Séne d'exos #3
Temps d'arrêt - The d'arrêt - Inégalités maximales

[EXO1] Dans tous les exos, supposons que (12, (Fn), F, IP) est un espace de probabilité filtré.

- Soitent Tet o deux (Fn), - temps d'arrêt.

- Montrer que

(a) Si T= kelN alos == Fk.

(b) TAG, TVG, S+T sout de (Fb)-t.a.

(c) SITST alos FCF

日) 元的一天八天

(e) { \(\tau \) \(\t

[Ex02] Soient (Xn), et (Xn), deux surmartingales (resp. martingales)

et z un temps d'arrêt telque: Xz < Yz (resp. Xz=Yz) p.s sur (T<+00).

Sat

Zn := 1/n 1/n < cf + xn 1/1 { T < nf

- Montrer que (Zn), est une surmartingale (resp. martingale),

[Exo3] Soit (XII), est use martingale et 7 un temps d'arrêt tels que !

(i) T<∞ ps, (ii) X_EL' et (iii) E|Xn|11/17>ny

Montrer que !

(a) E|X_τ/1/_{{τ>n}y →+∞ 0; (b) E|X_{τ,m}-X_τ/ →0; (c) EX_τ=EX₀,

EXO4 (Une réciproque du Thm d'arrêt)

Soit (Xn) un processus intégrable adapté

Montrer que si l'on a E(XZ)=IE(Xo) pour tont temps d'arrêt borné T, alors (Xn), est une martingale.

 $(\frac{1}{2})$

[EXO5] Soit (Xn) new une marche aléatoire symétrique sur Z.
Soient 2,6 & 2 avec: a < 0 < b et Soient:
Ta = inf { n > 0 : X = 2} ; Tb= inf { n > 0 : Xn = b} et Ta,b = Ta 1 Tb.
Soit A = { Ta,b=Ta} l'évenement où X atteint "a" avant "b".
- Le but de cet exercice est de calculer P(A).
1) Montrer que lim sup Xn = + 00
2) Montrer que (Xn Tab)=(Xn A Tab) est une martingale.
3) Montrer que Xnb < b-2.
4) B. l. The de la convergence dominée montrer que : [(xn) > 107)
5) Ecrire E(X, Ta, b) en fonction de a, b. et P(Tq, b=Ta).
6) En déduire P(A).
[Exot Soient Y, Y, des v.a. i.i.d telles que E(Xm)=0, et soil
la martingale $X_n = \frac{1}{2} Y_m$. On se donne $\Delta > 0$, et soit
P(1) - P S max 1xm > 12.
Donner une majoration de In(x) en expregnant
l'inégalité de Doob à X_n^2 . 2. Améliorer la borne prédente en appliquant l'inégalité de Doob à $(X_n+c)^2$ 2. Améliorer la borne prédente en appliquant l'inégalité
1 1. La home prédente en apprique de
et en optimisant sur c. N(0,1). Majorer Pn(x) en appliquant l'inégalité 3. On suppose que Xm ~ N(0,1). Majorer Pn(x) en appliquant l'inégalité 3. On suppose que Xm ~ N(0,1). Majorer Pn(x) en appliquant l'inégalité
3. On suppose que xm et en optimisant sur c. de Doob à exte et en optimisant sur c.
de Doob à l'entrées réduites, majorer Pmax Xm > 1
de Doob à e et en ophinisant et l'appliquent l'inégalité de Doob à e et en optimisant sur . (0/2)
en appliquent inegatile de dies (2/2)

Processus stochastines 2.

Corrige des exos de la sei nº 3

[Exon] (a) IT < ny = 1 & sik > n

On part que: Fa = or (UFn)

Dni: Fr= {A+Fo: A+Fo pour th 1172} = OFn = Fo.

(b) 87 new. Dra:

· (TNJ=n)= (TEn) Ulosny EFn,

de mia de vosint = lesnintosnie Fn.

> {T+0≤n}= U (T≤m) (T≤m) (T≤m) (€ Fn.

· Remarque: On prent les démontrer en utilisant l'égalité { z=n}.

(c) St [A & Fo] et no, On a: An It = ny & Fn.

et comme TET, on a: losnysloteny. Par conséquent,

And o ent = And Tent noting & Fn = D[AEFo.]

DM: FCF.

(d) Daprès (b) et (c): For CF et For Fo

· Fus c FNF.

le contraire: St A & FNF SE. Qu sait ge: of TNG Enf = ITS ny U { SEn } Alors: And TNE Suy = An Iten Ulasy = (Antent JU[Antoent]. E Fn.

A & Fo. (e) StreW. Ona: { T < 6 { ∩ { T ≤ n } = U[{ T=m } ∩ { 6 > m }] Mais pour the me 20, 2, --, ng, on a: 17=my= 17 < myn) T < m-19 & Fm C Fn ' 20>m/= 20≤m/c = Fm = Fn. Il den suit que: 1 T< J'nj T ≤ ng E Fn Vm. = MTCOYEFT. Par la m. procedure, ou monte que: ITCOPOSOSNY EFN AM c.ad. Steole Fol Conclusion: ITCOYEFITE.

Notous que: 12n1 = 1xn1+1xn) Vn>1. DM Znell. de plus (Zn): (Fn)-explapté car some de processus (Fn) - adaptés. p.s 8w / T=n+16. (T:fini) Una: Yn+1 = Y > X = Xn+1 Din: Zn+1 = Yn+1 1/11+1< TY + Xn+1 1/1 (T < n+1) < Xn+1 1/11+1<T(+ X1/11+1=T) + Xn+1 1/1 (T≤n) = Yn+1 11/12 + Xn+1 11/25/25 Introdissons l'esperance conditionnelle: E(Zn+n/Fn) < 11/11<\(\text{\formal}\) +11 \(\text{\formal}\) +11 \(\text{\formal}\) \(\t < Yn1/n<τ) + ×n1/(τ≤n) = Zn p.s. Dac: (By): (Fy)- sw mart. * La m. chose pour la cas de martingale (resplacer = [Exo3] (2) Conne T<+00 et 1/2/2+00 p.S, Ona: IXT/11/Tzny -> 0 P.S. 1xell [Try SIXZ] et XZEL1

3/6

En appliquant le The de la cryer mountaine dominée on obtient: EIX_111/Z>ng ->0 (b) D'après le hypothèses et la partie (2), on a: EIX__X_1 = E|Xn-X_1/1/27n3 + E|X_-X_1/1/17≤n3 (X_{z,n-xz)14z4s} < E|Xn11) + E|Xz/11/T>ny -> 0. (C) Come TAN stru t.a. borné, par le theuré-e d'arrêt: iE(X_{TAN}) = IEX_D [la mart, arrêtée] | EX_ - EX/= | EX_-EX_m | < E XT - XTAM -> 0 DM: EX = EXO. Exoy Du remarque que EXn=EXo pour 4 nzo (t.a. constant). De plus, pour n>,0, et A = Fn, on considère: T = n1/A + (n+1)/1/Ac Test on tra, Eneffet: $\{T \leq k\} = \left\{ \begin{array}{l} \emptyset & \text{Sion } k \leq n-1 \\ A & \text{Sin } k \geq n+1 \end{array} \right\} \in \mathcal{F}n.$ de plus: ITI < 24+2 due borné, (ELI),

Donc: EX_ = E(Xn1/A) + E(Xn+1/1/Ac) = E(Xn+1) ce qui implique que: E(Xn11A)=E(Xnm11A) VAEFn. dai: (E(Xn+n/Fn)=Xn) [Exos (1) (X): chaîne de markov récurrente de 26 donc tous les états sesont vioités To Xn West pas bornée => lim sup Xy = + 00, him inf Xy = -0 (2) Il suffit de voir que Tais = Tanto st un t.a. (Mir exo1) et on sait que la martingale arrêtée et une martigale. (3) $X_{N\Lambda} \tau_{q,b} = X_{N\Lambda} \tau_{\Lambda\Lambda} \tau_{b} = \begin{cases} X_{N\Lambda} \tau_{\Lambda} & \text{si } \tau_{\Lambda} \leq \tau_{b} \\ X_{N\Lambda} \tau_{b} & \text{si } \tau_{b} \leq \tau_{\Lambda} \end{cases}$ et on but que Xo = 0 (marche aléatoire) -- 0 D'ai: si Ta<Tb : une fois le processus atteint "à" - 10 de m si Tb<Za il garde la valenti apris Tb-3 de 0,0 et 3 |XnnTa,6 | < b-a. $\begin{array}{c} T_{a} \\ T_{a} \\ T_{b} \\$

* 4) Notres que Ta < 00 et Tb < 00 (Chaîne de Markou récurrante) alms: Ta,6 AM -> Ta,6 ' p.s. ce qui entraîno: X Tais P.S et X/6/12 | X () < 6-a = Y & L1. Par le 7h de la cryce dominée: $\mathbb{E}[X_n^{c_{q_1b}}] \xrightarrow{N-1} \mathbb{E}(X_{\tau_{q_1b}})$ 5) $X_{\tau_{a,b}} = \begin{cases} a & \text{si } \tau_{a,b} = \tau_a \\ b & \text{si } \tau_{a,b} = \tau_b \end{cases}$ $\frac{D'a^{-}}{a^{-}} \cdot \mathbb{E} X_{T_{a_1b}} = a \cdot \mathbb{P}(T_{a_1b} = T_a) + b \cdot \mathbb{P}(T_{a_1b} = T_b)$ $= b + (a - b) \cdot \mathbb{P}(T_{a_1b} = T_a) \quad \begin{bmatrix} car & la \\ somne & des \\ proba = 1 \end{bmatrix}$ 6) Du sait que (Xn tas), est une martingale d'un $\mathbb{E}(X_n^{\tau_{a,b}}) = \mathbb{E}(X_0) = 0$ (marche ale'a hoire) 0 = \lim \mathbb{E}(\times_{1} \tau_{1}) = \mathbb{E}(\times_{1} \tau_{1} \tau_{1}) = \mathbb{b} + (a - b) \mathbb{R}(A). $|P(A) = \frac{b}{b-a}$ $|P(A) = \frac{b}{b-a}$ $|P(A) \leq \frac{n\sigma^2}{A^2}; 2 \cdot |P_n(A)| \leq \frac{n\sigma^2 + c^2}{(A+c)^2} \text{ minimale pour } c = \frac{n\sigma^2}{A}$ $|P(A)| \leq \frac{e^{cA}}{A^2}; 2 \cdot |P_n(A)| \leq \frac{n\sigma^2 + c^2}{(A+c)^2}$ $|P(A)| \leq \frac{e^{cA}}{A^2}; 2 \cdot |P_n(A)| \leq \frac{n\sigma^2 + c^2}{(A+c)^2}$ $|P(A)| \leq \frac{e^{cA}}{A^2}; 2 \cdot |P_n(A)| \leq \frac{n\sigma^2 + c^2}{(A+c)^2}; 2 \cdot |P_n(A)| \leq \frac{e^{cA}}{A^2}; 3 \cdot |P_n$

Scanned with CamScanner