

GÉOMÉTRIE ALGORITHMIQUE

Master Informatique Parcours Vision et Machine Intelligente

F. CLOPPET

2022-2023

SOMMAIRE

- Informations pratiques
- Introduction
- Notions Algorithmiques
- Méthodes Algorithmiques pour la géométrie
- Modéliser le monde
- Méthodes géométriques
 - Notions de base en géométrie
 - Méthodes applicables aux modèles discrets
 - Méthodes applicables aux modèles continus

Informations Pratiques

 Support de Cours Sur moodle

http://www.math-info.univ-paris5.fr/~cloppet/GeometrieAlgorithmique/

Contact

florence.cloppet@u-paris.fr

- Bureau 804 I
 - Pavillon Sappey 8ème étage

Planning

- Cours
 - 09h00-10h30 salle Fourier F543

- TD
 - 10h45-12h15 salle Fourier F 543

Modalités de contrôle des Connaissances

- Examen E
 - CC1 (1h) 40% de la note finale
 - épreuve écrite terminale de (1h30) 60% de la note finale
- Aucun document autorisé lors des épreuves

Bibliographie

- Géométrie Algorithmique, J. D. Boissonnat, Mariette Yvinec, Ediscience International, 1995
- Computational Geometry: Algorithms and Applications, M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf, Springer Verlag 2nd Edition, 2000.
- Computational Geometry in C, Joseph O'Rourke, Cambridge University Press, 2nd edition, 1998.

- Géométrie discrète et images numériques, D. Coeurjolly, A. Montanvert, J.M. Chassery, Hermès- Lavoisier, 2007.
- Geometric Tools for Computer Graphics, P. J. Scheider, D. H. Eberly, Morgan Kaufmann Publishers, Elsevier Science, 2003
- Algorithmes pour la synthèse d'images et l'animation 3D, Remy Malgouyres, Dunod Edition

SOMMAIRE

- Informations pratiques
- Introduction
- Notions Algorithmiques
- Méthodes Algorithmiques pour la géométrie
- Modéliser le monde
- Méthodes géométriques
 - Notions de base en géométrie
 - Méthodes applicables aux modèles discrets
 - Méthodes applicables aux modèles continus

Introduction (1)

 Nombreux domaines d'application où il faut savoir construire et traiter efficacement des objets de nature géométrique

- La robotique
- La vision par ordinateur
- L'informatique graphique
- La réalité virtuelle
- CAO
- Imagerie médicale

21 MR images 3mm. Courtesy of Dr. Stephane Boisgard, CHU Clermont Ferrand

Introduction (2)

- 1ers résultats de nature constructive en géométrie => Euclide
- Développements remarquables au 19ème S
- Mais pas de conception et d'analyse systématique des algorithmes géométriques

Introduction (3)

- Naissance de la géométrie algorithmique (autour des années 1975)
- Discipline à la frontière de la géométrie et de l'algorithmie
 - Construire et traiter de manière efficace des objets de nature géométrique
 - Conception et analyse d'algorithmes géométriques

Introduction (4)

- Apport majeur de la géométrie algorithmique
 - Rôle central joué par
 - Petit nombre de structures géométriques fondamentales polytopes, triangulations, diagrammes de Voronoï
 - Leur lien avec de très nombreux problèmes
 - Ajout de techniques proprement géométriques aux grands paradigmes de l'algorithmique générale
 - Technique de Balayage (Algorithme de Bentley et Ottman) pour calculer les intersections d'un ensemble de segments du plan

Introduction (5)

- Des algorithmes aux programmes
 - Deux points majeurs
 - Précision finie des calculateurs
 - algorithmes sont conçus et analysés dans le cadre d'un modèle abstrait de calculateur (données sont des nbs réels et opérations sont effectuées exactement)
 - Pas le cas de la réalité : implantation naïve d'un algo utilisant la représentation flottante des nombres réels peut => erreurs fatales
 - Traitement des cas particuliers (cas dégénérés ne sont généralement pas exposés dans l'algorithme général)

SOMMAIRE

- Informations pratiques
- Introduction
- Notions Algorithmiques
- Méthodes Algorithmiques pour la géométrie
- Modéliser le monde
- Méthodes géométriques
 - Notions de base en géométrie
 - Méthodes applicables aux modèles discrets
 - Méthodes applicables aux modèles continus

Rappels (1)

- Définition d'un critère pour
 - Mesurer l'efficacité d'un algorithme
 - Comparer plusieurs algorithmes entre eux
- Performances évaluées en termes de
 - Temps de calcul
 - Place mémoire nécessaire

Dépendent de la machine utilisée, du langage de programmation

Rappels (2)

- Évaluer les performances d'un algo par rapport à une machine abstraite idéale
 - Modèle de calculateur (machine abstraite idéale)
 - Définition d'une unité de temps
 - Opérations élémentaires exécutées en une unité de temps
 - © Complexité en temps = nb d'opérations élémentaires nécessaires à l'exécution du programme qui code l'algo
 - Définition d'une unité mémoire
 - Variables dites élémentaires qui peuvent être représentées dans une unité mémoire
 - © Complexité en espace mémoire = nb d'unités mémoires requises pour l'exécution du programme

Rappels (3)

Complexité(s)

- Taille de l'entrée = *nb d'unités mémoires nécessaires pour représenter cette* entrée
 - Si chaque donnée est élémentaire => taille de l'entrée est proportionnelle au cardinal de l'ensemble des données
- Nb d'opérations élémentaires dépend surtout de la taille de l'entrée mais également de l'ensemble de données lui-même

Rappels (4)

Complexités

- Complexité au pire (complexité en temps dans le cas le pire)
 - Fonction f(n) qui donne la borne supérieure du nombre d'opérations élémentaires effectuées par l'algorithme lorsque taille(entrée) = n
 - Mesure pessimiste de l'efficacité d'un algo
 - Borne sup rarement atteinte (ens de données très particuliers dont l'occurrence est marginale ou peut être évitée par un pré-traitement)

Complexité en moyenne

- Fonction g(n) qui donne la moyenne du nombre d'opérations élémentaires effectuées si on suppose un loi de probabilités sur les ensembles de données de taille n
- Plus difficile à évaluer que la complexité au pire
- Dépend de la mesure de probabilités choisie sur l'espace des entrées de taille n (doit refléter de façon réaliste l'usage qui est fait de l'algo)

Rappels (5)

- Définitions analogues pour complexité en espace mémoire au pire ou en moyenne
- La plupart du temps : complexité au pire d'un algo qui est évaluée
- Complexité fonction de la taille de la sortie
 - nb d'unités mémoires pour représenter le résultat
 - Taille de la sortie fonction de la taille de l'entrée et de l'ensemble de données luimême
 - Taille de la sortie au pire s(n)= le max de la taille de la sortie pour toutes les entrées de taille n

Rappels (6)

- Complexité fonction de la taille de la sortie
 - Algorithmes adaptatifs : complexité est fonction de la taille de la sortie correspondant à l'entrée traitée et non de la taille de la sortie dans le cas le pire
 - Analyse d'un algo adaptatif est fonction de 2 variables n (taille de l'entrée) et s (taille de la sortie)
 - Complexité au pire d'un algo adaptatif = f(n,s) qui donne la borne sup du nb d'opérations élémentaires effectuées pour tous les ensembles de données correspondant à une entrée de taille n et une sortie de taille s

Rappels (7)

- Pré-traitement sur l'ensemble de données
 - Parfois si plusieurs requêtes du même type concernant un même ensemble de données
 - Pré-traitement qui construit une structure de données permettant de répondre efficacement aux requêtes
 - Analyse séparée de la complexité du pré-traitement et du traitement des requêtes
 - Si structure de données semi-dynamique (ajout), ou dynamique(ajout + suppression) => opérations (insertion, suppression, requête) ont un coût

complexité amortie : (complexité de n opérations)/n opérations

Rappels (8)

- Comportement asymptotique
 - Manière dont la complexité croît en fonction de la taille de l'entrée (n ⇒∞)
 - Ordre de grandeur du comportement asymptotique
 - On borne le terme dominant de la complexité en temps de calcul et en espace mémoire et on néglige les constantes numériques
 - 1, log(n), n, n log(n), n², n³, ...2ⁿ

Rappels (9)

Comportement asymptotique

Rappels (10)

Comportement asymptotique

0,0000

100,0000

temps / instruction 1,00E-07 seconde

- 1							7		1		7
	n	log(n)	n	n*log(n)		n^2		n^2 * log(n)		n^3	1
	10	0,0000	0,0000	0,0000		0,0000		0,0000		0,0001]
	20	0,0000	0,0000	0,0000		0,0000		0,0002]	0,0008	1
	30	0,0000	0,0000	0,0000		0,0001		0,0004	1	0,0027	1
	40	0,0000	0,0000	0,0000		0,0002		0,0009		0,0064]
	50	0,0000	0,0000	0,0000		0,0003		0,0014	1	0,0125	1
	60	0,0000	0,0000	0,0000		0,0004		0,0021	1	0,0216	1
	70	0,0000	0,0000	0,0000		0,0005		0,0030]	0,0343	1
	100	0,0000	0,0000	0,0001		0,0010		0,0066	1	0,1000	1
	1000	0,0000	0,0001	0,0010		0,1000		0,9966		2	mn
	10 000	0,0000	0,0010	0,01		10,0000		2	mn	1	jour
	100 000	0,0000	0,0100	0,17		17	mn	5	heures	3	années
	1 000 000	0,0000	0,1000	1,99		1	j	23	jours	32	siècles
	10 000 000	0,0000	1,0000	23,25		4	mois	7	années		-
	100 000 000	0,0000	10,0000	4	mn	32	années	9	siècles		

2^n	
0,0001	
0,1049	
2	mn
1	jour
4	années
37	siècles
4	millions d'années

1 000 000 000

siècles

Rappels (11)

- Comparaison des ordres de grandeur asymptotique f et g : 2 fonctions de n (variable à valeurs réelles)
 - f(n) = O(g(n)) ssi $\forall n \ge n_0$, $f(n) \le cg(n)$ avec c: cste réelle \Rightarrow complexité de f(n) majorée pour une fonction connue g(n)
 - $f(n) = \Omega(g(n))$ ssi $\forall n \ge n_0$, $f(n) \ge cg(n)$ avec c: cste réelle \Rightarrow complexité de f(n) minorée pour une fonction connue g(n)
 - $f(n) = \theta(g(n))$ ssi $\forall n \ge n_0$, $c_1g(n) \le f(n) \le c_2g(n)$ avec c_1 , c_2 : cstes réelles \Rightarrow complexité de f(n) connue pour une fonction connue g(n)

Rappels (12)

- Méthode de transformation
 - Ramener 1 problème à un autre problème dont la complexité est connue

- A est transformé en temps $\tau(n)$ si
 - entrée de A peut être convertie en 1 entrée pour B en $\tau_1(n)$ opérations élément.
 - solution de B peut être transformée en solution de A en $\tau_2(n)$ opérations élément.
 - $\tau_1(n) + \tau_2(n) = O(\tau(n))$

Rappels (13)

- Méthode de transformation (suite)
 - Si 1 pb A de complexité f(n) est transformable en temps τ(n) en un problème B de complexité g(n)
 Alors
 - f(n) = O(g(n)+ τ(n))
 ⇒ complexité de B fournit un majorant pour celle de A
 - $g(n) = \Omega(f(n) \tau(n))$ \Rightarrow complexité de A fournit un minorant pour celle de B

Structures de données fondamentales

- Structure de données = brique avec laquelle est construite l'édifice algorithmique
- Définition de structures de base supportant des fonctions précises
- Structures de données courantes peuvent être combinées ou assemblées pour former des structures de données géométriques

Structures de données / Listes

- Définition
 - une liste linéaire I est une suite finie éventuellement vide d'éléments repérés selon leur rang dans la liste
- Remarques
 - ordre sur les places des éléments et non sur les éléments
 - il existe une fonction de succession succ telle que toute place soit accessible en appliquant succ de manière répétée à partir de la première place de la liste
- Opérations de base effectuées sur les listes
 - accéder au k ième élément
 - insérer un nouvel élément après la k ième place
 - supprimer le k ième élément

- Représentation contiguë en mémoire
 - liste représentée par un tableau dont la ième case est la ième place de la liste
 - taille du tableau doit être très supérieure à la longueur de la liste pour pouvoir insérer des éléments
 - => surdimensionnement du tableau
 - => pour prendre en compte les éléments de la liste et pas toutes les cases du tableau, il faut connaître la longueur de la liste

1			n				Ν
e_1	e_2		e _n				

 l'opération succ est représentée par la succession des cases du tableau en mémoire

Opération d'insertion

• en fin de liste : ex: inserer (I, 7, 'H')

• en début ou milieu de liste : ex: inserer (l, 4, 'D')

1	2	3	4	5	6	7				
A	В	C	E	F	G	Н				
1	2	3	4	5	6	7	8			
A	В	С		Е	F	G	Н			
1	2	3	4	5	6	7	8			
A	В	С	D	Е	F	G	Н			

- Avantages Représentation contiguë
 - accès direct
 - parcours séquentiel de la liste facile
 - insertion et suppression sur le dernier élément est simple
- Inconvénients Représentation contiguë
 - il faut majorer la taille des listes
 - insertion et suppression ailleurs qu'en fin de liste sont coûteuses

Tête de liste

• Représentation chaînée

Cueue de liste

• E,

cellule

- Tête de liste = adresse de la 1ère cellule de la liste
- une cellule contient au minimum 2 champs
 - un champ info qui est l'élément stocké dans la liste
 - un champ **pointeur** qui contient l'adresse de la prochaine cellule
 - fin de liste est matérialisée par champ pointeur = NULL

- Il existe plusieurs types de listes chaînées
 - simplement chaînée

• doublement chaînée

• circulaire (simplement ou doublement chaînée)

- Avantages Représentation chaînée
 - permet de faire évoluer la liste en fonction des besoins de l'application
 pas de surdimensionnement
 - insertion ou suppression sont peu coûteuses quelle que soit la place où elles ont lieu
- Inconvénients Représentation chaînée
 - pas d'accès direct => parcours peut être relativement coûteux
- Remarque:
 - faire attention de ne jamais perdre le point d'entrée dans la liste

Structures de données / Listes / Implantation

- Complexité : Représentation chaînée
 - Espace mémoire occupé O(n) si liste a n élts
 - Opérations successeur, prédécesseur (si liste doublement chaînée), insertion, suppression sont effectuées en temps constant
 - 1 liste peut être créée et parcourue en O(n) si n est la longueur de la liste
 - Si pointeur sur 1er et dernier éléments, les opérations de concaténation et partition sont effectuées en temps constant

Struct. de données/ Listes/Cas particuliers

Pile = structure de type LIFO (Last In First Out)

- Insertions et suppressions ne se font qu'à une seule extrémité de la liste
 - => sommet de la pile

Struct. de données/ Listes/Cas particuliers

• File = structure de type FIFO (First In First Out)

- · Les insertions se font à une extrémité
- Les accès et les suppressions se font à l'autre extrémité de la liste

Struct. de données/ Dictionnaires - Queues de priorité

- Représente un ensemble S sous ensemble d'un Univers U
- Opérations minimales
 - Recherche : étant donné x de U, est ce que x appartient à S ?
 - Ajout: ajouter un élément x de U à l'ensemble S
 - Suppression: supprimer un élément x de l'ensemble S

Struct. de données/ Dictionnaires - Queues de priorité

- Si U est totalement ordonné et S sous-ens fini de U
 - => Opérations supplémentaires
 - Localisation: étant donné x de U, rechercher le plus petit élément y de S tel que x ≤ y
 - Minimum: retrouver le plus petit élément de S
 - Maximum: retrouver le plus grand élément de S
 - Prédécesseur : rechercher l'elt de S précédant un elt x de S donné
 - Successeur : rechercher l'elt de S suivant un elt x de S donné

Struct. de données/ Dictionnaires Queues de priorité

- Dictionnaire
 - Structure qui permet les recherches, les insertions et les suppressions
- Queue de priorité
 - Structure qui permet les recherches, les insertions et les suppressions + opération minimum
- Dictionnaire augmenté
 - Structure qui permet toutes les opérations (Recherche, insertion, suppression, localisation, minimum, maximum, prédécesseur, successeur)

Struct. de données/ Graphes

- Graphes
 - Couple (X,A)
 où X est un ens fini d'élts (nœuds)
 A est un ens de paires de nœuds (arcs)
 - Orienté
 - Connexe

Graphe non orienté : relation symétrique entre les nœuds

Graphe non connexe: il n'existe aucun chemin de 1 à 5, par exemple.

- Cycle
 - Chemin = liste de sommets telle qu'il existe dans le graphe une arête entre chaque paire de sommets successifs
 - Cycle = chemin finissant à son point de départ

Struct. de données/Arbres

- Arbre
 - Graphe orienté connexe et sans cycle

- Cas particuliers : arbres équilibrés
 - Implantation efficace des dictionnaires et queues de priorité

Arbre binaire

• Arbre dans lequel chaque nœud au plus 2 fils

Arbre binaire de recherche

• Sous arbre gauche (resp. droit) de tout nœud ne contient que des valeurs strictement plus

petites (resp. grandes)

- AVL en 1962 par Adelson-Velskii et Landis
 - Différence entre les hauteurs des fils gauche et droit de tout nœud ne peut excéder 1

• AVL : Contre-exemple

- Il faut, après chaque insertion ou retrait, rétablir l'équilibre s'il a été rompu par l'opération
- Observation importante: après une insertion, seuls les nœuds qui sont sur le chemin du point d'insertion à la racine sont susceptibles d'être déséquilibrés
- Deux cas: nœud n où déséquilibre observé
 - insertion dans le sous-arbre de gauche du fils gauche du nœud n ou dans le sous-arbre de droite du fils droit de n
 - ⇒ Simple rotation
 - insertion dans le sous-arbre de droite du fils gauche de n ou dans le sous-arbre de gauche du fils droit de n
 - ⇒ Double rotation

Rotation simple

Nœud inséré dans sous arbre gauche du fils gauche de n => Déséquilibre corrigé par une rotation simple

Rotation double

=> Double rotation

Rotation double (suite)

- Arbre binaire de recherche Analyse
 - Le prix d'une opération (recherche, insertion, retrait) est proportionnel au nombre de nœuds visités
 - Cas le pire : arbre binaire où chaque nœud n'a qu'1 seul successeur droit ou gauche (revient à 1 liste)
 - => complexité linéaire O(n) (n: nb de nœuds)
 - Cas le meilleur : arbre binaire équilibré
 - On peut montrer que la hauteur maximale h d'un arbre équilibré comprenant n nœuds
 - \Rightarrow h $\leq 1,44* log_2(n+1)-0,328$
 - ⇒Complexité au pire cas des AVL : O(log(n))

n	log (n+1)
1	1
3	2
7	3
1 023	10
1 048 575	20

- Donc, le coût est O(log n) dans le meilleur cas et O(n) dans le pire cas
 - Si nb de données important => utilisation des arbres

Pour info

- Il y a d'autres types d'arbres équilibrés plus facile à implémenter (pour éviter rotations)
 - Arbres 2-3 ou 2-3-4:
 - implémentation plus simple du même principe que AVL mais avec un d° supplémentaire de liberté (nb de fils : 2 ou 3 ou 2 ou 3 ou 4) => éclatements au lieu de rotation
 - Rotations lors des ré-équilibrages remplacés par des éclatements
 - Arbres rouges et noirs
 - Arbre 2-3-4 implémenté à l'aide d'arbre binaire bicolore liens frères sont colorés en rouge

