學號:B04505026 系級:工海三 姓名:蔡仲閔

1. (1%) 請說明你實作的 CNN model,其模型架構、訓練參數和準確率為何? 在下表中我列出了四種我嘗試的 Model,第一個是參考 VGG16(https://gist.github.com/baraldilorenzo/07d7802847aaad0a35d3)並改進過後的 Model,也是 performance 最好的,另外則是使用較小的 Model,並更改其filter 大小去觀察,我們可以發現似乎較大的的 filter 可以得到較快的收斂,然而整體來看最後的 perfomance 差異並不大,而我最後也嘗試直接使用 DNN,但可以看到結果並不好,而且波動極大,尚未到達收斂。

參數: batch\_size = 128, epoch = 100

| Model  | 1. VGG-like | 2. CNN-Small | 3. CNN-Small                                                                                                            | 4. DNN                                                                    |
|--------|-------------|--------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Filter | (3, 3)      | (3, 3)       | (5, 5)                                                                                                                  | (3, 3)                                                                    |
| ACC    | 0.6429      | 0.5886       | 0.5924                                                                                                                  | 0.448275                                                                  |
|        |             |              | 10 training 0.8 0.8 0.7 0.6 0.5 0.4 0.5 0.5 0.4 0.5 0.5 0.5 0.4 0.5 0.5 0.5 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 | 0.45 training validation 0.35 0.30 0.25 0.20 0.20 0.20 0.20 0.20 0.20 0.2 |

```
def CNN_Small():
    filt_size = (3, 3)
model2 = Sequential()
    model2.add(convolution2D(32, filt_size, input_shape=(48,48,1), activation='relu', padding='same'))
    model2.add(BatchNormalization())
    model2.add(MaxPooling2D((2,2)))
    model2.add(Dropout(0.2))
    model2.add(Convolution2D(64, filt_size, activation='relu', padding='same'))
    model2.add(BatchNormalization())
    model2.add(MaxPooling2D((2,2)))
    model2.add(Dropout(0.3))
   model2.add(Flatten())
model2.add(Dense(512, activation='relu'))
    model2.add(BatchNormalization())
    model2.add(Dropout(0.5))
    model2.add(Dense(512, activation='relu'))
model2.add(BatchNormalization())
    model2.add(Dropout(0.5))
    model2.add(Dense(7))
    model2.add(Activation('softmax'))
```

```
def VGG16_like():
    filt_size = (3, 3)
     model2 = Sequential()
     model1.add(Convolution2D(32, filt_size, input_shape=(48,48,1), activation='relu', padding='same'))
model2.add(Convolution2D(32, filt_size, activation='relu', padding='same'))
     model2.add(BatchNormalization())
     model2.add(MaxPooling2D((2,2)))
     model2.add(Dropout(0.1))
     model2.add(Convolution2D(64, filt_size, activation='relu', padding='same'))
     model2.add(Convolution2D(64, filt_size, activation='relu', padding='same'))
     model2.add(BatchNormalization())
model2.add(MaxPooling2D((2,2)))
     model2.add(Dropout(0.3))
     model2.add(Convolution2D(128, filt_size, activation='relu', padding='same'))
model2.add(Convolution2D(128, filt_size, activation='relu', padding='same'))
model2.add(Convolution2D(128, filt_size, activation='relu', padding='same'))
      model2.add(BatchNormalization())
     model2.add(MaxPooling2D((2,2)))
     model2.add(Dropout(0.4))
     model2.add(Convolution2D(256, filt_size, activation='relu', padding='same'))
model2.add(Convolution2D(256, filt_size, activation='relu', padding='same'))
#model2.add(Convolution2D(256, filt_size, activation='relu', padding='same'))
model2.add(BatchNormalization())
     model2.add(MaxPooling2D((2,2)))
     model2.add(Dropout(0.5))
     model2.add(Flatten())
     model2.add(Dense(1024, activation='relu'))
model2.add(BatchNormalization())
     model2.add(Dropout(0.5))
     model2.add(Dense(1024, activation='relu'))
model2.add(BatchNormalization())
     model2.add(Dropout(0.5))
     model2.add(Dense(7))
      model2.add(Activation('softmax'))
```

2. (1%) 請嘗試 data normalization, data augmentation,說明實行方法並且說明對準確率有什麼樣的影響?

在 normalization 的實驗中是使用 Standard Score ((X-mu) / sigma), 若以結果來看兩者相差並不大,但觀察沒有 normalization 的組別,在前 20 個 epoch 明顯出現比較大的波動,最後的波動也比較大,收斂的速度似乎較慢。而 data augmentation 我則是使用 Keras 的 image generator, 並給圖片進行部分的 shift 及 rotate, 最後則是得到相當好的結果,也成功突破 Strong Baseline!





3. (1%) 觀察答錯的圖片中,哪些 class 彼此間容易用混?



從 confusion matrix 中可以觀察到,最準確的是高興這個分類。而容易混淆的則是中立 vs 難過,以及生氣 vs 厭惡。

4. (1%) 從(1)(2)可以發現,使用 CNN 的確有些好處,試繪出其 saliency maps,觀察模型在做 classification 時,是 focus 在圖片的哪些部份?

Class 0: 生氣



我們選擇較易被混淆的 class 0 及 class 1 來觀察,可以看到大多聚焦在眼睛及嘴型上,而其實即便以人眼都很難做出判斷。

5. (1%) 承(4) 利用上課所提到的 gradient ascent 方法,觀察特定層的 filter 最容易被哪種圖片 activate 與觀察 filter 的 output。(Collaborators: )

下面兩張圖分別是 CNN 第一層及最後一層,可以看到第一層 activate 都是一些 紋路 pattern,然而到了最後一層,卻幾乎無從辨別,我想這是因為經過多次 MaxPooling 的關係,經過 Subsampling 之後圖片用肉眼已經難以辨認。

## 第一層



## 最末層

