Convex Optimization: Homework 5-4

Wanshan Li^*

 $*1300010695$ ** School of Mathematical Sciences, Peking University

2016.12.12

Problem: Algorithms for ℓ_1 Minimization

The ℓ_1 minimization problem we consider here is:

$$\min_{x} \frac{1}{2} ||Ax - b||_{2}^{2} + \mu ||x||_{1}, \tag{1}$$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ and $\mu > 0$ are given. When implementing, we use

```
n = 1024;
m = 512;
A = randn(m,n);
u = sprandn(n,1,0.1);
b = A*u;
mu = 1e-3;
```

We always use the values of m and n as above throughout this report.

Numerical Result

The numerical results below compare the performance of the three methods in subproblem (g),(h),(i). They show that the fast ADMM applying to the dual problem is most efficient.

result	cpu-time	Error to CVX call MOSEK	Objective Function
CVX call MOSEK	1.61s	0	7.5393e-2
ALM for Dual	0.38s	4.41e-6	7.5393e-2
ADMM for Dual	0.14s	1.14e-6	7.5393e-2
ADMM&Linear for Primal	0.32s	1.11e-6	7.5393e-2

Table 1: Numerical Results (I)

One can see that the most efficient method is ADMM for the dual problem. This is reasonable since it avoids the inaccuracy of "ADMM&Linear for the primal problem" as well as the complexity of "ALM for the dual problem".

Here are the summary of the numerical performance of these methods

1.

Details on Implementing Other Algorithms

Here I will give some details in implementing methods in subproblem (g), (h), (i). Firstly I will show the warm-start strategy which is quite useful for all the subproblems here, just as the subproblems before.

4.1. AdaGrad Method

```
Algorithm 8.4 The AdaGrad algorithm

Require: Global learning rate \epsilon

Require: Initial parameter \theta

Require: Small constant \delta, perhaps 10^{-7}, for numerical stability

Initialize gradient accumulation variable r = \mathbf{0}

while stopping criterion not met \mathbf{do}

Sample a minibatch of m examples from the training set \{x^{(1)}, \dots, x^{(m)}\} with corresponding targets \mathbf{y}^{(i)}.

Compute gradient: \mathbf{g} \leftarrow \frac{1}{m} \nabla_{\theta} \sum_{i} L(f(\mathbf{x}^{(i)}; \theta), \mathbf{y}^{(i)})

Accumulate squared gradient: \mathbf{r} \leftarrow \mathbf{r} + \mathbf{g} \odot \mathbf{g}

Compute update: \Delta \theta \leftarrow -\frac{\epsilon}{\delta + \sqrt{r}} \odot \mathbf{g}. (Division and square root applied element-wise)

Apply update: \theta \leftarrow \theta + \Delta \theta

end while
```

4.2. Adam Method

```
Algorithm 8.7 The Adam algorithm
Require: Step size \epsilon (Suggested default: 0.001)
Require: Exponential decay rates for moment estimates, \rho_1 and \rho_2 in [0,1).
   (Suggested defaults: 0.9 and 0.999 respectively)
Require: Small constant \delta used for numerical stabilization. (Suggested default:
   10^{-8})
Require: Initial parameters \theta
   Initialize 1st and 2nd moment variables s = 0, r = 0
   Initialize time step t = 0
   while stopping criterion not met do
      Sample a minibatch of m examples from the training set \{x^{(1)}, \dots, x^{(m)}\} with
      corresponding targets \boldsymbol{y}^{(i)}.
Compute gradient: \boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})
      Update biased first moment estimate: s \leftarrow \rho_1 s + (1 - \rho_1) g
      Update biased second moment estimate: r \leftarrow \rho_2 r + (1 - \rho_2) g \odot g
      Correct bias in first moment: \hat{s} \leftarrow \frac{s}{1-\rho_1^t}
Correct bias in second moment: \hat{r} \leftarrow \frac{r}{1-\rho_2^t}
      Compute update: \Delta \theta = -\epsilon \frac{\hat{s}}{\sqrt{\hat{r}} + \delta} (operations applied element-wise) Apply update: \theta \leftarrow \theta + \Delta \theta
   end while
```

4.3. RMSProp Method

```
Algorithm 8.5 The RMSProp algorithm Require: Global learning rate \epsilon, decay rate \rho. Require: Initial parameter \theta Require: Small constant \delta, usually 10^{-6}, used to stabilize division by small numbers. Initialize accumulation variables \boldsymbol{r}=0 while stopping criterion not met do Sample a minibatch of m examples from the training set \{\boldsymbol{x}^{(1)},\ldots,\boldsymbol{x}^{(m)}\} with corresponding targets \boldsymbol{y}^{(i)}. Compute gradient: \boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)};\boldsymbol{\theta}),\boldsymbol{y}^{(i)}) Accumulate squared gradient: \boldsymbol{r} \leftarrow \rho \boldsymbol{r} + (1-\rho)\boldsymbol{g} \odot \boldsymbol{g} Compute parameter update: \Delta \boldsymbol{\theta} = -\frac{\epsilon}{\sqrt{\delta+r}} \odot \boldsymbol{g}. (\frac{1}{\sqrt{\delta+r}} applied element-wise) Apply update: \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \Delta \boldsymbol{\theta} end while
```

4.4. Momentum Method

end while

```
Algorithm 8.2 Stochastic gradient descent (SGD) with momentum Require: Learning rate \epsilon, momentum parameter \alpha. Require: Initial parameter \boldsymbol{\theta}, initial velocity \boldsymbol{v}.

while stopping criterion not met do

Sample a minibatch of m examples from the training set \{\boldsymbol{x}^{(1)},\ldots,\boldsymbol{x}^{(m)}\} with corresponding targets \boldsymbol{y}^{(i)}.

Compute gradient estimate: \boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)};\boldsymbol{\theta}),\boldsymbol{y}^{(i)})

Compute velocity update: \boldsymbol{v} \leftarrow \alpha \boldsymbol{v} - \epsilon \boldsymbol{g}

Apply update: \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \boldsymbol{v}
```