

Tema 4º

Corriente eléctrica

Programa

- Corriente y densidad de corriente eléctrica.
- La ecuación de continuidad.
- Corriente de conducción. Ley de Ohm.
- Propiedades de conducción en los materiales:
 Conductores, semiconductores y aislantes.
- Circuitos de corriente continua.
- Leyes de Kirchoff.
- Teoremas del análisis de redes:
 - Superposición
 - Thevenin y Norton
 - Máxima transferencia de potencia.

Introducción

El movimiento de las cargas es lo que conocemos como corriente eléctrica. El proceso por el que se transporta la carga se denomina conducción.

Se caracteriza mediante la magnitud **intensidad de corriente**, que definimos como la velocidad a la que se transporta la carga $I = \frac{dQ}{dt}$ por un punto dado en un medio conductor.

En Δt la carga que pasa por la superficie es: $Q = n q \vec{S} (\vec{v} \Delta t)$

Como:
$$I(S) = \frac{\Delta Q}{\Delta t} = q \, n \, \vec{S} \, \vec{v}$$
 Podemos decir $I = \vec{J} \cdot \vec{S}$

Definimos, densidad de corriente $I = \int_{S} \vec{J} \cdot d\vec{s}$

En general:
$$\vec{J} = \sum_{i} n_i q_i < \vec{v}_i >$$

Ecuación de continuidad

$$\oint_{\Sigma} \vec{J} \, d\vec{s} = -\frac{\partial}{\partial t} \int_{\tau} \rho \, d\tau$$

Universidad de Alcalá Parámetros macroscópicos

Caracterizar el fenómeno será relacionar causa \vec{E} y efecto \vec{J}

$$\vec{J} = \sigma \; \vec{E}$$
 Ley de Ohm

Medios lineales σ =cte

Medios no lineales $\sigma(E)$

Medios homogéneos $\sigma \neq \sigma(r)$

Medios isótropos (sus propiedades son las mismas en todas las direcciones) σ es escalar Medios anisótropos σ es un tensor

En circuitos

$$I = J \cdot S = (\sigma E) \cdot S = \sigma \frac{S}{L} V$$

$$R = \frac{1}{\sigma} \frac{L}{S} = \rho \frac{L}{S}$$

$$V = RI$$

Universidad Parámetros macroscópicos

3material-resistencia

En metales $\rho = a + b T + c T^2 + ...$

En semiconductores

$$\sigma = \sigma_0 \ e^{-\frac{\varepsilon_A}{kT}}$$

La resistividad del material varía con la temperatura

Coeficiente térmico de la resistividad

$$\alpha = \frac{1}{\rho} \frac{\mathrm{d}\rho}{\mathrm{d}T}$$

En metales la resistividad aumenta con la temperatura (resistencia PTC).

En semiconductores disminuye, esto es, si la conductividad aumenta con la temperatura, el coeficiente será negativo (resistencias NTC).

Universidad de Alcalá Parámetros microscópicos

En conducción la velocidad de los portadores se debe:

- Agitación térmica (no contribuye a la conducción)
- Arrastre por campo J = n q v_{arr}

$$a = \frac{F_{electrica}}{m} = \frac{q \; E}{m} \qquad \xrightarrow{\text{agitación térmica}} \qquad v_{arr} = a \; \tau = \frac{q \; E}{m} \tau \qquad \qquad \text{Tiempo de relajación } \tau$$

$$\rightarrow \vec{v}_{arr} = \mu \vec{E}$$

 $\vec{v}_{arr} = \mu \vec{E}$ Movilidad del portador μ $\mu = \frac{q}{m}\tau$

$$\mu = \frac{q}{m} \tau$$

$$\vec{J} = \sigma \vec{E} = n q \vec{v} = n q \mu \vec{E}$$

$$\vec{J} = \sigma \vec{E} = n q \vec{v} = n q \mu \vec{E}$$
 $\sigma = q n \mu = \frac{q^2 n \tau}{m}$

En general
$$\sigma = \sum_i n_i \ q_i \ \mu_i$$

caso muy frecuente
$$\sigma = q_+(n_+ \mu_+ + n_- \mu_-)$$

El modelo del gas de electrones libres

$$W = -\frac{e^2}{4\pi \, \epsilon_0 \, r}$$

El modelo del gas de electrones libres

El trabajo de extracción se define como la energía mínima para sacar un electrón del metal.

La energía de Fermi o potencial Químico es la máxima energía que puede tener un electrón de conducción en el cero absoluto

El modelo de bandas

El número de niveles de energía permitidos dentro de cada banda depende de la densidad de átomos

El modelo de bandas

Esquema de la distribución de electrones en las bandas a 0 K según el tipo de material. Los estados ocupados están resaltados en color

Metales, semiconductores y aislantes

Para que un material conduzca es necesario que existan estados permitidos en la banda de conducción no ocupados y que existan electrones en esta banda, que por acción de un campo eléctrico, se muevan en ella ocupando estados permitidos vacíos.

La acción de un campo eléctrico a temperatura ambiente será comunicar a los electrones energía suficiente para que se muevan en el volumen del material en sentido opuesto al campo. El material conduce

Esquema de bandas de un no conductor

Conducción en semiconductores

Los semiconductores, a bajas temperaturas tienen un esquema de bardas equivalentes al de los aisladores, pero el "gap" de energías prohibidas E_G es pequeño. Subiendo la temperatura, la energía térmica es capaz de hacer saltar electrones de la banda de valencia a la de conducción, con lo que estos materiales conducen, aunque sólo sea pobremente, la electricidad.

El salto del electrón provoca la aparición de un hueco, o defecto de un electrón, en la banda de valencia. Esta banda, deja de estar totalmente llena y contribuye por tanto a la conducción.

Ahora para describir el fenómeno de conducción los portadores que tendremos que considerar serán: los electrones en la banda de conducción, y los huecos en la banda de valencia

Conducción con dopado

Las impurezas ceden electrones que pasan a la banda de conducción

Banda de valencia

Los electrones de la banda de valencia con energía suficiente pasan al nivel de dadores y producen un hueco Nivel de aceptores

Banda de conducción

AE

Banda de valencia

Magnitudes fundamentales

- Corriente eléctrica:
 - El movimiento de las cargas eléctricas en un conductor se conoce como corriente eléctrica
- Intensidad de corriente:
 - Nos mide la cantidad de carga eléctrica que atraviesa un punto de un conductor en la unidad de tiempo.
- ¿Por dónde se mueven las cargas?
 - Las cargas se mueven por los conductores eléctricos
- ¿Por qué se mueven las cargas?
 - Sólo se pueden mover si "alguien" les comunica energía: Los generadores eléctricos

de Alcalá Elementos de un circuito I

Elementos activos:

- Convierten cualquier forma de energía en energía eléctrica. Generadores eléctricos.
- Se caracterizan por su f.e.m. (ε)

Universidad La Alaslá Elementos de un circuito II

Elementos pasivos

- Convierten la energía eléctrica en otro tipo de energía
- Se caracterizan por su resistencia

La Ley de Ohm

- Nos relaciona la causa, la f.e.m. del generador, con el efecto la corriente que pasa por el circuito.
- En el caso ideal:

$$V = I \times R$$

Potencia en elementos pasivos

• Sabemos que:Potencia = $\frac{\text{Energia}}{\text{Tiempo}}$

- En ese elemento pasivo:
 - cuando le recorren 0,5 a,
 la ddp entre bornes es de
 12 v, disipa 6 w
 - si le recorren 2 a, la ddp entre bornes es de 48 v, disipa 96 w
 ¿Es posible?

Existe una potencia máxima

Universidad Potencia en elementos activos

 Lo característico de una batería es proporcionar siempre la misma diferencia de potencial (ε)

- En ese elemento activo:
 - cuando le recorren 0,5 a, si es ideal, disipa 6 w
 - si le recorren 2 a, si es ideal, disipa 24 w ¿Es posible?

En el caso real:

$$V = \varepsilon - (I \times r)$$

- Resistencia equivalente
 - Es la resistencia que juega en el circuito el mismo papel que las resistencias que forman el circuito

Resistencias en serie

 Dos resistencias están en serie si las recorre la misma corriente

Si están recorridas por la misma intensidad:

$$V_A - V_B = I R_1 y V_B - V_C = I R_2$$

La resistencia equivalente deberá conseguir que al ser atravesada por "I" en sus bornes caiga $V_{\rm A}$ – $V_{\rm c}$

$$R_{eq,s} = R_1 + R_2$$

^a Asociación de resistencias II

- Resistencias en paralelo
 - Dos resistencias están conectadas en paralelo si están sometidas a la misma diferencia de potencial

Si están sometidas a la misma tensión:

$$V = I_1 R_1 y V = I_2 R_2$$

La resistencia equivalente deberá conseguir que al estar sometida a la tensión "V" por el circuito pase la corriente "I", que será la suma de las dos intensidades: $I = I_1 + I_2$

$$1/R_{eq} = (1/R_1) + (1/R_2)$$

Circuitos eléctricos I

Un circuito puede contener varios elementos activos y pasivos, que pueden conectarse entre si de diversas formas.

☐ Los puntos de conexión entre tres o más conductores se denominan "nudos".

- nudo
- ☐ El conjunto de elementos existentes entre dos nudos consecutivos, se denomina "rama"
- ☐ Las figuras geométricas cerradas que se pueden formar en un circuito se denominan "mallas"

Lemas de Kirchoff

Lema de nudos:

La suma de las intensidades que llegan a un nudo es igual a la suma de las intensidades que salen de él.

$$\sum_{j} I_{j} = 0$$

Lema de mallas:

En cada malla, la energía suministrada por los generadores es igual a la energía disipada los elementos pasivos

$$\sum_{i} \varepsilon_{i} = \sum_{i} R_{i} \cdot I_{i}$$

Circuitos eléctricos II

Principio de superposición

Teorema de Thevenin

Teorema de la máxima transmisión de potencia $R_i = R_c$