Question	Answer	Marks	AO Element	Notes	Guidance
1	30.2 or 30.20 to 30.21	4		M3 for $\frac{1}{2} \times 10 \times 10 \times \sin 60$ $-\frac{60}{360} \times \pi \times \left(\frac{10}{2}\right)^{2}$ or M1 for $\frac{k}{360} \times \pi \times \left(\frac{10}{2}\right)^{2}$ oe and M1 for $\frac{1}{2} \times 10 \times 10 \times \sin c$ oe	
2	$[p =] 12$ $[q =] \frac{12}{5}$ oe	3		B1 for $[p =]$ 12 and B2 for $[q =]$ $\frac{12}{5}$ or M1 for $\frac{72}{360} [\times \pi] \times 2 \times 6$ oe	

Question	Answer	Marks	AO Element	Notes	Guidance
3(a)(i)	$[h =] 253.8 \div 18 \div \left(\frac{6}{2}\right) \text{ or }$	3		For M3 no errors at any stage	
	$[h =] \frac{253.8 \times 2}{6 \times 18}$ or			M2 for $253.8 = \frac{1}{2} \times 6 \times h \times 18$	
	$[h =] \frac{253.8}{18 \times \frac{6}{2}}$			oe (no previous errors)	
	$18 \times \frac{6}{2}$			or M1 for triangle area = $\frac{1}{2} \times 6 \times h \text{ soi}$	
3(a)(ii)	38.1 or 38.06 to 38.08	2		M1 for $\tan = \frac{4.7}{6}$ oe	
3(b)	358 or 357.9 to 358	6		M1 for $6^2 + 4.7^2$	
				M1 for $\sqrt{6^2 + 4.7^2} \times 18 \ [\times 2]$	
				M1 for $6 \times 18 \times 2$	
				M1 for 4. 7 × 18	
				M1 for $2 \times \frac{1}{2} \times 6 \times 4.7$	
				oe	

Question	Answer	Marks	AO Element	Notes	Guidance
4(a)	132.26 to 132.28 or 132.3	5		B1 for angle <i>ABO</i> or angle <i>CBO</i> = 90 soi M1 for tan [<i>XOB</i>] = $\frac{15}{8}$ oe M1 for tan [<i>BOY</i>] = $\frac{22.4}{8}$ oe A1 for [<i>BOY</i> =] 70.3 or [<i>XOB</i> =] 61.9	
4(b)	18.4 or 18.5 or 18.43 to 18.48	2		$\frac{\mathbf{M1} \text{ for}}{\frac{their(\mathbf{a})}{360}} \times 2 \times \pi \times 8$ oe	

Question	Answer	Marks	AO Element	Notes	Guidance
4(c)	75.7 to 75.9	4		M1 for $\frac{1}{2} (15 + 22.4) \times 8 \text{ oe}$ M2 for $\frac{their(\mathbf{a})}{360} \times \pi \times 8^2 \text{ oe}$ or M1 for one sector either $\frac{inv \tan\left(\frac{15}{8}\right)}{360} \times \pi \times 8^2$ oe or $\frac{inv \tan\left(\frac{22.4}{8}\right)}{360} \times \pi \times 8^2$ oe oe	
5(a)	$75000 \times 60 \times 20$ oe	M1		Allow \times 1200 for \times 60 \times 20	
5(b)	16.4 or 16.36	3		M2 for $\frac{9 \times 10^7 \times 100}{1000 \times 55 \times 10^4}$ oe or B2 for answer 0.164 or 0.1636 or B1 for answer figs 164 or 1636 or M1 for figs $9 \div \text{figs } 55$	

Question	Answer	Marks	AO Element	Notes	Guidance
6	28.3 or 28.27 to 28.28	3		M2 for $\frac{76}{360} \times 2\pi \times 8.5 + 2 \times 8.5$ oe or M1 for $\frac{76}{360} \times 2\pi \times 8.5$ oe	
7(a)	3770 or 3769 to 3770	2		M1 for $\frac{1}{3} \times \pi \times 10^2 \times 36$	

Question	Answer	Marks	AO Element	Notes	Guidance
7(b)	3.68 or 3.683 to 3.684	4		M3 for $\begin{bmatrix} r^3 = \end{bmatrix}$ $\frac{1}{2} \times their(\mathbf{a}) \times \frac{3}{4\pi \times 9}$ oe or M2 for $\frac{4\pi r^3}{3} + \frac{4\pi (2r)^3}{3}$ $= \frac{1}{2} \times their(\mathbf{a})$ or for $\frac{4\pi r^3}{3}$ $= \frac{1}{1+8} \times \frac{1}{2} \times their(\mathbf{a})$ or M1 for $\frac{4\pi r^3}{3} + \frac{4\pi (2r)^3}{3}$ or $\frac{1}{2} \times \frac{\pi \times 10^2 \times 36}{3}$	
				or $\frac{1}{2} \times their(\mathbf{a})$ seen or ratio of vols = 1:2 ³ oe seen	

Question	Answer	Marks	AO Element	Notes	Guidance
8(a)	M1 for $\frac{1}{2} \times 4 (x - 1) \times (2x + 5) [\sin 90]$ = 30 oe B1 for $8x^2 - 8x + 20x - 20$ or better A1 for completion to $2x^2 + 3x - 20 = 0$	3		correct expansion of brackets with no errors or omissions seen	
8(b)	M2 for $(2x - 5)(x + 4)$ B1 for 2.5 and -4 cao	3		Allow M2 for e.g. 2x (x + 4) - 5 (x + 4) then $2x - 5 [= 0]$ and x + 4 [= 0] M1 for 2x (x + 4) - 5 (x + 4) or x (2x - 5) + 4 (2x - 5) or $(2x + a) (x + b) [= 0]$ where $ab = -20$ or a + 2b = 3 [a, b integers]	

Question	Answer	Marks	AO Element	Notes	Guidance
8(c)	11.7 or 11.66 or 11.67	3		M2dep for $(4 (their2.5 - 1))^2 + (2 \times their2.5 + 5)^2$ or M1dep for $4 (their2.5 - 1)$ or $2 \times their2.5 + 5$ OR B1 for $\sqrt{20x^2 - 12x + 41}$ and M1dep for substituting $x = their 2.5$ into $\sqrt{20x^2 - 12x + 41}$ at any stage	
9(a)	427 or 427.2 to 427.3	2		M1 for $\pi \times 8 \times 17$	
9(b)	1010 or 1005	4		M2 for $\sqrt{17^2 - 8^2}$ oe or M1 for $h^2 + 8^2 = 17^2$ oe M1 for $\frac{1}{3} \times \pi \times 8^2 \times their h$ oe	
9(c)	804 or 804.2 to 804.4 or 808	1		FT <i>their</i> (b) × 0.8	

Question	Answer	Marks	AO Element	Notes	Guidance
9(d)	396 or 395.6 to 395.8 or 392	1		FT 1200 – their (c)	
10	81.7 or 81.71 to 81.72	2		M1 for $\pi \times 5.1^2$	
11(a)	25	2		M1 for $\frac{90 \times 1000}{60 \times 60}$ oe	
11(b)	1.25	1		FT $\frac{their(a)}{20}$ correctly evaluated	
11(c)	1250	2		2FT for <i>their</i> (a) × 50 correctly evaluated or M1 for one area e.g. $\frac{1}{2}(40 + 60) \times 25$, 25×40 , $\frac{1}{2} \times 25 \times 20$, $\frac{1}{2}(40 + 60) \times 90$, 90×40 , $\frac{1}{2} \times 90 \times 20$, $\frac{1}{2}(40 + 60) \times their 25$, <i>their</i> 25 × 40, $\frac{1}{2} \times their 25 \times 20$	
12	628 or 628.3 to 628.4 cm ³	3		B2 for 628 or 628.3 to 628.4 or M1 for $5^2 \times 8 \times \pi$ B1 for cm ³	

Question	Answer	Marks	AO Element	Notes	Guidance
13(a)	$\pi \times 6 \times 12 + \pi \times 6^2 = 108\pi$	M2		M1 for $\pi \times 6 \times 12$	
13(b)	[x =] 5.2[0] or 5.196 $[y =] 6$	4		B2 for x correct or M1 for $4\pi x^2 = 108\pi$ seen B2 for y correct or M1 for $\frac{1}{2} (4\pi y^2) + \pi y^2$ or better seen	
14	204 or 203.5 to 203.6 nfww	4		M2 for $\pi \times 1.5^2 \times 8 \times 60 \times 60$ or M1 for $\pi \times 1.5^2$ M1 for dividing <i>their</i> volume by 1000 If 0 scored SC1 for an answer figs 204 or figs 2035 to 2036 without working	

Question	Answer	Marks	AO Element	Notes	Guidance
15(a)	4.79 or 4.788 to 4.789	3		M2 for $\sqrt[3]{\frac{230 \times 3}{2 \times \pi}}$ oe	
				or M1 for	
				$230 = \frac{2}{3} \times \pi \times r^3 \text{ oe}$	
				If 0 scored SC1 for answer 3.8[0]	
15(b)(i)	8.7[0] or 8.702 to 8.704	3		M2 for $(300 - 230) \div (1.6^2 \pi)$	
				or M1 for $\pi \times 1.6^2 \times h$	
15(b)(ii)	6.4	3		M2 for	
				$1.6 \times \sqrt[3]{\frac{19200}{300}}$ oe	
				or M1 for sf $\sqrt[3]{\frac{19200}{300}}$	
				or $\sqrt[3]{\frac{300}{19200}}$ oe or for $\left(\frac{1.6}{r}\right)^3 = \frac{300}{19200}$	
				$\int \operatorname{or} \operatorname{for} \left(\frac{1.6}{r} \right)^3 = \frac{300}{19200}$	

Question	Answer	Marks	AO Element	Notes	Guidance
16(a)	116.6 or 116.56 to 116.57	4		M1 for $\sin [EAD] = \frac{6}{12}$ oe M1 for $\tan [BAC] = \frac{6}{12}$ oe B1 for [angle DAC] = 60	
16(b)	13.4 or 13.41 to 13.42	2		M1 for $12^2 + 6^2$	
16(c)	10.4 or 10.39	3		M2 for $\sqrt{12^2 - 6^2}$ or M1 for $AE^2 + 6^2 = 12^2$	
16(d)	130 or 129.5 to 129.6	4		M1 for 0.5× 6×theirAE oe M1 for 0.5×12×12×sin 60 oe M1 for 0.5× 6×12 oe	
17(a)	M1 for $x^2 + (2x - 3)^2 = 6^2$ oe or $x^2 + 4x^2 - 6x - 6x + 9 = 36$ B1 for $4x^2 - 6x - 6x + 9$ or better A1 for $5x^2 - 12x - 27 = 0$	3		Dep on M1B1 with no errors or omissions	

Question	Answer	Marks	AO Element	Notes	Guidance
17(b)	B2 for $\frac{-(-12) \pm \sqrt{(-12)^2 - 4(5)(-27)}}{2 \times 5}$ or better or $\frac{12}{10} \pm \sqrt{\left(\frac{12}{10}\right)^2 + \frac{27}{5}}$ B2 for -1.42, 3.82 final answers	4		B1 for $\sqrt{(-12)^2 - 4(5)(-27)}$ or for $\left(x - \frac{12}{10}\right)^2$ oe or $\frac{-(-12) + \sqrt{q}}{2 \times 5}$ oe or $\frac{-(-12) - \sqrt{q}}{2 \times 5}$ oe or both B1 for each If B0, SC1 for answers -1.4 or -1.415 to -1.415 and 3.8 or 3.815 to 3.815 or answers -1.41 and 3.81 or -1.42 and 3.82 seen in working or for -3.82 and 1.42 as final ans	
17(c)	14.4 or 14.5 or 14.44 to 14.46	2		2FT for 3 × their positive root + 3 evaluated to 3sf or better M1 for 3 × their positive root + 3 oe	

Question	Answer	Marks	AO Element	Notes	Guidance
17(d)	39.5 or 39.46 to 39.54	2		M1 for trig statement seen to find either angle $\sin = \frac{their x}{6} \text{ oe or}$ $\sin = \frac{their (2x - 3)}{6}$ oe	
18(a)	M2 for $8^2 + 7^2 - 2 \times 7 \times 8 \times \cos 78$ oe A2 for 9.471 to 9.472	4		M1 for correct implicit version A1 for 89.7	
18(b)	46.3 or 46.29 to 46.30	3		M2 for $[\sin OAC =] \frac{7 \sin 78}{9.47}$ or M1 for $\frac{\sin OAC}{7} = \frac{\sin 78}{9.47}$	
18(c)	M1 for 29.5 – (7 + 8 + 9.47) M3 for $ \frac{360 \times (29.5 - (7 + 8 + 9.47))}{2 \times \pi \times 7} $ B1 for 41.15 to 41.171	5		M2 for $\frac{x}{360} \times 2 \times \pi \times 7$ = their arc length oe or M1 for $\frac{x}{360} \times 2 \times \pi \times 7$ oe	

Question	Answer	Marks	AO Element	Notes	Guidance
18(d)	45[.0] or 44.98 to 45.01 nfww	4		M3 for $\frac{1}{2} \times 8 \times 7 \times \sin 780e + \frac{41.2}{360} \times \pi \times 7^2$ oe OR M1 for $\frac{1}{2} \times 8 \times 7 \times \sin 78$ oe or $\frac{1}{2} \times 8 \times 7 \times \sin 78$ oe or $\frac{1}{2} \times 8 \times 9.47 \times \sin their$ (b) oe M1 for $\frac{41.2}{360} \times \pi \times 7^2$ oe	
19(a)	24	2		B1 for angle $PRQ = 24$	
19(b)	29.4 or 29.40 to 29.41	3		M2 for $\frac{360 - 48}{360} \times 2 \times \pi \times 5.4$ or B2 for answer (minor arc) 4.52 or 4.523 to 4.524 or M1 for $\frac{48}{360} \times 2 \times \pi \times 5.4$	
20	2.24	2		M1 for $0.5 \times 1.6 \times 2.8$	

Question	Answer	Marks	AO Element	Notes	Guidance
21	2.71 or 2.709 to 2.710	3		M2 for $\sqrt[3]{500 \div \left(6 \times \frac{4}{3} \pi\right)}$ oe or M1 for $500 = 6 \times \frac{4}{3} \pi r^3$ oe If 0 scored, SC1 for answer 4.92 or 4.923 to 4.924	

Question	Answer	Marks	AO Element	Notes	Guidance
22(a)	1930 or 1940 or 1933.4 to 1935.3	5		B1 for interior angle 120 soi or angle at centre 60 soi or for correct use of Pythagoras' with 7 and 3.5 or with 14 and 7 M3 for $6 \times \frac{1}{2} \times 7^2 \times \sin 60 \times 15.2$ oe or complete other methods or M2 for $6 \times \frac{1}{2} \times 7^2 \times \sin 60$ oe OR M1 for $\frac{1}{2} \times 7^2 \times \sin 60$ oe or other partial area of hexagon M1dep for their area × 15.2 evaluated	

Question	Answer	Marks	AO Element	Notes	Guidance
22(b)	893 or 892.8 to 893.0	3		M2 for $6 \times 7 \times 15.2$ $+ 2 \times 6 \times \frac{1}{2} \times 7^2 \times \sin 60$ oe or for $6 \times 7 \times 15.2 +$ $2 \times their$ area of hexagon from (a) oe or M1 for $[6 \times]7 \times 15.2$ oe or $2 \times their$ area of hexagon from (a) oe	

[Total: 146]