# PRODUTO DE ESTIMATIVA DE PRECIPITAÇÃO POR SATÉLITE (O ALGORITMO HIDROESTIMADOR) DESCRIÇÃO DO PRODUTO CONTEXTUALIZADO PARA A REGIÃO DE ITAJUBÁ-MG Realizador por:

JEFFERSON MARTINIANO CASSEMIRO

Contato: <a href="mailto:cassemirojefferson@gmail.com">cassemirojefferson@gmail.com</a>

LORENA BEZERRA DA ROCHA

Contato: <a href="mailto:lore.bezerra.r@gmail.com">lore.bezerra.r@gmail.com</a>

Itajubá - MG Dezembro de 2019

# SUMÁRIO

| 1.  | INTRODUÇÃO                                         | 3  |
|-----|----------------------------------------------------|----|
| 1.1 | NOME DO PROJETO BÁSICO                             | 4  |
| 1.2 | OBJETIVO                                           | 4  |
| 2.  | PRODUTO DE ESTIMATIVA DE PRECIPITAÇÃO POR SATÉLITE | 4  |
| 2.1 | DESCRIÇÃO DO PRODUTO                               | 4  |
| 3.  | ESTRUTURA DOS DIRETÓRIOS DO PRODUTO                | 5  |
| 3.1 | src                                                | 6  |
| 3.2 | input                                              | 11 |
| 3.3 | output                                             | 11 |
| 4.  | PROCEDIMENTO PARA PROCESSAR O PRODUTO              | 11 |
| 5.  | CONSIDERAÇÕES FINAIS                               | 12 |
| 6.  | REFERÊNCIAS BIBLIOGRÁFICAS                         | 13 |

# 1. INTRODUÇÃO

Esse documento pertence ao produto de estimativa de precipitação por satélite (o algoritmo Hidroestimador) contextualizado para a região de Itajubá. Esse trabalho é decorrente da disciplina denominada "Ferramentas de Previsão de Curtíssimo Prazo (nowcasting)" pertencente ao curso de graduação em Ciências Atmosféricas da Universidade Federal de Itajubá (Unifei). O Hidroestimador tem como principal característica estimar precipitação empregando-se da temperatura do canal infravermelho do satélite GOES-16. A operação estará disponível no site do curso Ciências Atmosféricas (https://meteorologia.unifei.edu.br), a sua interface possui menus interativos com o objetivo de compor os produtos relacionados ao nowcasting, esperando que seja de grande utilidade para os moradores, Defesa Civil, tomadores de decisão e agricultores locais.

Estimativa de precipitação por satélite é extremamente importante como auxílio na prevenção de desastres naturais, principalmente em áreas de baixa densidade de postos pluviométricos. Ainda que informações regionalizadas sobre a estimativa de precipitação por satélite são escassas, elas podem ser essenciais na contribuição para uma veiculação eficiente de estratégias que antecipem eventos severos de tempo, a fim de minimizar ou até mesmo eliminar os prejuízos causados aos diversos setores da sociedade.

Os arquivos binários do Hidroestimador disponibilizados pelo Centro de Previsão de Tempo e Estudos Climáticos (CPTEC) são utilizados e para cada arquivo é plotada uma imagem para todo o Brasil, imagens setorizadas das 5 regiões do Brasil e uma imagem para o estado de Minas Gerais. Há também a imagem para todo o Brasil da precipitação acumulada diária. A última funcionalidade do produto é uma tabela com os acumulados de precipitação das últimas 6 horas para cada município do sul de Minas Gerais.

Nas seções seguintes deste documento são apresentadas as características do produto de estimativa de precipitação por satélite; como foi desenvolvido cada componente do produto; o procedimento para operacionalização e instalação do produto, exemplo do produto.

#### 1.1 NOME DO PROJETO BÁSICO

Produto de estimativa de precipitação por satélite utilizando o Hidroestimador

#### 1.20BJETIVO

O objetivo deste produto de *nowcasting* foi montar e operacionalizar um produto de estimativa de precipitação por satélite (o algoritmo Hidroestimador) contextualizado para a região de Itajubá.

## 2. PRODUTO DE ESTIMATIVA DE PRECIPITAÇÃO POR SATÉLITE

### 2.1 DESCRIÇÃO DO PRODUTO

A estimativa de precipitação não é um processo comum, ela envolve várias técnicas físicas e empíricas a fim de relacionar a quantidade de chuva com a radiação medida pelo satélite em diferentes faixas do espectro eletromagnético. O produto desenvolvido mostra em tempo quase-real a estimativa de precipitação, com frequência de 10 minutos, para todo o Brasil, além de todas as 5 regiões do país (Norte, Nordeste, Centro-Oeste, Sudeste e Sul) e todo o estado de Minas Gerais. Foram utilizados os arquivos binários do Hidroestimador disponibilizados pelo CPTEC, no site: http://ftp.cptec.inpe.br/goes/goes16/hidroest/est\_prec/, com resolução temporal de 10 minutos.

A estimativa é feita por meio de imagens de satélites através do reconhecimento das características físicas das nuvens e da associação dessas características a taxa de precipitação, registrando a temperatura das nuvens de acordo com sua altura e espessura. O Hidroestimador utiliza dados de imagem de satélite no infravermelho e a saída de parâmetros meteorológicos do modelo de previsão de tempo ETA (VICENTE et al., 1998). Ele utiliza a temperatura de brilho (Tb) do canal 10,7 µm do satélite GOES-16 e as converte a partir de uma relação de potência para taxa de precipitação estimada por radar.

Além disso, a taxa de precipitação é ajustada para diferentes regimes de umidade e crescimento das células convectivas. Porém, existem algumas exceções como por exemplo a nuvem Cirrus (Ci) é fria, mas tem baixa taxa de precipitação, já as nuvens Nimbostratus (Ns) são quentes, mas podem ter uma alta taxa de precipitação. A relação utilizada entre a precipitação medida com radar (mm/h) e a temperatura de brilho do topo da nuvem tende a superestimar a precipitação em ambientes úmidos e subestimar a precipitação em ambientes secos. Para fazer esta correção o

algoritmo Hidroestimador utiliza dados de água precipitável entre superfície e 250 mb e umidade relativa média entre superfície e 500 mb, ambas do modelo ETA.

A partir destes cálculos, o CPTEC processa estes dados, armazena-os em arquivos formato binário e os disponibilizam em seu site para utilização. Estes arquivos são os dados de entrada deste produto, que a partir do download, são transformados de arquivo formato binário para arquivo formato netcdf, utilizando o software Climate Data Operators (CDO). A geração das imagens de precipitação instantânea e precipitação acumulada é realizada utilizando o software Grid Analysis and Display System (GrADS). Já a tabela com os valores acumulados de precipitação das últimas 6 horas para cada município do sul de Minas Gerais é gerada via programa na linguagem Python. Para automatizar as tarefas do produto utiliza-se a programação Shell Script (sistema Linux) e disponível no site do curso Ciências Atmosféricas (https://meteorologia.unifei.edu.br) com uma interface com menus interativos, compondo os produtos relacionados ao *nowcasting*, esperando que seja de grande utilidade para os estudantes, moradores, Defesa Civil, tomadores de decisão e agricultores locais.

#### 3. ESTRUTURA DOS DIRETÓRIOS DO PRODUTO

A estrutura do produto de estimativa de precipitação por satélite é dividida em três diretórios:

- 1) src;
- 2) input;
- 3) output.

A Figura 1 mostra o diagrama de execução do produto de *nowcasting*, no diretório **src** existem todos os *script-shell* para a execução do produto, no **input** estão os dados de entrada, arquivos binários disponibilizados pelo CPTEC com resolução temporal de 10 minutos e no diretório **output** estão os dados de saída como as imagens de precipitação instantânea, acumulado diário e tabela do acumulado de precipitação das últimas 6 horas.



Figura 1 – Diagrama da execução do produto.

#### 3.1 src

No diretório **src** há subdiretórios que contém dados necessários para a execução do produto:

- 1) grads: contém as sub-rotinas, que serão utilizadas para o *plot* das imagens;
- 2) shapefile: contém os contornos em .shp;
- 3) sub: nesse subdiretório estão as sub-rotinas em *script-shell* para a conversão do dado binário em NetCDF para melhor manuseio e *plot* das imagens.

Na Figura 2 é mostrado como o diretório está organizado. Com três subdiretórios e quatro arquivos *script-shell* para o processamento.



Figura 2 - Organização do diretório src.

O *script-shell* principal é o *main\_instantanea.sh*, pode ser esquematizado pela Figura 3, esse código tem o objetivo de:

- baixar os arquivos binário do Hidroestimador;
- transformar o arquivo binário em NetCDF (/sub/cria\_ctl.sh e /sub/cria\_nc.sh);
- plotar imagens de precipitação instantânea para Brasil, Região Norte, Nordeste, Centro-Oeste, Sudeste, Sul e para o estado de Minas Gerais utilizando subrotinas (/sub/criar\_imagem\_brasil.sh, /sub/criar\_imagem\_CO.sh, /sub/criar\_imagem\_N.sh, /sub/criar\_imagem\_NE.sh, /sub/criar\_imagem\_S.sh, /sub/criar\_imagem\_SE.sh, /sub/criar\_imagem\_CO.sh e /sub/criar\_imagem\_MG.sh);
- upar o dado baixado e imagens feitas a cada 10 min para o ftp do site do curso Ciências Atmosféricas, para que o usuário possa visualizar essa estimativa de precipitação.



Figura 3 – Esquematização do script-shell nominado main\_instantanea.sh.

A cada rodada, o *main\_instantanea.sh* cria um arquivo lista.txt com os últimos três arquivos do ftp do CPTEC/INPE e o último arquivo é baixado. Após isso, esse arquivo é transformado em arquivo com extensão NetCDF através do *software* CDO, 7 imagens de precipitação instantânea são geradas pelo GrADS, e para finalizar esses arquivos são upados no ftp do site meteorologia.unifei.edu.br; no total, são criados 8 arquivos (Tabela 1), apenas o arquivo do Hidroestimador é mantido no diretório **output**, as imagens são apagadas.

**Tabela 1 –** Descrição dos arquivos gerados e respectivos tamanhos para *main\_instantanea.sh*.

| NOME DO ARQUIVO           | TAMANHO<br>(Kb) | TAMANHO TOTAL<br>(Mb) |
|---------------------------|-----------------|-----------------------|
| S11636382_201911280000.nc | 4263            |                       |
| ultima_img_brasil.png     | 245             |                       |
| ultima_img_CO.png         | 179             | 5,62                  |
| ultima_img_MG.png         | 477             |                       |
| ultima_img_N.png          | 253             |                       |
| ultima_img_N.png          | 151             |                       |
| ultima_img_S.png          | 11              |                       |
| ultima_img_SE.png         | 173             |                       |

O segundo *script-shell* a ser executado é o *main\_acum\_6h.sh*, esquematizado pela Figura 4, e tem por objetivo:

- juntar os arquivos das últimas 6 horas em um único;
- calcular o acumulado dessas 6 horas, visando o passo temporal dos arquivos, ou seja, é necessário multiplicar os dados por  $\Delta t = \frac{10}{60}$ ;
- georreferenciar os pontos de grade do Hidroestimador com as coordenadas geográficas dos municípios do Sul de Minas Gerais.



Figura 4 – Esquematização do script-shell nominado main\_acum\_6h.sh.

A cada rodada, o *main\_acum\_6h.sh* utiliza o subdiretório 6horas no diretório **output** para os cálculos. É criado um arquivo com as últimas 6 horas (ultimas\_6h.txt), que resgata os respectivos arquivos do Hidroestimador, após isso é realizado o cálculo do acumulado de precipitação nesse período (*acum\_6h.nc*) através do CDO. O próximo passo é georreferenciar os pontos de grade do *acum\_6h.nc* com o *shapefile* do Sul de Minas Gerais pela linguagem *Python*, e assim é gerada uma tabela (media\_municipios.txt) com todos os municípios da região e o acumulado de precipitação das últimas 6 horas. Após isso, todos os arquivos são apagados, exceto o arquivo *media\_municipios.txt*, no qual é upado para o ftp.

**Tabela 2 –** Descrição dos arquivos gerados e respectivos tamanhos para *main\_acum\_6h.sh*.

| NOME DO ARQUIVO      | TAMANHO<br>(Kb) | TAMANHO TOTAL<br>(Mb) |
|----------------------|-----------------|-----------------------|
| acum_6h.nc           | 4506            | 130,81                |
| acum_6hnc            | 4506            |                       |
| acum_horario_dia.nc  | 22323           |                       |
| hidro_horario_dia.nc | 80282           |                       |
| nc_acum.nc           | 22323           |                       |
| ultimas_6h.txt       | 0,07            |                       |
| 6h_geo.py            | 2               |                       |
| media_municipios.txt | 3               |                       |

O terceiro *script-shell* utilizado é o *main\_acumulado\_diario.sh*, esquematizado pela Figura 5. Esse código visa:

- juntar todos os arquivos de 00Z do dia em questão até 2350Z;
- acumular a precipitação em um único arquivo;
- criar imagem do acumulado diário de precipitação para o Brasil.



Figura 5 – Esquematização do script-shell nominado main\_acumulado\_diario.sh

Esse código possui rodada diária, então só precisa ser utilizado uma vez ao dia. Ao rodar, o *main\_acumulado\_diario.sh* gera um arquivo com todos os arquivos a cada 10 min do dia (*hidroestimador\_dia.nc*), assim é possível acumular diariamente a precipitação pelo CDO. Após isso, é gerada a imagem do acumulado diário de precipitação para o Brasil com o GrADS, todos os arquivos criados para esse cálculo são apagados, e somente a imagem é upada no ftp.

**Tabela 3 –** Descrição dos arquivos gerados e respectivos tamanhos para *main\_acumulado\_diario.sh*.

| NOME DO ARQUIVO               | TAMANHO<br>(Kb) | TAMANHO TOTAL<br>(Mb) |
|-------------------------------|-----------------|-----------------------|
| hidroestimador_dia.nc         | 463463          |                       |
| hidroestimador_dianc          | 17818           |                       |
| hidroestimador_dia_acum.nc    | 17818           |                       |
| hidroestimador_brasil_acum.gs | 824             | 489,05                |
| gera_acum.gs                  | 216             |                       |
| hidroestimador_dia.ctl        | 327             |                       |
| precip_diaria_hidro_dia.png   | 318             |                       |

O último código *limpa\_nc.sh* serve para limpar o diretório **output** toda vez que o acumulado diário é calculado, e assim não é mais necessário o uso dos arquivos do dia anterior.

#### 3.2 input

O diretório **input** armazena o último dado baixado no ftp do CPTEC/INPE e também é o local em que ocorre a conversão do arquivo binário (.bin) para o NetCDF, e logo após isso o arquivo .bin é apagado. Além disso, o *software* GrADS realiza todo o processamento das imagens nessa pasta, gerando os seus arquivos no **output**.

#### 3.3 output

O diretório **output** possui um subdiretório 6horas para cálculo do acumulado das últimas 6 horas de precipitação do *main\_acum\_6h.sh*, em que fica armazenada a tabela dos municípios. No diretório, os arquivos do Hidroestimador em NetCDF fica armazenado durante todo o dia (UTC), após isso, há a limpeza desse diretório para os novos dados do dia seguinte. As imagens geradas também ficam no **output**, porém a cada rodada, são apagadas.

#### 4. PROCEDIMENTO PARA PROCESSAR O PRODUTO

Para a utilização do produto, é necessário ter pré-instalado os seguintes recursos, além de acesso à *Internet*:

- a. software CDO:
- b. software GrADS;
- c. Linguagem Python3;
- d. Módulos: geopandas, xarray, pandas.

Para a instalação do produto, seguir o procedimento:

- 1) Entrar no diretório "src/" e "src/sub/" e mudar as informações do caminho, em que a pasta "hidroestimador\_unifei" está localizada, nos scripts-shell. A informação do caminho deverá ser colocada na variável "PATH\_name" no começo de todos os arquivos com extensão .sh.
- Após isso, é necessário montar um <u>cron</u> para automatizar o processo dos quatro códigos. Acesse o terminal, e utilize o comando "crontab -e", esse comando serve para criar um novo arquivo <u>cron</u>.
  - Escreva no arquivo aberto pelo terminal:
  - \*/5 \* \* \* \* /bin/bash

/caminho/da/pasta/hidroestimador\_unifei/src/main\_instantanea.sh

Como no ftp do CPTEC/INPE, os dados são upados a cada 10 minutos, configura-se o cron para fazer a verificação de novos arquivos a cada 5 minutos.

13 \* \* \* \* /bin/bash

/caminho/da/pasta/hidroestimador\_unifei/src/main\_acum\_6h.sh

O último arquivo de cada hora (50 min) é upado no ftp do CPTEC/INPE depois dos primeiros 7 minutos de cada hora, portanto, é necessário um intervalo seguro para ter todos os arquivos de uma hora completa.

12 21 \* \* \* \* /bin/bash

/caminho/da/pasta/hidroestimador\_unifei/src/main\_acumulado\_diario.sh

O último arquivo do dia é upado no ftp do CPTEC/INPE depois de 21:06 (BRT),
portanto, é necessário um intervalo seguro para ter todos os arquivos do dia no
diretório para realizar o acumulado diário.

52 03 \* \* \* /bin/bash /caminho/da/pasta/hidroestimador\_unifei/src/limpa\_nc.sh Esse cron serve para limpar todos os arquivos .nc do dia anterior (UTC) e assim, só pode ser utilizado quando os arquivos não forem mais úteis tanto para o acumulado diário quanto para o acumulado das últimas 6 horas.

Obs.: O formato cron é dado como: min hora dia mês ano ; caminho da função utilizada para rodar o programa ; caminho do programa que roda/programa que roda.

- No terminal, digitar "sudo service cron start", para iniciar a automatização do produto.

# 5. CONSIDERAÇÕES FINAIS

Este documento apresentou o produto de estimativa de precipitação por satélite (o algoritmo Hidroestimador) contextualizado para a região de Itajubá. Este produto estima a precipitação empregando-se da temperatura do canal infravermelho do satélite GOES-16.

A grande importância deste produto reside no fato que são escassas informações regionalizadas sobre a estimativa de precipitação por satélite e essas informações podem ser essenciais na contribuição para uma veiculação eficiente de estratégias que antecipem eventos severos de tempo, a fim de minimizar ou até mesmo eliminar os prejuízos causados aos diversos setores da sociedade, podendo ser beneficiadas com tal produto.

O produto foi estruturado em três diretórios, sendo cada um responsável por uma etapa do processamento do funcionamento do produto. Neste documento foi mostrado como foi desenvolvido cada processo.

Espera-se que este produto auxilie o monitoramento da precipitação pelos meteorologistas e que combinado com outras ferramentas de previsão de curtíssimo prazo possa melhorar a detecção e previsibilidade de sistemas precipitantes intensos. Este produto pode auxiliar na emissão de alertas e avisos meteorológicos para a antecipação de ocorrência de tempestades intensas. Além disso, o produto desenvolvido pode ser utilizado por pesquisadores. Este produto e seus códigos são de acesso livre, o que permite a qualquer usuário ou pesquisador implementar mudanças e melhorias conforme suas necessidades locais.

#### 6. REFERÊNCIAS BIBLIOGRÁFICAS

VICENTE, G. A.; SCOFIELD, R. A.; MENZEL, W. P. The operational GOES infrared rainfall estimation technique. **Bull. Amer. Meteor. Soc.,** 79, 1883-1898, 1998.