Applied Production Analysis

SOK-3011—Part 1

Dual approach: Estimation of cost and profit functions

Overview

- Dual Approach
- Cost function
 - Recovery of production function
 - Properties
 - Estimation
- Profit function
 - Properties
 - Estimation

Dual Approach (vs. Primal Approach)

- Primal approach: Start with the production function → analyze how firms maximize profit or minimize cost given technology.
- Dual approach: Start with the cost function → analyze how much it costs to produce a given output at given input prices.
- Key duality insight:
 - From production function → we can derive the cost function.
 - From cost function → we can recover the production function (if technology is well-behaved, i.e., quasiconcave).

Recovery of production function

Recovery of production function

Theorem.

Let c(y, w) be a differentiable function satisfying the regular properties (stated later) of a cost function.

Define a function f as

$$f(x) \equiv \max\{y \geq 0 \mid w \cdot x \geq c(y, w), \ \forall w \gg 0\}.$$

Then:

- f is increasing, unbounded above, and quasiconcave.
- Moreover, the cost function generated by f is precisely c.

Dual Approach (vs. Primal Approach)

- In the context of empirical estimation of technology, we can address it by studying the same problem from two mirrors:
 - Primal: What output can I get with these inputs?
 - Dual: What is the minimum cost of producing this output?
- In practice, the dual approach is often more useful because prices and expenditures are visible in markets, while internal technology is hidden.
- Applied advantage:
 - Easier to observe input prices and costs than to measure technical production details.
 - Researchers can estimate cost functions directly from market data and then infer the production side.

Cost function

Cost minimization and cost function

Cost Minimization Problem:

$$\min_{x} \ \sum_{i=1}^n w_i x_i \quad ext{s.t.} \ f(x) \geq y$$

Cost Function:

$$c(y,w) = \sum_{i=1}^n w_i x_i(y,w)$$

where $x_i(y, w)$ is the cost-minimizing demand for input i.

• Interpretation: Minimum cost of producing output y given input prices w.

Properties of cost function

If production function f is continuous and strictly increasing:

- 1. c(0, w) = 0
- 2. Continuous on domain
- 3. Strictly increasing & unbounded in y (for $w\gg 0$)
- **4.** Increasing in input prices w
- **5.** Homogeneous of degree one in w
- **6.** Concave in w

Properties of cost function

- An important result is the relationship between the cost function and the optimal input demand function
- Shephard's Lemma

$$rac{\partial c(y,w)}{\partial w_i} = x_i(y,w)$$

- This is a direct application of the envelope theorem for constrained optimization
- We can use this result to check if firms' choices of inputs are consistent with cost minimization principle

Estimation of cost function

A Cobb-Douglas cost function

- We will estimate a Cobb-Douglas cost function using our data.
- Note that a Cobb-Douglas production function generates a cost function that exhibits a Cobb-Douglas form in input prices.
- If the original production technology exhibits constant returns to scale (CRS), the cost function is typically linear in y.
- We consider the following specification:

$$c = A\bigg(\prod_{i=1}^{N} w_i^{\alpha_i}\bigg) y^{\alpha_y}$$

and in its linearized form:

$$\ln c = \alpha_0 + \sum_{i=1}^{N} \alpha_i \ln w_i + \alpha_y \ln y$$

Estimation

- Coefficients of log-input prices are non-negative
 → cost function is non-decreasing in input prices.
- Coefficient of logoutput quantity is nonnegative → cost function is nondecreasing in output.
- With a positive intercept, the cost function satisfies the non-negativity condition.

```
lm(formula = log(cost) ~ log(pCap) + log(pLab) + log(pMat) +
log(qOut), data = dat)
```

Residuals:

```
Min 1Q Median 3Q Max -0.77663 -0.23243 -0.00031 0.24439 0.74339
```

Coefficients:

```
Pr(>|t|)
           Estimate Std. Error t value
           6.75383
                      0.40673 16.605 < 0.0000000000000000 ***
(Intercept)
log(pCap)
           0.07437
                      0.04878
                               1.525
                                                 0.12969
log(pLab)
           0.46486
                      0.14694
                               3.164
                                                 0.00193 **
log(pMat)
           0.48642
                      0.08112
                                            0.000000174 ***
                               5.996
log(qOut)
           0.37341
                      0.03072 12.154 < 0.0000000000000000 ***
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
Residual standard error: 0.3395 on 135 degrees of freedom
Multiple R-squared: 0.6884, Adjusted R-squared: 0.6792
F-statistic: 74.56 on 4 and 135 DF, p-value: < 0.0000000000000022
```

Does it satisfy homogeneity?

- The F-statistic tests whether the null hypothesis (sum of coefficients = 1) holds.
- It compares the fit of a restricted model (with the null imposed) and an unrestricted model.
- A small difference in residuals → null likely true → large Pr(>F) (as in this case).

```
# Liner homogeneity condition check
linearHypothesis( costCD, "log(pCap) + log(pLab) + log(pMat) = 1" )

Linear hypothesis test:
log(pCap) + log(pLab) + log(pMat) = 1

Model 1: restricted model
Model 2: log(cost) ~ log(pCap) + log(pLab) + log(pMat) + log(qOut)

Res.Df RSS Df Sum of Sq F Pr(>F)
1 136 15.563
2 135 15.560 1 0.0025751 0.0223 0.8814
```

Imposing homogeneity

- We can directly impose homogeneity of degree one by modifying the model.
- This involves setting one input's coefficient as 1 minus the sum of the others, which changes the regression specification.

$$\ln c = \alpha_0 + \sum_{i=1}^{N-1} \alpha_i \ln w_i + (1 - \sum_{i=1}^{N-1} \alpha_i) \ln w_N + \alpha_y \ln y$$

or, equivalently,

$$\ln \frac{c}{w_N} = \alpha_0 + \sum_{i=1}^{N-1} \alpha_i \ln \frac{w_i}{w_N} + \alpha_y \ln y$$

Imposing homogeneity

```
lm(formula = log(cost/pMat) ~ log(pCap/pMat) + log(pLab/pMat) +
   log(qOut), data = dat)
Residuals:
             1Q Median
    Min
                            30
                                   Max
-0.77096 -0.23022 -0.00154 0.24470 0.74688
Coefficients:
                                               Pr(>|t|)
             Estimate Std. Error t value
(Intercept)
              6.75288
                       0.40522 16.665 < 0.0000000000000000 ***
log(pCap/pMat) 0.07241 0.04683 1.546
                                                  0.124
log(pLab/pMat) 0.44642 0.07949 5.616 0.000000106 ***
log(qOut)
             Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.3383 on 136 degrees of freedom
Multiple R-squared: 0.5456, Adjusted R-squared: 0.5355
F-statistic: 54.42 on 3 and 136 DF, p-value: < 0.0000000000000022
```

• Coefficients change slightly but keep the **same interpretation**; the "materials" coefficient is derived as $\alpha_{MAT} = 0.48$.

Homogeneity-imposed model

```
Likelihood ratio test

Model 1: log(cost/pMat) ~ log(pCap/pMat) + log(pLab/pMat) + log(qOut)

Model 2: log(cost) ~ log(pCap) + log(pLab) + log(pMat) + log(qOut)

#Df LogLik Df Chisq Pr(>Chisq)

1  5 -44.878

2  6 -44.867  1 0.0232   0.879
```

- A Likelihood-ratio (LR) test compares unrestricted vs. restricted models; here, the large Pr(>ChiSq) means the null holds → restricted model fits well.
- We adopt the homogeneity-imposed model for further analysis.
- Advantage: for Cobb-Douglas cost functions, non-decreasing + linear homogeneity automatically imply concavity.

Are firms' input choices consistent with cost-minimization principle?

An implication of Shephard's lemma:

$$\alpha_i = \frac{\partial \ln c(y, \mathbf{w})}{\partial \ln w_i} = \frac{\partial c(y, \mathbf{w})}{\partial w_i} \cdot \frac{w_i}{c(y, \mathbf{w})} = \frac{w_i \cdot x_i(y, \mathbf{w})}{c(y, \mathbf{w})} = \text{ cost share of input i}$$

where the first equality follows from Cobb-Douglas specification and the third follows from the Shephard's lemma.

This can also be rewritten as

$$\alpha_i \frac{c(y,\mathbf{w})}{w_i} = x_i(y,\mathbf{w})$$

Are firms' input choices consistent with cost-minimization principle?

- If $(\alpha_i c)/w_i < x_i$, the firm is **overusing the input** relative to cost-minimization.
- The scatter plots show input use across firms.
- Findings: most firms
 overuse capital and
 underuse materials.

Are firms' input choices consistent with cost-minimization principle?

- We can also check the distribution of x_iw_i/c across firms and compare it against α_i
- If α_i is sufficiently low, it implies firms are overusing the input.
- Findings: most firms overuse capital and underuse materials.

dat\$pMat * dat\$qMat/dat\$cost

Profit function

Profit maximization and profit function

Profit Maximization Problem:

$$\max_{x,y} \ \pi = p \cdot y - \sum_{i=1}^n w_i x_i \quad ext{s.t.} \ f(x) \geq y$$

Profit Function:

$$\pi(p,w) = p \cdot y(p,w) - \sum_{i=1}^n w_i x_i(p,w)$$

where $x_i(p,w)$ is the profit-maximizing demand for input i.

• Interpretation: Maximum profit attainable given output price p and input prices w.

Properties of profit function

If f is continuous, strictly increasing, and strictly quasiconcave:

- 1. Continuous
- 2. Increasing in output price p
- 3. Decreasing in input prices w
- **4.** Homogeneous of degree one in (p, w)
- **5.** Convex in (p, w)

Properties of profit function

 Like the Shephard's lemma, there is also an important result on the relationship between the profit function and the optimal output function

Hotelling's Lemma

• If $\pi(p,w)$ is differentiable at $(p,w)\gg 0$:

$$rac{\partial \pi(p,w)}{\partial p} = y(p,w), \quad -rac{\partial \pi(p,w)}{\partial w_i} = x_i(p,w)$$

- The output and input demand functions can be recovered from the profit function. These can be derived via envelope theorem (analogous to Shephard's lemma).
- We can use this result to check if firms' choices of inputs and output volume are consistent with profit maximization principle

Estimation of profit function

A Cobb-Douglas profit function

- We define Profit = Revenue Costs, assuming full information on both.
- In our data set, the constructed profit measure shows negative profits for several firms.
- Negative profits may reflect short-run conditions, where not all inputs can be adjusted (e.g., capital fixed).
- Even after treating capital costs as fixed,
 8 observations still show negative profits.
- For estimation, we exclude 14 observations with negative profits (see Henningsen 2024 for discussion).

A Cobb-Douglas profit function

- We estimate a Cobb-Douglas form using our data.
- We consider the following specification:

$$\pi = Ap^{lpha_p}igg(\prod_{i=1}^N w_i^{\;lpha_i}igg)$$

and in its linearized form:

$$\ln \pi = \alpha_0 + \alpha_p \ln p + \sum_{i=1}^N \alpha_i \ln w_i$$

Estimation

- Profit function is
 decreasing in capital
 and labor prices;
 coefficient for materials
 is positive but not
 statistically significant.
- Profit function is
 increasing in output
 price (positive,
 significant coefficient).
- With a positive intercept, the profit function satisfies the non-negativity condition.

```
lm(formula = log(profit) ~ log(pOut) + log(pCap) + log(pLab) +
log(pMat), data = dat_clean)
```

Residuals:

```
Min 1Q Median 3Q Max -3.6183 -0.2778 0.1261 0.5986 2.0442
```

Coefficients:

```
Pr(>|t|)
           Estimate Std. Error t value
                        0.4921 28.321 < 0.0000000000000000 ***
(Intercept)
            13.9380
log(pOut)
             2.7117
                        0.2340 11.590 < 0.0000000000000000 ***
log(pCap)
            -0.7298
                        0.1752 - 4.165
                                                  0.0000586 ***
log(pLab)
            -0.1940
                        0.4623 - 0.420
                                                     0.676
log(pMat)
             0.1612
                        0.2543 0.634
                                                     0.527
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9815 on 121 degrees of freedom Multiple R-squared: 0.5911, Adjusted R-squared: 0.5776 F-statistic: 43.73 on 4 and 121 DF, p-value: < 0.0000000000000022

Does it satisfy homogeneity?

F-test: Null hypothesis of homogeneity of degree one is rejected at 10%, but not at 5% → may be critical if alternative functional forms offer better properties.

Imposing homogeneity

- We impose homogeneity of degree one by modifying the model.
- This involves setting one input's coefficient as 1 minus the sum of the others, which changes the regression specification.

$$\ln \pi = \alpha_0 + (1 - \sum_{i=1}^N \alpha_i) \ln p + \sum_{i=1}^N \alpha_i \ln w_i$$

or, equivalently,

$$\ln \frac{\pi}{p} = \alpha_0 + \sum_{i=1}^{N} \alpha_i \ln \frac{w_i}{p}$$

Imposing homogeneity

```
lm(formula = log(profit/pOut) ~ log(pCap/pOut) + log(pLab/pOut) +
    log(pMat/pOut), data = dat_clean)
Residuals:
             10 Median
    Min
                                   Max
-3.6045 -0.2724 0.0972 0.6013 2.0385
Coefficients:
                                                     Pr(>|t|)
              Estimate Std. Error t value
(Intercept)
              14.27961
                          0.45962 31.068 < 0.000000000000000 ***
log(pCap/pOut) -0.82114 0.16953 -4.844
                                                   0.00000378 ***
log(pLab/pOut) -0.90068 0.25591 -3.519
                                                     0.000609 ***
log(pMat/pOut) -0.02469 0.23530 -0.105
                                                    0.916610
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.9909 on 122 degrees of freedom
Multiple R-squared: 0.3568,
                             Adjusted R-squared: 0.341
F-statistic: 22.56 on 3 and 122 DF, p-value: 0.0000000001091
```

As this model is nested within the original model, we can do a likelihood ratio test.

- Chi-square test:
 Null rejected at
 10% but not at 5%,
 similar to earlier
 homogeneity test.
- The homogeneityimposed model ensures coefficients sum to one → used for further analysis.

Likelihood ratio test

```
Model 1: log(profit) ~ log(pOut) + log(pCap) + log(pLab) + log(pMat)
Model 2: log(profit/pOut) ~ log(pCap/pOut) + log(pLab/pOut) + log(pMat/pOut)
    #Df LogLik Df Chisq Pr(>Chisq)
1    6 -173.88
2    5 -175.60 -1 3.4316    0.06396 .
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Are firms' choices consistent with profit-maximization principle?

An implication of Hotelling's lemma:

$$\alpha_p = \frac{\partial \ln \pi}{\partial \ln p} = \frac{\partial \pi}{\partial p} \cdot \frac{p}{\pi} = \frac{p \cdot y}{\pi} = \text{ profit share of output } (\geq 1)$$

$$\alpha_i = \frac{\partial \ln \pi}{\partial \ln w_i} = \frac{\partial \pi}{\partial w_i} \cdot \frac{w_i}{\pi} = -\frac{w_i \cdot x_i(p, \mathbf{w})}{\pi} = \text{ profit share of input i } (\leq 0)$$

- This can also be rewritten as **Profit shares** differ from cost shares → not bounded between 0 and 1.
- Example: profit share of 2 (output) = revenue twice the realized profit; profit share of -½ (input) = input cost equals half of realized profit.
- Comparing actual profit shares with α_i shows whether firms overuse/underuse inputs or deviate from profit-maximizing output.

Are firms' choices consistent with profit-maximization principle?

- Histograms show most firms operate below the optimal profit-maximizing level (similar to scale elasticity findings).
- Input use: firms could benefit from more capital and less materials, though this contrasts with earlier results.
- Possible reasons: short-run capital constraints or need to test alternative profit function forms (see Henningsen 2024).

(-dat\$pLab * dat\$qLab/dat\$profit)[dat\$profit > 0]

Reading materials

- Varian, Chapter 3 and 5
- Henningsen, Chapter 3 and 4