LCE0216 Introdução à Bioestatística Florestal 6. Principais Modelos Contínuos

Profa. Dra. Clarice Garcia Borges Demétrio Monitor: Eduardo E. R. Junior

Escola Superior de Agricultura "Luiz de Queiroz" Universidade de São Paulo

Piracicaba, 19 de abril de 2018

Modelos contínuos

- Estabelecem a relação entre variável e a realização do experimento que a origina;
- Uma variável aleatória contínua segue determinado modelo se cada possível intervalo da variável acontecer conforme uma determinada lei de atribuição de probabilidades;
- A lei de atribuição é dada pela função densidade de probabilidade;
- Neste curso, veremos os modelos contínuos Normal, Exponencial e Weibull.

- Um dos modelos mais importantes de uma distribuição contínua de probabilidade;
- Representa, com boa aproximação, muitos fenômenos da natureza;
- Alguns exemplos de variáveis aleatórias contínuas que seguem distribuição normal (geralmente):
 - Peso: de matéria seca, de raiz, de animais, de pessoas, de frutos, de sacas de café,...
 - Altura: de árvores, plantas, animais;
 - DAP, CAP;
 - Produtividade: de cana-de-açúcar, de soja,...
 - Erros de medida em geral.

Exemplo prático: Na figura abaixo, apresenta-se o histograma dos circunferência à altura do peito (DAP) obtidos na aula de campo com o professor Thadeu. Os pontos acima do eixo *x* são os valores observados e a curva em preto é a função de densidade da distribuição normal com média e variância amostrais.

Um problema: Sabe-se que as árvores em uma floresta de *Pinus caribaea* apresentam diâmetro médio de 23 cm, variância de 49 cm². O histograma de uma amostra aleatória de diâmetros de 1000 àrvores e a função densidade de probabilidade teórica são apresentados na figura a seguir.

▶ Sistema I:

Classificação	Diâmetro	Porcentagem esperada
I	até 17 cm	%
II	de 17 a 30 <i>cm</i>	%
III	acima de 30 cm	%

► Sistema II:

Classificação	Diâmetro	Porcentagem esperada
I	até <i>cm</i>	20%
II	de a <i>cm</i>	60%
III	acima de <i> cm</i>	20%

Observações:

- As observações estão mais concentradas em torno do valor central e a concentração vai diminuindo a medida que os valores vão aumentando ou diminuindo;
- Distribuição em forma de sino (bell curve);
- Distribuição simétrica em torno do seu ponto central;

Observações gerais:

- ► As distribuições amostrais de estatísticas como médias e proporções podem ser aproximadas pela distribuição normal ⇒ Inferência estatística
- ▶ Distribuições binomial e Poisson ⇒ aproximação por meio da distribuição normal
- ▶ Denominação: distribuição gaussinana ⇒ Karl F. Gauss (1777-1855).

Definição

Dizemos que uma variável aleatória X tem distribuição normal, com parâmetros μ e σ^2 , em que $-\infty < \mu < \infty$ e $\sigma^2 > 0$, se sua função densidade de probabilidade for dada por:

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad x \in \mathbb{R}.$$

Notação: $X \sim N(\mu, \sigma^2)$.

Pode-se demonstrar que:

►
$$f_X(x) > 0$$

$$\triangleright$$
 E(X) = μ

$$\int_{-\infty}^{+\infty} f_X(x) dx = 1$$

$$Var(X) = \sigma^2$$

• $f_X(x)$ é simétrica ao redor de μ , ou seja, $f(\mu - x) = f(\mu + x)$ para todo x

A probabilidade de uma variável aleatória com distribuição normal tomar um valor entre dois pontos quaisquer, x_1 e x_2 , tal que $x_1 < x_2$, é igual a área sob a curva normal compreendida entre os dois pontos.

Observação: A função de densidade acumulada F(x) da distribuição normal,

$$\Phi(x) = F(x) = P(X < x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt,$$

usada para o cálculo de probabilidades,

$$P(x_1 < X < x_2) = F(x_2) - F(x_1),$$

não pode ser obtida analiticamente (em forma fechada), sendo necessário o uso de métodos numéricos.

Distribuição normal padrão

Se X uma variável aleatória com distribuição $N(\mu, \sigma^2)$, então a variável aleatória Z, definida por:

$$Z=\frac{X-\mu}{\sigma},$$

tem uma distribuição N(0,1), denominada **normal padrão**, cuja função densidade de probabilidade é dada por:

$$f_Z(z) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}z^2}, \quad z \in \mathbb{R}.$$

Distribuição normal padrão

Observações:

- A nova distribuição tem média correspondente à origem e desvio padrão como medida de afastamento da média;
- $E(Z) = \mu_Z = 0 \text{ e Var}(Z) = \sigma_Z^2 = 1;$
- Probabilidades calculadas para valores de z com precisão de duas casas decimais foram tabeladas para facilitar cálculos manuais.

Distribuição Normal Padrão Acumulada

$$\Phi(z) = P(Z \le z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-u^2/2} du$$

						$\sqrt{2\pi}$				
z	0	1	2	3	4	5	6	7	8	9
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455

$$P(Z<-1)=\Phi(-1)=$$

$$P(Z < -1) = \Phi(-1) =$$

z	0	1	2	3	4	5	6	7	8	9
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611

$$P(Z < -1) = \Phi(-1) =$$

z	0	1	2	3	4	5	6	7	8	9
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-0.9	0 1841	0.1814	0.1788	0.1762	0 1736	0 1711	0 1685	0.1660	0 1635	0.1611

$$P(Z < -1) = \Phi(-1) = 0,1587$$

z	0	1	2	3	4	5	6	7	8	9
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-0.9	0 1841	0.1814	0 1788	0 1762	0 1736	0 1711	0.1685	0.1660	0.1635	0.1611

$$P(-2,02 \le Z \le 1,04) = \Phi(1,04) - \Phi(-2,02)$$

z	0	1	2	3	4	5	6	7	8	9
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767

$$P(-2,02 \le Z \le 1,04) = \Phi(1,04) - \Phi(-2,02)$$

= 0,8508 -

z	0	1	2	3	4	5	6	7	8	9
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767

$$P(-2,02 \le Z \le 1,04) = \Phi(1,04) - \Phi(-2,02)$$

= 0,8508 - 0,0217

	Π_									
	0	1	2	3	4	5	6		8	9
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823

19 / 61

$$P(-2,02 \le Z \le 1,04) = \Phi(1,04) - \Phi(-2,02)$$

= 0,8508 - 0,0217
= 0.8291

	0	1	2	3	4	5	6	7	8	9
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823

19 / 61

Padronização de uma variável

Com a tabela de probabilidades de uma variável normal padrão, pode-se calcular probabilidades para qualquer outra variável normalmente distribuída padronizando-a. Seja, por exemplo, $X \sim N(23,49)$. Deseja-se calcular P(X < 16)

Para padronizar X, devemos subtrair a média e dividir pelo desvio padrão

$$P\left(Z < \frac{x-\mu}{\sigma}\right) = P\left(Z < \frac{16-23}{7}\right) = P(Z < -1) = 0,1587.$$

Portanto:
$$P(X < 16) = P(Z < -1) = 0,1587$$

Padronização de uma variável

Padronizar uma variável normalmente distribuída é mapeá-la na escala da normal padrão.

Exercício: Sabendo-se que $Z \sim N(0,1)$, usando a tabela da distribuição normal padrão, calcular:

- (a) P(0 < Z < 2, 14)
- (b) P(-3,01 < Z < 0)
- (c) P(-3,01 < Z < 2,14)
- (d) P(Z > 0)
- (e) P(Z > 1,00)
- (f) P(Z < -1,00)

Agora podemos calcular as probabilidades associadas aos intervalos correspondentes a variável X: diâmetro, em cm, de uma árvore que se distribui conforme modelo N(23,49).

- (a) P(X < 17)
- (b) P(17 < X < 30)
- (c) P(X > 30)

Assim, as porcentagens esperadas são dadas por:

Classificação	Diâmetro	Porcentagem esperada
I	até 17 <i>cm</i>	%
II	de 17 a 30 <i>cm</i>	%
III	acima de 30 <i>cm</i>	%

Exercício: Calcular os valores de X correspondentes às porcentagens esperadas, em que X: diâmetro, em cm, de uma árvore se distribui conforme modelo N(23,49).¹

Classificação	Diâmetro	Porcentagem esperada
I	até <i>cm</i>	20%
II	de a <i>cm</i>	60%
III	acima de <i>cm</i>	20%

¹Assuma um intervalo simétrico para a classificação II.

Seja Y uma variável aleatória representando o número de sucessos em um total de n ensaios independentes e π a probabilidade de ocorrer sucesso em cada ensaio, dizemos que $Y \sim B(n; \pi)$.

A variável Y pode ser aproximada por uma distribuição normal com média $\mu_Y = n\pi$ e variância $\sigma_Y^2 = n\pi(1-\pi)$.

Quando a aproximação é boa?

Quando a probabilidade π de ocorrer sucesso não está muito próxima de 0 ou de 1 e o número n de ensaios é grande.

O cálculo da probabilidade pela normal é feito utilizando-se uma distribuição $N(n\pi,n\pi(1-\pi))$.

Exercício: As mudas em um viveiro são classificadas em grandes ou pequenas, conforme sua altura. Verificou-se que 45% das mudas são consideradas grandes. Supondo que as mudas são colocadas em recipientes que comportam 60 unidades, aleatoriamente, pergunta-se:

- (a) Em que porcentagem esperada de recipientes teremos pelo menos 50% de mudas grandes? (50% é igual a 30 mudas).
- (b) Em que porcentagem de recipientes teremos exatamente 50% de mudas grandes?

Aproximação Poisson pela normal

Seja Y uma variável aleatória representando o número de eventos ocorridos em um determinado domínio e λ a média do número de ocorrências nesse determinado intervalo, dizemos que $Y \sim P(\lambda)$.

A variável Y pode ser aproximada por uma distribuição normal com média $\mu_Y=\lambda$ e variância $\sigma_Y^2=\lambda$.

Aproximação Poisson pela normal

Aproximação Poisson pela normal

Quando a aproximação é boa?

Quando a taxa λ , quando a média de eventos em um determinado domínio é suficientemente grande.

O cálculo da probabilidade pela normal é feito utilizando-se uma distribuição $N(\lambda,\lambda)$.

Aprox. de v.a's discretas por distribuição contínua

Correção de continuidade

Consiste em somar ou subtrair 0,5 aos limites do intervalo para o qual desejamos calcular as probabilidades.

- Em muitas situações práticas o cálculo das probabilidades pode ser realizado sem levarmos em conta a correção de continuidade;
- Binomial: para grandes amostras (n grande) e probabilidade de sucesso π próximo a 0,5, a aproximação é suficientemente boa, dispensando a correção;
- Poisson: para contagens de média alta (λ grande) a aproximação é suficientemente boa, dispensando a correção.

Distribuição exponencial

- ► Teoria da confiabilidade;
- Utilizada para prever o período de tempo necessário até a ocorrência de um evento;
- Probabilidade ao longo do tempo ou da distância entre ocorrências num intervalo contínuo;

Função densidade de probabilidade

$$f(x) = \begin{cases} \frac{1}{\beta} e^{-\frac{x}{\beta}}, & x \ge 0, \\ 0, & \text{caso contrário} \end{cases}$$

em que $\frac{1}{\beta}$ indica a taxa de ocorrência por unidade de medida, que pode ser tempo, distância, volume. Notação: $X \sim \text{Exp}(\beta)$.

Esperança e variância

Obtida analiticamente por integração por partes!

$$E(X) = \beta$$

$$Var(X) = \beta^2$$

Função de densidade de probabilidade acumulada

$$F(b) = P(X < b) = \int_0^b \frac{1}{\beta} e^{-\frac{1}{\beta}x} dx = 1 - e^{-\frac{1}{\beta}b}.$$

$$P(a < X < b) = F(b) - F(a) = e^{-\frac{1}{\beta}a} - e^{-\frac{1}{\beta}b}.$$

Exemplo: Considere que a variável volume diário de chuva (mm) em Pelotas-RS no mês de janeiro segue uma distribuição exponencial com parâmetro $\beta=14,36$. Qual é a proporção de dias com volume de chuva superior a 30 mm?

Exemplo: Uma industria fabrica lâmpadas especiais que ficam em operação continuamente. Empresa oferece aos seus clientes a garantia de reposição, caso a lâmpada dure menos de 50 horas. A vida útil dessa lâmpada é modelada por meio da distribuição exponencial com parâmetro $\beta=8000$. Determine a proporção de trocas por defeito de fabricação.

Falta de memória

$$P(X \ge t + s | X \ge s) = \frac{P(X \ge t + s, X \ge s)}{P(X \ge s)} = \frac{P(X \ge t + s)}{P(X \ge s)}$$
$$= \frac{e^{-\frac{t + s}{\beta}}}{e^{-\frac{s}{\beta}}}$$
$$= e^{-\frac{t}{\beta}} = P(X \ge t)$$

Exemplo: O intervalo de tempo, em minutos, entre emissões consecutivas de uma fonte radioativa é uma variável aleatória com distribuição exponencial de parâmetro $\beta = 5$. Calcule:

- (a) A probabilidade de haver uma emissão em um intervalo inferior a 2 minutos;
- **(b)** A probabilidade do intervalo ser superior ou igual a 7, sabendo que ele é superior ou igual a 5.

Distribuição Weibull

- Teoria da confiabilidade;
- ► Tempo de vida.

Função densidade de probabilidade

$$f(x) = \begin{cases} \frac{\beta}{\theta} \left(\frac{x}{\theta}\right)^{\beta - 1} e^{-\left(\frac{x}{\theta}\right)^{\beta}}, & x \ge 0, \\ 0, & \text{caso contrário} \end{cases}$$

em que $\theta > 0$ é o parâmetro de escala e β é o parâmetro de forma.

Função densidade de probabilidade acumulada

$$F(a) = P(X < a) = \int_0^a \frac{\beta}{\theta} \left(\frac{x}{\theta}\right)^{\beta - 1} e^{-\left(\frac{x}{\theta}\right)^{\beta} dx} = 1 - e^{-\left(\frac{a}{\theta}\right)^{\beta}}$$

Distribuição Weibull: Esperança e Variância

$$E(X) = \theta \Gamma \left(1 + \frac{1}{\beta} \right)$$

$$Var(X) = \theta^2 \left[\Gamma \left(1 + \frac{2}{\beta} \right) - \left(\Gamma \left(1 + \frac{1}{\beta} \right) \right)^2 \right]$$

- $\Gamma(n) = \int_0^\infty x^{n-1} e^{-x} dx;$
- ► Se $n \in N$, então $\Gamma(n) = (n-1)\Gamma(n-1)$ e $\Gamma(n) = (n-1)!$.

Exemplo: O tempo de falha de uma submontagem eletrônica usada em uma estação de trabalho RISK é satisfatoriamente modelado por uma distribuição de Weibull com $\beta=0,5$ e $\theta=1000$. Obtenha o tempo médio de falha de uma submontagem. Qual a probabilidade da submontagem sobreviver mais de 4000h.

Exemplo: Suponha que a precipitação diária para a cidade de Santa Maria - RS, no mês de dezembro, segue uma distribuição Weibull com parâmetro de forma $\beta=0,6792$ e parâmetro de escala $\theta=11,6427$. Qual é a probabilidade da precipitação diária ser inferior a 10 mm no mês de dezembro?

Outras distribuições importantes Distribuição Oui-Ouadrado

Uma variável aleatória contínua Y, com valores positivos, tem uma distribuição **qui-quadrado** com ν graus de liberdade, se sua densidade for dada por:

Função de densidade de probabilidade

$$f(y; \nu) = \begin{cases} \frac{1}{\Gamma(\nu/2)^{\nu/2}} y^{\nu/2 - 1} e^{-y/2} & \text{se } y \ge 0\\ 0 & \text{se } y < 0 \end{cases}$$

Notação: $Y \sim \chi^2_{(\nu)}$

Média e variância

- $\blacktriangleright E(Y) = \nu;$
- $ightharpoonup Var(Y) = 2\nu.$

Outras distribuições importantes Distribuição Qui-Quadrado

A função acumulada da distribuição qui-quadrado também é tabelada. Porém, a ênfase é dada nos quantis dessa distribuição devido a sua extensa aplicação para testes de hipóteses.

Outras distribuições importantes Distribuição Qui-Quadrado

Quantis da distribuição Quiquadrado: $P(\chi_v^2 \ge \chi_{v,\alpha}^2) = \alpha$

G.L.					α					
ν	0.99	0.975	0.95	0.90	0.50	0.10	0.05	0.025	0.01	0.005
1	0.00016	0.00098	0.0039	0.016	0.45	2.71	3.84	5.02	6.63	7.88
2	0.020	0.051	0.103	0.211	1.39	4.61	5.99	7.38	9.21	10.60
3	0.115	0.216	0.352	0.584	2.37	6.25	7.81	9.35	11.34	12.84
4	0.297	0.484	0.711	1.064	3.36	7.78	9.49	11.14	13.28	14.86
5	0.554	0.831	1.15	1.61	4.35	9.24	11.07	12.83	15.09	16.75
6	0.872	1.24	1.64	2.20	5.35	10.64	12.59	14.45	16.81	18.55
7	1.24	1.69	2.17	2.83	6.35	12.02	14.07	16.01	18.48	20.28
8	1.65	2.18	2.73	3.49	7.34	13.36	15.51	17.53	20.09	21.95
9	2.09	2.70	3.33	4.17	8.34	14.68	16.92	19.02	21.67	23.59
10	2.56	3.25	3.94	4.87	9.34	15.99	18.31	20.48	23.21	25.19
11	3.05	3.82	4.57	5.58	10.34	17.28	19.68	21.92	24.72	26.76
12	3.57	4.40	5.23	6.30	11.34	18.55	21.03	23.34	26.22	28.30
13	4.11	5.01	5.89	7.04	12.34	19.81	22.36	24.74	27.69	29.82

Outras distribuições importantes Distribuição Qui-Quadrado

Exemplo:

$$Y \sim \chi^2_{(10)}$$
, $P(Y > 2,56) = 0,99$
 $P(Y > 18,31) = 0,05$

Resultado importante:

Considere uma $Z \sim N(0,1)$. Se $Y = Z^2$, tem-se que $Y \sim \chi^2_{(1)}$. Portanto, o quadrado de uma variável aleatória que segue uma distribuição normal padronizada corresponde a uma distribuição qui-quadrado com um grau de liberdade.

De modo geral, uma distribuição qui-quadrado com ν graus de liberdade pode ser vista como a soma de ν normais padronizadas independentes ao quadrado.

Seja Z uma variável aleatória N(0,1) e Y uma variável aleatória $\chi^2_{(\nu)}$, com Z e Y independentes. Então, a variável

$$T = \frac{Z}{\sqrt{Y/\nu}},$$

tem densidade dada por

$$f(t,\nu) = \frac{\Gamma((\nu+1)/2)}{\Gamma(\nu/2)\sqrt{\pi\nu}} (1 + t^2/\nu)^{-(\nu+1)/2}, \quad -\infty < t < +\infty.$$

Dizemos que a variável tem uma distribuição t **de Student** com ν graus de liberdade.

Notação: $T \sim t_{(\nu)}$

O gráfico da densidade t aproxima-se bastante de uma normal padrão quando ν é grande. Dessa forma, quando $\nu \to \infty$, pode-se usar a tabela da normal padrão ao invés da tabela t de Student. Para $\nu > 50$ a aproximação já é muito boa.

Distribuição t - Student

$$\alpha = P(T \ge t_v)$$

v	α														
•	0.25	0.10	0.05	0.025	0.01	0.005	0.0025	0.001							
1	1.0000	3.0777	6.3138	12.7062	31.8205	63.6567	127.3213	318.3088							
2	0.8165	1.8856	2.9200	4.3027	6.9646	9.9248	14.0890	22.3271							
3	0.7649	1.6377	2.3534	3.1824	4.5407	5.8409	7.4533	10.2145							
4	0.7407	1.5332	2.1318	2.7764	3.7469	4.6041	5.5976	7.1732							
5	0.7267	1.4759	2.0150	2.5706	3.3649	4.0321	4.7733	5.8934							
6	0.7176	1.4398	1.9432	2.4469	3.1427	3.7074	4.3168	5.2076							
7	0.7111	1.4149	1.8946	2.3646	2.9980	3.4995	4.0293	4.7853							
8	0.7064	1.3968	1.8595	2.3060	2.8965	3.3554	3.8325	4.5008							
9	0.7027	1.3830	1.8331	2.2622	2.8214	3.2498	3.6897	4.2968							
10	0.6998	1.3722	1.8125	2.2281	2.7638	3.1693	3.5814	4.1437							
11	0.6974	1.3634	1.7959	2.2010	2.7181	3.1058	3.4966	4.0247							
12	0.6955	1.3562	1.7823	2.1788	2.6810	3.0545	3.4284	3.9296							
13	0.6938	1.3502	1.7709	2.1604	2.6503	3.0123	3.3725	3.8520							
14	0.6924	1.3450	1.7613	2.1448	2.6245	2.9768	3.3257	3.7874							
15	0.6912	1.3406	1.7531	2.1314	2.6025	2.9467	3.2860	3.7328							
16	0.6901	1.3368	1.7459	2.1199	2.5835	2.9208	3.2520	3.6862							

Exemplo:

$$T \sim t_{(\nu=6)}$$
, $P(-1,943 < T < 1,943) = 0,90$
 $P(T > 2,4469) = 0,025$

Sejam U e V duas variáveis aleatórias independentes, cada uma com distribuição qui-quadrado, com v_1 e v_2 graus de liberdade, respectivamente. Então, a variável aleatória W dada por:

$$W = \frac{U/\nu_1}{V/\nu_2}$$

tem densidade dada por

$$f(w,\nu_1,\nu_2) = \frac{\Gamma((\nu_1+\nu_2)/2)}{\Gamma(\nu_1/2)\Gamma(\nu_2/2)} \left(\frac{\nu_1}{\nu_2}\right)^{\nu_1/2} \frac{w^{(\nu_1-2)/2}}{(1+\nu_1w/\nu_2)^{(\nu_1+\nu_2)/2}},$$

para w > 0. E dizemos que W tem distribuição F de Snedecor, com v_1 e v_2 graus de liberdade.

Notação: $W \sim F_{(\nu_1,\nu_2)}$.

Média e variância

$$E(W) = \frac{\nu_2}{\nu_2 - 2}$$
 e $Var(W) = \frac{2\nu_2^2(\nu_1 + \nu_2 - 2)}{\nu_1(\nu_2 - 2)^2(\nu_2 - 4)}$

	1	2	3	4	5	6	7	8	9	10	12	14	15	16	18	20	30	40	60	120
2	18,51	19,00	19,16	19,25	19,30	19,33	19,35	19,37	19,38	19,40	19,41	19,42	19,43	19,43	19,44	19,45	19,46	19,47	19,48	19,49
3	10,13	9,55	9,28	9,12	9,01	8,94	8,89	8,85	8,81	8,79	8,74	8,71	8,70	8,69	8,67	8,66	8,62	8,59	8,57	8,55
4	7,71	6,94	6,59	6,39	6,26	6,16	6,09	6,04	6,00	5,96	5,91	5,87	5,86	5,84	5,82	5,80	5,75	5,72	5,69	5,66
5	6,61	5,79	5,41	5,19	5,05	4,95	4,88	4,82	4,77	4,74	4,68	4,64	4,62	4,60	4,58	4,56	4,50	4,46	4,43	4,40
6	5,99	5,14	4,76	4,53	4,39	4,28	4,21	4,15	4,10	4,06	4,00	3,96	3,94	3,92	3,90	3,87	3,81	3,77	3,74	3,70
7	5,59	4,74	4,35	4,12	3,97	3,87	3,79	3,73	3,68	3,64	3,57	3,53	3,51	3,49	3,47	3,44	3,38	3,34	3,30	3,27
8	5,32	4,46	4,07	3,84	3,69	3,58	3,50	3,44	3,39	3,35	3,28	3,24	3,22	3,20	3,17	3,15	3,08	3,04	3,01	2,97
9	5,12	4,26	3,86	3,63	3,48	3,37	3,29	3,23	3,18	3,14	3,07	3,03	3,01	2,99	2,96	2,94	2,86	2,83	2,79	2,75
10	4,96	4,10	3,71	3,48	3,33	3,22	3,14	3,07	3,02	2,98	2,91	2,86	2,85	2,83	2,80	2,77	2,70	2,66	2,62	2,58
11	4,84	3,98	3,59	3,36	3,20	3,09	3,01	2,95	2,90	2,85	2,79	2,74	2,72	2,70	2,67	2,65	2,57	2,53	2,49	2,45
12	4,75	3,89	3,49	3,26	3,11	3,00	2,91	2,85	2,80	2,75	2,69	2,64	2,62	2,60	2,57	2,54	2,47	2,43	2,38	2,34
13	4,67	3,81	3,41	3,18	3,03	2,92	2,83	2,77	2,71	2,67	2,60	2,55	2,53	2,51	2,48	2,46	2,38	2,34	2,30	2,25
14	4,60	3,74	3,34	3,11	2,96	2,85	2,76	2,70	2,65	2,60	2,53	2,48	2,46	2,44	2,41	2,39	2,31	2,27	2,22	2,18
15	4,54	3,68	3,29	3,06	2,90	2,79	2,71	2,64	2,59	2,54	2,48	2,42	2,40	2,38	2,35	2,33	2,25	2,20	2,16	2,11
16	4,49	3,63	3,24	3,01	2,85	2,74	2,66	2,59	2,54	2,49	2,42	2,37	2,35	2,33	2,30	2,28	2,19	2,15	2,11	2,06
17	4,45	3,59	3,20	2,96	2,81	2,70	2,61	2,55	2,49	2,45	2,38	2,33	2,31	2,29	2,26	2,23	2,15	2,10	2,06	2,01
18	4,41	3,55	3,16	2,93	2,77	2,66	2,58	2,51	2,46	2,41	2,34	2,29	2,27	2,25	2,22	2,19	2,11	2,06	2,02	1,97
19	4,38	3,52	3,13	2,90	2,74	2,63	2,54	2,48	2,42	2,38	2,31	2,26	2,23	2,21	2,18	2,16	2,07	2,03	1,98	1,93
20	4,35	3,49	3,10	2,87	2,71	2,60	2,51	2,45	2,39	2,35	2,28	2,22	2,20	2,18	2,15	2,12	2,04	1,99	1,95	1,90
21	4,32	3,47	3,07	2,84	2,68	2,57	2,49	2,42	2,37	2,32	2,25	2,20	2,18	2,16	2,12	2,10	2,01	1,96	1,92	1,87
22	4,30	3,44	3,05	2,82	2,66	2,55	2,46	2,40	2,34	2,30	2,23	2,17	2,15	2,13	2,10	2,07	1,98	1,94	1,89	1,84
23	4,28	3,42	3,03	2,80	2,64	2,53	2,44	2,37	2,32	2,27	2,20	2,15	2,13	2,11	2,08	2,05	1,96	1,91	1,86	1,81
24	4,26	3,40	3,01	2,78	2,62	2,51	2,42	2,36	2,30	2,25	2,18	2,13	2,11	2,09	2,05	2,03	1,94	1,89	1,84	1,79
25	4,24	3,39	2,99	2,76	2,60	2,49	2,40	2,34	2,28	2,24	2,16	2,11	2,09	2,07	2,04	2,01	1,92	1,87	1,82	1,77
26	4,23	3,37	2,98	2,74	2,59	2,47	2,39	2,32	2,27	2,22	2,15	2,09	2,07	2,05	2,02	1,99	1,90	1,85	1,80	1,75

Exemplo:

$$W \sim F(5,7), \quad P(W > 3,97) = 0,05$$

 $P(W \le 3,97) = 0,95$

Distribuições de probabilidade no R

No R, há funções para trabalhar com distribuições conhecidas. Para todas as distribuições apresentadas há funções do tipo

- ddist(x, ...)Calcula a probabilidade ou densidade no ponto x;
- pdist(q, ...)
 Calcula a probabilidade acumulada até o quantil q;
- qdist(p, ...)Obtém o quantil cuja probabilidade acumulada é p;
- rdist(n, ...)Gera n números aleatórios da determinada distribuição.

Em que dist é o sufixo que indica a distribuição.

Distribuições de probabilidade no R

```
help("Distributions")
dpois(x = 5, lambda = 5)
ppois(q = 5, lambda = 5)
qpois(p = 0.9, lambda = 5)
rpois(n = 10, lambda = 5)
dbinom(x = 0:10, size = 10, prob = 0.5)
pbinom(x = 5, size = 10, prob = 0.5)
abinom(x = 0.3, size = 10, prob = 0.5)
rbinom(10, 1, 0.5)
dnorm(x = 0)
qnorm(p = -2, mean = 0, sd = 1)
pnorm(q = 0.95, mean = 0, sd = 1)
rnorm(n = 10, mean = -10, sd = 15)
```