

BRICS – Efficient Techniques for Estimating the Farness-Centrality in Parallel

Sai Charan Regunta, Sai Harsh Tondomker and Kishore Kothapalli

Why Graphs?

For a node v in graph G(u,v), it is the sum of the shortest distances from node v to all other nodes in the graph.

$$farness[u] = \sum_{v \in V} d(u, v)$$

	a	b	c	d	e	FC
a						
b						
c						
$\mid d \mid$						
$\mid e \mid$						

	a	b	c	d	e	FC
a	0	1	1	1	1	4
b						
c						
d						
$\mid e \mid$						

	a	b	c	d	e	FC
a	0	1	1	1	1	4
b	1	0	2	1	1	5
c						
d						
e						

	a	b	c	d	e	FC
a	0	1	1	1	1	4
b	1	0	2	1	1	5
c	1	2	0	1	2	6
d						
$\mid e \mid$						

	a	b	c	d	e	FC
a	0	1	1	1	1	4
b	1	0	2	1	1	5
c	1	2	0	1	2	6
$\mid d \mid$	1	1	1	0	1	4
e						

	a	b	c	d	e	FC
a	0	1	1	1	1	4
b	1	0	2	1	1	5
c	1	2	0	1	2	6
d	1	1	1	0	1	4
e	1	1	2	1	0	5

	a	b	c	d	e	FC
a	0	1	1	1	1	4
b	1	0	2	1	1	5
c	1	2	0	1	2	6
d	1	1	1	0	1	4
e	1	1	2	1	0	5

Why Approximate FC?

• Time complexity:

- FC: O(nm)

- Approx FC: O(km)

10M nodes graph

- FC: 2 - 3 days

- Approx FC: 3 - 5 Hrs

INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY

Related Work

• Eppstein et al: Random-K, first randomized Approximation of Centrality.(1999)

 Cohen et al: Hybrid method of sampling and pivoting to estimate the closeness centrality.

 Sariyuce et al: BADIOS framework for computing exact betweenness centrality.

Approaches

Exact FC

Approaches

Exact FC Approx FC(Random-K)

Approaches

Exact FC

Approx FC(Random-K)

Our Approach(BRICS)

BRICS-FrameWork

- BCT
- Redundant Nodes 3D & 4D
- Identical Nodes
- Chaining

BCC based approach

 $\mathsf{Graph}\ G$

BCC based approach

BCC(G)

BCC based approach

BCC(G)

BCT(G)

Redundant Nodes

No shortest path pass through v, unless v is source/destination in R3, similarly in R4.

Identical Nodes

Chain Nodes

Chain Nodes

Chain Nodes

Chain Nodes

All the redundant nodes can be removed directly from Graph G.

Chain Nodes

All the redundant nodes can be removed directly from Graph G.

Upto 60% of total chains are of Type-2 and 80% are redundant nodes.

Procedure

G

Top Down Approach

Procedure

Top Down Approach

Procedure

Top Down Approach

Speed up Vs Quality

Quality =
$$\frac{\sum_{v \in V} AR(v)}{n}$$
 where $AR(v) = \frac{farness_estimated(v)}{farness_actual(v)}$

Profiling for Road Networks

I & R < 1% C: 70 - 85% and Largest BiCC 90%

Distribution of BiCC: Skewed, Slightly better quality

Profiling for Web graphs

I: 44 %, C: 54%, R: 2.4 % and Large BiCC 27.3 % Nodes

Distribution of BiCC: nearly balanced, better quality

Profiling for Social graphs

I & C \leq 40 % but R < 1% and Large BiCC: 72 %

Distribution of BiCC: Skewed, Slightly better quality

Profiling for Community graphs

I, C & R \leq 40 % and Large BiCC: 80 %

Distribution of BiCC: Skewed, Slightly better quality

Thank You

Questions???