Universität Salzburg Florian Graf

Machine Learning

Übungsblatt 9 24 Punkte

Aufgabe 1. Skip Connections

7 P.

Gegeben sei ein neuronales Netz mit N linearen Layern, das auf skalaren Eingabedaten $x_i \in \mathbb{R}$ operiert.

Formal bedeutet dies, dass für jeden Layer i = 1, ..., N,

$$s_i = f_i(o_{i-1}) = w_i o_{i-1} + b_i \tag{1}$$

$$o_i = \sigma(s_i) \quad , \tag{2}$$

wobei σ eine (beliebige) Aktivierungsfunktion und $o_0 = x$ ist. Einfachheitshalber besteht jeder Layer aus nur einem Neuron, sodass $w_i, b_i, o_i, s_i \in \mathbb{R}$ skalarwertig sind.

- (a) Bestimmen Sie die Ableitung $\frac{\partial o_n}{\partial w_1}$ des Outputs nach dem Gewicht des ersten Layers in Abhängigkeit von s_i, w_i (für $i=1,\ldots,N$), x und der Ableitung der Aktivierungsfunktion $\sigma'(\cdot)$.
- (b) Erklären Sie mithilfe von (a) das Vanishing-, bzw. Exploding-Gradient Problem.

Wir ändern nun die Architektur durch das Einführen von Skip Connections, die jeweils eine Kombination an Layern f_{2j} , f_{2j+1} mit geradem und dann ungeradem Index überspringen. Die Anzahl N der linearen Layer sei gerade.

- (c) Adaptieren Sie die Formeln (1) und (2) auf die geänderte Architektur.
- (d) Bestimmen Sie $\frac{\partial o_n}{\partial w_1}$ für die geänderte Architektur.
- (e) Wie wirken sich die Shortcuts bzgl. des Vanishing-, bzw. Exploding-Gradient Problems aus?

Aufgabe 2. Initialisierungen

12 P.

Wir betrachten die Initialisierung von linearen Layern in einem neuronalen Netzwerk. Es sei $\mathbf{x} \in \mathbb{R}^{n_{\text{in}}}$ der Input des Layers und $\mathbf{y} \in \mathbb{R}^{n_{\text{out}}}$ der Output, wobei $\mathbf{y} = \mathbf{W}\mathbf{x} + \mathbf{b}$ mit $\mathbf{W} \in \mathbb{R}^{n_{\text{out}} \times n_{\text{in}}}$ und $\mathbf{b} \in \mathbb{R}^{n_{\text{out}}}$.

Wir initialisieren die Einträge w_{ij} der Matrix **W** zufällig, wobei jeder Eintrag w_{ij} unabhängig von der gleichen Verteilung gezogen wird. Diese Verteilung der w_{ij} habe Erwartungswert 0, Varianz σ^2 und sei unabhängig von der Verteilung des Inputs **x**. Der Bias **b** sei auf **0** initialisiert. Außerdem nehmen wir an, dass Verteilungen der Koordinaten x_i gemeinsam unabhängig sind mit $\mathbb{E}[x_i] = 0$ und $\mathbb{V}[x_i] = \gamma^2$.

- (a) Berechnen Sie die Erwartungswert $\mathbb{E}[y_i]$ der Einträge des Outputs zur Initialisierung.
- (b) Berechnen Sie die Varianzen $\mathbb{V}[y_i]$ des Outputs in Abhängigkeit der Varianzen des Inputs γ^2 . Hinweis: Für die Varianz einer Summe von Zufallsvariablen Z_i gilt $\mathbb{V}[\sum_i Z_i] = \sum_i \mathbb{V}[Z_i] + \sum_{j \neq k} \text{Cov}(Z_j, Z_k)$.
- (c) Motivieren Sie die Wahl einer Initialisierungsverteilung mit Varianz $\sigma^2 = \frac{1}{n_{in}}$

Alternativ wählen wir σ^2 unter Berücksichtigung des Gradienten des Trainingsloss L. Dazu nehmen wir an, dass die partiellen Ableitungen $\frac{\partial L}{\partial y_i}$ jeweils einer Verteilung mit Erwartungswert 0 und Varianz γ^2 folgen. Die Verteilung nach der wir die Gewichte w_{ij} initialisieren sei davon unabhängig.

(d) Nach der mehrdimensionalen Kettenregel gilt dass die Jacobi-Matrix $\mathbf{J}_L(x)$ des Trainingsloss die Gleichung

$$J_L(\mathbf{x}) = J_L(\mathbf{y}) J_{\nu}(\mathbf{x})$$

erfüllt.

Drücken Sie diese Gleichung durch die Gradienten $\nabla_x L$, $\nabla_y L$ und die Matrix **W** aus.

Hinweis, die Einträge der Jacobi Matrix einer differenzierbaren Funktion $f: \mathbb{R}^k \to \mathbb{R}^l$, $\mathbf{z} \mapsto f(\mathbf{z})$ sind definiert als $[\mathbf{J}_f(\mathbf{z})]_{ij} = \frac{\partial f_i}{\partial z_j}$

- (e) Berechnen Sie die Erwartungswerte $\mathbb{E}\left[\frac{\partial L}{\partial x_i}\right]$ der partiellen Ableitungen.
- (f) Berechnen Sie die Varianzen $\mathbb{V}\left[\frac{\partial L}{\partial x_i}\right]$ in Abhängigkeit von γ^2 .
- (g) Motivieren Sie die Wahl einer Initialisierungsverteilung mit Varianz $\sigma^2 = \frac{1}{n_{\rm out}}$.

Aufgabe 3. Xavier Initialisierung

5 P.

In dem Setting von Aufgabe 2 nennt man die Wahl $\sigma^2 = \frac{2}{n_{\rm in} + n_{\rm out}}$ Xavier Initialisierung.

- (a) Motivieren Sie diese Wahl mithilfe der Ergebnisse aus Aufgabe 2.
- (b) Wir initialisieren W mithilfe einer Normalverteilung $\mathcal{N}(m, s^2)$. Welche Parameter m, s^2 entsprechen einer Xavier Initialisierung.
- (c) Wir initialisieren W mithilfe einer stetigen Gleichverteilung $\mathcal{U}_{[a,b]}$ auf dem Interval [a,b]. Welche Intervalgrenzen a,b entsprechen einer Xavier Initialisierung.