XỬ LÝ THÔNG TIN MỜ TOK

MỞ ĐẦU

- Mục đích môn học: Trình bày các kiến thức cơ bản về lý thuyết tập mờ và ứng dụng xử lý các thông tin không chính xác, không đầy đủ, không chắc chắn.
- Nội dung môn học:
 - Tập mờ, quan hệ mờ, suy diễn mờ
 - Hệ mờ và ứng dụng
- Đánh giá:
 - Điểm giữa kỳ, bài tập lớn
 - Thi kết thúc môn học

TÀI LIỆU THAM KHẢO

- Hồ Thuần, Đặng Thanh Hà, Logic mở và ứng dụng, Nhà xuất bản Đại học Quốc gia Hà Nội
- T.J. Ross, Zimmermann, ..., FSS ...

CHƯƠNG 1 - NHẬP MÔN

- Thông tin và xử lý thông tin
- Biến ngôn ngữ

THÔNG TIN VÀ XỬ LÝ THÔNG TIN

- Con người tư duy trên ngôn ngữ tự nhiên
 - Học, quy nạp
 - Diễn giải, chuẩn hóa
 - Suy luận
- Cần có các mô hình để biểu diễn và xử lý thông tin
- Thông tin:
 - Các yếu tố mơ hồ, không chính xác, không đầy đủ, không rõ ràng ... (khoảng, xấp xỉ, gần, hơn, ...)
 - Các yếu tố không chắc chắn, độ tin cậy, nhiễu ...(có thể, hầu hết, ít nhất, ...)

Không gian tham chiếu —————→X

- Có trường hợp không đúng, không sai

THÔNG TIN VÀ XỬ LÝ THÔNG TIN

```
    Ví dụ: cơ sở dữ liệu
        (Họtên, Tuổi, Lương)
        t1 = ("Nguyễn Văn A", 26, 3000000)
        t2 = ("Phạm Văn B", xấp xỉ 25, cao)
```

Thêm thuộc tính: Độtincậy
(Họtên, Tuổi, Lương, Độtincậy)
t2 = ("Phạm Văn B", xấp xỉ 25, cao, 0.8)

BIÉN NGÔN NGỮ

- (V, T_V, X, G, M), trong đó:
 - V là tên của biến ngôn ngữ
 - T_V là tập giá trị của biến ngôn ngữ
 - X là không gian tham chiếu
 - G là cú pháp sản sinh ra các phần tử T_V
 - M là tập các luật ngữ nghĩa

VÍ DỤ BIẾN NGÔN NGỮ

- TUÔI
- {young, old, very old, moreorless young, not old and not young, ...}
- [0, 100]
- T ← A | T or A; A ← B | A and B;
 - $B \leftarrow C \mid \text{not } C; C \leftarrow (T) \mid D \mid E$
 - D ← very D | moreorless D | young
 - E ← very E | moreorless E | old
- M_{old}, M_{young}, M_{very}, M_{and}, ...

VÍ DỤ BIẾN NGÔN NGỮ

•
$$M_{old}(u) = 0$$
, với u<50
(u-50) / 10, với 50 ≤ u ≤ 60
1, với u>60

Hoặc

CHƯƠNG 2 - TẬP MỜ

- Tập mờ
- Các phép toán với tập mờ
- Nguyên lý mở rộng

2.1. TẬP MÒ'

 Tập con (rõ): Cho không gian X, tập A ⊂ X được định nghĩa bởi hàm đặc trưng

$$\chi_A$$
: X \to {0,1}, với $\chi_A(u)$ =1, nếu u \in A, và $\chi_A(u)$ =0, nếu u \notin A

• **Tập (con) mở**: Cho không gian X, tập $A \subset X$ được biểu diễn bởi hàm thuộc $\mu_{\widetilde{A}}: X \to [0,1]$, với $\mu_{\widetilde{A}}(u)$ là độ thuộc của phần tử $u \in X$ vào \widetilde{A} **Biểu diễn**: $A = \{ (u, \mu_A(u)) \mid u \in X \text{ và } \mu_A: X \to [0,1] \}$ **Ví dụ**: $X = \{1,2,3,4,5,6,7,8,9,10\}$, nhỏ = $\{(1,1.0), (2,0.6), (3,0.2), (4,0.0), ..., (10,0.0) \}$

BIỂU DIỄN TẬP MỜ

X hữu hạn

$$A = \frac{\mu_A(u_1)}{u_1} + \frac{\mu_A(u_2)}{u_2} + \dots + \frac{\mu_A(u_n)}{u_n} = \sum_{u_i \in X} \frac{\mu_A(u_i)}{u_i}$$

X không hữu hạn

$$A = \int_X \mu_A(u)/u$$

CÁC ĐẶC TRƯNG CỦA TẬP MỜ

- Giá đỡ: Supp(A) = $\{u \in X \mid \mu_A(u) > 0\}$
- Chiều cao: $h(A) = \sup_{u \in X} \mu_A(u)$
- Tập mờ chuẩn: nếu chiều cao =1
- *Nhân*: $ker(A) = \{u \in X \mid \mu_A(u) = 1\}$
- Lực lượng: $|A| = \sum_{u \in X} \mu_A(u)$

α-CUT

Lát cắt α: A_α = {u∈X | μ_A(u) ≥ α, α∈[0,1]}
 còn gọi là tập rõ mức α của A

• Định lý: $\forall u \in X : \mu_A(u) = \sup_{\alpha \in [0,1]} \alpha . \chi_{A\alpha}(u)$

VÍ DŲ

• $X = \{1,2,3,4,5,6,7,8,9,10\}$

$$A = \frac{0.2}{2} + \frac{0.5}{3} + \frac{0.8}{4} + \frac{1}{5} + \frac{0.8}{6} + \frac{0.5}{7} + \frac{0.2}{8}$$

- $A_{0.2} = \{2,3,4,5,6,7,8\}$
- $A_{0.5} = \{3,4,5,6,7\}$
- $A_{0.8} = \{4,5,6\}$
- $A_{1.0} = \{5\}$

2.2. CÁC PHÉP TOÁN VỚI TẬP MỜ

- Tập mờ là sự mở rộng của tập rõ, thêm 1 chiều biểu diễn độ thuộc --> cần xét hàm thuộc
- Các tập mờ trên cùng không gian tham chiếu
- Các tập mờ khác không gian tham chiếu

SO SÁNH CÁC TẬP MỜ

- Cho 2 tập mờ A, B xác định trên cùng không gian X, ta có A=B, nếu ∀u∈X: μ_A(u) = μ_B(u)
- Cho 2 tập mờ A, B xác định trên cùng không gian X, ta có A bao hàm trong B, nếu ∀u∈X: μ_A(u) ≤ μ_B(u), ký hiệu A⊂B
 (có thể viết A ⊂ X, cho "A xác định trên không gian X")

BIẾN ĐỔI TẬP MỜ

- very A = A^β, với β>1, thường lấy β=2
 Ta có very A ⊂ A
- mol A = A^β, với 1>β>0, thường lấy β=0.5
 Ta có A ⊂ mol A
- Họ M = {A^β, β>0} = {A, very A, mol A, very very A, very mol A, mol mol A, mol very A, ...}

MÒ HOÁ VÀ KHỬ MÒ

- Mò hoá: giá trị u∈X tương ứng tập mò đơn trị
- Từ một nhãn ngôn ngữ, có thể biểu diễn bằng các dạng tập mờ khác nhau: khoảng, tam giác, hình thang, hình chuông, ...
- Khử mờ: chuyển tập mờ về một giá trị rõ

$$x^* = \frac{\sum_{u \in X} \mu_A(u)^{\beta}.u}{\sum_{u \in X} \mu_A(u)^{\beta}}$$

Nếu $\beta \rightarrow \infty$: cực đại, β =1: trung bình

CÁC PHÉP TOÁN VỚI TẬP MỜ

- Cho A⊂X, B⊂X (A, B trên cùng không gian)
- Hợp: $A \cup B = \{(u, \max\{\mu_A(u), \mu_B(u)\}) \mid u \in X\}$ $\mu_{A \cup B}(u) = \max\{\mu_A(u), \mu_B(u)\}$
- Giao: $A \cap B = \{(u, \min\{\mu_A(u), \mu_B(u)\}) \mid u \in X\}$ $\mu_{A \cap B}(u) = \min\{\mu_A(u), \mu_B(u)\}$
- Phần bù: $A^{C} = \{(u, 1-\mu_{A}(u)) \mid u \in X\}$

VÍ DỤ

$$A = \frac{0.5}{x_1} + \frac{0.7}{x_2} + \frac{0.8}{x_3} + \frac{0.1}{x_4} \qquad B = \frac{0.4}{x_1} + \frac{1.0}{x_2} + \frac{0.3}{x_3} + \frac{0.3}{x_4}$$
$$A \cup B = \frac{0.5}{x_1} + \frac{1.0}{x_2} + \frac{0.8}{x_3} + \frac{0.3}{x_4}$$

$$A \cap B = \frac{0.4}{x_1} + \frac{0.7}{x_2} + \frac{0.3}{x_3} + \frac{0.1}{x_4}$$

$$B^{C} = \frac{0.6}{x_{1}} + \frac{0.7}{x_{3}} + \frac{0.7}{x_{4}}$$

HÌNH VỄ

CÁC PHÉP TOÁN KHÁC

• Tổng đại số:

$$\mu_{A+B}(u) = \mu_A(u) + \mu_B(u) - \mu_A(u) \cdot \mu_B(u)$$

Tích đại số:

$$\mu_{A.B}(u) = \mu_A(u).\mu_B(u)$$

- Công tuyển: A⊕B = (A∩B) ∪ (A^C∩B^C)
- Hiệu: A B = A∩B^C
- ! Chú ý: $A \cup A^C \neq X$, $A \cap A^C \neq \emptyset$
- ! A, B có thể thuộc hai không gian khác nhau

AND, OR, NOT CỦA CÁC TẬP MỜ

- Tổng quát hoá: các hàm f,g: [0,1]x[0,1]→[0,1]
- $\mu_{A \text{ and B}}(u) = f(\mu_{A}(u), \mu_{B}(u)), \quad \mu_{A \text{ or B}}(u) = g(\mu_{A}(u), \mu_{B}(u))$
- Các tiêu chuẩn cho f, g (Bellman, Giertz):
- (i) $f(a,b) \le min(a,b)$, $g(a,b) \ge max(a,b)$
- (ii) f(1,1)=1, g(0,0)=0
- (iii) f(a,a), g(a,a) đơn điệu tăng theo a
- (iv) Giao hoán: f(a,b)=f(b,a), g(a,b)=g(b,a)
- (v) f(a,b), g(a,b) không giảm và liên tục theo các đối số a,b

CÁC VÍ DỤ CHO AND, OR

- Zadeh: min(a,b), max(a,b)
- Giles: algebraic product a.b, sum a+b-ab
- Bonissone, Decker: drastic product, sum

```
(b=1: a, a=1: b, else 0), (b=0: a, a=0: b, else 1)
```

- Lukasiewicz: bounded difference, sum max(a+b-1,0), min(a+b,1)
- Einstein product, sum:
 ab / [2-(a+b-ab)], (a+b) / (1+ab)
- Hamacher: ab / (a+b-ab), (a+b-2ab) / (1-ab)

CHUẨN VÀ ĐỐI CHUẨN TAM GIÁC

- Chuấn tam giác t: [0,1] × [0,1] → [0,1] thoả:
 giao hoán: t(a,b)=t(b,a), kết hợp: t(t(a,b),c) =
 t(a,t(b,c)), đơn điệu: t(a,c)≤t(b,d), nếu a≤b, c≤d,
 phần tử trung hoà =1: t(a,1)=a
- Đối chuẩn tam giác s: [0,1] × [0,1] → [0,1] thoả: giao hoán, kết hợp, đơn điệu, phần tử trung hoà = 0
- Phủ định: n: [0,1] → [0,1] thoả: n(0)=1, n(1)=0, n(a)≤n(b), nếu a≥b
- Tính đối ngẫu: n(t(a,b)) = s(n(a),n(b))

VÍ DỤ

- Zadeh (t₃,s₃): min(a,b), max(a,b), 1-a
- Algebraic (t₂,s₂): a.b, a+b-a.b, 1-a
- Lukasiewicz (t₁,s₁): max(a+b-1,0), min(a+b,1),
 1-a
- Hamacher: ab/ [γ+(1- γ)(a+b-ab)],
 [(a+b+ab)-(1-γ)ab] / [1-(1-γ)ab], 1-a, γ>0
- •
- Cực biên (t₀,s₀): (b=1: a, a=1: b, else 0),
 (b=0: a, a=0: b, else 1), 1-u

MỘT SỐ HỌ t-CHUẨN, s-ĐỐI CHUẨN

- Ho Hamacher: $ab / [\gamma + (1-\gamma)(a+b-ab)]$ $[(\gamma'-1)ab + a + b] / [1 + \gamma'ab], \ v\acute{o}i \ \gamma \ge 0, \ \gamma' \ge -1$
- Họ Yager: 1 min(1, [(1-a)^p+1-b)^p]^{1/p})
 min(1, [a^p + b^p]^{1/p}), với p≥1
- Họ Dubois: ab / max(a,b,α)
 [a+b-ab min(a,b,1-α)] / max(1-a,1-b,α),
 với α∈[0,1]

PHÉP TÍCH ĐỀ CÁC

Giả sử có nhiều không gian tham chiếu X₁, X₂, ..., X_r, không có tác động lẫn nhau, cho A₁ ⊂ X₁, A₂ ⊂ X₂, ..., A_r ⊂ X_r, thì Tích đề các A = A₁ × A₂ × ... × A_r là tập mờ xác định trên không gian X₁ × X₂ × ... × X_r với hàm thuộc μ_A(u₁, u₂, ..., u_r) = = min {μ_{A1}(u₁), μ_{A2}(u₂), ..., μ_{Ar}(u_r)}

Hình chiếu trên X₁ của tập mờ A⊂X₁×X₂ là:
 với u₁∈X₁: μ _{ProjX1(A)} (u₁) = sup _{u₂∈X2} μ_A(u₁,u₂)

VÍ DỤ

$$A = \frac{0.5}{x_1} + \frac{0.7}{x_2}$$

$$B = \frac{0.4}{y_1} + \frac{1.0}{y_2} + \frac{0.3}{y_3}$$

$$A \times B = \frac{0.4}{(x_1, y_1)} + \frac{0.5}{(x_1, y_2)} + \frac{0.3}{(x_1, y_3)} + \frac{0.4}{(x_2, y_1)} + \frac{0.7}{(x_2, y_2)} + \frac{0.3}{(x_2, y_3)}$$

$$\Pr{oj_X(A \times B)} = \frac{\sup\{0.4, 0.5, 0.3\}}{x_1} + \frac{\sup\{0.4, 0.7, 0.3\}}{x_2}$$

NGUYÊN LÝ MỞ RỘNG

- Cho tập mờ A⊂X và ánh xạ φ: X→Y, thì có thể định nghĩa tập mờ B⊂Y thông qua A và φ như sau:
- Với y∈Y,

```
\begin{split} \mu_B(y) &= \sup_{\{x \in X \text{ và } y = \phi(x)\}} \mu_A(x), \text{ n\'eu } \phi^{-1}(y) \neq \varnothing \\ \mu_B(y) &= 0, \text{ n\'eu } \phi^{-1}(y) = \varnothing \end{split}
```

- Ví dụ: A = {(2, 0.4), (3, 0.7), (4, 0.2)}, $\phi(2) = n \hat{a} u, \ \phi(3) = n \hat{a} u, \ \phi(4) = \vec{d} \vec{o}$
 - → B = { (nâu, 0.7), (đỏ, 0.2) }
- ! Ý nghĩa: dẫn xuất thông tin