Trường Đại Học Bách Khoa TP HCM
Bộ môn Toán Ứng Dụng.

Họ và t	tên:	_
MSSV:		

ĐỀ KIỂM TRA GIỮA HỌC KỲ NĂM HỌC 2013-2014

Môn học: GIẢI TÍCH 2. CA: 1

Thời gian làm bài: 45 phút

ĐỀ THI SỐ: 4121 Đáp án: 1a, 2d, 3b, 4b, 5c, 6b, 7c, 8d, 9c, 10c, 11a, 12b, 13c,14d, 15b, 16c, 17a, 18d, 19a, 20d.

Câu 1 : Tính $I = \iint_D dx dy$ với D là nửa hình tròn $x^2 + (y-1)^2 \le 1, y \le x\sqrt{3}$.

- (a) $I=\frac{4\pi-3\sqrt{3}}{12}$. (b) Các câu kia sai. (c) $I=\frac{4\pi+3\sqrt{3}}{12}$. (d) $I=\frac{2\pi+\sqrt{3}}{\epsilon}$.

 Câu 2 : Tìm giá trị lớn nhất M của hàm f(x,y) = 2x - 4y - 3 trên miền tam giác ABC với A(1;1), B(2;3), C(3;0).

- (a) M = 5.
- **(b)** Các câu kia sai. © M=2.
- M=3.

Câu 3: Cho mặt bậc hai $\sqrt{4-2x^2-4z^2}+3-y=0$. Đây là mặt gì?

- (a) Nửa mặt cầu.
- (b) Nửa ellipsoid.
- © Các câu kia sai.
- (d) nón môt phía.

Câu 4: Cho hàm hợp f=f(u,v), với $u=3x+2y, v=x^3+y^2$. Tìm df(x,y) ⓐ Các câu kia sai. ⓒ $(3+3x^2)dx+(2+y)$

- (a) Các câu kia sai. (b) $(3f'_u + 3x^2f'_v)dx + (2f'_u + 2yf'_v)dy$. (c) $(3 + 3x^2)dx + (2 + 2y)dy$. (d) $2f'_u dx + 2yf'_v dy$.

Câu 5 : Tính $I = \iint \!\! 10y dx dy, \ D$ được giới hạn bởi $y = x^2$ và y = 1.

- (a) I = 4.
- (b) I = 6. (c) I = 8.
- d Các câu kia sai.

Câu 6 : Cho $f(x,y)=y^2|x-1|$. Tìm $A=f_x'(1,2)$ (a) A=2. (b) Không tồn tại A. (c) Các câu kia sai.

Câu 7: Ý nghĩa hình học của $f'_x(3,4)$ là: (ký hiệu: hệ số góc của tiếp tuyến là HSGTT)

- ⓐ HSGTT với đường cong là giao của x = 3 và f = f(x, y) tại điểm có tung độ = 4.
- (b) HSGTT với đường cong là giao của z = 0 và f(x, y) tại điểm có hoành độ = 3.
- © HSGTT với đường cong là giao của y = 4 và f = f(x, y) tại điểm có hoành độ = 3.
- Các câu kia sai.

Câu 8 : Khảo sát cực trị của f(x,y) = 6 - 5x - 4y với điều kiện $x^2 - y^2 = 9$.

Cho điểm P(5; -4). Khẳng định nào đúng?

- (a) Hàm đạt cực tiểu có điều kiện tại P.
- © Các câu kia sai.
- Không có cực tri có điều kiện tai P.
- (d) Hàm đạt cực đại có điều kiện tại P.

Câu 10 :	Tính	$\iint_D \frac{1}{\sqrt{x^2 + y^2}} dx dy$	với <i>L</i>) là miền giới hạn	bởi x	$x^2 + y^2 \le 4; y \ge 0; x \le 0$	≤ 0		
	<u>a</u>		(b)	Các câu kia sai.	©	π .		2π .	
Câu 11 :	Tìm các hướng mà đạo hàm của $f(x,y,z)=3x^2+y^3+6z^2$ tại điểm $M_0(1,1,2)$ theo hướng								
	a a	ạt giá trị lớn nhất. Các câu kia sai.	(b)	$\overrightarrow{l}(2,3,8).$	©	$\overrightarrow{l}(6,3,12).$	@	$\overrightarrow{l}(6,1,13).$	
Câu 12 :	Cho a	$f(x,y) = x^2 + xy$. T M(2;1).	ìm đ (b)	d = M(x; y) sao cl $M(1; 1)$.	ho gra	$\overrightarrow{adf(M)} = (3; 1).$ $M(1; -1).$	(1)	3 câu kia sai.	
Câu 13 :	Cho a	mặt bậc hai $\sqrt{1-2a}$ Nửa ellipsoid.		$\overline{z^2} + y = 0$. Đây là nửa mặt cầu.	mặt .	gì? Các câu kia sai.	@	nón một phía.	
Câu 14 :	(a)	$f(x,y) = x^4y^3$. Khi 3 câu kia sai. $12dx^2 + 12dxdy + 6$		(© 32 (d) 12	$2.$ $2dx^2 + 24dxdy + 6dy$	y^2 .		
Câu 15 :	Viết	cận trong tọa độ cực	e I =	=	en phá	\vec{a} i của hình tròn x^2 +	$-y^2 \le$	≤ 1.	
	<u>a</u>	$\int_{-\pi/2}^{\pi} d\varphi \int_{0}^{1} r dr.$	(b)	$\int_{-\pi/2}^{\pi/2} d\varphi \int_{0}^{1} r dr.$	©	$\int\limits_{0}^{\pi/2}d\varphi\int\limits_{0}^{1}rdr.$	(1)	Các câu kia sai.	
Câu 16 :	Bằng	g cách thay đổi thứ t	ự tínl	h tích phân $I = \int\limits_0^1 e^{-t}$	$dx \int_{\sqrt[3]{x}}^{1}$	$4e^{y^4}dy$			
	a	$I = \frac{e^2}{2}.$	(b)	$I = \frac{e^2 - 1}{2}.$	©	I = e - 1.	@	Các câu kia sai.	
Câu 17 :	Khi o	$d\vec{o}$ i tích phân $I = \int_{0}^{\pi/2}$	$darphi$ $\int\limits_{0}^{2}$	$\int\limits_{0}^{1}r^{2}\cosarphi dr$ sang tọ	a độ l	Descartes, kết quả n	ào đ	úng?	

(a)
$$I = \int_{0}^{1} dx \int_{0}^{\sqrt{1-x^2}} x dy$$
.
(b) $I = \int_{-1}^{1} dx \int_{0}^{\sqrt{1-x^2}} x dy$.

© Các câu kia sai.

Câu 18: Cho $f(x,y) = \frac{8}{2+xy}$. Tìm khai triển Maclaurint của hàm f đến cấp 4.

(a)
$$4 + 2xy + 2x^2y^2 + o(\rho^4)$$
.

 \bigcirc 4 - 4xy + $x^2y^2 + o(\rho^4)$.

(b) Các câu kia sai.

(d) $4 - 2xy + x^2y^2 + o(\rho^4)$.

Câu 19 : Cho hàm $f(x,y)=e^{x^2+2y^2-4x}$ và điểm P(2;0). Khẳng định nào đúng?

Hàm đạt cực tiểu tại P.

© P không là điểm dừng.

Hàm f(x,y) không có cực trị tại P.

 \bigcirc Hàm đạt cực đại tại P.

Câu 20 : Tính diện tích miền phẳng D giới hạn bởi các đường $y=x^2, y=2-x^2 \ (x\geq 0).$

(a) 1/3.

(b) 1/2.

© Các câu kia sai. a 4/3.