

Faculty of Engineering and Technology Electrical and Computer Engineering Department ENEE2103

Circuits and Electronics Lab

Experiment No.10 - Pre Lab No.6 Operational Amplifier

Student's Name: Lojain Abdalrazaq. ID Number: 1190707.

Instructor's Name: Dr. Ali Abdo.

Teaching assistant: Eng. Ismail Abualia.

Section: 5.

Apr 30, 2022

1. Adding Application

• Connecting the circuit using PsPice:

Fig 1: connecting adding application circuit

• When V1=0.5V, and V2=2V:

Fig 2: Adding application circuit when v1=0.5 V and V2=2V

• When V1=0.3V, and V2=4V:

Fig 3: Adding application circuit when v1=0.3 V and V2=4V

• When V1=-1.5V, and V2=6V:

Fig 4: Adding application circuit when v1=-1.5 V and V2=6V

• Calculated Voltage:

In the inverting adder circuit, the output voltage can be calculated using the following equation:

$$Vo = -\left(\frac{V1}{R1} + \frac{V2}{R2}\right) \times R_{feedback}$$

1. V1=0.5V and V2=2V:

$$Vo = -\left(\frac{0.5}{10k} + \frac{2}{100k}\right) * 100k = -7 Volt$$

1. V1=0.3V and V2=4V:

$$Vo = -\left(\frac{0.3}{10k} + \frac{4}{100k}\right) * 100k = -7 Volt$$

2. V1=-1.5V and V2=6V:

$$Vo = -\left(\frac{-1.5}{10k} + \frac{6}{100k}\right) * 100k = 9 Volt$$

• Filling the results in the table:

Table 1: Results of adding circuit

Input voltage		Output voltage	
V_1	\mathbf{V}_2	Vo	Calculated voltage
0.5	2	-6.993 Volt	-7 Volt
0.3	4	-6.993 Volt	-7 Volt
-1.5	6	9.008 Volt	9 Volt

• Writing The expression relating Vo to V1 and V2:

→ Using the following equation:

$$Vo = -\left(\frac{V1}{R1} + \frac{V2}{R2}\right) \times R_{feedback}$$

→ By entering the Rf into the brackets:

$$Vo = -\left(rac{V1*R_{feedback}}{R1} + rac{V2*R_{feedback}}{R2}
ight)$$
 $Vo = -rac{V1*R_{feedback}}{R1} - rac{V2*R_{feedback}}{R2}$

So, the
$$X = \frac{-R_{feedback}}{R1} = \frac{-100K}{10K} = -10$$
 and $Y = \frac{-R_{feedback}}{R2} = \frac{-100K}{100K} = -1$

Finally, the expression relating Vo to V1 and V2 is:

$$Vo = -10V1 - V2$$

2. Voltage Follower Application

• Connecting the circuit using PsPice:

Fig 18: connecting the circuit using PsPice

• Plotting Vo and observe the relationship between Vo and Vi:

Fig 19: The relation between Vo and Vi

• Plotting Io and observing its behavior:

Fig 20: The output current Plot

→ It is noticed that the current limit at 40 mA and this lead to voltage limit at 8.9347 V.

• Replacing the 220 ohm with 10k:

Fig 20: The output current Plot when R=10k

→ It is noticed that there is no current limit.

3. Comparator Application

• Connecting the circuit using PsPice:

Fig 5: connecting the comparator application circuit

• When V1=0V:

Fig 6: When V1=0V

Fig 7: The voltage simulation When V1=0V

• When V1=0.98V:

Fig 8: When V1=0.98V

Fig 9: The voltage simulation When V1=0.98V

• When V1=-0.98V:

Fig 10: When V1= -0.98V

Fig 11: The voltage simulation When V1= -0.98V

4. Integrator and Differentiator

- Integrator:
- Connecting the circuit using PsPice:

Fig 12: Connecting the Integrator circuit

• Plotting the output voltage:

Fig 13: The output voltage simulation

Differentiator:

• Connecting the circuit using PsPice:

Fig 14: Connecting the differentiator circuit

• Plotting the output voltage:

Fig 15: The input and output voltage simulation

5. To investigate the effect of adding hysteresis:

• Connecting the circuit using PsPice:

Fig 16: Connecting the circuit using PSpice

• Plotting the input and output voltage:

Fig 17: The input and output voltage simulation