Tópicos: Topologia, conjuntos abertos, fechados, compactos e conexos, continuidade e homeomorfismo.

1. Provar que toda bola aberta B(x;r) é um conjunto aberto.

Solução: Seja $y \in B(r; x)$. Queremos provar que existe $\epsilon > 0$ tal que $B(y; \epsilon) \subseteq B(r; x)$. Definimos para isto $\epsilon := r - |y - x| > 0$. Logo, dado qualquer ponto $z \in B(y; \epsilon)$, temos que

$$|z - x| \le |z - y| + |y - x| < \epsilon + |y - x| = r - |y - x| + |y - x| = r.$$

Logo $z \in B(x;r)$. Isto é, $B(y;\epsilon) \subseteq B(x;r)$. Concluímos que B(x;r) é aberto.

- 2. Provar que $Z:=\{(x,y)\in\mathbb{R}^2: xy<0\}$ é aberto. Dica: Seja (a,b) no conjunto Z. Seja $\epsilon:=\min\{|a|,|b|\}>0$. Provar que $B((a,b);\epsilon)\subseteq Z$.
- 3. Provar que união de conjuntos abertos é um conjunto aberto.

Solução: Seja $\{A_{\lambda} : \lambda \in \Lambda\}$ uma família de abertos, onde Λ é um conjunto de índices (possívelmente infinito, não enumerável). Consideremos a união:

$$A:=\bigcup_{\lambda\in\Lambda}A_{\lambda}.$$

Seja $z \in A$. Logo $z \in A_{\lambda}$ para algum índice λ . Dado que A_{λ} é aberto, existe $\epsilon > 0$ tal que $B(z; \epsilon) \subseteq A_{\lambda}$. Logo $B(z; \epsilon) \subseteq A$. Concluímos que A é aberto.

- 4. Provar que a interseção de uma quantidade finita de abertos é um conjunto aberto.
- 5. Provar que a interseção de conjuntos fechados é um conjunto fechado. Será que união de fechados é também fechado? Se não for certo, dar um contraexemplo.
- 6. Dê exemplos de conjuntos que não são nem abertos nem fechados.
- 7. Prove que

$$\{(x,y) \in \mathbb{R}^2 : y > 0\}$$

é aberto.

- 8. Prove que um conjunto em \mathbb{R}^n é aberto se, e somente se, é união de bolas abertas.
- 9. Provar que $\mathbb{R} \times \{0\}$ é fechado em \mathbb{R}^2 .
- 10. Prove que as bolas fechadas são conjuntos fechados.
- 11. Seja $A \subset \mathbb{R}^n$ tal que existe d > 0 tal que $||x y|| \ge d$ para todo par de pontos $x, y \in A$. Prove que A é fechado em \mathbb{R}^n .
- 12. Seja $A\subset\mathbb{R}^2$ um conjunto não vazio contido numa reta de \mathbb{R}^2 . Prove que A não é aberto.
- 13. Seja $A \subseteq \mathbb{R}^n$. Prove que $\mathbb{R}^n \setminus int(A)$ é fechado.
- 14. Seja $A \subset B \subseteq \mathbb{R}^n$, e x ponto de acumulação de A. Será que x é também ponto de acumulação de B?
- 15. Se $A \subset \mathbb{R}^n$ é aberto, prove que sua fronteira tem interior vazio.
- 16. Seja $A \subseteq \mathbb{R}^n$ com $n \ge 2$. Prove que, dado $a \in \mathbb{R}^n \setminus A$, o conjunto $A \cup \{a\}$ é aberto se, e somente se, a é um ponto isolado da fronteira de A.
- 17. Prove que se $F \subseteq \mathbb{R}^n$ é fechado então sua fronteira tem interior vazio.
- 18. Sejam $F \in \mathbb{R}^n$ fechado e $f : F \to \mathbb{R}^m$ uma aplicação contínua. Mostre que f leva subconjuntos limitados de F em subconjuntos limitados de \mathbb{R}^m . Prove, exibindo um contra-exemplo, que não se conclui o mesmo removendo-se a hipótese de F ser fechado.
- 19. Prove que duas bolas abertas de \mathbb{R}^n são homeomorfas.

Solução: Dados $a \in \mathbb{R}^n$ e r > 0, consideremos a aplicação:

$$f: B(0,1) \to B(a,r)$$

 $x \to rx + a$

A aplicação f é bijetiva e contínua. Sua inversa, $f^{-1}: B(a,r) \to B(0,1)$, é dada por $f^{-1}(y) = \frac{1}{r}(y-a)$, donde se vê que f^{-1} é contínua, portanto f é um homeomorfismo. Pela transitividade da relação de homeomorfismo, conclui-se que duas bolas bertas quaisquer de \mathbb{R}^n são homeomorfas. Um argumento análogo prova que vale o mesmo para duas bolas, ambas, fechadas.

20. Verifique que a aplicação:

$$f: B(0,1) \to \mathbb{R}^n$$
$$x \to \frac{x}{1 - ||x||}$$

é um homeomorfismo entre a bola aberta unitária B(0,1) e \mathbb{R}^n . Conclua que qualquer bola aberta de \mathbb{R}^n é homeomorfa a todo o espaço \mathbb{R}^n .

21. Mostre que o cone $C=\{(x,y,z)\in\mathbb{R}^3; z=\sqrt{x^2+y^2}\}$ e \mathbb{R}^2 são homeomorfos.