Augmented Music Scores

D. Fober, C. Daudin, Y. Orlarey, S. Letz Grame

Centre national de création musicale Lyon - France

April 2010

Sommaire

- Interlude
 - The Interlude Project
- Augmented Music Score
- - Segments and segmentations
 - Mappings

The Interlude Project.

New digital paradigms for the expressive gestural exploration and interaction with music contents.

The Interlude Project.

Interlude

New digital paradigms for the expressive gestural exploration and interaction with music contents.

Application domains:

- professional (pedagogy, interactive music...)
- general public (musical games...)

The Interlude Project.

New digital paradigms for the expressive gestural exploration and interaction with music contents.

Application domains:

- professional (pedagogy, interactive music...)
- general public (musical games...)

Partners:

- Ircam, Grame
- VoxLer. Dafact
- NoDesign, Atelier les Feuillantines

Augmented Music Score

- An augmented music score is a score that connects a symbolic music object to different representations of its performance.
- The music score is to be taken in a broad sense, as a graphic object representing a temporal object.
- The performance corresponds to a specific sound or gesture instance of the score.

Interaction with symbolic content.

Augmented Music Score

- An augmented music score is a score that connects a symbolic music object to different representations of its performance.

Interaction with symbolic content.

Augmented Music Score

- An augmented music score is a score that connects a symbolic music object to different representations of its performance.
- The music score is to be taken in a broad sense, as a graphic object representing a temporal object.

Interaction with symbolic content.

Augmented Music Score

- An augmented music score is a score that connects a symbolic music object to different representations of its performance.
- The music score is to be taken in a broad sense, as a graphic object representing a temporal object.
- The performance corresponds to a specific sound or gesture instance of the score.

Problematics

Interlude

The core of the augmented music score

- score extension to arbitrary music objects
- expression of relations between graphic and time spaces
- performance representation (gestural, sound)

Sommaire

- Interlude
 - The Interlude Project
- Augmented Music Score
 - Components
 - Implementation
- Synchronization
 - Segments and segmentations
 - Mappings
- Graphic signals
 - Graphic signals
 - Signals composition
 - Examples

First class music objects

Interlude

All the score components:

- have a graphic dimension,
- have a time dimension.
- can be addressed both in the graphic and time domains,
- maintain relations between time and graphic space,
- can be synchronized in the time and graphic space.

Components

Interlude

Graphic resources typology.

- Music scores GMN (Guido Music Notation format) or MusicXML format
- Textual elements
- Graphic bitmaps (jpg, gif, tiff, png, ...)
- Vectorial graphic (rectangles, ellipses, ...)
- Sound and gesture graphic representations

Available parameters

Common parameters

- position (x, y, z)
- scale
- rotation
- color
- date
- duration
- visibility

Example

Oxnamic score

Implementation

- as a C++ shared library.
- as an application: an augmented score viewer.
- multi-platform [MacOS X, Linux, Windows].
- based on the Qt framework.
- based on the Guido engine and the libMusicXML library.
- supports the OSC protocol [oscpack].

Sommaire

- - The Interlude Project
- Augmented Music Score
- Synchronization
 - Segments and segmentations
 - Mappings

Time segments

- A time segment is defined as an interval $i = [t_0, t_1]$ such as $t_0 \leqslant t_1$.

$$\forall i_m, \ \forall i_n, \ i_m \cap i_n := \{j \mid j \in i_m \land j \in i_n \}$$

Time segments

- A time segment is defined as an interval $i = [t_0, t_1]$ such as $t_0 \leqslant t_1$.
- $i = [t_0, t_1]$ is said empty when $t_0 = t_1$. We will use \oslash to denote empty intervals.

$$\forall i_m, \ \forall i_n, \ i_m \cap i_n := \{j \mid j \in i_m \land j \in i_n\}$$

Time segments

Synchronization

- A time segment is defined as an interval $i = [t_0, t_1]$ such as $t_0 \leqslant t_1$.
- $i = [t_0, t_1]$ is said empty when $t_0 = t_1$. We will use \oslash to denote empty intervals.
- Time segments intersection is the largest interval such as:

$$\forall i_m, \ \forall i_n, \ i_m \cap i_n := \{j \mid j \in i_m \ \land \ j \in i_n\}$$

Graphic segments

- A graphic segment g is defined as a rectangle given by two intervals g = (x, y) where x is an interval on the x-axis and y, on the y-axis.
- $g = \{x, y\}$ is said empty when $x = \emptyset$ or $y = \emptyset$

$$\forall g_m = \{x_m, y_m\}, \ \forall g_n = \{x_n, y_n\}, \ g_m \cap g_n = \{x_m \cap x_n, y_m \cap y_n\}$$

Graphic segments

- A graphic segment g is defined as a rectangle given by two intervals g = (x, y) where x is an interval on the x-axis and y, on the y-axis.
- $g = \{x, y\}$ is said empty when $x = \emptyset$ or $y = \emptyset$

$$\forall g_m = \{x_m, y_m\}, \ \forall g_n = \{x_n, y_n\}, \ g_m \cap g_n = \{x_m \cap x_n, y_m \cap y_n\}$$

Graphic segments

- A graphic segment g is defined as a rectangle given by two intervals g = (x, y) where x is an interval on the x-axis and y, on the y-axis.
- $g = \{x, y\}$ is said empty when $x = \emptyset$ or $y = \emptyset$
- Intersection ∩ between graphic segments:

$$\forall g_m = \{x_m, y_m\}, \ \forall g_n = \{x_n, y_n\}, \ g_m \cap g_n = \{x_m \cap x_n, y_m \cap y_n\}$$

Segment generalization

- A n-dimensional segment is defined as a set of n intervals $s^n = \{i_1, ..., i_n\}$ where i_i is an interval on the dimension j.

$$s_1^n \cap s_2^n = (i_1 \cap j_1, ..., i_n \cap j_n)$$

where
$$s_1^n = (i_1, ..., i_n)$$
 et $s_2^n = (j_1, ..., j_n)$

Segment generalization

- A n-dimensional segment is defined as a set of n intervals $s^n = \{i_1, ..., i_n\}$ where i_i is an interval on the dimension j.
- A segment s^n is said empty when $\exists i \in s^n \mid i = \emptyset$

$$s_1^n \cap s_2^n = (i_1 \cap j_1, ..., i_n \cap j_n)$$

where
$$s_1^n = (i_1, ..., i_n)$$
 et $s_2^n = (j_1, ..., j_n)$

Segment generalization

- A n-dimensional segment is defined as a set of n intervals $s^n = \{i_1, ..., i_n\}$ where i_i is an interval on the dimension j.
- A segment s^n is said empty when $\exists i \in s^n \mid i = \emptyset$
- Intersection between segments is defined as the set of their intervals intersection:

$$s_1^n \cap s_2^n = (i_1 \cap j_1, ..., i_n \cap j_n)$$

where
$$s_1^n = (i_1, ..., i_n)$$
 et $s_2^n = (j_1, ..., j_n)$

Segmentations

 A n dimensions resource R is segment-able when it can be defined by a segment S^n of dimension n.

Synchronization

$$\forall i, j \in Seg(R)$$
 $i \cap j = \emptyset$ segments are disjoints $\forall i \in Seg(R)$ $i \cap S^n = i$ all segments are included in R

Segmentations

- A n dimensions resource R is segment-able when it can be defined by a segment S^n of dimension n.
- The segmentation of a resource R is the set of segments $Seg(R) = \{s_1^n, ... s_i^n\}$ such as:

$$\forall i, j \in Seg(R)$$
 $i \cap j = \emptyset$ segments are disjoints $\forall i \in Seg(R)$ $i \cap S^n = i$ all segments are included in R

Mapping (1)

Interlude

A *mapping* is a relation between 2 segmentations.

Mapping (2)

Interlude

• For a mapping $M \subseteq Seg(R_1) \times Seg(R_2)$ the function:

$$M^+(i) = \{i' \in Seg(R_2) \mid (i,i') \in M\}$$

gives the set of segments from R_2 associated to the segment i from R_1 .

$$M^-(i') = \{i \in Seg(R_1) \mid (i,i') \in M$$

Mapping (2)

Interlude

• For a mapping $M \subseteq Seg(R_1) \times Seg(R_2)$ the function:

$$\textit{M}^+(\textit{i}) = \{\textit{i}' \in \textit{Seg}(\textit{R}_2) \mid (\textit{i},\textit{i}') \in \textit{M}\}$$

gives the set of segments from R_2 associated to the segment i from R_1 .

and the reverse function:

$$M^-(i') = \{i \in Seg(R_1) \mid (i, i') \in M\}$$

gives the set of segments from R_1 associated to the segment i' from R_2 .

Mapping (3)

Interlude

 These functions are defined for a set of segments as the union of each segment mapping:

$$M^+(\{i_1,...i_n\}) = M^+(i_1) \cup M^+(i_2)... \cup M^+(i_n)$$

• Mappings composition: let $M_1 \subseteq Seg(R_1) \times Seg(R_2)$ and $M_2 \subseteq Seg(R_2) \times Seg(R_3)$

$$(M_1 \circ M_2)^+(i) = M_2^+(M_1^+(i)$$

i.e. the relation

$$M_1 \circ M_2 \subseteq Seg(R_1) \times Seg(R_3)$$

Mapping (3)

Interlude

These functions are defined for a set of segments as the union of each segment mapping:

$$M^+(\{i_1,...i_n\}) = M^+(i_1) \cup M^+(i_2)... \cup M^+(i_n)$$

Mappings composition: let $M_1 \subseteq Seg(R_1) \times Seg(R_2)$ and $M_2 \subseteq Seg(R_2) \times Seg(R_3)$

$$(M_1 \circ M_2)^+(i) = M_2^+(M_1^+(i))$$

$$M_1 \circ M_2 \subseteq Seg(R_1) \times Seg(R_3)$$

Mapping (3)

Interlude

 These functions are defined for a set of segments as the union of each segment mapping:

$$M^+(\{i_1,...i_n\})=M^+(i_1)\cup M^+(i_2)...\cup M^+(i_n)$$

• Mappings composition: let $M_1 \subseteq Seg(R_1) \times Seg(R_2)$ and $M_2 \subseteq Seg(R_2) \times Seg(R_3)$

$$(M_1 \circ M_2)^+(i) = M_2^+(M_1^+(i))$$

i.e. the relation:

$$M_1 \circ M_2 \subseteq Seg(R_1) \times Seg(R_3)$$

Interlude

Relations between graphic and time spaces.

Segmentations and mappings for each component type.

type	segmentations and mappings required
text	$graphic \leftrightarrow text \leftrightarrow relative time$
score	graphic \leftrightarrow wrapped relative time \leftrightarrow relative time
image	$graphic \leftrightarrow pixel \leftrightarrow relative time$
gr. vectorial	vectorial ↔ relative time
signal	$graphic \leftrightarrow frame \leftrightarrow relative time$

Demo

See:

Interlude

- Max/sync/sync.maxpat
- PureData/sync/sync.pd
- python/example.py
- lisp/example.lisp

INScoreViewer must be running.

Sommaire

Interlude

- - The Interlude Project
- Augmented Music Score
- - Mappings
- Graphic signals
 - Graphic signals
 - Signals composition
 - Examples

The problem...

Previous approach:

- static signal representation
- non-extensible dynamically

Currently..

- a more general system, covering a large set of representations
- dynamically extensible
- and easy to use...

The problem...

Previous approach:

Synchronization

- static signal representation
- non-extensible dynamically

The problem...

Interlude

Previous approach:

- static signal representation
- non-extensible dynamically

Currently...

- a more general system, covering a large set of representations
- dynamically extensible
- and easy to use...

Graphic signals

Interlude

The graphic of a signal as a graphic signal:

A composite signal made of:

- a y signal.
- a thickness signal.
- a color signal.

Graphic signals

Interlude

Consider a signal S defined as a time function:

$$f(t): \mathbb{R} \to \mathbb{R}^3 = (y, h, c) \mid y, h, c \in \mathbb{R}$$

this signal could be directly drawn. (i.e. without additional computation)

To make simple, we assume that the color space addressed by c has one dimension.

Graphic signals

Interlude

Consider a signal S defined as a time function:

$$f(t): \mathbb{R} \to \mathbb{R}^3 = (y, h, c) \mid y, h, c \in \mathbb{R}$$

this signal could be directly drawn. (i.e. without additional computation)

To make simple, we assume that the color space addressed by c has one dimension.

Parallel signals types

Interlude

Color signal type:

(HSBA model [hue, saturation, brigthness, transparency])

$$c ::= \overrightarrow{(h, s, b, a)} \mid h, s, b, a \in \mathbb{R}$$

$$g ::= \overline{(y, th, h, s, b, a)} \mid y, th, h, s, b, a \in \mathbb{R}$$

$$g^n ::= \overrightarrow{g} \mid g \in \mathbb{R}^6$$

Parallel signals types

Interlude

Color signal type:

(HSBA model [hue, saturation, brigthness, transparency])

$$c ::= \overline{(h, s, b, a)} \mid h, s, b, a \in \mathbb{R}$$

Graphic signal type:

$$g := \overrightarrow{(y, th, h, s, b, a)} \mid y, th, h, s, b, a \in \mathbb{R}$$

$$g^n ::= \overrightarrow{g} \mid g \in \mathbb{R}^6$$

Parallel signals types

Interlude

Color signal type:

(HSBA model [hue, saturation, brigthness, transparency])

$$c ::= \overrightarrow{(h, s, b, a)} \mid h, s, b, a \in \mathbb{R}$$

Graphic signal type:

$$g := \overrightarrow{(y, th, h, s, b, a)} \mid y, th, h, s, b, a \in \mathbb{R}$$

Parallel graphic signals type

$$g^n ::= \overrightarrow{g} \mid g \in \mathbb{R}^6$$

Signals parallelization

Interlude

Let \mathbb{S} , the set of signals $s : \mathbb{N} \to \mathbb{R}$. We define a *parallel* operation '/' as:

$$s_1/s_2/.../s_n:\mathbb{S} \to \mathbb{S}^n \mid s_i \in \mathbb{S}$$

$$f(t) = (f_0(t), f_1(t), ...f_n(t)) \mid f_i(t) : \mathbb{N} \to \mathbb{R}$$

Signals parallelization

Interlude

Let \mathbb{S} , the set of signals $s : \mathbb{N} \to \mathbb{R}$. We define a *parallel* operation '/' as:

$$s_1/s_2/.../s_n: \mathbb{S} \to \mathbb{S}^n \mid s_i \in \mathbb{S}$$

Time function of a parallel signal $s^n \in \mathbb{S}^n : \mathbb{N} \to \mathbb{R}^n$

$$f(t) = (f_0(t), f_1(t), ...f_n(t)) \mid f_i(t) : \mathbb{N} \to \mathbb{R}$$

Interlude

$$g = S_{f0} / k_t / k_c$$

 S_{f0} : fundamental frequency

 k_t : constant thickness signal

Interlude

$$g = S_{f0} - S_{fr} \ / \ k_t \ / \ k_c$$

 S_{f0} : fundamental frequency

 S_{fr} : reference frequency

 k_t : constant thickness signal

Interlude

 $g = k_v / S_{rms} / k_c$

Srms: RMS signal

 k_v : constant y signal

Interlude

 $g = S_{f0} / S_{rms} / k_c$

Srms: RMS signal

 S_{f0} : fundamental frequency

Interlude

$$g0 = S_{f0} / S_{rms0} / k_c0$$

 S_{f0} : fundamental frequency

 S_{rms0} : f0 RMS values

$$g1 = S_{f0} / S_{rms1} + S_{rms0} / k_c1$$

S_{rms1}: f1 RMS values

$$g2 = S_{f0}/\ S_{rms2} + S_{rms1} + S_{rms0}\ /\ k_c2$$

S_{rms2}: f2 RMS values

$$g = g2 / g1 / g0$$

Demo

See:

- Max/sinus/sinus.maxpat
- PureData/sinus/sinus.pd
- Max/siggraph/siggraph.maxpat
- PureData/siggraph/siggraph.pd

InterludeScoreViewer must be running.

Interlude

INScore

Interactive Augmented Scores

http://inscore.sourceforge.net/

