MEMS1045 Automatic control

Lecture 3 Modeling

Objectives

- Describe analogous modeling between electrical and mechanical systems
- Derive the equations of motion for electromechanical systems
- Represent the equations of motion in matrix form using state variables
- Apply linearization to approximate the dynamics for small perturbations about operating conditions

Analogous systems

$$m\frac{d^2x}{dt^2} + f_v\frac{dx}{dt} + kx = f(t)$$

Charge =
$$q$$

$$q = \frac{di}{dt}$$

$$L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{1}{C}q = e(t)$$

Force-Voltage Analogy

Mechanical Systems	Electrical Systems
Force p (torque T) Mass m (moment of inertia J) Viscous-friction coefficient b Spring constant k Displacement x (angular displacement θ) Velocity \dot{x} (angular velocity $\dot{\theta}$)	Voltage e Inductance L Resistance R Reciprocal of capacitance, 1/C Charge q Current i

Analogous systems

$$i(t)$$
 $C \longrightarrow R \nearrow L$
 (b)

Magnetic flux =
$$\psi$$

$$\frac{d\psi}{dt} = e$$

$$m\frac{d^2x}{dt^2} + f_v\frac{dx}{dt} + kx = f(t)$$

$$C\frac{d^2\psi}{dt^2} + \frac{1}{R}\frac{d\psi}{dt} + \frac{1}{L}\psi = i(t)$$

$$C\frac{d^2\psi}{dt^2} + \frac{1}{R}\frac{d\psi}{dt} + \frac{1}{L}\psi = i(t)$$

Force-Current Analogy

Mechanical Systems	Electrical Systems	
Force p (torque T)	Current i	
Mass m (moment of inertia J)	Capacitance C	
Viscous-friction coefficient b	Reciprocal of resistance, 1/R	
Spring constant k	Reciprocal of inductance, 1/L	
Displacement x (angular displacement θ)	Magnetic flux linkage ψ	
Velocity \dot{x} (angular velocity $\dot{\theta}$)	Voltage e	

DC motor

Simplified diagram for permanent DC motor analysis:

- R_a = armature resistance
- $L_a =$ armature inductance
- $T_m = motor torque$

DC motor

$$e_{i} = i_{a}R_{a} + L_{a}\frac{di_{a}}{dt} + e_{b}$$

$$E_{i}(s) = R_{a}I_{a}(s) + L_{a}sI_{a}(s) + E_{b}(s)$$

$$E_{i}(s) = R_{a}I_{a}(s) + L_{a}sI_{a}(s) + K_{b}s\theta_{m}(s)$$

$$E_{i}(s) - K_{b}s\theta_{m}(s) = (R_{a} + L_{a}s)I_{a}(s)$$

$$I_{a}(s) = \frac{E_{i}(s)}{(R_{a} + L_{a}s)} - \frac{K_{b}s\theta_{m}(s)}{(R_{a} + L_{a}s)}$$

$$T_m = K_T i_a$$

 $T_m(s) = K_T I_a(s)$
 K_T = Torque constant

$$e_b = K_b \omega$$

 $E_b(s) = K_b s \theta_m(s)$
 K_b = Back EMF constant

$$J\ddot{\theta}_{m} = -B\dot{\theta}_{m} + T_{m}$$

$$Js^{2}\theta_{m}(s) = -Bs\theta_{m}(s) + T_{m}(s)$$

$$Js^{2}\theta_{m}(s) = -Bs\theta_{m}(s) + K_{T}I_{a}(s)$$

DC motor

$$Js^{2}\theta_{m}(s) = -Bs\theta_{m}(s) + K_{T}I_{a}(s)$$

$$Js^{2}\theta_{m}(s) = -Bs\theta_{m}(s) + \frac{K_{T}E_{i}(s)}{(R_{a} + L_{a}s)} - \frac{K_{b}K_{T}s\theta_{m}(s)}{(R_{a} + L_{a}s)}$$

$$Js^{2}\theta_{m}(s) + Bs\theta_{m}(s) + \frac{K_{b}K_{T}s\theta_{m}(s)}{(R_{a} + L_{a}s)} = \frac{K_{T}E_{i}(s)}{(R_{a} + L_{a}s)}$$

For small L_a :

$$Js^{2}\theta_{m}(s) + Bs\theta_{m}(s) + \frac{K_{b}K_{T}s\theta_{m}(s)}{(R_{a})} = \frac{K_{T}E_{i}(s)}{(R_{a})}$$
$$s\left[s + \frac{1}{I}\left(B + \frac{K_{b}K_{T}}{(R_{a})}\right)\right]\theta_{m}(s) = \frac{K_{T}}{I(R_{a})}E_{i}(s)$$

Motor transfer function

$$\frac{\theta_{m(s)}}{E_i(s)} = \frac{K_T/(R_a J)}{s \left[s + \frac{1}{J} \left(B + \frac{K_b K_T}{(R_a)}\right)\right]} = \frac{K_m}{s \left(s + \frac{1}{\tau_m}\right)}$$

 $K_m = \text{motor}$ gain constant

 $\tau_m = motor$ time constant

Brushless DC motor

SPECIFICATIONS

PARAMETER	UNITS	Value
Torque Constant	oz-in/amp	1.65 \leftarrow $K_T = 0.01164 \text{ Nm/A}$
Back EMF Constant	V/Krpm	1.22 \leftarrow $K_b = 0.01164 \text{ Vs/rad}$
D.C. Resistance	ohms	0.12
Inductance	mH	0.11 ← Very small inductance
Max Speed	rpm	15,000
Cont. Stall Torque	oz-in	25
Motor Constant	oz-in/sq.rt.W	5.22
Max. Winding Temp.	Deg.C	155

Commercial DC motor

Consider the dc servomotor system shown. The armature inductance is negligible and is not shown in the circuit. Obtain the transfer function between the output θ_2 and the input e_a .

 n_1 = number of teeth on gear 1 n_2 = number of teeth on gear 2 R_a = armature resistance,

 i_a = armature current,

 i_f = field current,

 e_a = applied armature voltage, e_b = back emf.

 θ_1 = angular displacement of the motor shaft,

 θ_2 = angular displacement of the load element,

T =torque developed by the motor

 J_1 = moment of inertia of motor rotor,

 J_2 = moment of inertia of the load

Torque developed by the motor is $T_m = K_T i_a$ or $T_m(s) = K_T I_a(s)$ where K_T = Torque constant

The induced voltage e_b is $e_b = K_b \omega$ or $E_b(s) = K_b s \theta_1(s)$ where

 K_b = Back EMF constant

The equation for the armature circuit is $e_a = i_a R_a + e_b$

$$E_a(s) = R_a I_a(s) + E_b(s)$$
 or $E_a(s) = R_a I_a(s) + K_b s \theta_1(s)$

$$I_a(s) = \frac{E_a(s)}{R_a} - \frac{K_b s \theta_1(s)}{R_a}$$

The total kinetic energy of the load inertias:

$$KE = \frac{1}{2}J_1\dot{\theta}_1^2 + \frac{1}{2}J_2\dot{\theta}_2^2 = \frac{1}{2}J_1\dot{\theta}_1^2 + \frac{1}{2}J_2\left(\frac{\dot{\theta}_2^2}{\dot{\theta}_1^2}\right)\dot{\theta}_1^2$$

$$KE = \frac{1}{2}J_1\dot{\theta}_1^2 + \frac{1}{2}J_2\left(\frac{n_1^2}{n_2^2}\right)\dot{\theta}_1^2 = \frac{1}{2}\left(J_1 + J_2\left(\frac{n_1}{n_2}\right)^2\right)\dot{\theta}_1^2$$

The equivalent moment of inertia of the motor rotor plus the load inertia referred to the motor shaft is

$$J_{1eq} = J_1 + N^2 J_2 = J_1 + \left(\frac{n_1}{n_2}\right)^2 J_2$$

$$J_{1eq} = J_1 + N^2 J_2 = J_1 + \left(\frac{n_1}{n_2}\right)^2 J_2$$

The armature current produces the torque that is applied to the equivalent moment of inertia J_{1eq} . Thus

$$J_{1eq}\ddot{\theta}_{1} = T_{m} = K_{T}i_{a}$$

$$J_{1eq}s^{2}\theta_{1}(s) = K_{T}I_{a}(s)$$
But $I_{a}(s) = \frac{E_{a}(s)}{R_{a}} - \frac{K_{b}s\theta_{1}(s)}{R_{a}}$ or $J_{1eq}s^{2}\theta_{1}(s) = K_{T}\left(\frac{E_{a}(s)}{R_{a}} - \frac{K_{b}s\theta_{1}(s)}{R_{a}}\right)$

$$s \left(J_{1eq} s + \frac{K_T K_b}{R_a} \right) \theta_1(s) = \frac{K_T E_a(s)}{R_a}$$

$$s \left(J_{1eq} s + \frac{K_T K_b}{R_a} \right) \left(\frac{n_2}{n_1} \right) \theta_2(s) = \frac{K_T E_a(s)}{R_a}$$

$$\frac{\theta_2(s)}{E_a(s)} = \frac{\left(\frac{n_1}{n_2} \right) K_T}{s \left[R_a \left\{ J_1 + \left(\frac{n_1}{n_2} \right)^2 J_2 \right\} s + K_T K_b \right]}$$

State Variable Equations

- ❖ Transfer function relates the dynamic relationship between the input and output
- For a system with **many** inputs $u_1(t)$, $u_2(t)$, ... and **many** outputs $y_1, y_2, ...$, we need to reduce a set of differential equations to a transfer function for each input and output pair
- ❖ An alternative is to represent the system using the state space approach
- \clubsuit A system of linear state equations (i.e. with n state variables, m inputs, and p outputs) can be expressed in a general matrix form:

$$\dot{x} = Ax + Bu$$
$$y = Cx + Du$$

where $\mathbf{x} = (n \times 1)$ state vector; $\dot{\mathbf{x}} =$ derivative of the $(n \times 1)$ state vector w.r.t. time;

 $\boldsymbol{u} = (m \times 1)$ input vector; $\boldsymbol{y} = (p \times 1)$ output vector;

 $\boldsymbol{A} = (n \times n)$ system matrix; $\boldsymbol{B} = (n \times m)$ input matrix;

 $\boldsymbol{C} = (p \times n)$ output matrix; $\boldsymbol{D} = (p \times m)$ feedforward matrix;

State Variable Equations

- State variables: The smallest set of linearly independent system variables such that the values of the members of the set at time t_0 along with known forcing functions completely determine the value of all system variables for all $t > t_0$
- ❖ Typically, the minimum number required equals the order of the differential equation describing the system
- Example: $m \frac{d^2y}{dt^2} + b \frac{dy}{dt} + ky = u(t)$ To solve the ODE we need to know the values of the coefficients, the inputs and the 2 initial conditions/states at $y(t_0)$ and $\frac{dy}{dt}(t_0)$. Hence there are 2 state variables and they can be y and $\frac{dy}{dt}$
- For a nth-order differential equation, the state variables (i.e. $x_1, x_2, \dots x_n$) reduce the nth-order differential equation into a set of first order ODEs

Consider the ODE: $m\frac{d^2y}{dt^2} + b\frac{dy}{dt} + ky = u(t)$. Obtain a state representation of the system with output y

Define state variables as $x_1 = y$ and $x_2 = \frac{dy}{dt}$

Derivatives of state variables $\dot{x}_1 = \frac{dy}{dt} = x_2$

and
$$\dot{x}_2 = \frac{d^2y}{dt^2} = \frac{1}{m}u - \frac{b}{m}\frac{dy}{dt} - \frac{k}{m}y = \frac{1}{m}u - \frac{b}{m}x_2 - \frac{k}{m}x_1$$

State equation:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -k/m & -b/m \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1/m \end{bmatrix} [u]$$

Output equation:

$$[y] = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix} [u]$$

М

Example 3

Find the state-space representation in phase-variable form for the transfer function

$$\frac{C(s)}{R(s)} = \frac{24}{s^3 + 9s^2 + 26s + 24}$$

Rewrite the transfer function as

$$(s^3 + 9s^2 + 26s + 24)C(s) = 24R(s)$$

$$\ddot{c} + 9\ddot{c} + 26\dot{c} + 24c = 24r(t)$$

Define state variables as $x_1 = c$; $x_2 = \dot{c}$; $x_3 = \ddot{c}$

Derivatives of state variables $\dot{x}_1 = \dot{c} = x_2$, $\dot{x}_2 = \ddot{c} = x_3$

and
$$\dot{x}_3 = \ddot{c} = 24r - 9\ddot{c} - 26\dot{c} - 24c = 24r - 9x_3 - 26x_2 - 24x_1$$

$$\begin{vmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{vmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -24 & -26 & -9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 24 \end{bmatrix} [r]$$

$$[y] = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + [0][u]$$

State space to transfer function

Given the state and output equations (assuming zero initial conditions):

$$\dot{x} = Ax + Bu$$
 or $sX(s) = AX(s) + BU(s)$
 $y = Cx + Du$ or $Y(s) = CX(s) + DU(s)$

$$sX(s) = AX(s) + BU(s)$$
$$[s - A]X(s) = BU(s)$$
$$X(s) = [s - A]^{-1}BU(s)$$

$$Y(s) = CX(s) + DU(s) = C[s - A]^{-1}BU(s) + DU(s)$$
$$Y(s) = \{C[s - A]^{-1}B + D\}U(s)$$

Hence

$$\frac{Y(s)}{U(s)} = \left\{ C[s-A]^{-1}B + D \right\}$$

Linearization

- **❖** All systems have some non-linearities
- ❖ We usually linearized the dynamics for small perturbations about the operating conditions

EOM:

$$J\ddot{\theta} = mgL\sin\theta$$

where $J = mL^2$

For small θ , $\sin \theta \approx \theta$ and the EOM simplifies to

$$J\ddot{\theta} = mgL\theta$$

System and models

Ordinary differential equations

$$\vec{x} = f(\vec{x}, u)$$

$$y = h(\vec{x}, u)$$

$$\vec{x} = A\vec{x} + Bu$$
$$y = C\vec{x} + Du$$

Block Diagrams

