

FIG. 11

PATH	1-HOP	<u>2-HOP</u>	<u>3-HOP</u>				
<u> 1i</u>	IN-?	X	X				
10	IN-?	X	X				
9i	AN-1	AN-8	IN-?				
90	AN-1	AN-8	IN-?				
5i	AN-6	IN-?	X				
50	AN-6	IN-?	X				
13i	AN-4	AN-11	IN-?				
130	AN-4	AN-11	IN-?				
3i	AN-3	IN-?	X				
30	AN-3	IN-?	X				
11i	AN-4	IN-?	X				
110	AN-4	IN-?	X				
7i	AN-1	IN-?	X X X X X X IN-?				
70	AN-1	IN-?	X				
2i	AN-2	IN-?	X				
20	AN-2	IN-?	X				
10i	AN-1	AN-9	IN-?				
100	AN-1	AN-9	IN-?				
6i	AN-7	IN-?	Χ				
60	AN-7	IN-?	Χ				
4i	AN-5	IN-?	Χ				
40	AN-5	IN-?	X				
12i	AN-4	AN-10	IN-?				
120	AN-4	AN-10	IN-?				
8i	AN-1	AN-8	IN-?				
80	AN-1	AN-8	IN-?				

FIG. 12

DATU	1 115		88
PATH			2 3-HOP
1i	IN-?	X	X
10	IN-?	X	X
9i	AN-1	AN-8	
90	AN-1	AN-8	
5i	AN-6	IN-?	X
50	AN-6	IN-?	X
13i	AN-4	AN-11	
130	AN-4	AN-11	IN-?
3i	AN-3	IN-?	
30	AN-3	IN-?	X
11i	AN-4	IN-?	X
110	AN-4	IN-?	X
7i	AN-1	IN-?	X X X X
70	AN-1	IN-?	X
2i	AN-2	IN-?	X
20	AN-2	IN-?	X
10i	AN-1	AN-9	IN-?
100	AN-1	AN-9	IN-?
6i	AN-7	IN-?	X
60	AN-7	IN-?	X
4i	AN-5	IN-?	X X X
40	AN-5	IN-?	X
12i	AN-4	AN-10	IN-?
12o	AN-4	AN-10	IN-?
80	AN-1	AN-8	IN-?

FIG. 13

		CHANN	IFI 1	1	CLIANIA	IEL O	98			
SLOT	PAT		RX	CHANNEL 2 PATH TX RX			<u> </u>	CHANNEL 3		
0	1	IN-?	HAP			RX	PATI	`	RX	
0'	$\frac{1}{X}$	X X	X	80	AN-1	AN-8	120	AN-10	IN-?	
1	10	HAP	1N-?		X	X	9i	IN-?	AN-8	
2	9i	AN-1	HAP	9i	AN-8	AN-1		ļ <u>.</u>		
3	90	HAP	AN-1	10 5i	X IN-?	X	80	AN-8	IN-?	
4	5i	AN-6	HAP			AN-6	10	X	X	
5	50	HAP		90	AN-1	AN-8	13i	IN-?	AN-11	
6	13i	AN-4	AN-6	13i	AN-11	AN-4	90	AN-8	IN-?	
7	-}		HAP	50	AN-6	IN-?	3i	X	X	
8	130	HAP	AN-4	3i	IN-?	AN-3	50	X	X	
	3i	AN-3	HAP	130	AN-4	AN-11	11i	X	X	
9	30	HAP	AN-3	11i	IN-?	AN-4	130	AN-11	IN-?	
10	11i	ÅN-4	HAP	30	AN-3	IN-?	7i	X	X	
11	110	HAP	AN-4	7i	IN-?	AN-1	30	X	$\frac{\hat{x}}{x}$	
12	7i	AN-1	HAP	110	AN-4	IN-?	2i	X	X	
13	70	HAP	AN-1	2i	IN-?	AN-2	110	$\frac{X}{X}$	X	
14	2i	AN-2	HAP	70	AN-1	IN-?	10i	IN-?	AN-9	
15	20	HAP	AN-2	10i	AN-9	AN-1	70	X	X X	
16	10i	AN-1	HAP	20	AN-2	IN-?	6i	X	X	
17	100	HAP	AN-1	6i	IN-?	AN-7	20	X	X	
18	6i	AN-7	HAP	100	AN-1	AN-9	4i	X	$\frac{\lambda}{X}$	
19	60	HAP	AN-7	4i	IN-?	AN-5	10o	AN-9	IN-?	
20	4i	AN-5	HAP	60	AN-7	IN-?	12i	IN-?	AN-10	
21	40	HAP	AN-5	12i	AN-10	AN-4	60	X	X	
22	12i	AN-4	HAP	40	AN-5	IN-?		X	$\frac{\lambda}{X}$	
23	120	HAP	AN-4		X	X	40	$\frac{X}{X}$	$\frac{}{X}$	
24	80	HAP	AN-1	120	AN-4	AN-10		$\frac{x}{X}$	$\frac{\hat{x}}{X}$	

FIG. 14

			_108
PATH		2-HOF	3-HOP
1i	IN-?	X	X
10	IN-?	X	X
90	AN-1	AN-8	IN-?
5i	AN-6	IN-?	X
50	AN-6	IN-?	X
13i	AN-4	AN-11	IN-?
130	AN-4	AN-11	IN-?
3i	AN-3	IN-?	X
30	AN-3	IN-?	X
11i	AN-4	IN-?	X
110	AN-4	IN-?	X
7i	AN-1	IN-?	X
70	AN-1	IN-?	X
2i	AN-2	IN-?	X
20	AN-2	IN-?	X
10i	AN-1	AN-9	IN-?
100	AN-1	AN-9	IN-?
6i	AN-7	IN-?	X
60	AN-7	IN-?	X
4i	AN-5	IN-?	X
40	AN-5	IN-?	X
12i	AN-4	AN-10	IN-?
120	AN-4	AN-10	IN-?
8i	AN-1	AN-8	IN-?
80	AN-1	AN-8	IN-?

FIG. 15

		СНАМИ	EI 1	- 1	01.141.19			0		
SLOT	CHANNEL 1 PATH TX RX			-	CHANNEL 2			CHANNEL 3		
0	1 1	IN-?	RX HAP	PAT		RX	PAT	TX TX	RX	
1	10	HAP	IN-?	80	AN-1	AN-8				
2	90	HAP	AN-1		IN-?	ANIO	8c	AN-8	IN-?	
3	5i	AN-6	HAP	90	AN-1	AN-6				
4	50	HAP	AN-6	13i		AN-8	13		AN-11	
5	13i	AN-4	HAP	50	AN-11	AN-4	90		IN-?	
6	130	HAP	AN-4	3i	AN-6	IN-?	3i	X	X	
7	3i	AN-3	HAP		IN-?	AN-3	50	X	X	
8	30	HAP	AN-3	130	AN-4	AN-11	11i	X	X	
9	111	AN-4	+	111	IN-?	AN-4	130	AN-11	IN-?	
10	110	HAP	HAP	30	AN-3	IN-?	7i	X	X	
11	71	AN-1	AN-4 HAP	71	IN-?	AN-1	30	X	X	
12	70	HAP	AN-1	110	AN-4	IN-?	2i	X	X	
13	2i	AN-2	HAP	2i	IN-?	AN-2	110	X	X	
14	20	HAP	AN-2	70 10i	AN-1	IN-?	10i	IN-?	AN-9	
15	10i	AN-1	HAP	20	AN-9	AN-1	70	X	X	
16	100	HAP	AN-1	6i	AN-2 IN-?	IN-?	6i	X	X	
17	6i	AN-7	HAP	100	AN-1	AN-7	20	X	X	
18	60	HAP	AN-7	4i	IN-?	AN-9 AN-5	41	X	X	
19	4i	AN-5	HAP	60	AN-7	IN-?	100	AN-9	IN-?	
20	40	HAP	AN-5	12i	AN10	AN-4	12i	IN-?	AN-10	
21	12i	AN-4	HAP	40	AN-5	IN-?	60 8i	X	X	
22	120	HAP	AN-4	8i	AN-8	AN-1	40	IN-?	AN-8	
23	8i	AN-1	HAP	120	AN-4	AN-10	1i	X	X	
24	80	HAP	AN-1	11	X	X X	120	AN-10	X IN-?	

FIG. 16