IN THE CLAIMS

Please amend claims 1 through 9 and 11 through 20 as follows:

1

2

6

8

10

11

1

2

3

1

2

3

4

1. (Currently amended) An organic electroluminescent display, comprising:

a plurality of anode electrodes of R, G and B for red, green and blue unit pixels disposed on a substrate and with the anode electrodes separated from each other and with an anode electrode for at least one unit pixel of the red, green and blue unit pixels having a thickness different from thicknesses of anode electrodes of other unit pixels of the red, green and blue unit pixels;

organic thin-film layers of for the R, G and B red, green and blue unit pixels disposed on the anode electrodes; and

a cathode electrode disposed over an entire surface of the substrate[[,]] wherein an anode electrode of a t least one unit pixel of the R, g and B unit pixels has a thickness different from thicknesses of anode electrodes of other unit pixels fo the R, G and B unit pixels.

- 2. (Currently amended) The organic electroluminescent display according to claim 1, wherein the anode electrode of the R red unit pixel is thicker than the anode electrodes of for the other unit pixels.
- 3. (Currently Amended) The organic electroluminescent display according to claim 1, wherein the anode electrode of each of the unit pixels includes a first film having a high reflectivity and a second film for adjusting a work function, and wherein the second film of said at least one unit pixel of the R, G and B red, green and blue unit pixels has a thickness different

from thicknesses of the second films of the other unit pixels of the R, G and B red, green and
blue unit pixel.

- 4. (Currently Amended) The organic electroluminescent display according to claim 3, wherein the second film of the [[R]] red unit pixel is thicker than the second films of the other unit pixels.
- 5. (Currently Amended) The organic electroluminescent display according to claim 3, wherein a thickness of the second film of the R unit pixel is in a range of one of 250 to 450Å and 700 to 750Å, and thicknesses of the second films of the [[G]] green and [[B]] blue unit pixels are in a range of 50 to 150Å.
- 6. (Currently Amended) The organic electroluminescent display according to claim 3, wherein a thickness of the second film of the [[R]] red unit pixel is in a range of one of 250 to 450Å and 700 to 750Å, a thickness of the second film of the [[G]] green unit pixel is in a range of 200 to 300Å, and a thickness of the second film of the [[B]] blue unit pixel is in a range of 50 to 150Å.
- 7. (Currently Amended) The organic electroluminescent display according to claim 3, wherein a thickness of the second film of the [[R]] <u>red</u> unit pixel is substantially 375Å, a thickness of the second film of the [[G]] <u>green</u> unit pixel is substantially 250Å, and a thickness of the second film of the [[B]] <u>blue</u> unit pixel is substantially 125Å, whereby maximum efficiency is obtained in the R; G and B <u>red</u>, green and <u>blue</u> unit pixels.

8. (Currently Amended) The organic electroluminescent display according to claim 3, wherein a thickness of the second film of the [[R]] red unit pixel is substantially 750Å, a thickness of the second film of the [[G]] green unit pixel is substantially 250Å, and a thickness of the second film of the [[B]] blue unit pixel is substantially 125Å, whereby maximum color reproduction is obtained in the R; G and B red, green and blue unit pixels.

- 9. (Currently amended) The A method for fabricating an organic electroluminescent display according to claim 1, wherein comprised of making the first film of each of the unit pixels comprised of one from a material selected from a group comprised of Al, Ag and an allow film thereof, and making the second film comprises from one of ITO and IZO.
- 1 10. (Original) An organic electroluminescent display comprising:
 2 a plurality of pixels, each including at least an anode electrode;
 3 wherein anode electrodes of adjacent pixels have different thicknesses relative to each
 4 other.
 - 11. (Currently amended) The A method for fabricating an organic electroluminescent display according to claim 10, wherein comprised of making the anode electrode of each of the pixels include a first film having a high reflectivity and a second film for adjusting a work function, and wherein making the second films of the anode electrodes of adjacent pixels have to have different thicknesses relative to each other.

1	12. (Currently Amended) A method for fabricating an organic electroluminescent
2	display, comprising the steps of:
3	disposing first anodes of R, G and B red, green and blue unit pixels on a substrate;
4	forming an anode electrode of the [[R]] red unit pixel by disposing a second anode of
5	the R unit pixel on the first anode of the [[R]] red unit pixel;
6	forming anode electrodes of the [[G]] green and [[B]] blue unit pixels by disposing
7	second anodes of the [[G]] green and [[B]] blue unit pixels on the first anodes of the [[G]] green
8	and [[B]] blue unit pixels, respectively;
9	disposing respective organic thin-film layers on the anode electrodes of the R, G and B
10	red, green and blue unit pixels; and
11	disposing a cathode electrode over an entire surface of the substrate,
12	wherein the second anode of at least one unit pixel of the R, G and B red, green and blue
13	unit pixels has a thickness different from thicknesses of the second anodes of other unit pixels
14	of the R, G and B red, green and blue unit pixels.
1	13. (Currently Amended) The method according to claim 12, wherein the second film
2	of the [[R]] red unit pixel is thicker than the second films of the other unit pixels of the R, G
3	and B red, green and blue unit pixels.
1	14. (Currently Amended) The method according to claim 12, wherein a thickness of

the second film of the [[R]] red unit pixel is in a range of one of 250 to 450Å and 700 to 750Å,

a thickness of the second film of the [[G]] green unit pixel is in a range of one of 50 to 150Å

and 200 to 300Å, and a thickness of the second film of the B unit pixel is in a range of 50 to

2

3

4

	_	۰
1	50	٨
1	50	А.

5

12

1

2

2

3

5

1	15. (Currently Amended) A method for fabricating an organic electroluminescent
2	display, comprising the steps of:
3	disposing sequentially a first anode electrode material and a second anode electrode
4	material of R, G and B red, green and blue unit pixels on a substrate;
5	etching the first and second anode electrode materials to form anode electrodes of the
6	R, G and B red, green and blue unit pixels, each including a first anode and a second anode;
7	disposing respective organic thin-film layers on the anode electrodes of the R, G and B
8	red, green and blue unit pixels; and
9	disposing a cathode electrode over an entire surface of the substrate,
10	wherein a second anode of at least one unit pixel of the R, G and B red, green and blue
11	unit pixels has a thickness different from thicknesses of second anodes of the other unit pixels

16. (Currently Amended) The method according to claim 15, wherein the second film of the [[R]] red unit pixel is thicker than the second films of the other unit pixels.

of the R, G and B red, green and blue unit pixels.

17. (Currently Amended) The method according to claim 15, wherein a thickness of the second film of the [[R]] red unit pixel is in a range of one of 250 to 450Å and 700 to 750Å, a thickness of the second film of the [[G]] green unit pixel is in a range of one of 50 to 150Å and 200 to 300Å, and a thickness of the second film of the [[B]] blue unit pixel is in a range of 50 to 150Å.

1	18. (Currently Amended) A method for fabricating an organic electroluminescent	
2	display, comprising the steps of:	
3	disposing first anodes of R, G and B red, green and blue unit pixels on a substrate;	
4	disposing a second anode electrode material over an entire surface of the substrate;	
5	etching the second anode electrode material to form respective second anodes on the first	
6	anodes of the R, G and B unit pixels, thereby forming respective anode electrodes of the R, G	
7	and B red, green and blue unit pixels;	
8	disposing organic thin-film layers on the respective anode electrodes of the R, G and B	
9	red, green and blue unit pixels; and	
10	disposing a cathode electrode over an entire surface of the substrate;	
11	wherein a second anode of at least one unit pixel of the R, G and B red, green and blue	
12	unit pixels has a thickness different from thicknesses of second anodes of the other unit pixels	
13	of the R, G and B red, green and blue unit pixels.	
1	19. (Currently Amended) The method according to claim 18, wherein the second film	
2	of the [[R]] red unit pixel is thicker than the second films of the other unit pixels.	
1	20. (Currently Amended) The method according to claim 18, wherein a thickness of	
2	the second film of the [[R]] red unit pixel is in a range of one of 250 to 450Å and 700 to 750Å,	

a thickness of the second film of the [[G]] green unit pixel is in a range of one of 50 to 150Å

and 200 to 300Å, and a thickness of the second film of the [[B]] blue unit pixel is in a range of

3

5

50 to 150Å.