

Tema № 3 **Química General**Modelos Atómicos

Ing. Yanina Fernández

Departamento de Biotecnología y Tecnología Alimentaria Facultad de Ingeniería y Ciencias Exactas Universidad Argentina de la Empresa

Química General

Modelos Atómicos

Evolución de la teoría atómica

LOS CUANTOS

1900

Teoría Cuántica de Planck

Estudia la radiación que emiten los sólidos a distintas temperaturas.

Descubre que los átomos y moléculas emiten y absorven

energía sólo en cantidades discretas (CUANTOS)

PAQUETES O CÚMULOS

Mínima cantidad de energía que se puede emitir o absorver en forma de radiación electromagnética

Planck no pudo determinar por qué sucede así.

Química General

Modelos Atómicos

Evolución de la teoría atómica

LA PROPUESTA DE BOHR

1913

Niveles de energía

Estudia el espectro de emisión del H₂

Y postula que el electrón sólo puede ocupar CIERTAS ÓRBITAS

DE ENERGÍA ESPECÍFICAS

LOS CUANTOS

Química General

Modelos Atómicos

Evolución de la teoría atómica

LA PROPUESTA DE BOHR

Un átomo de H energizado emite una radiación.
Bohr la atribuye a la caída de un electrón de una órbita con energía superior a una de inferior energía. El átomo emite UN CUANTO de energía o FOTÓN

Energía del electrón				
Menos energía	Más cerca del núcleo			
Más energía Más alejado del núcelo				

Emisión H según teoría Bohr

Química General

Modelos Atómicos

Evolución de la teoría atómica

Hay que darle energía

Emite energía (fotón)

Estados cuantizados de un electrón				
Fundamental	Excitado			
Estado de menor energía posible	Tiene más energía que el estado fundamental			

La cantidad de energía es **DISCRETA** y depende de la distancia entre las órbitas o niveles.

Cada órbita tiene una longitud de onda y una frecuencia ESPECÍFICA

Química General

Modelos Atómicos

Evolución de la teoría atómica

LA LEY DE BROGLIE

1924

Niveles de energía

Compara al electrón con una onda estacionaria

Si el electrón del átomo se comporta como una onda fija, su longitud de onda debe ajustarse EXACTAMENTE a la circunferencia de la órbita

LOS ELECTRONES SON PARTÍCULAS Y SON ONDAS Y SE COMPORTAN COMO AMBAS

Química General

Modelos Atómicos

Evolución de la teoría atómica

MODELO ATÓMICO PROBABILÍSTICO DE SCHRODINGER

1926

Mecánica cuántica:

No se puede saber en qué parte puntual del átomo está el electrón. Sí se puede definir la la **PROBABILIDAD de encontrar un electrón en cierta región del átomo**

DENSIDAD ELECTRÓNICA

Se mantiene el concepto de niveles de energía de Bohr y estos niveles de energía se dividen en **SUBNIVELES**

ORBITALES

Zona alrededor del núcleo donde es más probable encontrar el electrón

Química General

Modelos Atómicos

Evolución de la teoría atómica - Resumen

El profesor y químico JOHN DALTON, estableció que los elementos están formados por átomos y éstos son iguales para cada elemento

El físico británico JOSEPH THOMSON observó que los átmos contenían cargas positivas y negativas

atomo como un sistema solar en miniatura, en el cual los electrones (negativos) giraban alrededor del núcleo (positivo)

El físico danés NIELS BOHR (1913) postuló que los electrones están dispuestos en capas definidas, o niveles cuánticos, a una distancia considerable del núcleo, con movimientos definidos por determinadas órbitas

El modelo probabilístico de SCHRÖDINGER (1926) abandonó la idea de órbitas precisas y las sustituyó por regiones en el espacio (orbitales), donde es más probable que se encuentren los electrones

Química General

Modelos Atómicos

Evolución de la teoría atómica - Resumen

Thomson

Rutherford

1911

Bohr 1913

Química General

Modelos Atómicos

Evolución de la teoría atómica

Los números cuánticos

Para identificar cada electrón se recurre a un conjunto de números que indican nivel, subnivel, orbital y electrón; éstos se conocen como números cuánticos.

- Número cuántico principal (n), que determina la energía asociada con el electrón y expresa de alguna manera la distancia media del electrón al núcleo.
- *Número cuántico angular* (/), llamado también azimutal o de impulso, que determina el número y la forma de los subniveles.
- *Número cuántico magnético* (m_I), que expresa la orientación que toma cada uno de los subniveles por acción de un campo magnético.
- *Número cuántico de espín* (ms), que indica el sentido de rotación del electrón respecto de su propio eje.

Química General

Modelos Atómicos

Evolución de la teoría atómica

Número cuántico principal (n)

- Toma valores enteros positivos: 1, 2, 3,......
- A mayor "n" más lejos se encuentra del núcleo la región de mayor densidad electrónico
- A mayor "n" el electrón tiene mayor energía y se encuentra menos "atado" al núcleo

Número cuántico angular (/)

• Depende de "n" y toma valores enteros positivos de 0 a (n - 1). Así para n = 1 sólo hay un valor posible de l: 0. Para n = 2 hay dos valores posibles para l: 0 y 1, etc.

• El valor de / es representado por una letra

Define la forma del orbital

l	0	1	2	3	4
nombre del orbital	S	р	d	f	g

Química General

Modelos Atómicos

Evolución de la teoría atómica

Número cuántico magnético (m,)

Depende de / y toma valores entre – / y +/, incluyendo el 0
 Para el subnivel / = 1 existen tres valores posibles de m, que son

1, 0 y +1; ello significa que el subnivel p posee tres orbitales.

Para el subnivel l = 2 existen cinco valores posibles de m, que son -2, -1, 0, +1 y +2; ello significa que el subnivel d posee cinco orbitales.

Para el subnivel l = 3 existen siete valores posibles de m, que son -3, -2, -1, 0, +1, +2 y +3; ello significa que el subnivel f posee siete orbitales.

• Describe la orientación en el espacio del orbital

Número cuántico de espín (ms)

solamente son posibles dos sentidos de giro respecto de su eje, por lo que se describen como - ½ y +½

Química General

Modelos Atómicos

Evolución de la teoría atómica

nixel a	subnivel /	orbital m _i	notación del subnivel	número de orbitales por subnivel
1	0	Q	1s	1
2	0	Q	2s	1
	1	-1,0,+1	2р	3
3	0	Q	3s	1
1	1	-1,0,+1	Зр	3
	2	-2, -1, 0, +1, +2	3d	5
4	0	Q	4 s	1
1	1	-1,0,+1	4p	3
	2	-2, -1, 0, +1, +2	4 d	5
	3	-3, -2, -1, 0, +1, +2, +3	4.f	7

Química General

Modelos Atómicos

Evolución de la teoría atómica

TABLE 5-4 Permissible Values of the Quantum Numbers Through n = 4

n	ℓ	m_{ℓ}	m_s	Electron Capacity of Subshell = $4\ell + 2$	Electron Capacity of Shell = 2n ²
1	0 (1s)	0	$+\frac{1}{2}, -\frac{1}{2}$	2	2
2	0 (2s)	0	$+\frac{1}{2}, -\frac{1}{2}$	2	8
.004	1 (2p)	-1, 0, +1	$\pm \frac{1}{2}$ for each value of m_ℓ	6	
3	0 (3s)	0	$+\frac{1}{2}, -\frac{1}{2}$	2	18
	1 (3p)	-1, 0, +1	$\pm \frac{1}{2}$ for each value of m_ℓ	6	
\$58 <u>.</u>	2 (3d)	-2, -1, 0, +1, +2	$\pm \frac{1}{2}$ for each value of m_ℓ	10	
4	0 (4s)	0	$+\frac{1}{2}, -\frac{1}{2}$	2	32
	1 (4p)	-1, 0, +1	$\pm \frac{1}{2}$ for each value of m_ℓ	6	
	2 (4d)	-2, -1, 0, +1, +2	$\pm \frac{1}{2}$ for each value of m_ℓ	10	
15B	3 (4 <i>f</i>)	-3, -2, -1, 0, +1, +2, +3	$\pm \frac{1}{2}$ for each value of m_ℓ	14	

Química General

Modelos Atómicos

Forma de los orbitales

ORBITALES S

la distribución de probabilidades tiene simetría esférica con centro en el núcleo. A mayor valor de n corresponde una esfera de mayor radio, lo que significa mayor distancia entre los electrones y el núcleo. $(I=0; m_I=0)$

ORBITALES p

la distribución de probabilidades tiene tres configuraciones posibles, cada una de ellas lo hace en dirección de uno de los ejes coordenados (en el espacio), con origen en el núcleo y presenta un máximo en sentido negativo y otro en sentido positivo. Un electrón p se mueve más alejado del núcleo que uno s del mismo nivel de energía.

$$2p_x (l=1; m_l=-1)$$
 $2p_v (l=1; m_l=0)$ $2p_z (l=1; m_l=-1)$

Química General

Modelos Atómicos

Forma de los orbitales

ORBITALES d

están orientados en cinco direcciones, con simetría respecto del núcleo y su representación es un poco más compleja. /=2;

m/ = -2 para xy; -1 para xz; 0 para yz; 1 para x2y2; 2 para z2

ORBITALES f

están orientados en siete direcciones y por su elevada complejidad no son generalmente tratados.

Química General

Modelos Atómicos

Configuración electrónica

Orden de llenado de orbitales (Principio de Aufbau). Las energías relativas son diferentes para cada elemento.

Efecto pantalla

Dentro de un nivel todos los orbitales del hidrogeno tienen las misma energía, independientemente de los otros números cuánticos.

Pero los orbitales s, p, d y f dentro de un nivel dado poseen energías ligeramente distintas en un atomo polielectrónico

Zef = Zreal - apantallamiento e-

Química General

Modelos Atómicos

Configuración electrónica

Se conoce como **configuración electrónica** la forma en que se distribuyen los electrones del átomo de un elemento.

Para esquematizar la configuración electrónica es necesario ajustarse a algunas reglas, que se

detallan a continuación.

El orden de (llenando) de orbitales en un átomo polielectrónico

1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s

Química General

Modelos Atómicos

Configuración electrónica

Principio de exclusión de Pauli

No es posible que dos electrones de un átomo tengan los mismos 4 números cuánticos. Sólo 2 electrones pueden coexistir en el mismo orbital atómico y deben tener espines opuestos

Sustancias paramagnéticas

contienen electrones <u>no apareados</u> y son atraídas hacia un campo magnético

Sustancias diamagnéticas

contienen electrones <u>apareados</u> y son débilmente repelidas por un campo magnético

Química General

Modelos Atómicos

Configuración electrónica

Regla de Hund

"La distribución mas estable de e- en los subniveles es aquella que tenga mayor numero de espines paralelos"

Los electrones ocupan sucesivamente cada orbital del nivel desocupado y solamente después que cada orbital posee un electrón se lleva a cabo el apareamiento.

Átomo	Z	Configuración electrónica			
Li	3	$1s^22s^1$	↑ ₩	↑	
Ве	4	$1s^22s^2$	+	† \	
В	5	$1s^22s^22p^1$	+ +	† \	†
C	6	$1s^22s^22p^2$	↑ ↓	↑ ↓	† †
N	7	$1s^22s^22p^3$	↑ ₩	↑ ↓	† † †
O	8	$1s^22s^22p^4$	+ +	↑ ↓	+ + +
F	9	$1s^22s^22p^5$	↑ ↓	↑ ↓	++++
Ne	10	$1s^22s^22p^6$	+ +	↑ ↓	++++

Química General

 $_{43}$ Tc: [Kr] $5s^1 4d^6$

Modelos Atómicos

Configuración electrónica

Se hace necesario aclarar que en llenado de electrones en subniveles d y f no se sigue en todos los casos la regla de F. Hund. Las principales excepciones se encuentran en los siguientes elementos:

Química General

Modelos Atómicos

Configuración electrónica

Orbital Notation

1s 1H 2He		Sim	plified Notat 1s ¹ 1s ²	tion		
- C	1s	2s	2 <i>p</i>	Simpl	lified N	Votation
Li Be B C N O F Ne	T T T T T T T T T T T T T T T T T T T	↑ ↑ ↑ ↑ ↑ ↑ • • • • • • • • • • • • • •	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1s ² 2s ¹ 1s ² 2s ² 1s ² 2s ² 2p ¹ 1s ² 2s ² 2p ³ 1s ² 2s ² 2p ⁴ 1s ² 2s ² 2p ⁵ 1s ² 2s ² 2p ⁶	or	[He] 2s ¹ [He] 2s ² [He] 2s ² 2p ¹ [He] 2s ² 2p ² [He] 2s ² 2p ³ [He] 2s ² 2p ⁵ [He] 2s ² 2p ⁶

Química General

Modelos Atómicos

Configuración electrónica

	Orbital	Notation	
	3s	3 <i>p</i>	Simplified Notation
11Na	[Ne] <u></u>		[Ne] 3s1
$_{12}Mg$	[Ne] 🚹		[Ne] 3 <i>s</i> ²
13Al	[Ne] 🚹	1	[Ne] 3s ² 3p ¹
14Si	[Ne] 🚹	<u>1 1 _ </u>	[Ne] $3s^23p^2$
15P	[Ne] 🚹	11	[Ne] $3s^23p^3$
16S	[Ne] 🚹	<u> 14 1 1 1 </u>	[Ne] 3s ² 3p ⁴
17Cl	[Ne] 🚹	1	[Ne] 3s ² 3p ⁵
₁₈ Ar	[Ne] 🚹	<u> </u>	[Ne] 3s ² 3p ⁶
*********		N-1-1-00-1-00-1-00-1-00-1-00-1-00-1-00-	

		Orbital Not			
251		3 <i>d</i>	4s	4p	Simplified Notation
19K	[Ar]		1		[Ar] 4s1
20Ca	[Ar]		11		[Ar] 4s ²
21Sc	[Ar]	<u> </u>	11		[Ar] $3d^{1}4s^{2}$
₂₂ Ti	[Ar]		↑↓		[Ar] $3d^24s^2$
23V	[Ar]	<u>↑ ↑ ↑</u>	<u>↑</u>		[Ar] $3d^34s^2$
₂₄ Cr	[Ar]	<u> </u>	<u>1</u>		[Ar] $3d^54s^1$
₂₅ Mn	[Ar]	<u>↑ ↑ ↑ ↑ ↑</u>	11		[Ar] $3d^54s^2$
₂₆ Fe	[Ar]	<u>↑ ↑ ↑ ↑</u>	11		[Ar] $3d^64s^2$
₂₇ Co	[Ar]	<u> </u>	11		[Ar] $3d^{7}4s^{2}$
₂₈ Ni	[Ar]	<u> 11 </u>	<u>11</u>		[Ar] $3d^{8}4s^{2}$
₂₉ Cu	[Ar]	<u> </u>	1		[Ar] $3d^{10}4s^{1}$
30Zn	[Ar]	<u> </u>	11	1913	[Ar] $3d^{10}4s^2$
31Ga	[Ar]	<u> </u>	11	1	[Ar] 3d ¹⁰ 4s ² 4p ¹
32Ge	[Ar]	<u> </u>	<u>11</u>	1 1	[Ar] $3d^{10}4s^24p^2$
$_{33}As$	[Ar]	<u> </u>	<u>11</u>	<u>1 1 1</u>	[Ar] $3d^{10}4s^24p^3$
34Se	[Ar]	<u> </u>	<u> 11</u>	<u>↑↓ ↑</u>	[Ar] $3d^{10}4s^24p^4$
$_{35}\mathrm{Br}$	[Ar]	<u> </u>	<u> 11</u>	11 11 1	[Ar] $3d^{10}4s^24p^5$
$_{36}$ Kr	[Ar]	<u> </u>	<u> 11</u>	<u>11 11 11</u>	[Ar] 3d ¹⁰ 4s ² 4p ⁶