Embedded Machine Learning Lab Challenge

By Valentin & Max

Magnitude Pruning

Magnitude Pruning

precision over recall

1.0

0.2

0.4

0.6

recall

1.0

0.8

Taylor Pruning [1]

Channel pruning based on importance

- Defined by approximate change in loss caused by removing channel
- Activations & gradients gathered during forward passes

Iterative Pruning

For 10 iterations:

- 1. Taylor prune *k* least important channels
 - *k* proportional to num of params
- 2. Fine-tune for 10 epochs to regain performance
 - Very low learning rate
- 3. Evaluate AP
 - Compare APs over iterations

Pruning Statistics

Live camera flow

Computation steps

- 1. capture image with camera (disabled JPEG encode for Jupyter)
- 2. run model on image
- 3. filter anchors, apply non-maximum suppression
- 4. draw bounding boxes and fps
- 5. compress image to JPEG (OpenCV should use libjpeg-turbo already)
- 6. show image to user (MJPEG stream)

Jupyter notebook unreliable: kernel crashes, unresponsive, ...

 \rightarrow run on a custom web server inside docker

Docker container

- provided image outdated (2021)
- use "l4t-ml" from dustynv (11/2023)
 https://github.com/dusty-nv/jetson-containers
- chose matching NVIDIA JetPack/L4T
- newer libraries, faster inference
- unchanged performance on other parts
- simple web server with Flask
- low resource usage
- has endpoint serving MJPEG stream
- UI to start/stop camera

ONNX runtime

- use for inference on GPU
- supposedly faster than PyTorch
- represents model computations as graph
- use optimization ORT_ENABLE_ALL
 → fuses conv and batch-norm layers
- Quantization
 - int8 \rightarrow not supported by GPU
 - float16 \rightarrow no speed up

Filter boxes and NMS

- original code: slow, pure Python impl.
- use non_max_suppression() from Ultralytics library
- licensed as AGPL v3
- everything combined in one function
- based on native torchvision.ops.nms()

Pipelining

- split work between GPU and CPU
- parallelize steps
- as Python threading. Thread
 → GIL mostly no issue
- connected by queues, length limited
- Input: image from camera callback
- Output: byte stream for HTTP response

Pipelining: results

References

[1] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, & Jan Kautz. (2017). Pruning Convolutional Neural Networks for Resource Efficient Inference.