Formulario di Fisica Tecnica ITPS

CONTENTS

1	Trasformazioni	4
	1.1 Trasformazione Politropica	4
	1.1.1 Equazione di stato	
	1.2 Casi Particolari	
	1.3 Lavoro massico durante una Trasformazione Politropica .	5
	1.4 Calore massico scambiato	
	1.5 Calori specifici gas perfetti	
	1.5.1 A volume costante	
	1.5.2 A pressione costante	7
	1.6 Trasformazione Isoentropica	
2	Macchine	9
	2.1 Rendimenti	9
	2.1.1 Turbina adiabatica	9
	2.1.2 Pompa	9
3	Cicli Termodinamici	10
	3.1 Cicli Simmetrici	10
	3.2 Rendimenti	10
	3.2.1 Carnot (Gas)	10
	3.2.2 Ciclo frigorifero Carnot (Gas) (Indiretto)	
	3.2.3 Pompa di Calore (Gas) (Indiretto)	
	3.2.4 Brayton Joule (Gas)	
	3.2.5 Brayton Joule con rigenerazione (Gas)	
	3.2.5.1 Come calcolare Tx e Ty	
	3.2.5.2 Efficienza	
	3.2.6 Rankine (Vapore)	13
4	Aria Umida (miscela bicomponente)	14
	4.1 Umidità Assoluta	14
	4.2 Umidità Relativa	14
	4.3 Entalpia	15
5	Conduzione del colores Degime non Stazionerio	
5 16	Conduzione del calore: Regime non Stazionario	••••
	5.1 Numero di Biot	16
	5.2 Lunghezza Caratteristica	16

	5.3 Tempo di Raffreddamento	
	5.4 Temperatura finale al tempo t	17
6	Scambiatori di Calore	18
	6.1 Temperatura Media Logaritmica	18
	6.2 Potenza termica scambiata dal fluido freddo	18
	6.3 Coefficiente globale di scambio	
D	ocument made with typst Link to typst documentation	

1 Trasformazioni

1.1 Trasformazione Politropica

Con essa si indica una qualsiasi trasformazione termodinamica.

1.1.1 Equazione di stato

$$p \cdot V^n = \text{costante}$$

Dove:

• p: la pressione

• V: il volume

• n: l'indice politropico, **pari a k se** trasf. adiabatica e quasistatica(cioè isoen tropica)

1.2 Casi Particolari

• Per $n=0 \to$ Isobara: p=costante

• Per $n = \pm \infty \rightarrow$ Isocora: V = costante

• Per $n = 1 \rightarrow$ Isoterma: T =costante

• Per n=k o Adiabatica: $k=\frac{C_p}{C_n}$

1.3 Lavoro massico durante una Trasformazione Politropica

Calcolando:

$$w = \int_{v_1}^{v_2} p \, \mathrm{d}v = p_1 v_1^n \int_{v_1}^{v_2} v^{-n} \, \mathrm{d}v$$

Si distinguono due casi:

1. Caso Generale $(n \neq 1)$:

$$L_v = \frac{p_1 \cdot V_1}{n-1} \left(\left(\frac{V_1}{V_2} \right)^{n-1} - 1 \right)$$

1. Caso Isotermico (n = 1):

$$L_v = -p_1 \cdot V_1 \ln \frac{V_2}{V_1}$$

1.4 Calore massico scambiato

$$\begin{split} \Delta u &= q + w \quad \Rightarrow \quad q = \Delta u - w \\ \Delta u &= c_v \cdot (T_2 - T_1) \\ w &= \int_{v_1}^{v_2} p \, \mathrm{d}v \\ \\ \Rightarrow \\ q &= c_v \cdot (T_2 - T_1) - \int_{v_1}^{v_2} p \, \mathrm{d}v \end{split}$$

Due casi per il lavoro:

• n < 1:

$$q = c_v \cdot (T_2 - T_1) - \frac{p_1 \cdot V_1}{n-1} \Bigg(\left(\frac{V_1}{V_2} \right)^{n-1} - 1 \Bigg)$$

1.5 Calori specifici gas perfetti

N.B. NO vapore

SÌ aria umida ma solo per la parte di aria secca.

$$R^* = \frac{R}{\text{Mm}}$$

• R : Costante dei gas perfetti = 8314 $\frac{J}{\text{kmol }K}$

• Mm : Massa Molare del gas $\left[\frac{kg}{kmol}\right]$ pari allla somma delle masse atomiche degli atomi che compongono la singola molecola. Esempio: N2 = N + N = 14 + 14 = 28 kg/kmol

Calcolare calori specifici con l'indice n della politropica.

1.5.1 A volume costante

$$c_v = \frac{1}{n-1} \cdot R^*$$

1.5.2 A pressione costante

$$c_p = \frac{n}{n-1} \cdot R^*$$

1.6 Trasformazione Isoentropica

Se la trasformazione è adiabatica e anche quasistatica (deve essere specificato nella traccia) allora n=k.

Dove:

$$k = \frac{c_p}{c_v}$$

La quasistaticità è necessaria perchè se la trasformazione non è reversibile (presenza di forze non conservative che dissipano calore) si genera entropia. Forze non conservative -> dissipazione calore -> generazione entropia.

2 MACCHINE

2.1 Rendimenti

*rendimenti isoentropici

2.1.1 Turbina adiabatica

$$\eta = \frac{\text{Lavoro}_{\text{Reale}}}{\text{Lavoro}_{\text{Isoentropico}}} = \frac{h_2 - h_1}{h_2^{\text{iso}} - h_1}$$

2.1.2 **Pompa**

$$\eta = \frac{\text{Lavoro}_{\text{tecnico isoentropico}}}{\text{Lavoro}_{\text{tecnico reale}}} = \frac{h_2^{iso} - h_1}{h_2 - h_1}$$

3 CICLI TERMODINAMICI

3.1 Cicli Simmetrici

Per i cicli simmetrici valgono le seguenti equazioni:

$$v_1 v_3 = v_2 v_4$$

$$p_1 p_3 = p_2 p_4$$

$$T_1T_3 = T_2T_4$$

Seguono lo schema: $indici\ dispari=indici\ pari$

3.2 Rendimenti

Formula generale (cicli diretti):

$$\eta = rac{|w_{
m utile}|}{q_H}$$

3.2.1 Carnot (Gas)

• 2 isoterme + 2 adiabatiche isoentropiche

$$\eta = 1 - \frac{T_{min}}{T_{max}}$$

Si ricorda che 4 \rightarrow 1 e 2 \rightarrow 3 sono trasformazioni isoterme.

3.2.2 Ciclo frigorifero Carnot (Gas) (Indiretto)

Coefficient Of Performance (COP):

$$\begin{split} COP_{\rm frigo} &= \frac{\Delta s_{12} \cdot T_{\rm min}}{\Delta s_{34} \cdot T_{\rm max} - \Delta s_{12} \cdot T_{\rm min}} \\ COP_{\rm frigo} &= \frac{T_{\rm min}}{T_{\rm max} - T_{\rm min}} \end{split}$$

N.B.
$$\Delta s_{12} = \Delta s_{34}$$

3.2.3 Pompa di Calore (Gas) (Indiretto)

Si ottiene invertendo il cicli di Carnot diretto.

Coefficient Of Performance (COP):

$$\begin{split} COP_{\text{pompa calore}} &= \frac{\Delta s_{34} \cdot T_{\text{max}}}{\Delta s_{12} \cdot T_{\text{min}} - \Delta s_{34=12} \cdot T_{\text{max}}} \\ &COP_{\text{frigo}} = \frac{T_{\text{max}}}{T_{\text{max}} - T_{\text{min}}} \end{split}$$

N.B.
$$\Delta s_{12} = -\Delta s_{34}$$

3.2.4 Brayton Joule (Gas)

2 adiab. isoentropiche: (pompa $1\rightarrow 2$ + turbina $3\rightarrow 4$)

+ 2 isobare:

 $q_h: 2 \rightarrow 3$

 $q_c{:}\, 4{\longrightarrow} 1$

$$\eta = 1 - \frac{c_p \cdot (T_4 - T_1)}{c_p \cdot (T_3 - T_2)} = 1 - \frac{T_4 - T_1}{T_3 - T_2}$$

3.2.5 Brayton Joule con rigenerazione (Gas)

La rigenerazione la si può sfruttare se T4>T2, sostanzialmente il gas uscente dalla turbina è più caldo di quello uscente dal compressore.

Dall'uscita della turbina senza rigenerazione si deve portare il gas da T4 a T1, la rigenerazione permette di raffreddare da T4 a Ty (con T1<Ty<T4) quindi il calore da cedere sarà solo quello per portare il gas da Ty a T1.

Dall'uscita del compressore senza rigenerazione si deve portare il gas da T2 a T3, la rigenerazione permette di riscaldare da T2 a Tx (con T2<Tx<T3) quindi si riesce a recuperare del calore che altrimenti verrebbe disperso nell'ambiente per alimentare la trasformazione T2 → T3

$$\begin{split} \eta &= \frac{Q_{\text{prodotto}} - Q_{\text{ceduto}}}{Q_{\text{prodotto}}} \\ &= 1 - \frac{c_p \cdot \left(T_y - T_1\right)}{c_p \cdot \left(T_3 - T_x\right)} \end{split}$$

- Ty: temperatura di uscita dallo scambiatore lato turbina. (parte raffreddata)
- Tx: temperatura di uscita dallo scambiatore lato compressore (parte riscaldata)

3.2.5.1 Come calcolare Tx e Ty

Nello scambiatore verrà scambiata una quantità di calore che dipende in primo luogo dal Δ di temperatura tra uscente dalla turbina e uscente dal compressore, ammesso che abbiano stessa portata massica e dovrebbe visto che il circuito è chiuso e la massa si conserva, la velocità dovrebbe varia solo la sezione dei due condotti.

In secondo luogo dipende dall'efficienza dello scambiatore ε (epsilon).

$$\varepsilon = rac{Q_{ ext{ scambiato}}}{Q_{ ext{ potenzialmente}}}$$

$$\begin{array}{c} \varepsilon = \frac{Q_{ ext{ scambiato}}}{Q_{ ext{ potenzialmente}}} \\ & \text{scambiabile} \\ & \text{se efficienza} = 100\% \end{array}$$

Massimo calore scambiabile:

$$Q_{\rm max} = c_p (T_4 - T_2)$$

Calore scambiato effettivamente:

$$Q_{\rm rigenerato} = c_p \ |T_x - T_2| = c_p \ |T_1 - T_y|$$

Il ΔT causato dallo scambiatore è uguale da ambe due le parti. Perciò:

$$\begin{split} T_x &= T_2 + \Delta T_{\text{scambiatore}} \\ T_y &= T_4 - \Delta T_{\text{scambiatore}} \end{split}$$

Dove $\Delta T_{
m scambiatore}$ è calcolabile come:

$$\Delta T_{\rm scamb.} = \varepsilon \cdot (T_4 - T_2)$$

3.2.5.2 Efficienza

$$\eta_{\rm rig.} = 1 - \frac{|T_1 - T_y|}{T_3 - T_x}$$

Oppure:

$$\eta_{ ext{rig.}} = 1 - rac{|T_1 - (T_4 - \Delta T_{ ext{scamb.}})|}{T_3 - (T_2 + \Delta T_{ ext{scamb.}})}$$

3.2.6 Rankine (Vapore)

$$\eta = \frac{|w|}{q_H} = 1 - \frac{|h_1 - h_4|}{h_3 - h_2}$$

4 Aria Umida (miscela bicomponente)

4.1 Umidità Assoluta

$$U_A = 0.622 \cdot \frac{p_{vapore\%}}{p_{totale} - p_{vapore\%}} = 0.622 \cdot \frac{\varphi \cdot p_S}{p_{\text{totale}} - \varphi \cdot p_S}$$

- U_A : Umidità assoluta
- φ : Umidità relativa
- p_S : Pressione di saturazione del vapore alla data T
- p_{totale} : Pressione totale

Formule correlate:

$$U_A = \frac{m_{H2O}}{m_{Aria~Secca}}$$

$$0.622 = \frac{R}{Mm_{H2O}} \cdot \frac{Mm_{Aria\ Secca}}{R}$$

4.2 Umidità Relativa

$$\varphi = \frac{P_v}{P_{sat}}$$

- φ : Umidità relativa
- P_V : Pressione parziale vapore
- P_{sat} : Pressione di saturazione del vapore

4.3 Entalpia

Se
$$U_a < U_{sat}$$

$$h = c_{p_{AS}} \cdot T + U_a \cdot \left(c_{p_v}T + h_{0,v}\right)$$

Dove:

- + $c_{p_{AS}} = 1.007 \frac{kJ}{kg}$: calore specifico aria secca
- + $c_{p_v} = 1.86 \frac{kJ}{kg}$: calore specifico vapore
- $\,h_{0,v}=2506.1rac{kJ}{kg}\,$: entalpia vapore a 0 C°
- ullet T : temperatura in Celsius
- U_a : umidità assoluta

5 CONDUZIONE DEL CALORE: REGIME NON STAZIONARIO

5.1 Numero di Biot

$$Bi = \frac{R_k}{R_h} = \frac{hL_{caratteristica}}{k}$$

- $h \frac{W}{m^2K}$: coeff. di scambio termico convettivo (fluidi)
- $k \frac{W}{mK}$: coeff. di scambio termico conduttivo (solidi)
- L: lunghezza caratteristica
- R_k : Resistenza alla conduzione
- $\,R_h\,:$ Resistenza alla convezione

5.2 Lunghezza Caratteristica

$$L_{\rm car.} = rac{V}{S}$$

- V : Volume dell'oggetto
- S: Superficie dell'oggetto a contatto con il fluido termovettore

5.3 Tempo di Raffreddamento

N.B. Valida solamente se il numero di Biot ≤ 0.1

$$t = \tau \ln \frac{T_i - T_\infty}{T_f - T_\infty}$$

 T_i : iniziale

 T_f : finale

 T_{∞} : temperatura riferita al fluido in cui è immerso il corpo.

Con

$$\tau = \frac{\rho c}{h} L_{\rm caratteristica}$$

$$\tau = \frac{M \cdot c}{h \cdot S}$$

5.4 Temperatura finale al tempo t

Dato l'istante t, data T_{∞} (temperatura fluido convettivo) e τ . La temperatura finale è pari a:

$$T_f = (T_i - T_\infty) \cdot e^{-\frac{t}{\tau}} + T_\infty$$

6 SCAMBIATORI DI CALORE

6.1 Temperatura Media Logaritmica

$$\Delta T_{ml} = \frac{\Delta T_i - \Delta T_u}{\ln \frac{\Delta T_i}{\Delta T_u}}$$

$$\Delta T_i = T_{max_ingresso} - T_{min_ingresso}$$

$$\Delta T_u = T_{max_uscita} - T_{min_uscita}$$

i: ingresso u: uscita

6.2 Potenza termica scambiata dal fluido freddo

fluido freddo:

$$\dot{Q} = \dot{m} \cdot c_{pf} \cdot \left(T_{fu} - T_{fi} \right)$$

fu: fluido Freddo-Uscita fi: fluido Freddo-Ingresso

fluido caldo:

$$\dot{Q} = \dot{m} \cdot c_{pc} \cdot (T_{cu} - T_{ci})$$

cu: fluido Caldo-Uscita ci: fluido Caldo-Ingresso

6.3 Coefficiente globale di scambio

$$U_{tot} = \frac{\Delta T_{ml}}{\dot{Q}} \quad \left[\frac{K}{W}\right]$$