Data Structures MST 2

CS 225 Brad Solomon November 1, 2024

Learning Objectives

Review the minimum spanning tree (with weights)

Review Kruskal's / Prim's MST Algorithms

Focus on determining Big O of complex pseudocode

Compare implementations under different conditions

Summary: DFS and BFS

$$|V| = n, |E| = m$$

Both are **O(n+m)** traversals! They label every edge and every node

BFS DFS

Solves unweighted MST Solves unweighted MST

Solves shortest path

Solves cycle detection Solves cycle detection

Memory bounded by width Memory bounded by longest path

Minimum Spanning Tree Algorithms

Input: Connected, undirected graph **G** with edge weights (unconstrained, but must be additive)

Output: A graph G' with the following properties:

- G' is a spanning graph of G
- G' is a tree (connected, acyclic)
- G' has a minimal total weight among all spanning trees

- (A, D)
- (E, H)
- (F, G)
- (A, B)
- (B, D)
- (G, E)
- (G, H)
- (E, C)
- (C, H)
- (E, F)
- (F, C)
- (D, E)
- (B, C)
- (C, D)
- (A, F)
- (D, F)

1) Build a **priority queue** on edges

2) Build a **disjoint set** on vertices

- 3) Repeatedly find min edge If edge connects two sets Union and record edge
- 4) Stop after n-1 edges recorded

```
KruskalMST(G):
  DisjointSets forest
  foreach (Vertex v : G.vertices()):
    forest.makeSet(v)
  PriorityQueue Q
                     // min edge weight
  Q.buildFromGraph (G.edges ())
 Graph T = (V, {}) - Output tree
 while |T.edges()| < n-1:
    Vertex (u, v) = Q.removeMin()
    if forest.find(u) != forest.find(v):
       T.addEdge(u, v)
       forest.union( forest.find(u),
                     forest.find(v) )
  return T
```

10

11

12

13

14

15

16 17

18

19

1) Build a **priority queue** on edges

2) Build a **disjoint set** on vertices

- 3) Repeatedly find min edgeIf edge connects two setsUnion and record edge
- 4) Stop after n-1 edges recorded

```
(A, D)
                                      15
(E, H)
                                  16
(F, G)
                  A
(A, B)
                                             11
                16
                     17
(B, D)
                          12
(G, E)
(G, H)
                                              12
(E, C)
(C, H)
(E, F)
(F, C)
(D, E)
(B, C)
(C, D)
                (\mathbf{E})
                                                (\mathsf{H})
                                     (G)
(A, F)
```

(D, F)

```
KruskalMST(G):
     DisjointSets forest
     foreach (Vertex v : G.vertices()):
       forest.makeSet(v)
     PriorityQueue Q // min edge weight
     Q.buildFromGraph(G.edges())
     Graph T = (V, \{\})
10
     while |T.edges()| < n-1:
11
       Vertex (u, v) = Q.removeMin()
12
       if forest.find(u) != forest.find(v):
13
           T.addEdge(u, v)
14
           forest.union( forest.find(u),
15
                         forest.find(v) )
16
17
     return T
18
19
```

```
KruskalMST(G):
     DisjointSets forest
     foreach (Vertex v : G.vertices()):
       forest.makeSet(v)
     PriorityQueue Q // min edge weight
     Q.buildFromGraph(G.edges())
     Graph T = (V, \{\})
10
     while |T.edges()| < n-1:
11
       Vertex (u, v) = Q.removeMin()
12
       if forest.find(u) != forest.find(v):
13
        T.addEdge(u, v)
14
          forest.union( forest.find(u),
15
                         forest.find(v) )
16
17
     return T
18
19
```

```
Heap's O(m)
South 1:st: O(m log m)
 Hegp: O(log M)
 So 40 1:st: ()(1)
              Smart union
```

(V	<u>ا</u> ا	\wedge	IE	T	M
1 0		•			

Priority Queue:		
	Неар	Sorted Array
Building :7	O(w)	O(m log m)
Each removeMin :12 M X	0(log m)	0(1)

M + mlog m us alogn + m

Why heap sood? Ly What if edge wright changes? why sorted array good?

```
KruskalMST(G):
                                                                                 0(1)
                                               DisjointSets forest
                                               foreach (Vertex v : G.vertices()):
                                                 forest.makeSet(v)
                                               PriorityQueue Q // min edge weight
                                               Q.buildFromGraph(G.edges())
                                               Graph T = (V, \{\})
                                                                     MX
                                         10
                                               while |T.edges()| < n-1:
                                         11
                                                 Vertex (u, v) = Q.removeMin() {
                                         12
                                                 if forest.find(u) != forest.find(v):
                                         13
                                                    T.addEdge(u, v)
                                         14
                                                    forest.union( forest.find(u),
                                         15
                                                                  forest.find(v) )
                                         16
                                         17
                                               return T
                                         18
                                         19
4 Sorted array not destroyed when used = if we could use array later, this is better!
```


Priority Queue:	
	Total Running Time
Неар	O(n) + O(m) + O(m c > n)
Sorted Array	O(n) + O(m log m) + O(m
Unsurted allay	oral 0(1) + (1/m²)
0(109 m) 109 n°	~ O(log n)

```
KruskalMST(G):
     DisjointSets forest
     foreach (Vertex v : G.vertices())
       forest.makeSet(v)
     PriorityQueue Q // min edge weight
     Q.buildFromGraph(G.edges()) W
     Graph T = (V, \{\})
10
     while |T.edges()| < n-1:
11
       Vertex (u, v) = Q.removeMin() 
12
       if forest.find(u) != forest.find(v):
13
          T.addEdge(u, v)
14
          forest.union( forest.find(u),
15
                         forest.find(v) )
16
17
18
     return T
19
```

Partition Property

Consider an arbitrary partition of the vertices on **G** into two subsets **U** and **V**.

Let **e** be an edge of minimum weight across the partition.

Then **e** is part of some minimum spanning tree.

Partition Property

The partition property suggests an algorithm:

Prim's Algorithm


```
PrimMST(G, s):
     Input: G, Graph;
            s, vertex in G, starting vertex
     Output: T, a minimum spanning tree (MST) of G
     foreach (Vertex v : G.vertices()):
       d[v] = +inf
      p[v] = NULL
     d[s] = 0
10
     PriorityQueue Q // min distance, defined by d[v]
11
     Q.buildHeap(G.vertices())
12
                      // "labeled set"
     Graph T
13
14
     repeat n times:
15
       Vertex m = Q.removeMin()
16
17
       T.add(m)
       foreach (Vertex v : neighbors of m not in T):
18
         if cost(v, m) < d[v]:
19
           d[v] = cost(v, m)
20
          p[v] = m
21
22
     return T
23
```

Prim's Algorithm

Α	В	С	D	E	F	
0, —	2, A	11, E	5, B	8, D	9, D	

```
PrimMST(G, s):
     Input: G, Graph;
            s, vertex in G, starting vertex
     Output: T, a minimum spanning tree (MST) of G
     foreach (Vertex v : G.vertices()):
       d[v] = +inf
      p[v] = NULL
     d[s] = 0
10
     PriorityQueue Q // min distance, defined by d[v]
11
12
     Q.buildHeap(G.vertices())
                       // "labeled set"
     Graph T
13
14
     repeat n times:
15
       Vertex m = Q.removeMin()
16
17
       T.add(m)
       foreach (Vertex v : neighbors of m not in T):
18
         if cost(v, m) < d[v]:
19
           d[v] = cost(v, m)
20
           p[v] = m
21
22
     return T
23
```

Prim's Big O

```
Min heap

UNSOITED allay

Depend an implementation
```

```
PrimMST(G, s):
     foreach (Vertex v : G.vertices()):
       d[v] = +inf
       p[v] = NULL
10
     d[s] = 0
11
12
     PriorityQueue Q // min distance, defined by d[v]
13
     Q.buildHeap(G.vertices())
14
                      // "labeled set"
     Graph T
15
16
     repeat n times:
17
       Vertex m = Q.removeMin()
18
        T.add(m)
19
        foreach (Vertex v : neighbors of m not in T):
20
          if cost(v, m) < d[v]:
            d[v] = cost(v, m)
           p[v] = m
23
```



```
PrimMST(G, s):
     foreach (Vertex v : G.vertices()):
       d[v] = +inf
       p[v] = NULL
10
     d[s] = 0
11
12
     PriorityQueue Q // min distance, defined by d[v]
13
     Q.buildHeap(G.vertices())
     Graph T
14
                     // "labeled set"
15
16
     repeat n times:
17
       Vertex m = Q.removeMin()
18
       T.add(m)
       foreach (Vertex v : neighbors of m not in T):
19
20
         if cost(v, m) < d[v]:
21
           d[v] = cost(v, m)
22
           p[v] = m
23
```

	Adj. Matrix	Adj. List
Неар	$O(n) + O(n \log n) + O(n^2) + O(n^2) + O(n^2)$	$O(n) + \frac{O(n \log n)}{O(m)} + O(m) + \underline{\hspace{1cm}}$


```
PrimMST(G, s):
     foreach (Vertex v : G.vertices()):
       d[v] = +inf
       p[v] = NULL
10
     d[s] = 0
11
12
     PriorityQueue Q // min distance, defined by d[v]
13
     Q.buildHeap(G.vertices())
                     // "labeled set"
     Graph T
14
15
16
     repeat n times: ∧ X
17
       Vertex m = Q.removeMin()
18
       T.add(m)
19
       foreach (Vertex v : neighbors of m not in T):
20
         if cost(v, m) < d[v]:
21
           d[v] = cost(v, m)
22
           p[v] = m
23
```

	Adj. Matrix	Adj. List
Неар	O(n ² + m lg(n))	O(n lg(n) + m lg(n))
Unsorted Array	O(Ng)	$O(v_s)$

Prim's Algorithm

Sparse Graph: ↑ ~ M

5 hegp is better

Dense Graph: m~nd

```
PrimMST(G, s):
     foreach (Vertex v : G.vertices()):
       d[v] = +inf
     p[v] = NULL
10
     d[s] = 0
11
12
     PriorityQueue Q // min distance, defined by d[v]
13
     Q.buildHeap(G.vertices())
14
     Graph T // "labeled set"
15
16
     repeat n times:
       Vertex m = Q.removeMin()
18
       T.add(m)
19
       foreach (Vertex v : neighbors of m not in T):
20
         if cost(v, m) < d[v]:
21
           d[v] = cost(v, m)
22
           p[v] = m
23
```

1-1 5 W 5 2

MST Algorithm Runtime:

Kruskal's Algorithm: O(n + m log (n))

Prim's Algorithm: O(n log(n) + m log (n))

Sparse Graph:

Dense Graph:

Suppose I have a new heap:

	Binary Heap	Fibonacci Heap
Remove Min	O(lg(n))	O(lg(n))
Decrease Key	O(lg(n))	O(1)*

What's the updated running time?

```
PrimMST(G, s):
     foreach (Vertex v : G.vertices()):
       d[v] = +inf
       p[v] = NULL
     d[s] = 0
10
11
     PriorityQueue Q // min distance, defined by d[v]
12
     Q.buildHeap(G.vertices())
     Graph T
                     // "labeled set"
13
14
15
     repeat n times:
16
       Vertex m = Q.removeMin()
17
       T.add(m)
18
       foreach (Vertex v : neighbors of m not in T):
19
         if cost(v, m) < d[v]:
20
           d[v] = cost(v, m)
21
           p[v] = m
```

Shortest Path

Dijkstra's Algorithm (SSSP)


```
DijkstraSSSP(G, s):
     foreach (Vertex v : G.vertices()):
       d[v] = +inf
      p[v] = NULL
     d[s] = 0
10
11
     PriorityQueue Q // min distance, defined by d[v]
     Q.buildHeap(G.vertices())
12
     Graph T // "labeled set"
13
14
     repeat n times:
15
16
       Vertex u = Q.removeMin()
17
       T.add(u)
18
       foreach (Vertex v : neighbors of u not in T):
19
         if
            < d[v]:
20
           d[v] =
21
          p[v] = u
```

Α	В	С	D	E	F	G	Н
0							

Dijkstra's Algorithm (SSSP)


```
DijkstraSSSP(G, s):
     foreach (Vertex v : G.vertices()):
       d[v] = +inf
       p[v] = NULL
     d[s] = 0
10
11
     PriorityQueue Q // min distance, defined by d[v]
12
     Q.buildHeap(G.vertices())
     Graph T // "labeled set"
13
14
15
     repeat n times:
16
       Vertex u = Q.removeMin()
17
       T.add(u)
18
       foreach (Vertex v : neighbors of u not in T):
19
         if cost(u, v) + d[u] < d[v]:
20
           d[v] = cost(u, v) + d[u]
21
           p[v] = u
```

A	В	С	D	E	F	G	Н
	Α	E	В	G	Α	F	С
0	10	16	15	10	7	8	20

Dijkstra's Algorithm (SSSP)

What is the running time of Dijkstra's Algorithm?

```
DijkstraSSSP(G, s):
     foreach (Vertex v : G):
       d[v] = +inf
    p[v] = NULL
     d[s] = 0
10
     PriorityQueue Q // min distance, defined by d[v]
11
12
     Q.buildHeap(G.vertices())
     Graph T // "labeled set"
13
14
15
     repeat n times:
16
       Vertex u = Q.removeMin()
17
       T.add(u)
18
       foreach (Vertex v : neighbors of u not in T):
19
         if cost(u, v) + d[u] < d[v]:
20
           d[v] = cost(u, v) + d[u]
21
           p[v] = m
22
23
     return T
```