Solutions to Exam 2018-2019 Semester 2

- 1. (a) Let $f(x) = 1384(1 2x)e^{3x}$, $-\infty < x < \infty$. Find the absolute maximum value of f. Give your answer correct to the nearest integer.
 - (b) Let m and n denote two positive even integers with m < n. It is known that the area of the region between the graphs of $y = 2\cos x$ and $y = \sin 2x$ from $x = m\pi$ to $x = (n+1)\pi$ is equal to 8554. Find the exact value of n-m.

Answer. (a) 1521, (b) 2138.

Solution. (a) First $f'(x) = 1384(-2e^{3x} + 3(1-2x)e^{3x}) = 1384e^{3x}(1-6x)$. We have f'(x) > 0 if $x < \frac{1}{6}$; and f'(x) < 0 if $x > \frac{1}{6}$. By the first derivative test, f has the absolute maximum at $x = \frac{1}{6}$. The absolute maximum value is $f(\frac{1}{6}) = 1384 \times \frac{2}{3} \times e^{\frac{1}{2}} = 1521.22 \approx 1521$.

(b) Let's find the intersection points of the two curves. We have $\sin 2x = 2\cos x \Leftrightarrow 2\sin x \cos x = 2\cos x \Leftrightarrow \cos x(\sin x - 1) = 0 \Leftrightarrow x = k\pi + \frac{\pi}{2}$, where k is an integer. The function $|\sin 2x - 2\cos x|$ is clearly periodic of period 2π . Therefore, we first consider the interval $[m\pi, m\pi + 2\pi]$. Here m is an even integer. We have

$$\begin{split} & \int_{m\pi}^{m\pi+2\pi} |\sin 2x - 2\cos x| \, dx = \int_{0}^{2\pi} |\sin 2x - 2\cos x| \, dx \\ & = \int_{0}^{\frac{\pi}{2}} 2\cos x - \sin 2x \, dx + \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \sin 2x - 2\cos x \, dx + \int_{\frac{\pi}{2}}^{2\pi} 2\cos x - \sin 2x \, dx \\ & = [2\sin x + \frac{1}{2}\cos 2x]_{0}^{\frac{\pi}{2}} + [-\frac{1}{2}\cos 2x - 2\sin x]_{\frac{\pi}{2}}^{\frac{3\pi}{2}} + [2\sin x + \frac{1}{2}\cos 2x]_{\frac{3\pi}{2}}^{2\pi} \\ & = (2 - \frac{1}{2} - 0 - \frac{1}{2}) + (\frac{1}{2} + 2 - \frac{1}{2} + 2) + (0 + \frac{1}{2} + 2 + \frac{1}{2}) = 1 + 4 + 3 = 8. \end{split}$$

Also consider the last interval $[n\pi, (n+1)\pi]$. Here n is an even integer. We have $\int_{n\pi}^{(n+1)\pi} |\sin 2x - 2\cos x| \, dx = \int_{0}^{\pi} |\sin 2x - 2\cos x| \, dx = \int_{0}^{\frac{\pi}{2}} 2\cos x - \sin 2x \, dx + \int_{\frac{\pi}{2}}^{\pi} \sin 2x - 2\cos x \, dx = \left[2\sin x + \frac{1}{2}\cos 2x\right]_{0}^{\frac{\pi}{2}} + \left[-\frac{1}{2}\cos 2x - 2\sin x\right]_{\frac{\pi}{2}}^{\frac{\pi}{2}} = (2 - \frac{1}{2} - 0 - \frac{1}{2}) + (-\frac{1}{2} - 0 - \frac{1}{2} + 2) = 2.$

Consequently,

$$\int_{m\pi}^{(n+1)\pi} |\sin 2x - 2\cos x| dx = \int_{m\pi}^{n\pi} |\sin 2x - 2\cos x| dx + \int_{n\pi}^{(n+1)\pi} |\sin 2x - 2\cos x| dx$$
$$= \frac{n-m}{2} \times 8 + 2 = 4(n-m) + 2 = 8554. \text{ Thus } n-m = 2138.$$

2. (a) Let P(x) denote the degree two Taylor polynomial of the function ln(2 + tan x) at x = 0. Find the value of P(⁹/₁₀). Give your answer correct to two decimal places.
(b) Find the directional derivative of the function f(x, y, z) = 4xyz - 2x² + y² + z² + 321 at the point (1, 1, 2) in the direction of the vector which joins (2, 3, 1) to (1, 2, 3). Give your answer correct to two decimal places.

Answer. (a) 1.04, (b) -2.67.

Solution. (a) Let $f(x) = \ln(2 + \tan x)$. Then $f'(x) = \frac{\sec^2 x}{2 + \tan x}$, and $f''(x) = \frac{2 \sec x \sec x \tan x (2 + \tan x) - \sec^2 x \sec^2 x}{(2 + \tan x)^2}.$

Thus $f(0) = \ln 2$, $f'(0) = \frac{1}{2}$, $f''(0) = -\frac{1}{4}$. The degree two Taylor polynomial of f at x = 0 is $P(x) = \ln 2 + \frac{1}{2}x - \frac{1}{8}x^2$. Therefore, $P(\frac{9}{10}) = \ln 2 + \frac{1}{2}\frac{9}{10} - \frac{1}{8}(\frac{9}{10})^2 = 1.04$.

(b) The vector which joins (2,3,1) to (1,2,3) is $\langle 1,2,3\rangle - \langle 2,3,1\rangle = \langle -1,-2,2\rangle$ with length $\sqrt{(-1)^2 + (-2)^2 + 2^2} = 3$. The unit vector along this direction is $\langle -\frac{1}{3}, -\frac{2}{3}, \frac{2}{3}\rangle$.

We have $\nabla f = \langle 4yz - 4x, 4xz + 2y, 4xy + 2z \rangle$. Thus $\nabla f(1, 1, 2) = \langle 4, 10, 8 \rangle$.

Therefore the required directional derivative is $\langle 4, 10, 8 \rangle \cdot \langle -\frac{1}{3}, -\frac{2}{3}, \frac{2}{3} \rangle = -\frac{8}{3} = -2.67$.

3. (a) It is known that the function $f(x,y) = 3xy - x^2 - y^3 - 5$ has exactly one local maximum point at (a,b). If $a+b=\frac{m}{n}$ where m and n are two positive integers without any common factors, find the exact value of m+n.

(b) The region R lies above the paraboloid $z = 4 - x^2 - y^2$ and below the paraboloid $z = 8 - 3x^2 - 3y^2$. Find the volume of R. Give your answer correct to two decimal places.

Answer. (a) 29, (b) 12.57.

Solution. (a) First $f_x = 3y - 2x$, $f_y = 3x - 3y^2$. We need to solve the system 3y - 2x = 0, $3x - 3y^2 = 0$. Substituting $x = \frac{3}{2}y$ into the second equation, we have $\frac{9}{2}y - 3y^2 = 0$. That is $\frac{3}{2}y(3-2y) = 0$ so that y = 0, $\frac{3}{2}$. Using $x = \frac{3}{2}y$, if y = 0, then x = 0; if $y = \frac{3}{2}$, then $x = \frac{9}{4}$. Thus there are two critical points (0,0), $(\frac{9}{4},\frac{3}{2})$.

We have $f_{xx} = -2$, $f_{yy} = -6y$, $f_{xy} = 3$, and $D(x,y) = (-2)(-6y) - 3^2 = 12y - 9$.

At $(\frac{9}{4}, \frac{3}{2})$, we have $f_{xx}(\frac{9}{4}, \frac{3}{2}) = -2 < 0$, $D(\frac{9}{4}, \frac{3}{2}) = 9$. By the second derivative test, f has a local maximum at $(\frac{9}{4}, \frac{3}{2})$. By the statement of the question, we know f has exactly one local maximum point. Thus $(\frac{9}{4}, \frac{3}{2})$ is the point (a, b). We may this reject the the critical point (0, 0). Therefore, $a + b = \frac{9}{4} + \frac{3}{2} = \frac{15}{4}$ and m + n = 15 + 4 = 29.

(b) Equating the two equations of the paraboloids, we have $4-x^2-y^2=8-3x^2-3y^2 \Leftrightarrow x^2+y^2=2$, which is a circle with radius $\sqrt{2}$. That is the two paraboloids intersect in a circle $x^2+y^2=2$, z=2. Let z=20 on the z=30 on the z=31 on the z=32 on the z=33 on the z=33 on the z=34 on the z=34 on the z=35 on the z=

Thus $V = \iint_D (8-3x^2-3y^2) - (4-x^2-y^2) \, dx \, dy = \iint_D 4-2x^2-2y^2 \, dx \, dy$. Using polar coordinates, we have $V = \int_0^{2\pi} \int_0^{\sqrt{2}} (4-2r^2) r \, dr \, d\theta = 2\pi [2r^2-\frac{1}{2}r^4]_{r=0}^{r=\sqrt{2}} = 2\pi (4-2) = 4\pi = 12.57$.

4. (a) Evaluate $\int_{-2}^{0} \int_{0}^{x^2} e^{y-\frac{1}{3}y^{\frac{3}{2}}} dy dx$. Give your answer correct to two decimal places.

(b) At time t=0 a tank contains 20 pounds of salt dissolved in 120 gallons of water. Assume that water containing 0.5 pound of salt per gallon is entering the tank at a rate of 4 gallons per minute and the well stirred solution is leaving the tank at the same rate. Find the amount of salt in the tank at time t=16 minutes. Give your answer in pounds correct to two decimal places.

Answer. (a) 5.59, (b) 36.53.

Solution. (a) The region of integration is

$$R = \{(x, y) \mid y \le x^2, -2 \le x \le 0\} = \{(x, y) \mid -2 \le x \le -\sqrt{y}, \ 0 \le y \le 4\}.$$

Thus
$$\int_{-2}^{0} \int_{0}^{x^{2}} e^{y-\frac{1}{3}y^{\frac{3}{2}}} dy dx = \int_{0}^{4} \int_{-2}^{-\sqrt{y}} e^{y-\frac{1}{3}y^{\frac{3}{2}}} dx dy = \int_{0}^{4} \left[x e^{y-\frac{1}{3}y^{\frac{3}{2}}} \right]_{x=-2}^{x=-\sqrt{y}} dy$$
$$= \int_{0}^{4} (2-y^{\frac{1}{2}}) e^{y-\frac{1}{3}y^{\frac{3}{2}}} dy = \int_{0}^{4} 2e^{y-\frac{1}{3}y^{\frac{3}{2}}} d\left(y-\frac{1}{3}y^{\frac{3}{2}}\right) = 2\left[e^{y-\frac{1}{3}y^{\frac{3}{2}}}\right]_{0}^{4} = 2(e^{\frac{4}{3}}-1)$$
$$= 5.59.$$

(b) First note that the volume of the solution remains constant which is 120 gallons. Let Q be the amount of salt in pound at time t. The concentration of salt in the solution is Q/120 pound per gallon. Suppose at time t+dt, the amount of salt is Q+dQ. Then

$$dQ = \text{salt input} - \text{salt output} = 4 \times 0.5 \times dt - 4 \times \frac{Q}{120} \times dt.$$

Thus

$$\frac{dQ}{dt} = 2 - \frac{Q}{30}$$
, or equivalently $\frac{dQ}{dt} + \frac{Q}{30} = 2$.

The general solution to this first order linear DE is $Q = 60 + Ce^{-\frac{t}{30}}$. Since Q(0) = 20, we have 20 = 60 + C so that C = -40. Consequently, $Q = 60 - 40e^{-\frac{t}{30}}$. Therefore, $Q(16) = 60 - 40e^{-\frac{16}{30}} = 36.53$ pounds.

5. (a) Let y(x) be the solution of the differential equation

$$\frac{dy}{dx} + \frac{2}{x}y = \frac{y^3}{x^2}$$
, with $x > 0, y > 0$ and $y(1) = \sqrt{\frac{5}{7}}$.

Find the value of $y(\frac{3}{2})$. Give your answer correct to two decimal places.

(b) The growth of the sandhill crane population follows a logistic model with a birth rate per capita of 10% per year. Initially at time t = 0 there were 1521

sandhill cranes. It is known that at time t = 10 years there were 2019 sandhill cranes. How many sandhill cranes will there be after a very long time? Give your answer correct to the nearest integer.

Answer. (a) 0.43, (b) 2494.

Solution. (a) This is a Bernoulli equation with n = 3. Let $u = y^{-2}$. The equation becomes

$$u' - \frac{4}{x}u = -\frac{2}{x^2}.$$

This is a first order linear differential equation. An integrating factor is $e^{\int -\frac{4}{x} dx} = e^{-4 \ln x} = x^{-4}$. Multiplying through the above equation by x^{-4} , we have

$$(x^{-4}u)' = -\frac{2}{x^6}.$$

Integrating, $x^{-4}u = \frac{2}{5x^5} + C$. That is $u = Cx^4 + \frac{2}{5x}$. Therefore, $y = \frac{1}{\sqrt{u}} = \frac{1}{\sqrt{Cx^4 + \frac{2}{5x}}}$. Since $y(1) = \sqrt{\frac{5}{7}}$, we have $\sqrt{\frac{5}{7}} = \frac{1}{\sqrt{C + \frac{2}{5}}}$ so that C = 1. Consequently, $y = \frac{1}{\sqrt{x^4 + \frac{2}{5x}}}$. Therefore, $y(\frac{3}{2}) = \frac{1}{\sqrt{(\frac{3}{2})^4 + \frac{2}{5(\frac{3}{7})}}} = \frac{1}{\sqrt{(\frac{3}{2})^4 + \frac{4}{15}}} = 0.43$.

(b) Let N(t) be the number of sandhill crane at time t in years. The logistic model gives $\frac{1}{N} = \frac{s}{B} + Ce^{-Bt}$, where s, C are constants and B = 10% = 0.1 is the birth rate per capita. Thus $\frac{1}{N} = 10s + Ce^{-t/10}$, $t \ge 0$.

 $N(0) = 1521 \Rightarrow \frac{1}{1521} = 10s + C$, $N(10) = 2019 \Rightarrow \frac{1}{2019} = 10s + Ce^{-1}$. Subtracting the two equations, we obtain

$$\frac{1}{1521} - \frac{1}{2019} = C(1 - e^{-1}) \Rightarrow C = \frac{498}{1521 \times 2019 \times (1 - e^{-1})} = \frac{166}{1023633(1 - e^{-1})} = 0.000256545.$$

Therefore, $10s = \frac{1}{1521} - C$. As $t \to \infty$, $N \to N_{\infty} = \frac{1}{10s} = \frac{1}{\frac{1}{1521} - C} = \frac{1}{\frac{1}{1521} - \frac{166}{1023633(1 - e^{-1})}} = 2494.28 = 2494$ to the nearest integer.