Problem set: 5 Course: M358K – Applied Statistics Page: 1 of 3

University of Texas at Austin

Problem Set # 5 Normal distribution.

Problem 5.1. Let Z be a standard normal random variable. Find the following probabilities:

i.
$$\mathbb{P}[-1.33 < Z \le 0.24]$$

ii. $\mathbb{P}[0.49 < |Z|]$
iii. $\mathbb{P}[Z^4 < 0.0256]$
iv. $\mathbb{P}[e^{2Z} < 2.25]$
v. $\mathbb{P}[\frac{1}{Z} < 2]$

i.
$$P[-1.33 < Z \le 0.24] = \bigoplus (0.24) - \bigoplus (-1.33)$$

pnorm $(0.24) - pnorm (-1.33) = 0.5030757$

ii_ P[0.49 < |Z|] =?

$$P[Z < -0.49] + P[Z > 0.49] = 2.P[Z < -0.49]$$
2*pnorm(-0.49) = 0.6241339

iii.
$$P[Z^4 < 0.0256] = P[|Z| < \sqrt[4]{0.0256}] = 0.4]$$

$$= P[-0.4 < Z < 0.4]$$

$$= P[Z < 0.4] - P[Z < -0.4]$$

=
$$P[2<0.4]-(1-P[2<0.4])$$
 = = 2. $P[2<0.4]-1$
2* pnorm(0.4) -1 = 0.3408435

iv.
$$\mathbb{P}[e^{27} < 2.25] = \mathbb{P}[27 < \ln(2.25)] = \mathbb{P}[7 < 0.5 \ln(2.25)]$$

In is an increasing fition

pnorm $(0.5 \times \log(2.25)) =$ = 0.6574322

$$V. \quad \mathbb{P}\left[\frac{1}{Z} < 1\right] = ?$$

$$P[Z<0] + P[Z>0.5] = 0.5 + 1 - P[Z<0.5] = 1.5 - P[Z<0.5]$$