Guidelines for Intelligent Interfaces

Daniel Weld
University of Washington

Acknowledgements

- Krzysztof Gajos
- Corin Anderson
- Mary Czerwinski
- Pedro Domingos
- Oren Etzioni
- Raphael Hoffman
- Tessa Lau
- Desney Tan
- Steve Wolfman
- UW Al Group
- DARPA, NSF, ONR, WRF, Microsoft Research

14-Mar-19

Daniel S. Weld / Univ. Washington

Early Adaptation: Mitchell, Maes

Predict: Email message priorities
 Meeting locations, durations

Principle 1: Defaults minimize cost of errors

Principle 2: Allow users to adjust thresholds

14-Mar-19 Daniel S. Weld / Univ. Washington

21

Adaptation in Lookout: Horvitz

14-Mar-19

Daniel S. Weld / Univ. Washington

Adapted from Horvitz

--

Adaptation in Lookout: Horvitz

14-Mar-19 Daniel S. Weld / Univ. Washington 23

Resulting Principles

[Horvitz CHI-99]

- Decision-Theoretic Framework
 - Graceful degradation of service precision
 - Use dialogs to disambiguate (Considering cost of user time, attention)

14-Mar-19

Daniel S. Weld / Univ. Washington

Adapted from Horvitz

Horvitz <-> POMDP?

- What's Shared?
 - Policy mapping from belief state to action
 - · Idea of maximizing utility
- What's Different?
 - No model of state transition
 - · No lookahead or notion of time
 - Greedy policy

Principles About Invocation

Allow efficient invocation, correction & dismissal

Timeouts minimize cost of prediction errors

14-Mar-19

Daniel S. Weld / Univ. Washingto

16

20 Year Retrospective

- More guidelines
- https://medium.com/microsoft-design/guidelines-for-human-aiinteraction-9aa1535d72b9

Daniel S. Weld / Univ. Washington 14-Mar-19

Human-Al Teams

- Al makes recommendation [+ explanation]
 Human decides whether to
 Trust ΔI's addition
- - Trust Al's advice, or
 - · Get more info and decide herself
- Reward based on speed/accuracy

5

Updates in Human-Al Teams

- Environment gives percept
- AI makes recommendation [+ explanation]
- · Human decides whether to
 - · Trust Al's advice, or
 - · Get more info and decide herself
- Reward based on speed/accuracy

Gagan Bansal Besa Nushi Ece Kamar Walter Lasecki Eric Horvitz

[Bansal et al. AAAI19]

Many ML Algorithms aren't Stable wrt Updates

Classifier	Dataset	ROC h₁	ROC h ₂
LR	Recidivism	0.68	0.72
	Credit Risk	0.72	0.77
	Mortality	0.68	0.77
MLP	Recidivism	0.59	0.73
	Credit Risk	0.70	0.80
	Mortality	0.71	0.84

When trained on more data (same distribution)...

• Updates (h₂) increase **ROC**...

Many ML Algorithms aren't Stable wrt Updates

Classifier	Dataset	ROC h ₁	ROC h ₂	CS
LR	Recidivism	0.68	0.72	0.74
	Credit Risk	0.72	0.77	0.68
	Mortality	0.68	0.77	0.54
MLP	Recidivism	0.59	0.73	0.62
	Credit Risk	0.70	0.80	0.69
	Mortality	0.71	0.84	0.77

When trained on more data (same distribution)...

- Updates (h₂) increase ROC, $Q(h_1, h_2) = 1 \frac{count(h_1 = y, h_2 \notin y)}{count(h_2 \notin y)}$
- But have low compatibility score,

But for Teams, ...

