Dado un sistema cerrado (fluido), si ignoramos efectos electromagnéticos tal que nuestro fluido es puro, N, V y E determinan el estado termodinámico del sistema de manera única.

La presión será dada por P=P(E,V,N), mientras que no tenemos gaantía de que E=E(P,N,V).

Trabajo

La fuerza que ejerce el fluido sobre la pared es

Para que el fluido esté en equilibrio debería sentir la pared una fuerza $\vec{F} = -F_{fluido} \hat{c}$.

- (i) F>pA comprime
- (ii) F<pA expande

En ambos casos, el volumen cambia DV=A Ax, teniendo que

* $\Delta x > 0$ expansión $\Rightarrow \Delta V > 0$ * $\Delta X < 0$ compresión $\Rightarrow \Delta V < 0$

Mas aún, como △E≠O en cualquier caso, entonces

$$\Delta E = -\Delta E^{\text{ext}} \Rightarrow E_f - E_i = -E_f^{\text{ext}} + E_i^{\text{ext}}$$

$$\Rightarrow E_f + E_f^{\text{ext}} = E_i + E_i^{\text{ext}} = E_{\text{universo}}$$

Decimos que $\Delta E_{\text{ext}} = W$.

Suponiendo un cambio Δx "pequeño" del pistán $\Delta W = \vec{F} \cdot \Delta \vec{x} \text{ donde } \Delta \vec{x} = \Delta x \hat{\imath} \text{ y } \vec{F} = -F \hat{\imath}, \ \vec{F} > 0,$ entonces $\Delta W = -F \hat{\imath} \cdot \Delta x \hat{\imath} = -F \Delta x.$

$$W = \int_{\text{incial}}^{\text{final}} \vec{F} \cdot dx$$

Caso especial Un proceso (compresión o expansión) lo hace quasiestátivamente... i.e. es tan lento que siempre hay equilibrio entre el agente externo y el fluido.

Dado gue Δx es "pequeño", $\Delta W = -F\Delta x \Rightarrow \Delta W \approx -p \overline{A} \Delta x$: $\Delta W \approx -p(V)\Delta V$. Pero, si el volumen cambia. entonces $\Delta W \approx -p(V+\Delta V)\Delta V$, lo cual por Taylor es:

$$\frac{\Delta W}{\Delta V} \approx -\rho(V) + \frac{d\rho}{dV} \Big|_{V} \Delta V$$

$$\Rightarrow \frac{dW}{dV} = -\rho(V)$$
differencial inexacta
$$\Rightarrow dW = -\rho(V, N, E) dV$$

Por lo tanto, para un procesc cuasiestático de V_i a V_f el trabajo quasiestático es: $W = \int_i^f dW = -\int_{V_i}^{V_f} \rho \, dV$ en cada "instante" está en equilibrio consigo mismo y con el agente externo.

Jiagrama p-V (Clapeyron)

termodinámico, W ≠ W (E, V, N)

· estado de eguilibrio

1 → 2 proceso quasiestático... pero NO necesariamente con paredes <u>aislantes</u>.

Tenemos entonces $W_{1\rightarrow 2} = -\int_{1}^{2} \rho dV = -(Area bajo curva)$

Es decir, el trabajo depende de la trayectoria del proceso

$$\therefore \int_{1}^{2} dW \neq W_{2} - W_{1}$$

de donde deducimos que W no es una variable del estado

Proceso: Ciclo

 $W = \oint dW = - \text{Area} \neq 0$

 $W = \oint_C dW = + \text{Área} \neq 0$

\$dE=0 Vciclo

alrededores hacen W>0 trabajo sobre el sistema

el sistema hace trabajo W<0 solve los alrededores

Dado un sist. de paredes impermeables y AISLANTES con un proceso guasiestático entonces ocurre que solo I trabajo quasiestático, decimos que tenemos un proceso adiabático.

Ahora bien, dado un proceso en un sist. con paredes arbitrarias (e.g. diatérmicas \equiv no aislante) \Rightarrow \exists trabajo $W \neq 0$ y encontramos que el combio de energía no es el trobajo ∆E≠W. Dado esto último definimos Q = DE - W

En lengua vernácula... en un proceso dado (interacción del sistema con alrededores) el cambio de energía del sistema que NO es trabajo lo llamaremos CALOR.

W y Q son intercambio de energía c/alrededores ΔE: cambio de la energía del sistema