Distribución del los números primos

Índice de contenidos

1	Funciones aritméticas		2
	1.1	Ejemplos	3
	1.2	Producto de convolución	9
	1.3	Funciones multiplicativas	
	1.4	La identidad de Selberg	
	1.5	Convolución generalizada	16
2	Promedios de funciones aritméticas		
	2.1	Fórmulas para $\sum_{n \leq x} 1/n^s$	17
	2.2	Fórmulas para sumas de divisores	
	2.3	Fórmulas para sumas que involucran μ y Λ	22
3	Distribución de los números primos 25		
	3.1	Las funciones de Tchebychev	25
	3.2	El primo n ésimo	
	3.3	El teorema de Shapiro	31
	3.4	La sumatoria $\sum_{p \le x} 1/p$	
	3.5	La sumatoria $\overline{\operatorname{de}} \stackrel{p=\infty}{\mu}$	
Rε	eferen	cias	38

1 Funciones aritméticas

Nomenclatura. En general, salvo que se indique lo contrario, p o p_i , p_j , p_k , etc. denotarán números primos, pero q o q_i , q_j , q_k , etc. podrá denotar un entero arbitrario. Si $x \in \mathbb{R}$ es un número real, escribimos |x| para denotar su parte entera:

$$\lfloor x \rfloor = \max \{ n \in \mathbb{Z} : n \le x \} ;$$

La parte fraccionaria de x la denotamos $\{x\}$:

$$\{x\} = x - |x| .$$

Proposición 1.1. La función |x| satisface:

- (a) $|x| + |y| \le |x + y| \le |x| + |y| + 1$;
- (b) |x| + |-x| es igual a 0, si $x \in \mathbb{Z}$, y a -1, si no;
- (c) $\left|\frac{\lfloor x\rfloor}{m}\right| = \left\lfloor \frac{x}{m} \right\rfloor$, $si \ m \in \mathbb{Z}_{\geq 1}$;
- (d) $\left\lfloor x + \frac{1}{2} \right\rfloor$ es igual al entero más cercano a x, y el mayor;
- (e) $-\left|-x+\frac{1}{2}\right|$ es igual al entero más cercano a x, y el menor;
- $(f) \ \left\lfloor \frac{x}{m} \right\rfloor = \#\{1 \le k \le x : m \mid k\}, \ si \ m \in \mathbb{Z}_{\ge 1}.$

Demostración. (a): escribir $x=m+\mu$ e $y=n+\nu$. Entonces, $\lfloor x \rfloor + \lfloor y \rfloor = m+n \leq \lfloor m+n+\mu+\nu \rfloor = \lfloor x+y \rfloor$ y $\lfloor x+y \rfloor = m+n+\lfloor \mu+\nu \rfloor \leq m+n+1$.

- (b): si $x = m + \mu$, entonces $\lfloor x \rfloor + \lfloor -x \rfloor = m + \lfloor -m \mu \rfloor = \lfloor -\mu \rfloor$ que es igual a 0, si $\mu = 0$ y a -1, si $\mu > 0$.
 - (c): si $x = n + \nu$, entonces n = qm + r $(0 \le r < m)$ y

$$\left| \frac{\lfloor x \rfloor}{m} \right| = \left\lfloor q + \frac{r}{m} \right\rfloor = q + \left\lfloor \frac{r}{m} \right\rfloor .$$

Por otro lado,

$$\left\lfloor \frac{x}{m} \right\rfloor = \left\lfloor \frac{n+\nu}{m} \right\rfloor = \left\lfloor q + \frac{r}{m} + \frac{\nu}{m} \right\rfloor = q + \left\lfloor \frac{r+\nu}{m} \right\rfloor.$$

Pero $0 \le r \le m-1$ y $0 \le \nu < 1$, con lo que $0 \le r+\nu < m$ y

$$\left\lfloor \frac{r}{m} \right\rfloor = \left\lfloor \frac{r+\nu}{m} \right\rfloor = 0 .$$

En particular, $\left\lfloor \frac{x}{m} \right\rfloor = \left\lfloor \frac{\lfloor x \rfloor}{m} \right\rfloor = q$.

(d): Si n es el entero más cercano a x y el mayor entre ellos y si $n=x+\theta$ $(-\frac{1}{2}<\theta\leq\frac{1}{2})$, entonces $0\leq-\theta+\frac{1}{2}<1$ y

$$\left\lfloor x + \frac{1}{2} \right\rfloor = \left\lfloor n - \theta + \frac{1}{2} \right\rfloor = n + \left\lfloor -\theta + \frac{1}{2} \right\rfloor = n.$$

(e): si n es el entero más cercano a x y el menor entre ellos y si $n=x+\theta$ $\left(-\frac{1}{2}\leq\theta<\frac{1}{2}\right)$, entonces $0\leq\theta+\frac{1}{2}<1$ y

$$\left| -x + \frac{1}{2} \right| = \left| -n + \theta + \frac{1}{2} \right| = -n + \left| \theta + \frac{1}{2} \right| = -n$$
.

(f): Si $j m \le x < (j+1) m$, entonces $j \le \frac{x}{m} < j+1$ y, por definición, $j = \left\lfloor \frac{x}{m} \right\rfloor$. \square

1.1 Ejemplos

Definición 1.2. Una función aritmética es una sucesión de números (complejos), una función $\mathbb{Z}_{\geq 1} \to \mathbb{C}$.

Ejemplo 1.3. La función de Möbius es la función aritmética definida por:

$$\mu(n) = \begin{cases} 1 , & \text{si } n = 1 ,\\ (-1)^k , & \text{si } n = p_1 \cdots p_k \text{ (libre de cuadrados) y} \\ 0 , & \text{si } n \text{ no es libre de cuadrados.} \end{cases}$$

Ejemplo 1.4. La función de Euler es la función aritmética definida por:

$$\varphi(n) = \#\{0 \le k < n : (k:n) = 1\}$$
.

Ejemplo 1.5. La *cantidad de divisores* es una función aritmética; en un entero positivo toma como valor la cantidad de divisores positivos del mismo:

$$d(n) = \# \mathsf{Div}_+(n)$$
.

Ejemplo 1.6 (Sumas de divisores). Un poco más en general, si $\alpha \in \mathbb{C}$, definimos

$$\sigma_{\alpha}(n) = \sum_{d|n} d^{\alpha} ,$$

donde la suma se realiza sobre los divisores positivos de n. La cantidad de divisores es $d(n) = \sigma_0(n)$.

Ejemplo 1.7. La cantidad de divisores primos positivos distintos se define de la siguiente manera:

$$\omega(n)\,=\,\#\big\{p\,:\, \text{primo y }p\mid n\big\}$$
 .

También es una función aritmética. La cantidad de divisores primos postivos contados con multiplicidad la denotamos por $\Omega(n)$.

Ejemplo 1.8. La función de von Mangoldt es la función aritmética definida por:

$$\Lambda(n) \, = \, \begin{cases} \log(p) \ , & \text{si } n = p^m \ , \\ 0 \ , & \text{en otro caso.} \end{cases}$$

O sea, $\Lambda(n) = 0$, precisamente cuando $\omega(n) \neq 1$ (pues $\log(1) = 0$). La función logaritmo, $\log(n)$, restringida a los enteros positivos, es una función aritmética.

Ejemplo 1.9. La función de Liouville es la función aritmética definida por:

$$\lambda(n) = \begin{cases} 1 , & \text{si } n = 1 ,\\ (-1)^{a_1 + \dots + a_k} , & \text{si } n = p_1^{a_1} \dots p_k^{a_k} . \end{cases}$$

Ejemplo 1.10. La función identidad es la función

$$N(n) = n$$

y la función constante es, simplemente,

$$u(n) = 1$$
.

La función

$$I(n) = \begin{cases} 1 , & \text{si } n = 1 , \\ 0 , & \text{si } n > 1 , \end{cases}$$

también es una función aritmética importante; la llamaremos neutro o delta.

Ejemplo 1.11. Dado $\alpha \in \mathbb{C}$, la función aritmética definida por $n \mapsto n^{\alpha}$ está construida a partir de N(n) componiendo esta función con *elevar a la potencia* α . Si α es un número natural, podemos describirla también como la *multiplicación coordenada a coordenada* α veces de N con sigo misma:

$$n \mapsto n^{\alpha} = N(n)^{\alpha} = N^{\alpha}(n)$$
.

En general, el producto puntual de funciones aritméticas define nuevas funciones.

Ejemplo 1.12. Si $n \geq 1$, entonces

$$\log(n) I(n) = 0.$$

Es decir, el producto puntual de las funciones I y \log es igual a la función cero, que denotaremos 0.

Ejemplo 1.13. Si $\alpha \in \mathbb{R}$ es un número real arbitrario, el coeficiente binomial $\binom{\alpha}{\cdot}$: $\mathbb{Z}_{>1} \to \mathbb{R}$ es la función definida por:

$$\binom{\alpha}{k} = \frac{\alpha(\alpha-1)\cdots(\alpha-k+1)}{k!} = \frac{1}{k!} \prod_{j=0}^{k-1} (\alpha-j) ,$$

donde k! = k (k-1) cdots 1 denota la función factorial en k. Podemos extender la función a k = 0, con la convención de que 0! = 1 y que el producto de trasladados de α sea vacío; es decir,

$$\begin{pmatrix} \alpha \\ 0 \end{pmatrix} := 1 .$$

Si $\alpha \in \mathbb{Z}_{\geq 0}$, entonces $\binom{\alpha}{k}$, por propiedades del número combinatorio, es igual al coeficiente binomial usual. Si pensamos en un polinomio de variable compleja $P(z) = \sum_{k=0}^{\alpha} a_k z^k$ $(\alpha \in \mathbb{Z}_{\geq 0})$, entonces

$$P^{(r)}(z) = \sum_{k=r}^{\alpha} k (k-1) \cdots (k-r+1) a_k z^{k-r}$$

y, en particular, $P^{(r)}(0) = r! a_r$. Si elegimos $P(z) = (1+z)^{\alpha}$, entonces

$$P^{(r)}(z) = \alpha (\alpha - 1) \cdots (\alpha - r + 1) (1 + z)^{\alpha - r}$$

y, así, el coeficiente de z^k es $a_k = \binom{\alpha}{k}$. Es decir, si $\alpha \in \mathbb{Z}_{\geq 0}$,

$$(1+z)^{\alpha} = \sum_{k=0}^{\alpha} {\alpha \choose k} z^{k} .$$

El coeficiente binomial que aparece en esta expresión es el definido para un número real arbitrario. Si |z| < 1, entonces Re(1+z) > 0 y podemos definir, para $\alpha \in \mathbb{C}$, la función $f(z) = (1+z)^{\alpha}$ por la rama principal del logaritmo; esta función es holomorfa en Re(z) > -1 y admite un desarrollo de Taylor centrado en $z_0 = 0$ convergente en |z| < 1:

$$(1+z)^{\alpha} = \sum_{k=0}^{\infty} a_k z^k .$$

El coeficiente en z^k es

$$a_k = \frac{f^{(k)}(0)}{k!} = \frac{\alpha (\alpha - 1) \cdots (\alpha - k + 1)}{k!}.$$

De esta manera, podemos definir, para un número complejo arbitrario α , el coeficiente binomial (complejo) como la función $\binom{\alpha}{k} = a_k$.

Ejemplo 1.14. Dado $q \in \mathbb{C} \setminus \{0\}$, definimos la q-identidad por:

$$N_q(n) = 1 + q + \dots + q^{n-1} = \frac{q^n - 1}{q - 1}$$
.

El q-factorial es

$$n!_q = N_q(n) N_q(n-1) \cdots N_q(1) = \frac{(q-1)(q^2-1)\cdots(q^n-1)}{(q-1)^n}$$
.

Finalmente, el coeficiente q-binomial para enteros $0 \le k \le n$ es

$$\binom{n}{k}_q = \frac{n!_q}{k!_q (n-k)!_q} .$$

Observación 1.15. La función neutro, I, se puede describir en términos de la función parte entera:

$$I(n) \, = \, \left| \, \frac{1}{n} \, \right| \ .$$

A continuación demostramos algunas relaciones entre las funciones definidas en los ejemplos que aparecen al sumar sobre los divisores del argumento.

Teorema 1.16. Si $n \ge 1$, entonces

$$\sum_{d|n} \mu(d) = I(n) . \tag{1}$$

Demostración. Si $n = p_1^{a_1} \cdots p_k^{a_k}$, entonces $\mu(d) = (-1)^j$, si d es producto de j primos distintos y libre de cuadrados; si d no es libre de cuadrados, $\mu(d) = 0$. Entonces

$$\sum_{d|n} \mu(d) = \sum_{j=0}^{k} \binom{k}{j} (-1)^j = \begin{cases} 1 \ , & \text{si } k = 0 \ , \\ 0 \ , & \text{si } k \ge 1 \ , \end{cases} = \begin{cases} 1 \ , & \text{si } n = 1 \ , \\ 0 \ , & \text{si } n > 1 \ . \end{cases}$$

Teorema 1.17. Si $n \ge 1$, entonces

$$\sum_{d|n} \varphi(d) = n . (2)$$

Demostración. Sea S el conjunto $\{1, 2, ..., n\}$ y, para cada divisor d de n, sea $A(d) \subset S$ el subconjunto de los $k \in S$ tales que (k : n) = d. Entonces,

$$S = \bigsqcup_{d|n} A(d) .$$

En particular, $n=\#S=\sum_{d|n}\#A(d)$. Ahora, la función $k\mapsto k/d$ determina una biyección

$$A(d) = \{0 < k \le n : (k : n) = d\} \simeq \{0 < q \le n/d : (q : \frac{n}{d}) = 1\}.$$

De esto se deduce que $\#A(d) = \varphi(\frac{n}{d})$ y que

$$n = \sum_{d|n} \varphi(\frac{n}{d}) = \sum_{d|n} \varphi(d) .$$

Teorema 1.18. $Si \ n \ge 1$, entonces

$$\varphi(n) = \sum_{d|n} \mu(d) \frac{n}{d} = n \prod_{p|n} \left(1 - \frac{1}{p}\right). \tag{3}$$

Demostración. Simplemente,

$$\varphi(n) = \sum_{k=1}^{n} I((k:n)) = \sum_{k=1}^{n} \sum_{\substack{d \mid (k:n)}} \mu(d) = \sum_{k=1}^{n} \sum_{\substack{d \mid k \\ d \mid n}} \mu(d) .$$

Pero, intercambiando las sumatorias, el último término es igual a

$$\sum_{d|n} \mu(d) \sum_{\substack{k=qd \ a=1}}^{n/d} 1 = \sum_{d|n} \mu(d) \frac{n}{d} .$$

Finalmente, de la definición de μ ,

$$\sum_{d|n} \frac{\mu(d)}{d} = \prod_{p|n} \left(1 - \frac{1}{p} \right) .$$

Proposición 1.19. La función φ satisface:

(a) $\varphi(p^{\alpha}) = p^{\alpha} - p^{\alpha-1};$

(b) $\varphi(mn) = \varphi(m) \varphi(n) \frac{d}{\varphi(d)}$, donde d = (m:n);

(c) $\varphi(mn) = \varphi(m) \varphi(n)$, si(m:n) = 1;

(d) $\varphi(a) \mid \varphi(b)$, si $a \mid b$;

(e) $\varphi(n)$ es par, si n > 3;

(f) $2^r \mid \varphi(n)$, si n es divisible por r primos impares distintos.

Demostración. (b): por el Teorema 1.18,

$$\frac{\varphi(mn)}{mn} = \prod_{p|mn} \left(1 - \frac{1}{p} \right) = \frac{\prod_{p|m} \left(1 - \frac{1}{p} \right) \prod_{p|n} \left(1 - \frac{1}{p} \right)}{\prod_{p|(m:n)} \left(1 - \frac{1}{p} \right)} = \frac{\varphi(m)}{m} \frac{\varphi(n)}{n} \frac{d}{\varphi(d)}.$$

(d): si $a \mid b$, entonces b = a c para cierto c entero. Si $c \in \{1, b\}$, no hay nada que probar. Supongamos que c < b. Por (b),

$$\varphi(b) = \varphi(a) \varphi(c) \frac{d}{\varphi(d)},$$

donde d = (a:c). Pero c < b y $d \mid c$. Inductivamente, podemos suponer que $\varphi(d) \mid \varphi(c)$ y, por lo tanto, $\varphi(a) \mid \varphi(b)$, pues $\frac{\varphi(c)}{\varphi(d)} d \in \mathbb{Z}$.

Teorema 1.20. Si $n \ge 1$ es un entero y p es un promo positivo, entonces el mayor exponente de p que divide a n! es p^e , donde

$$e = \sum_{l>1} \left\lfloor \frac{n}{p^l} \right\rfloor . \tag{4}$$

Demostración. Si n=1, no hay nada que probar. Si j es tal que $p^{j} || n$, entonces

$$\sum_{l \ge 1} \left\lfloor \frac{n}{p^l} \right\rfloor - \sum_{l \ge 1} \left\lfloor \frac{n-1}{p^l} \right\rfloor = \sum_{l \ge 1} \left(\left\lfloor \frac{n}{p^l} \right\rfloor - \left\lfloor \frac{n-1}{p^l} \right\rfloor \right) = \sum_{p^l \mid n} 1 = j. \tag{5}$$

Para probar la anteúltima igualdad, notamos que, si $p^l \mid n$, entonces $\frac{n}{p^l}$ es entero, pero $\frac{n-1}{p^l}$ no lo es y, entonces $\left\lfloor \frac{n-1}{p^l} \right\rfloor = \frac{n}{p^l} - 1$; si $p^l \nmid n$, entonces, escribiendo $n = q p^l + r$ $(1 \le r < p^l)$, q es el cociente para n y para n-1 en la división por p^l , con lo que $\left\lfloor \frac{n}{p^l} \right\rfloor = q = \left\lfloor \frac{n-1}{p^l} \right\rfloor$. De (5), se deduce que, si vale (4) para n-1, entonces vale para n.

Observación 1.21. Si a_1, \ldots, a_n es una secuencia (finita) de enteros no negativos, entonces

$$a_1 + a_2 + \dots + a_n = f(1) + f(2) + \dots,$$
 (6)

donde $f(k) = \#\{i : a_i \ge k\}$; la sumatoria de las f(k) es finita.

Otra Demostración del Teorema 1.20. Para cada j en el rango $1 \leq j \leq n$, definimos $a_j \in \mathbb{Z}_{\geq 0}$ tal que $p^{a_j} \mid\mid j$. Entonces el valor de $e \in \mathbb{Z}_{\geq 0}$ tal que $p^e \mid\mid n!$ es igual a

$$e = a_1 + \dots + a_n = \sum_{l \ge 1} f(l) = \sum_{l \ge 1} \left\lfloor \frac{n}{p^l} \right\rfloor ,$$

donde $f(l) = \#\{1 \le k \le n : p^l \mid k\}$ es igual a $\left\lfloor \frac{n}{p^l} \right\rfloor$, por Proposición 1.1 (f).

Corolario 1.22. Si $a_1, \ldots, a_r \in \mathbb{Z}_{\geq 0}$ es una secuencia finita de enteros no negativos y $n = a_1 + \cdots + a_r$, entonces

$$\frac{n!}{a_1! \cdots a_r!}$$

es entero.

Demostración. Para cada primo p, si p^k divide al producto $a_1! \cdots a_r!$, entonces divide a n!. Esta afirmación se deduce de la designaldad

$$\left\lfloor \frac{a_1}{p^l} \right\rfloor + \dots + \left\lfloor \frac{a_r}{p^l} \right\rfloor \le \left\lfloor \frac{a_1 + \dots + a_r}{p^l} \right\rfloor = \left\lfloor \frac{n}{p^l} \right\rfloor$$

(válida para todo p primo y todo $l \ge 1$), sumando sobre l.

1.2 Producto de convolución

Definición 1.23. Dadas funciones aritméticas f y g, su convolución o producto de Dirichlet es la función aritmética:

$$f * g(n) = \sum_{d|n} f(d) g(\frac{n}{d}) . \tag{7}$$

Ejemplo 1.24. Los enunciados del Teorema 1.16, del Teorema 1.17 y del Teorema 1.18 se traducen, respectivamente, como

$$\mu * u = I$$
 , $\varphi * u = N$ y $\mu * N = \varphi$.

Las funciones suma de divisores σ_{α} cumplen que

$$\sigma_{\alpha} = N^{\alpha} * u$$
.

En particular, $d = \sigma_0 = u * u$.

Proposición 1.25. Dadas funciones aritméticas f, g y h, se verifica

- (a) f * g = g * f;
- (b) (f * g) * g = f * (g * h)
- (c) I * f = f * I = f.

Demostración. (a): si $n \ge 1$, sumando sobre los pares de enteros postivos a, b cuyo producto es igual a n,

$$f * g(n) = \sum_{ab=n} f(a) g(b) = g * f(n)$$
.

(b): análogamente,

$$(f * g) * h(n) = \sum_{a \, b \, c = n} f(a) \, g(b) \, h(c) = f * (g * h)(n) .$$

(c): por (a), es suficiente probar que f * I = f. Pero

$$f * I(n) = \sum_{d|n} f(d) \left\lfloor \frac{d}{n} \right\rfloor = f(n) .$$

Teorema 1.26. Si $f(1) \neq 0$, entonces existe una única función aritmética g que cumple que f * g = g * f = I. En tal caso, g está dada por:

$$\begin{cases} g(1) = \frac{1}{f(1)}, \\ g(n) = \frac{-1}{f(1)} \sum_{\substack{d | n \\ d < n}} f(\frac{n}{d}) g(d), & si \ n > 1. \end{cases}$$
 (8)

Demostración. Para n = 1, se debe cumplir

$$1 = f * g(1) = f(1) g(1)$$
.

Para n > 1,

$$0 \, = \, f * g(n) \, = \, \sum_{d \mid n} \, f(\frac{n}{d}) \, g(d) \, \, .$$

Observación 1.27. La condición $f(1) \neq 0$ es también necesaria para que f admite una inversa.

Corolario 1.28. El conjunto de las funciones aritméticas con el producto de convolución y la función I como neutro conforman un monoide. Las funciones f con $f(1) \neq 0$ forman un submonoide que es, además, un grupo con la inversa definida como en (8).

Demostración. Si f(1) y g(1) son distintos de cero, entonces f*g(1)=f(1) $g(1)\neq 0$. \square

Teorema 1.29 (Fórmula de inversión de Möbius). $Si\ f\ es\ una\ función\ aritmética\ y\ F$ es la función

$$F(n) = \sum_{d|n} f(d) = f * u(n) , \qquad (9)$$

entonces

$$f(n) = \sum_{d|n} F(d) \mu(\frac{n}{d}) = F * \mu(n) .$$
 (10)

Recíprocamente, si f cumple (10) para cierta F, entonces F y f están relacionadas por (9).

Demostración. Se deduce de $I = \mu * u = u * \mu$.

Ejemplo 1.30. La función φ satisface $\varphi(1) = 1 \neq 0$, con lo cual admite una inversa. Más adelante describiremos esta función.

Teorema 1.31. Si $n \ge 1$, entonces

$$\sum_{d|n} \Lambda(d) = \log n , \qquad (11)$$

es decir, $\Lambda * u = \log$. Sin embargo, $\Lambda(1) = 0$, con lo cual la función de von Mangoldt no es invertible.

Demostración. Si $n=1,\,0=\log(1)=\Lambda(1).$ Si n>1 y $n=p_1^{a_1}\,\cdots\,p_k^{a_k},$ entonces

$$\log n = \sum_{j=1}^k a_j \log p_j .$$

Por otro lado, como Λ se anula en los números con más de un factor primo distinto,

$$\sum_{d|n} \Lambda(d) = \sum_{j=1}^k \sum_{m=1}^{a_j} \Lambda(p_j^m) = \sum_{j=1}^k \sum_{m=1}^{a_j} \log p_j .$$

Si bien no podemos invertir Λ , podemos aplicar la Fórmula de inversión de Möbius (Teorema 1.29).

Teorema 1.32. $Si \ n \ge 1$, entonces

$$\Lambda(n) = \sum_{d|n} \mu(d) \log(\frac{n}{d}) = -\sum_{d|n} \mu(d) \log(d) , \qquad (12)$$

es decir, $\Lambda = \mu * \log = -(\mu \cdot \log) * u$.

Observación 1.33. El Teorema 1.32 proporciona otro ejemplo de producto puntual de funciones aritméticas.

Demostración. Por el Teorema 1.31 y el Teorema 1.29,

$$\Lambda(n) \, = \, \sum_{d|n} \, \mu(d) \log(\tfrac{n}{d}) \, = \, \log(n) \, \sum_{d|n} \, \mu(d) \, - \, \sum_{d|n} \, \mu(d) \log(d) \; .$$

Pero $\sum_{d|n} \mu(d) = I(n)$ y el Ejemplo 1.12 muestra que $\log(n) I(n) = 0$, siempre.

Observación 1.34. La conmutatividad, asociatividad, neutralidad y la Fórmula de inversión no requieren que las funciones sean invertibles.

1.3 Funciones multiplicativas

Definición 1.35. Una función aritmética $f \neq 0$ se dice *multiplicativa*, si f(mn) = f(m) f(n) para todo par de enteros m y n coprimos. Si f(mn) = f(m) f(n) para todo par de enteros m y n, entonces se dice que f es *completamente multiplicativa*.

Ejemplo 1.36. Las funciones I, N y u son completamente multiplicativas. La función N^{α} , también.

Ejemplo 1.37. Las funciones φ y μ son multiplicativas, pero no completamente; la función λ es completamente multiplicativa.

Observación 1.38. Algunas funciones separan productos en sumas: por ejemplo, el logaritmo verifica

$$\log(mn) = \log(m) + \log(n) ,$$

para todo par de enteros m y n, mientras que la función cantidad de divisores primos verifica

$$\omega(mn) = \omega(m) + \omega(n) ,$$

si(m:n) = 1.

Observación 1.39. Dadas funciones aritméticas f y g, el producto puntual $f \cdot g(n) = f(n) g(n)$ es una función aritmética. Si f y g son multiplicativas, $f \cdot g$ también lo es; si son completamente multiplicativas, $f \cdot g$, también. Por otro lado, en general, si $g(n) \neq 0$ para todo $n \geq 1$, podemos definir f/g(n) = f(n)/g(n). Si f y g son multiplicativas, entonces f/g también lo será; si son completamente multiplicativas, f/g también lo será. Un poco más en general, podemos definir f/g en el subconjunto de $\mathbb{Z}_{\geq 1}$ en donde g no se anula. Sigue siendo cierto, siempre que esté definida, que si f y g son multiplicativas, o bien completamente multiplicativas, entonces el cociente f/g también será multiplicativa o completamente multiplicativa, respectivamente.

Proposición 1.40. Sea f una función aritmética. Entonces,

- (a) si f es multiplicativa, f(1) = 1;
- (b) $si\ f(1) = 1$, entonces f es multiplicativa, $si\ y\ s\'olo\ si$

$$f(p_1^{a_1} \cdots p_k^{a_k}) = f(p_1^{a_1}) \cdots f(p_k^{a_k}) ;$$

(c) si f es multiplicativa, entonces es completamente multiplicativa si (y sólo si), además,

$$f(p^a) = f(p)^a .$$

Demostración. (a): como (por definición) f no es la función cero, $f(n) \neq 0$ para algún n. Como (n:1)=1, f(n)=f(1) f(n), de lo que se deduce que f(1)=1.

Observación 1.41. Si f es multiplicativa, por la Proposición 1.40 (a), f(1) = 1. Pero, entonces

$$f(n) I(n) = I(n) ,$$

para todo $n \ge 1$.

Teorema 1.42. Sean f y g funciones aritméticas. Entonces,

- (a) si f g son multiplicativas, f * g también lo es;
- (b) $si\ g\ y\ f*g\ son\ multiplicativas,\ f\ también\ lo\ es;$
- (c) si g es multiplicativa, su inversa con respecto a la convolución también lo es.

Demostración. (a): sean m y n enteros coprimos. Si $d \mid mn$, entonces d = ab, con (a:b) = 1 y $a \mid m$ y $b \mid n$. De hecho, existe una biyección

$$\mathsf{Div}_+(m) \times \mathsf{Div}_+(n) \simeq \mathsf{Div}_+(mn)$$

dada por $(a, b) \mapsto ab$. Entonces,

$$f * g(mn) = \sum_{d|mn} f(d) g(\frac{mn}{d}) = \sum_{\substack{a|m\\b|n}} f(ab) g(\frac{m}{a} \frac{n}{b}) = \sum_{a|m} f(a) g(\frac{m}{a}) \sum_{b|n} f(b) g(\frac{n}{b}).$$

(b): asumiendo que g es multiplicativa, g(1) = 1 y

$$f * g(1) = f(1) .$$

Si (m:n) = 1 y f(ab) = f(a) f(b) para todo par (a:b) = 1 tal que ab < mn, entonces

$$f * g(mn) = f(mn) + \sum_{\substack{a|m, b|n \\ ab < mn}} f(a) f(b) g(\frac{m}{a}) g(\frac{n}{b})$$

$$= f(mn) - f(m) f(n) + \sum_{\substack{a|m \\ b|n}} f(a) f(b) g(\frac{m}{a}) g(\frac{n}{b})$$

$$= f(mn) - f(m) f(n) + (f * g(m)) (f * g(n)).$$

Es decir, f * g es multiplicativa, (si y) sólo si f es multiplicativa.

Observación 1.43. El resultado del Teorema 1.42 no es cierto, en general, para funciones completamente multiplicativas (ver también el Teorema 1.44).

Funciones aritmeticas (monoide)

$$f(1) \neq 0$$
 (submonoide, grupo)
 $f(1) = 1$ (subgrupo)

Funciones multiplicativas (subgrupo)

Funciones completamente multiplicativas (subconjunto)

Cada uno de estos subconjuntos es cerrado por el producto y el conciente coordenada a coordenada. La función constante u actúa como neutro con respecto a este producto.

Teorema 1.44. Sea f una función multiplicativa. Entonces f es completamente multiplicativa, si y sólo si

$$f^{-1}(n) = \mu(n) f(n) = (\mu \cdot f)(n)$$
,

para todo $n \geq 1$.

Demostración. Sea $g(n) := \mu(n) f(n)$. Si f es completamente multiplicativa, entonces

$$g * f(n) = \sum_{d|n} \mu(d) f(d) f(\frac{n}{d}) = f(n) \sum_{d|n} \mu(d) = f(n) I(n)$$
.

Pero f(n) I(n) = I(n) (puntualemnte) y, así, g * f = I.

En general, si f es multiplicativa, $\mu \cdot f$ también es multiplicativa y f es completamente multiplicativa, si $f(p^a) = f(p)^a$ para todo primo p y todo $a \ge 1$. Si $f^{-1} = g$, entonces,

$$0 = \sum_{j=0}^{a} g(p^{j}) f(p^{a-j}) = \mu(1) f(1) f(p^{a}) + \mu(p) f(p) f(p^{a-1}),$$

de lo que se deduce que $f(p^a) = f(p) f(p^{a-1})$.

Ejemplo 1.45. Dado que $\varphi = \mu * N$,

$$\varphi^{-1} = \mu^{-1} * N^{-1} = u * N^{-1}$$

(el exponente denota inversa conrespecto a la convolución y no elevar a $\alpha = -1$ como en el Ejemplo 1.11). Como N es completamente multiplicativa, deducimos que $N^{-1} = \mu \cdot N$ y, por lo tanto,

$$\varphi^{-1}(n) = u * (\mu \cdot N)(n) = \sum_{d|n} \mu(d) d.$$

Teorema 1.46. Si f es una función multiplicativa, entonces

$$\sum_{d|n} \mu(d) f(d) = \prod_{p|n} (1 - f(p)) .$$

Demostración. Como f es multiplicativa, $\mu \cdot f$ y $g = u * (\mu \cdot f)$ también. Pero en potencias de primos,

$$g(p^a) \, = \, \mu(1) \, f(1) \, + \, \mu(p) \, f(p) \, = \, 1 \, - \, f(p) \; .$$

Ejemplo 1.47. La inversa de φ satisface

$$\varphi^{-1}(n) = \sum_{d|n} \mu(d) d = \prod_{p|n} (1-p).$$

Teorema 1.48. $Si \ n \ge 1$, entonces

$$\sum_{d|n} \lambda(d) = \begin{cases} 1, & \text{si nes cuadrado perfecto } y \\ 0, & \text{si no.} \end{cases}$$
 (13)

Además, la inversa λ^{-1} satisface:

$$\lambda^{-1}(n) = |\mu(n)| ,$$

 $si \ n \geq 1.$

Demostración. Como λ es completamente multiplicativa,

$$\lambda^{-1}(n) = \mu(n) \lambda(n) = \begin{cases} \left[(-1)^k \right]^2, & \text{si } n = p_1 \cdots p_k \text{ libre de cuadrados y} \\ 0, & \text{en otro caso,} \end{cases}$$
$$= \mu(n)^2 = |\mu(n)|.$$

También, $g = u * \lambda$ es multiplicativa y, en potencias de primos,

$$g(p^a) = \sum_{j=0}^a \lambda(p^j) = \sum_{j=0}^a (-1)^j = \begin{cases} 1, & \text{si } a \text{ es par y} \\ 0, & \text{si no.} \end{cases}$$

1.4 La identidad de Selberg

Definición 1.49. Si f es una función aritmética, su derivada (formal) es la función

$$f'(n) = (\log n) f(n) .$$

Observación 1.50. Para toda f, f'(1) = 0.

Ejemplo 1.51. La derivada del neutro es la función cero:

$$I'(n) = (\log n) I(n) = 0.$$

La derivada de la función constante u está dada por:

$$u'(n) = (\log n) u(n) = \log n = \sum_{d|n} \Lambda(d) ,$$

es decir, $u' = u * \Lambda$.

Proposición 1.52. Sean f y g funciones aritméticas. Entonces,

- (a) (f+g)' = f' + g';
- (b) (f * g)' = f' * g + f * g';
- (c) $(f^{-1})' = -f' * (f * f)^{-1}$.

Demostración. (b): si $n, d \ge 1$, $\log(n) = \log(d) + \log(\frac{n}{d})$.

Teorema 1.53 (Identidad de Selberg). Si $n \ge 1$, entonces

$$\Lambda(n)\log(n) + \sum_{d|n} \Lambda(d)\Lambda(\frac{n}{d}) = \sum_{d|n} \mu(d)\log(\frac{n}{d})^2.$$
 (14)

Demostración. Derivando $\Lambda * u = \log = u'$,

$$\Lambda' * u + \Lambda * u' = u'' = (\log)' = (\log)^2$$

(producto puntual). Pero $\Lambda' * u = (\Lambda \cdot \log) * u$ y, por otro lado,

$$\Lambda * u' = \Lambda * \log = \Lambda * \Lambda * u .$$

O sea,

$$(\log)^2 = u'' = (\Lambda' + (\Lambda * \Lambda)) * u .$$

1.5 Convolución generalizada

Definición 1.54. Dada una función aritmética α y una función $F:(0,+\infty)\to\mathbb{C}$ que verifique F(x)=0, si x<1, definimos la convolución generalizada de α con F como la función

$$(\alpha \circ F)(x) = \sum_{n \le x} \alpha(n) F(\frac{x}{n}) .$$

Observación 1.55. Si F(x) = 0 cuando x < 1, entonces $\alpha \circ F(x) = 0$ cuando x < 1, también.

Teorema 1.56. Si α y β son funciones aritméticas, entonces

$$\alpha \circ (\beta \circ F) = (\alpha * \beta) \circ F$$
.

Demostración. Dado $x \geq 1$,

$$\alpha \circ (\beta \circ F)(x) = \sum_{m \le x} \alpha(m) \sum_{n \le x/m} \beta(n) F(\frac{x}{mn}) = \sum_{mn \le x} \alpha(m) \beta(n) F(\frac{x}{mn})$$
$$= \sum_{k \le x} (\alpha * \beta)(k) F(\frac{x}{k}) .$$

Observación 1.57. La función *I* también es neutro para esta operación:

$$I \circ F(x) = \sum_{n \le x} \left\lfloor \frac{1}{n} \right\rfloor F(\frac{x}{n}) = F(x) .$$

Teorema 1.58 (Fórmula de inversión generalizada). Sea α una función aritmética invertible con inversa α^{-1} respecto del producto de convolución y sea $F:(0,+\infty)\to\mathbb{C}$ una función que verifica F(x)=0 si x<1. Si

$$G(x) = \sum_{n \le x} \alpha(n) F(\frac{x}{n}) , \qquad (15)$$

entonces

$$F(x) = \sum_{n \le x} \alpha^{-1}(n) G(\frac{x}{n}) . \tag{16}$$

Recíprocamente, si F cumple (16) para cierta G, entonces F y G están relacionadas por (15).

Ejemplo 1.59. Si $G(x) = \sum_{n \leq x} F(\frac{x}{n})$, entonces $G = u \circ F$. Recupermos F multiplicando por μ :

$$F(x) = \sum_{n \le x} \mu(n) G(\frac{x}{n}) .$$

Corolario 1.60. Si α es completamente multiplicativa, entonces F y G satisfacen $G(x) = \alpha \circ F(x)$, si y sólo si satisfacen $F(x) = (\mu \cdot \alpha) \circ G(x)$.

2 Promedios de funciones aritméticas

Las funciones de esta sección serán del tipo $A \to \mathbb{C}$, donde $A \subset \mathbb{R}$ es algún sobconjunto: un intervalo, una semirecta, los enteros, etc.; en particular, no consideramos funciones de variable compleja, aunque, con un poco de cuidado, sea posible adaptar las definiciones, los enunciados y las demostraciones. Si $g \geq 0$, es decir, si g es una función que toma valores reales no negativos, O(g(x)) denota la clase de funciones f que cumplen

$$|f(x)| \leq M g(x)$$
,

para todo x suficientemente grande y cierta constante $M.^1$ Escribimos $f(x) = o\left(g(x)\right)$ para indicar que $\lim_{x\to+\infty} f(x)/g(x) = 0$ (el límite existe y es 0); también usamos $f\sim g$ para indicar que $\lim_{x\to+\infty} f(x)/g(x) = 1$ (el límite existe y es 1).

2.1 Fórmulas para $\sum_{n \leq x} 1/n^s$

Teorema 2.1 (Fórmula sumatoria de Euler). 2 Si f es una función con derivada f' continua en un intervalo [x, y], entonces

$$\sum_{x < n \le y} f(n) = \int_{x}^{y} f(t) dt + \int_{x}^{y} (t - \lfloor t \rfloor) f'(t) dt - ((y - \lfloor y \rfloor) f(y) - (x - \lfloor x \rfloor) f(x)).$$

$$O\left(g\right) \,=\, \bigcup_{M>0}\, \bigcup_{x_0}\, \bigcap_{x\geq x_0}\, \Big\{f\,:\, |f(x)|\leq M\,g(x)\Big\}\;.$$

La clase de las f para las que existen M = M(f) > 0 y $x_0 = x_0(f)$ tal que, si $x \ge x_0$, entonces $|f(x)| \le M g(x)$:

² Este resultado será generlizado por la Identidad de Abel (Teorema 3.6).

Demostración. En primer lugar, integrando (t f(t))' = f(t) + t f'(t),

$$y f(y) - x f(x) = \int_{x}^{y} f(t) dt + \int_{x}^{y} t f'(t) dt$$
.

El lado derecho de la fórmula del enunciado es, entonces, igual a

$$-\int_{x}^{y} \lfloor t \rfloor f'(t) dt + \lfloor y \rfloor f(y) - \lfloor x \rfloor f(x) .$$

En segundo lugar, si m y n son enteros m < n, entonces

$$\int_{m+1}^{n} \lfloor t \rfloor f'(t) dt = \sum_{k=m+2}^{n} \int_{k-1}^{k} \lfloor t \rfloor f'(t) dt = \sum_{k=m+2}^{n} (k-1) (f(k) - f(k-1))$$

$$= (m+1) (f(m+2) - f(m+1)) + \dots + (n-1) (f(n) - f(n-1))$$

$$= n f(n) - (m+1) f(m+1) - \sum_{k=m+2}^{n} f(k) .$$

En particular, si m = |x| y n = |y|, entonces

$$\int_{x}^{y} \lfloor t \rfloor f'(t) dt = \int_{x}^{m+1} + \int_{m+1}^{n} + \int_{n}^{y} \lfloor t \rfloor f'(t) dt$$

$$= m \left(f(m+1) - f(x) \right) + \int_{m+1}^{n} \lfloor t \rfloor f'(t) dt + n \left(f(y) - f(n) \right)$$

$$= n f(y) - m f(x) - \sum_{k=m+1}^{n} f(k) .$$

Pero
$$\sum_{x < k \le y} f(k) = \sum_{n=1}^{m} f(k)$$
.

Definición 2.2. La función de Riemann es la función $\zeta:(0,1)\cup(1,+\infty)\to\mathbb{C}$ que definimos de la siguiente manera:

$$\zeta(s) = \begin{cases} \sum_{n \ge 1} \frac{1}{n^s} , & \text{si } s > 1 ,\\ \lim_{x \to +\infty} \left(\sum_{n \le x} \frac{1}{n^s} - \frac{x^{1-s}}{1-s} \right) , & \text{si } 0 < s < 1 . \end{cases}$$

La constante de Euler es

$$C = \lim_{x \to +\infty} \left(\sum_{n \le x} \frac{1}{n} - \log x \right).$$

Observación 2.3. Habría que verificar que los límites que aparecen en la Definición 2.2 efectivamente existen. Pero que ζ y C están bien definidas es consecuencia de, respectivamente, los items (b) y (c) y (a) del Teorema 2.4.

Teorema 2.4. Si $x \ge 1$, entonces

(a)
$$\sum_{n \le x} \frac{1}{n} = \log x + C + O\left(\frac{1}{x}\right);$$

(b)
$$\sum_{n < x} \frac{1}{n^s} = \frac{x^{1-s}}{1-s} + \zeta(s) + O(x^{-s})$$
, si $s > 0$ y $s \neq 1$;

(c)
$$\sum_{n>x} \frac{1}{n^s} = O(x^{1-s})$$
, si $s > 1$;

(d)
$$\sum_{n \le x} n^{\alpha} = \frac{x^{\alpha+1}}{\alpha+1} + O(x^{\alpha}), \text{ si } \alpha \ge 0.$$

Demostración. Para probar (a), elegir $f(t)=\frac{1}{t}$ y aplicar el Teorema 2.1: si y=x y x=1,

$$\sum_{1 < n < x} \frac{1}{n} \, = \, \int_1^x \, \frac{dt}{t} \, + \, \int_1^x \, \left(t - \lfloor t \rfloor\,\right) \left(\frac{-1}{t^2}\right) dt \, - \, \left(\left(x - \lfloor x \rfloor\,\right) \frac{1}{x} \, - \, \left(1 - \lfloor 1 \rfloor\,\right) \frac{1}{1}\right) \, .$$

Entonces, sumando el término n=1, si llamamos $R(x)=\int_1^x \frac{t-\lfloor t \rfloor}{t^2} dt$, vale que

$$\sum_{n \le x} \frac{1}{n} \le \log x + 1 - R(x) + \frac{1}{x} .$$

De hecho,

$$\left| \sum_{n \le x} \frac{1}{n} - \log x - \left(1 - R(x) \right) \right| = \frac{\{x\}}{x} .$$

Si x < X, $R(X) - R(x) \le \frac{1}{x} - \frac{1}{X}$, que tiende a 0 con $x \to +\infty$, con lo cual el límite de 1 - R(x) existe. Sea

$$C' := 1 - \int_1^{+\infty} \frac{t - \lfloor t \rfloor}{t^2} dt = \lim_{x \to +\infty} (1 - R(x)).$$

Entonces, el límite C existe y es igual a C'. Ahora bien,

$$(1 - R(x)) - C = \int_x^{+\infty} \frac{t - \lfloor t \rfloor}{t^2} dt \le \frac{1}{x}.$$

Por desigualdad triangular,

$$\left| \sum_{n \le x} \frac{1}{n} - \left(\log x - C \right) \right| \le \frac{1 + \{x\}}{x} .$$

Para la parte (b), elegimos $f(t)=t^{-s}$ ($s>0,\,s\neq 1$). Entonces,

$$\sum_{1 \le n \le x} \frac{1}{n^s} = \int_1^x t^{1-s} \frac{dt}{t} + \int_1^x \left(t - \lfloor t \rfloor \right) \left(\frac{-s}{t^{s+1}} \right) dt - \left(x - \lfloor x \rfloor \right) x^{-s} .$$

Ahora, $0 \le \int_x^{+\infty} \frac{t-\lfloor t \rfloor}{t^{s+1}} dt = O\left(x^{-s}\right)$ y, por lo tanto (s>0), el límite $\int_1^{+\infty} \frac{t-\lfloor t \rfloor}{t^{s+1}} dt$ existe. Como

$$\int_{1}^{x} t^{1-s} \frac{dt}{t} = \frac{x^{1-s} - 1}{1 - s} ,$$

agregando el término para n=1 a la sumatoria

$$\sum_{n \le x} \frac{1}{n^s} = \frac{x^{1-s}}{1-s} + \left(\frac{-1}{1-s} + 1 - s \int_1^{+\infty} \frac{t - \lfloor t \rfloor}{t^{s+1}} dt\right) + O\left(x^{-s}\right) . \tag{17}$$

De esta expresión se deduce que, si s > 1, entonces $x^{1-s} \to 0$ y $\zeta(s)$ está bien definida en $(1, +\infty)$. Además, para s > 0 y $s \neq 1$, el límite

$$\lim_{x \to +\infty} \left(\sum_{n \le x} \frac{1}{n^s} - \frac{x^{1-s}}{1-s} \right) \tag{18}$$

existe, de lo que se concluye que $\zeta(s)$ está bien definida para 0 < s < 1, también. Por otra parte, se ve que, para s > 1, $\zeta(s)$ es *igual a* el límite (18) existe para *todo* s > 0, $s \neq 1$. En definitiva,

$$\lim_{x \to +\infty} \left(\sum_{n \le x} \frac{1}{n^s} - \frac{x^{1-s}}{1-s} \right) = \zeta(s) = -s \left(\frac{1}{1-s} - \int_1^{+\infty} \frac{t - \lfloor t \rfloor}{t^s} \frac{dt}{t} \right).$$

Volviendo a la expresión asintótica (17), se deduce el resultado.

En cuanto a (c),

$$\sum_{n>x} \frac{1}{n^s} = \zeta(s) - \sum_{n \le x} \frac{1}{n^s} = \frac{-x^{1-s}}{1-s} + O(x^{-s}).$$

Finalmente, para (d), tomar $f(t) = t^{\alpha}$ ($\alpha > 0$). Entonces,

$$\sum_{1 \le n \le x} n^{\alpha} = \int_{1}^{x} t^{\alpha} dt + \alpha \int_{1}^{x} (t - \lfloor t \rfloor) t^{\alpha} \frac{dt}{t} - (x - \lfloor x \rfloor) x^{\alpha}.$$

Pero la segunda integral es $O(x^{\alpha})$ y la primera es igual a $\frac{x^{\alpha+1}-1}{\alpha+1}$.

Observación 2.5. En la demostración de (a) del Teorema 2.4, era mucho más sencillo decir: $\int_x^{+\infty} \frac{t-\lfloor t \rfloor}{t^2} dt = O\left(\frac{1}{x}\right)$ y, por lo tanto, el límite C' existe y $\sum_{n \leq x} \frac{1}{n} = \log x + C' + O\left(\frac{1}{x}\right)$; luego, el límite C existe y C = C'.

Observación 2.6. La expresión

$$\zeta(s) = \frac{s}{s-1} + s \int_{1}^{\infty} \frac{\{t\}}{t^{s}} \frac{dt}{t} , \qquad (19)$$

válida para todo s>0, $s\neq 1$, permite definir la función en todo el semiplano Re(s)>0, extenderla de manera meromorfa, con una única singularidad, un polo de orden 1 en s=1 y residuo 1.

2.2 Fórmulas para sumas de divisores

Teorema 2.7 (Dirichlet). Si $x \ge 1$, entonces

$$\sum_{n \le x} d(n) = x \log x + x (2C - 1) + O(\sqrt{x}).$$

Demostración. Recordando que $d(n) = \sum_{d|n} 1$, podemos intentar

$$\sum_{n \le x} d(n) = \sum_{n \le x} \sum_{d|n} 1 = \sum_{q \le x} 1 = \sum_{d \le x} \sum_{q \le x/d} 1 = \sum_{d \le x} \left\lfloor \frac{x}{d} \right\rfloor$$
$$= \sum_{d \le x} \left(\frac{x}{d} + O(1) \right) = x \sum_{d \le x} \frac{1}{d} + O(x) .$$

Por el Teorema 2.4 (a), esta última expresión es igual a

$$x\left(\log x + C + O\left(\frac{1}{x}\right)\right) + O(x) = x\log x + O(x)$$

que es un poco pe
or de lo enunciado. La idea será aprovechar la simetría; los roles de q
 y d son intercambiables. Entonces,

$$\sum_{d \le x} d(n) = \sum_{q \ d \le x} 1 = 2 \sum_{d < \sqrt{x}} \left(\sum_{d < q \le x/d} 1 \right) + \lfloor \sqrt{x} \rfloor .$$

El término $\lfloor \sqrt{x} \rfloor$ corresponde a d = q. La suma sobre $d < q \le x/d$ es igual a $\lfloor \frac{x}{d} \rfloor - d$ de lo que se deduce que todo es igual a

$$2x \sum_{d \le \sqrt{x}} \frac{1}{d} - 2 \sum_{d \le \sqrt{x}} d + O\left(\sqrt{x}\right) .$$

El resultado se deduce apelando a (a) y a (d) (con $\alpha = 1$) con \sqrt{x} en lugar de x.

Teorema 2.8. $Si \ x \ge 1$, entonces

$$\sum_{n \le x} \sigma_1(n) = \frac{1}{2} \zeta(2) x^2 + O(x \log x) .$$

Demostración. En este caso, no hay simetría en σ_1 . Entonces,

$$\sum_{n \le x} \sigma_1(n) = \sum_{q \le x} q = \sum_{d \le x} \sum_{q \le x/d} q.$$

Ahora, la suma sobre $q \le x/d$ es $(\frac{x}{d})^2 \frac{1}{2} + O(\frac{x}{d})$ (la constante implícita no depende de d). Reemplazando, la sumatoria total es igual a

$$\frac{x^2}{2} \sum_{d \le x} \frac{1}{d^2} + O\left(x \sum_{d \le x} \frac{1}{d}\right) .$$

El resultado se deduce ahora apelando a (a) y a (b) (con s = 2).

2.3 Fórmulas para sumas que involucran μ y Λ

Proposición 2.9. Dadas funciones aritméticas f y g, sea h = f * g. Si

$$F(x) = \sum_{n \le x} f(n)$$
 , $G(x) = \sum_{n \le x} g(n)$ y $H(x) = \sum_{n \le x} h(n)$,

entonces

$$H(x) = \sum_{n \le x} f(n) G(\frac{x}{n}) = \sum_{n \le x} g(n) F(\frac{x}{n}).$$

Observación 2.10. El resultado de la Proposición 2.9 es un caso particular del de la Proposición 2.18.

Demostración. Usando la convolución generalizada (Definición 1.54), podemos reescribir $F = f \circ U$, $G = g \circ U$ y $H = h \circ U$, donde

$$U(x) = \begin{cases} 0 , & \text{si } 0 < x < 1 ,\\ 1 , & \text{si } x \ge 1 . \end{cases}$$
 (20)

Pero, por Teorema 1.56, $(f * g) \circ U = f \circ (g \circ U)$.

Observación 2.11. La función U definida en (20) cumple que $f * u = f \circ U$ para toda f aritmética.

Corolario 2.12. Si $F(x) = \sum_{n \le x} f(n)$, entonces

$$\sum_{n \le x} \sum_{d|n} f(d) = \sum_{n \le x} f(n) \left\lfloor \frac{x}{n} \right\rfloor = \sum_{n \le x} F(\frac{x}{n}) .$$

Demostración. Aplicar la Proposición 2.9 con g=1, notando que $G:=g\circ U=|x|$. \square

Teorema 2.13. $Si \ x \ge 1$, entonces

$$\sum_{n \leq x} \mu(n) \, \left\lfloor \frac{x}{n} \right\rfloor \, = \, 1 \qquad y \qquad \sum_{n \leq x} \Lambda(n) \, \left\lfloor \frac{x}{n} \right\rfloor \, = \, \log \, \lfloor x \rfloor! \, \, .$$

Demostración. Aplicamos el Corolario 2.12 con $f = \mu$:

$$\sum_{n \le x} \mu(n) \left\lfloor \frac{x}{n} \right\rfloor = \sum_{n \le x} \sum_{d|n} \mu(d) = \sum_{n \le x} I(n) = 1 ;$$

y con $f = \Lambda$:

$$\sum_{n \leq x} \Lambda(n) \, \left\lfloor \frac{x}{n} \right\rfloor \, = \, \sum_{n \leq x} \, \sum_{d \mid n} \, \Lambda(d) \, = \, \sum_{n \leq x} \, \log n \, = \, \log \, \left\lfloor x \right\rfloor! \; .$$

Corolario 2.14. $Si \ x \ge 1$, entonces

$$\left| \sum_{n \le x} \frac{\mu(n)}{n} \right| \le 1 .$$

 $Si \ x < 2 \ vale \ la igualdad (y \ vale \ sin \ valor \ absoluto, \ la \ sumatoria \ tiene \ un \ único \ término \ y \ es \ positivo); \ si \ x \ge 2, \ la \ desigualdad \ es \ estricta.$

Demostración. Si $1 \le x < 2$, $\sum_{n \le x} \frac{\mu(n)}{n} = \mu(1) = 1$. Suponemos que $x \ge 2$. Por el Teorema 2.13 (la suma con μ),

$$1 + \sum_{n \le x} \mu(n) \left(\frac{x}{n} - \left\lfloor \frac{x}{n} \right\rfloor \right) = x \sum_{n \le x} \frac{\mu(n)}{n}.$$

Acotando,

$$x \left| \sum_{n \le x} \frac{\mu(n)}{n} \right| \le 1 + \sum_{n \le x} \left(\frac{x}{n} - \left\lfloor \frac{x}{n} \right\rfloor \right) = 1 + \left(x - \lfloor x \rfloor \right) + \sum_{2 \le n \le x} \left(\frac{x}{n} - \left\lfloor \frac{x}{n} \right\rfloor \right).$$

Como $x \ge 2$, la sumatoria de la derecha es no vacía y, de hecho, cada sumando está en el rango [0,1). La sumatoria está acotada superiormente por $\lfloor x \rfloor - 1$, estrictamente, de lo que se deduce el resultado.

Observación 2.15 (Identidad de Legendre o Fórmula de Polignac). Dado que, si $m \in \mathbb{Z}_{\geq 1}$, $\left\lfloor \frac{\lfloor x \rfloor}{m} \right\rfloor = \left\lfloor \frac{x}{m} \right\rfloor$, del Teorema 1.20 deducimos que, si $x \geq 1$, entonces

$$\lfloor x \rfloor! = \prod_{p \le x} p^{e(p)}$$
 , donde $e(p) = \sum_{m \ge 1} \left\lfloor \frac{x}{p^m} \right\rfloor$.

La sumatoria es sobre $1 \le m \le \left| \frac{\log x}{\log p} \right|$. En particular,

$$\log \lfloor x \rfloor! = \sum_{n \le x} \Lambda(n) \left\lfloor \frac{x}{n} \right\rfloor = \sum_{p \le x} (\log p) \sum_{m \ge 1} \left\lfloor \frac{x}{p^m} \right\rfloor . \tag{21}$$

Teorema 2.16. $Si \ x \ge 2$, entonces

$$\log |x|! = x \log x - x + O(\log x).$$

Demostración. Aplicamos la Fórmula sumatoria de Euler (Teorema 2.1) con $f(t) = \log t$:

$$\sum_{n \leq x} \log n \, = \, \sum_{2 \leq n \leq x} \log n \, = \, x \log x \, - \, x \, + \, 1 \, + \, \int_1^x \, \frac{t - \lfloor t \rfloor}{t} \, dt \, + \, O \left(\log x \right) \, \, .$$

La integral es $O(\log x)$, también.

Teorema 2.17. $Si \ x \ge 2$, entonces

$$\sum_{p \le x} \left(\log p \right) \left\lfloor \frac{x}{n} \right\rfloor = x \log x + O(x) .$$

Demostración. En primer lugar,

$$\sum_{n \le x} \Lambda(n) \left\lfloor \frac{x}{n} \right\rfloor = \sum_{p^m \le x} \left(\log p \right) \left\lfloor \frac{x}{p^m} \right\rfloor .$$

Como, en realidad, la sumatoria sobre potencias de primos p^m es finita (Observación 2.15), podemos separar y reordenarla: la sumatoria es igual a

$$\sum_{m>1} \sum_{p \le x} \left(\log p \right) \left\lfloor \frac{x}{p^m} \right\rfloor .$$

En segundo lugar, separamos m=1 de $m\geq 2$ y acotamos esta última parte:

$$\sum_{m \geq 2} \sum_{p \leq x} \left(\log p \right) \left\lfloor \frac{x}{p^m} \right\rfloor \leq x \sum_{m \geq 2} \sum_{p \leq x} \frac{\log p}{p^m} \ .$$

Pero, ahora, intercambiando las sumatorias nuevamente (por convergencia absoluta),

$$\sum_{m\geq 2} \sum_{p\leq x} \frac{\log p}{p^m} \, = \, \sum_{p\leq x} \frac{\log p}{p\left(p-1\right)} \, = \, O\left(1\right) \; .$$

Así,

$$\sum_{n \le x} \Lambda(n) \left\lfloor \frac{x}{n} \right\rfloor = \sum_{p \le x} \left(\log p \right) \left\lfloor \frac{x}{p} \right\rfloor + O(x) .$$

Proposición 2.18 (Fórmula de sumatoria por partes). Dadas funciones aritméticas f y g, definimos F, G y H como en la Proposición 2.9. Entonces, para todo par de números reales positivos, a y b, tales que ab = x, vale

$$H(x) = \sum_{d \, q < x} f(d) \, g(q) = \sum_{m \le a} f(m) \, G(\frac{x}{m}) + \sum_{n < b} g(n) \, F(\frac{x}{n}) - F(a) \, G(b) .$$

Demostraci'on. Dividir en tres regiones la sumatoria H:

$$\left\{d \leq a \ , \, q \leq b\right\} \quad , \quad \left\{x \geq d > a \ , \, q \leq b\right\} \quad \mathbf{y} \quad \left\{d \leq a \ , \, x \geq q > b\right\} \ .$$

Dibujar el gráfico de la hipérbola ab = x en ejes 'd' y 'q', marcando un a entre 1 y x en el eje 'd' y un b entre 1 y x en el eje 'q'.

3 Distribución de los números primos

3.1 Las funciones de Tchebychev

Definición 3.1. Dado x > 0, se definen las funciones

$$\psi(x) = \sum_{n \le x} \Lambda(n)$$
 y $\vartheta(x) = \sum_{p \le x} \log p$.

Observación 3.2. Dado que $\Lambda(n) = 0$, salvo que $n = p^m \ (m \ge 1, p \text{ primo})$,

$$\psi(x) \,=\, \sum_{p^m \leq x} \log p \,=\, \sum_{m \geq 1} \, \sum_{p < x^{1/m}} \log p \,\,.$$

Si $x^{1/m} < 2$, la sumatoria sobre p es vacía y, por lo tanto, la suma sobre m es, en realidad, finita. En términos de logaritmos, la cota para m es

$$m > \frac{\log x}{\log 2} \; ;$$

para estos valores, $\sum_{p \le x^{1/m}} \log p = 0$. De esta manera, las funciones ψ y ϑ están relacionadas por

$$\psi(x) \, = \, \sum_{m < \log_2 x} \, \vartheta(x^{1/m}) \, \, .$$

Teorema 3.3. Si x > 0, entonces

$$0 \le \frac{\psi x}{x} - \frac{\vartheta x}{x} \le \frac{(\log x)^2}{2(\log 2)\sqrt{x}}.$$
 (22)

Demostración. De la Observación 3.2,

$$\psi(x) - \vartheta(x) = \sum_{2 \le m \le \frac{\log x}{\log 2}} \vartheta(x^{1/m}) \ge 0.$$

De la Definición 3.1, acotando por peor caso,

$$\vartheta(x) = \sum_{p \le x} \log p \le x \log x.$$

Entonces,

$$0 \le \psi(x) - \vartheta(x) \le \sum_{\substack{2 \le m \le \frac{\log x}{\ln x^2}}} x^{1/m} \log(x^{1/m}) \le \frac{\log x}{\log 2} \sqrt{x} \log(\sqrt{x}) ,$$

de nuevo, acotando por peor caso.

Definición 3.4. Dado x > 0, se define la función

$$\pi(x) = \#\{p \le x : \text{primo}\}\ .$$

Observación 3.5. Las funciones π y ϑ son similares, en tanto que dan saltos en los primos, 1 y $\log p$, respectivamente.

Teorema 3.6 (Identidad de Abel). Sea a(n) una función aritmética y sea $A(x) = \sum_{n \leq x} a(n)$ su función de distribución acumulada (x > 0). Si f es una función con derivada continua, f', en el intervalo [x, y], entonces

$$\sum_{x < n \le y} a(n) f(n) = A(y) f(y) - A(x) f(x) - \int_x^y A(t) f'(t) dt.$$

Demostración. Este resultado es una generalización de la Fórmula sumatoria de Euler (Teorema 2.1). Se puede demostrar por un argumento similar. También se puede apelar a la integral de Riemann-Stieltjes y la fórmula de integración por partes.

Teorema 3.7. Si $x \ge 2$, entonces

$$\vartheta(x) = \pi(x)\log x - \int_2^x \pi(t) \, \frac{dt}{t} \quad y \quad \pi(x) = \frac{\vartheta(x)}{\log x} + \int_2^x \frac{\vartheta(t)}{(\log t)^2} \, \frac{dt}{t} \ .$$

En particular,

$$\frac{\pi(x)\log(x)}{x} - \frac{\vartheta x}{x} = \frac{1}{x} \int_{2}^{x} \pi(t) \, \frac{dt}{t} = \frac{\log x}{x} \int_{2}^{x} \frac{\vartheta(t)}{(\log t)^{2}} \, \frac{dt}{t} \, . \tag{23}$$

Demostración. Si a(n) denota la función característica del conjunto de primos y $f(t) = \log t$, entonces $\pi(x)$ es la función de distribución acumulada de a(n) y $\vartheta(x) = \sum_{n \leq x} a(n) f(n)$. Aplicando el Teorema 3.6 y notando que $\pi(t) = 0$, si t < 2,

$$\vartheta(x) = \pi(x) \log x - \int_{2}^{x} \pi(t) \frac{dt}{t} .$$

Si $b(n) = a(n) \log n$ y $g(t) = \frac{1}{\log t}$, entonces $\vartheta(x)$ es la función de distribución acumulada de b(n) y $\pi(x) = \sum_{n \leq x} b(n) g(n)$. Aplicando el Teorema 3.6 y notando que $\vartheta(t) = 0$, si t < 2,

$$\pi(x) = \frac{\vartheta(x)}{\log x} + \int_2^x \frac{\vartheta(t)}{(\log t)^2} \frac{dt}{t} .$$

Teorema 3.8. Las siguientes afirmaciones son equivalentes:

- (i) $\lim_{x\to\infty} \frac{\pi(x)\log(x)}{x} = 1$;
- (ii) $\lim_{x\to\infty} \frac{\vartheta x}{x} = 1$;

(iii)
$$\lim_{x\to\infty} \frac{\psi x}{x} = 1$$
.

Demostración. (ii) y (iii) son equivalentes por las desigualdades (22). La equivalencia de (i) y (ii), se deduce del Lema 3.9 y del Lema 3.10.

Lema 3.9. $Si \lim_{x\to\infty} \frac{\pi(x)\log(x)}{x} = 1$, entonces

$$\lim_{x \to \infty} \frac{1}{x} \int_2^x \pi(t) \frac{dt}{t} = 0.$$

Demostración. Por hipótesis, $\frac{\pi t}{t} = O\left(\frac{1}{\log t}\right)$. Como $\log t$ es creciente,

$$\int_2^x \pi(t) \, \frac{dt}{t} \, \ll \, \int_2^{\sqrt{x}} \, \frac{dt}{\log t} \, + \, \int_{\sqrt{x}}^x \frac{dt}{\log t} \, \ll \, \frac{\sqrt{x} - 2}{\log 2} \, + \, \frac{x - \sqrt{x}}{\log \sqrt{x}} \; .$$

Lema 3.10. Si $\lim_{x\to\infty} \frac{\vartheta x}{x} = 1$, entonces

$$\lim_{x \to \infty} \frac{\log x}{x} \int_2^x \frac{\vartheta(t)}{(\log t)^2} \frac{dt}{t} = 0.$$

Demostración. Por hipótesis, $\frac{\vartheta t}{t} = O(1)$. Entonces,

$$\int_2^x \frac{\vartheta(t)}{(\log t)^2} \, \frac{dt}{t} \, \ll \, \int_2^{\sqrt{x}} \frac{dt}{(\log t)^2} \, + \, \int_{\sqrt{x}}^x \frac{dt}{(\log t)^2} \, \ll \, \frac{\sqrt{x}-2}{(\log 2)^2} \, + \, \frac{x-\sqrt{x}}{(\log \sqrt{x})^2} \, .$$

Observación 3.11. El límite de $\frac{1}{x} \int_2^x \pi(t) \frac{dt}{t}$ está acotado por 1, independientemente del resultado anterior. Con lo cual, $\frac{\pi(x) \log(x)}{x}$ converge, si y sólo si $\frac{\vartheta x}{x}$ converge. Los límites son, a priori, distintintos.

3.2 El primo n ésimo

Definición 3.12. El número primo n es p_n .

Teorema 3.13. Las siguientes afirmaciones son equivalentes:

(i)
$$\lim_{x\to\infty} \frac{\pi(x)\log x}{x} = 1;$$

(ii)
$$\lim_{x\to\infty} \frac{\pi(x)\log(\pi x)}{x} = 1;$$

(iii)
$$\lim_{n\to\infty} \frac{p_n}{n\log n} = 1$$
.

Demostración. Las afirmaciones (i) y (ii) implican (Lema 3.14) que

$$\log(\pi x) \sim \log x \; ; \tag{24}$$

en particular, las afirmaciones son equivalentes. Asumiendo la afirmación (ii) y eligiendo $x = p_n$, vale $\pi(x) = n$ y $\pi(x) \log(\pi x) = n \log n$. En particular, $\lim_{n \to \infty} \frac{n \log n}{p_n} = 1$. Asumiendo (iii), dado x, sea n = n(x) tal que

$$p_n \leq x < p_{n+1}$$
.

Para este valor de n, $\pi(x) = n$ y

$$\frac{p_n}{n \log n} \le \frac{x}{n \log n} < \frac{p_{n+1}}{(n+1) \log(n+1)} \frac{(n+1) \log(n+1)}{n \log n}$$
.

Los extremos tienden a 1, por hipótesis.

Lema 3.14. Si valen (i) o (ii) del Teorema 3.13, entonces vale (24).

Demostración. De (i), $\lim_{x\to\infty} \{\log(\pi x) + \log\log x - \log x\} = 0$. En particular,

$$\lim_{x \to \infty} (\log x) \left\{ \frac{\log(\pi x)}{\log x} + \frac{\log\log x}{\log x} - 1 \right\} = 0$$

y, en consecuencia, $\lim_{x\to\infty} \left\{ \frac{\log(\pi x)}{\log x} + \frac{\log\log x}{\log x} - 1 \right\} = 0$ (tiende a 0 más rápido que como $\log x$ tiende a ∞). La afirmación es consecuencia de que $\frac{\log\log x}{\log x}$ tiende a 0 con x. El razonamiento con (ii) es análogo, usando que $\frac{\log\log(\pi x)}{\log(\pi x)}$ tiende a 0 con x.

Teorema 3.15. 3 *Si* $n \geq 2$,

$$\frac{1}{6} \frac{n}{\log n} < \pi(n) < 6 \frac{n}{\log n}$$
.

Demostración. Vale, para $n \geq 1$, la cota

$$2^n \le \binom{2n}{n} < 4^n.$$

Aplicando log a las desigualdades, como es una función creciente,

$$n \log 2 \le \log((2n)!) - 2 \log(n!) < n \log 4$$
.

Ahora, por la Fórmula de Polignac (Observación 2.15), $\log(n!) = \sum_{p \leq n} e(p) (\log p)$, donde

$$e(p) = \sum_{m=1}^{M(p)} \left\lfloor \frac{n}{p^m} \right\rfloor$$
 y $M(p) = M(n, p) = \left\lfloor \frac{\log n}{\log p} \right\rfloor$.

³ Este resultado será mejorado con el Teorema ??.

Así, se deduce

$$\log((2n)!) - 2\log(n!) = \sum_{p \le 2n} \left(\sum_{m=1}^{M(p)} \left\lfloor \frac{2n}{p^m} \right\rfloor - 2 \left\lfloor \frac{n}{p^m} \right\rfloor \right) (\log p) .$$

Pero las diferencias dentro de las sumatorias toman valores en $\{0,1\}$ (ver la Observación 3.16). Entonces,

$$\sum_{m=1}^{M(2n,p)} \left\lfloor \frac{2n}{p^m} \right\rfloor - 2 \, \left\lfloor \frac{n}{p^m} \right\rfloor \, \leq \, M(2n,p) \, = \, \left\lfloor \frac{\log(2n)}{\log p} \right\rfloor \, \leq \, \frac{\log(2n)}{\log p} \, \, .$$

En consecuencia, se deduce la cota $n \log 2 \le \pi(2n) \log(2n)$. Como $\sqrt{2} < e$, vale $\log 2 > \frac{1}{2}$ y

$$\frac{1}{4} \frac{2n}{\log(2n)} < \pi(2n) \ . \tag{25}$$

Esto es la cota para números pares. Para números impares,

$$\pi(2n+1) \ge \pi(2n) > \frac{1}{4} \left(\frac{2n}{2n+1}\right) \frac{2n+1}{\log(2n+1)} \ge \frac{1}{4} \frac{2}{3} \frac{2n+1}{\log(2n+1)}$$

es decir,

$$\frac{1}{6} \frac{2n+1}{\log(2n+1)} < \pi(2n+1) . \tag{26}$$

En cuanto a la cota inferior, por la Observación 3.17,

$$\log((2n)!) \, - \, 2\log(n!) \, \geq \, \sum_{n \leq 2n} \, \left(\, \left\lfloor \frac{2n}{p} \right\rfloor - 2 \, \left\lfloor \frac{n}{p} \right\rfloor \, \right) (\log p) \, \geq \, \sum_{n \leq n \leq 2n} \, \log p \, \, .$$

El lado derecho es igual a $\vartheta(2n) - \vartheta(n)$. Para n de la forma $n = 2^k$, $k \ge 0$,

$$\vartheta(2^{k+1}) - \vartheta(2^k) < 2^k (\log 4) .$$

Entonces,

$$\vartheta(2^{r+1}) = \vartheta(2^{r+1}) - \vartheta(1) = \sum_{k=0}^{r} \vartheta(2^{k+1}) - \vartheta(2^{k})
< \left(\sum_{k=0}^{r} 2^{k}\right) (\log 4) = (2^{r+1} - 1) (\log 4) < 2^{r+2} (\log 2).$$

Si, ahora, $2^r \le n < 2^{r+1}$, entonces

$$\vartheta(n) \, \leq \, \vartheta(2^{r+1}) \, < \, 2^{r+2} \, (\log 2) \, \leq \, (4n) \, (\log 2) \, \, .$$

Ahora, la idea es comparar $\pi(n)$ con $\pi(n^{\alpha})$, donde $\alpha \in (0,1)$:

$$\left(\pi(n) - \pi(n^{\alpha})\right) \left(\log n^{\alpha}\right) \, < \, \sum_{n^{\alpha} < p \leq n} \left(\log p\right) \, \leq \, \vartheta(n) \, < \, (4n) \left(\log 2\right) \, .$$

De esto se deduce que, para todo $\alpha \in (0,1)$,

$$\pi(n) \, < \, \frac{4n}{\alpha} \, \frac{\log 2}{\log n} \, + \, n^{\alpha} \, \, .$$

En particular,

$$\frac{\pi(n)\log(n)}{n} < \frac{4}{\alpha}\left(\log 2\right) + n^{-(1-\alpha)}\left(\log n\right).$$

Ahora, la función

$$f = f(x,c) = x^{-c} \log x$$
 $(c > 0, x \ge 1)$

tiene, en la región x>1, como único punto crítico, a $x=e^{1/c}$: $\frac{df}{dx}<0$, si $x>e^{1/c}$, y $\frac{df}{dx}>0$, si $x< e^{1/c}$; El máximo, alcanzado en $x=e^{1/c}$, es igual a $\frac{1}{ce}$. En particular, para todo $\alpha\in(0,1)$,

$$\frac{\pi(n)\log(n)}{n} < \frac{4}{\alpha}(\log 2) + \frac{1}{(1-\alpha)e}.$$

El resultado se deduce eligiendo $\alpha = \frac{2}{3}$.

Observación 3.16. Para todo x, la diferencia $\lfloor 2x \rfloor - 2 \lfloor x \rfloor$ pertenece a $\{0,1\}$. Por un lado, se cumple $\lfloor 2x \rfloor \leq 2x < \lfloor 2x \rfloor + 1$; en particular, $2 \lfloor x \rfloor < 2 \lfloor \frac{\lfloor 2x \rfloor + 1}{2} \rfloor \leq 2 (\frac{\lfloor 2x \rfloor + 1}{2}) = \lfloor 2x \rfloor + 1$. Entonces, $\lfloor 2x \rfloor - 2 \lfloor x \rfloor \leq 1$. Por otro lado, $2 \lfloor x \rfloor \leq 2x < 2 (\lfloor x \rfloor + 1)$ y, entonces, $\lfloor 2x \rfloor - 2 \lfloor x \rfloor \geq 0$.

Observación 3.17. Si $n < p^m \le 2n$, entonces $\left| \frac{2n}{p^m} \right| - 2 \left| \frac{n}{p^m} \right| = 1$, pues

$$2 > \frac{2n}{p^m} \ge 1 > \frac{n}{p^m} \ge \frac{1}{2}$$
.

Si $\frac{n}{2} < p^m \le n$, entonces

$$4 > \frac{2n}{p^m} \ge 2 > \frac{n}{p^m} \ge 1$$
.

Si $\frac{n}{4} < p^m \le \frac{n}{2}$, entonces

$$8 > \frac{2n}{n^m} \ge 4 > \frac{n}{n^m} \ge 2$$
.

Teorema 3.18. Si $n \ge 1$, entonces

$$\frac{1}{6} n \log n < p_n < 12 n \left(\log(12 n) - 1 \right) = 12 \left(n \log n + n \log \left(\frac{12}{e} \right) \right).$$

Demostración. Si $x=p_n$, entonces $n=\pi(x)<6$ $\frac{p_n}{\log p_n}$ y $p_n>\frac{1}{6}$ n (log n). Por otro lado, $n=\pi(x)>\frac{1}{6}$ $\frac{p_n}{\log p_n}$ implica que $p_n<6$ n (log p_n). En particular, como $\log x\leq \frac{2}{e}\sqrt{x}$, para todo $x\geq 1$, se deduce que $\log p_n\leq \frac{2}{e}\sqrt{p_n}$ y, en consecuencia, que $\sqrt{p_n}<\frac{12}{e}$ n. Aplicar $\log a$ esta desigualdad.

3.3 El teorema de Shapiro

Un mecanismo general nos permite derivar fórmulas asintóticas nuevas. Específicamente, podremos pasar de sumatorias que involucran la función parte entera a sumatorias en las que dicha función no aparece.

Teorema 3.19 (Shapiro). Sea a(n) una sucesión de números reales no negativos tales que

$$\sum_{n \le x} a(n) \left\lfloor \frac{x}{n} \right\rfloor = x \log x + O(x) ,$$

 $si \ x > 1$. Entonces,

- (i) para $x \ge 1$, $\sum_{n \le x} \frac{a(n)}{n} = \log x + O(1)$;
- (ii) existe B > 0 tal que $\sum_{n \le x} a(n) \le B x$, si $x \ge 1$;
- (iii) existen A > 0 y $x_0 > 0$ tales que $\sum_{n \le x} a(n) \ge A x$, si $x \ge x_0$.

Observación 3.20. La función $c(x) := \lfloor x \rfloor - 2 \lfloor \frac{x}{2} \rfloor$ toma valores en $\{0,1\}$ y, además, c(x+2) = c(x). En la región $x/2 < n \le x$, se cumple que $\lfloor \frac{x}{n} \rfloor = 1$.

Demostración. Comparamos las funciones sumatorias

$$S(x) := \sum_{n \le x} a(n)$$
 y $T(x) := \sum_{n \le x} a(n) \left\lfloor \frac{x}{n} \right\rfloor$.

Definimos $c(x) := \lfloor x \rfloor - 2 \lfloor \frac{x}{2} \rfloor$. En primer lugar,

$$T(x) - 2T\left(\frac{x}{2}\right) = \sum_{n \le x/2} c\left(\frac{x}{n}\right) a(n) + \sum_{x/2 \le n \le x} a(n) \left\lfloor \frac{x}{n} \right\rfloor \ge \sum_{n \le x/2} a(n) \left\lfloor \frac{x}{n} \right\rfloor.$$

Pero el lado derecho es igual a $\sum_{x/2 < n \le x} a(n)$, que coincide con $S(x) - S(\frac{x}{2})$. Por hipótesis, $T(x) - 2T(\frac{x}{2}) = O(x)$. De esto se deduce que existe K > 0 tal que, en la región $x \ge 1$,

$$S(x) - S\left(\frac{x}{2}\right) \le K x .$$

En particular, para cada $l \ge 0$ tal que $2^l \le x$, $S(\frac{x}{2^l}) - S(\frac{x}{2^{l+1}}) \le K(\frac{x}{2^l})$. De esta manera,

$$S(x) = \sum_{l=0}^{\left\lfloor \frac{\log x}{\log 2} \right\rfloor} \left(S\left(\frac{x}{2^l}\right) - S\left(\frac{x}{2^{l+1}}\right) \right) \le K x \sum_{l=0}^{\left\lfloor \frac{\log x}{\log 2} \right\rfloor} 2^{-l} \le 2 K x.$$

$$S(x) \ge T(x) - 2T\left(\frac{x}{2}\right).$$

⁴ Por otra parte, como S(x) se separa como $\sum_{n \leq x} a(n) + \sum_{x/2 < n \leq x} a(n) \left\lfloor \frac{x}{n} \right\rfloor$, podemos acotar superiormente de la siguiente manera:

Es decir, vale (ii) con B = 2K. En cuanto a (i),

$$T(x) = x \sum_{n \le x} \frac{a(n)}{n} + O\left(\sum_{n \le x} a(n)\right) = x \sum_{n \le x} \frac{a(n)}{n} + O(x)$$
.

La última igualdad es consecuencia de $\sum_{n \leq x} a(n) = S(x) = O(x)$. O sea,

$$\sum_{n \le x} \frac{a(n)}{n} = \frac{T(x)}{x} + O\left(\frac{S(x)}{x}\right) = \log x + O(1) .$$

La última igualdad es consecuencia de la hipótesis y de la cota S(x) = O(x), nuevamente.

Por último, para la cota inferior, definimos $A(x) := \sum_{n \leq x} \frac{a(n)}{n}$. Sabemos que $A(x) = \log x + R(x)$, donde R(x) es un término de error que verifica R(x) = O(1). Explícitamente, existe M > 0 tal que $|R(x)| \leq M$, si $x \geq 1$. Dado $\alpha \in (0,1)$, si $\alpha x \geq 1$, entonces

$$A(x) - A(\alpha x) = -\log \alpha + (R(x) - R(\alpha x)) \ge -\log \alpha - 2M.$$

Eligiendo α tal que $-\log \alpha - 2M = 1$, en la región $x \geq \frac{1}{\alpha}$ se verifica

$$1 \le A(x) - A(\alpha x) = \sum_{\alpha x < n \le x} \frac{a(n)}{n} \le \frac{1}{\alpha x} \sum_{\alpha x < n \le x} a(n) = \frac{S(x)}{\alpha x}.$$

Es decir, vale (iii) con $A = \alpha$ y $x_0 = \frac{1}{\alpha}$.

Corolario 3.21. $Si \ x \ge 1$,

$$\sum_{n \le x} \frac{\Lambda(n)}{n} = \log x + O(1) \qquad y$$

existen constnates $C_1, C_2 > 0$ tales que:

- $\psi(x) < C_1 x$, si x > 1, y
- $\psi(x) \geq C_2 x$, para x sufficientemente grande.

Demostración. Aplicamos el Teorema 3.19 partiendo de la fórmula asintótica

$$\sum_{n \le x} \Lambda(n) \left\lfloor \frac{x}{n} \right\rfloor \, = \, x \log x \, - \, x \, + \, O\left(\log x\right) \, = \, x \log x \, + \, O\left(x\right) \, \, .$$

Corolario 3.22. $Si \ x \ge 1$,

$$\sum_{p \le x} \frac{\log p}{p} = \log x + O(1) \qquad y$$

existen constantes $C_1, C_2 > 0$ tales que

•
$$\vartheta(x) \leq C_1 x$$
, $si \ x \geq 1$, y

• $\vartheta(x) \geq C_2 x$, para x sufficientemente grande.

Demostración. Aplicamos el Teorema 3.19 partiendo de la fórmula asintótica

$$\sum_{p \le x} (\log p) \left\lfloor \frac{x}{p} \right\rfloor = x \log x + O(x) .$$

Observación 3.23. Para cualquier función aritmética f, si $F(x) = \sum_{n \leq x} f(n)$, entonces

 $\sum_{n \le x} F\left(\frac{x}{n}\right) = \sum_{n \le x} f(n) \left\lfloor \frac{x}{n} \right\rfloor . \tag{27}$

En particular, reescribimos el Corolario 3.21 y el Corolario 3.22 (las fórmulas asintóticas de la siguiente manera: si $x \ge 1$,

$$\sum_{n \le x} \psi\left(\frac{x}{n}\right) = x \log x - x + O(\log x) \quad y$$
$$\sum_{n \le x} \vartheta\left(\frac{x}{n}\right) = x \log x + O(x).$$

3.4 La sumatoria $\sum_{p \le x} 1/p$

Observación 3.24. La sumatoria de los recíprocos de los primos crece, por lo menos, como $\log \log x$: si $x \ge 2$,

$$\sum_{p < x} \frac{1}{p} \ge \log \log x - \log 2.$$

Por un lado, considerando la sumatoria de los recíprocos de todos los naturales positivos,

$$\sum_{n \leq x} \frac{1}{n} = \sum_{\substack{q \leq x \\ \text{libres de cuadrados}}} \frac{1}{q} \sum_{\substack{m \leq \sqrt{x/q} \\ m \leq \sqrt{x/q}}} \frac{1}{m^2} \leq \sum_{\substack{q \leq x \\ \text{libres de cuadrados}}} \frac{1}{q} \sum_{\substack{m \geq 1 \\ m \geq 1}} \frac{1}{m^2} .$$

Ahora, la sumatoria de $\frac{1}{m^2}$ la podemos acotar de la siguiente manera:

$$\sum_{m\geq 1} \frac{1}{m^2} \le 1 + \sum_{m\geq 2} \left(\frac{1}{m-1} - \frac{1}{m} \right) = 2.$$

La sumatoria de los recíprocos de los enteros positivos libres de cuadrados está acotada por:

$$\sum_{\substack{q \leq x \text{ libres de cuadrados}}} \frac{1}{q} \leq \prod_{p \leq x} \left(1 + \frac{1}{p}\right) \leq \exp\left(\sum_{p \leq x} \frac{1}{p}\right) ,$$

donde $\exp(x) = e^x$. Por otro lado, tenemos la cota inferior

$$\sum_{n \le x} \frac{1}{n} \ge \sum_{n \le x} \int_n^{n+1} \frac{dt}{t} \ge \log x .$$

Juntando todo y tomando logaritmo, se deduce la cota mencionada. Notemos que podríamos haber utilizado $|\mu(q)|$ como la característica de los enteros positivos libres de cuadrados.

Teorema 3.25. Existe A > 0 tal que, si $x \ge 2$,

$$\sum_{p \le x} \frac{1}{p} = \log \log x + A + O\left(\frac{1}{\log x}\right) .$$

Demostración. Definimos una sucesión a(n) por

$$a(n) \,=\, \begin{cases} \frac{\log p}{p} \;, & \text{si } n = p \;, \\ 0 \;, & \text{si no.} \end{cases}$$

Sea $A(x) = \sum_{p \le x} \frac{\log p}{p} = \sum_{n \le x} a(n)$ su función de distribución. Si $f(t) = \frac{1}{\log t}$ en el Teorema 3.6,

$$\sum_{p \le x} \frac{1}{p} = \sum_{n \le x} a(n) f(n) = \frac{A(x)}{\log x} + \int_2^x \frac{A(t)}{(\log t)^2} \frac{dt}{t} ,$$

pues A(t) = 0, si t < 2. Por otro lado, de los resultados de § 3.3,

$$A(x) = \sum_{p \le x} \frac{\log p}{p} = \log x + R(x) ,$$

donde el término de error, R(x), es O(1). Así,

$$\sum_{p \le x} \frac{1}{p} = 1 + \frac{R(x)}{\log x} + \int_2^x \frac{1}{\log t} \frac{dt}{t} + \int_2^x \frac{R(t)}{(\log t)^2} \frac{dt}{t}$$

$$= \log \log x - \log \log 2 + 1 + O\left(\frac{1}{\log x}\right) + \int_2^x \frac{R(t)}{(\log t)^2} \frac{dt}{t}.$$

Ahora bien, el último de los sumandos anteriores es una integral convergente y

$$\int_2^x \, \frac{R(t)}{(\log t)^2} \, \frac{dt}{t} \, = \, \int_2^\infty \, \frac{R(t)}{(\log t)^2} \, \frac{dt}{t} \, + \, O\left(\frac{1}{\log x}\right) \; ,$$

de lo que se deduce el resultado con

$$A = 1 - \log \log 2 + \int_{2}^{\infty} \frac{R(t)}{(\log t)^2} \frac{dt}{t}$$
.

3.5 La sumatoria de μ

En esta sección estudiamos la función de distribución acumulada de $\mu(n)$.

Definición 3.26. Dado $x \ge 1$, definimos las funciones

$$M(x) \, := \, \sum_{n \leq x} \mu(n) \qquad \mathbf{y} \qquad H(x) \, := \, \sum_{n \leq x} \mu(n) \log n \, \, .$$

Teorema 3.27. Las funciones M(x) y H(x) verifican:

$$\lim_{x \to \infty} \left(\frac{M(x)}{x} - \frac{H(x)}{x \log x} \right) = 0.$$

Demostración. Aplicamos el Teorema 3.6 con $f(t) = \log t$ y deducimos:

$$H(x) = M(x) (\log x) - \int_1^x M(t) \frac{dt}{t}.$$

Pero, $|M(t)| \leq t$, con lo que la integral del lado derecho es O(x).

Ahora deducimos una nueva versión equivalente al Teorema de los números primos.

Teorema 3.28. Las siguientes afirmaciones son equivalentes:

- (i) $\psi(x) \sim x$;
- (ii) M(x) = o(x).

Demostración. La afirmación (i) es $\lim_{x\to\infty} \frac{\psi\,x}{x} = 1$; la afirmación (ii) es $\lim_{x\to\infty} \frac{M\,x}{x} = 0$. En primer lugar, vamos a ver que (i) implica $H(x) = o(x\log x)$. Usando inversión de Möbius y la identidad $\Lambda = -(\mu\log)*u$, se deduce que

$$-H(x) = \sum_{n \le x} \sum_{d \div n} \mu(d) \Lambda\left(\frac{n}{d}\right) = \sum_{n \le x} \mu(n) \sum_{m \le \frac{x}{n}} \Lambda(m) .$$

Pero la sumatoria interior en la última expresión de la derecha es igual a $\psi(\frac{x}{n})$, con lo que

$$-H(x) = \sum_{n \le x} \mu(n) \,\psi\left(\frac{x}{n}\right). \tag{28}$$

Ahora, asumiendo $\psi x \sim x$, dado $\epsilon > 0$, existe $x_0 = x_0(\epsilon) \ge 1$ tal que, si $x \ge x_0$, entonces

$$|\psi(x) - x| < \epsilon x .$$

Si $y := \left\lfloor \frac{x}{x_0} \right\rfloor$, y $x > x_0$, entonces, separando (28), deducimos que, si $n \leq y$, entonces $n \leq \frac{x}{x_0}$ y $x_0 \leq \frac{x}{n}$, con lo que

$$\left| \sum_{n \le y} \mu(n) \, \psi\left(\frac{x}{n}\right) \right| = \left| \sum_{n \le y} \mu(n) \left(\left(\psi\left(\frac{x}{n}\right) - \frac{x}{n}\right) + \frac{x}{n} \right) \right|$$

$$\le x \left| \sum_{n \le y} \frac{\mu(n)}{n} \right| + \epsilon x \sum_{n \le y} \frac{1}{n} \le x + \epsilon x + \epsilon x \log x .$$

Por otro lado, si $y < n \le x$, entonces $\frac{x}{x_0} < y + 1 \le n \le x$ y $\frac{x}{n} \le \frac{x}{y+1} < x_0$. En particular, $y < n \le x$ implica $\psi(\frac{x}{n}) \le \psi(x_0)$ y

$$\left| \sum_{y < n \le x} \mu(n) \, \psi\left(\frac{x}{n}\right) \right| \le x \, \psi(x_0) \; .$$

Juntando estas dos cotas,

$$\frac{|H(x)|}{x \log x} \le \frac{1 + \epsilon + \psi(x_0(\epsilon))}{\log x} + \epsilon .$$

De esto se concluye que el límite superior de $\frac{|H(x)|}{x \log x}$ es 0. Supongamos, ahora, que M(x) = o(x). Haremos uso de las siguientes identidades:

$$1 = \sum_{d \div n} \mu(d) \, \sigma_0\left(\frac{n}{d}\right) \quad , \quad \Lambda(n) = \sum_{d \div n} \mu(d) \log\left(\frac{n}{d}\right) \quad , \quad \left\lfloor \frac{1}{n} \right\rfloor - \sum_{d \div n} \mu(d) \, u\left(\frac{n}{d}\right) \quad ,$$
$$\sum_{n \le x} 1 = \lfloor x \rfloor \quad , \quad \sum_{n \le x} \Lambda(n) = \psi(x) \quad y \quad \sum_{n \le x} \left\lfloor \frac{1}{n} \right\rfloor = 1 \; .$$

Combinando estas identidades, se deduce que

$$\lfloor x \rfloor - \psi(x) - 2C = \sum_{n \le x} \left(1 - \Lambda(n) - 2C \left\lfloor \frac{1}{n} \right\rfloor \right)$$

$$= \sum_{n \le x} \sum_{d \doteq n} \mu(d) \left(\sigma_0 \left(\frac{n}{d} \right) - \log \left(\frac{n}{d} \right) - 2C u \left(\frac{n}{d} \right) \right) .$$

Si definimos $f(q) := \sigma_0(q) - \log(q) - 2 C u(q)$, entonces

$$\psi(x) = \lfloor x \rfloor - \sum_{n \le x} \sum_{d = n} \mu(d) f\left(\frac{n}{d}\right) - 2 C.$$

El resultado es consecuencia de la siguiente afirmación:

$$\sum_{q \, d \le x} \mu(d) \, f(q) = o(x) . \tag{29}$$

Para demostrar (29), definimos $F(x) := \sum_{n \le x} f(n)$. Entonces, con $a, b \in \mathbb{R}_{>0}$ tales que ab = x,

$$\sum_{q \, d \le x} \mu(d) \, f(q) \, = \, \sum_{m \le a} f(m) \, M\left(\frac{x}{m}\right) \, + \, \sum_{n \le b} \mu(n) \, F\left(\frac{x}{n}\right) \, - \, F(a) \, M(b) \, .$$

Ahora, $F(x) = \sum_{n \leq x} \sigma_0(n) - \sum_{n \leq x} \log n - 2 C \sum_{n \leq x} 1$. Usando las cotas conocidas para estas sumatorias, se deduce que $F(x) = O(\sqrt{x})$ en la región $x \geq 1$. Es decir, existe

B>0 tal que, si $x\geq 1$, entonces $|F(x)|\leq Bx$. Tomando una constante A posiblemente mayor a B,⁵

$$\left| \sum_{n < b} \mu(n) F\left(\frac{x}{n}\right) \right| \le B \sum_{n < b} \sqrt{\frac{x}{n}} < A \sqrt{x b} = \frac{A x}{\sqrt{a}}.$$

En cuanto al segundo sumando, dado $\epsilon > 0$, elegir $a \leq x$ tal que $\frac{A}{\sqrt{a}} < \epsilon$ (a no depende de x...); dada K > 0, existe c > 0 tal que, si x > c, entonces $\frac{|Mx|}{x} < \frac{\epsilon}{K}$. En tal caso,

$$\left| \sum_{m < a} f(m) M\left(\frac{x}{m}\right) \right| \leq \sum_{m < x} |f(m)| \frac{x}{m} \frac{\epsilon}{K} = \frac{x \epsilon}{K} \sum_{m < a} \frac{|f(m)|}{m}.$$

En resumen, dado $\epsilon > 0$, elegimos $a \le x$ tal que $A < \epsilon \sqrt{a}$, fijamos $K := \sum_{m \le a} \frac{|f(m)|}{m}$ y elegimos c>0 tal que, si x>c, entonces $\frac{|M\,x|}{x}<\frac{\epsilon}{K}.$ Finalmente,

$$|F(a) M(b)| \le B \sqrt{a} |M(b)| < A \sqrt{a} b = \frac{A}{\sqrt{a}} x < \epsilon x.$$

En definitiva, con estas elecciones, $\left| \sum_{q \, d \le x} \mu(d) \, f(q) \right| \le 3 \, \epsilon \, x.$

El siguiente resultado es sólo una de las implicaciones de otra equivalencia con el Teorema de los números primos.

Teorema 3.29. Si $\sum_{n \le x} \frac{\mu(n)}{n} = o(1)$, entonces M(x) = o(x).

Demostración. Dado que

$$M(x) = \left(\sum_{n \le x} \frac{\mu(n)}{n}\right) x - \int_1^x \left(\sum_{n \le t} \frac{\mu(n)}{n}\right) dt ,$$

el resultado es consecuencia de la siguiente afirmación: si $\sum_{n \leq x} \frac{\mu(n)}{n} = o(1)$, entonces

$$\int_{1}^{x} \left(\sum_{n \le t} \frac{\mu(n)}{n} \right) dt = o(x) .$$

Pero esto es cierto en general.⁶

$$\left| \int_{1}^{x} A(t) dt \right| \leq \left| \int_{1}^{x_{0}} A(t) dt \right| + \left| \int_{x_{0}}^{x} A(t) dt \right| \leq (x_{0} - 1) \|A\|_{\infty} + \epsilon (x - x_{0})$$

implican que $\limsup_{x\to\infty} \left| \frac{1}{x} \int_1^x A(t) \, dt \right| \le \epsilon$, para todo $\epsilon>0$.

⁵ Independiente de a, de b y de x.
⁶ Si $A(x) = \sum_{n \le x} a(n) = o(1)$, entonces las cotas

Referencias

- [Apo76] T. M. Apostol. *Introduction to Analytic Number Theory*. Undergraduate Texts Math. Springer, Cham, 1976.
- [Dav80] H. Davenport. *Multiplicative Number Theory*. 2nd. ed. Vol. 74. Grad. Texts Math. Springer, Cham, 1980.
- [Lan99] E. Landau. *Elementary Number Theory*. Reprint of the 1966 2nd edition. Providence, RI: American Mathematical Society (AMS), 1999.
- [TM00] G. Tenenbaum and M. Mendès France. The Prime Numbers and Their Distribution. Trans. by P. G. Spain. Vol. 6. Stud. Math. Libr. Providence, RI: American Mathematical Society (AMS), 2000.