HA 4 Due on Friday, April 1, 19:00

Details:

- (a) Students can work in **groups** of maximum **2** people. You need to submit one HA per group.
- (b) I encourage you to discuss all the problems with your classmates, but you should write your own write-up. Cheating won't be tolerated.
- (c) You should submit your work **electronically** to d.i.arkhangelsky at gmail dot com. Store of the results in the zip file with name "ha_4_"your_name".zip".

Problem 1 (Double selection)

In this problem you will implement double-selection algorithm that we discussed in lectures 13-14.

- (a) First you generate the data using the following guidelines:
 - (1) Let n = 1000 and p = 500 and $s_1 = 10$ and $s_2 = 10$. Generate $n \times p$ matrix of $\mathcal{N}(0,1)$ random numbers. Denote it by X_0
 - (2) Generate $p \times p$ matrix of $\mathcal{N}(0,1)$ random numbers. Denote it by U_0 . Let $\Sigma := U_0 U_0^T$, compute $\Sigma^{\frac{1}{2}}$ and compute $X := X_0 \Sigma^{\frac{1}{2}}$. What is the logic behind this step?
 - (3) Let $\mu_1 = 5$ and $\sigma_1^2 = 2$ and generate s_1 -dimensional vector of $\mathcal{N}(\mu_1, \sigma_1^2)$ random numbers. Denote it by β_1 .
 - (4) Let $\mu_2 = 3$ and $\sigma_1^2 = 1$ and generate s_2 -dimensional vector of $\mathcal{N}(\mu_2, \sigma_2^2)$ random numbers. Denote it by β_2 .
 - (5) Let $\sigma(x) := \frac{\exp(x)}{1+\exp(x)}$. Select random s_2 columns of matrix X, denote them by X_2 and compute $\pi = \sigma(\gamma + X_2\beta_2) n$ -dimensional vector of numbers between zero and one, where γ is n-dimensional vector of constants. Adjust γ in such way that $\bar{\pi} := \frac{\sum_{i=1}^n \pi_i}{n} \approx \frac{1}{2}$.

- (6) Generate n independent Bernoulli random variables with probabilities π . Denote the corresponding n-dimensional vector by D.
- (7) Let $\alpha_0 = 5$, $\tilde{X} := (D, X)$ and compute

$$s := \frac{1}{n} (\alpha_0, \beta_1)^T \tilde{X}^T \tilde{X} (\alpha_0, \beta_1)$$

Let $\sigma^2 = 0.3s$.

- (8) Select s_1 random columns from matrix X, denote them by X_1 and generate $Y := \alpha_0 D + X_1 \beta_1 + \varepsilon$, where $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$.
- (9) As a result you should have the following data: n-dimensional vectors Y and D, $n \times p$ matrix X. This is the **only data** that you should use in what follows.
- (10) Comment on the joint distribution of (Y, D, X). Does it satisfy (informally) the sparsity assumption that we discussed?
- (b) Estimate the following simple regression model by OLS:

$$Y = \theta_0 + \theta_1 D + u_1 \tag{1}$$

report θ_1 and compare it with α_0 .

(c) Estimate the full OLS model:

$$Y = \theta_0 + \theta_1 D + X \theta_2 \tag{2}$$

report θ_1 and compare it with α_0 .

- (d) Estimate the model (2) using the double-selection algorithm that we discussed in lectures 13-14. Use 10-fold CV to select tuning parameter for each step. Report θ_1 and compare it with α_0 .
- (e) Comment on the differences between the result in cases (b)-(d).
- (f) (Bonus) Estimate standard errors of all three estimates (you may assume homoskedasticity if you want).

Problem 2 (Demand estimation)

In this problem you will implement several demand estimation procedures that we discussed during lectures 15-16.

- (a) First you generate the data using the following guidelines:
 - (1) Let $\mu_1 = (10, 10)$ and $\mu_2 = (8, 8)$. Let n = 50. For i = 1, 2 do the following:
 - (i) Generate $n \times 4$ matrix of $\mathcal{N}(0,1)$ random numbers and call it U_i . Let u_{ij} be the j-th column of the matrix U_i .
 - (ii) Let $X_i := 2u_{i1} + \mu_{i1}$, let $\xi_i := 3u_{i2}$, let $P_i := \mu_{i2} + 2(\frac{1}{2}u_{i2} + \frac{\sqrt{3}}{2}u_{i3})$, let $Z_i := \frac{1}{3}u_{i3} + \frac{\sqrt{8}}{3}u_{i4}$.
 - (2) At the end you should have a data matrix $D = (X_1, P_1, \xi_1, Z_1, X_2, P_2, \xi_2, Z_2)$ with dimensions (50 × 8). Argue that random vector D_i (*i*-th row of matrix D) has a joint normal distribution. Compute its mean and covariance matrix.
 - (3) Let $\beta_0 = (-5, 10)^T$ and $\beta_1 = (-3, 9)^T$. Generate n random numbers from U[0, 1] and let π be the corresponding n-dimensional random vector.
 - (4) For each i = 1, ..., n compute the following shares:

$$s_{ik} = \begin{pmatrix} \frac{\exp\{(\beta_k^T, 1)(P_{1i}, X_{1i}, \xi_{1i})^T\}}{1 + \exp\{(\beta_k^T, 1)(P_{1i}, X_{1i}, \xi_{1i})^T\} + \exp\{(\beta_k^T, 1)(P_{2i}, X_{2i}, \xi_{2i})^T\}} \\ \frac{\exp\{(\beta_k^T, 1)(P_{2i}, X_{2i}, \xi_{2i})^T\}}{1 + \exp\{(\beta_k^T, 1)(P_{1i}, X_{1i}, \xi_{1i})^T\} + \exp\{(\beta_k^T, 1)(P_{2i}, X_{2i}, \xi_{2i})^T\}} \end{pmatrix}^T$$
(3)

$$s_i = \pi_i s_{i0} + (1 - \pi_i) s_{i1} \tag{4}$$

- (6) At the end you should have the following three data matrices: $D, S = (s_1, s_2)$ and π . Essentially D describes characteristics of two goods in n markets, S describes shares of the goods and π describes some demographic characteristic of each market. These are **the only data** that you can use in what follows.
- (b) First, you assume that there is no randomness in coefficients (all consumers are the same). Under this assumption you estimate typical multiple logit model following these steps:

- (1) Compute $s_0 = 1 s_1 s_2$.
- (2) Compute mean utilities: $\delta_1 = \ln(s_1) \ln(s_0)$ and $\delta_2 = \ln(s_2) \ln(s_0)$.
- (3) Estimate $\theta = (\theta_0, \theta_1, \theta_2)$ in the following model using OLS:

$$\delta_{ii} = \theta_0 + \theta_1 X_{ii} + \theta_2 P_{ii} + \xi_{ii} \tag{5}$$

report θ_2 , compare it with price coefficients that you used to construct the data. Comment.

- (4) Now, assume that P_{ji} is correlated with ξ_{ji} and use Z_{ji} as an instrument to estimate θ . Report θ_2 and compare it with correct price coefficients. Argue that Z_{ij} can be used as an instrument for price.
- (c) (Bonus) Argue that there is not enough information to estimate β_0 and β_1 . Generate additional instruments (valid and relevant!) that will allow you to estimate β_0 and β_1 and estimate them.