Логическите схеми се описват чрез:

- Входове
- Изходи
- Функционална спецификация (Functional specification) описва връзката между входовете и изходите
- Времева спецификация (Timing specification) дава времето на закъснение между промяната на входните сигнали и реакцията на изхода на схемата.

Логическите схеми се състоят от:

- Връзки (Nodes)
 - Входове: *A*, *B*, *C*
 - Изходи: Y, Z
 - Вътрешни връзки (Internal): n1
- Схемни елементи (Circuit elements)
 - E1, E2, E3

Видове логически схеми

- Комбинационни логически схеми (Combinational Logic)
 - Схеми без памет (Memoryless), т.е. състоянието на изходите се определя от текущото състояние на входовете.
- Последователни логически схеми (Sequential Logic)
 - това са схеми с памет, т.е. състоянието на изхода зависи от предишни състояния и текущото състояние на входовете

Правила при комбинационните схеми:

- Всеки елемент е комбинационна схема.
- Всяка връзка е вход или се свързва с точно един изход
- Схемата не съдържа циклични (кръгови) пътища

Пример:

Функционална спецификация

Пример:
$$S = F(A, B, C_{in})$$

$$C_{out} = F(A, B, C_{in})$$

$$\begin{array}{c|c}
A & & \\
B & & \\
C_{\text{in}} & & \\
\end{array}$$

$$\begin{array}{c|c}
C & S \\
C_{\text{out}} & & \\
\end{array}$$

$$S = A \oplus B \oplus C_{in}$$

$$C_{out} = AB + AC_{in} + BC_{in}$$

/ Пълен 1-битов суматор /

<u>Булева алгебра</u>. **George Boole**, **1815-1864**

Scanned at the American Institute of Physics

- Произхожда от работническо семейство.
- Увлича се от математиката и работи в Queen's College in Ireland.
- Написва An Investigation of the Laws of Thought (1854)
- Въвежда двоичните променливи.
- Въвежда трите основни логически операции: AND, OR и NOT.

Дефиниции.

• Допълнение (отрицание): променлива с черта над символа.

$$\overline{A}$$
, \overline{B} , \overline{C}

• Буквен символ (Literal): променливата или допълнението. ѝ.

• Импликант (Implicant): произведение от литерали.

ABC, AC, BC

• Minterm: произведение, включващо всички входни променливи.

• Maxterm: сума, включваща всички входни променливи.

$$(A+B+C)$$
, $(\overline{A}+B+\overline{C})$, $(\overline{A}+B+C)$

Представяне Сума От Произведения (СОП) (Sum-of-Products (SOP) Form)

- Всички уравнения могат да се представят в SOP форма.
- Всеки ред има minterm.
- minterm е произведение (AND) от литерали.
- Отделят се тези minterm, които са TRUE на даден ред.
- Съставя се логичеката функция като OR на minterms, където изходът е TRUE.
- Следователно се получава сума (OR) от произведения (AND terms).

				minterm
	В	Y	minterm	name
0	0	0	$\overline{A} \ \overline{B}$	m_{0}
0	1	1	$\overline{A} \; B$	m_1°
1	0	0	\overline{A}	m_2
1	1	1	АВ	m_3

$$Y = \mathbf{F}(A, B) =$$

Представяне Сума От Произведения (СОП) (Sum-of-Products (SOP) Form)

- Всички уравнения могат да се представят в SOP форма.
- Всеки ред има minterm.
- minterm е произведение (AND) от литерали.
- Отделят се тези minterm, които са TRUE на даден ред.
- Съставя се логичеката функция като OR на minterms, където изходът е TRUE.
- Следователно се получава сума (OR) от произведения (AND terms).

				minterm
 A	В	Y	minterm	name
0	0	0	$\overline{A} \ \overline{B}$	m_{0}
0	1	1	Ā B	m_1
1	0	0	\overline{A}	m_2
1	1	1	АВ	m_3

$$Y = \mathbf{F}(A, B) =$$

Представяне Сума От Произведения (СОП) (Sum-of-Products (SOP) Form)

- Всички уравнения могат да се представят в SOP форма.
- Всеки ред има minterm.
- minterm е произведение (AND) от литерали.
- Отделят се тези minterm, които са TRUE на даден ред.
- Съставя се логичеката функция като OR на minterms, където изходът е TRUE.
- Следователно се получава сума (OR) от произведения (AND terms).

					minterm
	Α	В	Y	minterm	name
_	0	0	0	$\overline{A} \overline{B}$	m_0
	0	1	1	Ā B	m_1
	1	0	0	\overline{AB}	m_2
	1	1	1	АВ	m_3

$$Y = F(A, B) = \overline{A}B + AB = \Sigma(1, 3)$$

Представяне Произведение От Суми (ПОС) (Product-of-Sums (POS) Form)

- Всички уравнения могат да се представят в POS форма.
- Всеки ред има maxterm.
- maxterm е сума (OR) от литерали.
- Отделят се тези maxterm, които са FALSE на даден ред.
- Съставя се логичеката функция като AND на maxterms, където изходът е FALSE.
- Следователно се получава произведение (AND) от суми (OR terms).

			maxterm	
_ A	В	Y	maxterm name	
0	0	0	A + B	M_0
0	1	1	$A + \overline{B}$	M_1
1	0	0	Ā + B	M_2
1	1	1	$\overline{A} + \overline{B}$	M_3

$$Y = F(A, B) = (A + B)(A + \overline{B}) = \Pi(0, 2)$$

Аксиоми и теореми на Булевата алгебра.

- Аксиоми и теореми за опростяване на Булевите уравнения.
- Прилича на обичайната алгебра, но е по-проста променливите имат само две стойности (0 или 1).
- Дуалност на аксиомите и теоремите:
 - ANDs и ORs, 0-те and 1-те са взаимно заменяеми.

КАРХ: Тема_4: Комбинационни логически схеми Аксиоми и теореми на Булевата алгебра.

	Axiom		Dual	Name
A1	$B = 0 \text{ if } B \neq 1$	A1′	$B = 1 \text{ if } B \neq 0$	Binary field
A2	$\overline{0} = 1$	A2′	T = 0	NOT
A3	$0 \bullet 0 = 0$	A3′	1 + 1 = 1	AND/OR
A4	1 • 1 = 1	A4′	0 + 0 = 0	AND/OR
A5	$0 \bullet 1 = 1 \bullet 0 = 0$	A5′	1 + 0 = 0 + 1 = 1	AND/OR

	Theorem		Dual	Name
T1	$B \bullet 1 = B$	T1'	B+0=B	Identity
T2	$B \bullet 0 = 0$	T2'	B + 1 = 1	Null Element
Т3	$B \bullet B = B$	T3'	B + B = B	Idempotency
T4		$\bar{\bar{B}} = B$		Involution
T5	$B \bullet \overline{B} = 0$	T5'	$B + \overline{B} = 1$	Complements

Аксиоми и теореми на Булевата алгебра.

T1: Identity Theorem

•
$$B \cdot 1 = B$$

•
$$B + 0 = B$$

Аксиоми и теореми на Булевата алгебра.

T1: Identity Theorem

•
$$B \cdot 1 = B$$

•
$$B + 0 = B$$

$$B \rightarrow B \rightarrow B$$

Аксиоми и теореми на Булевата алгебра.

T2: Null Element Theorem

• B •
$$0 = 0$$

•
$$B + 1 = 1$$

Аксиоми и теореми на Булевата алгебра.

T2: Null Element Theorem

• B •
$$0 = 0$$

•
$$B + 1 = 1$$

$$\begin{bmatrix} B \\ 0 \end{bmatrix} = 0$$

Аксиоми и теореми на Булевата алгебра.

T3: Idempotency Theorem

•
$$B \cdot B = B$$

•
$$B + B = B$$

Аксиоми и теореми на Булевата алгебра.

T3: Idempotency Theorem

•
$$B \cdot B = B$$

•
$$B + B = B$$

$$B = B$$

Аксиоми и теореми на Булевата алгебра.

T4: Identity Theorem

$$\bullet \stackrel{=}{B} = B$$

Аксиоми и теореми на Булевата алгебра.

T4: Identity Theorem

$$\bullet \stackrel{=}{B} = B$$

Аксиоми и теореми на Булевата алгебра.

T5: Complement Theorem

• B •
$$\overline{B} = 0$$

•
$$B + \overline{B} = 1$$

Аксиоми и теореми на Булевата алгебра.

T5: Complement Theorem

• B •
$$\overline{B} = 0$$

•
$$B + \overline{B} = 1$$

$$\frac{B}{B}$$
 $=$ 0

$$\frac{B}{B}$$
 $=$ 1

КАРХ: Тема_4: Комбинационни логически схеми

Аксиоми и теореми на Булевата алгебра.

Обобщение.

	Theorem		Dual	Name
T1	$B \bullet 1 = B$	T1′	B+0=B	Identity
T2	$B \bullet 0 = 0$	T2'	B + 1 = 1	Null Element
Т3	$B \bullet B = B$	T3′	B + B = B	Idempotency
T4		$\bar{\bar{B}} = B$		Involution
T5	$B \bullet \overline{B} = 0$	T5'	$B + \overline{B} = 1$	Complements

Аксиоми и теореми на Булевата алгебра.

Булеви теореми за повече променливи.

	Theorem		Dual	Name
T6	$B \bullet C = C \bullet B$	T6'	B + C = C + B	Commutativity
T 7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	T7′	(B+C)+D=B+(C+D)	Associativity
T8	$(B \bullet C) + (B \bullet D) = B \bullet (C + D)$	T8'	$(B+C) \bullet (B+D) = B + (C \bullet D)$	Distributivity
Т9	$B \bullet (B + C) = B$	T9'	$B + (B \bullet C) = B$	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	T10'	$(B + C) \bullet (B + \overline{C}) = B$	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D)$	T11'	$(B + C) \bullet (\overline{B} + D) \bullet (C + D)$	Consensus
	$= B \bullet C + \overline{B} \bullet D$		$= (B + C) \bullet (\overline{B} + D)$	
T12	$B_0 \bullet B_1 \bullet B_2$	T12'	$B_0 + B_1 + B_2$	De Morgan's
	$= (\overline{B_0} + \overline{B_1} + \overline{B_2} \dots)$		$= (\overline{B_0} \bullet \overline{B_1} \bullet \overline{B_2})$	Theorem

Забележка: Т8' се различава от традиционната алгебра!

Опростяване на Булеви уравнения.

Пример 1.

$$Y = AB + AB$$

Опростяване на Булеви уравнения.

Пример 1.

$$Y = AB + \overline{AB}$$

$$= B(A + \overline{A}) \qquad T8$$

$$= B(1) \qquad T5'$$

$$= B \qquad T1$$

Опростяване на Булеви уравнения.

Пример 2.

$$Y = A(AB + ABC)$$

Опростяване на Булеви уравнения.

Пример 2.

$$Y = A(AB + ABC)$$

= $A(AB(1 + C))$ T8
= $A(AB(1))$ T2'
= $A(AB)$ T1
= $(AA)B$ T7
= AB T3

Теорема на де Морган. (DeMorgan's Theorem)

•
$$Y = \overline{AB} = \overline{A} + \overline{B}$$
 $A = A = A$
 $A =$

•
$$Y = \overline{A + B} = \overline{A} \cdot \overline{B}$$
 $A = 0$
 $B = 0$
 $A = 0$
 $B = 0$

Аugustus De Morgan, починал 1871 г. Британски математик роден в Индия, сляп с едното око. На 22 години става професор по математика в университета в Лондон. Работи в областта на логиката, алгебрата и парадоксите. "Бях на х години в годината х²".

Местене на точките ("мехурчетата"). (Bubble Pushing)

• Назад:

- Променя се графичният символ.
- Прибавят се точки на входовете.

• Напред:

- Променя се графичният символ.
- Прибавя се точка на изхода.

Какво Булево уравнение описва показаната схема?

Какво Булево уравнение описва показаната схема?

$$Y = AB + CD$$

Правила:

- Започва се от изхода и се движи към входовете.
- Логическите елементи се променят така, че точките да се компенсират.

Преминаване от логически функции към логически схеми.

- Логически схеми на две нива: ANDs последвани от ORs
- Пример: $Y = \overline{A}\overline{B}\overline{C} + A\overline{B}\overline{C} + A\overline{B}C$

Правила при чертане на логически схеми с логически елементи.

- Входовете са отляво (или отгоре).
- Изходите са отдясно (или отдолу).
- Логическите елементи следват отляво на дясно.
- Използването на прави проводници е препоръчително.
- Проводниците винаги се свързват с Т-връзка.
- Точката показва връзка между пресичащи се проводници.
- Пресичащи се проводници без точка нямат връзка.

wires connect at a T junction	wires connect at a dot	wires crossing without a dot do not connect			

Логически схеми с много изходи.

Пример: Схема с приоритет – на изхода на схемата излиза най-старшия бит TRUE на входа.

Логически схеми с много изходи.

Пример: Схема с приоритет – на изхода на схемата излиза най-старшия бит TRUE на входа.

Логически схеми с много изходи.

Пример: Схема с приоритет – на изхода на схемата излиза най-старшия бит TRUE на входа.

A_3	A_2	A_{1}	A_{α}	Y	Y ₂	Y ₁	Yo
0	0		0	0	0	0	Y _o 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
0 0 0 0 0 0 0 1 1 1 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 1 0 1 0 1 0 1 0 1 0 1 0 1	000000011111111	0000111100000000	0 0 1 1 0 0 0 0 0 0 0 0 0 0 0	0
1	1	1	1	1	0	0	0

Логически схеми с много изходи.

Пример: Схема с приоритет – на изхода на схемата излиза най-старшия бит TRUE на входа.

11.		u Dii	эда.													
A_3	A_2	A_{1}	A_o	Y_3	Y_2	Y_1	Yo									
0	0	0	0	0	0	0	0									
0	0	0	1	0	0	0	1									
0	0	1	0	0	0	1	0						ı			
0	0	1	1	0	0	1	0									
0	1	0	0	0	1	0	0	_	A_3	A_2	A_1	A_o	Υ ₃	Y ₂	Y ₁	Y ₀
0	1	0	1	0	1	0	0	_	0	0	0	0	0	0	0	0
0	1	1	0	0	1	0	0		0	0	0	1	0	0	0	1
0	1	1	1	0	1	0	0		0	0	1	X	0	Ö	1	0
1	0	0	0	1	0	0	0									0
1	0	0	1	1	0	0	0		0	1	X	X	0	1	0	Ü
1	0	1	0	1	0	0	0		1	X	X	X	1	0	0	0
1	0	1	1	1	0	0	0									
1	1	0	0	1	0	0	0									
1	1	0	1	1	0	0	0									
1	1	1	0	1	0	0	0									
1	1	1	1	1	0	0	0									

x – няма значение (Don't Cares)

Конфликт: х

- Конфликт: изходът на схемата се опитва да бъде 1 и 0 едновременно.
 - Реалната стойност е някъде между тях.
 - Може да е 0, 1, или някъде в забранената зона.
 - Може да се мени с напрежението, температурата, във времето, с шума.
 - Често предизвиква отделяне на топлина.

$$A = 1 - Y = X$$

$$B = 0 - Y = X$$

• Внимание:

- Конфликтът обикновено е грешка (**bug**).
- X се използва при "don't care" и при конфликт трябва да се различават от контекста.

Логически схеми с плаващ изход (изход с висок импеданс).

- Плаващият изход може да бъде 0, 1, или някъде между тях.
 - Плаването на напрежението не може да се установи с волтметър.

Tristate Buffer

E	Α	Y
0	0	Z
O	1	Ζ
1	0	0
1	1	1

<u>Линии с три състояния.</u> (Tristate Busses) Използване на линии с три състояния.

- Свързване на много устройства.
- Само едно от тях активно.

Основни приложения на комбинационните схеми.

- Мултиплексори (Multiplexers).
- Дешифратори (Decoders).

Мултиплексори (Mux).

- Свързват 1 от N входа кум изхода.
- Има $\log_2 N$ -bit селектиращи входа контролни (управляващи) входове.
- Пример:

2:1 Mux

Мултиплексори (Mux).

Реализация

- С логически елементи (Logic gates). С буфери с три състояния (Tristates)
 - Sum-of-products form

$$Y = D_0 \overline{S} + D_1 S$$

Мултиплексори (Mux).

Приложения:

- като lookup table

Мултиплексори (Mux).

Приложения:

- като lookup table с намален брой изводи.

Дешифратори (Decoders).

- N входа, 2^N изхода.
- Само един активен изход (в състояние HIGH)

A ₁	A_0	Y ₃	Y_2	Y ₁	Y_0
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

Дешифратори (Decoders).

Реализация.

Дешифратори (Decoders).

Приложение.

<u>Логически схеми – времеви характеристики.</u> Закъснение между входа и изхода.

Логически схеми – времеви характеристики.

Закъснение между входа и изхода.

• Propagation delay: t_{pd} = max delay from input to output

• Contamination delay: t_{cd} = min delay from input to

output

<u> Логически схеми – времеви характеристики.</u>

"Звънене" (Glitches) – когато промяната на състоянието на даден вход води до няколкократна промяна на изхода до установяването му.

- Glitches не създават проблеми при използване на synchronous design.
- Важно е да се разпознават : в симулаторите или на осцилоскопа.
- Могат да се причинят и при едновременно превключване на няколко входа.