Seat No.: Enrolment No	eat No.:	Enrolment No
------------------------	----------	--------------

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III (New) EXAMINATION - WINTER 2019

Subject Code: 3130005	Date: 26/11/2019
Subject Name: Complex Variables and Partial	Differential Equations

Total Marks: 70 Time: 02:30 PM TO 05:00 PM

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1	(a) (b)	Find the real and imaginary parts of $f(z) = \frac{3i}{2+3i}$. State De-Movire's formula and hence evaluate $\left(1+i\sqrt{3}\right)^{100}+\left(1-i\sqrt{3}\right)^{100}$.	Marks 03 04
	(c)	Define harmonic function. Show that $u(x, y) = \sinh x \sin y$ is harmonic function, find its harmonic conjugate $v(x, y)$.	07
Q.2	(a)	Determine the Mobius transformation which maps $z_1 = 0$, $z_2 = 1$, $z_3 = \infty$	03
	(b)	into $w_1=-1$, $w_2=-i$, $w_3=1$. Define $logz$, prove that $i^i=e^{-(4n+1)\frac{\pi}{2}}$.	04
	(c)	Expand $f(z) = \frac{1}{(z-1)(z+2)}$ valid for the region	07
		(i) $ z < 1$ (ii) $1 < z < 2$ (iii) $ z > 2$. OR	
	(c)	Find the image of the infinite strips (i) $\frac{1}{4} \le y \le \frac{1}{2}$ (ii) $0 < y < \frac{1}{2}$ under the transformation $= \frac{1}{z}$. Show the region graphically.	07
Q.3	(a)	Evaluate $\int_c (x - y + ix^2) dz$ where c is a straight line from $z = 0$ to $z =$	03
	(b)	1 + i. Check whether the following functions are analytic or not at any point, (i) $f(z) = 3x + y + i(3y - x)$ (ii) $f(z) = z^{3/2}$.	04
	(c)	Using residue theorem, evaluate $\int_0^\infty \frac{dx}{(x^2+1)^2}$. OR	07
Q.3	(a)	Expand Laurent series of $f(z) = \frac{1-e^z}{z}$ at $z = 0$ and identify the	03

epand Laurent series of $f(z) = \frac{1}{z}$ singularity.

(b) If f(z) = u + iv, is an analytic function, prove that 04 $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |Ref(z)|^2 = 2|f'(z)|^2.$ 07

- (c) Evaluate the following:
 - $\int_{c} \frac{z+3}{z-1} dz \text{ where } c \text{ is the circle (a) } |z| = 2 \text{ (b) } |z| = \frac{1}{2}.$ $\int_{c} \frac{\sin z}{\left(z-\frac{\pi}{4}\right)^{3}} dz \text{ where } c \text{ is the circle } |z| = 1.$ ii.

Q.4	(a)	Evaluate $\int_0^{2+4i} Re(z)dz$ along the curve $z(t) = t + it^2$.	03
	(b)	Solve $x^2p + y^2q = (x + y)z$.	04
	(c)	Solve the equation $\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}$ for the condition of heat along rod without	07
		radiation subject to the conditions (i) $\frac{\partial u}{\partial t} = 0$ for $x = 0$ and $x = l$;	
		(ii) $u = lx - x^2$ at $t = 0$ for all x .	
		OR	
Q.4	(a)	Solve $\frac{\partial^2 z}{\partial x^2} + 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = e^{2x+3y}$.	03
	(b)	Solve $px + qy = pq$ using Charpit's method.	04
	(c)	Find the general solution of partial differential equation $u_{xx} = 9u_y$ using method of separation of variables.	07
Q.5	(a)	Using method of separation of variables, solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$.	03
	(b)	Solve $z(xp - yq) = y^2 - x^2$.	04
	(c)	A string of length $L = \pi$ has its ends fixed at $x = 0$ and $x = \pi$. At time $t = 0$, the string is given a shape defined by $f(x) = 50x(\pi - x)$, then it is released. Find the deflection of the string at any time t.	07
~ -		OR	
Q.5	- :	Solve $p^3 + q^3 = x + y$.	03
	(b)	Find the temperature in the thin metal rod of length l with both the ends insulated and initial temperature is $\sin \frac{\pi x}{l}$.	04
	(c)	Derive the one dimensional wave equation that governs small vibration of an elastic string . Also state physical assumptions that you make for the system.	07

GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-III (NEW) EXAMINATION - WINTER 2020

Subject Code:3130005 Date:09/03/2021

Subject Name: Complex Variables and Partial Differential Equations

Time:10:30 AM TO 12:30 PM Total Marks:56

Instructions:

- 1. Attempt any FOUR questions out of EIGHT questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

			Marks
Q.1	(a)	Show that the function $u = x^2 - y^2 + x$ is harmonic.	03
	(b)	Find the fourth roots of -1.	04
	(c)	(i) Find and sketch the image of the region $ z > 1$ under the transformation $w = 4z$.	03
		(ii) Find the real and imaginary parts of $f(z) = z^2 + 3z$.	04
Ω 2	(a)	2+i	03

- Q.2 (a) Evaluate $\int_{0}^{2+i} z^2 dz$ along the line y = x/2.
 - (b) Determine the Mobius transformation that maps $z = 0,1,\infty$ onto w = -1,-i,1 of respectively.
 - (c) (i) Evaluate $\oint_C \frac{e^{-z}}{z+1} dz$, where C is the circle |z| = 1/2.
 - (ii) For which values of z does the series $\sum_{n=0}^{\infty} \frac{z^n}{n!}$ convergent?
- Q.3 (a) Evaluate $\oint_C \frac{dz}{z^2}$ where C is a unit circle.
 - (b) Find the residue Res(f(z), 2i) of the function $f(z) = \frac{z^2 2z}{(z+1)^2(z^2+4)}$.
 - (c) Expand $f(z) = \frac{1}{(z+1)(z-2)}$ in Laurent's series in the region (i)|z| < 1, (ii)1 < |z| < 2, (iii)|z| > 2.
- **Q.4** (a) Evaluate $\oint_C \frac{5z+7}{z^2+2z-3} dz$, where C: |z-2| = 2.
 - (b) Evaluate by using Cauchy's Residue Theorem $\int_C \frac{5z-2}{z(z-1)} dz$, C: |z| = 2.
 - (c) Find Laurent's series that represent $f(z) = \frac{1}{z(z-1)}$ in the region (i)0 < |z| < 1, (ii)0 < |z-1| < 1.

04

Q.5	(a)	Solve $xp + yq = x - y$.	03
	(b)	Derive p.d.e. from $z = ax + by + ab$ by eliminating a and b.	04
	(c)	(i) Solve $(D^3 - 4D^2D' + 4DD'^2)z = 0$.	03
		(ii) Solve $pq = k$, where k is a constant.	04
Q.6	(a)	Solve $zp + yq = x$.	03
	(b)	Form the p.d.e. by eliminating ϕ from $x + y + z = \phi(x^2 + y^2 + z^2)$.	04
	(c)	(i) Solve $(D^2 + DD' + D' - 1)z = \sin(x + 2y)$.	03
		(ii) Solve $zpq = p + q$ by Charpit's method.	04
Q.7	(a)	Solve $\frac{\partial^3 z}{\partial x^3} - 2 \frac{\partial^3 z}{\partial x^2 \partial y} = 2e^{2x}$.	03
	(b)	Solve the p.d.e. $u_x = 4u_y$, $u(0, y) = 8e^{-3y}$.	04
	(c)	A string of length l is initially at rest in its equilibrium position and motion is started by giving each of its points a velocity kx for $0 \le x \le l/2$ and $k(l-x)$ for $l/2 \le x \le l$. Find the displacement $u(x,t)$.	07
Q.8	(a)	Solve $DD''(D-2D'-3)z = 0$.	03
	(b)	Solve the pde $u_{xx} = 16u_{xy}$.	04
	(c)	A bar of length $2m$ is fully insulated along its sides. It is initially at a uniform temperature of $10^{\circ}C$ and at $t=0$ the ends are plunged into ice and maintained at a temperature of $0^{\circ}C$. Determine an expression for the temperature at a point P at a distance x from one end at any subsequent time t seconds after $t=0$.	07

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III (NEW) EXAMINATION - WINTER 2021

Subject Code:3130005	Date:17-02-2022
Subject Name: Complex Variables and Parti	al Differential Equations
Time:10:30 AM TO 01:00 PM	Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

Marks

- Q.1 (a) Represent z = 7i into polar form and find the argument of z and the principal value of the argument of z.
 - (b) State De Moivre's theorem. Find and plot all roots of $(1+i)^{\frac{1}{3}}$ in the complex plane.
 - Using the method of separation of variables, solve $4\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 3u$ and $u = e^{-5y}$ when x = 0.
- Q.2 (a) Define an analytic function. Write the necessary and sufficient condition for function f(z) to be analytic. Show that $f(z) = |z|^2$ is nowhere analytic.
 - (b) Define the Mobious transformation. Determine the bilinear transformation which mapping the points $0, \infty, i$ onto $\infty, 2, 0$.
 - (c) Attempt the following.
 - (i) Define the harmonic function. Show that $u = x^2 y^2 + x$ is harmonic and find harmonic conjugate of u.
 - (ii) Show that $f(z) = \begin{cases} \frac{\text{Im}(z)}{|z|} & ; z \neq 0 \\ 0 & ; z = 0 \end{cases}$ is not continuous at z = 0

OR

- (c) Attempt the following.
 - (i) Prove that $\cos^{-1} z = -i \ln(z + i\sqrt{1 z^2})$.

(ii) Find the values of Re f(z) and Im f(z) at the point 7+2i, 3

- where $f(z) = \frac{1}{1-z}$.
- Q.3 (a) Evaluate $\int_C z dz$, where C is the right- half of the circle |z| = 2 and hence show that $\int_C \frac{dz}{z} = \pi i$.
 - (b) Expand $f(z) = \sin z$ in a Taylor series about $z = \frac{\pi}{4}$ and write the Maclaurin
 - series for e^{-z} . (c) Write the Cauchy integral theorem and Cauchy integral formula and hence evaluate:

(i)
$$\oint_C \frac{e^z}{(z-1)(z-3)} dz$$
; $C: |z| = 2$. (ii) $\oint_C e^z dz$; $C: |z| = 3$.

4

Q.3 (a) Evaluate
$$\oint_C \frac{e^z}{z+i} dz$$
, where $c:|z-1|=1$.

- (b) Develop the following functions into Maclaurin series:(i) $\cos^2 z$ (ii) **04** $e^z \cos z$.
- (c) Evaluate $\int_C \text{Re}(z^2)dz$, where C is the boundary of the square with vertices 0, i, 1+i, 1 in the clockwise direction.
- Q.4 (a) Define the singular points of f(z). Find the singularity of f(z) and classify as pole, essential singularity or removable singularity, where $f(z) = \frac{1 e^z}{z}$.
 - **(b)** State the Cauchy residue theorem. Find the residue at its poles of $f(z) = \frac{z^2}{(z-1)^2(z+2)}$ and hence evaluate $\oint_C f(z)dz$, C:|z|=3.
 - Determine the Laurent series expansion of $f(z) = \frac{1}{(z+2)(z+4)}$ valid for regions
 - (i) |z| < 2
 - (ii) 2 < |z| < 4
 - (iii) |z| > 4

OR

Q.4 (a) Solve
$$\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial y^2} = e^{x+2y}$$
.

- (b) Form a partial differential equation by eliminating the arbitrary functions form the equations $z = f(x+ay) + \phi(x-ay)$.
- (c) Show that $\int_{-\infty}^{\infty} \frac{dx}{(x^2+1)(x^2+4)} = \frac{\pi}{6}.$
- Q.5 (a) Form a partial differential equation by eliminating the arbitrary function form $u = f(\frac{x}{y})$.
 - (b) State the Lagrange's linear partial differential equation of first order and hence solve x(y-z)p + y(z-x) = z(x-y)
 - Using the method of separation of variables, solve $\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y}$ where $u(0, y) = 8e^{-3y}$.

ΛR

Q.5 (a) Obtain the general solution of
$$p+q^2=1$$
.

(b) Solve by Charpit's method:
$$px + qy = pq$$
.

(c) Find the solution of the wave equation
$$u_{tt} = c^2 u_{xx}$$
, $0 \le x \le L$ satisfying the condition $u(0,t) = u(L,t) = 0$, $u(x,0) = \frac{\pi x}{L}$, $0 \le x \le L$.

Seat No.: _____

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III EXAMINATION - SUMMER 2020

Subject Code: 3130005 Date:27/10/2020

Subject Name: Complex Variables and Partial Differential Equations

Time: 02:30 PM TO 05:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

			Marks
Q.1	(a)	If $u = x^3 - 3xy$ is find the corresponding analytic function $f(z) = u + iv$.	03
	(b) (c)	Find the roots of the equation $z^2 - (5+i)z + 8 + i = 0$. (i) Determine and sketch the image of $ z = 1$ under the transformation	04 03
		w = z + i. (ii) Find the real and imaginary parts of $f(z) = z^2 + 3z$.	04
Q.2	(a)	Evaluate $\int_C (x^2 - iy^2) dz$ along the parabola $y = 2x^2$ from (1,2) to (2,8).	03
	(b)	Find the bilinear transformation that maps the points $z = \infty, i, 0$ into $w = 0, i, \infty$.	04
	(c)	(i) Evaluate $\oint_C \frac{e^{-z}dz}{z+1}$, where C is the circle $ z = 1/2$.	03
		(ii) Find the radius of convergence of $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^{n^2} z^n$.	04
	(c)	OR (i) Find the fourth roots of -1 . (ii) Find the roots of $\log z = i\frac{\pi}{2}$.	03 04
		(ii) I find the roots of $\log z - i \frac{\pi}{2}$.	

- **Q.3** (a) Find $\oint_C \frac{1}{z^2} dz$, where C: |z| = 1.
 - (b) For $f(z) = \frac{1}{(z-1)^2(z-3)}$, find Residue of f(z) at z=1.
 - (c) Expand $f(z) = \frac{1}{(z+2)(z+4)}$ in a Laurent series for the regions (i)|z| < 2, (ii)2 < |z| < 4, (iii)|z| > 4.

OR

- Q.3 (a) Find $\oint_C \frac{z+4}{z^2+2z+5} dz$, where C: |z+1| = 1.
 - (b) Evaluate using Cauchy residue theorem $\int_C \frac{e^{2z}}{(z+1)^3} dz$; C: $4x^2 + 9y^2 = 16$.
 - (c) Expand $f(z) = \frac{1}{z(z-1)(z-2)}$ in Laurent's series for the regions (i)|z| < 1, (ii)1 < |z| < 2, (iii)|z| > 2.

03 (a) Solve xp + yq = x - y. 0.4 Derive partial differential equation by eliminating the arbitrary constants 04 a and b from z = ax + by + ab. (i) Solve the p.d.e. 2r + 5s + 2t = 0. 03 (c) (ii) Find the complete integral of $p^2 = qz$. 04 Find the solution of $x^2p + y^2q = z^2$. 03 **Q.4** (b) Form the partial differential equation by eliminating the arbitrary function 04 ϕ from $z = \phi \left(\frac{y}{x} \right)$. (i) Solve the p.d.e. $(D^2 - D'^2 + D - D')z = 0$. 03 **(c)** (ii) Solve by Charpit's method $yzp^2 - q = 0$. 04 Solve $(2D^2 - 5DD' + 2D'^2)z = 24(y - x)$. 03 Q.5 (b) Solve the p.d.e. $u_x + u_y = 2(x + y)u$ using the method of separation of 04 variables. (c) Find the solution of the wave equation $u_{tt} = c^2 u_{xx}$, $0 \le x \le \pi$ with the **07** and boundary conditions $u(0,t) = u(\pi,t) = 0; t > 0,$ $u(x,0) = k(\sin x - \sin 2x), u_{\epsilon}(x,0) = 0; 0 \le x \le \pi. \ (c^2 = 1)$ OR (a) Solve the p.d.e. r + s + q - z = 0. Q.5 03 **(b)** Solve $2u_x = u_t + u$ given $u(x,0) = 4e^{-3x}$ using the method of separation 04 of variables. **07** Find the solution of $u_t = c^2 u_{xx}$ together with the initial and boundary (c) conditions $u(0,t) = u(2,t) = 0; t \ge 0$ and $u(x,0) = 10; 0 \le x \le 2$.

Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III (NEW) EXAMINATION – SUMMER 2021 Subject Code:3130005 Date:05/10/2021

Subject Name: Complex Variables and Partial Differential Equations

Time:10:30 AM TO 01:00 PM Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.
- Q.1 (a) Find the fourth roots of -1. 03
 (b) Find the real and imaginary parts of $(-1-i)^7 + (-1+i)^7$. 04
 (c) (i) Find the analytic function whose real part is $u = x^2 y^2$. 04
 (ii) Show that $u = \frac{x}{x^2 + y^2}$ is harmonic. 03
- Q.2 (a) Find the image in the w plane of the circle |z-3|=2 in the z plane under the inversion mapping $w=\frac{1}{z}$.
 - (b) Evaluate $\int_C (x^2 iy^2) dz$ along the parabola $y = 2x^2$ from (1, 2) to (2, 8).
 - State Cauchy's Integral Formula. Evaluate $\oint_C \frac{e^{2z}}{(z+1)^4} dz$, where C is the circle |z|=2.

OR

- (c) (i) Evaluate $\oint_C \frac{e^{-z}}{z+1} dz$, where C is the circle $|z| = \frac{1}{2}$.
 - (ii) Determine and sketch the image of |z| = 1 under the transformation w = z + i.
- Q.3 (a) Find the radius of convergence of $\sum_{n=1}^{\infty} (3+4i)^n z^n$.
 - (b) Find the residues of the function $f(z) = \frac{1}{(z-1)^2(z-3)}$ at each of its poles in the finite z plane.
 - (c) Expand $f(z) = \frac{1}{(z+1)(z+3)}$ in a Laurent series for the regions (i) |z| < 1, (ii) 1 < |z| < 3, (iii) |z| > 3.

OF

- **Q.3** (a) Find the bilinear transformation which transforms z = 2,1,0 into w = 1,0,i.
 - Evaluate $\int_C \frac{e^{2z}}{(z+1)^3} dz$ by using Cauchy Residue Theorem, where C is the ellipse $4x^2 + 9y^2 = 16$.

MARKS

	(c)	Find the Laurent series for the function $f(z) = \frac{1}{z(1-z)}$ in the region (i) $ z+1 < 1$	07
		, (ii) $1 < z+1 < 2$, (iii) $ z+1 > 2$.	
Q.4	(a)	Find the real and imaginary parts of $f(z) = z^3 + 3z$.	03
	(b)	Derive partial differential equation by eliminating arbitrary constants a and b from $z = (x^2 + a)(y^2 + b)$.	04
	(c)	(i) Solve $x^2 p + y^2 q = z^2$.	03
		(ii) Solve $q = 3p^2$ by Charpit's method.	04
		OR	
Q.4	(a)	Show that the function $f(z) = xy + iy$ is continuous everywhere but not analytic.	03
	(b)	Solve $yq - xp = z$.	04
	(c)	(i) Find the complete integral of $q = pq + p^2$.	03
		(ii) Solve $px + qy = pq$ by Charpit's method.	04
Q.5	(a)	Solve $r - 2s + t = \sin(2x + 3y)$.	03
	(b)	Solve $(D^2 - D'^2 + D - D')z = 0$.	04
	(c)	Solve $u_x = 4y_y$, $u(0, y) = 8e^{-3y}$ by the method of separation of variables.	07
		OR	
Q.5	(a)	Solve $(DD'+D-D'-1)z = xy$.	03
	(b)	Solve $(D^2 + 3DD' + 2D'^2)z = x + y$.	04
	(c)	A tightly stretched string with fixed end points $x = 0$, $x = l$ is initially at rest in its equilibrium position. If it is set vibrating giving each point a velocity $\lambda x(l-x)$,	07
		find the displacement $u(x,t)$.	

Seat No.:

Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- III (NEW) EXAMINATION - SUMMER 2022

Subject Code:3130005 Date:11-07-2022

Subject Name: Complex Variables and Partial Differential Equations

Time:02:30 PM TO 05:00 PM **Total Marks:70**

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

Marks

- (a) Express the complex number $-\sqrt{3} i$ in polar form. **Q.1** 03
 - (b) Use De Moiver's theorem and find $\sqrt[3]{64i}$. 04
 - (c) Verify that $u = 2x x^3 + 3xy^2$ is harmonic in the whole complex plane 07 and finds it's harmonic conjugate function v(x, y).
- **Q.2** (a) Discuss Continuity of the function f(z) at the origin: 03 $f(z) = \begin{cases} \frac{lm(z)}{z}, & z \neq 0 \\ 0, & z = 0 \end{cases}$
 - **(b)** 1) Define Log(x + iy)04
 - 2) Determine $Log(-1+i\ 2)$
 - 3) Determine all values of log(1+i)
 - **07** (c) Find the image of the circle |z + i| = 2 under the transformation $w = \frac{1}{z}$. Also, show the regions graphically.

- (c) Check whether the function $f(z) = \sin z$ is analytic or not. If so, find its **07** derivative.
- Q.3 (a) Evaluate $\oint_C \frac{\sin z}{(z-\pi)^2} dz$, where C is the circle |z| = 403
 - (b) Find the Laurent's series that represent $f(z) = \frac{1}{(z-2)(z-3)}$ in the region 2 < 04 |z| < 3.
 - (c) Find the residues of the function $f(z) = \frac{z}{(z+1)^2(z^2-4)}$ at its poles. **07**

- Q.3 (a) Evaluate $\int_0^{2+i} z^2 dz$ along the line y = x(b) Evaluate $\oint_C \frac{3z+4}{z^2+2z-3} dz$, where C is |z| = 2(c) Using Residue theorem, evaluate the following **03**
 - 04
 - 07

$$\int_{0}^{2\pi} \frac{d\theta}{5 - 3\sin\theta}$$

- **Q.4** (a) Expand $f(z) = \frac{\sin z}{z^4}$ in Laurent's series about z = 0 and identify the **03**
 - (b) Solve: $\frac{\partial^2 z}{\partial x^2} + 10 \frac{\partial^2 z}{\partial x \partial y} + 25 \frac{\partial^2 z}{\partial y^2} = e^{3x+2y}$ 04
 - (c) Solve $x^2p + y^2q = (x + y)z$ **07**

OR

- Q.4 (a) Find the fixed points of the transformation, $w = \frac{z-1}{z+1}$ 03
 - **(b)** Solve: $\frac{\partial^2 z}{\partial x^2} + 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = \cos x$
 - (c) Solve: $\frac{\partial^2 z}{\partial x \partial y} = \sin x \sin y$, given that $\frac{\partial z}{\partial y} = -2 \sin y$ when x=0 and z=0 when y is an odd multiple of $\frac{\pi}{2}$
- **Q.5** (a) Solve xp + yq = 3z 03
 - (b) Solve by the method of separation of variables $\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y}$, where $u(0,y) = 8e^{-3y}$
 - (c) A tightly stretched string with fixed end points at x = 0 and x = 10 is initially given by the deflection f(x) = kx(10 x). If it is released from this position, then find the deflection of the string.

OR

- Q.5 (a) Find complete and singular solution of z = px + qy + pq 03
 - (b) Using Charpit's method, solve $q = 3p^2$.
 - (c) A rod of 30 cm long has its ends A and B are kept at 20°C and 80°C respectively until steady state conditions prevail. The temperature at each end is suddenly reduced to 0°C and kept so. Find the resulting temperature u(x, t) from the end A.