Chapter 5. Line and Surface Integrals

1 Mathematical Representation of Lines

Question 1: What is a line in 3-dimensional (2-dimensional) space?

Question 2: How to represent it in mathematics?

1.1 Parameterization of lines

Example Parameterize the following curves:

(1) The parabola $y = x^2$ from (0,0) to (1,1).

(2) The upper half of the unit circle $x^2 + y^2 = 1$.

(3) The line segment from (-1,5,0) to (1,6,4).

(4) The intersection of $x^2 + y^2 = 1$ and y + z = 2.

1.2 Tangent Vector of Curves

Definition Given a curve C with a parametric equation

$$\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k},$$

its tangent vector at $P_0 = \vec{r}(t_0)$ is

$$\vec{r}'(t_0) = x'(t_0)\vec{i} + y'(t_0)\vec{j} + z'(t_0)\vec{k} = \lim_{t \to t_0} \frac{\vec{r}(t) - \vec{r}(t_0)}{t - t_0}.$$

Example Find the tangent vector of $\vec{r}(t) = (1 + t^2)\vec{i} + (te^{-t})\vec{j} + \sin t\vec{k}$ at the point t = 0.

Physical Interpretation of Tangent Vector

Let $\vec{r}(t)$ represent the position of a particle A at time t. Then

- (1) $\vec{r}'(t)$ represents the velocity vector of A at time t.
- (2) $|\vec{r}'(t)|$ represents the speed of A at time t.
- (3) $\vec{r}''(t)$ represents the acceleration vector of A at time t.
- (4) $|\vec{r}''(t)|$ represents the acceleration magnitude of A at time t.

Example $\vec{r}(t) = (1 + t^2)\vec{i} + (te^{-t})\vec{j} + \sin t \vec{k}$, find the speed at t = 0.

2 Line Integral

Definition:

Physical Interpretation Let f(x, y, z) be the point density of a thinwire shaped curve C. Then

- $\int_C f(x, y, z) dC$ is the mass of the wire.
- $(\int_C x f(x,y,z) dC, \int_C y f(x,y,z) dC, \int_C z f(x,y,z) dC)$ is the center of mass of the wire.

Example Evaluate $\int_C y \sin z \ dC$, where C is the circular helix given by the equations

$$\vec{r}(t) = \cos t \ \vec{i} + \sin t \ \vec{j} + t \ \vec{k}, \ 0 \le t \le 2\pi.$$

Example $f(x,y)=2+x^2y$, C is the upper half of the unit circle $x^2+y^2=1$. Evaluate $\int_C f\ dC$

Example Evaluate $\int_C 2x \ dC$, where C consists of the arc C_1 of the parabola $y = x^2$ from (0,0) to (1,1) followed by the vertical line segment C_2 from (1,1) to (1,2).

3 Line integral of 2nd kind

Definition:

Example Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y, z) = xy\mathbf{i} + yz\mathbf{j} + zx\mathbf{k}$ and C is the twisted cubic given by $x = t, y = t^2, z = t^3, 0 \le t \le 1$.