Appendix: Supplementary Materials for

DieRouter+

I. THEORETICAL RESULTS ON SCHEDULER-DRIVEN DP

For convenience, we summarize the key notations used in the main paper.

- N_j⁺: The number of nets traversing edge j in the positive direction.
- {0,..., N_j⁺ 1}: The index set of nets traversing edge
 j in the positive direction, ordered such that their continuous TDM ratios satisfy

$$r_{0,j} \le r_{1,j} \le \cdots \le r_{N_i^+-1,j}$$
.

- (α, β) : A state representing the allocation of nets $\{0, \dots, \alpha\}$ to β wires.
- $J^+(\alpha, \beta)$: The optimal state cost of (α, β) , defined as the minimum possible value of the maximal displacement among all feasible allocation schemes.
- $J^-(\alpha, \beta)$: The optimal state cost in the negative direction, defined analogously.
- $V^+(\beta)$: The optimal cost of assigning all positivedirection nets to β wires, given by

$$V^{+}(\beta) = J^{+}(N_{j}^{+} - 1, \beta).$$

• $V^-(\beta)$: The optimal cost of assigning all negative-direction nets to β wires, given by

$$V^{-}(\beta) = J^{-}(N_{i}^{-} - 1, \beta).$$

• $g(\beta)$: The function

$$g(\beta) = \max\{V^+(\beta), V^-(n_i - \beta)\},\$$

which evaluates the worst-case cost for a given partitioning of wires.

• β^* : The optimal β , determined by

$$\beta^* = \arg\min_{\beta \in \{1, \dots, n_j - 1\}} g(\beta). \tag{1}$$

Lemma 1. Let β^+ and β^- be integers satisfying $\beta^+ + \beta^- < n_j$. Then the following statements hold: (a) If $V^+(\beta^+) \ge V^-(\beta^-)$, then $g(\beta^+ + 1) \le g(\beta^+)$; (b) If $V^+(\beta^+) \le V^-(\beta^-)$, then $g(n_j - \beta^- - 1) \le g(n_j - \beta^-)$.

Proof. We provide a proof for part (a) of Lemma 1. The proof of part (b) follows a similar argument.

Given $\beta^+ + \beta^- < n_j$, it follows that $\beta^- \le n_j - 1 - \beta^+$. Consequently, we have:

$$V^{-}(n_j - \beta^+ - 1) \le V^{-}(\beta^-) \le V^{+}(\beta^+),$$
 (2)

where the first inequality holds since V^- is a non-increasing function.

Furthermore, since $V^+(\beta^+ + 1) \leq V^+(\beta^+)$, we can establish the following:

$$g(\beta^{+} + 1) = \max\{V^{+}(\beta^{+} + 1), V^{-}(n_{j} - \beta^{+} - 1)\}$$
 (3)

$$\leq V^{+}(\beta^{+}) \tag{4}$$

$$\leq \max\{V^{+}(\beta^{+}), V^{-}(n_{j} - \beta^{+})\}$$
 (5)

$$= g(\beta^+). \tag{6}$$

This completes the proof of part (a).

Theorem 1. Once the scheduler has allocated all wires, that is, when $\beta^+ + \beta^- = n_i$, β^+ is an optimal solution to (1).

Proof. We first consider the case $n_j = 2$. In this scenario, the scheduler terminates with $\beta^+ = \beta^- = 1$. Since each direction requires at least one resource, it is clear that $\beta^+ = 1$ is an optimal solution.

Next, we examine the case $n_j > 2$. The crux of the argument relies on the fact that there always exists an optimal solution β^* of (1) in the set $\{\beta^+, \ldots, n_j - \beta^-\}$, and this statement serves as a loop invariant.

This property holds trivially when $\beta^+ = \beta^- = 1$. Suppose it holds at some β^+, β^- . We show that it remains true after a round of resource allocation. Note that a new resource can only be allocated if $\beta^+ + \beta^- < n_j$. We consider two cases:

Case 1. $V^+(\beta^+) \geq V^-(\beta^-)$. By Lemma 1(a), we have $g(\beta^+ + 1) \leq g(\beta^+)$. Hence, there exists an optimal solution within $\{\beta^+ + 1, \ldots, n_j - \beta^-\}$.

Case 2. $V^+(\beta^+) < V^-(\beta^-)$. By Lemma 1(b), we obtain $g(n_j - \beta^- - 1) \le g(n_j - \beta^-)$, implying that there is an optimal solution in $\{\beta^+, \dots, n_j - \beta^- - 1\}$.

These two cases justify the scheduler's decision to allocate a resource to the direction with a higher cost while preserving the loop invariant.

Finally, when $\beta^+ + \beta^- = n_j$, the search space containing an optimal solution reduces to a single element. That element must be optimal.

II. ABLATION STUDY

We present the ablation study in Table I, evaluating DieRouter+ with different initial routing algorithms and reporting maximum net delay at each stage. For clarity, the table uses the following abbreviations: *Init* for Initial Routing, *R&R* for violation-driven and performance-driven rip-up-and-rerouting, *Conti* for solving continuous TDM ratios via SOCP, and *Leg* for legalization via scheduler-driven DP.

We compare our SPT-based initial routing with the hybrid approach in DieRouter, where nets are classified as critical

TABLE I ABLATION STUDY RESULTS.

Test Case	DieRouter+ w/ MST-SPT				DieRouter+ w/ SMT-SPT				DieRouter+ w/ SPT			
	Init	R& R	Conti	Leg	Init	R& R	Conti	Leg	Init	R& R	Conti	Leg
1	2.51	2.51	6.5	6.5	2.51	2.51	6.5	6.5	2.51	2.51	6.5	6.5
2	6.93	5.65	13	13	6.64	6.64	14	14	3.84	3.83	7.5	7.5
3	12.1	12.1	10.5	13.5	17.2	16.6	13	13.5	10.7	10.7	9.5	11.5
4	29.7	18.1	14.4	18.5	30	18.1	14.32	18.5	16.7	16.5	15.49	18.5
5	139.71	138.48	125.77	133	150.1	137.57	125.8	133	137.69	137.51	125.77	133
$\Delta Delay_{avg}$	-20.28%	-10.66%	-8.85%	-11.42%	-26.51%	-17.35%	-13.04%	-12.25%	0%	0%	0%	0%
6	279.75	621.78	255.85	264	279.87	548.19	189.27	199.5	92.27	460.99	181.05	187.5
7	233.39	223.99	75.43	81.50	237.64	188.39	66.82	73.5	106.69	98.21	66.58	73.5
8	360.03	428.81	159.92	169.50	361.81	310.49	97.57	109	158.03	142.72	99.47	105.5
9	216.01	410.19	139.23	148.50	217.48	458.92	134.31	142.50	89.96	238.94	132.92	139.5
10	1699.65	7274.17	4402.39	4420	1699.76	7323.2	4432.11	4449	1404.81	7354.09	4465.99	4485
$\Delta Delay_{avg}$	-50.62%	-37.88%	-16.37%	-16.23%	-50.89%	-33.06%	-0.61%	-2.10%	0%	0%	0%	0%

or non-critical, with critical nets routed by MSTs and non-critical nets by SPTs. We also test an approximated SMT-based approach [1] for routing critical nets, denoted as "SMT-SPT". This naming convention is applied consistently across all cases. For net classification, we use the same hyperparameters as DieRouter.

From Table I, we conclude that SPT-based initial routing reduces average maximum net delay by 11.42%/16.23% over MST-SPT and 12.25%/2.1% over SMT-SPT on easier/challenging test cases, highlighting the impact of the initial routing topology.

Generally, a lower initial delay correlates with a lower final delay. However, when initial delays are similar, final performance becomes less predictable. In test case 10, for instance, despite a slightly lower initial delay with SPT-based routing, its final maximum net delay exceeds that of the other two methods. Nonetheless, maximum net delay after the ripup and rerouting phase remains a useful indicator of final performance.

REFERENCES

 K. Mehlhorn, "A faster approximation algorithm for the steiner problem in graphs," *Information Processing Letters*, vol. 27, no. 3, pp. 125–128, 1988.