

<u>Help</u>

sandipan_dey ~

<u>Calendar</u> **Discussion Progress** <u>Course</u> <u>Dates</u> <u>Notes</u>

☆ Course / Unit 4: Matrices and Linearization / Recitation 14: Solving Linear Systems

Next >

1. More Determinants

□ Bookmark this page

Previous

■ Calculator

Hide Notes

Recitation due Sep 15, 2021 20:30 IST

Practice

Using the 2×2 determinant

3/3 points (graded)

Let's use the determinant to answer a question about linear systems.

Consider the system:

$$-4x + cy = 4$$
$$cx - y = 1$$

1. Suppose c=1. Which of the following applies?

	there is no solution
	there is a unique solution
	there are multiple solutions
~	

2. Find the largest possible value of c such that the corresponding matrix is not invertible.

3. For that value of c, which of the following applies?

Submit

You have used 1 of 3 attempts

Determinant for 3×3

In lecture, we saw how to compute the determinant of a 2×2 matrix. In this section, we will compute the determinant of a 3×3 matrix. Recall that **the determinant is important because it has to be nonzero in order for the matrix to be invertible.** Computing the full inverse of a 3×3 matrix is a little complicated, so we will just focus on the determinant for now.

We use absolute value bars for the determinant of a matrix:

$$|A| = \det(M). \tag{5.85}$$

■ Calculator

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc. \tag{5.86}$$

What should be the determinant of a 3×3 matrix?

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = ? \tag{5.87}$$

Determinant in 3×3

0:00 / 0:00 ▶ 2.0x X CC 66 Start of transcript. Skip to the end.

PROFESSOR: And of course I have to give a meaning to this, so this will be a number. And what is that number? Well, the definition I will take is that this is a1 times the determinant of what I get by looking in this lower right corner. So the 2 by 2 determinant--

b2, b3, c2, c3.

Video

Download video file

Transcripts

Download SubRip (.srt) file Download Text (.txt) file

To find the determinant of a 3×3 matrix, we have the following formula.

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}.$$
 (5.88)

Determinant Formula Structure

Start of transcript. Skip to the end.

0:00 / 0:00 ▶ 2.0x X CC 66 PROFESSOR: So, how to remember the structure of this formula.

Well, it's called-- this is called an expansion according

to the first row.

So we're going to take the entries in the first row-- a 1,

a 2, a 3--

and for each of them we get a term. Namely, we multiply it by a 2 by 2

Video

Download video file

Transcripts

Download SubRip (.srt) file Download Text (.txt) file

How to Remember

The formula is easier to remember if you can see where each term comes from. In the first term, $a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix}$,

we see the determinant of the submatrix obtained by deleting the row and column containing a_1 . The same pattern is true for the terms with a_2 and a_3 , except for the (easily forgotten!) minus sign in front of a_2 . By remembering this pattern, you can remember the entire formula.

Determinant Practice

1/1 point (graded)

Compute the following determinant.

$$\begin{vmatrix} 2 & 3 & 3 \\ 2 & 4 & 5 \\ 1 & 1 & 2 \end{vmatrix} = 3$$
 \checkmark Answer: 3

Solution:

$$\begin{vmatrix} 2 & 3 & 3 \\ 2 & 4 & 5 \\ 1 & 1 & 2 \end{vmatrix} = 2 \begin{vmatrix} 4 & 5 \\ 1 & 2 \end{vmatrix} - 3 \begin{vmatrix} 2 & 5 \\ 1 & 2 \end{vmatrix} + 3 \begin{vmatrix} 2 & 4 \\ 1 & 1 \end{vmatrix} = 3$$
 (5.89)

Submit

You have used 1 of 5 attempts

Answers are displayed within the problem

1. More Determinants

Topic: Unit 4: Matrices and Linearization / 1. More Determinants

Hide Discussion

Add a Post

by recent activity > Show all posts [Staff] formula error (5.88) 3 I know it's covered in the video right below, but it looks like the third piece of the formula in 5.88 is incorrect. Just a heads up to any...

> Previous Next >

© All Rights Reserved

edX

About

<u>Affiliates</u>

edX for Business

Open edX

Careers

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

Blog

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>