RADIO SYSTEMS - ETIN15

Lecture no: 4

Channel models and antennas

Ove Edfors, Department of Electrical and Information Technology Ove.Edfors@eit.lth.se

Contents

- Why do we need channel models?
- Narrowband models
 - Review of properties
 - Okumura's measurements
 - Okumura-Hata model
 - COST 231-Walfish-Ikegami model
- Wideband models
 - Review of properties
 - COST 207 model for GSM
 - ITU-R model for 3G
- Antennas
 - Efficiency and bandwidth
 - Mobile station antennas
 - Base station antennas
 - Dipole and parabolic antennas

WHY DO WE NEED CHANNEL MODELS?

Why do we need channel models?

During system design, testing and type approval:

Simple models reflecting the important properties of important channels (best, average, worst case)

Models used to make sure that the system design behaves well in typical situations.

During network design:

More detailed models appropriate for certain geographical areas

Models used to obtain an efficient network in terms of base station locations and other parameters

NARROWBAND MODELS

Narrowband models Review of properties

Narrowband models contain "only one" attenuation, which is modeled as a propagation loss, plus large- and small-scale fading.

Path loss: Often proportional to $1/d^n$, where n is the propagation exponent. (n may be different at different distances)

Large-scale fading: Log-normal distribution (normal distr. in dB scale)

Small-scale fading: Rayleig, Rice, Nakagami distributions ... (**not** in dB-scale)

NOTE: Several of these models are found in an on-line appendix of the textbook which can be downloaded from the publisher's website (see "Literature" on course web).

Printed copies of textbook appendices are allowed during Part B of the written exam.

Okumura's measurements Background

Extensive measurement campaign in Japan in the 1960's.

Parameters varied during measurements:

Frequency 100 – 3000 MHz

Distance 1 – 100 km

Mobile station height 1 – 10 m

Base station height 20 – 1000 m

Environment medium-size city, large city, etc.

Propagation loss is given as a **median** value (50% of the time and 50% of the area).

Results from these measurements are displayed in figures 7.12 – 7.14.

Okumura's measurements How to calculate the prop. loss

- 1. We start by calculating the free-space attenuation
- 2. Apply a frequency and distance dependent correction
- 3. Apply a BS-height and distance dependent correction
- 4. Apply a MS-height, frequency and environment dependent correction

Okumura's measurements Example

Example

Propagation at 900 MHz in medium-size city with 40 m base station antenna height and 1.5 m mobile station antenna height.

Use Okumura's curves to calculate the propagation loss at a distance of 30 km between base station and mobile station.

Okumura's measurements 1. Calculate free-space loss

Example

Attenuation between two isotropic antennas in free space is (free-space loss):

$$L_{\text{free}|\text{dB}}(d) = 20 \log \left(\frac{4\pi d}{\lambda} \right)$$

The obtained value does not depend on antenna heights.

900 MHz and 30 km distance

=> 121 dB

Okumura's measurements 2. Apply correction for excess loss

Example

These curves

are only for

 $h_{\rm b}$ =200 m and

 $h_{\rm m}=3~{\rm m}$

900 MHz and 30 km distance

=> 36.5 dB

Okumura's measurements 3. Apply correction of BS height

Example

Note: Lower base station means INCREASING attenuation => subtract this number.

40 m BS and 30 km distance

=> -16 dB

Distance

Okumura's measurements 4. Apply correction of MS height

Example

Note: Lower mobile station means INCREASING attenuation => subtract this number.

1.5 m MS and 900 MHz in medium-size city => -3 dB

Okumura's measurements Summary of example

Example

Propagation loss (between isotropic antennas) using Okumura's measurements:

$$L_{Oku|dB} = 121 + 36.5 - (-16) - (-3) = 176.5 \text{ dB}$$

Calc. step: 1 2 3 4

The Okumura-Hata model Background

In 1980 Hata published a parameterized model, based on Okumura's measurements.

The parameterized model has a *smaller range of validity* than the measurements by Okumura:

Frequency 150 – 1500 MHz

Distance 1 – 20 km

Mobile station height 1 – 10 m

Base station height 30 – 200 m

The Okumura-Hata model How to calculate prop. loss

$$L_{O-H} = A + B \log(d_{|km}) + C$$

$$h_{\rm b}$$
 and $h_{\rm m}$ in meter

$$A = 69.55 + 26.16 \log(f_{0|MHz}) - 13.82 \log(h_b) - a(h_m)$$

$$B = 44.9 - 6.55 \log(h_b)$$

$$a(h_m) =$$

C =

8.29 $(\log(1.54 h_{\rm m}))^2 - 1.1$ for $f_0 \le 200 \,\text{MHz}$ 3.2 $(\log(11.75 h_{\rm m}))^2 - 4.97$ for $f_0 \ge 400 \,\text{MHz}$

0

Small/mediumsize cities

Suburban environments

Rural areas

$$\left(1.1\log\left(f_{0|MHz}\right)-0.7\right)h_{m}-$$

$$\left(1.56\log\left(f_{0|MHz}\right)-0.8\right)$$

0

$$-2(\log(f_{0|MHz}/28))^2-5.4$$

$$-4.78 \left(\log\left(f_{0|\text{MHz}}\right)\right)^2 + 18.33 \log\left(f_{0|\text{MHz}}\right) - 40.94$$

COST 231-Walfish-Ikegami model **Background**

The Okumura-Hata model is not suitable for micro cells or small macro cells, due to its restrictions on distance (d > 1 km).

The COST 231-Walfish-Ikegami model covers much smaller distances and is better suited for calculations on small cells.

Frequency

Distance

Mobile station height 1 – 3 m

Base station height

800 - 2000 MHz

0.02 - 5 km

4 - 50 m

COST 231-Walfish-Ikegami model How to calculate prop. loss

Details about calculations can be found in Appendix 7.B.

WIDEBAND MODELS

Wideband models Review of properties

Let's assume the tapped delay-line model

$$h(t,\tau) = \sum_{i=1}^{N} \alpha_i(t) \exp(j\theta_i(t)) \delta(\tau - \tau_i)$$

The **power-delay profile** tells us how much energy the channel has at a certain delay τ (essentially the rms values of the $\alpha_i(t)$'s).

The **Doppler spectrum** tells us how fast the channel changes in time (essentially how fast the $\alpha_i(t)$'s and $\theta_i(t)$'s change). There can be one Doppler spectrum for each delay.

The COST 207 model specifies:

FOUR power-delay profiles for different environments.

FOUR Doppler spectra used for different delays.

IT **DOES NOT** SPECIFY PROAGATION LOSSES FOR THE DIFFERENT ENVIRONMENTS!

Four specified power-delay profiles

Four specified Doppler spectra

Doppler spectra: CLASS GAUS1 GAUS2

There are also suggested tapped delay-line implementations, with six Rayleigh-fading taps per channel. See Appendix 7.C (on-line).

QUICK QUIZ: The system bit-rate of GSM is 271 kbit/s.

How long is one bit in time?

How long are the different COST 207 channels,

measured in bit-times?

Wideband models ITU-R model for 3G

The ITU-R model specifies:

SIX different tapped delay-line channels for three different scenarios (indoor, pedestrian, vehicular).

TWO channels per scenario (one short and one long delay spread).

TWO different Doppler spectra (uniform & classical), depending on scenario.

THREE different models for propagation loss (one for each scenario).

The standard deviation of the log-normal shadow fading is specified for each scenario.

The autocorrelation of the log-normal shadow fading is specified for the vehicular scenario.

Wideband models ITU-R model for 3G

Tap No.	delay/ns	power/dB	delay/ns	power/dB
INDOOR	CHANNEL A (50%)		CHANNEL B (45%)	
1	0	0	0	0
2	50	-3	100	-3.6
3	110	-10	200	-7.2
4	170	-18	300	-10.8
5	290	-26	500	-18.0
6	310	-32	700	-25.2
PEDESTRIAN	CHANNEL A (40%)		CHANNEL B (55%)	
1	0	0	0	0
2	110	-9.7	200	-0.9
3	190	-19.2	800	-4.9
4	410	-22.8	1200	-8.0
5			2300	-7.8
6			3700	-23.9
VEHICULAR	CHANNEL A (40%)		CHANNEL B (55%)	
1	0	0	0	-2.5
2	310	-1	300	0
3	710	-9	8900	-12.8
4	1090	-10	12900	-10.0
5	1730	-15	17100	-25.2
6	2510	-20	20000	-16.0

ANTENNAS

Antennas Efficiency

The antenna efficiency measures "how efficiently" an antenna converts the input power into radiation. This translates directly into power consumption and battery life.

Antenna efficiency of mobiles has **decreased** mainly due to cosmetic restrictions.

What cosmetic restrictions?

Antennas Bandwidth

We can say that the bandwidth of an antenna is the width of the frequency range over which it fulfills some specification.

Most cellular systems have a bandwidth requirement in the range of 10% of the carrier frequency.

Example: 900 MHz GSM needs an antenna that can transmit/receive well in a total bandwidth of about 100 MHz.

It is difficult to make small and efficient broadband antennas!

What happens when we have dual- (900/1800) or triple-band (900/1800/1900) GSM phones ... or phones with 3G and Bluetooth (2.4 GHz) as well?

Antennas Mobile station antennas

Antennas Mobile station antennas

The efficiency depends on many parameters, but a very important one is its environment. Below you can see differences in antenna efficiency for 42 test persons holding the mobile.

Antennas Base station antennas

Base station antenna pattern affected by the mast (30 cm from antenna).

Antennas Base station antennas

Base station antenna pattern affected by a concrete foundation.

Antennas The dipole antenna

 $\lambda/2$ -dipole (L= $\lambda/2$) $R_r = 73 \Omega$ L $G_a = 1,64 = 2,15 dB$ $L = 1/2 \lambda$

(Rr = Radiation resistance)

⋆ X_a Antenna impedance for loss-free dipole antenna $R_a = R_r$ $L = \frac{3}{2} \lambda$ Moji IN FEXTOOO $L = 0.2 \lambda$

For a short dipole (L/ λ << 1/2) R_{Γ} will be very low and $\frac{|X_a|}{R_{\Gamma}}$ very high. Difficult to avoid ohmic losses (R_{Ω}) and losses in the tuning coil (R_{match})

Leff: Effective length of antenna

Matching condition: $R_I = R_r + R_{(\Omega)} + R_{match}$

[Figure from Ericsson Radio School documentation]

Antennas The parabolic antenna

Opening area:
$$A = \frac{\pi d^2}{4}$$

Effective area: $A_{\rm eff} \approx 0.55 A$

Antenna gain: $G_a = \frac{4\pi}{\lambda^2} A_{\text{eff}} \approx 0.55 \frac{\pi^2 d^2}{\lambda^2}$

3dB beamwidth: $\theta \approx \frac{200}{\sqrt{G_a}} [\text{degrees}] (\theta < 25^\circ)$

Summary

- TO THE TOTAL PROPERTY OF THE PARTY OF THE PA
- Narrowband models: Okumura's measurements, Okumura-Hata, COST 231-Ikegami-Walfish.
 Mainly models for propagation loss. Fading has to be added.
- Wideband models: COST 207 for GSM & ITU-R for 3G. Mainly specification of power-delay profile and doppler spectrum (IRT-R also gives e.g. path loss).
- Antennas: Efficiency has decreased for mobile antennas. Antenna environment changes their properties. Some specific properties for dipole and parabolic antennas.