Cap. 6: Exercícios – Integração Numérica

Exercício 1:

Considere a seguinte integral definida:

$$\int_0^3 \frac{\sin(x^2)}{x+1} \, dx$$

- (a) Aproxime a integral utilizando a **regra do trapézio composta com** n = 6 **subintervalos**.
- (b) Aproxime utilizando a **regra de Simpson** 1/3 **composta com** n = 6.
- (c) Compare seus resultados com uma aproximação feita por um método de alta precisão, como scipy.integrate.quad (Python).
- (d) Analise e discuta qual dos métodos numéricos parece mais adequado para essa função, considerando seu comportamento oscilante.

Exercício 2:

Dada a função $f(x) = x^5 - 4x^3 + x - 1$, calcule a integral definida no intervalo [-2, 2]:

$$\int_{-2}^{2} (x^5 - 4x^3 + x - 1) \, dx$$

- (a) Calcule a integral de forma analítica.
- (b) Estime a integral pela **regra do trapézio composta com** n = 4.
- (c) Estime usando a regra de Simpson 1/3 composta com n=4.
- (d) Estime usando a regra de Simpson 3/8 composta com n=6.
- (e) Para cada resultado numérico, calcule o **erro absoluto** e o **erro relativo** em relação ao valor analítico.
- (f) Discuta qual método se mostrou mais eficaz para essa função polinomial de grau ímpar.

Exercício 3:

O calor específico c_p (em J/kg·K) de um material cerâmico foi medido em diferentes temperaturas conforme a tabela a seguir :

Temperatura (°C)	$c_p \; (\mathbf{J}/\mathbf{kg} \cdot \mathbf{K})$
0	500
10	520
20	541
40	572
60	593
80	608
100	615

Deseja-se estimar a quantidade total de energia necessária para aquecer 1 kg do material de 0° C até 100° C. Essa energia é dada por :

$$Q = \int_0^{100} c_p(T) \, dT$$

- (a) Estime o valor da integral utilizando a regra do trapézio composta.
- (b) Justifique por que a **regra 1/3 de Simpson composta** não pode ser aplicada diretamente (de forma global) neste conjunto de dados.
- (c) Proponha uma estratégia alternativa à letra b) para aproximar a integral numericamente com boa precisão.

Exercício 4:

Considere os seguintes dados obtidos experimentalmente sobre a velocidade de um carro:

Tempo (s)	Velocidade (m/s)
0	0
1,5	6
2,3	10
3,2	13
4,0	14
5,5	15

- (a) Estime a distância percorrida entre t = 0 e t = 5.5 s utilizando a **regra do trapézio**.
- (b) Interpole os dados com um polinômio de grau 3 e integre numericamente essa função no mesmo intervalo.
- (c) Compare os dois métodos e discuta os prós e contras de aplicar interpolação antes da integração numérica.

Exercício 5:

A força aplicada ao longo de uma trilha $x \in [0, \pi]$ é modelada por :

$$F(x) = 10\sin(2x) + \varepsilon(x)$$

onde $\varepsilon(x)$ representa ruído experimental, variando aleatoriamente entre ± 0.2 N.

- (a) Gere os dados da função F(x) em intervalos de 0,5, com $x=0,0,5,1,\ldots,\pi$.
- (b) Estime o trabalho realizado $W = \int_0^{\pi} F(x) dx$ usando :
 - A regra do trapézio composta
 - A regra de Simpson 1/3 composta
- (c) Execute 5 simulações diferentes com novos ruídos aleatórios. Para cada método, calcule a média e o desvio padrão dos valores estimados de W.
- (d) Discuta como a presença de ruído afeta a escolha do método de integração.