

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平7-296812

(43)公開日 平成7年(1995)11月10日

(51) Int. Cl. 6	戲別記号	庁内整理番号	FΙ	技術表示個所
H01M 4/40				
C22C 45/00				
H 0 1 M 4/02	D			

審査請求 未請求 請求項の数3 FD (全 5 頁)

		香堂原 次	木献水 間水気の数3 FD(主 5 長)
(21)出版書号	特要平 6-113 8 07	(71)出頭人	000003263 三 多電線工業株式 会社
(22) 出版日	平成6年(1994)4月28日		兵庫県尼崎市東向島西之町8番地
		(72)発明者	丸本 光弘 兵庫県尼崎市東向島西之町8番地 三菱電 銀工業株式会社内
		(72)発明者	高田 善典 兵庫県尼島市東向島西之町8番地 三菱電 線工業株式会社内
		(74)代理人	弁理士 斯本 勉
		·	

(54) 【発明の名称】 負種及びレ1二次電池

(57)【要約】

【目的】 デンドライトが成長しにくくてエネルギー密度や起電力に優れる負極を得て、サイクル寿命に優れ、 大電流による急速充電ができて高出力なし i 二次電池を 得ること。

【構成】 アモルファスリチウム又は/及びアモルノァスリチウム合金からなる層(1)を少なくとも表面に有するLi二次電池用の負極、及びかかる負傷を有するLi二次電池。

【効果】 金属リチウムに匹敵するエネルギー密度や起電力等の負極特性を示し、作動電圧や放電容量等に優れる高サイクル寿命の種々の形態のし;二次電池が得られる。

(2)

特開平7-296812

3

【特許請求の範囲】

【請求項1】 アモルファスリチウム又は/及びアモルファスリチウム合命からなる層を少なくとも表面に有することを特徴とする1.1二次電池用の負極。

【請求項2】 導電性支持基材上にアモルファスリチウム 又は/及びアモルファスリチウム合金からなる層を有する請求項1に記載の負極。

【請求項3】 請求項1又は2に記載の負極を有することを特徴とするレ1二次電池。

【発明の詳細な説明】

[00001]

【産業上の利用分野】本発明は、デンドライトが成長し にくくてサイクル寿命に優れ、急速充電できて高出力が 得られるしi二次電池及びその負極に関する。

[0002]

【従来の技術】従来、負種に金属リチウムを用いてなる。非水電解液型のLi二次電池が知られていた。かかるでした。なるでは、エネルギー密度や起電力に優れる利点を有すられた。全種では、五年のでは、大きなでは、大きなでは、大きなでは、大きなでは、大きなでは、大きなでは、大きなでは、大きなでは、大きなでは、大きなでは、大きなでは、大きなでは、大きなでは、大きなでは、大きなでは、大きないのでは、大きなでは、大きなでは、大きなでは、大きなでは、大きなでは、大きなでは、大きなでは、大きなでは、大きなでは、大きななの情報があった。

[0004]

【発明が解決しようとする課題】 4 発明は、デンドライトが成長しにくくてエネルギー密度や起電力に優れる負 医を得て、サイクル寿命に優れ、大電流による急速充電ができて高出力を得ることができるし i 二次電池を得る ことを課題とする。

[0005]

【課題を解決するための手段】本発明は、アモルファスリチウム又は/及びアモルファスリチウム合金からなる 暦を少なくとも表面に有することを特徴とするし1 二次電池用の負極、及びかかる負極を有することを特徴とするし1 二次電池を提供するものである。

[0006]

【実施服禄の例示】負極は、アモルファスリチウム又は
/及びアモルファスリチウム合金のテープや粉末成形
物、あるいはスラリー致布方式、裕者ないし蒸着方式等
により導電性支持基材の表面に当該アモルファスリチウム等の層を付設したものなどとして形成される。また事
電性支持基材としては、鋼、ニッケル、ステンレス、アルミニウム、銀等の金属からなるシートやネット、カーボンファイバやその横布の如き複合物等からなる炭素質
基材などが用いられる。リチウム合金としては、リチウ

ム以外の成分の含有量が原子比に基づいて40%以下、特に20%以下のものが用いられる。Li二次電池は、 電解質含有の多孔質網経膜を介して正極と負極を配置したものなどとして形成される。

2

[0007]

【作用】アモルファスリチワムメは/及びアモルファスリチウム合金を負傷の活物質とすることにより、充電時に負極の表面にデンドライト成長の特異点となる結晶粒界等の活性ポイントが形成されにくくてしiイオンの析別が均一化され、かつアモルファス構造に基づくるが、日本で乳密度により析出したリチウムが負極内部に効率よく拡散して負極表面の特定箇所に活性ポイントが集中することも防止され、これによりデンドライトの発生が抑制される。その結果、エネルギー密度や起電力に優れる負極を得ることができ、この負極を用いて充電効率、作動電圧、放電容量、サイクル寿命、出力に優れるしiこ次電池を形成することができる。

[0008]

【実施例】本発明の負極は、アモルファスリチウム又は

/ 及びアモルファスリチウム合金からなる層を少なくと
も表面に有するものであり、Li二次電池の形成に用い
ろものである。従って本発明の負極は、例えば当該アモ
ルファスリチウム等のテープや粉末成形物、あるいは導
電性支持基材の表面に当該アモルファスリチウム等の層
を付設したものなどの適宜な形態物として形成すること
ができる。その例を図1、図2に示した。

【0009】図1に例示の負極1は、アモルファスリチウム又は/及びアモルファスリチウム合金からなる粉末を粉末成形したものからなる。図2に例示の負極2は、導電性支持基材22の表面に当該アモルファスリチウム等からなる負極活性層21を付設したものからなる。なお当該アモルファスリチウム等からなる層は、導電性支持基材の両面に設けられていてもよいし、片面又は両面に部分的に設けられていてもよい。

【0010】アモルファスリチウム、アモルファスリチウム合金の形成は、例えば融液冷却方式、液体急冷方式、アトマイズ方式、真空蒸着方式、スパッタリング方式、プラズマCVD方式、光CVD方式、熱CVD方式などの適宜な方式で形成することができる。

40 【0011】アモルファスを形成するためのリチウム合金としては、Liと、例えばAl、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Sr、Teなどの金属との2元又は3元以上の合金に、必要に応じてSi、Cd、Zn、Ln等を添加したものなどがあげられ、公知物のいずれも用いうる。

【0012】ちなみに、前記リチウム合金の具体例としては、例えばA1、Bi、Sn又はIn等としiとの金属間化合物などからなるしi合金、LiとPbの合金にしa等を添加して機械的特性を改善したもの、あるいはAg、AI、Mg、Zn又はCaの少なくとも1種からな

3

るX成分を含むしi-X-Te系合金などがあげられ

【0013】リチウム合金におけるリチウム以外の成分 の合有量は、原子比に基づいて40%以下、就中5~3 0%、特に10~20%が好ましい。その含有量が40 %を超えると負傷活物質としてのエネルギー密度の低下 が著しい場合があり、20%を超えると起電力が低下す る場合がある。また5%未満では合金化による特性の改 善効果に乏しい場合がある。

【0014】充放電のサイクル寿命、高起電力性、高放 10 電容量性、高エネルギー密度性などの点より特に好まし く用いうるリチウム合金は、Li−Ag−T∈系合金か 5なるLi:Ag:Teの原子比が80~150:1~ 20:0.001~30のものなどであり、Liを80 原子%以上含有するものである。

【0015】本発明において負極は任意な形態とするこ とができ、その形成は例えば、1種又は2種以上のアモ ルファスリチウム又は/及びアモルファスリチウム合金 の粉末を必要に応じポリフッ化ビニリデンやエチレン・ プロピレン・ジェン共重合体の如き適宜な結者剤を用い て粉末成形する方法、又は結淆剤と分散媒等を用いて調 製したスラリーを注形する方法や導電性支持基材に塗布 する方法、あるいは上記したアモルファス形成方式で導 電性支持基材の表面に当該アモルファスリチウム等から なる層を溶着ないし蒸着層等として設ける方法などの適 宜な方法で行うことができる。

【0016】前記において当該アモルファスリチウム等 の粉末としては、形成目的の負極形態等に応じて適宜な 粒径のものを用いてよい。負極特性等の点より好ましく 用いうる粉末は、平均粒径に基づき1~100μ回以 下、貮中5~80μω、特に10~50μωのものであ る。なお結着剤の使用量は強度等に応じて適宜に決定し てよく、一般には形成負極の機械的強度や電極特性等の 点より当該アモルファスリチウム等の粉末の0.1~3 0重量%、武中1~20重量%、特に2~15重量%が

【0017】導電性支持基材についても、形成目的の負 極形態等に応じて適宜なものを用いてよい。その例とし ては、鈅、ニッケル、ステンレス、アルミニウム、銀等 の金属からなるシートやネット、カーボンファイバやそ の独布の如き複合物等からなる炭素質基材などがあげら れる。シート状の負種形成を目的とする場合、その事策 性支持基材としては一般に、1~500μm、就中5~ 300 um、特に10~100 umの厚さのものが用いら れる。その場合、導電性支持基材上に設ける当該アモル ファスリチウム等からなる層の厚さは任意で、電極の使 用目的等に応じて適宜に決定してよく、・・般には5~8 00 μm、就中10~500 μm、特に20~300 μm とされる。

ためのものであるが、そのLi二次電池の形成について は、かかる負極を用いる点を除いて特に限定はなく、電 解質と正極を用いて従来に準じて行うことができる。従 ってLi二次電池の形態なども使用目的等に応じて適宜 に決定することができ、例えばコイン型やボタン型、あ るいは整回体型などのように、電解質含有の多孔質絶縁 膜を介して止極と負極を配置した形態等の適宜な形態と することができる。

【0019】ちなみに、凶3にコイン型のものを例示し た。3は負極缶、4、8は集電用のニッケル板、5は負 極、6は電解質層(多孔質絶縁膜からなるセパレー タ)、7は正極、9は正極缶、10は絶縁封止材であ る。なお前記した楚回体型のものは、テープ状ないしシ ート状の正・負極を多孔質絶縁膜からなるセパレータを 介し捲回して正・負極部を形成する缶体に収容したもの である。前記したシート状等の正・負極の厚さは任意で あるが、数~数百μ□程度の厚さのものとすることもで きる。

【0020】電解質としては、Liイオンの移動を可能 とした適宜なものを用いることができる。その例として は、塩銀電解性ポリマーにリチウム塩を混合してなるも のの如きポリマー電解質、無機し;固体電解質、ないし それを樹脂中に分散させてなるものの如き固体電解質、 エステルやエーテル等の有機溶媒にリチウム塩を溶解さ せてなる非水電解液系のものなどがあげられる。

【0021】前記の塩類電解性ポリマーの代表例として は、ポリエチレンオキシド、ポリホスファゼン、ポリア ジリジン、ポリエチレンスルフィド、それらの誘導体や 混合物、複合体などがあげられる。なお固体電解質の場 30 合には、それが正・負極間のセパレータを兼ねうる利点 を有している。

【0022】また前記有機落椞の代表例としては、プロ ピレンカーボネート、エチレンカーボネート、ジメチル カーボネート、ジエチルカーポネート、テトラヒドロフ ラン、2-メチルテトラヒドロフラン、ジメトキシエタ ン、ジメチルスルホキシド、スルホラン、ァープチロラ クトン、1.2-ジメトキシエタン、ジエチルエーテ ル、1、3-ジオキソラン、靉酸メチル、酢酸メチル、 N.N-ジメチルホルムアミド、アセトニトリル、それ ちの混合物などがあげられる。

【0023】リチウム塩の代表例としては、LiI、Li CF3SO3, Li (CF2SO2) 2, LiBF4, LiCIO 4. LiAICI4. LiPF4. LiPF6. LiAsF3. Li AsF6などがあげられる。電解液におけるリチウム塩濃 皮は 0. 1~ 3 モル/リットルが一般的であるが、これ に限定されない。なお前記した非水電解液等の形成に際 しては、寿命や放電容量、起電力等の電池特性の向上な どを目的として、必要に応じて2-メチルフラン、チオ フェン、ピロール、クラウンエーテル、Li錯イオン形 【0018】本発明の負極は、レiニ次電池を形成する 50 成剤(人環状化合物等)などの有機添加物を添加するこ (4)

特開平7-296812

6

ともできる。

【0024】近極については、カーボンや金属系のもの、共役系ポリマー等の有機導電性物質系のものなどの適官なものを用いることができる。前記金属系正核の例としては、Liを含有する、Ti、Mo、Cu、Nb、V、Mn、Cr、Ni、Co、P等の金属の複合酸化物、硫化物、セレン化物などがあげられ、その代表的具体例としては、MnO2、LiCoO2、Li。Col-x-yMxPyO2+2(ただし、Mは1種又は2種以上の遷移金属、wは0<w \le 2、xは0 \le x<1、yは0<y<1、2は-1 \le 2 \le 4である。)、あるいはLiないしLi-Coのサン酸塩及び/又はCoないしLi-Coの酸化物を成分として1モルのLiあたり0、1モル以上のCoと0、2モル以上のPを含有するものなどを活物質とするものがあげられる。

5

【0025】なおシート状等の正極の形成は、例えば活物質を必要に応じてアセチレンブラックやケッチェンブラック等の導電材料及びポリテトラフルオロエチレンやポリエチレン等の結着剤と共にキャスティング方式や圧縮成形方式、ロール成形方式、ドクターブレード方式、各種の素者方式や圧延方式、熱間押出方式などの、上記した負極形成方式に準じた適宜な方式で成形する方法などにより行うことができる。従って正極は、導電性支持基材に正極材を半田付けやろう付け、超音波溶接、スポット溶接、バインダ樹脂による壺布付着等の適宜な方式で接着してなる補強形態物とすることもできる。

【0026】一方、上記した正・負極間に介在させる多 孔質絶縁膜(セパレータ)としては、例えばポリプロピ レン等からなる多孔性ポリマーフィルムやガラスフィル ター、不織布などの適宜な多孔性素材を用いることがで きる。電解質含有の多孔質絶縁膜の形成は、多孔質絶縁 膜に電解質ないし電解液を含浸させたり、充填する方 式、あるいは電池缶内に電解液等を充填する方式などの 適宜な方式で行うことができる。

【0028】実施例1

高純度アルゴン雰囲気(露点度-60℃)下、純リチウムをステンレス製加熱容器中にて約300℃で融解し、アルゴンガスで内部より加圧してその融液を高速回転下の一対の鋼製双ロールに噴出させて急冷凝固させて得たアモルファスLiテープを、40㎜幅にカットし、それをエキスパンドニッケルの両面に片面厚20~100μョとなるように加圧密着させ、長さ270㎜にカットし

て負極シートを得た。

【0029】一方、LiCoO246部(重量部、以下同じ)、アセチレンブラック4部、ポリフッ化ビニリデン1部及びNーメチルピロリドン49部を混合してなるベーストを厚さ20μm、幅42mmのアルミニウム箔上にドクターブレード方式にて片面厚100μmで両面に築布し、200℃で1分間仮乾燥後それを圧延し長さ250mmにカットして真空下、120℃で3時間本乾燥し正極シートを得た。

10 【0030】次に、前記の負極シートと正極シートをアルゴン雰囲気ド、ステンレス又はニッケルメッキ鉄からなる正・負極缶内に、空孔率10~45%、厚さ25μmのポリプロピレン不職布からなるセパレータを介して配置し、それに電解液を充填してAAサイズLi二次電池を形成した。なお前記の電解液は、含水率が20ppm以下のプロピレンカーボネートと1、2ージメトキシエタンの混合液(体積比:1/1)にLiClO4を1モル/リットル濃度で添加した溶液からなる。

【0031】 実施例2

20 Li、Ag、Teを原子比率でLi:Ag:Te=9 0:10:0.5に配合し、アルゴン雰囲気中で500 でにて容解させて合金化して得たLi-Ag-Te合金を、純リチウムに代えて用いたほかは、実施例1に準じて負極シートを得、それを用いてLi二次電池を得た。【0032】実施例3

高純度アルゴン雰囲気(露点度-60℃)下、実施例2に準じて得たしi-Ag-Te合金をステンレス製加熱容器中にて約300℃で融解し、その融液出口でアルゴンガスを吹き付けて霧状とし、それを急冷凝固させて得たアモルファスリチウム合金粉末79部を、無鉛粉末(導電剤)20部及びフッ素樹脂粉末(結着剤)1部と混合し、それを厚さ10μω、幅40mmの銅箔の両面に片面厚20~100μωとなるように加圧密着させ、長さ270mmにカットして負極シートを得、それを用いて実施例1に率じしi二次電池を得た。

【0033】比較例

アモルファスリチウム負極シートに代えて、金属リチウムの圧延テープからなる厚さ100μmの負極シートを用いたほかは実施例1に準じてAAサイズしi二次電池40を得た。

【0034】評価試験

実施例又は比較例で得たAAサイズレi二次電池について電流密度1mA/cm²で、上限(充電)電圧4.2V、下限(放電)2.7Vの条件で充放電を繰り返し、初期の電池容量(放電容量)の60%以下の容量となった時点を寿命の終点としてそのサイクル寿命を調べた。

【0035】前記の結果を表に示した。なお表には、負 傷の10サイクル日のエネルギー密度も示した。

8

特開平7-296812

7

· · · · · · · · · · · · · · · · · · ·				
	実施例1	実施例 2	実施例3	比較例
サイクル寿命(回)	600以上	1200以上	900ELL	40以下
エネルギー・密度(WM/1)	305	280	285	300

[0036]

【発明の効果】本発明によれば、金属リチウムに匹敵す るエネルギー密度や起電力等の特性を示す上に、デンド 10 【符号の説明】 ライトが成長しにくい負極を得ることができ、作動電圧 や放電容量等に優れる高エネルギー密度、高出力の、か つサイクル寿命の長さに優れ、しかも大電流による急速 充電が可能な種々の形態のLi二次電池を得ることがで きる。

【図面の簡単な説明】

【図1】負極例の断面図。

【図2】他の負極例の断面図。

【図3】電池例の説明図。

1、2、5:負極

21:アモルファス系の負極活性層

22: 導電性支持基材

3:負極缶

6: 電解質層(多孔質絶縁膜からなるセパレータ)

7:正極

【図1】

[图2]

【図3】

