EL 820 Home work 6

Exercise 10.2: The action of the bit flip channel can be described by the quantum operation $\mathcal{E}(\rho) = (1-p)\rho + pX\rho X$. Show that this may be given an alternate operator-sum representation, as $\mathcal{E}(\rho) = (1-2p)\rho + 2pP_+\rho P_+ + 2pP_-\rho P_-$ where P_+ and P_- are projectors onto the +1 and -1 eigenstates of X, $(|0\rangle + |1\rangle)/\sqrt{2}$ and $(|0\rangle - |1\rangle)/\sqrt{2}$, respectively. This latter representation can be understood as a model in which the qubit is left alone with probability 1-2p, and is 'measured' by the environment in the $|+\rangle$, $|-\rangle$ basis with probability 2p.

We know $P_{+} : |+> <+|$ $= \frac{1}{J_{2}} \left(\frac{1074 117}{J_{2}} \right) \frac{1}{J_{2}} \left(\frac{<01+<11}{3} \right)$ $= \frac{1}{2} \left(\frac{107<01+117<1}{117<01} + \frac{107<1}{117<01} + \frac{107<1}{117<01} \right)$ $\therefore P_{+} = \frac{1}{2} \left(\pm + \times \right)$

simillarly; $P_{-} = 1-7 < -1$ $= \frac{1}{52} (10) - 11 > \frac{1}{52} (< 01 - < 11)$

 $= \frac{1}{2} \left(\frac{100001 - 100011 - 110001 + 110011}{-x} \right)$

 $= \frac{1}{2} (\mathbf{I} - \mathbf{X}) \qquad \boxed{2}$

.: E(P) = (1-2p) P + 2p P+ PP+ + 2p P- PP — Given)

substituting eq (D & @) gives w

 $= (1-2p) \mathcal{O} + 2p \left(\frac{1}{2}(I+X)\right) \mathcal{O}\left(\frac{1}{2}(I+X)\right) + 2p \left(\frac{1}{2}(I-X)\right) \mathcal{O}\left(\frac{1}{2}(I-X)\right)$

= (1-2p)p + p (I+x)(P+px) + p (I-x)(P-px)

 $= (1-2\rho)\rho + \left[\frac{\rho}{2}\left(\rho + \rho\chi + \rho\chi + x\rho\chi\right) + \frac{\rho}{2}\left(\rho - \rho\chi - x\rho + x\rho\chi\right)\right]$

$$= P - 2pP + \frac{p}{2} \left(P + P + P \times - P \times + xP - xP + xP \times + xP \times \right)$$

$$= P - 2pP + \frac{P}{2} \left[2P + 2XPX \right]$$

$$= P - 2PP + PXPX$$

$$= P - PP + PXPX \qquad \qquad \textcircled{6}$$

Movever, it is also given that:

$$E(P) = (I-P)P + P \times P \times$$

Exercise 10.3: Show by explicit calculation that measuring Z_1Z_2 followed by Z_2Z_3 is equivalent, up to labeling of the measurement outcomes, to measuring the four projectors defined by (10.5)–(10.8), in the sense that both procedures result in the same measurement statistics and post-measurement states. $P_0 \equiv |000\rangle\langle000| + |111\rangle\langle111| \text{ no error} \qquad (10.5)$

 $P_0 \equiv |000\rangle\langle000| + |111\rangle\langle111| \text{ no error}$ $P_1 \equiv |100\rangle\langle100| + |011\rangle\langle011| \text{ bit flip on qubit one}$ $P_2 \equiv |010\rangle\langle010| + |101\rangle\langle101| \text{ bit flip on qubit two}$ (10.5)

 $P_3 \equiv |001\rangle\langle001| + |110\rangle\langle110| \text{ bit flip on qubit three.} \tag{10.8}$

measurement Operator = (2223) (2,22),

Possible outcomes: $- (z_2 z_2)^+ (z_1 z_2)^+$ $(z_2 z_3)^+ (z_1 z_2)^ (z_2 z_3)^- (z_1 z_2)^+$ $(z_2 z_3)^- (z_1 z_2)^-$

Now, $(2_2 2_3)_+ (2_1 2_2)_+ = [I \otimes (100) < 001 + 111) < (11)) (100) < 001 + 111) < (11) <math>\otimes I$

Now, (Z2Z3), (Z1Z2) = [IO(100)(001+111)(111)][(101)(011+110)(101)@I

= [100>(100) + 1011> (011) = P1 — 2

Nou, (2,23)_(2,22)+ = [I@(101>(01)+110>(101)][(100>(001+111)(11))@I = |001>(001) + 1110>(110) Na, (2, 2,)_ (2, 2,)_ = [I\lefta (101) <011 + 110> <101) | (101) <011 + 110> <101) & I = 1010><0101 + 1101><101) .. From O, D, B & C) we showed that measuring 2,22 followed by Z223 is same as neasuring projectors defiged in eq (10.5)-(10.8)

10.5

Exercise 10.5: Show that the syndrome measurement for detecting phase flip errors in the Shor code corresponds to measuring the observables $X_1X_2X_3X_4X_5X_6$ and $X_4X_5X_6X_7X_8X_9$.

cooleword's for Shor's code are:

Given: M, = X, X, X, X, X, X, X6

M2 = X4 X5 X6 X9 X8 X9

E, = phase - flip error on 1st block.

Say E, occurs. then:

10/2 = 1 (1000>- 1117) (1000>+ (1117) (1000> + (1117))

 $\frac{11'_{L}}{252} = \frac{1}{252} \left(\frac{1000}{1000} + \frac{111}{111} \right) \left(\frac{1000}{1000} - \frac{111}{111} \right)$

: M, 10'2> = x,x2x3x4x5x6 10'2>

```
Now, M2 | 0'2 = X4X5X6X4X8X9 | 0'2>
                  = (1000)-(111))(1000)+1111))(1000)(111))/252
                  = 10,>
Simillarly, M, (12) = 1 (1111> + 1000>) (111) - 1000>) (1000> - 1111>)
                   = - 11,>
& also M2/12>= 1 (1000) + 1111) (1111> - 1000) (1111) - 1000)
                 = /1/>
     F, M, = -1
M<sub>2</sub> = +1
   E2 = phase - flip emor on 2nd block.
   Say E2 occurs. then:
   10/2 = 1 (1000>+ 111) (1000> + (111>)
   11/2 = 1 (1000)-1(11))(1000)+(111))(1000)-1111)
: M, |01) = 1 (111) + (000) (1111) - (000) + (111))
         = - |0\rangle
```

$$\frac{M_2 |0_2\rangle = (1000) + (111))(1111) - (000))(1111) + (000)}{252}$$

$$= -(0_1)$$

for
$$E_2$$
: $M_1 = -1$
 $M_2 = -1$

= -11,>

$$|11_{L}'\rangle = \frac{1}{252} (|000\rangle - |(11\rangle) (|000\rangle - |(111\rangle) (|000\rangle + |111\rangle)$$

$$(M, |O_{i}^{t}\rangle = (|111\rangle + |000\rangle)(|111\rangle + |000\rangle)(|100\rangle - |111\rangle) \frac{1}{8}$$

$$= |O_{L}\rangle$$

$$R = -|0| = (1000) + |1111 + (1000) + |1111 + (1000) = \frac{1}{58}$$

$$= -|0| = (1000) - |1111 + (1000) = (1111) + (1111) + (1111) + (1111) + (1111) = (1111) + (1111) + (1111) + (1111) + (1111) = (1111) +$$

Hence we have showed measurement for detecting hit flip, be 15th, 2nd or 3rd comsponds to measuring the observables,
$$X_1X_2X_3X_4X_5X_6 + X_4X_5X_6X_9X_8X_9$$

Exercise 10.6: Show that recovery from a phase flip on any of the first three qubits may be accomplished by applying the operator $Z_1Z_2Z_3$.

$$|11'_{L}\rangle = \frac{1}{252} (|000\rangle + |111\rangle) (|000\rangle - |111\rangle) (|000\rangle - |111\rangle)$$

: Now Say Z = 2,2223.

$$Z |O'_{L}\rangle = (|000\rangle + |110\rangle)(|000\rangle + |110\rangle)/252$$

= $|O_{L}\rangle$

Hence, we	Showed	that	Ь9	applying	Z jie.
Z12223, we					
the first	thre q	ubi bi-			

Exercise 10.8: Verify that the three qubit phase flip code

 $|0_L\rangle = |+++\rangle, |1_L\rangle = |---\rangle$ satisfies the quantum error-correction conditions for the set of error operators $\{I, Z_1, Z_2, Z_3\}$.

Given code : p= |+++> <+++ + |---> <---|

 $F = \{ 1, 2, 2_2, 2_3 \}$

PIZ,P = PZ,P = PZ, (|+++> <+++) + |---> <---1) = P(|-++> <-++) + |+--> <+--1)

=(1+++><+++) + 1---> <---1)(1-++><-++) + 1+--> <+--1)
= 0

Simillarly,

Simillarly,

Abo, PIIP = $PI^2P = PP = P^2 = P$

& also $P2_1TP = P2_1P = 0$ $P2_2TP = P2_2P = 0$ Shown above. $P2_3TP = P2_2P = 0$

Now, $PZ_{1}Z_{1}P = PZ_{2}^{2}P = PTP = P^{2} = P$

Simillary P2222P = P2323P = P

```
NOU, PZ,22P = P2,22(1+++> <+++) + 1---> <---1)
            = P( | --+> <--+) + | +--> <++-1) -> (some as P Z3P)
               ~ O
 · P2;2; P = 0 - given 1 + 3.
                    if 1=3, P2; 2; P=P
 The quantum EC condition is PE; + E; P = xij P + i, j
                                       1 Hermitian
                   2, 2, 23
 Here! &:
             I
                                 → = ±.
             Zi
                 0 0 0
                                 : I is hermitian
             Z_2
             23
                 0
                    0 0 1
          It has been verified that given code satisfies
          the quantum EC anditions for set of
           errons ; {I, 2,, 2, 73}
```

10.9

Exercise 10.9: Again, consider the three qubit phase flip code. Let P_i and Q_i be the projectors onto the $|0\rangle$ and $|1\rangle$ states, respectively, of the *i*th qubit. Prove that the three qubit phase flip code protects against the error set $\{I, P_1, Q_1, P_2, Q_2, P_3, Q_3\}$.

 $P_{i} = \{0 > \langle 0 \};$ $Q_{i} = \{1 > \langle 1 \};$ $P_{i} = \{1, P_{i}, Q_{1}, P_{2}, Q_{2}, P_{3}, Q_{3}\}$

Given code: p= |+++> <+++) + |---> <---|

How, $P J J P = P J^2 P = P$ $P P, P, P = P P^2 P = P P, P$ P = P P, P P P P, P P P P, P P P P, P

= (1+++> <+++) + 1---> <---1) · 1 (10++> <0++1+10--> <0--1)

 $= \frac{1}{2} \left(\frac{1}{1+4} > (+++) + \frac{1}{1---} > (---) \right) = \frac{1}{2} \rho$

NO019 -

 $P P_{2} P_{2} P = P P_{2} P$ $= P \left(|0>\langle 0|_{2} \right) \left(|_{+++} > \langle +_{++} \rangle + |_{---} > \langle ---| \right)$

= (1+++><+++) + 1---><---1). 1 (1+0+><+0+1+1-0-><-0-1)

= 1 (1++><+++) + 1---> <---1) = 1 p

Nou,

$$P_{R}^{2}P_{3}P_{3}P_{4}=P_{R}^{2}P_{4}=P_{R}^{2}P_{4}$$

$$=P(10>(0)_{2})(1++4>(++4)+1--->(---1)$$

$$PQ_1Q_1P = PQ_2Q_2P = PQ_3Q_2P = PQ_3Q_2P$$

Also, PP;Q;P = P(10><01;)(11><1);)((+++><+++)+1---><---1)
= 0

: PP; Q; P = 0

		I P, Q, P2 Q2 P3 Q3	
.*_	9 = I	1 1/2 1/2 1/2 1/2 1/2	
	P,	1/2 1/2 0 kg 0 kg 6	
	01	1/2 0 1/2 0 1/4 0 1/4	
	P2	1/2 1/9 0 1/2 0 1/4 0	
	Ø ₂	1/2 0 1/9 0 1/2 0 1/4	
	P ,	1/2 1/9 0 1/9 0 1/2 0	
		1/2 0 /4 0 /4 0 1/2	

Thence we have proved that 3 qubit phase filp code protect again at - { I, P, O, P2, O2, P3, 6, 3