Beginner

Operators & Complexity Analysis:

- 1. Binary Number System
- 2. Logical and Bitwise Operators and their application in CP
- 3. Introduction to Time & Memory Complexity Analysis

Introduction to Competitive Programming:

- 1. How Online Judges & online Contest work
- 2. Explanation of different verdicts
- 3. How to solve a problem
- 4. Introduction to team contests, what is ICPC

Array and Strings:

- 1. Array
- 2. Linked List
- 3. Subarray, Substring, Subsequence, Palindrome, Longest Palindromic Substring, Anagram
- 4. Relevant Problem Solving

Function:

- 1. Intro to Function
- 2. Recursive Function.

Data Structures and C++ STL:

- 1. Basic Data structure (Stack/ Queue/ Vector/Binary Tree)
- 2. Binary Search Tree
- 3. Various STL features

Searching Techniques:

- 1. Binary Search and its application
- 2. Relevant problem solving on Binary search
- 3. Intuition behind Interpolation Search

Various Sorting Algorithms:

- 1. Insertion sort, Counting Sort, Bubble Sort
- 2. Merge sort and Quick sort
- 3. Problem solving

Number Theory:

- 1. Primality Testing
- 2. Various type of sieve techniques (prime generation, divisor finding/counting etc.)
- 3. Relevant problem solving

Modular Arithmetic:

- 1. Identities in modular arithmetic
- 2. Modular exponentiation (big mod) and it's application
- 3. Inverse modulo (Fermat's Little theorem) and relevant problem solving

Greedy Techniques:

- 1. Intro to Greedy technique
- 2. Problem solving

Dynamic Programing:

- 1. Intro to DP
- 2. Classical problem solving

Range Query Techniques:

- 1. Basic Range Query technique
- 2. Relevant problem solving

Combinatorics in CP:

- 1. Various application of combinatorics in CP
- 2. Relevant problem Solving

Intermediate

Basic Data Structure & Complexity:

- 1. Intro to Basic Data Structure (Stack/Queue/Vector/Priority Queue/Set/Map)
- 2. Time & Memory Complexity Analysis

STL:

- 1. In depth analysis of STL in C++ with application
- 2. Relevant problem solving

Searching Techniques:

Binary (Bisection), Ternary Search:

- 1. In depth discussion
- 2. Application with problem solving

Recursion:

- 1. Concept of Recursion
- 2. Divide & Conquer
- 3. Backtracking

String Algorithm:

- 1. KMP basic + Problem Solving
- 2. Hashing

Number Theory:

- 1. Primality testing, Various Sieve Techniques
- 2. Modular Arithmetic, Modular Inverse, Iterative & Recursive Big-mod
- 3. Totient Function, Mobius Function
- 4. Number Theory problem solving

Dynamic Programing:

Classical DP:

- 1. Intro to DP
- 2. Complexity analysis of DP
- 3. Coin Change, 0/1 knapsack
- 4. String DP (LCS, Edit Distance)
- 5. Longest Increasing Subsequence (LIS)
- 6. Relevant problem solving

Graph Theory:

- 1. Intro to Graphs
- 2. BFS/DFS/Dijkstra & relevant problem solving
- 3. Graph bicoloring
- 4. Relevant problem solving

Combinatorics:

- 1. nCr, nPr theory, coding and problem
- 2. relevant problem solving

Disjoint Set Union:

- 1. intro
- 2. Minimum Spanning Tree (Kruskal)
- 3. Problem solving

Segment Tree:

- 1. Intro to Segment Tree
- 2. Problem solving
- 3. Lazy Propagation

Advanced

Graph:

- 1. Floyd Warshall, Bellman Ford, problem solving
- 2. Topological Sorting + Strongly Connected Component
- 3. Graph Problems

String:

- 1. Trie + Hashing basics
- 2. Z algorithm + KMP basic + problem solving
- 3. String problems

Math:

- 1. Intro to Probability/Expected Value
- 2. Number theory problem
- 3. Combinatorics problem
- 4. Matrix Exponentiation

Dynamic Programming:

- 1. Basic DP problems + Iterative DP
- 2. More DP problems + DP with DS (Segment tree)
- 3. Bitmask DP
- 4. Digit DP

Game Theory:

- 1. Game Theory Basics (up to nim game)
- 2. Grundy Numbers

Geometry:

- 1. Point in Polygon
- 2. Ternary Search
- 3. Precision Issue handling
- 4. Problem solving

Miscellaneous:

- 1. Meet in the middle basics
- 2. Binary Search problem

Greedy:

- 1. Greedy problem
- 2. Exchange Arguments
- 3. Modify Past Decision

Expert

Data Structure:

- 1. Heavy Light Trick + Persistent Data Structure (Segment Tree)
- 2. Heavy Light Decomposition
- 3. Mo's Algorithms & advanced square root techniques
- 4. Centroid Decomposition
- 5. DSU on tree

Graph:

- 1. Articulation Point, Biconnected Component, Bridges, Bridge Tree
- 2. Bipartite Matching (BPM) and Covering problems
- 3. Max Flow and Min Cost Max Flow (MCMF)

String:

- 1. Suffix array problem
- 2. Aho Corasick

Math:

- 1. Probability and Expected Value
- 2. Gaussian Elimination basic and problem
- 3. Principle of Inclusion Exclusion and advanced Number Theory problems
- 4. FFT basics

Dynamic Programming:

- 1. Sibling DP
- 2. DP Optimization Tricks (Convex Hull Trick / CHT)
- 3. DP Optimization Tricks (Divide and Conquer, Knuth's Optimization)

Greedy Theory:

- 1. Advanced Greedy Problems
- 2. Solving problems

Game Theory:

- 1. Grundy Numbers and problem
- 2. Hackenbush and Advanced game theory problems

Geometry:

- 1. Vector Geometry Theory
- 2. Vector Geometry Coding and problem
- 3. Convex Hull, 3D Geometry Basics, Other Geometry Techniques

Problem Solving using Randomized Techniques