Lógica Aula 4

Leliane Nunes de Barros

2018

leliane@ime.usp.br

(recordando) Dedução Natural - Regras da conjunção

Introdução

$$\frac{\phi \quad \psi}{\phi \wedge \psi} \wedge_i$$

Eliminação

$$\frac{\phi \wedge \psi}{\phi} \wedge_{e_1}$$

$$\frac{\phi \wedge \psi}{\psi} \wedge_{e_2}$$

(recordando) Regras da dupla negação

Eliminação

$$\frac{\neg \neg \phi}{\phi}$$
 $\neg \neg \epsilon$

(recordando) Regras da dupla negação

Eliminação

$$\frac{\neg \neg \phi}{\phi} \neg \neg_e$$

Introdução

$$\frac{\phi}{\neg \neg \phi} \neg \neg_i$$

(recordando) Regras de eliminação da implicação

Modus Ponens (MP)

$$\frac{\phi \qquad \phi \to \psi}{\psi} \to_{\mathsf{e}}$$

Modus Tollens (MT)

$$\frac{\phi \to \psi \qquad \neg \psi}{\neg \phi} MT$$

(recordando) Introdução da Implicação

Regras da disjunção

Introdução

$$\frac{\phi}{\phi \vee \psi} \vee_{i_1} \qquad \qquad \frac{\psi}{\phi \vee \psi} \vee_{i_2} \qquad \qquad \frac{\psi}{\phi \vee \psi} \vee_{i_1} \qquad \qquad \frac{\psi}{\phi \vee \psi} \vee_{i_2} \qquad \qquad \frac{\psi}{\psi} \vee_{i$$

Regras da disjunção

Introdução

$$\frac{\phi}{\phi \vee \psi} \vee_{i_1}$$

$$\frac{\psi}{\phi \vee \psi} \vee_{i_2}$$

Eliminação

- φ (fi)
- ψ (psi)
- ξ (csi)

• $p \lor q \vdash q \lor p$ (comutativa da disj.)

- $p \lor q \vdash q \lor p$ (comutativa da disj.)
- $\bullet \ \ q \rightarrow r \vdash p \lor q \rightarrow p \lor r$

- $p \lor q \vdash q \lor p$ (comutativa da disj.)
- $q \rightarrow r \vdash p \lor q \rightarrow p \lor r$
- $p \land (q \lor r) \vdash (p \land q) \lor (p \land r)$ (distributiva da conj. sobre a disj.)

- $p \lor q \vdash q \lor p$ (comutativa da disj.)
- $q \rightarrow r \vdash p \lor q \rightarrow p \lor r$
- $p \land (q \lor r) \vdash (p \land q) \lor (p \land r)$ (distributiva da conj. sobre a disj.)
- $(p \lor q) \lor r \vdash p \lor (q \lor r)$ (associativa da disj.)

Equivalências

•
$$p \land (q \lor r) \dashv \vdash (p \land q) \lor (p \land r)$$

Equivalências

•
$$p \land (q \lor r) \dashv \vdash (p \land q) \lor (p \land r)$$

•
$$p \rightarrow q \rightarrow q \rightarrow q$$
 ???

Equivalências

•
$$p \land (q \lor r) \dashv \vdash (p \land q) \lor (p \land r)$$

- $p \rightarrow q \dashv \vdash \neg p \lor q$???
- precisamos de mais regras da DN!

Lei do Terceiro Excluído (Tertium non datur)

Ou "lei da exclusão mútua" permite incluir a fórmula $(\phi \lor \neg \phi)$ em qualquer ponto de uma prova.

$$\overline{\phi \vee \neg \phi}$$
 LTE

Voltamos para provar um dos argumentos do nosso exemplo:

$$p \to q \vdash \neg p \lor q$$

Contradições são expressões da forma:

$$(\phi \land \neg \phi)$$
 ou $(\neg \phi \land \phi)$

também denotadas por 1 (bottom ou "falso sintático").

Contradições são expressões da forma:

$$(\phi \land \neg \phi)$$
 ou $(\neg \phi \land \phi)$

também denotadas por 1 (bottom ou "falso sintático").

$$(p \to q) \land \neg (p \to q)$$

Contradições são expressões da forma:

$$(\phi \land \neg \phi)$$
 ou $(\neg \phi \land \phi)$

também denotadas por 1 (bottom ou "falso sintático").

$$(p \to q) \land \neg (p \to q)$$
$$(r \land (s \lor t)) \land \neg (r \land (s \lor t))$$

Contradições são expressões da forma:

$$(\phi \land \neg \phi)$$
 ou $(\neg \phi \land \phi)$

também denotadas por 1 (bottom ou "falso sintático").

Exemplos:

$$(p \to q) \land \neg (p \to q)$$
$$(r \land (s \lor t)) \land \neg (r \land (s \lor t))$$

Todas as contradições são equivalentes!

Regras da Negação

Eliminação

$$\frac{\phi \qquad \neg \phi}{\bot} \ \neg$$

Regras da Negação

Eliminação

$$\frac{\phi - \neg \phi}{\Box} \neg \epsilon$$

Introdução

Regras da Negação

Eliminação

$$\frac{\phi \qquad \neg \phi}{\bot} \ \neg \phi$$

Eliminação do 1

$$\frac{\perp}{\phi}$$
 \perp_e

Introdução

$$\begin{bmatrix}
\phi \\
\vdots \\
\bot
\\
\neg\phi
\end{bmatrix}
\neg\phi$$

"Qualquer fórmula pode ser deduzida a partir de uma contradição"

• $\neg p \lor q \vdash p \rightarrow q$... e assim provamos a equivalência " $\dashv \vdash$ "

- $\neg p \lor q \vdash p \rightarrow q$... e assim provamos a equivalência " $\dashv \vdash$ "
- $p \rightarrow q \dashv \vdash \neg p \lor q$

- $\neg p \lor q \vdash p \rightarrow q$... e assim provamos a equivalência " $\dashv \vdash$ "
- $\bullet \ p \to q \dashv \vdash \neg p \lor q$
- $\bullet \neg (p \land q) \dashv \vdash \neg p \lor \neg q$