习颞课

已知 m,n 为异面直线, $m \perp$ 平面 α , $n \perp$ 平面 β , 若直线 l 满足 $l \perp m, l \perp n, l \not\subset \alpha, l \not\subset \beta$, \bigcup ()

A.
$$\alpha//\beta, l//\alpha$$

B. α 与 $oldsymbol{eta}$ 相交,且交线平行于l

C.
$$\alpha \perp \beta$$
, $l \perp \beta$

D. $\alpha 与 \beta$ 相交,且交线垂直于l

【解】借助如图所示的长方体模型,很明显,A、C、D均错,只能选B。

已知四边形 ABCD, AB = BD = DA = 2, $BC = CD = \sqrt{2}$ 。 现将 $\triangle ABD$ 沿 BD 折起, 当

二面角A-BD-C处于 $\left[\frac{\pi}{6},\frac{5\pi}{6}\right]$ 过程中,直线AB与CD所成角的余弦值取值范围是(

A.
$$\left[-\frac{5\sqrt{2}}{8}, \frac{\sqrt{2}}{8}\right]$$
 B. $\left[\frac{\sqrt{2}}{8}, \frac{5\sqrt{2}}{8}\right]$ C. $\left[0, \frac{\sqrt{2}}{8}\right]$ D. $\left[0, \frac{5\sqrt{2}}{8}\right]$

$$B. \left[\frac{\sqrt{2}}{8}, \frac{5\sqrt{2}}{8} \right]$$

C.
$$\left[0, \frac{\sqrt{2}}{8}\right]$$

D.
$$0, \frac{5\sqrt{2}}{8}$$

【解】如图所示,取BD的中点E,连接AE,CE, $\therefore \angle AEC$ 即为二面角A-BD-C的平面 角,

 $\overrightarrow{m} AC^2 = AE^2 + CE^2 - 2AE \cdot CE \cos \angle AEC = 4 - 2\sqrt{3} \cos \angle AEC$

因
$$\angle AEC \in \left[\frac{\pi}{6}, \frac{5\pi}{6}\right], \text{ 故 } AC^2 \in [1,7]$$

由斯坦纳定理得

在三棱锥 P-ABC中,PA 上底面 ABC , $\angle BAC = 120^{\circ}$,PA = AB = AC = 2 ,若该三 棱锥的顶点都在同一个球面上,则该球的表面积为(

$$A.10\sqrt{3}\pi$$

B.
$$18\pi$$

C.
$$20\pi$$

A.
$$10\sqrt{3}\pi$$
 B. 18π C. 20π D. $9\sqrt{3}\pi$

【解】将三棱锥扩充成如图所示的正六棱柱,该正六棱柱的高为2,底面是边长为2的正六边形,正六棱柱的体对角线AE即为所求外接球的直径,即 $4R^2=AE^2=4^2+2^2=20$,故题中三棱锥外接球的表面积为 20π ,选C。

此时,AP,AB,AM 两两垂直,以AP,AB,AM 为棱构造一个长方体,长方体的体对角线则为三棱锥 P-ABC 外接圆的直径,即 $4R^2=12+2^2+2^2=20$,所以,外接球的面积为 20π 。

4. (全国 II)将半径都为 1 的 4 个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为

(A)
$$\frac{\sqrt{3} + 2\sqrt{6}}{3}$$
 (B) $2 + \frac{2\sqrt{6}}{3}$ (C) $4 + \frac{2\sqrt{6}}{3}$ (D) $\frac{4\sqrt{3} + 2\sqrt{6}}{3}$

【解】如图,显然 4 个钢球两两相切且每个钢球与正四面体 A-BCD 的面也相切时,正四面体 A-BCD 的高最小。这时 4 个钢球的球心构成一个小正四面体 $O_1-O_2O_3O_4$,设 G 、 O 分别为 $O_1-O_2O_3O_4$ 和 A-BCD 底面的重心,易知 A,O_1,G,O 四点共线,设 A-BCD 的棱长为 a , $AO_1=x$,易知:

$$AO = \frac{\sqrt{6}}{3}a, O_1G = \frac{2\sqrt{6}}{3}, OE = \frac{\sqrt{3}}{6}a, AE = \frac{\sqrt{3}}{2}a$$

曲
$$\sin \angle O_1 AF = \frac{1}{x} = \frac{\frac{\sqrt{3}}{6}a}{\frac{\sqrt{3}}{2}a} = \frac{1}{3}$$
,得 $x = 3$,故 $AO = 3 + 1 + O_1 G = 4 + \frac{2}{3}\sqrt{6}$,选(C)

5. 在 $\triangle ABC$ 中 , $AB = 2\sqrt{m}$, $AC = 2\sqrt{n}$, $BC = 2\sqrt{10}$, AB + AC = 8 , EF . EF EF , EF ,

(A)
$$\frac{29\pi}{2}$$

(B)
$$2\sqrt{33}\pi$$

(C)
$$14\pi$$

(D)
$$9\pi$$

【巧解】如图一、图二。显然,三棱锥S-EFG 是对棱长分别为 $\sqrt{m},\sqrt{n},\sqrt{10}$ 的等腰四面体。由等腰四面体的性质知:其外接球半径 $R=\frac{\sqrt{2}}{4}\sqrt{a^2+b^2+c^2}=\frac{\sqrt{2}}{4}\sqrt{m+n+10}$,故其外接球表面积为: $S=4\pi R^2=\frac{1}{2}(m+n+10)\pi$

故,只需求出m+n的最小值即可

由题意知: $\sqrt{m}+\sqrt{n}=4\Rightarrow 1\times\sqrt{m}+1\times\sqrt{n}=4\Rightarrow 4\leq\sqrt{2}\times\sqrt{m+n}\Rightarrow m+n\geq 8$ 当且仅当 $1:1=\sqrt{m}:\sqrt{n}$,即m=n=4时取等号, 故S的最小值为 9π 。

6. 如图,平面四边形 ABCD中, AB=AD=CD=1, $BD=\sqrt{2}$, $BD\perp CD$,将其沿对角线 BD 折成四面体 A'-BCD, 使平面 $A'BD\perp$ 平面 BCD, 若四面体 A'-BCD 的顶点在同一个球面上,则该球的表面积为(____)

- 【解】由图示可得 $BD = A'C = \sqrt{2}, BC = \sqrt{3}, \triangle DBC$ 与 $\triangle A'BC$ 都是以BC为斜边的直角三 角形,由此可得BC中点到四个点A',B,C,D的距离相等,即该三棱锥的外接球的直径为 $\sqrt{3}$,所 以该外接球的表面积 $S = 4\pi \times (\frac{\sqrt{3}}{2})^2 = 3\pi$
- 如图,一块正方体形木料的上底面有一点E,若经过点E在上底面上画一条直线与CE垂直,则应该怎样画?

【解】连接 EC_1 ,过E作 EC_1 的垂线,交 B_1C_1 于P,交 D_1C_1 于Q,线PQ即满足要求。

证明:因 CC_1 上平面 $A_1B_1C_1D_1$,而PQ 二平面 $A_1B_1C_1D_1$,故 CC_1 上PQ;

又, $PQ \perp EC_1$, $EC_1 \cap CC_1 = C_1$,所以 $PQ \perp$ 平面 ECC_1 ,

又因为CE \subset 平面 ECC_1 , 故 $PQ \perp CE$ 。

- 异面直线a, b成80°角, P为a, b外的一个定点, 若过P有且仅有 2 条直线与a, b 所成的角相等且等于 α ,则角 α 的取值范围为(
 - A. $(0^{\circ}, 40^{\circ})$
- B. $(40^{\circ}, 50^{\circ})$
- C. $(40^{\circ}, 90^{\circ})$ D. $(50^{\circ}, 90^{\circ})$

【解】将两异面直线平移到P点,分别得到AC,BD,

注意到 AC, BD 相交成 80°, 100°两对对顶角。

设PQ 上平面ABCD。

仔细分析图中的两条角平分线 EF 和 GH, 会发现过 P 作与 AC, BD 均为 α 的直线 l

 $\alpha = 40^{\circ}$ 时只有一条;

 α ∈ (40°,50°) 时有 2条;

 $\alpha = 50^{\circ}$ 时有 3 条;

 α ∈ (50°,90°) 时有 4 条。

综上,选B。

- 9. 在三棱锥 P-ABC中,点 P 在平面 ABC中的射影为点 O,
- (1)若PA = PB = PC,则点O是 $\triangle ABC$ 的____心.
- (2)若 $PA \perp PB, PB \perp PC, PC \perp PA$,则点O是 $\triangle ABC$ 的____心.

【解】 (1) 如图 1,连接 OA,OB,OC,OP, 在 $\mathbf{Rt}\triangle POA,\mathbf{Rt}\triangle POB$ 和 $\mathbf{Rt}\triangle POC$ 中, PA=PC=PB,

所以OA = OB = OC,即 $O为 \triangle ABC$ 的外心.

(2)如图 2, $:: PC \perp PA, PB \perp PC, PA \cap PB = P$, $:: PC \perp$ 平面 PAB,

 $AB \subset \text{PE} PAB$, $\therefore PC \perp AB$,

又 $AB \perp PO, PO \cap PC = P, :: AB \perp$ 平面 PGC,

又CG \subset 平面PGC, $\therefore AB \perp CG$

即CG为 $\triangle ABC$ 边AB的高。

同理可证 BD, AH 分别为 $\triangle ABC$ 边 AC, BC 上的高, 即 O 为 $\triangle ABC$ 的垂心.

10. (全国 I) 如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边 $\triangle ABC$ 的中心为

O。 D, E, F 为圆 O 上的点, ΔDBC , ΔECA , ΔFAB 分别是以 BC, CA, AB 为底边的等腰三角形。 沿虚线剪开后,分别以 BC, CA, AB 为折痕折起 ΔDBC , ΔECA , ΔFAB ,使得 D, E, F 重合,得到 三棱锥。 当 ΔABC 的边长变化时,所得三棱锥体积(单位: cm³)的最大值为_____。

【解】连接OD,设其交 $BC \mp G$,易知 $OD \perp BC$, $BC = 2\sqrt{3} \cdot OG$,

设OG = x,则 $BC = 2\sqrt{3}x$,DG = 5 - x

三棱锥的高
$$h = \sqrt{DG^2 - OG^2} = \sqrt{25 - 10x}$$
 , $S_{\triangle ABC} = \frac{\sqrt{3}}{4}(2\sqrt{3}x)^2 = 3\sqrt{3}x^2$

则
$$V = \frac{1}{3} S_{\triangle ABC} \cdot h = \sqrt{3} x^2 \cdot \sqrt{25 - 10 x} = \sqrt{15} \sqrt{5 x^4 - 2 x^5}$$
 , 易知 $x \in (0, \frac{5}{2})$

因
$$5x^4 - 2x^5 = x^4(5 - 2x) = 2^4 \times \frac{x}{2} \times \frac{x}{2}$$

11. (全国 I) 如图, 在三棱锥 P-ABC 的平面展开图中, $AC=1,AB=AD=\sqrt{3},AB\perp AC,AB\perp AD$, $\angle CAE=30^\circ$,则 $\angle FCB=$ _____

【解】由已知得 $BD = \sqrt{2}AB = \sqrt{6}$,因D, E, F重合于一点,

故
$$AE = AD = \sqrt{3}, BF = BD = \sqrt{6}$$
,

所以,在△ACE中,由余弦定理得

$$CE^2 = AC^2 + AE^2 - 2AC \cdot AE \cdot \cos \angle CAE = 1^2 + (\sqrt{3})^2 - 2 \times 1 \times \sqrt{3} \times \cos 30^\circ = 1$$
,

所以, CE = CF = 1

在 ABCF中,由余弦定理得

$$\cos \angle FCB = \frac{BC^2 + CF^2 - BF^2}{2BC \times CF} = \frac{1^2 + 2^2 - (\sqrt{6})^2}{2 \times 1 \times 2} = -\frac{1}{4}$$

- 12. 已知 α , β , γ 是三个平面,且 α ∩ β =a, α ∩ γ =b, β ∩ γ =c
- (1) $a \cap b = O$, 求证: a,b,c 三线共点;
- (2) 若a//b,则a与c,b与c有什么关系?为什么?
- (1) 证明: $a \cap b = O \Rightarrow O \in a$,而 $a \subset \beta$,故 $O \in \beta$;

同理, $O \in \gamma$;

因此 $O \in \gamma \cap \beta$,即 $O \in c$,故a,b,c三线共点。

(2) a//c,b//c, 证明如下: 如图二

因a//b, $b \subset \gamma$, $a \not\subset \gamma$, 故 $a//\gamma$,

又, $a \subset \beta$, $\beta \cap \gamma = c$, 故a//c,

又, a//b, 故b//c。

13. 如图, 四边形 A'B'C'D'是 $\Box ABCD$ 在平面 α 上的投影, 求证: 四边形 A'B'C'D'是平行四边形。

证明: 由投影的定义知: AA'//BB'//CC'//DD',

故: AA', DD'共面, BB', CC'共面;

由于AA'/BB', AA'文平面BB'C'C, BB'二平面BB'C'C,

故 AA'//平面 BB'C'C;

由题意知: AD//BC, $AD \subset \text{平面 } BB'C'C$, $BC \subset \text{平面 } BB'C'C$,

故 *AD* / / 平面 *BB* ' C ' C;

又,AA'~平面AA'D'D,AD~平面AA'D'D,AA'0AD=A,故平面AA'D'D//平面BB'C'C,

又,A'D'=平面AA'D'D个平面 α ,B'C'=平面BB'C'C个平面 α 故,A'D'/B'C',

同理可证: A'B'/C'D', 所以A'B'C'D'为平行四边形。

14. 如图,在直三棱柱 $ABC - A_1B_1C_1$ 中, $\angle ABC = 90^\circ$, $AA_1 = AB$,求证: $A_1C \perp AB_1$

【证明】连接 A_1B ,由题意知: ABB_1A_1 为正方形,故 $AB_1\perp A_1B$

又, A_iA 上平面 ABC, BC 二平面 ABC, 故 $A_iA \perp BC$,

 $ot Z BC \perp AB$, $AB \subset \text{Pm} ABA_1$, $AA_1 \subset \text{Pm} ABA_1$, $A_1A \cap AB = A$,

故BC上平面 ABA_1 ,

又 AB_1 二平面 ABA_1 , 故 $BC \perp AB_1$

考虑到 $AB_1 \perp A_1B$, BC 二平面 A_1BC , A_1B 二平面 A_1BC , $A_1B\cap BC=B$, 故 AB_1 一平面 A_1BC ,

又, $A_1C \subset \text{平面} A_1BC$, 故 $AB_1 \perp A_1C$, 证毕。

15. 如图,在三棱锥 P-ABC 中, PC 上底面 ABC , $AB \perp BC$,D ,E 分别是 AB ,PB 的中点,求证:

- (1) *DE* // 平面 *PAC*
- (2) $AB \perp PB$

【证明】(1) 由题意知: DE 为 $\triangle PAB$ 的中位线, 故 DE//PA,

又,DE ew 平面 PAC ,PA ew 平面 PAC ,所以 DE // 平面 PAC

(2) 因PC 上平面ABC, $AB \subset$ 平面ABC, 故 $PC \perp AB$,

又, $AB \perp BC$,BC 二平面PBC,PC 二平面PBC, $PC \cap BC = C$,所以, $AB \perp$ 平面PBC,

又, $PB \subset \text{平面 } PBC$, 故 $AB \perp PB$ 。

16. 如图,在边长为 2 的正方形 ABCD中, E 是 AB 的中点, F 是 BC 的中点,将 $\triangle AED$, $\triangle BEF$, $\triangle DCF$ 分别沿 DE, EF, DF 折起,使 A, B, C 三点重合于点 A'。

- (1) 求证: *A'D ⊥ EF*
- (2) 求三棱锥 A'- EFD 的体积。

(1) 证明: 由题意知: *A'D* ⊥ *A'E*, *A'D* ⊥ *A'F*

而 $A'E \subset$ 平面 A'EF , $A'F \subset$ 平面 A'EF , $A'E \cap A'F = A'$,

所以, A'D 上平面 A'EF,

又, $EF \subset$ 平面 A'EF , 所以 $A'D \perp EF$ 。

(2) 解: 由题意知: $A'D = 2, A'E = A'F = 1, EF = \sqrt{2}$

故, $\triangle A'EF$ 为等腰直角三角形,易得 $S_{\triangle A'EF} = \frac{1}{2}$

由(1) 知: A'D 上 平面 A'EF,

故
$$V_{A'-EFD} = V_{D-A'EF} = \frac{1}{3} \times S_{\triangle A'EF} \times A'D = \frac{1}{3} \times \frac{1}{2} \times 2 = \frac{1}{3}$$

17. 如图, 在四面体 A-BCD中, AD 上平面 BCD, M 是 AD 的中点, P 是 BM 的中点, Q 在线段 AC 上, 且 AQ=3QC, 求证: PQ // 平面 BCD 。

证明:连接CM,令N为AC的中点,R为CM的中点,连接NM,PR,QR, 由 AQ = 3CQ 知CQ = QN,考虑到CR = RM,故QR / / NM,

又因NM//CD,故QR//CD,

因 $QR \subset \text{平面} BCD$, $CD \subset \text{平面} BCD$, 故QR / / 平面 BCD。

又, PR//BC, $PR \subset PB$ C 平面 BCD, $BC \subset PB$ BCD, 故 PR//PB BCD,

又, $QR \subset$ 平面 PQR , $PR \subset$ 平面 PQR , $QR \cap PR = R$,

所以平面PQR/平面BCD,

又因PQ \subset 平面PQR, 故PQ / / 平面BCD。

- 18. 如图,在三棱锥 P-ABC中, $\angle ACB = 90^{\circ}$, $PA \perp$ 底面 ABC,
- (1) 求证: 平面 *PAC* 上平面 *PBC*
- (2) 若 AC = BC = PA, $M \in PB$ 的中点, 求 AM 与平面 PBC 所成角的正切值。

(1) 证明: 因 PA 上底面 ABC , BC 二底面 ABC , 所以 PA 上 BC ; 又 , BC 上 AC , AC 二 平面 PAC , PA 二 平面 PAC , AC $\cap PA$ = A , 所以 , BC 上 平面 PAC ,

又因BC \subset 平面PBC, 所以平面PAC \perp 平面PBC。

- (2) 解: 过A作 $AN \perp PC$, N为垂足, 连接MN,
- 由(1) 知: $BC \perp$ 平面 PAC ,而 $AN \subset$ 平面 PAC ,故 $BC \perp AN$,

因BC二平面PBC, PC二平面PBC, $BC \cap PC = C$

所以,AN 上平面PBC,因此MN 为MA 在平面PBC 上的投影,

故 ZAMN 即为 MA 与平面 PBC 所成的角,

设PA = a,则由题意知:AC = BC = a,

易得:
$$MN = \frac{a}{2}$$
, $AN = \frac{\sqrt{2}}{2}a$, 考虑到 $AN \perp MN$,

故,
$$\tan \angle AMN = \frac{AN}{MN} = \sqrt{2}$$
 。

- 19. 如图,在四棱锥 P-ABCD中,底面 ABCD 为正方形,侧面 PAD 是正三角形,侧面 PAD 上底面 ABCD, M 是 PD 的中点
 - (1) 求证: AM 上平面 PCD
 - (2) 求侧面 PBC 与底面 ABCD 所成二面角的余弦值。

(1)证明:因 $DC \perp AD$,平面 $PAD \perp$ 平面 ABCD,AD = 平面 $PAD \cap$ 平面 ABCD, $DC \subset$ 平面 ABCD,

所以,DC 上平面PAD ,

又, $AM \subset$ 平面 PAD, 故 $DC \perp AM$

因M 为PD的中点, $\triangle PAD$ 为正三角形,故 $AM \perp PD$;

又, DC \subset 平面 PDC , PD \subset 平面 PDC , $PD \cap DC = D$,

故, $AM \perp$ 平面 PDC 。

(2) 过P作 $PO \perp AD$, O为垂足, 令 K为BC的中点, 连接OK, PK, 如下图。

因平面 PAD 上平面 ABCD, AD = 平面 PAD \cap 平面 ABCD, PO \cup 平面 PAD, 故, PO \cup 平面 PAD \cap

又因BC 二平面ABCD,从而 $PO \perp BC$,

易知 $BC \bot OK$, 又 $OK \cap PO = O$, $OK \setminus PO$ ⊂ 平面 PKO,

故, BC 上平面 PKO, 从而 $BC \perp PK$

所以, $\angle PKO$ 即为平面 PBC 与底面 ABCD 所成二面角的平面角,

设正方形 ABCD 的边长为 a , 易得 $PO = \frac{\sqrt{3}}{2}a$, OK = a ,

因
$$\triangle POK$$
 为直角三角形,故 $PK = \frac{\sqrt{7}}{2}a$,进而得 $\cos \angle PKO = \frac{OK}{PK} = \frac{2\sqrt{7}}{7}$ 。

20. 如图,在四棱锥 P-ABCD中,底面 ABCD是正方形,PA 上底面 ABCD,PA=AB, E 为线段 PB 的中点,F 为线段 BC 上的动点,平面 AEF 与平面 PBC 是否互相垂直?如果垂直,请证明;如果不垂直,请说明理由。

【证明】平面 AEF 与平面 PBC 互相垂直,证明如下

由题意: PA = AB, E 为 PB的中点, 故 $AE \bot PB$,

因 $PA \perp$ 平面 ABCD, $BC \subset$ 平面 ABCD, 故 $PA \perp BC$,

由题意: $BC \perp AB$, 又 AB、 $PA \subset \text{平面 } PAB$, $PA \cap AB = A$,

故BC上平面PAB,

因AE \subset 平面PAB, 故 $BC \perp AE$,

考虑到 $AE \perp PB$, 且 $PB \setminus BC \subset \text{平面}PBC$, $PB \cap BC = B$,

故AE 上平面PBC,

因AE \subset 平面AEF, 故平面AEF \bot 平面PBC。

21. 如图,在三棱台 ABC-DEF 中, $BC=2EF,AB\perp BC,BC\perp CF,G,H$ 分别为 AC,BC 上的点,平面 FGH // ABED 。

(1) 求证: *BC* 上平面 *EGH*;

- (2) 若 $AB \perp CF$, AB = BC = 2CF = 2, 求二面角 E FG D的余弦值。
- (1) 证明: 因为平面 FGH / / ABED ,平面 BCFE \bigcirc 平面 ABED = BE ,平面 BCFE \bigcirc GHF = HF ,

所以BE//HF,所以BC//EF,

所以四边形 BHFE 为平行四边形, 所以 BH = EF,

因为BC = 2EF,所以BC = 2BH, H为BC的中点。

同理, G为AC的中点, 所以GH//AB,

因为 $AB \perp BC$, 所以 $GH \perp BC$,

又HC//EF且HC=EF,所以四边形EFCH是平行四边形,

所以CF / /HE,

又 $CF \perp BC$, 所以 $HE \perp BC$,

又HE,GH \subset 平面EGH, $HE \cap GH = H$,

所以BC 上平面EGH

(2) 解: 因为 $AB \perp CF$, CF / /HE, GH / /AB, 所以 $HE \perp GH$,

分别以 HG, HB, HE 所在直线为 x, y, z 轴,建立如图所示的空间直角坐标系 H-xyz,则 E(0,01), F(0,-1,1), G(1,0,0), D(1,0,1),设 $\vec{m}=(x_1,y_1,z_1)$ 为平面 EFG 的一个法向量,因为 $\overrightarrow{EF}=(0,-1,0)$, $\overrightarrow{EG}=(1,0,-1)$,

曲
$$\overrightarrow{m} \bullet \overrightarrow{EF} = 0$$
及 $\overrightarrow{m} \bullet \overrightarrow{EG} = 0$ 得 $\begin{cases} -y_1 = 0 \\ x_1 - z_1 = 0 \end{cases}$,取 $x_1 = 1$ 得 $\overrightarrow{m} = (1,0,1)$

设 $\vec{n} = (x_2, y_2, z_2)$ 为平面 FGD的一个法向量

因为
$$\overrightarrow{FG} = (1,1,-1), \overrightarrow{GD} = (0,0,1)$$

曲
$$\vec{n} \cdot \vec{FG} = 0$$
 及 $\vec{n} \cdot \vec{GD} = 0$ 得
$$\begin{cases} x_2 + y_2 - z_2 = 0 \\ z_2 = 0 \end{cases}$$
 , 取 $x_2 = 1$ 得 $\vec{n} = (1, -1, 0)$,

$$\cos\left\langle \overrightarrow{n}, \overrightarrow{m} \right\rangle = \frac{\overrightarrow{n \cdot m}}{\left| \overrightarrow{n} \right| \left| \overrightarrow{m} \right|} = \frac{1}{2},$$

又,二面角E-FG-D为锐二面角,所以二面角E-FG-D的余弦值为 $\frac{1}{2}$ 。