Topic 4 - Data Acquisition, Loading and Storage

Today we will learn about:

- How and where to get data from
- How images are loaded into a table-like structure
- How to save that table for better sharing
- See an image loading tutorial with three versions (Jupyter Notebook, Google Colab & GitHub)

Kaggle

https://www.kaggle.com/

HuggingFace

https://www.huggingface.co/

UCI Machine Learning Repository

https://archive.ics.uci.edu/ml/index.php

Pixel Loading

The most basic features in an image

Pixel Loading

The most basic features in an image

Like atoms for matter!

Pixel Loading

The most basic features in an image

Like atoms for matter!

An image is converted into a **vector** where each column represents a feature (pixel intensity)

```
import cv2
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
img = cv2.imread('imgs/logo.png', 0)
plt.imshow(img,'gray')
```

Out[2]: <matplotlib.image.AxesImage at 0x2968651ceb0>

Now we need to flatten the image so that it is represented as a vector

Now we need to flatten the image so that it is represented as a vector

```
In [3]: print("Shape of original image: ", img.shape)
    img_vector = img.flatten()
    print("Flattened image: ", img_vector)
    print("Shape of flattened image: ", img_vector.shape)

Shape of original image: (75, 75)
    Flattened image: [234 246 246 ... 246 246 234]
    Shape of flattened image: (5625,)
```

As more images get imported, we can create an **image dataset** by appending new images into a numpy array

As more images get imported, we can create an **image dataset** by appending new images into a numpy array

```
In [4]: # creating a variable to store the dataset
    dataset = img_vector.copy()
    # Importing and showing a new image
    img2 = cv2.imread('imgs/logotrans.png', 0)
    plt.imshow(img2,'gray')
    print(img2.shape)
(75, 75)
```



```
In [5]: # Flattening the second image
  img_vector2 = img2.flatten()
  # stacking the second vector created into our dataset
  dataset = np.vstack((dataset,img_vector2))
  # Printing the dataset
  print('Pixels in the image dataset: ',dataset)
  print('Shape of image dataset: ', dataset.shape)
Pixels in the image dataset: [[234, 246, 246, ..., 246, 246, 234]]
```

Pixels in the image dataset: [[234 246 246 ... 246 246 234] [0 243 243 ... 242 242 234]]
Shape of image dataset: (2, 5625)

Notice that we can append more images to create a larger dataset!

Notice that we can append more images to create a larger dataset! However, if we intend to use this dataset for **classification** purposes, then **all images** should be of the same size!

Notice that we can append more images to create a larger dataset!

However, if we intend to use this dataset for **classification** purposes, then **all images** should be of the same size!

If a new image with a different size has to be added to dataset, then we can use the resize function in OpenCV

```
In [6]: # Importing and showing a third image
  img3 = cv2.imread('imgs/logoaltered.png', 0)
  plt.imshow(img3,'gray')
  print(img3.shape)
```

(150, 150)


```
In [7]: # Resizing the image
   img3 = cv2.resize(img3, (75, 75))
   print('New dimensions of the image: ', img3.shape)
# Flattening the third image
   img_vector3 = img3.flatten()
# appending the third vector created
   dataset = np.vstack((dataset,img_vector3))
# Printing the array
   print(dataset, dataset.shape)
New dimensions of the image: (75, 75)
   [[234 246 246 ... 246 246 234]
   [ 0 243 243 ... 242 242 234]
```

[239 249 248 ... 248 249 239]] (3, 5625)

Sometimes, it is useful to **binarise images after importing & resizing** them to:

- Reduce the values for the features
- Increase quality/standardise samples

Sometimes, it is useful to binarise images after importing & resizing them to:

- Reduce the values for the features
- Increase quality/standardise samples

We will talk about this technique on our next session

Save the dataset as a .csv file

Save the dataset as a .csv file

```
In [8]: np.savetxt("imgs/dataset.csv", dataset, delimiter=",")
```


Why this makes sense?

How to do it with colour images?

If a 75 imes 75 image yielded 5'625 features (pixels), imagine with larger images!

If a 75 imes 75 image yielded 5'625 features (pixels), imagine with larger images!

Moreover, not all pixels contain valuable information

If a 75 imes 75 image yielded 5'625 features (pixels), imagine with larger images!

Moreover, not all pixels contain valuable information

This representation is typically not **rotation invariant** nor **structurally** representative of the images

Main issue: Libraries and processing power for next steps

Main issue: You cannot share so easily!

Main issued laws s		do this)	
Main issue: Lower s	pace, public (unless you	ao this)	

Main issue: "low space" (100 GB, mo				
Main issue: "low space" (100 GB, mo				
	ore if you ma	ake your datas	set public)	