

Barshvanetti Gieritelile Breeks

A P STANTI INSTITUTED OF THE TROUGHY

(Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai) (Religious Jain Minority)

Subject: Applied Mathematics IV

SEM:IV

Dual Simplex Method

Working Procedure:

* Convert the problem into minimisation type,

* Convert all constraints In less than or equal to type.

If any constraint is of greater than or equal to

type multiply by '-1'. & change the inequality sign

x form the simplex table

* In the RHS soln column select the now which

contains the smallest (negative) number. This is the

Key now 2 the corresponding variable is the

outgoing variable

& Now find the ratios by dividing the

I now by the key now. I write these Ratios

in another now below the table.

Bereitzmeith Gierriebie Briefeld

TO SILVINI INSTITUTION OF THEORY

(Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai)
(Religious Jain Minority)

Subject: Applied Mathematics IV

SEM:IV

* Now the smallest ratio and the corresponding column is key column & the corresponding variable is the incoming variable.

* It all the w-efficients in the row of z are negative and all the right hand side constants w) b's are positive then basic feasible solution is obtained.

If all the co-efficients in the now of z are negative and affects one of the right hand side constants is negative, then continue the process.

Ouse the dual simplex method to solve the following a LPP.

EMATGRATIRG = Z SYMINIM

Subject to 2714 272 4573 2 2

8 > EXT+ OR +1KE

7, + AND + bng < 5

21172, 73 Z D.

Prof. Nancy Nimal

Department of Humanities and Applied Sciences

As both in title of texture of the

Varsiavaneith Chartents Process

A. B. STIVITION GO CHUUMHENT INVESTIGATION OF THE CENTRAL PROPERTY

(Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai) (Religious Jain Minority)

Subject: Applied Mathematics IV

SEM:IV

Minimuse
$$Z = 8\pi_1 + 8\pi_2 + 6\pi_3 + 6$$

Rossitvonetti Giarrentte ilia irangika

A P. SIVALI INSTITUTED OF TEXT TO LOCKY

(Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai) (Religious Jain Minority)

Subject: Applied Mathematics IV

SEM:IV

$$2x_1 = 0$$

$$2x_2 = 0$$

$$2x_3 = 0$$

$$2x_1 = 0$$

$$2x_1 = 0$$

$$2x_2 = 0$$

ALTER STREET CONTROL OF THE PARTY OF THE PAR

Regalityonetti (Cientieti) (Cientieti)

A P. SIMI INSIMINUID OF THEINOLOGY

(Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai) (Religious Jain Minority)

Subject: Applied Mathematics IV

SEM:IV

Minimuse
$$Z = 8m_1 + 8m_2 + 0s_1 + 0s_2$$
 $Z = 8m_1 - 8m_2 + 0s_1 + 0s_2$
 $Z = 8m_1 - 8m_2 - 0s_1 - 0s_2$
 $Z = 8m_1 - 8m_2 - 0s_1 - 0s_2$
 $Z = 8m_1 - 8m_2 - 0s_1 - 0s_2$
 $Z = 8m_1 - 8m_2 - 0s_1 - 0s_2$
 $Z = 8m_1 - 8m_2 + 0s_1 + 0s_2$
 $Z = 8m_1 - 8m_2 + 0s_1 + 0s_2$
 $Z = 8m_1 - 8m_2 + 0s_1 + 0s_2$
 $Z = 8m_1 - 8m_2 + 0s_1 + 0s_2$
 $Z = 8m_1 - 8m_2 + 0s_1 + 0s_2$
 $Z = 8m_1 - 8m_2 + 0s_1 + 0s_2$
 $Z = 8m_1 - 8m_2 + 0s_2$
 Z

(Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai) (Religious Jain Minority)

Subject: Applied Mathematics IV

SEM:IV

RHS

Solution

Soln!-Minimise 220+120+ 08+14=X Z-N,-N2 -05,-052=0.

subject to - 21, -12+5,+052=2 1-262+180+64+1K

Simplex table

Basic Pterationno Variables Z

0 1/2

Ratio

Z

-1/2 -1/2 0

118

Sa

 S_{2}

Ratio **Prof. Nancy Nimal**

Department of Humanities and Applied Sciences

Benefivenedi Sieritebie Greges

A P. SINI INSHIMUND OF MOCINOLOGY

(Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai) (Religious Jain Minority)

Subject: Applied Mathematics IV

SEM:IV

Since all the ratios are negative, the given LPP has no faesible solution.