Document AI タスクに向けた 大規模事前学習済みモデルを活用した Layout-aware Prompting

<u>北田俊輔¹</u>, 井上直人², 大谷まゆ², 彌冨仁¹

¹法政大学 理工学研究科 応用情報工学専攻 ²株式会社CyberAgent

Summary

大規模事前学習済み言語モデルを Document Al タスクへ効率的に応用する際のレイアウト情報を考慮した新たな prompting 技術の提案

- ✓ 既存の GPT モデルに対してテキストの レイアウト情報を埋め込んだ layout embedding を加えるだけの非常にシンプルかつ効果の高い手法
- ✓ テキストや画像を始め、イラストやグラフといった オブジェクトを含むインフォグラフィック質問 応答タスクを例に、提案手法の効果を確認

Background

インフォグラフィック理解: 主にビジネス文書に 焦点を当てた Document Al タスクの一つ

- 一般物体ではなく人工物体を理解する必要あり
- テキストとイラスト間の位置の関係性の把握が重要
- → Webページのスクショ等に対する情報抽出等に応用可能

インフォ グラフィック に対する様々 な質問へ回答 するタスク

(1) OCR して テキスト取得

② OCR 誤り

How many companies have more than 10K delivery workers? から物体認識 Answer: 2 Evidence: Figure

Answer-source: Non-extractive Operation: Counting Sorting

② 人工物体

■ Layout-aware Prompting (LAP)

Experiments

評価用データセット

- Infographic VQA [Mathew+ WACV'22] (コンペwebサイト)
 - 30,035 質問応答対 5,485 画像
 - 先行研究のVQAデータセットより質問文が長く複雑

<u>比較手法</u> - ベースライン、提案手法、SoTa モデル

- GPT2-large fine-tuning: 事前学習済みモデル*を使用
- w/ LAP: 上記に提案法を適用したモデル (テキストのみ)
- **LayoutLM** [Xu+ KDD'20]: BERTをベースにOCRで取得した レイアウト情報を組み込んだモデルを fine-tuning
- **IGBERT** [Tanaka+ ANLP'22]: 約50万件のインフォグラフィックで事前学習したBERTベースのモデル (画像 + テキスト)
- **TILT** [Powalski+ ICDAR'22]: Document AI に関するデータセット 20種 計100万件以上を使用して教師なし・あり学習で事前学 習した T5 ベースのモデル (画像 + テキスト)

評価指標 - Average normalized levenshtein similarity

- 編集距離の平均値 ANLS [Biten+ ICCV'19]
 - 正解と予測との文字長を考慮した編集距離
 - OCRの誤りを考慮した正解率を緩和した指標

Results

<u>InfographicVQA リーダーボード</u>による評価結果

■ Ranking table										
Method	ANLS (test set)	Answer type				Evidence		Operation		
		Image span	Question span	Multiple spans	Non span	Textual	Visual object	Comparison	Arithmetic	Counting
GPT2-large	0.2456	0.2630	0.4632	0.1156	0.1521	0.2875	0.2301	0.2455	0.1790	0.1192
GPT2-large w/ LAP	0.3609	0.3593	0.4721	0.1305	0.4137	0.3783	0.3004	0.2871	0.4087	0.4063
LayoutLM [Xu+ KDD'20]	0.2720	0.3278	0.2386	0.0450	0.1371	0.3626	0.1705	0.1836	0.1559	0.1140
IG-BERT [Tanaka+ ANLP'22]	0.3854	0.4181	0.4481	0.2197	0.2849	0.5016	0.3013	0.2939	0.3564	0.2000
TILT [Powalski+ ICDAR'21]	0.6120	0.6765	0.6419	0.4391	0.3832	0.7916	0.4545	0.4801	0.4958	0.2652
Human Performance	0.9718	0.9745	0.9777	0.9335	0.9716	0.9789	0.9770	0.9712	0.9837	0.9544

GPT2-large vs. GPT2-large w/ LAP

- 提案手法を導入することで予測性能向上
 - 特に Non span, Arithmetic, Counting が向上
 - レイアウト情報の補助により、元々モデルが 持つ言語情報を有効に活用して質問応答できた

提案手法はリーダーボード上で3位 3 に

- レイアウト情報を使う SoTA の LayoutLM ベースの モデルよりも予測性能の向上を確認
- 大規模なインフォグラフィックで事前学習する必要 がある IGBERT と同程度の予測性能を実現
- TILT は多数の Document AI 関連のデータセットで 教師あり学習をしているため、比較するのは難しい

■ Discussion & Future Work

レイアウト情報を導入することで言語モデルが本来 有する言語・知識情報を活用可能になる

- 単に本文を抽出しても答えられない問題 Non span
- 数値を答えるような質問にも本文中の情報を元に 演算可能になる(e.g., Arithmetic, Counting)

今後の展望: インフォグラフィック以外の Document AI データセットでの有効性確認

● 提案手法はレイアウト情報が重要な Document Al タスク全般に簡単に適用可能; 提案法の汎用性確認