INTRODUCTION TO LIE ALGEBRAS – SOLUTION 14

First suppose that (i) the Lie algebra \mathfrak{g} is solvable. Then in the sequence

$$\mathfrak{g}^{(0)} = \mathfrak{g} \supset \mathfrak{g}^{(1)} = \mathfrak{g}' \supset \mathfrak{g}^{(2)} = \mathfrak{g}'' \supset \dots$$

of derived algebras we have $\mathfrak{g}^{(n)} = \mathfrak{g}^{(n+1)} = \ldots = \{0\}$ for some sufficiently large number n. Thus $\mathfrak{g}^{(0)} = \mathfrak{g}$, $\mathfrak{g}^{(n)} = \{0\}$, and the factor Lie algebra $\mathfrak{g}^{(i)}/\mathfrak{g}^{(i+1)}$ is Abelian by Example 13. Since, by the Jacobi Identity, the Lie bracket of two ideals is again an ideal, it follows by induction on i that each $\mathfrak{g}^{(i)}$ is an ideal in \mathfrak{g} . We have proved that (i) \Rightarrow (ii).

Now suppose that (ii) there exist ideals $\mathfrak{g}_0 \supset \mathfrak{g}_1 \supset \ldots \supset \mathfrak{g}_n$ of \mathfrak{g} such that $\mathfrak{g}_0 = \mathfrak{g}$, $\mathfrak{g}_n = \{0\}$, and for every index $i = 0, \ldots, n-1$ the factor Lie algebra $\mathfrak{g}_i/\mathfrak{g}_{i+1}$ is Abelian. Let us prove inductively for $i = n, n-1, \ldots, 0$ that the Lie algebra \mathfrak{g}_i is solvable. For i = 0 we will then obtain that \mathfrak{g} is solvable. Note that $\mathfrak{g}_n = \{0\}$. In particular, \mathfrak{g}_n is solvable. Now assume that \mathfrak{g}_{i+1} is solvable for some i < n. We know that the factor Lie algebra $\mathfrak{g}_i/\mathfrak{g}_{i+1}$ is Abelian. In particular, it is solvable. Then \mathfrak{g}_i is solvable, because both \mathfrak{g}_{i+1} and $\mathfrak{g}_i/\mathfrak{g}_{i+1}$ are solvable.

INTRODUCTION TO LIE ALGEBRAS – SOLUTION 15

Consider the image $\operatorname{ad} \mathfrak{g} \subset \operatorname{Der}(\mathfrak{g})$ of \mathfrak{g} . The linear map $X \mapsto \operatorname{ad} X$ is a homomorphism of the Lie algebra \mathfrak{g} onto this image. Therefore if \mathfrak{g} is solvable or nilpotent, then so is $\operatorname{ad} \mathfrak{g}$ by Theorem B.

Now we prove the other implication. The kernel of the map $X \mapsto \operatorname{ad} X : \mathfrak{g} \to \operatorname{ad} \mathfrak{g}$ is exactly the centre $\mathcal{Z}(\mathfrak{g})$ of the Lie algebra \mathfrak{g} :

$$\operatorname{ad} X = 0 \quad \Leftrightarrow \quad [X, Y] = 0 \text{ for any } Y \in \mathfrak{g}.$$

So, by a general property of Lie algebra homomorphisms, the Lie algebra ad \mathfrak{g} is isomorphic to the factor Lie algebra $\mathfrak{g}/\mathcal{Z}(\mathfrak{g})$. Hence $\mathfrak{g}/\mathcal{Z}(\mathfrak{g})$ is solvable or nilpotent if and only if this holds for ad \mathfrak{g} . Furthermore, the centre $\mathcal{Z}(\mathfrak{g})$ is abelian and therefore solvable. So the assertion follows from Theorem C.