ACT-7008 Sujets spéciaux Projet no3

Achille Rostan Fossouo Tadjuidje Ecole d'actuariat, Université Laval, Québec (Qc), Canada

24 novembre 2022

Résumé

Le projet no3 aborde différents thèmes étudiés pendant le cours. Il se présente sous la forme de questions de recherche.

Table des matières

1	Distribution de Poisson composee muitivariee	3
2	Modèle basé sur une copule archimédienne imbriquée	11

1 Distribution de Poisson composée multivariée

Soit un vecteur de v.a discrètes $\underline{M} = (M_1, \dots, M_n)$ dont la fgp conjointe est définie par :

$$\mathcal{P}_{\underline{M}}(s_1, \dots, s_n) = e^{\frac{\lambda}{1+\alpha} \left(\alpha(s_1-1) + \alpha(s_n-1) + (1-\alpha)\sum_{i=1}^n (s_i-1) + \alpha\sum_{i=1}^{n-1} (s_i s_{i-1} - 1)\right)}, \quad |s_i| \le 1, \ i \in A_n = \{1, \dots, n\}$$
(1)

Question bonus:

Soit $\underline{N} = \{N_k, k \in \mathbb{N}^+\}$ un processus de Poisson MA(1) définit comme dans [Cossette et al., 2011] comme suit :

$$N_k = \varepsilon_k + \alpha \circ \varepsilon_{k-1}$$

On définit un vecteur de v.a positives $\underline{X} = (X_1, \dots, X_n)$ dont la TLS multivariée est définie par :

$$\mathcal{L}_{X(t_1,\ldots,t_n)} = \mathcal{P}_M(\mathcal{L}_{B_1}(t_1),\ldots,\mathcal{L}_{B_n}(t_n))$$

Comme à l'équation (11) de [Cossette et al., 2011], la fgp de la loi conjointe N s'écrit comme suit :

$$\begin{split} E\left[t_1^{N_1}\dots t_n^{N_n}\right] &= e^{\frac{\lambda}{1+\alpha}\left\{((1-\alpha)+\alpha t_1-1)+((1-\alpha)t_1+\alpha t_1t_2-1)+\dots+((1-\alpha)t_{n-1}+\alpha t_{n-1}t_n-1)+(t_n-1)\right\}} \\ &= e^{\frac{\lambda}{1+\alpha}\left\{\alpha(t_1-1)+((1-\alpha)(t_1-1)+\alpha(t_1t_2-1))+\dots+((1-\alpha)(t_{n-1}-1)+\alpha(t_{n-1}t_n-1))+(t_n-1)\right\}} \\ &= e^{\frac{\lambda}{1+\alpha}\left\{\alpha(t_1-1)+(1-\alpha)\sum_{i=1}^n(t_i-1)+\alpha(t_n-1)+\alpha\sum_{i=1}^{n-1}(t_it_{i+1}-1)\right\}} \end{split}$$

Cette équation est bien similaire à l'équation 1. $\underline{M} = \{M_k, k \in \mathbb{N}^+\}$ est donc un processus de Poisson MA(1) définit comme dans [Cossette et al., 2011] comme suit :

$$M_k = \varepsilon_k + \alpha \circ \varepsilon_{k-1}$$

 $\text{avec } M_k \sim Poisson(\lambda), \quad \varepsilon_k \sim \varepsilon \sim Poisson\left(\frac{\lambda}{1+\alpha}\right), \quad et \quad (\alpha \circ \varepsilon_{k-1} | \varepsilon_{k-1} = K) \sim Bin(K,\alpha)$

- 1. Hypothèses du modèle pour X:
 - Les v.a M_k doivent être i.i.d
 - \bullet Les v.a B_k doivent être indépendantes aux v.a M_k
- 2. Distribution marginale de M_i : Nous savons déjà que $M_i \sim Poisson(\lambda)$ dans [Cossette et al., 2011]. Nous allons faire comme si on ne le savait pas, et le prouver :

Pour i = 1,

$$\mathcal{P}_{M_1}(s_1) = \mathcal{P}_{\underline{M}}(s_1, 1, \dots, 1) = e^{\frac{\lambda}{1+\alpha}(\alpha(s_1-1)+(1-\alpha)(s_1-1)+\alpha(s_1-1))} = e^{\frac{\lambda}{1+\alpha}(s_1-1)(1+\alpha)} = e^{\lambda(s_1-1)+\alpha(s_1-1)} = e^{\lambda(s_1-1)+\alpha(s_1-1)+\alpha(s_1-1)} = e^{\lambda(s_1-1)+\alpha(s_1-1)+\alpha(s_1-1)+\alpha(s_1-1)+\alpha(s_1-1)} = e^{\lambda(s_1-1)+\alpha(s_1-1)$$

Pour i = n,

$$\mathcal{P}_{M_n}(s_n) = \mathcal{P}_{\underline{M}}(1, \dots, s_n) = e^{\frac{\lambda}{1+\alpha}(\alpha(s_n-1) + (1-\alpha)(s_n-1) + \alpha(s_n-1))} = e^{\frac{\lambda}{1+\alpha}(s_n-1)(1+\alpha)} = e^{\lambda(s_n-1)}$$

Pour $i \in \{2, ..., n-1\},\$

$$\mathcal{P}_{M_i}(s_i) = \mathcal{P}_{\underline{M}}(1, \dots, s_i, \dots, 1) = e^{\frac{\lambda}{1+\alpha}((1-\alpha)(s_i-1)+2\alpha(s_i-1))} = e^{\frac{\lambda}{1+\alpha}(s_i-1)(1+\alpha)} = e^{\lambda(s_i-1)}$$

Dans tous les cas, on a bien $M_i \sim Poisson(\lambda)$

3. Distribution marginale de X_i :

$$\mathcal{L}_{X_i}(t_i) = \mathcal{L}_{\underline{X}}(0, \dots, t_i, \dots, 0)$$

$$= \mathcal{P}_{\underline{M}}(\mathcal{L}_{B_1}(0), \dots, \mathcal{L}_{B_i}(t_i), \dots, \mathcal{L}_{B_n}(0))$$

$$= \mathcal{P}_{\underline{M}}(1, \dots, \mathcal{L}_{B_i}(t_i), \dots, 1)$$

$$= \mathcal{P}_{M_i}(\mathcal{L}_{B_i}(t_i))$$

Donc $X_i \sim ComPois(\lambda, F_B)$

4. Expression de $E[X_i], i \in A_n$

On sait que:

$$X_i = \begin{cases} \sum_{j=1}^{M_i} B_{ij}, & M_i > 0\\ 0, & M_i = 0 \end{cases}$$

Donc:

$$E[X_i] = E[E[X_i \mid M_i]] = E[E[B_{i1} + \dots + B_{iM_i} \mid M_i]] = E[M_i E[B_i]] = E[M_i] E[B_i] = a\lambda$$

5. Expression de $Cov(M_i, M_j), i \neq j \in A_n$:

Deux cas seront à distinguer : |i - j| = 1 et |i - j| > 1.

Puisque $\underline{M} = \{M_k, k \in \mathbb{N}^+\}$ est un processus de Poisson MA(1), alors $Cov(M_i, M_j) = 0$ pour |i - j| > 1

Cas où |i-j|=1: supposons, sans nuire à la généralité, que j=i+1, alors on a :

Pour i = 1,

$$\mathcal{P}_{M_1,M_2}(s_1,s_2) = \mathcal{P}_{\underline{M}}(s_1,s_2,\dots,1)$$

$$= e^{\frac{\lambda}{1+\alpha}(\alpha(s_1-1)+(1-\alpha)(s_1-1)+(1-\alpha)(s_2-1)+\alpha(s_1s_2-1)+\alpha(s_2-1))}$$

$$= e^{\frac{\lambda}{1+\alpha}((s_1-1)+(s_2-1)+\alpha(s_1s_2-1))}$$

Pour $i \in \{2, ..., n-2\}$,

$$\mathcal{P}_{M_{i},M_{i+1}}(s_{i},s_{i+1} = \mathcal{P}_{\underline{M}}(1,\ldots,s_{i},s_{i+1},\ldots,1)$$

$$= e^{\frac{\lambda}{1+\alpha}((1-\alpha)(s_{i}-1)+(1-\alpha)(s_{i+1}-1)+\alpha(s_{i}-1)+\alpha(s_{i}s_{i+1}-1)+\alpha(s_{i+1}-1))}$$

$$= e^{\frac{\lambda}{1+\alpha}((s_{i}-1)+(s_{i+1}-1)+\alpha(s_{i}s_{i+1}-1))}$$

Pour i = n - 1,

$$\mathcal{P}_{M_{n-1},M_n}(s_{n-1},s_n) = e^{\frac{\lambda}{1+\alpha}(\alpha(s_n-1)+(1-\alpha)(s_{n-1}-1)+(1-\alpha)(s_n-1)+\alpha(s_{n-1}s_n-1)+\alpha(s_{n-1}-1))}$$

$$= e^{\frac{\lambda}{1+\alpha}((s_n-1)+(s_{n-1}-1)+\alpha(s_ns_{n-1}-1))}$$

De façon générale, on a donc :

$$\mathcal{P}_{M_i,M_j}(s_i,s_j) = e^{\frac{\lambda}{1+\alpha}((s_i-1)+(s_j-1)+\alpha(s_is_j-1))}, \text{ pour } |i-j| = 1$$

Puisque $Cov(M_i, M_j) = E[M_i M_j] - E[M_i] E[M_j] = E[M_i M_j] - \lambda^2$, déterminons maintenant l'expression de $E[M_i M_j]$. On a :

$$\begin{split} \frac{\partial}{\partial s_i} \mathcal{P}_{M_i, M_j}(s_i, s_j) &= \frac{\lambda}{1 + \alpha} (1 + \alpha s_j) \mathcal{P}_{M_i, M_j}(s_i, s_j) \\ \frac{\partial^2}{\partial s_j \partial s_i} \mathcal{P}_{M_i, M_j}(s_i, s_j) &= \frac{\alpha \lambda}{1 + \alpha} \mathcal{P}_{M_i, M_j}(s_i, s_j) + \left(\frac{\lambda}{1 + \alpha}\right)^2 (1 + \alpha s_i) (1 + \alpha s_j) \mathcal{P}_{M_i, M_j}(s_i, s_j) \end{split}$$

Donc:

$$E[M_{i}M_{j}] = \frac{\partial^{2}}{\partial s_{j}\partial s_{i}} \mathcal{P}_{M_{i},M_{j}}(s_{i},s_{j}) \Big|_{s_{i}=s_{j}=1}$$

$$= \frac{\alpha\lambda}{1+\alpha} \mathcal{P}_{M_{i},M_{j}}(s_{i},s_{j}) + \left(\frac{\lambda}{1+\alpha}\right)^{2} (1+\alpha s_{i})(1+\alpha s_{j}) \mathcal{P}_{M_{i},M_{j}}(s_{i},s_{j}) \Big|_{s_{i}=s_{j}=1}$$

$$= \frac{\alpha\lambda}{1+\alpha} + \lambda^{2}$$

On trouve donc

$$Cov(M_i, M_j) = \frac{\alpha \lambda}{1+\alpha} \times \mathbb{1}_{\{|i-j|=1\}}$$

6. Expression de $Cov(X_i, X_j), i \neq j \in A_n$:

Puisque $Cov\left(M_i,M_j\right)=0$ pour |i-j|>1, alors on aura également $Cov\left(X_i,X_j\right)=0$ pour |i-j|>1

Pour |i - j| = 1, on a:

$$\begin{split} \mathcal{L}_{X_i,X_j}(t_i,t_j) &= \mathcal{P}_{M_i,M_j}(\mathcal{L}_{B_i}(t_i),\mathcal{L}_{B_j}(t_j)) = e^{\frac{\lambda}{1+\alpha} \left\{ \mathcal{L}_{B_i}(t_i) - 1) + (\mathcal{L}_{B_j}(t_j) - 1) + \alpha(\mathcal{L}_{B_i}(t_i)\mathcal{L}_{B_j}(t_j) - 1) \right\}} \\ &= e^{\frac{\lambda}{1+\alpha} \left\{ \left(E[e^{-t_i B_i}] - 1 \right) + \left(E[e^{-t_j B_j}] - 1 \right) + \alpha\left(E[e^{-t_i B_i}] E[e^{-t_j B_j}] - 1 \right) \right\}} \end{split}$$

Donc:

$$\begin{split} \frac{\partial}{\partial t_i} \mathcal{L}_{X_i,X_j}(t_i,t_j) &= -\frac{\lambda}{1+\alpha} (1+\alpha \mathcal{L}_{B_j}(t_j)) E[B_i e^{-t_i B_i}] \mathcal{L}_{X_i,X_j}(t_i,t_j) \\ \frac{\partial^2}{\partial t_j \partial t_i} \mathcal{L}_{X_i,X_j}(t_i,t_j) &= \frac{\alpha \lambda}{1+\alpha} E[B_j e^{-t_j B_j}] E[B_i e^{-t_i B_i}] \mathcal{L}_{X_i,X_j}(t_i,t_j) &+ \\ & \left(\frac{\lambda}{1+\alpha}\right)^2 \left(1+\alpha \mathcal{L}_{B_i}(t_i)\right) \left(1+\alpha \mathcal{L}_{B_j}(t_j)\right) E[B_j e^{-t_j B_j}] E[B_i e^{-t_i B_i}] \mathcal{L}_{X_i,X_j}(t_i,t_j) \\ &= E[B_j e^{-t_j B_j}] E[B_i e^{-t_i B_i}] \mathcal{L}_{X_i,X_j}(t_i,t_j) \left(\frac{\alpha \lambda}{1+\alpha} + \left(\frac{\lambda}{1+\alpha}\right)^2 \left(1+\alpha \mathcal{L}_{B_i}(t_i)\right) \left(1+\alpha \mathcal{L}_{B_j}(t_j)\right)\right) \end{split}$$

On trouve:

$$E[X_i X_j] = \frac{\partial^2}{\partial t_j \partial t_i} \mathcal{L}_{X_i, X_j}(t_i, t_j) \Big|_{t_i = t_j = 0}$$
$$= E[B_i] E[B_j] \left(\frac{\alpha \lambda}{1 + \alpha} + \lambda^2 \right)$$
$$= E[B]^2 \left(\frac{\alpha \lambda}{1 + \alpha} + \lambda^2 \right)$$

Finalement,

$$Cov(X_{i}, X_{j}) = E[X_{i}X_{j}] - E[X_{i}]E[X_{j}] = \left\{ E[B]^{2} \left(\frac{\alpha \lambda}{1+\alpha} + \lambda^{2} \right) - E[B]^{2} \lambda^{2} \right\} \times \mathbb{1}_{\{|i-j|=1\}}$$

$$= \frac{\alpha \lambda}{1+\alpha} E[B]^{2} \times \mathbb{1}_{\{|i-j|=1\}}$$

7. Démontrons que $E[Wn] = a\lambda$. On a :

$$E[W_n] = E\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n}\sum_{i=1}^n E[X_i] = E[X_i] = \lambda E[B] = a\lambda$$

8. Déterminons $Var(W_n)$. On a :

$$Var(Wn) = \frac{1}{n^2} Var \left[\sum_{i=1}^n X_i \right] = \frac{1}{n^2} \left(\sum_{i=1}^n Var[X_i] + \sum_{1 \leq i,j \leq n; \ i \neq j} Cov(X_i, \ X_j) \right)$$
 Or
$$\sum_{1 \leq i,j \leq n; \ i \neq j} Cov(X_i, \ X_j) = 2 \sum_{i=1}^{n-1} Cov(X_i, \ X_{i+1}) = 2(n-1) \frac{\alpha \lambda}{1+\alpha} E[B]^2$$
 Et,
$$Var[X_i] = Var \left[E[X_i \mid M_i] \right] + E\left[Var[X_i \mid M_i] \right]$$

$$= Var \left(E[B_{i1} + \dots + B_{iM_i} \mid M_i] \right) + E\left(Var[B_{i1} + \dots + B_{iM_i} \mid M_i] \right)$$

$$= Var \left(M_i E[B_i] \right) + E\left(M_i Var[B_i] \right)$$

$$= Var[M_i] E[B]^2 + Var[B] E[M_i]$$

$$= \lambda a^2 + \lambda (E[B^2] - a^2)$$

$$= \lambda E[B^2]$$
 Donc,
$$Var(Wn) = \frac{1}{n^2} \left(n\lambda E[B^2] + 2(n-1) \frac{\alpha \lambda}{1+\alpha} E[B]^2 \right)$$

$$= \frac{\lambda}{n} E[B^2] + 2 \left(\frac{1}{n} - \frac{1}{n^2} \right) \frac{\alpha \lambda}{1+\alpha} E[B]^2$$

On peut donc écrire $Var(W_n) = g(n)$ où $g(n) = \frac{\lambda}{n} E[B^2] + 2\left(\frac{1}{n} - \frac{1}{n^2}\right) \frac{\alpha\lambda}{1+\alpha} E[B]^2$. On voit clairement que q est une fonction décroissante en n

9. Démontrons que $W_n \xrightarrow{P} a\lambda$ quand $n \longrightarrow \infty$.

Soit $\varepsilon > 0$; il suffit de montrer que $\lim_{n \to \infty} \Pr[|W_n - a\lambda| > \varepsilon] = 0$. On a :

$$\Pr\left[|W_n - a\lambda| > \varepsilon\right] = \Pr\left[|W_n - E[W_n] > \varepsilon\right]$$

$$\leq \frac{Var(W_n)}{\varepsilon^2} \quad \text{Inégalité de Bienaymé-Tchebychev}$$

$$= \frac{1}{\varepsilon^2} \left\{ \frac{\lambda}{n} E[B^2] + 2\left(\frac{1}{n} - \frac{1}{n^2}\right) \frac{\alpha\lambda}{1 + \alpha} E[B]^2 \right\}$$
On voit que
$$\lim_{n \longrightarrow \infty} \frac{1}{\varepsilon^2} \left\{ \frac{\lambda}{n} E[B^2] + 2\left(\frac{1}{n} - \frac{1}{n^2}\right) \frac{\alpha\lambda}{1 + \alpha} E[B]^2 \right\} = 0$$
Donc
$$\lim_{n \longrightarrow \infty} \Pr\left[|W_n - a\lambda| > \varepsilon\right] = 0$$

On conclut donc que $W_n \xrightarrow{P} a\lambda$ quand $n \longrightarrow \infty$

Interprétation : Pour tout écart $\varepsilon > 0$ fixé, lorsque n devient très grand, il est de moins en moins probable d'observer un écart, supérieur à l'écart donné entre W_n et $a\lambda$.

10. Déterminons la distribution de N_n .

On rappelle que $N_n = \sum_{i=1}^n M_i$. Donc :

$$\mathcal{P}_{N_n}(s) = \mathcal{P}_{\underline{M}}(s, \dots, s) = exp\left\{\frac{\lambda}{1+\alpha} \left(2\alpha(s-1) + n(1-\alpha)(s-1) + \alpha(n-1)(s^2-1)\right)\right\}$$

$$= exp\left\{\frac{\lambda(n+\alpha)}{1+\alpha} \left(\frac{2\alpha + n(1-\alpha)}{n+\alpha}(s-1) + \frac{\alpha(n-1)}{n+\alpha}(s^2-1)\right)\right\}$$

$$= exp\left\{\frac{\lambda(n+\alpha)}{1+\alpha} \left(\frac{2\alpha + n(1-\alpha)}{n+\alpha}s + \frac{\alpha(n-1)}{n+\alpha}s^2 - 1\right)\right\}$$

$$= exp\left\{\frac{\lambda(n+\alpha)}{1+\alpha} \left(\mathcal{P}_C(s) - 1\right)\right\}, \quad \text{avec} \quad \mathcal{P}_C(s) = \frac{2\alpha + n(1-\alpha)}{n+\alpha}s + \frac{\alpha(n-1)}{n+\alpha}s^2$$

Donc,
$$\mathcal{P}_{N_n}(s) = \mathcal{P}_{R_n}\left(\mathcal{P}_C(s)\right)$$
, avec $R_n \sim Poisson\left(\frac{\lambda(n+\alpha)}{1+\alpha}\right)$
Et, $N_n = \begin{cases} \sum_{i=1}^{R_n} C_i, & R_n > 0\\ 0, & R_n = 0 \end{cases}$

La fonction de masse de probabilité de N_n est définie par $\Pr[N_n = k] = \xi_k, \ k \in \mathbb{N}$. On peut utiliser la fonction FFT pour retrouver ξ_k

11. Déterminons la distribution de S_n . on a :

On rappelle que $S_n = \sum_{i=1}^n X_i$. Donc :

$$\mathcal{L}_{S_n}(t) = \mathcal{L}_{\underline{X}}(t, \dots, t) = \mathcal{P}_{\underline{M}}\left(\mathcal{L}_{B_1}(t), \dots, \mathcal{L}_{B_n}(t)\right) = \mathcal{P}_{N_n}\left(\mathcal{L}_{B}(t)\right)$$
Donc
$$S_n = \begin{cases} \sum_{i=1}^{N_n} B_i, & N_n > 0\\ 0, & N_n = 0 \end{cases}$$

 S_n suit donc une loi composée avec $\mathcal{L}_{S_n}(t) = \mathcal{P}_{N_n}\left(\mathcal{L}_B(t)\right)$

12. Soit B tel que sa fgm existe. Démontrons que $\Pr[W_n > \psi_\rho(W_n) + u] \leq e^{-\rho u}$.

D'après l'inégalité de Markov, on a

$$\Pr[X>\alpha] \leq \frac{E[g(X)]}{g(\alpha)}, \text{Pour toute fonction } g \text{ non décroissante et } \alpha>0$$

En prenant $g(x) = e^{\rho x}$, on a $E[g(X)] = E[e^{\rho X}] = \mathcal{M}_X(\rho)$

Donc

$$\Pr[W_n > \psi_{\rho}(W_n) + u] \le \frac{\mathcal{M}_{W_n}(\rho)}{\exp\left\{\rho(\psi_{\rho}(W_n) + u)\right\}}$$

$$= \frac{\mathcal{M}_{W_n}(\rho)}{\exp\left\{\ln\left(\mathcal{M}_{W_n}(\rho)\right) + \rho u\right\}}$$

$$= \frac{\mathcal{M}_{W_n}(\rho)}{\mathcal{M}_{W_n}(\rho)e^{\rho u}}$$

On trouve donc $\Pr[W_n > \psi_\rho(W_n) + u] \le e^{-\rho u}$

13. On suppose $B \sim Gamma(\eta, \beta)$. Développons l'expression de la mesure entropique $\psi_{\rho}(W_n)$.

On a
$$\psi_{\rho}(W_n) = \frac{1}{\rho} ln \left(\mathcal{M}_{W_n}(\rho) \right) = \frac{1}{\rho} ln E\left(e^{\rho W_n}\right) = \frac{1}{\rho} ln E\left(e^{\frac{\rho}{n} S_n}\right) = \frac{1}{\rho} ln \left(\mathcal{M}_{S_n}\left(\frac{\rho}{n}\right) \right)$$

$$= \frac{1}{\rho} ln \left(\mathcal{P}_{N_n}\left(\mathcal{M}_B\left(\frac{\rho}{n}\right) \right) \right)$$
Or $\mathcal{M}_B\left(\frac{\rho}{n}\right) = \left(\frac{\beta}{\beta - \frac{\rho}{n}}\right)^{\eta} = \left(\frac{n\beta}{n\beta - \rho}\right)^{\eta}, \quad \rho < n\beta$
Donc $\psi_{\rho}(W_n) = \frac{1}{\rho} ln \left(\mathcal{P}_{N_n}\left(\left(\frac{n\beta}{n\beta - \rho}\right)^{\eta}\right) \right), \quad \rho < n\beta$

$$= \frac{1}{\rho} \frac{\lambda(n+\alpha)}{1+\alpha} \left(\mathcal{P}_C\left(\frac{n\beta}{n\beta - \rho}\right)^{\eta} - 1 \right), \quad \rho < n\beta$$

On rappelle que :
$$\mathcal{P}_C(s) = \frac{2\alpha + n(1-\alpha)}{n+\alpha}s + \frac{\alpha(n-1)}{n+\alpha}s^2$$

Donc
$$\psi_{\rho}(W_n) = \frac{1}{\rho} \frac{\lambda(n+\alpha)}{1+\alpha} \left(\frac{2\alpha + n(1-\alpha)}{n+\alpha} \left(\frac{n\beta}{n\beta - \rho} \right)^{\eta} + \frac{\alpha(n-1)}{n+\alpha} \left(\frac{n\beta}{n\beta - \rho} \right)^{2\eta} - 1 \right)$$

$$= \frac{\lambda}{\rho(1+\alpha)} \left((2\alpha + n(1-\alpha)) \left(\frac{n\beta}{n\beta - \rho} \right)^{\eta} + \alpha(n-1) \left(\frac{n\beta}{n\beta - \rho} \right)^{2\eta} - 1 \right)$$

Pour $\eta = 1$, on a:

$$\psi_{\rho}(W_n) = \frac{\lambda}{\rho(1+\alpha)} \left((2\alpha + n(1-\alpha)) \left(\frac{n\beta}{n\beta - \rho} \right) + \alpha(n-1) \left(\frac{n\beta}{n\beta - \rho} \right)^2 - 1 \right)$$

On note que $t_0 = n\beta$

14. On suppose cette fois-ci que $B \sim MixErl(\gamma, \beta)$. Alors la TLS de B est définie par :

$$\mathcal{L}_B(t) = \mathcal{P}_J(\mathcal{L}_D(t)), \quad \text{où} \quad \mathcal{L}_D(t) = \frac{\beta}{\beta + t}.$$

J est une variable aléatoire discrète telle que $\Pr[J=j]=\gamma_j, \quad j\in\mathbb{N}_1$

(a) Démontrer que ${\cal S}_n$ obéit à une distribution mélange d'Erlang. On sait que :

$$\mathcal{L}_{S_n}(t) = \mathcal{P}_{N_n} \left(\mathcal{L}_B(t) \right) = \mathcal{P}_{N_n} \left(\mathcal{P}_J(\mathcal{L}_D(t)) \right) = \mathcal{P}_{K_n}(\mathcal{L}_D(t))$$
avec
$$K_n = \begin{cases} \sum_{i=1}^{N_n} J_i, & N_n > 0\\ 0, & N_n = 0 \end{cases}$$

La fonction de masse de probabilité de K_n est définie par $\Pr[K_n = j] = \nu_j, \ j \in \mathbb{N}$. On peut utiliser la fonction FFT pour retrouver ν_j

Par définition, on voit donc que $S_n \sim MixErl(\underline{\nu}, \beta)$ avec :

$$F_{S_n}(x) = \nu_0 + \sum_{j=1}^{\infty} \nu_j H(x, j, \beta)$$

(b) Démontrer que W_n obéit à une distribution mélange d'Erlang. On sait que :

$$\mathcal{L}_{W_n}(t) = E\left(e^{-tW_n}\right) = E\left(e^{-\frac{t}{n}S_n}\right) = \mathcal{L}_{S_n}\left(\frac{t}{n}\right) = \mathcal{P}_{K_n}\left(\mathcal{L}_D\left(\frac{t}{n}\right)\right) = \mathcal{P}_{K_n}\left(\frac{\beta}{\beta + \frac{t}{n}}\right)$$
$$= \mathcal{P}_{K_n}\left(\frac{n\beta}{n\beta + t}\right) = \mathcal{P}_{K_n}(\mathcal{L}_{D^*}(t)), \quad \text{où} \quad \mathcal{L}_{D^*}(t) = \frac{n\beta}{n\beta + t}.$$

On voit donc que $W_n \sim MixErl(\underline{\nu}, n\beta)$ avec

$$F_{W_n}(x) = \nu_0 + \sum_{j=1}^{\infty} \nu_j H(x, j, n\beta)$$

(c) Développer l'expression de $\psi_{\rho}(W_n)$. On a :

$$\psi_{\rho}(W_n) = \frac{1}{\rho} ln\left(\mathcal{M}_{W_n}(\rho)\right) = \frac{1}{\rho} ln\left(\mathcal{P}_{K_n}(\mathcal{M}_{D^*}(t))\right) = \frac{1}{\rho} ln\left(\nu_0 + \sum_{j=1}^{\infty} \nu_j \left(\frac{n\beta}{n\beta - \rho}\right)^j\right)$$

- (d) Exemple numérique :
 - Calculer $E[W_n]$:

$$E[W_n] = \lambda E[B] = \lambda \sum_{j=1}^{5} \gamma_j \frac{j}{\beta} = 68.80509$$

• Calculer $Var[W_n]$:

$$Var[W_n] = g(n) = \frac{\lambda}{n} E[B^2] + 2\left(\frac{1}{n} - \frac{1}{n^2}\right) \frac{\alpha\lambda}{1+\alpha} E[B]^2$$

On trouve:

Tableau 1 – Calcul de $Var[W_n]$ selon les valeurs de α et n

	n = 1	n = 10		n = 1000
$\alpha = 0$	3259.1883	325.9188	32.5919	3.2592
$\alpha = 0.5$	3259.1883	443.5755	45.5341	4.5652
$\alpha = 0.99$	3259.1883	501.5170	51.9077	5.2083

• Calculer $\psi_{\rho}(W_n)$:

$$\psi_{\rho}(W_n) = \frac{1}{\rho} \ln \left(\sum_{j=1}^{5} \nu_j \left(\frac{n\beta}{n\beta - \rho} \right)^j \right)$$

On trouve:

Tableau 2 – Calcul de $\psi_{\rho}(W_n)$ selon les valeurs de ρ et n

	n=1	n = 10	n = 100	n = 1000
$\rho = 0.01$	31.4389	2.8771	0.2853	0.0285
$\rho = 0.05$	50.6739	2.9905	0.2864	0.0285

• Calculer $VaR_{\kappa}(W_n)$: outil d'optimisation. (Je ne suis pas très sûr de ces résultats)

Tableau 3 – Calcul de $VaR_{0.01}(W_n)$ selon les valeurs de α et n

	n=1	n = 10	n = 100	n = 1000
$\alpha = 0$	0.0001	31.5687	0.3735	68.9999
$\alpha = 0.5$	0.0001	26.2871	0.2666	68.9999
$\alpha = 0.99$	0.0001	23.7633	0.2427	68.9999

On constate que pour n=1000, la valeur de $VaR_{0.01}(W_n)$ dépend de l'intervalle dans lequel on applique l'optimisation.

Tableau 4 – Calcul de $VaR_{0.5}(W_n)$ selon les valeurs de α et n

	n=1	n = 10	n = 100	n = 1000
$\alpha = 0$	58.1084	67.7748	16.6911	68.9999
$\alpha = 0.5$	58.1084	67.4151	15.8353	68.9999
$\alpha = 0.99$	58.1084	67.2999	15.4345	68.9999

• Calculer $TVaR_{\kappa}(W_n)$:

$$TVaR_{\kappa}(W_n) = \frac{1}{1-\kappa} \sum_{j=1}^{\infty} \nu_j \frac{j}{n\beta} \overline{H} \left(VaR_{\kappa}(W_n), \ j+1, \ n\beta \right)$$

On trouve les résultats suivants : (Je ne suis pas très sûr de ces résultats).

Tableau 6 – Calcul de $TVaR_{0.5}(W_n)$ selon les valeurs de α et n

	n=1	n = 10	n = 100	n = 1000
$\alpha = 0$	113.1311	104.8958	99.5734	96.0059
$\alpha = 0.5$	113.1311	106.2601	101.0158	97.3883
$\alpha = 0.99$	113.1311	106.9283	101.7160	98.0568

2 Modèle basé sur une copule archimédienne imbriquée

On définit :

$$F_X(k_1,\ldots,k_5) = C(F_1(k_1),\ldots,F_5(k_5)), \quad (k_1,\ldots,k_5) \in \mathbb{N}^5$$

où ${\cal C}$ est une copule archimédienne imbriquée qui comporte deux niveaux, soit :

$$C(u_1,\ldots,u_5)=C_{\alpha_0}(C_{\alpha_1}(u_1, u_2), C_{\alpha_2}(u_3, u_4, u_5))$$

 F_i étant la fonction de répartition de la loi X_i avec $X_i \sim Bin(10, 0.05i), i \in \{1, \dots, 5\}$

1. Décrire le modèle en s'appuyant sur le contenu de la section 7 de [Cossette et al., 2018] : C est une copule archimédienne imbriquée avec d=2 enfants. On peut donc écrire :

$$C(\underline{u}) = C(\underline{u}, \psi_0, \psi_1, \psi_2)$$

$$= C\left(C(\underline{u_1}; \psi_1), C(\underline{u_2}; \psi_2); \psi_0\right)$$

$$= C\left(C(u_{11}, u_{12}; \psi_1), C(u_{21}, u_{22}, u_{23}; \psi_2); \psi_0\right)$$

$$= \psi_0 \left\{ \sum_{i=1}^2 \psi_0^{-1} \left[\psi_i \left(\sum_{j=1}^{n_i} \psi_i^{-1}(u_{ij}) \right) \right] \right\}$$

Puisque ψ_0 est la Transformée de Laplace d'une variable discrète strictement positive Θ_0 , alors on peut écrire :

$$\begin{split} C(\underline{u}) &= \sum_{\theta_0 = 1}^{\infty} exp \left\{ -\theta_0 \sum_{i = 1}^{2} \psi_0^{-1} \left[\psi_i \left(\sum_{j = 1}^{n_i} \psi_i^{-1}(u_{ij}) \right) \right] \right\} f_{\Theta_0}(\theta_0) \\ &= \sum_{\theta_0 = 1}^{\infty} \prod_{i = 1}^{2} exp \left\{ -\theta_0 \psi_0^{-1} \left[\psi_i \left(\sum_{j = 1}^{n_i} \psi_i^{-1}(u_{ij}) \right) \right] \right\} f_{\Theta_0}(\theta_0) \\ &= \sum_{\theta_0 = 1}^{\infty} \prod_{i = 1}^{2} \psi_{0,i} \left(\sum_{j = 1}^{n_i} \psi_i^{-1}(u_{ij}); \ \theta_0 \right) f_{\Theta_0}(\theta_0) \quad \text{avec} \quad \psi_{0,i}(t) = exp \left\{ -\theta_0 \psi_0^{-1} \circ \psi_i(t) \right\} \\ &= \sum_{\theta_0 = 1}^{\infty} \prod_{i = 1}^{2} \left(\sum_{\theta_{0,i} = 1}^{\infty} \prod_{j = 1}^{n_i} exp \left\{ -\theta_{0,i} \times \psi_i^{-1}(u_{ij}) \right\} f_{\Theta_{0,i}}(\theta_{0,i}) \right) f_{\Theta_0}(\theta_0), \quad \text{avec} \ (n_1 = 2, \ n_2 = 3) \end{split}$$

Soit $\underline{k} = (k_{11}, k_{12}, k_{21}, k_{22}, k_{23})$. Alors la distribution multivariée de $\underline{X} = (X_{11}, X_{12}, X_{21}, X_{22}, X_{23})$ est définie comme suit :

$$\begin{split} F_{\underline{X}}(\underline{k}) &= C\left(C\left(F_{X_{11}}(k_{11}), \ F_{X_{12}}(k_{12}); \ \psi_{1}\right), \ C\left(F_{X_{21}}(k_{21}), \ F_{X_{22}}(k_{22}), \ F_{X_{23}}(k_{23}); \ \psi_{2}\right); \ \psi_{0}\right) \\ &= \sum_{\theta_{0}=1}^{\infty} \prod_{i=1}^{2} \left(\sum_{\theta_{0,i}=1}^{\infty} \prod_{j=1}^{n_{i}} exp\left\{-\theta_{0,i} \times \psi_{i}^{-1}\left(F_{X_{ij}}(k_{ij})\right)\right\} f_{\Theta_{0,i}}(\theta_{0,i})\right) f_{\Theta_{0}}(\theta_{0}), \quad \text{avec} \ (n_{1}=2, \ n_{2}=3) \\ &= \sum_{\theta_{0}=1}^{\infty} \prod_{i=1}^{2} \left(\sum_{\theta_{0,i}=1}^{\infty} \prod_{j=1}^{n_{i}} F_{X_{ij}|\Theta_{0}=\theta_{0},\Theta_{0,i}=\theta_{0,i}}(k_{ij}) f_{\Theta_{0,i}}(\theta_{0,i})\right) f_{\Theta_{0}}(\theta_{0}) \end{split}$$

avec $F_{X_{ij}|\Theta_0=\theta_0,\Theta_{0,i}=\theta_{0,i}}(k_{ij}) = exp\left\{-\theta_{0,i} \times \psi_i^{-1}\left(F_{X_{ij}}(k_{ij})\right)\right\}$

Pour $i \in \{1, 2\}$ et $j \in \{1, 2, 3\}$, on peut donc déduire :

$$f_{X_{ij}|\Theta_0=\theta_0,\Theta_{0,i}=\theta_{0,i}}(k) = \begin{cases} exp\left\{-\theta_{0,i} \times \psi_i^{-1}\left(F_{X_{ij}}(0)\right)\right\}, & k=0\\ exp\left\{-\theta_{0,i} \times \psi_i^{-1}\left(F_{X_{ij}}(k)\right)\right\} - exp\left\{-\theta_{0,i} \times \psi_i^{-1}\left(F_{X_{ij}}(k-1)\right)\right\}, & k\in\mathbb{N} \end{cases}$$

2. Expression de la fmp f_S de la v.a $S = X_1 + \cdots + X_5$.

On peut redéfinir la somme S comme suit ('*' désigne le produit le convolution) :

$$S = \sum_{i=1}^{2} \sum_{j=1}^{n_{i}} X_{ij} = \sum_{i=1}^{2} S_{i} \quad \text{où} \quad S_{i} = \sum_{j=1}^{n_{i}} X_{ij}$$
On a donc,
$$f_{S}(k) = \sum_{\theta_{0}=1}^{\infty} f_{S|\Theta_{0}=\theta_{0}}(k) f_{\Theta_{0}}(\theta_{0}) = \sum_{\theta_{0}=1}^{\infty} f_{S_{1}|\Theta_{0}=\theta_{0}} * f_{S_{2}|\Theta_{0}=\theta_{0}}(k) f_{\Theta_{0}}(\theta_{0})$$
Or,
$$f_{S_{1}|\Theta_{0}=\theta_{0}} = \sum_{\theta_{0,1}=1}^{\infty} f_{S_{1}|\Theta_{0}=\theta_{0},\Theta_{0,1}=\theta_{0,1}}(k) f_{\Theta_{0,1}}(k) f_{\Theta_{0,1}}(\theta_{0,1})$$

$$= \sum_{\theta_{0,1}=1}^{\infty} f_{X_{11}|\Theta_{0}=\theta_{0},\Theta_{0,1}=\theta_{0,1}} * f_{X_{12}|\Theta_{0}=\theta_{0},\Theta_{0,1}=\theta_{0,1}}(k) f_{\Theta_{0,1}}(\theta_{0,1})$$
Et,
$$f_{S_{2}|\Theta_{0}=\theta_{0}} = \sum_{\theta_{0,2}=1}^{\infty} f_{S_{2}|\Theta_{0}=\theta_{0},\Theta_{0,2}=\theta_{0,2}}(k) f_{\Theta_{0,2}}(k) f_{\Theta_{0,2}}(\theta_{0,2})$$

$$= \sum_{\theta_{0,2}=1}^{\infty} f_{X_{21}|\Theta_{0},\Theta_{0,2}} * f_{X_{22}|\Theta_{0},\Theta_{0,2}} * f_{X_{23}|\Theta_{0},\Theta_{0,2}}(k) f_{\Theta_{0,2}}(\theta_{0,2})$$

Et on déduit aisément l'expression de $f_S(k)$.

- 3. Calculer les valeurs de f_S , $k \in A_n = \{0, 1, ..., n\}$, pour n = 50
- 4. Approche de validation via E[S]:

On sait que
$$E[S] = E\left[\sum_{i=1}^{5} X_i\right] = \sum_{i=1}^{5} E[X_i] = \sum_{i=1}^{5} 10(0.05i) = 0.5 \frac{5 \times 6}{2} = 7.5$$

On sait aussi que $E[S] = \sum_{k=0}^{\infty} k f_S(k)$

Il suffit donc d'avoir $\sum_{k=0}^{\infty} k f_S(k) = 7.5$ pour vérifier que les valeurs sont bonnes.

5. Calculer les valeurs de la matrice de variance-covariance $Cov(\underline{X})$.

$$Cov(\underline{X}) = \begin{bmatrix} Var(X_{11}) & Cov(X_{11}, X_{12}) & Cov(X_{11}, X_{21}) & Cov(X_{11}, X_{22}) & Cov(X_{11}, X_{23}) \\ & Var(X_{12}) & Cov(X_{12}, X_{21}) & Cov(X_{12}, X_{22}) & Cov(X_{12}, X_{23}) \\ & & Var(X_{21}) & Cov(X_{21}, X_{22}) & Cov(X_{21}, X_{23}) \\ & & & Var(X_{22}) & Cov(X_{22}, X_{23}) \\ & & & & Var(X_{23}) \end{bmatrix}$$

On rappelle que $\underline{X} = (X_{11}, X_{12}, X_{21}, X_{22}, X_{23}) \equiv (X_1, X_2, X_3, X_4, X_5).$

Aussi, $Cov(\underline{X})$ est une matrice symétrique. Donc les éléments du triangle inférieur de la matrice se déduisent à partir de ceux du triangle supérieur. On a :

$$F_{X_{11},X_{12}}(k_{11},k_{12}) = C_{\alpha_1}\left(F_{X_{11}}(k_{11}),\ F_{X_{12}}(k_{12})\right)$$

$$F_{X_{21},X_{22},X_{23}}(k_{21},\ k_{22},\ k_{23}) = C_{\alpha_2}\left(F_{X_{21}}(k_{21}),\ F_{X_{22}}(k_{22}),\ F_{X_{23}}(k_{23})\right)$$
Donc
$$F_{X_{2u},X_{2v}}(k_{2u},\ k_{2v}) = C_{\alpha_2}\left(F_{X_{2u}}(k_{2u}),\ F_{X_{2v}}(k_{2v})\right),\quad u,v\in\{1,2,3\},\ u\neq v$$
De plus
$$F_{X_{1u},X_{2v}}(k_{1u},\ k_{2v}) = F_{\underline{X}}(k_{1u},\ \infty,\ k_{2v},\infty,\infty)$$

$$= C_{\alpha_0}\left(C_{\alpha_1}\left(F_{X_{1u}}(k_{1u}),\ 1\right),\ C_{\alpha_2}\left(F_{X_{2v}}(k_{2v}),\ 1,\ 1\right)\right),\quad u\in A_2,\ v\in A_3$$

$$= C_{\alpha_0}\left(F_{X_{1u}}(k_{1u}),\ F_{X_{2v}}(k_{2v})\right),\quad u\in A_2,\ v\in A_3$$

En se basant sur la formule $Cov(X_i, X_j) = E[X_i X_j] - E[X_i]E[X_j]$, on a :

$$\begin{split} E[X_{11}X_{12}] &= E\left[E[X_{11}X_{12} \mid \Theta_{1}]\right] = E\left[E[X_{11} \mid \Theta_{1}]E[X_{12} \mid \Theta_{1}]\right] \\ &= \sum_{\theta_{1}=1}^{\infty} E[X_{11} \mid \Theta_{1} = \theta_{1}]E[X_{12} \mid \Theta_{1} = \theta_{1}]f_{\Theta_{1}}(\theta_{1}) \\ &= \sum_{\theta_{1}=1}^{\infty} \left\{\sum_{k_{11}=0}^{\infty} k_{11}f_{X_{11}} \mid \Theta_{1} = \theta_{1}(k_{11})\right\} \left\{\sum_{k_{12}=0}^{\infty} k_{12}f_{X_{12}} \mid \Theta_{1} = \theta_{1}(k_{12})\right\} f_{\Theta_{1}}(\theta_{1}) \end{split}$$

Précisons que pour $m \in A_2$:

$$f_{X_{1m} \mid \Theta_{1} = \theta_{1}}(k_{1m}) = \begin{cases} exp\left\{-\theta_{1} \times \psi_{1}^{-1}\left(F_{X_{1m}}(0)\right)\right\}, & k_{1m} = 0\\ exp\left\{-\theta_{1} \times \psi_{1}^{-1}\left(F_{X_{1m}}(k_{1m})\right)\right\} - exp\left\{-\theta_{1} \times \psi_{1}^{-1}\left(F_{X_{1m}}(k_{1m} - 1)\right)\right\}, & k_{1m} \in \mathbb{N} \end{cases}$$

De même, pour $u, v \in A_3, u \neq v$,

$$\begin{split} E[X_{2u}X_{2v}] &= E\left[E[X_{2u}X_{2v} \mid \Theta_2]\right] \\ &= \sum_{\theta_2=1}^{\infty} \left\{\sum_{k_{2u}=0}^{\infty} k_{2u} f_{X_{2u} \mid \Theta_2=\theta_2}(k_{2u})\right\} \left\{\sum_{k_{2v}=0}^{\infty} k_{2v} f_{X_{2v} \mid \Theta_2=\theta_2}(k_{2v})\right\} f_{\Theta_2}(\theta_2) \end{split}$$

Maintenant, pour $u \in A_2$ et $v \in A_3$,

$$E[X_{1u}X_{2v}] = E[E[X_{1u}X_{2v} \mid \Theta_0]]$$

$$= \sum_{\theta_0=1}^{\infty} \left\{ \sum_{k_{1u}=0}^{\infty} k_{1u} f_{X_{1u} \mid \Theta_0=\theta_0}(k_{1u}) \right\} \left\{ \sum_{k_{2v}=0}^{\infty} k_{2v} f_{X_{2v} \mid \Theta_0=\theta_0}(k_{2v}) \right\} f_{\Theta_0}(\theta_0)$$

Nous disposons maintenant de tous les ingrédients pour trouver les valeurs de la matrice de variance-covariance $Cov(\underline{X})$. A l'aide de R, on trouve :

$$Cov(\underline{X}) = \begin{bmatrix} 0.4750 & 0.0518 & 1.8532 & 1.6032 & 1.3532 \\ 0.0518 & 0.9000 & 3.7601 & 3.2601 & 2.7601 \\ 1.8532 & 3.7601 & 1.2750 & 3.1392 & 0.8892 \\ 1.6032 & 3.2601 & 3.1392 & 1.6000 & -1.0189 \\ 1.3532 & 2.7601 & 0.8892 & -1.0189 & 1.8750 \end{bmatrix}$$

6. Calculer Var(S):

$$Var(S) = Var\left(\sum_{i=1}^{5} X_i\right) = \sum_{i=1}^{5} Var(X_i) + \sum_{1 \le i, j \le 5; \ i \ne j} Cov(X_i, X_j)$$

$$= \sum_{i=1}^{5} 10(0.05i)(1 - 0.05i) + \sum_{1 \le i, j \le 5; \ i \ne j} Cov(X_i, X_j)$$

$$= 6.125 + \sum_{1 \le i, j \le 5; \ i \ne j} Cov(X_i, X_j)$$

A partir de la question précédente, on trouve $\sum_{1 \le i,j \le 5;\ i \ne j} Cov(X_i,X_j) = 35.30271$ Donc Var(S) = 41.42771

7. Expression de la contribution du risque X_i selon la méthode d'Euler à $\sqrt{Var(S)}$. D'après le cours de Théorie du risque d'Etienne, on a :

$$C_i^{\sqrt{Var}}(X_i) = \frac{Cov(X_i, S)}{\sqrt{Var(S)}}$$
 Or $Cov(X_i, S) = Var(X_i) + \sum_{j=1; j \neq i}^{5} Cov(X_i, X_j)$

8. Calcul de la contribution du risque X_i selon la méthode d'Euler à $\sqrt{Var(S)}$.

A l'aide de R, on trouve :

Tableau 7 – Calcul de la contribution du risque X_i selon la méthode d'Euler à $\sqrt{Var(S)}$

i = 1	i = 2	i = 3	i = 4	i = 5
0.8291191	1.6673938	1.6960828	1.3336057	0.9102347

9. Expression de la contribution du risque X_i selon la méthode d'Euler à la mesure VaR. Toujours d'après le cours de Théorie du risque d'Etienne, on a :

$$C_{\kappa}^{VaR}(X_i) = \frac{E\left[X_i \times \mathbb{1}_{\{S = VaR_{\kappa}(S)\}}\right]}{f_S(Var(S))}$$

10. Expression de la contribution du risque X_i selon la méthode d'Euler à la mesure TVaR.

$$C_{\kappa}^{TVaR}(X_i) = \frac{E\left[X_i \times \mathbb{1}_{\{S > VaR_{\kappa}(S)\}}\right]}{1 - \kappa}$$

11. Soit 0 < s < 1. Développer l'expression pour calculer les primes $\Pi^{(s)}(X_i)$ et $\Pi^{(s)}(S)$ selon le principe de distortion. Selon ce principe, on a :

$$g^{(s)}(v) = v^s$$
 (fonction de distortion) et
$$h^{(s)}(v) = g'(1-v) = s(1-v)^{s-1}$$

$$F_{X_i}^g(u) = 1 - g(1 - F_{X_i}(u)) = 1 - (1 - F_{X_i}(u))^s$$
 (distribution de distortion)

En tenant compte du fait que X_i et S sont des variables discrètes, on peut donc écrire :

$$\Pi^{(s)}(X_i) = \sum_{u=0}^{10} g \left(1 - F_{X_i}(u)\right) = \sum_{u=0}^{10} \left(1 - F_{X_i}(u)\right)^s$$

$$= \sum_{u=0}^{9} \left(\sum_{m=u+1}^{10} \binom{10}{m} (0.05i)^m (1 - 0.05i)^{10-m}\right)^s$$
Et $\Pi^{(s)}(S) = \sum_{u=0}^{50} \left(1 - F_S(u)\right)^s$

12. Soit $s \ge 1$. Développer l'expression pour calculer les primes $\Pi^{(s)}(X_i)$ et $\Pi^{(s)}(S)$ selon le principe de distortion. Selon ce principe, on a :

$$g^{(s)}(v) = 1 - (1 - v)^s$$
 (fonction de distortion) et
$$h^{(s)}(v) = g'(1 - v) = sv^{s-1}$$

$$F_{X_i}^g(u) = 1 - g(1 - F_{X_i}(u)) = (F_{X_i}(u))^s$$
 (distribution de distortion)

On peut donc écrire:

$$\Pi^{(s)}(X_i) = \sum_{u=0}^{10} g \left(1 - F_{X_i}(u)\right) = \sum_{u=0}^{10} 1 - (F_{X_i}(u))^s$$

$$= \sum_{u=0}^{10} \left\{ 1 - \left(\sum_{m=0}^u \binom{10}{m} (0.05i)^m (1 - 0.05i)^{10-m}\right)^s \right\}$$
Et $\Pi^{(s)}(S) = \sum_{u=0}^{50} 1 - (F_S(u))^s$

On trouve les résultats suivants en utilisant R:

Tableau 8 – Calcul de $\Pi^{(s)}(X_i)$ en fonction de i et s

	s = 0.5	s = 0.8	s = 1	s = 1.25	s=2
i = 1	1.0762	0.6550	0.5000	0.5955	0.8314
i = 2	1.7551	1.2110	1.0000	1.1554	1.5010
i = 3	2.3706	1.7477	1.5000	1.6971	2.1124
i = 4	2.9516	2.2742	2.0000	2.2280	2.6941
i = 5	3.5091	2.7936	2.5000	2.7516	3.2562

RÉFÉRENCES RÉFÉRENCES

Références

[Cossette et al., 2018] Cossette, H., Marceau, E., Mtalai, I., and Veilleux, D. (2018). Dependent risk models with archimedean copulas: A computational strategy based on common mixtures and applications. *Insurance: Mathematics and Economics*, 78:53–71.

[Cossette et al., 2011] Cossette, H., Marceau, É., and Toureille, F. (2011). Risk models based on time series for count random variables. *Insurance : Mathematics and Economics*, 48(1):19–28.