IN THE CLAIMS:

The text of all pending claims, (including withdrawn claims) is set forth below. Cancelled and not entered claims are indicated with claim number and status only. The claims as listed below show added text with <u>underlining</u> and deleted text with <u>strikethrough</u>. When strikethrough cannot easily be perceived, or when five or fewer characters are deleted, [[double brackets]] are used to show the deletion. The status of each claim is indicated with one of (original), (currently amended), (cancelled), (withdrawn), (new), (previously presented), or (not entered). Please AMEND claims 1, 5, 6, 8, 13, 15, 17, 19 and 20, CANCEL claims 9 and 14 without prejudice or disclaimer in accordance with the following:

1. (currently amended) An electrophotographic photoreceptor comprising: a conductive substrate; and

a photoreceptor layer formed on the substrate, wherein the photoreceptor layer comprises polyester resins as binder resin having biphenyl fluorene units of the following chemical Formula (1) in the main chain, and phenolic compounds as antioxidant having the following chemical Formula (2):

Formula (1)

Formula (2)

$$X_1 = X_2$$

$$X_1 = X_2$$

$$X_2$$

where, in Formula (1), the hydrogens in the aromatic rings are optionally substituted with substituents selected from the group consisting of halogen, C_1 - C_{20} aliphatic hydrocarbon, and C_5 - C_8 cycloalkyl,

where, in Formula (2), X_1 and X_2 are independently selected from the group consisting of hydrogen and C_1 - C_6 alkyl; Y_1 and Y_2 are independently selected from the group consisting of hydrogen, methyl and ethyl; and X_3 is selected from the group consisting of the following C_1 - C_6 alkylalkyls, and the further X_3 s represented as set forth below in Formula (2) implementations:

Docket No. 1293.1814

$$-\text{(CH}_2)_{a}\text{(COO)}_{b}\text{(CH}_2)_{c}$$

$$Y_1$$

$$X_1$$

$$X_1$$

$$Y_2$$

$$X_2$$

$$\begin{array}{c|c} & & & & \\ & &$$

or
$$\begin{array}{c|c} X_1 & X_1 \\ X_2 & X_3 \end{array}$$

$$\begin{array}{c|c} X_1 & X_1 \\ X_2 & X_3 \end{array}$$

$$\begin{array}{c|c} X_1 & X_1 \\ X_2 & X_4 \end{array}$$

$$\begin{array}{c|c} X_1 & X_1 \\ X_2 & X_2 \end{array}$$

where a, c, k, I, and m, independently, are integers between 0 and 6, b is 0 or 1, X_1 , X_2 , Y_1 and Y_2 have the same meaning as above; and X_4 , X_5 , and X_6 are independently selected from the group consisting of hydrogen and C_1 - C_6 alkyl.

2. (original) An electrophotographic photoreceptor comprising:

a conductive substrate; and

a photoreceptor layer formed on said substrate, wherein the photoreceptor layer comprises polyester resins as binder resin having biphenyl fluorene units of the following chemical Formula (1) in the main chain, and phenolic compounds as antioxidants having the following chemical Formula (3):

Formula (1)

Formula (3)

where, in Formula (1), the hydrogens in the aromatic rings are optionally substituted with substituents selected from the group consisting of halogen, C_1 - C_{20} aliphatic hydrocarbon, and C_5 - C_8 cycloalkyl; and

where, in Formula (3), X_1 and X_2 are independently selected from the group consisting of hydrogen and C_1 - C_6 alkyl; Y_1 and Y_2 are independently selected from the group consisting of hydrogen, methyl, and ethyl; a and c are integers between 0 and 6; b is 0 or 1; n is an integer between 2 and 4; Z is S or O when n is 2, N when n is 3, and C when n is 4.

3. (original) The electrophotographic photoreceptor according to claim 1, wherein the polyester resin is a polyester resin having repeating units of the following chemical Formula (4), (5) or (6), or a copolymer comprising more than two of the repeating units:

Formula (4)

Formula (5)

Formula (6)

4. (original) The electrophotographic photoreceptor according to claim 1, wherein said polyester resin is a compound of the following general Formula (7) or (8):

Formula (7)

where m and n, independently, are each an integer between 10 and 1,000, Formula (8)

where k is an integer between 10 and 1,000.

- 5. (currently amended) The electrophotographic photoreceptor according to claim 1, wherein the content of the antioxidant is from 0.01 wt% to 50 wt% based on the total weight of the a charge transporting material of said photoreceptor layer.
- 6. (currently amended) The electrophotographic photoreceptor according to claim 1, wherein the antioxidant of the chemical Formula (42) is a compound selected from the group consisting of compounds of general Formula (9), (10), (11) and (12):

Formula (9)

Formula (10)

Formula (11)

Formula (12)

7. (original) The electrophotographic photoreceptor according to claim 2, wherein the antioxidant of the chemical Formula (3) is a compound represented by the chemical Formula (13) or (14).

Formula (13)

Formula (14)

8. (currently amended) The electrophotographic photoreceptor according to claim 1, wherein said electrophotographic photoreceptor is an electrophotographic photoreceptor for a wet developing method that suppresses a decrease in charged electrical potential and dark decay upon repeated use

- 9. (cancelled)
- 10. (original) The electrophotographic photoreceptor according to claim 2, wherein the polyester resin is a polyester resin having repeating units of the following chemical Formula (4), (5) or (6), or a copolymer comprising more than two of the repeating units:

Formula (4)

Formula (5)

Formula (6)

11. (original) The electrophotographic photoreceptor according to claim 2, wherein said polyester resin is a compound of the following general Formula (7) or (8):

Formula (7)

where m and n, independently, are each an integer between 10 and 1,000, Formula (8)

where k is an integer between 10 and 1,000.

- 12. (original) The electrophotographic photoreceptor according to claim 2, wherein the content of the antioxidant is from 0.01 wt% to 50 wt% based on the total weight of the charge transporting material of said photoreceptor layer.
- 13. (currently amended) The electrophotographic photoreceptor according to claim 2, wherein said electrophotographic photoreceptor is an electrophotographic photoreceptor for a wet developing method that suppresses a decrease in charged electrical potential and dark decay upon repeated use.
 - 14. (cancelled)
 - 15. (currently amended) An electrophotographic drum, comprising: a drum; and

an electrophotographic photoreceptor disposed thereon, the electrophotographic photoreceptor comprising:

a conductive substrate; and

a photoreceptor layer formed on the substrate, wherein the photoreceptor layer comprises polyester resins as binder resin having biphenyl fluorene units of the following chemical Formula (1) in the main chain, and phenolic compounds as antioxidant having the following chemical Formula (2):

Formula (1)

Formula (2)

Ser. No. 10/617,873

$$X_1 \xrightarrow{Y_1} X_3$$

$$HO \xrightarrow{X_2} Y_2$$

where, in Formula (1), the hydrogens in the aromatic rings are optionally substituted with substituents selected from the group consisting of halogen, C_1 - C_{20} aliphatic hydrocarbon, and C_5 - C_8 cycloalkyl,

where, in Formula (2), X_1 and X_2 are independently selected from the group consisting of hydrogen and C_1 - C_6 alkyl; Y_1 and Y_2 are independently selected from the group consisting of hydrogen, methyl and ethyl; and X_3 is selected from the group consisting of the following C_1 - C_6 alkyls, and the further X_3 s represented as set forth below in Formula (2) implementations:

$$-(CH_2)_a(COO)_b(CH_2)_c$$

$$Y_1$$

$$X_1$$

$$Y_2$$

$$X_1$$

$$Y_2$$

$$X_2$$

or
$$\begin{array}{c|c} Y_1 & X_1 & Y_1 \\ X_1 & X_2 & X_5 \end{array}$$

where a, c, k, l, and m, independently, are integers between 0 and 6, b is 0 or 1, X_1 , X_2 , Y_1 and Y_2 have the same meaning as above; and X_4 , X_5 , and X_6 are independently selected from the group consisting of hydrogen and C_1 - C_6 alkyl,

comprises polyester resins as binder resin having biphenyl fluorene units of the following chemical Formula (1) in the main chain, and phenolic compounds as antioxidants having the following chemical Formula (3):

Formula (1)

Formula (3)

where, in Formula (1), the hydrogens in the aromatic rings are optionally substituted with substituents selected from the group consisting of halogen, C_4 - C_{20} aliphatic hydrocarbon, and C_5 - C_8 cycloalkyl; and

where, in Formula (3), X_1 -and X_2 are independently selected from the group consisting of hydrogen and C_1 - C_6 alkyl; Y_1 and Y_2 are independently selected from the group consisting of hydrogen, methyl, and ethyl; a and c are integers between 0 and 6; b is 0 or 1; n is an integer between 2 and 4; Z is S or O when n is 2, N when n is 3, and C when n is 4,

wherein the electrophotographic drum is attachable to/detachable from an image forming apparatus.

16. (original) An electrophotographic drum, comprising:

a drum; and

an electrophotographic photoreceptor disposed thereon, the electrophotographic photoreceptor comprising:

a conductive substrate; and

a photoreceptor layer formed on the substrate, wherein the photoreceptor layer comprises polyester resins as binder resin having biphenyl fluorene units of the following chemical Formula (1) in the main chain, and phenolic compounds as antioxidants having the

Ser. No. 10/617,873

following chemical Formula (3):

Formula (1)

Formula (3)

where, in Formula (1), the hydrogens in the aromatic rings are optionally substituted with substituents selected from the group consisting of halogen, C_1 - C_{20} aliphatic hydrocarbon, and C_5 - C_8 cycloalkyl; and

where, in Formula (3), X_1 and X_2 are independently selected from the group consisting of hydrogen and C_1 - C_6 alkyl; Y_1 and Y_2 are independently selected from the group consisting of hydrogen, methyl, and ethyl; a and c are integers between 0 and 6; b is 0 or 1; n is an integer between 2 and 4; Z is S or O when n is 2, N when n is 3, and C when n is 4,

wherein the electrophotographic drum is attachable to/detachable from an image forming apparatus.

17. (currently amended) An electrophotographic cartridge, comprising: an electrophotographic photoreceptor comprising:

a conductive substrate; and

a photoreceptor layer formed on the substrate, wherein the photoreceptor layer comprises polyester resins as binder resin having biphenyl fluorene units of the following chemical Formula (1) in the main chain, and phenolic compounds as antioxidant having the following chemical Formula (2):

Docket No. 1293.1814

Formula (1)

Formula (2)

$$X_1 = X_2$$

$$X_1 = X_3$$

$$X_2$$

where, in Formula (1), the hydrogens in the aromatic rings are optionally substituted with substituents selected from the group consisting of halogen, C_1 - C_{20} aliphatic hydrocarbon, and C_5 - C_8 cycloalkyl,

where, in Formula (2), X_1 and X_2 are independently selected from the group consisting of hydrogen and C_1 - C_6 alkyl; Y_1 and Y_2 are independently selected from the group consisting of hydrogen, methyl and ethyl; and X_3 is selected from the group consisting of the following C_1 - C_6 alkyls, and the further X_3 s represented as set forth below in Formula (2) implementations:

$$\begin{array}{c} Y_1 \\ X_1 \\ Y_2 \end{array} \qquad \begin{array}{c} X_1 \\ Y_2 \end{array} \qquad \begin{array}{c} X_1 \\ X_2 \end{array} \qquad \begin{array}{c} X_1 \\ X_2 \end{array} \qquad \begin{array}{c} X_1 \\ X_1 \\ X_2 \end{array} \qquad \begin{array}{c} X_1 \\ X_1 \\ X_2 \end{array} \qquad \begin{array}{c} X_1 \\ X$$

where a, c, k, I, and m, independently, are integers between 0 and 6, b is 0 or 1, X_1 , X_2 , Y_1 and Y_2 have the same meaning as above; and X_4 , X_5 , and X_6 are independently selected from the group consisting of hydrogen and C_1 - C_6 alkyl; and

a photoreceptor layer formed on the substrate, wherein the photoreceptor layer comprises polyester resins as binder resin having biphenyl fluorene units of the following chemical Formula (1) in the main chain, and phenolic compounds as antioxidants having the following chemical Formula (3):

Formula (1)

Formula (3)

Ser. No. 10/617,873

where, in Formula (1), the hydrogens in the aromatic rings are optionally substituted with substituents selected from the group consisting of halogen, C_4 - C_{20} aliphatic hydrocarbon, and C_6 - C_8 cycloalkyl; and

where, in Formula (3), X₁ and X₂ are independently selected from the group consisting of hydrogen and C₁-C₆ alkyl; Y₁ and Y₂ are independently selected from the group consisting of hydrogen, methyl, and ethyl; a and c are integers between 0 and 6; b is 0 or 1; n is an integer between 2 and 4; Z is S or O when n is 2, N when n is 3, and C when n is 4; and

at least one of:

a charging device that charges the electrophotographic photoreceptor;

a developing unit which develops an electrostatic latent image formed on the electrophotographic photoreceptor; andor

a cleaning device which cleans a surface of the electrophotographic photoreceptor,

wherein the electrophotographic cartridge is attachable to/detachable from an image forming apparatus.

18. (original) An electrophotographic cartridge, comprising: an electrophotographic photoreceptor comprising:

a conductive substrate; and

a photoreceptor layer formed on the substrate, wherein the photoreceptor layer comprises polyester resins as binder resin having biphenyl fluorene units of the following chemical Formula (1) in the main chain, and phenolic compounds as antioxidants having the following chemical Formula (3):

Ser. No. 10/617,873

Formula (1)

Formula (3)

$$\begin{bmatrix} X_1 & & & \\ & X_1 & & & \\ & & & \\ & & &$$

where, in Formula (1), the hydrogens in the aromatic rings are optionally substituted with substituents selected from the group consisting of halogen, C_1 - C_{20} aliphatic hydrocarbon, and C_5 - C_8 cycloalkyl; and

where, in Formula (3), X_1 and X_2 are independently selected from the group consisting of hydrogen and C_1 - C_6 alkyl; Y_1 and Y_2 are independently selected from the group consisting of hydrogen, methyl, and ethyl; a and c are integers between 0 and 6; b is 0 or 1; n is an integer between 2 and 4; Z is S or O when n is 2, N when n is 3, and C when n is 4; and

at least one of:

a charging device that charges the electrophotographic photoreceptor;

a developing unit which develops an electrostatic latent image formed on the electrophotographic photoreceptor; and or

a cleaning device which cleans a surface of the electrophotographic photoreceptor,

wherein the electrophotographic cartridge is attachable to/detachable from an image forming apparatus.

19. (currently amended) An image forming apparatus, comprising: a photoconductor unit having an electrophotographic photoreceptor, the electrophotographic electrophotographic photoconductor comprising:

a conductive substrate; and

Ser. No. 10/617,873

a photoreceptor layer formed on the substrate, wherein the photoreceptor layer comprises polyester resins as binder resin having biphenyl fluorene units of the following chemical Formula (1) in the main chain, and phenolic compounds as antioxidant having the following chemical Formula (2):

Formula (1)

Formula (2)

$$X_1 = X_2$$

$$X_1 = X_3$$

$$X_2$$

where, in Formula (1), the hydrogens in the aromatic rings are optionally substituted with substituents selected from the group consisting of halogen, C_1 - C_{20} aliphatic hydrocarbon, and C_5 - C_8 cycloalkyl.

where, in Formula (2), X_1 and X_2 are independently selected from the group consisting of hydrogen and C_1 - C_6 alkyl; Y_1 and Y_2 are independently selected from the group consisting of hydrogen, methyl and ethyl; and X_3 is selected from the group consisting of the following C_1 - C_6 alkyls, and the further X_3 s represented as set forth below in Formula (2) implementations:

Ser. No. 10/617,873

$$- (CH_2)_a (COO)_b (CH_2)_c - (CH_2)_c (CH_2)_$$

where a, c, k, I, and m, independently, are integers between 0 and 6, b is 0 or 1, X_1 , X_2 , Y_1 and Y_2 have the same meaning as above; and X_4 , X_5 , and X_6 are independently selected from the group consisting of hydrogen and C_1 - C_6 alkyl;

a photoreceptor layer formed on the substrate, wherein the photoreceptor layer comprises polyester resins as binder resin having biphenyl fluorene units of the following chemical Formula (1) in the main chain, and phenolic compounds as antioxidants having the following chemical Formula (3):

Formula (1)

Formula (3)

$$\begin{array}{c|c} Y_1 \\ X_1 \\ \hline \\ HO \end{array} \begin{array}{c} Y_1 \\ \hline \\ X_2 \end{array} \begin{array}{c} (CH_2)_a(COO)_b(CH_2)_c \\ \hline \\ X_2 \end{array} \begin{array}{c} Z \\ T \\ T \end{array}$$

where, in Formula (1), the hydrogens in the aromatic rings are optionally substituted with substituents selected from the group consisting of halogen, C_4 - C_{20} aliphatic hydrocarbon, and C_5 - C_8 -cycloalkyl; and

where, in Formula (3), X₁ and X₂ are independently selected from the group consisting of hydrogen and C₁-C₆ alkyl; Y₁ and Y₂ are independently selected from the group consisting of hydrogen, methyl, and ethyl; a and c are integers between 0 and 6; b is 0 or 1; n is an integer between 2 and 4; Z is S or O when n is 2, N when n is 3, and C when n is 4;

a charging device which charges the photoconductor unit;

an imagewise light irradiating device which irradiates the charged photoconductor unit with imagewise light to form an electrostatic latent image on the photoconductor unit;

a developing unit that develops the electrostatic latent image with a toner to form a toner image on the photoconductor unit; and

a transfer device which transfers the toner image onto a receiving material,

20. (currently amended) An image forming apparatus, comprising: a photoconductor unit having an electrophotographic photoceptor, the electrophotographic electrophotographic photoconductor comprising:

a conductive substrate; and

a photoreceptor layer formed on the substrate, wherein the photoreceptor layer comprises polyester resins as binder resin having biphenyl fluorene units of the following chemical Formula (1) in the main chain, and phenolic compounds as antioxidants having the following chemical Formula (3):

Formula (1)

Ser. No. 10/617,873

Formula (3)

$$\begin{bmatrix} X_1 & & & & \\ & X_1 & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\$$

where, in Formula (1), the hydrogens in the aromatic rings are optionally substituted with substituents selected from the group consisting of halogen, C_1 - C_{20} aliphatic hydrocarbon, and C_5 - C_8 cycloalkyl; and

where, in Formula (3), X_1 and X_2 are independently selected from the group consisting of hydrogen and C_1 - C_6 alkyl; Y_1 and Y_2 are independently selected from the group consisting of hydrogen, methyl, and ethyl; a and c are integers between 0 and 6; b is 0 or 1; n is an integer between 2 and 4; Z is S or O when n is 2, N when n is 3, and C when n is 4;

a charging device which charges the photoconductor unit;

an imagewise light irradiating device which irradiates the charged photoconductor unit with imagewise light to form an electrostatic latent image on the photoconductor unit;

a developing unit that develops the electrostatic latent image with a toner to form a toner image on the photoconductor unit; and

a transfer device which transfers the toner image onto a receiving material,