

Resiko

- Konsep Resiko
- Resiko adalah kesempatan timbulnya kerugian;
- Resiko adalah ketidakpastian;
- Resiko adalah penyimpangan hasil aktual dari hasil yang diharapkan;
- Resiko adalah hasil yang berbeda dari hasil yang diharapkan

JENIS RESIKO

- Resiko dinamis (berhubungan dengan perubahan keadaan ekonomi), wujudnya dapat berupa resiko manajemen (pasar, keuangan, produksi);
 - resiko politik (akibat pemerintah);
 - resiko inovasi (re-engineering, diversification)
- Resiko statis;
 - terdiri dari resiko fundamental (menyangkut rakyat banyak);
 - resiko khusus (menyangkut orang perorangan;
 - resiko murni (sifatnya alami);
 - resiko spekulatif(sifatnya untung-untungan);
 - * resiko perorangan; dan resiko kebendaan,

Aspek dalam pemodelan

- Identifikasiper masalahan dan analisis lingkungan
- Masalah harus dipahami dan setiap orang yang terlibat harus mempunyai kerangka pemahaman yang sama identifikasi variabel.

Variabel keputusan, variabel hasil, variabel tidak dapt dikontrol , dll

- Perkiraan (forecasting)
 - Penting karena DSS umumnya didesain untuk menentukan apa yang terjadi di masa mendatang
- Model
- Manajemen Model

Model Statis dan Dinamis

Analisis statis

Model statis mengambil satu kejadian saja dalam suatu situasi. Selama kejadian tersebut semuanya terjadi dalam 1 interval, baik waktunya sebentar atau lama. Diasumsikan adanya stabilitas disini.

contoh : Pendapatan triwulan/ tahunan, keputusan mengenai membuat sendiri atau membeli satu produk.

· Analisis dinamis.

Model dinamis digunakan untuk mengevaluasi skenario yang berubah tiap saat. Model ini tergantung pada waktu. Dapat menunjukkan tren dan pola pada waktu tertentu.

contoh: proyeksi rugi laba 5 tahun, dimana data input seperti biaya, harga, dan kuantitas berubah dari tahun ke tahun;

Kategori SPK

- Turban (2005) mengkategorikan model sistem pendukung keputusan dalam tujuh model, yaitu:
 - Model optimasi untuk masalah-masalah dengan alternatif-alternatif dalam jumlah relatif kecil/terbatas.
 - Model optimasi dengan algoritma.
 - Model optimasi dengan formula analitik.
 - Model simulasi.
 - Model heuristik.
 - Model prediktif.
 - Model-model yang lainnya.

Kategori SPK (1)

- Model optimasi untuk masalah masalah dengan alternatif- alternatif dalam jumlah relatif kecil/terbatas.
 - Model ini akan melakukan pencarian terhadap solusi terbaik dari sejumlah alternatif.
 - Teknik-teknik untuk penyelesaian masalah ini antara lain dengan menggunakan tabel keputusan atau pohon keputusan.
- Contoh: Tabel Keputusan Pohon Keputusan, Multi Attribute Decision Making (MADM)

Contoh Pohon Keputusan

Kategori SPK (2)

- Model optimasi dengan algoritma.
 - Model ini akan melakukan pencarian terhadap solusi terbaik dari banyak alternatif.
 - Proses pencarian dilakukan tahap demi tahap.
 - Teknik-teknik untuk penyelesaian masalah ini antara lain dengan menggunakan linear programming atau model matematika yang lainnya, atau menggunakan model jaringan.
- Contoh: Linear Programming, ANN

Contoh Permasalahan LP (Pembuatan rencana produksi)

Ada sebuah permintaan barang selama 6 bulan kedepan di perusahaan ABC sebagai berikut:

Bulan	Satuan	1	2	3	4	5	6
НРР	Rp/karton	200	250	300	300	350	300
Demand	Karton	1200	800	1500	1500	2000	1200

HPP pada contoh ini diasumsikan berbeda setiap bulannya. Asumsi yang digunakan adalah sebagai berikut (kondisi perusahaan ABC):

- 1. Kapasitas mesin produksi adalah 1400 kartonperbulan
- 2. Biaya penyimpanan adalah Rp 20/bulan/karton
- 3. Barang memiliki masa exp 1 tahun, sehingga permintaan bisa dipenuhi pada bulan yang sama atau bulan sebelumnya.
- 4. Kapasitas gudang tidak boleh melebihi 2000 karton
- 5. Perusahaan menginginkan adanya stok awal selalu diatas atau sama dengan 200 karton untuk mengantisipasi tambahan demand
- 6. Stok awal 200 karton dan diharapkan stok akhir di Bulan enam juga 200 karton

Tentukan batasan harga pokok produksi dengan menggunakan linear programming!

Kategori SPK (3)

- Model optimasi dengan formula analitik.
 - Model ini akan melakukan pencarian terhadap solusi hanya dengan satu langkah melalui rumus tertentu.
 - Model seperti ini banyak dijumpai pada masalah- masalah inventory.
- Contoh: SAW, WP, Topsis

Contoh Permasalahan pada Simple Additive Weighting (SAW)

- Suatu institusi perguruan tinggi akan memilih seorang karyawannya untuk dipromosikan sebagai kepala unit sistem informasi.
- Ada empat kriteria yang digunakan untuk melakukan penilaian, yaitu:

C1 = tes pengetahuan (wawasan) sistem informasi

C3 = tes kepribadian

C2 = praktek instalasi jaringan

C4 = tes pengetahuan agama

- Pengambil keputusan memberikan bobot untuk setiap kriteria sebagai berikut: C1 = 35%; C2 = 25%; C3 = 25%; dan C4 = 15%.
- Ada enam orang karyawan yang menjadi kandidat (alternatif) untuk dipromosikan sebagai kepala unit, yaitu:

Indra,

Roni

Putri,

Dani,

Ratna,

Mira.

Kategori SPK (4)

- Model Simulasi.
 - Model ini akan melakukanpencarian terhadap solusi cukup baik atau solusi terbaik pada beberapa alternatif yang akan diuji dalam penelitian.
 - Model ini lebih banyak digunakan untuk beberapa tipe simulasi.

Model Simulasi

Task	Role	Execution Time (mean, dev.)	
Receive application	system	0	0
Check completeness	Clerk	30 mins	10 mins
Perform checks	Clerk	2 hours	1 hour
Request info	system	1 min	0

Kategori SPK (5)

- Model Heuristik.
 - Model ini akan melakukan pencarian terhadap solusi yang cukup baik melalui serangkaian aturan (rules).
 - Model ini lebih banyak direpresentasikan dengan menggunakan pemrograman heuristik atau sistem pakar

Contoh Permasalahan Model Heuristik

- Untuk menetapkan suatu daerah akan dipilih sebagai lokasi untuk mendirikan perumahan, telah dihimpun 10 aturan.
- Ada 4 atribut yang digunakan, yaitu:
 - harga tanah per meter persegi (C1),
 - jarak daerah tersebut dari pusat kota (C2),
 - ada atau tidaknya angkutan umum di daerah tersebut (C3), dan
 - keputusan untuk memilih daerah tersebut sebagai lokasi perumahan (C4).

Contoh Pembuatan Association Rule dalam Model Heuristik

No	2 item		
1	C1 = mahal C2 = jauh (2)	9	C2 = dekat C3 = tidak (3)
2	C1 = murah C3 = tidak (2)	10	C2 = sedang C3 = tidak (2)
3	C1 = mahal C3 = tidak (3)	11	C2 = dekat C4 = ya (3)
4	C1 = sedang C3 = ada (2)	12	C2 = sedang C4 = ya (2)
5	C1 = murah C4 = ya (2)	13	C2 = jauh C4 = tidak (4)
6	C1 = sedang C4 = ya (2)	14	C3 = ada C4 = tidak (3)
7	C1 = mahal C4 = tidak (3)	15	C3 = tidak C4 = ya (4)
8	C2 = jauh C3 = ada (3)	16	C3 = tidak C4 = tidak (2)

Kategori SPK (6)

- Model prediktif.
 - Model ini akan melakukan prediksi untuk masa depan apabila diberikan skenario tertentu.
 - Model ini lebih banyak direpresentasikan dengan menggunakan model peramalan (forecasting) atau analisis Makov