4CCS1ELA: Tutorial list 5 – Sample Solutions

- 1. Assume that $\exists x \forall y P(x,y)$ is true. Which of the following formulas must also to be true? If the formula is true, explain. Otherwise, give a counterexample.
 - (i) $\forall x \forall y P(x, y)$.
 - (ii) $\forall x \exists y P(x, y)$.
- (iii) $\exists x \exists y P(x, y)$.

SOLUTION

- (i) $\forall x \forall y P(x,y)$. This formula can be false, i.e. $\exists x \forall y P(x,y) \not\models \forall x \forall y P(x,y)$. Let $D = \{a,b\}$ and $\mathcal{I}(P(a,a)) = \mathcal{I}(P(a,b)) = 1$ but $\mathcal{I}(P(b,a)) = \mathcal{I}(P(b,b)) = 0$. Then $\exists x \forall y P(x,y)$ is true under the interpretations \mathcal{I} , but $\forall x \forall y P(x,y)$ is false under \mathcal{I} . Another counterexample. Let the domain be the set of positive integers. let P(x,y) means $x \leq y$. Then $\exists x \forall y P(x,y)$ is true (witness x = 1) but $\forall x \forall y P(x,y)$ is false (witness x = 2, y = 1).
- (ii) $\forall x \exists y P(x, y)$. This formula can be false, i.e. $\exists x \forall y P(x, y) \not\models \forall x \exists y P(x, y)$. The interpretation given in the answer (i) is a counterexample for this case too.
- (iii) $\exists x \exists y P(x,y)$. This formula must be true, i.e. $\exists x \forall y P(x,y) \models \exists x \exists y P(x,y)$. If $\exists x \forall y P(x,y)$ is true under an interpretation \mathcal{I} , then there is some value for x, say d, such that $\forall y P(d,y)$ is true under the interpretation \mathcal{I} . Choosing any value for y whatsoever, including the same d, makes P(d,y) true. Therefore, $\exists x \exists y P(x,y)$ is true under \mathcal{I} .
- **2.** Consider the formula $\mathcal{F} = \neg \forall x \exists y P(x,y)$. Determine which of the following formulas is <u>logically equivalent</u> to \mathcal{F} and which is not. If the formula is equivalent to \mathcal{F} , then show it using successive equivalences.
 - (i) $\exists x \neg \forall y P(x, y)$.
 - (ii) $\forall x \neg \exists y P(x, y)$.
- (iii) $\exists x \forall y \neg P(x, y)$.
- (iv) $\exists x \exists y \neg P(x, y)$.

SOLUTION

 $\mathcal{F} \ = \ \neg \forall x \exists y P(x,y) \ \equiv \ \exists x \neg \exists y P(x,y) \ \equiv \ \exists x \forall y \neg P(x,y) \quad \text{(quantifier interchange twice)}.$

- (i) No. $\exists x \neg \forall y P(x,y) \equiv \exists x \exists y \neg P(x,y)$.
- (ii) No. $\forall x \neg \exists y P(x, y) \equiv \forall x \forall y \neg P(x, y)$.
- (iii) Yes.
- (iv) No.

- 3. Give a reason based on interpretations and the meaning of quantifiers why
 - (i) the following first-order sentence is valid:

$$\exists x P(x) \land \forall y (P(y) \to Q(y)) \to \exists z Q(z)$$

(ii) the following first-order sentence is not valid:

$$\exists x P(x) \land \forall y (P(y) \to Q(y)) \to \forall z \neg Q(z)$$

SOLUTION

- (i) Let \mathcal{I} be an interpretation for this formula, with domain D. Assume the antecedent of this formula $\exists x P(x) \land \forall y (P(y) \to Q(y))$ is true under \mathcal{I} . Then P(d) is true for some $d \in D$ and the formula $P(d) \to Q(d)$ is true, so Q(d) is true. Therefore, the consequent $\exists z Q(z)$ is true under \mathcal{I} , so the implication is true. Since \mathcal{I} is an arbitrary interpretation, the sentence is valid.
- (ii) Following the arguments given in the solution to (i), we conclude that if the premise of the main implication is true then there exists $d \in D$ such that Q(d) is true. It follows that the consequent $\forall z \neg Q(z)$ is false.
- 4. Use successive equivalences, showing your work, to show that the formula

```
\neg \exists x \forall y (\neg P(x) \land (Q(y) \rightarrow R(x,y))) is logically equivalent to \forall x (P(x) \lor \exists y (Q(y) \land \neg R(x,y))).
```

SOLUTION

$$\neg\exists x \forall y (\neg P(x) \land (Q(y) \rightarrow R(x,y))) \quad \equiv \quad \forall x \exists y \neg (\neg P(x) \land (Q(y) \rightarrow R(x,y))) \quad \text{quantifier interchange twice} \\ \equiv \quad \forall x \exists y (\neg \neg P(x) \lor \neg (Q(y) \rightarrow R(x,y))) \quad \text{de Morgan} \\ \equiv \quad \forall x \exists y (P(x) \lor \neg (Q(y) \rightarrow R(x,y))) \quad \text{double negation} \\ \equiv \quad \forall x \exists y (P(x) \lor (Q(y) \land \neg R(x,y))) \quad \text{tautological equivalence} \\ \equiv \quad \forall x (\exists y (P(x)) \lor \exists y (Q(y) \land \neg R(x,y))) \quad \text{distribution} \\ \equiv \quad \forall x (P(x) \lor \exists y (Q(y) \land \neg R(x,y))) \quad \text{vacuous quantification} \\ \end{cases}$$

5. Determine whether the formula \mathcal{F}

$$\exists x \forall y (P(x) \rightarrow x = y)$$

is true or false under each of the following interpretations over the domain $D = \{a, b\}$.

- (i) both P(a) and P(b) are true;
- (ii) both P(a) and P(b) are false;
- (iii) P(a) is true and P(b) is false.

SOLUTION

(i) both P(a) and P(b) are true. Then the formula is false. Indeed, $P(a) \to a = b$ is false, and $P(b) \to b = a$ is false.

- (ii) both P(a) and P(b) are false. Then the formula is true.
- (iii) P(a) is true and P(b) is false. Then the formula is true. Indeed, both $P(b) \to b = a$ and $P(b) \to b = b$ are true.

In fact, this formula is true for any domain D for which P(d) is false for at least one element $d \in D$.