Workshop

Matemática e Física - Parte 1

Micaela Fonseca, 15 de Fevereiro de 2021 Universidade Lusófona

Workshop

Matemática e Física - Parte 1

Adaptado de:

"Preparação para o exame nacional 2013 Matemática A 12º ano", 2013, Maria Augusta Neves, Luis Guerreiro, Porto Editora

"MÉTODOS QUANTITATIVOS", Fernando F. Gonçalves, Notas de Apoio à UC de Matemática

Aleph 10: matemática, 10º ano / Jaime Carvalho e Silva, Joaquim Pinto, Vladimiro Machado. - 1º ed., 1º tir. - [Alfragide]: Asa II, 2010. - 2 v.: il.; 24 cm + guia (1 f. desdobr.) + Kittec 10 (16 p.). - 1º v.: 144 p. 2º v.: 239 p. - ISBN 978-989-23-0904-0-1

Conceptual test

Derivadas, Velocidade, Tempo

 Qual dos gráficos representa a velocidade do comboio em função do tempo? A train moves along a straight track and its position vs. time looks like:

Which graph best depicts the train's velocity vs. time?

Vectores Coordenadas

Mapa da cidade do Porto que mostra as linhas de eléctrico nalgumas zonas da cidade, no início do século XX (retirado do livro *Manual do viajante em Portugal* de L. de Mendonça e Costa, edição de 1913).

x=3

 $x \ge 3$

Vectores

Vector como diferença entre dois pontos

Consideremos o ponto A e o vector (livre) u.

A soma do vector \boldsymbol{u} com o ponto \boldsymbol{A} é definida como sendo o ponto \boldsymbol{B} , que pode ser obtido pela translação do ponto \boldsymbol{A} segundo o vector \boldsymbol{u} .

Escreve-se $B = A + \vec{u}$. Por definição, diz-se que esta igualdade é **equivalente** a $\vec{u} = B - A$, ou seja, pode-se considerar que o vector livre \vec{u} é obtido por meio da diferença entre dois pontos.

No plano e no espaço

Uma equação vectorial da recta r do plano que contém o ponto A de coordenadas (a_1, a_2) e que tem a direcção do vector $\vec{v} \neq \vec{0}$ de coordenadas (v_1, v_2) pode escrever-se na forma:

$$(x, y) = (a_1, a_2) + k(v_1, v_2), k \in \mathbb{R}$$

Uma equação vectorial da recta r do espaço que contém o ponto A de coordenadas (a_1, a_2, a_3) e que tem a direcção do vector $\vec{v} \neq \vec{0}$ de coordenadas (v_1, v_2, v_3) pode escrever-se na forma:

$$(x, y, z) = (a_1, a_2, a_3) + k(v_1, v_2, v_3), k \in \mathbb{R}$$

No plano e no espaço

Tarefa 1

Equação vectorial da recta no plano

Num referencial ortonormado do plano, considera os pontos A(1, -2), B(-3, 4) e C(2, 3).

- 1. Escreve uma equação vectorial da recta s que contém os pontos A e B.
- 2. Verifica se o ponto C pertence à recta s.

Uma equação vectorial da recta r do plano que contém o ponto A de coordenadas (a_1, a_2) e que tem a direcção do vector $\vec{v} \neq \vec{0}$ de coordenadas (v_1, v_2) pode escrever-se na forma:

$$(x,y) = (a_1,a_2) + k(v_1,v_2), k \in \mathbb{R}$$

No plano e no espaço

Na primeira pergunta é pedida uma equação vectorial da recta que contém os pontos A e B. Para isso, necessitamos de um ponto (a origem) e de um vector que determine a direcção da recta (\overrightarrow{AB}) ou (\overrightarrow{BA}) são vectores directores da recta). Vamos escolher, por exemplo, o vector (\overrightarrow{AB}) . As coordenadas do vector podem ser obtidas pela diferença dos dois pontos extremos:

$$\overrightarrow{AB} = B - A = (-3, 4) - (1, -2) = (-4, 6)$$

Já temos um vector director da recta e vamos agora escolher um ponto da recta para origem; pode ser um dos pontos *A* ou *B*. Escolhamos, por exemplo, o ponto *B*. Uma equação vectorial é então:

$$(x, y) = (-3, 4) + k(-4, 6), k \in \mathbb{R}$$

No plano e no espaço

Agora vamos responder à segunda questão verificando se o ponto C pertence à recta s. Se o ponto pertencer à recta terá de verificar a equação da recta. Ou seja, como C tem coordenadas (2, 3), então, para x = 2 e y = 3, deverá existir algum número real k que verifique a equação anteriormente obtida.

Vejamos então:

$$(2,3) = (-3,4) + k(-4,6) \Leftrightarrow (2,3) = (-3,4) + (-4k,6k)$$

 $\Leftrightarrow (2,3) = (-3-4k,4+6k)$

Determinar o valor de *k* equivale a resolver o sistema:

$$\begin{cases} 2 = -3 - 4k \\ 3 = 4 + 6k \end{cases} \Leftrightarrow \begin{cases} k = -\frac{5}{4} \\ k = -\frac{1}{6} \end{cases}$$

Sendo este sistema impossível, o ponto *C* não pode pertencer à recta.

A- vectores colineares

Dois vectores \vec{u} e \vec{v} dizem-se **colineares** se existir um número $k \neq 0$ tal que $\vec{u} = k\vec{v}$.

Como já tivemos oportunidade de ver, quando multiplicamos um vector \vec{v} por um número k obtemos um novo vector com a mesma direcção e sentido de \vec{v} (ou com o sentido oposto conforme k seja positivo ou negativo) e com norma igual ao produto da norma de \vec{v} pelo valor absoluto de k. No caso de k=0, obtemos o vector nulo $\vec{0}$. Daqui podemos concluir que **dois vectores paralelos são colineares** (isto é, têm a mesma direcção) e vice-versa.

Assim, todos os vectores da figura ao lado são colineares.

A- vectores colineares

Propriedade

Dois vectores $\vec{u} = (u_1, u_2)$ e $\vec{v} = (v_1, v_2)$ não nulos **são colineares** se e só se o produto cruzado das suas coordenadas for igual, isto é, se $u_1v_2=u_2v_1$

Demonstremos esta propriedade. Temos que \vec{u} e \vec{v} serão colineares se existir um número real k não nulo, tal que $\vec{u} = k\vec{v}$. Substituindo \vec{u} e \vec{v} pelas suas coordenadas, esta igualdade será equivalente a $(u_1, u_2) = k(v_1, v_2)$. Pela multiplicação de um escalar por um vector vem $(u_1, u_2) = (kv_1, kv_2)$ e da igualdade de vectores expressos pelas suas coordenadas terá de se ter $u_1 = kv_1$ e $u_2 = kv_2$. Mas estas igualdades são equivalentes a $\frac{u_1}{v_1} = k = \frac{u_2}{v_2}$ quando v_1 e v_2 forem ambos diferentes de zero. Daqui resulta

 $U_1V_2 = U_2V_1$

. Obtemos assim o que pretendíamos.

B- deducão

Propriedade

Dois vectores $\vec{u} = (u_1, u_2)$ e $\vec{v} = (v_1, v_2)$ não nulos **são colineares** se e só se o produto cruzado das suas coordenadas for igual, isto é, se $u_1v_2=u_2v_1$

Consideremos uma recta r que contém o ponto A de coordenadas (a_1, a_2) e que tem a direcção do vector \vec{v} de coordenadas (v_1, v_2) .

Designemos por P(x, y) um ponto genérico da recta. O vector $\overrightarrow{AP} = (x - a_1, y - a_2)$ é colinear com o vector \overrightarrow{v} porque, tanto P como A, estão sobre a recta. Sendo assim, temos sucessivamente que:

$$v_2(x - a_1) = (y - a_2)v_1$$

$$v_2x - v_2a_1 = yv_1 - a_2v_1$$

$$yv_1 = v_2x - v_2a_1 + a_2v_1$$

$$y = \frac{v_2}{v_1}x - a_1\frac{v_2}{v_1} + a_2$$

desde que $v_1 \neq 0$. Obtivemos deste modo uma equação que define uma recta não vertical a que se chama **equação reduzida da recta**.

B- dedução

Uma recta não vertical que passa pelo ponto $A(a_1, a_2)$ e tem a direcção do vector $\vec{v}(v_1, v_2)$ tem por equação reduzida:

$$y = mx + b$$

Duas rectas **são paralelas** se e só se têm o mesmo declive.

Repara na figura ao lado:

O declive
$$m = \frac{v_2}{v_1}$$
 é o valor da tangente trigonométrica

B- dedução

Uma recta não vertical que passa pelo ponto $A(a_1, a_2)$ e tem a direcção do vector $\vec{v}(v_1, v_2)$ tem por equação reduzida:

$$y = mx + b$$

Tarefa 3

Equação reduzida da recta

Considera a recta s, que contém os pontos A e B, e a recta r, que contém os pontos C e D.

- Escreve as equações reduzidas das rectas r e s.
- 2. Determina o ponto de intersecção das rectas *r* e *s*.

B- dedução

■ A recta s contém os pontos A(-2, 3) e B(2, 0). Para escrever uma equação reduzida da recta s podemos começar por determinar um vector director da recta, por exemplo,

$$\overrightarrow{AB} = B - A = (2, 0) - (-2, 3) = (4, -3)$$

O declive m da recta é $m = -\frac{3}{4}$, donde a equação é da forma $y = -\frac{3}{4}x + b$.

Mas o ponto *A* pertence à recta, logo *b* deve ser tal que:

$$3 = -\frac{3}{4} \times (-2) + b \Leftrightarrow b = \frac{3}{2}$$

A equação reduzida da recta é:

$$y = -\frac{3}{4}x + \frac{3}{2}$$

Quanto à recta r, a ela pertencem os pontos C(-2, -1) e D(0, 2). Com eles vamos determinar um vector director da recta:

$$\overrightarrow{CD} = D - C = (0, 2) - (-2, -1) = (2, 3)$$

B- dedução

O declive da recta será então $m=\frac{3}{2}$ e a equação da recta é da forma $y=\frac{3}{2}x+b$, onde b é a ordenada na origem. Mas a ordenada na origem é a ordenada do ponto em que a recta intersecta o eixo das ordenadas que, neste caso, é o ponto D. Assim, b=2 e a equação reduzida da recta é:

$$y = \frac{3}{2}x + 2$$

 Para determinar o ponto de intersecção das duas rectas temos (como noutras situações quando se trata de intersecção) de resolver o sistema constituído pelas duas rectas:

$$\begin{cases} y = \frac{3}{2}x + 2 \\ y = -\frac{3}{4}x + \frac{3}{2} \end{cases} \Leftrightarrow \begin{cases} x = -\frac{2}{9} \\ y = \frac{5}{3} \end{cases}$$

O ponto de intersecção das rectas r e s é o ponto de coordenadas $\left(-\frac{2}{9}, \frac{5}{3}\right)$.

Generalidades

DEFINIÇÃO (Função). Dados dois conjuntos X e Y, designamos função (ou aplicação) a correspondência f de X em Y, simbolicamente

$$f: X \longrightarrow Y$$

que associa a cada elemento de X um e um só elemento de Y. O conjunto X é chamado domínio da função. Os elementos de Y associados a elementos de X formam um conjunto chamando contradomínio da função.

Funções reais de variável real O plano cartesiano

O plano cartesiano

Funções polinomiais

Considere a função $p: \mathbb{R} \longrightarrow \mathbb{R}$ definida por

$$p(x) = \sum_{k=0}^{n} a_k x^k = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n,$$

Exemplos.

- (a) A função $q(x) = x^4 5x^2 10x + \sqrt{2}$ é polinomial de grau 4.
- (b) As funções r(x) = -2x + 1 e s(x) = 3x são polinomiais de grau 1
- (c) A função $t(x) = 2x^2 2x + 1$ é polinomial de grau 2.
- (d) A função constante k(x) = 7 é polinomial de grau 0.

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
.

$$m = \operatorname{tg} \alpha = \frac{y_2 - y_1}{x_2 - x_1}.$$

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{y_1 - y_2}{x_1 - x_2}.$$

x = -6 y = -2x-4 y y = x+2 y = 4 y

- Funções polinomiais grau 0 e grau 1
- (a) A função f(x) = x + 2 tem contradomínio \mathbb{R} . Resolvendo $x + 2 = 0 \Leftrightarrow x = -2$ determina-se o zero: x = -2. A ordenada na origem é b = 2 (é o valor da função em x = 0: f(0) = 0 + 2 = 2). Como m = 1 > 0 a recta tem inclinação positiva (para cima).
- (b) A função g(x) = -2x 4 tem contradomínio \mathbb{R} e o zero x = -2 (obtem-se resolvendo: $-2x 4 = 0 \Leftrightarrow x = -2$). A ordenada na origem é b = -4. Como o declive é negativo (m = -2 < 0) a recta tem inclinação negativa.
- (c) As funções h(x) = 4 e i(x) = 0 são constantes com contradomínios $\{4\}$ e $\{0\}$, respectivamente. A função h não tem zeros e a função i uma infinidade de zeros: $j(x) = 0 \ \forall x \in \mathbb{R}$). As ordenadas na origem de h e i são b = 4 e b = 0, respectivamente. Note que a recta que representa geometricamente a função i é o eixo das abcissas.
- (d) As fórmulas x = -6 e x = 0 têm por representação geométrica rectas verticais. A fórmula x = 0 corresponde ao eixo das ordenadas.

Funções polinomiais - grau 2 | Funções quadráticas

Caso particular:

$$f : \mathbb{R} \longrightarrow \mathbb{R}$$
,

$$f(x) = ax^2$$
,

Funções polinomiais - grau 2 | Funções quadráticas

Equação reduzida da parábola | Funções quadráticas

$$f(x) = ax^2 + bx + c$$

$$y = x^2 - 12x + 38$$
.

Equação reduzida da parábola | Funções quadráticas

HW1

4. E se a figura incluir vários semiplanos simultaneamente? Tenta caracterizar as faixas abaixo usando coordenadas.

5. Tenta agora descrever, usando coordenadas, os ângulos representados a seguir.

HW2

6. Descreve, usando coordenadas, as figuras a seguir representadas.

- 7. Descreve, usando coordenadas,
 - **a.** a faixa aberta compreendida entre as rectas x = 2 e x = 3;
 - **b.** o ângulo recto aberto limitado pelas rectas x = 3 e y = 5 e que está totalmente contido no primeiro quadrante;
 - **c.** a faixa fechada compreendida entre as rectas y = -2 e y = 3;
 - **d.** o ângulo recto fechado limitado pelas rectas x = -2 e y = -3 e que está totalmente contido no terceiro quadrante.