The hierarchy of languages

The Halting Problem (HP)

Does a given TM M accept a given input string w?

 $A_{TM} = \{\langle M, w \rangle : M \text{ is a Turing machine that accepts } w\}$

• Theorem: A_{TM} is Turing-recognizable

Proof: We present a TM U that recognizes A_{TM} .

U = "On input $\langle M, w \rangle$, where M is a TM and w is a string:

- 1. Simulate M on input w.
- 2. If *M* ever enters its accept state, *accept*; if *M* ever enters its reject state, *reject*."

U will loop on $\langle M, w \rangle$ if M loops on w. If the algorithm had some way to determine that M was not halting on w, it would *reject*. We'll see that this can't be done.

The HP is Undecidable

A short mathematical detour

The diagonalization method.

- Proposed in 1873 by Georg Cantor as an ingenious method to compare the sizes of infinite sets.
- Cantor's definition of set size: Let A and B be two sets.
 - A and B have the same size if there is a one-to-one, onto function $f:A\to B$. Such a function is called a correspondence.
 - A function f is called one-to-one if $f(a) \neq f(b)$ whenever $a \neq b$.
 - A function $f:A\to B$ is called onto if $\forall b\in B, \exists a\in A: f(a)=b$.
 - A set is countable if it is finite or it has the same size as \mathcal{N} .

Example

Proving (by diagonization) that the set \mathcal{L} of all infinite binary languages in **uncountable**.

● Assume it is countable, i.e., it has the same size as \mathcal{N} and there is a correspondence $f: \mathcal{N} \to \mathcal{L}$.

\boldsymbol{x}	f(x)
0	<u>1</u> 10010 · · ·
1	$1\underline{1}0010\cdots$
2	11 <u>0</u> 000 · · ·
:	:

- We can build an infinite binary string c that makes f impossible to exist.
- Each *i*-th bit of c is different from the *i*-th bit of f(i), e.g.,

$$c = 001 \cdots$$

- $c \neq f(n)$ for any n.
- ullet Therefore, \mathcal{L} is uncountable.

Proving the HP is undecidable

A proof by diagonalization.

 $A_{TM} = \{\langle M, w \rangle : M \text{ is a Turing machine that accepts } w\}$

• We assume A_{TM} is decidable and there is a TM H that decides A_{TM} :

$$H(\langle M,w\rangle) = \left\{ \begin{array}{ll} \mathrm{accept} & \mathrm{if}\ M\ \mathrm{accepts}\ w \\ \mathrm{reject} & \mathrm{if}\ M\ \mathrm{does\ not\ accept}\ w \end{array} \right.$$

- Next we construct a rather interesting TM D that makes the existence of H impossble.
 - it uses H as a subroutine.
 - it calls H to determine what M does when the input to M is its own description $\langle M \rangle$.

Proof (cont.)

- D = "On input $\langle M \rangle$, where M is a TM:
 - 1. Run H on input $\langle M, \langle M \rangle \rangle$
 - 2. Output the opposite of what *H* outputs, i.e., if *H* accepts, reject; if *H* rejects, accept."

$$D(\langle M \rangle) = \left\{ \begin{array}{ll} \text{accept} & \text{if } M \text{ does not accept } \langle M \rangle \\ \text{reject} & \text{if } M \text{ accepts } \langle M \rangle \end{array} \right.$$

What happens then when we run D on $\langle D \rangle$?

$$D(\langle D \rangle) = \left\{ \begin{array}{ll} \textit{accept} & \text{if } D \text{ does not accept } \langle D \rangle \\ \textit{reject} & \text{if } D \text{ accepts } \langle D \rangle \end{array} \right\} \text{Contradiction.}$$

Therefore, neither TM D nor TM H can exist. \square

The diagonalization in the proof of HP

The diagonalization becomes apparent when we analyze the behaviour of H and D.

- Let's consider the table below representing TMs and their encodings.
- The entries tell whether a machine in a given row accepts the input in a given column.

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	• • •
M_1	accept		accept	
M_2	accept	accept	accept	
M_3		accept		• • •
÷			:	

Let's run H on these inputs and see what we get.

Result of running $H(M_i, \langle M_j \rangle)$

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	• • •
M_1	accept	reject	accept	
	accept			
M_3	reject	accept	reject	• • •
:			:	

- Since D is also a TM, it must occur in the list M_1, M_2, \cdots of all TMs.
- Lets see D in the table.

Resulting of running $D(\langle M_i \rangle)$

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	• • •	$\langle D \rangle$	• • •
$\overline{M_1}$	accept	reject	accept		accept	
M_2	accept	accept	accept		reject	
M_3	reject	accept	\underline{reject}	• • •	accept	• • •
:			:	٠		
D	reject	reject	accept		?	

- D computes the opposite of the diagonal entries.
- The contradiction occurs at the '?', where the entry must be the opposite of itself.

Turing-unrecognizable languages

- We have just demonstrated a language, A_{TM} , that is undecidable.
- Before we go on a hunt for a Turing-unrecognizable language, we should first find out whether such language actually exists.
- Are there more problems than computer programs?
 - If there are more languages than Turing machines, and given that a TM recognizes a single language, then certainly there are some languages that are Turing-unrecognizable.
- Once we have a satisfactory answer for this question, we shall search for such Turing-unrecognizable language.

Are there more problems than programs?

- Let's first show that the set of TMs is countable:
 - The set of strings Σ^* is countable (there are finitely many strings of each length).
 - Therefore, the set of TMs is also countable, because each TM M has an encoding $\langle M \rangle$ selected from Σ^* .
- Now lets show that the set of all languages is uncountable.

Are there more problems than programs?

- ullet The set of all infinite binary strings ${\cal B}$ is uncountable
- Let \mathcal{L} be the set of all languages over $\Sigma = \{0, 1\}$. We'll prove that \mathcal{L} is uncountable by showing a correspondence $f : \mathcal{L} \to \mathcal{B}$.
- Let $A \in \mathcal{L}$. Sort Σ^* and A. We define a "Characteristic sequence" for A, as follows: the ith bit of an infinite binary string \mathcal{X}_A is a 1 if $s_i \in A$ and a 0 if $s_i \notin A$

$$\Sigma^* = \{ \epsilon, 0, 1, 00, 01, 10, 11, 000, 001, \cdots \}$$
 $A = \{ 0, 00, 01, 000, 001, \cdots \}$
 $\mathcal{X}_A = 0 1 0 1 1 0 0 1 1 \cdots$

 $f: \mathcal{L} \to \mathcal{B}$, where f(A) equals a *characteristic sequence* of A, is one-to-one, onto. Therefore \mathcal{L} is also uncountable.

Quod erat demonstrandum

Therefore, the theorem

"Some languages are not Turing-recognizable."

is finally proven, as we have shown that there are more languages than TMs.

A Turing-unrecognizable language

- Now that we know Turing-unrecognizable languages do exist, it is time to look at a specimen:
 - The diagonalization language, L_d : let w and M denote ordered sets of all possible input strings and TMs, respectively. Then L_d is the set of strings w_i such that $w_i \notin L(M_i)$.
- before proving that L_d is Turing-unrecognizable, let's define a binary version of this language.

The Diagonalization Language

- m o Suppose there is a binary code for all turing machines M
- ullet Suppose we sort and enumerate all binary strings w and all Turing machines M
- Now consider the table below representing the acceptance of strings by Turing machines
- A row in the table represents the *characteristic vector* of L(Mi), i.e., 1s represent a input string wi that Mi accepts.

	w1	w2	w3	w4	
M1	0	1	0	0	
M2	1	1	0	1	
M3	1	0	1	0	
M4	0	0	0	1	

The Diagonalization Language

- The language L_d , the *diagonalization language*, is the set of strings w_i such that w_i is not in $L(M_i)$
- To construct characteristic vector for L_d we complement the diagonal of the table, thus obtaining 1000...
- Notice that this vector disagrees in some column with every row of the table.
- Therefore, the diagonal cannot be the characteristic vector for any TM.

	w1	w2	w3	w4	
M1	0	1	0	0	
M2	1	1	0	1	
М3	1	0	1	0	
M4	0	0	0	1	
Md	1	0	0	0	?.

Exercises

Show that the language below is decidable.

 $\{\langle A \rangle : A \text{ is a DFA that recognizes } \Sigma^* \}$

Show that the problem of testing whether a CFG generates some string in 1* is decidable. I.e., show that the language below is decidable

 $\{\langle G \rangle : G \text{ is a CFG over } \{0,1\}^* \text{ and } 1^* \cap L(G) \neq \{\}\}$