

AR (4I403) - TD CHORD

CORRECTION

Exercice(s)

Exercice 1 – Ordre cyclique

Soit \mathbb{Z} , l'ensemble des entiers relatifs. Soit K un entier strictement positif. On dit que a et b sont congruents modulo <math>K, noté $a \equiv b[K]$, si et seulement si il existe λ dans \mathbb{Z} tel que $b = a + \lambda K$. On note \overline{a} l'unique entier dans [0, K[tel que $\overline{a} \equiv a[K]$. Enfin, $d_K(a,b) = min(\overline{a-b},\overline{b-a})$ est appelée la distance entre a et b.

Question 1

Quelle est la distance maximum entre deux entiers a et b, $a, b \in [0, K[$?

Solution

$$\forall a, b \in [0, K[, d_K(a, b) \le \lfloor \frac{K}{2} \rfloor].$$

Fin solution

Question 2

Soit a et b dans [0, K[. Selon les valeurs de a et de b, exprimer en extension l'ensemble des valeurs de [a, b[? **Solution**:

$$[a,b] = \begin{cases} \{a,a+1,\ldots,b-1\} \text{ if } a < b \\ \{a,a+1,\ldots,K-1,0,1,\ldots,b-1\} \text{ if } a \ge b \end{cases}$$

Fin solution

Question 3

Ecrire la fonction booléenne app(k,a,b) qui vérifie que $k\in [a,b[$.

Solution:

```
int app(int k, int a, int b) {    if (a < b) return ((k >= a) && (k < b));    return (((k >= 0) && (k < b)) || ((k >= a) && (k < N))); }
```

Ou format macro:

```
#define app(k,a,b) ((a)<(b))?((k)>=(a) && (k)<(b)) : \ ((((k)>=0) && ((k)<(b))) || (((k)>=(a)) && ((k)<N)))
```

Fin solution

Dans la suite, on défini la relation d'ordre cyclique notée \leq sur [0..K-1] de la manière suivante :

$$a \preceq b \text{ ssi } 0 \leq \overline{b-a} \leq \lfloor \frac{K}{2} \rfloor$$

Exercice 2 - DHT

On considère une DHT de type *Chord* pouvant stocker entre 0 et 2^K clés distinctes numérotés de 0 à $2^K - 1$. Une ressource du système est soit une clé, soit un pair. Toutes les resources du système pair-à-pair sont indexées via la DHT. Par simplification, on suppose que la clé d'un pair p_i est égale à i. Tous les calculs dans $[0..2^K - 1]$ sont fait modulo 2^K . Par abus de notation, la relation d'ordre \leq définie sur $\mathbb Z$ pourra êrte utilisée en lieu et place de la relation d'ordre cyclique \leq . C_p est un ensemble dans lequel un pair p stocke des clés dont il a la responsabilité. Chaque clé k est stockée sur le plus petit pair p_i tel que $k \leq i$.

On suppose que la DHT regroupe au moins 2 pairs. Le *successeur* d'un pair p_i est le pair p_j tel que j est la plus petite clé *strictement* supérieur à i. Chaque pair p_i a une table de routage des clés $i + 2^k$, $k \in [0..K - 1]$.

Question 1

Avec ce type d'overlay, quelle sera la complexité dans le pire des cas d'une requête couvrant un intervalle de valeurs, par exemple, *Trouver l'ensemble des clés dont le numéro est supérieur à 34*? Justifiez votre réponse.

Solution:

Avec ce type d'overlay, le mécanisme de routage n'est utile que pour rechercher des valeurs exactes. Il faut donc faire une recherche en utilisant la structure d'anneau, c'est-à-dire en allant de successeur en successeur. La complexité d'un telle recherche est donc de O(n) (n étant le nombre de pairs dans le système).

Fin solution

Dans la suite de l'exercice, on supposera que K=6 et que le système pair à pair est constitué des 10 pairs suivants : p_2 , p_7 , p_{13} , p_{14} , p_{21} , p_{38} , p_{42} , p_{48} , p_{51} et p_{59} . La figure ci-dessous représente le système avec la table de routage de p_7 (les étiquettes sur les arcs représentent leurs index respectifs dans la table de routage).

Ouestion 2

Sur le modèle de la table de p_7 ci-dessous, donnez les tables de routage des pairs p_{51} et p_{21} . Il est conseillé de suivre le modèle de réponse suivant :

	Table de p_7			
i	$(7+2^i) \mod 2^K$	j		
0	8	13		
1	9	13		
2	11	13		
3	15	21		
4	23	38		
5	39	42		

Solution:

Je donne toutes les tables, ça peut servir...

Table de p_2		
i	$2 + 2^{i}$	j
0	3	7
1	4	7
2	6	7
3	10	13
4	18	21
5	34	38

	5 · 1 · · · · · · · · · · · · · · · · ·		
Table de p_{13}			
i	$13 + 2^i$	j	
0	14	14	
1	15	21	
2	17	21	
3	21	21	
4	29	38	
5	45	48	

Table de p_{14}		
i	$14 + 2^{i}$	j
0	15	21
1	16	21
2	18	21
3	22	38
4	30	38
5	46	48

Table de p_{21}		
i	$21 + 2^i$	j
0	22	38
1	23	38
2	25	38
3	29	38
4	37	38
5	53	59

Table de p_{38}		
i	$38 + 2^i$	j
0	39	42
1	40	42
2	42	42
3	46	48
4	54	59
5	70[K] = 6	7

Table de p_{42}		
i	$42 + 2^i$	j
0	43	48
1	44	48
2	46	48
3	50	51
4	58	59
5	74[K] = 10	13

Table de p_{48}		
i	$48 + 2^i$	j
0	49	51
1	50	51
2	52	59
3	56	59
4	0	2
5	16	21

Table de p_{51}		
i	$51 + 2^i$	j
0	52	59
1	53	59
2	55	59
3	59	2
4	3	7
5	19	21

Table de p_{59}		
i	$59 + 2^i$	j
0	60	2
1	61	2
2	63	2
3	3	7
4	11	13
5	27	38

Fin solution

Le principe de la recherche d'un élément de clé k par un pair p_i est le suivant :

- Soit j la plus grande clé de la finger table de p_i tel que $k \in]j;i]$.
- Si j existe, la requête de recherche de k est transmise au pair p_i qui répète récursivement.
- Si j n'existe pas, le successeur de p_i est responsable de k et p_i lui demande directement si k est présent.

Question 3

Décrire les différentes étapes de l'algorithme lorsque le pair p_7 recherche la clé 30.

Solution:

 p_7 recherche dans la table finger[] le plus grand pair j tel que $30 \in [j, 7[$: c'est p_{21} . p_7 transmet la requête à p_{21} .

A la réception du message, p_{21} recherche dans la table finger[] le plus grand pair j tel que $30 \in [j, 21[$: il n'en trouve pas. Donc, demande directe au successeur, p_{38} .

Ce dernier cherche 30 dans C_{38} et notifie le résultat à p_7 .

Fin solution

Question 4

Même question pour les cas suivants :

- $-p_7$ recherche la clé 0;
- $-p_7$ recherche la clé 10;
- $-p_{51}$ recherche la clé 50;
- $-p_{51}$ recherche la clé 22.

Solution:

- p_7 recherche dans la table finger[] le plus grand pair j tel que $0 \in [j, 7[$: c'est p_{42} . p_7 transmet la requête à p_{42} . A la réception du message, p_{42} recherche dans la table finger[] le plus grand pair j tel que $0 \in [j, 42[$: c'est p_{59} . p_{42} transmet la requête à p_{59} .

A la réception du message, p_{59} recherche dans la table finger[] le plus grand pair j tel que $0 \in [j, 59[$: il n'en trouve pas. Donc, demande directe au successeur, p_2 .

Ce dernier cherche 0 dans C_2 et notifie le résultat à p_7 .

- p_7 recherche dans la table finger[] le plus grand pair j tel que $10 \in [j, 7[$: il n'en trouve pas. Donc, demande directe au successeur, p_{13} .

Ce dernier cherche 10 dans C_2 et notifie le résultat à p_7 .

- p_{51} recherche dans la table finger[] le plus grand pair j tel que $50 \in [j, 51[$: c'est p_{21} . p_{51} transmet la requête à p_{21} .

A la réception du message, p_{21} recherche dans la table finger[] le plus grand pair j tel que $50 \in [j, 21[$: c'est p_{38} . p_{21} transmet la requête à p_{38} .

A la réception du message, p_{38} recherche dans la table finger[] le plus grand pair j tel que $50 \in [j, 38[$: c'est p_{48} . p_{38} transmet la requête à p_{48} .

A la réception du message, p_{48} recherche dans la table finger[] le plus grand pair j tel que $50 \in [j, 48[$: il n'en trouve pas. Donc, demande directe au successeur, p_{51} .

Ce dernier cherche 50 dans C_{51} et notifie le résultat à p_{51} , i.e., lui-même.

- p_{51} recherche dans la table finger[] le plus grand pair j tel que $22 \in [j, 51[$: c'est p_{21} . p_{51} transmet la requête à p_{21} .

A la réception du message, p_{21} recherche dans la table finger[] le plus grand pair j tel que $22 \in [j, 21[$: il n'en trouve pas. Donc, demande directe au successeur, p_{38} .

Ce dernier cherche 22 dans C_{51} et notifie le résultat à p_{51} .

Fin solution

Question 5

Que se passe t-il si la clé recherchée n'est pas dans la DHT?

Solution

Idem, mais la fonction de recherche doit renvoyer une valeur spéciale pour dire que la clé n'existe pas, par ex. -1 ou nil.

Fin solution

Question 6

Ecrire une fonction booléenne lookup(k) qui permet à un pair de tester si k appartient à la DHT ou non.

Solution:

Fin solution

FIGURE 1 – Algorithm for Process p

```
Input:
      P: set of pairs
     \forall i \in [0..m-1], finger_p[i] \in [0..2^m-1] : finger table
     C_p: set of keys stored by p
Variables:
     next, q: CHORD identifiers of pair
Routine:
      send(m) to q: send the message m to the pair of CHORD identifier q
Function initiate\_lookup(k \in [0...2^m - 1])
begin
      lookup(k, p)
end
Function lookup(k \in [0...2^m - 1], initiator \in P)
begin
     next = findnext(k)
     if next = nil
     then send (lastchance, initiator, k) to finger[0]
     else send (lookup, initiator, k) to next
      endif
end
Upon receipt of (lookup, initiator, k) from q do
      lookup(k, initiator)
end
Upon receipt of (lastchance, initiator, k) from q do
begin
     if k \in C_p
     then send (\mathtt{succ}, p) to initiator
      else send (succ, nil) to initiator
      end if
end
Upon receipt of (succ, id) from q do
begin
      return id
end
Function findnext(k \in [0...2^m - 1])
begin
     for i = m - 1 to 0 step -1 do
            if k \in ]finger_p[i]; p]
            then return finger_p[i]
            end if
      end for
      return nil
end
```