Neural Networks: Representation

Latest Submission Grade

80%

1. Ouestion 1 Which of the following statements are true? Check all that apply. 0 / 1 point Incorrect 2. Question 2 Consider the following neural network which takes two binary-valued inputs $x1, x2 \in \{0,1\}x_1$, $x = 2 \ln \{0, 1\} x_1, x_2 \in \{0, 1\}$ and outputs $h\Theta(x)h$ \Theta(x)h\O(x). Which of the following logical functions does it (approximately) compute? 1 / 1 point Correct Question 3 Consider the neural network given below. Which of the following equations correctly computes the activation $a1(3)a_1^{(3)}a1(3)$? Note: g(z)g(z)g(z) is the sigmoid activation function. 1 / 1 point Correct Question 4 You have the following neural network:

You want to have a vectorized implementation of this (i.e., one that does not use for loops). Which of the following implementations correctly compute $a(2)a^{(2)}a(2)$? Check all that apply.

You'd like to compute the activations of the hidden layer $a(2) \in R3a^{(2)} \in R3a^{(2)} \in R3$. One way to do so is the following Octave code:

<u>1 /</u> 1 point

Correct

5.

Question 5

You are using the neural network pictured below and have learned the parameters $\Theta(1)=[12.11.310.6-1.2]$ \Theta^{(1)} =

12.11.310.6-1.2

 $\Theta(1){=}[112.10.61.3{-}1.2]$ (used to compute a(2)a^{(2)}a(2)) and $\Theta(2){=}[14.53.1]\$ Theta^{(2)} = 14.53.1

 $\Theta(2)=[14.53.1]$ (used to compute $a(3)a^{(3)}a(3)$) as a function of $a(2)a^{(2)}a(2)$). Suppose you swap the parameters for the first hidden layer between its two units so

 $\Theta(1)=[10.6-1.212.11.3]$ \Theta^{(1)} =

10.6-1.212.11.3

 $\Theta(1)=[110.62.1-1.21.3]$ and also swap the output layer so $\Theta(2)=[13.14.5]\$ Theta^{(2)} = 13.14.5

 $\Theta(2)=[13.14.5]$. How will this change the value of the output $h\Theta(x)h_{\perp}$ Theta(x) $h\Theta(x)$?

Correct