[First Name Initial]. Last Name

2. let as assume $A = \{a^{2n}\}b^n|n \ge 0\}$ is regular.

let pumping length = p $A = \{a^{2p}\}b^p$ divide this into xy'z

lets say p=2 $S = a^{2*2}b^2$ which is an aaabb where x = ay = aaaandz = bb

case 1 'y' is in a part (a + aaa + bb)

so
$$xy^iz$$
 is xy^2z for $i-2$

therefore we have a aaa aaa bb which is a^7b^2 does not comes in $a^{2n}b^n$

case 2: y lies in b part so aaaabb where x = aaaay = bz = b

for $i-2 xy^2z$ equals aaaa bbb (a^4b^3) does not comes with $a^{2n}b^n$

case 3: y lies in a and b part so we have aaaabb where x = aaay = abz = b

for i-2 xy^2z equals as abab b which does not comes under $a^{2n}b^n$

hence our assumption was wrong. so according to pumping lemma we can say that $\{a^{2n}\}b^n|n\geq 0\}$ is not regular

1. Consider set $X = \{n-n \ a \notin f(n)\}$

we can say that x is not a value of f. lets suppose that X = f(k). does k belong to f(k)?

if yes then no. for if $k \in f(k)$ then $k \notin X$ but X is f(k)

if no then yes. if $k \notin f(k)$ then $k \in x$ and P(X)

so there is no such f between X and p(x)

D:20200924020623Z 1 of 1