

SoC Final Project

Abhijjith Venkkateshraj, Shreyas Ravishankar

Fall 2021

Contents

- Product Overview (MRD)
- System Design
- SW Design
- HW Design
- Final HW/SW Design
- Demo
- Validation Metrics/Results

Product Overview

- Object detection using TinyYolo V3
- CNN based object detection
- Marketing requirements
 - o Performance- 10fps
 - Accuracy- 50% mAP
 - Area- 0.5mm²
 - Power < 8mW

YOLO: You Only Look Once

System Design

HW/SW Partitioning

- Pre-processed the weights and images before passing it to the gemm_nn function.
- Involved scaling the arrays and converting them from floating point to fixed point just before the gemm call.
 - Dynamically allocated 2 fixed point arrays storing the weights and images

```
    Function call stack → darknet.c (int main function)
        test_detector (detector.c)
        network_predict (network.c)
        forward_network (network.c)
        forward_convolutional_layer (convolutional_layer.c)
        gemm (gemm.c)
        gemm_cpu (gemm.c)
        gemm_nn (gemm.c)
```


- With a scale factor of 9, we got a latency of 8.99s for gemm_nn with decent accuracy.
 - SNR experiments might not be a true representation of the dataset used in darknet.
 - The better metric to decide scale factor would be analysing the tradeoff b/w prediction probabilities and latency on the actual image.
 - Performance ~ 9.522 secs/image

```
Flat profile:
Each sample counts as 0.01 seconds.
     cumulative self
                                 self
                                         total
time
       seconds
                seconds
                          calls
                                 s/call
                                         s/call
                                                name
88.22
          8.99 8.99
                           3694
                                           0.00 gemm nn
                                   0.00
                                           0.00 rand uniform
 1.77
        9.17 0.18 8845488
                                   0.00
      9.32 0.15
                                           0.00 stbi zbuild huffman
1.47
                           1102
                                   0.00
 1.47
        9.47
                  0.15
                             13
                                   0.01
                                           0.72 forward convolutional layee
        data/dog.jpg: Predicted in 9522.000000 milli-seconds.
        dog: 76%
        bicycle: 29%
        car: 65%
                                                                        Accuracy
        truck: 47%
        truck: 66%
        car: 43%
```

```
for conf_thresh = 0.25, precision = 0.67, recall = 1.00, F1-score = 0.80
for conf_thresh = 0.25, TP = 4, FP = 2, FN = 0, average IoU = 63.31 %

IoU threshold = 50 %, used Area-Under-Curve for each unique Recall

mean average precision (mAP) = 1.000000, or 100.00 % (4 classes)
Total Detection Time: 10 Seconds
```

Floating Point Fixed Point

ARM/QEMU + SystemC Co-Simulation

ARM/QEMU + SystemC Co-Simulation

Dimensions, weights and images sent using memory mapped I/O (/dev/mem) and used (/dev/fpga) for interrupts. ~ 3 min/gemm call.

- Since the calls to the GEMM hardware module was taking significant time, we verified the functionality of the model using the below approach
- 1st iteration in each layer invokes gemm_nn_hw and the rest of the iterations in that layer invokes the quantized gemm_nn model (software-only).
- Integrated darknet. Performance ~ 763 secs/image

```
data/dog.jpg: Predicted in 763590.025000 milli-seconds.
dog: 76%
bicycle: 29%
car: 65%
truck: 47%
truck: 66%
car: 43%
```

System Architecture

System/SW Architecture - Deep dive

Testing infrastructure

- Python testbench to test correctness of blocking
- Block testing
 - Whether individual blocks of weights and image are written correctly (via memory readback)
- Reconstruction/Layer testing
 - Whether intermediate O/P blocks are correctly reconstructed to the bigger Output matrix
 - Whether each layer's output is correct or not (functionality between HW and SW GEMM)
- Network testing
 - Whether the final accuracy is as expected or not

HW Design Approaches

- Pipelining
- Loop unrolling
- Array Partitioning
- Bit Width Optimization

Pipelining

- Pipelining J and K loop doesn't make a difference, so pipelining K loop is sufficient.
- Pipelining the outermost loop gives the most optimization, but at the cost of resources.
- Pipelining the middle loop (K) gives fair amount of optimization at the same time, saving us on resource usage.

Loop unrolling

- Different loop factors for K shows that unrolling K by more than 2 factor doesn't make a difference in loop latency.
- Unroll J fully, K by factor of 2.

Array Partitioning

- Experimented with cyclic partitioning and block partitioning.
- Saw more benefits when combined with unrolling and pipelining.

HLS Testing and Co-Simulation

- C simulation done for multiple tests (32), for random numbers generated within the required range based on scale factor.
- C RTL verification Values observed at various points in the waveform to ensure correct functionality of multiply and accumulate function.

```
for (i = 0; i < num_tests; i++)
{
    for (j = 0; j < max_array_size; j++)
    {
        // Generate random test data, limit dynamic range to 12-bit
        A[j] = (rand() - RAND_MAX / 2) >> (8*sizeof(input_t) - 12);
        B[j] = (rand() - RAND_MAX / 2) >> (8*sizeof(input_t) - 12);
    }
    hls_gemm(A, B, C_hw, 1);
    ref_gemm(A, B, C_sw, 1);
```

Snippet 1: A value is 0x4, B value is 0x4, and the current value of C is 0x68. So the new value of C would be 0x68 + ((0x4)*((0x4)) = 0x78.

Block Size Exploration

Dimensions (M,N,K)	HW optimizations	Communication	No. of GEMM calls	Darknet Performance/i mage
16, 16, 16	No optimizations	IOCTL	699232	500 s
16, 16, 16	unrolling and pipelining	MMAP	699232	210 s
64, 64, 64	unrolling and pipelining	MMAP	15191	62 s
256, 256,16	unrolling and pipelining	MMAP	6795	524 s
128, 128, 128	unrolling and pipelining	MMAP	3765	179 s

Choosing HW Design for 64*64 GEMM HW Accelerator

Gemm_Hw_Accelerator active time vs. HLS Optimization

Gemm_Hw_Accelerator active time (seconds)

Final HW/SW Design

HW

- 64*64 GEMM in HLS
- Loop unrolling J completely (innermost loop)
- Pipelining and Loop unrolling K(4) (middle loop)
- Cyclic partitioning A by 4 factor
- B and C cyclically partitioned by 16 factor

SW

- HAL sends blocks of 64*64 using mmap in a cyclic partitioned manner
- Communication is still the bottleneck (consuming ~24 secs).

Performance ~ 25s/image

Yolov3 DEMO using Custom Accelerator HLS IP

Metrics/ Validation

Functional Verification and Accuracy

data/giraffe.jpg: Predicted in 25431.975 giraffe: 46% zebra: 43%

data/person.jpg: Predicted in 25572.405000 milli-seconds.
dog: 85%
dog: 71%
person: 97%

data/eagle.jpg: Predicted in 25417.720000 milli-seconds. bird: 70%

mAP measurement for 2 images

for conf_thresh = 0.25, precision = 0.71, recall = 1.00, F1-score = 0.83
for conf_thresh = 0.25, TP = 5, FP = 2, FN = 0, average IoU = 67.34 %

IoU threshold = 50 %, used Area-Under-Curve for each unique Recall mean average precision (mAP) = 1.000000, or 100.00 % (5 classes)
Total Detection Time: 52 Seconds

sheep: 81%

Power and Timing Estimation

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 3.028 W
Design Power Budget: Not Specified

Power Budget Margin: N/A
Junction Temperature: 33.3°C

Thermal Margin: 66.7°C (24.1 W)

Effective θJA: 2.7°C/W

Power supplied to off-chip devices: 0 W

Confidence level: Medium

<u>Launch Power Constraint Advisor</u> to find and fix

invalid switching activity

Design Timing Summary

Setup		Hold		Pulse Width		
Worst Negative Slack (WNS):	2.303 ns	Worst Hold Slack (WHS):	0.010 ns	Worst Pulse Width Slack (WPWS):	3.500 ns	
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns	
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	
Total Number of Endpoints:	55991	Total Number of Endpoints:	55991	Total Number of Endpoints:	16727	

Figure 13: DPUCZDX8G Architecture

DPU based Design (Demo)

- State of the art IP (Xilinx) for ML applications
- Vitis- Al toolchain to deploy applications.

Acknowledgements

Thank you for your help

- Dr. Andreas Gerstlauer
- Alex
- Other Teams

Creative Backlog

DMA based design (Accelerator Master) to communicate with DRAM

- The processor is interrupted only after a layer's gemm computation instead of every block gemm.in
- C matrix (output of every layer) is thus read in one shot from DRAM after the interrupt is received.
- Streaming interface b/w DMA and HW accelerator.
- Processor can rearrange the weights matrix in DRAM, in parallel when gemm is being computed (avoiding rearranging overhead for weights after gemm computation)
- Petalinux is failing during configuration. (Wasn't able to push THIS design to completion)

Final HW Design for a 16*16 GEMM (Lab 3)

- Pipelining Middle (k) Loop
- Unroll the Middle (k) Loop by a factor of 2
- Completely Unroll the lower (j) loop (factor: 16)
- ap_int<16> for inputs and lda; and ap_int<32> for outputs

Frequency - 6.753ns Cycles- 2178 Total time (16*16)- 1.46us

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	-	35	-	-	
Expression	-	0	0	1987	- [
FIFO] -	-	-	-	- [
Instance	-		-	-	-
Memory	-	- [- [-	-
Multiplexer	-	-	-	512	-
Register	-	-[1429	h = 1	-1
Total	0	35	1429	2499	0
Available	432	360	141120	70560	0
+ Utilization (%)	0	9	1	 3	0

Software and Hardware Design

Approach 1:

- HW: 16*16 accelerator which implements naive gemm (No optimizations)
- SW: HAL to break down weights/images and send 16*16 matrices over IOCTL
- Tiling logic first implemented and tested in Python
 - Considered dimensions perfectly divisible by block size
 - Added zero padding logic for dimensions not perfectly divisible (zero padding the original array vs padding the block)
 - Making sure that we are not sending weights repetitively per GEMM layer.
- Performance ~500 secs/image

Approach 2:

- SW: Calling gemm_nn with M=m instead of M=1 for each gemm call (diverted from supposedly parallel thread execution).
- HW: 16*16 accelerator which implements naive gemm (No optimizations)
- Performance ~310 secs/image

Approach 3:

- HW: Took the most optimal design obtained from Lab 3 experiments
 - o 16*16
 - Unroll innermost loop (J) fully, Unroll middle (K) loop by factor of 2
 - Pipeline the K loop
 - **Performance ~ 306 sec/image** (communication is still the bottleneck)
- SW optimization- Changed loctl to mmap
 - Performance ~ 210 sec/image

Approach 4: Using varying block size to reduce the communication cost

M	N	K	# GEMM calls	Time(s)
64	64	64	15191	62.3
256	256	16	6795	524
128	128	128	3765	179

- # of GEMM calls not directly proportional to execution time.
- Squared block matrices seemed to perform better as compared to uneven shaped block matrices.
- 64*64 is the chosen block size based on analysis

Total cycles (HLS) vs. Blocking Factors

FPGA latency vs. Blocking Factors

