一 LVDS硬件特性

1.1 相关概念

- Lane: 用于连接发送端和接收端的一堆告诉差分线,既可以是时钟 Lane, 也可以是数据 Lane
- **Link**:发送端和接收端之间的时钟Lane和至少一个数据Lane组成一个Link,本文中的link是一个软件概念,每一个link包括两个数据lane。
- LVDS

低压差分信号,低功耗、低误码率、低串扰和低辐射的差分信号技术,核心是采用极低的电压摆幅告诉差动传输数据,可实现点对点或点对多的连接。

LVDS的基本工作原理如图 1-1所示,其源端驱动器由一个恒流源(通常约为3.5mA,最大不超过4mA)驱动一对差分信号线组成。接收端的接收器本身为高直流输入阻抗,所以几乎全部的驱动电流都流经100Ω的终端匹配电阻,并在接收器输入端产生约350mV的电压。当源端驱动状态反转变化时,流经匹配电阻的电流方向改变,于是在接收端产生高低逻辑状态的变化。

图 1-1 LVDS基本工作原理

特点:

- 高传输能力, 理论极限 1.9Gbps
- 低功耗特性, LVDS器件采用CMOS工艺实现
- 供电电压低
- 较强的抗噪声能力,差分信号固有的优点就是噪声以共模的方式在一对差分线上耦合出现, 并在接收器中相减,从而可消除噪声,所以LVDS具有较强的抗共模噪声能力
- 有效地抑制电磁干扰
- 时序定位精确

1.2 MIPI/LVDS电气参数

Sub-LVDS/LVDS 差分 DC 电气参数如图 1-2 所示. (《Hi3559A/C V100 ultra-HD Mobile Camera SoC 用户指南-2-25》)

符号	参数	最小值	典型值	最大值	单位	
VIDTH(SL)		Sub-LVDS	70	-	-	
VIDTH(HS)		HiSPi(SLV S)	70	-	-	
VIDTH(HiV CM)	Differential Input Threshold Voltage (VP—	HiSPi(HiV CM)	100	-	-	mV
VIDTH(DP)	VM)	D-PHY HS	70	-	-	
VIDTH(LV)		LVDS	100	-	-	
VIDTH(ML)		Mini-LVDS	100	-	-	
VCM(SL)	Common Mode	Sub-LVDS	0.5	0.9	1.3	v

符号	参数		最小值	典型值	最大值	单位
VCM(HS)	Voltage Range (VP+VM)/2	HiSPi(SLV S)	0.07	0.2	0.35	
VCM(HiVC M)		HiSPi(HiV CM)	0.66	0.90	1.17	
VCM(DP)		D-PHY HS	0.07	0.2	0.33	
VCM(LV)		LVDS	0.925	1.2	1.475	
VCM(ML)		Mini-LVDS	1.025	1.2	1.375	
VISVR (SL)		Sub-LVDS	0.4		1.4	
VCM(HS)	Sinds and	HiSPi(SLV S)	-0.04		0.49	
VCM(HiVC M)	Single-ended Input Voltage Range	HiSPi(HiV CM)	0.55		1.35	v
VCM(DP)	VP,VM	D-PHY HS	-0.04		0.46	
VCM(LV)		LVDS	0		1.8	
VCM(ML)		Mini-LVDS	0.825		1.575	
ZID(SL)		Sub-LVDS			125	
ZID(HS)		HiSPi(SLV S)			125	
ZID(HiVCM)	Internal Termination	HiSPi(HiV CM)	80	100	125	Ω
ZID(LV)	Resister Value	LVDS]		120	
ZID(ML)		Mini-LVDS			120	
ZID(DP)		D-PHY HS			125	

图 1-2 差分 DC 参数

Interface Type	Common mode voltage	Differential mode voltage	Maximum clock frequency	Maximum data rate per lane
MIPI D-PHY	200mV	200mV	1250MHz	2.5Gbps
sub-LVDS	900mV	150mV	750MHz	1.5Gbps
LVDS	1.25V	350mV	750MHz	1.5Gbps
HiSPi(HiVCM)	900mV	280mV	750MHz	1.5Gbps
HiSPi(SLVS)	200mV	200mV	750MHz	1.5Gbps

由上图可知 LVDS 共模电压为**典型值 1.25 V**,提供最小摆幅 100mV,**差模电压350mV**,在接收器的输入端连接有一个 100 Ω 的电阻

1.3 接口时序

1.3.1 VI 接口时序

VI 接口 CMOS 模式时序如图 1-3 所示。(Hi3559A/C V100 ultra-HD Mobile Camera SoC 用户指南-2-46)

图 1-3 VI CMOS 模式时序

VI 接口时序参数如表 1-1 所示

表 1-2 VI 接口时序参数

参数	符号	最小值	典型值	最大值	单位
VICLK时钟周期	Т	6.73	-	-	ns
输入信号建立时间要求	T _{su}	1.9	-	-	ns
输入信号保持时间要求	T _{hd}	0.8	-	-	ns

1.3.2 MIPI Rx接口时序

MIPI Rx 接口时钟时序如图 1-4 所示: (《Hi3559A/C V100 ultra-HD Mobile Camera SoC 用户指南-2-53》)

图 1-4 MIPI Rx 接口时钟时序

图中的 T_{skew} 包括 T_{dynamic_skew} 和 T_{static_skew}

MIPI Rx 时序参数如表 1-2 所示:

表 1-3 MIPI Rx 时序参数

符号	参数	最小值	典型值	最大值	单 位
FMAX	数据率	-	-	2.5G	bps
T _{clk}	差分时钟周期	0.8	Т	-	ns
T _{static_skew}	静态skew时间 (1.5Gbps <datarate<=2.5gbps)< td=""><td>0.2*UI</td><td>-</td><td>-</td><td>ns</td></datarate<=2.5gbps)<>	0.2*UI	-	-	ns
T _{dynamic_skew}	动态skew时间 (Tsetup+Thold) (1.5Gbps <datarate<=2.5gbps)< td=""><td>0.2*UI</td><td>-</td><td>-</td><td>ns</td></datarate<=2.5gbps)<>	0.2*UI	-	-	ns
T _{setup}	差分时钟建立时间	0.15 <i>UI (80Mbps<datarate<=1.0gbps)< i=""> 0.2UI (1.0Gbps<datarate<=1.5gbps)< td=""><td>-</td><td>-</td><td>ns</td></datarate<=1.5gbps)<></datarate<=1.0gbps)<></i>	-	-	ns
T _{hold}	差分始终保持时间	0.15 <i>UI (80Mbps<datarate<=1.0gbps)< i=""> 0.2UI (1.0Gbps<datarate<=1.5gbps)< td=""><td>-</td><td>-</td><td>ns</td></datarate<=1.5gbps)<></datarate<=1.0gbps)<></i>	-	-	ns

注: UI = T/2

1.4 硬件管脚连接

对于目标板, FPGA与海思的硬件连接关系如图 1-5。(《17所目标板原理图-MPSoC_HiSilicon_board Sheet Zynq_B64_B65_B66 HP》)

IO L15P T2L N4 AD11P 66 U11	011
IO L14N T2L N3 GC 66 Y8	Y8 MIPI RX1 CK1N
IO L14P T2L N2 GC 66 Y9	Y9 MIPI RX1 CK1P
IO L13N T2L N1 GC QBC 66 V8	V8
	U8
IO_L13P_T2L_N0_GC_QBC_66_U8 IO T1U N12 66 Y7	¥7
	W6
IO_L12N_T1U_N11_GC_66_W6	W7
IO_L12P_T1U_N10_GC_66_W7	V6 MIPI-RX1-D0N
IO_L11N_T1U_N9_GC_66_V6	V7 MIPI RX1 D0P
IO_L11P_T1U_N8_GC_66_V7	U6 MIPI-RX0-CK1N-
IO_L10N_T1U_N7_QBC_AD4N_66_U6	U7 MIPI-RX0-CK1P-
IO_L10P_T1U_N6_QBC_AD4P_66_U7	U4 MIPI-RX0-D3N
IO_L9N_T1L_N5_AD12N_66_U4	U5 MIPI-RX0-D3P
IO_L9P_T1L_N4_AD12P_66_U5	W4 MIPI RX0 D2N
IO_L8N_T1L_N3_AD5N_66_W4	V4 MIPI-RX0-D2P
IO_L8P_T1L_N2_AD5P_66_V4	Y5 MIPI-RX1-D2N
IO L7N T1L N1 QBC AD13N 66 Y5	W5 MIPI-RX1-D2P
	ms military
IO_L7P_T1L_N0_QBC_AD13P_66_W5	
	V3 R240 240 U1 1% MIPI RX0 D1N
IO_TOU_NI2_VRP_66_V3 IO_L6N_TOU_N11_AD6N_66_U1 IO_L6P_TOU_N10_AD6P_66_T1	V3 R240 240 U1 1% MIPI RX0 D1N
IO_TOU_N12_VRP_66_V3 IO_L6N_TOU_N11_AD6N_66_U1 IO_L6P_TOU_N10_AD6P_66_T1 IO_L5N_TOU_N9_AD14N_66_U3	V3 R240 240 U1 1% MIPI RX0 D1N T1 MIPI RX0 D1P
IO_TOU_NI2_VRP_66_V3 IO_L6N_TOU_N11_AD6N_66_U1 IO_L6P_TOU_N10_AD6P_66_T1 IO_L5N_TOU_N9_AD14N_66_U3 IO_L5P_TOU_N8_AD14P_66_U2	V3 R240 240 U1 1% MIPI RX0 D1N T1 MIPI RX0 D1P U3
IO_TOU_N12_VRP_66_V3 IO_L6N_T0U_N11_AD6N_66_U1 IO_L6P_T0U_N10_AD6P_66_T1 IO_L5N_T0U_N9_AD14N_66_U3 IO_L5P_T0U_N8_AD14P_66_U2 IO_L4N_T0U_N7_DBC_AD7N_66_V1	V3 R240 240 U1 1% MIPI RX0 D1N T1 MIPI RX0 D1P U3 U2 CND
IO_TOU_N12_VRP_66_V3 IO_L6N_TOU_N11_AD6N_66_U1 IO_L6P_TOU_N10_AD6P_66_T1 IO_L5N_TOU_N9_AD14N_66_U3 IO_L5P_TOU_N8_AD14P_66_U2 IO_L4N_TOU_N7_DBC_AD7N_66_V1 IO_L4P_TOU_N6_DBC_AD7P_66_V2	V3 R240 240 U1 1% MIPI RX0 D1N T1 MIPI RX0 D1P U3 U2 V1 MIPI RX0 D0N
IO_TOU_N12_VRP_66_V3 IO_L6N_TOU_N11_AD6N_66_U1 IO_L6P_TOU_N10_AD6P_66_T1 IO_L5N_TOU_N9_AD14N_66_U3 IO_L5P_TOU_N8_AD14P_66_U2 IO_L4N_TOU_N7_DBC_AD7N_66_V1 IO_L4P_TOU_N6_DBC_AD7P_66_V2 IO_L3N_TOL_N5_AD15N_66_W1	V3 R240 240 U1 1% MIPI RX0 D1N T1 MIPI RX0 D1P U3 U2 V1 MIPI RX0 D0N V2 MIPI RX0 D0N
IO_TOU_N12_VRP_66_V3 IO_L6N_TOU_N11_AD6N_66_U1 IO_L6P_TOU_N10_AD6P_66_T1 IO_L5N_TOU_N9_AD14N_66_U3 IO_L5P_TOU_N8_AD14P_66_U2 IO_L4N_TOU_N7_DBC_AD7N_66_V1 IO_L4P_TOU_N6_DBC_AD7P_66_V2 IO_L3N_TOL_N5_AD15N_66_W1 IO_L3P_TOL_N4_AD15P_66_W2	V3
IO_TOU_N12_VRP_66_V3 IO_L6N_TOU_N11_AD6N_66_U1 IO_L6P_TOU_N10_AD6P_66_T1 IO_L5N_TOU_N9_AD14N_66_U3 IO_L5P_TOU_N8_AD14P_66_U2 IO_L4N_TOU_N7_DBC_AD7N_66_V1 IO_L4P_TOU_N6_DBC_AD7P_66_V2 IO_L3N_TOL_N5_AD15N_66_W1 IO_L3P_TOL_N4_AD15P_66_W2 IO_L2N_TOL_N3_66_Y1	V3
IO_TOU_N12_VRP_66_V3 IO_L6N_TOU_N11_AD6N_66_U1 IO_L6P_TOU_N10_AD6P_66_T1 IO_L5N_TOU_N9_AD14N_66_U3 IO_L5P_TOU_N8_AD14P_66_U2 IO_L4N_TOU_N7_DBC_AD7N_66_V1 IO_L4P_TOU_N6_DBC_AD7P_66_V2 IO_L3N_TOL_N5_AD15N_66_W1 IO_L3P_TOL_N4_AD15P_66_W2 IO_L2N_TOL_N3_66_Y1 IO_L2P_TOL_N2_66_Y2	V3
IO_TOU_N12_VRP_66_V3 IO_L6N_TOU_N11_AD6N_66_U1 IO_L6P_TOU_N10_AD6P_66_T1 IO_L5N_TOU_N9_AD14N_66_U3 IO_L5P_TOU_N8_AD14P_66_U2 IO_L4N_TOU_N7_DBC_AD7N_66_V1 IO_L4P_TOU_N6_DBC_AD7P_66_V2 IO_L3N_TOL_N5_AD15N_66_W1 IO_L3P_TOL_N4_AD15P_66_W2 IO_L2N_TOL_N3_66_Y1 IO_L2P_TOL_N2_66_Y2 IO_L1N_TOL_N1_DBC_66_Y3	V3
IO_TOU_N12_VRP_66_V3 IO_L6N_TOU_N11_AD6N_66_U1 IO_L6P_TOU_N10_AD6P_66_T1 IO_L5N_TOU_N9_AD14N_66_U3 IO_L5P_TOU_N8_AD14P_66_U2 IO_L4N_TOU_N7_DBC_AD7N_66_V1 IO_L4P_TOU_N6_DBC_AD7P_66_V2 IO_L3N_TOL_N5_AD15N_66_W1 IO_L3P_TOL_N4_AD15P_66_W2 IO_L2N_TOL_N3_66_Y1 IO_L2P_TOL_N2_66_Y2 IO_L1N_TOL_N1_DBC_66_Y3 IO_L1P_TOL_N0_DBC_66_Y4	V3
IO_TOU_N12_VRP_66_V3 IO_L6N_TOU_N11_AD6N_66_U1 IO_L6P_TOU_N10_AD6P_66_T1 IO_L5N_TOU_N9_AD14N_66_U3 IO_L5P_TOU_N8_AD14P_66_U2 IO_L4N_TOU_N7_DBC_AD7N_66_V1 IO_L4P_TOU_N6_DBC_AD7P_66_V2 IO_L3N_TOL_N5_AD15N_66_W1 IO_L3P_TOL_N4_AD15P_66_W2 IO_L2N_TOL_N3_66_Y1 IO_L2P_TOL_N2_66_Y2 IO_L1N_TOL_N1_DBC_66_Y3	V3 R240 240 U1 1% MIPI RX0 D1N T1 MIPI RX0 D1P U3 CND V1 MIPI RX0 D0P V2 MIPI RX0 CK0N W1 MIPI RX0 CK0P Y1 MIPI RX1 D3N Y2 MIPI RX1 D3P Y3 MIPI RX1 D1N Y4 MIPI RX1 D1P

IO L24N T3U N11 PERSTNO 65 AB1	AB1	
IO L24P T3U N10 PERSTN1 I2C SDA 65 AA1	AA1	
IO L23N T3U N9 65 AA2	AA2 MIPI RX2 D1N	
IO L23P T3U N8 I2C SCLK 65 AA3	AA3 MIPI RX2 D1P	
IO L22N T3U N7 DBC AD0N 65 AD1	AD1 MIPI RX1 CK0	
IO L22P T3U N6 DBC AD0P 65 AC1	AC1 MIPI-RX1-CK0	
IO L21N T3L N5 AD8N 65 AD2	AD2 MIPT RX2 D3N	
IO L21P T3L N4 AD8P 65 AC2	AC2 MIPI RX2 D3P	
IO L20N T3L N3 AD1N 65 AE2	AE2 MIPI RX3 CK0	
IO L20P T3L N2 AD1P 65 AE3	AE3 MIPI RX3 CK0	Ρ
IO L19N T3L N1 DBC AD9N 65 AC3	AC3 MIPI-RX2-CK0	N
IO L19P T3L NO DBC AD9P 65 AB3	AB3 MIPI-RX2-CK0	P
IO_HIPF_ISH_NO_DBC_ADFF_05_ABS	AE7	
IO L18N T2U N11 AD2N 65 AC4	AC4 MIPI RX3 D3N	
IO L18P T2U N10 AD2P 65 AB4	AB4 MIPI RX3 D3P	
IO L17N T2U N9 AD10N 65 AE4	AE4 MIPI-RX3-D2N	
IO L17P T2U N8 AD10P 65 AD4	AD4 MIPI-RX3-D2P	
IO L16N T2U N7 QBC AD3N 65 AE5	AE5 MIPI RX3 D1N	
IO L16P T2U N6 QBC AD3P 65 AD5	AD5 MIPI RX3 D1P	
IO LISN T2L N5 AD11N 65 AA5	AA5 MIPI-RX2-D2N	
IO L15P T2L N4 AD11P 65 AA6	AA6 MIPI-RX2-D2P	
IO LI4N T2L N3 GC 65 AD6	AD6 MIPI-RX3-D0N	
IO L14P T2L N2 GC 65 AC6	AC6 MIPT RX3 D0P	
IO L13N T2L N1 GC QBC 65 AB5	AB5AB6 MIPI RX2 CK1	N
IO L13P T2L NO GC QBC 65 AB6	MIPI RX2 CK1	Ρ
IO TIU N12 65 AE8	AE8	
IO L12N T1U N11 GC 65 AC8	AC8	
IO L12P T1U N10 GC 65 AB8	AB8	
IO L11N T1U N9 GC 65 AD7	AD7 MIPI RX3 CK1	
IO L11P T1U N8 GC 65 AC7	AC7 MIPI RX3 CK1	
IO L10N T1U N7 QBC AD4N 65 AA7	AA7 MIPI-RX2-D0N	
IO L10P T1U N6 QBC AD4P 65 AA8	AA8 MIPI-RX2-D0P	i
TO T.QN TIT. NS AD12N 65 AFQ	AE9	

图 1-5 目标板 FPGA 与 海思的硬件连接

海思侧的MIPI Rx 管脚定义如图 1-6 所示,以 4*4lane 为例介绍,详细配置参照《Hi3559AV100_PINOUT_CN》

校口	<u> </u>		(4Lane*4)		
接口	管脚	电平 (▽)	功能	VI	
	MIPI_RX0_D2N	1.8	MIPI_RXO_D2N		
	MIPI_RX0_D2P	1.8	MIPI_RXO_D2P		
	MIPI_RX0_D0N	1.8	MIPI_RXO_DON		
	MIPI_RX0_D0P	1.8	MIPI_RXO_DOP		
	MIPI_RX0_CK0N	1.8	MIPI_RXO_CKON		
MIPI RXO	MIPI_RX0_CK0P	1.8	MIPI_RXO_CKOP	sensor0	
MIFI_KAO	MIPI_RXO_CK1N	1.8	MIPI_RX0_CK1N	Sensoro	
	MIPI_RX0_CK1P	1.8	MIPI_RXO_CK1P		
	MIPI_RX0_D1N	1.8	MIPI_RXO_D1N		
	MIPI_RX0_D1P	1.8	MIPI_RXO_D1P		
	MIPI_RX0_D3N	1.8	MIPI_RXO_D3N		
	MIPI_RX0_D3P	1.8	MIPI_RXO_D3P		
	MIPI_RX1_D2N	1.8	MIPI_RX1_D2N		
	MIPI_RX1_D2P	1.8	MIPI_RX1_D2P		
	MIPI_RX1_D0N	1.8	MIPI_RX1_D0N		
	MIPI_RX1_D0P	1.8	MIPI_RX1_D0P		
	MIPI_RX1_CKON	1.8	MIPI_RX1_CK0N		
MIPI RX1	MIPI_RX1_CK0P	1.8	MIPI_RX1_CK0P	sensor1	
MILI_KVI	MIPI_RX1_CK1N	1.8	MIPI_RX1_CK1N	Sensori	
	MIPI_RX1_CK1P	1.8	MIPI_RX1_CK1P		
	MIPI_RX1_D1N	1.8	MIPI_RX1_D1N		
	MIPI_RX1_D1P	1.8	MIPI_RX1_D1P		
	MIPI_RX1_D3N	1.8	MIPI_RX1_D3N		
	MIPI_RX1_D3P	1.8	MIPI_RX1_D3P		

+->	⇔r nin		(4Lane*4)		
接口	管脚	电平 (▽)	功能	VI	
	MIPI_RX2_D2N	1.8	MIPI_RX2_D2N		
	MIPI_RX2_D2P	1.8	MIPI_RX2_D2P		
	MIPI_RX2_D0N	1.8	MIPI_RX2_D0N		
	MIPI_RX2_D0P	1.8	MIPI_RX2_D0P		
	MIPI_RX2_CK0N	1.8	MIPI_RX2_CK0N		
MIPI RX2	MIPI_RX2_CK0P	1.8	MIPI_RX2_CK0P	sensor2	
MIFI_KAZ	MIPI_RX2_CK1N	1.8	MIPI_RX2_CK1N	sensorz	
	MIPI_RX2_CK1P	1.8	MIPI_RX2_CK1P		
	MIPI_RX2_D1N	1.8	MIPI_RX2_D1N		
	MIPI_RX2_D1P	1.8	MIPI_RX2_D1P		
	MIPI_RX2_D3N	1.8	MIPI_RX2_D3N		
	MIPI_RX2_D3P	1.8	MIPI_RX2_D3P		
	MIPI_RX3_D2N	1.8	MIPI_RX3_D2N		
	MIPI_RX3_D2P	1.8	MIPI_RX3_D2P		
	MIPI_RX3_D0N	1.8	MIPI_RX3_D0N		
	MIPI_RX3_D0P	1.8	MIPI_RX3_D0P		
	MIPI_RX3_CK0N	1.8	MIPI_RX3_CK0N		
MIDI DV2	MIPI_RX3_CK0P	1.8	MIPI_RX3_CK0P	sensor3	
MIPI_RX3	MIPI_RX3_CK1N	1.8	MIPI_RX3_CK1N	sensors	
	MIPI_RX3_CK1P	1.8	MIPI_RX3_CK1P		
	MIPI_RX3_D1N	1.8	MIPI_RX3_D1N		
	MIPI_RX3_D1P	1.8	MIPI_RX3_D1P		
	MIPI_RX3_D3N	1.8	MIPI_RX3_D3N		
	MIPI_RX3_D3P	1.8	MIPI_RX3_D3P		

图 1-6 4lane 模式下的 MIPI Rx 管脚分配

Hi3559AV100 的 MIPI Rx 最大支持 8Lane MIPI 输入或者 **16 Lane LVDS 输入**,MIPI Rx 能同时对接多个设备(sensor),Hi3559AV100 最多对接的设备数(sensor数)为 **8** 个。

MIPI Rx 最大能同时对接不同数量的设备 sensor,每个 sensor 需要的 Lane 数量也不同,因此需要用户确定 MIPI Rx 的 Lane 分布模式,具体的 Lane 分布模式如表 1-3 所示:

表 1-3 MIPI Rx Lane 分布模式

芯片类型	Mode	DEV0	DEV1	DEV2	DEV3	DEV4	DEV5	DEV6	DEV7
Hi3559AV100	0	L0~L15	N	N	N	N	N	N	N
	1	L0~L11	N	N	N	N	N	L12~L15	N
	2	L0~L11	N	N	N	N	N	L12 L14	L13 L15
	3	L0~L7	N	N	N	L8~L15	N	N	N
	4	L0~L7	N	N	N	L8~L11	N	L12~L15	N
	5	L0~L7	N	N	N	L8~L11	N	L12 L14	L13 L15
	6	L0~L7	N	N	N	L8 L10	L9 L11	L12 L14	L13 L15
	7	L0~L3	N	L4~L7	N	L8~L11	N	L12~L15	N
	8	L0~L3	N	L4~L7	N	L8~L11	N	L12 L14	L13 L15
	9	L0~L3	N	L4~L7	N	L8 L10	L9 L11	L12 L14	L13 L15
	A	L0~L3	N	L4 L6	L5 L7	L8 L10	L9 L11	L12 L14	L13 L15
	В	L0 L2	L1 L3	L4 L6	L5 L7	L8 L10	L9 L11	L12 L14	L13 L15

注:依据来自《MIPI使用指南-5》

采用 4Lane 分布模式情况下,对应于 图 1-6 的管脚分配。

首先将 MIPI RX 分为 MIPI RX0、MIPI RX1、MIPI RX2、MIPI RX3 四个组,每个组中具有 4 Lane数据线和 2 Lane 时钟线。

MIPI_RX0_CK0P、MIPI_RX0_CK0N表示差分时钟周期管脚所在位置,MIPI_RX0_D0P、MIPI_RX0_D0N 即表示第一对差分线,也就是Lane0;MIPI_RX0_D1P、MIPI_RX0_D1N即表示第二对差分线,也就是Lane1;依次类推,总共有 16 Lane,编号依次是L0、L1、L2、L3、L4、L5、L6、L7、L8、L9、L10、L11、L12、L13、L14、L15。

采用 4 Lane*4的模式,与 FPGA 的连接关系如表 1-4 所示:

表 1-4 Hi3559AV100与FPGA连接关系举例 (4Lane*4模式)

FPGA内部管脚	外部接口引脚名	Hi3559AV100	Lane
IO_L3P_T0L_N4_AD15P_66_W2	W2	MIPI_RX0_CK0P	差分时钟
IO_L3N_T0L_N5_AD15N_66_W1	W1	MIPI_RX0_CK0N	差分时钟
IO_L4P_T0U_N6_DBC_AD7P_66_V2	V2	MIPI_RX0_D0P	Lane0
IO_L4N_T0U_N7_DBC_AD7N_66_V1	V1	MIPI_RX0_D0N	Lane0
IO_L6P_T0U_N10_AD6P_66_T1	T1	MIPI_RX0_D1P	Lane1
IO_L6N_T0U_N11_AD6N_66_U1	U1	MIPI_RX0_D1N	Lane1
IO_L8P_T1L_N2_AD5P_66_V4	V4	MIPI_RX0_D2P	Lane2
IO_L8N_T1L_N3_AD5N_66_W4	W4	MIPI_RX0_D2N	Lane2
IO_L9P_T1L_N4_AD12P_66_U5	U5	MIPI_RX0_D3P	Lane3
IO_L9N_T1L_N5_AD12N_66_U4	U4	MIPI_RX0_D3N	Lane3

二 MIPI Rx 介绍

依据《Hi3559A/C V100 ultra-HD Mobile Camera SoC 用户指南-10-244》

2.1 概述

MIPI Rx(移动行业处理器接口)通过低电压差分信号接受原始视频数据(BAYER RGB数据),并将其转化为 DC 时序后传递给下一级模块 VICAP。MIPI Rx包含combo-PHY和Controller两部分,功能框图及在系统中的位置如图 2-1 所示。

图 2-1 MIPI Rx 功能框图和在系统中的位置

一些概念的说明:

- Lane指差分数据对, MIPI_Rx最多有16条Lane
- Link 指Lane的分组,每个分组中包含4对数据,MIPI_Rx有4个Link
- 通道指 MIPI_Rx内部的数据处理通道,对应连接到VICAP 通道,每个通道单独处理一个 Sensor的数据

MIPI Rx 的特点:

- 可同时支持8路sensor输入
- 单路最多支持8-Lane MIPI D-PHY 接口,最大支持2.5Gbps/Lane

- 单路最多支持16-Lane LVDS/ sub-LVDS /HiSPi 接口,最大支持1.5Gbps/Lane
- 支持RAW8/ RAW10/ RAW12/ RAW14/ RAW16 数据类型的解析
- 支持YUV420 8-bit/ YUV420 10-bit/ YUV422 8-bit/ YUV422 10-bit/Legacy YUV4208-bit数据类型的解析
- 支持 LVDS/HiSPi模式像素/同步码大小端配置
- 通道 0支持一拍双像素输出

2.2 功能描述

MIPI Rx包括4 个D-PHY,每个PHY 各自有两对差分随路时钟(CLKO/CLK1),每对时钟对应2对数据。 MIPI Rx 对接场景分类如图 2-2 所示。

Mode	PHY0 PHY1			PHY2		РНҮ3				
0	Sensor0(Sensor0(phy0clk0+lane0~15)								
1	Sensor0(phy0clk0+lan	e0~11)				Sensor1(phy 12~lane15)	/3clk0+lane		
2	Sensor0(phy0clk0+lan	e0~11)				Sensor1(p hy3clk0+l ane12/14)	Sensor2(p hy3clk1+l ane13/15)		
3	Sensor0(phy0clk0+lan	e0~7)		Sensor1(phy	y2clk0+lane8	~15)			
4	Sensor0()	phy0clk0+lan	e0~7)		Sensor1(phy 8~11)	y2clk0+lane	Sensor2(phy 12~15)	/3clk0+lane		
5	Sensor0(phy0clk0+lan	e0~7)		Sensor1(phy	y2clk0+lane	Sensor2(p	Sensor3(p		
					8~11)		hy3clk0+l ane12/14)	hy3clk1+l ane13/15)		
6	Sensor0(1	phy0clk0+lan	e0~7)		Sensor1(p hy2clk0+l ane8/10)	Sensor2(p hy2_clk1+ lane9/11)	Sensor3(p hy3+clk0+ lane12/14)	Sensor4(p hy3clk1+l ane13/15)		
7	Sensor0(1 ne0~3)	phy0clk0+la	Sensor1(phy 4~7)	y1clk0+lane	Sensor2(phy2clk0+lane 8~11)		Sensor3(phy3clk0+lane 12~15)			
8	Sensor0(1 ne0~3)	phy0clk0+la	Sensor1(phy 4~7)	y1clk0+lane	Sensor2(phy2clk0+lane 8~11)		Sensor3(p hy3+clk0+ lane12/14)	Sensor4(p hy3clk1+l ane13/15)		
9	Sensor0(1 ne0~3)	phy0clk0+la	Sensor1(phy 4~7)	Sensor1(phy1clk0+lane 4~7)		Sensor3(p hy2_clk1+ lane9/11)	Sensor4(p hy3+clk0+ lane12/14)	Sensor5(p hy3clk1+l ane13/15)		
10	Sensor0(1 ne0~3)	phy0clk0+la	Sensor1(p hy1clk0+l ane4/6) Sensor2(p hy1clk1+l ane5/7)		Sensor3(p hy2clk0+l ane8/10)	Sensor4(p hy2clk1+l ane9/11)	Sensor5(p hy3clk0+l ane12/14)	Sensor6(p hy3clk1+l ane13/15)		
11	Sensor0 (phy0cl k0+lane 0/2)	Sensor1(p hy0clk1+1 ane1/3)	Sensor2(p hy1clk0+l ane4/6)	Sensor3(p hy1clk1+l ane5/7)	Sensor4(p hy2clk0+1 ane8/10)	Sensor5(p hy2clk1+l ane9/11)	Sensor6(p hy3clk0+l ane12/14)	Sensor7(p hy3clk1+1 ane13/15)		

图 2-2 MIPI Rx 对接场景分类

MIPI Rx只完成接口的时序转换,不处理图像的数据格式。Combo-PHY 支持的**最大速率为 2.5Gbps/Lane**,总共支持16 Lane 同时传输。对于 MIPI Rx 控制器的来说,**通道的最大工作时钟为600MHz**,所以内部最大处理速度 600M*2pixels/s。

2.3 LVDS 接口数据格式

电压差分信号通过同步码区分消隐区和有效区的数据。

MIPI Rx 的 combo-PHY 将差分串行数据转换为并行数据,MIPI Rx控制器把并行数据拆分、拼接,然后提取同步码、解析出像素数据。

在 LVDS 的传输模式中,行场同步信号集成在数据流中,数据流中的特殊码型 **SOF 和 EOF 分别表示帧 的起始和结束,SOL 和 EOL 分别表示行的起始和结束。**

SOF/EOF/SOL/EOL由4 个字段构成,每个字段的位宽与像素数据保持一致;根据第4个字段来区分帧/行的起始或结束,LVDS 同步码格式如图 2-3 所示:

Field	Bit	Sync code					
	Width	SOL/SAV (Valid line)	EOL/EAV (Valid line)	SOF/SAV (Invalid line)	EOF/EAV (Invalid line)		
8bit		FFh	FFh	FFh	FFh		
1st	10bit	3FFh	3FFh	3FFh	3FFh		
	12bit	FFFh	FFFh	FFFh	FFFh		
	14bit	3FFFh	3FFFh	3FFFh	3FFFh		
	16bit	FFFFh	FFFFh	FFFFh	FFFFh		
8bit		00h	00h	00h	00h		
	10bit	000h	000h	000h	000h		
2nd code	12bit	000h	000h	000h	000h		
	14bit	0000h	0000h	0000h	0000h		
	16bit	0000h	0000h	0000h	0000h		
	8bit	00h	00h	00h	00h		
	10bit	000h	000h	000h	000h		
3rd code	12bit	000h	000h	000h	000h		
	14bit	0000h	0000h	0000h	0000h		
	16bit	0000h	0000h	0000h	0000h		
	8bit	XXh	XXh	XXh	XXh		
4th	10bit	XXXh	XXXh	XXXh	XXXh		
	12bit	XXXh	XXXh	XXXh	XXXh		
	14bit	XXXXh	XXXXh	XXXXh	XXXXh		
	16bit	XXXXh	XXXXh	XXXXh	XXXXh		

图 2-3 LVDS 同步码格式

同步码前三个字段固定,第4个字段标识行场的起始或结束。第4个字段的值由图像传感器厂商确定, 我们采用文档中的格式,如图 2-4 所示:

Field	Bit Width	Sync code					
		SAV(Valid line)	EAV(Valid line)	SAV(Invalid line)	EAV(Invalid line)		
4th	8bit	80h	9Dh	ABh	B6h		
code	10bit	200h	274h	2ACh	2D8h		
	12bit	800h	9D0h	AB0h	B60h		
	14bit	2000h	2740h	2AC0h	2D80h		
	16bit	8000h	9D00h	AB00h	B600h		

图 2-4 LVDS 同步码的第四个字段格式

注意: 每个字段的数据位宽与像素数据保持一致

以 4Lane 为例,LVDS 同步码和像素数据在各个 Lane 上传输方式如图 2-5 所示,H 表示同步码,P 表示像素,H 和 P 的位宽与图像传感器输出的单个像素的位宽一致。各个数据通道首先传输 4 个像素位宽的同步码,紧接着是像素数据,像素数据的分布与通道数有关。

图 2-5 LVDS 同步码和图像传输模式

同步码和像素数据的传输是串行的,MIPI Rx支持数据的大小端可配置。以 RAW12、大端模式为例,图像传感器输出单个像素点的时序如图 2-6 所示。

图 2-6 LVDS 单个像素点时序

2.4 LVDS接口线性模式

LVDS 有两种同步方式,一种使用 SAV (Invalid) 和EAV (Invalid) 标识消隐区的无效数据,使用 SAV (Valid)和 EAV (Valid) 标识有效像素区。同步方式如图 2-7 所示。

H.BLK		V.BLK		H.BLK
	SAV		EAV	
H.BLK	(Invalid line)	V.BLK	(Invalid line)	H.BLK
H.BLK		V.BLK		H.BLK
H.BLK		Effective Pixel		H.BLK
H.BLK		Effective Pixel		H.BLK
:	0.01/	: :		
H.BLK	SAV (Valid line)	Effective Pixel	EAV (Valid line)	H.BLK
		Ellective Fixel		n.bln
H.BLK		Effective Pixel		H.BLK
H.BLK		Effective Pixel	1	H.BLK
H.BLK			1	
H.BLK		Effective Pixel		H.BLK
H.BLK		Effective Pixel		H.BLK
H.BLK		V.BLK		H.BLK
:	SAV	:	EAV	:
H.BLK	(Invalid line)	V.BLK	(Invalid line)	H.BLK
H.BLK		V.BLK		H.BLK

图 2-7 LVDS 同步方式 (SAV-EAV)

2.5 LVDS模式配置流程

LVDS/HiSPi模式下需要配置RAW DATA 类型、数据大小端、同步方式、WDR类型和图像宽高等寄存器。LVDS 模式依靠同步码识别帧/行同步信息,根据RAW DATA 类型的不同,同步码可以为8/10/12/14/16-bit

- 步骤 1. 上电启动。
- 步骤 2. 根据使用场景将MISC_CTRL130 寄存器中相应通道的mipi_work_mode配置为LVDS模式。
- 步骤 3. 配置CRG寄存器中的PERI_CRG61,打开mipi_bus_clken、mipi_cil_clken 以及对应通道的 mipi_pix_clken。配置mipi总线软复位,撤销复位;配置对应通道pix_core复位,撤销复位。
- 步骤 4. 配置CRG寄存器中的PERI_CRG69,配置sensor复位,撤销复位;打开sensor时钟门控,并配置时钟频率。
- 步骤 5. 配置CRG寄存器中的PERI_CRG60,选择MIP_Rx通道时钟频率。
- 步骤 6. 配置接收数据类型、WDR模式,图像宽高(LVDS模式下,配置的宽度是图像实际宽度除以Lane数-1)、同步头、Lane ID 等信息。
- 步骤 7. 配置PHY的工作模式(PHY_MODE_LINK*)、PHY 通道延迟调节(PHY_SKEW_LINK *)、PHY通道使能(PHY_EN_LINK *)、PHY均衡调节(PHY_EQ_LINK *)、PHY性能调节(PHY_CFG_LINK *);配置LVDS模式Lane同步头信息(PHY_SYNC_CODE *_LINK *)。
- 步骤 8. 配置系统控制寄存器。场景模式选择(HS_MODE_SELECT)、PHY_EN、LANE_EN,打开 PHY_CIL_CTRL、选择PHYCFG_MODE(对于LVDS 模式,应选择1)。
- 步骤 9. 配置对应的PHYCFG_EN。
- 步骤 10. 配置sensor序列。

注意: 统一采用单沿采样,Hi3559AV100 侧需要软件层次的配置。

2.6 MIPI 使用指南

MIPI Rx 是一个支持多种差分视频输入接口的采集单元,<mark>通过combo-PHY 接收MIPI/LVDS/sub-LVDS/HiSPi/DC 接口的数据</mark>,通过不同的功能模式配置,MIPI Rx 可以支持多种速度和分辨率的数据传输需求,支持多种外部输入设备。最大支持Lane 个数如表 2-1 所示。

表 2-1 最大支持的 Lane 数

芯片类型	最大支持 lane 数
Hi3559AV100	MIPI Rx 最大支持8Lane MIPI 输入或16Lane LVDS 输入。

Hi3559AV100 最大能对接 8 个sensor,MIPI Rx 最大能同时对接不同数量的 sensor,每个 sensor 需要的 Lane 也不尽相同,需要自己定义 LANE 分布模式,具体的分布模式如图 2-8 所示。

芯片类型	Mode	DEV0	DEV1	DEV2	DEV3	DEV4	DEV5	DEV6	DEV7
Hi3559AV100	0	L0~L15	N	N	N	N	N	N	N
	1	L0~L11	N	N	N	N	N	L12~L15	N
	2	L0~L11	N	N	N	N	N	L12 L14	L13 L15
	3	L0~L7	N	N	N	L8~L15	N	N	N
	4	L0~L7	N	N	N	L8~L11	N	L12~L15	N
	5	L0~L7	N	N	N	L8~L11	N	L12 L14	L13 L15
	6	L0~L7	N	N	N	L8 L10	L9 L11	L12 L14	L13 L15
	7	L0~L3	N	L4~L7	N	L8~L11	N	L12~L15	N
	8	L0~L3	N	L4~L7	N	L8~L11	N	L12 L14	L13 L15
	9	L0~L3	N	L4~L7	N	L8 L10	L9 L11	L12 L14	L13 L15
	A	L0~L3	N	L4 L6	L5 L7	L8 L10	L9 L11	L12 L14	L13 L15
	В	L0 L2	L1 L3	L4 L6	L5 L7	L8 L10	L9 L11	L12 L14	L13 L15

图 2-8 MIPI Rx 的 Lane 分布模式

注意: 我们采用 4lane*4 的分布模式,即模式 7

Lane id 的配置

Lane id 的配置对应 mipi_dev_attr_t 中的 short lane_id[MIPI_LANE_NUM], 其中 lane_id 数组的 索引号表示的是 sensor 的 Lane ID, lane_id 数组的值表示的是 MIPI Rx 的 LANE ID。

对接 sensor 时,未使用的 lane 将其对应的 lane_id 设置为 0。根据硬件单板与实际sensor 输出通道的对应关系调整lane_id 的配

置。下面将举例进行说明。sensor与 MIPIRx 的硬件连接关系如表 2-2 所示。

表 2-2 sensor 与 MIPI Rx管脚关系

MIPI Rx 管脚	sensor 管脚
MIPI_RX1_D0	Lane 0
MIPI_RX1_D1	Lane 1
MIPI_RX1_D2	Lane 2
MIPI_RX1_D3	Lane 3

MIPI 的最大Lane 数为8,我们认为SENSOR 的Lane 数目最多8 个,由于sensor 实际只有4 个Lane,只输出数据到MIPI 的4 个Lane,需要将SENSOR 未连接的或者不存在的Lane 的lane_id 配置为-1,所以所以lane_id 配置如图 2-9 所示。

所以最终的 lane_id = {4, 5, 6, 7, -1, -1, -1, -1}