JOINT INVENTORS

"EXPRESS MAIL" mailing label No.

EK657815295US.

Date of Deposit: November 2, 2001
I hereby certify that this paper (or fee) is being deposited with the United States Postal Service "EXPRESS MAIL POST OFFICE TO ADDRESSEE" service under 37 CFR §1.10 on the date indicated above and is addressed to: Commissioner for Patents, Washington, D.C.

20231

Richard Zimmermann

APPLICATION FOR UNITED STATES LETTERS PATENT

SPECIFICATION

TO ALL WHOM IT MAY CONCERN:

Be it known that we, Nancy K. Mize a citizen of the United States of America, residing at 662 Mountain View Avenue, Mountain View, 94041, in the State of California and Dana A. Haley-Vicente a citizen of the United States of America, residing at 1430 Glenwood Avenue, San Jose, 95125, in the State of California have invented a new and useful NOVEL INTERLEUKIN-1 HY2 MATERIALS AND METHODS, of which the following is a specification.

10

15

20

25

30

NOVEL INTERLEUKIN - 1 Hy2 MATERIALS AND METHODS

RELATED APPLICATIONS

This patent application claims priority benefit from Untied States Provisional Application No. 60/245,346 filed November 2, 2001, which is herein incorporated by reference in its entirety.

FIELD OF THE INVENTION

The present invention relates to a novel polynucleotide encoding a protein called IL-1 Hy2, which is structurally related to interleukin-1 receptor antagonist protein, along with therapeutic, diagnostic and research utilities for these and related products.

BACKGROUND

Cytokines are involved in inflammation and the immune response, in part through endothelial cell activation. Distinct immune-mediators such as tumor necrosis factor (TNF), interleukin-1 (IL-1), and gamma-interferon (IFN) appear to induce different but partially overlapping patterns of endothelial cell activation including increased procoagulant activity (Bevilaqua (1986) PNAS, 83:4533-4537), PGI and 2 production (Rossi (1985), Science, 229:174-176), HLA antigen expression (Pober (1987) J. Immunol., 138:3319-3324) and lymphocyte adhesion molecules (Carender (1987) J. Immunol., 138:2149-2154). These cytokines are also reported to cause hypotension, vascular hemorrhage, and ischemia (Goldblum et al. 1989, Tracey et al. Science 234:470, 1986). A major toxicity of these and other biological response modifiers is hypotension and vascular leakage (Dvorak (1989) J.N.C.I., 81:497-502).

IL-1 is produced by a number of cell types, including monocyte and macrophages, Langerhans cells, natural killer cells, B cells, T cell leukemic cell lines, neutrophils, endothelial cells, dendritic cells, melanoma cell lines, mesangial cells, astrocytes, glioma cells, microglial cells, fibroblasts and epithelial cells. Two forms of IL-1 have been isolated; IL-1α and IL-1β. They represent the products of two distinct genes and their mature forms are 159 and 153 amino acid proteins, respectively. These molecules are extremely potent and multi-functional cell activators, with a spectrum that encompasses

THE RESERVE OF THE PERSON OF T

10

15

20

cells of hematopoietic origin, from immature precursors to differentiated leukocytes, vessel wall elements, and cells of mesenchymal, nervous and epithelial origin. IL-1 also induces production of secondary cytokines, including IL-6, colony stimulating factors (CSFs) and chemokines. 1L-1 is active as a hematopoietic growth and differentiation factor; activates endothelial cells in a pro-inflammatory and pro-thrombotic manner (including by inducing production of tissue factor and platelet activating factor); stimulates the release of corticotropin-releasing hormone (CRH) that ultimately causes release of corticosteroids by the adrenals; mediates the acute phase response (including by inducing hepatocyte production of acute phase proteins) and is a central mediator of local and systemic inflammatory reactions that can lead to sepsis and septic shock; is the primary endogenous pyrogen (causing fever); induces slow-wave sleep and anorexia; may play a role in destructive joint and bone diseases (including by inducing production of collagenase by synovial cells and metalloproteinases by chondrocytes); stimulates fibroblast proliferation and collagen synthesis; and may play a role in the pathogenesis of insulin-dependent type I diabetes through its toxicity for insulin-producing beta cells in Langerhans islets.

The IL-1 pathway consists of the two agonists IL-1α and IL-1β, a specific activation system (IL-1 converting enzyme), a receptor antagonist (IL-1Ra) produced in different isoforms and two high affinity receptors. IL-1α and IL-1β bind to two distinct IL-1 receptor types, IL-1 receptor type I (IL-1RI) and IL-1 receptor type II (IL-1RII), both of which are members of the immunoglobulin superfamily of receptors. Both types of receptors are usually coexpressed, although type I is the predominant form in fibroblasts and T cells, while type II is preferentially expressed on B cells, monocytes and neutrophils. IL-1RI and IL-1RII have different affinities for the three ligands of the IL-1 family (IL-1α, IL-1β and IL-1Ra). In particular, IL-1Ra binds to the type I receptor with an affinity similar to that of IL-1α, while IL-1Ra binds to the type II receptor 100-fold less efficiently than the type I receptor. There is evidence indicating that IL-1 induced activities are mediated exclusively via the type I receptor, whereas the type II receptor has no signaling activity and inhibits IL-1 activities by acting as a decoy for IL-1.

IL-1 receptor antagonist (IL-1Ra or IRAP) binds to the IL-1 receptor with affinity similar to that of IL-1 but has no IL-1-like activity, even at very high concentrations, and thus inhibits (antagonizes) the activity of IL-1. The purified IL-1Ra molecule has a

30

molecular weight of approximately 22 kD and is believed to be glycosylated. It has limited sequence similarity to $1L-1\alpha$ and $1L-1\beta$ at the amino acid level (19% and 26%, respectively). There appear to be at least two isoforms of 1L-1Ra, including a soluble form and an intracellular form generated by an alternative splicing event. 1L-1Ra appears to be produced by monocytes, macrophages, neutrophils and fibroblasts; keratinocytes and cells of epithelial origin produce almost exclusively the intracellular form. In humans, the gene for 1L-1Ra has been localized to the long arm of chromosome 2, which is the same region where $1L-1\alpha$ and $1L-1\beta$, as well as 1L-1R1 and 1L-1R1, are found.

The ability of IL-1 to modify biological responses has been demonstrated in a variety of studies. For example, the administration of IL-1 to rabbits (Wakabayashi et al., FASEB J 1991;5:338; Okusawa et al. J Clin Invest 1988;81:1162; Ohlsson et al., Nature 1990;348:550; Aiura, et al. Cytokine 1991;4:498) and primates (Fischer et al. Am J Physiol 1991;261:R442) has been shown to result in hypotension, tachycardia, lung edema, renal failure, and, eventually, death, depending on the dose. When the serum from the IL-1 treated animals is examined, the elevation of other cytokines is evident, mimicking the levels seen in acute pancreatitis in humans. (Guice et al., J Surg Res 1991;51:495-499; Heath et al., Pancreas 1993;66:41-45) There is a large body of evidence currently available which supports the role of IL-1 as a major mediator of the systemic response to diseases such as sepsis and pancreatitis and as an activator of the remaining members of the cytokine cascade. (Dinarello et al., Arch Surg 1992;127:1350-1353).

IL-1 is a key mediator in the inflammatory response (for reviews, see Dinarello (1991) Blood 77: 1627-1652; Dinarello et al. (1993) New England J. Med. 328:106-113; Dinarello (1994) FASEB J. 8:1314-1325). The importance of IL-1 in inflammation has been demonstrated by the ability of the highly specific IL-1 receptor antagonist protein to relieve inflammatory conditions (for review, see Dinarello (1991) Blood 77: 1627-1652; Dinarello et al. (1993) New England J. Med. 328:106-113; Dinarello (1994) FASEB J. 8:1314-1325; Dinarello (1993) Immunol. Today 14:260-264). Many of the proinflammatory effects of IL-1, such as the upregulation of cell adhesion molecules on vascular endothelia, are exerted at the level of transcriptional regulation. The transcriptional activation by IL-1 of cell adhesion molecules and other genes involved in the inflammatory response appears to be mediated largely by NF- kappa B (Shirakawa et al. (1989) Mole. Cell Biol. 9:2424-2430; Osborn et al., (1989) Proc. Natl. Acad. Sci. USA

10

15

20

25

30

86:2336-2340; Krasnow et al., (1991) Cytokine 3:372-379; Collins et al., (1993) Trends Cardiovasc. Med. 3:92-97). In response to IL-1, the NF- kappa B inhibitory factor I kappa B is degraded and NF- kappa B is released from its inactive cytoplasmic state to localize within the nucleus where it binds DNA and activates transcription (Liou et al. (1993) Curr. Opin. Cell Biol. 5:477-487; Beg et al., (1993) Mol. Cell. Bid. 13:3301-3310).

IL-1 is also a mediator of septic shock. Septic shock, a life-threatening complication of bacterial infections, affects 150,000 to 300,000 patients annually in the United States (Parrillo, J. E. (1989), Septic Shock in Humans: Clinical Evaluation, Pathogenesis, and Therapeutic Approach (2nd ed.) In: Textbook of Critical Care Shoemaker, et al., editors, Saunders Publishing Co., Philadelphia, Pa., pp. 1006). The cardiovascular collapse and multiple metabolic derangements associated with septic shock are due largely to bacterial endotoxin (ET), which has been shown to elicit a septic shock-like condition when administered to animals (Natanson, et al. (1989), Endotoxin and Tumor Necrosis Factor Challenges in Dogs Simulate the Cardiovascular Profile of Human Septic Shock, J. Exp. Med. 169:823). Thus, there is a great need for modulators of IL-1 which may be useful for modulating inflammation and the immune response.

SUMMARY OF THE INVENTION

The compositions of the present invention include novel isolated polypeptides, in particular, novel human Interleukin-1 Hy2 (IL-1 Hy2) proteins and active variants thereof, isolated polynucleotides encoding such polypeptides, including recombinant DNA molecules, cloned genes or degenerate variants thereof, especially naturally occurring variants such as allelic variants, antisense polynucleotide molecules, and antibodies that specifically recognize one or more epitopes present on such polypeptides, as well as hybridomas producing such antibodies.

The compositions of the present invention additionally include vectors, including expression vectors, containing the polynucleotides of the invention, cells genetically engineered to contain such polynucleotides and cells genetically engineered to express such polynucleotides.

The polynucleotides of the invention include naturally occurring or wholly or partially synthetic DNA, e.g., cDNA and genomic DNA, and RNA, e.g., mRNA. The

10

15

20

25

30

isolated polynucleotides of the invention include, but are not limited to, a polynucleotide encoding a polypeptide comprising the amino acid sequence of SEQ ID NOS: 2, 4 or 13. The isolated polynucleotides of the invention further include, but are not limited to, a polynucleotide comprising the nucleotide sequence of SEQ ID NOS: 1, 12 or 14; a polynucleotide comprising the full length protein coding sequence of SEQ ID NOS: 1, 12 or 14; and a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of SEQ ID NOS: 1, 12 or 14. The polynucleotides of the present invention also include, but are not limited to, polynucleotides that encode polypeptides with IL-1 Hy2 activity and that hybridize under stringent hybridization conditions to the complement of (a) the nucleotide sequence of SEQ ID NOS: 1, 12 or 14, or (b) a nucleotide sequence encoding the amino acid sequence of SEQ ID 2, 4 or 13; a polynucleotide which is an allelic variant of any polynucleotide recited above; a polynucleotide which encodes a species homologue of any of the proteins recited above; or a polynucleotide that encodes a polypeptide comprising a specific domain or truncation of the polypeptide having an amino acid sequence of SEQ ID NOS: 2, 4 or 13.

The polynucleotides of the present invention still further include, but are not limited to, a polynucleotide comprising the nucleotide sequence of the cDNA insert of clone pIL-1Hy2 deposited on May 21, 1999 under Accession No. PTA-96 with the American Type Culture Collection (ATCC; 10801 University Blvd., Manassas, Virginia, 20110-2209, U.S.A.) or an IL-1 Hy2 protein coding portion thereof, such as the full length protein coding sequence or the mature protein coding sequence.

The polynucleotides of the invention additionally include the complement of any of the polynucleotides recited above.

A collection as used in this application can be a collection of only one polynucleotide. The collection of sequence information or identifying information of each sequence can be provided on a nucleic acid array. In one embodiment, segments of sequence information are provided on a nucleic acid array to detect the polynucleotide that contains the segment. The array can be designed to detect nucleic acids that are perfectly complementary (full-match) or mismatched to the polynucleotide that contains the segment. The collection can also be provided in a computer-readable format.

The isolated polypeptides of the invention include, but are not limited to, a polypeptide comprising the amino acid sequence of SEQ ID NOS: 2, 4 or 13, or the

10

15

20

25

amino acid sequence encoded by the cDNA insert of clone pIL-1Hy2, or a portion thereof corresponding to the full length or mature protein. Polypeptides of the invention also include polypeptides with IL-1 Hy2 activity that are encoded by (a) polynucleotides encoding SEQ ID NOS: 2 or 13 (b) polynucleotides that hybridize to the complement of the polynucleotides of (a) under stringent hybridization conditions. Biologically or immunologically active variants of the IL-1Ra protein sequence of SEQ ID NOS: 2, 4 or 13 and "substantial equivalents" thereof (e.g., with 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98% or 99% amino acid identity) that retain IL-1 Hy2 activity, preferably IL-1 antagonist activity, are also contemplated. The polypeptides of the invention may be wholly or partially chemically synthesized but are preferably produced by recombinant means using the genetically engineered cells (e.g. host cells) of the invention.

Protein compositions of the present invention may further comprise an acceptable carrier, such as a hydrophilic, e.g., pharmaceutically acceptable, carrier.

The invention also relates to methods for producing polypeptides of the invention comprising growing a culture of the cells of the invention in a suitable culture medium under conditions permitting expression of the desired polypeptide, and purifying the protein from the cells or the culture medium. Preferred embodiments include those in which the protein produced by such process is a mature form of the protein.

Polynucleotides according to the invention have numerous applications in a variety of techniques known to those skilled in the art of molecular biology. These techniques include use as hybridization probes, use as oligomers for PCR, use for chromosome and gene mapping, use in the recombinant production of protein, and use in generation of anti-sense DNA or RNA, their chemical analogs and the like. For example, when the expression of an mRNA is largely restricted to a particular cell or tissue type, polynucleotides of the invention can be used as hybridization probes to detect the presence of the particular cell or tissue mRNA in a sample using, e.g., in situ hybridization.

In other exemplary embodiments, the polynucleotides are used in diagnostics as expressed sequence tags for identifying expressed genes or, as well known in the art and exemplified by Vollrath et al., Science 258:52-59 (1992), as expressed sequence tags for physical mapping of the human genome.

10

15

20

25

30

The polypeptides according to the invention can be used in a variety of conventional procedures and methods that are currently applied to other proteins. For example, a polypeptide of the invention can be used to generate an antibody that specifically binds the polypeptide. The polypeptides of the invention can also be used as molecular weight markers, and as a food supplement. Transgenic animals with altered expression of the polypeptides of the invention (i.e. knock out animals or animals overexpressing IL-1 Hy2) are also contemplated.

Methods are also provided for preventing, treating or ameliorating a medical condition which comprises administering to a mammalian subject a therapeutically effective amount of a composition comprising a protein of the present invention and a pharmaceutically acceptable carrier.

In particular, the polypeptides and polynucleotides of the invention can be utilized, for example, as part of methods for the prevention and/or treatment of IL-1, IL-18 and/or IL-12 mediated disorders including disorders involving sepsis (and associated conditions such as fever, tachycardia, tachypnea, cytokine overstimulation, increased vascular permeability, hypotension, complement activation, disseminated intravascular coagulation, anemia, thrombocytopenia, leukopenia, pulmonary edema, adult respiratory distress syndrome, intestinal ischemia, renal insufficiency and failure, metabolic acidosis and multiorgan dysfunction syndrome), endotoxic shock, cytokine induced shock, thrombosis, acute pancreatitis, rheumatoid or reactive arthritis, chronic inflammatory arthitis, vasculitis, lupus, immune complex glomerulonephritis, pancreatic cell damage from diabetes mellitus type 1, allograft and xenograft transplantation, graft versus host disease, inflammatory bowel disease, inflamation associated with pulmonary disease, other autoimmune disease or inflammatory disease, an antiproliferative agent such as for acute or chronic myelogenous leukemia, ovarian carcinoma, or in the prevention of premature labor secondary to intrauterine infections, bone degenerative diseases such as osteoporosis, and neurodegenerative disorders such as Alzheimer disease.

Concurrent administration of other agents that inhibit the production or activity of IL-1 (such as GM-CSF, IL-4, IL-10, IL-13 and transforming growth factor-beta) or other anti-inflammatory agents (such as IL-1Ra, IL-1Ra-like IL-1Hy1 proteins described in co-owned, co-pending U.S. application serial no. 09/287,210 filed April 5, 1999,

incorporated herein by reference, anti-TNF, corticosteroids, immunosuppressive agents) is also contemplated according to the invention.

The methods of the present invention further relate to methods for detecting the presence of the polynucleotides or polypeptides of the invention in a sample. Such methods can, for example, be utilized as part of prognostic and diagnostic evaluation of disorders as recited above and for the identification of subjects exhibiting a predisposition to such conditions. Furthermore, the invention provides methods for evaluating the efficacy of drugs, and monitoring the progress of patients, involved in clinical trials for the treatment of disorders as recited above.

The invention also provides methods for the identification of compounds that modulate (i.e., increase or decrease) the expression or activity of the polynucleotides and/or polypeptides of the invention. Such methods can be utilized, for example, for the identification of compounds that can ameliorate symptoms of disorders as recited above. Such methods can include, but are not limited to, assays for identifying compounds and other substances that interact with (e.g., bind to) the polypeptides of the invention.

The methods of the invention also include methods for the treatment of disorders as recited above which may involve the administration of such compounds to individuals exhibiting symptoms or tendencies related to disorders as recited above. In addition, the invention encompasses methods for treating diseases or disorders as recited above by administering compounds and other substances that modulate the overall activity of the target gene products. Compounds and other substances can effect such modulation either on the level of target gene expression or target protein activity.

The invention further provides a method of treating an inflammatory disease state mediated by IL-18 comprising administering to a subject in need thereof an amount of an IL-1 Hy2 polynucleotide, polypeptide or agonist effective to inhibit IL-18 activity. Also provided are in vitro and in vivo methods of inhibiting IL-18 activity.

Three-dimensional modeling data has suggested that the predicted three-dimensional structure of IL-1 Hy2 closely resembles the three-dimensional structure of IL-1 β . This data indicates that IL-1 Hy2 may function as a low affinity agonist to the IL-1 receptor in the absence of accessory protein. Therefore, IL-1 Hy2 may induce proinflammatory physiological effects similar to IL-1 β and plays a role in enhancing inflammation related pathological conditions. On the other hand, experimental results

10

5

15

20

25

indicate that IL-1 Hy2 is an antagonist of the IL-1 receptor and this is supported by the presence of Lys145 which is an important residue for biological activity.

The invention provides for antagonists, agonists and modulators of IL-1 Hy2, such as antibodies, antisense oligonucleotides, small molecules, peptides and derivatives thereof which reduce IL-1 Hy2 binding interactions with or activation of the IL-1 receptor. The invention also provides for methods of screening for antagonists and modulators of IL-1 Hy2 and methods of treating pathological conditions associated with inflammation by administering IL-1 Hy2 antagonists or modulators thereof.

The predicted three-dimensional structure of IL-1 Hy2 recited herein provides a basis for rationally designing IL-1 Hy2 modulators (such as antagonists and agonists) which specifically associate with the amino acids predicted to interact with a receptor such as IL-1 receptor. Such residues include Met 6, Arg 8, Lys13, Gln17, Asp31, Val33, Pro46, Val55,Gly92, Gly93, Gln103, Ser105, Tyr147 and other amino acids of SEQ ID NO: 2 within about 2-12 Å, preferably within 7 Å, and more preferably within 5 Å, that may interact with these amino acids and/or contribute to the three-dimensional conformation of the receptor binding residues. In addition, the predicted three-dimensional structure will allow for the creation of IL-1 Hy2 polypeptide mutants that have similar, increased, decreased or different biological activity compared to wild type IL-1Hy2.

Therefore, the invention provides for a polypeptide comprising an amino acid sequence comprising two or more receptor binding residues substantially defined by structural coordinates of amino acids Met 6, Arg 8, Lys13, Gln17, Asp31, Val33, Pro46, Val55, Gly92, Gly93, Gln103, Ser105 and Tyr147 of SEQ ID NO: 2 as set forth in Tables II or III, and said polypeptide capable of binding IL-1 receptor. These polypeptides include those which have a root mean squared deviation from the structural coordinates set forth in Tables II or III within 2-12 Å, preferably within 7 Å, or more preferably within 5 Å, those which have an basic residue at the position corresponding to 145 of SEQ ID NO: 2, such as arginine, lysine, and histidine. These polypeptides also include those taht are less than 95% identical, more preferably less than 85% identical over the entire length of S ID NO: 2. The invention also provides for polypeptides that comprises two or more receptor binding residues substantially defined by structural coordinates of amino acids Met 6, Arg 8, Lys13, Gln17, Asp31, Val33, Pro46, Val55,Gly92, Gly93, Gln103, Ser105

and Tyr147 of SEQ ID NO: 2 as set forth in Tables II or III, and said polypeptide capable of binding IL-1 receptor but the portion outside of the IL-1 receptor binding region has a three-dimensional conformation substantially different from that of IL-1 Hy2 of SEQ ID NO: 2. The invention also provides for a method of treating a pathological condition, such as psoriasis, characterized by aberrant expression or activity of IL-1 receptor comprising administering to a patient a therapeutically effective amount any one of these polypeptides.

The invention further provides for an IL-1 Hy2 polypeptide variant comprising at least one modification wherein an amino acid residue selected from the group consisting of Met 6, Arg 8, Lys13, Gln17, Asp31, Val33, Pro46, Val55,Gly92, Gly93, Gln103, SerI05, LysI45 and Tyr147 is replaced with a different amino acid, and wherein said IL-1 Hy2 polypeptide variant exhibits increased or deceased binding to IL-1 receptor compared to IL-1 Hy2 of SEQ ID NO: 2. The modification contemplates replacing at least one amino acid with a conservative substitution.

Another embodiment of this invention provides a machine-readable storage medium comprising a data storage material encoded with machine readable data which, when using a machine programmed with instructions for using said data, is capable of displaying a graphical three-dimensional structure corresponding to IL-Hy1 (including IL-I Hy2 variants), particularly as defined herein with reference to receptor binding residues, accessory protein binding residues and other residues important to IL-1 Hy2 biological function. For example, the machine readable storage medium includes a three-dimensional representation which is substantially defined by the structural coordinates of amino acids Met 6, Arg 8, Lys13, Gln17, Asp31, Val33, Pro46, Val55,Gly92, Gly93, Gln103, Ser105, Lys145 and Tyr147 of SEQ ID NO: 2 as set forth in Tables II or III.

The invention provides for a computer comprising memory containing the three-dimensional representation of IL-1 Hy2 or a portion of IL-1 Hy2 that includes the IL-1 receptor binding regions of IL-1 Hy2. These computers include those comprising memory of a three-dimensional representation that is substantially defined by structural coordinates of IL-1 Hy2 amino acids Met 6, Arg 8, Lys13, Gln17, Asp31, Val33, Pro46, Val55,Gly92, Gly93, Gln103, Ser105 and Tyr147 of SEQ ID NO: 2 as set forth in Tables II or III or those wherein the IL-1 receptor binding region has a root mean square deviation from the structural coordinates set forth in Tables II or III of amino acids Met 6,

10

15

20

25

30

Arg 8, Lys13, Gln17, Asp31, Val33, Pro46, Val55, Gly92, Gly93, Gln103, Ser105 and Tyr147 within 2-12 Å, preferably within 7 Å, or more preferably within 5 Å. The invention also provides for a computer comprising a computer readable storage medium, which is a data storage material coded with machine readable data, wherein said data includes the three-dimensional representation of IL-1 Hy2 or a portion of IL-1 Hy2 that includes the IL-1 receptor binding regions of IL-1 Hy2 described herein.

Another embodiment of the invention provides for methods of identifying potential modulators of IL-1 Hy2 biological activity using a three-dimensional structure of IL-1 Hy2 substantially defined by the structural coordinates of two or more IL-1 Hy2 (SEQ ID NO: 2) amino acids Met 6, Arg 8, Lys13, Gln17, Asp31, Val33, Pro46, Val55, Gly92, Gly93, Gln103, Ser105 and Tyr147 as set forth in Tables II or III to design or select potential modulators and contacting said modulators with IL-1 Hy2 in the presence of IL-1 receptor to test the ability of said potential modulator to modulate the interaction between IL-1 Hy2 and IL-1 receptor. These methods include selecting modulators using a computer for interaction with the three-dimensional structure of IL-1 Hy2. These methods also include contacting said potential modulator with an IL-1 Hy2 mutant, which exhibits reduced binding to IL-1 receptor compared to wild type IL-1 Hy2 (SEQ ID NO: 2), to test the ability of the modulator to modulate the interaction between the IL-1 Hy2 mutant and IL-1 receptor. These methods will includes the use of mutants which comprise at least one modification wherein an amino acid residue selected from the group consisting of Met 6, Arg 8, Lys13, Gln17, Asp31, Val33, Pro46, Val55, Gly92, Gly93, Gln103, Ser105 and Tyr147 is replaced with a different amino acid, and wherein said IL-1 Hy2 polypeptide variant exhibits decreased binding to IL-1 receptor compared to IL-1 Hy2 of SEQ ID NO: 2.

The invention provides for methods of treating pathological condition characterized by aberrant expression or activity of IL-1 Hy2, comprising administering to a patient a therapeutically effective amount of a non-peptidyl compound that is a biological modulator of IL-1 Hy2 interaction with IL-1 receptor, said compound containing one or more moieties that mimic one or more of the IL-1 Hy2 amino acids of SEQ ID NO: 2 selected from the group consisting of Met 6, Arg 8, Lys13, Gln17, Asp31, Val33, Pro46, Val55, Gly92, Gly93, Gln103, Ser105, Lys145 and Tyr147 and as set forth in Tables II or III.

10

15

20

25

30

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A-1B show an alignment of the amino acid sequence of IL-1 Hy2 (SEQ ID NO. 2) with the sequences of IL-1Hy1 (described in co-owned, co-pending U.S. Serial No. 09/287,210 filed April 5, 1999), rat IL-1Ra, pig IL-1Ra, secreted human IL-1Ra (Hu sIL-1Ra) and intracellular human IL-1Ra (Hu icIL-1Ra), SEQ ID NOS: 5-9, respectively. In these figures, A- Alanine; R- Arginine; N- Asparagine; D- Aspartic Acid; C- Cysteine; E- Glutamic Acid; Q- Glutamine; G- Glycine; H- Histidine; I- Isoleucine; L- Leucine; K- Lysine; M- Methionine; F- Phenylalanine; P- Proline; S- Serine; T- Threonine; W- Tryptophan; Y- Tyrosine; V- Valine; X - any of the twenty amino acids. Gaps are presented as dashes. Amino acid numbers for all sequences are labelled accordingly. Boxed residues indicate consensus or conserved sequence.

FIG. 2 sets forth SEQ ID NO: 12 which represents the predicted cDNA sequence based on the human genomic sequence of IL-1 Hy2.

FIG. 3 sets forth SEQ ID NO: 13 which represents the human amino acid sequence encoded by the longer open reading frame of SEQ ID NO: 12 which is an alternative form of the IL-1 Hy2 polypeptide.

FIG. 4 sets forth SEQ ID NO: 14 which represents the cDNA sequence of human IL-1 Hy2 clones which extends the 5' region of SEQ ID NO: 1.

FIG.5 shows ribbon diagrams of the IL-1 Hy2 predicted three-dimensional structural model superimposed with the IL-1 Ra (top panel) average NMR structure and IL-1 β (low panel) crystal structure. This figure demonstrates that IL-1 Hy2 is more structurally similar to IL-1 β than IL-1 Ra.

FIG.6 shows the alignment based on secondary structure of the amino acid sequences of IL-1 Ra and IL-1 Hy2 and indicates the residues involved in receptor interaction and critical function. An amino acid symbol between the two sequences indicates identity and "+" indicates similarity. The amino acids in bold are within the receptor binding region. A critical function amino acid is underlined. The arrows indicate the location of the β-strands within the three-dimensional structure.

FIG. 7 shows the alignment based on secondary structure of the amino acid sequences of IL-1 β and IL-1 Hy2 and indicates the residues involved in receptor interaction and function. An amino acid symbol between the two sequences indicates identity and "+" indicates similarity. The amino acids in bold are within the receptor

15

20

binding region. A critical function amino acid is underlined. The arrows indicate the location of the β -strands within the three-dimensional structure.

DETAILED DESCRIPTION OF THE INVENTION

5 1. **DEFINITIONS**

The term "nucleotide sequence" refers to a heteropolymer of nucleotides or the sequence of these nucleotides. The terms "nucleic acid" and "polynucleotide" are also used interchangeably herein to refer to a heteropolymer of nucleotides. Generally, nucleic acid segments provided by this invention may be assembled from fragments of the genome and short oligonucleotide linkers, or from a series of oligonucleotides, or from individual nucleotides, to provide a synthetic nucleic acid which is capable of being expressed in a recombinant transcriptional unit comprising regulatory elements derived from a microbial or viral operon, or a eukaryotic gene.

The terms "oligonucleotide fragment" or a "polynucleotide fragment", "portion," or "segment" is a stretch of polypeptide nucleotide residues which is long enough to use in polymerase chain reaction (PCR) or various hybridization procedures to identify or amplify identical or related parts of mRNA or DNA molecules.

The terms "oligonucleotides" or "nucleic acid probes" are prepared based on the polynucleotide sequences provided in the present invention. Oligonucleotides comprise portions of such a polynucleotide sequence having at least about 15 nucleotides and usually at least about 20 nucleotides. Nucleic acid probes comprise portions of such a polynucleotide sequence having fewer nucleotides than about 6 kb, usually fewer than about 1 kb. After appropriate testing to eliminate false positives, these probes may, for example, be used to determine whether specific mRNA molecules are present in a cell or tissue or to isolate similar nucleic acid sequences from chromosomal DNA as described by Walsh et al. (Walsh, P.S. et al., 1992, PCR Methods Appl 1:241-250).

The term "probes" includes naturally occurring or recombinant or chemically synthesized single- or double-stranded nucleic acids. They may be labeled by nick translation, Klenow fill-in reaction, PCR or other methods well known in the art. Probes of the present invention, their preparation and/or labeling are elaborated in Sambrook, J. et al., 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory,

30

NY; or Ausubel, F.M. et al., 1989, Current Protocols in Molecular Biology, John Wiley & Sons, New York NY, both of which are incorporated herein by reference in their entirety.

The term "stringent" is used to refer to conditions that are commonly understood in the art as stringent. Stringent conditions can include highly stringent conditions (i.e., hybridization to filter-bound DNA under in 0.5 M NaHPO₄, 7% sodium dodecyl sulfate (SDS), 1 mM EDTA at 65°C, and washing in 0.1xSSC/0.1% SDS at 68°C), and moderately stringent conditions (i.e., washing in 0.2xSSC/0.1% SDS at 42°C).

In instances wherein hybridization of deoxyoligonucleotides is concerned, additional exemplary stringent hybridization conditions include washing in 6xSSC/0.05% sodium pyrophosphate at 37°C (for 14-base oligos), 48°C (for 17-base oligos), 55°C (for 20-base oligos), and 60°C (for 23-base oligos).

The term "recombinant," when used herein to refer to a polypeptide or protein, means that a polypeptide or protein is derived from recombinant (e.g., microbial or mammalian) expression systems. "Microbial" refers to recombinant polypeptides or proteins made in bacterial or fungal (e.g., yeast) expression systems. As a product, "recombinant microbial" defines a polypeptide or protein essentially free of native endogenous substances and unaccompanied by associated native glycosylation. Polypeptides or proteins expressed in most bacterial cultures, e.g., *E. coli*, will be free of glycosylation modifications; polypeptides or proteins expressed in yeast will have a glycosylation pattern in general different from those expressed in mammalian cells.

The term "recombinant expression vehicle or vector" refers to a plasmid or phage or virus or vector, for expressing a polypeptide from a DNA (RNA) sequence. An expression vehicle can comprise a transcriptional unit comprising an assembly of (1) a genetic element or elements having a regulatory role in gene expression, for example, promoters or enhancers, (2) a structural or coding sequence which is transcribed into mRNA and translated into protein, and (3) appropriate transcription initiation and termination sequences. Structural units intended for use in yeast or eukaryotic expression systems preferably include a leader sequence enabling extracellular secretion of translated protein by a host cell. Alternatively, where recombinant protein is expressed without a leader or transport sequence, it may include an N-terminal methionine residue. This residue may or may not be subsequently cleaved from the expressed recombinant protein to provide a final product.

20

25

30

5

10

The term "recombinant expression system" means host cells which have stably integrated a recombinant transcriptional unit into chromosomal DNA or carry the recombinant transcriptional unit extrachromosomally. Recombinant expression systems as defined herein will express heterologous polypeptides or proteins upon induction of the regulatory elements linked to the DNA segment or synthetic gene to be expressed. This term also means host cells which have stably integrated a recombinant genetic element or elements having a regulatory role in gene expression, for example, promoters or enhancers. Recombinant expression systems as defined herein will express polypeptides or proteins endogenous to the cell upon induction of the regulatory elements linked to the endogenous DNA segment or gene to be expressed. The cells can be prokaryotic or eukaryotic.

The term "open reading frame," ORF, means a series of nucleotide triplets coding for amino acids without any termination codons and is a sequence translatable into protein.

The term "expression modulating fragment," EMF, means a series of nucleotides which modulates the expression of an operably linked ORF or another EMF.

As used herein, a sequence is said to "modulate the expression of an operably linked sequence" when the expression of the sequence is altered by the presence of the EMF. EMFs include, but are not limited to, promoters, and promoter modulating sequences (inducible elements). One class of EMFs are fragments which induce the expression or an operably linked ORF in response to a specific regulatory factor or physiological event.

As used herein, an "uptake modulating fragment," UMF, means a series of nucleotides which mediate the uptake of a linked DNA fragment into a cell. UMFs can be readily identified using known UMFs as a target sequence or target motif with the computer-based systems described below.

The presence and activity of a UMF can be confirmed by attaching the suspected UMF to a marker sequence. The resulting nucleic acid molecule is then incubated with an appropriate host under appropriate conditions and the uptake of the marker sequence is determined. As described above, a UMF will increase the frequency of uptake of a linked marker sequence.

15

10

5

20

25

10

15

20

25

The term "active" refers to those forms of the polypeptide which retain the biologic and/or immunologic activities of any naturally occurring polypeptide. According to the invention, the term "biologically active" with reference to IL-1 Hy2 means that the polypeptide retains at least one of the biological activities, preferably the IL-1 antagonist activity, of human IL-1 Hy2, while the term "immunologically active" with reference to IL-1 Hy2 means that the polypeptide retains at least one of the immunologic or antigenic activities of human IL-1 Hy2.

The term "naturally occurring polypeptide" refers to polypeptides produced by cells that have not been genetically engineered and specifically contemplates various polypeptides arising from post-translational modifications of the polypeptide including, but not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation and acylation.

The term "derivative" refers to polypeptides chemically modified by such techniques as ubiquitination, labeling (e.g., with radionuclides or various enzymes), pegylation (derivatization with polyethylene glycol) and insertion or substitution by chemical synthesis of amino acids such as ornithine, which do not normally occur in human proteins.

The term "variant" (or "analog") refers to any polypeptide differing from naturally occurring polypeptides by amino acid insertions, deletions, and substitutions, created using recombinant DNA techniques. Guidance in determining which amino acid residues may be replaced, added or deleted without abolishing activities of interest, such as IL-1 antagonistic activity, may be found by comparing the sequence of the particular polypeptide with that of homologous human or other mammalian peptides e.g. IL-1Ra, IL-1Hy1, or IL-1, and minimizing the number of amino acid sequence changes made in regions of high homology (conserved regions) or by replacing amino acids with consensus sequence.

Preferably, amino acid "substitutions" are the result of replacing one amino acid with another amino acid having similar structural and/or chemical properties, i.e., conservative amino acid replacements. "Conservative" amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophobicity, and/or the amphipathic nature of the residues involved. For example, nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline,

phenylalanine, tryptophan, and methionine; polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine; positively charged (basic) amino acids include arginine, lysine, and histidine; and negatively charged (acidic) amino acids include aspartic acid and glutamic acid. "Insertions" or "deletions" are typically in the range of about 1 to 5 amino acids. The variation allowed may be experimentally determined by systematically making insertions, deletions, or substitutions of amino acids in a polypeptide molecule using recombinant DNA techniques and assaying the resulting recombinant variants for activity.

Alternatively, where alteration of function is desired, insertions, deletions or non-conservative alterations can be engineered to produce altered polypeptides. Such alterations can, for example, alter one or more of the biological functions or biochemical characteristics of the polypeptides of the invention. For example, such alterations may change polypeptide characteristics such as ligand-binding affinities, interchain affinities, or degradation/turnover rate. Further, such alterations can be selected so as to generate polypeptides that are better suited for expression, scale up and the like in the host cells chosen for expression. For example, cysteine residues can be deleted or substituted with another amino acid residue in order to eliminate disulfide bridges.

As used herein, "substantially equivalent" can refer both to nucleotide and amino acid sequences, for example a mutant sequence, that varies from a reference sequence by one or more substitutions, deletions, or additions, the net effect of which does not result in an adverse functional dissimilarity between the reference and subject sequences.

Typically, such a substantially equivalent sequence varies from one of those listed herein by no more than about 20% (i.e., the number of individual residue substitutions, additions, and/or deletions in a substantially equivalent sequence, as compared to the corresponding reference sequence, divided by the total number of residues in the substantially equivalent sequence is about 0.2 or less). Such a sequence is said to have 80% sequence identity to the listed sequence. In one embodiment, a substantially equivalent, e.g., mutant, sequence of the invention varies from a listed sequence by no more than 10% (90% sequence identity); in a variation of this embodiment, by no more than 5% (95% sequence identity); and in a further variation of this embodiment, by no more than 2% (98% sequence identity). Substantially equivalent, e.g., mutant, amino acid sequences according to the invention generally have at least 95% sequence identity with a

listed amino acid sequence, whereas substantially equivalent nucleotide sequence of the invention can have lower percent sequence identities, taking into account, for example, the redundancy or degeneracy of the genetic code. For the purposes of the present invention, sequences having substantially equivalent biological activity and substantially equivalent expression characteristics are considered substantially equivalent. For the purposes of determining equivalence, truncation of the mature sequence (e.g., via a mutation which creates a spurious stop codon) should be disregarded. Sequence identity may be determined, e.g., using the Jotun Hein method.

Nucleic acid sequences encoding such substantially equivalent sequences, e.g., sequences of the recited percent identities, can routinely be isolated and identified via standard hybridization procedures well known to those of skill in the art.

Where desired, an expression vector may be designed to contain a "signal or leader sequence" which will direct the polypeptide through the membrane of a cell. Such a sequence may be naturally present on the polypeptides of the present invention or provided from heterologous protein sources by recombinant DNA techniques.

A polypeptide "fragment," "portion," or "segment" is a stretch of amino acid residues of at least about 5 amino acids, often at least about 7 amino acids, typically at least about 9 to 13 amino acids, and, in various embodiments, at least about 17 or more amino acids. To be active, any polypeptide must have sufficient length to display biologic and/or immunologic activity.

Alternatively, recombinant variants encoding these same or similar polypeptides may be synthesized or selected by making use of the "redundancy" in the genetic code. Various codon substitutions, such as the silent changes which produce various restriction sites, may be introduced to optimize cloning into a plasmid or viral vector or expression in a particular prokaryotic or eukaryotic system. Mutations in the polynucleotide sequence may be reflected in the polypeptide or domains of other peptides added to the polypeptide to modify the properties of any part of the polypeptide, to change characteristics such as ligand-binding affinities, interchain affinities, or degradation/turnover rate.

The term "activated" cells as used in this application are those which are engaged in extracellular or intracellular membrane trafficking, including the export of neurosecretory or enzymatic molecules as part of a normal or disease process.

20

25

30

15

5

15

20

25

30

The term "purified" as used herein denotes that the indicated nucleic acid or polypeptide is present in the substantial absence of other biological macromolecules, e.g., polynucleotides, proteins, and the like. In one embodiment, the polynucleotide or polypeptide is purified such that it constitutes at least 95% by weight, more preferably at least 99.8% by weight, of the indicated biological macromolecules present (but water, buffers, and other small molecules, especially molecules having a molecular weight of less than 1000 daltons, can be present).

The term "isolated" as used herein refers to a nucleic acid or polypeptide separated from at least one other component (e.g., nucleic acid or polypeptide) present with the nucleic acid or polypeptide in its natural source. In one embodiment, the nucleic acid or polypeptide is found in the presence of (if anything) only a solvent, buffer, ion, or other component normally present in a solution of the same. The terms "isolated" and "purified" do not encompass nucleic acids or polypeptides present in their natural source.

The term "infection" refers to the introduction of nucleic acids into a suitable host cell by use of a virus or viral vector.

The term "transformation" means introducing DNA into a suitable host cell so that the DNA is replicable, either as an extra chromosomal element, or by chromosomal integration.

The term "transfection" refers to the taking up of an expression vector by a suitable host cell, whether or not any coding sequences are in fact expressed.

The term "intermediate fragment" means a nucleic acid between 5 and 1000 bases in length, and preferably between 10 and 40 bp in length.

The term "secreted" includes a protein that is transported across or through a membrane, including transport as a result of signal sequences in its amino acid sequence when it is expressed in a suitable host cell. "Secreted" proteins include without limitation proteins secreted wholly (e.g., soluble proteins) or partially (e.g., receptors) from the cell in which they are expressed. "Secreted" proteins also include without limitation proteins which are transported across the membrane of the endoplasmic reticulum. "Secreted" proteins are also intended to include proteins containing non-typical signal sequences (e.g. Interleukin-1 Beta, see Krasney, P.A. and Young, P.R. (1992) Cytokine 4(2): 134 -143) and factors released from damaged cells (e.g. Interleukin-1 Receptor Antagonist, see Arend, W.P. et. al. (1998) Annu. Rev. Immunol. 16:27-55)

10

15

20

25

30

Each of the above terms is meant to encompasses all that is described for each, unless the context dictates otherwise.

NUCLEIC ACIDS AND POLYPEPTIDES OF THE INVENTION

Nucleotide and amino acid sequences of the invention are reported below. Fragments of the proteins of the present invention which are capable of exhibiting biological activity are also encompassed by the present invention. Fragments of the protein may be in linear form or they may be cyclized using known methods, for example, as described in H. U. Saragovi, et al., Bio/Technology 10, 773-778 (1992) and in R. S. McDowell, et al., J. Amer. Chem. Soc. 114, 9245-9253 (1992), both of which are incorporated herein by reference. Such fragments may be fused to carrier molecules such as immunoglobulins for many purposes, including increasing the valency of protein binding sites. For example, fragments of the protein may be fused through "linker" sequences to the Fc portion of an immunoglobulin. For a bivalent form of the protein, such a fusion could be to the Fc portion of an IgG molecule. Other immunoglobulin isotypes may also be used to generate such fusions. For example, a protein-IgM fusion would generate a decayalent form of the protein of the invention.

The present invention also provides both full-length and mature forms (for example, without a signal sequence or precusor sequence) of the disclosed proteins. The full-length form of the such proteins is identified in the sequence listing by translation of the nucleotide sequence of each disclosed clone. The mature form of such protein may be obtained by expression of the disclosed full-length polynucleotide in a suitable mammalian cell or other host cell. The sequence of the mature form of the protein is also determinable from the amino acid sequence of the full-length form. Where protein of the present invention is membrane bound, soluble forms of the protein are also provided. In such forms part or all of the regions causing the protein to be membrane bound are deleted so that the protein is fully secreted from the cell in which it is expressed.

The present invention also provides genes corresponding to the cDNA sequences disclosed herein. The corresponding genes can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include the preparation of probes or primers from the disclosed sequence information for identification and/or amplification of genes in appropriate genomic libraries or other

10

15

25

30

sources of genomic materials. Species homologs of the disclosed polynucleotides and proteins are also provided by the present invention. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source from the desired species. The invention also encompasses allelic variants of the disclosed polynucleotides or proteins; that is, naturally-occurring alternative forms of the isolated polynucleotide which also encode proteins which are identical, homologous or related to that encoded by the polynucleotides. The compositions of the present invention include isolated polynucleotides, including recombinant DNA molecules, cloned genes or degenerate variants thereof, especially naturally occurring variants such as allelic variants, novel isolated polypeptides, and antibodies that specifically recognize one or more epitopes present on such polypeptides. Species homologs of the disclosed polynucleotides and proteins are also provided by the present invention. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source from the desired species. The invention also encompasses allelic variants of the disclosed polynucleotides or proteins; that is, naturally-occurring alternative forms of the isolated polynucleotide which also encode proteins which are identical, homologous or related to that encoded by the polynucleotides.

20 DESCRIPTION OF SEQUENCES

SEQ ID NO: 1 sets forth one preferred nucleotide sequence of IL-1 Hy2 which contains a protein coding region from nucleotides 54 through 509.

SEQ ID NO: 2 sets forth an amino acid sequence encoded by SEQ ID NO: 1.

SEQ ID NO: 3 sets forth a nucleotide sequence identical to SEQ ID NO: 1 except the protein coding region spans nucleotides 3 through 509.

SEQ ID NO: 4 sets forth the amino acid sequence encoded by SEQ ID NO: 3.

SEQ ID NOS: 5-9 set forth the amino acid sequences of human IL-1 Hy1. rat IL-1Ra, pig IL-1Ra, human IL-1Ra and intracellular human IL-1Ra, respectively.

SEQ ID NO: 14 sets forth an extended cDNA sequence of a human IL-1 Hy2 clone which is longer than SEQ ID NO: 1 but encodes the same 152 amino acid polypeptide (SEQ ID NO: 2).

10

15

20

25

30

SEQ ID NO: 15 sets forth the genomic DNA sequence of human IL-1 Hy2.

SEQ ID NO: 12 sets forth the predicted cDNA sequence based on the human genomic sequence of IL-Hy2.(SEQ ID NO: 15) and differs from SEQ ID NO: 14 at position 279 (C→T).

SEQ ID NO: 13 sets forth the 200 amino acid sequence encoded by the longer open reading frame of SEQ ID NO: 12.

SEQ ID NO: 16 sets forth the genomic DNA sequence of murine IL-1 Hy2.

SEQ ID NO: 17 sets forth the predicted murine cDNA sequence based on the mouse genomic sequence of SEQ ID NO: 16.

SEQ ID NO: 18 sets forth the deduced amino acid sequence of murine IL-1 Hy2 polypeptide.

2. NUCLEIC ACIDS OF THE INVENTION

The isolated polynucleotides of the invention include, but are not limited to, a polynucleotide encoding a polypeptide comprising the amino acid sequence of SEQ ID NOS: 2, 4 or 13. A preferred nucleic acid sequence is set forth in SEQ ID NO: 1 (which is identical to SEQ ID NO: 3 except for the identification of the protein coding region, which is nucleotides 54 through 509 for SEQ ID NO: 1 and nucleotides 3 through 509 for SEQ ID NO: 3).

There are two alternative open reading frames in SEQ ID NO: 1. Resequencing of the 5' region of the IL-1 Hy2 cDNA resulted in SEQ ID NO: 14 which includes the shorter open reading frame of SEQ ID NO: 1 and extends its 5' sequence. The predicted amino acid sequence based upon the shorter open reading frame of SEQ ID NO: 14 is shown in SEQ ID NO: 2. The predicted cDNA sequence based on the genomic DNA sequence is set forth as SEQ ID NO: 12, which contains a C→T change that results in an alternative upstream initiating methionine which extends the open reading frame of SEQ ID NO: 3. The predicted amino acid sequence based on the longer open reading frame is shown in SEQ ID NO: 13.

The isolated polynucleotides of the invention further include, but are not limited to a polynucleotide comprising the nucleotide sequence of SEQ ID NOS: 1, 12 or 14; a polynucleotide comprising the full length protein coding sequence of SEQ ID NOS: 1, 12 or 14; and a polynucleotide comprising the nucleotide sequence of the mature protein

10

15

20

25

30

coding sequence of SEQ ID NOS: 1, 12 or 14. The polynucleotides of the present invention also include, but are not limited to, polynucleotides that encode polypeptides with IL-1 Hy2 activity and that hybridize under stringent hybridization conditions to the complement of either (a) the nucleotide sequence of SEQ ID NOS: 1, 12 or 14, or (b) a nucleotide sequence encoding the amino acid sequence of SEQ ID NOS: 2, 4 or 13; a polynucleotide which is an allelic variant of any polynucleotide recited above; a polynucleotide which encodes a species homologue of any of the proteins recited above; or a polynucleotide that encodes a polypeptide comprising a specific domain or truncation of the polypeptide of SEQ ID NOS: 2, 4 or 13.

The polynucleotides of the present invention still further include, but are not limited to, a polynucleotide comprising the nucleotide sequence of the cDNA insert of clone pIL-1Hy2 or an IL-1 Hy2 protein coding portion thereof, such as the full length protein coding sequence or the mature protein coding sequence.

The polynucleotides of the invention additionally include the complement of any of the polynucleotides recited above.

The polynucleotides of the invention also provide polynucleotides including nucleotide sequences that are substantially equivalent to the polynucleotides recited above. Polynucleotides according to the invention can have at least about 65%, more typically at least about 70%, 75%, 80%, 85% or 90%, and even more typically at least about 95%, sequence identity to a polynucleotide recited above. The invention also provides the complement of the polynucleotides including a nucleotide sequence that has at least about 80%, more typically at least about 90%, and even more typically at least about 95%, sequence identity to a polynucleotide encoding a polypeptide recited above. The polynucleotide can be DNA (genomic, cDNA, amplified, or synthetic) or RNA. Methods and algorithms for obtaining such polynucleotides are well known to those of skill in the art and can include, for example, methods for determining hybridization conditions which can routinely isolate polynucleotides of the desired sequence identities.

A polynucleotide according to the invention can be joined to any of a variety of other nucleotide sequences by well-established recombinant DNA techniques (see Sambrook J et al. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, NY). Useful nucleotide sequences for joining to polypeptides include an assortment of vectors, e.g., plasmids, cosmids, lambda phage derivatives, phagemids, and

10

15

20

the like, that are well known in the art. Accordingly, the invention also provides a vector including a polynucleotide of the invention and a host cell containing the polynucleotide. In general, the vector contains an origin of replication functional in at least one organism, convenient restriction endonuclease sites, and a selectable marker for the host cell.

Vectors according to the invention include expression vectors, replication vectors, probe generation vectors, and sequencing vectors. A host cell according to the invention can be a prokaryotic or eukaryotic cell and can be a unicellular organism or part of a multicellular organism.

The sequences falling within the scope of the present invention are not limited to the specific sequences herein described, but also include allelic variations thereof. Allelic variations can be routinely determined by comparing the sequence provided in SEQ ID NOS: 1, 12 or 14, or a representative fragment thereof, or a nucleotide sequence at least 99.9% identical to SEQ ID NOS: 1, 12 or 14 with a sequence from another isolate of the same species. Example 2 shows that several allelic variants exist, some of which result in changes in the encoded polypeptide sequence.

To accommodate codon variability, the invention includes nucleic acid molecules coding for the same amino acid sequences as do the specific ORFs disclosed herein. In other words, in the coding region of an ORF, substitution of one codon for another which encodes the same amino acid is expressly contemplated. Any specific sequence disclosed herein can be readily screened for errors by resequencing a particular fragment, such as an ORF, in both directions (i.e., sequence both strands).

The present invention further provides recombinant constructs comprising a nucleic acid having the sequence of SEQ ID NOS: 1, 12 or 14; or a fragment thereof or any other polynucleotides of the invention. In one embodiment, the recombinant constructs of the present invention comprise a vector, such as a plasmid or viral vector, into which a nucleic acid having the sequence of SEQ ID NOS: 1, 12 or 14; or a fragment thereof is inserted, in a forward or reverse orientation. In the case of a vector comprising one of the ORFs of the present invention, the vector may further comprise regulatory sequences, including for example, a promoter, operably linked to the ORF. For vectors comprising the EMFs and UMFs of the present invention, the vector may further comprise a marker sequence or heterologous ORF operably linked to the EMF or UMF. Large numbers of suitable vectors and promoters are known to those of skill in the art and

30

10

15

20

25

30

are commercially available for generating the recombinant constructs of the present invention. The following vectors are provided by way of example. Bacterial: pBs, phagescript, PsiX174, pBluescript SK, pBs KS, pNH8a, pNH16a, pNH18a, pNH46a (Stratagene); pTrc99A, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia). Eukaryotic: pWLneo, pSV2cat, pOG44, PXTI, pSG (Stratagene) pSVK3, pBPV, pMSG, pSVL (Pharmacia).

The isolated polynucleotide of the invention may be operably linked to an expression control sequence such as the pMT2 or pED expression vectors disclosed in Kaufman et al., Nucleic Acids Res. 19, 4485-4490 (1991), in order to produce the protein recombinantly. Many suitable expression control sequences are known in the art. General methods of expressing recombinant proteins are also known and are exemplified in R. Kaufman, Methods in Enzymology 185, 537-566 (1990). As defined herein "operably linked" means that the isolated polynucleotide of the invention and an expression control sequence are situated within a vector or cell in such a way that the protein is expressed by a host cell which has been transformed (transfected) with the ligated polynucleotide/expression control sequence.

Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers. Two appropriate vectors are pKK232-8 and pCM7. Particular named bacterial promoters include lacI, lacZ, T3, T7, gpt, lambda P_R, and trc. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein-I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art. Generally, recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, e.g., the ampicillin resistance gene of E. coli and S. cerevisiae TRP1 gene, and a promoter derived from a highly-expressed gene to direct transcription of a downstream structural sequence. Such promoters can be derived from operons encoding glycolytic enzymes such as 3-phosphoglycerate kinase (PGK), a-factor, acid phosphatase, or heat shock proteins, among others. The heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein into the periplasmic space or extracellular medium. Optionally, the heterologous sequence can encode a

fusion protein including an N-terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product. Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter. The vector will comprise one or more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and to, if desirable, provide amplification within the host. Suitable prokaryotic hosts for transformation include *E. coli, Bacillus subtilis, Salmonella typhimurium* and various species within the genera Pseudomonas, Streptomyces, and Staphylococcus, although others may also be employed as a matter of choice.

As a representative but non-limiting example, useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017). Such commercial vectors include, for example, pKK223-3 (Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM 1 (Promega Biotec, Madison, WI, USA). These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed. Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter is induced or derepressed by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period. Cells are typically harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for further purification.

Included within the scope of the nucleic acid sequences of the invention are nucleic acid sequences that hybridize under stringent conditions to a fragment of the DNA sequence of SEQ ID NOS: 1, 12 or 14, which fragment is greater than about 10 bp, preferably 20-50 bp, and even greater than 100 bp. In accordance with the invention, polynucleotide sequences which encode the novel nucleic acids, or functional equivalents thereof, may be used to generate recombinant DNA molecules that direct the expression of that nucleic acid, or a functional equivalent thereof, in appropriate host cells.

The nucleic acid sequences of the invention are further directed to sequences which encode variants of the described nucleic acids. These amino acid sequence variants

10

15

20

25

30

may be prepared by methods known in the art by introducing appropriate nucleotide changes into a native or variant polynucleotide. There are two variables in the construction of amino acid sequence variants: the location of the mutation and the nature of the mutation. The amino acid sequence variants of the nucleic acids are preferably constructed by mutating the polynucleotide to give an amino acid sequence that does not occur in nature. These amino acid alterations can be made at sites that differ in the nucleic acids from different species (variable positions) or in highly conserved regions (constant regions). Sites at such locations will typically be modified in series, e.g., by substituting first with conservative choices (e.g., hydrophobic amino acid to a different hydrophobic amino acid) and then with more distant choices (e.g., hydrophobic amino acid to a charged amino acid), and then deletions or insertions may be made at the target site. Amino acid sequence deletions generally range from about 1 to 30 residues, preferably about 1 to 10 residues, and are typically contiguous. Amino acid insertions include amino- and/or carboxyl-terminal fusions ranging in length from one to one hundred or more residues, as well as intrasequence insertions of single or multiple amino acid residues. Intrasequence insertions may range generally from about 1 to 10 amino residues, preferably from 1 to 5 residues. Examples of terminal insertions include the heterologous signal sequences necessary for secretion or for intracellular targeting in different host cells.

In a preferred method, polynucleotides encoding the novel nucleic acids are changed via site-directed mutagenesis. This method uses oligonucleotide sequences that encode the polynucleotide sequence of the desired amino acid variant, as well as a sufficient adjacent nucleotide on both sides of the changed amino acid to form a stable duplex on either side of the site of being changed. In general, the techniques of site-directed mutagenesis are well known to those of skill in the art and this technique is exemplified by publications such as, Edelman et al., DNA 2:183 (1983). A versatile and efficient method for producing site-specific changes in a polynucleotide sequence was published by Zoller and Smith, Nucleic Acids Res. 10:6487-6500 (1982). PCR may also be used to create amino acid sequence variants of the novel nucleic acids. When small amounts of template DNA are used as starting material, primer(s) that differs slightly in sequence from the corresponding region in the template DNA can generate the desired amino acid variant. PCR amplification results in a population of product DNA fragments

10

15

20

25

30

that differ from the polynucleotide template encoding the polypeptide at the position specified by the primer. The product DNA fragments replace the corresponding region in the plasmid and this gives the desired amino acid variant.

A further technique for generating amino acid variants is the cassette mutagenesis technique described in Wells et al., Gene 34:315 (1985); and other mutagenesis techniques well known in the art, such as, for example, the techniques in Sambrook et al., supra, and Current Protocols in Molecular Biology, Ausubel et al. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be used in the practice of the invention for the cloning and expression of these novel nucleic acids. Such DNA sequences include those which are capable of hybridizing to the appropriate novel nucleic acid sequence under stringent conditions.

Furthermore, knowledge of the DNA sequence provided by the present invention allows for the modification of cells to permit, or increase, expression of endogenous IL-1 Hy2 polypeptides. Cells can be modified (e.g., by homologous recombination) to provide increased IL-1 Hy2 expression by replacing, in whole or in part, the naturally occurring IL-1 Hy2 promoter with all or part of a heterologous promoter so that the cells express IL-1 Hy2 polypeptides at a higher level. The heterologous promoter is inserted in such a manner that it is operatively linked to IL-1 Hy2 encoding sequences. See, for example, PCT International Publication No. WO94/12650, PCT International Publication No. WO92/20808, and PCT International Publication No. WO91/09955. It is also contemplated that, in addition to heterologous promoter DNA, amplifiable marker DNA (e.g., ada, dhfr, and the multifunctional CAD gene which encodes carbamyl phosphate synthase, aspartate transcarbamylase, and dihydroorotase) and/or intron DNA may be inserted along with the heterologous promoter DNA. If linked to the IL-1 Hy2 coding sequence, amplification of the marker DNA by standard selection methods results in co-amplification of the IL-1 Hy2 coding sequences in the cells.

The polynucleotides of the present invention also make possible the development, through, e.g., homologous recombination or knock out strategies, of animals that fail to express functional IL-1 Hy2 polypeptides or that express a variant of a IL-1 Hy2

20

25

30

polypeptide. Such animals are useful as models for studying the *in vivo* activities of IL-1 Hy2 polypeptides as well as for studying modulators of IL-1 Hy2 polypeptides.

Polynucleotides of the invention can also be used to induce immune responses. For example, as described in Fan et al., Nat. Biotech. 17:870-872 (1999), incorporated herein by reference, nucleic acid sequences encoding a polypeptide may be used to generate antibodies against the encoded polypeptide following topical administration of naked plasmid DNA or following injection, and preferably intramuscular injection of the DNA. The nucleic acid sequences are preferably inserted in a recombinant expression vector and may be in the form of naked DNA.

10 **3. HOSTS**

The present invention further provides host cells genetically engineered to contain the polynucleotides of the invention. For example, such host cells may contain nucleic acids of the invention introduced into the host cell using known transformation, transfection or infection methods. The present invention still further provides host cells genetically engineered to express the polynucleotides of the invention, wherein such polynucleotides are in operative association with a regulatory sequence heterologous to the host cell which drives expression of the polynucleotides in the cell.

The host cell can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic host cell, such as a yeast cell, or the host cell can be a prokaryotic cell, such as a bacterial cell. Introduction of the recombinant construct into the host cell can be effected by calcium phosphate transfection, DEAE, dextran mediated transfection, or electroporation (Davis, L. et al., Basic Methods in Molecular Biology (1986)). The host cells containing one of polynucleotides of the invention, can be used in conventional manners to produce the gene product encoded by the isolated fragment (in the case of an ORF) or can be used to produce a heterologous protein under the control of the EMF.

Any host/vector system can be used to express one or more of the ORFs of the present invention. These include, but are not limited to, eukaryotic hosts such as HeLa cells, Cv-1 cell, COS cells, and Sf9 cells, as well as prokaryotic host such as *E. coli* and *B. subtilis*. The most preferred cells are those which do not normally express the particular polypeptide or protein or which expresses the polypeptide or protein at low natural level. Mature proteins can be expressed in mammalian cells, yeast, bacteria, or

10

15

20

25

30

other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described by Sambrook, et al., in Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor, New York (1989), the disclosure of which is hereby incorporated by reference.

Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts, described by Gluzman, Cell 23:175 (1981), and other cell lines capable of expressing a compatible vector, for example, the C127, 3T3, CHO, HeLa and BHK cell tines. Mammalian expression vectors will comprise an origin of replication, a suitable promoter and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences. DNA sequences derived from the SV40 viral genome, for example, SV40 origin, early promoter, enhancer, splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements. Recombinant polypeptides and proteins produced in bacterial culture are usually isolated by initial extraction from cell pellets, followed by one or more salting-out, aqueous ion exchange or size exclusion chromatography steps. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps. Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents.

A number of types of cells may act as suitable host cells for expression of the protein. Mammalian host cells include, for example, monkey COS cells, Chinese Hamster Ovary (CHO) cells, human kidney 293 cells, human epidermal A431 cells, human Colo205 cells, 3T3 cells, CV-1 cells, other transformed primate cell lines, normal diploid cells, cell strains derived from in vitro culture of primary tissue, primary explants, HeLa cells, mouse L cells, BHK, HL-60, U937, HaK or Jurkat cells.

Alternatively, it may be possible to produce the protein in lower eukaryotes such as yeast or in prokaryotes such as bacteria. Potentially suitable yeast strains include

Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces strains, Candida, or any yeast strain capable of expressing heterologous proteins. Potentially suitable bacterial strains include Escherichia coli, Bacillus subtilis, Salmonella typhimurium, or any bacterial strain capable of expressing heterologous proteins. If the protein is made in yeast or bacteria, it may be necessary to modify the protein produced therein, for example by phosphorylation or glycosylation of the appropriate sites, in order to obtain the functional protein. Such covalent attachments may be accomplished using known chemical or enzymatic methods.

In another embodiment of the present invention, cells and tissues may be engineered to express an endogenous gene comprising the polynucleotides of the invention under the control of inducible regulatory elements, in which case the regulatory sequences of the endogenous gene may be replaced by homologous recombination. As described herein, gene targeting can be used to replace a gene's existing regulatory region with a regulatory sequence isolated from a different gene or a novel regulatory sequence synthesized by genetic engineering methods. Such regulatory sequences may be comprised of promoters, enhancers, scaffold-attachment regions, negative regulatory elements, transcriptional initiation sites, regulatory protein binding sites or combinations of said sequences. Alternatively, sequences which affect the structure or stability of the RNA or protein produced may be replaced, removed, added, or otherwise modified by targeting, including polyadenylation signals. mRNA stability elements, splice sites, leader sequences for enhancing or modifying transport or secretion properties of the protein, or other sequences which alter or improve the function or stability of protein or RNA molecules.

The targeting event may be a simple insertion of the regulatory sequence, placing the gene under the control of the new regulatory sequence, e.g., inserting a new promoter or enhancer or both upstream of a gene. Alternatively, the targeting event may be a simple deletion of a regulatory element, such as the deletion of a tissue-specific negative regulatory element. Alternatively, the targeting event may replace an existing element; for example, a tissue-specific enhancer can be replaced by an enhancer that has broader or different cell-type specificity than the naturally occurring elements. Here, the naturally occurring sequences are deleted and new sequences are added. In all cases, the identification of the targeting event may be facilitated by the use of one or more selectable

10

15

20

25

30

marker genes that are contiguous with the targeting DNA, allowing for the selection of cells in which the exogenous DNA has integrated into the host cell genome. The identification of the targeting event may also be facilitated by the use of one or more marker genes exhibiting the property of negative selection, such that the negatively selectable marker is linked to the exogenous DNA, but configured such that the negatively selectable marker flanks the targeting sequence, and such that a correct homologous recombination event with sequences in the host cell genome does not result in the stable integration of the negatively selectable marker. Markers useful for this purpose include the Herpes Simplex Virus thymidine kinase (TK) gene or the bacterial xanthine-guanine phosphoribosyl-transferase (gpt) gene.

The gene targeting or gene activation techniques which can be used in accordance with this aspect of the invention are more particularly described in U.S. Patent No. 5,272,071 to Chappel; U.S. Patent No. 5,578,461 to Sherwin et al.; International Application No. PCT/US92/09627 (WO93/09222) by Selden et al.; and International Application No. PCT/US90/06436 (WO91/06667) by Skoultchi et al., each of which is incorporated by reference herein in its entirety.

4. POLYPEPTIDES OF THE INVENTION

SEQ ID NO. 1 encodes the IL-1 Hy2 polypeptide sequence of SEQ ID NOS: 2, 4 and 13. An amino acid alignment of SEQ ID NO. 2 with human secreted IL-1Ra, human intracellular IL-1Ra and human IL-1Hy1, as well as rat and pig IL-1Ra, is shown in FIG. 1. SEQ ID NO. 2 displays significant amino acid homology with human IL-1Ra and IL-1 Hy1 (41.4% and 45% sequence identity, respectively, using the Jotan Hein method), and thus represents a novel molecule within the IL-1Ra family. The sequence similarities among the three proteins and the localization of the IL-1 Hy2 gene to chromosome 2, where other proteins of the IL-1 system are located, indicate that IL-1 Hy2 is involved in the IL-1 system and may play some common biological roles as IL-1Ra and IL-1Hy1, e.g., acting as an IL-1 antagonist. Additional IL-1Hy2 family members can be identified using SEQ ID NOS: 1, 12 or 14 as a molecular probe.

Interleukin-1 has pleiotropic biological activities many of which adversely affect the organism, it would be expected that the molecule must be tightly regulated if it is not to be injurious. Indeed, there are several reports of Interleukin-1 inhibitors that regulate

15

20

25

30

the action of Interleukin-1. Interleukin-1 inhibitory activity has been reported in monocyte conditioned medium, wherein the monocytes are grown on adherent immune complexes. Arena, W. P., et al., 1985, Journal of Immun., 134:3868. Additionally, an inhibitor has been reported to be present urine. Seckinger, P., et al., 1987, Journal of Immun., 139:1546. Lastly, a protein inhibitor, purified and cloned, that has interleukin-1 receptor antagonist activity has been reported. Hannum, et at., 1990, Nature, 343:336, and Eisenberg, S., et al., 1990, Nature, 343:341.

It is thought that the Interleukin-1 inhibitor present in urine, and which has been partially purified and characterized by Seckinger, P. et al., and Seckinger, P., et al., 1987, Journal of Immun., 139:1541 is similar, if not identical to the cloned Interleukin-1 receptor antagonist reported by Eisenberg, S., et al. (1990), Nature, 343:341; and Carter, D., et al (1990), Nature, 344:633.

Interleukin-1 receptor antagonist is a naturally occurring peptide secreted by macrophages in response to many of the same stimuli which cause the secretion of Interleukin-1 itself. Interleukin-1 receptor antagonist is a naturally occurring antagonist to the cytokines and recognizes receptors on various cell types and blocks Interleukin-1 mediated responses by occupying the receptor. (Wakabayashi et al., FASEB J 1991;5:338; Okusawa et al. J Clin Invest 1988;81:1162; Ohlsson et al., Nature 1990;348:550; Aiura, et al. Cytokine 1991;4:498; Fischer et al. Am J Physiol 1991;261:R442). In humans, Interleukin-1 receptor antagonist is a naturally occurring group of molecules; three forms have been characterized (two glycosylated and one non-glycosylated).

Fischer et al. (Am J Physiol 1991;261:R442) demonstrated that the administration of a naturally occurring antagonist to Interleukin-1 will significantly blunt the cytokine cascade and improve survival in baboons given a lethal dose of live bacteria. Interleukin-1 receptor antagonist significantly attenuates the decrease in mean arterial pressure and cardiac output and improves survival for severe acute pancreatitis. (U.S. Pat. NO. 5 ,508,262) The systemic Interleukin-1 response observed as a result of bacterial sepsis was also diminished significantly, correlating with a decrease in the systemic response to bacterial sepsis.

Studies by Aiura et al. (Cytokine 1991;4:498) have shown that Interleukin-1 receptor antagonist is protective in a rabbit model of hypotensive gram-positive septic

shock. The administration of Interleukin-1 receptor antagonist in this animal model has been shown to maintain mean arterial pressure compared to control, as well as decreasing lung water and maintaining urine output. This work demonstrated the role of Interleukin-1 and the protective role of Interleukin-1 receptor antagonist in gram-positive septic shock. Interleukin-1 is the principal mediator in a patient's clinical response to multiple different stresses regardless of the etiology (including acute pancreatitis, sepsis, endotoxin shock, and cytokine induced shock).

The isolated polypeptides of the invention include, but are not limited to, a polypeptide comprising the amino acid sequence of SEQ ID NOS: 2, 4, or 13, or the amino acid sequence encoded by the cDNA insert of clone pIL-1Hy2, or a portion thereof corresponding to the full length or mature protein. Polypeptides of the invention also include polypeptides with IL-1 Hy2 activity that are encoded by (a) the polynucleotide of SEQ ID NOS: 1, 12 or 14, or (b) polynucleotides encoding SEQ ID NOS: 2, 4, or 13 (b) polynucleotides that hybridize to the complement of the polynucleotides of either (a) or (b) under stringent hybridization conditions. Biologically active or immunologically active variants of the IL-1Ra protein sequence of SEQ ID NOS: 2, 4 or 13 and "substantial equivalents" thereof (e.g., with 65%, 70%, 75%, 80%, 85%, 90%, typically 95%, more typically 98% or most typically 99% amino acid identity) that retain IL-1 Hy2 activity, preferably IL-1 antagonist activity, are also contemplated. Polypeptides encoded by allelic variants, such as those described in Example 2 below, may have a similar or increased or decreased activity compared to the polypeptides of SEQ ID NOS: 2, 4 or 13.

Protein compositions of the present invention may further comprise an acceptable carrier, such as a hydrophilic, e.g., pharmaceutically acceptable, carrier.

The invention also relates to methods for producing a polypeptide comprising growing a culture of the cells of the invention in a suitable culture medium, and purifying the protein from the culture. For example, the methods of the invention include a process for producing a polypeptide in which a host cell containing a suitable expression vector that includes a polynucleotide of the invention is cultured under conditions that allow expression of the encoded polypeptide. The polypeptide can be recovered from the culture, conveniently from the culture medium, and further purified. Preferred embodiments include those in which the protein produced by such process is a full length or mature form of the protein.

10

15

20

25

30

The present invention further provides isolated polypeptides encoded by the nucleic acid fragments of the present invention or by degenerate variants of the nucleic acid fragments of the present invention. By "degenerate variant" is intended nucleotide fragments which differ from a nucleic acid fragment of the present invention (e.g., an ORF) by nucleotide sequence but, due to the degeneracy of the genetic code, encode an identical polypeptide sequence. Preferred nucleic acid fragments of the present invention are the ORFs that encode proteins. A variety of methodologies known in the art can be utilized to obtain any one of the isolated polypeptides or proteins of the present invention. At the simplest level, the amino acid sequence can be synthesized using commercially available peptide synthesizers. This is particularly useful in producing small peptides and fragments of larger polypeptides. Fragments are useful, for example, in generating antibodies against the native polypeptide. In an alternative method, the polypeptide or protein is purified from bacterial cells which naturally produce the polypeptide or protein. One skilled in the art can readily follow known methods for isolating polypeptides and proteins in order to obtain one of the isolated polypeptides or proteins of the present invention. These include, but are not limited to, immunochromatography, HPLC, size-exclusion chromatography, ion-exchange chromatography, and immuno-affinity chromatography. See, e.g., Scopes, Protein Purification: Principles and Practice, Springer-Verlag (1994); Sambrook, et al., in Molecular Cloning: A Laboratory Manual; Ausubel et al., Current Protocols in Molecular Biology.

The polypeptides and proteins of the present invention can alternatively be purified from cells which have been altered to express the desired polypeptide or protein. As used herein, a cell is said to be altered to express a desired polypeptide or protein when the cell, through genetic manipulation, is made to produce a polypeptide or protein which it normally does not produce or which the cell normally produces at a lower level. One skilled in the art can readily adapt procedures for introducing and expressing either recombinant or synthetic sequences into eukaryotic or prokaryotic cells in order to generate a cell which produces one of the polypeptides or proteins of the present invention. The purified polypeptides can be used in *in vitro* binding assays which are well known in the art to identify molecules which bind to the polypeptides. These molecules include but are not limited to, for e.g., small molecules, molecules from combinatorial libraries, antibodies or other proteins. The molecules identified in the binding assay are

then tested for antagonist or agonist activity in *in vivo* tissue culture or animal models that are well known in the art. In brief, the molecules are titrated into a plurality of cell cultures or animals and then tested for either cell/animal death or prolonged survival of the animal/cells.

In addition, the binding molecules may be complexed with toxins, e.g., ricin or cholera, or with other compounds that are toxic to cells. The toxin-binding molecule complex is then targeted to a tumor or other cell by the specificity of the binding molecule for SEQ ID NOS: 2, 4 or 13.

The protein of the invention may also be expressed as a product of transgenic animals, e.g., as a component of the milk of transgenic cows, goats, pigs, or sheep which are characterized by somatic or germ cells containing a nucleotide sequence encoding the protein.

The protein may also be produced by known conventional chemical synthesis. Methods for constructing the proteins of the present invention by synthetic means are known to those skilled in the art. The synthetically-constructed protein sequences, by virtue of sharing primary, secondary or tertiary structural and/or conformational characteristics with proteins may possess biological properties in common therewith, including protein activity. Thus, they may be employed as biologically active or immunological substitutes for natural, purified proteins in screening of therapeutic compounds and in immunological processes for the development of antibodies.

The proteins provided herein also include proteins characterized by amino acid sequences similar to those of purified proteins but into which modification are naturally provided or deliberately engineered. For example, modifications in the peptide or DNA sequences can be made by those skilled in the art using known techniques. Modifications of interest in the protein sequences may include the alteration, substitution, replacement, insertion or deletion of a selected amino acid residue in the coding sequence. For example, one or more of the cysteine residues may be deleted or replaced with another amino acid to alter the conformation of the molecule. Techniques for such alteration, substitution, replacement, insertion or deletion are well known to those skilled in the art (see, e.g., U.S. Pat. No. 4,518,584). Preferably, such alteration, substitution, replacement, insertion or deletion retains the desired activity of the protein.

20

25

30

5

10

15

Other fragments and derivatives of the sequences of proteins which would be expected to retain protein activity in whole or in part and may thus be useful for screening or other immunological methodologies may also be easily made by those skilled in the art given the disclosures herein. Such modifications are believed to be encompassed by the present invention.

The protein may also be produced by operably linking the isolated polynucleotide of the invention to suitable control sequences in one or more insect expression vectors, and employing an insect expression system. Materials and methods for baculovirus/insect cell expression systems are commercially available in kit form from, e.g., Invitrogen, San Diego, Calif., U.S.A. (the MAXBATTM. kit), and such methods are well known in the art, as described in Summers and Smith, Texas Agricultural Experiment Station Bulletin No. 1555 (1987), incorporated herein by reference. As used herein, an insect cell capable of expressing a polynucleotide of the present invention is "transformed."

The protein of the invention may be prepared by culturing transformed host cells under culture conditions suitable to express the recombinant protein. The resulting expressed protein may then be purified from such culture (i.e., from culture medium or cell extracts) using known purification processes, such as gel filtration and ion exchange chromatography. The purification of the protein may also include an affinity column containing agents which will bind to the protein; one or more column steps over such affinity resins as concanavalin A-agarose, HEPARIN-TOYOPEARLTM or CIBACROM BLUE 3GA SEPHAROSETM; one or more steps involving hydrophobic interaction chromatography using such resins as phenyl ether, butyl ether, or propyl ether; or immunoaffinity chromatography.

Alternatively, the protein of the invention may also be expressed in a form which will facilitate purification. For example, it may be expressed as a fusion protein, such as those of maltose binding protein (MBP), glutathione-S-transferase (GST) or thioredoxin (TRX). Kits for expression and purification of such fusion proteins are commercially available from New England BioLab (Beverly, Mass.), Pharmacia (Piscataway, N.J.) and In Vitrogen, respectively. The protein can also be tagged with an epitope and subsequently purified by using a specific antibody directed to such epitope. One such epitope ("Flag") is commercially available from Kodak (New Haven, Conn.).

10

15

20

25

Finally, one or more reverse-phase high performance liquid chromatography (RP-HPLC) steps employing hydrophobic RP-HPLC media, e.g., silica gel having pendant methyl or other aliphatic groups, can be employed to further purify the protein. Some or all of the foregoing purification steps, in various combinations, can also be employed to provide a substantially homogeneous isolated recombinant protein. The protein thus purified is substantially free of other mammalian proteins and is defined in accordance with the present invention as an "isolated protein."

This embraces fragments of IL-1 Hy2 of the invention, as well as analogs (variants) of IL-1 Hy2 in which one or more amino acids has been deleted, inserted, or substituted. Analogs of the invention also embrace fusions or modifications of IL-1 Hy2 wherein the IL-1 Hy2 or analog is fused to another moiety or moieties, e.g., targeting moiety or another therapeutic agent. Such analogs may exhibit improved properties such as activity and/or stability. Examples of moieties which may be fused to IL-1 Hy2 or an analog include, for example, targeting moieties which provide for the delivery of polypeptide to pancreatic cells, e.g., antibodies to pancreatic cells, antibodies to immune cells such as T-cells, monocytes, dendritic cells, granulocytes, etc., as well as receptor and ligands expressed on pancreatic or immune cells. Other moieties which may be fused to IL-1 Hy2 or an analog include therapeutic agents which are used for treatment, for example, immunosuppressive drugs such as cyclosporin, SK506, azathioprine, CD3 antibodies and steroids, or immunostimulants, immune modulators, and other cytokines such as alpha or beta interferon.

5. DEPOSIT OF CLONE

The following clone, pIL-1Hy2 was deposited with the American Type Culture Collection (ATCC) 10801 University Avenue, Manassas, Virginia, on May 21, 1999 under the terms of the Budapest Treaty. The clone represents a plasmid clone as described in the Examples set forth below.

Microorganism/Clone	ATCC Accession No.
pIL-1Hy2	PTA-96

10

15

20

25

30

6. USES AND BIOLOGICAL ACTIVITY

The polynucleotides and proteins of the present invention are expected to exhibit one or more of the uses or biological activities (including those associated with assays cited herein) identified below. Uses or activities described for proteins of the present invention may be provided by administration or use of such proteins or by administration or use of polynucleotides encoding such proteins (such as, for example, in gene therapies or vectors suitable for introduction of DNA).

6.1. RESEARCH USES AND UTILITIES

The polynucleotides provided by the present invention can be used by the research community for various purposes. The polynucleotides can be used to express recombinant protein for analysis, characterization or therapeutic use; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in disease states); as molecular weight markers on Southern gels; as chromosome markers or tags (when labeled) to identify chromosomes or to map related gene positions; to compare with endogenous DNA sequences in patients to identify potential genetic disorders; as probes to hybridize and thus discover novel, related DNA sequences; as a source of information to derive PCR primers for genetic fingerprinting; as a probe to "subtract-out" known sequences in the process of discovering other novel polynucleotides; for selecting and making oligomers for attachment to a "gene chip" or other support, including for examination of expression patterns; to raise anti-protein antibodies using DNA immunization techniques; and as an antigen to raise anti-DNA antibodies or elicit another immune response. Where the polynucleotide encodes a protein which binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the polynucleotide can also be used in interaction trap assays (such as, for example, that described in Gyuris et al., Cell 75:791-803 (1993)) to identify polynucleotides encoding the other protein with which binding occurs or to identify inhibitors of the binding interaction.

The proteins provided by the present invention can similarly be used in assay to determine biological activity, including in a panel of multiple proteins for high-throughput screening; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine

10

15

30

levels of the protein (or its receptor) in biological fluids; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state); and, of course, to isolate correlative receptors or ligands. Where the protein binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the protein can be used to identify the other protein with which binding occurs or to identify inhibitors of the binding interaction. Proteins involved in these binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction.

Any or all of these research utilities are capable of being developed into reagent grade or kit format for commercialization as research products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include without limitation "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E. F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S. L. and A. R. Kimmel eds., 1987.

6.2. NUTRITIONAL USES

Polynucleotides and proteins of the present invention can also be used as

nutritional sources or supplements. Such uses include without limitation use as a protein or amino acid supplement, use as a carbon source, use as a nitrogen source and use as a source of carbohydrate. In such cases the protein or polynucleotide of the invention can be added to the feed of a particular organism or can be administered as a separate solid or liquid preparation, such as in the form of powder, pills, solutions, suspensions or capsules. In the case of microorganisms, the protein or polynucleotide of the invention can be added to the medium in or on which the microorganism is cultured.

6.3. CYTOKINE AND CELL PROLIFERATION/DIFFERENTIATION ACTIVITY

A protein of the present invention may exhibit cytokine, cell proliferation (either inducing or inhibiting) or cell differentiation (either inducing or inhibiting) activity or

may induce production of other cytokines in certain cell populations. A polynucleotide of the invention can encode a polypeptide exhibiting such attributes. Many protein factors discovered to date, including all known cytokines, have exhibited activity in one or more factor-dependent cell proliferation assays, and hence the assays serve as a convenient confirmation of cytokine activity. The activity of a protein of the present invention is evidenced by any one of a number of routine factor dependent cell proliferation assays for cell lines including, without limitation, 32D, DA2, DA1G, T10, B9, B9/11, BaF3, MC9/G, M+(preB M+), 2E8, RB5, DA1, 123, T1165, HT2, CTLL2, TF-1, Mo7e and CMK. The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for T-cell or thymocyte proliferation include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Bertagnolli et al., J. Immunol. 145:1706-1712, 1990; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Bertagnolli, et al., I. Immunol. 149:3778-3783, 1992; Bowman et al., I. Immunol. 152:1756-1761, 1994.

Assays for cytokine production and/or proliferation of spleen cells, lymph node cells or thymocytes include, without limitation, those described in: Polyclonal T cell stimulation, Kruisbeek, A. M. and Shevach, E. M. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 3.12.1-3.12.14, John Wiley and Sons, Toronto. 1994; and Measurement of mouse and human interleukin .gamma., Schreiber, R. D. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.

Assays for proliferation and differentiation of hematopoietic and lymphopoietic cells include, without limitation, those described in: Measurement of Human and Murine Interleukin 2 and Interleukin 4, Bottomly, K., Davis, L. S. and Lipsky, P. E. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 6.3.1-6.3.12, John Wiley and Sons, Toronto. 1991; deVries et al., J. Exp. Med. 173:1205-1211, 1991; Moreau et al., Nature 336:690-692, 1988; Greenberger et al., Proc. Natl. Acad. Sci. U.S.A. 80:2931-2938, 1983; Measurement of mouse and human interleukin 6--Nordan, R. In

15

Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 6.6.1-6.6.5, John Wiley and Sons, Toronto. 1991; Smith et al., Proc. Natl. Aced. Sci. U.S.A. 83:1857-1861, 1986; Measurement of human Interleukin 11--Bennett, F., Giannotti, J., Clark, S. C. and Turner, K. J. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 6.15.1 John Wiley and Sons, Toronto. 1991; Measurement of mouse and human Interleukin 9--Ciarletta, A., Giannotti, J., Clark, S. C. and Turner, K. J. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 6.13.1, John Wiley and Sons, Toronto. 1991.

Assays for T-cell clone responses to antigens (which will identify, among others, proteins that affect APC-T cell interactions as well as direct T-cell effects by measuring proliferation and cytokine production) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function; Chapter 6, Cytokines and their cellular receptors; Chapter 7, Immunologic studies in Humans); Weinberger et al., Proc. Natl. Acad. Sci. USA 77:6091-6095, 1980; Weinberger et al., Eur. J. Immun. 11:405-411, 1981; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988.

6.4. IMMUNE STIMULATING OR SUPPRESSING ACTIVITY

A protein of the present invention may also exhibit immune stimulating or immune suppressing activity, including without limitation the activities for which assays are described herein. A polynucleotide of the invention can encode a polypeptide exhibiting such activities. A protein may be useful in the treatment of various immune deficiencies and disorders (including severe combined immunodeficiency (SCID)), e.g., in regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic activity of NK cells and other cell populations. These immune deficiencies may be genetic or be caused by viral (e.g., HIV) as well as bacterial or fungal infections, or may result from autoimmune disorders. More specifically, infectious diseases causes by viral, bacterial, fungal or other infection may be treatable using a protein of the present invention, including infections by HIV, hepatitis viruses, herpesviruses, mycobacteria, Leishmania spp., malaria spp. and various fungal infections

10

15

20

25

30

such as candidiasis. Of course, in this regard, a protein of the present invention may also be useful where a boost to the immune system generally may be desirable, i.e., in the treatment of cancer. IL-1 has been indicated to promote tumor cell growth in cancers of various organs including breast adenocarcinoma, brain tumors, melanoma, myeloma, giant cell tumors of bone, acute myelogenous leukemia, oral epidermoid carcinoma, and squamous cell carcinoma; thus treatment of such cancer disease states involving elevated levels of IL-1 with IL-1 Hy2 polypeptides of the present invention is expected to ameliorate signs and symptoms of cancer.

Autoimmune disorders which may be treated using a protein of the present invention include, for example, connective tissue disease, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, autoimmune pulmonary inflammation, Guillain-Barre syndrome, autoimmune thyroiditis, insulin dependent diabetes mellitis, myasthenia gravis, graft-versus-host disease and autoimmune inflammatory eye disease. Such a protein (or antagonists thereof, including antibodies) of the present invention may also be useful in the treatment of allergic reactions (e.g., anaphylaxis, serum sickness, drug reactions, food allergies, insect venom allergies, mastocytosis, allergic rhinitis, hypersensitivity pneumonitis, urticaria, angioedema, eczema, atopic dermatitis, allergic contact dermatitis, erythema multiforme, Stevens-Johnson syndrome, allergic conjunctivitis, atopic keratoconjunctivitis, venereal keratoconjunctivitis, giant papillary conjunctivitis and contact allergies) and conditions, such as asthma (particularly allergic asthma) or other respiratory problems. Other conditions, in which immune suppression is desired (including, for example, organ transplantation), may also be treatable using a protein of the present invention. The therapeutic effects of IL-1 Hy2 polypeptides or antagonists thereof on allergic reactions can be evaluated by in vivo animals models such as the cumulative contact enhancement test (Lastborn et al., Toxicology 125: 59-66, 1998), skin prick test (Hoffmann et al., Allergy 54: 446-54, 1999), guinea pig skin sensitization test (Vohr et al., Arch. Toxocol. 73: 501-9), and murine local lymph node assay (Kimber et al., J. Toxicol. Environ. Health 53: 563-79).

Using the proteins of the invention it may also be possible to modulate immune responses, in a number of ways. Down regulation may be in the form of inhibiting or blocking an immune response already in progress or may involve preventing the induction of an immune response. The functions of activated T cells may be inhibited by

and the second second

5

10

15

20

25

30

suppressing T cell responses or by inducing specific tolerance in T cells, or both. Immunosuppression of T cell responses is generally an active, non-antigen-specific, process which requires continuous exposure of the T cells to the suppressive agent. Tolerance, which involves inducing non-responsiveness or anergy in T cells, is distinguishable from immunosuppression in that it is generally antigen-specific and persists after exposure to the tolerizing agent has ceased. Operationally, tolerance can be demonstrated by the lack of a T cell response upon reexposure to specific antigen in the absence of the tolerizing agent.

Down regulating or preventing one or more antigen functions (including without limitation B lymphocyte antigen functions (such as, for example, B7)), e.g., preventing high level lymphokine synthesis by activated T cells, will be useful in situations of tissue, skin and organ transplantation and in graft-versus-host disease (GVHD). For example, blockage of T cell function should result in reduced tissue destruction in tissue transplantation. Typically, in tissue transplants, rejection of the transplant is initiated through its recognition as foreign by T cells, followed by an immune reaction that destroys the transplant. The administration of a molecule which inhibits or blocks interaction of a B7 lymphocyte antigen with its natural ligand(s) on immune cells (such as a soluble, monomeric form of a peptide having B7-2 activity alone or in conjunction with a monomeric form of a peptide having an activity of another B lymphocyte antigen (e.g., B7-1, B7-3) or blocking antibody), prior to transplantation can lead to the binding of the molecule to the natural ligand(s) on the immune cells without transmitting the corresponding costimulatory signal. Blocking B lymphocyte antigen function in this matter prevents cytokine synthesis by immune cells, such as T cells, and thus acts as an immunosuppressant. Moreover, the lack of costimulation may also be sufficient to anergize the T cells, thereby inducing tolerance in a subject. Induction of long-term tolerance by B lymphocyte antigen-blocking reagents may avoid the necessity of repeated administration of these blocking reagents. To achieve sufficient immunosuppression or tolerance in a subject, it may also be necessary to block the function of a combination of B lymphocyte antigens.

The efficacy of particular blocking reagents in preventing organ transplant rejection or GVHD can be assessed using animal models that are predictive of efficacy in humans. Examples of appropriate systems which can be used include allogeneic cardiac

10

15

20

25

30

grafts in rats and xenogeneic pancreatic islet cell grafts in mice, both of which have been used to examine the immunosuppressive effects of CTLA4Ig fusion proteins in vivo as described in Lenschow et al., Science 257:789-792 (1992) and Turka et al., Proc. Natl. Acad. Sci USA, 89:11102-11105 (1992). In addition, murine models of GVHD (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 846-847) can be used to determine the effect of blocking B lymphocyte antigen function in vivo on the development of that disease.

Blocking antigen function may also be therapeutically useful for treating autoimmune diseases. Many autoimmune disorders are the result of inappropriate activation of T cells that are reactive against self tissue and which promote the production of cytokines and autoantibodies involved in the pathology of the diseases. Preventing the activation of autoreactive T cells may reduce or eliminate disease symptoms. Administration of reagents which block costimulation of T cells by disrupting receptor:ligand interactions of B lymphocyte antigens can be used to inhibit T cell activation and prevent production of autoantibodies or T cell-derived cytokines which may be involved in the disease process. Additionally, blocking reagents may induce antigen-specific tolerance of autoreactive T cells which could lead to long-term relief from the disease. The efficacy of blocking reagents in preventing or alleviating autoimmune disorders can be determined using a number of well-characterized animal models of human autoimmune diseases. Examples include murine experimental autoimmune encephalitis, systemic lupus erythmatosis in MRL/lpr/lpr mice or NZB hybrid mice, murine autoimmune collagen arthritis, diabetes mellitus in NOD mice and BB rats, and murine experimental myasthenia gravis (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 840-856).

Upregulation of an antigen (preferably a B lymphocyte antigen function), as a means of up regulating immune responses, may also be useful in therapy. Upregulation of immune responses may be in the form of enhancing an existing immune response or eliciting an initial immune response. For example, enhancing an immune response through stimulating B lymphocyte antigen function may be useful in cases of viral infection. In addition, systemic viral diseases such as influenza, the common cold, and encephalitis might be alleviated by the administration of stimulatory forms of B lymphocyte antigens systemically.

to destaying grant described the result of the same of the same

5

10

15

20

25

30

Alternatively, anti-viral immune responses may be enhanced in an infected patient by removing T cells from the patient, costimulating the T cells in vitro with viral antigen-pulsed APCs either expressing a peptide of the present invention or together with a stimulatory form of a soluble peptide of the present invention and reintroducing the in vitro activated T cells into the patient. Another method of enhancing anti-viral immune responses would be to isolate infected cells from a patient, transfect them with a nucleic acid encoding a protein of the present invention as described herein such that the cells express all or a portion of the protein on their surface, and reintroduce the transfected cells into the patient. The infected cells would now be capable of delivering a costimulatory signal to, and thereby activate, T cells in vivo.

The presence of the peptide of the present invention having the activity of a B lymphocyte antigen(s) on the surface of the tumor cell provides the necessary costimulation signal to T cells to induce a T cell mediated immune response against the transfected tumor cells. In addition, tumor cells which lack MHC class I or MHC class II molecules, or which fail to reexpress sufficient mounts of MHC class I or MHC class II molecules, can be transfected with nucleic acid encoding all or a portion of (e.g., a cytoplasmic-domain truncated portion) of an MHC class I α chain protein and β_2 microglobulin protein or an MHC class II α chain protein and an MHC class II β chain protein to thereby express MHC class I or MHC class II proteins on the cell surface. Expression of the appropriate class I or class II MHC in conjunction with a peptide having the activity of a B lymphocyte antigen (e.g., B7-1, B7-2, B7-3) induces a T cell mediated immune response against the transfected tumor cell. Optionally, a gene encoding an antisense construct which blocks expression of an MHC class Π associated protein, such as the invariant chain, can also be cotransfected with a DNA encoding a peptide having the activity of a B lymphocyte antigen to promote presentation of tumor associated antigens and induce tumor specific immunity. Thus, the induction of a T cell mediated immune response in a human subject may be sufficient to overcome tumor-specific tolerance in the subject.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for thymocyte or splenocyte cytotoxicity include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.

20

25

30

M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., I. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986; Bowmanet al., J. Virology 61:1992-1998; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Brown et al., J. Immunol. 153:3079-3092, 1994.

Assays for T-cell-dependent immunoglobulin responses and isotype switching (which will identify, among others, proteins that modulate T-cell dependent antibody responses and that affect Th1/Th2 profiles) include, without limitation, those described in: Maliszewski, J. Immunol. 144:3028-3033, 1990; and Assays for B cell function: In vitro antibody production, Mond, J. J. and Brunswick, M. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 3.8.1-3.8.16, John Wiley and Sons, Toronto. 1994.

Mixed lymphocyte reaction (MLR) assays (which will identify, among others, proteins that generate predominantly Th1 and CTL responses) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., J. Immunol. 149:3778-3783, 1992.

Dendritic cell-dependent assays (which will identify, among others, proteins expressed by dendritic cells that activate naive T-cells) include, without limitation, those described in: Guery et al., J. Immunol. 134:536-544, 1995; Inaba et al., Journal of Experimental Medicine 173:549-559, 1991; Macatonia et al., Journal of Immunology 154:5071-5079, 1995; Porgador et al., Journal of Experimental Medicine 182:255-260, 1995; Nair et al., Journal of Virology 67:4062-4069, 1993; Huang et al., Science 264:961-965, 1994; Macatonia et al., Journal of Experimental Medicine 169:1255-1264,

10

15

20

25

30

1989; Bhardwaj et al., Journal of Clinical Investigation 94:797-807, 1994; and Inaba et al., Journal of Experimental Medicine 172:631-640, 1990.

Assays for lymphocyte survival/apoptosis (which will identify, among others, proteins that prevent apoptosis after superantigen induction and proteins that regulate lymphocyte homeostasis) include, without limitation, those described in: Darzynkiewicz et al., Cytometry 13:795-808, 1992; Gorczyca et al., Leukemia 7:659-670, 1993; Gorczyca et al., Cancer Research 53:1945-1951, 1993; Itoh et al., Cell 66:233-243, 1991; Zacharchuk, Journal of Immunology 145:4037-4045, 1990; Zamai et al., Cytometry 14:891-897, 1993; Gorczyca et al., International Journal of Oncology 1:639-648, 1992.

Assays for proteins that influence early steps of T-cell commitment and development include, without limitation, those described in: Antica et al., Blood 84:111-117, 1994; Fine et al., Cellular Immunology 155:111-122, 1994; Galy et al., Blood 85:2770-2778, 1995; Toki et al., Proc. Nat. Acad Sci. USA 88:7548-7551, 1991.

6.5. HEMATOPOIESIS REGULATING ACTIVITY

A protein of the present invention may be useful in regulation of hematopoiesis and, consequently, in the treatment of myeloid or lymphoid cell deficiencies. Even marginal biological activity in support of colony forming cells or of factor-dependent cell lines indicates involvement in regulating hematopoiesis, e.g. in supporting the growth and proliferation of erythroid progenitor cells alone or in combination with other cytokines, thereby indicating utility, for example, in treating various anemias or for use in conjunction with irradiation/chemotherapy to stimulate the production of erythroid precursors and/or erythroid cells; in supporting the growth and proliferation of myeloid cells such as granulocytes and monocytes/macrophages (i.e., traditional CSF activity) useful, for example, in conjunction with chemotherapy to prevent or treat consequent myelo-suppression; in supporting the growth and proliferation of megakaryocytes and consequently of platelets thereby allowing prevention or treatment of various platelet disorders such as thrombocytopenia, and generally for use in place of or complimentary to platelet transfusions; and/or in supporting the growth and proliferation of hematopoietic stem cells which are capable of maturing to any and all of the above-mentioned hematopoietic cells and therefore find therapeutic utility in various stem cell disorders (such as those usually treated with transplantation, including, without limitation, aplastic

10

15

20

25

anemia and paroxysmal nocturnal hemoglobinuria), as well as in repopulating the stem cell compartment post irradiation/chemotherapy, either in-vivo or ex-vivo (i.e., in conjunction with bone marrow transplantation or with peripheral progenitor cell transplantation (homologous or heterologous)) as normal cells or genetically manipulated for gene therapy.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for proliferation and differentiation of various hematopoietic lines are cited above.

Assays for embryonic stem cell differentiation (which will identify, among others, proteins that influence embryonic differentiation hematopoiesis) include, without limitation, those described in: Johansson et al. Cellular Biology 15:141-151, 1995; Keller et al., Molecular and Cellular Biology 13:473-486, 1993; McClanahan et al., Blood 81:2903-2915, 1993.

Assays for stem cell survival and differentiation (which will identify, among others, proteins that regulate lympho-hematopoiesis) include, without limitation, those described in: Methylcellulose colony forming assays, Freshney, M. G. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 265-268, Wiley-Liss, Inc., New York, N.Y. 1994; Hirayama et al., Proc. Natl. Acad. Sci. USA 89:5907-5911, 1992; Primitive hematopoietic colony forming cells with high proliferative potential, McNiece, I. K. and Briddell, R. A. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 23-39, Wiley-Liss, Inc., New York, N.Y. 1994; Neben et al., Experimental Hematology 22:353-359, 1994; Cobblestone area forming cell assay, Ploemacher, R. E. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 1-21, Wiley-Liss, Inc., New York, N.Y. 1994; Long term bone marrow cultures in the presence of stromal cells, Spooncer, E., Dexter, M. and Allen, T. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 163-179, Wiley-Liss, Inc., New York, N.Y. 1994; Long term culture initiating cell assay, Sutherland, H. J. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 139-162, Wiley-Liss, Inc., New York, N.Y. 1994.

10

15

20

25

30

6.6. TISSUE GROWTH ACTIVITY

A protein of the present invention also may have utility in compositions used for bone, cartilage, tendon, ligament and/or nerve tissue growth or regeneration, as well as for wound healing and tissue repair and replacement, and in the treatment of burns, incisions and ulcers.

A protein of the present invention, which induces cartilage and/or bone growth in circumstances where bone is not normally formed, has application in the healing of bone fractures and cartilage damage or defects in humans and other animals. Such a preparation employing a protein of the invention may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic resection induced craniofacial defects, and also is useful in cosmetic plastic surgery.

A protein of this invention may also be used in the treatment of periodontal disease, and in other tooth repair processes. Such agents may provide an environment to attract bone-forming cells, stimulate growth of bone-forming cells or induce differentiation of progenitors of bone-forming cells. A protein of the invention may also be useful in the treatment of osteoporosis or osteoarthritis, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or processes of tissue destruction (collagenase activity, osteoclast activity, etc.) mediated by inflammatory processes.

Another category of tissue regeneration activity that may be attributable to the protein of the present invention is tendon/ligament formation. A protein of the present invention, which induces tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or ligament defects in humans and other animals. Such a preparation employing a tendon/ligament-like tissue inducing protein may have prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and in repairing defects to tendon or ligament tissue. De novo tendon/ligament-like tissue formation induced by a composition of the present invention contributes to the repair of congenital, trauma induced, or other tendon or ligament defects of other origin, and is also

useful in cosmetic plastic surgery for attachment or repair of tendons or ligaments. The compositions of the present invention may provide environment to attract tendon- or ligament-forming cells, stimulate growth of tendon- or ligament-forming cells, induce differentiation of progenitors of tendon- or ligament-forming cells, or induce growth of tendon/ligament cells or progenitors ex vivo for return in vivo to effect tissue repair. The compositions of the invention may also be useful in the treatment of tendinitis, carpal tunnel syndrome and other tendon or ligament defects. The compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.

The protein of the present invention may also be useful for proliferation of neural cells and for regeneration of nerve and brain tissue, i.e. for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders, which involve degeneration, death or trauma to neural cells or nerve tissue. More specifically, a protein may be used in the treatment of diseases of the peripheral nervous system, such as peripheral nerve injuries, peripheral neuropathy and localized neuropathies, and central nervous system diseases, such as Alzheimer's, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome. Further conditions which may be treated in accordance with the present invention include mechanical and traumatic disorders, such as spinal cord disorders, head trauma and cerebrovascular diseases such as stroke. Peripheral neuropathies resulting from chemotherapy or other medical therapies may also be treatable using a protein of the invention.

Proteins of the invention may also be useful to promote better or faster closure of non-healing wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds, and the like.

It is expected that a protein of the present invention may also exhibit activity for generation or regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac) and vascular (including vascular endothelium) tissue, or for promoting the growth of cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring to allow normal tissue to regenerate. A protein of the invention may also exhibit angiogenic activity.

10

15

20

25

30

A protein of the present invention may also be useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokine damage.

A protein of the present invention may also be useful for promoting or inhibiting differentiation of tissues described above from precursor tissues or cells; or for inhibiting the growth of tissues described above.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for tissue generation activity include, without limitation, those described in: International Patent Publication No. WO95/16035 (bone, cartilage, tendon); International Patent Publication No. WO95/05846 (nerve, neuronal); International Patent Publication No. WO91/07491 (skin, endothelium).

Assays for wound healing activity include, without limitation, those described in: Winter, Epidermal Wound Healing, pps. 71-112 (Maibach, H. I. and Rovee, D. T., eds.), Year Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J. Invest. Dermatol 71:382-84 (1978).

6.7. ACTIVIN/INHIBIN ACTIVITY

A protein of the present invention may also exhibit activin- or inhibin-related activities. A polynucleotide of the invention may encode a polypeptide exhibiting such characteristics. Inhibins are characterized by their ability to inhibit the release of follicle stimulating hormone (FSH), while activins and are characterized by their ability to stimulate the release of follicle stimulating hormone (FSH). Thus, a protein of the present invention, alone or in heterodimers with a member of the inhibin α -family, may be useful as a contraceptive based on the ability of inhibins to decrease fertility in female mammals and decrease spermatogenesis in male mammals. Administration of sufficient amounts of other inhibins can induce infertility in these mammals. Alternatively, the protein of the invention, as a homodimer or as a heterodimer with other protein subunits of the inhibin- β group, may be useful as a fertility inducing therapeutic, based upon the ability of activin molecules in stimulating FSH release from cells of the anterior pituitary. See, for example, U.S. Pat. No. 4,798,885. A protein of the invention may also be useful for

advancement of the onset of fertility in sexually immature mammals, so as to increase the lifetime reproductive performance of domestic animals such as cows, sheep and pigs.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for activin/inhibin activity include, without limitation, those described in: Vale et al., Endocrinology 91:562-572, 1972; Ling et al., Nature 321:779-782, 1986; Vale et al., Nature 321:776-779, 1986; Mason et al., Nature 318:659-663, 1985; Forage et al., Proc. Natl. Acad. Sci. USA 83:3091-3095, 1986.

6.8. CHEMOTACTIC/CHEMOKINETIC ACTIVITY

A protein of the present invention may have chemotactic or chemokinetic activity (e.g., act as a chemokine) for mammalian cells, including, for example, monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells. A polynucleotide of the invention can encode a polypeptide exhibiting such attributes. Chemotactic and chemokinetic proteins can be used to mobilize or attract a desired cell population to a desired site of action. Chemotactic or chemokinetic proteins provide particular advantages in treatment of wounds and other trauma to tissues, as well as in treatment of localized infections. For example, attraction of lymphocytes, monocytes or neutrophils to tumors or sites of infection may result in improved immune responses against the tumor or infecting agent.

A protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell population. Preferably, the protein or peptide has the ability to directly stimulate directed movement of cells. Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell chemotaxis.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for chemotactic activity (which will identify proteins that induce or prevent chemotaxis) consist of assays that measure the ability of a protein to induce the migration of cells across a membrane as well as the ability of a protein to induce the adhesion of one cell population to another cell population. Suitable assays for movement

15

5

10

20

25

30

10

15

20

25

30

and adhesion include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Marguiles, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 6.12, Measurement of alpha and beta Chemokines 6.12.1-6.12.28); Taub et al. J. Clin. Invest. 95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 1995; Muller et al Eur. J. Immunol. 25:1744-1748; Gruber et al. J. of Immunol. 152:5860-5867, 1994; Johnston et al. J. of Immunol. 153:1762-1768, 1994.

6.9. HEMOSTATIC AND THROMBOLYTIC ACTIVITY

A protein of the invention may also exhibit hemostatic or thrombolytic activity. A polynucleotide of the invention can encode a polypeptide exhibiting such attributes. Such a protein is expected to be useful in treatment of various coagulation disorders (including hereditary disorders, such as hemophilias) or to enhance coagulation and other hemostatic events in treating wounds resulting from trauma, surgery or other causes. A protein of the invention may also be useful for dissolving or inhibiting formation of thromboses and for treatment and prevention of conditions resulting therefrom (such as, for example, infarction of cardiac and central nervous system vessels (e.g., stroke).

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assay for hemostatic and thrombolytic activity include, without limitation, those described in: Linet et al., J. Clin. Pharmacol. 26:131-140, 1986; Burdick et al., Thrombosis Res. 45:413-419, 1987; Humphrey et al., Fibrinolysis 5:71-79 (1991); Schaub, Prostaglandins 35:467-474, 1988.

6.10. RECEPTOR/LIGAND ACTIVITY

A protein of the present invention may also demonstrate activity as receptors, receptor ligands or inhibitors or agonists of receptor/ligand interactions. A polynucleotide of the invention can encode a polypeptide exhibiting such characteristics. Examples of such receptors and ligands include, without limitation, cytokine receptors and their ligands, receptor kinases and their ligands, receptor phosphatases and their ligands, receptors involved in cell-cell interactions and their ligands (including without limitation, cellular adhesion molecules (such as selectins, integrins and their ligands) and

receptor/ligand pairs involved in antigen presentation, antigen recognition and development of cellular and humoral immune responses). Receptors and ligands are also useful for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interaction. A protein of the present invention (including, without limitation, fragments of receptors and ligands) may themselves be useful as inhibitors of receptor/ligand interactions.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for receptor-ligand activity include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 7.28, Measurement of Cellular Adhesion under static conditions 7.28.1-7.28.22), Takai et al., Proc. Natl. Acad. Sci. USA 84:6864-6868, 1987; Bierer et al., J. Exp. Med. 168:1145-1156, 1988; Rosenstein et al., J. Exp. Med. 169:149-160 1989; Stoltenborg et al., J. Immunol. Methods 175:59-68, 1994; Stitt et al., Cell 80:661-670, 1995.

By way of example, the IL-1 Hy2 polypeptides of the invention may be used as a ligand for a cytokine receptor thereby modulating (*i.e.*, enhancing or inhibiting) the biological activity of that receptor. Examples of cytokine receptors that may be used include, but are not limited to, the Interleukin-1 Type I or Type II Receptors. Whether the IL-1 Hy2 polypeptides of the invention exhibit agonist, partial agonist, antagonist, or partial antagonist activity for a particular receptor, such as a cytokine receptor, in a particular cell type can be determined by conventional techniques known to those skilled in the art, such as those described below in sections 6.11.1 and 6.11.2 and in the Examples below. In one embodiment, one or more cells expressing a cytokine receptor (e.g., Interleukin-1 Type I or Type II Receptors) are contacted with the protein of the invention. Examples of cells that may be contacted with the protein of the invention include, but are not limited to, mammalian cells such as fibroblasts and T-cells. Preferably the novel protein of the invention acts as an antagonist for a cytokine receptor (e.g.-the Interleukin-I Receptor) so that the biological activities of that receptor are inhibited.

Studies characterizing drugs or proteins as agonist or antagonist or partial agonists a partial antagonist require the use of other proteins as competing ligands. The polypeptides of the present invention are expected to exhibit an affinity for Interleukin-1 Receptor. Thus, the polypeptides of the present invention may be used, for example, as competitors in assays involving Interleukin-1 Receptors. Alternatively, the polypeptides of the invention may be labelled by being coupled to radioisotopes, colorimetric molecules or a toxin molecules by conventional methods. ("Guide to Protein Purification" Murray P. Deutscher (ed) Methods in Enzymology Vol. 182 (1990) Academic Press, Inc. San Diego) and used in both in vivo and in vitro to bind to the Interleukin-1 Receptor. Examples of radioisotopes include, but are not limited to, fluorescent molecules such as fluorescamine, or rhodamine or other colorimetric molecules. Examples of toxins include, but are not limited, to ricin. By way of example, the proteins coupled to such molecules are useful in studies involving in vivo or in vitro metabolism of the Interleukin-1 Receptor.

6.11 DRUG SCREENING WITH INTERLEUKIN-1 Hy2 POLYPEPTIDES

This invention is particularly useful for screening compounds by using the IL-1 Hy2 polypeptides of the invention, particularly binding fragments, in any of a variety of drug screening techniques. The polypeptides employed in such a test may either be free in solution, affixed to a solid support, borne on a cell surface or located intracellularly. One method of drug screening utilizes eukaryotic or prokaryotic host cells which are stably transformed with recombinant nucleic acids expressing the desired IL-1 Hy2 polypeptide. Drugs are screened against such transformed cells in competitive binding assays. Such cells, either in viable or fixed form, can be used for standard binding assays. One may measure, for example, the formation of complexes between IL-1 Hy2 polypeptides of the invention and the agent being tested or examine the diminution in complex formation between the IL-1 Hy2 polypeptides and an appropriate cell line, which are well known in the art.

10

15

20

25

30

6.11.1 ASSAY FOR ANTI-INTERLEUKIN-1 RECEPTOR ACTIVITY

In one embodiment, the Interleukin-1 receptor antagonist activity of the polypeptides of the invention is determined using a method that involve (1) forming a mixture comprising Interleukin-1, the Interleukin-1 receptor, and the IL-1 Hy2 polypeptides of the invention and/or its agonists and antagonists (or agonist or antagonist drug candidates) and/or antibodies specific for the IL-1 Hy2 polypeptides of the invention; (2) incubating the mixture under conditions whereby, but for the presence of said IL-1 Hy2 polypeptide of the invention and/or its agonists and antagonists (or agonist or antagonist drug candidates) and/or antibodies specific for the IL-1 Hy2 polypeptides of the invention, the Interleukin-1 binds to the Interleukin-1 receptor; and (3) detecting the presence or absence of specific binding of Interleukin-1 to the Interleukin-1 receptor.

6.11.2 ASSAY FOR ANTAGONISTS AND AGONISTS

Human HepG2 cells are incubated at 37 degree(s) C. for 18-24 hours in serum-free Dulbecco's modified Eagle medium. Separate monolayers of cells are incubated in the same medium supplemented with Interleukin-1 at various concentrations and in the same medium supplemented with a IL-1 Hy2 polypeptide of the invention at various concentrations.

Monolayers are rinsed vigorously with isotonic buffer and incubated in (35-S) methionine, 250 mu ci/ml methionine-free medium and pulsed for a period of 15-30 minutes to assess net synthesis. Cell culture fluid is discarded and monolayers are again rinsed and resuspended in cell lysis buffer. The newly synthesized radiolabelled hepatic proteins in these cell lysates are detected by immunoprecipitation, SDS-PAGE and fluorography.

6.12. ANTI-INFLAMMATORY ACTIVITY

Proteins of the present invention may also exhibit anti-inflammatory activity. The anti-inflammatory activity may be achieved by providing a stimulus to cells involved in the inflammatory response, by inhibiting or promoting cell-cell interactions (such as, for example, cell adhesion), by inhibiting or promoting chemotaxis of cells involved in the inflammatory process, inhibiting or promoting cell extravasation, or by stimulating or suppressing production of other factors which more directly inhibit or promote an

10

15

20

25

30

inflammatory response. Proteins exhibiting such activities can be used to treat inflammatory conditions including chronic or acute conditions), including without limitation intimation associated with infection (such as septic shock, sepsis or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine-induced lung injury, inflammatory bowel disease, Crohn's disease or resulting from over production of cytokines such as TNF or IL-1. Proteins of the invention may also be useful to treat anaphylaxis and hypersensitivity to an antigenic substance or material. In particular, the IL-1 Hy2 polypeptides of this invention may be utilized to prevent or treat condition such as, but not limited to, utilized, for example, as part of methods for the prevention and/or treatment of disorders involving sepsis, acute pancreatitis, endotoxic shock, cytokine induced shock, rheumatoid arthritis, chronic inflammatory arthritis, pancreatic cell damage from diabetes mellitus type 1, graft versus host disease, inflammatory bowel disease, inflamation associated with pulmonary disease, other autoimmune disease or inflammatory disease, an antiproliferative agent such as for acute or chronic mylegenous leukemia or in the prevention of premature labor secondary to intrauterine infections.

6.13 MODULATION OF IL-18, IL-12 and IFN-γ RELATED DISORDERS

Administration of IL-1Hy2 polynucleotides, polypeptides and agonists is also expected to be useful for the treatment of IL-18 and/or IL-12 and/or IFN-γ related disorders. IL-1Hy2 inhibits IL-18 and IL-12 activity, including IL-18 and IL-12 induced IFN-γ production.

IL-18 has been found to have a variety of biological activities including the stimulation of activated T cell proliferation, enhancement of NK cell lytic activity, induction of IFNγ secretion, enhancement of Fas ligand expression and function, and stimulation of granulocyte-macrophage colony-stimulating factor (GM-CSF) production by activated T cells. IL-18 has been shown to counteract viral and intracellular infections and suppress tumor formation. However, IL-18 is also involved in the pathogenic progression of chronic inflammatory diseases, including endotoxin-induced shock, liver injury (including endotoxin-induced liver injury, hepatitis, biliary atresia and obesity-related fatty liver) and autoimmune diseases. Other disorders related to IL-18 production

15 13

10

15

20

25

30

include meliodosis, purine nucleoside phosphorylase deficiency, increased susceptibility to Leishmania major and Staphylococcus aureus infection, hemophagocytic lymphohistiocytosis, mononucleosis, viral meningitis/encephalitis, bacterial meningitis/encephalitis and ischemia or ischemia/reperfusion injury.

Inflammation may result from infection with pathogenic organisms (including gram-positive bacteria, gram-negative bacteria, viruses, fungi, and parasites such as protozoa and helminths), transplant rejection (including rejection of solid organs such as kidney, liver, heart, lung or cornea, as well as rejection of bone marrow transplants including graft versus host disease (GVHD)), or from localized chronic or acute autoimmune or allergic reactions. Autoimmune diseases include acute glomerulonephritis; rheumatoid or reactive arthritis; chronic glomerulonephritis; inflammatory bowel diseases such as Crohn's disease, ulcerative colitis and necrotizing enterocolitis; granulocyte transfusion associated syndromes; inflammatory dermatoses such as contact dermatitis, atopic dermatitis, psoriasis; systemic lupus erythematosus (SLE), autoimmune thyroiditis, multiple sclerosis, some forms of diabetes, or any other autoimmune state where attack by the subject's own immune system results in pathologic tissue destruction. Allergic reactions include allergic asthma, chronic bronchitis, allergic rhinitis, acute and delayed hypersensitivity. Systemic inflammatory disease states include inflammation associated with trauma, burns, reperfusion following ischemic events (e.g. thrombotic events in heart, brain, intestines or peripheral vasculature, including myocardial infarction and stroke), sepsis, ARDS or multiple organ dysfunction syndrome. Inflammatory cell recruitment also occurs in atherosclerotic plaques.

Endotoxin activation of the systemic inflammatory response leads to a number of disorders including bacterial and/or endotoxin-related shock, fever, tachycardia, tachypnea, cytokine overstimulation, increased vascular permeability, hypotension, complement activation, disseminated intravascular coagulation, anemia, thrombocytopenia, leukopenia, pulmonary edema, adult respiratory distress syndrome, intestinal ischemia, renal insufficiency and failure, and metabolic acidosis.

Hepatitis represents liver disorders that are characterized by hepatic inflammation and necrosis that can be manifested as an acute or chronic condition. These liver disorders include virus-induced hepatitis such as hepatitis A, hepatitis B, hepatitis C (non-A, non-B hepatitis), hepatitis D, hepatitis E; toxin and drug induced hepatitis such as

Marting of the form of the contraction of the contr

acetaminophohen hepatotoxicity, halothane hepatotoxicity, mehtyldopa hepatoxicity, iaoniazid hepatoxicity, sodium valproate hepatoxicity, phenytion hepatoxicity, chlorpromazine hepatoxicity, amiodarone hepatoxicity, amioidarone hepatoxicity, erythromycin hepatoxicity, oral contraceptive hepatoxicity, 17,α-alkyl-substituted anabolic steroid hepatoxicity and trimethoprim-sulfamethoxazole hepatoxicity; cholestatic hepatitis; alcoholic hepatitis; autoimmune chronic active hepatitis; and T cell mediated hepatitis. Other conditions that cause liver injury include congenital bilary atresia, obesity-related fatty liver and the autosomal recessive disease heamophagocytic lymphohistocytosis (HLH).

IL-18 induced IFN-γ plays a role in liver injury. IFNγ has been shown to mediate LPS-induced liver injury following Propionibacterium acnes infection as described in Tsuji et al. (J. Immunol. 162: 1049-55, 1999). Large number of macrophages and lymphocytes infiltrate the portal area in response to P. acnes infection which results in intrahepatic formation of granulomas. IFNγ knock out mice exhibited less macrophage infiltration and a reduction in the number and size of granulomas. Subsequent treatment with low doses of LPS caused massive hepatic necrosis and increased IL-12, IL-18 and TNF-α serum levels in the normal mice, while the knock out mice exhibited drastic decreases in IL-12, IL-18 and TNF-α serum levels. The addition of IFNγ neutralizing antibody also caused a decrease in IL-18 and IL-12 levels. This model of liver injury indicates that LPS-induced liver injury is associated with increased levels of IL-18, IL-12 and IFN-γ. Currently, a role for IL-1β is not known in this liver injury model. Since IL-1β is known to be induced by LPS, it is possible IL-1β also plays a role in the disorder. Treatment with IL-Ra may modulate the severity of liver injury due to IL-18 induced IFN-γ production and IL-1β.

IL-18 has also been shown to be involved in the immunomediated hepatitis model where treatment with concavalin A induced hepatitis in mice as described by Fiorucci et al. (Gastroenterology 118: 404-21, 2000). In this model, CD+ Tcells and Th1-like cytokines cause Fas mediated liver cell death. Treatment with a nitric oxide derivative of aspirin protected against this cell death by reducing production of IFNγ, IL-18, IL-19 and TNF-α. In addition, a neutralizing antibody to IL-18 caused a decrease in IFNγ production and reduced liver injury induced by conA.

proposite day of the control of the

10

15

20

25

30

HLH is a fatal autosomal recessive disease that manifests in early childhood. This disease is characterized by fever, hepatosplenomegaly, cytopenia and widespread infiltration of vital organs by activated lymphocytes and macrophages. Patients with HLH exhibit elevated serum levels of IL-18. IL-18 plays an important role in the induction of Th1 cells in HLH patients. (Takada et al., Br. J. Haematol. 106: 182-9, 1999).

IL-1 Hy2 inhibits IL-18 induced production of IFN γ . In the models described above, the degree of IL-1 β activity is not known. Since IL-1 β is known to be induced by LPS, it is possible that IL-1 β also play a role in the pathogenicity of these conditions. The presence of the appropriate amount of IL-1Hy2 polynucleotides, polypeptides or other agonists may modulate the severity of the disease states due to both IL-18 induced IFN γ production and IL-1 β .

IL-12 is known to potentiate IFNγ production, and the cytolytic activity of NK cells and cytotoxic T lymphocytes. These immunomodulatory effects have implicated a role for IL-12 in therapies for cancer and infectious disease. However, these same therapeutic effects can also promote autoimmune diseases and chronic inflammatory conditions such as multiple sclerosis, transplant rejection and cytotoxicity.

IL-12 and IFN-γ are involved in the pathogenesis of multiple sclerosis (MS). In the experimental allergic encephalomyelitis animal model (EAE), the demyelinating effect on the central nervous system is carried out similar to that in humans suffering from MS. Currently, IFNβ is used to treat MS. The mechanism of IFNβ treatment may be to decrease the number of IFNγ producing T cells in MS patients. (Rep et al., J. Neuroimmunol. 96:92-100, 1999). In addition, IFNγ production in blood lymphocytes was found to correlate with disability score in MS patients. (Petcreit et al., Mult. Scler. 6: 19-23, 2000). Antibodies against IL-12 were found to prevent superantigen-induced and spontaneous relapses of EAE in mice (Constantineseu et al., J. Immunol. 161: 5097-5104, 1998). All these studies point to the involvement of IL-12 induced IFNγ production in the progression of MS in human patients. Therefore, treatment with IL-1 Hy2 polynucleotides, polypeptides or other agonists to reduce IFNγ production may be an useful therapy for MS patients.

The combination of IL-12 and IL-2 has synergistic anti-tumor activity in vivo. However, in clinical trials the combination resulted in significant toxicity and

mention makes the property of property with the

5

10

15

20

25

30

subsequently shock and mortality. (Cohen, Science 270: 908 1995). In a murine model investigated by Carson et al. (J. Immunol., 162: 4943-5, 1999) determined that the fatal systemic inflammatory response was NK cell dependent but not related to other effector molecules in the system such as IL-1, TNF-α, and IFNγ. IL-1 Hy2 polynucleotides, polypeptides or other agonists is expected to inhibit IL-12 induced IFN-γ production and is expected to inhibit other biological activities of IL-12 such as NK cell cytolytic activity. Inhibition of NK cell activity, through IL-Ra administration, may reduce toxicity resulting from IL-12 antitumor treatment.

The effect of IL-1 Hy2 on IL-12 and/or IL-18 activity may be determined by measuring the biological activities of these cytokines. Both IL-12 and IL-18 are known to induce IFNγ production in T cells. In addition to IFN-γ, the combination of IL-12 and IL-18 increases production of IL-3, IL-6 and TNF. Treatment with IL-1 Hy2 is expected to reduce IFNγ production induced by IL-12 and IL-18. Circulating or local levels of IFNγ in tissue or fluid samples from patients treated with IL-1 Hy2 polynucleotides, polypeptides or other agonists will be an indication of the therapeutic effects of IL-1 Hy2 on the IL-18 and IL-12 related disorders. Tissue samples include tissue samples from an area involved in inflammation or other disease. Fluid samples include, for example, whole blood, plasma, serum, cerebrospinal fluid, synovial fluid, peritoneal fluids (including lavage fluids or exudate), pleural fluids (including lavage fluids or exudate).

Furthermore, IL-12 is known to activate NK cells and to decrease serum IgE levels. These assays may also be used to measure the effectiveness of IL-1 Hy2 treatment for IL-12 related disorders. The NK cell cytolytic activity in patients treated with IL-1 Hy2 polynucleotides, polypeptides or other agonists can be assayed by measuring patient's blood samples ability to lysis colon carcinoma or lymphoma cells in vitro. (Lieberman et al., J. Sur. Res., 50: 410-415, 1992) In addition, the serum levels of IgE from patients treated with IL-1Hy2 can be measured to determine the effectiveness of treatment for IL-12 related disorders. (Kiniwa et al. J. Clin. Invest., 90: 262-66, 1992)

6.14. LEUKEMIAS

Leukemias and related disorders may be treated or prevented by administration of a therapeutic that promotes or inhibits function of the polynucleotides and/or polypeptides

15

20

25

30

of the invention. Such leukemias and related disorders include but are not limited to acute leukemia, acute lymphocytic leukemia, acute myelocytic leukemia, myeloblastic, promyelocytic, myelomonocytic, monocytic, erythroleukemia, chronic leukemia, chronic myelocytic (granulocytic) leukemia and chronic lymphocytic leukemia (for a review of such disorders, see Fishman et al., 1985, Medicine, 2d Ed., J.B. Lippincott Co., Philadelphia).

6.15. NERVOUS SYSTEM DISORDERS

Nervous system disorders, involving cell types which can be tested for efficacy of intervention with compounds that modulate the activity of the polynucleotides and/or polypeptides of the invention, and which can be treated upon thus observing an indication of therapeutic utility, include but are not limited to nervous system injuries, and diseases or disorders which result in either a disconnection of axons, a diminution or degeneration of neurons, or demyelination. Nervous system lesions which may be treated in a patient (including human and non-human mammalian patients) according to the invention include but are not limited to the following lesions of either the central (including spinal cord, brain) or peripheral nervous systems:

- (i) traumatic lesions, including lesions caused by physical injury or associated with surgery, for example, lesions which sever a portion of the nervous system, or compression injuries;
- (ii) ischemic lesions, in which a lack of oxygen in a portion of the nervous system results in neuronal injury or death, including cerebral infarction or ischemia, or spinal cord infarction or ischemia;
- (iii) infectious lesions, in which a portion of the nervous system is destroyed or injured as a result of infection, for example, by an abscess or associated with infection by human immunodeficiency virus, herpes zoster, or herpes simplex virus or with Lyme disease, tuberculosis, syphilis;
- (iv) degenerative lesions, in which a portion of the nervous system is destroyed or injured as a result of a degenerative process including but not limited to degeneration associated with Parkinson's disease, Alzheimer's disease, Huntington's chorea, or amyotrophic lateral sclerosis;

10

15

20

- (v) lesions associated with nutritional diseases or disorders, in which a portion of the nervous system is destroyed or injured by a nutritional disorder or disorder of metabolism including but not limited to, vitamin B12 deficiency, folic acid deficiency, Wernicke disease, tobacco-alcohol amblyopia, Marchiafava-Bignami disease (primary degeneration of the corpus callosum), and alcoholic cerebellar degeneration;
- (vi) neurological lesions associated with systemic diseases including but not limited to diabetes (diabetic neuropathy, Bell's palsy), systemic lupus erythematosus, carcinoma, or sarcoidosis;
- (vii) lesions caused by toxic substances including alcohol, lead, or particular neurotoxins; and
- (viii) demyelinated lesions in which a portion of the nervous system is destroyed or injured by a demyelinating disease including but not limited to multiple sclerosis, human immunodeficiency virus-associated myelopathy, transverse myelopathy or various etiologies, progressive multifocal leukoencephalopathy, and central pontine myelinolysis.

Therapeutics which are useful according to the invention for treatment of a nervous system disorder may be selected by testing for biological activity in promoting the survival or differentiation of neurons. For example, and not by way of limitation, therapeutics which elicit any of the following effects may be useful according to the invention:

- (i) increased survival time of neurons in culture;
 - (ii) increased sprouting of neurons in culture or in vivo;
 - (iii) increased production of a neuron-associated molecule in culture or in vivo,e.g., choline acetyltransferase or acetylcholinesterase with respect to motor neurons; or
 - (iv) decreased symptoms of neuron dysfunction in vivo.
- Such effects may be measured by any method known in the art. In preferred, non-limiting embodiments, increased survival of neurons may be measured by the method set forth in Arakawa et al. (1990, J. Neurosci. 10:3507-3515); increased sprouting of neurons may be detected by methods set forth in Pestronk et al. (1980, Exp. Neurol. 70:65-82) or Brown et al. (1981, Ann. Rev. Neurosci. 4:17-42); increased production of neuron-associated molecules may be measured by bioassay, enzymatic assay, antibody binding, Northern blot assay, etc., depending on the molecule to be measured; and motor neuron dysfunction

10

15

20

25

30

may be measured by assessing the physical manifestation of motor neuron disorder, e.g., weakness, motor neuron conduction velocity, or functional disability.

In a specific embodiments, motor neuron disorders that may be treated according to the invention include but are not limited to disorders such as infarction, infection, exposure to toxin, trauma, surgical damage, degenerative disease or malignancy that may affect motor neurons as well as other components of the nervous system, as well as disorders that selectively affect neurons such as amyotrophic lateral sclerosis, and including but not limited to progressive spinal muscular atrophy, progressive bulbar palsy, primary lateral sclerosis, infantile and juvenile muscular atrophy, progressive bulbar paralysis of childhood (Fazio-Londe syndrome), poliomyelitis and the post polio syndrome, and Hereditary Motorsensory Neuropathy (Charcot-Marie-Tooth Disease).

6.16. OTHER ACTIVITIES

A protein of the invention may also exhibit one or more of the following additional activities or effects: inhibiting the growth, infection or function of, or killing, infectious agents, including, without limitation, bacteria, viruses, fungi and other parasites; effecting (suppressing or enhancing) bodily characteristics, including, without limitation, height, weight, hair color, eye color, skin, fat to lean ratio or other tissue pigmentation, or organ or body part size or shape (such as, for example, breast augmentation or diminution, change in bone form or shape); effecting biorhythms or caricadic cycles or rhythms; effecting the fertility of male or female subjects; effecting the metabolism, catabolism, anabolism, processing, utilization, storage or elimination of dietary fat, lipid, protein, carbohydrate, vitamins, minerals, co-factors or other nutritional factors or component(s); effecting behavioral characteristics, including, without limitation, appetite, libido, stress, cognition (including cognitive disorders), depression (including depressive disorders) and violent behaviors; providing analgesic effects or other pain reducing effects; promoting differentiation and growth of embryonic stem cells in lineages other than hematopoietic lineages; hormonal or endocrine activity; in the case of enzymes, correcting deficiencies of the enzyme and treating deficiency-related diseases; treatment of hyperproliferative disorders (such as, for example, psoriasis); immunoglobulin-like activity (such as, for example, the ability to bind antigens or complement); and the ability to act as an antigen in a vaccine composition to raise an

10

15

20

25

immune response against such protein or another material or entity which is cross-reactive with such protein.

6.17 IDENTIFICATION OF POLYMORPHISMS

The demonstration of polymorphisms, for example the T125C, C184T and A205C polymorphisms illustrated in Example 2 below, makes possible the identification of such polymorphisms in human subjects and the pharmacogenetic use of this information for diagnosis and treatment. Such polymorphisms may be associated with, e.g., differential predisposition or susceptibility to various disease states (such as disorders involving inflammation or immune response) or a differential response to drug administration, and this genetic information can be used to tailor preventive or therapeutic treatment appropriately. For example, the existence of a polymorphism associated with a predisposition to inflammation or autoimmune disease makes possible the diagnosis of this condition in humans by identifying the presence of the polymorphism.

Polymorphisms can be identified in a variety of ways known in the art which all generally involve obtaining a sample from a patient, analyzing DNA from the sample, optionally involving isolation or amplification of the DNA, and identifying the presence of the polymorphism in the DNA. For example, PCR may be used to amplify an appropriate fragment of genomic DNA which may then be sequenced. Alternatively, the DNA may be subjected to allele-specific oligonucleotide hybridization (in which appropriate oligonucleotides are hybridized to the DNA under conditions permitting detection of a single base mismatch) or to a single nucleotide extension assay (in which an oligonucleotide that hybridizes immediately adjacent to the position of the polymorphism is extended with one or more labelled nucleotides). In addition, traditional restriction fragment length polymorphism analysis (using restriction enzymes that provide differential digestion of the genomic DNA depending on the presence or absence of the polymorphism) may be performed.

Alternatively a polymorphism resulting in a change in the amino acid sequence could also be detected by detecting a corresponding change in amino acid sequence of the protein, e.g., by an antibody specific to the variant sequence.

NAMES OF THE PROPERTY OF THE PROPERTY OF

• III I

7. THERAPEUTIC METHODS

The novel IL-1 Hy2 polypeptides (including fragments, analogs and variants) of the invention have numerous applications in a variety of therapeutic methods.

Antagonists and agonist of IL-1 Hy2 polypeptides may also have therapeutic applications in these models. Examples of therapeutic applications include, but are not limited to, those exemplified below.

7.1 SEPSIS

5

10

15

20

25

One embodiment of the invention is the administration of an effective amount of the IL-1 Hy2 polypeptides of the invention or modulators of IL-1 Hy2 polypeptides (such as agonists or antagonists) to individuals that are at a high risk of developing sepsis, or that have developed sepsis. An example of the former category are patients about to undergo surgery. While the mode of administration is not particularly important, parenteral administration is preferred because of the rapid progression of sepsis, and thus, the need to have the inhibitor disseminate quickly throughout the body. Thus, the preferred mode of administration is to deliver an I.V. bolus slightly before, during, or after surgery. The dosage of the IL-1 Hy2 polypeptides of the invention or IL-1 Hy2 modulators will normally be determined by the prescribing physician. It is to be expected that the dosage will vary according to the age, weight and response of the individual patient. Typically, the amount of inhibitor administered per dose will be in the range of about 0.1 to 25 mg/kg of body weight, with the preferred dose being about 0.1 to 10 mg/kg of patient body weight. For parenteral administration, the IL-1 Hy2 polypeptides of the invention or IL-1 Hy2 modulators will be formulated in an injectable form combined with a pharmaceutically acceptable parenteral vehicle. Such vehicles are well known in the art and examples include water, saline, Ringer's solution, dextrose solution, and solutions consisting of small amounts of the human serum albumin. The vehicle may contain minor amounts of additives that maintain the isotonicity and stability of the inhibitor. The preparation of such solutions is within the skill of the art. Typically, the cytokine inhibitor will be formulated in such vehicles at a concentration of about 1-8 mg/ml to about 10 mg/ml.

15

20

25

7.2 ARTHRITIS AND INFLAMMATION

The immunosuppressive effects of the Interleukin-1 inhibitor against rheumatoid arthritis is determined in an experimental animal model system. The experimental model system is adjuvant induced arthritis in rats, and the protocol is described by J. Holoshitz, et at., 1983, Science, 219:56, or by B. Waksman et al., 1963, Int. Arch. Allergy Appl. Immunol., 23:129. Induction of the disease can be caused by a single injection, generally intradermally, of a suspension of killed Mycobacterium tuberculosis in complete Freund's adjuvant (CFA). The route of injection can vary, but rats may be injected at the base of the tail with an adjuvant mixture. The inhibitor is administered in phosphate buffered solution (PBS) at a dose of about 1-5 mg/kg. The control consists of administering PBS only.

The procedure for testing the effects of the Interleukin-1 inhibitor would consist of intradermally injecting killed Mycobacterium tuberculosis in CFA followed by immediately administering the inhibitor and subsequent treatment every other day until day 24. At 14, 15, 18, 20, 22, and 24 days after injection of Mycobacterium CFA, an overall arthritis score may be obtained as described by J. Holoskitz above. An analysis of the data would reveal that the inhibitor would have a dramatic affect on the swelling of the joints as measured by a decrease of the arthritis score.

7.3 DIABETES

Interleukin-1 has been shown to be involved in the destruction of islet cells in diabetes mellitus (DM) (Mandrup-Paulsen, T., K. Bendtzen, J. Nerup, C. A. Dinarello, M. Svenson, and J. H. Nielson [1986] Diabetologia 29:63-67). The IL-1 Hy2 polypeptides of the invention limit lymphocyte and macrophage mediated damage to islet cells in incipient cases of DM identified by disease susceptibility via genetic background and family history. The inflammatory destruction of the pancreatic beta islet cells in such individuals with early DM is reduced by parenterally administering the IL-1 Hy2 polypeptides of the invention or modulators of IL-1 Hy2 polypeptides (such as agonists or antagonists) which have an anti-Interleukin-1 effect in the pancreas.

7.4 ANTI-HYPOTENSIVE ARGININE-FREE FORMULATIONS

The parenteral formulation of the therapeutic regimen is defined as including: about 3-4 g/l isoleucine, about 4-6 g/l leucine, about 3-4 g/l lysine, about 1-2 g/l methionine, about 1-2 g/l phenylalanine, about 2-3 g/l threonine, about 0.5-1.5 g/l tryptophan, about 3-4 g/l valine, about 4-5 g/l alanine, about 1-2 g/l histidine, about 3-4 g/l proline, about 1-2 g/l serine, about 0.25-0.75 g/l tyrosine, about 4-5 g/l glycine and about 2-3 g/l aspartic acid, together in a pharmacologically acceptable excipient. In another preferred embodiment of the described parenteral formulation, the formulation may further include ornithine, most particularly at a concentration of about 1-2 g/l. In still another embodiment of the described parenteral formulation, the formulation may include citrulline, most preferably at a concentration of between about 1 g/l and about 2 g/l. Both citrulline and ornithine may be included in still another embodiment of the formulation, again at the concentrations indicated.

The method includes an arginine-free formulation which comprises the amino acids and concentrations thereof already described herein, together in a pharmacologically acceptable excipient. Again, the formulation may further include ornithine, citrulline, or both, to even further supply physiologically required concentrations of urea cycle substrates in the animal. Most preferably, the formulation is provided as a parenteral formulation.

Another aspect of the method comprises a method for treating chemotherapeutic agent-related hypotension. In a most preferred embodiment, the method comprises monitoring an animal receiving a chemotherapeutic agent for a decrease in systolic blood pressure to less than about 100 mm Hg to detect an animal with systemic hypotension, treating the animal having systemic hypotension with a therapeutic regimen comprising a therapeutically effective amount of an arginine-free formulation sufficient to reduce plasma or serum arginine concentrations administered concurrently with or followed by the administration of a therapeutically effective concentration of an IL-1 Hy2 polypeptide or modulators of IL-1 Hy2 polypeptides (such as agonists or antagonists), and maintaining the animal on the therapeutic regimen until an increase of systolic blood pressure to at least about 100 mm Hg is detectable. Most preferably, the arginine-free formulation is a parenteral formulation.

10

15

20

In a preferred embodiment, the IL-1 Hy2 polypeptides of the invention or modulators of IL-1 Hy2 polypeptides (such as agonists or antagonists) are used in combination with the anti-hypotensive arginine free formulation to treat hypotension in an animal, particularly that hypotension caused by exposure to endotoxin or septic shock.

A patient having a systolic blood pressure of less than about 100 mm Hg will be targeted for the present treatment. Such a patient is to be placed on a continuous feed of an arginine-free formulation which includes a mixture of essential and nonessential amino acids as described in U.S. Patent NO. 5,334,380. The patient is treated concurrently with the interleukin-1 antagonist polypeptides of the invention. Blood samples are to be obtained from the patient and arginine levels in the serum or plasma fraction are determined.

7.5 PHARMACEUTICAL FORMULATIONS AND ROUTES OF ADMINISTRATION

A protein of the present invention (from whatever source derived, including without limitation from recombinant and non-recombinant sources) may be administered to a patient in need, by itself, or in pharmaceutical compositions where it is mixed with suitable carriers or excipient(s) at doses to treat or ameliorate a variety of disorders. Such a composition may also contain (in addition to protein and a carrier) diluents, fillers, salts, buffers, stabilizers, solubilizers, and other materials well known in the art. The term "pharmaceutically acceptable" means a non-toxic material that does not interfere with the effectiveness of the biological activity of the active ingredient(s). The characteristics of the carrier will depend on the route of administration. The pharmaceutical composition of the invention may also contain cytokines, lymphokines, or other hematopoietic factors such as M-CSF, GM-CSF, TNF, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IFN, TNF0, TNF1, TNF2, G-CSF, Meg-CSF, thrombopoietin, stem cell factor, and erythropoietin.

The pharmaceutical composition may further contain other agents which either enhance the activity of the protein or compliment its activity or use in treatment. Such additional factors and/or agents may be included in the pharmaceutical composition to produce a synergistic effect with protein of the invention, or to minimize side effects. Protein that can be administered with IL-1 Hy2 include other IL-1 receptor antagonist

30

25

polypeptides such as IL-1Ra and IL-1 Hyl Conversely, protein of the present invention may be included in formulations of the particular cytokine, lymphokine, other hematopoietic factor, thrombolytic or anti-thrombotic factor, or anti-inflammatory agent to minimize side effects of the cytokine, lymphokine, other hematopoietic factor, thrombolytic or anti-thrombotic factor, or anti-inflammatory agent. A protein of the present invention may be active in multimers (e.g., heterodimers or homodimers) or complexes with itself or other proteins. As a result, pharmaceutical compositions of the invention may comprise a protein of the invention in such multimeric or complexed form.

Techniques for formulation and administration of the compounds of the instant application may be found in "Remington's Pharmaceutical Sciences," Mack Publishing Co., Easton, PA, latest edition. A therapeutically effective dose further refers to that amount of the compound sufficient to result in amelioration of symptoms, e.g., treatment, healing, prevention or amelioration of the relevant medical condition, or an increase in rate of treatment, healing, prevention or amelioration of such conditions. When applied to an individual active ingredient, administered alone, a therapeutically effective dose refers to that ingredient alone. When applied to a combination, a therapeutically effective dose refers to combined amounts of the active ingredients that result in the therapeutic effect, whether administered in combination, serially or simultaneously.

In practicing the method of treatment or use of the present invention, a therapeutically effective amount of protein of the present invention is administered to a mammal having a condition to be treated. Protein of the present invention may be administered in accordance with the method of the invention either alone or in combination with other therapies such as treatments employing cytokines, lymphokines or other hematopoietic factors. When co-administered with one or more cytokines, lymphokines or other hematopoietic factors, protein of the present invention may be administered either simultaneously with the cytokine(s), lymphokine(s), other hematopoietic factor(s), thrombolytic or anti-thrombotic factors, or sequentially. If administered sequentially, the attending physician will decide on the appropriate sequence of administering protein of the present invention in combination with cytokine(s), lymphokine(s), other hematopoietic factor(s), thrombolytic or anti-thrombotic factors.

10

15

20

25

30

7.6. ROUTES OF ADMINISTRATION

Suitable routes of administration may, for example, include oral, rectal, transmucosal, or intestinal administration; parenteral delivery, including intramuscular, subcutaneous, intramedullary injections, as well as intrathecal, direct intraventricular, intravenous, intraperitoneal, intranasal, or intraocular injections. Administration of protein of the present invention used in the pharmaceutical composition or to practice the method of the present invention can be carried out in a variety of conventional ways, such as oral ingestion, inhalation, topical application or cutaneous, subcutaneous, intraperitoneal, parenteral or intravenous injection. Intravenous administration to the patient is preferred.

Alternately, one may administer the compound in a local rather than systemic manner, for example, via injection of the compound directly into a arthritic joints or in fibrotic tissue, often in a depot or sustained release formulation. In order to prevent the scarring process frequently occurring as complication of glaucoma surgery, the compounds may be administered topically, for example, as eye drops. Furthermore, one may administer the drug in a targeted drug delivery system, for example, in a liposome coated with a specific antibody, targeting, for example, arthritic or fibrotic tissue. The liposomes will be targeted to and taken up selectively by the afflicted tissue.

7.7. COMPOSITIONS/FORMULATIONS

Pharmaceutical compositions for use in accordance with the present invention thus may be formulated in a conventional manner using one or more physiologically acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. These pharmaceutical compositions may be manufactured in a manner that is itself known, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or lyophilizing processes. Proper formulation is dependent upon the route of administration chosen. When a therapeutically effective amount of protein of the present invention is administered orally, protein of the present invention will be in the form of a tablet, capsule, powder, solution or elixir. When administered in tablet form, the pharmaceutical composition of the invention may additionally contain a solid carrier such as a gelatin or an adjuvant. The tablet, capsule, and powder contain from about 5 to 95% protein of the present invention, and preferably

10

15

20

25

30

from about 25 to 90% protein of the present invention. When administered in liquid form, a liquid carrier such as water, petroleum, oils of animal or plant origin such as peanut oil, mineral oil, soybean oil, or sesame oil, or synthetic oils may be added. The liquid form of the pharmaceutical composition may further contain physiological saline solution, dextrose or other saccharide solution, or glycols such as ethylene glycol, propylene glycol or polyethylene glycol. When administered in liquid form, the pharmaceutical composition contains from about 0.5 to 90% by weight of protein of the present invention, and preferably from about 1 to 50% protein of the present invention.

When a therapeutically effective amount of protein of the present invention is administered by intravenous, cutaneous or subcutaneous injection, protein of the present invention will be in the form of a pyrogen-free, parenterally acceptable aqueous solution. The preparation of such parenterally acceptable protein solutions, having due regard to pH, isotonicity, stability, and the like, is within the skill in the art. A preferred pharmaceutical composition for intravenous, cutaneous, or subcutaneous injection should contain, in addition to protein of the present invention, an isotonic vehicle such as Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection, Lactated Ringer's Injection, or other vehicle as known in the art. The pharmaceutical composition of the present invention may also contain stabilizers, preservatives, buffers, antioxidants, or other additives known to those of skill in the art. For injection, the agents of the invention may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks's solution, Ringer's solution, or physiological saline buffer. For transmucosal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

For oral administration, the compounds can be formulated readily by combining the active compounds with pharmaceutically acceptable carriers well known in the art. Such carriers enable the compounds of the invention to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions and the like, for oral ingestion by a patient to be treated. Pharmaceutical preparations for oral use can be obtained solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are, in particular, fillers such as sugars, including lactose,

sucrose, mannitol, or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone (PVP). If desired, disintegrating agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate. Dragee cores are provided with suitable coatings. For this purpose, concentrated sugar solutions may be used, which may optionally contain gum arabic, talc, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.

Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol. The push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols. In addition, stabilizers may be added. All formulations for oral administration should be in dosages suitable for such administration. For buccal administration, the compositions may take the form of tablets or lozenges formulated in conventional manner.

For administration by inhalation, the compounds for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebuliser, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol the dosage unit may be determined by providing a valve to deliver a metered amount. Capsules and cartridges of, e.g., gelatin for use in an inhaler or insufflator may be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch. The compounds may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion. Formulations for injection may be presented in unit dosage form, e.g., in ampoules or in multi-dose containers, with an added preservative.

The compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents.

Pharmaceutical formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Optionally, the suspension may also contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions. Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.

The compounds may also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or other glycerides. In addition to the formulations described previously, the compounds may also be formulated as a depot preparation. Such long acting formulations may be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection. Thus, for example, the compounds may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.

A pharmaceutical carrier for the hydrophobic compounds of the invention is a cosolvent system comprising benzyl alcohol, a nonpolar surfactant, a water-miscible organic polymer, and an aqueous phase. The cosolvent system may be the VPD co-solvent system. VPD is a solution of 3% w/v benzyl alcohol, 8% w/v of the nonpolar surfactant polysorbate 80, and 65% w/v polyethylene glycol 300, made up to volume in absolute ethanol. The VPD co-solvent system (VPD:5W) consists of VPD diluted 1:1 with a 5% dextrose in water solution. This co-solvent system dissolves hydrophobic compounds well, and itself produces low toxicity upon systemic administration. Naturally, the proportions of a co-solvent system may be varied considerably without destroying its

protein stabilization may be employed.

solubility and toxicity characteristics. Furthermore, the identity of the co-solvent components may be varied: for example, other low-toxicity nonpolar surfactants may be used instead of polysorbate 80; the fraction size of polyethylene glycol may be varied; other biocompatible polymers may replace polyethylene glycol, e.g. polyvinyl pyrrolidone; and other sugars or polysaccharides may substitute for dextrose. Alternatively, other delivery systems for hydrophobic pharmaceutical compounds may be employed. Liposomes and emulsions are well known examples of delivery vehicles or carriers for hydrophobic drugs. Certain organic solvents such as dimethylsulfoxide also may be employed, although usually at the cost of greater toxicity. Additionally, the compounds may be delivered using a sustained-release system, such as semipermeable matrices of solid hydrophobic polymers containing the therapeutic agent. Various of sustained-release materials have been established and are well known by those skilled in the art. Sustained-release capsules may, depending on their chemical nature, release the compounds for a few weeks up to over 100 days. Depending on the chemical nature and the biological stability of the therapeutic reagent, additional strategies for

The pharmaceutical compositions also may comprise suitable solid or gel phase carriers or excipients. Examples of such carriers or excipients include but are not limited to calcium carbonate, calcium phosphate, various sugars, starches, cellulose derivatives, gelatin, and polymers such as polyethylene glycols. Many of the proteinase inhibiting compounds of the invention may be provided as salts with pharmaceutically compatible counterions. Such pharmaceutically acceptable base addition salts are those salts which retain the biological effectiveness and properties of the free acids and which are obtained by reaction with inorganic or organic bases such as sodium hydroxide, magnesium hydroxide, ammonia, trialkylamine, dialkylamine, monoalkylamine, dibasic amino acids, sodium acetate, potassium benzoate, triethanol amine and the like.

The pharmaceutical composition of the invention may be in the form of a complex of the protein(s) of present invention along with protein or peptide antigens. The protein and/or peptide antigen will deliver a stimulatory signal to both B and T lymphocytes. B lymphocytes will respond to antigen through their surface immunoglobulin receptor. T lymphocytes will respond to antigen through the T cell receptor (TCR) following presentation of the antigen by MHC proteins. MHC and structurally related proteins

10

15

20

25

30

including those encoded by class I and class II MHC genes on host cells will serve to present the peptide antigen(s) to T lymphocytes. The antigen components could also be supplied as purified MHC-peptide complexes alone or with co-stimulatory molecules that can directly signal T cells. Alternatively antibodies able to bind surface immunoglobulin and other molecules on B cells as well as antibodies able to bind the TCR and other molecules on T cells can be combined with the pharmaceutical composition of the invention. The pharmaceutical composition of the invention may be in the form of a liposome in which protein of the present invention is combined, in addition to other pharmaceutically acceptable carriers, with amphipathic agents such as lipids which exist in aggregated form as micelles, insoluble monolayers, liquid crystals, or lamellar layers in aqueous solution. Suitable lipids for liposomal formulation include, without limitation, monoglycerides, diglycerides, sulfatides, lysolecithin, phospholipids, saponin, bile acids, and the like. Preparation of such liposomal formulations is within the level of skill in the art, as disclosed, for example, in U.S. Pat. Nos. 4,235,871; 4,501,728; 4,837,028; and 4,737,323, all of which are incorporated herein by reference.

The amount of protein of the present invention in the pharmaceutical composition of the present invention will depend upon the nature and severity of the condition being treated, and on the nature of prior treatments which the patient has undergone. Ultimately, the attending physician will decide the amount of protein of the present invention with which to treat each individual patient. Initially, the attending physician will administer low doses of protein of the present invention and observe the patient's response. Larger doses of protein of the present invention may be administered until the optimal therapeutic effect is obtained for the patient, and at that point the dosage is not increased further. It is contemplated that the various pharmaceutical compositions used to practice the method of the present invention should contain about $0.01~\mu g$ to about 100~mg(preferably about 0.1 µg to about 10 mg, more preferably about 0.1 µg to about 1 mg) of protein of the present invention per kg body weight. For compositions of the present invention which are useful for bone, cartilage, tendon or ligament regeneration, the therapeutic method includes administering the composition topically, systematically, or locally as an implant or device. When administered, the therapeutic composition for use in this invention is, of course, in a pyrogen-free, physiologically acceptable form. Further, the composition may desirably be encapsulated or injected in a viscous form for delivery

10

15

20

25

30

to the site of bone, cartilage or tissue damage. Topical administration may be suitable for wound healing and tissue repair. Therapeutically useful agents other than a protein of the invention which may also optionally be included in the composition as described above, may alternatively or additionally, be administered simultaneously or sequentially with the composition in the methods of the invention. Preferably for bone and/or cartilage formation, the composition would include a matrix capable of delivering the protein-containing composition to the site of bone and/or cartilage damage, providing a structure for the developing bone and cartilage and optimally capable of being resorbed into the body. Such matrices may be formed of materials presently in use for other implanted medical applications.

The choice of matrix material is based on biocompatibility, biodegradability, mechanical properties, cosmetic appearance and interface properties. The particular application of the compositions will define the appropriate formulation. Potential matrices for the compositions may be biodegradable and chemically defined calcium sulfate, tricalciumphosphate, hydroxyapatite, polylactic acid, polyglycolic acid and polyanhydrides. Other potential materials are biodegradable and biologically well-defined, such as bone or dermal collagen. Further matrices are comprised of pure proteins or extracellular matrix components. Other potential matrices are nonbiodegradable and chemically defined, such as sintered hydroxyapatite, bioglass, aluminates, or other ceramics. Matrices may be comprised of combinations of any of the above mentioned types of material, such as polylactic acid and hydroxyapatite or collagen and tricalciumphosphate. The bioceramics may be altered in composition, such as in calcium-aluminate-phosphate and processing to alter pore size, particle size, particle shape, and biodegradability. Presently preferred is a 50:50 (mole weight) copolymer of lactic acid and glycolic acid in the form of porous particles having diameters ranging from 150 to 800 microns. In some applications, it will be useful to utilize a sequestering agent, such as carboxymethyl cellulose or autologous blood clot, to prevent the protein compositions from disassociating from the matrix.

A preferred family of sequestering agents is cellulosic materials such as alkylcelluloses (including hydroxyalkylcelluloses), including methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropyl-methylcellulose, and carboxymethylcellulose, the most preferred being

cationic salts of carboxymethylcellulose (CMC). Other preferred sequestering agents include hyaluronic acid, sodium alginate, poly(ethylene glycol), polyoxyethylene oxide, carboxyvinyl polymer and poly(vinyl alcohol). The amount of sequestering agent useful herein is 0.5-20 wt %, preferably 1-10 wt % based on total formulation weight, which represents the amount necessary to prevent desorbtion of the protein from the polymer matrix and to provide appropriate handling of the composition, yet not so much that the progenitor cells are prevented from infiltrating the matrix, thereby providing the protein the opportunity to assist the osteogenic activity of the progenitor cells. In further compositions, proteins of the invention may be combined with other agents beneficial to the treatment of the bone and/or cartilage defect, wound, or tissue in question. These agents include various growth factors such as epidermal growth factor (EGF), platelet derived growth factor (PDGF), transforming growth factors (TGF-.alpha. and TGF-.beta.), and insulin-like growth factor (IGF).

The therapeutic compositions are also presently valuable for veterinary applications. Particularly domestic animals and thoroughbred horses, in addition to humans, are desired patients for such treatment with proteins of the present invention. The dosage regimen of a protein-containing pharmaceutical composition to be used in tissue regeneration will be determined by the attending physician considering various factors which modify the action of the proteins, e.g., amount of tissue weight desired to be formed, the site of damage, the condition of the damaged tissue, the size of a wound, type of damaged tissue (e.g., bone), the patient's age, sex, and diet, the severity of any infection, time of administration and other clinical factors. The dosage may vary with the type of matrix used in the reconstitution and with inclusion of other proteins in the pharmaceutical composition. For example, the addition of other known growth factors, such as IGF I (insulin like growth factor I), to the final composition, may also effect the dosage. Progress can be monitored by periodic assessment of tissue/bone growth and/or repair, for example, X-rays, histomorphometric determinations and tetracycline labeling.

Polynucleotides of the present invention can also be used for gene therapy. Such polynucleotides can be introduced either in vivo or ex vivo into cells for expression in a mammalian subject. Polynucleotides of the invention may also be administered by other known methods for introduction of nucleic acid into a cell or organism (including, without limitation, in the form of viral vectors or naked DNA). Cells may also be cultured

15

20

25

30

ex vivo in the presence of proteins of the present invention in order to proliferate or to produce a desired effect on or activity in such cells. Treated cells can then be introduced in vivo for therapeutic purposes.

5 7.8. EFFECTIVE DOSAGE

Pharmaceutical compositions suitable for use in the present invention include compositions wherein the active ingredients are contained in an effective amount to achieve its intended purpose. More specifically, a therapeutically effective amount means an amount effective to prevent development of or to alleviate the existing symptoms of the subject being treated. Determination of the effective amounts is well within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein. For any compound used in the method of the invention, the therapeutically effective dose can be estimated initially from cell culture assays. For example, a dose can be formulated in animal models to achieve a circulating concentration range that includes the IC₅₀ as determined in cell culture (i.e., the concentration of the test compound which achieves a half-maximal inhibition of the C-proteinase activity). Such information can be used to more accurately determine useful doses in humans.

A therapeutically effective dose refers to that amount of the compound that results in amelioration of symptoms or a prolongation of survival in a patient. Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD₅₀ (the dose lethal to 50% of the population) and the ED₅₀ (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio between LD₅₀ and ED₅₀. Compounds which exhibit high therapeutic indices are preferred. The data obtained from these cell culture assays and animal studies can be used in formulating a range of dosage for use in human. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED₅₀ with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. The exact formulation, route of administration and dosage can be chosen by the individual physician in view of the patient's condition. See, e.g., Fingl et al., 1975, in "The Pharmacological Basis of Therapeutics", Ch. 1 p.1.Dosage amount and

15

20

25

interval may be adjusted individually to provide plasma levels of the active moiety which are sufficient to maintain the C-proteinase inhibiting effects, or minimal effective concentration (MEC). The MEC will vary for each compound but can be estimated from in vitro data; for example, the concentration necessary to achieve 50-90% inhibition of the C-proteinase using the assays described herein. Dosages necessary to achieve the MEC will depend on individual characteristics and route of administration. However, HPLC assays or bioassays can be used to determine plasma concentrations.

Dosage intervals can also be determined using MEC value. Compounds should be administered using a regimen which maintains plasma levels above the MEC for 10-90% of the time, preferably between 30-90% and most preferably between 50-90%. In cases of local administration or selective uptake, the effective local concentration of the drug may not be related to plasma concentration.

An exemplary dosage regimen for the human IL-1 Hy2 polypeptides of the invention will be in the range of about 0.01 to 100 mg/kg of body weight daily, with the preferred dose being about 0.1 to 25 mg/kg of patient body weight daily, varying in adults and children. Dosing may be once daily, or equivalent doses may be delivered at longer or shorter intervals.

The amount of composition administered will, of course, be dependent on the subject being treated, on the subject's age and weight, the severity of the affliction, the manner of administration and the judgment of the prescribing physician.

7.9. PACKAGING

The compositions may, if desired, be presented in a pack or dispenser device which may contain one or more unit dosage forms containing the active ingredient. The pack may, for example, comprise metal or plastic foil, such as a blister pack. The pack or dispenser device may be accompanied by instructions for administration. Compositions comprising a compound of the invention formulated in a compatible pharmaceutical carrier may also be prepared, placed in an appropriate container, and labelled for treatment of an indicated condition.

10

15

20

8. ANTIBODIES

Another aspect of the invention is an antibody that specifically binds the polypeptide of the invention. Such antibodies can be either monoclonal or polyclonal antibodies, as well fragments thereof and humanized forms or fully human forms, such as those produced in transgenic animals. The invention further provides a hybridoma that produces an antibody according to the invention. Antibodies of the invention are useful for detection and/or purification of the polypeptides of the invention.

Protein of the invention may also be used to immunize animals to obtain polyclonal and monoclonal antibodies which specifically react with the protein. Such antibodies may be obtained using either the entire protein or fragments thereof as an immunogen. The peptide immunogens additionally may contain a cysteine residue at the carboxyl terminus, and are conjugated to a hapten such as keyhole limpet hemocyanin (KLH). Methods for synthesizing such peptides are known in the art, for example, as in R. P. Merrifield, J. Amer. Chem. Soc. 85, 2149-2154 (1963); J. L. Krstenansky, et al., FEBS Lett. 211, 10 (1987). Monoclonal antibodies binding to the protein of the invention may be useful diagnostic agents for the immunodetection of the protein. Neutralizing monoclonal antibodies binding to the protein may also be useful therapeutics for both conditions associated with the protein and also in the treatment of some forms of cancer where abnormal expression of the protein is involved. In the case of cancerous cells or leukemic cells, neutralizing monoclonal antibodies against the protein may be useful in detecting and preventing the metastatic spread of the cancerous cells, which may be mediated by the protein. In general, techniques for preparing polyclonal and monoclonal antibodies as well as hybridomas capable of producing the desired antibody are well known in the art (Campbell, A.M., Monoclonal Antibodies Technology: Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1984); St. Groth et al., J. Immunol. 35:1-21 (1990); Kohler and Milstein, Nature 256:495-497 (1975)), the trioma technique, the human B-cell hybridoma technique (Kozbor et al., Immunology Today 4:72 (1983); Cole et al., in Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc. (1985), pp. 77-96).

Any animal (mouse, rabbit, etc.) which is known to produce antibodies can be immunized with a peptide or polypeptide of the invention. Methods for immunization are well known in the art. Such methods include subcutaneous or intraperitoneal injection of

30

25

the polypeptide. One skilled in the art will recognize that the amount of the protein encoded by the ORF of the present invention used for immunization will vary based on the animal which is immunized, the antigenicity of the peptide and the site of injection. The protein that is used as an immunogen may be modified or administered in an adjuvant in order to increase the protein's antigenicity. Methods of increasing the antigenicity of a protein are well known in the art and include, but are not limited to, coupling the antigen with a heterologous protein (such as globulin or β -galactosidase) or through the inclusion of an adjuvant during immunization.

For monoclonal antibodies, spleen cells from the immunized animals are removed, fused with myeloma cells, such as SP2/0-Ag14 myeloma cells, and allowed to become monoclonal antibody producing hybridoma cells. Any one of a number of methods well known in the art can be used to identify the hybridoma cell which produces an antibody with the desired characteristics. These include screening the hybridomas with an ELISA assay, western blot analysis, or radioimmunoassay (Lutz et al., Exp. Cell Research. 175:109-124 (1988)).

Hybridomas secreting the desired antibodies are cloned and the class and subclass is determined using procedures known in the art (Campbell, A.M., Monoclonal Antibody Technology: Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1984)). Techniques described for the production of single chain antibodies (U.S. Patent 4,946,778) can be adapted to produce single chain antibodies to proteins of the present invention.

For polyclonal antibodies, antibody containing antiserum is isolated from the immunized animal and is screened for the presence of antibodies with the desired specificity using one of the above-described procedures. The present invention further provides the above-described antibodies in delectably labeled form. Antibodies can be delectably labeled through the use of radioisotopes, affinity labels (such as biotin, avidin, etc.), enzymatic labels (such as horseradish peroxidase, alkaline phosphatase, etc.) fluorescent labels (such as FITC or rhodamine, etc.), paramagnetic atoms, etc. Procedures for accomplishing such labeling are well-known in the art, for example, see (Sternberger, L.A. et al., J. Histochem. Cytochem. 18:315 (1970); Bayer, E.A. et al., Meth. Enzym. 62:308 (1979); Engval, E. et al., Immunol. 109:129 (1972); Goding, J.W. J. Immunol. Meth. 13:215 (1976)).

10

15

20

25

30

The labeled antibodies of the present invention can be used for in vitro, in vivo, and in situ assays to identify cells or tissues in which a fragment of the polypeptide of interest is expressed. The antibodies may also be used directly in therapies or other diagnostics. The present invention further provides the above-described antibodies immobilized on a solid support. Examples of such solid supports include plastics such as polycarbonate, complex carbohydrates such as agarose and sepharose, acrylic resins and such as polyacrylamide and latex beads. Techniques for coupling antibodies to such solid supports are well known in the art (Weir, D.M. et al., "Handbook of Experimental Immunology" 4th Ed., Blackwell Scientific Publications, Oxford, England, Chapter 10 (1986); Jacoby, W.D. et al., Meth. Enzym. 34 Academic Press. N.Y. (1974)). The immobilized antibodies of the present invention can be used for in vitro, in vivo, and in situ assays as well as for immuno-affinity purification of the proteins of the present invention.

The three-dimensional structural analysis of IL-1 Hy2 (described in Example 14) demonstrates the IL-1 Hy2 residues involved in IL-1 receptor interactions. Antibodies that specifically bind to these receptor interacting residues are preferred antagonists for IL-1 Hy2 activity. These antibodies will reduce IL-1 Hy2 binding to an IL-1 receptor and thereby inhibit IL-1 Hy2 activity.

9. COMPUTER READABLE SEQUENCES AND STRUCTURAL COORDINATES

According to one aspect of this invention, a nucleotide sequence, amino acid sequence or three-dimensional structure of the present invention can be recorded on computer readable media. A three-dimensional structure may be represented or displayed using structural coordinates of atoms of amino acids within amino acid sequences of the present invention (including mutant or variant amino acid sequences), particularly amino acids involved in binding to IL-1 receptor or other receptors or IL-1 receptor accessory protein, as well as amino acids involved in other IL-1Hy2 functions.

As used herein, "computer readable media" or "machine readable storage medium" refers to any medium which can be read and accessed directly by a computer. The term "data storage material" refers to any material on which data can be physically stored. Such media include, but are not limited to: magnetic storage media, such as

10

15

20

25

30

floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media. The term "machine readable data" refers to a group of one or more characters, including numbers, representing basic elements of information that can be processed by a computer. A skilled artisan can readily appreciate how any of the presently known computer readable media can be used to create a manufacture comprising a computer readable medium having recorded thereon a nucleotide sequence, amino acid sequence or structural coordinates of the present invention that can be used to render a three-dimensional structure of a polypeptide.

As used herein, "recorded" refers to a process for storing information on computer readable medium. A skilled artisan can readily adopt any of the presently known methods for recording information on computer readable medium to generate manufactures comprising the sequence or structure information of the present invention. A variety of data storage structures are available to a skilled artisan for creating a computer readable medium having recorded thereon sequence or structure information of the present invention. The choice of the data storage structure will generally be based on the means chosen to access the stored information. In addition, a variety of data processor programs and formats can be used to store the sequence or structure information of the present invention on computer readable medium. The sequence information can be represented in a word processing text file, formatted in commercially-available software such as WordPerfect and Microsoft Word, or represented in the form of an ASCII file, stored in a database application, such as DB2, Sybase, Oracle, or the like. A skilled artisan can readily adapt any number of dataprocessor structuring formats (e.g. text file or database) in order to obtain computer readable medium having recorded thereon the sequence or structure information of the present invention.

As used herein, "a computer-based system" refers to the hardware means, software means, and data storage means used to analyze the nucleotide sequence information of the present invention. The minimum hardware means of the computer-based systems of the present invention comprises a central processing unit (CPU), input means, output means, and data storage means. A skilled artisan can readily appreciate that any one of the currently available computer-based systems are suitable for use in the present invention. As stated above, the computer-based systems of the present invention comprise a data

storage means having stored therein sequence or structure information of the present invention and the necessary hardware means and software means for supporting and implementing a search means. As used herein, "data storage means" refers to memory which can store sequence or structure information of the present invention, or a memory access means which can access manufactures having recorded thereon the sequence or structure information of the present invention.

Input means can be implemented in a variety of ways. Machine-readable data of this invention may be inputted via the use of a modem or modems connected by a telephone line or dedicated data line. Alternatively or additionally, the input means may comprise CD-ROM drives or disk drives. In conjunction with a display terminal, a keyboard may also be used as an input device. Output means may similarly be implemented by conventional devices. By way of example, output hardware may include CRT display terminal for displaying a graphical representation of important functional residues of the invention using a computer program as described herein. Output means might also include a printer, so that hard copy output may be produced, or a disk drive to store system output for later use.

In operation, the CPU coordinates the use of the various input and output devices, coordinates data accesses from data storage means including working memory, and determines the sequence of data processing steps. A number of programs may be used to process the machine-readable data of the invention, to form or display a sequence or a three-dimensional structure or representation, or to carry out computational methods of sequence comparison or drug discovery.

For example, by providing the nucleotide sequence of SEQ ID NOS: 1, 12 or 14 or a representative fragment thereof, or a nucleotide sequence at least 99.9% identical to SEQ ID NOS: 1, 12 or 14 in computer readable form, a skilled artisan can routinely access the sequence information for a variety of purposes. Computer software is publicly available which allows a skilled artisan to access sequence information provided in a computer readable medium. The examples which follow demonstrate how software which implements the BLAST (Altschul et al., J. Mol. Biol. 215:403-410 (1990)) and BLAZE (Brutlag et al., Comp. Chem. 17:203-207 (1993)) search algorithms on a Sybase system is used to identify open reading frames (ORFs) within a nucleic acid sequence. Such ORFs may be protein encoding fragments and may be useful in producing

10

15

20

25

30

commercially important proteins such as enzymes used in fermentation reactions and in the production of commercially useful metabolites.

As used herein, "search means" refers to one or more programs which are implemented on the computer-based system to compare a target sequence or target structural motif with the sequence information stored within the data storage means. Search means are used to identify fragments or regions of a known sequence which match a particular target sequence or target motif. A variety of known algorithms are disclosed publicly and a variety of commercially available software for conducting search means are and can be used in the computer-based systems of the present invention. Examples of such software includes, but is not limited to, MacPattern (EMBL), BLASTN and BLASTA (NPOLYPEPTIDEIA). A skilled artisan can readily recognize that any one of the available algorithms or implementing software packages for conducting homology searches can be adapted for use in the present computer-based systems. As used herein, a "target sequence" can be any nucleic acid or amino acid sequence of six or more nucleotides or two or more amino acids. A skilled artisan can readily recognize that the longer a target sequence is, the less likely a target sequence will be present as a random occurrence in the database. The most preferred sequence length of a target sequence is from about 10 to 100 amino acids or from about 30 to 300 nucleotide residues. However, it is well recognized that searches for commercially important fragments, such as sequence fragments involved in gene expression and protein processing, may be of shorter length.

As used herein, "a target structural motif," or "target motif," refers to any rationally selected sequence or combination of sequences in which the sequence(s) are chosen based on a three-dimensional configuration which is formed upon the folding of the target motif. There are a variety of target motifs known in the art. Protein target motifs include, but are not limited to, enzyme active sites and signal sequences. Nucleic acid target motifs include, but are not limited to, promoter sequences, hairpin structures and inducible expression elements (protein binding sequences).

Computational methods of drug discovery may include computational evaluation of a three-dimensional structure for its ability to associate with moieties of chemical compounds. This evaluation may include performing a fitting operation between the structure or a portion thereof and one or more moieties of a chemical compound, and

thereby qualitatively or quantitatively judging the proximity and/or extent of interaction between the three-dimensional structure and the chemical moiety(ies). Interaction may take place through, e.g., non-covalent interactions such as hydrogen bonding, van der Waals interactions, hydrophobic interactions and electrostatic interactions, or through covalent bonding. When the structure is displayed in a graphical three-dimensional representation on a computer screen, this allows visual inspection of the structure, as well as visual inspection of the structure's association with chemical moieties.

Specialized computer programs may be used to assist in a process of selecting chemical moieties or fragments of chemical compounds for further evaluation. These include: 1. GRID (P. J. Goodford, "A Computational Procedure for Determining Energetically Favorable Binding Sites on Biologically Important Macromolecules", J. Med. Chem., 28, pp. 849-857 (1985)). GRID is available from Oxford University, Oxford, UK. 2. MCSS (A. Miranker et al., "Functionality Maps of Binding Sites: A Multiple Copy Simultaneous Search Method." Proteins: Structure, Function and Genetics, 11, pp. 29-34 (1991)). MCSS is available from Molecular Simulations, San Diego, Calif. 3. AUTODOCK (D. S. Goodsell et al., "Automated Docking of Substrates to Proteins by Simulated Annealing", Proteins: Structure, Function, and Genetics, 8, pp. 195-202 (1990)). AUTODOCK is available from Scripps Research Institute, La Jolla, Calif. 4. DOCK (I. D. Kuntz et al., "A Geometric Approach to Macromolecule-Ligand Interactions", J. Mol. Biol., 161, pp. 269-288 (1982)). DOCK is available from University of California, San Francisco, Calif.

Assembly of individual chemical moieties or fragments can be assisted by using programs including: 1. CAVEAT (P. A. Bartlett et al, "CAVEAT: A Program to Facilitate the Structure-Derived Design of Biologically Active Molecules", in Molecular Recognition in Chemical and Biological Problems", Special Pub., Royal Chem. Soc., 78, pp. 182-196 (1989); G. Lauri and P. A. Bartlett, "CAVEAT: a Program to Facilitate the Design of Organic Molecules", J. Comput. Aided Mol. Des., 8, pp. 51-66 (1994)). CAVEAT is available from the University of California, Berkeley, Calif. 2. 3D Database systems such as ISIS (MDL Information Systems, San Leandro, Calif.). This area is reviewed in Y. C. Martin, "3D Database Searching in Drug Design", J. Med. Chem., 35, pp. 2145-2154 (1992). 3. HOOK (M. B. Eisen et al, "HOOK: A Program for Finding Novel Molecular Architectures that Satisfy the Chemical and Steric Requirements of a

10

15

20

25

30

Macromolecule Binding Site", Proteins: Struct., Funct., Genet., 19, pp. 199-221 (1994). HOOK is available from Molecular Simulations, San Diego, Calif.

Computer programs that assist in designing a chemical compound that potentially interacts with a three-dimensional structure as a whole or "de novo" using either an empty binding site or optionally including some portion(s) of a known modulator(s) include: 1. LUDI (H.-J. Bohm, "The Computer Program LUDI: A New Method for the De Novo Design of Enzyme Inhibitors", J. Comp. Aid. Molec. Design, 6, pp. 61-78 (1992)). LUDI is available from Molecular Simulations Incorporated, San Diego, Calif. 2. LEGEND (Y. Nishibata et al., Tetrahedron, 47, p. 8985 (1991)). LEGEND is available from Molecular Simulations Incorporated, San Diego, Calif. 3. LeapFrog (available from Tripos Associates, St. Louis, Mo.). 4. SPROUT (V. Gillet et al, "SPROUT: A Program for Structure Generation)", J. Comput. Aided Mol. Design, 7, pp. 127-153 (1993)). SPROUT is available from the University of Leeds, UK.

Other molecular modeling techniques may also be employed in accordance with this invention [see, e.g., N. C. Cohen et al., "Molecular Modeling Software and Methods for Medicinal Chemistry", J. Med. Chem., 33, pp. 883-894 (1990); see also, M. A. Navia and M. A. Murcko, "The Use of Structural Information in Drug Design", Current Opinions in Structural Biology, 2, pp. 202-210 (1992); L. M. Balbes et al., "A Perspective of Modern Methods in Computer-Aided Drug Design", in Reviews in Computational Chemistry, Vol. 5, K. B. Lipkowitz and D. B. Boyd, Eds., VCH, New York, pp. 337-380 (1994); see also, W. C. Guida, "Software For Structure-Based Drug Design", Curr. Opin. Struct. Biology,, 4, pp. 777-781 (1994)].

Binding affinity may be tested and optimized by computational evaluation, e.g. by minimizing the energy between the bound and free states of the three-dimensional structure (e.g., a small deformation energy of binding, preferably not greater than about 10 kcal/mole and more preferably not greater than 7 kcal/mole).

Specific computer software is available in the art to evaluate compound deformation energy and electrostatic interactions. Examples of programs designed for such uses include: Gaussian 94, revision C (M. J. Frisch, Gaussian, Inc., Pittsburgh, Pa.); AMBER, version 4.1 (P. A. Kollman, University of California at San Francisco); QUANTA/CHARMM (Molecular Simulations, Inc., San Diego, Calif.); Insight II/Discover (Molecular Simulations, Inc., San Diego, Calif.); DelPhi (Molecular

20

30

5

Simulations, Inc., San Diego, Calif.); and AMSOL (Quantum Chemistry Program Exchange, Indiana University). These programs may be implemented, for instance, using a Silicon Graphics workstation with "IMPACT" graphics. Other hardware systems and software packages will be known to those skilled in the art.

Such computational drug design may include computer-based screening of small molecule databases for chemical moieties or chemical compounds that can bind in whole, or in part, to the desired three-dimensional structure. In this screening, the quality of fit of such entities to the binding site may be judged either by shape complementarity or by estimated interaction energy [E. C. Meng et al., J. Comp. Chem., 13, pp. 505-524 (1992)].

10 10. TRIPLE HELIX FORMATION

In addition, the fragments of the present invention, as broadly described, can be used to control gene expression through triple helix formation or antisense DNA or RNA, both of which methods are based on the binding of a polynucleotide sequence to DNA or RNA. Polynucleotides suitable for use in these methods are usually 20 to 40 bases in length and are designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 15241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense - Olmno, J. Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). Triple helix- formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated to be effective in model systems. Information contained in the sequences of the present invention is necessary for the design of an antisense or triple helix oligonucleotide.

25 11. DIAGNOSTIC ASSAYS AND KITS

The present invention further provides methods to identify the presence or expression of one of the ORFs of the present invention, or homolog thereof, in a test sample, using a nucleic acid probe or antibodies of the present invention.

In general, methods for detecting a polynucleotide of the invention can comprise contacting a sample with a compound that binds to and forms a complex with the

10

15

20

25

30

polynucleotide for a period sufficient to form the complex, and detecting the complex, so that if a complex is detected, a polynucleotide of the invention is detected in the sample. Such methods can also comprise contacting a sample under stringent hybridization conditions with nucleic acid primers that anneal to a polynucleotide of the invention under such conditions, and amplifying annealed polynucleotides, so that if a polynucleotide is amplified, a polynucleotide of the invention is detected in the sample.

In general, methods for detecting a polypeptide of the invention can comprise contacting a sample with a compound that binds to and forms a complex with the polypeptide for a period sufficient to form the complex, and detecting the complex, so that if a complex is detected, a polypeptide of the invention is detected in the sample. In detail, such methods comprise incubating a test sample with one or more of the antibodies or one or more of nucleic acid probes of the present invention and assaying for binding of the nucleic acid probes or antibodies to components within the test sample.

Conditions for incubating a nucleic acid probe or antibody with a test sample vary. Incubation conditions depend on the format employed in the assay, the detection methods employed, and the type and nature of the nucleic acid probe or antibody used in the assay. One skilled in the art will recognize that any one of the commonly available hybridization, amplification or immunological assay formats can readily be adapted to employ the nucleic acid probes or antibodies of the present invention. Examples of such assays can be found in Chard, T., An Introduction to Radioimmunoassay and Related Techniques, Elsevier Science Publishers, Amsterdam, The Netherlands (1986); Bullock, G.R. et al., Techniques in Immunocytochemistry, Academic Press, Orlando, FL Vol. 1 (1982), Vol. 2 (1983), Vol. 3 (1985); Tijssen, P., Practice and Theory of immunoassays: Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1985). The test samples of the present invention include cells, protein or membrane extracts of cells, or biological fluids such as sputum, blood, serum, plasma, or urine. The test sample used in the above-described method will vary based on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed. Methods for preparing protein extracts or membrane extracts of cells are well known in the art and can be readily be adapted in order to obtain a sample which is compatible with the system utilized.

10

15

20

25

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the assays of the present invention. Specifically, the invention provides a compartment kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the probes or antibodies of the present invention; and (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of a bound probe or antibody.

In detail, a compartment kit includes any kit in which reagents are contained in separate containers. Such containers include small glass containers, plastic containers or strips of plastic or paper. Such containers allows one to efficiently transfer reagents from one compartment to another compartment such that the samples and reagents are not cross-contaminated, and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another. Such containers will include a container which will accept the test sample, a container which contains the antibodies used in the assay, containers which contain wash reagents (such as phosphate buffered saline, Tris-buffers, etc.), and containers which contain the reagents used to detect the bound antibody or probe. Types of detection reagents include labeled nucleic acid probes, labeled secondary antibodies, or in the alternative, if the primary antibody is labeled, the enzymatic, or antibody binding reagents which are capable of reacting with the labeled antibody. One skilled in the art will readily recognize that the disclosed probes and antibodies of the present invention can be readily incorporated into one of the established kit formats which are well known in the art.

12. MEDICAL IMAGING

The novel IL-1 Hy2 polypeptides of the invention are useful in medical imaging, e.g., imaging the site of infection, inflammation, and other sites having Interleukin-1 receptor antagonist receptor molecules. See, e.g., Kunkel et al., U.S. Pat. NO. 5,413,778. Such methods involve chemical attachment of a labelling agent, administration of the labelled IL-1 Hy2 polypeptide to a subject in a pharmaceutically acceptable carrier, and imaging the labelled IL-1 Hy2 polypeptide *in vivo* at the target site.

13. SCREENING ASSAYS

Using the isolated proteins and polynucleotides of the invention, the present invention further provides methods of obtaining and identifying agents which bind to a polyneptide encoded by the ORF from a polynucleotide with a sequence of SEQ ID NOS: 1, 12 or 14 to a specific domain of the polypeptide encoded by the nucleic acid, or to a nucleic acid with a sequence of SEQ ID NOS: 1, 12 or 14. In detail, said method comprises the steps of:

- (a) contacting an agent with an isolated protein encoded by an ORF of the present invention, or nucleic acid of the invention; and
 - (b) determining whether the agent binds to said protein or said nucleic acid.

In general, therefore, such methods for identifying compounds that bind to a polynucleotide of the invention can comprise contacting a compound with a polynucleotide of the invention for a time sufficient to form a polynucleotide/compound complex, and detecting the complex, so that if a polynucleotide/compound complex is detected, a compound that binds to a polynucleotide of the invention is identified.

Likewise, in general, therefore, such methods for identifying compounds that bind to a polypeptide of the invention can comprise contacting a compound with a polypeptide of the invention for a time sufficient to form a polypeptide/compound complex, and detecting the complex, so that if a polypeptide/compound complex is detected, a compound that binds to a polynucleotide of the invention is identified.

Methods for identifying compounds that bind to a polypeptide of the invention can also comprise contacting a compound with a polypeptide of the invention in a cell for a time sufficient to form a polypeptide/compound complex, wherein the complex drives expression of a receptor gene sequence in the cell, and detecting the complex by detecting reporter gene sequence expression, so that if a polypeptide/compound complex is detected, a compound that binds a polypeptide of the invention is identified.

Compounds identified via such methods can include compounds which modulate the activity of a polypeptide of the invention (that is, increase or decrease its activity, relative to activity observed in the absence of the compound). Alternatively, compounds identified via such methods can include compounds which modulate the expression of a polynucleotide of the invention (that is, increase or decrease expression relative to expression levels observed in the absence of the compound). Compounds, such as

15

5

10

20

25

30

10

15

20

25

30

compounds identified via the methods of the invention, can be tested using standard assays well known to those of skill in the art for their ability to modulate activity/expression.

The agents screened in the above assay can be, but are not limited to, peptides, carbohydrates, vitamin derivatives, or other pharmaceutical agents. The agents can be selected and screened at random or rationally selected or designed using protein modeling techniques.

For random screening, agents such as peptides, carbohydrates, pharmaceutical agents and the like are selected at random and are assayed for their ability to bind to the protein encoded by the ORF of the present invention. Alternatively, agents may be rationally selected or designed. As used herein, an agent is said to be "rationally selected or designed" when the agent is chosen based on the configuration of the particular protein. For example, one skilled in the art can readily adapt currently available procedures to generate peptides, pharmaceutical agents and the like capable of binding to a specific peptide sequence in order to generate rationally designed antipeptide peptides, for example see Hurby et al., Application of Synthetic Peptides: Antisense Peptides," In Synthetic Peptides, A User's Guide, W.H. Freeman, NY (1992), pp. 289-307, and Kaspczak et al., Biochemistry 28:9230-8 (1989), or pharmaceutical agents, or the like.

In addition to the foregoing, one class of agents of the present invention, as broadly described, can be used to control gene expression through binding to one of the ORFs or EMFs of the present invention. As described above, such agents can be randomly screened or rationally designed/selected. Targeting the ORF or EMF allows a skilled artisan to design sequence specific or element specific agents, modulating the expression of either a single ORF or multiple ORFs which rely on the same EMF for expression control. One class of DNA binding agents are agents which contain base residues which hybridize or form a triple helix formation by binding to DNA or RNA. Such agents can be based on the classic phosphodiester, ribonucleic acid backbone, or can be a variety of sulfhydryl or polymeric derivatives which have base attachment capacity.

Agents suitable for use in these methods usually contain 20 to 40 bases and are designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense -

10

15

20

25

30

Okano, J. Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). Triple helix- formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated to be effective in model systems. Information contained in the sequences of the present invention is necessary for the design of an antisense or triple helix oligonucleotide and other DNA binding agents. Agents which bind to a protein encoded by one of the ORFs of the present invention can be used as a diagnostic agent, in the control of bacterial infection by modulating the activity of the protein encoded by the ORF. Agents which bind to a protein encoded by one of the ORFs of the present invention can be formulated using known techniques to generate a pharmaceutical composition.

14. USE OF NUCLEIC ACIDS AS PROBES

Another aspect of the subject invention is to provide for polypeptide-specific nucleic acid hybridization probes capable of hybridizing with naturally occurring nucleotide sequences. The hybridization probes of the subject invention may be derived from the nucleotide sequence of the SEQ ID NOS: 1, 12 or 14. Because the corresponding gene is only expressed in a limited number of tissues, especially adult tissues, a hybridization probe derived from SEQ ID NOS: 1, 12 or 14 can be used as an indicator of the presence of RNA of cell type of such a tissue in a sample.

Any suitable hybridization technique can be employed, such as, for example, in situ hybridization. PCR as described US Patent Nos 4,683,195 and 4,965,188 provides additional uses for oligonucleotides based upon the nucleotide sequences. Such probes used in PCR may be of recombinant origin, may be chemically synthesized, or a mixture of both. The probe will comprise a discrete nucleotide sequence for the detection of identical sequences or a degenerate pool of possible sequences for identification of closely related genomic sequences.

Other means for producing specific hybridization probes for nucleic acids include the cloning of nucleic acid sequences into vectors for the production of mRNA probes. Such vectors are known in the art and are commercially available and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA

10

15

20

25

30

polymerase as T7 or SP6 RNA polymerase and the appropriate radioactively labeled nucleotides. The nucleotide sequences may be used to construct hybridization probes for mapping their respective genomic sequences. The nucleotide sequence provided herein may be mapped to a chromosome or specific regions of a chromosome using well known genetic and/or chromosomal mapping techniques. These techniques include in situ hybridization, linkage analysis against known chromosomal markers, hybridization screening with libraries or flow-sorted chromosomal preparations specific to known chromosomes, and the like. The technique of fluorescent in situ hybridization of chromosome spreads has been described, among other places, in Verma et al (1988) Human Chromosomes: A Manual of Basic Techniques, Pergamon Press, New York NY.

Fluorescent in situ hybridization of chromosomal preparations and other physical chromosome mapping techniques may be correlated with additional genetic map data. Examples of genetic map data can be found in the 1994 Genome Issue of Science (265:1981f). Correlation between the location of a nucleic acid on a physical chromosomal map and a specific disease (or predisposition to a specific disease) may help delimit the region of DNA associated with that genetic disease. The nucleotide sequences of the subject invention may be used to detect differences in gene sequences between normal, carrier or affected individuals. The nucleotide sequence may be used to produce purified polypeptides using well known methods of recombinant DNA technology. Among the many publications that teach methods for the expression of genes after they have been isolated is Goeddel (1990) Gene Expression Technology, Methods and Enzymology, Vol 185, Academic Press, San Diego. Polypeptides may be expressed in a variety of host cells, either prokaryotic or eukaryotic. Host cells may be from the same species from which a particular polypeptide nucleotide sequence was isolated or from a different species. Advantages of producing polypeptides by recombinant DNA technology include obtaining adequate amounts of the protein for purification and the availability of simplified purification procedures.

14.1 Preparation of Sequencing Chips and Arrays

A basic example is using 6-mers attached to 50 micron surfaces to give a chip with dimensions of 3 x 3 mm which can be combined to give an array of 20 x 20 cm.

Another example is using 9-mer oligonucleotides attached to 10 x 10 microns surface to

10

15

20

25

30

create a 9-mer chip, with dimensions of 5 x 5 mm. 4000 units of such chips may be used to create a 30 x 30 cm array. In an array in which 4,000 to 16,000 oligochips are arranged into a square array. A plate, or collection of tubes, as also depicted, may be packaged with the array as part of the sequencing kit.

The arrays may be separated physically from each other or by hydrophobic surfaces. One possible way to utilize the hydrophobic strip separation is to use technology such as the Iso-Grid Microbiology System produced by QA Laboratories, Toronto, Canada.

Hydrophobic grid membrane filters (HGMF) have been in use in analytical food microbiology for about a decade where they exhibit unique attractions of extended numerical range and automated counting of colonies. One commercially-available grid is ISO-GRIDTM from QA Laboratories Ltd. (Toronto, Canada) which consists of a square (60 x 60 cm) of polysulfone polymer (Gelman Tuffryn HT-450, 0.45u pore size) on which is printed a black hydrophobic ink grid consisting of 1600 (40 x 40) square cells. HGMF have previously been inoculated with bacterial suspensions by vacuum filtration and incubated on the differential or selective media of choice.

Because the microbial growth is confined to grid cells of known position and size on the membrane, the HGMF functions more like an MPN apparatus than a conventional plate or membrane filter. Peterkin *et al.* (1987) reported that these HGMFs can be used to propagate and store genomic libraries when used with a HGMF replicator. One such instrument replicates growth from each of the 1600 cells of the ISO-GRID and enables many copies of the master HGMF to be made (Peterkin *et al.*, 1987).

Sharpe *et al.* (1989) also used ISO-GRID HGMF form QA Laboratories and an automated HGMF counter (MI-100 Interpreter) and RP-100 Replicator. They reported a technique for maintaining and screening many microbial cultures.

Peterkin and colleagues later described a method for screening DNA probes using the hydrophobic grid-membrane filter (Peterkin *et al.*, 1989). These authors reported methods for effective colony hybridization directly on HGMFs. Previously, poor results had been obtained due to the low DNA binding capacity of the epoxysulfone polymer on which the HGMFs are printed. However, Peterkin *et al.* (1989) reported that the binding of DNA to the surface of the membrane was improved by treating the replicated and incubated HGMF with polyethyleneimine, a polycation, prior to contact with DNA. Although this

and appropriately that the state of the state of the state of the state of

and the same of the

10

15

20

25

30

early work uses cellular DNA attachment, and has a different objective to the present invention, the methodology described may be readily adapted for Format 3 SBH.

In order to identify useful sequences rapidly, Peterkin *et al.* (1989) used radiolabeled plasmid DNA from various clones and tested its specificity against the DNA on the prepared HGMFs. In this way, DNA from recombinant plasmids was rapidly screened by colony hybridization against 100 organisms on HGMF replicates which can be easily and reproducibly prepared.

Manipulation with small (2-3 mm) chips, and parallel execution of thousands of the reactions. The solution of the invention is to keep the chips and the probes in the corresponding arrays. In one example, chips containing 250,000 9-mers are synthesized on a silicon wafer in the form of 8 x 8 mM plates (15 uM/oligonucleotide, Pease et al., 1994) arrayed in 8 x 12 format (96 chips) with a 1 mM groove in between. Probes are added either by multichannel pipette or pin array, one probe on one chip. To score all 4000 6-mers, 42 chip arrays have to be used, either using different ones, or by reusing one set of chip arrays several times.

In the above case, using the earlier nomenclature of the application, F=9; P=6; and F+P=15. Chips may have probes of formula BxNn, where x is a number of specified bases B; and n is a number of non-specified bases, so that x=4 to 10 and n=1 to 4. To achieve more efficient hybridization, and to avoid potential influence of any support oligonucleotides, the specified bases can be surrounded by unspecified bases, thus represented by a formula such as (N)nBx(N)m.

14.2 Preparation of Support Bound Oligonucleotides

Oligonucleotides, i.e., small nucleic acid segments, may be readily prepared by, for example, directly synthesizing the oligonucleotide by chemical means, as is commonly practiced using an automated oligonucleotide synthesizer.

Support bound oligonucleotides may be prepared by any of the methods known to those of skill in the art using any suitable support such as glass, polystyrene or Teflon. One strategy is to precisely spot oligonucleotides synthesized by standard synthesizers.

Immobilization can be achieved using passive adsorption (Inouye & Hondo, 1990); using UV light (Nagata *et al.*, 1985; Dahlen *et al.*, 1987; Morriey & Collins, 1989) or by covalent

accelerated that is the first of the first

as with the a tour

10

15

20

25

30

binding of base modified DNA (Keller et al., 1988; 1989); all references being specifically incorporated herein.

Another strategy that may be employed is the use of the strong biotin-streptavidin interaction as a linker. For example, Broude *et al.* (1994) describe the use of Biotinylated probes, although these are duplex probes, that are immobilized on streptavidin-coated magnetic beads. Streptavidin-coated beads may be purchased from Dynal, Oslo. Of course, this same linking chemistry is applicable to coating any surface with streptavidin. Biotinylated probes may be purchased from various sources, such as, e.g., Operon Technologies (Alameda, CA).

Nunc Laboratories (Naperville, IL) is also selling suitable material that could be used. Nunc Laboratories have developed a method by which DNA can be covalently bound to the microwell surface termed Covalink NH. CovaLink NH is a polystyrene surface grafted with secondary amino groups (>NH) that serve as bridge-heads for further covalent coupling. CovaLink Modules may be purchased from Nunc Laboratories. DNA molecules may be bound to CovaLink exclusively at the 5'-end by a phosphoramidate bond, allowing immobilization of more than 1 pmol of DNA (Rasmussen *et al.*, 1991).

The use of CovaLink NH strips for covalent binding of DNA molecules at the 5'-end has been described (Rasmussen et al., 1991). In this technology, a phosphoramidate bond is employed (Chu et al., 1983). This is beneficial as immobilization using only a single covalent bond is preferred. The phosphoramidate bond joins the DNA to the CovaLink NH secondary amino groups that are positioned at the end of spacer arms covalently grafted onto the polystyrene surface through a 2 nm long spacer arm. To link an oligonucleotide to CovaLink NH via an phosphoramidate bond, the oligonucleotide terminus must have a 5'-end phosphate group. It is, perhaps, even possible for biotin to be covalently bound to CovaLink and then streptavidin used to bind the probes.

More specifically, the linkage method includes dissolving DNA in water (7.5 ng/ul) and denaturing for 10 min. at 95°C and cooling on ice for 10 min. Ice-cold 0.1 M 1-methylimidazole, pH 7.0 (1-MeIm₇), is then added to a final concentration of 10 mM 1-MeIm₇. A ss DNA solution is then dispensed into CovaLink NH strips (75 ul/well) standing on ice.

Carbodiimide 0.2 M 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC), dissolved in 10 mM 1-MeIm₇, is made fresh and 25 ul added per well. The strips are

THE PROPERTY OF THE PARTY OF TH

10

15

20

25

30

incubated for 5 hours at 50°C. After incubation the strips are washed using, e.g., Nunc-Immuno Wash; first the wells are washed 3 times, then they are soaked with washing solution for 5 min., and finally they are washed 3 times (where in the washing solution is 0.4 N NaOH, 0.25% SDS heated to 50°C).

It is contemplated that a further suitable method for use with the present invention is that described in PCT Patent Application WO 90/03382 (Southern & Maskos), incorporated herein by reference. This method of preparing an oligonucleotide bound to a support involves attaching a nucleoside 3'-reagent through the phosphate group by a covalent phosphodiester link to aliphatic hydroxyl groups carried by the support. The oligonucleotide is then synthesized on the supported nucleoside and protecting groups removed from the synthetic oligonucleotide chain under standard conditions that do not cleave the oligonucleotide from the support. Suitable reagents include nucleoside phosphoramidite and nucleoside hydrogen phosphorate.

An on-chip strategy for the preparation of DNA probe for the preparation of DNA probe arrays may be employed. For example, addressable laser-activated photodeprotection may be employed in the chemical synthesis of oligonucleotides directly on a glass surface, as described by Fodor *et al.* (1991), incorporated herein by reference. Probes may also be immobilized on nylon supports as described by Van Ness *et al.* (1991); or linked to Teflon using the method of Duncan & Cavalier (1988); all references being specifically incorporated herein.

To link an oligonucleotide to a nylon support, as described by Van Ness *et al.* (1991), requires activation of the nylon surface via alkylation and selective activation of the 5'-amine of oligonucleotides with cyanuric chloride.

One particular way to prepare support bound oligonucleotides is to utilize the light-generated synthesis described by Pease *et al.*, (1994, incorporated herein by reference). These authors used current photolithographic techniques to generate arrays of immobilized oligonucleotide probes (DNA chips). These methods, in which light is used to direct the synthesis of oligonucleotide probes in high-density, miniaturized arrays, utilize photolabile 5'-protected *N*-acyl-deoxynucleoside phosphoramidites, surface linker chemistry and versatile combinatorial synthesis strategies. A matrix of 256 spatially defined oligonucleotide probes may be generated in this manner and then used in the advantageous Format 3 sequencing, as described herein.

AND REPORT OF THE PERSON OF THE PERSON PROPERTY AND AND ADDRESS OF THE PERSON.

and the REST. III IF A not come

14.3 Preparation of Nucleic Acid Fragments

The nucleic acids to be sequenced may be obtained from any appropriate source, such as cDNAs, genomic DNA, chromosomal DNA, microdissected chromosome bands, cosmid or YAC inserts, and RNA, including mRNA without any amplification steps. For example, Sambrook *et al.* (1989) describes three protocols for the isolation of high molecular weight DNA from mammalian cells (p. 9.14-9.23).

DNA fragments may be prepared as clones in M13, plasmid or lambda vectors and/or prepared directly from genomic DNA or cDNA by PCR or other amplification methods. Samples may be prepared or dispensed in multiwell plates. About 100-1000 ng of DNA samples may be prepared in 2-500 ml of final volume.

The nucleic acids would then be fragmented by any of the methods known to those of skill in the art including, for example, using restriction enzymes as described at 9.24-9.28 of Sambrook *et al.* (1989), shearing by ultrasound and NaOH treatment.

Low pressure shearing is also appropriate, as described by Schriefer *et al.* (1990, incorporated herein by reference). In this method, DNA samples are passed through a small French pressure cell at a variety of low to intermediate pressures. A lever device allows controlled application of low to intermediate pressures to the cell. The results of these studies indicate that low-pressure shearing is a useful alternative to sonic and enzymatic DNA fragmentation methods.

One particularly suitable way for fragmenting DNA is contemplated to be that using the two base recognition endonuclease, *Cvi*JI, described by Fitzgerald *et al.* (1992). These authors described an approach for the rapid fragmentation and fractionation of DNA into particular sizes that they contemplated to be suitable for shotgun cloning and sequencing. The present inventor envisions that this will also be particularly useful for generating random, but relatively small, fragments of DNA for use in the present sequencing technology.

The restriction endonuclease *Cvi*JI normally cleaves the recognition sequence PuGCPy between the G and C to leave blunt ends. Atypical reaction conditions, which alter the specificity of this enzyme (*Cvi*JI**), yield a quasi-random distribution of DNA fragments form the small molecule pUC19 (2688 base pairs). Fitzgerald *et al.* (1992) quantitatively evaluated the randomness of this fragmentation strategy, using a *Cvi*JI** digest of pUC19 that was size fractionated by a rapid gel filtration method and directly

20

5

10

15

30

25

10

15

20

25

ligated, without end repair, to a lac Z minus M13 cloning vector. Sequence analysis of 76 clones showed that *Cvi*JI** restricts pyGCPy and PuGCPu, in addition to PuGCPy sites, and that new sequence data is accumulated at a rate consistent with random fragmentation.

As reported in the literature, advantages of this approach compared to sonication and agarose gel fractionation include: smaller amounts of DNA are required (0.2-0.5 ug instead of 2-5 ug); and fewer steps are involved (no preligation, end repair, chemical extraction, or agarose gel electrophoresis and elution are needed). These advantages are also proposed to be of use when preparing DNA for sequencing by Format 3.

Irrespective of the manner in which the nucleic acid fragments are obtained or prepared, it is important to denature the DNA to give single stranded pieces available for hybridization. This is achieved by incubating the DNA solution for 2-5 minutes at 80-90°C. The solution is then cooled quickly to 2°C to prevent renaturation of the DNA fragments before they are contacted with the chip. Phosphate groups must also be removed from genomic DNA by methods known in the art.

14.4 Preparation of DNA Arrays

Arrays may be prepared by spotting DNA samples on a support such as a nylon membrane. Spotting may be performed by using arrays of metal pins (the positions of which correspond to an array of wells in a microtiter plate) to repeated by transfer of about 20 nl of a DNA solution to a nylon membrane. By offset printing, a density of dots higher than the density of the wells is achieved. One to 25 dots may be accommodated in 1 mm², depending on the type of label used. By avoiding spotting in some preselected number of rows and columns, separate subsets (subarrays) may be formed. Samples in one subarray may be the same genomic segment of DNA (or the same gene) from different individuals, or may be different, overlapped genomic clones. Each of the subarrays may represent replica spotting of the same samples. In one example, a selected gene segment may be amplified from 64 patients. For each patient, the amplified gene segment may be in one 96-well plate (all 96 wells containing the same sample). A plate for each of the 64 patients is prepared. By using a 96-pin device, all samples may be spotted on one 8 x 12 cm membrane. Subarrays may contain 64 samples, one from each patient. Where the 96 subarrays are identical, the dot span may be 1 mm² and there may be a 1 mm space between subarrays.

30

Manufacture and the substitute of the sales

Another approach is to use membranes or plates (available from NUNC, Naperville, Illinois) which may be partitioned by physical spacers e.g. a plastic grid molded over the membrane, the grid being similar to the sort of membrane applied to the bottom of multiwell plates, or hydrophobic strips. A fixed physical spacer is not preferred for imaging by exposure to flat phosphor-storage screens or x-ray films.

14.5 Sequence Comparisons

Preferred identity and/or similarity are designed to give the largest match between the sequences tested. Methods to determine identity and similarity are codified in publicly available computer programs including, but are not limited to, the GCG program package, including GAP (Devereux, J., et al., Nucleic Acids Research 12(1):387 (1984); Genetics Computer Group, University of Wisconsin, Madison, WI), BLASTP, BLASTN, BLASTX, and FASTA (Atschul, S.F. et al., J. Molec. Biol. 215:403-410 (1990). The BLAST X program is publicly available from the National Center for Biotechnology Information (NCBI) and other sources (BLAST Manual, Altschul, S., et al. NCB NLM NIH Bethesda, MD 20894; Altschul, S., et al., J. Mol. Biol. 215:403-410 (1990). The preferred computer program is FASTA version 3, specifically the FASTy program within the FASTA program package. Another preferred algorithm is the well known Smith Waterman algorithm which can also be used to determine identity.

Sequences can be compared to sequences in GenBank using a search algorithm developed by Applied Biosystems and incorporated into the INHERIT™ 670 Sequence Analysis System. In this algorithm, Pattern Specification Language (developed by TRW Inc., Los Angeles, CA) is used to determine regions of homology. The three parameters that determine how the sequence comparisons run are window size, window offset, and error tolerance. Using a combination of these three parameters, the DNA database can be searched for sequences containing regions of homology to the query sequence, and the appropriate sequences scored with an initial value. Subsequently, these homologous regions are examined using dot matrix homology plots to distinguish regions of homology from chance matches. Smith-Waterman alignments can be used to display the results of the homology search. Peptide and protein sequence homologies can be ascertained using the INHERIT™ 670 Sequence Analysis System in a way similar to that used in DNA sequence homologies. Pattern Specification Language and parameter windows are used to search

10

15

20

25

30

protein databases for sequences containing regions of homology that were scored with an initial value. Dot-matrix homology plots can be examined to distinguish regions of significant homology from chance matches.

Alternatively, BLAST, which stands for Basic Local Alignment Search Tool, is used to search for local sequence alignments (Altschul SF (1993) J Mol Evol 36:290-300; Altschul, SF et al (1990) J Mol Biol 215:403-10). BLAST produces alignments of both nucleotide and amino acid sequences to determine sequence similarity. Because of the local nature of the alignments, BLAST is especially useful in determining exact matches or in identifying homologs. Whereas it is ideal for matches which do not contain gaps, it is inappropriate for performing motif-style searching. The fundamental unit of BLAST algorithm output is the High-scoring Segment Pair (HSP). An HSP consists of two sequence fragments of arbitrary but equal lengths whose alignment is locally maximal and for which the alignment score meets or exceeds a threshold or cutoff score set by the user. The BLAST approach is to look for HSPs between a query sequence and a database sequence, to evaluate the statistical significance of any matches found, and to report only those matches which satisfy the user-selected threshold of significance. The parameter E establishes the statistically significant threshold for reporting database sequence matches. E is interpreted as the upper bound of the expected frequency of chance occurrence of an HSP (or set of HSPs) within the context of the entire database search.

15. GENE THERAPY

Mutations in the polynucleotides of the invention gene may result in loss of normal function of the encoded protein. The invention thus provides gene therapy to restore normal activity of the polypeptides of the invention; or to treat disease states involving polypeptides of the invention. Delivery of a functional genes encoding polypeptides of the invention to appropriate cells is effected *ex vivo*, *in situ*, or *in vivo* by use of vectors, and more particularly viral vectors (e.g., adenovirus, adeno-associated virus, or a retrovirus), or ex vivo by use of physical DNA transfer methods (e.g., liposomes or chemical treatments). See, for example, Anderson, Nature, supplement to vol. 392, no. 6679, pp.25-20 (1998). For additional reviews of gene therapy technology see Friedmann, Science, 244: 1275-1281 (1989); Verma, Scientific American: 68-84 (1990); and Miller, Nature, 357: 455-460 (1992). Introduction of any one of the nucleotides of the present invention or a gene

10

15

20

25

30

encoding the polypeptides of the present invention can also be accomplished with extrachromosomal substrates (transient expression) or artificial chromosomes (stable expression). Cells may also be cultured *ex vivo* in the presence of proteins of the present invention in order to proliferate or to produce a desired effect on or activity in such cells. Treated cells can then be introduced in vivo for therapeutic purposes. Alternatively, it is contemplated that in other human disease states, preventing the expression of or inhibiting the activity of polypeptides of the invention will be useful in treating the disease states. It is contemplated that antisense therapy or gene therapy could be applied to negatively regulate the expression of polypeptides of the invention.

Other methods inhibiting expression of a protein include the introduction of antisense molecules to the nucleic acids of the present invention, their complements, or their translated RNA sequences, by methods known in the art, the removal of the nucleic acids of the present invention such as using targeted deletion methods, or the insertion of a negative regulatory element such as a silencer, which is tissue specific. Further, the polypeptides of the present invention can be inhibited by the introduction of antisense molecules that hybridize to nucleic acids that encode for the polypeptides of the present invention and by the removal of a gene that encode for the polypeptides of the present invention.

The present invention still further provides cells genetically engineered *in vivo* to express the polynucleotides of the invention, wherein such polynucleotides are in operative association with a regulatory sequence heterologous to the host cell which drives expression of the polynucleotides in the cell. These methods can be used to increase or decrease the expression of the polynucleotides of the present invention.

Knowledge of DNA sequences provided by the invention allows for modification of cells to permit, increase, or decrease, expression of endogenous polypeptide. Cells can be modified (e.g., by homologous recombination) to provide increased polypeptide expression by replacing, in whole or in part, the naturally occurring promoter with all or part of a heterologous promoter so that the cells express the protein at higher levels. The heterologous promoter is inserted in such a manner that it is operatively linked to the desired protein encoding sequences. See, for example, PCT International Publication No. WO 94/12650, PCT International Publication No. WO 92/20808, and PCT International Publication No. WO 91/09955. It is also contemplated that, in addition to heterologous promoter DNA, amplifiable marker DNA (e.g., ada, dhfr, and the multifunctional CAD gene

paranthe homen con the the things of the thi

cold and an experience of the state of the state of

which encodes carbamyl phosphate synthase, aspartate transcarbamylase, and dihydroorotase) and/or intron DNA may be inserted along with the heterologous promoter DNA. If linked to the desired protein coding sequence, amplification of the marker DNA by standard selection methods results in co-amplification of the desired protein coding sequences in the cells.

In another embodiment of the present invention, cells and tissues may be engineered to express an endogenous gene comprising the polynucleotides of the invention under the control of inducible regulatory elements, in which case the regulatory sequences of the endogenous gene may be replaced by homologous recombination. As described herein, gene targeting can be used to replace a gene's existing regulatory region with a regulatory sequence isolated from a different gene or a novel regulatory sequence synthesized by genetic engineering methods. Such regulatory sequences may be comprised of promoters, enhancers, scaffold-attachment regions, negative regulatory elements, transcriptional initiation sites, regulatory protein binding sites or combinations of said sequences.

Alternatively, sequences which affect the structure or stability of the RNA or protein produced may be replaced, removed, added, or otherwise modified by targeting. These sequence include polyadenylation signals, mRNA stability elements, splice sites, leader sequences for enhancing or modifying transport or secretion properties of the protein, or other sequences which alter or improve the function or stability of protein or RNA molecules.

The targeting event may be a simple insertion of the regulatory sequence, placing the gene under the control of the new regulatory sequence, e.g., inserting a new promoter or enhancer or both upstream of a gene. Alternatively, the targeting event may be a simple deletion of a regulatory element, such as the deletion of a tissue-specific negative regulatory element. Alternatively, the targeting event may replace an existing element; for example, a tissue-specific enhancer can be replaced by an enhancer that has broader or different cell-type specificity than the naturally occurring elements. Here, the naturally occurring sequences are deleted and new sequences are added. In all cases, the identification of the targeting event may be facilitated by the use of one or more selectable marker genes that are contiguous with the targeting DNA, allowing for the selection of cells in which the exogenous DNA has integrated into the cell genome. The identification of the targeting event may also be facilitated by the use of one or more marker genes exhibiting the property

HE AN ALE CHESTED IN THE TANK OF THE THE

10

15

20

25

30

of negative selection, such that the negatively selectable marker is linked to the exogenous DNA, but configured such that the negatively selectable marker flanks the targeting sequence, and such that a correct homologous recombination event with sequences in the host cell genome does not result in the stable integration of the negatively selectable marker.

Markers useful for this purpose include the Hernes Simpley Virus thymidine kinase (TK)

Markers useful for this purpose include the Herpes Simplex Virus thymidine kinase (TK) gene or the bacterial xanthine-guanine phosphoribosyl-transferase (gpt) gene.

The gene targeting or gene activation techniques which can be used in accordance with this aspect of the invention are more particularly described in U.S. Patent No. 5,272,071 to Chappel; U.S. Patent No. 5,578,461 to Sherwin et al.; International Application No. PCT/US92/09627 (WO93/09222) by Selden et al.; and International Application No. PCT/US90/06436 (WO91/06667) by Skoultchi et al., each of which is incorporated by reference herein in its entirety.

16. TRANSGENIC ANIMALS

In preferred methods to determine biological functions of the polypeptides of the invention in vivo, one or more genes provided by the invention are either over expressed or inactivated in the germ line of animals using homologous recombination [Capecchi, Science 244:1288-1292 (1989)]. Animals in which the gene is over expressed, under the regulatory control of exogenous or endogenous promoter elements, are known as transgenic animals. Animals in which an endogenous gene has been inactivated by homologous recombination are referred to as "knockout" animals. Knockout animals, preferably non-human mammals, can be prepared as described in U.S. Patent No. 5,557,032, incorporated herein by reference. Transgenic animals are useful to determine the roles polypeptides of the invention play in biological processes, and preferably in disease states. Transgenic animals are useful as model systems to identify compounds that modulate lipid metabolism. Transgenic animals, preferably non-human mammals, are produced using methods as described in U.S. Patent No 5,489,743 and PCT Publication No. WO94/28122, incorporated herein by reference.

Transgenic animals can be prepared wherein all or part of a polynucleotides of the invention promoter is either activated or inactivated to alter the level of expression of the polypeptides of the invention. Inactivation can be carried out using homologous recombination methods described above. Activation can be achieved by supplementing or even replacing the homologous promoter to provid for increased protein expression. The

homologous promoter can be supplemented by insertion of one or more heterologous enhancer elements known to confer promoter activation in a particular tissue.

17. THREE-DIMENSIONAL STRUCTURAL ANALYSIS

The predicted three-dimensional structure of IL-1Hy2, generated by the GeneAtlasTM program (MSI) (as described in Example 28) which includes fold predictions from Fischer and Eisenberg (*Protein Science* 5: 947-955, 1996) and homology models from Sanchez and Sali (*Proc. Natl. Acad. Sci.*, 95: 13597-13602, 1998), suggests IL-1 Hy2 is structurally related to IL-1 β and IL-1Ra. This analysis can be used to predict residues potentially involved in receptor binding and other residues important to IL-1Hy2 biological function. The three-dimensional structure of IL-1Hy2 will be useful in developing modulators of IL-1Hy2 activity such as antibodies, small molecules, peptides and derivatives thereof.

The three-dimensional structure of IL-1 Hy2 may be generated using the structural coordinates set forth below in Tables II or III. In addition, it is understood in the art that molecules or molecular complexes that are defined by the structural coordinates of Tables II or III include those plus or minus a root mean square deviation from the conserved backbone atoms of those amino acids of 2-12 Å, preferably not more than about 7 Å, or more preferably not more than about 2 Å.

Identification of receptor binding residues and other residues important to IL-1 Hy2 biological function will be useful in discovering drugs which may modulate (i.e. increase or decrease) activity of the IL-1 receptor. Small molecules, antibodies and peptides which associate with one or more, or two or more, or three or more, or four or more, or five or more of the receptor binding residues or with other regions of IL-1 Hy2 may modulate IL-1Hy2 activity, *e.g.*, by increasing or decreasing its affinity for the IL-1 receptor. An understanding of the receptor binding residues and associations that occur with these residues will facilitate the development of modulators (including antagonists and agonists) of IL-1Hy2 activity, including receptor binding.

The "receptor binding residues" of IL-1 Hy2 refer to the amino acid residues of the IL-1Hy2 molecule which interact with the IL-1 receptor or any other receptor to which IL-1Hy2 binds. These amino acids preferably include Met6, Arg8, Gln17, Val27, Asp31, Val33, Pro46, Val55, Gly92, Gly93, Gln103, Ser105, and Tyr147 of SEQ ID NO: 2 and

20

25

30

5

10

10

15

20

25

other amino acids within 2-12 Å, preferably within 7 Å, or more preferably within 5 Å, that may interact with these listed amino acids and/or contribute to the three-dimensional conformation of these listed amino acids.

The "accessory protein binding residues" of IL-1 Hy2 refer to the amino acid residues of the IL-1 Hy2 molecule which interact with IL-1 receptor accessory protein. These amino acids preferably include Lys145 of SEQ ID NO: 2 and other amino acids within 2-12 Å, preferably within 7 Å, or more preferably within 5 Å, that may interact with this amino acid and/or contribute to the three-dimensional conformation of this amino acid.

The IL-1Hy2 three-dimensional structure allows for the generation of polypeptide variants or non-peptidyl compounds that mimic the three-dimensional structure of IL-1Hy2. The IL-1 Hy2 three-dimensional structure also allows for the identification of desirable sites for mutation to create polypeptide or non-peptidyl variants with similar, increased, decreased or different biological activity compared to wild type IL-1 Hy2. Through sitedirected mutagenesis, receptor binding residues, accessory protein binding residues or other residues involved in IL-1Hy2 biological function may be mutated to create modulators of IL-1 receptor activity. The mutants may act as antagonists or agonists for the IL-1 receptor. These mutants may be useful in the apeutic compositions directed to modulating the activity of IL-1Hy2 or its receptor. These mutations can be deletions, additions or substitutions of receptor binding residues, accessory protein binding residues or other residues important to IL-1Hy2 biological function. Non-conservative substitutions are expected to be more likely to result in different biological activity compared to wild type IL-1 Hy2. For example, mutations may alter the surface charge of IL-1Hy2. The three-dimensional structure indicates that IL-1Hy2 has fewer positively charged molecules on its surface than IL-1β. Therefore, mutations of negatively charged residues on its surface to positively charged residues may alter the biological activity of IL-1Hy2. Other mutations may affect the ability of IL-1Hy2 variants (1) to bind to IL-1 receptor (IL-1R) or other receptors to which IL-1 Hy2 binds, (2) to bind to IL-1R accessory protein, or (3) ability to antagonize IL-1R. The effect of various mutations on IL-1 Hy2 activity can be modeled in three-dimensional representations on a computer using any of the computer programs described herein.

Molecular modeling may be carried out using, e.g., the structural coordinates described herein, and any computer programs known in the art. For example, programs which predict binding sites and aid in designing modulators based on three-dimensional

15

20

25

structural models include, but are not limited to, GRID (Oxford University) which aids in determining energetically favorable binding sites (Goodford, *J. Med. Chem.* 28: 849-857, 1985), MCSS (Molecular Simulations, Burlington, MA) which aids in determining functional maps of binding sites (Miranker and Karplus, *Proteins, Structure, Function, and Genetics*, 11: 29-34, 1991), AUTODOCK (Scripps Research) which aids in automated docking of substrates to proteins (Goodsell and Olsen, *Proteins, Structure, Function, and Genetics*, 8: 195-202, 1990, DOCK (University of San Francisco) which aids in determining macromolecular-ligand interactions (Kuntz et al., J. Mol. Biol. 161: 269-288, 1982).

The term "structure coordinates" refers to Cartesian coordinates derived from mathematical equations to generate the three-dimensional model of IL-1 Hy2 as derived from its primary amino acid sequence using, e.g., the GeneAtlas™ program. The model is used to establish the positions of the individual atoms of the IL-1 Hy2 protein.

Those of skill in the art understand that a set of structure coordinates for a molecule or a portion thereof is a relative set of points that define a structure in three dimensions. Thus, it is possible that an entirely different set of coordinates could define a similar structure. Moreover, slight variations in the individual coordinates will have little effect on overall shape. Variations in coordinates may be generated by mathematical manipulations of the structural coordinates, e.g., by permutations of the structure coordinates, fractionalization of the structure coordinates, integer additions or subtractions to sets of the structure coordinates, inversion of the structure coordinates or any combination of the above.

Various computational analyses may be done to determine whether a molecule or a portion thereof is sufficiently similar, e.g., using current software applications, such as the Molecular Similarity application of QUANTA (Molecular Simulations Inc., San Diego, Calif.) version 4.1, and as described in the accompanying User's Guide.

The term "root mean square deviation" means the square root of the arithmetic mean of the squares of the deviations from the mean and is a way to express the deviation or variation from a trend or object. For purposes of the invention, the "root mean square deviation" defines the variation in the backbone of a protein from the polypeptide backbone of IL-1 Hy2 or a portion thereof or selected residues thereof, as substantially defined by the structural coordinates in Tables II or III below.

10

15

20

25

30

The present invention is illustrated in the following examples. Upon consideration of the present disclosure, one of skill in the art will appreciate that many other embodiments and variations may be made in the scope of the present invention. Accordingly, it is intended that the broader aspects of the present invention not be limited to the disclosure of the following examples. Example 1 addresses cloning of IL-1Hy2 cDNA, Example 2 addresses identification of polymorphisms, Example 3 addresses tissue expression of IL-1Hy2 mRNA and polypeptide, Example 4 addresses chromosomal localization of IL-1Hy2 DNA, Example 5 addresses identification of an IL-1 receptor binding region and binding to IL-1 receptor, Example 6 addresses IL-1Hy2 polypeptide expression in E. coli, Example 7 addresses confirmation of IL-1Hy2 biological activities through assessment of its modulating effect on IL-1 related activities and IL-1 related disorders, Example 8 addresses the sequencing of the IL-1Hy2 human genomic BAC clone, Example 9 addresses the sequencing of IL-1 Hy2 mouse genomic BAC clone, Example 10 addresses inhibition of IL-1β induced IL-6 production by IL-1 Hy2, Example 11 addresses the inhibition of IL-18 activity by IL-1 Hy2, Example 12 addresses IL-1 Hy2 binding to the IL-1 receptor, Example 13 addresses expression of IL-1 Hy2 in mammalian cells. Example 14 addresses the predicted three-dimensional structure of IL-1 Hy2. Example 15 addresses the crystal structure of IL-1 Hy2. Example 16 addresses site directed mutagenesis of IL-1 Hy2 based on the three-dimensional structure. Example 17 addresses expression of IL-1 Hy2 polypeptide in E. coli. Example 18 addresses purification of recombinant IL-Hy2 polypeptide expressed in *E. coli*.

EXAMPLE 1

Cloning of IL-1 Hy2 cDNA

A plurality of novel nucleic acids were obtained from the FSK001 cDNA library (prepared from human fetal skin tissue mRNA purchased from Invitrogen, San Diego, CA) using standard PCR, SBH sequence signature analysis and Sanger sequencing techniques. The inserts of the library were amplified with PCR using primers specific for pSport1 (GIBCO BRL, Grand Island, N.Y) vector sequences which flank the inserts. These samples were spotted onto nylon membranes and hybridized with oligonucleotide probes to give sequence signatures. The clones were clustered into groups of similar or identical sequences, and single representative clones were selected from each group for gel

sequencing. The 5' sequence of the amplified inserts was then deduced using the reverse M13 sequencing primer in a typical Sanger sequencing protocol. PCR products were purified and subjected to flourescent dye terminator cycle sequencing. Single pass gel sequencing was done using a 377 Applied Biosystems (ABI) sequencer. One cDNA insert was identified by sequencing of several hundred base pairs (approximately 1-386 of SEQ ID NO: 1) as a novel sequence related to IL-1Ra that had not been previously reported in public databases. The remaining sequence of SEQ ID NO: 1 was obtained by further sequencing of the entire cDNA insert of the same clone; the sequence was confirmed in part by sequencing of 5' RACE PCR products from fetal skin and adult brain cDNA libraries using a Marathon cDNA amplification kit according to the manufacturer's instructions. This sequence and the clone were designated by code name CG149 and clone name RTA00003379F.h.20 (later redesignated pIL-1Hy2 and deposited at the ATCC on May 21, 1999 under Accession No. PTA-96), and the encoded polypeptide was designated IL-1Ra-Hy2 (later redesignated IL-1Hy2).

15

5

10

EXAMPLE 2

Identification of polymorphisms

Sequencing of a number of PCR products from various cDNA libraries revealed several potential polymorphisms, which are described with reference to the nucleotide sequence numbering of SEQ ID NO: 1.

20

25

At nucleotide 125 of SEQ ID NO: 1, the "T" may be replaced with a "C", resulting in a codon change from "GAT" to "GAC" (a silent mutation, as both codons encode the amino acid Asp). At nucleotide 184 of SEQ ID NO: 1, the "C" may be replaced with a "T", resulting in a codon change from "ACA" (encoding Thr) to "ATA" (encoding Ile). At nucleotide 205 of SEQ ID NO: 1, the "A" may be replaced with a "C", resulting in a codon change from "GAC" (Asp) to "GCC" (Ala). The changes in the amino acid sequence may be reflected in differences in the biological activities of the molecules, which can be confirmed by testing in any of the activity assays described herein.

15

20

25

30

EXAMPLE 3

Tissue Expression Study

3.1 In situ Hybridization

Gene expression of human IL-1 Hy2 was analyzed using a semi-quantitative PCRbased technique. A panel of cDNA libraries derived from human tissue (from Clontech and Invitrogen) was screened with IL-1Hy2 specific primers [5'-CCGCACCAAGGTCCCCATTTTC-3' (nucleotides 206-227), SEQ ID NO: 10 and 3'-GAGCCCACAAGGATAACCCAGG-5' (nucleotides 728-707), SEQ ID NO: 11] to examine the mRNA expression of IL-1Hy2 in the following human tissues and cell types: heart, kidney, lung, placenta, liver, ovary, lymph node, spleen, testes, thymus, fetal liver, fetal skin, fetal spleen and macrophage. PCR assays (94 °C for 30 sec., 58 °C for 30 sec., 72 °C for 30 sec., for 30 cycles) were performed with 20 ng of cDNA derived from human tissues and cell lines and 10 picomoles of the IL-1Hy2 gene-specific primers. The 522 bp PCR product was identified through gel electrophoresis. Amplified products were separated on an agarose gel, transfered and chemically linked to a nylon filter. The filter was then hybridized with a radioactively labeled (33Palpha-dCTP) double-stranded probe generated from the full-length SEQ ID NO: 1 sequence using a Klenow polymerase, random prime method. The filters were washed (high stringency) and used to expose a phosphorimaging screen for several hours. Bands indicated the presence of cDNA including SEQ ID NO: 1 sequences in a specific library, and thus mRNA expression in the corresponding cell type or tissue.

IL-1Hy2 mRNA was observed to be expressed in kidney, spleen, and fetal skin. Similar to IL-1Hy2, IL-1Ra and IL-1Hy1 mRNA are also expressed in the human fetal skin tissues, suggesting that this family of proteins may share some physiologic functions. Within the kidney, IL-1 Hy2 mRNA was detected in the distal tubules of the kidney, the glomeruli of the kidney, the Bowman's capsule epithelia, capillary epithelia, and a subset of white blood cells within the blood vessels

Additional studies were performed to localize IL-1 Hy2 mRNA expression as described by D'Andrea et al. (J. Sur. Path, 1: 191-203,1995). IL-1 Hy2 mRNA was detected in serial sections of human normal tonsil and kidney by DIG-labeled probes consisting of nucleotide 396 to 568 of SEQ ID NO: 14. The slides were hybridized with the IL-iHy2 probes for 2 hours at 54°C. Subsequently, the slides were washed with 2x SSC

15

20

25

30

at room temperature and then washed with 0.1x SSC at 54°C. After the stringency rinses, 5-bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium (BCIP/NBT) was used a chromagen. For visual detection, the slides were counter-stained with Eosin and examined under a light microscope.

5 3.2 Immunohistochemistry

The serial sections of normal tonsil were also stained with polyclonal antibodies specific for IL-1 Hy2 prepared by immunizing rabbits with IL-1 Hy2 peptide: 43-56 of SEQ. ID NO.: 2 using conventional methods [see, e.g. Harlow et al., "Antibodies: A Laboratory Manual". Cold Spring Harbor Laboratories, Cold Spring Harbor, NY (1998)] and control preimmune serum form the immunized rabbits. The resulting anti-IL-1 Hy2 antibodies did not cross react with other IL-1 family members such as IL-1Ra, Il-1β, or IL-1Hy2 on a Western Blot. In addition, the slides were also stained (via double labeling) with antibodies for CD20 (Dako, Carpenteria, CA), Ki67 (Coulter Immunotech, Miami FL), CD3, CD1a, CD14, CD68, CD45 RO and LN5. Immunohistochemistry was performed by QualTek Molecular Systems, Inc. (Santa Barbara, CA) using a modified procedure described by (Myers 1995). Antibody binding was detected with biotinylated secondary antibodies and streptavidin-AP. Fast red was used as the chromagen for detection and the slides were counter-stained with hematoxylin. IL-1 Hy2 expression was visually detected under a light microscope. For double labeling, the secondary antibodies were detected using a biotinylated secondary antibody followed by streptavidin-HRP and diaminobenzidine (DAB) was used as a chromagen. For all immunohistochemical studies a negative control was carried out in the absence of primary antibody.

In the tonsil, IL-1 Hy2 mRNA and protein were detected in a subset of B-cells (CD20 positive) in the germinal center, most of which were proliferating according to Ki67 staining suggesting that IL-1 Hy2 may play a role in regulating immune responses in the tonsil. IL-1 Hy2 was also expressed in the basal squamous epithelial of the skin surrounding the tonsil., lymph node and spleen. In a comparison of psoriatic skin and normal skin, IL-1 Hy2 polypeptide was elevated in the psoriatic skin. Furthermore, the IL-1 Hy2 positive cells did not react with anti-CD45RO (T cell marker) antibody or the anti-CD14 (monocyte marker) antibody suggesting that the IL-1 Hy2 polypeptide was not expressed in T cells or monocytes.

10

15

20

25

30

EXAMPLE 4

Chromosomal Localization Study

Chromosome mapping technologies allow investigators to link genes to specific regions of chromosomes. Chromosomal mapping was performed using the NIGMS human/rodent somatic cell hybrid mapping panel as described by Drwinga, H. L. et al., Genomics, 16, 311- 314, 1993 (human/rodent somatic cell hybrid mapping panel #2 purchased from the Coriell Institute for Medical Research, Camden, New Jersey). 60 ng of DNA from each sample in the panel was used as template, and 10 picomoles of the same IL-1Hy2 gene-specific oligonucleotides used in Example 3 were used as primers in a PCR assay (94 °C for 3 minutes, followed by 94 °C for 1 minute, 58 °C for 30 sec., 72 °C for 30 seconds, for 30 cycles, then 72 °C for 10 minutes). PCR products were analyzed by gel electrophoresis. The 824 bp genomic PCR product was detected only in the human/rodent somatic cell hybrid DNA containing human chromosome 2.

The IL-1 Hy2 gene was further localized using the Stanford G3 Human/Hamster Radiation panel as described by Stewart et al., *Genome Res.* 7: 422-33, (1997)(Research Genetics, Huntsville, AL). This analysis was carried out with a PCR assay as described above and localized IL-1 Hy2 gene to the 2q14 region. The gene has a 7 cRs distance from the marker SHGC-7020 and a LOD score of 10.58. The IL-1 Hy1 (marker SHGC-7020), IL-1Ra (marker W17030) IL-1β (marker SHGC-10703) were also mapped to the similar location on chromosome 2. *See* Mulero *et al.*, *Biochem. Biophys. Res. Comm.* 263: 702-706, 1999; Smith *et al.*, *J. Biol. Chem.*, 275: 1169-75, 2000; Kuman *et al.*, *J. Biol. Chem.*, 275: 10308-14, 2000; Busfield *et al.*, *Genomics* 6: 21-6, 2000; Steinlasserer *et al.*, *Genomics* 13: 654-7, 1992; Modi *et al.*, *Genomics* 2: 310-4, 1988; Stockman *et al.*, *FEBS Letts.* 349: 79-83, 1994.

Gene family members are often linked to specific regions of chromosomes owing to intrachromosomal gene duplication events that give rise to multimember gene families during the process of evolution. The interleukin-1 gene family has been mapped to chromosome 2. More specifically, all of the interleukin 1 genes (IL-1 α , IL-1 β) and the receptors (IL-1 RI and IL-1 RII), as well as the receptor antagonist IL-1 α and the newly identified IL-1 Hy2 have been found to be situated in chromosome 2. The identification of IL-1 Hy2 sequences in this same region establishes its physical linkage to the interleukin-1 locus which indicates that IL-1 Hy2 functions as a modulator of the inflammatory response.

EXAMPLE 5

Interleukin-1 Receptor Binding Domain and Interleukin-1 Receptor Assay

The receptor binding region of both IL-1 β and IL-1 Ra have been mapped to an 18 amino acid region in the carboxy terminal half of the proteins (i.e., residues 88-105 of IL-1 β) by site-directed mutagenesis and protein modification studies.

IL-1 Hy2 and fragments thereof that include a receptor binding region are useful as reagents to identify cells and tissues expressing IL-1 receptors. The IL-1 receptor binding assay described in Hannum et al. Nature 343:336-340 (1990) may be used. Briefly, highly radioactive recombinant SEQ ID NOS: 2, 4 or 13 is prepared by growing *E.coli* expressing either of SEQ ID NOS: 2, 4 or 13 on M9 medium containing [35S] sulphate and purifying the labeled recombinant polypeptide by chromatography on a Mono-S column. The labeled polypeptide is incubated with the cells or tissue under standard IL-1 binding assay conditions, and [35S] binding. Significant [35S] binding indicates the presence of IL-1 receptors.

EXAMPLE 6

Expression of IL-1 Hy2 in E. coli

SEQ ID NOS: 1, 12 or 14 are expressed in E. coli by subcloning the entire coding region into a prokaryotic expression vector. The expression vector (pQE16) used is from the QIAexpression prokaryotic protein expression system (Qiagen). The features of this vector that make it useful for protein expression include: an efficient promoter (phage T5) to drive transcription; expression control provided by the lac operator system, which can be induced by addition of IPTG (isopropyl-β-D-thiogalactopyranoside), and an encoded His₆ tag. The latter is a stretch of 6 histidine amino acid residues which can bind very tightly to a nickel atom. The vector can be used to express a recombinant protein with a His₆ tag fused to its carboxyl terminus, allowing rapid and efficient purification using Ni-coupled affinity columns.

PCR is used to amplify the coding region which is then ligated into digested pQE16 vector. The ligation product is transformed by electroporation into electrocompetent *E.coli* cells (strain M15[pREP4] from Qiagen), and the transformed cells are plated on ampicillin-containing plates. Colonies are screened for the correct insert in the proper orientation using a PCR reaction employing a gene-specific primer and a vector-specific primer. Positives are then sequenced to ensure correct orientation and sequence. To express

15

10

25

30

10

15

25

30

IL-1 Hy2, a colony containing a correct recombinant clone is inoculated into L-Broth containing $100 \,\mu\text{g/ml}$ of ampicillin, $25 \,\mu\text{g/ml}$ of kanamycin, and the culture was allowed to grow overnight at 37°C . The saturated culture is then diluted 20-fold in the same medium and allowed to grow to an optical density at $600 \, \text{nm}$ of 0.5. At this point, IPTG is added to a final concentration of 1 mM to induce protein expression. The culture is allowed to grow for 5 more hours, and then the cells are harvested by centrifugation at $3000 \, \text{xg}$ for 15 minutes.

The resultant pellet is lysed using a mild, nonionic detergent in 20mM Tris HCl (pH 7.5) (B-PERTM Reagent from Pierce), or by sonication until the turbid cell suspension turned translucent. The lysate obtained is further purified using a nickel containing column (Ni-NTA spin column from Qiagen) under non-denaturing conditions. Briefly, the lysate is brought up to 300mM NaCl and 10mM imidazole and centrifuged at 700xg through the spin column to allow the His-tagged recombinant protein to bind to the nickel column. The column is then washed twice with Wash Buffer (50mM NaH₂PO₄, pH8.0; 300mM NaCl; 20mM imidazole) and is eluted with Elution Buffer (50mM NaH₂PO₄, pH8.0; 300mM NaCl; 250mM imidazole). All the above procedures are performed at 4°C. The presence of a purified protein of the predicted size is confirmed with SDS-PAGE.

EXAMPLE 7

Evaluation of IL-1 Hy2 Activities In Vitro and In Vivo

20 7.1 Binding to the Interleukin-1 Receptor

A cell binding assay is carried out to demonstrate that IL-1 Hy2 binds to the Interleukin-1 receptor. Briefly, cell binding of the recombinant protein with and without the presence of 100-fold greater amounts of non tagged Interleukin-1 ßeta (IL-1ß) ligand is analyzed by using fluorescent antibodies specific for a IL-1 Hy2 polypeptide (e.g. specific for an express tag within the recombinant polypeptide) on the fluorescent activated cell sorter (FACS). In each reaction, 10^6 cells NHDF (normal human dermal fibroblasts) are resuspended in $100~\mu l$ of FACS buffer (distilled PBS and 3% calf serum and 0.01% azide). Cell binding is done by adding 5 nM recombinant IL-1 Hy2 in $100~\mu l$ cell suspension and as a competition in one reaction, 500~nM of recombinant IL-1 ß is also added. The cells are incubated on ice for 1 hr. The cells are pelleted, $200~\mu l$ of 0.2~mM BS3 (crosslinker) is added, and the cells are kept on ice for 30 min. Next, 10~ul 1 M Tris pH 7.5 is added and

the cells are incubated for 15 minutes on ice. The cells are pelleted, washed 1 time in FACS buffer, resuspended in 100 μ l volume of FACS buffer and 2 μ l primary antibody (anti-express tag antibody 1mg/ml) is added, and incubated on ice for 30 minutes. The cells are pelleted, washed with FACS buffer, and resuspended in FACS buffer (100 ul volume). The secondary antibody (phycoerythrin conjugated) 2ul of anti-mouse Ig (1mg/ml) is added and the cells are incubated for 30 minutes on ice. The cells are again pelleted, washed two times with FACS buffer, resuspended in 0.5 ml FACS buffer and analyzed on FACS. A shift in the fluorescence is expected to be observed in the cells treated with the recombinant tagged IL-1 Hy2. This binding is shown to be specific if it is competed off with the non tagged IL-1 ß protein. The results will indicate binding of IL-1 Hy2 to the IL-1 receptor.

7.2 IL-1 Antagonist Activity

IL-1 antagonist activity is determined using a prostaglandin E2 (PGE₂) based assay as follows. Cells are plated at 20,000 cells per well in a 96 well plate 24 hours before the assay. The cells are then treated with 25 pg/ml recombinant human IL-1 β for 7 hours. To evaluate inhibition of IL-1 β stimulated PGE₂ release by IL-1Hy2 in comparison to IL-1Ra, the cells are pretreated with various amounts of IL-1Hy2 or IL-1Ra for two hours before the addition of IL-1 β . The supernatants are then collected and cell debris is removed by centrifugation. The amounts of PGE₂ in the supernatants are determined by ELISA using the PGE₂ assay system (R&D Systems) according to the manufacturer's protocol.

This assay was carried out with IL-1 Hy2 as follows. To stimulate IL-1 β induced PGE₂ production, human fibroblasts (CCD 1098; accession no. CRL 2127) were plated at 20,000 cells per well in a 96 well plate 24 hours before the assay. The cells were then washed once with fresh media and incubated for 16 hours with fresh media containing 1 ng/ml recombinant human IL-1 β . To evaluate inhibition of IL-1 β stimulated PGE₂ release by IL-1 Hy2 in comparison to IL-1Ra, the cells were treated with various concentrations of IL-2 Hy2 or IL-1Ra together with IL-1 β . After the 16 hour stimulation at 37°C in a 5%CO₂ incubator, the culture plates were centrifuged for 5 minutes at 4000 rpm to remove cellular debris. The amounts of PGE₂ were determined by assaying 100 μ l of supernatant with the PGE₂ ELISA assay kit (R & D Systems) according to the manufacturer's protocol.

The addition of IL-1 Hy2 to the IL-1 β stimulated cultures resulted in a dose-dependent partial decrease in PGE₂ production. At a concentration of 1000 fold excess, IL-1 Hy2 inhibited IL-1 β induced PGE₂ production 40-60%. As a control and a means for

20

25

30

5

10

15

20

30

comparison, IL-1Ra completely inhibited PGE2 production at a concentration of 100 fold excess. The fact that IL-1 Hy2 only partially inhibits IL-1β activity may be beneficial in the treatment of inflammatory disease states due to fewer side effects. It is possible that more highly purified preparations of IL-1 Hy1 may show complete inhibition in this assay.

Inhibition Of Interleukin-1 Induced Cell Proliferation 5 7.3

Murine D10 T cells are obtained from the American Type Culture Collection (Rockville, Md.). Cells are maintained in Dulbecco's modified Eagle medium and Ham's F-12 medium (1:1) containing 10 mM HEPES buffer (pH 7.4) and 10% fetal bovine serum. All tissue culture reagents contained less than 0.25 ng/mL endotoxin as measured by the limulus amebocyte assay.

Murine D10 cells, an Interleukin-1 dependent T-cell line, are used to measure Interleukin-1 mitogenic activity. Cell proliferation in the present of Interleukin-1 with and without the IL-1 Hy2 polypeptides of the invention is assessed by incorporation of (3H) thymidine as previously described (Bakouche, O., et al. J. Immunol. 138:4249-4255, 1987). In a preferred embodiment, antagonists and agonist of the IL-1 Hy2 polypeptides of the invention are identified in this assay by adding the candidate compounds with the Interleukin-1 and IL-1 Hy2 polypeptides of the invention and measuring the change in cell proliferation caused by the candidate compound.

Inhibition Of Interleukin-1 Induced Cell Cytotoxicity 7.4

Inhibition of Interleukin-1-induced cytotoxicity is studied using an appropirate cell line, such as, for example, A375 tumor cells plated at a density of 6000 cells per well in 96-well microliter plates. After overnight attachment, Interleukin-1 (3-300 ng/mL) is added in the presence or absence of NAA or NMA. After cells are incubated for 3 days, (3H) thymidine is added (1 mu Ci per well) for an additional 2 hours. Cells are harvested onto glass fiber disks (PHD Cell Harvested; Cambridge Technology, Inc., Watertown, Ma.) 25 Disks are air dried overnight, and radioactivity is determined with a Model 1900TR Scintillation Counter (Packard Instrument Division, Downers Grove, Ill.)

Induction Of Nitrite Synthesis In Smooth Muscle Cells 7.5

Aortic smooth muscle cells are cultured by explanting segments of the medial layer of aortas from adult male Fischer 344 rats. Aortas are removed aseptically and freed of adventitial and endothelial cells by scraping both the luminal and abluminal surfaces. Medial fragments are allowed to attach to Primaria 25-cm² tissue culture flasks

(Becton-Dickinson, Lincoln Park, N.J.) which are kept moist with growth medium until cells emerged. Cultures are fed twice weekly with medium 199 containing 10% fetal bovine serum, 25 mM HEPES buffer (pH 7.4), 2mM L-glutamine, 40 mu g/mL endothelial cell growth supplement (Biomedical Technologies, Inc., Stoughton, Mass.) and 10 mu g/ml gentamicin (GIBCO BRL, Grand Island, N.Y.). When primary cultures become confluent, they are passaged by trypsinization, and explants are discarded. For these studies, cells from passages 12-14 are seeded at 20,000 per well in 96-well plates and are used at confluence (60,000-80,000 cells per well). The cells exhibit the classic smooth muscle cell phenotype with hill and valley morphology, and they stain positively for smooth muscle actin.

Rat aortic smooth muscle cells are incubated with RPMI-1640 medium containing 10% bovine calf serum, 25 mM HEPES buffer 7.4), 2 mM glutamine, 80 U/mL penicillin, 80 mu g/mL streptomycin, 2 mu g/mL fungizone, and Interleukin-1, IFN-gamma, and various inhibitors. At the desired times, nitrite concentration in the culture medium is measured using the standard Griess assay (Green, L., et al. Anal. Biochem. 126:131-138, 1982) adapted to a 96-well microtiter plate reader (Gross, S. S., et al. Biochem. Biophys. Res. Commun. 178:823-829, 1991). Thus, 100 muL of Griess reagent (0.5% sulfanilic acid, 0.05% naphthalenediamine, and 2.5% phosphoric acid) is added to an equal volume of culture medium, and the OD sub 550 is measured and related to nitrite concentration by reference to a standard curve. The background OD sub 550 of medium incubated in the absence of cells is subtracted from experimental values.

Rat aortic smooth muscle cells are incubated with RPMI-1640 medium containing 10% bovine calf serum, 25 mM HEPES buffer (pH 7.4), 2 mM glutamine, 80 mu g/mL penicillin, 80 mu g/mL steptomycin, 2 mu g/mL fungizone, 30 mu g/mL lipopolysaccharide (Escherichia coli 0111:B4), and 50 U/mL IFN-γ. Cells are harvested after 24 hours, and cytosol is prepared (Gross, S. S., et al. Biochem. Biophys. Res. Commun. 178:823-829, 1991). Cytosolic NO synthase activity is assayed by the Fe²⁺ -myoglobin method described previously (Gross, S. S., et al. Biochem. Biophys. Res. Commun. 178:823-829, 1991).

7.6 Alloreactivity Determined By Lymph Node Weight Gain

Experiments are conducted to show that systemic administration of the IL-1 Hy2 polypeptides of the invention suppress a localized, T cell-dependent, immune response to alloantigen presented by allogeneic cells. Mice are injected in the footpad with irradiated, allogeneic spleen cells. The mice are then injected in the contralateral footpad with

15

10

5

20

30

10

15

20

25

30

irradiated, syngeneic spleen cells. An alloreactive response (marked by proliferation of lymphocytes and inflammation) occurs in the footpad receiving the allogeneic cells, which can be measured by determining the increase in size and weight of the popliteal lymph node draining the site of antigen deposition relative to controls or by an increase in cellularity.

Specific pathogen free 8-12 week old BALB/c (H-2 sup d) and C57BL/6 (H-2 sup b) mice (Jackson Laboratory, Bar Harbor, Me.) are used in this experiment. 48 BALB/c mice are divided into 16 groups, each having 3 mice (unless otherwise indicated). Each group of mice received a different mode of treatment. On day 0 the left footpads of all mice are injected intracutaneously with 107 irradiated (2500R), allogeneic spleen cells from C57BL/6 mice in 50 ul of RPMI-1640 (Gibco) as antigen and the right contralateral footpads of the same mice are injected with 10 sup 7 irradiated (2500R), syngeneic spleen cells from BALB/c mice.

Seven days after antigen administration, the mice are sacrificed and the popliteal lymph nodes (PLN) are removed from the right and left popliteal fossa by surgical dissection. Lymph nodes are weighed and the results expressed as the difference (DELTA) in weight (mg) of the lymph node draining the site of allogeneic cell injection and the weight of the node draining the syngeneic cell injection site. Lymph nodes draining the syngeneic cell injection site weighed approximately 1 mg, regardless of whether they are obtained from mice treated with MSA or IL-1 Hy2 polypeptides of the invention, and did not differ significantly in weight from nodes obtained from mice given no cell injection.

7.7 Suppression Of Organ Graft Rejection In Vivo

Neonatal C57BL/6 (H-2 sup b) hearts are transplanted into the ear pinnae of adult BALB/c (H-2 sup d) recipients utilizing the method of Fulmer et al., Am. J. Anat. 113:273, 1963, modified as described by Trager et al., Transplantation 47:587, 1989, and Van Buren et al., Transplant. Proc. 15:2967, 1983. Survival of the transplanted hearts is assessed by visually inspecting the grafts for pulsatile activity. Pulsatile activity is determined by examining the ear-heart grafts of anesthetized recipients under a dissecting microscope with soft reflected light beginning on day 5 or 6 post transplant. The time of graft rejection is defined as the day after transplantation on which contractile activity ceases.

Recipient mice are transplanted on day 0 and injected with either IL-1 Hy2 polypeptides of the invention plus MSA (mouse serum albumin, 100 ng) or with MSA alone

10

15

20

25

30

on days 0 through 6, alternating i.p. and s.c. routes. In a second heart transplant experiment, the mice are injected with MSA alone on days 0 through 2, i.p. route only.

7.8 Suppression Of Inflammatory Arthritis

20 rats are divided into 4 groups, designated Groups G-J, each having 5 rats. All rats are immunized by subcutaneous injection. On day 21 following immunization with mBSA, an inflammatory arthritis response is elicited. On the same day, a negative control group is injected with a 0.2 ml volume of saline. Groups are injected with increasing amounts of IL-1 Hy2 polypeptides of the invention. Interleukin-1 is injected in one group as a positive control. The diameter of the largest egion of the treated joints is measured using a caliper on days 2, 4, 6 and 8 relative to day 0 intra-articular injection of antigen.

7.9 Activity in a Pancreatitis Model

Acute edematous, necrotizing pancreatitis is induced in adult male Swiss mice weighing more than 35 grams using caerulein--an analog of cholecystokinin. Mice are divided into four groups with three of the groups receiving caerulein 50 mu g/kg by intraperitoneal (IP) injection in four doses over three hours as previously described. (Murayama et al., Arch Surg 1990;125:1570-1572; Tani et al., International J Pancreatology 1987;2:337-348; Schoenberg et al., Free Radical Biology & Medicine 1992;12:515-522; Heath et al., Pancreas 1993;66:41-45; Saluja et al., Amer Physiological Society 1985: G702-G710; Manso et al., Digestive Disease and Sciences 1992;37:364-368). Group 1 is a control group (n-9) which receives only IP saline injections. Group 2 (n=12) is an untreated disease control. Group 3 (n=12) receives three injections of drug (10 mg/kg/hr) starting one hour prior to induction of pancreatitis. Group 4 (n=12) receives three injections of drug (10 mg/kg/hr) starting one hour after induction of pancreatitis.

After a suitable time period, all animals are euthanized, the blood collected, and the pancreata surgically excised and weighed. Serum is assayed for amylase, lipase, IL-6, and TNF levels. Each pancreas is fixed, stained, and graded histologically in a blinded fashion or interstitial edema, granulocyte infiltration, acinar vacuolization, and acinar cell. Additionally, serum levels of IL-1 Hy2 are determined, therefore allowing comparisons between dosage, serum level, systemic cytokine response, and degree of pancreatic damage.

Interleukin-6, Interleukin-1, Interleukin-1 receptor antagonist, and TNF are measured by commercially available ELISA kits (Genzyme Corp., Boston, Mass.). All

10

15

20

25

30

specimens are run in triplicate. Serum levels of amylase and lipase are measured on a Kodak Ectachem 700 automated analyzer (Eastman Kodak Company, Rochester, N.Y.).

Histologic slides are prepared as is known in the art after rapid excision and subsequent fixation in 10% formalin. The tissues are paraffin embedded as is known in the art and then stained with Hematoxylin and Eosin in a standard fashion. These slides are examined and graded in a blinded fashion by a board certified pathologist.

EXAMPLE 8

Sequencing of IL-1 Hy2 Human Genomic BAC Clone

To understand the genomic organization of the IL-1 Hy2 gene, a commercial human BAC library (Research Genetics) was screened by PCR with primers specifc to the full length IL-1 Hy2 cDNA using standard procedures. The BAC39316 clone containing the IL-1 Hy2 gene was partially digested with Sau3A I restriction enzyme. The resulting size-selected restriction fragments were inserted into a BamHI site of pUC18 (Pharmacia) to generate a library for screening. The BAC39316 clone containing the human genomic IL-1 Hy2 gene was sequencedusing M13 forward and reverse primers flanking the inserts. Direct BAC DNA sequencing was also carried out using primers specific to IL-1 HY2 cDNA to confirm exon/intron organization. The sequence of the BAC genomic clone is set out as SEQ ID NO: 15. Based on the sequences, exons of the IL-1 Hy2 gene were predicted using the GenScan software (Stanford University). This analysis indicated that the IL-1 Hy2 cDNA should contain additional sequences at the 5' end in addition to those set forth in SEQ ID NO: 1.

The predicted cDNA sequence based on the genomic DNA sequence encoding IL-1 Hy2 was compared to the corresponding cDNA sequence. This analysis indicated that the predicted cDNA sequence based on the human genomic sequence of IL-1 Hy2 (SEQ ID NO: 12) contains a thymidine (T) at nucleotide 279 (see Figure 2), while the IL-1 Hy2 cDNA sequence (SEQ ID NO: 14; Figure 4) contains a cytosine (C) at position 279. The change in nucleotides (C \rightarrow T) would extend the IL-1 Hy2 open reading frame in the 5' direction, resulting in a 200 amino acid polypeptide, while the cDNA sequence (SEQ ID NO: 14; Figure 4) encodes a 152 amino acid polypeptide (SEQ ID NO: 2).

The predicted cDNA sequence (SEQ ID NO: 12) is 1366 nucleotides which contains an open reading frame (nucleotides 278 to 880) that encodes a predicted

10

15

20

25

30

polypeptide of 200 amino acids (SEQ ID NO: 13; Figure 2). However, the sequences surrounding the translation initiation codon at nucleotide 422 of SEQ ID NO: 12 are more similar to the Kozak translation start site consensus than the sequences surrounding nucleotide 278. Therefore, it is also possible that the IL-1 Hy2 polypeptide is encoded by a shorter open reading frame between nucleotides 422 and 880 of SEQ ID NO: 12, which encodes a predicted polypeptide of 152 amino acid (SEQ ID NO: 2).

EXAMPLE 9

Sequencing of IL-1 Hy2 Mouse Genomic BAC Clone

A commercial mouse BAC library (Research Genetics) was screened with the full length IL-1 Hy2 cDNA using standard procedures. The BAC clone containing the mouse IL-1 Hy2 gene was sequenced by conventional methods and is set forth as SEQ ID NO: 17. Based on the sequences, exons of the mouse IL-1 Hy2 gene were predicted using the GenScan software (Stanford University). This analysis indicated that the mouse IL-1 Hy2 gene contains 4 exons. The predicted cDNA encoding the mouse IL-1 Hy protein is set forth as SEQ ID NO: 16. The murine IL-1 Hy2 polypeptide translation initiates at nucleotide 1 and terminates at nucleotide 457 of SEQ ID NO: 17. The mouse and human IL-1 Hy2 polypeptide sequences share 81.7% homology. The murine genomic DNA sequence can be used to generate transgenic animals which overexpress the IL-1 Hy2 polypeptide or have the IL-1 Hy2 gene knocked out as described above in Section 16.

EXAMPLE 10

Inhibition of IL-1 B Induced IL-6 Production

Inhibition of Interleukin-1 β induced IL-6 production was studied using human endothelial cells from umbilical vein (Huvec). Huvec cells were seeded at 2 X 10^4 cells per well in a 96-well plate the day before cell stimulation. On the day of stimulation, cells were washed once with fresh medium (F12 medium with 100 µg/ml heparin, 50 µg/ml endothelial growth supplement and 10% fetal bovine serum) and replated with 200 µl of fresh medium [without supplements] in each well. The Huvec cells were then stimulated with 100 pg/ml (final volume) of IL-1 β . Although this assay was done with IL-1 β , any cytokine of interest can be used. To test IL-6 inhibition, different concentrations of IL-1Hy2

10

15

20

25

30

(ranging from 10x to 1000x the concentration of IL-1 β) or IL-1ra (ranging from 10x to 1000x IL-1 β concentration) were added to the wells with the IL-1 β .

After 16 hours of cell stimulation, the culture plate was spun for five minutes at 4000 rpm to remove cell debris. To test for the presence of IL-6, 100 µl of supernatant was removed and assayed with a human IL-6 immunoassay kit (R&D Systems) according to the manufacturer's instructions.

IL-1 Hy2 partially inhibited IL-1β-stimulated IL-6 production in a dose-dependent manner. In view of the fact that IL-6 blocks production of tumor necrosis factor (TNF), a pro-inflammatory cytokine, the fact that IL-1 Hy2 only partially inhibits of IL-6 production by IL-1 Hy2 may be beneficial in the treatment of inflammatory disease states with IL-1Hy2 due to reduced side effects. It is possible that more highly purified preparations of IL-1 Hy2 may show complete inhibition in this assay.

EXAMPLE 11

Inhibition of IL-18 Activity by IL-1 Hy2

The following experiment evaluated the ability of IL-1 Hy2 to inhibit IL-18 activity, as measured by induction of IFN-γ. Human lymphocytes (PBMC) were obtained by Ficoll-Hypaque density gradient separation of peripheral blood from healthy volunteer donors. Immediately after isolation, the PBMC were washed two times with growth media, containing RPMI 1640-10% fetal bovine serum, and 3 x 10⁵ cells/well were seeded in a 96 well plate. The cells were stimulated by adding anti-CD3 antibody (R & D Systems, Minneapolis, MN) to all of the samples at a final concentration of 0.5 μg/ml. At the time of stimulation, all but one control well per plate were treated with 100 ng/ml recombinant IL-18 (R&D Systems) for 36 hours at 37°C at 5% CO₂. The untreated well served as a measure of background levels of IFNγ produced by stimulated PBMC cells. IL-18 treatment causes the PBMC cells to increase production of IFN-γ relative to the background levels.

To assay for IL-1 Hy2 inhibition of IL-18 stimulated IFN γ production, 100x fold to 1000x fold concentration of IL-1 Hy2 (relative to IL-18 concentration) was added to wells together with IL-18 at the time of stimulation. After 36 hours of cell stimulation, the culture plate was centrifuged for 5 minutes at 4000 rpm to remove cell debris. The supernatant was assayed for IFN γ using the Quantikine IFN γ ELISA kit (R & D Systems) according to the manufacturer's suggested protocol.

10

15

20

25

30

Results indicated that IL-18 alone stimulated IFN γ production and that IL-1 Hy2 had some inhibitory activities on the IL-18 stimulation. In order to assess the mechanism by which IL-1 Hy2 reduced IFN γ production, the following assay was carried out.

Human lymphocytes (PBMC) were obtained, washed, seeded, stimulated with anti-CD3 antibody and treated with a final concentration of 100 ng/ml IL-18 (R & D Systems) as described above. Several blocking antibodies were then used to test inhibition of IFNγ production, including anti-IL 18 receptor antibody, anti-IL-1 receptor accessory protein antibody, anti-IL1 receptor type I antibody and anti-IL-1 receptor type II antibody (all obtained from R & D Systems, Minneapolis, MN). Different amounts of each antibody were added to the wells with IL-18, and after 36 hours of cell stimulation, the culture plate was centrifuged for 5 minutes at 4000 rpm to remove cell debris. The supernatant was assayed for IFNγ using the Quantikine IFNγ ELISA kit (R & D Systems) according to manufacturer's instructions.

In the absence of an antibody, IL-18 stimulated IFNγ production relative to background levels as observed above. However, anti-IL18 receptor antibody, anti-accessory protein antibody and anti-IL-1 receptor type I, but not type II, antibody inhibited IL-18 induced IFNγ production.

These results indicate that compounds which antagonize the action of the IL-1 receptor inhibit IL-18 activity as measured by induction of IFN γ production.

EXAMPLE 12

Binding of IL-1 Hy2 to the Interleukin-1 Receptor

A cell binding assay was carried out, in a modification of the procedure as described above in Example 7.1, to determine if IL-1 Hy2 of the invention binds to the interleukin-1 (IL-1) receptor. Briefly, fluorescent activated cell sorting (FACS) was used to measure cell binding of the recombinant protein (see Example 6) using fluorescent antibodies specific for the express tag on the IL-1 Hy2 recombinant protein. In each reaction, 10⁶ cells of human fibroblast cells (CCD 1089) were suspended in 100 μl of FACS buffer (containing distilled PBS, 3% calf serum and 0.01% azide). Cell binding reactions included 5 nM recombinant IL-1 Hy2 in 100 μl cell suspension. The cells were incubated on ice for one hour. The cells were pelleted by centrifugation, 200 μl of 0.2 mM BS3 (crosslinker) was added, and the cells were kept on ice for 30 minutes. Next, 10 μl 1 M Tris pH 7.5 was added and the cells

were incubated for 15 minutes on ice. The cells were pelleted by centrifugation, washed one time in FACS buffer, resuspended in 100 μ l volume of FACS buffer, 2 μ l primary antibody (anti-express tag antibody 1mg/ml) was added, and incubation continued on ice for an additional 30 minutes. The cells were pelleted by centrifugation, washed with FACS buffer, and resuspended in FACS buffer (100 μ l volume). The secondary antibody (phycoerythrin-conjugated), 2 μ l of anti-mouse Ig (1mg/ml), was added and the cells were incubated for 30 minutes on ice. The cells were again pelleted by centrifugation, washed two times with FACS buffer, resuspended in 0.5 ml FACS buffer and analyzed on FACS.

A shift in the fluorescence was observed for the cells treated with the recombinant tagged IL-1 Hy2. This binding was specific, as binding was not observed with the same molarity of non-related proteins, such as bovine serum albumin (BSA). Specific IL-1 Hy2 binding was also demonstrated in the murine T cell line D10 and the murine monoclonal cell line RAW 264.7. These results indicate binding of the IL-1 Hy2 protein of the invention to the IL-1 receptor.

15

20

25

30

5

10

EXAMPLE 13

Expression of IL-1 Hy2 Polypeptide in Cells

To express IL-1 Hy2 in mammalian cells, Chinese hamster ovary (CHO) cells were transfected with a mammalian expression vector and IL-1 Hy2 secretion was detected. The protein coding region of IL-1 Hy2 was obtained by PCR. The IL-1 Hy2 cDNA was used as a template for the IL-1 Hy2 specific primers (5' GAGCCGCCATGTGTTCCCTCCCCATGGCAAG 3' and 5' GCTACCAGC TCTGTTCAAAGT AAAAC3'; SEQ ID NO: 19 and 20 respectively) designed to amplify the shorter ORF. The PCR reaction was run for 30 cycles at 94°C for 30 seconds, 55°C for 30 seconds and 72°C for 30 seconds. The PCR product was inserted into the pcDNA3.1/V5-His-Topo vector (Invitrogen) per manufacturer's instructions. The resulting expression construct was sequenced to confirm that the inserted IL-1 Hy2 sequence was correct.

CHO cells were obtained from the ATCC and cultured in F12K media supplemented with 10% FBS and 100 units/ml of penicillin G and 100 µg/ml streptomycin at 37°C in 5% CO₂. The CHO cells were transiently transfected with the mammalian expression vector, pcDNA IL-1 Hy2, using the FuGene transfection reagent (Roche

Molecular Biochemicals) according to manufacturer's instructions. After transfection, the medium was replaced with serum-free F12K medium. The culture medium was then collected 24 hours later and passed through a 0.2 μ filter (Pall Gelman Laboratory) to remove cellular debris.

The collected conditioned medium was concentrated 10 fold using Microcon YM-10 microcolumns (Amicon) according to the manufacturer's instructions and analyzed by electrophoresis on a 15% SDS-polyacrylamide gel followed by Western blot hybridization on Immunobilon-P membrane (Millipore). IL-Hy2 was detected on the Western blot with a polyclonal antibody specific for IL-1 Hy2 using the Supersignal West Pico chemiluminescence detection reagents with goat anti-rabbit IgG conjugated with horseradish peroxidase (Pierce) as a secondary antibody. The polyclonal antibody used for the Western Blot was the IL-1 Hy2 specific antibody described in Example 3.

The IL-1 Hy2 polypeptide was detected in both the cell culture medium and in the cell lysate, suggesting that IL-1 Hy2 is a secreted polypeptide of the apparent molecular weight 25 kD when expressed in mammalian cells. The IL-1 Hy2 polypeptide expressed in mammalian cells can be sequenced to confirm the amino terminus sequence of the mature protein. Analysis of the amino acid sequence with the SignalP algorithm (Nielsen *et al.*, *Int. J. Neural Syst.* 8:581-599, 1997) suggested that the IL-1Hy2 does not contain a signal peptide. However, some proteins such as bFGF, TGFβ, IL-1β and IL-18, are known to be secreted in the absence of a signal peptide (Nielsen *et al.*, *supra.*) similar to IL-1Hy2.

The recombinant IL-1Hy2 protein expressed in mammalian cells (CHO has two forms, a major for of 25 kDa and a minor form of 17 kDa,, which corresponds to the predicted molecular weight (17 kDa). The increase in molecular weight may result from posttranslational modifications of the protein. The IL-1 Hy2 protein lacks N-linked glycosylation consensus sites. Neither N linked glycosylation nor O-linked glycosylation on the recombinant IL-1 Hy2 protein expressed in CHO cells was detected using peptide N-glycosidase F (PNGase F) and O-glycosidase deglycosylation analysis. Thus, the difference between the apparent molecular weight and the predicted molecular weight of IL-1 Hy2 may be due to other posttranslational modifications such as phosphorylation.

EXAMPLE 14

Three -Dimensional Structure of IL-1 Hy2

The GeneAtlasTM software package (Molecular Simulations Inc. (MSI), San Diego, CA) was used to predict the three-dimensional structure models of IL-1 Hy2. Models were generated by (1) PSI-Blast which is the multiple alignment sequence profile-based searching developed by Altschul *et al.*, (*Nucl. Acids Res.* 25: 3389-3408, 1997), (2) High Throughput Modeling (MSI) which is an automated sequence and structure searching procedure, and (3) SeqFold which is a fold recognition method described by Fischer and Eisenberg (*J. Mol. Biol.* 209: 779-791, 1998). This analysis was carried out in part by comparing the IL-1 Hy2 amino acid sequence (SEQ ID NO: 2) with the known NMR (nuclear magnetic resonance) and x-ray crystal three-dimensional structures of IL-1 Ra, IL-1 β and IL-1 α as templates. The best structural model prediction for IL-1 Hy2(highest verify score = 0.58) was based on the IL-1 β template and the results are summarized in the table I below:

Protein	Amino Acid Residues of IL-1 Hy2	Sequence Identity	Sequence Similarity	Structure Verify Score
IL-1 Ra	7-150 aa	41.1%	55.3%	0.41
IL-1 β	5-149 aa	21.2%	41.5%	0.58
IL-1 α	5-146 aa	19.5%	37.6%	0.38

IL-1 Hy2 was predicted to exhibit an overall β -barrel structure with a pseudo 3- fold symmetry axis down the center of the barrel. The structural models all consisted of 12 β -strands organized in three trefoil units of four antiparallel β -strands. Six of the β -strands form the barrel and the other six create a triangular array which closes the bottom of the barrel. The 12- β stranded trefoil structure is partially conserved between the IL-1 Hy2 structure models and the IL-1 β , IL-1Ra and IL-1 α structures . Although the IL-1 Hy2 amino acid sequence is more similar to the IL-1 Ra amino acid sequence; the IL-1 Hy2 structural model has greater structural agreement with the IL-1 β structure (0.58 verifyscore). The verify score produced by the MSI GeneAtlasTM program indicates the quality of the model. A verify score between 0 - 1.0, with 1 being the best, represents a good model.

The predicted three-dimensional structures of IL-1 Hy2 were superimposed with the average NMR structure of IL-1 Ra and the crystal structure of IL-1 β to evaluate

15

20

25

30

5

10

15

20

25

30

their structural differences. The structural alignment overlays of the superimposed ribbon structures are shown in Figure 5 and display similar interior core β -strands for both overlays. These overlays suggested that IL-1 Hy2 is more structurally similar to IL-1 β than IL-1 Ra. The overlay of the structural alignments also demonstrated major differences within the exterior loop region of the IL-1 Hy2 model based on IL-1 Ra.

Comparisons of the surface representations of the three-dimensional structures as viewed from surface models of the proteins suggested that IL-1 Hy2 has a similar overall shape to IL-1 β compared to the surface view of IL-1 Ra. This analysis also indicates that IL-1 Hy2 has fewer positively charged surface residues than both IL-1 β and IL-1 Ra.

Sequence alignment of IL-1 Ra and IL-1 Hy2, based on secondary structure in combination with mutagenesis analysis (*See* Boraschi *et al. Fronteriers in Bioscience* 1: 270-308, 1995), was generated as shown in Figure 6. Residues important for receptor interaction and protein function are identified in this figure with reference to the amino acid numbering of SEQ ID NO: 22 (which is missing the first 6 amino acids compared to SEQ ID NO: 2). This difference in amino acid numbering allows for the figure to correlate with the structural alignment between IL-1Ra and IL-1 Hy2.

In Figure 6, the receptor interacting amino acid are Lys7, Gln11, Asp25, Val27 and Tyr 141 and another residue identified as important for biological function is Lys139 of SEQ ID NO: 2. When the amino acid numbering of SEQ ID NO: 2 is used, the residues indicated to be associated with receptor interaction are Lys13, Gln17, Asp31, Val33 and Tyr 147 and another residue identified as important for biological function is Lys145. The corresponding Lys residue in IL-1 Ra is confirmed to be important for IL-1 Ra biological function. (*See* Boraschi *et al.*, *supra.*). These results suggest that IL-1 Hy2 may function as an antagonist in the presence of accessory protein.

The alignment with IL-1 β and IL-1 Hy2 is displayed in Figure 7. Residues important for receptor interaction and protein function are identified in this figure with reference to the amino acid numbering of SEQ ID NO: 24 (which is missing the first 4 amino acids compared to SEQ ID NO: 2). This difference in amino acid numbering allows for the figure to correlate with the structural alignment between IL-1 β and IL-1 Hy2.

In Figure 7, the receptor interacting amino acid are Met2, Arg4, Lys9 Gln13, Asp27, Val27, Pro42, Val51, Gly88, Gly89, Gln99, and Ser101 and another residue

10

15

20

25

30

identified as important for biological function is Lys141 of SEQ ID NO: 24. When the amino acid numbering of SEQ ID NO: 2 is used, the residues indicated to be associated with receptor interaction are Met6, Arg8, Lys13, Gln17, Asp31, Val33, Pro46, Val55, Gly92, Gly93, Gln103, and Ser105 and another residue identified as important for biological function is Lys145. In this case, the importance of Lys145 also indicated that IL-1 Hy2 will function as an antagonist. Overall, this analysis suggested that IL-1 Hy2 binds to the same region of the IL-1 receptor as IL-1 β and IL-1 Ra, but IL-1 Hy2 has different atomic interactions. This suggests that IL-1 Hy2 will have a different binding affinity for the IL-1 receptor as compared to IL-1 β or IL-1 Ra.

The protein database coordinates of the IL-1 Hy2 structural models are shown in Tables II or III below. These structural coordinates were calculated based on the threedimensional structures of IL-1 Ra and IL-1β. The protein database coordinate output file in this format provided the atom number, atom name, amino acid side chain, amino acid number, the X, Y and Z coordinates, occupancy (Occup.), the B-factor associated and 1SG with each atom. The last column indicates the row number. The "Atom Name" refers to the element whose coordinates are measured. The "Amino Acid Side Chain" refers to the name of the amino acid, and the "Amino Acid Number" refers to the position in the IL-1 Hy2 amino acid sequence in the structural model. The "X, Y and Z coordinates" refer to the atomic position measured in Angstroms. An occupancy of 1 indicates the position is fully occupied. The "B-factor" refers to the thermal factor that measures movement of the atom around the atomic center. The term "1SG" indicates the name of the structure file given by the MSI program, and the last column indicates the row number. The MSI GeneAtlas™ program used the known crystal and NMR structures of IL-1β and IL-1 Ra, respectively, as templates to derive the coordinates which can be used to generate the electron density map of IL-1 Hy2. Those of skill in the art will understand the structural coordinates set out in Figures 8 and 9 are not without standard error. The verify score produced by the MSI GeneAtlasTM program indicates the quality of the model. A verify score between 0 - 1.0, with 1 being the best, represents a good model.

Table II shows protein database coordinates for a IL-1 Hy2 structural models generated by the GeneAtlas[™] Program (MSI) using the three-dimensional structure of IL-1 Ra as a template.

Table II:

		Atom	Amino Acio	d X Y	Z Occup.	В
		No. Name	SC No	·		Factor
	ATOM	1 N	ALA 1	3.198 18.691	2.923 1.00	44.80 1SG 2
5	ATOM	2 CA	ALA 1	2.440 17.443	2.686 1.00	44.80 1SG 3
	ATOM	3 CB	ALA 1	2.647 16.950	1.245 1.00	44.80 1SG 4
	ATOM	4 C	ALA 1	2.894 16.372	3.614 1.00	44.80 1SG 5
	ATOM	5 O	ALA 1	3.292 16.637	4.747 1.00	44.80 1SG 6
	ATOM	6 N	ARG 2	2.837 15.112	3.148 1.00	52.08 1SG 7
10	ATOM	7 CA	ARG 2	3.252 14.046	4.003 1.00	52.08 1SG 8
	ATOM	8 CB	ARG 2	2.339 12.811	3.919 1.00	52.08 1SG 9
	ATOM	9 CG	ARG 2	0.893 13.095	4.336 1.00	52.08 1SG 10
	ATOM	10 CD	ARG 2	0.592 12.800	5.807 1.00	52.08 1SG 11
	ATOM	11 NE	ARG 2	0.862 14.036	6.594 1.00	52.08 1SG 12
15	ATOM	12 CZ	ARG 2	0.307 14.176	7.834 1.00	52.08 1SG 13
	ATOM	13 NH1	ARG 2	-0.491 13.188	8.334 1.00	52.08 1SG 14
	ATOM	14 NH2	ARG 2	0.552 15.299	8.570 1.00	52.08 1SG 15
	ATOM	15 C	ARG 2	4.619 13.643	3.560 1.00	52.08 1SG 16
	ATOM	16 O	ARG 2	4.805 13.131	2.458 1.00	52.08 1SG 17
20	ATOM	17 N	TYR 3	5.616 13.851	4.440 1.00	57.09 1SG 18
	_ATOM	18 CA	TYR 3	6.972 13.521	4.112 1.00	57.09 1SG 19
	ATOM	19 CB	TYR 3	7.982 14.591	4.558 1.00	57.09 1SG 20
	ATOM	20 CG	TYR 3	7.553 15.877	3.950 1.00	57.09 1SG 21
	_ATOM	21 CD1	TYR 3	7.983 16.242	2.699 1.00	57.09 1SG 22
25	ATOM	22 CD2	TYR 3	6.700 16.715	4.630 1.00	57.09 1SG 23

		Atom	Amino	Acid	X	Y 2	Z	Occup.	В	
		No. Name	SC	No.					Facto	r
	ATOM	23 CE1	TYR	3	7.583	17.430	2.137	1.00	57.09	1SG 24
	ATOM	24 CE2	TYR	3	6.295	17.906	4.076	1.00	57.09	1SG 25
5	ATOM	25 CZ	TYR	3	6.738	18.264	2.826	1.00	57.09	1SG 26
	ATOM	26 OH	TYR	3	6.325	19.485	2.251	1.00	57.09	1SG 27
	ATOM	27 C	TYR	3	7.263	12.315	4.934	1.00	57.09	1SG 28
	ATOM	28 O	TYR	3	7.039	12.317	6.143	1.00	57.09	1SG 29
	ATOM	29 N	TYR	4	7.761	11.240	4.299	1.00	60.92	1SG 30
10	ATOM	30 CA	TYR	4	7.918	10.033	5.054	1.00	60.92	1 S G 31
	ATOM	31 CB	TYR	4	6.891	8.982	4.592	1.00	60.92	1 S G 32
	ATOM	32 CG	TYR	4	6.982	7.718	5.370	1.00	60.92	1SG 33
	ATOM	33 CD1	TYR	4	6.515	7.649	6.663	1.00	60.92	1SG 34
	ATOM	34 CD2	TYR	4	7.487	6.589	4.774	1.00	60.92	1SG 35
15	ATOM	35 CE1	TYR	4	6.589	6.470	7.365	1.00	60.92	1SG 36
	ATOM	36 CE2	TYR	4	7.560	5.414	5.469	1.00	60.92	1SG 37
	ATOM	37 CZ	TYR	4	7.118	5.353	6.764	1.00	60.92	1SG 38
	ATOM	38 OH	TYR	4	7.205	4.134	7.461	1.00	60.92	1SG 39
	ATOM	39 C	TYR	4	9.306	9.493	4.860	1.00	60.92	1SG 40
20	ATOM	40 O	TYR	4	9.853	9.552	3.759	1.00	60.92	1SG 41
	ATOM	41 N	ILE	5	9.915	8.980	5.956	1.00	62.27	1SG 42
	ATOM	42 CA	ILE	5	11.232			1.00	62.27	1SG 43
	ATOM	43 CB	ILE	5	12.286	9.357	6.414	1.00	62.27	1SG 44
	ATOM	44 CG2	ILE	5	12.123	9.477	7.937	1.00	62.27	1SG 45
25	ATOM	45 CG1	ILE	5	13.712		5.971	1.00	62.27	1SG 46
	ATOM	46 CD1	ILE	5	14.302		6.635	1.00	62.27	1SG 47
	ATOM	47 C	ILE	5	11.195	7.193	6.846	1.00	62.27	1SG 48
	ATOM	48 O	ILE	5	10.434	7.188	7.813	1.00	62.27	1SG 49
	ATOM	49 N	ILE	6	11.990	6.129	6.564	1.00	59.51	1SG 50
30	ATOM	50 CA	ILE	6	11.988	4.961	7.419	1.00	59.51	1SG 51
	ATOM	51 CB	ILE	6	11.353	3.747	6.806	1.00	59.51	1SG 52

		Atom	Amino	Acid	l	X	Y Z	Occup.	В	
		No. Name	SC	No.					Factor	•
	ATOM	52 CG2	ILE	6	9.862	4.030	6.638	1.00	59.51	1 S G 53
	ATOM	53 CG1	ILE	6	12.076	3.315	5.523	1.00	59.51	1SG 54
5	ATOM	54 CD1	ILE	6	11.629	1.943	5.025	1.00	59.51	1SG 55
	ATOM	55 C	ILE	6	13.387	4.593	7.853	1.00	59.51	1SG 56
	ATOM	56 O	ILE	6	14.357	4.785	7.120	1.00	59.51	1SG 57
	ATOM	57 N	LYS	7	13.507	4.042	9.090	1.00	55.47	1SG 58
	ATOM	58 CA	LYS	7	14.777	3.738	9.700	1.00	55.47	1SG 59
10	ATOM	59 CB	LYS	7	15.293	4.999	10.421	1.00	55.47	1SG 60
	ATOM	60 CG	LYS	7	16.803	5.103	10.601	1.00	55.47	1SG 61
	ATOM	61 CD	LYS	7	17.268	6.529	10.899	1.00	55.47	1SG 62
	ATOM	62 CE	LYS	7	18.780	6.656	11.084	1.00	55.47	1SG 63
	ATOM	63 NZ	LYS	7	19.164	8.086	11.088	1.00	55.47	1SG 64
15	ATOM	64 C	LYS	7	14.560	2.624	10.705	1.00	55.47	1SG 65
	ATOM	65 O	LYS	7	13.471	2.054	10.773	1.00	55.47	1SG 66
	ATOM	66 N	TYR	8	15.612	2.232	11.471	1.00	50.67	1SG 67
	ATOM	67 CA	TYR	8	15.481	1.200	12.476	1.00	50.67	1SG 68
	ATOM	68 CB	TYR	8	16.002	-0.161	11.979	1.00	50.67	1 SG 69
20	ATOM	69 CG	TYR	8	15.708	-1.222	12.985	1.00	50.67	1SG 70
	ATOM	70 CD1	TYR	8	14.449	-1.771	13.061	1.00	50.67	1SG 71
	ATOM	71 CD2	TYR	8	16.688	-1.688	13.832	1.00	50.67	1SG 72
	ATOM	72 CE1	TYR	8	14.168	-2.757	13.978	1.00	50.67	1SG 73
	ATOM	73 CE2	TYR	8	16.413	-2.674	14.751	1.00	50.67	1SG 74
25	ATOM	74 CZ	TYR	8	15.150	-3.210	14.826	1.00	50.67	1SG 75
	ATOM	75 OH	TYR	8	14.864	-4.223	15.768	1.00	50.67	1SG 76
	ATOM	76 C	TYR	8	16.308	1.606	13.670	1.00	50.67	1SG 77
	ATOM	77 O	TYR	8	17.325	2.289	13.538	1.00	50.67	1SG 78
	ATOM	78 N	ALA	9	15.888	1.147	14.869	1.00	46.42	1SG 79
30	ATOM	79 CA	ALA	9	16.457	1.494	16.146	1.00	46.42	1 SG 80
	ATOM	80 CB	ALA	9	15.691	0.873	17.328	1.00	46.42	1SG 81
	ATOM	81 C	ALA	9	17.881	1.051	16.257	1.00	46.42	1SG 82

The second state of the se

		Atom	Amino Ac	d	X Y	\mathbf{Z}	Occup.	В	
		No. Name	SC N).			,	Factor	•
	ATOM	82 O	ALA 9	18.690	1.743	16.875	1.00	46.42	1SG 83
	ATOM	83 N	ASP 10	18.227	-0.119	15.685	1.00	45.09	1SG 84
5	ATOM	84 CA	ASP 10	19.555	-0.633	15.864	1.00	45.09	1SG 85
	ATOM	85 CB	ASP 10	19.643	-2.143	15.581	1.00	45.09	1SG 86
	ATOM	86 CG	ASP 10	18.842	-2.866	16.658	1.00	45.09	1SG 87
	ATOM	87 OD1	ASP 10	18.625	-2.265	17.743	1.00	45.09	1SG 88
	ATOM	88 OD2	ASP 10	18.431	-4.029	16.406	1.00	45.09	1SG 89
10	ATOM	89 C	ASP 10	20.505	0.053	14.933	1.00	45.09	1SG 90
	ATOM	90 O	ASP 10	21.329	-0.601	14.296	5 1.00	45.09	1SG 91
	ATOM	91 N	GLN 11	20.457	1.400	14.901	1.00	46.81	1SG 92
	ATOM	92 CA	GLN 11	21.339	2.232	14.128	1.00	46.81	1SG 93
	ATOM	93 CB	GLN 11	22.785	2.216	14.652	1.00	46.81	1SG 94
15	ATOM	94 CG	GLN 11	22.894	2.633	16.120	1.00	46.81	1SG 95
	ATOM	95 CD	GLN 11	22.189	3.972	16.288	1.00	46.81	1SG 96
	ATOM	96 OE1	GLN 11	22.533	4.962	15.644	1.00	46.81	1SG 97
	ATOM	97 NE2	GLN 11	21.157	3.999	17.174	1.00	46.81	1SG 98
	ATOM	98 C	GLN 11	21.375	1.838	12.679	1.00	46.81	1SG 99
20	ATOM	99 O	GLN 11	22.446	1.557	12.144	1.00	46.81	1SG 100
	ATOM	100 N	LYS 12	20.203	1.801	12.002	2 1.00	55.60	1SG 101
	ATOM	101 CA	LYS 12	20.173	1.494	10.596	5 1.00	55.60	1SG 102
	ATOM	102 CB	LYS 12	19.870	0.011	10.299	9 1.00	55.60	1SG 103
	ATOM	103 CG	LYS 12	20.984	-0.922	10.790	0 1.00	55.60	1SG 104
25	ATOM	104 CD	LYS 12	20.628	-2.413	10.76	4 1.00	55.60	1SG 105
	ATOM	105 CE	LYS 12	21.764	-3.313	11.262	2 1.00	55.60	1 SG 106
	ATOM	106 NZ	LYS 12	21.446	-4.741	11.022	2 1.00	55.60	1SG 107
	ATOM	107 C	LYS 12	19.117	2.362	9.955	1.00	55.60	1SG 108
	ATOM	108 O	LYS 12	18.156	2.739	10.622	2 1.00	55.60	1SG 109
30	ATOM	109 N	ALA 13	19.275	2.709	8.646	1.00	67.26	1SG 110
	ATOM	110 CA	ALA 13	18.364	3.612	7.969	1.00	67.26	1SG 111
	ATOM	111 CB	ALA 13	18.880	5.062	7.916	1.00	67.26	1SG 112

		Atom	Amino	Acid		X Y	Z	Occup.	В	
		No. Name	SC_	No.					Facto	or
	ATOM	112 C	ALA	13	18.144	3.192	6.531	1.00	67.26	1SG 113
	ATOM	113 O	ALA	13	18.932	2.437	5.965	1.00	67.26	1SG 114
5	ATOM	114 N	LEU	14	17.031	3.677	5.913	1.00	79.42	1SG 115
	ATOM	115 CA	LEU	14	16.674	3.399	4.538	1.00	79.42	1SG 116
	ATOM	116 CB	LEU	14	15.167	3.170	4.340	1.00	79.42	1SG 117
	ATOM	117 CG	LEU	14	14.779	2.791	2.901	1.00	79.42	1SG 118
	ATOM	118 CD2	LEU	14	13.255	2.799	2.722	1.00	79.42	1SG 119
10	ATOM	119 CD1	LEU	14	15.414	1.450	2.495	1.00	79.42	1SG 120
	ATOM	120 C	LEU	14	17.078	4.610	3.736	1.00	79.42	1SG 121
	ATOM	121 O	LEU	14	16.950	5.739	4.213	1.00	79.42	1SG 122
	ATOM	122 N	TYR	15	17.541	4.421	2.474	1.00	87.23	1SG 123
	ATOM	123 CA	TYR	15	18.224	5.544	1.881	1.00	87.23	1SG 124
15	ATOM	124 CB	TYR	15	19.587	5.413	2.567	1.00	87.23	1SG 125
	ATOM	125 CG	TYR	15	20.605	6.424	2.283	1.00	87.23	1SG 126
	ATOM	126 CD1	TYR	15	21.306	6.405	1.104	1.00	87.23	1SG 127
	ATOM	127 CD2	TYR	15	20.889	7.343	3.258	1.00	87.23	1SG 128
	ATOM	128 CE1	TYR	15	22.274	7.345	0.870	1.00	87.23	1SG 129
20	ATOM	129 CE2	TYR	15	21.857	8.283	3.029	1.00	87.23	1SG 130
	ATOM	130 CZ	TYR	15	22.542	8.284	1.835	1.00	87.23	1SG 131
	ATOM	131 OH	TYR	15	23.538	9.251	1.599	1.00	87.23	1SG 132
	ATOM	132 C	TYR	15	18.362	5.352	0.379	1.00	87.23	1SG 133
	ATOM	133 O	TYR	15	18.951	4.371	-0.068	1.00	87.23	1SG 134
25	ATOM	134 N	THR	16	17.865	6.300	-0.452	1.00	84.17	1SG 135
	ATOM	135 CA	THR	16	17.928	6.159	-1.888	3 1.00	84.17	1SG 136
	ATOM	136 CB	THR	16	16.824	6.887	-2.595	1.00	84.17	1SG 137
	ATOM	137 OG1	THR	16	16.796	6.531	-3.969	1.00	84.17	1SG 138
	ATOM	138 CG2	THR	. 16	17.066	8.398	3 -2.440	1.00	84.17	1 SG 139
30) ATOM	139 C	THR	. 16	19.224	6.697	7 -2.419	9 1.00	84.17	1 S G 140
	ATOM	140 O	THR	. 16	19.725	7.727	7 -1.976	5 1.00	84.17	1SG 141
	ATOM	141 N	ARC	i 17	19.770	5.992	2 -3.42	9 1.00	78.02	1SG 142

		Atom	Amino	Acid		X	Y	Z	Occup.	В	
		No. Name	SC	No.						Factor	
	ATOM	142 CA	ARG	17	20.968	6.319)	-4.149	1.00	78.02	1SG 143
	ATOM	143 CB	ARG	17	21.962	5.148	3	-4.239	1.00	78.02	1SG 144
5	ATOM	144 CG	ARG	17	22.578	4.743	3	-2.897	1.00	78.02	1SG 145
	ATOM	145 CD	ARG	17	23.917	5.423	3	-2.600	1.00	78.02	1SG 146
	ATOM	146 NE	ARG	17	24.892	4.988	3	-3.640	1.00	78.02	1SG 147
	ATOM	147 CZ	ARG	17	25.646	3.866	5	-3.452	1.00	78.02	1SG 148
	ATOM	148 NH1	ARG	17	25.487	3.110)	-2.327	1.00	78.02	1SG 149
10	ATOM	149 NH2	ARG	17	26.569	3.502	2	-4.389	1.00	78.02	1SG 150
	ATOM	150 C	ARG	17	20.463	6.569	9	-5.531	1.00	78.02	1SG 151
	ATOM	151 O	ARG	17	19.599	7.421	l	-5.734	1.00	78.02	1SG 152
	ATOM	152 N	ASP	18	21.078	5.939)	-6.548	1.00	69.34	1SG 153
	ATOM	153 CA	ASP	18	20.502	6.094	1	-7.854	1.00	69.34	1SG 154
15	ATOM	154 CB	ASP	18	21.438	5.589)	-8.966	1.00	69.34	1SG 155
	ATOM	155 CG	ASP	18	20.761	5.794	1 -	10.315	1.00	69.34	1SG 156
	ATOM	156 OD1	ASP	18	20.559	6.976	5 -	10.705	1.00	69.34	1SG 157
	ATOM	157 OD2	ASP	18	20.435	4.771	1 -	10.972	1.00	69.34	1SG 158
	ATOM	158 C	ASP	18	19.205	5.326	5	-7.997	1.00	69.34	1SG 159
20	ATOM	159 O	ASP	18	18.126	5.913	3	-8.058	1.00	69.34	1SG 160
	ATOM	160 N	GLY	19	19.316	3.973	3	-8.067	1.00	63.66	1SG 161
	ATOM	161 CA	GLY	19	18.259	3.012	2	-8.316	1.00	63.66	1SG 162
	ATOM	162 C	GLY	19	17.371	2.617	7	-7.167	1.00	63.66	1SG 163
	ATOM	163 O	GLY	19	16.170	2.441	l	-7.368	1.00	63.66	1SG 164
25	ATOM	164 N	GLN	20	17.914	2.387	7	-5.950	1.00	61.51	1SG 165
	ATOM	165 CA	GLN	20	17.017	1.871	l	-4.947	1.00	61.51	1SG 166
	ATOM	166 CB	GLN	20	16.857	0.345	5	-4.968	1.00	61.51	1SG 167
	ATOM	167 CG	GLN	20	16.150	-0.08	7	-6.250	1.00	61.51	1SG 168
	ATOM	168 CD	GLN	20	15.734	-1.539	9	-6.140	1.00	61.51	1SG 169
30	ATOM	169 OE1	GLN	20	16.082	-2.258	8	-5.205	1.00	61.51	1SG 170
	ATOM	170 NE2	GLN	20	14.939	-1.982	2	-7.150	1.00	61.51	1SG 171
	ATOM	171 C	GLN	20	17.372	2.305	5	-3.562	1.00	61.51	1SG 172

		Atom	Amino A	cid		X Y	Z	Occup.	В	
		No. Name	SC	No.					Factor	
	ATOM	202 CB	ASP 2	25	24.891	2.522	7.738	1.00	54.16	1SG 203
	ATOM	203 CG	ASP 2	25	25.475	3.902	7.449	1.00	54.16	1SG 204
5	ATOM	204 OD1	ASP 2	25	24.942	4.584	6.533	1.00	54.16	1SG 205
	ATOM	205 OD2	ASP 2	25	26.452	4.296	8.141	1.00	54.16	1SG 206
	ATOM	206 C	ASP 2	25	25.194	1.920	5.400	1.00	54.16	1SG 207
	ATOM	207 O	ASP 2	25	26.380	1.894	5.724	1.00	54.16	1SG 208
	ATOM	208 N	PRO :	26	24.840	1.778	4.146	1.00	53.80	1SG 209
10	ATOM	209 CA	PRO	26	25.788	1.720	3.051	1.00	53.80	1SG 210
	ATOM	210 CD	PRO	26	23.498	2.100	3.692	1.00	53.80	1SG 211
	ATOM	211 CB	PRO	26	24.929	1.637	1.790	1.00	53.80	1SG 212
	ATOM	212 CG	PRO	26	23.644	2.386	2.188	1.00	53.80	1SG 213
	ATOM	213 C	PRO	26	26.751	2.876	2.928	1.00	53.80	1SG 214
15	ATOM	214 O	PRO	26	27.922	2.713	3.260	1.00	53.80	1SG 215
	ATOM	215 N	VAL	27	26.285	4.065	2.474	1.00	51.24	1SG 216
	ATOM	216 CA	VAL	27	27.193	5.172	2.287	1.00	51.24	1SG 217
	ATOM	217 CB	VAL	27	28.095	5.012	1.095	5 1.00	51.24	1SG 218
	ATOM	218 CG1	VAL	27	27.230	4.971	-0.176	5 1.00	51.24	1SG 219
20	ATOM	219 CG2	VAL	27	29.123	6.158	1.105	5 1.00	51.24	1SG 220
	ATOM	220 C	VAL	27	26.410	6.431	2.058	3 1.00	51.24	1SG 221
	ATOM	221 O	VAL	27	25.349	6.426	1.438	3 1.00	51.24	1SG 222
	A T O M	222 N	ALA	28	26.947	7.565	2.549	9 1.00	46.54	1SG 223
	ATOM	223 CA	ALA	28	26.305	8.836	2.372	2 1.00	46.54	1SG 224
25	ATOM	224 CB	ALA	28	25.477	9.267	3.59	5 1.00	46.54	1SG 225
	ATOM	225 C	ALA	28	27.381	9.864	2.20	4 1.00	46.54	1SG 226
	ATOM	226 O	ALA	28	28.423	9.803	3 2.85	2 1.00	46.54	1SG 227
	ATOM	227 N	ASP	29	27.156	5 10.848	3 1.31	6 1.00	46.28	1SG 228
	ATOM	228 CA	ASP	29	28.119	9 11.890	1.12	7 1.00	46.28	1SG 229
30	ATOM	229 CB	ASP	29	28.440	0 12.17	7 -0.35	55 1.00	46.28	1SG 230
	ATOM	230 CG	ASP	29	27.17	4 12.56	3 -1.10	5 1.00	46.28	1SG 231
	ATOM	231 OD1	ASP	29	26.17	3 11.80	4 -1.01	9 1.00	46.28	1SG 232

and the state of t

THE PROPERTY OF THE PROPERTY O

		Atom	Amino A	Acid	2	X Y	Z	Occup.	В	
		No. Name	SC	No.					Facto	<u> </u>
	ATOM	232 OD2	ASP	29	27.202 1	3.622	-1.788	1.00	46.28	1SG 233
	ATOM	233 C	ASP	29	27.575 1	3.114	1.788	1.00	46.28	1SG 234
5	ATOM	234 O	ASP	29	27.116 1	3.058	2.928	1.00	46.28	1SG 235
	ATOM	235 N	ASN	30	27.618 1	4.263	1.095	1.00	48.86	1SG 236
	ATOM	236 CA	ASN	30	27.164 1	5.467	1.716	1.00	48.86	1SG 237
	ATOM	237 CB	ASN	30	27.228 1	6.680	0.774	1.00	48.86	1SG 238
	ATOM	238 CG	ASN	30	28.692 1	6.993	0.510	1.00	48.86	1SG 239
10	ATOM	239 OD1	ASN	30	29.591 1	6.445	1.146	1.00	48.86	1SG 240
	ATOM	240 ND2	ASN	30	28.939 1	7.917	-0.454	1.00	48.86	1SG 241
	ATOM	241 C	ASN	30	25.735 1	5.292	2.117	1.00	48.86	1SG 242
	ATOM	242 O	ASN	30	25.399 1	5.485	3.285	1.00	48.86	1SG 243
	ATOM	243 N	CYS	31	24.849 1	4.904	1.175	1.00	56.83	1SG 244
15	ATOM	244 CA	CYS	31	23.482 1	4.739	1.582	1.00	56.83	1SG 245
	ATOM	245 CB	CYS	31	22.896 1	5.982	2.276	1.00	56.83	1SG 246
	ATOM	246 SG	CYS	31	21.167 1	15.751	2.786	1.00	56.83	1SG 247
	ATOM	247 C	CYS	31	22.617 1	14.480	0.387	1.00	56.83	1SG 248
	ATOM	248 O	CYS	31	22.858	15.003	-0.702	1.00	56.83	1SG 249
20	ATOM	249 N	CYS	32	21.582	13.639	0.592	1.00	66.99	1SG 250
	ATOM	250 CA	CYS	32	20.568	13.312	-0.374	1.00	66.99	1SG 251
	ATOM	251 CB	CYS	32	20.972	12.185	-1.341	1.00	66.99	1SG 252
	ATOM	252 SG	CYS	32	21.327	10.625	-0.480	1.00	66.99	1SG 253
	ATOM	253 C	CYS	32	19.402	12.829	0.452	1.00	66.99	1SG 254
25	ATOM	254 O	CYS	32	19.623	12.348	1.560	1.00	66.99	1SG 255
	ATOM	255 N	ALA	33	18.141	12.888	-0.05	1.00	71.35	1SG 256
	ATOM	256 CA	ALA	33	17.055	12.664	0.876	5 1.00	71.35	1SG 257
	ATOM	257 CB	ALA	33	16.264	13.941	1.20	1.00	71.35	1SG 258
	ATOM	258 C	ALA	33	16.044	11.635	0.454	1.00	71.35	1SG 259
30	ATOM	259 O	ALA	33	15.721	11.460	-0.72	0 1.00	71.35	1SG 260
	ATOM	260 N	GLU	34	15.533	10.940	1.49	7 1.00	72.50	1SG 261
	ATOM	261 CA	GLU	34	14.566	9.873	1.58	4 1.00	72.50	1SG 262

3-
1
-
137
7
E
i and
į.
127
E.i.

		Atom	Amino A	Acid		X Y	\mathbf{z}	Occup.	В	
		No. Name	SC	No.					Factor	
	ATOM	262 CB	GLU :	34	14.668	9.101	2.912	1.00	72.50	1SG 263
	ATOM	263 CG	GLU :	34	13.820	7.828	2.955	1.00	72.50	1SG 264
5	ATOM	264 CD	GLU :	34	14.489	6.781	2.075	1.00	72.50	1SG 265
	ATOM	265 OE1	GLU 3	34	15.301	7.172	1.194	1.00	72.50	1SG 266
	ATOM	266 OE2	GLU :	34	14.191	5.573	2.271	1.00	72.50	1SG 267
	ATOM	267 C	GLU 3	34	13.137	10.333	1.435	1.00	72.50	1SG 268
	ATOM	268 O	GLU 3	34	12.242	9.503	1.281	1.00	72.50	1SG 269
10	ATOM	269 N	LYS 3	35	12.867	11.644	1.577	1.00	67.33	1SG 270
	ATOM	270 CA	LYS 3	35	11.538	12.209	1.559	1.00	67.33	1SG 271
	ATOM	271 CB	LYS 3	35	11.604	13.720	1.293	1.00	67.33	1SG 272
	ATOM	272 CG	LYS 3	35	10.259	14.437	1.246	1.00	67.33	1SG 273
	ATOM	273 CD	LYS 3	35	10.418	15.949	1.076	1.00	67.33	1SG 274
15	ATOM	274 CE	LYS 3	35	10.585	16.390	-0.379	1.00	67.33	1SG 275
	ATOM	275 NZ	LYS 3	35	10.689	17.864	-0.456	5 1.00	67.33	1SG 276
	ATOM	276 C	LYS 3	35	10.682	11.607	0.472	1.00	67.33	1SG 277
	ATOM	277 O	LYS 3	35	11.034	11.643	-0.705	1.00	67.33	1SG 278
	ATOM	278 N	ILE 3	86	9.519	11.031	0.872	1.00	61.39	1SG 279
20	ATOM	279 CA	ILE 3	6	8.527	10.454	-0.008	1.00	61.39	1SG 280
	ATOM	280 CB	ILE 3	6	8.567	8.950	-0.045	1.00	61.39	1SG 281
	ATOM	281 CG2	ILE 3	66	7.227	8.432	-0.591	1.00	61.39	1SG 282
	ATOM	282 CG1	ILE 3	6	9.765	8.467	-0.869	1.00	61.39	1SG 283
	ATOM	283 CD1	ILE 3	86	9.598	8.822	-2.344	1.00	61.39	1SG 284
25	ATOM	284 C	ILE 3	86	7.169	10.864	0.498	1.00	61.39	1SG 285
	ATOM	285 O	ILE 3	36	6.972	11.027	1.700	1.00	61.39	1SG 286
	ATOM	286 N	CYS 3	7	6.178	11.047	-0.404	1.00	56.42	1SG 287
	ATOM	287 CA	CYS 3	7	4.877	11.456	0.056	1.00	56.42	1SG 288
	ATOM	288 CB	CYS 3	7	4.174	12.446	-0.890	1.00	56.42	1SG 289
30	ATOM	289 SG	CYS 3	7	2.561	12.996	-0.254	1.00	56.42	1SG 290
	ATOM	290 C	CYS 3	7	4.009	10.237	0.179	1.00	56.42	1SG 291
	ATOM	291 O	CYS 3	7	3.973	9.390	-0.711	1.00	56.42	1SG 292

		Atom	Amino	Acid		X	Y Z	Occup.	В	
		No. Name	<u>sc</u>	No.					Factor	•
	ATOM	292 N	ILE	38	3.270	10.11	5 1.303	1.00	54.66	1SG 293
	ATOM	293 CA	ILE	38	2.455	8.94	1.469	1.00	54.66	1SG 294
5	ATOM	294 CB	ILE	38	2.621	8.23	3 2.783	1.00	54.66	1SG 295
	ATOM	295 CG2	ILE	38	1.543	7.14	2.853	1.00	54.66	1SG 296
	ATOM	296 CG1	ILE	38	4.049	7.70	5 2.952	1.00	54.66	1SG 297
	ATOM	297 CD1	ILE	38	4.292	7.11	5 4.338	1.00	54.66	1SG 298
	ATOM	298 C	ILE	38	0.996	9.29	1.396	1.00	54.66	1SG 299
10	ATOM	299 O	ILE	38	0.532	10.192	2.093	1.00	54.66	1SG 300
	ATOM	300 N	LEU	39	0.230	8.583	0.527	1.00	56.97	1SG 301
	ATOM	301 CA	LEU	39	-1.197	8.78	3 0.479	1.00	56.97	1SG 302
	ATOM	302 CB	LEU	39	-1.710	9.37	0.848	1.00	56.97	1SG 303
	ATOM	303 CG	LEU	39	-1.278	10.83	-1.083	1.00	56.97	1SG 304
15	ATOM	304 CD2	LEU	39	-2.066	11.47	5 -2.234	1.00	56.97	1SG 305
	ATOM	305 CD1	LEU	39	0.244	10.944	1 -1.256	1.00	56.97	1SG 306
	ATOM	306 C	LEU	39	-1.896	7.47	0.736	1.00	56.97	1SG 307
	ATOM	307 O	LEU	39	-1.535	6.44	0.166	1.00	56.97	1SG 308
	ATOM	308 N	PRO	40	-2.820	7.48	3 1.681	1.00	57.04	1SG 309
20	ATOM	309 CA	PRO	40	-3.588	6.29	2.021	1.00	57.04	1SG 310
	ATOM	310 CD	PRO	40	-2.520	8.26	4 2.874	1.00	57.04	1SG 311
	ATOM	311 CB	PRO	40	-3.585	6.20	9 3.547	1.00	57.04	1SG 312
	ATOM	312 CG	PRO	40	-3.372	7.65	9 3.999	1.00	57.04	1SG 313
	ATOM	313 C	PRO	40	-4.996	6.24	2 1.473	1.00	57.04	1SG 314
25	ATOM	314 O	PRO	40	-5.505	7.28	0 1.055	1.00	57.04	1SG 315
	ATOM	315 N	ASN	41	-5.640	5.04	2 1.462	1.00	58.99	1SG 316
	ATOM	316 CA	ASN	41	-7.033	4.90	5 1.092	1.00	58.99	1SG 317
	ATOM	317 CB	ASN	41	-7.561	3.45	6 1.108	1.00	58.99	1SG 318
	ATOM	318 CG	ASN	41	-8.922	3.45	4 0.414	1.00	58.99	1SG 319
30	ATOM	319 OD1	ASN	41	-9.838	4.18	2 0.794	1.00	58.99	1SG 320
	ATOM	320 ND2	ASN	41	-9.056	2.62	0 -0.652	1.00	58.99	1SG 321
	ATOM	321 C	ASN	41	-7.867	5.54	9 2.122	1.00	58.99	1SG 322

		Atom	Amino .	Acid		$\mathbf{X} - \mathbf{Y}$	Z	Occup.	В	
		No. Name	SC_	No.					Factor	
	ATOM	322 O	ASN 4	41	-8.703	6.411	1.852	1.00	58.99	1SG 323
5	ATOM	323 N	ARG	42	-7.610	5.091	3.352	1.00	61.65	1SG 324
	ATOM	324 CA	ARG	42	-8.332	5.431	4.528	1.00	61.65	1SG 325
	ATOM	325 CB	ARG	42	-9.650	4.661	4.658	1.00	61.65	1SG 326
	ATOM	326 CG	ARG	42	-10.645	4.972	3.540	1.00	61.65	1SG 327
10	ATOM	327 CD	ARG	42	-11.899	4.102	3.586	1.00	61.65	1SG 328
	ATOM	328 NE	ARG	42	-11.461	2.693	3.386	1.00	61.65	1SG 329
	ATOM	329 CZ	ARG	42	-12.373	1.681	3.458	1.00	61.65	1SG 330
	ATOM	330 NH1	ARG	42	-13.688	1.962	3.694	1.00	61.65	1SG 331
	ATOM	331 NH2	ARG	42	-11.966	0.387	3.295	1.00	61.65	1SG 332
15	ATOM	332 C	ARG	42	-7.454	4.955	5.634	1.00	61.65	1SG 333
	ATOM	333 O	ARG	42	-6.641	5.711	6.163	1.00	61.65	1SG 334
	ATOM	334 N	GLY ·	43	-7.629	3.675	6.028	1.00	65.68	1SG 335
	ATOM	335 CA	GLY -	43	-6.846	3.113	7.090	1.00	65.68	1SG 336
	ATOM	336 C	GLY ·	43	-5.433	2.861	6.647	1.00	65.68	1SG 337
20	ATOM	337 O	GLY ·	43	-4.947	1.733	6.713	1.00	65.68	1SG 338
	ATOM	338 N	LEU 4	44	-4.741	3.910	6.170	1.00	75.22	1SG 339
	ATOM	339 CA	LEU 4	44	-3.331	3.886	5.885	1.00	75.22	1SG 340
	ATOM	340 CB	LEU 4	44	-2.491	3.268	7.018	1.00	75.22	1SG 341
	ATOM	341 CG	LEU 4	44	-2.541	4.040	8.347	1.00	75.22	1SG 342
25	ATOM	342 CD2	LEU 4	44	-2.183	5.519	8.148	1.00	75.22	1SG 343
	ATOM	343 CD1	LEU 4	44	-1.675	3.357	9.417	1.00	75.22	1SG 344
	ATOM	344 C	LEU 4	44	-3.011	3.079	4.657	1.00	75.22	1SG 345
	ATOM	345 O	LEU 4	44	-2.085	3.429	3.928	1.00	75.22	1SG 346
	ATOM	346 N	ASP 4	45	-3.809	2.027	4.368	1.00	83.45	1SG 347
30	ATOM	347 CA	ASP 4	45	-3.608	1.109	3.276	1.00	83.45	1SG 348
	ATOM	348 CB	ASP 4	45	-4.325	-0.238	3.473	1.00	83.45	1 SG 349
	ATOM	349 CG	ASP 4	45	-3.689	-0.966	4.647	1.00	83.45	1SG 350
	ATOM	350 OD1	ASP 4	45	-2.519	-0.644	4.986	1.00	83.45	1SG 351
	ATOM	351 OD2	ASP 4	45	-4.369	-1.856	5.224	1.00	83.45	1SG 352

-

-
7 T
-
-
338
Žm:i
The same
ARTIN .

		Atom	Amino Acid	X Y Z Occup. B	
		No. Name	SC No.	Factor	
	ATOM	352 C	ASP 45	-4.287 1.767 2.130 1.00 83.45 13	SG 353
	ATOM	353 O	ASP 45	-4.119 2.971 1.985 1.00 83.45 13	SG 354
5	ATOM	354 N	ARG 46	-4.975 0.988 1.249 1.00 85.55 13	SG 355
	ATOM	355 CA	ARG 46	-5.647 1.473 0.058 1.00 85.55 13	SG 356
	ATOM	356 CB	ARG 46	-4.986 2.742 -0.549 1.00 85.55 13	SG 357
	ATOM	357 CG	ARG 46	-5.950 3.634 -1.310 1.00 85.55 13	SG 358
	ATOM	358 CD	ARG 46	-5.648 5.146 -1.446 1.00 85.55 15	SG 359
10	ATOM	359 NE	ARG 46	-4.193 5.443 -1.540 1.00 85.55 13	SG 360
	ATOM	360 CZ	ARG 46	-3.833 6.703 -1.921 1.00 85.55 1	SG 361
	ATOM	361 NH1	ARG 46	-4.792 7.669 -2.026 1.00 85.55 1:	SG 362
	ATOM	362 NH2	ARG 46	-2.540 7.000 -2.226 1.00 85.55 13	SG 363
	ATOM	363 C	ARG 46	-5.514 0.346 -0.935 1.00 85.55 1	SG 364
15	ATOM	364 O	ARG 46	-5.227 -0.776 -0.519 1.00 85.55 13	SG 365
	ATOM	365 N	THR 47	-5.712 0.588 -2.260 1.00 82.81 1	SG 366
	ATOM	366 CA	THR 47	-5.374 -0.404 -3.268 1.00 82.81 1	SG 367
	ATOM	367 CB	THR 47	-6.409 -1.482 -3.476 1.00 82.81 1	SG 368
	ATOM	368 OG1	THR 47	-7.687 -0.898 -3.642 1.00 82.81 1	SG 369
20	ATOM	369 CG2	THR 47	-6.445 -2.462 -2.294 1.00 82.81 1	SG 370
	ATOM	370 C	THR 47	-5.069 0.262 -4.600 1.00 82.81 1	SG 371
	ATOM	371 O	THR 47	-5.586 1.338 -4.898 1.00 82.81 18	SG 372
	ATOM	372 N	LYS 48	-4.191 -0.377 -5.424 1.00 79.66 1	SG 373
	ATOM	373 CA	LYS 48	-3.743 0.033 -6.748 1.00 79.66 1	SG 374
25	ATOM	374 CB	LYS 48	-4.732 0.809 -7.646 1.00 79.66 1	SG 375
	ATOM	375 CG	LYS 48	-4.436 0.722 -9.151 1.00 79.66 1	SG 376
	ATOM	376 CD	LYS 48	-5.652 0.996 -10.039 1.00 79.66 1	SG 377
	ATOM	377 CE	LYS 48	-6.594 -0.209 -10.142 1.00 79.66 I	SG 378
	ATOM	378 NZ	LYS 48	-7.750 0.112 -11.010 1.00 79.66 1	SG 379
30	ATOM	379 C	LYS 48	-2.604 0.962 -6.582 1.00 79.66 1	SG 380
	ATOM	380 O	LYS 48	-1.802 0.828 -5.663 1.00 79.66 1	SG 381
	ATOM	381 N	VAL 49	-2.549 1.965 -7.481 1.00 77.69 1	SG 382

		Atom	Amino .	Acid		X Y	Z	Occup.	В	
		No. Name	SC	No.					Factor	
	ATOM	382 CA	VAL	49	-1.603	3.034	-7.410	1.00	77.69	1SG 383
	ATOM	383 CB	VAL	49	-1.910	4.144	-8.376	1.00	77.69	1SG 384
5	ATOM	384 CG1	VAL	49	-0.934	5.309	-8.129	1.00	77.69	1SG 385
	ATOM	385 CG2	VAL	49	-1.860	3.567	-9.803	1.00	77.69	1SG 386
	ATOM	386 C	VAL	49	-1.745	3.536	-6.011	1.00	77.69	1SG 387
	ATOM	387 O	VAL	4 9	-0.772	3.947	-5.401	1.00	77.69	1SG 388
	ATOM	388 N	PRO	50	-2.928	3.481	-5.473	1.00	81.22	1SG 389
10	ATOM	389 CA	PRO	50	-3.093	3.780	-4.078	1.00	81.22	1SG 390
	ATOM	390 CD	PRO	50	-4.045	4.050	-6.231	1.00	81.22	1SG 391
	ATOM	391 CB	PRO	50	-4.590	3.799	-3.931	1.00	81.22	1SG 392
	ATOM	392 CG	PRO	5 0	-5.073	4.492	-5.197	1.00	81.22	1SG 393
	ATOM	393 C	PRO	50	-2.280	2.994	-3.059	1.00	81.22	1SG 394
15	ATOM	394 O	PRO	50	-1.577	2.067	-3.462	1.00	81.22	1SG 395
	ATOM	395 N	ILE	51	-2.440	3.350	-1.744	1.00	85.66	1SG 396
	ATOM	396 CA	ILE	51	-1.587	3.232	-0.626	1.00	85.66	1SG 397
	ATOM	397 CB	ILE	51	-1.335	1.957	0.044	1.00	85.66	1SG 398
	ATOM	398 CG2	ILE	51	-0.954	2.338	1.486	1.00	85.66	1SG 399
20	ATOM	399 CG1	ILE	51	-2.496	1.010	-0.039	1.00	85.66	1SG 400
	ATOM	400 CD1	ILE	51	-2.690	0.573	-1.456	1.00	85.66	1SG 401
	ATOM	401 C	ILE	51	-0.331	3.247	-1.354	1.00	85.66	1SG 402
	ATOM	402 O	ILE	51	0.224	2.187	-1.648	1.00	85.66	1SG 403
	ATOM	403 N	PHE .	52	0.153	4.443	-1.667	1.00	83.41	1SG 404
25	ATOM	404 CA	PHE :	52	1.377	4.400	-2.385	1.00	83.41	1SG 405
	ATOM	405 CB	PHE :	52	1.338	4.682	-3.888	1.00	83.41	1SG 406
	ATOM	406 CG	PHE	52	0.997	6.115	-4.120	1.00	83.41	1SG 407
	ATOM	407 CD1	PHE	52	-0.283	6.572	-3.929	1.00	83.41	1SG 408
	ATOM	408 CD2	PHE :	52	1.955	6.999	-4.558	1.00	83.41	1SG 409
30	ATOM	409 CE1	PHE :	52	-0.602	7.891	-4.148	1.00	83.41	1SG 410
	ATOM	410 CE2	PHE	52	1.644	8.320	-4.780	1.00	83.41	1SG 411
	ATOM	411 CZ	PHE :	52	0.363	8.771	-4.572	1.00	83.41	1SG 412

		Atom	Amino Ac	id	X Y	\mathbf{Z}	Occup.	В	
		No. Name	SC N	0.				Factor	
	ATOM	412 C	PHE 52	2.238	5.478	-1.870	1.00	83.41	1SG 413
	ATOM	413 O	PHE 52	1.887	6.191	-0.933	1.00	83.41	1SG 414
5	ATOM	414 N	LEU 53	3.418	5.585	-2.493	1.00	78.56	1SG 415
	ATOM	415 CA	LEU 53	4.372	6.566	-2.086	1.00	78.56	1SG 416
	ATOM	416 CB	LEU 53	5.612	5.924	-1.438	1.00	78.56	1SG 417
	ATOM	417 CG	LEU 53	5.297	4.976	-0.261	1.00	78.56	1SG 418
	ATOM	418 CD2	LEU 53	4.393	5.644	0.786	1.00	78.56	1SG 419
10	ATOM	419 CD1	LEU 53	6.582	4.380	0.339	1.00	78.56	1SG 420
	ATOM	420 C	LEU 53	4.854	7.291	-3.317	1.00	78.56	1SG 421
	ATOM	421 O	LEU 53	4.931	6.694	-4.390	1.00	78.56	1SG 422
	ATOM	422 N	GLY 54	5.178	8.607	-3.220	1.00	70.60	1SG 423
	ATOM	423 CA	GLY 54	5.719	9.237	-4.401	1.00	70.60	1SG 424
15	ATOM	424 C	GLY 54	6.195	10.638	-4.135	1.00	70.60	1SG 425
	ATOM	425 O	GLY 54	5.400	11.486	-3.737	1.00	70.60	1SG 426
	ATOM	426 N	ILE 55	7.517	10.892	-4.353	1.00	62.73	1SG 427
	ATOM	427 CA	ILE 55	8.192	12.176	-4.273	1.00	62.73	1SG 428
	ATOM	428 CB	ILE 55	8.301	12.845	-2.910	1.00	62.73	1SG 429
20	ATOM	429 CG2	ILE 55	9.028	14.185	-3.132	1.00	62.73	1SG 430
	ATOM	430 CG1	ILE 55	6.950	13.168	-2.272	1.00	62.73	1SG 431
	ATOM	431 CD1	ILE 55	6.138	14.174	-3.089	1.00	62.73	1SG 432
	ATOM	432 C	ILE 55	9.616	11.941	-4.717	1.00	62.73	1SG 433
	ATOM	433 O	ILE 55	9.902	11.796	-5.904	1.00	62.73	1SG 434
25	ATOM	434 N	GLN 56	10.545	11.904	-3.728	1.00	54.76	1SG 435
	ATOM	435 CA	GLN 56	11.969	11.738	-3.875	1.00	54.76	1SG 436
	ATOM	436 CB	GLN 56	12.415	10.369	-4.424	1.00	54.76	1SG 437
	ATOM	437 CG	GLN 56	12.313	9.219	-3.420	1.00	54.76	1SG 438
	ATOM	438 CD	GLN 56	12.904	7.975	-4.072	1.00	54.76	1SG 439
30	ATOM	439 OE1	GLN 56	13.861	8.062	-4.840	1.00	54.76	1SG 440
	ATOM	440 NE2	GLN 56	12.319	6.788	-3.760	1.00	54.76	1SG 441
	ATOM	441 C	GLN 56	12.578	12.795	-4.744	1.00	54.76	1SG 442

The spiral stand stands are in the spiral sp

		Atom	Amino A	Acid		X Y	\mathbf{Z}	Occup.	В	
		No. Name	SC	No.					Factor	
	ATOM	442 O	GLN :	56	13.280	12.494	-5.709	1.00	54.76	1SG 443
	ATOM	443 N	GLY :	57	12.282	14.073	-4.438	1.00	49.12	1SG 444
5	ATOM	444 CA	GLY :	57	12.943	15.172	-5.079	1.00	49.12	1SG 445
	ATOM	445 C	GLY :	57	12.076	15.715	-6.161	1.00	49.12	1SG 446
	ATOM	446 O	GLY :	57	11.753	16.902	-6.167	1.00	49.12	1SG 447
	ATOM	447 N	GLY :	58	11.649	14.860	-7.107	1.00	45.25	1SG 448
	ATOM	448 CA	GLY :	58	10.832	15.410	-8.141	1.00	45.25	1SG 449
10	ATOM	449 C	GLY :	58	10.182	14.303	-8.907	1.00	45.25	1SG 450
	ATOM	450 O	GLY :	58	10.754	13.751	-9.846	1.00	45.25	1SG 451
	ATOM	451 N	SER	59	8.923	14.013	-8.531	1.00	45.65	1SG 452
	ATOM	452 CA	SER	59	8.034	13.084	-9.175	1.00	45.65	1SG 453
	ATOM	453 CB	SER	59	7.529	13.586	-10.541	1.00	45.65	1SG 454
15	ATOM	454 OG	SER	59	8.592	13.606	-11.483	1.00	45.65	1SG 455
	ATOM	455 C	SER	59	8.586	11.699	-9.376	1.00	45.65	1SG 456
	ATOM	456 O	SER	59	8.567	11.189	-10.496	1.00	45.65	1SG 457
	ATOM	457 N	ARG	60	9.088	11.039	-8.312	1.00	50.20	1SG 458
	ATOM	458 CA	ARG	60	9.455	9.657	-8.467	1.00	50.20	1SG 459
20	ATOM	459 CB	ARG	60	10.893	9.337	-8.018	1.00	50.20	1SG 460
	ATOM	460 CG	ARG	60	11.914	9.981	-8.959	1.00	50.20	1SG 461
	ATOM	461 CD	ARG	60	13.331	9.413	-8.870	1.00	50.20	1SG 462
	ATOM	462 NE	ARG	60	13.974	9.939	-7.635	1.00	50.20	1SG 463
	ATOM	463 CZ	ARG	6 0	15.336	9.979	-7.556	1.00	50.20	1SG 464
25	ATOM	464 NH1	ARG	60	16.091	9.573	-8.618	1.00	50.20	1SG 465
	ATOM	465 NH2	ARG	60	15.944	10.429	-6.420	1.00	50.20	1SG 466
	ATOM	466 C	ARG	60	8.466	8.869	-7.652	1.00	50.20	1SG 467
	ATOM	467 O	ARG	60	8.328	9.077	-6.449	1.00	50.20	1SG 468
	ATOM	468 N	CYS	61	7.744	7.923	-8.291	1.00	53.33	1SG 469
30	ATOM	469 CA	CYS	61	6.689	7.234	-7.595	1.00	53.33	1SG 470
	ATOM	470 CB	CYS	61	5.425	7.069	-8.464	1.00	53.33	1SG 471
	ATOM	471 SG	CYS	61	4.065	6.207	-7.620	1.00	53.33	1SG 472

		Atom	Amino .	Acid		X Y	Z	Occup.	В	
		No. Name	SC	No.					Factor	
	ATOM	472 C	CYS	61	7.136	5.867	-7.159	1.00	53.33	1SG 473
	ATOM	473 O	CYS	61	7.627	5.070	-7.958	1.00	53.33	1SG 474
5	ATOM	474 N	LEU	62	6.964	5.566	-5.849	1.00	56.92	1SG 475
	ATOM	475 CA	LEU	62	7.292	4.264	-5.334	1.00	56.92	1SG 476
	ATOM	476 CB	LEU	62	7.707	4.220	-3.848	1.00	56.92	1SG 477
	ATOM	477 CG	LEU	62	9.157	4.668	-3.573	1.00	56.92	1SG 478
	ATOM	478 CD2	LEU	62	9.580	4.316	-2.138	1.00	56.92	1SG 479
10	ATOM	479 CD1	LEU	62	9.385	6.146	-3.916	1.00	56.92	1SG 480
	ATOM	480 C	LEU	62	6.099	3.381	-5.506	1.00	56.92	1SG 481
	ATOM	481 O	LEU	62	5.035	3.631	-4.937	1.00	56.92	1SG 482
	ATOM	482 N	ALA	63	6.287	2.308	-6.308	1.00	55.92	1SG 483
	ATOM	483 CA	ALA	63	5.249	1.375	-6.657	1.00	55.92	1SG 484
15	ATOM	484 CB	ALA	63	4.609	1.687	-8.021	1.00	55.92	1SG 485
	ATOM	485 C	ALA	63	5.859	0.000	-6.764	1.00	55.92	1SG 486
	ATOM	486 O	ALA	63	7.074	-0.166	-6.673	1.00	55.92	1SG 487
	ATOM	487 N	CYS	64	5.008	-1.042	-6.909	1.00	54.10	1SG 488
	ATOM	488 CA	CYS	64	5.479	-2.389	-7.086	1.00	54.10	1SG 489
20	ATOM	489 CB	CYS	64	4.550	-3.436	-6.452	1.00	54.10	1SG 490
	ATOM	490 SG	CYS	64	4.399	-3.210	-4.655	1.00	54.10	1SG 491
	ATOM	491 C	CYS	64	5.496	-2.628	-8.573	1.00	54.10	1SG 492
	ATOM	492 O	CYS	64	4.482	-2.990	-9.162	1.00	54.10	1SG 493
	ATOM	493 N	VAL	65	6.669	-2.465	-9.222	1.00	52.49	1SG 494
25	ATOM	494 CA	VAL	65	6.782	-2.513	-10.665	1.00	52.49	1SG 495
	ATOM	495 CB	VAL	65	8.032	-1.844	-11.163	1.00	52.49	1SG 496
	ATOM	496 CG1	VAL	65	8.114	-1.972	-12.690	1.00	52.49	1SG 497
	ATOM	497 CG2	VAL	65	8.017	-0.388	-10.681	1.00	52.49	1SG 498
	ATOM	498 C	VAL	65			-11.166	1.00	52.49	1SG 499
30	ATOM	499 O	VAL	65	7.153		-10.450		52.49	1SG 500
	ATOM	500 N	GLU	66	6.328		-12.427		49.66	1SG 501
	ATOM	501 CA	GLU	66	6.253	-5.496	-12.918	1.00	49.66	1SG 502

The first first first state of the state of

		Atom	Amino	Acid		X	Y	Z	Occup.	В	
		No. Name	SC_	No.						Factor	
	ATOM	502 CB	GLU	66	4.897	-5.8	374 -1	3.549	1.00	49.66	1SG 503
	ATOM	503 CG	GLU	66	3.727	-5.9	80 -1	2.564	1.00	49.66	1SG 504
5	ATOM	504 CD	GLU	66	3.125	-4.5	95 -1	2.354	1.00	49.66	1SG 505
	ATOM	505 OE1	GLU	66	3.826	-3.7	08 -1	1.796	1.00	49.66	1SG 506
	ATOM	506 OE2	GLU	66	1.946	-4.4	107 -1	2.755	1.00	49.66	1SG 507
	ATOM	507 C	GLU	66	7.281	-5.7	26 -1	3.967	1.00	49.66	1SG 508
	ATOM	508 O	GLU	66	7.236	-5.1	44 -1	5.051	1.00	49.66	1SG 509
10	ATOM	509 N	THR	67	8.259	-6.5	92 -1	3.652	1.00	47.84	1SG 510
	ATOM	510 CA	THR	67	9.128	-7.0	002 -1	4.700	1.00	47.84	1SG 511
	ATOM	511 CB	THR	67	10.473	-7.5	08 -1	4.265	1.00	47.84	1SG 512
	ATOM	512 OG1	THR	67	11.353	-7.5	52 -1	5.378	1.00	47.84	1SG 513
	ATOM	513 CG2	THR	67	10.310	-8.9	24 -1	3.694	1.00	47.84	1SG 514
15	ATOM	514 C	THR	67	8.355	-8.1	50 -1	5.239	1.00	47.84	1SG 515
	ATOM	515 O	THR	67	7.242	-8.3	97 -1	4.779	1.00	47.84	1SG 516
	ATOM	516 N	GLU	68	8.852	-8.8	370 -1	6.250	1.00	46.72	1SG 517
	ATOM	517 CA	GLU	68	8.000	-9.9	946 -1	6.660	1.00	46.72	1SG 518
	ATOM	518 CB	GLU	68	8.509	-10.7	7 36 -1	7.877	1.00	46.72	1SG 519
20	ATOM	519 CG	GLU	68	7.553	-11.8	373 -1	8.259	1.00	46.72	1SG 520
	ATOM	520 CD	GLU	68	8.228	-12.7	752 -1	9.301	1.00	46.72	1SG 521
	ATOM	521 OE1	GLU	68	9.049	-12.2	210 -2	0.088	1.00	46.72	1SG 522
	ATOM	522 OE2	GLU	68	7.938	-13.9	79 -1	9.319	1.00	46.72	1SG 523
	ATOM	523 C	GLU	68	7.902	-10.9	94 0 -1	5.548	1.00	46.72	1SG 524
25	ATOM	524 O	GLU	68	6.805	-11.3	305 -1	5.125	1.00	46.72	1SG 525
	ATOM	525 N	GLU	69	9.067	-11.3	869 -1	5.027	1.00	46.10	1SG 526
	ATOM	526 CA	GLU	69	9.118	-12.4	119 -1	4.051	1.00	46.10	1SG 527
	ATOM	527 CB	GLU	69	10.565	-12.8	36 -1	3.758	1.00	46.10	1SG 528
	ATOM	528 CG	GLU	69	11.352	-13.1	98 -1	5.019	1.00	46.10	1SG 529
30	ATOM	529 CD	GLU	69	11.792	-11.8	388 -1	5.664	1.00	46.10	1SG 530
	ATOM	530 OE1	GLU	69	12.402	-11.0)55 -1	4.939	1.00	46.10	1SG 531
	ATOM	531 OE2	GLU	69	11.527	-11.6	598 -1	6.880	1.00	46.10	1SG 532

2272
200
1
125
N. 11
1
35
ê : Maria
Area.
į.

		Atom	Amino	Acid		X	Y Z	Oc	cup. B	
		No. Name	SC	No.					Fact	or
	ATOM	532 C	GLU	69	8.528	-12.003	-12.7	42 1.0	00 46.10	1SG 533
	ATOM	533 O	GLU	69	7.571	-12.599	-12.2	251 1.0	00 46.10	1SG 534
5	ATOM	534 N	GLY	70	9.034	-10.915	-12.1	46 1.0	00 46.58	1SG 535
	ATOM	535 CA	GLY	70	8.525	-10.675	-10.8	32 1.0	00 46.58	1SG 536
	ATOM	536 C	GLY	70	8.540	-9.209	-10.5	42 1.0	00 46.58	1SG 537
	ATOM	537 O	GLY	70	9.152	-8.419	-11.2	258 1.0	00 46.58	1SG 538
	ATOM	538 N	PRO	71	7.776	-8.841	-9.54	41 1.0	00 48.89	1SG 539
10	ATOM	539 CA	PRO	71	7.766	-7.452	-9.14	41 1.0	0 48.89	1SG 540
	ATOM	540 CD	PRO	71	6.437	-9.409	-9.48	81 1.0	00 48.89	1SG 541
	ATOM	541 CB	PRO	71	6.301	-7.073	-8.92	20 1.0	00 48.89	1SG 542
	ATOM	542 CG	PRO	71	5.599	-8.411	-8.6	70 1.0	00 48.89	1SG 543
	ATOM	543 C	PRO	71	8.623	-7.095	-7.94	49 1.0	00 48.89	1SG 544
15	ATOM	544 O	PRO	71	8.676	-7.874	-6.99	97 1.0	00 48.89	1SG 545
	ATOM	545 N	SER	72	9.202	-5.869	-7.93	37 1.0	0 52.25	1SG 546
	ATOM	546 CA	SER	72	10.027	-5.386	-6.85	58 1.0	0 52.25	1SG 547
	ATOM	547 CB	SER	72	11.533	-5.496	-7.15	56 1.0	0 52.25	1SG 548
	ATOM	548 OG	SER	72	11.900	-6.860	-7.30	05 1.0	0 52.25	1SG 549
20	ATOM	549 C	SER	72	9.716	-3.925	-6.66	50 1.0	0 52.25	1SG 550
	ATOM	550 O	SER	72	9.029	-3.313	-7.47	77 1.0	0 52.25	1SG 551
	ATOM	551 N	LEU	73	10.200	-3.332	-5.54	43 1.0	00 56.41	1SG 552
	ATOM	552 CA	LEU	73	9.942	-1.944	-5.24	43 1.0	00 56.41	1SG 553
	ATOM	553 CB	LEU	73	10.215	-1.624	-3.70	63 1.0	0 56.41	1SG 554
25	ATOM	554 CG	LEU	73	9.954	-0.167	-3.3	58 1.0	0 56.41	1SG 555
	ATOM	555 CD2	LEU	73	10.384	0.077	-1.90	05 1.00	56.41	1SG 556
	ATOM	556 CD1	LEU	73	8.493	0.230	-3.6	10 1.0	56.41	1SG 557
	ATOM	557 C	LEU	73	10.809	-1.069	-6.10	07 1.0	0 56.41	1SG 558
	ATOM	558 O	LEU	73	12.017	-1.286	-6.20	09 1.0	0 56.41	1SG 559
30	ATOM	559 N	GLN	74	10.210	-0.035	-6.7	45 1.0	0 58.13	1SG 560
	ATOM	560 CA	GLN	74	10.980	0.815	-7.6	11 1.0	0 58.13	1SG 561
	ATOM	561 CB	GLN	74	10.964	0.374	-9.0	77 1.0	0 58.13	1SG 562

		Atom	Amino	Acid		X Y Z	Occup.	В	
		No. Name	SC	No.		·		Factor	
	ATOM	562 CG	GLN	74	11.793	1.311 -9.948	1.00	58.13	1SG 563
	ATOM	563 CD	GLN	74	11.570	0.904 -11.386	1.00	58.13	1SG 564
5	ATOM	564 OE1	GLN	74	11.127	-0.211 -11.655	1.00	58.13	1SG 565
	ATOM	565 NE2	GLN	74	11.874	1.835 -12.329	1.00	58.13	1SG 566
	ATOM	566 C	GLN	74	10.436	2.215 -7.604	1.00	58.13	1SG 567
	ATOM	567 O	GLN	74	9.254	2.440 -7.341	1.00	58.13	1SG 568
	ATOM	568 N	LEU	75	11.317	3.201 -7.899	1.00	57.60	1SG 569
10	ATOM	569 CA	LEU	75	10.922	4.581 -8.000	1.00	57.60	1SG 570
	ATOM	570 CB	LEU	75	11.865	5.553 -7.251	1.00	57.60	1SG 571
	ATOM	571 CG	LEU	75	13.345	5.118 -7.120	1.00	57.60	1SG 572
	ATOM	572 CD2	LEU	75	14.044	4.945 -8.474	1.00	57.60	1SG 573
	ATOM	573 CD1	LEU	75	13.486	3.883 -6.217	1.00	57.60	1SG 574
15	ATOM	574 C	LEU	75	10.861	4.943 -9.459	1.00	57.60	1SG 575
	ATOM	575 O	LEU	75	11.863	5.291 -10.081	1.00	57.60	1SG 576
	ATOM	576 N	GLU	76	9.646	4.903 -10.042	1.00	53.82	1SG 577
	ATOM	577 CA	GLU	76	9.479	5.166 -11.445	1.00	53.82	1SG 578
	ATOM	578 CB	GLU	76	8.308	4.373 -12.064	1.00	53.82	1SG 579
20	ATOM	579 CG	GLU	76	6.959	4.659 -11.394	1.00	53.82	1SG 580
	ATOM	580 CD	GLU	76	5.880	3.832 -12.083	1.00	53.82	1SG 581
	ATOM	581 OE1	GLU	76	5.747	2.627 -11.732	1.00	53.82	1SG 582
	ATOM	582 OE2	GLU	76	5.180	4.388 -12.969	1.00	53.82	1SG 583
	ATOM	583 C	GLU	76	9.207	6.631 -11.635	1.00	53.82	1SG 584
25	ATOM	584 O	GLU	76	8.479	7.245 -10.857	1.00	53.82	1SG 585
	ATOM	585 N	ASP	77	9.805	7.235 -12.687	1.00	49.18	1SG 586
	ATOM	586 CA	ASP	77	9.612	8.637 -12.940	1.00	49.18	1SG 587
	ATOM	587 CB	ASP	77	10.685	9.258 -13.853	1.00	49.18	1SG 588
	ATOM	588 CG	ASP	77	11.993	9.332 -13.077	1.00	49.18	1SG 589
30	ATOM	589 OD1	ASP	77	12.007	8.894 -11.896	1.00	49.18	1SG 590
	ATOM	590 OD2	ASP	77	12.994	9.835 -13.654	1.00	49.18	1SG 591
	ATOM	591 C	ASP	77	8.293	8.804 -13.624	1.00	49.18	1SG 592

5
100
200
8. 10 M. 10
3
1
1
#
anar.
٠.

		Atom	Amino	Acid		X	Y	Z	Occup.	В	
		No. Name	SC	No.						Factor	
	ATOM	592 O	ASP	77	8.091	8.30	7 -1	4.731	1.00	49.18	1SG 593
	ATOM	593 N	VAL	78	7.353	9.52	1 -1	2.973	1.00	47.59	1SG 594
5	ATOM	594 CA	VAL	78	6.057	9.68	5 -13	3.568	1.00	47.59	1SG 595
	ATOM	595 CB	VAL	78	4.923	9.50	5 -1	2.596	1.00	47.59	1SG 596
	ATOM	596 CG1	VAL	78	5.001	10.596	5 -11	.514	1.00	47.59	1SG 597
	ATOM	597 CG2	VAL	78	3.601	9.47	9 -1	3.384	1.00	47.59	1SG 598
	ATOM	598 C	VAL	78	5.963	11.04	3 -1	4.201	1.00	47.59	1SG 599
10	ATOM	599 O	VAL	78	6.092	12.07	8 -1	3.548	1.00	47.59	1SG 600
	ATOM	600 N	ASN	79	5.734	11.04	2 -1:	5.528	1.00	47.00	1SG 601
	ATOM	601 CA	ASN	79	5.658	12.19	6 -1	6.382	1.00	47.00	1SG 602
	ATOM	602 CB	ASN	79	5.700	11.83	5 -1	7.874	1.00	47.00	1 S G 603
	ATOM	603 CG	ASN	79	7.120	11.41	7 -1	8.226	1.00	47.00	1SG 604
15	ATOM	604 OD1	ASN	79	7.421	10.23	2 -1	8.354	1.00	47.00	1SG 605
	ATOM	605 ND2	ASN	79	8.020	12.42	1 -1	8.400	1.00	47.00	1SG 606
	ATOM	606 C	ASN	79	4.419	13.01	6 -1	6.161	1.00	47.00	1SG 607
	ATOM	607 O	ASN	79	4.432	14.21	9 -1	6.420	1.00	47.00	1SG 608
	ATOM	608 N	ILE	80	3.305	12.40	5 -1:	5.708	1.00	48.12	1 S G 609
20	ATOM	609 CA	ILE	80	2.066	13.14	1 -1	5.658	1.00	48.12	1SG 610
	ATOM	610 CB	ILE	80	0.899	12.32	2 -1	6.127	1.00	48.12	1SG 611
	ATOM	611 CG2	ILE	80	0.788	11.08	31 -1	5.226	1.00	48.12	1SG 612
	ATOM	612 CG1	ILE	80	-0.373	13.17	79 -1	6.180	1.00	48.12	1SG 613
	ATOM	613 CD1	ILE	80	-1.524	12.50)2 -1	6.917	1.00	48.12	1SG 614
25	ATOM	614 C	ILE	80	1.747	13.61	8 -1	4.268	1.00	48.12	1SG 615
	ATOM	615 O	ILE	80	1.691	12.84	0 -1	3.319	1.00	48.12	1SG 616
	ATOM	616 N	GLU	81	1.578	14.95	50 -1	4.125	1.00	50.04	1SG 617
	ATOM	617 CA	GLU	81	1.244	15.58	89 -1	2.880	1.00	50.04	1SG 618
	ATOM	618 CB	GLU	81	1.532	17.10	00 -1	2.916	1.00	50.04	1SG 619
30	ATOM	619 CG	GLU	81	3.004	17.43	37 -1	3.183	1.00	50.04	1SG 620
	ATOM	620 CD	GLU	81	3.861	16.85	50 -1	2.068	1.00	50.04	1SG 621
	ATOM	621 OE1	GLU	81	3.873	15.59	98 -1	1.925	1.00	50.04	1SG 622

		Atom	Amino	Acid		X	Y	Z	Occup.	В	
		No. Name	SC	No.						Factor	
	ATOM	622 OE2	GLU	81	4.523	17.64	16 -1	1.350	1.00	50.04	1SG 623
	ATOM	623 C	GLU	81	-0.206	15.39	97 -1	2.512	1.00	50.04	1SG 624
5	ATOM	624 O	GLU	81	-0.535	15.16	54 -1	1.350	1.00	50.04	1SG 625
	ATOM	625 N	GLU	82	-1.114	15.50)2 -1	3.504	1.00	52.62	1SG 626
	ATOM	626 CA	GLU	82	-2.533	15.50	06 -1	3.258	1.00	52.62	1SG 627
	ATOM	627 CB	GLU	82	-3.346	15.83	31 -1	4.525	1.00	52.62	1SG 628
	ATOM	628 CG	GLU	82	-4.840	16.03	34 -1	4.263	1.00	52.62	1SG 629
10	ATOM	629 CD	GLU	82	-5.532	14.6	79 -1	4.304	1.00	52.62	1SG 630
	ATOM	630 OE1	GLU	82	-5.494	14.03	34 -1	5.386	1.00	52.62	1SG 631
	ATOM	631 OE2	GLU	82	-6.107	14.2	70 -1	3.260	1.00	52.62	1SG 632
	ATOM	632 C	GLU	82	-3.027	14.20	00 -1	2.721	1.00	52.62	1SG 633
	ATOM	633 O	GLU	82	-3.775	14.17	75 -1	1.744	1.00	52.62	1SG 634
15	ATOM	634 N	LEU	83	-2.610	13.07	75 -1	3.326	1.00	56.83	1SG 635
	ATOM	635 CA	LEU	83	-3.112	11.79	95 -1	2.915	1.00	56.83	1SG 636
	ATOM	636 CB	LEU	83	-2.651	10.68	37 -1	3.886	1.00	56.83	1SG 637
	ATOM	637 CG	LEU	83	-3.003	9.23	38 -1	3.503	1.00	56.83	1SG 638
	ATOM	638 CD2	LEU	83	-4.505	9.07	74 -1	3.230	1.00	56.83	1SG 639
20	ATOM	639 CD1	LEU	83	-2.122	8.73	32 -1	2.351	1.00	56.83	1 S G 640
	ATOM	640 C	LEU	83	-2.614	11.51	2 -1	1.534	1.00	56.83	1SG 641
	ATOM	641 O	LEU	83	-1.410	11.43	35 -1	1.296	1.00	56.83	1SG 642
	ATOM	642 N	TYR	84	-3.549	11.30	54 -1	0.573	1.00	63.40	1SG 643
	ATOM	643 CA	TYR	84	-3.154	11.0	85 -9	9.224	1.00	63.40	1SG 644
25	ATOM	644 CB	TYR	84	-3.212	12.3	43 -	8.343	1.00	63.40	1SG 645
	ATOM	645 CG	TYR	84	-2.238	12.13	80 -	7.233	1.00	63.40	1SG 646
	ATOM	646 CD1	TYR	84	-2.491	11.39	99 -	6.130	1.00	63.40	1SG 647
	ATOM	647 CD2	TYR	84	-1.036	12.8	43 -	7.325	1.00	63.40	1 SG 648
	ATOM	648 CE1	TYR	84	-1.544	11.29	91 -	5.135	1.00	63.40	1SG 649
30	ATOM	649 CE2	TYR	84	-0.090	12.7	39 -	6.335	1.00	63.40	1SG 650
	ATOM	650 CZ	TYR	84	-0.346	11.9	60 -	-5.236	1.00	63.40	1SG 651
	ATOM	651 OH	TYR	84	0.621	11.8	48 -	4.215	1.00	63.40	1SG 652

No.	TYR TYR TYR LYS CA LYS CB LYS CG LYS CD LYS	No. 84 84 85 85 85 85	-4.198 -5.355 -3.839 -4.856 -4.428 -4.269 -5.537	8.315 6.838		1.00 1.00 1.00	Factor 63.40 63.40 72.58 72.58 72.58	1SG 653 1SG 654 1SG 655 1SG 656 1SG 657
ATOM 653 C 5 ATOM 654 N ATOM 655 C	D TYR N LYS CA LYS CB LYS CG LYS CD LYS	848585858585	-5.355 -3.839 -4.856 -4.428 -4.269	10.206 9.209 8.315 6.838	-9.123 -7.814 -7.354 -7.365	1.00 1.00 1.00	63.40 72.58 72.58	1SG 654 1SG 655 1SG 656
5 ATOM 654 N ATOM 655 (N LYS CA LYS CB LYS CG LYS CD LYS	85 85 85 85 85	-3.839 -4.856 -4.428 -4.269	9.209 8.315 6.838	-7.814 -7.354 -7.365	1.00 1.00	72.58 72.58	1SG 655 1SG 656
ATOM 655 (CA LYS CB LYS CG LYS CD LYS	85 85 85 85	-4.856 -4.428 -4.269	8.315 6.838	-7.354 -7.365	1.00	72.58	1SG 656
	CB LYS CG LYS CD LYS	85 85 85	-4.428 -4.269	6.838	-7.365			
ATOM 656 (CG LYS	85 85	-4.269			1.00	72.58	1SG 657
	CD LYS	85		6.258	-8.774			
ATOM 657 (-5 537			1.00	72.58	1SG 658
ATOM 658 (CE LYS		5.551	6.382	-9.624	1.00	72.58	1SG 659
ATOM 659 (85	-5.496	5.585	-10.931	1.00	72.58	1SG 660
ATOM 660 N	NZ LYS	85	-4.450	6.118	-11.832	1.00	72.58	1SG 661
ATOM 661 (C LYS	85	-5.173	8.680	-5.949	1.00	72.58	1SG 662
ATOM 662 (D LYS	85	-4.414	9.381	-5.284	1.00	72.58	1SG 663
ATOM 663 N	N GLY	86	-6.293	8.160	-5.428	1.00	79.59	1SG 664
ATOM 664 (CA GLY	86	-6.600	8.530	-4.086	1.00	79.59	1SG 665
ATOM 665 (C GLY	86	-7.612	7.565	-3.575	1.00	79.59	1SG 666
ATOM 666 (O GLY	86	-8.562	7.929	-2.893	1.00	79.59	1SG 667
ATOM 667 N	N GLY	87	-7.281	6.269	-3.714	1.00	82.84	1SG 668
ATOM 668 (CA GLY	87	-8.143	5.212	-3.282	1.00	82.84	1SG 669
ATOM 669 (C GLY	87	-7.862	3.982	-4.104	1.00	82.84	1SG 670
ATOM 670 (O GLY	87	-7.291	3.040	-3.577	1.00	82.84	1SG 671
ATOM 671 N	N GLU	88	-8.157	3.975	-5.411	1.00	81.60	1SG 672
ATOM 672 (CA GLU	88	-7.980	2.864	-6.329	1.00	81.60	1SG 673
ATOM 673 (CB GLU	88	-6.703	2.910	-7.168	1.00	81.60	1SG 674
ATOM 674 (CG GLU	88	-6.653	4.106	-8.118	1.00	81.60	1SG 675
ATOM 675 (CD GLU	88	-7.898	4.060	-8.991	1.00	81.60	1SG 676
ATOM 676 (DE1 GLU	88	-8.126	3.017	-9.660	1.00	81.60	1SG 677
ATOM 677 (OE2 GLU	88	-8.645	5.075	-8.994	1.00	81.60	1SG 678
ATOM 678 (C GLU	88	-8.225	1.460	-5.787	1.00	81.60	1SG 679
ATOM 679 (O GLU	88	-8.663	1.254	-4.657	1.00	81.60	1SG 680
ATOM 680 1	N GLU	89	-8.013	0.431	-6.656	1.00	75.52	1SG 681
ATOM 681 (CA GLU	89	-8.298	-0.958	-6.340	1.00	75.52	1SG 682

		Atom	Amino	Acid		X Y	Z	Occup.	В	
		No. Name	SC	No.		<u> </u>			Factor	
	ATOM	682 CB	GLU	89	-9.371	-1.608	-7.238	1.00	75.52	1SG 683
	ATOM	683 CG	GLU	89 -	10.804	-1.270	-6.813	1.00	75.52	1SG 684
5	ATOM	684 CD	GLU	89 -	11.217	-2.282	-5.749	1.00	75.52	1SG 685
	ATOM	685 OE1	GLU	89 -	10.499	-3.307	-5.600	1.00	75.52	1SG 686
	ATOM	686 OE2	GLU	89 -	12.257	-2.049	-5.076	1.00	75.52	1 S G 687
	ATOM	687 C	GLU	89	-7.054	-1.811	-6.426	1.00	75.52	1SG 688
	ATOM	688 O	GLU	89	-6.055	-1.435	-7.019	1.00	75.52	1SG 689
10	ATOM	689 N	ALA	90	-7.066	-3.024	-5.844	1.00	73.23	1SG 690
	ATOM	690 CA	ALA	90	-5.868	-3.821	-5.812	1.00	73.23	1SG 691
	ATOM	691 CB	ALA	90	-6.075	-5.191	-5.142	1.00	73.23	1SG 692
	ATOM	692 C	ALA	90	-5.299	-4.073	-7.188	1.00	73.23	1SG 693
	ATOM	693 O	ALA	90	-5.976	-4.582	-8.081	1.00	73.23	1SG 694
15	ATOM	694 N	THR	91	-4.002	-3.715	-7.358	1.00	76.69	1SG 695
	ATOM	695 CA	THR	91	-3.218	-3.923	-8.554	1.00	76.69	1SG 696
	ATOM	696 CB	THR	91	-3.348	-2.825	-9.565	1.00	76.69	1SG 697
	ATOM	697 OG1	THR	91	-2.778	-3.225	-10.802	1.00	76.69	1SG 698
	ATOM	698 CG2	THR	91	-2.613	-1.588	-9.024	1.00	76.69	1SG 699
20	ATOM	699 C	THR	91	-1.789	-3.897	-8.081	1.00	76.69	1SG 700
	ATOM	700 O	THR	91	-1.546	-3.688	-6.899	1.00	76.69	1SG 701
	ATOM	701 N	ARG	92	-0.779	-4 .097	-8.957	1.00	83.50	1SG 702
	ATOM	702 CA	ARG	92	0.550	-4.076	-8.404	1.00	83.50	1SG 703
	ATOM	703 CB	ARG	92	1.571	-4.950	-9.162	1.00	83.50	1SG 704
25	ATOM	704 CG	ARG	92	1.360	-6.457	-8.988	1.00	83.50	1SG 705
	ATOM	705 CD	ARG	92	2.509	-7.298	-9.553	1.00	83.50	1SG 706
	ATOM	706 NE	ARG	92	2.189	-8.736	-9.321	1.00	83.50	1SG 707
	ATOM	707 CZ	ARG	92	2.507	-9.327	-8.133	1.00	83.50	1SG 708
	ATOM	708 NH1	ARG	92	3.084	-8.594	-7.135	1.00	83.50	1SG 709
30	ATOM	709 NH2	ARG	92	2.253	-10.654	-7.938	3 1.00	83.50	1SG 710
	ATOM	710 C	ARG	92	1.098	-2.673	-8.385	1.00	83.50	1SG 711
	ATOM	711 O	ARG	92	2.048	-2.377	-9.102	1.00	83.50	1SG 712

The first of the f

		Atom	Amino	Acid		X Y	Z	Occup.	В	
		No. Name	SC	No.					Factor	
	ATOM	712 N	PHE	93	0.386	-1.709	-7.769	1.00	91.53	1SG 713
	ATOM	713 CA	PHE	93	0.882	-0.395	-7.407	1.00	91.53	1SG 714
5	ATOM	714 CB	PHE	93	0.116	0.754	-8.068	1.00	91.53	1SG 715
	ATOM	715 CG	PHE	93	0.776	1.072	-9.369	1.00	91.53	1SG 716
	ATOM	716 CD1	PHE	93	0.455	0.407	-10.530	1.00	91.53	1SG 717
	ATOM	717 CD2	PHE	93	1.743	2.055	-9.415	1.00	91.53	1SG 718
	ATOM	718 CE1	PHE	93	1.084	0.726	-11.713	1.00	91.53	1SG 719
10	ATOM	719 CE2	PHE	93	2.373	2.377	-10.595	1.00	91.53	1SG 720
	ATOM	720 CZ	PHE	93	2.043	1.711	-11.750	1.00	91.53	1SG 721
	ATOM	721 C	PHE	93	0.997	-0.098	-5.918	1.00	91.53	1SG 722
	ATOM	722 O	PHE	93	1.751	0.783	-5.509	1.00	91.53	1SG 723
	ATOM	723 N	THR	94	0.159	-0.778	-5.101	1.00	92.25	1SG 724
15	ATOM	724 CA	THR	94	-0.205	-0.526	-3.719	1.00	92.25	1SG 725
	ATOM	725 CB	THR	94	-1.574	-1.115	-3.551	1.00	92.25	1SG 726
	ATOM	726 OG1	THR	94	-1.700	-1.825	-2.327	1.00	92.25	1SG 727
	ATOM	727 CG2	THR	94	-1.859	-2.036	-4.742	1.00	92.25	1SG 728
	ATOM	728 C	THR	94	0.670	-1.156	-2.666	1.00	92.25	1SG 729
20	ATOM	729 O	THR	94	1.484	-2.031	-2.950	1.00	92.25	1SG 730
	ATOM	730 N	PHE	95	0.508	-0.688	-1.392	2 1.00	85.34	1SG 731
	ATOM	731 CA	PHE	95	1.202	-1.286	-0.270	1.00	85.34	1SG 732
	ATOM	732 CB	PHE	95	2.422	-0.481	0.215	1.00	85.34	1SG 733
	ATOM	733 CG	PHE	95	3.449	-0.351	-0.854	1.00	85.34	1SG 734
25	ATOM	734 CD1	PHE	95	4.238	-1.418	-1.215	5 1.00	85.34	1SG 735
	ATOM	735 CD2	PHE	95	3.640	0.864	-1.470	1.00	85.34	1SG 736
	ATOM	736 CE1	PHE	95	5.190	-1.277	-2.197	7 1.00	85.34	1SG 737
	ATOM	737 CE2	PHE	95	4.590	1.012	-2.451	1.00	85.34	1SG 738
	ATOM	738 CZ	PHE	95	5.366	-0.062	2 -2.816	5 1.00	85.34	1SG 739
30	ATOM	739 C	PHE	95	0.297	-1.287	0.936	1.00	85.34	1SG 740
	ATOM	740 O	PHE	95	-0.435	-0.326	5 1.164	1.00	85.34	1SG 741
	ATOM	741 N	PHE	96	0.299	-2.353	1.770	1.00	74.79	1SG 742

		Atom	Amino A	Acid		X Y	Z	Occup.	В	
		No. Name	SC	No.					Facto	<u>r</u>
	ATOM	742 CA	PHE	96	-0.453	-2.149	2.972	1.00	74.79	1SG 743
	ATOM	743 CB	PHE	96	-1.538	-3.186	3.376	1.00	74.79	1SG 744
5	ATOM	744 CG	PHE	96	-1.065	-4.504	3.893	1.00	74.79	1SG 745
	ATOM	745 CD1	PHE	96	-0.376	-4.592	5.083	1.00	74.79	1SG 746
	ATOM	746 CD2	PHE	96	-1.389	-5.670	3.234	1.00	74.79	1SG 747
	ATOM	747 CE1	PHE	96	0.035	-5.809	5.573	1.00	74.79	1SG 748
	ATOM	748 CE2	PHE	96	-0.985	-6.891	3.724	1.00	74.79	1SG 749
10	ATOM	749 CZ	PHE	96	-0.265	-6.965	4.892	1.00	74.79	1SG 750
	ATOM	750 C	PHE	96	0.555	-1.970	4.050	1.00	74.79	1SG 751
	ATOM	751 O	PHE	96	1.472	-2.769	4.212	1.00	74.79	1SG 752
	ATOM	752 N	GLN	97	0.423	-0.863	4.793	1.00	62.31	1SG 753
	ATOM	753 CA	GLN	97	1.368	-0.499	5.799	1.00	62.31	1SG 754
15	ATOM	754 CB	GLN	97	1.438	1.034	5.915	1.00	62.31	1SG 755
	ATOM	755 CG	GLN	97	2.404	1.607	6.950	1.00	62.31	1SG 756
	ATOM	756 CD	GLN	97	2.263	3.123	6.862	1.00	62.31	1SG 757
	ATOM	757 OE1	GLN	97	3.156	3.833	6.402	1.00	62.31	1SG 758
	ATOM	758 NE2	GLN	97	1.080	3.633	7.299	1.00	62.31	1SG 759
20	ATOM	759 C	GLN	97	0.849	-1.039	7.085	1.00	62.31	1SG 760
	ATOM	760 O	GLN	97	-0.081	-0.478	7.658	3 1.00	62.31	1SG 761
	ATOM	761 N	SER	98	1.448	-2.142	7.582	2 1.00	50.81	1SG 762
	ATOM	762 CA	SER	98	0.973	-2.712	8.809	1.00	50.81	1SG 763
	ATOM	763 CB	SER	98	1.105	-4.243	8.844	1.00	50.81	1SG 764
25	ATOM	764 OG	SER	98	0.624	-4.754	10.077	7 1.00	50.81	1SG 765
	ATOM	765 C	SER	98	1.816	-2.168	9.916	5 1.00	50.81	1SG 766
	ATOM	766 O	SER	98	2.841	-2.743	10.27	1 1.00	50.81	1SG 767
	ATOM	767 N	SER	99	1.372	-1.061	10.53	7 1.00	43.31	1SG 768
	ATOM	768 CA	SER	99	2.198	-0.486	11.55	8 1.00	43.31	1SG 769
30	ATOM	769 CB	SER	99	2.194	1.053	11.55	0 1.00	43.31	1 SG 770
	ATOM	770 OG	SER	99	3.032	2 1.549	12.58	4 1.00	43.31	1SG 771
	ATOM	771 C	SER	99	1.694	-0.930	12.88	36 1.00	43.31	1SG 772

		Atom	Amino Aci	d	X Y	Z	Occup.	В	
		No. Name	SC No).				Facto	r
	ATOM	772 O	SER 99	0.573	-0.624	13.289	1.00	43.31	1SG 773
	ATOM	773 N	SER 100	2.541	-1.676	13.616	1.00	37.37	1SG 774
5	ATOM	774 CA	SER 100	2.133	-2.108	14.913	1.00	37.37	1SG 775
	ATOM	775 CB	SER 100	2.444	-3.593	15.164	1.00	37.37	1SG 776
	ATOM	776 OG	SER 100	3.826	-3.845	14.952	1.00	37.37	1SG 777
	ATOM	777 C	SER 100	2.899	-1.286	15.889	1.00	37.37	1SG 778
	ATOM	778 O	SER 100	3.984	-1.665	16.326	1.00	37.37	1 SG 779
10	ATOM	779 N	GLY 10	2.323	-0.141	16.294	1.00	35.21	1SG 780
	ATOM	780 CA	GLY 10	3.036	0.712	17.195	1.00	35.21	1SG 781
	ATOM	781 C	GLY 10	4.100	1.425	16.410	1.00	35.21	1SG 782
	ATOM	782 O	GLY 10	1 3.823	2.034	15.378	1.00	35.21	1SG 783
	ATOM	783 N	SER 10	2 5.349	1.396	16.921	1.00	38.31	1SG 784
15	ATOM	784 CA	SER 10	2 6.464	2.092	16.332	2 1.00	38.31	1SG 785
	ATOM	785 CB	SER 10	2 7.691	2.209	17.260	1.00	38.31	1SG 786
	ATOM	786 OG	SER 10	2 7.387	3.034	18.374	4 1.00	38.31	1SG 787
	ATOM	787 C	SER 10	2 6.976	1.487	15.044	4 1.00	38.31	1SG 788
	ATOM	788 O	SER 10	7.559	2.217	14.245	5 1.00	38.31	1SG 789
20	ATOM	789 N	ALA 10	6.814	0.166	14.790	1.00	43.59	1SG 790
	ATOM	790 CA	ALA 10	3 7.451	-0.404	13.61	7 1.00	43.59	1SG 791
	ATOM	791 CB	ALA 10	3 8.435	5 -1.540	13.95	6 1.00	43.59	1SG 792
	ATOM	792 C	ALA 10	6.438	3 -0.971	12.65	5 1.00	43.59	1SG 793
	ATOM	793 O	ALA 10	5.323	3 -1.302	2 13.05	2 1.00	43.59	1SG 794
25	ATOM	794 N	PHE 10	04 6.80	1 -1.090	0 11.34	4 1.00	52.49	1SG 795
	ATOM	795 CA	PHE 1	04 5.83	4 -1.60	8 10.40	0 1.00	52.49	1SG 796
	ATOM	796 CB	PHE 1	04 5.04	0 -0.52	5 9.650	6 1.00	52.49	1SG 797
	ATOM	797 CG	PHE 1	04 5.86	7 0.122	2 8.604	4 1.00	52.49	1SG 798
	ATOM	798 CD1	PHE 1	04 6.97	8 0.85	8 8.930	5 1.00	52.49	1SG 799
30	ATOM	799 CD2	PHE 1	04 5.53	6 -0.03	9 7.27	7 1.00	52.49	1SG 800
	ATOM	800 CE1	PHE 1	04 7.72	8 1.45	4 7.95	1 1.00	52.49	1SG 801
	ATOM	801 CE2	PHE 1	04 6.28	0.55	9 6.29	1 1.00	52.49	1SG 802

		Atom	Amino	Acid		X Y	Z	Occup.	В	
		No. Name	SC	No.					Factor	•
	ATOM	802 CZ	PHE	104	7.381	1.309	6.628	1.00	52.49	1SG 803
	ATOM	803 C	PHE	104	6.460	-2.527	9.377	1.00	52.49	1SG 804
5	ATOM	804 O	PHE	104	7.613	-2.936	9.507	1.00	52.49	1SG 805
	ATOM	805 N	ARG	105	5.644	-2.909	8.354	1.00	61.03	1SG 806
	ATOM	806 CA	ARG	105	5.980	-3.832	7.293	1.00	61.03	1SG 807
	ATOM	807 CB	ARG	105	5.433	-5.232	7.602	1.00	61.03	1SG 808
	ATOM	808 CG	ARG	105	5.822	-5.729	8.997	1.00	61.03	1SG 809
10	ATOM	809 CD	ARG	105	5.102	-7.013	9.405	1.00	61.03	1SG 810
	ATOM	810 NE	ARG	105	5.506	-7.326	10.805	5 1.00	61.03	1SG 811
	ATOM	811 CZ	ARG	105	6.100	-8.519	11.101	1.00	61.03	1SG 812
	ATOM	812 NH1	ARG	105	6.333	-9.437	10.117	7 1.00	61.03	1SG 813
	ATOM	813 NH2	ARG	105	6.458	-8.796	12.388	3 1.00	61.03	1SG 814
15	ATOM	814 C	ARG	105	5.272	-3.372	6.021	1.00	61.03	1SG 815
	ATOM	815 O	ARG	105	4.242	-2.701	6.088	1.00	61.03	1SG 816
	ATOM	816 N	LEU	106	5.792	-3.713	4.810	1.00	71.08	1SG 817
	ATOM	817 CA	LEU	106	5.107	-3.275	3.606	1.00	71.08	1SG 818
	ATOM	818 CB	LEU	106	5.972	-2.446	2.634	1.00	71.08	1SG 819
20	ATOM	819 CG	LEU	106	6.471	-1.092	3.162	1.00	71.08	1SG 820
	ATOM	820 CD2	LEU	106	7.461	-1.285	4.314	1.00	71.08	1SG 821
	ATOM	821 CD1	LEU	106	5.308	-0.145	3.491	1.00	71.08	1SG 822
	ATOM	822 C	LEU	106	4.592	-4.393	2.722	1.00	71.08	1SG 823
	ATOM	823 O	LEU	106	5.344	-5.031	1.990	1.00	71.08	1SG 824
25	ATOM	824 N	GLU	107	3.264	-4.613	2.680	1.00	80.65	1SG 825
	ATOM	825 CA	GLU	107	2.734	-5.598	1.766	5 1.00	80.65	1SG 826
	ATOM	826 CB	GLU	107	1.306	-6.036	2.098	3 1.00	80.65	1SG 827
	ATOM	827 CG	GLU	107	0.903	-7.366	1.457	7 1.00	80.65	1SG 828
	ATOM	828 CD	GLU	107	1.626	-8.496	2.187	7 1.00	80.65	1SG 829
30	ATOM	829 OE1	GLU	107	2.414	-8.199	3.125	5 1.00	80.65	1SG 830
	ATOM	830 OE2	GLU	107	1.397	-9.677	1.813	3 1.00	80.65	1SG 831
	ATOM	831 C	GLU	107	2.737	-4.975	0.386	5 1.00	80.65	1SG 832

		Atom	Amino	Acid		X	Y	Z (Occup.	В	
		No. Name	SC	No.						Facto	or
	ATOM	832 O	GLU	107	2.674	-3	.752	0.260	1.00	80.65	1SG 833
	ATOM	833 N	ALA	108	2.816	-5	5.801	-0.690	1.00	85.77	1SG 834
5	ATOM	834 CA	ALA	108	2.943	-5	.291	-2.042	1.00	85.77	1SG 835
	ATOM	835 CB	ALA	108	4.261	-5	5.704	-2.721	1.00	85.77	1SG 836
	ATOM	836 C	ALA	108	1.817	-5	5.779	-2.907	1.00	85.77	1SG 837
	ATOM	837 O	ALA	108	1.309	-6	5.879	-2.700	1.00	85.77	1SG 838
	ATOM	838 N	ALA	109	1.421	-4	1.968	-3.923	1.00	87.63	1SG 839
10	ATOM	839 CA	ALA	109	0.192	-4	5.226	-4.629	1.00	87.63	1SG 840
	ATOM	840 CB	ALA	109	-0.072	-(6.686	-5.043	1.00	87.63	1SG 841
	ATOM	841 C	ALA	109	-0.682		4.796	-3.518	1.00	87.63	1SG 842
	ATOM	842 O	ALA	109	-0.260	-3	3.864	-2.853	3 1.00	87.63	1SG 843
	ATOM	843 N	ALA	110	-1.960	-	5.155	-3.346	1.00	80.92	1SG 844
15	ATOM	844 CA	ALA	110	-2.367	-	4.822	-2.001	1.00	80.92	1SG 845
	ATOM	845 CB	ALA	110	-3.788	-	4.244	-1.938	3 1.00	80.92	1SG 846
	ATOM	846 C	ALA	110	-2.329	_	5.995	-1.047	7 1.00	80.92	1SG 847
	ATOM	847 O	ALA	110	-1.480		6.110	-0.163	3 1.00	80.92	1SG 848
	ATOM	848 N	TRP	111	-3.319) -	6.916	-1.24	5 1.00	69.81	1SG 849
20	ATOM	849 CA	TRP	111	-3.479	, .	-8.105	-0.44	3 1.00	69.81	1SG 850
	ATOM	850 CB	TRP	111	-4.946	5 -	-8.567	7 -0.28	8 1.00	69.81	1SG 851
	ATOM	851 CG	TRP	111	-5.836	<u></u>	-7.555	0.39	2 1.00	69.81	1SG 852
	ATOM	852 CD2	TRP	111	-6.624	1 .	-6.588	3 -0.31	6 1.00	69.81	1SG 853
	ATOM	853 CD1	TRP	111	-6.080) .	-7.355	5 1.71	9 1.00	69.81	1SG 854
25	ATOM	854 NE1	TRP	111	-6.969)	-6.319	1.88	2 1.00	69.81	1SG 855
	ATOM	855 CE2	TRP	111	-7.314	4	-5.840	0.63	6 1.00	69.81	1SG 856
	ATOM	856 CE3	TRP	111	-6.76	5	-6.34	8 -1.65	4 1.00	69.81	1SG 857
	ATOM	857 CZ2	TRP	111	-8.15	6	-4.83	2 0.26	5 1.00	69.81	1SG 858
	ATOM	858 CZ3	TRP	111	-7.61	5	-5.33	0 -2.02	6 1.00	69.81	1SG 859
30	ATOM	859 CH2	TRP	111	-8.29	7	-4.58	6 -1.08	3 1.00	69.81	1SG 860
	ATOM	860 C	TRP	111	-2.60	9	-9.22	4 -0.94	1.00	69.81	1SG 861
	ATOM	861 O	TRP	111	-1.79	9	-9.75	9 -0.19	94 1.00	69.81	1SG 862

		Atom	Amino	Acid		X	\mathbf{Y}	Z	Occup.	В	
		No. Name	_SC_	No.						Factor	
	ATOM	862 N	PRO	112	-2.728	-9	.603	-2.212	1.00	62.43	1SG 863
	ATOM	863 CA	PRO	112	-1.865	-10	.612	-2.763	1.00	62.43	1SG 864
5	ATOM	864 CD	PRO	112	-3.976	-9	.518	-2.960	1.00	62.43	1SG 865
	ATOM	865 CB	PRO	112	-2.652	-11	.309	-3.872	1.00	62.43	1SG 866
	ATOM	866 CG	PRO	112	-3.722	-10	.282	-4.268	1.00	62.43	1SG 867
	ATOM	867 C	PRO	112	-0.692	-9	.863	-3.289	1.00	62.43	1 S G 868
	ATOM	868 O	PRO	112	-0.720	-8	3.634	-3.238	1.00	62.43	1SG 869
10	ATOM	869 N	GLY	113	0.349	-10).556	-3.793	1.00	62.37	1SG 870
	ATOM	870 CA	GLY	113	1.428	-9	.790	-4.339	1.00	62.37	1SG 871
	ATOM	871 C	GLY	113	2.736	-10	.297	-3.803	1.00	62.37	1SG 872
	ATOM	872 O	GLY	113	3.147	-11	.409	-4.126	1.00	62.37	1 SG 873
	ATOM	873 N	TRP	114	3.446	-9	.452	-3.012	1.00	67.98	1SG 874
15	ATOM	874 CA	TRP	114	4.724	-9	.793	-2.437	1.00	67.98	1SG 875
	ATOM	875 CB	TRP	114	5.914	- 9	.196	-3.203	1.00	67.98	1SG 876
	ATOM	876 CG	TRP	114	6.075	-9	.845	-4.556	1.00	67.98	1SG 877
	ATOM	877 CD2	TRP	114	7.053	-10	.850	-4.866	1.00	67.98	1SG 878
	ATOM	878 CD1	TRP	114	5.355	-9	.641	-5.697	1.00	67.98	1 SG 879
20	ATOM	879 NE1	TRP	114	5.810	-10	.470	-6.691	1.00	67.98	1 SG 880
	ATOM	880 CE2	TRP	114	6.858	-11	.217	-6.198	1.00	67.98	1SG 881
	ATOM	881 CE3	TRP	114	8.032	-11	.425	-4.104	1.00	67.98	1SG 882
	ATOM	882 CZ2	TRP	114	7.640	-12	.165	-6.792	1.00	67.98	1 SG 883
	ATOM	883 CZ3	TRP	114	8.820	-12	.380	-4.709	1.00	67.98	1SG 884
25	ATOM	884 CH2	TRP	114	8.627	-12	.743	-6.026	1.00	67.98	1SG 885
	ATOM	885 C	TRP	114	4.774	-9	.341	-0.991	1.00	67.98	1SG 886
	ATOM	886 O	TRP	114	3.866	-8	.644	-0.535	1.00	67.98	1 SG 887
	ATOM	887 N	PHE	115	5.840	-9	.745	-0.234	1.00	75.12	1SG 888
	ATOM	888 CA	PHE	115	5.900	-9	.542	1.201	1.00	75.12	1 SG 889
30	ATOM	889 CB	PHE	115	6.118	-10	.851	1.984	1.00	75.12	1 SG 890
	ATOM	890 CG	PHE	115	4.938	-11	.737	1.781	1.00	75.12	1 S G 891
	ATOM	891 CD1	PHE	115	3.809	-11	.586	2.549	1.00	75.12	1SG 892

IOUCIEZ LILOUI

		Atom	Amino	Acid		X Y	Z O	ccup.	В	
		No. Name	SC	No.					Facto	or
	ATOM	892 CD2	PHE	115	4.965	-12.726	0.825 1	00.1	75.12	1SG 893
	ATOM	893 CE1	PHE	115	2.722	-12.406	2.363 1	00.1	75.12	1SG 894
5	ATOM	894 CE2	PHE	115	3.879	-13.549	0.635	1.00	75.12	1SG 895
	ATOM	895 CZ	PHE	115	2.753	-13.390	1.405	1.00	75.12	1SG 896
	ATOM	896 C	PHE	115	7.005	-8.617	1.687	1.00	75.12	1SG 897
	ATOM	897 O	PHE	115	8.185	-8.745	1.381	1.00	75.12	1SG 898
	ATOM	898 N	LEU	116	6.589	-7.733	2.604	1.00	79.62	1SG 899
10	ATOM	899 CA	LEU	116	7.128	-6.614	3.344	1.00	79.62	1 SG 900
	ATOM	900 CB	LEU	116	6.186	-6.453	4.520	1.00	79.62	1SG 901
	ATOM	901 CG	LEU	116	5.684	-7.837	4.981	1.00	79.62	1SG 902
	ATOM	902 CD2	LEU	116	4.748	-7.722	6.181	1.00	79.62	1SG 903
	ATOM	903 CD1	LEU	116	6.835	-8.808	5.266	1.00	79.62	1SG 904
15	ATOM	904 C	LEU	116	8.481	-6.700	4.035	1.00	79.62	1SG 905
	ATOM	905 O	LEU	116	8.505	-6.311	5.200	1.00	79.62	1SG 906
	ATOM	906 N	CYS	117	9.637	-7.046	3.414	1.00	73.41	1SG 907
	ATOM	907 CA	CYS	117	10.854	-7.122	4.216	1.00	73.41	1SG 908
	ATOM	908 CB	CYS	117	11.489	-8.525	4.188	1.00	73.41	1SG 909
20	ATOM	909 SG	CYS	117	10.392	-9.804	4.874	1.00	73.41	1SG 910
	ATOM	910 C	CYS	117	11.925	-6.146	3.754	1.00	73.41	1SG 911
	ATOM	911 O	CYS	117	11.660	-5.250	2.953	1.00	73.41	1SG 912
	ATOM	912 N	GLY	118	13.169	-6.282	4.305	1.00	66.61	1SG 913
	ATOM	913 CA	GLY	118	14.312	-5.456	3.968	1.00	66.61	1SG 914
25	ATOM	914 C	GLY	118	15.571	-6.125	4.494	1.00	66.61	1SG 915
	ATOM	915 O	GLY	118	15.574	-6.721	5.568	1.00	66.61	1SG 916
	ATOM	916 N	PRO	119	16.642	-6.042	3.738	1.00	63.36	1SG 917
	ATOM	917 CA	PRO	119	17.904	-6.605	4.165	1.00	63.36	1SG 918
	ATOM	918 CD	PRO	119	16.408	-6.432	2.368	1.00	63.36	1 SG 919
30	ATOM	919 CB	PRO	119	18.784	-6.602	2.925	1.00	63.36	1SG 920
	ATOM	920 CG	PRO	119	17.758	-6.941	1.826	1.00	63.36	1SG 921
	ATOM	921 C	PRO	119	18.522	-6.093	5.431	1.00	63.36	1SG 922

		Atom	Amino	Acid		X Y	Z Occup	. В	
		No. Name	SC	No.				Facto	or
	ATOM	922 O	PRO	119	18.339	-4.932	5.781 1.00	63.36	1SG 923
	ATOM	923 N	ALA	120	19.201	-7.003	6.165 1.00	59.66	1SG 924
5	ATOM	924 CA	ALA	120	19.788	-6.772	7.458 1.00	59.66	1SG 925
	ATOM	925 CB	ALA	120	20.233	-8.078	8.139 1.00	59.66	1SG 926
	ATOM	926 C	ALA	120	20.980	-5.841	7.507 1.00	59.66	1SG 927
	ATOM	927 O	ALA	120	21.012	-4.965	8.368 1.00	59.66	1SG 928
	ATOM	928 N	GLU	121	21.987	-5.975	6.611 1.00	62.17	1SG 929
10	ATOM	929 CA	GLU	121	23.212	-5.236	6.838 1.00	62.17	1SG 930
	ATOM	930 CB	GLU	121	24.431	-6.175	6.910 1.00	62.17	1SG 931
	ATOM	931 CG	GLU	121	25.562	-5.661	7.797 1.00	62.17	1SG 932
	ATOM	932 CD	GLU	121	25.087	-5.778	9.242 1.00	62.17	1SG 933
	ATOM	933 OE1	GLU	121	24.274	-6.696	9.535 1.00	62.17	1SG 934
15	ATOM	934 OE2	GLU	121	25.532	-4.943	10.073 1.00	62.17	1SG 935
	ATOM	935 C	GLU	121	23.442	-4.222	5.746 1.00	62.17	1SG 936
	ATOM	936 O	GLU	121	22.727	-4.214	4.745 1.00	62.17	1SG 937
	ATOM	937 N	PRO	122	24.392	-3.319	5.931 1.00	63.98	1SG 938
	ATOM	938 CA	PRO	122	24.632	-2.311	4.927 1.00	63.98	1SG 939
2 0	ATOM	939 CD	PRO	122	24.701	-2.813	7.256 1.00	63.98	1SG 940
	ATOM	940 CB	PRO	122	25.479	-1.223	5.595 1.00	63.98	1SG 941
	ATOM	941 CG	PRO	122	25.814	-1.788	6.992 1.00	63.98	1SG 942
	ATOM	942 C	PRO	122	25.142	-2.803	3.616 1.00	63.98	1SG 943
	ATOM	943 O	PRO	122	26.359	-2.872	3.456 1.00	63.98	1SG 944
25	ATOM	944 N	GLN	123	24.229	-3.037	2.644 1.00	62.66	1SG 945
	ATOM	945 CA	GLN	123	24.578	-3.584	1.363 1.00	62.66	1SG 946
	ATOM	946 CB	GLN	123	24.968	-5.073	1.449 1.00	62.66	1SG 947
	ATOM	947 CG	GLN	123	26.243	-5.331	2.257 1.00	62.66	1SG 948
	ATOM	948 CD	GLN	123	26.356	-6.820	2.544 1.00	62.66	1SG 949
30	ATOM	949 OE1	GLN	123	25.369	-7.554	2.534 1.00	62.66	1SG 950
	ATOM	950 NE2	GLN	123	27.604	4 -7.283	3 2.826 1.00	62.66	1SG 951
	ATOM	951 C	GLN	123	23.366	-3.515	0.465 1.00	62.66	1SG 952

Atom

Amino Acid

 $\mathbf{X} - \mathbf{Y} - \mathbf{Z}$

Occup.

B

		Atom				-		
		No. Name	SC_	No.			Factor	
	ATOM	952 O	GLN	123	23.283	-2.648 -0.404 1.00	62.66 1SG 9	953
	ATOM	953 N	GLN	124	22.417	-4.470 0.632 1.00	62.66 1SG	954
5	ATOM	954 CA	GLN	124	21.243	-4.591 -0.205 1.00	62.66 1SG	95:
	ATOM	955 CB	GLN	124	20.703	-6.025 -0.329 1.00	62.66 1SG	95
	ATOM	956 CG	GLN	124	21.649	-6.978 -1.061 1.00	62.66 1SG	95
	ATOM	957 CD	GLN	124	20.854	-8.233 -1.384 1.00	62.66 1SG	95
	ATOM	958 OE1	GLN	124	19.643	-8.168 -1.585 1.00	62.66 1SG	95
10	ATOM	959 NE2	GLN	124	21.544	-9.402 -1.442 1.00	62.66 1SG	96
	ATOM	960 C	GLN	124	20.102	-3.707 0.250 1.00	62.66 1SG	96
	ATOM	961 O	GLN	124	20.093	-3.156 1.352 1.00	62.66 1SG	96
	ATOM	962 N	PRO	125	19.158	-3.548 -0.661 1.00	62.42 1SG	96
	ATOM	963 CA	PRO	125	17.985	-2.698 -0.494 1.00	62.42 1SG	96
15	ATOM	964 CD	PRO	125	19.553	-3.620 -2.060 1.00	62.42 1SG	96
	ATOM	965 CB	PRO	125	17.688	-2.107 -1.872 1.00	62.42 1SG	90
	ATOM	966 CG	PRO	125	18.355	-3.080 -2.853 1.00	62.42 1SG	90
	ATOM	967 C	PRO	125	16.746	-3.330 0.075 1.00	62.42 1SG	90
	ATOM	968 O	PRO	125	16.795	-4.495 0.439 1.00	62.42 1SG	: 90
20	ATOM	969 N	VAL	126	15.621	-2.569 0.130 1.00	63.03 1SG	9
	ATOM	970 CA	VAL	126	14.329	-3.006 0.618 1.00	63.03 1SG	[†] 9
	ATOM	971 CB	VAL	126	13.319	-1.890 0.647 1.00	63.03 1SG	i 9
	ATOM	972 CG1	VAL	126	13.203	-1.283 -0.764 1.00	63.03 1SG	è 9
	ATOM	973 CG2	VAL	126	11.990	-2.433 1.199 1.00	63.03 1SG	ì 9
25	ATOM	974 C	VAL	126	13.808	-4.122 -0.255 1.00	63.03 1SG	; 9
	ATOM	975 O	VAL	126	13.983	-4.108 -1.474 1.00	63.03 1SG) 9
	ATOM	976 N	GLN	127	13.156	-5.146 0.353 1.00	63.16 1SC	39
	ATOM	977 CA	GLN	127	12.754	-6.261 -0.464 1.00		
	ATOM	978 CB	GLN	127	13.705	-7.464 -0.329 1.00		
30	ATOM	979 CG	GLN	127	13.396	-8.616 -1.283 1.00		
	ATOM	980 CD	GLN	127	14.588	-9.562 -1.248 1.00		39 39
						-9.152 -1.490 1.00	63.16 1SC	

* r * 10 10 10 10 10 10 11 17 1

a dhe da . .

		Atom	Amino A	Acid		X Y		Z (Occup.	В	
		No. Name	SC_	No.						Factor	•
	ATOM	982 NE2	GLN	127	14.330	-10.85	9 -	-0.934	1.00	63.16	1SG 983
	ATOM	983 C	GLN	127	11.354	-6.73	4 -	-0.180	1.00	63.16	1SG 984
5	ATOM	984 O	GLN	127	10.978	-7.00	6	0.960	1.00	63.16	1SG 985
	ATOM	985 N	LEU	128	10.555	-6.86	2 -	1.264	1.00	62.34	1SG 986
	ATOM	986 CA	LEU	128	9.216	-7.38	9 -	-1.248	1.00	62.34	1SG 987
	ATOM	987 CB	LEU	128	8.348	-6.71	8 -	-2.326	1.00	62.34	1SG 988
	ATOM	988 CG	LEU	128	8.284	-5.18	2 -	-2.195	1.00	62.34	1SG 989
10	ATOM	989 CD2	LEU	128	7.831	-4.74	9 .	-0.793	1.00	62.34	1SG 990
	ATOM	990 CD1	LEU	128	7.423	-4.56	1	-3.304	1.00	62.34	1 SG 991
	ATOM	991 C	LEU	128	9.422	-8.82	6	-1.660	1.00	62.34	1SG 992
	ATOM	992 O	LEU	128	9.557	-9.13	1	-2.844	1.00	62.34	1SG 993
	ATOM	993 N	THR	129	9.464	-9.72	28	-0.660	1.00	61.72	1SG 994
15	ATOM	994 CA	THR	129	9.832	-11.11	16	-0.762	1.00	61.72	1SG 995
	ATOM	995 CB	THR	129	10.572	-11.52	24	0.477	1.00	61.72	1SG 996
	ATOM	996 OG1	THR	129	10.953	-12.88	35	0.419	1.00	61.72	1SG 997
	ATOM	997 CG2	THR	129	9.665	-11.26	63	1.692	1.00	61.72	1SG 998
	ATOM	998 C	THR	129	8.666	-12.05	52	-0.955	1.00	61.72	1SG 999
20	ATOM	999 O	THR	129	7.499	-11.69	90	-0.820	1.00	61.72	1SG1000
	ATOM	1000 N	LYS	130	8.997	-13.30)7	-1.341	1.00	60.09	1SG1001
	ATOM	1001 CA	LYS	130	8.075	-14.39	90	-1.569	1.00	60.09	1SG1002
	ATOM	1002 CB	LYS	130	8.684	-15.54	4 7	-2.380	1.00	60.09	1SG1003
	ATOM	1003 CG	LYS	130	7.652	-16.60	02	-2.792	2 1.00	60.09	1SG1004
25	ATOM	1004 CD	LYS	130	8.091	-17.40	69	-3.977	7 1.00	60.09	1SG1005
	ATOM	1005 CE	LYS	130	8.073	-16.70	07	-5.308	3 1.00	60.09	1 SG 1006
	ATOM	1006 NZ	LYS	130	8.478	3 -17.59	93	-6.422	2 1.00	60.09	1SG1007
	ATOM	1007 C	LYS	130	7.532	2 -14.9	51	-0.286	5 1.00	60.09	1SG1008
	ATOM	1008 O	LYS	130	6.398	3 -15.4	25	-0.24	4 1.00	60.09	1SG1009
30	ATOM	1009 N	GLU	131	8.333	-14.90	64	0.797	7 1.00	60.35	1SG1010
	ATOM	1010 CA	GLU	131	7.828	3 -15.59	98	1.981	1.00	60.35	1SG1011
	ATOM	1011 CB	GLU	131	8.414	-17.0	07	2.172	2 1.00	60.35	1SG1012

		Atom	Amino A	Acid		X	Y	Z	Occup.	В	
		No. Name	SC	No.					,	Factor	
	ATOM	1012 CG	GLU	131	9.943	-17.0)30	2.105	1.00	60.35	1SG1013
	ATOM	1013 CD	GLU	131	10.389	-18.4	185	2.073	1.00	60.35	1SG1014
5	ATOM	1014 OE1	GLU	131	9.524	-19.3	373	2.301	1.00	60.35	1SG1015
	ATOM	1015 OE2	GLU	131	11.597	-18.	727	1.813	1.00	60.35	1SG1016
	ATOM	1016 C	GLU	131	8.134	-14.	776	3.197	1.00	60.35	1SG1017
	ATOM	1017 O	GLU	131	8.917	-13.	827	3.159	1.00	60.35	1SG1018
	ATOM	1018 N	SER	132	7.456	-15.	127	4.310	1.00	60.94	1 SG 1019
10	ATOM	1019 CA	SER	132	7.647	-14.	555	5.614	1.00	60.94	1SG1020
	ATOM	1020 CB	SER	132	6.392	-14.	594	6.505	1.00	60.94	1SG1021
	ATOM	1021 OG	SER	132	5.399	-13.	719	5.989	1.00	60.94	1SG1022
	ATOM	1022 C	SER	132	8.681	-15.	4 54	6.230	1.00	60.94	1SG1023
	ATOM	1023 O	SER	132	9.704	-15.	707	5.597	7 1.00	60.94	1SG1024
15	ATOM	1024 N	GLU	133	8.477	-15.	928	7.483	3 1.00	59.09	1SG1025
	ATOM	1025 CA	GLU	133	9.402	-16	875	8.059	1.00	59.09	1SG1026
	ATOM	1026 CB	GLU	133	9.774	-18	.016	7.090	1.00	59.09	1SG1027
	ATOM	1027 CG	GLU	133	8.602	-18	.946	6.76	5 1.00	59.09	1SG1028
	ATOM	1028 CD	GLU	133	8.982	-19	.777	5.54	5 1.00	59.09	1SG1029
20	ATOM	1029 OE1	GLU	133	10.160	-20	.219	5.46	3 1.00	59.09	1SG1030
	ATOM	1030 OE2	gLU	133	8.098	3 -19	.969	4.66	8 1.00	59.09	1SG1031
	ATOM	1031 C	GLU	133	10.647	-16	.140	8.43	9 1.00	59.09	1SG1032
	ATOM	1032 O	GLU	133	10.774	1 -14	.946	8.17	4 1.00	59.09	1 SG 1033
	ATOM	1033 N	PRO	134	11.560	-16	.810	9.09	2 1.00	58.29	1SG1034
25	ATOM	1034 CA	PRO	134	12.814	-16	.224	9.46	7 1.00	58.29	1SG1035
	ATOM	1035 CD	PRO	134	11.329	-18	.096	9.72	1 1.00	58.29	1SG1036
	ATOM	1036 CB	PRO	134	13.546	5 -17	.284	10.29	95 1.00	58.29	1SG1037
	ATOM	1037 CG	PRO	134	12.749	-18	.585	10.05	55 1.00	58.29	1SG1038
	ATOM	1038 C	PRO	134	13.485	5 -15	.806	8.20	4 1.00	58.29	1SG1039
30	ATOM	1039 O	PRO	134						58.29	1SG1040
	ATOM	1040 N	SER	135						58.09	1SG1041
	ATOM	I 1041 CA	SER	135	14.472	2 -14	.043	6.89	4 1.00	58.09	1SG1042

A STATE OF THE PROPERTY OF THE

-
200
7
-
inz
:::::::
2
2
-
retorn
2
-
-
\$
age.
: .
- Annual Control
ž
(pacil)
7
Samuel
ï.
55
11

	Atom	Amino	Acid		X Y	Z	Occup.	В	
	No. Nam	e SC	No.					<u>Factor</u>	
TOM	1042 CB	SER	135	13.418	-13.831	5.791	1.00	58.09	1SG1043
MOT	1043 OG	SER	135	12.851	-15.071	5.393	1.00	58.09	1SG1044
MOT	1044 C	SER	135	15.079	-12.696	7.147	1.00	58.09	1SG1045
TOM	1045 O	SER	135	16.161	-12.577	7.718	1.00	58.09	1SG1046
TOM	1046 N	ALA	136	14.377	-11.641	6.680	1.00	60.01	1SG1047
MOT	1047 CA	ALA	136	14.857	-10.284	6.707	1.00	60.01	1SG1048
MOT	1048 CB	ALA	136	14.753	-9.576	5.346	1.00	60.01	1SG1049
TOM	1049 C	ALA	136	14.091	-9.447	7.695	1.00	60.01	1SG1050
TOM	1050 O	ALA	136	13.290	-9.959	8.476	1.00	60.01	1SG1051
MOT	1051 N	ARG	137	14.372	-8.116	7.712	1.00	65.19	1SG1052
MOT	1052 CA	ARG	137	13.759	-7.251	8.687	1.00	65.19	1SG1053
TOM	1053 CB	ARG	137	14.663	-6.095	9.165	1.00	65.19	1SG1054
TOM	1054 CG	ARG	137	15.054	-5.086	8.083	1.00	65.19	1SG1055
TOM	1055 CD	ARG	137	16.029	-4.017	8.583	1.00	65.19	1SG1056
TOM	1056 NE	ARG	137	16.251	-3.052	7.473	1.00	65.19	1SG1057
MOT	1057 CZ	ARG	137	15.451	-1.952	7.361	1.00	65.19	1SG1058
TOM	1058 NH1	ARG	137	14.476	-1.722	8.288	1.00	65.19	1SG1059
TOM	1059 NH2	2 ARG	137	15.623	-1.081	6.324	1.00	65.19	1SG1060
MOT	1060 C	ARG	137	12.483	-6.647	8.178	1.00	65.19	1SG1061
MOT	1061 O	ARG	137	12.486	-5.730	7.357	1.00	65.19	1SG1062
TOM	1062 N	THR	138	11.344	-7.155	8.692	1.00	70.42	1SG1063
MOT	1063 CA	THR	138	10.062	-6.596	8.373	1.00	70.42	1SG1064
MOT	1064 CB	THR	138	9.075	-7.634	7.898	1.00	70.42	1SG1065
MOT	1065 OG1	THR	138	7.833	-7.025	7.583	1.00	70.42	1SG1066
MOT	1066 CG2	2 THR	138	8.883	-8.719	8.976	1.00	70.42	1SG1067
MOT	1067 C	THR	138	9.548	-5.977	9.639	1.00	70.42	1SG1068
TOM	1068 O	THR	138	8.432	-6.249	10.081	1.00	70.42	1SG1069
TOM	1069 N	LYS	139	10.369	-5.102	10.251	1.00	75.06	1SG1070
MOTA	1070 CA	LYS	139	10.010	-4.426	11.463	1.00	75.06	1SG1071
TO 1.6	1071 CD	IVC	130	10 275	5 3 2 1	12 680	1.00	75.06	1SG1072
	MOTOM	FOM 1053 CB FOM 1054 CG FOM 1055 CD FOM 1056 NE FOM 1057 CZ FOM 1058 NH1 FOM 1059 NH2 FOM 1060 C FOM 1061 O FOM 1062 N FOM 1063 CA FOM 1064 CB FOM 1065 OG FOM 1066 CG2 FOM 1067 C FOM 1068 O FOM 1069 N FOM 1069 N FOM 1070 CA	TOM 1053 CB ARG TOM 1054 CG ARG TOM 1055 CD ARG TOM 1056 NE ARG TOM 1057 CZ ARG TOM 1058 NH1 ARG TOM 1059 NH2 ARG TOM 1060 C ARG TOM 1061 O ARG TOM 1062 N THR TOM 1063 CA THR TOM 1064 CB THR TOM 1066 CG2 THR TOM 1068 O THR TOM 1068 O THR TOM 1069 N LYS TOM 1070 CA LYS	TOM 1053 CB ARG 137 TOM 1054 CG ARG 137 TOM 1055 CD ARG 137 TOM 1056 NE ARG 137 TOM 1057 CZ ARG 137 TOM 1058 NH1 ARG 137 TOM 1059 NH2 ARG 137 TOM 1060 C ARG 137 TOM 1061 O ARG 137 TOM 1062 N THR 138 TOM 1063 CA THR 138 TOM 1064 CB THR 138 TOM 1065 OG1 THR 138 TOM 1066 CG2 THR 138 TOM 1067 C THR 138 TOM 1068 O THR 138 TOM 1069 N LYS 139 TOM 1069 N LYS 139	TOM 1053 CB ARG 137 14.663 TOM 1054 CG ARG 137 15.054 TOM 1055 CD ARG 137 16.029 TOM 1056 NE ARG 137 16.251 TOM 1057 CZ ARG 137 15.451 TOM 1058 NH1 ARG 137 14.476 TOM 1059 NH2 ARG 137 15.623 TOM 1060 C ARG 137 12.483 TOM 1061 O ARG 137 12.483 TOM 1062 N THR 138 11.344 TOM 1063 CA THR 138 10.062 TOM 1064 CB THR 138 9.075 TOM 1065 OG1 THR 138 7.833 TOM 1066 CG2 THR 138 8.883 TOM 1067 C THR 138 9.548 TOM 1068 O THR 138 8.432 TOM 1069 N LYS 139 10.369 TOM 1070 CA LYS 139 10.010	TOM 1053 CB ARG 137 14.663 -6.095 TOM 1054 CG ARG 137 15.054 -5.086 TOM 1055 CD ARG 137 16.029 -4.017 TOM 1056 NE ARG 137 16.251 -3.052 TOM 1057 CZ ARG 137 15.451 -1.952 TOM 1058 NH1 ARG 137 15.623 -1.081 TOM 1060 C ARG 137 12.483 -6.647 TOM 1061 O ARG 137 12.483 -6.647 TOM 1062 N THR 138 11.344 -7.155 TOM 1063 CA THR 138 10.062 -6.596 TOM 1064 CB THR 138 9.075 -7.634 TOM 1065 OG1 THR 138 7.833 -7.025 TOM 1066 CG2 THR 138 8.883 -8.719 TOM 1067 C THR 138 9.548 -5.977 TOM 1068 O THR 138 8.432 -6.249 TOM 1069 N LYS 139 10.369 -5.102 TOM 1069 N LYS 139 10.369 -5.102	TOM 1053 CB ARG 137 14.663 -6.095 9.165 TOM 1054 CG ARG 137 15.054 -5.086 8.083 TOM 1055 CD ARG 137 16.029 -4.017 8.583 TOM 1056 NE ARG 137 16.251 -3.052 7.473 TOM 1057 CZ ARG 137 15.451 -1.952 7.361 TOM 1058 NH1 ARG 137 14.476 -1.722 8.288 TOM 1059 NH2 ARG 137 15.623 -1.081 6.324 TOM 1060 C ARG 137 12.483 -6.647 8.178 TOM 1061 O ARG 137 12.486 -5.730 7.357 TOM 1062 N THR 138 11.344 -7.155 8.692 TOM 1063 CA THR 138 10.062 -6.596 8.373 TOM 1064 CB THR 138 9.075 -7.634 7.898 TOM 1065 OG1 THR 138 7.833 -7.025 7.583 TOM 1066 CG2 THR 138 8.883 -8.719 8.976 TOM 1067 C THR 138 9.548 -5.977 9.639 TOM 1068 O THR 138 8.432 -6.249 10.081 TOM 1069 N LYS 139 10.369 -5.102 10.251 TOM 1070 CA LYS 139 10.010 -4.426 11.463	TOM 1053 CB ARG 137 14.663 -6.095 9.165 1.00 TOM 1054 CG ARG 137 15.054 -5.086 8.083 1.00 TOM 1055 CD ARG 137 16.029 -4.017 8.583 1.00 TOM 1056 NE ARG 137 16.251 -3.052 7.473 1.00 TOM 1057 CZ ARG 137 15.451 -1.952 7.361 1.00 TOM 1058 NH1 ARG 137 15.623 -1.081 6.324 1.00 TOM 1059 NH2 ARG 137 15.623 -1.081 6.324 1.00 TOM 1060 C ARG 137 12.483 -6.647 8.178 1.00 TOM 1061 O ARG 137 12.486 -5.730 7.357 1.00 TOM 1062 N THR 138 11.344 -7.155 8.692 1.00 TOM 1063 CA THR 138 10.062 -6.596 8.373 1.00 TOM 1064 CB THR 138 9.075 -7.634 7.898 1.00 TOM 1065 OG1 THR 138 7.833 -7.025 7.583 1.00 TOM 1066 CG2 THR 138 8.883 -8.719 8.976 1.00 TOM 1068 O THR 138 9.548 -5.977 9.639 1.00 TOM 1069 N LYS 139 10.369 -5.102 10.251 1.00 TOM 1069 N LYS 139 10.369 -5.102 10.251 1.00 TOM 1070 CA LYS 139 10.010 -4.426 11.463 1.00	TOM 1053 CB ARG 137 14.663 -6.095 9.165 1.00 65.19 (COM 1054 CG ARG 137 15.054 -5.086 8.083 1.00 65.19 (COM 1055 CD ARG 137 16.029 -4.017 8.583 1.00 65.19 (COM 1056 NE ARG 137 16.251 -3.052 7.473 1.00 65.19 (COM 1057 CZ ARG 137 15.451 -1.952 7.361 1.00 65.19 (COM 1058 NH1 ARG 137 14.476 -1.722 8.288 1.00 65.19 (COM 1059 NH2 ARG 137 15.623 -1.081 6.324 1.00 65.19 (COM 1060 C ARG 137 12.483 -6.647 8.178 1.00 65.19 (COM 1061 O ARG 137 12.486 -5.730 7.357 1.00 65.19 (COM 1062 N THR 138 11.344 -7.155 8.692 1.00 70.42 (COM 1064 CB THR 138 9.075 -7.634 7.898 1.00 70.42 (COM 1065 OG1 THR 138 7.833 -7.025 7.583 1.00 70.42 (COM 1066 CG2 THR 138 8.883 -8.719 8.976 1.00 70.42 (COM 1067 C THR 138 9.548 -5.977 9.639 1.00 70.42 (COM 1068 O THR 138 8.432 -6.249 10.081 1.00 70.42 (COM 1069 N LYS 139 10.369 -5.102 10.251 1.00 75.06 (COM 1070 CA LYS 139 10.010 -4.426 11.463 1.00 75.06 (

		Atom	Amino Acid	l	XY	Z	Occup.	В	
		No. Name	SC No.					Factor	
	ATOM	1072 CG	LYS 139	11.555	-6.131	12.484	1.00	75.06	1SG1073
	ATOM	1073 CD	LYS 139	11.916	-7.063	13.633	1.00	75.06	1SG1074
5	ATOM	1074 CE	LYS 139	12.988	-8.081	13.241	1.00	75.06	1SG1075
	ATOM	1075 NZ	LYS 139	14.190	-7.383	12.733	1.00	75.06	1SG1076
	ATOM	1076 C	LYS 139	10.879	-3.212	11.539	1.00	75.06	1SG1077
	ATOM	1077 O	LYS 139	11.910	-3.212	12.210	1.00	75.06	1SG1078
	ATOM	1078 N	PHE 140	10.475	-2.127	10.850	1.00	75.24	1SG1079
10	ATOM	1079 CA	PHE 140	11.255	-0.918	10.860	1.00	75.24	1SG1080
	ATOM	1080 CB	PHE 140	12.050	-0.659	9.566	1.00	75.24	1SG1081
	ATOM	1081 CG	PHE 140	11.191	-0.999	8.400	1.00	75.24	1SG1082
	ATOM	1082 CD1	PHE 140	11.076	-2.319	8.033	1.00	75.24	1SG1083
	ATOM	1083 CD2	PHE 140	10.529	-0.044	7.667	1.00	75.24	1SG1084
15	ATOM	1084 CE1	PHE 140	10.307	-2.698	6.961	1.00	75.24	1SG1085
	ATOM	1085 CE2	PHE 140	9.758	-0.419	6.592	1.00	75.24	1SG1086
	ATOM	1086 CZ	PHE 140	9.646	-1.741	6.236	1.00	75.24	1SG1087
	ATOM	1087 C	PHE 140	10.401	0.251	11.249	1.00	75.24	1SG1088
	ATOM	1088 O	PHE 140	9.182	0.216	11.091	1.00	75.24	1SG1089
20	ATOM	1089 N	TYR 141	11.011	1.336	11.786	1.00	71.99	1SG1090
	ATOM	1090 CA	TYR 141	10.129	2.331	12.330	1.00	71.99	1SG1091
	ATOM	1091 CB	TYR 141	10.335	2.675	13.823	1.00	71.99	1SG1092
	ATOM	1092 CG	TYR 141	11.540	3.500	14.095	1.00	71.99	1SG1093
	ATOM	1093 CD1	TYR 141	11.440	4.871	14.075	1.00	71.99	1SG1094
25	ATOM	1094 CD2	TYR 141	12.747	2.915	14.393	1.00	71.99	1SG1095
	ATOM	1095 CE1	TYR 141	12.535	5.654	14.343	1.00	71.99	1SG1096
	ATOM	1096 CE2	TYR 141	13.848	3.695	14.661	1.00	71.99	1SG1097
	ATOM	1097 CZ	TYR 141	13.740	5.065	14.635	1.00	71.99	1SG1098
	ATOM	1098 OH	TYR 141	14.860	5.874	14.910	1.00	71.99	1SG1099
30	ATOM	1099 C	TYR 141	9.996	3.563	11.493	1.00	71.99	1SG1100
	ATOM	1100 O	TYR 141	10.895	3.959	10.752	1.00	71.99	1SG1101
	ATOM	1101 N	PHE 142	8.778	4.146	11.589	1.00	66.71	1SG1102

		Atom	Amino Acid		X Y	Z	Occup.	В	
		No. Name	SC No.					Factor	
	ATOM	1102 CA	PHE 142	8.258	5.281	10.875	1.00	66.71	1SG1103
	ATOM	1103 CB	PHE 142	6.760	5.515	11.114	1.00	66.71	1SG1104
5	ATOM	1104 CG	PHE 142	5.917	4.446	10.532	1.00	66.71	1SG1105
	ATOM	1105 CD1	PHE 142	5.787	3.237	11.169	1.00	66.71	1SG1106
	ATOM	1106 CD2	PHE 142	5.254	4.665	9.351	1.00	66.71	1SG1107
	ATOM	1107 CE1	PHE 142	4.995	2.258	10.623	1.00	66.71	1SG1108
	ATOM	1108 CE2	PHE 142	4.463	3.690	8.804	1.00	66.71	1SG1109
10	ATOM	1109 CZ	PHE 142	4.333	2.484	9.441	1.00	66.71	1SG1110
	ATOM	1110 C	PHE 142	8.789	6.558	11.441	1.00	66.71	1SG1111
	ATOM	1111 O	PHE 142	8.757	6.768	12.653	1.00	66.71	1SG1112
	ATOM	1112 N	GLU 143	9.234	7.468	10.550	1.00	57.45	1SG1113
	ATOM	1113 CA	GLU 143	9.601	8.798	10.942	1.00	57.45	1SG1114
15	ATOM	1114 CB	GLU 143	11.104	9.128	10.835	1.00	57.45	1SG1115
	ATOM	1115 CG	GLU 143	12.001	8.325	11.780	1.00	57.45	1SG1116
	ATOM	1116 CD	GLU 143	12.523	7.118	11.012	1.00	57.45	1SG1117
	ATOM	1117 OE1	GLU 143	12.818	7.278	9.798	1.00	57.45	1SG1118
	ATOM	1118 OE2	GLU 143	12.648	6.026	11.627	1.00	57.45	1SG1119
20	ATOM	1119 C	GLU 143	8.901	9.692	9.969	1.00	57 .45	1SG1120
	ATOM	1120 O	GLU 143	8.922	9.445	8.764	1.00	57.45	1SG1121
	ATOM	1121 N	GLN 144	8.240	10.756	10.464	1.00	49.90	1SG1122
	ATOM	1122 CA	GLN 144	7.558	11.622	9.548	1.00	49.90	1SG1123
	ATOM	1123 CB	GLN 144	6.056	11.771	9.857	1.00	49.90	1SG1124
25	ATOM	1124 CG	GLN 144	5.282	12.512	8.763	1.00	49.90	1SG1125
	ATOM	1125 CD	GLN 144	3.812	12.557	9.159	1.00	49.90	1SG1126
	ATOM	1126 OE1	GLN 144	2.974	13.057	8.411	1.00	49.90	1SG1127
	ATOM	1127 NE2	GLN 144	3.487	12.020	10.366	1.00	49.90	1SG1128
	ATOM	1128 C	GLN 144	8.213	12.992	9.651	1.00	49.90	1SG1129
30	ATOM	1129 O	GLN 144	9.430	13.084	9.335	1.00	49.90	1SG1130
	ATOM	1130 OXT	GLN 144	7.512	13.961	10.048	1.00	49.90	1SG1131

Table III show protein database coordinates for a IL-1 Hy2 structural models generated by the Protein Data Bank GeneAtlasTM Program (MSI) using the three-dimensional structure of IL-1 β as a template.

Table III:

5		At	om	Amino	Acid		X	Y	Z	Occup.	В		
		No.	Name	SC	No.						Factor		
	ATOM	1	N	PRO	1	38.534 -	21.65	8 6	5.515	1.00	33.32	1SG	2
	ATOM	2	CA	PRO	1	38.607 -	21.36	9 7	7.975	1.00	33.32	1SG	3
	ATOM	3	CD	PRO	1	39.877 -	22.12	6 6	5.026	1.00	33.32	1SG	4
10	ATOM	4	CB	PRO	1	39.976 -	21.86	9 8	3.434	1.00	33.32	1SG	5
	ATOM	5	CG	PRO	1	40.848 -	21.82	9 7	7.175	1.00	33.32	1SG	6
	ATOM	6	C	PRO	1	38.437 -	19.88	9 8	3.098	1.00	33.32	1SG	7
	ATOM	7	Ο	PRO	1	38.643 -	19.18	5 7	7.111	1.00	33.32	1SG	8
	ATOM	8	N	MET	2	38.063 -	-19.39	96	9.296	1.00	34.27	1SG	9
15	ATOM	9	CA	MET	2	37.838 -	-17.99	93	9.495	1.00	34.27	1SG	10
	ATOM	10	CB	MET	2	36.412 -	-17.67	76	9.998	1.00	34.27	1SG	11
	ATOM	11	CG	MET	2	35.307 -	-17.86	52	8.948	1.00	34.27	1SG	12
	ATOM	12	SD	MET	2	33.614 -	-17.59	95	9.564	1.00	34.27	1SG	13
	ATOM	13	CE	MET	2	33.251 -	-19.34	16	9.888	1.00	34.27	1SG	14
20	ATOM	14	C	MET	2	38.803 -	-17.50	06 1	0.535	1.00	34.27	1SG	15
	ATOM	15	O	MET	2	39.300 -	-18.27	79 1	1.355	5 1.00	34.27	1SG	16
	ATOM	16	N	ALA	3	39.133 -	-16.19	9 1	0.477	1.00	38.92	1SG	17
	ATOM	17	CA	ALA	3	39.983 -	-15.60)4 1	1.462	2 1.00	38.92	1SG	18
	ATOM	18	CB	ALA	3	41.411 -	-15.32	29 1	0.948	3 1.00	38.92	1SG	19
25	ATOM	19	C	ALA	3	39.349 -	14.30)1 1	1.837	7 1.00	38.92	1SG	20
	ATOM	20	O	ALA	3	39.000 -	-13.48	37 1	0.980	1.00	38.92	1SG	21
	ATOM	21	N	ARG	4	39.183 -	-14.07	74 1	3.150	1.00	46.12	1SG	22
	ATOM	22	CA	ARG	4	38.537 -	-12.87	75 1	3.57	1.00	46.12	1SG	23

		Atom	Amino Acid	X Y Z Occup. B	
		No. Name	SC No.	Factor	
	ATOM	23 CB	ARG 4	37.249 -13.145 14.377 1.00 46.12 1SG	24
	ATOM	24 CG	ARG 4	36.232 -12.003 14.462 1.00 46.12 1SG	25
5	ATOM	25 CD	ARG 4	34.842 -12.538 14.822 1.00 46.12 1SG	26
	ATOM	26 NE	ARG 4	33.872 -11.424 14.644 1.00 46.12 1SG	27
	ATOM	27 CZ	ARG 4	33.274 -11.204 13.435 1.00 46.12 1SG	28
	ATOM	28 NH1	ARG 4	33.483 -12.053 12.386 1.00 46.12 1SG	29
	ATOM	29 NH2	ARG 4	32.496 -10.096 13.274 1.00 46.12 1SG	30
10	ATOM	30 C	ARG 4	39.502 -12.145 14.430 1.00 46.12 1SG	31
	ATOM	31 O	ARG 4	40.306 -12.725 15.161 1.00 46.12 1SG	32
	ATOM	32 N	TYR 5	39.434 -10.817 14.300 1.00 53.72 1SG	33
	ATOM	33 CA	TYR 5	40.226 -9.892 15.025 1.00 53.72 1SG	34
	ATOM	34 CB	TYR 5	40.325 -8.571 14.253 1.00 53.72 1SG	35
15	ATOM	35 CG	TYR 5	41.299 -8.710 13.136 1.00 53.72 1SG	36
	ATOM	36 CD1	TYR 5	41.167 -9.623 12.109 1.00 53.72 1SG	37
	ATOM	37 CD2	TYR 5	42.352 -7.834 13.127 1.00 53.72 1SG	38
	ATOM	38 CE1	TYR 5	42.123 -9.671 11.114 1.00 53.72 1SG	39
	ATOM	39 CE2	TYR 5	43.300 -7.878 12.141 1.00 53.72 1SG	40
20	ATOM	40 CZ	TYR 5	43.193 -8.801 11.135 1.00 53.72 1SG	41
	ATOM	41 OH	TYR 5	44.186 -8.828 10.133 1.00 53.72 1SG	42
	ATOM	42 C	TYR 5	39.479 -9.608 16.283 1.00 53.72 1SG	43
	ATOM	43 O	TYR 5	38.330 -9.165 16.257 1.00 53.72 1SG	44
	ATOM	44 N	TYR 6	40.096 -9.911 17.429 1.00 62.65 1SG	45
25	ATOM	45 CA	TYR 6	39.472 -9.583 18.671 1.00 62.65 1SG	46
	ATOM	46 CB	TYR 6	38.524 -10.643 19.262 1.00 62.65 1SG	47
	ATOM	47 CG	TYR 6	37.110 -10.362 18.901 1.00 62.65 1SG	48
	ATOM	48 CD1	TYR 6	36.660 -9.063 18.931 1.00 62.65 1SG	49
	ATOM	49 CD2	TYR 6	36.253 -11.367 18.519 1.00 62.65 1SG	50
30	ATOM	50 CE1	TYR 6	35.357 -8.767 18.627 1.00 62.65 1SG	51
	ATOM	51 CE2	TYR 6	34.943 -11.080 18.218 1.00 62.65 1SG	52
	ATOM	52 CZ	TYR 6	34.500 -9.779 18.276 1.00 62.65 1SG	53

THE PERSON OF RESIDENCE AND ADDRESS OF THE PERSON OF THE P

		Atom	Amino Acid	X Y Z Occup. B
		No. Name	SC No.	Factor
	ATOM	83 CB	TYR 10	39.569 -10.540 32.567 1.00 64.11 1SG 84
	ATOM	84 CG	TYR 10	40.443 -9.815 33.532 1.00 64.11 1SG 85
5	ATOM	85 CD1	TYR 10	39.929 -8.879 34.391 1.00 64.11 1SG 86
	ATOM	86 CD2	TYR 10	41.775 -10.140 33.638 1.00 64.11 1SG 87
	ATOM	87 CE1	TYR 10	40.739 -8.227 35.289 1.00 64.11 1SG 88
	ATOM	88 CE2	TYR 10	42.596 -9.496 34.531 1.00 64.11 1SG 89
	ATOM	89 CZ	TYR 10	42.077 -8.530 35.355 1.00 64.11 1SG 90
10	ATOM	90 OH	TYR 10	42.911 -7.862 36.276 1.00 64.11 1SG 91
	ATOM	91 C	TYR 10	37.811 -8.756 32.295 1.00 64.11 1SG 92
	ATOM	92 O	TYR 10	37.697 -7.572 31.989 1.00 64.11 1SG 93
	ATOM	93 N	ALA 11	37.059 -9.328 33.245 1.00 60.60 1SG 94
	ATOM	94 CA	ALA 11	35.961 -8.637 33.852 1.00 60.60 1SG 95
15	ATOM	95 CB	ALA 11	35.310 -9.425 34.997 1.00 60.60 1SG 96
	ATOM	96 C	ALA 11	36.426 -7.331 34.410 1.00 60.60 1SG 97
	ATOM	97 O	ALA 11	35.649 -6.381 34.476 1.00 60.60 1SG 98
	ATOM	98 N	ASP 12	37.685 -7.253 34.872 1.00 58.92 1SG 99
	ATOM	99 CA	ASP 12	38.131 -6.025 35.460 1.00 58.92 1SG 100
20	ATOM	100 CB	ASP 12	39.042 -6.249 36.673 1.00 58.92 1SG 101
	ATOM	101 CG	ASP 12	38.099 -6.632 37.805 1.00 58.92 1SG 102
	ATOM	102 OD1	ASP 12	36.965 -6.081 37.815 1.00 58.92 1SG 103
	ATOM	103 OD2	ASP 12	38.481 -7.474 38.659 1.00 58.92 1SG 104
	ATOM	104 C	ASP 12	38.841 -5.144 34.473 1.00 58.92 1SG 105
25	ATOM	105 O	ASP 12	39.777 -4.431 34.833 1.00 58.92 1SG 106
	ATOM	106 N	GLN 13	38.384 -5.143 33.207 1.00 57.45 1SG 107
	ATOM	107 CA	GLN 13	38.868 -4.238 32.199 1.00 57.45 1SG 108
	ATOM	108 CB	GLN 13	38.526 -2.774 32.511 1.00 57.45 1SG 109
	ATOM	109 CG	GLN 13	37.023 -2.500 32.520 1.00 57.45 1SG 110
30	ATOM	110 CD	GLN 13	36.544 -2.555 31.077 1.00 57.45 1SG 111
	ATOM	111 OE1	GLN 13	37.229 -2.084 30.170 1.00 57.45 1SG 112
	ATOM	112 NE2	GLN 13	35.343 -3.150 30.850 1.00 57.45 1SG 113

THE REPORT OF THE PROPERTY OF

		Atom	Amino	Acid		X Y	Z	Occup.	В	
		No. Name	SC	No.					Factor	
	ATOM	113 C	GLN	13	40.349	-4.332	32.019	9 1.00	57.45	1SG 114
	ATOM	114 O	GLN	13	41.004	-3.343	31.696	5 1.00	57.45	1 S G 115
5	ATOM	115 N	LYS	14	40.910	-5.533	32.207	1.00	58.16	1 S G 116
	ATOM	116 CA	LYS	14	42.302	-5.776	31.993	1.00	58.16	1SG 117
	ATOM	117 CB	LYS	14	42.758	-6.983	32.837	1.00	58.16	1SG 118
	ATOM	118 CG	LYS	14	44.072	-7.653	32.443	1.00	58.16	1SG 119
	ATOM	119 CD	LYS	14	43.997	-8.498	31.161	1.00	58.16	1SG 120
10	ATOM	120 CE	LYS	14	42.643	-9.198	31.004	1.00	58.16	1SG 121
	ATOM	121 NZ	LYS	14	42.479	-9.776	29.655	1.00	58.16	1SG 122
	ATOM	122 C	LYS	14	42.470	-6.088	30.538	1.00	58.16	1SG 123
	ATOM	123 O	LYS	14	41.623	-6.748	29.942	1.00	58.16	1SG 124
	ATOM	124 N	ALA	15	43.595	-5.636	29.944	4 1.00	54.24	1SG 125
15	ATOM	125 CA	ALA	15	43.937	-5.866	28.57	1.00	54.24	1SG 126
	ATOM	126 CB	ALA	15	44.398	-4.595	27.835	5 1.00	54.24	1SG 127
	ATOM	127 C	ALA	15	45.092	-6.822	28.57	7 1.00	54.24	1SG 128
	ATOM	128 O	ALA	15	45.767	-6.973	29.593	3 1.00	54.24	1SG 129
	ATOM	129 N	LEU	16	45.325	-7.528	27.450	1.00	50.90	1SG 130
20	ATOM	130 CA	LEU	16	46.381	-8.503	27.392	2 1.00	50.90	1SG 131
	ATOM	131 CB	LEU	16	45.934	-9.852	26.801	1.00	50.90	1SG 132
	ATOM	132 CG	LEU	16	44.833	-10.544	27.62	3 1.00	50.90	1 S G 133
	ATOM	133 CD2	LEU	16	45.216	-10.618	29.10	5 1.00	50.90	1SG 134
	ATOM	134 CD1	LEU	16	44.458	-11.913	27.03	6 1.00	50.90	1SG 135
25	ATOM	135 C	LEU	16	47.460	-7.999	26.483	3 1.00	50.90	1SG 136
	ATOM	136 O	LEU	16	47.176	-7.396	25.449	1.00	50.90	1SG 137
	ATOM	137 N	TYR	17	48.737	-8.228	26.863	3 1.00	48.25	1SG 138
	ATOM	138 CA	TYR	17	49.853	-7.817	26.056	5 1.00	48.25	1 SG 1 3 9
	ATOM	139 CB	TYR	17	50.452	-6.469	26.510	0 1.00	48.25	1 SG 140
30	ATOM	140 CG	TYR	17	51.599	-6.103	25.630	0 1.00	48.25	1SG 141
	ATOM	141 CD1	TYR	17	51.380	-5.535	24.396	5 1.00	48.25	1SG 142
	ATOM	142 CD2	TYR	17	52.893	-6.346	26.02	7 1.00	48.25	1SG 143

AND THE PERSON OF THE PERSON O

production of the contract of

		Atom	Amino 2	Acid		X	Y	Z	Occup.	В	
		No. Name	SC	No.						Factor	<u> </u>
	ATOM	143 CE1	TYR	17	52.432	-5 .19	97	23.577	7 1.00	48.25	1SG 144
	ATOM	144 CE2	TYR	17	53.949	-6.00	8(25.213	3 1.00	48.25	1SG 145
5	ATOM	145 CZ	TYR	17	53.722	-5.43	32	23.988	3 1.00	48.25	1SG 146
	ATOM	146 OH	TYR	17	54.810	-5.08	39	23.158	3 1.00	48.25	1SG 147
	ATOM	147 C	TYR	17	50.902	-8.88	39	26.148	3 1.00	48.25	1SG 148
	ATOM	148 O	TYR	17	50.844	-9.74	45	27.030	0 1.00	48.25	1SG 149
	ATOM	149 N	THR	18	51.884	-8.87	78	25.22	1 1.00	46.19	1SG 150
10	ATOM	150 CA	THR	18	52.927	-9.86	57	25.193	3 1.00	46.19	1SG 151
	ATOM	151 CB	THR	18	53.441	-10.0	97	23.80	1 1.00	46.19	1SG 152
	ATOM	152 OG1	THR	18	52.393	-10.5	52	22.96	1 1.00	46.19	1SG 153
	ATOM	153 CG2	THR	18	54.575	-11.1	25	23.83	8 1.00	46.19	1SG 154
	ATOM	154 C	THR	18	54.072	-9.34	47	26.00	2 1.00	46.19	1SG 155
15	ATOM	155 O	THR	18	54.883	-8.50	63	25.51	3 1.00	46.19	1SG 156
	ATOM	156 N	ARG	19	54.171	-9.7	75	27.27	6 1.00	52.23	1SG 157
	ATOM	157 CA	ARG	19	55.219	-9.2	63	28.10	9 1.00	52.23	1SG 158
	ATOM	158 CB	ARG	19	55.131	-9.7	74	29.55	5 1.00	52.23	1SG 159
	ATOM	159 CG	ARG	19	56.226	-9.2	06	30.45	9 1.00	52.23	1SG 160
20	ATOM	160 CD	ARG	19	56.158	-9.7	10	31.90	2 1.00	52.23	1SG 161
	ATOM	161 NE	ARG	19	57.28 0	-9.0	70	32.64	3 1.00	52.23	1SG 162
	ATOM	162 CZ	ARG	19	58.522	-9.6	36	32.63	0 1.00	52.23	1SG 163
	ATOM	163 NH1	ARG	19	58.738	3 -10.7	798	31.9	47 1.00	52.23	1SG 164
	ATOM	164 NH2	ARG	19	59.551	-9 .0	35	33.29	6 1.00	52.23	1SG 165
25	ATOM	165 C	ARG	19	56.546	- 9.6	80	27.56	66 1.00	52.23	1SG 166
	ATOM	166 O	ARG	19	57.407	7 -8.8	346	27.28	37 1.00	52.23	1SG 167
	ATOM	167 N	ASP	20	56.735	-11.0	000	27.38	31 1.00	59.27	1SG 168
	ATOM	168 CA	ASP	20	57.964	-11.4	.94	26.83	88 1.00	59.27	1SG 169
	ATOM	169 CB	ASP	20	58.963	-11.9	66	27.90	7 1.00	59.27	1SG 170
30	ATOM	170 CG	ASP	20	60.296	-12.2	237	27.22	21 1.00	59.27	1SG 171
	ATOM	171 OD1	ASP	20	60.343	-12.1	.76	5 25.96	53 1.00	59.27	1SG 172
	ATOM	172 OD2	ASP	20	61.289	-12.5	500	27.95	50 1.00	59.27	1SG 173

4			
	Comments of the comments of th		

The second secon

		Atom	Amino	Acid	X	Y	Z	Occup.	В	
		No. Name	<u>sc</u>	No.					Factor	·
	ATOM	173 C	ASP	20	57.571 -12.	.683	26.042	2 1.00	59.27	1SG 174
	ATOM	174 O	ASP	20	58.291 -13	.675	25.96	1 1.00	59.27	1SG 175
5	ATOM	175 N	GLY	21	56.385 -12	.591	25.42	7 1.00	65.03	1SG 176
	ATOM	176 CA	GLY	21	55.889 -13	.646	24.61	0 1.00	65.03	1SG 177
	ATOM	177 C	GLY	21	54.895 -14	.444	25.40	4 1.00	65.03	1SG 178
	ATOM	178 O	GLY	21	54.020 -15	.079	24.81	8 1.00	65.03	1 S G 179
	ATOM	179 N	GLN	22	55.002 -14	1.432	26.75	4 1.00	68.58	1SG 180
10	ATOM	180 CA	GLN	22	54.145 -15	5.243	27.58	31 1.00	68.58	1 S G 181
	ATOM	181 CB	GLN	22	54.580 -15	5.294	29.06	50 1.00	68.58	1SG 182
	ATOM	182 CG	GLN	22	54.492 -13	3.962	29.80	9 1.00	68.58	1SG 183
	ATOM	183 CD	GLN	22	55.821 -13	3.234	29.67	74 1.00	68.58	1SG 184
	ATOM	184 OE1	GLN	22	56.058 -12	2.234	30.34	1.00	68.58	1SG 185
15	ATOM	185 NE2	GLN	22	56.717 -13	3.751	28.79	90 1.00	68.58	1SG 186
	ATOM	186 C	GLN	22	52.705 -14	4.815	27.55	59 1.00	68.58	1SG 187
	ATOM	187 O	GLN	22	51.859 -13	5.630	27.2	15 1.00	68.58	1SG 188
	ATOM	188 N	LEU	23	52.401 -13	3.539	27.89	94 1.00	63.11	1SG 189
	ATOM	189 CA	LEU	23	51.081 -12	2.938	27.96	55 1.00	63.11	1 S G 190
20	ATOM	190 CB	LEU	23	49.859 -13	3.873	27.80	03 1.00	63.11	1SG 191
	ATOM	191 CG	LEU	23	49.580 -14	4.387	26.3	74 1.00	63.11	1 S G 192
	ATOM	192 CD2	LEU	23	49.467 -13	3.231	25.3	71 1.00	63.11	1 S G 193
	ATOM	193 CD1	LEU	23	48.345 -1:	5.301	26.3	46 1.00	63.11	1 S G 194
	ATOM	194 C	LEU	23	50.939 -12	2.331	29.3	30 1.00	63.11	1 SG 195
25	ATOM	195 O	LEU	23	51.090 -1	3.017	7 30.3	41 1.00	63.11	1SG 196
	ATOM	196 N	LEU	24	50.622 -1	1.022	2 29.3	86 1.00	55.20	1SG 197
	ATOM	197 CA	LEU	24	50.498 -1	0.321	30.6	32 1.00	55.20	1 SG 198
	ATOM	198 CB	LEU	24	51.666 -9	9.321	30.82	20 1.00	55.20	1SG 199
	ATOM	199 CG	LEU	24	51.703 -8	3.467	32.10	08 1.00	55.20	1SG 200
30	ATOM	200 CD2	LEU	24	50.544 -7				55.20	1SG 201
	ATOM	201 CD1	LEU	24	53.044 -				55.20	1SG 202
	ATOM	202 C	LEU	24	49.194 -9	9.586	30.6	19 1.00	55.20	1SG 203

		Atom Amino Acid			X	Y	\mathbf{Z}	Occup.	В		
		No. Name	SC	No.		-				Factor	
	ATOM	203 O	LEU	24	48.705	-9.1	87	29.564	1.00	55.20	1SG 204
	ATOM	204 N	VAL	25	48.578	-9.4	130	31.811	1.00	49.24	1SG 205
5	ATOM	205 CA	VAL	25	47.336	-8.7	727	31.945	1.00	49.24	1SG 206
	ATOM	206 CB	VAL	25	46.321	-9.5	527	32.715	1.00	49.24	1SG 207
	ATOM	207 CG1	VAL	25	46.013	-10.	808	31.93	0 1.00	49.24	1SG 208
	ATOM	208 CG2	VAL	25	46.856	-9.8	311	34.130	1.00	49.24	1SG 209
	ATOM	209 C	VAL	25	47.609	-7.4	172	32.725	1.00	49.24	1SG 210
10	ATOM	210 O	VAL	25	48.274	-7.4	198	33.760	1.00	49.24	1SG 211
	ATOM	211 N	GLY	26	47.094	-6.3	326	32.233	1.00	45.56	1SG 212
	ATOM	212 CA	GLY	26	47.263	-5.	059	32.89	0 1.00	45.56	1SG 213
	ATOM	213 C	GLY	26	46.128	-4.2	210	32.431	1.00	45.56	1SG 214
	ATOM	214 O	GLY	26	45.360	-4.6	538	31.579	1.00	45.56	1SG 215
15	ATOM	215 N	ASP	27	45.967	-2.9	90	32.979	1.00	47.30	1SG 216
	ATOM	216 CA	ASP	27	44.862	-2.1	93	32.521	1.00	47.30	1SG 217
	ATOM	217 CB	ASP	27	44.021	-1.5	95	33.663	1.00	47.30	1SG 218
	ATOM	218 CG	ASP	27	42.744	-1.0	12	33.068	1.00	47.30	1SG 219
	ATOM	219 OD1	ASP	27	42.587	-1.0	75	31.819	1.00	47.30	1SG 220
20	ATOM	220 OD2	ASP	27	41.905	-0.5	02	33.857	1.00	47.30	1SG 221
	ATOM	221 C	ASP	27	45.405	-1.0	55	31.712	1.00	47.30	1SG 222
	ATOM	222 O	ASP	27	45.828	-0.0	46	32.270	1.00	47.30	1SG 223
	ATOM	223 N	PRO	28	45.452	-1.2	210	30.412	1.00	51.05	1SG 224
	ATOM	224 CA	PRO	28	45.924	-0.1	125	29.594	1.00	51.05	1SG 225
25	ATOM	225 CD	PRO	28	45.902	-2.4	184	29.878	1.00	51.05	1SG 226
	ATOM	226 CB	PRO	28	46.569	-0.7	751	28.358	1.00	51.05	1SG 227
	ATOM	227 CG	PRO	28	46.948	-2.1	163	28.807	1.00	51.05	1SG 228
	ATOM	228 C	PRO	28	44.837	7 0.	820	29.20	0 1.00	51.05	1SG 229
	ATOM	229 O	PRO	28	43.665	0.4	153	29.259	1.00	51.05	1SG 230
30	ATOM	230 N	VAL	29	45.222	2.0	046	28.799	1.00	52.42	1SG 231
	ATOM	231 CA	VAL	29	44.305	3.0	800	28.264	1.00	52.42	1SG 232
	ATOM	232 CB	VAL	29	43.622	3.8	344	29.307	1.00	52.42	1SG 233

		Atom	Amino .	Acid		X Y	Z	Occup.	В	
		No. Name	SC	No.					Factor	•
	ATOM	233 CG1	VAL	29	44.688	4.667	30.050	1.00	52.42	1SG 234
	ATOM	234 CG2	VAL	29	42.550	4.702	28.615	5 1.00	52.42	1SG 235
5	ATOM	235 C	VAL	29	45.145	3.931	27.445	5 1.00	52.42	1SG 236
	ATOM	236 O	VAL	2 9	46.307	4.136	27.788	3 1.00	52.42	1SG 237
	ATOM	237 N	ALA	30	44.595	4.464	26.328	3 1.00	50.57	1SG 238
	ATOM	238 CA	ALA	30	45.268	5.424	25.487	7 1.00	50.57	1SG 239
	ATOM	239 CB	ALA	30	46.354	6.299	26.148	3 1.00	50.57	1SG 240
10	ATOM	240 C	ALA	30	45.854	4.749	24.290	1.00	50.57	1SG 241
	ATOM	241 O	ALA	30	45.433	3.667	23.884	4 1.00	50.57	1SG 242
	ATOM	242 N	ASP	31	46.852	5.417	23.686	1.00	46.54	1SG 243
	ATOM	243 CA	ASP	31	47.521	4.975	22.498	1.00	46.54	1SG 244
	ATOM	244 CB	ASP	31	48.617	5.960	22.057	1.00	46.54	1SG 245
15	ATOM	245 CG	ASP	31	49.084	5.578	20.661	1.00	46.54	1SG 246
	ATOM	246 OD1	ASP	31	48.539	4.591	20.100	1.00	46.54	1SG 247
	ATOM	247 OD2	ASP	31	49.995	6.274	20.138	3 1.00	46.54	1SG 248
	ATOM	248 C	ASP	31	48.175	3.660	22.788	3 1.00	46.54	1SG 249
	ATOM	249 O	ASP	31	48.309	2.815	21.905	5 1.00	46.54	1 SG 250
20	ATOM	250 N	ASN	32	48.583	3.454	24.05	3 1.00	40.79	1SG 251
	ATOM	251 CA	ASN	32	49.270	2.266	24.47	1 1.00	40.79	1SG 252
	ATOM	252 CB	ASN	32	49.772	2.310	25.92	8 1.00	40.79	1SG 253
	ATOM	253 CG	ASN	32	48.640	2.628	26.89	2 1.00	40.79	1SG 254
	ATOM	254 OD1	ASN	32	48.774	3.576	27.66	4 1.00	40.79	1SG 255
25	ATOM	255 ND2	ASN	32	47.530	1.842	26.87	1 1.00	40.79	1SG 256
	ATOM	256 C	ASN	32	48.397	1.069	24.25	5 1.00	40.79	1SG 257
	ATOM	257 O	ASN	32	48.883	-0.059	24.19	5 1.00	40.79	1SG 258
	ATOM	258 N	CYS	33	47.080	1.293	24.12	2 1.00	37.36	1SG 259
	ATOM	259 CA	CYS	33	46.117	0.245	23.94	0 1.00	37.36	1SG 260
30	ATOM	260 CB	CYS	33	44.689	0.778	23.73	3 1.00	37.36	1SG 261
	ATOM	261 SG	CYS	33	44.007	1.554	25.22	9 1.00	37.36	1SG 262
	ATOM	262 C	CYS	33	46.486	-0.530	22.71	0 1.00	37.36	1SG 263

		Atom	Amino Acid			X Y	\mathbf{Z}	Occup.	В	
		No. Name	SC_	No.					Facto	<u>r</u>
	ATOM	263 O	CYS	33	46.129	-1.699	22.572	2 1.00	37.36	1SG 264
	ATOM	264 N	CYS	34	47.230	0.099	21.787	7 1.00	40.37	1SG 265
5	ATOM	265 CA	CYS	34	47.592	-0.501	20.532	2 1.00	40.37	1SG 266
	ATOM	266 CB	CYS	34	48.510	0.400	19.692	2 1.00	40.37	1SG 267
	ATOM	267 SG	CYS	34	47.702	1.958	19.226	5 1.00	40.37	1SG 268
	ATOM	268 C	CYS	34	48.342	-1.777	20.780	0 1.00	40.37	1SG 269
	ATOM	269 O	CYS	34	48.269	-2.708	19.97	8 1.00	40.37	1 SG 27 0
10	ATOM	270 N	ALA	35	49.070	-1.860	21.90	6 1.00	48.30	1SG 271
	ATOM	271 CA	ALA	35	49.904	-2.985	5 22.23	4 1.00	48.30	1SG 272
	ATOM	272 CB	ALA	35	50.597	-2.812	23.59	5 1.00	48.30	1SG 273
	ATOM	273 C	ALA	35	49.073	-4.241	22.27	6 1.00	48.30	1SG 274
	ATOM	274 O	ALA	35	49.558	-5.330	21.97	6 1.00	48.30	1SG 275
15	ATOM	275 N	GLU	36	47.797	-4.116	5 22.67	4 1.00	58.23	1SG 276
	ATOM	276 CA	GLU	36	46.849	-5.194	1 22.80	3 1.00	58.23	1SG 277
	ATOM	277 CB	GLU	36	45.453	-4.623	3 23.09	5 1.00	58.23	1SG 278
	ATOM	278 CG	GLU	36	45.311	-3.973	3 24.47	3 1.00	58.23	1SG 279
	ATOM	279 CD	GLU	36	43.946	-3.30	1 24.52	8 1.00	58.23	1SG 280
20	ATOM	280 OE1	GLU	36	43.488	-2.810	23.45	9 1.00	58.23	1SG 281
	ATOM	281 OE2	GLU	36	43.341	-3.26	7 25.63	1 1.00	58.23	1SG 282
	ATOM	282 C	GLU	36	46.750	-5.97	7 21.50	6 1.00	58.23	1SG 283
	ATOM	283 O	GLU	36	46.914	-5.40	3 20.43	30 1.00	58.23	1SG 284
	ATOM	284 N	LYS	37	46.514	-7.324	21.57	0 1.00	65.72	1SG 285
25	ATOM	285 CA	LYS	37	46.371	-8.106	5 20.34	8 1.00	65.72	1SG 286
	ATOM	286 CB	LYS	37	47.679	-8.177	7 19.53	2 1.00	65.72	1SG 287
	ATOM	287 CG	LYS	37	48.888	-8.600	20.36	0 1.00	65.72	1SG 288
	ATOM	288 CD	LYS	37	48.773	-10.03	2 20.80	69 1.00	65.72	1SG 289
	ATOM	289 CE	LYS	37	49.819	-10.37	4 21.92	24 1.00	65.72	1SG 290
30	ATOM	290 NZ	LYS	37	49.625	-11.76	1 22.3	99 1.00	65.72	1SG 291
	ATOM	291 C	LYS	37	45.835	-9.526	5 20.58	3 1.00	65.72	1SG 292
	ATOM	292 O	LYS	37	45.594	-9.890	5 21.73	2 1.00	65.72	1SG 293

		Atom	Amino Ao	cid		X	Y	Z	Occup.	В	
		No. Name	SC N	lo.						Factor	·
	ATOM	293 N	ILE 38	3	45.553	-10.3	01	19.469	1.00	67.02	1SG 294
	ATOM	294 CA	ILE 38	3	45.168	-11.7	18	19.359	1.00	67.02	1SG 295
5	ATOM	295 CB	ILE 38	3	44.552	-12.4	14	20.547	1.00	67.02	1SG 296
	ATOM	296 CG2	ILE 38	3	45.618	-12.6	26	21.637	1.00	67.02	1SG 297
	ATOM	297 CG1	ILE 38	3	43.245	-11.7	36	20.969	1.00	67.02	1SG 298
	ATOM	298 CD1	ILE 38	3	42.388	-12.6	28	21.865	1.00	67.02	1SG 299
	ATOM	299 C	ILE 38	3	44.222	-11.9	75	18.205	1.00	67.02	1SG 300
10	ATOM	300 O	ILE 38	3	43.388	-11.1	35	17.873	1.00	67.02	1SG 301
	ATOM	301 N	CYS 3	9	44.369	-13.	149	17.528	3 1.00	63.20	1SG 302
	ATOM	302 CA	CYS 3	9	43.484	-13.:	568	16.459	9 1.00	63.20	1SG 303
	ATOM	303 CB	CYS 3	9	44.215	5 -13.9	958	15.16	1 1.00	63.20	1SG 304
	ATOM	304 SG	CYS 3	9	45.292	2 -15.4	406	15.378	8 1.00	63.20	1SG 305
15	ATOM	305 C	CYS 3	9	42.743	3 -14.	805	16.91	4 1.00	63.20	1SG 306
	ATOM	306 O	CYS 3	9	43.334	1-15.	698	17.519	9 1.00	63.20	1SG 307
	ATOM	307 N	ILE 4	10	41.420) -14.	887	16.61	9 1.00	57.92	1SG 308
	ATOM	308 CA	ILE 4	10	40.582	2 -15.	994	17.02	0 1.00	57.92	1 SG 309
	ATOM	309 CB	ILE 4	10	39.39	7 -15.	569	17.84	7 1.00	57.92	1SG 310
20	ATOM	310 CG2	ILE 4	10	38.40	2 - 16.	736	17.90	0 1.00	57.92	1SG 311
	ATOM	311 CG1	ILE 4	10	39.84	5 -15.	.055	19.22	8 1.00	57.92	1SG 312
	ATOM	312 CD1	ILE 4	10	38.73	8 -14.	.341	20.00	5 1.00	57.92	1SG 313
	ATOM	313 C	ILE 4	1 0	40.05	6 -16.	.676	15.79	1 1.00	57.92	1SG 314
	ATOM	314 O	ILE 4	1 0	39.46	5 -16.	.043	14.91	6 1.00	57.92	1SG 315
25	ATOM	315 N	LEU 4	1	40.25	7 -18.	009	15.70	7 1.00	55.12	1SG 316
	ATOM	316 CA	LEU 4	l 1	39.87	6 -18.	774	14.55	2 1.00	55.12	1SG 317
	ATOM	317 CB	LEU 4	1	41.10	3 -19.	.537	13.99	5 1.00	55.12	1SG 318
	ATOM	318 CG	LEU 4	1 1	40.94	8 -20.	.324	12.67	6 1.00	55.12	1 SG 319
	ATOM	319 CD2	LEU 4	1 1	39.84	4 -21.	.381	12.74	4 1.00	55.12	1SG 320
30	ATOM	320 CD1	LEU 4	4 1	42.28	2 -20.	.976	12.28	30 1.00	55.12	1SG 321
	ATOM	321 C	LEU 4	41	38.82	1 -19	.751	14.97	3 1.00	55.12	1SG 322
	ATOM	322 O	LEU 4	4 1	38.99	2 -20	.498	15.93	3 1.00	55.12	1SG 323

		Atom	Amino .	Acid	X	Y	Z	Occup.	В	
		No. Name	SC	No.					Factor	
	ATOM	323 N	PRO	42	37.697 -19	9.717	14.30	8 1.00	50.96	1SG 324
	ATOM	324 CA	PRO	4 2	36.686 -20	0.695	14.60	6 1.00	50.96	1SG 325
5	ATOM	325 CD	PRO	42	37.122 -13	8.442	13.91	4 1.00	50.96	1SG 326
	ATOM	326 CB	PRO	42	35.378 -20	0.132	14.05	8 1.00	50.96	1SG 327
	ATOM	327 CG	PRO	42	35.605 -1	8.608	14.09	0 1.00	50.96	1SG 328
	ATOM	328 C	PRO	42	37.113 -2:	2.001	14.02	4 1.00	50.96	1SG 329
	ATOM	329 O	PRO	42	37.212 -2	2.097	12.80	2 1.00	50.96	1SG 330
10	ATOM	330 N	ASN	43	37.272 -2	3.044	14.85	7 1.00	45.74	1SG 331
	ATOM	331 CA	ASN	43	37.798 -2	4.277	14.35	4 1.00	45.74	1SG 332
	ATOM	332 CB	ASN	43	39.057 -2	4.748	15.10	2 1.00	45.74	1SG 333
	ATOM	333 CG	ASN	43	38.669 -2	5.002	16.55	2 1.00	45.74	1SG 334
	ATOM	334 OD1	ASN	43	38.046 -2	4.157	17.19	3 1.00	45.74	1SG 335
15	ATOM	335 ND2	ASN	43	39.040 -2	6.197	17.08	35 1.00	45.74	1SG 336
	ATOM	336 C	ASN	43	36.768 -2	25.335	14.52	20 1.00	45.74	1SG 337
	ATOM	337 O	ASN	43	35.690 -2	25.107	15.06	55 1.00	45.74	1SG 338
	ATOM	338 N	ARG	44	37.078 -2	26.529	13.98	86 1.00	40.33	1SG 339
	ATOM	339 CA	ARG	44	36.185 -2	27.637	14.09	99 1.00	40.33	1SG 340
20	ATOM	340 CB	ARG	44	36.409 -2	28.706	13.0	14 1.00	40.33	1SG 341
	ATOM	341 CG	ARG	44	37.827 -2	29.279	12.9	79 1.00	40.33	1SG 342
	ATOM	342 CD	ARG	44	38.132 -	30.232	14.1	33 1.00	40.33	1SG 343
	ATOM	343 NE	ARG	44	37.286 -	31.441	13.9	35 1.00	40.33	1SG 344
	ATOM	344 CZ	ARG	44	37.213 -	32.380	14.9	21 1.00	40.33	1SG 345
25	ATOM	345 NH1	ARG	44	37.931 -	32.213	3 16.0	70 1.00	40.33	1SG 346
	ATOM	346 NH2	ARG	44	36.421 -	33.480	14.7	60 1.00	40.33	1SG 347
	ATOM	347 C	ARG	44	36.368 -	28.241	15.4	53 1.00	40.33	1SG 348
	ATOM	348 O	ARG	44	37.446 -	28.182	2 16.0	42 1.00	40.33	1SG 349
	ATOM	349 N	GLY	45	35.282 -	28.823	15.9	92 1.00	32.71	1SG 350
30	ATOM	350 CA	GLY	45	35.330 -	29.414	17.2	94 1.00	32.71	1SG 351
	ATOM	351 C	GLY	45	33.922 -	29.725	5 17.6	63 1.00	32.71	1SG 352
	ATOM	352 O	GLY	45	33.034 -	29.730	16.8	12 1.00	32.71	1SG 353

		Atom	Amino Acid	X Y Z Occup. B
		No. Name	SC No.	Factor
	ATOM	353 N	LEU 46	33.680 -29.994 18.958 1.00 30.21 1SG 354
	ATOM	354 CA	LEU 46	32.346 -30.312 19.365 1.00 30.21 1SG 355
5	ATOM	355 CB	LEU 46	32.285 -31.110 20.678 1.00 30.21 1SG 356
	ATOM	356 CG	LEU 46	32.992 -32.477 20.599 1.00 30.21 1SG 357
	ATOM	357 CD2	LEU 46	32.496 -33.297 19.398 1.00 30.21 1SG 358
	ATOM	358 CD1	LEU 46	32.888 -33.238 21.930 1.00 30.21 1SG 359
	ATOM	359 C	LEU 46	31.642 -29.018 19.593 1.00 30.21 1SG 360
10	ATOM	360 O	LEU 46	32.084 -28.186 20.385 1.00 30.21 1SG 361
	ATOM	361 N	ASP 47	30.522 -28.813 18.875 1.00 32.57 1SG 362
	ATOM	362 CA	ASP 47	29.774 -27.605 19.029 1.00 32.57 1SG 363
	ATOM	363 CB	ASP 47	29.361 -26.958 17.694 1.00 32.57 1SG 364
	ATOM	364 CG	ASP 47	28.692 -25.621 17.988 1.00 32.57 1SG 365
15	ATOM	365 OD1	ASP 47	28.576 -25.263 19.190 1.00 32.57 1SG 366
	ATOM	366 OD2	ASP 47	28.292 -24.935 17.009 1.00 32.57 1SG 367
	ATOM	367 C	ASP 47	28.518 -27.948 19.755 1.00 32.57 1SG 368
	ATOM	368 O	ASP 47	27.733 -28.790 19.322 1.00 32.57 1SG 369
	ATOM	369 N	ARG 48	28.324 -27.293 20.909 1.00 34.94 1SG 370
20	ATOM	370 CA	ARG 48	27.162 -27.439 21.728 1.00 34.94 1SG 371
	ATOM	371 CB	ARG 48	27.404 -28.219 23.033 1.00 34.94 1SG 372
	ATOM	372 CG	ARG 48	27.668 -29.712 22.828 1.00 34.94 1SG 373
	ATOM	373 CD	ARG 48	27.895 -30.472 24.137 1.00 34.94 1SG 374
	ATOM	374 NE	ARG 48	28.133 -31.902 23.795 1.00 34.94 1SG 375
25	ATOM	375 CZ	ARG 48	27.092 -32.785 23.791 1.00 34.94 1SG 376
	ATOM	376 NH1	ARG 48	25.837 -32.357 24.116 1.00 34.94 1SG 377
	ATOM	377 NH2	ARG 48	27.305 -34.094 23.468 1.00 34.94 1SG 378
	ATOM	378 C	ARG 48	26.868 -26.041 22.115 1.00 34.94 1SG 379
	ATOM	379 O	ARG 48	27.113 -25.121 21.336 1.00 34.94 1SG 380
30	ATOM	380 N	THR 49	26.299 -25.829 23.311 1.00 39.86 1SG 381
	ATOM	381 CA	THR 49	26.166 -24.458 23.674 1.00 39.86 1SG 382
	ATOM	382 CB	THR 49	25.210 -24.227 24.807 1.00 39.86 1SG 383

		Atom	Amino Acid	X Y Z Occup. B
		No. Name	SC No.	Factor
	ATOM	383 OG1	THR 49	23.915 -24.694 24.459 1.00 39.86 1SG 384
	ATOM	384 CG2	THR 49	25.167 -22.721 25.119 1.00 39.86 1SG 385
5	ATOM	385 C	THR 49	27.533 -24.075 24.149 1.00 39.86 1SG 386
	ATOM	386 O	THR 49	27.793 -24.020 25.350 1.00 39.86 1SG 387
	ATOM	387 N	LYS 50	28.446 -23.834 23.181 1.00 43.04 1SG 388
	ATOM	388 CA	LYS 50	29.815 -23.473 23.400 1.00 43.04 1SG 389
	ATOM	389 CB	LYS 50	30.522 -24.412 24.391 1.00 43.04 1SG 390
10	ATOM	390 CG	LYS 50	31.765 -23.807 25.041 1.00 43.04 1SG 391
	ATOM	391 CD	LYS 50	32.193 -24.554 26.307 1.00 43.04 1SG 392
	ATOM	392 CE	LYS 50	33.254 -23.820 27.128 1.00 43.04 1SG 393
	ATOM	393 NZ	LYS 50	33.489 -24.536 28.402 1.00 43.04 1SG 394
	ATOM	394 C	LYS 50	30.457 -23.608 22.050 1.00 43.04 1SG 395
15	ATOM	395 O	LYS 50	30.036 -24.446 21.253 1.00 43.04 1SG 396
	ATOM	396 N	VAL 51	31.478 -22.784 21.732 1.00 44.03 1SG 397
	ATOM	397 CA	VAL 51	32.054 -22.899 20.419 1.00 44.03 1SG 398
	ATOM	398 CB	VAL 51	31.843 -21.683 19.565 1.00 44.03 1SG 399
	ATOM	399 CG1	VAL 51	32.582 -21.888 18.231 1.00 44.03 1SG 400
20 -	ATOM	400 CG2	VAL 51	30.332 -21.442 19.414 1.00 44.03 1SG 401
	ATOM	401 C	VAL 51	33.534 -23.080 20.542 1.00 44.03 1SG 402
	ATOM	402 O	VAL 51	34.192 -22.431 21.352 1.00 44.03 1SG 403
	ATOM	403 N	PRO 52	34.065 -23.976 19.749 1.00 46.94 1SG 404
	ATOM	404 CA	PRO 52	35.488 -24.189 19.757 1.00 46.94 1SG 405
25	ATOM	405 CD	PRO 52	33.341 -25.203 19.455 1.00 46.94 1SG 406
	ATOM	406 CB	PRO 52	35.721 -25.552 19.110 1.00 46.94 1SG 407
	ATOM	407 CG	PRO 52	34.409 -26.308 19.385 1.00 46.94 1SG 408
	ATOM	408 C	PRO 52	36.201 -23.065 19.077 1.00 46.94 1SG 409
	ATOM	409 O	PRO 52	
30	ATOM	410 N	ILE 53	
	ATOM	411 CA	ILE 53	
	ATOM	412 CB	ILE 53	37.817 -20.286 19.889 1.00 47.21 1SG 413

		Atom	Amino .	Acid		X	Y	Z	Occup.	В	
		No. Name	SC	No.						Factor	•
	ATOM	413 CG2	ILE	53	38.805	-19.	184	19.483	3 1.00	47.21	1SG 414
	ATOM	414 CG1	ILE	53	36.340	-19.	888	19.733	3 1.00	47.21	1SG 415
5	ATOM	415 CD1	ILE	53	35.935	-19.	585	18.290	1.00	47.21	1SG 416
	ATOM	416 C	ILE	53	39.554	-21.	855	19.255	5 1.00	47.21	1SG 417
	ATOM	417 O	ILE	53	39.958	-22.	644	20.108	3 1.00	47.21	1SG 418
	ATOM	418 N	PHE	54	40.371	-21.2	242	18.378	3 1.00	47.50	1SG 419
	ATOM	419 CA	PHE	54	41.799	-21.	330	18.379	1.00	47.50	1SG 420
10	ATOM	420 CB	PHE	54	42.309	-21.	800	17.009	1.00	47.50	1SG 421
	ATOM	421 CG	PHE	54	43.788	-21.	828	17.028	3 1.00	47.50	1SG 422
	ATOM	422 CD1	PHE	54	44.457	-22.	916	17.533	3 1.00	47.50	1SG 423
	ATOM	423 CD2	PHE	54	44.494	-20.	761	16.528	3 1.00	47.50	1SG 424
	ATOM	424 CE1	PHE	54	45.827	-22.	933	17.542	2 1.00	47.50	1SG 425
15	ATOM	425 CE2	PHE	54	45.865	-20.	772	16.53	4 1.00	47.50	1SG 426
	ATOM	426 CZ	PHE	54	46.522	2 -21.	863	17.043	3 1.00	47.50	1SG 427
	ATOM	427 C	PHE	54	42.258	3 -19.	920	18.60	1 1.00	47.50	1SG 428
	ATOM	428 O	PHE	54	41.680	-18.	.988	18.04	5 1.00	47.50	1SG 429
	ATOM	429 N	LEU	55	43.290	-19	.711	19.44	6 1.00	47.90	1SG 430
20	ATOM	430 CA	LEU	55	43.731	-18	.372	19.71	4 1.00	47.90	1SG 431
	ATOM	431 CB	LEU	55	43.708	3 -18	.034	21.21	4 1.00	47.90	1SG 432
	ATOM	432 CG	LEU	55	42.301	1 -18	.055	21.83	7 1.00	47.90	1SG 433
	ATOM	433 CD2	LEU	55	41.342	2 -17	.140	21.06	1 1.00	47.90	1SG 434
	ATOM	434 CD1	LEU	55	42.349	9 -17	.718	23.33	5 1.00	47.90	1SG 435
25	ATOM	435 C	LEU	55	45.15	8 - 18	.260	19.27	9 1.00	47.90	1SG 436
	ATOM	436 O	LEU	55	46.03	6 -18	.923	19.82	4 1.00	47.90	1SG 437
	ATOM	437 N	GLY	56	45.44	0 -17	7.393	18.29	2 1.00	45.33	1SG 438
	ATOM	438 CA	GLY	56	46 .79	6 -17	7.227	7 17.86	51 1.00	45.33	1SG 439
	ATOM	439 C	GLY	56	47.05	7 -15	5.762	2 17.86	54 1.00	45.33	1SG 440
30	ATOM	440 O	GLY	56	46.16	66 -14	1.961	18.14	44 1.00	45.33	1SG 441
	ATOM	441 N	ILE	57	48.29	9 -15	5.360	17.5	51 1.00	42.94	1SG 442
	ATOM	442 CA	ILE	57	48.54	0 -13	3.953	3 17.49	90 1.00	42.94	1SG 443

THE MANAGEMENT OF THE PARTY OF

i dil ilini i

		Atom	om Amino Acid		X	Z	Occup.	В		
		No. Name	SC N	0.					<u>Facto</u>	<u>r</u>
	ATOM	443 CB	ILE 57	7	49.902 -13.5	530	17.96	1 1.00	42.94	1SG 444
	ATOM	444 CG2	ILE 57	7	50.962 -14.	151	17.03	7 1.00	42.94	1SG 445
5	ATOM	445 CG1	ILE 57	7	49.969 -11.9	996	18.05	0 1.00	42.94	1SG 446
	ATOM	446 CD1	ILE 5	7	51.202 -11.4	475	18.78	5 1.00	42.94	1SG 447
	ATOM	447 C	ILE 5	7	48.424 -13.0	503	16.04	8 1.00	42.94	1SG 448
	ATOM	448 O	ILE 5'	7	48.944 -14.	309	15.18	7 1.00	42.94	1SG 449
	ATOM	449 N	GLN 5	8	47.687 -12.	526	15.72	25 1.00	39.72	1SG 450
10	ATOM	450 CA	GLN 5	8	47.564 -12.	239	14.33	32 1.00	39.72	1SG 451
	ATOM	451 CB	GLN 5	8	46.525 -11.	167	13.96	66 1.00	39.72	1SG 452
	ATOM	452 CG	GLN 5	8	46.515 -10.	850	12.46	66 1.00	39.72	1SG 453
	ATOM	453 CD	GLN 5	8	46.163 -12.	118	11.69	96 1.00	39.72	1SG 454
	ATOM	454 OE1	GLN 5	8	45.085 -12.	687	11.85	59 1.00	39.72	1SG 455
15	ATOM	455 NE2	GLN 5	8	47.104 -12.	581	10.82	29 1.00	39.72	1SG 456
	ATOM	456 C	GLN 5	8	48.888 -11.	777	13.82	29 1.00	39.72	1SG 457
	ATOM	457 O	GLN 5	8	49.555 -10	951	14.4	49 1.00	39.72	1SG 458
	ATOM	458 N	GLY 5	9	49.309 -12	.336	12.6	80 1.00	36.04	1SG 459
	ATOM	459 CA	GLY 5	59	50.528 -11	.910	12.0	64 1.00	36.04	1SG 460
20	ATOM	460 C	GLY 5	59	51.687 -12	.639	12.6	60 1.00	36.04	1SG 461
	ATOM	461 O	GLY 5	59	52.835 -12	.353	12.3	25 1.00	36.04	1SG 462
	ATOM	462 N	GLY 6	60	51.433 -13	.609	13.5	56 1.00	35.52	1SG 463
	ATOM	463 CA	GLY 6	50	52.554 -14	.299	14.1	17 1.00	35.52	1SG 464
	ATOM	464 C	GLY 6	50	52.189 -15	.737	14.1	98 1.00	35.52	1SG 465
25	ATOM	465 O	GLY 6	50	51.033 -16	.085	14.4	37 1.00	35.52	1SG 466
	ATOM	466 N	SER (61	53.182 -16	5.623	3 14.0	005 1.00	38.49	1SG 467
	ATOM	467 CA	SER	61	52.858 -18	3.008	3 14.1	.06 1.00	38.49	1SG 468
	ATOM	468 CB	SER	61	53.770 -18	3.906	5 13.2	254 1.00	38.49	1 SG 469
	ATOM	469 OG	SER	61	53.623 -18	3.588	3 11.8	378 1.00	38.49	1SG 470
30	ATOM	470 C	SER	61	53.090 -18				38.49	1SG 471
	ATOM	471 O	SER	61	54.032 -19					1SG 472
	ATOM	472 N	ARG	62	52.209 -17	7.869	9 16.4	423 1.00	41.73	1SG 473

		Atom	Amino	Acid		X	Y	Z	Occup.	В	
		No. Name	SC_	No.						Factor	
	ATOM	473 CA	ARG	62	52.295	-18.	62	17.823	3 1.00	41.73	1SG 474
	ATOM	474 CB	ARG	62	52.729	-16.9	964	18.687	1.00	41.73	1SG 475
5	ATOM	475 CG	ARG	62	54.095	-16.3	379	18.317	1.00	41.73	1SG 476
	ATOM	476 CD	ARG	62	54.091	-15.6	511	16.993	3 1.00	41.73	1SG 477
	ATOM	477 NE	ARG	62	55.406	-14.9	921	16.859	1.00	41.73	1SG 478
	ATOM	478 CZ	ARG	62	56.461	-15.5	547	16.262	2 1.00	41.73	1SG 479
	ATOM	479 NH1	ARG	62	56.317	-16.8	310	15.766	5 1.00	41.73	1SG 480
10	ATOM	480 NH2	ARG	62	57.661	-14.9	905	16.157	7 1.00	41.73	1SG 481
	ATOM	481 C	ARG	62	50.903	-18.5	503	18.245	1.00	41.73	1SG 482
	ATOM	482 O	ARG	62	49.960	-17.7	783	17.916	1.00	41.73	1SG 483
	ATOM	483 N	CYS	63	50.731	-19.6	606	19.000	1.00	43.44	1SG 484
	ATOM	484 CA	CYS	63	49.397	-20.0	80	19.331	1.00	43.44	1SG 485
15	ATOM	485 CB	CYS	63	48.996	-21.2	47	18.523	1.00	43.44	1SG 486
	ATOM	486 SG	CYS	63	49.453	-21.0	47	16.773	1.00	43.44	1SG 487
	ATOM	487 C	CYS	63	49.357	-20.3	96	20.775	1.00	43.44	1SG 488
	ATOM	488 O	CYS	63	50.329	-20.9	23	21.314	1.00	43.44	1SG 489
	ATOM	489 N	LEU	64	48.222	-20.1	16	21.447	1.00	42.33	1SG 490
20	ATOM	490 CA	LEU	64	48.069	-20.5	20	22.816	1.00	42.33	1SG 491
	ATOM	491 CB	LEU	64	46.996	-19.7	22	23.580	1.00	42.33	1SG 492
	ATOM	492 CG	LEU	64	47.413	-18.2	65	23.875	1.00	42.33	1SG 493
	ATOM	493 CD2	LEU	64	46.354	-17.5	46	24.727	1.00	42.33	1SG 494
	ATOM	494 CD1	LEU	64	47.745	-17.4	95	22.588	1.00	42.33	1SG 495
25	ATOM	495 C	LEU	64	47.698	-2 1.9	64	22.792	1.00	42.33	1SG 496
	ATOM	496 O	LEU	64	46.903	-22.3	99	21.960	1.00	42.33	1SG 497
	ATOM	497 N	ALA	65	48.290	-22.7	52	23.708	1.00	36.60	1SG 498
	ATOM	498 CA	ALA	65	48.009	-24.1	54	23.756	1.00	36.60	1SG 499
	ATOM	499 CB	ALA	65	49.046	-25.0)14	23.014	1.00	36.60	1SG 500
30	ATOM	500 C	ALA	65	48.059	-24.5	542	25.192	1.00	36.60	1SG 501
	ATOM	501 O	ALA	65	48.600	-23.8	310	26.021	1.00	36.60	1SG 502
	ATOM	502 N	CYS	66	47.452	-25.6	99	25.518	1.00	33.08	1SG 503

		Atom	Amino	Acid		X	Y	Z	Occup.	В	
		No. Name	SC	No.						Factor	
	ATOM	503 CA	CYS	66	47.452	-26.1	77	26.866	5 1.00	33.08	1SG 504
	ATOM	504 CB	CYS	66	46.041	-26.4	146	27.417	7 1.00	33.08	1SG 505
5	ATOM	505 SG	CYS	66	45.034	-24.9	34	27.501	1.00	33.08	1SG 506
	ATOM	5 06 C	CYS	66	48.185	-27.4	177	26.864	1.00	33.08	1SG 507
	ATOM	5 07 O	CYS	66	47.890	-28.3	866	26.067	7 1.00	33.08	1SG 508
	ATOM	508 N	VAL	67	49.186	-27.6	512	27.753	3 1.00	34.93	1SG 509
	ATOM	509 CA	VAL	67	49.923	-28.8	338	27.808	3 1.00	34.93	1SG 510
10	ATOM	510 CB	VAL	67	51.213	-28.7	794	27.043	3 1.00	34.93	1SG 511
	ATOM	511 CG1	VAL	67	50.893	-28.5	589	25.55	3 1.00	34.93	1SG 512
	ATOM	512 CG2	VAL	67	52.101	-27.6	592	27.64	7 1.00	34.93	1SG 513
	ATOM	513 C	VAL	67	50.267	-29.0)77	29.23	5 1.00	34.93	1SG 514
	ATOM	514 O	VAL	67	50.301	-28.	149	30.04	3 1.00	34.93	1SG 515
15	ATOM	515 N	GLU	68	50.498	-30.3	351	29.59	4 1.00	41.24	1SG 516
	ATOM	516 CA	GLU	68	50.867	-30.6	524	30.94	8 1.00	41.24	1SG 517
	ATOM	517 CB	GLU	68	50.712	-32.	106	31.33	2 1.00	41.24	1SG 518
	ATOM	518 CG	GLU	68	49.262	-32.	595	31.32	0 1.00	41.24	1SG 519
	ATOM	519 CD	GLU	68	49.260	-34.0	065	31.71	5 1.00	41.24	1SG 520
20	ATOM	520 OE1	GLU	68	50.363	-34.0	502	32.00	0 1.00	41.24	1SG 521
	ATOM	521 OE2	GLU	68	48.155	-34.0	670	31.73	5 1.00	41.24	1SG 522
	ATOM	522 C	GLU	68	52.311	-30.2	275	31.09	7 1.00	41.24	1SG 523
	ATOM	523 O	GLU	68	53.151	-30.	697	30.30	4 1.00	41.24	1SG 524
	ATOM	524 N	THR	69	52.630	-29.4	466	32.12	1 1.00	50.56	1SG 525
25	ATOM	525 CA	THR	69	53.984	-29.	153	32.45	9 1.00	50.56	1SG 526
	ATOM	526 CB	THR	69	54.315	-27.0	686	32.35	1 1.00	50.56	1SG 527
	ATOM	527 OG1	THR	69	55.673	-27.	464	32.69	8 1.00	50.56	1SG 528
	ATOM	528 CG2	THR	69	53.380	-26.	864	33.25	6 1.00	50.56	1SG 529
	ATOM	529 C	THR	69	54.053	-29.	579	33.87	6 1.00	50.56	1SG 530
30	ATOM	530 O	THR	69	53.165	-29.2	212	34.64	5 1.00	50.56	1SG 531
	ATOM	531 N	GLU	70	55 .092	-30.	365	34.24	4 1.00	57.23	1SG 532
	ATOM	532 CA	GLU	70	55.11 0	-30.	98 5	35.53	7 1.00	57.23	1SG 533

		Atom	Amino Aci	d X	Y	Z	Occup.	В	
		No. Name	SC No).				Factor	
	ATOM	533 CB	GLU 70	55.426 -30	0.052	36.740	1.00	57.23	1 S G 534
	ATOM	534 CG	GLU 70	54.504 -28	8.854	36.993	3 1.00	57.23	1SG 535
5	ATOM	535 CD	GLU 70	53.404 -29	9.266	37.962	2 1.00	57.23	1SG 536
	ATOM	536 OE1	GLU 70	53.653 -30	0.184	38.788	3 1.00	57.23	1SG 537
	ATOM	537 OE2	GLU 70	52.304 -2	8.654	37.898	3 1.00	57.23	1SG 538
	ATOM	538 C	GLU 70	53.786 -3	1.666	35.622	2 1.00	57.23	1SG 539
	ATOM	539 O	GLU 70	53.264 -3	2.104	34.599	9 1.00	57.23	1SG 540
10	ATOM	540 N	GLU 71	53.197 -3	1.836	36.80	6 1.00	58.06	1SG 541
	ATOM	541 CA	GLU 71	51.892 -3	2.404	36.70	3 1.00	58.06	1SG 542
	ATOM	542 CB	GLU 71	51.569 -3	3.403	37.82	6 1.00	58.06	1SG 543
	ATOM	543 CG	GLU 71	50.280 -3	4.191	37.59	3 1.00	58.06	1SG 544
	ATOM	544 CD	GLU 71	49.097 -3	3.288	37.91	2 1.00	58.06	1SG 545
15	ATOM	545 OE1	GLU 7	49.106 -3	2.668	39.00	9 1.00	58.06	1SG 546
	ATOM	546 OE2	GLU 7	48.172 -3	3.202	37.06	2 1.00	58.06	1SG 547
	ATOM	547 C	GLU 7	50.927 -3	1.267	36.79	2 1.00	58.06	1SG 548
	ATOM	548 O	GLU 7	50.757 -3	0.671	37.85	4 1.00	58.06	1SG 549
	ATOM	549 N	GLY 72	50.276 -3	0.917	35.66	4 1.00	53.24	1SG 550
20	ATOM	550 CA	GLY 7	2 49.310 -2	29.860	35.73	1 1.00	53.24	1SG 551
	ATOM	551 C	GLY 7	2 49.173 -2	29.228	34.38	3 1.00	53.24	1SG 552
	ATOM	552 O	GLY 7	2 50.135 -2	29.096	33.62	6 1.00	53.24	1SG 553
	ATOM	553 N	PRO 7.	3 47.968 -2	8.818	34.08	5 1.00	47.47	1SG 554
	ATOM	554 CA	PRO 7	3 47.742 -2	8.160	32.83	3 1.00	47.47	1SG 555
25	ATOM	555 CD	PRO 7	3 46.807 -2	9.585	34.50	7 1.00	47.47	1SG 556
	ATOM	556 CB	PRO 7	3 46.232 -2	28.164	32.61	8 1.00	47.47	1SG 557
	ATOM	557 CG	PRO 7	3 45.773 -2	29.421	33.38	30 1.00	47.47	1SG 558
	ATOM	558 C	PRO 7	3 48.355 -2	26.806	32.89	1.00	47.47	1SG 559
	ATOM	559 O	PRO 7	3 48.345 -2	26.189	33.95	56 1.00	47.47	1SG 560
30	ATOM	560 N	SER 7	48.895 -2	26.325	31.76	0 1.00	42.89	1SG 561
	ATOM	561 CA	SER 7	49.528 -2	25.047	31.79	3 1.00	42.89	1SG 562
	ATOM	562 CB	SER 7	51.040 -2	25.164	32.03	2 1.00	42.89	1SG 563

		Atom	Amino	Acid		X	Y	Z	Occup.	В	
		No. Name	SC_	No.						Factor	•
	ATOM	563 OG	SER	74	51.587	-23.89	93	32.328	1.00	42.89	1SG 564
	ATOM	564 C	SER	74	49.301	-24.41	7	30.457	1.00	42.89	1SG 565
5	ATOM	565 O	SER	74	49.223	-25.10	8(29.441	1.00	42.89	1SG 566
	ATOM	566 N	LEU	75	49.187	-23.07	74	30.434	1.00	39.97	1SG 567
	ATOM	567 CA	LEU	75	48.941	-22.34	45	29.224	1.00	39.97	1SG 568
	ATOM	568 CB	LEU	75	48.073	-21.09	96	29.458	1.00	39.97	1SG 569
	ATOM	569 CG	LEU	75	4 7.778	-20.27	76	28.191	1.00	39.97	1SG 570
10	ATOM	570 CD2	LEU	75	47.229	-18.88	35	28.547	1.00	39.97	1SG 571
	ATOM	571 CD1	LEU	75	46.879	-21.05	52	27.215	1.00	39.97	1SG 572
	ATOM	572 C	LEU	75	50.264	-21.87	74	28.705	1.00	39.97	1SG 573
	ATOM	573 O	LEU	75	51.063	-21.30)9	29.450	1.00	39.97	1SG 574
	ATOM	574 N	GLN	76	50.542	-22.1	11	27.406	5 1.00	39.38	1SG 575
15	ATOM	575 CA	GLN	76	51.799	-21.6	60	26.877	7 1.00	39.38	1SG 576
	ATOM	576 CB	GLN	76	52.863	-22.7	66	26.765	5 1.00	39.38	1SG 577
	ATOM	577 CG	GLN	76	52.497	-23.8	47	25.744	1.00	39.38	1SG 578
	ATOM	578 CD	GLN	76	53.654	-24.8	32	25.650	1.00	39.38	1SG 579
	ATOM	579 OE1	GLN	76	54.517	-24.8	85	26.524	1.00	39.38	1SG 580
20	ATOM	580 NE2	GLN	76	53.675	-25.6	35	24.552	2 1.00	39.38	1SG 581
	ATOM	581 C	GLN	76	51.578	-21.1	72	25.483	3 1.00	39.38	1SG 582
	ATOM	582 O	GLN	76	50.531	-21.4	07	24.883	3 1.00	39.38	1SG 583
	ATOM	583 N	LEU	7 7	52.575	-20.44	41	24.945	1.00	38.94	1SG 584
	ATOM	584 CA	LEU	77	52.534	-19.98	88	23.584	1.00	38.94	1SG 585
25	ATOM	585 CB	LEU	77	53.069	-18.56	60	23.372	1.00	38.94	1SG 586
	ATOM	586 CG	LEU	77	52.141	-17.46	52	23.921	1.00	38.94	1SG 587
	ATOM	587 CD2	LEU	77	51.833	-17.69	93	25.405	1.00	38.94	1SG 588
	ATOM	588 CD1	LEU	77	50.862	-17.33	34	23.078	1.00	38.94	1SG 589
	ATOM	589 C	LEU	77	53.432	-20.93	15	22.841	1.00	38.94	1SG 590
30	ATOM	590 O	LEU	77	54.532	-21.22	20	23.301	1.00	38.94	1SG 591
	ATOM	591 N	GLU	78	52.973	-21.4	05	21.674	1.00	36.56	1SG 592
	ATOM	592 CA	GLU	78	53.755	-22.3	55	20.940	1.00	36.56	1SG 593

		Atom	Amino A	cid	2	Y	Z	Occup.	В	
		No. Name	SC	No.					Factor	<u>r</u>
	ATOM	593 CB	GLU	78	53.041 -2	23.714	20.83	8 1.00	36.56	1SG 594
	ATOM	594 CG	GLU	78	53.820 -2	24.812	20.11	6 1.00	36.56	1SG 595
5	ATOM	595 CD	GLU	78	52.942 -2	26.056	20.13	1 1.00	36.56	1SG 596
	ATOM	596 OE1	GLU	78	52.261 -2	26.280	21.16	7 1.00	36.56	1SG 597
	ATOM	597 OE2	GLU	78	52.933 -2	26.793	19.10	9 1.00	36.56	1SG 598
	ATOM	598 C	GLU	78	53.953 -2	21.829	19.55	5 1.00	36.56	1SG 599
	ATOM	599 O	GLU	78	53.044 -2	21.246	18.96	8 1.00	36.56	1SG 600
10	ATOM	600 N	ASP	79	55.179 -2	1.993	19.01	6 1.00	34.75	1SG 601
	ATOM	601 CA	ASP	79	55.477 -2	1.569	17.67	7 1.00	34.75	1SG 602
	ATOM	602 CB	ASP	79	56.985 -2	1.341	17.45	4 1.00	34.75	1SG 603
	ATOM	603 CG	ASP	79	57.208 -2	0.499	16.20	4 1.00	34.75	1SG 604
	ATOM	604 OD1	ASP	79	56.794 -2	0.935	15.09	7 1.00	34.75	1SG 605
15	ATOM	605 OD2	ASP	79	57.816 -1	9.404	16.34	3 1.00	34.75	1SG 606
	ATOM	606 C	ASP	79	55.017 -2	2.669	16.77	0 1.00	34.75	1SG 607
	ATOM	607 O	ASP	79	55.001 -2	23.835	17.16	3 1.00	34.75	1SG 608
	ATOM	608 N	VAL	80	54.622 -	22.332	15.52	26 1.00	33.44	1SG 609
	ATOM	609 CA	VAL	80	54.154 -	23.352	14.63	33 1.00	33.44	1SG 610
20	ATOM	610 CB	VAL	80	52.661 -	23.465	14.63	31 1.00	33.44	1SG 611
	ATOM	611 CG1	VAL	80	52.215 -	23.832	16.05	57 1.00	33.44	1SG 612
	ATOM	612 CG2	VAL	80	52.069 -	22.141	14.1	17 1.00	33.44	1SG 613
	ATOM	613 C	VAL	80	54.573 -	22.974	13.24	48 1.00	33.44	1SG 614
	ATOM	614 O	VAL	80	54.881 -	21.815	12.97	79 1.00	33.44	1SG 615
25	ATOM	615 N	ASN	81	54.622 -	23.958	12.32	27 1.00	34.97	1SG 616
	ATOM	616 CA	ASN	81	54.977 -	23.616	10.98	31 1.00	34.97	1SG 617
	ATOM	617 CB	ASN	81	55.218 -	24.837	10.0	75 1.00	34.97	1SG 618
	ATOM	618 CG	ASN	81	55.874 -	24.360	8.78	5 1.00	34.97	1SG 619
	ATOM	619 OD1	ASN	81	57.010 -	24.723	8.48	4 1.00	34.97	1SG 620
30	ATOM	620 ND2	ASN	81	55.146 -	23.523	7.99	8 1.00	34.97	1SG 621
	ATOM	621 C	ASN	81	53.813 -	22.853	10.4	43 1.00	34.97	1SG 622
	ATOM	622 O	ASN	81	52.678 -	23.326	5 10.4	79 1.00	34.97	1SG 623

		Atom	Amino.	Acid		X	Y	Z	Occup.	В	
		No. Name	SC	No.						Factor	•
	ATOM	623 N	ILE	82	54.064	-21.	631	9.939	1.00	40.29	1SG 624
	ATOM	624 CA	ILE	82	52.968	-20.	830	9.488	3 1.00	40.29	1SG 625
5	ATOM	625 CB	ILE	82	53.380	-19.	422	9.143	3 1.00	40.29	1SG 626
	ATOM	626 CG2	ILE	82	54.483	-19.	461	8.072	2 1.00	40.29	1SG 627
	ATOM	627 CG1	ILE	82	52.149	-18.	583	8.762	2 1.00	40.29	1SG 628
	ATOM	628 CD1	ILE	82	52.436	-17.	.085	8.674	1.00	40.29	1SG 629
	ATOM	629 C	ILE	82	52.320	-21.	.446	8.290	1.00	40.29	1SG 630
10	ATOM	630 O	ILE	82	51.104	-21.	.625	8.263	3 1.00	40.29	1SG 631
	ATOM	631 N	GLU	83	53.123	-21	.797	7.27	1 1.00	52.05	1SG 632
	ATOM	632 CA	GLU	83	52.595	-22	.322	6.04	6 1.00	52.05	1SG 633
	ATOM	633 CB	GLU	83	53.650	-22	.382	4.92	8 1.00	52.05	1SG 634
	ATOM	634 CG	GLU	83	53.087	-22	.802	3.56	8 1.00	52.05	1SG 635
15	ATOM	635 CD	GLU	83	52.374	-21	.601	2.96	0 1.00	52.05	1SG 636
	ATOM	636 OE1	GLU	83	52.283	-20	.554	3.65	4 1.00	52.05	1SG 637
	ATOM	637 OE2	GLU	83	51.912	-21	.716	1.79	3 1.00	52.05	1SG 638
	ATOM	638 C	GLU	83	52.074	-23	.710	6.22	7 1.00	52.05	1SG 639
	ATOM	639 O	GLU	83	50.987	-24	.040	5.75	3 1.00	52.05	1SG 640
20	ATOM	640 N	GLU	84	52.828	-24	.556	6.95	1 1.00	66.46	1SG 641
	ATOM	641 CA	GLU	84	52.492	-25	.949	6.99	0 1.00	66.46	1SG 642
	ATOM	642 CB	GLU	84	53.450	-26	5.752	7.88	4 1.00	66.46	1SG 643
	ATOM	643 CG	GLU	84	54.885	-26	5.790	7.35	9 1.00	66.46	1SG 644
	ATOM	644 CD	GLU	84	55.715	-27	7.604	8.34	1.00	66.46	1SG 645
25	ATOM	645 OE1	GLU	84	55.137	7 -28	3.066	9.36	50 1.00	66.46	1SG 646
	ATOM	646 OE2	GLU	84	56.937	7 -27	7.774	8.08	35 1.00	66.46	1SG 647
	ATOM	647 C	GLU	84	51.134	1 -26	5.133	7.54	17 1.00	66.46	1SG 648
	ATOM	648 O	GLU	84	50.259	-26	5.744	6.93	34 1.00	66.46	1SG 649
	ATOM	649 N	LEU	85	50.907	-25	5.581	8.73	35 1.00	76.27	1SG 650
30	ATOM	650 CA	LEU	85	49.617	7 -25	5.767	9.29	1.00	76.27	1SG 651
	ATOM	651 CB	LEU	85	49.541	-26	5.969	10.2	56 1.00	76.27	1SG 652
	ATOM	652 CG	LEU	85	48.119	-27	7.305	10.7	50 1.00	76.27	1SG 653

		ATOM	654 CI
	5	ATOM	655 C
		ATOM	656 O
		ATOM	657 N
		ATOM	658 C
		ATOM	659 C
	10	ATOM	660 C
1		ATOM	661 C
and an analysis		ATOM	662 C
The state of the s		ATOM	663 C
		ATOM	664 C
12	15	ATOM	665 C
		ATOM	666 O
		ATOM	667 C
		ATOM	668 O
		ATOM	669 N
	20	ATOM	670 C
		ATOM	671 C
		ATOM	672 C
		ATOM	673 C
		ATOM	674 C
	25	ATOM	675 N
		ATOM	676 C
		ATOM	677 C
		ATOM	678 N
		ATOM	679 (
	20	ATOM	690 (

		Atom	Amino Acid	X Y Z Occup. B
		No. Name	SC No.	Factor
	ATOM	653 CD2	LEU 85	48.145 -28.388 11.841 1.00 76.27 1SG 654
	ATOM	654 CD1	LEU 85	47.197 -27.672 9.576 1.00 76.27 1SG 655
5	ATOM	655 C	LEU 85	49.373 -24.520 10.039 1.00 76.27 1SG 656
	ATOM	656 O	LEU 85	50.142 -23.566 9.927 1.00 76.27 1SG 657
	ATOM	657 N	TYR 86	48.261 -24.493 10.779 1.00 82.94 1SG 658
	ATOM	658 CA	TYR 86	47.945 -23.392 11.618 1.00 82.94 1SG 659
	ATOM	659 CB	TYR 86	49.143 -22.743 12.330 1.00 82.94 1SG 660
10	ATOM	660 CG	TYR 86	49.629 -23.839 13.212 1.00 82.94 1SG 661
	ATOM	661 CD1	TYR 86	50.528 -24.767 12.739 1.00 82.94 1SG 662
	ATOM	662 CD2	TYR 86	49.165 -23.960 14.500 1.00 82.94 1SG 663
	ATOM	663 CE1	TYR 86	50.970 -25.790 13.543 1.00 82.94 1SG 664
	ATOM	664 CE2	TYR 86	49.603 -24.981 15.310 1.00 82.94 1SG 665
15	ATOM	665 CZ	TYR 86	50.508 -25.898 14.831 1.00 82.94 1SG 666
	ATOM	666 OH	TYR 86	50.962 -26.948 15.657 1.00 82.94 1SG 667
	ATOM	667 C	TYR 86	47.128 -22.412 10.883 1.00 82.94 1SG 668
	ATOM	668 O	TYR 86	47.412 -22.054 9.741 1.00 82.94 1SG 669
	ATOM	669 N	LYS 87	46.095 -21.917 11.583 1.00 77.48 1SG 670
20	ATOM	670 CA	LYS 87	45.112 -21.117 10.945 1.00 77.48 1SG 671
	ATOM	671 CB	LYS 87	45.706 -19.940 10.153 1.00 77.48 1SG 672
	ATOM	672 CG	LYS 87	46.442 -18.916 11.022 1.00 77.48 1SG 673
	ATOM	673 CD	LYS 87	45.557 -18.238 12.070 1.00 77.48 1SG 674
	ATOM	674 CE	LYS 87	45.379 -19.058 13.349 1.00 77.48 1SG 675
25	ATOM	675 NZ	LYS 87	46.642 -19.073 14.121 1.00 77.48 1SG 676
	ATOM	676 C	LYS 87	44.428 -22.028 9.987 1.00 77.48 1SG 677
	ATOM	677 O	LYS 87	44.182 -21.674 8.836 1.00 77.48 1SG 678
	ATOM	678 N	GLY 88	44.127 -23.262 10.449 1.00 67.17 1SG 679
	ATOM	679 CA	GLY 88	43.445 -24.165 9.576 1.00 67.17 1SG 680
30	ATOM	680 C	GLY 88	42.471 -24.999 10.347 1.00 67.17 1SG 681
	ATOM	681 O	GLY 88	42.788 -25.521 11.415 1.00 67.17 1SG 682
	ATOM	682 N	GLY 89	41.225 -25.034 9.826 1.00 57.43 1SG 683

		Atom	Amino A	Acid		\mathbf{X}	Y	Z	Oc	cup.	В	
		No. Name	SC	No.							Factor	
	ATOM	683 CA	GLY	89	40.112	-25.	890	10.1	48 1	.00	57.43	1SG 684
	ATOM	684 C	GLY	89	40.328	-26.	702	11.3	77 1	.00	57.43	1SG 685
5	ATOM	685 O	GLY	89	40.056	-26	.277	12.4	98 1	.00	57.43	1SG 686
	ATOM	686 N	GLU	90	40.797	-27	.945	11.1	47 1	.00	47.61	1SG 687
	ATOM	687 CA	GLU	90	41.017	-28	.906	12.1	82 1	.00	47.61	1SG 688
	ATOM	688 CB	GLU	90	41.067	-30	.344	11.6	540 1	.00	47.61	1SG 689
	ATOM	689 CG	GLU	90	41.181	-31	.433	12.7	706 1	.00	47.61	1SG 690
10	ATOM	690 CD	GLU	90	41.212	-32	.768	11.9	973 1	.00	47.61	1SG 691
	ATOM	691 OE1	GLU	90	41.160	-32	.748	10.7	714 1	.00	47.61	1SG 692
	ATOM	692 OE2	GLU	90	41.287	-33	.823	12.6	558 1	00.1	47.61	1SG 693
	ATOM	693 C	GLU	90	42.329	-28	.598	12.8	313 1	00.1	47.61	1SG 694
	ATOM	694 O	GLU	90	43.387	-28	.752	12.2	205	00.1	47.61	1SG 695
15	ATOM	695 N	GLU	91	42.277	7 -28	3.162	14.0	081	1.00	42.98	1SG 696
	ATOM	696 CA	GLU	91	43.457	7 -27	7.795	14.	796	1.00	42.98	1SG 697
	ATOM	697 CB	GLU	91	43.326	5 -26	5.435	15.	504	1.00	42.98	1SG 698
	ATOM	698 CG	GLU	91	44.640	-25	5.896	16.	070	1.00	42.98	1SG 699
	ATOM	699 CD	GLU	91	45.438	3 -25	5.320	14.	909	1.00	42.98	1SG 700
20	ATOM	700 OE1	GLU	91	44.969	9 -25	5.457	13.	748	1.00	42.98	1SG 701
	ATOM	701 OE2	GLU	91	46.523	3 -24	4.735	15.	167	1.00	42.98	1SG 702
	ATOM	702 C	GLU	91	43.640	6 -28	8.831	15.	.853	1.00	42.98	1SG 703
	ATOM	703 O	GLU	91	42.69	5 -29	9.503	3 16.	.248	1.00	42.98	1SG 704
	ATOM	704 N	ALA	92	44.89	4 -2	8.996	5 16.	.327	1.00	42.31	1SG 705
25	ATOM	705 CA	ALA	92	45.15	9 -2	9.975	5 17.	.340	1.00	42.31	1SG 706
	ATOM	706 CB	ALA	92	46.64	6 -3	0.094	1 17.	.712	1.00	42.31	1SG 707
	ATOM	707 C	ALA	92	44.40	9 -2	9.56	1 18.	.569	1.00	42.31	1SG 708
	ATOM	708 O	ALA	92	44.12	1 -2	8.383	3 18	.767	1.00	42.31	1SG 709
	ATOM	709 N	THR	93	44.08	6 -3	0.54	5 19	.430	1.00	43.29	1SG 710
30	ATOM	710 CA	THR	93	43.27	1 -3	0.374	4 20	.603	1.00	43.29	1SG 711
	ATOM	711 CB	THR	93	43.00	7 -3	1.66	5 21	.318	1.00	43.29	1SG 712
	ATOM	712 OG1	THR	93	42.36	2 -3	2.58	3 20	.448	1.00	43.29	1SG 713

		Atom	Amino	Acid	X	Y	Z	Occup.	В	
		No. Name	SC	No.					Factor	•
	ATOM	713 CG2	THR	93	42.111 -31.3	75	22.535	5 1.00	43.29	1SG 714
	ATOM	714 C	THR	93	43.901 -29.4	42	21.594	1.00	43.29	1SG 715
5	ATOM	715 O	THR	93	43.196 -28.6	99	22.275	5 1.00	43.29	1SG 716
	ATOM	716 N	ARG	94	45.238 -29.4	48	21.718	3 1.00	46.17	1SG 717
	ATOM	717 CA	ARG	94	45.875 -28.6	36	22.719	9 1.00	46.17	1SG 718
	ATOM	718 CB	ARG	94	47.406 -28.8	311	22.76	5 1.00	46.17	1SG 719
	ATOM	719 CG	ARG	94	48.142 -28.4	28	21.48	0 1.00	46.17	1SG 720
10	ATOM	720 CD	ARG	94	49.655 -28.6	555	21.56	8 1.00	46.17	1SG 721
	ATOM	721 NE	ARG	94	50.260 -28.2	233	20.27	4 1.00	46.17	1SG 722
	ATOM	722 CZ	ARG	94	50.342 -29.1	08	19.23	0 1.00	46.17	1SG 723
	ATOM	723 NH1	ARG	94	49.860 -30.3	378	19.36	3 1.00	46.17	1SG 724
	ATOM	724 NH2	ARG	94	50.904 -28.7	711	18.05	1 1.00	46.17	1SG 725
15	ATOM	725 C	ARG	94	45.566 -27.1	92	22.45	4 1.00	46.17	1SG 726
	ATOM	726 O	ARG	94	45.525 -26.3	375	23.37	4 1.00	46.17	1SG 727
	ATOM	727 N	PHE	95	45.403 -26.8	43	21.168	3 1.00	49.82	1SG 728
	ATOM	728 CA	PHE	95	45.133 -25.5	14	20.689	9 1.00	49.82	1SG 729
	ATOM	729 CB	PHE	95	45.411 -25.3	40	19.187	7 1.00	49.82	1SG 730
20	ATOM	730 CG	PHE	95	46.884 -25.4	57	18.977	7 1.00	49.82	1SG 731
	ATOM	731 CD1	PHE	95	47.718 -24.4	01	19.266	5 1.00	49.82	1SG 732
	ATOM	732 CD2	PHE	95	47.435 -26.6	28	18.51	1.00	49.82	1SG 733
	ATOM	733 CE1	PHE	95	49.077 -24.5	05	19.07	7 1.00	49.82	1SG 734
	ATOM	734 CE2	PHE	95	48.792 -26.7	37	18.319	9 1.00	49.82	1SG 735
25	ATOM	735 CZ	PHE	95	49.616 -25.6	75	18.60	1 1.00	49.82	1SG 736
	ATOM	736 C	PHE	95	43.719 -25.0	50	20.934	4 1.00	49.82	1SG 737
	ATOM	737 O	PHE	95	43.466 -23.8	45	20.913	3 1.00	49.82	1SG 738
	ATOM	738 N	THR	96	42.744 -25.9	971	21.09	1 1.00	48.19	1SG 739
	ATOM	739 CA	THR	96	41.360 -25.5	568	21.13	1 1.00	48.19	1SG 740
30	ATOM	740 CB	THR	96	40.427 -26.6	523	20.60	9 1.00	48.19	1SG 741
	ATOM	741 OG1	THR	96	40.747 -26.9	939	19.26	2 1.00	48.19	1SG 742
	ATOM	742 CG2	THR	96	38.985 -26.0)96	20.70	2 1.00	48.19	1SG 743

		Atom	Amino	Acid		X Y	Z	Occup.	В	
		No. Name	SC	No.					Factor	
	ATOM	743 C	THR	96	40.872	-25.206	22.50	2 1.00	48.19	1SG 744
	ATOM	744 O	THR	96	41.198	-25.835	23.50	9 1.00	48.19	1SG 745
5	ATOM	745 N	PHE	97	40.043	-24.139	22.53	7 1.00	46.05	1SG 746
	ATOM	746 CA	PHE	97	39.392 -	-23.669	23.72	4 1.00	46.05	1SG 747
	ATOM	747 CB	PHE	97	39.817 -	-22.253	24.15	8 1.00	46.05	1SG 748
	ATOM	748 CG	PHE	97	41.227 -	-22.296	24.63	9 1.00	46.05	1SG 749
	ATOM	749 CD1	PHE	97	42.279 -	-22.175	23.76	0 1.00	46.05	1SG 750
10	ATOM	750 CD2	PHE	97	41.496	-22.454	25.97	9 1.00	46.05	1SG 751
	ATOM	751 CE1	PHE	97	43.578 -	-22.213	24.21	2 1.00	46.05	1SG 752
	ATOM	752 CE2	PHE	97	42.792	-22.493	26.43	7 1.00	46.05	1SG 753
	ATOM	753 CZ	PHE	97	43.837 -	-22.373	25.55	3 1.00	46.05	1SG 754
	ATOM	754 C	PHE	97	37.938 -	-23.588	23.38	8 1.00	46.05	1SG 755
15	ATOM	755 O	PHE	97	37.563 -	-23.348	22.24	1 1.00	46.05	1SG 756
	ATOM	756 N	PHE	98	37.066 -	-23.812	24.38	4 1.00	42.94	1SG 757
	ATOM	757 CA	PHE	98	35.665 -	-23.708	24.11	9 1.00	42.94	1SG 758
	ATOM	758 CB	PHE	98	34.816 -	-24.783	24.81	9 1.00	42.94	1SG 759
	ATOM	759 CG	PHE	98	35.051	-26.089	24.14	3 1.00	42.94	1SG 760
20	ATOM	760 CD1	PHE	98	36.159 -	-26.849	24.43	9 1.00	42.94	1SG 761
	ATOM	761 CD2	PHE	98	34.149	-26.558	23.21	7 1.00	42.94	1SG 762
	ATOM	762 CE1	PHE	98	36.364 -	-28.055	23.81	2 1.00	42.94	1SG 763
	ATOM	763 CE2	PHE	98	34.350	-27.763	22.58	7 1.00	42.94	1SG 764
	ATOM	764 CZ	PHE	98	35.460 -	-28.515	22.88	5 1.00	42.94	1SG 765
25	ATOM	765 C	PHE	98	35.235	-22.390	24.65	6 1.00	42.94	1SG 766
	ATOM	766 O	PHE	98	35.414	-22.108	25.84	0 1.00	42.94	1SG 767
	ATOM	767 N	GLN	99	34.676	-21.537	7 23.77	5 1.00	39.29	1SG 768
	ATOM	768 CA	GLN	99	34.184	-20.276	5 24.22	7 1.00	39.29	1SG 769
	ATOM	769 CB	GLN	99	34.032	-19.210	23.12	6 1.00	39.29	1SG 770
30	ATOM	770 CG	GLN	99	35.359	-18.700	22.56	3 1.00	39.29	1SG 771
	ATOM	771 CD	GLN	99	35.045	-17.660	21.49	5 1.00	39.29	1SG 772
	ATOM	772 OE1	GLN	99	33.988	-17.693	3 20.86	57 1.00	39.29	1SG 773

		Atom	Amino Acid	X Y Z Occup. B
		No. Name	SC No.	Factor
	ATOM	773 NE2	GLN 99	35.988 -16.703 21.286 1.00 39.29 1SG 774
	ATOM	774 C	GLN 99	32.822 -20.554 24.765 1.00 39.29 1SG 775
5	ATOM	775 O	GLN 99	31.971 -21.115 24.075 1.00 39.29 1SG 776
	ATOM	776 N	SER 100	32.591 -20.175 26.035 1.00 38.03 1SG 777
	ATOM	777 CA	SER 100	31.320 -20.430 26.639 1.00 38.03 1SG 778
	ATOM	778 CB	SER 100	31.415 -21.217 27.957 1.00 38.03 1SG 779
	ATOM	779 OG	SER 100	32.107 -20.453 28.933 1.00 38.03 1SG 780
10	ATOM	780 C	SER 100	30.714 -19.111 26.961 1.00 38.03 1SG 781
	ATOM	781 O	SER 100	31.403 -18.175 27.366 1.00 38.03 1SG 782
	ATOM	782 N	SER 101	29.388 -19.005 26.776 1.00 36.29 1SG 783
	ATOM	783 CA	SER 101	28.752 -17.757 27.056 1.00 36.29 1SG 784
	ATOM	784 CB	SER 101	27.779 -17.308 25.954 1.00 36.29 1SG 785
15	ATOM	785 OG	SER 101	26.695 -18.221 25.862 1.00 36.29 1SG 786
	ATOM	786 C	SER 101	27.944 -17.933 28.293 1.00 36.29 1SG 787
	ATOM	787 O	SER 101	27.096 -18.820 28.375 1.00 36.29 1SG 788
	ATOM	788 N	SER 102	28.214 -17.086 29.302 1.00 34.22 1SG 789
	ATOM	789 CA	SER 102	27.433 -17.099 30.499 1.00 34.22 1SG 790
20	ATOM	790 CB	SER 102	28.186 -17.663 31.718 1.00 34.22 1SG 791
	ATOM	791 OG	SER 102	29.341 -16.883 31.994 1.00 34.22 1SG 792
	ATOM	792 C	SER 102	27.113 -15.667 30.758 1.00 34.22 1SG 793
	ATOM	793 O	SER 102	27.991 -14.876 31.098 1.00 34.22 1SG 794
	ATOM	794 N	GLY 103	25.835 -15.286 30.599 1.00 32.47 1SG 795
25	ATOM	795 CA	GLY 103	25.530 -13.900 30.767 1.00 32.47 1SG 796
	ATOM	796 C	GLY 103	26.265 -13.212 29.663 1.00 32.47 1SG 797
	ATOM	797 O	GLY 103	26.507 -13.794 28.609 1.00 32.47 1SG 798
	ATOM	798 N	SER 104	26.641 -11.942 29.874 1.00 33.67 1SG 799
	ATOM	799 CA	SER 104	27.366 -11.220 28.871 1.00 33.67 1SG 800
30	ATOM	800 CB	SER 104	27.414 -9.708 29.149 1.00 33.67 1SG 801
	ATOM	801 OG	SER 104	28.126 -9.041 28.117 1.00 33.67 1SG 802
	ATOM	802 C	SER 104	28.778 -11.725 28.850 1.00 33.67 1SG 803

		Atom	Amino Acid	X Y Z Occup. B
		No. Name	SC No.	Factor
	ATOM	803 O	SER 104	29.528 -11.461 27.911 1.00 33.67 1SG 804
	ATOM	804 N	ALA 105	29.170 -12.452 29.914 1.00 36.18 1SG 805
5	ATOM	805 CA	ALA 105	30.512 -12.932 30.118 1.00 36.18 1SG 806
	ATOM	806 CB	ALA 105	30.761 -13.358 31.571 1.00 36.18 1SG 807
	ATOM	807 C	ALA 105	30.823 -14.127 29.274 1.00 36.18 1SG 808
	ATOM	808 O	ALA 105	29.941 -14.891 28.883 1.00 36.18 1SG 809
	ATOM	809 N	PHE 106	32.129 -14.309 28.973 1.00 40.27 1SG 810
10	ATOM	810 CA	PHE 106	32.558 -15.447 28.217 1.00 40.27 1SG 811
	ATOM	811 CB	PHE 106	32.928 -15.094 26.770 1.00 40.27 1SG 812
	ATOM	812 CG	PHE 106	31.607 -14.775 26.161 1.00 40.27 1SG 813
	ATOM	813 CD1	PHE 106	31.001 -13.560 26.389 1.00 40.27 1SG 814
	ATOM	814 CD2	PHE 106	30.966 -15.701 25.372 1.00 40.27 1SG 815
15	ATOM	815 CE1	PHE 106	29.775 -13.274 25.835 1.00 40.27 1SG 816
	ATOM	816 CE2	PHE 106	29.741 -15.421 24.815 1.00 40.27 1SG 817
	ATOM	817 CZ	PHE 106	29.144 -14.206 25.048 1.00 40.27 1SG 818
	ATOM	818 C	PHE 106	33.720 -16.070 28.920 1.00 40.27 1SG 819
	ATOM	819 O	PHE 106	34.522 -15.384 29.553 1.00 40.27 1SG 820
20	ATOM	820 N	ARG 107	33.810 -17.413 28.849 1.00 44.06 1SG 821
	ATOM	821 CA	ARG 107	34.882 -18.121 29.482 1.00 44.06 1SG 822
	ATOM	822 CB	ARG 107	34.434 -19.063 30.617 1.00 44.06 1SG 823
	ATOM	823 CG	ARG 107	33.858 -18.338 31.834 1.00 44.06 1SG 824
	ATOM	824 CD	ARG 107	32.483 -17.715 31.582 1.00 44.06 1SG 825
25	ATOM	825 NE	ARG 107	31.496 -18.830 31.518 1.00 44.06 1SG 826
	ATOM	826 CZ	ARG 107	30.924 -19.303 32.664 1.00 44.06 1SG 827
	ATOM	827 NH1	ARG 107	31.244 -18.745 33.868 1.00 44.06 1SG 828
	ATOM	828 NH2	ARG 107	30.030 -20.333 32.606 1.00 44.06 1SG 829
	ATOM	829 C	ARG 107	35.510 -18.976 28.432 1.00 44.06 1SG 830
30	ATOM	830 O	ARG 107	34.829 -19.459 27.527 1.00 44.06 1SG 831
	ATOM	831 N	LEU 108	36.843 -19.155 28.524 1.00 43.88 1SG 832
	ATOM	832 CA	LEU 108	37.561 -19.972 27.588 1.00 43.88 1SG 833

		Atom	Amino Acid	X Y Z Occup. B
		No. Name	SC No.	Factor
	ATOM	833 CB	LEU 108	38.797 -19.271 26.999 1.00 43.88 1SG 834
	ATOM	834 CG	LEU 108	38.462 -18.001 26.194 1.00 43.88 1SG 835
5	ATOM	835 CD2	LEU 108	39.691 -17.485 25.428 1.00 43.88 1SG 836
	ATOM	836 CD1	LEU 108	37.827 -16.924 27.089 1.00 43.88 1SG 837
	ATOM	837 C	LEU 108	38.051 -21.170 28.333 1.00 43.88 1SG 838
	ATOM	838 O	LEU 108	38.964 -21.087 29.154 1.00 43.88 1SG 839
	ATOM	839 N	GLU 109	37.453 -22.335 28.038 1.00 41.59 1SG 840
10	ATOM	840 CA	GLU 109	37.797 -23.555 28.713 1.00 41.59 1SG 841
	ATOM	841 CB	GLU 109	36.562 -24.411 29.029 1.00 41.59 1SG 842
	ATOM	842 CG	GLU 109	36.881 -25.781 29.624 1.00 41.59 1SG 843
	ATOM	843 CD	GLU 109	35.600 -26.599 29.563 1.00 41.59 1SG 844
	ATOM	844 OE1	GLU 109	34.814 -26.545 30.546 1.00 41.59 1SG 845
15	ATOM	845 OE2	GLU 109	35.384 -27.284 28.527 1.00 41.59 1SG 846
	ATOM	846 C	GLU 109	38.633 -24.369 27.786 1.00 41.59 1SG 847
	ATOM	847 O	GLU 109	38.373 -24.419 26.586 1.00 41.59 1SG 848
	ATOM	848 N	ALA 110	39.676 -25.029 28.324 1.00 38.02 1SG 849
	ATOM	849 CA	ALA 110	40.494 -25.850 27.482 1.00 38.02 1SG 850
20	ATOM	850 CB	ALA 110	41.774 -26.354 28.170 1.00 38.02 1SG 851
	ATOM	851 C	ALA 110	39.692 -27.049 27.078 1.00 38.02 1SG 852
	ATOM	852 O	ALA 110	38.991 -27.648 27.893 1.00 38.02 1SG 853
	ATOM	853 N	ALA 111	39.769 -27.408 25.779 1.00 37.70 1SG 854
	ATOM	854 CA	ALA 111	39.096 -28.566 25.268 1.00 37.70 1SG 855
25	ATOM	855 CB	ALA 111	39.238 -28.710 23.744 1.00 37.70 1SG 856
	ATOM	856 C	ALA 111	39.743 -29.761 25.887 1.00 37.70 1SG 857
	ATOM	857 O	ALA 111	39.080 -30.730 26.253 1.00 37.70 1SG 858
	ATOM	858 N	ALA 112	41.086 -29.710 25.985 1.00 42.33 1SG 859
	ATOM	859 CA	ALA 112	41.885 -30.783 26.499 1.00 42.33 1SG 860
30	ATOM	860 CB	ALA 112	43.393 -30.506 26.373 1.00 42.33 1SG 861
	ATOM	861 C	ALA 112	41.601 -31.026 27.950 1.00 42.33 1SG 862
	ATOM	862 O	ALA 112	41.457 -32.176 28.363 1.00 42.33 1SG 863

Amino Acid X Y Z Occup. B

Factor

No. Name SC No.

Atom

		ATOM	863 N	TRP 113	41.523 -29.959 28.773 1.00	51.12 180	G 864
		ATOM	864 CA	TRP 113	41.267 -30.162 30.173 1.00	51.12 1Se	G 865
	5	ATOM	865 CB	TRP 113	42.358 -29.572 31.077 1.00	51.12 1S	G 866
		ATOM	866 CG	TRP 113	43.692 -30.261 30.926 1.00	51.12 1Se	G 867
		ATOM	867 CD2	TRP 113	44.098 -31.408 31.688 1.00	51.12 1S	G 868
		ATOM	868 CD1	TRP 113	44.725 -29.970 30.084 1.00	51.12 1S	G 869
		ATOM	869 NE1	TRP 113	45.750 -30.866 30.272 1.00	51.12 1S	G 870
	10	ATOM	870 CE2	TRP 113	45.377 -31.757 31.257 1.00	51.12 1S	G 871
		ATOM	871 CE3	TRP 113	43.456 -32.113 32.665 1.00	51.12 1S	G 872
THE ACT OF T		ATOM	872 CZ2	TRP 113	46.038 -32.822 31.800 1.00	51.12 1S	G 873
		ATOM	873 CZ3	TRP 113	44.125 -33.186 33.211 1.00	51.12 1S	G 874
		ATOM	874 CH2	TRP 113	45.391 -33.533 32.787 1.00	51.12 1S	G 875
Tomore Company	15	ATOM	875 C	TRP 113	39.992 -29.445 30.486 1.00	51.12 1S	G 876
en de company de compa		ATOM	876 O	TRP 113	39.952 -28.217 30.522 1.00	51.12 1S	SG 877
English Street		ATOM	877 N	PRO 114	38.959 -30.188 30.772 1.00	61.83 1S	SG 878
		ATOM	878 CA	PRO 114	37.661 -29.591 30.937 1.00	61.83 1S	SG 879
		ATOM	879 CD	PRO 114	38.865 -31.550 30.271 1.00	61.83	SG 880
	20	ATOM	880 CB	PRO 114	36.677 -30.757 30.989 1.00	61.83	SG 881
		ATOM	881 CG	PRO 114	37.359 -31.833 30.123 1.00	61.83	SG 882
		ATOM	882 C	PRO 114	37.472 -28.574 32.022 1.00	61.83	SG 883
		ATOM	883 O	PRO 114	36.697 -27.644 31.848 1.00	61.83	SG 884
		ATOM	884 N	GLY 115	38.097 -28.722 33.181 1.00	68.27	SG 885
	25	ATOM	885 CA	GLY 115	37.874 -27.769 34.229 1.00	68.27	SG 886
		ATOM	886 C	GLY 115	38.590 -26.478 34.011 1.00	68.27	SG 887
		ATOM	887 O	GLY 115	38.211 -25.458 34.581 1.00	68.27	SG 888
		ATOM	888 N	TRP 116	39.704 -26.522 33.263 1.00	68.48	SG 889
		ATOM	889 CA	TRP 116	40.629 -25.426 33.200 1.00	68.48	SG 890
	30	ATOM	890 CB	TRP 116	42.011 -25.937 32.794 1.00	68.48	SG 891
		ATOM	891 CG	TRP 116	42.440 -27.016 33.752 1.00	68.48	SG 892
		ATOM	892 CD2	TRP 116	43.383 -26.852 34.820 1.00	68.48	SG 893

		Atom	Amino	Acid		X	\mathbf{Y}	Z	Occup.	В	
		No. Name	SC	No.						Factor	<u>r</u>
	ATOM	893 CD1	TRP	116	42.011	-28.	309	33.80	7 1.00	68.48	1SG 894
	ATOM	894 NE1	TRP	116	42.618	-28.	960	34.852	2 1.00	68.48	1SG 895
5	ATOM	895 CE2	TRP	116	43.469	-28.	076	35.482	2 1.00	68.48	1SG 896
	ATOM	896 CE3	TRP	116	44.114	-25.	770	35.219	9 1.00	68.48	1SG 897
	ATOM	897 CZ2	TRP	116	44.292	-28.	237	36.560	0 1.00	68.48	1SG 898
	ATOM	898 CZ3	TRP	116	44.947	-25.	937	36.303	3 1.00	68.48	1SG 899
	ATOM	899 CH2	TRP	116	45.034	-27.	147	36.960	0 1.00	68.48	1 SG 900
10	ATOM	900 C	TRP	116	40.205	-24.	355	32.252	2 1.00	68.48	1 SG 901
	ATOM	901 O	TRP	116	39.756	-24.	628	31.139	9 1.00	68.48	1SG 902
	ATOM	902 N	PHE	117	40.367	-23.	083	32.69	3 1.00	63.22	1SG 903
	ATOM	903 CA	PHE	117	39.994	-21.	971	31.869	9 1.00	63.22	1 SG 904
	ATOM	904 CB	PHE	117	38.785	-21.	165	32.38	1 1.00	63.22	1SG 905
15	ATOM	905 CG	PHE	117	37.636	-22.	087	32.61	1 1.00	63.22	1SG 906
	ATOM	906 CD1	PHE	117	37.093	-22	836	31.59	3 1.00	63.22	1SG 907
	ATOM	907 CD2	PHE	117	37.071	-22	168	33.86	2 1.00	63.22	1SG 908
	ATOM	908 CE1	PHE	117	36.028	-23	672	31.83	3 1.00	63.22	1SG 909
	ATOM	909 CE2	PHE	117	36.005	-23	001	34.10	4 1.00	63.22	1SG 910
20	ATOM	910 CZ	PHE	117	35.481	-23	761	33.089	9 1.00	63.22	1SG 911
	ATOM	911 C	PHE	117	41.128	-20	994	31.84	8 1.00	63.22	1SG 912
	ATOM	912 O	PHE	117	41.981	-20	988	32.73	6 1.00	63.22	1SG 913
	ATOM	913 N	LEU	118	41.165	-20	.135	30.80	7 1.00	54.77	1SG 914
	ATOM	914 CA	LEU	118	42.161	-19	.110	30.75	1 1.00	54.77	1SG 915
25	ATOM	915 CB	LEU	118	42.137	-18	.305	29.44	0 1.00	54.77	1 SG 916
	ATOM	916 CG	LEU	118	43.205	-17	.199	29.36	7 1.00	54.77	1SG 917
	ATOM	917 CD2	LEU	118	42.964	-16	.266	28.17	0 1.00	54.77	1SG 918
	ATOM	918 CD1	LEU	118	44.623	-17	.788	29.38	6 1.00	54.77	1 SG 919
	ATOM	919 C	LEU	118	41.804	-18	.188	31.86	5 1.00	54.77	1SG 920
30	ATOM	920 O	LEU	118	40.636	-17	.832	32.02	6 1.00	54.77	1SG 921
	ATOM	921 N	CYS	119	42.797	-17	.789	32.68	0 1.00	45.64	1SG 922
	ATOM	922 CA	CYS	119	42.468	-16	.952	33.79	2 1.00	45.64	1SG 923

		Atom	Amino Acid	X	Y	\mathbf{z}	Occup.	В	
		No. Name	SC No.					Factor	•
	ATOM	923 CB	CYS 119	42.456 -17.0	592	35.141	1.00	45.64	1SG 924
	ATOM	924 SG	CYS 119	41.139 -18.9	941	35.241	1.00	45.64	1SG 925
5	ATOM	925 C	CYS 119	43.469 -15.	356	33.900	1.00	45.64	1SG 926
	ATOM	926 O	CYS 119	44.536 -15.	389	33.286	1.00	45.64	1SG 927
	ATOM	927 N	GLY 120	43.114 -14.	837	34.704	1.00	39.83	1SG 928
	ATOM	928 CA	GLY 120	43.986 -13.	728	34.921	1.00	39.83	1SG 929
	ATOM	929 C	GLY 120	43.942 -13.	439	36.383	1.00	39.83	1SG 930
10	ATOM	930 O	GLY 120	42.993 -13.	777	37.091	1.00	39.83	1SG 931
	ATOM	931 N	PRO 121	45.027 -12.	383	36.832	1.00	37.35	1SG 932
	ATOM	932 CA	PRO 121	45.105 -12.	504	38.217	1.00	37.35	1SG 933
	ATOM	933 CD	PRO 121	46.285 -13.	436	36.359	1.00	37.35	1SG 934
	ATOM	934 CB	PRO 121	46.571 -12.	613	38.609	1.00	37.35	1SG 935
15	ATOM	935 CG	PRO 121	47.140 -13.	637	37.614	1.00	37.35	1SG 936
	ATOM	936 C	PRO 121	44.516 -11.	156	38.496	1.00	37.35	1SG 937
	ATOM	937 O	PRO 121	44.351 -10.	358	37.575	1.00	37.35	1SG 938
	ATOM	938 N	ALA 122	44.183 -10.	9 00	39.775	5 1.00	35.18	1SG 939
	ATOM	939 CA	ALA 122	43.625 -9.0	555	40.214	1.00	35.18	1SG 940
20	ATOM	940 CB	ALA 122	43.194 -9.0	584	41.690	1.00	35.18	1SG 941
	ATOM	941 C	ALA 122	44.642 -8.5	568	40.065	1.00	35.18	1SG 942
	ATOM	942 O	ALA 122	44.311 -7.4	1 52	39.669	1.00	35.18	1SG 943
	ATOM	943 N	GLU 123	45.915 -8.3	366	40.397	1.00	37.20	1SG 944
	ATOM	944 CA	GLU 123	46.938 -7.	359	40.355	1.00	37.20	1SG 945
25	ATOM	945 CB	GLU 123	48.206 -8.3	212	41.148	1.00	37.20	1SG 946
	ATOM	946 CG	GLU 123	48.959 -9.	419	40.591	1.00	37.20	1SG 947
	ATOM	947 CD	GLU 123	50.199 -9.	629	41.448	1.00	37.20	1SG 948
	ATOM	948 OE1	GLU 123	50.344 -8.	898	42.463	1.00	37.20	1SG 949
	ATOM	949 OE2	GLU 123	51.018 -10	.521	41.09	8 1.00	37.20	1SG 950
30	ATOM	950 C	GLU 123	47.349 -7.	622	38.941	1.00	37.20	1SG 951
	ATOM	951 O	GLU 123	47.181 -8.	459	38.055	1.00	37.20	1SG 952
	ATOM	952 N	PRO 124	47.857 -6.4	44 1	38.732	1.00	40.57	1SG 953

		Atom	Amino Acid	X Y Z Occup. B	
		No. Name	SC No.	Factor	<u>-</u>
	ATOM	953 CA	PRO 124	48.305 -6.070 37.421 1.00 40.57	1SG 954
	ATOM	954 CD	PRO 124	47.362 -5.294 39.473 1.00 40.57	1SG 955
5	ATOM	955 CB	PRO 124	48.254 -4.540 37.361 1.00 40.57	1SG 956
	ATOM	956 CG	PRO 124	48.064 -4.096 38.822 1.00 40.57	1SG 957
	ATOM	957 C	PRO 124	49.646 -6.635 37.075 1.00 40.57	1SG 958
	ATOM	958 O	PRO 124	50.405 -7.003 37.969 1.00 40.57	1SG 959
	ATOM	959 N	GLN 125	49.939 -6.694 35.763 1.00 45.04	1SG 960
10	ATOM	960 CA	GLN 125	51.200 -7.101 35.218 1.00 45.04	1SG 961
	ATOM	961 CB	GLN 125	52.344 -6.163 35.634 1.00 45.04	1SG 962
	ATOM	962 CG	GLN 125	52.167 -4.733 35.118 1.00 45.04	1SG 963
	ATOM	963 CD	GLN 125	53.357 -3.914 35.595 1.00 45.04	1SG 964
	ATOM	964 OE1	GLN 125	54.207 -4.410 36.332 1.00 45.04	1SG 965
15	ATOM	965 NE2	GLN 125	53.419 -2.625 35.167 1.00 45.04	1SG 966
	ATOM	966 C	GLN 125	51.600 -8.504 35.563 1.00 45.04	1SG 967
	ATOM	967 O	GLN 125	52.794 -8.778 35.681 1.00 45.04	1SG 968
	ATOM	968 N	GLN 126	50.655 -9.453 35.711 1.00 51.17	1SG 969
	ATOM	969 CA	GLN 126	51.144 -10.792 35.885 1.00 51.17	1SG 970
20	ATOM	970 CB	GLN 126	50.898 -11.454 37.254 1.00 51.17	1SG 971
	ATOM	971 CG	GLN 126	49.458 -11.692 37.682 1.00 51.17	1SG 972
	ATOM	972 CD	GLN 126	49.566 -12.461 38.995 1.00 51.17	1SG 973
	ATOM	973 O E1	GLN 126	48.972 -12.099 40.009 1.00 51.17	1SG 974
	ATOM	974 NE2	GLN 126	50.351 -13.571 38.973 1.00 51.17	1SG 975
25	ATOM	975 C	GLN 126	50.634 -11.618 34.743 1.00 51.17	1SG 976
	ATOM	976 O	GLN 126	49.703 -11.227 34.041 1.00 51.17	1SG 977
	ATOM	977 N	PRO 127	51.248 -12.746 34.517 1.00 53.74	1SG 978
	ATOM	978 CA	PRO 127	50.915 -13.519 33.350 1.00 53.74	1SG 979
	ATOM	979 CD	PRO 127	52.638 -12.925 34.893 1.00 53.74	1SG 980
30	ATOM	980 CB	PRO 127	52.083 -14.488 33.130 1.00 53.74	1SG 981
	ATOM	981 CG	PRO 127	52.971 -14.333 34.379 1.00 53.74	1SG 982
	ATOM	982 C	PRO 127	49.574 -14.168 33.367 1.00 53.74	1SG 983

No. Name SC No. Factor

Atom Amino Acid X Y Z Occup. B

		ATOM	983 O	PRO 127	49.026 -14.406 34.441 1.00	53.74 1SG 984
		ATOM	984 N	VAL 128	49.021 -14.433 32.165 1.00	52.63 1SG 985
	5	ATOM	985 CA	VAL 128	47.771 -15.125 32.065 1.00	52.63 1SG 986
		ATOM	986 CB	VAL 128	47.027 -14.903 30.779 1.00	52.63 1SG 987
		ATOM	987 CG1	VAL 128	46.517 -13.460 30.743 1.00	52.63 1SG 988
		ATOM	988 CG2	VAL 128	47.962 -15.234 29.609 1.00	52.63 1SG 989
		ATOM	989 C	VAL 128	48.111 -16.571 32.139 1.00	52.63 1SG 990
	10	ATOM	990 O	VAL 128	49.112 -17.003 31.569 1.00	52.63 1SG 991
		ATOM	991 N	GLN 129	47.295 -17.353 32.875 1.00	48.04 1SG 992
		ATOM	992 CA	GLN 129	47.592 -18.746 33.010 1.00	48.04 1SG 993
Andrew Mr. Comments of the Com		ATOM	993 CB	GLN 129	48.225 -19.127 34.360 1.00	48.04 1SG 994
ليا		ATOM	994 CG	GLN 129	49.603 -18.506 34.600 1.00	48.04 1SG 995
Part of the second seco	15	ATOM	995 CD	GLN 129	49.408 -17.099 35.143 1.00	48.04 1SG 996
		ATOM	996 OE 1	GLN 129	50.374 -16.362 35.333 1.00	48.04 1SG 997
3.4		ATOM	997 NE2	GLN 129	48.130 -16.718 35.412 1.00	48.04 1SG 998
		ATOM	998 C	GLN 129	46.317 -19.510 32.904 1.00	48.04 1SG 999
		ATOM	999 O	GLN 129	45.256 -18.948 32.637 1.00	48.04 1SG1000
ini Park	20	ATOM	1000 N	LEU 130	46.415 -20.841 33.084 1.00	42.95 1SG1001
		ATOM	1001 CA	LEU 130	45.265 -21.688 33.032 1.00	42.95 1SG1002
		ATOM	1002 CB	LEU 130	45.526 -22.971 32.223 1.00	42.95 1SG1003
		ATOM	1003 CG	LEU 130	44.261 -23.779 31.898 1.00	42.95 1SG1004
		ATOM	1004 CD2	LEU 130	44.614 -25.141 31.280 1.00	42.95 1SG1005
	25	ATOM	1005 CD1	LEU 130	43.309 -22.962 31.008 1.00	42.95 1SG1006
		ATOM	1006 C	LEU 130	44.978 -22.048 34.459 1.00	42.95 1SG1007
		ATOM	1007 O	LEU 130	45.856 -22.543 35.166 1.00	42.95 1SG1008
		ATOM	1008 N	THR 131	43.741 -21.780 34.930 1.00	39.85 1SG1009
		ATOM	1009 CA	THR 131	43.402 -22.057 36.298 1.00	39.85 1SG1010
	30	ATOM	1010 CB	THR 131	42.903 -20.856 37.048 1.00	39.85 1SG1011
		ATOM	1011 OG1	THR 131	43.888 -19.833 37.045 1.00	39.85 1SG1012
		ATOM	1012 CG2	THR 131	42.580 -21.276 38.492 1.00	39.85 1SG1013

iles.	
	1
	Garage of
272	-
Ĺ.	
I	200
	23:17
	-
27	
-	
=	1
5 5	il Za
ant Lan	2
2-	

		Atom	Amino Acid	X Y Z Occup. B
		No. Name	SC No.	Factor
	ATOM	1013 C	THR 131	42.298 -23.062 36.287 1.00 39.85 1SG1014
	ATOM	1014 O	THR 131	41.472 -23.077 35.375 1.00 39.85 1SG1015
5	ATOM	1015 N	LYS 132	42.263 -23.950 37.301 1.00 42.27 1SG1016
	ATOM	1016 CA	LYS 132	41.251 -24.962 37.307 1.00 42.27 1SG1017
	ATOM	1017 CB	LYS 132	41.817 -26.364 37.602 1.00 42.27 1SG1018
	ATOM	1018 CG	LYS 132	40.802 -27.495 37.414 1.00 42.27 1SG1019
	ATOM	1019 CD	LYS 132	41.420 -28.894 37.440 1.00 42.27 1SG1020
10	ATOM	1020 CE	LYS 132	41.938 -29.308 38.818 1.00 42.27 1SG1021
	ATOM	1021 NZ	LYS 132	42.507 -30.673 38.757 1.00 42.27 1SG1022
	ATOM	1022 C	LYS 132	40.262 -24.650 38.376 1.00 42.27 1SG1023
	ATOM	1023 O	LYS 132	39.497 -25.519 38.791 1.00 42.27 1SG1024
	ATOM	1024 N	GLU 133	40.215 -23.392 38.843 1.00 47.60 1 SG1025
15	ATOM	1025 CA	GLU 133	39.251 -23.139 39.864 1.00 47.60 1SG1026
	ATOM	1026 CB	GLU 133	39.872 -23.015 41.267 1.00 47.60 1SG1027
	ATOM	1027 CG	GLU 133	38.858 -23.133 42.404 1.00 47.60 1SG1028
	ATOM	1028 CD	GLU 133	38.080 -21.832 42.478 1.00 47.60 1SG1029
	ATOM	1029 OE1	GLU 133	38.641 -20.782 42.066 1.00 47.60 1SG1030
20	ATOM	1030 OE2	GLU 133	36.913 -21.873 42.951 1.00 47.60 1SG1031
	ATOM	1031 C	GLU 133	38.567 -21.856 39.543 1.00 47.60 1SG1032
	ATOM	1032 O	GLU 133	39.207 -20.848 39.243 1.00 47.60 1SG1033
	ATOM	1033 N	SER 134	37.225 -21.875 39.592 1.00 52.73 1SG1034
	ATOM	1034 CA	SER 134	36.485 -20.673 39.383 1.00 52.73 1SG1035
25	ATOM	1035 CB	SER 134	35.282 -20.840 38.440 1.00 52.73 1SG1036
	ATOM	1036 OG	SER 134	34.602 -19.602 38.292 1.00 52.73 1SG1037
	ATOM	1037 C	SER 134	35.958 -20.330 40.734 1.00 52.73 1SG1038
	ATOM	1038 O	SER 134	35.151 -21.062 41.304 1.00 52.73 1SG1039
	ATOM	1039 N	GLU 135	36.440 -19.204 41.283 1.00 55.75 1SG1040
30	ATOM	1040 CA	GLU 135	36.079 -18.734 42.586 1.00 55.75 1SG1041
	ATOM	1041 CB	GLU 135	37.055 -19.230 43.675 1.00 55.75 1SG1042
	ATOM	1042 CG	GLU 135	36.567 -19.097 45.120 1.00 55.75 1SG1043

		Atom	Amino Acid	X Y Z Occup. B
		No. Name	SC No.	Factor
	ATOM	1043 CD	GLU 135	35.508 -20.164 45.363 1.00 55.75 1SG1044
	ATOM	1044 OE1	GLU 135	35.831 -21.369 45.193 1.00 55.75 1SG1045
5	ATOM	1045 OE2	GLU 135	34.360 -19.787 45.722 1.00 55.75 1SG1046
	ATOM	1046 C	GLU 135	36.245 -17.259 42.456 1.00 55.75 1SG1047
	ATOM	1047 O	GLU 135	36.592 -16.792 41.377 1.00 55.75 1SG1048
	ATOM	1048 N	PRO 136	35.992 -16.488 43.465 1.00 54.05 1SG1049
	ATOM	1049 CA	PRO 136	36.189 -15.078 43.306 1.00 54.05 1SG1050
10	ATOM	1050 CD	PRO 136	34.852 -16.745 44.326 1.00 54.05 1SG1051
	ATOM	1051 CB	PRO 136	35.458 -14.409 44.476 1.00 54.05 1SG1052
	ATOM	1052 CG	PRO 136	34.896 -15.574 45.316 1.00 54.05 1SG1053
	ATOM	1053 C	PRO 136	37.622 -14.661 43.143 1.00 54.05 1SG1054
	ATOM	1054 O	PRO 136	37.845 -13.506 42.786 1.00 54.05 1SG1055
15	ATOM	1055 N	SER 137	38.604 -15.540 43.431 1.00 51.53 1SG1056
	ATOM	1056 CA	SER 137	39.993 -15.167 43.361 1.00 51.53 1SG1057
	ATOM	1057 CB	SER 137	40.927 -16.312 43.781 1.00 51.53 1SG1058
	ATOM	1058 OG	SER 137	40.713 -16.644 45.144 1.00 51.53 1SG1059
	ATOM	1059 C	SER 137	40.415 -14.754 41.980 1.00 51.53 1SG1060
20	ATOM	1060 O	SER 137	40.455 -13.567 41.661 1.00 51.53 1SG1061
	ATOM	1061 N	ALA 138	40.745 -15.746 41.123 1.00 51.19 1SG1062
	ATOM	1062 CA	ALA 138	41.240 -15.485 39.798 1.00 51.19 1SG1063
	ATOM	1063 CB	ALA 138	42.003 -16.671 39.184 1.00 51.19 1SG1064
	ATOM	1064 C	ALA 138	40.085 -15.176 38.911 1.00 51.19 1SG1065
25	ATOM	1065 O	ALA 138	38.958 -15.598 39.168 1.00 51.19 1SG1066
	ATOM	1066 N	ARG 139	40.343 -14.422 37.825 1.00 54.85 1SG1067
	ATOM	1067 CA	ARG 139	39.256 -14.072 36.968 1.00 54.85 1SG1068
	ATOM	1068 CB	ARG 139	39.302 -12.611 36.498 1.00 54.85 1SG1069
	ATOM	1069 CG	ARG 139	38.052 -12.197 35.729 1.00 54.85 1SG1070
30	ATOM	1070 CD	ARG 139	37.915 -10.685 35.568 1.00 54.85 1SG1071
	ATOM	1071 NE	ARG 139	37.851 -10.092 36.933 1.00 54.85 1SG1072
	ATOM	1072 CZ	ARG 139	36.739 -10.278 37.703 1.00 54.85 1SG1073

	_	=
÷		_
ď,	_	=
1:00	-	=
The West Late of the	-	*
m. K #	110	
	_	
1	ã	
	-	-
7	-	-
-		
	=	1
į	=	-
	=	=
That Take	2007	-

		Atom	Amino .	Acid	X	Y	z	Occup.	В	
		No. Name	SC	No.	,				Factor	•
	ATOM	1073 NH1	ARG	139	35.744 -11	1.108	37.275	5 1.00	54.85	1SG1074
	ATOM	1074 NH2	ARG	139	36.627 -9	.644	38.90	7 1.00	54.85	1SG1075
5	ATOM	1075 C	ARG	139	39.308 -14	4.960	35.774	1.00	54.85	1SG1076
	ATOM	1076 O	ARG	139	40.374 -15	5.205	35.210	1.00	54.85	1SG1077
	ATOM	1077 N	THR	140	38.142 -15	5.507	35.386	5 1.00	60.01	1SG1078
	ATOM	1078 CA	THR	140	38.109 -16	5.363	34.244	1.00	60.01	1SG1079
	ATOM	1079 CB	THR	140	37.824 -17	7.788	34.614	1.00	60.01	1SG1080
10	ATOM	1080 OG1	THR	140	37.863 -18	3.617	33.463	3 1.00	60.01	1SG1081
	ATOM	1081 CG2	THR	140	36.450 -17	7.865	35.293	3 1.00	60.01	1SG1082
	ATOM	1082 C	THR	140	37.025 -15	5.874	33.336	5 1.00	60.01	1SG1083
	ATOM	1083 O	THR	140	36.615 -16	5.582	32.420	1.00	60.01	1SG1084
	ATOM	1084 N	LYS	141	36.566 -14	.624	33.549	1.00	64.19	1SG1085
15	ATOM	1085 CA	LYS	141	35.490 -14	.050	32.794	1.00	64.19	1SG1086
	ATOM	1086 CB	LYS	141	34.440 -13	3.403	33.719	1.00	64.19	1SG1087
	ATOM	1087 CG	LYS	141	33.242 -12	2.749	33.028	3 1.00	64.19	1SG1088
	ATOM	1088 CD	LYS	141	33.563 -11	.464	32.261	1.00	64.19	1SG1089
	ATOM	1089 CE	LYS	141	32.375 -10).893	31.487	7 1.00	64.19	1SG1090
2 0	ATOM	1090 NZ	LYS	141	31.301 -10	0.500	32.426	5 1.00	64.19	1SG1091
	ATOM	1091 C	LYS	141	36.051 -12	2.986	31.907	7 1.00	64.19	1SG1092
	ATOM	1092 O	LYS	141	36.909 -12	2.205	32.319	1.00	64.19	1SG1093
	ATOM	1093 N	PHE	142	35.552 -12	2.922	30.654	1.00	64.86	1SG1094
	ATOM	1094 CA	PHE	142	36.082 -11	1.974	29.719	1.00	64.86	1SG1095
25	ATOM	1095 CB	PHE	142	36.991 -12	2.636	28.666	5 1.00	64.86	1SG1096
	ATOM	1096 CG	PHE	142	38.061 -13	3.398	29.376	5 1.00	64.86	1SG1097
	ATOM	1097 CD1	PHE	142	39.036 -12	2.742	30.088	3 1.00	64.86	1 SG 1098
	ATOM	1098 CD2	PHE	142	38.108 -14	4.772	29.314	4 1.00	64.86	1SG1099
	ATOM	1099 CE1	PHE	142	40.028 -13	3.438	30.739	9 1.00	64.86	1 SG 1100
3 0	ATOM	1100 CE2	PHE	142	39.099 -15	5.473	29.963	3 1.00	64.86	1SG1101
	ATOM	1101 CZ	PHE	142	40.062 -14	4.809	30.68	1 1.00	64.86	1SG1102
	ATOM	1102 C	PHE	142	34.952 - 11	1.358	28.95	0 1.00	64.86	1SG1103

		Atom	Amino	Acid		X	Y	Z	Occup.	В	
		No. Name	SC	No.						Factor	
	ATOM	1103 O	PHE	142	33.832	-11	.866	28.939	1.00	64.86	1SG1104
	_ATOM	1104 N	TYR	143	35.255	-10	.226	28.27	9 1.00	62.77	1SG1105
5	ATOM	1105 CA	TYR	143	34.355	- 9.	491	27.432	1.00	62.77	1SG1106
	ATOM	1106 CB	TYR	143	34.142	-8.	.018	27.852	1.00	62.77	1SG1107
	ATOM	1107 CG	TYR	143	33.283	-7.	851	29.065	1.00	62.77	1SG1108
	ATOM	1108 CD1	TYR	143	33.820	- 7.	825	30.334	1.00	62.77	1SG1109
	ATOM	1109 CD2	TYR	143	31.922	-7.	.698	28.926	5 1.00	62.77	1SG1110
10	ATOM	1110 CE1	TYR	143	33.012	: - 7.	.655	31.437	7 1.00	62.77	1SG1111
	ATOM	1111 CE2	TYR	143	31.109	-7.	.527	30.022	2 1.00	62.77	1SG1112
	ATOM	1112 CZ	TYR	143	31.654	-7.	.505	31.282	2 1.00	62.77	1 S G1113
	ATOM	1113 OH	TYR	143	30.819	-7.	.327	32.407	7 1.00	62.77	1SG1114
	ATOM	111 4 C	TYR	143	35.056	-9.	.394	26.110	1.00	62.77	1SG1115
15	ATOM	1115 O	TYR	143	36.284	-9	.463	26.056	5 1.00	62.77	1 S G1116
	ATOM	1116 N	PHE	144	34.291	-9.	251	25.005	1.00	60.39	1SG1117
	ATOM	1117 CA	PHE	144	34.903	-9.	104	23.712	1.00	60.39	1SG1118
	ATOM	1118 CB	PHE	144	34.301	-10	.001	22.61	7 1.00	60.39	1SG1119
	ATOM	1119 CG	PHE	144	34.118	-11	.383	23.14	4 1.00	60.39	1SG1120
20	ATOM	1120 CD1	PHE	144	35.166	-12	.260	23.32	4 1.00	60.39	1SG1121
	ATOM	1121 CD2	PHE	144	32.849	-11	.787	23.48	4 1.00	60.39	1SG1122
	ATOM	1122 CE1	PHE	144	34.937	-13	.524	23.82	0 1.00	60.39	1SG1123
	ATOM	1123 CE2	PHE	144	32.614	-13	.046	23.97	7 1.00	60.39	1SG1124
	ATOM	1124 CZ	PHE	144	33.661	-13	.920	24.14	4 1.00	60.39	1SG1125
25	ATOM	1125 C	PHE	144	34.546	-7.	.710	23.277	7 1.00	60.39	1SG1126
	ATOM	1126 O	PHE	144	33.400	-7.	.288	23.425	5 1.00	60.39	1SG1127
	ATOM	1127 N	GLU	145	35.504	1 -6	.939	22.72	7 1.00	57.37	1 S G11 2 8
	ATOM	1128 CA	GLU	145	35.130	-5	.605	22.35	3 1.00	57.37	1SG1129
	ATOM	1129 CB	GLU	145	35.800) -4	.489	23.18	4 1.00	57.37	1SG1130
30	ATOM	1130 CG	GLU	145	35.176	5 -4	.250	24.56	5 1.00	57.37	1SG1131
	ATOM	1131 CD	GLU	145	35.786	5 -5	.213	25.57	7 1.00	57.37	1SG1132
	ATOM	1132 OE1	GLU	145	36.153	3 -6	.350	25.18	2 1.00	57.37	1SG1133

25

5

	Atom	Amino	Acid	X Y Z Occup. B
***	No. Name	SC	No.	Factor
ATOM	1133 OE2	GLU	145	35.895 -4.818 26.768 1.00 57.37 1SG1134
ATOM	1134 C	GLU	145	35.488 -5.355 20.900 1.00 57.37 1SG1135
ATOM	1135 O	GLU	145	36.283 -4.410 20.648 1.00 57.37 1SG1136
ATOM	1136 OXT	GLU	145	34.961 -6.089 20.023 1.00 57.37 1SG1137

EXAMPLE 15

Determination of IL-1 Hy2 Crystal Structure

Crystallization is used to verify the predicted three-dimensional structure of IL-1 Hy2 using methods known in the are, *e.g.*, as described by Vigers *et al.* (*Nature* 386: 190-194, 1997). Recombinant IL-1 Hy2 and the IL-1 receptor art incubated under conditions which promote binding. The IL-1 Hy2 receptor complex is then purified and crystallized.

Crystals consisting of the IL-1 Hy2 alone. IL-1 Hy2/IL-1 receptor complex or IL-1 Hy2/IL-1 receptor accessory protein or IL-1 Hy2/II-1R/IL-1 receptor accessory protein are grown by methods known in the art. (*See* Jensen *et al.*, *J. Immunol.* 15: 5277-86, 2000). For example, hanging-drop diffusion against a salt solution such as an ammonium sulphate solution, an ammonium nitrate solution or an ammonium chloride solution may be used to form IL-1 Hy2 crystals. The resulting crystals are diffracted in a beam of x-rays to determine their quality. Heavy-atom derivatives are created and compared to the native crystal. The crystals are cryoprotected and diffracted to determine the diffraction pattern, the unit cell dimensions and symmetry. Molecular replacement is used to determine the final three-dimensional structure.

EXAMPLE 16

Determination of Critical Residues by Site-Directed Mutagenesis

Site-directed mutagenesis is carried out to confirm the location of specific amino acids within the IL-1 Hy2 polypeptide sequence such as those residues predicted to interact with the IL-1 receptor and those predicted to be important to biological function. The mutants are designed based on the predicted three-dimensional structure (described in Example 14) or on the crystal structure (described in Example 15).

25

30

Mutants are produced, e.g., via site-directed mutagenesis performed on IL-1 Hy2 cDNA constructs using any method known in the art. For example, uracil-enrichment of single-stranded DNA may be used as described by Kunkel *et al.* (*Proc. Natl. Acad. Sci. U.S.A.*, 82: 488-492, 1985). Mutagenesis primers are designed based on the (+) coding orientation, and mutagenesis is carried out with a commercially available mutagenesis kit such as the Muta-Gene kit (Biorad) or the TransformerTM Site-Directed Mutagenesis kit (Clontech) according to the manufacturer's instructions.

The mutants generated will have non-conservative substitutions of amino acids predicted to be critical for IL-1 Hy2 function or IL-1 receptor binding, or IL-1 receptor accessory protein binding. In addition, mutants will have amino acid insertions and/or deletions within functional domains, and a single mutant may contain more than one change within the amino acid sequence.

The resulting mutants cDNAs are sequenced, and recombinant IL-1 Hy2 mutants are purified and analyzed in functional assays such as the IL-1 receptor binding assay (described in Example 12), inhibition of IL-6 production assay (described in Example 10) and inhibition of IL-18 activity assay (described in Example 11). Both mutants which knock out function and those that increase function are desirable. In addition, these mutants can be crystallized (as described in Example 15) to determine if a change in the amino acid sequence alters the three-dimensional structure of IL-1 Hy2. Mutants lacking IL-1 Hy2 activity, including receptor binding activity, are useful in screening for compounds which bind to the wild type IL-1 Hy2 polypeptide but do not interact with the IL-1 Hy2 mutants, and thus identifying modulators specific for the active site.

EXAMPLE 17

Expression of IL-1Hy2 in E.coli

The coding region of SEQ ID NO: 2 was expressed in *E. coli*. First, the coding region was amplified by PCR using the forward primer QB36 (GTCATATGTGTTCCCTCCCCATGGCAAG; SEQ ID NO: 25) and reverse primer QB38 (GTTTTACTTTGAACAGAGCTGGTAGTGATCAAGCTTC; SEQ ID NO: 26). Primer QB36 corresponds to nucleotides 54 to 76 of SEQ ID NO: 1 and Primer QB38 corresponds to the reverse complement of nucleotides 488 to 512 of SEQ ID NO: 1. The underlined

20

nucleotides are restriction sites to assist in cloning. PCR was carried out using Pfu polymerase and the primer QB36 and QB38.

The PCR product was ligated into the TOPO cloning vector pCRII (Invitrogen) and transformed into electrocompetent *E. coli* strain Top10 (Invitrogen). The transformed cells were plated on ampicillin-containing plates. Colonies were screened for the correct insert using a PCR reaction employing a gene-specific primer and a vector-specific primer. Positives were then sequenced to ensure correct sequences.

The pCRII was digested with NdeI and HindIII and purified with low melting agarose (LMPA) from FHM Bioproducts. The resulting IL-1 Hy2 fragment was subcloned into the prokaryotic expression vector pRSETB (Invitrogen). The pRSETB was useful for protein expression because it contains an efficient promoter (phage T7) to drive trancription. In addition, this vector provides gene expression control with the lac operator system, which can be induced by the addition of IPTG (isopropyl- β -D-thiogaloctopyranoside).

The pRSETB vector containing IL-1 Hy2 was transformed into *E. coli* strain DH10B (Invitrogen) The transformed cells were plated on carbenicillin-containing plates. Colonies containing the correct insert were verified by restriction digest. Six clones were selected, the DNA was isolated with a mini-prep (QIAgen) and then transformed into the BL21(DE3)plysS cells (Invitrogen). Cloning between the NdeI and HindIII sites resulted in IL-1 Hy2 gene expression without tags.

The transformed BL21DE3pLysS cells containing the plasmid pRSETB with IL-1 Hy2 were cultured in LB broth containing 0.1 mg/ml of ampicillin and 20 μ g/ml Chloamphenicol. A 200 ml starter culture was innoculated from with BL21DE3pLysS cells and the culture was allowed to grow overnight at 37°C with constant shaking at 250 RPM. The starter culture was then used to innoculate 4 liters of complex fermenter media containing 0.1 mg/ml of ampicillin. At this point, IPTG was added to a final concentration of 1 mM at 25 OD to induce protein expression. The culture was allowed to grow for 2 more hours, and then the cells were harvested at a final OD $_{A600}$ of 48.5 and a density of 59.6 grams/liter by centrifugation at 10,000 x g for 30 minutes. The cell pellets were stored at -70°C.

20

25

30

EXAMPLE 18

Purification of IL-1 HY2 Polypeptide from E.coli

For two 5 liter fermentations, 550 grams of wet cell paste were suspended in 5 liters of lysis buffer (20 mM Tris pH 8.0, 1 mM EDTA). The cells were disrupted with two passes through an Avestin C50 homogenizer at 15, 000 psi. The temperature after disruption was kept at or below 24°C using a cooling coil and ice bath. After disruption, the lysate was centrifuged at 13,000 x g for 20 minutes to remove cell debris. The lysate supernatant was clarified with 1M BisTris (pH 6.0) to reach a final concentration of 20 mM Bis Tris. The supernatant was then titrated to pH 4.7 using 0.5 HCl to precipitate the proteins. The precipitated proteins were removed by centrifugation at 13,000 x g for 30 minutes. The pH of the clarified titrated supernatant was then adjusted to 6.0 using 0.5 M NaOH.

Q-Sepharose Anion Exchange Chromatography at pH 8.0

The pH 6.0 supernatent was loaded onto a 500 ml Q-Sepharose FF column (AP Biotech) equilibrated in 20 mM Bis Tris pH 6.0 (Equilibration Buffer A) at 100 cm/hr linear flow rate. After the sample was applied, the column was washed with 2 volumes of Equilibration Buffer A. Subsequently, the column was washed with two volumes of Elution Buffer A (20 mM Tris pH 8.0) followed by two volumes of 20% Elution Buffer B (20 mM Tris pH 8.0, 500 mM NaCl). The colum was then eluted with a 15 volume linear gradient consisting of 20% to 100% Buffer B. Fractions were collected and evaluated by SDS PAGE. The fractions were collected in two pools based on the SDS PAGE results and a chromatogram.

Phenyl Sepharose High Sub Hydrophobic Interaction Chromatography

The main pool generated by Q-Sepharose chromatography (described above) was titrated to pH7.0 using 2 M NaOH. This pool was then divided into two equal alliquots and ammonium sulfate was added to a final concentration of 1.5 M ammonium sulfate using a 4 M solution. The pool was then loaded onto a 180 ml Phenyl Sepharose High Sub Column (AP Biotech), equilibrated in 1.5 M ammonium sulfate, 50 mM sodium phosphate at pH 7.0 (Equilibration Buffer B), in two runs at 100cm/hr linear flow rate. The column was then washed with five volumes of Equilibration Buffer B. Subsequently, the column was eluted with a 15 volume linear gradient consisting of 1.2 M to 0.45 M amminoium sulfate.

20

25

Fractions from the two runs which contained the lowest level of impurities as seen on a SDS-PAGE gel were pooled. The side fractions that were not included in the pool were combined and run as a third aliquot under the same conditions to recover more purified IL-1Hy2.

The combined pools were concentrated approximately 5 fold using a Millipore PrepScale spiral 10 K molecular weight cut off membrane cartridge. Ammonium sulfate was then removed by dilution and diafiltration with 1 L of 50 mM sodium phosphate (pH 7.0).

DEAE Sepharose Anion Exchange Chromatogrpahy

The desalted pool was loaded onto a 75 ml DEAE Sepharose FF column (AP Biotech) in order to remove endotoxins and additional impurities. The column was first equilibrated in 20 mM sodium phosphate pH 7.0 (Equilibration Buffer C). After loading of the sample at a flow rate of 100cm/hr, the column was washed with 5 volumes of Equilibration Buffer C. Subsequently, the column was eluted with 4 volumes of 200 mM NaCl. The protein eluted in one peak and was collected in a single pool.

15 Q-Sepharose Anion Exchange Chromotography at pH 7.0

The pool from the DEAE Sepharose column (described above) was diluted approximately two-fold with 20 mM sodium phosphate (pH 7.0) to lower conductivity and was loaded onto a 50 ml Q-Sepharose column (AP Biotech) equilibrated with Equilibration Buffer C. The column was eluted with 10 volume linear gradient consisting of 0 to 350 mM NaCl. The eluted protein was collected in 3 peaks and the fractions from the first two peaks were pooled together.

This pool was concentrated to 22.5 mg/ml using an Amicon Stircell with a YM10 membrane. Since the concentration of NaCl in the pool was calculated to be approximately 110 mM and no other formulations were needed. The concentrated pool was sterile filtered and stored at -80°C.

The present invention is not to be limited in scope by the exemplified embodiments which are intended as illustrations of single aspects of the invention, and compositions and methods which are functionally equivalent are within the scope of the invention. Indeed, numerous modifications and variations in the practice of the invention are

expected to occur to those skilled in the art upon consideration of the present preferred embodiments. Consequently, the only limitations which should be placed upon the scope of the invention are those which appear in the appended claims. All references cited within the body of the instant specification are hereby incorporated by reference in their entirety.