1 Opamp 1

1.1 Catégories d'AOP idéaux

Amplificateur de tension Entrée en tension, sortie en tension

$$U_a = A_D U_D$$

Amplificateur à transconductance Entrée en tension, sortie en courant

$$I_a = S_D U_D$$

Amplificateur à transimpédance Entrée en 1.3.2 courant, sortie en tension

$$U_a = I_N Z = A_D U_D$$

Amplificateur de courant Entrée en courant, sortie en courant

$$I_a = k_I I_N = S_D U_D$$

1.2 Caractéristique de transfert

- gain idéal infini
- U_{out} limité aux tensions d'alimentation

1.3 Control loop diagram

- $\bullet \ U_D = k_F U_e k_R U_a$
- $A = \frac{U_a}{U_e} = \frac{k_F A_D}{1 + k_R A_D} \cong \frac{k_F}{k_R}$ (pour A_D grand)

1.3.1 non-inverseur

- $k_F = 1$
- $k_R = \frac{R_1}{R_1 + R_N}$
- $A = 1 + \frac{R_N}{R_1}$

 R_N est la résistance de contre réaction et R_1 la résistance mise à la masse.

1.3.2 inverseur

- $k_F = \frac{-R_N}{R_1 + R_N}$
- $k_R = \frac{R_1}{R_1 + R_N}$
- $\bullet \ A_D = \frac{U_a}{k_F U_e k_R U_a}$
- $\bullet \ A = k_F \frac{A_D}{1 + k_R A_D}$

1.3.3 différentiel

- $\bullet \ k_F = \frac{R_1}{R_1 + R_2}$
- $k_R = \frac{R_2}{R_1 + R_2}$
- $A = \frac{R_1 A_D}{R_1 + R_2 + R_2 A_D} \cong \frac{R_1}{R_2}$ (pour A_D grand)

 R_1 contre réaction et résistance à la masse / R_2 résistance d'entrée (+ et -)

1.4 Montage interne AOP

1.4.1 Amplificateur différentiel

Pour les petits signaux

$$\bullet \ A_1 = \frac{R_c}{2r_s}$$

$$\bullet \ A_2 = \frac{-R_c}{2r_s}$$

1.4.2 Miroir de courant

Facteur de translation de courant $k = \frac{R_1}{R_2}$

1.4.3 Charge active

On utilise un miroir de courant comme charge active.

- 1.4.4 Cascode
- 1.4.5 Conversion d'impédance
- 1.4.6 Push-Pull
- 1.4.7 Darlington