

Winning Space Race with Data Science

Manoel Revez 12th June 2023

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Summary of methodologies
 - Data collection methodology
 - Data wrangling
 - Exploratory data analysis (EDA) using visualization and SQL
 - Visual analytics using Folium and Plotly Dash
 - Predictive analysis using classification models
- Summary of all results
 - Exploratory data analysis
 - Interactive analytics
 - Predictive analysis

Introduction

- Project background and context
 - SpaceX claims to save millions by reusing the first stage in other launches. Space Y is a company that aims to compete with SpaceX in making launches more economic
 - The purpose of this work is to use public information, train a machine learning model and creating dashboards with Space X launch information in order to predict if SpaceX will reuse the first stage, therefore calculating the price of each launch.
- Problems you want to find answers
 - Which attributes play a meaningful role in predicting the final outcome
 - Can we create a model to accurately predict the outcome of each launch

Methodology

Executive Summary

- Data collection methodology:
 - SpaceX REST API (data about launches)
 - Scraping through Wikipedia pages for Falcon 9 Launch data
- Perform data wrangling
 - Identification and processing missing values in each attribute
 - Format the data collected
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - Use of Machine Learning Models to predict the outcome of the missions

Data Collection

SpaceX RESTAPI

- URL to target a specific endpoint of the API to get past launch data.
- perform a get request
- Our response will be in the form of a list of JSON objects.
- Convert this JSON to a dataframe,

Scraping through Wiki pages

- GET method to request the F9 Launch
- Python BeautifulSoup package to web scrape some HTML
- Parse the data from those tables
- Convert them into a Pandas data

Data Collection - SpaceX API

 For further information check the following link: https://github.com/MRevez/Applied-Data-Science-Capstone/blob/main/jupyter-labs-spacex-data-collection-api-MRevez.ipynb

:		FlightNumber	PayloadMass	Flights	Block	ReusedCount	Longitude	Latitude
	count	94.000000	88.000000	94.000000	90.000000	94.000000	94.000000	94.000000
	mean	54.202128	5919.165341	1.755319	3.500000	3.053191	-75.553302	28.581782
	std	30.589048	4909.689575	1.197544	1.595288	4.153938	53.391880	4.639981
_	min	1.000000	20.000000	1.000000	1.000000	0.000000	-120.610829	9.047721
	25%	28.250000	2406.250000	1.000000	2.000000	0.000000	-80.603956	28.561857
	50%	52.500000	4414.000000	1.000000	4.000000	1.000000	-80.577366	28.561857
	75%	81.500000	9543.750000	2.000000	5.000000	4.000000	-80.577366	28.608058
	max	106.000000	15600.000000	6.000000	5.000000	13.000000	167.743129	34.632093

Data Collection - Scraping

 For further information check the following link: https://github.com/MRevez/Appli-ed-Data-Science-Capstone/blob/main/jupyter-labs-webscraping-MRevez.ipynb

df=pd.DataFrame(launch_dict)
df.head()

	Fligh No		Launch site	Payload	Payload mass	Orbit	Customer	Launch outcome	Version Booster	Booster landing	Date	Time
(0	1	CCAFS	Dragon Spacecraft Qualification Unit	Dragon Spacecraft Qualification Unit	LEO	SpaceX	Success\n	F9 v1.0B0003.1	Failure	4 June 2010	18:45
•	1	2	CCAFS	Dragon	Dragon	LEO	NASA	Success	F9 v1.0B0004.1	Failure	8 December 2010	15:43
2	2	3	CCAFS	Dragon	Dragon	LEO	NASA	Success	F9 v1.0B0005.1	No attempt\n	22 May 2012	07:44
3	3	4	CCAFS	SpaceX CRS-1	SpaceX CRS-1	LEO	NASA	Success\n	F9 v1.0B0006.1	No attempt	8 October 2012	00:35
4	4	5	CCAFS	SpaceX CRS-2	SpaceX CRS-2	LEO	NASA	Success\n	F9 v1.0B0007.1	No attempt\n	1 March 2013	15:10

Parse all launch tables

Convert to dataframe

Data Wrangling

[8]: # Apply value counts on Orbit column

Launches p/ site

[7]: # Apply value_counts() on column LaunchSite

df['LaunchSite'].value_counts()

[7]: CCAFS SLC 40 55 KSC LC 39A 22 VAFB SLC 4E 13

Name: LaunchSite, dtype: int64

Mission outcome p/orbit

Occurence p/ orbit

Success/unsuccess falcon 9 landings

[9]: # landing_outcomes = values on Outcome column
df['Outcome'].value_counts()

Name: Outcome, dtype: int64

 For further information check the following link: https://github.co m/MRevez/Applied-Data-Science-Capstone/blob/main/labs-jupyterspacex-

<u>Data%20wrangling MRevez.ipynb</u>

[18]: df["Class"].mean()

[18]: 0.66666666666666

EDA with Data Visualization

• The following visualizations were produced:

- FlightNumber vs. Payload and launch outcome (are heavier loads more prone to fail?)
- Flight Number vs Launch Site and launch outcome (are there any location issues related to success/failure?)
- Launch sites vs. payload mass and launch outcome (is a particular location being used for a particularly difficult Payload?).
- Success rate vs. orbit type (is success related to the type of orbit of the launch?)
- FlightNumber vs. Orbit type (experience?)
- Payload vs. Orbit type (is Payload important for the prediction of success/failure?)
- Launch success yearly trend (how important is experience in the success of the launches)
- For further information check the following link: https://github.com/MRevez/Applied-Data-Science-Capstone/blob/main/jupyter-labs-eda-dataviz MRevez.ipynb

EDA with SQL

• The following information was extracted:

- The names of the unique launch sites in the space mission
- 5 records where launch sites begin with the string 'CCA'
- Total payload mass carried by boosters launched by NASA (CRS)
- Average payload mass carried by booster version F9 v1.1
- Date of the first successful landing outcome in ground pad.
- Names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000

- Total number of successful and failure mission outcomes
- Names of the booster versions which have carried the maximum payload mass.
- Records with the month names, failure landing outcomes in drone ship ,booster versions, launch site for the months in year 2015.
- Rank the count of successful landing outcomes between the date 04-06-2010 and 20-03-2017 in descending order.

 For further information check the following link: https://github.com/MRevez/Appliced-Data-Science-Capstone/blob/main/jupyter-labs-eda-sql-coursera-sqllite-MRevez.ipynb

Build an Interactive Map with Folium

- All launch sites were marked on a map (folium.Circle and folium.Marker were added for each launch site on the site map with the exact location)
- Success/failed launches were marked for each site on the map (green and red color-labeled markers were added with a folium.Marker for easy visualization for each site)
- The distances between a launch site to its proximities were calculated (MousePosition was used to calculate the distance between the launch site and several relevant positions such as railways an cities. A line was drawn between a launch site and the selected locations)

• For further information check the following link: https://github.com/MRevez/Applied-Data-Science-Capstone/blob/main/lab_jupyter_launch_site_location_MRevez.ipynb

Build a Dashboard with Plotly Dash

- A Plotly Dash application was built, for users to perform interactive visual analytics on SpaceX launch data in real-time.
- This dashboard application contains a pie chart, with a dropdown menu option to allow visualization of the success rate for all sites, as well as the success rate for each site individually.
- A Range Slider was created, allowing the selection of Payload ranges. A function was created to render the success payload scatter plot, with classification of launches, booster version and launch site, for the payload range selected

• For further information check the following link: https://github.com/MRevez/Applied-Data-Science-Capstone/blob/main/dash interactivity.py

Predictive Analysis (Classification)

- Standardize (Preprocess and Scale) the data in X using the transform preprocessing.StandardScaler()
- With function train_test_split, split the data X and Y into training and test data
- Find best model for logistic regression (LR), support vector machine object (SVM), decision tree classifier (Tree), k nearest neighbors (KNN), using the best fit model loop
- For further information check the following link: https://github.com/MRevez/Ap
 plied-Data-Science-Capstone/blob/main/SpaceX Machine%20Learnin g%20Prediction Part 5 MRevez.ipynb

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Flight Number vs. Launch Site

- In the first 25 flights, launches came mostly from CCAFS SLC 40 (East coast, close to the coastline), with low success rates (Experience?)
- Later on, launches were conducted from other sites, with higher success rates. After flight 42 they
 were conducted from all sites

Payload vs. Launch Site

- With Payload Mass greater than 7500kg the mission success rate appears to increases, but there are not many missions to evaluate
- Most launches carry a Payload Mass lower than 7500kg in any location
- For VAFB SLC 4E there are no launches with Payload greater than 10000kg

Success Rate vs. Orbit Type

• ES-L1 (lagrange point), GEO, HEO and SSO are the highest success rate launches. They are also the types of orbit with less missions (1,1,1 and 4 respectively)

Flight Number vs. Orbit Type

- in the LEO orbit Success appears related to flight number.
- In SSO all flights were successful
- The highest number of flights are done to ISS, GTO, PO, VLEO and LEO orbits
- GTO is the least successful one (also one of the furthest orbit from Earth)

Payload vs. Orbit Type

- There seems to be no close relationship between Payload Mass and mission success in any given orbit.
- ISS and GTO orbits appear to be related to a lower probability of success

Launch Success Yearly Trend

- Between 2010 and 2013 there were no success flights.
- Then the success rate gradually came up to over 80% in the last years

All Launch Site Names

The DISTINCT statement was used to find all different site names

```
[7]: %sql Select DISTINCT Launch_Site from SPACEXTBL

    * sqlite:///my_data1.db
Done.
[7]: Launch_Site
    CCAFS LC-40
    VAFB SLC-4E
    KSC LC-39A
    CCAFS SLC-40
    None
```

Launch Site Names Begin with 'CCA'

- The WHERE clause was used to select all launches from location 'CCA'
- The LIMIT clause was used to limit results to 5

	* sqlite:///my_data1.db Done.										
:	Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit	Customer	Mission_Outcome	Landing_Outcom	
	06/04/2010	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0.0	LEO	SpaceX	Success	Failure (parachute	
	12/08/2010	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0.0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute	
	22/05/2012	7:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525.0	LEO (ISS)	NASA (COTS)	Success	No attemp	
	10/08/2012	0:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500.0	LEO (ISS)	NASA (CRS)	Success	No attemp	
	03/01/2013	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677.0	LEO (ISS)	NASA (CRS)	Success	No attem	

Total Payload Mass

- The WHERE clause was used to select all launches from Customer 'NASA'
- The sum function was used to find the total payload carried by boosters from NASA launches (45596 kg)

Average Payload Mass by F9 v1.1

- The WHERE clause was used to select all launches from Booster 'F9 v1.1'
- The avg function was used to find the average payload carried by booster version F9 v1.1 (2928.4 kg)

First Successful Ground Landing Date

- The WHERE clause was used to find the launch with ground pad successful output and minimum date
- The min function was used to find minimum date (2015)

```
*[54]: %sql Select Date, Landing_Outcome from SPACEXTBL where

(substr(Date, 1, 2)+substr(Date, 4, 2)*100+substr(Date, 7, 4)*10000) =

(select min(substr(Date, 1, 2)+substr(Date, 4, 2)*100+substr(Date, 7, 4)*10000) from SPACEXTBL

where "Landing_Outcome"='Success (ground pad)')

* sqlite:///my_data1.db

Done.

[54]: Date Landing_Outcome

22/12/2015 Success (ground pad)
```

Successful Drone Ship Landing with Payload between 4000 and 6000

- The DISTINCT statement was used to find all different booster version involved in the query
- The WHERE clause was used to find both successful landing outcomes AND Payload mass BETWEEN 4000 and 6000

Total Number of Successful and Failure Mission Outcomes

- The DISTINCT statement was used to find all different mission outcomes involved in the query
- The Group by statement was used to group all mission outcomes
- Finally the Count function was used to count all missions in the selected Groups (only one unsuccessful in 101 launches)

Boosters Carried Maximum Payload

- A subquery was used to select the value of the maximum payload mass
- The WHERE clause was used to find all records with maximum payload
- The DISTINCT statement was used to find all different booster with max value

2015 Launch Records

- The substr function was used to select the year (last 4 numbers of the date field)
- The WHERE clause was used to find both failed landing outcomes in drone ship AND launches occurred in 2015

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

- The DISTINCT statement was used to find all different Landing Outcomes
- The Group by statement was used to group all record in Landing outcomes
- The WHERE clause was used to find the records between the date 2010-06-04 and 2017-03-20
- The count function was used to count all elements in Landing Outcome
- The desc command was used to Rank the results in descending order.

```
*Sql Select distinct("Landing_Outcome"), count("Landing_Outcome") as counts from SPACEXTBL where ((substr(Date, 1, 2)+substr(Date, 4, 2)*100+substr(Date, 7, 4)*10000
(substr(Date, 1, 2)+substr(Date, 4, 2)*100+substr(Date, 7, 4)*10000 > 20100603)).
Group by "Landing Outcome" ORDER BY counts desc:
* sqlite:///my_datal.db
Done.
[23]: Landing_Outcome counts
No attempt 10
Success (ground pad) 5
Success (drone ship) 5
Failure (drone ship) 5
Controlled (ocean) 3
Uncontrolled (ocean) 2
Precluded (drone ship) 1
Failure (parachute) 1
```


Launch site location

 The East Coast is where most of the launches take place

Success/failed launches for each site

- The launch site that has more successful launches is is the furthest location from the coastline (KSC LC-39A
- The site that has most launches is CCAF SLC-40, but not with a very good success rate

Distance to relevant locations

- KSC LC-39A is 7,44 km away from the coastline. All other locations are closer
- All locations are somewhat far away from cities (safety issues)
- All locations are close to railways, important for transporting materials

SpaceX Success Launch Dashboard

- Piechart of launch success count shows KSC LC-39A as the most successful site, with 41,2% of successful launches coming from this site
- CCAFS LC40 presents itself as the least successful one with 14,4%

Launch site with highest launch success ratio

KSC LC-39A has the highest success rate with 76.9%

Payload vs. Launch Outcome

- In all sites, there is only one successful launch over 6761 kg
- Between 5300-9600 kg there are no successful launches
- FT and B4 are the most successful Booster versions

Payload vs. Launch Outcome

- For the most successful site, with payloads higher than 5500kg there are no successful launches in this site
- Between 2500-5300 kg all launches in this site were successful for all Booster versions

Classification Accuracy

 All values are very similar but Tree and SVM are the ones with higher scores

:		Evaluation	KNN	Tree	LR	SVM
	0	train	0.861111	0.888889	0.875000	0.888889
	1	test	0.833333	0.833333	0.833333	0.833333

Confusion Matrix

- Once again, the performance of the models is very similar, so the confusion matrix looks the same for all of them
- False positives are the biggest problem in the model

Conclusions

- Experience is an important issue concerning the success of the missions. The success rate gradually came up from 0 in 2010 to over 80% in the last years (2019 and 2020).
- KSC LC-39A is the most successful site. It is the furthest location from the coastline.
- The site that has most launches is CCAF SLC-40, but not with a very good success rate, also because it is where the first launces were made.
- The highest number of flights are done to ISS, GTO, PO, VLEO and LEO orbits.
- ISS and GTO orbits appear to be related to a lower probability of success. GTO is the least successful one (also one of the furthest orbit from Earth).
- FT and B4 are the most successful Booster versions.
- All classification models have very similar accuracy results in predicting the landing outcome. Tree and SVM are the ones with higher scores.

