Lab5-Q2

RollNo-190020021

Kushagra Khatwani

Answers-

Q2

Simulink Model-

Code to get time domain characterstics and plot-

```
% Exact linearization of the Simulink model Q2_simulink
       % This MATLAB script is the command line equivalent of the exact
       % linearization tab in linear analysis tool with current settings.
       % It produces the exact same linearization results as hitting the Linearize button.
       % MATLAB(R) file generated by MATLAB(R) 9.9 and Simulink Control Design (TM) 5.6.
       % Generated on: 04-Feb-2021 22:27:46
10
11
       %% Specify the model name
12 -
13
       model = 'Q2 simulink';
14
15
        %% Specify the analysis I/Os
       % Get the analysis I/Os from the model
16 -
       io = getlinio(model);
17
18
       %% Specify the operating point
       % Use the model initial condition
19
20
       op = operpoint(model);
21
22
       %% Linearize the model
23
24 -
       sys = linearize(model,io,op);
25
26
       % Plot the resulting linearization
27 -
       stepinfo(sys)
28 -
       tf(sys)
       step(sys)
```


Output-

RiseTime: 1.0092 SettlingTime: 5.2598 SettlingMin: 1.4989 SettlingMax: 1.8936 Overshoot: 18.3472 Undershoot: 0

Peak: 1.8936

PeakTime: 2.2719

Solve for transfer function using timedomain characterstics-

	Camlin Page Date
Part 2-	
From time domain characteristics -	
$\frac{\text{feak Teme}}{\sqrt{1-3^2}} = 2.2719$ $\frac{\sqrt{1-3^2}}{\sqrt{1-3^2}} = 2.2719$	
Orreshoot 1. = 18.3472 e 51-52 = 0.183472	
$\frac{\mathcal{O}_{1}}{\sqrt{1-r^2}} = 1.6956$	
$ \frac{f_{1}}{f_{1}} = 1.6956 $ $ \sqrt{1-f^{2}} $ $ \frac{f_{2}}{f_{2}} = 0.5397 $ $ \sqrt{1-f^{2}} $ $ \frac{f_{2}}{f_{2}} = 0.291(1-f^{2}) $	
f = 0.47	
$[\omega_n = 1.57]$	
General form-	
$\frac{(97(4) = c \times (1.57)^{2}}{5^{2} + 1.464 + (.57)^{2}}$	
$G(R) = C \times 2.47$ $A^{2} + 1.46 + 2.47$	= constant)

Simlink model-

After finding the value of C using time domain characteristics of G(s)/c.

Plot-

We can see that both plots look similar hence second order approximation is valid.