Student	Number:		

NATIONAL UNIVERSITY OF SINGAPORE

MA1101R - Linear Algebra I

(Semester 1 : AY2014/2015)

Time allowed: 2 hours

INSTRUCTIONS TO CANDIDATES

- 1. Write down your matriculation/student number clearly in the space provided at the top of this page. This booklet (and only this booklet) will be collected at the end of the examination.
- 2. Please write your matriculation/student number only. Do not write your name.
- 3. This examination paper contains **SIX** questions and comprises **NINETEEN** printed pages.
- 4. Answer **ALL** questions.
- 5. This is a CLOSED BOOK (with helpsheet) examination.
- 6. You are allowed to use two A4 size helpsheets.
- 7. You may use scientific calculators. However, you should lay out systematically the various steps in the calculations)

Examiner's Use Only				
Questions	Marks			
1				
2				
3				
4				
5				
6				
Total				

Question 1 [15 marks]

(a) [6 marks]

Let \boldsymbol{A} be a 4×5 matrix such that its row echelon form is

$$m{R} = egin{pmatrix} 1 & 1 & 0 & 1 & 0 \ 0 & 0 & 1 & 1 & 0 \ 0 & 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

- (i) Write down a basis for the row space of \boldsymbol{A} .
- (ii) Extend the basis found in (i) to a basis for \mathbb{R}^5 . (Just write down the additional vectors.)
- (iii) Find a basis for the nullspace of A. Show your working.

(b) [6 marks]

Let

$$\mathbf{B} = \begin{pmatrix} x & x(x-1) & 0 \\ 0 & x-1 & (x-1)(x+1) \\ 0 & 0 & x+1 \end{pmatrix}.$$

Find all values of x such that:

(i) $rank(\mathbf{B})=1$; (ii) $rank(\mathbf{B})=2$; (iii) $rank(\mathbf{B})=3$.

Justify your answer.

(c) [3 marks]

Give an example of a 3×4 matrix C with <u>no identical columns</u> such that

the column space of
$$C$$
 is span $\left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix} \right\}$.

(You are not required to justify your answer.)

What is the nullity of C?

PAGE 5 MA1101R

Question 2 [15 marks]

(a) [6 marks]

Let $V = \{(x,y,z,w) \mid x=y+z, w=2y\}$ be a subspace of $\mathbb{R}^4.$

- (i) Write down an explicit form of a general vector in V.
- (ii) Express V in linear span form.
- (iii) Write down a basis for V and dim V.

(b) [6 marks]

Let $S = \{u, v\}$ and $T = \{u - v, u + 2v\}$ be two bases for a vector space U.

- (i) Find the transition matrix from T to S.
- (ii) Find the transition matrix from S to T.
- (iii) Given the coordinate vector of $\boldsymbol{w} \in U$ with respect to T is $[\boldsymbol{w}]_T = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, find $[\boldsymbol{w}]_S$.

PAGE 7 MA1101R

Question 2

(c) [3 marks]

Let $\{\boldsymbol{u}_1,\boldsymbol{u}_2,\boldsymbol{u}_3,\boldsymbol{u}_4\}$ be a basis for \mathbb{R}^4 .

Suppose $U_1 = \text{span}\{\boldsymbol{u}_1, \boldsymbol{u}_2\}$ and $U_2 = \text{span}\{\boldsymbol{u}_3, \boldsymbol{u}_4\}$. Is it possible that

$$U_1 \cup U_2 = \mathbb{R}^4?$$

Justify your answer.

Question 3 [15 marks]

(a) [6 marks]

Find the least squares solutions of the linear system Ax = b where

$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \\ 0 & -1 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$,

and hence find the smallest possible value of $\|Ax - b\|$ from among all $x \in \mathbb{R}^2$.

(b) [4 marks]

Let
$$\boldsymbol{u} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\boldsymbol{v} = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$ and $\boldsymbol{w} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$.

- (i) Find an orthogonal basis $\{u', v'\}$ for $V = \text{span}\{u, v\}$ such that u = u'.
- (ii) Find the projection of \boldsymbol{w} onto the subspace V.

(c) [5 marks]

Suppose the set $\{\boldsymbol{v}_1,\boldsymbol{v}_2,\boldsymbol{v}_3\}$ is an orthonormal basis for \mathbb{R}^3 .

Show that the set $\left\{\frac{1}{\sqrt{2}}\boldsymbol{v}_1 - \frac{1}{\sqrt{2}}\boldsymbol{v}_2, \frac{1}{\sqrt{2}}\boldsymbol{v}_1 + \frac{1}{\sqrt{2}}\boldsymbol{v}_2, \boldsymbol{v}_3\right\}$ is also an orthonormal basis for \mathbb{R}^3 .

Question 4 [15 marks]

(a) [6 marks]

Let
$$\mathbf{A}$$
 be the matrix $\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$.

- (i) Find all the eigenvalues of A. Explain how you get your answer.
- (ii) Find a basis for the eigenspace of \boldsymbol{A} associated with each of the eigenvalues. Show your working.

(b) [4 marks]

Suppose \boldsymbol{B} is a 2×2 matrix such that

$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}^{-1} \boldsymbol{B} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}.$$

Find a matrix C such that $C^2 = B$.

Explain how you obtain your answer.

(c) [5 marks]

Let \boldsymbol{M} be a non-invertible 3×3 symmetric matrix such that

$$M \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix} \text{ and } M \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix}.$$

What are the eigenvalues of M?

Write down a basis for \mathbb{R}^3 consisting entirely of eigenvectors of M.

Justify your answers.

Question 5 [15 marks]

(a) [6 marks]

Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation given by

$$T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x \\ x+y \\ x-y \end{pmatrix}.$$

- (i) Write down the standard matrix for T.
- (ii) Find the kernel of T. Show your working.
- (iii) Suppose $S: \mathbb{R}^3 \to \mathbb{R}^2$ is a linear transformation with standard matrix $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$. Write down the formula for the composition $S \circ T$.

PAGE 15 MA1101R

Question 5

(b) [4 marks]

Given that $F: \mathbb{R}^3 \to \mathbb{R}^3$ is a linear transformation, P is a plane in \mathbb{R}^3 given by the equation x+y+z=0, and ℓ is a line in \mathbb{R}^3 given by the set $\{(t,t,t)\mid t\in\mathbb{R}\}$. Suppose F maps the plane P onto the line ℓ and maps the line ℓ to the origin.

Show that the linear transformation F^2 (i.e. $F \circ F$) is the zero transformation.

PAGE 16 MA1101R

Question 5

(c) [5 marks]

Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation.

Suppose $\{u_1, u_2, u_3\}$ is a basis for \mathbb{R}^3 , and $\{T(u_1), T(u_2), T(u_3)\}$ spans \mathbb{R}^2 .

Show that the standard matrix of T is of full rank.

PAGE 17 MA1101R

Question 6 [15 marks]

Determine whether each of the following parts is true or false. Justify your answer.

(a) [3 marks]

If A is a square matrix, then its row space is equal to its column space.

Show your working below.

(b) [3 marks]

The set $W = \{(a, b, c, abc) \mid a, b, c \in \mathbb{R}\}$ is not a subspace of \mathbb{R}^4 .

PAGE 18 MA1101R

Question 6

(c) [3 marks]

Let u, v be non-zero vectors in some vector space. If $\operatorname{span}\{u\} \cap \operatorname{span}\{v\} = \operatorname{span}\{u, v\}$, then $\operatorname{span}\{u\} = \operatorname{span}\{v\}$.

Show your working below.

(d) [3 marks]

There is no 3×3 matrix of rank 2 with only 1 eigenvalue.

PAGE 19 MA1101R

Question 6

(e) [3 marks]

Let \mathbf{A} be a 3×2 matrix with two columns \mathbf{c}_1 and \mathbf{c}_2 , and \mathbf{b} is a non-zero 3×1 column vector orthogonal to \mathbf{c}_1 and \mathbf{c}_2 . Then the linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ is inconsistent.

PAGE 20 MA1101R