STAT443 Assignment4

Yiming Shen 20891774

29/03/2023

Problem 4

(a)

```
library(fpp)
## Loading required package: forecast
## Registered S3 method overwritten by 'quantmod':
     method
##
     as.zoo.data.frame zoo
## Loading required package: fma
## Loading required package: expsmooth
## Loading required package: lmtest
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
       as.Date, as.Date.numeric
##
## Loading required package: tseries
par(mfrow=c(1,3))
# plot the series
plot(austa, main="The plot of austa time series",
    ylab="total international visitors (in millions)")
# plot ACF
acf(austa, main="The ACF plot of austa time series")
# plot PACF
pacf(austa, main="The PACF plot of austa time series")
```

The plot of austa time series The ACF plot of austa time serie The PACF plot of austa time series

Series diff(austa) Series diff(austa) The plot of difference series of au 1.0 9.0 0.3 0.8 0.2 9.0 0.1 0.2 Partial ACF 0.4 diff(austa) ACF 0.0 0.1 0.2 -0.1 0.0 -0.2 -0.2 0.1 -0.3

```
# comments:
# Based on the plot of difference series, there is no obvious trend and it
# looks quite stationary.
# Based on its ACF and PACF plot, almost (except lag0 in ACF) all spikes stay
# within the band, so there is no significant spikes for the first difference
# series.
```

6

Lag

4

12

4 6 8 10

Lag

14

2

0 2

(b)

##

gas

1980

1990

2000

Time

2010

```
# How to settled on the model:
# We notice that the first difference series is relative stationary and looks
# like a white noise process. So we fit a ARIMA(0,1,0) model to the series.
library(astsa)
##
## Attaching package: 'astsa'
## The following object is masked from 'package:fpp':
##
##
       oil
## The following objects are masked from 'package:fma':
##
##
       chicken, sales
## The following object is masked from 'package:forecast':
##
```

```
# forecast 10 steps ahead
model <- sarima.for(austa, n.ahead=10, p=0, d=1, q=0)</pre>
```


model

```
## $pred
## Time Series:
## Start = 2011
## End = 2020
## Frequency = 1
## [1] 5.594594 5.748294 5.901994 6.055694 6.209394 6.363094 6.516794 6.670494
  [9] 6.824194 6.977894
##
##
## $se
## Time Series:
## Start = 2011
## End = 2020
## Frequency = 1
## [1] 0.1769883 0.2502993 0.3065528 0.3539766 0.3957579 0.4335311 0.4682671
   [8] 0.5005986 0.5309649 0.5596862
# construct 95% prediction interval
c <- 1.96
lower_bound <- model$pred-c*model$se</pre>
upper_bound <- model$pred+c*model$se</pre>
cbind(model$pred,lower_bound, upper_bound)
## Time Series:
## Start = 2011
```

```
## Frequency = 1
##
        model$pred lower_bound upper_bound
          5.594594
                       5.247697
                                     5.941491
## 2011
## 2012
          5.748294
                       5.257707
                                     6.238881
## 2013
          5.901994
                       5.301151
                                     6.502837
## 2014
          6.055694
                       5.361900
                                     6.749488
## 2015
          6.209394
                       5.433708
                                     6.985079
## 2016
          6.363094
                       5.513373
                                     7.212815
## 2017
          6.516794
                       5.598990
                                    7.434597
## 2018
          6.670494
                       5.689321
                                     7.651667
## 2019
          6.824194
                        5.783503
                                     7.864885
## 2020
          6.977894
                       5.880909
                                     8.074879
(c)
time.vec <- 1:length(austa)</pre>
time.vec2 <- time.vec^2</pre>
time.vec3 <- time.vec^3</pre>
time.vec4 <- time.vec^4</pre>
time.vec5 <- time.vec^5</pre>
# fitting models
regression1 <- lm(austa~time.vec, na.action=NULL)</pre>
regression2 <- lm(austa~time.vec+time.vec2, na.action=NULL)</pre>
regression3 <- lm(austa~time.vec+time.vec2+time.vec3, na.action=NULL)</pre>
regression4 <- lm(austa~time.vec+time.vec2+time.vec3+time.vec4, na.action=NULL)
regression5 <- lm(austa~time.vec+time.vec2+time.vec3+time.vec4+time.vec5,</pre>
                  na.action=NULL)
# Based on Residual plot
plot(rstudent(regression1))
```

End = 2020

plot(rstudent(regression3))

plot(rstudent(regression4))

plot(rstudent(regression5))

Based on AIC

AIC(regression1)

[1] 11.33923

AIC(regression2)

[1] 9.026575

AIC(regression3)

```
## [1] -12.8224
AIC(regression4)

## [1] -17.66838
AIC(regression5)

## [1] -16.34848

# fitting trend+noise model:
# Based on the residual plots, we found that there seems to be decreasing trend
# in regression1 and regression2, and for regression 3,4,5, they all do not have
# obvious trend.

# Then based on their AIC, we found that model_reg4 has the smallest AIC.
# Therefore, based on both residual plot and AIC, regression4
# (time.vec+time.vec2+time.vec3+time.vec4) is appropriate.
acf(resid(regression4))
```

Series resid(regression4)

pacf(resid(regression4))

Series resid(regression4)


```
# How to settled on the model:
# Based on the ACF and PACF plot of reg4, we found that its ACF cut off after
# lag1 and PACF cut off after lag2, so we fit a ARIMA(2,0,1) to the series.
predict_time = 32:41
predict_data = cbind(time.vec=predict_time,
                     time.vec2=predict_time^2,
                     time.vec3=predict_time^3,
                     time.vec4=predict_time^4)
# forecast 10 steps ahead
model2 <- sarima.for(austa, n.ahead = 10,</pre>
                     p=2, d=0, q=1,
                     xreg=model.matrix(regression4)[,-1],
                     newxreg = predict_data)
## Warning in log(s2): NaNs produced
```


model2

```
## $pred
## Time Series:
## Start = 2011
## End = 2020
## Frequency = 1
## [1] 5.539765 5.631367 5.743567 5.896603 6.099000 6.350941 6.650713 6.999946
  [9] 7.405515 7.878398
##
##
## $se
## Time Series:
## Start = 2011
## End = 2020
## Frequency = 1
## [1] 0.1038075 0.1053323 0.1145138 0.1307160 0.1377850 0.1381310 0.1390896
## [8] 0.1413095 0.1424743 0.1425601
# construct 95% prediction interval
c <- 1.96
lower_bound <- model2$pred-c*model2$se</pre>
upper_bound <- model2$pred+c*model2$se</pre>
cbind(model2$pred,lower_bound,upper_bound)
## Time Series:
## Start = 2011
## End = 2020
## Frequency = 1
        model2$pred lower_bound upper_bound
```

```
## 2011
                                    5.743228
           5.539765
                        5.336302
## 2012
           5.631367
                        5.424916
                                    5.837819
## 2013
           5.743567
                        5.519120
                                    5.968014
## 2014
           5.896603
                        5.640400
                                    6.152807
## 2015
           6.099000
                        5.828942
                                    6.369059
## 2016
           6.350941
                        6.080205
                                    6.621678
## 2017
           6.650713
                        6.378098
                                    6.923329
## 2018
           6.999946
                        6.722979
                                    7.276912
## 2019
           7.405515
                        7.126265
                                    7.684764
## 2020
           7.878398
                        7.598980
                                    8.157816
```

(d)

Difference: The ARIMA forecast is linear trend while the trend+noise forecast is non-linear trend. Besides, the prediction interval of trend+noise forecast is much narrower then ARIMA forecast. Therefore, I think that trend+noise forecast is better. Because the narrow forecast interval means that the forecast is more accurate.

Problem 5

```
load("usGNP.RData")
```

(a)

```
# plot raw data
plot(y, main="Plot of USA GNP time series from 1947 to 2002")
```

Plot of USA GNP time series from 1947 to 2002

plot first difference of log time series
plot(diff(log(y)), main="Plot of the first difference of log time series")

Plot of the first difference of log time series

```
# Comments:
# Based on the plot of raw data, we found that there is a very obvious
# increasing trend, so the time series is non-stationary.
# Based on the first difference of log time series, we found that there is no
# obvious trend and seasonality so it looks relative stationary.
# The meaning of first difference of log(y) in real life is GNP's growth rate.
```

```
(b)
# ACF plot
acf(diff(log(y)), main="Sample ACF plot of first difference of log time series")
```

Sample ACF plot of first difference of log time series

PACF plot
pacf(diff(log(y)), main="Sample PACF plot of first difference of log time series")

Sample PACF plot of first difference of log time series

Comments:

Based on the sample ACF plot, we found that spikes cut off at lag2.

```
# Based on the sample PACF plot, we found that spikes cut off at lag1.
# Therefore, we suggest an ARIMA(1,1,2) model on the logrithmic data.
```

(c)

```
library(astsa)
model \leftarrow sarima(log(y), p=1, d=1, q=2)
## initial value -4.589567
## iter 2 value -4.593469
## iter 3 value -4.661378
## iter 4 value -4.662245
## iter 5 value -4.662354
## iter 6 value -4.662395
## iter 7 value -4.662567
## iter 8 value -4.662643
## iter 9 value -4.662676
## iter 10 value -4.662678
## iter 10 value -4.662678
## final value -4.662678
## converged
## initial value -4.664307
## iter
        2 value -4.664310
## iter 3 value -4.664311
## iter 4 value -4.664313
## iter 5 value -4.664315
## iter 6 value -4.664315
## iter 7 value -4.664316
## iter 8 value -4.664316
## iter 9 value -4.664316
## iter 9 value -4.664316
## iter 9 value -4.664316
## final value -4.664316
## converged
```


SE t.value p.value

1.9083

0.7078

0.0577

0.2407 0.2066 1.1651 0.2453

0.0083 0.0010 8.0774 0.0000

0.0761 0.2026 0.3754

0.1623 0.0851

##

##

\$AIC

ar1

ma1

\$ttable

constant

Estimate

```
## [1] -6.445711
##
## $AICc
## [1] -6.44488
##
## $BIC
## [1] -6.369074
# diagnostics:
# Based on plot of standardized residuals, there is no obvious trend,
# seasonality.
# Based on plot of ACF, except lag0, there is no significant spike.
# Based on QQplot, most points distribute along qqline roughly, except a
# few points at two ends.
# Based on LjungBox test, p-value above 0.05 shows that there is no
# evidence to reject hypothesis of white noise.
(d)
```

simulate ARIMA model

ACF plot of simulated model

 $model_sim \leftarrow arima.sim(list(order=c(1,1,2),ar=0.2407,ma=c(0.0761, 0.1623)),$

 $\begin{array}{c} n=400)\\ \text{acf(model_sim, main="ACF plot of simulated model")} \end{array}$

PACF plot of simulated model

```
Partial ACF

O 2 0.4 0.6 0.8 1.0

O 5 10 15 20 25

Lag
```

```
# Comments:
# Based on the ACF plot, the values decay slowly.
# Based on the PACF plot, there are significant spikes at lag1 and lag2.
```

Forecast of log(GNP)


```
# Switch to forecast of GNP
exp(model_forecast$pred)
```

```
##
                      Qtr2
                               Qtr3
            Qtr1
                                         Qtr4
## 2002
                                     9553.013
## 2003 9639.100 9721.190 9802.819 9884.854
# construct 95% forecasted interval
c <- 1.96
# lower bound
lower_bound <- exp(model_forecast$pred-c*model_forecast$se)</pre>
# upper bound
upper_bound <- exp(model_forecast$pred+c*model_forecast$se)</pre>
# summary
cbind(model_forecast$pred, lower_bound, upper_bound)
```

```
model_forecast$pred lower_bound upper_bound
## 2002 Q4
                      9.164612
                                  9378.215
                                              9731.069
## 2003 Q1
                      9.173583
                                  9349.228
                                              9937.960
## 2003 Q2
                      9.182063
                                  9322.100
                                             10137.365
## 2003 Q3
                      9.190425
                                  9311.473
                                             10320.093
## 2003 Q4
                      9.198759
                                  9313.366
                                             10491.409
```