人大附中练珊·高中数学处修三 P\$46. 13题.

解 *法1: tanA= cosB-cosC sinC-sinB

.. tanA 麓义且 Sin C-SinB #0

:: A 丰至且 Sn B ≠ Sn C

 $\frac{sinA}{cosA} = \frac{cosB - cosC}{sinC - sinB} = cosA(cosB - cosC)$

.. sinAsinC - sinAsinB = cosAcosB - cosAcosC

: cosA cosC+snAsnC = cosA cosB+snAsunB

cos(A-C) = cos(A-B)

 $A \in (0,\pi)$, $B \in (0,\pi)$, $C \in (0,\pi)$

 $A \in (0, \pi), -B \in (-\pi, 0), -C \in (-\pi, 0)$

 $A-B\in(-\pi,\pi)$, $A-C\in(-\pi,\pi)$

:. A-C=A-B \vec{A} A-C=-(A-B).

若A-C=A-B,则-C=-B, B=C. :SuB=sin C. 豬.

A - C = -(A - B) = B - A A - C = B + C

: $B+C=\pi-A$: $2A=\pi-A$: $A=\frac{\pi}{3}$

: A=3且B+C(假设B=C,则suB=suC. Than B+C).

假设B=子.则·A=子·C=T-A-B=子·五届B=C

: Sin B = Sin C 種 . . B + 3 . 同理可证: C + 3.

: A=受且B+C且B+受且C+受。

· △ABC是 山三亚M的三角形,且不是等边三角形,不是等腰三角形。

法2:先推导和差化积公式。 设x+y=A, x-y=B. $N: x=\frac{A+B}{2}$, $y=\frac{A-B}{2}$ $cos \times - cos y = cos \left(\frac{A}{2} + \frac{B}{2}\right) - cos \left(\frac{A}{2} - \frac{B}{2}\right)$ $= \cos \frac{A}{2} \cos \frac{B}{2} - \sin \frac{A}{2} \sin \frac{B}{2} - (\cos \frac{A}{2} \cos \frac{B}{2} + \sin \frac{A}{2} \sin \frac{B}{2})$ $= -2\sin\frac{4}{2}\sin\frac{8}{2} = -2\sin\frac{x+y}{2}\sin\frac{x-y}{2}$ $Sinx - Siny = Sin\left(\frac{A}{2} + \frac{B}{2}\right) - Sin\left(\frac{A}{2} - \frac{B}{2}\right)$ $= sin \frac{A}{2} cos \frac{B}{2} + cos \frac{A}{2} sin \frac{B}{2} - \left(sin \frac{A}{2} cos \frac{B}{2} - cos \frac{A}{2} sin \frac{B}{2}\right)$ $=2\cos\frac{A}{2}\sin\frac{B}{2}=2\cos\frac{x+y}{2}\sin\frac{x-y}{2}$: $\cos B - \cos C = -2 \sin \frac{B+C}{2} \sin \frac{B-C}{2} = -2 \sin \frac{\pi - A}{3} \sin \frac{B-C}{3} = -2 \cos \frac{A}{2} \sin \frac{B-C}{3}$ $Sin C - Sin B = 2 cos \frac{C+B}{2} sin \frac{C-B}{2} = 2 cos \frac{\pi - A}{2} sin \frac{C-B}{2} = \frac{2 sin \frac{A}{2} sin \frac{C-B}{2}}{2}$ $= -2 \sin \frac{A}{2} \sin \frac{B-C}{2}$ $: \quad \mathsf{B} \in (\mathsf{o}, \pi) \ , \ \mathsf{C} \in (\mathsf{o}, \pi) \ : \quad -\mathsf{C} \in (-\pi, \circ) \ : \quad \mathsf{B} - \mathsf{C} \bowtie \in (-\pi, \pi)$ $\frac{B-C}{7}\in\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ $\therefore A \in (0, \pi) \quad \therefore \frac{A}{2} \in (0, \frac{\pi}{2}) \quad \therefore \sin \frac{A}{2} > 0, \quad \cos \frac{A}{2} > 0, \quad \tan \frac{A}{2} > 0$: $\sin C - \sin B \neq 0$: $-2\sin \frac{A}{2}\sin \frac{B-C}{2} \neq 0$: $\sin \frac{B-C}{2} \neq 0$: $\frac{B-C}{2} \neq 0$: $B \neq C$ $\frac{\cos B - \cos C}{\sin C - \sin B} = \frac{-2\cos\frac{A}{2}\sin\frac{B-C}{2}}{-2\sin\frac{A}{2}\sin\frac{B-C}{2}} = \frac{1}{\tan\frac{A}{2}}$ $SM(-SNB) = \frac{-2SM\frac{A}{2}Sin\frac{2}{2}}{tanA} = \frac{tanA}{2} = \frac{tanA}{2}$ $\frac{2\tan\frac{A}{2}}{1-\tan^2\frac{A}{2}} = \frac{1}{\tan\frac{A}{2}}$ 假设 $1-\tan^2\frac{A}{2} = 0$. 別 $\tan^2\frac{A}{2} = 1$. :: $\tan\frac{A}{2} = \pm 1$ $\therefore \stackrel{A}{=} \in (0, \frac{\pi}{2}) \qquad \therefore \stackrel{A}{=} = \stackrel{\pi}{+}, \quad \tan(\stackrel{A}{=}) = 1. \qquad \therefore A = \stackrel{\pi}{=} \qquad \therefore \tan A \not \approx 2. \not \Rightarrow 6. \qquad \therefore 1 - \tan^2 \frac{A}{2} \neq 0.$: $2 \tan^2 \frac{A}{2} = 1 - \tan^2 \frac{A}{2}$: $3 \tan^2 \frac{A}{2} = 1$: $\tan \frac{A}{2} = \frac{3}{3}$ (注意 $\tan \frac{A}{2} > 0$) $A = \frac{\pi}{3} = 6^{\circ}$ 同样可用处证法证明 $B \neq \frac{\pi}{3}$ 且 $C \neq \frac{\pi}{3}$