46. Электростатическое поле. Напряженность электрического поля. Принцип суперпозиции полей. Напряженность электростатического поля точечного заряда.

Пробный заряд $q_{\rm np}$ — достаточно малый заряд, чтобы его внесение в исследуемое электрическое поле не вызывало заметного изменения этого поля.

Из опыта следует, что сила \vec{F} , действующая со стороны электрического поля на расположенный в любой точке этого поля неподвижный точечный пробный заряд $q_{\rm np}$, всегда может быть представлена в виде $\vec{F} = q_{\rm m} \vec{E}$,

где \vec{E} — напряженность электрического поля.

Напряженность \vec{E} электрического поля в некоторой его точке — векторная физическая величина, являющаяся <u>силовой</u> характеристикой электрического поля и равная отношению силы \vec{F} , действующей со стороны поля на помещенный в данную точку неподвижный точечный пробный заряд $q_{\text{пр}}$, к этому заряду:

$$\vec{E} = \frac{\vec{F}}{q_{\rm np}} \,. \tag{9.17}$$

 $B \ C U [E] = B/м.$

Если $q_{\rm np} > 0$, то $\overrightarrow{F} \uparrow \uparrow \overrightarrow{E}$.

Если $q_{\rm np} < 0$, то $\overrightarrow{F} \uparrow \downarrow \overrightarrow{E}$.

Силовая линия вектора \vec{E} (линия напряженности) – см. определение в теме 9.1.

Белорусский государственный университет информатики и радиоэлектроники

Кафедра физики

Напряженность поля неподвижного точечного заряда

Пусть электрическое поле образовано неподвижным точечным зарядом q_0 , находящимся в т. O.

Если в точку с радиус-вектором \vec{r} поместить пробный заряд $q_{\text{пр}}$, то по закону Кулона (9.2) на него будет действовать сила \vec{F} , равная $(\vec{r}_1 = \vec{r}, \ \vec{r}_2 = \vec{0})$: $\vec{F} = \frac{1}{4\pi\epsilon_0} \cdot \frac{q_0 q_{\text{пр}}}{r^2} \cdot \frac{\vec{r}}{r}$.

$$4πε0 r2$$

$$\vec{E} = \frac{\vec{F}}{a}.$$

Напряженность $\vec{E}(\vec{r})$ электростатического поля неподвижного точечного заряда q_0 в точке с радиус-вектором \vec{r} :

$$\vec{E}(\vec{r}) = \frac{q_0}{4\pi\epsilon_0 r^2} \cdot \frac{\vec{r}}{r} = \frac{q_0}{4\pi\epsilon_0 r^2} \cdot \vec{e}_r,$$

$$\vec{e}_r = \frac{\vec{r}}{r} -$$
единичный вектор оси Or . (9.18)

$$\vec{E}(\vec{r}) = \frac{q_0}{4\pi\epsilon_0 r^2} \cdot \frac{\vec{r}}{r} = \frac{q_0}{4\pi\epsilon_0 r^2} \cdot \vec{e}_r, \qquad (9.18)$$

Направление вектора \vec{E} в данной т. P поля точечного заряда q_0 зависит от его знака.

Если $q_0 > 0$, то $\overrightarrow{E} \uparrow \uparrow \overrightarrow{e}_r$.

Если $q_0 < 0$, то $\vec{E} \uparrow \downarrow \vec{e}_r$.

Белорусский государственный университет информатики и радиоэлектроники

Кафедра физики

Электростатическое поле — неизменяющееся со временем (стационарное) электрическое поле, создаваемое неподвижными зарядами.

Для электростатических полей справедлив *принцип суперпозиции*: Напряженность в каждой точке электрического поля, созданного несколькими неподвижными источниками, равна векторной сумме напряженностей полей, создаваемых каждым источником по отдельности в этой точке:

• для системы *п* точечных зарядов:

$$\vec{E}(\vec{r}) = \sum_{i=1}^{n} \vec{E}_i(\vec{r}), \tag{9.19}$$

где $\vec{E}_i(\vec{r})$ – напряженность поля точечного заряда q_i в точке с \vec{r} ;

• для непрерывного распределения заряда в области (V):

$$\vec{E}(\vec{r}) = \int_{(V)} d\vec{E}(\vec{r}), \tag{9.20}$$

где $d\vec{E}(\vec{r})$ — напряженность поля малого элемента заряда dq в точке с \vec{r} .