Reinforcement Learning

Department of Information and Communication Technology

Unit 8: Reinforcement Learning

Artificial Intelligence (01CT0703)

Prof. Nishith Kotak

Reinforcement learning is a type of Machine Learning where an agent learns to behave in a environment by performing actions and seeing the results

Scenario 1: Baby starts crawling and makes it to the candy

Scenario 2: Baby starts crawling but falls due to some hurdle in between

Reinforcement Learning system is comprised of two main components:

- Agent
- Environment

Reinforcement Learning system is comprised of two main components:

- Agent Environment

Agent: The RL algorithm that learns from trial and error

Environment: The world through which the agent moves

Action (A): All the possible steps that the agent can take

State (S): Current condition returned by the environment

Reward (R): An instant return from the environment to appraise the last action

Policy (n): The approach that the agent uses to determine the next action based on the current state

Value (V): The expected long-term return with discount, as opposed to the short-term reward R

Action-value (Q): This similar to Value, except, it takes an extra parameter, the current action (A)

Reward maximization theory states that, a RL agent must be trained in such a way that, he takes the best action so that the reward is maximum.

Exploration Vs Exploitation

Counter Strike Example

- The RL Agent (Player1) collects state S^o from the environment
- Based on the state So, the RL agent takes an action Ao, initially the action is random
- 3. The environment is now in a new state S1
- RL agent now gets a reward R¹ from the environment
- The RL loop goes on until the RL agent is dead or reaches the destination

The mathematical approach for mapping a solution in reinforcement learning is called Markov Decision Process (MDP)

The following parameters are used to attain a solution:

- Set of actions, A
- Set of states, S
- Reward, R
- Policy, π
- Value, V

In this problem,

- Set of states are denoted by nodes i.e. {A, B, C, D}
- Action is to traverse from one node to another {A -> B, C -> D}
- Reward is the cost represented by each edge
- Policy is the path taken to reach the destination {A -> C -> D}

Place an agent in any one of the rooms (0,1,2,3,4) and the goal is to reach outside the building (room 5)

- 5 rooms in a building connected by doors
- each room is numbered 0 through
- The outside of the building can be thought of as one big room (5)
- Doors 1 and 4 lead into the building from room 5 (outside)

Next step is to associate a reward value to each door:

- doors that lead directly to the goal have a reward of 100
- Doors not directly connected to the target room have zero reward
- Because doors are two-way, two arrows are assigned to each room
- Each arrow contains an instant reward value

Place an agent in any one of the rooms (0,1,2,3,4) and the goal is to

Example (Agent traverse from room 2 to room5):

- 1. Initial state = state 2
- 2. State 2 -> state 3
- 3. State 3 -> state (2, 1, 4)
- 4. State 4 -> state 5

		Action					
State		0	1	2	3	4	5
R =	0	-1	-1	-1	-1	0	-1
	1	-1	-1	-1	0	-1	100
	2	-1	-1	-1	0	-1	-1
	3	-1	0	0	-1	0	-1
	4	0	-1	-1	0	-1	100
	5	-1	0	-1	-1	0	100

The -1's in the table represent null values

Add another matrix Q, representing the memory of what the agent has learned through experience.

- The rows of matrix Q represent the current state of the agent
- columns represent the possible actions leading to the next state
- Formula to calculate the Q matrix:

Q(state, action) = R(state, action) + Gamma * Max [Q(next state, all actions)]

Note

The Gamma parameter has a range of 0 to 1 (0 \leq Gamma \geq 1).

- If Gamma is closer to zero, the agent will tend to consider only immediate rewards.
- If Gamma is closer to one, the agent will consider future rewards with greater weight

- 2 Initialize matrix Q to zero
 - Select a random initial state
 - Set initial state = current state
 - Select one among all possible actions for the current state
 - 6 Using this possible action, consider going to the next state
 - Get maximum Q value for this next state based on all possible actions
- (8) Compute: Q(state, action) = R(state, action) + Gamma * Max[Q(next state, all actions)]
- Repeat above steps until current state = goal state

Q(3,1) = R(3,1) + 0.8 * Max[Q(1,3), Q(1,5)] = 0 + 0.8 * [0, 100] = 80The matrix Q get's updated

0

0

5 0

0

0

0

100