

République Tunisienne Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université de Gabès

Ecole Nationale d'Ingénieurs de Gabès

Réf:	DE-EX-01
------	----------

Indice: 3

Date: 27/11/2023

Page: 1/4

EPREUVE D'EVALUATION

Année Universitaire : 2023/2024	Date de l'Examen : 27/11/2023
Nature: ☑ DC ☐ Examen ☐ DR	Durée : □ 1h ☑ 1h30min □ 2h
Diplôme : ☐ Mastère ☑ Ingénieur	Nombre de pages : 04
Section: ☐ GCP ☐ GCV ☐ GEA ☑ GCR ☐ GM	Enseignant (e): Mme. Chayma BAHAR
Niveau d'étude : ☐ 1ère ☐ 2ème ☐ 3ème année	Documents Autorisés :□ Oui ☑ Non
Matière : Communications Optiques	Remarque : Calculatrice autorisée

N.B: La présentation, la lisibilité, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

Exercice 1: (Atténuations et dispersions d'une communication optique)

La propagation d'un rayon lumineux à l'aide d'une fibre optique à saut d'indice peut être schématisée par la figure ci-dessous :

Figure.1

- 1- Calculer l'angle minimal ilR qui permet la réflexion totale du rayon dans la fibre.
- 2- Calculer l'angle maximal θ_{0max} qui autorise la propagation du signal dans la fibre.
- 3- Pour le mode de propagation fondamental sans réflexions, calculer le temps de transmission d'une information dans cette fibre.
- 4- Pour un mode de transmission correspondant à des réflexions successives de i₁ = 70°, calculer le temps de transmission de l'information.
- 5- Une fibre optique monomode à saut d'indice possède un cœur d'indice n_1 =1.48, un indice de gaine n_2 =1.475 et un diamètre de cœur ϕ =7.5 μ m.
 - a) Calculer l'ouverture numérique ON.
 - Pour λ₁=1300nm et λ₂=1550nm, calculer la fréquence normalisée.
- 6- Une fibre optique à gradient d'indice possède un cœur de diamètre ϕ =62.5 μ m, un indice de réfraction maximale n1=1.48 et une différence d'indice Δ =1.5%.

République Tunisienne Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université de Gabès

Ecole Nationale d'Ingénieurs de Gabès

Réf : DE-EX-01

Indice: 3

Date: 27/11/2023

Page: 2/4

EPREUVE D'EVALUATION

a) Dans le cas d'un profil parabolique, α=2, quelle est l'ouverture numérique et l'angle d'acceptance maximum de la fibre optique ? Calculer le nombre de modes se propageant dans la fibre pour λ=1300nm.

b) L'affaiblissement est de 0,5dB/km à λ=1300nm. Une source injecte une puissance optique de puissance Ps=-10dB à une extrémité. Un récepteur de sensibilité Pr=-35dB est connecté à l'autre extrémité. En négligeant les autres causes d'affaiblissement, donner la portée de la liaison L_{max}.

7- Soit une fibre monomode d'atténuation $\alpha=2.1dB/km$ et une diode laser à $\lambda=0.85\mu m$ émettant une puissance moyenne $P_c=2mW$. Les pertes de connectique : 0.6dB à chaque extrémité et une photodiode PIN de sensibilité S=0.53mA/mW et de courant d'obscurité négligeable.

Quelle est la portée maximale L_{\max} de la liaison pour obtenir un courant de sortie minimal de PIN de $5\mu A$, avec une marge de sécurité de 3dB sur d'éventuelles pertes optiques supplémentaires ?

Exercice 2: (Bilan de liaison)

Partie I

On désire transmettre 32 voies téléphoniques de 64 kbits/s au moyen d'une fibre optique sur une distance de 10 km. Pour réaliser la liaison, on se propose d'utiliser une fibre optique multimode à saut d'indice possédant les caractéristiques suivantes :

Indice de cœur : n1=1,510N=0,17; atténuation A=5 dB/km.

1) En tenant compte uniquement de la dispersion intermodale $\Delta \tau$, le choix de la fibre optique est-il réaliste?

Pour les composants d'extrémité, on a les choix suivants

Sources d'émission

 S_1 : Diode électroluminescente émettant une puissance totale de 3mW. La DEL étant placée dans l'air $(n_0=1)$ face à l'extrémité de la fibre optique. L'efficacité de couplage η_c est donnée par :

$$\eta_c = (ON)^2$$

 S_2 : Diode laser, puissance totale 5 mW, rendement de couplage diode-fibre 60%.

Récepteurs

 D_1 : Photodiode PIN, sensibilité 0,5 A/W.

 D_2 : Photodiode à avalanche, sensibilité 50 A/W.

Afin d'assurer le taux d'erreur spécifié, la puissance minimale du signal au détecteur est $P_{\min} = 10 \ nW$ dans les deux cas.

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université de Gabès

Ecole Nationale d'Ingénieurs de Gabès

Réf: DE-EX-01

Indice: 3

Date: 27/11/2023

Page: 3/4

EPREUVE D'EVALUATION

- 2) Calculer l'atténuation totale due au couplage et aux pertes par absorption pour les deux sources.
- 3) En prenant une marge de sécurité M = 4dB, quelles sont les combinaisons utilisables.

Partie II

Pour réaliser une liaison de 12km par fibres optiques entre deux stations avec un débit minimum exigé de 2 Mbits/s et un taux d'erreur admis de 10-8, vous disposez du choix des composants suivants :

Fibres optiques:

- fibre à saut d'indice (FSI) : diamètre de cœur 100μm, bande passante 100MHz pour 100m,
 atténuation 5dB/km, livrée par rouleaux de 1 km.
- fibre à gradient d'indice (FGI) : diamètre de cœur 50μm, bande passante 100MHz pour 1km,
 atténuation 3dB/km, livrée par rouleaux de 1 km.

Emetteurs:

- LED : puissance moyenne d'émission 1mW, bande passante 60MHz, perte de couplage -17 dB.
- LASER: puissance moyenne d'émission 10mW, bande passante 600MHz, perte de couplage -3dB.

Détecteurs :

- Photodiode PIN: sensibilité 0.5 A/W, bande passante 1GHz. Niveau minimum de détection à 2.
 Mbits/s avec taux d'erreur 10-8: -52 dBm.
- Photodiode PPPN: sensibilité 50 A/W, bande passante 1GHz. Niveau minimum de détection à 2 Mbits/s avec taux d'erreur 10⁻⁸: -64 dBm.

Connectique:

- Connecteur à l'émetteur : pertes de 1 dB.
- Connecteur au récepteur : pertes de 1 dB.
- Epissure par soudage : pertes de 0.3dB.

On désire comparer les deux solutions suivantes :

Première solution: LASER+FGI+PIN.

Deuxième solution: LED+FGI+PPPN.

République Tunisienne Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université de Gabès

Ecole Nationale d'Ingénieurs de Gabès

Réf: DE-EX-01

Indice: 3

Date: 27/11/2023

Page: 4/4

EPREUVE D'EVALUATION

- 1. Donner un schéma de liaison optique pour les deux solutions.
- 2. Établir le bilan de liaison pour chaque solution sachant qu'on ajoute une marge de 2dB.
- 3. Comparer les deux solutions en termes d'atténuation disponible.