EE 123 Discussion Section 7 Resampling

March 20, 2019 Li-Hao Yeh

Based on slides by Jon Tamir

Announcements

- Lab 3 Part I and II due tomorrow March 21st
- HW 8 due next Wednesday April 1st
- Questions?

Review of sampling

Continuous time signal

$$x_c(t) \longleftrightarrow X_c(j\Omega) = \int x_c(t)e^{-j\Omega t}dt$$

Continuous time sampling

$$x_s(t) = x_c(t) \sum_{k=-\infty}^{\infty} \delta(t - kT)$$

$$X_s(j\Omega) = \frac{1}{T} \sum_{\substack{k = -\infty \\ \infty}}^{\infty} X_c(j(\Omega - k\Omega_s)), \quad \Omega_s = \frac{2\pi}{T}$$
$$= \sum_{\substack{k = -\infty \\ \infty}}^{\infty} x_c(nT)e^{-j\Omega T n}$$

Discrete time spectrum

 $k=-\infty$

$$X(e^{j\omega}) = X_s \left(j \left(\frac{\omega}{T} \right) \right)$$

4.23. Figure P4.23-1 shows a continuous-time filter that is implemented using an LTI discrete-time filter ideal lowpass filter with frequency response over $-\pi \le \omega \le \pi$ as

$$H(e^{j\omega}) = \begin{cases} 1 & |\omega| < \omega_c \\ 0 & \omega_c < |\omega| \le \pi. \end{cases}$$

- (a) If the continuous-time Fourier transform of $x_c(t)$, namely $X_c(j\Omega)$, is as shown in Figure P4.23-2 and $\omega_c = \frac{\pi}{5}$, sketch and label $X(e^{j\omega})$, $Y(e^{j\omega})$ and $Y_c(j\Omega)$ for each of the following cases:
 - (i) $1/T_1 = 1/T_2 = 2 \times 10^4$
 - (ii) $1/T_1 = 4 \times 10^4$, $1/T_2 = 10^4$
 - (iii) $1/T_1 = 10^4$, $1/T_2 = 3 \times 10^4$.
- (b) For $1/T_1 = 1/T_2 = 6 \times 10^3$, and for input signals $x_c(t)$ whose spectra are bandlimited to $|\Omega| < 2\pi \times 5 \times 10^3$ (but otherwise unconstrained), what is the maximum choice of the cutoff frequency ω_c of the filter $H(e^{j\omega})$ for which the overall system is LTI? For this maximum choice of ω_c , specify $H_c(j\Omega)$.

Figure P4.23-1

(b) From the figure below, it can be seen that the only portion of the spectrum which remains unaffected by the aliasing is $|\omega| < \pi/3$. So if we choose $\omega_c < \pi/3$, the overall system is LTI with a frequency response of

$$H_c(j\Omega) = \begin{cases} 1 & \text{for } |\Omega| < \omega_c \times 6 \times 10^3 \\ 0 & \text{otherwise.} \end{cases}$$

What will you do if I want to resample the signal with a period of 3T/4?

Assuming the low-pass filter is an ideal low pass filter, how would you draw the spectrum at each stage?

Assuming the filter is $H(e^{j\omega})$, can you write up the expression of spectrum for each stage?

If we only want to express $X_d(e^{j\omega})$, how many terms do we need to consider?

How do these signals look like in the sequence space?

How would you reconstruct this signal with linear interpolation with period 3T/4?

What will you do if I want to resample the signal with a period of 4T/3?

Assuming the low-pass filter is an ideal low pass filter, how would you draw the spectrum at each stage?

4.32. Consider the discrete-time system shown in Figure P4.32-1

Figure P4.32-1

where

- (i) L and M are positive integers.

- (iii) $y[n] = y_e[nM]$. (iv) $H(e^{j\omega}) = \begin{cases} M & |\omega| \le \frac{\pi}{4} \\ 0 & \frac{\pi}{4} < |\omega| \le \pi \end{cases}$.
- (a) Assume that L=2 and M=4, and that $X(e^{j\omega})$, the DTFT of x[n], is real and is as shown in Figure P4.32-2. Make an appropriately labeled sketch of $X_e(e^{j\omega})$, $Y_e(e^{j\omega})$ and $Y(e^{j\omega})$, the DTFTs of $x_e[n]$, $y_e[n]$, and y[n], respectively. Be sure to clearly label salient amplitudes and frequencies.

Figure P4.32-2

(b) Now assume L=2 and M=8. Determine y[n] in this case. *Hint*: See which diagrams in your answer to part (a) change.

4.32. A. With L = 2 and M = 4,

B. With L=2 and M=8, $X_e\left(e^{j\omega}\right)$ and $Y_e\left(e^{j\omega}\right)$ remain as in part A, except that $Y_e\left(e^{j\omega}\right)$ now has a peak value of 8. After expanding we have

We see that $Y(e^{j\omega}) = 1$ for all ω . Inverse transforming gives $y[n] = \delta[n]$ in this case.

2. A continuous time signal $x_c(t)$ with the spectrum $X_c(j\Omega)$ depicted below is sampled with period T_1 , resulting in a discrete sequence $x_1[n]$ with the DTFT $X_1(e^{j\omega})$ below.

- a) (15 points) Determine the largest sampling period T_2 that would avoid aliasing, and express it in terms of T_1 . Sketch the DTFT of the sequence $x_2[n]$, sampled with period T_2 .
- b) (15 points) Draw the block diagram of a post-processing unit that down-samples $x_2[n]$ by a factor of T_2/T_1 . Sketch the DTFT of the output and compare it with $X_1(e^{j\omega})$ above.

