MATH 3961 - METRIC SPACES EXAM NOTES

ANDREW TULLOCH

1. Metric Spaces

Definition 1.1 (Metric). A metric, or distance function, on a set X is a mapping $d: X \times X \to \mathbb{R}$ such that

- $d(x,y) \ge 0$ for all $x,y \in X$, and d(x,y) = 0 if and only if x = y.
- d(x,y) = d(y,x) for all $x, y \in X$.
- $d(x,z) \le d(x,y) + d(y,z)$ for all $x, y, z \in X$.

We call (X, d) a **metric space**.

Definition 1.2 (Open ball). Let (X, d) be a metric space. For $x \in X$ and $\epsilon > 0$, the set $B_d(x, \epsilon)$ defined by

$$B_d(x,\epsilon) = \{ y \in X \mid d(x,y) < \epsilon \}$$

is callen an **open ball** in the set X.

Definition 1.3 (Open sets in metric spaces). Let (X, d) be a metric space and let U be any subset of X. Then U is called an **open set** in X if every point of U is an interior point of U; that is, for any $a \in U$, there is an open ball $B(a, \epsilon)$ such that $B(a, \epsilon) \subseteq U$.

Definition 1.4 (Properties of open sets). Let (X, d) be a metric space.

- \emptyset and X are open.
- The union of an arbitrary collection of open sets is open.
- The intersection of a **finite** number of open sets is open.

Definition 1.5 (Closed set). A subset A of a metric space (X, d) is **closed** if it's complement $X \setminus A$ is open in X.

Definition 1.6 (Properties of closed sets). Let (X, d) be a metric space.

- \emptyset and X are closed.
- The union of an finite collection of closed sets is closed.
- The intersection of an arbitrary number of closed sets is closed.

Definition 1.7 (Limit point of a subset). Let (X, d) be a metric space and let A be a subset of X. Then a point x in X is a **limit point** of A if every open ball $B(x, \epsilon)$ contains at least one point of A.

The set of all limit points of A is called the **derived set** A'.

Definition 1.8 (Closure of a set). Let (X, d) be a metric space and let $A \subseteq X$. Then the set consisting of A and its limit points is called the **closure** of A, denoted \overline{A} .

$$\overline{A} = A \cup A'$$

Theorem 1.9. The closure of a set is a closed set, and a set is closed if and only if it is equal to its closure.

Definition 1.10 (Interior of a set). Let (X, d) be a metric space and let $A \subseteq X$. A point $a \in A$ is an **interior point** of A if there exists $\epsilon > 0$ such that

$$B(a,\epsilon) \subseteq A$$

The set of interior points of A is called Int A, the **interior** of A.

Theorem 1.11. The set Int A is open, and a set A is open if and only if Int A = A.

Theorem 1.12 (Properties of interior and closure). The interior of a set A is the largest open subset contained in A, and the closure of A is the smallest closed set containing A.

Definition 1.13 (Isolated point). Let (X, d) be a metric space and let A be a subset of X. A point $x \in A$ is called an **isolated point** if there exists an $\epsilon > 0$ such that

$$B(x,\epsilon)\backslash\{x\}\cap A=\emptyset$$

Definition 1.14 (Boundary of a subset). Let (X, d) be a metric space and $A \subseteq X$. Then the **boundary** of A is defined as

$$\partial A = \overline{A} \cap \overline{X \backslash A} = \overline{A} \backslash \operatorname{Int} A$$

Theorem 1.15 (Properties of the boundary). Let (X,d) be a metric space and $A \subset X$. Then we have

- $\overline{A} = Int A \cup \partial A$.
- A is closed if and only if $\partial A \subseteq A$.
- A is open if and only if $\partial A \subseteq X \backslash A$.
- $\partial(X \backslash A) = \partial A$.

Definition 1.16 (Diameter of a set). The diameter of a subset A of a metric space (X, d), $\delta(A)$ is defined as

$$\delta(A) = \sup_{x,y \in A} d(x,y)$$

Definition 1.17 (Bounded set). A subset A of a metric space (X, d) is **bounded** if its diameter is finite. Alternatively, a subset is bounded if it is contained in a large enough open set - i.e., there exists $x \in X$ and $\epsilon > 0$ such that $A \subseteq B(x, \epsilon)$

1.1. Separable metric spaces.

Definition 1.18 (Separable metric space). Let (X,d) be a metric space. Then a subset A of X is said to be **dense** in X if $\overline{A} = X$. A metric space (X,d) is said to be **separable** if X has a countable dense subset.

Corollary 1.19. We note that A is dense in X if and only if for any $x \in X$ and $\epsilon > 0$, there is a point $a \in A$ such that $d(x, a) < \epsilon$.

1.2. Subspaces.

Definition 1.20 (Open sets in a subspace). Let (X, d) be a metric space and (Y, d_Y) be a metric subspace of (X, d). Let G be a subset of Y. Then G is open in Y if and only if, for any $x \in G$, there is an open ball $B(x, \epsilon)$ in X such that

$$B(x,\epsilon) \cap Y \subseteq G$$

A subset H of Y is closed in Y if its complement $G = Y \setminus H$ of H is open in Y.

Theorem 1.21 (Open sets in a metric subspace). Let (Y, d_Y) be a metric subspace of a metric space (X, d), and let $G \subseteq Y$. Then G is open in Y if and only if there exists an open subset U in X such that $G = U \cap Y$.

1.3. Convergence in a Metric Space.

Definition 1.22 (Convergence). A sequence (x_n) in a metric space (X, d) is said to **converge** to a point $x \in X$ if for any $\epsilon > 0$, there exists N such that

$$n > N$$
 implies $d(x_n, x) < \epsilon$

The point x is called a **limit** of the sequence (x_n)

Corollary 1.23. A sequence (x_n) in a metric space (X,d) is said to converge to a point $x \in X$ if any open ball $B(x,\epsilon)$ contains almost all x_n .

Theorem 1.24 (Connection between closed sets and convergent sequences). Let (X, d) be a metric space, $A \subseteq X$ and $x \in X$. Then

- $x \in \overline{A}$ if and only if there is a sequence (x_n) in A such that $x_n \to x$.
- A is closed if and only if A contains all the limits of convergent sequences in A.

Definition 1.25 (Uniform convergence). Let (f_n) be a sequence of real-valued functions defined on a set S and let f be a function defined on S. Then we say that the sequence (f_n) converges to f uniformly if for any $\epsilon > 0$, there exists N such that

$$\sup_{x \in S} d(f_n(x), f(x)) < \epsilon$$

for all n > N, and where N is independent of x.

Definition 1.26 (Cauchy Sequences). A sequence (x_n) in a metric space (X, d) is said to be **Cauchy** in X if for any $\epsilon > 0$, there exists N such that

$$m, n > N \Rightarrow d(x_m, x_n) < \epsilon$$

Definition 1.27 (Completeness in Metric Spaces). A space X is said to be complete if every Cauchy sequence in X converges in X.

Proposition 1.28. Every convergent sequence (x_n) in a metric space (X,d) is a Cauchy sequence.

Corollary 1.29. Let (X, d) be a complete metric space. Then a closed metric subspace $Y = (Y, d_Y)$ of X is complete.

Proposition 1.30. Let (X,d) be a metric space. If a Cauchy sequence (x_n) in (X,d) has a subsequence converging to x, then (x_n) converges to x.

2. Continuous Mappings

Definition 2.1 (Continuous mapping between metric spaces). Let (X, d) and (Y, d_Y) be two metric spaces. Then a mapping $f: X \to Y$ is said to be **continuous** at a point $a \in X$ if for any $\epsilon > 0$, there exists δ such that

$$d_X(x,a) < \delta \Rightarrow d_Y(f(x),f(a)) < \epsilon$$

Theorem 2.2 (Topological characterisations of continuity). A funtion $f: X \to Y$ is continuous at $a \in X$ if and only if for any open set W containing f(a), there exists an open set G containing A such that $f(G) \subseteq W$.

Theorem 2.3 (Sequential characterisation of continuity). A function $f: X \to Y$ is continuous at $a \in X$ if and only if for any sequence (x_n) which converges to a in X, the corresponding sequence $(f(x_n))$ converges to f(a) in Y.

Definition 2.4 (Continuous mapping). A map is continuous on X if any only if it is continuous at every point in X.

Theorem 2.5 (Topological definition of continuous mapping). A mapping $f: X \to Y$ is continuous on X if and only if for any open set W in Y, the set $f^{-1}(W)$ is open in X. Alternatively, a function is continuous if the preimage of open sets are open in X.

Theorem 2.6 (Continuity in terms of closed sets). A mapping $f: X \to Y$ is continuous on X if and only if the preimage of closed sets are closed in X.

3. Homeomorphism and Equivalent Metrics

Definition 3.1 (Homeomorphism). Let X and Y be metric spaces and let $f: X \to Y$ be a map between them. Then f is a **homeomorphism** from X to Y if we have

- \bullet f is a bijection.
- f and f^{-1} are continuous

If a homeomorphism exists between X and Y, we say that X and Y are **homeomorphic**, and that $X \simeq Y$.

Definition 3.2 (Characterisations of homeomorphism). Let $f: X \to Y$ be a bijective mapping. Then the following are equivalent.

- f is a homeomorphism;
- for any $U \subseteq X$, U is open in X if and only if f(U) is open in Y;
- for any $G \subseteq X$, G is closed in X if and only if f(G) is closed in Y;
- for any $A \subseteq X$, $f(\overline{A}) = \overline{f(A)}$;
- for any $B \subseteq Y$, $\overline{f^{-1}(B)} = f^{-1}(\overline{B})$
- for any $B \subseteq Y$, $f^{-1}(\operatorname{Int} B) = \operatorname{Int} f^{-1}(B)$

Definition 3.3 (Isometric mappings). Let (X, d) and (Y, d_Y) be two metric spaces and $f: X \to Y$ a mapping. Then f is said to be **isometric** or an **isometry** if f preserves distances; that is, for all $x, y \in X$,

$$d_Y(f(x), f(y)) = d_X(x, y)$$

The space X is said to be isometric with the space Y if there exists a bijective isometry of X onto Y. The spaces X and Y are isometric spaces

Theorem 3.4. Any isometric mapping from X onto Y is a homeomorphism. Moreover, if X is complete and Y is isometric with X, then Y is also complete.

Definition 3.5 (Equivalent metrics). Let (X, d_1) and (X, d_2) be two metric spaces. If the identity mapping id : $(X, d_1) \to (X, d_2)$ is a homeomorphism, then the metrics d_1 and d_2 are said to be equivalent on X.

Theorem 3.6 (Characterisations of equivalent metrics). Let (X, d_1) and (X, d_2) be two metric spaces. Then the following are equivalent.

- The metrics d_1 and d_2 are equivalent on X;
- for any $U \subseteq X$, U is open in (X, d_1) if and only if U is open in (X, d_2) ;
- for any $G \subseteq X$, G is closed in (X, d_1) if and only if G is closed in (X, d_2) ;

• The sequence (x_n) converges to a in (X, d_1) if and only if it converges to a in (X, d_2) .

Theorem 3.7 (Equivalent metrics). Let (X, d_1) and (X, d_2) be two metric spaces. If there exist strictly positive numbers c and C such that

$$cd_1(x,y) \le d_2(x,y) \le Cd_1(x,y)$$

for all $x, y \in X$, then the metrics d_1, d_2 are equivalent on X.

4. Contraction Mapping Theorem

Definition 4.1 (Uniformly continuous). A function $f: X \to Y$ is uniformly continuous if for any $\epsilon > 0$ there exists $\delta > 0$ such that

$$d_X(x,y) < \delta \Rightarrow d_Y(f(x),f(y)) < \epsilon$$

where δ is independent of x, y.

Definition 4.2 (Contraction mapping). Let f be a mapping from a metric space (X, d) to itself. Then f is called a **contraction mapping** if there exists a constant K > 1 such that for all $x, y \in X$,

$$d(f(x), f(y)) \le K(x, y)$$

Proposition 4.3. If $f: X \to X$ is a contraction mapping, then f is **uniformly continuous**, and hence continuous, on X

Theorem 4.4 (Banach fixed point theorem). Let (X,d) be a complete metric space and let $f: X \to X$ be a contraction mapping. Then f has a unique fixed point p in X

Proof. Existence: Show that the sequence (x_n) , defined as $x_n = f^n(x_0)$ for some $x_0 \in X$ is Cauchy.

Uniqueness: If p and q are fixed points of f, the we have that

$$d(p,q) = d(f(p), f(q)) \le Kd(p,q)$$

and so p = q.

Corollary 4.5 (Application of Banach fixed point theorem to ordinary differential equations). We seek to solve the differential equation

$$\frac{dx}{dt} = f(t, x)$$

given the initial condition $x(t_0) = x_0$.

Define Y be the subspace of the set of all continuous functions on $[t_0-\beta, t_0+\beta]$ with the supremum metric, satisfying $d(x(t), x_0) < c\beta$ We claim that the mapping $F: Y \to Y$ defined by

$$F(x(t)) = x_0 + \int_{t_0}^{t} f(s, x(s)) ds$$

is a contraction mapping. As F is a contraction mapping on a complete metric space, we must have that it has a unique fixed point, which satisfies the differential equation above.

5. Completeness

We recall the definition of completeness in metric spaces.

Definition 5.1 (Completeness in Metric Spaces). A space X is said to be complete if every Cauchy sequence in X converges in X.

We now state the theorem that every metric space can be completed. The space \hat{X} in the theorem is called the completion of the given space X.

Theorem 5.2 (Completion of a metric spaces). Let (X,d) be a metric space. Then there exists a complete metric space $\hat{X} = (\hat{X}, \hat{d})$ which has a subspace W that is isometric with X and is dense in \hat{X}

$$Proof.$$
 TO DO

6. Connectedness

Definition 6.1 (Disconnected). Let X be a metric space (or topological space). Then X is said to be **disconnected** if there exist two non-empty subsets A_1, A_2 of X such that

$$X = A_1 \cup A_2$$
 and $A_1 \cap \overline{A}_2, \overline{A}_1 \cap A_2 = \emptyset$

If no two sets A_1, A_2 exist, we say that X is **connected**

Theorem 6.2 (Characterisations of connectedness). Let (X,d) be a metric space. Then the following statements are equivalent:

- X is disconnected;
- There exist two non-empty disjoint open subsets A_1, A_2 in X such that $X = A_1 \cup A_2$;
- There exist two non-empty disjoint closed subsets A_1, A_2 in X such that $X = A_1 \cup A_2$;
- There exists are proper subset of X which is both open and closed in X

Definition 6.3 (Connected subspace). Let (X,d) be a metric space and A a non-empty subset of X. Then A is said to be a connected subst of X if A is connected as a metric subspace and to be a **disconnected** subset of X if A is disconnected as a metric subspace.

Theorem 6.4 (Intervals in \mathbb{R}). A subset A of \mathbb{R} containing at least two points is connected if and only if A is a interval.

Theorem 6.5 (Characterisations of connectedness). Let S(2) be the two point discrete metric space. If A is connected then any continuous mapping $f: A \to S(2)$ is a constant mapping. Alternatively, if $f: A \to S(2)$ is continuous, then $f(A) = \{0\}$ or $\{1\}$.

Theorem 6.6 (Connectedness is a topological property). Let X and Y be two metric spaces, and let $f: X \to Y$ be a continuous mapping. Then if $A \subseteq X$ is connected in X, then the image f(A) is connected in Y.

Definition 6.7 (Path-connected). Let X be a metric space and A a subset of X. Then A is said to be **path-connected** if for any $a, b \in A$, there is a path joining a and b, that is, a continuous mapping $f : [0,1] \to A$ such that f(0) = a, f(1) = b.

Theorem 6.8 (Path-connectedness implies connectedness). Let X be a metric space and A a subset of X. If A is path-connected, then A is connected.

We note that the converse is not necessarily true - that is, there exist connected sets that are not path connected. However, in \mathbb{R}^n , we have the following.

Theorem 6.9 (For open sets in \mathbb{R}^n , path-connectedness is equivalent to connectedness). Let X be any open set in \mathbb{R}^n . Then X is connected if and only if X is path-connected.

7. Compactness

Compactness in metric spaces.

Definition 7.1 (Open covering of a set). Let X be a metric space (or any topological space), and let $A \subseteq X$. Then a family \mathcal{U} of open sets in X, is called an **open covering** of A if

$$A \subseteq \cup_{U \in \mathcal{U}} U$$

A subset \mathcal{V} of \mathcal{U} is called a **finite subcovering** if \mathcal{V} covers A and has a finite number of elements.

Definition 7.2 (Compact subset of a topological space). let X be a metric space (or any topological space), and let $A \subseteq X$. Then A is called a **compact subset** of X if **every** open covering \mathcal{U} of A has a finite subcovering \mathcal{V} of A.

In metric spaces, we have the following useful theorem.

Theorem 7.3 (Implications of compactness in metric spaces). Let (X, d) be a metric space. If A is a compact subset in X, then A is closed and bounded in X.

In \mathbb{R}^n , we have the following, more general, results. These are key results in characterising compact subsets of Euclidean space.

Theorem 7.4 (Heine-Borel). Every closed and bounded interval in \mathbb{R} is compact.

Theorem 7.5 (Compactness in \mathbb{R}^n). Let A be a subset of \mathbb{R}^n . Then A is compact if and only if A is closed and bounded.

7.1. Properties of compact sets.

Theorem 7.6. A subset A in \mathbb{R}^n is compact if and only if every sequence in A has a convergent subsequence with limit in A.

Definition 7.7 (Compactness is a topological property). Let X and Y be topological spaces, and let $f: X \to Y$ be a continuous mapping. If a subset A in X is compact, then the image f(A) is compact in Y.

That is, continuous images of compact sets are compact.

Corollary 7.8. The following are true in an arbitrary metric space.

- A continuous image of a compact subset is closed.
- A continuous image of a compact subset is bounded.

Theorem 7.9. Any closed subspace A of a compact space X is compact.

8. Applications to Continuous Functions $f:[a,b] \to \mathbb{R}$

Theorem 8.1 (Intermediate Value Theorem). Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Let K be a number lying between f(a) and f(b). Then there exists a point $c \in [a,b]$ such that f(c) = K.

Proof. Using connectedness of [a,b], we have that f([a,b]) is connected. Thus, if f(a) < K < f(b), then $K \in f([a,b])$. Hence, there exists $c \in [a,b]$ such that f(c) = K.

9. Topological Spaces

A topological space is defined as follows. Let X be a non-empty set. Then a family τ of subsets of X is called a topology for X if τ satisfies

- $\emptyset, X \in \tau$;
- The union of any subfamily of members of τ is in τ ;
- The intersection of any **finite** subfamily of members of τ is in τ .

The pair (X, τ) is called a **topological space**, and the members of τ are called the **open sets** in (X, τ) .

Definition 9.1 (Interior of a subset). Let (X, τ) be any topological space and $A \subseteq X$. Then $a \in A$ is called an **interior point** of A if there exists an open set U containing a such that $U \subseteq A$. We denote by Int A the set of all interior points of A.

Theorem 9.2 (Properties of the interior). Let (X, τ) be any topological space and let $A \subseteq X$. Then Int A is the largest open subset contained in A.

Definition 9.3 (Closed subsets). Let A be a subset of a topological space (X, τ) . Then A is called a **closed set** in X if the complement $X \setminus A$ is open in X, that is, if $X \setminus A \in \tau$.

Theorem 9.4. In a topological space (X, τ) ,

- \emptyset and X are closed;
- The intersection of any collection of closed sets is closed;
- The union of any finite collection of closed sets are closed.

Definition 9.5 (Limit point of a subset). Let (X, τ) be a topological space and let $A \subseteq X$. Then a point $x \in X$ is called a **limit point** or **accumulation point** of A if every open set G containing x contains a point of A different from x, i.e.,

$$G \in \tau, x \in G \Rightarrow (G \setminus \{x\}) \cap A \neq \emptyset$$

We denote by A' the set of all limit points of A, and is called the derived set of A.

Theorem 9.6 (Properties of closed sets). Let (X, τ) be a topological space and let $A \subseteq X$. Then A is closed if and only if $A' \subseteq A$.

Definition 9.7 (Closure of a subset). Let (X, τ) be a topological space and $A \subseteq X$. Then the set consisting of A together with all its limit points is called the **closure** of A, and is denoted by \overline{A} . Thus,

$$\overline{A} = A \cup A'$$

Proposition 9.8. Let (X,τ) be a topological space and $A\subseteq X$. Then

$$\overline{A} = \{x \in X \mid \text{for every open set } U \text{ containing } x, U \cap A \neq \emptyset\}.$$

Theorem 9.9. Let (X, τ) be a topological space and $A \subseteq X$. Then \overline{A} is the smallest closed set containing A.

Definition 9.10 (Dense subset). Let (X, τ) be a topological space and $A \subseteq X$. Then a subset A of X is said to be **dense** in X if $\overline{A} = X$.

Definition 9.11 (Nowhere dense). Let (X, τ) be a topological space and $A \subseteq X$. Then A is **nowhere dense** in X if and only if the interior of the closure of A is empty. That is, $\operatorname{Int}(\overline{A}) = \emptyset$. Alternatively, a set is nowhere dense if and only if $X \setminus \overline{A}$ is dense in X.

Definition 9.12 (Boundary of a subset). Let (X, τ) be a topological space and $A \subseteq X$. Then the **boundary** of A, denoted by ∂A , is defined as

$$\partial A = \overline{A} \cap \overline{X \backslash A}$$

Theorem 9.13 (Characterisation of the boundary). Let (X, τ) be a topological space and $A \subseteq X$. Then

$$\overline{A} = Int A \cup \partial A$$

Definition 9.14 (Convergence in topological spaces). Let (X, τ) be a topological space. Then a sequence (x_n) of points in X is said to **converge** to a point $x \in X$ if for any open set U containing x, there exists a positive integer N such that

$$n > N \Rightarrow x_n \in U$$

That is, if any open set U containing x contains almost all of the terms of the sequence.

Definition 9.15 (Induced or relative topology). Let (X, τ) be a topological space and $Y \subseteq X$. Let

$$\tau_Y = \{ G \subseteq Y \mid G = U \cap Y \text{ for some } U \in \tau \}$$

Then τ_Y is a topology for Y, called the **induced** or **relative topology** on Y and the space (Y, τ_Y) is called a subspace of (X, τ)

Definition 9.16 (Bases for a topology). Let (X, τ) be a topological space. Then a subfamily \mathcal{B} of τ is called a **base** for the topology if for every open set U in τ is the union of members of \mathcal{B} . Equivalently, $\mathcal{B} \subseteq \tau$ is a basis for τ if and only if for any point a in an open set $U \in \tau$, there exists $V \in \mathcal{B}$ such that $a \in V \subseteq U$.

Theorem 9.17 (Characterisation of a basis for a topology). A family of nonempty subsets of a set X is a base for some topology τ on X if and only if it satisfies the following properties.

- $X = \cup_{B \in \mathcal{B}} B$
- For any $B_1, B_2 \in \mathcal{B}$, $B_1 \cap B_2$ is the union of members of \mathcal{B} . Equivalently, if $b \in B_1 \cap B_2$, then there exists $B_b \in \mathcal{B}$ such that $b \in B_b \subseteq B_1 \cap B_2$.

Theorem 9.18 (Continuity in terms of a basis). Let (X, τ_X) and (Y, τ_Y) be topological spaces and $f: X \to Y$ a mapping. Let \mathcal{B}_Y be a basis for τ_Y . Then f is continuous if and only if for any $B \in \mathcal{B}_Y$, $f^{-1}(B)$ is open in X - i.e., is in τ_X .

Theorem 9.19 (Product spaces). Let (X, τ_X) and (Y, τ_Y) be topological spaces. Then the family \mathcal{B} given by

$$\mathcal{B} = \{ U \times V \mid U \in \tau_X, V \in \tau_Y \}$$

is a base for a topology on $X \times Y$.

9.1. Compactness.

Definition 9.20 (Compactness in terms of a basis). A topological space (X, τ) is compact if and only if there exists a base \mathcal{B} for τ such that every open covering of X be members of \mathcal{B} has a finite subcovering.

Theorem 9.21. The product space of two compact topological spaces is compact.

9.2. Connectedness.

Theorem 9.22. Let X and Y be topological spaces and let $f: X \to Y$ be a homeomorphism. Then X is connected if and only if Y is connected.

Theorem 9.23. Let X be a topological space. Let $\{A_i\}$ be a family of connected subsets in X and suppose that for all $i, j, A_i \cap A_j \neq \emptyset$. Then the union $A = \bigcup_i A_i$ is connected.

10. Separation Properties

Definition 10.1 (T_0 -spaces). A topological space (X, τ) is called a T_0 -space if for any pair of distinct points a, b of X, either there exists an open set U containing a and not b or an open set V containing b and not a.

Definition 10.2 (T_1 -spaces). A topological space (X, τ) is called a T_1 -space if for any pair of distinct points a, b of X, there exists an open set U in X with $a \in U$ and $b \notin U$.

Every T_1 -space is T_0 , but not the reverse.

Theorem 10.3 (Characterisation of T_1 -spaces). AA topological space (X, τ) is called a T_1 -space if and only if early singleton set $\{a\}$ of X is closed (and so every finite subset of X is closed).

Definition 10.4 (T_2 -spaces or Hausdorff spaces). A topological space (X, τ) is called a T_2 -space or a **Hausdorff space** if for any pair of distinct points a, b of X, there are disjoint open sets U and V in X such that $a \in U$ and $b \in V$.

Every T_2 -space is T_1 , but not the reverse.

Example 10.5. Any metric space is a T_2 -space

Theorem 10.6. Every subspace of a T_1 - or T_2 -space is a T_1 - or T_2 -space.

Theorem 10.7. Every product space of a T_1 - or T_2 -space is a T_1 - or T_2 -space.

10.1. Regular Spaces and T_3 -spaces.

Definition 10.8 (Regular space). A topological space (X, τ) is called a **regular** space if for any closed set F in X and $a \in X \setminus F$, there are disjoint open sets U and V in X such that $F \subseteq U$ and $a \in V$. A regular T_1 -space is called a T_3 -space.

Theorem 10.9. A topological space X is regular if and only if for any point a in X and any open set U containing A, there is an open set W containing a such that $\overline{W} \subseteq U$.

Every T_3 -space is T_2 , but not the reverse.

10.2. Normal Spaces and T_4 -spaces.

Definition 10.10 (Normal spaces and T_4 -spaces). A topological space (X, τ) is called a **normal space** if for any two disjoint closed sets A and B in X, there are disjoint open sets U and V in X such that $A \subseteq U$ and $B \subseteq V$. A normal T_1 -space is called a T_4 -space.

Clearly every T_4 -space is a T_3 -space. However, a normal space may not be a T_1 -space or a regular space and a regular space may not be normal.

Theorem 10.11. Every metric space (X, d) is a T_4 -space

Theorem 10.12. Every compact Hausdorff space is normal. Additionally, any compact subset A of a Hausdorff space X is closed.

Our final theorem is **Urysohn's Lemma**.

Theorem 10.13 (Urysohn's Lemma). Let X be a normal space. Then, for any disjoint closed sets A and B in X, there exists a continuous function $f: X \to [0,1]$ such that $F(A) = \{0\}$ and $F(B) = \{1\}$.

Theorem 10.14 (Tietze Extension Theorem). Let X be a normal space, A a closed subset of X, and $f: A \to \mathbb{R}$ continuous. Then there is a continuous function $g: X \to R$ such that $g|_A = f$ that is, g restricted to A is f.

11. Hilbert Spaces

Let V be a vector space over a field \mathbb{F} , where \mathbb{F} is either \mathbb{R} or \mathbb{C} .

Definition 11.1 (Inner product space). A function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{F}$ is called an inner product if

- $\langle u, v \rangle = \overline{\langle u, v \rangle}$ for all $u, v \in V$.
- $\langle u, u \rangle \geq 0$ for all $u \in V$ with equality if and only if u = 0.
- $\langle \alpha u + \beta v, w \rangle = \alpha \langle u, w \rangle + \beta \langle v, w \rangle$ for all $u, v, w \in V$ and $\alpha, \beta \in \mathbb{F}$.

We say that V equipped with $\langle \cdot, \cdot \rangle$ is an **inner product space**.

Definition 11.2 (Induced norm). If V is an inner product space with $\langle \cdot, \cdot \rangle$, we define

$$||u|| := \sqrt{\langle u, u \rangle}$$

for all $u \in E$. The operation $\|\cdot\|$ is the **induced norm**.

Theorem 11.3 (Cauchy-Schwarz inequality). Let V be an inner product space. The

$$|\langle u, v \rangle| < ||u|| ||v||$$

Definition 11.4 (Hilbert space). An inner product space which is complete with respect to the induced norm is called a **Hilbert space**.

Proposition 11.5 (Continuity of the inner product). Let V be an inner product space. Then the inner product is continuous with respect to the induced norm.

Proposition 11.6 (Parallelogram identity). Let V be an inner product space and $\|\cdot\|$ the induced norm. Then

$$||u + v||^2 + ||u - v||^2 = 2||u||^2 + 2||v||^2$$

for all $u, v \in E$

11.1. Projections and orthogonal complements.

Definition 11.7 (Projection). Let V be a normed space and M a non-empty closed subset of V. We define the **set of projections of** x **onto** M by

$$P_M(x) = \{ m \in M \mid ||x - m|| = d(x, M) \}$$

This set is non-empty as M is closed.

Definition 11.8 (Orthogonal complement). For an arbitrary non-empty subset M of an inner product space H we set

$$M^{\perp} := \{ x \in H \mid \langle x, m \rangle = 0 \text{ for all } m \in M \}$$

We call M^{\perp} the orthogonal complement of M in H.

Lemma 11.9 (Properties of the orthogonal complement). Suppose M is a non-empty subset of the inner product space H. Then M^{\perp} is a closed subspace of H and $M^{\perp} = \overline{M}^{\perp} = (span \ M)^{\perp} = (span \ \overline{M}) \perp$

Theorem 11.10 (Key properties of the orthogonal complement). Suppose that M is a closed subspace of a Hilbert space H. Then

• $H = M \oplus M^{\perp}$

Corollary 11.11 (Dense subspace of a Hilbert space). A subspace M of a Hilbert space H is dense in H if and only if $M^{\perp} = \{0\}$.

11.2. Orthogonal systems.

Definition 11.12 (Orthogonal systems). Let H be an inner product space with inner product $\langle \cdot, \cdot \rangle$ and induced norm $\| \cdot \|$. Let $M \subset H$ be a non-empty subset.

- M is called an **orthogonal system** if $\langle u, v \rangle = 0$ for all $u, v \in M$ with $u \neq v$.
- M is called an **orthonomal system** if it is orthogonal and ||u|| = 1.
- M is called a **complete orthonormal system** or **orthonormal basis** of H if it is an orthonormal system and $\overline{\text{span } M} = H$.

Theorem 11.13 (Pythagoras's Theorem). Suppose that H is an inner product space and M an orthogonal system in H. Then the following assertions are true:

- $M \setminus \{0\}$ is linearly independent.
- If (x_n) is a sequence in M with distinct terms and H is complete, then $\sum x_k$ converges if and only if $\sum ||x_k||^2$ converges. In that case,

$$\left\| \sum x_k \right\|^2 = \sum \|x_k\|^2$$

Theorem 11.14 (Bessel's Inequality). Let H be an inner product space and M an orthonormal system in H. Then

$$\sum_{m \in M} |\langle x, m \rangle|^2 \leq \|x\|^2$$

 $\textit{for all } x \in H. \textit{ Moreover, the set } \{m \in M \, | \, \langle x,m \rangle \neq 0\} \textit{ is at most countable for all } x \in H.$