Wady metod opartych na macierzach Y_n i Y_w

Macierz Y_n (a także Y_w) bardzo prosto się układa nawet dla złożonych układów, a na podstawie jej kofaktorów można łatwo obliczyć dowolne transmitancje, ale...

- Wszystkie gałęzie muszą mieć postać prądową.
- Nie można reprezentować źródeł napięciowych idealnych (ani niezależnych, ani sterowanych).
- Nie można reprezentować źródeł sterowanych prądem.
- Nie można wprost obliczyć prądu gałęzi, tylko napięcia.

Jak sobie poradzić z tymi problemami? Wykorzystać żyratory!

Tellegen 1948

Żyrator — właściwości i model

Równania żyratora (r — opór żyracji albo stała żyracji):

$$U_1 = -rI_2, \quad I_1 = U_2/r, \quad r \in \mathbb{R}^+$$

Właściwości żyratora:

- $U_1/I_1 = r^2 \cdot (-I_2)/U_2$ zmiana "rodzaju" obciążenia,
- $U_2 = U_2' + U_2'' \Rightarrow I_1 = I_1' + I_1''$ połączenia szeregowe po stronie wtórnej przechodzą na równoległe po pierwotnej,
- $-I_2 = (-I_2') + (-I_2'') \Rightarrow U_1 = U_1' + U_1''$ poł. równoległe po stronie wtórnej przechodzą na szeregowe po pierwotnej,
- $I_1 = J \Rightarrow U_2 = Jr$ źr. prądowe przechodzi w napięciowe,
- I₁ = 0 ⇒ U₂ = 0 rozwarcie przechodzi w zwarcie, które może służyć do "pomiaru" prądu, gdyż – U₁ = rI₂.

Żyrator — modelowanie gałęzi innych niż prądowe

Od modelu żyratorowego do ZMPW — przykład dla E

Nieoznaczone r-nia admitancyjne $Y_n V_n = J_n$ (gdzie g = 1/r):

Wezeł $m \to \text{masa}$, r-nie k dzielimy przez g, podst. $l = -V_k g$:

Szablony ZMPW dla gałęzi innych niż prądowe

TABLE 2. STAMPS FOR THE ELEMENTS IN FIG. 2.

Voltage source		i	$\begin{bmatrix} a \\ \vdots \\ c \\ -1 \end{bmatrix}$. +1	+1	. "		· -V	
VCVS	a b			,		. -	. 11	e _a] e _b	
	c d					.	ll.	e _c =	
	х	-1	l +	1 +.	Α -	-A		e _x	$\lfloor \cdot \rfloor$
cccs		a b c d x		· · ·	· · ·	+B -B +1 -1	$\begin{bmatrix} e_a \\ e_b \\ e_c \\ \frac{e_d}{e_x} \end{bmatrix}$		
ccvs	a b c d - x v -	· · · · -1		-1	· · · +1	+1 -1 -R	+1 -1 .	$\begin{bmatrix} e_a \\ e_b \\ e_c \\ e_d \\ e_x \\ e_y \end{bmatrix}$	= .

W układzie równań pojawiaja się dodatkowe zmienne pradowe.

Antonio Carlos M. de Queiroz: Compact Nodal Analysis With Controlled Sources Modeled by Ideal Operational Amplifiers. Proc. 38th Midwest Symposium on Circuits and Systems. Rio de Janeiro, Brazil, 1995

Podstawowe założenia przekształcenia Fouriera

- Metoda operatorowa służy do analizy stanów nieustalonych — pobudzenia muszą być oryginałami.
- Możemy pobudzić układ sygnałem x(t) niezerowym dla t < 0, jeśli jest on bezwzględnie całkowalny:

$$\forall t_1, t_2 \quad \exists \int_{t_1}^{t_2} x(t) dt, \qquad \land \qquad \exists \int_{-\infty}^{+\infty} |x(t)| dt$$

- Stosujemy wtedy przekształcenie Fouriera.
 - sygnał stały dla $t \in (-\infty, +\infty) \longleftrightarrow$ liczba rzeczywista X (wartość)
 - sygnał sinusoidalny dla $t \in (-\infty, +\infty) \longleftrightarrow$ liczba zespolona X (wskaz)
 - sygnał okresowy dla $t \in (-\infty, +\infty) \longleftrightarrow$ ciag zespolony $\{X^{(k)}\}$ (szereg Fouriera)
 - sygnał oryginalny (określony dla $t > t_0$) \longleftrightarrow funkcja zespolona $\bar{x}(s)$ (transformata Laplace'a)
 - sygnał bezwzględnie całkowalny dla $t \in (-\infty, +\infty) \longleftrightarrow$ funkcja zespolona $X(j\omega)$ (transformata Fouriera)

Przekształcenie Fouriera

Przekształcenie Fouriera (oznaczane literą \mathcal{F})...

... przyporządkowuje funkcji x(t) zmiennej rzeczywistej t jej \mathcal{F} -transformatę $X(j\omega)$, będącą funkcją zmiennej rzeczywistej ω :

$$X(j\omega) = \mathcal{F}[x(t)] \stackrel{\mathsf{def}}{=} \int_{-\infty}^{\infty} x(t) \mathrm{e}^{-j\omega t} \mathrm{d}t$$

Dla porównania współczynniki zespolonego szeregu Fouriera:

$$X^{(k)} = rac{1}{T} \int_{t_0}^{t_0+T} x(t) \mathrm{e}^{-\mathrm{j}\omega t} \mathrm{d}t, \ k = 0, \pm 1, \pm 2, \ldots, \ \omega = k\omega_1 = krac{2\pi}{T}$$

i jednostronna transformata Laplace'a:

$$\bar{x}(s) = \mathcal{L}[x(t)] \stackrel{\text{def}}{=} \int_0^\infty x(t) e^{-st} dt$$

wyrażają się bardzo podobnymi wzorami jak \mathcal{F} -transformata. Z porównania wzorów wynika, że jeśli x(t) jest oryginałem bezwzględnie całkowalnym, to $X(j\omega) = \bar{x}(j\omega)$. $\mathcal{F}[\delta(t)] = 1$

Interpretacia widmowa

Transformata odwrotna $\mathcal{F}^{-1}[X(j\omega)]$ wyraża się niemal identycznym wzorem jak \mathcal{F} :

$$\mathbf{X}(t) = \mathcal{F}^{-1}\left[\mathbf{X}(\mathrm{j}\omega)\right] \stackrel{\mathsf{def}}{=} \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathbf{X}(\mathrm{j}\omega) \mathrm{e}^{\mathrm{j}\omega t} \mathrm{d}\omega$$

- $\int d\omega$ oznacza "sumowanie" po wszystkich ciągłych $\omega...$
- ...zespolonych sygnałów harmonicznych $e^{j\omega t}$.
- A zatem $X(j\omega)/(2\pi)$ możemy interpretować jako gestość zespolonej amplitudy sumowanych sygnałów.

Funkcja $X(j\omega)$ to gestość widmowa sygnału x(t) albo jego widmo ciągłe (dla odróżnienia od prążkowego widma sygnału okresowego, czyli ciągu współczynników szeregu Fouriera).

$$X(j\omega) = A(\omega)e^{j\varphi(\omega)}$$

 $A(\omega)$ – widmo amplitudowe, $\varphi(\omega)$ – widmo fazowe

Właściwości przekształcenia Fouriera

Niech $x(t) \longleftrightarrow X(j\omega)$ i $y(t) \longleftrightarrow Y(j\omega)$ beda sygnałami bezwzględnie całkowalnymi. Niech $\alpha, \beta, t_0, \omega_0 \in \mathbb{R}$. przekształcenie liniowe $\alpha x(t) + \beta y(t) \longleftrightarrow \alpha X(i\omega) + \beta Y(i\omega)$ $x(t/\alpha) \longleftrightarrow |\alpha| X(\alpha i\omega)$ zmiana skali czasu $X(t-t_0)\longleftrightarrow X(j\omega)e^{-j\omega t_0}$ opóźnienie modulacja zespolona $x(t)e^{j\omega_0t}\longleftrightarrow X(j(\omega-\omega_0))$ $\frac{d}{dt}x(t)\longleftrightarrow j\omega X(j\omega)$ różniczkowanie $\int_0^t x(t')dt' \longleftrightarrow X(i\omega)/(i\omega)$ całkowanie

Twierdzenie o wartości granicznej: $\lim_{\omega \to \pm \infty} X(j\omega) = 0$. Dla sygnałów całkowalnych z kwadratem (klasy L^2 , czyli o ograniczonej energii) obowiązuje twierdzenie Parsevala:

$$\int_{-\infty}^{\infty} x^2(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} A^2(\omega) d\omega$$

Lewa strona to energia ($\times R$ lub $\frac{1}{R}$) wydzielona w oporze R.

Splot dwu- i jednostronny

Dla sygnałów całkowalnych z kwadratem (klasy L^2 , czyli o ograniczonej energii) obowiązuje twierdzenie Borela:

$$[x*y](t) = \int_{-\infty}^{+\infty} x(t')y(t-t')dt' \longleftrightarrow X(j\omega) \cdot Y(j\omega)$$

Analogicznie dla przekształcenia Laplace'a (sygnałów oryginalnych) splot dwustronny automatycznie przechodzi w jednostronny:

$$[x*y](t) = \int_0^t x(t')y(t-t')dt' \longleftrightarrow \bar{x}(s) \cdot \bar{y}(s)$$

Splot ma fundamentalne znaczenie przy opisie transmisji svgnału przez układ liniowy.

Czwórniki jako układy transmisyjne

Czwórnik transmisyjny może pracować w różnych kontekstach:

- pobudzenie oryginalne przy z.w.p. (*L*-transformata)
- pobudzenie bezwzględnie całkowalne (F-transformata)
- pobudzenie sinusoidalne w stanie ust. (met. wskazowa)
- pobudzenie stałe w stanie ust. (analiza DC)
- pobudzenie okresowe w stanie ust. (szereg Fouriera)

Czwórnik o transmitancji H dokonuje operacji \mathcal{H} na sygnale:

skupiony

H wymierna (por. ukł. opóźn.)

liniowy i bezźródłowy

 \Rightarrow \mathcal{H} liniowa

stacjonarny realnie istniejący \Rightarrow \mathcal{H} niezmiennicza w czasie

 \mathcal{H} przyczynowa

Charakterystyki czasowe – odpowiedź jednostkowa

Odpowiedź jednostkowa (skokowa) r(t) – na pobudzenie będące funkcją skoku jednostkowego (Heaviside'a). Stała $A \neq 0$ – tylko po to, żeby jednostki się zgadzały.

$$x(t) = A\mathbf{1}(t)$$
 $y(t) = Ar(t)$
 $\overline{y}(s) = \frac{A}{s}$
 $\overline{y}(s) = A\frac{H(s)}{s}$

Zauważmy, że $\mathcal{L}[r(t)] = H(s)/s$, a zatem:

$$\lim_{t\to\infty} r(t) = \lim_{s\to 0} (s\frac{H(s)}{s}) = \lim_{\omega\to 0} H(j\omega)$$

$$\lim_{t\to 0^+} r(t) = \lim_{s\to \infty} (s\frac{H(s)}{s}) = \lim_{\omega\to \infty} H(j\omega)$$

Zachowanie dla małych/dużych częstotliwości możemy określić na bazie odpowiedzi jednostkowej dla dużych/małych czasów.

Przykład – dzielnik całkujący RC (filtr LP):
$$H(s) = \frac{1/\tau}{s+1/\tau}$$
, więc

$$r(t) = (1 - e^{-t/\tau})\mathbf{1}(t) \Rightarrow H(0) = r(\infty) = 1, H(\infty) = r(0^+) = 0.$$

Charakterystyki czasowe – odpowiedź impulsowa

Odpowiedź impulsowa h(t) – na pobudzenie dystrybucją delta (Diraca). Stała $K \neq 0$ – tylko po to, żeby jednostki się zgadzały.

$$x(t) = K\delta(t)$$
 $\overline{y}(t) = Kh(t)$
 $\overline{y}(s) = KH(s)$
 $\overline{y}(s) = KH(s)$

Takiego pobudzenia nie da się zrealizować w praktyce.

Zauważmy, że $\mathcal{L}[h(t)] = H(s)$. Przykład – dzielnik całkujący

RC:
$$H(s) = \frac{1/\tau}{s+1/\tau}$$
, wiec $h(t) = \frac{1}{\tau} e^{-t/\tau} \mathbf{1}(t)$ (pochodna $r(t)$).

Właściwości i związki między charakterystykami czasowymi:

- Dla t < 0 mamy r(t) = 0 i h(t) = 0 przyczynowość
- $h(t) = \frac{d}{dt}r(t) = r'(t) + r(0^+)\delta(t)$ operator $\frac{d}{dt}$ oznacza tu pochodną dystrybucyjną
- $r(t) = \int_0^t h(t')dt' = \lim_{\varepsilon \to 0^+} \int_{-\varepsilon}^t h(t')dt'$
- Jeśli H(s) = L(s)/M(s) i st L(s) < st M(s) (\leq), to h(t) (r(t)) nie ma składników dystrybucyjnych. Na ogół tak jest.

Splot pobudzenia z odpowiedzią impulsowa

Konsekwencja twierdzenia Borela:

$$x(t)$$
 $y(t) = h(t) * x(t)$
 $H(s)$
 $\bar{y}(s) = H(s)\bar{x}(s)$
 $z.w.p.$

Jeśli h(t) nie ma składników dystrybucyjnych, to:

$$y(t) = \int_0^t h(t-t')x(t')dt' = \int_0^t h(t')x(t-t')dt'.$$

Dlaczego?

Splot pobudzenia z odpowiedzia jednostkowa – c.d.

$$x_k(t) = x(k\varepsilon)\delta_{\varepsilon}(t - k\varepsilon)\varepsilon$$
$$x(t) \approx \sum_{k=0}^{\infty} x_k(t) = \sum_{k=0}^{\infty} x(k\varepsilon)\delta_{\varepsilon}(t - k\varepsilon)\varepsilon$$

$$y(t) \approx \sum_{k=0}^{t/\varepsilon} x(k\varepsilon) h_{\varepsilon}(t-k\varepsilon) \varepsilon \xrightarrow{\varepsilon \to 0} \int_{0}^{t} x(t') h(t-t') dt' = x(t) * h(t)$$