

Trabalho Prático 1

Agentes Racionais

Licenciatura em Engenharia Informática Inteligência Artificial

José Paulo Barroso de Moura Oliveira Eduardo José Solteiro Pires

Autores

Diogo Medeiros n.º 70633

Rui Pinto n.º 70648

RESUMO

Este relatório visa descrever a execução do trabalho prático desenvolvido no âmbito da Unidade Curricular de Inteligência Artificial, pressupondo a aquisição de competências relativas à modelação e simulação computacional de sistemas com agentes racionais, utilizando a ferramenta NetLogo.

A sua execução teve por base o enquadramento teórico dos conceitos adquiridos e aplicados, bem como a apresentação e descrição do sistema desenvolvido, incluindo imagens descritivas das várias etapas / fases do sistema em execução, de acordo com as condições iniciais.

ÍNDICE

1.	INT	TRODUÇÃO	
2.	AGE	SENTES RACIONAIS	
		Enquadramento do Problema	
	2.1.	L.1 Estrutura dos Agentes – Arquitetura e Programa	3
	2.2	Resolução do Problema	6
3.	NO	DTAS FINAIS	14
B	IBLIO	OGRAFIA	14
ΑI	NEXO A	A – Código de TP1_torus.nlogo	15
ΔΙ	NFXO P	B – Código de TP1, hox nlogo	18

1. INTRODUÇÃO

No âmbito da Unidade Curricular de Inteligência Artificial, foi solicitado um trabalho prático que consiste no desenvolvimento de um sistema computacional com agentes racionais usando a ferramenta NetLogo.

No nosso caso, o ambiente retratado representa um campo (ou terreno de plantação), e os agentes modelados são o planta-relva e as toupeiras, responsáveis, respetivamente, pela plantação e destruição da relva.

2. AGENTES RACIONAIS

"Um agente é qualquer coisa que perceciona o seu ambiente através de sensores e atua sobre esse ambiente através de atuadores." [1]

2.1 Enquadramento do Problema

Um agente racional é aquele que toma a decisão correta, sendo necessário definir o contexto da decisão, o que considera certo e o que considera errado. Quando colocado num ambiente, o agente gera uma sequência de ações de acordo com estímulos (ou perceções). Esta desencadeia uma sequência de estados no ambiente que, quando favorável, determina o sucesso do agente, que por sua vez é avaliado de acordo com uma medida de performance.

A definição de racionalidade de um agente tem por base [1]:

- A medida de desempenho que define o critério de sucesso.
- O conhecimento prévio do agente sobre o ambiente.
- As ações que o agente pode executar.
- A sequência de perceções do agente até à data.

Segue-se um quadro descritivo, onde são identificados os agentes e respetivas perceções e ações, de acordo com o nosso sistema.

AGENTES	Planta-relva	Toupeira
PERCEÇÕES / ESTÍMULOS	2 células: atual e à frente 2 estados: plantado e por plantar Presença de toupeira	2 células: atual e à frente 2 estados: plantado e por plantar Presença de toupeira Presença de planta-relva
AÇÕES	Mudar de direção (360°) Andar para a frente Plantar relva Matar toupeira	Mudar de direção (360°) Andar para a frente Comer relva Reproduzir-se Não operar

O quadro seguinte caracteriza a descrição PEAS para os agentes em causa.

Agente	Performance	Ambiente	Atuadores	Sensores
Planta-Relva	Relva plantada, toupeiras mortas	Campo, toupeiras	*	"Olhos"
Toupeiras	Relva destruída, saúde, reprodução	Campo, planta-relva, toupeiras	*	"Olhos"

^{*} No caso da ferramenta usada, os agentes movem-se entre patches e interagem com estes e com outros agentes usando primitivas (i.e., *forward* e *die*)

[&]quot;Ao desenhar um agente, o primeiro passo deve ser sempre especificar o ambiente de tarefa o mais detalhadamente possível. A sigla PEAS significa *Performance*, *Environment*, *Actuators*, *Sensors*." [1]

Relativamente aos ambientes, é possível caracterizá-los de acordo com as suas propriedades, sendo, no caso do campo de relva, as seguintes:

- Parcialmente observável quer o planta-relva, quer as toupeiras só têm acesso ao estado da célula atual e à sua frente
- Multiagente o campo contém o planta-relva e pode conter múltiplas toupeiras
- Estocástico os movimentos dos agentes podem ser aleatórios
- Episódico quer o planta-relva, quer as toupeiras tomam as suas decisões com base na informação que percecionam no momento, não possuindo "memória"
- Dinâmico caso haja várias toupeiras no campo, o estado do mesmo pode mudar durante a decisão de qualquer uma delas, face aos movimentos das restantes
- Contínuo há um conjunto infinito de estados do campo, dependendo do número de toupeiras vivas, do terreno já plantado e por plantar e das ações dos agentes

2.1.1 Estrutura dos Agentes – Arquitetura e Programa

Raças de agentes (*breeds*):

- planta-relvas / planta-relva
- toupeiras / toupeira

Variáveis globais do ambiente (globals):

- Modo_de_Plantar modo de plantação ("Para a frente", "Serpentina" ou "Manutenção")
- *Prob_toupeira* determina a atividade das toupeiras
- default-time tempo (em ticks) que as toupeiras devem esperar entre reproduções
- max-iter número máximo de testes realizados por um agente, por tick

Variáveis do planta-relva (planta-relvas-own):

• *stock* – stock atual de relva

Variáveis das toupeiras (toupeiras-own):

- *health* vida/saúde da toupeira
- elapsed-time tempo (em ticks) passado após se reproduzir

Inicialmente, escolhe-se o modo de plantação, "Para a frente" ou "Serpentina". De seguida faz-se a configuração inicial, criando o planta-relva com uma direção de acordo com o modo de plantação e o stock de relva necessário para plantar o campo todo.

"Para a frente"	"Serpentina"	
direção ← Frente	direção ← RANDOM(Frente, Trás,	
direção V 1 Tente	Esquerda, Direita)	

Após a configuração inicial, procede-se à plantação, a qual dependerá do modo escolhido.

"Para a frente"	"Serpentina"
PlantarRelva()	PlantarRelva()
IF célula à frente = plantada THEN	IF AtingiuLimite() THEN
VirarDireita()	InverterSentido()
END IF	END IF
AndarFrente()	AndarFrente()

Em ambos os modos, quando a plantação for concluída, o modo de plantação muda automaticamente para "Manutenção". Imediatamente a seguir, o planta-relva procede à reposição do seu stock de relva.

Algoritmos dos agentes		
Planta-relva	Toupeira	
IF Aqui(toupeiras) THEN Matar()	IF Aqui(planta-relvas) THEN Morrer()	
	IF célula = plantada THEN	
IF stock = 0 THEN	DestruirRelva()	
ReporStock()	GanharVida()	
ELSE	ELSE	
IF célula = por plantar THEN	PerderVida()	
PlantarRelva()	END IF	
END IF	IF health = 0 THEN Morrer()	
	IF Prob(Prob_toupeira) THEN	
iter $\leftarrow 0$	IF Aqui(toupeiras) = true	
	AND elapsed-time < default-time THEN	
WHILE iter < max-iter	Reproduzir()	
AND ÀFrente(toupeiras) = false	elapsed-time $\leftarrow 0$	
AND célula à frente = plantada DO	END IF	
iter ← iter + 1	iter $\leftarrow 0$	
direção ← RANDOM(0, 360)	WHILE iter < max-iter	
END WHILE	AND ÀFrente(toupeiras) = false	
	AND célula à frente = por plantar DO	
AndarFrente()	$iter \leftarrow iter + 1$	
END IF	direção ← RANDOM(0, 360)	
	END WHILE	
	AndarFrente()	
	ELSE	
	NOP	
	END IF	

No caso do planta-relva, este começa por matar quaisquer toupeiras (eliminar os agentes) que encontre na sua célula. De seguida verifica o seu stock de relva. Caso já não tenha stock, procede à reposição do mesmo. Caso contrário, prossegue. Se a célula atual se encontrar por plantar (castanha), trata de a plantar. Conseguinte, verifica se a célula à sua frente está por plantar (castanha) ou contêm toupeiras. Caso isto não se verifique, escolhe

uma direção aleatória. O planta-relva testa estas condições até se verificarem, ou, em contrapartida, até atingir um número máximo de testes, definido por *max-iter*. Por fim, anda para a frente.

No caso da toupeira, esta verifica se está na presença do planta-relva. Caso afirmativo, esta morre (o agente é eliminado). Na situação em que a probabilidade gerada é inferior a *Prob_toupeira*, a toupeira procede com a sua atividade. Caso contrário, não opera (*nop*). De seguida, verifica se a célula em que se encontra tem relva (verde) e, se sim, destrói a relva (muda para castanho). Se destruir a relva, ganha vida, caso contrário, perde. Se a sua vida atingir o valor nulo, a toupeira morre. Caso tenha passado o tempo necessário (*default-time*), a toupeira reproduz-se quando se cruza com outra toupeira. De seguida, verifica se a célula à sua frente está plantada (verde) ou contêm toupeiras. Caso isto não se verifique, escolhe uma direção aleatória. A toupeira testa estas condições até se verificarem, ou, em contrapartida, até atingir um número máximo de testes, definido por max-iter. Por fim, anda para a frente.

2.2 Resolução do Problema

Segue-se um conjunto de imagens capturadas durante o funcionamento do sistema, retratando as várias fases do mesmo em execução, de acordo com certas condições iniciais.

Figura 1 – Agentes planta-relva (à esquerda), toupeira (ao centro) e "restocker" de relva (à direita)

Na figura 2, é possível visualizar o agricultor a plantar relva, quando selecionado o modo de plantação "Para a frente".

Figura 2 – Modo de plantação "Para a frente"

Já na figura 3, podemos observar o agricultor a plantar relva de acordo com o outro modo de plantação disponível, "Serpentina".

Figura 3 – Modo de plantação "Serpentina"

Após terminar a plantação, o planta-relva repõe o stock e entra em modo de manutenção, algo que podemos ver na figura 4.1. Acrescenta-se que, para 1.º teste, optou-se por manter as condições iniciais nos valores predefinidos.

Figura 4.1 – Modo de "Manutenção"

Já em manutenção, o utilizador optou por inserir 3 toupeiras, sendo possível visualizar na figura 4.2 as mesmas (e a sua vida) e o estado do campo, passados alguns ticks.

Figura 4.2 – Estado do campo após várias inserções de toupeiras

Com o passar do tempo, a população de toupeiras cresce rapidamente devido ao ritmo de reprodução das mesmas, assim como a porção de relva destruída. Isto é evidente na figura 4.3, onde também se pode ver o planta-relva prestes a matar uma toupeira.

Figura 4.3 – Estado do campo após a reprodução das toupeiras

Como o agricultor não tem capacidade para manter o ritmo de plantação, as toupeiras veem-se privadas da sua fonte de sobrevivência, perdendo gradualmente vida e acabando por morrer, deixando um campo completamente destruído.

Figura 4.4 – Estado do campo após mortes sucessivas de toupeiras

Eventualmente, o planta-relva recupera o controlo do seu campo, conseguindo matar as últimas toupeiras, prosseguindo então com a plantação. Podemos ver na figura 4.5 o mesmo a deslocar-se ao "restocker" para repor o seu stock.

Figura 4.5 – Estado final do campo

No 2.º teste, optou-se por alterar o tempo de espera entre reproduções para 20 ticks, de modo a analisar a evolução do sistema, quer ao nível da população de toupeiras, quer ao nível do campo em si. Na figura abaixo verifica-se uma população inicial de 4.

Dado o curto intervalo de tempo entre reproduções, passado algum tempo a população de toupeiras atinge um pico. Contudo, isto reflete-se na pouca relva plantada disponível.

Figura 5.2 – Estado do campo após inúmeras reproduções de toupeiras

Como seria expetável, a falta de relva leva a população de toupeiras a rapidamente decrescer, devido a sucessivas mortes, restando apenas uma, passado algum tempo.

Figura 5.3 – Estado do campo após algum tempo, maioria das toupeiras morreram

Com a população controlada, o planta-relva consegue replantar o campo a um ritmo sustentável, como podemos verificar na figura 5.4.

Figura 5.4 – Estado final do campo

No 3.º teste, optou-se por reduzir a probabilidade da toupeira, responsável pela sua atividade, bem como o número de testes (*max-iter*) de ambos os agentes (fig. 6.1).

Figura 6.1 – Estado inicial do campo (menor probabilidade)

Por um lado, o menor número de testes resulta em decisões mais aleatórias e/ou erráticas por parte quer do planta-relva, quer das toupeiras. Por outro, a menor probabilidade condiciona a atividade das últimas, quer em movimentos, quer em reprodução.

Figura 6.2 – Estado do campo após algum tempo

Passado algum tempo, a maioria, senão todas as toupeiras, morreram, permitindo ao agricultor recuperar a plantação do campo, ainda que este tenha sido pouco afetado.

Figura 6.3 – fim

3. NOTAS FINAIS

Concluído o presente trabalho prático, estamos deveras satisfeitos com o mesmo, tendo a referir que surgiram algumas dificuldades quanto á melhor forma de definir o algoritmo. Isto, porque grande parte do funcionamento do sistema foi deixado ao nosso critério, levando a melhorias executadas para além do definido em protocolo, melhorias essas que desencadearam uma série de novas ideias a aplicar, no entanto, decidimos focar-nos na base resultante do trabalho já desenvolvido.

Em anexo está o código relativo ao respetivo trabalho prático, bem como uma implementação alternativa ao mundo aberto (toro), num mundo fechado (caixa), que entendemos adicionar ao trabalho.

BIBLIOGRAFIA

- [1] S. J. Russel e P. Norvig, "2 Intelligent Agents," em *Artificial Intelligence: A Modern Approach, 3rd ed.*, Upper Saddle River, New Jersey 07458, Pearson Education. Inc., 2010, pp. 34-63.
- [2] J. P. B. M. Oliveira, *Agentes Inteligentes*, Universidade de Trás-os-Montes e Alto Douro, 2021.

ANEXO A - Código de TP1_torus.nlogo

```
toupeiras-own [elapsed-time health]
planta-relvas-own [stock]
breed [planta-relvas planta-relva]
breed [toupeiras toupeira]
to setup
  clean field
  create-planta-relvas 1 [
    if Modo_de_Plantar = "Serpentina" [ set heading 0 ]
    if Modo_de_Plantar = "Para a frente" [ set heading one-of [0 90 180 270] ]
    set size 2.5
    set shape "agricultor"
   set stock world-width * world-height; o necessário para plantar o campo todo
  create-turtles 1 [
   setxy 1 1
   set size 2.5
   set shape "grass-restocker"
  reset-ticks
end
to plantar
  ask planta-relvas [
   set label stock
    set label-color black
    if Modo de Plantar = "Para a frente" [
      if not (any? patches with [pcolor = brown]) [
        set Modo de Plantar "Manutenção"
        stop
      1
      ask patch-here [ set pcolor green ]
      set stock stock - 1
      if [pcolor] of patch-ahead 1 = green [ right 90 ]
      forward 1
    1
    if Modo de Plantar = "Serpentina" [
      if not (any? patches with [pcolor = brown]) [
        set Modo de Plantar "Manutenção"
        stop
      ]
      ask patch-here [ set pcolor green ]
      set stock stock - 1
      if xcor = max-pxcor and ycor = max-pycor [ stop ]
      if heading = 0 and ycor = max-pycor [
        right 90
        forward 1
```

```
ask patch-here [ set pcolor green ]
    set stock stock - 1
   right 90
  if heading = 180 and ycor = 0 [
   left 90
   forward 1
   ask patch-here [ set pcolor green ]
   set stock stock - 1
   left 90
 forward 1
if Modo_de_Plantar = "Manutenção" [
  ; atividade das toupeiras
 ask toupeiras [
   set label health
   set label-color black
   set elapsed-time elapsed-time + 1
    if any? planta-relvas-here [ die ]
    ifelse [pcolor] of patch-here = green [
        ask patch-here [ set pcolor brown ]
        ifelse health <= 90 [ set health health + 5 ]
        [ set health 100 ]
    [ set health health - 1 ]
      if health = 0 [ die ]
    if prob Prob toupeira [
      if count toupeiras-here = 2 and elapsed-time >= default-time [
        hatch 1 [
          set heading random 360
          set elapsed-time 0
        set elapsed-time 0
      let it 0
      while [it < max-iter and not(any? toupeiras-on patch-ahead 1)</pre>
       and [pcolor] of patch-ahead 1 = brown] [
        set it it + 1
        set heading random 360
      forward 1
; atividade do planta-relva
 ask toupeiras-here [ die ]
 ifelse stock = 0 [
    facexy 1 1
```

```
forward 1
        if count turtles-here with [shape = "grass-restocker"] = 1
        [ set stock int (world-width * world-height / 3) ]
      [ if [pcolor] of patch-here = brown [
          set pcolor green
          set stock stock - 1
        let it2 0
        while [it2 < max-iter and not(any? toupeiras-on patch-ahead 1)</pre>
          and [pcolor] of patch-ahead 1 = green] [
          set it2 it2 + 1
         set heading random 360
        forward 1
      1
    ]
  1
 tick
end
to insere toupeira
  create-toupeiras 1 [
    setxy random-xcor random-ycor
   set heading random 360
    set size 2
    set shape "toupeira"
    set color 32
    set elapsed-time default-time
    set health 100
end
to-report prob[x]
 report (random-float 1 < x)
end
to clean_field
  clear-all
  ask patches [ set pcolor brown ]
```

ANEXO B - Código de TP1_box.nlogo

```
toupeiras-own [elapsed-time health]
planta-relvas-own [stock]
breed [planta-relvas planta-relva]
breed [toupeiras toupeira]
to setup
  clean field
  create-planta-relvas 1 [
    if Modo de Plantar = "Serpentina" [ set heading 0 ]
    if Modo de Plantar = "Para a frente" [ set heading one-of [0 90 180 270] ]
   set size 2.5
   set shape "agricultor"
    set stock world-width * world-height; o necessário para plantar o campo todo
  create-turtles 1 [
   setxy 1 1
   set size 2.5
    set shape "grass-restocker"
  reset-ticks
end
to plantar
  ask planta-relvas [
    set label stock
    set label-color black
    if Modo de Plantar = "Para a frente" [
      if not (any? patches with [pcolor = brown]) [
        set Modo de Plantar "Manutenção"
        stop
      ]
      ask patch-here [ set pcolor green ]
      set stock stock - 1
      if [pcolor] of patch-ahead 1 = green [ right 90 ]
      forward 1
    ]
    if Modo de Plantar = "Serpentina" [
      if not (any? patches with [pcolor = brown]) [
        set Modo_de_Plantar "Manutenção"
        stop
      ]
      ask patch-here [ set pcolor green ]
      set stock stock - 1
      if xcor = max-pxcor and ycor = max-pycor [ stop ]
      if heading = 0 and ycor = max-pycor [
        right 90
        forward 1
```

```
ask patch-here [ set pcolor green ]
   set stock stock - 1
   right 90
 if heading = 180 and ycor = 0 [
   left 90
   forward 1
   ask patch-here [ set pcolor green ]
   set stock stock - 1
   left 90
 forward 1
if Modo de Plantar = "Manutenção" [
  ; atividade das toupeiras
 ask toupeiras [
   set label health
   set label-color black
   set elapsed-time elapsed-time + 1
    if any? planta-relvas-here [ die ]
    ifelse [pcolor] of patch-here = green [
        ask patch-here [ set pcolor brown ]
        ifelse health \leq 90 [ set health health + 5 ]
        [ set health 100 ]
    [ set health health - 1 ]
      if health = 0 [ die ]
    if prob Prob toupeira [
      if count toupeiras-here = 2 and elapsed-time >= default-time [
        hatch 1 [
          set heading random 360
          set elapsed-time 0
        set elapsed-time 0
      if bounce = false [
        let it 0
        while [it < max-iter and not(any? toupeiras-on patch-ahead 1)</pre>
         and [pcolor] of patch-ahead 1 = brown] [
         set it it + 1
         set heading random 360
        ]
      forward 1
; atividade do planta-relva
 ask toupeiras-here [ die ]
```

```
ifelse stock = 0 [
        facexy 1 1
        forward 1
        if count turtles-here with [shape = "grass-restocker"] = 1
        [ set stock int (world-width * world-height / 3) ]
      [ if [pcolor] of patch-here = brown [
          set pcolor green
          set stock stock - 1
        if bounce = false [
          let it2 0
          while [it2 < max-iter and not(any? toupeiras-on patch-ahead 1)</pre>
            and [pcolor] of patch-ahead 1 = green] [
            set it2 it2 + 1
            set heading random 360
        1
        forward 1
    ]
  1
  tick
end
to-report bounce; function to bounce when agent hits walls
  let flag false
  ; bounce off left wall
  if pxcor = 0 [
    set heading random 180
    set flag true
  ; bounce off right wall
  if pxcor = max-pxcor [
    set heading random 180 + 180
    set flag true
  ; bounce off bottom wall
  if pycor = 0 [
   set heading random 180 - 90
    set flag true
  ; bounce off top wall
 if pycor = max-pycor [
   set heading random 180 + 90
    set flag true
  ]
 report flag
end
to insere toupeira
 create-toupeiras 1 [
    setxy random-xcor random-ycor
    set heading random 360
```

```
set size 2
set shape "toupeira"
set color 32
set elapsed-time default-time
set health 100
]
end

to-report prob[x]
  report (random-float 1 < x)
end

to clean_field
  clear-all
  ask patches [ set pcolor brown ]
end</pre>
```