MATH1061/1002 Cheatsheet (Linear Algebra) Semester 1, 2024

Abyan Majid

O Source

1	Con	aplex numbers	2		2.19	Skewness of lines	7
	1.1	Imaginary unit	2		2.20	Forms of planes in \mathbb{R}^3	8
	1.2	Cartesian, standard polar, exponential			3.5		0
		polar forms	2	3		rices	8
	1.3	Complex conjugate	2		3.1	Homogeneous system of equations	8
	1.4	Modulus of a complex number	2		3.2	Augmented matrix of a system	8
	1.5	Principal argument	2		3.3	Elementary row operations (EROs)	9
	1.6	Arithmetic in cartesian form	3		3.4	Gaussian elimination (Mat \rightarrow REF)	9
	1.7	Arithmetic in polar forms	3		3.5	Gauss-Jordan elimination (Mat \rightarrow RREF)	9
	1.8	Equality of complex numbers	3		3.6	Summarised procedure for solving systems	9
	1.9	Roots of complex numbers	3		3.7	Matrices	10
	1.10	Complex exponential function	3		3.8	Square matrix, diagonal entries	10
					3.9	Identity matrix, zero matrix	10
2	Vec	tors	4			Row matrix, column matrix	10
	2.1	Vector algebra	4		3.11	Matrix addition, scalar multiple	11
	2.2	Magnitude of a vector	4		3.12	Matrix multiplication	11
	2.3	Useful theorems for vector algebra	4		3.13	Matrix multiplication properties	11
	2.4	Vector space	4		3.14	Function composition with matrix multi-	
	2.5	Unit vector	5			plication	11
	2.6	Linear combination	5		3.15	Matrix transpose	11
	2.7	Parallel vectors	5		3.16	Operations with matrix transpose	12
	2.8	Standard basis vectors	5		3.17	Matrix inversion	12
	2.9	Dot product	5		3.18	Inverses and systems of equations	12
	2.10	Theorems for dot products	5		3.19	$ Determinant \dots \dots$	12
	2.11	Angle between vectors using dot product .	6		3.20	Laplace expansion theorem \dots	13
	2.12	Orthogonal vectors	6		3.21	Matrix minor and cofactor	13
	2.13	Projections	6		3.22	Eigenvalues, eigenvectors, eigenspace	13
	2.14	Cross products	6		3.23	How to find eigenvalues	14
	2.15	Properties for cross products	6		3.24	How to find eigenspace	14
	2.16	Area inscribed by vectors in \mathbb{R}^3	7		3.25	Characteristic polynomial and equation .	14
	2.17	Angle between vectors using cross product	7		3.26	Algebraic and geometric multiplicities	14
	2.18	Forms of lines in \mathbb{R}^2	7		3.27	Diagonalization	14

1 Complex numbers

1.1 Imaginary unit

Imaginary unit
$$i = \sqrt{-1}$$

1.2 Cartesian, standard polar, exponential polar forms

Name	Form
Cartesian	z = a + bi
Standard Polar	$r(\cos\theta + i\sin\theta)$
Exponential Polar	$re^{i\theta}$

1.3 Complex conjugate

Complex conjugate
Complex conjugate of $z = a + bi$ is $\overline{z} = a - bi$

Complex conjugate properties		
Property	Definition	
Conjugate of a Sum	$\overline{z+w} = \overline{z} + \overline{w}$	
Conjugate of a Product	$\overline{zw} = \overline{z} \times \overline{w}$	
Conjugate of a Power	$\overline{z^n} = (\overline{z})^n$	

1.4 Modulus of a complex number

1.5 Principal argument

Principal argument

The principal argument of $z \in \mathbb{C}$, denoted Arg z, satisfies $-\pi < \text{Arg } z \leq \pi$ So, to get principal argument, add or subtract multiples of 2π to/from θ .

Modulus propert	ties
Property	Definition
Multiplicative Property of Moduli	zw = z w
Division Property of Moduli	$\left \frac{z}{w} \right = \frac{ z }{ w }$
Triangle Inequality	$ z+w \le z + w $
Reverse Triangle Inequality	$ z - w \ge z - w $

2

1.6 Arithmetic in cartesian form

Operation	$\mathbf{let}\ z = a + bi\ \mathbf{and}\ w = c + di$
Addition	z + w = (a+c) + (b+d)i
Subtraction	z - w = (a - c) + (b - d)i
Multiplication	$z \times w = (a+bi)(c+di)$
	$z \times w = ac + adi + bci + bdi^2$
	$z \times w = (ac - bd) + (ad + bc)i$
Division	$z \div w = \frac{z}{w} \times \frac{\overline{w}}{\overline{w}}$
	$z \div w = \frac{w + \overline{w}}{c + di} \times \frac{c - di}{c - di}$

1.7 Arithmetic in polar forms

let $z = re^{i\theta}$ and $w = se^{i\phi}$			
Operation	Exponential polar	Standard polar	
Multiplication	$zw = rse^{i(\theta + \phi)}$	$zw = rs(\cos(\theta + \phi) + i\sin(\theta + \phi))$	
Division	$\frac{z}{w} = (\frac{r}{s})e^{i(\theta - \phi)}$	$\frac{z}{w} = \frac{r}{s}(\cos(\theta - \phi) + i\sin(\theta - \phi))$	
Power	$z^n = r^n e^{in\theta}$ where $n \in \mathbb{Z}$	$z^n = r^n(\cos(n\theta) + i\sin(n\theta))$	

1.8 Equality of complex numbers

Equality in Cartesian form
$$(a+bi)=(c+di)$$
 if and only if $a=c, b=d$

Equality in polar forms
$$re^{i\theta}=se^{i\phi} \text{ if and only if } r=s \text{ and } \theta=\phi+2k\pi \text{ for } k\in\mathbb{Z}$$

1.9 Roots of complex numbers

When asked to find the roots of
$$z^n=\alpha$$

$$z=r^{\frac{1}{n}}e^{i(\frac{\theta+2k\pi}{n})} \text{ satisfy } z^n=\alpha \text{ for each } k=0,1,2,...,n-1.$$

1.10 Complex exponential function

Complex exponential function For
$$z=a+bi$$
, we define $e^z=e^ae^{bi}$, which means $e^z=e^a(\cos b+i\sin b)$ from which we know $|e^z|=e^a$ and $arg(e^z)=b$.

2 Vectors

2.1 Vector algebra

Let $\mathbf{u} = [u_1,, u_n], \mathbf{v} = [v_1,, v_n] \in \mathbb{R}^n, c \in \mathbb{R}$			
Operation	What to do	Operation	What to do
Addition	$\mathbf{u} + \mathbf{v} = \begin{bmatrix} u_1 + v_1 \\ \vdots \\ u_n + v_n \end{bmatrix}$	Scalar multiplication	$c\mathbf{u} = \begin{bmatrix} cu_1 \\ \vdots \\ cu_n \end{bmatrix}$
Subtraction	$\mathbf{u} - \mathbf{v} = \begin{bmatrix} u_1 - v_1 \\ \vdots \\ u_n - v_n \end{bmatrix}$	Negation	$-\mathbf{u} = \begin{bmatrix} -u_1 \\ \vdots \\ -u_n \end{bmatrix}$

2.2 Magnitude of a vector

Magnitude of a vector
The magnitude (length) of a vector \mathbf{u} is given by
$ \mathbf{u} = \sqrt{u_1^2 + u_2^2 + \dots + u_n^2}$
Also note that $ c\mathbf{u} = c \mathbf{u} $

2.3 Useful theorems for vector algebra

Let $\mathbf{u} = [u_1,, u_n], \mathbf{v} = [v_1,, v_n] \in \mathbb{R}^n, c, d \in \mathbb{R}$				
	and \mathbf{o} be the zero vector			
No	Theorem			
1	$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$			
2	$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$			
3	$\mathbf{u} + \mathbf{o} = \mathbf{u}$			
4	$\mathbf{u} + (-\mathbf{u}) = \mathbf{o}$			
5	$5 c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$			
6	$6 \mathbf{u}(c+d) = c\mathbf{u} + d\mathbf{u}$			
7	$c(d\mathbf{u}) = (cd)\mathbf{u}$			
8	$1\mathbf{u} = \mathbf{u}$			

2.4 Vector space

Vector Space

A $vector\ space$ is a set V equipped with:

- Addition: For any $\mathbf{u}, \mathbf{v} \in V$, there exists $\mathbf{u} + \mathbf{v} \in V$.
- Scalar multiplication: For any $\mathbf{u} \in V$ and any scalar $c \in \mathbb{R}$, there exists $c\mathbf{u} \in V$.

These operations must satisfy properties (1)-(8) defined in Section 2.3.

Examples: \mathbb{R}^n and \mathbb{C} are both examples of vector spaces.

2.5 Unit vector

Unit vector

A "unit vector" is a vector of length 1. If $\mathbf{u} \in \mathbb{R}^n$, $||\mathbf{u}|| \neq 0$ then $\frac{1}{||\mathbf{u}||}\mathbf{u}$ is a unit vector.

2.6 Linear combination

Linear combination

A "linear combination" of $\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_k} \in \mathbb{R}^n$ is a vector of the form $C_1\mathbf{v_1} + C_2\mathbf{v_2} + ... + C_k\mathbf{v_k}$.

Example: [2, 2] is a linear combination of [-1, 2], [0, 6] because [2, 2] = (-2)[-1, 2] + (1)[0.6]

2.7 Parallel vectors

Parallel vectors

Vectors **u** and **v** are parallel if $\mathbf{u} = c\mathbf{v}$ or $\mathbf{v} = c\mathbf{u}$ for $c \in \mathbb{R}$.

2.8 Standard basis vectors

Standard basis vectors

 $e_1 = [1, 0, 0], e_2 = [0, 1, 0], e_3 = [0, 0, 1]$ are the standard basis vectors in \mathbb{R}^3 .

Similarly, $\mathbf{e_1} = [1, 0, ..., 0], \mathbf{e_2} = [0, 1, 0, ..., 0], ..., \mathbf{e_n} = [0, 0, ..., 0, 1] \in \mathbb{R}^n$ are the standard basis vectors in \mathbb{R}^n

2.9 Dot product

Dot product

For $\mathbf{u} = [u_1, ..., u_n], \mathbf{v} = [v_1, ..., v_n] \in \mathbb{R}^n$, we define the dot product $\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + ... + u_n v_n \in \mathbb{R}$

2.10 Theorems for dot products

Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n, c \in \mathbb{R}$		
No	Theorem	
1	$\mathbf{u}\cdot\mathbf{v}$	
2	$\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$	
3	$(c\mathbf{u}) \cdot \mathbf{v} = c(\mathbf{u} \cdot \mathbf{v})$	
4	$\mathbf{u} \cdot \mathbf{u} \ge 0$	
5	$ \mathbf{u} = \sqrt{\mathbf{u} \cdot \mathbf{u}}$	
6	$ \mathbf{u} \cdot \mathbf{v} \le \mathbf{u} \mathbf{v} $ (Cauchy-Schwarz Inequality)	
7	$ \mathbf{u} + \mathbf{v} \le \mathbf{u} + \mathbf{v} $ (Triangle Inequality)	

2.11 Angle between vectors using dot product

Angle between vectors using dot product

We define angle between vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ to be a unique value $\theta \in [0, \pi]$ such that: $\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}||||\mathbf{v}||}$

which means we can also find $\mathbf{u}\cdot\mathbf{v}$ if we know the the magnitude of u and v, and the angle in between:

$$\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}||||\mathbf{v}|| \cos \theta$$

2.12Orthogonal vectors

Orthogonal vectors

Vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ are orthogonal iff $\mathbf{u} \cdot \mathbf{v} = 0$

$$\mathbf{u} \cdot \mathbf{v} = 0 \Longrightarrow \cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}||||\mathbf{v}||} = 0$$

Note: Orthogonal vectors are perpendicular
$$\mathbf{u} \cdot \mathbf{v} = 0 \Longrightarrow \cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}||||\mathbf{v}||} = 0$$

$$\theta = \cos^{-1}(0) = \frac{\pi}{2}, \text{ i.e. perpendicular.}$$

2.13**Projections**

Projections

The projection of \mathbf{u} onto \mathbf{v} is defined by

$$\mathrm{proj}_{\mathbf{v}}(\mathbf{u}) = (\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}})\mathbf{v}$$

Cross products 2.14

Cross products

Cross product of $\mathbf{u} = [u_1, u_2, u_3], \mathbf{v} = [v_1, v_2, v_3] \in \mathbb{R}^3$ is the vector $\mathbf{u} \times \mathbf{v} = \begin{bmatrix} u_2v_3 - u_3v_2 \\ u_3v_1 - u_1v_3 \\ u_1v_2 - u_2v_1 \end{bmatrix}$

$$\mathbf{u} \times \mathbf{v} = \begin{bmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{bmatrix}$$

Properties for cross products 2.15

Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^3, c \in \mathbb{R}$		
No	Property	
1	$\mathbf{u} \times \mathbf{v} \neq \mathbf{v} \times \mathbf{u}$ (not commutative)	
2	$\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) \neq (\mathbf{u} \times \mathbf{v}) \times \mathbf{w}$ (not associative)	
3	$\mathbf{u} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{u})$ (anti-commutative)	
4	$\mathbf{u} \times \mathbf{u} = 0$	
5	$\mathbf{u} \cdot (\mathbf{u} \times \mathbf{v}) = 0 = \mathbf{v} \cdot (\mathbf{u} \times \mathbf{v})$	
	i.e. given 2 vectors, their cross product is orthogonal to both vectors.	
6	$\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) + (\mathbf{u} \times \mathbf{w})$	
7	$c(\mathbf{u} \times \mathbf{v}) = (c\mathbf{u}) \times \mathbf{v} = \mathbf{u} \times (c\mathbf{v})$	

2.16 Area inscribed by vectors in \mathbb{R}^3

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$		
Shape Area		
Parallelogram The area of the parallelogram inscribed by \mathbf{u}, \mathbf{v} is $ \mathbf{u} \times \mathbf{v} $		
Triangle	The area of the triangle inscribed by \mathbf{u}, \mathbf{v} is $\frac{1}{2} \mathbf{u} \times \mathbf{v} $	

2.17 Angle between vectors using cross product

Angle between vectors using cross product Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$ and θ the angle between them. Then, $||\mathbf{u} \times \mathbf{v}|| = ||\mathbf{u}|| ||\mathbf{v}|| \sin \theta$ which means $\theta = \sin^{-1} \frac{||\mathbf{u} \times \mathbf{v}||}{||\mathbf{u}|| ||\mathbf{v}||}$

2.18 Forms of lines in \mathbb{R}^2

Let

 ${\bf p}$: position vector pointing to the line

n: normal vector (vector orthogonal to the line)

d: direction vector (vector parallel to the line)

Name	Form	How to obtain	Survives \mathbb{R}^n
Normal form	$\mathbf{n} \cdot (\mathbf{x} - \mathbf{p}) = 0$	1) Find $\mathbf{p}, \mathbf{n} \in \mathbb{R}^2$	No
		2) Write $\mathbf{n} \cdot (\mathbf{x} - \mathbf{p}) = 0$	
General form	ax + by = c	1) Find the normal form	No
		2) Let $\mathbf{x} = [x, y], \mathbf{n} = [a, b], \text{ and write } c = \mathbf{n} \cdot \mathbf{p}$	
		3) Simplify as follows	
		$\mathbf{n} \cdot (\mathbf{x} - \mathbf{p}) = 0$	
		$\implies [a,b] \cdot ([x,y] - \mathbf{p}) = 0$	
		$\implies [a,b] \cdot [x,y] - c = 0$	
		$\implies ax + by = c$	
Vector form	$\mathbf{x} = \mathbf{p} + t\mathbf{d}, t \in \mathbb{R}$	1) Find $\mathbf{p}, \mathbf{d} \in \mathbb{R}^2$	Yes
		2) Write $\mathbf{x} = \mathbf{p} + t\mathbf{d}, t \in \mathbb{R}$	
Parametric equations	$x = p_1 + td_1$	1) Find the vector form	Yes
	$y = p_2 + td_2$	2) Write equations using each corresponding	
	for $t \in \mathbb{R}$	components of \mathbf{x}, \mathbf{p} and \mathbf{d}	

2.19 Skewness of lines

Skewness of lines
Two lines are "skew" if they are NOT parallel and do NOT intersect.
(applicable only to \mathbb{R}^3 and above since all non-parallel lines in \mathbb{R}^2 has to intersect)

7

2.20 Forms of planes in \mathbb{R}^3

Let

 \mathbf{p} : position vector pointing to the line

n : normal vector (vector orthogonal to the line)

u, **v**: direction vector (vector parallel to the line)

Name	Form	How to obtain	Survives \mathbb{R}^n
Normal form	$\mathbf{n} \cdot (\mathbf{x} - \mathbf{p}) = 0$	1) Find $\mathbf{p}, \mathbf{n} \in \mathbb{R}^3$	No
		2) Write $\mathbf{n} \cdot (\mathbf{x} - \mathbf{p}) = 0$	
General form	ax + by + cz = d	1) Find the normal form	No
		2) Let $\mathbf{x} = [x, y, z], \mathbf{n} = [a, b, c], \text{ and }$	
		write $d = \mathbf{n} \cdot \mathbf{p}$	
		3) Simplify as follows	
		$\mathbf{n} \cdot (\mathbf{x} - \mathbf{p} = 0)$	
		$\implies [a, b, c] \cdot ([x, y, z] - \mathbf{p}) = 0$	
		$\implies ax + by + cz = d$	
Vector form	$\mathbf{x} = \mathbf{p} + s\mathbf{u} + t\mathbf{v}$	1) Find $\mathbf{p}, \mathbf{u}, \mathbf{v} \in \mathbb{R}^3$	Yes
	for $s, t \in \mathbb{R}$	2) Write $\mathbf{x} = \mathbf{p} + s\mathbf{u} + t\mathbf{v}$, for $s, t \in \mathbb{R}$	
Parametric equations	$x = p_1 + su_1 + tv_1$	1) Find the vector form	Yes
	$y = p_2 + su_2 + tv_2$	2) Write equations using each corresponding	
	$z = p_3 + su_3 + tv_3$	components of $\mathbf{x}, \mathbf{p}, \mathbf{u}$ and \mathbf{v}	
	for $s, t \in \mathbb{R}$		

3 Matrices

3.1 Homogeneous system of equations

Recall that a system of m linear equations in n variables $x_1, x_2, ..., x_n$ is $\sum_{j=1}^n a_{ij} x_j = b_i \text{ for } 1 \leq i \leq m$ The system is homogeneous if for all $i, b_i = 0$.

3.2 Augmented matrix of a system

Au	Augmented matrix of a system				
The	augm	ented	matri	ix of th	ne system
$\sum_{j=1}^{n} a_{ij} x_j = b_i \text{ for } 1 \le i \le m \text{ is}$					
[a_{11}	a_{12}		a_{1n}	b_1
	a_{21}	a_{22}		a_{1n} a_{2n}	b_2
	:	:	٠	:	
	a_{m1}	a_{m2}		a_{mn}	b_m \rfloor

3.3 Elementary row operations (EROs)

Elementary row operations (EROs)		
No Operation		
1	Swapping two rows $(R_i \leftrightarrow R_j)$	
2	Multiplying (each entry of) a row by a nonzero constant $(R_i \to cR_i)$	
3	Adding a multiple of one row to another $(R_i \to R_i + cR_j)$	

3.4 Gaussian elimination (Mat \rightarrow REF)

Gaussian Elimination

The process of applying EROs (Elementary Row Operations) to transform a matrix into Row Echelon Form (REF)

Once in REF, we can solve the system by back substituting, starting from the bottom row.

No	REF Characteristic
1	All rows of 0s are at the bottom
2	In each non-zero row, the leading entry (*) is in a column
	to the left of any leading entries below it.

3.5 Gauss-Jordan elimination (Mat \rightarrow RREF)

Gauss-Jordan elimination

The process of using EROs to transform a matrix into reduced row echelon form (RREF)

Example:

No	RREF Characteristic	
1	It is in REF	
2	Every leading entry is a 1	
3	Each column with a leading 1 has zeros everywhere else in the column	

3.6 Summarised procedure for solving systems

Step	What to do
1	Form the augmented matrix
2	Perform EROs to REF or RREF
3	Set a parameter $(t, u, \text{ etc})$ for every column without a leading entry
4	Use nonzero rows to solve for the other variables.

3.7 Matrices

Matrix definition

Let $n_r, n_c \in \mathbb{N}$. An $n_r \times n_c$ matrix is just a $n_r \times n_c$ grid of numbers where n_r is the no. of rows and n_c is the no. of columns.

$$M = \begin{bmatrix} m_{1,1} & m_{1,2} & \dots & m_{1,n_c} \\ m_{2,1} & m_{2,2} & \dots & m_{2,n_c} \\ \vdots & \vdots & \ddots & \vdots \\ m_{n_r,1} & m_{n_r,2} & \dots & m_{n_r,n_c} \end{bmatrix}$$

Given a $n_r \times n_c$ matrix M we write $M = (m_{i,j})$ where for each i = 1, 2, ..., n and j = 1, 2, ..., n the symbol $m_{i,j}$ denotes the entry in row i, column j

3.8 Square matrix, diagonal entries

Term	Definition
Diagonal entries	The diagonal entries of a square matrix A are a_{11}, a_{22}, a_{nn} .
Square matrix	A matrix of size $n \times n$
Diagonal square matrix	A square matrix is "diagonal" if $a_{ij} = 0$ if $i \neq j$.

3.9 Identity matrix, zero matrix

Term	Definition		
Identity matrix	The diagonal matrix whose diagonal entries are all 1. $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$		
Zero matrix	The $m \times n$ matrix with entries all equal to 0. $O_{2\times 3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$		

3.10 Row matrix, column matrix

Term	Definition
Row matrix	A matrix of size $1 \times n$
	$\begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}$
Column matrix	A matrix of size $n \times 1$
	[1]
	3
	$\lfloor 4 \rfloor$

3.11 Matrix addition, scalar multiple

Matrix addition, scalar multiple

Let $A = (a_{ij})_{m \times n}$ and $B = (b_{ij})_{p \times r}, c \in \mathbb{R}$

If m = p, n = r, then the sum of A and B is given by

$$A + B = (a_{ij} + b_{ij})_{m \times n}$$

and we define the **scalar multiple** of A as

$$cA = (ca_{ij})_{m \times n}$$

3.12Matrix multiplication

Matrix multiplication

Let $A = (a_{ij})_{m \times n}$ and $B = (b_{ij})_{p \times r}$.

If n = p, then we define the **product** ABto be the $m \times r$ matrix whose ij-entry is

$$\sum_{k=1}^{n} a_{ik} b_{kj} = a_{i1} b_{1j} + \ldots + a_{in} b_{nj}$$

$$A = \begin{bmatrix} 1 & 2 \\ 4 & 6 \end{bmatrix}, B = \begin{bmatrix} 7 & 3 \\ 2 & 8 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 \\ 4 & 6 \end{bmatrix}, B = \begin{bmatrix} 7 & 3 \\ 2 & 8 \end{bmatrix}$$

$$AB = \begin{bmatrix} (1)(7) + (2)(2) & (1)(3) + (2)(8) \\ (4)(7) + (6)(2) & (4)(3) + (6)(8) \end{bmatrix} = \begin{bmatrix} 11 & 19 \\ 40 & 60 \end{bmatrix}$$

3.13 Matrix multiplication properties

Matrix multiplication properties

Let A, B, C be matrices such that all the following operations are defined, and let $k \in \mathbb{R}$

No	Property
1	A(BC) = (AB)C
2	A(B+C) = AB + AC
3	(A+B)C = AC + BC
4	k(AB) = (kA)B = A(kB)

3.14 Function composition with matrix multiplication

Function composition with matrix multiplication

Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be given by $f(\mathbf{x}) = A\mathbf{x}$

Let $q: \mathbb{R}^n \to \mathbb{R}^n$ be given by $q(\mathbf{x}) = B\mathbf{x}$

We have $(f \circ g)(\mathbf{x}) = (AB)\mathbf{x}$

Matrix transpose 3.15

Matrix transpose

For $A = (a_{ij})_{m \times n}$, we define the transpose of A to be the $n \times m$ matrix

$$A^T = (b_{ij})_{n \times m}$$
 where $b_{ij} = a_{ij}$

Meaning, rows of A become the columns of A^T and vice versa.

3.16 Operations with matrix transpose

Operations with matrix transpose				
No	Operation			
1	$(A^T)^T = A$			
2	$(A+B)^T = A^T + B^T$			
3	$(kA)^T = kA^T$			
4	$(AB)^T = B^T A^T$			
5	$(A^n)^T = (A^T)^n$			

3.17 Matrix inversion

Matrix inversion

Let A be an $n \times n$ matrix. An inverse of A is an $n \times n$ matrix B such that $AB = BA = I_n$. If there exists such matrix B, then we say: A is invertible

Inverting a 2×2 matrix					
$\begin{bmatrix} a \\ c \end{bmatrix}$	$\begin{bmatrix} b \\ d \end{bmatrix}^{-1} =$	$\frac{1}{\det(\begin{bmatrix} a \\ c \end{bmatrix}}$	$\begin{bmatrix} b \\ d \end{bmatrix}$)	$\begin{bmatrix} d \\ -c \end{bmatrix}$	$\begin{bmatrix} -b \\ a \end{bmatrix}$

Inverting an $n \times n$ matrix

Let A be an $n \times n$ matrix. This means A is invertible if and only if the matrix $[A|I_n]$ can be row reduced to a matrix of the form $[I_n|B]$. In which case, $B = A^{-1}$.

Note: If you get a row of zeros on the left, then A is not invertible.

3.18 Inverses and systems of equations

Inverses and systems of equations

If $A\mathbf{x} = \mathbf{b}$ is a system of equations and A is invertible, then there is a unique solution $\mathbf{x} = A^{-1}\mathbf{b}$

3.19 Determinant

Determinant of a
$$2 \times 2$$
 matrix
If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, then $\det(A) = ad - bc$

Determinant of an $n \times n$ matrix

For an $n \times n$ matrix with $n \geq 2$, we denote A_{ij} to be the $(n-1) \times (n-1)$ matrix obtained by deleting row i and column j for $1 \leq i, j \leq n$. In which case,

$$\det(A) = \sum_{j=1}^{n} (-1)^{1+j} a_{ij} \det(A_{ij})$$

Note: The determinant of a 1×1 matrix [a] is a.

12

More facts about determinants				
No	Fact			
1	If $A \xrightarrow{R_i \leftrightarrow R_j} B$, then $\det(B) = -\det(A)$			
2	If $A \xrightarrow{R_i \to cR_j} B$, then $\det(B) = c\det(A)$			
3	If $A \xrightarrow{R_i \to R_i + cR_j} B$, then $\det(B) = \det(A)$			
4	A is invertible if and only if $\det(A) \neq 0$			
5	Let A, B be $n \times n$ matrices.			
	$5.1. \det(cA) = c^n \det(A)$			
	5.2. $\det(AB) = \det(A)\det(B)$			
	$5.3. \det(A^{-1}) = \frac{1}{\det(A)}$			
	5.4. $\det(A) = \det(A^T)$			

3.20 Laplace expansion theorem

Laplace expansion theorem

Let A be an $n \times n$ matrix where $n \geq 2$.

For any
$$1 \le i \le n$$
, we have $\det(A) = \sum_{j=1}^{n} a_{ij} C_{ij}$

3.21 Matrix minor and cofactor

Minor and cofactor

Let A be an $n \times n$ matrix. For $1 \le i, j \le n$, we define:

- 1. The (i, j)-minor to be $det(A_{ij})$
- 2. The (i, j)-cofactor to be $C_{ij} = (-1)^{i+j} \det(A_{ij})$

3.22 Eigenvalues, eigenvectors, eigenspace

Eigenvalues, eigenvectors, eigenspace

Let A be an $n \times n$ matrix. A scalar λ is an eigenvalue of A if

$$A\mathbf{x} = \lambda \mathbf{x}, \mathbf{x} \neq \mathbf{o}$$

Such a vector \mathbf{x} is called an eigenvector of A for λ .

The eigenspace for λ is

$$E_{\lambda}(A) = \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \lambda \mathbf{x} \}$$

You can think of the eigenspace as $E_{\lambda}(A) = (\{\text{all eigenvectors for } \lambda\} \cup \{\mathbf{o}\})$

3.23 How to find eigenvalues

How to find eigenvalues

The eigenvalues of A are the values of λ satisfying $\det(A - \lambda I) = 0$

This is based on the following manipulation

$$A\mathbf{x} = \lambda \mathbf{x}, \mathbf{x} \neq \mathbf{o}$$

$$\Rightarrow A\mathbf{x} = \lambda I_{\mathbf{x}}, \mathbf{x} \neq 0$$

$$\Rightarrow A\mathbf{x} - \lambda I\mathbf{x} = \mathbf{o}, \mathbf{x} = \mathbf{o}$$

$$\Rightarrow (A - \lambda I)\mathbf{x} = \mathbf{o}, \mathbf{x} \neq \mathbf{o}$$

$$\Rightarrow A - \lambda I$$
 is not invertible

$$\Rightarrow \det(A - \lambda I) = 0$$

3.24 How to find eigenspace

How to find eigenspace

Since
$$A\mathbf{x} = \lambda \mathbf{x} \Leftrightarrow (A - \lambda I)\mathbf{x} = \mathbf{o}$$
, we have $E_{\lambda}(A) = {\mathbf{x} : (A - \lambda I)\mathbf{x} = \mathbf{o}}$

= {solutions to the system $(A - \lambda I)\mathbf{x} = \mathbf{o}$ }

3.25 Characteristic polynomial and equation

Characteristic polynomial and equation

If A is an $n \times n$ matrix, then $\det(A - \lambda I)$ is a polynomial in λ of degree n called the characteristic polynomial.

 $det(A - \lambda I) = 0$ is the characteristic equation.

3.26 Algebraic and geometric multiplicities

Algebraic and geometric multiplicities					
Let A be an $n \times n$ matrix, and let $\lambda = b$ be an eigenvalue of A					
Multiplicity	Definition				
Algebraic If when factored, the characteristic polynomial $\det(A - \lambda I)$					
	has factor $(\lambda - b)^m$, then the algebraic multiplicity of $\lambda = b$ is m				
Geometric	The geometric multiplicity of $\lambda = b$ is the				
	number of parameters appearing in $E_{\lambda}(A)$				

3.27 Diagonalization

Diagonalization

An $n \times n$ matrix A is diagonalizable if there is an invertible matrix P and a diagonal matrix D such that

$$A = PDP^{-1}$$

Another way to put it: An $n \times n$ matrix A is diagonalizable if and only if for all eigenvalues of A, the algebraic multiplicity is equal to the geometric multiplicity.