

BOUNDARY PROBLEM FOR LEVI FLAT GRAPHS

PIERRE DOLBEAULT, GIUSEPPE TOMASSINI* AND DMITRI ZAITSEV**

ABSTRACT. In [DTZ2] the authors provided general conditions on a real codimension 2 submanifold $S \subset \mathbb{C}^n$, $n \geq 3$, such that there exists a possibly singular Levi-flat hypersurface M bounded by S .

In this paper we consider the case when S is a graph of a smooth function over the boundary of a bounded strongly convex domain $\Omega \subset \mathbb{C}^{n-1} \times \mathbb{R}$ and show that in this case M is necessarily a graph of a smooth function over Ω . In particular, M is non-singular.

1. INTRODUCTION

The problem of finding a Levi-flat hypersurface $M \subset \mathbb{C}^n$ with prescribed boundary S (the complex analogue of the real Plateau's problem), has been extensively studied for $n = 2$ (cf. [Bi, BeG, BeK, Kr, CS, Sh, SIT, ShT]). In [DTZ2] (announced in [DTZ1]) we addressed this problem for $n \geq 3$, where the situation is substantially different. In contrast to the case $n = 2$, for $n \geq 3$ the boundary S has to satisfy certain compatibility conditions. Assuming those necessary conditions as well as the existence of complex points, their ellipticity and non-existence of complex subvarieties in S , we have constructed in [DTZ2] a (unique but possibly singular) solution to the above problem. An example was also provided in [DTZ2] showing that one may not always expect a smooth solution M in general.

The purpose of this paper is to show that the solution M is smooth if the given boundary has certain "graph form". More precisely, in the coordinates $(z, u + iv) \in \mathbb{C}^{n-1} \times \mathbb{C}$, we assume that S is the graph of a smooth function $g: b\Omega \rightarrow \mathbb{R}_v$, where $b\Omega$ is the smooth boundary of a strongly convex bounded domain Ω in $\mathbb{C}_z^{n-1} \times \mathbb{R}_u$ and S satisfies the assumptions of [DTZ2] mentioned above. Let M be the solution given by these theorems. Recall that it is obtained as a projection to \mathbb{C}^n of a Levi-flat subvariety with negligible singularities in $[0, 1] \times \mathbb{C}^n$. Let $q_1, q_2 \in b\Omega$ be the projections of the complex points p_1, p_2 of S . Using

Date: December 7, 2009.

*Supported by the project MIUR "Geometric Properties of Real and Complex Manifolds".

**Supported in part by the Science Foundation Ireland grant 06/RFP/MAT018.

a theorem of Shcherbina on the polynomial envelope of a graph in \mathbb{C}^2 (cf. [Sh]) we here prove (cf. Theorem 3.1) that

- i) the solution M is the graph of a Lipschitz function $f: \overline{\Omega} \rightarrow \mathbb{R}_v$ with $f|_{\partial\Omega} = g$ which is smooth on $\overline{\Omega} \setminus \{q_1, q_2\}$;
- ii) $M_0 = \text{graph}(f) \setminus S$ is a Levi flat hypersurface in \mathbb{C}^n .

The regularity of f at q_1 and q_2 remains an interesting open problem closely related to the work of Kenig and Webster [KW1, KW2].

2. PRELIMINARIES

In this section we collect some facts that will be used in the sequel.

2.1. Remarks about Harvey-Lawson theorem. Let D be a strongly pseudoconvex bounded domain in \mathbb{C}^n , $n \geq 3$, with boundary ∂D , $\Sigma \subset \partial D$ a compact connected maximally complex $(2d-1)$ -submanifold with $d > 1$. Then, in view of the theorem of Harvey and Lawson in [HL1, Theorem 10.4] (see also [HL2]), Σ is the boundary of a uniquely determined relatively compact subset $V \subset \overline{D}$ such that: $\overline{V} \setminus \Sigma$ is a complex analytic subset of D with finitely many singularities of pure dimension d and, near Σ , \overline{V} is a d -dimensional complex manifold with boundary. We refer to $V = V_\Sigma$ as the *solution of the boundary problem corresponding to Σ* . A simple consequence is the following:

Lemma 2.1. *Let $D \subset \mathbb{C}^n$ be as above and Σ_1, Σ_2 connected, maximally complex $(2d-1)$ -submanifolds of ∂D . Let V_1, V_2 be the corresponding solutions of the boundary problem. If $d > 1$, $2d > n$ and $\Sigma_1 \cap \Sigma_2 = \emptyset$, then $V_1 \cap V_2 = \emptyset$.*

Proof. Suppose $V_1 \cap V_2 \neq \emptyset$. Then $2d > n$ implies $\dim V_1 \cap V_2 \geq 1$. Since $V_1 \cap V_2$ is an analytic subset of D , its closure $\overline{V_1 \cap V_2}$ must intersect ∂D and hence also $\Sigma_1 \cap \Sigma_2 \neq \emptyset$, which contradicts the assumption. \square

2.2. Known results. First, we have the following: a real 2-codimensional submanifold S of \mathbb{C}^n , $n \geq 3$, which locally bounds a Levi flat hypersurface must be nowhere minimal near a CR point, i.e. all local CR orbits must be of positive codimension (cf. [DTZ2, Section 2]). If $p \in S$ is a complex point, consider local holomorphic coordinates $(z, w) \in \mathbb{C}_z^{n-1} \times \mathbb{C}_w$, vanishing at p , such that S is locally given by the equation

$$(2.1) \quad w = Q(z) + O(|z|^3),$$

where $Q(z)$ is a complex valued quadratic form in the real coordinates $(\text{Re } z, \text{Im } z) \in \mathbb{R}^{n-1} \times \mathbb{R}^{n-1}$. Observing that not all quadratic forms Q can appear when S bounds a Levi flat hypersurface one comes to

the condition that p must be *flat*, i.e. $Q(z) \in \mathbb{R}$ in suitable coordinates. A natural stronger condition is that of *ellipticity* which means by definition that $Q(z) \in \mathbb{R}_+$ for every $z \neq 0$ in suitable coordinates.

Assume that:

- (1) S is compact, connected and nowhere minimal at its CR points;
- (2) S has at least one complex point and every such point of is flat and elliptic;
- (3) S does not contain complex manifold of dimension $(n - 2)$.

Then in [DTZ2, Proposition 3.1] it was proved that

- a) S is diffeomorphic to the unit sphere with two complex points p_1, p_2 ;
- b) the CR orbits of S are topological $(2n - 3)$ -spheres that can be represented as level sets of a smooth function $\nu : S \rightarrow \mathbb{R}$, inducing on $S_0 = S \setminus \{p_1, p_2\}$ a foliation \mathcal{F} of class C^∞ with 1-codimensional compact leaves.

Next, by applying a parameter version of Harvey-Lawson's theorem [HL1, Theorem 8.1], we obtained in [DTZ2, Theorem 1.3] a solution to the boundary problem as follows:

Theorem 2.2. *Let $S \subset \mathbb{C}^n$, $n \geq 3$ satisfy the above conditions. Then there exist a smooth submanifold \tilde{S} and a Levi flat $(2n - 1)$ -subvariety \tilde{M} in $\mathbb{C}^n \times [0, 1]$ (i.e. \tilde{M} is Levi flat in $\mathbb{C}^n \times \mathbb{C}$) such that $\tilde{S} = d\tilde{M}$ in the sense of currents and the natural projection $\pi : \mathbb{C}^n \times [0, 1] \rightarrow \mathbb{C}^n$ restricts to a diffeomorphism between \tilde{S} and S .*

As for the singularities of \tilde{M} we have the following results [DTZ2, Theorems 1.4]:

Theorem 2.3. *The Levi-flat $(2n - 1)$ -subvariety \tilde{M} can be chosen with the following properties:*

- (i) \tilde{S} has two complex points \tilde{p}_0 and \tilde{p}_1 with $\tilde{S} \cap (\mathbb{C}^n \times \{j\}) = \{\tilde{p}_j\}$ for $j = 0, 1$; every other slice $\mathbb{C}^n \times \{x\}$ with $x \in (0, 1)$, intersects \tilde{S} transversally along a submanifold diffeomorphic to a sphere that bounds (in the sense of currents) the (possibly singular) irreducible complex-analytic hypersurface $(\tilde{M} \setminus \tilde{S}) \cap (\mathbb{C}^n \times \{x\})$;
- (ii) the singular set $\text{Sing } \tilde{M}$ is the union of \tilde{S} and a closed subset of $\tilde{M} \setminus \tilde{S}$ of Hausdorff dimension at most $2n - 3$; moreover each slice $(\text{Sing } \tilde{M} \setminus \tilde{S}) \cap (\mathbb{C}^n \times \{x\})$ is of Hausdorff dimension at most $2n - 4$;
- (iii) there exists a closed subset $\tilde{A} \subset \tilde{S}$ of Hausdorff $(2n - 2)$ -dimensional measure zero such that away from \tilde{A} , \tilde{M} is a smooth

submanifold with boundary \tilde{S} near \tilde{S} ; moreover \tilde{A} can be chosen such that each slice $\tilde{A} \cap (\mathbb{C}^n \times \{x\})$ is of Hausdorff $(2n - 3)$ -dimensional measure zero.

3. THE CASE OF GRAPH

From now on we assume that $S \subset \mathbb{C}^n$, $n \geq 3$, is a graph. Consider $\mathbb{C}^n = \mathbb{C}_z^{n-1} \times \mathbb{C}_w$ with complex coordinates $z = (z_1, \dots, z_{n-1})$ and w where $z_\alpha = x_\alpha + iy_\alpha$, $1 \leq \alpha \leq n - 1$, $w = u + iv$. We also write $\mathbb{C}^n = (\mathbb{C}_z^{n-1} \times \mathbb{R}_u) \times i\mathbb{R}_v$. Accordingly, a point of \mathbb{C}^n will be denoted by $(z, u, v) = (z, u + iv)$.

Let Ω be a bounded strongly convex domain of $\mathbb{C}_z^{n-1} \times \mathbb{R}_u$ with smooth boundary $b\Omega$. By strong convexity here we mean that the second fundamental form of the boundary $b\Omega$ of Ω is everywhere positive definite. In particular, $\Omega \times i\mathbb{R}_v$ is a strongly pseudoconvex domain in \mathbb{C}^n .

Let $g : b\Omega \rightarrow \mathbb{R}_v$ be a smooth function, and $S \subset \mathbb{C}^n$ the graph of g . We assume that S satisfies the conditions of [DTZ2, Theorem 1.3] and denote $q_1, q_2 \in b\Omega$ the natural projections of the complex points p_1, p_2 of S , respectively.

Our goal is to prove the following:

Theorem 3.1. *Let $q_1, q_2 \in b\Omega$ be the projections of the complex points p_1, p_2 of S , respectively. Then, there exists a Lipschitz function $f : \overline{\Omega} \rightarrow \mathbb{R}_v$ which is smooth on $\overline{\Omega} \setminus \{q_1, q_2\}$ and such that $f|_{b\Omega} = g$ and $M_0 = \text{graph}(f) \setminus S$ is a Levi flat hypersurface of \mathbb{C}^n . Moreover, each complex leaf of M_0 is the graph of a holomorphic function $\phi : \Omega' \rightarrow \mathbb{C}$ where $\Omega' \subset \mathbb{C}^{n-1}$ is a domain with smooth boundary (that depends on the leaf) and ϕ is smooth on $\overline{\Omega}'$.*

The natural candidate to be the graph M of f is $\pi(\widetilde{M})$ where \widetilde{M} and π are as in Theorem 2.2. We prove that this is the case proceeding in several steps.

3.1. Behaviour near S . Set $m_1 = \min_S g$, $m_2 = \max_S g$ and $r \gg 0$ such that

$$D = \Omega \times [m_1, m_2] \Subset \mathbb{B}(r) \cap (\Omega \times i\mathbb{R}_v)$$

where $\mathbb{B}(r)$ is the ball $\{|(z, w)| < r\}$.

Let Σ be a CR-orbit of the foliation of $S \setminus \{p_1, p_2\}$. Then, Σ is a compact maximally complex $(2n - 3)$ -dimensional real submanifold of \mathbb{C}^n , which is contained in the boundary of the strongly pseudoconvex domain $\Omega \times i\mathbb{R}_v$ of \mathbb{C}^n . Let V be the solution to the boundary problem corresponding to Σ , i.e. the complex-analytic subvariety of $\Omega \times i\mathbb{R}_v$

bounded by Σ . We refer to V as the *leaf* bounded by Σ . From Theorems 2.2 and 2.3 it follows that V is obtained as projection $\pi(\tilde{V})$, where $\tilde{V} = (\widetilde{M} \setminus \widetilde{S}) \cap (\mathbb{C}^n \times \{x\})$ for suitable $x \in (0, 1)$. In particular, if M denotes $\pi(\widetilde{M})$, $\pi|_{\widetilde{V}}$ defines a biholomorphism $\tilde{V} \simeq V$ and $M \setminus S \subset D$.

Now let Σ_1 and Σ_2 be two distinct CR orbits of the foliation of $S \setminus \{p_1, p_2\}$, and let $\overline{V}_1, \overline{V}_2$ be the corresponding leaves bounded by them. Then $\overline{V}_1, \overline{V}_2$ do not intersect by Lemma 2.1.

Remark 3.1. In the previous discussion, we only employed the fact that $\Omega \times \mathbb{R}_v$ is a strongly pseudoconvex domain and S is contained in its boundary, without regarding the graph nature of S . It can happen that the leaves have isolated singularities. We shall show that this cannot happen in our case.

Lemma 3.2. *Let $p \in S$ be a CR point. Then, near p , M is the graph of a function ϕ on a domain $U \subset \mathbb{C}_z^{n-1} \times \mathbb{R}_u$, which is smooth up to the boundary of U .*

Proof. Near p , S is foliated by local CR orbits. As a consequence of Theorem 2.2, each local CR orbit extends to a compact global CR orbit Σ that bounds a complex codimension 1 subvariety $V_\Sigma \subset \Omega \times i\mathbb{R}_v$. Furthermore, near p , each Σ is smooth and can be represented as the graph of a CR function over a strongly pseudoconvex hypersurface and V_Σ as the graph of the local holomorphic extension of this function. It follows from the Hopf Lemma that V is transversal to the strongly pseudoconvex hypersurface $b\Omega \times i\mathbb{R}_v$ near p . Hence the family of V_Σ near p forms a smooth real hypersurface with boundary on S that can be seen as the graph of a smooth function ϕ from a relative open neighbourhood U of p in $\overline{\Omega}$ into \mathbb{R}_v . Finally, Lemma 2.1 guarantees that this family does not intersect any other leaf V from M . This completes the proof. \square

Corollary 3.3. *If $p \in S$ is a CR point, each complex leaf V of M , near p , is the graph of a holomorphic function on a domain $\Omega_V \subset \mathbb{C}_z^{n-1}$, which is smooth up to the boundary of Ω_V .*

Proof. Since M is the graph of a smooth function near p , its tangent space at every point near p is transversal to $i\mathbb{R}_v$. Hence the complex tangent space of M at every point near p is transversal to \mathbb{C}_w . Since the tangent spaces of the complex leaves of M coincide with the complex tangent spaces of M , it follows that each leaf V projects immersively to \mathbb{C}_z^{n-1} and the conclusion follows. \square

3.2. M is the graph of a Lipschitz function. Assume as before that Ω is strongly convex. We have the following

Proposition 3.4. *M is the graph of a Lipschitz function $f : \overline{\Omega} \rightarrow \mathbb{R}_v$.*

Proof. We fix a nonzero vector $a \in \mathbb{C}_z^{n-1}$ and for a given point $(\zeta, \xi) \in \Omega$ denote by $H_{(\zeta, \xi)} \subset \mathbb{C}_z^{n-1} \times \{\xi\}$ the complex line through (ζ, ξ) in the direction of $(a, 0)$. Furthermore, we set

$$L_{(\zeta, \xi)} = H_{(\zeta, \xi)} + \mathbb{R}(0, 1), \quad \Omega_{(\zeta, \xi)} = L_{(\zeta, \xi)} \cap \Omega, \quad S_{(\zeta, \xi)} = (H_{(\zeta, \xi)} + \mathbb{C}(0, 1)) \cap S$$

Then $S_{(\zeta, \xi)}$ is contained in the strongly convex cylinder

$$(H_{(\zeta, \xi)} + \mathbb{C}(0, 1)) \cap (\text{b}\Omega \times i\mathbb{R}_v)$$

over $H_{(\zeta, \xi)} + \mathbb{C}(0, 1) \simeq \mathbb{C}^2$ and it is the graph of $g|_{\text{b}\Omega_{(\zeta, \xi)}}$.

Since $\Omega_{(\zeta, \xi)} = \Omega \cap L_{(\zeta, \xi)}$, in view of the main theorem of [Sh], the polynomial hull $\widehat{S}_{(\zeta, \xi)}$ of $S_{(\zeta, \xi)}$ is a continuous graph over $\overline{\Omega}_{(\zeta, \xi)}$. Consider $M = \pi(\widetilde{M})$ and set

$$M_{(\zeta, \xi)} = (H_{(\zeta, \xi)} + \mathbb{C}(0, 1)) \cap M.$$

Since M is a union of irreducible analytic subvarieties of codimension 1 in \mathbb{C}^n with boundary in the graph S , each intersection $M_{(\zeta, \xi)}$ is the union of a family \mathcal{A} of 1-dimensional analytic subsets. Clearly, the boundary of a connected component of any such analytic set is contained in $S_{(\zeta, \xi)}$. It follows that $M_{(\zeta, \xi)}$ is contained in the polynomial hull $\widehat{S}_{(\zeta, \xi)}$ of $S_{(\zeta, \xi)}$. In view of the main theorem of Shcherbina [Sh], $\widehat{S}_{(\zeta, \xi)}$ is a graph over $\overline{\Omega}_{(\zeta, \xi)} = \overline{\Omega} \cap L_{(\zeta, \xi)}$, foliated by analytic discs, so $M_{(\zeta, \xi)}$ is a graph over a subset U of $\overline{\Omega}_{(\zeta, \xi)}$.

On the other hand, every analytic disc Δ of $\widehat{S}_{(\zeta, \xi)}$ has its boundary on $S_{(\zeta, \xi)} \subset S$. Since all elliptic complex points are isolated, the boundary of Δ contains a CR point p of S . In view of Lemma 3.2, near p , $M_{(\zeta, \xi)}$ is also a graph over $\overline{\Omega}_{(\zeta, \xi)}$. Thus, near p , we must have $M_{(\zeta, \xi)} = \widehat{S}_{(\zeta, \xi)}$. In particular, near p , Δ is contained in $M_{(\zeta, \xi)}$, and therefore in a leaf V_Σ of M . Since V_Σ is a closed analytic subset in $\mathbb{C}^n \setminus S$, the whole disc Δ is contained in V_Σ and hence in M . Moreover, $\Delta \subset H_{(\zeta, \xi)} + \mathbb{C}(0, 1)$ thus we conclude that $\Delta \subset M_{(\zeta, \xi)}$. Therefore, every analytic disc of $\widehat{S}_{(\zeta, \xi)}$ is contained in $M_{(\zeta, \xi)}$, consequently $M_{(\zeta, \xi)}$ and $\widehat{S}_{(\zeta, \xi)}$ coincide. It follows that M is the graph of a function $f : \overline{\Omega} \rightarrow \mathbb{R}_u$.

Let us prove that f is a continuous function. Choose $(\zeta, \xi) \in \Omega$ and a complex line $H_{(\zeta, \xi)}$ as before. Consider a neighborhood U of (ζ, ξ) in $\mathbb{C}_z^{n-1} \times \mathbb{R}_u$. For $q \in U$, let H_q be the translated of $H_{(\zeta, \xi)}$ which passes through q . With the notation corresponding to the one employed above, we can state the following. For a small enough neighborhood

$V \subset U$ of p in $\mathbb{C}_z^{n-1} \times \mathbb{R}_u$, let \widehat{S}_q be the polynomial hull of S_q in $H_q + \mathbb{C}(0, 1)$, and let

$$\mathcal{S}_U = \bigcup_{q \in U} \widehat{S}_q;$$

then \mathcal{S}_U is the graph of a continuous function. Indeed let \bar{q} be a point in V , and let $\{q_m\}_{m \in \mathbb{N}}$ be a sequence of points such that $q_n \rightarrow \bar{q}$. Then, obviously, the sets S_{q_m} converge to the set $S_{\bar{q}}$ in the Hausdorff metric as $n \rightarrow \infty$. Moreover, it is also clear that $\widetilde{\Omega}_{q_n} \rightarrow \widetilde{\Omega}_{\bar{q}}$ for $n \rightarrow \infty$. Then, by [Sh, Lemma 2.4] it follows that $\widehat{S}_{q_m} \rightarrow \widehat{S}_{\bar{q}}$ as $m \rightarrow \infty$. Since every \widehat{S}_q is a continuous graph, this allows to prove easily that \mathcal{S}_U is a continuous graph as a whole.

Thus, f is continuous on Ω , whence on $\overline{\Omega} \setminus \{q_1, q_2\}$ in view of Lemma 3.2. Continuity at q_1 is proved as follows. Let let $\{a_m\}_{m \in \mathbb{N}} \subset \Omega$ be a sequence of points which converges to q_1 . Each point $(a_m, f(a_m))$ belongs to a complex leaf V_{Σ_m} of M which is bounded by a compact CR orbit Σ_m of the foliation of $S \setminus \{p_1, p_2\}$ (cf. Section 2). By the maximum principle, for every $m \in \mathbb{N}$ there exists a point $(b_m, g(b_m))$ in Σ_m such that

$$|(q_1, g(q_1)) - (a_m, f(a_m))| \leq |(q_1, g(q_1)) - (b_m, g(b_m))|.$$

We claim that

$$|(q_1, g(q_1)) - (b_m, g(b_m))| \rightarrow 0$$

as $m \rightarrow \infty$. If not there exists an open $B = B(q_1, r) \Omega \times \mathbb{R}_u$ centered at q_1 such that $b_m \notin \overline{B}$ for all m . It follows that

$$\Sigma_m \cap \pi^{-1}(\overline{B}) = \emptyset$$

for all m and

$$V_{\Sigma_m} \cap \pi^{-1}(B) \neq \emptyset$$

for $m \gg 0$. This violates the Kontinuitätsatz since $\Omega \times i\mathbb{R}_v$ is a domain of holomorphy.

Continuity at q_2 is proved in a similar way.

Thus f is continuous on $\overline{\Omega}$ and smooth near $\partial\Omega \setminus \{q_1, q_2\}$.

In order to show that f is Lipschitz we now observe that, as it is easily proved, $f|_{\Omega}$ is a weak solution of the *Levi-Monge-Ampère* operator defined in [SIT] with smooth boundary value, so, in view of [SIT, Theorems 2.4, 4.4, 4.6], it is Lipschitz. This concludes the proof of Proposition 3.4. \square

Remark 3.2. M is the envelope of holomorphy of S .

3.3. Regularity. In order to prove that $M \setminus \{p_1, p_2\}$ is a smooth manifold with boundary we need the following:

Lemma 3.5. *Let U be a domain in $\mathbb{C}_z^{n-1} \times \mathbb{R}_w$, $n \geq 2$, $f : U \rightarrow \mathbb{R}_v$ a continuous function. Let $A \subset \text{graph}(f)$ be a germ of complex analytic set of codimension 1. Then A is a germ of a complex manifold, which is a graph over \mathbb{C}_z^{n-1} .*

Proof. The idea of the proof (here is slightly modified) is due to Jean-Marie Lion cfr. [L].

Let us denote by $z_1, \dots, z_{n-1}, w = u + iv$, the complex coordinates in $\mathbb{C}_z^{n-1} \times \mathbb{C}_w$. We may suppose that A is a germ at 0. Let $h \in \mathcal{O}_{n+1}$ be a non identically vanishing germ of holomorphic function such that $A = \{h = 0\}$. Let \mathbb{D}_ε be the disc $\{z = 0\} \cap \{|w| < \varepsilon\}$. Then, for $\varepsilon \ll 1$, we have either $A \cap \mathbb{D}_\varepsilon = \{0\}$ or $A \cap \mathbb{D}_\varepsilon = \mathbb{D}_\varepsilon$. The latter is not possible since \mathbb{D}_ε is not contained in any graph over $\mathbb{C}_z^{n-1} \times \mathbb{R}_u$. It follows that $A \cap \mathbb{D}_\varepsilon = \{0\}$, i.e. A is w -regular. Let us denote by π the projection $\mathbb{C}_z^n \rightarrow \mathbb{C}_z^{n-1}$. Then, by the local parametrization theorem for analytic sets there exists $d \in \mathbb{N}$ such that

- for some neighborhood U of 0 in \mathbb{C}_z^{n-1} , there exists an analytic set $\Delta \subset U$ such that $A_\Delta = A \cap ((U \setminus \Delta) \times \mathbb{D}_\varepsilon)$ is a manifold;
- $\pi : A_\Delta \rightarrow U \setminus \Delta$ is a d -sheeted covering.

We claim that the covering $\pi : H_\Delta \rightarrow U \setminus \Delta$ is trivial. Otherwise, there would exist a closed loop $\gamma : [0, 1] \rightarrow U \setminus \Delta$ whose lift $\tilde{\gamma}$ to A_Δ is not closed. We extend γ to \mathbb{R} by periodicity and extend $\tilde{\gamma}$ to \mathbb{R} as lift of γ . Define $\alpha = u \circ \tilde{\gamma} = u \circ \gamma$, $\beta = v \circ \tilde{\gamma}$. Since α is continuous and bounded, there exists $\theta \in \mathbb{R}$ such that $\alpha(\theta) = \alpha(\theta + 1)$. But then $\beta(\theta) = \beta(\theta + 1)$ since by the assumption, $\beta(\theta) = f(\gamma(\theta), \alpha(\theta))$. Hence $\tilde{\gamma}(\theta) = \tilde{\gamma}(\theta + 1)$, a contradiction with the assumption that $\tilde{\gamma}$ is not closed.

Since $\pi : A_\Delta \rightarrow U \setminus \Delta$ is a trivial covering, we may define d holomorphic functions $\tau_1, \dots, \tau_d : U \setminus \Delta \rightarrow \mathbb{C}$ such that A_Δ is a union of the graphs of the τ_j 's. By Riemann's extension theorem, the functions τ_j extend as holomorphic functions $\tau_j \in \mathcal{O}(U)$. The desired conclusion will follow from the fact that all the τ_j coincide. Indeed, suppose, by contradiction, $\tau_1 \neq \tau_2$; then for some disc $\mathbb{D} \subset U$ centered at 0 we have $\tau_1|_{\mathbb{D}} \neq \tau_2|_{\mathbb{D}}$ and then, after shrinking \mathbb{D} , $(\tau_1 - \tau_2)|_{\mathbb{D}}$ vanishes only at 0. But, by virtue of the hypothesis, $\{\text{Re } (\tau_1 - \tau_2) = 0\} \subset \{\tau_1 - \tau_2 = 0\} = \{0\}$, when restricted to \mathbb{D} . The latter is not possible since $(\tau_1 - \tau_2)|_{\mathbb{D}} \neq 0$ is holomorphic and thus an open map (whose image must include a segment of the imaginary axis). \square

Proof of Theorem 3.1. Consider the foliation on $S \setminus \{p_1, p_2\}$ given by the level sets of the smooth function $\nu: S \rightarrow [0, 1]$ as in Section 2 and set $L_t = \{\nu = t\}$ for $t \in (0, 1)$. Let $V_t \subset \overline{\Omega} \times i\mathbb{R}_v \subset \mathbb{C}^n$ be the complex leaf of M bounded by L_t and $\pi: \mathbb{C}_z^{n-1} \times \mathbb{C}_w \rightarrow \mathbb{C}_z^{n-1}$ denote the natural projection. We have:

- by Proposition 3.4, M is the graph of a continuous function over Ω and by Lemma 3.5, each leaf V_t is a complex hypersurface and $\pi|_{V_t}$ is a submersion.
- Since Ω is strongly convex, an argument completely analogous to that of [Sh, Lemma 3.2] shows that $\pi|_{V_t}$ is one-to-one, then, by Corollary 3.3, π sends V_t onto a domain $\Omega_t \subset \mathbb{C}_z^{n-1}$ with smooth boundary.

If

$$\begin{aligned}\pi_u: (\mathbb{C}_z^{n-1} \times \mathbb{R}_u) \times i\mathbb{R}_v &\rightarrow \mathbb{R}_u, \\ \pi_v: (\mathbb{C}_z^{n-1} \times \mathbb{R}_u) \times i\mathbb{R}_v &\rightarrow \mathbb{R}_v\end{aligned}$$

denote the natural projections then $\pi_{u|L_t} = a_t \circ \pi|_{L_t}$ and $\pi_{v|L_t} = b_t \circ \pi|_{L_t}$, where a_t and b_t are smooth functions in $b\Omega_t$. Furthermore, the boundary $b\Omega_t$ and a_t, b_t depend smoothly on t for $t \in (0, 1)$. The latter property means that one has a local parametrization of $b\Omega_t$ smoothly depending on t and such that the functions a_t, b_t also depend smoothly on t when composed with this parametrization. It follows that

- if $(z_t, w_t) \in M$, then $w_t = u_t + iv_t$ is varying in V_t , so $u_t + iv_t$ is the holomorphic extension to Ω_t of $a_t + ib_t$. In particular, u_t and v_t are smooth functions in (z, t) , e.g. as a consequence of the Martinelli-Bochner formula.
- The derivative $\partial u_t / \partial t$ is defined and harmonic in Ω_t for each t , and has a smooth extension to the boundary $b\Omega_t$. Moreover, it follows from Lemma 3.2 and Corollary 3.3 that $\partial u_t / \partial t$ does not vanish on $b\Omega_t$. Since the CR orbits L_t are connected in view of Theorem 2.2, the boundary $b\Omega_t$ is also connected and hence $\partial u_t / \partial t$ has constant sign on $b\Omega_t$. Then, by the maximum principle, $\partial u_t / \partial t$ has constant sign in Ω_t and, in particular, does not vanish. The latter implies the $M \setminus S$ is the graph of a smooth function over Ω , which extends smoothly to $\overline{\Omega} \setminus \{q_1, q_2\}$.
- It furthermore follows from Proposition 3.4 that M is the graph of a Lipschitz function over $\overline{\Omega}$. This completes the proof of Theorem 3.1.

REFERENCES

- [A] H.Alexander, *A note on polynomial hulls*, Proc. Amer. Math. Soc., **33**, (1972), 389–391.
- [BeG] E. Bedford and B. Gaveau, *Envelopes of holomorphy of certain 2-spheres in \mathbb{C}^2* , Amer. J. Math. **105** (1983), 975–1009.
- [BeK] E. Bedford & W. Klingenberg, *On the envelopes of holomorphy of a 2-sphere in \mathbb{C}^2* , J. Amer. Math. Soc. **4** (1991), 623–646.
- [Bi] E. Bishop, *Differentiable manifolds in complex Euclidean space*, Duke Math. J. **32** (1966), 1–22.
- [CS] E. M. Chirka and N. V. Shcherbina, *Pseudoconvexity of rigid domains and foliations of hulls of graphs*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) **22** (1995), no. 4, 707–735.
- [DTZ1] P. Dolbeault, G. Tomassini, and Zaitsev, D., *On boundaries of Levi flat hypersurfaces in \mathbb{C}^n* , C. R. Acad. Sci. Paris, Ser. I, **341** (2005), 343–348.
- [DTZ2] P. Dolbeault, G. Tomassini, and Zaitsev, D., *On Levi-flat hypersurfaces with prescribed boundary*, Pure and Applied Mathematics Quarterly (Special Issue: In honor of Joseph J. Kohn), **6** (2010), no. 3, 725–753.
- [HL1] F. R. Harvey, H. B. Lawson Jr., *On boundaries of complex analytic varieties. I*, Ann. of Math. (2), **102** (1975), no. 2, 223–290.
- [HL2] F. R. Harvey, H. B. Lawson Jr., Addendum to Theorem 10.4 in “Boundaries of analytic varieties”, arXiv: math.CV/0002195, (2000).
- [Kr] N. G. Kružilin, *Two-dimensional spheres in the boundary of strictly pseudoconvex domains in \mathbb{C}^2* , Izv. Akad. Nauk SSSR Ser. Mat. **55** (1991), 1194–1237.
- [KW1] C.E. Kenig, S.M. Webster, *The local hull of holomorphy of a surface in the space of two complex variables*. Invent. Math. 67 (1982), no. 1, 1–21.
- [KW2] C.E. Kenig, S.M. Webster, *On the hull of holomorphy of an n-manifold in \mathbb{C}^n* , Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) **11** (1984), no. 2, 261–280.
- [L] J.-M. Lion, personal communication, July, 2004.
- [Sh] N.V. Shcherbina, *On the polynomial hull of a graph*, Indiana Univ. Math. J., **42**, (1993), no. 2, 477–503.
- [ShT] N. Shcherbina and G. Tomassini, *The Dirichlet problem for Levi flat graphs over unbounded domains*, Internat. Math. Res. Notices (1999), 111–151.
- [SIT] Z. Slodkowski, G. Tomassini, *Levi equation in higher dimension*, Am. J. Math. , **116**, (1994), no. 2, 479–499.

GIUSEPPE TOMASSINI: SCUOLA NORMALE SUPERIORE, PIAZZA DEI CAVALIERI 7, 56126 PISA, ITALY
E-mail address: g.tomassini@sns.it

PIERRE DOLBEAULT: INSTITUT DE MATHÉMATIQUES DE JUSSIEU, UNIVERSITÉ PIERRE ET MARIE CURIE, 175 RUE DU CHEVALERET, 75013 PARIS, FRANCE
E-mail address: pierre.dolbeault@upmc.fr

DMITRI ZAITSEV: SCHOOL OF MATHEMATICS, TRINITY COLLEGE DUBLIN, DUBLIN 2, IRELAND
E-mail address: zaitsev@maths.tcd.ie