Du 3 - verze 2

Pavel Marek

1)

Rozhodněte, zda jazyk $S = \{ \langle M_1, M_2 \rangle \mid L(M_1) \cap L(M_2) = \emptyset \}$ je rozhodnutelný.

2.1)

Ukažte, že $L_u \leq_m S$, kde $S = \{ \langle M \rangle \mid (\forall x \in \Sigma^*) [x \in L(M) \Leftrightarrow x^R \in L(M)] \}$.

Chceme převést $\langle M,x\rangle \to \langle M'\rangle.$ Výpočet M' bude vypadat následovně: $M'(y\in \Sigma^*)$:

- 1. Pokud y = a, tak přijmi. a je předem zvolené konstantní slovo.
- 2. Spusť M(x). Pokud odmítne, odmítni. Zde nám nevadí, pokud výpočet M(x) nedoběhne.
- 3. Pokud $y = a^R$, tak přijmi.
- 4. Odmítni.

Všimněme si, že pokud $x \in L(M)$, tak $L(M') = \{a, a^R\}$. A pokud $x \notin L(M)$, tak $L(M') = \{a\}$. Tím pádem je splněna podmínka $x \in L(M) \Leftrightarrow ((\forall x \in \Sigma^*)(x \in M' \Leftrightarrow x^R \in M'))$.

2.2)

Ukažte, že $L_u \leq_m \overline{S}$, kde $\overline{S} = \{ \langle M \rangle \mid (\forall x \in \Sigma^*) [x \in L(M) \Leftrightarrow x^R \notin L(M)] \}.$

Chceme převést $\langle M,x\rangle\to\langle M'\rangle.$ Výpočet M'bude vypadat následovně: $M'(y\in\Sigma^*):$

- 1. Pokud y = a, přijmi.
- 2. Pokud $y=a^R$, přijmi. První dva kroky jsou zde zbytečné. Prázdný jazyk je také \overline{S} .
- 3. Spusť M(x). Pokud odmítne, přijmi.

- 4. Pokud y=b, přijmi. b je předem zvolené konstantní slovo.
- 5. Odmítni.

Všimněme si, že pokud $x \in L(M)$, tak $L(M') = \{a, a^R, b\}$. A pokud $x \notin L(M)$, tak $L(M') = \{a, a^R\}$. Tím pádem je splněna podmínka $x \in L(M) \Leftrightarrow ((\forall x \in \Sigma^*)(x \in M' \Leftrightarrow x^R \notin M'))$.