# **Computational Intelligence Programming Assignment 1**

**DUE DATE: NOV 1, 2016** 

# **OBJECT OF THE ASSIGNMENT:**

To understand the Widrow-Hoff learning rule (also referred as to the Least Mean Square (LMS) algorithm).

- The Perceptron learning rule and the Widrow-Hoff learning rule are both methods of training up a single layer of neurons (or even a single neuron) to learn some task.
- Unlike the perceptron learning rule, the activation function of the Widrow-Hoff learning rule is a linear function and its output values can be any real numbers.

#### **PROBLEM:**

Implement both incremental (or call stochastic) and batch versions of the Widrow-Hoff learning rule to classify the digits 0 and 1.

- Use a single neuron with 30 inputs in the recognition system.

#### INPUT:

## REPRESENTATION OF EACH INPUT

In this simple problem, we want to design a recognition system that would classify the digits 0 and 1. Each of the digits is displayed in a 6x5 grid; see the following for an example of digit 0:



Figure 1 An example of digit 0

We need to convert the digit to a vector, which will become the input for the neuron. Each white square will be represented by a "-1", and each dark square will be represented by a "1". To create the input vector, we will scan each 6x5 grid one column at a time. For example, the digit 0 shown in Figure 1 will be

For each input pattern, there is a target is associated with it. The targets for the digits 0 and 1 are -1 and 1, respectively.

# TRAINING SET

The training set that consists of two types of the input patterns is shown below:

| Training pattern i | Neural inputs | Target t |
|--------------------|---------------|----------|
| P1                 | Vector P1     | -1       |
| P2                 | Vector P2     | 1        |
| P3                 | Vector P3     | 1        |
| P4                 | Vector P4     | -1       |
| P5                 | Vector P5     | -1       |
| P6                 | Vector P6     | 1        |
| P7                 | Vector P7     | 1        |
| P8                 | Vector P8     | -1       |



Figure 2 Input patterns of the training set

# TESTING SET

The testing set that consists of the input patterns only is shown below:



Figure 3 Input patterns of the testing set

#### **OUTPUT:**

Display the stop condition, the adjusted bias and weight values, the training accuracy and testing accuracy.

#### **TESTING CASES:**

- Run both incremental and batch versions of the Widrow-Hoff learning rule with same parameter settings, training/testing sets, and compare their performance.
  - Try different learning rates and initial weights when you run the same training/testing sets and see any difference among the results.
- Create your own training and testing sets and repeat the process.

#### **DISCUSSION:**

Summarize your results and discuss what your observations. For example:

- Compare the performance of both versions of the Widrow-Hoff learning rule.
- Compare the performance of different learning rates and initial weights.
- Compare the performance of different training/testing sets.
- Everything else you consider it is important.

#### **APPENDIX:**

#### ALGORITHM: Widrow-Hoff learning rule\_Incremental version

- Choose a learning rate  $\eta$  and initialize weights  $v_i$ , i = 1, ..., I+1, to random values
- UNTIL the termination condition is met DO

FOR each training pattern  $(z_1, z_2, ..., z_l, z_{l+1}) \in \text{dataset}$ 

Compute the current output  $o_p$  // the value of  $o_p$  can be any real number

FOR 
$$i = 1$$
 to  $I+1$   $// v_{I+1} = \theta$ ,  $z_{I+1} \equiv -1$   $v_i \leftarrow v_i + 2 * \eta * (t_p - o_p) * z_i$ 

### ALGORITHM: Widrow-Hoff learning rule\_Batch version

- Choose a learning rate  $\eta$  and initialize weights  $v_i$ , i = 1, ..., I+1, to random values
- UNTIL the termination condition is met DO

//one iteration for whole training examples

Initialize each  $\Delta v_i$  to zero

FOR each training pattern  $(z_1, z_2, ..., z_l, z_{l+1}) \in \text{dataset DO}$ 

//train each example

Compute the current output  $o_p$  // the value of  $o_p$  can be any real number

FOR 
$$i = 1$$
 to  $I+1$  //  $v_{I+1} = \theta$ ,  $z_{I+1} = -1$ 

//train each  $v_i$  for the given example

$$\Delta v_i \leftarrow \Delta v_i + 2 * \eta * (t_p - o_p) * z_i$$

//have trained all examples, update  $v_i$ 

FOR 
$$i = 1$$
 to  $I+1$   $// v_{I+1} = \theta$   $v_i \leftarrow v_i + \Delta v_i$ 

### Remark:

The algorithm stops when it meets one of the termination conditions. Stopping criteria usually includes:

- (a) Stop when a maximum number of epochs has been exceeded.
- (b) Stop when the mean squared error (MSE) on the training set,  $\varepsilon$ , is small enough.

$$\varepsilon = \frac{\sum_{p=1}^{P_T} (t_p - o_p)^2}{P_T},$$

where  $t_p$  and  $o_p$  are respectively the target and actual output for the p-th pattern, and  $P_T$  is the total number of input-target vector pairs (patterns) in the training set.

For example,  $\varepsilon < \tau (= 10^{-6})$ , where  $\tau$  is a given tolerance.

(c)  $\Delta v_i < a$  given weight change tolerance  $\varepsilon_i$ , i = 1, 2, ..., I+1.