A Modern Bayesian Approach to Model Updating of Bridges Considering Measurement Uncertainty

Ms Fatemeh Shaker A/Prof. Colin Caprani

Monash University

July 2023

Contents

- Overview
- 2 Determining of Posterior Distribution
- Application
- 4 Summary

Why Finite Element Model Updating?

- Uncertainties
- Model error
- ullet Structural health monitoring (SHM) data

Bayesian Inference

- Prior
- Data
- Likelihood
- Posterior

$$P(\theta \mid data) = \frac{P(data \mid \theta)P(\theta)}{P(data)}$$

$$p(\mathsf{data}) = \int p(\mathsf{data}| heta) \cdot p(heta) \; d heta$$

Figure 1: Bayesian inference

- Overview
- Determining of Posterior Distribution
- Application
- Summary

Bayesian is hard because integration is hard!

Closed-form Solution (conjugate priors)

Figure 2: Conjugate and non-conjugate priors (ucanalytics.com)

Sampling Methods

- Metropolis-Hasting Algorithm
 - Moves to a new near state randomly!

Figure 3: Sampling using MH (MacKay,2003)

Sampling Methods

- Hamiltonian Monte Carlo (HMC)
 - Using the geometry of the log-likelihood model, momentum, and gradient!

Figure 4: Sampling using HMC (MacKay,2003)

Diagnostic and Convergence

Gelman Rubin statistic

$$\hat{R} = \sqrt{\frac{N-1}{N} + \frac{1}{N} \frac{B}{W}}$$

Figure 5: Converging between and within chains (Betancourt, 2014)

Effective Sample Size

MH may get Stuck!

Figure 6: Exploring using MH and HMC (Rogozhnikov, 2016)

Principled Bayesian Workflow Using HMC

Figure 7: Bayesian workflow

Contents

- Overview
- 2 Determining of Posterior Distribution
- Application
- 4 Summary

Application

Simple Beam with Moving Point Load

$$\delta = \frac{PL^3}{6EI} \left[a^3 (1-x) - \langle a-x \rangle^3 + a(1-x)^3 - a(1-x) \right]$$

Figure 8: Function and data results plot for deflection in five sensor locations

Prior distributions and probabilistic model structure

Figure 10: Prior predictive check for the sensor at 0.75L

Figure 11: MH

Figure 12: HMC

Comparing Results

Diagnostic and Convergence (\hat{R})

Parameter	нмс	МН
EI	1	1.03
L	1	1.01

Figure 13: Comparison of effective sample size

Posterior plots (calculate highest density interval (HDI))

The wider HDI from HMC suggests that it might be better at capturing the tails of the posterior distribution, where less probable but still plausible values reside.

Figure 14: Posterior results comparison

Figure 15: Posterior plot

Contents

- Summary

Conclusion

Overview

- Recent developments in Bayesian methods can help structural engineers improve model updating.
- HMC sampling allows flexibility with non-conjugate distributions and can have important diagnostics.
- Prior and posterior predictive checks validate the model and provide accurate parameter estimates.
- The updating procedure was done without any user input settings hyperparameters for HMC.
- The updated model with posterior parameter distributions can better predict the uncertain real structure behaviour.

Thank You!

- Thank you for your kind attention
- Please email me at Fatemeh. Shaker@monash.edu with any thoughts on this

