Санкт-Петербургский Политехнический Университет им. Петра Великого

Институт прикладной математики и механики Кафедра "Прикладная математика"

ОТЧЁТ
КУРСОВАЯ РАБОТА
ПО ДИСЦИПЛИНЕ
"МАТЕМАТИЧЕСКАЯ СТАТИСТИКА"

Выполнил студент: Шарапов Сергей Андреевич группа: 3630102/70401

Проверил: к.ф-м.н., доцент Баженов Александр Николаевич

Содержание

1.	Список таблиц	3
2.	Постановка задачи	4
3.	Теория	4
	3.1. Метод максимального правдоподобия	4
	3.2. Критерий согласия Пирсона	4
4.	Реализация	5
5.	Результаты	5
	5.1. Исследование зависимости распознования распределения Лапласа как нормального от величины выборки	5
	5.2. Исследование зависимости распознования распределения Лапласа как нормального от параметра α распределения	7
6.	Выводы	9
7.	Литература	9
8.	Приложения	9

1 Список таблиц

1	Таблица вычислений χ^2, n = 50	5
2	Таблица вычислений χ^2 , n = 100	6
3	Таблица вычислений $\chi^2, \mathrm{n}=200\ldots$	6
4	Таблица вычислений χ^2 , n = 1000	7
5	Таблица вычислений $\chi^2, \alpha = \frac{1}{2}$	7
6	Таблица вычислений χ^2, α = 1	8
7	Таблица вычислений χ^2, α = 2	8
8	Таблица вычислений γ^2 , $\alpha = 4$	9

2 Постановка задачи

Провести исследования о распознавании распределения Лапласа как нормального. Генерировать выборки по закону распределения Лапласа, методом максимального правдоподобия оценивать параметры нормального распределения(μ и σ), предполагая, что полученная выборка может подчиняться нормальному закону. В итоге требуется использовать критерий согласия Пирсона для определения сходства распределений Лапласа и нормального распределения. При заданных параметрах изучить зависимость от мощности выборки n=50,100,200,1000. При мощности выборки n=100 варьировать параметр распределения Лапласа: $\alpha=0.5,1,2,4$. В качестве уровня значимости взять $\alpha=0,05$.

3 Теория

3.1 Метод максимального правдоподобия

Метод максимального правдоподобия – метод оценивания неизвестного параметра путём максимимзации функции правдоподобия.

$$\hat{\theta}_{\text{M}\Pi} = argmax \mathbf{L}(x_1, x_2, \dots, x_n, \theta) \tag{1}$$

Где ${\bf L}$ это функция правдоподобия, которая представляет собой совместную плотность вероятности независимых случайных величин X_1, x_2, \ldots, x_n и является функцией неизвестного параметра θ

$$\mathbf{L} = f(x_1, \theta) \cdot f(x_2, \theta) \cdot \dots \cdot f(x_n, \theta) \tag{2}$$

Оценкой максимального правдоподобия будем называть такое значение $\hat{\theta}_{\text{МП}}$ из множества допустимых значений параметра θ , для которого функция правдоподобия принимает максимальное значение при заданных x_1, x_2, \ldots, x_n .

Тогда при оценивании математического ожидания m и дисперсии σ^2 нормального распределения $N(m,\sigma)$ получим:

$$\ln(\mathbf{L}) = -\frac{n}{2}\ln(2\pi) - \frac{n}{2}\ln(\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^{n}(x_i - m)^2$$
 (3)

Отсюда находятся выражения для оценок m и σ^2 :

$$\begin{cases}
 m = \bar{x} \\
 \sigma^2 = s^2
\end{cases}$$
(4)

3.2 Критерий согласия Пирсона

Разобьём генеральную совокупность на k неперсекающихся подмножеств $\Delta_1, \Delta_2, \ldots, \Delta_k, \ \Delta_i = (a_i, a_{i+1}], \ p_i = P(X \in \Delta_i), \ i = 1, 2, \ldots, k$ – вероятность того, что точка попала в iый промежуток.

Так как генеральная совокупность это \mathbb{R} , то крайние промежутки будут бесконечными: $\Delta_1 = (-\infty, a_1], \ \Delta_k = (a_k, \infty), \ p_i = F(a_i) - F(a_{i-1})$

 n_i – частота попадания выборочных элементов в $\Delta_i,\ i$ = $1,2,\ldots,k$.

В случае справедливости гипотезы H_0 относительно частоты $\frac{n_i}{n}$ при больших n должны быть близки к p_i , значит в качестве меры имеет смысл взять:

$$Z = \sum_{i=1}^{k} \frac{n}{p_i} \left(\frac{n_i}{n} - p_i\right)^2 \tag{5}$$

Тогда

$$\chi_B^2 = \sum_{i=1}^k \frac{n}{p_i} \left(\frac{n_i}{n} - p_i \right)^2 = \sum_{i=1}^k \frac{(n_i - np_i)^2}{np_i}$$
 (6)

Для выполнения гипотезы H_0 должны выполняться следующие условия:

$$\chi_B^2 < \chi_{1-\alpha}^2(k-1) \tag{7}$$

где $\chi^2_{1-\alpha}(k-1)$ – квантиль распределения χ^2 с k-1 степенями свободы порядка $1-\alpha$, где α заданный уровень значимости.

4 Реализация

Работа была выполнена на языке *Python*3.7 Для генерации выборок и обработки функции распределения использовалась библиотека scipy.stats.

5 Результаты

5.1 Исследование зависимости распознования распределения Лапласа как нормального от величины выборки

Дано распределение Лапласа:

$$L\left(x,0,\frac{1}{\sqrt{2}}\right) = \frac{1}{2\sqrt{2}}e^{-\frac{|x|}{\sqrt{2}}}\tag{8}$$

Размер выборки n = 50:

$$\hat{m}_{\text{M}\Pi} = -0.0692
\hat{\sigma}_{\text{M}\Pi}^2 = 1.0152$$
(9)

Таблица 1: Таблица вычислений χ^2, n = 50

i	Δ_i	n_i	p_i	$\frac{(n_i - np_i)^2}{np_i}$
0	$(-\infty, -1.0]$	8	0.1796	0.1070
1	(-1.0, -0.5]	7	0.1561	0.0826
2	(-0.5, 0.0]	15	0.1915	3.0717
3	(0.0, 0.5]	6	0.1853	1.1513
4	(0.5, 1.0]	7	0.1414	0.0007
5	$(1.0, \infty)$	7	0.1461	0.0128

$$\chi_B^2 = 4.4261$$

Размер выборки n = 100:

$$\hat{\sigma}_{\text{M}\Pi} = 0.0746$$

$$\hat{\sigma}_{\text{M}\Pi}^2 = 0.8623$$
(10)

Таблица 2: Таблица вычислений $\chi^2,\; n=100$

i	Δ_i	n_i	p_i	$\frac{(n_i - np_i)^2}{np_i}$
0	$(-\infty, -1.0]$	9	0.1063	0.2510
1	(-1.0, -0.5]	9	0.1462	2.1633
2	(-0.5, 0.0]	26	0.2129	1.0398
3	(0.0, 0.5]	33	0.2236	5.0643
4	(0.5, 1.0]	9	0.1693	3.7141
5	$(1.0, \infty)$	14	0.1416	0.0018

$$\chi_B^2$$
 = 12.2342

Размер выборки n = 200:

$$\hat{m}_{\rm MII} = -0.0052
\hat{\sigma}_{\rm MII}^2 = 1.0047$$
(11)

Таблица 3: Таблица вычислений $\chi^2, \; n=200$

i	Δ_i	n_i	p_i	$\frac{(n_i - np_i)^2}{np_i}$
0	$(-\infty, -1.0]$	26	0.1611	1.1979
1	(-1.0, -0.75]	10	0.0682	0.9715
2	(-0.75, -0.5]	10	0.0819	2.4898
3	(-0.5, -0.25]	23	0.0926	1.0879
4	(-0.25, 0.0]	30	0.0983	5.4340
5	(0.0, 0.25]	33	0.0982	9.0920
6	(0.25, 0.5]	16	0.0922	0.3231
7	(0.5, 0.75]	17	0.0814	0.0316
8	(0.75, 1.0]	10	0.0676	0.9155
9	$(1.0, \infty)$	25	0.1585	1.4183

$$\chi_B^2$$
 = 22.9616

Размер выборки n = 1000:

$$\hat{m}_{\rm M\Pi} = -0.0210
\hat{\sigma}_{\rm M\Pi}^2 = 0.9983$$
(12)

Таблица 4: Таблица вычислений $\chi^2,\, {\rm n} = 1000$

i	Δ_i	n_i	p_i	$\frac{(n_i - np_i)^2}{np_i}$
0	$(-\infty, -1.0]$	129	0.1634	7.2424
1	(-1.0, -0.8571]	28	0.0378	2.5226
2	(-0.8571, -0.7143]	35	0.0426	1.3424
3	(-0.7143, -0.5714]	39	0.0470	1.3606
4	(-0.5714, -0.4286]	45	0.0508	0.6724
5	(-0.4286, -0.2857]	66	0.0539	2.7162
6	(-0.2857, -0.1429]	74	0.0560	5.8002
7	(-0.1429, 0.0]	96	0.0570	26.7487
8	(0.0, 0.1429]	99	0.0568	31.3657
9	(0.1429, 0.2857]	69	0.0555	3.2962
10	(0.2857, 0.4286]	55	0.0531	0.0684
11	(0.4286, 0.5714]	41	0.0498	1.5507
12	(0.5714, 0.7143]	47	0.0457	0.0347
13	(0.7143, 0.8571]	29	0.0412	3.5985
14	(0.8571, 1.0]	30	0.0363	1.0966
15	$(1.0, \infty)$	118	0.1532	8.0947

$$\chi_B^2 = 97.5109$$

5.2 Исследование зависимости распознования распределения Лапласа как нормального от параметра α распределения

Дано распределение Лапласа:

$$L(x,0,\alpha) = \frac{\alpha}{2}e^{-\alpha|x|}$$
(13)

Размер выборки n = 100. $\alpha = \frac{1}{2}$:

$$\hat{m}_{\rm MII} = 0.1507$$

$$\hat{\sigma}_{\rm MII}^2 = 0.5960$$
(14)

Таблица 5: Таблица вычислений χ^2, α = $\frac{1}{2}$

i	Δ_i	n_i	p_i	$\frac{(n_i - np_i)^2}{np_i}$
0	$(-\infty, -1.0]$	3	0.0268	0.0391
1	(-1.0, -0.5]	4	0.1107	4.5154
2	(-0.5, 0.0]	35	0.2627	2.9011
3	(0.0, 0.5]	34	0.3209	0.1140
4	(0.5, 1.0]	17	0.2019	0.5026
5	$(1.0, \infty)$	7	0.0771	0.0655

$$\chi_B^2 = 8.1377$$

 α = 1:

$$\hat{m}_{\rm MII} = 0.0157
\hat{\sigma}_{\rm MII}^2 = 1.2034$$
(15)

Таблица 6: Таблица вычислений χ^2, α = 1

i	Δ_i	n_i	p_i	$\frac{(n_i - np_i)^2}{np_i}$
0	$(-\infty, -1.0]$	15	0.1993	1.2205
1	(-1.0, -0.5]	10	0.1348	0.8983
2	(-0.5, 0.0]	23	0.1607	2.9928
3	(0.0, 0.5]	24	0.1615	3.8129
4	(0.5, 1.0]	9	0.1370	1.6114
5	$(1.0, \infty)$	19	0.2067	0.1352

$$\chi_B^2$$
 = 10.6710

 α = 2:

$$\hat{m}_{\rm M\Pi} = 0.2995$$

$$\hat{\sigma}_{\rm M\Pi}^2 = 2.5786$$
(16)

Таблица 7: Таблица вычислений χ^2, α = 2

i	Δ_i	n_i	p_{i}	$\frac{(n_i - np_i)^2}{np_i}$
0	$(-\infty, -1.0]$	26	0.3071	0.7235
1	(-1.0, -0.5]	4	0.0711	1.3613
2	(-0.5, 0.0]	6	0.0755	0.3185
3	(0.0, 0.5]	17	0.0772	11.1471
4	(0.5, 1.0]	11	0.0761	1.5135
5	$(1.0, \infty)$	36	0.3929	0.2763

$$\chi_B^2$$
 = 15.3401

 α = 4:

$$\hat{m}_{\rm M\Pi} = -0.6772$$

$$\hat{\sigma}_{\rm M\Pi}^2 = 5.4524$$
(17)

Таблица 8: Таблица вычислений χ^2 , $\alpha = 4$

i	Δ_i	n_i	p_i	$\frac{(n_i - np_i)^2}{np_i}$
0	$(-\infty, -1.0]$	39	0.4764	1.5668
1	(-1.0, -0.5]	8	0.0366	5.1584
2	(-0.5, 0.0]	7	0.0365	3.0855
3	(0.0, 0.5]	8	0.0360	5.3594
4	(0.5, 1.0]	4	0.0353	0.0614
5	$(1.0, \infty)$	34	0.3792	0.4050

$$\chi_B^2$$
 = 15.6365

Табличные значения квантилей: $\chi_{0.95}^2(5) = 11.0705, \chi_{0.95}^2(15) = 24.9958.$

6 Выводы

Для выборки n=50 распределения Лапласа полученно значение критерия Пирсона: $\chi_B^2=4.4261<\chi_{0.95}^2(5)=11.0705$. Это означает, что из полученной выборки мы не можем опровергнуть гипотезу о нормальности исходного распределения на уровне значимости $\alpha=0.05$. При данных параметрах и размере выборки распределение Лапласа распознается как нормальное, что не правда. При увеличении выборки до $100,\ 200$ или 1000 элементов значение критерия Пирсона возрастает, превышая соответствующие значения $\chi_{1-\alpha}^2$, и уже позволяет отвергнуть потенциальную нулевую гипотезу о нормальном распределении. В результате увеличения выборки в интервалы попадает больше точек, что сильно влияет на получаемое значение критерия.

Исследуя распределения Лапласа с параметрами $\alpha=1/2$ и 1, получилось, что они сходны с соотвествующими нормальными распределениями. Однако, с увеличением α росло и χ^2_B , поэтому при $\alpha=2$ и 4 значение критерия Пирсона стало больше $\chi^2_{0.95}(5)=11.0705$. Получается с увеличением параметра масштаба распределения Лапласа, оно становиться менее распознаваемым как нормальное.

7 Литература

Модуль питру

Модуль matplotlib

Модуль scipy

Шевляков Г. Л. Лекции по математической статистике, 2019.

8 Приложения

Код курсового проекта