Universidade do Minho $2^{\underline{o}} \text{ Teste de}$ $\mathbf{L\acute{o}gica~EI}$ Lic. Eng. Informática Duração: 2 horas

Nota: Justifique adequadamente cada uma das suas respostas.

- 1. (a) Construa uma derivação em DNP que prove que $(p_1 \to p_2) \to (\neg p_2 \to \neg p_1)$ é um teorema.
 - (b) Prove que se Γ é um conjunto de fórmulas proposicionais tal que $\Gamma \vdash p_1 \to p_2$, então $\Gamma \vdash \neg p_2 \to \neg p_1$.
- 2. Diga, justificando, se cada uma das seguintes afirmações é verdadeira para quaisquer fórmulas proposicionais φ e ψ .
 - (a) $(\neg \varphi \lor \psi) \to (\varphi \to \psi)$ é um teorema.
 - (b) $\varphi \lor \psi \vdash \varphi \to \psi$.
- 3. Considere o tipo de linguagem $L = (\{0,f\}, \{P,=\}, \mathcal{N})$ em que $\mathcal{N}(0) = 0$, $\mathcal{N}(f) = 1$, $\mathcal{N}(P) = 1$ e $\mathcal{N}(=) = 2$.
 - (a) Dê exemplo de um L-termo t que tenha 3 subtermos, explicitando o conjunto subt(t) dos subtermos de t.
 - (b) Dê exemplo de uma L-fórmula φ tal que $LIG(\varphi) = \{x_0\}$ e $LIV(\varphi) = \{x_1\}$, indicando uma sequência de formação de φ .
 - (c) Considere a L-fórmula $\varphi_0 = \exists x_1((P(x_0) \land x_0 = f(x_1)) \to \forall x_2 \neg (x_0 = f(x_2)))$. Diga, justificando, se cada uma das seguintes afirmações é verdadeira.
 - (i) A variável x_0 é substituível pelo L-termo $f(x_3)$ em φ_0 .
 - (ii) Qualquer variável é substituível por qualquer L-termo em φ_0 .
 - (d) Defina por recursão estrutural a função $h: \mathcal{T}_L \longrightarrow \mathbb{N}_0$ que a cada L-termo t faz corresponder o número de ocorrências do símbolo de função f em t.
- 4. Sejam L o tipo de linguagem do exercício anterior e $E = (\mathbb{N}_0, \overline{})$ a L-estrutura onde $\overline{0}$ é o número inteiro zero, $\overline{\mathsf{f}}: \mathbb{N}_0 \longrightarrow \mathbb{N}_0$ é a função definida por $\overline{\mathsf{f}}(n) = n+3$, para todo $n \in \mathbb{N}_0$, $\overline{\mathsf{P}} = \{n \in \mathbb{N}_0 \mid n \text{ é múltiplo de 3}\}$ e Ξ é a relação de igualdade em \mathbb{N}_0 , i.e., $\Xi = \{(n, m) \in \mathbb{N}_0^2 \mid n = m\}$.
 - (a) Seja a a atribuição em E tal que, para todo $i \in \mathbb{N}_0, \ a(x_i) = i.$ Calcule:
 - (i) $f(f(x_4))[a]$
 - (ii) $(\exists x_1 f(x_1) = 0) \lor \neg P(f(x_2))[a]$
 - (b) Seja φ a L-fórmula ($f(x_1) = x_2 \land P(x_1)$) $\rightarrow P(x_2)$. Prove que:
 - (i) φ é válida em E;
 - (ii) φ não é universalmente válida.
 - (c) Indique uma L-fórmula ψ que seja uma instância da fórmula proposicional $p_0 \leftrightarrow p_0$. A L-fórmula ψ que indicou é universalmente válida? Justifique.
 - (d) Para cada uma das seguintes afirmações, indique (sem justificar) uma L-fórmula que a represente:
 - (i) Existe um número que é múltiplo de 3 mas não é zero.
 - (ii) Para todo o número que seja múltiplo de 3, esse número mais 3 é ainda múltiplo de 3.
- 5. Sejam L um tipo de linguagem, $\varphi, \psi \in \mathcal{F}_L$ e x arbitrários. Mostre que $\exists x \varphi, \forall x (\varphi \to \psi) \vDash \exists x \psi$.

Cotações	1.	2.	3.	4.	5.
	1,5+1,5	1,5+1,5	1+1,5+2+1	2,5+2+1,5+1,5	1