Essentials of Computer Systems - Exercises #1 (with partial solutions)

1 Positional Number Systems

$[8D9_{16}]$	$(vi.) 2265_{10}$	$[62D_{16}]$	$(i.) 1581_{10}$
$[945_{16}]$	(vii.) 2373 ₁₀	$[79C_{16}]$	(ii.) 1948 ₁₀
$[84A_{16}]$	$(viii.) 2122_{10}$	$[5AD_{16}]$	$(iii.) 1453_{10}$
$[883_{16}]$	$(ix.) 2179_{10}$	$[713_{16}]$	(iv.) 1811 ₁₀
$[94D_{16}]$	$(x.) 2381_{10}$	$[75B_{16}]$	(v.) 1883 ₁₀

Exercise 1.2 Convert into binary notation:

$[111111111_2]$	(vi.) 225 ₁₀	$[010101010_2]$	$(i.) 170_{10}$
$[1001010_2]$	$(vii.)$ 74_{10}	$[10000000_2]$	(ii.) 128 ₁₀
$[10000_2]$	$(viii.)$ 16_{10}	$[0110000000_2]$	(iii.) 384 ₁₀
$[1110011_2]$	(ix.) 115 ₁₀	$[01010001_2]$	$(iv.) 81_{10}$
$[1100_2]$	$(x.) 12_{10}$	$[0111111_2]$	$(v.) 63_{10}$

Exercise 1.3 Convert into the given radix:

Exercise 1.5 Convert into the given runnin.			
(i.) 72_{10} to $r=3$	$[2200_3]$	(vi.) 92_{10} to $r = 8$	$[134_{8}]$
(ii.) 214_{10} to $r = 5$	[13245]	(vii.) 72_{10} to $r = 8$	$[110_8]$
(iii.) 351_{10} to $r = 5$	$[2401_5]$	(viii.) 15_{10} to $r = 7$	$[21_7]$
(iv.) 54_{10} to $r = 3$	$[2000_3]$	(ix.) 116_{10} to $r = 16$	$[74_{16}]$
(v.) 14_{10} to $r=2$	$[1110_2]$	(x.) 164_{10} to $r = 11$	$[13A_{11}]$

Exercise 1.4 Convert into decimal notation:

$(i.) 01010101_2$	$[85_{10}]$	$(vi.)$ 201_3	$[19_{10}]$
(ii.) 101011 ₂	$[43_{10}]$	(vii.) 231 ₆	$[91_{10}]$
(iii.) 1101101 ₂	$[109_{10}]$	(viii.) 414 ₅	$[109_{10}]$
(iv.) $CAFE_{16}$	$[51966_{10}]$	(ix.) 315 ₈	$[205_{10}]$
$(v.) 2D3_{16}$	$[723_{10}]$	$(x.) 76_9$	$[69_{10}]$

2 Boolean Algebra

Exercise 2.1 Fill out the truth tables and draw the circuit diagrams below each table. Available gates: NOT, 2-input OR, 2-input AND gate. Derive the delay and the area of each circuit given the following assumptions:

$$A_{\text{NOT}} = 1$$
 GE , $A_{\text{AND}} = 2$ GE , $A_{\text{OR}} = 3$ GE

 $t_{\mathtt{NOT}}\!=\!0.5~ns,~t_{\mathtt{AND}}\!=\!0.7~ns,~t_{\mathtt{OR}}\!=\!0.7~ns$

x	y	$\overline{x}(x+y)$
0	0	
0	1	
1	0	
1	1	

$$\begin{array}{c|cccc} x & y & xy + x\overline{x} \\ \hline 0 & 0 & \\ 0 & 1 & \\ 1 & 0 & \\ 1 & 1 & \\ \end{array}$$

$$\begin{array}{c|c|c|c} x & y & xy(\overline{x}+y) \\ \hline 0 & 0 & \\ 0 & 1 & \\ 1 & 0 & \\ 1 & 1 & \\ \end{array}$$

Exercise 2.2 Proof of Absorption:

$$x + xy = x$$
 $x(x + y) = x$

$$\begin{array}{lllll} x+xy=x\cdot 1+xy & \dots \text{identity} & x(x+y)=(x+0)(x+y) & \dots \text{identity} \\ &=x\cdot (1+y) & \dots \text{distributivity} & =x+(0\cdot y) & \dots \text{distributivity} \\ &=x\cdot (y+1) & \dots \text{commutativity} & =x+(y\cdot 0) & \dots \text{commutativity} \\ &=x\cdot 1 & \dots \text{null element} & =x+0 & \dots \text{null element} \\ &=x & \dots \text{identity} & =x & \dots \text{identity} \end{array}$$

Exercise 2.3 Proof of consensus theorem:

$$xy + \overline{x}z + yz = xy + \overline{x}z \qquad (x+y)(\overline{x}+z)(y+z) = (x+y)(\overline{x}+z)$$

```
\begin{array}{lll} xy+\overline{x}z+yz \\ &=xy+\overline{x}z+yz\cdot 1 \\ &=xy+\overline{x}z+yz\cdot (x+\overline{x}) \\ &=xy+\overline{x}z+yzx+yz\overline{x} \\ &=xy+xyz+\overline{x}z+\overline{x}yz \\ &=xy\cdot 1+xyz+\overline{x}z\cdot 1+\overline{x}zy \\ &=xy(1+z)+\overline{x}z(1+y) \\ &=xy+\overline{x}z \end{array} \qquad \begin{array}{ll} \dots \text{ identity twice, commut.} \\ \dots \text{ identity twice, commut.} \\ \dots \text{ identity twice, commut.} \\ \dots \dots \text{ identity twice, com
```

Exercise 2.4 Prove: if a = b if and only if $\overline{a}b + a\overline{b} = 0$

Since 'if and only if' is the equivalence, i.e., implication in both directions, which is what we have to prove.

 (\Rightarrow) we take l.h.s. a = b as hypothesis:

 (\Leftarrow) we take r.h.s. $\overline{a}b + a\overline{b} = 0$ as hypothesis, but we will perform two steps, both treating the hypothesis as an equation (not as mere expression as in previous examples):

```
\overline{a}b + a\overline{b} = 0
                                                                                                              \overline{a}b + a\overline{b} = 0
                                                                 a + on both sides
                                                                                                                                                                          b+\, on both sides
a + \overline{a}b + a\overline{b} = a + 0
                                                                                                         b + \overline{a}b + a\overline{b} = b + 0
a + a\overline{b} + \overline{a}b = a
                                                                                                         b + b\overline{a} + a\overline{b} = b
                               ... commutativity on left, identity on right
                                                                                                                                       ... commutativity on left, identity on right
       a + \overline{a}b = a
                                                             \dots absorption on left
                                                                                                                b + \overline{b}a = b
                                                                                                                                                    ... absorption on left, absorption
         a+b=a
                                            ... simplification on left, (slide 9)
                                                                                                                 b + a = b
                                                                                                                                                     ... simplification on left, (slide 9)
                                                                                                                                                                \dots commutativity \ on \ left
                                                                                                                  a + b = b
```

very important: we do NOT have cancellations!!!

 $very\ important:\ we\ do\ NOT\ have\ cancellations!!!$

We have obtained a + b = a and a + b = b and conclude that a = b.

Exercise 2.5 Simplify (using algebraic manipulation) the following Boolean functions:

$$[x + \overline{y} + \overline{z}]$$

$$(i.) \ bc + b(ad + a\overline{d})$$

$$[b(a+c)]$$

$$(iii.) \ \overline{x_1} \, \overline{x_2} \, \overline{x_3} + \overline{x_1} \, \overline{x_2} \, x_3 + \overline{x_1} \, \overline{x_2} \, x_3 + x_1 \, \overline{x_2} \, \overline{x_3} + x$$

$$(iv.) \ \overline{a}b + \overline{b}c + \overline{a}\overline{b}\overline{c}$$

$$[\overline{a} + \overline{b}c]$$

$$(v.) \ \overline{(\overline{a}+b)(\overline{b}+c)}$$
 $[a\overline{b}+b\overline{c}]$

$$(vi.) \sum_{1}^{3} (1,3,6)$$
 $[\overline{x_1}x_3 + x_1x_2\overline{x_3}]$

(vii.)
$$\sum_{1}^{3} (0, 1, 2, 4, 6, 7)$$
 $[x_1 x_2 + \overline{x_1} \, \overline{x_2} + \overline{x_3}]$

Exercise 2.6 Write the normal SOP form for the following functions:

(i.)
$$x_1x_2x_3 + \overline{x_1}x_2 + \overline{x_3}$$

(ii.)
$$(x_1 + x_2 + \overline{x_3})(\overline{x_1} + x_2)x_3$$
 $\left[\sum^3 (3,7)\right]$

(iii.)
$$(\overline{x_1} + x_2 x_3) + x_1 x_2 \overline{x_3}$$
 $\left[\sum_{i=1}^{3} (0, 1, 2, 3, 6, 7) \right]$

Exercise 2.7 Write the normal POS form for the following functions :

$$(i.) \ \overline{x_1 \overline{x_2} x_3} + x_1 x_2 + \overline{x_3}$$

(ii.)
$$x_1 x_2 x_3 + \overline{x_1} x_2 + \overline{x_3}$$

(iii.)
$$(\overline{x_1} + x_2x_3) + x_1x_2\overline{x_3}$$

$$\left[\prod^3(2,3)\right]$$

3 K-maps

Exercise 3.1 Simplify the examples from exercise 2.5 using K-maps !

Exercise 3.2 Simplify using K-maps:

$$(i.) \ \overline{(x_1\overline{x_2})}(x_1+\overline{x_2}+\overline{x_3})+x_1(x_2+\overline{x_3})$$
$$[x_1x_2+\overline{x_1}\,\overline{x_2}+\overline{x_3}]$$

$$(ii.) \overline{(x_1 \overline{x_2} x_3)} (x_1 + x_2)$$

$$(iii.) \ x_1\overline{x_2}x_3 + x_1x_2 + \overline{x_3}$$

$$[x_1 + \overline{x_3}]$$

$$(iv.) \ x_1x_2\overline{x_3}x_4 + \overline{x_3}\overline{x_4} + x_2\overline{x_3}x_4 + x_1x_4 \qquad [x_1x_4 + \overline{x_3}\overline{x_4} + x_2\overline{x_3}]$$