CATEGORY THEORY:

An Abstraction For Anything

@alissapajer

TALK OUTLINE

- (1) git history as a Category
- (2) terminal and initial objects
- (3) polymorphism as a Natural Transformation
 - (4) currying as a Natural Transformation
- (5) covariance and contravariance of Functors

DIRECTED ACYCLIC GRAPHS

git commit history is a DAG!

DIRECTED ACYCLIC GRAPHS

```
val currentId = new AtomicInteger(0)

sealed trait Commit {
    def id: Int
}

case class IndivCommit(parent: Commit) extends Commit {
    lazy val id: Int = currentId.getAndIncrement()
}

case class MergeCommit(left: Commit, right: Commit) extends Commit {
    lazy val id: Int = currentId.getAndIncrement()
}

case object FirstCommit extends Commit {
    lazy val id: Int = currentId.getAndIncrement()
}
```

GIT MERGE GRAPH

```
val first = FirstCommit
```


GIT MERGE GRAPH

```
val first = FirstCommit

val left = IndivCommit(first)

val right = IndivCommit(first)
```


GIT MERGE GRAPH

```
val first = FirstCommit

val left = IndivCommit(first)

val right = IndivCommit(first)

val merge = MergeCommit(left, right)
```


CREATING A CATEGORY

1. A collection of objects

The nodes in our graph of commits will be the objects.

CREATING A CATEGORY

2. A set of morphisms or arrows between every two objects

```
Hom(first, left) = { }
Hom(merge, first) = { \leq_MF }
Hom(left, left) = { \leq_LL }
...
```

morphisms governed by reachability

CREATING A CATEGORY

3. A way to compose morphisms

 \leq _ML * \leq _LF = \leq _MF

(a) compositional associativity holds(b) an identity morphism exists for each object

TERMINAL AND INITIAL OBJECTS

Object F is an initial object:

For every object X, Hom(F, X) has size one

(i.e. $F \le X$ for all X)

(i.e. all objects are reachable from F)

TERMINAL AND INITIAL OBJECTS

Object A is a terminal object:

For every object X, Hom(X, A) has size one

(i.e. $X \le A$ for all X)

(i.e. all objects can reach to A)

TERMINAL AND INITIAL OBJECTS

Is a terminal or initial object guaranteed to exist in a DAG?

No!

CATEGORY OF ALL THE GRAPHS

Objects: Graphs themselves

Morphisms: Structure-preserving graph homomorphisms

(i.e. adjacent nodes map to adjacent nodes)

FORGETFUL FUNCTOR

Functors are morphisms between categories

Forget: **GRAPH** -> **SET**

OPTION FUNCTOR

Option[_] is parametrized on a Scala type

Option[_] gives us a way to convert from A to Option[A]

```
scala> def optionize[A](a: A): Option[A] = Some(a)
optionize: [A](a: A)Option[A]
```

Option[_] is a Functor on the category of Scala types

What about the morphisms from one type to another?

OPTION FUNCTOR

Option transforms morphisms and objects from the category of Scala types to itself

OPTION FUNCTOR

def foo[A, B](a: A): $B = \{ ... \}$

How can we transform Option[T] into List[T]?

POLYMORPHIC FUNCTIONS

(parametric polymorphism)

NATURAL TRANSFORMATIONS

optToList[T] is a polymorphism and a Natural Transformation

This diagram commutes

NATURAL TRANSFORMATIONS

For every object X
we have nat trans Option[X] -> List[X]
such that
for every morphism foo: X->Y
the diagram commutes

If we can define the same nat trans for every type A, then this nat trans is a polymorphism!

(aka schönfinkelzation)

```
def uncurried(x: Int, y: Int): Int = x + y
uncurried: (x: Int, y: Int)Int

scala> def curried(x: Int): Int => Int = (y: Int) => x + y
moreCurried: (x: Int)Int => Int

scala> uncurried(2, 3)
res5: Int = 9

scala> curried(2)(3)
res4: Int = 5
```

Currying provides another example of a natural transformation

HOM FUNCTORS

Hom(X, Y) is the set of morphisms from object X to object Y

Hom(_, Y) is a functor

Hom(_, B): SomeCategory => Set

Apply Hom(_, B) to an object A

Hom(A, B)

Apply Hom(_, B) to a morphism f: P -> Q

 $Hom(Q, B) \Rightarrow Hom(P, B)$

HOM FUNCTORS

Apply Hom(_, B) to a morphism f: X->Y

```
def f[X, Y](x: X): Y = { ... }
```

the "logical" (but wrong) idea

```
Hom(X, B) => Hom(Y, B)

X->Y, X->B
```

the correct idea: contravariance

```
Hom(Y, B) => Hom(X, B)

X->Y, Y->B
```

COMIC INTERLUDE


```
curry[A]: Hom(A x B, C) => Hom(A, Hom(B, C))
curry[_]: Hom(_ x B, C) => Hom(_, Hom(B, C))
```

A functor transforms one category into another

Currying transforms one functor into another!

This sounds familiar...

Can we create a diagram that commutes?

For every object Q
we have nat trans Hom(QxB,C) -> Hom(Q,Hom(B,C))
such that
for every morphism f: Y->Q
the diagram commutes

Hom functor for type C instead

```
curry[C]: Hom(A x B, C) => Hom(A, Hom(B, C))

curry[_]: Hom(A x B, _) => Hom(A, Hom(B, _))
```

(google term: _ x B and Hom(B, _) are adjoint functors)

```
(A \times B) => C
def uncurried(x: A, y: B): C = \{ ... \}
A => (B => C)
def curried(x: A): B => C = \{ ... \}
```

There is a correspondence (isomorphism!) between the set of functions (A x B) -> C and the set of functions A -> (B -> C)

QUESTIONS?