FERTILIZERS RECOMMENDATION SYSTEM FOR DISEASE PREDICTION

TEAM ID : PNT2022TMID14746 TEAM

MEMBERS : S.V.L.GANESH NITHIN

(111619106127)

T.N.S.RAM VARDHAN

(111619106149)

P.SRAVAN KUMAR

(111619106101)

CH.PAVAN

(111619106020)

DEPARTMENT : ELECTRONICS AND COMMUNICATION

ENGINEERING

COLLEGE NAME: R.M.K COLLEGE OF ENGINEERING AND

TECHNOLOGY, R.S.M NAGAR, PUDUVOYAL.

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.No	Parameter	Values	Screenshot
•			
1.	Model Summary	Total params: 896 Trainable params: 896 Non-trainable params: 0	model.summary() Model: "sequential" Layer (type) Output Shape Param #
2.	Accuracy	Training Accuracy – 96.55 Validation Accuracy – 97.45	1902.00 179 1903 1905

Model Summary

```
model.summary()
Model: "sequential"
Layer (type)
                   Output Shape
                                     Param #
conv2d (Conv2D)
                   (None, 126, 126, 32)
                                     896
max_pooling2d (MaxPooling2D (None, 63, 63, 32)
flatten (Flatten)
                   (None, 127008)
______
Total params: 896
Trainable params: 896
Non-trainable params: 0
```

Accuracy

model.fit generator(x train, steps per epoch=len(x train), validation data=x test, validation steps=len(x test), epochs=10)

```
Epoch 1/10
0.8861
Epoch 2/10
225/225 [=============== ] - 88s 393ms/step - loss: 0.2825 - accuracy: 0.9042 - val_loss: 0.3015 - val_accuracy:
0.9075
Epoch 3/10
225/225 [================ ] - 85s 375ms/step - loss: 0.2032 - accuracy: 0.9303 - val_loss: 0.2203 - val_accuracy:
0.9288
Epoch 4/10
225/225 [============] - 84s 374ms/step - loss: 0.1576 - accuracy: 0.9463 - val_loss: 0.2424 - val_accuracy:
0.9164
Epoch 5/10
225/225 [============= ] - 84s 372ms/step - loss: 0.1719 - accuracy: 0.9389 - val loss: 0.1330 - val accuracy:
0.9632
Epoch 6/10
225/225 [============ ] - 85s 376ms/step - loss: 0.1240 - accuracy: 0.9580 - val loss: 0.1340 - val accuracy:
0.9573
Epoch 7/10
225/225 [============ ] - 87s 388ms/step - loss: 0.1235 - accuracy: 0.9591 - val loss: 0.1638 - val accuracy:
0.9478
Epoch 8/10
225/225 [============= ] - 83s 371ms/step - loss: 0.1012 - accuracy: 0.9643 - val loss: 0.1468 - val accuracy:
Epoch 9/10
225/225 [============] - 83s 367ms/step - loss: 0.0967 - accuracy: 0.9655 - val loss: 0.1412 - val accuracy:
0.9531
Epoch 10/10
225/225 [============== ] - 83s 369ms/step - loss: 0.0954 - accuracy: 0.9655 - val_loss: 0.0905 - val_accuracy:
0.9745
```