КИНЕМАТИКА КРИВОЛИНЕЙНОГО ДВИЖЕНИЯ

$$|ec{v}_0| = |ec{v}|$$

 $ec{v}\uparrow\uparrow$ касательн.

Даже если $|ec{v}|-const$, $ec{v}$ - меняется

Словно есть $\vec{a} = rac{\Delta \vec{v}}{\Delta t}$ $\vec{a} \uparrow \uparrow \Delta \vec{v}$

Криволинейное движение можно свести к движению по окружности

(2) Центростремительное ускорение

$$|ec{v}_0| = |ec{v}| = v$$

$$a_{\mathit{uc}} = rac{v^2}{R}$$

— в векторном виде не имеет физического смысла

Направление a_{uc} : $\vartriangle BCD$ $\phi + 2\alpha = 180^\circ$

т.к. $\Delta t o 0 \Longrightarrow \phi o 0 \Longrightarrow \ \alpha o 90^\circ \Longrightarrow \ \Delta \vec{v} \perp \vec{v} \implies \vec{a}_{\mathit{uc}} \perp v$

примечание

• ϕ \longrightarrow (фи) угол поворота

КИНЕМАТИКА КРИВОЛИНЕЙНОГО ДВИЖЕНИЯ

Движение по окружности

$$egin{cases} v_A
eq v_{A'} \ v_B
eq v_{B'} \end{cases}
ightharpoons ext{линейные скорости}$$

$$\omega = rac{\phi}{\Delta t}
ightarrow$$
 угловая скорость $[\omega] = rac{pa\partial}{c}$

4 Радиан

Радиан – центральный угол, длина дуги которого равна R (радиусу)

Во всей окружности содержится $\dfrac{2\pi R}{D}=2\pi$ радиана

(5) Связь между угловой и линейной скоростями

Пусть за t секунд диск сделает n оборотов

Пусть за
$$t$$
 секунд диск сделает n оборотов
$$1 \text{ оборот } \longrightarrow 2\pi \text{ рад } \\ n \text{ оборот } \longrightarrow 2\pi n \text{ рад } \end{cases} \Rightarrow \omega = \frac{\phi}{t} = \frac{2\pi n}{t} = 2\pi \nu = \sqrt{\frac{2\pi}{T}}$$

$$T=rac{1}{
u}$$
 $T=rac{n}{t}$ $T=rac{t}{n}$ $T=$

$$[T]=c$$
 — период обращения (время одного оборота)

Напоминание: $2\pi R
ightarrow$ длина окружности

связь угловой и линейной скоростей

примечание

- ω \longrightarrow (омега) угловая скорость
- $u \longrightarrow ($ ню) частота {письменно пишется как: u }