Stacks

Outline I

- 1 Stacks
 - Stack Operations
- 2 Array Representation of Stacks
- 3 Linked Representation of Stacks
- 4 Applications of Stacks
- 5 Arithmetic Expressions; Polish Notation

- 1 Stacks
 - Stack Operations

- 2 Array Representation of Stacks
- 3 Linked Representation of Stacks
- 4 Applications of Stacks
- 5 Arithmetic Expressions; Polish Notation

Stacks I

- A stack is a list of elements in which an element can be inserted or deleted only at one end.
- The end is referred to as the "top of stack".
- So elements are removed from the stack in the reverse order of that in which they were inserted into the stack.
- This way a stack is a LIFO (Last in First Out) or FILO (First in Last Out)data structure.

- 1 Stacks
 - Stack Operations

- 2 Array Representation of Stacks
- 3 Linked Representation of Stacks
- 4 Applications of Stacks
- 5 Arithmetic Expressions; Polish Notation

Stack Operations

- Special terminology is used to refer to the two basic operations associated with stack:
 - **PUSH:** is the term used to insert an element into the stack.
 - **POP:** is the term used to delete an element from the stack.

Stack Operations: Example I

- Say following six elements are pushed in order onto an empty stack: AAA, BBB, CCC, DDD, EEE, FFF
- Following figures depict the above operations:

- 1 Stacks
 - Stack Operations
- 2 Array Representation of Stacks
- 3 Linked Representation of Stacks
- 4 Applications of Stacks
- 5 Arithmetic Expressions; Polish Notation

Array Representation of Stacks I

- Can be maintained using arrays or linked list.
- We shall discuss discuss array representation representation of stack.
- Array representation requires following:
 - ► A linear array named as **STACK**.
 - A pointer variable **TOP** which contains the location of the top element of the stack.
 - A variable MAXSTK which gives the maximum number of elements that can be held by the stack.

Array Representation of Stacks II

■ The condition **TOP** == **0** or **TOP** == **NULL** will indicate that the stack is empty.

Operations on Stack

- Operations: PUSH and POP.
- We have already already looked into them. So, its time to discuss them formally.

Algorithm for PUSH

- Following algorithm pushes (inserts)ITEM into STACK.
 PUSH(STACK, TOP, MAXSTK, ITEM)
 This procedure pushes an ITEM onto a stack.
 - [Stack already filled?]
 If TOP = MAXSTK, then: Print: OVERFLOW, and Return.
 - 2. Set TOP := TOP + 1. [Increases TOP by 1.]
 - 3. Set STACK[TOP] := ITEM. [Inserts ITEM in new TOP position.]
 - 4. Return.

Algorithm for POP

Following algorithm pops (deletes) ITEM from the STACK.
 POP(STACK, TOP, ITEM)

This procedure deletes the top element of STACK and assigns it to the variable ITEM.

- [Stack has an item to be removed?]
 If TOP = 0, then: Print: UNDERFLOW, and Return.
- 2. Set ITEM := STACK[TOP]. [Assigns TOP element to ITEM.]
- 3. Set TOP := TOP 1. [Decreases TOP by 1.]
- 4. Return.

- 1 Stacks
 - Stack Operations
- 2 Array Representation of Stacks
- 3 Linked Representation of Stacks
- 4 Applications of Stacks
- 5 Arithmetic Expressions; Polish Notation

Linked Representation of Stacks I

- Can be maintained using one-way list or singly linked list.
- Linked representation requires following:
 - The INFO fields of the nodes hold the elements of the stack.
 - The LINK fields hold pointers to the neighboring element in the stack.
 - The START pointer of the linked list behaves as the TOP pointer variable of the stack.
 - The null pointer of the last node in the list signals the bottom of stack.

Linked Representation of Stacks II

■ The condition **TOP** == **NULL** will indicate that the stack is empty.

Algorithm for PUSH

- Following algorithm pushes (inserts)ITEM into STACK.
- PUSH_LINKSTACK(INFO, LINK, TOP, AVAIL, ITEM): This procedure pushes an ITEM into a linked stack
- 1. [Available space?] If AVAIL = NULL, then Write OVERFLOW and Exit
- [Remove first node from AVAIL list]Set NEW := AVAIL and AVAIL := LINK[AVAIL].
- 3. Set INFO[NEW] := ITEM [Copies ITEM into new node]
- 4. Set LINK[NEW] := TOP [New node points to the original top node in the stack]
- 5. Set TOP = NEW [Reset TOP to point to the new node at the top of the stack]
- 6. Exit.

Algorithm for POP

- Following algorithm pops (deletes) ITEM from the STACK.
- POP_LINKSTACK(INFO, LINK, TOP, AVAIL, ITEM): This procedure deletes the top element of a linked stack and assigns it to the variable ITEM
- [Stack has an item to be removed?]
 IF TOP = NULL then Write: UNDERFLOW and Exit.
- 2. Set ITEM := INFO[TOP] [Copies the top element of stack into ITEM]
- Set TEMP := TOP and TOP = LINK[TOP]
 [Remember the old value of the TOP pointer in TEMP and reset TOP to point to the next element in the stack]
- [Return deleted node to the AVAIL list]
 Set LINK[TEMP] = AVAIL and AVAIL = TEMP.
- 5. Exit.

- 1 Stacks
 - Stack Operations

- 2 Array Representation of Stacks
- 3 Linked Representation of Stacks
- 4 Applications of Stacks
- 5 Arithmetic Expressions; Polish Notation

Applications of Stacks

- Stacks are widely used computer science.
- Their specific applications are:
 - Management of Function Calls
 - Evaluation of Expressions
 - Implementation of certain algorithms (e.g., Quick Sort)

- 1 Stack
 - Stack Operations

- 2 Array Representation of Stacks
- 3 Linked Representation of Stacks
- 4 Applications of Stacks
- 5 Arithmetic Expressions; Polish Notation

Evaluation of Expressions I

- Operators Precedence:
 - In arithmetic expressions operators precedence is observed:
 - Highest: Exponentiation (†)
 - Next highest: Multiplication (*) and division (/)
 - Lowest: Addition (+) and subtraction (-)
- An Example:
 - ► Evaluate: $2 \uparrow 3 + 5 * 2 \uparrow 2 12/6$
 - Answer: 26

Evaluation of Expressions II

- An Important Fact:
 - Parentheses' alter the precedence of operators.
- An Example:
 - $(A+B)*C \neq A+(B*C)$
 - (2+3)*7 = 35 while 2 + (3*7) = 23
- How computer evaluates the arithmetic expressions? is the question we want to seek answer for.

Notations for Expressions I

Infix Notations:

- Expressions in which operator lies between the operands are referred to as infix notations.
- A+B, C-D, P*F, · · · all are infix notations.
- A+(B*C) and (A+B)*C are distinguished by parentheses or by applying the operators precedence discussed above.

Notations for Expressions II

- Prefix or Polish Notations:
 - Named in honour of Polish mathematician, Jan Lukasiewiez, refer to the expressions in which the operator symbol is placed before its two operands.
 - ► +AB, -CD, *PF, · · · all are examples of prefix or polish expressions.
 - Simple infix expressions can be converted to polish expressions as follows:
 - (A + B) * C = [+AB] * C = * + ABC
 - A + (B * C) = A + [*BC] = +A * BC
 - (A+B)/(C-D) = [+AB]/[-CD]/ + AB CD
 - An important property of these notations is that they are parentheses free.

Notations for Expressions III

- Postfix or Reverse Polish Notations
 - Refer to the expressions in which operator is placed after its two operands.
 - AB+, CD-, PF*... all are examples of postfix or reverse polish notations.
 - Like prefix notations, they are also parentheses' free.

How Computer Evaluates Expressions? I

- Expressions are represented in infix notations and use of parentheses is very common.
- Computer may apply the operators precedence and parentheses' rules and evaluate the expression.
- But, this process is not feasible in terms of computer timing (timing complexity) as computer takes a lot of time to resolve parentheses'.
- So, the computer first converts an infix expression into an equivalent postfix expression and then evaluates it.

How Computer Evaluates Expressions? II

Following figure depicts the process:

How Computer Evaluates Expressions? III

- Clearly following two procedures (algorithms) are required:
 - Algorithm 1: Converting an infix expression to an equivalent postfix expression.
 - Algorithm 2: Evaluating the postfix expression.
- For each algorithm, Stack is the main tool to be utilized.

Algorithm 1 I

Conversion of an infix expression to an equivalent postfix expression.

Algorithm 1 II

- POLISH(Q, P): Suppose Q is an arithmetic expression written in infix notation.
 This algorithm finds the equivalent postfix expression P.
 - 1. Push "(" onto STACK, and add ")" to the end of Q.
 - 2. Scan Q from left to right and repeat Steps 3 to 6 for each element of Q until the STACK is empty:
 - If an operand is encountered, add it to P.
 - If a left parenthesis is encountered, push it onto STACK.
 - 5. If an operator \otimes is encountered, then:
 - (a) Repeatedly pop from STACK and add to P each operator (on the top of STACK) which has the same precedence as or higher precedence than \otimes .
 - (b) Add ⊗ to STACK. [End of If structure.]
 - 6. If a right parenthesis is encountered, then:
 - (a) Repeatedly pop from STACK and add to P each operator (on the top of STACK) until a left parenthesis is encountered.
 - (b) Remove the left parenthesis. [Do not add the left parenthesis to P.] [End of If structure.] [End of Step 2 loop.]
 - 7. Exit.

Algorithm 1-Example

■ arithmetic infix expression $Q: A + (B*C - (D/E \uparrow F)*G)*H$

Symbol Scanned	STACK	Expression P
(1) A	(A
(2) +	1 (+	A
(3) (1 + (A
(4) B	1 (+)	А В
(5) •	(+ (·	A B
(6) C	(+ (:	A B C
(7) –	(+ (-	A B C +
(8)	i + i - (A B C •
(9) D	1 (+ (- (A B C + D
(10) /	1 + 1 - 11	A B C · D
(11) E	(+ (- ())	A B C · D E
(11) E (12) ↑	(+(-(//	A B C · D E
(13) F	(+(+()↑	A B C · D E F
(14)	(+ (-	ABC · DEF 1 /
(15) +	(+ (- •	ABC · DEF 1 /
(16) G	(+ (- •	ABC · DEF 1 / G
(17)	(.+	ABC·DEF1/G·-
(18) *	(+ *	ABC·DEF 1/G·-
(19) H	(+ *	A
(20)		A

Algorithm 2

- Evaluating the postfix expression.
- This algorithm finds the VALUE of an arithmetic expression P written in postfix notation.
- Add a right parenthesis ")" at the end of P. [This acts as a sentinel.]
- 2. Scan P from left to right and repeat Steps 3 and 4 for each element of P until the sentinel ")" is encountered.
- If an operand is encountered, put it on STACK.
- If an operator ⊗ is encountered, then:
 - (a) Remove the two top elements of STACK, where A is the top element and B is the next-to-top element.
 - (b) Evaluate B ⊗ A.
 - (c) Place the result of (b) back on STACK.

[End of If structure.]

[End of Step 2 loop.]

- 5. Set VALUE equal to the top element on STACK.
- 6. Exit.

Algorithm 2-Example

Arithmetic expression P written in postfix notation: P: 5, 6, 2, +, *, 12, 4, /, -

Symbol Sc	anned	STACK
(1)	5	5
(2)	6	5, 6
(3)	2	5, 6, 2
(4)	+	5, 8
(5)		40
(6)	12	40, 12
(7)	4	40, 12, 4
(8)	1	40, 3
(9)	_	37
(10))	

Infix to Prefix I

Infix to Prefix II

Algorithm of Infix to Prefix

- 1. Push ")" onto STACK, and add "(" to end of the A
- 2. Scan A from right to left and repeat step 3 to 6 for each element of A until the STACK is empty
- 3. If an operand is encountered add it to B
- 4. If a right parenthesis is encountered push it onto STACK
- 5. If an operator is encountered then:
 - Repeatedly pop from STACK and add to B each operator (on the top of STACK) which has same or higher precedence than the operator.
 - b. Add operator to STACK
- 6. If left parenthesis is encontered then
 - Repeatedly pop from the STACK and add to B (each operator on top of stack until a left parenthesis is encounterd)
 - b. Remove the left parenthesis
- 7. Exit

Example Infix to Prefix I

Expression: (A + B
$$\wedge$$
 C) * D + E \wedge 5

- 1. Reverse the infix expression: $5 \land E + D^*) C \land B + A$ (
- 2. Make every '(' as ')' and every ')' as '(': $5 \land E + D * (C \land B + A)$

Example Infix to Prefix II

3. Convert expression to postfix form:

Expression	Stack	Output	Comment
5^E+D*(C^B+A)	Empty	-	Initial
^E+D*(C^B+A)	Empty	5	Print
E+D*(C^B+A)	٨	5	Push
+D*(C^B+A)	٨	5E	Push
D*(C^B+A)	+	5E^	Pop And Push
*(C^B+A)	+	5E^D	Print
(C^B+A)	+*	5E^D	Push
C^B+A)	+*(5E^D	Push
^B+A)	+*(5E^DC	Print
B+A)	+*(^	5E^DC	Push
+A)	+*(^	5E^DCB	Print
A)	+*(+	5E^DCB^	Pop And Push
)	+*(+	5E^DCB^A	Print
End	+*	5E^DCB^A+	Pop Until '('
End	Empty	5E^DCB^A+*+	Pop Every element

Example Infix to Prefix III

4. Reverse the expression: $+ * + A \wedge B C D \wedge E 5$

Result: $+ * + A \wedge B C D \wedge E 5$

Evaluation of Prefix Expressions I

Algorithm for evaluating a prefix expression

1. Put a pointer P at the end of the end.

- 2. If character at P is an operand push it to Stack.
- If the character at P is an operator pop two elements from the Stack. Operate on these elements according to the operator, and push the result back to the Stack.
- 4. Decrement P by 1 and go to Step 2 as long as there are characters left to be scanned in the expression.
- 5. The Result is stored at the top of the Stack, return it.
- 6 Fnd

Example- Evaluation of Prefix Expressions I

Expression: + 9 * 2 6

Character Scanned	Stack (Front to Back)	Explanation
6	6	6 is an operand, push to Stack
2	62	2 is an operand, push to Stack
*	12 (6 * 2)	* is an operator, pop 6 and 2,
		multiply them and push result to
		Stack
9	12 9	9 is an operand, push to Stack
+	21 (12+9)	+ is an operator, pop 12 and
		9 add them and push result to
		Stack

Result: 21