Q6)
$$\int e^{x} \cos x dx$$
 $u = \cos x$ $du = -\sin x dx$
 $dv = e^{x}$ $v = e^{x}$
 $\cos x e^{x} + \int \sin x e^{x} dx$
 $u_{1} = +\sin x$ $du_{1} = \cos x dx$

$$dv_1 = e^{\frac{\pi}{10}} \quad v_1 = e^{\frac{\pi}{10}}$$

$$\cos x e^{\frac{\pi}{10}} + \sin x e^{\frac{\pi}{10}} - \int \cos x e^{\frac{\pi}{10}} dx = \int e^{\frac{\pi}{10}} \cos x dx$$

Qt)
$$y = x^3 - 3x + 2x$$
 $y = 0$ when $x = 0$, $x = 1$, $x = 2$

Area = $\int x^3 - 3x^2 + 2x - \int x^3 - 3x^2 + 2x$

Area = $\int (4x^4 - x^3 + x^2)^{-3} \int (4x^4 - x^4 + x^3 + x^2)^{-3} \int (4x^4 - x^4 + x^$