EJERCICO 1

Una bomba centrífuga en que no se consideran las pérdidas tiene las dimensiones especificadas abajo. El fluido es agua. La entrada en los álabes es radial. Calcular:

Caudal (m3/s)

Altura de la bomba Ht (m)

Potencia de accionamiento en CV para rendimiento 1

Datos:

D1 =	60	mm	r1=	0.030 m
D2 =	200	mm	r2=	0.100 m
b1 =b2 =	50	mm	b=	0.050 m
β 1 =	45	0.785	tg β1 =	1.00
β2 =	45	0.785	tg β2 =	1.00
n =	600	rpm	η =	1
γ agua =	1000	Kgf/m³	radial	

EJERCICO 2

Una bomba centrífuga tiene una curva característica especificada, y envía agua desde un depósito inferior a otro superior (abiertos) colocado a **Ho** m de altura a través de una tubería de impulsión, cuya curva de pérdidas (sistema) se adjunta.

Determinar:

El caudal que se puede enviar desde un punto a otro, y potencia (CV) que desarrolla la bomba si su rendimiento es del 75%. Pérdida de carga en la cañería (m).

$$γ agua = 1000 Kgf/m3$$
H0 (Δz) = 16 m Q[m3/s]?
 $Δe_{sist} = 50 Q2$ N (CV)?

EJERCICIO 3

Un aceite de viscosidad $v = 1* 10^{-5} \text{ m}^2/\text{s}$ fluye a través de un tubo de hierro de rugosidad K= 0.00025 m, con una pérdida de carga de 45 m en 400 m de longitud. Determinar el caudal (m3/s) si el diámetro de la cañería es de 0.20 m.

Tipo 2	
ν =	0.00001 m2/s
h =	45 m
L=	390 m
K =	0.00025 m
D =	0.2 m

