24/11 ([2] chap. 4)

Quantum Groups, $U_q(\mathfrak{g}(A)), U_q(A)$

Definition: Given $A \in M(n \times n, \mathbb{Z})$ a symmetrisable Generalised Cartan Matrix, DA symmetric with $D \in M(n \times n, \mathbb{Z})$ diagonal with diagonal entries d_1, \ldots, d_n , consider the associated Kac-Moody Lie algebra $\mathfrak{g}(A) = \widetilde{\mathfrak{g}}(A)/I$. Define the quantum universal enveloping algebra of $U_q(\mathfrak{g}(A))$ as the k(q)-algebra generated by elements

$$E_i, F_i, K_i^{\pm 1}$$
 for $1 \le i \le n$

with the quantum analogues of the Serre relations given by

(R1)
$$K_i K_i^{-1} = K_i^{-1} K_i = 1$$
, $K_i K_j = K_j K_i$ for all $i, j = 1, ..., n$;

(R2)
$$K_i E_j = q^{d_i a_{i,j}} E_j K_i, K_i F_j = q^{d_i a_{i,j}} F_j K_i;$$

(R3)
$$E_i F_j - F_j E_i = \delta_{i,j} \frac{K_i - K_i^{-1}}{q^{d_i} - q^{-d_i}};$$

(R4) (*q*-Serre relations) for all $i \neq j$

$$S_{i,j}^+ := \sum_{s=0}^{1-a_{i,j}} (-1)^s \begin{bmatrix} 1-a_{i,j} \\ s \end{bmatrix}_{a^{d_i}} E_i^{1-a_{i,j}-s} E_j E_i^s = 0,$$

$$S_{i,j}^{-} := \sum_{s=0}^{1-a_{i,j}} (-1)^{s} \begin{bmatrix} 1-a_{i,j} \\ s \end{bmatrix}_{q^{d_i}} F_i^{1-a_{i,j}-s} F_j F_i^s = 0,$$

Similar to how we constructed the classic Kac-Moody Lie algebras, denote by $\widetilde{U}_q(A)$ the k(q)-algebra with the same generators as $U_q(A)$ and relations (R1),(R2) and (R3).

Remark: If A is the 1×1 matrix (2) then we recover the classic $U_q(\mathfrak{sl}_2)$ over the field k(q).

Remark: Note that the relations given in (R4) are precisely the *quantised* Serre relations introduced when studying Kac-Moody Lie algebras, since in general we have the formula, valid in $U(\mathfrak{g})$,

$$(ad(x))^n(y) = \sum_{s=0}^n (-1)^s \binom{n}{s} x^{n-s} y x^s.$$

This hints at somewhat of a general strategy which we shall adopt throughout most of the constructions: often times it's unlikely that we'll have a precise q-analogue of certain instruments for the classical theory developed over the standard universal enveloping algebra $U(\mathfrak{g})$, so what we'll do is turn our considered object into a combinatorial identity and "quantise" the obtained formula by swapping out the integral-coefficients appearing in it with their quantum-analogues.

Definition (notation): Let $I = (\alpha_{i_1}, \dots, \alpha_{i_r})$ be a finite sequence of simple roots (i.e. elements in \mathfrak{h}^* given in the minimal realisation for A). Define

$$\begin{split} E_I &:= E_{i_1} \dots E_{i_r}, E_{\varnothing} := 1, \\ F_I &:= F_{i_1} \dots F_{i_r}, F_{\varnothing} := 1, \\ K_{\mu} &:= K_1^{m_1} \dots K_n^{m_n} \text{ for every } \mu \in Q := \bigoplus_{\alpha} \mathbb{Z} \alpha \subseteq \mathbb{C}^{\dim \mathfrak{h}} \text{ where } \mu = \sum_i n_i \alpha_i. \end{split}$$

Proposition: $U_q(A)$ is a Hopf algebra via the formulas

$$\Delta(E_i) = E_i \otimes 1 + K_i \otimes E_i,$$

$$\Delta(F_i) = 1 \otimes F_i + F_i \otimes K_i^{-1}$$

$$\Delta(K_i) = K_i \otimes K_i$$

and η , S defined just as with $U_q(\mathfrak{sl}_2)$.

Observations: We have naturally-defined subalgebras $\tilde{U}_q^-, \tilde{U}_q^0, \tilde{U}_q^+$ generated by F_i 's, K_i^\pm 's and E_i 's respectively. If we set $\deg(E_i) = -\deg(F_i) = 1$ and $\deg(K^{\pm 1}) = 0$ then we have that the relations (R1),(R2),(R3) and (R4) are homogeneous with respect to this grading, thus $U_q(A)$ has a natural \mathbb{Z} -grading.

Proposition: The set $\{F_I, K_\mu, E_J \mid I, J \subseteq \{\alpha_1, \dots, \alpha_n\}, \mu \in Q\} \subseteq U_q(A)$ for a basis of $\widehat{U}_q(A)$.

Proof: Omitted. □

Corollary:

1. The multiplication map

$$\widetilde{U_q}^- \otimes \widetilde{U}_q^0 \otimes \widetilde{U}_q^+ \to \widetilde{U}_q$$

 $u_1 \otimes u_2 \otimes u_3 \mapsto u_1 u_2 u_3$

is an isomorphism of vector spaces.

2. The E_I 's, F_J 's and K_μ 's form a basis for $\widetilde{U_q}^-$, $\widetilde{U_q}^0$ and $\widetilde{U_q}^+$ respectively.

3. The multiplication map

$$\widetilde{U_q}^+ \otimes \widetilde{U_q}^0 \otimes \widetilde{U}_q^-$$

is an isomorphism of vector spaces.

Corollary: For every i = 1, ..., n the algebra homomorpism

$$\begin{split} \phi_i : U_{q^{d_i}}(\mathfrak{sl}_2) &\to \widetilde{U}_q(A) \\ E &\mapsto E_i \\ F &\mapsto F_i \\ K &\mapsto K_i \end{split}$$

is an inclusion.

Theorem: The multiplication map

$$U_q^- \otimes U_q^0 \otimes U_q^+ \to U_q$$
$$u_1 \otimes u_2 \otimes u_3 \mapsto u_1 u_2 u_3$$

is an isomorphism of vector spaces.

 $Proof: \ \ \text{Let} \ p: \widetilde{U}_q \twoheadrightarrow U_q \ \text{be the canonical projection and} \ I \subseteq \widetilde{U}_q \ \text{the ideal generated by the} \ q\text{-Serre relations elements} \\ S_{i,j}^\pm \in \widetilde{U}_q. \ \ \text{Define} \ I^\pm := \widetilde{U}_q^\pm \cap I.$

Claim: The ideal in \widetilde{U}_q generated by the $S^+_{i,j}$'s is the image im via the multiplication map applied to the subalgebra $\widetilde{U}^-_q \otimes \widetilde{U}^0_q \otimes I^+$.

"⊇": clear.

" \subseteq ": Evidently the image of $1 \otimes 1 \otimes S_{i,j}^+$ is $S_{i,j}^+$ and thus **im** contains all the generators of I^+ as an ideal. It follows that all we have to do it show **im** is a two-sided ideal; it's evidently a left ideal by construction and furthermore every element in **im** is a linear combination of terms of the form

$$uS_{i,j}^+E_I, u \in \widetilde{U}_q.$$

multiplying any of these on the right by E_r, K_μ, F_r yields

$$uS_{i,j}^{+}E_{I}E_{r} = uS_{i,j}^{+}E_{I \cup r} \in \mathbf{im}$$

$$uS_{i,j}^{+}E_{I}K_{\mu} = q^{\cdots}uS_{i,j}^{+}K_{\mu}E_{I} = q^{\cdots}uK_{\mu}S_{i,j}^{+}E_{I} \in \mathbf{im}$$

$$uS_{i,j}^{+}E_{I}F_{r} = uF_{r}S_{i,j}^{+}E_{I} - u[F_{r},S_{i,j}^{+}]E_{I} - uS_{i,j}^{+}[F_{r},E_{I}] = uF_{r}S_{i,j}^{+}E_{I} - uS_{i,j}^{+}[F_{r},E_{I}] \in \mathbf{im}$$

where in the last one we used that $[F_r, S_{i,j}^+] = 0$ and that $[F_r, E_I]$ lies in \widetilde{U}_q^+ and thus the term $uS_{i,j}^+[F_r, E_I]$ lies in **im** by the first calculation.

Thus the claim follows.

Following a similar argument we also have that I^- is given precisely by the image under the multiplication map of the subalgebra $I^- \otimes \tilde{U}_q^0 \otimes \tilde{U}_q^+$. Since $I = I^+ \oplus I^-$ we have that I is the image under the multiplication map of

$$\widetilde{U}_{q}^{-} \otimes \widetilde{U}_{q}^{0} \otimes I^{+} + I^{-} \otimes \widetilde{U}_{q}^{0} \otimes \widetilde{U}_{q}^{+}$$

For the rest of the argument consult Jantzen Theorem 4.21 (haven't got time for this lol). \Box

Problem: We're missing an analogue of the PBW theorem for the quantum universal enveloping algebra $\widetilde{U}_q(A)$... The problem is that although we do have analogues of elements in $\widetilde{U}_q(A)$ corresponding to "simple" roots e_α for $\alpha \in \pi$, we're lacking some sort-of analogue of the remaining roots.

A useful tool in the classical theory of semisimple Lie algebras is the action of the Weyl group W; recall that W acts on the set of roots - W acts on \mathfrak{g} and $w(\mathfrak{g}_{\alpha}) \subseteq \mathfrak{g}_{w(\alpha)}$ - and, in particular, we can construct all roots by taking the simple ones and analysing the orbit of W's action on them.

26/11 - 3/12 ([1] chap. 3)

Defining an analogue of the Weyl group action for g(A) for A GCM symmetrisable

Definition: Let V be a (possibly infinite-dimensional) complex vector space, $x \in \text{End}_{\mathbb{C}}(V)$ and $v \in V$ any vector.

- 1. x is *locally finite at v* if there exists an x-invariant subspace W containing v.
- 2. x is a *locally finite* endomorphism if it's locally finite at all vectors $v \in V$.

Definition: If $x \in \text{End}_{\mathbb{C}}(V)$ is a locally finite endomorphism, define

$$\exp(x) := \sum_{n \ge 0} x^n / n! \in \operatorname{End}_{\mathbb{C}}(V).$$

Note that for every finite-dimensional x-invariant vector space $W \subseteq V$ we have that $\operatorname{End}_{\mathbb{C}}(W)$ is endowed with a norm ||-|| satisfying $||A|| \cdot ||B|| \ge ||AB||$ (since $\operatorname{End}_{\mathbb{C}}(W)$ can be identified with euclidean space $\mathbb{C}^{\dim W^2}$) thus $\exp(x)|_W$ is well defined. Since x is locally finite by assumption, formally speaking we set

$$\exp(x) = \operatorname*{colim}_{W \subseteq V, x(W) \subseteq W} \exp(x) \mid_{W} \in \operatorname{End}_{\mathbb{C}}(V).$$

Remark: If x is *nilpotent* then exp(x) is *polynomial* (with globally bounded degree) in x.

If x is *locally nilpotent*, then it is a polynomial in x when restricted to each x-invariant finite-dimensional subspace.

Remark: A standard calculation shows that for every $a \in \mathbb{Z}$ we have $\exp(x)^a = \exp(ax)$; in particular, we have that $\exp(x)$ is *invertible* for every $x \in \operatorname{End}_{\mathbb{C}}(V)$ locally finite.

Lemma: Let *A* be an algebra, $\partial: A \to A$ a derivation; the following formulae hold $x, y \in A$.

1.
$$\partial^n([x,y]) = \sum_{i=0}^n \binom{n}{i} [\partial^i(x), \partial^{n-i}(y)],$$

2.
$$x^{n}(y) = \sum_{i=0}^{n} {n \choose i} (ad(x))^{i} (y) x^{n-i}$$
,

3.
$$(ad(x))^n(y) = \sum_{i=0}^n (-1)^i \binom{n}{i} x^{n-i} y x^i$$
.

Proof: All of these follow quite directly from a simple induction. \Box

Corollary: Let $x, y \in \text{End}_{\mathbb{C}}(V)$, and assume y is locally finite and $\text{ad}(y) \in \text{End}_{\mathbb{C}}(\text{End}_{\mathbb{C}}(V))$ locally finite at x. Then

$$\exp(y) \cdot x \cdot \exp(-y) = \sum_{n>0} \frac{(\operatorname{ad}(y))^n}{n!} (x) = \exp(\operatorname{ad}(y))(x).$$

Proof: Since y is locally finite the left and right hand sides are well defined. We thus have

$$\exp(y) \cdot x \cdot \exp(-y) = \left(\sum_{n \ge 0} \frac{y^n}{n!}\right) \cdot x \cdot \left(\sum_{n \ge 0} \frac{(-y)^n}{n!}\right) = \sum_{n \ge 0} \sum_{i=0}^n (-1)^i \frac{y^{n-i} x y^i}{(n-i)! \cdot i!} \stackrel{\text{Lemma}}{=} \sum_{n \ge 0} \frac{\operatorname{ad}(y)^n}{n!} x = \exp(\operatorname{ad}(y))(x). \square$$

Remark:

- Let $x \in \operatorname{End}_{\mathbb{C}}(V)$ be locally finite. For every isomorphism $f \in \operatorname{GL}_{\mathbb{C}}(V)$ we have that conjugation $f \circ \circ f^{-1} \in \operatorname{End}_{\mathbb{C}}(\operatorname{End}_{\mathbb{C}}(V))$ of course fixes the subspace of locally finite endomorphisms, i.e. $f \cdot x \cdot f^{-1} \in \operatorname{End}_{\mathbb{C}}(V)$ is again locally finite.
- Let $\pi: \mathfrak{g} \to \mathfrak{gl}(V)$ be a representation of a complex Lie algebra \mathfrak{g} . If $ad(x): \mathfrak{g} \to \mathfrak{g}$ is locally finite, then $ad(\pi(x)) \in \operatorname{End}_{\mathbb{C}}(\operatorname{im}(\pi)) \subseteq \mathfrak{gl}(V)$ is locally finite.

Proof: Let $z = \pi(u) \text{im}(\pi)$ and let $U \subseteq \mathfrak{g}$ be a finite-dimensional vector subspace containing u which is ad(x)-invariant. It follows that the image $\pi(U) \subseteq \text{im}(\pi)$ is of course also finite-dimensional, contains z and is $\text{ad}(\pi(x))$ -invariant since

$$y = \pi(w) \in \pi(U) \Longrightarrow \operatorname{ad}(\pi(x))(\pi(w)) = \pi([x, w]) \in \pi(U)$$

since U is ad(x)-stable. \sqcap

Lemma: Assume \mathfrak{g} is a Lie algebra with Lie-algebra generators $\{z_i\}_{i\in I}$.

Suppose $x \in \mathfrak{g}$ is such that ad(x) acts locally nilpotently on each z_i . Then $ad(x) \in End_{\mathbb{C}}(\mathfrak{g})$ is locally nilpotent.

Proof: For each $i \in I$, let $N_i \ge 0$ be such that $ad(x)^{N_i}(z_i) = 0$. Thus for each $N \ge 0$ we have

$$(ad(x))^N([z_i, z_j]) = \sum_{r=0}^N [(ad(x))^r(z_i), ad(x)^{N-r}(z_j)],$$

hence taking $N = N_i + N_j + 1$ yields that ad(x) acts locally nilpotently on $[z_i, z_j]$ as well. Inductively it follows that ad(x) acts locally nilpotently on a basis of \mathfrak{g} , since the collection of Lie-words in the z_i 's form a set of generators; thus ad(x) is locally nilpotent. \square

Corollary: Let A be a Generalised Cartan Matrix. Then $ad(e_i)$, $ad(f_i) \in End_{\mathbb{C}}(\mathfrak{g}(A))$ act locally nilpotently on $\mathfrak{g}(A)$.

Proof: The previous lemma shows that it is sufficient to test nilpotency of $ad(e_i)$ and $ad(f_i)$ on a set of generators for g(A) as a Lie algebra. The Serre relations thus allow us to conclude. \Box

Definition: Let A be a Generalised Cartan Matrix and M a $\mathfrak{g}(A)$ -module. M is said to be *integrable* if:

- *M* has a weight space decomposition: $M = \bigoplus_{\lambda \in h^*} M_{\lambda}$,
- e_i, f_i act locally nilpotently on M.

We denote by $\mathcal{O}_{\mathrm{int}}(\mathfrak{g}(A)) \subseteq \mathrm{Mod}_{\mathfrak{g}(A)}$ the full subcategory of integrable $\mathfrak{g}(A)$ -modules.

The previous corollary shows us that g(A) itself lies in $\mathcal{O}_{\mathrm{int}}(g(A))$ via the adjoint representation.

The following proposition shows the importance of this definition. For every $1 \le i \le n$ let $\mathfrak{g}_{(i)}$ be the Lie subalgebra in $\mathfrak{g}(A)$ generated by the standard generators e_i, f_i - thus $\mathfrak{g}_{(i)}$ is spanned by e_i, f_i and α_i^{\vee} and is isomorphic to $\mathfrak{sl}_2(\mathbb{C})$.

Proposition: Let V be an integrable $\mathfrak{g}(A)$ -module.

- 1. V decomposes as a direct sum of finite dimensional irreducible $\mathfrak{g}_{(i)} \cong \mathfrak{sl}_2(\mathbb{C})$ -modules which are also \mathfrak{h} -invariant.
- 2. Let $\lambda \in \mathfrak{h}^*$ be a weight of V and let α_i be a simple root of $\mathfrak{g}(A)$. Denote by M_{λ,α_i} the set of roots of V that lie in the α_i -string through λ in other words $M_{\lambda,\alpha_i} := \{\lambda + t\alpha_i \in \mathfrak{h}^* \mid t \in \mathbb{Z}, M_{\lambda + t\alpha_i} \neq (0)\}$. Denote by m_t the dimension of the weight space $M_{\lambda + t\alpha_i}$ for each $\lambda + t\alpha_i \in M_{\lambda,\alpha_i}$. Then:
 - (a) M_{λ,α_i} is a *string* (as its name suggests), i.e. it is of the form

$$M_{\lambda,\alpha_i} = {\lambda + (-p)\alpha_i, \lambda + (-p+1)\alpha_i, \dots, \lambda + (q-1)\alpha_i, \lambda + q\alpha_i}$$

where p and q are both non-negative integers or infinite.

- (b) $p, q < \infty \implies p q = \langle \lambda, \alpha_i^{\vee} \rangle$.
- (c) $\dim M_{\lambda} \leq \infty \implies p, q < \infty$.
- (d) $e_i: V_{\lambda + t\alpha_i} \to V_{\lambda + (t+1)\alpha_i}$ is injective if $-p \le t < \frac{-\langle \lambda, \alpha_i^{\vee} \rangle}{2}$,

- (e) $t \mapsto m_t$ is non-decreasing for $-p \le t < \frac{-\langle \lambda, \alpha_i^{\vee} \rangle}{2}$,
- (f) $t\mapsto m_t$ is symmetric with respect to the midpoint $\frac{-\langle\lambda,a_i^\vee
 angle}{2}$,
- (g) if both λ and $\lambda + \alpha_i$ lie in M_{λ,α_i} , then $e_i(V_{\lambda}) \neq (0)$.

Proof: In the universal enveloping algebra $U(\mathfrak{sl}_2(k))$ we have formulas

$$[h, f^k] = -2kf^k,$$

$$[h, e^k] = 2ke^k,$$

$$[e, f^k] = -k(k-1)f^{k-1} + kf^{k-1}h.$$

Proof of formulae: The first two follow quite simply from the fact that $f \in U(\mathfrak{sl}_2(k))_{-2}$ and $e \in U(\mathfrak{sl}_2(k))_2$. The last one follows by a simple induction, where for k = 1 we have the standard relation [e, f] = h:

$$[e, f^{k}] = ef^{k} - f^{k}e = f^{k-1}ef + [e, f^{k-1}]f - f^{k-1}ef + f^{k-1}h$$
$$= [e, f^{k-1}]f + f^{k-1}h.$$

With the third formula at hand, we have

$$e_i f_i^k(v) := f_i^k e_i(v) + k(1 - k + \langle \lambda, \alpha_i^{\vee} \rangle) f_i^{k-1}(v)$$

for each $v \in V_{\lambda}$.

It follows that the vector subspace

$$U = \sum_{k,m>0} (f_i^k e_i^m(v))$$

is invariant under both the actions of $\mathfrak{g}_{(i)}$ and \mathfrak{h} . Since e_i and f_i are locally nilpotent on V, U must have finite dimension, and is thus a finite-dimensional $\mathfrak{sl}_2(\mathbb{C})$ -module. By $\mathfrak{sl}_2(\mathbb{C})$'s simplicity, U must be a direct sum of simple $\mathfrak{sl}_2(\mathbb{C})$ -modules.

Since $v \in V$ was chosen arbitrarily, it follows that V is a direct sum of irreducible finite-dimensional $\mathfrak{g}_{(i)}$ -submodules. (a) thus follows.

The remaining results follow from the classical representation theory of $\mathfrak{sl}_2(\mathbb{C})$ and a few combinatorial arguments, applied to the $\mathfrak{g}_{(i)}$ -submodule given by $\sum_{k\in\mathbb{Z}}V_{\lambda+k\alpha_i}$. \square

Definition: For each i = 1,...,n define s_{α_i} the reflection with respect to α_i in $\operatorname{Aut}_{\mathbb{C}}(\mathfrak{h}^*)$ by

$$s_{\alpha_i}(\lambda) = \lambda - \langle \lambda, \alpha_i^{\vee} \rangle \alpha_i$$
.

We define the Weyl group W as being the subgroup of $\operatorname{Aut}_{\mathbb{C}}(\mathfrak{h}^*)$ generated by the reflections s_{α_i} . W also acts on \mathfrak{h} via the pairing $\alpha \mapsto \alpha^{\vee}$, namely

$$s_{\alpha_i}(h) := h - \langle h, \alpha_i \rangle \alpha_i^{\vee}$$
.

Definition: Assume $M \in \mathcal{O}_{int}(\mathfrak{g}(A))$, A a symmetrisable GCM. Suppose M is given by $\pi : \mathfrak{g}(A) \to \mathfrak{gl}(M)$. Define

$$s_i^{\pi} = \exp(\pi(f_i)) \exp(-\pi(e_i)) \exp(\pi(f_i))$$

(also denoted by s_i^M when π is implicit).

Goal: Understand s_i^{ad} .

Lemma:

1.
$$s_i^{ad}(f_i) = -e_i$$
,

2.
$$s_i^{ad}(e_i) = -f_i$$
,

3.
$$s_i^{\text{ad}}(\alpha_i^{\vee}) = -\alpha_i^{\vee}$$
.

Proof: Compute :) □

Lemma: Assume $M \in \mathcal{O}_{int}(\mathfrak{g}(A))$, A symmetrisable, $\pi : \mathfrak{g}(A) \to \mathfrak{gl}(M)$. Then

$$(s_i^M)^{-1}\pi(x)s_i^M = \pi(\exp(-\operatorname{ad}(f_i))\exp(\operatorname{ad}(e_i))\exp(-\operatorname{ad}(f_i))x)$$

Proof: We have, explicitly

$$(s_i^M)^{-1}\pi(x)s_i^M = \exp(-\pi(f_i))\exp(\pi(e_i))\exp(-\pi(f_i))\pi(x)\exp(\pi(f_i))\exp(-\pi(e_i))\exp(\pi(f_i)).$$

If we call $S = \exp(\pi(e_i)) \exp(-\pi(f_i))\pi(x) \exp(\pi(f_i)) \exp(-\pi(e_i))$ the middle part then

$$(s_i^M)^{-1}\pi(x)s_i^M = \exp(-\pi(f_i))S\exp(\pi(f_i)) = \exp(-\operatorname{ad}(\pi(f_i)))(S)$$

$$=\exp(-\operatorname{ad}(\pi(f_i)))(\exp(\operatorname{ad}(\pi(e_i))))\exp(-\operatorname{ad}(\pi(f_i)))\pi(x) = \pi(\exp(-\operatorname{ad}(f_i))\exp(\operatorname{ad}(e_i))\exp(-\operatorname{ad}(f_i))(x))$$

since π is a Lie-algebra homomorphism. \square

We require a few simple results on working with integrability.

Lemma: Assume $\mathfrak g$ is a Lie algebra, $\pi:\mathfrak g\to\mathfrak g\mathfrak l(M)$ a representation. Assume $\mathfrak g$ is generated as a Lie algebra by the elements

$$\Phi = \{x \in \mathfrak{g} \mid \operatorname{ad}(x) \text{ is locally finite on } \mathfrak{g}, \pi(x) \text{ is locally finite on } M\}$$

Then

- 1. g is generated as a vector space by the elements in Φ and
- 2. if furthermore \mathfrak{g} is finite-dimensional (thus \mathfrak{g} is generated as a Lie algebra by elements acting locally finitely on M) then any $m \in M$ is contained in a finite-dimensional \mathfrak{g} -submodule $W \subseteq M$.

Proof: Since \mathfrak{g} is spanned by Lie words in the elements of Φ , it's enough to show that Φ is actually closed under \mathfrak{g} 's Lie bracket.

Let $x, y \in \Phi$; we thus have that $\exp(\operatorname{ad}(y))$ is well-defined. We actually have that $\exp(\operatorname{ad}(y))(x) \in \Phi$:

$$\pi(\exp(\operatorname{ad}(y))(x)) = \exp(\operatorname{ad}(\pi(y)))(\pi(x)) = \exp(\pi(y))\pi(x)\exp(-\pi(y))$$

which is locally finite. This in particular works if we set $\pi = \operatorname{ad}$ since $M = \mathfrak{g}, \pi = \operatorname{ad}$ also satisfies the hypothesis of the lemma. Thus $\operatorname{ad}(\exp(\operatorname{ad}(y)(x)))$ is also locally finite and hence $\exp(\operatorname{ad}(y)(x)) \in \Phi$. Finally, simply observe that

$$\frac{\exp(t\operatorname{ad}(y))(x)-x}{t}\in\Phi$$

for every $t \neq 0$ since Φ is a vector subspace of \mathfrak{g} , and taking the limit as $t \to 0$ yields

$$[y,x] = \lim_{t \to 0} \frac{\exp(t \operatorname{ad}(y))(x) - x}{t} \in \Phi$$

As for our second claim, if we fix a PBW basis \mathscr{B} for $U(\mathfrak{g})$ associated to the basis $x_1,\ldots,x_n\in\mathfrak{g}$ of \mathfrak{g} as a vector space, we have that finding $m\in N\subseteq M$ such that $N=U(\mathfrak{g})N$ amounts to finding such an N for each of the one-dimensional lie algebras spanned by the x_i 's. This follows straight from the first part, since \mathfrak{g} is spanned by elements acting locally finitely on M. \square

We may now discuss where the action of the braid group $B_{\mathscr{W}}$ associated to the Weyl group \mathscr{W} arises.

Proposition: Let $M \in \mathcal{O}_{\mathrm{int}}(\mathfrak{g}(A))$, A a symmetrisable GCM, $\pi : \mathfrak{g}(A) \to \mathfrak{gl}(M)$.

- 1. $s_i^{\pi}(M_{\lambda}) \subseteq M_{s_{\alpha},(\lambda)}$ for all $\lambda \in \mathfrak{h}^*$,
- 2. s_i^{ad} is a Lie-algebra homomorphism,
- 3. $(s_i^M)^2(v) = (-1)^{\langle \lambda, \alpha_i^{\vee} \rangle} v$ for all $v \in M_{\lambda}$,
- 4. let $m_{i,j} = \operatorname{ord}(s_{\alpha_i} s_{\alpha_j})$ for i,j = 1,...,n as elements in \mathcal{W} . If $m_{i,j} < \infty$ then

$$s_i^M s_j^M s_i^M \cdots = s_j^M s_i^M s_j^M$$

where on both sides we have $m_{i,j}$ factors. This implies we have an action of the Braid group $B_{\mathcal{W}}$ associated to \mathcal{W} on M.

Proof:

1. Let $v \in M_{\lambda}$ be any weight vector, and $h \in \mathfrak{h}$. If $\langle h, \alpha_i \rangle = 0$ then h commutes with e_i and f_i , thus

$$hs_{i}^{\pi}(v) = s_{i}^{\pi}(hv) = \lambda(h)s_{i}^{\pi}(v) = s_{\alpha_{i}}(\lambda)(h)s_{i}^{\pi}(v)$$

thus $s_i^{\pi}(v) \in M_{s_{\alpha_i}(\lambda)}$ since by definition we have $s_{\alpha_i}(\lambda)(h) = \lambda(h) - \langle \lambda, \alpha_i^{\vee} \rangle \langle \alpha_i, h \rangle = \lambda(h)$. On the other hand, if $h = \alpha_i^{\vee}$ then

$$s_{\alpha_i}(v)(h) = \langle \lambda, \alpha_i^\vee \rangle - \langle \lambda, \alpha_i^\vee \rangle \langle \alpha_i, \alpha_i^\vee \rangle = \langle \lambda, \alpha_i^\vee \rangle - 2 \langle \lambda, \alpha_i^\vee \rangle = - \langle \lambda, \alpha_i^\vee \rangle.$$

It follows that

$$(s_i^{\pi})^{-1}\pi(\alpha_i^{\vee})s_i^{\pi} = \pi(\exp(-\operatorname{ad}(f_i)\exp(\operatorname{ad}(e_i))\exp(-\operatorname{ad}(f_i))) = \pi(-\alpha_i^{\vee}).$$

The reverse inclusion follows from the fact s_i^{π} is invertible and part 2.

2. We have

$$s_i^{\pi}(xv) = s_i^{\pi}(\pi(x)(s_i^{\pi})^{-1}s_i^{\pi}(v))) = \pi(s_i^{\text{ad}}(x))s_i^{\pi}(v).$$

If we take $M = \mathfrak{g}$ and $\pi = ad$ then we have

$$s_i^{\text{ad}}([x, v]) = [s_i^{\text{ad}}(x), s_i^{\text{ad}}(v)].$$

3. Since M is a direct sum of $\mathfrak{sl}_2(\mathbb{C})$ -representations, we may assume without loss of generality that \mathfrak{g} is equal to $\mathfrak{g}_{(i)}$ its Lie subalgebra generated by elements e_i, f_i, α^{\vee} .

By our previous lemma there exists $v \in N \subseteq M$ a finite dimensional subrepresentation containing v and thus $\langle \lambda, \alpha_i^\vee \rangle \in \mathbb{Z}_{\geq 0}$ by the classical representation theory of $\mathfrak{sl}_2(\mathbb{C})$. Furthermore, since $\mathfrak{sl}_2(\mathbb{C})$ is the Lie algebra associated to the Lie group $\mathrm{SL}_2(\mathbb{C})$ which is simply connected, by *fully faithfulness* we have that the Liealgebra homomorphism $\pi : \mathfrak{sl}_2(\mathbb{C}) \to \mathfrak{gl}(N)$ can be *integrated* to a Lie-group homomorphism $\widetilde{\pi} : \mathrm{SL}_2(\mathbb{C}) \to GL(N)$. Thus

$$(\operatorname{Exp}(f)\operatorname{Exp}(-e)\operatorname{Exp}(f))^2 = -\operatorname{id} = \operatorname{Exp}(i\pi h)$$

and $\operatorname{Exp}(i\pi h)v = e^{i\pi\langle\lambda,h\rangle} = (-1)^{\lambda,h}v$.

4. Since in this case we're just considering the action of s_i^M and s_j^M on M, we may assume A is a 2×2 matrix of the form

$$A = \begin{pmatrix} 2 & a_{i,j} \\ a_{i,i} & 2 \end{pmatrix}$$

By this it follows that $s_{\alpha_i} = \begin{pmatrix} -1 & -a_{i,j} \\ 0 & 1 \end{pmatrix}$ and $s_{\alpha_j} = \begin{pmatrix} 1 & 0 \\ -a_{j,i} & -1 \end{pmatrix}$ in the basis α_i, α_j .

A simple linear algebra argument shows the matrix

$$s_{\alpha_i} s_{\alpha_j} = \begin{pmatrix} -1 + a_{i,j} a_{j,i} & a_{i,j} \\ -a_{j,i} & -1 \end{pmatrix}$$

is of finite order if and only if $a_{i,j}a_{j,i} < 4$ which implies A is of finite type and thus $\mathfrak{g}(A)$ is finite dimensional.

Given any $v \in M$ by the previous lemma - since we've shown we may consider solely the case $\dim \mathfrak{g}(A) < \infty$ - we may fit v inside some finite-dimensional subrepresentation $N \subseteq M$ and, once again, *integrate* the Lie-algebra homomorpism $\pi: \mathfrak{g}(A) \to \mathfrak{gl}(N)$ to get a Lie group homomorphism $G(A) \to GL(N)$ where G(A) is the simply-connected two-dimensional Lie group whose Lie algebra is $\mathfrak{g}(A)$ (since we've reduced to the case $a_{i,j}a_{j,i} < 4$ we essentially just have to consider G(A) equal to one of 4 possible groups). Once we've done this, it's enough to check $s_i = \operatorname{Exp}(f_i)\operatorname{Exp}(-e_i)\operatorname{Exp}(f_i)$ satisfy the stated braid group relations. This is done explicitly in all the relevant cases in Springer's book on algebrai groups.

Corollary:

- 1. $s_i^{\text{ad}}|_{\mathfrak{h}} = s_{\alpha_i}$
- 2. If $\alpha_j = w(\alpha_i)$, then $w(\alpha_i^{\vee}) = \alpha_j^{\vee}$ for every $w \in \mathcal{W}$.

Proof:

1. explicitly we have $s_i^{ad}(h) = \exp(\operatorname{ad}(f_i))\exp(-\operatorname{ad}(e_i))\exp(\operatorname{ad}(f_i))(h)$ and

$$\begin{aligned} h &\mapsto h + \langle \alpha_i, h \rangle f_i \\ &\mapsto h + \langle \alpha_i, h \rangle f_i - \langle \alpha_i, h \rangle e_i - \langle \alpha_i, h \rangle \alpha_i^{\vee} + \frac{\langle \alpha_i, h \rangle \langle \alpha_i^{\vee}, \alpha_i \rangle}{2} e_i \\ &\mapsto h + \langle \alpha_i, h \rangle f_i - \langle \alpha_i, h \rangle \alpha_i^{\vee} + \langle \alpha_i, h \rangle f_i - \langle \alpha_i, h \rangle \langle \alpha_i, \alpha_i^{\vee} \rangle f_i \\ &= h - 2 \langle \alpha_i, h \rangle f_i = s_{\alpha_i}(h) \end{aligned}$$

2. The previous part gives a Lie algebra homomorphism $\widehat{w}: \mathfrak{g}(A) \to \mathfrak{g}(A)$ defined by $\widehat{w}|_{\mathfrak{h}} = w$. Thus $[\widehat{w}(e_i), \widehat{w}(f_i)] = \widehat{w}(\alpha_i^{\vee})$ and $w(\alpha_i) = \alpha_j$ implies $w(e_i) \in \mathfrak{g}_{\alpha_j}$ and $w(e_j) \in \mathfrak{g}_{\alpha_{-j}}$. Thus $\widehat{w}(\alpha_i^{\vee}) \in [\mathfrak{g}_{\alpha_i}, \mathfrak{g}_{-\alpha_j}]$ which is spanned by α_j^{\vee} (recall that the weight spaces relative to simple roots are one-dimensional - **not true for arbitrary roots**). It follows that we have $\widehat{w}(\alpha_i^{\vee}) = c\alpha_j^{\vee}$ for some scalar $c \in \mathbb{C}$. However applying α_j yields

$$2c = \alpha_j(\widehat{w}(\alpha_i^{\vee})) = \widehat{w}(\alpha_i^{\vee})(\alpha_j) = \alpha_i^{\vee}(\widehat{w}^{-1}(\alpha_j)) = \alpha_i^{\vee}(\alpha_i) = 2. \ \Box$$

8/12

Braid group action on $U_q(\mathfrak{g}(A))$

As usual, we start with $U = U_q(\mathfrak{sl}_2), q \neq \sqrt{-1}$.

Consider $\operatorname{Rep}_1(U) = \{ \text{ f.d. re. of } U \text{ of type 1} \} \text{ i.e. the collection of } U\text{-modules } M \text{ such that } \dim M < \infty, M = \bigoplus_{j \in \mathbb{Z}} M_j \text{ where } M_j = \{ m \in M \mid Km = q^j m \}.$

Definition: For $r \in \mathbb{N}_0$ define $E^{(r)} = \frac{E^r}{|r|!}$, $F^{(r)} = \frac{F^r}{|r|!}$ the divided powers.

Definition: For any $M \in \text{Rep}_1(U)$ define linear endomorphisms T of M by:

$$v \in M_m \mapsto T(v) = \sum_{a,b,c \in \mathbb{N}_0, -a+b-c=m} (-1)^b q^{b-ac} E^{(a)} F^{(b)} E^{(c)} v$$

$$v \in M_m \mapsto T'(v) = \sum_{a,b,c \in \mathbb{N}_0, -a+b-c=m} (-1)^b q^{ac-b} E^{(a)} F^{(b)} E^{(c)} v$$

$$v \in M_m \mapsto {}^{\omega} T(v) = \sum_{a,b,c \in \mathbb{N}_0, -a-b+c=m} (-1)^b q^{b-ac} E^{(a)} F^{(b)} E^{(c)} v$$

$$v \in M_m \mapsto {}^{\omega} T'(v) = \sum_{a,b,c \in \mathbb{N}_0, -a-b+c=m} (-1)^b q^{ac-b} E^{(a)} F^{(b)} E^{(c)} v$$

Remark: Since E, F act locally nilpotently on M, these sums are in fact finite and define linear endomorphisms of M.

Remark: Consider the cartan involution $\omega: U \to U$, and for $M \in \text{Rep}_1(U)$ let ${}^{\omega}M$ be M with the twisted U-action

$$u \cdot m := \omega(u)m$$

It follows that, by how the previous endomorphisms are constructed,

$${}^{\omega}M\ni^{\omega}T(v):=T(v)\in{}^{\omega}T(v)$$

The above describes precisely the action of ${}^\omega T : {}^\omega M \to {}^\omega M$ in terms of $T : M \to M$.

Action on $L = L(n, +1) \in \mathbf{Rep}_1(U)$: recall that L is spanned by $m_0, m_1, m_2, \dots, m_n$ and $Fm_j = m_{j+1}$. Since we want to consider the action of the constructed endomorphisms, it makes sense to rescale and define

$$v_i := \begin{cases} \frac{m_i}{[i]!} & 0 \le i \le n \\ 0 & \text{otherwise} \end{cases}$$

We thus have the identities

$$Fv_i = \begin{cases} [i+1]v_{i+1} & 0 \leq i < n \\ 0 & i = n \end{cases}, \ Ev_i = \begin{cases} [n-i+1]v_{i-1} & 0 < i \leq n \\ 0 & i = 0 \end{cases}$$

Thus the divided powers act as

$$F^{(r)}v_i = \begin{bmatrix} r+i \\ r \end{bmatrix} v_{i+r}, E^{(r)}v_i = \begin{bmatrix} n+r-i \\ r \end{bmatrix} v_{i-r}.$$

Lemma: We have for $M = L(n, +1), v_i \in M$ the following formulas

$$\begin{split} T(v_i) &= (-1)^{n-i} q^{(n-i)(i+1)} v_{n+i}, \ T'(v_i) = (-1)^{n-i} q^{-(n-i)(i+1)} v_{n+i} \\ & {}^{\omega} T(v_i) = (-1)^{n-i} q^{i(n-i+1)} v_{n+i}, \ {}^{\omega} T'(v_i) = (-1)^{n-i} q^{-i(n-i+1)} v_{n+i} \end{split}$$

Proof: We have

$$T(v_i) = \sum_{-a+b-c=m} (-1)^b q^{b-ac} \begin{bmatrix} n+a-i+c-b \\ a \end{bmatrix} \begin{bmatrix} b+i-c \\ b \end{bmatrix} \begin{bmatrix} n+c-i \\ c \end{bmatrix} v_{n-i} = [\text{Jantzen appendix}]_{\square}$$

Claim: $\Phi: L(n,+1) \stackrel{\cong}{\longrightarrow} {}^{\omega} L(n,+1), v_i \mapsto v_{n-i}$ is an isomorphism of *U*-modules.

Proof: Simply look at symmetry of the Casimir's action. □

Corollary:

- 1. $T, T', {}^{\omega}T, {}^{\omega}T'$ are invertible linear endomorphisms of any $M \in \text{Rep}_1(U)$. Explicitly, $T^{-1} = {}^{\omega}T'$ and $(T')^{-1} = {}^{\omega}T$.
- 2. ${}^{\omega}T = (-q)^{-m}T$ on M_m and ${}^{\omega}T' = (-q)^mT'$ on M_m .

Proof: Follows from previous formulas. \Box

Proposition: For all $M \in \text{Rep}_1(U)$, $v \in M$ we have the following identities

$$T(Ev) = (-FK)T(v),$$

$$T(Fv) = (-K^{-1}E)T(v)$$

$$T(Kv) = K^{-1}T(v)$$

$$ET(v) = T(-K^{-1}Fv)$$

$$FT(v) = T(-EKv)$$

$$KT(v) = T(K^{-1}v).$$

Proof: It's enough to consider M = L(n, +). We'll just show the first one... not really \square

Proposition: The assignment T(E) = -FK, $T(F) = -K^{-1}E$, $T(K) = K^{-1}$ defines an algebra automorphism of U, with inverse $T^{-1}(E) = -K^{-1}F$, $T^{-1}(F) = -EK$, $T^{-1}(K) = K^{-1}$.

Proof: Follows from the next proposition.

Proposition: For any $u \in U$ there exists a unique $u' \in U$ such that T(uv) = u'T(v) for every $v \in M$, $M \in \text{Rep}_1(U)$. Moreover, $\phi : u \mapsto u'$ is an algebra homomorphism of U.

Proof: Assuming the well-defined ness and uniqueness it's clear that $(\lambda u_1 + \mu u_2)' = \lambda u_1' + \mu u_2'$ and $(u_1 u_2)' = u_1' u_2'$. Thus the considered assignment is an algebra homomorphism.

Furthermore, by the previous calculation, u' exists on generators E, F, K, K^{-1} , and one can extend the definition to all elements via decreeing that $u \mapsto u'$ be an algebra homomorphism.

As for uniqueness, if u'v = u''v for all $v \in M$ and $M \in \operatorname{Rep}_1(U)$. This implies u' - u'' acts by zero on all representations of U and thus u' - u'' = 0 in U since $\operatorname{Rep}_1(U)$ is faithful. \square

Remark: T is an isomorphism. In fact, the generators E, F, K lie in the image by our calculations, thus it is surjective. Furthermore if $u \in U$ is such that T(u) = 0 then T(uv) = 0 for all $v \in M, M \in \operatorname{Rep}_1(U)$, and thus implies uv = 0 since T acts invertibly on M. Just as we argued before it follows that u acts as zero on all representations of U and thus u = 0.

The general case $U = U_q(\mathfrak{g}(A))$ for A symmetrisable

Recall: We have an embedding $U_{q_i}(\mathfrak{sl}_2) \hookrightarrow U_q(\mathfrak{g}(A))$, $q_i := q^{d_i}$ mapping E to E_i and F to F_i .

Definition: For $M \in \text{Rep}_1(U)$ define

$$M_{\lambda,\sigma} := \{ m \in M \mid K_{\mu}m = \sigma(\mu)q^{(\lambda,\mu)}m \text{ for all } \mu \in \bigoplus_i \mathbb{Z}\alpha_i \}$$

where $\sigma: \mathbb{Z}\alpha_1 \oplus \cdots \oplus \mathbb{Z}\alpha_n \to \{\pm 1\}$ is a group homomorphism and λ is an *integral weight* (definition to come).

Definition: λ is an *integral weight* if $\lambda = \sum_{i=1}^{n} m_i \omega_i$ for $\mathfrak{m}_i \in \mathbb{Z}$ and $\omega_1, \ldots, \omega_n \in \mathfrak{h}^*$ the *fundamental weights*. The fundamental weights ω_i are defined by

$$\langle \omega_i, \alpha_i^{\vee} \rangle = \delta_{i,j}.$$

Remark: For $\lambda = \sum_i m_i \omega_i$ an integral dominant weight, $\mu \in \mathbb{Z}\alpha_1 \oplus \cdots \oplus \mathbb{Z}\alpha_n$ we have

$$(lambda, \mu) = \sum_{i} m_{i} \mu_{i} \in \mathbb{Z}$$

Proposition: Assume A is of finite-type (i.e. $\mathfrak{g}(A)$ is a simple finite-dimensional Lie algebra). If M if a finite-dimensional $U_q(A)$ -module and $q \neq \sqrt{-1}$. Then

- 1. E_i, F_i act nilpotently on M,
- 2. $M = \bigoplus_{\lambda,\sigma} M_{\lambda,\sigma}$
- 3. $E_i M_{\lambda,\sigma} \subseteq M_{\lambda+\alpha_i,\sigma}$ and $F_i M_{\lambda,\sigma} \subseteq M_{\lambda-\sigma,\sigma}$.

Proof:

- 1. $\mathfrak{sl}_2(\mathbb{C})$ -calculation.
- 2. Consider M as a $U_{q_i}(\mathfrak{sl}_2)$ -module.

10/12

Proposition: M a finite-dimensional representation of $U_q(\mathfrak{g}(A))$, where A is a **Cartan Matrix** (if A is not Cartan then by the exercise sheet $U_q(\mathfrak{g}(A))$ has no non trivial f.d. representations). Then

- 1. E_i, F_i act (locally) nilpotently,
- 2. $M = \bigoplus_{\lambda,\sigma} M_{\lambda,\sigma}$,
- 3. $E_i M_{\lambda,\sigma} \subseteq M_{\lambda+\alpha_i,\sigma}$ and $F_i M_{\lambda,\sigma} \subseteq M_{\lambda-\alpha_i,\sigma}$.

Proof:

- 1. Follows from the \mathfrak{sl}_2 case and the inclusion $U_q(\mathfrak{sl}_2(\mathbb{C})) \hookrightarrow U_q(\mathfrak{g}(A))$.
- 2. Again by restriction to $U_{q_i}(\mathfrak{sl}_2)$, K_i is diagonalisable with eigenvalues of the form $\pm q^m$ with $m \in \mathbb{Z}$. Since the K_i 's commute, they are simultaneously diagonalisable over M, which yields an eigenspace decomposition with eigenvectors of the for m v such that

$$K_i v = \sigma_i q^{m_i} v, \sigma_i \in \{\pm 1\}$$

If we set $\sigma: \mathbb{Z}\alpha_i \oplus \cdots \oplus \mathbb{Z}\alpha_n \to \{\pm 1\}$ by setting $\sigma(\alpha_i) = \sigma_i$, then we have $K_\mu v = \sigma(\mu)q^{m_i\mu_i}v = \sigma(\mu)q^{(\lambda,\mu)}v$. If we now set λ such that $\langle \lambda, \alpha_i^\vee \rangle = m_i$ then v must lie in $M_{(\lambda,\sigma)}$. And thus the second point follows.

3. This one's clear by our previous remarks. \Box

Definition: Let M be as in the previous lemma, $M = \bigoplus_{\sigma} M^{\sigma}$ where $M^{\sigma} = \bigoplus_{\lambda} M_{(\lambda,\sigma)}$. We call M of type σ if $M = M^{\sigma}$. And we say M is of type 1 if is of type $\sigma \equiv 1$.

Remark: We have an equivalence of categories (for any σ)

 $\{\text{finite-dimensional representations of type 1}\}\cong \{\text{finite-dimensional representations of type }\sigma\}$

$$M \mapsto^{\phi} M$$

where $\phi: U_q(A) \to U_q(A)$ is defined by $\phi(E_i) = \sigma(\alpha_i) E_i, \phi(F_i) = F_i, \phi(K_i) = \sigma(\alpha_i) K_i$ (note that $\phi^2 = 1$).

Definition: For A a Cartan Matrix let $\operatorname{Rep}_1(U_q(A))$ be the category of finite-dimensional representations of type 1

Definition: For a general GCM A define

$$E_i^{(r)} := \frac{E_i^r}{[r]!_{q_i}}, F_i^{(r)} = \frac{F_i^r}{[r]_{q_i}!}$$

for all $r \in \mathbb{Z} \ge 0$ (as elements in $U_q(A)$).

Definition: Let $M \in \text{Rep}_1(U_q(A))$. Define linear endomorphisms of M as follows:

$$1 \le i \le n, \ T_i(v) := \sum_{-a+b-c=m} (-1)^b q^{b-ac} E_i^{(a)} F_i^{(b)} E_i^{(c)} v$$

where $m := \langle \lambda, \alpha_i^{\vee} \rangle$.

Remark: ${}^{\omega}T_i, T'_i, {}^{\omega}T'_i$ similarly (as last lecture).

Finite dimensional representations of $U_q(A)$, A a Cartan matrix

Let A be (provisionally) a GCM, and $U_q^{\geq 0}(A)$ be the subalgebra of $U_q(A)$ generated by $K_i^{\pm 1}$'s and E_i 's.

Note that $U_q^{\geq 0}(A)$ is a Hopf subalgebra

We have a triangular decomposition: $U_q^{<0}(A) \otimes U_q^0(A) \otimes U_q^{>0}(A) \xrightarrow{\cong} U_q(A)$ (proof omitted).

Remark (construction of the Verma's): In particular $U_q(A)$ is free as a $U_q^{\geq 0}$ -module with basis any one for $U_q^{<0}(A)$.

Let $\lambda \in \mathfrak{h}^*$ ($\mathfrak{h} =$ "Cartan for underlying Lie algebra associated with A"). Assume $\langle \lambda, \alpha_i^\vee \rangle \in \mathbb{Z}$ for all i (i.e. λ is an integral weight). And let h_λ be the 1-dimensional $U_q^{\geq 0}(A)$ -module generated by v defined by

$$K_i v = q^{(\lambda, \alpha_i)} v = q_i^{\langle \lambda, \alpha_i^{\vee} \rangle} v$$

$$E_i v = 0$$
 for all i .

We thus define the "Verma" $U_q(A)$ -module

$$M(\lambda) := U_q(A) \otimes_{U_q^{\geq 0}} h_{\lambda}$$

of highest weight λ . For any $U_q(A)$ -module $M, m \in M$ is said to be a weight vector of weight $\lambda \in \mathfrak{h}^*$ if $K_{\mu}m = q^{(\lambda,\mu)}m$ for all $\mu \in \mathbb{Z}\alpha_1 \oplus \cdots \oplus \mathbb{Z}\alpha_n$.

Remark: $M(\lambda)$ has a unique irreducible quotient, denoted by $L(\lambda)$.

Theorem: A a Cartan Matrix, $\lambda \in \mathfrak{h}^*$ a dominant integral weight (i.e. $\langle \lambda, \alpha_i^{\vee} \rangle \in \mathbb{Z}_{\geq 0}$ for all i).

1. For each i there is a homomorphism of $U_q(A)$ -modules

$$M(\lambda-(m+1)\alpha_i) \hookrightarrow M(\lambda) \text{ with } m = \langle \lambda, \alpha_i^\vee \rangle \text{ for all } i,$$

defined by

$$1 \otimes 1 \mapsto F_i^{m+1} \cdot 1 \otimes 1$$
.

- 2. Define $\widetilde{L}(\lambda) = M(\lambda)/(\sum_i \operatorname{im} \phi_i)$. The $\widetilde{L}(\lambda)$ is finite dimensional.
- 3. We have a bijection

{irreducible finite dimensional $U_q(A)$ – modules of highest weight} $/ \cong \xrightarrow{\sim} X^+ := \{\text{dominant integral weights}\}$

$$L(\lambda) \mapsto \lambda$$

Proof:

1. The vectors $1 \otimes 1 \in M(\lambda - (n+1)\alpha_i)$ and $F_i^{m+1} 1 \otimes 1$ have the same weight. Moreover

$$E_j F_i^{m+1} \cdot 1 \otimes 1 = F_i^{m+1} E_j \cdot 1 \otimes 1 = 0 \text{ if } i \neq j$$

$$E_i F_i^{m+1} \cdot 1 \otimes 1 = 0$$
 by a $U_q(\mathfrak{sl}_2)$ – calculation.

The universal property of $M(\lambda - (m+1)\alpha_i)$ yields the first part.

2. It's enough to show $\dim \widetilde{L}(\lambda)_{\mu} = \dim \widetilde{L}(\lambda)_{w(\mu)}$ for all $w = s_{\alpha_i}$ and $1 \le i \le n$ (note that $\dim \widetilde{L}(\lambda)_{\mu} < \infty$ by construction). Draw a picture of the weights and see why this is the case :)

I want to go to mensa

We have $\widetilde{L}(\lambda) = U_q(A)/\operatorname{Ann}_{U_q(A)}(1 \otimes 1) = U_q(A)/(\sum_i U_q(A)E_i + \sum_i U_q(A)(K_i - q^{(\lambda, \alpha_i)}) + \sum_i \sum_i U_q(A)F_i^{m+1}) \Longrightarrow$ [Jantzen 5.7] E_i, F_i act locally nilpotently on $\widetilde{L}(\lambda)$. Consider for every i the module

$$M:=\bigoplus_{r\in\mathbb{Z}}\widetilde{L}(\lambda)_{\mu-r\alpha_i}$$

on which $U_{q_i}(\mathfrak{sl}_2) \cong (E_i, F_i)$ acts.

M has finite dimensional weight spaces, and E_i and F_i act locally nilpotently on M.

Let $v \in M \setminus \{0\}$ be a non-zero vector such that $E_i v = 0$. The $U_{q_i}(\mathfrak{sl}_2)$ -module generated by v thus yields a surjection of a Verma module

$$M(q^n) \rightarrow U_{q_i}(\mathfrak{sl}_2)v$$

for some q^n ($M(q^n)$ is the $U_q(\mathfrak{sl}_2)$ Verma).

However, $F_i^s v = 0$ for s large enough, which implies $L(q^n, +1) \xrightarrow{f} U_{q_i}(\mathfrak{sl}_2)v$. Consider

$$M' := M/\mathrm{im}(f)$$
.

The dimension of the 0 or 1-weight space of M' is *smaller* than that of M - as $U_{q_i}(\mathfrak{sl}_2)$ -modules. By repeating this argument we obtain a finite Jordan-Holder series of M as a quantum \mathfrak{sl}_2 -module:

$$M \supseteq M^1 \supseteq M^2 \supseteq \cdots \supseteq M^r \supseteq (0)$$

where the quotients of each of these are finite-dimensional.

It follows that $\dim M_{\mu} = \dim M_{s_{\alpha_1}(\mu)}$ since it holds for any subquotient and thus for M.

3. $L(\lambda)$ is finite-dimensional for λ dominant integral, since $\widetilde{L}(\lambda)$ is and $M(\lambda)$ has unique irreducible quotient - $\widetilde{L}(\lambda) \to L(\lambda)$. Thus the map $\lambda \mapsto L(\lambda)$ is well-defined.

Viceversa, given $L(\lambda)$ an irreducible finite dimensional $U_q(A)$ -module, by the $U_q(\mathfrak{sl}_2)$ theory which we developed, $\langle \lambda, \alpha_i^{\vee} \rangle \in \mathbb{Z}_{\geq 0}$ for all i; thus λ is dominant integral. \square

Proposition: A a Cartan Matrix. For all $u \in U_q(A)$ there exists a direct sum of irreducible finite-dimensional highest-weight modules such that $uM \neq 0$.

Proof: For not-quantised version: exercise.

For quantised omitted. \Box

What about when A is not necessarily CM? What are the *integrable* representations?

Proposition (construction): Let A be a symmetrisable GCM. Construct $L(\lambda)$ as before over $U_q(A)$. Then $L(\lambda)$ is integrable if and only if $\lambda \in X^+ := \{\text{dominant integral weights}\} = \{\lambda \in \mathfrak{h}^* \mid \langle \lambda, \alpha_i^\vee \rangle \in \mathbb{Z}_{\geq 0} \}$. Proof next time (:

Definition: A a symmetrisable GCM and M a direct sum of integrable irreducible representations or just integrable (this is one of those two definitions for the price of one sort-of-thing). Define $T_i(v)$ as before for all $v \in M$. Similarly ${}^\omega T_i, T_i', {}^\omega T_i'$.

Proposition:

- 1. $T_i, T'_i, {}^{\omega}T_i, {}^{\omega}T'_i$ are invertible endomorphisms.
- 2. ${}^{\omega}T_i(v) = (-q_i)^{-\langle \lambda, \alpha_i \rangle}T_i(v)$ for all $v \in M_{\lambda}$.
- 3. ${}^{\omega}T'_{i}(v) = (-q_{i})^{\langle \lambda, \alpha_{i}^{\vee} \rangle}T'_{i}(v)$.

1 **15/12**

Last time we discussed a classification result of the highest weight modules for $U_q(\mathfrak{g}(A))$ where A is a GCM. We prove this now:

Theorem:

- 1. $L(\lambda)$ is integrable $\iff \lambda \in \Lambda^+$,
- 2. {irred. integrable hw representations of $\mathfrak{g}(A)$ }/ $\cong \xrightarrow{\cong} \Lambda^+$.

Proof: Let $v_{\lambda} = 1 \otimes 1 \in L(\lambda)$. If $L(\lambda)$ is integrable then $f_i^N v_{\lambda} = 0$ for N large enough, and choose N as small as can be. It follows that

$$v_{\lambda}, f_i v_{\lambda}, \dots, f_i^{N-1} v_{\lambda}$$

spans a finite-dimensional \mathfrak{sl}_2 -module, which implies $(\lambda, \alpha_i^{\vee}) \in \mathbb{Z}_{\geq 0}$.

For the converse, suppose $(\lambda, \alpha_i^{\vee}) \in \mathbb{Z}_{\geq 0}$ for all i. It's clear that $L(\lambda)$ has a weight decomposition, since $M(\lambda)$ does.

What we have to show is that if $v \in L(\lambda)$ then $e_i^N v = 0$ and $f_i^N v = 0$ for some N large enough. Without loss of generality, suppose $v \in L(\lambda)_{\mu}$ for some weight $\mu = \lambda - \sum_{i=0}^{n} n_i \alpha_i$. For N large enough we have that, by the structure of the weights in $L(\lambda)$, $\mu + N\alpha_i$ is not smaller than λ , and is thus not a weight in $M(\lambda)$ or $L(\lambda)$. Thus $e_i^N v = 0$.

 $f_1...f_{i_n}$ then

$$f_i^s y v_\lambda = \sum_{k=0}^s {s \choose k} (\operatorname{ad} f_i)^k (y) f_i^{s-k} v_\lambda.$$

In general, if $D: U \to U$ is any derivation (U any algebra) then

$$D^{n}(u_{1}...u_{r}) = \sum_{\sum_{i} m_{i} = m, m_{i} \geq 0} {m \choose m_{1},...,m_{r}} D^{m_{1}}(u_{1})...D^{m}_{r}(u_{r})$$

a simple induction shows.

If we now take $D = \operatorname{ad} f_i$ and $u_1 \dots u_r = f_1 \dots f_{i_n} = y$. By the Serre relations and our assumption on v_{λ} , we have that $f_i^s y v_{\lambda} = 0$ for s large enough.

Thus, all that's left to show is that f_i acts locally nilpotently at v_{λ} . For this, we can show $N = m_i + 1$ works, where

Assume by contradiction that $v':=f_i^{m_i+1}v_\lambda\neq 0$. We are $e_jv=e_jf_i^{m_i+1}v_\lambda=0$ (by the relations in $\mathfrak{g}(A)$ for $i\neq j$ and the \mathfrak{sl}_2 -calculations for i = j).

This implies v' is actually a highest weight vector, different to v_{λ} ! This contradicts $L(\lambda)$'s irreducibility, because $U(\mathfrak{g}(A))v' = U(\mathfrak{n}_-) \otimes U(\mathfrak{h}) \otimes U(\mathfrak{n}_+)v' = U(\mathfrak{n}_-)v' \notin v_\lambda$ is a proper, non-zero, subrepresentation. This implies both 1 and 2. □

Remark:

- 1. The theorem holds for A a GCM.
- 2. If we go back to the case in which A is symmetrisable, $L(\lambda)$ has finite-dimensional weight spaces (because $M(\lambda)$ has as well). This implies we have a function char($L(\lambda)$) given by the character of $L(\lambda)$. There exists for $\lambda \in X^+$ a character formula for $L(\lambda)$ ("*Kac*-formula") which is totally analogous to the Weyl character formula for semisimple Lie algebras (take a look at the exercise sheet for the affine case).
- 3. A "nice" character formula exists for any integrable highest weight module. This can be tackled via BGG resolutions.
- 4. A nice consequence of this is any integrable highest weight module is irreducible (Cor 10.4 [1]). Gist: If L is an integrable highest weight module and L' is irreducible quotient, compare characters :)

Theorem: A a symmetrisable GCM, and $M \in \mathcal{O}_{int}(\mathfrak{g}(A))$ with finite-dimensional weight spaces, and weights contained in a finite union of sets of the form $\{\mu \mid \mu \leq \lambda_i\}$, then we have a decomposition of M into highest weight submodules

$$M = \bigoplus_{\lambda \in X^+} L(\lambda)^{\oplus a_{\lambda}}$$

where $a_{\lambda} \in \mathbb{Z}_{\geq 0}$.

Remark: This applies in particular to $L(\lambda) \otimes L(\mu)$ with $\lambda, \mu \in X^+$; although unfortunately this does not hold for $L(\lambda) \otimes^{\omega} L(\mu)$ in general.

Proof: Let $N \subseteq M$ be the subspace annihilated by \mathfrak{n}_+ , which is a non-zero subspace by our assumption on the weights of M. Furthermore, N is also \mathfrak{h} -invariant since it is spanned by weights.

Let $\{v_i\}_{i\in I}$ be a basis of N consisting of weight vectors, each v_i of weight μ_i .

We have homomorphisms

$$M(\mu_i) \rightarrow U(\mathfrak{g}(A))v_i \subseteq M$$

 $1 \otimes 1 \mapsto v_i$

for each i. The image is an integrable hw module (as a submodule of M), and the previous remark shows that its image is irreducible. We thus have an induced homomorphism

$$\phi_i: L(\mu_i) \rightarrow U(\mathfrak{g}(A))v_i \subseteq M$$
.

Adding these homomorphisms we have a homomorphism

$$\bigoplus_{i \in I} L(\mu_i) \xrightarrow{\phi := \sum_i \phi_i} M$$

We actually have that ϕ is an isormorphism of $U(\mathfrak{g}(A))$ -modules:

Injectivity: Let $v \in \ker \phi$ be such that $\mathfrak{n}_+v = 0$, $v = \sum_{i \in I} c_i v_{\mu_i}$ where $v_{\mu_i} = 1 \otimes 1 \in L(\mu_i)$ and $c_i \in \mathbb{C}$. Since each v_{μ_i} is sent to v_i and these form a set of linearly independent vectors, it follows that $c_i = 0$ for all i.

Surjectivity: Assume we have a ses

$$\bigoplus_{i\in I} L(\mu_i) \stackrel{\phi}{\hookrightarrow} M \stackrel{\pi}{\twoheadrightarrow} Q$$

with $Q \neq 0$. If we choose $L(\mu)$ a submodule of Q (as above), replacing M by $\pi^{-1}(L(\mu))$ allows us to assume whog that $Q = L(\mu)$.

It follows that there exists a weight vector $v \in \pi^{-1}(v_{\lambda})$. On v, the Casimir must acts as it does on v_{μ} , and thus in the same way it acts on $L(\mu)$. Moreover, $e_i v \in \ker \pi$ for all i and thus in the image of ϕ . If we express $e_i v = \sum_{j \in I} z_j$ where $z_j \in L(\mu_j)$, then $z_j \neq 0$ implies

$$\mu + \alpha_i \leq \mu_i$$
,

$$(\mu_i + \rho, \mu_i + \rho) = (\mu + \rho, \mu + \rho)$$

(these scalars are the ones as which the Casimir acts on $L(\mu_j)$ resp. $L(\mu)$) and the Casimir acts on $L(\mu)$ in the same way as on $L(\mu_i)$ if $z_i \neq 0$.

Recall that ρ is chosen such that $\langle \rho, \alpha_i^{\vee} \rangle = 1$ for all i.

We have the following claim:

Given
$$\mu, \lambda \in \mathfrak{h}^*$$
 such that $\langle \lambda, \alpha_i^{\vee} \rangle \geq 0$ for all $i, \mu \leq \lambda$, and $\langle \mu, \alpha_i^{\vee} \rangle \geq 0$ for all $i, then v = \lambda + \rho$.

Applying the claim to $\mu := \mu + \rho$, $\lambda = \mu_j$ yields $\mu + \rho = \mu_j + \rho$ hence $\mu = \mu_j$, which contradicts $\mu + \alpha_i \le \mu_j$. The claim is a simple calculation exercise...

Lemma: M is integrable if and only if ${}^{\omega}M$ is integrable.

Proof: ${}^{\omega}M$ has a weight space decomposition induced by M's, and the local nilpotency of the e_i 's and f_i 's follows directly.

Warning: If M an integrable highest weight module, then ${}^{\omega}M$ is integrable of highest weight.

Remark: If M is irreducible, then ${}^{\omega}M$ is irreducible.

Fact (without proof): The construction of (integrable) highest weight modules $L(\lambda)$ goes through in the quantised setting as well. We have a bijection

 $\text{\{irreducible integrable highest weight modules of } U_q(\mathfrak{g}(A)) \text{\}/} \cong \xrightarrow{\cong} X^+ \times \{\sigma: \mathbb{Z}\alpha_1 \oplus \cdots \oplus \mathbb{Z}\alpha_n \to \{\pm 1\} \text{ group homomorphisms}\}.$

Construction: We may thus define

$$T_i$$
, ${}^{\omega}T_i$, T'_i , ${}^{\omega}T'_i$

for any $M = L(\lambda, \sigma)$ or ${}^\omega L(\lambda, \sigma)$, with $\lambda \in X^+$. Just as last time, we restrict our attention to when $\sigma \equiv 1$ and thus the representations in the category $\operatorname{Rep}_1(U_q(\mathfrak{g}(A)))$ of ${}^uU_q(\mathfrak{g}(A))$ -modules of type 1" which are direct sums of $L(\lambda, 1)$ or ${}^\omega L(\lambda, 1)$ for $\lambda \in X^+$.

Proposition:

1. $T_i, {}^{\omega}T_i, T_i', {}^{\omega}T_i'$ is an invertible endomorphism for any $M \in \operatorname{Rep}_1^{int}(U_q(A))$.

2.
$${}^{\omega}T_i(v) = (-q_i)^{-\langle \lambda, \alpha_i^v ee \rangle} T_i(v)$$
 and ${}^{\omega}T_i'(v) = (-q_i)^{\langle \lambda, \alpha_i^v \rangle} T_i'(v)$.

Proof: Restrict to $U_{q_i}(\mathfrak{sl}_2)$ and use formulas we proved there.

Remark: By construction T_i maps M_{λ} to $M_{s_{\alpha_i}(\lambda)}$.

Lemma: If A is symmetrisable, $M \in \text{Rep}_1^{\text{int}}(U_q(A))$ then

- 1. $T_i(K_\mu v) = K_{s_{\alpha},(\mu)}T_i(v)$ for all $v \in M$,
- 2. $T_i(E_i(v)) = -F_iK_iT(v), T_i(F_i(v))...$ (for formulas, take a look at the \mathfrak{sl}_2 case),
- 3. (these are the *new* formulas) $T_i(E_j v) = E_j T_i(v)$ if $a_{i,j} = 0$ and $T_i(F_j(v)) = F_j(T_i(v))$.

Proof: Clear by the \mathfrak{sl}_2 case, and the last one follows from the Serre relations ($a_{i,j} = 0$ implies E_i and F_i commute with E_j and F_j).

Proposition: $M \in \text{Rep}_1^{\text{int}}(U_q(\mathfrak{g}(A)))$, A symmetrisable GCM. Then for every $1 \le i \ne j \le n$ we have the formula

$$T_i(E_j v) = (\operatorname{ad} E_i^{(r)}) E_j T_i(v)$$

where $r = -\langle \alpha_i, \alpha_i^{\vee} \rangle$.

Formula intuition: (We'll prove the formula later) We may define, for every Hopf algebra H we have the adjoint representation of H on H given by

$$ad(h)(x) := \sum_{i=1}^{n} h_{(1)}xS(h_{(2)})$$

with $\Delta(h) = h_{(1)} \otimes h_{(2)}$ where S is the antipode.

Examples (of adjoint representation of a Hopf algebra): If $H = U(\mathfrak{g})$ where \mathfrak{g} is a Lie algebra, then

$$\Delta(h) = 1 \otimes h + h \otimes 1, S(h) = -h$$

$$h \in \mathfrak{g}, x \in U(\mathfrak{g}) \Longrightarrow \mathrm{ad}(h)(x) = hx - xh.$$

If we instead take H = kG where G is a finite group, then

$$ad(g)(x) = gxg^{-1}$$

for every $g \in G$, $x \in kG$.

Lastly, let $H = U_q(A)$ where A is a symmetrisable GCM, or if you like $H = U_q(A)$. We have the following formulas

$$ad(E_i)u = E_i u - K_i u K_i^{-1} E_i$$

$$ad(F_i)u = -uF_iK_i + F_iuK = (F_iu - uF_i)K_i$$
$$ad(K_i)u = K_iuK_i^{-1}$$

since

$$\Delta(E_i) = E_i \otimes 1 + K_i \otimes E_i$$

$$\Delta(F_i) = 1 \otimes F_i + F_i \otimes K_i^{-1}.$$

17/12

Proposition: In the notations for last lecture, $T_i(E_j v) = \operatorname{ad}(E_i^{(r)})(E_j)T_i v$ where $r = -\langle \alpha_j, \alpha_i^{\vee} \rangle$ and the adjoint representation is given by $\operatorname{ad}(E_i)(u) = E_i u - K_i u K_i^{-1} E_i$.

Proof: Inductively, for all $r \ge 0$ we have

$$\begin{split} \mathrm{ad}(E_i^(r))u &= \sum_{s=0}^r q_i^{s(r-s)} \begin{bmatrix} r \\ s \end{bmatrix}_{q_i} E_i^{r-s} K_i^s u K_i^{-s} (-1)^s q_i^{s(s-1)} E_i^s \\ &= \sum_{s=0}^r (-1)^s q_i^{s(r-1)} \begin{bmatrix} r \\ s \end{bmatrix}_{q_i} E_i^{r-s} K_i^s u K_i^{-s} E_i^s. \end{split}$$

Now just use divided powers $ad(E_i^{(k)}) = \sum_{s=0}^{k} (-1)^s q_i^{s(k-1-r)} E_i^{k-s} E_j E_i^{(s)}$.

Lemma: If we set $r = 1 - a_{i,j}$ then we have the formulas in $\widetilde{U}_q(\mathfrak{g}(A))$

$$\operatorname{ad}(E_i^r)(E_j) = S_{i,j}^+$$

$$ad(F_i^r)(E_jK_j) = S_{i,j}^-K_jK_i^r$$

Proof:
$$ad(E_i^r)(E_j) = \sum_{s=0}^r (-1)^s q_i^{s(r-s)} \begin{bmatrix} r \\ s \end{bmatrix}_{q_i} E^{r-s} K_i^s E_j K_i^{-s} E_i^s$$
. \Box

Remarks: From this one can deduce $\operatorname{ad}(E_i^s)(E_j) = 0 = \operatorname{ad}(F_i^s)(F_j)$ for $s \ge r$ in $U_q(\mathfrak{g}(A))$. It follows (via some further calculations) that $[F_k, S_{i,j}^{\pm}] = 0 = [E_k, S_{i,j}^{\pm}]$ for all k.

Proposition: $T_i(F_j(v)) = \sum_{s=0}^r (-1)^s q_i^s F_i^{(s)} F_j F_i^{(r-s)} T_i(v).$

Proof: This follows from the following lemma:

Lemma: Assume for $u, u' \in U_q(\mathfrak{g}(A))$ we have $T_i(uv) = u'T_i(v)$ for any $v \in M \in \operatorname{Rep}_1^{\operatorname{int}}(\mathfrak{g}(A))$. Then

- 1. ${}^{\omega}T_i(\omega(u)v) = \omega(u')^{\omega}T_i(v)$,
- 2. $T_i(\omega(u)v) = q^{-\langle \mu, \alpha_i^{\vee} \rangle} \omega(u') T_i(v)$ for $u \in U(\mathfrak{g}(A))$.

Proof:

- 1. For every $v \in {}^{\omega}$ we have ${}^{\omega}T_i(\omega(u)v) = T_i(uv) = u'T_i(v) = \omega(u')T_i(v) = \omega(u')^{\omega}T_i(v)$.
- 2. $T_i(\omega(u)v) = (-q_i)^{\langle \lambda \mu, \alpha_i^{\vee} \rangle} \cdot \omega T_i(\omega(u)v) = (-q_i)^{\langle \lambda \mu, \alpha_i^{\vee} \rangle} (-q_i)^{\langle \lambda, \alpha_i^{\vee} \rangle} \omega(u')^{\omega} T_i(v)$.

Proof of proposition: $T_i(F_j v) = (-q_i)^r \omega((\operatorname{ad}(E_i^{(r)})(E_j))T_i(v)) |_{\square}$

Theorem: Let $1 \le i \le n$ for all $u \in U_q(\mathfrak{g}(A))$. Then there exists $u' \in U_q(\mathfrak{g}(A))$ such that $T_i(uv) = u'T_i(v)$ for all $v \in M \in \operatorname{Rep}_1^{\operatorname{int}}(\mathfrak{g}(A))$. Furthermore, $u \mapsto u'$ defines an algebra automorphism of $U_q(\mathfrak{g}(A))$.

 $\textit{Proof:} \text{ As for } U_{q_i}(\mathfrak{sl}_2), \text{ using that for all } u \in U_q(\mathfrak{g}(A)) \text{ there exists } v \in M \in \operatorname{Rep}_1^{\operatorname{int}}(U_q(\mathfrak{g}(A))) \text{ such that } uv \neq 0. \ \square$

Theorem:

1. There are algebra homomorphisms

$$T_i: U_q(\mathfrak{g}(A)) \to U_q(\mathfrak{g}(A))$$

such that

$$\begin{split} T_i(E_i) &= -F_i K_i \\ T_i(F_i) &= -K_i^{-1} E_i \\ T_i(E_j) &= \sum_s (-1)^s q_i^{-s} E_i^{(r-s)} E_j E_i^{(s)} \\ T_i(F_j) &= \sum_s (-1)^s q_i^s F_i^{(s)} F_j F_j^{(r-s)} \\ T_i(K_\mu) &= K_{s_{\alpha_i}(\mu)} \end{split}$$

for all $\mu \in \mathbb{Z}\alpha_1 \oplus \cdots \oplus \mathbb{Z}\alpha_n$ where $r = -\langle \alpha_i, \alpha_i^{\vee} \rangle$.

2. These satisfy the braid relations:

$$T_i T_j T_i \cdots = T_j T_i T_j \dots$$

where on each side we have $m_{i,j} = \operatorname{ord}(s_{\alpha_i} s_{\alpha_i})$.

Proof:

- 1. :)
- 2. long direct calculation... \Box

Example: $\langle \alpha_j, \alpha_i^{\vee} \rangle = -1$.

We have $T_i(E_j) = E_i E_j - q^{-1} E_j E_i$ and $T_j(E_i) = E_j E_i - q^{-1} E_i E_j$ - these elements are called q^{-1} -commutators. Another check yields $T_j T_i(E_j) = E_i$ and $T_i T_j(E_i) = E_j$.

Nice calculation :) $T_i T_j T_i(E_j) = T_i(E_i) = -F_i K_i$ and $T_j T_i T_j(E_j) = T_j T_i(-F_j K_j) = -F_i K_{s_{\alpha_j} s_{\alpha_i}(\alpha_j)}$ and $s_{\alpha_j} s_{\alpha_i}(\alpha_j) = \alpha_i$.

We now compare this Braid group action on $\mathfrak{g} = \mathfrak{sl}_3(\mathbb{C})$. Consider $w_0 = s_{\alpha_1} s_{\alpha_2} s_{\alpha_1}$ the longest element in Weyl group and the roots

$$\{\alpha_1, s_{\alpha_1}(\alpha_2) = \alpha_1 + \alpha_2, s_{\alpha_1}s_{\alpha_2}(\alpha_1) = \alpha_2\}$$

which by the exercise sheet are precisely the positive roots of the associated root system. Consider the root space

$$\mathfrak{g}_{\alpha_1} = \mathbb{C}e_1$$

Thus

$$s_1^{\text{ad}}(e_2) = \text{long calculation} = [e_1, e_2]$$

 $s_1^{\text{ad}} s_2^{\text{ad}} s_1^{\text{ad}}(e_2) = -[e_1, e_2]$

Observations/facts:

- Let $w \in \langle s_{\alpha_i}, s_{\alpha_j} \rangle$ with $i \neq j$ and $w(\alpha_j) > 0$. Then $T_w(E_i) \in U_q^{>0}(\mathfrak{g}(A))$ (like the previous example).
- If $w(\alpha_i) = \alpha_i$ then $T_w(E_i) = E_i$.
- Consider $g = \mathfrak{sl}_3$:

$$T_1T_2(E_1^c), T_1(E_2^b), E_1^a,$$

and

$$T_2T_1(E_2^c), T_2(E_1^b), E_2^a$$

One can show these two triples span the same subspace in $U_q(\mathfrak{sl}_3)$. This holds in fact when we take $w = s_{\alpha_{i_1}} \dots s_{\alpha_{i_r}}$ reduced expression. The subspace spanned by these is called $U_q(A)[w_0]$ - w_0 being the longest element in the Weyl group for ss Lie algebra.

• The space $U_q(A)[w_0]$ is stable under right multiplication with E_i 's.

Theorem: Let A be a GCM, $w_0 = s_{\alpha_1} \dots s_{\alpha_{i_r}}$ a chosen reduced expression. Then

$$T_{i_r}T_{i_{r-1}}\cdots T_{i_2}(E_{i_1})$$

form a basis of $U_q^{>0}(\mathfrak{g}(A))$. This is called the PBW-basis.

Example, \mathfrak{gsl}_3 : Let $E_1 = z_1, T_1(E_2) = z_2, T_1T_2(T_1) = E_2$. We have the formula

$$E_1E_2 = q^{-1}E_2E_1 + (E_1E_2 - q^{-1}E_2E_1)$$

$$z_1 z_3 = q z_3 z_1 + z_2$$

Theorem: A a CM, and let $w_0 = s_{\alpha_{i_1}} \dots s_{\alpha_{i_r}}$ be a fixed reduced expression of the longest element, with corresponding PBW basis

$$Z_1 = E_{i_r}, Z_2 = T_{i_r}(E_{i_{r-1}}), \dots, Z_r = T_{i_r}T_{i_{r-1}}\dots T_{i_2}(E_{i_1})$$

then for i < j we have

$$Z_i Z_j = q^{\{ \operatorname{wt}(Z_i), \operatorname{wt}(Z_j) \}} Z_j Z_i + \sum_{I(i,j)} c(b_{i+1}, \ldots, b_{j-1}) Z_{i+1}^{-b_{i+1}} \ldots Z_{j-1}^{b_{j-1}}$$

where
$$I(i,j) = \{(b_{i+1},\ldots,b_{j-1}) \in \mathbb{Z}_{\geq 0}^{j-i+1} \mid \sum_{t=i+1}^{j-1} b_t \operatorname{wt}(Z_t) = \operatorname{wt}(Z_i) + \operatorname{wt}(Z_j) \}.$$

Application: We have this nice result:)

Theorem: A a CM, $U_q^{>0}(A)$ is an iterated Ore extension.

Lemma: Let R be a ring, $\beta: R \to R$ a ring endomorphism. For $r \in R$ let $\partial_r(x) = rx - \beta(x)r$. Then ∂_r is a β -derivation.

Proof of theorem: Let Y_j be the subalgebra of $U_q^{>0}(A)$ generated by Z_1, \ldots, Z_j with $Y_0 = k(q)$. Our claim is that $Y_j = Y_{j-1}[Z_j; \beta_j, \partial_j]$ where $\beta_j : Y_{j-1} \to Y_{j-1}$ is given by

$$\beta_i(Z_i) = q^{\{\operatorname{wt}(Z_i), \operatorname{wt}(Z_j)\}} Z_i$$

for i < j and ... mensa time :((actually more like :))

12/1

New topic: Crystals

Setup: Given a symmetrisable Kac-Moody Lie algebra $\mathfrak{g}(A) = \mathfrak{g}$, M an integrable/finite-dimensional representation of \mathfrak{g} or $U_q(\mathfrak{g}(A))$. Question: is there a basis B of M such that

$$x \cdot v \in kB \cup \{0\}$$

for all $v \in M$ and $x = E_i, F_i, K_i^{\pm 1}$ (or $x = e_i, f_i, \alpha_i^{\vee}$ in the non-quantised version).

Observations: We start off by looking at \mathfrak{sl}_2 (as usual): let M be a finite-dimensional irreducible representation, then as we saw in the beginning of the course, such a basis exists (regardless of whether q is or isn't a root of unity). Since all representations for \mathfrak{sl}_2 are completely reducible, such a basis always exists.

Question: Can be construct such a *simultaneous* basis for all \mathfrak{sl}_2 triples in a KM Lie algebra $\{e_i, f_i, \alpha_i^{\vee}\}$ resp. $\{E_i, F_i, K_i^{\pm 1}\}$? In the classical situation, all representations of semisimple Lie algebras admit such a basis (check Humphrey's book) - these are called *Chevalley bases*.

In the quantum case, we can also construct such a basis for the very particular case of the natural representation of $U_q(\mathfrak{sl}_n)$.

Unfortunately this does not work for a general KM Lie algebra, in the quantum case.

Remark (*Kashiwara*): Such a basis does exist when " $q \rightarrow 0$ " - this is called the "crystal limit"; these bases are called crystal bases.

Goals for the rest of course:

- Properly define " $q \rightarrow 0$ ".
- Construction of crystal bases for irreducible representations in the case for which g is semisimple. This is based on a big induction called the *Grand loop argument*.
- Define the related canonical basis (Lusztig).

Recall the theorem:

Theorem: Every finite dimensional $U_q(\mathfrak{g})$ -module is completely reducible.

A quick lemma first:

Lemma: If λ is a dominant integrable weight, consider the module $L(\lambda)^*$. We have an isomorphism $L(\lambda)^* \cong L(-w_0(\lambda))$ where w_0 is the longest element in the Weyl group (for $U(\mathfrak{g})$ or $U_q(\mathfrak{g})$) (Recall that for any $U_q(\mathfrak{g})$ -module M we have the dual $U_q(\mathfrak{g})$ -module M^* since $U_q(\mathfrak{g})$ is a Hopf algebra).

Proof: $L(\lambda)$ is finite dimensional and irreducible, thus $L(\lambda)^*$ is finite-dimensional and irreducible; its highest weight (in the classical case at least) is the negative of the lowest weight in $L(\lambda)$. Let v be this lowest weight: $v \le \mu$ for all $\mu \in P(L(\lambda)) = \{\text{weights in } L(\lambda)\}$. Thus $w_0(v) \ge w_0(\mu)$ for all $\mu \in P(L(\lambda))$. By the braid group action we have that $P(L(\lambda))$ is stable under the action of w_0 . It follows that $w_0(v)$ is the highest weight in $P(L(\lambda))$, hence $w_0(v) = \lambda$. \square

Proof (of theorem): It's enough to show that any short exact sequence (ses) $L(\lambda) \hookrightarrow M \twoheadrightarrow L(\mu)$ splits, where λ, μ are dominant integral weights.

(ses) induces for every ν integral weight a short exact sequence of vector spaces $L(\lambda) \rightarrow M_{\nu} \rightarrow M_{\nu} \rightarrow L(\mu)_{\nu}$.

Let $v\mu \in L(\mu)_{\mu}$ and v a preimage under f (where $f: M \to L(\mu)$). Our claim is if $E_i v = 0$ for all i, then the sequence splits (we'll show this in a sec). Under this hypothesis we have a surjection $M(\mu) \twoheadrightarrow U_q(\mathfrak{g})v$. Since $U_q(\mathfrak{g})v$ is finite dimensional, this surjection factors through yielding an isomorphism $L(\mu) \stackrel{\cong}{\to} U_q(\mathfrak{g})v$ (recall that $L(\mu)$ is the quotient of $M(\mu)$ by all its submodules of the form $M(\lambda)$ where λ is not dominant integral).

We thus have $f(U_q(\mathfrak{g})v) = U_q(\mathfrak{g})f(v) = U_q(\mathfrak{g})v_{\mu} \cong L(\mu)$ which implies $U_q(\mathfrak{g})v \cap \ker f = \{0\}$ by exactness of the considered sequence. Thus $M = U_q(\mathfrak{g})v \oplus \ker(f)$ which yields our claim.

We now have to show that $E_i v = 0$ for all i.

Case 1: If $\mu \ge \lambda$ then the claim follows simple by the fact that μ must be a maximal weiht in M.

Case 2: If $\mu \leq \lambda$ then we may dualise (ses) to obtain the dual short exact sequence (ses*)

$$L(\mu)^* \cong L(-w_0(\mu)) \hookrightarrow M^* \to L(\lambda)^* \cong L(-w_0(\lambda))$$

which shows by case 1 $M^* \cong L(\mu)^* \oplus L(\lambda)^*$ hence $(M^*)^* \cong (L(\mu)^*)^* \oplus (L(\lambda)^*)^*$. Now we have an isomorphism (**not valid for all Hopf algebras**) $\Phi: N \to (N^*)^*$ for any finite-dimensional \mathfrak{g} -module where $\phi(n)(f) = f(K_{2\rho})^{-1}n$ and $2\rho = \sum_{\alpha \geq 0} \alpha$. \square

Remark: One can consider irreducible finite dimensional representations.

Let M be a finite-dimensional $U_q(\mathfrak{g}) = U_q$ -module, and we can consider it as a $U_{q_i}(\mathfrak{sl}_2)$ -module by restriction of scalars.

We have a decomposition $M \cong L_1 \oplus \cdots \oplus L_r$ where $L_j \cong L(a_s)$ is irreducible as a $U_{q_i}(\mathfrak{sl}_2)$ -modules, $a_s \in X^+ = \mathbb{N}_{\geq 0}$. If we pick m(s) a highest weight vector for $L(a_s)$, we have a basis for M

$$F_i^{(j)}m(s) \quad 1 \le s \le r \quad 0 \le j \le a_s.$$

If $x \in M$ is a weight vector of weight l, we can express x as

$$x = \sum_{j \ge 0} \sum_{s, a_s - 2_j = l} b_s F_i^{(j)} m(s)$$

for some $b_s \in k$. We can also group terms as:

$$x = \sum_{j \ge 0, j \ge -l} F_i^{(j)} x_j$$

where $x_j := \sum_{s a_s - 2j = l} b_s m(s)$ (this way of expressing weight vectors is **crucial**).

Note, we need $j \ge -l$: if l is non-negative then in the above sums we have no extra constraint of course $(j \ge -l)$ is automatically implies by $j \ge 0$), and if l is non-positive then... I didn't get this part (POST: check proof for following lemma)

We have a few easy facts about these summands:

Lemma:

- 1. $E_i x_j = 0$ for all j,
- 2. x_i has weight l + 2j,
- 3. if $x = \sum_{j \ge 0, j \ge -l} F_i^{(j)} x_j'$ with x_j' satisfying parts 1 and 2 of this lemma, then $x_j = x_j'$.

Proof: Pick $j \ge 0, -l$. Part 1 is pretty clear, and for part 2 note that m(s) has weight $a_s = l + 2j$ by definition of x_j . As for part 3, define the $U_{q_i}(\mathfrak{sl}_2)$ -module $N = U_{q_i}(\mathfrak{sl}_2)x_j'$; N is either irreducible or zero of highest weight l + 2j. If it's non-zero then $N \cong L(l+2j)$ and $F^{(j)}x_j'$ is the projection onto the isotypic component for L(l+2j) of x.

Now since $j \ge -l$ we have $-j \ge l$ and thus $j \le l+2j \Longrightarrow F_i^{(j)}$ acts injectively on $L(l+2j)_{l+2j}$ so $F_i^{(j)}x_j' = F_i^{(j)}x_j \Longrightarrow x_j' = x_j$. \square

Definition (*Kashiwara operators*): Given M as above, define $\widetilde{E_i}, \widetilde{F_i}: M \to M$ as follows. Given $x \in M$ and its decomposition into x_i 's as above, we define

$$\widetilde{F_i}x := \sum_{j \ge 0, j \ge -l} F_i^{(j+1)} x_j$$

$$\widetilde{E_i}x := \sum_{j \ge 0, j \ge -l} F_i^{(j-1)} x_j$$

A few easy properties:

Lemma: Let $x \in M_{\lambda}$ written as before; then

- 1. $\widetilde{F_i}\widetilde{E_i}x = x x_0$,
- 2. $\widetilde{E}_i \widetilde{F}_i x = x F_i^{(r)} x_r$
- 3. $\widetilde{F_i}M = F_iM$,
- 4. if $M' \subseteq M$ is a submodule, then M' is $\widetilde{F_i}$ and $\widetilde{E_i}$ -invariant,
- 5. if $\phi: M \to N$ is a U_q -homomorphism then ϕ commutes with $\widetilde{E_i}$ and $\widetilde{F_i}$ for all i.

Proof: Parts one and two are clear, and for part three simply note

$$\widetilde{F}_{i}x = F_{i}(\sum_{j} [j+1]_{q_{i}}^{-1} F_{i}^{(j)} x_{j}) \in F_{i}M$$

$$F_i x = \widetilde{F_i}(\sum_j [j+1]_{q_i} F_i^{(j)} x_j) \in \widetilde{F_i} M.$$

Part four follows from part 5 by taking the inclusion homomorphism, and for part 5 let x be a weight vector in M. We have

$$\phi(x) = \phi(\sum_{j} F_i^{(j)} x_j) = \sum_{j} F_i^{(j)} \phi(x_j)$$

$$\phi(\widetilde{F_i}x) = \sum_j F_i^{(j+1)} \phi(x_j)$$

so it's now enough to show

$$\phi(x_j) = \phi(x)_j$$

and for this we can use the previous lemma on the characterisation of the j-th components constructed:

- $E_i \phi(x_j) = \phi(E_i x_j) = 0$ for all j and
- $\phi(x_j)$ has the same weight as x_j .

Since $\phi(x) = \sum_j F_i^{(j)} \phi(x)_j$ and $\phi(x) = \sum_j F_i^{(j)} \phi(x_j)$ we have $\phi(x_j) = \phi(x)_j$.

Proposition: Every finite-dimensional $U_q(\mathfrak{sl}_2)$ -module of type 1 has a basis $\{v_s\}_{s\in I}$ such that $\widetilde{F}v_s=v_t$ for some t or $\widetilde{F}v_s=0$. Similarly for \widetilde{E} .

Proof: Assuming M is an irreducible finite-dimensional $U_q(\mathfrak{sl}_2)$ -module, such a basis exists because of the theory we developed at the beginning of the course. \Box

Idea for " $q \to 0$ ": Define the ground field $\mathbb{Q}(q) = k$. We have an intermediate ring: $\mathbb{Q}(q) \supseteq A \supseteq \mathbb{Q}[q]$ where $A = \{\frac{f}{g} \mid g(0) \neq 0\}$. Recall that A is a DVR with residue field \mathbb{Q} . If M is any U_q -module, then (essentially by definition) it's a k-vector space and can be restricted to an A-module. Next time we define what lattices in M are :)

14/1

Definition: M a finite dimensional U_q -module; an $admissible\ lattice\ \mathcal{L}$ in M is an $A := \mathbb{Q}[q]_{(q)}$ -submodule which is finitely generated over A such that

- (L1) it generates M over $k=\mathbb{Q}(q)$ (i.e. $k\otimes_{\mathbb{Q}}\mathscr{L}\xrightarrow{\text{"mult"}}M$ is surjective)
- (L2) $\mathcal{L} = \bigoplus_{\lambda \in X} \mathcal{L}_{\lambda}$ where X is the set of integral weights and $\mathcal{L}_{\lambda} := \mathcal{L} \cap M_{\lambda}$ and
- (L3) is stable under the action of the Kashiwara operators \tilde{F}_i and \tilde{E}_i for all i.

Remarks: From the first property it follows that $k \otimes_A \mathscr{L} \xrightarrow{\text{"mult"}} M$ is actually an isomorphism; indeed, $\frac{f}{g} \otimes x = \frac{1}{g} \otimes fx$ is mapped to zero if and only if $g^{-1}fx = 0$ if and only if fx = 0 if and only if fx = 0 since fx = 0 is a torsion-free fx = 0-module. From the second property it also follows that fx = 0 is a free fx = 0-module.

And from the last one since \mathscr{L} is stable under \widetilde{E}_i and \widetilde{F}_i we have that the Kashiwara operators induce maps

$$\widetilde{E}_i, \widetilde{F}_i: \mathcal{L}/q\mathcal{L} \to \mathcal{L}/q\mathcal{L}.$$

Definition: Let M be a finite dimensional U_q -module. A crystal basis of M is a pair (\mathcal{L}, B) where \mathcal{L} is an admissible lattice in M and B is basis of $\mathcal{L}/q\mathcal{L}$ as a \mathbb{Q} -vector space satisfying:

- (B1) $B = \bigsqcup_{\lambda} B_{\lambda}$ with $B_{\lambda} := B \cap \mathcal{L}_{\lambda}/q\mathcal{L}_{\lambda}$,
- (B2) $\widetilde{F}_i B \subseteq B \cup \{0\}, \widetilde{E}_i B \subseteq B \cup \{0\},$
- (B3) for all basis elements $b, b' \in B$ we have $b' = \widetilde{F}_i b$ if and only if $\widetilde{E}_i b' = b$.

Remark: All this works exactly in the same way for integral representations of $U_q(\mathfrak{g}(A))$ where A is symmetrisable.

Example: Let M be a finite dimensional $U_q(\mathfrak{sl}_2)$ -module (e.g. M the 4-dimensional representation of type 1). We take

$$v_0 \in M$$

 $v_1 = Fv_0 = F^{(1)}v_0 = \widetilde{F}v_0$
 $v_2 = \widetilde{F}v_1 = F^{(2)}v_0$
 $v_3 = \widetilde{F}v_2 = F^{(3)}v_0$

If we define $\mathcal{L} = A$ -submodule generated by v_0, v_1, v_2, v_3 and $B = (v_0, v_1, v_2, v_3) \subseteq \mathcal{L}/q\mathcal{L}$ we get a crystal basis.

Definition: Given a crystal basis (\mathcal{L},B) of M we may assign to it a graph, called the *crystal graph of* (\mathcal{L},B) , defined as the oriented coloured graph, where the colours are $\{1,\ldots,n\}$, the vertices are elements in B and $b\stackrel{i}{\to}b'$ if and only if $b'=\widetilde{F}_ib$.

Problem: Uniqueness of crystal basis? Existence?

Proposition: Let M_1, M_2 be finite-dimensional U_q -modules with (arbitrary) A-submodules $\mathcal{L}_i \subseteq M_i$ then

- 1. $\mathcal{L}_1 \otimes \mathcal{L}_2$ is an admissible lattice for the U_q -module $M_1 \otimes M_2$ if and only if \mathcal{L}_1 and \mathcal{L}_2 are admissible lattices in M_1 and M_2 respectively.
- 2. $(\mathcal{L}_1 \otimes \mathcal{L}_2, B_1 \times \{0\} \cup \{0\} \times B_2)$ is a crystal basis of $M_1 \oplus M_2$ if and only if (\mathcal{L}_1, B_1) and (\mathcal{L}_2, B_2) are crystal bases for M_1 and M_2 respectively.

Remark/construction: Let $M = L(\lambda)$ with $\lambda \in X^+$; we want to construct a good candidate for a crystal basis for M: pick a vector $0 \neq v_{\lambda} \in L(\lambda)_{\lambda}$ and define $\mathcal{L} := A$ -submodule of M generated by all $\widetilde{F}_{i_r} \dots \widetilde{F}_{i_2} \widetilde{F}_{i_1} v_{\lambda}$ for all tuples of indices $(i_{r_1}, \dots, i_{r_n})$ where $1 \leq i_j \leq n$ and n is the size of the cartan matrix.

Is $\mathscr L$ an admissible lattice? It is surely finitely generated by definition, since only finitely many of the $\widetilde F_{i_r} \dots \widetilde F_{i_1} \widetilde F_{i_1} v_\lambda$ are non-zero, and they generated $L(\lambda)$ over $\mathbb Q(q)=k$; indeed, we have a surjection $M(\lambda) \twoheadrightarrow L(\lambda)$, $M(\lambda)$ is spanned by the $F_{i_r} \dots F_{i_2} \widetilde F_{i_1} 1 \otimes 1$ and we have $\widetilde F_i N = F_i N$ for all U_q -modules N.

We also have $v_{\lambda} \in \mathcal{L} \cap M_{\lambda} = \mathcal{L}_{\lambda}$ and $\widetilde{F}_{i}v_{\lambda} \in \mathcal{L} \cap M_{\lambda-\alpha_{i}}$ which implies $\mathcal{L} = \bigoplus_{\lambda} \mathcal{L}_{\lambda}$.

The first part of the third property is clear, since \mathscr{L} is evidently stable under \mathscr{F}_i ; what is not clear (and this will require some work) is that $\widetilde{E}_i \mathscr{L} \subseteq \mathscr{L}$. We'll accomplish this is a while.

Assuming this last part, is (\mathcal{L}, B) a crystal basis?

B spans $\mathcal{L}/q\mathcal{L}$ over \mathbb{Q} evidently, $B = \bigcup_{\lambda}$ where $B_{\lambda} = B \cap \mathcal{L}_{\lambda}/q\mathcal{L}_{\lambda}$ and lastly $\widetilde{F}_{i}B \subseteq B \cup \{0\}$ by definition. **However,** it requires some effort to argue why $\widetilde{E}_{i}B \subseteq B \cup \{0\}$.

Remark: The proposed crystal basis depends on the choise of v_{λ} , but the crystal graph doesn't! We call the proposed crystal basis $(\mathcal{L}(\lambda), B(\lambda))$ - which we remark once more *depends on the choice of* v_{λ} .

Lemma:

- 1. If $\mathfrak{g} = \mathfrak{sl}_2$ then $(\mathcal{L}(\lambda), B(\lambda))$ is a crystal basis,
- 2. If $\lambda = 0$ then $(\mathcal{L}(\lambda), B(\lambda))$ is a crystal basis (for any semisimple lie algebra \mathfrak{g}),
- 3. The same is true in case λ is a miniscule dominant weight (namely $\langle \lambda, \alpha^{\vee} \rangle \in \{0, 1\}$ for all positive roots α).
- 4. The same is further true in case λ is a maximal short root in a component of \mathfrak{g} .

Proof:

- 1. In this case we can just appeal to the calculations in the previous example,
- 2. trivial :) $(\dim L(0) = 1)$
- 3. Exercise:(
- 4. Maybe exercise :/ □

Theorem (uniqueness of crystals): Let $\lambda \in X^+$ be a dominant integral weight and $(\mathcal{L}(\lambda), B(\lambda))$ the crystal basis of $L(\lambda)$. Let (\mathcal{L}, B) be another crystal basis for $L(\lambda)$. Then there exists a non-zero scalar $a \in k$ such that $\mathcal{L} = a\mathcal{L}(\lambda)$ and $\mathcal{L}(\lambda)/q\mathcal{L}(\lambda) \to \mathcal{L}/q\mathcal{L}$ sends $B(\lambda)$ bijectively to B. First a few lemmas.

Corollary: The crystal graph for $L(\lambda)$ is uniquely determined.

Lemma: M a finite dimensional U_q -module, $x \in M_\lambda$ and $\alpha = \alpha_i$ a simply root. We express like last time $x = \sum_{j \geq 0, j \geq \langle \lambda, \alpha^\vee \rangle} F_i^{(j)} x_j$. Let $\mathcal{L} \subseteq M$ be an admissible lattice. Then

- 1. $x \in \mathcal{L} \implies x_j \in \mathcal{L}$ for all j,
- 2. $\widetilde{E}_i x \in q \mathcal{L} \implies x_j \in q \mathcal{L}$ for all $j \ge 1$.

Proof: Note that we have, by last time's lemma, $\widetilde{E}_i x = \sum_{j \geq 1, j \geq \langle \lambda, \alpha_i^\vee \rangle} F_i^{(j-1)} x_j$ with $\widetilde{E}_i x_j = 0$ and $j \geq \langle \lambda, \alpha_i, \alpha_i^\vee \rangle = -\langle \lambda, \alpha_i^\vee \rangle - 2$ where $\langle \lambda + \alpha_i \rangle$ is the weight of $\widetilde{E}_i x$ so this expression is the x-decomposition for the vector $\widetilde{E}_i x$.

- 1. We have $x_0 = x \widetilde{F}_i \widetilde{E}_i x \in \mathcal{L}$ and by induction of weights using the above expression we have $x_j \in \mathcal{L}$ for $j \ge 1$.
- 2. Since \mathscr{L} is an admissible lattice we have that $q\mathscr{L}$ is also an admissible lattice, and then apply the previous part of this lemma to get the claim. \Box

Lemma: Let M be a finite-dimensional U_q -module, (\mathcal{L},B) a crystal basis. For any subset $S\subseteq \mathcal{L}/q\mathcal{L}$ define $HW(S):=\{x\in S\mid \widetilde{E}_ix=0 \text{ for all } i\}$ the set of highest weight elements in S. Then

- 1. for all $b \in B$ there exists a $b' \in HW(B)$ such that $b = \widetilde{F}_{i_r} \dots \widetilde{F}_{i_1} b'$ for some $1 \le i_j \le n$.
- 2. $HW(\mathcal{L}_{\lambda}/q\mathcal{L}_{\lambda})$ is the \mathbb{Q} -span of $HW(B_{\lambda})$ for all λ .
- 3. $HW(B_{\mu}) = \emptyset$ if $\mu \notin X^+$.

Proof:

- 1. If the weight is maximal then $b \in HW(B)$, so define b' = b and r = 0. Otherwise pick i such that $\widetilde{E}_i b \neq 0$, and let $b_1 = \widetilde{E}_i b$. By our induction hypothesis we have $b_1 = \widetilde{F}_{i_r} \dots \widetilde{F}_{i_1} b'$ for some $b' \in HW(B)$ thus $b = \widetilde{F}_i \widetilde{F}_{i_r} \dots \widetilde{F}_{i_1} b'$ since $b = \widetilde{F}_i \widetilde{E}_i b = \widetilde{F}_i b'$ (by (B2) and (B3)).
- 2. The relation "\(\to ''\) is clear. For the converse, let $x \in \mathcal{L}_{\lambda}/q\,\mathcal{L}_{\lambda}$ and write $x = \sum_{b \in B_{\lambda}} \gamma_b b$ for coefficients $\gamma_b \in \mathbb{Q}$ (by definition of crystal bases). Then $\widetilde{E}_i x = \sum_{b \in B_{\lambda}} \gamma_b \widetilde{E}_i b$.

 If $\widetilde{E}_i x = 0$ then $\gamma_b = 0$ for all b such that $\widetilde{E}_i b \neq 0$ ($\widetilde{E}_i b \neq 0 \implies \widetilde{E}_i b \in B$). This implies $\gamma_b = 0$ for all $b \notin HW(B_{\lambda})$. Thus x is a linear combination of highest weight vectors, i.e. $x \in \operatorname{span}_{\mathbb{Q}}(HW(B_{\lambda}))$.
- 3. Let $b \in \mathcal{L}/q\mathcal{L}$ be a non-zero vector and suppose $\widetilde{E}_i b = 0$; to show: $\langle \lambda, \alpha_i^\vee \rangle \geq 0$ (this implies our claim directly). If $\langle \lambda, \alpha_i^\vee \rangle < 0$ then express $b = \sum_{j \geq 0, j \geq -\langle \lambda, \alpha_i^\vee \rangle} F^{(j)} b_j$ where by assumption $\langle \lambda, \alpha_i^\vee \rangle \geq 1$. Take now $b \in HW(B_\mu)$. Since we have $\widetilde{E}_j b \in q\mathcal{L}$ for all j (by assumption) and no b_j occurs in the expression for $b \implies b_j \in q\mathcal{L}$ for all $j \implies b \in q\mathcal{L}$ which contradicts $b \neq 0$ hence $HW(B_\mu) \neq \emptyset \implies \mu \in X^+$.

Lemma: In the same setup as the statement of the above theorem, we have

- 1. $HW(\mathcal{L}(\lambda)_{\lambda}/q\mathcal{L}(\lambda)_{\lambda}) = \mathbb{Q}v_{\lambda}$,
- 2. if $\mu \neq \lambda$ then $\{x \in L(\lambda)_{\mu} \mid \widetilde{E}_i x \in \mathcal{L}(\lambda) \text{ for all } i\} = L(\lambda)_{\mu}$.

Lemma (lattice determined by highest weight): Let $\mathcal{L} \subseteq L(\lambda)$ be an A-submodule ($\lambda \in X^+$ dominant integral) and $\mathcal{L} = \bigoplus_{\mu} \mathcal{L}_{\mu}$ where $\mathcal{L}_{\mu} = \mathcal{L} \cap (L(\lambda))_{\mu}$; and assume $\mathcal{L}_{\lambda} = Av_{\lambda}$.

- 1. $\tilde{F}_i \mathcal{L} \subseteq \mathcal{L}$ for all i implies $\mathcal{L}(\lambda) \subseteq \mathcal{L}$.
- 2. $\widetilde{E}_i \mathcal{L} \subseteq \mathcal{L}$ for all i implies $\mathcal{L} \subseteq \mathcal{L}(\lambda)$.

19/1

I like chips. Last time we took a look at the lemmas:

Lemma: Let M be the finite-dimensional $U_q(\mathfrak{g})$ -module $L(\lambda)$; assume $(\mathcal{L}(\lambda), B(\lambda))$ is a crystal basis for M. Then:

- 1. $HW(B(\lambda)) = \{v_{\lambda}\},\$
- 2. $\{x \in L(\lambda)_{\mu} \mid \widetilde{E}_i x \in \mathcal{L}(\lambda) \forall i\} = \mathcal{L}(\lambda)_{\mu} \text{ for all } \mu \neq \lambda.$

Proof:

- 1. The relation " \supseteq " is clear. For the converse, suppose $0 \neq b \in HW(B(\lambda))$ and we can express $b = \widetilde{F}_{i_r} \dots \widetilde{F}_{i_1} v_{\lambda}$. If r > 0 then we can set $b' = \widetilde{F}_{i_{r-1}} \dots \widetilde{F}_{i_1} v_{\lambda}$. We have $0 \neq b = \widetilde{F}_{i_r} b'$ and thus by the defining property of crystal bases we have $\widetilde{E}_{i_r} b = b' \neq 0$ which contradicts $b \in HW(B(\lambda)) \Longrightarrow r = 0$.
- 2. As before, the relation " \supseteq " is clear; and for the converse suppose $0 \neq x \in L(\lambda)_{\mu}$ with $\widetilde{E}_i x \in \mathcal{L}(\lambda)_{\mu}$. Since $\mathcal{L}(\lambda)_{\mu}$ spans $\mathcal{L}(\lambda)_{\mu}$ over $k = \mathbb{Q}(q)$ it follows that there exists r such that $q^r x \in \mathcal{L}(\lambda)$ (by definition of localisation). If we pick r to be minimal, then $r > 0 \Longrightarrow \widetilde{E}_i(q^r x) = q^r \widetilde{E}_i(x) \in q \mathcal{L}(\lambda)$ for all i thus $\widetilde{E}_i(\overline{q^r x}) = 0 \in \mathcal{L}(\lambda)/q \mathcal{L}(\lambda)$. By last time's lemma it follows that $\overline{q^r x} = 0$ or $q^r x \in HW(L(\lambda)_{\mu})$. Since we are assuming $(\mathcal{L}(\lambda), B(\lambda))$ is a crystal basis we get that $HW(\mathcal{L}(\lambda)_{\mu}) = \emptyset$ thus necessarily $q^r x = 0$ which contradicts r > 0. \square

Lemma (Admissible lattices are determined by their highest weights): Assume \mathcal{L} is an A-submodule of $L(\lambda)$ where $\lambda \in X^+$.

Assume $\mathcal{L}_{\lambda} = Av_{\lambda}$. Then

- 1. $\tilde{F}_i \mathcal{L} \subseteq \mathcal{L}$ for all $i \Longrightarrow \mathcal{L}(\lambda) \subseteq \mathcal{L}$.
- 2. $\widetilde{E}_i \mathcal{L} \subseteq \mathcal{L}$ for all $i \Longrightarrow \mathcal{L} \subseteq \mathcal{L}(\lambda)$.

Proof: $L(\lambda) = Av_{\lambda} = L_{\lambda}$ by construction of $\mathcal{L}(\lambda)$ so:

- 1. Clear by the definition of $\mathcal{L}(\lambda)$.
- 2. We argue by induction on the partial order of the weights. $x \in \mathcal{L}_{\mu} \Longrightarrow \widetilde{E}_i x \in \mathcal{L}_{\mu+\alpha_i}$ and by induction we have $\mathcal{L}(\lambda)_{\mu+\alpha_i}$ for all i. Thus by the previous lemma we have that $x \in \mathcal{L}(\lambda)_{\mu\cdot\Box}$

Now we have a result which - in the prof's words - is a bit strange.

Theorem: *If* (!!) $L(\lambda)$ has a crystal basis, then $(\mathcal{L}(\lambda), B(\lambda))$ is a crystal basis.

Proof: We have the following - slightly more general - claim

Let $M \cong \mathcal{L}(\lambda)^{\oplus r}$ for $r \geq 0$ and suppose (\mathcal{L}, B) is a crystal basis for M. If $HW(B) = B_{\lambda}$ then there exists some U_q -homomorphism $\phi_j : L(\lambda) \to M$ for $1 \leq j \leq r$ such that

- $M = \bigoplus_{j=1}^r \phi_j(L(\lambda)),$
- $\mathcal{L} = \bigoplus_{j=1}^r \phi_j(\mathcal{L}(\lambda)),$
- $B = \bigsqcup_{j=1}^r \overline{\phi_j}(B(\lambda)).$

Assuming the claim we have that by the previous lemma each $(\phi_j(\mathcal{L}(\lambda), \overline{\phi_j}(B(\lambda))))$ is a crystal basis of $\mathrm{im}\phi_j$ for all $j=1,\ldots,r$.

Now since $\phi_j: L(\lambda) \to \operatorname{im} \phi_j$ is an isomorphism of U_q -modules we get that $(\mathcal{L}(\lambda), B(\lambda))$ is a crystal basis of $L(\lambda)$. Sketch of proof of claim (Jantzen 9.9)

- 1. $r = \dim M_{\lambda} = (B_{\lambda})$ and let $B_{\lambda} = \{b_1, \dots, b_r\}$. Pick lifts $v_1, \dots, v_r \in M_{\lambda}$. By the Nakayama lemma (applied to the ring $\mathbb{Q}[q]_{(q)}$) we have that v_1, \dots, v_r are a basis of M_{λ} . These define U_q -homomorphisms $L(\lambda) \to U_q v_j$ for $1 \le j \le r$ mapping v_{λ} to v_j for each j.
- 2. evidently we have $\phi_i(\mathcal{L}(\lambda)) \subseteq \mathcal{L}$ and induction of the weights shows equality.
- 3. " \subseteq ": Let $b \in B_{\mu}$. We have the following claim: $b \in \bigcup_{1 \leq j \leq r} \overline{\phi_j}(B(\lambda))$. For $\mu = \lambda$ this is clear, so we can suppose $\mu < \lambda$.

 We can express $b = \widetilde{F}_i \widetilde{E}_i b$ at least one i since (\mathcal{L}, B) is a crystal basis, so $\widetilde{E}_i b \in \bigcup_{1 \leq j \leq r} \overline{\phi_j}(B(\lambda))$ by induction and so applying \widetilde{F}_i yields $b = \widetilde{F}_i \widetilde{E}_i b \in \widetilde{F}_i (\bigcup_{1 \leq j \leq r} \overline{\phi_j}(B(\lambda))) \subseteq \bigcup_{1 \leq j \leq r} \overline{\phi_i}(B(\lambda))$ by definition of $B(\lambda)$ and \widetilde{F}_i 's action on $B(\lambda)$.
 - "\(\text{\text{\$\infty}\$}:" \) Let $x \in \bigcup_{1 \le j \le r} \overline{\phi_j}(B(\lambda)_\mu)$. Just like before we have that if $\lambda = \mu$ then evidently $x \in B$ by definition; and if $\mu < \lambda$, so there exists i such that $y \in B(\lambda)_{\mu + \alpha_i} \implies \widetilde{F}_i y = x$ and by induction we have $\overline{\phi_j}(y) \in B \implies \widetilde{F}_i(\overline{\phi_j}(y)) = \overline{\phi_j}(\widetilde{F}_i(y)) = \overline{\phi_j}(x) \in B$. \square

The following proposition has a similar proof kinda.

Proposition: Let M be a finite dimensional U_q -module, λ a maximal weight and (\mathcal{L}, B) a crystal basis of M. If $M = N_1 \oplus N_2$ with N_i =isotypical component of $L(\lambda)$ and set $\mathcal{L}_i := \mathcal{L} \cap N_i, B_i = B \cap \mathcal{L}_i/q\mathcal{L}_i$. Then

- 1. $\mathcal{L} = \mathcal{L}_1 \oplus \mathcal{L}_2$ and $B = B_1 \cup B_2$,
- 2. there exists an isomorphism $L(\lambda) \oplus \cdots \oplus L(\lambda) \xrightarrow{\cong} N_i$ mapping "our crystal basis" (namely $(\mathcal{L}(\lambda), B(\lambda))$) to the crystal basis (\mathcal{L}_i, B_i) .

Proof: omitted.

Theorem (uniqueness of the crystal basis): Let $\lambda \in X^+$, and assume $(\mathcal{L}(\lambda), B(\lambda))$ is a crystal basis of $L(\lambda)$. Let (\mathcal{L}, B) also be a crystal basis. Then there exists $0 \neq a \in \mathbb{Q}(q)$ such that $\mathcal{L} = a\mathcal{L}(\lambda)$ and

$$\mathcal{L}(\lambda)/g\mathcal{L}(\lambda) \xrightarrow{\cong} \mathcal{L}/g\mathcal{L}$$

 $x \mapsto ax$

sending $B(\lambda)$ to B (set-theoretically).

Proof: If $M = L(\lambda)$ then $N_1 = L(\lambda)$ as in the previous proposition, so we have an isomorphism $L(\lambda) \to N_1 \cong L(\lambda)$ of U_q -modules mapping $(\mathcal{L}(\lambda), B(\lambda))$ to (\mathcal{L}, B) which must be an isomorphism given by multiplication by some scalar $a \in \mathbb{Q}(q)$. \square

Example: Take $\mathfrak{g} = \mathfrak{sl}_2, V = L(q)$ the two-dimensional representation of type 1. As discussed, V has a the "standard" crystal basis $\mathcal{L}(q), B(q)$. **Problem:** $(\mathcal{L}(\lambda) \otimes \mathcal{L}(\lambda), B(\lambda) \otimes B(\lambda))$ - even in this super basi example - is **not** a crystal for $V \otimes V$ any longer:

The reason is because (!!!!) $\Delta(F) = F \otimes K^{-1} + 1 \otimes F \implies \Delta(F)(v_0 \otimes v_0) = q^{-1}v_0 \otimes v_0 + v_0 \otimes v_0$ but we want $F(v_0 \otimes v_0) = \widetilde{F}(v_0 \otimes v_0) \in (\mathcal{L}(\lambda) \otimes \mathcal{L}(\lambda))_0$ for this to be a crystal basis and $(\mathcal{L}(\lambda) \otimes \mathcal{L}(\lambda))_0 \subseteq Av_0 \otimes v_0 + Av_0 \otimes v_1$ which of course goes against $q^{-1} \in A$ (which is basically the whole point of this contruction).

"Easy" solution: Change comultiplication!

Consider the antiautomorphism $\tau: U \to U$ given by $E_i \mapsto F_i, F_i \mapsto E_i, K_i \mapsto K_i$ and set $\Delta' = (\tau \otimes \tau) \circ (\Delta \circ \tau)$ so $\Delta'(F_i) = \tau \otimes \tau(E_i \otimes 1 + K_i \otimes E_i) = F_i \otimes 1 + K_i \otimes F_i$ which solves the problem since there's no K_i^{-1} popping up:)

Remark: Weight spaces are independent of the choice of comultiplication Δ or Δ' , and we actually have an isomorphism

$$V \otimes W \xrightarrow{\cong} V \otimes W$$

of U_q -modules, where the module on the left is defined by the usual comultiplication Δ and the on the right is with Δ' (which is of course not the identity).

Definition: Let (\mathcal{L}, B) be a crystal basis of M a finite-dimensional U_q -module, and let $b \in B$. Define the functions (these shouldn't be anything new):

- 1. $\epsilon_i(b) := \max\{r \geq 0 \mid \widetilde{E}_i^r b \neq 0\},\$
- 2. $\phi_i(b) := \max\{r \ge 0 \mid \widetilde{F}_i b \ne 0\}.$

Theorem: Let M_1 and M_2 be finite-dimensional U_q -modules, and let (\mathcal{L}_i, B_i) be a crystal basis of M_i . Then $(\mathscr{L}_1 \otimes \mathscr{L}_2, B_1 \otimes B_2)$ is a crystal basis for $M_1 \otimes M_2$ with the above U_q -module structure and

$$\begin{split} \widetilde{F}_i(b\otimes b') &= \begin{cases} \widetilde{F}_ib\otimes b' & \text{if } \phi_i(b) > \epsilon_i(b') \\ b\otimes \widetilde{F}_i(b') & \text{if } \phi_i(b) \leq \epsilon_i(b') \end{cases} \\ \widetilde{E}_i(b\otimes b') &= \begin{cases} \widetilde{E}_ib\otimes b' & \text{if } \phi_i(b) \geq \epsilon_i(b') \\ b\otimes \widetilde{E}_i(b') & \text{if } \phi_i(b) < \epsilon_i(b') \end{cases} \end{split}$$

$$\widetilde{E}_{i}(b \otimes b') = \begin{cases} \widetilde{E}_{i}b \otimes b' & \text{if } \phi_{i}(b) \geq \epsilon_{i}(b') \\ b \otimes \widetilde{E}_{i}(b') & \text{if } \phi_{i}(b) < \epsilon_{i}(b') \end{cases}$$

Proof (idea): For fixed i this is just an \mathfrak{sl}_2 -calculation, and we use the isomorphism $(M \oplus N) \otimes P \cong (M \otimes P) \oplus (N \otimes P)$ to reduce to M_i irreductible. Then we simply compute :p \Box

21/1

In our last lecture we introduced the following crystal basis for tensor products of modules whose crystal bases we know:

Theorem: Let M_1 and M_2 be finite-dimensional U_q -modules, and let (\mathcal{L}_i, B_i) be a crystal basis of M_i . Then $(\mathcal{L}_1 \otimes \mathcal{L}_2, B_1 \otimes B_2)$ is a crystal basis for $M_1 \otimes M_2$ with the above U_q -module structure and

$$\widetilde{F}_i(b\otimes b') = \begin{cases} \widetilde{F}_ib\otimes b' & \text{if } \phi_i(b) > \epsilon_i(b') \\ b\otimes \widetilde{F}_i(b') & \text{if } \phi_i(b) \leq \epsilon_i(b') \end{cases}$$

$$\widetilde{E}_{i}(b \otimes b') = \begin{cases} \widetilde{E}_{i}b \otimes b' & \text{if } \phi_{i}(b) \geq \epsilon_{i}(b') \\ b \otimes \widetilde{E}_{i}(b') & \text{if } \phi_{i}(b) < \epsilon_{i}(b') \end{cases}$$

Proof (idea): The following identities are relatively easy to ver

$$\mathbb{Q}(q) \otimes_A (\mathcal{L}_1 \otimes_A \mathcal{L}_2) \cong M_1 \otimes_{\mathbb{Q}(q)} M_2$$

$$\mathcal{L}_1 \otimes_A \mathcal{L}_2 = \bigoplus_{v \in X, \lambda + \mu = v} (\mathcal{L}_1)_{\lambda} \otimes_A (\mathcal{L}_2)_{\mu}$$

$$B_1 \otimes B_2 \subseteq \mathcal{L}_1 \otimes_A \mathcal{L}_2/q(\mathcal{L}_1 \otimes_A \mathcal{L}_2)$$
 is a \mathbb{Q} -basis of $\mathcal{L}_1 \otimes_A \mathcal{L}_2/q(\mathcal{L}_1 \otimes_A \mathcal{L}_2) \cong \mathcal{L}_1/q\mathcal{L}_1 \otimes_{\mathbb{Q}} \mathcal{L}_2/q\mathcal{L}_2$

where by definition (which is implicit in the theorem's statement) $B_1 \otimes B_2 = \bigcup_{v \in V} \bigcup_{\lambda + \mu = v} (B_1)_{\lambda} \otimes (B_2)_{\mu}$. What's missing is to show the theorem for $U_q(\mathfrak{sl}_2)$ (via long calculations) and then restrict to $U_{q_i}(\mathfrak{sl}_2)$.

Then we need to show $\widetilde{E}_i \mathcal{L} \subseteq \mathcal{L}, \widetilde{E}_i B \subseteq B \cup \{0\}$ and analogously $\widetilde{F}_i \mathcal{L} \subseteq \mathcal{L}, \widetilde{F}_i B \subseteq B \cup \{0\}$: this is again an \mathfrak{sl}_2 computation. \Box

This theorem is extremely important because it works as the foundation for the existence of crystal bases for arbitrary modules, via the Grand Loop Argument (Jantzen). Definitely take a look at this from the book :)

Examples: insert image

Observation (lemma): Let $(\mathcal{L}(\lambda), B(\lambda))$ be the "nice" crystal basis of $L(\lambda)$. Let (\mathcal{L}, B) be the crystal basis of M some finite-dimensional U_q -module. Then $HW(B(\lambda) \otimes B_{\mu}) = \{\overline{v}_{\lambda} \otimes b' \mid \widetilde{E}_i^{\langle \lambda, a_i^{\vee} \rangle + 1} b' = 0\}$.

Proof: Assume $b \otimes b' \in HW(B(\lambda) \otimes B_{ii})$. Then $\widetilde{E}_i(b \otimes b') \in \{\widetilde{E}_i b \otimes b', b \otimes \widetilde{E}_i b'\}$; so if $\widetilde{E}_i(b \otimes b') = b \otimes \widetilde{E}_i b'$ then $\varepsilon_i(b') > 0$ $\phi_i(b) \Longrightarrow \epsilon_i(b') > 0 \Longrightarrow b \otimes \widetilde{E}_i b' \neq 0$ which is contradiction since $b \otimes b'$ is of "kashiwara highest weight". So we must necessarily have $0 = \tilde{E}_i b \otimes b' = \tilde{E}_i b \otimes b'$ for all i (since i was arbitrary in the previous remark) and thus $b \in \operatorname{span}\overline{v_{\lambda}}$. Now, $\epsilon_i(b') \leq \phi_i(b) = \langle \lambda, \alpha_i^{\vee} \rangle$ so we're done :) \Box

Remark: We showed that if M is a U_q -module and $M \cong L(\lambda_1) \oplus \cdots \oplus L(\lambda_r)$, then any crystal basis for M is isomorphic to $(\mathcal{L}(\lambda_1) \oplus \cdots \oplus \mathcal{L}(\lambda_r), B(\lambda_1) \oplus \cdots \oplus B(\lambda_r))$.

So if *M* is irreducible then the crystal graph must be connected, and between summands there is no connection. We thus have that in general components of the crystal graph of M correspond to irreducible direct summands of M.

Warning(!): The above is just a *bijection of sets*.

Missing part in my notes: at this point in the lecture I was bewildered by so many cool examples and graphs :) I was so in awe that my fingers literally stopped typing without me noticing.

Abstract crystals

Goal: Define "abstract crystal graphs". Let \mathfrak{g} be a semisimple Lie algebra with Cartan Matrix A, $\pi = \{\alpha_1, \dots, \alpha_n\}$ its set of simple roots, $X = \sum_{i=1}^n \mathbb{Z}\omega_i$ the set of integral dominant weights.

Definition: An (abstract) crystal is a set B together with maps wt : $B \to X$ for i = 1, ..., n, $\phi_i, \epsilon_i : B \to \mathbb{Z} \cup \{-\infty\}$ and $\widetilde{E}_i, \widetilde{F}_i : B \to B \cup \{0\}$ which satisfy

- (C1) $\phi_i(b) = \epsilon_i(b) + \langle \operatorname{wt}(b), \alpha_i^{\vee} \rangle$,
- (C2) $\operatorname{wt}(\widetilde{E}_i b) = \operatorname{wt}(b) + \alpha_i$ and $\operatorname{wt}(\widetilde{F}_i b) = \operatorname{wt}(b) \alpha_i$,
- (C3) $\epsilon(\widetilde{E}_i b) = \epsilon_i(b) 1$, $\phi_i(\widetilde{F}_i b) = \phi_i(b) 1$, $\epsilon_i(\widetilde{F}_i b) = \epsilon_i(b) + 1$, $\phi_i(\widetilde{E}_i b) = \phi_i(b) + 1$,
- (C4) $b, b' \in B$ implies $b' = \widetilde{F}_i b \iff b = \widetilde{E}_i b'$,
- (C5) $b \in B, \phi_i(b) = -\infty \implies \widetilde{E}_i(b) = 0 = \widetilde{F}_i(b) \text{ and } \varepsilon_i(b) = -\infty.$

26/1

Example: Today we started off computing the crystal graph for the tensor product of representations of \mathfrak{sp}_7 , $V_{sp} \otimes V$ where $V_{sp} = L(\omega_{\infty})$ and $V = L(\epsilon_1)$ is the natural representation.

Back to abstract crystals: recall that the setup was we had a semisimple Lie algebra \mathfrak{g} and a set B, and functions $\widetilde{e_i}, \widetilde{f_i}: B \to B \cup \{0\}, \phi_i, \epsilon_i: B \to \mathbb{Z} \cup \{-\infty\}$ and $\operatorname{wt}: B \to X$ where X is the set of integral weights of \mathfrak{g} .

Definition: An abstract crystal is of *finite type* if $-\infty$ doesn't occur as a value for the elements in B. The abstract crystal is *seminormal* if $\phi_i(b) = \max\{k \mid \widetilde{f_i}^k b \neq 0\}$ and $\epsilon_i(b) = \max\{k \mid \widetilde{e_i}^k b \neq 0\}$.

Lemma: Given an abstract crystal of finite type, for all $b \in B$ we have

$$\operatorname{wt}(b) = \sum_{i=1}^{n} (\phi_i(b) - \epsilon_i(b)) \omega_i$$

where ω_i is the *i*-th fundamental weight.

Proof:

$$\langle \operatorname{wt}(b) - \sum_{i=1}^{n} (\phi_i(b) - \epsilon_i(b)) \omega_i, \alpha_j^{\vee} \rangle = \langle \operatorname{wt}(b), \alpha_j^{\vee} \rangle - (\phi_j(b) - \epsilon_j(b)) \stackrel{\text{(C3)}}{=} 0$$

by the abstract crystals axioms.

Examples:

- 1. $(\mathcal{L}(\lambda), B(\lambda))$ crystal basis of $L(\lambda)$ irreducible and finite-dimensional for $U_q(\mathfrak{g})$ defines a seminormal abstract crystal basis of finite type.
- 2. (the "stupid crystal") $T(\lambda)$ for $\lambda \in X$ is defined by $B = \{*\}$, $\operatorname{wt}(*) = \lambda$, $\widetilde{e_i}(*) = 0 = \widetilde{f_i}(*)$ and $e_i(*) = -\infty = \phi_i(*)$ for all i, which is neither of finite type nor seminormal.
- 3. $B(\infty)$ of type A_1 is defined by the infinite crystal graph

$$b_0 \xrightarrow{1} b_{-1} \xrightarrow{1} b_{-2} \xrightarrow{1} \dots$$

where $\epsilon_1(b_{-j}) = j$, $\phi_1(b_{-j}) = -j$ and $\text{wt}(b_{-j}) = -2j$.

Remark: We have a notion of "tensor products" of abstract crystals: $\widetilde{e_i}$ and $\widetilde{f_i}$ are defined on the product of the two bases B_1 and B_2 as $\widetilde{E_i}$ and $\widetilde{F_i}$ were defined in the standard setting and furthermore

$$wt(b \otimes b') = wt(b) + wt(b')$$

$$\phi_i(b \otimes b') = \max\{\phi_i(b), \phi_i(b') + \langle wt(b), \alpha_i^{\vee} \rangle\}$$

$$\epsilon_i(b \otimes b') = \max\{\epsilon_i(b), \epsilon_i(b) - \langle wt(b'), \alpha_i^{\vee} \rangle\}.$$

Where do crystals pop up in real life?

Littelmann's path model

Construction: Let X be the integral weight lattice for some semisimple Lie algebra \mathfrak{g} , and define $X_{\mathbb{Q}} := \mathbb{Q} \otimes_{\mathbb{Z}} X$ and

$$\widetilde{\pi} := \{ \text{continuous piecewise linear maps } \phi : [0,1] \to X_{\mathbb{Q}}, \phi(0) = 0 \}$$

and $\mathbb{Z}\pi$ the free \mathbb{Z} -module with basis π where $\pi = \tilde{\pi}/\sim$ for an equivalence relation \sim which we'll define later.

Ideal: Define on $\mathbb{Z}\pi$ actions of $\widetilde{e_i}$ and $\widetilde{f_i}$ to get an abstract crystal. For each $\lambda \in X$ we can construct the element $\phi_\lambda \in \widetilde{\pi}$ the straight-line path from 0 to λ . Let $M(\lambda) = \mathscr{E}$ -submodule of $\mathbb{Z}\pi$ generated by ϕ_λ where $\mathscr{E} \subseteq \operatorname{End}_{\mathbb{Z}}(\mathbb{Z}\pi)$ generated by $\widetilde{e_i}$, $\widetilde{f_i}$.

Theorem: Let $B(\lambda) = M(\lambda) \cap \pi$ paths in $M(\lambda)$. For every $\lambda \in X^+$ we have

$$\sum_{\phi \in B(\lambda)} e^{\phi(1)} = \mathrm{char} L(\lambda)$$

The above theorem is our objective: we're interested in expressing the character $char L(\lambda)$ in terms of this loop construction; we can now return and fill in the blanks in our definitions.

Definition: $\phi_1, \phi_2 \in \widetilde{\pi}$ are (\sim) equivalent is $\exists \gamma : [0,1] \to [0,1]$ a piecewise linear continuous surjective map such that $\phi_2 = \phi_1 \circ \gamma$.

Pick now $\alpha = \alpha_1$ a simple root; we're interested in defining $\widetilde{e_\alpha}$ and $\widetilde{f_\alpha}$.

2/2/22

Remark (Generalised Littlewood-Richardson rule): In terms of the Littlemann path model, given $\phi_1, \phi_2 \in \Pi$ with image in the closure of the dominand Weyl chamber, let $\phi_1(1) = \lambda$, $\phi_2(1) = \mu$. We have the formula

$$L(\lambda)\otimes L(\mu)=\bigoplus_{\pi\in W}L(\pi(1))$$

where W is the set of paths in Π such that the image is in closure of dominant Weyl chamber and $\pi = \phi * \eta$ where η is contained among the paths attached to $L(\mu)$.

Geralities on Geometric Realisations: Fix a field k; given any set X we denote by $\operatorname{Func}_k(X)$ the set {maps $f: X \to k$ }. Assume $\pi: A \to B$ is a map of sets and define $\pi^*: \operatorname{Func}_k(B) \to \operatorname{Func}_k(A)$ as $f \mapsto f \circ \pi$. If π has finite fibres then define $\pi_!: \operatorname{Func}(A) \to \operatorname{Func}(B)$ as $f \mapsto (\pi_!(f): b \mapsto \sum_{a \in \pi^{-1}(b)} f(a)$.

Appendix: things that came before the 24th of November

Unfortunately I began to work on these notes relatively late after the course started, so - in preparation for my oral exam in a few days - I collect in this appendix a few propositions and theorems which were discussed before; most of the arguments here are either from my memory and some references which Prof. Stroppel didn't quite follow by the letter or by a sheer replication of my friend Lukas' notes.

Representation theory for $U_q(\mathfrak{sl}_2)$

Definition: k be any field and $q \in k^{\times}$ a non-zero element whose square isn't one. Define the *quantum universal* enveloping algebra for \mathfrak{sl}_2 as the k-algebra generated by elements E, F, K, K^{-1} with the relations

$$EF - FE = \frac{K - K^{-1}}{q - q^{-1}}, \ KEK^{-1} = q^2E, \ KFK^{-1} = q^{-2}F, \ KK^{-1} = K^{-1}K = 1.$$

We have a natural \mathbb{Z} -grading for $U_q(\mathfrak{sl}_2)$ defined by

$$\deg E = 1$$
, $\deg F = -1$, $\deg K = \deg K^{-1} = 0$

which is well defined by the above prescriptions since $U_q(\mathfrak{sl}_2)$'s defining relations are homogeneous. The following theorem is pretty much essential for all practical computations:

Theorem: The set of monomials $S = \{F^a K^b E^c \mid a, c \in \mathbb{Z}_{\geq 0}, b \in \mathbb{Z}\} \subseteq U_q(\mathfrak{sl}_2)$ forms a basis for $U_q(\mathfrak{sl}_2)$ over k.

Proof: The set Span S is stable under multiplication by E,F and $K^{\pm 1}$ by the following computations

$$F \cdot F^a K^b E^c = F^{a+1} K^b E^c$$

$$K \cdot F^a K^b E^c = q^{-2a} F^a K^{b+1} E^c$$

$$K^{-1} \cdot F^a K^b E^c = q^{2a} F^a K^{b-1} E^c$$

and lastly, by induction we can show the following very important relation (from now on referred to as the *EF* relation):

$$EF^a = F^aE + [\alpha]_qF^{\alpha-1}[K;1-\alpha]$$

where [K;n] is defined by $[K;n]:=\frac{q^nK-q^{-n}K^{-1}}{q-q^{-1}}$: the base case n=1 follows straight from $U_q(\mathfrak{sl}_2)$'s construction, and if we suppose

$$EF^{a} = F^{a}E + [a]_{q}F^{a-1}\frac{q^{1-a}K - q^{a-1}K^{-1}}{q - q^{-1}}$$

then multiplying on the left by F yields

$$\begin{split} EF^{a+1} &= F^a EF + [a]_q F^{a-1} \frac{q^{1-a}K - q^{a-1}K^{-1}}{q - q^{-1}} \cdot F = F^{a+1}E + F^a \cdot \frac{K - K^{-1}}{q - q^{-1}} + [a]_q F^a \frac{q^{-a-1}K - q^{a+1}K^{-1}}{q - q^{-1}} \\ &= F^{a+1}E + F^a \cdot (\frac{K - K^{-1} + (q^{a-1} + q^{a-3} + \dots + q^{3-a} + q^{1-a}) \cdot (q^{a+2}K - q^{-a-2}K^{-1})}{q - q^{-1}}) \\ &= F^{a+1}E + [a+1]_q F^a \frac{q^{-a}K - q^a K^{-1}}{q - q^{-1}}. \end{split}$$

From this it follows that

$$E \cdot F^a K^b E^c = q^{2b} F^a K^b E^{c+1} + [a]_q \frac{q^a F^{a-1} K^{b+1} E^c - q^{-a} F^{a-1} K^{b-1} E^c}{q - q^{-1}}$$

which shows our claim. Since evidently $1 \in \operatorname{Span} S$ it follows that $\operatorname{Span} S = U_q(\mathfrak{sl}_2)$. To show linear independence, we construct a representation V for $U_q(\mathfrak{sl}_2)$: let V be the k-vector space given by the localised polynomial ring $k[x,y^{\pm 1},z]$, and define $U_q(\mathfrak{sl}_2)$'s action on V reflecting our above calculations:

$$\begin{split} F \cdot x^a y^b z^c &:= x^{a+1} y^b z^c \\ K \cdot x^a y^b z^c &:= q^{-2a} x^a y^{b+1} z^c \\ E \cdot x^a y^b z^c &:= q^{2b} x^a y^b z^{c+1} + [a]_q \frac{q^a x^{a-1} y^{b+1} z^c - q^{-a} x^{a-1} y^{b-1} z^c}{q - q^{-1}} \end{split}$$

If we thus suppose we have a zero-linear combination of the elements in S

$$0 = \sum_{a,b,c} \lambda_{a,b,c} F^a K^b E^c$$

then applying this linear combination to $1 \in V$ yields

$$0 = \sum_{a,b,c} \lambda_{a,b,c} x^a y^b z^c$$

which of course shows that each coefficient $\lambda_{a,b,c}$ must be zero since the monomials $x^ay^bz^c$ form a basis for V.

Remark: Note that $U_q(\mathfrak{sl}_2)$ also possesses another decomposition, aside from the grading described earlier: the linear endomorphism $u \in U_q(\mathfrak{sl}_2) \to KuK^{-1} \in U_q(\mathfrak{sl}_2)$ is indeed diagonalisable by our previous theorem (indeed, every element in S is an eigenvector) and the element $u = F^aK^bE^c$ has eigenvalue q^{2c-2a} ; thus, if q is not a root of unity each of these eigenvalues is distinct from any other and thus the decomposition for $U_q(\mathfrak{sl}_2)$ into eigenspaces of conjugation by K coincides with our initial grading. When $q^l = 1$ for some $l \in \mathbb{Z}$ however matters get a little more complicated; this motivates why we begin by analysing $U_q(\mathfrak{sl}_2)$'s representation theory when $q^l \neq 1$ for all $l \in \mathbb{Z}$.

Construction: Let $U_q(\mathfrak{sl}_2)^{\geq 0} \subseteq U_q(\mathfrak{sl}_2)$ be the subalgebra generated by E,K and K^{-1} - i.e. the analogue of the Borel subalgebra in the classical setting. $U_q^{\geq 0}(\mathfrak{sl}_2)$ possesses for every $\lambda \in k^*$ a one-dimensional representation k_λ spanned over k by v defined by

$$Ev := 0$$

$$Kv := \lambda v$$

$$K^{-1}v := \lambda^{-1}v$$

The induced representation

$$\operatorname{Ind}_{U_q^{\geq 0}(\mathfrak{sl}_2)}^{U_q(\mathfrak{sl}_2)}(k_\lambda) = U_q(\mathfrak{sl}_2) \otimes_{U_q^{\geq 0}(\mathfrak{sl}_2)} k_\lambda := M(\lambda)$$

is called the *Verma module of highest weight* λ or the *standard cyclic module of highest weight* λ . By the previous theorem it's easy to see that a basis for $M(\lambda)$ is given by the following vectors

$$\{v, Fv, F^2v, F^3v, \ldots\}$$

and furthermore, by the "restrictions / extensions" adjunction, $M(\lambda)$ satisfies the so-called "Verma-module universal property" (a name which I'm come to dislike a little :/): for every $U_q(\mathfrak{sl}_2)$ -module V we have the following natural bijection

$$\operatorname{Hom}_{U_q(\mathfrak{sl}_2)}(M(\lambda),V) \cong \operatorname{Hom}_{U_q^{\geq 0}(\mathfrak{sl}_2)}(k_{\lambda},\operatorname{Res}_{U_q(\mathfrak{sl}_2)}^{U_q^{\geq 0}(\mathfrak{sl}_2)}(V)) \cong \{v \in V \mid Kv = \lambda v \text{ and } Ev = 0\}.$$

Theorem: Let $\lambda \in k$ be any scalar, and suppose $q \in k \times isn't$ a root of unity.

- 1. If λ is $\lambda \notin \{\epsilon q^n \mid \epsilon \in \{\pm 1\}, n \in \mathbb{Z}_{\geq 0}\}$ (i.e. λ is not *dominant integral*) then $M(\lambda)$ is an irreducible $U_q(\mathfrak{sl}_2)$ -module.
- 2. if $\lambda = \epsilon q^n$ for some $\epsilon \in \{\pm 1\}$ and $n \in \mathbb{Z}_{\geq 0}$ then $M(\lambda) = M(\epsilon q^n)$ has precisely one submodule N isomorphic to $M(\epsilon q^{-(n+2)})$ generated over $U_q(\mathfrak{sl}_2)$ by $F^{n+1}v$ and the quotient $M(\epsilon q^n)/N$ is finite dimensional.

Proof: We first make a very general claim, which has an analogue in pretty much every setting in this course:

Let M be a (possibly infinite-dimensional) $U_q(\mathfrak{sl}_2)$ -module which has a decomposition $M = \bigoplus_{\lambda} M_{\lambda}$ into eigenspaces for K (i.e. into weight spaces). Then every submodule $N \subseteq M$ also admits a decomposition into weight spaces.

Proof of claim: Given any $n \in N$ expressed as a sum of weight vectors

$$n = \sum_{\lambda} m_{\lambda}, m_{\lambda} \in M_{\lambda}$$

we show that each m_{λ} lies in $N_{\lambda} = M_{\lambda} \cap N$. If by contradiction there existed some $n \in N$ such that, when expressed as before, not all m_{λ} lie in N, then we certainly have that the number of such terms which don't lie in N must be greater strictly than one - if m_{λ_0} is the only term not in N we would have

$$m_{\lambda_0} = n - \sum_{\lambda \neq \lambda_0} m_{\lambda} \in N.$$

However, if we take $n \in N$ such that the number $\#\{\lambda \mid m_\lambda \notin N\}$ is minimal, then for any λ_0 such that $m_\lambda \notin N$ we have

$$Kn - \lambda_0 n = \sum_{\lambda} \lambda m_{\lambda} - \lambda_0 m_{\lambda}$$

which is an element in N that has precisely one term less than n not lying in N. This contradicts n's minimality.

If we now go back to discussing our theorem, if $N\subseteq M(\lambda)$ is any submodule, then it must be a direct sum of the one-dimensional weight spaces $\operatorname{Span} F^n v$. However, note that by the EF-relation we have that $EF^n v = [n]_q \frac{q^n \lambda - q^{-n} \lambda^{-1}}{q - q^{-1}} F^{n-1} v$ which is a non-zero element of the weight space $\operatorname{Span} F^{n-1} v$ for every n if λ isn't of the form $\pm q^n$ for some $n \geq 0$ - we have that $[n]_q \neq 0$ for all n since q isn't a root of unity, and $q^n \lambda = q^{-n} \lambda^{-1}$ only if $\lambda = \pm q^n$. This implies that in case 1. (iteratively applying E to any element in $N \cap \operatorname{Span} F^n v \neq 0$) N contains some non-zero scalar multiple of v and must thus coincide with N.

As for case 2. it follows that $M(\pm q^n)$'s only submodule is spanned by $F^{n+1}v$ its unique highest weight vector different to v, which is evidently isomorphic to $M(\pm q^{-(n-2)})$ (since $F^{n+1}v$ has weight $\pm q^{-(n-2)}$) and by the PBW basis for $M(\pm q^{-(n-2)})$ discussed above. \Box

The finite dimensional module $M(\pm q^n)/M(\pm q^{-(n+2)})$ is denoted by $L(q^n,\pm)$ or $L(n,\pm)$ and is crucial for the classification of $U_q(\mathfrak{sl}_2)$ -modules.

Proposition: Let q be a non-root of unity and M a finite-dimensional $U_q(\mathfrak{sl}_2)$ -module. Then M decomposes into a direct sum of weight spaces.

Proof: Suppose $r \ge 0$ is such that $F^rM = 0$. Define the following elements in $U_q(\mathfrak{sl}_2)$ for $s = 0, \ldots, r$:

$$h_s := \prod_{j=-(s-1)}^{s-1} [K; s-r+j] = \prod_{j=-(s-1)}^{s-1} \frac{q^{s-r+j}K - q^{r-s-j}K^{-1}}{q-q^{-1}}.$$

For s = 0 we have $h_0 = 1$ and thus $F^r h_0 M = 0$. By induction on s we have that $F^{r-s} h_s M = 0$:

$$m \in M, \ F^{r-s} \prod_{j=-(s-1)}^{s-1} \frac{q^{s-r+j}K - q^{r-s-j}K^{-1}}{q-q^{-1}} \cdot m = 0$$

⇒ ... I thought this would be swifter but it had me invested much more than expected.

For s = r we thus obtain that $h_r M = 0$ and thus K satisfies the polynomial equation

$$\prod_{j=-(r-1)}^{r-1} \frac{q^{j}t - q^{-j}t^{-1}}{q - q^{-1}}$$

whose roots are all distinct and equal to $\pm q^j$ since q isn't a root of unity. \Box The following simple fact comes from one of the course's exercise sheets.

Proposition: Let $q \in k^{\times}$ be a non-root of unity, M any finite-dimensional $U_q(\mathfrak{sl}_2)$ -module. Then E and F act as nilpotent endomorphisms on M.

Proof: Let $p(T) \in k[T]$ be the minimal polynomial of the endomorphism given by the action of K on M. If $p(T) = p_1^{d_1}(T) \dots p_s^{d_s}(T)$ is its factorisation into irreducible factors then M decomposes as a direct sum $M = M_1 \oplus \dots \oplus M_s$ where $M_i = \ker(q_i^{d_i}(K))$. Note that $EK = q^2KE$ implies $f(q^2K)E = Ef(K)$ for every polynomial $f \in k[T]$, hence $E \ker f(K) \subseteq \ker(f(q^2K))$ and in general $E^j \ker f(K) \subseteq \ker(f(q^{2j}K))$. However, since $p_i^{d_i}(q^{2j}T)$ is coprime to $p_i^{d_i}(T)$ for every i,j because $q \neq \sqrt{1}$, they have the same degree and the same non-zero constant term (note that K is invertible and thus $T \nmid p(T)$). It follows that for every i we have that either $EM_i \subseteq M_j$ for some $j \neq i$ - if $p_i(q^2T) = p_j(T)$ - or $EM_i = 0$. Since the M decomposes as the direct sum of the M_i 's and these are fintely many, it follows that $E^rM = 0$ for some $r \geq 1$. Applying the Cartan involution yields that $\omega(E)^r = F^r$ also acts as zero on M. \square

Remark: From these simple results it follows that all finite-dimensional irreducible $U_q(\mathfrak{sl}_2)$ -modules M are isomorphic to $L(n,\epsilon)$ for some $n\in\mathbb{Z}_{\geq 0}$ and $\epsilon\in\{\pm 1\}$: whenever $m\in M$ is a weight vector of weight $\pm q^n$, we have that $Em\in M$ is also a weight vector, of weight q^{n+2} ; since M decomposes as a direct sum of weight spaces and E acts nilpotently on M, it follows that (iteratively applying E) there must exist $m\in M_{\pm q^n}$ for some $n\geq 0$ such that Em=0. Thus by $M(\pm q^n)$'s property we have a surjective (since M is irreducible) $U_q(\mathfrak{sl}_2)$ -homomorphism $M(\pm q^n)\to M$ which must necessarily factor through to an isomorphism $L(n,\pm)\stackrel{\cong}{\longrightarrow} M$ because M is finite dimensional and $M(\pm q^n)$ only has one quotient.

Definition: We define the Casimir element in $U_q(\mathfrak{sl}_2)$ to be

$$C = FE + \frac{[K;1]}{q-q^{-1}} = FE + \frac{qK-q^{-1}K}{(q-q^{-1})^2}.$$

A pretty quick computation shows that C commutes with K, K^{-1}, E and F thus $C \in Z(U_q(\mathfrak{sl}_2))$.

Remark: C is a handy took for *separating* representations: C must act as a scalar on $M(\lambda)$ for all λ since $M(\lambda)$ is generated over $U_q(\mathfrak{sl}_2)$ by just one vector, and suppose C acts as the same scalar on $M(\lambda)$ and $M(\mu)$ for two scalars $\lambda, \mu \in k^{\times}$.

These scalars are easily computed to be (via C's action on the highest weight vector)

$$rac{q\lambda-q^{-1}\lambda^{-1}}{(q-q^{-1})^2}$$
 on $M(\lambda)$ and

$$\frac{q\mu - q^{-1}\mu^{-1}}{(q - q^{-1})^2}$$
 on $M(\mu)$

so we must have either $\lambda = \mu$ or $\lambda = q^{-2}\mu^{-1}$. Note that if either λ or μ is dominant integral then we necessarily have that **the other isn't**: C acts as the same scalar on $L(n,\epsilon)$ and $L(m,\epsilon')$ if and only if n=m and $\epsilon=\epsilon'$. For each $\lambda \in k^{\times}$ denote by $c(\lambda) = \frac{q\lambda - q^{-1}\lambda^{-1}}{(q-q^{-1})^2}$ this scalar.

Theorem: Suppose $q \in k^{\times}$ isn't a root of unity and M is a finite-dimensional $U_q(\mathfrak{sl}_2)$ -module. Then M is a direct sum of irreducible $U_q(\mathfrak{sl}_2)$ -modules.

Proof: Let $M_0=(0)\subseteq M_1\subseteq M_2\subseteq \cdots\subseteq M_r=M$ be a composition series for M, so each quotient M_i/M_{i-1} for $i=1,\ldots,r$ is isomorphic to some $L(\lambda_i)$ for some $\lambda_i\in X^+:=\{\pm q^n\mid n\in\mathbb{Z}_{\geq 0}\}$, on which C acts as $c(\lambda_i)$ (since $L(\lambda_i)$ is a quotient of $M(\lambda_i)$). Thus the polynomial $(t-c(\lambda_1))\ldots(t-c(\lambda_r))$ annihilates C and hence M is a direct sum of C's generalised eigenspaces $M_{(v)}=\{m\in M\mid (C-v\operatorname{id}_M)^k\cdot m=0 \text{ for some } k\geq 0\}$ for $\mu\in k$ (if each of the λ_i 's were different then C would be diagonalisable).

Since $C \in U_q(\mathfrak{sl}_2)$ is central it follows that each $M_{(v)}$ is actually a $U_q(\mathfrak{sl}_2)$ -submodule of M's, so to argue M's semisimplicity it's enough to show each $M_{(v)}$ is a direct sum of its simple $U_q(\mathfrak{sl}_2)$ -submodules. Assume thus without loss of generality that $M = M_{(v)}$, and hence that the Casimir $C \in U_q(\mathfrak{sl}_2)$ acts as the same scalar on each of M's composition factors, thus M only has one composition factor by our previous remarks: $\lambda_i = \lambda$ for all $i = 1, \ldots, r$. By the previous proposition we have that all submodules of M are spanned by M's weight vectors, therefore, since each quotient $M_i/M_{i-1} \cong L(\lambda)$ has a one-dimensional weight space relative to the weight λ , it follows that M_λ has dimension precisely r the number of M's composition factors. Let $v_1, \ldots, v_r \in M_\lambda$ be a basis for M's λ -weight space and we thus have a homomorphism of $U_q(\mathfrak{sl}_2)$ -modules $\phi: \bigoplus_{i=1}^r L(\lambda) \to M$ mapping surjectively onto M's $U_q(\mathfrak{sl}_2)$ -subspace generated by v_1, \ldots, v_r . ϕ must be injective since its kernel must be a $U_q(\mathfrak{sl}_2)$ -submodule of $\bigoplus_{i=1}^r L(\lambda)$'s,

subspace generated by $v_1, ..., v_r$. ϕ must be injective since its kernel must be a $U_q(\mathfrak{sl}_2)$ -submodule of $\bigoplus_{i=1}^r L(\lambda)$'s, and hence - if non-zero - it must contain a highest weight vector $v \in \ker \phi$ which must of course be a linear combination of each of the highest weight vectors for the direct summands $L(\lambda), ..., L(\lambda)$; since these r vectors are send to the linearly independent vectors $v_1, ..., v_r$, we get that $\ker \phi$ can have no such highest weight vector and thus $\ker \phi = 0$.

As for surjectivity, note that the $U_q(\mathfrak{sl}_2)$ -module $M/\mathrm{im}\,\phi$ must only have copies of $L(\lambda)$ as its composition facts, since it is a quotient of M; however the weight space $(M/\mathrm{im}\,\phi)_\lambda$ is zero dimensional, which indicates by our previous remarks that $M/\mathrm{im}\,\phi$ can't have any composition factors isomorphic to $L(\lambda)$; thus $M/\mathrm{im}\,\phi=0$ and ϕ is an isomorphism. \Box

We can now consider the case in which $q^l=1$ for some $l\geq 0$. Just as we utilised the Casimir's existence in $Z(U_q(\mathfrak{sl}_2))$ to study $U_q(\mathfrak{sl}_2)$'s representation theory previously, in this case it turns out to be quite useful to introduce other distinguished elements in $U_q(\mathfrak{sl}_2)$'s centre.

Remark: We have that $q^l=1 \Longrightarrow [l]_q=\frac{q^l-q^{-l}}{q-q^{-1}}=0$ since $q^{2l}=1$ and in fact we actually have $[l']_q=0$ where

$$l' = \begin{cases} \frac{l}{2} & l \text{ even} \\ l & l \text{ odd} \end{cases}$$

This implies by the EF-relations that the elements $E^{l'}$, $F^{l'}$, $K^{\pm l'}$ lie in $Z(U_q(\mathfrak{sl}_2))$.

By the PBW theorem it follows that $U_q(\mathfrak{sl}_2)$ has an abelian polynomial subalgebra $P = k[E^{l'}, F^{l'}, K^{\pm l'}] \subseteq U_q(\mathfrak{sl}_2)$ such that $U_q(\mathfrak{sl}_2)$ is a finite P-module (generated by elements $\{E, E^2, \dots, E^{l'-1}, F, F^2, \dots, F^{l'-1}, K^{\pm 1}, \dots, K^{\pm (l'-1)}\}$).

Construction: Let $\lambda \in k^{\times}$ be any element and consider the Verma module $M(\lambda)$ generated by the highest weight vector $v_{\lambda} \in M(\lambda)$. The EF-formula implies that $F^{l'}v$ is also highest weight (once again, because $[l']_q = 0$), so we have submodule $N = U_q(\mathfrak{sl}_2) \cdot (F^{l'}v_{\lambda} - bv_{\lambda}) \subseteq M(\lambda)$ for any $b \in k$, which is proper since $v_{\lambda} \notin N$ (in particular, if q is a root of unity $M(\lambda)$ is *never* irreducible). Define the *baby Verma module* as the finite dimensional quotient $M(\lambda,b) := M(\lambda)/N$.

 $M(\lambda,b)$ has a weight space decomposition induced by that of $M(\lambda)$ with weights $W(M(\lambda)) = \{\lambda,q^{-2}\lambda,\ldots,q^{-2(l'-1)}\lambda\}$ such that each weight space $M(\lambda,b)_{q^{-2i}\lambda}$ is one dimensional and spanned by F^iv_λ . We have the following description of how E,F and $K^{\pm 1}$ act on this weight space:

$$\begin{split} E \cdot v_{\lambda} &= 0, \qquad E \cdot F^i v_{\lambda} = [i]_q \frac{q^{1-i} \lambda - q^{i-1} \lambda^{-1}}{q - q^{-1}} F^{(i-1)} v_{\lambda} \qquad \text{for } i = 1, \dots, l' - 1 \\ F \cdot F^{l'-1} v_{\lambda} &= b v_{\lambda}, \qquad F \cdot F^i v_{\lambda} = F^{i+1} v_{\lambda} \qquad \text{for } i = 0, \dots, l' - 2, \\ K^{\pm 1} \cdot F^i v_{\lambda} &= (q^{-2i} \lambda)^{\pm 1} F^i v_{\lambda}. \end{split}$$

From this we can see that if $q^{1-i}\lambda \neq q^{i-1}\lambda^{-1}$ for all $i=1,\ldots,l'$ (i.e. $\lambda \neq \pm q^i$ for any i) then any submodule of $M(\lambda,b)$'s must contain the highest weight vector v_λ and must thus be equal to $M(\lambda,b)$.

Analogously (this time appealing to F's action rather than E's) we have that $b \neq 0$ also implies all submodules of $M(\lambda, b)$ contain v_{λ} .

So the only case in which $M(\lambda,b)$ could possibly not be irreducible is when $\lambda=\pm q^i$ and b=0. In this case the above formulas show that $F^{i+1}v_\lambda$ is highest weight and generated a submodule isomorphic to $L(q^iq^{-2i-2},\pm)=L(q^{-i-2},\pm)$ whereas the quotient $M(\pm q^i,0)/U_q(\mathfrak{sl}_2)F^{i+1}v_\lambda$ is isomorphic to $L(q^i,\pm)$; note that the sequence

$$0 \rightarrow L(q^{-i-2}, \pm) \rightarrow M(\pm q^i, 0) \rightarrow L(q^i, \pm) \rightarrow 0$$

is non-split.

Classification of irreducible $U_q(\mathfrak{sl}_2)$ -modules: Suppose k is algebraically closed, $q^l=1$ and M a finite-dimensional irreducible $U_q(\mathfrak{sl}_2)$ -module. Since each element $E^{l'}, F^{l'}, K^{\pm l'}$ acts on M as a scalar, we have a homomorphism of rings from the polynomial algebra $k[E^{l'}, F^{l'}, K^{\pm l'}] \to k$ to our ground field k, which by Hilbert's Nullstellensatz has some maximal ideal of the form $(E^{l'}-a, F^{l'}-b, K^{\pm l'}-c) \subseteq k[E^{l'}, F^{l'}, K^{\pm l'}]$ as its kernel, with $a,b,\in k$ and $c\in k^{\times}$.

- 1. If a=0 then since M has a weight space decomposition the non-zero subspace (because E acts nilpotently) $\ker E$ contains a non-zero weight vector $m \in M$ of weight λ . We thus have a surjection $\phi: M(\lambda) \to M$ mapping v_{λ} to m. Since $F^{l'} b$ acts as zero on M it follows that ϕ factors through to a homomorphism $M(\lambda,b) = M(\lambda)/(F^{l'}v_{\lambda} bv_{\lambda})M$ which shows M is a quotient of the baby Verma $M(\lambda,b)$. However, by our previous analysis we have that $M(\lambda,b)$ only has irreducible quotients (including, in some cases, the quotient by the zero subspace) isomorphic to either baby Verma's or standard cyclic irreducible quotients $L(q^i,\pm)$.
- 2. If $a \neq 0$ and b = 0 then the twisted module ${}^{\omega}M$ (where $\omega \in \operatorname{Aut}(U_q(\mathfrak{sl}_2))$ is the Cartan involution) falls into the previous case, thus in this case M is isomorphic to a "twisted" baby Verma module ${}^{\omega}M(\lambda,a)$ (since the irreducible quotient modules $L(q^i,\pm)$ satisfy b=a=0.
- 3. If $a, b \neq 0$ then let $m \in M$ be any weight vector, say of weight $\lambda \in k$. We thus have the l' weight vectors

$$m = \frac{1}{h}F^{l'}m, Fm, F^2m, \dots, F^{l'-1}m$$

of weights respectively $\lambda, q^{-2}\lambda, \dots, q^{-2l'+2}\lambda$ which span an l-dimensional subspace of M's. A simple computation relying on the EF-formula shows that this subspace is indeed a submodule, which must thus coincide with M by irreducibility.

$U_a(\mathfrak{sl}_2)$'s centre

As observed, we have that the element $C = FE + \frac{qK - q^{-1}K^{-1}}{q - q^{-1}} \in U_q(\mathfrak{sl}_2)$ lies in $U_q(\mathfrak{sl}_2)$'s centre. Our objective it to show that infact $Z(U_q(\mathfrak{sl}_2))$ is precisely the k-subalgebra generated by C, when q isn't a root of unity.

Remark: Let $u \in Z(U_q(\mathfrak{sl}_2))$; note that since [u,K] = 0, we have that u must be an element of degree zero, because it's an eigenvector of eigenvalue q^0 with respect to conjugation by K. Thus expressing u in terms of our PBW theorem yields an expression of the form

$$u = \sum_{r \in \mathbb{Z}_{>0}} F^r u_r E^r$$
, where $h_r \in k[K^{\pm 1}]$.

If we now see how the conditions Eu = uE and Fu = uF reflect on the structure of the u_r 's we get

$$\begin{split} Eu &= \sum_r EF^r u_r E^r = \sum_r F^r E u_r E^r + [r]_q F^{r-1}[K;1-r] u_r E^r = \sum_r F^r \gamma(u_r) E^{r+1} + [r]_q F^{r-1}[K;1-r] u_r E^r \\ &= \sum_r F^r \cdot (\gamma(u_r) + [r+1]_q [K;-r] u_{r+1}) \cdot E^{r+1} \\ &\text{and on the other hand } uE = \sum_r F^r u_r E^{r+1} \end{split}$$

where $\gamma: k[K^{\pm 1}] \to k[K^{\pm 1}]$ is the ring homomorphism given by $K \mapsto q^{-2}K$. So since the above are both expressions in terms of the PBW basis we have that $u_r = \gamma(u_r) + [r+1]_q[K;-r]u_{r+1}$ for every $r \in \mathbb{Z}_{\geq 0}$. In particular, since $q^r \neq 1$ implies $[r+1]_q \neq 0$ for all r, we can always express u_{r+1} in terms of $u_r!$ This shows that the element u_0 totally determines u:) The following proposition follows from these remarks - the introduction of the "shift" $\gamma: k[K^{\pm 1}] \to k[K^{\pm 1}]$ to the "projection" $u = \sum_r F^r u_r E^r \mapsto u_0$ is essentially there just to make the upcoming statement a little cleaner.

Proposition: Let $\xi: Z(U_q(\mathfrak{sl}_2)) \to k[K^{\pm 1}]$ be defined by $u = \sum_r F^r u_r E^r \mapsto \gamma(u_0)$. Then ξ is a linear injective map, called the *Harish-Chandra homomorphism*.

We can now understand further what elements $u \in Z(U_q(\mathfrak{sl}_2))$ look like with the aid of the representation theory we developed.

Proposition: Let $u = \sum_r F^r u_r E^r \in Z(U_q(\mathfrak{sl}_2))$ be a central element. Then $\xi(u) \in k[K^{\pm 1}]$ is a symmetric Laurent polynomial with respect to the automorphism $K \mapsto K^{-1}$ (i.e. if we express $\xi(u) = \sum_{i \in \mathbb{Z}} a_i K^i$ then $a_i = a_{-i}$ for all $i \in \mathbb{Z}$).

Proof: Since u is central and the $U_q(\mathfrak{sl}_2)$ -module $M(q^j)$ is generated by one element, u acts as a scalar on $M(q^j)$ which is of course given by $\sum_r F^r u_r E^r \cdot v_{q^j} = u_0 \cdot v_{q^j} = \sum_{i \in \mathbb{Z}} a_i q^{j \cdot i} v_{q^j}$. However, $M(q^j)$ also has a submodule generated by $F^{j+1}v_{q^j}$ isomorphic to $M(q^{-j-2})$ and just as before we get that u acts on this subspace as the scalar $\sum_{i \in \mathbb{Z}} a_i q^{i \cdot (-j-2)}$; it follows that we have an equality:

$$\sum_{i \in \mathbb{Z}} a_i q^{j \cdot i} = \sum_{i \in \mathbb{Z}} a_i q^{-ij - 2i}$$

for all $j \ge 0$.

Since the (characters) group homomorphisms

$$\Phi_i: \mathbb{Z} \to k$$
$$i \mapsto a^j$$

are distinct (because q isn't a root of unity), it follows that they are linearly independent by Dirichlet's theorem and thus

$$a_i = q^{-2i} a_{-i}$$

for all *i*, i.e. $\xi(u) = \gamma(u_0)$ is symmetric.

Remark: The previous proposition shows that ξ 's image in $k[K^{\pm 1}]$ is given by the symmetric Laurent polynomials $k[K^{\pm 1}]^s$ where $s: k[K^{\pm 1}] \to k[K^{\pm 1}]$ maps K to K^{-1} . Note that ξ must actually also be surjective on this subalgebra, because $\xi(C) = \xi(FE + \frac{qK - q^{-1}K^{-1}}{q - q^{-1}}) = \frac{q^3K - q^{-3}K^{-1}}{q - q^{-1}}$ is a degree one-term, and thus all polynomials in $k[K^{\pm 1}]$ can be obtained via the images of linear combinations of C and its powers. Since ξ is injective by the previous lemma, it follows that it is an isomorphism of algebras and thus

$$Z(U_q(\mathfrak{sl}_2)) \cong k[C].$$

Kac/Moody Lie algebras

Definition: Let $A = (a_{i,j})_{i,j} \in M_{n \times n}(\mathbb{C})$ be an $n \times n$ matrix with complex coefficients of arbitrary rank (this is the important bit). A realisation for A is a triple $(\mathfrak{h}, \pi, \pi^{\vee})$ consisting of a finite dimensional complex vector space \mathfrak{h} and subsets of linearly independent vectors of size n

$$\pi = {\alpha_1, \dots, \alpha_n} \subseteq \mathfrak{h}^*$$
$$\pi^{\vee} = {\alpha_1^{\vee}, \dots, \alpha_n^{\vee}} \subseteq \mathfrak{h}$$

satisfying $\alpha_i(\alpha_i^{\vee}) = \alpha_{i,j}$.

Remark: There's always a simple way of constructing a realisation for A: up to a reordering of the elements in π and π^{\vee} we can always assume that A is a matrix of the form

$$A = \begin{pmatrix} \mathbf{A}_0 & * \\ * & * \end{pmatrix}$$

where \mathbf{A}_0 is an $r \times r$ invertible matrix, r being A's rank.

If we now let $\mathfrak{h} = \mathbb{C}^{2n-r}$ with basis $\epsilon_1, \dots, \epsilon_{2n-r}$, its dual basis $\epsilon_1^*, \dots, \epsilon_{2n-r}^*$, and C the invertible endomorphism of \mathfrak{h}^* given by the matrix (in terms of the basis $\{\epsilon_1^*, \dots, \epsilon_n^*\}$)

$$\begin{pmatrix} \mathbf{A}_0 & * & 0 \\ * & * & \mathrm{id}_{n-r} \\ 0 & \mathrm{id}_{n-r} & 0 \end{pmatrix}$$

then we can set $\alpha_1^{\vee} = \epsilon_1, \dots, \alpha_n^{\vee} = \epsilon_n$ and $\alpha_1 = C\epsilon_1^*, \dots, \alpha_n = C\epsilon_n^*$. Since C is invertible (a pretty quick inspection of C's columns shows) it follows that π and π^{\vee} are both subsets of linearly independent vectors, and they evidently satisfy the condition that $\alpha_j(\alpha_j^{\vee}) = a_{i,j}$ since these are precisely the entries in C's top left $n \times n$ submatrix.

The constructed realisation turns out to have *minimal dimension*.

Proposition: Let $A \in M_{n \times n}(\mathbb{C})$ be any $n \times n$ square matrix with complex coefficients and let r be A's rank. If $(\mathfrak{h}, \pi, \pi^{\vee})$ is any realisation for A then $\dim \mathfrak{h} \geq 2n - r$.

Proof: We may complete π and π^{\vee} arbitrarily to bases for \mathfrak{h}^* and \mathfrak{h}

$$\alpha_1, \dots, \alpha_n, \alpha_{n+1}, \dots, \alpha_m \in \mathfrak{h}^*$$

 $\alpha_1^{\vee}, \dots, \alpha_n^{\vee}, \alpha_{n+1}^{\vee}, \dots, \alpha_m^{\vee} \in \mathfrak{h}$

and thus the matrix $R = (\alpha_j(\alpha_i^\vee))_{i,j} \in \mathcal{M}_{n \times n}(\mathbb{C})$, whose top left $n \times n$ submatrix is equal to A and has rank r, must be invertible (when thought of as a linear endomorphism, any vector in its kernel represents an element in \mathfrak{h} annihilated by every linear functional in \mathfrak{h}^*). If we take B to be R's submatrix consisting of R's first n rows (thus including the mentioned submatrix A) we have that R has rank n and m columns, whose first n span a subspace of dimension r. It follows that the remaining m-n columns must span a subspace of dimension at least n-r since otherwise B would have rank less than n, thus

$$m-n \geq n-r$$

which is our claim. \Box

We can now begin to construct the Kac-Moody Lie algebra associated to a Generalised Cartan Matrix A.

Construction: Let $A \in \mathcal{M}_{n \times n}(\mathbb{Z})$ be a Generlised Cartan Matrix (i.e. a matrix with integral coefficients, whose diagonal entries are all equal to 2 and whose coefficient $a_{i,j}$ is zero if and only the reflected one $a_{j,i}$ is also zero) and let $(\mathfrak{h}, \pi, \pi^{\vee})$ be a minimal realisation for A with a completed basis $\alpha_1^{\vee}, \ldots, \alpha_n^{\vee}, \alpha_{n+1}^{\vee}, \ldots, \alpha_m^{\vee}$ (the following can be done with no alterations even if A isn't a Generalised Cartan Matrix and this is how we introduced the notion in the lectures, but I think that's a bit of a redundant generalisation for our purposes). Define $\widetilde{\mathfrak{g}}(A)$ to be the complex Lie algebra given by generators $\widetilde{e_1}, \ldots, \widetilde{e_n}, \widetilde{f_1}, \ldots, \widetilde{f_n}, \widetilde{\alpha_1^{\vee}}, \ldots, \widetilde{\alpha_m^{\vee}}$ subject to to the (generalised) Chevalley relations:

$$\begin{split} [\widetilde{\alpha_i^\vee}, \widetilde{\alpha_j^\vee}] &= 0, \\ [\widetilde{e_i}, \widetilde{f_j}] &= \delta_{i,j} \widetilde{\alpha_i}, \\ [\widetilde{\alpha_i}^\vee, \widetilde{e_j}] &= \alpha_j (\alpha_i^\vee) \widetilde{e_j}, \\ [\widetilde{\alpha_i}^\vee, \widetilde{f_j}] &= -\alpha_j (\alpha_i^\vee) \widetilde{f_j}. \end{split}$$

We couldn't possibly hope for $\widetilde{g}(A)$ to be finite-dimensional, or even or "reasonable" size, since it contains n different copies of $\mathfrak{sl}_2(\mathbb{C})$ given by the triples $\{\widetilde{e_i}, \widetilde{f_i}, \widetilde{a_i^{\vee}}\}$ which have no relations among them whatsoever. We thus want to consider a particular quotient of $\widetilde{\mathfrak{g}}(A)$'s which will yield our (non-quantised) central object for the course.

Construction: We now construct a representation for $\widetilde{\mathfrak{g}}(A)$ which will help us understand part of its underlying structure. Fix a weight $\lambda \in \mathfrak{h}^*$ and let V be the tensor algebra on the n-dimensional complex vector space $\operatorname{span}_{\mathbb{C}}(v_1,\ldots,v_n) \cong \mathbb{C}^n$; we define $\widetilde{\mathfrak{g}}(A)$'s action on V by

$$\begin{split} \widetilde{f_i} \cdot (v_{i_1} \otimes \cdots \otimes v_{i_r}) &:= v_i \otimes v_{i_1} \otimes \cdots \otimes v_{i_r} \\ \widetilde{\alpha_i^\vee} \cdot (v_{i_1} \otimes \cdots \otimes v_{i_r}) &= (\lambda - \alpha_{i_1} - \cdots - \alpha_{i_r})(\alpha_i^\vee) \cdot v_{i_1} \otimes \cdots \otimes v_{i_r} \\ \widetilde{e_i} \cdot 1 &= 0 \\ \widetilde{e_i} \cdot (v_{i_1} \otimes \cdots \otimes v_{i_r}) &= \delta_{i, i_1} \widetilde{\alpha_{i_1}^\vee} \cdot (v_{i_2} \otimes \cdots \otimes v_{i_r}) + \widetilde{f_{i_1}} \widetilde{e_i} \cdot (v_{i_2} \otimes \cdots \otimes v_{i_r}) \end{split}$$

where in the last couple of lines we implicitly define $\tilde{e_i}$'s action by induction on r.

The above do indeed define a representation for $\widetilde{\mathfrak{g}}(A)$ (albeit a very infinite-dimensional one) by simply checking the above relations one by one.

Remark: The above construction gives an analogue of the *triangular (Cartan) decomposition* for $\widetilde{\mathfrak{g}}(A)$: define $\widetilde{\mathfrak{n}}^+, \widetilde{\mathfrak{n}}^-, \widetilde{h}$ to be the Lie-subalgebras of $\widetilde{\mathfrak{g}}(A)$ generated by $\widetilde{e_i}, \ldots, \widetilde{e_n}$ for $\mathfrak{n}^+, \widetilde{f_1}, \ldots, \widetilde{f_n}$ for \mathfrak{n}^- and $\widetilde{\alpha_1^\vee}, \ldots, \widetilde{\alpha_m^\vee}$ for $\widetilde{\mathfrak{h}}$. Our claim is that $\widetilde{\mathfrak{g}}(A) = \widetilde{\mathfrak{n}}^- \oplus \widetilde{\mathfrak{h}} \oplus \widetilde{\mathfrak{n}}^+$.

We evidently have $\widetilde{\mathfrak{g}}(A) = \widetilde{\mathfrak{n}}^- + \widetilde{\mathfrak{h}} + \widetilde{\mathfrak{n}}^+$ since the latter is a Lie-ideal (check the Chevalley relations) containing each of $\widetilde{\mathfrak{g}}(A)$'s natural generators, so all that there is to verify is that the sum is direct. If we suppose u + h + u' = 0 where $u \in \widetilde{\mathfrak{n}}^+, h \in \widetilde{h}, u' \in \widetilde{\mathfrak{n}}^-$ then applying the sum to the element $1 \in V$ in the above representation yields

$$0 = u(1) + h(1) + u'(1) = \lambda(h) + u'(1)$$

since u'(1) has positive degree with respect to $V = T^{\otimes}(v_1, ..., v_n)$ it follows that $\lambda(h) = 0$ and u'(1) = 0; since λ was arbitrary in \mathfrak{h}^* , we have that h = 0 and u' = 0.

We also have a nice decomposition into *root spaces* for $\widetilde{\mathfrak{g}}(A)$: we set $\widetilde{\mathfrak{g}}(A)_{\alpha} := \{u \in \widetilde{\mathfrak{g}}(A) \mid [h,u] = \alpha(h)u \text{ for all } h \in \widetilde{h}\}$ for every $\alpha \in Q$ where $Q := \mathbb{Z}\alpha_1 \oplus \cdots \oplus \mathbb{Z}\alpha_n \subseteq \mathfrak{h}^*$ is the *root lattice*; we thus have that $\mathfrak{h} \subseteq \widetilde{\mathfrak{g}}(A)_0$ and $[e_i,\widetilde{\mathfrak{g}}(A)_{\alpha}] \subseteq \widetilde{\mathfrak{g}}(A)_{\alpha-\alpha_i}$; thus $\widetilde{\mathfrak{h}}^+ \subseteq \bigoplus_{\alpha \in Q^+} \widetilde{\mathfrak{g}}(A)_{\alpha}$ and $\widetilde{\mathfrak{h}}^- \subseteq \bigoplus_{\alpha \in Q^-} \widetilde{\mathfrak{g}}(A)_{\alpha}$. Hence

$$\widetilde{\mathfrak{g}}(A)\supseteq (\bigoplus_{\alpha\in Q^+}\widetilde{\mathfrak{g}}(A))\oplus (\bigoplus_{\alpha\in Q^-}\widetilde{\mathfrak{g}}(A))\oplus \widetilde{\mathfrak{g}}(A)_0\supseteq \widetilde{\mathfrak{n}^+}\oplus \widetilde{\mathfrak{h}}\oplus \widetilde{\mathfrak{n}^-}=\widetilde{\mathfrak{g}}(A).$$

Definition: Let A be a Generalised Cartan Matrix and $\widetilde{\mathfrak{g}}(A)$ as constructed above. Note that the collection of Lie-ideals $\{I\subseteq\widetilde{\mathfrak{g}}(A)\mid I\cap\widetilde{\mathfrak{h}}=(0)\}$ whose intersection with the cartan subalgebra is trivial has a maximal element, namely given by the sum of all such ideals. Let I be this maximal element. The Lie algebra $\mathfrak{g}(A):=\widetilde{\mathfrak{g}}(A)/I$ is called the Kac-Moody Lie algebra associated to A. We denote by $p:\widetilde{\mathfrak{g}}(A)\to\mathfrak{g}(A)$ the natural projection map, whose kernel is I, and I^+,I^- the intersections of I with the triangular parts $\widetilde{\mathfrak{n}}^+,\widetilde{\mathfrak{n}}^-$.

We require a few rather technical lemmas and notions. The following generalises the notion of "highest-weight vector", and by the following proposition it essentially serves the same purpose.

Definition: Let M be a $\mathfrak{g}(A)$ -module. A *pseudoprimitive* element $v \in M$ is a weight vector such that there exists some $\mathfrak{g}(A)$ -submodule $N \subseteq M$ not containing v but such that $e_i \cdot v \in N$ for all i.

In other words, v is pseudoprimitive if it is primitive (i.e. of highest weight) in some quotient of M's.

Proposition: Let M be a $\mathfrak{g}(A)$ -module admitting a weight-space decomposition $M = \bigoplus_{\lambda \in \mathfrak{h}^*} M_{\lambda}$ such that M's set of weights satisfy the "mountains-condition":

$$WT(M) \subseteq \bigcup_{\mu \in X} \{\lambda \in \mathfrak{h}^* \mid \lambda \le \mu\}$$

for some finite set of weights $X \subseteq \mathfrak{h}^*$. If we let $P(M) \subseteq M$ denote the set of pseudoprimitive vectors in M, then P(M) is a set of generators for M as a $\mathfrak{g}(A)$ -module.

Proof: Let P be the $\mathfrak{g}(A)$ -submodule of M's generated by P(M). If $P \subsetneq M$ then M/P must contain a highest weight vector, and thus M contains a pseudoprimitive vector which doesn't lie in P. \square

Proposition: Let M be a $\mathfrak{g}(A)$ -module admitting a weight-space decomposition which satisfies the *mountain-contidion*. Then P(M) is a set of generators for M as an \mathfrak{n}^- -module.

Proof: Let $P \subseteq M$ be the \mathfrak{n}^- -submodule in M generated by pseudoprimitive vectors P(M), and suppose by contradiction that $P \subsetneq M$ is a proper subspace. M is generated as a $\mathfrak{g}(A)$ -module by pseudoprimitive vectors by the previous proposition, we must have $U(\mathfrak{g}(A))v$ contains some element $u \cdot v$ outside of P for some $v \in P(M)$. We can write $u \in U(\mathfrak{g}(A))$ as u' + u'' where $u' \in U(\mathfrak{n}^-)$ and $u'' = u_1 x \in U(\mathfrak{n}^-)U(\mathfrak{n}^+)\mathfrak{n}^+$ - $u_1 \in U(\mathfrak{n}^-)$ and $x \in U(\mathfrak{n}^+)\mathfrak{n}^+$ and since $u' \cdot v \in P$ it must be that $u'' \cdot v \notin P$; also, since $u_1 \in U(\mathfrak{n}^-)$ it must also be that $x \cdot v \notin P$. Since $x \cdot v$ isn't pseudoprimitive, it follows that $x \cdot v$ must lie in the $U(\mathfrak{g}(A))$ -module generated by the vectors $e_1 x \cdot v, \ldots, e_n x \cdot v$; so the $U(\mathfrak{g}(A))$ -submodule given by

$$U(\mathfrak{g}(A))\mathfrak{n}^+ x \cdot v = U(\mathfrak{n}^-)U(\mathfrak{n}^+)\mathfrak{n}^+ x \cdot v \subseteq M$$

contains vectors which don't lie in P (namely $x \cdot v$) and hence $U(\mathfrak{n}^+)\mathfrak{n}^+x \cdot v$ must contain some vector which doesn't lie in P (since P is an \mathfrak{n}^- -submodule), say $x'x \cdot v \notin P$. We can thus iterate this procedure and get a sequence of weight vectors

$$v, v_1, v_2, v_3, \dots$$

where $v_i \notin P$ for every i and $v_i = xv_{i-1}$ for some $x \in U(\mathfrak{n}^+)\mathfrak{n}^+$ implying thus that v_i 's weight is always strictly greater than that of v_{i+1} . By our assumption on M's weight structure, sure an infinite sequence of weight vectors can't occur. Thus P = M. \square

Definition: Let $A \in \mathcal{M}_{n \times n}(\mathbb{Z})$ be a generalised cartan matrix; A is said to be *symmetrisable* if there exists some diagonal matrix $D \in \mathcal{M}_{n \times n}(\mathbb{Z})$ with integral coefficients such that DA is symmetric.

The above notion of *symmetrisability* reflects the recoupment in the classical case of semisimple Lie algebras \mathfrak{g} of the matrix $(\kappa(\alpha_i^{\vee}, \alpha_j^{\vee}))_{i,j}$ where κ is the Killing bilinear form restricted to the Cartan subalgebra $\mathfrak{h} \subseteq \mathfrak{g}$ from the

matrix of Cartan integers $(\langle \alpha_i, \alpha_j \rangle)_{i,j}$: recall that to recover the Killing κ on \mathfrak{h} form from $(\langle \alpha_i, \alpha_j \rangle)_{i,j} = (\frac{2\kappa(\alpha_i^\vee, \alpha_j^\vee)}{\kappa(\alpha_j^\vee, \alpha_j^\vee)})$ all one has to do it multiply the matrix of Cartan integers on the right by the diagonal matrix whose diagonal entries are $\frac{\kappa(\alpha_1^\vee, \alpha_1^\vee)}{2}, \ldots, \frac{\kappa(\alpha_n^\vee, \alpha_n^\vee)}{2}$.

In some sense, having a bilinear form on \mathfrak{h} turns out to be equivalent to requiring the existence of such a matrix "symmetriser" D.

To work with Kac-Moody Lie algebras more concretely, we will need to understand I's structure in a more explicit manner: this is very possible by means of the mentioned bilinear form on \mathfrak{h} , in this extra hypothesis of symmetrisability.

Definition: Suppose A is a symmetrisable Generalised Cartan Matrix, D a diagonal matrix with integral coefficients d_1, \ldots, d_n such that DA is symmetric. If we pick a complement $h' \subseteq \mathfrak{h}$ to the subspace \mathfrak{h}_0 in \mathfrak{h} spanned by the roots $a_1^{\vee}, \ldots, a_n^{\vee}$ then we can naturally define a non-degenerate symmetric bilinear form on \mathfrak{h} by setting

$$(\alpha_i^{\vee}, \alpha_j^{\vee}) = d_i \langle \alpha_j, \alpha_i^{\vee} \rangle = d_i \alpha_{i,j},$$

$$(\alpha_i^{\vee}, x) = d_i \alpha_i(x), \ x \in \mathfrak{h}'$$

$$(x, y) = 0, \ x, y \in \mathfrak{h}'.$$

Proposition: Let $A \in \mathcal{M}_{n \times n}(\mathbb{Z})$ be a symmetrisable generalised cartan matrix, $\widetilde{\mathfrak{g}}(A) \to \mathfrak{g}(A)$ the natural projection with kernel $I = I^+ + I^-$ where $I^{\pm} = I \cap \widetilde{\mathfrak{n}}^{\pm}$. We have an injective homomorphism of $\mathfrak{g}(A)$ -modules

$$I^-/[I^-,I^-] \xrightarrow{\cong} \bigoplus_{i=1,\dots,n} M(-\alpha_i)$$

where $M(\lambda)$ is the Verma $\mathfrak{g}(A)$ -module of highest weight $\lambda \in \mathfrak{h}^*$.

Proof: Consider the $\widetilde{\mathfrak{q}}(A)$ -Verma module $\widetilde{M}(0)$ of highest weight zero, and define its suspace

$$\widetilde{J}(0) := \sum_{i=1}^{n} U(\widetilde{n}) \widetilde{f}_{i} \cdot v_{0} \subseteq \widetilde{M}(0).$$

A simple computation shows $\widetilde{J}(0)$ is actually a $\widetilde{\mathfrak{g}}(A)$ -submodule (it's evidently stable under the action of \mathfrak{n}^- and \mathfrak{h} , and a quick induction on the number of factors shows that it is stable under the action of $U(\mathfrak{n}^+)$ as well - using that v_0 's weight is zero and thus $\alpha_i^\vee \cdot v_0 = 0$ for all i). The vectors $\widetilde{f}_1 \cdot v_0, \ldots, \widetilde{f}_n \cdot v_0 \in \widetilde{J}(0)$ are evidently highest weight, and thus induce a homomorphism of $\widetilde{\mathfrak{g}}(A)$ -modules

$$igoplus_{i=1,...,n} \widetilde{M}(-lpha_i) woheadrightarrow \widetilde{J}(0)$$

which must be an isomorphism by the PBW theorem. Extension of scalars yields

$$\bigoplus_{i=1,\ldots,n} M(-\alpha_i) \cong U(\mathfrak{g}(M)) \otimes_{U(\widetilde{\mathfrak{g}}(A))} \widetilde{J}(0).$$

So in our proposition we can actually replace this direct sum of Verma modules $\bigoplus_{i=1,\dots,n} M(-\alpha_i)$ with $U(\mathfrak{g}(M)) \otimes_{U(\widetilde{\mathfrak{g}}(A))} \widetilde{J}(0)$. Define a map (of vector spaces at the moment)

$$\phi: u \in I^-/[I^-, I^-] \mapsto 1 \otimes uv_0 \in U(\mathfrak{g}(M)) \otimes_{U(\widetilde{\mathfrak{g}}(A))} \widetilde{J}(0)$$

which is well defined since $u \in I^- \subseteq \widetilde{\mathfrak{n}}^-$ and $1 \otimes [u,u']v_0 = p(u) \otimes u'v_0 - p(u') \otimes uv_0 = 0$ since p(u) = p(u') for elements $u,u' \in I^-$.

The kernel of the lifted map $\overline{\phi}:I^-\to U(\mathfrak{g}(M))\otimes_{U(\widetilde{\mathfrak{g}}(A))}\widetilde{J}(0)$ evidently contains $[I^-,I^-]$ by our above computation, so to show ϕ 's injective we need to show this kernel is precisely $[I^-,I^-]$. Let $\pi:U(\widehat{\mathfrak{n}})\to U(\mathfrak{n})$ be the projection induced by the quotient map $\widehat{\mathfrak{n}}\to\widehat{\mathfrak{n}}/I\cong\mathfrak{n}$. π 's kernel is, by one of the exercise sheets, the extended ideal $I^-U(\widehat{\mathfrak{n}})$. If we think of I^- as being the degree one terms in $U(I^-)$ then a generic element in $\ker\overline{\phi}$ is of the form

$$\sum_{i=1}^{n} u_i f_i \in \ker \phi$$

where $\sum_{i=1}^n \pi(u_i) \otimes \widetilde{f_i} v_0 = 0$ and, under the above isomorphism $U(\mathfrak{g}(M)) \otimes_{U(\widetilde{\mathfrak{g}}(A))} \widetilde{J}(0) \cong \bigoplus_{i=1}^n M(-\alpha_i)$ we get that $\sum_{i=1}^n \pi(u_i) v_{-\alpha_i} = 0$ and thus $\pi(u_i) = 0$ for every i since the $v_{-\alpha_i}$ lie in distinct subrepresentations. So we get $u_i \in \ker \pi = U(\widetilde{n}^-)I^-$ and thus

$$\sum_{i=1}^n u_i f_i \in I^- U(\mathfrak{n}^-) \cap I^-.$$

However, this last Lie-subalgebra of I^{-} 's is precisely $[I^{-}, I^{-}]$:)

Lemma: Let $L' \subseteq L$ be Lie algebras, L' a subalgebra of L's. Then $L'U(L) \cap L' = [L'L']$.

Proof: Evidently $[x,y] \in L'U(L) \cap L'$ for every $x,y \in L'$ essentially by definition of $L' \subseteq L$ being a Lie-subalgebra. For the converse, let $\{x_1,\ldots,x_r\} \subseteq L'$ be a basis, and we may extend to a basis for L as $\{x_1,\ldots,x_r,y_{r+1},\ldots,y_t\} \subseteq L$ which induces a PBW-basis for U(L) given by monomials respecting the expressed order. Let $\sum_{(a)} b_{(a)} x_1^{a_1} \ldots x_t^{a_r} y_{r+1}^{a_{r+1}} \ldots y_t^{a_t} \in L'U(L) L \cap L' \implies a_{r+1} = \cdots = a_t = 0$ and $a_1 + \cdots + a_r \ge 2$ for every (a) such that $b_{(a)}$ is non-zero. So we get

$$L'U(L)L \cap L' \subseteq \dots$$

Proof of Serre relations: Let $J \subseteq I \subseteq \widetilde{\mathfrak{g}}(A)$ be the ideal generated by the Serre relations, and suppose by contradiction that I/J is a non-zero vector space. By the existence of the Cartan involution, we get that I^-/J^- is non-zero, and I^-/J^- 's weight space decomposition is made up of weights contained in Q^- (since such is true for I^-).

Furthermore, evidently the roots $-\alpha_i$ can't occur as weights for I^-/J^- since these would produce elements in the Cartan (because such a weight space would also imply $(I^+/J^+)_{\alpha_i} \neq 0$ for the same i).

Let $\alpha = \sum_i c_i \alpha_i \in Q^+$ be such that $(I^-/J^-)_{-\alpha} \neq 0$ and $\operatorname{ht}(\alpha) = \sum_i c_i \in \mathbb{Z}_{\geq 2}$ is minimal. It follows that (by the Braid group action) $(I^-/J^-)_{-s_{\alpha_i}(\alpha)} \neq 0$ for all i and thus $\operatorname{ht}(\alpha) \leq \operatorname{ht}(s_{\alpha_i}(\alpha))$. Computing these numbers explicitly yields

$$\sum_j c_j \leq \sum_j c_j) \sum_j c_j \langle \alpha_j, \alpha_i \rangle \implies \sum_j c_j \langle \alpha_j, \alpha_i \rangle \leq 0$$

thus

$$(\alpha,\alpha) = \sum_i c_i (\sum_j c_j(\alpha_j,\alpha_i)) = \sum_i \frac{c_i(\alpha_i,\alpha_i)}{2} \sum_j c_j \langle \alpha_j,\alpha_i \rangle \leq 0$$

However! We have that $2(\alpha, \rho) = \sum_{i} 2c_{i}(\alpha_{i}, \rho) \ge 0 \implies (\alpha, \alpha) \ne 2(\alpha, \rho)$.

References

- $[1] \ \textit{Infinite Dimensional Lie Algebras}, Victor \ Kac.$
- [2] Lectures on quantum groups, Jantzen