STA261 Summer 2018

Quiz 3

July 16th, 2018

First Name: Solution 3	•				
First Name: OCO 110 N 3					
Last Name:					
Student Number:				. '	
This quiz is out of 10 marks. Do Al rough work, but nothing on the from	LL of your work on the back of	of the quiz, where t		can use the front	t for
If $X \sim N(\mu, \sigma^2)$ then $f_X(x) = \frac{1}{\sqrt{2\pi}}$	$\frac{1}{\sigma^2} \times \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right), x \in$	$\in \mathbb{R}, \mu \in \mathbb{R}, \sigma \in \mathbb{R}^+$	•		
BELOW SPACE IS FOR ROUGH	WORK NOTHING WRITT	EN HERE WILL F	E READ OR MARK	ŒD.	

- 1. (5 marks) Suppose random variable X has density $f_X(x;\theta)$ depending on parameter θ , we have a random sample of independent and identically distributed $X_i \stackrel{d}{=} X$, and $T_1(\mathbf{X})$ is a sufficient statistic for θ . Let $r(\cdot)$ be an invertible function, and $T_2 = r(T_1)$. Prove that T_2 is sufficient for θ .
- 1 Factorization theorem: $f(x;\theta) = g(T(x);\theta)h(x) \iff T(x) \text{ suff. for } \theta$.
- (1) Write $f(x_{i\theta}) = g(T_i(x)_{i\theta})h(x)$, possible because T, SVH. for θ .
- (2) B4 T,(x) = r-1(Tz(x)), so f(x;0) = g(r-1(Tz(x));0)h(x).
- 1) By Factor itation Theorem, Tz suff. for O.
 - 2. (5 marks) Let $X \sim N(\mu, 1)$ and find a sufficient statistic for μ .

$$f(x; \mu) = \sqrt{2\pi} \exp\left(-\frac{1}{2}(x - \mu)^{2}\right)$$

$$= \sqrt{2\pi} \exp\left(-\frac{1}{2}x^{2} + x\mu - \frac{1}{2}\mu^{2}\right)$$

$$= \exp\left(x\mu - \frac{1}{4^2}\right) \cdot \frac{1}{\sqrt{2\pi}} \exp\left(\frac{1}{2}x^2\right)$$

$$= g(x; \mu) \cdot h(x)$$

By fact. theorem, X is suff. for a

-1 it they do it for random sample X1... Xn, that not what question asks

-3 if they aren't clear about how fixing factorizes.