Searching PAJ Page 1 of 1

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-033672

(43) Date of publication of application: 31.01.2002

(51)Int.CI.

H04B 1/04

H03F 1/02

(21)Application number : 2001-171807

(71)Applicant: LUCENT TECHNOL INC

(22)Date of filing:

06.06.2001

(72)Inventor: ALEINER BORIS

LIEU WINSTON HONG

(30)Priority

Priority number: 2000 587893 Priority date: 06.06.2000 Priority country: US

(54) TRANSMITTER FOR WIRELESS DEVICE AND METHOD AND DEVICE FOR ENHANCING EFFICIENCY OF POWER AMPLIFIER IN THE TRANSMITTER

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a method and a device by which a nonlinear power amplifier with low power consumption can be employed in a transmitter. SOLUTION: The power amplifier of this invention is in operation in a linear mode to enhance the ISI(Inter-Symbol Interference) when the transmission power is low. When the input power is increased, the power amplifier is in operation in a nonlinear mode to reduce the power consumption. By changing a parameter of a root raised cosine filter, the shape of the signal is changed. A conventional filter parameter is used when the input level is low and a corrected filter parameter is employed when the input level is high. The power amplifier is characterized in that the two filter parameters are switched at the base band.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-33672 (P2002-33672A)

(43)公開日 平成14年1月31日(2002.1.31)

(51) Int.Cl.7	酸別記号	FΙ	ゲーマコート*(参考)
H 0 4 B	1/04	H04B	/04 E 5 J 0 9 2
H03F	1/02	H03F	./02 5 K 0 6 0

審査請求 未請求 請求項の数17 OL (全 12 頁)

特顧2001-171807(P2001-171807)	(71)出顧人	59607/259
		ルーセント テクノロジーズ インコーボ
平成13年6月6日(2001.6.6)		レイテッド
		Lucent Technologies
09/587893		Inc.
平成12年6月6日(2000.6.6)		アメリカ合衆国 07974 ニュージャージ
米国 (US)		ー、マレーヒル、マウンテン アベニュー
		600-700
	(74)代理人	100081053
		弁理士 三俣 弘文
	平成13年6月6日(2001.6.6) 09/587893 平成12年6月6日(2000.6.6)	平成13年6月6日(2001.6.6) 09/587893 平成12年6月6日(2000.6.6) 米国(US)

最終頁に続く

(54) 【発明の名称】 無線デバイス用送信器と送信器内のパワー増幅器の効率を改善する方法と装置

(57)【要約】

【課題】 送信器内で電力消費低い非線形パワー増幅器 を使用出来る方法と装置を提供すること。

【解決手段】 本発明によればパワー増幅器の送信パワーが低いときには線形モードで動作してISIを改善する。入力パワーが高くなったときにはパワー増幅器は非線形モードで動作して電力消費を減らす。信号形状はルートレイズドコサインフィルターのパラメータを変化させることにより変化させる。入力レベルが低いときには従来のフィルターパラメータが用いられ、高いときには修正したフィルターパラメータが用いられる。2つのフィルターパラメータの間の切り替えはベースバンドで行われることを特徴とする。

【特許請求の範囲】

【請求項1】パワー増幅器(108)と、

ルートレイズドコサインフィルター(106)と、 前記パワー増幅器により増幅された変調信号に対し第1 レベルの線形を与えるために前記ルートレイズドコサイ ンフィルターに適用される第1の組のパラメータ(10 2)と

前記パワー増幅器により増幅された変調信号に対し第2 レベルの線形を与えるために前記ルートレイズドコサインフィルターに適用される第2の組のパラメータ(104)とを有することを特徴とする無線デバイス用送信器 【請求項2】前記第1の組のパラメータは、前記ルートレイズドコサインフィルターの従来のパラメータの組であることを特徴とする請求項1記載の送信器。

【請求項3】前記パワー増幅器は非線形パワー増幅器であることを特徴とする請求項1記載の送信器。

【請求項4】前記送信器は、TDMA装置であることを 特徴とする請求項1記載の送信器。

【請求項5】前記TDMA装置は、携帯電話であることを特徴とする請求項4記載の送信器。

【請求項6】前記送信器は、CDMA装置であることを 特徴とする請求項1記載の送信器。

【請求項7】前記送信器は、FDMA装置であることを 特徴とする請求項1記載の送信器。

【請求項8】前記変調信号は、前記ルートレイズドコサインフィルター(106)を通過する前に前記パワー増幅器を通過することを特徴とする請求項1記載の送信器。

【請求項9】前記変調信号は、前記パワー増幅器(108)を通過する前に前記ルートレイズドコサインフィルター(106)を通過することを特徴とする請求項1記載の送信器。

【請求項10】(A) パワー増幅器の送信パワーが所 定レベル以下のときには、ルートレイズドコサインフィルター内で第1の組のパラメータを設定するステップと、

(B) パワー増幅器の送信パワーが所定レベル以上のときには、ルートレイズドコサインフィルター内で第2の組のパラメータを設定するステップとを有することを特徴とする送信器内のパワー増幅器の効率を改善する方法。

【請求項11】前記第1の組のパラメータは、TDMAシステムでのシンボル間干渉を低下させることを特徴とする請求項10記載の方法。

【請求項12】前記所定レベルは、最大の動作可能送信 レベルであることを特徴とする請求項10記載の方法。

【請求項13】前記パワー増幅器は、非線形増幅器であることを特徴とする請求項10記載の方法。

【請求項14】(A) パワー増幅器の送信パワーが所 定レベル以下のときには、ルートレイズドコサインフィ ルター内で第1の組のパラメータを設定する手段と、

(B) パワー増幅器の送信パワーが所定レベル以上のときには、ルートレイズドコサインフィルター内で第2の組のパラメータを設定する手段とを有することを特徴とする送信器内のパワー増幅器の効率を改善する装置。 【請求項15】前記第1の組のパラメータはTDMAシ

【請求項15】前記第1の組のパラメータはTDMAシステムでのシンボル間干渉を低下させることを特徴とする請求項14記載の装置。

【請求項16】前記所定レベルは、最大の動作可能送信レベルであることを特徴とする請求項14記載の装置。 【請求項17】前記パワー増幅器は、非線形増幅器であることを特徴とする請求項14記載の装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は携帯電話器に関し、特に時分割多重アクセス (time division multiplie ac cess; TDMA) 電話内の非線形パワー増幅器の使用が可能となるような線形化技術に関する。

[0002]

【従来の技術】携帯電話は現代社会においてありふれた ものとなっている。携帯電話によりユーザーはあらゆる 場所で電話をかけたり受けたりすることが出来る。

【0003】初期の時代は、携帯電話はアナログ伝送技術を用いて基地局と通信していた。しかし、近年TDMAのようなデジタル技術が携帯電話(ワイヤレス電話)で開発されている。TDMAは時分割多重化技術を用いてデジタル無線サービスを提供する技術として無線電話の世界で用いられている。TDMAは無線周波数を複数のタイムスロットに分割し、このタイムスロットを必要に応じて携帯電話に割り当てることにより機能している。このようにして1個の周波数で複数データチャンネルを同時にサポートすることが出来る。

【0004】図1は従来のTDMA無線電話(携帯電話)の関連部分を表すブロック図である。

【0005】図1に於いて、変調信号が可変利得増幅器502に入力され、その後パワー増幅器504に入力されて送信される。パワー増幅器504から出力された信号の一部をエンベロープ検出回路506が検出し、この検出した信号が修正回路508に出力される。修正回路508は、検出ダイオードの線形領域の特性に基づいて、可変利得増幅器502の入力/出力(I/O)特性を、パワー増幅器504の非線形領域特性とは逆の特性を用いて、線形特性を近似するよう可変利得増幅器502のI/O特性を修正する。

【0006】一般的に、パワー増幅器504は、遠く離れた受信用基地局に無線信号を送信するのに必要なエネルギーを提供する。無線デバイスに於いては、パワー増幅器504はデバイスのバッテリーの主要な消費源である。パワー増幅器504の効率を増加させることは、通話時間と待機時間を長くし、無線デバイスの軽量化と小

型化に寄与できる。

【0007】パワー増幅器504の線形性を減少させることにより利点が得られるが、又別の制約も存在する。例えば、現在の産業界の標準では送信出力信号の最大歪みレベルを規定している。従来では線形パワー増幅器を用いて出力信号がクリアーで歪みのないものとなるようにしている。パワー増幅器の線形性のレベルが高くなると送信信号の歪みレベルが低くなる。しかし、線形性と効率とは逆比例の関係にある。高効率を有するパワー増幅器は非線形パワー増幅器である。

【0008】線形性と効率の2つの要件をバランスさせることが好ましい。

【0009】効率を犠牲にすることなくパワー増幅器の線形性を改善することは、線形化回路を非線形増幅器に導入することである。この考えの背景にあるものは、線形化装置は線形パワー増幅器よりもDCパワーの消費が遙かに少ないということである。線形化回路を従来方法で実行することは「フィードフォワード」線形化技術を用いることである。このフィードフォワード線形化技術は、日本特許特開平7-173661(出願人:沖電気工業,公開日1997年1月21日)に開示されている。

【0010】しかし、従来の線形化方法は更に余分な回路を必要とし、これにより無線送信器のコストと信頼性が上昇することになる。更にこのような従来の線形化技術はC級増幅器への適用に対しては十分なテストがなされていない。

[0011]

【発明が解決しようとする課題】本方法の目的は、パワー増幅器の線形性を犠牲にすることなく、特にTDMA 送信器の効率を改善する方法と装置を提供することである。

[0012]

【課題を解決するための手段】本発明によれば、本発明の送信器は請求項1に記載した特徴を有する。即ち、パワー増幅器(108)と、ルートレイズドコサインフィルター(106)と、前記パワー増幅器により増幅された変調信号に対し第1レベルの線形を与えるために前記ルートレイズドコサインフィルターに適用される第1の組のパラメータ(102)と、前記パワー増幅器により増幅された変調信号に対し第2レベルの線形を与えるために前記ルートレイズドコサインフィルターに適用される第2の組のパラメータ(104)とを有することを特徴とする。

【0013】本発明の送信器内のパワー増幅器の効率を増加させる方法は、請求項10に記載した特徴を有する。即ち、(A) パワー増幅器の送信パワーが所定レベル以下のときには、ルートレイズドコサインフィルター内で第1の組のパラメータを設定するステップと、

(B) パワー増幅器の送信パワーが所定レベル以上の

ときには、ルートレイズドコサインフィルター内で第2 の組のパラメータを設定するステップとを有することを 特徴とする。

[0014]

【発明の実施の形態】本発明は多重アクセス技術、例えばTDMA, CDMA, FDMA等を用いた移動電話システムで使用されるパワー増幅器を線形化する方法と装置を提供する。

【0015】歪んだ出力信号により生成される問題は、そのスペクトラムが拡散することである。隣接する別のチャネルは、特にスペクトラム拡散に弱いが、その理由は不用なスペクトラム拡散の結果がフィルタで除去できないからである。基礎理論によれば、入力信号が振幅変調されたときにのみ隣接するチャネルに対するスペクトラム拡散の問題が発生する。例えば、TDMA標準(IS-136)によれば入力信号は振幅変調されている。振幅変調は入力信号を特殊なナイキスト型に整形することにより行われる。この整形はシンボル間干渉(Inter-Symbol Interference; ISI)を回避するために必要である。

【0016】送信器に対するISIの測定値はエラーベクトル振幅(Error Vector Magnitude; EVM)である。一方、線形性の測定値は隣接チャネルパワー(Adjacent Channel Power; ACP)である。TDMA標準ではACPの値は26dB以上であり、線形増幅器(即ち、ACP=29dBの増幅器)に対してはEVMの値は約4%である。非線形増幅器(即ち、ACP=26dBの増幅器)に対してはEVMの値は約6%である。TDMA標準ではEVMの値は12.5%を要求している。このことは線形性が改善される場合(即ち、ACPの値が増加する場合)には、EVMの値は増加する余地があることを意味している。

【0017】前述の議論から判るように、拡散スペクトラムを決定するファクターは入力信号の整形をすることである。整形は、ルートレイズドコサインフィルター(rootraised cosine filter;RRCF)によりベースバンドで行われる。RRCFパラメータを変化させることは、パルス整形を変化させることにつながる。そしてこの変化はACPの改善につながるが、ISIを劣化させることになる。

【0018】平方根レイズドコサインフィルター(Squa re-root raised cosine filter;RRCF)は、あらゆる承認された無線変調標準に含まれている。レイズドコサインフィルター(RRCFを含む)は、厳密にバンド幅が制限された信号を生成するために無線通信で広く用いられる。これは隣接するチャネルバンドで使用されるために変調信号が作り出す干渉を低減させるために好ましい。これにより通信システムはチャネル帯域(バンド幅)に対してナイキストレイトに近いレートで信号を送ることができ且つ、チャネル歪みとシンボル間干渉(I

SI)の原因となる過剰なサイドローブのフィルタリングを必要としない。

【0019】平方根或いはルートレイズドコサインフィルターは、多くの通信アプリケーションで用いられている。RCパルス形状(波形)は2つの部分に分割され、1つは送信器用に他の1つは受信器用である。この場合各サイドはいわゆるマッチドフィルター対を形成するルートレイズドコサインフィルターを有する。

【0020】RCパルス形状は、ベースバンド(データ上で)或いはRF(変調器の出力点で)の何れかで実行される。多くの実際のアプリケーションでは、例えばルックアップテーブル内のパルス形状のサンプル値を記憶するデジタル信号プロセッサ(DSP)を用いたベースバンドのアプローチを採用している。これ等の値はサンプルクロック周波数で読み出されてシンボルを生成して変調及び転送を行う。

【0021】RRCFにおいては、その目的はRRCFパラメータを調節することにより、ISI要件とACP要件との間の妥協点を見出すことである。この調整はフレキシブルでなければならない。RRCFパラメータは出力信号が仕様書が許す以上に拡散したときには基の値に戻らなければならない。

【0022】ここに本明細書に開示した実施例は、1つ或いは複数のRRCFと共に使用するRRCFのフィルターパラメータの追加の組を含み、何れの時にもRRCFフィルターパラメータの2つの組の間での選択権を与える。RRCFフィルターパラメータは無線デバイスの動作モードに基づいて選択される。特にここに開示した実施例に於いてはRRCFパラメータの1つの組が無線デバイスが高い(例、最大)パワーで送信しているときには自動的に選択され、それが実行され、無線デバイスがそれよりも低いパワーで送信しているときには別の組が自動的に選択されて実行される。

【0023】斯くして、高い送信レベルにおいて変調信号出力の整形(成形)は送信パワーのレベルに従って変化する。このことは特に高いパワーレベル出力信号に対してはシンボル間干渉(ISI)を増加させるが、ACPを改善することはない(即ち、スペクトラム拡散を低減させて送信パワー増幅器の線形性を改善する)。

【0024】RRCFパラメータを自動的に選択することにより、自動線形機能(adaptable linearization)を有する。安価で容易に実現可能なパワー増幅器が多重アクセスシステム、例えばTDMA、FDMA、CDMA等で実現することが出来る。実際に送信器の効率は大幅に改善することが出来(例えば、10%から20%或いはそれ以上)、これはより大きな非線形領域でパワー増幅器を動作させる必要がない。

【0025】効率及び/又は線形性は他の機器に悪影響を及ぼすことなく大幅に改善することが出来るために小電流しか必要としない非線形増幅器を用いることが出来

る。これはバッテリーの充電時間を減らし、デバイスの 小型化に役立つ。

【0026】図2は少なくとも複数の異なる動作フィルターパラメータにアクセスする適用型(自動)ルートレイズドコサインフィルターRRCFを含む無線デバイス(例、TDMA, CDMA, FDMAの携帯電話)の送信器部分を表す。

【0027】特に、図2に示すようにルートレイズドコサインフィルタ106は正規動作用フィルターパラメータ102或いは高送信パワー用フィルターパラメータ104を具備して構成される。ルートレイズドコサインフィルタ106は、変調信号に対し変調信号を線形化して出力パワー増幅器108を効率的に線形化し、回路の追加も少なくパワーも少ないようなより効率的なパワー増幅器を構成できる。

【0028】図3は、シミュレートした結果を得るために用いられるブロック図である。

【0029】特に、図3に於いては送信器は、QデータストリームとIデータストリームを受信するデータ符号 化器272を有する。

【0030】一対のルートレイズドコサインフィルタ271a,271bが、それぞれQデータストリームとIデータストリームをフィルタ処理する。ルートレイズドコサインフィルタ271a,271bはベースバンド内にある。

【0031】RRCFでフィルタ処理された入力QデータストリームとIデータストリーム(即ち、デジタルベースバンドデータストリーム)は、適宜の変調器、例えば直交振幅変調器(QAM)273で変調されてRF信号を出力する。

【0032】アップコンバータ274は、この変調された信号を適宜のRF周波数に変換して、それを送信器が用いる。

【0033】RF送信器部分275は、2段パワー増幅器(第1段プリアンプ276と第2段パワー増幅器277)を有する。

【0034】パワー増幅器は入力信号の形状を変化させて線形化して、非線形効果に関連する拡散スペクトラムを減らす。入力信号の形状の変化はルートレイズドコサインフィルタ271a,271bのパラメータを変化させることにより行われる。従ってパワー増幅器は送信されたパワーが高いときには非線形モードで動作して、これにより効率が改善される。

【0035】RRCFはパワー増幅器が、ハイパワーモードにあるときには第1の組のパラメータを用いる。非線形が原因で増加したISIは、ハイパワー時で隣接するシンボル間を区別することが容易に出来るために障害とはならない。

【0036】ローパワーモードで動作するとき (例えば、最大パワーで動作しないとき)、RRCFの第2の

組のパラメータがダウンロードされる。これにより全体的なシンボル間干渉(ISI)が低下する。

【0037】図4は様々なβの値に対するレイズドコサイン周波数応答を表す図である。

【0038】図5はシミュレーションの結果として理想的な線形増幅器と、パワー増幅器内の非線形性を三段階悪くした状態を表すスペクトラムのプロット図である。

【0039】図5に示すように線形パワー増幅器は狭いスペクトラムLを用い、一方、幾分非線形のパワー増幅器は広いスペクトラムNL1を用い、これは図5に示すように例えば-40dB以上である。

【0040】この考えを拡張すると更に非線形のパワー 増幅器は、更に広いスペクトラムNL2を用い、非常に 非線形のパワー増幅器は更に広いスペクトラムNL3を 用いる。

【0041】本発明はRRCFのフィルターパラメータ間の関係と、送信された信号が利用するスペクトラム量について明確にし、出力スペクトラムに対する所望の制約に基づいてRRCFフィルターパラメータを調整する。

【0042】非線形パワー増幅器の出力がハイレベル (例、最大レベル)にあり、そして元のものと信頼形に ある場合には、RRCFの実現は、RRCFの特定のパ ラメータの決定を含み、それ以外の場合には非線形パワ ー増幅器の出力拡散スペクトラムが許容範囲内にあると き、例えばハイレベル(最大レベル)以下にあるときに は従来のパラメータを用いる。

【0043】図7Aは送信パワーレベルが29.41dB mを示す。図7BにはRMSのベクトルエラーが6.12% (rms)の場合で、変調の割合を示し、図7Cは-30kHzに-25.85dB (これは所望の仕様である-26dBを越えている)の変調に起因する平均パワーを示す。このことはスペクトラム拡散は許容された隣接するチャネルパワーの特定値以上であることを示している。

【0044】しかし、本発明によればRRCFフィルターのパラメータは、高送信パワー用フィルターパラメータ104に変化させて、その結果得られた隣接チャネルパワーが仕様の範囲にはいるようにすることが出来る。このことは図8A-8Cに示した結果で明らかである。

【0045】測定装置は、RRCFのパラメータを調節できる機能を有していないために(多くの測定デバイスも同様な問題がある)、ナイキストフィルタを用いて図8A-8Cを作成した。ナイキストフィルタは高送信パワー用フィルターパラメータ104を有するRRCFフィルタをこの実施例ではシミュレートする。

【0046】図8Aには送信パワーが29.49dBmを示し、これは図7Aと実質的に同一である。図8BはRMSベクトルエラーが14.29%(rms)の場合を示し、ベクトルエラーが増加していることを示す(これ

はシミュレートしたRRCFパラメータを変化させることから予測出来ることである)。しかしこのことは大したことではなく、その理由は図8Cに示すように隣接するチャネルパワーは-26dB以上に十分に減衰しているからである。特に図8Cに示すように-30kHzでの変調に起因した平均パワーは-27.24dBにまで改善されている。

【0047】RRCFパラメータの決定はRFシミュレータソフトウエア(HP-EESOFから市販されているOMNISYS)を用いて行われた。このシミュレートした測定は、汎用の電話器モデルに対し形成された送信器モデルで行われた。

【0048】本発明の実験は、ANRITSUのテスト装置上でTDMAシステムに対し行われた。本発明はTDMAシステムの実施例で行われ証明されたが、本発明は他の多重アクセス通信システム、例えばCDMA、FDMA等にも等しく適用できる。

【0049】生成器MS3670Bの出力からの変調信号が増幅器に与えられた。この増幅器の出力信号は、TDMAパワーメータMS8604Aで測定した。図6は図7A-7Cと8A-8Cのシミュレーションが行われたRFパワーレベルの組を示す。

【0050】まず、増幅器に線形モードで動作が行われるようバイアスがかけられた。このモードに於いて、増幅器はEVMが約3.5%でACPが約29個の出力パワーの約29個mを分配した。DC電流の消費は0.71Aであった。

【0051】その後この増幅器が非線形モードで動作するよう再度バイアスをかけた。同一の出力パワーを得るために入力パワーレベルを増加させた。線形の場合のパワーレベル(-29dB)でACPは26db以下(最大許容可能値)で、EVMは約6%(図7A-7C)で、DC電流消費は0.55Aに減少した。

【0052】その後、入力データストリームの形状を変化させた。ANRITSUの装置における入力データストリームの形状を変化させる唯一の方法は、フィルタの種類を変化させることであった。成形フィルタはRRCFからNYQ(Nyquist)に変えた。入力パワーを調整して前の場合と同じ出力パワーの値(約29dBm)を得た。そのパワーレベルでACPの値は27dBより良好となるよう変化した。しかし、EVMの値は14%以上にジャンプした(図7A-7C)。DC消費は非線形の場合と同じである。即ち、0.55Aであった。

【0053】このシミュレーションの方法は、本発明の実験的な証明方法と基本的には一致する。即ち、まずパワー増幅器が圧縮点の値(PidB=28.5dBm)を変化させることにより非線形モードとなるよう調整した。その後、入力パワーを増加させて出力パワーは線形モードと同一となるよう調整した(約27.5dBm)。この場合のACPの値は、約24dBmであった。

【0054】RRCFのバンド幅をその後5%低下させた。これによりACPは約27.5dBmに改善され、EVMの値は依然として許容可能である(約9%)。

【0055】元のRRCFパラメータに戻す方法は簡単である。本発明によれば、2つの組のルートレイズドコサインフィルターパラメータを用意した。1つは元のパラメータの組であり、他は修正したパラメータの組である。電話器が最大パワーレベルで送信を必要とする場合には、修正されたフィルターパラメータがダウンロードされる。電話器が3dB以上パワーレベルを低下させるよう指示を受けると元のパラメータが再びダウンロードされる。

【0056】他の実施例は、複数のルックアップテーブルを用いて実現可能である。切り替えは、異なるフィルター係数をダウンロードすることにより行われるために、実際にはRRCFの異なるパラメータはこの本発明の解決方法に対しコストを上乗せすることはない。

【0057】特許請求の範囲の発明の要件の後ろに括弧で記載した番号は本発明の一実施例の態様関係を示すもので本発明の範囲を限定するものと解釈してはならない。

【図面の簡単な説明】

【図1】従来のTDMA電話器の関連部分を表す図。 【図2】本発明による複数の異なる動作パラメータにアクセス可能な適用型ルートレイズドコサインフィルタ(root raised cosine filter;RRCF)を有する無線デバイス(TDMA無線電話器)の関連送信器部分を表す図。

【図3】シミュレートした結果を得るために用いられる

詳細ブロック図。

【図4】様々な β の値に対するレイズドコサイン周波数 応答を表す図。

【図5】シミュレーションの結果として理想的な線形増幅器と、パワー増幅器内の非線形性を三種類悪くした状態を表すスペクトラムのプロット図。

【図6】図7と図8のシミュレーションを行った際のR Fパワーレベルの組を表す図。

【図7】本発明により正規のパラメータを用いた非線形 増幅器とRRCFを有する送信器の実験結果を表す図。

【図8】本発明により高出力パワーパラメータを具備したRRCFをシミュレートするナイキストフィルタと非線形増幅器を含む送信器の実験結果を表す図。

【符号の説明】

- 102 正規動作用フィルターパラメータ
- 104 高送信パワー用フィルターパラメータ
- 106 ルートレイズドコサインフィルタ
- 108 出力パワー増幅器
- 271 ルートレイズドコサインフィルタ
- 272 データ符号化器
- 273 直交振幅変調器(QAM)
- 274 アップコンバータ
- 275 RF送信器部分
- 276 第1段プリアンプ
- 277 第2段パワー増幅器
- 502 可変利得増幅器
- 504 パワー増幅器
- 506 エンベロープ検出回路
- 508 修正回路

【図1】

【図2】

【図3】

A

Raised Cosine Prequency Response for Various Values of fl.

- HIGOLATION AMPLYSTS (HPDC) --

【図5】

【図6】

【図7】

フロントページの続き

(71)出願人 596077259

600 Mountain Avenue, Murray Hill, New Je rsey 07974-0636U.S.A.

(72) 発明者 ボリス アレイナー

アメリカ合衆国、08873 ニュージャージ ー州、ソマーセット、20番E、イーストン アベニュー 575 (72)発明者 ウィンストン ホン リュー アメリカ合衆国、07733 ニュージャージ 一州、ホルムデル、カントリー スクウェ ア レーン 11 F 夕一ム(参考) 5J092 AA01 AA41 CA36 FA18 HA38
KA00 KA24 KA41 KA53 KA55
SA14 TA01 TA02 TA03
5K060 BB07 DD04 FF06 HH04 HH05
HH06 LL01 LL14 LL22 LL24
MM06