Quadratic Pieces

Input file: standard input
Output file: standard output

Time limit: 2 seconds Memory limit: 1024 megabytes

You are given an integer sequence $A = (A_1, A_2, \dots, A_N)$ of length N.

A contiguous subsequence $(A_L, A_{L+1}, \ldots, A_R)$, defined by integers L and R such that $1 \le L \le R \le N$, is said to be **quadratic** if the following condition is satisfied:

• There exists real numbers a, b, c such that for every integer i satisfying $L \leq i \leq R$, the equation $A_i = ai^2 + bi + c$ holds.

Your task is to partition the sequence A into several contiguous **quadratic** subsequences. Among all possible ways to do this, output the minimum number of such subsequences.

You are given T test cases. Output the answer for each test case.

Input

The input is given in the following format:

```
T
case_1
case_2
\vdots
case_T
```

Each test case is given in the following format:

```
N \\ A_1 \ A_2 \ \dots \ A_N
```

- All inputs are integers.
- $1 \le T \le 10^5$.
- $1 < N < 2 \times 10^5$.
- $\bullet \ -10^{18} \le A_i \le 10^{18}.$
- Over all test cases in a single input, the sum of N is at most 2×10^5 .

Output

Output T lines.

For the *i*-th line, print the answer to the *i*-th test case.

Example

standard input	standard output
4	3
12	3
-16 -9 -4 -1 0 0 0 0 1 4 9 16	1
8	1
2 0 2 5 0 3 0 8	
1	
0	
5	
100000000000000000000000000000000000000	

Note

In the first example, the given sequence can be partitioned into three quadratic subsequences: (-16, -9, -4, -1), (0, 0, 0), and (0, 1, 4, 9, 16). For each of these subsequences, (a, b, c) = (-1, 10, -25), (0, 0, 0), and (1, -16, 64) satisfies the condition. It is not possible to divide the sequence into fewer than 3 quadratic subsequences, so the answer is 3.

In the fourth example, note that the input values may exceed the 32-bit integer range.