

()	Pre	limina	ry S _l	pecificatior	าร
	•					

(V) Final Specifications

Module	13.3"(13.26") FHD 16:9 Color TFT-LCD with LED Backlight design			
Model Name	B133HAN04.6 (HW:0A)			
Note ()	LED Backlight with driving circuit design			

Customer	Date		Approved by	Date
				<u>07/07/2017</u>
Checked & Approved by	Date		Prepared by	Date
				07/07/2017
Note: This Specification is subject to change without notice.			AU Optronics	corporation

Contents

1.	. Handling Precautions	
2.	. General Description	5
	2.1 General Specification	5
	2.2 Optical Characteristics	7
3.	. Functional Block Diagram	12
4.	. Absolute Maximum Ratings	12
	4.1 Absolute Ratings of TFT LCD Module	12
	4.2 Absolute Ratings of Environment	12
5.	. Electrical Characteristics	14
	5.1 TFT LCD Module	14
	5.2 Backlight Unit	17
6.	. Signal Interface Characteristic	19
	6.1 Pixel Format Image	
	6.2 Integration Interface Requirement	
	6.3 Interface Timing	
	6.4 Power ON/OFF Sequence	24
7.	. Panel Reliability Test	
	7.1 Vibration Test	
	7.2 Shock Test	27
	7.3 Reliability Test	
8.	. Mechanical Characteristics	
	8.1 Total Solution Outline Dimension	28
9.	. Shipping and Package	
	9.1 Shipping Label Format	
	9.2 Carton Package	
	9.3 Shipping Package of Palletizing Sequence	
1 (0 Annendix: FDID Description	22

Record of Revision

Ve	rsion and Date	Page	Old description	New Description	Remark
0.1	2016/11/02	All	First Edition for Customer		
0.2	2017/07/07	P12		Function block diagram	

AU OPTRONICS CORPORATION

1. Handling Precautions

- 1) Since front polarizer is easily damaged, pay attention not to scratch it.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- 5) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface.
- 6) Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling.
- 7) Do not open nor modify the Module Assembly.
- 8) Do not press the reflector sheet at the back of the module to any directions.
- 9) At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT Module.
- 10) After installation of the TFT Module into an enclosure (Notebook PC Bezel, for example), do not twist nor bend the TFT Module even momentary. At designing the enclosure, it should be taken into consideration that no bending/twisting forces are applied to the TFT Module from outside. Otherwise the TFT Module may be damaged.
- 11)Small amount of materials having no flammability grade is used in the LCD module. The LCD module should be supplied by power complied with requirements of Limited Power Source (IEC60950 or UL1950), or be applied exemption.
- 12) Disconnecting power supply before handling LCD modules, it can prevent electric shock, DO NOT TOUCH the electrode parts, cables, connectors and LED circuit part of TFT module that a LED light bar build in as a light source of back light unit. It can prevent electrostatic breakdown.

AU OPTRONICS CORPORATION

2. General Description

B133HAN04.6 is a Color Active Matrix Liquid Crystal Display composed of a TFT LCD panel, a driver circuit, and LED backlight system. The screen format is intended to support the 16:9 FHD, 1920(H) x1080(V) screen and 262K colors (RGB –6bits with FRC)with LED backlight driving circuit. All input signals are eDP (Embedded DisplayPort) interface compatible.

B133HAN04.6 is designed for a display unit of notebook style personal computer and industrial machine.

2.1 General Specification

The following items are characteristics summary on the table at 25 °C condition:

Items	Unit	Specifications					
Screen Diagonal	[mm]	336.71					
Active Area	[mm]	293.472x165.078					
Pixels H x V		1920x3(RG	3B) x 108	0			
Pixel Pitch	[mm]	0.1529 x 0.	.1529				
Pixel Format		R.G.B. Ver	tical Strip	е			
Display Mode		Normally B	lack				
White Luminance (ILED=22mA) (Note: ILED is LED current)	[cd/m ²]	300 typ. (5 255 min. (5					
Luminance Uniformity		1.25 max.	(5 points)				
Contrast Ratio		800 typ					
Response Time	[ms]	27 typ / 35	Max				
Nominal Input Voltage VDD	[Volt]	+3.3 typ.					
Power Consumption	[Watt]	4.2 max (Ir	clude Lo	gic and E	Blu power)		
Weight	[Grams]	220 max					
			Min.	Тур.	Max.		
Dhysical Cine		Length	299.47	299.97	300.47		
Physical Size	[mm]	Width	176.98	177.48	177.98		
		Thickness	-	-	2.4 (without PCBA) 4.35 (With PCBA)		
Electrical Interface		2 Lane eDP 1.3					
Glass Thickness	[mm]	0.3					
Surface Treatment		AG					

Support Color		262K colors (RGB 6-bit)
Temperature Range Operating Storage (Non-Operating)	[°C]	0 to +50 -20 to +60
RoHS Compliance		RoHS Compliance

2.3 Optical Characteristics

The optical characteristics are measured under stable conditions at 25°C (Room Temperature) :

Item		Symbol	Conditions	Min.	Тур.	Max.	Unit	Note
White Luminance ILED=23mA (Base Panel Only)			5 points average	255	300	-	cd/m2	1, 4, 5.
Viewing A	nale	θR θL	Horizontal (Right) CR = 10 (Left)	80 80	80 80	-	degree	4, 9
viewing Ai	igie	ψH ψL	Vertical (Upper) CR = 10 (Lower)	80 80	80 80	-		4, 9
Luminan Uniformi		δ5Р	5 Points	-	-	1.25		1, 3, 4
Luminance Uniformity		δ13Ρ	13 Points	-	-	1.6		2, 3, 4
Contrast Ratio		CR		700	800	-		4, 6
Cross ta	lk	%				4		4, 7
Response	Time	TRT	Rising + Falling	-	27	35		
	Red	Rx		0.608	0.638	0.668		
	1100	Ry		0.306	0.336	0.366		
Color /	Green	Gx		0.292	0.322	0.352		
Chromaticity		Gy		0.580	0.610	0.640	_	
Coodinates	Blue	Вх	CIE 1931	0.124	0.154	0.184	_	4
	Diue	Ву		0.010	0.040	0.070	_	
	\A/Ic ! ! -	Wx		0.283	0.313	0.343	-	
	White	Wy		0.299	0.329	0.359		
NTSC		%		-	72	_		

AU OPTRONICS CORPORATION

Note 1: 5 points position (Ref: Active area)

Note 2: 13 points position (Ref: Active area)

Note 3: The luminance uniformity of 5 or 13 points is defined by dividing the maximum luminance values by the minimum test point luminance

2	Maximum Brightness of five points
$\delta_{W5} =$	Minimum Brightness of five points
6	Maximum Brightness of thirteen points
$\delta_{\text{W13}} =$	Minimum Brightness of thirteen points

Note 4: Measurement method

The LCD module should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting

Backlight for 30 minutes in a stable, windless and dark room, and it should be measured in the center of screen.

Center of the screen

Note 5: Definition of Average Luminance of White (Y_L):

Measure the luminance of gray level 63 at 5 points \cdot $Y_L = [L(1) + L(2) + L(3) + L(4) + L(5)] / 5$ L (x) is corresponding to the luminance of the point X at Figure in Note (1).

Note 6: Definition of contrast ratio:

Contrast ratio is calculated with the following formula.

Note 7: Definition of Cross Talk (CT)

$$CT = |Y_B - Y_A| / Y_A \times 100$$
 (%)

Where

Y_A = Luminance of measured location without gray level 0 pattern (cd/m₂)

Y_B = Luminance of measured location with gray level 0 pattern (cd/m₂)

Note 8: Definition of response time:

The output signals of BM-7 or equivalent are measured when the input signals are changed from "Black" to "White" (falling time) and from "White" to "Black" (rising time), respectively. The response time interval between the 10% and 90% of amplitudes. Refer to figure as below.

AU OPTRONICS CORPORATION

Note 9. Definition of viewing angle

Viewing angle is the measurement of contrast ratio \geq 10, at the screen center, over a 180° horizontal and 180° vertical range (off-normal viewing angles). The 180° viewing angle range is broken down as follows; 90° (θ) horizontal left and right and 90° (Φ) vertical, high (up) and low (down). The measurement direction is typically perpendicular to the display surface with the screen rotated about its center to develop the desired measurement viewing angle.

3. Functional Block Diagram

Schematic Block Diagram

4. Absolute Maximum Ratings

An absolute maximum rating of the module is as following:

4.1 Absolute Ratings of TFT LCD Module

Item	Symbol	Min	Max	Unit	Conditions
Logic/LCD Drive Voltage	Vin	-0.3	4	[Volt]	Note 1,2

4.2 Absolute Ratings of Environment

Item	Symbol	Min	Max	Unit	Conditions
Operating Temperature	TOP	0	+50	[°C]	Note 4
Operation Humidity	HOP	5	95	[%RH]	Note 4
Storage Temperature	TST	-20	+60	[°C]	Note 4
Storage Humidity	HST	5	95	[%RH]	Note 4

Note 1: At Ta (25°C)

Note 2: Permanent damage to the device may occur if exceed maximum values

Note 3: LED specification refer to section 5.2

AU OPTRONICS CORPORATION

- Note 4: For quality performance, please refer to AUO IIS (Incoming Inspection Standard).
- Note 5: The packing material of system forbid to involve ammonium component
- Note 6: The reliability test conditions of system do not exceed the verified conditions of TFT module
- Note 7: Be sure the panel test condition do not exceed the component limitation of TFT module(TN Liquid crystal, for example)

5. Electrical Characteristics

5.1 TFT LCD Module

5.1.1 Power Specification

Input power specifications are as follows;

The power specification are measured under 25°C and frame frenquency under 60Hz

Symble	Parameter	Min	Тур	Max	Units	Note
VDD	Logic/LCD Drive Voltage	3.0	3.3	3.6	[Volt]	
PDD	VDD Power	-	-	0.9	[Watt]	Note 1
IDD	IDD Current	-	-	300	[mA]	Note 1
IRush	Inrush Current	-	-	2000	[mA]	Note 2
VDDrp	Allowable Logic/LCD Drive Ripple Voltage	-	-	100	[mV] p-p	

Note 1 : Maximum Measurement Condition : Mosaic pattern (PDD(max)=VDD(min)X IDD(min))

Note 2: Measure Condition

Vin rising time

5.1.2 Signal Electrical Characteristics

Signal electrical characteristics are as follows;

Display Port main link signal:

	Display port main link										
		Min	Тур	Max	unit						
VCM	RX input DC Common Mode Voltage		0		٧						
VDiff _{P-P}	Peak-to-peak Voltage at a receiving Device	150		1320	mV						

Follow as VESA display port standard V1.3

Display Port AUX_CH signal:

	Display port AUX_CH										
		Min	Тур	Max	unit						
VCM	AUX DC Common Mode Voltage		0		V						
VDiff _{P-P}	AUX Peak-to-peak Voltage at a receiving Device	270		800	mV						

Follow as VESA display port standard V1.3

Display Port VHPD signal:

	Display port VHPD									
		Min	Тур	Max	unit					
VHPD	HPD Voltage	2.25	-	3.6	V					

Follow as VESA display port standard V1.3

5.2.1 LED characteristics

Parameter	Symbol	Min	Тур	Max	Units	Condition
Backlight Power Consumption	PLED	-	-	3.0	[Watt]	(Ta=25℃), Note 1
LED Life-Time	N/A	15,000	-	-	Hour	(Ta=25℃), Note 2 I _F =24 mA

Note 1: Calculator value for reference P_{LED} = VF (Normal Distribution) * IF (Normal Distribution) / Efficiency

Note 2: The LED life-time define as the estimated time to 50% degradation of initial luminous.

5.2.2 Backlight input signal characteristics

Parameter	Symbol	Min	Тур	Max	Units	Remark
LED Power Supply	VLED (Note 1)	5.0 (Note 2)	12.0	21.0	[Volt]	
LED Enable Input High Level	VLED EN	2.2	ı	5.5	[Volt]	
LED Enable Input Low Level	VLLD_LIN	-	-	0.6	[Volt]	Define as
PWM Logic Input High Level		2.7	-	5.5	[Volt]	Connector Interface
PWM Logic Input Low Level	VPWM_EN	-	-	0.6	[Volt]	(Ta=25°C)
PWM Input Frequency	FPWM	200	1K	10K	Hz	
PWM Duty Ratio	Duty	1 (Note 3)		100	%	

Note 1: Recommend system pull up/down resistor no bigger than 10kohm

Note 2: measured in panel VIN

AU OPTRONICS CORPORATION

Note 3 : If the PWM duty ratio(min) is set between 5% to 1% $^{\circ}$ the PWM input frequency should be set below 1KHz .

The brightness-duty characteristic might not be able to keep in it's linearity if the dimming control is operated in 1% to 5% range.

6. Signal Interface Characteristic

6.1 Pixel Format Image

Following figure shows the relationship of the input signals and LCD pixel format.

	1									19	20)
1st Line	R G	В	R	G	В		R	G	В	R	G	В
	1			1		•		1			1	
	,					•						
	,			•		•		•			•	
	,					•						
	,					•		•			•	
	,					•						
	1			1		ı		ı			1	
1080th Line	R G	В	R	G	В		R	G	В	R	G	В

6.2 Integration Interface Requirement

6.2.1 Connector Description

Physical interface is described as for the connector on module.

These connectors are capable of accommodating the following signals and will be following components.

Connector Name / Designation	For Signal Connector					
Manufacturer	IPEX or compatible					
Type / Part Number	IPEX 20455-030E-12 or compatible (0.5mm pitch or compatible)					
Mating Housing/Part Number	IPX or compatible					

6.2.2 Pin Assignment (with Touch Sensor Pin Assignment)

Pin	Symbol	Description
1	DCR	Reserved for DCR
2	GND	High Speed Ground
3	Lane1_N	Complement Signal Link Lane 1
4	Lane1_P	True Signal Link Lane 1
5	GND	High Speed Ground
6	Lane0_N	Complement Signal Link Lane 0
7	Lane0_P	True Signal Link Lane 0
8	GND	High Speed Ground
9	AUX_CH_P	True Signal Auxiliary Channel
10	AUX_CH_N	Complement Signal Auxiliary Channel
11	GND	High Speed Ground
12	VCC	LCD logic
13	VCC	LCD logic
14	LCD Self Test or NC	LCD Panel Self Test Enable (Optional)
15	GND	LCD logic and driver ground
16	GND	LCD logic and driver ground
17	HPD	HPD signale pin
18	BL_GND	LED Backlight ground
19	BL_GND	LED Backlight ground
20	BL_GND	LED Backlight ground
21	BL_GND	LED Backlight ground
22	BL ENABLE	LED Backlight control on/off control
23	BL PWM	System PWM signal input for dimming
24	H_SYNC or NC	H_SYNC function(Optional) or NC
25	NC Reserved	Reserved for LCD supplier
26	VLED	LED Backlight Power (5-21V)
27	VLED	LED Backlight Power (5-21V)
28	VLED	LED Backlight Power (5-21V)
29	VLED	LED Backlight Power (5-21V)
30	NC	NC

Note1: Start from right side.

Note2: Input signals shall be low or High-impedance state when VDD is off. Internal circuit of **eDP inputs** are as following.

AU OPTRONICS CORPORATION

6.3.1 Timing Characteristics

Basically, interface timings should match the 1920x1080 /60Hz manufacturing guide line timing.

Parameter		Symbol	Min.	Тур.	Max.	Unit
Frame	e Rate	-		60	-	Hz
Clock frequency		1/ T _{Clock}	66.6	72	80	MHz
	Period	T _V	1090	1116	1080+A	
Vertical	Active	T _{VD}	T _{VD} 1080		T_{Line}	
Section	Blanking	T _{VB}	10	36	Α	
	Period	T _H	1000	1052	960+B	
Horizontal	Active	T _{HD}		960		T_{Clock}
Section	Blanking	T _{HB}	40	92	В	

Note 1: The above is as optimized setting

Note 2 : The maximum clock frequency = (1920+B)*(1080+A)*60 < 149.1 MHz

6.3.2 Timing diagram

AU OPTRONICS CORPORATION

6.4 Power ON/OFF Sequence

Power on/off sequence is as follows. Interface signals and LED on/off sequence are also shown in the chart. Signals from any system shall be Hi-Z state or low level when VDD is off

Display Port panel power sequence:

Display port interface power up/down sequence, normal system operation

Display Port AUX CH transaction only:

Display port interface power up/down sequence, AUX_CH transaction only

AU OPTRONICS CORPORATION

Display Port panel power sequence timing parameter:

Timing	Diti	David Jan		Limits		Netes
parameter	Description	Reqd. by	Min.	Тур.	Max.	Notes
T1	power rail rise time, 10% to 90%	source	0.5ms		10ms	
Т2	delay from LCDVDD to black video generation	sink	0ms		200ms	prevents display noise until valid video data is received from the source
Т3	delay from LCDVDD to HPD high	sink	0ms		200ms	sink AUX_CH must be operational upon HPD high.
Т4	delay from HPD high to link training initialization	source				allows for source to read link capability and initialize.
Т5	link training duration	source				dependant on source link to read training protocol.
Т6	link idle	source				Min accounts for required BS-Idle pattern. Max allows for source frame synchronization.
Т7	delay from valid video data from source to video on display	sink	0ms		50ms	max allows sink validate video data and timing.
Т8	delay from valid video data from source to backlight enable	source				source must assure display video is stable.
Т9	delay from backlight disable to end of valid video data	source				source must assure backlight is no longer illuminated.
T10	delay from end of valid video data from source to power off	source	0ms		500ms	
T11	power rail fall time, 905 to 10%	source			10ms	
T12	power off time	source	500ms			

Note1: The sink must include the ability to generate black video autonomously. The sink must automatically enable black video under the following conditions:

-upon LCDVDD power on (with in T2 max)-when the "Novideostream_Flag" (VB-ID Bit 3) is received from the source (at the end of T9).

-when no main link data, or invalid video data, is received from the source. Black video must be displayed within 64ms (typ) from the start of either condition. Video data can be deemed invalid based on MSA and timing information, for example.

Note 2: The sink may implement the ability to disable the black video function, as described in Note 1, above, for system development and debugging purpose.

Note 3: The sink must support AUX_CH polling by the source immediately following LCDVDD power on without causing damage to the sink device (the source can re-try if the sink is not ready). The sink must be able to respond to an AUX_CH transaction with the time specified within T3 max.

AU OPTRONICS CORPORATION

Display Port panel B/L power sequence timing parameter:

Note: When the adapter is hot plugged, the backlight power supply sequence is shown as below.

	Min (ms)	Max (ms)
T13	0.2	10
T14	0	2
T15	0	2
T16	0	-
T17	0	
T18	0.2	10
T19	1*	2
T20	1*	≅

Seamless change: T19/T20 = 5xT_{PWM}*
*T_{PWM}= 1/PWM Frequency

Note 1 : If T14,T15,T16,T17<10ms • The display garbage may occur. We suggest T14,T15,T16,T17>10ms to avoid the display garbage.

Note 2: If T13 or T18<0.5ms, the inrush current may cause the damage of fuse. If T13 or T18<0.5ms, the inrush current l²t is under typical melt of fuse Spec., there is no mentioned problem.

Touch Panel Power on Sequence

Timing	Description	Min (ms)
T _{RST}	Reset signal delay time from VTSP (TP power)	1
T _{TPEN}	TP enable signal delay time from reset signal	20

AU OPTRONICS CORPORATION

7. Panel Reliability Test

7.1 Vibration Test

Test Spec:

Test method: Non-Operation

Acceleration: 1.5 G

• Frequency: 10 - 500Hz Random

Sweep: 30 Minutes each Axis (X, Y, Z)

7.2 Shock Test

Test Spec:

Test method: Non-Operation

Acceleration: 220 G, Half sine wave

Active time: 2 ms

Pulse: X,Y,Z .one time for each side

7.3 Reliability Test

Required Condition	Note
Ta= 40℃, 90%RH, 300h	
Ta= 50℃, Dry, 300h	
Ta=0℃, 300h	
Ta= 60℃, 300h	
Ta= -20℃, 250h	
Ta=-20°C (30min) ~60°C (30min), 100cycles condition.	
Contact : ±8 KV	Note 1
	Ta= 40° C, 90%RH, 300h Ta= 50° C, Dry, 300h Ta= 60° C, 300h Ta= -20° C, 250h Ta=- 20° C (30min) \sim 60°C (30min), 100cycles condition.

Note1: According to EN 61000-4-2, ESD class B: Some performance degradation allowed. No data lost

. Self-recoverable. No hardware failures.

Remark: MTBF (Excluding the LED): 30,000 hours with a confidence level 90%

B133HAN04.6 Document Version: 0.2

8. Mechanical Characteristics

1. PANEL WARPAGE S 1.0MM

B133HAN04.6 Document Version: 0.2

- 9. Shipping and Package
 - 9.1 Shipping Label Format

TBD

9.2 Carton Package

9.3 Shipping Package of Palletizing Sequence

10. Appendix: EDID Description

TBD