

Actuators

Luís Paulo Reis

lpreis@fe.up.pt **Director/Researcher LIACC Associate Professor at FEUP/DEI**

Armando Sousa

asousa@fe.up.pt **Researcher INESC-TEC Assistant Professor at FEUP/DEEC**

Obs: Language: English!

Robot & World

Actuators

(including motors, etc.)

Principle of workings

- Actuators + Motors are transducers
 - Rotative (torque)
 - Linear (force)
- Physics of producing torque / force
 - Electromagnetic (current + magnetic field)
 - Pneumatic + Hydraulic (pressure difference)
 - Piezoelectric+Ultra Sonic Motor (Shape Shifting Materials)
 - Internal Combustion (Diesel/Gasoline!) :(
 - Efficiency <30%

Simplified Physics

- Simplified Definitions:
 - Mechanical Power (P) = Speed (n) x Torque (M)
 Typically measured in Watts (W)
 - Electrical power (P) = Voltage (V) x Current (I)
 Typically measured in Watts (W)
 - Efficiency => Power_{out} / Power_{in} (percentage %)
 - ... Torque ... "rotational force" => force x distance

http://physics.bu.edu/~duffy/py105/notes/Torque.html

Mechanical

Issues:

- Start
- Stall
- Nominal
- Max mechanical
- Above nominal?
- Life cycle
- Thermal
- Zero speed ?!

Plot the curve for the mechanical load and for the motor.

=> Intersection is the working point

General Considerations

- Each motor has different characteristics
 - Efficiency / size / safety / life cycle / max speed + max force
 - Start-Up + stall start-up currents + f.c.e.m.
 - Electricity is nice for input, force / torque is output
 - Static / viscous / non-linear friction
 - Dead Zone / non linear
- Point of work of actuator is the interception of actuator curve and load curve – probably not very simple
 - Stable or dynamic point of working
- Actuators are mechanically complex
 - Throughout the actuator chain, several limitations will apply, all are dangerous
- Broken actuators are typically expensive and time consuming!!!

Servo Motor

- A complex actuator that includes closed loop control
- Generally power and signal separated
- External behaviour similar to ideal actuator
 - Linear, fast, safe, reliable, "intelligent" (?!), "smart" (?!), ...
- Position controllers have extra complexity so servo position actuators are frequent:

Actuator "Chain"

Gears

- What for ? Exchange Speed for Torque
 - $-T_{output} = T_{input} \times r_{output} / r_{input}$ (reduce speed to get larger torque)
- Types:
 - Spur, Bevel, Worm Gear, Rack and pinion, planetary ...
 - http://www.societyofrobots.com/mechanics_gears.shtml

Gear Math

- Gear ratio
 R = # teeth_w/ #teeth_p
- $T_w = e(T_p R)$
- $\omega_w = e(\omega_p/R)$

Spur Gear Reduction

A is attached to motor

 ω_{out} = (A/B) (C/D) ω_{in}

- C is a pinion attached to B's output shaft
- D is on output shaft

Some well-designed gears have high efficiency, so mechanical power is mostly kept and speed is exchanged with torque

Gear math (ii)

Exchange speed for torque

8-tooth gear on left; 24-tooth gear on right

Spur Gear / Rack pinion

Planetary Gear

3D Printed example (video):

 $\underline{https://www.youtube.com/watch?v=P\text{-}Obt\text{-}9tZVo}$

Gears

- Differential Gear:
 - http://www.youtube.com/watch?v=vBm-SzO3ggE
 - http://youtu.be/glGvhvOhLHU
- Planetary Gear:
 - http://www.youtube.com/watch?v=ECljAo1q1RQ
 - http://www.youtube.com/watch?v=acXiebKExQM
 - http://www.youtube.com/watch?v=50uQriU1mCs
- Spur Gear:
 - http://www.youtube.com/watch?v=5QCvONWi4mk
 - http://www.youtube.com/watch?v=H1cfbv7iqsY
- Worm Gear:
 - http://www.youtube.com/watch?v=S3XAeMCeZr0&NR=1

Gear-chain / belt

Example Actuator Chain: windshield wiper

https://youtu.be/D_KIOr_TpcM__ - Taha Emara

Example Actuator Chain (ii)

Actuator Chain (iii)

- Can change angle of rotation or direction of rotation: e.g. c
- Can convert rotational motion to linear motion (eg E)
- Can change location of rotational motion (eg a)

A: spur gear

B: Planetary gears

C: Worm gear

D: Ball screw

E: rack and pinion

F: belt and pulley

Actuator Chain - humanoid

Gear Knowledge

Backlash

- Amount of space between an engaging tooth and the tooth space of the mating gear
- Proportional to lubricant flow (high is good)
- Inverse to efficiency (high is good) low efficiency generates heat
- Backlash is a non linearity in control (makes control much harder)
- Other project considerations
 - Noise
 - Durability (life cycle time)
 - Breakdown
 - Friction

Differential – mechanical power trading

Cardan & Joints

http://www.youtube.com/watch?v=Dh5C4e4exhM

http://www.youtube.com/watch?v=TGvKS4bHgTk&feature=

http://www.youtube.com/watch?v=R-NzQ21i-98

Some actuators (in-depth)

Solenoid Actuator

- Solenoid electro magnet with air core
 - Simplest electric actuator
 - When energized, tends to minimize magnetic reluctance
 - Drop (off) / pull (on) and 50 % of the time on (PWM) ???
 - Example: Kicker in robotic soccer

Motor Technologies

- AC Motors
 - synchronous, induction 1,3 phase, ...
- DC Motors
 - Perm Magnet/winding, brushless DC Motors
 - Piezo/Ultra Sonic Motors
- Stepper Motors

"World of electrical motors"

DC Motor

- Conventional brushed DC motor
 - Permanent magnets on the stator
 - Mechanical brushes on the rotor
 - Currents on the rotor drive the shaft to always rotate

- Brushless DC Motor
 - Rotor has permanent magnets
 - Stator windings are commutated by external electronics to keep motion
 - For perfect drive, needs position sensing in the shaft
 - (has same points in common with stepper motors)

Drive Electronics – H Bridge

- H-brigde
 - PWM (AC or DC)
 - 2 way
 - **–** ...
- S1..S4 are very high speed electronic switches
- PWM ~ 20 kHz
- Input for a servo drive simply direction and analogue speed

https://www.build-electronic-circuits.com/h-bridge/

PWM

https://en.wikipedia.org/wiki/Pulse-width_modulation

Stepper

Unipolar

Bipolar

http://www.cs.uiowa.edu/~jones/step/

Stepper (ii) - electronics

Stepper (iii) – unipolar sequence

http://www.cs.uiowa.edu/~jones/step/

Stepper (iv) – bipolar sequence

http://www.cs.uiowa.edu/~jones/step/

Driving a bipolar Stepper Motor

Microstepping

MicroStep

Stepper dynamics

Poles & Static force & Dynamics...

Stepper (animation)

http://www.electric-motors-price.info/images/stepper-motor.jpg

Ultra Sonic Motor (piezo)

Pneumatic / Hydraulic Linear Actuator

Single effect (+ spring)

Pneumatic / Hydraulic Linear Actuator (ii)

Double Effect

Pneumatic / Hydraulic Linear Actuator (iii)

https://gifer.com/en/Ls6U

Why Pneumatic/Hidraulic?

Hydraulic

- High stress (20 MPa) / High power density (600 W/Kg)
- Moderate-high speeds (although inefficient at high speeds)

Pneumatic

- Moderate stress (0.7 MPa) / High power density (200 W/Kg)
- High efficiency (~90%)
- Fast but settling time (compressible gas, control difficulty)

Both:

- Bilateral actuation,
- High instantaneous power delivery
- Constant force advancements
- **—** ...

Series Elastic Actuator

Summary

- Transducers change energy types
 - Actuator "chain" (assembly, set of apparatus to change world)
 - Actuator chains change movement / forces / efficiencies
 - Efficiency, safety, etc
- Many types of actuators
 - Most Important: DC motor

Actuators

Luís Paulo Reis

lpreis@fe.up.pt **Director/Researcher LIACC Associate Professor at FEUP/DEI**

Armando Sousa

asousa@fe.up.pt **Researcher INESC-TEC Assistant Professor at FEUP/DEEC**

Obs: Language: English!

