Sistemas de Ecuaciones Diferenciales de Primer Orden

Coordinación de Ecuaciones Diferenciales y Métodos Numéricos, DMCC

• Tema 2: El Método de valores y vectores propios

DMCC, Facultad de Ciencia, USACH

Método de Valores propios para sistemas homogéneos

Es un método para construir la solución general de un sistema lineal de primer orden homogéneo con coeficientes constantes.

$$\begin{aligned} x_1' &= a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ x_2' &= a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ &\vdots &\vdots \\ x_n' &= a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n. \end{aligned}$$

$$(1)$$

Se sabe que es suficiente encontrar n vectores soluciones linealmente independientes $\mathbf{x}_1,\ \mathbf{x}_2,\ \cdots,\mathbf{x}_n$, de modo que la combinación lineal

$$\mathbf{x}(t) = c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2 + \dots + c_n \mathbf{x}_n \tag{2}$$

es la solución general del sistema (1).

Procedimiento

El procedimiento para determinar los n vectores solución linealmente independientes, es análogo al método de raíces características para resolver una EDO homogénea de coeficiente constantes.

Buscamos el vector solución de la forma:

$$\mathbf{x}(t) = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} v_1 e^{\lambda t} \\ v_2 e^{\lambda t} \\ \vdots \\ v_n e^{\lambda t} \end{pmatrix} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} e^{\lambda t} = \mathbf{v} e^{\lambda t}$$
(3)

donde λ , v_1 , v_2 , \cdots , v_n son constantes a determinar de forma apropiada.

• Sustituyendo la solución propuesta $\mathbf{x}(t) = \mathbf{v}e^{\lambda t}$ en el sistema

$$x'(t) = Ax,$$

se tiene

$$\lambda \mathbf{v} e^{\lambda t} = \mathbf{A} \mathbf{v} e^{\lambda t} \quad \Leftrightarrow \quad \mathbf{A} \mathbf{v} = \lambda \mathbf{v} \quad \Leftrightarrow \quad (\mathbf{A} - \lambda \mathbf{I}) \mathbf{v} = \mathbf{0},$$

donde I es la matriz identidad.

Procedimiento

De álgebra lineal, la ecuación

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{v} = \mathbf{0}$$

tiene una solución no trivial si y sólo si el determinante del sistema se anula, es decir

$$|\mathbf{A} - \lambda \mathbf{I}| = \det(\mathbf{A} - \lambda \mathbf{I}) = 0, \tag{4}$$

donde λ se conoce como un valor propio (o valor característico) de **A** y **v** es el vector propio (o vector característico) no nulo asociado a λ de modo que $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$.

Observación:

- La ecuación (4) se denomina ecuación característica de la matriz A y sus raíces son los valores propios de Α.
- La ecuación característica tiene n raíces, que pueden ser reales y distintas, reales repetidas o compleias.
- lacktriangle El método de valores propios para resolver $\mathbf{x}'(t) = \mathbf{A}\mathbf{x}$, consiste en encontrar los valores y vectores propios de la matriz A. Entonces $\mathbf{x} = \mathbf{v}e^{\lambda t}$ es una solución no trivial del sistema.

Casos

• Valores propios reales distintos: Sean $\lambda_1, \lambda_2, \dots, \lambda_n$ valores reales y distintos de la matriz A, del sistema homogéneo $\mathbf{x}'(t) = \mathbf{A}\mathbf{x}(t)$ y sean $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$, los vectores propios correspondientes. Entonces la solución general es:

$$\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + c_2 \mathbf{v}_2 e^{\lambda_2 t} + \cdots + c_n \mathbf{v}_n e^{\lambda_n t}.$$

Ejemplo: En el caso del sistema

$$\frac{dx}{dt} = x + y$$

$$\frac{dy}{dt} = 4x - 2y$$
(5)

la correspondiente matriz es

$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 4 & -2 \end{pmatrix} .$$

Los autovalores son los λ que verifican

$$\begin{vmatrix} 1-\lambda & 1 \\ 4 & -2-\lambda \end{vmatrix} = \lambda^2 + \lambda - 6 = (\lambda+3)(\lambda-2) = 0.$$

Luego los autovalores son $\lambda = -3$ y $\lambda = 2$.

Para encontrar un vector propio asociado a $\lambda = -3$ debemos encontrar una solución no trivial del correspondiente sistema $(A - \lambda I)v = 0$:

$$(1 - (-3)) v_1 + 1 v_2 = 0$$

$$4 v_1 + (-2 - (-3)) v_2 = 0$$
(6)

que se reduce a la ecuación

$$4 v_1 + v_2 = 0$$
.

Una solución sencilla no trivial de este sistema es $v_1=1,\ v_2=-4.$ Luego $\mathbf{x}_1(t)=e^{-3t}\,(1,-4)^t$ es solución de nuestro sistema de ecuaciones diferenciales

Para el otro autovalor. $\lambda = 2$, tenemos la ecuación

$$(1-2) v_1 + v_2 = -v_1 + v_2 = 0,$$

la solución no trivial $v_2 = 1$, $v_2 = 1$ y la solución $\mathbf{x}_2(t) = e^{2t} (1, 1)^t$.

De esta forma la solución general de nuestro sistema de ecuaciones diferenciales es

$$\begin{array}{rcl} x(t) & = & c_1 \, x_1(t) + c_2 \, x_2(t) \\ \\ & = & c_1 \left(\begin{array}{c} 1 \\ -4 \end{array} \right) e^{-3t} + c_2 \left(\begin{array}{c} 1 \\ 1 \end{array} \right) e^{2t} \\ \\ \left(\begin{array}{c} x \\ y \end{array} \right) & = & \left(\begin{array}{c} c_1 \, e^{-3t} + c_2 \, e^{2t} \\ -4 \, c_1 \, e^{-3t} + c_2 \, e^{2t} \end{array} \right) \, , \, \, c_1, \, c_2 \in \mathbb{R} \, , \, \, t \in \mathbb{R} \, . \end{array}$$

Casos

• Valores propios complejos: Sea \mathbf{v}_1 un vector propio correspondiente al valor propio complejo $\lambda_1 = \alpha + i\beta$, donde α y β son números reales. Entonces los vectores

$$\mathbf{v}_1 e^{\lambda_1 t}$$
 y $\mathbf{\bar{v}}_1 e^{\bar{\lambda}_1 t}$

son soluciones del sistema. $(\bar{\lambda}_1, \bar{\mathbf{v}}_1)$ es el conjugado de $(\lambda_1, \mathbf{v}_1)$.

Usando la fórmula de Euler, los dos vectores solución pueden expresarse:

$$\begin{aligned} \mathbf{v}_1 e^{\lambda_1 t} &= \mathbf{v}_1 e^{\alpha t} e^{i\beta t} = \mathbf{v}_1 e^{\alpha t} (\cos{(\beta t)} + i\sin{(\beta t)}) \\ \mathbf{\bar{v}}_1 e^{\bar{\lambda}_1 t} &= \mathbf{\bar{v}}_1 e^{\alpha t} e^{-i\beta t} = \mathbf{\bar{v}}_1 e^{\alpha t} (\cos{(\beta t)} - i\sin{(\beta t)}). \end{aligned}$$

De acuerdo al principio de superposición, la combinación lineal es solución. De modo que son soluciones:

$$\begin{split} \mathbf{x}_1 &= & \frac{1}{2}(\mathbf{v}_1e^{\lambda_1t} + \bar{\mathbf{v}}_1e^{\bar{\lambda}_1t}) = \frac{1}{2}(\mathbf{v}_1 + \bar{\mathbf{v}}_1)e^{\alpha t}\cos{(\beta t)} - \frac{i}{2}(-\mathbf{v}_1 + \bar{\mathbf{v}}_1)e^{\alpha t}\sin{(\beta t)} \\ \mathbf{x}_2 &= & \frac{i}{2}(-\mathbf{v}_1e^{\lambda_1t} + \bar{\mathbf{v}}_1e^{\bar{\lambda}_1t}) = \frac{i}{2}(-\mathbf{v}_1 + \bar{\mathbf{v}}_1)e^{\alpha t}(\cos{(\beta t)} + \frac{1}{2}(\mathbf{v}_1 + \bar{\mathbf{v}}_1)e^{\alpha t}(\sin{(\beta t)}) \\ \end{split}$$

Definamos

$$\mathbf{B_1} = \frac{1}{2}(\mathbf{v_1} + \overline{\mathbf{v}_1}) = \text{Re}(\mathbf{v_1}) \quad \text{y} \quad \mathbf{B_2} = \frac{i}{2}(-\mathbf{v_1} + \overline{\mathbf{v}_1}) = \text{Im}(\mathbf{v_1}). \tag{7}$$

Notar que B₁ y B₂ son números reales.

Luego, las dos soluciones reales linealmente independientes asociadas a $\lambda_1 = \alpha + i\beta$ son:

$$\mathbf{x}_1(t) = (\mathbf{B}_1 \cos(\beta t) - \mathbf{B}_2 \sin(\beta t))e^{\alpha t}$$

$$\mathbf{x}_2(t) = (\mathbf{B}_2 \cos(\beta t) + \mathbf{B}_1 \sin(\beta t))e^{\alpha t}.$$
(8)

$$\frac{dx}{dt} = 5x - 3y$$

$$\frac{dy}{dt} = 6 - y$$
(9)

La correspondiente matriz es

$$\mathbf{A} = \begin{pmatrix} 5 & -3 \\ 6 & -1 \end{pmatrix} .$$

Los autovalores son los λ que verifican

$$\begin{vmatrix} 5 - \lambda & -3 \\ 6 & -1 - \lambda \end{vmatrix} = \lambda^2 - 4\lambda + 13 = (\lambda - 2)^2 + 9 = 0.$$

Luego los autovalores son $\lambda=2\pm 3i$. El vector propio asociado a $\lambda=2+3i$ verifica

$$\begin{pmatrix} 5 - (2+3i) & -3 \\ 6 & -1 - (2+3i) \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \implies \begin{pmatrix} 3-3i & -3 \\ 6 & -3-3i \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$(1-i)v_1 - v_2 = 0 \implies v_2 = (1-i)v_1$$

 $2v_1 - (1+i)v_2 = 0$

Tomando $v_1 = 1$ se obtiene el vector propio

$$\mathbf{v} = \begin{pmatrix} 1 \\ 1 - i \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ -1 \end{pmatrix} i$$

La correspondiente solución de valores complejos $\mathbf{x}(t) = \mathbf{v}e^{(2+3i)t}$ es

$$\begin{aligned} \mathbf{x}(t) & = & \begin{pmatrix} 1 \\ 1-i \end{pmatrix} e^{2t} (\cos(3t)+i\sin(3t)) = e^{2t} \begin{pmatrix} \cos(3t)+i\sin(3t) \\ \cos(3t)+\sin(3t)+i(\sin(3t)-\cos(3t)) \end{pmatrix} \\ & = & e^{2t} \begin{pmatrix} \cos(3t) \\ \cos(3t)+\sin(3t) \end{pmatrix} + i e^{2t} \begin{pmatrix} \sin(3t) \\ \sin(3t) - \cos(3t) \end{pmatrix} \end{aligned}$$

Las partes real e imaginaria de $\mathbf{x}(t)$ son las soluciones de valores reales¹

$$\mathbf{x}_1(t) = \mathrm{e}^{2t} \begin{pmatrix} \cos(3t) \\ \cos(3t) + \sin(3t) \end{pmatrix} \quad \mathbf{y} \quad \mathbf{x}_2(t) = \mathrm{e}^{2t} \begin{pmatrix} \sin(3t) \\ \sin(3t) - \cos(3t) \end{pmatrix}$$

Notar que obtuvimos los mismo resultados que (8)

$$\mathbf{x}_1(t) = e^{2t} \left(\begin{pmatrix} 1 \\ 1 \end{pmatrix} \cos(3t) - \begin{pmatrix} 0 \\ -1 \end{pmatrix} \sin(3t) \right) \quad \mathbf{y} \quad \mathbf{x}_2(t) = e^{2t} \left(\begin{pmatrix} 0 \\ -1 \end{pmatrix} \cos(3t) + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \sin(3t) \right)$$

donde

$$\mathbf{B_1} = \mathsf{Re}(\mathbf{v}) = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad \mathbf{B_2} = \mathsf{Im}(\mathbf{v}) = \begin{pmatrix} 0 \\ -1 \end{pmatrix}.$$

La solución general es

$$\mathbf{x}(t) = c_1 \mathbf{x}_1(t) + c_2 \mathbf{x}_2(t)$$

¹Si el sistema admite una solución compleja $\mathbf{x}(t) = \mathbf{x}_1(t) + i\mathbf{x}_2(t)$, entonces la parte real $\mathbf{x}_1(t)$ y la parte imaginaria $\mathbf{x}_2(t)$, son soluciones reales del sistema $\mathbf{x}'(t) = \mathbf{A}\mathbf{x}$.

Casos

- Valores propios reales repetidos: Sean $\lambda_1, \ \lambda_2, \cdots, \ \lambda_n$ valores reales e iguales de la matriz **A**, del sistema homogéneo $\mathbf{x}'(t) = \mathbf{A}\mathbf{x}(t)$, entonces se pueden dar los siguientes casos:
 - Para algunas matrices A de n X n sería posible encontrar m vectores propios linealmente independientes v₁, v₂, ··· , v_m, correspondientes a un eingevalor λ₁. En este caso la solución general del sistema contiene la combinación lineal:

$$c_1\mathbf{v}_1e^{\lambda_1t}+c_2\mathbf{v}_2e^{\lambda_1t}+\cdots+c_m\mathbf{v}_me^{\lambda_1t}$$

ii) Si sólo hay un vector propio que corresponde al valor propio λ_1 de multiplicidad m, entonces siempre se pueden encontrar m soluciones linealmente independientes de la forma:

$$\begin{split} & \mathbf{x}_1 = \mathbf{v}_1 e^{\lambda_1 t} \\ & \mathbf{x}_2 = \mathbf{v}_1 t e^{\lambda_1 t} + \mathbf{v}_2 e^{\lambda_1 t} \\ & \vdots \\ & \mathbf{x}_m = \mathbf{v}_1 \frac{t^{m-1}}{(m-1)!} e^{\lambda_1 t} + \mathbf{v}_2 \frac{t^{m-2}}{(m-2)!} e^{\lambda_1 t} + \dots + \mathbf{v}_m e^{\lambda_1 t} \end{split}$$

Donde los vectores \mathbf{v}_1 , \mathbf{v}_2 , \cdots , \mathbf{v}_m cumplen con:

$$\begin{aligned} (\mathbf{A} - \lambda_1 \mathbf{I}) \mathbf{v}_1 &= 0 \\ (\mathbf{A} - \lambda_1 \mathbf{I}) \mathbf{v}_2 &= \mathbf{v}_1 \\ &\vdots \\ (\mathbf{A} - \lambda_1 \mathbf{I}) \mathbf{v}_m &= \mathbf{v}_{m-1} \end{aligned}$$

Ejemplo i): Considere el sistema

$$\frac{dx}{dt} = x - 2y + 2z$$

$$\frac{dy}{dt} = -2x + y - 2z$$

$$\frac{dz}{dt} = 2x - 2y + z$$
(10)

la correspondiente matriz es

$$\mathbf{A} = \begin{pmatrix} 1 & -2 & 2 \\ -2 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix} .$$

Los autovalores son los λ que verifican

$$\begin{vmatrix} 1 - \lambda & -2 & 2 \\ -2 & 1 - \lambda & -2 \\ 2 & -2 & 1 - \lambda \end{vmatrix} = -(\lambda + 1)^2 (\lambda - 5) = 0.$$

Luego los autovalores son $\lambda_1=\lambda_2=-1$ y $\lambda_3=5$.

Para los autovalores, $\lambda_1 = \lambda_2 = -1$, tenemos las ecuaciones:

$$(1 - (-1)) v_1 - 2 v_2 + 2 v_3 = 0$$

$$- 2 v_1 + (1 - (-1)) v_2 - 2 v_3 = 0$$

$$2 v_1 - 2 v_2 + (1 - (-1)) v_3 = 0$$
(11)

que se reduce a la ecuación

$$2v_1 - 2v_2 + 2v_2 = 0$$

Encontrar una solución sencilla no trivial de este sistema puede lograrse dando valores arbitarios a 2 variables, por ejemplo $v_2=1$, $v_3=0$ dan como resultado $v_1=1$, otro caso podría ser donde $v_2=0$, $v_3=1$ dando como resultado $v_1 = -1$. De esta forma se pueden construir 2 vectores linealmente independientes de un único valor propio, quedando como soluciones del sistema:

$$\mathbf{x}_1(t) = e^{-t} (1, 1, 0)^t$$

 $\mathbf{x}_2(t) = e^{-t} (-1, 0, 1)^t$

Para el otro autovalor, $\lambda = 5$, tenemos las ecuaciones:

$$(1 - (5)) v_1 - 2 v_2 + 2 v_3 = 0$$

$$- 2 v_1 + (1 - (5)) v_2 - 2 v_3 = 0$$

$$2 v_1 - 2 v_2 + (1 - (5)) v_3 = 0$$
(12)

la solución no trivial $v_1=1,\ v_2=-1,v_3=1$ y la solución $\mathbf{x}_3(t)=e^{5t}\left(1,-1,1\right)^t$.

De esta forma la solución general de nuestro sistema de ecuaciones diferenciales es

$$\begin{aligned} \mathbf{x}(t) &= c_1 \, \mathbf{x}_1(t) + c_2 \, \mathbf{x}_2(t) + c_3 \, \mathbf{x}_3(t) \\ &= c_1 \left(\begin{array}{c} 1 \\ 1 \\ 0 \end{array} \right) e^{-t} + c_2 \left(\begin{array}{c} -1 \\ 0 \\ 1 \end{array} \right) e^{-t} + c_3 \left(\begin{array}{c} 1 \\ -1 \\ 1 \end{array} \right) e^{5t} \\ \left(\begin{array}{c} x \\ y \\ z \end{array} \right) &= \left(\begin{array}{c} c_1 \, e^{-t} - c_2 \, e^{-t} + c_3 \, e^{5\,t} \\ c_1 \, e^{-t} - c_3 \, e^{5\,t} \\ c_2 \, e^{-t} + c_3 \, e^{5\,t} \end{array} \right) \,, \, c_1, c_2, c_3 \in \mathbb{R} \,, \, t \in \mathbb{R} \,. \end{aligned}$$

Ejemplo ii): Considere el sistema

$$\frac{dx}{dt} = 3x - 18y$$

$$\frac{dy}{dt} = 2x - 9y$$
(13)

la correspondiente matriz es

$$\mathbf{A} = \begin{pmatrix} 3 & -18 \\ 2 & -9 \end{pmatrix} .$$

Los autovalores son los λ que verifican

$$\begin{vmatrix} 3-\lambda & -18 \\ 2 & -9-\lambda \end{vmatrix} = (\lambda+3)^2 = 0.$$

Luego los autovalores son $\lambda_1=\lambda_2=-3$

Para el autovalor, $\lambda=-3$, tenemos la ecuación:

$$v_1 - 3v_2 = 0 ag{14}$$

la solución no trivial $v_1=3,\ v_2=1$ y la solución $\mathbf{x}_1(t)=e^{-3t}\left(3,1\right)^t.$

Para construir la segunda solución se debe utilizar la siguiente relación:

$$(\mathbf{A}+3\mathbf{I})\mathbf{v}_2=\mathbf{v}_1$$

Que se reduce a la ecuación:

$$2 v_1 - 6 v_2 = 1$$

la solución no trivial más sencilla es $v_1=\frac{1}{2},\ v_2=0$ y la solución $\mathbf{x}_2(t)=te^{-3t}\left(3,1\right)^t+e^{-3t}\left(\frac{1}{2},0\right)^t.$ De esta

forma la solución general de nuestro sistema de ecuaciones diferenciales es

$$\begin{split} x(t) &= c_1 \, x_1(t) + c_2 \, x_2(t) \\ &= c_1 \left(\begin{array}{c} 3 \\ 1 \end{array} \right) e^{-3t} + c_2 \left[\left(\begin{array}{c} 3 \\ 1 \end{array} \right) t e^{-3t} + \left(\begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right) e^{-3t} \right] \\ \left(\begin{array}{c} x \\ y \end{array} \right) &= \left(\begin{array}{c} 3 \, c_1 \, e^{-3t} + 3c_2 \, t e^{-3t} + \frac{c_2}{2} \, e^{-3t} \\ c_1 \, e^{-3 \, t} + c_2 \, t e^{-3t} \end{array} \right) \, , \, \, c_1, \, c_2 \in \mathbb{R} \, , \, \, t \in \mathbb{R} \, . \end{split}$$