

BMEG4450 Project Presentation Lab-on-a-chip

Chan Cheuk Ka 1155174356 Heung Hoi Ying 1155176975 Tam Kam Hang 1155176652

Table of contents

Introduction

Research Applications

Diagnostic Applications

Future Prospects

Lab-on-a-chip

Definition:

Integrated micro electromechanical systems that can carry out all stages of biological and chemical processes

Key Features:

- Point-of-Care Diagnostics
- Biochemical Analysis
- Drug Discovery
- Regenerative Medicine

Components of Lab-on-a-chip

- 1. Injector
- 2. Transporter
- 3. Preparator
- 4. Mixer
- 5. Reactor
- 6. Separator
- 7. Detector
- 8. Controller
- 9. Power supply

Sample handling, mixing and reacting with reagent, separation, detecting analyte

[1] Lim et al., Springer Nature Link, 2010

Advantages

Miniaturization

Capabilities for working with single small entities

Versatility

Integrate complex functions

Automation

Automate repetitive laboratory tasks

- Reduce the time of analysis
- Reduce reagent consumption
- Less waste generation

Diagnostic Applications

Chronic kidney disease diagnosis

Chronic Kidney Disease (CKD) is associated with irreversible kidney function loss

✓ We need renal function assessment and monitoring

Conventional method:

Chemical analysis using estimated glomerular filtration rate(eGFR) and urine albumin to creatinine ratio (UACR)

- Expensive
- Limited availability

Lab-on-a-chip device:

Lab-on-a-chip based detection of creatinine and cystatin C in blood and urine

[3] Karakuzu et al., ACS Omega, 2022 [4] Wu et al., Npj Digital Medicine, 2018

Examples

- Detection of elevated creatinine level in blood based on electrophoretic separation and conductivity detection
- Limit of detection (LOD):
 ~100µM

[4] Wu et al., Npj Digital Medicine, 2018

Examples

 Detection of creatinine in urine by integrating microfluidic chip with the capillary–gravitational valves

[4] Wu et al., Npj Digital Medicine, 2018

Significance

High accessibility

- Avoid the need of sending samples to centralized laboratory
- Can be operate manually by every end user

Small sample volume

 Reduce the sample volume required to micro or nanolitre range.

Higher accuracy

 Better sample processing and avoid interference by other analytes in the sample

Research Applications

Organ-on-a-chip (OoC)

[6] Ingber, Nature Review Genetics, 2022

other in vitro models?

- Unable to simulate microenvironment
- Unable to support complex structures

⇒ Cannot simulate in vivo conditions well

2D Culture

3D Culture

[7] UPM Biomedicals, 2022

other *in vitro* models?

[9] UPM Biomedicals, 2022

more **organs**..!

BLOOD BRAIN BARRIER ON CHIP HEART ON CHIP SHEAR FLOW -KIDNEY ON CHIP LUNG ON CHIP LIVER ON CHIP **GUT ON CHIP**

Human-on-a-chip

[6] Ingber, Nature Review Genetics, 2022

Predictive value

Toxicity

Ebola vaccine:

• 10× fewer induced antibodies in humans than non-human primates^[11]

HIV vaccine:

 Increase risk in humans than non-human primates^[12]

[11] Golding et al., *Cold Spring Harbour Perspectives in Biology*, 2017 [12] Buchbinder et al., *The Lancet*, 2008

Predictive value

Toxicity

Hu5c8 antibody drug^[13]:

- Binds with FcγRlla receptor
- Induced thrombosis in humans
- 2/28 patients suffered heart attack! + pulmonary embolism

why **OoC**?

vs **2D testing**:

- Better in vivo simulation
- More accurate dynamics

vs animal testing:

- Higher predictive power
- Cheaper
- Reproducible
- More ethical

Physiological relevance and complexity

[14] Ma et al., Trends in Pharmacological Sciences, 2021

Future Prospects

what **obstacles** to tackle?

Commercialisation

 Mass production of chips is necessary for self-assessment of patients at home (PoC chips)

Validation

- Large-scale validation is necessary to ensure the applicability of OoC results to humans
- FDA started allowing OoC for proof of DILI drug^[15]

[15] U.S. Food and Drug Administration, 2024

References

- [1] Y. C. Lim, A. Z. Kouzani, and W. Duan, "Lab-on-a-chip: A component view microsystem technologies," SpringerLink, https://link.springer.com/article/10.1007/s00542-010-1141-6
- [2] Ríos, Á., Zougagh, M., & Avila, M., "Miniaturization through lab-on-a-chip: Utopia or reality for routine laboratories?," *Analytica Chimica Acta*, https://www.sciencedirect.com/science/article/pii/S0003267012008926
- [3] B. Karakuzu, E. A. Tarim, C. Oksuz, and H. C. Tekin, "An electromechanical Lab-on-a-Chip platform for colorimetric detection of serum creatinine," ACS Omega, vol. 7, no. 29, pp. 25837–25843, Jul. 2022, doi: 10.1021/acsomega.2c03354.
- [4] Wu, J., Dong, M., Rigatto, C. et al. Lab-on-chip technology for chronic disease diagnosis. npj Digital Med 1, 7 (2018). https://doi.org/10.1038/s41746-017-0014-0
- [5] B. Becher, "What is lab on a chip?," Built In, Jun. 04, 2024. https://builtin.com/articles/lab-on-a-chip
- [6] D. E. Ingber, "Human organs-on-chips for disease modelling, drug development and personalized medicine," *Nature Reviews Genetics*, vol. 23, no. 23, pp. 467–491, Mar. 2022, doi: https://doi.org/10.1038/s41576-022-00466-9.
- [7] "2D vs 3D cell culture | Learning Center," 2D vs 3D cell culture | Learning Center | UPM Biomedicals, 2022. https://www.upmbiomedicals.com/resource-center/learning-center/what-is-3d-cell-culture/2d-versus-3d-cell-culture/
- [8] "Overview of lung-on-a-chip systems The use of the alveolar-capillary barrier in human medicine," Microfluidics Innovation Center, Oct. 30, 2024.
- https://microfluidics-innovation-center.com/reviews/overview-lung-on-chip-technology-use-of-alveolar-capillary-barrier-human-medicine/
- [9] K. H. Benam et al., "Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro," *Nature Methods*, vol. 13, no. 2, pp. 151–157, Dec. 2015. doi: https://doi.org/10.1038/nmeth.3697.
- [10] R. Driver and S. Mishra, "Organ-On-A-Chip Technology: An In-depth Review of Recent Advancements and Future of Whole Body-on-chip," *BioChip Journal*, Oct. 2022, doi: https://doi.org/10.1007/s13206-022-00087-8.
- [11] H. Golding, S. Khurana, and M. Zaitseva, "What Is the Predictive Value of Animal Models for Vaccine Efficacy in Humans?," *Cold Spring Harbor Perspectives in Biology*, vol. 10, no. 4, p. a028902, Mar. 2017, doi: https://doi.org/10.1101/cshperspect.a028902.
- [12] S. P. Buchbinder *et al.*, "Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial," *The Lancet*, vol. 372, no. 9653, pp. 1881–1893, Nov. 2008, doi: https://doi.org/10.1016/s0140-6736(08)61591-3.
- [13] R. Barrile et al., "Organ-on-Chip Recapitulates Thrombosis Induced by an anti-CD154 Monoclonal Antibody: Translational Potential of Advanced Microengineered Systems," Clinical Pharmacology & Therapeutics, vol. 104, no. 6, pp. 1240–1248, Apr. 2018, doi: https://doi.org/10.1002/cpt.1054.
- [14] C. Ma, Y. Peng, H. Li, and W. Chen, "Organ-on-a-Chip: A New Paradigm for Drug Development," *Trends in Pharmacological Sciences*, vol. 42, no. 2, pp. 119–133, Feb. 2021, doi: https://doi.org/10.1016/j.tips.2020.11.009.
- [15] Center, "FDA Accepts First ISTAND Proposal," U.S. Food and Drug Administration, 2024. https://www.fda.gov/drugs/drug-safety-and-availability/fdas-istand-pilot-program-accepts-submission-first-organ-chip-technology-designed-predict-human-drug

Thanks

Q&A session

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon** and infographics & images by **Freepik**

