Derivatives (turev) $(f(t) \rightarrow f'(t) \text{ or } f(t) \rightarrow \dot{f}(t) \text{ or } f(t) \rightarrow df(t)/dt)$

Table: Derivatives Rules

Rule	Formula	Example
	(af(t))' = af(t)'	$(at^2)' = 2at$
	(f(at))' = af(at)'	$\cos(at)' = a\cos(at)$
Sum rule	$(f_1(t) + f_2(t))' = f_1'(t) + f_2'(t)$	$(t^2 + t^4)' = (t^2)' + (t^4)' = 2t + 4t^3$
Product rule	$(f_1(t)f_2(t))' = f_1'(t)f_2(t) + f_1(t)f_2'(t)$	$(t^2 \sin t)' = (2t) \sin t + t^2 (\cos t)$
Chain rule	$(f_1[f_2(t)])' = f_1'[f_2(t)]f_2'(t)$	$(\sin[t^2])' = \cos[t^2] \cdot (2t)$
Division rule	$\left(\frac{f_1(t)}{f_2(t)}\right)' = \frac{f_1'(t)f_2(t) - f_1(t)f_2'(t)}{f_2(t)^2}$	$\left(\frac{\sin t}{t}\right)' = \frac{t(\cos t) - (1) \cdot \sin t}{t^2}$

For vectors, the derivative just means taking derivatives of every component, $\vec{r}' = (r'_x, r'_y, r'_z)$.

Table: Derivatives of Simple Functions

name	f(t)	f'(t)	name	f(t)	f'(t)
constant	1	0	exponential	e^t	e^t
linear	$\mid t \mid$	1	nat. logarithm	$\ln t$	1/t
quadratic	t^2	2t		$a^t = e^{\ln(a)t}$	$\ln(a)a^t$
cubic	t^3	$3t^2$	logarithm	$\log_a t = \ln t / \ln a$	$\begin{vmatrix} 1/(\ln(a)t) \\ -nt^{-n-1} \end{vmatrix}$
power	t^n	nt^{n-1}	inverse power	t^{-n}	$-nt^{-n-1}$
sinus	$\sin(t)$	$a\cos(t)$			
cosinus	$\cos(t)$	$-\sin(t)$			
tangent	$\tan(t)$	$1/cos(t)^2$			

Derivatives practice

Example: $(4t^5 - \sin t)' = (4t^5)' - (\sin t)' = 4(t^5)' - (\sin t)' = 4 * 5t^4 - \cos t = 20t^4 - \cos t$.

Example: (vector) $(t^3, t^2 + 2\cos t, 5)' = ((t^3)', (t^2 + 2\cos t)', 5') = (3t^2, 2t - 2\sin t, 0).$

Example: (composite function) $(\sin t^4)'$;

For composite functions it is most important to first understand what $f_1(t)$ and $f_2(t)$ are. In this example, $f_1(t) = \sin t$ and $f_2(t) = t^4$, so that you have $\sin t^4 = \sin[(t^4)]$.

Then, $f_1(t)' = \cos t$, $f_2'(t) = 4t^3$, then the full derivative is written as

$$f_1'(f_2(t))f_2'(t) = \{f_1' = \cos\}(f_2(t) = t^4) \cdot (f_2'(t) = 4t^3) = \cos(t^4) \cdot 4t^3.$$

Find derivatives of the following functions:

1.
$$t^6$$

2.
$$t^3 + t^6$$

3.
$$\frac{1}{3}t^3 + \frac{1}{4}t^4$$

4.
$$t + 1/t$$
 (use the fact that $1/t = t^{-1}$)

5.
$$t^3 + 1/t^2$$
 (use the fact that $1/t = t^{-1}$)

6.
$$4\cos(3t) + 3\sin(3t)$$

7.
$$2\sin(4t) + \tan(4t)$$

8.
$$\cos(3t+1)$$

9.
$$t\cos(3t)$$

10.
$$5\sin(3t)\cos(3t)$$

11.
$$\cos(5t)\tan(5t)$$

12.
$$t^2 \sin(3t) + 2t \cos(3t)$$

13.
$$(\sin(3t))^3$$
 (use chain rule, $f_1(t) = t^3$ and $f_2(t) = \sin(3t)$

14.
$$\cos(t^4)$$
 (use chain rule ...)

15.
$$\sin(t^4 + 4t^3) + \cos(t^4 + 2t^2)$$

16.
$$(\cos(t))^2 + \cos(t^2)$$

17.
$$(2+t-t^2/2, 4t^3+\sin(t), \cos(\pi t))$$
 (THIS IS A VECTOR)

18.
$$(\cos(\pi t), -\sin(\pi t), \pi t^3)$$

19.
$$4 \cdot (\cos(\pi t), 3t^2, 3)$$

20.
$$(12t^2, 8t^3, 6t^4)$$