Seaborn Stuff

March 3, 2021

1 Importing Stuff

```
[1]: import numpy as np
  import pandas as pd
  import matplotlib.pyplot as plt
  import seaborn as sns
  sns.set_theme(style="darkgrid")

%matplotlib inline
```

2 Example Datasets

```
[2]: print(sns.get_dataset_names())
    ['anagrams', 'anscombe', 'attention', 'brain_networks', 'car_crashes',
    'diamonds', 'dots', 'exercise', 'flights', 'fmri', 'gammas', 'geyser', 'iris',
    'mpg', 'penguins', 'planets', 'tips', 'titanic']
[3]: crash_data = sns.load_dataset('car_crashes')
     iris_data = sns.load_dataset('iris')
     tips_data = sns.load_dataset('tips')
[4]: crash_data
[4]:
         total
                speeding
                           alcohol
                                    not_distracted no_previous
                                                                   ins_premium \
     0
          18.8
                   7.332
                             5.640
                                             18.048
                                                                        784.55
                                                          15.040
     1
          18.1
                   7.421
                             4.525
                                             16.290
                                                          17.014
                                                                       1053.48
     2
          18.6
                   6.510
                             5.208
                                             15.624
                                                          17.856
                                                                        899.47
     3
          22.4
                   4.032
                             5.824
                                             21.056
                                                          21.280
                                                                        827.34
     4
          12.0
                   4.200
                             3.360
                                             10.920
                                                          10.680
                                                                        878.41
     5
          13.6
                   5.032
                             3.808
                                             10.744
                                                          12.920
                                                                        835.50
     6
          10.8
                   4.968
                             3.888
                                             9.396
                                                           8.856
                                                                       1068.73
     7
          16.2
                   6.156
                             4.860
                                             14.094
                                                          16.038
                                                                       1137.87
     8
           5.9
                   2.006
                             1.593
                                              5.900
                                                           5.900
                                                                       1273.89
     9
          17.9
                   3.759
                             5.191
                                             16.468
                                                          16.826
                                                                       1160.13
```

10	15.6	2.964	3.900	14.820	14.508	913.15
11	17.5	9.450	7.175	14.350	15.225	861.18
12	15.3	5.508	4.437	13.005	14.994	641.96
13	12.8	4.608	4.352	12.032	12.288	803.11
14	14.5	3.625	4.205	13.775	13.775	710.46
15	15.7	2.669	3.925	15.229	13.659	649.06
16	17.8	4.806	4.272	13.706	15.130	780.45
17	21.4	4.066	4.922	16.692	16.264	872.51
18	20.5	7.175	6.765	14.965	20.090	1281.55
19	15.1	5.738	4.530	13.137	12.684	661.88
20	12.5	4.250	4.000	8.875	12.375	1048.78
21	8.2	1.886	2.870	7.134	6.560	1011.14
22	14.1	3.384	3.948	13.395	10.857	1110.61
23	9.6	2.208	2.784	8.448	8.448	777.18
24	17.6	2.640	5.456	1.760	17.600	896.07
25	16.1	6.923	5.474	14.812	13.524	790.32
26	21.4	8.346	9.416	17.976	18.190	816.21
27	14.9	1.937	5.215	13.857	13.410	732.28
28	14.7	5.439	4.704	13.965	14.553	1029.87
29	11.6	4.060	3.480	10.092	9.628	746.54
30	11.2	1.792	3.136	9.632	8.736	1301.52
31	18.4	3.496	4.968	12.328	18.032	869.85
32	12.3	3.936	3.567	10.824	9.840	1234.31
33	16.8	6.552	5.208	15.792	13.608	708.24
34	23.9	5.497	10.038	23.661	20.554	688.75
35	14.1	3.948	4.794	13.959	11.562	697.73
36	19.9	6.368	5.771	18.308	18.706	881.51
37	12.8	4.224	3.328	8.576	11.520	804.71
38	18.2	9.100	5.642	17.472	16.016	905.99
39	11.1	3.774	4.218	10.212	8.769	1148.99
40	23.9	9.082	9.799	22.944	19.359	858.97
41	19.4	6.014	6.402	19.012	16.684	669.31
42	19.5	4.095	5.655	15.990	15.795	767.91
43	19.4	7.760	7.372	17.654	16.878	1004.75
44	11.3	4.859	1.808	9.944	10.848	809.38
45	13.6	4.080	4.080	13.056	12.920	716.20
46	12.7	2.413	3.429	11.049	11.176	768.95
47	10.6	4.452	3.498	8.692	9.116	890.03
48	23.8	8.092	6.664	23.086	20.706	992.61
49	13.8		4.554	5.382	11.592	670.31
50	17.4	7.308	5.568	14.094	15.660	791.14

	ins_tosses	apprev
0	145.08	AL
1	133.93	AK
2	110.35	AZ

ΑZ 3 142.39 AR

4	165.63	CA
5	139.91	CO
6	167.02	CT
7	151.48	DE
8	136.05	DC
9	144.18	FL
10	142.80	GA
11	120.92	HI
12	82.75	ID
13	139.15	IL
14	108.92	IN
15	114.47	IA
16	133.80	KS
17	137.13	KY
18	194.78	LA
19	96.57	ME
20	192.70	MD
21	135.63	MA
22	152.26	MI
23	133.35	MN
24	155.77	MS
25	144.45	MO
26	85.15	MT
27	114.82	NE
28	138.71	NV
29	120.21	NH
30	159.85	NJ
31	120.75	NM
32	150.01	NY
33	127.82	NC
34	109.72	ND
35	133.52	OH
36	178.86	OK
37	104.61	OR
38	153.86	PA
39	148.58	RI
40	116.29	SC
41	96.87	SD
42	155.57	TN
43	156.83	TX
44	109.48	UT
45	109.61	VT
46	153.72	VA
47	111.62	WA
48	152.56	WV
49	106.62	WI
50	122.04	WY

3 Distribution Plots

```
[5]: sns.distplot(crash_data['total'])
sns.distplot(crash_data['speeding'])
```

/Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/site-packages/seaborn/distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

/Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/site-packages/seaborn/distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

[5]: <AxesSubplot:xlabel='speeding', ylabel='Density'>


```
[6]: #Joint plot

sns.jointplot(x='speeding', y='alcohol', data=crash_data, kind='reg')
sns.jointplot(x='speeding', y='alcohol', data=crash_data, kind='kde')
```

```
sns.jointplot(x='speeding', y='alcohol', data=crash_data, kind='resid')
sns.jointplot(x='speeding', y='alcohol', data=crash_data, kind='hex')
```

[6]: <seaborn.axisgrid.JointGrid at 0x12c1563d0>


```
[7]: #Pair plots
sns.pairplot(crash_data)
sns.pairplot(tips_data, hue='sex', palette='pastel')
```

[7]: <seaborn.axisgrid.PairGrid at 0x12c8992e0>


```
[8]: #Rug Plot
sns.rugplot(tips_data['tip'])
```

[8]: <AxesSubplot:xlabel='tip'>

4 Basic Styling

```
[9]: sns.set_style('darkgrid')

plt.figure(figsize=(8,4))

sns.set_context('paper')
sns.jointplot(x ='speeding', y = 'alcohol', data=crash_data, kind='reg')

#https://matplotlib.org/stable/tutorials/colors/colormaps.html
```

[9]: <seaborn.axisgrid.JointGrid at 0x129e7c190>

<Figure size 576x288 with 0 Axes>

5 Catagorical Plotting

```
[10]: #Bar Plot
sns.barplot(x='sex', y='total_bill', data=tips_data, estimator=np.mean)
```

[10]: <AxesSubplot:xlabel='sex', ylabel='total_bill'>

[11]: sns.barplot(x='sex', y='total_bill', data=tips_data, estimator=np.median)

[11]: <AxesSubplot:xlabel='sex', ylabel='total_bill'>


```
[12]: sns.barplot(x='sex', y='total_bill', data=tips_data, estimator=np.cov)
```

[12]: <AxesSubplot:xlabel='sex', ylabel='total_bill'>


```
[13]: #Count Plot
sns.countplot(x='sex', data=tips_data)
```

[13]: <AxesSubplot:xlabel='sex', ylabel='count'>


```
[14]: #Box Plot
sns.boxplot(x='day', y='total_bill', data=tips_data, hue='sex')
#plt.legend(loc=0)
```

[14]: <AxesSubplot:xlabel='day', ylabel='total_bill'>


```
[15]: #Violin Plot
sns.set_style('white')
sns.violinplot(x='day', y='total_bill', data=tips_data, hue='sex',split=True)
```

[15]: <AxesSubplot:xlabel='day', ylabel='total_bill'>

[16]: <AxesSubplot:xlabel='day', ylabel='total_bill'>


```
[17]: #Swarm Plot
sns.violinplot(x='day', y='total_bill', data=tips_data)
sns.swarmplot(x='day', y='total_bill', data=tips_data, color='white')
```

[17]: <AxesSubplot:xlabel='day', ylabel='total_bill'>

6 Matrix Plot

```
[18]: #Heatmap

#Get correlation matrix

corr_mtx = crash_data.corr()

sns.heatmap(corr_mtx, annot=True, cmap='jet')
```

[18]: <AxesSubplot:>


```
[21]: #Cluster Map
iris_data.pop('species')
sns.clustermap(iris_data)
```

[21]: <seaborn.matrix.ClusterGrid at 0x12f5f4820>


```
[22]: #Pair Grid
iris_pg = sns.PairGrid(tips_data, hue='sex')
iris_pg.map(plt.scatter)
plt.show()
iris_pg2 = sns.PairGrid(tips_data, hue='sex')
iris_pg2.map_diag(plt.hist)
```

 $\hbox{\#Loads of customizability here, https://seaborn.pydata.org/generated/seaborn.} \\ \hbox{\hookrightarrow pairplot.html?highlight=pairplot\#seaborn.pairplot}$

[22]: <seaborn.axisgrid.PairGrid at 0x12f8e5610>

7 Regression Plots

<Figure size 576x432 with 0 Axes>

[23]: <seaborn.axisgrid.FacetGrid at 0x1307520a0>


```
[24]: sns.set_palette('plasma')
sns.set_context('paper')
sns.lmplot(x='total_bill', y='tip', data=tips_data, col='sex', row='time')
```

[24]: <seaborn.axisgrid.FacetGrid at 0x13056c4f0>

[]: