## Métodos Numéricos. Grado en Físicas Curso 16/17

## Hoja 2. Interpolación y aproximación de funciones

2.1 Escribe un programa que calcule el polinomio interpolador de una serie de *n* pares de datos mediante el método de Lagrange.

Considérese la siguiente tabla de datos correspondiente a una función antisimétrica, f(-x) = -f(x):

| $x_i$    | -10.      | -9.       | -8.       | -7.       | -6.        |    |
|----------|-----------|-----------|-----------|-----------|------------|----|
| $f(x_i)$ | 0.129776  | 0.193452  | 0.210419  | 0.131653  | -0.0686905 |    |
| $x_i$    | -5.       | -4.       | -3.       | -2.       | -1.        | 0. |
| $f(x_i)$ | -0.362992 | -0.660285 | -0.833178 | -0.776776 | -0.469932  | 0. |

- a) Aplíquese a calcular el valor aproximado de f(2,27723) a partir de todos los datos de esta tabla y sus correspondientes valores simétricos (n = 20).
- b) Reconstruye la función escribiendo en un fichero 101 puntos de la función interpolada en el intervalo [-10, 10].
- c) Compara en un fichero Mathematica la tabla original y el fichero con la interpolación obtenida.
- 2.2 Intenta reconstruir la silueta superior del pato de la figura a partir de los datos contenidos en la tabla adjunta (las ascisas no están equiespaciadas y el origen de coordenadas es arbitrario).

|          | 72.33 |       |       |       |       |       |       |       |       |       |       |
|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| $f(x_i)$ | 319.0 | 325.0 | 333.7 | 339.7 | 354.3 | 356.3 | 347.7 | 341.7 | 339.0 | 339.7 | 345.0 |
|          | 235.0 |       |       |       |       |       |       |       |       |       |       |
| $f(x_i)$ | 346.3 | 345.0 | 336.3 | 322.3 | 308.3 | 303.7 | 300.3 | 298.3 | 295.7 | 292.3 |       |



- a) Para hacerlo, escribe y utiliza un programa en Fortran que calcule los *splines* cúbicos correspondientes e interpola 100 puntos en el intervalo considerado en la tabla.
- b) Dibuja en Mathematica los puntos utilizados en la interpolación junto con la aproximación obtenida en Fortran.
- c) Calcula en Mathematica la función interpoladora (utilizando los comandos apropiados para obtener *splines* en Mathematica) y comprueba que coincide aproximadamente con la obtenida en Fortran.
- d) Adapta el programa desarrollado en el problema 1 para hacer una interpolación polinómica con el método de Lagrange de esa tabla de datos y obtener un fichero de 100 puntos con la aproximación. Representa los resultados en Mathematica y coméntalos.