SENTIMENT ANALYSIS

Negative **Energy Vibe** Totally dissatisfied with the service. Worst customer care ever BRB COT YOLO

Neutral Energy Vibe

Good job but I will expect a lot more in the future

HPY NICE VIBE

20.000

Different expression for different energy level

Business Problem & Objectives

- Problem Statement:
- Companies struggle to analyze vast amounts of customer feedback on social media.

- Objectives:
- 1. Automate sentiment detection (positive, negative, neutral).
- 2. Enhance brand reputation management.
- 3. Optimize marketing strategies based on sentiment insights.

Data Collection & Preprocessing

Data Source: Tweets dataset with sentiment labels.

(https://data.world/crowdflower/brands-and-productemotions)

- Preprocessing Steps:
- - Tokenization, Stopword Removal, Lemmatization
- TF-IDF Vectorization & Word Embeddings (GloVe)
- Exploratory Analysis:
- - Word clouds, n-grams, sentiment distribution.

Exploratory Data Analysis (EDA)

 No emotion sentiments: 5,375(Majority), followed by positive emotions92,970) and Negative emotions:569(least)

Distribution of tweets by Emotion category

- •Tweet Length: Most are 75–150 characters.
- •Neutral Tweets: Most frequent across all lengths.
- •Positive & Negative: Similar distribution, but negatives are fewer.
- •Peak: "No emotion" tweets peak at 125 characters.
- •Distribution: Roughly normal, cantered around 75–150 characters.

Wordcloud Analysis

- No Emotion Tweets
- today link
 mention, apple

 apple set
 mention, apple

 apple set
 mention, apple

 apple set
 mention

 apple

 app

- •Top Words: "SXSW,"
 "mention," and "link" appear
 most across all sentiments.
- •Negative Tweets: Words like "fail," "need," and "headache" show frustration.
- •Positive Tweets: Terms like "great," "awesome," and "love" indicate enthusiasm.
- •Neutral Tweets: Mostly event-related words, suggesting objective discussions

N-grams Tweet category analysis

Cont.

- •"RT mention" dominates all sentiments.
- •Negative: Frustration "ipad design headache," "fascist company America."
- •Positive: Excitement "apple pop store," "store downtown Austin."
- •Neutral: Info-driven "new social network," "network called circle."
- •**Trigrams**: Neutral = facts, Positive/Negative = emotions.

Model Selection & Training

Models Used:

- Base Model Logistic Regression for binary classification
- -Machine Learning: SVM, Naïve Bayes, KNN.
- - Deep Learning: **RNN (Recurrent Neural Network)** -LSTM with Pre-trained GloVe Embeddings.

Training Process:

- Data split into Train & Test sets.
- - Hyperparameter tuning via GridSearchCV, random search

Results & Evaluation

• Metrics: Accuracy, Confusion Matrix, F1-Score.

• Best Performing Model: [Model Name] with [Accuracy%].

Insights:

- - Positive tweets dominate, few neutral sentiments.
- - Misclassification mainly in no motion tweets vs. negative.

RESULTS: BINARY CLASSIFICATION- LOGISTIC REGRESSION MODEL

Accuracy: 0.9090909090909091 Classification Report:				
	precision	recall	f1-score	support
Negative emotion	0.87	0.95	0.91	575
Positive emotion	0.95	0.87	0.91	613
accuracy			0.91	1188
macro avg	0.91	0.91	0.91	1188
weighted avg	0.91	0.91	0.91	1188

•Accuracy: 90.9%

•Negative: Precision 87%, Recall

95% (more false positives)

Positive: Precision 95%, Recall

87% (more false negatives)

•F1-score: 0.91 → Strong overall

classification

OTHER CLASSIFIERS (SVS,KNN,NAÏVE BAYES)

- •SVC: 95% accuracy Best performer.
- •KNN: Low recall (35%) for Positive
- → Poor balance.
- •Naïve Bayes: 90% accuracy Good, but SVC is better.
- •SVC ensures strong generalization & class balance.

MULTICLASSIFIERS(KNN,SVC,NAIVE BAYES)

- •KNN: Best (74% accuracy) → Outperformed SVC (57%) & Naïve Bayes (54%).
- •SVC struggled with imbalance, even after SMOTE.
- •Naïve Bayes underperformed due to feature independence issues.
- •KNN captures patterns better, but tuning may improve results.

TUNED BEST MODEL(KNN)- CONFUSION MATRIX

- •Optimized KNN: 75% accuracy (↑ from 74%).
- •Best params: n_neighbors=3, metric='euclidean', weights='distance'.
- •Negative emotions: Best classified (87% F1-score).

DEEP LEARNING FOR SENTIMENT ANALYSIS

- •Accuracy: Improved from $33.9\% \rightarrow 75.3\%$ (epoch 15).
- •Validation Accuracy:

Peaked at **65.0%**.

- •Learning Rate: Adjustments at epochs 5 & 14 boosted performance.
- •Class Performance:
- •Positive: Good recall (62%), moderate precision (50%).
- Negative: Weak detection(34% precision, 54% recall)
- needs improvement.
- •No Emotion: High precision (78%), lower recall (63%).

Confusion matrix

Conclusions

- The automation of sentiment classification reduces manual effort and enables large-scale tweet analysis.
- The optimized KNN model, achieving 75% accuracy, outperforms the deep learning model at 62% accuracy, with well-balanced F1-scores across all classes.
- Given its superior performance, KNN is the preferred choice for this classification task.

Recommendations

- Adopt KNN for Sentiment Analysis Achieves 75% accuracy, outperforming deep learning.
- Monitor Negative Sentiment in Real Time 92% recall enables proactive brand management.
- Leverage Sentiment Insights for Marketing Optimize ads and messaging based on trends.
- Automate Sentiment Analysis Reduces manual effort and enhances decision-making.
- Next Steps Deploy KNN, re-evaluate models, and expand data sources.

END

THANK YOU