SEOUL NATIONAL UNIVERSITY

LECTURE NOTE

Introduction to Stochastic Differential Equations

Lecture by Seo Insuk Notes taken by Lee Youngjae

Contents

0	Intr	oduction	2
1	General Probability Theory		
	1.1	Infinite Probability Spaces	4
	1.2	Random Variables and Distributions	7
	1.3	Expectations	8
	1.4	Convention of Integrals	11
	1.5	Computation of Expectations	12
2	Info	ormation and Conditioning	13
	2.1	Information and σ -algebras	13
	2.2	Independence	14
	2.3	Conditional Expectation	17
3	Brownian Motions		21
	3.1	Introduction	21
	3.2	Scaled Random Walks	21
2	Bro	wnian Motion	25
	2.1	Definition of Browinan Motion	25
Aj	pen	dices	28
A	TA	Session	28

Chapter o

Introduction

E-mail: *insuk.seo@snu.ac.kr*, 27-212 Office Hour: Tuesday 15:00 - 16:00 Grading

- Mid-terms 1 (15%, 10/10 or 17)
- Mid-terms 2 (15%, 11/7)
- Fianl-term (40%)
- Assignment (20%, 8-10 times)
- Attendance (10%, absent: -2%, late: -1%)

Let X be a standard normal random variable in \mathbb{R} . i.e., $\mathbb{P}[X \in [a,b]] = \int_a^b \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$. (Central Limit Theorem) If $x_1, x_2, \dots, x_n \in X$, $E(x_i) = m$, $Var(x_i) = \sigma^2$, then

$$\frac{\frac{x_1-m}{\sigma} + \frac{x_2-m}{\sigma} + \dots + \frac{x_n-m}{\sigma}}{\sqrt{n}} \to X$$

In this class, we study dynamic version of this theorem. If $(W_t)_{t\geq 0}$ be a fluctuation, then $(W_t)_{t\geq 0}$ be a random variable in C[0,T]

Example.
$$\frac{dX_t}{dt} = rX_t; dX_1 = rX_t dt$$
. Then, $X_t = X_0 e^{rt}$ (unrisky assets, bank) $dX_t = rX_t dt + \sigma X_t dW_t, \sigma$: volatility (risky assets, stock)

We will study:

- 1. Probability Space
- 2. Random Variable
- 3. Expectation

Textbooks:

- 1. Stochastic Calculus for Finance II (Shreve), covering chapter 1-3 or 4
- 2. Introduction to Stochastic Integration (Hui-Hsiung Kuo)

Chapter 1

General Probability Theory

1.1 Infinite Probability Spaces

There are three elements consisting probability space:

- *S*: Sample space
- \mathcal{E} : Family of events $\mathcal{E} \subseteq 2^S$ (σ -algebra in measure theory)
- \mathbb{P} : probability $\Rightarrow \mathbb{P}(E)$ is defined for all $E \in \mathcal{E}$ (μ with $\mu(S) = 1$)

Example.

- 1. Toss a coin twice (H for Head, T for Tail) Then, $S = \{HH, HT, TT, TT\}$
- 2. Uniform random variable in $[0,1]^3$ Then, $S=[0,1]^3$. If $E=[0,\frac{1}{2}]^3$, then $\mathbb{P}(E)=Vol(E)=\frac{1}{8}$

How to define \mathcal{E} ?

In example 2, let $\mathcal{E}=$ family of all subsets of $[0,1]^3$ naively. But Banach-Tarski Paradox says there are disjoint sets E,F with $\mathbb{P}(E\cup F)\neq \mathbb{P}(E)+\mathbb{P}(F)$ in this \mathcal{E} . Therefore we cannot naively set \mathcal{E} (Use measure theory)

In example 1, suppose that we cannot see the second flip. If $\{HH\} \notin \mathcal{E}$ and $\{HT, HH\} \in \mathcal{E}$, then $\mathcal{E} = \{\phi, \{HH, HT\}, \{TH, TT\}, \{HH, HT, TH, TT\}\}$

Definition 1.1.1 (Measure)

Let Ω be a non-empty set and \mathcal{F} be family of subsets of Ω with

1.
$$\phi \in \mathcal{F}$$

2.
$$A \in \mathcal{F} \Rightarrow A^{C} \in \mathcal{F}$$

3.
$$A_1, A_2, \dots \in \mathcal{F} \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$$
.

We say \mathcal{F} as σ -algebra or σ -field, $A \in \mathcal{F}$ as measurable, and Ω as measurable space.

Exercises.

- 1) $\Omega \in \mathcal{F}$
- 2) $A_1, A_2, \dots \in \mathcal{F}$, then $A_1 \cap A_2 \dots \in \mathcal{F}$
- 3) $A_1, A_2, \dots \in A_n \in \mathcal{F}$, then $A_1 \cup \dots \cup A_n, A_1 \cap \dots \cap A_n \in \mathcal{F}$.
- 4) $A, B \in \mathcal{F}$, then $A B \in \mathcal{F}$

Definition 1.1.2 (Topological Space)

(See Rudin: *Real and Complex Analysis, Chapter 1.*) Let Θ be non-empty set and τ be family of subsets of Θ with

- 1. $\phi,\Theta \in \tau$
- 2. $V_1, \dots V_n \in \tau \Rightarrow V_1 \cap \dots \cap V_n \in \tau$
- 3. $V_{\alpha} \in \tau \ \forall \alpha \in I \Rightarrow \bigcup_{\alpha \in I} V_{\alpha} \in \tau$.

We say $V \in \tau$ be an **open set**, and (Θ, τ) be a **topological space**.

Definition 1.1.3 (Measurable Function)

$$f:(\Omega,\mathcal{F}) o (\Theta, au)$$
 is measurable if $f^{-1}(V) \in \mathcal{F} \ \ orall V \in au$

Definition 1.1.4 (Positive Measure)

Let Ω be non-empty set and \mathcal{F} be σ -algebra. Then $\mu: \mathcal{F} \to [0, \infty]$ is called **measurable** if

- 1. A_1, A_2, \cdots : disjoint members of $\mathcal{F} \Rightarrow \mu(A_1 \cup A_2 \cup \cdots) = \sum_{i=1}^{\infty} \mu(A_i)$
- **2.** $\mu(A) < \infty$ for some $A \in \mathcal{F}$,

and $(\Omega, \mathcal{F}, \mu)$ is called a **measure space**.

Definition 1.1.5 (probability space, random variable)

- 1. $(\Omega, \mathcal{F}, \mathbb{P})$ is called a **probability space** if $\mathbb{P}(\Omega) = 1$.
- 2. *X* is called a **random variable** if it is a function from $(\Omega, \mathcal{F}, \mathbb{P})$ to \mathbb{R}

Next Class

- Borel sets on \mathbb{R} or \mathbb{R}^d
- · Lebesgue Measure
- Lebesgue Integral (Define Expectation of random variable)

Last class, we define a sample space Ω , a σ -algebra \mathcal{F} , and a (positive) measure $\mu : \mathcal{F} \to [0, \infty]$.

Exercises.

•
$$A_1 \subseteq A_2 \subseteq \cdots \Rightarrow \mu(\bigcup_{i=1}^{\infty} A_i) = \lim_{n \to \infty} \mu(A_n)$$

•
$$A_1 \supseteq A_2 \supseteq \cdots$$
, $\mu(A_1) < \infty \Rightarrow \mu(\bigcap_{i=1}^{\infty} A_i) = \lim_{n \to \infty} \mu(A_n)$

Theorem 1.1.6 (Rudin 1.10)

Let \mathcal{F}_0 be a collection of subset of Ω . Then, $\exists ! \mathcal{F}^*$ minimal σ -algebra containing \mathcal{F}_0 .

Proof. Let $\{\mathcal{F}_{\alpha}, \alpha \in I\}$ be a family of *σ*-algebra containing \mathcal{F}_0 . Then, $\mathcal{F}^* = \bigcap_{\alpha \in I} F_\alpha$ satisfies the three condition: 1) contain \mathcal{F}_0 2) *σ*-algebra 3) minimal (trivial, $\mathcal{F}^* \subseteq \mathcal{F}_\alpha$) \square

Definition 1.1.7 (Borel measurable)

 \mathcal{B} is a **Borel** σ -algebra on the topological space (Θ, τ) if \mathcal{B} is a minimal σ -algebra containing τ , and \mathcal{B} is a **Borel measurable** if $\mathcal{B} \in \mathcal{B}$.

Remark (Completion of measure space, Rudin 1.15).

Consider an extension $(\Omega, \mathcal{F}, \mu) \to (\Omega, \overline{\mathcal{F}}, \mu)$ where

1.
$$\overline{\mathcal{F}} = \{A \cup N : A \in \mathcal{F}, N \subseteq A_0 \in \mathcal{F}, \mu(A_0) = 0\}$$

$$\mathbf{2.}\ \mu(A\cup N)=\mu(A)$$

Then, (Check!)

1. (well-definedness)
$$A_1 \cup N_1 = A_2 \cup N_2 \Rightarrow \mu(A_1) = \mu(A_2)$$

2.
$$\mu : \overline{\mathcal{F}}$$
 is σ -algebra.

3.
$$\mu: \overline{\mathcal{F}} \to [0, \infty]$$
 is a measure

Example.

1) R

$$\mathcal{F}_0 = \tau \xrightarrow{\quad 1.10 \quad} \mathcal{B} \xrightarrow{\text{completion}} \overline{\mathcal{B}}$$

$$\mathcal{L} \xrightarrow{\text{Rudin CH 2}} \mathcal{L} \xrightarrow{\text{completion}} \mathcal{L}$$

2) $C[0,T] = \Omega = \{f; f : [0,T] \to \mathbb{R}, \text{continuous} \}.$ Define $\mathcal{F}_0 = \{\bigcup_{t_1,t_2,\cdots,t_k} (A_1,A_2,\cdots,A_k) : 0 \le t_1 < t_2 < \cdots < t_k \le T; A_1,\cdots A_k \in \overline{\mathcal{B}} \}.$ We call $\{f \in C[0,T] : f(t_1) \in A_1, f(t_2) \in A_2,\cdots,f(t_k) \in A_k \}$ as **cylindrical set**. Consider

$$\begin{array}{ccc} \mathcal{F}_0 \stackrel{1.10}{\longrightarrow} & \mathcal{B} \stackrel{completion}{\longrightarrow} & \overline{\mathcal{B}} \\ \\ \mathbb{P}_{BM} \stackrel{KET}{\longrightarrow} & \mathbb{P}_{BM} \stackrel{completion}{\longrightarrow} & \mathbb{P}_{BM}^* \end{array}$$

(KET refers Kolmogorov's Extension Thm)

1.2 Random Variables and Distributions

Definition 1.2.1

 $f: \Omega \to \mathbb{R}$ is measurable if $f^{-1}(V) \in \mathcal{F}$ for any open set $V \subseteq \mathbb{R}$.

Remark. $\mathcal{B}(\mathbb{R})$ = Borel σ -algebra in \mathbb{R} .

Remark. If f: measurable, then $f^{-1}(B) \in \mathcal{F}$ for any $B \in \mathcal{B}(\mathbb{R})$.

Proof. Let
$$G = \{A \subseteq \mathbb{R} : f^{-1}(A) \in \mathcal{F}\}$$
. Then, $\tau \subseteq G$, $G : \sigma$ -algebra (check!), hence $\mathcal{B}(\mathbb{R}) \subseteq G$.

Definition 1.2.2

- $(\Omega, \mathcal{F}, \mathbb{P})$ is a **probability space** if $(\mathbb{P}(\Omega) = 1$.
- *X* is a **random variable** if $X : \Omega \to \mathbb{R}$ is measurable.

Example.

1. Toss a coin Twice.

$$\Omega = \{HH, HT, TH, TT\}, \mathcal{F} = 2^{\Omega} = \{\text{all subsets of } \Omega\}, \mathbb{P}(A) = \frac{1}{4}|A|, \ A \in \mathcal{F}.$$
 Then, $X = \text{the number of } H'\text{s is a random variable with } X(HH) = 2, X(HT) = X(TH) = 1, X(TT) = 1.$

2. Uniform random variable in [0,1]

$$\Omega = [0,1], \mathcal{F} = \{B \in \mathcal{B}(\mathbb{R}) : B \subseteq [0,1]\}, \mathbb{P}(B) = \mathcal{L}(B) \ (\mathbb{P}([0,1]) = \mathcal{L}([0,1]) = 1).$$

Then, $X : [0,1] \to \mathbb{R}$ with $X(x) = 1$ is a (uniform) random variable in $[0,1]$.

Remark.
$$\mathcal{L}$$
: Lebesgue measure on \mathbb{R} . i.e., $\mathcal{L}(a,b) = b - a$. Then, $\mathcal{L}(\{a\}) = 0$ $(\because \{a\}) = \bigcap_{i=1}^{\infty} (a - \frac{1}{n}, a + \frac{1}{n}) \Rightarrow \mathcal{L}(\{a\}) = \lim_{n \to \infty} \mathcal{L}((a - \frac{1}{n}, a + \frac{1}{n})) = 0)$ Similarly, $\mathcal{L}([a,b]) = \mathcal{L}([a,b]) = \mathcal{L}((a,b]) = b - a$, $\mathcal{L}(\mathbb{Q}) = \sum_{q \in \mathbb{Q}} \mathcal{L}(\{q\}) = 0$.

Return to uniform random variable,

$$\mathbb{P}[X \in (a,b)] = \mathbb{P}[\{x : X(x) \in (a,b)\}] = \mathbb{P}[(a,b)] = b - a.$$

Definition 1.2.3 (Distribution measure on *X*)

X is a random variable in $(\Omega, \mathcal{F}, \mathbb{P})$. μ_X is a **distribution measure** on *X* if μ_X is a probability measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that

$$\mu_X(B) = \mathbb{P}[X \in B] = \mathbb{P}[\{\omega : X(\omega) \in B\}] = \mathbb{P}[X^{-1}(B)] \ \forall B \in \mathcal{B}(\mathbb{R})$$

Definition 1.2.4 (Probability density function)

f is a **probability density function** of X if $\mu_X((a,b)) = \int_a^b f(x) dx$

Remark. There is a measure with no pdf: Dirac measure

Remark. Lebesgue-Radon-Nikodym decomposition implies that any measure can be decomposed as density part and singular part.

Example (Standard Normal random variable).

Let
$$\phi(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$
. Define $F: (0,1) \to \mathbb{R}$ by $F(x) = N^{-1}(x)$ for $N(X) = \int_{-\infty}^{x} \phi(y) dy$.
Let $\Omega = (0,1)$, $\mathcal{F} = \{B \in \mathcal{B}(\mathbb{R}) : B \subseteq (0,1)\}$, $\mathbb{P}(A) = \mathcal{L}(A) : A \in \mathcal{B}(\mathbb{R})$.

Then, $Y : \Omega \ni x \mapsto F(x) \in \mathbb{R}$ is a random variable with

$$\mathbb{P}[Y \in (a,b)] = \mathbb{P}[\{x : Y(x) \in (a,b)\}]
= \mathbb{P}[\{x \in (N(a), N(b))\}]
= N(b) - N(a) = \int_{a}^{b} \phi(x) dx,$$

and a density function is ϕ .

Previous Question: In the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and random variable $X : \Omega \to \mathbb{R}$, the random element or random realization $\omega \in \Omega$ is a element of events in sample space. For example, $\omega = HHTTH$ is a random element in tossing a coin five times, and $X(\omega) = 3$. $(X(\omega) = \# \text{ of Heads})$

In the previous example(Standard Normal random variable), define $(\Omega, \mathcal{F}, \mathbb{P}) = ((0,1), \mathcal{B}(0,1), \mathbb{P})$, $\mathbb{P}((a,b)) = b - a$, $F(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-y^2/2} dy$, $X : (0,1) \ni \omega \mapsto F^{-1}(\omega) \in \mathbb{R}$. Then, X is called a standard normal random variable.

1.3 Expectations

In the following, let $\Omega = (\Omega, \mathcal{F}, \mathbb{P})$. Let $X : \Omega \to \mathbb{R}$. Then the expection $\mathbb{E}(X)$ is a mean of $X(\omega)$ with respect to the randomness of ω (given by \mathbb{P})

Definition 1.3.1 (Lebesgue Integration)

 $(\Omega, \mathcal{F}, \mu)$ is a measure space, and $f : \Omega \to \mathbb{R}$ is a measurable function.

$$(1) f: \Omega \to [0, \infty)$$

Let $0 = y_0 < y_1 < y_2 < \cdots \rightarrow \mathbb{R}$ be a partition of $[0, \infty)$,

$$\Pi = \{y_0, y_1, y_2, \dots\} : \|\Pi\| = \sup_{i>1} |y_i - y_{i-1}|, \text{ and }$$

$$LS_{\pi} = \sum_{i=0}^{\infty} y_i \mu[f^{-1}([y_i, y_{i+1}))].$$

In Rudin's book, $\lim_{\|\Pi\|\to 0} LS_{\Pi}$ converges to an element belonging to $[0, \infty]$.

Now, $\int f d\mu := \lim_{\|\Pi\| \to 0} \mathsf{LS}_{\Pi}$ is called a **Lebesgue Integral**.

(2)
$$f:\Omega\to\mathbb{R}$$

Let
$$f^+ = \max\{f,0\} \ge 0$$
, and $f^- = -\min\{f,0\} \ge 0$. Then, $f = f^+ - f^-$, and $|f| = f^+ + f^-$. If $\int f^+ d\mu < \infty$ and $\int f^- d\mu < \infty$, then we say f is Lebesgue integrable and $f \in L^1(\mu)$. The Lebesgue integral of $f = \int f d\mu$ is defined as $\int f^+ d\mu - \int f^- d\mu$

Remark.

1.
$$\int f^+ d\mu < \infty$$
 and $\int f^- d\mu = \infty$, then $\int f d\mu = -\infty$. The others are defined similarly.

2.
$$f \in L^1(\mu) \Leftrightarrow \int |f| d\mu < \infty$$
.

Example (Riemann vs Lebesgue Integral (p19-22)).

- $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mathcal{L})$ Lebesgue measure where $\mathcal{L}((a, b)) = b a$.
- $f: \mathbb{R} \to \mathbb{R} \in L^1(\mathcal{L})$
- (Def) $A \subseteq \mathbb{R}$, $\int_A f d\mu := \int f \mathbb{1}_A d\mu$, where $\mathbb{1}_A(x) = 1$ if $x \in A$, and 0 otherwise.

If f is Riemann integrable, then $\int_{[a,b]} f d\mathcal{L} = \int_a^b f dx$.

Riemann integral is a limit of approximation by a partition of x-axis. On the other hand, Lebesgue integral is a limit of approximation by a partition of y-axis with preimage. Partition of x-axis is sensitive to fluctuation and restricted to Euclidean space, while partition of y-axis is not. For example, $f(x) = \mathbb{1}_{\mathbb{Q}}(x)$ is Lebesgue integrable, but it is not Riemann integrable since it is sensitive to fluctuation.

Definition 1.3.2 (Almost everywhere, 1.1.5 in Textbook)

P(x) is a property at $x \in \mathbb{R}$. We say P holds **almost everywhere** (or a.e.) in \mathbb{R} if and only if $\mathcal{L}(\{x : P(x) \text{ does not hold }\} = 0$.

Example. f(x) = [x] is continuous almost everywhere.

Theorem 1.3.3

f is Riemann integrable if and only if f is continuous a.e.

Exercises. f = g a.e. $\Rightarrow \int f d\mathcal{L} = \int g d\mathcal{L}$.

Definition 1.3.4 (Almost surely)

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. The event $A \in \mathcal{F}$ occurs **almost surely** (a.s.) if $\mathbb{P}(A) = 1$.

Example. Let X be a uniform random variable in (0,1). Let $A = \{X(\omega) \neq \frac{1}{2}\}$; $\mathbb{P}(A) = 1$.

Definition 1.3.5 (Expectation, 1.3.3. in Textbook)

Expectation of $X : \Omega \to \mathbb{R}$ is defined by

$$\mathbb{E}(X) := \int_{\Omega} X d\mathbb{P} \quad \text{if} \quad \int_{\Omega} |X| d\mathbb{P} < \infty$$

Theorem 1.3.6 (1.3.4 in Textbook)

- 1. X takes finite number of values $\{x_1, x_2, \dots, x_n\} \Rightarrow \mathbb{E}(X) = \sum_{i=1}^n x_i \mathbb{P}(X = x_i)$
- 2. X, Y: random variables, $E(|X|), E(|Y|) < \infty$,

(i)
$$X \leq Y$$
 a.s. (i.e. $\mathbb{P}[\{X(\omega) \leq Y(\omega)\}] = 1$), then $\mathbb{E}(X) \leq \mathbb{E}(Y)$

(ii)
$$X = Y \text{ a.s.} \Rightarrow \mathbb{E}(X) = \mathbb{E}(Y)$$

- 3. $X, Y: random \ variables, \mathbb{E}(|X|), \mathbb{E}(|Y|) < \infty \Rightarrow \mathbb{E}(\alpha X + \beta Y) = \alpha \mathbb{E}(X) + \beta \mathbb{E}(Y).$
- 4. Jensen's Inequality: $\phi : \mathbb{R} \to \mathbb{R}$ is a convex function $\Rightarrow \phi(\mathbb{E}(X)) \leq \mathbb{E}(\phi(X))$ (c.f. $\phi(t) = t^2$)

Proof of 4. Define $S_{\phi} = \{(a,b) \in \mathbb{R}^2 : a+bt \le \phi(t) \ \forall t\}$. Then $\forall t \in \mathbb{R}, \phi(t) = \sup_{(a,b) \in S_{\phi}} \{a+bt\}$. In fact, it is a equivalent condition. Now,

$$\begin{split} \phi(\mathbb{E}[X]) &= \sup_{a,b \in S_{\phi}} \{a + b\mathbb{E}[X]\} \\ &= \sup_{a,b \in S_{\phi}} \mathbb{E}[a + bX] \\ &\leq \mathbb{E}[\sup_{a,b \in S_{\phi}} (a + bX)] = \mathbb{E}[\phi(X)] \quad \text{(Check!)} \end{split}$$

Example (Dirac Measure in \mathbb{R}). $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \delta_y)$ $(y \in \mathbb{R})$ is a probability space with $\delta_y(A) = 1$ if $y \in A$, and 0 otherwise. Then, $\int_{\mathbb{R}} f d\delta_y = f(y)$ (Check!)

Consider modeling: X: random variable such that probability of $x_i = p_i$ with $\sum_{i=1}^n p_i = 1$. Then, $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mu)$ with $\mu = \sum_{i=1}^n p_i \delta_{x_i}$ is a probability space, and $P(X = x_i) = p_i$ for $X : \mathbb{R} \ni \omega \mapsto \omega \in \mathbb{R}$: Example of thm 1.3.4.

Summary:

- Probability space: $(\Omega, \mathcal{F}, \mathbb{P})$
- Random variables: $X : \Omega \to \mathbb{R}$
- Expectation: $E(X) = \int X d\mathbb{P}$

1.4 Convention of Integrals

We will use this section when we define the Brownian motion.

Definition 1.4.1

(1) Let $(\Omega, \mathcal{F}, \mu)$ be a measure space, and f, f_1, f_2, \cdots be measurable $(\Omega \to \mathbb{R})$. Then, $f_n \to f$ almost everywhere (a.e.) if

$$\mu[\{\omega: (f_n(\omega))_{n=1}^{\infty} \text{ does not converge to } f(\omega)\}] = 0$$

(2) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, X, X_1, X_2, \cdots be random variables. Then, $X_n \to X$ almost surely (a.s.) if

$$\mathbb{P}[\{\omega: (X_n(\omega))_{n=1}^{\infty} \text{ does not converge to } X(\omega)\}] = 0$$

Question: $f_n \to \text{a.e.}$ Then, $\int f_n d\mu \to \int f d\mu$? $X_n \to X$ a.s. Then, $\mathbb{E}[X_n] \to \mathbb{E}[X]$?

Theorem 1.4.2 (Monotone Convergence Theorem. 1.4.5 in Textbook)

 $0 \le f_1 \le f_2 \le \cdots$ (or decreasing), and $f_n \to f$ a.e. Then, $\int f_n d\mu \to \int f d\mu$.

Theorem 1.4.3 (Dominated Convergence Theorem. 1.4.9 in Textbook) $\exists g \in L^1(\mu)$ *such that* $|f_n| \leq g$ *for all* n, *and* $f_n \to f$ *a.e. Then,* $\int f_n d\mu \to \int f d\mu$.

Corollary 1.4.4

 $\exists Y \in L^1(\mathbb{P}) \text{ such that } |X_n| \leq Y \text{ for all } n, \text{ and } X_n \to X \text{ a.s. Then, } \mathbb{E}[X_n] \to \mathbb{E}[X].$

Example. Let
$$f_n(x) = \begin{cases} n^2x & \text{if } 0 \le x \le \frac{1}{n}, \\ -n^2x + n & \text{if } \frac{1}{n} < x \le \frac{2}{n}, \text{ Then, } f_n \to 0 \text{ a.e. and } \int f_n dx = 1. \\ 0 & \text{otherwise.} \end{cases}$$

1.5 Computation of Expectations

Notation: $(X : \Omega \ni \omega \mapsto X(\omega) \in \mathbb{R})$

- $\mathbb{E}[X] = \int X d\mathbb{P} = \int_{\Omega} X(\omega) d\mathbb{P}(\omega)$
- $\int_B X(\omega) d\mathbb{P}(\omega) := \int \mathbb{1}_B(\omega) X(\omega) d\mathbb{P}(\omega)$

Recall: *X*: random variable, μ_X : distribution measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, $\mu_X(B) = \mathbb{P}(X \in B)$.

Theorem 1.5.1

 $g \in L^1(\mu_X)$. Then, $\mathbb{E}[g(X)] = \int_{\mathbb{R}} g(x) d\mu_X(x) (:= \int g d\mu_X)$.

Example. g(x) = x. $\int |x| d\mu_X(x) < \infty \Rightarrow \mathbb{E}[X] = \int x d\mu_X(x)$.

Proof. First, prove the thm holds for $g \ge 0$, then prove for general g by $g = g^+ - g^-$.

- (1) $g = \mathbb{1}_B$ By thm 1.3.4. (1), $E[\mathbb{1}_B(X)] = 1 \cdot \mathbb{P}[\mathbb{1}_B(X) = 1] = \mathbb{P}(X \in B) = \mu_X(B) = \int \mathbb{1}_B(x) d\mu_X(x)$.
- (2) $g = \sum_{k=1}^{n} \alpha_k \mathbb{1}_{B_k}$ Trivial by linearity.
- (3) $g \ge 0$ By MCT. See *Rudin* chapter 1 for details.

Recall: X : random variable, X has density function f_X if

$$\mu_X((a,b)) = \int_a^b f_X(x) dx \ \forall a,b.$$

$$\mu_X(B) = \int_B f_X d\mathcal{L} = \int_B f_X(x) d\mathcal{L}(x) = \int_B f_X(x) dx.$$

Theorem 1.5.2

 $g \in L^1(\mu_X)$. Then, $E(g(X)) = \int_{\mathbb{R}} g(x) f_X(x) dx$.

Example. Let X be standard normal. i.e., $f_X(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$ (regardless what X be). Then, $E(X^4) = \int_{\mathbb{R}} x^4 \frac{1}{\sqrt{2\pi}} e^{-x^2/2} = 3$.

Chapter 2

Information and Conditioning

2.1 Information and σ -algebras

Example. Toss a coin Three times. $\Omega = \{HHH, HHT, \cdots, TTT\}.$

 $A_H = \{HHH, HHT, HTH, HTT\}, A_T = \{THT, THT, TTH, TTT\}.$

Let $\mathcal{F}(1) = \{\phi, \Omega, A_H, A_T\}$ so that it is a σ -algebra containing the randomness up to time 1.

Similarly, define A_{HH} , A_{HT} , A_{TH} , A_{TT} .

Let $\mathcal{F}(2) = \{\phi, \Omega, A_{HH}, A_{HT}, A_{TH}, A_{TT}, A_{HH} \cup A_{HT}, \cdots, A_{TT}^{C}\}$ so that it is a σ -algebra containing the randomness up to time 2, and define $\mathcal{F}(0)$ similarly, and let $\mathcal{F}(0) = \{\phi, \Omega\}$.

Then, $\mathcal{F}(0) \subseteq \mathcal{F}(1) \subseteq \mathcal{F}(2) \subseteq \mathcal{F}(3)$. Let $X_t = \#$ of heads until time t. Then, X_t is $\mathcal{F}(t)$ -measurable for each t.

Now,
$$\{X_1 = 1\} = \{\omega : X_1(\omega) = 1\} = A_H$$
, and $\{X_1 = 0\} = \{\omega : X_1(\omega) = 0\} = A_T$.

Definition 2.1.1 (σ -algebra generated by X)

 Ω is a set, $X : \Omega \to \mathbb{R}$. $\sigma(X) = \{A \subseteq \Omega : A = X^{-1}(B) \text{ for some } B \in \mathcal{B}(\mathbb{R})\}$. Then, $\sigma(X)$ is a σ -algebra(exercise) and it is called a σ -algebra generated by X.

Remark. X is a random variable in $(\Omega, \sigma(X))$.

X is a random variable in (Ω, \mathcal{F}) , then $\sigma(X) \subseteq \mathcal{F}$ (exercise)

Definition 2.1.2 (\mathcal{F} -measurable)

 (Ω, \mathcal{F}) : measure space. $X : \Omega \to \mathbb{R}$. X is called \mathcal{F} -measurable if $\sigma(X) \subseteq \mathcal{F}$. i.e., X: measurable with respect to (Ω, \mathcal{F}) .

In example, X(t) is $\mathcal{F}(t)$ -measurable $\forall t$ (check!)

cf.
$$X(t): \Omega \to \mathbb{R}$$
. $(X(t))^{-1}(B) \in \mathcal{F}(t) \ \forall B \in \mathcal{B}(\mathbb{R})$.

Enough to check $(X(t))^{-1}(\{0\}), (X(t))^{-1}(\{1\}), \cdots, (X(t))^{-1}(\{t\}).$

 $\mathcal{F}(t)$ has enough information to determine X(t) in the sense that $\{\omega : (X(t))(\omega) \in B\} \in \mathcal{F}(t) \ \forall B \in \mathcal{B}(\mathbb{R}).$

Definition 2.1.3 (Filtration, Stochastic Process)

Ω: non-empty set, T > 0.

- 1. If $\mathcal{F}(t)$ is a σ -algebra $\forall t \in [0, T] \in T$ and $s < t \Rightarrow \mathcal{F}(s) \subseteq \mathcal{F}(t)$, then $(\mathcal{F}(t) : t \in [0, T])$ is called a **filtration**
- 2. If $X(t): \Omega \to \mathbb{R}$ is $\mathcal{F}(t)$ -measurable $\forall t \in [0, T]$, then $(X(t): t \in [0, T])$ is called **Stochastic Process adopted to the filtration** $\mathcal{F}(t)$.

2.2 Independence

 $X : \Omega \to \mathbb{R}$, \mathcal{F} : *σ*-algebra on Ω .

- 1. \mathcal{F} has full information to determine $X \Rightarrow X$ is \mathcal{F} -measurable. (2.1)
- 2. \mathcal{F} has no information to determine $X \Rightarrow X$ is independent to \mathcal{F} . (2.2)
- 3. \mathcal{F} has a partition information to determine $X \Rightarrow (2.3)$

Definition 2.2.1 (independent)

 $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space. $A, B \in \mathcal{F}$ is **independent** if $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$.

Question: X, Y are random variables in $(\Omega, \mathcal{F}, \mathbb{P})$. If X, Y are independent, then $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$, but the converse does not hold.

Definition 2.2.2

 $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space. $\mathcal{G}, \mathcal{H} \subseteq \mathcal{F}$ are sub σ -algebras of $\mathcal{F}. X, Y : \Omega \to \mathbb{R}$ are random variables in $(\Omega, \mathcal{F}, \mathbb{P})$.

- 1. \mathcal{G}, \mathcal{H} : independent iff $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B) \ \forall A \in \mathcal{G}, B \in \mathcal{H}$.
- 2. X, Y: independent iff $\sigma(X), \sigma(Y)$ are independent.
- 3. X, G: independent iff $\sigma(X)$, G are independent.

Definition 2.2.3

 $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space.

 $\mathcal{G}_1, \mathcal{G}_2, \cdots, \mathcal{G}_n, \cdots$: sub σ -algebra of \mathcal{F} . $X_1, X_2, \cdots, X_n, \cdots$: random variable in $(\Omega, \mathcal{F}, \mathbb{P})$.

- 1. $\mathcal{G}_1, \dots, \mathcal{G}_2$ are independent iff $\mathbb{P}(A_1 \cap \dots \cap A_n) = \mathbb{P}(A_1) \dots \mathbb{P}(A_n)$ for $A_1 \in \mathcal{G}_1, \dots, A_n \in \mathcal{G}_n$.
- 2. X_1, \dots, X_n are independent iff $\sigma(X_1) \sim \sigma(X_n)$ are independent.
- 3. G_1, G_2, \cdots are independent iff $G_1 \sim G_n$ are independent $\forall n$.
- 4. X_1, X_2, \cdots are independent iff $X_1 \sim X_n$ are independent $\forall n$.

Example. Toss a coin three times.

- 1. X(2), X(3) are not independent. $\mathbb{P}(\{X(2) = 2\} \cap \{X(3) = 1\}) \neq \mathbb{P}(X(2) = 2)\mathbb{P}(X(3) = 1)$.
- 2. X(2), X(3) X(2) are independent. Why: X(2) is an information at tossing first, second times, and X(3) is an information at tossing third time.

Definition 2.2.4 (Joint distribution)

 $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space. X, Y are random variables in Ω . $(X, Y) : \Omega \ni \omega \mapsto (X(\omega), Y(\omega)) \in \mathbb{R}^2$

1. Joint Distribution Measure in \mathbb{R}^2

$$\mu_{X,Y}(C) = \mathbb{P}((X,Y) \in C)$$
 for $C \in \mathcal{B}(\mathbb{R}^2)$.
(Note: We checked that $\{\omega : (X(\omega), Y(\omega)) \in C\} \in \mathcal{F}$ in real analysis.)

2. Joint Cumulative Distribution Function

$$F_{X,Y}(a,b) = \mathbb{P}(X \le a, Y \le b) = \mu_{X,Y}((-\infty, a] \times (-\infty, b])$$
 (check!)

3. Joint Probability Distribution Function

If $f_{X,Y}: \mathbb{R}^2 \to \mathbb{R}$ is Borel-measurable and satisfies $\mu_{X,Y}(A \times B) = \int_B \int_A f_{X,Y}(x,y) dx dy$ for all $A, B \in \mathcal{B}(\mathbb{R})$, then $f_{X,Y}$ is called a joint probability density function (jpdf)

Theorem 2.2.5

 $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space, X, Y are random variables in Ω . Then, the followings are equivalent.

(i) X, Y are independent

(ii)
$$\mu_{X,Y}(A \times B) = \mu_X(A)\mu_Y(B) \ \forall A, B \in \mathcal{B}(\mathbb{R})$$

(iii)
$$F_{X,Y}(a,b) = F_X(a)F_Y(b) \ \forall a,b \in \mathbb{R}$$

(iv)
$$\mathbb{E}[e^{uX+vY}] = \mathbb{E}[e^{uX}]\mathbb{E}[e^{vY}]$$

Remark. If JPDF $f_{X,Y}$ exists, then (i) to (iv) $\Leftrightarrow f_{X,Y}(x,y) = f_X(x)f_Y(y)$ a.e.

Theorem 2.2.6

X, Y are independent if and only if $f, g : \mathbb{R} \to \mathbb{R}$ Borel-measurable, $\mathbb{E}[|f(X)g(Y)|] < \infty$ implies that $\mathbb{E}[f(X)g(Y)] = \mathbb{E}[f(X)]\mathbb{E}[g(Y)]$.

Remark.
$$f(x) = g(x) = x : \mathbb{E}[|XY|] < \infty \Rightarrow \mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$$

Proof. Details are exercises.

- (1) $f = \mathbb{1}_A, g = \mathbb{1}_B$
- (2) f, g are simple functions
- (3) $f, g \ge 0$
- (4) f, g are general.

Review

 \mathcal{G} , \mathcal{H} are independent if $\forall A \in \mathcal{G}$, $B \in \mathcal{H} \Rightarrow \mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$.

X, Y are independent if $\sigma(X), \sigma(Y)$ are independent.

* $\sigma(X) = \{ A \in \Omega : A = X^{-1}(B) \text{ for some } B \in \mathcal{B}(\mathbb{R}) \}.$

* $\mu_{X,Y}(C) = \mathbb{P}((X,Y) \in C) \ \forall C \in \mathcal{B}(\mathbb{R}^2).$

Thm. T.F.A.E.C:

- 1. *X*, *Y* are independent
- **2.** $\mu_{X,Y}(A \times B) = \mu_X(A)\mu_Y(B)$
- 3. $\mathcal{F}_{X,Y}(x,y) = \mathcal{F}_X(x)\mathcal{F}_Y(y)$
- 4. (If JPDF $f_{X,Y}$ exists) $f_{X,Y}(x,y) = f_X(x)f_Y(y)$

Theorem 2.2.7

 $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space. X, Y are independent random variables, $f, g : \mathbb{R} \to \mathbb{R}$ are Borel measurable. Then, f(X), g(Y) are independent.

Proof.
$$A ∈ \sigma(f(X))$$
; $A = (f ∘ X)^{-1}(B)$ for some $B ∈ \mathbb{R} = X^{-1}(f^{-1}(B)) ∈ \sigma(X)$.
∴ $\sigma(f(X)) ⊆ \sigma(X)$, $\sigma(g(Y)) ⊆ \sigma(Y) ⇒ \sigma(f(X))$, $\sigma(g(Y))$ are independent. \Box

Corollary 2.2.8

$$\mathbb{E}[f(X)g(Y)] = \mathbb{E}[f(X))\mathbb{E}(g(Y)].$$

Definition 2.2.9

X, Y are random variables in $(\Omega, \mathcal{F}, \mathbb{P})$.

1.
$$Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

2.
$$std(X) = \sqrt{Var(X)}$$

3.
$$Cov(X,Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

4.
$$corr(X,Y) = cov(X,Y)/(std(X)std(Y))$$

Example.
• X: standard normal random variable $(N(0, 1^2))$

•
$$\mathbb{P}(Z=1) = \mathbb{P}(Z=-1) = \frac{1}{2}$$
 (X, Z are independent)

- Y = XZ. Then
 - 1) Y is standard normal,
 - 2) corr(X, Y) = 0.
 - 3) *X*, *Y* are not independent.

Definition 2.2.10 (Jointly normal)

X, Y are **jointly normal** with mean $m = (m_X, m_Y)$, $Var(C) = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}$ if

$$f_{X,Y}(z) = \frac{1}{\sqrt{(2\pi)^2 \det C}} e^{-\frac{1}{2}(z-m)C^{-1}(z-m)^{\mathsf{T}}}$$

Theorem 2.2.11

X, Y are jointly normal and uncorrelated $(C_{12} = C_{21} = 0)$. Then, they are independent.

Conditional Expectation

 $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space. $\int_A X d\mathbb{P} := \int \mathbb{1}_A X d\mathbb{P} = \int \mathbb{1}_A (\omega) X(\omega) d\mathbb{P}(\omega)$.

Lemma. $\int_A X d\mathbb{P} = \int_A Y d\mathbb{P}$ for all $A \in \mathcal{F}$ if and only if X = Y a.s.

Proof. $A_n = \{\omega : X(\omega) - Y(\omega) > \frac{1}{n}\}, B_n = \{\omega : X(\omega) - Y(\omega) < -\frac{1}{n}\}.$ Then,

$$0 = \int_{A_n} (X - Y) d\mathbb{P} \ge \int_{A_n} \frac{1}{n} d\mathbb{P} = \frac{1}{n} \int \mathbb{1}_{A_n} d\mathbb{P} = \frac{1}{n} \mathbb{P}(A_n)$$

Thus, $\mathbb{P}(A_n)=0 \ \forall n$. Similarly, $\mathbb{P}(B_n)=0$. Now, $\{\omega: X(\omega)\neq Y(\omega)\}=(\bigcup_{n=1}^\infty A_n)\cup A_n$ $(\bigcup_{n=1}^{\infty} B_n) \Rightarrow \text{measure } 0.$

Intuition. $(\Omega, \mathcal{F}, \mathbb{P})$ is given, $X : \mathcal{F}$ -measurable random variable, $\mathcal{G} \subseteq \mathcal{F}$ is a sub σ -algebra. If we know nothing, then we expect X as $\mathbb{E}[X]$. If we know \mathcal{F} , then we expect X as X. Now, if we know \mathcal{G} , then we expect X as $\mathbb{E}[X|\mathcal{G}]$ (what is it?)

Definition 2.3.1 (Conditional Expectation)

 $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space. $X \in L^1(\mathbb{P})$ is a random variable. \mathcal{G} is a sub σ -algebra of \mathcal{F} . We define $\mathbb{E}[X|\mathcal{G}]$ as

- 1. G-measurable random variable
- 2. $\int_A \mathbb{E}[X|\mathcal{G}](\omega)d\mathbb{P}(\omega) = \int_A X(\omega)d\mathbb{P}(\omega)$.

Question. $\mathbb{E}[X|\mathcal{G}]$ exists? (Yes! proof skip). unique? (Yes! up to a.s.)

Remark. Lemma implies determine X (a.s.) is equivalent to know $\int_A Xd\mathbb{P} \ \forall A \in \mathcal{F}$. In this sense, conditional expectation $Y = \mathbb{E}[X|\mathcal{G}]$ is knowing $\int_A Yd\mathbb{P} = \int_A Xd\mathbb{P} \ \forall A \in \mathcal{G}$. *Example.* Toss a coin three times.

 $\mathcal{F}(0) \subseteq \mathcal{F}(1) \subseteq \mathcal{F}(2) \subseteq \mathcal{F}(3)$. X(t) is a number of heads until t times; X(t) is $\mathcal{F}(t)$ -measurable. If $\mathcal{F}(1) = \{\phi, \Omega, A_H, A_T\}$, then $\mathbb{E}[X(2)|\mathcal{F}(1)] = X(1) + \frac{1}{2}$, since we know the information of 1st flip.

Proof. Want:
$$\int_A (X(1) + \frac{1}{2}) d\mathbb{P} = \int_A X(2) d\mathbb{P}$$
 for all $A \in \mathcal{F}(1)$ (c.f. $\mathbb{P}(\omega) = \frac{1}{8} \ \forall \omega \in \Omega$). For $A = A_H$, $\int \mathbb{1}_{A_H}(\omega)(X(1)(\omega) + \frac{1}{2}) d\mathbb{P}(\omega) = \frac{3}{2}\mathbb{P}(A_H) = \frac{3}{4}$.
$$\int \mathbb{1}_{A_H}(\omega)(X(2))(\omega) d\mathbb{P}(\omega) = \sum_{\omega \in A_H} (X(2))(\omega)\mathbb{P}(\omega) = \frac{1}{8}(2 + 2 + 1 + 1) = \frac{3}{4}.$$

Remark. $\mathcal{G} = \sigma(Y)$; $\mathbb{E}[X|\mathcal{G}] = \mathbb{E}[X|\sigma(Y)] := \mathbb{E}[X|Y]$

Theorem 2.3.2

X, Y are independent random variable in $(\Omega, \mathcal{F}, \mathbb{P})$, \mathcal{G} is a sub σ -algebra of \mathcal{F} .

- 1. $\mathbb{E}[aX + bY|\mathcal{G}] = a\mathbb{E}[X|\mathcal{G}] + b\mathbb{E}[Y|\mathcal{G}]$
- 2. X is G-measurable. Then, $\mathbb{E}[XY|\mathcal{G}] = X\mathbb{E}[Y|\mathcal{G}]$.
- 3. \mathcal{H} is a sub σ -algebra of \mathcal{G} . Then, $\mathbb{E}[\mathbb{E}[X|\mathcal{G}]|\mathcal{H}] = \mathbb{E}[X|\mathcal{H}]$.
- 4. X, G are independent, then $\mathbb{E}[X|G] = \mathbb{E}[X]$.

Proof. 1. Exercise

2. We only need to show that $X \ge 0$, $Y \ge 0$ implies 2.

- (a) $X = \mathbb{1}_B$ Want: $\mathbb{E}[\mathbb{1}_B Y | \mathcal{G}] = \mathbb{1}_B \mathbb{E}[Y | \mathcal{G}]$ for $B \in \mathcal{G}$.
- (b) $X = \sum_{i=1}^{n} \alpha_i \mathbb{1}_{B_i}$ Use linearity.
- (c) $X \ge 0$ Use MCT
- 3. Want: $\mathbb{E}[\mathbb{E}[X|\mathcal{G}]|\mathcal{H}] = \mathbb{E}[X|\mathcal{H}]$ Let $A \in \mathcal{H}$. Then, $\int_A \mathbb{E}[\mathbb{E}[X|\mathcal{G}]|\mathcal{H}](\omega)d\mathbb{P}(\omega) = \int_A \mathbb{E}[X|\mathcal{G}]d\mathbb{P} = \int_A Xd\mathbb{P} = \int_A \mathbb{E}[X|\mathcal{H}]d\mathbb{P}$
- 4. Can be shown similarly as in 2. Check $X = \mathbb{1}_B$ case. (Hint: $A \in \mathcal{G} \Rightarrow A, B$ are independent.)

Example (Revisit).

$$\begin{split} \mathbb{E}[X(2)|\mathcal{F}(1)] &= \mathbb{E}[X(2) - X(1) + X(1)|\mathcal{F}(1)] \\ &= \mathbb{E}[X(2) - X(1)|\mathcal{F}(1)] + X(1) \\ &= \mathbb{E}[X(2) - X(1)] + X(1) \\ &= \frac{1}{2} + X(1) \end{split}$$

Review

- $(\Omega, \mathcal{F}, \mathbb{P})$: probability space, $\mathcal{G} \subseteq \mathcal{F}$.
- $X : \mathcal{F}$ -measurable random variable.
- $Y = \mathbb{E}[X|\mathcal{G}]$ if Y is \mathcal{G} -measurable.
- $\int_A Y(\omega) d\mathbb{P}(\omega) = \int_A X(\omega) d\mathbb{P}(\omega) \ \forall A \in \mathcal{G}.$

Remark. $\mathbb{E}[X|\mathcal{G}]$ is an expectation of X when we know \mathcal{G} .

Remark. Y = Z a.s. and Z is \mathcal{G} -measurable, then $Z = \mathbb{E}[X|\mathcal{G}]$.

Remark. $(X(t))_{t \in [0,T]}$ is stochastic process adapted to $(\mathcal{F}(t))_{t \in [0,T]}$. In this, $(X(t))_{t \in [0,T]}$ is a random variable in $(\Omega, \mathcal{F}, \mathbb{P})$ and X(t) is $\mathcal{F}(t)$ -measurable. $\mathcal{F}(s) \subseteq \mathcal{F}(t)$ for all s < t and $\mathcal{F}(0) = \{\phi, \Omega\}$.

Remark. We can define \mathcal{F} as $\mathcal{F}(t) = \bigcup_{s:s \leq t} \sigma(X(s))$

Definition 2.3.3 (Martingale, Markov Process)

1. Martingale X(t) $\mathbb{E}[X(t)|\mathcal{F}(s)] = X(s) \text{ for all } s < t.$

2. Markov Process X(t)

For any borel measurable f, there exists some borel measurable g such that $\mathbb{E}[f(X(t))|\mathcal{F}(s)]=g(X(s))$

Remark. In Martingale, if we know all the previous value, then the expectation of the future is as same as the expectation of the present.

Remark. Markov process is a generalization of Markov chain. We only have to know the present value.

Chapter 3

Brownian Motions

3.1 Introduction

To study Brownian Motions, we will study:

- 1. Random Walks
- 2. Definition of Brownian Motions and its basic property (We will change the text-book!)
- 3. Constuction of Brownian Motions

3.2 Scaled Random Walks

Definition 3.2.1 (Random Walk)

- Let $X_i = \begin{cases} 1 & \text{prob } \frac{1}{2} \\ -1 & \text{prob } \frac{1}{2} \end{cases}$; X_1, X_2, \cdots independent.
- $M_n = X_1 + \cdots + X_n$ is called **random walk**
- $W_n(t) = \frac{1}{\sqrt{n}} M_{nt} (:= \frac{1}{\sqrt{n}} M_{[nt]})^v$, $t \in \{\frac{1}{n}k, k \in \mathbb{Z}_+\}$ is called **scaled random walk**

Proposition 3.2.2

Random walk holds the following properties:

- 1. Independent Increament
- 2. Martingale

3. Quadratic Variation

Proof.

- 1. See Def 3.2.3
- 2. Let $\mathcal{F}(n) = \sigma(X_1, X_2, \dots, X_n) = \text{smallest } \sigma\text{-algebra making } X_1 \sim X_n \text{ measurable.}$ Then,
 - $M_n = X_1 + \cdots \times X_n$ is $\mathcal{F}(n)$ -measurable
 - $(M_n)_{n\in\mathbb{N}}$ is stochastic process adapted to $(\mathcal{F}(n))_{n=0}^{\infty}$
 - $k < l \Rightarrow \mathbb{E}[M_l | \mathcal{F}(k)] = \mathbb{E}[M_l M_k | \mathcal{F}(k)] + \mathbb{E}[M_k | \mathcal{F}(k)] = \mathbb{E}[M_l M_k] + M_k = \mathbb{E}[X_{k+1} + \dots + X_l] + M_k = \mathbb{E}[X_{k+1}] + \dots + \mathbb{E}[X_l] + M_k = M_k.$
- 3. $\sum_{i=1}^{n} (M_i M_{i-1})^2 = n$

Definition 3.2.3 (Independent increament)

 M_n is **independent increament** if M_{k_1} , $M_{k_2} - M_{k_1}$, \cdots , $M_{k_m - k_{m-1}}$ are independent for any $k_1 < k_2 < \cdots < k_m$. Here, $M_{k_l} - M_{k_{l-1}}$ is called increament. If M_n is a random walk, then $M_{k_1} = \sum_{i=1}^{k_1} X_i$, $M_{k_2 - k_1} = \sum_{i=k_1}^{k_2} X_i$, \cdots are independent.

Remark. Proposition 3.2.2 holds for scaled random variable $W_n(t) = \frac{1}{n} M_{nt}$ $(t \in \frac{1}{n} \mathbb{Z}_+)$. *Proof.*

1. Independent Increament

For $t_1 < t_2 < \cdots < t_m$, $W_n(t_1) - W_n(0)$, $W_n(t_2) - W_n(t_1)$, \cdots , $W_n(t_m) - W_n(t_{m-1})$ are independent, since its increaments $W_n(t_{n+1}) - W_n(t_l) = \frac{1}{n}(M_{nt_{l+1}} - M_{nt_l})$ are independent by independent increament property of M_n .

2. Martingale

Let $\mathcal{F}_n(t) = \sigma(X_1, X_2, \dots, X_{nt})$. Then, $W_n(t) = \frac{1}{n}(X_1 + X_2 + \dots + X_{nt})$ is $\mathcal{F}_n(t)$ -measurable. Therefore, $(W_n(t))$ is stochastic process adapted to $(\mathcal{F}_n(t))$. With some computations as before, $\mathbb{E}[W_n(t)|\mathcal{F}_n(s)] = \dots = W_n(s)$ for s < t.

3. Quadratic Variation

$$\sum_{i=1}^{nt} \left(W_n(\frac{i}{n}) - W_n(\frac{i-1}{n}) \right)^2 = \sum_{i=1}^{nt} \left[\frac{1}{\sqrt{n}} (M_i - M_{i-1}) \right]^2 = \sum_{i=1}^{nt} \frac{1}{n} \cdot 1 = t$$

Example. Let $f \in C^1([0,t])$. Then,

$$\sum_{i=1}^{nt} \left(f(\frac{i}{n}) - f(\frac{i-1}{n}) \right)^2 = \sum_{i=1}^{nt} \left[\frac{1}{n} f'(\frac{x_i}{n}) \right]^2$$

$$= \frac{1}{n} \frac{1}{n} \sum_{i=1}^{nt} \left(f'(\frac{x_i}{n})^2 \right) \quad (\to \int_0^t [f'(x)]^2 dx)$$

$$\le \frac{c}{n} \quad (\to 0)$$

It is the most different property between random process and deterministic function: Q.V. of random variable is constant but Q.V. of C^1 function is zero.

Theorem 3.2.4 (Central Limit Theorem)

Let Y_1, Y_2, \cdots are independent and identically distributed (called i.i.d.) with mean 0 and variation $1 (\mathbb{E}(Y_i) = 0, Var(Y_i) = \mathbb{E}(Y_i^2) = 1)$. Then,

$$\frac{1}{\sqrt{n}}\left[Y_1 + \cdots Y_n\right] \to N(0, 1^2) \tag{\bigstar}$$

Remark. Meaning of ★:

$$\mathbb{P}\left[\frac{1}{n}(Y_1+\cdots+Y_n)\in[a,b]\right]\to\int_a^b\frac{1}{\sqrt{2\pi}}e^{-x^2/2}dx.$$

 $W_n(t) = \frac{1}{n} M_{nt} = \frac{1}{n} (X_1 + \dots + X_{nt}) = \sqrt{t} \frac{1}{\sqrt{nt}} (X_1 + \dots + X_{nt}) \sim N(0, t)$ cf. $N(\mu, \sigma^2)$ is a normal random variable with mean μ and variation σ^2 . Using the above,

$$\lim_{n\to\infty} \mathbb{P}\left[W_n(t)\in [a,b]\right] = \int_a^b \frac{1}{\sqrt{2\pi t}} e^{-x^2/2t} dx.$$

$$W_n(t) = rac{1}{n^{rac{1}{2}+lpha}} M_{nt} egin{cases} lpha < 0 & |W_n(t)|
ightarrow \infty \ lpha > 0 & |W_n(t)|
ightarrow 0 \end{cases}$$

Remark. $\frac{1}{\sqrt{2\pi t}}e^{-x^2/2t}$ is a heat kernel in PDE.

Summary

- 1. Independent Increament
- 2. Martingale
- 3. Markov Process

4.
$$W_n(t) \sim N(0,t)$$

 $W_n(t) - W_n(s) \sim N(0,t-s)$

5. Q.V. in [0, t] = t.

Review

$$X_1, X_2, \cdots$$
 are i.i.d. and $X_i = \begin{cases} \pm 1 & 1/2 \\ -1 & 1/2 \end{cases}$.

Random walk: $\mu_n = X_1 + \cdots + X_n$.

Scaled random walk: $W_n(t) = \frac{1}{\sqrt{n}} M_{nt}$. Then,

1.
$$W_n(0) = 0$$

2. Independent Increament

$$t_1 < t_2 < \cdots < t_n$$
, then $W_n(t_1), W_n(t_2) - W_n(t_1), \cdots, W_n(t_n) - W_n(t_{n-1})$ are independent.

$$W_n(t) - W_n(s) \sim N(0, t - s)$$
 as $n \to \infty$.

Chapter 2

Brownian Motion

2.1 Definition of Browinan Motion

Definition 2.1.1 (Stochastic Process)

- Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.
- $[0, \infty)$ with Borel σ -algebra
- $X : [0, \infty) \times \Omega \to \mathbb{R}$, measurable.

Then, *X* is a **stochastic process** if

- 1. $X(t, \cdot): \Omega \to \mathbb{R}$ is random variable
- 2. $X(\cdot,\omega):[0,\infty)\to\mathbb{R}$ is measurable.

Remark. $X(t,\cdot) \Rightarrow X(t)$: random variable in Ω . $X(t): \omega \mapsto [X(t)](\omega) = X(t,\omega)$.

For each $t \in [0, \infty)$ there exists random variable $X(t) : \Omega \to \mathbb{R}$. If we pick $\omega \in \Omega$, then each $X(t_i)$ is determined simultaneously by $X(t_i)(\omega)$.

Remark. We can work in [0, T] instead of $[0, \infty)$. In fact, we can define in [0, T] and extend to $[0, \infty)$, but it is extremly difficult.

Definition 2.1.2 (Brownian Motion in $[0, \infty)$)

- $t \in [0, \infty)$, $\omega \in \Omega((\Omega, \mathcal{F}, \mathbb{P})$: probability space)
- Stoch. Process $B(t, \omega)$

B is called **Brownian Motion** if

1.
$$B(0, \omega) = 0$$
 a.s. (i.e., $\mathbb{P}[\{\omega : B(0, \omega) = 0\}] = 1$)

2. $B(\cdot, \omega) : [0, \infty) \to \mathbb{R}$ is a continuous function a.s.

3.
$$\forall 0 \le s < t, B(t) - B(s) \sim N(0, t - s)$$

4. Independent Increament

Remark. $B(t) \sim N(0, t)$ by 3 with s = 0.

Remark. $(B(t))_{t>0}: \Omega \to \mathbb{R}$

- B(t) itself is a normal distribution
- $B(t) B(s) : \Omega \to \mathbb{R}$ is normal distribution with variance t s.

Remark. Brwonian motion is a continuous version of random walk: random walk has property 1,4 and has property 3 with $n \to \infty$.

Theorem 2.1.3

1.
$$s < t : \mathbb{E}[B(s)B(t)] = s$$

2. $t_1 < t_2 < \dots < t_n \Rightarrow (B(t_1), B(t_2), \dots, B(t_n))$ is jointly normal with $\mu = (0, 0, \dots, 0)$ and Var = C. $(C_{ij} = t_{\min(i,j)} \ \forall i, j)$.

Proof.

1.
$$\mathbb{E}[B(s)B(t)] = \mathbb{E}[B(s)(B(t) - B(s))] + \mathbb{E}[B(s)^2] = \mathbb{E}(B(s))\mathbb{E}(B(t) - B(s)) + s = s.$$

2. Let
$$\vec{v} = (B(t_1), B(t_2) - B(t_1), \dots, B(t_m) - B(t_{m-1}))$$
. Then,

PDF of
$$\vec{v} = \frac{1}{\sqrt{2\pi t_1}} e^{-\frac{x_1^2}{2t_1}} \cdot \frac{1}{\sqrt{2\pi (t_2 - t_1)}} e^{-\frac{x_2^2}{2(t_2 - t_1)}} \cdot \cdot \cdot \frac{1}{\sqrt{2\pi (t_m - t_{m-1})}} e^{-\frac{x_m^2}{2(t_m - t_{m-1})}}.$$

Therefore, \vec{v} is jointly normal with $\mu = 0$ and $Var = \text{diag}(t_1, t_2 - t_1, \dots, t_n - t_{n-1}) = D$, and,

$$\vec{W} = (B(t_1), \cdots, B(t_m)) = \vec{v} \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 0 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} = \vec{v}E.$$

Thus, \vec{W} is jointly normal with $\mu = (0, 0, \dots, 0)$ and $Var = EDE^T = C$.

Definition 2.1.4 (Filtration for Browinan Motion)

$$\mathcal{F}_t = \sigma(B(s) : s \le t)$$

= smallest σ -algebra containing $\{\omega : (B(s))(\omega) \in A\} \ \forall s \in [0, t], A : Borel$

= smallest σ -algebra making $\forall B_s, s \in [0, t]$ measurable

Remark.

1. $(B(t))_{t\geq 0}$: Stochastic process adapted to the filtration (\mathcal{F}_t) .

2. $(B(t), \mathcal{F}(t))$: Martingale.

Proof. 1. By construction

2.
$$s < t \Rightarrow \mathbb{E}[B(t)|\mathcal{F}_s] = \mathbb{E}[B(t) - B(s)|\mathcal{F}_s] + \mathbb{E}[B(s)|\mathcal{F}_s]$$

Appendix A

TA Session

Example (1.2.2). Let $(\Omega_{\infty}, \mathcal{F}_{\infty}, \mathbb{P})$ be the independent, infinite coin-toss space. Define stock price by

$$S_0(\omega) = 4$$
 for all $\omega \in \Omega_\infty$
 $S_1(\omega) = \begin{cases} 8 & \text{if } \omega_1 = H \\ 2 & \text{if } \omega_1 = T \end{cases}$
 $S_2(\omega) = \begin{cases} 16 & \text{if } \omega_1 = \omega_2 = H \\ 4 & \text{if } \omega_1 \neq \omega_2 \\ 1 & \text{if } \omega_1 = \omega_2 = T \end{cases}$

and in general

$$S_{n+1}(\omega) = \begin{cases} 2S_n(\omega) & \text{if } \omega_{n+1} = H\\ \frac{1}{2}S_n(\omega) & \text{if } \omega_{n+1} = T \end{cases}$$

Then, S_0, S_1, \cdots , are random variable.

For example, $\mathbb{P}(S_2 = 4) = \mathbb{P}(A_{HT} \cup A_{TH}) = 2pq$

Example (2.2.2). Let Ω be a three independent coin-toss space. Stock price random variables S_0, S_1, \cdots , are the same as the previous example. Let the probability measure \mathbb{P} be given by

$$\mathbb{P}(HHH) = p^3, \mathbb{P}(HHT) = p^2q, \cdots, \mathbb{P}(TTT) = q^3.$$

Assume $0 . Then, the random variables <math>S_2$ and S_3 are not independent.

: Consider the sets $\{S_3 = 32\} = \{HHH\}$ and $\{S_2 = 16\} = \{HHH, HHT\}$ whose probabilities are $\mathbb{P}(S_3 = 32) = p^3$ and $\mathbb{P}(S_2 = 16) = p^2$. In order to have Independence, $p^3 = \mathbb{P}(S_3 = 32) = \mathbb{P}(S_2 = 16 \text{ and } S_3 = 32) = \mathbb{P}(S_2 = 16)\mathbb{P}(S_3 = 32) = p^5 \Rightarrow \Leftarrow$.

The random variables S_2 and S_3/S_2 are independent. The σ -algebra generated by S_2 comprises ϕ , Ω , the atoms

 ${S_2 = 16} = {HHH, HHT}, {S_2 = 4} = {HTH, HTT, THH, THT}, {S_2 = 1} = {TTH, TTH}, and their unions.$

The σ -algebra generated by S_3/S_2 comprises ϕ , Ω and

$${S_3/S_2 = 2} = {HHH, HTH, THH, TTH}, {S_3/S_2 = \frac{1}{2}} = {HHT, HTT, THT, TTT}$$

For
$$A \in \sigma(S_2)$$
, $B \in \sigma(S_3/S_2)$, $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$.
ex) $p^3 = \mathbb{P}(S_2 = 16 \text{ and } S_3/S_2 = 2) = \mathbb{P}(S_2 = 16)\mathbb{P}(S_3/S_2 = 2)) = p^2p = p^3$

Example (2.2.10 Uncorrelated, dependent normal random variables).

Let *X*, *Z* be random variable satisfying

X : standard normal random variable

$$Z$$
: independent of X , $\mathbb{P}(Z=1)=\frac{1}{2}$, $\mathbb{P}(Z=-1)=\frac{1}{2}$

Define Y = ZX. Show

- 1. Y is standard normal random variable
- 2. *X* and *Y* are uncorrelated but they are dependent.

Proof.

1.

$$F_Y(b) = \mathbb{P}(Y \le b)$$

$$= \mathbb{P}(Y \le b \text{ and } Z = 1) + \mathbb{P}(Y \le b \text{ and } Z = -1)$$

$$= \mathbb{P}(X \le b \text{ and } Z = 1) + \mathbb{P}(X \ge -b \text{ and } Z = -1)$$

$$= \mathbb{P}(X \le b)\mathbb{P}(Z = 1) + \mathbb{P}(X \ge -b)\mathbb{P}(Z = -1)$$

$$= \frac{1}{2}N(b) + \frac{1}{2}N(b)$$

$$= N(b)$$

2. Since $\mathbb{E}X = \mathbb{E}Y = 0$,

$$Cov(X,Y) = \mathbb{E}[XY] = \mathbb{E}[ZX^2] = \mathbb{E}[Z]\mathbb{E}[X^2] = 0$$

 \therefore X and Y are uncorrelated.

If X and Y are independent, |X| and |Y| are independent. But $\mathbb{P}(|X| \leq 1, |Y| \leq$

1) =
$$\mathbb{P}(|X| \le 1) = N(1) - N(-1)$$
, and $\mathbb{P}(|X| \le 1, |Y| \le 1) = \mathbb{P}(|X| \le 1)\mathbb{P}(|Y| \le 1)$

$$1) = (N(1) - N(-1))^2 \implies$$

Let $\mu_{X,Y}$ be a joint distribution measure of (X,Y). Since |X|=|Y|, (X,Y) takes values only in the set $C=\{(x,y): x=\pm y\}$.

It follows that for any measurable function f,

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathbb{1}_{C}(x,y) f_{X,Y}(x,y) dy dx = 0$$

 \therefore There is no joint density $f_{X,Y}$ for (X,Y).

$$\begin{split} F_{X,Y}(a,b) &= \mathbb{P}(X \le a, Y \le b) \\ &= \mathbb{P}(X \le a, X \le b, Z = 1) + \mathbb{P}(X \le a, -X \le b, Z = -1) \\ &= \frac{1}{2} \mathbb{P}(X \le a \land b) + \frac{1}{2} \mathbb{P}(-b \le X \le a) \\ &= \frac{1}{2} N(a \land b) + \frac{1}{2} ((N(a) - N(-b)) \lor 0) \end{split}$$

Example (2.2.12). Let (X,Y) be jointly normal with the density

$$f_{X,Y}(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left(-\frac{1}{2(1-\rho^2)} \left[\frac{(x-\mu_1)^2}{\sigma_1^2} - \frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2} \right] \right)$$

Define $W = Y - \frac{\rho \sigma_2}{\sigma_1} X$. Then, X and W are independent.

Note that linear combination of jointly normal random variables are jointly normal (i.e., (X, W) is jointly normal).

Thus it suffices to show that Cov(X, W) = 0 (by Thm 2.2.9)

$$\begin{aligned} Cov(X, W) &= \mathbb{E}[(X - \mathbb{E}X)(W - \mathbb{E}W)] \\ &= \mathbb{E}[(X - \mathbb{E}X)(Y - \mathbb{E}Y)] - \mathbb{E}[\frac{\rho\sigma_2}{\sigma_1}(X - \mathbb{E}X)^2] \\ &= Cov(X, Y) - \frac{\rho\sigma_2}{\sigma_1}\sigma_1^2 \\ &= 0 \end{aligned}$$

Let $f_{X,W}$ be joint density of X and W.

$$\begin{split} \mathbb{E}[W] &= \mu_2 - \frac{\rho \sigma_2 \mu_1}{\sigma_1} =: \mu_3 \\ \mathbb{E}[(W - \mathbb{E}W)^2] &= \mathbb{E}[(Y - \mathbb{E}Y)^2] - \frac{2\rho \sigma_2}{\sigma_1} \mathbb{E}[(X - \mathbb{E}X)(Y - \mathbb{E}Y)] + \frac{\rho^2 \sigma_2^2}{\sigma_1^2} \mathbb{E}[(X - \mathbb{E}X)^2] \\ &= \sigma^2 - \frac{2\rho \sigma_2}{\sigma_1} \rho \sigma_1 \sigma_2 + \frac{\rho^2 \sigma_2^2}{\sigma_1^2} \sigma_1^2 \\ &= (1 - \rho^2) \sigma_2^2 =: \sigma_3^2 \end{split}$$

$$\therefore f_{X,W}(x,w) = \frac{1}{2\pi\sigma_1\sigma_3} \exp\left(-\frac{(x-\mu_1)^2}{2\sigma_1^2} - \frac{(w-\mu_3)^2}{2\sigma_3^2}\right).$$

Note that we have decomposed Y into the linear combination $Y = \frac{\rho \sigma_2}{\sigma_1} X + W$ of a pair of independent normal random variables X and W.

Example (2.3.3). Let $\mathcal{G} = \sigma(X)$. Observe estimate Y based on X and error.

$$\begin{split} \mathbb{E}[Y|X] &= \frac{\rho \sigma_2}{\sigma_1} + \mathbb{E}[W] = \frac{\rho \sigma_2}{\sigma_1} (X - \mu_1) + \mu_2. \\ Y - \mathbb{E}[Y|X] &= W - \mathbb{E}[W] \end{split}$$

Note that the error is random variable with expected value zero and independent of the estimation $\mathbb{E}[Y|X]$.