The Curry-Howard Isomorphism

Introduction

Some Background

A Three-way Correspondence

Conclusions

Introduction

An example

$$\frac{A \to B \quad A}{B}$$
Modus ponens

$$\frac{f: A \to B \quad x: A}{fx: B}$$
Function application

- Propositions correspond to types
- Proofs correspond to programs

A Three-way Correspondence

Intuitionistic Logic

- Syntactically, reductio ad absurdum (RAA) is not a rule in the natural deduction system.
- The law of excluded middle $\varphi \lor \neg \varphi$ and double negation elimination $\neg \neg \varphi \to \varphi$ are no longer axioms.
- Semantically, the judgements about statements are based on the existence of a proof (or construction) of that statement

Simply Typed Lambda Calculus

- ◆ A family of prototype programming languages
- Simply typed lambda calculus with function types λ^{\rightarrow}
 - \triangleright Types $\sigma ::= \iota \mid \sigma \rightarrow \sigma$
 - \triangleright Terms $M ::= x \mid \lambda x.M \mid MM$
- Three kinds of equivalence
 - $\triangleright \alpha$ -equivalence $\lambda x. M =_{\alpha} \lambda y. [y/x]M$
 - \triangleright β -equivalence $(\lambda x. M)N =_{\beta} [N/x]M$
 - \triangleright η -equivalence $\lambda x. Mx =_{\eta} M$

Cartesian Closed Categories

A CCC is a category with the following extra structure:

- lacktriangle A terminal object *unit* with unique arrow **One** $^{\sigma}$ for every σ
- Object map \times , function $\langle \cdot, \cdot \rangle$, and arrows Proj_1 and Proj_2 satisfying $\operatorname{Proj}_i \circ \langle f_1, f_2 \rangle = f_i$ and $\langle \operatorname{Proj}_1 \circ g, \operatorname{Proj}_2 \circ g \rangle = g$
- ◆ Object map \rightarrow , function **Curry**, and arrow **App** satisfying **App** \circ (**Curry**(h) \circ **Proj**₁, **Proj**₂) = h and **Curry**(**App** \circ ($k\circ$ **Proj**₁, **Proj**₂)) = k

Encode Proofs in Typed Lambda Terms

- Every proof leads to a type derivation
- Every type-derivation bring a well-typed lambda term
- Therefore, every proof can be encoded in a well-typed lambda term
 - assumptions are encoded in type context
 - proofs of theorems are encoded in closed terms

Encode Proofs in Typed Lambda Terms

• Example – Theorem $\varphi \to (\psi \to \varphi)$

$$\frac{\frac{\overline{\varphi} \vdash \overline{\varphi}}{\varphi, \quad \psi \vdash \overline{\varphi}}(add)}{\varphi \vdash \qquad \psi \rightarrow \varphi} (\rightarrow I) \\
\vdash \qquad \qquad \varphi \rightarrow (\psi \rightarrow \varphi)} (\rightarrow I)$$

The proof of theorem $\varphi \to (\psi \to \varphi)$ is encoded in combinator $\mathbf{K} \equiv \lambda x : \varphi \cdot \lambda y : \psi \cdot x : \varphi \to \psi \to \varphi$

Encode Proofs in Typed Lambda Terms

• Example – Theorem $\varphi \to (\psi \to \varphi)$

$$\frac{\frac{\overline{x:\varphi \vdash x:\varphi}}{x:\varphi,y:\psi \vdash x:\varphi}(add)}{\frac{x:\varphi,y:\psi \vdash x:\varphi}{\vdash \lambda x:\varphi.\lambda y:\psi.x:\psi \to \varphi}(\to I)} (\to I)$$

The proof of theorem $\varphi \to (\psi \to \varphi)$ is encoded in combinator $\mathbf{K} \equiv \lambda x : \varphi \cdot \lambda y : \psi \cdot x : \varphi \to \psi \to \varphi$

- Every type derivation leads to a proof (by erasing terms)
- Every well-typed lambda term uniquely determines a type derivation
- By decoding a well-typed lambda term, we obtain a proof
 - Rebuild the type derivation of the term
 - Erase all the terms in the derivation

• Example – Combinator $\mathbf{K} \equiv \lambda x : \varphi \cdot \lambda y : \psi \cdot x : \varphi \rightarrow \psi \rightarrow \varphi$

$$\frac{\frac{\overline{x:\varphi \vdash x:\varphi}}{x:\varphi,y:\psi \vdash x:\varphi}(add)}{\frac{x:\varphi,y:\psi \vdash x:\varphi}{\vdash \lambda x:\varphi.\lambda y:\psi.x:\psi \to \varphi}(\to I)} (\to I)$$

• The proof of theorem $\varphi \to (\psi \to \varphi)$ is obtained by decoding the combinator $\mathbf{K} \equiv \lambda x : \varphi \cdot \lambda y : \psi \cdot x : \varphi \to \psi \to \varphi$

• Example – Combinator $\mathbf{K} \equiv \lambda x : \varphi \cdot \lambda y : \psi \cdot x : \varphi \rightarrow \psi \rightarrow \varphi$

$$\frac{\frac{\overline{x} : \varphi \vdash \overline{x} : \varphi}{\overline{x} : \varphi, \overline{y} : \psi \vdash \overline{x} : \varphi}(add)}{\frac{\overline{x} : \varphi \vdash \overline{\lambda} y : \psi : x : \psi \rightarrow \varphi}{} (\rightarrow I)} (\rightarrow I) \\
\vdash \frac{\lambda x : \varphi \vdash \overline{\lambda} y : \psi : x : \varphi \rightarrow (\psi \rightarrow \varphi)}{} (\rightarrow I)$$

• The proof of theorem $\varphi \to (\psi \to \varphi)$ is obtained by decoding the combinator $\mathbf{K} \equiv \lambda x : \varphi \cdot \lambda y : \psi \cdot x : \varphi \to \psi \to \varphi$

• Example – Combinator $\mathbf{K} \equiv \lambda x : \varphi \cdot \lambda y : \psi \cdot x : \varphi \rightarrow \psi \rightarrow \varphi$

$$\frac{\frac{\overline{\varphi} \vdash \overline{\varphi}}{\varphi, \quad \psi \vdash \overline{\varphi}}(add)}{\varphi \vdash \qquad \psi \rightarrow \varphi} (\rightarrow I) \\
\vdash \qquad \qquad \varphi \rightarrow (\psi \rightarrow \varphi)} (\rightarrow I)$$

♦ The proof of theorem φ → (ψ → φ) is obtained by decoding the combinator $\mathbf{K} \equiv \lambda x : φ . \lambda y : ψ . x : φ → ψ → φ$

Some Correspondence

- Propositions correspond to types
 - set of propositions

 set of types
 - propositional connectives
 type constructors
- Proofs correspond to terms
 - natural deduction system
 typing rules
 - ➤ normalization \(\sime\) reduction
- Some typical questions
 - proof checking
 type checking
 - provability
 inhabitation

A Three-way Correspondence

Interpret Well-typed Terms as Morphisms

- $\lambda^{unit,\times,\rightarrow}$
 - terminal type unit product types $\sigma \times \tau$ function types $\sigma \to \tau$

CCCs

terminal object *unit*

products $A \times B$

function types $A \rightarrow B$

- \bullet λ^{\rightarrow} is as expressive as $\lambda^{unit,\times,\rightarrow}$
 - \triangleright product $\sigma_1 \times ... \times \sigma_n \cong \text{sequence } \sigma_1, ..., \sigma_n$
 - Function $f: \sigma \times \tau \to \rho \cong \bar{f}: \sigma \to (\tau \to \rho)$
 - Function $g: \sigma \to (\tau \times \rho) \cong g_1: \sigma \to \tau$ and $g_2: \sigma \to \rho$

Interpret Well-typed Terms as Morphisms

Given a cartesian closed category \mathcal{C} with some object constants

- the interpretation of type expressions
 - \triangleright $C[[\iota]] = \hat{b}$
- the interpretation of type expressions
 - \triangleright $C[\emptyset] = unit$

Interpret Well-typed Terms as Morphisms

- the interpretation of well-typed terms

 - \triangleright $\mathcal{C}[\![\Gamma \rhd MN:\tau]\!] =$

$$\operatorname{App}^{\mathcal{C}\llbracket\sigma\rrbracket,\mathcal{C}\llbracket\tau\rrbracket}\circ\langle\mathcal{C}\llbracket\Gamma\rhd M:\sigma\to\tau\rrbracket,\mathcal{C}\llbracket\Gamma\rhd N:\sigma\rrbracket\rangle$$

- $\mathcal{C}[\![\Gamma_1, x : \sigma, \Gamma_2 \rhd M : \tau]\!] = \mathcal{C}[\![\Gamma_1, \Gamma_2 \rhd M : \tau]\!] \circ \chi_f^{[\![\Gamma_1, x : \sigma, \Gamma_2]\!]}$

Soundness & Completeness

Theorem (Soundness) Given any well typed terms M and N,

if
$$\Gamma \triangleright M \equiv_{\alpha\beta\eta} N : \sigma$$
, then $\llbracket \Gamma \triangleright M : \sigma \rrbracket = \llbracket \Gamma \triangleright N : \sigma \rrbracket$ in very *CCC*.

Proof

- igoplus α -equivalence: no term-variable name appears in the calculations
- igoplus β-equivalence: $\llbracket Γ ▷ (λx: σ. M)N : τ \rrbracket = \llbracket Γ ▷ [N/x]M : τ \rrbracket$

Soundness & Completeness (cont.)

Theorem (Completeness) Given any $\Gamma \rhd M$: σ and $\Gamma \rhd N$: σ , there exists a CCC $\mathcal C$ such that if $\mathcal C[\![\Gamma \rhd M:\sigma]\!] = \mathcal C[\![\Gamma \rhd N:\sigma]\!]$, then $\Gamma \rhd M \equiv_{\alpha\beta\eta} N:\sigma$.

Proof

- Construct one category \mathcal{C} by λ^{\rightarrow}
 - Objects sequences of types
 - Morphisms tuples of equivalence classes of terms
- $igoplus \mathcal{C}$ is cartesian closed (the most difficult part)
- igoplus If $\mathcal C$ satisfies $\llbracket \Gamma \rhd M \colon \sigma \rrbracket = \llbracket \Gamma \rhd N \colon \sigma \rrbracket$, then $\Gamma \rhd M \equiv_{\alpha\beta\eta} N \colon \sigma$.

Conclusions

Appendix

Connectives VS. Type Constructors

Formulas in	Types in
intuitionist propositional logic	full simply-typed lambda calculus
False formula ⊥	Initial type <i>null</i>
True formula ⊤ (¬⊥)	Terminal type unit
Implication $\varphi_0 o \varphi_1$	Function type $\sigma_0 ightarrow \sigma_1$
Conjunction $arphi_0 \wedge arphi_1$	Product type $\sigma_0 imes \sigma_1$
Disjunction $arphi_0 \lor arphi_1$	Sum type $\sigma_0 + \sigma_1$

Appendix

◆ Natural Deduction System VS. Typing Rules

Natural deduction in	Typing rules in
intuitionist propositional logic	full simply-typed lambda calculus
${\Gamma_{1},\varphi,\Gamma_{2}\vdash\varphi}Axiom$	$\frac{1}{\Gamma_1, x: \sigma, \Gamma_2 \vdash x: \sigma} Var$
$\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \to \psi} \to I$	$\frac{\Gamma, x: \sigma \vdash M: \tau}{\Gamma \vdash \lambda x. M: \sigma \to \tau} \to I$
$\frac{\Gamma \vdash \varphi \to \psi, \ \Gamma \vdash \varphi}{\Gamma \vdash \psi} \to E$	$\frac{\Gamma \vdash M : \sigma \to \tau, \ \Gamma \vdash N : \sigma}{\Gamma \vdash MN : \tau} \to E$
$\frac{\Gamma \vdash \varphi, \ \Gamma \vdash \psi}{\Gamma \vdash \varphi \land \psi} \land I$	$\frac{\Gamma \vdash M : \sigma, \ \Gamma \vdash N : \tau}{\Gamma \vdash \langle M, N \rangle : \sigma \times \tau} \times I$

Appendix

◆ Natural Deduction System VS. Typing Rules (cont.)

	1
$\frac{\Gamma \vdash \varphi \land \psi}{\Gamma \vdash \varphi} \land E_1$	$\frac{\Gamma \vdash M: \sigma \times \tau}{\Gamma \vdash \operatorname{Proj}_{1}^{\sigma,\tau} M: \sigma} \times E_{1}$
$\frac{\Gamma \vdash \varphi \land \psi}{\Gamma \vdash \psi} \land E_2$	$\frac{\Gamma \vdash M: \sigma \times \tau}{\Gamma \vdash \operatorname{Proj}_{2}^{\sigma,\tau} M: \tau} \times E_{2}$
$\frac{\Gamma \vdash \varphi}{\Gamma \vdash \varphi \lor \psi} \lor I_1$	$\frac{\Gamma \vdash M : \sigma}{\Gamma \vdash \text{Inleft}^{\sigma,\tau} M : \sigma + \tau} + I_1$
$\frac{\Gamma \vdash \psi}{\Gamma \vdash \varphi \lor \psi} \lor I_2$	$\frac{\Gamma \vdash M: \tau}{\Gamma \vdash \operatorname{Inright}^{\sigma,\tau} M: \sigma + \tau} + I_1$
$\frac{\Gamma \vdash \varphi \lor \psi, \Gamma \vdash \varphi \to \chi, \Gamma \vdash \psi \to \chi}{\Gamma \vdash \chi} \lor E$	$\frac{\Gamma \vdash M: \sigma + \tau, \Gamma \vdash N: \sigma \to \rho, \Gamma \vdash P: \tau \to \rho}{\Gamma \vdash Case^{\sigma,\tau,\rho} MNP: \rho} + E$