SUPPLEMENTARY MATERIALS

Contents

Meta-analyses with $r = .30$	3
Dataset	3
Descriptive statistics	3
Random-effects meta-analysis	3
Models	3
Forest plot	4
Prediction interval	5
Funnel plot (trim-and-fill method)	5
Model corrected for publication bias (trim-and-fill method) $\dots \dots \dots \dots \dots \dots$	6
Sensitivity analyses	6
Leave-One-Out	6
Cook's distance	6
Meta-analyses with $r = .50$	8
Dataset	8
Descriptive statistics	8
Random-effects meta-analysis	8
Models	8
Forest plot	9
Funnel plot (trim-and-fill method)	10
Model corrected for publication bias (trim-and-fill method)	11
Sensitivity analyses	11
Leave-One-Out	11
Cook's distance	11
Meta-analyses with $r = .70$	13
Dataset	13
Descriptive statistics	13
Random-effects meta-analysis	13
Models	13

Compa	aring results	17
	Cook's distance	16
	Leave-One-Out	
	Sensitivity analyses	16
	Model corrected for publication bias (trim-and-fill method) $\dots \dots \dots \dots \dots \dots$	16
	Funnel plot (trim-and-fill method) \dots	15
	Prediction interval	15
	Forest plot	14

Meta-analyses with r = .30

Dataset

Effect sizes (Hedge's g) and varinaces for each of the included studies, with r = .30

ID	Authors	Hedge's g	Var
1	Brezis et al., 2017	0.66	0.03
2	Fitzpatrick et al., 2013	0.21	0.25
3	Fitzpatrick et al., 2017	1.00	0.04
4	Fitzpatrick et al., 2016	0.34	0.09
5	Fulceri et al., 2018	0.88	0.08
6	Georgescu et al., 2020	0.83	0.08
7	Kawasaki et al., 2017	0.83	0.09
8	Kruppa et al., 2021	0.62	0.05
9	Lampi et al., 2020	0.83	0.03
10	Liu et al., 2021	3.78	0.10
11	Marsh et al., 2013	0.21	0.31
12	Noel et al., 2018	0.24	0.09
13	Yoo et al., 2018	0.44	0.05

Descriptive statistics

				TD Group						ASD Group					
					I	Age				Age					
ID	Authors	Country	N	M/F ratio	range	mean	sd	N	M/F ratio	range	mean	sd	Type of Synchrony	Hedge's g	var
1	Brezis et al., 2017	Israel	35	28:7	19 - 45	25.90	6.37	34	31:3	20 - 45	28.60	6.26	instructed	0.66	0.03
2	Fitzpatrick et al., 2013	USA	3	1:2	4 - 5.6	4.80	0.75	5	4:1	5 - 7.4	6.21	1.17	instructed	0.21	0.25
3	Fitzpatrick et al., 2017	USA	27	21:6	6.33 - 10.8	8.24	1.46	23	20:3	6.08 - 10.75	8.08	1.44	instructed	1.00	0.04
4	Fitzpatrick et al., 2016	USA	9	7:2	12 - 16	14.44	1.13	9	8:1	12 - 17	13.67	1.94	instructed	0.34	0.09
5	Fulceri et al., 2018	Italy	11	9:2	6.3 - 9.8	7.57	0.71	11	10:1	5.11 - 10.3	7.82	1.32	spontaneous	0.88	0.08
6	Georgescu et al., 2020	Germany	10	6:4	33 - 51	41.80	8.86	9	5:4	30 - 50	40.72	10.45	spontaneous	0.83	0.08
7	Kawasaki et al., 2017	USA	24	12:12	18.9 - 32.1	25.60	6.60	24	14:10	22 - 36.4	29.20	7.20	instructed	0.83	0.09
- 8	Kruppa et al., 2021	Germany	41	18:23	8 - 18	12.66	2.79	18	18:0	8 - 18	13.54	2.96	instructed	0.62	0.05
9	Lampi et al., 2020	USA	47	34:13	6 - 10	7.85	1.49	50	34:7	6 - 10	8.02	1.44	spontaneous	0.83	0.03
10	Liu et al., 2021	USA	16	10:6	1.66 - 4.33	2.99	0.70	13	10:3	1.75 - 5.75	3.88	0.85	spontaneous	3.78	0.10
11	Marsh et al., 2013	USA	7	4:3	2.8 - 4.6	3.75	0.12	7	5:2	3.8 - 4.1	3.94	0.74	spontaneous	0.21	0.31
12	Noel et al., 2018	USA	15	11:4	8.9 - 14.5	10.94	2.13	12	8:4	7.9 - 16.5	12.20	3.75	spontaneous	0.24	0.09
13	Yoo et al., 2018	Korea	42	23:19	11 - 16	13.50	0.80	10	10:0	11 - 16	13.40	1.40	spontaneous	0.44	0.05

Random-effects meta-analysis

Models

```
m.random <- rma(yi=es, vi=var, data=df_agg, method="REML")
RE.results <- summary(m.random)
print(RE.results)</pre>
```

```
##
## Random-Effects Model (k = 13; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## -16.0619 32.1238 36.1238 37.0936 37.4571
##
```

```
## tau^2 (estimated amount of total heterogeneity): 0.7439 (SE = 0.3402)
## tau (square root of estimated tau^2 value):
                                                   0.8625
## I^2 (total heterogeneity / total variability):
## H^2 (total variability / sampling variability):
## Test for Heterogeneity:
## Q(df = 12) = 105.5515, p-val < .0001
##
## Model Results:
##
## estimate
                      zval
                              pval
                                     ci.lb
                                             ci.ub
                se
    0.8494 0.2535 3.3505 0.0008 0.3525 1.3462
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#fit moderation model (type of synchrony)
moderation.random <- rma(yi=es, vi=var, mods = ~ synch_type, data=df_agg, method="REML")
summary(moderation.random)
##
## Mixed-Effects Model (k = 13; tau^2 estimator: REML)
##
##
    logLik deviance
                           AIC
                                     BIC
                                              AICc
## -14.8883
             29.7765
                       35.7765
                                 36.9702
                                           39.2051
##
## tau^2 (estimated amount of residual heterogeneity):
                                                          0.7701 \text{ (SE = } 0.3669)
## tau (square root of estimated tau^2 value):
                                                          0.8776
## I^2 (residual heterogeneity / unaccounted variability): 92.14%
## H^2 (unaccounted variability / sampling variability):
                                                          12.73
## R^2 (amount of heterogeneity accounted for):
                                                          0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 11) = 101.4966, p-val < .0001
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.6647, p-val = 0.4149
##
## Model Results:
##
##
                                                             ci.lb
                                                                    ci.ub
                         estimate
                                       se
                                             zval
                                                    pval
## intrcpt
                           0.6241
                                   0.3774
                                          1.6535
                                                   0.0982
                                                          -0.1157
                                                                   1.3638
## synch_typespontaneous
                           ##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Forest plot

Dotted line is the prediction interval

Study	SynchType								I	Estimate [95% CI]
Brezis et al., 2017	instructed		: +	H					8.35%	0.66 [0.35, 0.98]
Fitzpatrick et al., 2013	instructed	-		_					6.47%	-
Fitzpatrick et al., 2017	instructed		⊢	-					8.22%	1.00 [0.62, 1.38]
Fitzpatrick et al., 2016	instructed			→					7.75%	0.34 [-0.24, 0.91]
Fulceri et al., 2018	spontaneous		∷ ⊢	_					7.79%	0.88 [0.33, 1.44]
Georgescu et al., 2020	spontaneous								7.77%	
Kawasaki et al., 2017	instructed		: ⊢						7.72%	
Kruppa et al., 2021	instructed		-	_					8.04%	
Lampi et al., 2020	spontaneous		: ⊢	-					8.32%	
Liu et al., 2021	spontaneous					_	_		7.64%	3.78 [3.17, 4.39]
Marsh et al., 2013	spontaneous	-	<u>:-</u>						6.12%	0.21 [-0.88, 1.29]
Noel et al., 2018	spontaneous		-						7.75%	0.24 [-0.34, 0.81]
Yoo et al., 2018	spontaneous		-	-					8.06%	
, , , , , , , , , , , , , , , , , , ,	<u>'</u>									
RE Model		1		_		-1			100.00%	0.85 [0.35, 1.35]
(Q = 105.55, df = 12, p < .	0001; $I^2 = 92.19\%$; τ	= 0.86)								
			ı	ı	I	ı		ı		
		_1	0	1	2	3	4	5		
		-1	U	1	2	3	4	3		
				He	dae's	s a				

Prediction interval

```
## pred se ci.lb ci.ub pi.lb pi.ub
## 0.8494 0.2535 0.3525 1.3462 -0.9126 2.6113
```

Funnel plot (trim-and-fill method)

Model corrected for publication bias (trim-and-fill method)

```
## Estimated number of missing studies on the right side: 5 (SE = 2.2785)
## Random-Effects Model (k = 18; tau^2 estimator: REML)
##
##
     logLik deviance
                            AIC
                                     BIC
                                               AICc
## -23.3268
              46.6537
                        50.6537
                                 52.3201
                                            51.5108
##
## tau^2 (estimated amount of total heterogeneity): 0.7886 (SE = 0.3059)
## tau (square root of estimated tau^2 value):
                                                   0.8881
## I^2 (total heterogeneity / total variability):
                                                   91.81%
## H^2 (total variability / sampling variability): 12.21
##
## Test for Heterogeneity:
## Q(df = 17) = 160.8662, p-val < .0001
## Model Results:
## estimate
                               pval
                                      ci.lb
                                             ci.ub
                 se
                       zval
     1.1668 0.2230 5.2335 <.0001 0.7299 1.6038
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Sensitivity analyses

Authors	Estimate	I2	tau	CI	PI
Brezis et al., 2017	0.87	92.08	0.91	[0.32;1.41]	[-0.99;2.73]
Fitzpatrick et al., 2013	0.89	92.96	0.88	[0.37;1.42]	[-0.92;2.7]
Fitzpatrick et al., 2016	0.89	92.79	0.89	[0.36;1.42]	[-0.93;2.72]
Fitzpatrick et al., 2017	0.84	92.50	0.91	[0.29;1.38]	[-1.03;2.7]
Fulceri et al., 2018	0.85	93.00	0.91	[0.30;1.39]	[-1.01;2.7]
Georgescu et al., 2020	0.85	93.01	0.91	[0.31;1.39]	[-1.01;2.71]
Kawasaki et al., 2017	0.85	93.03	0.91	[0.31;1.39]	[-1.01;2.71]
Kruppa et al., 2021	0.87	92.75	0.91	[0.33;1.41]	[-0.99;2.72]
Lampi et al., 2020	0.85	92.24	0.91	[0.31;1.39]	[-1.02;2.71]
Liu et al., 2021	0.68	1.36	0.00	[0.54;0.82]	[0.53;0.83]
Marsh et al., 2013	0.89	92.98	0.88	[0.37;1.42]	[-0.92;2.7]
Noel et al., 2018	0.90	92.69	0.88	[0.37;1.43]	[-0.91;2.71]
Yoo et al., 2018	0.88	92.63	0.90	[0.35;1.42]	[-0.96;2.72]

Leave-One-Out

Cook's distance

Note that study IDs follow alphabetical order of included studies and their specifications reported in the descriptive statistic's table

Meta-analyses with r = .50

Dataset

Effect sizes (Hedge's g) and varinaces for each of the included studies, with r=.50

ID	Authors	Hedge's g	Var
1	Brezis et al., 2017	0.66	0.04
2	Fitzpatrick et al., 2013	0.21	0.34
3	Fitzpatrick et al., 2017	1.00	0.05
4	Fitzpatrick et al., 2016	0.34	0.13
5	Fulceri et al., 2018	0.88	0.11
6	Georgescu et al., 2020	0.83	0.12
7	Kawasaki et al., 2017	0.83	0.09
8	Kruppa et al., 2021	0.62	0.06
9	Lampi et al., 2020	0.83	0.03
10	Liu et al., 2021	3.78	0.11
11	Marsh et al., 2013	0.21	0.31
12	Noel et al., 2018	0.24	0.11
13	Yoo et al., 2018	0.44	0.08

Descriptive statistics

				TD Group						ASD Group					
					I	Age				Age					
ID	Authors	Country	N	M/F ratio	range	mean	sd	N	M/F ratio	range	mean	sd	Type of Synchrony	Hedge's g	var
1	Brezis et al., 2017	Israel	35	28:7	19 - 45	25.90	6.37	34	31:3	20 - 45	28.60	6.26	instructed	0.66	0.04
2	Fitzpatrick et al., 2013	USA	3	1:2	4 - 5.6	4.80	0.75	5	4:1	5 - 7.4	6.21	1.17	instructed	0.21	0.34
3	Fitzpatrick et al., 2017	USA	27	21:6	6.33 - 10.8	8.24	1.46	23	20:3	6.08 - 10.75	8.08	1.44	instructed	1.00	0.05
4	Fitzpatrick et al., 2016	USA	9	7:2	12 - 16	14.44	1.13	9	8:1	12 - 17	13.67	1.94	instructed	0.34	0.13
5	Fulceri et al., 2018	Italy	11	9:2	6.3 - 9.8	7.57	0.71	11	10:1	5.11 - 10.3	7.82	1.32	spontaneous	0.88	0.11
6	Georgescu et al., 2020	Germany	10	6:4	33 - 51	41.80	8.86	9	5:4	30 - 50	40.72	10.45	spontaneous	0.83	0.12
7	Kawasaki et al., 2017	USA	24	12:12	18.9 - 32.1	25.60	6.60	24	14:10	22 - 36.4	29.20	7.20	instructed	0.83	0.09
- 8	Kruppa et al., 2021	Germany	41	18:23	8 - 18	12.66	2.79	18	18:0	8 - 18	13.54	2.96	instructed	0.62	0.06
9	Lampi et al., 2020	USA	47	34:13	6 - 10	7.85	1.49	50	34:7	6 - 10	8.02	1.44	spontaneous	0.83	0.03
10	Liu et al., 2021	USA	16	10:6	1.66 - 4.33	2.99	0.70	13	10:3	1.75 - 5.75	3.88	0.85	spontaneous	3.78	0.11
11	Marsh et al., 2013	USA	7	4:3	2.8 - 4.6	3.75	0.12	7	5:2	3.8 - 4.1	3.94	0.74	spontaneous	0.21	0.31
12	Noel et al., 2018	USA	15	11:4	8.9 - 14.5	10.94	2.13	12	8:4	7.9 - 16.5	12.20	3.75	spontaneous	0.24	0.11
13	Yoo et al., 2018	Korea	42	23:19	11 - 16	13.50	0.80	10	10:0	11 - 16	13.40	1.40	spontaneous	0.44	0.08

Random-effects meta-analysis

Models

```
m.random <- rma(yi=es, vi=var, data=df_agg, method="REML")
RE.results <- summary(m.random)
print(RE.results)</pre>
```

```
##
## Random-Effects Model (k = 13; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## -16.0955 32.1909 36.1909 37.1607 37.5242
##
```

```
## tau^2 (estimated amount of total heterogeneity): 0.7307 (SE = 0.3433)
## tau (square root of estimated tau^2 value):
                                                    0.8548
                                                    90.06%
## I^2 (total heterogeneity / total variability):
## H^2 (total variability / sampling variability):
## Test for Heterogeneity:
## Q(df = 12) = 89.7806, p-val < .0001
##
## Model Results:
##
## estimate
                       zval
                               pval
                                      ci.lb
                                              ci.ub
                 se
    0.8534 0.2547 3.3500 0.0008 0.3541 1.3527
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#fit moderation model (type of synchrony)
moderation.random <- rma(yi=es, vi=var, mods = ~ synch_type, data=df_agg, method="REML")
summary(moderation.random)
##
## Mixed-Effects Model (k = 13; tau^2 estimator: REML)
##
##
    logLik deviance
                            AIC
                                      BIC
                                               AICc
## -14.9281
              29.8562
                        35.8562
                                  37.0499
                                            39.2848
##
## tau^2 (estimated amount of residual heterogeneity):
                                                           0.7596 \text{ (SE = } 0.3714)
## tau (square root of estimated tau^2 value):
                                                           0.8716
## I^2 (residual heterogeneity / unaccounted variability): 90.03%
## H^2 (unaccounted variability / sampling variability):
                                                           10.03
## R^2 (amount of heterogeneity accounted for):
                                                           0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 11) = 86.0983, p-val < .0001
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.6403, p-val = 0.4236
##
## Model Results:
##
##
                                                              ci.lb
                                                                       ci.ub
                          estimate
                                        se
                                              zval
                                                      pval
## intrcpt
                            0.6303 0.3802
                                            1.6579
                                                    0.0973
                                                            -0.1149 1.3756
## synch_typespontaneous
                            0.4157 0.5195 0.8002 0.4236
                                                            -0.6026 1.4340
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Forest plot

Dotted line is the prediction interval

Study	SynchType								l	Estimate [95% CI]
Brezis et al., 2017	instructed			-					8.46%	0.66 [0.29, 1.03]
Fitzpatrick et al., 2013	instructed	-	- 						6.06%	0.21 [-0.93, 1.35]
Fitzpatrick et al., 2017	instructed		:	-					8.30%	1.00 [0.55, 1.44]
Fitzpatrick et al., 2016	instructed		<u> </u>						7.55%	0.34 [-0.37, 1.04]
Fulceri et al., 2018	spontaneous				-				7.69%	0.88 [0.23, 1.54]
Georgescu et al., 2020	spontaneous		-	-	4				7.59%	0.83 [0.14, 1.52]
Kawasaki et al., 2017	instructed		-	-					7.92%	0.83 [0.25, 1.42]
Kruppa et al., 2021	instructed		į-						8.17%	0.62 [0.12, 1.11]
Lampi et al., 2020	spontaneous		:	-					8.50%	. , .
Liu et al., 2021	spontaneous		:			-	-			3.78 [3.13, 4.44]
Marsh et al., 2013	spontaneous	-	- ; -						6.26%	0.21 [-0.88, 1.29]
Noel et al., 2018	spontaneous			—					7.75%	0.24 [-0.40, 0.88]
Yoo et al., 2018	spontaneous		\vdash	-					8.05%	0.44 [-0.10, 0.98]
RE Model	0	1		_		-1			100.00%	0.85 [0.35, 1.35]
(Q = 89.78, df = 12, p < .00)	$001; I^2 = 90.06\%; \tau =$	= 0.8 <u>5)</u>						_		
		ı	ı	ı	ı	ı	ı	١		
		-1	0	1	2	3	4	5		
				Не	edge's	s g				

###

Prediction interval

pred se ci.lb ci.ub pi.lb pi.ub ## 0.8534 0.2547 0.3541 1.3527 -0.8948 2.6017

Funnel plot (trim-and-fill method)

Model corrected for publication bias (trim-and-fill method)

```
## Estimated number of missing studies on the right side: 5 (SE = 2.2785)
## Random-Effects Model (k = 18; tau^2 estimator: REML)
##
##
     logLik deviance
                            AIC
                                     BIC
                                               AICc
## -23.3410
              46.6819
                        50.6819
                                 52.3483
                                            51.5390
##
## tau^2 (estimated amount of total heterogeneity): 0.7668 (SE = 0.3065)
## tau (square root of estimated tau^2 value):
                                                   0.8757
## I^2 (total heterogeneity / total variability):
                                                   89.40%
## H^2 (total variability / sampling variability): 9.43
##
## Test for Heterogeneity:
## Q(df = 17) = 130.3017, p-val < .0001
## Model Results:
## estimate
                               pval
                                      ci.lb
                                             ci.ub
                 se
                       zval
     1.1665 0.2233 5.2240 <.0001 0.7288 1.6041
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Sensitivity analyses

Authors	Estimate	I2	tau	CI	PI
Brezis et al., 2017	0.87	90.08	0.90	[0.32;1.42]	[-0.98;2.72]
Fitzpatrick et al., 2013	0.89	91.03	0.88	[0.37;1.42]	[-0.9;2.69]
Fitzpatrick et al., 2016	0.90	90.89	0.88	[0.36;1.43]	[-0.92;2.71]
Fitzpatrick et al., 2017	0.84	90.54	0.90	[0.29;1.39]	[-1.01;2.69]
Fulceri et al., 2018	0.85	91.12	0.90	[0.31;1.39]	[-1;2.69]
Georgescu et al., 2020	0.85	91.15	0.90	[0.31;1.40]	[-0.99;2.7]
Kawasaki et al., 2017	0.85	91.00	0.90	[0.31;1.40]	[-0.99;2.7]
Kruppa et al., 2021	0.87	90.69	0.90	[0.33;1.42]	[-0.97;2.72]
Lampi et al., 2020	0.85	90.00	0.91	[0.31;1.40]	[-1;2.71]
Liu et al., 2021	0.69	0.00	0.00	[0.53;0.84]	[0.53;0.84]
Marsh et al., 2013	0.90	91.01	0.88	[0.37;1.42]	[-0.9;2.69]
Noel et al., 2018	0.90	90.67	0.88	[0.37;1.44]	[-0.89;2.7]
Yoo et al., 2018	0.89	90.68	0.89	[0.35;1.43]	[-0.94;2.72]

Leave-One-Out

Cook's distance

Note that study IDs follow alphabetical order of included studies and their specifications reported in the descriptive statistic's table

Meta-analyses with r = .70

Dataset

Effect sizes (Hedge's g) and varinaces for each of the included studies, with r = .70

ID	Authors	Hedge's g	Var
1	Brezis et al., 2017	0.66	0.05
2	Fitzpatrick et al., 2013	0.21	0.43
3	Fitzpatrick et al., 2017	1.00	0.07
4	Fitzpatrick et al., 2016	0.34	0.17
5	Fulceri et al., 2018	0.88	0.15
6	Georgescu et al., 2020	0.83	0.16
7	Kawasaki et al., 2017	0.83	0.09
8	Kruppa et al., 2021	0.62	0.07
9	Lampi et al., 2020	0.83	0.04
10	Liu et al., 2021	3.78	0.13
11	Marsh et al., 2013	0.21	0.31
12	Noel et al., 2018	0.24	0.13
13	Yoo et al., 2018	0.44	0.10

Descriptive statistics

			Ι	TD Group						ASD Group					
					I	Age				Age					
ID	Authors	Country	N	M/F ratio	range	mean	sd	N	M/F ratio	range	mean	sd	Type of Synchrony	Hedge's g	var
1	Brezis et al., 2017	Israel	35	28:7	19 - 45	25.90	6.37	34	31:3	20 - 45	28.60	6.26	instructed	0.66	0.05
2	Fitzpatrick et al., 2013	USA	3	1:2	4 - 5.6	4.80	0.75	5	4:1	5 - 7.4	6.21	1.17	instructed	0.21	0.43
3	Fitzpatrick et al., 2017	USA	27	21:6	6.33 - 10.8	8.24	1.46	23	20:3	6.08 - 10.75	8.08	1.44	instructed	1.00	0.07
4	Fitzpatrick et al., 2016	USA	9	7:2	12 - 16	14.44	1.13	9	8:1	12 - 17	13.67	1.94	instructed	0.34	0.17
5	Fulceri et al., 2018	Italy	11	9:2	6.3 - 9.8	7.57	0.71	11	10:1	5.11 - 10.3	7.82	1.32	spontaneous	0.88	0.15
6	Georgescu et al., 2020	Germany	10	6:4	33 - 51	41.80	8.86	9	5:4	30 - 50	40.72	10.45	spontaneous	0.83	0.16
7	Kawasaki et al., 2017	USA	24	12:12	18.9 - 32.1	25.60	6.60	24	14:10	22 - 36.4	29.20	7.20	instructed	0.83	0.09
- 8	Kruppa et al., 2021	Germany	41	18:23	8 - 18	12.66	2.79	18	18:0	8 - 18	13.54	2.96	instructed	0.62	0.07
9	Lampi et al., 2020	USA	47	34:13	6 - 10	7.85	1.49	50	34:7	6 - 10	8.02	1.44	spontaneous	0.83	0.04
10	Liu et al., 2021	USA	16	10:6	1.66 - 4.33	2.99	0.70	13	10:3	1.75 - 5.75	3.88	0.85	spontaneous	3.78	0.13
11	Marsh et al., 2013	USA	7	4:3	2.8 - 4.6	3.75	0.12	7	5:2	3.8 - 4.1	3.94	0.74	spontaneous	0.21	0.31
12	Noel et al., 2018	USA	15	11:4	8.9 - 14.5	10.94	2.13	12	8:4	7.9 - 16.5	12.20	3.75	spontaneous	0.24	0.13
13	Yoo et al., 2018	Korea	42	23:19	11 - 16	13.50	0.80	10	10:0	11 - 16	13.40	1.40	spontaneous	0.44	0.10

Random-effects meta-analysis

Models

```
m.random <- rma(yi=es, vi=var, data=df_agg, method="REML")
RE.results <- summary(m.random)
print(RE.results)</pre>
```

```
##
## Random-Effects Model (k = 13; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## -16.1275 32.2550 36.2550 37.2248 37.5883
##
```

```
## tau^2 (estimated amount of total heterogeneity): 0.7175 (SE = 0.3459)
## tau (square root of estimated tau^2 value):
                                                    0.8470
## I^2 (total heterogeneity / total variability):
## H^2 (total variability / sampling variability): 8.41
## Test for Heterogeneity:
## Q(df = 12) = 78.4058, p-val < .0001
##
## Model Results:
##
## estimate
                       zval
                               pval
                                      ci.lb
                                              ci.ub
                 se
    0.8570 0.2558 3.3498 0.0008 0.3556 1.3585
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#fit moderation model (type of synchrony)
moderation.random <- rma(yi=es, vi=var, mods = ~ synch_type, data=df_agg, method="REML")
summary(moderation.random)
##
## Mixed-Effects Model (k = 13; tau^2 estimator: REML)
##
##
    logLik deviance
                            AIC
                                      BIC
                                               AICc
## -14.9658
              29.9316
                        35.9316
                                  37.1253
                                            39.3602
##
## tau^2 (estimated amount of residual heterogeneity):
                                                           0.7487 \text{ (SE = } 0.3754)
## tau (square root of estimated tau^2 value):
                                                           0.8653
## I^2 (residual heterogeneity / unaccounted variability): 88.11%
## H^2 (unaccounted variability / sampling variability):
                                                           8.41
## R^2 (amount of heterogeneity accounted for):
                                                           0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 11) = 75.0846, p-val < .0001
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.6188, p-val = 0.4315
##
## Model Results:
##
##
                                                              ci.lb
                                                                       ci.ub
                          estimate
                                        se
                                              zval
                                                      pval
## intrcpt
                            0.6361
                                    0.3826
                                            1.6625
                                                    0.0964
                                                            -0.1138 1.3860
## synch_typespontaneous
                            0.4110 0.5225
                                            0.7866
                                                   0.4315 -0.6130 1.4350
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Forest plot

Dotted line is the prediction interval

Study	SynchType		Estimate [95% CI]			
Brezis et al., 2017	instructed	: ⊢∎→	8.57% 0.66 [0.24, 1.08]			
Fitzpatrick et al., 2013	instructed ⊢	: =	5.70% 0.21 [-1.08, 1.50]			
Fitzpatrick et al., 2017	instructed	. ⊢₽ →	8.36% 1.00 [0.50, 1.50]			
Fitzpatrick et al., 2016	instructed	<u> </u>	7.36% 0.34 [-0.48, 1.15]			
Fulceri et al., 2018	spontaneous	 	7.58% 0.88 [0.14, 1.63]			
Georgescu et al., 2020	spontaneous		7.42% 0.83 [0.04, 1.63]			
Kawasaki et al., 2017	instructed	: ⊢=	8.12% 0.83 [0.25, 1.42]			
Kruppa et al., 2021	instructed	⊢ ■→	8.29% 0.62 [0.09, 1.14]			
Lampi et al., 2020	spontaneous	: ⊢■ →	8.67% 0.83 [0.45, 1.21]			
Liu et al., 2021	spontaneous		7.76% 3.78 [3.09, 4.48]			
Marsh et al., 2013	spontaneous -	: =	6.40% 0.21 [-0.88, 1.29]			
Noel et al., 2018	spontaneous	⊢	7.74% 0.24 [-0.47, 0.94]			
Yoo et al., 2018	spontaneous	· ·	8.04% 0.44 [-0.17, 1.05]			
RE Model (Q = 78.41, df = 12, p < .0001; I ² = 88.11%; τ = 0.85)						
			1			
			_			
	-2 -1	0 1 2 3 4	5			
Hedge's g						

Prediction interval

pred se ci.lb ci.ub pi.lb pi.ub ## 0.8570 0.2558 0.3556 1.3585 -0.8772 2.5913

Funnel plot (trim-and-fill method)

Model corrected for publication bias (trim-and-fill method)

```
## Estimated number of missing studies on the right side: 5 (SE = 2.2785)
## Random-Effects Model (k = 18; tau^2 estimator: REML)
##
##
     logLik deviance
                            AIC
                                     BIC
                                               AICc
              46.7154
## -23.3577
                        50.7154
                                 52.3819
                                            51.5726
##
## tau^2 (estimated amount of total heterogeneity): 0.7463 (SE = 0.3072)
## tau (square root of estimated tau^2 value):
                                                   0.8639
## I^2 (total heterogeneity / total variability):
                                                   87.17%
## H^2 (total variability / sampling variability): 7.80
##
## Test for Heterogeneity:
## Q(df = 17) = 110.8582, p-val < .0001
## Model Results:
## estimate
                               pval
                                      ci.lb
                                             ci.ub
                 se
                       zval
     1.1660 0.2237 5.2132 <.0001 0.7276 1.6044
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Sensitivity analyses

Authors	Estimate	I2	tau	CI	PI
Brezis et al., 2017	0.87	88.27	0.89	[0.32;1.42]	[-0.96;2.71]
Fitzpatrick et al., 2013	0.90	89.26	0.87	[0.37;1.42]	[-0.88;2.68]
Fitzpatrick et al., 2016	0.90	89.14	0.88	[0.36;1.43]	[-0.9;2.7]
Fitzpatrick et al., 2017	0.84	88.77	0.89	[0.29;1.39]	[-0.99;2.68]
Fulceri et al., 2018	0.85	89.40	0.89	[0.31;1.40]	[-0.98;2.68]
Georgescu et al., 2020	0.86	89.44	0.89	[0.31;1.40]	[-0.97;2.69]
Kawasaki et al., 2017	0.86	89.10	0.89	[0.31;1.41]	[-0.98;2.69]
Kruppa et al., 2021	0.88	88.81	0.89	[0.33;1.42]	[-0.95;2.71]
Lampi et al., 2020	0.86	87.98	0.90	[0.31;1.41]	[-0.99;2.7]
Liu et al., 2021	0.69	0.00	0.00	[0.52;0.86]	[0.52;0.86]
Marsh et al., 2013	0.90	89.18	0.87	[0.37;1.43]	[-0.88;2.68]
Noel et al., 2018	0.91	88.83	0.87	[0.37;1.44]	[-0.88;2.69]
Yoo et al., 2018	0.89	88.91	0.88	[0.35;1.43]	[-0.92;2.71]

Leave-One-Out

Cook's distance

Note that study IDs follow alphabetical order of included studies and their specifications reported in the descriptive statistic's table

Comparing results

Table 1: Results of the three meta-analyses with different hypothesized correlations

Correlation	ES	I2	tau	CI	PI
r = .30	0.85	92.19	0.86	[0.35;1.35]	[-0.91;2.61]
r = .50	0.85	90.06	0.85	[0.35;1.35]	[-0.89;2.6]
r = .70	0.86	88.11	0.85	[0.36; 1.36]	[-0.88;2.59]