Computational Number Theory Part III

Isomorphisms, Pairings, CRT, etc.

Isomorphisms

- Abelian groups G and H are isomorphic if they have same underlying algebraic structure
- Isomorphism just a different, but equivalent way to represent elements of a group
- Let (G, •) and (H, *) be abelian groups. A function f:
 G->H is said an isomorphism from G to H, if:
 - f is a bijective function (one-to-one mapping)
 - For all $g_1, g_2 \in G$, we have: $f(g_1 \cdot g_2) = f(g_1) * f(g_2)$
- If such an f exists, groups G, H are said to be isomorphic, i.e., G ≃ H

Isomorphisms

- If G ≃ H, and G is finite, H must be finite too
- |G| = |H| too
- If f: G -> H exists, f⁻¹: H->G exists too (either may/may not be efficiently computable)
- General idea: group homomorphisms
- Isomorphism one possible mapping (bijective)
- Others:
 - f is surjective (many-to-one): epimorphism
 - f is injective (one-to-one, but preserves distinctness): monomorphism

Direct Product

- Given two groups, (G, •), (H, ∗), the direct product of G and H is defined as: (G × H, ⊕)
- The elements of group $(G \times H, \oplus)$ are *ordered* pairs (g,h), where $g \in G$, and $h \in H$
- If |G| = n, |H| = m, $|G \times H| = mn$
- $(g,h) \oplus (g',h') = (g \cdot g', h * h')$

Is this Useful?

- Certainly
- Pairing-based crypto: entire area of research within public-key crypto
- Many hardness assumptions based on group mappings or "pairings"
- Lots of primitives/protocols built around these assumptions
- Math relatively more involved
- Efficiency? Not as efficient as, say, RSA, ElGamal, etc., but other advantages¹...

1: Don't need an established PKI, or standardized certificates, for one

Group Pairings

- Broadly speaking, 3 kinds of pairings
- Type I pairings: "Symmetric":
 - e:G×H->G_T; G=H
 - e is a bilinear map¹
- Type II pairings: "Asymmetric", with efficiently computable isomorphism:
 - e:G×H−>G_T; G≠H, but ψ exists, such that g=ψ(h);
 g∈G, h∈H
 - ψ is an efficiently computable isomorphism

Group Pairings

- Type III pairings: "Asymmetric", with no efficiency computable isomorphism:
 - e:G×H−>G_T; G≠H, no efficiently computable ψ exists, such that g=ψ(h); g∈G, h∈H
- Pairing between 2 groups: e is a Bilinear map
- Pairings between k groups: k-linear, or multilinear map

Pairing Assumption (DLIN)

- Decision Linear Diffie-Hellman Assumption (DLIN)
- Let G, H be two groups, with G=H. The DLIN assumption holds in G and H if, given (u,v,h,ua,vb,hc), it is computationally infeasible to determine if c = a+b, or c <- Zp, where |G|=|H|=p
- $| Pr[A(u,v,h,u^a,v^b,h^{a+b}) = 1: u,v,h < G; a,b < Zp]$
 - $Pr[A(u,v,h,u^a,v^b,η) = 1: u,v,h,η < G, a,b < Zp]$ | ≤ 1/2 + negl(ε)

Pairing Assumption (qSDH)

- Let G, H be groups or order p. Let $g \in G$, and $h \in H$ be generators of G and H respectively. The q-SDH assumption holds in G and H, if, given the elements $(g, h, h^x, h^{x^2}, h^{x^3}, ..., h^{x^q})$, it is computational infeasible for an algorithm* to output any pair $(c, g^{1/(x+c)})$, where $x, c < -Z_p$
- $| Pr[A(g, h, h^x, h^{x^2}, h^{x^3}, ..., h^{x^q}) = (c, g^{1/(x+c)})] | \ge \varepsilon$

Defined over symmetric/asymmetric groups

^{*:} Math assumptions are usually defined in terms of a general algorithm, not "adversary". Its only when we build a crypto protocol on top of the assumption, that adversary comes into picture

Pairing Assumptions

- Other pairing assumptions: Symmetric Diffie Hellman (SDH), subgroup assumptions, innerproduct assumptions, and few more
- Boondoggle...? Nope
- Families of protocols built on pairing-based assumptions:
 - Identity-based encryption (IBE)
 - Attribute-based cryptosystems (ABE/ABS)
 - Non-interactive zero-knowledge proofs (NIZK)^{1,} and more...

1: There exist interactive, non-pairing-based "cut-and-choose" ZKPs too, but those are communication-intensive, and hence inefficient

Chinese Remainder Theorem

 Let N = pq, where p,q > 1, and p,q are co-prime. Then:

$$Z_N \simeq Z_p \times Z_q$$
, and $Z_N^* \simeq Z_p^* \times Z_q^*$

- Let f be a function that maps Z_N to $Z_p \times Z_q$
- f maps $x \in \{0,...,N-1\}$ to pairs (x_p,x_q) , where $x_p \in$ $\{0,...,p-1\}$ and $x_q \in \{0,...,q-1\}$, defined as:

 $f(x) = ([x \bmod p], [x \bmod q])$

Chinese Remainder Theorem

- f is an isomorphism from Z_N to $Z_p \times Z_q$
- If f^* is a function that maps Z_N^* to $Z_p^* \times Z_q^*$, then f^* is also an isomorphism from Z_N^* to $Z_p^* \times Z_q^*$
- Modular exponentiation very computationally expensive operation; CRT can considerably speed up implementations

Chinese Remainder Theorem

- Example: consider group $Z_{15}^* = \{1,2,4,7,8,11,13,14\}, \mid Z_{15}^* \mid = 8$
- CRT stipulates $Z_{15}^* \simeq Z_5^* \times Z_3^*$
- Check:
 - $Z_5^* = \{1,2,3,4\}, Z_3^* = \{1,2\}$
 - Needs to be a one-to-one mapping between Z_{15}^* and $Z_{5}^* \times Z_{3}^*$
 - $1 \Leftrightarrow (1,1), 2 \Leftrightarrow (2,2), 4 \Leftrightarrow (4,1), 7 \Leftrightarrow (2,1), 8 \Leftrightarrow (3,2), 11 \Leftrightarrow (1,2), 13 \Leftrightarrow (3,1), 14 \Leftrightarrow (4,2)$

CRT Tricks

- Example 1: Compute 14•13 mod 15. Assume Z₁₅* is a group
- We know $14 \leftrightarrow (4,2)$, and $13 \leftrightarrow (3,1)$
- We also know $Z_{15}^* \simeq Z_5^* \times Z_3^*$
- (4,2) (3,1) = ([4 3 mod 5], [2 1 mod 3])
- \bullet = (2,2)
- = 2, since $2 \Leftrightarrow (2,2)$
- So, 14•15 mod 15 = 2

CRT Tricks

- Example 2: Compute 11⁵³ mod 15. Assume Z₁₅* is a group
- We know $11 \leftrightarrow (1,2)$, and $Z_{15}^* \simeq Z_5^* \times Z_3^*$
- = ([1⁵³ mod 5],[(-1)⁵³ mod 3]) (since 2 = (-1 mod 3))
- \bullet = (1, [-1 mod 3])
- \bullet = (1,2)
- $11 \leftrightarrow (1,2)$
- So, 11^{53} mod 15 = 11

CRT Tricks

- Example 3: Compute [18^{25} mod 35]. Assume Z_{35}^* is a group
- We know $18 \Leftrightarrow (3,4)$, and $Z_{35}^* \simeq Z_5^* \times Z_7^*$
- $((3,4)^{25} \mod 35) = ([3^{25} \mod 5], [4^{25} \mod 7])$
- = ($[3^{25 \mod 4} \mod 5]$, $[4^{25 \mod 6} \mod 7]$) (refer to numTheory II slide 7)
- \bullet = ([3], [4])
- $18 \leftrightarrow (3,4)$
- So, 18^{25} mod 35 = 18

Factoring

- Integer factoring:
- Given composite number N, such that N = pq, find primes p,q > 1
- Solution:
- Heuristic search (trial-and-error): ∀ p∈[2,...,
 L√N_⊥], check if p divides N
- Complexity: O(√N polylog(N)), but marginally better ones also exist
- No polynomial-time algorithm known¹

1: When p,q are primes, that is. Of course, if one of them is even, it is easy to factor N in polynomial time

Prime Generation

- Ok, but how do we generate large primes?
- Bertrand's postulate: For any n>1, ∃ at least one prime p, s.t., n
- Miller-Rabin procedure for primality testing
 - Fairly simple process
 - Works over Z_n* groups
 - Uses property that $|Z_n^*| = n-1$, if n is prime

FLT Primality Test

- Let Z_n^* be a group. If n is prime, $|Z_n^*| = n-1$
- So, for any $a \in Z_n^*$, $a^{n-1} \mod n = 1$ (group property)
- Attempt 1: Fermat's little theorem
 for i = 1 to t /*t reasonably big integer*/
 Choose a random (but uniformly chosen) a ∈ {1, ...,n-1}
 if aⁿ⁻¹ mod n ≠ 1, return "n is composite"
 return "n is prime"

FLT Test

- Sounds simplistic, does it work?
- Somewhat...
 - Let an a, such that aⁿ⁻¹ mod n ≠ 1 be a witness (of being composite/non-prime)
 - Known result: if there exists a witness, then 1/2 of elements in Z_n^* are witnesses that n is composite, for a given n
 - So, if n is composite, at least $|Z_n^*|/2$ witnesses exist
 - Probability that no witness found in t iterations is 1/2^t

FLT Test

- Problem?
- There are infinitely many composite numbers that don't have any witnesses:-(
 - Carmichael numbers!*
- Attempt 2: (Weak) Miller Rabin test
 - Given n, compute r, u, such that $(n-1) = 2^r u$; where $r \ge 1$, u is odd, n > 2
 - In attempt 1, if a^{2ru} mod n ≠ -1, return "n is composite", for a ∈ {1,...,n-1}

^{*:} Satisfy certain primality tests, despite not being prime. First such number is 561

Miller-Rabin Test

- Attempt 3: Miller-Rabin test
 - Instead of checking if a^{2ru} mod n ≠ -1, for a single r, check the entire sequence from i = {1, ...,r-1}, for n > 2, (n-1) = 2^ru
 - In attempt 2, if ((a^u mod n ≠ 1) AND (a^{2¹u} mod n ≠ -1), AND (a^{2²u} mod n ≠ -1), AND (a^{2³u} mod n ≠ -1), AND, (a^{2⁻u} mod n ≠ -1)), return "n is composite", for n > 2
- a ∈ {1,...,n-1} is a strong witness, else strong liar

Miller-Rabin Test

- Composite integer, n is a prime power, if n = p^r, for some prime p, and r≥1
- Known result: If n is an odd number that is not a prime power, at least 1/2 of elements in Z_n^* are strong witnesses that n is composite

Miller-Rabin Test

• Final Attempt: if n is even, return "n is composite" if n is a prime power¹, return "n is composite" find $r \ge 1$ and odd u, such that $(n-1) = 2^r u$ for i = 1 to t /*t reasonably big integer*/ Choose a random (but uniformly chosen) element $a \in \{1, ..., n-1\}$ if $(a^u \mod n \neq 1)$ and if $(a^{2^{r_u}} \mod n \neq -1)$, $\forall i \in$ {1,...,r-1}), return "n is composite" return "n is prime"

1: Textbook gives slightly more general notion of perfect power; every prime power is also a perfect power

Factoring Assumption

Factoring Experiment, Fact_{A,GenModulus}(n):

GenModulus (1ⁿ) \rightarrow (N,p,q), such that N=pq; p,q are n-bit primes Poly-time algorithm A: A(N) \rightarrow p',q' If $\{p,q\} = \{p',q'\}$, output 1, else 0

 Factoring is hard w.r.t. GenModulus, if, for all PPT algorithms A, there exists a negligible function, negl, s.t.:

 $Pr[Fact_{A,GenModulus}(n) = 1] \le negl(n)$