专业年级及班级

考试类别[学生填写](□正考 □补考 □重修 □补修 □缓考 □其它)

《高等数学 A1\B1》试卷(A 卷)

(电气、机电、食工、物理、能源、计算机、软件、建环各专业 19 级适用) 注意: 所有答案必须写在答题卡上, 在试卷上作答无效

- 一、填空题(6小题,每小题3分,共18分)
- 1. 函数 $f(x) = \ln(x+5) \frac{1}{\sqrt{2-x}}$ 的定义域是_____
- 2. 已知 f(x) 的一个原函数为 e^{-x} ,则 f(x) =
- 3. 曲线 $v = 1 e^{-x^2}$ 的水平渐进线是
- 4. 设函数 $y = \ln(\sqrt{1-x^2})$, 则 $\frac{dy}{dx}\Big|_{x=0}$ ______.
- 5. 设函数 f(x) 连续,且 $\int_0^{x^3} f(t) dt = x$,则 f(8) =______.
- 6. $\lim_{x \to \infty} (\frac{x+2}{x})^x = \underline{\hspace{1cm}}$
- 二、单项选择题(6小题,每小题3分,共18分)
- 7. 当 $x \to 0$ 时,下列变量中与 x^2 等价的无穷小量是-----()
 - (A) $1 \cos x$; (B) $\sqrt{x} + x^2$; (C) $e^x 1$; (D) $\sin x \ln(1 + x)$.

- 8. 设函数 f(x) 在 x = a 处可导,则下列极限中等于 f'(a) 的是-----()

 - (A) $\lim_{h \to 0} \frac{f(a) f(a-h)}{h}$; (B) $\lim_{h \to 0} \frac{f(a+h) f(a-h)}{h}$;

 - (C) $\lim_{h \to 0} \frac{f(a+2h) f(a)}{h}$; (D) $\lim_{h \to 0} \frac{f(a+2h) f(a-h)}{3h}$.
- 9. 设函数 f(x) 在 [a,b] 上满足条件 f'(x) > 0, f''(x) < 0, 则曲线 y = f(x) 在该 区间上-----

(A) 上升且凹的;

(B) 上升且凸的;

(C) 下降且凹的;

- (D) 下降且凸的.
- 10. 设函数 f(x) 具有连续的导数,则下列等式中错误的是-----()
 - (A) $\frac{\mathrm{d}}{\mathrm{d}x} \left(\int_a^b f(x) \mathrm{d}x \right) = f(x);$ (B) $\mathrm{d} \left(\int_a^x f(t) \, \mathrm{d}t \right) = f(x) \mathrm{d}x;$
 - (C) $d(\int f(x) dx) = f(x)dx$; (D) $\int f'(t) dt = f(t) + C$.

- (A) 发散; (B) 收敛于 1; (C) 收敛于 $\frac{1}{2}$; (D) 收敛于 $-\frac{1}{2}$.
- 12. 曲线 $v = \sqrt{x} + 1$ 在x = 1 处的切线方程是------

(A)
$$y = \frac{x}{2} + \frac{3}{2}$$
; (B) $y = \frac{x}{2} - \frac{3}{2}$; (C) $y = -\frac{x}{2} + \frac{3}{2}$; (D) $y = -\frac{x}{2} - \frac{3}{2}$.

- 三、解答题(7小题,每小题6分,共42分)
- 13. 求极限 $\lim_{x\to 0} \frac{\tan x x}{x^3}$.

14. 求 $y = (1 + 2x)^{\sin x}$ 的微分.

15. 求 $y = x^2 - 4x + 3$ 在其顶点处的曲率及曲率半径.

16. 求由参数方程
$$\begin{cases} x = at^2 \\ y = bt^3 \end{cases}$$
 所确定的函数 $y = y(x)$ 的二阶导数
$$\frac{d^2 y}{dx^2}$$
.

17. 求不定积分 $\int x^3 \ln x \, dx$.

- 18. 计算定积分 $\int_{0}^{1} \frac{x^2}{\sqrt{1-x^2}} dx$.
- 19. 求由曲线 $y = x^2$, y = x, y = 2x 所围成的图形的面积.

四、证明题(本题7分)

20. 己知函数 f(x) 在[0,1]上连续,在(0,1) 内可导,且 f(0) = 0, f(1) = 1, 证明:存在点 $\eta \in (0,1)$,使得 $f'(\eta) = 1$.

五、应用题(本题7分)

21. 要造一圆柱形油罐,体积为V,问底半径r和高h等于多少时,才能使表面积最小?这时底直径与高的比是多少?

六、分析题(本题8分)

22. 设函数
$$f(x) = \begin{cases} e^{x-2}, & x < 2 \\ k, & x = 2, \\ ax + 4, & x > 2 \end{cases}$$

- (1) 试问k和a分别为何值时,f(x)在x=2处连续?
- (2) 讨论函数 f(x) 在 x=2 处是否可导?

线