From Predictions to Insights: An Empirical Study of Risky Choice Behavior

MIDS
Capstone Project

Ana B. Barcenas Yolanda Diao

Project summary

Why risky choices matter?

Insurance contracts, stock investing, personal finance, etc.

Cutting-edge research

Risky decision-making predictions taking into account behavioral phenomena (aka CPC*)

Aggregated decision-making

Predict the rate at which different risky prospects will be chosen in a population.

Individual decision-making

Predict a decision-maker's choices in future risky choices based on their previous behavior and psychological theories.

Application

The Standard Bank of South Africa showed interest on using our insights to predict their customers' decision-making.

Key Concepts

- Risky choices: When we choose between two uncertain prospects. Within an uncertain prospect, there are different possible outcomes with associated probabilities.
- Behavioral anomalies: People do not always choose on higher expected values (EVs).
- Risky choice paradoxes:
 - Breakeven effect (Thaler & Johnson, 1990)
 - St. Petersburg paradox (Bernoulli, 1954)

Choice Prediction Competition (CPC18)

Design

Experiment on people's choices over 2 gambles, 25 times in several choice problems.

Features

- Demographic variables: age, gender, location.
- Gamble features: objective, naive, psychological.
- Preference rate for Gamble B.

Choice Prediction Competition (CPC18)

Track I Aggregate-level risky choice prediction

- Neglect individual differences, focus on average choice rates
- Application: general tactics; choice prediction of an individual with no demographic info & choice history

Track II Individual-level prediction of behavior over time

- Admit individual differences, focus on individual choice rates
- Application: choice prediction of an individual based on demographic info & choice history

Aggregated-level predictions

Track I - Replication & Improvement

		Features	
Algorithm	Obj. + Naive + Psych.* (Ori, et al.)	Obj. + Naiv (our imple	ve + Psych. mentation)
	MSE * 100	MSE * 100	R - Squared
Random Forest	0.87	0.815	0.89
XGBoost	-	0.84	0.89
Neural network	-	1.42	-

^{*} Features description on Appendix B

Individual-level predictions

Track II - Replication

Baseline models	Description	Features	MSE
Naïve model	Each decision maker, in each block of its target problem, would behave the same as the average decision maker behaves in the same block of that problem.	Game ID Subject ID	0.1038
Factorization machines	A predictor based on Support Vector Machines and matrix factorization techniques. It is designed to capture interactions between features in high dimensional sparse datasets. Each observation supplied is a long binary vector with two non-zero elements that correspond to the active decision maker and the active block within an active problem.	Game ID Subject ID	0.0976

Individual-level predictions

Track II - Constraints

- 1. Customized methodology focused on predicting progression of behavior over time.
- 2. Poor interpretability and flexibility.
- 3. Requires large volume of training data. It relies on features based on many (25) repetitive decisions on several problems (210) by the same individual.

Individual-level predictions

Novel approach - Results

- Leverage psychological features to boost performance.
- Relies on demographic data and problem specifications (ambiguity, payoffs, etc.).
- Focus solely on individual predictions instead of progression of behavior over time.

Algorithm	Important features	MSE
Fixed effects	(1) Sign heuristic and (2) tendency to minimize immediate regret.	0.1224
Random forest	(1) Difference on EVs.	0.1044
XGBoost	(1) Driven by stochastic dominance, and (2) difference on EVs.	0.0988

Application

How is this useful in financial settings?

Use case	Why risk matters?
Personal finance	Credit card Determine credit limit based on how accurate your perceptions of wealth are.
reisoliai illialice	Savings account Determine withdrawal limit to fulfill savings goals.
Insurance	Car insurance contracts
Investments	Risk tolerance Ability to bare with large swings in the value of your investments.

Application

The Standard Bank of South Africa

Goal: Predict individual customer behavior based on demographic data and psychological features.

Next steps: Collect data on behavioral tendencies and financial-decisions.

IRB approval for the study design

Choose both abstract and financial problems for the study

Collect data from Mechanical Turk First round of predictions with this data

Thank you!

Appendix A

Choice dataset from CPC 15/18

The data includes decisions made by 446 incentivized human participants in 150 different choice problems.

Block 1	Block 2	Block 3	Block 4	Block 5
1	6	11	16	21
2	7	12	17	22
3	8	13	18	23
4	9	14	19	24
5	10	15	20	25

Appendix B.1

Features description

Set name	Features
Objective	Includes the 11 parameters that define each decision problem with an additional block feature that captures the development of choice over time
Naïve	Includes 4 domain-relevant features that capture very basic properties of the choice problem and represent basic decision rules according to which humans can make a decision.
Psychological	 Includes 13 features that aim to capture directly research made by social scientist on decision making and the psychology of choice such as: Sensitivity to the difference between the gambles' expected values. Tendency to minimize immediate regret. Tendency to weight all outcomes as equally likely.

Appendix B.2

Examples of the most important psychological features

Tendency to minimize immediate regret

A:

15 with probability 0.3

10 with probability 0.7

5 with probability 0.9

Choice: **Gamble A** (90% of the time, the payoff of gamble A will be higher)

Sign

Implies high sensitivity to the payoff sign.

A:
3 with probability 0.5
1 with probability 0.5
200 with probability 0.1
-20 with probability 0.9

Choice: **Gamble A** (Even though its EV is **equal**)

Dominance

When choice problems are trivial, decision makers often recognize it and choose without performing unnecessary computations. Specifically, if one gamble stochastically dominates the other, the choice problem is trivial.

Appendix C

Neural network model

(David D. Bourgin et al., 2019)

(13)

(200, 275, 100)

Cognitive Model Prior

85K*5 synthetic data

Fine-Tuning

210 problems * 5 blocks real data

Initial Hyperparameters

Activation Funcs: ReLU

Layer-wise Dropout Rate: 0.15

Learning Rate: 0.001 Optimizer: RMSProp

Batch Size: 100

Epochs: 200 Criterion: MSE

(1)

Appendix D

Fixed effects regression results

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-1.006e+08	2.11e+07	-4.776	0.000	-1.42e+08	-5.93e+07
C(Gender)[T.1.0]	0.0008	0.003	0.297	0.767	-0.004	0.006
C(LotShapeB)[T.0.33333333333333333333333333333333333	-0.0161	0.007	-2.451	0.014	-0.029	-0.003
C(LotShapeB)[T.0.666666666666667]	-0.0176	0.006	-3.137	0.002	-0.029	-0.007
C(LotShapeB)[T.1.0]	-0.0081	0.004	-2.175	0.030	-0.015	-0.001
C(Amb)[T.1.0]	0.0857	0.005	17.452	0.000	0.076	0.095
C(Corr)[T.0.5]	-0.0032	0.007	-0.459	0.646	-0.017	0.010
C(Corr)[T.1.0]	-0.0073	0.010	-0.715	0.474	-0.027	0.013
C(Feedback)[T.1.0]	24.0860	5.041	4.778	0.000	14.206	33.966
C(Dom)[T.0.5]	0.1189	0.008	14.901	0.000	0.103	0.134
C(Dom)[T.1.0]	0.2894	0.012	23.807	0.000	0.266	0.313
C(block)[T.0.25]	-24.0688	5.041	-4.775	0.000	-33.949	-14.189
C(block)[T.0.5]	-24.0690	5.041	-4.775	0.000	-33.949	-14.189
C(block)[T.0.75]	-24.0789	5.041	-4.777	0.000	-33.959	-14.199
C(block)[T.1.0]	-24.0837	5.041	-4.778	0.000	-33.964	-14.204
Age	0.0147	0.008	1.763	0.078	-0.002	0.031
На	0.0660	0.010	6.446	0.000	0.046	0.086
рНа	-0.0011	0.006	-0.186	0.852	-0.012	0.010
La	0.1049	0.025	4.174	0.000	0.056	0.154
LotNumA	-0.0321	0.007	-4.489	0.000	-0.046	-0.018

OLS Regression Results Dep. Variable: 0.313 R-squared: Model: OLS Adj. R-squared: 0.313 Method: Least Squares F-statistic: 1093. Date: Thu, 02 Apr 2020 Prob (F-statistic): 0.00

Log-Likelihood: Time: 20:13:45 -30634. No. Observations: 81570 AIC: 6.134e+04 **Df Residuals:** 81535 BIC: 6.166e+04 Df Model: 34 **Covariance Type:** nonrobust

-0.018	-0.040	0.000	-5.269	0.006	-0.0291	pHb
-0.104	-0.211	0.000	-5.785	0.027	-0.1573	Lb
0.078	0.060	0.000	15.163	0.005	0.0689	RatioMin
0.002	-0.031	0.095	-1.671	0.009	-0.0143	SignMax
-0.132	-0.248	0.000	-6.465	0.029	-0.1901	pBbet_Unbiased1
0.505	0.394	0.000	15.735	0.029	0.4495	pBbet_UnbiasedFB
0.180	0.143	0.000	17.194	0.009	0.1613	pBbet_Uniform
1.603	1.349	0.000	22.804	0.065	1.4761	pBbet_Sign1
-1.287	-1.545	0.000	-21.538	0.066	-1.4163	pBbet_SignFB
4.61e+08	1.93e+08	0.000	4.776	6.84e+07	3.265e+08	diffBEV0
-2.41e+08	-5.76e+08	0.000	-4.776	8.56e+07	-4.087e+08	diffBEVfb
0.345	0.188	0.000	6.686	0.040	0.2664	diffMins
0.091	0.011	0.012	2.502	0.020	0.0508	diffSignEV
2.69e+08	1.13e+08	0.000	4.776	4e+07	1.91e+08	diffEV
0.177	0.100	0.000	7.067	0.020	0.1389	diffMaxs
-0.163	-0.262	0.000	-8.428	0.025	-0.2128	diffSDs

1.845

0.00

Durbin-Watson:

Jarque-Bera (JB): 2448.133

Prob(JB): Cond. No. 1.36e+15

Omnibus: 8135.512

Skew:

Kurtosis:

0.000

0.086

2.169

Prob(Omnibus):