

Fraud Detection

Account and Transactional Risk Scoring

24th July 2024

What's the problem?

What's the problem?

The ever-increasing number of fraud cases

"997. What's your emergency?"

**

National Scam Response Center (NSRC)

Fraud Prevention

Fraud Prevention

Challenges

Data Volume

- >10 million transactions in a day
- And this is only for 2 products...

Data Cleanliness

- Missing values
- Inconsistent formats
- Reliability of information

Exploratory Data Analysis

- Basic statistics
- Distributions
- Visualize data

Labels

Extreme Imbalance

- 1000 non-fraud: 1 fraud
- Resampling / Synthetic Data / Hybrid
- Class Weights

Labels Misclassification

K-Nearest Neighbor

Defining Fraudulent Transaction

- If an account is tagged as a mule, should all transactions by this account be considered fraudulent?
- Or, only transactions after the account is identified as a mule?
- What's the difference?

Ambiguity

Inconsistent Patterns

- Fraud patterns are quite inconsistent
- Police/Bank Officers themselves have a hard time identifying fraud transactions

Various types of fraud

- Different behaviors and patterns, for different fraud types
- How does the victim of a love scam behave prior to the scam?
- How does the feature importance differ from one type to another?

and many many more...

Fraud Prevention

Model Flow

1. Feature Engineering

Arguably the most important step in machine learning!

Graph Features

• Eigenvector Centralities

Behavioral Features

· Test transaction

Interaction Features

Features A * Features B

2. Preprocessing

Dimensionality Reduction

• e.g. Principal Component Analysis

Scaling

Standardization/Normalization

3. Feature Selection

Correlation Analysis

How does your feature affect your labels

Domain Expertise

 Selecting features based on experience

Al Bias

4. Model

XGBoost

- High Performance
- Feature Importance
- Struggle with large datasets
- · Hyperparameters tuning

- Complex Patterns
- Feature Learning
- Black Box
- Very data hungry!

Random Forest

- Relatively little tuning required
- Imbalanced data
- Heavy (Size and Compute)

Isolation Forest

- Unsupervised Learning
- Good explainability!
- · Limited to Anomaly Detection

5. Training

The slight changes to the weights and biases of a formula

Addition of trees based on optimal split point

Cost Function (except Iso. F.)

Optimization Function (except Iso. F.)

Explainability

Explainability

Art of Selling

LIME - Local Interpretable Model-Agnostic Explanations

Thanks for listening!

