EC 21103

Introduction to Electronics

Sudip Nag

Book: Electronic Circuits - Analysis and Design (1) by Donald A Neamen (3rd Ed.)

Syllabus:

- 1. Semiconductor theory
- 2 Diodes
- 3. Bipolar Junction Transistors (BJTs)
- 4. Field Effect Transistors (FETs)
- 5. Operational Amplifiers
- 6. Digital Circuits

Assessment:

- 1. Attendance: 5 (De-registration rule)
- 2. Class Tests: 10
- 3. Assignments: 5
- 4. Mid sem exam: 30
- 5. End sem exam: 50

(total) 100

Semiconductor Theory

7 9	Partial
1 1.	Intrinsic semiconductor: Pure semiconductor (s-c)
-Si-	> Valency = 4 (eg. Silicon & Germanium)
	lectrons at valence band) Sit Get
	Valency = 4 (eg. Silicon & Germanium) electrons at valence band) Crystal Lattice Most commonly used. Atomic Structure
	Structure
	Si = Si = Si - //
	$S_i = S_i = S_i -$
	Co-valent
	Si = Si = Si - bond with nearby atoms
2-	Si = Si = Si - I
F	ig: 2D Structure
	Charged Carriers
C	Electron Hole
5	(e^-) (h^+)
	E E
	Fig: 3D Structure
a. E	nergy band diagram:
E/	Conduction C: C: C:
E	bound (-) - An electron ett
	Energy Si — Si — Si — Si —
E	V Garage
	Valence (+) Charged -Si=Si=Si-
	A hole
Electro	n-Volt(eV) Dist.

	e-diffusion
	e diffusion I-density: $J_n = e.D_n \cdot \frac{dn}{dx}$ Gradient Charge of
Ī	on 1 dx Gradient
	Charge of Gradient an e-19c) of e-conc.
	ht diffusion I-density: $J_p = -e \cdot D_p \cdot \frac{dp}{dx}$ Gradient of ht diffusion ht conc.
	1 an Gradient of
	ht diffusion ht conc.
	Drift: Mechanism for carrier/particle flow due to
	the influence of an external energy/force (e.g. electric field or heat).
	(e.g. electric field or heat).
	n-type p-type
	$\longrightarrow \overline{E}$
	$\hat{\mathcal{V}}_{d_n} \leftarrow e^ h^+ \rightarrow \hat{\mathcal{V}}_{d_p}$
	$\longrightarrow \mathcal{I}_n \longrightarrow \hat{\mathcal{I}}_p$
	where,
	În Drift velocity of e Ivap: Drift velocity of h
İ	Van: Drift velocity of e 1 Vap: Drift velocity of ht În: Drift current density Îp: Drift current density of ht
Ī	g n
	Mathematically,
	$V_{dn} = -\mu_n \cdot E$
	e-mobility Electric field
	(cm²/V-s) intensity
	Mn > A parameter (physical) indicating an ability of
	Mn ⇒ A parameter (physical) indicating an ability of an e to move/travel inside a solid S-C.
	$\mu_p \Rightarrow (Same for h^+)$

Similarly, Vdp = + up. E Hole mobility For lightly doped Si, $\mu_n = 1350 \text{ cm}^2/V-s$ $\mu_p = 480 \text{ cm}^2/V-s$ e drift I-density: Jn = -e.n. Van $=-en(-\mu_n.E)=+en\mu_n.E$ ht drift I-density: Jp = +e.p. Vap = + e. p. (+ up. E) = + e. p. up. E S-C contains both e & h+, : total I-density is: $J = J_n + J_p$.. Doping controls/determines conductivity of s-c. n-type: n>p
p-type: p>>n C. Excess carriers: At thermal non-equilibrium, in the presence of additional energy, valence e breaks covalent bonds & become free e. Therefore, an etat pair is formed, which is known as excess e-f excess ht. $n = n_0 + 8n$ Total carriers At Excess carriers thermal equilb.