Отчет о выполнении лабораторной работы 2.4.1

Определение теплоты испарения жидкости

Тихонов Ярослав Б01-306

Март 2024

1 Аннотация

Цель: 1) измерение давления насыщенного пара жидкости при разной температуре; 2) вычисление по полученным данным теплоты испарения с помощью уравения Клапейрона-Клаузиуса. **Оборудование**: термостат, герметический сосуд, заполненный водой, отсчетный микроскоп.

2 Теория

Известно, что жидкость охлаждается при испарении вследствие обеднения ее быстрыми молекулами. Такое поведение описывается формулой Клапейрона-Клаузиуса:

$$\frac{dP}{dT} = \frac{L}{T(V_2 - V_1)}$$

L определяется из этой формулы путем рассчета, остальные параметры можно получить экспериментально.

В нашем опыте объемом жидкости - V_1 можно пренебречь, по сравнению с объемом образовавшегося пара.

Для описания состояния газа объемом $V := V_2$ будем пользоваться моделью Ван-дер-Ваальса:

$$(P + \frac{a}{V^2})(V - b) = RT$$

Из табличных данных, величиной b, по сравнению с V, тоже можно пренебречь.

Также можно пренебречь и поправкой a т.к. давления, при которых мы будем работать, ниже атмосферных.

Пришли к уравнению Менделеева-Клапейрона:

$$V = \frac{RT}{P}$$

В итоге получаем рабочую формулу:

$$L = \frac{RT^2}{P} \frac{dP}{dT} = -R \frac{d(lnP)}{d(1/T)}$$

2.1 Экспериментальная установка

3 Ход работы

Плавно повышая температуру, мы снимали зависимость.

$T, \circ C$	h, см	h_0 , cm
40.0	9.24	4.35
39.0	9.2	4.36
38.02	9.1	4.43
37.15	8.93	4.59
35.15	8.77	4.78
34.15	8.6	4.88
33.06	8.44	5.0
32.05	8.35	5.05
31.06	8.27	5.18
30.2	8.17	5.27
29.05	8.09	5.36
28.07	7.97	5.45
27.07	7.91	5.5
26.12	7.84	5.56
25.18	7.74	5.67
24.27	7.64	5.73
23.32	7.56	5.84

То же самое проделали и в обратную сторону, понижая температуру.

$T, \circ C$	h, см	h_0 , см
40.0	9.24	4.35
39.0	9.2	4.36
38.02	9.1	4.43
37.15	8.93	4.59
35.15	8.77	4.78
34.15	8.6	4.88
33.06	8.44	5.0
32.05	8.35	5.05
31.06	8.27	5.18
30.2	8.17	5.27
29.05	8.09	5.36
28.07	7.97	5.45
27.07	7.91	5.5
26.12	7.84	5.56
25.18	7.74	5.67
24.27	7.64	5.73
23.32	7.56	5.84

4 Обработка измерений

 $P=\rho_{hg}g\Delta h$ - по этой формуле считали давление.

Аппроксимировали по МНК, погрешности считали из формулы для МНК и через частные производные.

Нагрев: $dP/dT=(249.79\pm6.98)~\Pi a/K~(\varepsilon\approx3\%)$ Охлаждение: $dP/dT=(260.47~\pm4.86)~\Pi a/K~(\varepsilon\approx1.86\%)$

Построили графики в логарифмических коорданатах и по их коэффициентам посчитали L:

$$d(lnP)/d(1/T) = (-6007.24~\pm76.11)~1/$$
моль ($\varepsilon~pprox 1.27\%$)

Охлаждение:

$$d(lnP)/d(1/T) = (-5778.15 \pm 135.4) \ 1/$$
моль ($\varepsilon \approx 2.34\%$)

Нагрев:

$$L = (49920.15 \pm 632.5) \ Дж/K (\varepsilon \approx 1.27\%)$$

Охлаждение:

$$L = (48016.39 \pm 1125.19)$$
Дж/К ($\varepsilon \approx 2.34\%$)

Более точными оказались данные при нагреве.

$$\overline{L} = (48968.27 \pm 1125.47)$$
 Дж/К ($\varepsilon \approx 2.3\%$)

5 Вывод

В ходе работы были измерены давления насыщенного пара жидкости (воды) при разной температуре и вычислены по полученным данным теплоты испарения с помощью уравения Клапейрона-Клаузиуса.

Для двух процессов получили почти идентичные величины L, в среднем:

$$\overline{L} = (48968.27 \pm 1125.47) \text{ Дж/K } (\varepsilon \approx 2.3\%)$$