Analyse de Fourier Devoir maison à rendre le 3 avril

Les parties **I** et **IV** sont facultatives. Seule la question **6** de la partie **I** est utilisée dans les parties **II** et **III**. L'objectif du devoir est de démontrer le résultat suivant.

Théorème (des nombres premiers). Pour tout $x \in \mathbf{R}$ on note $\pi(x)$ le nombre de nombres premiers inférieurs à x. Alors quand $x \to \infty$ on a l'équivalent

$$\pi(x) \sim \frac{x}{\log x}.$$

On rappelle que la fonction ζ de Riemann est définie par

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \in \mathscr{P}} (1 - p^{-s})^{-1}, \quad s \in \mathbb{C}_{>1}.$$

où $C_{>1} = \{s \in C : \text{Re } s > 1\}$. Ici \mathscr{P} est l'ensemble des nombres premiers. On rappelle aussi que la fonction ζ admet un prolongement méromorphe à tout le plan complexe, avec un unique pôle en s = 1, qui est simple avec résidu 1, et qu'on a

$$\zeta(1+it) \neq 0, \qquad t \in \mathbf{R}^*.$$

Dans toute la suite, on notera pour Re s > 1

$$\kappa(s) = \sum_{p \in \mathscr{P}} \frac{1}{p^s}.$$

On notera log la détermination principale du logarithme complexe, définie par

$$\log(re^{i\theta}) = \log(r) + i\theta, \quad r > 0, \quad \theta \in]-\pi, \pi[.$$

La fonction log : $\mathbb{C} \setminus \mathbb{R}_- \to \mathbb{C}$ ainsi définie est holomorphe sur $\mathbb{C} \setminus \mathbb{R}_-$ et on a le développement

$$-\log(1-z) = \sum_{n=1}^{\infty} \frac{z^n}{n}, \qquad |z| < 1.$$

On pose en outre

$$\nu(s) = -\sum_{n \in \mathcal{D}} \log\left(1 - p^{-s}\right)$$

dès que Re s > 1, de sorte que $\exp \nu(s) = \zeta(s)$ et que $\nu(\sigma) = \log \zeta(\sigma)$ si $\sigma > 1$.

I. Préliminaires

On pose $g(s) = \nu(s) - \kappa(s)$ pour Re s > 1.

1. Montrer que pour tout $r \in [0,1[$ il existe C > 0 telle que

$$|-\log(1-z) - z| \le C|z|^2$$
, $|z| \le r$.

2. En déduire qu'il existe C > 0 telle que pour tout $s \in \mathbb{C}$ avec $\sigma = \text{Re } s > 1/2$, on a

$$\left|-\log\left(1-p^{-s}\right)-p^{-s}\right| \leqslant Cp^{-2\sigma}, \qquad p \in \mathscr{P}.$$

- **3.** En déduire que la fonction g s'étend en une fonction holomorphe sur le demi-plan $\{s \in \mathbb{C} : \operatorname{Re} s > 1/2\}.$
- **4.** Soit $t_0 \in \mathbf{R}^*$ et $s_0 = 1 + it_0$. Comme $\zeta(1 + it_0) \neq 0$, il existe un disque D_0 , centré en s_0 et de rayon strictement inférieur à 1/2, sur lequel ζ ne s'annule pas et on admet qu'on choisir $\nu_0 : D_0 \to \mathbf{C}$ holomorphe telle que $\exp \circ \nu_0 = \zeta$ sur D_0 .
 - (i) Montrer qu'il existe $k \in \mathbf{Z}$ tel que $\nu_0 = \nu + 2\pi i k$ sur $D_0 \cap \mathbf{C}_{>1}$.
 - (ii) En déduire que κ a un prolongement holomorphe à $D_0 \cup \mathbb{C}_{>1}$.
- **5.** On note $h: s \mapsto (s-1)\zeta(s)$.
 - (i) Montrer que la fonction h admet un prolongement analytique à ${\bf C}$ tel que h(1)=1.

Soit D_0 un disque centré en 1 et de rayon strictement inférieur à 1/2 sur lequel h ne s'annule pas, et $\nu_0: D_0 \to \mathbf{C}$ holomorphe telle que $\exp \circ \nu_0 = h$.

- (ii) Montrer qu'il existe $k \in \mathbf{Z}$ tel que $\nu_0(s) = \log(s-1) + \nu(s) + 2\pi i k$ pour tout $s \in \mathbf{C}_{>1} \cap D_0$.
- (iii) Montrer que $\kappa(s) + \log(s-1)$ admet un prolongement holomorphe à $D_0 \cup \mathbb{C}_{>1}$.
- **6.** Déduire des questions **4.** et **5.** que la fonction $\Phi: s \mapsto \kappa(s) + \log(s-1)$ admet un prolongement holomorphe à un voisinage ouvert du demi-plan $\{s \in \mathbf{C} : \operatorname{Re} s \geqslant 1\}$. En déduire que la fonction $\ell: \mathbf{R}^* \to \mathbf{C}$ donnée par

$$\ell(t) = \lim_{\varepsilon \to 0} \kappa (1 + \varepsilon + it)$$

est bien définie et que $t \mapsto \ell(t) - \log \frac{1}{it}$ s'étend à une fonction \mathscr{C}^{∞} sur \mathbf{R} .

II. Une mesure de comptage

Pour tout $x \in \mathbf{R}$ on note $\delta_x \in \mathscr{S}'(\mathbf{R})$ la distribution donnée par $\langle \delta_x, \varphi \rangle = \varphi(x)$ pour tout $\varphi \in \mathscr{S}$. On note

$$u = \sum_{p \in \mathscr{P}} \frac{1}{p} \delta_{\log p}.$$

2

7. On rappelle que pour tout $\alpha > 1$, on a

$$\sum_{n=1}^{\infty} \frac{1}{n \log(n)^{\alpha}} < +\infty.$$

En déduire que u est bien une distribution tempérée sur \mathbf{R} .

Pour tout $\varepsilon > 0$ on note $u_{\varepsilon} = \sum_{p \in \mathscr{P}} \frac{1}{p^{1+\varepsilon}} \delta_{\log p}$.

- **8.** Montrer que $u_{\varepsilon} \to u$ dans $\mathscr{S}'(\mathbf{R})$ quand $\varepsilon \to 0$.
- **9.** Montrer que $\hat{u}_{\varepsilon} = \ell_{\varepsilon}$ dans $\mathscr{S}'(\mathbf{R})$, où on a noté

$$\ell_{\varepsilon}(t) = \kappa(1 + \varepsilon + it), \qquad t \in \mathbf{R}.$$

10. Déduire de la question **6.**, que pour tout compact $K \subset \mathbf{R}$, il existe C > 0 telle que pour tout $\varepsilon > 0$ petit et tout $t \in K \setminus \{0\}$, on a la majoration

$$|\ell_{\varepsilon}(t)| \leq C + |\log|t||.$$

Indication. On pourra écrire $\ell_{\varepsilon}(t) = \Phi(1 + \varepsilon + it) - \log(\varepsilon + it)$ où Φ est définie dans la question **6.**

11. En déduire que pour toute fonction $\varphi \in \mathscr{C}_c^{\infty}(\mathbf{R})$ on a

$$\sum_{p \in \mathscr{P}} \frac{\widehat{\varphi}(\log p)}{p} = \int_{\mathbf{R}} \varphi(t)\ell(t) dt.$$

III. Une version régularisée du théorème

Dans ce qui suit on note $f_0: t \mapsto (1+it)^{-1}$ et $A: x \mapsto e^{-x}\pi(e^x)$.

12. Montrer que $f_0 \in L^2(\mathbf{R})$ et que pour presque tout $\lambda \in \mathbf{R}$ on a

$$\widehat{f_0}(\lambda) = 2\pi 1_{\mathbf{R}_-}(\lambda)e^{\lambda}.$$

13. Montrer que pour toute fonction $\varphi \in \mathscr{C}_c^{\infty}(\mathbf{R})$ et tout $p \in \mathscr{P}$ on a

$$\widehat{f_0\varphi}(\log p) = \frac{1}{2\pi} (\widehat{f}_0 \star \widehat{\varphi})(\log p) = p \int_{\mathbf{R}} \widehat{\varphi}(\lambda) e^{-\lambda} 1_{[\log p, +\infty[}(\lambda) d\lambda)$$

14. Montrer que $A \in L^{\infty}(\mathbf{R})$ et qu'on a

$$\int_{\mathbf{R}} \widehat{\varphi}(\lambda) A(\lambda) d\lambda = \int_{\mathbf{R}} \varphi(t) \frac{\ell(t)}{1 + it} dt, \qquad \varphi \in \mathscr{C}_c^{\infty}(\mathbf{R}).$$

Indication. Appliquer la question 11. avec $\phi = f_0 \varphi$.

On se donne maintenant une fonction paire $\varphi \in \mathscr{C}_c^{\infty}(\mathbf{R})$ et on pose $\psi = \widehat{\varphi}$.

15. Montrer que ψ est paire et que pour tout $\lambda \in \mathbf{R}$, on a

$$(\psi \star A)(\lambda) = \int_{\mathbf{R}} \frac{\ell(t)}{1+it} \varphi(t) e^{it\lambda} dt.$$

16. En utilisant la question **6**, montrer que pour tout $N \in \mathbb{N}$, il existe une constante $C_N > 0$ telle que

$$\left| \int_{\mathbf{R}} \left(\ell(t) - \log \frac{1}{it} \right) \frac{\varphi(t)}{1 + it} e^{it\lambda} dt \right| \leq C_N \langle \lambda \rangle^{-N}, \qquad \lambda \in \mathbf{R}$$
 où $\langle \lambda \rangle = \sqrt{1 + \lambda^2}$.

17. On rappelle que pour toute fonction $f \in \mathcal{S}(\mathbf{R})$, on a, quand $\lambda \to \infty$,

$$\int_{\mathbf{R}} \log \frac{1}{it} f(t) e^{it\lambda} dt = \frac{2\pi f(0)}{\lambda} + o(\lambda^{-1}).$$

En déduire que $(\psi \star A)(\lambda) = \frac{2\pi\varphi(0)}{\lambda} + o(\lambda^{-1})$ quand $\lambda \to \infty$.

IV. Approximation de l'identité

18. Montrer qu'on peut choisir la fonction paire φ de sorte que

$$\varphi(0) = \frac{1}{2\pi}, \quad \psi = \widehat{\varphi} \geqslant 0 \quad \text{et} \quad \int_{\mathbf{R}} \psi(\lambda) d\lambda = 1.$$

On se donne de telles fonctions φ et ψ et pour tout $\varepsilon > 0$ on pose

$$\psi_{\varepsilon}(\lambda) = \varepsilon^{-1} \psi_{\varepsilon}(\lambda/\varepsilon), \qquad t \in \mathbf{R}.$$

19. (i) Montrer que pour tout $\delta > 0$ il existe $\varepsilon > 0$ tel que

$$\int_{-\delta}^{\delta} \psi_{\varepsilon}(\lambda) d\lambda \geqslant (1 - \delta).$$

(ii) En déduire que pour tout $\delta > 0$ il existe $\varepsilon > 0$ tel que

$$(\psi_{\varepsilon} \star A)(\lambda) \geqslant (1 - \delta)\pi(e^{\lambda - \delta})e^{-\lambda - \delta}, \qquad \lambda \in \mathbf{R}.$$

(iii) En utilisant la question 17., montrer que

$$\limsup_{\lambda \to \infty} \frac{\pi(e^{\lambda})}{e^{\lambda}} \lambda \leqslant 1.$$

20. (i) En utilisant la question précédente, montrer qu'il existe M > 0 tel que

$$\frac{\pi(e^{\lambda})}{e^{\lambda}} \leqslant \frac{M}{1+\lambda}, \qquad \lambda \geqslant 0.$$

(ii) En déduire que pour tout $\delta > 0$, il existe $\varepsilon > 0$ tel que pour tout $\lambda > \delta$ on a

$$\int_{|\sigma-\lambda|>\delta} \psi_{\varepsilon}(\lambda-\sigma) A(\sigma) d\sigma \leqslant \frac{2M\delta}{\lambda} \quad \text{et} \quad \int_{|\sigma-\lambda|\leqslant\delta} \psi_{\varepsilon}(\lambda-\sigma) A(\sigma) d\sigma \leqslant \frac{\pi(e^{\lambda+\delta})}{e^{\lambda-\delta}}.$$

(iii) En déduire que $\liminf_{\lambda \to \infty} \frac{\pi(e^{\lambda})}{e^{\lambda}} \lambda \geqslant 1$ et conclure.