Feuille d'exercices nº 3 Relations binaires

Les questions ou exercices précédés d'une étoile (*) sont plus difficiles.

Vous ne les traiterez qu'avec l'accord de votre enseignant(e) de TD.

Exercice 1: Soit $A = \{a, b, c\}$ et $B = \{1, 2, 3\}$.

On définit la relation \mathcal{R} de A vers B par $\mathcal{R} = \{(a, 1), (b, 1), (b, 3)\}.$

Donner la présentation cartésienne de \mathcal{R} puis sa représentation sagittale.

Exercice 2: Définition : Soit a et b deux nombres entiers relatifs. On dit que **a divise b** s'il existe un entier relatif k tel que b = ka. On note alors $a \mid b$.

On considère les relations \mathcal{R} suivantes de A vers B.

Donner pour chacune d'elles une présentation sagittale (ou cartésienne si elle est trop lourde).

- 1. $A = \{1, 2, 3, 4, 8\}$; $B = \{1, 4, 6, 9\}$ et $aRb \Leftrightarrow a$ divise b
- 2. $A = \{1, 2, 3, 4, 8\}; B = \{1, 4, 6, 9\} \text{ et } a\mathcal{R}b \Leftrightarrow b = a^2$

Exercice 3: Soit $A = \{a, b\}$ et $B = \{1, 2\}$.

- 1) Combien existe-t-il de relations binaires de A vers B? (Indication : revenir à la définition mathématique)
- 2) Représenter toutes les relations de A vers B. (On s'attachera à travailler méthodiquement) Pour chacune d'elles préciser s'il s'agit d'une application ou non de A vers B.

Pour celles qui ne correspondent pas à une application, le prouver en donnant une raison suffisante.

Définition: Soit \mathcal{R} une relation de A vers B. On dit que le triplet $f = (A, B, \mathcal{R})$ est une application de A dans B si, pour tout x de A, il existe y unique de B tel que x \mathcal{R} y. On note alors y = f(x). L'application f est notée:

$$f: A \to B$$
$$x \mapsto f(x)$$

Exercice 4: Soit $A = \{a, b, c, d\}$. Combien y a-t-il de relations dans A? Représenter sous forme sagittale trois d'entre elles.

Exercice 5: Soit X un ensemble. On considère la relation d'inclusion dans $\mathcal{P}(X)$ (l'ensemble des parties de X). Rappeler les propriétés de l'inclusion, démontrées dans un cours précédent, qui font de cette relation une relation d'ordre dans $\mathcal{P}(X)$.

Exercice 6: On définit une relation dans l'ensemble des mots de la langue française de la façon suivante : un mot **x** est en relation avec un mot **y** s'il est écrit avec les mêmes lettres (on dit que x est un anagramme de y). Montrer qu'il s'agit d'une relation d'équivalence. Déterminer la classe du mot "chien".

Exercice 7: On rappelle la définition suivante : un entier $n \in \mathbb{N}$ est un carré parfait s'il existe un entier a tel que $n=a^2$. Par exemple 1,4, 9 et 16 sont des carrés parfaits car $1=1^2,\ 4=2^2,\ 9=3^2$ et $16=4^2$.

On considère la relation $\mathcal R$ définie dans $\mathbb N^*$ par :

 $\forall x, y \in \mathbb{N}^*, x\mathcal{R}y \Leftrightarrow xy \text{ est un carré parfait.}$

Dans la suite de l'exercice on restreint la relation \mathcal{R} à l'ensemble $E = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

1. Donnez la représentation cartésienne de la relation \mathcal{R} , puis sa représentation sagittale à côté.

\mathcal{R}	1	2	3	4	5	6	7	8
1								
2								
3								
4								
5								
6								
7								
8								

- 2. En vous appuyant sur la représentation cartésienne de la relation \mathcal{R} , déterminez si celle-ci est réflexive et symétrique.
- 3. On souhaite étudier si la relation $\mathcal R$ est transitive. En vous appuyant sur la représentation sagittale, complétez le tableau ci-dessous en 2 parties, en ne reportant dans les trois colonnes à gauche, que les triplets (x,y,z) tels que $x\mathcal Ry$ et $y\mathcal Rz$. Ecrire alors Vrai ou Faux en-dessous de $x\mathcal Rz$, puis en-dessous du connecteur \to .

x	y	z	$(x\mathcal{R}y)$	ET			x	y	z	$(x\mathcal{R}y)$	ET	$y\mathcal{R}z)$	\rightarrow	$x\mathcal{R}z$
1	1	1		V	V	V								

- 4. Que peut-on dire de la relation \mathcal{R} d'après les questions 2. et 3.?
- 5. Donner les classes d'équivalence de \mathcal{R} .
- 6. (*) Démontrer la transitivité de la relation \mathcal{R} dans \mathbb{N} (et non plus dans E).

Exercice 8: (*) Soit a et b deux nombres entiers relatifs. On dit que **a divise b** s'il existe un entier relatif k tel que b = ka. On note alors $a \mid b$.

Démontrer que la relation de divisibilité est réflexive et transitive dans \mathbb{Z} . Est-elle antisymétrique dans \mathbb{Z} ? Démontrer que sa restriction à \mathbb{N} est antisymétrique.