Théorème de la base de BURNSIDE

Clarence Kineider

Leçons: 101, 104, 108, 151

Référence : Zavidovique, Un max de maths.

Théorème : Soit p premier et G un p-groupe (i.e. $|G|=p^n$). Alors les parties génératrices minimales (pour l'inclusion) de G sont toutes de même cardinal.

Dans la suite, on se fixe p premier et G un p-groupe.

Définition : Un sous-groupe $H \leq G$ est dit maximal s'il est *strict* et maximal pour l'inclusion. On note \mathcal{M} l'ensemble des sous-groupes maximaux de G.

Lemme : Tout sous-groupe maximal H de G est distingué dans G et $G/H \simeq \mathbf{Z}/p\mathbf{Z}$.

Démonstration : Soit $H \in \mathcal{M}$. Soit $N = \{g \in G \mid gH = Hg\}$ le normalisateur de H dans G. On considère l'action de H sur l'ensemble des classes à gauche modulo H, et on fixe $g_1H, ..., g_rH$ des représentants des classes de G/H. La formule des classes donne :

$$|G/H| = \sum_{i=1}^{r} \frac{|H|}{|Stab_H(g_iH)|}$$

On a $p \mid |G/H|$ et si $Stab_H(g_iH) \subsetneq H$, alors $p \mid \frac{|H|}{|Stab_H(g_iH)|}$. En passant la formule aux classes modulo p, on obtient :

$$|\underbrace{\{g_i H \in G/H \mid \forall h \in H, hg_i H = g_i H\}}_{(G/H)^H}| \equiv 0 \text{ [mod } p]$$

Montrons que $gH \in (G/H)^H \Leftrightarrow g \in N$.

Soit $gH \in (G/H)^H$. On a pour tout $h, h' \in H$, $hgh' \in gH$. En particulier avec h' = e, on a $hg \in gH$. Donc gH = Hg, donc $g \in N$. Réciproquement si $g \in N$ et $h \in H$, alors hgH = hHg = Hg = gH, donc $gH \in (G/H)^H$. On a donc $|N/H| \equiv 0 \pmod{p}$, donc $|N/H| \neq 1$. Or $H \leqslant N$ et H est maximal, donc N = G, i.e. H est distingué dans G.

Par maximalité de H, le quotient G/H n'a pas de sous-groupe propre non trivial. Il est donc cyclique (car pour tout $x \in G/H$ avec $x \neq 1$, $\langle x \rangle$ est un sous groupe non trivial de G/H, donc $\langle x \rangle = G/H$). De plus, le cardinal de G/H est une puissance de p, donc $G/H \simeq \mathbf{Z}/p^k\mathbf{Z}$. Si $k \neq 1$, alors $G/H \simeq \mathbf{Z}/p^k\mathbf{Z}$ a des sous groupes propres non triviaux, absurde. Donc $G/H \simeq \mathbf{Z}/p\mathbf{Z}$.

Démonstration du théorème : Soit $\Phi(G) = \bigcap_{H \in \mathcal{M}} H$ le sous-groupe de Frattini de G. Par le lemme, pour tout $H \in \mathcal{M}, H \triangleleft G$. Donc $\Phi(G) \triangleleft G$.

On montre tout d'abord le résultat pour le p-groupe $G/\Phi(G)$. Pour cela, on va munir $G/\Phi(G)$ d'une structure de \mathbf{F}_p -espace vectoriel.

Pour tout $H \in \mathcal{M}$, G/H est abélien (par le lemme), donc $D(G) \leq H$. Donc $D(G) \leq \Phi(G)$, donc $G/\Phi(G)$ est abélien. De plus, par le lemme, pour tout $x \in G$ et pour tout $H \in \mathcal{M}$, on a $x^p \in H$ (car $\overline{x}^p = 1$ dans $G/H \simeq \mathbf{Z}/p\mathbf{Z}$). Donc pour tout $x \in G$, $x^p \in \Phi(G)$.

On peut donc poser, pour $x, y \in G/\Phi(G)$ et $\lambda \in \mathbf{F}_p$, x + y := xy et $\lambda.x := x^{\lambda}$. Ces opérations munissent $G/\Phi(G)$ d'une structure de \mathbf{F}_p -espace vectoriel.

De plus, si $X \subset G/\Phi(G)$ on a $\langle X \rangle = \operatorname{Vect}_{\mathbf{F}_p}(X)$. Or toutes les parties génératrices minimales pour la structure de \mathbf{F}_p -espace vectoriel ont le même cardinal (ce sont des bases), ce qui donne le résultat.

Pour le cas général, on montre que $X \subset G$ est génératrice dans G si et seulement si $\pi(X)$ est génératrice dans $G/\Phi(G)$ (avec $\pi: G \to G/\Phi(G)$ la projection canonique).

Le sens direct découle immédiatement de la surjectivité de π . On montre le sens indirect par contraposée : soit $X \subset G$ tel que $\langle X \rangle$ est un sous groupe strict de G. Alors il existe $H \in \mathcal{M}$ tel que $\langle X \rangle \leqslant H < G$. Donc $\langle \pi(X) \rangle \leqslant \pi(H) < \pi(G) = G/\Phi(G)$ car $H \subsetneq G$ et $\Phi(G) \leqslant H$. Donc $\pi(X)$ n'est pas génératrice dans $G/\Phi(G)$, ce qui termine la démonstration.

Remarque:

Vous pouvez appliquer la formule des classes modulo p directement, et passer rapidement sur l'égalité $(G/H)^H = N/H$ si vous êtes à l'aise, vous aurez plus de temps pour expliquer la partie espace vectoriel. Pour l'égalité $\langle X \rangle = \operatorname{Vect}_{\mathbf{F}_p}(X)$, il suffit de l'écrire, tout vient de la façon dont on a posé la loi +.