	待估 参数	已知条件	双侧置信区间	置信上限	置信下限
单个正态总体	μ	σ^2 已知	$\left(\bar{X} \pm \frac{\sigma}{\sqrt{n}} u_{\alpha/2}\right)$	$\hat{\boldsymbol{\theta}}_{U} = \overline{X} + \frac{\boldsymbol{\sigma}}{\sqrt{n}} \boldsymbol{u}_{\alpha}$	$\hat{\theta}_L = \bar{X} - \frac{\sigma}{\sqrt{n}} u_{\alpha}$
	μ	σ ² 未知	$\left(\bar{X} \pm \frac{S}{\sqrt{n}} t_{\alpha/2} (n-1)\right)$	$\hat{\theta}_U = \overline{X} + \frac{S}{\sqrt{n}} t_{\alpha}(n-1)$	$\hat{\theta}_L = \bar{X} - \frac{S}{\sqrt{n}} t_{\alpha}(n-1)$
	σ^2	μ未知	$\left(\frac{(n-1)S^{2}}{\chi_{\alpha/2}^{2}(n-1)},\frac{(n-1)S^{2}}{\chi_{1-\alpha/2}^{2}(n-1)}\right)$	$\hat{\theta}_U = \frac{(n-1)S^2}{\chi^2_{1-\alpha}(n-1)}$	$\hat{\theta}_L = \frac{(n-1)S^2}{\chi_{\alpha}^2(n-1)}$
两个正态总体	μ_1 - μ_2	σ ₁ ², σ ₂ ² 已知	$\left(\overline{X} - \overline{Y} \pm u_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}\right)$	$\hat{\theta}_U = \overline{X} - \overline{Y} + u_{\alpha} \sqrt{\frac{{\sigma_1}^2}{n_1} + \frac{{\sigma_2}^2}{n_2}}$	$\hat{\theta}_L = \overline{X} - \overline{Y} - u_{\alpha} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$
	μ_1 - μ_2	σ ₁ ² , σ ₂ ² 未 知,n 很大	$\left(\bar{X} - \bar{Y} \pm u_{\alpha/2} \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}} \right)$	$\hat{\theta}_U = \overline{X} - \overline{Y} + u_{\alpha} \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}$	$\hat{\theta}_{L} = \overline{X} - \overline{Y} - u_{\alpha} \sqrt{\frac{S_{1}^{2}}{n_{1}} + \frac{S_{2}^{2}}{n_{2}}}$
	μ1-μ2	$\sigma_1^2 = \sigma_2^2 =$ $\sigma^2 未知$	$\left(\overline{X} - \overline{Y} \pm t_{\alpha/2}(n_1 + n_2 - 2)S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}\right)$ $S_w^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}, S_w = \sqrt{S_w^2}$	$\hat{\theta}_{U} = \overline{X} - \overline{Y} + t_{\alpha}(n_{1} + n_{2} - 2)S_{w}\sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}$	$\hat{\theta}_{L} = \overline{X} - \overline{Y} - t_{\alpha}(n_{1} + n_{2} - 2)S_{w} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}$
	σ_1^2/σ_2^2	μ1,2 未知	$\left(\frac{S_1^2}{S_2^2} \frac{1}{F_{\alpha/2}(n_1 - 1, n_2 - 1)}, \frac{S_1^2}{S_2^2} \frac{1}{F_{1-\alpha/2}(n_1 - 1, n_2 - 1)}\right)$	$\hat{\theta}_U = \frac{S_1^2}{S_2^2} \frac{1}{F_{1-\alpha}(n_1 - 1, n_2 - 1)}$	$\hat{\theta}_L = \frac{S_1^2}{S_2^2} \frac{1}{F_{\alpha}(n_1 - 1, n_2 - 1)}$