Министерство образования Российской Федерации

Московский Государственный Университет Пищевых Производств

Е.И. Конопленко

Сборник задач

По курсу «Информатика»

(раздел «Алгоритмизация вычислительных процессов»)

для студентов факультета

альтернативных форм обучения

Тема: Линейный вычислительный процесс
Утверждено методической комиссией
2001 года

Оглавление

Введение	3
Линейные процессы	4
Разветвляющиеся вычислительные процессы	6
Циклические процессы:	
табулирование ф-ций, нахождение максимума, минимума	8
табулирование ф-ций двух переменных	10
вычисление сумм, произведений	12
Сложные циклы:	
табулирование, вычисление сумм, произведений	нет
табулирование, нахождение максимума и минимума	16
Одномерные массивы	22
Лвумерные массивы	23

Введение

Важным этапом в процессе решения задач на ЭВМ является этап алгоритмизации вычислительных процессов.

Сборник задач включает примеры для алгоритмизации всех вычислительных процессов: линейного, разветвляющегося, циклического.

Вычисление максимума и минимума, табулирование функции, вычисление суммы и произведения, сложные циклы, задачи на массивы – содержание сборника задач.

Составив блок-схему алгоритма решения задачи, студент, по указанию преподавателя, составляет программу на алгоритмическом языке, проводит отладку программы на ЭВМ, получает и анализирует результат решения.

Сборник, безусловно, будет полезен для самостоятельного решения, выполнения индивидуальных занятий студентам заочной формы обучения, а также студентам других форм образования.

Линейные процессы

Вариант	Пример
1.	$Y = (x + \sin^2 x - 3) / 5x^3$
2.	$Y = \sin(ax) + e^x + 2\ln x$
3.	$Z = lny + y^{1/3} + 3$
4.	$T = \sin(x)^{1/2} + 2\ln x + 3x^2$
5.	$Z = arctg x + 2x^{1/3} - cosx^2$
6.	$Y = \sin x^3 + 2x^{1/2} + 2bx$
7.	$Z = \cos^3 x + \ln x - abx$
8.	$\Phi = \operatorname{arctgx}^3 + \operatorname{asin} \mathbf{x} + \mathbf{x}^{1/2} - \mathbf{c}$
9.	$Y = tgx^{1/2} + e^{2x} - ablnx^3$
10.	$Z = \sin x^2 + \cos x + (ax)^{1/3}$
11.	$T = tgx^{1/2} + 2cosax - x^{1/2}$
12.	$M = \sin^2 x + 2tgx^{1/2} - 0.3ax$
13.	$Z = (x^{1/2} + 2\cos^2 x - e^x) / \ln x^3$
14.	$A = (bcsinx^{1/2} + 2x^3 - 3lnx) / arctgx^3$
15.	$Z = \sin x^5 - 2x^{1/3} + ab \ln x^{1/2}$

16.	$B = \sin^2 x + \cos x^2 - \ln^{1/2} x + e^x$
17.	$Z = (arctgx^3 + 2x^{1/5} - sinx^2) / (2 + x^6)$
18.	$Y = \cos^3 x + 2\sin x^{1/2} + \ln x$
19.	$Z = (\ln x^3 + 2\cos x^2 - 5x^{1/2}) / (\sin^2 x + 3)$
20.	$Y = x^3 + 2\ln x - \sin^2 x - c$
21.	$Y = \sin^2 x + \cos^2 x - 3$
22.	$Z = \sin y - y^{1/2} + 2a$
23.	$Z = \ln y - \cos y + e^y - 3b$
24.	$Y = (x^3 + 2) / x^{1/2} + 3\sin x $
25.	$Y = x^{1/2} + \cos x - abx$
26.	$Y = \sin ax + e^x + 2\ln x$
27.	$Y = x^{1/2} + \cos^2 x + \sin x^5 - 5$
28.	$Z = arctgy + 2asinx^{1/2} + x $
29.	$Z = (acsin^2x + cos x) / (2tgx^2 + x)$
30.	$Y = (ac x - lnx^{1/2}) / (x^{1/3} + 2sin^2x)$
31.	$C = e^{x} + 2/x^{2} + 3\cos^{3}x$
32.	$M = (\ln y^3 + y + 2\sin^2 y) / (2\sin y + y^5)$

33.	A = (ey + 2y3 + y1/3) / (2siny + y5)
34.	$B = (\ln x + x1/2 + 2cx5) / (\arctan x + x)$
35.	$C = (\cos 2x - \sin x2 + x) / (x5 + ex - a)$

Разветвляющиеся вычислительные процессы

N ^o п./п.	Условие Задачи				
11./11.	Задача N°1	Задача N°2			
1.	$Y = \begin{cases} \ln x^{1/2} + \cos^2 x & x > 3 \\ \sin x^2 - 3 & x < = 3 \end{cases}$	$Z = \begin{cases} y^{1/3} + ey & 1 <= y <= 2 \\ y + 2 & 3 < y <= 5 \\ arctgy - y^{1/3} & y > 7 \end{cases}$			
2.	$Y = \begin{cases} \sin x + 2^{x} & x < 3 \\ x^{3} + x1/2 & x >= 3 \end{cases}$	$Z = \begin{cases} y^{3} + \cos y - 2 & y < 5 \\ y1/2 + \ln y & 6 <= y <= 7 \\ arctgy & y > 7 \end{cases}$			
3.	$Y = \begin{cases} x + 3\sin y & x > 3 \\ \cos^2 x - 3 & x <= 3 \end{cases}$	$Z = \begin{cases} \ln^2 y + y^{1/3} - 3 & y < 2 \\ \cos^2 y + \sin y^3 & 3 < y < = 5 \\ y + y^{1/2} - e^y & y > 7 \\ y^3 + 2y - 3 & y < 2 \end{cases}$			
4.	$Y = \begin{cases} x + 3\sin y & x > 3 \\ \cos^2 x - 3 & x <= 3 \end{cases}$	$Z = \begin{cases} y^3 + 2y - 3 & y < 2 \\ \ln y^{1/2} + 2 & 5 \le y < 6 \\ y + tgy & y > 6 \end{cases}$			
5.	$Y = \begin{cases} x^3 - 2\ln x & x > 3 \\ \cos x^2 - 3 & x > 3 \end{cases}$	$Z = \begin{cases} x + 2\sin x - 3 & 1 <= x <= 2\\ \ln x^{2} + x^{1/3} & 3 < x <= 5\\ e^{x} + 3tgx & x > 6 \end{cases}$			
6.	$Y = \begin{cases} x + \sin x & x < 3 \\ x^3 - x^{1/3} & x >= 3 \end{cases}$	$Z = \begin{cases} \cos x^{2} - a & x < 2\\ \ln x + e^{x} & 3 <= x <= 5\\ x + 3 & x > 7 \end{cases}$			
7.	$Z = \begin{cases} \ln x + 2\sin^{2}x & x > 2 \\ e^{x} - 3ax^{1/2} & x <= 2 \end{cases}$	$Y = \begin{cases} \sin^2 x - 3 & x < 2 \\ \ln x^{1/2} + 2c & 3 < x <= 5 \\ c^3 + e^x & x > 5 \end{cases}$			
8.	$Z = \begin{cases} arctgy + 2ay & y > 1 \\ y^3 + \sin^2 y & y <= 1 \end{cases}$	$ Y = \begin{cases} e^{x} + x & x < 3 \\ 2 - \cos^{3} x & 5 <= x < 7 \\ \ln x - c & x > 9 \end{cases} $			

	orotay + v ^{1/2} v > 5	$\cos x^{1/2} + 2a \ 1 \le x < 2$
	$\int \arctan x + x^{1/2} \qquad x > 5$	
9.	$A = \gamma$	$Y = \begin{cases} aclnx & 5 < x < 7 \\ X^3 - 3 & x > 10 \end{cases}$
	$ x + \sin^3 x \qquad x <= 5$	$\subseteq X^3 - 3 \qquad x > 10$
	$\int e^x + 2\cos^3 x \qquad x > 3$	
10.	Y =	$ Z = \langle x^3 + x $ $7 < x < 8$
10.	1/2 2 5	$\cos x^{1/2} + 3$ $x \ge 9$
	$x^{1/2} + 2cx^5$ $x \le 3$	
11.	Y =	$ Z = $ $y^2 + 2\sin y$ $5 \le y \le 6$
	$\int ax^2 - 3x^{1/3}$ $x <= 3$	
	$\int y^5 + \sin^3 y - 1 y > 5$	$\int \cos^2 x + x^3 \qquad x < 2$
12.	$Z = \mathcal{A}$	Y =
	$\int e^x + a * \ln(y) \qquad y <= 5$	
	$\sin^5 x + cx^3 \qquad x > 2$	$\int \sin v^3 + 2v$ $v < 3$
13.	Y = ≺	$ Z = \begin{cases} y + a & 5 < = y < = 6 \end{cases} $
15.	$\int \arctan x^{1/2} - 3 \qquad x \le 2$	$\ln y^3 + y^{1/2}$ $y > 8$
	$\int \ln y^3 + y2 \qquad y > 3$	$\int x^3 + \sin x$ $x < 3$
14.	$Z = \downarrow$	$Y = $ $x^{1/3} - 2a$ $5 \le x < 7$
	$y^{1/2} + 5$ $y \le 3$	$\int x^5 \qquad x > 8$
	$y^{1/2} + 5 \qquad y \le 3$ $\cos x + ax^3 x < 2$	$y^5 + 2\ln y \qquad y < 2$
15.	$Y = \prec$	$Z = \begin{cases} e^{y} - 3y & 2.1 < = y < = 3.5 \end{cases}$
	$\int \arctan x >= 2$	$\frac{1}{2}$ arctgy -3 $x > 5$
	$\frac{\cot x - 3 x \ge 2}{\sin^3 x + \cos x^2 x > 5}$	$(a + e^{x} - 3)$ $x < 1$
16.	A =	$ Y = \langle \sin x + 5 2 \leq x \leq 3$
	$\int x^5 + \ln^{1/2} x$ $x <= 5$	arctay 2 v 5
	$\int \operatorname{arctgx}^3 - 2a \qquad x < 2$	$\int x^{1/2} + 5\sin x \qquad x < 2$
17.	$B = \begin{cases} 0 & 0 \end{cases}$	$ Y = \begin{cases} x^5 - 3 & 3.5 < x <= 4 \end{cases}$
	$\ln x + \cos^2 x$ $x \ge 2$	$\int e^x + 2$ $x > 5$
	c ac*cos - 3 x > 1	c arctgy + 2ay x < 5
18.	Y =	$Z = \begin{cases} v^3 + e^{y^2} & 6 \le v \le 7 \end{cases}$
	$\int \sin^2 x + 5e^x \qquad v \le 1$	
	$\int \sin^2 v + 2v^3 v > 2$	$Y = \begin{cases} x^{1/2} + 5\sin x & x < 2 \\ x^5 - 3 & 3.5 < x <= 4 \\ e^x + 2 & x > 5 \end{cases}$ $Z = \begin{cases} arctgy + 2ay & x < 5 \\ y^3 + e^{y^2} & 6 <= y < 7 \\ lny & y > 8 \end{cases}$ $Y = \begin{cases} arctgx + x^3 & y < 3 \\ x - 2 & 4 <= x < 5 \\ e^x + 3 & x > 6 \end{cases}$ $T = \begin{cases} x^5 + e^x & x < 2 \\ cos^3 x + 2 & 3 <= x <= 4 \\ arctgx + 5 & x > 6 \end{cases}$ $Y = \begin{cases} sin^2 x + 2x & x < 2 \\ x^{1/2} + x^{1/5} - 3 & 3 <= x < 4 \\ lnx + 5 & x > 8 \end{cases}$ $\begin{cases} sinx + 2x^{1/2} & x < 2 \\ 1 & x > 5 \end{cases}$ $Y = \begin{cases} lnx - 3 & 3 <= x < 4 \\ x > 5 \end{cases}$
19.	$ z \leq z $	$ Y = \begin{cases} x - 2 & 4 < x < 5 \end{cases}$
17.	$\ln(\sin y) \qquad y \le 2$	$e^{x} + 3 \qquad x > 6$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\int_{-\infty}^{\infty} x^5 + e^x \qquad x < 2$
20	$Y = \int \frac{dx}{x} dx$	$T = \begin{cases} \cos^3 x + 2 & 3 \le x \le 4 \end{cases}$
20.	$\begin{vmatrix} 1 & - \\ - & \end{vmatrix}$ siny + lny $x < -3$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(\sin^2 y + 2y + y + 2y)$
21	$ \mathbf{R}- $	$V = \begin{cases} Sin x + 2x & x < 2 \\ y^{1/2} + y^{1/5} = 3 & 3 < -y < 1 \end{cases}$
21.	$\begin{bmatrix} B - \\ \cos^3 y - 3a \end{bmatrix} y = 5$	$\begin{vmatrix} 1 & -1 & -3 & 3 & -4 & 4 \\ \ln x + 5 & v & 2 \end{vmatrix}$
	$\frac{-\cos x - 5a}{\sin^2 y + \cos y^2} + \frac{x - 5}{y - 2}$	$\begin{array}{c c} - mx + 3 & x > 0 \\ \hline & cinv + 2v^{1/2} & v > 2 \end{array}$
	$7 - \begin{bmatrix} \sin x + \cos x & x < 3 \end{bmatrix}$	$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$
22.	$\begin{bmatrix} L - \\ \end{bmatrix}$ $\mathbf{v}^{1/2}$ 3 $\mathbf{v} \sim 2$	$Y = \lfloor \ln x - 3 \qquad 3 \le x < 4 \rfloor$
	(X - 3	$x^5 + 5 \qquad x > 5$

	2 1/2	2 1/2
23.	$A = \begin{cases} \ln x^3 + x^{1/3} - 2 & x < 2 \end{cases}$	$B = \begin{cases} arctgx^2 - x^{1/2} & x < 3 \\ x^{1/5} - 2 & 4 <= x <= 5 \end{cases}$
	$ $ arctgx $x \ge 2$	$\ln x + 2.5$ 6 < x < 7
	$\int \cos^3 - t^5 \qquad t < 5$	$\int \sin^2 x + \cos x^2 \qquad x < 3$
24.	$\Phi = 1$	$T = \begin{cases} x^5 - 3 & 4 < x < 5 \end{cases}$
	t+3 $t >= 5$	$x^{1/3} + 2$ $x > 6$
	$\int arctgx^2 - x^{1/2} $ $x < 1$	$\int x^3 + 2\sin x \qquad x < 1$
25.	$M = \langle$	$N = \begin{cases} \cos x^2 - 3 & 2 \le x < 3 \end{cases}$
	$\int a^5 + 2\sin^2 x \qquad x >= 1$	$\ln x +2$ $x>5$
	$\int x^{1/2} + x^{1/3} - 3 x < 2$	$\int y^{1/3} + e^y \qquad y < 2$
26.	$\mid \mathbf{C} = \mid$	$B = y^5 + 2y^2 $ $4 <= y <= 5$
	$\ln x $ $x \ge 2$	$y^{1/2} + 2\sin y \qquad y > 7$

Циклические процессыТабулирование ф-ций, нахождение максимума и минимума.

N° П/п	Функция	Начальное х	Конечное х	Шаг по х
1	2	3	4	5
1.	$Y=\sin x + x + 2^x$	0.5	3.5	0.5
2.	$Y = \sin x^{1/2} + e^x - 3$	1	2	0.1
3.	$Y=ab + \sin^2 x - x1/2$	1	2	0.1
4.	$Y=x^3 + x^{1/2} - 3c$	2	3	0.1
5.	$Y = arctgx^2 + x - 3$	5	10	0.2
6.	$Y=x^{1/2} + \cos x - 3$	3	5	0.1
7.	$Y=\ln x^2+x^2+2$	2	3	0.1
8.	$Y = \cos x^2 + \sin^2 x + 2$	3	6	0.5
9.	$Y=\cos x + \ln x - e^x$	1	3	0.2
10.	$Y=e^{x}+ x +x^{2}$	2	3	0.1
11.	$Y=x^3 + \ln x - 3$	3	5	0.2
12.	$Y = arctgx + x^{1/2} + 2$	3	6	0.3

13.	$Y=x^5 + 2x^2 - 3$	2	4	0.2
14.	$Y=x^{1/2}+3 x +x^2$	1	2	0.1
15.	$Y = \cos^2 x + \ln x + 2$	2	3	0.1
16.	$Y = x^3 + 2\ln x + 3$	3	5	0.2
17.	$Y=\sin^2 x + x^3 + x $	2	4	0.2
18.	$Y = arctgx^2 - 3 + 2x$	3	6	0.3
19.	$Y = \sin^3 x + 3x^2 + 3$	1	5	0.4
20.	$Y = arctg x^3 + 2sinx - 3$	1	3	0.2
21.	$Y=\ln x^3 + 2\cos - 2$	1	5	0.4
22.	$Y=x^5 + 3arctgx^2 + 2$	2.5	3.5	0.1
23.	$Y = x^3 + 3\sin^2 x - 3$	1.5	2.5	0.1
24.	Y=arctgx + 2sinx - 2	3	5	0.2
25.	$Y = \sin^2 x + 2\cos x + 3$	2	4	0.2
26.	$Y=x^5 + x^{1/2} - 3$	3	5	0.2
27.	$Y = x^8 + 5x^2 - 5$	1	3	0.2
28.	$Y=\sin x +\cos^2x$	2	3	0.1
29.	$Y=x^{1/3}+x^3-3$	4	5	0.1
30.	$Y = \sin x^2 + \cos x^2 - \ln x$	1	2	0.1
31.	Y = arctg x + 2	2	5	0.3
32.	$Y = \sin x^2 + 5\sqrt{x}$	2	4	0.2
33.	$Y = \cos x + x^{1/5}$	3	5	0.1
34.	Y = ln x + 2	2	4	0.2

35. $Y=(\cos x +2x)/(x^5+5)$ 5 0.3

Табулирование ф-ций двух переменных

	Изменение аргументов					
№	Функция	первого		второго	Исход ные	
		интервал	шаг	интервал	шаг	данны е
1	$y=ae^{2xt}\cos(\pi/2+t)$	$x \in [0; 1]$	0.1	$t \in [0; \pi/2]$	0.3	a=-3.1
2	$z=ae^{-x}\sin(ax)+\sqrt{(a+y)}$	$x \in [-1; 1]$	0.2	y ∈ [1; 5]	1.5	a=0.75
3	$s=x^{-0.75}\sin(x+a)\ln(y+a)$	$x \in [-2; 0]$	0.4	y∈[0; 1]	0.3	a=0.7
4	$y=\sqrt{(t+1)} e^{-axt}cos(t-a)$	$x \in [1; 2]$	0.2	t∈[2; 3]	0.3	a=-2.1
5	$z=b2^{-x^2y}+\sqrt{b}\cos(2x)$	$x \in [0; \pi/2]$	0.2	y∈[0; 1]	0.25	b=1.2
6	$y=5\sqrt{(axy^2+1.3)\sin(x-a)}$	x ∈ [2; 5]	0.5	y∈[-1; 1]	0.5	a=1.9
7	$z=ae^{-xy^2}\cos\sqrt{(x+a)}$	$x \in [-1; 1]$	0.3	y∈[0; 1]	0.2	a=1.5
8	$z=be^{-\sqrt{x}}$ $tg(x+1.7)++\sqrt{(y+a)}$	x ∈ [1; 2]	0.2	y∈[2; 5]	0.5	b=-0.5
9	$s=bx\sqrt{(t+b)} tg(tx+2.1)$	x ∈ [1; 2]	0.2	t∈[0; 1]	0.2	b=3.5

10	$y=b^{xt}\cos(x-1)$	x ∈ [-1; 1]	0.3	t∈[1; 2]	0.4	b=2.2
11	$z=a(xy)^{0.7}\cos(ax)$	x ∈ [0; 1]	0.2	t∈[3; 4]	0.3	a=1.7
12	$s=ae^{-2x}\cos(\pi x/2)+a^2\sqrt{y}$	$x \in [0; \pi/2]$	0.2	y∈[1; 5]	1.5	a=2.1
13	$y=\sqrt{(1+\ln 1.3x+\cos(at))}$	x ∈ [1; 1.4]	0.1	t∈[2; 4]	0.5	a=0.9
14	$z=1.5*2^{-0.1x} \ln(y+b)$	x ∈ [2; 5]	0.5	y∈[1; 3]	0.5	b=1.5
15	$s=e^{-ax}\sin(ax+y)+\sqrt{(xy)}$	x ∈ [1; 2]	0.2	y∈[5; 7]	0.3	a=0.5
16	$y = \underbrace{ax + \sin(at)}_{\sqrt{2t + e^{-0.5x}}}$	x ∈ [1; 2]	0.3	t∈[1; 2]	0.3	a=0.7
17	$z=\arcsin(x/y)-\sqrt{(ax+y)}$	v c [1: 2]	0.3	v.c[2: 2]	0.3	a=1.4
1 /	z=arcsin(x/y)-v(ax+y)	x ∈ [1; 2]	0.5	y∈[2; 3]	0.5	a-1.4
18	$s=e^{-ax} \lg \sqrt{(x+1) - ae^y}$	$x \in [1; 3]$	0.4	y∈[-1; 1]	0.4	a=0.4
19	$z=2^x\cos(by)-3^y\sin(bx)$	x ∈ [-1; 1]	0.4	y∈[1; 2]	0.3	b=0.8
20	$y=arctg(x/a)-(t/a)^{-2}$	x ∈ [1; 2]	0.3	t∈[2; 3]	0.3	a=2.1
21	$s=0.5xy^3\cos(xy+0.3a)$	x ∈ [2; 4]	0.5	y∈[0; 1]	0.2	a=4.1
22	$z=ae^{-\sqrt{(xy)}}tg(ax/2)$	x ∈ [1; 2]	0.3	y∈[4; 7]	0.3	a=-0.7
23	y=sin(ax+cos(at))	$x \in [0; \pi/2]$	0.2	$t \in [0; \pi]$	0.4	a=2.1
24	$s=^{3}\sqrt{(x+a\sqrt{y})} e^{-xy}$	x ∈ [2; 5]	0.5	y∈[1; 2]	0.2	a=0.7
25	z=xy-1/(1.3+sin(axy))	x ∈ [-1; 1]	0.2	y∈[3; 7]	0.5	a=2.3

Вычисление сумм, произведений

№	Вычислить сумму	Вычислить произведения
1	2	3
1	$Y = \frac{\sum_{n=1}^{10} n^2 + \sin x}{x + 2}$	$z=y^3+\prod_{n=1}^3n^2$
2	$Y = 2\sum_{i=1}^{5} \ln(ix) + x^{5}$	$Z = \prod_{k=1}^{5} \sin(kx) + 2$
3	$Y = \frac{\sum_{k=1}^{10} \sin(kx) + 2x}{x^2 + 5}$	$Z=3\sin y+\prod_{m=2}^{10}\ln(my)$
4	$Y=ln(\sum_{i=1}^{5} i)+x^{2}$	$Z = \prod_{i=1}^{5} arctg(ix) + \sqrt{x}$
5	$Y = \frac{\cos\left(\sum_{n=1}^{5} n^{3}\right) + \ln x}{\operatorname{arctg}^{2} x}$	$Z=\sin\left(\prod_{i=1}^{10}\ln(ix)\right)$
6	$Y = \sum_{n=1}^{10} \ln(nx) - x^2$	$Z = \operatorname{arctg} x + \prod_{n=1}^{5} \ln(nx)$
7	$Y = \frac{\cos x + \sum_{k=1}^{5} \ln(kx)}{0.5 + x^{5}}$	$Z=y^5+\prod_{k=1}^5\ln(ky)$
8	$Y = \sum_{n=1}^{5} \cos(nx) + 5x^2$	$Z=\cos\prod_{m=2}^{5}\ln(my)$
9	$Y = \frac{\cos x + \sum_{i=1}^{10} \ln(ix)}{x^2 + 2}$	$Z = \prod_{n=1}^{5} arctg(nx)$
10	$Y = arctg\left(\sum_{i=1}^{5} i + 2x\right)$	$Z= X^5 + \prod_{k=1}^{10} k^3$

1	2	3
11	$Y = \frac{\sin \sum_{i=1}^{5} (ix) + x^{2}}{x^{4} + 2}$	$Z=y^3+\prod_{m=1}^5 m^3$
12	$Y = \cos x + \sum_{i=1}^{3} \ln(ix)$	$Z = \frac{\sin y + 2 \prod_{m=1}^{5} (my)}{y^3 + 3}$
13	$Y = \frac{arctgx^2 + \sum_{n=1}^{5} \cos n}{x+5}$	$Z = \prod_{k=1}^{10} \ln(ky) + y^2$
14	$Y = \frac{\ln\left(\sum i^3\right) + 2\sin^2 x}{x^2 + 5}$	$Z = \prod_{m=1}^{5} \cos(my) + 2y$
15	$Y = \cos\left(\sum_{i=1}^{5}\sin(ix)\right) + 2x$	$Z = \frac{x^5 + \sqrt{x} + 2x}{\prod_{k=1}^{10} \ln(kx)}$
16	$Y = \frac{\ln \sum_{n=1}^{5} \cos(nx) + 2x}{x^4 + 5}$	$Z = \prod_{n=1}^{10} \ln(nx) + 2x^2$
17	$Y = \frac{arctgx + 5}{\sum_{k=1}^{5} k + x^4}$	$Z = \frac{\cos\left(\prod_{i=1}^{5} i\right) + 2\sin y}{y^2 + 5}$
18	$Y = \frac{x^3 + \sin^2 x - 3}{\sum_{k=1}^5 k + x^4}$	$\mathbf{Z} = \operatorname{arctg}\left(\prod_{\tau=1}^{5} \tau\right) + y^{5}$
19	$Y=\ln x+2\sum_{k=1}^{10} k$	$Z = \frac{y^5 + \sqrt[3]{y - 2}}{\prod_{k=1}^{5} \ln(ky)}$
20	$\mathbf{Y} = \frac{\sin\left(\sum_{k=1}^{10} k\right) + x^2}{x^2 + 2}$	$Z = \prod_{k=1}^{10} k + 2 \ln y$

1	2	3
21	$Y=\ln\left(\sum_{k=1}^{10}k\right)+x^5$	$Z = \frac{y^3 + \prod_{n=1}^{10} n + 2}{y^2 + 5}$
22	$Y = \frac{\sum_{n=1}^{5} \cos(nx) + \sqrt{x}}{5x^2}$	$Y = \frac{arctgx^2 + \sum_{n=1}^{5} \cos n}{x+5}$
23	$Y = x^3 + \sin \sum_{i=1}^3 ix$	$Z = \frac{y + \prod_{n=1}^{10} n + 2}{y^2 + 5}$
24	$y \frac{\cos \sum_{i=1}^{5} \ln(ix)}{x^2 + 5}$	$Z = \prod_{n=1}^{10} \ln(ny) + y^5$
25	$Y = \ln x^3 + \cos \left(\sum_{i=1}^3 x^i \right)$	$Z = \frac{\cos \prod_{i=1}^{10} \ln(iy)}{y+2}$
26	$Y = \frac{\sum_{n=1}^{10} n + 2 \operatorname{arctgx}}{x + 2}$	$Z = y + \prod_{k=1}^{10} \ln(ky) + 2$
27	$Y = \ln x^3 + 2\sin^2 x + \sum_{i=1}^{10} i$	$Z = \frac{\cos(\prod_{i=1}^{10} arctgiy)}{y+2}$
28	$Y = \frac{\cos\sum_{i=1}^{5}\ln(ix)}{x^5 + 5}$	$Z = \ln y^2 + \prod_{n=1}^5 n$
29	$Y = \frac{\sum_{i=1}^{5} i^2 + \sin x}{x^2 + 5}$	$Z = \prod_{n=1}^{5} n + 2\sin y$
30	$Y = \cos \sum_{n=1}^{3} nx + \ln x$	$Z = \frac{y + \prod_{k=1}^{\infty} k^2 y}{y^2 + \sin^2 y}$

1	2	3
31	$Y = \frac{arctgx + \sum_{i=1}^{5} i}{x^4 + 5}$	$Z=\sin\prod_{k=1}^{3}k+2y^{3}$
32	$Y=\sin x+2\ln\sum_{i=1}^{10}i$	$Z = \frac{\prod_{i=1}^{5} i + 2\cos y}{y^2 + 3}$
33	$Y = \frac{arctg\sum_{n=1}^{3} n^2 + 2}{\sin^2 x + 5}$	$Z=y+\prod_{n=1}^{5}n^2+2y^3$
34	$Y = \sum_{m=1}^{10} m + 2 \sin x$	$Z = \frac{\sin y + \prod_{n=1}^{10} n^3 + 2}{y^3 + 3}$
35	$Y = \frac{\sin^2 x + \sum_{k=1}^{1-} k}{\ln x^2}$	$\mathbf{Z} = \ln \left(\prod_{k=1}^{10} (k^2 + k \sin y) \right)$

Сложные циклы

"Табулирования, max, min" взять вариант у преподавателя на бумаге.

Табулирование функции, нахождение min, max.

№ вар.	Функция	Начальн. значение	Конечн. значения	<u>Ш</u> <u>аг</u>
1	2	3	4	5
1	$Y = \begin{cases} X^2 + \sum_{n=1}^{10} \cos nx & \text{если } x < 3 \\ x + 3 \text{ tg}^2 x & \text{если } 4 \le x \le 5 \end{cases}$	1	3	0.2

	$\prod_{\kappa=1}^{5} K^{3} + e^{\kappa} \qquad \text{если } \kappa > 6$ $\kappa = \sqrt{a} + 2 \text{ ab} + \cos a$			
2	$Z = \begin{cases} y + \sum_{i=1}^{10} \cos iy & \text{если } y < 3 \\ \prod_{m=1}^{5} \ln(my) + y & \text{если } 4 \le y \le 5 \\ y + 3 & \text{если } y > 7 \end{cases}$ $y = x^{5} + 2x - \cos x$	1	5	0.5
3	$Z = \begin{cases} e^{y} + \sqrt{y} & \text{если } y < 2 \\ \sum_{n=1}^{10} \cos ny & \text{если } 3 \le y \le 4 \\ y^{3} + \prod_{i=1}^{5} \ln(iy) & \text{если } y > 5 \end{cases}$ $y = \sqrt{x} + 2x^{2} - 3 \text{ tg x}$	1	3	0.5
4	$Z = \begin{cases} Y^5 + y + \sum_{j=1}^{10} \sin(ny) \text{ если } y < 5 \\ \sum_{j=1}^{5} \operatorname{arctg}(py) \text{ если } 6 \le y \le 7 \\ \sqrt{y} + 2 \cos^3 y \text{ если } y > 5 \end{cases}$	1	5	0.5
5		1	5	0.5

$Y = \begin{cases} x^2 + \prod_{n=1}^{10} nx + 2 & \text{если } x < 10 \\ \sin x^3 + \sum_{k=1}^5 k & \text{если } 15 \le x \le 20 \\ \ln x - 3 & \text{если } x > 20 \end{cases}$ $x = a + a^2 - 3$	2	5	0,3
--	---	---	-----

7	$y = \begin{cases} \sqrt{x} + 2x + \sum_{n=1}^{10} n \text{ если } x < 5 \\ \cos \prod_{m=1}^{5} m + 2 \text{ если } 6 < x \le 7 \\ \sin x^2 - 3 \text{ если } x > 20 \end{cases}$ $x = 0, 2 + t + \sqrt{t}$	3	10	0.5
8	$Z = \begin{cases} & \text{Sin y} + \sum_{i=1}^{5} i^2 - 5, \text{ если } y < 2 \\ & \text{y}^3 + \sqrt{y} - \prod_{n=1}^{10} n^2, \text{ если } 3 < y < 5 \\ & \text{lny } + 2, \text{ если } y > 10 \\ & \text{y} = x^2 + 2 \sin x + 0.5 \end{cases}$	0.1	10.1	0.1
9	$X + \sum_{i=1}^{10} i - 5 , если x < 3$ $Y = \begin{cases} \cos \prod_{n=1}^{3} n^3 + 3 , если 5 < x < 6 \\ \text{Ln x +2 , если x > 7} \end{cases}$ $Z = \operatorname{arctg} y + 2 y^2 - 3$	1	10	0.2
10	$Y = \begin{cases} Sin x + \sum_{i=1}^{10} i^2, если x < 2 \\ cos x^2 + \prod_{n=1}^{5} n, если 3 < x < 5 \\ Ln x - 3, если x > 6 \end{cases}$ $Z = y^3 + 2$	1	10	0.5
11	$Z = \begin{cases} \cos x + \sum_{i=1}^{3} i, \text{ если } x < 5 \\ \ln x + \prod_{n=1}^{5} \cos(nx), \text{ если } 7 < x < 8 \\ X + \sqrt{x}, \text{ если } x > 10 \end{cases}$ $X = a^{3} - 5$	1	10	0.5
12	$X = a^{3} - 5$ $Z = \begin{cases} \operatorname{Ln} x - \prod_{i=1}^{3} i^{2}, \text{ если } x < 3 \\ \cos x^{3} + 2, \text{ если } 4 < x < 5 \\ \sum_{m=1}^{10} m + 5 \ln x, \text{ если } x > 6 \end{cases}$ $y = z^{2} + 3$	2	10	0.5

13	$Y = \begin{cases} X + \sum_{i=1}^{3} \ln(ix), \text{ если } x < 3 \\ x^3 + \sqrt[3]{x} + \prod_{n=1}^{10} n, \text{ если } 5 < x < 6 \\ \cos x^3, \text{ если } x > 10 \end{cases}$ $Z = y^3 + \sin^2 y$	2	12	0.5
14	$Z = \begin{cases} Y^3 + \sum_{n=1}^{10} n, \text{ если } y < 3 \\ \cos y + 2, \text{ если } 5 \le y < 6 \\ \prod_{m=1}^{5} m + \sin y, \text{ если } y > 8 \end{cases}$ $\Theta = z^3 + 2$	2	10	0.5
15	$x = \begin{cases} \sum_{i=1}^{10} i + \ln a, \text{ если } a < 3\\ \prod_{m=1}^{10} ma + 2.5, \text{ если } 5 \le a < 6\\ \text{arctg } a + 3, \text{ если } a > 7 \end{cases}$ $y = x^5 + \sin \sqrt{x}$	1	10	0.5
16	$Z = \begin{cases} X^3 + \sum_{n=1}^3 n + 2, \text{ если } x < 3 \\ \cos x + 3 x^3, \text{ если } 5 < x < 6 \\ \sqrt{x} + \prod_{m=2}^{10} m, \text{ если } x > 7 \end{cases}$ $y = z^5 + 2 \ln z$	2	8	0.2
17	$\mathbf{x} = \begin{cases} \sum_{i=1}^{3} i^{3} + \prod_{n=1}^{10} n - 1000a, \text{ если } \mathbf{x} < 3\\ \ln a + a^{2} - 3, \text{ если } 5 < a < 7\\ \cos a^{3}, \text{ если } a > 7 \end{cases}$ $\mathbf{y} = \mathbf{x}^{5} + 2 \ln \mathbf{x}$	2	10	0.5
8	$Y = \begin{cases} Z = y^5 + 2 \sin y - 3 \\ X^3 + \cos x + 2 \text{ если } x < 3 \end{cases}$ $Y = \begin{cases} \sum_{i=1}^{3} \ln(ix) - 3 & \text{если } 5 < x < 7 \\ \prod_{m=2}^{10} m + 5 \sin x & \text{если } x > 8 \end{cases}$	1.5	10.5	0.5

19	$Q = z + 2 \sum_{i=3}^{3} \ln(iz)$ $Z = \begin{cases} y + 5 & \text{если } y < 2 \\ y^{3} + \prod_{n=1}^{10} n^{2} + 2 & \text{если } 3 < x < 5 \\ \sin^{2} y + \cos y^{2} & \text{если } y > 7 \end{cases}$	1	10	0.5
20	$Y = x^{5} + 2 \prod_{m=1}^{10} \ln(nx)$ $x = \begin{cases} a^{2} + 3 & \text{если } a < 2 \\ \sqrt{a} + \sum_{i=1}^{10} i & \text{если } 6 < a < 7 \\ \sin^{2} a & \text{если } a > 10 \end{cases}$	3	15	0.5
21	$Z = y^{5} + 2 \sum_{i=1}^{10} \ln(iy)$ $Y = \begin{cases} \sin^{2} + 2 & \text{если } x < 5 \\ \sin x + \ln x & \text{если } 7 < x < 8 \end{cases}$ $\prod_{i=1}^{10} \operatorname{arctg}(nx) \text{если } x > 10$	3	15	0.5
22	$Z = \begin{cases} x^2 + 3 \ln x \text{ если } x < 2\\ \prod_{n=1}^{5} \cos(nx) \text{ если } 3 < x \le 5\\ X + 5 \text{ если } x > 7\\ Y = z^5 + \sum_{i=1}^{10} i \end{cases}$	2	10.5	0.5
23	$Z = y^{5} + 2 y + \prod_{m=1}^{10} m$ $y = \begin{cases} x^{2} + 2 \ln x & \text{если } x < 2 \\ \sum_{i=1}^{10} i + 2 \sin x & \text{если } 7 < x < 8 \\ x + 5 & \text{если } x > 10 \end{cases}$	2	10.5	0.5
24	$T = \sin \sum_{i=1}^{5} (iy) + 2$ $Y = \sqrt[3]{x^2 + 2 \sin x} \text{ если } x < 2$ $\lim_{i=1}^{10} i \text{ если } 5 < x < 7$ $\lim_{i=1}^{10} x^2 \text{ если } x > 10$	1	15	0.5

25	$Q = \ln\left(\prod^{5} m \cdot \ln\left(mz\right)\right)$			
	$Z = \int_{k=1}^{5} k + 2 \text{если } y < 2$ $Z = \int_{k=1}^{5} k + 2 \text{если } 5 < y < 7$ $\text{arctg } y \text{если } y > 5$			
	$Z = \sum_{k=1}^{3} k + 2$ если $5 < y < 7$			
	arctg y если y > 5			
26	$Z = \begin{cases} x + \sum_{i=1}^{3} ix \text{ если } x < 5 \\ \prod_{m=2}^{10} \cos(mx) \text{ если } x \ge 10 \end{cases}$			
	$y = z^2 + 5 \cdot \sum_{i=1}^{5} i + 3$	3	15	0.8
27	$Z = y^{5} + 2 \sin y + \sum_{i=1}^{10} i$ $Y = \begin{cases} x^{3} + \prod_{n=2}^{10} n \text{ если } 1 \le x \le 3\\ \sin^{2}x + \cos x^{2} \text{ если } 5 < y < 7 \end{cases}$	0.5	7.5	0.8
28	$Q = \cos(\sum_{i=1}^{3} z^{i}) - 2$ $Z = \begin{cases} \arctan y + 2 \text{ если } 2 < y < 3 \end{cases}$ $\prod_{n=1}^{10} \ln(ny) \text{ если } 2 < y < 3$	1.5	7.5	0.5
29	$Z = y^{5} + 2 \sum_{i=1}^{3} \cos(iy)$ $Y = \begin{cases} \ln x + x^{3} & \text{если} x < 3 \\ \sqrt{x} + 5 \prod_{m=1}^{3} m & \text{если} 1 \le x \le 3 \end{cases}$ $\text{arctg } x = x > 7$	2	3	0.5
30	$Y = \begin{cases} \sum_{n=1}^{10} n + 2 \sin x, & \text{если } x < 2 \\ x + 3, & \text{если } 3 < x < 5 \\ \sqrt{x} + \ln x, & \text{если } x > 5.5 \end{cases}$ $z = y^3 + 2 \sin y - 3 \prod_{i=1}^{10} i$	1	6	0.5

31	$Z = \begin{cases} X^3 + 3 \sin^2 x , \text{ если } 1 \le x \le 2 \\ \prod_{n=1}^{10} n x^5 , \text{ если } x > 5 \end{cases}$ $y = z^5 + \sum_{i=1}^{3} (iz)$	0.5	6	0.5
32	$Y = \begin{cases} \text{Ln } x + x^5 - 3, \text{ если } x < 3 \\ \text{arctg} + 3\sin^2 x, \text{ если } 5 < x < 7 \\ \prod_{k=1}^{10} \cos(kx), \text{если } x > 5 \end{cases}$ $z = y^5 + 3 \sum_{i=1}^{5} (iy)$	2	12	0.5
33	$z = \begin{cases} Y^3 + 2\cos y &, \text{ если } y < 3\\ \sum_{i=1}^{3} \ln(iy), &\text{ если } 5 < y < 6\\ 3 + \prod_{m=2}^{10} m - 100, &\text{ если } y \ge 7\\ \Theta = z^3 + 2 \end{cases}$	2	8	0.5
34	$Y = \left\{ egin{array}{ll} & \operatorname{Arctg} \; \sum_{i=2}^{10} i \; \; + \mathrm{x}^5 \; , \; \operatorname{если} \; \; \mathrm{x} < 5 \\ & \prod_{m=2}^5 \sin(m x) \; , \qquad \operatorname{если} \; \; 7 < \mathrm{x} \leq 8 \\ & Z = y^3 + \sum_{k=1}^{10} k^2 \end{array} \right.$	4	10	0.5
35	$Y = \begin{cases} \ln \prod_{i=1}^{5} \cos ix, \text{ если } 1 < x \le 3 \\ \arctan \left(\sum_{n=1}^{5} n^{2} x \right), \text{ если } x > 5 \end{cases}$ $Z = \ln \sum_{i=1}^{10} (iy) + y^{2}$	0.5	6.5	0.5

Одномерные массивы

- 1. В массиве из п элементов определить: сумму положительных элементов, найти тах элемент и его индексы, построить новый массив из элементов, величина которых больше заданного числа Р.
- 2. В массиве из 50 элементов определить сумму элементов, тах и тіп элементы. Построить вектор из отрицательных элементов исходного массива.
- 3.В массиве из 50 элементов определить произведение элементов с четными индексами, максимальный элемент. Построить новый массив из элементов, величина которых >p.
 - 4. В массиве из 100 элементов найти количество отрицательных элементов, минимальный элемент и его индекс. Построить новый массив из элементов исходного, величина которых больше 15.6.
 - 5. В массиве из 20 элементов определить сумму элементов с нечетными индексами, минимальный элемент. Построить новый массив из элементов квадрат которых больше q.
 - 6. В массиве из п чисел найти сумму элементов отрицательных, определить максимальный элемент. Построить вектор из положительных элементов.
 - 7. В массиве из к чисел найти среднее положительных элементов, определить максимальный элемент и его индексы. Построить вектор из отрицательных элементов.
 - 8. В массиве из m чисел найти количество элементов, величина которого больше заданного числа p, построить вектор из элементов с четными индексами.
 - 9. В массиве из k чисел найти количество элементов, величина которых больше 10.5, минимальный элемент, построить вектор из отрицательных элементов.
 - 10. В массиве из 50 чисел найти сумму положительных, тах элемент массива, построить вектор из отрицательных элементов исходного массива.

- 11. В массиве из k элементов найти сумму элементов с четными индексами, тах элемент массива, построить вектор из отрицательных элементов исходного массива.
- 12. В массиве из 100 элементов найти сумму положительных элементов, тах и тах
- 13. В массиве из п элементов найти среднее всех элементов, определить min элемент и построить его индекс, построить новый массив из положительных элементов исходного.
- 14. В массиве из k элементов найти сумму элементов 5-ой строки, min элемент в массиве, построить новый массив из элементов исходного, величина которых больше заданного числа р.

Двумерные массивы

- 1. В матрице n x m найти: min элемент и его индексы, построить вектор из максимальных элементов по строкам, найти среднее положительных элементов матрицы.
- 2. В матрице $n \times m$ найти среднее элементов, тах элемент и его индексы. Построить вектор из отрицательных элементов матрицы.
- 3. В матрице 50×10 найти сумму всех элементов, минимальный элемент в 3 столбце. Построить вектор из отрицательных элементов матрицы.
- 4. В матрице К х L найти сумму элементов, максимальные и минимальные элементы. Построить вектор из элементов 5 строки.
- 5. В матрице 6×10 найти произведение элементов третей строки, максимальный элемент в пятом столбце. Построить вектор из положительных элементов матрицы.
- 6. В матрице n x m найти произведение всех элементов, минимальный элемент в третьем столбце. Построить вектор из максимальных элементов по строкам.

- 7. В матрице 5×10 найти сумму всех элементов, определить максимальный элемент в пятой строке. Построить вектор из положительных элементов 3 столбца.
- 8. В матрице $n \times m$ найти среднее элементов, тах элемент, построить вектор из элементов, величина которых больше 5 и меньше 12.
- 9. В матрице 5×8 найти среднее отрицательных элементов, min элемент первой строки, построить вектор из элементов, величина которых не превышает 15.7
- 10. В матрице 10×20 найти среднее отрицательных элементов, тах и то элементы, построить вектор из элементов пятой строки.
- 11. В матрице n × m найти сумму элементов 5-го столбца, min элемент матрицы, построить вектор из положительных элементов матрицы.
- 12. В матрице 5×6 найти сумму элементов 3-го столбца, тах элемент 5-ой строки, построить вектор из положительных элементов матрицы.
- 13. В матрице 10×20 найти сумму элементов, определить min элемент 3-й строки, построить вектор из отрицательных элементов исходной матрицы.
- 14. В матрице $1 \times m$ найти сумму элементов, определить max и min элементы, построить вектор из элементов 3-й строки матрицы.