Optimal Control of Ordinary Differential Equations

Laurent Pfeiffer

Inria and CentraleSupélec, Université Paris-Saclay

Ensta-Paris
Paris-Saclay University

General information

- Pre-requisites: Basic knowledge in integration, calculus and optimization (Lagrange multipliers).
- No programming session, the lectures will include (theoretical) application exercises.
- All lectures take place at Ensta-Paris.
- Two written exams (lecture and personal notes allowed, electronic devices are forbidden), both on November 27. Ensta students only write the first one.
- Website: https://laurentpfeiffer.github.io/sod/

First part of the course

In the first part of the course, you will learn...

- how to formulate an optimal control problem
- how to prove the existence of a solution
- how to characterize the solution through optimality conditions.

Schedule:

27.11	08:30-12:15		Written exam
23.10	8:30-12:15	RB	Pontryagin's principle
16.10	8:30-12:15	LP/RB	Pontryagin's principle
09.10	8:30-12:15	LP	Linear-quadratic problems
02.10	8:30-12:15	RB	Examples and analytical framework
25.09	8:30-12:15	LP	Time-optimal problems

Optimal control in a nutshell

A simple optimal control problem:

$$\inf_{\substack{y \in W^{1,\infty}(0,T) \\ u \in L^{\infty}(0,T)}} \phi(y(T)), \quad \text{subject to: } \begin{cases} \dot{y}(t) = f(y(t), u(t)), \\ y(0) = y_0. \end{cases}$$

Vocabulary. Optimization variables:

- *u*: the control
- y: the state.

Here, the control is said to be **open-loop**, it is a function of time \rightarrow a sequence of pre-defined actions to be executed.

In this lecture

Guideline. We aim at finding an optimal control \bar{u} with associated trajectory \bar{y} in **closed-loop** form:

$$\bar{u}(t) = \kappa(t, \bar{y}(t)), \quad \forall t.$$

The map κ should be independent of the initial condition y_0 .

Motivation.

- In some situations: easier to find $\kappa!$
- Robustness, flexibility.

Intention.

- Specific techniques from optimal control.
- Overview of the diversity of techniques.

Lecture 1: Time-optimal linear problems

- Goal: controlling a dynamical system so as to reach a target as fast as possible.
- Focus: linear systems $\dot{y}(t) = Ay(t) + Bu(t)$.
- Issues: existence of a solution, optimality conditions, graph of feedback κ .

Bibliography

The following references are related to Chapter 1:

- F. Bonnans et P. Rouchon, Commande et optimisation de systèmes dynamiques, Editions de l'Ecole Polytechnique, 2005. (Partie 3, Chapitre 1).
- E. Trélat, Contrôle optimal : théorie et applications. Version électronique, 2013. (Chapitre 3).
- E. Sontag, Mathematical Control Theory, Springer, 1998. (Chapter 10).

- 1 Example: the lunar landing problem
- 2 Existence of a solution
- 3 Optimality conditions
 - Separation
 - An auxiliary problem
 - Back to the time-optimal control problem
- 4 Back to the lunar landing problem

Model

A spatial engine has the dynamics:

$$m\ddot{h}(t) = u(t), \quad \forall t \ge 0,$$
 (1)

where:

m	mass of the engine
h(t)	heigth of the engine at time t
u(t)	propulsion force at time t
$v(t) = \dot{h}(t)$	velocity at time t .

Problem: given h_0 and v_0 , find the smallest T > 0 for which there exist time functions h and u satisfying (1),

$$(h(0), v(0)) = (h_0, v_0),$$
 and $(h(T), v(T)) = (0, 0).$

Mathematical problem

For simplicity, we take m = 1. We consider constraints on u. Given (h_0, v_0) , the problem writes:

$$\inf_{\substack{T \geq 0 \\ h \colon [0,T] \to \mathbb{R} \\ v \colon [0,T] \to \mathbb{R} \\ u \colon [0,T] \to \mathbb{R}}} T, \quad \text{s.t.:} \quad \left\{ \begin{array}{l} \dot{h}(t) = v(t), \quad h(0) = h_0, \quad h(T) = 0, \\ \dot{v}(t) = u(t), \quad v(0) = v_0, \quad v(T) = 0, \\ u(t) \in [-1,1]. \end{array} \right.$$

Remark. The state (h, v) is uniquely defined by the control u (via the dynamical system).

For the moment: no theoretical tool at hand... let's see what we can do!

Mathematical problem

For simplicity, we take m = 1. We consider constraints on u. Given (h_0, v_0) , the problem writes:

$$\inf_{\substack{T \geq 0 \\ h \colon [0,T] \to \mathbb{R} \\ u \colon [0,T] \to \mathbb{R}}} T, \quad \text{s.t.:} \; \left\{ \begin{array}{l} \dot{h}(t) = v(t), \quad h(0) = h_0, \quad h(T) = 0, \\ \dot{v}(t) = u(t), \quad v(0) = v_0, \quad v(T) = 0, \\ u(t) \in [-1,1]. \end{array} \right.$$

Remark. The state (h, v) is uniquely defined by the control u (via the dynamical system).

For the moment: no theoretical tool at hand... let's see what we can do!

Accelerating trajectories

For u = 1, we have

$$\begin{cases} v(t) = v_0 + t \\ h(t) = h_0 + t v_0 + \frac{1}{2}t^2. \end{cases}$$

We can isolate t in the first line: $t = v(t) - v_0$ and inject the result in the second line:

$$h(t) = h_0 + (v(t) - v_0)v_0 + \frac{1}{2}(v(t) - v_0)^2.$$

The curve

$$\{(h(t), v(t)) | t \ge 0\}$$

is the portion of a parabola.

Accelerating trajectories

Figure: Trajectories for u = 1 (acceleration).

Accelerating trajectories

Let Γ_1 denote the set of initial conditions for which u=1 steers (h,v) to (0,0). We have:

$$(h_0, v_0) \in \Gamma_1 \iff egin{cases} \exists \, T \geq 0 \ 0 = v_0 + T \ 0 = h_0 + T v_0 + rac{1}{2} T^2 \end{cases} \iff egin{cases} v_0 \leq 0 \ 0 = h_0 - v_0^2 + rac{1}{2} v_0^2. \end{cases}$$

Therefore,

$$\Gamma_1 = \left\{ (h_0, v_0) \in \mathbb{R}^2 \; \middle| \; egin{array}{c} v_0 \leq & 0 \\ h_0 = & rac{1}{2} v_0^2. \end{array}
ight\}.$$

Decelerating trajectories

For u = -1, we have

$$\begin{cases} v(t) = v_0 - t \\ h(t) = h_0 + tv_0 - \frac{1}{2}t^2. \end{cases}$$

We can isolate t in the first line: $t = v_0 - v(t)$ and inject the result in the second line:

$$h(t) = h_0 + (v_0 - v(t))v_0 - \frac{1}{2}(v_0 - v(t))^2.$$

The curve

$$\{(h(t), v(t)) | t \ge 0\}$$

is the portion of a parabola.

Decelerating trajectories

Figure: Trajectories for u = -1 (deceleration).

Decelerating trajectories

Let Γ_{-1} denote the set of initial conditions for which u=-1 steers (h, v) to (0,0). We have:

$$(h_0, v_0) \in \Gamma_{-1} \Longleftrightarrow \begin{cases} \exists T \geq 0 \\ 0 = v_0 - T \\ 0 = h_0 + Tv_0 - \frac{1}{2}T^2 \end{cases} \Longleftrightarrow \begin{cases} v_0 \geq 0 \\ 0 = h_0 + v_0^2 - \frac{1}{2}v_0^2. \end{cases}$$

Therefore,

$$\Gamma_{-1} = \left\{ (h_0, v_0) \in \mathbb{R}^2 \; \middle| \; egin{array}{l} v_0 \geq & 0 \ h_0 = & -rac{1}{2}v_0^2 \end{array}
ight\}.$$

Consider the case $v_0 = 0$.

Then we should (fully) accelerate and (fully) decelerate on equal intervals of time.

- If $h_0 < 0$: accelerate (u = 1) until $h(t) = h_0/2$, then decelerate (u = -1).
- If $h_0 > 0$: decelerate (u = -1) until $h(t) = h_0/2$, then accelerate (u = 1).

Figure: Optimal control and trajectory for $v_0 = 0$ and $h_0 < 0$.

Figure: Optimal control and trajectory for $v_0 = 0$ and $h_0 > 0$.

Figure: Some optimal trajectories with null initial speed.

The theory (developed in the next sections) tells us the following.

For any $(h_0, v_0) \in \mathbb{R}^2$,

- There exists an optimal time \bar{T} and an optimal control \bar{u} .
- Any optimal control takes values in $\{-1,1\}$.
- Any optimal control is piecewise constant, with atmost two pieces.

In other words, for any optimal control \bar{u} , one of the following cases is satisfied:

- **1** $\bar{u}(t)=1$, for almost every $t\in(0,\bar{T})$
- $\bar{u}(t)=-1$, for a.e. $t\in(0,\bar{T})$
- "Accelerate-Decelerate": $\exists \tau \in (0, \bar{T})$ such that: $\bar{u}(t) = 1$, for a.e. $t \in (0, \tau)$, $\bar{u}(t) = -1$, for a.e. $t \in (\tau, \bar{T})$.
- 4 "Decelerate-Accelerate": $\exists \tau \in (0, \bar{T})$ such that: $\bar{u}(t) = -1$, for a.e. $t \in (0, \tau)$, $\bar{u}(t) = 1$, for a.e. $t \in (\tau, \bar{T})$.

In the last two cases, τ is called **switching time**.

Remark for French readers: we use the english notation (a, b) for the open interval, instead of the french notation]a, b[.

The problem is reduced to a **geometric** problem.

Find all trajectories such that...

- starting at the initial condition,
- ending up at the origin,
- made of two portions of parabola (a "red" and a "blue" one).

We will call them **Pontryagin** trajectories.

Methodology: for each initial condition,

- find all possible Pontryagin trajectories,
- find out the optimal one (there may exist Pontryagin trajectories which are not optimal).

First case: (h_0, v_0) lies strictly under $\Gamma_1 \cup \Gamma_{-1}$. One possibility for the scenario "accelerate-decelerate".

First case: (h_0, v_0) lies strictly under $\Gamma_1 \cup \Gamma_{-1}$. Zero possibility for the scenario "decelerate-accelerate".

Second case: (h_0, v_0) lies strictly above $\Gamma_1 \cup \Gamma_{-1}$. One possibility for the scenario "decelerate-accelerate".

Second case: (h_0, v_0) lies strictly above $\Gamma_1 \cup \Gamma_{-1}$. Zero possibility for the scenario "accelerate-decelerate".

Conclusion: Whatever the initial condition, there is exactly one Pontryagin trajectory, which is necessarily optimal.

Figure: Phase portrait of optimal trajectories.

We finally obtain a relation in **feedback form** for optimal controls \bar{u} with associated trajectory (\bar{h}, \bar{v}) :

$$\bar{u}(t) = \kappa(\bar{h}(t), \bar{v}(t)),$$

where κ is defined by:

$$\kappa(h,v) = \begin{cases} 1 & \text{if } (h,v) \in \Gamma_1 \\ -1 & \text{if } (h,v) \in \Gamma_{-1} \\ 1 & \text{if } (h,v) \text{ lies strictly under } \Gamma_{-1} \cup \Gamma_1 \\ -1 & \text{if } (h,v) \text{ lies strictly above } \Gamma_{-1} \cup \Gamma_1, \end{cases}$$

for any $(h, v) \in \mathbb{R}^2 \setminus \{0\}$.

Remark: The feedback relation holds whatever the initial condition of the problem.

Summary

The three main steps of our methodology:

- Calculation of trajectories with constant controls (with extremal values).
- Theory → structural properties of optimal controls.
- Reformulation of the problem as a **geometric** problem.

- Example: the lunar landing problem
- Existence of a solution
- 3 Optimality conditions
 - Separation
 - An auxiliary problem
 - Back to the time-optimal control problem
- 4 Back to the lunar landing problem

Framework

A general linear time-optimal control problem:

$$\inf_{\substack{T \geq 0 \\ y \in W^{1,\infty}(0,T;\mathbb{R}^n) \\ u \in L^{\infty}(0,T;\mathbb{R}^m)}} T, \quad \text{s.t.:} \begin{cases} \dot{y}(t) = Ay(t) + Bu(t), \\ y(0) = y_0, \\ y(T) \in C, \\ u(t) \in U. \end{cases}$$
(P)

Data of the problem and assumptions:

- Initial condition: $y_0 \in \mathbb{R}^n$
- Dynamics' coefficients: $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$
- A control set: $U \subset \mathbb{R}^m$, assumed convex, compact, non-empty
- A target: $C \subset \mathbb{R}^n$, assumed convex, closed, non-empty.

Matrix exponential

Definition 1

Let $M \in \mathbb{R}^{n \times n}$. We call **matrix exponential** e^{M} the matrix

$$e^M = \sum_{k=0}^{\infty} \frac{1}{k!} M^k \in \mathbb{R}^{n \times n}.$$

Lemma 2

- For any operator norm $\|\cdot\|$, we have $\|e^M\| \le e^{\|M\|}$.
- For all $t \in \mathbb{R}$, we have $\frac{d}{dt}e^{tM} = Me^{tM} = e^{tM}M$.
- Given $x_0 \in \mathbb{R}^n$, let $x: [0, \infty) \to \mathbb{R}^n$ be the solution to

$$\dot{x}(t) = Mx(t), \quad x(0) = x_0.$$

Then $x(t) = e^{tM}x_0$, for all $t \ge 0$.

State equation

A pair $(y, u) \in W^{1,\infty}(0, T; \mathbb{R}^n) \times L^{\infty}(0, T; \mathbb{R}^m)$ satisfies the **state** equation: $\dot{y}(t) = Ay(t) + Bu(t)$, $y(0) = y_0$ if and only if

$$y(t) = y_0 + \int_0^t \left(Ay(s) + Bu(s) \right) ds, \quad \forall t \in [0, T].$$
 (2)

Theorem 3 (Picard-Lindelöf / FR: Cauchy-Lipschitz)

Given $y_0 \in \mathbb{R}^n$ and $u \in L^{\infty}(0, T; \mathbb{R}^m)$, there exists a unique y satisfying (2). Moreover,

$$y(t) = e^{tA}y_0 + \int_0^t e^{(t-s)A}Bu(s)ds$$
. [Duhamel's formula]

Notation: y[u].

Reachable set

Some notation:

- $L^{\infty}(0, T; U)$: set of measurable functions from (0, T) to U,
- \overline{T} : the value of problem (P) $(\overline{T} = \infty \text{ if } (P) \text{ is infeasible}).$

Definition 4

Given $t \ge 0$, the **reachable set** at time t, $\mathcal{R}(t)$, is defined by

$$\mathcal{R}(t) = \{ y[u](t) \mid u \in L^{\infty}(0, t; U) \}.$$

Lemma 5

- For all $T \ge 0$, the set $\bigcup_{0 \le t \le T} \mathcal{R}(t)$ is bounded.
- For all $t \ge 0$, the reachable set $\mathcal{R}(t)$ is convex.

Proof. Exercise (use Duhamel's formula and boundedness of U).

Weak compactness

Definition 6

Let F be a Banach space. Let $(e_k)_{k\in\mathbb{N}}$ be a sequence in F. The sequence **converges weakly** to $\bar{e} \in F$ (notation: $e_k \to \bar{e}$) if

 $L(e_k) \to L(\bar{e}),$ for all continuous and linear map $L \colon F \to \mathbb{R}$.

Remark. If $e_k \rightharpoonup \bar{e}$, then $L(e_k) \to L(\bar{e})$ for any continuous and linear map $L \colon F \to \mathbb{R}^k$.

Lemma 7

Let E be a closed and convex subset of a Hilbert space F. Let $(e_k)_{k\in\mathbb{N}}$ be a bounded sequence in E. Then there exists a weakly convergent subsequence $(e_{k_q})_{q\in\mathbb{N}}$ with weak limit in E.

Proof. See Corollary 3.22 and Proposition 5.1 in *Functional Analysis*, by H. Brézis.

Closedness of the reachable set

Lemma 8 (Closedness lemma)

Let $(\tau_k)_{k\in\mathbb{N}}$ be a convergent sequence of positive real numbers with limit $\bar{\tau} \geq 0$. Assume that $\tau_k \geq \bar{\tau}$, $\forall k \in \mathbb{N}$.

Let $(y_k)_{k\in\mathbb{N}}$ be a convergent sequence in \mathbb{R}^n with limit \bar{y} . Assume that

$$y_k \in \mathcal{R}(\tau_k), \quad \forall k \in \mathbb{N}.$$

Then $\bar{y} \in \mathcal{R}(\bar{\tau})$.

Corollary 9

For all $t \geq 0$, the set $\mathcal{R}(t)$ is closed.

Proof. Step 1. For all $k \in \mathbb{N}$, let $u_k \in L^{\infty}(0, \tau_k; U)$ be such that $y[u_k](\tau_k) = y_k$. As a consequence of Lemma 5, there exists M > 0 (independent of k) such that

$$\|\dot{y}[u_k]\|_{L^{\infty}(0,\tau_k;\mathbb{R}^m)}\leq M.$$

Thus $y[u_k](\cdot)$ is *M*-Lipschitz, that is

$$||y[u_k](t_2) - y[u_k](t_1)|| \le M|t_2 - t_1|, \quad \forall t_1, t_2 \in [0, T].$$

Next, we have

$$||y[u_k](\bar{\tau}) - \bar{y}|| \leq \underbrace{||y[u_k](\bar{\tau}) - y[u_k](\tau_k)||}_{\leq M|\tau_k - \bar{\tau}|} + ||\underbrace{y[u_k](\tau_k)}_{y_k} - \bar{y}|| \to 0.$$

Thus $y[u_k](\bar{\tau}) \to \bar{y}$.

Proof. Step 1. For all $k \in \mathbb{N}$, let $u_k \in L^{\infty}(0, \tau_k; U)$ be such that $y[u_k](\tau_k) = y_k$. As a consequence of Lemma 5, there exists M > 0 (independent of k) such that

$$\|\dot{y}[u_k]\|_{L^{\infty}(0,\tau_k;\mathbb{R}^m)}\leq M.$$

Thus $y[u_k](\cdot)$ is *M*-Lipschitz, that is

$$||y[u_k](t_2)-y[u_k](t_1)|| \leq M|t_2-t_1|, \quad \forall t_1, t_2 \in [0, T].$$

Next, we have

$$||y[u_k](\bar{\tau}) - \bar{y}|| \leq \underbrace{||y[u_k](\bar{\tau}) - y[u_k](\tau_k)||}_{\leq M|\tau_k - \bar{\tau}|} + ||\underbrace{y[u_k](\tau_k)}_{y_k} - \bar{y}|| \to 0.$$

Thus $y[u_k](\bar{\tau}) \to \bar{y}$.

Step 2. Consider the linear map $L\colon u\in L^2(0,\bar{\tau};\mathbb{R}^m)\to\mathbb{R}^n$ defined by

$$L(u) = \int_0^{\bar{\tau}} e^{(\bar{\tau} - s)A} Bu(s) \, \mathrm{d}s.$$

By Cauchy-Schwarz inequality, we have

$$|L(u)| \leq \int_0^{\bar{\tau}} e^{(\bar{\tau}-s)||A||} \cdot ||B|| \cdot ||u(s)|| \, ds$$

$$\leq \underbrace{||B|| \cdot \left(\int_0^{\bar{\tau}} e^{2(\bar{\tau}-s))||A||} \, ds\right)^{1/2}}_{<\infty} ||u||_{L^2(0,\bar{\tau};\mathbb{R}^m)}.$$

This proves that the linear form *L* is **continuous**.

Step 3. Apply Lemma 7:

- $L^2(0,\bar{\tau};\mathbb{R}^m)$ is a Hilbert space
- $L^{\infty}(0, \bar{\tau}; U)$ is convex, closed, and bounded.

Then the sequence u_k (restricted to $(0, \bar{\tau})$) has a weakly convergent subsequence, with limit $\bar{u} \in L^{\infty}(0, \bar{\tau}; U)$.

We have:

$$\underbrace{y[u_{k_q}](\bar{\tau})}_{\to \bar{y}} = e^{\bar{\tau}A}y_0 + \int_0^{\bar{\tau}} e^{(\bar{\tau}-s)A}Bu_{k_q}(s)ds$$
$$= e^{\bar{\tau}A}y_0 + L(u_{k_q}) \longrightarrow e^{\bar{\tau}A}y_0 + L(\bar{u}) = y[\bar{u}](\bar{\tau})$$

proving that $\bar{y} = y[\bar{u}](\bar{\tau}) \in \mathcal{R}(\bar{\tau})$.

Step 3. Apply Lemma 7:

- $L^2(0,\bar{\tau};\mathbb{R}^m)$ is a Hilbert space
- $L^{\infty}(0, \bar{\tau}; U)$ is convex, closed, and bounded.

Then the sequence u_k (restricted to $(0, \bar{\tau})$) has a weakly convergent subsequence, with limit $\bar{u} \in L^{\infty}(0, \bar{\tau}; U)$.

We have:

$$\underbrace{y[u_{k_q}](\bar{\tau})}_{\longrightarrow \bar{y}} = e^{\bar{\tau}A}y_0 + \int_0^{\bar{\tau}} e^{(\bar{\tau}-s)A}Bu_{k_q}(s)ds$$
$$= e^{\bar{\tau}A}y_0 + L(u_{k_q}) \longrightarrow e^{\bar{\tau}A}y_0 + L(\bar{u}) = y[\bar{u}](\bar{\tau}),$$

proving that $\bar{y} = y[\bar{u}](\bar{\tau}) \in \mathcal{R}(\bar{\tau})$.

Existence result

Theorem 10

Assume that $\bar{T} < \infty$. There exists an optimal control, that is, there exists \bar{u} such that

$$y[\bar{u}](\bar{T}) \in C.$$

Proof. Consider the set of times at which the target can be reached, that is:

$$\mathcal{T} = \{ T \ge 0 \, | \, \mathcal{R}(T) \cap C \ne \emptyset \}.$$

By assumption $\mathcal T$ is non empty. By definition, $\bar T=\inf \mathcal T$. Our task: proving that $\bar T\in \mathcal T$.

Existence result

- It suffices to show that $\mathcal{R}(\bar{T}) \cap C \neq \emptyset$.
- Let $\tau_k \downarrow \bar{T}$ be such that for all $k \in \mathbb{N}$, there exists $y_k \in \mathcal{R}(\tau_k) \cap C$. By Lemma 5, $(y_k)_{k \in \mathbb{N}}$ is bounded. Thus it has an **accumulation point** \bar{y} .
- Since *C* is closed, $\bar{y} \in C$. By Lemma 8, $\bar{y} \in \mathcal{R}(\bar{T})$.

- 1 Example: the lunar landing problem
- 2 Existence of a solution
- 3 Optimality conditions
 - Separation
 - An auxiliary problem
 - Back to the time-optimal control problem
- 4 Back to the lunar landing problem

Methodology

For proving the optimality conditions (in the form of a Pontryagin's principle), we proceed as follows:

- Fix an optimal control \bar{u} for the time-optimal problem.
- Show that \bar{u} is optimal for another problem, easier to treat, referred to as auxiliary problem.
- Establish Pontryagin's principle for the auxiliary problem.

Hahn-Banach lemma

Lemma 11

Let C_1 and C_2 be two closed and convex sets of \mathbb{R}^n , let C_2 be bounded. Assume that $C_1 \cap C_2 = \emptyset$. Then, there exists $q \in \mathbb{R}^n \setminus \{0\}$ such that

$$\langle q, y_1 \rangle \leq \langle q, y_2 \rangle, \quad \forall y_1 \in C_1, \ \forall y_2 \in C_2.$$

We say that q separates C_1 and C_2 .

Proof. See Brezis, Theorem 1.7.

Remark. With loss of generality, we can assume that ||q|| = 1.

Hahn-Banach lemma

Figure: Illustration of Hahn-Banach lemma.

Normal cones

Definition 12

Let K be a subset of \mathbb{R}^n and let $x \in K$. The normal cone of K at x, denoted $N_K(x)$ is defined by

$$N_K(x) = \{ q \in \mathbb{R}^n \mid \langle q, y - x \rangle \leq 0, \ \forall y \in K \}.$$

Some examples.

- If $K = \{\bar{x}\}$, then $N_K(\bar{x}) = \mathbb{R}^n$.
- If $K = \mathbb{R}^n$, then $N_K(x) = \{0\}$ for any $x \in \mathbb{R}^n$.
- Let $\mathbb{R}^n_{\geq 0} := \{x \in \mathbb{R}^n \mid x_i \geq 0, i = 1, ..., n\}.$ Let $\mathbb{R}^n_{\leq 0} := \{x \in \mathbb{R}^n \mid x_i \leq 0, i = 1, ..., n\}.$ Then

$$\mathcal{N}_{\mathbb{R}^n_{>0}}(0)=\mathbb{R}^n_{\leq 0}$$
 and $\mathcal{N}_{\mathbb{R}^n_{< 0}}(0)=\mathbb{R}^n_{\geq 0}$

Normal cones

Figure: A vector in the normal cone.

Lemma 13 (Separation lemma)

Let \overline{T} denote the value of the time optimal control problem (P). Assume that $0 < \overline{T} < \infty$. Then, there exists $\overline{q} \in \mathbb{R}^n \setminus \{0\}$ such that

$$\langle \bar{q}, z \rangle \leq \langle \bar{q}, y \rangle, \quad \forall z \in C, \quad \forall y \in \mathcal{R}(\bar{T}).$$

Corollary 14

For any optimal control \bar{u} , we have $\bar{q} \in N_C(y[\bar{u}](\bar{T}))$.

Proof of the corollary. Take $y = y[\bar{u}](\bar{T})$ in the separation lemma.

Figure: Illustration of the separation lemma.

Proof of the separation lemma.

- Let $T_k \uparrow \bar{T}$. For all $k \in \mathbb{N}$, $\mathcal{R}(T_k) \cap C = \emptyset$.
- The set C is convex and closed, $\mathcal{R}(T_k)$ is compact and convex (by Lemma 5 and Lemma 8).
- By the Hahn-Banach Lemma, there exists q_k such that $\|q_k\|=1$ and

$$\langle q_k, z \rangle \le \langle q_k, y \rangle, \quad \forall z \in C, \ \forall y \in \mathcal{R}(T_k).$$
 (3)

Extracting a subsequence if necessary, we assume that $q_k \to \bar{q}$ for some $\bar{q} \in \mathbb{R}^n$ with $\|\bar{q}\| = 1$.

We next show that \bar{q} separates C and $\mathcal{R}(\bar{T})$.

- Let $z \in C$ and let $y \in \mathcal{R}(\bar{T})$. Let $u \in L^{\infty}(0, T; U)$ be such that $y[u](\bar{T}) = y$. Set $y_k = y[u](T_k) \in \mathcal{R}(T_k)$.
- Inequality (3) yields:

$$\langle q_k, z \rangle \leq \langle q_k, y_k \rangle, \quad \forall k \in \mathbb{N}.$$

■ We pass to the limit and obtain

$$\langle \bar{q}, z \rangle \leq \langle \bar{q}, y \rangle.$$

An auxiliary problem

Let T > 0, let $y_0 \in \mathbb{R}^n$, and let $q \in \mathbb{R}^n$ be fixed. Consider the following **auxiliary** optimal control problem:

$$\inf_{\substack{y \in W^{1,\infty}(0,T;\mathbb{R}^n) \\ u \in L^{\infty}(0,T;U)}} \langle q,y(T) \rangle, \quad \text{s.t.:} \quad \begin{cases} \dot{y}(t) = Ay(t) + Bu(t) \\ y(0) = y_0, \\ u(t) \in U. \end{cases}$$
$$(P_{\mathsf{aux}}[q,T])$$

Remark: Let $(\bar{u}, \bar{y}, \bar{T})$ be a solution to the time-optimal problem. Let \bar{q} be as in the separation lemma. Then (\bar{u}, \bar{y}) is a solution to $P_{\mathsf{aux}}[q, T]$, with $(q, T) = (\bar{q}, \bar{T})$.

Example: the lunar landing problem

Pre-Hamiltonian and adjoint equation

Define the **pre-Hamiltonian**:

$$H: (u, y, p) \in \mathbb{R}^m \times \mathbb{R}^n \times \mathbb{R}^n \mapsto \langle p, Ay + Bu \rangle \in \mathbb{R}.$$

Note that

$$H(u, y, p) = \langle A^{\top} p, y \rangle + \langle B^{\top} p, u \rangle.$$

Thus.

$$\nabla_y H(u, y, p) = A^\top p$$
 and $\nabla_u H(u, y, p) = B^\top p$.

$$\begin{cases}
p(T) = q \\
-\dot{p}(t) = A^{\top}p(t) = \nabla_{y}H(p(t)).
\end{cases}$$
(4)

Pre-Hamiltonian and adjoint equation

Define the pre-Hamiltonian:

$$H: (u, y, p) \in \mathbb{R}^m \times \mathbb{R}^n \times \mathbb{R}^n \mapsto \langle p, Ay + Bu \rangle \in \mathbb{R}.$$

Note that

$$H(u, y, p) = \langle A^{\top} p, y \rangle + \langle B^{\top} p, u \rangle.$$

Thus,

$$\nabla_y H(u, y, p) = A^\top p$$
 and $\nabla_u H(u, y, p) = B^\top p$.

Let us define p as the solution to the **adjoint equation** (also called costate equation):

$$\begin{cases}
p(T) = q \\
-\dot{p}(t) = A^{\top} p(t) = \nabla_{y} H(p(t)).
\end{cases}$$
(4)

Pontryagin's principle

Theorem 15 (Pontryagin's minimum principle)

Let (\bar{y}, \bar{u}) be such that $\bar{y} = y[\bar{u}]$. Then (\bar{y}, \bar{u}) is a solution to $(P_{aux}[q, T])$ if and only if

$$ar{u}(t) \in \operatorname*{argmin}_{v \in U} H(v, ar{y}(t),
ho(t)), \quad \textit{for a.e. } t \in (0, T).$$

Remark:

$$\underset{v \in U}{\operatorname{argmin}} \ H(v, \bar{y}(t), p(t)) = \underset{v \in U}{\operatorname{argmin}} \ \langle B^{\top} p(t), v \rangle.$$

"=" Assume that (\bar{y}, \bar{u}) satisfies Pontryagin's principle. Let (y, u) be such that y = y[u]. Then

$$\langle q, y(T) - \bar{y}(T) \rangle = \langle p(T), y(T) - \bar{y}(T) \rangle - \langle p(0), \underbrace{y(0) - \bar{y}(0)}_{=v_0 - v_0 = 0} \rangle$$

"

Assume that (\bar{y}, \bar{u}) satisfies Pontryagin's principle. Let (y, u) be such that y = y[u]. Then

$$\langle q, y(T) - \bar{y}(T) \rangle = \langle p(T), y(T) - \bar{y}(T) \rangle - \langle p(0), \underbrace{y(0) - \bar{y}(0)}_{=y_0 - y_0 = 0} \rangle$$

$$= \int_0^T \frac{d}{dt} \langle p(t), y(t) - \bar{y}(t) \rangle dt$$

"

Assume that (\bar{y}, \bar{u}) satisfies Pontryagin's principle. Let (y, u) be such that y = y[u]. Then

$$\begin{aligned} \langle q, y(T) - \bar{y}(T) \rangle &= \langle p(T), y(T) - \bar{y}(T) \rangle - \langle p(0), \underline{y(0)} - \overline{y}(0) \rangle \\ &= \int_0^T \frac{d}{dt} \langle p(t), y(t) - \bar{y}(t) \rangle \, \mathrm{d}t \\ &= \int_0^T \langle \dot{p}(t), y(t) - \bar{y}(t) \rangle + \int_0^T \langle p(t), \dot{y}(t) - \dot{\bar{y}}(t) \rangle \, \mathrm{d}t \end{aligned}$$

"=" Assume that (\bar{y}, \bar{u}) satisfies Pontryagin's principle. Let (y, u) be such that y = y[u]. Then

$$\langle q, y(T) - \bar{y}(T) \rangle = \langle p(T), y(T) - \bar{y}(T) \rangle - \langle p(0), \underline{y(0)} - \bar{y}(0) \rangle$$

$$= \int_0^T \frac{d}{dt} \langle p(t), y(t) - \bar{y}(t) \rangle dt$$

$$= \int_0^T \langle \dot{p}(t), y(t) - \bar{y}(t) \rangle + \int_0^T \langle p(t), \dot{y}(t) - \dot{\bar{y}}(t) \rangle dt$$

$$= \int_0^T \langle -A^T p(t), y(t) - \bar{y}(t) \rangle dt$$

$$+ \int_0^T \langle p(t), Ay(t) + Bu(t) - A\bar{y}(t) - B\bar{u}(t) \rangle dt$$

"=" Assume that (\bar{y}, \bar{u}) satisfies Pontryagin's principle. Let (y, u) be such that y = y[u]. Then

$$\langle q, y(T) - \bar{y}(T) \rangle = \langle p(T), y(T) - \bar{y}(T) \rangle - \langle p(0), \underline{y(0)} - \bar{y}(0) \rangle$$

$$= \int_{0}^{T} \frac{d}{dt} \langle p(t), y(t) - \bar{y}(t) \rangle dt$$

$$= \int_{0}^{T} \langle \dot{p}(t), y(t) - \bar{y}(t) \rangle + \int_{0}^{T} \langle p(t), \dot{y}(t) - \dot{\bar{y}}(t) \rangle dt$$

$$= \int_{0}^{T} \langle -p(t), Ay(t) - A\bar{y}(t) \rangle dt$$

$$+ \int_{0}^{T} \langle p(t), Ay(t) + Bu(t) - A\bar{y}(t) - B\bar{u}(t) \rangle dt$$

"
Assume that (\bar{y}, \bar{u}) satisfies Pontryagin's principle. Let (y, u) be such that y = y[u]. Then

$$\langle q, y(T) - \bar{y}(T) \rangle = \langle p(T), y(T) - \bar{y}(T) \rangle - \langle p(0), \underline{y(0)} - \bar{y}(0) \rangle$$

$$= \int_0^T \frac{d}{dt} \langle p(t), y(t) - \bar{y}(t) \rangle dt$$

$$= \int_0^T \langle \dot{p}(t), y(t) - \bar{y}(t) \rangle + \int_0^T \langle p(t), \dot{y}(t) - \dot{\bar{y}}(t) \rangle dt$$

$$= \int_0^T \langle -p(t), Ay(t) - A\bar{y}(t) \rangle dt$$

$$+ \int_0^T \langle p(t), Ay(t) + Bu(t) - A\bar{y}(t) - B\bar{u}(t) \rangle dt$$

$$= \int_0^T \langle B^T p(t), u(t) - \bar{u}(t) \rangle dt \ge 0.$$

" \Longrightarrow " Assume that (\bar{y}, \bar{u}) is optimal. Consider the time function

$$h: t \in [0, T] \mapsto \langle B^{\top} p(t), \bar{u}(t) \rangle \in \mathbb{R}.$$

A time t is called Lebesgue point if

$$h(t) = \lim_{\varepsilon \to 0} \frac{1}{2\varepsilon} \int_{t-\varepsilon}^{t+\varepsilon} h(s) ds.$$

Lebesgue differentiation theorem states that almost every time t is a Lebesgue point, since $h \in L^1(0, T)$.

Let t be a Lebesgue point. Let $v \in U$. Let u_{ε} be defined by

$$u_{arepsilon}(s) = \left\{ egin{array}{ll} v & ext{if } s \in (t-arepsilon, t+arepsilon) \ & ar{u}(s) & ext{otherwise}. \end{array}
ight.$$

" \Longrightarrow " Assume that (\bar{y}, \bar{u}) is optimal. Consider the time function

$$h: t \in [0, T] \mapsto \langle B^{\top} p(t), \bar{u}(t) \rangle \in \mathbb{R}.$$

A time t is called Lebesgue point if

$$h(t) = \lim_{\varepsilon \to 0} \frac{1}{2\varepsilon} \int_{t-\varepsilon}^{t+\varepsilon} h(s) ds.$$

Lebesgue differentiation theorem states that almost every time t is a Lebesgue point, since $h \in L^1(0, T)$.

Let t be a Lebesgue point. Let $v \in U$. Let u_{ε} be defined by

$$u_{arepsilon}(s) = \left\{ egin{array}{ll} v & ext{if } s \in (t-arepsilon, t+arepsilon) \ ar{u}(s) & ext{otherwise}. \end{array}
ight.$$

The same calculation as above leads to:

$$0 \leq \frac{1}{2\varepsilon} \langle q, y[u_{\varepsilon}](T) - \bar{y}(T) \rangle$$

$$= \frac{1}{2\varepsilon} \int_{0}^{T} \langle B^{\top} p(s), u_{\varepsilon}(t) - \bar{u}(s) \rangle ds$$

$$= \frac{1}{2\varepsilon} \int_{t-\varepsilon}^{t+\varepsilon} \langle B^{\top} p(s), v - \bar{u}(s) \rangle ds$$

$$\xrightarrow{\varepsilon \downarrow 0} \langle B^{\top} p(t), v - \bar{u}(t) \rangle,$$

as was to be proved.

Pontryagin for time-optimal problems

We come back to the **time-optimal control** problem (P).

Theorem 16 (Pontryagin's principle)

Let $y_0 \notin C$, assume that $\overline{T} < \infty$. Let $(\overline{y}, \overline{u})$ be a solution to the original minimum time problem (P).

Then, there exists $\bar{q} \in N_C(\bar{y}(\bar{T}))$, $\bar{q} \neq 0$ such that

$$\bar{u}(t) \in \underset{v \in U}{\operatorname{argmin}} \ H(v, \bar{y}(t), p(t)) = \underset{v \in U}{\operatorname{argmin}} \ \langle B^{\top} p, v \rangle,$$
 (5)

where p is the solution to the costate equation:

$$-\dot{p}(t) = A^{\top}p(t), \quad p(\bar{T}) = \bar{q}.$$

Remark. Pontryagin's principle is only a necessary optimality condition.

Proof

Proof.

■ By Lemma 13 and by Corollary 14, there exists $\bar{q} \in N_C(\bar{y}(\bar{T}))$ such that

$$\langle \bar{q}, z \rangle \leq \langle \bar{q}, y \rangle, \quad \forall z \in C, \quad \forall y \in \mathcal{R}(\bar{T}).$$

We take $z = \bar{y}(\bar{T}) \in C$.

- It follows that (\bar{y}, \bar{u}) is a solution to the auxiliary problem $(P_{\text{aux}}[q, T])$, with $q = \bar{q}$ and $T = \bar{T}$.
- Applying Pontryagin's principle to the auxiliary problem (Theorem 15), we obtain (5).

- 1 Example: the lunar landing problem
- 2 Existence of a solution
- 3 Optimality conditions
 - Separation
 - An auxiliary problem
 - Back to the time-optimal control problem
- 4 Back to the lunar landing problem

Example: the lunar landing problem

Optimality conditions

The dynamics writes:

$$\begin{pmatrix} \dot{h}(t) \\ \dot{v}(t) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} h(t) \\ v(t) \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u(t).$$

The lunar landing problem is a special case of (P), with

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad C = \{0\}.$$

We apply Pontryagin's principle. Let T be the optimal time.

■ Costate equation (4) reads:

$$-\begin{pmatrix} \dot{p}_h(t) \\ \dot{p}_v(t) \end{pmatrix} = A^\top \begin{pmatrix} p_h(t) \\ p_v(t) \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} p_h(t) \\ p_v(t) \end{pmatrix} = \begin{pmatrix} 0 \\ p_h(t) \end{pmatrix}.$$

- Terminal condition: $(p_h(T), p_v(T)) \in N_C(\bar{h}(T), \bar{v}(T)) = \mathbb{R}^2$ does not bring any information!
- Analytic resolution:

$$p_h(t) = p_h(T), \quad \dot{p}_v(t) = -p_h(t) = -p_h(T)$$

and thus

$$p_{v}(t) = p_{v}(T) + p_{h}(T)(T - t).$$

We apply Pontryagin's principle. Let T be the optimal time.

Costate equation (4) reads:

$$-\begin{pmatrix} \dot{p}_h(t) \\ \dot{p}_v(t) \end{pmatrix} = A^\top \begin{pmatrix} p_h(t) \\ p_v(t) \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} p_h(t) \\ p_v(t) \end{pmatrix} = \begin{pmatrix} 0 \\ p_h(t) \end{pmatrix}.$$

- Terminal condition: $(p_h(T), p_v(T)) \in N_C(\bar{h}(T), \bar{v}(T)) = \mathbb{R}^2$ does not bring any information!
- Analytic resolution:

$$p_h(t) = p_h(T), \quad \dot{p}_v(t) = -p_h(t) = -p_h(T)$$

and thus

$$p_{V}(t) = p_{V}(T) + p_{h}(T)(T - t).$$

The minimization condition reads:

$$ar{u}(t) \in \operatorname*{argmin}_{v \in [-1,1]} inom{0}{1}^{ op} inom{p_h(t)}{p_v(t)} v = \operatorname*{argmin}_{v \in [-1,1]} p_v(t) v.$$

It follows that

$$\begin{cases} \bar{u}(t) = -1 & \text{if } p_{\nu}(t) > 0 \\ \bar{u}(t) = 1 & \text{if } p_{\nu}(t) < 0 \end{cases} \text{ for a.e. } t \in [0, T].$$

We now **prove the original conjecture**: any optimal control is piecewise constant, with at most two pieces, taking values in $\{-1,1\}$.

- Case 1: $p_h(T) = 0$. Then $p_v(T) \neq 0$. Therefore
 - \blacksquare either $p_v(t) = p_v(T) < 0 \Longrightarrow \bar{u}(t) = 1$
- Case 2: $p_h(T) \neq 0$. Then the map $t \mapsto p_v(T) + p_h(T)(T-t)$ vanishes at exactly one point, say τ .
 - If $\tau \leq 0$ or $\tau \geq T$, then the optimal control is constant, equal to 1 or τ^{-1}
 - If $\tau \in (0, T)$, then there is a switch.

We now **prove the original conjecture**: any optimal control is piecewise constant, with at most two pieces, taking values in $\{-1,1\}$.

- Case 1: $p_h(T) = 0$. Then $p_v(T) \neq 0$. Therefore
 - lacksquare either $p_v(t) = p_v(T) < 0 \Longrightarrow \bar{u}(t) = 1$
 - lacksquare or $p_{v}(t)=p_{v}(T)>0\Longrightarrow \bar{u}(t)=-1.$
- Case 2: $p_h(T) \neq 0$. Then the map $t \mapsto p_v(T) + p_h(T)(T-t)$ vanishes at exactly one point, say τ .
 - If $\tau \leq 0$ or $\tau \geq T$, then the optimal control is constant, equal to 1 or τ^{-1}
 - If $\tau \in (0, T)$, then there is a switch.

We now **prove the original conjecture**: any optimal control is piecewise constant, with at most two pieces, taking values in $\{-1,1\}$.

- Case 1: $p_h(T) = 0$. Then $p_v(T) \neq 0$. Therefore
 - either $p_v(t) = p_v(T) < 0 \Longrightarrow \bar{u}(t) = 1$
- Case 2: $p_h(T) \neq 0$. Then the map $t \mapsto p_v(T) + p_h(T)(T-t)$ vanishes at exactly one point, say τ .
 - If $\tau \leq 0$ or $\tau \geq T$, then the optimal control is constant, equal to 1 or -1.
 - If $\tau \in (0, T)$, then there is a switch.

A summary

Given a linear time-optimal control problem, the following methodology can be followed to analyze it:

- 1 Put the state equation in the form $\dot{y} = Ay + Bu$. Check the **assumptions** state at the beginning of Section 2.
- Existence of a solution: verify the applicability of Theorem 10.
- 3 Derive optimality conditions with Theorem 15.
- 4 Deduce structural properties of optimal controls and trajectories.
- 5 Transform the problem into a geometric problem.
- 6 Solve it!

