参考答案、提示及评分细则

題号	1	2	3	4	5	6	7	8	9	10
答案	D	С	D	D	٨	В	С	С	В	D

一、选择题:本题共10小题,每小题4分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.【答案】D

【解析】泥活字中的硅酸盐属于无机盐, A 错误; 磁针中的四氧化三铁属于氧化物, B 错误; 黑火药中的木炭属于单质, C 错误; 纸中的纤维家属于有机物, D 正确。

2.【答案】C

【解析】稀豆浆属于胶体,分散质粒子的直径为1~100 nm,A 不符合题意;胶体具有丁达尔效应,用激光笔照射稀豆浆,会出现光亮的"通路",B 不符合题意;胶体分散质粒子直径太小,能和杂质的分子或离子一样透过滤纸的孔隙,应采用半透膜对胶体进行提纯、精制,不能采用过滤操作,C 符合题意;豆浆凝聚成豆腐与江河人海口形成"三角洲"的原理类似,都属于胶体的聚沉,D 不符合题意。

3.【答案】D

【解析】用铜电极电解氯化镁溶液,反应的离子方程式为 Cu+2H,O = Cu(OH), ↓+H, ↑, D 错误。

4.【答案】D

【解析】高温下,Fe(s)与 H₁O(g)反应生成 Fe₃O₄(s)和 H₂(g),I) 错误。

5.【答案】A

【解析】实验①、②、③均为氧化还原反应。实验①氧化性, MnO_{i} (酸性条件) $>Cl_{i}$,实验②氧化性, $Cl_{i}>Fe^{j+}$,同时实验②只证明了 Fe^{j+} 的还原性;实验③氧化性, $Fe^{j+}>I_{i}$,故氧化性, MnO_{i} (酸性条件) $>Cl_{i}>Fe^{j+}>I_{i}$,A 正确,B、C、D 错误。

6.【答案】B

【解析】18 g H₂ ¹¹O 的物质的量为 $\frac{18 \text{ g}}{20 \text{ g} \cdot \text{ mol}}$ ¹² 0.9 mol·1 个 H₂ ¹⁵O 分子中含 0+(18-8)=10 个中子·则 18 g H₂ ¹¹O 含有的中子数为 9 N_A,A 正确;未给出 HCl 溶液体积,无法计算,B 错误;2NO+O₂ —2NO₂,2NO₂ — N₂O₄,因此 2 mol NO 与 1 mol O₂ 在密闭容器中充分反应后的分子数小于 2 N_A,C 正确;CH₄ 和 Cl₂ 发生的四步取代反应均为反应前后分子总数保持不变的反应,反应前,标准状况下,33.6 L CH₄ 和 18 g H₂ ¹⁵O 含有的中子数为 9 N_A,A 正确;未给出 HCl 溶液体积,无法计算,B 错误;2NO+O₂ —2NO₂,2NO₂ — N₂O₄,因此 2 mol NO 与 1 mol O₂ 在密闭容器中充分反应后的分子数小于 2 N_A,C 正确;CH₄ 和 Cl₂ 发生的四步取代反应均为反应前后分子总数保持不变的反应,反应前,标准状况下,33.6 L CH₄ 和 Cl₂ 发生的四步取代反应均为反应前后分子总数保持不变的反应,反应前,标准状况下,33.6 L CH₄ 和 22.4 L Cl₂ 的总的物质的量为 2.5 mol·故在光照下充分反应后的分子数为 2.5 N_A,D 正确。

7.【答案】C

【解析】①混合物溶于水,得到澄消透明溶液,则不含 BaCO」;②做焰色试验,透过蓝色钴玻璃可观察到火焰的 颜色呈紫色,可确定含有钾元素,即含有 KCI。③向溶液中加碳溶液,产生白色沉淀,则应含有 MgSO。综合以 上分析,混合物由 KCI 和 MgSO。两种物质组成,C 正确。

8.【答案】C

【解析】粗食盐水中加入过量氮化钡溶液、除去硫酸根离子;过滤后向滤液1中加入过量氮氧化钠溶液、除去 镁离子;过滤后向滤液2中加入过量碳酸钠溶液、除去钙离子和过量的钡离子;过滤后向滤液3中加入盐酸、 调pH,除去过量的氦氮根离子和过量的碳酸根离子、最后蒸发结晶、得到氮化钠固体。滤液2中主要有五种 离子,Ca²⁺、Na⁺、Cl⁻、OH⁻和 Ba²⁺、C 错误,A、B、D 正确。

9.【答案】B

【解析】根据盖斯定律可知,反应 \mathbb{I} 一反应 \mathbb{I} ,得到反应 $\mathrm{CO}(g) + 3H_2(g)$ 〇 $\mathrm{CO}(g) + H_2\mathrm{O}(g)$ 。由图可知,随着温度升高,一氧化碳的平衡体积分数增大,甲烷的平衡体积分数减小,则说明随着温度升高,反应 \mathbb{I} 的化学平衡正向移动,反应 \mathbb{I} 的化学平衡逆向移动,则反应 \mathbb{I} 为吸热反应,即 $\Delta H_1 > 0$,反应 \mathbb{I} 为放热反应,即 $\Delta H_2 < 0$,则反应 $\mathrm{CO}(g) + 3H_2(g)$ 、 $\mathrm{CCH}_1(g) + \mathrm{H}_1\mathrm{O}(g)$ 的 ΔH $\Delta H_2 - \Delta H_1 < 0$, ΔH_2 个 ΔH_3 个

10.【答案】D

【解析】 $H_2\Lambda$ 的 $K_{a_1} > K_{a_2}$, $K_{a_1} = \frac{c(H\Lambda^-) \cdot c(H^+)}{c(H_2\Lambda)}$, $K_{a_1} = \frac{c(H\Lambda^-) \cdot c(H^+)}{c(H_2\Lambda)}$, $K_{a_2} = \frac{c(H\Lambda^-) \cdot c(H^+)}{c(H_2\Lambda)}$, $K_{a_1} = \frac{c(H\Lambda^-)}{c(H\Lambda^-)}$, $K_{a_2} =$

二、非选择题:本题共 4 小题,共 60 分。

11.【答案及评分细则】(15分)

- $(1)2Cu+O_2+4HCl = 2CuCl_2+2H_2O(2 \%)$
- (2)盐酸受热易挥发,氮气的溶解度降低(2分)
- (3)除去大部分过量的盐酸,减少后面锌的用量(2分)
- $(4)Zn+Cu^{2+}-Zn^{2+}+Cu(1分)$
- (5)①2(2分)
- $2ZnCO_3 \cdot 2ZnO(\sqrt{2}ZnC) \cdot ZnCO_3 \not ZnO(\sqrt{2}nCO_3)(2 \not T)$
- (6) $ZnO+H_2O+2OH^-$ [$Zn(OH)_{\iota}$] $^{\iota-}$ (2分)
- (7)D(2分)

【解析】(5)①根据"碱式碳酸锌在空气中加热最终可转化为 ZnO"可知,固体失重率为 32. 32%时,所得固体为 ZnO。根据关系式 ZnCO。• 2Zn(OH)2 • xH_2O ~ 3ZnO,列出计算式:

$$\frac{3\times81}{323+18x}\times100\%=1-32.32\%=67.68\%$$
,解得 $x=2$.

②根据关系式 $ZnCO_3 \cdot 2Zn(OH)_2 \cdot 2H_2O \sim ZnCO_3 \cdot 2Zn(OH)_2 \sim 2H_2O$. 固体失重率= $\frac{36}{359} \times 100\%$ =

- 20.06%, 故固体失重率为 20.06%时. 所得固体的化学式为 ZnCO。• 2ZnO(或 2ZnO• ZnCO。或 ZnO、ZnCO。)。
- (7)原电池是将化学能转化为电能的装置、 Λ 正确; a 极为 MnO_2 ,作正极,其电极反应式为 $MnO_2 + H_2O + e^- = MnO(OH) + OH^-$. B 正确; b 极为 Zn,作负极,其电极反应式为 $Zn 2e^- + 2OH^- = ZnO + H_2O$,
- C正确:电子不经过溶液.D 错误。

12.【答案及评分细则】(15 分)

(1)B(2分。答错或多答,不给分)

$$(2)2U_3O_8+O_2+6NaOH \xrightarrow{\triangle} 3Na_2U_2O_7+3H_2O(2/3)$$

$$4CePO_4 + O_2 + 12NaOH + 2H_2O - 4Ce(OH)_4 + 4Na_3PO_4(2分)$$

- (3)Na₃PO₄(1分) 大量的高碱度废水(或其他正确答案)(1分)
- (4)①酸性作用、还原剂作用(2分)
- ② $2Ce(OH)_4 + 8H^+ + 2Cl^- = 2Ce^{3+} Cl_2 + 8H_2O(2 分)$
- ③4.0×10⁻⁰(2分)
- (5)Ra2+(1分)

【解析】(1)升高温度,热分解速率增大,A正确;反应时间越长,热分解速率越小,B 错误;提高搅拌速度,热分解速率增大,C正确;独居石粉碎的越小,固体与碱溶液的接触面积越大,热分解速率越大,D正确;适当提高 NaOH 溶液的浓度,热分解速率增大,E正确。

(4)①盐酸在"溶解"阶段,既起酸性作用又起还原剂作用。

③25 ℃时,
$$K_{\mathfrak{P}}$$
 [Th(OH),]=4.0×10⁻⁴⁵。 当溶液的 pH=5.0 时, c (Th⁴⁺)= $\frac{K_{\mathfrak{P}}$ [Th(OH),]= $\frac{4.0\times10^{-45}}{c^{1}(OH^{-})}$ mol·L⁻¹=4.0×10⁻⁹ mol·L⁻¹。

- (1)1:1(1分) 29g·mol 1(1分)
- (2)67.2(2分)
- (3)①3.0(2分)
- ②295(2分) 用少量蒸馏水洗涤烧杯内壁和玻璃棒 2~3次,将洗涤液也都注入容量瓶(2分)
- ③将稀释后的硫酸溶液冷却至室温(2分)
- ①偏小(1分)
- (4)0.15(2分)

【解析】(4)根据关系式 $2Na_2S_2O_3\sim I_2$ 可知,与葡萄糖反应后,剩余的 I_2 为 $\frac{1}{2}$ × 0.0120 mol·L⁻¹×25.00× 10^{-3} L=1.5× 10^{-4} mol,与葡萄糖反应的 I_2 为 0.015 00 mol·L⁻¹×30.00× 10^{-3} L-1.5× 10^{-4} mol= 3.0×10^{-4} mol。根据关系式 $C_6H_{12}O_6\sim I_2$ 可知,该无色饮料 20.00 mL 中糖类物质(均以葡萄糖计)的物质的量为 3.0×10^{-4} mol× $\frac{100}{10}$ = 3.0×10^{-3} mol,该饮料中糖类物质(均以葡萄糖计)的物质的量浓度为 $\frac{3.0\times10^{-3}\text{mol}}{20.00\times10^{-3}}$ L=0.15 mol·L⁻¹。

14.【答案及评分细则】(15分)

- (1) 高温(2分) 反应 I 的 $\Delta H > 0$ 、 $\Delta S > 0$,高温下可以满足 $\Delta H T \Delta S < 0$ (2分)
- (2)M(1分) 进料口总压为恒压 100 kPa,反应物 CH。和 H₂S 的投料比保持不变(均为 1:3),一定温度下加入 He 气,则相当于减小压强,平衡向着气体分子数增多的方向移动,反应 I 和反应 II 的化学平衡均向正反应方向移动,导致 CH₃ 的平衡转化率增大(2分)

(3)0.0012(或 1.2×10⁻³)(2 分) $\frac{16}{15}p_0(2 分)$

(4)600 ℃(2分) 温度升高,反应速率加快,催化剂 Ni 的孔道内积碳量增加,催化剂快速失活(2分)

【解析】(3)由图 2 可知,反应到 5 min 时,CH。的转化率为 5%,H₂S 的转化率为 20%,根据关系式 CH。(转化)~2H₂ 和 H₂S(转化)~H₂,可知反应到 5 min 时生成 H₂ 的物质的量为 $n(H_2)=0.3$ mol×5%×2+0.15 mol×20%=0.03 mol+0.03 mol=0.06 mol,0~5 min 内,H₂ 的平均化学反应速率 $v(H_2)=\frac{0.06 \text{ mol}}{10 \text{ L} \times 5 \text{ min}}=0.0012$ mol·L⁻¹·min⁻¹。5 min 时,容器内 $n(CH_1)=0.3$ mol×95%=0.285 mol, $n(H_2S)=0.15$ mol×80%=0.12 mol, $n(H_2)=0.06$ mol,再根据 S 原子守恒关系式 2H₂S(转化)~CS₂ 和 2H₂S(转化)~S₂ 可知,5 min 时,容器内 $n(CS_2)+n(S_2)=\frac{1}{2}n(H_2S)_{\Re k}=\frac{1}{2}\times 0.15$ mol×20%=0.015 mol。5 min 时,容器内混合气体(CH₄、H₂S、H₂、CS₂和 S₂)的总物质的量为 0.285 mol+0.12 mol+0.06 mol+0.015 mol=0.48 mol,恒温恒容条件下, $\frac{0.45 \text{ mol}}{0.48 \text{ mol}}=\frac{p_0 \text{ kPa}}{p(5 \text{ min})}$,解得 $p(5 \text{ min})=\frac{16}{15}p_0 \text{ kPa}$ 。

(4)由图 3 可知,550 ℃,650 ℃时,当反应时间大于 1 000 s,氢气的体积分数迅速下降,催化剂 Ni 的孔道内积碳量增加,催化剂快速失活。而 600 ℃时,随着反应的进行,氢气的体积分数逐渐增大并保持在较高水平,因此,使用催化剂的最佳温度为 600 ℃。650 ℃条件下,1 000 s 后,氢气的体积分数快速下降,原因是温度升高,反应速率加快,催化剂 Ni 的孔道内积碳量增加,催化剂快速失活。