Applied Regression Lecture Notes

Zuletzt aktualisiert: 11. November 2023

Applied Regression

About

This repository contains the lecture notes for the course Applied Regression at the Technical University of Munich during the winter semester 2023/24.

You can download the merged file at merge.pdf

How to Contribute

- 1. Fork this Repository
- 2. Commit and push your changes to your forked repository
- 3. Open a Pull Request to this repository
- 4. Wait until the changes are merged

Contributors

Inhaltsverzeichnis

Appli	ed Regressi	on				 											1
	About					 			 								1
]	How to Cor	ntribute				 			 								1
(Contributor	s				 					 •						1
	1: Simple																3
Data						 											3
Least	squares .					 											3
	nptions .																
]	Estimates f	or β_0 , β	and and	σ^2	 	 			 								4
Varia	nce of $\hat{eta_0}$ ar	$\operatorname{ad} \hat{eta_1}$.				 			 								4
T-test						 			 								5
	dence inter																
	ction of val																5
Analy	sis of Varia	nce (Al	NOVA	.) .		 			 								6
	ntage of var	,		,													
	on's correla		-														

Lecture 1: Simple Regression

Data

Often in applications we would like to see if there is an association or trend of one variable with another. For example: How does the price of a house depend on its size?

A dataset for this very simple example would contain only two columns:

- Size of the house (in square meters)
- Price of the house (in €)

A scatter plot of such data can be used to visually interpret the association between the two variables and to get a first impression of the data. On this data, different models can be fitted to describe the association between the two variables, the simplest of which is a linear model. Such models can be used to predict the price of a house based on its size. For linear models we want to fit a line to the data, which is described by the equation

$$y = \beta_0 + \beta_1 x$$

Least squares

The idea is to find $\hat{\beta}_0$ and $\hat{\beta}_1$ that minimizes

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

where $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$

This overall minimizes the vertical distances between the data points and the fitted line.

This minimazation problem can be solved by setting the partial derivatives of the sum (w.r.t. $\hat{\beta}_0$ and $\hat{\beta}_1$) to zero and yields the following results:

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x}) (y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} = \frac{S_{xy}}{S_{xx}}$$

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1}\bar{x}$$

The equation for $\hat{\beta}_1$ states that the fitted line always goes through the point (\bar{x}, \bar{y}) and that the slope is given by the ratio of the covariance of x and y and the variance of x.

The abreveations S_{ab} denotes the sum of the products of the deviations of a and b from their means. It can be calculated as follows:

$$S_{ab} = \sum_{i=1}^{n} (a_i - \bar{a}) (b_i - \bar{b})$$

The formula for $\hat{\beta}_1$ can also be written as:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x}) y_i}{\sum_{i=1}^n (x_i - \bar{x})^2} = \sum_{i=1}^n c_i y_i$$

where
$$c_i = \frac{x_i - \bar{x}}{\sum_{i=1}^n (x_i - \bar{x})^2}$$
.

Assumptions

The model $y = \beta_0 + \beta_1 x + \epsilon$ and $\epsilon \sim N(0, \sigma^2)$ requires some assumptions to be valid:

- Independence of y
 - Each sample is independent of the others
 - (E.g. daily temperatures are not independent, since they tend to be similar to the previous day)
- Linearity of mean of y
 - The mean of y is linearly dependent on x
 - (This allows the fitted line to pass through the center of the data)
- Homogeneity of variance of y
 - The variance of y is constant for all x
- Normal distribution of y
 - The distribution of y is normal for all x

Estimates for β_0 , β_1 and σ^2

Under these conditions it can be shown, that (using the previous formulas) $\hat{\beta}_0$ and $\hat{\beta}_1$ are unbiased estimators for β_0 and β_1 .

Given an independent set of observations (x_i, y_i) that follow the regression model $y = \beta_0 + \beta_1 x_i + \epsilon_i$ $\epsilon_i \sim N(0, \sigma^2)$,

$$s^{2} = \frac{1}{n-2} \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}$$

is an unbiased estimator for $\sigma^2 = Var(\epsilon_i)$. This is called the residual variance, and measures the variance around the fitted line.

The denominator n-2 is called the degrees of freedom and is the number of independent observations minus the number of parameters estimated (at least in this model).

Calculating $\hat{\beta}_0$ and $\hat{\beta}_1$ requires 2 data points (since we want to fit a line), so whenever we are using the already estimated $\hat{\beta}_0$ and $\hat{\beta}_1$ we have n-2 free points left.

In this case we estimate the two parameters β_0 and β_1 (which are hidden in $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$) and therefore have n-2 degrees of freedom.

Variance of $\hat{\beta}_0$ and $\hat{\beta}_1$

Since $\hat{\beta}_0$ and $\hat{\beta}_1$ are linear combinations of the y_i which are generally normally distributed random variables, they are normally distributed as well. As such their variance can be calculated to be:

$$Var(\hat{\beta}_0) = \sigma^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right)$$
$$Var(\hat{\beta}_1) = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

 σ^2 can then be substituted by s^2 to get the estimated variance of $\hat{\beta_0}$ and $\hat{\beta_1}$.

T-tests

We want to test for $H_0: \beta_1 = 0$. This hypothesis states that the covariate has no effect on the outcome. Meaning that there is absolutely no association between the two variables.

Under this hypothesis it holds that

$$T = \frac{\hat{\beta}_1}{\sqrt{var(\hat{\beta}_1)}} = \frac{\hat{\beta}_1}{se(\hat{\beta}_1)} \sim t_{n-2}$$

For a given significance level α we can then reject the null hypothesis if $|T| > t_{n-2,1-\frac{\alpha}{2}}$, where $t_{n-2,1-\frac{\alpha}{2}}$ is the $1-\frac{\alpha}{2}$ quantile of the t_{n-2} distribution.

Another approach is to calculate the probability of a result as or more extreme than the observed and reject the null hypothesis if $p < \alpha$. For a two-sided test this probability is given by $2 \cdot (1 - P(t < |T|))$, $t \sim t_{n-2}$.

Confidence intervals

The confidence interval for β_1 (with accuracy $1 - \alpha$) is given by

$$\hat{\beta_1} \pm t_{n-2,1-\frac{\alpha}{2}} \cdot se(\hat{\beta_1})$$

Since this is a random function ($\hat{\beta}_1$ is a random variable) the confidence interval is random as well. Hence the interval covers the true value of β_1 with probability $1 - \alpha$.

Prediction of values

Given a fixed value x we want to predict the value of y at this point. The mean of the distribution of y is given by:

$$E(y) = E(\beta_0 + \beta_1 x + \epsilon) = E(\beta_0 + \beta_1 x) + E(\epsilon) = \beta_0 + \beta_1 x + 0$$

We can substitue β_0 and β_1 by their estimators $\hat{\beta_0}$ and $\hat{\beta_1}$ to obtain the estimated mean.

$$\hat{\beta}_0 + \hat{\beta}_1 x = \bar{y} - \hat{\beta}_1 \bar{x} + \hat{\beta}_1 x = \bar{y} + \hat{\beta}_1 (x - \bar{x})$$

We assume that \bar{y} is independent of $\hat{\beta}_1$ and can derive that

$$Var(\hat{\beta}_0 + \hat{\beta}_1 x) = Var(\bar{y}) + (x - \bar{x})^2 Var(\hat{\beta}_1)$$

$$= \frac{\sigma^2}{n} + (x - \bar{x})^2 \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

$$= \sigma^2 \left(\frac{1}{n} + \frac{(x - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right)$$

This is the variance of the distribution of y at x. Since the second term increases with the distance of x from \bar{x} , the variance increases as well. This means, that the prediction is more uncertain the further away x is from \bar{x} .

Analysis of Variance (ANOVA)

We now want to derive, how much of the variability of y is explained by the model and how much is left unexplained. The total variability is given by

$$\sum_{i=1}^{n} (y_i - \bar{y})^2$$

but it can be directly decomposed into the variability due to regression and the residual variability (proof on the slides).

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \underbrace{\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2}_{\text{explained by regression}} + \underbrace{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}_{\text{residual variability}}$$

ANOVA table for regression

Let k denote the number of regression slopes in the data not including the intercept, for this lecture k=1; df degrees of freedom, SS sum of squares, MS mean square

Source	df	SS	MS	F				
Regression	k	$SS_{regression} = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$	$\frac{SS_{regression}}{k}$	$\frac{MS_{regression}}{MS_{residual}}$				
Residual	n-k-1	$SS_{residual} = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$	$\frac{SS_{residual}}{n-k-1} = s^2$					
Total	n-1	$SS_{total} = \sum_{i=1}^{n} (y_i - \bar{y})^2$	$\frac{SS_{total}}{n-1}$					

Abbildung 1: ANOVA table

Percentage of variability explained

The percentage of variability explained by the model is given by the ratio of the variability explained by the model and the total variability.

$$R^{2} = \frac{\sum_{i=1}^{n} (\hat{y}_{i} - \bar{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}} = \frac{SS_{reg}}{SS_{tot}}$$

where SS_{reg} is the sum of squares explained by the regression and SS_{tot} is the total sum of squares. The result is a number between 0 and 1 which describes how many percent of the variability is explained by the model.

Pearson's correlation coefficient

Another measure of the association between two variables is Pearson's correlation coefficient. It is defined as:

$$r = sgn(\beta_1)\sqrt{R^2}$$

where $sgn(\cdot)$ is the sign function. The pears on correlation coefficient is always between -1 and 1 and describes the strength of the linear association between the two variables. It is symmetric, meaning that r(x,y) = r(y,x), so it does not matter which variable is the covariate and which is the outcome.