Варианты заданий

Pr	L/H	тип граничных условий			α° - угол наклона (от				
		обе свободные f-f	верхняя свободная - нижняя жесткая f-r	обе жесткие т-г	- горизонтали)				
0,05	2 ÷ 10				90	1	2	3	5
0,67									
1,00									
2									
5									
10									
15									
45									
100									
300									
2700									

Здесь Pr = v/a — число Прандтля; v — коэффициент кинематической вязкости, $v = \mu/\rho$; $a = \lambda/(\rho \times C_P)$ — коэффициент температуропроводности; μ — коэффициент динамической вязкости; ρ — плотность; λ — коэффициент теплопроводности; C_P — теплоемкость при постоянном давлении; L/H — относительный размер расчетной области или относительный размер полости — фрагмента горизонтального слоя; L — горизонтальный размер — длина полости; H — высота слоя жидкости; α^o — угол наклона полости отсчитывается от горизонтали. Динамический параметр подобия — число Рэлея $Ra = (\beta g/av) \times \Delta T \times H^3$, здесь β — коэффициент теплового расширения жидкости, g — ускорение силы тяжести можно принять равным 9.8 м/сек 2 , $\Delta T = T_1 - T_2$ — перепад температуры между границами слоя, нижней горячей T_1 и верхней холодной T_2 .

Тема работы: исследование горизонтального слоя на устойчивость. Исследование течений и теплопереноса в неоднородно нагретой прямоугольной области при нагреве снизу.

Цель работы: приобретение навыков применения математического моделирования в исследовании физических процессов; приобретение навыков описание задач естествознания на языке математического моделирования; понимание методики построения моделей механики сплошной среды; понимание основ построения обобщенных уравнений гидромеханики; пользуясь готовой программой, на качественном уровне изучить эволюцию полей изолиний функции тока и изотерм с ростом числа Рэлея (или числа Грасгофа при заданном значении числа Прандтля Pr) в зависимости от геометрии, направления градиента температуры, числа Прандтля.

Задание

1. Определить критические значения числа Рэлея при выбранных значениях Pr, относительного размера L/H, граничных условиях на всех границах расчетной области. Изучить зависимость полей изотерм и изолиний функции тока от числа Рэлея. Т.е. исследовать эволюцию РБК с ростом числа Рэлея. Исследовать зависимость от Pr.

В режимах развитой конвекции в пределах отдельного вала:

- 2. Построить профили вертикальной и горизонтальной компонент скорости, распределение температуры в восходящем и нисходящем потоках, распределение локальных тепловых потоков на теплой и холодной стенках, определить значения числа Nu.
 - 3. Построить зависимость Nu(Ra).
- 1. Исследование зависимости критического числа Рэлея от L/H Поля изотерм и изолиний функции тока при L/H = 2, Pr = 0.05и всех жестких границах зависимость от чисел Рэлея

Профили температуры в восходящем (x = 0.2), нисходящем (x = 1) потоках и центральном сечении (x = 0.5) при L/H = 2 для различных Pr и Ra

Профили горизонтальной компоненты скорости

Аналогично

Профили вертикальной компоненты скорости в сечениях y = H/2; 3H/4; H/4 в выбранном конвективном вале.

К построенным графикам дать комментарии и сделать краткие выводы.

Зависимость критического числа Рэлея от L/H

Построение зависимости Nu(Ra). Для заданных Pr, L/H и гранусловий Определить тепловые потоки на горячей и холодной стенках при разных значениях числа Pэлея.

Зависимости теплового потока ($q=-\lambda \frac{\partial T}{\partial y}$) на холодной и теплой стенке от Ra

Зависимость числа Нуссельта от числа Рэлея(Nu(Ra))

