

WATERPROOF

Educational Software for Learning How to Write Mathematical Proofs

Jelle Wemmenhove

Dick Arends, Thijs Beurskens, Maitreyee Bhaid, Sean McCarren, Jan Moraal, Diego Rivera Garrido, David Tuin, Malcolm Vassallo, Pieter Wils, **Jim Portegies**

Motivation

Analysis 1

- Goal: teach students how to rigorously prove theorems from calculus
- Mathematical content metrics, sequences, series, limits, continuity
- Write valid proofs

Motivation

Analysis 1

- Goal: teach students how to rigorously prove theorems from calculus
- Mathematical content metrics, sequences, series, limits, continuity
- Write valid proofs

Proof Assistants in Education

Potential benefits

- Present proving as a game with clear rules and actions
- Immediate feedback
- Emphasize mechanical aspects of proving

Proof Assistants in Education

General trend

- PAT 2023 Thematic School
- Lean Together 2021: Panel on teaching with proof assistants
- Tobias Nipkow (2012): "No More LSD Trip Proofs"
- ... instances going back to 70's (Mizar)

• Teaching students how to use a PA takes precious time

- Teaching students how to use a PA takes precious time
- Knowing how to create proofs in a PA does not imply being able to write proofs by hand

- Teaching students how to use a PA takes precious time
- Knowing how to create proofs in a PA does not imply being able to write proofs by hand
 - ✓ Participants Lean panel
 - ✓ Maria Knobelsdorf et al. (2017)
 - X Athina Thoma and Paola Iannone (2021)

Possible explanation

example of Coq proof

 $\forall \varepsilon : \mathbb{R}, \varepsilon > 0 \Longrightarrow \exists a : \mathbb{R}, (0 \le a < 4) \land (4 - \varepsilon < a)$

Possible explanation

```
example of Coq proof \forall \varepsilon : \mathbb{R}, \varepsilon > 0 \Longrightarrow \exists a : \mathbb{R}, (0 \le a < 4) \land (4 - \varepsilon < a)
```

```
intro \epsilon. intro \epsilon_gt_0.

assert (\epsilon < 2 \/ 2 <= \epsilon) as cases by lra.

destruct cases as [\epsilon_lt_two | two_le_\epsilon].

- (* Case \epsilon < 2. *)

set (a := 4 - \epsilon/2); exists a.

split.

+ assert (0 <= 4 - \epsilon/2 < 4) as h1 by lra; exact h1.

+ assert (4 - \epsilon < 4 - \epsilon/2) as h2 by lra; exact h2.

- (* Case \epsilon \geq 2. *)

...
```

Possible explanation

```
\forall \varepsilon : \mathbb{R}, \varepsilon > 0 \Longrightarrow \exists a : \mathbb{R}, (0 \le a < 4) \land (4 - \varepsilon < a)
                                                                              ε > 0
                                                                            ε_lt_two :
intro \varepsilon. intro \varepsilon_gt_0.
                                                                               ε < 2
assert (\epsilon < 2 \/ 2 <= \epsilon) as cases by 1ra.
                                                                            ∃ a : R,
destruct cases as [\varepsilon_1t_two_1two_1e_\varepsilon].
- (* Case \epsilon < 2. *)
   set (a := 4 - \epsilon/2); exists a.
  split.
   + assert (0 <= 4 - \epsilon/2 < 4) as h1 by lra; exact h1.
   + assert (4 - \epsilon < 4 - \epsilon/2) as h2 by lra; exact h2.
- (* Case \epsilon \geq 2. *)
```

example of Coq proof

ε : R

ε_gt_0 :

Waterproof

Design goals

- Suitable for use in educational environment
- Writing a proof in Waterproof should be **as close as possible to** writing a proof with pen and paper, both in terms of **style** and the **process** of constructing a proof

Waterproof

Design goals

- Suitable for use in educational environment
- Writing a proof in Waterproof should be as close as possible to writing a proof with pen and paper, both in terms of style and the process involved

Custom version of the Coq proof assistant

- Custom proof language
- Custom editor

Overview

- Introduction
- Demonstration
- Issue: working with subsets
- Conclusion

Custom proof language

Features

- Proof steps inspired by language in regular math proofs
- Implicit automation to verify statements
- Mandatory signposting
- Elaborate error messages
- Conventional mathematical notation
- Chains of (in)equalities

Custom editor

Features

- Mixed documents
- Continuous proof checking
- Designated input areas
- Hidden segments
- Limited automated bookkeeping
- Autcomplete for mathematical symbols and proof steps
- Separate panel for expanding definitions

Analysis 1

- First-year course
- ≈ 175 students (some retakes)
- Mathematics students (mandatory)

Analysis 1

- First-year course
- ≈ 175 students (some retakes)
- Mathematics students (mandatory)

- 8 weeks
- Lectures
- Instruction hours
 - 6 classes, ≈ 30 students per class
- Weekly homework exercises
 - Groups of 4
 - Within instruction classes

Waterproof

- Waterproof versions for selection of homework exercises
- Voluntary
 - Only 3/6 instructors can provide support for Waterproof
 - 1st and 2nd 'line of defense'
- Not explicitly taught
 - Tutorial
 - Videos
 - Questions during instruction hours
- Automatic grading

Students' experience

- Small survey, conversations with students
- Some like using Waterproof, some don't
- Both stronger and weaker students
- High retention rate
 - Start: 25 homework groups
 - End: 19 homework groups

Results for handwritten proofs?

- Observations
- Improved readability
 - Students use controlled natural language formulations from Waterproof
- Improved proof structure

Results for handwritten proofs?

- Observations
- Improved readability
 - Students use controlled natural language formulations from Waterproof
- Improved proof structure

Issue: subsets

Current approaches

- Sigma/record types ----> dealing with coercions ☺
- Classifying predicates -----> not directly usable with quantifiers

$$\forall x : \mathbb{R}, x > 0$$
 instead of $\forall x : \mathbb{R}_{>0}$

Issue: subsets

Current approaches

- Sigma/record types ----> dealing with coercions ☺
- Classifying predicates -----> not directly usable with quantifiers

```
\forall x : \mathbb{R}, x > 0 instead of \forall x : \mathbb{R}_{>0}
```

Desired: behave like subsets in naive set theory

- given $P: X \to \text{Prop}$, a type A such that
- If x : A then x : X and P(x)
- If x: X and P(x) then x: A

Conclusion

Waterproof

- Custom version of Coq for teaching how to write proofs
- Used in Analysis 1 course
- Observation: improved readability and structure

Conclusion

Waterproof

- Custom version of Coq for teaching how to write proofs
- Used in Analysis 1 course
- Observation: improved readability and structure

Future Work

- Proper evaluation
- Improve mathematical library

WATERPROOF

Educational Software for Learning How to Write Mathematical Proofs

Editor https://github.com/impermeable/waterproof

Proof language https://github.com/impermeable/coq-waterproof

• Exercises https://github.com/impermeable/waterproof-exercise-sheets

submitted article to post-proceedings

Workshop on Theorem proving components for Educational software (ThEdu'23)

References

- Lean Together 2021: Panel on teaching with proof assistants https://www.youtube.com/watch?v=mTLuON5eRZI&list=PLIF-CfQhukNnO8z3TcFcoKozif9gbl7Yt
- Tobias Nipkow (2012). Teaching Semantics with a Proof Assistant: No More LSD Trip Proofs.
- Krzysztof Retel and Anna Zalewska (2005). Mizar as a Tool for Teaching Mathematics.
- Maria Knobelsdorf, Christiane Frede, Sebastian Böhne, and Christoph Kreitz (2017). Theorem Provers as a Learning Tool in Theory of Computation.
- Athina Thoma and Paola Iannone (2021).

 Learning about Proof with the Theorem Prover LEAN: the Abundant Numbers Task.