4.3. Cramer's rule; Formula for A^{-1} ; Applications of Determinants

Theorem

If the entries in an row (column) of a square matrix are multiplied by the cofactors of the corresponding entries in a different row (column), then the sum of the product is zero.

Adjoint of a matrix

Definition

If A is an $n \times n$ matrix and C_{ij} is the cofactor of a_{ij} , then the matrix

$$C = \begin{bmatrix} C_{11} & C_{12} & \cdots & C_{1n} \\ C_{21} & C_{22} & \cdots & C_{2n} \\ \vdots & \vdots & & \vdots \\ C_{n1} & C_{n2} & \cdots & C_{nn} \end{bmatrix}$$

is called the matrix of cofactors from A.

The transpose of this matrix is called the adjoint of A and is denoted by adj(A).

Adjoint of a matrix

Example

Find the adjoint of
$$A = \begin{bmatrix} 3 & 2 & -1 \\ 1 & 6 & 3 \\ 2 & -4 & 0 \end{bmatrix}$$

Inverse of a matrix

Theorem

If A is an invertible matrix, then

$$A^{-1} = \frac{1}{\det(A)} adj(A).$$

Inverse of a matrix

Example

Find the inverse of
$$A = \begin{bmatrix} 3 & 2 & -1 \\ 1 & 6 & 3 \\ 2 & -4 & 0 \end{bmatrix}$$

Cramer's rule

Theorem

If $A\mathbf{x} = \mathbf{b}$ is a linear system of n equations in n unknowns, then the system has a unique solution if and only if $\det(A) \neq 0$, in which case the solution is

$$x_1 = \frac{\det(A_1)}{\det(A)}, x_2 = \frac{\det(A_2)}{\det(A)}, \dots, x_n = \frac{\det(A_n)}{\det(A)}$$

where A_j is the matrix that results when the jth column of A is replaced by **b**.

Cramer's rule

Example

Use Cramer's rule to solve the system

$$x_1$$
 + $2x_2$ = 6
-3 x_1 + 4 x_2 + 6 x_3 = 30
- x_1 - 2 x_2 + 3 x_3 = 8

Geometric interpretation of determinants

Cross Products