

GŁÓWNE ŹRÓDŁA ZAUFANIA DO OBLICZEŃ

dr hab. inż. Jerzy Pejaś, prof. ZUT

Wydział Informatyki

Zachodniopomorskiego Uniwersytetu Technologicznego w Szczecinie

Wydział Informatyki

1

O czym będzie mowa w tym wykładzie?

AGENDA

- · Łańcuch zaufania
- · Źródła zaufania
- · Metryki i ich pomiary
- · Specyfikacje przemysłowe
 - ARM TrustZone
 - · Intel Software Guard eXtensions (SGX)
 - · Trusted Computing Group (TCG)

- · Łańcuch zaufania
- Źródła zaufania
- Metryki i ich pomiary
- · Specyfikacje przemysłowe
 - ARM TrustZone
 - Intel Software Guard eXtensions (SGX)
 - Trusted Computing Group (TCG)

Podstawowa idea zaufanej platformy

IDEA ...

- · Łańcuch zaufania
- Źródła zaufania
- · Metryki i ich pomiary
- Specyfikacje przemysłowe
 - · ARM TrustZone
 - Intel Software Guard eXtensions (SGX)
 - Trusted Computing Group (TCG)

- · Sprzętowe i programowe zaufane komponenty
- · Oferuje szereg funkcji zaufanych
 - · W szczególności zestaw funkcji kryptograficznych i funkcji bezpieczeństwa
- · Tworzy idealną bazę do budowania zaufania do oprogramowania
- Zapewnia sprzętową ochronę danych wrażliwych
 - · np. kluczy, liczników

Łańcuch zaufania

zaufania)

- · Pożądane cele praktyczne
 - · Trusted Computing Base (TCB) powinna być minimalizowana
 - · Kompatybilność z systemami źródłowymi

ZALIFANA INFRASTRIJKTIJRA OBLICZENIOWA

Rozważmy jednostki (ang. entities) E_0, \dots, E_n

Celem jest uzyskanie zaufania do jednostki E_n

• Zaufanie E_2 wymaga zaufania do E_0 i E_1

3

ŁAŃCUCH ...

- Łańcuch zaufania
- Źródła zaufania
- Metryki i ich pomiary
- Specyfikacje przemysłowe
 - ARM TrustZone
 - Intel Software Guard eXtensions (SGX)
- Trusted Computing Group (TCG)

t

Entity E_0

wywołuje E_2 , itd.

• Aby ufać E_n należy ufać E_{n-1}

Entity Entity E2

• Z punktu widzenia wykonywanych operacji: E_0 wywołuje E_1 , E_1

- Sekwencja \boldsymbol{E}_0 , \boldsymbol{E}_1 to \boldsymbol{E}_n tworzy "łańcuch zaufania" (ścieżkę

• Zaufanie przechodnie (tranzytywne) od E_0 do E_1 do E_2 , itd.

• Jednak: zaufanie do $E_{\rm 0}$ nie implikuje zaufania do $E_{\rm 2}$

Entity E_n

74LIFANA INFRASTRUKTURA ORUCZENIOW

Zaufane obliczenia: początek łańcucha zaufania - główny punkt zaufania (ang. Root of Trust, RoT)

ROT ...

- Łańcuch zaufania
- Źródła zaufania
- · Metryki i ich pomiary
- Specyfikacje przemysłowe
 - · ARM TrustZone
 - Intel Software Guard extensions (SGX)
 - Trusted Computing Group (TCG)

Wydział Informatyki

Rekurencja musi kończyć się na komponencie, któremu możemy zaufać, na przykład układowi sprzętowemu firmy Intel TXT (Intel® Trusted Execution Technology).

Uwaga: RoT to nie tylko dane (np. klucze), ale także logika. Dlatego mówimy, że RoT to silnik.

ZAUFANA INFRASTRUKTURA OBLICZENIOWA

5

Główny punkt zaufania (ang. Root of Trust)

ROT ...

- · Łańcuch zaufania
- · Źródła zaufania
- Metryki i ich pomiary
- Specyfikacje przemysłowe
 - ARM TrustZone
 - Intel Software Guard eXtensions (SGX)
 - Trusted Computing Group (TCG)

- RoT (Root of Trust) jest tą częścią systemu, którą uważamy za wiarygodną.
- · Dlaczego dana część systemu może być wiarygodna?
 - Bo przeprowadziliśmy bardzo staranne analizy projektu i wdrożenia
 - Na przykład w oparciu o metodologię Common Criteria (wg ISO 15408)
 - Bo możemy zweryfikować, czy ktoś inny (trzecia strona) uważa tę część systemu za godną zaufania
 - Poświadczenie o zgodności, certyfikat (np. wydany zgodnie ze specyfikacją FIPS 140-2)

Wydział Informatyki

ZAUFANA INFRASTRUKTURA OBLICZENIOWA

INFORMACJE ...

- · Łańcuch zaufania
- Źródła zaufania
- · Metryki i ich pomiary
- Specyfikacje przemysłowe
 - ARM TrustZone
 - Intel Software Guard eXtensions (SGX)
 - Trusted Computing Group (TCG)

7

Różne główne punkty zaufania (ang. Roots of Trust)

- Warto przyjąć, że RoT składa się z różnych typów RoT, z których każdy specjalizuje się w realizacji innych zadań.
- Główne źródło zaufania do pomiaru (ang. Root of Trust for Measurement, RTM)
 - Silnik obliczeniowy zdolny do wykonywania wiarygodnych pomiarów integralności (tzw. metryk integralności).
- Główne źródło zaufania do magazynu (ang. Root of Trust for Storage, RTS)
 - Silnik obliczeniowy, który chroni użycie i dostęp do danych/kluczy
- Główne źródło zaufania do raportów (ang. Root of Trust for Reporting, RTR)
 - Silnik obliczeniowy zdolny do niezawodnego raportowania informacji będących w posiadaniu RTS (tzw. atestacja komponentu)

ZAUFANA INFRASTRUKTURA OBLICZENIOWA

PRYMITYWY ...

- Łańcuch zaufania
- Źródła zaufania
- Metryki i ich pomiary
- Specyfikacje przemysłowe
 - ARM TrustZone
 - Intel Software Guard eXtensions (SGX)
 - Trusted Computing Group (TCG)

Pożądane prymitywy (własności pierwotne)

- Metryki na potrzeby konfiguracji kodu oraz tożsamości
 - Zachowanie się operacji I /O hosta zależy od stanu początkowego
 - Przykład prostej metryki: wartość skrótu z kodu binarnego
 - Problematyczne wtedy, gdy funkcjonalność kodu zależy od innego kodu nieuwzględnionego w skrócie (np. wspólne lub dynamicznie łączone biblioteki)
- Weryfikacja integralności (atestacja)
 - Umożliwia platformie obliczeniowej eksportowanie weryfikowalnych informacji o jej właściwościach (np. tożsamości i stanie początkowym)
 - Wynika z wymogu uzasadnia zaufania do kodu wykonywalnego oraz środowiska aplikacji znajdującej się na zdalnej platformie obliczeniowej

Wydział Informatyki

ZALIFANA INFRASTRI IKTURA OBLICZENIOWA

Pożądane prymitywy (własności pierwotne)

PRYMITYWY ...

- · Łańcuch zaufania
- Źródła zaufania
- Metryki i ich pomiary
- Specyfikacje przemysłowe
 - ARM TrustZone
 - · Intel Software Guard
 - · Trusted Computing

Bezpieczny magazyn

- Bezpieczne przechowywanie danych na tradycyjnych niezaufanych nośnikach (np. twarde dyski)
- Szyfrowanie danych i zapewnienie, że nikt inny nie może ich odszyfrować

Silna izolacja procesów

- Zapewnienie separacji procesów (przestrzeni pamięci)
- Uniemożliwienie procesowi odczytu lub modyfikowania pamięci innego procesu

Bezpieczne operacje I/O

- Pozwala aplikacjom zbudować zaufanie do końcowych operacji wejścia i wyjścia
- Gwarantuje użytkownikowi, że bezpiecznie współdziała z właściwymi aplikacjami

9

ŁAŃCUCH ...

- · Łańcuch zaufania
- Źródła zaufania
- Metryki i ich pomiary
- Specyfikacje przemysłowe
 - · ARM TrustZone
 - · Intel Software Guard
 - · Trusted Computing

Łańcuch pomiarów

- Co jest konieczne do zaufania łańcuchowi pomiarów?
 - Tożsamość każdej jednostki E_i należącej do łańcucha
 - Tożsamość = pomiar metryki (zgodnie z definicją TCG)
 - Na przykład skrót z kodu binarnego E_i
 - Ogólny przepływ: każda jednostka E_i mierzy swojego następcę E_{i+1} przed przekazaniem do niego kontroli
- Kto mierzy E_0 ?
- Główny punkt zaufania do pomiarów (RTM, ang. Root of Trust for Measurements)
 - Musi być zaufany, brak mechanizmu pomiaru E_0
 - Aby utworzyć łańcuch zaufania pierwsza jednostka E_0 musi być RTM

Wykonywanie pomiarów integralności

POMIAR ...

- Łańcuch zaufania
- Źródła zaufania
- · Metryki i ich pomiary
- Specyfikacje przemysłowe
 - ARM TrustZone
 - Intel Software Guard eXtensions (SGX)
 - Trusted Computing Group (TCG)

- 1. RTM mierzy jednostkę *E*
- RTM tworzy Event Structure w SM Event Log
 - SM Event Log zawiera Event Structures dla wszystkich pomiarów, o które poszerzony jest SM
 - SM Event Log może być przechowywany na dowolnym (niezaufanym) nośniku (np. na twardym dysku)
- RTM rozszerza pomiary wartości w rejestrach SM
- RTM przekazuje kontrolę do jednostki *E*

Source: Prof. Dr.-Ing. Ahmad-Reza Sadeghi, Ruhr University Bochum

ZAUFANA INFRASTRUKTURA OBLICZENIOWA

11

Przykład pomiaru i atestacji oprogramowania sprzętowego

ŁAŃCUCH ...

- Łańcuch zaufania
- Źródła zaufania
- Metryki i ich pomiary
- Specyfikacje przemysłowe
 - ARM TrustZone
 - Intel Software Guard eXtensions (SGX)
 - Trusted Computing Group (TCG)

Wydział Informatyki

J. Yao, V. Zimmer Building Secure Firmware - Armoring the Foundation of the Platform. Apress 2020

ZAUFANA INFRASTRUKTURA OBLICZENIOW*A*

Przykład Event Structure w SM Event Log

LOGI ...

- · Łańcuch zaufania
- Źródła zaufania
- · Metryki i ich pomiary
- Specyfikacje przemysłowe
 - ARM TrustZone
 - Intel Software Guard eXtensions (SGX)
 - Trusted Computing Group (TCG)

//Structure to be added to the Event Log
typedef struct {

//PCRIndex event extended PCR
TCG PCRINDEX PCRIndex;

TCG_EVENTTYPE EventType;

//Value extended into PCRIndex
TCG DIGEST Digest;

//Size of the event data
UINT32 EventSize;

//The event data
UINT8 Event[1];

} TCG PCR EVENT;

J. Yao, V. Zimmer Building Secure Firmware - Armoring the Foundation of the Platform. Apress 2020

Hash[PCR|Measu

ZAUFANA INFRASTRUKTURA OBLICZENIOWA

13

Zapisywanie dziennika zdarzeń pomiarów TPM podczas uruchamiania systemu

LOGI ...

- · Łańcuch zaufania
- Źródła zaufania
- Metryki i ich pomiary
- Specyfikacje przemysłowe
 - · ARM TrustZone
 - Intel Software Guard eXtensions (SGX)
 - Trusted Computing Group (TCG)

Wydział Informatyki

J. Yao, V. Zimmer Building Secure Firmware - Armoring the Foundation of the Platform. Apress 2020

ZAUFANA INFRASTRUKTURA OBLICZENIOW*A*

Zaufane środowisko wykonawcze (ang. Trusted Execution Environment, TEE)

SPECYFIKACJE ...

- · Łańcuch zaufania
- Źródła zaufania
- · Metryki i ich pomiary
- Specyfikacje przemysłowe
 - ARM TrustZone
 - Intel Software Guard eXtensions (SGX)
 - Trusted Computing Group (TCG)

- Zaufane środowisko wykonawcze (TEE) oznacza bezpieczny obszar, który może zagwarantować poufność i integralność kodu i danych znajdujących się w tym obszarze.
- Zazwyczaj TEE jest odizolowanym środowiskiem wykonawczym.
- Może być zaimplementowane jako specjalny bezpieczny tryb pracy procesora głównego (tzw. CPU-based TEE), lub TEE może być utrzymywane za pomocą bezpiecznego koprocesora (ang. Cooprocesor-based TEE).
- · Przykłady:
 - CPU-based TEE: ARM TrustZone, Intel SGX, AMD SEV, RISC-V/ARM-M MultiZone.
 - Cooprocesor-based TEE: Intel Converged Security and Management Engine (CSME), Google Titan, TPM.

ZAUFANA INFRASTRUKTURA OBLICZENIOWA

15

CPU-based TEE - architektura

SPECYFIKACJE ...

- Łańcuch zaufania
- · Źródła zaufania
- · Metryki i ich pomiary
- Specyfikacje przemysłowe
 - · ARM TrustZone
 - Intel Software Guard eXtensions (SGX)
 - Trusted Computing Group (TCG)

Wydział Informatyki

J. Yao, V. Zimmer Building Secure Firmware - Armoring the Foundation of the Platform. Apress 2020

ZAUFANA INFRASTRUKTURA OBLICZENIOW*A*

Czy zaufane środowisko wykonawcze jest zawsze bezpieczne?

SPECYFIKACJE ...

- · Łańcuch zaufania
- Źródła zaufania
- · Metryki i ich pomiary
- Specyfikacje przemysłowe
 - · ARM TrustZone
 - Intel Software Guard eXtensions (SGX)
 - Trusted Computing Group (TCG)

Niestety, ale nie!

Najgrożniejsze są ataki typu **Side Channel** (ataki z wykorzystaniem kanału bocznego) - **ataki programowe** (np. atak czasowy i ataki na pamięć podręczną) i **ataki sprzętowe** (np. analiza poboru mocy).

Przykład: zużyta klawiatura numeryczna.

Na podstawie widocznej obok klawiatury można wywnioskować, że klawisze 3 i 7 są mocno zużyte, zaś 4 i 8 lekko zużyte. W skład kodu dostępu wchodzą wiec cztery cyfry: 3, 4, 7 i 8.

Co więcej, większe zużycie klawiszy 3 i 7 sugeruje, że cyfry 3 i 7 powtarzają się w kodzie dostępu.

J. Yao, V. Zimmer Building Secure Firmware - Armoring the Foundation of the Platform. Apress 2020

ZAUFANA INFRASTRUKTURA OBLICZENIOWA

17

Tradycyjne ataki z wykorzystaniem kanału bocznego Atak czasowy (ang. Timing Attack)

SPECYFIKACJE ...

- · Łańcuch zaufania
- Źródła zaufania
- Metryki i ich pomiary
- Specyfikacje przemysłowe
 - ARM TrustZone
 - Intel Software Guard eXtensions (SGX)
 - Trusted Computing Group (TCG)

Wydział Informatyki Przykład: porównanie podanego kodu dostępu z oczekiwanym kodem.

J. Yao, V. Zimmer Building Secure Firmware - Armoring the Foundation of the Platform. Apress 2020

ZALIFANA INFRASTRIJKTURA OBLICZENIOWA

Tradycyjne ataki z wykorzystaniem kanału bocznego **Atak czasowy (ang. Timing Attack)**

SPECYFIKACJE ...

- Łańcuch zaufania
- Źródła zaufania
- · Metryki i ich pomiary
- Specyfikacje przemysłowe
 - · ARM TrustZone
 - · Intel Software Guard
 - · Trusted Computing Group (TCG)

- Przykład: kod dostępu P@ssw0rd.
- Spostrzeżenie: czas wykonania funkcji jest proporcjonalny do liczby znaków pasujących w kodzie.

	Р	@	s	s	w	0	r	d
Round 1	Р	*	*	*	*	*	*	*
Round 2	Р	@	*	*	*	*	*	*
Round 3	Р	@	s	*	*	*	*	*
Round 4	Р	@	S	S	*	*	*	*
Round 5	Р	@	S	s	w	*	*	*
Round 6	Р	@	s	s	w	0	*	*
Round 7	Р	@	s	S	w	0	r	*
Round 8	Р	@	s	s	w	0	r	d

19

Tradycyjne ataki z wykorzystaniem kanału bocznego Atak czasowy (ang. Timing Attack)

SPECYFIKACJE ...

- · Łańcuch zaufania
- Źródła zaufania
- Metryki i ich pomiary
- · Specyfikacje przemysłowe
 - · ARM TrustZone
 - · Intel Software Guard eXtensions (SGX)
 - Trusted Computing

Wyeliminowanie ataku polega na wptowadzeniu do funkcji takich zmian, aby czas wykonania pętli for stał się niezależny od liczby dopasowywanych znaków.

```
bool compare_mem (byte *a, size_t a_len, byte *b,
                                       size t b len) {
   volatile size t x = a len ^ b len;
   for (size t i = 0; ((i < a len) & (i < b len)); i++) {
      x = a[i] ^ b[i];
   return (x==0);
```


Specyfikacje przemysłowe/wymagania dotyczące RoT

SPECYFIKACJE ...

- Łańcuch zaufania
- Źródła zaufania
- · Metryki i ich pomiary
- Specyfikacje przemysłowe
 - · ARM TrustZone
 - Intel Software Guard eXtensions (SGX)
 - Trusted Computing Group (TCG)

- ARM TrustZone
- Intel SGX

 NIST 800-207 Zero Trust Architecture, 2020

ZAUFANA INFRASTRUKTURA OBLICZENIOWA

21

ARM ...

- Łańcuch zaufania
- · Źródła zaufania
- Metryki i ich pomiary
- Specyfikacje przemysłowe
 - · ARM TrustZone
 - Intel Software Guard eXtensions (SGX)
 - Trusted Computing Group (TCG)

Specjalny tryb pracy procesora ARM

ARM TrustZone

Dzieli System-On-Chip (SoC) na "normalny świat" i "bezpieczny świat" (inaczej, na "niezaufany" i "zaufany")

Kernel

interface

Keymaster

Keymaster

HAL

ZAUFANA INFRASTRUKTURA OBLICZENIOWA

Client

Podstawowa idea

odbywa sie w świecie

ARM IDEA ...

- · Łańcuch zaufania
- Źródła zaufania
- · Metryki i ich pomiary
- Specyfikacje przemysłowe
 - · ARM TrustZone
 - · Intel Software Guard
 - Trusted Computing Group (TCG)
- · pamięć podręczna · strony pamięci
- Monitor
 - · zarzadza bitem NS
 - · zarządza przejściem do i z trybu bezpieczeństwa
 - · mały stały interfejs API (pozwala lepiej sprawdzić/zweryfikować kod)

określa, czy wykonanie programu

bezpiecznym, czy też normalnym

· użyj tego bitu, aby oznaczyć

· szyny (ang. buses)

Trustlet: zaufany proces lub aplikacja

Normal

23

ARM TrustZone - przełączanie z trybu normalnego w bezpieczny

Secure

ARM ...

- · Łańcuch zaufania
- · Źródła zaufania
- · Metryki i ich pomiary
- · Specyfikacje przemysłowe
 - · ARM TrustZone
 - · Intel Software Guard eXtensions (SGX)
 - · Trusted Computing

Wydział Informatyki

userspace userspace Normal Secure application Service Context switch Monitor Secure Secure Normal Secure Kernel drivers OS device **Boot** priviledged priviledged loader Context switch

ARM TrustZone - software and hardware components (A-profile)

ARM ...

- Łańcuch zaufania
- · Źródła zaufania
- · Metryki i ich pomiary
- Specyfikacje przemysłowe
 - · ARM TrustZone
 - Intel Software Guard eXtensions (SGX)
 - Trusted Computing Group (TCG)

- EL3 (monitor mode): runs the ARM Trusted Firmware
- EL1: for the OS kernel
- EL0: for execution of application code.
- Software can be executed in normal world or in secure world.
- Isolation between these two worlds is enforced by the memory controller (TZASC) that checks for each memory access which world it originates from

F. Brasser, et. al. "SANCTUARY: ARMing TrustZone with User-space Enclaves", Network and Distributed Systems Security (NDSS), 2019

ZAUFANA INFRASTRUKTURA OBLICZENIOWA

25

ARM TrustZone wykorzystuje funkcje sprzętowe - przykładowy system

ARM ...

- · Łańcuch zaufania
- · Źródła zaufania
- Metryki i ich pomiary
- Specyfikacje przemysłowe
 - · ARM TrustZone
 - Intel Software Guard eXtensions (SGX)
 - Trusted Computing Group (TCG)

ARM TrustZone jest wykorzystywany w wielu smartfonach z systemem Android

ZALIFANA INFRASTRIJKTURA OBLICZENIOWA

Korzystanie z ARM TrustZone

Samsung

ARM ...

- · Łańcuch zaufania
- Źródła zaufania
- · Metryki i ich pomiary
- Specyfikacje przemysłowe
 - · ARM TrustZone
 - Intel Software Guard eXtensions (SGX)
 - Trusted Computing Group (TCG)

Powszechnie stosowany w smartfonach z chipsetami Qualcomm i

Wydział Informatyki

ZAUFANA INFRASTRUKTURA OBLICZENIOWA

27

ARM TrustZone – ochrona przed różnymi rodzajami ataków

ARM ...

- Łańcuch zaufania
- Źródła zaufania
- · Metryki i ich pomiary
- Specyfikacje przemysłowe
 - · ARM TrustZone
 - Intel Software Guard eXtensions (SGX)
 - Trusted Computing Group (TCG)

Wydział Informatyki

ZAUFANA INFRASTRUKTURA OBLICZENIOWA

Intel Software Guard eXtensions (SGX)

- · Łańcuch zaufania
- Źródła zaufania

SGX ...

- · Metryki i ich pomiary
- Specyfikacje przemysłowe
 - · ARM TrustZone
 - Intel Software Guard eXtensions (SGX)
 - Trusted Computing Group (TCG)

- SGX w nowej technologii wprowadzonej w chipsetach Intela
- Architektura SGX zawiera 17 nowych instrukcji, nowe struktury procesorów i nowy tryb wykonywania (dodatkowe rozszerzenia dla serwerów).
- Architektura SGX obejmuje ładowanie enklawy do chronionej pamięci, dostęp do zasobów poprzez odwzorowania tabel stron i planowanie wykonanie aplikacji obsługującej enklawę.
 - Stąd system oprogramowanie ciągle utrzymuje kontrolę nad tym, do których zasobów ma dostęp enklawa.
- Aplikacja może być hermetyzowana przez pojedynczą enklawę lub może być rozkładana na mniejsze komponenty w taki sposób, że w enklawie umieszczane są tylko enklawy krytyczne.

Wydział Informatyki

ZAUFANA INFRASTRUKTURA OBLICZENIOWA

29

SGX ...

- Łańcuch zaufania
- Źródła zaufania
- · Metryki i ich pomiary
- Specyfikacje przemysłowe
 - · ARM TrustZone
 - Intel Software Guard eXtensions (SGX)
 - Trusted Computing Group (TCG)

Enklawy w SGX

- Enklawy to izolowane regiony pamięci kodu i danych
- Jedna część pamięci fizycznej (RAM) jest zarezerwowana dla enklaw i nosi nazwę Enclave Page Cache (EPC)
- Pamięć EPC jest szyfrowana w pamięci głównej (RAM)
- · EPC jest zarządzany przez OS / VMM

Wydział Informatyki Zaufany sprzęt składa się tylko z matrycy procesora

74LIFANA INFRASTRIJKTURA OBLICZENIOWA

Redukcja obszaru ataku dzięki SGX

SGX ...

- Łańcuch zaufania
- Źródła zaufania
- · Metryki i ich pomiary
- Specyfikacje przemysłowe
 - · ARM TrustZone
 - Intel Software Guard eXtensions (SGX)
 - Trusted Computing Group (TCG)

- · Aplikacja zyskuje możliwość obrony własnych sekretów
- Mniejszy obszar ataku (enklawa aplikacji + procesor)
- Złośliwe oprogramowanie, które zagraża OS lub VMM, BIOS-owi, sterownikom nie jest w stanie wykraść sekretów aplikacji

https://software.intel.com/en-us/articles/intel-software-guard-extensions-tutorial-part-1-foundation

ZAUFANA INFRASTRUKTURA OBLICZENIOWA

31

Redukcja obszaru ataku dzięki SGX

SGX ...

- · Łańcuch zaufania
- · Źródła zaufania
- Metryki i ich pomiary
- Specyfikacje przemysłowe
 - · ARM TrustZone
 - Intel Software Guard eXtensions (SGX)
 - Trusted Computing Group (TCG)

Architektura warstwowa ↔ TCB tylko sprzętowa

https://software.intel.com/en-us/articles/intel-software-guard-extensions-tutorial-part-1-foundation

ZALIFANA INFRASTRIJKTURA OBLICZENIOWA

Ochrona przed szpiegowaniem pamięci

SGX ...

- · Łańcuch zaufania
- Źródła zaufania
- · Metryki i ich pomiary
- Specyfikacje przemysłowe
 - · ARM TrustZone
 - Intel Software Guard eXtensions (SGX)
 - Trusted Computing Group (TCG)

- Obszar bezpieczeństwa to granica pakietu procesora
- Dane i kod są w pakiecie procesora niezaszyfrowane
- Dane i kod poza pakietem procesora są szyfrowane i/lub sprawdzane pod kątem integralności
- Odczytując pamięć zewnętrzną i magistralę szpiedzy widzą tylko zaszyfrowane dane.

Wydział Informatyki

ZAUFANA INFRASTRUKTURA OBLICZENIOWA

33

Ogólny schemat sprzętu/oprogramowania SGX

SGX ...

- Łańcuch zaufania
- · Źródła zaufania
- Metryki i ich pomiary
- Specyfikacje przemysłowe
 - · ARM TrustZone
 - Intel Software Guard eXtensions (SGX)
 - Trusted Computing Group (TCG)

Wydział Informatyki

<u>Instructions</u> **EEXIT** Application EGETKEY Environment FREPORT EENTER ERESUME Instructions ECREATE ETRACK Privileged **EWB** EEXTEND ELD Environment EINIT tables Module EBLOCK EREMOVE Platform Exposed **EPC EPCM** Hardware

Pamięć podręczna stron enklawy (EPC) to chroniona pamięć używana do przechowywania stron enklawy i struktur SGX. EPC jest podzielona na fragmenty 4KB zwane stroną EPC. Mapa pamięci podręcznej strony enklawy (EPCM) to chroniona struktura używana przez procesor do śledzenia zawartości EPC.

ZALIFANA INFRASTRIJKTURA OBLICZENIOWA

Środowisko programistyczne SGX

SGX ...

- · Łańcuch zaufania
- Źródła zaufania
- · Metryki i ich pomiary
- Specyfikacje przemysłowe
 - ARM TrustZone
 - Intel Software Guard eXtensions (SGX)
 - Trusted Computing Group (TCG)

Proces użytkownika

Enklawa

Chronione środowisko wykonawcze osadzone w procesie:

- · Z własnym kodem i danymi
- Zapewniające ochronę poufności i integralności
- Z kontrolowanymi punktami wejścia
- Obsługujące wiele wątków
- Z pełnym dostępem do pamięci aplikacji
- Dedykowane punkty wejście do enklawy

TCS= Thread Control Structure

ZAUFANA INFRASTRUKTURA OBLICZENIOWA

35

Atestacja i pieczętowanie

SGX ...

- Łańcuch zaufania
- Źródła zaufania
- Metryki i ich pomiary
- Specyfikacje przemysłowe
 - ARM TrustZone
 - Intel Software Guard eXtensions (SGX)
 - Trusted Computing Group (TCG)

Pojęcia te zostaną wyjaśnione w kolejnym wykładzie o module TPM

Wydział Informatyki

74LIFANA INFRASTRIJKTI IRA OBI ICZENIOWA

Trusted Computing Group (TCG)

TCG ...

- · Łańcuch zaufania
- Źródła zaufania
- · Metryki i ich pomiary
- Specyfikacje przemysłowe
 - · ARM TrustZone
 - · Intel Software Guard
 - · Trusted Computing Group (TCG)

- Grupa założona w 1999 przez firmy Compag, HP, IBM, Intel i Microsoft
 - · Obecnie skupia ponad 200 członków
- Wersje specyfikacji TPM (Trusted Platform Module)
 - TPM 1.0 opublikowana w lutym 2001 r.
 - TPM 1.1b opublikowana w 2003 r.
 - TPM 1.2 rozwijana w latach 2005–2011
 - · TPM 2.0 opublikowana w kwietniu 2014 r.
- Aktualnie stosowane specyfikacje TPM
 - Version 1.2 Revision 116, 1 Mar 2011
 - Brak kompatybilności z Version 1.1
 - Version 2.0 Revision 01.38, Version 2.0 Revision 01.38, November 8, 2019 (ISO/IEC 11889:2015, parts 1-4)
- Standardy TPM są opracowywane przez Trusted Computing Group (TCG), www.trustedcomputinggroup.org

Cooprocesor-based TEE - zaufana architektura obliczeniowa

37

TPM ...

- · Łańcuch zaufania
- Źródła zaufania
- · Metryki i ich pomiary
- · Specyfikacje przemysłowe
 - · ARM TrustZone
 - · Intel Software Guard eXtensions (SGX)
 - · Trusted Computing Group (TCG)

TPM (Trusted Platform Module): moduł sprzętowy odporny na manipulacje zamontowany na platformie

obliczeniowej.

Odpowiedzialny za: pomiar, przechowywanie, raportowanie

Zaufana architektura obliczeniowa - TPM 1.2

Cryptographic **Protected Memory TPM** ... Co-Processor Bus Random Number Endorsement Key (EK) · Łańcuch zaufania Generator unique & unerasable Źródła zaufania Secured Input/Output via LPC · Metryki i ich pomiary **RSA Key Pair** Storage Root Key (SRK) Specyfikacje Generator przemysłowe RSA Encryption / Platform Configuration ARM TrustZone Signature Engine Registers (PCR) · Intel Software Guard Symmetric Attestation Identity Keys · Trusted Computing **Encryption Engine** (AIK) Group (TCG) SHA-1 / HMAC **Volatile Memory** Engine Wydział Informatyki

39

Zaufana architektura obliczeniowa - TPM 2.0

TPM ...

- Łańcuch zaufania
- · Źródła zaufania
- · Metryki i ich pomiary
- Specyfikacje przemysłowe
 - ARM TrustZone
 - Intel Software Guard eXtensions (SGX)
 - Trusted Computing Group (TCG)

Wydział Informatyki

TPM ...

- · Łańcuch zaufania
- Źródła zaufania
- · Metryki i ich pomiary
- Specyfikacje przemysłowe
 - · ARM TrustZone
 - Intel Software Guard eXtensions (SGX)
 - Trusted Computing Group (TCG)

Wydział Informatyki

ZALIFANA INFRASTRIJKTURA OBI ICZENIOWA

41

Co wg TCG zapewnia TPM?

TPM ...

- · Łańcuch zaufania
- · Źródła zaufania
- Metryki i ich pomiary
- Specyfikacje przemysłowe
 - ARM TrustZone
 - Intel Software Guard eXtensions (SGX)
 - Trusted Computing Group (TCG)

Izolacja i odporność na manipulacje

Wydział Informatyki

ZALIFANA INFRASTRIJKTURA OBLICZENIOWA

Zaufana platforma (Trusted Platform, TP) - podsumowanie

TPM ...

- · Łańcuch zaufania
- Źródła zaufania
- · Metryki i ich pomiary
- Specyfikacje przemysłowe
 - · ARM TrustZone
 - Intel Software Guard eXtensions (SGX)
 - Trusted Computing Group (TCG)

- Zaufane platformy (TP) to platformy komputerowe zawierające zestaw wbudowanych komponentów sprzętowych, które są wykorzystywane jako podstawa do budowania zaufania do oprogramowania.
- · Zaufane komponenty to:
 - główne źródło (rdzeń) zaufania do pomiaru (Root of Trust for Measurement RTM), i
 - Zaufany komponent sprzętowy, np. moduł zaufanej platformy (TPM).
- Zaufane komponenty są podłączone na stałe do płyty głównej lub wbudowane w oprogramowanie układowe.

Wydział Informatyki

ZAUFANA INFRASTRUKTURA OBLICZENIOWA

43

Zaufana platforma (Trusted Platform, TP) - podsumowanie

TPM ...

- · Łańcuch zaufania
- Źródła zaufania
- Metryki i ich pomiary
- Specyfikacje przemysłowe
 - · ARM TrustZone
 - Intel Software Guard eXtensions (SGX)
 - Trusted Computing Group (TCG)
 - Iniopomorski t Technologiczny zczecinie

Wydział Informatyki

- Zaufana platforma (TP)
 łączy w sobie
 mechanizmy
 zabezpieczenia sprzętu
 i oprogramowania
 mające na celu
 zapewnienia zaufania do
 urządzenia użytkownika.
- Zaufanie wywodzi się ze sprzętowego zaufanego komponentu, np. TPM.

Referencyjna architektura komputera osobistego

ZALIFANA INFRASTRIJKTI IRA OBI ICZENIOWA

Podstawowe własności zaufanej platformy z komponentem **TPM 1.2**

45

Podstawowe własności zaufanej platformy z komponentem

Porównanie zaufanych architektur komputerowych opartych na sprzęcie

TPM ...

- · Łańcuch zaufania
- Źródła zaufania
- · Metryki i ich pomiary
- Specyfikacje przemysłowe
 - · ARM TrustZone
 - Intel Software Guard eXtensions (SGX)
 - Trusted Computing Group (TCG)

P. Maene, et al. Hardware-Based Trusted Computing Architectures for Isolation and Attestation, IEEE Transactions on Computers, vol. 67, no. 3, pp. 361-374, 1 March 2018,

Jan Tobias Mühlberg
"Trusted Execution
Environments
and how far you can
trust them"

ZALIFANA INFRASTRUKTURA OBLICZENIOWA

