Fast Polynomials Multiplication Using FFT

Li Chen

lichen.xd at gmail.com

Xidian University

January 17, 2014

Fast Polynomials Multiplication Using FFT

Outline

- 1 Discrete Fourier Transform (DFT)
- 2 Discrete Convolution
- 3 Fast Fourier Transform (FFT)
- 4 Number Theoretic Transform (NTT)
- 5 More Optimize & Application Scenario

References

- [1] Doz Dr A Schönhage and Volker Strassen. Schnelle multiplikation grosser zahlen. *Computing*, 7(3-4):281–292, 1971.
- [2] Martin Fürer. Faster integer multiplication. In *Proceedings of the thirty-ninth annual ACM symposium on Theory of computing*, pages 57–66. ACM, 2007.
- [3] Martin Fürer. Faster integer multiplication. *SIAM Journal on Computing*, 39(3):979–1005, 2009.
- [4] Anindya De, Piyush P Kurur, Chandan Saha, and Ramprasad Saptharishi. Fast integer multiplication using modular arithmetic. In *Proceedings of the 40th annual ACM symposium on Theory of computing*, pages 499–506. ACM, 2008.
- [5] Anindya De, Piyush P Kurur, Chandan Saha, and Ramprasad Saptharishi. Fast integer multiplication using modular arithmetic. SIAM Journal on Computing, 42(2):685–699, 2013.

Claim: Our slides are based on reference [1], [2], [3], [4], [5].

1 Discrete Fourier Transform (DFT)

Definition 1.1 (Discrete Fourier Transform (DFT)) Let $X = (x_0, x_1, \dots, x_{N-1})$ be a N-length sequence, the *discrete fourier transform* of X is defined as a N-length sequences $F(X) = (f_1, f_2, \dots, f_N)$, where

$$f_k = \sum_{n=0}^{N-1} x_n \omega_N^{nk}, \ k = 0, 1, \dots, N-1.$$

where ω_N is the a principal Nth root of unity in a ring R (with unity).

Note1: Let R is a ring with unity, $\alpha \in R$ is called a principal Nth root of unity, if

$$\alpha^N = 1$$

and

$$\sum_{n=0}^{N-1} \alpha^{kn} = 0, \ 1 \le k < N. \tag{1}$$

Note2: If R is a integral domain, it is sufficient to choose α as a primitive Nth root of unity, which replaces the condition (1) by

$$\alpha^k \neq 1, \ 1 \le k < N. \tag{2}$$

Proof: Take $\beta = \alpha^k$, $1 \le k < N$, since $\alpha^N = 1$, $\beta^N = \alpha^{kN} = 1$, thus we have $\beta^N - 1 = (\beta - 1) \sum_{n=1}^{N-1} \beta^n = 0$, which implies $\sum_{n=1}^{N-1} \beta^n = 0$.

Theorem 1.2 (Inverse of Discrete Fourier Transform (IDFT)) Let $X=(x_0,x_1,\cdots,x_{N-1})$ be a N-length sequence, $F(X)=(f_1,f_2,\cdots,f_N)$ is the discrete fourier transform of X, then

$$x_n = \frac{1}{N} \sum_{k=0}^{N-1} f_k \omega_N^{-kn}, \ k = 0, 1, \dots, N-1.$$

where ω_N is the a principal N-th root of unity in a ring R, and $\frac{1}{N}$ is multiplicative inverse of N in R (if this inverse does not exist, the DFT cannot be inverted).

Proof

$$\frac{1}{N} \sum_{k=0}^{N-1} f_k \omega_N^{-kn} = \frac{1}{N} \sum_{k=0}^{N-1} \left(\sum_{j=0}^{N-1} x_j \omega_N^{jk} \right) \omega_N^{-kn}$$

$$= \frac{1}{N} \sum_{k=0}^{N-1} \sum_{j=0}^{N-1} x_j \omega_N^{(j-n)k}$$

$$= \frac{1}{N} \sum_{j=0}^{N-1} x_j \sum_{k=0}^{N-1} \omega_N^{(j-n)k}$$

$$= \frac{1}{N} x_n \sum_{k=0}^{N-1} \omega_N^0 + \frac{1}{N} \sum_{j \neq n} x_j \sum_{k=0}^{N-1} \omega_N^{(j-n)k}$$

$$= x_n + 0$$

2 Discrete Convolution

Definition 2.1 (Acyclic Convolution) Let $X=(x_0,x_1,\cdots,x_{N-1})$, $Y=(y_0,y_1,\cdots,y_{N-1})$ be two N-length sequences, then the *acyclic convolution* or *linear convolution* is defined as a 2N+1-length sequences $Z=(z_0,z_1,\cdots,z_{2(N-1)})$, where

$$z_i = \sum_{\substack{j \in [0,N-1]\\k \in [0,N-1]}}^{j+k=i} x_j y_k, \ i = 0, 1, \cdots, 2(N-1).$$

And the cyclic convolution or wrapped convolution is defined as a N-length sequences $\tilde{Z}=(\tilde{z}_0,\tilde{z}_1,\cdots,\tilde{z}_{N-1})$, where

$$\tilde{z}_i = z_i + z_{i+N}, \ i = 0, 1, \dots, N-1, \ (\text{pad } z_{2N-1} = 0).$$

or equivalent,

$$\tilde{z}_i = \sum_{j=0}^{N-1} x_j y_{i-j}, \ i = 0, 1, \dots, N-1, \ (y_{-k} = y_{N-k}, \ k = 0, 1, \dots, N-1).$$

Definition 2.2 (Negacyclic Convolution) Let $X=(x_0,\cdots,x_{N-1}), Y=(y_0,\cdots,y_{N-1})$ be two N-length sequences, then the *negacyclic convolution* is defined as a N-length sequences $\tilde{Z}=(\tilde{z}_0,\tilde{z}_1,\cdots,\tilde{z}_{N-1})$, where

$$\tilde{z}_i = z_i - z_{i+N}, \ i = 0, 1, \dots, N-1, \ (\text{pad } z_{2N-1} = 0).$$

or equivalent,

$$\tilde{z}_i = \sum_{j=0}^{N-1} x_j y_{i-j}, \ i = 0, 1, \dots, N-1, \ (y_{-k} = -y_{N-k}, \ k = 0, 1, \dots, N-1).$$

Theorem 2.3 (Convolution Theorem) Let $X=(x_0,\cdots,x_{N-1}), Y=(y_0,\cdots,y_{N-1})$ be two N-length sequences, take $F(\cdots)$ as the discrete fourier transform on a N-length sequences (\cdots) , then

$$F(X * Y) = N \cdot F(X) \otimes F(Y)$$

where \ast indicates cyclic convolution, and \otimes indicates component-wise multiplication.

Proof

Let $\tilde{z}_0, \dots, \tilde{z}_{N-1}$ be the cyclic convolution of X, Y, i.e.,

$$\tilde{z}_j = \sum_{j=0}^{N-1} x_j y_{n-j}$$

and let
$$F(x * Y) = (f_0, f_1, \cdots, f_{N-1})$$
. For each $k \in [0, N-1]$,
$$f_k = \sum_{n=0}^{N-1} \tilde{z}_n \omega_N^{nk} = \sum_{n=0}^{N-1} \left(\sum_{j=0}^{N-1} x_j y_{n-j}\right) \omega_N^{nk}$$

$$= \sum_{n=0}^{N-1} \left(\sum_{j=0}^{N-1} x_j y_{n-j}\right) \omega_N^{jk+(n-j)k}$$

$$= \sum_{n=0}^{N-1} \left(\sum_{j=0}^{N-1} x_j \omega_N^{jk} \cdot y_{n-j} \omega_N^{(n-j)k}\right)$$

$$= \sum_{j=0}^{N-1} x_j \omega_N^{jk} \cdot \sum_{n=0}^{N-1} \sum_{j=0}^{N-1} x_j y_{n-j} \omega_N^{(n-j)k}$$

$$= N \cdot \sum_{j=0}^{N-1} x_j \omega_N^{jk} \cdot \sum_{n=0}^{N-1} y_j \omega_N^{jk}$$

Lemma 2.4 Let $X=(x_0,\cdots,x_{N-1}), Y=(y_0,\cdots,y_{N-1})$ be two N-length sequences, let X' be a 2N-1-length sequences $(x_0,\cdots,x_{N-1},0,\cdots,0)$, i.e. padding X with 0, similarly, let Y' be a 2N-1-length sequences $(y_0,\cdots,y_{N-1},0,\cdots,0)$, i.e. padding Y with 0, then

$$AcyclicConvolution(X, Y) = CyclicConvolution(X', Y')$$

Proof

3 Fast Fourier Transform (FFT)

Cooley-Tukey Algorithm (radix-2)

Let $X=(x_0,\cdots,x_{N-1})$ be a sequence with length N=2M, and $F(X)=(f_0,\cdots,f_{N-1})$ be the discrete fourier transform of X, i.e.

$$f_k = \sum_{n=0}^{N-1} x_n \omega_N^{nk}$$

$$= \sum_{m=0}^{M-1} x_{2m} \omega_N^{2mk} + \sum_{m=0}^{M-1} x_{2m+1} \omega_N^{(2m+1)k}$$

$$= \sum_{m=0}^{M-1} x_{2m} \omega_{\frac{N}{2}}^{mk} + \omega_N^k \sum_{m=0}^{M-1} x_{2m+1} \omega_{\frac{N}{2}}^{mk}$$

Note: ω is a principle Nth root of unity $\Rightarrow \omega^2$ is a principle $\frac{N}{2}$ th root of unity.

Thus, let
$$E_k=\sum\limits_{m=0}^{M-1}x_{2m}\omega_{\frac{N}{2}}^{mk}$$
, and $D_k=\sum\limits_{m=0}^{M-1}x_{2m+1}\omega_{\frac{N}{2}}^{mk}$, we can write $f_k=E_k+\omega_N^kD_k$.

Since $E_{k+\frac{N}{2}}=E_k, D_{k+\frac{N}{2}}=D_k, k=0,\cdots, M-1$, and $\omega_N^{k+\frac{N}{2}}=-\omega_N^k$, finally we have, for $0\leq k\leq M-1$

$$f_k = E_k + \omega_N^k D_k$$
$$f_{k+\frac{N}{2}} = E_k - \omega_N^k D_k$$

And Now we can view E_k as the kth term of the discrete fourier transform on the $\frac{N}{2}$ -length sequence $(x_0, x_2, \cdots, x_{N-2})$, and view D_k as the kth term of the discrete fourier transform on the $\frac{N}{2}$ -length sequence $(x_1, x_3, \cdots, x_{N-1})$.

Suppose ${\cal N}=2^m$, by reduction, the asymptotic complexity of FFT is:

$$O(N \log N)$$

4 Number Theoretic Transform (NTT)

The number theoretic transform (NTT) is obtained by specializing the discrete Fourier transform on a special ring Z_p , the integers modulo a prime p, which is a finite field.

Lemma 4.1 Given a prime integer p, there exist a primitive nth root of unity in Z_p if and only if n|p-1.

5 More Optimize & Application Scenario

Internal Discussed...

Thanks! & Questions?

