IIT Jodhpur

Biological Vision and Applications

Module 03-07: Hierarchical Bayesian Model

Hiranmay Ghosh

An example

Prior belief: The bags can have marbles of any color or mix

- What do we learn from these observations?
- Can we predict something about bags 4 6 that are yet to be sampled?

An example

... Contd.

• What do we infer about bag 4 from this new observation?

This is the very basis of transfer learning

Specific knowledge and Generic knowledge

- Specific Knowledge: When we sample marbles from a particular bag, we gain knowledge about the content of that bag
- Generic (Meta) Knowledge: When we sample marbles from several bags, we gain knowledge about all bags ... even for those which are not sampled

This is an instance of inductive reasoning or inductive generalization

Modeling the problem

Hierarchical Bayesian Model

Modeling the problem

contd ...

- Let Θ_i represent the model parameters for bag i
 - $\Theta_i = (\theta_{i1}, \theta_{i2}, \dots), \theta_{ii}$: probability of a marble to be of color i $ightharpoonup 0 \le \theta_{ij} \le 1$, $\sum_i \theta_{ij} = 1$
 - Parameters θ_{ii} 's can be individually learned using Bayesian inferencing
- Θ_i s are modeled as probabilistic functions of some hyper-parameters Ω in HBM
- A common approach is to use Dirichlet distribution

Dirichlet distribution:
$$P_{\alpha}(x) = \frac{1}{B(\alpha)} \prod_{i=1}^k x_i^{(\alpha_i+1)}$$
, where $B(\alpha) = \frac{\prod_{i=1}^k \Gamma(\alpha_i)}{\Gamma(\sum_{i=1}^k \alpha_i)}$

Example of Dirichlet Distribution

What is really happening?

- ullet When we have no observations, we have some priors on Ω
 - ▶ This determines priors (constraints) for Θ_i 's
- As we observe *i*-th bag, we learn (update) Θ_i
 - As we "observe" Θ_i , we learn (update) Ω
- As we update Ω , values of all Θ_i are updated
 - Hyper-parameters Ω are learned together with the model parameters Θ_i 's
 - Hyper-parameters Ω links the model parameters Θ_i 's
 - An observation for one bag serves as an observation for the other bags too

Progressive generalization of knowledge

- It is possible to model generic knowlege with even higher abstraction (level) of knowledge, and so on ...
- The entire knowledge-base gets linked
 - Generalization from one problem to another will be efficient for similar problems

Feature Learning

Which feature do you choose ?

BioVision 03-07

Which category X belongs to?

P and Q are rare flowers, you have one sample for each

Pretty simple!

Which category X belongs to?

P and Q are rare flowers, you have one sample for each

Meta-learning from abundant classes

Meta-learn visual model for objects from abundant classes:

Object features have more spread in color than shape

Use the meta-model to create models for new (and rare) classes

Create models for rare classes from meta-model

X belongs to class P

We put more emphasis on shape than color

Shape bias

That is exactly how a child learns to distinguish objects by their shapes

Source: Shape Bias

Quiz

Quiz 03-07

End of Module 03-07