Løsning til underveiseksamen i MAT 1100 høst 2009

- 1. (2 poeng) Det komplekse tallet z har polarkoordinater $r=8, \theta=\frac{4\pi}{3}$. Da er z lik:
- \Box $-4+4i\sqrt{3}$
- \Box $-4-4i\sqrt{3}$
- \Box $-4\sqrt{2}-4i\sqrt{2}$
- \Box $-4\sqrt{3}-4i$
- \Box $-8-8i\sqrt{3}$

Riktig løsning: $-4 - 4i\sqrt{3}$

- 2. (2 poeng) Det komplekse tallet z = -3 + 3i har polarkoordinater:
- $\begin{array}{c|c} \text{C poeigf Det kol} \\ \hline & r = 3\sqrt{2}, \theta = \frac{2\pi}{3} \\ \hline & r = 3\sqrt{2}, \theta = \frac{3\pi}{4} \\ \hline & r = 3\sqrt{3}, \theta = \frac{3\pi}{4} \\ \hline & r = 3\sqrt{2}, \theta = \frac{\pi}{4} \\ \hline & r = 3\sqrt{3}, \theta = \frac{5\pi}{6} \\ \hline \end{array}$

Riktig løsning: $r = 3\sqrt{2}, \theta = \frac{3\pi}{4}$

- 3. (2 poeng) Dersom $z = \overline{(2+i)(3-i)}$, så er:
- \Box z=5-i
- \Box z = 7 i
- \Box z = 7 + 5i
- \Box z = 7 + i
- \Box z = 12 3i

Riktig løsning: z = 7 - i

- 4. (2 poeng) Den deriverte til $f(x) = \cos \sqrt{1 x^2}$ er: $\frac{-2x}{\sqrt{1 x^2}} \sin \sqrt{1 x^2}$ $\frac{2x}{\sqrt{1 x^2}} \sin \sqrt{1 x^2}$ $2x \sin \sqrt{1 x^2}$ $\frac{x}{\sqrt{1 x^2}} \sin \sqrt{1 x^2}$ $\frac{x}{\sqrt{1 x^2}} \sin x$

Riktig løsning: $\frac{x}{\sqrt{1-x^2}}\sin\sqrt{1-x^2}$

- 5. (2 poeng) Den deriverte til $f(x) = 2\sqrt{x} \ln(1+\sqrt{x})$ er:

Riktig løsning: $\frac{\ln(1+\sqrt{x})}{\sqrt{x}} + \frac{1}{1+\sqrt{x}}$

- 6. (2 poeng) Grenseverdien $\lim_{x\to 0} \frac{6x^4-3x^6+7x^7}{7x^4+3x^6+6x^7}$ er lik:
- $\begin{array}{ccc} \square & \frac{6}{7} \\ \square & 1 \end{array}$
- \Box 0
- \Box $-\infty$

Riktig løsning: $\frac{6}{7}$

- 7. (2 poeng) Grenseverdien $\lim_{x\to 0} \frac{\sqrt{1+\tan x}-1}{x}$ er lik:
- $\begin{array}{cc} \square & -\infty \\ \square & \frac{1}{2} \end{array}$
- \Box ∞
- \square 0
- \square 1

Riktig løsning: $\frac{1}{2}$

- 8. (2 poeng) Grenseverdien $\lim_{x \to 0^+} \frac{\sqrt{x}}{\sin x}$ er lik:
- \square ∞
- \square 0
- \Box $\frac{1}{2}$
- \square 2
- \square 1

Riktig løsning: ∞

- 9. (2 poeng) Den omvendte funksjonen til $f(x) = \frac{\ln(x-2)}{5}, x > 2$ er: $\square \quad g(x) = e^{-5x+2}$
- $\hfill \Box$ Det finnes ingen omvendt funksjon
- $g(x) = e^{5x-2}$
- $\Box g(x) = 5 \ln(x+2)$ $\Box g(x) = e^{5x} + 2$

Riktig løsning: $g(x) = e^{5x} + 2$

```
10. (2 poeng) Funksjonen f(x) = x^2 - 2x er injektiv på intervallet:
\square (-\infty,1]
\Box [-1,\infty)
\square hele \mathbb{R}
\square [0,\infty)
\square [0,2]
Riktig løsning: (-\infty, 1]
11. (3 poeng) Den deriverte til x^{\sin x} er lik:
\Box x^{\sin x} \left(\cos x \ln x + \frac{\sin x}{x}\right)
\Box \quad \cos(x) x^{\sin x - 1}
\Box x^{\sin x} \ln(\sin x)
Riktig løsning: x^{\sin x} \left(\cos x \ln x + \frac{\sin x}{x}\right)
12. (3 poeng) Det reelle tredjegradspolynomet P(z) = z^3 + z^2 - 4z + 6 har
z = 1 + i som rot. De andre røttene er:
\square 1 - i og 3
\Box 1 - i og i
\Box 1 - i og 2
\square 1 - i og -3
☐ Har ikke nok informasjon til å finne dem
Riktig løsning: 1 - i og -3
13. (3 poeng) Anta at f er en deriverbar funksjon med f(x) > 0.
La h(x) = f(x) \ln f(x). Da er den deriverte, h'(x) lik:
 \Box f'(x) \ln f(x) 
 \Box \frac{\ln f(x)}{f(x)} f'(x) 
\Box \quad \ln f(x) + f'(x)
 \Box f'(x)(\ln f(x) + 1) 
 \Box \frac{\ln f(x)}{f(x)} f'(x) 
Riktig løsning: f'(x)(\ln f(x) + 1)
14. (3 poeng) Løsningene til annengradsligningen z^2 - 4z + 6 = 0 er:
\Box 1 ± i\sqrt{2}
\square 2 \pm i\sqrt{2}
\square 2 ± i
\square 2 \pm i\sqrt{3}
☐ Ligningen har ingen komplekse løsninger
```

Riktig løsning: $2 \pm i\sqrt{2}$

	(3 poeng) Når $x\to\infty$, har funksjonen $f(x)=\sqrt{4x^2+2x}$ asymptoten: $y=2x+\frac{1}{2}$ Den har ingen asymptote $y=x+\frac{1}{2}$ $y=2x+1$ $y=x+2$	
Rik	tig løsning: $y = 2x + \frac{1}{2}$	
Fun	(3 poeng) Funksjonen f er definert for $x\geq 0$ ved $f(x)=\sqrt{x}+\frac{2}{\sqrt{x}}$. Iksjonen er konkav på mengden: $[\frac{1}{6},\infty)$ Ingen steder $[0,\infty)$ $[0,6]$ $[6,\infty)$	
	tig løsning: $[6,\infty)$ (Her er det desverre en feil i oppgaven; f er bare definert e definert i $x=0$, men dette er uvesentlig for hvor den er konkav.)	
17.	(3 poeng) Funksjonen f er gitt ved $f(x) = \begin{cases} \frac{\ln x}{x-1} & \text{hvis } x \neq 1 \\ 1 & \text{hvis } x = 1 \end{cases}$. Da er	
f'(1) lik:		
	eksisterer ikke 0	
Riktig løsning: $-\frac{1}{2}$		
$x_n = N$ f	(3 poeng) Du skal bruke definisjonen av grenseverdi til å vise at følgen = $\frac{3n-5}{2n}$ har grenseverdi $\frac{3}{2}$. Gitt en vilkårlig $\epsilon>0$, hvor stor må du velge for at $ x_n-\frac{3}{2} <\epsilon$ når $n\geq N$? større enn $\min\{\frac{\epsilon}{4},1\}$ større enn $\max\{\epsilon^2,1\}$ større enn $\max\{\epsilon^2,1\}$ større enn $\frac{5}{2\epsilon}$ større enn $\frac{5}{2\epsilon}$	
Rik	tig løsning: større enn $\frac{5}{2\epsilon}$	
bok	(3 poeng) En eske skal ha kvadratisk bunn, men ingen topp. Volumet til sen skal være 4 dm³. Hvor høy må boksen være for at overflatearealet nn+sidevegger) skal bli minst mulig? $\sqrt[3]{4}$ dm $\frac{3}{2}$ dm	

1 dm
$\frac{3}{4}$ dm
Vi kan få arealet så lite vi måtte ønske

Riktig løsning: 1 dm

20. (3 poeng) En jente sitter på en karusell som bruker 4 sekunder på hver omdreining. Stedet hun sitter er 4 m fra karusellens akse. Faren står 8 m fra aksen for å ta et bilde av jenta. Figuren viser situasjonen sett ovenfra. Hvor raskt avtar avstanden mellom de to i det øyeblikket vinkelen θ er $\frac{\pi}{3}$?

$\frac{15}{8}\pi \text{ m/s}$
$2\sqrt{2}\pi \text{ m/s}$

$$\square$$
 2π m/s

Riktig løsning:
$$2\pi$$
 m/s

Slutt