Diffie-Hellman Key Exchange

CS 5158/6058 Data Security and Privacy
Spring 2018

Instructor: Boyang Wang

- Share a secret key between Alice and Bob
 - Alice and Bob meet in advance at a secure place (e.g., Starbucks)
- If they have a secure place, why not exchange private message at secure place (to avoid sharing keys)?
 - Alice/Bob cannot go to Starbucks all the time
 - Starbucks is not open all the time

- Each pair of two users should have a different key
 - Messages should be private between two users
- The total number of keys in a system is high
 - 2 users: Alice, Bob
 - 1 key: A <—> B
 - 3 users: Alice, Bob, Charlie
 - 3 keys: A <—> B, A <—> C, B <—> C

- The total number of keys in a system is high
 - 4 users: Alice, Bob, Charlie, David
 - 6 keys: A <—> B, A <—> C, A <—> D,
 B <—> C, B <—> D,
 C <—> D
 - n users: 1st user needs (n-1) keys,
 2nd user needs another (n-2) keys,
 3rd user needs another (n-3) keys, ...
 - No. of keys: (n-1) + (n-2) + ... + 1 = (n)(n-1)/2

- The total number of keys in a system is high
 - n users: (n)(n-1)/2 keys
- The cost to establish/share all the keys is high
 - E.g., n = 60 in this class, 60*59/2 = 1770 keys
 - Share each key at Starbucks
 - Each one costs \$10, \$10*1770=\$17700
 - no wonder Starbucks is rich!

- The total number of keys in a system is high
 - n users: (n)(n-1)/2 keys
 - Each user needs to maintain n-1 keys
- The cost to maintain all the keys is high
 - E.g., n = 60 in this class
 - Each user needs to maintain 59 keys
 - Keep all those keys secret
 - Synchronize among PC, laptop, smartphone

- The total number of keys in a system is high
 - n users: (n)(n-1)/2 keys
 - Each user needs to maintain n-1 keys
- Example: UC has 40,000 students, the total number of keys? how many keys for each user?
 - 40000*(39999)/2 = 799 million keys
 - Each key costs \$10 at Starbucks, 8 billion dollars
 - Each student maintains 39999 keys

Key Distribution Center

- All the users trust a same entity (KDC):
- Each user only needs one secret key with KDC
 - Alice only has 1 key with KDC
 - Bob only has 1 key with KDC
- Alice & Bob need to exchange private messages?
 - KDC helps two users establish a session key
 - Session key: short-term, easy to replace

- k_A: Alice <—> KDC; k_B: Bob <—> KDC
 - Alice to KDC: I want to talk to Bob
 - KDC generates a session key k
 - KDC to Alice: EnckA(k), EnckB(k)
 - Alice decrypts EnckA(k), obtains session key k
 - Alice to Bob: Let's talk, EnckB(k)
 - Bob decrypts Encke(k), obtains session key k

Key Distribution Center

- Alice and Bob use session key k to talk
 - KDC deletes session key after sending it to Alice
 - Alice & Bob delete session key after they talk
 - Want talk again tomorrow? Get a new session key from KDC
- Total: n (long-term) secret keys in the system
 - Each user: 1 secret key with KDC
 - KDC: n secret keys

Key Distribution Center

- The total number of keys in a system is lower
 - n users: n keys (v.s. n(n-1)/2)
- The cost to establish/share all the keys is lower
 - E.g., n = 60 in this class, 60 keys
 - Share each key at Starbucks
 - Each one costs \$10, total \$600 (v.s.\$17700)
- The cost to maintain all the keys is lower
 - Each user only maintains 1 key (v.s. 59 keys)

Limitation of KDC

- Everything depends on KDC
 - Security: if KDC is compromised, all comm. are not secure; KDC becomes a popular target
 - Performance: all the requests for session keys need to go though KDC; if KDC is down, the entire system is down
- Using multiple KDCs is better
 - Synchronization requires more costs

Public-Key Revolution

- Public-Key Revolution (<u>Diffie and Hellman</u>, 1976)
 - "New Direction in Cryptography"
 - Idea: No need to share a private key
 - Did not propose a detailed encryption scheme
 - Proposed a key-exchange protocol on public channel
 - Diffie-Hellman Key Exchange

Diffie-Hellman Key Exchange

- Alice & Bob do not have a private channel
- Alice & Bob establish a secret key using a public channel
 - Will use this secret key for later encryption

Diffie-Hellman Key Exchange

- No secret keys need to be shared at secure location
 - If we have 60 students in a system
 - Total cost at Starbucks \$0 (v.s.\$17700, v.s. \$600)

- Group G (defined under an operation)
 - Group order p: there are p elements in G
 - Set Z₆={0, 1, 2, 3, 4, 5} is an additive group
 - Set Z₆*={1, 5} is a multiplicative group
- For any g in group G, group order is p
 - Identity is 1 (i.e., a multiplicative group)
 - Order of element g
 - is the smallest positive integer a, s.t., $g^a = 1$

- Order of element g
 - is the smallest <u>positive</u> integer s.t., g^a = 1
- Example: $Z_6^*=\{1, 5\}$, group order is 2
 - element 1:
 - $1^1 = 1 \mod 6$, order of element 1 is 1
 - element 5:
 - $5^1 = 5! = 1 \mod 6$
 - $5^2 = 1 \mod 6$, order of element 5 is 2

- Order of element g
 - is the smallest <u>positive</u> integer s.t., g^a = 1
- Practice: $Z_{10}^* = \{1,3,7,9\}$, group order is 4
 - What is the order of element 1?
 - What is the order of element 3?
 - $1^1 = 1 \mod 10$, order of element 1 is 1
 - $3^1 = 3! = 1 \mod 10$
 - $3^2 = 9 != 1 \mod 10$
 - $3^3 = 27 = 7 != 1 \mod 10$
 - $3^4 = 81 = 1 \mod 10$, order of element 3 is 4

- If the order of element g is equal to group order p
 - This element g is a generator of group G
- Example: $Z_6^*=\{1, 5\}$, group order is 2
 - element 1:
 - $1^1 = 1 \mod 6$, order of element 1 is 1
 - element 1 is not a generator of Z₆*
 - element 5:
 - $5^2 = 25 = 1 \mod 6$, order of element 5 is 2
 - element 5 is a generator of Z₆*

- If the order of element g is equal to group order p
 - This element g is a generator of group G
- Practice: $Z_{10}^* = \{1,3,7,9\}$, group order is 4
 - $1^1 = 1 \mod 10$, order of element 1 is 1
 - $3^4 = 81 = 1 \mod 10$, order of element 3 is 4
 - Is element 1 a generator?
 - Is element 3 a generator?

- If the order of element g is equal to group order p
 - This element g is a generator of group G
 - $<g> = \{g^0, g^1, ..., g^{p-1}\}$ has all elements in G
- Example: $Z_6^*=\{1, 5\}$, group order is 2
 - element 5: order of element 5 is 2
 - 5 is a generator of Z₆*
 - $<5> = {50, 5p-1} = {50, 5^{2-1}} = {1, 5}$
 - <5> has all the elements in Z_6^*

- If the order of element g is equal to group order p
 - This element g is a generator of group G
 - $<g> = \{g^0, g^1, ..., g^{p-1}\}$ has all elements in G
- Example: $Z_{10}^* = \{1,3,7,9\}$, group order is 4
 - order of element 3 is 4
 - 3 is a generator of Z₁₀*
 - $<3> = {30, 31, 32, 3p-1} = {1, 3, 9, 7}$
 - <3> has all the elements in Z_{10}^*

- G is a cyclic group if there is a generator in G
- Example: $Z_6^*=\{1, 5\}$, group order is 2
 - order of element 5 is 2, 5 is a generator of Z₆*
- Example: $Z_{10}^* = \{1,3,7,9\}$, group order is 4
 - order of element 3 is 4, 3 is a generator of Z₁₀*
- Z₆* and Z₁₀* are both cyclic groups

Thm: If p+1 is a prime, Z_{p+1}^* is a cyclic group & group order is p

- $Z_5^* = \{1,2,3,4\}$ is a (multiplicative) group
 - 5 is a prime, Z₅* is cyclic group, order p=4
- Example: Find the generator(s) of Z₅*
 - Order of element 1 is 1: $1^1 = 1 \mod 5$
 - Order of element 2 is $4: 2^4 = 1 \mod 5$
 - Order of element 3 is $4: 3^4 = 1 \mod 5$
 - Order of element 4 is 2: $4^2 = 1 \mod 5$
 - Generators: 2, 3

- Cyclic group G, generator g, group order p,
 - $<g> = \{g^0, g^1, ..., g^{p-1}\}$ is a <u>permutation</u> of G
 - For any h in G, h=g^x for a <u>unique</u> x in {0, ..., p-1}
- Example: $Z_{10}^* = \{1,3,7,9\}$, group order is 4
 - order of element 3 is 4,
 - 3 is a generator of Z₁₀*
 - Z₁₀* is cyclic group
 - $<3> = {30, 31, 32, 3p-1} = {1, 3, 9, 7}$
 - <3> is a permutation of Z_{10}^*

- Cyclic group G, generator g, group order p,
 - $<g> = \{g^0, g^1, ..., g^{p-1}\}$ is a <u>permutation</u> of G
 - For any h in G, h=g^x for a <u>unique</u> x in {0, ..., p-1}
- Example: $Z_5^* = \{1,2,3,4\}$, group order is p=4
 - Z₅* is cyclic, since 5 is a prime
 - order of element 2 is 4,
 - 2 is a generator
 - $\langle 2 \rangle = \{2^0, 2^1, 2^2, 2^3\} = \{1, 2, 4, 3\}$
 - <2> is a permutation of Z₅*

Discrete-Logarithm Problem

- Cyclic group G, generator g, group order p
 - For any h in G, h=g^x for a <u>unique</u> x in {0, ..., p-1}
- Given g and x, compute h is easy
- Discrete-Logarithm Problem (DL)
 - If p is a large integer, given h and g, compute x = log_g(h) is hard
 - DL is a one-way function

Discrete-Logarithm Problem

- Given g and x, compute h is easy
- Discrete-Logarithm Problem (DL)
 - If p is a large integer, given h and g, compute x = log_g(h) is hard
- Example: Z₁₃₁*, 131 is a prime,
 - Given g=100 and $h=g^x=44$, what is x???
 - Given g=100 and x=2, compute h = g^x = 100² =
 44 mod 131

Discrete-Logarithm Problem

Discrete-logarithm experiment $\mathsf{DLog}_{\mathcal{A},\mathbb{G}}(n)$

- 1. Given 1^n , obtain (\mathbb{G}, p, g) , where \mathbb{G} is a cyclic group with order p (p is n-bit), and g is a generator of \mathbb{G} .
- 2. Choose a uniform $h \in \mathbb{G}$
- 3. Adversary \mathcal{A} is given \mathbb{G} , p, g, h, and outputs $x \in \mathbb{Z}_p$
- 4. Experiment outputs 1 iff $g^x = h$

For any PPT \mathcal{A} , $\Pr[\mathsf{DLog}_{\mathcal{A},\mathbb{G}}(n)=1] \leq \mathsf{negl}(n)$

- Diffie-Hellman Key Exchange
- Alice outputs public parameters (G, p, g)
 - G is cyclic, generator g, group order p

Alice and Bob share a same key g^{xy}

Bob

choose a uniform $x \in \mathbb{Z}_p$, compute $h_A = q^x$

$$h_A$$

 h_B

choose a uniform $y \in \mathbb{Z}_p$, compute $h_B = g^y$

compute
$$k_A = h_B^x = g^{xy}$$

compute $k_B = h_A^y = g^{xy}$

- Example: $Z_7^* = \{1, 2, 3, 4, 5, 6\}$
 - Group order p = 6, generator g = 3
 - Alice chooses x = 3 and Bob chooses y = 5
 - what is $h_A = ?$, $h_B = ?$, $k_A = k_B = ?$ in DH protocol

Bob

choose a uniform

$$x \in \mathbb{Z}_p$$
, compute $h_A = g^x$

$$h_A$$

 h_B

choose a uniform $y \in \mathbb{Z}_p$, compute $h_B = q^y$

compute
$$k_A = h_B^x = g^{xy}$$

compute
$$k_B = h_A^y = g^{xy}$$

- Example: $Z_7^* = \{1, 2, 3, 4, 5, 6\}$
 - p = 6, g = 3, choose x = 3 and y = 4
 - $h_A = g^x = 3^3 = 6 \mod 7$
 - $h_B = g^y = 3^4 = 4 \mod 7$
 - $k_A = h_{B^X} = 4^6 = 1 \mod 7$

Bob

choose a uniform $x \in \mathbb{Z}_p$, compute $h_A = q^x$

$$h_A$$

 h_B

choose a uniform $y \in \mathbb{Z}_p$, compute $h_B = g^y$

compute $k_A = h_B^x = g^{xy}$

compute $k_B = h_A^y = g^{xy}$

- Practice: $Z_{11}^* = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
 - Group order p = 10, generator g = 2
 - Alice chooses x = 3 and Bob chooses y = 9
 - what is $h_A = ?$, $h_B = ?$, $k_A = k_B = ?$ in DH protocol

Bob

choose a uniform

$$x \in \mathbb{Z}_p$$
, compute $h_A = g^x$

$$h_A$$

 h_B

choose a uniform $y \in \mathbb{Z}_p$, compute $h_B = g^y$

compute
$$k_A = h_B^x = g^{xy}$$

compute
$$k_B = h_A^y = g^{xy}$$

- Practice: $Z_{11}^* = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
 - p = 10, g = 2, choose x = 3 and y = 9
 - $h_A = g^x = 2^3 = 8 \mod 11$
 - $h_B = g^y = 2^9 = 6 \mod 11$
 - $k_A = h_{B^X} = 6^3 = 7 \mod 11$

Security of DH Protocol

- If Discrete-Logarithm problem is easy, DH is not secure
 - Eavesdropper has h_A = g^x and h_B = g^y
 - Computes $x = log_g(h_A)$ and $y = log_g(h_B)$
 - Obtains key k = g^{xy}
 - DL is hard is necessary, but not sufficient
- Computational Diffie-Hellman Problem (CDH)
 - Given g^x and g^y, compute g^{xy} is hard

Security of DH Protocol

- If CDH problem is easy, DH is not secure
 - Given $h_A = g^x$ and $h_B = g^y$
 - Adversary computes key k = g^{xy}
 - CDH is hard is necessary, but still not sufficient
- Decisional Diffie-Hellman Problem (DDH)
 - Given g^x, g^y and a random element h in G, decide whether h?=g^{xy} is hard
- DH protocol is secure if DDH problem is hard

Security of DH Protocol

- Computational Diffie-Hellman Problem (CDH)
 - Given g^x and g^y, compute g^{xy} is hard
- Decisional Diffie-Hellman Problem (DDH)
 - Given g^x, g^y and a random element h in G, decide whether h?=g^{xy} is hard
- True: DH protocol is secure if DDH problem is hard
- False: DH protocol is secure if CDH problem is hard
- False: DH protocol is secure if DL problem is hard

Additional Reading

Chapter 10, Introduction to Modern Cryptography, Drs. J. Katz and Y. Lindell, 2nd edition