Comparison with related work with floating-point and fixed-point.

Chen et al. [2]

FP 8-bit / 8-bit

XC7K325T

2019

\$1,299

BFP [3]

2019

\$7,494

XC7VX690T

FP 16-bit / 8-bit

Paolo et al. [4]

XC7Z007S

INT 16-bit

2019

\$89

This work

XC7Z007S

FP 32-bit / 6-bit

2023

\$89

Chunsheng et al. [1]

XC7VX690T

2017

\$7,494

FP 16-bit

Platform

Dev. kit cost

Format (activation/weight)

Device

Year

rormat (activation, weight)	1.1 10-010	11 0-010 / 0-010	1.1 10-DIC / G-DIC	111 1 10-010	1.1 32-010 / 0-010
Frequency (MHz)	200	200	200	80	200
Peak power efficiency (GFLOP/s/W)	18.72	115.40	82.88	2.98	5.74
Peak throughput (GFLOP/s)	202.42	1086.8	760.83	10.62	0.482
Wall plug power (W)	10.81	9.42	9.18	2.5	2.3
BRAM 36Kb utilization	196.5	234.5	913	44	15
DSP utilization	1728	768	1027	54	20
] Chunsheng Mei, Zhenyu Liu, Yue Niu, Xi	angyang Ji, Wei Zho	ou, and Dongsheng	Wang. A 200mhz 20	2.4 gflops@ 10.8 v	v vgg16 accelerator in

xilinx vx690t. In 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pages 784-788. IEEE, 2017. Chen Wu, Mingyu Wang, Xinyuan Chu, Kun Wang, and Lei He, Low-precision floating-point arithmetic for high-performance fpga-based cnn acceleration. ACM Transactions on Reconfigurable Technology and Systems (TRETS), 15(1):1-21, 2021.

- Xiaocong Lian, Zhenyu Liu, Zhourui Song, Jiwu Dai, Wei Zhou, and Xiangyang Ji. High-performance fpga-based cnn accelerator with block-
- floating-point arithmetic. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 27(8):1874–1885, 2019.

- [4] Paolo Meloni, Antonio Garufi, Gianfranco Deriu, Marco Carreras, and Daniela Loi. Cnn hardware acceleration on a low-power and low-cost apsoc. In 2019 Conference on Design and Architectures for Signal and Image Processing (DASIP), pages 7-12. IEEE, 2019.