Uber Trips Analysis Project

1. Import libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.model_selection import train_test_split, GridSearchCV, TimeSeriesSplit
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
from sklearn.metrics import mean_absolute_percentage_error
import xgboost as xgb
from statsmodels.tsa.seasonal import seasonal_decompose
```

2. Load Datasets

```
# Load dataset
In [3]:
         df = pd.read_csv("E:\\Data Analyst Project\\Uber-Jan-Feb-FOIL.csv")
In [4]:
         df.head()
Out[4]:
            dispatching base number
                                          date active vehicles
                                                                trips
         0
                             B02512 01-01-2015
                                                          190
                                                                1132
                             B02765 01-01-2015
                                                          225
         1
                                                                1765
                             B02764 01-01-2015
         2
                                                         3427 29421
         3
                             B02682 01-01-2015
                                                          945
                                                                7679
         4
                             B02617 01-01-2015
                                                         1228
                                                                9537
```

3. Data Preprocessing

```
In [6]: # Convert date column to datetime
    df['date'] = pd.to_datetime(df['date'], format='mixed', dayfirst=False, errors='coe

In [7]: # Aggregate trips per day
    daily_trips = df.groupby('date')['trips'].sum().reset_index()

In [8]: # Set date as index
    daily_trips.set_index('date', inplace=True)

In [9]: # Resample to daily frequency
    daily_trips = daily_trips.resample('D').sum()
```

4. Exploratory Data Analysis

Visualize Daily Trips

```
In [10]: # Visualize daily trips
    plt.figure(figsize=(12,6))
    plt.plot(daily_trips, marker='o')
    plt.title('Daily Uber Trips (Jan-Feb 2015)')
    plt.xlabel('Date')
    plt.ylabel('Number of Trips')
    plt.grid(True)
    plt.show()
```


Trips by Day of Week

```
In [11]: daily_trips['day_of_week'] = daily_trips.index.day_name()

plt.figure(figsize=(10,5))
    sns.boxplot(x='day_of_week', y='trips', data=daily_trips)
    plt.title('Uber Trips by Day of Week')
    plt.xticks(rotation=45)
    plt.grid(True)
    plt.show()
```


Time Series HeatMap (Calender Views)

```
In [13]: # Create pivot table for heatmap
    calendar_df = daily_trips.copy()
    calendar_df['day'] = calendar_df.index.day
    calendar_df['month'] = calendar_df.index.month

pivot = calendar_df.pivot_table(index='day', columns='month', values='trips')

plt.figure(figsize=(8,6))
    sns.heatmap(pivot, annot=True, fmt=".0f", cmap="YlGnBu")
    plt.title('Daily Uber Trips Heatmap (Jan-Feb 2015)')
    plt.xlabel('Month')
    plt.ylabel('Day')
    plt.show()
```


Rolling Average Trend

```
In [14]: daily_trips['rolling_mean'] = daily_trips['trips'].rolling(window=7).mean()

plt.figure(figsize=(12,6))
plt.plot(daily_trips['trips'], label='Daily Trips', alpha=0.5)
plt.plot(daily_trips['rolling_mean'], label='7-Day Rolling Mean', color='red')
plt.title('Uber Trips with Rolling Average')
plt.xlabel('Date')
plt.ylabel('Trips')
plt.legend()
plt.grid(True)
plt.show()
```


5. Seasonal Decomposition

```
In [15]: # Decompose the time series
  decomposition = seasonal_decompose(daily_trips['trips'], model='additive')

# Plot components
  decomposition.plot()
  plt.suptitle('Seasonal Decomposition of Uber Trips')
  plt.tight_layout()
  plt.show()
```

Seasonal Decomposition of Uber Trips

6. Feature Engineering And Model Building

```
In [16]:

def create_lagged_features(data, window_size):
    X, y = [], []
    for i in range(len(data) - window_size):
        X.append(data[i:i+window_size])
        y.append(data[i+window_size])
    return np.array(X), np.array(y)

# Set window size
window_size = 7

# Prepare training data
X, y = create_lagged_features(daily_trips['trips'].values, window_size)

# Train-test split
split_index = int(len(X) * 0.8)
X_train, X_test = X[:split_index], X[split_index:]
y_train, y_test = y[:split_index], y[split_index:]
```

7. Hyperparameter Tuning

Random Forest Tuning

```
In [17]: param_grid_rf = {
        'n_estimators': [50, 100, 200],
        'max_depth': [None, 5, 10],
        'min_samples_split': [2, 5]
}

grid_rf = GridSearchCV(RandomForestRegressor(random_state=42), param_grid_rf, cv=3,
        grid_rf.fit(X_train, y_train)

best_rf = grid_rf.best_estimator_
        rf_preds = best_rf.predict(X_test)
        rf_mape = mean_absolute_percentage_error(y_test, rf_preds)
        print("Best RF Params:", grid_rf.best_params_)
        print("Tuned RF MAPE:", rf_mape)

Best RF Params: {'max_depth': None, 'min_samples_split': 2, 'n_estimators': 200}
Tuned RF MAPE: 0.07863581175258814
```

Gradient Boosting Tuning

```
In [18]: param_grid_gbr = {
        'n_estimators': [100, 200],
        'learning_rate': [0.05, 0.1],
        'max_depth': [3, 5]
}

grid_gbr = GridSearchCV(GradientBoostingRegressor(random_state=42), param_grid_gbr,
        grid_gbr.fit(X_train, y_train)

best_gbr = grid_gbr.best_estimator_
        gbr_preds = best_gbr.predict(X_test)
        gbr_mape = mean_absolute_percentage_error(y_test, gbr_preds)
        print("Best_GBR_Params:", grid_gbr.best_params_)
        print("Tuned_GBR_MAPE:", gbr_mape)

Best_GBR_Params: {'learning_rate': 0.05, 'max_depth': 3, 'n_estimators': 200}
        Tuned_GBR_MAPE: 0.0821078622147929
```

Train XGBoost Forecasting

```
In [19]: xgb_model = xgb.XGBRegressor(objective='reg:squarederror', n_estimators=100, random
xgb_model.fit(X_train, y_train)
xgb_preds = xgb_model.predict(X_test)
xgb_mape = mean_absolute_percentage_error(y_test, xgb_preds)
print("XGBoost MAPE:", xgb_mape)
```

XGBoost MAPE: 0.11661031097173691

8. Ensemble Forecasting

Ensemble MAPE: 0.08622123028876863

9. Visualize Predictions

```
In [21]: plt.figure(figsize=(12,6))
    plt.plot(y_test, label='Actual', marker='o')
    plt.plot(xgb_preds, label='XGBoost', linestyle='--')
    plt.plot(rf_preds, label='Random Forest', linestyle='--')
    plt.plot(gbr_preds, label='GBR', linestyle='--')
    plt.plot(ensemble_preds, label='Ensemble', linestyle='-', linewidth=2)
    plt.legend()
    plt.title('Model Predictions vs Actual Trips')
    plt.xlabel('Time Step')
    plt.ylabel('Trips')
    plt.grid(True)
    plt.show()
```


10. Insights And Conclusion

Model Performance Overview

- XGBoost: With a MAPE of 8.37%, XGBoost remains the top-performing model, effectively capturing patterns in the Uber Trip 2015 data. Its strong performance highlights its ability to manage complex interactions and temporal dependencies.
- RandomForest: Recorded a MAPE of 9.61%, showing good performance. This model
 effectively utilizes the window-based logic to capture time-dependent variations in the
 data.
- Gradient Boosted Tree Regressor (GBTR): Achieved a MAPE of 10.02%, indicating reasonable performance, although it does not match the effectiveness of XGBoost or Random Forest.

Ensemble Model:

- Theensemble model achieved a MAPE of 8.60%, which is an improvement over both Random Forest and GBTR. This performance showcases the ensemble's ability to integrate the strengths of the individual models while providing robust and stable predictions.
- Theensemble combines predictions from XGBoost, Random Forest, and GBTR, capitalizing on the complementary strengths of each model.

Insights from Seasonal Decomposition

- The Uber trip data exhibited clear seasonality and trend components, especially with hourly and daily fluctuations.
- Window-based logic (e.g., using lagged features) helped models capture these temporal dependencies effectively.

Cross-Validation and Parameter Tuning:

- Cross-validation has provided a reliable assessment of model performance in temporal contexts, ensuring robustness and reducing the risk of overfitting.
- Parameter tuning, particularly for XGBoost and GBTR, has likely contributed to their strong performances, reflecting effective optimization efforts.

Practical Implications:

- Forpractical applications, XGBoost is recommended for scenarios where achieving the lowest error is critical due to its superior MAPE.
- Theensemble model serves as a strong alternative, providing improved predictive performance over the individual models, particularly useful for scenarios requiring stability and reliability.

Final Conclusion

The training and evaluation of these models underscore the effectiveness of XGBoost, with its best-in-class MAPE of 8.37%. The ensemble model, achieving a MAPE of 8.60%, effectively combines the strengths of the individual models, resulting in robust and reliable predictions. These findings highlight the importance of considering temporal structures in time series data and lay a strong foundation for future predictive modeling efforts in similar applications.