#### **DATOS MASIVOS II**

#### DESCOMPOSICIÓN DE VALORES SINGULARES

Blanca Vázquez-Gómez y Gibran Fuentes-Pineda 15 de agosto de 2022

#### Un poco de historia

- La descomposición de valores singulares (SVD) fue propuesta por Beltrani (1873) y por Jordan (1874).
- Fue hasta 1907 por Smith y en 1912 por Weyl que fue planteado como una generalización de la descomposición propia de matrices.
- En la década de los 60 y 70, cuando consigue popularidad para el tratamiento de imágenes.

### DEFINICIÓN

Dada una matriz A de  $m \times n$ , una descomposición de valores singulares de A es una **factorización** del tipo:

$$A = U\Sigma V^{T}$$

Dónde:

U es una matriz ortogonal de tamaño  $m \times m$  $\Sigma$  es una matriz diagonal de tamaño  $m \times n$ V es una matriz ortogonal de tamaño  $n \times n$ 

### DESCOMPOSICIÓN DE VALORES SINGULARES



### DESCOMPOSICIÓN DE VALORES SINGULARES

- Los elementos de la matriz  $\Sigma$  se les conoce como los valores singulares de A, se denotan por  $(\sigma_i)$
- Los vectores  $u_i$ , ...,  $u_m$  que conforman la matriz U se les conoce como vectores singulares de A por la izquierda.
- Los vectores  $v_i$ , ...,  $v_m$  que conforman la matriz V se les conoce como vectores singulares de A por la derecha.
- · Las matrices *U* y *V* son unitarias
- El término  $\sigma_i u_i v_i$  se conoce también como tripleta singular.

### **EJERCICIO**

Encontrar la descomposición de valores singulares de A:

$$A = \begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{bmatrix}$$

#### **EJERCICIO**

Paso 1: para obtener las matrices U,  $\Sigma$  y V, es necesario calcular:

$$AA^T$$
  
 $A^TA$ 

Posteriormente, se deben calcular los valores propios para cada una de estas matrices.

# CÁLCULO DE LA MATRIZ $AA^T$

$$A = \begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{bmatrix}$$

Por lo tanto:

$$AA^{T} = \begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 2 & 3 \\ 2 & -2 \end{bmatrix} = \begin{bmatrix} 17 & 8 \\ 8 & 17 \end{bmatrix}$$

## CÁLCULO DE LA MATRIZ Σ

Dada la matriz  $AA^T$  calcular los valores propios:

$$AA^{T} = \begin{bmatrix} 17 & 8 \\ 8 & 17 \end{bmatrix}$$

Recordemos, cómo se hace la descomposición propia de una matriz:

$$AV = \lambda V$$

$$AV = (\lambda I)V$$

$$AV - (\lambda I)V = 0$$

$$A - (\lambda I)V = 0$$

# CÁLCULO DEL DETERMINANTE DE $AA^T$

 $|A - (\lambda I)| = \lambda^2 - 34\lambda + 225 = 0$ 

$$\begin{vmatrix} \begin{bmatrix} 17 & 8 \\ 8 & 17 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} \end{vmatrix} = 0$$
$$\begin{vmatrix} \begin{bmatrix} 17 - \lambda & 8 \\ 8 & 17 - \lambda \end{bmatrix} \end{vmatrix} = 0$$
$$\begin{vmatrix} A - (\lambda I) \end{vmatrix} = (17 - \lambda)(17 - \lambda) - 64 = 0$$
$$\begin{vmatrix} A - (\lambda I) \end{vmatrix} = 289 - 17\lambda - 17\lambda + \lambda^2 - 64 = 0$$

#### CÁLCULO DE LOS VALORES PROPIOS

Usamos la función cuadrática para resolver la ecuación:

$$\lambda^2 - 34\lambda + 225 = 0$$

$$\lambda = \frac{-(-34) \pm \sqrt{(-34)^2 - 4(1 \cdot 225)}}{2 \cdot 1}$$

Los valores propios quedan:

$$\lambda_1 = \frac{34 + 16}{2} = 25$$

$$\lambda_2 = \frac{34 - 16}{2} = 9$$

#### CÁLCULO DE LOS VALORES SINGULARES

Los valores singulares de la matriz  $\Sigma$  son las raíces cuadradas de los valores propios:

$$\sigma_i = \sqrt{\lambda_i}$$

**Entonces:** 

$$\sigma_1 = \sqrt{\lambda_1} = \sqrt{25} = 5$$
  
$$\sigma_2 = \sqrt{\lambda_2} = \sqrt{9} = 3$$

### 1er resultado: matriz $\Sigma$

$$\mathbf{\Sigma} = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 3 & 0 \end{bmatrix}$$

La matriz  $\Sigma$  es una matriz diagonal de tamaño de A.

### CÁLCULO DE LA MATRIZ U

Es necesario calcular los vectores propios de la matriz de  $AA^T$ :

Para  $\lambda_1 = 25$ 

$$\begin{bmatrix} 17 & 8 \\ 8 & 17 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 25 \begin{bmatrix} x \\ y \end{bmatrix}$$

Se obtiene el sistema de ecuaciones y se resuelve:

$$17x + 8y = 25x$$
$$8x + 17y = 25y$$

### Calculando el vector propio de $\lambda_1$

Posible vector propio cuando  $\lambda_1$ =25:

Calculamos el vector unitario:  $1^2 + 1^2 = 2$ , tal que el vector propio cuando  $\lambda_1 = 25$  es:

$$1/\sqrt{2}$$

$$1/\sqrt{2}$$

## Calculando el vector propio de $\lambda_2$

Para  $\lambda_2 = 9$ 

$$\begin{bmatrix} 17 & 8 \\ 8 & 17 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 9 \begin{bmatrix} x \\ y \end{bmatrix}$$

Se obtiene el sistema de ecuaciones y se resuelve:

$$17x + 8y = 9x$$
$$8x + 17y = 9y$$

### Calculando el vector propio de $\lambda_2$

El vector propio cuando  $\lambda_2 = 9$  es:

$$\begin{bmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{bmatrix}$$

#### 2DO RESULTADO: MATRIZ U

Los vectores propios para  $\lambda_1 = 25$  y  $\lambda_2 = 9$  son:

$$u_1 \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}, u_2 \begin{bmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{bmatrix}$$

Por lo tanto,

$$U = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix}$$

# CÁLCULO DE LA MATRIZ $A^TA$

$$A = \begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{bmatrix}$$

Por lo tanto:

$$A^{\mathsf{T}}A = \begin{bmatrix} 3 & 2 \\ 2 & 3 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{bmatrix} = \begin{bmatrix} 13 & 12 & 2 \\ 12 & 13 & -2 \\ 2 & -2 & 8 \end{bmatrix}$$

#### CALCULAR EL DETERMINANTE DE $A^TA$

Dada la matriz  $A^{T}A$  calcular el determinante:

$$\left| \begin{bmatrix} 13 & 12 & 2 \\ 12 & 13 & -2 \\ 2 & -2 & 8 \end{bmatrix} - \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix} \right| = 0$$

$$\left| \begin{bmatrix} 13 - \lambda & 12 & 2 \\ 12 & 13 - \lambda & -2 \\ 2 & -2 & 8 - \lambda \end{bmatrix} \right| = 0$$

## CALCULAR EL DETERMINANTE DE $A^TA$

Dada la matriz  $A^TA$  calcular el determinante:

$$\begin{vmatrix} \begin{bmatrix} 13 - \lambda & 12 & 2 \\ 12 & 13 - \lambda & -2 \\ 2 & -2 & 8 - \lambda \end{bmatrix} \end{vmatrix} = 0$$

$$|A - (\lambda I)| = 13 - \lambda ((13 - \lambda)(8 - \lambda) - 4) - 12(12(8 - \lambda) - (-4)) - 2(2(13 - \lambda) - (-24))$$
  
Se factoriza la ecuación y se obtiene:

$$\lambda^2 - 34\lambda + 225 = 0$$

## CÁLCULO DE LOS VALORES PROPIOS

Dada la ecuación:

$$\lambda^2 - 34\lambda + 225 = 0$$

se calculan los valores propios usando la función cuadrática:

Los valores propios quedan:

$$\lambda_1 = \frac{34 + 16}{2} = 25$$

$$\lambda_2 = \frac{34 - 16}{2} = 9$$

$$\lambda_3 = 0$$

# 3er resultado: matriz $V^T$

Los vectores propios para  $\lambda_1=25$ , y  $\lambda_2=9$  y  $\lambda_3=0$  son:

$$v_1 \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{bmatrix}, v_2 \begin{bmatrix} 1/\sqrt{18} \\ -1/\sqrt{18} \\ 4/\sqrt{18} \end{bmatrix}, v_3 \begin{bmatrix} 2/3 \\ -2/3 \\ -1/3 \end{bmatrix}$$

Por lo tanto,

$$V^{T} = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0\\ 1/\sqrt{18} & -1/\sqrt{18} & 4/\sqrt{18}\\ 2/3 & -2/3 & -1/3 \end{bmatrix}$$

# DESCOMPOSICIÓN DE VALORES SINGULARES

Dada la matriz A,

$$A = \begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{bmatrix}$$

La descomposición de valores singulares es:

$$A = U\Sigma V^{T} = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 5 & 0 & 0 \\ 0 & 3 & 0 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 1/\sqrt{18} & -1/\sqrt{18} & 4/\sqrt{18} \\ 2/3 & -2/3 & -1/3 \end{bmatrix}$$

#### RECUERDA

- SVD es la descomposición de una matriz mxn en 3 matrices: U, Σ, V
- $\Sigma$  es una matriz diagonal compuesta de los valores singulares
  - Son los valores importantes en una matriz, nos indica la fuerza de cada concepto.
- Los vectores propios de una matriz son direcciones de máxima dispersión o varianza de datos

#### APLICACIONES DE LA SVD

# Compresión de imágenes

- · Trasmitir / enviar imágenes por medios electrónicos
- ¿Cuál es la cantidad mínima de información que se debe almacenar? (Sin perder información valiosa y que ahorre espacio).

# VENTAJAS EN LA COMPRESIÓN DE IMÁGENES

- Una imagen contiene información redundante, que puede ser eliminada sin afectar a la información importante.
- Observamos que es posible descomponer una imagen en una matriz y calcular sus SVD.
- A partir de los valores singulares, es posible reconstruir la imagen original
- Mientras mayor sea k, mayor será la calidad y menor la compresión.

#### RELACIÓN DE COMPRESIÓN

Para aproximar cuanto espacio se reduce una imagen usando SVD, se usa la siguiente relación de compresión:

$$r = (n + m + 1)k / nm$$

Dónde:

n y m es el tamaño de la imagen k es el número de valores singulares a usar

### RELACIÓN DE COMPRESIÓN

Una imagen de 480 x 640 pixeles está compuesta de 307,200 puntos ≈ 0.3 MB, calcular la relación de compresión, si únicamente usamos 50 valores singulares para reconstruir la imagen:

$$r = (n + m + 1)k / nm$$
  
 $r = (480 + 640 + 1)50 / 480*640$   
 $r = 0.18$ 

Una imagen reconstruida con 50k, únicamente requiere el 18 % de la información original  $\approx$  0.05 MB

#### APLICACIONES DE LA SVD

#### Resolución de mínimos cuadrados

- Se requiere resolver Ax = b
- Se multiplica en ambos lados de la ecuación por  $A^T$  y se obtiene:  $A^TA = A^Tb$
- Se calcula SVD de  $A = U\Sigma V^T$

#### APLICACIONES DE LA SVD

# Reducción de dimensionalidad en datos dispersos

- · Sistemas de puntajes (películas, canciones)
- · Bolsa de palabras
- · Codificación One-hot

#### OTRAS APLICACIONES DE LA SVD

- · Reducción de ruido
- · Cálculos estadísticos
- · Procesamiento de señales

#### TRUNCAMIENTO DE SVD

- En la práctica, puede ser muy costoso el cómputo de la versión completa de SVD
- En la versión truncada, solo se calculan las k vectores columna de U y los k vectores fila de V asociados a los k valores singulares más grandes en Σ
  - $\mathbf{U}_k$  es de tamaño  $m \times k$
  - $V_k$  es de tamaño  $k \times n$
  - $\Sigma_k$  es de tamaño  $k \times k$
- · La versión truncada es una aproximación de SVD

$$\tilde{\mathsf{A}} pprox \mathsf{U}_k \mathsf{\Sigma}_k \mathsf{V}_k^{ op}$$

#### **LOBPCG**

El gradiente conjugado precondicionado de bloque localmente óptimo (LOBPCG, por sus siglas en ingles) permite el cálculo de valores y propios:

- · Es un método libre de matrices.
- Calcula un solo par propio extremo de una matriz simétrica (más grande).
- Bibliotecas disponibles con la implementación del método:Blopex <sup>1</sup>.

<sup>&</sup>lt;sup>1</sup>https://github.com/lobpcg/blopex