

# Прикладная статистика и анализ данных Съезд VII



# Дисперсионный анализ I







#### 1. Независимые выборки

Две группы пациентов. Одним дают одно лекарство, другим — другое. Верно ли, что первое лекарство эффективнее?

## 2. Связные выборки

Пациент проходит испытание, принимает средство, затем снова проходит испытание. Отличается ли эффект?

- Методы для задач 2 типа можно использовать для задач 1 типа.
   При этом теряется важная информация.
- ▶ Методы для задач 1 типа нельзя использовать для задач 2 типа.





| Человек | Препарат   | Изменение температуры |
|---------|------------|-----------------------|
| Петя    | Апотивадом | -0.9                  |
| Вася    | Апотивадом | -0.6                  |
| Катя    | Апотивадом | -1.0                  |
| Миша    | Апотивадом | -0.3                  |
| Ира     | Волымикер  | -2.6                  |
| Света   | Волымикер  | -1.9                  |
| Коля    | Волымикер  | -0.7                  |

Значимо ли отличается эффект от приема препаратов?





Каждый человек применяет один и тот же препарат.

| Человек | Температура до | Температура после |  |
|---------|----------------|-------------------|--|
| Петя    | 38.2           | 37.6              |  |
| Вася    | 37.6           | 38.0              |  |
| Катя    | 38.5           | 37.1              |  |
| Миша    | 38.0           | 36.9              |  |
| Ира     | 37.9           | 37.1              |  |
| Света   | 39.4           | 37.3              |  |

Есть ли эффект от приема препарата?

# **6**

# Другие вопросы на практике

- 1. Значимо ли отличаются решения в топ-10 в соревновании на Kaggle?
- 2. На какой дизайн кнопки клиент кликнет с большей вероятностью?
- 3. Увеличился ли средний чек корзины покупателей после внедрения нового блока рекомендаций?
- 4. В чем причина оттока клиентов к конкурентам?
- 5. Отличаются ли гены по степени экспрессии?
- 6. многие другие...



# Бернуллиевские выборки





$$X_1,...,X_n \sim \textit{Bern}(p)$$
 u  $Y_1,...,Y_m \sim \textit{Bern}(q)$ .

$$H_0\colon p=q \text{ vs. } H_1\colon p\ \{<,\neq,>\}\ q$$

$$\widehat{p}_1 = \overline{X} \stackrel{d}{pprox} \mathcal{N}\left(p_1, rac{p_1(1-p_1)}{n}
ight)$$
 и  $\widehat{p}_2 = \overline{Y} \stackrel{d}{pprox} \mathcal{N}\left(p_2, rac{p_2(1-p_2)}{m}
ight)$  — ОМП При справедливости  $H_0\colon W(X,Y) = rac{\widehat{p}_1-\widehat{p}_2}{\widehat{\sigma}} \stackrel{d}{pprox} \mathcal{N}(0,1),$  где  $\widehat{\sigma} = \sqrt{rac{\widehat{p}_1(1-\widehat{p}_1)}{n} + rac{\widehat{p}_2(1-\widehat{p}_2)}{m}}.$ 

Для 
$$\mathsf{H}_1 \colon p > q$$
 критерий Вальда  $S = \{W(x,y) > z_{1-\alpha}\}.$ 

Дов. интервал для 
$$p_1-p_2$$
 равен  $C=(\widehat{p}_1-\widehat{p}_2-z_{1-\alpha}\widehat{\sigma},\ 1).$ 

 $H_0$  отвергается  $\iff$  0  $\notin$  C

# Пример (влияние нового препарата на выздоровление)

# Испытуемые делятся случайно на две группы:

1. Исследуемая группа — принимает новый препарат;

$$X=(X_1,...,X_n)\sim \textit{Bern}(p_1)$$
 — результаты лечения.

2. Контрольная группа — принимает плацебо;

$$Y=(Y_1,...,Y_m)\sim \textit{Bern}(p_2)$$
 — результаты лечения.

 $H_0: p_1 = p_2$  — отсутствие эффекта

 $H_1: p_1 > p_2$  — эффект присутствует



# Пример (влияние нового препарата на выздоровление)

- 1. 1 группа: n=30 человек, 27 выздоровело  $\implies \widehat{p}_1=0.9$  2 группа: m=30 человек, 21 выздоровело  $\implies \widehat{p}_2=0.7$   $W(x,y)\approx 2,\; pvalue=0.0228,\; дов.\; интервал\; (0.036,1)$
- 2. 1 группа: n=30 человек, 27 выздоровело  $\implies \widehat{p}_1=0.9$  2 группа: m=30 человек, 15 выздоровело  $\implies \widehat{p}_2=0.5$   $W(x,y)\approx 3.76,\; pvalue=0.00008,\; дов.\; интервал (0.225,1)$
- 3. 1 группа: n=30 человек, 27 выздоровело  $\implies \widehat{p}_1=0.9$  2 группа: m=10 человек, 7 выздоровело  $\implies \widehat{p}_2=0.7$   $W(x,y)\approx 1.54,\; pvalue=0.0618,\; дов.\; интервал\; (-0.017,1)$

# Связные выборки



$$X_1, ..., X_n \sim Bern(p)$$
  
 $Y_1, ..., Y_n \sim Bern(q)$ .

$$H_0: p = q \text{ vs. } H_1: p \{<, \neq, >\} q$$

|           | $Y_i = 1$ | $Y_i = 0$ |
|-----------|-----------|-----------|
| $X_i = 1$ | е         | f         |
| $X_i = 0$ | g         | h         |

#### Статистика критерия:

$$Z(X,Y) = \frac{\widehat{p} - \widehat{q}}{\sqrt{\frac{f+g}{n^2} + \frac{(f-g)^2}{n^3}}} = \frac{f-g}{\sqrt{f+g+\frac{(f-g)^2}{n}}} \xrightarrow{d_0} \mathcal{N}(0,1)$$

Для 
$$\mathsf{H}_1\colon p>q$$
 критерий  $S=\{Z(x,y)>z_{1-\alpha}\}$  Дов. интервал для  $p_1-p_2$  равен  $C=(\widehat{p}_1-\widehat{p}_2-z_{1-\alpha}\widehat{\sigma},\ 1)$ , где  $\widehat{\sigma}=\sqrt{\frac{f+g}{n^2}+\frac{(f-g)^2}{n^3}}$ .





Два опроса с интервалом в полгода среди 1600 граждан Великобритании об одобрении премьер-министра.

|           | $Y_i = 1$ | $Y_i = 0$ | $\sum$ |
|-----------|-----------|-----------|--------|
| $X_i = 1$ | e = 794   | f = 150   | 944    |
| $X_i = 0$ | g = 86    | h = 720   | 656    |
| Σ         | 880       | 720       | 1600   |

 $H_0$ : рейтинг не изменился

 $H_1$ : рейтинг изменился  $\Longrightarrow$  pvalue  $= 2.8 \cdot 10^{-5}$ 

 $\mathsf{H}_1$ : рейтинг снизился  $\Longrightarrow$   $\mathit{pvalue} = 1.4 \cdot 10^{-5}$ 

 $\mathsf{H}_1$ : рейтинг увеличился  $\Longrightarrow$  pvalue = 0.99999

Доверительный интервал (0.0214, 0.0590)

# Дов. интервал Уилсона для p-q

# Независимые выборки

$$[\widehat{p} - \widehat{q} - \delta, \ \widehat{p} - \widehat{q} + \varepsilon],$$

$$\begin{split} \delta &= z_{\alpha/2} \sqrt{\frac{\ell_1 (1 - \ell_1)}{n} + \frac{u_2 (1 - u_2)}{m}}, \\ \varepsilon &= z_{\alpha/2} \sqrt{\frac{u_1 (1 - u_1)}{n} + \frac{\ell_2 (1 - \ell_2)}{m}}, \end{split}$$

$$\ell_1, u_1$$
 — корни уравнения  $|x - \widehat{p}| = z_{\alpha/2} \sqrt{\frac{x(1-x)}{p}},$ 

$$\ell_2,u_2$$
 — корни уравнения $|x-\widehat{q}|=z_{lpha/2}\sqrt{rac{x(1-x)}{m}}.$ 

# Связные выборки

$$[\widehat{p} - \widehat{q} - \delta, \ \widehat{p} - \widehat{q} + \varepsilon],$$

$$\delta = \sqrt{d\ell_1^2 - 2\widehat{\varphi}d\ell_1du_2 + du_2^2},$$

$$\varepsilon = \sqrt{du_1^2 - 2\widehat{\varphi}du_1d\ell_2 + d\ell_2^2},$$

$$\widehat{arphi} = egin{cases} rac{eh-fg}{(e+f)(g+h)(e+h)(f+g)}; \ 0, & ext{если знаменатель} = 0; \end{cases}$$

$$d\ell_1 = \widehat{p} - \ell_1, \quad d\ell_2 = \widehat{q} - \ell_2,$$
  
 $du_1 = u_1 - \widehat{p}, \quad du_2 = u_2 - \widehat{q},$ 

 $\ell_1, u_1$  — корни уравнения

$$|x-\widehat{p}|=z_{\alpha/2}\sqrt{\frac{x(1-x)}{n}},$$

 $\ell_2, u_2$  — корни уравнения

$$|x-\widehat{q}|=z_{\alpha/2}\sqrt{\frac{x(1-x)}{n}}.$$



Нормальные выборки

# Связные выборки

$$X_1,...,X_n \sim \mathcal{N}(a_1,\sigma_1^2)$$

$$Y_1,...,Y_n \sim \mathcal{N}(a_2,\sigma_2^2).$$

$$H_0: a_1 = a_2 \ vs. \ H_1: a_1 \ \{<, \neq, >\} \ a_2$$

#### Сведение к задаче с одной выборкой:

Рассмотрим выборку  $\delta_1,...,\delta_n$ , где  $\delta_i=X_i-Y_i$ .

Тогда 
$$\mathsf{H}_0\colon \mathsf{E}\delta_i=\mathsf{0}$$
 vs.  $\mathsf{H}_1\colon \mathsf{E}\delta_i\ \{<,\neq,>\}\ \mathsf{0}$ 

Применяем критерий Вальда:

$$Z(X,Y) = \sqrt{n} \ \overline{\delta}/S_{\delta} \stackrel{d_0}{\longrightarrow} \mathcal{N}(0,1)$$

# Почему не точный?

Если  $X_i \sim \mathcal{N}(a_1, \sigma_1^2)$  и  $Y_i \sim \mathcal{N}(a_2, \sigma_2^2)$  зависимы, то разность не обязана быть нормальной.

# Связные выборки: обобщение

$$X_1, ..., X_n$$

$$Y_1, ..., Y_n$$
.

$$H_0: EX_1 = EY_1$$
 vs.  $H_1: EX_1 \{<, \neq, >\} EY_1$ 

#### Сведение к задаче с одной выборкой:

Рассмотрим выборку  $\delta_1,...,\delta_n$ , где  $\delta_i=X_i-Y_i$ .

**Требование:**  $\delta_1,...,\delta_n$  — выборка с конечной дисперсией.

Тогда  $\mathsf{H}_0\colon\mathsf{E}\delta_i=\mathsf{0}\,$  vs.  $\mathsf{H}_1\colon\delta_i\,\left\{<,\neq,>\right\}\,\mathsf{0}$ 

Применяем критерий Вальда:

$$Z(X,Y) = \sqrt{n} \ \overline{\delta}/S_{\delta} \stackrel{d_0}{\longrightarrow} \mathcal{N}(0,1)$$



$$X_1,...,X_n \sim \mathcal{N}(a_1,\sigma_1^2)$$

$$Y_1,...,Y_m \sim \mathcal{N}(a_2,\sigma_2^2).$$

#### Виды гипотез:

1. Равенство средних

$$H_0: a_1 = a_2 \ vs. \ H_1: a_1 \ \{<, \neq, >\} \ a_2$$

Способ зависит от доступной информации о дисперсиях.

2. Равенство дисперсий

$$H_0\colon \sigma_1=\sigma_2 \ \textit{vs.} \ H_1\colon \sigma_1\ \{<,\neq,>\}\ \sigma_2$$

3. Однородность

$$H_0: (a_1, \sigma_1^2) = (a_2, \sigma_2^2)$$

# Независимые выборки: среднее

$$X_1,...,X_n \sim \mathcal{N}(a_1,\sigma_1^2)$$

$$Y_1,...,Y_m \sim \mathcal{N}(a_2,\sigma_2^2).$$

$$H_0: a_1 = a_2$$

$$\{a_2\}$$

$$H_1: a_1\{<, \neq, >\}a_2$$

$$<, \neq, >$$
  $\}a_2$ 

$$\overline{X} \sim \mathcal{N}\left(a_1, \sigma_1^2/n\right)$$

$$\overline{Y} \sim \mathcal{N}\left(a_2, \sigma_2^2/m\right)$$

$$\overline{X} - \overline{Y} \stackrel{\mathsf{H_0}}{\sim} \mathcal{N}\left(0, \sigma_1^2/n + \sigma_2^2/m\right)$$

Случай 1. 
$$\sigma_1$$
 и  $\sigma_2$  из

Случай 1. 
$$\sigma_1$$
 и  $\sigma_2$  и

**Случай 1.** 
$$\sigma_1$$
 и  $\sigma_2$  известны

 $Z(X,Y) = \frac{\overline{X} - \overline{Y}}{\sqrt{\sigma_*^2/n + \sigma_*^2/m}} \stackrel{\mathsf{H_0}}{\sim} \mathcal{N}(0,1)$ 

**Случай 1.** 
$$\sigma_1$$
 и  $\sigma_2$  из Статистика критерия

**Случай 2.** 
$$\sigma_1 = \sigma_2 = \sigma$$
 **не**известны

$$S_X^2, S_Y^2$$
 — несмещ. оценки дисп.

Несмещенная оценка 
$$\sigma$$
: как взвещенное усреднение дисперсий

как взвешенное усреднение дисперсий 
$$S_{\mathrm{tot}}^2 = \frac{(n-1)S_{\mathrm{X}}^2 + (m-1)S_{\mathrm{Y}}^2}{2}$$

$$S_{tot} = \frac{1}{n+m-2}$$
 Статистика критерия

$$T(X,Y) = \frac{\overline{X-Y}}{S_{tot}\sqrt{1/n+1/m}} \stackrel{\text{Ho}}{\sim} T_{n+m-2}$$

$$T(X,Y) = \frac{\overline{X} - \overline{Y}}{\sqrt{S_X^2/n + S_Y^2/m}} \stackrel{\mathbf{Ho}}{\sim} T_V$$

$$V = \left(\frac{S_X^2}{n} + \frac{S_Y^2}{m}\right)^2 / \left(\frac{S_X^4}{n^2(n-1)} + \frac{S_Y^4}{m^2(m-1)}\right)$$

**Случай 3.** 
$$\sigma_1 \neq \sigma_2$$
 и **не**известны  $S_X^2, S_Y^2 -$  несмещ. оценки дисп.

# Независимые выборки: дисперсия

$$X_1,...,X_n \sim \mathcal{N}(a_1,\sigma_1^2)$$

$$Y_1,...,Y_m \sim \mathcal{N}(a_2,\sigma_2^2).$$

$$H_0\colon \sigma_1=\sigma_2 \ \textit{vs.} \ H_1\colon \sigma_1\ \{<,\neq,>\}\ \sigma_2$$

#### Критерий Фишера

$$S_X^2, S_Y^2$$
 — несмещенные оценки дисперсии  $\frac{(n-1)S_X^2}{\sigma^2} \sim \chi_{n-1}^2, \quad \frac{(m-1)S_Y^2}{\sigma^2} \sim \chi_{m-1}^2$ 

$$F(X,Y) = S_X^2 / S_Y^2 \stackrel{\mathsf{H_0}}{\sim} F_{n-1,m-1}$$

Не устойчив к отклонениям от нормальности даже асимптотически, нужна строгая проверка нормальности критерием Шапиро-Уилка.

# Независимые выборки: однородность

$$X_1,...,X_n \sim \mathcal{N}(a_1,\sigma_1^2)$$

$$Y_1, ..., Y_m \sim \mathcal{N}(a_2, \sigma_2^2)$$

$$\mathsf{H}_0$$
:  $(a_1, \sigma_1^2) = (a_2, \sigma_2^2)$ 

#### Идея:

- 1. Проверим гипотезу  $H_0': \sigma_1^2 = \sigma_2^2$   $\implies$  двусторонний критерий Фишера;
- 2. Если не отвергается, то проверим  $\mathsf{H}_0'': a_1 = a_2$   $\Longrightarrow$  двусторонний критерий Стьюдента (случай  $\sigma_1 = \sigma_2$ ).

Как быть с уровнем значимости? Применяем МПГ по методу Холма.



