Autoencoders

Sanjoy Dasgupta

University of California, San Diego

Topics we'll cover

- Autoencoders
- 2 k-means and PCA as autoencoders
- Manifold learning
- 4 Independent component analysis
- 5 Stacked autoencoders

Autoencoders

Finding the underlying degrees of freedom of data

Ideally $x \approx D(E(x))$ on data points $x \in \mathbb{R}^d$

The k-means clustering scheme, revisited

The *k*-means problem:

• Given: $x^{(1)}, \dots, x^{(n)} \in \mathbb{R}^d$; integer k

• Find: k centers $\mu_1,\dots,\mu_k\in\mathbb{R}^d$ that minimize $\sum_{i=1}^n\min_{1\leq j\leq k}\|x^{(i)}-\mu_j\|^2$

The *k*-means autoencoder

Principal component analysis, revisited

The PCA problem:

• Given: $x^{(1)}, \dots, x^{(n)} \in \mathbb{R}^d$; integer k

ullet Find: the projection $\mathbb{R}^d o \mathbb{R}^k$ that maximizes the variance of the projected data

Solution:

Compute the covariance matrix of the data

• Let u_1, \ldots, u_k be the top k eigenvectors of this matrix

• Let $k \times d$ matrix U have the u_i as its columns

• Projection: $x \mapsto U^T x$

• Reconstruction: $z \mapsto Uz$

The PCA autoencoder

Some other types of intrinsic structure

1 Manifold learning

The data lies on a k-dimensional manifold.

2 Independent component analysis

The data are linear combinations of hidden features that are independent.

Manifold learning

Sometimes data in a high-dimensional space \mathbb{R}^d in fact lies close to a k-dimensional manifold, for $k \ll d$

The manifold autoencoder

Independent component analysis

The cocktail party problem

Stacked autoencoders

- Fit one layer at a time to the previous layer's activations
- Then fine-tune whole structure to minimize reconstruction error