Index

Note: Page numbers followed by f indicate figures and t indicate tables.

A	Amplitude beam-pattern, 149f
Active constraints, 544	Analog signal
Active set, 692	Fourier transform, 435f
Adaptive algorithm, 162	sampling process, 432 <i>f</i> , 434–435
Adaptive Boosting (AdaBoost) algorithm, 307–311	Analog-to-information sampling, 434–435
Adaptive coordinate descent scheme, 259–261	Analysis of variance (ANOVA), 570
Adaptive CoSaMP (AdCoSaMP) algorithm, 479–480, 484f	APA. See Affine projection algorithm (APA)
Adaptive decision feedback equalization, 202–204	Approximate inference
Adaptive decision recuback equalization, 202–204 Adaptive gradient (ADAGRAD) algorithm, 368	block methods, 809-813
Adaptive line element (ADALINE), 881	loopy belief propagation, 813-816
Adaptive rine element (ADALINE), 881 Adaptive projected subgradient method (APSM), 349–350	variational methods, 804–809
	Approximation error, 94, 374–376, 511
algorithm, 350	APSM. See Adaptive projected subgradient method (APSM)
asymptotic consensus, 358	Arithmetic averaging rule, 305
combine-then-adapt diffusion, 357–358	ARMA model. See Autoregressive-moving average
constrained learning, 356	(ARMA) model
convergence of, 351–356	AR models. See Autoregressive (AR) models
distributed algorithms, 357–358	Assumed density filtering (ADF), 682
hyperslabs, 352	Asymptotic distribution, of LS estimator, 238-239
parameters, 352–356	Augmented Lagrangian method, 387-388
projection operation, 351	Authorship identification, 570–573
SpAPSM, 480–484, 481f, 484f	Autocorrelation matrix, 114–115
Adaptive signal processing, 5	Autocorrelation sequence, 33–35
Adapt-then-combine DiLMS, 215–216, 216f	Auto-cumulants, 1021
Additive models approach, 568–570	Autoencoders, 919-920, 925-927
Ad hoc networks, 210	Automatic relevance determination (ARD), 655-656
ADMM algorithm. See Alternating direction method of	Autoregressive hidden Markov model, 829
multipliers (ADMM) algorithm	Autoregressive (AR) models, 38–40
Affine projection algorithm (APA), 188–194, 201	Autoregressive-moving average (ARMA) model, 40
convergence, 353	Autoregressive process estimation, 153
curves for, 355f	Auxiliary particle filtering, 862–868
geometric interpretation of, 189–191	Auxiliary variable Markov chain Monte Carlo methods, 735
normalized LMS, 193-194	Average mutual information, 44–45, 47
orthogonal projections, 191–194	Average risk, Bayesian classification, 278–280
set-membership, 354	Averaging method, 187
widely-linear, 195-196	Averaging rule, 217
Affine set, 415–416	
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),	
696–699	В
ALMA algorithm, 560	Backpropagation algorithm, 877, 886–897
Alternating direction method of multipliers (ADMM)	activation functions, 894
algorithm, 220–221, 387–388	cost function, 896–897
Alternating optimization, 608–609	gradient descent scheme, 887–894
Amino-acids, proteinogenic, 314–315	initialization, 894
Annio-acids, proteinogenie, 514–515	initialization, 894

Backpropagation algorithm (Continued)	multiple-cause networks, 760, 761f
preprocess input variables, 894	naive Bayes classifier, 835f
target values, 894	set of findings and diseases, 806f
Backtracking, 783–785	sigmoidal, 758–759, 759f, 760
Backward errors, 138–140	soundness, 761–762
Backward MSE optimal predictors, 134–138	triangulated graph, 800–801, 800f
Bagging, 303–304	Bayesian regression, 690–692
Bag-of-words approach, 571	computational considerations, 692
Bandpass filter, 37–38	hyperparameters, 691–692
Base learner, 307	Bayes's theorem, 13, 276–277, 586
Base transition matrices, 724	Beamforming, 145–148
Basis pursuit, 407, 418	Belief propagation, 782
Basis pursuitde-noising (BPDN), 408	Bernoulli distribution, 18
Basis vector, 395	Best linear unbiased estimator (BLUE), 144–145, 237–238
Batch learning, 376–379	Beta distribution, 25–26
Batch processing methods, 162	Bethe entropy approximation, 813–814
Baum-Welch algorithm, 827-828	Bethe free energy cost, 813–814
Bayesian approach, 5	Between-classes scatter matrix, 296
to regression, 589–593	Biased estimation, 64–67
to sparsity-aware learning, 655-661	Biasor, 57–58
Bayesian classification, 276–280	Bias-variance dilemma/tradeoff, 77–81
average risk, 278–280	BIC. See Bayesian information criterion (BIC)
designing classifiers, 282	Big data problems, 162
equiprobable Gaussian classes, 284f	Big data tasks, 376
Gaussian distributed classes, 283f	Binary classifier, 307–308
implicitly forms hypersurfaces, 281f	Binomial deviance function, 311–313
M-class problem, 278–279, 284, 293–294	Binomial distribution, 18–19
misclassification error, 277–280	Bipartite graph, 769
reject option, 279	Blind source separation (BSS), 964–965
Bayesian decision theory, 276	Blocking Gibbs sampling, 734
Bayesian inference, 84–89, 87f	Block methods, 809–813
Bayesian information criterion (BIC), 599	Block processing techniques, 197
Bayesian learning, 11–12	Block sparsity, 468
neural networks, 902–903	BLUE. See Best linear unbiased estimator (BLUE)
regularization, 75	BNs. See Bayesian networks (BNs)
variational approximation, 640-645	Boltzmann machines, 767
Bayesian networks (BNs)	graph nodes representing, 812f
causality, 753–755	mean field approximation, 810–813
cause-effect relationships, 753–755	MRF, 809f
completeness, 761–762	variational approximation, 807–809
<i>d</i> -separation, 755–758, 758 <i>f</i>	**
faithfulness, 761–762	Boolean approach, bag-of-words, 571 Boosting approach, 307–313
graphs, 749–753	Boosting approach, 307–313 Boosting trees, 313–314
I-maps, 761–762	_
independent variables, 751f	Bootstrap Aggregating, 303–304
joint pdf, 836–837	Bootstrap techniques, 93
Kalman filtering, 852–854	Box-Müller method, 713–714
latent Markov model, 818f	Bregman divergence, 389
linear Gaussian models, 759–760	Burn-in phase, Metropolis method, 730

C	Clifford algebras, 552
Calculus of variations, 641	Clique, 764 <i>f</i> , 769 <i>f</i>
Canonical correlation analysis (CCA)	message passing, 801–804
content-based image retrieval, 953	potentials, 763
correlation coefficient, 951–952	Closed convex set, 345–346
eigenvalue-eigenvector problem, 952, 953–954	associated projection operator, 338-339
goals, 951	finite number, 341
optimization task, 951–952	Hilbert space, 334, 337, 339–340, 344
PLS method, 954–955	infinite, 349–356
Capon beamforming, 148	nonempty intersection, 342
CART. See Classification and regression trees (CART)	sliding window, 349–350
Cauchy-Schwartz inequality, 34, 396	Clustering, 3, 64, 617–620
Cauchy sequence, 397	Cocktail party problem, 963–966
Causality, 753–755	Codon, 314–315
Cause-effect relationships, 753–755	Collapsed Gibbs sampling, 735
Centralized networks, 209, 210 <i>f</i>	Combine-then-adapt diffusion APSM, 357-358
Central limit theorem, 24–25	Combine-then-adapt diffusion LMS, 217
	Common sense reasoning, 753–754
Chain graph, 773–776	Communications channel, 43–44
Change-point detection, 737–738	Compatibility functions/factors, 762
Channel equalization, 126–132	Complementary slackness conditions, 1026
Channel identification, 144–145	Complete dictionaries, 414–415
Characteristic functions, 1020	Complex linear space, 394
Chinese restaurant process (CRP), 683–684	Complex networks, 211
Chi-squared distribution, 27	Complex random variables, 16–17
Cholesky factorization, 140, 255	Complex-valued case
Circular condition, 115–116	adaptive decision feedback equalization, 202-204
Class assignment rule, 303	least mean fourth algorithm, 196-197
Classification, 2–3, 60–64	mean-square-error loss function, 175-176, 194-195
Bayesian classification, 276–280	sign-error LMS, 196
decision (hyper)surfaces, 280–290	transform-domain LMS, 197-201
discrete nature, 275–276	widely-linear APA, 195–196
Gaussian random process, 692–693	widely-linear LMS, 195
generative vs. discriminative learning, 63–64	Complex-valued data, widely linear RLS, 254-255
logistic regression model for, 662–666	Complex-valued variables
<i>M</i> -class problem, 278–279, 284, 293–294	extension to, 111–118
POCS, 347–349	widely linear, 113–116
protein folding prediction, 316, 318	Wirtinger calculus, 116–118
trees, 300–304, 301 <i>f</i>	Composite mirror descent, 389
two-class task, 277, 286, 290f, 296–297, 312	Compressed sensing (CS), 404
unstable, 303	analog-to-information conversion, 434-436
Classification and regression trees (CART), 300, 317f, 318	definition, 430–431
Classifiers, 2, 3f	description, 431–436
combining, 304–307	dimensionality reduction, 433-434
experimental comparisons, 304-305	sparse signal representation, 487-488
goal to design, 60–61	stable embeddings, 433–434
schemes for combining, 305–307	sub-Nyquist sampling, 434-436
Class imbalance problem, 552	Compressed sensing matching pursuit (CSMP) algorithms,
Class label variable, 61	455–456, 460, 479–480

Compressive sampling matching pursuit (CoSaMP), 455–456, 480	connection, 756 distributed learning, 181–186, 218–219
Computational considerations, Bayesian regression, 692	distributions, 49–51
Computation, of lower bound, 650–651	error vector, 181–186
Concave, 667, 668–669	issues, Metropolis method, 731–732
Concentration parameter, 684	in mean, 182–183, 218
Conditional entropy, 45	NORMA, 559–560
Conditional independencies, 749, 752–753	performance, 218–219
Conditional information, 43–44, 47	stochastic (see Stochastic convergence)
Conditional log-likelihood, 835–836	Convex, 330–333
Conditional pdf, 632–633, 634–637	duality, 666–671
•	•
Conditional probabilities, 12–13 Conditional random fields (CRFs), 767–768	online learning, 367–370
	optimization techniques, 458, 460, 478, 487
Conditional Random Markov Field, 768	programming, 1028–1029
Conditional restricted Boltzmann machine (CRBM), 920–922	separating hyperplane, 370
Conjugate function, 666–667	strictly, 331
Conjugate prior, 89	theory, 328
Dirichlet distribution, 604	Convex set, 329
gamma distribution, 601	closed (see Closed convex set)
Gaussian-gamma form, 603	Hilbert space, 334, 337
Conjugate Wirtinger's derivative, 117	strongly attracting nonexpansive mapping, 356
Consensus-based algorithms, 221	theory, 328
Consensus-based distributed schemes, 220–222	Convolution matrices, 132
Consensus matrix, 223–224	Coordinate descent (CD), 258–261, 459
Consensus strategy, 221–222	Correlated component analysis, 953
Consistent estimator, 31	Correlation, 15
Constrained-based path, 837	Correlation matrix, 15–16
Constrained learning, 356	CoSaMP. See Compressive sampling matching pursuit
Constrained linear estimation, 145–148	(CoSaMP)
Continuous random variables, 14	Cosparsity, 488–490
average mutual information, 47	Cost function
conditional information, 47	backpropagation algorithm, 896-897
entropy for, 46–47	isovalue curves, 164f
generalization, 45	surface, 107–108, 109f
Kullback-Leibler divergence, 47–48	two-dimensional parameter space, 164f
relative entropy, 47–48	Countably infinite, 683
Continuous-time signal, 29	Coupon collector's problem, 992
Continuous variables	Covariance, 15
beta distribution, 25–26	functions, 688–689
central limit theorem, 24–25	Kalman algorithm, 152
Dirichlet distribution, 27–49	matrix, 15–16, 175 <i>f</i>
exponential distribution, 25	Cover's theorem, 514–517
gamma distribution, 26–27	Cramér-Rao bound, 67–72, 1019
Gaussian distribution, 20–24	CRFs. See Conditional random fields (CRFs)
uniform distribution, 20	Cross-correlation vector, 128, 129, 171–174
Contrastive divergence (CD), 911	Cross-cumulants, 1021
Convergence	Cross-entropy cost function, 896
affine projection algorithm, 353	Cross-entropy error, 292
APSM, 351–356	Cross-spectral density, 120–121
,	·I · · · · · · · · · · · · · · · · · ·

Cross-validation, 92–93	DFE. See Decision feedback equalizer (DFE)
CS. See Compressed sensing (CS)	Dictionary learning (DL), 414–415
CSMP algorithms. See Compressed sensing matching pursuit	codebook update, 967-968
(CSMP) algorithms	image de-noising, 970, 971f
C-SVM, 547	optimization problem, 966
Cumulant generating function, 815	sparse coding, 967
Cumulants, 1020–1021	Difference equation, 38–39
Cumulative distribution function (cdf), 14, 19f, 713f	Diffusion gradient descent, 215
Cumulative loss, 186–188, 371	Diffusion LMS (DiLMS), 211-218
Cuprite data set, 696–697	adapt-then-combine, 215–216, 216f
Curse of dimensionality, 89–91, 90f	combine-then-adapt, 217
Curve fitting problem, 54–55, 55 <i>f</i>	Dimensionality reduction, 243–244, 433–434
Cyclic coordinate descent (CCD), 258–261	Directed acyclic graph (DAG), 749
Cyclic path, 210	Bayesian network, 749, 751
	d-separation, 758f
D	independencies, 762f
DAG. See Directed acyclic graph (DAG)	moralization on, 772f
Dantzig selector, 472	Directed graphs, 749, 772
Data sets, 91	Dirichlet distribution, 27–49, 603–604
De-blurring, 4–5, 4 <i>f</i>	Dirichlet process (DP), 684–686
Decentralized networks, 210–211	Discrete cosine transform (DCT), 412–413, 413f
Decision feedback equalizer (DFE), 202–203, 203f, 204f	Discrete distributions
Decision surface, 60–61, 280–281, 282	cumulative distribution function, 713f
Gaussian distribution, 282–287	generating samples from, 711–712
naive Bayes classifier, 287–288	resampling, 847–849
nearest neighbor rule, 288–290	Discrete random variables, 12–13
Decision trees, 304	codewords, 42–43
CART, 317 <i>f</i>	entropy/average mutual information, 44-45
protein folding prediction classification, 318	information, 42–43
Decomposition, analysis of variance, 570	mutual/conditional information, 43-44
Deconvolution, 121–124, 126–132	Discrete-time random process, 29
Deep belief network (DBN), 916–918, 928	Discrete-time stochastic process, 29f
Deep learning, 877	Discrete variables
block diagram, 906f	Bernoulli distribution, 18
character recognition, 923–925	binomial distribution, 18–19
CRBM, 920–922	multinomial distribution, 19–20
Gaussian visible units, 918–919	Discrete wavelet transform (DWT), 412–413, 414–415
issues, 903	Discriminant functions, 282
stacked autoencoder, 919–920	Discriminative learning
training, 905–908	generative vs., 63–64
Deflation procedure, 954–955	hidden Markov model, 828–829
Degeneracy phenomenon, 858–860	Disjoint subsets, 302–303
Degree of node k , 211–212	Distributed learning
Deming regression, 262	consensus-based schemes, 220–222
De-noising, 438–439, 439 <i>f</i>	convergence, 181–186, 218–219
Denoising autoencoder, 920	cooperation strategies, 209–211
Density function, 14	diffusion LMS, 211–218
Dependent random variable, 57–58	LMS, 208–222
Dependent fandom variable, 37–38	steady-state performance, 218–219

Distributed sparsity-promoting algorithms, 483	Euclidean norm, 395, 404–405
α-Divergence, 682	descent directions, 166f
Diverging connection, 756	graphs, 250f
Division algebra, 552	Euclidean space, 109
DNA sequences, 314–318	Evidence function, 593–595, 596–600
Doubly stochastic matrix, 213–214	Exact inference methods
D-separation, BNs, 755–758, 758f	chain graph, 773–776
Dual frames, 498	trees, 777–778
Dynamic Bayesian networks, 832–833	Excess mean-square error, 184
Dynamic graphical models, 816–818	Expectation-maximization (EM) algorithm, 598
	convergence criterion, 607
E	description, 606–608
Echo canceller, 125f	E-step, 607, 623
Echolocation signals, time-frequency analysis, 493–497	linear regression, 610–612
Eckart-Young-Mirsky theorem, 242	lower bound maximization view, 608-610
Edgeworth expansion, PDF, 1021–1022	missing data, 608
Eigenvalues	Monte Carlo methods, 720–721
covariance matrix, 175f	M-step, 607, 623
unequal, 172f, 174f	Newton-type searching techniques, 607
EKF. See Extended Kalman filter (EKF)	online versions, 609
Elastic net regularization, 472	Expectation propagation, 679–683
EM algorithm. See Expectation-maximization (EM) algorithm	Expectation step, hidden Markov model, 825-827
Empirical bayes method, 600	Expected loss, 93–94, 177–178
Empirical loss functions, 93–94	Expected risk, 177–178
Energy conservation method, 187	Expected value, 15
Entropy, 44–45, 302–303	Explaining away, 756
binary random variable, 46f	Exponential distribution, 25, 711
continuous random variable, 46–47	Exponential family
differential entropy, 47	advantage, 600
relative, 47–48	of probability distributions, 600-606, 644-645
Epigraph, 332, 405–407, 406f	Exponentially weighted isometry property (ERIP), 480
Equality constraints, 1023–1029	Exponentially weighted least-squares cost function, 245–246
Equalizer, 127, 127f	time-iterative computations, 246–247
Ergodicity, 31	time updating, 247–248
Ergodic Markov chain Monte Carlo methods, 723–728	Extended Kalman filter (EKF), 152, 854
Erlang distribution, 27	Extreme Learning Machines (ELMs), 900
Error bounds, NORMA, 559–560	
Error-correcting codes, 770–772	F
Error covariance matrix, 141, 150–152	Factor analysis, 972, 977–980
Errors-in-variables regression models, 262	Factor graphs, 768–772
Error vector	Factorial hidden Markov model (FHMM), 829–832
convergence, 181–186	Factorization
covariance matrix, 183–184	pdf, 643
Estimation	theorem, 71
error, 94, 374–376	Far-end speech signal, 125
interpretation power, 407	Fast iterative shrinkage-thresholding algorithm (FISTA),
nonparametric modeling and, 95–97	459, 461
Euclidean distance, 283, 285	Fast Newton transversal filter (FNTF) algorithm, 257

Fast proximal gradient splitting algorithm, 386	functional brain networks, 998
FDR. See Fisher's discriminant ratio (FDR)	goals, 999
Feasibility set, 349	ICA, 1000
Feasible points, 1025	scanning procedure, 1000, 1000f
Feasible region, 1025	Function transformation, 711–715
Feature generation	
phases, 295–296, 295f	G
stage, 2	Gabor frames, 490–492, 493, 496f
Feature map, 517	Gabor transform, 490–492
Feature selection	Gabor type signal expansion, 414–415
phases, 295–296, 295f	Gamma distribution, 26–27
stage, 2	Gating functions, 621
Feature space, 2, 517	Gaussian distribution, 183–184, 276
Feature variable, 60–61	continuous variables, 20–24
Feature vector, 2, 60–61	decision surfaces, 282–287
Feed-forward neural networks, 882–886	hypersurfaces, 282–287
deep learning, 914–915	isovalue contours for, 23f
hidden layer, 884	multivariate, 21–22, 24
multilayer, 882–886	pdf, 22f, 24
output neuron, 884	sub-gaussian distribution, 196–197
universal approximation property, 899–902	Gaussian-gamma distribution, 603, 603f
Fill-in edge, 798	Gaussian-gamma pair, 601–602
Finite rate of innovation sampling, 436	Gaussian Gaussian-gamma pair, 602–603
First order convexity condition, 331	Gaussian kernel, 520, 521f, 665f, 688
Fisher-Neyman factorization theorem, 71	Gaussian mixture modeling, 613–620, 651–654
Fisher's discriminant ratio (FDR), 296–297	Gaussian noise case, nonwhite, 84
Fisher's information matrix, 1019	Gaussian pdf, 655–656
Fisher's linear discriminant, 294–300	computational advantages, 759–760
FISTA. See Fast iterative shrinkage-thresholding algorithm	conditional, 632–633, 634–637
(FISTA)	joint, 632–634
Fixed interval, 866	marginal pdf, 633–634
Fixed lag smoothing, 866	with quadratic form exponent, 631
Fixed point set, 339	Gaussian processes (GP), 687–693
Focal underdetermined system solver (FOCUSS) algorithm,	Gauss-Markov theorem, 143–145, 237–238
472	Generalization, 91
Forward backward algorithm, 827	Generalization error, 80–81
Forward MSE entired predictors, 134, 138	Generalized forward-backward algorithm, 782
Forward MSE optimal predictors, 134–138 Fourier transforms, 33	Generalized linear models, 510–511
	Generalized maximum likelihood, 600
analog signal, 435f	Generalized Rayleigh ratio, 296–297
software packages to, 122–123 Frames theory, 497–502	Generalized thresholding (GT), 483
Free energy, 608	Generative learning, 63–64
Frequency approach, bag-of-words, 571	Generic particle filtering, 860–861
Frequency approach, bag-or-words, 371 Frequentist techniques, 586	Genes, 315–316
Frobenius norm, 265	Geometric averaging rule, 305
Functional brain networks (FBN), 998	Gibbs distribution, 763
Functional magnetic resonance imaging (fMRI)	cliques, 763, 769f
BOLD contrast, 998–999	I-map, 764
DOLD Colliant, 770-777	Ţ,

Gibbs sampling, 733–735	Hammerstein model, 511–514
blocking, 734	Hard thresholding
change-point detection, 738	function, 456–457, 459, 460
collapsed, 735	operation, 409–411, 410 <i>f</i>
slice-sampling algorithm, 735	Head-to-head connection, 756
Gini index, 303	Head-to-tail connection, 755
Givens rotations, 256	Heat bath algorithm, 733
Global decomposition, likelihood function, 836–837	Heavy-tailed distribution, 671
Gradient averaging, 378	Hermitian operation, 16–17
Gradient descent algorithm, 163, 165, 166 <i>f</i> , 173 <i>f</i>	Hessian matrix, 292, 293–294, 377–378
Gradient descent scheme, 887–894	Hidden Markov model (HMM), 816, 817-818
adaptive momentum, 893	autoregressive, 828
algorithm, 891–892	discriminative learning, 828-829
backpropagation algorithm, 891–892	expectation step, 825–827
gradient computation, 889	FHMM, 829–832
iteration-dependent step-size, 893	inference, 821–825
logistic sigmoid neuron, 887	left-to-right type, 819, 820f
momentum term, 893	maximization step, 827
paramount importance, 895	parameters, 821, 825–828
pattern-by-pattern/online mode, 892	sum product algorithm, 821
quickprop algorithm, 895	time-varying dynamic Bayesian networks, 832-833
Gradient vector, 163–165, 165f	transition probability, 818, 819
Gram-Schmidt orthogonalization, 138, 256	variable duration, 829
Graph embedding, 989	Viterbi reestimation, 827-828
Graphical models	Hidden variables, 606
•	Hierarchical Bayesian modeling, 647, 695-696
dynamic, 816–818 for error-correcting codes, 770–772	Hierarchical mixture of expert (HME), 625, 626f
_	Hierarchical priors, 599
learning structure, 837 need for, 746–748	High-definition television (HDTV) system, 412–413
	Hilbert space, 329, 397
parameter estimation, 833–837	closed convex set, 334, 337, 339-340, 344
probabilistic, 751	convex set, 334
undirected, 762–768	Hinge loss function, 348–349, 349f, 538–539, 558–559
Graphs himortite 760	Histogram technique, 95–96
bipartite, 769	HME. See Hierarchical mixture of expert (HME)
definitions, 749–753	HMM. See Hidden Markov model (HMM)
direction/undirected, 749	Homotopy algorithm, 454
factor, 768–772	Householder reflections, 256
triangulated, 796–804	Huber loss function, 530–531, 531f
undirected (see Undirected graph)	Hyperparameters, 599, 600
Graph theory, 746	Gaussian processe, 691–692
Greedy algorithms, 451–456	support vector machine, 550-551
CSMP, 455–456, 460	Hyperplane, 60, 61–62
LARS, 454	Hyperprior, 647
OMP, 451, 453	Hyper rectangles, 300–301
П	Hyperslab, 345–346
H	Hyperspectral image unmixing (HSI), 693-699
Halfspace, 347–348	experimental results, 696–699
Hamiltonian Monte Carlo methods, 736	hierarchical Bayesian modeling, 695-696

Hyperspectral remote sensing, 693–694	Input vector, 57–58
Hypersurfaces, 280–281, 282	Intercausal reasoning, 756
Gaussian distribution, 282–287	Intercept, 57–58
naive Bayes classifier, 287-288	Interference cancellation, 124–125
nearest neighbor rule, 288–290	Interior point methods, 358–359
Hypothesis class, 371	Interpretation power of estimator, 407
Hypothesis space, 528–529	Intersymbol interference (ISI), 127, 412–413
	Intrinsic dimensionality, 90–91, 938, 938f, 939
1	Invariant distribution, 722
IIR. See Infinite impulse response (IIR)	Inverse Fourier transform, 35
Ill conditioning, 74–76	Inverse problems, 74–76
Image deblurring, 121–124	Inverse system identification, 126
I-maps	Invertible transformation, 17, 667
BNs, 761–762	IRLS. See Iterative reweighted Least Squaresscheme (IRLS
Markov Random Fields, 763–765	IS. See Importance sampling (IS)
Importance sampling (IS), 718–720	ISI. See Intersymbol interference (ISI)
Impulse response function, 411–412, 412 <i>f</i>	Ising model, 765–767
Incremental networks, 210	Isodata algorithm, 618
Incremental topology, 211f	Isometric mapping (ISOMAP), 987–991
Independence assumption, 182	IST algorithms. See Iterative shrinkage/thresholding (IST)
Independent component analysis (ICA), 944	algorithms
ambiguities, 958	Iterative hard thresholding (IHT), 466–467, 466f
cocktail party problem, 963–966	Iterative refinement algorithm, 383–384
Edgeworth expansion, 959–960	Iterative reweighted Least Squares scheme (IRLS), 293,
fourth-order cumulants, 957–958	471–472
Gaussian distributions, 956	Iterative shrinkage/thresholding (IST) algorithms, 456–462
gradient ascent scheme, 960–961	Iterative soft thresholding (IST) algorithms, 466–467, 466f
Infomax principle, 962	
Kullback-Leibler divergence, 959–960	J
maximum likelihood, 962	Jacobian matrix, of transformation, 17–18
mixture variables, 955	Joint distribution, 748, 749
mutual information, 959–960	Joint Gaussian pdf, 632–634
natural gradient, 961–962	Jointly distributed random variables, 77
negentropy, 963	Jointly sufficient statistics, 71
non-Gaussian distributions, 958–959	Joint pdf, 68, 71, 836–837
Riemannian metric tensor, 961–962	Joint probabilities, 12–13
tensorial methods, 958	Join tree, construction, 799–801
unmixing/separating matrix, 955–956	Junction tree, 798, 801–804
Inequality constraints, 1025–1029	Junction (100, 770, 001 004
Inference, 684, 821–825	K
Infinite impulse response (IIR), 120–121	
Information filtering scheme, 152	Kalman filtering, 149, 851–854, 853 <i>f</i>
Information projection (I-projection), 679	Kalman gain, 150–152, 246–247, 248, 257
Information theory, 41	Karush-Kuhn-Tucker (KKT) conditions, 1025–1026
continuous random variables, 45–48	Kernel APSM (KAPSM) algorithm, 560–565
discrete random variables, 42–45	classification, 561–565
Inner product space, 395	nonlinear equalization, 564–565
Innovations process, 152	quantized, 562–563, 565
Input space, 2	regression, 560–561

Kernel Hilbert spaces, 152	sparsity-aware (see Sparsity-aware learning)
Kernel LMS (KLMS), 553–556	Least absolute shrinkage and selection operator (LASSO)
Kernel perceptron algorithm, 881–882	407–411
Kernels, 96–97	adaptive norm-weighted, 477-478
construction, 523–524	asymptotic performance, 475–477
covariance functions, 688–689	elastic net regularization, 472
function, 520–525	group, 467–468
matrix, 519, 688–689	LARS algorithm, 454
ridge regression, 528–530, 537–538	regularized cost function, 458
trick, 517, 532, 537–538	Least angle regression (LARS) algorithm, 454, 466-467
Kikuchi energy, 815–816	Least mean fourth (LMF) algorithm, 196-197
k-means algorithm, 618, 619	Least-mean-square (LMS)
k-nearest neighbor density estimation, 97	adaptive algorithm, 179-188
k-nearest neighbor (k-NN) rule, 288–290	algorithm, 179-180, 368
k-rank matrix approximation, 242	consensus matrix, 223-224
KRLS, 565	convergence, 181–186, 199f, 200f, 201f
k-spectrum kernel, 525	cumulative loss bounds, 186-188
Kullback-Leibler distance, 305	diffusion, 211–218
Kullback-Leibler (KL) divergence, 47–48	distributed learning, 208–222
EM algorithm, 608–609, 610f	H^{∞} optimality of, 187
mean field approximation, 642, 643	linearly constrained, 204–206
minimizing, 680–681	normalized, 193–194
_	parameter estimation, 209
Kurtosis, 958, 1020–1021	recursion, 213
1	relatives of, 196
	sign-error, 196
Labeled faces in the wild (LFW) database, 947	steady-state performance, 181–186, 206
Lagrange multipliers, 1024–1025	target localization, 222–223
Lagrangian, 205	time-varying model, 206–207
duality, 1027–1028	tracking performance, 206–208
function, 1024–1025	transform-domain, 197–201
Laplacian approximation, 662, 664	widely-linear, 195
evidence function, 596–600	Least modulus method, 530–531
method, 596–600	Least-squares (LS) estimator
Laplacian kernel, 521	asymptotic distribution of, 238–239
Laplacian pdf, 668–670, 670f, 671, 672f	BLUE, 237–238
Large scale tasks, 376	covariance matrix, 236–237
LARS-LASSO algorithm, 454, 462	Cramer-Rao bound, 238
Latent Markov model, 816–817, 818f	loss criterion, 276, 308f, 311
Latent variables, 606–610	unbiased, 236
Lattice-ladder algorithm, 132	Least-squares method
forward/backward MSE optimal predictors, 134-138	classifier, 61–62
orthogonality of optimal backward errors, 138-140	computational aspects, 255–257
Toeplitz matrix, 133	fitting plane, 60f
LDA. See Linear discriminant analysis (LDA)	linear classifier, 63f
Learning, 1	linear regression, 234–236, 235f
curve, 171–174	loss function, 56–57, 58–59, 59f
from data, 1	minimization task, 72–73
deep (see Deep learning)	optimal, 59

regularization, 72–73	Log-concave function, 805–807
ridge regression, 243–245	Log-convex function, 808
unregularization, 72–73	Logistic regression, 290-294, 662-666
Leave-one-out (LOO) cross-validation method, 92-93	Logistic sigmoid function, 290-291, 662, 887
Levenberg-Marquardt method, 376-377	Log-likelihood function, 82-83, 292
Levinson algorithm, 132–140	Log-loss function, 311–313
Levinson-Durbin algorithm, 137	Log-odds ratio, 311
Likelihood function, 82	Log-partition, 815
Linear classifier, 63f, 283	Loopy belief propagation, 813–816
Linear congruential generator, 709–710	Loss functions
Linear convergence, 167	empirical, 93–94
Linear discriminant analysis (LDA), 286, 291	expected, 93–94
Linear discriminant, Fisher's, 294–300	mean-square-error (see Mean-square-error (MSE) loss
Linear dynamical systems (LDS), 817–818	function)
Linear filtering, 35–36, 118–120	optimizing, 106
Linear Gaussian models, 759–760	parametric modeling, 56
Linear ϵ -insensitive loss function, 346, 347 f , 530–537, 559	Loss matrix, 279–280
Linear independency, 394	Lower bound, computation, 650-651
Linear inverse problems, 438	Low-rank matrix factorization method
Linear kernel, 688	matrix completion, 991-994
Linearly constrained LMS, 204–206	robust PCA, 995–996
Linearly constrained minimum variance (LMV), 148	LTI. See Linear time invariant (LTI)
Linearly separable classes, 515–517	LTIFIR filter, 137
classes, 540–545	
probability, 515f	M
two-dimensional plane, 516f	Magnetic resonance imaging (MRI), sparsity-promoting
Linear regression, 57–60	learning, 473–474
Bayesian approach, 589–593	Mahalanobis distance, 283, 285
dependencies, 646f	Majority voting rule, 306
EM algorithm, 610–612	Majorization-minimization techniques, 458, 471
MAP estimator, 588–589	Manifold learning, 434
ML estimator, 587	MAP estimator. See Maximum a posteriori probability (MAP)
nonwhite Gaussian noise case, 84	estimator
variational Bayesian approach to, 645-651	Marginal pdf, 633–634
Linear space, 393	Marginal probabilities, 13, 849
Linear time invariant (LTI), 35–36, 512–514	Markov blanket, 758
Linear varieties, 343, 343f	Markov chain Monte Carlo methods
LMF algorithm. See Least mean fourth (LMF) algorithm	auxiliary variable, 735
LMS. See Least-mean-square (LMS)	building, 724
LMV. See Linearly constrained minimum variance (LMV)	detailed balanced condition, 723
ℓ_0 norm minimizer, 417–418	ergodic, 723–728
equivalence, 426–429	invariant distribution, 722
uniqueness, 422–426	reversible jump, 736
ℓ_1 norm minimizer, 418	transition probabilities matrix, 721-722
characterization, 419	Markov condition
equivalence, 426–429	causality, 753–755
ℓ_2 norm minimizer, 416 f , 417	completeness, 761–762
Local independencies, 749–750	definitions, 749
Local linear embedding (LLE), 986–987	<i>d</i> -separation, 755–758, 758 <i>f</i>

Markov condition (Continued)	iteration functions, 565, 566f
faithfulness, 761–762	linear estimator, 178–179
graphs, 749-753	local cost function, 212–213
I-maps, 761–762	values, 76, 76t
linear Gaussian models, 759–760	Mean-square error linear estimation, 105–106, 141–148
multiple-cause networks, 760, 761f	complex-valued variables, 111-118
soundness, 761–762	constrained linear estimation, 145-148
Markov networks, 762	cost function, 107–108, 108f
Markov Random Fields (MRF), 762	deconvolution, 121-124, 126-132
Boltzmann machine, 809f	Gauss-Markov theorem, 143–145
I-maps, 763–765	geometric viewpoint, 109–111
independencies, 763–765	interference cancellation, 124–125
Ising model, 765–767	Kalman filtering, 149
MARTs. See Multiple additive regression trees (MARTs)	Lattice-ladder algorithm, 132–140
Matching Pursuit, 451	Levinson algorithm, 132–140
CoSaMP, 455–456, 480	linear filtering, 118–120, 119f, 120–124
CSMP algorithms, 455–456, 460, 479–480	minimum, 110f
OMP, 451, 453, 466–467	normal equations, 106–108
Matrices	optimal equalizer, 130–131
derivatives, 1014	system identification, 125–126
inversion lemmas, 1014	Mean-square-error (MSE) loss function
positive definite and symmetric, 1015	complex-valued case, 175–176
properties, 1013–1014	cost function, 167
Matrix completion, 991–994	cross-correlation vector, 171–174
applications, 997	error curves, 171–174
collaborative filtering task, 996–997	gradient descent algorithm, 173f
Maximal cliques, 763, 764 <i>f</i> , 768	learning curve, 171–174
Maximal spanning tree algorithm, 799	minimum eigenvalue, 169–171
Maximum a posteriori probability (MAP) estimator, 88–89,	parameter error vector convergence, 171
588–589, 592	time constant, 169
Maximum entropy (ME) method, 47, 605–606	time-varying step sizes, 174–176
Maximum likelihood (ML) method, 82–84, 82f, 277	Mean-square sense, convergence in, 49
estimator, 587	Measurement noise, 149–150
Type II, 600	Mercedes Benz (MB) frame, 499–500
Maximum margin classifiers, 540–545	Message-passing algorithms, 460–462
Maximum variance unfolding method, 989	exact inference methods, 773–789
Max-product algorithms, 782–789	junction tree, 801–804
Max-sum algorithms, 782–789	max-product algorithms, 782–789
McCulloch-Pitts neuron, 880–881	max-sum algorithms, 782–789
MDA. See Mirror descent algorithms (MDA)	sum-product algorithm, 778–782
Mean, 15–17	two-way, 801–803
Mean field approximation, 641–645, 810–813	Metropolis-Hastings algorithm, 729, 730, 735, 736
Mean field equation, 811	Metropolis method, 728–729
Mean field factorization, 810	burn-in phase, 730
Mean square deviation (MSD), 358, 359f	convergence issues, 731–732
Mean-square-error (MSE), 65	MIMO systems. See Multiple-input-multiple-output (MIMO)
cost function, 176	systems
curves, 260f, 262f	Minimum distance classifiers, 285–287
estimation, 77–78	minum distance classificis, 203–207

Minimum variance distortionless response (MVDR)	Multiple kernel learning (MKL), 567–568
beamforming, 148	Multiple measurement vectors (MMV), 659
Minimum variance unbiased estimator (MVUE), 66-67,	Multipulse signals, 436
144–145, 238	Multitask learning, 548
Min-Max duality, 1026–1027	Multivariate Gaussian distribution, 21-22, 24
Mirror descent algorithms (MDA), 388-389	Multivariate linear regression (MLR), 955
Misclassification error, Bayesian classification, 277-280	Mutual coherence, 424–426
Mixing linear regression models, 622–625	Mutual information, 43–44
HME, 625, 626f	MVDR beamforming. See Minimum variance distortionless
mixture of experts, 624–625	response (MVDR) beamforming
Mixing logistic regression models, 625–627	MVUE. See Minimum variance unbiased estimator (MVUE)
Mixing of learners, 621	MWC. See Modulated wideband converter (MWC)
Mixing time, 730	
Mixture of experts, 621, 621 <i>f</i> , 624–625	N
Mixture of factor analyzers (MSA), 978–979	Naive Bayes classifier, 287–288
Mixture scatter matrix, 296	Naive online R _{reg} minimization algorithm (NORMA), 556-560
ML method. See Maximum likelihood (ML) method	Natural gradient, 376–377
Mode, 169–171, 170 <i>f</i>	Natural parameters, 600
Model-based Compressed Sensing, 468–469	Near-end speech signal, 125
Modulated wideband converter (MWC), 435–436	Nearest neighbor rule, 288–290
Moment generating function, 1020	Near-to-Toeplitz, 256–257
Moment matching, 680–681, 682	NESTA algorithm, 461, 472–473, 490, 495–496
Moment projection (M-projection), 680	Neural networks
Moments, 1020–1021	backpropagation algorithm, 886-897
Monte Carlo methods, 709	Bayesian learning, 902–903
advantages, 736–737	feed-forward, 882–886
change-point detection, 737–738	gradient descent scheme, 887–894
concepts, 708–710	perceptron algorithm, 876
EM algorithm, 720–721	pruning, 897–899
Gibbs sampling, 733–735	synapses, 876
Hamiltonian function, 736	Newton's iterative minimization method, 248–251
importance sampling, 718–720	Newton's scheme, 293
Markov chain, 721–728	NLMS. See Normalized least mean square (NLMS)
Metropolis method, 728–732	Noise cancellation, 127, 127f
random sampling, 711–715	Noisy-OR model, 746–747, 805–807
rejection sampling, 715–718	Nonempty set, 683
Moore-Penrose pseudo-inverse, 234–236	Noninformative/objective priors, 599
Moreau envelop, 379, 381 <i>f</i> , 460	Nonlinear dimensionality reduction
Moreau-Yosida regularization, 379	ISOMAP, 987–991
Moving average model, 40	kernel PCA, 980–982
Multichannel estimation, 112–113, 141	Laplacian eigenmaps, 982–986
Multiclass Fisher's discriminant, 299–300	local linear embedding, 986–987
Multiclass generalizations, SVM, 552–553	Nonlinear filter, 512f
Multidimensional Scaling (MDS), 946	Nonlinear manifold learning, 979
Multinomial distribution, 19–20	Nonnegative garrote, 411, 412 <i>f</i>
Multinomial resampling, 847	Nonnegative matrix factorization (NMF), 971–972
Multiple additive regression trees (MARTs), 314	Non-negative real function, 38
Multiple-cause Bayesian networks, 760, 761f, 805–807	Nonoverlapping training sets, 93
Multiple-input-multiple-output (MIMO) systems, 412–413	1.01.0. or apping training sous, 75

Nonparametric Bayesian modeling, 54, 95–97, 683–686	optimization error, 374–376
estimation, 95–97	techniques, 162
representer theorem, 528	Online perceptron algorithm, 880
Nonparametric sparsity-aware learning, 568–570	Optical character recognition (OCR) systems, 2, 923
Nonseparable classes, SVM, 545–548	Optimal brain damage technique, 898
Nonsmooth convex cost functions	Optimal brain surgeon method, 898
linearly separable, 364	Optimal linear estimation, 124
minimizing, 362–367	Optimization error, 374–376
optimizing, 358–370	Order statistics, 30
subdifferentials, 359–362	Ordinary binary classification trees (OBCT), 300-301
subgradients, 359-362, 363-365	300f, 304
Nonstationary environments, LMS, 206-208	Ordinary-differential-equation approach (ODE), 187
Nonwhite Gaussian noise, 84	Ornstein-Uhlenbeck kernel, 689
Norm, 395	Orthogonality
definition, 404–405	geometric viewpoint, 109-111
ℓ_0 minimizer, 417–418, 422–429	optimal backward errors, 138-140
ℓ_1 minimizer, 418, 419, 426–429	Orthogonal matching pursuit (OMP), 451
ℓ_2 minimizer, 416 f , 417	algorithm, 466–467
searching for, 404–407	recover optimal sparse solutions, 453
Normal distribution, 20–24	Orthogonal projection, 109, 110
Normal equations, 110	Outlier, 537
Normal factor graph (NFG), 770	Output variable, 57–58
Normalized graph Laplacian matrix, 984–985	Overcomplete dictionaries, 414–415
Normalized least mean square (NLMS)	Overdetermined system, 240–242
convex analytic path, 353	Overfitting, 74–76
stochastic gradient descent, 193–194, 201, 202f	•
Normed linear space, 395	P
Nucleobases, 314–315	Pairwise MRFs undirected graphs, 766, 767f
Nucleotides, 314–316	Parallelogram law, 396
	Parameter error vector convergence, 171
0	Parametric functional form, 54–55
OBCT. See Ordinary binary classification trees (OBCT)	Parametric modeling, 53
Observations, 57–58	curve fitting problem, 54–55, 55 <i>f</i>
Occam's razor rule, 78–79, 593–600, 643	deterministic point of view, 54–57
OCR systems. See Optical character recognition (OCR) systems	loss function, 56
OMP. See Orthogonal matching pursuit (OMP)	nonnegative function, 56
One-against-all, 552	Parity-check bits, 770–771
One-against-one, 552	Parseval tight frame, 498–499
One pixel camera, 432–433	Partial least-squares (PLS) method, 954–955
Online cyclic coordinate descent time weighted LASSO	Particle filtering, 854
(OCCD-TWL), 478, 484 <i>f</i>	auxiliary, 862–868
Online learning	degeneracy phenomenon, 858–860
approximation error, 374–376	generic, 860–861
batch vs., 376–379	one-dimensional random walk model, 857–858
and big data applications, 374–379	SIS, 855, 856
convex, 367–370	state-space model, 853f, 854–855
estimation error, 374–376	Parzen windows, 96–97
expected loss/risk function, 374	Path, 749
expected 1000/110K fulletion, 5/7	1 441, 177

Pattern, 60-61	Probability density function (pdf), 10
Pattern recognition, 60-61, 91, 295-296	beta distribution, 26f
Peak signal-to-noise ratio (PSNR), 438–439	definition, 18f
Perceptron algorithm, 364-365, 876, 878	edgeworth expansion, 1021-1022
Perceptron cost, 877–882	gamma distribution, 27f
Perfect elimination sequence, 798	Gaussian, 22f, 24
Perron-Frobenius theorem, 722	uniform distribution, 21f
Persistent contrastive divergence (PCD) algorithm,	Probability distributions
913, 914	exponential family, 600-606, 644-645
PGM. See Projected gradient method (PGM)	random walk chain, 726–728, 727f, 728f
pmf. See Probability mass function (pmf)	Probability mass function (pmf), 12, 19f
POCS. See Projections onto convex sets (POCS)	Probit regression, 294
Poisson process, 737–738	Process noise, 149–150
Polynomial kernel	Product rule of probability, 13
homogeneous, 520	Projected gradient method (PGM), 365-366
inhomogeneous, 520, 522f	Projected Landweber method, 366
Population-based methods, 735-736	Projected subgradient method, 366-367
Positive definite, 16, 34, 1015	Projection approximation subspace tracking
Positive definite kernel, 519, 520	(PAST), 949
Positive semidefinite, 1015	Projections onto convex sets (POCS)
Posteriori probability, 63-64, 276	algorithm, 344
Potential functions, 96-97, 762	analytical expressions, 335–336
Potts model, 766	classification, 347–349
Power spectral density (PSD), 33-38, 120-121	concepts, 333–335
definition, 35	fundamental theorem, 341-344
physical interpretation of, 37–38	halfspace, 336f
Prediction, 118, 186	hyperplane, 336f
Preprocessing stage, 32–33	intersection, 345–346
Primal estimated subgradient solver for SVM (PEGASOS)	linear varieties, 343, 343f
algorithm, 369-370, 551	nonempty intersection, 341, 342
Principal axes/directions, 244–245	nonexpansiveness property, 340f, 343-344
Principal component pursuit (PCP), 995	parallel version, 344
Principal components regression, 244–245	product spaces, 344
Principia Mathematica, 754–755	properties, 337–341
Principle component analysis (PCA)	regression, 345–347
eigenimages/eigenfaces, 947, 947f, 948f	relaxed, 339–340, 340f, 341f
feature generation, 943–944	weak convergence, 342
latent semantics indexing, 943	Property sets, 349
latent variables, 944–949	Proportionate NLMS, 194
LFW database, 947	Protein folding prediction, 314–318
low-rank matrix factorization method, 942	Proteinogenic amino-acids, 314–315
minimum error interpretation, 943	Proximal forward-backward splitting operator, 386–387
mutually uncorrelated, 943-944	Proximal gradient splitting algorithms, 385–386
online subspace tracking, 949, 950f	Proximal mapping, 460
optimization task, 940–941	Proximal operators, 379–385
principle directions, 940	minimization, 383–385
supervised PCA, 947	properties, 382–383
SVD decomposition, 941, 942	splitting methods, 385–389
Probabilistic PCA (PPCA), 974–977	subdifferential mapping, 384–385

Pruning, neural networks	convergence curve, 354
convolutional networks, 899	fast versions, 256–257
early stopping, 898–899	Newton's method, 251
optimal brain damage technique, 898	simulation examples, 259, 260–261
weight decay, 897	steady state performance, 252–254
weight elimination, 897	widely linear, 254–255
weight sharing, 898	Reduced convex hull interpretation, 548
Pruning tree, 303–304	Regression, 3–8
PSD. See Power spectral density (PSD)	Bayesian, 690–692
Pseudo covariance, 114–115	deming, 262
Pseudo-inverse matrix, 240–242	errors-in-variables, 262
Pseudorandom generator, 709–710, 711	input-output relation, 57f
	KAPSM algorithm, 560–561
Q	least-squares linear, 234–236, 235f
QR factorization, 255–256	linear, 57–60
Quadratic discriminant analysis (QDA), 286	linear ϵ -insensitive loss function, 559
Quadratic form exponent, pdfs with, 631	POCS, 345–347
Quadratic ϵ -insensitive loss function, 530–531, 531 f , 536	principal components, 244-245
Quantized KLMS (QKLMS), 555–556, 565	ridge, 243–245
Quasi-stationary process, 818	Regressor, 57–58
Quickprop algorithm, 895	Regret analysis, 367–368, 370–374
Quickprop argorium, 675	Regularity assumption, 1023
R	Regularization, 72–76
	Regularized dual averaging (ARD) algorithm, 388
Random demodulator (RD), 432, 434–435, 436	Regularized particle filter, 866
Random field, 121	Rejection sampling, 715–718
Random forests, 303–304	Relative entropy, 47–48, 896–897
Random-modulation pre-integrator (RMPI), 434–435	Relevance vector machine (RVM), 661–666
Random number generation, 709–710	Relevance vectors, 662
Random sampling, 711–715	Representer theorem, 525–528
Random signal, 29	nonparametric, 528
Random variables	semiparametric, 527
axiomatic definition, 11–12	Reproducing kernel Hilbert spaces (RKHS), 95, 517–518, 662
complex, 16–17	authorship identification, 570–573
continuous (see Continuous random variables)	definition, 510
discrete (see Discrete random variables)	generalized linear models, 510–511
geometric interpretation of, 109–111	KAPSM algorithm, 560–565
probability and, 10-18	kernel functions, 520–525
relative frequency definition, 11	kernel LMS, 553–556
transformation of, 17–18	kernel trick, 517
Random vector, 15	NORMA, 556–560
Rao-Blackwellization technique, 866	properties, 519–520
Rao-Blackwell theorem, 70, 71, 735	representer theorem, 525–528
Rate of convergence, 457–458	ridge regression, 528–530, 537–538
Rational quadratic kernel, 689	theoretical highlights, 519–520
Rayleigh fading channel, 342	Resampling, 847–849, 851
RD. See Random demodulator (RD)	Restricted Boltzmann machine (RBM), 905–906, 908–914
Real linear space, 394	Restricted Bottzmann machine (RBM), 903–900, 906–914 Restricted isometry property (RIP), 427–429
Recursive least-squares (RLS) algorithm, 234, 245–248	Reversible jump Markov chain Monte Carlo algorithms, 736
1 \ / "	reconsiste jump marker enam monte cano arguntillas, 750

Ring networks, 210 Ring topology, 211 f Ring topology, 211 f RIP. See Restricted isometry property (RIP) RKHS. See Reproducing kernel Hilbert spaces (RKHS) RLS algorithm. See Recursive least-squares (RLS) algorithm Robbins-Monro algorithm, 177–179 Robust loss functions, 311–313 Robust PCA applications of, 997 low-rank matrix factorization, 995–996 Robust sparse signal recovery, 429–430 Running intersection property, 798 S Saddle point condition, 1027 Saliencies, 898 Sample nean, 31 Sample sequences, 29 Sample space, 12 Sampling-importance-resampling (SIR), 860–861 Scanb. See Smoothly clipped absolute deviation (SCAD) Scatter matrices, 295–296 Schur algorithm, 140 Schur complement, 133–134 Search direction, 163 Second order convexity condition, 331 Segmental k-means training algorithm, 827–828 Semiparametric representer theorem, 527 Semisupervised learning, 3, 64, 202–203 Separator, 799, 801–804 Separator, 799, 801–804 Separator nodes, 802–803	Ridge regression, 72–73, 243–245	Signal restoration, 438
Right stochastic matrix, 213–214 Ring networks, 210 Ring topology, 211f RIP. See Restricted isometry property (RIP) RKHS. See Reproducing kernel Hilbert spaces (RKHS) RLS algorithm. See Recursive least-squares (RLS) algorithm Robbins-Monro algorithm, 177–179 Robust loss functions, 311–313 Robust PCA applications of, 997 Robust sparse signal recovery, 429–430 Running intersection property, 798 Saddle point condition, 1027 Saliencies, 898 Sample space, 12 Sampling-importance resampling (SIR), 860–861 SCAD. See Through glorithm, 140 Schur complement, 133–134 Searned irrection, 163 Second order convexity condition, 331 Segmental k-means training algorithm, 827–828 Semiparametric representer theorem, 527 Semisupervised learning, 3, 64, 202–203 Separator, 799, 801–804 Separator nodes, 802–803 Sequental importance sampling (SIS), 845–846, 850 importance sampling revisited, 846–847 particle filtering, 855, 856 Isingular value decomposition (SVD), 239–242, 941, 942 SIS. See Sequential importance sampling (SIS) Slab method, 660–661 Slack variables, 532 SLDS. See Switching linear dynamic systems (SLDS) Slice-sampling algorithm, 735 Small scale tasks, 376 Smoothly clipped absolute deviation (SCAD), 411, 412f, 478 Softmax activation function, 624, 896–897 Soft thresholding, 380–381 function, 465–457 operation, 409–411, 410f Soundness, 761 Sparse adaptive projection subgradient method (SpAPSM), 480–484, 481f, 484f Sparse analysis representation, 485–486 Sparse preosstruction by separable approximation (SpaRSA) algorithm, 458–459 Sparse solutions, 433, 475 Sparsity-aware learning, 385, 404 Bayesian approach to, 655–661 concave, 675–676 Cramer-Rao bound, 679 de-noising, 438–439 geometric interpretation, 419–422 least absolute shrinkage/selection operator, 407–411 enorm minimizer, 417–418, 422–429 et 1 norm minimizer, 417–418, 422–429 et 1 norm minimizer, 418, 419, 426–429	kernels, 528–530, 537–538	Sign-error LMS, 196
Ring networks, 210 Ring topology, 211f Ring topology, 211f RIRP. See Restricted isometry property (RIP) RKHS. See Reproducing kernel Hilbert spaces (RKHS) RLS algorithm. See Recursive least-squares (RLS) algorithm Robbins-Monro algorithm, 177–179 Robust loss functions, 311–313 Robust PCA applications of, 997 low-rank matrix factorization, 995–996 Robust sparse signal recovery, 429–430 Running intersection property, 798 Saddle point condition, 1027 Saliencies, 898 Sample mean, 31 Sample sequences, 29 Sample space, 12 Sample sequences, 29 Sample space, 12 Sampling-importance-resampling (SIR), 860–861 SCAD. See Smoothly clipped absolute deviation (SCAD) Scatter matrices, 295–296 Schur algorithm, 140 Scemental k-means training algorithm, 827–828 Semiparametric representer theorem, 527 Semisupervised learning, 3, 64, 202–203 Separator, 799, 801–804 Seeparator nodes, 802–803 Sequential importance sampling (SIS) Single-stage auxiliary particle filter, 865–867 Singular value decomposition (SVD), 239–242, 941, 942 SIS. See Sequential importance sampling (SIS) Slab method, 660–661 Slack variables, 532 SLDS. See Switching linear dynamic systems (SLDS) Slice-sampling algorithm, 735 Smoothing, 118, 852, 866 Smoothly clipped absolute deviation (SCAD), 411, 412f, 478 Soft thresholding, 380–381 function, 456–457 operation, 409–411, 410f Soundess, 761 Sparse adaptive projection subgradient method (SpAPSM), 480–484, 481f, 484f Sparse analysis representation, 485–486 Sparse Bayesian Learning (SBL), 657–660 Sparse factor analysis, 977 Sparse indeling, 404 Sparse reconstruction by separable approximation (SpaRSA) algorithm, 458–459 Sparse solutions, 453, 475 Sparsity-aware learning, 385, 404 Bayesian approach to, 655–661 concave, 675–676 cost function, 675–676 cost function, 675–676 cost function, 675–676 concave,	principal components regression, 244-245	Sinc kernel, 523
Ring topology, 211f RIP. See Restricted isometry property (RIP) RKHS. See Restricted isometry property (RIP) RKHS. See Reproducing kernel Hilbert spaces (RKHS) RLS algorithm. See Recursive least-squares (RLS) algorithm Robbins-Monro algorithm, 177–179 Robust loss functions, 311–313 Robust PCA applications of, 997 low-rank matrix factorization, 995–996 Robust sparse signal recovery, 429–430 Running intersection property, 798 Saddle point condition, 1027 Saddle point condition, 1027 Saddle point condition, 1027 Sample mean, 31 Sample sequences, 29 Sample space, 12 Sampline space, 12 Sampline jimportance resampling (SIR), 860–861 SCAD. See Smoothly clipped absolute deviation (SCAD) Scatter matrices, 295–296 Schur algorithm, 140 Schur complement, 133–134 Search direction, 163 Second order convexity condition, 331 Segmental k-means training algorithm, 827–828 Semiparametric representer theorem, 527 Semisupervised learning, 3, 64, 202–203 Separator, 799, 801–804 Separator, 799, 801–804 Separator nodes, 802–803 Sequential importance sampling (SIS), 845–846, 850 importance sampling (SIS) Singular value decomposition (SVD), 239–242, 941, 942 SIS. See Sequential importance sampling (SIS) Slab method, 660–661 Slack variables, 532 SLDS. See Switching linear dynamic systems (SLDS) Since-sampling algorithm, 735 Small scale tasks, 376 Smoothly clipped absolute deviation (SCAD), 411, 412f, 478 Softmax activation function, 624, 896–897 Soft thresholding, 380–381 function, 456–457 operation, 409–411, 410f Soundness, 761 Sparse analysis representation, 485–486 Sparse Bayesian Learning (SBL), 657–660 Sparse Bayesian Learning (SBL), 657–660 Sparse reconstruction by separable approximation (SpaRSA) algorithm, 458–459 Sparse solutions, 453, 475 Sparsity aware learning, 384, 404 Bayesian approach to, 655–661 concave, 675–676 cost function, 675–676 Cramer-Rao bound, 679 de-noising, 438–439 geometric interpretation, 419–422 least absolute shrinkage/selection operator, 407–411 de,	Right stochastic matrix, 213–214	Single-layered feed-forward networks (SLFNs), 900
RP. See Restricted isometry property (RIP) RKHS. See Reproducing kernel Hilbert spaces (RKHS) RLS algorithm. See Recursive least-squares (RLS) algorithm Robbins-Monro algorithm, 177–179 Robust loss functions, 311–313 Robust PCA applications of, 997 low-rank matrix factorization, 995–996 Robust sparse signal recovery, 429–430 Running intersection property, 798 Saddle point condition, 1027 Saliencies, 898 Sample mean, 31 Sample sequences, 29 Sample space, 12 Sampling-importance-resampling (SIR), 860–861 SCAD. See Smoothly clipped absolute deviation (SCAD) Scatter matrices, 295–296 Schur algorithm, 140 Schur complement, 133–134 Search direction, 163 Second order convexity condition, 331 Segmental k-means training algorithm, 827–828 Semiparametric representer theorem, 527 Semisupervised learning, 3, 64, 202–203 Separator, 799, 801–804 Separator nodes, 802–803 Sequential importance sampling (SIS) Slab method, 660–661 Slab method, 660–661 Slab variables, 532 Slab method, 660–661 Slab method, 660–661 Slab variables, 532 Slab method, 660–661 Slab method, 660–661 Slab variables, 532 Slab method, 660–661 Slab method, 660–661 Slab variables, 532 Slab method, 660–661 Slab method, 660–661 Slab method, 660–661 Slab variables, 532 Slab method, 660–661 Smoothing, 118, 852, 866 Smoothly clipped absolute deviation (SCAD), 411, 412f, 478 Softmax activation function, 624, 896–897 Soft thresholding, 380–381 function, 456–457 operation, 49–411, 410f Sparse analysis representation, 485–486 Sparse andysis representation, 485–486 Sparse solutions, 435, 475 Sparsity-aware learning, 385, 404 Bayesian app	Ring networks, 210	Single-stage auxiliary particle filter, 865–867
RKHS. See Reproducing kernel Hilbert spaces (RKHS) RLS algorithm. See Recursive least-squares (RLS) algorithm Robbins-Monro algorithm, 177–179 Robust loss functions, 311–313 Robust PCA applications of, 997 low-rank matrix factorization, 995–996 Robust spares signal recovery, 429–430 Running intersection property, 798 S Saddle point condition, 1027 Saliencies, 898 Sample mean, 31 Sample sequences, 29 Sample space, 12 Sampling-importance-resampling (SIR), 860–861 SCAD. See Smoothly clipped absolute deviation (SCAD) Scatter matrices, 295–296 Schur algorithm, 140 Schur complement, 133–134 Search direction, 163 Second order convexity condition, 331 Segmental k-means training algorithm, 827–828 Semiparametric representer theorem, 527 Semisupervised learning, 3, 64, 202–203 Separator, 799, 801–804 Separator nodes, 802–803 Sequential importance sampling (SIS), 845–846, 850 importance sampling revisited, 846–847 particle filtering, 855, 856 Slab method, 660–661 Slack variables, 532 SLDS. See Switching linear dynamic systems (SLDS) Slice-sampling algorithm, 735 Small scale tasks, 376 Smoothing, 118, 852, 866 Smoothly clipped absolute deviation (SCAD), 411, 412f, 478 Softmax activation function, 624, 896–897 Soft thresholding, 380–381 function, 456–457 operation, 458–459 Sparse adaptive projection subgradient method (SpAPSM), 480–484, 481f, 484f Sparse adaptive projection subgradient method (SpAPSM), 480–484, 481f, 484f Sparse analysis representation, 485–486 Sparse Bayesian Learning (SBL), 657–660 Sparse factor analysis, 977 Sparse modeling, 404 Sparse reconstruction by separable approximation (SpaRSA) algorithm, 458–459 Sparse signal representation, 411–415, 487–488 Sparse solutions, 433, 443 Bayesian approach to, 655–661 concave, 675–676 cost function, 679 de-noising, 438–439 geometric interpretation, 419–422 least absolute shrinkage/selection operator, 407–411 enormalized, 44, 44, 44, 44, 44, 44, 44, 44, 44, 4	Ring topology, 211f	Singular value decomposition (SVD), 239–242, 941, 942
RLS algorithm. See Recursive least-squares (RLS) algorithm Robbins-Monro algorithm, 177–179 Robust loss functions, 311–313 Robust PCA applications of, 997 low-rank matrix factorization, 995–996 Robust sparse signal recovery, 429–430 Running intersection property, 798 Saddle point condition, 1027 Saliencies, 898 Sample mean, 31 Sample sequences, 29 Sampling-importance-resampling (SIR), 860–861 SCAD. See Smoothly clipped absolute deviation (SCAD) Scatter matrices, 295–296 Schur algorithm, 140 Schur complement, 133–134 Seeroh direction, 163 Second order convexity condition, 331 Segmental k-means training algorithm, 827–828 Semiparametric representer theorem, 527 Semisupervised learning, 3, 64, 202–203 Separator, 799, 801–804 Separator nodes, 802–803 Sequential importance sampling (SIS), 845–846, 850 importance sampling revisited, 846–847 particle filtering, 855, 856 second or convexity condition, 827–808 Second or convexity condition, 331 Sequential importance sampling (SIS), 845–846, 850 importance sampling revisited, 846–847 particle filtering, 855, 856 second or convexity condition, 827–808 Second or convexity condition, 2027 Sequential importance sampling (SIS), 845–846, 850 importance sampling revisited, 846–847 particle filtering, 855, 856 second or convexity condition, 202 Sequential importance sampling (SIS), 845–846, 850 importance sampling revisited, 846–847 particle filtering, 845, 840, 851	RIP. See Restricted isometry property (RIP)	SIS. See Sequential importance sampling (SIS)
Robbins-Monro algorithm, 177–179 Robust loss functions, 311–313 Robust PCA applications of, 997 low-rank matrix factorization, 995–996 Robust sparse signal recovery, 429–430 Running intersection property, 798 Saddle point condition, 1027 Saliencies, 898 Sample sequences, 29 Sample space, 12 Sampling-importance-resampling (SIR), 860–861 SCAD. See Smoothly clipped absolute deviation (SCAD) Scarter matrices, 295–296 Schur algorithm, 140 Schur complement, 133–134 Search direction, 163 Second order convexity condition, 331 Segmental k-means training algorithm, 827–828 Semiparametric representer theorem, 527 Semisupervised learning, 3, 64, 202–203 Separator, 799, 801–804 Separator nodes, 802–803 Sequential importance sampling (SIS), 845–846, 850 importance sampling revisited, 846–847 particle filtering, 855, 856 importance sampling revisited, 846–847 particle filtering, 855, 856 importance sampling revisited, 846–847 particle filtering, 855, 856 second by the sequence of the	RKHS. See Reproducing kernel Hilbert spaces (RKHS)	Slab method, 660–661
Robust loss functions, 311–313 Robust PCA applications of, 997 low-rank matrix factorization, 995–996 Robust sparse signal recovery, 429–430 Running intersection property, 798 S Saddle point condition, 1027 Sailencies, 898 Sample mean, 31 Sample sequences, 29 Sample space, 12 Sampling-importance-resampling (SIR), 860–861 SCAD. See Smoothly clipped absolute deviation (SCAD) Scatter matrices, 295–296 Schur algorithm, 140 Schur complement, 133–134 Search direction, 163 Second order convexity condition, 331 Segmental k-means training algorithm, 827–828 Semiparametric representer theorem, 527 Semisupervised learning, 3, 64, 202–203 Separator, 799, 801–804 Separator nodes, 802–803 Sequential importance sampling (SIS), 845–846, 850 importance sampling revisited, 846–847 particle filtering, 855, 856 importance sampling revisited, 846–847 particle filtering, 855, 856 importance sampling revisited, 846–847 particle filtering, 845, 846 second order convexity on the second order convexity condition, 331 Segmental k-means training algorithm, 735 Small scale tasks, 376 Smoothly clipped absolute deviation (SCAD), 411, 412f, 478 Softmax activation function, 624, 896–897 Soft thresholding, 380–381 function, 456–457 operation, 409–411, 410f Sparse adaptive projection subgradient method (SpAPSM), 480–484, 481f, 484f Sparse adaptive projection subgradient method (SpAPSM), 480–484, 481f, 484f Sparse adaptive projection subgradient method (SpAPSM), 480–484, 481f, 484f Sparse adaptive projection subgradient method (SpAPSM), 480–484, 481f, 484f Sparse adaptive projection subgradient method (SpAPSM), 480–484, 481f, 484f Sparse adaptive projection subgradient method (SpAPSM), 480–484, 481f, 484f Sparse adaptive projection subgradient method (SpAPSM), 480–484, 481f, 484f Sparse adaptive projection subgradient method (SpAPSM), 480–484, 481f, 484f Sparse adaptive projection subgradient method (SpAPSM), 480–484, 481f, 484f Sparse adaptive projection	RLS algorithm. See Recursive least-squares (RLS) algorithm	Slack variables, 532
Robust PCA applications of, 997 low-rank matrix factorization, 995–996 Robust sparse signal recovery, 429–430 Running intersection property, 798 Samula scale tasks, 376 Smoothing, 118, 852, 866 Smoothly clipped absolute deviation (SCAD), 411, 412f, 478 Softmax activation function, 624, 896–897 Soft thresholding, 330–381 function, 456–457 operation, 409–411, 410f Soundness, 761 Sparse adaptive projection subgradient method (SpAPSM), 480–484, 481f, 484f Sparse analysis representation, 485–486 Sparse Bayesian Learning (SBL), 657–660 Sparse factor analysis, 977 Sparse modeling, 404 Sparse reconstruction by separable approximation (SpaRSA) algorithm, 458–459 Sparse signal representation, 411–415, 487–488 Sparse solutions, 453, 475 Sparsity-aware learning, 385, 404 Bayesian approach to, 655–661 concave, 675–676 Cramer-Rao bound, 679 de-noising, 438–439 geometric interpretation, 419–422 least absolute shrinkage/selection operator, 407–411 \(\ell_0\) norm minimizer, 417–418, 422–429 \(\ell_1\) norm minimizer, 417–418, 422–429 \(\ell_1\) norm minimizer, 417, 418, 422–429	Robbins-Monro algorithm, 177–179	SLDS. See Switching linear dynamic systems (SLDS)
applications of, 997 low-rank matrix factorization, 995–996 Robust sparse signal recovery, 429–430 Running intersection property, 798 Saddle point condition, 1027 Saliencies, 898 Sample mean, 31 Sample sequences, 29 Sample space, 12 Sampling-importance-resampling (SIR), 860–861 SCAD. See Smoothly clipped absolute deviation (SCAD) Scatter matrices, 295–296 Schur algorithm, 140 Schur complement, 133–134 Search direction, 163 Second order convexity condition, 331 Segmental k-means training algorithm, 827–828 Semiparametric representer theorem, 527 Semisupervised learning, 3, 64, 202–203 Separator, 799, 801–804 Separator, 799, 801–804 Separator, 799, 801–804 Separator nodes, 802–803 Sequential importance sampling (SIS), 845–846, 850 importance sampling revisited, 846–847 particle filtering, 855, 856 importance sampling revisited, 846–847 particle filtering, 855, 856 importance sampling revisited, 846–847 particle filtering, 855, 856 second order convexity condition, 827–828 Second order convexity condition, 331 Segmental k-means training algorithm, 827–828 Sequential importance sampling (SIS), 845–846, 850 importance sampling revisited, 846–847 particle filtering, 855, 856 monothly clipped absolute deviation (SCAD), 411, 412f, 478 Softmax activation function, 624, 896–897 Soft thresholding, 380–381 function, 456–457 operation, 409–411, 410f Soundness, 761 Sparse adaptive projection subgradient method (SpAPSM), 480–484 481f, 484f Sparse analysis representation, 485–486 Sparse analysis representation, 455–660 Sparse factor analysis, 977 Sparse modeling, 404 Sparse reconstruction by separable approximation (SpaRSA) algorithm, 458–459 Sparse signal representation, 411–415, 487–488 Sparse solutions, 453, 475 Sparsity-aware learning, 385, 404 Bayesian approach to, 655–661 concave, 675–676 Cramer-Rao bound, 679 de-noising, 438–439 geometric interpretation, 419–422 least absolute shrinkage/selection operator, 407–411 ℓ_0 norm minimizer, 417–418, 422–429 ℓ_1 norm minimizer, 418, 419, 426–429	Robust loss functions, 311–313	Slice-sampling algorithm, 735
Incomplemental statements of the statement of the stateme	Robust PCA	Small scale tasks, 376
Robust sparse signal recovery, 429–430 Running intersection property, 798 Softmax activation function, 624, 896–897 Soft thresholding, 380–381 function, 456–457 operation, 409–411, 410f Soundness, 761 Soundness, 761 Sparse adaptive projection subgradient method (SpAPSM), 480–484, 481f, 484f Sparse analysis representation, 485–486 Sparse Bayesian Learning (SBL), 657–660 Sparse Bayesian Learning (SBL), 657–660 Sparse factor analysis, 977 Sparse modeling, 404 Sparse reconstruction by separable approximation (SpaRSA) algorithm, 458–459 Sparse signal representation, 411–415, 487–488 Sparse solutions, 453, 475 Sparsity-aware learning, 385, 404 Bayesian approach to, 655–661 concave, 675–676 Cramer-Rao bound, 679 de-noising, 438–439 geometric interpretation, 419–422 least absolute shrinkage/selection operator, 407–411 ℓ ₀ norm minimizer, 417–418, 422–429 ℓ ₁ norm minimizer, 418, 419, 426–429	applications of, 997	Smoothing, 118, 852, 866
Running intersection property, 798 Soft thresholding, 380–381 function, 456–457 operation, 409–411, 410f Soundness, 761 Sparse adaptive projection subgradient method (SpAPSM), 480–484, 481f, 484f Sparse analysis representation, 485–486 Sparse Bayesian Learning (SBL), 657–660 Sparse Bayesian Learning (SBL), 657–660 Sparse analysis representation, 485–486 Sparse modeling, 404 Sparse reconstruction by separable approximation (SpaRSA) algorithm, 140 Schur complement, 133–134 Search direction, 163 Second order convexity condition, 331 Segmental k-means training algorithm, 827–828 Semiparametric representer theorem, 527 Semisupervised learning, 3, 64, 202–203 Separator, 799, 801–804 Separator nodes, 802–803 Sequential importance sampling (SIS), 845–846, 850 importance sampling revisited, 846–847 particle filtering, 855, 856 importance sampling revisited, 846–847 particle filtering, 855, 856 memorphism, 947, 840, 851	low-rank matrix factorization, 995-996	Smoothly clipped absolute deviation (SCAD), 411, 412f, 478
function, 456–457 stable point condition, 1027 Saliencies, 898 Sample mean, 31 Sample sequences, 29 Sampling-importance-resampling (SIR), 860–861 SCAD. See Smoothly clipped absolute deviation (SCAD) Scatter matrices, 295–296 Schur algorithm, 140 Schur complement, 133–134 Search direction, 163 Second order convexity condition, 331 Segmental k-means training algorithm, 827–828 Semiparametric representer theorem, 527 Semisupervised learning, 3, 64, 202–203 Separator, 799, 801–804 Separator nodes, 802–803 Sequential importance sampling (SIS), 845–846, 850 importance sampling revisited, 846–847 particle filtering, 855, 856 The stable projection subgradient method (SpAPSM), 480–484 (Sparse adaptive projection subgradient method (SpAPSM), 480–484, 481f, 484f Sparse analysis representation, 485–486 Sparse Bayesian Learning (SBL), 657–660 Sparse modeling, 404 Sparse reconstruction by separable approximation (SpaRSA) algorithm, 458–459 Sparse signal representation, 411–415, 487–488 Sparse solutions, 453, 475 Sparsity-aware learning, 385, 404 Bayesian approach to, 655–661 concave, 675–676 Cramer-Rao bound, 679 de-noising, 438–439 geometric interpretation, 419–422 least absolute shrinkage/selection operator, 407–411 \$\ell_0\$ norm minimizer, 417, 418, 422–429 \$\ell_1\$ norm minimizer, 418, 419, 426–429	Robust sparse signal recovery, 429–430	Softmax activation function, 624, 896–897
Saddle point condition, 1027 Saliencies, 898 Sample mean, 31 Sample sequences, 29 Sample space, 12 Sampling-importance-resampling (SIR), 860–861 SCAD. See Smoothly clipped absolute deviation (SCAD) Scatter matrices, 295–296 Schur algorithm, 140 Schur complement, 133–134 Search direction, 163 Second order convexity condition, 331 Segmental k-means training algorithm, 827–828 Semiparametric representer theorem, 527 Semisupervised learning, 3, 64, 202–203 Separator, 799, 801–804 Separator nodes, 802–803 Sequential importance sampling (SIS), 845–846, 850 importance sampling revisited, 846–847 particle filtering, 855, 856 Importance sampling revisited, 846–847 particle filtering, 87, 940, 951	Running intersection property, 798	Soft thresholding, 380–381
Saddle point condition, 1027 Saliencies, 898 Sample mean, 31 Sample sequences, 29 Sample space, 12 Sampling-importance-resampling (SIR), 860–861 SCAD. See Smoothly clipped absolute deviation (SCAD) Scatter matrices, 295–296 Schur algorithm, 140 Schur complement, 133–134 Search direction, 163 Second order convexity condition, 331 Segmental k-means training algorithm, 827–828 Semisupervised learning, 3, 64, 202–203 Separator, 799, 801–804 Separator nodes, 802–803 Sequential importance sampling revisited, 846–847 particle filtering, 855, 856 meansupersping, 847, 840, 851 meansuping, 847, 840, 851 Soundness, 761 Sparse adaptive projection subgradient method (SpAPSM), 480–484, 481f, 484f Sparse analysis representation, 485–486 Sparse Bayesian Learning (SBL), 657–660 Sparse factor analysis, 977 Sparse modeling, 404 Sparse reconstruction by separable approximation (SpaRSA) algorithm, 458–459 Sparse signal representation, 411–415, 487–488 Sparse solutions, 453, 475 Sparsity-aware learning, 385, 404 Bayesian approach to, 655–661 concave, 675–676 cost function, 675–676 Cramer-Rao bound, 679 de-noising, 438–439 geometric interpretation, 419–422 least absolute shrinkage/selection operator, 407–411 \[\ell_0 \text{ norm minimizer, 417-418, 422-429} \] \[\ell_1 \text{ norm minimizer, 418, 419, 426–429} \]		function, 456–457
Saliencies, 898 Sample mean, 31 Sample sequences, 29 Sampling-importance-resampling (SIR), 860–861 SCAD. See Smoothly clipped absolute deviation (SCAD) Scatter matrices, 295–296 Schur algorithm, 140 Schur complement, 133–134 Search direction, 163 Second order convexity condition, 331 Segmental k-means training algorithm, 827–828 Semiparametric representer theorem, 527 Semisupervised learning, 3, 64, 202–203 Separator, 799, 801–804 Separator nodes, 802–803 Sequential importance sampling (SIS), 845–846, 850 importance sampling revisited, 846–847 particle filtering, 855, 856 importance sampling revisited, 846–847 particle filtering, 855, 856 meanwhire, 247, 840, 851	\$	operation, 409–411, 410 <i>f</i>
Sample mean, 31 Sample mean, 31 Sample sequences, 29 Sample space, 12 Sampling-importance-resampling (SIR), 860–861 SCAD. See Smoothly clipped absolute deviation (SCAD) Scatter matrices, 295–296 Schur algorithm, 140 Schur complement, 133–134 Search direction, 163 Second order convexity condition, 331 Segmental k-means training algorithm, 827–828 Semiparametric representer theorem, 527 Semisupervised learning, 3, 64, 202–203 Separator, 799, 801–804 Separator nodes, 802–803 Sequential importance sampling (SIS), 845–846, 850 importance sampling revisited, 846–847 particle filtering, 855, 856 importance sampling revisited, 846–847 particle filtering, 855, 856 meansupervised learning, 855, 856 meansupervised learning, 855, 856 meansupervised learning, 3, 64, 202–203 Sequential importance sampling (SIS), 845–846, 850 importance sampling revisited, 846–847 particle filtering, 855, 856 meansupervised learning, 385, 856 minorial deviation (SCAD) Sparse Bayesian Learning (SBL), 657–660 Sparse Bayesian	Saddle point condition, 1027	
Sample mean, 31 Sample sequences, 29 Sample space, 12 Sampling-importance-resampling (SIR), 860–861 SCAD. See Smoothly clipped absolute deviation (SCAD) Scatter matrices, 295–296 Schur algorithm, 140 Schur complement, 133–134 Search direction, 163 Second order convexity condition, 331 Segmental k-means training algorithm, 827–828 Semiparametric representer theorem, 527 Semisupervised learning, 3, 64, 202–203 Separator, 799, 801–804 Separator nodes, 802–803 Sequential importance sampling (SIS), 845–846, 850 importance sampling revisited, 846–847 particle filtering, 855, 856 sample mean, 31 Sparse analysis representation, 485–486 Sparse Bayesian Learning (SBL), 657–660 Sparse modeling, 404 Sparse reconstruction by separable approximation (SpaRSA) algorithm, 458–459 Sparse signal representation, 411–415, 487–488 Sparse solutions, 453, 475 Sparsity-aware learning, 385, 404 Bayesian approach to, 655–661 concave, 675–676 cost function, 675–676 Cramer-Rao bound, 679 de-noising, 438–439 geometric interpretation, 419–422 least absolute shrinkage/selection operator, 407–411 ℓ_0 norm minimizer, 417–418, 422–429 ℓ_1 norm minimizer, 418, 419, 426–429	Saliencies, 898	
Sample sequences, 29 Sample space, 12 Sampling-importance-resampling (SIR), 860–861 SCAD. See Smoothly clipped absolute deviation (SCAD) Scatter matrices, 295–296 Schur algorithm, 140 Schur complement, 133–134 Search direction, 163 Second order convexity condition, 331 Segmental k-means training algorithm, 827–828 Semiparametric representer theorem, 527 Semisupervised learning, 3, 64, 202–203 Separator, 799, 801–804 Separator nodes, 802–803 Sequential importance sampling (SIS), 845–846, 850 importance sampling revisited, 846–847 particle filtering, 855, 856 sparse Bayesian Learning (SBL), 657–660 Sparse factor analysis, 977 Sparse modeling, 404 Sparse reconstruction by separable approximation (SpaRSA) algorithm, 458–459 Sparse signal representation, 411–415, 487–488 Sparse solutions, 453, 475 Sparsity-aware learning, 385, 404 Bayesian approach to, 655–661 concave, 675–676 Cramer-Rao bound, 679 de-noising, 438–439 geometric interpretation, 419–422 least absolute shrinkage/selection operator, 407–411 \[\ell_0 \ \text{ norm minimizer, 417, 418, 422–429} \] \[\ell_1 \ \text{ norm minimizer, 418, 419, 426–429} \]	Sample mean, 31	
Sampling-importance-resampling (SIR), 860–861 SCAD. See Smoothly clipped absolute deviation (SCAD) Scatter matrices, 295–296 Schur algorithm, 140 Schur complement, 133–134 Search direction, 163 Second order convexity condition, 331 Segmental k-means training algorithm, 827–828 Semiparametric representer theorem, 527 Semisupervised learning, 3, 64, 202–203 Separator, 799, 801–804 Separator nodes, 802–803 Sequential importance sampling (SIS), 845–846, 850 importance sampling revisited, 846–847 particle filtering, 855, 856 somothly clipped absolute deviation (SCAD) Sparse factor analysis, 977 Sparse modeling, 404 Sparse reconstruction by separable approximation (SpaRSA) algorithm, 458–459 Sparse signal representation, 411–415, 487–488 Sparse solutions, 453, 475 Sparsity-aware learning, 385, 404 Bayesian approach to, 655–661 concave, 675–676 Cramer-Rao bound, 679 de-noising, 438–439 geometric interpretation, 419–422 least absolute shrinkage/selection operator, 407–411 \(\ell_0\) norm minimizer, 417–418, 422–429 \(\ell_1\) norm minimizer, 418, 419, 426–429	Sample sequences, 29	
Sparse modeling, 404 Sparse reconstruction by separable approximation (SpaRSA) algorithm, 458–459 Schur algorithm, 140 Schur complement, 133–134 Search direction, 163 Second order convexity condition, 331 Segmental k-means training algorithm, 827–828 Semiparametric representer theorem, 527 Semisupervised learning, 3, 64, 202–203 Separator, 799, 801–804 Separator nodes, 802–803 Sequential importance sampling (SIS), 845–846, 850 importance sampling revisited, 846–847 particle filtering, 855, 856 recompting, 847, 840, 851	Sample space, 12	
Scatter matrices, 295–296 Schur algorithm, 140 Schur complement, 133–134 Search direction, 163 Second order convexity condition, 331 Segmental <i>k</i> -means training algorithm, 827–828 Semiparametric representer theorem, 527 Semisupervised learning, 3, 64, 202–203 Separator, 799, 801–804 Separator nodes, 802–803 Sequential importance sampling (SIS), 845–846, 850 importance sampling revisited, 846–847 particle filtering, 855, 856 recompling, 847, 840, 851	Sampling-importance-resampling (SIR), 860-861	
scatter matrices, 293–296 Schur algorithm, 140 Schur complement, 133–134 Search direction, 163 Second order convexity condition, 331 Segmental k-means training algorithm, 827–828 Semiparametric representer theorem, 527 Semisupervised learning, 3, 64, 202–203 Separator, 799, 801–804 Separator nodes, 802–803 Sequential importance sampling (SIS), 845–846, 850 importance sampling revisited, 846–847 particle filtering, 855, 856 parses signal representation, 411–415, 487–488 Sparse solutions, 453, 475 Sparsity-aware learning, 385, 404 Bayesian approach to, 655–661 concave, 675–676 Cramer-Rao bound, 679 de-noising, 438–439 geometric interpretation, 419–422 least absolute shrinkage/selection operator, 407–411 \(\ell_0\) norm minimizer, 417–418, 422–429 \(\ell_1\) norm minimizer, 418, 419, 426–429	SCAD. See Smoothly clipped absolute deviation (SCAD)	•
Schur algorithm, 140 Schur complement, 133–134 Search direction, 163 Second order convexity condition, 331 Segmental k-means training algorithm, 827–828 Semiparametric representer theorem, 527 Semisupervised learning, 3, 64, 202–203 Separator, 799, 801–804 Separator nodes, 802–803 Sequential importance sampling (SIS), 845–846, 850 importance sampling revisited, 846–847 particle filtering, 855, 856 recompling, 847, 840, 851	Scatter matrices, 295–296	
Scarch complement, 133–134 Search direction, 163 Second order convexity condition, 331 Segmental k-means training algorithm, 827–828 Semiparametric representer theorem, 527 Semisupervised learning, 3, 64, 202–203 Separator, 799, 801–804 Separator nodes, 802–803 Sequential importance sampling (SIS), 845–846, 850 importance sampling revisited, 846–847 particle filtering, 855, 856 particle filtering, 855, 856 second order convexity condition, 331 Sparse solutions, 453, 475 Sparsity-aware learning, 385, 404 Bayesian approach to, 655–661 concave, 675–676 Cramer-Rao bound, 679 de-noising, 438–439 geometric interpretation, 419–422 least absolute shrinkage/selection operator, 407–411 \[\ell_0 \text{ norm minimizer, 417–418, 422–429} \] \[\ell_1 \text{ norm minimizer, 418, 419, 426–429} \]	Schur algorithm, 140	-
Search direction, 163 Second order convexity condition, 331 Segmental k-means training algorithm, 827–828 Semiparametric representer theorem, 527 Semisupervised learning, 3, 64, 202–203 Separator, 799, 801–804 Separator nodes, 802–803 Sequential importance sampling (SIS), 845–846, 850 importance sampling revisited, 846–847 particle filtering, 855, 856 parsempling, 847, 840, 851 Sparsity-aware learning, 385, 404 Bayesian approach to, 655–661 concave, 675–676 Cramer-Rao bound, 679 de-noising, 438–439 geometric interpretation, 419–422 least absolute shrinkage/selection operator, 407–411 \[\ell_0 \] norm minimizer, 417–418, 422–429 \[\ell_1 \] norm minimizer, 418, 419, 426–429	Schur complement, 133–134	
Second order convexity condition, 331 Segmental k-means training algorithm, 827–828 Semiparametric representer theorem, 527 Semisupervised learning, 3, 64, 202–203 Separator, 799, 801–804 Separator nodes, 802–803 Sequential importance sampling (SIS), 845–846, 850 importance sampling revisited, 846–847 particle filtering, 855, 856 recompling, 847, 840, 851	Search direction, 163	-
Segmental k-means training algorithm, 827–828 Semiparametric representer theorem, 527 Semisupervised learning, 3, 64, 202–203 Separator, 799, 801–804 Separator nodes, 802–803 Sequential importance sampling (SIS), 845–846, 850 importance sampling revisited, 846–847 particle filtering, 855, 856 parametric nodes, 802–803 Sequential importance sampling revisited, 846–847 particle filtering, 855, 856 parametric netroreation, 419–422 least absolute shrinkage/selection operator, 407–411 \$\ell_0\$ norm minimizer, 417–418, 422–429 \$\ell_1\$ norm minimizer, 418, 419, 426–429	Second order convexity condition, 331	
Semisupervised learning, 3, 64, 202–203 Separator, 799, 801–804 Separator nodes, 802–803 Sequential importance sampling (SIS), 845–846, 850 importance sampling revisited, 846–847 particle filtering, 855, 856 parametric representer theorem, 527 cost function, 675–676 Cramer-Rao bound, 679 de-noising, 438–439 geometric interpretation, 419–422 least absolute shrinkage/selection operator, 407–411 \$\ell_0\$ norm minimizer, 417–418, 422–429 \$\ell_1\$ norm minimizer, 418, 419, 426–429	Segmental k-means training algorithm, 827–828	* **
Semisupervised learning, 3, 64, 202–203 Separator, 799, 801–804 Separator nodes, 802–803 Sequential importance sampling (SIS), 845–846, 850 importance sampling revisited, 846–847 particle filtering, 855, 856 particle filtering, 855, 856 particle filtering, 847, 840, 851 particle filtering, 855, 856 particle filtering, 855, 856 particle filtering, 847, 840, 851	Semiparametric representer theorem, 527	
Separator, 799, 801–804 Separator nodes, 802–803 Sequential importance sampling (SIS), 845–846, 850 importance sampling revisited, 846–847 particle filtering, 855, 856	Semisupervised learning, 3, 64, 202–203	
Separator nodes, $802-803$ Sequential importance sampling (SIS), $845-846$, 850 importance sampling revisited, $846-847$ particle filtering, 855 , 856 second line of the importance sampling (SIS), $845-846$, 850 particle filtering, 855 , 856 ℓ_1 norm minimizer, $417-418$, $422-429$ ℓ_1 norm minimizer, 418 , 419 , $426-429$	Separator, 799, 801-804	
Sequential importance sampling (SIS), $845-846$, 850 least absolute shrinkage/selection operator, $407-411$ importance sampling revisited, $846-847$ ℓ_0 norm minimizer, $417-418$, $422-429$ particle filtering, 855 , 856 ℓ_1 norm minimizer, 418 , 419 , $426-429$	Separator nodes, 802–803	-
importance sampling revisited, 846–847 ℓ_0 norm minimizer, 417–418, 422–429 particle filtering, 855, 856 ℓ_1 norm minimizer, 418, 419, 426–429	Sequential importance sampling (SIS), 845-846, 850	-
particle filtering, 855, 856 ℓ_1 norm minimizer, 418, 419, 426–429	importance sampling revisited, 846-847	
recompling 947 940 951	particle filtering, 855, 856	
() norm minimizer, 710/, 71/	resampling, 847-849, 851	
sequential sampling, 849–851 models, 485–490	sequential sampling, 849–851	•
Serial connection, 755 nondecreasing, 675–676	Serial connection, 755	
Set-membership algorithms, 354 parameter identifiability, 678–679	Set-membership algorithms, 354	
Shepp-Logan image phantom, 474f robust sparse signal recovery, 429–430	Shepp-Logan image phantom, 474f	
100dst sparse signal recovery, 427 430	Shrinkage methods, 314	
Sigmoidal Bayesian networks, 758–759, 759f, 760 techniques, 404	Sigmoidal Bayesian networks, 758–759, 759f, 760	
Sigmoid link function, 290, 291f variational parameters, 677	Sigmoid link function, 290, 291f	*
Signal compression, 412–413 variations on, 467–474	Signal compression, 412–413	•
Signal processing, filtering, 118 Sparsity-aware regression, 671–675	Signal processing, filtering, 118	

Sparsity-promoting algorithms, 356, 450	Stochastic EM, 720–721
adaptive norm-weighted LASSO, 477–478	Stochastic gradient descent schemes, 178-179
AdCoSaMP algorithm, 479–480	Stochastic processes, 29
distributed, 483	autoregressive models, 38-40
frames theory, 497–502	first/second order statistics, 30
greedy algorithms, 451–456	power spectral density, 33-38
iterative shrinkage/thresholding algorithms, 456-462	stationarity/ergodicity, 30–33
LASSO, 475–477	Stochastic volatility model, 867
magnetic resonance imaging, 473-474	Stop-splitting rule, 303
phase transition behavior, 464–465, 465f	Strict-sense stationarity (SSS), 30, 31
practical hints, 462–467	String kernels, 525
SpAPSM, 480–484	Strongly convex auxiliary function, 388
Spectral signature, 694	Structured sparsity, 467, 468–469
Spectral unmixing (SU), 694–695	Subband adaptive filters, 198
Spike method, 660–661	Subdifferential mapping
Spline kernels, 521	proximal operators, 384–385
Split Levinson algorithm, 137	resolvent of, 384–385
Splitting criterion, 300–301, 302–303	Sub-Gaussian distribution, 196–197
Squared-error loss function, 234	Subgradient algorithm, 359–362, 363–365
Squared exponential kernel, 688	generic scheme, 365
Squashing function, 887	regret analysis of, 372–374
SSS. See Strict-sense stationarity (SSS)	Subjective priors, 599
Stable embedding, 433–434	Sublinear global rate of convergence, 457–458
Stacking, 306	Sub-Nyquist sampling
State equation, 149–150	analog-to-information conversion, 434–436
State-observation models, 816–817	definition, 434–435
State-space models, 149–150, 816–817	Sufficient statistics, 70–72
Kalman filters, 853f	Sum-product algorithm, 778–782, 821
particle filters, 853 <i>f</i> , 854–855	Supervised learning, 3, 64
Stationarity, 30	Support vector machine (SVM), 369, 538–539, 665
Stationary iterative/iterative relaxation methods,	applications, 550
456–457	division and clifford algebras, 552
Statistical filtering, 119f	hyperparameters, 550–551
Statistical independence, 13	linearly separable classes, 540–545
Statistical signal processing, 5	multiclass generalizations, 552–553
Steady-state performance, 218–219	nonseparable classes, 545–548
distributed learning, 218–219	one-against-all, 552
improving, 219	one-against-one, 552
LMS in stationary environments, 181–186	PEGASOS, 551
of RLS, 252–254	performance, 550
Steepest descent method, 163–167, 293	Support vector regression (SVR), 662
Stick-breaking construction, 685–686	linear ϵ -insensitive loss function, 530–537, 559
Stochastic approximation, 177–179, 251	optimization task, 530–531
Stochastic convergence	Support vectors, 533, 543
almost everywhere, 49	Switching linear dynamic systems (SLDS), 832
distribution, 49–51	Synapses, 876
everywhere, 48	• •
mean square sense, 49	Systematic resampling, 848
probability, 49	System identification, 125–126

T	Two-stage-thresholding (TST) algorithms, 460, 466–467, 466j
Tail-to-tail connection, 756	Tychonoff-Phillips regularization, 72
Test error, 80–81	Type I estimator, 592
Thinning process, 731	Type II maximum likelihood, 600
Tight frames, 498–499	
Time-adaptive algorithm, 162	U
Time-and-norm-weighted LASSO (TNWL), 477–478	Unbiased estimation, 31, 65–67
Time constant, 169, 185–186	Underdetermined system, 240-242
Time-frequency analysis	Undirected graph
echolocation signals, 493–497	perfect elimination sequence, 798
Gabor frames, 490–492, 493	triangulated graph, 796, 797f, 799
Gabor transform, 490–492	Undirected graphical models, 762–768
time-frequency resolution, 492–493	CRFs, 767–768
Time-frequency resolution, 492–493	independencies/I-maps in Markov random fields, 763-765
Time sequential nature, 140	Ising model, 765–767
Time-shifted versions, 132	Uniform distribution, 20, 712f
Time-shift structure, 256–257	Union of subspaces, 433
Time varying signal, 483–484	Unit vector, 193f
Time varying statistics, 149	Unobserved random variable, 57–58
Time-varying step sizes, 174–176	Unscented Kalman filters, 152
TNWL. See Time-and-norm-weighted LASSO (TNWL)	Unsupervised learning, 3, 64
Toeplitz matrix, 40, 133	Update direction, 163
Total-least-squares (TLS) method, 261–268	
Training data set, 57–58	V
Training deep networks	Validation, 91–93
backpropagation, 907	Value similarity (VS), 572–573
distributive representation, 907	Variable duration HMM, 829
feed-forward networks, 914–915	Variable elimination, 781
restricted Boltzmann machine, 905–906, 908–914	Variance, 15–17
sparsity, 907	Variational approximation methods, 804-805
Training error, 80–81, 92 <i>f</i>	Bayesian learning, 640–645
Training set, 2	block methods, 809-813
Transform-domain LMS, 197–201	Boltzmann machine, 807–809
Transition probability matrix, 722–723, 724, 725	multiple-cause networks, 805–807
detailed balanced condition, 723	noisy-OR model, 805-807
hidden Markov model, 818, 819	Variational Bayesian approach
Markov chains, 724, 725–726	to Gaussian mixture modeling, 651-654
properties, 722–723	to linear regression, 645–651
Transversal implementation, LTIFIR filter, 137	Variational bound approximation method, 666-671
Tree reweighted belief propagation, 815	Variational bound Bayesian path, 671–675
Trees	Variational inference techniques, 736–737
boosting, 313–314	Variational message passing, 812
classification, 300–304, 301f	Variational method, 670
exact inference methods, 777–778	VC-dimension of classifier, 91
Triangle inequality, 395	Vector space model (VSM), 570–571
Triangulated graphs, 796–804	Vector spaces, 109, 394
Bayesian network, 800–801, 800 <i>f</i>	Vertex component analysis (VCA) algorithm, 697
undirected graph, 796, 797 <i>f</i> , 799	Visual tracking, 867–868
andrestou Brupii, 170, 1713, 177	-

Index

Viterbi algorithm, 825	real random processes, 119
Viterbi reestimation, 827–828	two-dimensional random process, 121
insufficient training data set, 828	Wiener-Hammerstein model, 512–514, 512f
scaling, 828	Wiener-Hopf equations, 110
Volterra model, 511–514	Wiener model, 511–514, 512f
Volterra series expansion, 511	Wireless sensor networks (WSNs), 208
<i>v</i> -SVM, 547	Wirtinger calculus, 116-118, 175, 1016-1017
	Wirtinger derivative, 117
W	Wishart distribution, 601
Weak convergence, 342, 397	Within-class scatter matrix, 296
Weierstrass theorem, 510–511	Wolfe dual representation, 1029
Welch bound, 424–425	Woodburry's matrix inversion formula, 246-247
Well-posed problems, 74	WSS. See Wide-sense stationary (WSS)
White Gaussian noise, 238	
White noise	X
LS estimator, 237–238	X-ray mammography, 2
sequence, 38, 42 <i>f</i>	
Widely-linear APA, 195–196	Υ
Widely linear complex-valued estimation, 113-116	Yule-Walker equations, 39–40
Widely-linear LMS, 195	
Wide-sense stationary (WSS), 30, 31	Z
cross-correlation, 34	Zero mean values, 32–33, 106–107