



# Redes de Bravais

Métodos matemáticos para fisicos I Profesor: Luis Nuñez

Gabriela Sánchez Ariza - 2200816 Nicolás Toledo - 2200017

## Inciso a





| Red bidimensional | Celda primitiva 1 | Celda primitiva 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Celda primitiva 3         |
|-------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
|                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · / ː \ · · · · · . |
|                   | '.'.'.'           | LI CONTRACTOR OF THE CONTRACTO |                           |
|                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |

#### Inciso b

#### Triclínica



Monoclínica



$$a = (a1, a2, a3),$$
  $b = (b1, b2, b3),$   $c = (c1, c2, c3)$ 

$$v = c * (axb) = \begin{vmatrix} c1 & c2 & c3 \\ a1 & a2 & a3 \\ b1 & b2 & b3 \end{vmatrix}$$

$$v^2 = Det(\mathbf{D}\mathbf{D}^T) = \begin{vmatrix} c.c & c.a & c.b \\ c.a & a.a & a.b \\ c.b & a.b & b.b \end{vmatrix}$$

$$v^{2} = Det(DD^{T}) = (c. d)((a. a)(b. b) - (a. b)^{2}) - (c. a)((c. a)(b. b) - (a. b)(c. b)) + (c. b)((c. a)(a. b) - (a. a)(c. b))$$

$$v = |\mathbf{a}||\mathbf{b}||\mathbf{c}|\sqrt{1 - \cos^2 \gamma - \cos^2 \beta - \cos^2 \alpha + 2\cos \gamma \cos \beta \cos \alpha}$$

$$v = |\boldsymbol{a}||\boldsymbol{b}||\boldsymbol{c}|\sqrt{1-\cos^2\beta}$$

$$v = |\mathbf{a}||\mathbf{b}||\mathbf{c}|\sin\beta$$

| Ortorrómbica |                        | v =  a  b  c                                                      |
|--------------|------------------------|-------------------------------------------------------------------|
| Tetragonal   | a $a$                  | $v =  a ^2  c $                                                   |
| Romboédrico  | a $a$ $a$ $a$ $a$      | $v =  \boldsymbol{a} ^3 \sqrt{1 - 3\cos^2\alpha + 2\cos^3\alpha}$ |
| Hexagonal    | $\gamma = 120^{\circ}$ | $v =  \boldsymbol{a} ^2  \boldsymbol{c}  \frac{\sqrt{3}}{2}$      |
| Cúbico       | a                      | $v =  a ^3$                                                       |

### Inciso c

Parte I: BCC  $a = a\hat{\imath}, b = a\hat{\jmath}, c = a(\hat{\imath} + \hat{\jmath} + \hat{k})/2$ 

$$\mathbf{c} \cdot (\mathbf{a} \times \mathbf{b}) = \begin{vmatrix} \frac{a}{2} & \frac{a}{2} & \frac{a}{2} \\ a & 0 & 0 \\ 0 & a & 0 \end{vmatrix} = \frac{a^3}{2}$$

Parte II: BCC

$$a = a(\hat{j} + \hat{k} - \hat{i})/2, b = a(\hat{i} + \hat{k} - \hat{j})/2, c = a(\hat{i} + \hat{j} - \hat{k})/2$$

$$\mathbf{c} \cdot (\mathbf{a} \times \mathbf{b}) = \begin{vmatrix} \frac{a}{2} & \frac{a}{2} & -\frac{a}{2} \\ -\frac{a}{2} & \frac{a}{2} & \frac{a}{2} \\ \frac{a}{2} & -\frac{a}{2} & \frac{a}{2} \end{vmatrix} = \frac{a^3}{2} \quad .$$

Parte III: FCC

$$a = a(\hat{j} + \hat{k})/2, b = a(\hat{i} + \hat{k})/2, c = a(\hat{i} + \hat{j})/2$$

$$\mathbf{c} \cdot (\mathbf{a} \times \mathbf{b}) = \begin{vmatrix} \frac{a}{2} & \frac{a}{2} & 0\\ 0 & \frac{a}{2} & \frac{a}{2}\\ \frac{a}{2} & 0 & \frac{a}{2} \end{vmatrix} = \frac{a^3}{4}$$



| •     |   |
|-------|---|
| nciso | d |

Vectores primitivos:

Vectores recíprocos

Volumen celda reciproca

$$\mathbf{a} = a\hat{\mathbf{i}}, \mathbf{b} = a\hat{\mathbf{j}}, \mathbf{c} = a\hat{\mathbf{k}}$$

$$\mathbf{a}' = (\frac{1}{a}, 0, 0)$$
  $\mathbf{b}' = (0, \frac{1}{a}, 0)$   $\mathbf{c}' = (0, 0, \frac{1}{a})$ 

$$\mathbf{c}' \cdot (\mathbf{a}' \times \mathbf{b}') = V = \frac{1}{a^3}$$

$$a = a\hat{\imath}, b = a\hat{\jmath},$$

$$c = a(\hat{\imath} + \hat{\jmath} + \hat{k})/2$$

$$\mathbf{a}' = (\frac{1}{a}, 0, -\frac{1}{a}) \quad \mathbf{b}' = (0, \frac{1}{a}, -\frac{1}{a})$$

$$\mathbf{c}' = (0, 0, \frac{2}{a})$$

$$\mathbf{c}' \cdot (\mathbf{a}' \times \mathbf{b}') = V = \frac{2}{a^3}$$

$$a = \frac{a(\hat{j} + \hat{k} - \hat{i})}{2},$$

$$b = \frac{a(\hat{i} + \hat{k} - \hat{j})}{2},$$

$$c = a(\hat{i} + \hat{j} - \hat{k})/2$$

$$\mathbf{a}' = (0, \frac{1}{a}, \frac{1}{a})$$
  $\mathbf{b}' = (\frac{1}{a}, 0, \frac{1}{a})$   $\mathbf{c}' = (\frac{1}{a}, \frac{1}{a}, 0)$ 

$$\mathbf{c}' \cdot (\mathbf{a}' \times \mathbf{b}') = V = \frac{2}{a^3}$$

$$a = \frac{a(\hat{j} + \hat{k})}{2}, b = \frac{a(\hat{i} + \hat{k})}{2},$$
 $c = a(\hat{i} + \hat{j})/2$ 

$$\mathbf{a}' = (-\frac{1}{a}, \frac{1}{a}, \frac{1}{a}) \quad \mathbf{b}' = (\frac{1}{a}, -\frac{1}{a}, \frac{1}{a})$$

$$\mathbf{c}' = (\frac{1}{a}, \frac{1}{a}, -\frac{1}{a})$$

$$\mathbf{c}' \cdot (\mathbf{a}' \times \mathbf{b}') = V = \frac{4}{a^3}$$