

Ayudantía 6 - Relaciones

Héctor Núñez, Paula Grune, Manuel Irarrázaval

Soluciones

Pregunta 1 (Ross, 9.1, p49)

Dado un conjunto de n elementos, indique cuantas relaciones posibles existen de los siguientes tipos:

- 1. simetricas
- 2. antisimetricas
- 3. asimetricas
- 4. irreflejas
- 5. reflejas y simetricas
- 6. ni relejas ni irreflejas

Propuesto: transitivas, con n = 1, 2 y 3

Solución:

1. Simétricas:

Tomemos \mathcal{R}_{sim} como el conjunto de todas las relaciones simetricas. Dada $R \in \mathcal{R}_{sim}$ cualquiera, veamos las restricciones que la simetria pone sobre esta relacion.

Separamos todos los pares de la relación R en dos tipos:

- (a, a): Tenemos n de estas conexiones. La simetria no las restringe, ya que si usamos la definición $(a, a) \implies (a, a)$. Podemos elegir libremente si pertenezen o no a R
- $(a,b), a \neq b$: Tenemos n(n-1) de este tipo de conexiones. Sin embargo, por simetria $(a,b) \in R \implies (b,a) \in R$, por lo que estamos restringidos a tomar

(b,a). Debido a que las conexiones siempre viene de a 2, solo podemos elegir el estado de $\frac{n(n-1)}{2}$ parejas independientemente.

Luego llegamos que:

$$|\mathcal{R}_{sim}| = 2^{\frac{n(n-1)}{2}} 2^n = 2^{\frac{n(n+1)}{2}}$$

2. Antisimétricas:

Separamos nuevamente en parejas:

- (a, a): Si vemos la definicion de antisimetria, estas relaciones nuevamente no se ven restringidas.
- $(a, b), a \neq b$: Veamos cualquier pareja de valores a, b, tal que $a \neq b$. Tenemos $\frac{n(n-1)}{2}$ de estos posibles pares y existen 3 posibilidades:
 - $a) \ (a,b) \in R \ \land (b,a) \not \in R$
 - $(b,a) \in R \land (a,b) \notin R$
 - c) $(a,b) \notin R \land (b,a) \notin R$

Dado esto podemos llegar a que:

$$|\mathcal{R}_{ant}| = 3^{\frac{n(n-1)}{2}} 2^n$$

3. Asimétricas: Analogo a caso \mathcal{R}_{ant} , a exepción de que no incluye relaciones de la forma (a, a).

$$|R| = 3^{\frac{n(n-1)}{2}}$$

4. Irreflejas: En estas relaciones, $(a, a) \notin R$. Si nos fijamos en los casos (a, b) donde $a \neq b$, podemos ver que tenemos n(n-1) posibles intersecciones independientes. Por lo tanto:

$$|\mathcal{R}_{ir}| = 2^{n(n-1)}$$

5. Simétrica y refleja: Analogo al caso \mathcal{R}_{sim} , pero tenemos la restriccion de que $(a, a) \in R$. Por lo tanto:

$$|\mathcal{R}_{sim,r}| = 2^{\frac{n(n-1)}{2}}$$

6. Ni reflejas ni irreflejas:

Como no hay interseccion entre las relaciones reflejas e irreflejas podemos simplemente restarla de todas las relaciones posibles. Si no tenemos ninguna restricción, tenemos n^2 posibles conexiones y por lo tanto:

$$|\mathcal{R}| = 2^{n^2}$$

Además las relaciones reflejas e irreflejas ambas restringen solamente los autoloops, por lo que:

$$|\mathcal{R}_r| = 2^{n(n-1)} = |\mathcal{R}_{ir}|$$

Finalmente, tenemos que:

$$|\mathcal{R}_{nir,nr}| = |\mathcal{R}| - |\mathcal{R}_{ir}| - |\mathcal{R}_r|$$

= $2^{n^2} - 2^{n(n-1)} - 2^{n(n-1)} = 2^{n^2} - 2^{n(n-1)+1}$

Propuestos:

No existe una formula explicita para $|\mathcal{R}_{trn}|$, pero para n=1, n=2, n=3, toma los respectivos valores de 2, 13, 171.

Pregunta 2

Sea $\{0,1\}^* = \{\epsilon,0,1,00,01,10,11,000,\ldots\}$ el conjunto de todas las palabras (strings) binarias y sea $u \cdot v$ la concatenación de dos palabras $u,v \in \{0,1\}^*$ (ej. $00 \cdot 101 = 00101$). Se define la relación $R \subseteq \{0,1\}^* \times \{0,1\}^*$:

 $(w_1, w_2) \in R$ si, y solo si, existen palabras u y v tal que $w_1 = u \cdot v$ y $w_2 = v \cdot u$.

1. Demuestre que R es una relación de equivalencia sobre $\{0,1\}^*$.

Solución:

La solución consiste en demostrar que la relación presentada sobre palabras en Σ^* es una relación de equivalencia. Luego, es necesario mostrar que la relación es refleja, simétrica y transitiva.

- Reflexividad: Sale de la idea que para toda palabra w es posible definir la división como u = w y $v = \varepsilon$ ya que $w = w \cdot \varepsilon = \varepsilon \cdot w$. Luego, $(w, w) \in R$.
- Simetría: Al tener par $(a, b) \in R$, luego existen u y v tal que $a = u \cdot v$ y $b = v \cdot u$. Es claro notar que al escoger u' = v y v' = u, podemos mostrar que se cumple para el lado contrario. Luego $(b, a) \in R$.
- Transitividad: Si se tienen palabras $(a,b) \in R$ y $(b,c) \in R$ luego existen divisiones entre a y b y entre b y c. Nótese que podemos conectar mediante estas divisiones a a y c. Sin embargo, es necesario revisar los casos en que estas divisiones son de distinto largo y como formar la división que conecta a a y c. Sin pérdida de generalidad es posible solo ver el caso en que una las porciones de la división entre a y b es más larga que una entre b y c. Subdividiendo más aún estas divisiones, teniendo en cuenta lo anterior, es posible construir la división buscada para mostrar que $(a,c) \in R$.
- 2. Interprete en palabras a qué corresponden las clases de equivalencia de R.

Solución:

La solución consiste en analizar, más allá de la definición de R, que describen las clases de equivalencia de R. Podemos notar que la clase de equivalencia de una palabra w son todas las palabras obtenidas a partir de al "girarla", es decir, si $w = a_1 \dots a_n$, entonces $a_j \dots a_n a_1 \dots a_{j-1} \in [w]_R$. Podemos pensar de toda palabra como un ciclo, luego todas las palabras que pueden formar ese mismo ciclo son parte de su clase de equivalencia.

Pregunta 3

Solución

- (a) Notemos que \sim es simétrica, por lo que para todo $(a,b) \in \sim$, se tiene que $(b,a) \in \sim$, y por definición de relación inversa, que $(a,b) \in \sim^{-1}$. Luego todos los elementos de \sim están en \sim^{-1} , es decir, $\sim \subseteq \sim^{-1}$. Del mismo modo, $\sim = (\sim^{-1})^{-1}$ por definición de inversa, por lo que el mismo argumento se puede utilizar para decir que $\sim^{-1}\subseteq \sim$. Concluimos que $\sim^{-1}=\sim$, por lo que \sim^{-1} es una relación de equivalencia.
- (b) Sea $(x, x) \in I_A$. Luego, $x \in A$ por definición de I_A . Como \sim es una relación de equivalencia, en particular es refleja, por lo que $(x, x) \in \sim$. Como se tomó (x, x) arbitrario, se cumple que para todo $(x, x) \in I_A$, $(x, x) \in \sim$, por lo que $I_A \subseteq \sim$.
 - Notemos que \sim es finito, por lo que $|\sim \backslash I_A| \leq |\sim|$ debe ser un natural mayor o igual a 0. Notemos además que si $I_A \subsetneq \sim$, entonces existe al menos un elemento en $\sim \backslash I_A$. Sea (a,b) este elemento. Dado que $(a,b) \notin I_A$, por definición de diferencia de conjuntos, tenemos que $a \neq b$. Además, como $(a,b) \in \sim$, por definición de diferencia de conjuntos, y como \sim es simétrica por ser relación de equivalencia, tenemos además que $(b,a) \in \sim$. Luego, tenemos que (a,b) y (b,a) pertenecen a $\sim \backslash I_A$. Finalmente, como $a \neq b$, se tiene que los pares ordenados también son distintos, esto es que $(a,b) \neq (b,a)$. Concluimos que $\sim \backslash I_A$ tiene al menos dos elementos, es decir, $|\sim \backslash I_A| \geq 2$.