

Computer Graphics

by Ruen-Rone Lee ICL/ITRI

Shadow Volume
Shadow Map
Ambient Occlusion
Ray Tracing

Shadow Effect

Simple Shadow Effect

- Simple and fast
 - A simple shadow image (or a set of shadow images) is sufficient
 - Texture mapping with blending to the ground
- Have to resolve Z-fighting issue
- Cannot generate shadows on non-planner surface
- No dynamic shadows
 - Can use a set of static shadows to simulate the shadow change

Examples

Shadow Region

Shadow Volume Algorithm

- Generate shadow volumes
- Generate depth buffer for the scene
- Update stencil buffer based on the Zpass or Zfail algorithm
- Render scene with lighting effect
 - If the corresponding stencil value is not zero, then it is inside shadow
 - If the corresponding stencil value is zero, then it is outside shadow

Shadow Volume Algorithm

Stencil Buffer Update Rules

- Zpass Algorithm
 - Zpass for front face shadow volume polygons: +1
 - Zpass for back face shadow volume polygons: -1
 - Zfail for either front or back face shadow volume polygons: No Update

Zfail Algorithm

- Zfail for front face shadow volume polygons: -1
- Zfail for back face shadow volume polygons: +1
- Zpass for either front or back face shadow volume polygons: No Update

Stencil Buffer Update Rules: on Zpass

Stencil Buffer Update Rules: on Zfail

◆ Example

Basic Concept

Shadow Mapping Algorithm

- Create the shadow (depth) map from the light's point of view
- Render the scene from camera's point of view
 - Transform the coordinates from camera to light coordinates
 - Compare the coordinates with the light depth map
 - If the depth test fail, then it is in shadow; otherwise, it is not in shadow

Coordinates Transformation

- From eye coordinates to light coordinates
- Similar to the viewing transformation

With and without shadows

with shadows

without shadows

The scene from the light's point-of-view

Scene rendered from light view

Depth map from light view

Comparing light distance to light depth map

Depth map projected onto scene

Depth map test failure

Final Result

Rendered in ambient shadows

Another Example

with shadows

without shadows

◆ The scene from the light's point-of-view

Comparing light distance to light depth map

Green is where the light planar distance and the light depth map are approximately equal

Non-green is where shadows should be

Results

Comparison

- Shadow Volume
 - Might result in large amount of shadow volumes
 - More accurate
 - Slow due to render extra shadow volumes
- Shadow Map
 - No extra polygon is generated
 - Less accurate. Depends on shadow map resolution
 - Fast for only applying a coordinate transformation

Comparison

Quality vs. Performance

Shadow Mapping

 Difference between Hard Shadow and Soft Shadow

Soft Shadow

Soft Shadow Technique

Step 1: Render the shadow map from light

view

 Step 2: Rendering the shadowed scene into a buffer

Step 3: Blurring the screen buffer

After first pass of Gaussian blur

After second pass of Gaussian blur

 Step 4: Rendering the shadowed scene (with a spot light)

Quality Comparison

Ambient Occlusion

 Calculate how each point is exposed in a scene to ambient lighting

◆ A cheap way to create more realistic

ambient illumination

35

Diffuse Only Ar

Ambient Occlusion

Combined

Ambient Occlusion

Comparison

Gouraud + Ambient Occlusion

Ambient Occlusion

Gouraud + Ambient Occlusion

Shadows using Ray Tracing

 If the shadow ray is blocked by an object, then the pixel is in shadow

Shadows using Ray Tracing

 Multiple shadow rays with respect to multiple light sources

Q&A

