ICFP M2 - Statistical physics 2 - Solution of the exam

Grégory Schehr, Guilhem Semerjian

April 10th, 2020

1 Questions on the lectures

- 1. (a) The energies $H(\underline{\sigma})$ are linear combinations of the Gaussian random variables J and J', hence they are Gaussian as well.
 - (b) The first moment vanishes, as the average of the J and J' is zero:

$$\mathbb{E}[H(\underline{\sigma})] = -\frac{1}{\sqrt{N}} \sum_{1 \le i \le j \le N} \mathbb{E}[J_{ij}] \sigma_i \sigma_j - \sqrt{\frac{3}{N^2}} \sum_{1 \le i \le j \le k \le N} \mathbb{E}[J'_{ijk}] \sigma_i \sigma_j \sigma_k = 0.$$

In the second moment only the terms involving $(J_{ij})^2$ and $(J'_{ijk})^2$ give a non-zero contribution, as these random variables are independent and of zero mean:

$$\mathbb{E}[H(\underline{\sigma})H(\underline{\tau})] = \frac{1}{N} \sum_{1 \le i < j \le N} \sigma_i \sigma_j \tau_i \tau_j + \frac{3}{N^2} \sum_{1 \le i < j \le k \le N} \sigma_i \sigma_j \sigma_k \tau_i \tau_j \tau_k .$$

(c) In the large N limit one can replace at the leading order $\sum_{i < j}$ by $\frac{1}{2}\sum_{i,j}$, neglecting the sub-dominant contribution of the diagonal, and similarly $\sum_{i < j < k}$ by $\frac{1}{6}\sum_{i,j,k}$, neglecting the cases where one or two indices are equal. This gives

$$\mathbb{E}[H(\underline{\sigma})H(\underline{\tau})] = \frac{1}{2N} \sum_{i,j} \sigma_i \sigma_j \tau_i \tau_j + \frac{1}{2N^2} \sum_{i,j,k} \sigma_i \sigma_j \sigma_k \tau_i \tau_j \tau_k + O(1)$$
$$= \frac{N}{2} \left(\frac{1}{N} \sum_i \sigma_i \tau_i\right)^2 + \frac{N}{2} \left(\frac{1}{N} \sum_i \sigma_i \tau_i\right)^3 + O(1) ,$$

which is of the form of the text with $g(q) = q^2 + q^3$.

2. (a) The average of a binomial random variable is the product of its parameters, the number l of trials and the probability p of success for each trial:

$$m = \mathbb{E}[k] = \sum_{k=0}^{l} q_k k = \sum_{k=0}^{l} {l \choose k} k p^k (1-p)^{l-k} = lp \sum_{k=1}^{l} {l-1 \choose k-1} p^{k-1} (1-p)^{l-k} = lp.$$

- (b) One can view a branching process of g+1 generations as k copies of branching processes of g generations, where k is the number of offspring of the ancestor. As everything is independent one obtains $\mathbb{E}[\mathcal{N}^{(g+1)}] = \mathbb{E}[k]\mathbb{E}[\mathcal{N}^{(g)}]$, hence by induction $\mathbb{E}[\mathcal{N}^{(g)}] = m^g$. When g goes to infinity this either converges to 0, if the average number of descendent of an individual m is strictly smaller than 1, or diverges to $+\infty$ if m>1. In terms of the parameter p these two behaviors occurs for $p< p_c$ and $p>p_c$ respectively, with the threshold value $p_c=\frac{1}{l}$.
- (c) Suppose the ancestor has k offsprings; the branching process persists forever if at least one of its k offsprings has an infinite line of descendents. Reciprocally the branching process is finite if all the offsprings have a finite progeny. Hence f(p,l) is solution of

$$1 - f = \sum_{k=0}^{l} q_k (1 - f)^k = \sum_{k=0}^{l} {l \choose k} p^k (1 - p)^{l-k} (1 - f)^k = (1 - pf)^l , \qquad f = 1 - (1 - pf)^l .$$

The function $f \mapsto 1 - (1 - pf)^l$ is an increasing function on the interval $f \in [0, 1]$, from 0 in f = 0 to $1 - (1 - p)^l$ in f = 1, with a derivative lp in f = 0. The graphical study of this self-consistent equation is given on the left plot of this figure :

1

For $p < p_c$ the only solution is f = 0, whereas for $p > p_c$ a non-trivial solution appears continuously, hence the shape of f(p, l) plotted on the right plot of the figure. It varies as $(p - p_c)^{\beta}$ when $p \to p_c^+$, up to a multiplicative constant, with the critical exponent $\beta = 1$, as can be easily established by expanding the self-consistent equation for f and $p - p_c$ small (cf TD 4).

- 3. (a) Such a domain wall energy is proportional to the area of the surface separating the two phases, hence of order ℓ^{d-1} .
 - (b) Flipping the spins inside a domain Ω yields for the second term $\sum_{i\in\Omega}h_i$. This is a sum of $|\Omega|$ (the number of sites in the domain) i.i.d. random variables, its cumulants are thus $|\Omega|$ multiplied by the cumulants of one h_i . As the average of h_i vanishes so does the average of the sum, while the variance of the sum is order $|\Omega| \sim \ell^d$, hence the sum is of order $\ell^{d/2}$.
 - (c) Comparing the two terms amount to compare d with d/2. For d>2 the surface tension cost is dominant when ℓ is large, hence the ferromagnetic phase is protected from the effect of disorder and does exist in these dimensions if the disorder is not too strong. When $d \leq 2$ on the contrary the energetic gain obtained by flipping the spins will dominate in the large ℓ limit for arbitrarily small disorder, that destroys the possibility of a ferromagnetic phase in these low dimensions.

2 The Wigner semi-circular law via replicas

We recall here the definition of the average density of eigenvalues,

$$\rho(x) = \mathbb{E}\left[\frac{1}{N}\sum_{i=1}^{N}\delta(x - \lambda_i)\right] , \qquad (1)$$

and the Gaussian identities:

$$\int_{\mathbb{R}^m} d\vec{x} \, e^{-\frac{1}{2}\vec{x}^T \mathbf{A} \vec{x}} = \frac{(2\pi)^{m/2}}{\sqrt{\det \mathbf{A}}} , \qquad (2)$$

$$\int_{\mathbb{R}^m} d\vec{x} \, e^{-\frac{1}{2}\vec{x}^T \mathbf{A} \vec{x} + \vec{b}^T \vec{x}} = \frac{(2\pi)^{m/2}}{\sqrt{\det \mathbf{A}}} e^{\frac{1}{2}\vec{b}^T \mathbf{A}^{-1} \vec{b}} \,, \tag{3}$$

$$\int_{\mathbb{R}^m} d\vec{x} \, x_k x_l \, e^{-\frac{1}{2}\vec{x}^T \mathbf{A} \vec{x}} = \frac{(2\pi)^{m/2}}{\sqrt{\det \mathbf{A}}} (\mathbf{A}^{-1})_{kl} . \tag{4}$$

2.1 Preamble

1.) Using the distributional identity recalled in the text we obtain

$$\frac{1}{N} \sum_{i=1}^{N} \delta(x - \lambda_i) = \frac{1}{\pi N} \lim_{\epsilon \to 0^+} \operatorname{Im} \left(\sum_{i=1}^{N} \frac{1}{x - i\epsilon - \lambda_i} \right) = -\frac{1}{\pi N} \lim_{\epsilon \to 0^+} \operatorname{Im} \left(\sum_{i=1}^{N} \frac{1}{\lambda_i - x_{\epsilon}} \right)$$
 (5)

where $x_{\epsilon} = x - i\epsilon$. Therefore, using that

$$\sum_{i=1}^{N} \frac{1}{\lambda_i - x_{\epsilon}} = \text{Tr}(\mathbf{J} - x_{\epsilon} \mathbb{I}_N)^{-1} , \qquad (6)$$

where \mathbb{I}_N denotes the identity matrix of size N, together with the definition of $\rho(x)$ in (1) one obtains

$$\rho(x) = -\frac{1}{N\pi} \lim_{\epsilon \to 0^+} \operatorname{Im} \left(\mathbb{E} \left[\operatorname{Tr} (\mathbf{J} - x_{\epsilon} \mathbb{I}_N)^{-1} \right] \right) , \ x_{\epsilon} = x - i\epsilon .$$
 (7)

2.) The N-dimensional Gaussian integral

$$Z_J(x_{\epsilon}) = \int_{-\infty}^{\infty} d\phi_1 \cdots \int_{-\infty}^{\infty} d\phi_N \exp\left[-\frac{i}{2}x_{\epsilon} \sum_{k=1}^N \phi_k^2 + \frac{i}{2} \sum_{k,l} J_{kl} \phi_k \phi_l\right]$$
(8)

$$= \int_{\mathbb{R}^N} d\vec{\phi} \exp\left[-\frac{1}{2}\vec{\phi}^T (ix_{\epsilon} \mathbb{I}_N - i\mathbf{J})\vec{\phi}\right]$$
 (9)

is convergent because the absolute value of the integrand is $\exp[-\frac{\epsilon}{2}\sum_k \phi_k^2]$, which is integrable for every $\epsilon > 0$. Taking the derivative of $\ln Z_J(x_{\epsilon})$ with respect to x one obtains

$$\frac{\mathrm{d}\ln Z_J(x_{\epsilon})}{\mathrm{d}x} = \frac{\int_{\mathbb{R}^N} \mathrm{d}\vec{\phi} \left(-\frac{i}{2} \sum_{k=1}^N \phi_k^2\right) \exp\left[-\frac{1}{2} \vec{\phi}^T (ix_{\epsilon} \mathbb{I}_N - i\mathbf{J}) \vec{\phi}\right]}{\int_{\mathbb{R}^N} \mathrm{d}\vec{\phi} \exp\left[-\frac{1}{2} \vec{\phi}^T (ix_{\epsilon} \mathbb{I}_N - i\mathbf{J}) \vec{\phi}\right]}$$
(10)

$$= -\frac{i}{2} \sum_{k=1}^{N} ((ix_{\epsilon} \mathbb{I}_{N} - i\mathbf{J})^{-1})_{kk} = \frac{1}{2} \sum_{k=1}^{N} ((\mathbf{J} - x_{\epsilon} \mathbb{I}_{N})^{-1})_{kk}$$
 (11)

where, in the second line, we have used the Gaussian identities (2) and (4). This finally leads to

$$\operatorname{Tr}(\mathbf{J} - x_{\epsilon} \mathbb{I})^{-1} = 2 \frac{\mathrm{d}}{\mathrm{d}x} \ln Z_J(x_{\epsilon}) .$$
(12)

2.2 A simplified computation

- 3.) The replacement $\mathbb{E}[\ln Z_J(x_\epsilon)] \approx \ln (\mathbb{E}[Z_J(x_\epsilon)])$ is the annealed approximation. In the more general context of disordered systems, this approximation is valid in the large N limit if $Z_J(x_\epsilon)$ does not fluctuate too much, i.e. if it is self-averaging : $Z_J(x_\epsilon) \to \mathbb{E}[Z_J(x_\epsilon)]$ as $N \to \infty$. This is the case when the disorder is weak, or the temperature high.
- 4.) The average "partition function" $\mathbb{E}[Z_J(x_{\epsilon})]$ is given by

$$\mathbb{E}[Z_J(x_{\epsilon})] = \int_{\mathbb{R}^N} d\vec{\phi} \, e^{-\frac{i}{2}x_{\epsilon} \sum_{k=1}^N \phi_k^2} \prod_{k=1}^N \mathbb{E}\left[e^{\frac{i}{2}J_{kk}\phi_k^2}\right] \prod_{k< l} \mathbb{E}\left[e^{iJ_{kl}\phi_k\phi_l}\right] . \tag{13}$$

Note that in the last factors, the argument of the exponential is indeed $iJ_{kl}\phi_k\phi_l$ and not $(i/2)J_{kl}\phi_k\phi_l$ since the product over k and l is restricted to k < l, while there is no restriction on these indices in Eq. (8). Using the Gaussian integration formulae (2,3) for m = 1, one finds

$$\mathbb{E}\left[e^{\frac{i}{2}J_{kk}\phi_k^2}\right] = e^{-\frac{\phi_k^4}{8}\mathbb{E}[J_{kk}^2]} = e^{-\frac{\phi_k^4}{4N}}, \quad k = 1, \dots, N,$$
(14)

and similarly

$$\mathbb{E}\left[e^{iJ_{kl}\phi_k\phi_l}\right] = e^{-\frac{\phi_k^2\phi_l^2}{2}\mathbb{E}[J_{kl}^2]} = e^{-\frac{\phi_k^2\phi_l^2}{2N}}, \quad k < l.$$
 (15)

Injecting these results (14) and (15) in Eq. (13) one finds

$$\mathbb{E}[Z_J(x_\epsilon)] = \int_{\mathbb{R}^N} d\vec{\phi} \, e^{-\frac{i}{2}x_\epsilon \sum_{k=1}^N \phi_k^2} \, e^{-\frac{1}{4N} \sum_{k=1}^N \phi_k^4 - \frac{1}{2N} \sum_{k$$

which finally yields

$$\mathbb{E}[Z_J(x_{\epsilon})] = \int_{-\infty}^{\infty} d\phi_1 \cdots \int_{-\infty}^{\infty} d\phi_N \exp\left[-\frac{i}{2} x_{\epsilon} \sum_{k=1}^N \phi_k^2 - \frac{1}{4N} \left(\sum_{k=1}^N \phi_k^2\right)^2\right].$$
(17)

5.) We use the identity (3) with m = 1 to write

$$e^{-\frac{1}{4N}(\sum_{k=1}^{N}\phi_k^2)^2} = \sqrt{\frac{N}{\pi}} \int_{-\infty}^{\infty} dq \, e^{-Nq^2 + iq \sum_{k=1}^{N}\phi_k^2} \,. \tag{18}$$

Hence $\mathbb{E}[Z_J(x_{\epsilon})]$ can be written as

$$\mathbb{E}[Z_J(x_{\epsilon})] = \sqrt{\frac{N}{\pi}} \int_{-\infty}^{\infty} \mathrm{d}q \,\mathrm{e}^{-Nq^2} \int_{\mathbb{R}^N} \mathrm{d}\vec{\phi} \,\mathrm{e}^{i(q-\frac{x_{\epsilon}}{2})} \sum_{k=1}^N \phi_k^2$$

$$= \sqrt{\frac{N}{\pi}} \int_{-\infty}^{\infty} \mathrm{d}q \,\mathrm{e}^{-Nq^2} \left[\int_{-\infty}^{\infty} \mathrm{d}\phi \,\mathrm{e}^{i(q-\frac{x_{\epsilon}}{2})\phi^2} \right]^N . \tag{19}$$

The integral over ϕ can be evaluated using the relation (2) which, specified for m=1, yields here

$$\int_{-\infty}^{\infty} d\phi \, e^{i(q - \frac{x_{\epsilon}}{2})\phi^2} = \left[\frac{i\pi}{(q - \frac{x_{\epsilon}}{2})} \right]^{1/2} . \tag{20}$$

Therefore, by substituting (20) in (19) one finds that $\mathbb{E}[Z_J(x_\epsilon)]$ can be written as

$$\mathbb{E}[Z_J(x_{\epsilon})] = \sqrt{\frac{N}{\pi}} \int_{-\infty}^{\infty} dq \, e^{-N \, \varphi(q, x_{\epsilon})} \,, \, \varphi(q, x_{\epsilon}) = q^2 - \frac{1}{2} \ln \left(\frac{2\pi}{i(x_{\epsilon} - 2q)} \right) \,.$$
 (21)

6.) By substituting the identity found in (12) in the expression for the density $\rho(x)$ in Eq. (7) one finds

$$\rho(x) = -\frac{2}{N\pi} \lim_{\epsilon \to 0^+} \operatorname{Im} \frac{\mathrm{d}}{\mathrm{d}x} \mathbb{E}\left[\ln(Z_J(x_\epsilon))\right] \approx -\frac{2}{N\pi} \lim_{\epsilon \to 0^+} \operatorname{Im} \frac{\mathrm{d}}{\mathrm{d}x} \ln(\mathbb{E}[Z_J(x_\epsilon)]) , \qquad (22)$$

where the last relation holds in the annealed approximation considered here. We see that we need to evaluate $N^{-1} \ln(\mathbb{E}[Z_J(x_{\epsilon})])$ in the limit of large N and therefore, anticipating that $\rho(x)$ is of order $\mathcal{O}(1)$, we only need to retain the exponentially large terms in (21).

7.) The saddle point equation $\partial_q \varphi(q, x_{\epsilon}) = 0$ yields the quadratic equation

$$2q + \frac{1}{2q - x_{\epsilon}} = 0 , \qquad 4q^2 - 2x_{\epsilon}q + 1 = 0 , \qquad (23)$$

which admits the two solutions

$$q_{\pm} = \frac{1}{4} \left(x_{\epsilon} \pm \sqrt{x_{\epsilon}^2 - 4} \right) . \tag{24}$$

8.) In the limit of large N the Laplace method applied to (21) yields

$$\lim_{N \to \infty} \frac{\ln \mathbb{E}\left[Z_J(x_{\epsilon})\right]}{N} = -\varphi(q_+, x_{\epsilon}) . \tag{25}$$

Therefore, using this result (25) in Eq. (22) one finds

$$\lim_{N \to \infty} \rho(x) = \frac{2}{\pi} \lim_{\epsilon \to 0^+} \operatorname{Im} \frac{\mathrm{d}}{\mathrm{d}x} \varphi(q_+, x_{\epsilon}) .$$
 (26)

9.) To compute $\frac{d}{dx}\varphi(q_+,x_{\epsilon})$ we notice that $\varphi(q_+,x_{\epsilon})$ depends on x through the dependence of q_+ on x (24) as well as through the x-dependence of the function $\varphi(q,x_{\epsilon})$ itself (21). Therefore differentiating using the chain rule one finds

$$\frac{\mathrm{d}}{\mathrm{d}x}\varphi(q_+, x_\epsilon) = \frac{\partial q_+}{\partial x} \frac{\partial \varphi(q, x_\epsilon)}{\partial q} \Big|_{q=q_+} + \frac{\partial \varphi(q, x_\epsilon)}{\partial x} \Big|_{q=q_+}.$$
(27)

The first term vanishes since q_+ is a saddle point, solution of $\partial_q \varphi = 0$, and the second term yields

$$\frac{\mathrm{d}}{\mathrm{d}x}\varphi(q_+, x_\epsilon) = \frac{\partial\varphi(q, x_\epsilon)}{\partial x}\Big|_{q=q_+} = \frac{1}{2(x_\epsilon - 2q_+)} = q_+ = \frac{1}{4}\left(x_\epsilon + \sqrt{x_\epsilon^2 - 4}\right) , \tag{28}$$

where in the last two equalities we have used (23) and (24). Finally, injecting this result (28) in Eq. (26) one finds

$$\lim_{N \to \infty} \rho(x) = \frac{1}{2\pi} \lim_{\epsilon \to 0^+} \operatorname{Im} \left[x_{\epsilon} + \sqrt{x_{\epsilon}^2 - 4} \right] , \qquad (29)$$

which leads to the Wigner semi-circle law

$$\rho(x) \underset{N \to \infty}{\longrightarrow} \left\{ \begin{array}{c} \frac{1}{2\pi} \sqrt{4 - x^2} , |x| < 2 \\ 0, |x| > 2. \end{array} \right.$$
 (30)

2.3 A more complete computation

10.) By using the replica trick

$$\mathbb{E}[\ln Z_J(x_\epsilon)] = \lim_{n \to 0} \frac{1}{n} \ln \left(\mathbb{E}[Z_J(x_\epsilon)^n] \right) . \tag{31}$$

together with the first equality in (22) one obtains

$$\rho(x) = -\frac{2}{N\pi} \lim_{\epsilon \to 0^+} \lim_{n \to 0} \operatorname{Im} \frac{\mathrm{d}}{\mathrm{d}x} \frac{1}{n} \ln \left(\mathbb{E}[Z_J(x_\epsilon)^n] \right) . \tag{32}$$

11.) By replicating the system n times to write the n-th power $Z_J(x_\epsilon)^n$ and performing the averages over the random variables J_{kl} , one has

$$\mathbb{E}[Z_{J}(x_{\epsilon})^{n}] = \int_{-\infty}^{\infty} \prod_{k=1}^{N} \prod_{a=1}^{n} d\phi_{k}^{a} e^{-\frac{ix_{\epsilon}}{2} \sum_{k=1}^{N} \sum_{a=1}^{n} (\phi_{k}^{a})^{2}} \mathbb{E}[e^{\frac{i}{2} \sum_{k,l} J_{kl} \sum_{a=1}^{n} \phi_{k}^{a} \phi_{l}^{a}}]$$

$$= \int_{-\infty}^{\infty} \prod_{k=1}^{N} \prod_{a=1}^{n} d\phi_{k}^{a} e^{-\frac{ix_{\epsilon}}{2} \sum_{k=1}^{N} \sum_{a=1}^{n} (\phi_{k}^{a})^{2}} \prod_{k=1}^{N} \mathbb{E}[e^{\frac{i}{2} J_{kk} \sum_{a=1}^{n} (\phi_{k}^{a})^{2}}] \prod_{k

$$= \int_{-\infty}^{\infty} \prod_{k=1}^{N} \prod_{a=1}^{n} d\phi_{k}^{a} e^{-\frac{ix_{\epsilon}}{2} \sum_{k=1}^{N} \sum_{a=1}^{n} (\phi_{k}^{a})^{2}} e^{-\frac{1}{4N} \sum_{k=1}^{N} \sum_{a,b=1}^{n} (\phi_{k}^{a})^{2} (\phi_{k}^{b})^{2}}$$

$$\times e^{-\frac{1}{2N} \sum_{k

$$(33)$$$$$$

which can be written (by inverting the sum over k and the double sum over a, b in the argument of the last two exponentials) as

$$\mathbb{E}[Z_J(x_{\epsilon})^n] = \int_{-\infty}^{\infty} \prod_{k=1}^N \prod_{a=1}^n d\phi_k^a \exp\left[-\frac{i}{2} x_{\epsilon} \sum_{k=1}^N \sum_{a=1}^n (\phi_k^a)^2 - \frac{1}{4N} \sum_{a,b=1}^n \left(\sum_{k=1}^N \phi_k^a \phi_k^b\right)^2\right].$$
(36)

12.) We write the exponentials containing quartic terms in Eq. (36) as

$$\exp\left[-\frac{1}{4N}\sum_{a,b=1}^{n}\left(\sum_{k=1}^{N}\phi_{k}^{a}\phi_{k}^{b}\right)^{2}\right] = \exp\left[-\frac{1}{4N}\sum_{a=1}^{n}\left(\sum_{k=1}^{N}(\phi_{k}^{a})^{2}\right)^{2} - \frac{1}{2N}\sum_{1\leq a< b\leq n}\left(\sum_{k=1}^{N}\phi_{k}^{a}\phi_{k}^{a}\right)^{2}\right]$$
(37)

and we use n(n+1)/2 times the Gaussian identity (3) to rewrite it as

$$\exp\left[-\frac{1}{4N}\sum_{a,b=1}^{n}\left(\sum_{k=1}^{N}\phi_{k}^{a}\phi_{k}^{b}\right)^{2}\right] = \prod_{a=1}^{n}\left(\sqrt{\frac{N}{\pi}}\int_{-\infty}^{\infty}dQ_{aa}e^{-NQ_{aa}^{2}+iQ_{aa}\sum_{k=1}^{N}(\phi_{k}^{a})^{2}}\right) \times \prod_{1\leq a< b\leq n}\left(\sqrt{\frac{2N}{\pi}}\int_{-\infty}^{\infty}dQ_{ab}e^{-2NQ_{ab}^{2}+2iQ_{ab}\sum_{k=1}^{N}\phi_{k}^{a}\phi_{k}^{b}}\right)$$
(38)

which can be re-written as

$$\exp\left[-\frac{1}{4N}\sum_{a,b=1}^{n}\left(\sum_{k=1}^{N}\phi_{k}^{a}\phi_{k}^{b}\right)^{2}\right] = 2^{n(n-1)/4}\left(\frac{N}{\pi}\right)^{n(n+1)/4}$$

$$\times \int_{-\infty}^{\infty}\prod_{1\leq a\leq b\leq n}dQ_{ab}\exp\left[-N\sum_{a,b=1}^{n}(Q_{ab})^{2}+i\sum_{a,b=1}^{n}Q_{ab}\sum_{k=1}^{N}\phi_{k}^{a}\phi_{k}^{b}\right],$$
(39)

with the convention, in the argument of the exponential, that $Q_{ab} = Q_{ba}$ if a > b. Therefore, substituting this identity (39) in (36) one obtains

$$\mathbb{E}[Z_{J}(x_{\epsilon})^{n}] = A_{N,n} \int_{-\infty}^{\infty} \prod_{k=1}^{N} \prod_{a=1}^{n} d\phi_{k}^{a} \int_{-\infty}^{\infty} \prod_{1 \leq a \leq b \leq n} dQ_{ab}$$

$$\times \exp \left[-N \sum_{a,b=1}^{n} (Q_{ab})^{2} - \frac{i}{2} x_{\epsilon} \sum_{k=1}^{N} \sum_{a=1}^{n} (\phi_{k}^{a})^{2} + i \sum_{a,b=1}^{n} Q_{ab} \sum_{k=1}^{N} \phi_{k}^{a} \phi_{k}^{b} \right]$$
(40)

where $A_{N,n} = 2^{n(n-1)/4} \left(\frac{N}{\pi}\right)^{n(n+1)/4}$.

13.) We observe that the *n*-dimensional vectors $\{\phi_k^1, \phi_k^2, \cdots, \phi_k^n\}$, for different values of $k = 1, \cdots, N$, are now independent in (40). Therefore one has

$$\mathbb{E}[Z_J(x_{\epsilon})^n] = A_{N,n} \int_{-\infty}^{\infty} \prod_{1 < a < b < n} dQ_{ab} e^{-N\sum_{a,b=1}^n (Q_{ab})^2} \left(\int_{-\infty}^{\infty} \prod_{a=1}^n d\phi^a e^{-\frac{1}{2}\sum_{a,b=1}^n \phi^a (ix_{\epsilon}\delta_{ab} - 2iQ_{ab})\phi^b} \right)^N . \tag{41}$$

The multiple integral over the ϕ^a 's can be explicitly evaluated using (2) with m=n, which yields

$$\mathbb{E}[Z_J(x_{\epsilon})^n] = A_{N,n} \prod_{1 \le a \le b=1}^n \int_{-\infty}^{\infty} dQ_{ab} \exp\left[-N\Phi(\mathbf{Q}, x_{\epsilon})\right]$$
(42)

where **Q** is the (symmetric) overlap matrix, of size $n \times n$, with matrix elements Q_{ab} for $a \leq b$ (and $Q_{ab} = Q_{ba}$ for a > b), and

$$\Phi(\mathbf{Q}, x_{\epsilon}) = \text{Tr}[\mathbf{Q}^2] - \frac{1}{2} \ln \left[\det \left(\frac{2\pi}{i} \left(x_{\epsilon} \mathbb{I}_n - 2\mathbf{Q} \right)^{-1} \right) \right] ,$$
(43)

where \mathbb{I}_n denotes the identity matrix matrix of size n.

14.) Expliciting the independent parameters in \mathbf{Q} we rewrite Φ as

$$\Phi(\mathbf{Q}, x_{\epsilon}) = \sum_{a=1}^{n} Q_{aa}^{2} + 2\sum_{a < b} Q_{ab}^{2} - \ln\left(\int_{-\infty}^{\infty} \prod_{a=1}^{n} d\phi^{a} e^{-\frac{i}{2}x_{\epsilon} \sum_{a} (\phi^{a})^{2} + i\sum_{a} Q_{aa}(\phi^{a})^{2} + 2i\sum_{a < b} Q_{ab}\phi^{a}\phi^{b}}\right).$$
(44)

Taking the derivative with respect to one diagonal element Q_{cc} or one off-diagonal element Q_{cd} with c < d yields

$$\frac{\partial \Phi}{\partial Q_{cc}} = 2Q_{cc} - i \frac{\int_{-\infty}^{\infty} \prod_{a=1}^{n} d\phi^{a}(\phi^{c})^{2} e^{-\frac{1}{2} \sum_{a,b=1}^{n} \phi^{a}(ix_{\epsilon}\delta_{ab} - 2iQ_{ab})\phi^{b}}}{\int_{a=1}^{\infty} \prod_{a=1}^{n} d\phi^{a} e^{-\frac{1}{2} \sum_{a,b=1}^{n} \phi^{a}(ix_{\epsilon}\delta_{ab} - 2iQ_{ab})\phi^{b}}} = 2Q_{cc} - i((ix_{\epsilon}\mathbb{I}_{n} - 2i\mathbf{Q})^{-1})_{cc}, \quad (45)$$

$$\frac{\partial \Phi}{\partial Q_{cd}} = 4Q_{cd} - 2i \frac{\int_{-\infty}^{\infty} \prod_{a=1}^{n} d\phi^{a} \phi^{c} \phi^{d} e^{-\frac{1}{2} \sum_{a,b=1}^{n} \phi^{a} (ix_{\epsilon} \delta_{ab} - 2iQ_{ab}) \phi^{b}}}{\int_{-\infty}^{\infty} \prod_{a=1}^{n} d\phi^{a} e^{-\frac{1}{2} \sum_{a,b=1}^{n} \phi^{a} (ix_{\epsilon} \delta_{ab} - 2iQ_{ab}) \phi^{b}}} = 4Q_{cd} - 2i ((ix_{\epsilon} \mathbb{I}_{n} - 2i\mathbf{Q})^{-1})_{cd}, (46)$$

where we used the Gaussian integrals (2,4). Simplifying the factors i gives the saddle-point equation of the text,

$$2 Q_{ab} - ((x_{\epsilon} \mathbb{I}_n - 2\mathbf{Q})^{-1})_{ab} = 0 , \quad \forall \ a, b = 1, \dots, n .$$
(47)

Alternatively one can use the identity $\partial_z(\det \mathbf{Y}) = (\det \mathbf{Y}) \operatorname{Tr}(\mathbf{Y}^{-1}\partial_z \mathbf{Y})$, hence $\partial_z \ln(\det \mathbf{Y}) = \operatorname{Tr}(\mathbf{Y}^{-1}\partial_z \mathbf{Y})$ applied to $\mathbf{Y} = x_{\epsilon} \mathbb{I}_n - 2\mathbf{Q}$ and $z = Q_{ab}$; one finds

$$\frac{\partial \ln \det(x_{\epsilon} \mathbb{I}_n - 2\mathbf{Q})}{\partial Q_{ab}} = \sum_{c,d=1}^n ((x_{\epsilon} \mathbb{I}_n - 2\mathbf{Q})^{-1})_{cd} \frac{\partial (x_{\epsilon} \delta_{cd} - 2Q_{cd})}{\partial Q_{ab}} = -2((x_{\epsilon} \mathbb{I}_n - 2\mathbf{Q})^{-1})_{ab} , \qquad (48)$$

which yields the same saddle-point equations (47) when applied to the expression (43) of Φ .

15.) The replica symmetric ansatz $Q_{ab} = q \delta_{ab}$ corresponds to $\mathbf{Q} = q \mathbb{I}_n$; the saddle point equations (47) are then equivalent to

$$2q - \frac{1}{x_{\epsilon} - 2q} = 0 , (49)$$

which is precisely the equation found in the annealed approximation in (23). It admits the two solutions $q = q_{\pm}$ as given in (24).

16.) Assuming that $Q_{ab} = q_+ \delta_{ab}$ is the correct saddle point solution, one finds, from Eq. (42) that

$$\lim_{N \to \infty} \frac{\ln \left(\mathbb{E}[Z(x_{\epsilon})^n] \right)}{N} = -\Phi(\mathbf{Q} = q_+ \mathbb{I}_n, x_{\epsilon}) = -n\varphi(q_+, x_{\epsilon}) , \qquad (50)$$

where we have used the explicit expression of $\Phi(\mathbf{Q}, x_{\epsilon})$ in (43) together with the expression of the function $\varphi(q, x_{\epsilon})$ found before in the annealed approximation and given in (21). Substituting this result (50) in Eq. (32) one obtains (assuming that the limit $N \to \infty$ and $n \to 0$ can be exchanged)

$$\lim_{N \to \infty} \rho(x) = \frac{2}{\pi} \lim_{\epsilon \to 0^+} \operatorname{Im} \frac{\mathrm{d}}{\mathrm{d}x} \varphi(q_+, x_{\epsilon}) , \qquad (51)$$

which coincides with the result obtained above in the annealed approximation (26) and therefore this quenched computation also yields the Wigner semi-circle (30) for the average density $\rho(x)$ in the limit of large N.

2.4 The deformed GOE case

17.) It is easy to see that a $N \times N$ matrix with all entries equal to 1 has one eigenvalue equal to N, associated to the constant eigenvector $(1, \ldots, 1)^T$, and N-1 eigenvalues equal to 0, the corresponding eigenspace being spanned by the vectors with vanishing sum of their entries. Hence \mathbf{H} has one eigenvalue equal to μ , and N-1 vanishing eigenvalues. When $\mu \to +\infty$ the matrix \mathbf{J} is equivalent to \mathbf{H} , hence $\lambda_{\max}(\mu) \sim \mu$ in this limit. On the contrary $\lambda_{\max}(\mu) \to 2$ as $\mu \to 0$, the Wigner semi-circle law being supported on [-2,2] (actually $\lambda_{\max}(\mu)$ is a random variable, but it concentrates around its mean in the thermodynamic limit). For intermediate values of μ one can imagine two main scenari for the behavior of λ_{\max} , as depicted on the figure :

In the hypothesis plotted on the left there is a smooth dependency of λ_{max} on μ , whereas in the second scenario there is a phase transition, λ_{max} remains stuck to its GOE value for μ smaller than a critical value. It turns out that the correct scenario is the second one, as will be explained in the following. This comes from the low-rank character of the perturbation introduced by adding \mathbf{H} to the GOE matrix, \mathbf{H} being indeed of rank 1, hence if μ is not large enough it is not able to modify notably the spectrum of the GOE.

18.) The computation of $\mathbb{E}[Z_J(x_\epsilon)]$ can be carried out along the same lines as before, see Eqs. (13)-(16). One obtains

$$\mathbb{E}[Z_J(x_{\epsilon})] = \int_{\mathbb{R}^N} d\vec{\phi} \, e^{-\frac{i}{2}x_{\epsilon} \sum_{k=1}^N \phi_k^2} \prod_{k=1}^N \mathbb{E}\left[e^{\frac{i}{2}J_{kk}\phi_k^2}\right] \prod_{k< l} \mathbb{E}\left[e^{iJ_{kl}\phi_k\phi_l}\right] . \tag{52}$$

Using the Gaussian formulae (2,3) for m=1, one finds

$$\mathbb{E}\left[e^{\frac{i}{2}J_{kk}\phi_k^2}\right] = e^{-\frac{\phi_k^4}{8}\mathbb{E}[J_{kk}^2] + \frac{i\mu}{2N}\phi_k^2} = e^{-\frac{\phi_k^4}{4N} + \frac{i\mu}{2N}\phi_k^2}, \quad k = 1, \dots, N,$$
(53)

and similarly

$$\mathbb{E}\left[e^{iJ_{kl}\phi_k\phi_l}\right] = e^{-\frac{\phi_k^2\phi_l^2}{2}\mathbb{E}[J_{kl}^2] + \frac{i\mu}{N}\phi_k\phi_l} = e^{-\frac{\phi_k^2\phi_l^2}{2N} + \frac{i\mu}{N}\phi_k\phi_l}, \quad k < l.$$
 (54)

Note the additional term in the argument of the exponentials in (53) and (54) due to the non-zero mean value μ/N of the entries J_{kl} 's. Finally, injecting these results (53) and (54) in Eq. (52) one finds

$$\mathbb{E}[Z_J(x_{\epsilon})] = \int_{\mathbb{R}^N} d\vec{\phi} \, e^{-\frac{i}{2}x_{\epsilon} \sum_{k=1}^N \phi_k^2} \, e^{-\frac{1}{4N} \sum_{k=1}^N \phi_k^4 - \frac{1}{2N} \sum_{k$$

which finally yields

$$\left| \mathbb{E}[Z_J(x_\epsilon)] = \int_{-\infty}^{\infty} \mathrm{d}\phi_1 \cdots \int_{-\infty}^{\infty} \mathrm{d}\phi_N \exp\left[-\frac{i}{2} x_\epsilon \sum_{k=1}^N \phi_k^2 - \frac{1}{4N} \left(\sum_{k=1}^N \phi_k^2 \right)^2 + i \frac{\mu}{2N} \left(\sum_{k=1}^N \phi_k \right)^2 \right].$$
 (56)

19.) We use the identity (3) with m=1 to write

$$e^{-\frac{1}{4N}(\sum_{k=1}^{N}\phi_k^2)^2} = \sqrt{\frac{N}{\pi}} \int_{-\infty}^{\infty} dq \, e^{-Nq^2 + iq \sum_{k=1}^{N}\phi_k^2} \,. \tag{57}$$

By substituting this identity (57) in (56) one can rewrite $\mathbb{E}[Z_J(x_{\epsilon})]$ as

$$\mathbb{E}[Z_J(x_\epsilon)] = \sqrt{\frac{N}{\pi}} \int_{-\infty}^{\infty} \mathrm{d}q \,\mathrm{e}^{-Nq^2} \int_{\mathbb{R}^N} \mathrm{e}^{-\frac{1}{2}\phi^T \,\tilde{\mathbf{A}} \,\vec{\phi}} = \sqrt{\frac{N}{\pi}} \int_{-\infty}^{\infty} \mathrm{d}q \,\mathrm{e}^{-Nq^2} \frac{(2\pi)^{N/2}}{\sqrt{\det \tilde{\mathbf{A}}}} \,, \tag{58}$$

where

$$\tilde{\mathbf{A}} = (ix_{\epsilon} - 2iq)\mathbb{I}_{N} - i\frac{\mu}{N}\vec{u}\vec{u}^{T} \quad \text{where} \quad \vec{u} = \begin{bmatrix} 1\\1\\\vdots\\\vdots\\1 \end{bmatrix}$$
(59)

Therefore, using the identity $\det(\mathbb{I}_N + \vec{u} \vec{v}^T) = 1 + \vec{v}^T \vec{u}$ one finds that

$$\det \tilde{\mathbf{A}} = (ix_{\epsilon} - 2iq)^{N} \frac{x_{\epsilon} - 2q - \mu}{x_{\epsilon} - 2q}. \tag{60}$$

Finally, injecting this result (60) in (58) one obtains

$$\mathbb{E}[Z_J(x_{\epsilon})] = \sqrt{\frac{N}{\pi}} \int_{-\infty}^{\infty} dq \sqrt{\frac{x_{\epsilon} - 2q}{x_{\epsilon} - \mu - 2q}} e^{-N\varphi(q, x_{\epsilon})}, \ \varphi(q, x_{\epsilon}) = q^2 - \frac{1}{2} \ln\left(\frac{2\pi}{i(x_{\epsilon} - 2q)}\right).$$
 (61)

20.) To compute the Taylor expansion of $\varphi(q, x_{\epsilon})$ around $q_1 = (x_{\epsilon} - \mu)/2$ up to order $\mathcal{O}((q - q_1)^3)$, we need to compute $\partial_q \varphi(q_1, x_{\epsilon})$ and $\partial_q^2 \varphi(q_1, x_{\epsilon})$. They read

$$\partial_q \varphi(q, x_{\epsilon}) = 2q - \frac{1}{x_{\epsilon} - 2q} \Longrightarrow \varphi'(q_1, x_{\epsilon}) = x_{\epsilon} - \mu - \frac{1}{\mu} , \qquad (62)$$

and

$$\partial_q^2 \varphi(q, x_{\epsilon}) = 2 - \frac{2}{(x_{\epsilon} - 2q)^2} \Longrightarrow \varphi''(q_1, x_{\epsilon}) = 2 - \frac{2}{\mu^2} . \tag{63}$$

Therefore the Taylor expansion reads

$$\varphi(q, x_{\epsilon}) = \varphi_x(q_1) + (q - q_1)(x_{\epsilon} - x_m(\mu)) + (q - q_1)^2 \frac{\mu^2 - 1}{\mu^2} + \mathcal{O}((q - q_1)^3),$$
(64)

with

$$x_m(\mu) = \mu + \frac{1}{\mu} \ . \tag{65}$$

21.) For $\mu < 1$ and $x = x_m(\mu)$, the function $\varphi(q, x)$ admits a local maximum which leads to a local minimum of the integrand, and it is thus of no importance. On the other hand, for $\mu > 1$, $\varphi(q, x)$ admits a local minimum and the contribution for this isolated value $x = x_m(\mu)$ must be included. The function $\mu \mapsto \mu + \frac{1}{\mu}$ can be easily studied; for $\mu > 0$ it admits a minimum in $\mu = 1$ where it is equal to 2. Hence for $\mu > 1$ one has $x_m(\mu) > 2$, i.e. it is outside the support of the Wigner semi-circle.

22.) By injecting the expression

$$\mathbb{E}[Z_J(x_{\epsilon})] \sim B \frac{e^{-N\varphi(q_1, x_{\epsilon})}}{\sqrt{x_{\epsilon} - x_m(\mu)}},$$
(66)

in Eq. (22) one finds, for large N,

$$\rho(x) \sim \frac{-2}{N\pi} \lim_{\epsilon \to 0^+} \operatorname{Im} \frac{\mathrm{d}}{\mathrm{d}x} \left[-N\varphi(q_1, x_{\epsilon}) - \frac{1}{2} \ln(x_{\epsilon} - x_m(\mu)) \right] . \tag{67}$$

Using $q_1 = (x_{\epsilon} - \mu)/2$ one has

$$\varphi(q_1, x_{\epsilon}) = q_1^2 - \frac{1}{2} \ln \left(\frac{2\pi}{i(x_{\epsilon} - 2q_1)} \right) = \frac{1}{4} (x_{\epsilon} - \mu)^2 - \frac{1}{2} \ln(2\pi/(i\mu)) , \qquad (68)$$

hence

$$\lim_{\epsilon \to 0^+} \operatorname{Im} \frac{\mathrm{d}}{\mathrm{d}x} \varphi(q_1, x_{\epsilon}) = 0 , \qquad (69)$$

and the only contribution to $\rho(x)$ in (67) comes from $\ln(x_{\epsilon} - x_m(\mu))$. It reads

$$\rho(x) \sim \frac{1}{N\pi} \lim_{\epsilon \to 0^+} \operatorname{Im} \frac{1}{x_{\epsilon} - x_m(\mu)} = \frac{1}{N} \delta(x - x_m(\mu)), \qquad (70)$$

where we have used the identity

$$\lim_{\epsilon \to 0^+} \frac{1}{x - i\epsilon} = \text{PV} \frac{1}{x} + i\pi\delta(x) . \tag{71}$$

As $x_m(\mu)$ is outside the support of the Wigner semi-circle law this isolated eigenvalue is the maximal eigenvalue of \mathbf{J} , one has thus found

$$\lambda_{\max}(\mu) = \begin{cases} 2 & \text{for } 0 \le \mu \le 1\\ \mu + \frac{1}{\mu} & \text{for } \mu \ge 1 \end{cases} , \tag{72}$$

i.e. the second scenario plotted above with a phase transition at $\mu = 1$.