

# Integrated Test and Evaluation (IT&E) Goals

 Conduct simulations and integrated flight tests in a relevant environment to collect required research data



 Develop and adapt the test environment infrastructure to conduct UAS research



## **IT&E Objectives**

- Provide an adaptable test infrastructure for simulation and flight test research
  - Leverage existing and/or modify aircraft
  - Leverage airspace
  - Leverage and build upon existing NASA Live Virtual Constructive (LVC) system
  - We are not building a prototype operational system
- Execute simulations and flight tests
  - Concept development
  - Verification and validation (V&V)
- Technology integration
- Maintain data collection archive



## Live Virtual Constructive (LVC) Objectives

#### **Distributed**

- To support asset usage where they exist
- External partner support

#### **Adaptable**

- Support for dynamic research requirements
- Utilize inputs from multiple surveillance sources (air and ground)
- Emulate data sources and features



#### **Extensible**

- Use for simulation and live flight testing
  - Reduces risk moving between simulation and flight
- Across NASA centers
- Tie in UAS collaborators

## IT&E Capabilities

### Encounter Design and Range Coordination

#### **Airspace Planning**

- Primarily Mercury Spin, 4 Corners and Buckhorn Military Operating Area (MOA) (red outline)
- 1,000 feet AGL (4.2K feet) to 20K feet MSL
- Extensions (west/north) may be requested real time for encounters that need the additional airspace
- Operations outside of test area (blue shaded areas) are planned to be performed early (before 0800) when airspace is relatively empty
- Operations between 0600 and 0700 are under Joshua control and have less geographical constraints

#### **Coordination with Edwards Range**

- Coordination of range/operating area borders and UAS keep out zones
- Ikhana must remain within Range (R)-2515 at all times
- Intruder aircraft can use Buckhorn MOA, plus areas shaded in blue

# Encounter design accomplished by operations working group with researchers and partners

- Encounter requirements coordinated with System Safety Working Group to ensure flight safety
- Mitigations designed into flight test planning (safe separation, training, testing, offsets, procedures, etc.)



#### **Airspace Extensions (Blue Shaded Areas)**

- Conducted early 0600-0800 preferably
- Pre-coordinated 24-48 hours in advance
- Requested real-time with SPORT (after 0700)



# Completed Flight Tests

## **Completed Flight Tests**

#### **Risk Reduction Approach to Integrated Test Flow**

- Each test built upon the previous and reduced future risk
- Lessons learned applied from one test to the next



## **IT&E Flight Test Summary**

#### Ownship - Ikhana

- Build-up of detect and avoid (DAA) system (air-to-air [A/A] radar/Automatic Dependent Surveillance-Broadcast (ADS-B]/traffic alert and collision avoidance system [TCAS]) to meet researcher requirements
- Ikhana logged more than 190 hours flight time for airborne collision avoidance system (ACAS) Xu,
   Flight Test (FT)3, and FT4 data collection

#### **Intruder Aircraft (seven total aircraft)**

- Met researcher objectives to represent many classes of aircraft
  - > Low-speed, mid-speed, high-speed
  - > Cooperative versus non-cooperative
  - > Small, medium, large radar cross section
- Equipped four aircraft with required surveillance systems
- Coordinated 25 crew members from three organizations
  - NASA, U.S. Air Force, Honeywell

#### **Flight Test Stats**

- ACAS Xu: 9 flights, 170 encounters flown (one intruder)
- FT3: 11 flights, 212 encounters flown (multiple intruders)
- FT4: 19 flights, 321 encounters flown (up to four intruders)

|                       |     | Intruder DAA Encounter Sensor Suite Configuration |                       |        |                   |      |  |
|-----------------------|-----|---------------------------------------------------|-----------------------|--------|-------------------|------|--|
| Aircr                 | aft | ADS-B<br>(1090 IN/OUT)                            | Mode S<br>Transponder | TCAS I | TCAS II<br>(v7.1) | DGPS |  |
| HW King Air<br>(N3GC) |     | х                                                 | х                     |        | х                 | х    |  |
| AFRC T<br>(NASA       |     | х                                                 | x                     | х      |                   | x    |  |
| AFRC T<br>(NASA       |     | х                                                 | х                     |        |                   | х    |  |
| AFRC Ki<br>(NASA      |     | х                                                 | х                     | х      |                   | х    |  |
| AFRC<br>(NASA         |     | х                                                 | х                     |        | х                 | x    |  |
| USAF<br>(not sh       |     |                                                   | х                     |        | х                 | х    |  |



Flight Test 4 supporting aircraft

## FT4 Flight Test Card





# FT4 Quad Video Recording



# In Progress/Upcoming Flight Tests

## IT&E Integrated Test Flow – ACAS Xu FT2







Well clear and collision avoidance functions integrated into one algorithm









#### **ACAS Xu FT2**

### **Purpose**

- Validate modeling and simulations
- Demonstrate system behavior integrated on prototype avionics and UAS
- Collect flight test data for performance evaluations and future research and development (R&D)
- Increased functionality
  - > Combined horizontal and vertical maneuvers against multiple intruders
  - > Resolution advisory (RA) logic accounts for sensor quality and ownship performance limitations

#### **Test Duration**

**Approach** 

June-July 2017: 10-12 flights (~150 encounters)

#### **Tech Transfer**

 Contribute to ACAS Xu minimum operational performance standards (MOPS) development

#### **Project** Benefit

 Continued collaboration with the Federal Aviation Administration (FAA) to mature the ACAS Xu software in support of the ACAS Xu MOPS development

## ACAS Xu FT2 Flight Test Card



# ACAS Xu FT2 Quad Video Recording



# No Chase Certificate of Authorization (COA)



**Tech Transfer** 

**Project Benefit** 





|               | No Chase COA Demonstration                                                                                                                                                                                                                                                                                                                                               |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Purpose       | <ul> <li>Obtain COA from FAA to fly Ikhana UAS without safety chase in multiple classes of airspace, including Class A, D, and E</li> <li>Demonstrate UA transitioning to/from Class A or special use airspace (SUA) to Class E and Class D employing the Phase 1 detect and avoid (DAA) and A/A radar MOPS systems as alternate compliance for 14CFR 91.113b</li> </ul> |
| Approach      | <ul> <li>Complete gap analysis and safety case analysis justifying alternative method of compliance with Federal Aviation Regulation (FAR) Part 91.113</li> <li>Work in partnership with General Atomics Aeronautical Systems Inc. (GA-ASI) to secure use of GA-ASI DAA system as primary airborne de-conflicting tool</li> </ul>                                        |
| Test Duration | February 2018: 2-3 flights                                                                                                                                                                                                                                                                                                                                               |

findings through a "Capstone" event

Demonstrate Phase 1 DAA and radar MOPS research

Demonstration of UAS-NAS Phase 1 DAA technologies

## No Chase Aircraft COA Flight Demonstration

## Concept of Operations (CONOPS)

**Objective:** Demonstrate UA transitioning to/from Class A or SUA to Class E and Class D employing the Phase 1 DAA and air-to-air radar MOPS systems as alternate means of compliance for 14 CFR 91.113b



# No Chase Aircraft COA Flight Demonstration

#### Mission Profile



## **Project Planning for FY18 and FY19**

Phase 2 DAA MOPS Development and Validation

#### Phase 2 DAA and A/A Radar MOPS

- Shifting focus to medium-sized (group 2/3) UAS equipped with a low size, weight and power (SWaP) non-cooperative A/A sensor
  - Cooperative Agreement Notice (CAN) to partner/cost-share with low SWaP A/A sensor manufacturer
  - NASA Ames Systems Integration Evaluation Remote Research Aircraft (SIERRA)-B UAS selected as medium-sized UAS ownship

## Flight Test Series 5







#### Flight Test Series 5

|         | i light foot collect                                                                                                                                                                  |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Purpose | <ul> <li>Initial flight testing of low-cost size, weight and power<br/>(C-SWaP) airborne non-cooperative surveillance senso<br/>integrated on group 2/3 UAS</li> </ul>                |
|         | <ul> <li>Equip NASA SIERRA-B UAS with low C-SWaP sensor and perform DAA encounters with manned intruder(s)</li> <li>Downlink sensor tracks to ground control station (GCS)</li> </ul> |

Approach and LVC Gateway (GW) for processing by DAA algorithm

**Project Benefit** 

 DAA well clear (DWC) alerts and maneuver guidance provided to Vigilant Spirit Control Station (VSCS)

UAS pilot employs VSCS display to meet test objectives

Test Duration August-September 2018: ~100 encounters

Tech Transfer ■ Inform development of Phase 2 MOPS

 Collection of data used by researchers to inform contributions to MOPS

## Flight Test Series 6







## Flight Test Series 6

### Purpose

- Operationally representative scenarios and increased emphasis on pilot performance data collection with integration of a NASA research GCS capability
- NASA SIERRA UAS and potential Partner Group 2/3 UAS equipped with low C-SWaP sensor(s) performing DAA encounters with manned intruder(s)
- Sensor tracks downlinked for processing by DAA algorithm

#### **Approach**

- SIERRA-B equipped with non-coop and coop (ADS-B In) sensors and a tracker to correlate multiple sensor tracks
- DWC alerts/maneuver guidance provided to DAA display
- UAS pilot employs integrated DAA display to meet objectives
- Pilot response data collected using subject pilots

## **Test Duration**

**Tech Transfer** 

**Project Benefit** 

#### July-August 2019: ~100 encounters

- Inform development of final Phase 2 MOPS
- Collection of data used by researchers to inform contributions to MOPS

# Backup

# 2014 ACAS Xu/Self-Separation (SS) Flight Test



## 2014 ACAS Xu Flight Test Summary

## Four unmanned versus manned CA flights conducted

- Ownship: Ikhana UAS
- Intruders: FAA Convair 580, Honeywell King Air C90, NASA T-34C
- Single intruder at a time
- 85 encounters, 20 hours flight time/data collection
- First CA system for UAS tested without artificial horizontal or vertical offsets
- Flight test encounters flown in exact conflict conditions

## Two unmanned versus unmanned CA flights conducted

- Ownship: Ikhana UAS
- Intruder: GA-ASI Predator-B
- 30 encounters, 10 hours of flight time/data collection
- First CA flight test employing UAS versus UAS encounters

# Three unmanned versus manned initial SS flights conducted

- Ownship: Ikhana UAS
- Intruders: Honeywell King Air C90, NASA T-34C
- Single intruder at a time
- 55 encounters, 12 hours flight time/data collection
- Three self-separation algorithms evaluated
- VSCS Autoresolver: NASA/AFRL, UAS-NAS
- > Stratway+: NASA, UAS-NAS
- Conflict Prediction and Display System (CPDS): GA-ASI

## Flight Test 3 Overview

## Flight Systems



# Flight Test 3 Summary

## **FT3 Flight Operations**

- June 17-July 24, 2015
  - Ikhana versus manned intruder(s)
  - 11 flights completed
    - More than 200 A/A encounters
    - DAA maneuver guidance and alerting logic checks
    - Auto TCAS II maneuvers
    - Engineering development model (EDM) radar performance near scan volume limits
    - EDM radar low-altitude performance tests
    - Higher closure rate encounters with F/A-18
    - Stressing multi-intruder encounters



|           | Aircraft | EDM<br>DRR           | ADS-B    | GPS         | TCAS I   | TCAS II  | CNPC     | Notes    |                    |
|-----------|----------|----------------------|----------|-------------|----------|----------|----------|----------|--------------------|
| ships     | 1        | NASA 870<br>CFG 1    | <b>✓</b> | <b>✓</b>    | <b>✓</b> |          | <b>✓</b> |          | + HUD              |
| Ownships  |          | NASA 608<br>CFG 2    |          | <b>&gt;</b> | <b>✓</b> | <b>✓</b> |          | <b>\</b> |                    |
|           |          | NASA 850<br>CFG 1    |          |             | <b>✓</b> | <b>✓</b> |          |          | Z-12<br>GPS        |
| Intruders |          | N3GC<br>CFG 1, 2     |          | <b>/</b>    | <b>✓</b> |          | <b>✓</b> |          | + TCAS<br>Recorder |
| Intro     |          | NASA 865<br>CFG 1, 2 |          | <b>\</b>    | <b>✓</b> | <b>✓</b> |          |          |                    |
|           |          | NASA 7<br>CFG 2      |          | <b>✓</b>    | <b>✓</b> | <b>✓</b> |          |          |                    |

## Flight Test 4 Overview

## Flight Systems



## Flight Test 4 Summary

- Research Objectives:
  - Conduct FT4 integrating the latest Separation Assurance/Sense and Avoid Interoperability (SSI) algorithms, Human Systems Integration (HSI) displays, and LVC test environment to support validation of Phase 1 DAA MOPS
  - > Document the performance of the test infrastructure in meeting the flight test requirements



Intruder in a maneuver as seen by the Ikhana MTS-B

270-Sc-S3M

ATRIDACEM DAA alerting and maneuver guidance



Scripted Encounters

Flight Test Execution

- Results, Conclusions, and Recommendations:
  - FT4 successfully completed June 30, 2016
    - Leveraged lessons learned and risk reduction from technology refinements to support Phase 1 MOPS validation
    - Two system checkout and 19 data collection flight tests
    - 11 weeks (April 12-June 30)
    - 321 A/A encounters
      - » 98.1 flight hours on Ikhana
      - » 25 pilots and six different intruder aircraft
    - Excellent collaboration between partners
      - » GA-ASI, Special Committee (SC)-228 DAA Working Group, Honeywell

- Nearly 500 gigabytes of data collected
  - » Data products provided in an accurate and timely manner to researchers (close of business day of flight test, differential Global Positioning System [DGPS] data next day)
- In concert with project simulation activities, FT4 contributed significantly to the validation of DAA MOPS; it identified some key performance requirements that needed additional refinement
  - » Well clear recovery
  - » DAA/TCAS interoperability
- Flight test report completed
- Lessons learned documented

## ACAS Xu Flight Test 2

- Flight Test Objectives:
  - Validate modeling and simulations
  - Demonstrate system behavior integrated on prototype avionics and UAS
  - Collect flight test data for performance evaluations and future R&D





- Flight Test Overview:
  - Continue collaboration with the FAA TCAS Program Office-led partnership to mature the ACAS Xu software in support of ACAS Xu MOPS development (draft FY18, final FY20)
    - FY17 flight tests (mid June-early August)
    - About 220 encounters/ ~13-14 flights (Ikhana as ownship)
    - Intruders provided by Honeywell and Aviation Surveillance & Communications Systems (ACSS)
  - More capable functionality

- Horizontal and vertical maneuvers against multiple intruders
- RA logic accounts for sensor quality and ownship performance limitations
- Includes DAA or SS functionality (Phase 1 DAA MOPS)
- ACAS processors are representative production units (Honeywell and ACSS)
- Performance against ACAS Xa (mature system in operational evaluation that will directly replace TCAS II)
- Ownship low approach operations (data collection only during mission)

## **ACAS Xu FT2 Overview**

- ACAS Xu FT2 leverages off of ACAS Xu 2014 (plus FT3/4)
- ACAS scripted encounters
- Data collection for system under test (SUT):
  - > CPDS
  - Honeywell ACAS Xu unit
  - ACSS ACAS Xu unit
  - > EDM radar
- Sensor evaluation
  - ACAS Xa/Xu
  - > EDM A/A radar
  - Mode C
  - Mode S
  - > TCAS II
  - > ADS-B
- Multi-intruder requirements
  - King Air C90 (2)



## **Detect and Avoid Function**



<sup>\*</sup> It is possible for the CAT to be greater than the WCT.

## FT5 FY18 Flight Test Operational View – 1 (OV-1)

#### SIERRA-B UAS with Low C-SWaP A/A Sensor



#### Flight Test CONOPS

- NASA SIERRA-B Group 3 UAS equipped with low C-SWaP A/A sensor performing DAA encounters with manned intruder(s)
  - A/A sensor tracks downlinked to the GCS and LVC GW for processing by DAA algorithm
  - DWC alerts and maneuver guidance provided to VSCS
  - UAS pilot employs VSCS display to meet encounter test objectives



## FT6 FY19 Flight Test OV-1

#### Medium-Sized UAS with Low C-SWaP A/A Sensors



- NASA SIERRA Group 3 UAS and partner Group 2/3 UAS equipped with low C-SWaP A/A sensor(s) performing DAA encounters with manned intruder(s)
  - A/A sensor tracks downlinked to the GCS for processing by DAA algorithm
    - SIERRA-B equipped with non-coop and coop (ADS-B In) sensors and a tracker to correlate multiple sensor tracks
  - DWC alerts and maneuver guidance provided to DAA display
  - UAS pilot employs an integrated DAA display to meet encounter test objectives
  - Pilot response data collected using subject pilots



# Sensor Integrated Environmental Remote Research Aircraft (SIERRA)





| Wing Span                                    | 20 feet                |  |  |
|----------------------------------------------|------------------------|--|--|
| Length                                       | 11.8 feet              |  |  |
| Height                                       | 4.6 feet               |  |  |
| Wing Area                                    | 42.4 feet <sup>2</sup> |  |  |
| Empty Weight                                 | 320 pounds             |  |  |
| Max Gross Weight                             | 480 pounds             |  |  |
| Max Operating Speed (V <sub>mo</sub> )       | 80 knots               |  |  |
| Cruise Speed                                 | 55-63 knots            |  |  |
| Stall Speed (No flaps V <sub>so</sub> )      | 48 knots               |  |  |
| Aspect ratio                                 | 9.43                   |  |  |
| Rate of Climb (S/L Std Day,<br>Max Gross Wt) | 500 fpm                |  |  |
| CG Range                                     | 27-33% MAC             |  |  |
| Payload weight                               | 100 pounds             |  |  |
| Payload power                                | 24V DC                 |  |  |
| Load Rating (Utility)                        | +4.4 g, -1.7 g         |  |  |
| Duration                                     | 8-10 hours             |  |  |

