

Buck Converter

B Swaroop Reddy and G V V Sharma*

1

1

2

3

CONTENTS

1 Components	
--------------	--

2 Circuit Operation

3 Circuit Assembly

4 Fourier Series Analysis of Buck-Converter

Abstract—This manual provides the design of a DC-DC Buck-Converter.

1 Components

Component	Value	Quantity		
Arduino Uno		1		
Inductor	5 mH	1		
Capacitor	10 uF	1		
n-MOS	IRF 540	1		
Jumper Wires	M-M	20		
Diode		1		
Gate Driver	TLP350	1		

TABLE I

2 CIRCUIT OPERATION

The buck converter block diagram and circuit are shown in Figs. 1 and 2 respectively.

Problem 2.1. When the switch is ON, the circuit diagram is shown in Fig. 3. Express the voltage across inductor in terms of V_s and V_o and current passing through the capacitor in terms of I_L and I_o when swich is ON.

Fig. 1: Block Diagram

Fig. 2: DC-DC buck converter

Fig. 3: Switch in ON state

Solution:

$$V_L(ON) = V_s - V_o$$
$$I_C(ON) = I_L - I_o$$

Problem 2.2. When the switch is OFF, the circuit diagram is shown in Fig. 4. Express the voltage across inductor in terms of V_s and V_o and current

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

passing through the capacitor in terms of I_L and I_o when swich is OFF.

Fig. 4: Switch in OFF state

Solution:

$$V_L(OFF) + V_o = 0$$

$$V_L(OFF) = -V_o$$

$$I_C(OFF) = I_L - I_o$$

Problem 2.3. Find V_o and I_o .

Solution: From Volt-sec Balance

$$V_L(ON)T_{ON} + V_L(OFF)T_{OFF} = 0$$
$$(V_s - V_o)DT - V_o(1 - D)T = 0$$
$$V_o = DV_s$$

Where D is Duty cycle. From Amp-sec Balance,

$$(I_L - I_o)DT + (I_L - I_o)(1 - D)T = 0$$
$$I_o = I_L$$

Problem 2.4. Express L interms of D, V_o , $f = \frac{1}{T}$ and ΔI_L where ΔI_L is Ripple in the inductor current i.e maximum change in the inductor current from ON state to OFF state.

Solution:

$$V_L(ON) = V_s - V_o$$

$$L\frac{di_{ON}}{dt_{ON}} = V_s - V_o$$

$$L\frac{\Delta I_L}{DT} = V_s - DV_s$$

$$L = \frac{D(1 - D)V_s}{\Delta I_L f}$$

$$L = \frac{(1-D)V_o}{f\Delta I_L} \tag{2.4.1}$$

Where ΔI_L is Ripple in the inductor current i.e maximum change in the inductor current from ON state to OFF state.

Problem 2.5. Express C interms of L,D, ΔV_o and $f = \frac{1}{T}$.

Solution: Charge on the capacitor

$$Q = CV_C$$
$$\Delta Q = C\Delta V_C = C\Delta V_o$$

 ΔQ =Area under the capacitor current will

$$\Delta Q = \frac{1}{2} \frac{\Delta I_L}{2} \frac{T}{2} = \frac{\Delta I_L}{8f}$$

$$C = \frac{\Delta I_L}{8f \Delta V_c}$$
(2.5.1)

Problem 2.6. Assume, Input Voltage $(V_s) = 10V$ Output Voltage $(V_o) = 5V$ $\Delta I_L = 11\%$ of I_L $\Delta V_o = 6\%$ of V_o Let $R = 5\Omega$ (for $I_o = 1A$) Calculate L and C.

Problem 2.7. Connect the circuit as per the Fig. 2 and measure I_o and V_o .

3 CIRCUIT ASSEMBLY

Problem 3.1. Assemble the Buck converter circuit according to Figs. 2, 5 and Table II.

TLP350	1	2	3	4	5	6	7	8
ARDUINO	NA	13	GND	NA			NA	
					-5 V	10 Ω		12 V
MOSFET					S	G		

TABLE II: Pin Connections

Problem 3.2. Program the arduino to generate a square wave with *Duty Cycle D* = 0.5 and frequency f = 5KHz.

Solution:

Pin Configuration

1: N.C.

2: Anode

3: Cathode

4: N.C.

5: GND

6: VO (Output)

7 : Vo

8: V_{CC}

Fig. 5: TLP350

```
void loop() {
    digitalWrite(13,LOW);
    delayMicroseconds(10);
    digitalWrite(13,HIGH);
    delayMicroseconds(10);
}
```

4 Fourier Series Analysis of Buck-Converter

Problem 4.1. Observe the output of the Source pin of the n-MOS on oscilloscope and write the python script to generate the same.

Solution: The output is shown in Fig. 6

```
import numpy as np
import matplotlib.pyplot as plt
from scipy import signal
A =10 # wave amplitude
```

```
T = 0.2 # wave period

t = np.linspace(-2.5*T,2.5*T,int(1 e4))

plt.plot(t,A/2 *(1+signal.square (2*np.pi*t/T,0.5)))

plt.ylim(-1,12)
plt.grid()
plt.xlabel('$t(msec)$')
plt.ylabel('$X(t)$')
plt.savefig('square.eps')
plt.show()
```


Fig. 6: Square Pulse

Problem 4.2. Show that the voltage across the diode in Fig. 2 is

$$V_D(t) = \begin{cases} \sum_{n=1}^{\infty} \frac{10}{n\pi} \sin(2\pi f t) & n \text{ odd} \\ 5 & n = 0 \\ 0 & n \text{ even} \end{cases}$$
 (4.2.1)

Problem 4.3. Compute and sketch the frequency response for the L-C-R part of Fig. 2 shown in Fig. 7 for $R = 5\Omega$ and L and C calculated using equation (2.4.1) and equation (2.5.1). What kind of filter is it?

Problem 4.4. Calculate the cut-off frequency for the filter in Fig. 7.

Fig. 7: Filter

Problem 4.5. Find V_o .

Problem 4.6. Explain your results through a Python script.