Machine Learning the WEKA directions Week-7

WEKA IS

- ✓ Machine Learning toolkit
- ✓ Open Source (Java)
- ✓ Well documented + huge community
- ✓ Provides API, command line and GUI-swing tools
- ✓ Relatively easy to learn
- ✓ Runnable on a remote server so you can "dumb terminal" your laptop and keep your data in one place!

WEKA is not...

A complete replacement for R/Matlab

Optimized out of the box for multiple CPUs / compute farms

• An excuse to ignore the method details of a clustering/classification algorithm

Data Mining: Practical Machine Learning Tools and Techniques (Third Edition)

Ian H. Witten, Eibe Frank, Mark A. Hall

Morgan Kaufmann January 2011 629 pages Paper ISBN 978-0-12-374856-0

Eibe Frank and Ian Witten

Click here to order from Amazon.com

Personal WEKA dataset

- ✓ 21k+ variables
- ✓ 14k+ subjects phenotyped
- ✓ 9k+ subjects genotyped 500k Affymetrix
- ✓ 54M recorded phenotype values of widely varying types
- ✓ Even the simplest correlation matrix
 - ✓ 20k * 20k = **400M** comparisons *before* including SNPs

WEKA basics

NOTE: GUI will be Slightly differ due to versions

Iris Example Data Set

		Features				Class
		Sepal		Petal		Species
%		Length	Width	Length	Width	
ě	Pick flower 1					1
Ä	Pick flower 2					2
Sta	Pick flower 3					3
10/24/2023	Pick flower N	(????

WEKA basics

NOTE: GUI will be Slightly differ due to versions

• API backs all functions of the CLI/GUI interfaces, can be easily used for your own project.

WEKA Explorer Tutorial Examples

- Preprocess
 - > Instance and Attribute Filters (Supervised and Unsupervised)
- Classify
 - Bayes
- Cluster
 - Expectation Maximization
 - Hierarchical Clustering
- Associate
 - > Apriori
- Select Attributes
 - Via clustering

Preprocess

- File: CSV, ARFF*,
- Database: direct SQL access (useful)

WEKA "flat" files

@relation heart-disease-simplified

```
@attribute age numeric
```

- @attribute sex { female, male}
- @attribute chest_pain_type { typ_angina, asympt, non_anginal, atyp_angina}
- @attribute cholesterol numeric
- @attribute exercise_induced_angina { no, yes}
- @attribute class { present, not_present}

@data

63,male,typ_angina,233,no,not_present 67,male,asympt,286,yes,present 67,male,asympt,229,yes,present 38,female,non_anginal,?,no,not_present

Flat file in ARFF format

WEKA "flat" files

```
@relation heart-disease-simplified
                                     numeric attribute
@attribute age numeric
                                     nominal attribute
@attribute sex { female, male}
@attribute chest_pain_type { typ_angina, asympt, non_anginal, atyp_angina}
@attribute cholesterol numeric
@attribute exercise_induced_angina { no, yes}
@attribute class { present, not_present}
@data
63,male,typ_angina,233,no,not_present
67,male,asympt,286,yes,present
67,male,asympt,229,yes,present
38, female, non anginal,?, no, not present
```


Preprocess: filters

- Choosing a filter
 - Supervised vs. Unsupervised
 - > Attribute vs. Instance
- Supervised filters "require a class attribute";
 unsupervised filters do not
- " meta-filters" can filter results from clustering and classification steps

34

Preprocess: filter examples

	Instance	Attribute	
UNsupervised	Resample	Discretize	
Supervised	Resample	Discretize	

Preprocess: instance filter example

Resampling

- <u>Unsupervised</u>
 - → random % of the dataset
- > Supervised
 - → takes the class distribution into account when generating a random sample
 - → Can add bias towards a specific class value
 - → Can specify maximum spread for rare/common class values

Preprocess: <u>attribute</u> filter example

Discretize

- <u>Unsupervised</u>
 - → K-Interval : simplest, can ensure small bin sizes
 - → Proportional K-Interval : optimized for classification (Naïve Bayes)
- Supervised
 - Entropy based
 - state of the art
 - computationally expensive
- > see Chapter 7 of Data Mining by I. H. Witten and E. Frank

Preprocess: <u>attribute</u> filter favorites

- Finding and Discarding variables
 - RemoveUseless : cut using variation threshold
- Datatype Transforms
 - NumericToNominal & NominalToBinary
 - > StringToWord : NLP
- Value transforms
 - Normalize
 - ReplaceMissingValues : with mean value from training data
 - > AddExpression : any math expression (think R)

WEKA Explorer Tutorial Examples

- Preprocess
 - Instance and Attribute Filters (Supervised and Unsupervised)
- Classify
 - ZeroR
 - Bayes
- Cluster
 - Expectation Maximization
 - Hierarchical Clustering
- Associate
 - > Apriori
- Select Attributes
 - Via clustering

Classify: Bayes

Various Bayesian network classifier learning algorithms are implemented in Weka [12]. This note provides some user documentation and implementation details.

Summary of main capabilities:

- Structure learning of Bayesian networks using various hill climbing (K2, B, etc) and general purpose (simulated annealing, tabu search) algorithms.
- Local score metrics implemented; Bayes, BDe, MDL, entropy, AIC.
- Global score metrics implemented; leave one out cv, k-fold cv and cumulative cv.
- Conditional independence based causal recovery algorithm available.
- Parameter estimation using direct estimates and Bayesian model averaging.
- GUI for easy inspection of Bayesian networks.
- Part of Weka allowing systematic experiments to compare Bayes net performance with general purpose classifiers like C4.5, nearest neighbor, support vector catego24N-ADA-JJT-WK7

Classify: Learning a Bayes Network Structure

Classify using Naïve Bayes

Naïve Bayes (standard)

Multinominal Naïve Bayes (text classification)

Hidden Naïve Bayes, others,

Classify using Naïve Bayes

- Pick Discretization method* (hardest part)
- 2. Pick a class to predict
- 3. Run the classifier

Classify Text using Naïve Bayes Multinominal

- Framingham dataset contains text descriptions for each of the 21k+ variables
- I wrote a parallelized NLP program to calculate inverse word frequencies and score variable pairs (2 days)
- Highest scoring pairs were suggested for merger to reduce the variable space (curse of dimensionality)

Classify Text using Naïve Bayes Multinominal

What I should have done....

- 1 Train an NBC to learn from small set of labeled cases
- ② Apply NBC to unlabeled data using Expectation Maximization with class probabilities (expectation step)
- 3 Retrain NBC using the labels for all the data
- 4 Repeat until convergence

WEKA Explorer Tutorial Examples

- Preprocess
 - Instance and Attribute Filters (Supervised and Unsupervised)
- Classify
 - Bayes
- Cluster
 - Expectation Maximization
 - > Hierarchical Clustering
- Associate
 - > Apriori
- Select Attributes
 - Via clustering

Cluster Algorithm Examples

Expectation Maximization (EM)

Hierarchical Clustering (cobweb)

Note: Weka provides many more clustering methods

Cluster with Expectation Maximization

Cluster with cobweb (hierarchical clustering)

Class colour

WEKA Explorer Tutorial Examples

- Preprocess
 - Instance and Attribute Filters (Supervised and Unsupervised)
- Classify
 - Bayes
- Cluster
 - Expectation Maximization
 - Hierarchical Clustering
- Associate
 - > Apriori
- Select Attributes
 - Via clustering

Associate

- Quick scan for association rules
- see "Fast Algorithms for Mining Association Rules in Large Databases"

WEKA Explorer Tutorial Examples

- Preprocess
 - Instance and Attribute Filters (Supervised and Unsupervised)
- Classify
 - Bayes
- Cluster
 - Expectation Maximization
 - Hierarchical Clustering
- Associate
 - > Apriori
- Select Attributes
 - > Via clustering

Select Attributes Using a Classifier

Select Attributes using PCA

WEKA Tutorial Summary

Preprocess

Prepare datasets instances and attributes before analysis

Classify

- Pick a instance and predict the class
 - → Iris : Pick a flower and use the attributes to predict species
 - → Medicine: pick a patient and use the genes to predict cancer status

Cluster

Group instances together (flowers, breast cancer cases, etc)

Associate

Discover relationships between variables in your dataset

References

- Data Mining: Practical Machine Learning Tools and Techniques
- Data Mining (I. H. Witten and E. Frank)
- WEKA Exploratory Tool for Data Mining
- Bayesian Network Classifiers in Weka (Bouckaert)
- COC131 Data Mining Clustering (Sykora)
- Fast, Correct Multithreaded Programs in Java (Gilbert)
- R. Agrawal, R. Srikant: Fast Algorithms for Mining Association Rules in Large Databases. In: 20th International Conference on Very Large Data Bases, 478-499, 1994.
- WEKA Wiki http://weka.wikispaces.com/
- Graphical User Interface

 10/24/P033//prdownloads.sourceforge.net/Welka/plf-WK7

References

OL- Ebook