1 Simple Stuff

Prerequisites: control flow (branching, iteration), IO, arithmetic, atomic types.

The Good Old Days ****

Input: An integer 4.

Output: The word "Elephant".

In	Out
4	Elephant

Equation of a Line ****

Input: Two integers k and b, k = 0.

Output: Such value x, that it satisfies the equation kx + b = 0.

Wait, what? ★★☆☆

Input: Two integers a and b. **Output:** The product of a and b.

Note: You may not use the multiplication operation.

In	Out
1	0
0	
7	56
8	

Late'o'clock ★★☆☆

Input: An integer 0 h < 24. Hours on a clock.

Note: Convert the given time h to the 12-hour clock format.

Output: First the time h in 12-hour clock format, then "am" or "pm" depending on the time.

Ĭn	Out
0	12
8	8am
13	1pm

Quadratic Equations ****

Input: Three integers a, b and c.

Output: Find all values of x, such that $ax^2 + bx + c = 0$.

Note: If there are no possible values of x output "NaN" (not a number). The values should not be repeated.

In	Out
1	-2
-1	3
-6	

Qubic Equation ★★★★

Input: Four integers a, b, c and d.

Output: Find all values of x, such that $ax^3 + bx^2 + cx + d = 0$.

Note: If there are no possible values of x output "NaN" (not a number). The

values should not be repeated. **Hint:** use Cardano's formula.

Euclid Approves ****

Input: Two integers a and b, sides of a right angled triangle. **Output:** The hypotenuse c of the aforementioned triangle.

In	Out
3	5
4	

Euclid Disapproves ****

Input: Two integers a and b, sides of a right angled triangle and an integer angle θ (given in degrees) between them.

Output: The third side of the triangle.

Hint: You may use import math to get some functions you might want.

Everyone but Euclid Approves ****

Input: An integer n the amount of following lines, 3 n 100. Each following line i contains a number -100 a_i 100, a component of the vector $\hat{v} = \{a_1, a_2, \dots, a_n\}$.

Output: The length of a vector \hat{v} .

Minmaxed ★☆☆☆

Input: Two integers, a and b.

Output: Two integers, first the largest of them two, next the smallest.

TreE ****

Input: An integer h, the height of the christmass tree.

Output: A christmas tree with total height h + 1, 1 being the trunk of said

tree and h all the result of it.

In	Out
4	е
	a a
	e e e
	aaaa
	a

Sigma for Sum ★★☆☆

Input: An integer a such that $1 a 10^{10^{10}}$.

Output: The sum all the integers $1 + 2 + \cdots + a$.

Hint: Loop isn't the only way to go.

Factor!al ****

Input: An integer a such that $1 b 10^5$.

Output: The product all the integers $1 \times 2 \times \cdots \times b$.

Hint: Lookup the arguments for range in the official Python3.x documentation.

Minmaxed 2: The Sequel ★★★☆

Input: Two integers, a and b.

Output: Two integers, first the largest of them two, next the smallest.

Note: You may only use min() or max(), not both. You may not use branch-

ing.

Set Product ****

Input: Two integers, a and b where a > 0 and b > 0. They create sets of values: $A = \{0, 1, ..., a - 1\}$ and $B = \{0, 1, ..., b - 1\}$.

Output: Print out the product of the two sets.

Note: A product of two sets is a mapping of every element of one set to every element of another, e.g. for sets $C = \{1, 2\}$ and $D = \{3, 4\}$ the product is $C \times D = \{(1, 3), (1, 4), (2, 3), (2, 4)\}.$

2 Turtle or Tortoise?

Prerequisites: turtle module, the entire previous section.

Fair Square ****

Input: An integer A such that 10 A 100.

Output: Using from turtle import Turtle's methods like forward and

right draw a square of length A.

Fair Ngon ****

Input: Two integers, A such that 10 A 100 and N such that 2 N 20. **Output:** Using Turtle draw a regular polygon (an N-gon) with N sides and side length 5A. Ensure that the turtle finishes in the same position as it started in. The turtle shouldn't draw over itself at any point.

Hint: Loops are your friend.

Trigonometry BFF ****

Input: Two integers, a and b.

Output: Using Turtle draw a graph of the function y = a $sin(\frac{\pi x}{10}) + b$. From 0 to 200 and a graph of the function y = b. Print the final position of the turtle. **Hint:** You can get sin and π with from math import pi, sin, they are accurate enough for this purpose.

The Fair Ngon *****

Input: Two integers, A such that $10 \ A \ 100$ and N such that $2 \ N \ 20$. **Output:** Using Turtle draw a regular polygon (an N-gon) with N sides and side length 10A. Ensure that the turtle finishes in the same position as it started in. You are only allowed to control the turtle with goto.

Hint: Trigonometry might help.

Tick Space Tick Space Tick ★★☆☆

Input: Two integers, 10 L 100 and 1 N 15.

Output: Draw a horizontal dotted line of N segments. The length of each segment should be L. The space between two segments should also be L. **Note:** The turtle should start and end the drawing with a filled segment. **Hint:** Make use of turtle.penup, turle.penup and turtle.isdown.