

Meios (Mídias) de Transmissão

- São os elementos responsáveis pela conexão entre agentes transmissores e receptores em um sistema de comunicação
- Podem ser divididos em duas grandes categorias:
 - Mídias guiadas
 - Mídias não-guiadas

Meios Físicos

Guiados

- Par Trançado
- Coaxial
- Fibra Óptica

Não-guiados

- Microondas
- Satélite
- Redes sem Fio

Mídias de Transmissão

• Em ambos casos, as informações são enviadas através de sinais eletromagnéticos analógicos ou digitais

Critérios de Análise

- Propriedades físicas
- Tecnologias de transmissão
- Largura de banda
- Topologia
- Segurança
- Imunidade a ruídos
- Considerações de instalação
- Custo final

Algumas Considerações

• Os meios diferem em relação as suas capacidades de transmissão e cobertura geográfica, em função de fatores como resistência, imunidade a ruído, custo, disponibilidade de componentes e confiabilidade

Algumas Considerações

- Para mídias guiadas, a capacidade de transmissão, em termos de taxa de dados e capacidade do canal, depende, fundamentalmente, da distância envolvida
- Nas mídias não guiadas, a capacidade é muito dependente das antenas e da freqüência dos sinais envolvidos na transmissão

Tipos de Mídia

- Qualquer meio físico capaz de transportar sinais eletromagnéticos é passível de ser usado como meio de transmissão
- Os meios mais utilizados atualmente são o par trançado e a fibra ótica, cabo coaxial está em desuso

Tipos de Mídia

- Sob circunstâncias especiais, a radiodifusão, o infravermelho, os enlaces de satélite e de microondas também são escolhas possíveis
- Muitas vezes, não existe escolha, pois ao se utilizar linhas fornecidas pelas operadoras locais o sinal pode ter que passar por diferentes meios

Espectro Eletromagnético

Par Trançado

- Mídia de transmissão mais usada atualmente
- Par de fios, isolados separadamente, enrolados (twisted) juntos, empacotados em cabos
- Usualmente instalados nos edifícios durante a construção

Par Trançado

Tipos de Cabos

- UTP (Unshielded Twisted Pair): não blindado, maioria das redes locais
- STP (Shielded Twisted Pair): blindado, redes específicas, principalmente em ambiente industrial
- S-UTP (Shielded Cable Unshielded Twisted Pair)
- S-STP (Shielded Cable Shielded Twisted Pair)

UTP

STP

S-UTP

S-STP

Características de Transmissão

- Regeneração do sinal
 - transmissão analógica: a cada 5 ou 6Km
 - transmissão digital: a cada 2 ou 3Km

Características de Transmissão

- Problemas de transmissão
 - Atenuação (aumenta com a freqüência)
 - Interferência eletromagnética (ruídos)
 - Trançamento reduz interferências

Características de Transmissão

- Taxas de transmissão típicas
 - Longa distância: poucos Mbps
 - Curtas distâncias (redes locais): 10 Mbps a 1 Gbps, dependendo da distância, técnica de transmissão e qualidade do cabo
 - Largura de banda da ordem de 108 Hz

Características Físicas

Conector RJ-45

Cabo montado

Método de Transmissão

- Originalmente projetado para o tráfego telefônico analógico
- Suporta tanto transmissão analógica como digital
- Transmissão digital geralmente usa PCM em aplicações de integração de voz e dados

Cobertura de Transmissão

- Instalações de par trançado são freqüentemente limitadas a 100 metros por segmento de cabo
- Para compensar a atenuação, repetidores são usados para estender a distância e atingir os requisitos de cobertura da aplicação
- Quanto maior a taxa de bits, menor a distância que pode ser alcançada

Topologia

- São usados em configurações ponto-a-ponto
- Podem ser usados em configurações que simulam comunicação multiponto, técnica é conhecida como daisy-chaining

Rede com Par Trançado

Imunidade ao Ruído

- Meio que provê a menor imunidade a ruídos: emite e absorve ruídos
- Sensível a EMI (Interferência EletroMagnética) como a RFI (Interferência de Rádio Freqüência)
- Efeitos são minimizados com uma blindagem adequada
- Maior imunidade é atingida quando o tamanho da trança é menor que o comprimento de onda efetivo do sinal

Segurança

- É a menos segura das mídias de transmissão mais comuns
- É fácil conectá-lo a um hub, onde os sinais estão sendo difundidos (broadcasting)
- O uso de criptografia pode adicionar um nível a mais de segurança numa rede de par trançado

Ambiente de Uso

- As redes mais comuns que utilizam o par trançado são:
 - PABX (Private Automatic Branch Exchange)
 - Utilizados em telefonia
 - LANs baseadas em hubs e switches (padrão 10BaseT, 100BaseT)

Custo

- O par trançado é o meio de transmissão de menor custo por comprimento
- A ligação de nós ao cabo é também extremamente simples, e portanto de baixo custo

Categorias de UTP

- A norma EIA 568-A reconhece apenas as categorias de 3 a 6:
 - UTP Categoria 3: tipicamente utilizados para voz
 - UTP Categoria 6: trançamento mais denso, isolamento de teflon, menor interferência e melhor qualidade do sinal, tipicamente utilizados em redes locais

Categorias de UTP

Categoria	Taxa	Freqüência
1	Telefone e Modems	0,4 MHz
2	Terminais	4 MHz
3	10 Mbps	16 MHz
4	16 Mbps	20 MHz
5	100 Mbps	100 MHz
6	1 Gbps	500 MHz
7	10 Gbps	600 MHz

Categorias de UTP

- A principal diferença das categorias 3 e 4 para a 5 é que na categoria 5 os cabos possuem mais voltas por unidade de comprimento
- O cabeamento categoria 5 é o mais popular, um dos motivos para isso é que a categoria 5 é, teoricamente, certificada para redes que trabalham a 100 Mbps (obs: nem todos os cabos categoria 5 são certificados)

Par Trançado - Resumo

- Meio de transmissão de baixo custo
- É a mídia de escolha corrente
- Apresenta pequena cobertura de transmissão
- Provê pequena imunidade a ruídos
- Apresenta baixa segurança

Cabo Coaxial

Cabo Coaxial

- Meio de transmissão dominante nas LANs do passado
- Composto de dois condutores: O interno é sólido e o externo serve como blindagem, sendo usualmente aterrado, com um isolante plástico entre eles
- Uma jaqueta plástica protetora circunda o cabo

Cabo Coaxial

- Existem basicamente dois tipos:
 - Coaxial grosso (thick) tamanho máximo é de 500 metros
 - Coaxial fino (thin) tamanho máximo de um segmento é de 200 metros
- As desvantagens do coaxial grosso estão na interface da placa de rede, pois o conector bem é mais caro e no fato de ser muito mais difícil de ser manuseado

Cabo Fino (Thin)

Cabo Grosso (Thick)

Cabo Coaxial

- O conector é encaixado em outro conector do tipo T que, por sua vez, é ligado à estação
- Todo cabo coaxial deve ter em cada uma das suas pontas um terminador de rede, para evitar reflexão do sinal
- Um conector I é usado para emendar dois segmentos de cabo coaxial

Categorias

- Existem duas categorias de cabos coaxiais, existindo pequenas diferenças físicas entre eles:
 - aqueles usados para transmissão baseband
 - aqueles usados para transmissão broadband

Problemas do Cabo Coaxial

- Mal contato nos conectores é muito frequente de acontecer
- Se um usuário "abrir o barramento", ou seja, retirar o conector do T, paraliza toda a rede no mesmo instante

Conectores BNC (Thin)

Conexão BNC

Conexão Thick

Conexão Thick

Conexão Thick

Rede com Cabo Coaxial

Cobertura de Transmissão

- O padrão de LAN IEEE 802.3/Ethernet) especifica uma distância máxima de 1,8 km para cabos coaxiais broadband
- Sistemas baseband podem cobrir distâncias de tipicamente 1 a 3 km, o padrão IEEE 802.3 limita em 2,8 km a distância entre quaisquer dois dispositivos comunicantes

Cobertura de Transmissão

• A razão primária para esses limites não é a construção física do cabo mas sim considerações de tempo do protocolo de acesso ao meio

Largura de Banda

- Difere significantemente entre sistemas baseband e broadband
- Muitas implementações baseband operam na faixa de 10 Mbps, outras operam a taxas mais altas, como Token Ring a 16 Mbps
- Novas instalações Ethernet operam a taxas ainda maiores, 100 Mbps e 1 Gbps

Largura de Banda

- Sistemas broadband, por sua vez, oferecem maiores capacidades porque existem múltiplos canais em cada cabo
- Cada canal pode operar nas faixas que v\(\tilde{a}\) desde 10
 Mbps a 1 Gbps

Topologia

- O cabo coaxial é usado tanto em modo ponto-a-ponto como broadcast
- Dependendo da aplicação, um sistema broadband pode suportar milhares de conexões
- Sistemas baseband podem suportar até 100 dispositivos em um único segmento de cabo em algumas implementações

Imunidade a Ruídos

• O cabo coaxial provê excelente imunidade a ruídos comparado aos cabos UTP

Segurança

- Tapping (grampo) ou interceptação de sinal de um ponto remoto é difícil em sistemas baseados em cabo coaxial
- Porém existem conectores chamados vampiros com essa finalidade

Instalação

- É mais difícil de instalar do que o par trançado
- Isso contribuiu para o crescimento da popularidade dos cabos UTP

Instalação

- É mais difícil de instalar do que o par trançado
- Isso contribuiu para o crescimento da popularidade dos cabos UTP

Outras Considerações

- Um cabo coaxial de condutor sólido não deve ser dobrado, curvado ou torcido repetidamente
- Ele é projetado para instalações de cabos horizontais e de backbone
- A atenuação, por sua vez, é mais baixa que nos cabos de condutores retorcidos

Outras Considerações

- O cabo de fios retorcidos é muito mais flexível que o cabo de núcleo sólido
- Este cabo deve ser usado em instalações mais curtas como:
 - Entre placas de rede e tomadas de paredes
 - Entre concentradores e patch panels, hubs e outros equipamentos montados em rack

Cabo Coaxial - Resumo

- Mídia em desuso
- Alta capacidade de largura de banda
- Provê conectividade sem a necessidade de hubs
- Melhor imunidade a ruídos
- Mídia mais segura que o UTP
- Mais difícil de instalar do que o par trançado
- Adequado para aplicações multidrop

Fibra Óptica

Fibra Óptica

- A transmissão é realizada pelo envio de um sinal de "luz" codificado, através de uma fibra óptica
- A fibra óptica consiste em um filamento de sílica ou plástico, por onde é feita a transmissão da "luz"
- Ao redor do filamento óptico deve existir uma casca para garantir o confinamento da "luz"

Fibra Óptica

- Os sinais de luz geralmente ficam dentro do espectro de freqüências do infravermelho
- Atualmente já estão sendo usados outros comprimentos de onda
- Existem três tipos de fibras óticas: as multimodo degrau, as multimodo com índice gradual e as monomodo

Equação da Onda

$$\frac{\partial^2 B}{\partial t^2} = c^2 \frac{\partial^2 B}{\partial y^2}$$

$$\frac{\partial^2 E}{\partial t^2} = c^2 \frac{\partial^2 E}{\partial y^2}$$

Multimodo Índice Degrau

Pulso de Entrada

Explicação

- Multimodo:
 - Núcleo um pouco maior
 - Utiliza Light Emitting Diodes (LEDs) para transmitir o sinal
- Monomodo:
 - Núcleo de diâmetro extremamente pequeno, da ordem de 8 mícrons
 - Usa laser para transmitir sinais de luz

- Uma medida padrão da fibra diz respeito ao diâmetro do núcleo e da casca da fibra
- Ex: 100/140 quer dizer núcleo 100 e casca 140
- Multimodo: 50/125 ou 62,5/125 mícrons
- Monomodo:8/125 ou 10/125 mícrons

Tipos de Cabos Ópticos

- Loose
- Tight
- Groove
- Ribbon
- Armored

Cabos Loose

- Fibras soltas em um tubo plástico
- Geralmente no interior do tubo encontra-se uma geléia a base de petróleo
- A geléia protege as fibras na ação do tempo e choque mecânico
- Normalmente utilizado em ambientes externos

Cabos Tight

- Cada fibra recebe um revestimento termoplástico
- Um conjunto de fibras recebe um segundo revestimento termo plástico
- Normalmente utilizado em ambientes internos

Cabos Groove

- Fibras são depositadas em sulcos (ranhuras)
- Agregação de fibras
- Elemento tensor para resistência

Cabos Ribbon

- Extrema agregação (≅ 4.000 fibras)
- Pode ser utilizado em conjunto com o Groove
- Adesivo mantém o empilhamento estável

Cabos Armored

- Extrema proteção mecânica (capa de aço)
- Proteção contra roedores
- Utilizados em lançamento subterrâneos

Conectores

Conectores

Conectores

Tipos de Polimento

- PLANO
 - Face plana do ferrolho
- PC (Physical Contact)
 - Face convexa do ferrolho
- SPC (Super Physical Contact)
 - Face convexa com menor raio de curvatura que o PC
- UPC (Ultra Physical Contact)
 - Face convexa com menor raio de curvatura que o SPC
- APC (Angled Physical Contact)
 - Face angular do ferrolho (de 8°)

Tipos de Polimento

Cobertura de Transmissão

- Devido ao efeito da dispersão que incrementa com o comprimento do cabo, os sistemas de fibras caracterizam pelo produto largura de banda por distância (MHz·km)
- Uma fibra multimodo pode levar o sinal de 500 MHz por 1 km ou um sinal de 1000 MHz por 0,5 km
- A distância mínima deve ser observada para evitar sobrecargas

Cobertura de Transmissão

- O fator determinante no cálculo da cobertura máxima é a atenuação, por isso deve-se considerar:
 - Perda de sinal do cabo para o tipo de fibra utilizada
 - A potência do transmissor óptico e a sensibilidade do receptor óptico
 - Perda de sinal nos conectores e emendas no cabo

Largura de Banda

- Altas taxas de transmissão (algo em torno de 10 Gbps ou mais)
- Taxas ampliadas através do uso de diversos comprimentos de onda (WDM) podendo chegar a Peta bps
- Baixa taxa de erro, que está na faixa de 10-12

Taxas Recordes

Ano	Organização	Taxa Efetiva	Canais WDM	Taxa por Canal	Distância
2009	Alcatel- Lucent	15 Tbps	155	100 Gbps	90 km
2010	NTT	69,1 Tbps	432	171 Gpps	240 km
2011	KIT	26 Tbps	1	26 Tbps	50 km
2011	NEC	101 Tbps	370	273 Gbps	165 km
2012	NEC, Corning	1,05 Pbps	fibra de 12 núcleos		52,4 km

Largura de Banda

Banda	Descrição	Faixa de Comprimento de Onda	
O	original	1260 a 1360 nm	
E	estendida	1360 a 1460 nm	
S	comprimento de onda curto	1460 a 1530 nm	
C	convencional ("erbium window")	1530 a 1565 nm	
L	comprimento de onda longo	1565 a 1625 nm	
U	comprimento de onda ultra longo	1625 a 1675 nm	

Topologia

- São usados em configurações ponto-a-ponto
- Permite instalações em estrela e em anel

Segurança

- Isolamento elétrico entre as partes conectadas, já que não utilizamos para transferência energia elétrica e sim a luz
- Necessidade de rompimento físico do cabo para quebrar a segurança da informação

Imunidade ao Ruído

• É o meio de transmissão com maior imunidade de ruído, pois a transmissão óptica exigiria a entrada de luz na direção do feixe transmitido

- Requer profissional especializado para instalação e manutenção
- Equipamentos específicos para fusão de fibras

Custo

- Alto custo de instalação (o custo por metro da fibra ainda é elevado, comparado com os outros meios)
- Equipamentos nas pontas também apresentam um custo alto devido à necessidade de conversão de energia em luz e depois novamente em sinal elétrico)

Comparação das Mídias Guiadas

	Par Trançado	10Base2 ThinNet	10Base5 ThickNet	Fibra Óptica
Distância	Curta a Moderada	Moderada	Moderada	Moderada a Longa
Imunidade ao Ruído	Baixa (UTP) Moderada (STP)	Moderada	Moderada	Alta
Facilidade de Instalação	Fácil de Instalar e Manter	Fácil de Instalar	Treinamento ou Profissional	Instalador Especializado
Custo	Baixo	Baixo a Moderado	Baixo a Moderado	Alto
Topologia	Barramento/ Estrela/Anel	Barramento	Barramento	Estrela/Anel

Mídias Não-Guiadas

Mídias Não-Guiadas

- 3 faixas de interesse:
 - Rádio: 30 MHz a 1 GHz, omnidirecionais
 - Microondas: 1 a 40 GHz, feixes direcionais, terrestres e satélites
 - ▶ Infravermelho: 300 GHZ a 200 THz, aplicações locais ponto a ponto ou multiponto

Antenas

- Um ou mais condutores (sistema) usados para irradiar ou coletar energia eletromagnética
- A mesma antena para transmissão e recepção
- Desempenho dado pelo padrão de irradiação, representando graficamente as propriedades de irradiação em função de coordenadas espaciais

Ganho da Antena

- Medida da direcionalidade da antena em decibéis (dB)
- Potência de saída em uma direção particular, comparada com a de qualquer direção da isotrópica
- Não implica em se obter potência irradiada maior que a entrada
- Aumenta a irradiação em uma direção, diminuindo a potência irradiada em outras

Perda no Espaço Livre

- Medida em dB
- Relação entre a potência transmitida e a recebida (teórico em dB),

$$L = 10 \log (4\pi d/\lambda)^2 = 20 \log (4\pi d/\lambda)$$

• Normalemente: $\lambda = c$

Perda no Espaço Livre

Antenas Isotrópicas

- Não existem na prática (idealizada)
- Um único ponto no espaço
- Potência irradiada igualmente em todas as direções
- Tem o padrão de irradiação esférico com a antena no centro

Antenas Dipolo

Padrão de Irradiação

Antenas Yagi

Antenas Parabólicas

- Usadas em microondas terrestres e via satélite
- Parábola: conjunto de todos pontos equidistantes de uma linha (diretriz) e de um ponto fora da linha (foco)
- Girando a parábola em torno do seu eixo para obter um parabolóide
 - Cortes paralelos ao eixo são parábolas, perpendiculares circunferências

Antenas Parabólicas

- Teoricamente produz um feixe paralelo, sem dispersão
- Na prática, há alguma dispersão porque a fonte de energia ocupa mais de um ponto
- Quanto maior o diâmetro da antena, mais direcional é o feixe

Área Efetiva

- Relativo ao tamanho físico e ao formato da antena
- Relaciona-se com o ganho por:

$$G = 4\pi A_e / \lambda^2 = 4\pi f^2 A_e / c^2$$

onde:

- G = ganho da antena
- A_e = área efetiva da antena

Área Efetiva

- Isotrópica: $A_e = \lambda^2/4\pi$
 - Ganho: G = 1
- Parabólica: $A_e = 0.56 A$
 - Ganho: $7A/\lambda^2$

Propagação

- Sinal propaga-se através de três mecanismos:
 - Ondas Terrestres ou de superfície
 - Ondas Espaciais
 - Ondas em Linhas de Visada

Ondas Terrestres

Ondas Espaciais

Ondas de Visada

Refração

- Velocidade da onda é função da densidade do material
- ~3 x 10° m/s no vácuo, menor nos demais meios
- Velocidade altera quando muda de meio, causando uma guinada na direção da onda na superfície de transição dos meios

Refração

- Índice de refração, varia com o comprimento de onda: sin(ângulo de incidência)/sin(ângulo de refração)
- A mudança de direção pode ser brusca ou suave, dependendo do tipo de variação do índice (transição ou gradual)
- Densidade da atmosfera decrementa com a altura, resultando na curvatura da onda em direção à Terra

Horizonte Óptico e de Rádio

Absorção Atmosférica

- Vapor d'água e o oxigênio absorvem sinais de rádio
- Água maior em 22 GHz, menor abaixo de 15 GHz
- Oxigênio maior em 60 GHz, menor abaixo de 30 GHz
- Chuva e neblina dispersam as ondas de rádio (mais sensível com o aumento da freqüência)

Multiplicidade de Caminhos

- Sinal pode ser refletido causando múltiplas cópias no receptor
- Melhor é utilizar a linha de visada, mas pode ser que não exista um caminho direto
- Pode reforçar ou cancelar o sinal direto
- Ex.: múltiplas imagens na TV com a passagem de um avião

Multiplicidade de Caminhos

Microondas Terrestre

- Linha de visada, antenas em locais altos para estender a distância entre antenas e desviar de obstáculos
- Feixe focalizado, Antena parabólica (normalmente 3m), montagem rígida
- Comunicações em longas distâncias
- Freqüências mais altas carreiam taxas de dados mais altas, porém com maiores perdas

Microondas Terrestre

- A banda mais comum é a de 4 a 6 GHz
- Com o aumento do congestionamento, a banda de 11 GHz está sendo usada
- A banda de 12 GHz é usada em uma parte do sistemas de TV a cabo
- Ligações ponto a ponto entre edifícios utilizam a banda de 22 GHz, com antenas mais baratas e pequenas
- Sistemas de Telefonia Celular

Microondas via Satélite

- O satélite é usado para conectar duas ou mais estações de microondas terrestres, funcionando como uma estação retransmissora (relay)
- Recebe sinais em uma freqüência (uplink), amplifica ou repete e o transmite em outra freqüência (downlink)
- Opera com um número de bandas de freqüências: canais transponders

Microondas via Satélite

- Inerentemente broadcast (difusão)
- Requer órbitas Geo-estacionárias
 - Altitude de 35.784 Km
- \bullet Satélites operando em uma mesma banda, requerem um espaçamento de 4° para banda 4/6 GHz e 3° para banda 12/14 GHz
- Problemas de atraso (1/4 segundo)

Aplicações

- Distribuição de sinais de TV (PBS e DBS)
- Transmissão de telefonia a longa distância
- Redes comerciais privadas normais e VSAT (Very Small Aperture Terminal)
- Posicionamento Global (Navstar Global Positioning System)

Enlaçe de Satélite Ponto a Ponto

Enlace de Satélite Broadcast

Enlace VSAT

- GlobalStar
- Iridium (descontinuado)
- Starlink
- Viasat
- HughesNet
- Google Loon (balões)

Rádio Difusão

- Normalmente Omnidirecional
- Faixas de 30 MHz a 1 GHz (VHF e UHF)
- Faixas inferiores com outros usos
- Menos sensível à atenuação causada pela chuva
- Problemas com caminhos múltiplos, reflexões

Bandas de Frequências

Banda	Características de Propagação	Utilização Típica
ELF (30 a 300 Hz)	Ondas de Superfície	Linhas de transmissão de potência, alguns sistema de controle domésticos
VF (300 a 3000 Hz)	Ondas de Superfície	Sistema telefônico analógico em banda base
VLF (3 a 30 kHz)	Ondas de Superfície	Navegação a longas distâncias, comunicação submarina
LF (30 a 300 kHz)	Ondas de Superfície	Navegação a longas distâncias, rádio- balizas de comunicação marinha
MF (300 a 3000 kHz)	Ondas de Superfície	rádio marítimo, rádio farol, radiodifusão AM
HF (3 a 30 MHz)	Ondas Espaciais; qualidade varia com a hora do dia, estação do ano, clima e freqüência	Rádio amador; radiodifusão internacional; comunicações militares, aviões e navios

Bandas de Frequências

Banda	Características de Propagação	Utilização Típica
VHF (30 a 300 MHz)	Radiovisibilidade; dispersão pela inversão térmica; ruído cósmicos	Televisão; radiodifusão FM e rádio two- way; comunicação aérea AM; suporte à navegação aérea
UHF (300 a 3000 MHz)	Radiovisibilidade; ruído cósmicos	Televisão; telefonia celular; radar; enlaces de microondas; sistemas de comunicação pessoal
SHF (3 a 30 GHz)	Radiovisibilidade; atenuação pela chuva acima de 10 GHz; atenuação pelo oxigênio e vapor d'água	Comunicações por satélite; radar; enlaces de microondas terrestres; loop local sem fio
EHF (30 a 300 GHz)	Radiovisibilidade; atenuação pelo oxigênio e vapor d'água	Experimental; loop local sem fio
Infravermelho (300 GHz a 400 THz)	Radiovisibilidade	Redes (LAN) com infravermelho; aplicações em equipamentos eletrodomésticos
Luz visível (400 a 900 THz)	Radiovisibilidade	Comunicações óptica