EXERCICE photocopié (niveau 1-2)

Trouve la formule ou le nom des composés ioniques suivants.

NOM	FORMULE
Fluorure de calcium en solution	$Ca^{2+}(aq) + 2 F^{-}(aq)$
solide	CaF _{2 (s)}
Hydroxyde de potassium en solution	$K^+_{(aq)} + HO^{(aq)}$
solide	KHO (s)
Hydroxyde d'aluminium solide	Al(HO) _{3 (s)}
en solution	$AI^{3+}_{(aq)} + 3 HO^{-}_{(aq)}$
Fluorure d'Aluminium en solution	$AI^{3+}_{(aq)} + 3 F^{-}_{(aq)}$
solide	AIF _{3 (s)}
Bromure de magnésium en solution	$Mg^{2+}_{(aq)} + 2 Br^{-}_{(aq)}$
solide	$MgBr_{2 (s)}$
Sulfate de bore solide	B ₂ (SO ₄) ₃ (s)
en solution	$2 B^{3+}_{(aq)} + 3 SO_4^{2-}_{(aq)}$
Sulfate d'hydrogène solide	H ₂ SO _{4 (s)}
en solution	$2 H^{+}_{(aq)} + 5O_4^{2-}_{(aq)}$
Oxyde de calcium solide	CaO (s)
en solution	$Ca^{2+}(aq) + O^{2-}(aq)$
Oxyde de potassium en solution	$2 K^{+}_{(aq)} + O^{2-}_{(aq)}$
solide	K ₂ O (s)
Phosphure de sodium solide	Na₃P (s)
en solution	$3 \text{ Na}^+_{(aq)} + P^{3-}_{(aq)}$
Sulfure de béryllium solide	BeS (s)
en solution	$Be^{2+}(aq) + S^{2-}(aq)$
Chlorure d'aluminium en solution	Al ³⁺ (aq) + 3 Cl ⁻ (aq)
solide	AICI _{3 (s)}

EXERCICE 19 p 72 (niveau 1-2)

1

- a. L'atome de potassium K a pour structure électronique 1s²2s²2p63s²3p64s¹, il perd un électron pour devenir l'ion potassium K⁺ de structure électronique 1s²2s²2p63s²3p6 (règle de l'octet, structure de l'argon).
 L'atome de chlore Cl a pour structure électronique 1s²2s²2p63s²3p5, il gagne un électron pour devenir l'ion chlorure Cl⁻ de structure électronique 1s²2s²2p63s²3p6 (règle de l'octet, structure de l'argon).
- b. Dans la solution de chlorure de potassium, chaque ion potassium accompagne un ion chlorure pour que la neutralité de la solution soit vérifiée : $K^+_{(aq)} + Cl^-_{(aq)}$

2.

- a. L'atome de béryllium Be pour structure électronique 1s²2s², perd 2 électrons pour devenir l'ion béryllium Be²+de structure électronique 1s² (règle du duet, structure de l'hélium).
 - L'atome de fluor F a pour structure électronique $1s^22s^22p^5$, il gagne un électron pour devenir l'ion fluorure F de structure électronique $1s^22s^22p^6$ (règle de l'octet, structure du néon).