

数学规划 作业常见问题说明

孙莹, 孔令晨

1-1 某工厂生产 A、B 两种产品,已知生产产品 A 每千克要用煤 9 吨、电 4 千瓦•时,劳动力 3 个,生产产品 B 每千克要用煤 4 吨,电 5 千瓦•时,劳动力 10 个,又知每千克产品 A 的产值是 7 万元,每千克 B 的产值是 12 万元。现在该工厂只有煤 360 吨,电 200 千瓦•时,劳动力 300 个,问在这种条件下,应该生产产品 A、B 各多少千克才能使产值最高,试建立其数学模型并将其化为标准型。

TIPS: 注意在对实际问题建模的时候要根据决策变量的意义增加约束条件,例如本题中需要决策变量 $x_i \geq 0$

A: $max \le 7x_1 + 12x_2$ $yx_1 + 4x_1 \le 360$ $x_1 + 10x_1 \le 300$ $x_1 + 10x_1 \le 300$ $x_1 + x_1 \ge 0$ $x_1 + x_2 \le 0$ $x_1 = x_2 \le 0$ $x_2 = x_2 \le 0$ $x_1 = x_2 \le 0$ $x_1 = x_2 \le 0$

单纯形法求解

TIPS: 一步步来,不要省略步骤,计算过程要细心

					W				
			χı	χ_{l}	X3	χψ	X5	γ_{6}	
	-	13	0	0	- 6	U	0	- 7	
_χ	4 0	٦	1	0	0	1	0	6	_
χ × ÷	2	2	3	(- 4	O	0	2	
$\in \chi$	7	6	ţ	D	3	0	l	2	

_									
			χı	χ_{l}	χ_3	χ _ψ	X5	γ_{6}	
		1	2	0	0	U	2	-3	
	λY	9		0	0	1	0	6	_
	χ ₄	0)	13	(0	O	75~	LY.	
	χz	2	1 (D	ſ	()	ال	2	
右兒	优色	} }	3	,	0		3	3	
14 3X	110 (1	χ = (0,	(0, 2)	1, 9	, 0,0)		
		S = -	-)						
	_	S = -	-			/ 0 0 , 0, 0			

不然容易出错

单纯形法求解

表 3: 迭代表 (3)

A:

表 3: 迭代表 (3)								
			x_4	x_5	x_6	x_1	x_2	x_3
		6	0	0	0	12.5	3.5	-20
1	x_4	-3	1	0	0	-8	-3	12
1	x_5	-4	0	1	0	-2	-1	7
	x_6	-1	0	0	1	1.5	0.5	-2
		1	$\frac{5}{3}$	0	0	$-\frac{5}{6}$	-1.5	0
0	x_3	$-\frac{1}{4}$	$\frac{1}{12}$	0	0	$-\frac{2}{3}$	$-\frac{1}{4}$	1
2	x_5	$\begin{vmatrix} -\frac{1}{4} \\ -\frac{9}{4} \end{vmatrix}$	$-\frac{7}{12}$	1	0	$\frac{8}{3}$	$\left\lceil \frac{3}{4} \right\rceil$	0
	x_6	$-\frac{3}{2}$	$\frac{1}{6}$	0	1	$\frac{1}{6}$	0	0
		-3.5	0.5	2	0	4.5	0	0
3	x_3	-1	$-\frac{1}{9}$	$\frac{1}{3}$	0	$\frac{2}{9}$	0	1
3	x_2	-3	$-\frac{7}{9}$	$\frac{4}{3}$	0	$\frac{32}{9}$	1	0
	x_6	$-\frac{3}{2}$	$\frac{1}{6}$	0	1	$\frac{1}{6}$	0	0

• 由表 3 知,最优解 $X^* = [0,3,1,0,0,1.5]^{\mathrm{T}},$ 对应目标函数值 S = -3.5.

线性规划的对偶问题

TIPS: 注意x若为"自由"时的情况

题目: (3)
$$\min S = 2x_1 + x_2 + 4x_3$$
s. t.
$$\begin{cases} x_1 + 2x_2 + 2x_3 \geqslant 3 \\ 2x_1 + x_2 + 3x_3 \geqslant 5 \\ x_1 \geqslant 0, x_2 \geqslant 0, x_3$$
自由

max
$$Z=3\lambda_1+5\lambda_2$$

 $\lambda_1+2\lambda_2\leq 2$
 $2\lambda_1+\lambda_2\leq 1$
 $2\lambda_1+3\lambda_2=4$
 $\lambda_1\geq 0$ $\lambda_2\geq 0$

$$max = 3y_1 + 5y_2$$

 $y_1 + 2y_2 \le 2$
 $y_1 + y_2 \le 1$
 $y_2 + y_2 \le 4$
 $y_1 \ge 0$ $y_2 \ge 4$

原	问题(或对偶问题)	对偶问题(或原问题)
	目标函数 max	目标函数 min	
约	m个	m个	
束	₩	≥0	变
条	\wedge	≤0	量
件		无约束	
	n个	n个	约
变	≥0	≥	束
量	≪0	€	条
	无约束	=	件
	约束条件右端项	目标函数变量的系数	
	目标函数变量的系数	约束条件右端项	

用对偶单纯形法求解线性规划问题

TIPS: 得到最优解X*即可

对线性规划问题:

minS=
$$5x_1-5x_2-13x_3$$

s. t.
$$\begin{cases}
-x_1+x_2+3x_3 \leqslant 20 \\
12x_1+4x_2+10x_3 \leqslant 90 \\
x_1\geqslant 0, x_2\geqslant 0, x_3\geqslant 0
\end{cases}$$

先用单纯形法求出最优解,然后分析在下列各种条件下,最优解分别有什么变化?

- (1) 约束条件①的右端常数由 20 变为 30;
- (2) 约束条件②的右端常数由 90 变为 70;

TIPS: B-1 b≥ 0 并不可直接说明最优解不变

错误示范: (1)

- B⁻¹b̄ ≥ 0, 故最优基不变, 但最优解与最优值发生变化。
- 新最优解: $X^* = [B^{-1}\bar{b} \ 0]^T = [0 \ 30 \ 0]^T$, 最优值 $S^* = C_B B^{-1}\bar{b} = -150$.

(2)

• $B^{-1}\bar{b} \geq 0$, 故最优基不变,且经过进一步验算,最优解与最优值均不变。

A:
$$(2)$$
 $\overline{b} = \begin{bmatrix} 20 \\ 70 \end{bmatrix}$, $\beta^{-1} = \begin{bmatrix} 1 & 0 \\ 4 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 \\ -4 & 1 \end{bmatrix}$

$$\therefore \beta^{-1} \overline{b} = \begin{bmatrix} 20 \\ -10 \end{bmatrix}$$

$$S = C_B B^{-1} \bar{b} = [-5\ 0] \begin{bmatrix} 20 \\ -10 \end{bmatrix} = -100$$
 , B为正则基

				1(
	þ	۲ı	Z	λ3 ¹ L	χ_{4}	χ_{S}	
ყ₀j	<u>0</u>	0	0	2	15)	۵	
X <u>.</u>	20	1	_	3	_	0	
€ χ²	- 0	16	0	[-2]	-4	_	
	ع	_		1	54	_	
	↓ 迭代 ι						

	þ	χ_{l}	χ.	λ 3	74	χ_{ς}
yoj	90	16	0	O	_	_
χ,	5	23	1	0	-5	<u>2</u>
×3	5	-8	0	1	2	-1/2

作业5&6

整数规划中的分支定界法/割平面法

TIPS: 1.分支法出现两个分支时都要讨论,避免漏掉其中一个分支

分支定界法可能出现的情况

序号	问题1	问题2	说明
1	无可行解	无可行解	整数规划无可行解
2	无可行解	整数解	此整数解即最优解
3	无可行解	非整数解	对问题2继续分支
4	整数解	整数解	较优的一个为最优解
5	整数解 且目标值优于问题2	非整数解	问题1的解即最优解
6	整数解	非整数解 且目标值优于问题1	问题1停止分支剪枝,以其整 数解为界,对问题2继续分支

2.整数规划中将可行域分割成多个子集讨论时,可行域内每部分都要求解,避免遗漏

运输问题求解:

TIPS: 最优解需回答运输方案+最优运费

求梯度和Hesse矩阵

TIPS: 最终结果算到最简

$$\nabla f = \begin{bmatrix}
\frac{\chi_{1}(\chi_{1}^{2} + \chi_{1}\chi_{1} + \chi_{2}^{2}) + (2\chi_{1} + \chi_{1})^{2}}{(\chi_{1}^{2} + \chi_{1}\chi_{2} + \chi_{1}^{2})^{2}} & \frac{\chi_{1}^{2} + \chi_{1}\chi_{2} + \chi_{2}^{2} + (\chi_{1} + \chi_{2})^{2}}{(\chi_{1}^{2} + \chi_{1}\chi_{2} + \chi_{2}^{2})^{2}} & \frac{\chi_{1}^{2} + \chi_{1}\chi_{2} + \chi_{2}^{2}}{(\chi_{1}^{2} + \chi_{1}\chi_{2} + \chi_{2}^{2})^{2}} & \frac{\chi_{1}^{2} + \chi_{1}\chi_{2} + \chi_{2}^{2}}{(\chi_{1}^{2} + \chi_{1}\chi_{2} + \chi_{2}^{2})^{2}} & \frac{\chi_{1}^{2} + \chi_{1}\chi_{2} + \chi_{2}^{2}}{(\chi_{1}^{2} + \chi_{1}\chi_{2} + \chi_{2}^{2})^{2}} & \frac{\chi_{1}^{2} + \chi_{1}\chi_{2} + \chi_{2}^{2}}{(\chi_{1}^{2} + \chi_{1}\chi_{2} + \chi_{2}^{2})^{2}} & \frac{\chi_{1}^{2} + \chi_{1}\chi_{2} + \chi_{2}^{2}}{(\chi_{1}^{2} + \chi_{1}\chi_{2} + \chi_{2}^{2})^{2}} & \frac{\chi_{1}^{2} + \chi_{1}\chi_{2} + \chi_{2}^{2}}{(\chi_{1}^{2} + \chi_{1}\chi_{2} + \chi_{2}^{2})^{2}} & \frac{\chi_{1}^{2} + \chi_{1}\chi_{2} + \chi_{2}^{2}}{(\chi_{1}^{2} + \chi_{1}\chi_{2} + \chi_{2}^{2})^{2}} & \frac{\chi_{1}^{2} + \chi_{1}\chi_{2} + \chi_{2}^{2}}{(\chi_{1}^{2} + \chi_{1}\chi_{2} + \chi_{2}^{2})^{2}} & \frac{\chi_{1}^{2} + \chi_{1}\chi_{2} + \chi_{2}^{2}}{(\chi_{1}^{2} + \chi_{1}\chi_{2} + \chi_{2}^{2})^{2}} & \frac{\chi_{1}^{2} + \chi_{1}\chi_{2} + \chi_{2}^{2}}{(\chi_{1}^{2} + \chi_{1}\chi_{2} + \chi_{2}^{2})^{2}} & \frac{\chi_{1}^{2} + \chi_{1}\chi_{2} + \chi_{2}^{2}}{(\chi_{1}^{2} + \chi_{1}\chi_{2} + \chi_{2}^{2})^{2}} & \frac{\chi_{1}^{2} + \chi_{1}\chi_{2} + \chi_{2}^{2}}{(\chi_{1}^{2} + \chi_{1}\chi_{2} + \chi_{2}^{2})^{2}} & \frac{\chi_{1}^{2} + \chi_{1}\chi_{2} + \chi_{2}^{2}}{(\chi_{1}^{2} + \chi_{1}\chi_{2} + \chi_{2}^{2})^{2}} & \frac{\chi_{1}^{2} + \chi_{1}\chi_{2} + \chi_{2}^{2}}{(\chi_{1}^{2} + \chi_{1}\chi_{2} + \chi_{2}^{2})^{2}} & \frac{\chi_{1}^{2} + \chi_{1}\chi_{2} + \chi_{2}^{2}}{(\chi_{1}^{2} + \chi_{1}\chi_{2} + \chi_{2}^{2})^{2}}{(\chi_{1}^{2} + \chi_{1}\chi_{2} + \chi_{2}^{2})^{2}} & \frac{\chi_{1}^{2} + \chi_{1}\chi_{2} + \chi_{2}^{2}}{(\chi_{1}^{2} + \chi_{1}\chi_{2} + \chi_{2}^{2})^{2}} & \frac{\chi_{1}^{2} + \chi_{1}\chi_{2} + \chi_{2}^{2}}{(\chi_{1}^{2} + \chi_{1}\chi_{2} + \chi_{2}^{2})^{2}} & \frac{\chi_{1}^{2} + \chi_{1}\chi_{2} + \chi_{2}^{2}}{(\chi_{1}^{2} + \chi_{1}\chi_{2} + \chi_{2}^{2})^{2}} & \frac{\chi_{1}^{2} + \chi_{1}\chi_{2} + \chi_{2}^{2}}{(\chi_{1}^{2} + \chi_{1}\chi_{2} + \chi_{2}^{2})^{2}} & \frac{\chi_{1}^{2} + \chi_{1}\chi_{2} + \chi_{2}^{2}}{(\chi_{1}^{2} + \chi_{1}\chi_{2} + \chi_{2}^{2})^{2}} & \frac{\chi_{1}^{2} + \chi_{1}\chi_{2} + \chi_{2}^{2}}{(\chi_{1}^{2} + \chi_{1}\chi_{2} + \chi_{2}^{2})^{2}} & \frac{\chi_{1}^{2} + \chi_{1}\chi_{2} + \chi_{2}^{2}}{(\chi_{1}^{2} + \chi_{1$$

$$\frac{\sqrt{f}}{\int_{-1}^{2} \left[\frac{x_{1}^{2} + x_{1} x_{2} + x_{3}^{2} - \left[\frac{1}{2} x_{1} + x_{1} \right)^{2}}{\left[\frac{x_{1}^{2} + x_{1} x_{2} + x_{3}^{2}}{1 + x_{1} x_{2} + x_{3}^{2}} \right]^{2}} , \frac{\frac{x_{1}^{2} + x_{1} x_{2} + x_{2}^{2} - \left[\frac{2}{2} x_{1} + x_{1} \right] \left(\frac{2}{2} x_{1} + x_{2}}{\left[\frac{x_{1}^{2} + x_{1} x_{2} + x_{2}^{2}}{1 + x_{1} x_{2} + x_{2}^{2}} \right]^{2}} \right]} \\
\frac{\left[\frac{x_{1}^{2} + x_{1} x_{2} + x_{2}^{2}}{1 + x_{1} x_{2} + x_{2}^{2}} \right]^{2}}{\left[\frac{x_{1}^{2} + x_{1} x_{2} + x_{2}^{2}}{1 + x_{1} x_{2} + x_{2}^{2}} \right]^{2}} \\
\frac{\left[\frac{x_{1}^{2} + x_{1} x_{2} + x_{2}^{2}}{1 + x_{1} x_{2} + x_{2}^{2}} \right]^{2}}{\left[\frac{x_{1}^{2} + x_{1} x_{2} + x_{2}^{2}}{1 + x_{1} x_{2} + x_{2}^{2}} \right]^{2}} \\
\frac{\left[\frac{x_{1}^{2} + x_{1} x_{2} + x_{2}^{2}}{1 + x_{1} x_{2} + x_{2}^{2}} \right]^{2}}{\left[\frac{x_{1}^{2} + x_{1} x_{2} + x_{2}^{2}}{1 + x_{1} x_{2} + x_{2}^{2}} \right]^{2}}$$

用外点法求解:

(1) $\min(x_1^2 + x_2^2)$

s. t.
$$(x_1-1)^3-x_2^2=0$$

TIPS: 高次偏导函数求极值点首先 观察表达式的特点再展开, 会比较容易求解

错误示范:

章解 Min p (XAK-1 (用解析は) → マク(X,Me)=0 $\frac{3V}{3N_1} = 2X_1 + 6Mk(X_1-1)^5 - 6Mk(X_1-1)^2 = 0$ $\frac{3V}{3N_1} = 2X_2 + 4Mk(X_1-1)^3 X_2 + 4Mk X_2^3 = 0$ $\frac{3V}{3N_1} = 2X_2 + 4Mk(X_1-1)^3 X_2 + 4Mk X_2^3 = 0$ $\frac{3V}{3N_1} = 2X_2 + 4Mk(X_1-1)^3 X_2 + 4Mk X_2^3 = 0$ $\frac{3V}{3N_1} = 4X_1 + 3 = 0$ $\frac{3V}{3N_1} = 4X_1 + 3 = 0$ $\frac{3V}{3N_1} = 0$

 $\begin{array}{lll}
\lambda_{1}(1) & \psi(\chi_{1}M_{R}) = \chi_{1}^{2} + \chi_{2}^{2} + M_{R}((\chi_{1} - 1)^{2} - \chi_{2}^{2}) \\
& = \chi_{1}^{2} + \chi_{2}^{2} + M_{R}((\chi_{1} - 3)^{6} - 2\chi_{2}(\chi_{1} - 1)^{2} - \chi_{2}^{4}) \\
\lambda_{1}^{2} = 2\chi_{1} + M_{R}((\chi_{1} - 3)^{6} - 6\chi_{2}(\chi_{1} - 1)^{2}) \\
\lambda_{2}^{2} = 2\chi_{2} + M_{R}((\chi_{1} - 3)^{6} - 4\chi_{2}^{2}) \\
\lambda_{3}^{2} = 2\chi_{2} + M_{R}((\chi_{1} - 3)^{6} - 4\chi_{2}^{2})
\end{array}$

A: (1) min $(x_1^2+x_2^2)$ S.t. $(x_1-1)^3-x_2^2=0$ $\varphi(x_1M)=f(x_2)+M\sum_{i=1}^{m}[\min(o_ig_ix_i)]^2+M\sum_{i=1}^{n}h_i^2(x_2)$ $\varphi(x_1M_k)=x_1^2+x_2^2+M_k[(x_1-1)^3-x_2^2]^2$ $\varphi(x_1M_k)=\frac{1}{2}$

min (x +x2) = 1

目标规划模型

TIPS:

1.引入偏差变量, 建立目标约束后, 无需保留相对应的 原系统约束。

$$f(X) + d^- - d^+ = f_0$$

6-8 考虑一个有两个产地、三个销地的不平衡运输问题,有关的供、求数量及单位运费如下表:

单位运费 销 地	B ₁	B ₂	B ₃	供应量 (单位)
A ₁	10	4	12	3000
A ₂	8	10	3	4000
需求量 (单位)	2000	1500	5000	7000 8500

现有以下各级目标:

P1: 销地 B2 的需求必须全部满足;

P2: 至少要满足每个销地需求量的 75%;

 P_3 : 总的运输费用最小;

P4: 由于合同规定,至少要产地 A₂ 供应销地 B₁1000 个单位;

 P_s : 出于运输安全考虑,尽量减少产地 A_1 向销地 B_s 的调运和产地 A_2 向销地 B_2 的调运;

 P_6 : 销地 B_1 和 B_2 实际调人数与其需求数的比值应相等,即 B_1 、 B_2 满足需求量的百分比应该一致. 试 建立这个问题的目标规划模型.

震球量約束
$$x_{11} + x_{11} \le 2000$$

 $x_{11} + x_{12} \le 1500$
任应量4年 $x_{11} + x_{12} + x_{13} = 3000$
 $x_{11} + x_{21} + x_{13} = 4000$