Аугментации и основные сверточные архитектуры

Марк Блуменау

Аугментации

- 1) "Увеличиваем" датасет бесплатно
- 2) "Регуляризуем" модель

Применять к текущему батчу, либо нагенерить заранее (смотря что не жалко)

https://github.com/albumentations-team/albumentations

LeNet-5 (1995)

60К параметров + Аугментации = меньше 1% ошибок на MNIST

Мемы с Yann LeCun

Training with large minibatches is bad for your health. More importantly, it's bad for your test error. Friends dont let friends use minibatches larger than 32. arxiv.org/abs/1804.07612

2:00 PM · Apr 26, 2018 · Facebook

Literally me:

А кроме MNIST что-то есть вообще? CIFAR-10

60к картинок 32х32

10 классов

https://www.cs.toronto.edu/~kriz/learning-features-2009-T

R.pdf

ImageNet

ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

Изначально 1 млн картинок на 1000 классов, сейчас 14 млн.

AlexNet (2012)

А что с архитектурой за раздвоение?

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–1000.

Более понятная картинка

VGG (2014)

https://lekhuyen.medium.com/an-overview-ofvgg16-and-nin-models-96e4bf398484

VGG (2014)

Хитрость: у более старших сеток не обучаем с нуля, а берем веса из маленьких

Свертки все маленькие, нет больших фильтров

maxpool					
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
			conv1-256	conv3-256	conv3-256
					conv3-256
maxpool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
maxpool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
maxpool					
FC-4096					
FC-4096					
FC-1000					
soft-max					

ConvNet Configuration

input $(224 \times 224 \text{ RGB image})$

maxpool

16 weight

layers

conv3-64

conv3-64

conv3-128

conv3-128

13 weight

layers

conv3-64

conv3-64

conv3-128

conv3-128

A-LRN

11 weight

layers

conv3-64

LRN

conv3-128

11 weight

layers

conv3-64

conv3-128

Network Number of parameters

A.A-LRN

133

Table 2: **Number of parameters** (in millions).

D

16 weight

layers

conv3-64

conv3-64

conv3-128

conv3-128

E

19 weight

layers

conv3-64

conv3-64

conv3-128

conv3-128

134 138

В

133

Ε 144

https://arxiv.org/pdf/1409.1556 The batch size was set to 256.

GoogLeNet aka Going deeper with convolutions (2014)

Inception module

(a) Inception module, naïve version

(b) Inception module with dimension reductions

ResNet (2015)

We have a problem

Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer "plain" networks. The deeper network has higher training error, and thus test error. Similar phenomena on ImageNet is presented in Fig. 4.

О, мы решили проблему

А как? (Основа всего CV)

Figure 2. Residual learning: a building block.

Как выглядит сетка

Что мы рассмотрели:

ImageNet Classification top-5 error (%)

https://www.researchgate.net/figure/Performa nce-of-different-approaches-in-ImageNet-201 5-competition fig2 309392322

Что есть дальше? (курс CV)

Squeeze-and-Excite

MBConv (see MobileNet/EfficientNet)

Fused MBConv (see EfficientNetV2)

Пирамидки

ConvNext

ViT

. . .

Интерпретируемость

bell pepper

lemon

husky https://arxiv.org/pdf/1312.6034

Layer 1

https://arxiv.org/pdf/1311.2901

