Performing matrix multiplication and finding eigen vectors and eigen values using TensorFlow

Code:

```
import tensorflow as tf
print("Matrix Multiplication Demo")
x=tf.constant([1,2,3,4,5,6],shape=[2,3])
print(x)
y=tf.constant([7,8,9,10,11,12],shape=[3,2])
print(y)
z=tf.matmul(x,y)
print("Product:",z)
e_matrix_A=tf.random.uniform([2,2],minval=3,maxval=10,dtype=tf.float32,name="matrixA")
print("Matrix A:\n{}\n\n".format(e_matrix_A))
eigen_values_A,eigen_vectors_A=tf.linalg.eigh(e_matrix_A)
print("Eigen Vectors:\n{}\n\nEigen
Values:\n{}\n'n.format(eigen_vectors_A,eigen_values_A))
```

```
Matrix Multiplication Demo
tf.Tensor(
[[1 2 3]
 [4 5 6]], shape=(2, 3), dtype=int32)
tf.Tensor(
[[7 8]
 [ 9 10]
 [11 12]], shape=(3, 2), dtype=int32)
Product: tf.Tensor(
[[ 58 64]
 [139 154]], shape=(2, 2), dtype=int32)
Matrix A:
[[3.0372672 6.6474676]
 [5.6447554 4.8327074]]
Eigen Vectors:
[[-0.76061237 -0.6492064 ]
 [ 0.6492064 -0.76061237]]
Eigen Values:
[-1.7807075 9.650682 ]
>>>
```

Solving XOR problem using deep feed forward network.

Code:

```
import numpy as np

from keras.layers import Dense

from keras.models import Sequential

model=Sequential()

model.add(Dense(units=2,activation='relu',input_dim=2))

model.add(Dense(units=1,activation='sigmoid'))

model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy'])

print(model.summary())

print(model.get_weights())

X=np.array([[0.,0.],[0.,1.],[1.,0.],[1.,1.]])

Y=np.array([[0.,1.,1.,0.])

model.fit(X,Y,epochs=1000,batch_size=4)

print(model.get_weights())

print(model.predict(X,batch_size=4))
```

Layer (type)	Output Shape	Param #	
dense (Dense)	(None, 2)	6	
dense_1 (Dense)	(None, 1)	3	
Otal params: 9 rainable params: 9 Ion-trainable params: 0			
[-0.3534118]], dt	169273]], dtype=floa ype=float32), array([0.], dtype=float32)]	dtype=float32), array([[0.05397427],
./1 [racy: 0.5000
poch 2/1000 //1 [===================================			racy: 0.5000
./1 [======		- loss: 0.7210 - accu - loss: 0.7210 - accu	racy: 0.5000
		- loss: 0.7208 - accu - loss: 0.7208 - accu	racy: 0.5000
Cpoch 5/1000		- loss: 0.7206 - accu - loss: 0.7206 - accu	racy: 0.5000
		- loss: 0.7205 - accu	racy: 0.5000
poch 7/1000 ./1 [====================================		- loss: 0.7203 - accu	racy: 0.5000
poch 990/1000 /1 [======		oss: 0.6332 - accuracy: ().7500@###################################
poch 991/1000 ./1 [0.7500
poch 992/1000 ./1 [,7500
poch 993/1000 //1 [,7500
poch 994/1000 //1 (7500
poch 995/1000 /1 (0.7500
poch 996/1000 /1 [0.7500
poch 997/1000 ./1 [0.7500
poch 998/1000 /1 [.7500
poch 999/1000 /1 [2.7500
poch 1000/1000 ./1 [===) - 0s 15ms/step - 1c	oss: 0.6314 - accuracy: 0).7500
array([[-0.19081533, -0.89-	===] - 0s 15ms/step - 10 42301], 08426]], dtype=float32),	oss: 0.6312 - accuracy: 0	.7500 .00045995], dtype=float32), array([[0.05397427],

Implementing deep neural network for performing classification task.

Problem statement: the given dataset comprises of health information about diabetic women patient. we need to create deep feed forward network that will classify women suffering from diabetes mellitus as 1.

```
>>> from numpy import loadtxt
>>> from keras.models import Sequential
>>> from keras.layers import Dense
>>>
>>>
>>> dataset= loadtxt('pima-indians-diabetes.csv', delimiter = ',')
>>> dataset
             , 148.
                      , 72.
array([[ 6.
                              , ...,
                                      0.627, 50.
                                                        1.
            , 85.
                                     0.351,
      [ 1.
                     , 66.
                                              31.
                                                        0.
                              , ...,
                                                             ],
             , 183.
       [ 8.
                     , 64.
                                      0.672,
                                              32.
                                                        1.
                             , ...,
                                                             1,
             , 121. , 72. , ..., 0.245,
      [ 5.
                                              30.
                                                        0.
                                                             1,
            , 126.
                    , 60. , ..., 0.349, 47.
                                                        1.
       [ 1.
                                                             1,
       [ 1.
             , 93. ,
                        70. , ...,
                                     0.315, 23. ,
                                                        0.
                                                             11)
>>> X=dataset[:,0:8]
>>> Y=dataset[:,8]
>>> X
array([[ 6. , 148. , 72. , ..., 33.6 ,
                                               0.627,
                                                       50.
                                                             1,
            , 85.
                    , 66. , ..., 26.6 ,
      [ 1.
                                               0.351,
                                                       31.
                                                             1,
       r 8.
             , 183. ,
                        64.
                              , ..., 23.3 ,
                                               0.672,
                                                       32.
                                                             1,
       [ 5.
            , 121. , 72.
                             , ..., 26.2 ,
                                               0.245,
                                                       30.
                                                             1,
       [ 1. , 126. ,
                         60. , ..., 30.1 ,
                                               0.349,
                                                       47.
                                                             1,
            , 93.
                         70.
                               , ..., 30.4 ,
                                               0.315,
                                                       23.
       [ 1.
                                                             11)
>>> Y
array([1., 0., 1., 0., 1., 0., 1., 0., 1., 1., 0., 1., 0., 1., 1., 1., 1.,
      1., 0., 1., 0., 0., 1., 1., 1., 1., 1., 0., 0., 0., 0., 1., 0., 0.,
      0., 0., 0., 1., 1., 1., 0., 0., 0., 1., 0., 1., 0., 0., 1., 0., 0.,
      0., 0., 1., 0., 0., 1., 0., 0., 0., 1., 0., 0., 1., 0., 1., 0.,
      0., 0., 1., 0., 1., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 1.,
      0., 0., 0., 1., 0., 0., 0., 1., 0., 0., 0., 0., 0., 1., 1., 0.,
      0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 0., 0., 1., 1., 1., 0., 0.,
      0., 1., 0., 0., 0., 1., 1., 0., 0., 1., 1., 1., 1., 1., 0., 0., 0.,
      0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 1.,
      0., 1., 1., 0., 0., 0., 1., 0., 0., 0., 0., 1., 1., 0., 0., 0.,
      1., 1., 0., 0., 0., 1., 0., 1., 0., 1., 0., 0., 0., 0., 0., 1., 1.,
      1., 1., 1., 0., 0., 1., 1., 0., 1., 0., 1., 1., 1., 0., 0., 0., 0.,
      0., 0., 1., 1., 0., 1., 0., 0., 0., 1., 1., 1., 1., 0., 1., 1., 1.,
```

Creating model:

```
>>> model = Sequential()
>>> model.add(Dense(12, input_dim=8, activation='relu'))
>>> model.add(Dense(8, activation='relu'))
>>> model.add(Dense(1,activation='sigmoid'))
>>>
```

Compiling and fitting model:

```
>>> model.compile(loss ='binary crossentropy',optimizer ='adam',metrics =['accuracy'])
>>> model.fit(X,Y,epochs=150,batch_size=10)
777 [===========] - ls 2ms/step - loss: 0.5528 - accuracy: 0.7448
Epoch 2/150
        [.....] - ETA: 0s - loss: 0.2094 - accuracy: 0.9000
6/77 [=======>..........] - ETA: 0s - loss: 0.4719 - accuracy: 0.7808[[[[[[]]]]][[[]]][[[]]][[[]]][[[]]][[[]]][[[]]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[]][[][[]][[]][[]][[]][[]][[]][[]][[]][[]][[][[]][[]][[]][[]][[]][[]][[][[]][[]][[]][[][[]][[]][[]][[]][[][[]][[]][[][[]][[]][[]][[][[]][[]][[]][[]][[][[]][[]][[][[]][[]][[][[]][[]][[]][[][[]][[]][[]][[][[]][[]][[]][[][[]][[]][[][[]][[]][[]][[][[]][[]][[]][[][[]][[]][[]][[]][[][[]][[]][[]][[]][[][[]][[]][[]][[]][[]][[]][[][[]][[]][[]][[]][[]][[][[]][[]][[]][[][[]][[]][[]][[]][[]][[][[]][[]][[][[]][[
                    1/77 [.....] - ETA: 0s - loss: 0.3357 - accuracy: 1.0000
      [======>....] - ETA: 0s - loss: 0.5162 - accuracy: 0.7560
----->.....] - ETA: 0s - loss: 0.4721 - accuracy: 0.7767
  =====>......
======>.....] - ETA: 0s - loss: 0.4779 - accuracy: 0.7714
```

Evaluating the accuracy:

Using model for prediction class:

```
>>> prediction=model.predict(X)
>>> exec("for i in range(5) :print(X[i].tolist(),prediction[i],Y[i])")
[6.0, 148.0, 72.0, 35.0, 0.0, 33.6, 0.627, 50.0] [0.5428344] 1.0
[1.0, 85.0, 66.0, 29.0, 0.0, 26.6, 0.351, 31.0] [0.08321831] 0.0
[8.0, 183.0, 64.0, 0.0, 0.0, 23.3, 0.672, 32.0] [0.8285245] 1.0
[1.0, 89.0, 66.0, 23.0, 94.0, 28.1, 0.167, 21.0] [0.01245207] 0.0
[0.0, 137.0, 40.0, 35.0, 168.0, 43.1, 2.288, 33.0] [0.8305522] 1.0
>>>
```

A] Using deep feed forward network with two hidden layers for performing classification and predicting the class.

```
from keras.models import Sequential
from keras.layers import Dense
from sklearn.datasets import make_blobs
from sklearn.preprocessing import MinMaxScaler
X,Y=make_blobs(n_samples=100,centers=2,n_features=2,random_state=1)
scalar=MinMaxScaler()
scalar.fit(X)
X=scalar.transform(X)
model=Sequential()
model.add(Dense(4,input_dim=2,activation='relu'))
model.add(Dense(4,activation='relu'))
model.add(Dense(1,activation='sigmoid'))
model.compile(loss='binary_crossentropy',optimizer='adam')
model.fit(X,Y,epochs=500)
Xnew, Yreal=make_blobs(n_samples=3,centers=2,n_features=2,random_state=1)
Xnew=scalar.transform(Xnew)
Ynew=model.predict(Xnew)
for i in range(len(Xnew)):
print("X=%s,Predicted=%s,Desired=%s"%(Xnew[i],Ynew[i],Yreal[i]))
Output:
```

File Edit Shell Debug Options Window Help ms/step - loss: 0.0056 Epoch 489/500 1/4 [=====] - 0.8 3 ms/step - loss: 0.0056 Epoch 499/500 1/4 [====] - 0.8 3 ms/step - loss: 0.0056 Epoch 499/500 1/4 [====] - 0.8 3 ms/step - loss: 0.0056 Epoch 499/500 1/4 [====] - 0.8 3 ms/step - loss: 0.0056 Epoch 499/500 1/4 [====] - 0.8 3 ms/step - loss: 0.0055 Epoch 499/500 1/4 [====] - 0.8 3 ms/step - loss: 0.0055 Epoch 499/500 1/4 [====] - 0.8 3 ms/step - loss: 0.0055 Epoch 499/500 1/4 [====] - 0.8 3 ms/step - loss: 0.0055 Epoch 499/500 1/4 [====] - 0.8 3 ms/step - loss: 0.0055 Epoch 499/500 1/4 [====] - 0.8 3 ms/step - loss: 0.0055 Epoch 499/500 1/4 [====] - 0.8 3 ms/step - loss: 0.0055 Epoch 499/500 1/4 [====] - 0.8 3 ms/step - loss: 0.0054 Epoch 499/500 1/4 [====] - 0.8 3 ms/step - loss: 0.0054 Epoch 499/500 1/4 [====] - 0.8 3 ms/step - loss: 0.0054 Epoch 499/500 1/4 [====] - 0.8 3 ms/step - loss: 0.0054 Epoch 499/500 1/4 [====] - 0.8 3 ms/step - loss: 0.0054 Epoch 499/500 1/4 [====] - 0.8 3 ms/step - loss: 0.0054 Epoch 499/500 1/4 [====] - 0.8 3 ms/step - loss: 0.0054 Epoch 499/500 1/4 [===] - 0.8 3 ms/step - loss: 0.0054 Epoch 499/500 1/4 [===] - 0.8 3 ms/step - loss: 0.0054 Epoch 499/500	
ma/step - loss: 0.0056	B IDLE Shell 3.9.1
ma/step - loss: 0.0056	File Edit Shell Debug Ontions Window Help
Epoch 499/500 1/4 [====> 0.056 Epoch 490/500 1/4 [====> 0.056 Epoch 491/500 1/4 [====> 0.056 Epoch 491/500 1/4 [====> 0.056 Epoch 491/500 1/4 [====> 0.055 Epoch 491/500 1/4 [====> 0.0054 Epoch 491/500 1/4 [====> 0.0058 Epoch 491/500 1/4 [=====> 0.0058 Epoch 491/500 1/4 [====> 0.0058 Epoch 491/500 1/4 [====> 0.0058 Epoch 491/500 1/4 [====> 0.0058 Epoch 491/500 1/4 [===== 0.0058 Epoch 491/500 1/4 [==== 0.0058 Epoch 491/500 1/4 [=== 0.0058 Epoch 491/500 1/4 [== 0.0058 Epoch 491/500 1/4 [= 0.0058 Epoch	
1/4 [=====>	
ms/step - loss: 0.0056 Epoch 490/500 1/4 [====>	
Epoch 490/500 1/4 [====>] - 0s 3 ms/step - loss: 0.0056 Epoch 491/500 1/4 [====] - 0s 3 ms/step - loss: 0.0055 Tych 492/500 1/4 [====] - 0s 3 ms/step - loss: 0.0055 Epoch 493/500 1/4 [====] - 0s 3 ms/step - loss: 0.0055 Epoch 493/500 1/4 [====] - 0s 3 ms/step - loss: 0.0055 Epoch 493/500 1/4 [====] - 0s 3 ms/step - loss: 0.0055 Epoch 493/500 1/4 [====] - 0s 3 ms/step - loss: 0.0055 Epoch 493/500 1/4 [====] - 0s 3 ms/step - loss: 0.0056 Epoch 493/500 1/4 [====] - 0s 3 ms/step - loss: 0.0056 Epoch 493/500 1/4 [===] - 0s 3 ms/step - loss: 0.0054 Epoch 495/500 1/4 [===] - 0s 3 ms/step - loss: 0.0054 Epoch 495/500 1/4 [===] - 0s 3 ms/step - loss: 0.0054 Epoch 495/500 1/4 [===] - 0s 3 ms/step - loss: 0.0054 Epoch 495/500 1/4 [===] - 0s 3 ms/step - loss: 0.0054 Epoch 495/500 1/4 [===] - 0s 3 ms/step - loss: 0.0054 Epoch 495/500 1/4 [===] - 0s 3 ms/step - loss: 0.0054 Epoch 497/500 1/4 [===] - 0s 3 ms/step - loss: 0.0053 Epoch 499/500 1/4 [===] - 0s 3 ms/step - loss: 0.0053 Epoch 499/500 1/4 [===] - 0s 3 ms/step - loss: 0.0053 Epoch 499/500 1/4 [===] - 0s 3 ms/step - loss: 0.0053 Epoch 499/500 1/4 [===] - 0s 3 ms/step - loss: 0.0053 Epoch 499/500 1/4 [===] - 0s 3 ms/step - loss: 0.0053 Epoch 499/500 1/4 [===] - 0s 3 ms/step - loss: 0.0053 Epoch 499/500 1/4 [===] - 0s 3 ms/step - loss: 0.0053 Epoch 499/500 1/4 [===] - 0s 3 ms/step - loss: 0.0053 Epoch 499/500 1/4 [===] - 0s 3 ms/step - loss: 0.0053 Epoch 499/500 1/4 [===] - 0s 3 ms/step - loss: 0.0053 Epoch 499/500 1/4 [===] - 0s 3 ms/step - loss: 0.0053 Epoch 499/500 1/4 [===] - 0s 3 ms/step - loss: 0.0053 Epoch 499/500 1/4 [===] - 0s 3 ms/step - loss: 0.0053 Epoch 499/500 1/4 [===] - 0s 3 ms/step - loss: 0.0053 Epoch 499/500 1/4 [===] - 0s 3 ms/step - loss: 0.0053 Epoch 499/500 1/4 [===] - 0s 3 ms/step - loss: 0.0053 Epoch 499/500 1/4 [===] - 0s 3 ms/step - loss: 0.0053 Epoch 499/500 1/4 [===] - 0s 3 ms/step - loss: 0.0053 Epoch 499/500 1/4 [==] - 0s 3 ms/step - loss: 0.0053 Epoch 499/500 1/4 [==] - 0s 3 ms/step - loss: 0.0053 Epoch 499/500 1/4 [=] - 0s 3 ms/step - lo	
1/4 [====>,	
ms/step - loss: 0.0056 Epoch 491/500 1/4 [=====] - 0s 3 ms/step - loss: 0.0055 Epoch 492/500 1/4 [=====] - 0s 3 ms/step - loss: 0.0055 Epoch 492/500 1/4 [=====] - 0s 3 ms/step - loss: 0.0055 Epoch 493/500 1/4 [====] - 0s 3 ms/step - loss: 0.0055 Epoch 493/500 1/4 [====] - 0s 3 ms/step - loss: 0.0055 Epoch 493/500 1/4 [====] - 0s 3 ms/step - loss: 0.0055 Epoch 493/500 1/4 [====] - 0s 3 ms/step - loss: 0.0054 Epoch 493/500 1/4 [====] - 0s 5 ms/step - loss: 0.0054 Epoch 493/500 1/4 [====] - 0s 5 ms/step - loss: 0.0054 Epoch 493/500 1/4 [====] - 0s 3 ms/step - loss: 0.0054 Epoch 493/500 1/4 [====] - 0s 3 ms/step - loss: 0.0054 Epoch 493/500 1/4 [====] - 0s 3 ms/step - loss: 0.0054 Epoch 493/500 1/4 [===] - 0s 3 ms/step - loss: 0.0054 Epoch 493/500 1/4 [===] - 0s 3 ms/step - loss: 0.0058 Epoch 493/500 1/4 [===] - 0s 3 ms/step - loss: 0.0058 Epoch 493/500 1/4 [===] - 0s 3 ms/step - loss: 0.0058 Epoch 493/500 1/4 [===] - 0s 3 ms/step - loss: 0.0058 Epoch 493/500 1/4 [===] - 0s 3 ms/step - loss: 0.0058 Epoch 493/500 1/4 [===] - 0s 3 ms/step - loss: 0.0058 Epoch 493/500 1/4 [===] - 0s 3 ms/step - loss: 0.0058 Epoch 493/500 1/4 [===] - 0s 3 ms/step - loss: 0.0058 Epoch 493/500 1/4 [===] - 0s 3 ms/step - loss: 0.0058 Epoch 493/500 1/4 [===] - 0s 3 ms/step - loss: 0.0058 Epoch 493/500 1/4 [===] - 0s 3 ms/step - loss: 0.0058 Epoch 493/500 1/4 [===] - 0s 3 ms/step - loss: 0.0058 Epoch 493/500 1/4 [===] - 0s 3 ms/step - loss: 0.0058 Epoch 493/500 1/4 [===] - 0s 3 ms/step - loss: 0.0058 Epoch 493/500 1/4 [===] - 0s 3 ms/step - loss: 0.0058 Epoch 493/500 1/4 [===] - 0s 3 ms/step - loss: 0.0058 Epoch 493/500 1/4 [===] - 0s 3 ms/step - loss: 0.0058 Epoch 493/500 1/4 [===] - 0s 3 ms/step - loss: 0.0058 Epoch 493/500 1/4 [===] - 0s 3	
Epoch 491/500 1/4 [=====>	
1/4 [====> - 0.8 3 mm/step - 1.0ss: 0.0055	ms/step - loss: 0.0056
ms/step - loss: 0.0055 Epoch 492/500 1/4 [=====>	Epoch 491/500
Epoch 492/500 1/4 [====>	1/4 [=====>] - ETA: 0s - loss: 0.0055
1/4 [=====>	ms/step - loss: 0.0055
ms/step - loss: 0.0055 Epoch 493/500 1/4 [=====] - 0s 3 ms/step - loss: 0.0055 Epoch 493/500 1/4 [====] - 0s 3 ms/step - loss: 0.0056 Epoch 493/500 1/4 [====] - 0s 5 ms/step - loss: 0.0054 Epoch 495/500 1/4 [====] - 0s 5 ms/step - loss: 0.0054 Epoch 495/500 1/4 [====] - 0s 3 ms/step - loss: 0.0054 Epoch 495/500 1/4 [====] - 0s 3 ms/step - loss: 0.0054 Epoch 495/500 1/4 [====] - 0s 3 ms/step - loss: 0.0054 Epoch 495/500 1/4 [====] - 0s 3 ms/step - loss: 0.0054 Epoch 495/500 1/4 [====] - 0s 3 ms/step - loss: 0.0054 Epoch 495/500 1/4 [====] - 0s 3 ms/step - loss: 0.0058 Epoch 495/500 1/4 [====] - 0s 3 ms/step - loss: 0.0053 Epoch 495/500 1/4 [====] - 0s 3 Epoch 495	Epoch 492/500
Epoch 493/500 1/4 [====>] - 0s 3 ms/step - loss: 0.0055 Epoch 494/500 1/4 [====] - 0s 5 ms/step - loss: 0.0054 Epoch 495/500 1/4 [====] - 0s 5 ms/step - loss: 0.0054 Epoch 495/500 1/4 [====] - 0s 6 ms/step - loss: 0.0054 Epoch 495/500 1/4 [====] - 0s 3 ms/step - loss: 0.0054 Epoch 495/500 1/4 [====] - 0s 3 ms/step - loss: 0.0054 Epoch 495/500 1/4 [====] - 0s 3 ms/step - loss: 0.0054 Epoch 495/500 1/4 [====] - 0s 3 ms/step - loss: 0.0054 Epoch 495/500 1/4 [====] - 0s 3 ms/step - loss: 0.0054 Epoch 495/500 1/4 [====] - 0s 3 ms/step - loss: 0.0054 Epoch 495/500 1/4 [====] - 0s 3 ms/step - loss: 0.0053 Epoch 495/500 1/4 [====] - 0s 3 ms/step - loss: 0.0053 Epoch 495/500 1/4 [====] - 0s 3 ms/step - loss: 0.0053 Epoch 495/500 1/4 [====] - 0s 3 ms/step - loss: 0.0053 Epoch 495/500 1/4 [====] - 0s 3 ms/step - loss: 0.0053 Epoch 495/500 1/4 [====] - 0s 3 ms/step - loss: 0.0053 Epoch 495/500 1/4 [====] - 0s 3 ms/step - loss: 0.0053 Epoch 495/500 1/4 [====] - 0s 3 ms/step - loss: 0.0053 Epoch 495/500 1/4 [====] - 0s 3 ms/step - loss: 0.0053 Epoch 500/500 1/4 [===] - 0s 3 ms/step - loss: 0.0053 Epoch 500/500 1/4 [===] - 0s 3 ms/step - loss: 0.0053 Epoch 500/500 1/4 [===] - 0s 3 ms/step - loss: 0.0053 Epoch 500/500 1/4 [===] - 0s 3 ms/step - loss: 0.0053 Epoch 500/500 1/4 [===] - 0s 3 ms/step - loss: 0.0053 Epoch 500/500 1/4 [===] - 0s 3 ms/step - loss: 0.0053 Epoch 500/500 1/4 [===] - 0s 3 ms/step - loss: 0.0053 Epoch 500/500 1/4 [===] - 0s 3 ms/step - loss: 0.0053 Epoch 500/500 1/4 [===] - 0s 3 ms/step - loss: 0.0053 Epoch 500/500 1/4 [===] - 0s 3 ms/step - loss: 0.0053 Epoch 500/500 1/4 [===] - 0s 3 ms/step - loss: 0.0053 Epoch 500/500 1/4 [===] - 0s 3 ms/step - loss: 0.0053	1/4 [] - ETA: Os - loss: 0.0056
1/4 [=====] - 0s 3 mm/step - 10ss: 0.0055 Epoch 494/500 1/4 [=====] - 0s 5 Epoch 494/500 1/4 [=====] - 0s 5 Epoch 494/500 1/4 [=====] - 0s 5 Epoch 495/500 1/4 [====] - 0s 5 Epoch 495/500 1/4 [====] - 0s 5 Epoch 495/500 1/4 [====] - 0s 3 mm/step - 10ss: 0.0054 Epoch 495/500 1/4 [====] - 0s 3 Epoch 495/500 1/4 [====] -	ms/step - loss: 0.0055
ms/step - loss: 0.0055 Epoch 494/500 1/4 [=====] - 0s 5 ms/step - loss: 0.0054 Epoch 495/500 1/4 [=====] - 0s 5 ms/step - loss: 0.0054 Epoch 495/500 1/4 [====] - 0s 3 ms/step - loss: 0.0054 Epoch 495/500 1/4 [====] - 0s 3 ms/step - loss: 0.0054 Epoch 496/500 1/4 [====] - 0s 3 ms/step - loss: 0.0054 Epoch 496/500 1/4 [====] - 0s 3 ms/step - loss: 0.0054 Epoch 496/500 1/4 [====] - 0s 3 ms/step - loss: 0.0054 Epoch 496/500 1/4 [====] - 0s 3 ms/step - loss: 0.0054 Epoch 496/500 1/4 [====] - 0s 3 ms/step - loss: 0.0053 Epoch 496/500 1/4 [====] - 0s 3 ms/step - loss: 0.0053 Epoch 496/500 1/4 [====] - 0s 3 ms/step - loss: 0.0053 Epoch 496/500 1/4 [====] - 0s 3 ms/step - loss: 0.0053 Epoch 496/500 1/4 [====] - 0s 3 ms/step - loss: 0.0053 Epoch 496/500 1/4 [====] - 0s 3 ms/step - loss: 0.0053 Epoch 496/500 1/4 [====] - 0s 3 ms/step - loss: 0.0053 Epoch 496/500 1/4 [====] - 0s 3 ms/step - loss: 0.0053 Epoch 500/500 1/4 [====] - 0s 3 ms/step - loss: 0.0053 Epoch 500/500 1/4 [====] - 0s 3 ms/step - loss: 0.0053 Epoch 500/500 1/4 [====] - 0s 3 ms/step - loss: 0.0053 Epoch 500/500 1/4 [====] - 0s 3 ms/step - loss: 0.0053 Epoch 500/500 1/4 [====] - 0s 3 ms/step - loss: 0.0053 Epoch 500/500 1/4 [====] - 0s 3 ms/step - loss: 0.0053 Epoch 500/500 1/4 [====] - 0s 3 ms/step - loss: 0.0053 Epoch 500/500 1/4 [====] - 0s 3	Epoch 493/500
Epoch 494/500 1/4 [====>	1/4 [=====>] - ETA: 0s - loss: 0.0045
1/4 [====>	ms/step - loss: 0.0055
mm/step - loss: 0.0054 Epoch 495/500 1/4 [=====>	Epoch 494/500
Epoch 495/500 1/4 [====>] - 0s 3 ms/step - loss: 0.0054 Epoch 496/500 1/4 [====>] - 0s 3 ms/step - loss: 0.0054 Epoch 496/500 1/4 [====>] - 0s 3 ms/step - loss: 0.0054 Epoch 497/500 1/4 [====>] - 0s 3 ms/step - loss: 0.0054 Epoch 497/500 1/4 [====>] - 0s 3 ms/step - loss: 0.0053 Epoch 498/500 1/4 [====>] - 0s 3 ms/step - loss: 0.0053 Epoch 498/500 1/4 [====>] - 0s 3 ms/step - loss: 0.0053 Epoch 498/500 1/4 [====>] - 0s 3 ms/step - loss: 0.0053 Epoch 498/500 1/4 [=====>] - 0s 3 ms/step - loss: 0.0053 Epoch 498/500 1/4 [=====>] - 0s 3 ms/step - loss: 0.0053 Epoch 498/500 1/4 [=====>] - 0s 3 ms/step - loss: 0.0053 Epoch 498/500 1/4 [=====>] - 0s 3 ms/step - loss: 0.0053 Epoch 498/500 1/4 [=====>] - 0s 3 ms/step - loss: 0.0053 Epoch 598/500 1/4 [====>>] - 0s 3 ms/step - loss: 0.0053 Epoch 598/500 1/4 [====>>] - 0s 3 ms/step - loss: 0.0053 Epoch 598/500 1/4 [====>>] - 0s 3 ms/step - loss: 0.0053 Epoch 598/500 1/4 [====>>] - 0s 3 ms/step - loss: 0.0053 Epoch 598/500 1/4 [====>>] - 0s 3 ms/step - loss: 0.0053 Epoch 598/500 1/4 [====>>] - 0s 3 ms/step - loss: 0.0053 Epoch 598/500 1/4 [====>>] - 0s 3 ms/step - loss: 0.0053 Epoch 598/500 1/4 [====>>] - 0s 3 ms/step - loss: 0.0053 Epoch 598/500 1/4 [====>>] - 0s 3 ms/step - loss: 0.0053 Epoch 598/500 1/4 [====>>] - 0s 3 ms/step - loss: 0.0053	1/4 [] - ETA: 0s - loss: 0.0056
1/4 [=====] - 0s 3 ms/step - loss: 0.0054 Epoch 496/500 1/4 [=====] - 0s 3 ms/step - loss: 0.0054 Epoch 496/500 1/4 [=====] - 0s 3 ms/step - loss: 0.0054 Epoch 496/500 1/4 [=====] - 0s 3 ms/step - loss: 0.0054 Epoch 496/500 1/4 [=====] - 0s 3 ms/step - loss: 0.0053 Epoch 496/500 1/4 [=====] - 0s 3 ms/step - loss: 0.0053 Epoch 496/500 1/4 [=====] - 0s 3 Epoch 500/500 Epoch 5	ms/step - loss: 0.0054
ms/step - loss: 0.0054 Epoch 496/500 1/4 [=====] - 0s 3 ms/step - loss: 0.0054 Epoch 497/500 1/4 [=====] - 0s 3 ms/step - loss: 0.0054 Epoch 497/500 1/4 [=====] - 0s 3 ms/step - loss: 0.0053 Epoch 498/500 1/4 [=====] - 0s 3 ms/step - loss: 0.0053 Epoch 498/500 1/4 [=====] - 0s 3 ms/step - loss: 0.0053 Epoch 498/500 1/4 [=====] - 0s 3 ms/step - loss: 0.0053 Epoch 498/500 1/4 [=====] - 0s 3 ms/step - loss: 0.0053 Epoch 498/500 1/4 [=====] - 0s 3 ms/step - loss: 0.0053 Epoch 498/500 1/4 [=====] - 0s 3 ms/step - loss: 0.0053 Epoch 498/500 1/4 [=====] - 0s 3 ms/step - loss: 0.0053 Epoch 500/500 1/4 [=====] - 0s 3 ms/step - loss: 0.0053 Epoch 500/500 1/4 [====] - 0s 3 ms/step - loss: 0.0053 Epoch 500/500 1/4 [====] - 0s 3 ms/step - loss: 0.0053 Epoch 500/500 1/4 [====] - 0s 3 ms/step - loss: 0.0053 Epoch 500/500 1/4 [====] - 0s 3 ms/step - loss: 0.0053 Epoch 500/500 1/4 [====] - 0s 3 ms/step - loss: 0.0053 Epoch 500/500 1/4 [====] - 0s 3 ms/step - loss: 0.0053 Epoch 500/500 1/4 [====] - 0s 3 ms/step - loss: 0.0053 Epoch 500/500 1/4 [====] - 0s 3 ms/step - loss: 0.0053 Epoch 500/500 1/4 [====] - 0s 3 ms/step - loss: 0.0053 Epoch 500/500 1/4 [====] - 0s 3 ms/step - loss: 0.0053 Epoch 500/500 1/4 [====] - 0s 3	Epoch 495/500
Epoch 498/500 1/4 [====>	1/4 [] - ETA: 0s - loss: 0.0047
1/4 [] - 08 3 mm/step - 10ss: 0.0054 Epoch 489/500 1/4 [] - 08 3 mm/step - 10ss: 0.0054 Epoch 489/500 1/4 [] - 08 3 mm/step - 10ss: 0.0053 Epoch 489/500 1/4 [] - 08 3 mm/step - 10ss: 0.0053 Epoch 489/500 1/4 [] - 08 3 mm/step - 10ss: 0.0053 Epoch 489/500 1/4 [] - 08 3 mm/step - 10ss: 0.0053 Epoch 489/500 1/4 [] - 08 3 mm/step - 10ss: 0.0053 Epoch 489/500 1/4 [] - 08 3 mm/step - 10ss: 0.0053 Epoch 489/500 1/4 [] - 08 3 mm/step - 10ss: 0.0053 Epoch 489/500 1/4 [] - 08 3 mm/step - 10ss: 0.0053 Epoch 489/500 1/4 [] - 08 3 mm/step - 10ss: 0.0053 Epoch 500/500 Epoch 500/500 1/4 [] - 08 3 mm/step - 10ss: 0.0053 Epoch 500/500 Epoch 500	ms/step - loss: 0.0054
ms/step - loss: 0.0054 Epoch 497/500 1/4 [] - 0s 3 ms/step - loss: 0.0053 Epoch 498/500 1/4 [] - 0s 3 ms/step - loss: 0.0053 Epoch 498/500 1/4 [] - 0s 3 Epoch 598/500 1/4 [] - 0s 3 Epoch 509/500 Epoch 5	Epoch 496/500
Epoch 497/500 1/4 [====>	1/4 [======>] - ETA: 0s - loss: 0.0061000000000000000000000000000000000
1/4 [=====] - 0s 3 Epoch 498/500 1/4 [=====] - 0s 3 Epoch 508/500 1/4 [=	ms/step - loss: 0.0054
ms/step - loss: 0.0053 Epoch 499/500 1/4 [] - 08 3 ms/step - loss: 0.0053 Epoch 499/500 1/4 [] - 08 3 ms/step - loss: 0.0053 Epoch 499/500 1/4 [] - 08 2 ms/step - loss: 0.0053 Epoch 499/500 1/4 [] - 08 2 ms/step - loss: 0.0053 Epoch 500/500 1/4 [] - 08 2 ms/step - loss: 0.0053 Epoch 500/500 1/4 [] - 08 3 ms/step - loss: 0.0053 Epoch 500/500 1/4 [] - 08 3 ms/step - loss: 0.0053 Epoch 500/500 1/4 [] - 08 3 ms/step - loss: 0.0053 Epoch 500/500 1/4 [] - 08 3 ms/step - loss: 0.0053 Epoch 500/500 1/4 [] - 08 3 ms/step - loss: 0.0053 Epoch 499/500 1/4 [] - 08 3 ms/step - loss: 0.0053 Epoch 499/500 1/4 [] - 08 3 ms/step - loss: 0.0053 Epoch 499/500 1/4 [] - 08 3 ms/step - loss: 0.0053 Epoch 499/500 1/4 [] - 08 3 ms/step - loss: 0.0053 Epoch 499/500 1/4 [] - 08 3 ms/step - loss: 0.0053 Epoch 499/500 1/4 [] - 08 3 ms/step - loss: 0.0053 Epoch 499/500 1/4 [] - 08 2 ms/step - loss: 0.0053 Epoch 499/500 1/4 [] - 08 2 ms/step - loss: 0.0053 Epoch 499/500 1/4 [] - 08 2 ms/step - loss: 0.0053 Epoch 499/500 1/4 [] - 08 2 ms/step - loss: 0.0053 Epoch 499/500 1/4 [Epoch 497/500
Epoch 498/500 1/4 [=====>	1/4 [
Epoch 498/500 1/4 [=====>	ms/step - loss: 0.0053
ms/step - loss: 0.0053 Epoch 499/500 1/4 [=====] - 0s 2 ms/step - loss: 0.0053 Epoch 509/500 1/4 [=====] - 0s 2 ms/step - loss: 0.0053 Epoch 509/500 1/4 [=====] - 0s 3 ms/step - loss: 0.0053 X=[0.89337759 0.65864154], Predicted=[0.01206562], Desired=0 X=[0.29097707 0.12978982], Predicted=[0.01206565], Desired=0 X=[0.29097707 0.12978982], Predicted=[0.001206564], Desired=0	Epoch 498/500
Epoch \$99/500 1/4 [====>>	1/4 [=====>] - ETA: 0s - loss: 0.0050
Epoch \$99/500 1/4 [====>>	ms/step - loss: 0.0053
1/4 [=====] - 0s 2 ms/step - loss: 0.0053 Epoch 500/500 1/4 [=====] - 0s 2 ms/step - loss: 0.0053 1/4 [=====] - 0s 2 ms/step - loss: 0.0053 X=[0.89337759 0.65864154], Predicted=[0.01206562], Desired=0 X=[0.29097707 0.12978982], Predicted=[0.01206565], Desired=0 X=[0.29097707 0.12978982], Predicted=[0.001206566], Desired=0	
ms/step - loss: 0.0053 Epoch 500/500 1/4 [] - ETA: 0s - loss: 0.0052000000000000000000000000000000000	
Epoch 500/500 1/4 [======] - 0s 3 mm/step - loss: 0.0053 X=[0.89337759 0.68864154], Predicted=[0.01206562], Desired=0 X=[0.78093777 0.12978982], Predicted=[0.99513656], Desired=0 X=[0.78092614 0.78391697], Predicted=[0.0091946], Desired=0	
1/4 [=====],	
ms/step - loss: 0.0053 X=[0.89337759 0.65864154],Predicted=[0.01206562],Desired=0 X=[0.78908707 0.12978982],Predicted=[0.99513656],Desired=1 X=[0.78082614 0.75391697],Predicted=[0.00914946],Desired=0	
X=[0.89337759 0.65864154],Predicted=[0.01206562],Desired=0 X=[0.29097707 0.12978982],Predicted=[0.09513656],Desired=1 X=[0.7803614 0.75391697],Predicted=[0.09913946],Desired=0	
X=[0.29097707 0.12978982], Predicted=[0.99513656], Desired=1 X=[0.78082614 0.75391697], Predicted=[0.00914946], Desired=0	
X=[0.78082614 0.75391697],Predicted=[0.00914946],Desired=0	
*** 1	
	*** 1

B] Using a deep field forward network with two hidden layers for performing classification and predicting the probability of class.

Code:

```
from keras.models import Sequential
from keras.layers import Dense
from sklearn.datasets import make_blobs
from sklearn.preprocessing import MinMaxScaler
X,Y=make_blobs(n_samples=100,centers=2,n_features=2,random_state=1)
scalar=MinMaxScaler()
scalar.fit(X)
X = scalar.transform(X)
model=Sequential()
model.add(Dense(4,input_dim=2,activation='relu'))
model.add(Dense(4,activation='relu'))
model.add(Dense(1,activation='sigmoid'))
model.compile(loss='binary_crossentropy',optimizer='adam')
model.fit(X,Y,epochs=500)
Xnew, Yreal=make blobs(n samples=3,centers=2,n features=2,random state=1)
Xnew=scalar.transform(Xnew)
Yclass=model.predict(Xnew)
Ynew=model.predict(Xnew)
for i in range(len(Xnew)):
print("X=%s,Predicted_probability=%s,Predicted_class=%s"%(Xnew[i],Ynew[i],Yclass[i]))
```

```
| By | Cont | 10 | Cont | Cont
```

\boldsymbol{C}] Using a deep field forward network with two hidden layers for performing linear regression and predicting values.

```
from keras.models import Sequential
from keras.layers import Dense
from sklearn.datasets import make_regression
from sklearn.preprocessing import MinMaxScaler
X,Y=make_regression(n_samples=100,n_features=2,noise=0.1,random_state=1)
scalarX,scalarY=MinMaxScaler(),MinMaxScaler()
scalarX.fit(X)
scalarY.fit(Y.reshape(100,1))
X=scalarX.transform(X)
Y=scalarY.transform(Y.reshape(100,1))
model=Sequential()
model.add(Dense(4,input_dim=2,activation='relu'))
model.add(Dense(4,activation='relu'))
model.add(Dense(1,activation='sigmoid'))
model.compile(loss='mse',optimizer='adam')
model.fit(X,Y,epochs=1000,verbose=0)
Xnew,a=make regression(n samples=3,n features=2,noise=0.1,random state=1)
Xnew=scalarX.transform(Xnew)
Ynew=model.predict(Xnew)
for i in range(len(Xnew)):
print("X=%s,Predicted=%s"%(Xnew[i],Ynew[i]))
Output:
X=[0.29466096 0.30317302],Predicted=[0.16992235]
```

```
X=[0.29466096 0.30317302],Predicted=[0.16992235]
X=[0.39445118 0.79390858],Predicted=[0.7379006]
X=[0.02884127 0.6208843 ],Predicted=[0.4013802]
>>> |
```

A | Evaluating feed forward deep network for regression using KFold cross validation.

```
import pandas
from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasClassifier
from keras.utils import np_utils
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
from sklearn.preprocessing import LabelEncoder
from sklearn.pipeline import Pipeline
# load dataset
dataframe = pandas.read_csv("iris.txt", header=None)
dataset = dataframe.values
X = dataset[:,0:4].astype(float)
Y = dataset[:,4]
# encode class values as integers
encoder = LabelEncoder()
encoder.fit(Y)
encoded_Y = encoder.transform(Y)
# convert integers to dummy variables (i.e. one hot encoded)
dummy_y = np_utils.to_categorical(encoded_Y)
# define baseline model
def baseline_model():
       # create model
       model = Sequential()
       model.add(Dense(8, input_dim=4, activation='relu'))
       model.add(Dense(8, input_dim=4, activation='relu'))
       model.add(Dense(8, input_dim=4, activation='relu'))
       model.add(Dense(3, activation='linear'))
```

```
# Compile model
       model.compile(loss='categorical_crossentropy', optimizer='adam',
metrics=['accuracy'])
       return model
estimator = KerasClassifier(build fn=baseline model, epochs=10, batch size=5, verbose=0)
kfold = KFold(n_splits=10, shuffle=True)
results = cross_val_score(estimator, X, dummy_y, cv=kfold)
print("Baseline: %.2f%% (%.2f%%)" % (results.mean()*100, results.std()*100))
Output:
Baseline: 36.00% (13.40%)
B | Evaluating feed forward deep network for multiclass Classification using KFold
cross-validation.
Code:
import pandas
from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasClassifier
from keras.utils import np_utils
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
from sklearn.preprocessing import LabelEncoder
from sklearn.pipeline import Pipeline
# load dataset
dataframe = pandas.read_csv("iris.txt", header=None)
dataset = dataframe.values
X = dataset[:,0:4].astype(float)
Y = dataset[:,4]
# encode class values as integers
encoder = LabelEncoder()
encoder.fit(Y)
encoded_Y = encoder.transform(Y)
# convert integers to dummy variables (i.e. one hot encoded)
```

```
dummy_y = np_utils.to_categorical(encoded_Y)
# define baseline model
def baseline_model():
       # create model
       model = Sequential()
       model.add(Dense(8, input_dim=4, activation='relu'))
       model.add(Dense(8, input_dim=4, activation='relu'))
       model.add(Dense(8, input_dim=4, activation='relu'))
       model.add(Dense(3, activation='sigmoid'))
       # Compile model
       model.compile(loss='categorical_crossentropy', optimizer='adam',
metrics=['accuracy'])
       return model
estimator = KerasClassifier(build_fn=baseline_model, epochs=10, batch_size=5, verbose=0)
kfold = KFold(n_splits=10, shuffle=True)
results = cross_val_score(estimator, X, dummy_y, cv=kfold)
print("Baseline: %.2f%% (%.2f%%)" % (results.mean()*100, results.std()*100))
Output:
```

```
Baseline: 80.67% (12.45%)
```

Implementing regularization to avoid overfitting in binary classification..

Code:

```
from matplotlib import pyplot
from sklearn.datasets import make_moons
from keras.models import Sequential
from keras.layers import Dense
X,Y=make_moons(n_samples=100,noise=0.2,random_state=1)
n_train=30
trainX,testX=X[:n_train,:],X[n_train:]
trainY,testY=Y[:n_train],Y[n_train:]
#print(trainX)
#print(trainY)
#print(testX)
#print(testY)
model=Sequential()
model.add(Dense(500,input dim=2,activation='relu'))
model.add(Dense(1,activation='sigmoid'))
model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy'])
history=model.fit(trainX,trainY,validation_data=(testX,testY),epochs=4000)
pyplot.plot(history.history['accuracy'],label='train')
pyplot.plot(history.history['val_accuracy'],label='test')
pyplot.legend()
pyplot.show()
```


The above code and resultant graph demonstrate overfitting with accuracy of testing data less than accuracy of training data also the accuracy of testing data increases once and then start decreases gradually.to solve this problem we can use regularization.

Hence, we will add two lines in the above code as highlighted below to implement 12 regularization with alpha=0.001

```
from matplotlib import pyplot
from sklearn.datasets import make moons
from keras.models import Sequential
from keras.layers import Dense
from keras.regularizers import 12
X,Y=make moons(n samples=100,noise=0.2,random state=1)
n_train=30
trainX,testX=X[:n_train,:],X[n_train:]
trainY,testY=Y[:n_train],Y[n_train:]
#print(trainX)
#print(trainY)
#print(testX)
#print(testY)
model=Sequential()
model.add(Dense(500,input dim=2,activation='relu',kernel regularizer=12(0.001)))
model.add(Dense(1,activation='sigmoid'))
model.compile(loss='binary crossentropy',optimizer='adam',metrics=['accuracy'])
history=model.fit(trainX,trainY,validation data=(testX,testY),epochs=4000)
pyplot.plot(history.history['accuracy'],label='train')
pyplot.plot(history.history['val_accuracy'],label='test')
pyplot.legend()
pyplot.show()
```

Output:

By replacing 12 regularizer with 11 regularizer at the same learning rate 0.001 we get the following output.

By applying 11 and 12 regularizer we can observe the following changes in accuracy of both training and testing data. The changes in code are also highlighted.

Code:

from matplotlib import pyplot

from sklearn.datasets import make_moons

from keras.models import Sequential

from keras.layers import Dense

from keras.regularizers import l1_l2

```
X,Y=make_moons(n_samples=100,noise=0.2,random_state=1)
n_train=30
trainX,testX=X[:n_train,:],X[n_train:]
trainY,testY=Y[:n_train],Y[n_train:]
#print(trainX)
#print(trainY)
#print(testX)
#print(testY)
model=Sequential()
model.add(Dense(500,input_dim=2,activation='relu',kernel_regularizer=11_12(11=0.001,12=0.
001)))
model.add(Dense(1,activation='sigmoid'))
model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy'])
history=model.fit(trainX,trainY,validation_data=(testX,testY),epochs=4000)
pyplot.plot(history.history['accuracy'],label='train')
pyplot.plot(history.history['val_accuracy'],label='test')
pyplot.legend()
pyplot.show()
```

