云南大学 2019 年春季学期软件学院 2018 级《线性代数》期末考试(闭卷)试卷 A 答案

满分 100 分 考试时间: 120 分钟 任课教师: 赵明雄, 张一凡, 胡盛, 黄光能, 郁湧

学院: 专业: 学号: 姓名:

一、选择题(本大题共10小题,每小题2分,共20分)

1	2	3	4	5	6	7	8	9	10
A	D	В	C	D	В	A	В	D	C

二、填空题(本大题共5小题,每小题2分,共10分)

1. <u>5</u>; 2. <u>n</u>; 3. <u>4</u>; 4. <u>3</u>; 5. () ___.

三、计算题(本大题共4小题,每小题各10分,共40分)

1. 已知行列式 D=
$$\begin{vmatrix} 3 & 1 & -1 & 2 \\ -5 & 1 & 2 & -4 \\ 2 & 0 & 1 & -1 \\ 1 & -5 & 3 & -3 \end{vmatrix}$$
, D 的(i, j)元的余子式为 M_{ij} ,

计算 M₃₁-3M₃₂-2M₃₃-2M₃₄, 写出求解步骤.

解: M_{31} - $3M_{32}$ - $2M_{33}$ - $2M_{34}$ = A_{31} + $3A_{32}$ - $2A_{33}$ + $2A_{34}$

设 D'=
$$\begin{vmatrix} 3 & 1 & -1 & 2 \\ -5 & 1 & 2 & -4 \\ 1 & 3 & -2 & 2 \\ 1 & -5 & 3 & -3 \end{vmatrix}$$
, 由行列式展开的性质可知:

 M_{31} - $3M_{32}$ - $2M_{33}$ - $2M_{34}$ = A_{31} + $3A_{32}$ - $2A_{33}$ + $2A_{34}$

$$= D' \underbrace{\frac{c_4 + c_3}{-5}}_{1} \begin{vmatrix} 3 & 1 & -1 & 1 \\ -5 & 1 & 2 & -2 \\ 1 & 3 & -2 & 0 \\ 1 & -5 & 3 & 0 \end{vmatrix} \underbrace{\frac{r_2 + 2r_1}{-5}}_{1} \begin{vmatrix} 3 & 1 & -1 & 1 \\ 1 & 3 & 0 & 0 \\ 1 & 3 & -2 & 0 \\ 1 & -5 & 3 & 0 \end{vmatrix}}_{1} = 1 \times (-1)^{1+4} \begin{vmatrix} 1 & 3 & 0 \\ 1 & 3 & -2 \\ 1 & -5 & 3 \end{vmatrix} \underbrace{\frac{c_2 - 3r_1}{-5}}_{1} - \begin{vmatrix} 1 & 0 & 0 \\ 1 & 0 & -2 \\ 1 & -8 & 3 \end{vmatrix} = 1 \times (-1)^{1+4} \underbrace{\begin{vmatrix} 1 & 3 & 0 \\ 1 & 3 & -2 \\ 1 & -5 & 3 \end{vmatrix}}_{1} \underbrace{\begin{vmatrix} 1 & 0 & 0 \\ 1 & 0 & -2 \\ 1 & -8 & 3 \end{vmatrix}}_{1} = 1 \times (-1)^{1+4} \underbrace{\begin{vmatrix} 1 & 3 & 0 \\ 1 & 3 & -2 \\ 1 & -5 & 3 \end{vmatrix}}_{1} \underbrace{\begin{vmatrix} 1 & 0 & 0 \\ 1 & 0 & -2 \\ 1 & -8 & 3 \end{vmatrix}}_{1} = 1 \times (-1)^{1+4} \underbrace{\begin{vmatrix} 1 & 0 & 0 \\ 1 & 0 & -2 \\ 1 & -8 & 3 \end{vmatrix}}_{1} = 1 \times (-1)^{1+4} \underbrace{\begin{vmatrix} 1 & 0 & 0 \\ 1 & 0 & -2 \\ 1 & -8 & 3 \end{vmatrix}}_{1} = 1 \times (-1)^{1+4} \underbrace{\begin{vmatrix} 1 & 0 & 0 \\ 1 & 0 & -2 \\ 1 & -8 & 3 \end{vmatrix}}_{1} = 1 \times (-1)^{1+4} \underbrace{\begin{vmatrix} 1 & 0 & 0 \\ 1 & 0 & -2 \\ 1 & -8 & 3 \end{vmatrix}}_{1} = 1 \times (-1)^{1+4} \underbrace{\begin{vmatrix} 1 & 0 & 0 \\ 1 & 0 & -2 \\ 1 & -8 & 3 \end{vmatrix}}_{1} = 1 \times (-1)^{1+4} \underbrace{\begin{vmatrix} 1 & 0 & 0 \\ 1 & 0 & -2 \\ 1 & -8 & 3 \end{vmatrix}}_{1} = 1 \times (-1)^{1+4} \underbrace{\begin{vmatrix} 1 & 0 & 0 \\ 1 & 0 & -2 \\ 1 & -8 & 3 \end{vmatrix}}_{1} = 1 \times (-1)^{1+4} \underbrace{\begin{vmatrix} 1 & 0 & 0 \\ 1 & 0 & -2 \\ 1 & -8 & 3 \end{vmatrix}}_{1} = 1 \times (-1)^{1+4} \underbrace{\begin{vmatrix} 1 & 0 & 0 \\ 1 & 0 & -2 \\ 1 & -8 & 3 \end{vmatrix}}_{1} = 1 \times (-1)^{1+4} \underbrace{\begin{vmatrix} 1 & 0 & 0 \\ 1 & 0 & -2 \\ 1 & -8 & 3 \end{vmatrix}}_{1} = 1 \times (-1)^{1+4} \underbrace{\begin{vmatrix} 1 & 0 & 0 \\ 1 & 0 & -2 \\ 1 & -8 & 3 \end{vmatrix}}_{1} = 1 \times (-1)^{1+4} \underbrace{\begin{vmatrix} 1 & 0 & 0 \\ 1 & 0 & -2 \\ 1 & -8 & 3 \end{vmatrix}}_{1} = 1 \times (-1)^{1+4} \underbrace{\begin{vmatrix} 1 & 0 & 0 \\ 1 & 0 & -2 \\ 1 & -8 & 3 \end{vmatrix}}_{1} = 1 \times (-1)^{1+4} \underbrace{\begin{vmatrix} 1 & 0 & 0 \\ 1 & 0 & -2 \\ 1 & -8 & 3 \end{vmatrix}}_{1} = 1 \times (-1)^{1+4} \underbrace{\begin{vmatrix} 1 & 0 & 0 \\ 1 & 0 & -2 \\ 1 & -8 & 3 \end{vmatrix}}_{1} = 1 \times (-1)^{1+4} \underbrace{\begin{vmatrix} 1 & 0 & 0 \\ 1 & 0 & -2 \\ 1 & -8 & 3 \end{vmatrix}}_{1} = 1 \times (-1)^{1+4} \underbrace{\begin{vmatrix} 1 & 0 & 0 \\ 1 & 0 & -2 \\ 1 & -8 & 3 \end{vmatrix}}_{1} = 1 \times (-1)^{1+4} \underbrace{\begin{vmatrix} 1 & 0 & 0 \\ 1 & 0 & -2 \\ 1 & -8 & 3 \end{vmatrix}}_{1} = 1 \times (-1)^{1+4} \underbrace{\begin{vmatrix} 1 & 0 & 0 \\ 1 & 0 & -2 \\ 1 & -8 & 3 \end{vmatrix}}_{1} = 1 \times (-1)^{1+4} \underbrace{\begin{vmatrix} 1 & 0 & 0 \\ 1 & 0 & -2 \\ 1 & -8 & 3 \end{vmatrix}}_{1} = 1 \times (-1)^{1+4} \underbrace{\begin{vmatrix} 1 & 0 & 0 \\ 1 & 0 & -2 \\ 1 & -8 & 3 \end{vmatrix}}_{1} = 1 \times (-1)^{1+4} \underbrace{\begin{vmatrix} 1 & 0 & 0 \\ 1 & 0 & -2 \\ 1 & -8 & 3 \end{vmatrix}}_{1} = 1 \times (-1)^{1+4} \underbrace{\begin{vmatrix} 1 & 0 & 0 \\ 1 & 0 & -2 \\ 1 & -8 & 3 \end{vmatrix}}_{1} = 1 \times (-1)^{1+4} \underbrace{\begin{vmatrix} 1 & 0$$

$$-\begin{vmatrix} 0 & -2 \\ -8 & 3 \end{vmatrix} = 16$$

2. 已知矩阵
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 2 & 3 \\ -1 & -2 & 4 \\ 0 & 5 & 1 \end{pmatrix}$, 求解

解:解:(1))10A=10
$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 10 & 10 & 10 \\ 10 & 10 & -10 \\ 10 & -10 & 10 \end{pmatrix}$$
(2分)

(2)
$$A^T = A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix} (2 \%)$$

$$(3)\mathbf{A}^{\mathsf{T}}\mathbf{B} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ -1 & -2 & 4 \\ 0 & 5 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 5 & 8 \\ 0 & -5 & 6 \\ 2 & 9 & 0 \end{pmatrix} (2 \ \%)$$

$$2A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 2 & 2 \\ 2 & 2 & -2 \\ 2 & -2 & 2 \end{pmatrix} (2 \%)$$

$$A^{T}B-2A = \begin{pmatrix} 0 & 5 & 8 \\ 0 & -5 & 6 \\ 2 & 9 & 0 \end{pmatrix} - \begin{pmatrix} 2 & 2 & 2 \\ 2 & 2 & -2 \\ 2 & -2 & 2 \end{pmatrix} = \begin{pmatrix} -2 & 3 & 6 \\ -2 & -7 & 8 \\ 0 & 11 & -2 \end{pmatrix} (2 \%)$$

3. 已知向量组 A:
$$a_1 = \begin{pmatrix} 1 \\ 2 \\ 7 \end{pmatrix}$$
, $a_2 = \begin{pmatrix} 1 \\ -5 \\ -7 \end{pmatrix}$, $a_3 = \begin{pmatrix} -1 \\ 3 \\ 3 \end{pmatrix}$, $a_4 = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$ 和未知向量 $x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$, 满足 Ax=0,其

中 A 为矩阵(a₁,a₂,a₃,a₄), 求解:

(1)向量组 A 的秩.(4 分) (2)Ax=0 的基础解系.(4 分) (3)Ax=0 的通解.(2 分)

解:(1)因为
$$A = \begin{pmatrix} 1 & 1 & -1 & -1 \\ 2 & -5 & 3 & 2 \\ 7 & -7 & 3 & 1 \end{pmatrix}$$
 $r \begin{pmatrix} 1 & 0 & -\frac{2}{7} & -\frac{3}{7} \\ 0 & 1 & -\frac{5}{7} & -\frac{4}{7} \\ 0 & 0 & 0 & 0 \end{pmatrix}$,所以,向量组 A 的秩,为 R(A)=2.(4 分)

(2)Ax=0 的基础解系为
$$\xi_1 = \begin{pmatrix} \frac{2}{7} \\ \frac{5}{7} \\ 1 \\ 0 \end{pmatrix}$$
 (2 分), $\xi_2 = \begin{pmatrix} \frac{3}{7} \\ \frac{4}{7} \\ 0 \\ 1 \end{pmatrix}$ (2 分)

(3)Ax=0 的通解为:
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = c_1 \begin{pmatrix} \frac{2}{7} \\ \frac{5}{7} \\ 1 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} \frac{3}{7} \\ \frac{4}{7} \\ 0 \\ 1 \end{pmatrix} (c_1, c_2 \in \mathbb{R})(2 \%)$$

4. 已知矩阵
$$A = \begin{pmatrix} -1 & 1 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$
, 求解:

(1)矩阵(A-λE). (2 分) (2)矩阵 A 的特征值.(4 分) (3)矩阵 A 的特征向量.(4 分)

解: (1)(A-
$$\lambda$$
E)= $\begin{pmatrix} -1-\lambda & 1 & 0 \\ -4 & 3-\lambda & 0 \\ 1 & 0 & 2-\lambda \end{pmatrix}$ (2 分)

$$(2)|A-\lambda E| = \begin{vmatrix} -1-\lambda & 1 & 0 \\ -4 & 3-\lambda & 0 \\ 1 & 0 & 2-\lambda \end{vmatrix} = (2-\lambda)(-1)^{3+3} \begin{vmatrix} -1-\lambda & 1 \\ -4 & 3-\lambda \end{vmatrix} = (2-\lambda)[(-1-\lambda)(3-\lambda)+4] = (2-\lambda)(1-\lambda)^2 = 0$$

则, $\lambda_1=2$, $\lambda_2=\lambda_3=1$.(4 分)

(3)i)
$$\lambda_1$$
=2,解方程(A-2E)x=0,由(A-2E)= $\begin{pmatrix} -3 & 1 & 0 \\ -4 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$,得方程解: x_1 = x_2 =0, x_3 = x_3 = x_4 0, x_5 = x_6 0,

所以其对应的特征向量可取 $p_1=\begin{pmatrix}0\\0\\1\end{pmatrix}$,则 kp_1 为 λ_1 =2 对应的全部特征向量.(2 分,说明一个特征

向量即可)

$$ii)\lambda_2=1$$
,解方程(A-2E)x=0,由(A-E)= $\begin{pmatrix} -2 & 1 & 0 \\ -4 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}$,得方程的解 $x_1=-x_3, x_2=2x_1$,所以其对应的特

征向量可取 $p_2 = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$, 则 kp_2 为 $\lambda_2 = \lambda_3 = 1$ 对应的全部特征向量.(2 分,说明一个特征向量即可)

四、证明题(本大题共3小题,每小题10分,共30分)

1.设 A 为 n 阶矩阵,满足 $A^2 = 10E$,证明 A-2E 可逆,并求(A-2E)-1。

证明: $A^2=10E, A^2-4E=6E, A^{2-}(2E)^2=6E, (A-2E)(A+2E)=6E, 即(A-2E)(\frac{1}{6}A+\frac{1}{3}E)=E$ 所以 A-2E 可逆,且 $(A-2E)^{-1}=\frac{1}{6}A+\frac{1}{3}E$

2. 设 λ_1 和 λ_2 是矩阵 A 的两个不同的特征值,其对应的特征向量依次为 p_1 和 p_2 ,证明 p_1 - p_2 不是 A 的特征向量。

证明: 按题设有 $AP_1=\lambda_1P_1$, $AP_2=\lambda_2P_2$, 故 $A(P_1-P_2)=\lambda_1P_1-\lambda_2P_2$

采用反证法,假设 P_1 - P_2 是 A 的特征向量,则应存在数λ,使 A (P_1 - P_2) =λ (P_1 - P_2),于是 λ (P_1 - P_2) =λ₁ P_1 -λ₂ P_2 , 即 (λ-λ₁) P_1 + (λ₂-λ) P_2 =0,

因 $\lambda_1 \neq \lambda_2$,按定理 2 知 P_1 , P_2 线性无关,故由上式得 λ - λ_1 = λ_2 - λ =0 ,即 λ_1 = λ_2 与题设矛盾,因此 P_1 - P_2 不是 A 的特征向量。

3. 证明:向量组 α_1 , α_2 , α_3 线性无关的<u>充分必要</u>条件是向量组 α_1 + α_2 , α_2 + α_3 , α_3 + α_1 线性无关。

证明: 设 α_1 , α_2 , α_3 为列向量组,且 β_1 = α_1 + α_2 , β_2 = α_2 + α_3 , β_3 = α_3 + α_1

则
$$(\beta 1, \beta 2, \beta 3) = (\alpha 1, \alpha 2, \alpha 3) \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

因为 $\begin{vmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix}$ =2 \neq 0,故知 R(β 1, β 2, β 3) = R(α 1, α 2, α 3),所以向量组线性无关的充分必要

条件是向量组 α 1+ α 2, α 2+ α 3, α 3+ α 1 线性无关。