4.3 Goniometrie a trigonometrie

4.3.1 Goniometrické funkce ostrého úhlu

Definice 4.3.1

Nechť v pravoúhlém trojúhelníku ABC s přeponou AB jsou strany a úhly označeny běžným způsobem. Potom přiřazujeme dále uvedeným poměrům názvy sinus, kosinus, tangens a

kotangens a označujeme
$$\sin \alpha = \frac{a}{c}, \cos \alpha = \frac{b}{c}, tg\alpha = \tan \alpha = \frac{a}{b}, \cot g\alpha = \cot an\alpha = \frac{b}{a}$$
.

Poznámka Sekans a cosekans

4.3.2 Oblouková míra úhlu Definice 4.3.2

Orientovaný úhel $\angle AVB$ je určen uspořádanou dvojicí polopřímek $[\overrightarrow{VA}, \overrightarrow{VB}]$, přičemž \overrightarrow{VA} je počáteční a \overrightarrow{VB} koncové rameno. Každému orientovanému úhlu lze jednoznačně přiřadit základní velikost, tj. reálné číslo $\alpha = \frac{s}{r}$ tzv. obloukovou míru úhlu, kde r je poloměr

kružnice a s je délka oblouku , který daný úhel na kružnici vytíná. Pokud je nenulový úhel orientován proti směru hodinových ručiček přiřazujeme mu kladné reálné číslo α , v opačném případě číslo $-\alpha$.

Jednotkou obloukové míry je úhel velikosti $\alpha = 1$, hovoříme o 1 radianu s označením 1 rad.

0_0	30^{0}	45 ⁰	60^{0}	90^{0}	180^{0}	270^{0}	360^{0}	57°17′45″
0	$\frac{\pi}{}$	$\frac{\pi}{}$	$\frac{\pi}{}$	π	π	$\frac{3}{\pi}$	2π	1
	6	4	3	2		2"		

Každý orientovaný úhel má nekonečně mnoho velikostí $\alpha' = \alpha + 2k\pi$, kde $k \in \mathbb{Z}$.

Věta 4.3.2.1

Je-li v rovině dána pevně polopřímka \overrightarrow{VA} a libovolné reálné číslo x, potom v této rovině existuje právě jeden orientovaný úhel $\angle AVB$, jehož jedna velikost v obloukové míře se rovná číslu x.

4.3.3 Goniometrické funkce

Sinus a kosinus

Definice 4.3.3.1

V jednotkové kružnici existuje ke každému reálnému číslu jediný orientovaný úhel, jehož velikost v obloukové míře je rovna číslu x, jehož počáteční rameno splývá s kladnou poloosou x. Průsečík koncového ramene s touto kružnicí nechť je M. Pro souřadnice tohoto bodu definujeme $M = [x_M, y_M] = [\cos x, \sin x]$.

Funkcí sinus resp. kosinus pak nazýváme funkci určenou předpisem $y = \sin x$ resp. $y = \cos x$.

Vlastnosti:		sin	cos
1)	D	R	R
2)	Н	$\langle -1,1 \rangle$	$\langle -1,1 \rangle$
3)	parita	lichá	sudá
4)	periodicita	2π	2π
5)	znaménka	I+,II+,III-,IV-	I+,II-,III-,IV+
6)	monotonie	není	není
7)	omezenost	ano	ano
8)	max,min	$\frac{\pi}{2} + 2k\pi, \frac{3}{2}\pi + 2k\pi$	$2k\pi, \pi + 2k\pi$
9)	spojitost	ano	ano

Tabulka význačných hodnot

	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
sin x	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
cosx	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0	1

Grafy

>plot(sin(x),x=-Pi/2..5*Pi/2);

>

>plot(cos(x),x=-Pi/2..5*Pi/2);

Vztahy pro různé argumenty

$$\forall x \in \left(0, \frac{\pi}{2}\right)$$
:

$$1)\sin x = \cos\left(\frac{\pi}{2} - x\right)$$

$$2)\cos x = \sin\left(\frac{\pi}{2} - x\right)$$

$$3)\sin x = \sin(\pi - x)$$

$$4)\sin x = -\sin(\pi + x)$$

$$5)\sin x = -\sin(2\pi - x)$$

$$6)\cos x = -\cos(\pi - x)$$

$$4)\cos x = -\cos(\pi + x)$$

$$5)\cos x = \cos(2\pi - x)$$

Tangens a kotangens

Definice 4.3.3.2

Funkce tangens je definována vztahem $y = tg\alpha = \frac{\sin \alpha}{\cos \alpha}$, pro $x \neq \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$.

Funkce kotangens je definována vztahem $y = \cot g\alpha = \frac{\cos \alpha}{\sin \alpha}$, pro $x \neq k\pi$, $k \in \mathbb{Z}$.

Vlastnosti: cotg tg $R - \left\{ \frac{\pi}{2} + k\pi \right\}$ $R-\{k\pi\}$ 1) D Η 2) R lichá lichá 3) parita 4) periodicita π π I+,II-,III+,IV-I+,II-,III+,IV-5) znaménka 6) monotonie není není 7) omezenost ne ne 8) max,min není není

ne

Grafy

9)

spojitost

>plot(tan(x),x=-Pi/2..Pi/2,y=-10..10); 1U 7 8 7 6 у 4 2 -2 -1.5 0.5 1.5 -0.5 1 χ -4 -6 >

ne

> plot(1/tan(x),x=0..Pi,y=-10..10);

Zřejmě platí:
$$\forall x \in R - \left\{k \cdot \frac{\pi}{2}\right\} : tgx = \frac{1}{\cot gx}$$

Vztahy pro různé argumenty

$$\forall x \in \left(0, \frac{\pi}{2}\right):$$

$$1)tgx = -tg(\pi - x)$$

$$2)\cot gx = -\cot g(\pi - x)$$

Příklad 4.3.3.1

Určete hodnoty goniometrických funkcí pro argumenty $\frac{7}{6}\pi$, $-\frac{7}{6}\pi$, $-\frac{38}{3}\pi$.

Jednoduché rovnice a nerovnice

Základní rovnice a nerovnice jsou všechny typů $GF\Re a$, kde $GF \in \{\sin x, \cos x, tgx, \cot gx\}$, $\Re \in \{\le, <, >, \ge, \ne\}$ a $a \in R$.

Postup řešení rovnice:

- 1) Vyřešíme přiřazenou rovnici pro x' na intervalu $\left\langle 0, \frac{\pi}{2} \right\rangle$
- 2) Převedeme předchozí výsledek na zadanou rovnici řešenou v intervalu $\langle 0,2\pi \rangle$
- 3) Vezmeme v potaz periodicitu

Postup řešení nerovnice:

- 1) Vyřešíme přiřazenou rovnici pro pomocnou neznámou x' na intervalu $\left\langle 0, \frac{\pi}{2} \right\rangle$
- 2) Převedeme předchozí výsledek na rovnici řešenou v intervalu $\langle 0,2\pi \rangle$
- 3) Z grafu odvodíme řešení příslušné nerovnice na intervalu $\left<0,2\pi\right>$
- 4) Vezmeme v potaz periodicitu

Poznámka

Pro funkce tangens a kotangens v bodě dva uvažujeme pouze interval $\langle 0, \pi \rangle$, resp. $\left\langle -\frac{\pi}{2}, \frac{\pi}{2} \right\rangle$.

Parametrické systémy goniometrických funkcí

Příklad 4.3.3.2

Načrtněte grafy složených funkcí pro konkrétní hodnoty parametrů a diskutujte parametrické systémy příslušných funkcí obecně a uvažte též vliv záměny goniometrické funkce:

$$y = \sin x + c, y = c \cdot \cos x, y = tgcx, y = \cot g(x+c)$$

$$y = |\sin x|, y = tg|x|$$

$$y = \cos x^{2}, y = \cot g^{2}x$$

4.3.4 Cyklometrické funkce

Cyklometrické funkce jsou funkce inverzní k funkcím goniometrickým. Protože žádná z goniometrických funkcí není prostá je nutné provést před tvorbou inverzní funkce tzv. zúžení příslušné goniometrické funkce na interval, na němž je tato prostá.

I. Funkce sinus je prostá na intervalu $\left\langle -\frac{\pi}{2}, \frac{\pi}{2} \right\rangle$.

Proto k ní existuje na tomto intervalu funkce inverzní ($x = \sin y$), což se zapisuje $y = \arcsin x$

Funkce f_{-1} : $y = \arcsin x < \check{\text{cti}} \text{ arkussinus} >$

>plot(arcsin(x),x=-1..1);

>

Funkce

II. Funkce cosinus je prostá na intervalu $\langle 0,\pi\rangle$. Proto k ní existuje na tomto intervalu funkce inverzní ($x=\cos y$), což se zapisuje $y=\arccos x$ Funkce $f_{-1}:y=\arccos x$ <čti arkuskosínus>

>plot(arccos(x),x=-1..1);

>

80

III. Funkce tangens je prostá na intervalu $\left\langle -\frac{\pi}{2}, \frac{\pi}{2} \right\rangle$. Proto k ní existuje na tomto intervalu funkce inverzní (x = tgy), což se zapisuje y = arctgx Funkce $f_{-1}: y = arctgx$ <čti arkustangens>

Funkce

>plot(arctan(x),x=-10..10);

>

IV. Funkce kotangens je prostá na intervalu $\langle 0, \pi \rangle$.

Proto k ní existuje na tomto intervalu funkce inverzní ($x = \cot gy$), což se zapisuje $y = arc \cot gx$

Funkce

Funkce f_{-1} : $y = \arcsin x < \check{c}ti$ arkussínus>

>plot(arccot(x),x=-10..10);

>

Přehled vzorců

Základní vztahy

1.
$$\forall x \in R - \left\{ k \cdot \frac{\pi}{2}, k \in Z \right\} : tgx \cdot \cot gx = 1$$
$$\forall x \in R : \sin^2 x + \cos^2 x = 1$$

Součtové vzorce

2.
$$\forall x, y \in R : \sin(x \pm y) = \sin x \cos x \pm \cos x \sin y$$
$$\forall x, y \in R : \cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$$

a za vhodných podmínek 3.
$$tg(x \pm y) = \frac{tgx \pm tgy}{1 \mp tgxtgy}$$
.

Funkce

Vzorce dvojnásobného a polovičního úhlu

$$\forall x \in R : \sin 2x = 2\sin x \cos x$$

$$\forall x \in R : \cos 2x = \cos^2 x - \sin^2 x$$

4.
$$\forall x \in R : \sin \frac{x}{2} = \pm \sqrt{\frac{1 - \cos x}{2}}$$

$$\forall x \in R : \cos\frac{x}{2} = \pm \sqrt{\frac{1 + \cos x}{2}}$$

Součet a rozdíl goniometrických funkcí

$$\forall x, y \in R : \sin x \pm \sin y = 2\sin \frac{x \pm y}{2} \cos \frac{x \mp y}{2}$$

5.
$$\forall x, y \in R : \cos x + \cos y = 2\cos\frac{x+y}{2}\cos\frac{x-y}{2}$$
.

$$\forall x, y \in R : \cos x - \cos y = -2\sin\frac{x+y}{2}\sin\frac{x-y}{2}$$

4.3.5 Goniometrické rovnice a nerovnice a jejich soustavy

Využíváme řešení jednoduchých goniometrických rovnic a nerovnic, goniometrických vzorců, substitucí a případně speciálních postupů.

Příklad 4.3.5.1

$$\sin^2 x - \cos^2 x = 0.5$$

$$2\sin x + \cos^2 x = 0$$

Řešte v R: $a \cdot \sin x + b \cdot \cos x = c$.

$$\sin x - \cos x = \frac{\sqrt{3}}{2}$$

4.3.6 Trigonometrie

Řešení obecného trojúhelníku

- 1) Sinová věta $a:b:c=\sin\alpha:\sin\beta:\sin\gamma$
- 2) Kosinová věta $c^2 = a^2 + b^2 2ab\cos\gamma$ <CZ>

3) Tangentová věta
$$\frac{a+b}{a-b} = \frac{tg \frac{\alpha+\beta}{2}}{tg \frac{\alpha-\beta}{2}}$$

4)
$$2r = \frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$$

5)
$$r = \frac{abc}{4S}$$
 $\rho = \frac{S}{s}$, když $s = \frac{a+b+c}{2}$

6)
$$S = \frac{1}{2}ab\sin\gamma = \frac{1}{2}bc\sin\alpha = \frac{1}{2}ac\sin\beta$$

7)
$$S = \sqrt{s(s-a)(s-b)(s-c)}$$

Poznámka:

Při použití sinové věty je třeba provést trojí zkoušku.

- 1) Součet úhlů roven 180°
- 2) Platnost trojúhelníkové nerovnosti
- 3) Proti většímu úhlu leží větší strana