Analysis II - 2014.03.03

Erinnerung: Sei $L = (\frac{d}{dx})^n + a_1 \dots + a_{n-1} \frac{d}{dx} + a_n$ für Koeffizienten $a_1 \dots a_n$ $f_L(T) = T^n + a_1 T^{n-1} + \dots a_{n-1} T + a_n. \ L(x^n e^{\lambda x}) = \begin{cases} 0 & \text{falls } \lambda \text{ EW der Mult.} > n. \\ ((\neq 0) x^{n-\mu}) e^{\lambda x} \end{cases}$ $Z.B. \ Ly = e^{\lambda x} \text{ hat L\"osung } cx^{\mu} e^{\lambda x}.$

Fakt: Ist $\lambda \in \mathbb{C}$ Nullstelle von f_L der Multiplizität $\mu \geq 0$ und g(x) ein Polynom vom Grad m, so hat $Ly = g(x)e^{\lambda x}$ eine Lösung $f(x)e^{\lambda x}$ für ein Polynom vom Grad $m + \mu$.

Beispiel: $y^{(5)} + y = xe^{-x} \Rightarrow f_L(T) = T^5 + 1 = 0 \Rightarrow \text{Nullstellen } -e^{\frac{2\pi i k}{5}}, k \in \mathbb{Z} \Rightarrow y = (ax^2 + bx)e^{-x} \text{ für Konstanten } a, b.$ $\Rightarrow y' = (-ax^2 + (2a - b)x + b)e^{-x}$ $\Rightarrow y'' = (ax^2 + (b - 4a)x + (2a - 2b))e^{-x}$

$$\Rightarrow y''' = (-ax^2 + (6a - b)x + (2a - 2b))e^{-x}$$

\Rightarrow y''' = (-ax^2 + (6a - b)x + (3b - 6a))e^{-x}

$$\Rightarrow y'''' = (ax^2 + (b - 8a)x + (12a - 4b))e^{-x}$$

$$\Rightarrow y''''' = (-ax^2 + (10a - b)x + (5b - 20a))e^{-x}$$

$$\implies y^{(5)} + y = ((10a)x + (5b - 20a))e^{-x} \stackrel{!}{=} xe^{-x} \iff \left\{ \begin{array}{l} 10a = 1 \\ 5b - 20a = 0 \end{array} \right\} \Rightarrow y = \frac{x^2}{10} + \frac{2x}{5}e^{-x}$$

Beispiel: $\ddot{y} + \omega^2 y = \cos \lambda t = \frac{e^{i\lambda t} + e^{-i\lambda t}}{2}$ angeregter harmonischer Oszillator, $\omega \neq 0$. Homogene Gleichung Fundamentallösungen $\cos \omega t$, $\sin \omega t$. Eigenwerte: $\pm \omega i$.

$$\lambda \neq \pm \omega \Rightarrow y = ae^{i\lambda t} + be^{-i\lambda t} = (a+b)\cos \lambda t + (a-b)i\sin \lambda t \text{ für } a,b \in \mathbb{C}$$
$$y = c\cos \lambda t + d\sin \lambda t$$

$$\Rightarrow \ddot{y} = -c\lambda^2 \cos \lambda t - d\lambda^2 \sin \lambda t$$

$$\implies \ddot{y} + \omega^2 y = (\omega^2 - \lambda^2)(\cos \lambda t + d\sin \lambda t) \stackrel{!}{=} \cos \lambda t \iff \left\{ \begin{array}{l} (\omega^2 - \lambda^2)c = 1 \\ (\omega^2 - \lambda^2)d = 0 \end{array} \right\} \Rightarrow y = \frac{\cos \lambda t}{\omega^2 - \lambda^2}$$

Fall $w = \pm \lambda$: Ansatz: $y = ct \cos \lambda t + dt \sin \lambda t$

$$\Rightarrow \dot{y} = c\cos\lambda t - c\lambda t\sin\lambda t + d\sin\lambda t + d\lambda t\cos\lambda t$$

$$\Rightarrow \ddot{y} = -2c\lambda \sin \lambda t - c\lambda^2 t \cos \lambda t + 2d\lambda \cos \lambda t - d\lambda^2 t \sin \lambda t$$

$$\implies \ddot{y} + \omega^2 y = \ddot{y} + \lambda^2 y = -2c\lambda \sin \lambda t + 2d\lambda \cos \lambda t \stackrel{!}{=} \cos \lambda t \iff \left\{ \begin{array}{l} c = 0 \\ d = \frac{1}{2}\lambda \end{array} \right\} \Rightarrow y = \frac{1}{2\lambda} t \sin \lambda t$$

Systeme von Differentialgleichungen / Gekoppelte DGL

Fakt: Existenz und Eindeutigkeitssatz gilt genauso.

Beispiel: $\mathbb{R}^2 \simeq \mathbb{C}$

 $\mathit{Spezialfall} :$ Konstante Koeffizienten, n=1,linear, homogen.

$$\Rightarrow y_1' = a_{11}y_1 + ... + a_{1m}y_m \quad .. \quad y_m' = a_{m1}y_1 + ... + a_{mm}y_m$$

Mit
$$y = (y_1..y_m)^T$$
 ist dies äquivalent zu $y' = Ay$ mit $A = \begin{pmatrix} a_{11} & \cdots & a_{1m} \\ \cdots & \ddots & \cdots \\ a_{m1} & \cdots & a_{mm} \end{pmatrix}$

Für jedes $v \in \mathbb{C}^m \neq 0$ und $\lambda \in \mathbb{C}$ gilt $y := ve^{\lambda x} \Rightarrow y' = \lambda ve^{\lambda x} \stackrel{?}{=} Ay = Ave^{\lambda x} \iff \lambda v = Ave^{\lambda x}$

Also ist $ve^{\lambda x}$ eine Lösung $\iff \lambda$ Eigenwert von A und v ein zugehöriger Eigenvektor.

Folge: Ist A diagonalisierbar und $v_1..v_m$ eine Basis von \mathbb{C}^m bestehend aus Eigenvektoren zu den Eigenwerten $\lambda_1..\lambda_m \in \mathbb{C}$, so ist $v_1e^{\lambda_1x}..v_me^{\lambda_mx}$ eine Basis des Lösungsraums.

Beispiel:
$$y'_1 = -y_1 + 3y_2$$
, $y'_2 = 2y_1 - 2y_2$ mit $y_1(0) = 5$, $y_2(0) = 0$
Lösung: $A = \begin{pmatrix} -1 & 3 \\ 2 & -2 \end{pmatrix} \Rightarrow det(A) = (-1 - T)(-2 - T) - 2 \cdot 3 = T^2 + 3T - 4 = (T - 1)(T + 4)$
 \Rightarrow Eigenwerte: $\lambda = \{1, -4\}$ Eigenvektoren: $v = \{\left(3 \quad 2\right)^T, \left(-1 \quad 1\right)^T\}$
 $\Rightarrow y = av_1e^x + bv_2e^{-4x} \Rightarrow y_1 = 3ae^x - be^{-4x}, \quad y_2 = 2ae^x + be^{-4x}$
 $\Rightarrow \begin{cases} y_1(0) = 3a - b = 5 \\ y_2(0) = 2a + b = 0 \end{cases} \iff \begin{vmatrix} a = 1 \\ b = -2 \end{cases} \Rightarrow y_1 = 3e^x + 2e^{-4x}, \quad y_2 = 2e^x - 2e^{-4x}$
Anmerkung: $y^{(n)} + a_1y^{(n-1)} + ... + a_0y = 0 \Rightarrow \text{Setze } y_i := y^{(i-1)} \text{ für } i = 1...n$
 $\Rightarrow y'_i = y_{i+1} \text{ für } 1 \le i \le n - 1 \Rightarrow y'_n = -a_ny_1 - a_{n-1}y_2 - ... - a_1y_n$