計量分析 2:復習テスト 5

	学籍番号	£	氏名		
		2023年10月	1 24 日		
	質問に解答しなければ提 上めし,中間試験実施E			上で,復習テスト 1〜8 を .と.	きまとい
	ι σ ² の母集団から抽出 l 。の不偏推定量であるこ			匀を $ar{X}_n$,標本分散を s_n^2	とする
(b) $ar{X}_n \not \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	の一致推定量であるこ	とを示しなさい	(ヒント:大数の法	則).	
(c) $ar{X}_n$ の分	散を求めなさい.				
(d) $ar{X}_n$ の潮	近分布を求めなさい(ヒント:中心極限	艮定理).		

(e) s_n^2 が σ^2 の不偏推定量であることを示しなさい.

2. N (μ	$,\sigma^2)$ から抽	出した大きさ n	の無作為標本の標本平均を $ar{X}$	とする.	次の片側検定問題を考える.
--------------	------------------	------------	----------------------	------	---------------

$$H_0: \mu = c \quad \text{vs} \quad H_1: \mu > c$$

有意水準を5%とする.

- (a) \bar{X} の分布を求めなさい.
- (b) 検定統計量を与えなさい.
- (c) 検定統計量の H_0 の下での分布を与えなさい.
- (d) n=10 として検定の棄却域を定めなさい(必要な分布表は各自で入手すること).
- (e) 検定統計量の値が 2.0 なら検定結果はどうなるか?
- (f) p値が 0.1 なら検定結果はどうなるか?

解答例

1. (a) 期待値の線形性より

$$E(\bar{X}_n) = E\left(\frac{X_1 + \dots + X_n}{n}\right)$$

$$= \frac{E(X_1 + \dots + X_n)}{n}$$

$$= \frac{E(X_1) + \dots + E(X_n)}{n}$$

$$= \frac{\mu + \dots + \mu}{n}$$

$$= \mu$$

(b) (チェビシェフの) 大数の弱法則より

$$\lim_{n \to \infty} \bar{X}_n = \mu$$

(c) X_1, \ldots, X_n は独立なので

$$\operatorname{var}(\bar{X}_n) = \operatorname{var}\left(\frac{X_1 + \dots + X_n}{n}\right)$$

$$= \frac{\operatorname{var}(X_1 + \dots + X_n)}{n^2}$$

$$= \frac{\operatorname{var}(X_1) + \dots + \operatorname{var}(X_n)}{n^2}$$

$$= \frac{\sigma^2 + \dots + \sigma^2}{n^2}$$

$$= \frac{\sigma^2}{n}$$

(d) (リンドバーグ=レヴィの) 中心極限定理より

$$\bar{X}_n \stackrel{a}{\sim} \mathrm{N}\left(\mu, \frac{\sigma^2}{n}\right)$$

(e) $\mathbf{E}\left(s_{n}^{2}\right)=\sigma^{2}$ を示すには、次式を示せばよい.

$$E\left(\sum_{i=1}^{n} (X_i - \bar{X}_n)^2\right) = (n-1)\sigma^2$$

ここで

$$\sum_{i=1}^{n} (X_i - \bar{X}_n)^2 = \sum_{i=1}^{n} [(X_i - \mu) - (\bar{X}_n - \mu)]^2$$

$$= \sum_{i=1}^{n} [(X_i - \mu)^2 - 2(X_i - \mu)(\bar{X}_n - \mu) + (\bar{X}_n - \mu)^2]$$

$$= \sum_{i=1}^{n} (X_i - \mu)^2 - 2\sum_{i=1}^{n} (X_i - \mu)(\bar{X}_n - \mu) + n(\bar{X}_n - \mu)^2$$

第2項は

$$-2\sum_{i=1}^{n} (X_i - \mu) \left(\bar{X}_n - \mu\right) = -2\left(\sum_{i=1}^{n} X_i - n\mu\right) \left(\bar{X}_n - \mu\right)$$
$$= -2\left(n\bar{X}_n - n\mu\right) \left(\bar{X}_n - \mu\right)$$
$$= -2n\left(\bar{X}_n - \mu\right)^2$$

したがって

$$\sum_{i=1}^{n} (X_i - \bar{X}_n)^2 = \sum_{i=1}^{n} (X_i - \mu)^2 - 2n (\bar{X}_n - \mu)^2 + n (\bar{X}_n - \mu)^2$$
$$= \sum_{i=1}^{n} (X_i - \mu)^2 - n (\bar{X}_n - \mu)^2$$

期待値をとると

$$E\left(\sum_{i=1}^{n} (X_i - \bar{X}_n)^2\right) = E\left(\sum_{i=1}^{n} (X_i - \mu)^2 - n(\bar{X}_n - \mu)^2\right)$$

$$= \sum_{i=1}^{n} E((X_i - \mu)^2) - nE((\bar{X}_n - \mu)^2)$$

$$= \sum_{i=1}^{n} var(X_i) - nvar(\bar{X}_n)$$

$$= n\sigma^2 - n\frac{\sigma^2}{n}$$

$$= (n-1)\sigma^2$$

両辺を n-1 で割ると $\mathrm{E}\left(s_{n}^{2}\right)=\sigma^{2}$.

2. (a) 前問の計算より $ar{X}$ の平均は μ ,分散は σ^2/n .正規分布の線形変換は正規分布なので

$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

(b) 検定統計量は

$$t := \frac{\bar{X} - c}{\sqrt{s^2/n}}$$

(c) H₀の下で

$$t \sim t(n-1)$$

(d) t 分布表より H₀ の下で

$$\Pr[t \ge 1.833] = .05$$

したがって棄却域は $[1.833, \infty)$.

- (e) t 統計量の値が棄却域に入るので H_0 は棄却.
- (f) p値>有意水準なので H_0 は採択.