

Вебинар №6. Частичные пределы. Фундаментальные последовательности.

Бесконечно большие последовательности

Мы уже говорили о сходящихся последовательностях (имеющих конечный предел) и расходящихся (не имеющих предела). Среди расходящихся последовательностей особое место занимают бесконечно большие последовательности. Но для начала давайте расширим наше понимание числовой оси.

Определение. Расширенная числовая прямая $\overline{\mathbb{R}}$ — это множество действительных чисел \mathbb{R} , дополненное двумя бесконечностями: положительной бесконечностью $+\infty$ и отрицательной бесконечностью $-\infty$. Иногда, для обозначения "просто бесконечности" (без указания знака), используется символ ∞ .

$$\overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty\} \cup \{-\infty\} \cup \{\infty\}$$

Определение. Последовательность x_n называется **бесконечно большой**, если её предел равен ∞ (это общее определение бесконечно большой последовательности, которое включает как $+\infty$, так и $-\infty$ или их чередование). Формально это записывается так:

$$\lim_{n \to \infty} x_n = \infty \iff \forall E > 0 \quad \exists N : \forall n \ge N \hookrightarrow |x_n| > E$$

Как это читается: "Предел последовательности x_n равен бесконечности тогда и только тогда, когда для любого сколь угодно большого положительного числа E существует такой номер N, что для всех членов последовательности, начиная с этого номера N, модуль члена последовательности $|x_n|$ будет больше E."

Это означает, что члены последовательности, начиная с некоторого номера, становятся сколь угодно большими, какой бы большой мы ни установили границу E. Например:

- Для E=1 мы найдем N такое, что все $|x_n|>1$ для $n\geq N$.
- Для E=4 мы найдем N такое, что все $|x_n|>4$ для $n\geq N.$

Puc. 1: Бесконечно большая последовательность пробивает любой коридор начиная с некоторого номера

Определение. Последовательность x_n называется бесконечно большой в положительном смысле (стремится к плюс бесконечности), если:

$$\lim_{n \to \infty} x_n = +\infty \iff \forall E > 0 \quad \exists N : \forall n \ge N \hookrightarrow x_n > E$$

Пример: $x_n = n$.

$$\lim_{n \to \infty} n = +\infty$$

Докажем это по определению: нам нужно показать, что для любого E > 0 существует N такое, что для всех $n \ge N$ выполняется n > E. Для этого мы можем просто выбрать N = |E| + 1.

$$\forall E > 0 \quad \exists N = |E| + 1 \quad \forall n > N \hookrightarrow n > E$$

Определение. Последовательность x_n называется бесконечно большой в отрицательном смысле (стремится к минус бесконечности), если:

$$\lim_{n \to \infty} x_n = -\infty \iff \forall E > 0 \quad \exists N : \forall n \ge N \hookrightarrow x_n < -E$$

Пример: $x_n = -n$.

$$\lim_{n \to \infty} (-n) = -\infty$$

Докажем это по определению: нам нужно показать, что для любого E>0 существует N такое, что для всех $n\geq N$ выполняется -n<-E, или n>E. Опять же, мы можем выбрать N=|E|+1.

$$\forall E > 0 \quad \exists N = |E| + 1 \quad \forall n \ge N \hookrightarrow -n < -E$$

Пример: $x_n = (-1)^n n$.

$$\lim_{n \to \infty} (-1)^n n = \infty$$

Докажем, что x_n бесконечно большая. Опять же, мы можем выбрать $N = \lfloor E \rfloor + 1$.

$$\forall E > 0 \quad \exists N = |E| + 1 \quad \forall n \ge N \hookrightarrow |(-1)^n n| = n > E$$

Рис. 2: Бесконечно большая последовательность $x_n = (-1)^n n$ пробивает любой коридор начиная с некоторого номера

Связь неограниченных и бесконечно больших последовательностей

Давайте еще раз повторим определения ограниченной и неограниченной последовательностей, а также бесконечно большой, чтобы лучше понять их взаимосвязь.

Определение. Последовательность x_n называется **ограниченной**, если множество её значений ограничено. Формально:

$$\exists C > 0 : \forall n \hookrightarrow |x_n| \leq C$$

Определение. Последовательность x_n называется **неограниченной**, если она не является ограниченной. Формально (отрицание предыдущего определения):

$$\forall C > 0 : \exists n \hookrightarrow |x_n| > C$$

Определение. Последовательность x_n называется **бесконечно большой**, если:

$$\forall E > 0 \quad \exists N : \forall n \ge N \hookrightarrow |x_n| > E$$

Важно понимать, что не все неограниченные последовательности являются бесконечно большими. Последовательности можно разделить на два основных типа по поведению:

- 1. Ограниченные последовательности: Они могут быть как сходящимися (например, $x_n = 1/n$), так и расходящимися (например, $x_n = (-1)^n$, которая ограничена $|x_n| \le 1$, но не сходится).
- 2. Неограниченные последовательности:
 - Бесконечно большие последовательности: Это частный случай неограниченных последовательностей, где члены по модулю неограниченно возрастают (например, $x_n = n$).
 - Неограниченные, но не бесконечно большие последовательности: Это последовательности, которые не ограничены, но при этом не стремятся к бесконечности по модулю. Например, $x_n = n(1-(-1)^n)$. Эта последовательность принимает значения $0,2,0,4,0,6,\ldots$ Она неограниченна, так как члены $2,4,6,\ldots$ могут быть сколь угодно большими, но она не является бесконечно большой, так как бесконечно много её членов равны 0 и не выходят за произвольно заданную границу E.

Рис. 3: Неограниченная, но не бесконечно большая последовательность

Теорема Кантора о вложенных отрезках

Теорема о вложенных отрезках, также известная как лемма о вложенных отрезках Кантора, является важным инструментом в математическом анализе, особенно при доказательстве существования вещественных чисел и свойств непрерывности.

Система вложенных отрезков — это последовательность отрезков $[a_n; b_n]$ таких, что каждый последующий отрезок полностью содержится в предыдущем: $[a_n; b_n] \supset [a_{n+1}; b_{n+1}]$ для всех $n \in \mathbb{N}$.

Рис. 4: Система вложенных отрезков

Лемма о вложенных отрезках Кантора: У любой системы вложенных отрезков $[a_n;b_n]$ существует общая точка γ , которая принадлежит всем отрезкам этой системы: $\gamma \in [a_i;b_i] \ \forall i$. Более того, если длина отрезков стремится к нулю (то есть $\lim_{n\to\infty}(b_n-a_n)=0$), то данная общая точка является единственной.

Доказательство: Дана система вложенных отрезков $[a_n; b_n]$. Из условия вложенности следует, что последовательность левых концов a_n является неубывающей, а последовательность правых концов b_n — невозрастающей. Также, любой левый конец не превосходит любого правого конца. Таким образом, мы имеем:

$$a_1 \le a_2 \le \dots \le a_n \le b_n \le \dots \le b_2 \le b_1$$

Последовательность a_n является неубывающей и ограничена сверху (например, любым b_k , или, в частности, b_0). По теореме Вейерштрасса о сходимости монотонных и ограниченных последовательностей, существует предел последовательности a_n :

$$\exists \lim_{n \to \infty} a_n = \sup\{a_n\} = \gamma_1$$

Аналогично, последовательность b_n является невозрастающей и ограничена снизу (например, любым a_k , или, в частности, a_0). Следовательно, существует предел последовательности b_n :

$$\exists \lim_{n \to \infty} b_n = \inf\{b_n\} = \gamma_2$$

Поскольку $a_n \leq b_n$ для всех n, то при переходе к пределу сохраняется неравенство: $\lim_{n \to \infty} a_n \leq \lim_{n \to \infty} b_n$, то есть $\gamma_1 \leq \gamma_2$.

Из того, что a_n неубывает и стремится к γ_1 , следует, что $a_n \leq \gamma_1$ для всех n. Из того, что b_n невозрастает и стремится к γ_2 , следует, что $b_n \geq \gamma_2$ для всех n. Сопоставляя эти факты с $\gamma_1 \leq \gamma_2$, получаем, что для любого n:

$$a_n \le \gamma_1 \le \gamma_2 \le b_n$$

Это означает, что отрезок $[\gamma_1; \gamma_2]$ содержится в каждом отрезке $[a_n; b_n]$:

$$[\gamma_1; \gamma_2] \subset [a_n; b_n] \quad \forall n$$

Таким образом, любая точка из отрезка $[\gamma_1; \gamma_2]$ является общей точкой для всех вложенных отрезков. Следовательно, такая общая точка γ существует (например, можно взять $\gamma = \gamma_1$).

Если же дополнительно дано, что длина отрезков стремится к нулю, то есть $\lim_{n\to\infty}(b_n-a_n)=0$, то докажем, что эта общая точка единственна. Известно, что $0\le\gamma_2-\gamma_1$. Также, из $a_n\le\gamma_1\le\gamma_2\le b_n$ следует, что $\gamma_2-\gamma_1\le b_n-a_n$. Тогда мы получаем:

$$0 \le |\gamma_2 - \gamma_1| \le |b_n - a_n|$$

Поскольку $\lim_{n\to\infty}|b_n-a_n|=0$ по условию, то по теореме о двух милиционерах (теореме о сжатой последовательности), мы получаем, что $\lim_{n\to\infty}|\gamma_2-\gamma_1|=0$. Это возможно только если $\gamma_2-\gamma_1=0$, то есть $\gamma_1=\gamma_2$. Таким образом, общая точка является единственной. Доказательство окончено.

Примеры:

Система вложенных открытых интервалов: $\left(-\frac{1}{n}; \frac{1}{n}\right)$

Например:
$$(-1;1) \supset \left(-\frac{1}{2};\frac{1}{2}\right) \supset \left(-\frac{1}{3};\frac{1}{3}\right) \supset \cdots \supset \left(-\frac{1}{100};\frac{1}{100}\right) \supset \cdots \supset \left(-\frac{1}{10^{100}};\frac{1}{10^{100}}\right) \supset \cdots$$

Рис. 5: Система вложенных интервалов
$$\left(-\frac{1}{n};\frac{1}{n}\right)$$

Общая точка, принадлежащая всем этим интервалам, — это точка 0. Однако, теорема Кантора о вложенных отрезках относится именно к **отрезкам**. Для системы стягивающихся вложенных интервалов общая точка может существовать, а может и нет.

Рассмотрим случай, когда общая точка не существует для системы стягивающихся интервалов:

$$\left(0;\frac{1}{n}\right)$$
 Например: $\left(0;1\right)\supset\left(0;\frac{1}{2}\right)\supset\left(0;\frac{1}{3}\right)\supset\dots$

Рис. 6: Система вложенных интервалов $\left(0;\frac{1}{n}\right)$

В этом случае, хотя длина интервалов $\frac{1}{n} \to 0$, не существует ни одной точки, которая принадлежала бы всем интервалам одновременно.

Например, 0 не принадлежит ни одному из этих интервалов. Это подчеркивает важность того, что в формулировке теоремы Кантора должны быть именно **отрезки**.

Hесчетность \mathbb{R}

Одним из глубоких следствий теоремы о вложенных отрезках и понятия предела является доказательство несчетности множества действительных чисел \mathbb{R} . Это означает, что действительных чисел больше, чем натуральных чисел, и их невозможно перенумеровать.

Доказательство (с использованием вложенных отрезков): Докажем методом от противного. Предположим, что множество действительных чисел \mathbb{R} является счетным. Это означает, что все элементы \mathbb{R} удалось занумеровать (установить взаимно однозначное соответствие с натуральными числами).

То есть, существует такой список всех действительных чисел:

Наша цель — построить действительное число γ , которое не содержится в этом списке, тем самым придя к противоречию.

Построим последовательность вложенных замкнутых отрезков $[a_n; b_n]$ следующим образом:

- 1. Начнем с произвольного замкнутого отрезка, например, $I_0 = [0, 1]$.
- 2. Рассмотрим первое число в нашем списке, r_1 . Разделим отрезок I_0 на три равные замкнутые части. Поскольку r_1 является одной точкой, хотя бы одна из этих трех частей не будет содержать r_1 . Выберем такую часть в качестве нашего первого отрезка $I_1 = [a_1, b_1]$. Таким образом, $r_1 \notin I_1$.
- 3. Рассмотрим второе число в нашем списке, r_2 . Разделим отрезок I_1 на три равные замкнутые части. Хотя бы одна из этих частей не будет содержать r_2 . Выберем такую часть в качестве нашего второго отрезка $I_2 = [a_2, b_2]$. Таким образом, $r_2 \notin I_2$.
- 4. Продолжаем этот процесс: для каждого n, имея отрезок $I_{n-1} = [a_{n-1}, b_{n-1}]$, мы делим его на три равные замкнутые части. Выбираем одну из этих частей, которая не содержит r_n , и обозначаем её как $I_n = [a_n, b_n]$. Таким образом, $r_n \notin I_n$.

Рис. 7: Доказательство несчетности ℝ

В результате мы получили систему вложенных замкнутых отрезков $I_0 \supset I_1 \supset I_2 \supset \cdots \supset I_n \supset \ldots$, для которой выполняются условия:

$$r_{1} \mathcal{L}[a_{1};b_{1}]$$

$$r_{2} \mathcal{L}[a_{2};b_{2}]$$

$$r_{3} \mathcal{L}[a_{3};b_{3}]$$

$$r_{4} \mathcal{L}[a_{4};b_{4}]$$

По теореме Кантора о вложенных отрезках, для любой такой системы замкнутых вложенных отрезков существует хотя бы одна общая точка γ , которая принадлежит всем отрезкам этой системы:

$$\exists \gamma \in [a_n, b_n] \quad \forall n$$

Теперь рассмотрим эту точку γ . Принадлежит ли она нашему исходному списку r_1, r_2, r_3, \ldots ? По построению, для каждого n, число r_n было исключено из отрезка $I_n = [a_n, b_n]$. А поскольку γ принадлежит всем отрезкам I_n , то γ не может быть равно ни одному r_n из списка.

Итак, мы нашли действительное число γ , которое не совпадает ни с одним r_n из нашего списка. Это прямо противоречит нашему первоначальному предположению о том, что все действительные числа удалось занумеровать.

Следовательно, множество действительных чисел $\mathbb R$ является несчетным. Доказательство окончено.

Подпоследовательности

Понятие подпоследовательности очень важно для изучения сходимости и других свойств последовательностей.

Определение. Подпоследовательность последовательности x_n — это последовательность, составленная из элементов x_n в том же порядке, но с индексами n_k , которые образуют строго возрастающую последовательность натуральных чисел. То есть $n_1 < n_2 < n_3 < \dots$

Например, для
$$x_n = \frac{1}{n} = \{x_1, x_2, x_3, x_4, \dots\} = \left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\right\}$$
:

• Подпоследовательность x_{n_k} , где $n_k = 2k$ (т.е. берем только четные индексы):

$$x_{n_k} = x_{2k} = \{x_2, x_4, x_6, \dots\} = \left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \dots\right\}$$

Здесь последовательность индексов $n_k = \{2, 4, 6, \dots\}$ строго возрастает.

• Подпоследовательность x_{n_p} , где $n_p = 2p - 1$ (т.е. берем только нечетные индексы):

$$x_{n_p} = x_{2p-1} = \{x_1, x_3, x_5, \dots\} = \left\{1, \frac{1}{3}, \frac{1}{5}, \dots\right\}$$

Здесь последовательность индексов $n_p = \{1, 3, 5, \dots\}$ также строго возрастает.

Если последовательность x_n сходится к некоторому пределу a, то любая её подпоследовательность также сходится к тому же пределу a.

Частичный предел

Понятие частичного предела обобщает идею предела для последовательностей, которые могут не сходиться, но имеют сходящиеся подпоследовательности.

Определение. Число A называется **частичным пределом** последовательности x_n , если существует подпоследовательность x_{n_k} данной последовательности, которая сходится к A:

$$\exists \{n_k\} : n_1 < n_2 < \dots$$
 такое, что $\lim_{k \to \infty} x_{n_k} = A$

Критерий частичного предела: Число A является частичным пределом последовательности x_n тогда и только тогда, когда в любой ε -окрестности точки A содержится бесконечно много членов последовательности x_n .

Доказательство:

Необходимость (\Longrightarrow): Пусть A является частичным пределом. Это означает, что существует подпоследовательность x_{n_k} такая, что $\lim_{k\to\infty} x_{n_k} = A$. По определению предела, для любой $\varepsilon>0$ найдётся K такое, что для всех $k\geq K$ выполняется $|x_{n_k}-A|<\varepsilon$. То есть, члены подпоследовательности $x_{n_K}, x_{n_{K+1}}, \ldots$ (а их бесконечно много) находятся в ε -окрестности $U_\varepsilon(A)$. Следовательно, в ε -окрестности A содержится бесконечно много членов исходной последовательности x_n .

Достаточность (\Leftarrow): Пусть в любой ε -окрестности точки A содержится бесконечно много членов последовательности x_n . Нам нужно построить сходящуюся подпоследовательность.

- Возьмем $\varepsilon_1 = 1$. В $U_1(A)$ содержится бесконечно много членов x_n . Выберем любой из них, пусть это будет x_{n_1} .
- Возьмем $\varepsilon_2 = \frac{1}{2}$. В $U_{1/2}(A)$ содержится бесконечно много членов x_n . Выберем такой x_{n_2} , чтобы $n_2 > n_1$. Такой x_{n_2} существует, потому что иначе вне конечного числа членов x_n останется только конечное число членов, что противоречит бесконечности.
- Возьмем $\varepsilon_k = \frac{1}{k}$. В $U_{1/k}(A)$ содержится бесконечно много членов x_n . Выберем такой x_{n_k} , чтобы $n_k > n_{k-1}$.

Таким образом, мы построили подпоследовательность x_{n_k} такую, что $|x_{n_k} - A| < \frac{1}{k}$. Поскольку $\lim_{k \to \infty} \frac{1}{k} = 0$, то по определению предела $\lim_{k \to \infty} x_{n_k} = A$. Следовательно, A является частичным пределом. Доказательство окончено.

Теорема Больцано-Вейерштрасса: Из любой ограниченной последовательности можно выделить сходящуюся подпоследовательность.

Доказательство: Пусть x_n — ограниченная последовательность. Это означает, что существует такое C>0, что $|x_n|\leq C$ для всех n. То есть, все члены последовательности x_n находятся в замкнутом отрезке $I_0=[-C,C]$.

Разобьем отрезок I_0 на две равные половины: [-C,0] и [0,C]. Хотя бы в одной из этих половин содержится бесконечно много членов последовательности x_n . Обозначим этот отрезок как $I_1 = [a_1,b_1]$. Его длина $b_1 - a_1 = \frac{2C}{2} = C$.

Теперь возьмем отрезок I_1 и снова разделим его на две равные половины. В одной из них также будет содержаться бесконечно много членов x_n . Обозначим этот отрезок как $I_2=[a_2,b_2]$. Его длина $b_2-a_2=\frac{C}{2}$.

Продолжим этот процесс бесконечно. На k-м шаге мы получим отрезок $I_k = [a_k, b_k]$ длиной $\frac{2C}{2^k}$ (стремится к 0 при $k \to \infty$), который содержит бесконечно много членов последовательности x_n . Мы построили систему вложенных отрезков $I_0 \supset I_1 \supset I_2 \supset \dots$

По теореме Кантора о вложенных отрезках, существует единственная точка γ , которая принадлежит всем этим отрезкам: $\gamma \in I_k$ для всех k.

Теперь построим сходящуюся подпоследовательность x_{n_k} .

- Выберем $x_{n_1} \in I_1$.
- Выберем $x_{n_2} \in I_2$ такую, что $n_2 > n_1$. (Такая существует, поскольку I_2 содержит бесконечно много членов x_n .)
- В общем, выберем $x_{n_k} \in I_k$ такую, что $n_k > n_{k-1}$.

Так как $x_{n_k} \in I_k = [a_k, b_k]$ и $\gamma \in I_k$, то $a_k \le x_{n_k} \le b_k$ и $a_k \le \gamma \le b_k$. Значит, $|x_{n_k} - \gamma| \le b_k - a_k$. Мы знаем, что $\lim_{k \to \infty} (b_k - a_k) = \lim_{k \to \infty} \frac{2C}{2^k} = 0$. По теореме о двух милиционерах, $\lim_{k \to \infty} |x_{n_k} - \gamma| = 0$, что означает $\lim_{k \to \infty} x_{n_k} = \gamma$.

Таким образом, из произвольной ограниченной последовательности мы выделили сходящуюся подпоследовательность. Доказательство окончено.

Примеры частичных пределов

Давайте рассмотрим примеры, чтобы проиллюстрировать понятие частичных пределов. Пример 1. $x_n = \cos\left(\frac{\pi n}{4}\right)$ Выпишем первые несколько членов этой последовательности:

$$x_{1} = \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$

$$x_{2} = \cos\left(\frac{2\pi}{4}\right) = \cos\left(\frac{\pi}{2}\right) = 0$$

$$x_{3} = \cos\left(\frac{3\pi}{4}\right) = -\frac{\sqrt{2}}{2}$$

$$x_{4} = \cos\left(\frac{4\pi}{4}\right) = \cos(\pi) = -1$$

$$x_{5} = \cos\left(\frac{5\pi}{4}\right) = -\frac{\sqrt{2}}{2}$$

$$x_{6} = \cos\left(\frac{6\pi}{4}\right) = \cos\left(\frac{3\pi}{2}\right) = 0$$

$$x_{7} = \cos\left(\frac{7\pi}{4}\right) = \frac{\sqrt{2}}{2}$$

$$x_{8} = \cos\left(\frac{8\pi}{4}\right) = \cos(2\pi) = 1$$

$$x_{9} = \cos\left(\frac{9\pi}{4}\right) = \cos\left(2\pi + \frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$

$$x_{n} = \left\{\frac{\sqrt{2}}{2}, 0, -\frac{\sqrt{2}}{2}, -1, -\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}, 1, \frac{\sqrt{2}}{2}, \dots\right\}$$

Эта последовательность является ограниченной, но не сходится, так как её члены колеблются между несколькими значениями. Однако из неё можно выделить сходящиеся подпоследовательности по теореме Больцано-Вейерштрасса.

Рис. 8: Последовательность $x_n = \cos\left(\frac{\pi n}{4}\right)$

Давайте выделим некоторые подпоследовательности и найдем их пределы:

• Для индексов вида n = 8k - 7 (то есть $n = 1, 9, 17, \ldots$):

$$x_{8k-7} = \cos\left(\frac{\pi(8k-7)}{4}\right) = \cos\left(2\pi k - \frac{7\pi}{4}\right) = \cos\left(-\frac{7\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$

$$\lim_{k \to \infty} x_{8k-7} = \frac{\sqrt{2}}{2}$$

• Для индексов вида n=8k-6 (то есть $n=2,10,18,\ldots$):

$$x_{8k-6} = \cos\left(\frac{\pi(8k-6)}{4}\right) = \cos\left(2\pi k - \frac{6\pi}{4}\right) = \cos\left(-\frac{3\pi}{2}\right) = \cos\left(\frac{\pi}{2}\right) = 0$$

$$\lim_{k \to \infty} x_{8k-6} = 0$$

• Для индексов вида n = 8k - 5 (то есть $n = 3, 11, 19, \ldots$):

$$x_{8k-5} = \cos\left(\frac{\pi(8k-5)}{4}\right) = \cos\left(2\pi k - \frac{5\pi}{4}\right) = \cos\left(-\frac{5\pi}{4}\right) = \cos\left(\frac{3\pi}{4}\right) = -\frac{\sqrt{2}}{2}$$

$$\lim_{k \to \infty} x_{8k-5} = -\frac{\sqrt{2}}{2}$$

• Для индексов вида n = 8k - 4 (то есть $n = 4, 12, 20, \ldots$):

$$x_{8k-4} = \cos\left(\frac{\pi(8k-4)}{4}\right) = \cos(2\pi k - \pi) = \cos(-\pi) = \cos(\pi) = -1$$
$$\lim_{k \to \infty} x_{8k-4} = -1$$

• Для индексов вида n = 8k - 3 (то есть $n = 5, 13, 21, \ldots$):

$$x_{8k-3} = \cos\left(\frac{\pi(8k-3)}{4}\right) = \cos\left(2\pi k - \frac{3\pi}{4}\right) = \cos\left(-\frac{3\pi}{4}\right) = \cos\left(\frac{5\pi}{4}\right) = -\frac{\sqrt{2}}{2}$$

$$\lim_{k \to \infty} x_{8k-3} = -\frac{\sqrt{2}}{2}$$

• Для индексов вида n = 8k - 2 (то есть $n = 6, 14, 22, \ldots$):

$$x_{8k-2} = \cos\left(\frac{\pi(8k-2)}{4}\right) = \cos\left(2\pi k - \frac{2\pi}{4}\right) = \cos\left(-\frac{\pi}{2}\right) = \cos\left(\frac{3\pi}{2}\right) = 0$$
$$\lim_{k \to \infty} x_{8k-2} = 0$$

• Для индексов вида n = 8k - 1 (то есть $n = 7, 15, 23, \ldots$):

$$x_{8k-1} = \cos\left(\frac{\pi(8k-1)}{4}\right) = \cos\left(2\pi k - \frac{\pi}{4}\right) = \cos\left(-\frac{\pi}{4}\right) = \cos\left(\frac{7\pi}{4}\right) = \frac{\sqrt{2}}{2}$$
$$\lim_{k \to \infty} x_{8k-1} = \frac{\sqrt{2}}{2}$$

• Для индексов вида n = 8k (то есть n = 8, 16, 24, ...):

$$x_{8k} = \cos\left(\frac{\pi(8k)}{4}\right) = \cos(2\pi k) = 1, \lim_{k \to \infty} x_{8k} = 1$$

Таким образом, множество частичных пределов последовательности $x_n = \cos\left(\frac{\pi n}{4}\right)$ состоит из значений $\left\{-1, -\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}, 1\right\}$. Все эти подпоследовательности в совокупности покрывают всю исходную последовательность x_n .

Пример 2. $x_n = (-1)^n$

Эта последовательность $\{-1,1,-1,1,\dots\}$ имеет два частичных предела:

- Подпоследовательность с нечетными индексами $x_{2k-1} = -1$. Предел равен -1.
- Подпоследовательность с четными индексами $x_{2k} = 1$. Предел равен 1.

Частичные пределы: $\{-1,1\}$.

Рис. 9: Последовательность $x_n = (-1)^n$

Пример 3. $x_n = \frac{\left(3\cos\left(\frac{\pi n}{2}\right) - 1\right)n + 1}{n}$ Перепишем выражение:

$$x_n = \frac{n \cdot 3\cos(\frac{\pi n}{2}) - n + 1}{n} = 3\cos(\frac{\pi n}{2}) - 1 + \frac{1}{n}$$

Рассмотрим различные подпоследовательности в зависимости от n:

• Если n=4k (делится на 4), то $\frac{\pi n}{2}=\frac{\pi(4k)}{2}=2\pi k.$ $\cos(2\pi k)=1.$

$$x_{4k} = 3 \cdot 1 - 1 + \frac{1}{4k} = 2 + \frac{1}{4k}$$
$$\lim_{k \to \infty} x_{4k} = 2$$

• Если n=4k-1 (остаток 3 при делении на 4), то $\frac{\pi n}{2}=\frac{\pi(4k-1)}{2}=2\pi k-\frac{\pi}{2}$. $\cos\left(2\pi k-\frac{\pi}{2}\right)=\cos\left(-\frac{\pi}{2}\right)=0$.

$$x_{4k-1} = 3 \cdot 0 - 1 + \frac{1}{4k-1} = -1 + \frac{1}{4k-1}$$
$$\lim_{k \to \infty} x_{4k-1} = -1$$

• Если n=4k-2 (четное, но не делится на 4), то $\frac{\pi n}{2}=\frac{\pi(4k-2)}{2}=2\pi k-\pi$. $\cos{(2\pi k-\pi)}=\cos{(-\pi)}=-1$.

$$x_{4k-2} = 3 \cdot (-1) - 1 + \frac{1}{4k-2} = -4 + \frac{1}{4k-2}$$
$$\lim_{k \to \infty} x_{4k-2} = -4$$

• Если n=4k-3 (нечетное), то $\frac{\pi n}{2}=\frac{\pi(4k-3)}{2}=2\pi k-\frac{3\pi}{2}.\cos\left(2\pi k-\frac{3\pi}{2}\right)=\cos\left(-\frac{3\pi}{2}\right)=0.$

$$x_{4k-3} = 3 \cdot 0 - 1 + \frac{1}{4k-3} = -1 + \frac{1}{4k-3}$$
$$\lim_{k \to \infty} x_{4k-3} = -1$$

Множество частичных пределов этой последовательности: $\{-4, -1, 2\}$.

Рис. 10: Последовательность $x_n = \frac{\left(3\cos\left(\frac{\pi n}{2}\right) - 1\right)n + 1}{n}$

Фундаментальные последовательности (Критерий Коши)

Помимо определения предела через ε и N, существует еще один способ описать сходимость последовательности, который не требует знания самого предела. Этот способ использует понятие фундаментальной последовательности, или последовательности Коши.

Определение. Последовательность x_n называется фундаментальной (или последовательностью **Коши**), если для любого сколь угодно малого положительного числа ε существует такой номер N_{ε} , что для любых двух членов последовательности, номера которых больше или равны N_{ε} , расстояние между ними (модуль их разности) будет меньше ε . Формально:

$$\forall \varepsilon > 0 \quad \exists N_{\varepsilon} > 0 : \forall n, m \ge N_{\varepsilon} \hookrightarrow |x_n - x_m| < \varepsilon$$

Это определение означает, что чем дальше мы идем по последовательности, тем ближе друг к другу становятся её члены.

Существуют две эквивалентные формулировки определения фундаментальной последовательности:

- 1. $\forall \varepsilon > 0 \quad \exists N_{\varepsilon} > 0 : \forall n,m \geq N_{\varepsilon} \hookrightarrow |x_n x_m| < \varepsilon$ (как мы использовали в доказательстве).
- 2. $\forall \varepsilon > 0 \quad \exists N_{\varepsilon} > 0 : \forall n \geq N_{\varepsilon}, \forall p \in \mathbb{N} \hookrightarrow |x_{n+p} x_n| < \varepsilon$ (Это означает, что расстояние между любым членом x_n (после N_{ε}) и любым последующим членом x_{n+p} будет меньше ε .)

Обе эти формулировки математически эквивалентны.

Пример:
$$x_n = \frac{(-1)^n}{n}$$
.

Мы уже знаем, что эта последовательность сходится к 0. Давайте посмотрим, как члены этой последовательности приближаются друг к другу. $x_1 = -1, x_2 = 1/2, x_3 = -1/3, x_4 = 1/4, \dots$ $|x_n - x_m|$ будет становиться все меньше и меньше при больших n, m.

Например, если
$$n = 100, m = 101$$
: $|x_{100} - x_{101}| = \left| \frac{1}{100} - \left(-\frac{1}{101} \right) \right| = \left| \frac{1}{100} + \frac{1}{101} \right| \approx 0.01 + 0.0099 = 0.0199.$

Если n = 1000, m = 1001: $|x_{1000} - x_{1001}| \approx 0.001 + 0.00099 = 0.00199$.

Как видно, расстояние между соседними членами, а также между любыми двумя членами после некоторого номера, становится сколь угодно малым.

Рис. 11: Последовательность $x_n = \frac{(-1)^n}{n}$

Критерий Коши сходимости последовательности: Последовательность сходится тогда и только тогда, когда она является фундаментальной.

Доказательство:

Необходимость (\Longrightarrow): Если последовательность x_n сходится, то она является фундаментальной. Пусть $\lim_{n\to\infty}x_n=a$. По определению предела, для любого $\varepsilon>0$ существует N_ε такое, что для всех $n\geq N_\varepsilon$ выполняется $|x_n-a|<\frac{\varepsilon}{2}$. Теперь рассмотрим любые два члена последовательности x_n и x_m с номерами $n,m\geq N_\varepsilon$. Используем неравенство треугольника:

$$|x_n - x_m| = |x_n - a + a - x_m| \le |x_n - a| + |a - x_m|$$

Поскольку $n \ge N_\varepsilon$ и $m \ge N_\varepsilon$, то $|x_n - a| < \frac{\varepsilon}{2}$ и $|x_m - a| < \frac{\varepsilon}{2}$. Следовательно:

$$|x_n - x_m| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Мы показали, что для любого $\varepsilon > 0$ существует N_{ε} такое, что для всех $n, m \geq N_{\varepsilon}$ выполняется $|x_n - x_m| < \varepsilon$. Это означает, что последовательность x_n является фундаментальной.

Достаточность (\Leftarrow): Если последовательность x_n является фундаментальной, то она сходится. 1. Покажем, что фундаментальная последовательность ограничена. Пусть x_n — фундаментальная последовательность. По определению, для $\varepsilon=1$ существует N_1 такое, что для всех $n,m\geq N_1$ выполняется $|x_n-x_m|<1$. Фиксируем $m=N_1$. Тогда для всех $n\geq N_1$ имеем $|x_n-x_{N_1}|<1$. Это означает $x_{N_1}-1< x_n< x_{N_1}+1$. Таким образом, "хвост"последовательности $\{x_n\}_{n\geq N_1}$ ограничен. Первые N_1-1 членов $\{x_1,\ldots,x_{N_1-1}\}$ образуют конечное множество, которое всегда ограничено. Следовательно, вся последовательность x_n ограничена.

- 2. Используем теорему Больцано-Вейерштрасса. Так как x_n ограничена, то по теореме Больцано-Вейерштрасса из неё можно выделить сходящуюся подпоследовательность x_{n_k} : $\lim_{k\to\infty} x_{n_k} = a$ для некоторого a.
- 3. Покажем, что вся последовательность сходится к a. Мы знаем, что x_n фундаментальная, и x_{n_k} сходится к a. Нам нужно показать, что для любого $\varepsilon>0$ существует N такое, что для всех $n\geq N$ выполняется $|x_n-a|<\varepsilon$. Так как x_n фундаментальная, для данного $\varepsilon>0$ существует

 N_1 такое, что для всех $n,m\geq N_1$ выполняется $|x_n-x_m|<\frac{\varepsilon}{2}$. Так как x_{n_k} сходится к a, для того же $\varepsilon>0$ существует K такое, что для всех $k\geq K$ выполняется $|x_{n_k}-a|<\frac{\varepsilon}{2}$. Выберем $N=N_1$.

Для любого $n \geq N$, нам нужно найти такой x_{n_k} , что $n_k \geq N_1$ и $k \geq K$. Мы можем всегда найти такой n_k , так как последовательность индексов n_k возрастает, и их бесконечно много. Возьмем такой n_k (и соответствующий k), что $n_k \geq N_1$ и $k \geq K$. Теперь рассмотрим $|x_n - a|$:

$$|x_n - a| = |x_n - x_{n_k} + x_{n_k} - a| \le |x_n - x_{n_k}| + |x_{n_k} - a|$$

Поскольку $n \geq N_1$ и $n_k \geq N_1$ (по нашему выбору), то $|x_n - x_{n_k}| < \frac{\varepsilon}{2}$. Поскольку $k \geq K$, то $|x_{n_k} - a| < \frac{\varepsilon}{2}$. Следовательно:

$$|x_n - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Таким образом, $\lim_{n\to\infty} x_n = a$. Доказательство окончено.

Примеры фундаментальных и нефундаментальных последовательностей

Пример 1. (Фундаментальная последовательность) $x_n = \frac{1}{n}$ Эта последовательность сходится к 0, а значит, по критерию Коши, она является фундаментальной. Проверим: $|x_n - x_m| = |\frac{1}{n} - \frac{1}{m}| \le |\frac{1}{n}| + |\frac{1}{m}|$. Для любого $\varepsilon > 0$, если выбрать $N_\varepsilon > \frac{2}{\varepsilon}$, то для $n,m \ge N_\varepsilon$: $|\frac{1}{n} - \frac{1}{m}| < \frac{1}{N_\varepsilon} + \frac{1}{N_\varepsilon} = \frac{2}{N_\varepsilon} < \varepsilon$.

Пример 2. (Фундаментальная последовательность) $x_n = 1 + \frac{1}{2^2} + \dots + \frac{1}{n^2}$ Эта последовательность является последовательностью частичных сумм ряда. Хотя мы не будем доказывать это здесь, можно показать, что эта последовательность сходится к конечному числу. Поскольку она сходится, то по критерию Коши она является фундаментальной. (Например, можно показать, что $|x_m - x_n| = \left| \sum_{k=n+1}^m \frac{1}{k^2} \right| \le \sum_{k=n+1}^m \frac{1}{k(k-1)} = \sum_{k=n+1}^m \left(\frac{1}{k-1} - \frac{1}{k} \right) = \frac{1}{n} - \frac{1}{m} < \frac{1}{n}$, что стремится к нулю.)

Пример 3. (Нефундаментальная последовательность) $x_n = (-1)^n$ Эта последовательность принимает значения $-1,1,-1,1,\ldots$ Она не сходится. Следовательно, по критерию Коши, она не является фундаментальной. Проверим: возьмем $\varepsilon=1$. Для любых n и m разной четности, например n четное и m нечетное, $x_n=1$ и $x_m=-1$. Тогда $|x_n-x_m|=|1-(-1)|=|2|=2$. Поскольку $2 \ge \varepsilon=1$ (или даже $2 \ge \varepsilon$ для любого $\varepsilon \le 2$), мы не можем найти такой N_ε , чтобы для всех $n,m \ge N_\varepsilon$ выполнялось $|x_n-x_m|<1$. Поэтому эта последовательность нефундаментальна.

Пример 4. (**Нефундаментальная последовательность**) $x_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$ (гармонический ряд) Эта последовательность является последовательностью частичных сумм гармонического ряда $\sum_{k=1}^{\infty} \frac{1}{k}$. Известно, что гармонический ряд расходится (его сумма стремится к ∞). Поскольку последовательность частичных сумм расходится, то по критерию Коши она не является фундаментальной. Проверим: рассмотрим $|x_{2n} - x_n|$ для больших n.

$$|x_{2n} - x_n| = \left| \left(1 + \frac{1}{2} + \dots + \frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{2n} \right) - \left(1 + \frac{1}{2} + \dots + \frac{1}{n} \right) \right|$$

$$= \left| \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \right|$$

В этой сумме n слагаемых. Каждое слагаемое $\frac{1}{k}$ больше или равно $\frac{1}{2n}$ (поскольку $k \leq 2n$). Следовательно:

$$\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} > \underbrace{\frac{1}{2n} + \frac{1}{2n} + \dots + \frac{1}{2n}}_{n \text{ pas}} = n \cdot \frac{1}{2n} = \frac{1}{2}$$

Таким образом, $|x_{2n}-x_n|>\frac{1}{2}$ для любого n. Если мы выберем $\varepsilon=\frac{1}{2}$, то для любого N мы всегда можем найти такие n (например, $n\geq N$) и m=2n (тоже $\geq N$), что $|x_n-x_m|>\frac{1}{2}$. Это означает, что последовательность не является фундаментальной.