

Aufgaben zu Riemannschen Flächen

8. Blatt - Übung am Montag, 12.12.2016

Aufgabe 24: Sei X eine Riemannsche Fläche und $z:U\to U'$ eine Karte um p. Zeige, dass für das maximale Ideal $\mathfrak{m}_p\lhd\mathcal{E}_p$ der bei $p\in X$ verschwindenen C^∞ -Funktionen gilt:

$$\mathfrak{m}_p^2 = \left\{ \varphi \in \mathfrak{m}_p \mid \left. \frac{\partial}{\partial x} \right|_p \varphi = 0 = \left. \frac{\partial}{\partial y} \right|_p \varphi \right\} \,.$$

Beweise dazu vorher das

Lemma: Ist $V \subset \mathbb{C}$ offen und sternförmig um 0, sowie $f: V \to \mathbb{C}$ eine C^{∞} -Funktion mit f(0) = 0, dann existieren C^{∞} -Funktionen $f_j: V \to \mathbb{C}$ für j = 1, 2, so dass

$$f(x+iy) = x \cdot f_1(x+iy) + y \cdot f_2(x+iy) .$$

(Hinweis: $f(x+iy) = \int_0^1 \frac{d}{dt} f(tx+ity) dt = \ldots$)

Aufgabe 25: Sei X eine Riemannsche Fläche. Dann ist induziert die komplexe Sturktur von X auch eine differenzierbare Struktur auf X und macht diese zu einer 2-dimensionalen reellen Mannigfaltigkeit (daher auch der Name *Fläche*). Es bezeichne $T_p^{\mathbb{R}}X$ den reell 2-dimensionalen Tangentialraum von X bei p. Wieso definiert die komplexe Struktur in kanonischer Weise die Struktur eines 1-dimensionalen \mathbb{C} -Vektorraums auf $T_p^{\mathbb{R}}X$?

(Hinweis: Dazu muss man sich an Analysis III bzw. an die Kenntnisse über Mannigfaltigkeiten erinnern, z.B. dass eine differenzierbare Abbildung $h:U\to\mathbb{R}^2=\mathbb{C}$ eine \mathbb{R} -lineare Abbildung $dh_p:T_p^\mathbb{R}X\to\mathbb{R}^2=\mathbb{C}$ liefert.)

Aufgabe 26: Betrachte die holomorphe 1-Form $\frac{dz}{1+z^2}$ auf $\mathbb{C} \setminus \{\pm i\}$. Zeige, dass diese eine holomorphe Fortsetzung auf $\mathbb{CP}^1 \setminus \{\pm i\}$ hat. Wie schreibt man diese in der üblichen Karte für \mathbb{CP}^1 bei ∞ ?

Aufgabe 27: Ist $f: X \to Y$ holomorph, dann hat man für offenes $V \subset Y$ den pull-back:

$$f^*: \mathcal{E}(V) \to \mathcal{E}(f^{-1}(V)) , \ \varphi \mapsto f^*\varphi := \varphi \circ f .$$

Zeige, dass man in folgender Weise ein f^* für holomorphe 1-Formen hat: Ist $\omega \in \Omega^1(V)$ und $z:W \to W'$ eine Karte für Y mit $W \subset V$, so schreibe $\omega|_W = \varphi(z)\,dz$ und setze

$$f^*(\omega|_W) := f^*\varphi(z) d(f^*z) .$$

Wie ist das zu lesen und warum ist das unabhängig von der Wahl der Karte? Hat man letzteres gesehen, folgt, dass man damit $f^*\omega \in \Omega^1(f^{-1}(V))$ wohldefiniert erhalten hat.