Physics Phormula Sheet

$\vec{v_{av}} = \left(\frac{\vec{v_1} + \vec{v_2}}{2}\right)$	$\vec{v}_2 = \vec{v}_1 + \vec{a}\Delta t$	$\vec{\Delta d} = \left(\frac{\vec{v}_1 + \vec{v}_2}{2}\right) \Delta t$	$\vec{\Delta d} = \vec{v_1} \Delta t + \frac{1}{2} \vec{a} \Delta t^2$
$\vec{\Delta d} = \vec{v_2} \Delta t - \frac{1}{2} \vec{a} \Delta t^2$	$\vec{v_2}^2 = \vec{v_1}^2 + 2\vec{a}\vec{\Delta d}$	$\Delta t = \frac{2v_1 sin\theta}{g}$	$\Delta d_x = \frac{v_1^2 \sin 2\theta}{g}$
$\vec{v_{og}} = \vec{v_{om}} + \vec{v_{mg}}$	$F_g = mg$	$F_g = \frac{Gm_1m_2}{r^2}$	$T = 2\pi\sqrt{\frac{L}{g}}$
$\vec{F_{net}} = ma$	$F_f = \mu F_N$	$a_c = \frac{v^2}{r}$	$a_c = \frac{4\pi^2 r}{T^2}$
$a_c = 4\pi^2 r f^2$	$\frac{F_1}{F_2} = \frac{r_2^2}{r_1^2}$	$F_e = kx$	$E_e = \frac{1}{2}kx^2$
$W = \vec{F} \vec{\Delta d}$	$E_g = mgh$	$E_k = \frac{mv^2}{2}$	$W = \Delta E$
$W = E_{k2} - E_{k1}$	$W = E_{g2} - E_{g1}$	$P = \frac{W}{\Delta t} = \frac{\Delta E}{\Delta t}$	$E_t = E_t'$
$E_t = E_g + E_k + E_e + \dots$	$E_{\gamma} = E_i - E_f(emission)$	$t_o = \frac{t}{\sqrt{1 - \frac{v^2}{c^2}}}$	$L_o = \frac{L}{\sqrt{1 - \frac{v^2}{c^2}}}$
$m = \frac{m_o}{\sqrt{1 - \frac{v^2}{c^2}}}$	$E = mc^2$	$E_h = mc\Delta t$	$m_c c_c \Delta t_c = -m_h c_h \Delta t_h$
$L_f = \frac{E_h}{m}$	$L_v = \frac{E_h}{m}$	$E_k = \frac{p^2}{2m}$	$\vec{p} = m\vec{v}$
$W = \vec{F} cos\theta \vec{\Delta d}$	$\vec{F}\Delta t = \vec{\Delta p}$	Eff. = $\frac{Useful\ Energy\ Output}{Energy\ Input} \times 100\%$	$ec{p}=ec{p'}$
$v_1' = v_1 \left(\frac{m_1 - m_2}{m_1 + m_2} \right)$	$v_2' = v_1 \left(\frac{2m_1}{m_1 + m_2} \right)$	$E_g = \frac{-Gm_1m_2}{r}$	$E_t = \frac{1}{2}E_g$
$v = \sqrt{\frac{2GM}{r}}$	$E_t = E_g + E_k$	$E_k = E_b = E_t $	$f = \frac{1}{T}$
$f = \frac{\text{# of cycles}}{\Delta t}$	$v = f\lambda$	$n_1 sin\theta_1 = n_2 sin\theta_2$	$sin\theta_c = \frac{n_2}{n_1}$
$\frac{n_1}{n_2} = \frac{v_2}{v_1} = \frac{\lambda_2}{\lambda_1}$	$\frac{1}{f} = \frac{1}{d_i} + \frac{1}{d_o}$	$M = \frac{h_i}{h_o} = \frac{-d_i}{d_o}$	$P = \frac{1}{f}$
$x_n = \frac{\left(n - \frac{1}{2}\right)L\lambda}{d}$	$\frac{x_n}{L} = \sin \theta_n$	$x_n = \frac{nL\lambda}{d}$	$y_n = \frac{\left(n + \frac{1}{2}\right)L\lambda}{w}$
$\frac{y_n}{L} = sin\theta_n$	$y_n = \frac{nL\lambda}{w}$	$\Delta x = \frac{L\lambda}{d}$	$\Delta y = \frac{L\lambda}{w}$
$p = \frac{h}{\lambda}$	$\Delta x = \frac{L\lambda}{2t}$	$I = \frac{q}{\Delta t}$	$V = \frac{E}{q}$
$E = qI\Delta t$	q = ne	V = IR	$\frac{R_1}{R_2} = \frac{A_2}{A_1} = \frac{L_1}{L_2}$
$V_T = V_1 + V_2 + V_3 + \dots + V_n$	$P = I^2 R$	$I_T = I_1 + I_2 + I_3 + \dots + I_n$	$R_T = R_1 + R_2 + R_3 + \dots + R_n$
$P = \frac{V^2}{R}$	$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_n}$	P = VI	$Cost = Energy \times Rate$
$\frac{V_p}{V_s} = \frac{N_p}{N_s} + \frac{I_s}{I_p}$	$F_e = \frac{kq_1q_2}{r^2}$	$\vec{F_e} = q\vec{\epsilon}$	$\epsilon = \frac{kq}{r^2}$
$E_e = \frac{kq_1q_2}{r}$	$\epsilon = \frac{V}{d}$	$V = \frac{kq}{r}$	$F_m = qvBsin\theta$
$F_m = BILsin\theta$ $B = \mu_o \left(\frac{NI}{L}\right)$	$\begin{aligned} \epsilon &= \frac{V}{d} \\ \frac{e}{m} &= 1.76 \times 10^{11} \ C/kg \\ E_{\gamma} &= hf \end{aligned}$	$\frac{\dot{\overline{m}}}{\bar{m}} = \frac{c}{B^2 r}$ $f = \frac{c}{\bar{n}}$	$B = \mu_o \left(\frac{I}{2\pi r}\right)$ $E_{\gamma} = E_k + W$
, 2 /	$E_{\gamma} = E_i - E_f \ (emission)$	~	$d_2 = d_1 \left(\frac{n_2}{n_1}\right)$
$\frac{B_1}{B_2} = \frac{N_1 I_1 \mu_1 d_2}{N_2 I_2 \mu_2 d_1}$	$v_s = 332 + 0.6T$	$f_2 = f_1 \left(1 \pm \frac{v_o}{v_s} \right)$	$f_2 = f_1 \left(\frac{v_s}{v_s \pm v_o} \right)$
$\beta = 10log\left(\frac{I_2}{I_1}\right)$	$I = \frac{P}{4\pi r^2}$	$rac{I_1}{I_2} = rac{r_2^2}{r_1^2}$	$L_n = \frac{n\lambda}{2}$
$\Delta L = \frac{\lambda}{2}$	$L_n = \frac{(2n-1)}{\lambda}$		$f_b = f_2 - f_1 $
$v = \sqrt{\frac{GM}{r}}$	$C = \frac{R^3}{T^2}$ $ PS_1 - PS_2 = \left(n - \frac{1}{2}\right)\lambda$		$f_n = nf_o$
$tan\theta_p = \frac{n_2}{n_1}$	$ PS_1 - PS_2 = \left(n - \frac{1}{2}\right)\lambda$	$ PS_1 - PS_2 = n\lambda$	$\frac{\lambda}{w} \geq 1$
Constants			
$e = 1.6 \times 10^{-19} \ C$	$m_{proton} = 1.67 \times 10^{-27} \ kg$	$g = 9.8 \ N/kg$	$m_{electron} = 9.11 \times 10^{-31} \ kg$

$e = 1.6 \times 10^{-19} C$	$m_{proton} = 1.67 \times 10^{-27} \ kg$	$g = 9.8 \ N/kg$	$m_{electron} = 9.11 \times 10^{-31} \ kg$
$m_{Earth} = 5.98 \times 10^{24} \ kg$	$n_{diamond} = 2.42$	$n_{water} = 1.33$	$n_{zircon} = 1.92$
$h = 6.626 \times 10^{-34} \ J \cdot s$	$k=9.0\times 10^9~N\cdot m^2/kg^2$	$c=3\times 10^8~m/s$	$G = 6.67 \times 10^{-11} \ N \cdot m^2/kg^2$
$R_{Earth} = 6.38 \times 10^6~m$	$\mu_o = 4\pi \times 10^{-7} \ T \cdot m/A$	$C_{H_2O} = 4.18 \times 10^3 \ J/kg \cdot {}^o C$	$L_f(H_2O) = 3.3 \times 10^5 \ J/kg$
$L_v(H_2O) = 2.3 \times 10^6 \ J/kg$	$\Delta d_{Earth-Sun} = 1.50 \times 10^{11} \ m$	$\Delta d_{Earth-moon} = 3.85 \times 10^8~m$	$m_{moon} = 7.35 \times 10^{22} \ kg$
$m_{Sun} = 1.99 \times 10^{30} \ kg$			