Topic 4

Multiple Linear Regression

Learning objectives

- Distinguish between simple linear regression and multiple linear regression
- Understand the applications of multiple linear regression.
- Use the F-test
- Calculate the Adjusted R-Squared

The Multiple Regression Model

Examine the linear relationship between 1 dependent (Y) & 2 or more independent variables (X_i)

Multiple Regression Model with k Independent Variables:

Y-intercept Population slopes Random Error
$$Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + \ldots + \beta_k X_{k-1,i} + \epsilon_i$$

Multiple Regression Equation

The coefficients of the multiple regression model are estimated using sample data

Multiple regression equation with k independent variables:

Estimated (or predicted) value of y
$$\hat{y}_i = b_0 + b_1 x_{1i} + b_2 x_{2i} + \ldots + b_k x_{k,i}$$

We will always use a computer to obtain the regression slope coefficients and other regression summary measures.

Example 1: Sales

Week	Pie Sales	Price (\$)	Advertising (\$100s)
1	350	5.50	3.3
2	460	7.50	3.3
3	350	8.00	3.0
4	430	8.00	4.5
5	350	6.80	3.0
6	380	7.50	4.0
7	430	4.50	3.0
8	470	6.40	3.7
9	450	7.00	3.5
10	490	5.00	4.0
11	340	7.20	3.5
12	300	7.90	3.2
13	440	5.90	4.0
14	450	5.00	3.5
15	300	7.00	2.7

Multiple regression equation:

$$Sales_t = b_0 + b_1 (Price)_t + b_2 (Advertising)_t + e_t$$

Multiple Regression Output

Regression S	tatistics					When the second
Multiple R	0.72213				Same.	()
R Square	0.52148				13	
Adjusted R Square	0.44172					
Standard Error	47.46341	Sales - 306	526 - 24 0	75(Drica)	+ 74.131(Adve	orticina)
Observations	15	Jaies – 500	.020 - 24.0	73(11100)	+ 14.101(Auve	
ANOVA	df	ss	MS	F	Significance F	
Regression	2	29460.027	14730.013	6.53861	0.01201	
Residual	12	27033.306	2252.776			
Total	14	56493.333				
	Coefficients	Standard Error	4 5404	D volvo	Lower 05%	Unnor 05%
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	306.52619	114.25389	2.68285	0.01993	57.58835	555.46404
Price	-24.97509	10.83213	-2.30565	0.03979	-48.57626	-1.37392
Advertising	74.13096	25.96732	2.85478	0.01449	17.55303	130.70888

The formal F-test for slope parameter β_i

Null hypothesis H_0 : $\beta_1 = \beta_2 = 0 \parallel R^2 = 0$ Alternative hypothesis H_A : $\beta_1 \neq \beta_2 \neq 0 \parallel R^2 \neq 0$

Test statistic
$$F^* = \frac{R^2/k}{(1 - R^2)/n - k - 1}$$

F-critical (from F-tables)
$$Fcritical = F_{k,n-k-1}$$

Formal F-test

Decision rule

- When F*>F-critical, Reject H₀ and conclude that
- \mathbb{R}^2 is statistically significant
 - $\checkmark \beta_1$ and β_2 are jointly significant
- When F*<F-critical, Fail to reject H_0 and conclude that R^2 is not statistically significant
 - $\checkmark \beta_1$ and β_2 are jointly significant

Equivalence of F-test to t-test

- For a given α level, the F-test of $\beta_1 = 0$ versus $\beta_1 \neq 0$ is algebraically equivalent to the two-tailed t-test.
- Will get exactly same P-values, so...
 - If one test rejects H_0 , then so will the other.
 - If one test does not reject H₀, then so will the other.

Should I use the F-test or the t-test?

- The F-test is only appropriate for testing that the slope differs from $0 \ (\beta_1 \neq 0)$.
- Use the t-test to test that the slope is positive ($\beta_1 > 0$) or negative ($\beta_1 < 0$).
- F-test is more useful for multiple regression model when we want to test that more than one slope parameter is 0. Test if β_1 and β_2 are jointly significant

Adjusted-R²

- The adjusted R-squared compares the explanatory power of regression models that contain different numbers of predictors
- It is adjusted based on the df (i.e. the number of predictors in the model)
- Relevant in multiple regression
- Adjusted R² can actually get smaller as additional variables are added to the model.
- As N gets bigger, the difference between R² and Adjusted R² gets smaller and smaller.

$$R_{adj}^2 = 1 - (1 - R^2) \frac{n - 1}{n - k - 1}$$

Adjusted-R²

- One main difference between \mathbb{R}^2 and the adjusted \mathbb{R}^2
- R^2 assumes that every single variable explains the variation in the dependent variable.
- The adjusted R^2 tells you the percentage of variation explained by only the independent variables that actually affect the dependent variable.
- The adjusted R^2 is always lower than the R^2

Class exercise

- Given that $R^2 = 0.52$, n=15, and k=2
- Calculate the Adjusted R²
- Test the statistical significance of R²
- \bullet Use the t-test to test the statistical significance of β_1 and β_2
- Describe the equivalence of the F-test and the t-test above.

Solution: Multiple Regression Output

Regression St	tatistics					114
Multiple R	0.72213				Sir	
R Square	0.52148				133	
Adjusted R Square	0.44172					
Standard Error	47.46341	Sales - 306	526 - 24 0	75/Prica)	+ 74.131(Adve	articina)
Observations	15	Sales - 500	.520 - 24.57	73(11100)	+ /4.131(Auve	
ANOVA	df	ss	MS	F	Significance F	
Regression	2	29460.027	14730.013	6.53861	0.01201	
Residual	12	27033.306	2252.776			
Total	14	56493.333				
		ĺ				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	306.52619	114.25389	2.68285	0.01993	57.58835	555.46404
Price	-24.97509	10.83213	-2.30565	0.03979	-48.57626	-1.37392
Advertising	74.13096	25.96732	2.85478	0.01449	17.55303	130.70888

Class test

• You are given the following regression equation:

$$Y = 98 - 9.3X_1 - 0.029X_2$$

(0.006) (0.002) (0.003)
 $R^2 = 0.83$
 $n = 12$

- 1. Interpret the coefficient of determination (2 marks)
- 2. Test the significance of the coefficient of determination (6 marks)
- 3. Compute the adjusted R^2 and interpret your result (5 marks)
- 4. Why is the adjusted R^2 different from the R^2 value? (2 Marks)