AELP Complete System Architecture Overview

Version 2.0

September 29, 2025

Integrated business-first document with latest design, data, simulator learnings, and first-wave outputs

Aura Engineering Team

Confidential and Proprietary

Contents

1	Executive Summary	2
	1.1 The Challenge	2
	1.2 Our Solution	2
	1.3 Why It Works Now	2
	1.4 This Week's Plan	2
	1.5 What Changed Since Last Document	3
2	Problem Framing & Goals	4
	2.1 Why Simulate Real Life for Reinforcement Learning	4
	2.2 Key Questions Answered	4
	2.3 Constraints and Success Metrics	4
3	Plain-Language Glossary & Assumptions	6
	3.1 Key Terms	6
	3.2 Key Assumptions	6
4	System Architecture	7
	4.1 End-to-End Flow	7
	4.2 AELP vs AELP2 Responsibilities	8
5	Connectors Status Matrix	9
6	Data Ingestion & BigQuery Inventory	10
	6.1 Ingestion Architecture	10
	6.2 BigQuery Dataset Inventory	10
7	Feature & Ranking Layer	11
	7.1 Feature Families	11
	7.2 Model Accuracy	12
8	Forecasting (Placement-Aware)	13
	8.1 Baseline Metrics by Placement	13
	8.2 Security Track Forecasts (\$30k/day)	14
	8.3 Balance Track Forecasts (\$30k/day)	14
9	Offline RL Simulator	15
	9.1 Thompson Sampling Algorithm	15
	9.2 Budget Allocation Evolution	16
10	First-Wave Outputs	17
	10.1 30-Day Combined Outlook	17
11	Workflow	18

	11.1 Daily Operations Timeline	18 18
12	Status Overview	19
	12.1 Working Well (Green)	19
	12.2 In Progress (Yellow)	19
	12.3 Gaps/Issues (Red)	19
13	Risk Matrix	20
14	90-Day Roadmap	21
	14.1 Resource Requirements	21
	14.2 Expected Outcomes	
\mathbf{A}	Data Lineage	22

Executive Summary

1.1 The Challenge

The Aura Experiential Learning Platform (AELP) solves the critical challenge of optimizing behavioral health marketing spend across digital channels. Traditional approaches yield unpredictable customer acquisition costs (CAC) ranging from \$150 to \$400, making budget planning impossible and wasting millions on underperforming campaigns.

1.2 Our Solution

AELP employs a sophisticated reinforcement learning system that simulates real-world ad auctions, user journeys, and conversion patterns. By analyzing 30+ days of Meta Ads performance data across placements, the system forecasts CAC and volume with quantified uncertainty bounds, then uses Thompson sampling to optimize creative allocation.

1.3 Why It Works Now

Three breakthroughs enable success:

- 1. Placement-aware baselines capturing true market dynamics
- 2. Conformal prediction providing reliable lower bounds on performance
- 3. Offline RL simulation that learns optimal allocation without spending real money

1.4 This Week's Plan

- Launch Security slate (8 creatives) at \$30k/day with p50 CAC of \$166-\$289
- Launch Balance slate (8 creatives) at \$30k/day with p50 CAC of \$82-\$142
- Monitor daily performance against forecasted bounds and adjust if outside p10-p90 range

Key Performance Metrics

Metric	Value
Daily Spend	\$60,000
Expected Signups (p50)	548
Combined CAC (p50)	\$109
Net Revenue (p50)	\$19,416

Confidence Note: Based on 146 campaign samples with precision@10 of 30% and isotonic calibration reliability of 0.85+

1.5 What Changed Since Last Document

- Added placement-specific forecasting (feed vs stories vs reels)
- Implemented Thompson sampling for exploration/exploitation balance
- Integrated real BigQuery data pipeline with 7 datasets
- Validated accuracy on 11 live campaigns
- Extended to Balance product track beyond Security

Problem Framing & Goals

The behavioral health industry faces unique digital marketing challenges. Unlike e-commerce where conversions happen immediately, our users undergo multi-touch journeys spanning 3-14 days before subscribing. This delayed attribution, combined with privacy regulations and platform limitations, creates a complex optimization problem.

2.1 Why Simulate Real Life for Reinforcement Learning

Traditional A/B testing requires months and millions in spend to reach statistical significance. By simulating the entire ecosystem—from user behavior to auction dynamics—we can explore thousands of strategies offline, learning optimal policies without financial risk.

The simulator captures:

- Auction Mechanics: Second-price auctions with quality scores and budget pacing
- User Journeys: Multi-touchpoint paths with channel-specific response rates
- Temporal Dynamics: Day-of-week patterns, creative fatigue, and seasonality
- Uncertainty: Conformal bounds on CTR/CVR predictions

2.2 Key Questions Answered

- 1. Which creatives to run? Top 8 ranked by expected value considering both performance and uncertainty
- 2. Where to place them? Optimal placement mix based on historical CPM/CTR/CVR by publisher platform
- 3. **How much to spend?** Daily budget allocation using Thompson sampling with safety caps
- 4. Expected CAC? Probabilistic forecast with p10/p50/p90 bounds
- 5. Volume forecast? Signup projections with confidence intervals

2.3 Constraints and Success Metrics

Hard Constraints

- Maximum CAC: \$240 for Security, \$200 for Balance
- Minimum volume: 100 signups/day per product
- Budget caps: \$30k/day per product track
- Creative compliance: Mental health advertising policies

Success Metrics

- $\bullet~$ CAC within 20% of forecast p50
- $\bullet\,$ Volume within p10-p90 bounds 80% of days
- $\bullet\,$ Positive net revenue after 30 days
- \bullet Learning efficiency: 50% fewer impressions to convergence vs random

Plain-Language Glossary & Assumptions

3.1 Key Terms

p10/p50/p90 — Percentiles representing uncertainty. p50 is the median (50% chance of being above or below). p10 means 90% chance the actual value is higher, p90 means 90% chance it's lower.

Priors — Initial beliefs about performance before seeing data. We use informative priors from historical campaigns in the same vertical.

Conformal Bound — A statistical guarantee that provides a lower bound on performance with specified confidence.

Baseline — Historical average performance metrics (CPM, CTR, CVR) calculated from past campaigns.

Placement — Where ads appear: Feed (main scrolling area), Stories (full-screen temporary), Reels (short videos), Audience Network (third-party apps).

Thompson Sampling — Algorithm that balances trying new creatives (exploration) with using proven winners (exploitation).

AOV (Average Order Value) — Revenue per subscription: Security \$200, Balance \$120 unless specified otherwise.

3.2 Key Assumptions

- Budget levels: \$30k/day Security + \$30k/day Balance = \$60k total
- CAC targets: Security ≤\$240, Balance ≤\$200
- Conversion window: 7-day click, 1-day view attribution
- Creative pool: 50+ validated creatives per product
- Forecast horizon: 30 days forward-looking

System Architecture

The AELP system orchestrates data flow from multiple sources through transformation and modeling layers to produce actionable recommendations. At its core, the architecture follows a feedback loop where historical performance informs future decisions, with safety checks and human oversight at critical junctures.

4.1 End-to-End Flow

Raw data enters through platform APIs (Meta, Google, Impact) and vendor feeds. The ingestion layer normalizes formats and loads to BigQuery. Feature engineering extracts signals like creative elements, timing patterns, and audience segments. The scoring layer applies ML models to predict CTR and CVR with uncertainty bounds.

Figure 4.1: High-level system architecture showing data flow from sources through optimization to execution

4.2 AELP vs AELP2 Responsibilities

Component	AELP (Legacy)	AELP2 (Current)	Interface
User Simulation	RecSim models, jour-	_	JSON state files
	ney states		
Auction Simulation	AuctionGym environ-		Bid/impression logs
	ment		
Data Ingestion	_	Meta API, vendor	BigQuery tables
		normalization	
Scoring & Ranking	_	ML models, calibra-	JSON score files
		tion	
Forecasting	_	Placement-aware pro-	JSON forecast files
<u> </u>		jections	
RL Optimization	PPO/DQN agents	Thompson sampling	Policy parameters
Production Ops		Orchestration, moni-	Status APIs
•		toring	

Connectors Status Matrix

Connector	Purpose	Auth/Keys	Rate Limit	Status	Owner/Notes
BigQuery	Central data warehouse	ADC/Service	100 GB/day	Green	Data Team / 7
Meta Ads API	Campaign performance	OAuth (***)	200/hour	Green	Marketing / Insights
SearchAPI	Ad Library proxy	API key (***)	100/month	Yellow	Vendor / Limited
Vendor CSV	Creative meta-	SFTP	Daily batch	Green	Creative / Auto-
	data				sync
Google Analytics	Conversion track-	Service acct	10 QPS	Yellow	Analytics / Pend-
	ing				ing
Google Ads	Search campaigns	OAuth	15k ops/day	Yellow	PPC / Read-only
Impact.com	Affiliate tracking	API creds	1k/day	Red	Partnerships /
			, ,		Contract
Redis Cache	Real-time state	Internal	50k ops/sec	Green	Infra / Memorys-
			- ,		tore

Data Ingestion & BigQuery Inventory

6.1 Ingestion Architecture

Each placement combination requires separate API calls due to Meta's dimension restrictions. We process feed, stories, reels, and audience network placements independently, then union results. The ingestion runs every 4 hours for recent data (last 7 days) and daily for historical backfill (up to 90 days).

6.2 BigQuery Dataset Inventory

Dataset.Table	30d Rows	Total	Latest	Key Fields
gaelp_training.meta_ad_performance	145,230	1,245,892	2025-09-28	ad_id, date, metrics
gaelp_training.meta_ad_performance_by_	place $423,502$	2,134,291	2025-09-28	ad_id, placement
gaelp_training.creative_objects	8,234	52,341	2025-09-29	creative_id, assets
gaelp_training.ab_experiments	42	234	2025-09-28	experiment_id
gaelp_training.user_journeys	23,421	523,122	2025-09-28	user_id, touchpoint
gaelp_training.policy_runs	892	4,321	2025-09-29	run_id, rewards
$gaelp_training.forecast_results$	15,234	43,234	2025-09-29	creative_id, cac_p50

Feature & Ranking Layer

The ad ranking system evaluates creative objects using multi-modal features and ensemble models. Each creative contains structured metadata (titles, bodies, CTAs), visual assets (images, videos), and historical performance signals where available.

7.1 Feature Families

Textual Features (dim: 768)

- BERT embeddings of concatenated text
- Sentiment scores and emotional triggers
- Readability metrics (Flesch-Kincaid)
- Keyword density for regulated terms

Visual Features (dim: 512)

- ResNet-50 embeddings of hero image
- Color palette and contrast metrics
- Face detection and emotion recognition
- Text overlay percentage

Historical Features (dim: 128)

- Past CTR/CVR by placement (if available)
- Creative fatigue indicators
- Seasonal performance patterns
- Competitive density in auction

7.2 Model Accuracy

Metric	Value
Precision@5	26.7%
Precision@10	30.0%
AUC-ROC	0.73
Calibration reliability	0.85 +

Forecasting (Placement-Aware)

8.1 Baseline Metrics by Placement

Figure 8.1: Baseline performance metrics by placement (p50 values)

8.2 Security Track Forecasts (\$30k/day)

2whiteaelplightgray

Creative	p_win	Budget	Sign p10	Sign p50	Sign p90	CAC p50	p(CAC≤240)
bp_0042	0.222	\$3,750	37	23	13	\$165	79.8%
$bp_{-}0011$	0.211	\$3,750	35	21	12	\$178	75.2%
bp_0002	0.185	\$3,750	32	19	11	\$197	71.3%
bp_0005	0.162	\$3,750	29	18	10	\$208	68.9%
bp0006	0.140	\$3,750	27	16	9	\$234	62.4%
bp_0007	0.117	\$3,750	24	14	8	\$268	48.7%
bp0009	0.095	\$3,750	22	13	7	\$289	41.2%
bp_0012	0.073	\$3,750	20	12	7	\$312	35.8%

8.3 Balance Track Forecasts (\$30k/day)

2whiteaelplightgray

					v		
Creative	p_{-} win	Budget	Sign p10	$\mathbf{Sign}\ \mathbf{p50}$	Sign p90	CAC p50	$p(CAC{\le}200)$
bpbal_0001	0.706	\$3,750	75	46	26	\$82	95.3%
$bpbal_0002$	0.623	\$3,750	68	41	24	\$91	93.8%
$bpbal_0003$	0.541	\$3,750	62	38	22	\$99	91.2%
$bpbal_0004$	0.459	\$3,750	57	35	20	\$107	88.4%
$bpbal_0005$	0.376	\$3,750	52	32	18	\$117	85.1%
$bpbal_0006$	0.294	\$3,750	47	29	16	\$129	81.3%
$bpbal_0007$	0.211	\$3,750	43	26	15	\$144	76.8%
$bpbal_0008$	0.129	\$3,750	39	23	13	\$163	71.2%

Offline RL Simulator

9.1 Thompson Sampling Algorithm

Figure 9.1: Thompson sampling loop for offline RL optimization

9.2 Budget Allocation Evolution

Figure 9.2: Budget allocation evolution showing convergence to optimal distribution

First-Wave Outputs

10.1 30-Day Combined Outlook

Metric	Daily	Week 1	Week 2	Week 3	Week 4	Days 29-30	Total
Spend	\$60,000	\$420,000	\$420,000	\$420,000	\$420,000	\$120,000	\$1,800,000
Signups p10	764	5,348	5,348	5,348	5,348	1,528	22,920
Signups p50	548	3,836	3,836	3,836	3,836	1,096	16,440
Signups p90	362	2,534	2,534	2,534	2,534	724	10,860
CAC p50	\$109	\$109	\$109	\$109	\$109	\$109	\$109
Revenue p50	\$79,416	\$555,912	\$555,912	\$555,912	\$555,912	\$158,832	\$2,382,480
Net p50	\$19,416	\$135,912	\$135,912	\$135,912	\$135,912	\$38,832	\$582,480

Figure 10.1: 30-day daily projections for combined Security and Balance tracks

Workflow

11.1 Daily Operations Timeline

11.2 Weekly Cadence

- Monday: Vendor Import Process new creative batches, score and rank
- Tuesday: Model Retraining Update ranking models with latest conversion data
- Wednesday: Forecast Update Regenerate 30-day projections with fresh baselines
- Thursday: A/B Test Analysis Evaluate running experiments for significance
- Friday: Slate Refresh Select next week's creative rotation

Status Overview

12.1 Working Well (Green)

- **Placement-aware forecasting:** Separate models for feed/stories/reels improve accuracy by 35%
- **Thompson sampling planner:** Converges to optimal allocation in 3-5 days vs 14+ for pure exploration
- Offline simulation: Tests 1000+ strategies per hour without spend
- US baselines: 30 days of data across major placements, refreshed daily
- Creative scoring: 30% precision@10 sufficient for initial filtering

12.2 In Progress (Yellow)

- 90-day placement backfill: Currently at 30 days, extending to full quarter
- Balance offer variants: Testing \$120 vs \$150 vs \$200 price points
- API rate limit handling: Implementing adaptive backoff and request queuing
- Cross-channel attribution: Integrating Google Ads and organic touchpoints
- Real-time bidding: Moving from daily to hourly budget adjustments

12.3 Gaps/Issues (Red)

- Ad Library coverage: Only 15% of competitor ads accessible via SearchAPI
- Vendor API reliability: 20% failure rate on bulk creative uploads
- Impact.com integration: Contract pending, blocking affiliate attribution
- Video creative scoring: Current model only handles static images
- iOS 17 attribution: ATT opt-in rates dropped to 12%, limiting visibility

Risk Matrix

2whiteaelplightgray

F 0 0 V							
Risk	Probability	Impact	Mitigation	Owner			
Model drift from distribution shift	High	High	Weekly retraining, drift detection	ML Team			
API rate limits during peak	Medium	Medium	Request queuing, cached fall-back	Data Team			
Creative compliance rejec-	Low	High	Pre-flight review, vendor	Legal			
tion Competitor copying strategy	Medium	Low	training Rapid iteration, proprietary	Product			
Budget overspend from bug	Low	High	features Hard caps, hourly spend	Finance			
Conversion tracking failure	Medium	High	alerts Dual tracking, reconciliation	Analytics			

90-Day Roadmap

Week	Milestone	Owner	Success Criteria
1-2	Launch Security + Balance	Campaign Mgr	CAC within 20% of forecast
	slates		
3-4	Complete 90-day backfill	Data Eng	All placements, 90 days history
5-6	Video scoring model v1	ML Eng	25% precision@10 on video
7-8	Real-time bidding pilot	Platform Team	Hourly adjustments live
9-10	Cross-channel attribution	Analytics	Google + Meta unified view
11-12	Expand to 3rd product (Calm)	Product	Forecasts for Calm track

14.1 Resource Requirements

• Engineering: 2 FTE for platform development

• Data Science: 1 FTE for model improvements

• Operations: 1 FTE for daily management

• Budget: \$60k/day media spend + \$20k/month infrastructure

14.2 Expected Outcomes

- Reduce CAC by 25% through improved targeting
- Increase forecast accuracy to 85% (from 70%)
- Scale to \$100k/day spend profitably
- Expand to 3 product tracks with positive unit economics

Appendix A

Data Lineage

Figure A.1: Complete data lineage from sources through processing to launch instructions

End of Document

Version 2.0 — September 29, 2025

The complete prior version (AELP_Complete_System_Architecture_Overview.pdf) is preserved in the repository root and serves as the foundation for this updated v2 document.