HOME

Home Credit Default Risk

By Amir Helmy

Problem Description

- Many people struggle to get loans due to insufficient or non-existent credit histories.
- Home Credit strives to broaden financial inclusion for the unbanked population by providing a positive and safe borrowing experience.
- Our aim is to make use of alternative data to predict the probability of default of a loan application.
- A typical performance measure for classification problems is the Area under the ROC Curve (AUC/ROC).

Data Description

- We have different info about clients and credit applications.
- The main application data file contains 122 col 307511 rows.
- And0 total of 99 columns in 7 different historical data files related by foreign key.

Monthly balance of credits in Credit
Bureau
Rehawloral data

- client's previous loans in Home Credit
- Monthly balance of
- installments of previous credit in Home Credit related to loan in our sample
- Past payment data for each
- Monthly balance of
- ...
 - credit_card_balance.cs

Target feature

- 92% of the loans are repaid, 8% are not repaid
- Highly Imbalanced Data.
- Leading to a Biased Model.
- Under sampling to prevent majority class from dominating.

NAME_CONTRACT_TYPE

- Contract type Revolving loans are just a small fraction (10%) from the total number of loans.
- Larger amount of Revolving loans, comparing with their frequency, are not repaid.

Conclusion

Beware when contract type is revolving as a larger amount of Revolving loans, comparing with their frequency, are not repaid.

CODE_GENDER

- The number of female clients is almost double the number of male clients
- Looking to the percent of unpaid credits, males have a higher chance of not returning their loans, comparing with women.

FLAG_OWN_CAR

- The clients that owns a car are almost a half of the ones that doesn't own one.
- In terms of percentage of not repayment of loan, The clients that doesn't own a car are more likely not to repay than who does.

NAME_FAMILY_STATUS

- Most of clients are married, followed by Single/not married and civil marriage.
- In terms of percentage of not repayment of loan, Civil marriage has the highest percent of not repayment.
- Widow being the most likely to pay.

Conclusion

Widowed have the most repayment rate so they should be more assurance when lending them.

NAME_INCOME_TYPE

- Most income is from Working, followed by Commercial associate, Pensioner, etc..
- Applicants with Maternity leave income have almost 40% ratio of not returning loans, followed by Unemployed (37%).
- The rest of types of incomes are under 10% for not returning loans

AMT_CREDIT

- Data points are mostly centered in the left side of the plot, 'Right skewed' (under about 1.5 million)
- Certain models are sensitive to skewed data, so I applied log transform to get data close to normal distribution and correct It's skewness.

Data Preprocessing

Missing Values

- Most of the datasets have missing values between 60% to 70%
 - Tried removing and Imputing with the median.
 - Imputing preformed better.
- Some columns needed special treatment
 - Example: Previous application Dataframe
 - Missing values means there is no previous loan to this client i.e the current application is the first.

	Missing Values	% of Total Values
COMMONAREA_MEDI	214865	69.9
COMMONAREA_AVG	214865	69.9
COMMONAREA_MODE	214865	69.9
NONLIVINGAPARTMENTS_MEDI	213514	69.4
NONLIVINGAPARTMENTS_MODE	213514	69.4

Data Preprocessing

Treatment of the days of employment

Remove anomalies (Outliers)

There are 55374 (5.4%) of applicants are about 1000 years old.

- Imputing.
- Added feature.
- I ended up using Random Forest.
 - Robust to outliers.

Approach in Data Modeling

Pipeline

Encode categorical variables

One Hot Encoder.

Normalize features

MinMaxScaller

Imputing : median

SimpleImputer

Baseline Model

Logistic Regression

- Tried Logistic Regression without feature engineering
 - Scored around 0.691134
- Not bad

Improved Model

Random Forest

- Tried Random Forest without feature engineering
 - scored around 0.709793
- Tried Random Forest with feature engineering
 - Test data scored around: 0.7051048
 - Train data scored: 1.0
- Over Fitting problem.

Dealing with Overfitting.

Regularization & Hyper parameter Tunning

- Tried Random Forest with feature engineering
 - Test data scored around: 0.72
 - Train data scored: 0.73
- Score Improved and No Over Fitting.
- Generalize to unseen data.

Feature Importance

- The most important features are Normalized credit score from external data source.
- Most of Important features are the ones I engineered.
 - Statistics of supporting table aggregation

Conclusion

- Home credit can quite rely on this model as a **secondary option** for now as it needs further enhancements.
- Home credit should consider these advices before lending money to applicants.
 - ✓ Beware when contract type is **revolving** as a larger amount of Revolving loans, comparing with their frequency, are **not repaid**.
 - ✓ Widowed have the most repayment rate so there should be more assurance when lending them.
 - ✓ Should focus on applicants with no children & (1: 2 children) as they are most frequent and with highest repayment rate.
 - ✓ Shouldn't lend to applicants with 9 and 12 children as 100% of them don't repay.
 - ✓ Pay attention when someone isn't working or on maturity leave as 40% of them doesn't pay back.

Thank you

Next Steps

For EDA.

- Explore the bereau dataset.
- Merge the application_train and bureau on ID column
- Explore these features (Credit status, Credit currency, Credit type, Duration of credit, Credit overdue 'CREDIT_DAY_OVERDUE', Credit sum 'AMT_CREDIT_SUM')
- Remove the outliers from AMT_CREDIT_SUM and better plot the distribution.
- Explore the Previous application data
- Plot these features (Contract type, Cash loan purpose, Contract status, Payment type, Client type)
- For Feature engineering.

 - Then merge the to application data (Train & test)
 - Evaluate the model on these new features.

Next Steps

- For Dimensionality reduction.
 - Get important features from Randomforest
 - Select top features and evaluate.
 - If It preforms poorly I could add more feature until it gets better.
- For Data Modeling
 - I want to try some Gradient boosting algorithms like XGBoost, and LightGBM.
 - I think it will preform even better than Randomforest.