- (c) specific latent heat of fusion and specific latent heat of vaporisation; E = mL
 - the specific latent heat of fusion and vaporisation

 (ii) techniques and procedures used for an
 - techniques and procedures used for an electrical method to determine the specific latent heat of a solid and a liquid.

an electrical experiment to determine

- (6) M Define the terms: specific latent heat of fusion and specific latent heat of vaporisation
- (7) S Select and apply the equation for specific latent heat
- (8) C Describe an electrical experiment to determine the specific latent heat of fusion and vaporisation

Specific latent heat

0:00:00

STARTER:

(d)

Peer mark the HWK.

Use the practical guidance booklet for more information.

WWW/EBI SR in response

	Expected Answers	Mark	Additional Guidance	
	Sets up the experiment safely and correctly without help. ✓		Any help given should be recorded on the front cover of the task sheet.	
A1.1	Determines the temperature of the water and 100g mass without help. ✓	2	Any help given should be recorded on the front cover of the task sheet.	
	Calculates a value for <i>E</i> correctly. ✓		Penalise power of 10 error / inconsistent unit.	
A1.2	Repeats the experiment for one further value of starting temperature. 🗸	2	Any help given should be recorded on the front cover of the task sheet. $\theta_{\rm M}$ must be in the range 60 °C to 70 °C	
A1.3	Identifies one hazard and describes appropriate safety precaution. ✓	1	e.g. avoid splashing as the mass is inserted and so put in beaker slowly, or breaking the beaker and so put in beaker slowly/ carefully. Do not allow 'use goggles' / 'use lab coats' / 'tie hair back' / 'string' / '(oven) gloves'.	
B1.1	Records all data required in a suitable table. Correctly determines both values	2	The table must include the following quantities: $\theta_{\rm M}$, $\theta_{\rm 2}$, $(\theta_{\rm M}-\theta_{\rm 2})$, $(\theta_{\rm 2}-\theta_{\rm 1})$, E . Ignore units, sig. fig. and d.p.	
	for s.h.c. ✓		One value should be centre value ±50%	
	Discusses with appropriate justification the value of the s.h.c. of the metal block. Supports the observations by sound reasoning in terms of the		Credit the following marking points and ignore reference to one of the s.h.c. values being greater/smaller than the other. The s.h.c. values are different because the 100 g mass:	
	energy losses. 🗸 🗸		loses more energy when transferred from the higher temperature hot water; also warms up the beaker/container (and	
B1.2		3	the cold water);	
			 may not have reached temperature θ_M/thermal equilibrium. Allow one other detailed correct statement 	
			that supports the observations. Do not allow loses energy (to	
			surroundings) when transferred from hot water to cold water.	
	Total	10		

	Expected Answers	Mark	Additional Guidance
A1.1	Sets up the experiment safely and correctly without help. ✓ Determines the temperature of the water and 100 g mass without help. ✓	2	Any help given should be recorded on the front cover of the task sheet. Any help given should be recorded on the front cover of the task sheet.
A1.2	Calculates a value for <i>E</i> correctly. ✓ Repeats the experiment for one further value of starting temperature. ✓	2	Penalise power of 10 error / inconsistent unit. Any help given should be recorded on the front cover of the task sheet. $\theta_{\rm M}$ must be in the range 60 °C to 70 °C
A1.3	Identifies one hazard and describes appropriate safety precaution. ✓	1	e.g. avoid splashing as the mass is inserted and so put in beaker slowly, or breaking the beaker and so put in beaker slowly/ carefully. Do not allow 'use goggles' / 'use lab coats' / 'tie hair back' / 'string' / '(oven) gloves'.
B1.1	Records all data required in a suitable table. Correctly determines both values for s.h.c.	2	The table must include the following quantities: $\theta_{\rm M}$, $\theta_{\rm 2}$, $(\theta_{\rm M}-\theta_{\rm 2})$, $(\theta_{\rm 2}-\theta_{\rm 1})$, E . Ignore units, sig. fig. and d.p. One value should be centre value ±50%
B1.2	Discusses with appropriate justification the value of the s.h.c. of the metal block. Supports the observations by sound reasoning in terms of the energy losses.	3	 Credit the following marking points and ignore reference to one of the s.h.c. values being greater/smaller than the other. The s.h.c. values are different because the 100 g mass: 1. loses more energy when transferred from the higher temperature hot water; 2. also warms up the beaker/container (and the cold water); 3. may not have reached temperature θ_M/thermal equilibrium. 4. Allow one other detailed correct statement that supports the observations. Do not allow loses energy (to surroundings) when transferred from hot water to cold water.
	Total	10	

	0:00:00
Activity: Complete summar	
Kilo 10³ Mega 10 ⁶ Start at 3 Giga 10 ⁹ Start at 5	
Key	
	14.5 Specific latent hear Stretch and challenge
Oxford A Level Sciences OCR Physics A An old principle saves ene	Stretch and challenge
OCR Physics A	Stretch and challenge
OCR Physics A	Stretch and challenge
OCR Physics A	Stretch and challenge

(7) S - Se	efine the terms: specific latent heat of fusion and specific latent heat of vaporisation elect and apply the equation for specific latent heat escribe an electrical experiment to determine the specific latent heat of fusion and vaporisation
	0:00:00
	 Mini: plenary: 1. What is the definition for specific latent heat of fusion? 2. The SLH of F for water is 3.3 x 10⁵ Jkg⁻¹ A 25g ice cube is left on a desk. The flow of heat energy to the ice is equivalent to 5W. How long until the ice cube melts?
	Kilo 10^3 Mega 10^6 Giga 10^9 Why is this time likely to be inaccurate?
	Frage += E = 8280 = 16505. Sint Temp dap. Wis

- (6) M Define the terms: specific latent heat of fusion and specific latent heat of vaporisation
- (7) S Select and apply the equation for specific latent heat
- (8) C Describe an electrical experiment to determine the specific latent heat of fusion and vaporisation

Measuring specific latent heat - demonstration

- 1. For both demonstrations, complete the method write up sheet.
- 2. Find and describe a more accurate method to measure the mass of evaporated water for practical 2.
- 3. Find similarities between the methods and highlighting certain parts of your text.

Kilo 10³

Mega 10

Giga 10⁹

Why is this time likely to be inaccurate?

A. S.	<u></u>
K	ey [—]
po	pint

Specific latent heat of fusion	Specific latent heat of vaporisation		
Labelled diagram of setup	Labelled diagram of setup		
Method – basic procedure (the measurements)	Method – basic procedure (the measurements)		
Equations and calculations	Equations and calculations		
Uncertainties and solutions	Uncertainties and solutions		

1.2 × 10

6.02 × 10

Substance	Specific latent heat of fusion (<i>L</i> _t) (J/kg)	Melting point (°C)	Specific latent heat of vaporization (L_v) (J/kg)	Boiling point (°C)
aluminum	6.6×10^{5}	2519	4.0 × 10 ⁵	10 900
ethyl alcohol	1.1 × 10 ⁵	-114	8.6 × 10 ⁵	78.3
carbon dioxide	1.8 × 10 ⁵	-78	5.7 × 10 ⁵	-57
gold	1.1×10^{6}	2856	6.4 × 10 ⁴	1 645
lead	2.5 × 10 ⁴	327.5	8.7 × 10 ⁵	1 750
water	3.4×10^{5}	0	2.3 × 10 ⁶	100

% difference

