עבודה 7: תת מרחבים שמורים.

שאלה $T:\mathbb{R}^3 o\mathbb{R}^3$ יהי יהי $T:\mathbb{R}^3 o\mathbb{R}^3$ אופרטור לינארי המוגדר ע"י המוגדר ע"י אופרטור $T:\mathbb{R}^3 o\mathbb{R}^3$

? הם שמורים

$$W_1 = \operatorname{span} \left\{ egin{pmatrix} 1 \ 0 \ 0 \end{pmatrix}, egin{pmatrix} 0 \ 1 \ 0 \end{pmatrix}
ight\}$$
 (8

$$W_2 = \operatorname{span} \left\{ \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$$
 (2)

$$W_3 = \operatorname{span}\left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix} \right\}$$
 (3)

-שאלה $T:\mathbb{R}^2$ מצאו תת מרחב $T:\mathbb{R}^2\to\mathbb{R}^2$ כך ש $T:\mathbb{R}^2\to\mathbb{R}^2$ יהי יהי $T:\mathbb{R}^2\to\mathbb{R}^2$ אופרטור שמוגדר ע"י שמור לא טריוויאלי. W

 $U\subset W\subset \mathbb{R}^3$ יהי $T\begin{pmatrix}x\\y\\z\end{pmatrix}=\begin{pmatrix}x\\y\\z\end{pmatrix}=\begin{pmatrix}z\\x+y\\0\end{pmatrix}$ אופרטור שמוגדר ע"י $T:\mathbb{R}^3 o\mathbb{R}^3$ מצאו תת מרחבים $T:\mathbb{R}^3 o\mathbb{R}^3$

. שמור מרחב אבל U לא טריוויאלי שמור שמור שמור T הוא תת-מרחב שW

שאלה $A\in\mathbb{F}$ יהי V מרחב וקטורים. יהי T:V o V ויהיו T:V o V יהי V סקלר מעל מרחב וקטורי מעל שדה V ויהי עויהי V מרחב העצמי של V ביחס לאופרטור V הוכיחו שאם האופרטורים V וויהי V מרחב העצמי של V ביחס לאופרטור V ביחס V מרחב V שמור.

 $u\in V$ כך שלכל Orb $_T\subset V$ יהי V מרחב וקטורי ויהי T:V o V אופרטור. נגדיר את הקבוצה אופרטורי ויהי

$$Orb_T(u) = span \{u, T(u), T^2(u), T^3(u), \ldots\}$$
.

V תת-מרחב של OrbT הוכיחו כי

בור. T שמור. OrbT שמור.

שמור. הוכיחו: T:V o V שמור ו- T:V o V שמור. הוכיחו: T:V o V

- .א) אור $U\cap W$ שמור $U\cap W$
- ב) אמור. U+W
 - . אמור T שמור T(U)

שאלה $T:\mathbb{R}^3 o\mathbb{R}^3$ שמוגדר ע"י נתון אופרטור לינארי

$$T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -6x + y + 12z \\ -8x + 2y + 15z \\ -2x + 5z \end{pmatrix} .$$

. אמור $W=\operatorname{span}\left\{egin{pmatrix}0\\1\\1\end{pmatrix}\right\}$ הוא התת מרחב

תשובות

שאלה 1

-ע כך ש
$$\alpha_1,\alpha_2$$
 סקלרים קיימים $u\in W_1$ לכל לכל $W_1=\operatorname{span}\left\{\begin{pmatrix}1\\0\\0\end{pmatrix},\begin{pmatrix}0\\1\\0\end{pmatrix}\right\}$

$$u = \alpha_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \alpha_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ 0 \end{pmatrix} .$$

$$T(u) = \begin{pmatrix} \alpha_1 \\ \alpha_1 - \alpha_2 \\ 0 \end{pmatrix} = \alpha_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + (\alpha_1 - \alpha_2) \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \in W_1.$$

.לכן W_1 תת-מרחב שמור לכן

$$W_2=\operatorname{span}\left\{egin{pmatrix}0\\0\\1\end{pmatrix}
ight\}$$
 פע - לכל $u\in W_2$ קיימים סקלרים כך ש

$$u = \alpha \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \alpha \end{pmatrix} .$$

$$T(u) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \in W_2 .$$

.לכן W_2 תת-מרחב שמור לכן

$$W_3 = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\} \qquad$$
לכל α פיימים סקלרים א קיימים ער פר ע

$$u = \alpha \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} \alpha \\ 0 \\ 0 \end{pmatrix} .$$

$$T(u) = \begin{pmatrix} \alpha \\ \alpha \\ 0 \end{pmatrix} \not\in W_3 .$$

. לכן W_3 אינו תת-מרחב שמור לכן

שאלה 2 התמונה של T היא תת-מרחב של T הנפרש ע"י שני וקטורים:

$$\operatorname{Im} T = \operatorname{span} \left\{ u_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, u_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$$

תת-מרחב T שמור. Im T

שאלה 3 התמונה של T היא תת-מרחב של T הנפרש ע"י שני וקטורים:

$$\operatorname{Im} T = \operatorname{span} \left\{ u_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, u_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\}$$

תת-מרחב T שמור. $W={
m Im}\ T$

לעומת זאת,

$$T(u_1) = u_2$$

. שמור T שמור אינו $U=\operatorname{span}\{u_2\}\subset W$ לכן

שאלה λ יהי $w \in W$ כאשר W המרחב עצמי של T השייך לערך עצמי $w \in W$ יהי

$$T(w) = \lambda w$$
.

נניח שS(w)=w' אז

$$T(w') = T(S(w')) = TS(w').$$

נתון) TS = ST

$$T(w') = T(S(w)) = TS(w) = ST(w) = S(\lambda w) = \lambda S(w) = \lambda w'.$$

<u>שאלה 5</u>

- V וכל פרישה של וקטורים של א וכל פרישה של וקטורים של א וכל פרישה של Orb. א וכל פרישה של וקטורים של א וכל פרישה של ו
 - נסמן $T(w)\in \mathrm{Orb}_T(u)$ מתקיים $w\in \mathrm{Orb}_T(u)$. נסמן

$$w = a_1 T^{n_1}(u) + a_2 T^{n_2}(u) + \ldots + a_k T^{n_k}(u)$$
.

$$T(w) = a_1 T^{n_1+1}(u) + a_2 T^{n_2+1}(u) + \ldots + a_k T^{n_k+1}(u) \in \text{Orb}_T(u)$$

כנדרש.

שאלה 6

אם
$$T$$
 אוא U ו- $a\in U$ הוקטור $a\in U\cap W$ אור, לכן

$$T(a) \in U$$
.

לכן שמור, לכן Tהוא W-ו גם, $a\in W$ חוקטור הוקטור $a\in W$

$$T(a) \in W$$
.

 $a\in U\cap W$ לכל $T(a)\in U\cap W$, ולכן $T(a)\in W$ רכל ולכל $T(a)\in U$

 $b \in W$ -ו $a \in U$ לכל

$$T(a) \in U$$
, $T(b) \in W$

-ו $a+b\in U+W$ הוקטור $b\in W$ -ו $a\in U$ לכל

$$T(a+b) = T(a) + T(b) \in U + W .$$

 $a \in U$ לכל

$$T(a) \in U$$

לכן

$$T(T(a)) \in U$$
.

שאלה 7

$$T\begin{pmatrix}0\\1\\1\end{pmatrix} = \begin{pmatrix}13\\17\\5\end{pmatrix} \notin W$$

. שמור T אינו W לכן