Interpolation:				
· Deriving a fund	tion from	given	discrete	
data points	·			
· Passing throu	gh the	points		
	rearc intenpolation		2 3 4 5 6	

Exercise-4. $y = \sin(x)$; x = 0.10; x(i) = 0.0.25.10; Construct the interpolant y and plot.

```
• • •
clear
close all
y=sin(x);
plot(x,y,'-ob')
x_interp=0:0.25:10;
y_interp=zeros(1,n);
         if x_{interp(i)} \ge x(j) && x_{interp(i)} \le x(j+1)
             y_{interp(i)} = ((x_{interp(i)} - x(j+1))/(x(j) - x(j+1)))*y(j) - ((x_{i} - x(j+1)))
         end
    end
end
close all
y=sin(x);
hold on
close all
y=sin(x);
y1 = polyval(p,x1);
```

Curve fitting

_east Square Regression

· only 1 best fitted curve

Regression:	Interpolation:
1. Used to model relationships between variables, especially when data contains noise or inaccuracies.	Used to estimate unknown values within a given range of discrete data points.
2. Does not require the model to pass through all data points.	Assumes that the data points are exact.
3. The goal is to find the best-fit curve or line that approximates the relationship between variables.	3. The goal is to find a function that passes through all the data points.
-	

Linear Regression

$$\sum_{i=1}^{n} e_{i}^{2} = (y_{i} - a_{o} - \alpha_{i} x_{i})^{2} \longrightarrow sum of$$

sq. ettots St

$$\frac{\partial S_{R}}{\partial a_0} = 0$$
 Minimum

$$\frac{\partial S_{\pi}}{\partial a_{1}} = 0$$
 $n = N_{0}$. data points

$$\begin{bmatrix}
\gamma & \geq \chi_i \\
\geq \chi_i & \geq \chi_i
\end{bmatrix}
\begin{bmatrix}
\alpha_0 \\
\alpha_1
\end{bmatrix}
\begin{bmatrix}
\geq \chi_i \\
\geq \chi_i \\
\leq \chi_i
\end{bmatrix}$$

Polynomial regnession:

$$y_m = a_0 + a_1 x + a_2 x^2$$

Home work-3:

Fit a second order polynomial to the data given in table-4 and determine the value of the co-efficient

