Projet de statistiques

Maxime Peterlin - Gabriel Vermeulen ENSEIRB-MATMECA, Bordeaux 28, avril 2014

Table des matières

1	Aut	${\bf Autour\ des\ variables\ al [Please insert into preamble] atoires\ gaussi-}$					
	enn	$\mathbf{e}\mathbf{s}$		3			
	1.1	Variab	oles aléatoires gaussiennes réelles	3			
		1.1.1	Densité de probabilité d'une variable aléatoire gaussienne				
			de de moyenne μ et de variance σ^2	3			
		1.1.2	Histogramme de 100 réalisations de la loi $\mathcal{N}_{\mathbb{R}}(5,1)$	4			
		1.1.3	Histogramme de 1000 réalisations de la loi $\mathcal{N}_{\mathbb{R}}(5,1)$	4			
	1.2	Variab	oles aléatoires gaussiennes vectorielles	4			
		1.2.1	Fonction caractéristique de la variable $t^T X$	4			
		1.2.2	Montrons que les X_1, \ldots, X_n sont indépendantes \ldots	4			
		1.2.3	Densité de probabilité de la loi $\mathcal{N}_{\mathbb{R}^n}(0,I)$	4			
		1.2.4	Densité de probabilité de la loi $\mathcal{N}_{\mathbb{R}^n}(\mu,\Gamma)$	5			
		1.2.5	Montrons que les composantes d'un vecteur gaussien sont				
			indépendantes si et seulement si sa matrice de covariance				
			est diagonale	5			
		1.2.6	Tracé de la densité de la loi $\mathcal{N}_{\mathbb{R}^2}(\mu,\Gamma)$	5			
		1.2.7	Histogramme de 1000 réalisations de la loi $\mathcal{N}_{\mathbb{R}^2}(\mu,\Gamma)$	5			
		1.2.8	Montrons que $X \sim \mathcal{N}_{\mathbb{R}^d}(0, I) \Rightarrow UX \sim \mathcal{N}_{\mathbb{R}^d}(0, I), \forall U \in \mathbb{R}^d$	L			
		4.0.0	$\mathbb{O}_d(\mathbb{R})$	5			
		1.2.9	Histogramme de 1000 réalisations du vecteur UX	6			
		1.2.10	Démonstration et vérification expérimentale du caractère				
			gaussien d'un vecteur donné	6 7			
	1.3	Variables aléatoires gaussiennes complexes					
		1.3.1	Variance et densité de probabilité de $Z \sim \mathcal{N}_{\mathbb{C}}(\mu, \sigma^2)$	7			
		1.3.2	Histogramme de 1000 réalisations de la loi $\mathcal{N}_{\mathbb{C}}(0,1)$	7			
	1.4		ème de la limite centrale	7			
		1.4.1	Loi de W_n lorsque $X_k \sim \mathcal{N}_{\mathbb{R}}(\mu, \sigma^2)$	7			
		1.4.2	Histogramme de 1000 réalisations de la loi W_n lorsque				
			$X_k \sim \mathcal{N}_{\mathbb{R}}(\mu, \sigma^2) \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$	8			
		1.4.3	Histogramme de 1000 réalisations de la loi W_n lorsque				
			$X_k \sim \mathcal{U}([0,1]) \dots \dots \dots \dots \dots \dots \dots \dots \dots$	8			
		1.4.4	Histogramme de 1000 réalisations de la loi W_n lorsque				
			$X_k \sim \mathcal{B}(\frac{1}{2})$	8			
	1.5	Loi du	χ^2	9			

		1.5.1	Densité de probabilité d'une variable suivant une loi $\chi^2(n)$	9		
		1.5.2	Moyenne et variance de la loi $\chi^2(n)$	10		
		1.5.3	Tracé de la densité de probabilité de la loi $\chi^2(n)$	11		
		1.5.4	Loi du vecteur $U^T X$	11		
2	Esti	imatio	n paramétrique	12		
	2.1		ation des paramètres d'une loi gaussienne	12		
		2.1.1	Démonstration de l'expression des composantes de $\hat{\theta}_n$	12		
		2.1.2	Matrice d'information de Fisher	13		
		2.1.3	Borne de Cramer-Rao	14		
		2.1.4	Loi de l'estimateur $\hat{\mu}_n$	14		
		2.1.5	Biais de l'estimateur $\hat{\mu}_n$	14		
		2.1.6	Risque quadratique de l'estimateur $\hat{\mu}_n$	14		
		2.1.7	Tracé de l'évolution du risque quadratique de l'estimateur			
			$\hat{\mu}_n$	15		
		2.1.8	Loi de l'estimateur $\hat{\sigma}_n^2$	15		
		2.1.9	Biais de l'estimateur $\hat{\sigma}_n^2$	16		
		2.1.10	Risque quadratique de l'estimateur $\hat{\sigma}_n^2$	16		
		2.1.11	Tracé de l'évolution du risque quadratique de l'estimateur			
			$\hat{\sigma}_n^2$	16		
3	Introduction à la statistique descriptive					
	3.1		pe de l'ACP	17		
		3.1.1	Montrons que le vecteur maximisant l'énergie de projec-			
			tion est donné par u_1	17		
		3.1.2	Montrons que le vecteur orthogonal à u_1 maximisant l'énergie	е		
			de projection est donné par u_2	18		
		3.1.3	Montrons que le vecteur orthogonal à u_1, \dots, u_{l-1} max-			
			imisant l'énergie de projection est donné par u_l	18		
	3.2	ACP ϵ	et classification d'échantillons gaussiens	18		
	3.3	$ACP \epsilon$	et compression d'images	18		

Chapitre 1

Autour des variables aléatoires gaussiennes

1.1 Variables aléatoires gaussiennes réelles

1.1.1 Densité de probabilité d'une variable aléatoire gaussienne de de moyenne μ et de variance σ^2

La densité de probabilité d'une loi normale de moyenne 0 et de variance 1 est :

$$f(x) = \frac{1}{\sqrt{2\pi}} \cdot exp(-\frac{x^2}{2})$$

Pour obtenir la densité de probabilité d'une variable aléatoire gaussienne de de moyenne μ et de variance σ^2 , on effectue le changement de variable $y=\frac{x-\mu}{\sigma}$:

$$\int f(x)dx = \int \frac{1}{\sqrt{2\pi}} \cdot exp(-\frac{x^2}{2})dx = \int \frac{1}{\sqrt{2\pi}} \cdot exp(-\frac{(y-\mu)^2}{2 \cdot \sigma^2})\frac{dy}{\sigma} = \int f(y)dy$$

Ainsi, on a la densité de probabilité f(y) recherchée :

$$f(y) = \frac{1}{\sqrt{2\pi\sigma}} \cdot exp(-\frac{(y-\mu)^2}{2 \cdot \sigma^2})$$

- 1.1.2 Histogramme de 100 réalisations de la loi $\mathcal{N}_{\mathbb{R}}(5,1)$
- 1.1.3 Histogramme de 1000 réalisations de la loi $\mathcal{N}_{\mathbb{R}}(5,1)$

1.2 Variables aléatoires gaussiennes vectorielles

1.2.1 Fonction caractéristique de la variable t^TX

On a

$$\Phi_{t^T X}(u) = \mathbb{E}[e^{iut^T X}] = \mathbb{E}[e^{iu\sum_{k=1}^n t_k X_k}]$$

1.2.2 Montrons que les X_1, \ldots, X_n sont indépendantes

En se servant du lemme donné, si

$$\mathbb{E}[e^{i\sum_{k=1}^{n}t_{k}X_{k}}] = \prod_{k=1}^{n}\mathbb{E}[e^{it_{k}X_{k}}]$$

alors les variables aléatoires X_1,\ldots,X_n seront indépendantes. Soit $X\sim\mathcal{N}_{\mathbb{R}^{\mathbb{N}}}(\mu,\sigma^2)$ et $Y\sim\mathcal{N}_{\mathbb{R}^{\mathbb{N}}}(O,I)$, on a la relation suivante entre X et Y:

$$X = m + \sigma Y$$

On en déduit que

$$\Phi_X(u) = \mathbb{E}[e^{iuX}] = \mathbb{E}[e^{iu(m+\sigma Y)}] = e^{ium}\mathbb{E}[e^{iu\sigma Y}] = e^{ium - \frac{\sigma^2 u^2}{2}}$$

Comme $X \sim \mathcal{N}_{\mathbb{R}^{\mathbb{N}}}(O, I)$, alors $t^T X \sim \mathcal{N}_{\mathbb{R}^{\mathbb{N}}}(O, \sum_{k=1}^n t_k^2)$.

Ainsi
$$\Phi_{t^TX}(u) = e^{-\frac{u^2}{2}\sum_{k=1}^n t_k^2}$$
 et $\Phi_{t^TX}(1) = e^{-\frac{1}{2}\sum_{k=1}^n t_k^2}$.

De plus,
$$\Phi_{X_k}(t_k) = e^{-\frac{t_k^2}{2}} = \mathbb{E}[e^{it_k X_k}]$$
, donc $\prod_{k=1}^n \Phi_{X_k}(t_k) = \Phi_{t^T X}(1) = \mathbb{E}[e^{i\sum\limits_{k=1}^n t_k X_k}]$.

On a bien montré que

$$\mathbb{E}[e^{i\sum\limits_{k=1}^{n}t_{k}X_{k}}] = \prod_{k=1}^{n}\mathbb{E}[e^{it_{k}X_{k}}]$$

Donc les variables aléatoires X_1, \dots, X_n sont indépendantes.

1.2.3 Densité de probabilité de la loi $\mathcal{N}_{\mathbb{R}^n}(0,I)$

On a $\forall k, X_k \sim \mathcal{N}_{\mathbb{R}}(0,1)$ indépendantes, ainsi

$$f(X) = f(X_1, \dots X_n) = \prod_{k=1}^n f_k(X_k) = (\frac{1}{\sqrt{2\pi}})^n e^{-\frac{1}{2} \sum_{k=1}^n x_k}$$

1.2.4 Densité de probabilité de la loi $\mathcal{N}_{\mathbb{R}^n}(\mu,\Gamma)$

Pour toutes fonctions ϕ bornée, on a

$$\mathbb{E}[h(Y)] =$$

1.2.5 Montrons que les composantes d'un vecteur gaussien sont indépendantes si et seulement si sa matrice de covariance est diagonale

Si les composantes d'un vecteur gaussien sont indépendantes, alors $\forall i \neq j$ on a $COV(X_i, X_j) = 0$, ainsi, la matrice de covariance a tous ses éléments non diagonaux qui sont nuls. Cette dernière est donc diagonale.

Réciproquement, si la matrice de covariance est diagonale, alors :

$$f_k(X_k) = \frac{1}{\sqrt{2\pi}\sigma_k} e^{-\frac{1}{2}\sum_{k=1}^n \frac{(x_1 - \mu_1)^2}{\sigma_k^2}}$$

et

$$f(X) = \frac{1}{\sqrt{2\pi}^n \prod_{k=1}^n \sigma_k} e^{-\frac{1}{2}(x-\mu)^T \begin{bmatrix} \sigma_1^2 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_n^2 \end{bmatrix}^{-1}} = \frac{1}{\sqrt{2\pi}^n \prod_{k=1}^n \sigma_k} e^{-\frac{1}{2} \sum_{k=1}^n \frac{(x_k - \mu_k)}{\sigma_k^2}}$$

On a bien $\prod f_k(X_k) = f(X)$, les variables sont donc indépendantes.

- 1.2.6 Tracé de la densité de la loi $\mathcal{N}_{\mathbb{R}^2}(\mu,\Gamma)$
- 1.2.7 Histogramme de 1000 réalisations de la loi $\mathcal{N}_{\mathbb{R}^2}(\mu,\Gamma)$
- 1.2.8 Montrons que $X \sim \mathcal{N}_{\mathbb{R}^d}(0,I) \Rightarrow UX \sim \mathcal{N}_{\mathbb{R}^d}(0,I), \forall U \in \mathbb{O}_d(\mathbb{R})$

On a
$$UX = [a_1, \dots, a_d]$$
, avec $\forall k, a_k = \sum_{i=1}^d u_{ki} X_i$.

Calculons l'espérance de ce vecteur :

$$\mathbb{E}[UX] = \mathbb{E}\left[\left[\sum_{i=1}^{d} u_{1i}X_{i}, \dots, \sum_{i=1}^{d} u_{di}X_{i}\right]\right] = \left[\sum_{i=1}^{d} u_{1i}\mathbb{E}[X_{i}], \dots, \sum_{i=1}^{d} u_{di}\mathbb{E}[X_{i}]\right] = 0$$

 $\operatorname{car} \, \forall i, \mathbb{E}[X_i] = 0.$

Calculons à présent sa variance

$$Var[UX] = \mathbb{E}[(UX)(UX)^T] = \mathbb{E}[UXX^TU^T] = U\mathbb{E}[XX^T]U^T$$

Nous savons également que

$$Var[X] = \mathbb{E}[XX^T] - \mathbb{E}^2[X] = \mathbb{E}[XX^T] = I$$

Ainsi, $Var[X] = UU^T = I$, car $U \in \mathbb{O}_d(\mathbb{R})$. Nous avons donc montré que $X \sim \mathcal{N}_{\mathbb{R}^d}(0, I) \Rightarrow UX \sim \mathcal{N}_{\mathbb{R}^d}(0, I), \forall U \in \mathbb{O}_d(\mathbb{R})$.

1.2.9 Histogramme de 1000 réalisations du vecteur UX

1.2.10 Démonstration et vérification expérimentale du caractère gaussien d'un vecteur donné

On a $X \sim \mathcal{N}_{\mathbb{R}}(0,1)$.

On pose $\mathbf{X} = [X_1, X_2]^T$, avec $X_1 = XetX_2 = ZX$. Z est une variable aléatoire indépendante de X de loi uniforme sur l'intervalle $\{-1, 1\}$

On veut montrer que X_1 et X_2 suivent des lois gaussiennes.

Il est évident que c'est le cas pour X_1 , montrons le pour X_2 . La densité de probabilité que suit Z est

$$f_Z(x) = \frac{1}{2}\delta(x+1) + \frac{1}{2}\delta(x-1)$$

La densité de probabilité que suit X est

$$f_X(x) = \frac{1}{\sqrt{2\pi}} exp(-\frac{x^2}{2})$$

La densité de probabilité que suit ZX est la convolution de leur densité respective.

$$f_{ZX}(x) = (f_X * f_Z)(x) = [f * (\frac{1}{2}\delta_{-1} + \frac{1}{2}\delta_1)](x) = \frac{1}{2}f(x+1) + \frac{1}{2}f(x-1)$$

La fonction caractéristique d'une variable $X \sim \mathcal{N}_{\mathbb{R}}(0,1)$ est

$$\Phi_X(u) = \mathbb{E}[e^{iuX}] = e^{-\frac{u^2}{2}}$$

Ainsi

$$\begin{split} \Phi_{ZX}(u) &= \mathbb{E}[e^{iuZX}] = \int_{\mathbb{R}} f_{ZX}(y)e^{ity}dy = \int_{\mathbb{R}} (\frac{1}{2}f_X(x+1) + \frac{1}{2}f_X(x-1))e^{ity}dy \\ &= \int_{\mathbb{R}} \frac{1}{2}f(x+1)e^{ity}dy + \int_{\mathbb{R}} \frac{1}{2}f(x-1)e^{ity}dy \\ &= \frac{1}{2}e^{-\frac{u^2}{2}} + \frac{1}{2}e^{-\frac{u^2}{2}} = e^{-\frac{u^2}{2}} \end{split}$$

car f_X suit une loi $\mathcal{N}_{\mathbb{R}}(0,1)$.

Nous avons donc prouvé que $X_2 \sim \mathcal{N}_{\mathbb{R}}(0,1)$.

A présent, nous allons voir si le vecteur ${\bf X}$ est gaussien ou non. Si le vecteur ${\bf X}$ était gaussien, il aurait la fonction caractéristique suivante :

$$\Phi_{\mathbf{X}}(u) = e^{-\frac{u^2}{2}}$$

Calculons sa fonction caractéristique.

$$\Phi_{\mathbf{X}}(u) = \mathbb{E}(e^{i < u, X >}) = \int_{\mathbb{R}} \int_{\mathbb{R}} f_{\mathbf{X}}(x, z) e^{iu_1 x + iu_2 x z} dx dz$$

X et ZX n'étant pas indépendant, on ne peut retrouver la bonne fonction caractéristique.

Le vecteur X n'est donc pas gaussien.

1.3 Variables aléatoires gaussiennes complexes

1.3.1 Variance et densité de probabilité de $Z \sim \mathcal{N}_{\mathbb{C}}(\mu, \sigma^2)$

Calculons la variance de la variable aléatoire Z = X + iY.

$$\begin{split} V[Z] &= \mathbb{E}\left[|Z - \mathbb{E}[Z]|^2\right] = \mathbb{E}\left[|Z|^2 + |\mathbb{E}[Z]|^2 - 2\Re(Z\overline{\mathbb{E}[Z]})\right] \\ &= \mathbb{E}[|Z|^2] - |\mathbb{E}[Z]|^2 = \mathbb{E}[|X + iY|^2] - |\mathbb{E}[X + iY]|^2 \\ &= \mathbb{E}[X^2 + Y^2] - (\mathbb{E}^2[X] + \mathbb{E}^2[Y]) = Var[X] + Var[Y] = \sigma^2 \end{split}$$

Calculons à présent la densité de probabilité de Z. On sait que X et Y sont indépendantes, ainsi

$$\begin{split} f_{XY}(X,Y) &= f_X(X) f_Y(Y) \\ &= \frac{1}{\sqrt{2\pi} \frac{\sigma}{\sqrt{2}}} exp(-\frac{1}{2} \frac{(x - \Re(\mu))^2}{\frac{\sigma^2}{2}}) \cdot \frac{1}{\sqrt{2\pi} \frac{\sigma}{\sqrt{2}}} exp(-\frac{1}{2} \frac{(y - \Im(\mu))^2}{\frac{\sigma^2}{2}}) \\ &= \frac{1}{\sigma^2 \pi} e^{-\frac{|z - \mu|^2}{\sigma^2}} \end{split}$$

1.3.2 Histogramme de 1000 réalisations de la loi $\mathcal{N}_{\mathbb{C}}(0,1)$

1.4 Théorème de la limite centrale

1.4.1 Loi de W_n lorsque $X_k \sim \mathcal{N}_{\mathbb{R}}(\mu, \sigma^2)$

On sait que $\forall k, X_k \sim \mathcal{N}_{\mathbb{R}}(0,1)$, de plus, on a

$$W_n = \frac{1}{\sqrt{n}} \sum_{k=1}^n \frac{X_k - \mu}{\sigma}$$

Nous cherchons la loi de W_n en sachant que $\forall k, X_k$ suit une loi normale. Posons

$$Y_k = \frac{X_k - \mu}{\sqrt{n}\sigma}$$

Commençons par calculer l'espérance de Y_k

$$\mathbb{E}[Y_k] = \mathbb{E}\left[\frac{X_k - \mu}{\sqrt{n}\sigma}\right] = \frac{\mathbb{E}[X_k] - \mu}{\sqrt{n}\sigma} = 0$$

Calculons à présent la variance de Y_k

$$Var[Y_k] = Var\left[\frac{X_k - \mu}{\sqrt{n}\sigma}\right] = \frac{1}{n\sigma^2}Var[X_k - \mu] = \frac{1}{n\sigma^2}\sigma^2 = \frac{1}{n}$$

Nous avons donc $Y_k \sim \mathcal{N}_{\mathbb{R}}(0, \frac{1}{n})$ Ainsi

$$W_n = \sum_{k=1}^{n} Y_k \sim \mathcal{N}_{\mathbb{R}}(0, \sqrt{\sum_{k=1}^{n} \frac{1}{n}} = 1)$$

- 1.4.2 Histogramme de 1000 réalisations de la loi W_n lorsque $X_k \sim \mathcal{N}_{\mathbb{R}}(\mu, \sigma^2)$
- 1.4.3 Histogramme de 1000 réalisations de la loi W_n lorsque $X_k \sim \mathcal{U}([0,1])$

Calcul de l'espérance et de la variance de $X_k, \forall k$

$$\begin{split} \mathbb{E}[X_k] &= \int\limits_0^1 x dx = \frac{1}{2} \\ Var[X_k] &= \mathbb{E}[X_k^2] - \mathbb{E}^2[X_k] = \frac{1}{3} - \frac{1}{4} = \frac{1}{12} \end{split}$$

1.4.4 Histogramme de 1000 réalisations de la loi W_n lorsque $X_k \sim \mathcal{B}(\frac{1}{2})$

Calcul de l'espérance et de la variance de $X_k, \forall k$

$$\mathbb{E}[X_k] = p = \frac{1}{2}$$

$$Var[X_k] = p(1-p) = \frac{1}{2}$$

1.5 Loi du χ^2

1.5.1 Densité de probabilité d'une variable suivant une loi $\chi^2(n)$

Montrons par récurrence que la densité de probabilité de $Y \sim \chi^2(n)$ est

$$f_n(x) = \frac{x^{\frac{n}{2} - 1} e^{-\frac{x}{2}}}{2^{\frac{n}{2}} \Gamma(\frac{n}{2})} \mathbb{1}_{\mathbb{R}^+}(x)$$

Tout d'abord, montrons le pour n=1. On a $Y=X^2$. Pour toutes fonctions ϕ bornée, on a :

$$\mathbb{E}[\phi(y)] = \mathbb{E}[\phi(x^2)] = \int_{\mathbb{R}} \phi(x^2) f_X(x) dx$$
$$= \int_{-\infty}^{0} \phi(x^2) f_X(x) dx + \int_{0}^{\infty} \phi(x^2) f_X(x) dx$$
$$= \int_{0}^{\infty} \phi(x^2) f_X(-x) dx + \int_{0}^{\infty} \phi(x^2) f_X(x) dx$$

Posons le changement de variable $x = \sqrt{u}$, $dx = \frac{du}{2\sqrt{u}}$.

$$\mathbb{E}[\phi(y)] = \int_{0}^{\infty} \phi(u) f_X(-\sqrt{u}) \frac{du}{2\sqrt{u}} + \int_{0}^{\infty} \phi(u) f_X(\sqrt{u}) \frac{du}{2\sqrt{u}}$$
$$= \int_{0}^{\infty} \phi(u) [f_X(-\sqrt{u}) + f_X(\sqrt{u})] \frac{du}{2\sqrt{u}}$$

Ainsi, pour $Y = X^2$, la densité de probabilité s'exprime de la façon suivante :

$$f_Y(y) = \frac{1}{2\sqrt{y}} [f_X(-\sqrt{y}) + f_X(\sqrt{y})] \mathbb{1}_{\mathbb{R}^+}(x)$$

On en déduit donc que

$$f_1(x) = \frac{x^{-\frac{1}{2}}}{2\sqrt{2\pi}} \left[e^{-\frac{x}{2}} + e^{-\frac{x}{2}}\right] \mathbb{1}_{\mathbb{R}^+}(x) = \frac{x^{-\frac{1}{2}}e^{-\frac{x}{2}}}{\sqrt{2\pi}} \mathbb{1}_{\mathbb{R}^+}(x)$$

Supposons que la propriété soit vraie au rang n et montrons le au rang n+1 :

$$f_{n+1}(x) = f_n(x) * f_1(x) = \int_{\mathbb{R}} f_n(t) f_1(x-t) dt$$
$$= \frac{1}{2^{\frac{n+1}{2}} \Gamma(\frac{n}{2}) \Gamma(\frac{1}{2})} e^{-\frac{x}{2}} \mathbb{1}_{\mathbb{R}^+}(x) \int_0^x t^{\frac{n}{2}-1} (x-t)^{-\frac{1}{2}} dt$$

Posons le changement de variable t = xu, dt = xdu.

$$f_{n+1}(x) = \frac{1}{2^{\frac{n+1}{2}}\Gamma(\frac{n}{2})\Gamma(\frac{1}{2})} e^{-\frac{x}{2}} \mathbb{1}_{\mathbb{R}^{+}}(x) \int_{0}^{1} (xu)^{\frac{n}{2}-1} (x-xu)^{-\frac{1}{2}} du$$

$$= \frac{1}{2^{\frac{n+1}{2}}\Gamma(\frac{n}{2})\Gamma(\frac{1}{2})} e^{-\frac{x}{2}} \mathbb{1}_{\mathbb{R}^{+}}(x) \int_{0}^{1} (xu)^{\frac{n}{2}-1} (x-xu)^{-\frac{1}{2}} x du$$

$$= \frac{1}{2^{\frac{n+1}{2}}\Gamma(\frac{n}{2})\Gamma(\frac{1}{2})} e^{-\frac{x}{2}} x^{\frac{n+1}{2}-1} \beta(\frac{n}{2},\frac{1}{2}) \mathbb{1}_{\mathbb{R}^{+}}(x)$$

$$= \frac{x^{\frac{n+1}{2}-1}e^{-\frac{x}{2}}}{2^{\frac{n+1}{2}}\Gamma(\frac{n+1}{2})} \mathbb{1}_{\mathbb{R}^{+}}(x)$$

1.5.2 Moyenne et variance de la loi $\chi^2(n)$

Calculons l'espérance de Y

$$\mathbb{E}[Y] = \mathbb{E}[\sum_{k=1}^{n} X_k^2] = \sum_{k=1}^{n} \mathbb{E}[X_k^2] = \sum_{k=1}^{n} Var[X_k] + \mathbb{E}^2[X_k] = n$$

Calculons à présent la variance de X^2

$$Var[X^2] = \mathbb{E}[X_k^4] - \mathbb{E}^2[X_k^2]$$

Déterminons l'expression de $\mathbb{E}[X_k^4]$

$$\mathbb{E}[X_k^4] = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} x^4 e^{-\frac{x^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} x^3 \cdot x e^{-\frac{x^2}{2}} dx$$

$$= \frac{1}{\sqrt{2\pi}} [-x^3 e^{-\frac{x^2}{2}}]_{\mathbb{R}} + \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} 3x^2 e^{-\frac{x^2}{2}} dx$$

$$= \frac{3}{\sqrt{2\pi}} \int_{\mathbb{R}} x \cdot x e^{-\frac{x^2}{2}} dx$$

$$= \frac{3}{\sqrt{2\pi}} [-x e^{-\frac{x^2}{2}}]_{\mathbb{R}} + \frac{3}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-\frac{x^2}{2}} dx$$

$$= 3 \cdot \int_{\mathbb{R}} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = 3$$

Ainsi

$$\mathbb{E}[X_k^4] = 3$$

$$Var[X_k^2] = \mathbb{E}[X_k^4] - \mathbb{E}^2[X_k^2] = 3 - 1 = 2$$

On a donc $Var[Y^2] = \sum_{k=1}^n Var[X_k^2] = 2n$, car les variables sont indépendantes.

- 1.5.3 Tracé de la densité de probabilité de la loi $\chi^2(n)$
- 1.5.4 Loi du vecteur U^TX

On a

$$U^T X = \sum_{i=1}^k \langle u_i, X \rangle u_i = \begin{bmatrix} u_1^T X \\ \vdots \\ u_k^T X \end{bmatrix}$$

Ainsi,

$$\forall i, u_i^T X \sim \mathcal{N}_{\mathbb{R}}(u_i^T \cdot \mathbf{0}, u_i^T \sigma^2 \mathbb{I} u_i) \Leftrightarrow \forall i, u_i^T X \sim \mathcal{N}_{\mathbb{R}}(0, \sigma^2)$$

Chapitre 2

Estimation paramétrique

- 2.1 Estimation des paramètres d'une loi gaussienne
- 2.1.1 Démonstration de l'expression des composantes de $\hat{\theta}_n$

On cherche $\hat{\theta}_n$ tel que

$$\hat{\theta}_n = \operatorname*{arg\,max}_{\theta \in \Theta} f_{\theta}(X_1, \dots, X_n) = \{\theta / \forall \theta', f_{\theta'}(\mathbf{X}) \le f_{\theta}(\mathbf{X})\}$$

On a

$$f_{\theta}(X_1, \dots, X_n) = \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} e^{-\frac{1}{2}(\mathbf{x} - \mu)^T \Sigma^{-1}(\mathbf{x} - \mu)}$$
$$= \frac{1}{(2\pi)^{\frac{n}{2}} \sigma^n} e^{-\frac{1}{2} \frac{\sum_{k=1}^{n} (X_k - \mu)^2}{\sigma^2}}$$

$$\frac{\partial f_{\theta}}{\partial \mu}|_{\theta = \hat{\theta}_n} = 0 = \sum_{k=1}^n (X_k - \hat{\mu}_n) \Leftrightarrow \hat{\mu}_n = \frac{1}{n} \sum_{k=1}^n X_k$$

Dans l'expression précédente de f_{θ} on pose $y = \hat{\sigma}_n^2$, ainsi

$$\begin{split} \frac{\partial f_{\theta}}{\partial y}|_{\theta = \hat{\theta}_{n}} &= 0 \\ &= \frac{-\frac{n}{2}}{(2\pi)^{\frac{n}{2}}y^{\frac{n}{2}+1}} e^{-\frac{1}{2}\frac{\sum\limits_{k=1}^{n}(X_{k} - \hat{\mu}_{n})^{2}}{\sigma^{2}}} + \frac{1}{(2\pi)^{\frac{n}{2}}y^{\frac{n}{2}}} \left(\frac{1}{2}\frac{\sum\limits_{k=1}^{n}(X_{k} - \hat{\mu}_{n})^{2}}{y^{2}}\right) e^{-\frac{1}{2}\frac{\sum\limits_{k=1}^{n}(X_{k} - \hat{\mu}_{n})^{2}}{\sigma^{2}}} \\ &\Leftrightarrow \frac{n}{2y} = \frac{1}{2}\frac{\sum\limits_{k=1}^{n}(X_{k} - \hat{\mu}_{n})^{2}}{y^{2}} \\ &\Leftrightarrow \hat{\sigma}_{n}^{2} = \frac{1}{n}\sum\limits_{k=1}^{n}(X_{k} - \hat{\mu}_{n})^{2} \end{split}$$

2.1.2 Matrice d'information de Fisher

Commençons par calculer $log f_{\theta}$

$$log f_{\theta}(X_{1}, \dots, X_{n}) = log \left[\frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} e^{-\frac{1}{2}(\mathbf{x} - \mu)^{T} \Sigma^{-1}(\mathbf{x} - \mu)} \right]$$

$$= -\frac{1}{2} log \left[(2\pi)^{n} \sigma^{2n} \right] - \frac{1}{2} \frac{\sum_{k=1}^{n} (X_{k} - \mu)^{2}}{\sigma^{2}}$$

$$= -\frac{n}{2} log (2\pi) - nlog(\sigma) - \frac{1}{2} \frac{\sum_{k=1}^{n} (X_{k} - \mu)^{2}}{\sigma^{2}}$$

$$\frac{\partial log f_{\theta}}{\partial \mu} = \frac{\sum_{k=1}^{n} X_{k} - \mu}{\sigma^{2}}$$

$$\frac{\partial^{2} log f_{\theta}}{\partial \mu^{2}} = -\frac{n}{\sigma^{2}}$$

$$\frac{\partial^{2} log f_{\theta}}{\partial \mu \partial \sigma^{2}} = -\frac{\sum_{k=1}^{n} X_{k} - \mu}{\sigma^{4}}$$

Posons $y = \sigma^2$

$$log f_{\theta}(X_1, \dots, X_n) = -\frac{n}{2}log(2\pi) - nlog(\sqrt{y}) - \frac{1}{2} \frac{\sum_{k=1}^{n} (X_k - \mu)^2}{y}$$
$$\frac{\partial log f_{\theta}}{\partial y} = -\frac{n}{2y} + \frac{1}{2} \frac{\sum_{k=1}^{n} (X_k - \mu)^2}{y^2}$$
$$\frac{\partial^2 log f_{\theta}}{\partial y^2} = -\frac{n}{2^2 y} - \frac{2\sum_{k=1}^{n} (X_k - \mu)^2}{2y^3}$$

On obtient alors la matrice de Fisher suivante :

$$\begin{bmatrix} -\mathbb{E}[\frac{\partial^2 log f_{\theta}}{\partial \mu^2}] & -\mathbb{E}[\frac{\partial^2 log f_{\theta}}{\partial \mu \partial \sigma^2}] \\ -\mathbb{E}[\frac{\partial^2 log f_{\theta}}{\partial \mu \partial \sigma^2}] & -\mathbb{E}[\frac{\partial^2 log f_{\theta}}{\partial \sigma^4}] \end{bmatrix} = \begin{bmatrix} \frac{n}{\sigma^2} & 0 \\ 0 & \frac{n}{2\sigma^4} \end{bmatrix}$$

2.1.3 Borne de Cramer-Rao

On déduit directement de la matrice d'information de Fisher la borne de Cramer-Rao

$$I_{\theta}^{-1} = \begin{bmatrix} \frac{\sigma^2}{n} & 0\\ 0 & \frac{2\sigma^4}{n} \end{bmatrix}$$

2.1.4 Loi de l'estimateur $\hat{\mu}_n$

On a

$$\mathbb{E}[\hat{\mu}_n] = \frac{1}{n} \sum_{k=1}^n \mu = \mu$$

$$Var[\hat{\mu}_n] = \frac{1}{n^2} \cdot n\sigma^2 = \frac{\sigma^2}{n}$$

Ainsi $\hat{\mu}_n \sim \mathcal{N}_{\mathbb{R}}(\mu, \frac{\sigma^2}{n})$

2.1.5 Biais de l'estimateur $\hat{\mu}_n$

On a

$$\|\mu - \mathbb{E}[\hat{\mu}_n]\|^2 = \|\mu - \mu\|^2 = 0$$

2.1.6 Risque quadratique de l'estimateur $\hat{\mu}_n$

On a

$$\mathbb{E}[\|\mu - \hat{\mu}_n\|^2] = \int_{\mathbb{R}} f(t)(\mu - t)dt = \int_{\mathbb{R}} (\mu - t)^2 \frac{\sqrt{n}}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\frac{(t - \mu)^2 n}{\sigma^2}} dt$$

On effectue le changement de variable $u=\frac{t-\mu}{\sqrt{2}\frac{\sigma}{\sqrt{n}}},\,du=\frac{\sqrt{n}}{\sqrt{2}\sigma}dt$

$$\mathbb{E}[\|\mu - \hat{\mu}_n\|^2] = \frac{2\sigma^2}{n\sqrt{\pi}} \int_{\mathbb{R}} u^2 e^{-u^2} du$$

On effectue à présent le changement de variable $u = \sqrt{y}$, $du = \frac{dy}{2\sqrt{y}}$

$$\mathbb{E}[\|\mu - \hat{\mu}_n\|^2] = \frac{\sigma^2}{n\sqrt{\pi}} \int_{\mathbb{R}} y^{-\frac{1}{2}} e^{-y} dy = \frac{\sigma^2}{n\sqrt{\pi}} \Gamma(\frac{1}{2}) = \frac{\sigma^2}{n}$$

2.1.7 Tracé de l'évolution du risque quadratique de l'estimateur $\hat{\mu}_n$

2.1.8 Loi de l'estimateur $\hat{\sigma}_n^2$

On a

$$\hat{\sigma}_n^2 = \frac{1}{n} \| (\mathbb{I} - \frac{1}{n} \mathbf{1} \mathbf{1}^T) X \| = \frac{1}{n} \sum_{l=1}^n (X_k - \frac{1}{n} \sum_{l=1}^n X_l)^2 = \|MX\|^2$$

Avec

$$M = \frac{1}{\sqrt{n}} \begin{bmatrix} 1 - \frac{1}{n} & 1 & \cdots & 1 \\ 1 & \ddots & & \vdots \\ \vdots & & \ddots & 1 \\ 1 & \cdots & 1 & 1 - \frac{1}{n} \end{bmatrix}$$

On a $MX = [M_1, \dots, M_n]^T$ et

$$\forall k, M_k = \frac{1}{\sqrt{n}} [(1 - \frac{1}{n})X_k - \frac{1}{n} \sum_{\substack{l=1 \ l \neq k}}^n X_l]$$

On en déduit l'espérance et la variance de $\hat{\sigma}_n^2$

$$\forall k, \mathbb{E}[M_k] = \frac{1}{\sqrt{n}}[(1 - \frac{1}{n})\mu - \frac{1}{n}\sum_{\substack{l=1\\l \neq k}}^n \mu] = \frac{1}{\sqrt{n}}[\mu - \frac{1}{n}\mu - \mu + \frac{1}{n}\mu] = 0$$

$$\forall k, VarE[M_k] = \frac{1}{\sqrt{n}}[(1 - \frac{1}{n})\sigma^2 - \frac{1}{n}\sum_{\substack{l=1\\l \neq k}}^n \sigma^2] = \frac{\sigma^2}{n}(1 - \frac{3}{n} + \frac{2}{n^2})$$

Comme
$$\sigma^2 = \|M\|^2 = \sum_{k=1}^n M_k^2$$
, alors
$$\sigma^2 \sim \chi^2(n), \text{ avec } \forall k, X_k \sim \mathcal{N}_R(0, \frac{\sigma^2}{n}(1 - \frac{3}{n} + \frac{2}{n^2}))$$

- 2.1.9 Biais de l'estimateur $\hat{\sigma}_n^2$
- 2.1.10 Risque quadratique de l'estimateur $\hat{\sigma}_n^2$
- 2.1.11 Tracé de l'évolution du risque quadratique de l'estimateur $\hat{\sigma}_n^2$

Chapitre 3

Introduction à la statistique descriptive

3.1 Principe de l'ACP

3.1.1 Montrons que le vecteur maximisant l'énergie de projection est donné par u_1

 $\forall v \in \mathbb{C}^d$, tel que ||v|| = 1 on a

$$\mathbb{E}[(v^T X_k)^2] = \mathbb{E}[\langle v^T X_k, v^T X_k \rangle] = \mathbb{E}[v^T X_k X_k^T v] = v^T \mathbb{E}[X_k X_k^T] v = v^t R v$$

R étant diagonalisable, on peut l'écrire sous la forme $R = PDP^{-1}$.

 $P = [\mathbf{u}_1, \dots, \mathbf{u}_n],$ de plus, comme P est une matrice orthonormée, on a $P^{-1} = P^T.$

Ainsi,

$$\mathbb{E}[(v^T X_k)^2] = v^T P D P^T v = \sum_{k=1}^n \lambda_k < v, u_k >^2$$

$$\mathbb{E}[(v^T X_k)^2] \le \lambda_1 \sum_{k=1}^n \langle v, u_k \rangle^2$$

 $\forall v \in \mathbb{C}^d$, tel que ||v|| = 1, on a égalité dans l'inégalité large précédente, lorsque $v = u_1$.

Ainsi, c'est bien le vecteur u_1 qui maximise l'énergie de projection et cette dernière vaut $\mathbb{E}[(v^T X_k)^2] = \lambda_1 ||u_1|| = \lambda_1$.

3.1.2 Montrons que le vecteur orthogonal à u_1 maximisant l'énergie de projection est donné par u_2

On se base sur la relation trouvée précédemment

$$\mathbb{E}[(v^T X_k)^2] = \sum_{k=1}^{n} \lambda_k < v, u_k >^2$$

On cherche un vecteur $v \in \mathbb{C}^d$, avec ||v|| = 1 et $\langle v, u_1 \rangle = 0$. Ainsi,

$$\mathbb{E}[(v^T X_k)^2] = \sum_{k=2}^n \lambda_k < v, u_k >^2 \le \lambda_2 \sum_{k=2}^n < v, u_k >^2$$

On a égalité lorsque $v=u_2$, donc le vecteur orthogonal à u_1 maximisant l'énergie de projection est bien donné par u_2 et l'énergie de projection vaut, avec le même raisonnement que précédemment, λ_2 .

3.1.3 Montrons que le vecteur orthogonal à u_1, \dots, u_{l-1} maximisant l'énergie de projection est donné par u_l

On cherche un vecteur $v \in \mathbb{C}^d$, avec ||v|| = 1 et $\langle v, u_1 \rangle = \ldots = \langle v, u_{l-1} \rangle = 0$. Ainsi,

$$\mathbb{E}[(v^T X_k)^2] = \sum_{k=l}^n \lambda_k < v, u_k >^2 \le \lambda_l \sum_{k=l}^n < v, u_k >^2$$

On a égalité lorsque $v=u_l$, donc le vecteur orthogonal à u_1, \dots, u_{l-1} maximisant l'énergie de projection est bien donné par u_l et l'énergie de projection vaut, toujours avec le même raisonnement que précédemment, λ_l

3.2 ACP et classification d'échantillons gaussiens

3.3 ACP et compression d'images