Формальные языки и автоматы Игнатьев Валерий Николаевич vignatyev@cs.msu.ru

Организационные вопросы и отчетность

- ▶ 2 контрольных на лекциях (40 баллов)
- ≽Экзамен письменный (30 баллов)
- ➤ Задачи в ejudge (ДЗ) (10,10,5, ... баллов)

Оценка	Перед экзаменом	Бонус	экзамен (22г)
отл.	~50	+1 к оценке на экзамене	20 / 25
хор.	~42		16 / 25
удв.	~35		12 / 25

Слайды, материалы, результаты проверочных работ

https://t.me/+AfdgEOSZCiAwMWEy

- Табличка с результатами
 - будет сообщение в группе

- Регулярные выражения (РВ, RE)
 - текстовые редакторы
 - утилиты обработки текстов (sed, grep)
 - UNIX shell,
 - тривиальный разбор текста
- Конечные автоматы модель для многих HW&SW компонентов
 - Лексический анализ компилятора
 - Model checking
 - Дизайн и верификация цифровых электронных схем
- Контекстно-свободные грамматики используются для
 - формализации синтаксиса практически всех ЯП
 - в распознавании естественного языка (natural language processing)
- Конструирование неоптимизирующего компилятора

1930-е

• Тьюринг – абстрактная машина

• Проблема разрешимости, останова

теория к разработка рексически рязи

Хомский

Формал

Формалі реализа

колы

- Тьюринг абстрактная машина
- Проблема разрешимости, останова

1940 - 1950-e

теория конечных автоматов

разработка и верификация цифровых схем,

1950-е

1950 -1960-е

реализации первых ЯП

Тьюринг – абстрактная машина
 Проблема разрешимости, останова
 1940 – 1950-е
 теория конечных автоматов разработка и верификация цифровых схем, лексический анализ, парсеры-краулеры, протоколы связи
 Хомский – основы теории ФЯ
 1950-е
 Формальные грамматики
 Формальные грамматики применяются при реализации первых ЯП

Литература

• Джон Э. Хопкрофт, Раджив Мотвани, Джеффри Д. Ульман

«Введение в теорию автоматов, языков и вычислений»

В.А. Серебряков

«Теория и реализация языков программирования»

- Альфред В. Ахо, Моника С. Лам, Рави Сети, Джеффри Д. Ульман «Компиляторы. Принципы, технологии и инструментарий»
- Cooper, Keith D., Torczon, Linda
 "Engineering a compiler"

Основные понятия теории автоматов Язык как формальная система

- **Алфавит (V**) конечное непустое множество *символов* Пример: $\{a, b, c, ..., z\}$ латинский, $\{0,1\}$ двоичный
- Слово (строка, предложение) любая цепочка конечной длины, составленная из символов алфавита.

 $m{\varepsilon}$ или $m{\epsilon}, m{e}$ — обозначение **пустой строки/слова** — не содержит ни одного символа

 V^* – множество всех слов, составленных из символов V $V^+ = V^* \setminus \{\varepsilon\}$

Пример: $V = \{0,1\}$, тогда $V^* = \{\varepsilon, 0, 1, 00, 01, 10, 11, 000, ...\}$

- |x| длина строки $x \in V$,
- $|\varepsilon| = 0$
- Пусть $x, y \in V^*, x = a_1 a_2 \dots a_i, y = b_1 b_2 \dots b_j,$ xy конкатенация, $xy = a_1 a_2 \dots a_i b_1 b_2 \dots b_i.$

Язык как формальная система

• Язык (L) — любое множество строк в алфавите $L \subseteq V^*$

Пример:

- $L_1 = \emptyset$ пустой язык;
- $L_2 = \{ \mathcal{E} \}$ язык, содержащий только пустую цепочку (L_1 и L_2 различные языки)
- $L_3 = \{ \varepsilon, a, b, aa, ab, ba, bb \}$ язык, содержащий все цепочки из a и b, длина которых не превосходит 2;
- $L_4 \{a^{n^2} : n > 0\}$ язык цепочек из a, длины которых представляют собой квадраты натуральных чисел.

Проблемы

- ≻Как задавать язык?
- Для каждого ли языка существует конечное представление?
- Для каких классов языков существуют конечные представления?
- Является ли данная цепочка элементом определенного языка?

Проблемы

Распознавание Порождение • алгоритм или процедура, которые определяют, принадлежит ли заданное слово языку • алгоритм: «да» ^ «нет» • процедура: «да» ^ «нет» ^ не завершается

ightharpoonup По алгоритму или процедуре распознавания языка можно построить процедуру, порождающую этот у язык: генерировать все предложения из V^* и проверять с помощью известной

процедуры или алгоритма

А что если процедура распознавания не завершится на некотором слове?

Построение порождающей процедуры по процедуре распознавания

Пусть V — алфавит из p символов

 \triangleright Занумеруем слова из V^* (как числа p-ичной системы счисления)

Пример: $V = \{a, b, c\}$

aa 6. ab 10. bc 7. ac 8. ba

9. bb *11.* ...

ightharpoonup Пусть P — распознающая процедура для L. Она состоит из шагов, т.е. существует некоторый i-й шаг

Построение порождающей процедуры по процедуре распознавания

 \succ Зададим способ нумерации (k) пар положительных целых чисел (i,j) k=c(i,j)

ightharpoonup Пусть k имеет координаты (i,j) (серый) Заметим, что

Пусть

N — число эл-тов треугольника (желтый)

$$k = N + i$$

$$N = 1 + 2 + ... + n = \frac{n(n+1)}{2},$$

n: (1,1), (i + j - 1,1), (1, i + j - 1); i + j = n + 2

$$N = 1 + 2 + .. + (i + (j - 1) - 1)$$

$$N = \frac{(i + j - 2)(i + j - 1)}{2}$$

$$k = \frac{(i+j-2)(i+j-1)}{2} + i$$

Построение порождающей процедуры по процедуре распознавания

 \succ Зададим способ нумерации (k) пар положительных целых чисел (i,j) k=c(i,j)

ightharpoonup Пусть k имеет координаты (i,j) Заметим, что

$$k = N + i$$

N — число эл-тов треугольника

$$N = 1 + 2 + ... + (i + (j - 1) - 1)$$

$$N = \frac{(i+j-2)(i+j-1)}{2}$$

$$k = \frac{(i+j-2)(i+j-1)}{2} + i$$

Для каждой пары (i,j):

- \triangleright выбирается i-е слово из V^* , на котором
- ightharpoonupвыполняются первые j шагов процедуры распознавания P

Если P распознает слово за j шагов, то оно добавляется к списку слов языка L.

Построение распознающей процедуры по порождающей

Пусть P — порождающая процедура языка L Обозначим как P' — распознающую процедуру Тогда $\forall x \in V^* \ P'$ определяет истинность $x \in L$

```
procedure P'(x):

do

y \leftarrow P

while (y \neq x);

return true;
```

Пожет не завершиться

Типы языков

- Рекурсивно перечислимый существует процедура распознавания
 Или существует порождающая процедура
- ▶ Рекурсивный существует алгоритм распознавания

Теорема

Пусть $L\subseteq V^*$ — некоторый язык, а $\overline{L}=V^*\backslash L$ — его дополнение. Если языки L и \overline{L} рекурсивно перечислимы, то L рекурсивен.

Доказательство теоремы

Теорема

Пусть $L\subseteq V^*$ — некоторый язык, а $\bar L=V^*\backslash L$ — его дополнение. Если языки L и $\bar L$ рекурсивно перечислимы, то L рекурсивен.

Пусть L распознается процедурой P, а \overline{L} распознается \overline{P} .

Построим алгоритм распознавания $L: (x \in L)$?:

> Способ порождения языков

Грамматикой называется четвёрка $G = (V_N, V_T, P, S)$, где

 V_N — алфавит нетерминальных символов,

 V_T — алфавит терминальных символов, причём $V_N \cap V_T = \emptyset$, $V = V_N \cup V_T$

P – конечное множество правил вида $\alpha \to \beta$, $\alpha \in V^*V_NV^*$, $\beta \in V^*$

 $S \in V_N$ — начальный нетерминал (аксиома грамматики, стартовый символ)

Обозначения:

 $A, B, C, S \in V_N$ — нетерминалы

 $a, b, c \in V_T$ — терминалы

 $x, y, z \in V_T^*$ — строки терминалов

 $\alpha, \beta, \gamma \in V^*$ — строки из объединенного алфавита V

- ightharpoonup Пусть $lpha o eta \in P$ правило; $\gamma, \delta \in V^*$ Тогда $\gamma lpha \delta \Rightarrow \gamma eta \delta$ читается как *«из* $\gamma lpha \delta$ непосредственно выводится $\gamma eta \delta$ » в грамматике G.
- Пусть $\alpha_1,\alpha_2,...\alpha_m \in V^*$, $\alpha_1 \underset{G}{\Rightarrow} \alpha_2$, $\alpha_2 \underset{G}{\Rightarrow} \alpha_3$, ..., $\alpha_{m-1} \underset{G}{\Rightarrow} \alpha_m$ Тогда $\alpha_1 \underset{G}{\Rightarrow} \alpha_m$ читается как *«из* α_1 выводится α_m в грамматике G»
- Рефлексивность: $\alpha \stackrel{\cdot}{\Rightarrow} \alpha$

Языки и грамматики

• Язык, порождаемый грамматикой G:

$$L(G) = \{\omega | \omega \in V_T^*, S \stackrel{*}{\underset{G}{\Rightarrow}} \omega \}$$
 -- множество всех терминальных строк, выводимых из начального нетерминала грамматики

• Сентенциальной формой называется любая строка α такая что

$$\alpha \in V^*$$
 и $S \stackrel{*}{\underset{G}{\Rightarrow}} \alpha$

• Грамматики G_1 и G_2 эквивалентны, если $L(G_1) = L(G_2)$

Пример:
$$G = (\{S\}, \{0,1\}, \{S \to 0S1, S \to 01\}, S)$$

$$S \Rightarrow 0S1 \Rightarrow 00S11 \Rightarrow 0^3S1^3 \Rightarrow \cdots \Rightarrow 0^{n-1}S1^{n-1} \Rightarrow 0^n1^n$$

$$L(G) = \{0^n1^n | n > 0\}$$

Пример грамматики

Пример 2:
$$G = (\{S, B, C\}, \{a, b, c\}, P, S)$$

$$P = \begin{cases} S \rightarrow aSBC \ (1) \\ S \rightarrow aBC \ (2) \\ CB \rightarrow BC \ (3) \\ aB \rightarrow ab \ (4) \\ bB \rightarrow bb \ (5) \\ bC \rightarrow bc \ (6) \\ cC \rightarrow cc \ (7) \end{cases}$$

$$S \xrightarrow{(1)\times(n-1)} a^{n-1}S(BC)^{n-1} \xrightarrow{(2)} a^{n}(BC)^{n} \xrightarrow{(3)\times\frac{n(n-1)}{2}} a^{n}B^{n}C^{n}$$

$$\stackrel{(4)}{\Rightarrow} a^{n}bB^{n-1}C^{n} \xrightarrow{(5)\times(n-1)} a^{n}b^{n}C^{n} \xrightarrow{(6)} a^{n}b^{n}cC^{n-1} \xrightarrow{(7)} a^{n}b^{n}c^{n}$$

$$L(G) = \{a^{n}b^{n}c^{n}|n \geq 1\}$$

Возможен только такой порядок применения правил, т.к. иначе порождается нетерминальная строка.

Классификация грамматик по Хомскому

- ▶ Грамматика типа 0 без ограничений
- Грамматика типа 1 (неукорачивающая, контекстно-зависимая (КЗ), context-sensitive grammar (CSG))

Каждое правило имеет вид $lpha
ightarrow oldsymbol{eta} \in P$: $|lpha| \leq |oldsymbol{eta}|$

Почему контекстно-зависимые?

$$\alpha_1 A \alpha_2 \rightarrow \alpha_1 \beta \alpha_2$$
, $A \in V_N, \beta \neq \varepsilon$

Можно показать, что порождаемые языки одинаковы.

- ightharpoonup Грамматика **типа 2 (контекстно-свободная (КС), context-free grammar)** Каждое правило имеет вид $A
 ightharpoonup eta \in P, A \in V_N, \ eta \in V^+$
- \succ Грамматика **типа 3 (регулярная, regular grammar)** Каждое правило имеет вид $A \to aB$ или $A \to a$, $a \in V_T$, $A, B \in V_N$

Можно показать, что правила вида $A \to xB$ или $A \to x$, $x \in V_T^+$, $A, B \in V_N$ также задают регулярную грамматику

Язык, порождаемый грамматикой типа i, и не порождаемый грамматикой типа i+1, называют языком типа i.

Пусть K_i -- класс языков типа i, тогда $K_3 \subset K_2 \subset K_1 \subset K_0$

Пустое слово

 \blacktriangleright Пустое слово: $\exists L \in K_1 \ (K_2, K_3)$: $\varepsilon \in L$ Расширим 1-3 классы, добавим правило $S \to \varepsilon$, при условии, что S не появляется в правой части никакого правила.

Хотим доказать, что если $L \in K_i$ (i=1,2,3), то $L \cup \{\varepsilon\} \in K_i$ и $L \setminus \{\varepsilon\} \in K_i$

Лемма

Если $G = (V_N, V_T, P, S)$ – K3-, KC- или регулярная грамматика, то существует G_1 такого же типа, которая порождает тот же самый язык, и в которой ни одно правило не содержит стартовый нетерминал в своей правой части.

Пустое слово

Если $G = (V_N, V_T, P, S) - K3$ -, КС- или регулярная грамматика, то существует G_1 такого же типа, которая порождает тот же самый язык и в которой ни одно правило не содержит начальный символ в своей правой части.

Доказательство

```
Пусть S_1: S_1 \notin V_T \cup V_N
Пусть G_1 = (V_N \cup \{S_1\}, V_T, P_1, S_1),
P_1 = P \cup \{S_1 \to \alpha\}, для каждого правила S \to \alpha \in P
S_1 \notin V \Rightarrow S_1 – нет в правой части.
Покажем L(G) = L(G_1).
1. L(G) \subseteq L(G_1)
Пусть x \in L(G), тогда S \Rightarrow_G^* x. Пусть 1-ое правило S \to \alpha \in P, т. е.
S\Rightarrow_G \alpha\Rightarrow_G^* x, тогда существует правило S_1\to \alpha\in P_1:S_1\Rightarrow_{G_1} \alpha и S_1\Rightarrow_{G_1}^* x.
2. L(G) \supseteq L(G_1)
Пусть x \in L_1(G), тогда S_1 \Rightarrow_G^* x. Пусть 1-ое правило S_1 \to \alpha \in P_1, тогда есть S \to R
\alpha \in P и S \Rightarrow_G \alpha. \alpha \Rightarrow_{G_1} x и S_1 \notin \alpha, поэтому используются правила из
P и \alpha \Rightarrow_{c}^{*} x.
3.1 \& 2 => L(G) = L(G_1)
```

Пустое слово

Теорема

Если L - K3-, KC- или регулярный язык, то L ∪ $\{\varepsilon\}$ и L \ $\{\varepsilon\}$ -- K3-, KC- или регулярный язык соответственно.

Доказательство

Согласно лемме существует G порождающая L и не содержащая S в правой части правил.

1.
$$\varepsilon \notin L(G)$$
.

 G_1 : добавим $S \to \varepsilon$. S нет в правой части, значит $S \to \varepsilon$ — первое и единственное

$$L(G_1) = L(G) \cup \{\varepsilon\}$$

2.
$$\varepsilon \in L(G)$$
.

Тогда среди правил есть $S \to \varepsilon$, отбросив которое получим G_1 , порождающую $L(G_1) = L(G) \backslash \{\varepsilon\}$

3. Согласно лемме типы грамматик G и G_1 совпадают

Примеры

 $ightharpoonup G = (\{S,A,B\},\ \{0,1\},\ \{S o AB,A o 0A,A o 0,B o 1B,B o 1\},\ S)$ Контекстно-свободная

$$L(G) = \{0^n 1^m | n, m > 0\}$$

 $ightharpoonup G_1 = (\{S,A\}, \{0,1\}, S o 0S, S o 0A, A o 1A, A o 1\}, S)$ Регулярная

Если язык порождается некоторой грамматикой, то это не означает, что не существует грамматики с более сильными ограничениями, порождающей заданный язык

Лексический анализ

- > Первый этап анализа исходного текста программы в компиляторе
- Входная строка разбивается на цепочку лексем (token)
 - *Например*: <константа,5>, <ключевое слово, for>, <идентификатор, int>
- Отдельная стадия анализа или «по запросу» синтаксического анализа
- > Задается конечным автоматом
 - На практике регулярное выражение или регулярная грамматика

Итерация на множествах

- ightharpoonup Пусть Р, $Q \subseteq V^*$ некоторые языки.
- **Произведением (конкатенацией)** PQ языков P и Q называется множество, состоящее из всех конечных слов в алфавите A, которые составлены конкатенацией некоторого слова из P и некоторого слова из Q.
- > T.e. $PQ = \{pq \mid p \in P, q \in Q\}$.

Итерация (замыкание Клини) языка L обозначается L^* и представляет собой множество всех слов, которые можно образовать путем конкатенации любого количества конечных слов из L.

При этом допускаются повторения, т.е. одна и та же цепочка из L может быть выбрана для конкатенации более одного раза

$$P^* = \bigcup_{n=0}^{\infty} P^n, P^0 = \{\varepsilon\}, P^1 = P$$

- **Регулярное множество** в алфавите V_T определяется рекурсивно:
 - 1. \emptyset регулярное множество в алфавите V_T ;
 - 2. $\{\varepsilon\}$ регулярное множество в алфавите V_T ;
 - $3. \{a\}$ регулярное множество в алфавите V_T , $a \in V_T$;
 - 4. Если P и Q регулярные множества в алфавите V_T , то регулярными множествами являются и множества:
 - a) $P \cup Q$,
 - $b) \ P \cdot Q = PQ$ (конкатенация: $\{pq | p \in P, q \in Q\}$),
 - (c) P^* (итерация: $P^* = \bigcup_{n=0}^{\infty} P^n$)., $P^0 = \{ {m \epsilon} \}, P^1 = P^n$
 - 5. Ничто другое регулярным множеством в алфавите V_T не является.

Регулярные выражения

- Форма записи регулярных множеств
- **Регулярное выражение (РВ)** в алфавите V_T и обозначаемое им регулярное множество определяется следующим образом:
 - 1. \emptyset регулярное выражение, обозначающее регулярное множество \emptyset ;
 - 2. ε регулярное выражение, обозначающее регулярное множество $\{\varepsilon\}$;
 - 3. a регулярное выражение, обозначающее регулярное множество $\{a\}$;
 - 4. Если p и q регулярные выражения, обозначающие регулярные множества P и Q соответственно, то:
 - a) (p|q) PB, обозначающее $P \cup Q$,
 - b) (pq) PB, обозначающее PQ,
 - (p^*) PB, обозначающее P^*
 - 5. Ничто другое регулярным выражением в алфавите $V_{T}\,$ не является.

 $01^* | 1 = (0(1^*)) | 1$

- Приоритет операций:
 - 1. * Итерация
 - 2. Конкатенация
 - 3.
- $\triangleright p^+ = pp^*$
- ightharpoonup запись L(r) для регулярного множества, обозначаемого регулярным выражением r.

- Примеры
- Какое множество обозначает РВ?
 - $a(\varepsilon|a)|b$

- Примеры
- Какое множество обозначает РВ?
 - $a(\varepsilon|a)|b$ обозначает $\{a,b,aa\}$

- Примеры
 - $a(\varepsilon|a)|b$ обозначает $\{a,b,aa\}$
- Какое множество обозначает РВ?
 - $a(a|b)^*$?

- Примеры
 - $a(\varepsilon|a)|b$ обозначает $\{a,b,aa\}$
- Какое множество обозначает РВ?
 - $a(a|b)^*$?

- $a(\varepsilon|a)|b$ обозначает $\{a,b,aa\}$
- $a(a|b)^*$ обозначает множество всевозможных цепочек, состоящих из a и b, начинающихся с a;
- Какое множество обозначает РВ?
 - $(a|b)^*(a|b)(a|b)^*$?

- $a(\varepsilon|a)|b$ обозначает $\{a,b,aa\}$
- $a(a|b)^*$ обозначает множество всевозможных цепочек, состоящих из a и b, начинающихся с a;
 - $(a|b)^*(a|b)(a|b)^*$ обозначает множество всех непустых цепочек, состоящих из a и b, т. е. множество $\{a,b\}^+$;
- Какое множество обозначает РВ?
 - $((0|1)(0|1)(0|1))^*$?

- $a(\varepsilon|a)|b$ обозначает $\{a,b,aa\}$
- $a(a|b)^*$ обозначает множество всевозможных цепочек, состоящих из a и b, начинающихся с a;
 - $(a|b)^*(a|b)(a|b)^*$ обозначает множество всех непустых цепочек, состоящих из a и b, т. е. множество $\{a,b\}^+$;
- $\left((0|1)(0|1)\right)^*$ обозначает множество всех цепочек, состоящих из нулей и единиц, длины которых делятся на 3.
- ▶ Будем говорить, что регулярные выражения равны, или эквивалентны
 (=), если они обозначают одно и то же регулярное множество.

- $a(\varepsilon|a)|b$ обозначает $\{a,b,aa\}$
- $a(a|b)^*$ обозначает множество всевозможных цепочек, состоящих из a и b, начинающихся с a;
 - $(a|b)^*(a|b)(a|b)^*$ обозначает множество всех непустых цепочек, состоящих из a и b, т. е. множество $\{a,b\}^+$;
- $\left((0|1)(0|1)\right)^*$ обозначает множество всех цепочек, состоящих из нулей и единиц, длины которых делятся на 3.
- ➤ Напишите регулярное выражение, задающее множество всех цепочек в алфавите {0, 1}, в которых символ 1 является четвертым с конца.

- $a(\varepsilon|a)|b$ обозначает $\{a,b,aa\}$
- $a(a|b)^*$ обозначает множество всевозможных цепочек, состоящих из a и b, начинающихся с a;
 - $(a|b)^*(a|b)(a|b)^*$ обозначает множество всех непустых цепочек, состоящих из a и b, т. е. множество $\{a,b\}^+$;
- $\left((0|1)(0|1)\right)^*$ обозначает множество всех цепочек, состоящих из нулей и единиц, длины которых делятся на 3.
- ightharpoonup Напишите регулярное выражение, задающее множество всех цепочек в алфавите $\{0,1\}$, в которых символ 1 является третьим с конца.
 - $(0|1)^*1(0|1)(0|1)$
- Напишите регулярное выражение, задающее множество всех цепочек в алфавите $\{x,y,z\}$, которые **не содержат** подцепочку xy.

- $a(\varepsilon|a)|b$ обозначает $\{a,b,aa\}$
- $a(a|b)^*$ обозначает множество всевозможных цепочек, состоящих из a и b, начинающихся с a;
 - $(a|b)^*(a|b)(a|b)^*$ обозначает множество всех непустых цепочек, состоящих из a и b, т. е. множество $\{a,b\}^+$;
- $\left((0|1)(0|1)\right)^*$ обозначает множество всех цепочек, состоящих из нулей и единиц, длины которых делятся на 3.
- \succ Напишите регулярное выражение, задающее множество всех цепочек в алфавите $\{0,1\}$, в которых символ 1 является третьим с конца.
 - $(0|1)^*1(0|1)(0|1)$
- Напишите регулярное выражение, задающее множество всех цепочек в алфавите $\{x, y, z\}$, которые **не содержат** подцепочку xy.
- 1. $(x^*z | y)^*x^*$
- 2. $y^*(zz^*y^*|x^*)^*$
- 3. $y^* (x^* z y^*)^* x^*$
- 4. $(y \mid z)^*(x^* zz^* y^* \mid z)^*x^*$

Свойства регулярных выражений

Пусть p, q, r — регулярные выражения, тогда

$$p|q = q|p$$
 $p\varepsilon = \varepsilon p = p$
 $\emptyset^* = \varepsilon$ $\varepsilon^* = \varepsilon$ $p|q|r$ $p = p = p$
 $p|(q|r) = (p|q)|r$ $p^* = p|p^*$
 $p(qr) = (pq)r$ $(p^*)^* = p^*$
 $p(q|r) = pq|pr$ $p|p = p$
 $(p|q)r = pr|qr$ $p|\emptyset = p$

Именование регулярных выражений

```
Letter = a|b|c|...|x|y|z,

Digit = 0|1|...|9,

Identifier = Letter(Letter|Digit)^*

\geq 2.

Digit = 0|1|...|9,

Integer = Digit^+

Fraction = .Integer|\varepsilon

Exponent = (E(+|-|\varepsilon)Integer)|\varepsilon
```

Конечные автоматы

- Регулярные выражения -- для задания регулярных множеств
- Конечные автоматы для распознавания регулярных множеств
- \blacktriangleright Недетерминированный конечный автомат (НКА) -- $M = (Q, \Sigma, \delta, q_0, F)$:
 - Q конечное непустое множество состояний;
 - Σ конечный входной алфавит;
 - $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to Q$ функция переходов
 - $q_0 \in Q$ начальное состояние;
 - $F \subseteq Q$ множество заключительных состояний.

- ightharpoonup Конфигурация автомата $(q,w)\in Q imes \Sigma^*$. q текущее состояние, w цепочка символов под головкой и справа на ленте
 - (q_0, w) начальная конфигурация
 - $(q, \varepsilon), q \in F$ заключительная (допускающая) конфигурация

Конечные автоматы

- **>** *Такт* автомата M (⊢) бинарное отношение, заданное на конфигурациях: если $p \in \delta(q, a), a \in \Sigma \cup \{\varepsilon\}$, то $(q, aw) \vdash (p, w)$ для всех $w \in \Sigma^*$
- \succ \vdash^* , \vdash^+ -- рефлексивно-транзитивное (транзитивное) замыкание \vdash
- \blacktriangleright Автомат M **допускает** цепочку w, если $(q_0,w) \vdash^* (q, \varepsilon), q \in F$
- Язык L распознаваемый (допускаемый, определяемый) M: $L = L(M) = \{w | w \in \Sigma^* \land (q_0, w) \vdash^* (q, \varepsilon), q \in F\}$
- ightharpoonup Детерминированный конечный автомат (ДКА) НКА $M=(Q,\Sigma,\delta,q_0,F),$ если
 - $\forall q \in Q : \delta(q, \varepsilon) = \emptyset$;
 - $\forall (q, a) \in Q \times \Sigma : |\delta(q, a)| \le 1$