Appunti di analisi matematica

Luca Chiodini luca@chiodini.org

Indice

Introduzione			5	
1	Prima lezione $(06/10/2015)$			
	1.1	Insieme $\mathbb N$	7	
	1.2	Insieme \mathbb{Z}	9	
	1.3	Insieme \mathbb{Q} e oltre	10	
	1.4	Estremo superiore e maggioranti	10	
2	Seconda lezione $(09/10/2015)$			
	2.1	Estremi e limiti di insiemi	13	
	2.2	Insieme \mathbb{R}	15	
3	Terza lezione $(13/10/2015)$			
	3.1	Allineamenti decimali e insieme \mathbb{R}	17	
	3.2	Potenze e logaritmi	19	
	3.3	Intervalli e intorni	20	
	3.4	Successioni	20	
4	Quarta lezione $(16/10/2015)$			
	4.1	Limiti di una successione	23	
	4.2	Successioni convergenti, divergenti, limitate	24	

Introduzione

Questi appunti sono relativi al corso di analisi matematica tenuto dal prof. Diego Conti agli studenti del corso di laurea di informatica dell'Università degli Studi di Milano - Bicocca, durante l'anno accademico 2015-2016.

Queste pagine sono state scritte nell'intento di essere utili, tuttavia potrebbero contenere errori tra i più disparati. Sarò grato a chiunque ne trovasse e volesse segnalarmeli (basta una mail a luca@chiodini.org).

Capitolo 1

Prima lezione (06/10/2015)

1.1 Insieme \mathbb{N}

Definizione 1.1. L'insieme \mathbb{N} è l'insieme dei numeri interi positivi, detti numeri naturali, e si indica con $\mathbb{N} = \{1, 2, 3, ...\}$.

Su di esso sono definite due operazioni:

- Somma: $\mathbb{N} + \mathbb{N} \to \mathbb{N}$, quindi $(a, b) \to a + b$
- Prodotto: $\mathbb{N} \cdot \mathbb{N} \to \mathbb{N}$, quindi $(a, b) \to a \cdot b$

Queste due proprietà sono commutative e associative:

- a + b = b + a
- a + (b + c) = (a + b) + c
- $\bullet \ a \cdot b = b \cdot a$
- \bullet $a \cdot (b \cdot c) = (a \cdot b) \cdot c$

Vale inoltre la proprietà distributiva:

$$(a+b) \cdot c = a \cdot c + b \cdot c$$

Nel prodotto esiste un elemento neutro, in altri termini esiste un $e \in \mathbb{N}$ tale per cui, comunque scelto $a, a \cdot e = e \cdot a = a$. Tale e risulta ovvio essere 1.

Nell'insieme N esiste una relazione di ordinamento $(a \le b)$ tale per cui:

I.
$$a \le b \in b \le a \implies a = b$$

II.
$$a \le b \le c \implies a \le c$$

III. $\forall a, b \ a < b \text{ oppure } b < a$

Definizione 1.2. Un insieme S con una relazione d'ordine che soddisfa I, II, III si dice totalmente ordinato.

Osservazione 1.3. Ogni $S \subseteq \mathbb{N}$ è totalmente ordinato.

Se $a \le b$ e $c \in \mathbb{N} \implies a + c \le b + c$

Se $a \leq b$ e $c \in \mathbb{N} \implies a \cdot c \leq b \cdot c$

L'equazione n + x = m ha una soluzione (unica) se e solo se m > n.

Anche $\{x \in \mathbb{Q} \mid x > 0\}$, l'insieme dei numeri razionali, soddisfa le condizioni sopra indicate.

Definizione 1.4. Dato un insieme totalmente ordinato (scriviamo (S, \leq)), X è il minimo di S se $x \in S$ e per ogni $y \in S$ vale $x \leq y$.

Proposizione 1.5 (Principio del buon ordinamento). *Ogni sottoinsieme di* \mathbb{N} *non vuoto ha un minimo.*

Esempio 1.6. L'inisieme $\{x \in Q \mid x > 0\}$ non soddisfa il principio del buon ordinamento perché, ad esempio, il suo sottoinsieme $\{\frac{1}{n} \mid n > 0\}$ non ha minimo.

Corretto? Osservazione 1.7. Grazie al principio del buon ordinamento vale che $\{x \in \mathbb{N} \mid x \subseteq S\} = \{1, ..., S\}.$

Proposizione 1.8 (Principio di induzione). Sia P_n un enunciato che dipende da $n \in \mathbb{N}$ (ad esempio "n è pari", "n è primo"), supponiamo che P_1 sia vero e che valga l'implicazione $P_n \implies P_{n+1}$, allora P_n è vero per ogni n.

Nota che, ad esempio, l'enunciato " $\forall n, n > 0$ " non è un enunciato che dipende da n!

Esempio 1.9. Dimostriamo per induzione che

$$P_n: \sum_{i=1}^{n} i = \frac{1}{2} \cdot (n+1) \cdot n$$

Verifichiamo P_1 :

$$P_1: \sum_{i=1}^{1} i = \frac{1}{2} \cdot (1+1) \cdot 1$$

che equivale a 1 = 1 ed è quindi vero.

Ora dobbiamo verificare anche che $P_n \implies P_{n+1}$.

$$P_n: \sum_{i=1}^n i = \frac{1}{2} \cdot (n+1) \cdot n$$

$$P_{n+1}: \sum_{i=1}^{n+1} i = \frac{1}{2} \cdot (n+2) \cdot (n+1)$$

Per definizione vale anche che:

$$P_{n+1}: \sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n+1) = \frac{1}{2} \cdot (n+1) \cdot n + (n+1)$$

$$\sum_{i=1}^{n+1} i = \frac{1}{2} \cdot (n+1) \cdot (n+2)$$

Dimostrazione. Sia $S = \{ n \in \mathbb{N} \mid P_n \ e' \ falso \}$. Se $S = \emptyset$ non c'è niente da dimostrare. Altrimenti, per il principio del buon ordinamento S ha un minimo $k = min \ S$. Non può essere $k = 1 \ (1 \in S)$ perché P_1 è vero.

Essendo $k > 1, k - 1 \in \mathbb{N}$ (ricorda l'equazione 1 + k = x) e $k - 1 \in S$.

Allora P_{k-1} non è falso, quindi P_{k-1} è vero. P_k è vero per ipotesi. Ma questo contraddice l'ipotesi che $k \in S$, quindi il caso S non vuoto non si verifica.

1.2 Insieme \mathbb{Z}

Consideriamo queste due equazioni:

- a + x = b, che ha soluzione in \mathbb{N} se e solo se b > a.
- $a \cdot x = b$, che ha soluzione in \mathbb{N} quando a è un divisore di b (si scrive $x = \frac{b}{a}$).

È evidente che serve quindi estendere l'insieme $\mathbb N$ arrivando all'insieme degli interi $\mathbb Z$ così definito:

$$\mathbb{Z} = \{\ldots, -1, 0, 1, \ldots\}$$

 \mathbb{Z} è la più piccola estensione di \mathbb{N} dove l'equazione a+x=b ha soluzione per ogni a,b. In \mathbb{Z} valgono le stesse proprietà di \mathbb{N} .

 \mathbb{Z} ha un elemento neutro per la somma (zero). Ovvero scriviamo:

$$a+0=0+a=a \quad \forall a$$

Dato $a \in \mathbb{Z}$ esiste $x \in \mathbb{Z}$ tale che a + x = 0 (si scrive x = -a). Per passi:

$$b - a = b + (-a)$$

$$a + (b - a) = b$$

che è la soluzione di a + x = b cercata.

Nota inoltre che $a \cdot x = b$ non ha soluzioni per $a = 0, \ b \neq 0$ perché $0 \cdot x = 0$, che a sua volta discende da

$$1 \cdot x = (1+0) \cdot x$$
$$= 1 \cdot x + 0 \cdot x$$

Sottraendo $-(1 \cdot x)$ a entrambi i membri risulta $0 = 0 \cdot x$.

1.3 Insieme \mathbb{Q} e oltre

Definiamo l'insieme Q, insieme dei numeri razionali, in questo modo:

$$\mathbb{Q} = \{ \frac{p}{q} \mid p, q \in \mathbb{Z}, \ q \neq 0 \}$$

 \mathbb{Q} ha le stesse proprietà di \mathbb{Z} . Inoltre:

$$\forall a \neq 0 \ \exists x \in \mathbb{Q} : a \cdot x = 1$$

 $x = \frac{1}{a}$, da cui $\frac{b}{a} = b \cdot \frac{1}{a}$ che è la soluzione di $a \cdot x = b$. Infatti:

$$a \cdot \frac{b}{a} = a \cdot b \cdot \frac{1}{a} = b(a(\frac{1}{a})) = b \cdot 1 = b$$

È evidente che i numeri razionali non vanno bene per l'analisi numerica. Supponiamo di voler misurare un segmento in gessetti: potrebbero volerci quattro gessi "e un pezzetto". Potremmo dividere il gessetto a metà e scoprire che la lunghezza del segmento è 4 gessi + 1 gessetto + "un pezzettino". Non è detto che questo processo termini! Infatti non tutti gli intervalli si possono rappresentare con un numero razionale.

È dim? Dimostrazione. Sia x la diagonale di un quadrato di lato 1. Per Pitagora vale che $x^2 = 1 + 1 = 2$. Se x fosse razionale, potremmo scrivere $x = \frac{p}{q}$ per un qualche $p, q \in \mathbb{Z}$.

Quindi varrebbe $\frac{p^2}{q^2} = 2$, ovvero $p^2 = 2 \cdot q^2$.

Possiamo scrivere $p = 2^k \cdot a$ per un qualche a dispari e $q = 2^h \cdot b$ per un qualche b dispari.

Sostituendo nella prima equazione resta: $2^{2k} \cdot a^2 = 2 \cdot 2^{2h} \cdot b^2$.

 a^2 e b^2 sono quadrati di un numero dispari e quindi dispari anch'essi.

Se uguagliamo gli esponenti risulta 2k=2h+1 dove il primo è un numero pari mentre il secondo è un numero dispari, il che è assurdo.

Quindi, $x^2 = 2$ non ha soluzione in \mathbb{Q} .

1.4 Estremo superiore e maggioranti

Definizione 1.10. Un sottoinsieme $A \subseteq \mathbb{Q}$ è limitato superiormente se esiste un $k \in \mathbb{Q}$ tale che $a \leq k$ per ogni $a \in A$.

Un tale k è detto maggiorante di A.

Definizione 1.11. Dato $A \subseteq \mathbb{Q}$ non vuoto e limitato superiormente, si dice estremo superiore di A il minimo dei maggioranti, se esiste. (Si indica sup A.)

Se A è non vuoto ma non è limitato superiormente, allora sup $A = +\infty$.

Esempio 1.12. Sia $A = \{ x \in \mathbb{Q} \mid 0 < x < 1 \}$. Esso è limitato superiormente perché se prendo $k = 2, k > a \ \forall a \in A$.

y è maggiornate di $A \implies y > x \ \forall x \in A$. Sia $y \in \mathbb{Q}$:

- Se $y \ge 1$ allora y è un maggiorante.
- Se 0 < y < 1, supponiamo $x = \frac{1}{2}(y+1)$ (ovvero x punto medio tra y e 1). Vale che $0 < x < 1 \implies x \in A$. Poiché x > y, y non è un maggiornate.
- Se y < 0 supponiamo $x = \frac{1}{2} \in A$; x > y quindi y non è un maggiorante.

In definitiva i maggioranti sono $\{y \in \mathbb{Q} \mid y \ge 1\}$ e sup A = 1.

Esempio 1.13. Sia $A = \{ x \in \mathbb{Q} \mid x^2 \leq 2 \}$. A è limitato superiormente.

Proposizione 1.14. 2 è maggiorante di A.

Indenta!

Dimostrazione. Supponiamo che 2 non sia maggiorante. Allora non è vero che $x \leq 2 \ \forall x \in A$. Quindi esiste $x \in A$ tale che x > 2. Allora $x^2 > 2^2$, ovvero $x^2 > 4$ che è assurdo perché vale che $x^2 < 2$.

Proposizione 1.15. A non ha un estremo superiore in \mathbb{Q} .

Dimostrazione. Sia $x \in \mathbb{Q}$ un maggiorante. Allora $x^2 \neq 2$.

• Se $x^2 < 2$ vale $(x + \frac{1}{n})^2$, ovvero $x^2 + \frac{2}{n} + \frac{1}{n^2}$. Per n sufficientemente grandi $y = x + \frac{1}{n}$. Da chiarire Essendo $y^2 < 2$, basta che $\frac{2}{n} + \frac{1}{n^2} \le 2 - x^2$.

Ovvero

$$(2-x^2) \cdot n^2 - 2n + 1 > 0$$

Nota che l'equazione sopra è una parabola con concavità verso l'alto.

Allora x non è un maggiorante perché x < y e $y \in A$.

• Se $x^2 > 2$ allora y = x - 1 è maggiorante.

$$(x - \frac{1}{n})^2 > 2$$

$$x^2 - \frac{2}{n} + \frac{1}{n^2} > 2$$

$$n^2 \cdot (x^2 - 2) - 2n + 1 > 0$$

che è vera per n sufficientemente grandi.

Quanto sopra implica che deve esistere un maggiorante della forma $y=x-\frac{1}{n}$. Ciò implica che x non è il minimo dei maggioranti e a sua volta questo implica che A non ha sup.

Capitolo 2

Seconda lezione (09/10/2015)

2.1 Estremi e limiti di insiemi

Definizione 2.1. Un sottoinsieme $A \subseteq \mathbb{Q}$ è limitato superiormente se esiste $k \in \mathbb{Q}$ tale che $k \geq x$ per ogni $x \in A$. Tale k è detto maggiorante di A.

In modo analogo, A è limitato inferiormente se esiste $k \in \mathbb{Q}$ tale che $k \leq x$ per ogni $x \in A$. Tale k è detto minorante di A.

Dati $a \neq 0$, l'estremo superiore (sup A), il minimo dei maggiornati, l'estremo inferiore (inf A) e il massimo dei maggioranti (purché esistano):

- se A non è limitato superiormente \implies sup $A = +\infty$
- se A non è limitato inferiormente \implies inf $A = -\infty$

Osservazione 2.2. Se A ha un massimo x, allora $x \in \sup A$.

Infatti, essendo un massimo, x è un maggiorante e vale $x \leq y$ perché $x \in A$ è il minimo dei maggioranti.

Ad esempio, dato $A = \{ x \in \mathbb{Q} \mid 0 < x < 1 \}$, è evidente che sup A = 1 ma $1 \notin A$. In questo caso l'insieme A non ha massimo.

Esempio 2.3. Dato $A = \mathbb{Q}$ osserviamo che non è limitato superiormente. Questo perché $x \in \mathbb{Q}$ è un maggiorante se $x \geq y$ per ogni $y \in \mathbb{Q}$; dovrebbe essere quindi $x \geq x + 1$ che è assurdo. Quindi sup $\mathbb{Q} = +\infty$.

Esempio 2.4. Dato $A=\mathbb{Q}$ non vuoto, se A è limitato superiormente allora A ha un massimo

Infatti $S = \{ x \in \mathbb{Z} \mid x \text{ è maggiorante di } A \}$. S non può essere vuoto perché A è limitato superiormente.

Allora S ha un minimo x per il principio del buon ordinamento. Essendo il minimo, x-1 non è un maggiorante.

Quindi esiste un $y \in A$ tale che y > x - 1 e $y \le x$. L'unico caso possibile è che x e y coincidano, ovvero $y = x \in A$

Quindi x è un maggiorante e appartiene ad A. Quindi x è il massimo.

Proposizione 2.5. Dato $A \in \mathbb{Q}$ non vuoto $e \ y \in \mathbb{Q}$, $y \ è$ l'estremo superiore di A se e solo se $y \ è$ maggiorante di A e per ogni y' < y esiste $x \in A$ tale che $y' < x \le y$.

Osserviamo che la condizione $x \leq y$ è una diretta conseguenza del fatto che y è un maggiorante.

Dimostriamo la proposizione in entrambi i sensi, per mostrare che vale l'implicazione "se e solo se".

Dimostrazione. Se y è estremo superiore, allora devo dimostrare che:

I. y è un maggiorante

II.
$$\forall y' < y \quad \exists x \in A \quad y' < x \le y$$

Il punto I è ovvio; dimostriamo il punto II.

Dato y' < y, y' non può essere maggiorante perché y è il minimo dei maggioranti. Quindi esiste $x \in A$ tale che y' < x. Poiché y è un maggiorante, possiamo scrivere $y' < x \le y$.

Dimostriamo ora il viceversa.

Dimostrazione. Dobbiamo dimostriare che i punti I e II implicano il fatto che y sia un estremo superiore.

Sia y' maggiorante di A. Se y' < y allora esiste $x \in A$ tale che $y' < x \le y$, quindi y' non è un maggiorante; il che è assurdo.

Allora ogni maggiorante y' deve essere $y' \geq y$. Poiché y è un maggiorante, y è il minimo dei maggioranti. Quindi $y = \sup A$.

Esempio 2.6. Proviamo a calcolare $\sup A$ di:

$$A = \left\{ \frac{n-1}{n+1} \mid n \in \mathbb{N} \right\}$$

che è l'insieme:

$$A = \left\{0, \frac{1}{3}, \frac{1}{2}, \frac{3}{5}, \dots\right\}$$

Ha senso innanzitutto chiedersi se A è limitato superiormente. Possiamo dire che lo è con certezza perché il numeratore è sempre inferiore al denominatore, quindi

$$\frac{n-1}{n+1} < 1$$

Quindi 1 è un maggiorante. Dimostriamo che è anche il sup (sup A = 1).

In altri termini dobbiamo dimostrare che preso y' < 1 esiste $x \in A$ tale che $y' < x \le 1$, che equivale a risolvere:

$$y' < \frac{n-1}{n+1}$$

$$y'(n+1) < n-1$$

$$y'n + y' < n-1$$

$$n(1-y') > y' + 1$$

$$n > \frac{y'+1}{1-y'}$$

Poiché \mathbb{N} non è limitato superiormente, esiste sempre una soluzione $n \in \mathbb{N}$. Ovvero:

$$\exists x = \frac{n-1}{n+1} \in A \qquad y' < x$$

Quindi sup A = 1.

2.2 Insieme \mathbb{R}

I numeri reali sono un insieme, chiamato \mathbb{R} , su cui sono definite le operazioni di somma e prodotto, è definito un ordinamento ed esistono due elementi neutri per le due operazioni precedenti.

L'insieme dei numeri reali soddisfa tutte le seguenti proprietà, che erano già soddisfatte da \mathbb{Q} ma che riportiamo:

- La somma è commutativa e associativa, ha un elemento neutro che è lo zero.
- Il prodotto è commutativo e associativo, ha un elemento neutro che è l'uno.
- Di ogni elemento esiste l'opposto e l'inverso, ovvero:

$$\forall a \in \mathbb{R} \text{ esiste } b \in \mathbb{R} \qquad a+b=0 \quad (b=-a)$$

$$\forall a \in \mathbb{R} \setminus \{0\} \text{ esiste } b \in \mathbb{R} \qquad a \cdot b = 1 \quad \left(b = \frac{1}{a}\right)$$

• È definito un ordinamento:

$$a \le b e b \le a \implies a = b$$

$$a \le b e b \le c \implies a \le c$$

$$\forall a, b \quad a \le b \circ b \ge a$$

$$a \le b \implies \forall c \quad a + c \le b + c$$

$$a \le b \implies \forall c > 0 \quad a \cdot c \le b \cdot c$$

In aggiunta alle proprietà comuni a \mathbb{Q} abbiamo che se $A \subseteq \mathbb{R}$ è non vuoto, allora A ammette un estremo superiore (eventualmente sup $A = +\infty$).

Dobbiamo mostrare ora che esistono i numeri reali e per fare ciò ricorriamo al modello degli *allineamenti decimali*.

Un allineamento decimale è una sequenza numerabile di interi del tipo p_0, p_1, p_2, \dots dove

$$0 < p_k < 9 \qquad k \in \mathbb{N}$$

Un allineamento decimale è periodico se si ripete da un certo punto in poi, cioè ha la forma:

$$p_0, p_1, \dots, \underbrace{p_n, p_{n+1}, \dots, p_{n+k}}_{\text{periodo}}, p_{n+1+k}, \dots$$

Un allineamento periodico con periodo 0 si dice anche che è limitato (ad esempio 1,5000... è limitato).

Dato un allineamento decimale x definiamo il troncamento k-esimo

$$r_k(x) = p_0 + \frac{1}{10}p_1 + \ldots + \frac{1}{10^k}p_k$$

Il troncamento $r_0(x)$ è la parte intera di x e si indica [x].

Ad ogni $x \in \mathbb{Q}$ possiamo associare un allineamento decimale $T(x) = p_0, p_1, p_2, \dots$

$$p_0 = \max \{ n \in \mathbb{Z} \mid n \le x \}$$

$$p_1 = \max \{ n \in \mathbb{Z} \mid p_0 + \frac{1}{10} n \le x \}$$

e così via, in modo che per ogni k > 0 sia

$$p_k = \max \left\{ n \in Z \mid \underbrace{r_{k-1}(T(x))}_{p_0 + \frac{1}{10}p_1 + \dots} + \frac{1}{10^k} n \le x \right\}$$

Esempio 2.7. Consideriamo T(x) per $x=\frac{3}{2}$, che è 1,5000.... Infatti:

$$p_0 = \max \{ n \in \mathbb{Z} \mid n \le \frac{3}{2} \} = 1$$

$$p_1 = \max\{n \in \mathbb{Z} \mid 1 + \frac{1}{10}n \le \frac{3}{2}\} = 5$$

$$p_2 = \max \{ n \in \mathbb{Z} \mid 1 + \frac{5}{10}n + \frac{1}{100}n \le \frac{3}{2} \} = 0$$

Prestiamo attenzione al fatto che il comportamento di T(x) per i numeri negativi, così per come è stato definito, è diverso da come ce lo potremmo aspettare. Ad esempio:

$$T(-\frac{3}{2}) = -2,500...$$

Proposizione 2.8. Per ogni $x \in \mathbb{Q}$, k > 0 vale:

$$0 \le x - r_k(T(x)) < \frac{1}{10^k}$$

Come conseguenza si ha che l'insieme

$$\{ n \in \mathbb{Z} \mid r_{k-1}((T(x)) + \frac{1}{10^k} n \le x \}$$

contiene 0 e ha 9 come maggiorante.

Capitolo 3

Terza lezione (13/10/2015)

3.1 Allineamenti decimali e insieme \mathbb{R}

Abbiamo già visto come si scrive un allineamento decimale: P_0, P_1, P_2, \ldots con $P_k \in \mathbb{Z}$, $0 \le P_k \le 9$ per k > 0.

Dato un allineamento x consideriamo il suo k-esimo troncamento:

$$r_k(x) = P_0 + \frac{1}{10}P_1 + \ldots + \frac{1}{10^k}P_k$$

Dato $x \in \mathbb{Q}$, esiste l'allineamento decimale T(x) tale che $0 \le x - r_k(T(x)) \le \frac{1}{10^k}$. Nota che T(x) non può avere periodo 9.

Esempio 3.1. Supponiamo che esista $T(x) = 0, \overline{9}$. Allora

$$r_k(T(x)) = 0 + \frac{9}{10} + \dots + \frac{9}{10^k}$$

= $\frac{10^k - 1}{10^k}$

Ad esempio per k=2 varrebbe $r_k(T(x))=\frac{9}{10}+\frac{9}{100}=\frac{99}{100}$; e così via.

$$0 \le x - r_k(T(x)) < \frac{1}{10^k}$$

Che è equivalente a:

$$\underbrace{r_k(T(x))}_{\frac{10^k - 1}{10^k}} \le x < \underbrace{r_k(T(x)) + \frac{1}{10^k}}_{1}$$

Non esiste $x \in \mathbb{Q}$ tale che $1 - \frac{1}{10^k} \le x < 1$ per ogni k. Ciò implica che $0, \overline{9}$ non è T(x) per un $x \in \mathbb{Q}$.

Definizione 3.2. Un allineamento decimale è ammissibile se non è periodico con periodo 9.

Sia \mathcal{A} l'insieme degli allineamenti decimali ammissibili. Definiamo T come la funzione che associa un numero razionale a un allineamento ammissibile (che è un elemento dell'insieme \mathcal{A}). Sinteticamente si scrive:

$$T: \mathbb{Q} \to \mathcal{A}$$

Poniamo $\mathbb{R} = \mathcal{A}$. L'ordinamento su \mathcal{A} è definito nel seguente modo: $p_0, p_1, \ldots, p_k < q_0, q_1, \ldots, q_k$ se e solo se, detto $k = min = \{i \mid p_i \neq q_i\}$, si ha $p_k < q_k$.

Esempio 3.3. Consideriamo il banale ordinamento tra le seguenti coppie di allineamenti:

- 2, 3 < 3, 2 (vera per k = 0)
- 1,12 < 1,13 (vera per k=2)

Definizione 3.4. Dati $x, y \in \mathcal{A}$ definiamo $x \leq y$ se x < y o x = y.

L'insieme \mathcal{A} è totalmente ordinato.

Proposizione 3.5. Ogni $X \subset A$ non vuoto ha un estremo superiore.

TODO Dimostrazione. Se X non è limitato superiormente, allora sup $X = +\infty$.

Se X è limitato superiormente, allora esiste sicuramente un maggiorante M.

Per ogni $k \in \mathbb{Z}$ con $k \geq 0$ definiamo la funzione $a_k : \mathcal{A} \to \mathbb{Z}$ (che estrae la k-esima cifra); ovvero: $a_k(p_0, p_1, \dots, p_k) = p_k$.

Osserviamo che $\{a_0(z)\mid z\in X\}$ è limitato superiormente perché M è un suo maggiorante.

Sia $q_0 = max \{ a_p(z) \mid z \in X \}.$

Se k > 0: $\{ a_k(z) \mid z \in X \} \subseteq \{0, \dots, 9\}$.

 $q_k = max \{ a_k(z) \mid z \in X \text{ tale che } a_0(z) = q_0, a_1(z) = q_1, \dots, a_{k-1}(z) = q_{k-1} \}.$

Sia $y = q_0, q_1, \ldots$ un maggiorante. Sia $z = p_0, \ldots, p_k$ di X; sia $j = \min \{ p_j \neq q_j \}$ con $z \neq y$.

$$q_j = max \underbrace{\{a_j(z) \mid z \in X a_0(z) = q_0, \dots, a_{j-1}(z) = q_{j-1}\}}_{C}$$

Notiamo che C contiene z. Ciò implica che $\underbrace{a_j(z)}_{p_j} \leq q_j$, ma per la definizione precedente

 $p_j \neq q_j$.

esempio

 $\implies p_i < q_i$

 $\implies z < y$, quindi y è effettivamente un maggiorante.

Preso $y' \leq y$ devo dimostrare che $\exists z \in X$ tale che y' < z.

 $y'=p_0,p_1,\ldots$

 $y=q_0,q_1,\ldots$

Supponiamo che $p_i = q_i$ e $p_k < q_k$ per ogni i < k. Per definizione di q_k esiste $z \in X$ tale che $a_i(z) = q_i$ per $i \le k$. Per costruzione questo implica y' < z. Abbiamo quindi dimostrato che $y = \sup X$.

Per ora abbiamo definito (A, \leq) . Dobbiamo però ancora definire la somma in A, si pone: $x + y = \sup \{ T(r_k(x) + r_k(y)) \mid k \in \mathbb{N} \}$ dove x, y sono allineamenti.

Possiamo inoltre definire in modo analogo il prodotto.

Per
$$x, y \ge 0$$
, $x \cdot y = \sup \{ T(r_k(x) \cdot r_k(y)) \mid k \in \mathbb{N} \}$

Proposizione 3.6. Esiste un $e \in A$ tale che x + e = x = e + x per ogni x (detto anche "zero").

Dimostrazione. Poniamo $e = T(0) = \{0,0000...\}$. Allora $x + e = \sup \{T(r_k(x) + r_k(e)) \mid k \in \mathbb{N}\}$. Calcoliamo $r_k(e) = 0 + \frac{1}{10} \cdot 0 + \cdots + \frac{1}{10^k} \cdot 0 = 0$. Quindi $x + e = \sup \{T(r_k(x)) \mid k \in \mathbb{N}\} = x$. Quindi \mathcal{A} contiene lo zero.

In modo del tutto analogo si prova che \mathcal{A} contiene anche 1,000...

Siamo quindi pronti per definire l'insieme dei reali \mathbb{R} ; in modo sintetico scriviamo $\mathbb{R} = (\mathcal{A}, \leq, +, \cdot, 0, 1)$.

Osserviamo che $\mathbb{Q} \subseteq \mathbb{R}$ e che ogni $x \in \mathbb{Q}$ determina un $T(x) \in \mathcal{A} = \mathbb{R}$. Valgono le solite proprietà:

- T(x + y) = T(x) + T(y)
- $T(x \cdot y) = T(x) \cdot T(y)$
- T(0) = 0.
- T(1) = 1.

Proposizione 3.7 (Proprietà di Archimede). Dati a, b reali positivi esiste un $n \in \mathbb{N}$ tale che $n \cdot a > b$.

Dimostrazione. Per assurdo supponiamo che valga il contrario, ovvero che $n \cdot a < b \ \forall n$. Allora $n < \frac{a}{b}$. Questo è impossibile perché $\mathbb N$ dovrebbe essere limitato superiormente, quindi avere un massimo. Ma ciò è palesemente assurdo, perché vale sempre $x+1 \in N$ e x+1>x.

3.2 Potenze e logaritmi

Dato $a \in \mathbb{R}$ e $n \in \mathbb{N}$ definiamo $a^n = \underbrace{a \cdot \ldots \cdot a}_{n \text{ volte}}$. L'elevamento a potenza gode delle seguenti proprietà:

- $\bullet \ a^{n+m} = a^n \cdot a^m$
- $\bullet \ (a \cdot b)^n = a^n \cdot b^n$
- $(a^n)^m = a^{n \cdot m}$

Per definizione se $a \neq 0 \implies a^0 = 1$. Sempre per definizione $a^{-n} = (\frac{1}{a})^n$.

Teorema 3.8. Dato $x \in \mathbb{R}$ positivo $e \ n \in \mathbb{N}$ esiste un unico reale positivo, y, tale che $y^n = x$ (ovvero $y = \sqrt[n]{x}$).

Definizione 3.9. Dato x reale positivo e $\frac{p}{q} \in \mathbb{Q}$ (assumendo senza perdita di generalità che q > 0), si pone $x^{\frac{p}{q}} = (\sqrt[q]{x})^p$.

Se $x \ge 1$ reale e $y \in \mathbb{R}$ definiamo $x^y = \sup \{ x^{\frac{p}{q}} \mid \frac{p}{q} \le y \}.$

Se x < 1 possiamo invertire: $x^y = (\frac{1}{x})^{-y}$).

Valgono le solite proprietà.

Teorema 3.10. Dato $x \in \mathbb{R}$ (con x > 0, y > 1) esiste un unico $z \in \mathbb{R}$ tale che $x^z = y$. Si scrive: $z = \log_x y$.

3.3 Intervalli e intorni

Dati $a, b \in \mathbb{R}$ sono definiti i seguenti intervalli (riportati solo nelle forme più esemplificative, le altre sono immediate dalle seguenti):

$$(a,b) = \{ x \in \mathbb{R} \mid a < x < b \}$$

$$[a,b] = \{ x \in \mathbb{R} \mid a \le x \le b \}$$

$$(-\infty,a) = \{ x \in \mathbb{R} \mid x < a \}$$

$$(a,+\infty) = \{ x \in \mathbb{R} \mid x > a \}$$

$$[a,b) = \{ x \in \mathbb{R} \mid a \le x < b \}$$

$$(a,b] = \{ x \in \mathbb{R} \mid a < x \le b \}$$

Definizione 3.11. Dati $x \in \mathbb{R}$ e $r \in R$ (con r > 0), si dice intorno circolare di x di raggio r l'intervallo $B_r(x) = (x - r, x + r) = \{ y \in \mathbb{R} \mid |x - y| < r \}.$

Definiamo inoltre $B'_r(x) = B_r(x) \setminus \{x\} = (x - r, x) \cup (x, x + r).$

Ricorda che
$$|x| = \begin{cases} x & \text{se } x \ge 0 \\ -x & \text{se } x < 0 \end{cases}$$

Inoltre osserviamo che $|x+y| \le |x| + |y|$.

3.4 Successioni

Una successione è una funzione $x : \mathbb{N} \to \mathbb{R} \ (n \to x_n)$.

Tale funzione viene rappresentata con la notazione $\{x_1, x_2, x_3, \dots\}$ oppure $\{x_n\}_{n\in\mathbb{N}}$.

Esempio 3.12. $\{n\}_{n\in\mathbb{N}}$ rappresenta la successione $\{1,2,3,\dots\}$, ovvero la funzione $\mathbb{N}\to\mathbb{N}$ $(n\to n)$.

Esempio 3.13. $\{[\sqrt{n}]\}_{n\in\mathbb{N}}$ rappresenta la successione $\{1,1,1,2,\ldots,[\sqrt{n}],\ldots\}$, ovvero la funzione $\mathbb{N}\to\mathbb{N}$ $(n\to[\sqrt{n}])$.

Esempio 3.14. $\{(-1)^n\}_{n\in\mathbb{N}}$ rappresenta la successione $\{-1,1,-1,1,\dots\}$.

Definizione 3.15. Una successione $\{x_n\}_{n\in\mathbb{N}}$ è crescente se $x_{n+1}>x_n$ per ogni n.

Definizione 3.16. Una successione $\{x_n\}_{n\in\mathbb{N}}$ è decrescente se $x_{n+1} < x_n$ per ogni n.

Definizione 3.17. Una successione $\{x_n\}_{n\in\mathbb{N}}$ è non crescente se $x_{n+1}\leq x_n$ per ogni n.

Definizione 3.18. Una successione $\{x_n\}_{n\in\mathbb{N}}$ è non decrescente se $x_{n+1}\geq x_n$ per ogni n.

Se una successione soddisfa una qualsiasi delle precedenti condizioni, allora essa si dice monotona.

Esempio 3.19. Le tre successioni mostrate in precedenza (3.12, 3.13, 3.14) sono rispettivamente crescente, non decrescente e non monotona.

Definizione 3.20. Si dice che $L \in \mathbb{R}$ è il limite di $\{x_n\}$ se per ogni intorno $B_r(L)$ di Lesiste $N \in \mathbb{N}$ tale che $x_n \in B_r(L)$ per ogni n > N.

Analogamente per ogni r > 0 esiste $N \in \mathbb{N}$ tale che $L - r < x_n < L + r$ per ogni n > N.

Si scrive $\lim_{n\to+\infty} x_n = L$.

Esempio 3.21. La successione $\{\frac{1}{n}\}_{n\in\mathbb{N}}$ ha limite 0.

Dobbiamo dimostrare che per ogni r > 0 esiste N tale che se n > N allora $\frac{1}{n} \in B_r(0)$.

Ovvero $\left|\frac{1}{n}\right| < r$, cioè $1 < n \cdot r$, quindi $n > \frac{1}{r}$. Poniamo $N = \left[\frac{1}{r} + 1\right]$, allora n > N. $\Longrightarrow n > \frac{1}{r} \implies x_n \in B_r(0)$. Quindi $\lim_{n \to +\infty} \frac{1}{n} = 0$.

Capitolo 4

Quarta lezione (16/10/2015)

4.1 Limiti di una successione

Definizione 4.1. Si dice che $L \in \mathbb{R}$ è il limite di $\{x_n\}_{n \in \mathbb{N}}$ se per ogni $\varepsilon > 0$ esiste un N tale che, per ogni n > N, vale:

$$L - \varepsilon < x_n < L + \varepsilon$$

Si scrive:

$$\lim_{n \to +\infty} x_n = L$$

Teorema 4.2 (Teorema di unicità del limite). Sia $\{x_n\}$ una successione. Se $\{x_n\}$ ha limite L e $\{x_n\}$ ha limite L', allora L = L'.

In altre parole stiamo dicendo che se il limite esiste allora è unico. Dimostriamo per assurdo il teorema.

Dimostrazione. Supponiamo per assurdo $L \neq L'$. Sia ε il punto medio tra L e L', ovvero:

$$\varepsilon = \frac{|L - L'|}{2} > 0$$

Per definizione di limite esiste un N tale che $|x_n-L|<\varepsilon$ per ogni n>N; quindi $x_n< L+\varepsilon$ e $x_n>L-\varepsilon$.

Esiste un N' tale che se n > N' allora $|x_n - L'| < \varepsilon$.

Scelto n > N e n > N', allora devono valere entrambe le precedenti. Riassumendo, deve valere sia $|x_n - L| < \varepsilon$ che $|x_n - L'| < \varepsilon$.

Per la disuguaglianza triangolare abbiamo che:

$$|L - L'| < |L - x_n| + |x_n - L'| < 2 \cdot \varepsilon$$

Quindi |L - L'| < |L - L'|, che è palesemente assurdo. In altri termini, stiamo dicendo che:

$$(L-\varepsilon, L+\varepsilon) \cup (L'-\varepsilon, L'+\varepsilon) = \varnothing$$

Esempio 4.3. Consideriamo la successione

$$x_n = \left(-\frac{1}{2}\right)^n$$

Il suo limite è zero.

Per dimostrarlo dobbiamo far vedere che esiste per ogni $\varepsilon > 0$ un N tale che, se n > N, allora $|x_n| < \varepsilon$.

$$\left| \left(-\frac{1}{2} \right)^n \right| < \varepsilon \iff \frac{1}{2^n} < \varepsilon \iff \frac{1}{\varepsilon} < 2^n \iff n > \log_2 \frac{1}{\varepsilon}$$

Non ci resta che scegliere $N > \log_2 \frac{1}{\varepsilon}$, ad esempio

$$N = \left\lceil \log_2 \frac{1}{\varepsilon} \right\rceil + 1$$

Quando n > N varrà

$$n > \log_2 \frac{1}{\varepsilon} \implies \frac{1}{2^n} < \varepsilon$$

Esempio 4.4. Consideriamo questa volta la successione $\{n^2\}_{n\in\mathbb{N}}$ che non ha limite. Supponiamo che abbia un limite L, allora per ogni $\varepsilon > 0$ esiste N tale che:

$$L - \varepsilon < n^2 < L + \varepsilon \qquad \forall n > N$$

Tale disuguaglianza deve valere anche per $\varepsilon = L$. Quindi:

$$0 = L - \varepsilon < n^2 < L + \varepsilon = 2L$$

Ciò implica $n<\sqrt{2L}$, che non può essere soddisfatta. Quindi L>0 non può essere il limite.

In modo ancora più semplice possiamo mostrare che il limite non può essere nemmeno negativo. Infatti se L < 0 dovrebbe valere per n > N:

$$|n^2 - L| < \frac{1}{2} \implies |n^2| < \frac{1}{2}$$

che è assurdo perché il più piccolo quadrato di un numero naturale è 1.

4.2 Successioni convergenti, divergenti, limitate

Definizione 4.5. Si dice che $\{x_n\}$ ha limite $+\infty$ (si dice anche "diverge a $+\infty$ ") se, per ogni $M \in \mathbb{R}$, esiste un $N \in \mathbb{N}$ tale che, per ogni n > N, $x_n > M$.

In altre parole stiamo dicendo che, da un certo punto in poi (n > N), il valore della successione sarà sempre maggiore di M, con M scelto grande a piacere.

In modo analogo una successione ha limite $-\infty$ se per ogni $M \in \mathbb{R}$ esiste un $N \in \mathbb{N}$ tale che, per ogni n > N, vale $x_n < -M$.

Esempio 4.6. Consideriamo il limite di questa successione:

$$\lim_{n \to +\infty} n^2 = +\infty$$

Tale limite è corretto. Scegliamo M positivo e poniamo $N = [\sqrt{M}] + 1$. In tale situazione $n > N \implies n > \sqrt{M} \implies n^2 > M$; che è esattamente la definizione precedente.

Esempio 4.7. La successione $\{(-1)^n\}_{n\in\mathbb{N}}$ non converge e non diverge (cioè non ha limite). Il suo limite non può essere infinito perché $(-1)^n\in[-1;1]$. Scelto banalmente M>1 non vale mai $x_n>M$. In modo analogo non vale mai nemmeno $x_n<-M$.

Mostriamo ora che non ha nemmeno un limite finito (cioè $L \in \mathbb{R}$). Se fosse $\lim_{n \to +\infty} (-1)^n = L$ allora, posto $\varepsilon = 1$ nella definizione di limite, avremmo che esiste N tale che:

$$|(-1)^n - L| < 1 \qquad \forall n > N$$

$$\implies |1 - L| < 1 \qquad e \qquad |-1 - L| < 1$$

$$\implies |1 - (-1)| \le |1 - L| + |(-1) - L| < 2$$

$$\implies |2| < 2$$

che è palesemente assurdo.

Definizione 4.8. Una successione $\{x_n\}$ è limitata se esiste $M \in \mathbb{R}$ tale che $|x_n| \leq M$ per ogni $n \in \mathbb{N}$.

Esempio 4.9. Mostriamo due successioni limitate:

$$\{(-1)^n\}_{n\in\mathbb{N}}$$
 è limitata: $M=1$ $|(-1)^n|=1$

$$\left\{\frac{1}{n}\right\}_{n\in\mathbb{N}}\quad \text{è limitata: } M=1\quad \left|\frac{1}{n}\right|\leq 1$$

Enunciamo e dimostriamo ora un importante teorema sulla relazione che sussiste tra le definizioni precedenti.

Teorema 4.10. Ogni successione convergente è limitata. Nessuna successione divergente è limitata.

Dimostriamo la prima affermazione del teorema.

Dimostrazione. Sia:

$$\lim_{n \to +\infty} x_n = L \qquad L \in \mathbb{R}$$

Per definizione di limite esiste un N tale che $L-1 < x_n < L+1$ per ogni n > N (ovvero $|x_n| < |L|+1$). Scegliamo M:

$$M = max\{|L| + 1, |x_1|, |x_2|, \dots, |x_n|\}$$

Allora:

• per n = 1, ..., N vale $|x_n| \le M$ perché appartiene all'insieme

• per n > N vale $|x_n| \le M$ perché abbiamo detto che $|x_n| < |L| + 1$.

Abbiamo quindi dimostrato che la successione $\{x_n\}$ è limitata.

Dimostriamo ora la seconda affermazione del teorema.

Dimostrazione. Per assurdo, sia $\{x_n\}$ una successione divergente limitata. Allora deve valere:

$$|x_n| < M \qquad \forall n \in \mathbb{N}$$

Se il limite della successione è $+\infty$ allora esiste un N tale che per n > N vale $x_n > M$. Questo è assurdo (avevamo detto che $x_n < M$).

Non è neppure possibile che il limite sia $-\infty$: in quel caso dovrebbe essere $x_n < -M$ che è assurdo per n > N.

Consideriamo con attenzione questi due esempi:

Esempio 4.11. $\{(-1)^n\}$ è limitata ma non è convergente.

Esempio 4.12.

$$x_n = \begin{cases} 0 & n \text{ pari} \\ n & n \text{ dispari} \end{cases}$$

Quindi $\{x_n\} = \{1, 0, 3, 0, 5, \ldots\}$. Essa non è limitata ma non è divergente.

È necessario prestare quindi attenzione al fatto che il teorema precedente non indica "se e solo se".

Teorema 4.13. Sia

$$\{x_n\}_{n\in\mathbb{N}}$$
 e $\lim_{n\to+\infty} x_n = x$

$$\{y_n\}_{n\in\mathbb{N}}$$
 e $\lim_{n\to+\infty}y_n=y$

Allora valgono le sequenti:

- 1. $\{x_n + y_n\}_{n \in \mathbb{N}}$ converge a x + y
- 2. $\{x_n \cdot y_n\}_{n \in \mathbb{N}}$ converge $a \times y$
- 3. se $x_n = k$ allora x = k
- 4. se $\alpha \in \mathbb{R}$, $\{\alpha \cdot x_n\}$ converge $a \alpha \cdot x$
- 5. $\frac{x_n}{y_n}$ converge $a \frac{x}{y}$ se $y_n \neq 0 \ \forall n \ e \ y \neq 0$
- 6. se $x_n \leq y_n$ per ogni n, allora $x \leq y$
- 7. $\{|x_n|\}$ converge a |x|

Dimostriamo a scopo didattico i punti uno e sei.

Dimostrazione. Per dimostrare il punto uno, devo far vedere che $\forall \varepsilon$ esiste N tale che $\forall n > N \text{ vale:}$

$$|(x_n + y_n) - (x + y)| < \varepsilon$$

Scelgo N tale che $|x_n - x| < \frac{\varepsilon}{2}$ $\forall n > N$. Scelgo N' tale che $|y_n - y| < \frac{\varepsilon}{2}$ $\forall n > N'$.

Sia $N'' = max\{N, N'\}$. Quindi se n > N'' allora varranno anche n > N' e n > N.

$$\implies |x_n - x| < \frac{\varepsilon}{2} \quad \text{e} \quad |y_n - y| < \frac{\varepsilon}{2}$$

$$\implies |(x_n - x) + (y_n - y)| \le |x_n - x| + |y_n - y| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

$$\implies |(x_n + y_n) - (x + y)| < \varepsilon \quad \forall n > N''$$

Abbiamo quindi dimostrato che $\lim(x_n + y_n) = (\lim x_n) + (\lim y_n)$.

Dimostriamo ora il punto sei:

Dimostrazione. Fissato $\varepsilon>0$ per n>N'' vale $|x_n-x|<\varepsilon$ e $|y_n-y|<\varepsilon$. Quindi, preso $x < \varepsilon + x_n$:

$$\implies x \le \varepsilon + y_n < \varepsilon + (y + \varepsilon) = y + 2\varepsilon$$

$$\implies x < y + 2\varepsilon \qquad \forall \varepsilon > 0$$

$$\implies x - y < 2\varepsilon \qquad \forall \varepsilon > 0$$

$$\implies x - y \le 0 \implies x \le y$$

Prestiamo attenzione al fatto che non vale lo strettamente minore! Formalmente, non è vero che se $x_n < y_n$ per ogni n allora $\lim x_n < \lim y_n$. Ad esempio $x_n = \frac{1}{n+1}$ e $y_n = \frac{1}{n}$ hanno entrambi limite 0, quindi possiamo scrivere $\lim x_n \le \lim y_n$ (con il minore uguale!).

Con quanto abbiamo appreso sopra possiamo già calcolare alcuni limiti interessanti, ad esempio:

$$\lim \frac{1}{n^2} = \lim \left(\frac{1}{n}\right) \cdot \left(\frac{1}{n}\right) = \left(\lim \frac{1}{n}\right) \cdot \left(\lim \frac{1}{n}\right) = 0 \cdot 0 = 0$$

Enunciamo ora un teorema sulle successioni che richiederebbe la nozione di funzione continua, non fornita per ora in questo corso. Facciamo solo alcuni esempi di funzioni continue: $f(x) = \sin x$, $f(x) = x^a$, $f(x) = a^x$, $f(x) = \log_a x$.

Teorema 4.14. Sia $f:[a,b] \to \mathbb{R}$ una funzione continua e $\{x_n\}$ una successione in [a,b]il cui limite $\lim x_n = x$; allora

$$\lim_{n \to +\infty} F(x_n) = F(x)$$

Supponiamo di voler calcolare $\lim \sqrt{\frac{2n+1}{n}}$ tramite il teorema esposto. Calcoliamo il limite senza radice:

$$\lim \frac{2n+1}{n} = \lim \left(2 + \frac{1}{n}\right) = \lim 2 + \lim \frac{1}{n} = 2 + 0 = 2$$

Grazie al teorema possiamo affermare che lim $\sqrt{\frac{2n+1}{n}} = \sqrt{2}$.

Teorema 4.15. Sia $\{x_n\}$ una successione il cui limite vale $+\infty$ e $\{y_n\}$ una generica successione. Allora:

- 1. se $\lim y_n = y$ oppure $\lim y_n = +\infty$ allora $\lim x_n + y_n = +\infty$
- 2. se $\lim y_n = y > 0$ oppure $\lim y_n = +\infty$ allora $\lim x_n \cdot y_n = +\infty$
- 3. se $\alpha \in \mathbb{R}^+$ allora $\lim \alpha \cdot x_n = +\infty$
- 4. se $x_n \neq 0$ per ogni n allora $\lim \frac{1}{x_n} = 0$
- 5. se $x_n \le y_n$ per ogni n allora $\lim y_n = +\infty$
- 6. $\lim |x_n| = +\infty$