Combinacional

Algebra booliana

Fernando Pujaico Rivera¹

¹Universidade Federal de Lavras

Aula-1 2016

Álgebra booliana [1]

George Boole

AND

OR

NOT

Propriedade associativa:

(A and B) and C
$$\equiv$$
 A and (B and C)
(A B) C \equiv A (B C)

Propriedade Associativa:

(A or B) or C
$$\equiv$$
 A or (B or C)
(A+B)+C \equiv A+(B+C)

Propiedades comutativas

Propriedade distributiva:

(A and B) or C
$$\equiv$$
 (A or C) and (B or C)

$$(A B) + C \equiv (A+C)(B+C)$$

Propriedade distributiva:

(A or B) and C
$$\equiv$$
 (A and C) or (B and C)
$$(A+B) C \equiv (A C)+(B C)$$

Propriedade absortiva: (similar a conjuntos or:união and:interseção)

(A and B) or A
$$\equiv$$
 (A or B) and A \equiv A
(A B) + A \equiv (A+B) A \equiv A

Propiedades de elementos neutros:

A and 1
$$\equiv$$
 A

$$A1 \equiv A$$

A or 0
$$\equiv$$
 A

$$A+0 \equiv A$$

Elementos absorventes:

A and
$$0 \equiv 0$$

$$A 0 \equiv 0$$

A or
$$1 \equiv 1$$

$$A+1 \equiv 1$$

Propiedades idempotentes:

Leis de "De Morgan": (Augustus De Morgan)

not (A and B)
$$\equiv$$
 (not A) or (not B)
$$\overline{A} \overline{B} \equiv \overline{A} + \overline{B}$$

$$A \longrightarrow A \longrightarrow A \longrightarrow A \longrightarrow A \longrightarrow A \longrightarrow A \longrightarrow B$$

$$X = (\overline{A} + BC) A B$$

$$= (A \overline{BC}) A B$$

$$= \overline{BC} A B$$

$$= (\overline{B} + \overline{C}) A B$$

$$= \overline{B} A \overline{B} + \overline{C} A B$$

$$X = A B \overline{C}$$

Forma soma de produtos

Α	В		X
0	0		0
0	1	——— B	1
1	0	<u> </u>	1
1	1		0

$$X = \overline{A} B + A \overline{B}$$

Forma soma de produtos

Projetando: Mapa de Karnaugh [1]

Α	В	C		X
0	0	0	Ā B C	1
0	0	1	Ā B C	1
0	1	0		0
0	1	1	ĀBC→	1
1	0	0		0
1	0	1		0
1	1	0	ABĒ→	1
1	1	1	ABC,	1

- * Divide em dois grupos
- * Ordena seguindo minima distância de Hamming
- * Agrupa e potencias de 2

Projetando: Mapa de Karnaugh

Projetando: Mapa de Karnaugh

References I

[1] Ronald J Tocci, Neal S Widmer, and Gregory L Moss. *Sistemas digitais: princípios e aplicações*, volume 8. Prentice Hall, 2003.