Работа 3.6.1

Спектральный анализ электрических сигналов

Валеев Рауф Раушанович группа 825

6 ноября 2019 г.

Цель работы

Изучить спектры электрических сигналов.

Оборудование

генератор сигналов произвольной формы, цифровой осциллограф с функцией быстрого преобразования Фурье.

Теория

Разложение сложных сигналов на периодические колебания

Метод для описания сигналов. Для него используется разложение в сумму синусов и косинусов с различными аргументами или, как чаще его называют, разложение в ряд $\Phi upbe$.

Пусть задана функция f(t), которая периодически повторяется с частотой $\Omega_1=\frac{2\pi}{T},$ где T — период повторения импульсов. Её разложение в ряд Фурье имеет вид

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(n\Omega_1 t\right) + b_n \sin\left(n\Omega_1 t\right) \right] \tag{1}$$

или

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} A_n \cos(n\Omega_1 t - \psi_n)$$
 (2)

Если сигнал четен относительно t = 0, так что f(t) = f(-t) в тригонометрической записи остаются только косинусные члены. Для нечетной наоборот.

Коэффициенты определяются по формуле

$$a_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \cos(n\Omega_1 t) dt$$

$$b_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \sin(n\Omega_1 t) dt$$
(3)

Здесь t_1 — время, с которого мы начинаем отсчет.

Сравнив формулы (1) и (2) можно получить выражения для A_n и ψ_n :

$$A_n = \sqrt{a_n^2 + b_n^2}; \psi_n = \arctan \frac{b_n}{a_n} \tag{4}$$

Периодическая последовательность прямоугольных импульсов

Введем некоторые величины:

$$\Omega_1 = \frac{2\pi}{T},$$

где T — период повторения импульсов.

Коэффициенты при косинусных составляющих будут равны

$$a_n = \frac{2}{T} \int_{-\tau/2}^{\tau/2} V_0 \cos\left(n\Omega_1 t\right) dt = 2V_0 \frac{\tau}{T} \frac{\sin\left(n\Omega_1 \tau/2\right)}{n\Omega_1 \tau/2} \sim \frac{\sin x}{x}$$
 (5)

Здесь V_0 - амплитуда сигнала.

Поскольку наша функция четная, то $b_n = 0$.

Пусть у нас τ кратно T. Тогда введем ширину спектра, равную $\Delta \omega$ — расстояние от главного максимума до первого нуля огибающей, возникающего, как нетрудно убедится при $n=\frac{2\pi}{\tau\Omega_1}$. При этом

$$\Delta\omega\tau \simeq 2\pi \Rightarrow \Delta\nu\Delta t \simeq 1 \tag{6}$$

Периодическая последовательность цугов

Функция f(t) снова является четной относительно t=0. Коэффициент при n-ой гармонике согласно формуле (3) равен

$$a_n = \frac{2}{T} \int_{-\tau/2}^{\tau/2} V_0 \cos(\omega_0 t) \cdot \cos(n\Omega_1 t) dt = V_0 \frac{\tau}{T} \left(\frac{\sin\left[(\omega_0 - n\Omega_1) \frac{\tau}{2} \right]}{(\omega_0 - n\Omega_1) \frac{\tau}{2}} + \frac{\sin\left[(\omega_0 + n\Omega_1) \frac{\tau}{2} \right]}{(\omega_0 + n\Omega_1) \frac{\tau}{2}} \right)$$
(7)

Амплитудно-модулированные колебания

Рассмотрим гармонические колебания высокой частоты ω_0 , амплитуда которых медленно меняется по гармоническому закону с частотой $\Omega \ll \omega_0$.

$$f(t) = A_0 \left[1 + m \cos \Omega t \right] \cos \omega_0 t \tag{8}$$

Коэффициентом m называется глубина модуляции. При m < 1 амплитуда меняется от минимальной $A_{min} = A_0(1-m)$ до максимальной $A_{max} = A_0(1+m)$. Глубина модуляции может быть представлена в виде

$$m = \frac{A_{max} - A_{min}}{A_{max} + A_{min}} \tag{9}$$

Простым тригонометрическим преобразованием уравнения (9) можно найти спектр колебаний

$$f(t) = A_0 \cos \omega_0 t + \frac{A_0 m}{2} \cos (\omega_0 + \Omega) t + \frac{A_0 m}{2} \cos (\omega_0 - \Omega) t$$
(10)

Ход работы

Исследование спектра периодических последовательностей прямоугольных импульсов

Устанавливаем колебания прямоугольные с $\nu_{\text{повт}}=1$ к Γ ц (период T=1 мс) и длительность импульса $\tau=T/20=50$ мкс. Получаем на экране спектр сигнала, потом изменяя τ и $\nu_{\text{повт}}$, не изменяя другой величины наблюдаем, как изменяется спектр.

(a) $\nu_{\text{повт}} = 1 \text{ к}\Gamma$ ц, $\tau = 50 \text{ мкс.}$

(b) $\nu_{\text{повт}} = 1.5 \ \text{к} \Gamma$ ц, $\tau = 50 \ \text{мкс}$.

(c) $\nu_{\text{повт}} = 2 \text{ к}\Gamma$ ц, $\tau = 50 \text{ мкс.}$

(d) $\nu_{\text{повт}} = 2.5 \text{ к}\Gamma$ ц, $\tau = 50 \text{ мкс.}$

(e) $\nu_{\text{повт}} = 1$ к Γ ц, $\tau = 60$ мкс.

(f) $\nu_{\text{повт}} = 1 \ \text{к}\Gamma$ ц, $\tau = 100 \ \text{мкс}$.

Теперь зафиксируем $\nu_{\text{повт}} = 1$ к Γ ц и $\tau = 50$ мкс. Для этих параметров измерим величину a_n и ν_n . И сравним с рассчитанными значениями по формуле (5).

(a) $\nu_{\text{повт}}=1$ к Γ ц, au=150 мкс.

п гармоники	1	2	3	4	5
f , к Γ ц	29,4	49,4	69,6	89,8	110
a_n , мВ	15,6	9,2	7,5	5,2	4,4
$a_{n,\text{теория}}, \text{ мB}$	11,6	10,3	8,4	6,1	3,6
$\frac{ a_n - a_{n,\text{теория}} }{a_{n,\text{теория}}}$	0,25	0,12	0,12	0,16	0,18
$\Delta \nu$, к Γ ц	20	20	20,2	20,2	20,2

Таблица 1. Исследование амплитуд и частот гармоник.

Из таблицы мы видим, что $\Delta \nu$ сохраняются между гармониками, что сходится с теорией. Так же мы видим, что амплитуды довольно неплохо сходятся с теорией. Теперь проведем измерения зависимости ширины спектра от $\Delta \nu$ и установим зависимость между $\Delta \nu$ и τ , полученную из формулы (6).

τ , MKC	50	75	100	125	150	175	200
$\Delta \nu$, к Γ ц	19,6	13,4	9,8	8,0	6,5	5,5	4,5
$1/\tau \cdot 10^3$, c ⁻¹	20	13	10	8	7	6	5
$\Delta\nu\Delta t\approx 1,000\pm 0,018$							

Таблица 2. Исследование зависимости Δt от $\Delta \nu$.

В итоге получаем, что формула (6) довольно точно выполняется.

Исследование спектра периодической последовательности цугов

Получаем на экране последовательность цугов с характерными параметрами: $\nu_0=50$ кГц, T=1 мс, число периодов в одном импульсе N=5 (длительность импульса $\tau=T/\nu_0=100$ мкс). Сам сигнал выглядит так:

Рис. 8. последовательность цугов.

Для этого сигнала мы получаем картину для спектра

Рис. 9. Спектр последовательности цугов.

Теперь будем менять эти параметры по одному и зафиксируем несколько таких изменений

(a) $\nu_0 = 50 \text{ K}\Gamma\text{II}, T = 1 \text{ Mc}, N = 10.$

(b) $\nu_0=50$ к Γ ц, T=1 мс, N=15.

(c) $\nu_0=50$ кГц, T=2.5 мс, N=5.

(d) $\nu_0 = 50$ кГц, T = 5 мс, N = 5.

(e)
$$\nu_0 = 75$$
 к Γ ц, $T = 1$ мс, $N = 5$.

(f) $\nu_0 = 100$ к Γ ц, T = 1 мс, N = 5.

Теперь зафиксируем $\nu_0=50$ к Γ ц, N=5. Для этих параметров измерим, меняя T $(\nu_{\text{повт}})$, зависимость $\delta \nu$ от τ .

$\Delta \nu$, к Γ ц	23	32	35	38	35	45
n	42	33	18	13	10	8
$ u_{\text{повт}}, \text{к}\Gamma$ ц	0.5	1.0	2.0	3.0	4.0	6.0

Таблица 3. Зависимость $\Delta \nu$ от $\nu_{\text{повт}}$.

Итоговое отношение:

$$\left| \frac{\delta \nu}{\nu_{\text{\tiny HOBT}}} = 1.05 \pm 0.08 \right|$$

Исследование спектра амплитудно модулированного сигнала

Выведем на экран картину амплитудно-модулированного сигнала с характерными параметрами: несущая частота $\nu_0=50$ к Γ ц, $\nu_{\text{мод}}=2$ к Γ ц, глубину модуляции - 50 % (m=0,5). Картина данного сигнала будет выглядеть следующим образом:

Рис. 16. Картина амплитудно-модулированного сигнала.

Найдем для него A_{max} и A_{min} и проверим справедливость формулы (9).

A_{max} , B	1,52
A_{min} , B	0,48
\overline{m}	0,52

Таблица 3. Измерения максимальной и минимальной амплитуд и проверка формулы (9)

Поскольку мы установили глубину модуляции на 0,5, а из теории у нас получилась 0,52, то мы видим, что формула (9) верна. Получим на экране спектр сигнала и будем изменять параметры сигнала Из формулы (10) следует, что $a_{\rm och}=A_0$, а $a_{\rm fok}=\frac{mA_0}{2}$, это нам и предстоит проверить в следующей серии измерений.

m, %	10	25	50	75	100	
$a_{\text{бок}}, \text{ мB}$	360	820	1660	2320	3260	
$a_{\rm och}$, мВ	6240	6240	6240	6240	6240	
$a_{\rm 6ok}/a_{\rm och}$	0,06	0,13	0,27	0,37	0,52	
$a_{\text{бок}}/a_{\text{осн}} \cdot m, \%$	57,69	52,56	53,21	49,57	52,24	
$a_{\text{бок}}/a_{\text{осн}} \cdot m = (53, 1 \pm 1, 31), \%$						

Таблица 3. Исследование зависимости $a_{\text{бок}}/a_{\text{осн}}$ от m.

Так как из написанного выше должно было получится, что $\frac{a_{\text{бок}}}{a_{\text{осн}}} \cdot m \approx 0, 5$, что у нас и получилось.

(a) $\nu_0 = 60 \ {\rm к} \Gamma {\rm ц}, \ \nu_{\rm мод} = 2 \ {\rm к} \Gamma {\rm ц}.$

(b) $\nu_0 = 70 \ к\Gamma$ ц, $\nu_{\text{мод}} = 2 \ к\Gamma$ ц.

(c) $\nu_0=50$ к Γ ц, $\nu_{\text{мод}}=8$ к Γ ц.

(d) $\nu_0 = 50$ к Γ ц, $\nu_{\text{мод}} = 16$ к Γ ц.

Вывод

Мы убедились в справедливости разложения в ряд Фурье сигналов, с помощью анализа спектра сигналов и получения для них характерных величин и проверки закономерностей.

Литература

- 1. **Лабораторный практикум по общей физике:** Учебное пособие. В трех томах. Т. 2. Электричество и магнетизм /Гладун А.Д., Александров Д.А., Берулёва Н.С. и др.; Под ред. А.Д. Гладуна М.: МФТИ, 2007. 280 с.
- 2. **Дополнительное описание лабораторной работы 3.6.1**: Исследование спектров сигналов; Под ред. МФТИ, 2018 г. 10 с.