Math Review Part II

Problem Set 2: Convexity

Divya Bhagia*

August 20, 2019

- 1. In vector space V, let $\{S_{\alpha}\}_{{\alpha}\in A}$ be a family of convex sets. For the following statements, prove it if true or disprove it by providing a counterexample if false.
 - 1.1. $\cap_{\alpha \in A} S_{\alpha}$ is convex
 - 1.2. $\bigcup_{\alpha \in A} S_{\alpha}$ is convex
- 2. In vector space V, let $\{x_1, x_2, ..., x_n\}$ be a finite set of vectors. Then prove that

$$Co(\{x_1, x_2, ..., x_n\}) = \left\{ \sum_{i=1}^n \lambda_i x_i : \lambda_1, \lambda_2, ..., \lambda_n \in \mathbb{R}_+ \text{ and } \sum_{i=1}^n \lambda_i = 1 \right\}$$

- 3. Consider a function $f: S \to \mathbb{R}$, where S is a convex set in vector space V. Prove the following:
 - 3.1. f is (strictly) convex/quasiconvex iff -f is (strictly) concave/quasiconcave.
 - 3.2. If f is (convex) concave and $\phi : \mathbb{R} \to \mathbb{R}$ is weakly increasing and (convex) concave, then $\phi \circ f$ is (convex) concave.
- 4. (Jensen's Inequality) Consider a function $f: S \to \mathbb{R}$, where S is a convex set in vector space V. Prove the following:
 - 4.1. f is convex iff

$$f\left(\sum_{i=1}^{n} \lambda_i x_i\right) \le \sum_{i=1}^{n} \lambda_i f(x_i)$$

for any $x_1, x_2, ..., x_n \in S$ and $\lambda_1, \lambda_2, ..., \lambda_n \in \mathbb{R}_+$ with $\sum_{i=1}^n \lambda_i = 1$.

^{*}PhD Candidate in Economics at Boston College (email: bhagia@bc.edu)

4.2. f is concave iff

$$f\left(\sum_{i=1}^{n} \lambda_i x_i\right) \ge \sum_{i=1}^{n} \lambda_i f(x_i)$$

for any $x_1, x_2, ..., x_n \in S$ and $\lambda_1, \lambda_2, ..., \lambda_n \in \mathbb{R}_+$ with $\sum_{i=1}^n \lambda_i = 1$.

- 5. Consider a function $f: S \to \mathbb{R}$, where S is a convex set in \mathbb{R}^n . For the following statements, prove it if true or disprove it by providing a counterexample if false.
 - 5.1. If f is concave, then it is quasiconcave
 - 5.2. If f is quasiconcave, then it is concave
 - 5.3. If f is convex, then it is quasiconvex
 - 5.4. If f is quasiconvex, then it is convex
- 6. Determine if possible, which of the following properties each of the following functions satisfies: convexity, strict convexity, concavity, strict concavity, quasiconcavity, strict quasiconcavity.
 - 6.1. $f(x,y) = x^2y^2$ for $x \ge 0$ and $y \ge 0$.
 - 6.2. $f(x,y) = x e^x e^{x+y}$
- 7. Consider the Cobb-Douglas function $f(x,y) = cx^ay^b$ with a,b,c>0 and x,y>0. What are the conditions required for this function to be concave?
- 8. Show that a generalized Constant Elasticity of Substitution (CES) function given by

$$f(x) = \left(\sum_{i=1}^{n} a_i x_i^{\rho}\right)^{\frac{1}{\rho}}$$

with $a_i > 0$ for all i and $\rho \in (0, 1)$ is quasiconcave.