

非线性规划与01规划模型

主讲人: 泰山教育 小石老师

非线性规划的lingo求解

$$Max 98x_1 + 277x_2 - x_1^2 - 0.3x_1x_2 - 2x_2^2 (1)$$

$$s.t. x_1 + x_2 \le 100 (2)$$

$$x_1 \le 2x_2 \tag{3}$$

$$x_1, x_2 \ge 0 \qquad 为整数 \tag{4}$$

程序

```
Model:

max=98*x1+277*x2-x1*x1-0.3*x1*x2-2*x2*x2;

x1+x2<100;

x1<=2*x2;

@gin(x1);

@gin(x2);

end
```

01规划是指未知量的取值范围只能是0,1的规划问题,通常是线性规划

01规划模型例子

设有 A_1 、 A_2 、 A_3 、 A_4 四个人完成 B_1 、 B_2 、 B_3 、 B_4 四项工作,每人只做一件工作且每件工作仅由一人担任, A_i 完成工作 B_j 所需时间为 C_{ij} (i, j=1, 2, 3, 4)(单位:天),如下表所示。

B _j C _{ij} A _i	B_1	B ₂	B ₃	B ₄
A_1	8	13	18	23
A_2	10	14	16	27
A_3	2	10	21	26
A_4	14	22	26	28

例子求解

试问应指派哪个人去承担哪件工作,才能使总的花费时间最少?

这个问题与上述各例有所不同,上述各例所设的变量都是问题中所要求的数量,而这个例题中我们要引入的变量必须具有指定某人做某件工作,而其他人不能做该工作。数0、1就起到了这种作用,变量取1,说明该人做这件事,在总的花费时间中贡献时间,变量取0表示不做这件事,从而在总的花费时间中不作出贡献。

引入16个变量

$$X_{ij} = \begin{cases} 1, & \text{当指派}A_i$$
承担工作 B_i 时; $0, & \text{当指派}A_i$ 不承担工作 B_i 时,

例子求解

得线性规划模型如下

$$\begin{aligned} \text{MinT=8x}_{11} + 13x_{12} + 18x_{13} + 23x_{14} \\ + 10x_{21} + 14x_{22} + 16x_{23} + 27x_{24} \\ + 2x_{31} + 10x_{32} + 21x_{33} + 26x_{34} \\ + 14x_{41} + 22x_{42} + 26x_{43} + 28x_{44} \end{aligned}$$

由于每人只做一件工作,得

$$x_{11} + x_{12} + x_{13} + x_{14} = 1$$

$$x_{21} + x_{22} + x_{23} + x_{24} = 1$$

$$x_{31} + x_{32} + x_{33} + x_{34} = 1$$

$$x_{41} + x_{42} + x_{43} + x_{44} = 1$$

由于每件工作仅由一个担任,得

$$x_{11} + x_{21} + x_{31} + x_{41} = 1$$

$$x_{12} + x_{22} + x_{32} + x_{42} = 1$$

$$x_{13} + x_{23} + x_{33} + x_{43} = 1$$

$$x_{14} + x_{24} + x_{34} + x_{44} = 1$$

求解得 $x_{12}=x_{23}=x_{31}=x_{44}=1$,其余 $x_{ij}=0$,即 A_1 承担工作 B_2 , A_2 承担工作 B_3 , A_3 承担工作 B_1 , A_4 承担工作 B_4 ,花费的总时间最少为59天。

Thank You !