Correlation and Linear Regression

PRANAVCHENDUR T K 15BCE1097

Faculty: ARUN PRASATH G M

Aim:

Model fitting and investigating relationship between two variables within a regression framework.

Program:

> #PROBLEM 1

AGE GROUP	REPRESENTATIVE AGE	HOURS SPENT IN THE LOCAL LIBRARY
10-19	15	302.28
20-29	25	193.63
30-39	35	185.46
40-49	45	198.49
50-59	55	224.30
60-69	65	288.71

Spearman's Rank Correlation Coefficient Rho = $1-[6Sigma(d^2)/n(n^2-1)]$

Spearman's Rank Correlation Coefficient for a data

```
> x<-c(15,25,35,45,55,65)
> y<-c(302.28,193.63,185.46,198.49,224.30,288.71)
```

> plot(x,y,type = "l",main="Average age vs. Time spent in library",xlab="Age",ylab = "Time Sent in the library",col="red")

Average age vs. Time spent in library


```
> #PROBLEM 2
```

> var(x)

[1] 350

> var(y)

[1] 2595.123

> r=var(x,y)/sqrt(var(x)*var(y)) #Spearmans

> r

[1] 0.03902233

> cor(x,y)

[1] 0.03902233

> cor.test(x,y)

Pearson's product-moment correlation

```
data: x and y t = 0.078104, df = 4, p-value = 0.9415 alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval: -0.7978046 0.8244734 sample estimates: cor 0.03902233
```

> cor.test(x,y,method = "pearson")

Pearson's product-moment correlation

data: x and y t = 0.078104, df = 4, p-value = 0.9415 alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval: -0.7978046 0.8244734 sample estimates: cor 0.03902233

- > #Import Hello.CCSV
- > View(hello)
- > hello<-hello[c("BIRTHS2015","DEATHS2015")]
- > cor(hello)

BIRTHS2015 DEATHS2015 BIRTHS2015 1.000000 0.997816 DEATHS2015 0.997816 1.000000

> cor(hello)^2

BIRTHS2015 DEATHS2015 BIRTHS2015 1.0000000 0.9956367 DEATHS2015 0.9956367 1.0000000

Problem:-

The bod weight and the BMI of 12 school going children are given in the following table

Weight	15	26	27	25	25.5	27	32	18	22	20	26	24
BMI	13. 35	16. 12	16.7 4	16.0 0	13.5 9	15.7 3	15.6 5	13.8 5	16.0 7	12.8	13.6 5	14.4 2

- > weight=c(15,26,27,25,25.5,27,32,18,22,20,26,24)
- > bmi=c(13.35,16.12,16.74,16,13.59,15.73,15.65,13.85,16.07,12.8,13.65,14.42)
- > cor(weight,bmi)

[1] 0.5790235

```
> mode1<-lm(bmi~weight)
```

> summary.lm(mode1)

Call:

lm(formula = bmi ~ weight)

Residuals:

Min 1Q Median 3Q Max -1.52988 -0.75527 0.04426 0.95286 1.57397

Coefficients:

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1

Residual standard error: 1.155 on 10 degrees of freedom Multiple R-squared: 0.3353, Adjusted R-squared: 0.2688

F-statistic: 5.044 on 1 and 10 DF, p-value: 0.04852