9.3 Classwork: Triangle congruence theorem applications

Kelly is completing a proof based on the figure below.

She was given that $\angle A \cong \angle EDF$, and has already proven $AB \cong DE$. Which pair of corresponding parts and triangle congruency method would *not* prove $\triangle ABC \cong \triangle DEF$?

(1)
$$\overline{AC} \cong \overline{DF}$$
 and SAS

(1)
$$\overline{AC} \cong \overline{DF}$$
 and SAS (3) $\angle C \cong \angle F$ and AAS

(2)
$$\overline{BC} \cong \overline{EF}$$
 and SAS (4) $\angle CBA \cong \angle FED$ and ASA

(4)
$$\angle CBA \cong \angle FED$$
 and ASA

2. Sketch the triangles first.

In the two distinct acute triangles ABC and DEF, $\angle B \cong \angle E$. Triangles ABC and DEF are congruent when there is a sequence of rigid motions that maps

- ∠A onto ∠D, and ∠C onto ∠F
- (2) AC onto DF, and BC onto EF
- (3) $\angle C$ onto $\angle F$, and \overline{BC} onto \overline{EF}
- (4) point A onto point D, and \overline{AB} onto \overline{DE}
- 3. Sketch the triangles first.

Triangles IOE and SAM are drawn such that $\angle E \cong \angle M$ and $\overline{EI} \cong \overline{MS}$. Which mapping would *not* always lead to $\triangle IOE \cong \triangle SAM$?

- (1) $\angle I$ maps onto $\angle S$ (3) \overline{EO} maps onto \overline{MA}
- (2) $\angle O$ maps onto $\angle A$ (4) \overline{IO} maps onto \overline{SA}

In the diagram below, \overline{AC} and \overline{BD} intersect at E.

Which information is always sufficient to prove $\triangle ABE \cong \triangle CDE$?

- (1) $\overline{AB} \parallel \overline{CD}$
- (2) $\overline{AB} \cong \overline{CD}$ and $\overline{BE} \cong \overline{DE}$
- (3) E is the midpoint of AC.
- $_{4.}$ (4) \overline{BD} and \overline{AC} bisect each other.
- 5. Sketch the triangles first.

In the diagram below, \overline{AKS} , \overline{NKC} , \overline{AN} , and \overline{SC} are drawn such that $\overline{AN} \cong \overline{SC}$.

Which additional statement is sufficient to prove $\triangle KAN \cong \triangle KSC$ by AAS?

- (1) AS and NC bisect each other.
- K is the midpoint of NC.
- (3) $\overline{AS} \perp \overline{CN}$
- (4) $\overline{AN} \parallel \overline{SC}$