Multi-Omics analysis identifies signature genes to predict bladder cancer survival

Overview

- 1. Remind
- 2. Workflow
- 3. CNV analysis
- 4. Gene expression analysis
- 5. Feature selection
- 6. Apply machine learning model
- 7. Survival analysis
- 8. GO enrichment analysis

Remind:

- Aim:
 - Using CNV data and transcriptomic data to predict survival of Bladder Cancer patients
 - Key genes contain CNV and play a big role in survival of patient
 - Functional annotation
- Data:
 - TCGA Bladder cancer data
 - CNV data: CNVs from tumor and normal cells of different samples (within-sample homogeneity)
 - Transcriptomic data: 442 samples
 - Survival data: survival label and survival time.
 - Phenotype data:
 - tumor diagnose stage: 422 samples
 - lost of follow up patient: 150 samples are lost of follow up

Workflow

CNV analysis

- 412 samples , each sample contains tumor and normal cell types
- CNVs: chromosome, start, end, probe and segmean
- Aim: finding independent and recurrent copy number abbreviations
 - r-package: GAIA (genomic analysis of significant chromosomal aberrations)
- Result: 3448 segments (q.value < 0.01) -> 11591 genes
- Cross checking with gene profile from gene expression data -> 9254 genes

Stage 2

Stage 3

Stage 4

	significant genes	samples
stage 2	619	111
stage 3	1003	97
stage 4	607	84

tSNE plot

t-SNE Plot 10.0 Not death 7.5 5.0 2.5 Dimension 2 0.0 -2.5 -5.0-7.5 -10.0 5 0.0 Dimension 1 -10.0 -7.5 2.5 5.0 7.5 10.0 -5.0 -2.5

t-SNE on original raw count

t-SNE on significant genes raw count

Apply machine learning models

Random forest

Ridge regression

XGBoost

Result with the features from intersection of CNV gene set and DESeq2

Apply machine learning model

Apply machine learning model

Apply machine learning model

ROC curve of testing data 1.0 0.8 ROC fold 0 (AUC = 0.62) ROC fold 1 (AUC = 0.45) ROC fold 2 (AUC = 0.62) ROC fold 3 (AUC = 0.52) 0.2 ROC fold 4 (AUC = 0.72) --- chance level (AUC = 0.5) Mean ROC (AUC = 0.58 ± 0.09) ± 1 std. dev 0.0 0.2 0.6 0.8 1.0 False Positive Rate

Random forest

Ridge regression

XG Boost

Random forest

Hyperparameters:

- max features : sqrt, log2
- max depth of each tree : 10, 12, 14, 16, 20
- criterion: gini, entropy

Gridsearchcv -> max_depth=10, max_features='log2'

Test set

	precision	recall	fl-score	support
Θ	0.74	0.84	0.79	76
1	0.60	0.44	0.51	41
accuracy			0.70	117
macro avg	0.67	0.64	0.65	117
weighted avg	0.69	0.70	0.69	117

Train set

		precision	recall	fl-score	support
	Θ	1.00	1.00	1.00	113
	1	1.00	1.00	1.00	113
accur	асу			1.00	226
macro	avg	1.00	1.00	1.00	226
weighted	avg	1.00	1.00	1.00	226

OVERFITTED:(

Ensemble ID	Gene name	Cancer related information
ENSG00000150764	DIXDC1	Participating in growing of tumor (1)
ENSG00000113657	DPYSL3	high DPYSL3 expression predicted a higher bladder tumor recurrence rate in patients (2)
ENSG00000125895	TMEM74	High expression of TMEM74 significantly shortens the surviving periods of patients in several types of cancer (3)
ENSG00000137693	YAP 1	Yap1 also plays an important role in the development of bladder and the deregulation of Yap1 is significantly associated with the development and metastasis of human bladder cancer (4)

- Reminder:Kaplan-Meier-curve for each stage
- Stage = Confounder

- highest and lowest counts of one gene
- upregulated and downregulated
- Gene **TMEM74**
- High expression shortens the surviving periods of patients

DPYSL3high DPYSL3 expression predicted a higher bladder tumor recurrence rate

YAP 1deregulation of Yap1 is significantly associated with the development and metastasis of BLCA

DIXDC1high DPYSL3 expression predicted a higher bladder tumor recurrence rate

GO Enrichment analysis

Gene Ontology (GO) enrichment analysis is used for interpreting high throughput molecular data and generating hypotheses about underlying biological phenomena of experiments.

GO Enrichment Analysis

- One of the main uses of the GO (Gene Ontology) is to perform enrichment analysis on gene sets.
- For example, given a set of genes that are up-regulated under certain conditions, an enrichment analysis will find which GO terms are over-represented (or under-represented) using annotations for that gene set.

GO Enrichment analysis (Results)

Barplot of our GO results

GO Enrichment analysis (Results)

clusterProfiler::dotplot()

GO Enrichment analysis (Results)

compareCluster()

enrichplot::emapplot()

cowplot::plot_grid()

Clusters close-up

monoatomic ion gated channel activity

voltage-gated monoatomic cation channel activity

protein serine/threonine

carboxylic acid binding

Conclusion

What difficulties have we faced:

- finding dataset
- preprocessing took longer than we thought (no LIMMA, but DESeq2)
- accuracy of our data was 70% and overfitted
- confounder: stages, lost of follow up
- Install outdated R packages

What have we learned?

- CNV analysis, DESeq2 analysis
- GO enrichment analysis

What could be improved?

- Find confounders and insights of metadata before starting
- Always checking for overfitting