Non-rigid regions of real Grothendieck groups

Sota Asai (Osaka University)

2022/04/22, Minami Osaka Daisu Seminar

- arXiv:2112.14908 (joint work with Osamu Iyama)
- arXiv:2201.09543

Motivation

Let A be a fin. dim. K-algebra over a field K.

- $K_0(\operatorname{proj} A)_{\mathbb{R}} := K_0(\operatorname{proj} A) \otimes_{\mathbb{Z}} \mathbb{R}$: the real Grothendieck group.
- Each $\theta \in K_0(\operatorname{proj} A)_{\mathbb{R}}$ gives an \mathbb{R} -linear form

$$\theta \colon K_0(\mathsf{mod}\,A)_{\mathbb{R}} \to \mathbb{R}$$

via the Euler form $K_0(\operatorname{proj} A)_{\mathbb{R}} \times K_0(\operatorname{mod} A)_{\mathbb{R}} \to \mathbb{R}$.

By using this duality, the following notions were introduced:

- θ -semistable modules $M \in \text{mod } A$ by [King]
 - \rightarrow Wall-chamber structures on $K_0(\text{proj }A)_{\mathbb{R}}$ by [BST, Bridgeland].
- Two numerical torsion pairs in $\operatorname{mod} A$ for each θ by [BKT]
 - \rightarrow TF equivalence on $K_0(\operatorname{proj} A)_{\mathbb{R}}$ by [A].

These two are strongly related to each other. To study them, silting theory is useful.

TF equiv. classes by presilting complexes

Let $U = \bigoplus_{i=1}^m U_i \in \mathsf{K}^\mathsf{b}(\mathsf{proj}\,A)$ be 2-term presilting with U_i : indec. We set the presilting cone of U by

$$C^+(U) := \sum_{i=1}^m \mathbb{R}_{>0}[U_i] \subset K_0(\operatorname{proj} A)_{\mathbb{R}}.$$

Theorem [Brüstle-Smith-Treffinger, Yurikusa, (A)]

For each $U \in 2$ -psilt A, $C^+(U)$ is a TF equivalence class.

However, presilting cones do not give all TF equivalence classes if A is not τ -tilting finite [Zimmermann-Zvonareva].

Non-rigid regions

We set the non-rigid region of $K_0(\operatorname{proj} A)_{\mathbb{R}}$ by

$$\mathsf{NR} := K_0(\mathsf{proj}\,A)_{\mathbb{R}} \setminus \bigcup_{U \in \mathsf{2-psilt}\,A} C^+(U)$$

In these talks, I will explain two approaches to study NR.

- (1) Canonical decomp. $\theta = \bigoplus_{i=1}^m \theta_i$ in $K_0(\text{proj } A)$ by [Derksen-Fei] give TF equivalence classes $\sum_{i=1}^m \mathbb{R}_{>0} \theta_i$ if A is E-tame.
 - We can obtain construct TF equivalence classes in NR.
 - Representation-tame algebras are always E-tame [GLFS].
- (2) The non-rigid region NR can be described in terms of 2-term presilting complexes and the purely non-rigid region R_0 .
 - R_0 is a certain closed subset of $K_0(\text{proj }A)_{\mathbb{R}}$.
 - I have determined R_0 in the case A is a special biserial algebra.

Canonical decompositions

We use the presentation space for each $\theta \in K_0(\operatorname{proj} A)$:

$$\operatorname{Hom}(\theta) := \operatorname{Hom}_{A}(P_{1}^{\theta}, P_{0}^{\theta}),$$

where $\theta = [P_0^{\theta}] - [P_1^{\theta}]$ and add $P_0^{\theta} \cap \operatorname{add} P_1^{\theta} = \{0\}$. Each $f \in \operatorname{Hom}(\theta)$ defines a 2-term complex

$$P_f := (P_1^{\theta} \xrightarrow{f} P_0^{\theta}) \in \mathsf{K}^\mathsf{b}(\mathsf{proj}\,A).$$

[Derksen-Fei] defined direct sums in $K_0(\text{proj }A)$:

$$\bigoplus_{i=1}^{m} \theta_i : \iff \begin{bmatrix} \text{For general } f \in \text{Hom}(\sum_{i=1}^{m} \theta_i), \\ \exists f_i \in \text{Hom}(\theta_i), P_f \cong \bigoplus_{i=1}^{m} P_{f_i} \end{bmatrix}.$$

This is called a canonical decomposition if each θ_i is indecomposable.

Theorem [DF, Plamondon]

Any $\theta \in K_0(\text{proj }A)$ admits a unique canon. decomp. $\bigoplus_{i=1}^m \theta_i$.

Our results

We introduced E-tame algebras in our study:

$$A$$
: E-tame : $\iff \forall \theta \in K_0(\operatorname{proj} A), \theta \oplus \theta$.

All representation-tame algebras are E-tame [GLFS].

Main theorem of 1st talk [Al]

Assume that A is hereditary or E-tame.

Let $\theta = \bigoplus_{i=1}^m \theta_i$ be a canon. decomp. in $K_0(\operatorname{proj} A)$.

Then, $C^+(\theta) := \sum_{i=1}^m \mathbb{R}_{>0} \theta_i$ is a TF equiv. class in $K_0(\operatorname{proj} A)_{\mathbb{R}}$.

If $\theta_i \neq \theta_j$ for any $i \neq j$ in above, then $\theta_1, \ldots, \theta_m$ are lin. independent.

Setting

Let A be a fin. dim. algebra over an alg. closed field K.

- proj *A*: the category of fin. gen. projective *A*-modules.
- P_1, P_2, \ldots, P_n : the non-iso. indec. proj. modules.
- $K^b(\text{proj } A)$: the homotopy cat. of bounded complexes over proj A.
- mod *A*: the category of fin. dim. *A*-modules.
- S_1, S_2, \ldots, S_n : the non-iso. simple modules (we may assume there exists a surj. $P_i \to S_i$).
- $D^b(\text{mod } A)$: the derived cat. of bounded complexes over mod A.
- $K_0(C)$: the Grothendieck group of C.
- $K_0(C)_{\mathbb{R}} := K_0(C) \otimes_{\mathbb{Z}} \mathbb{R}$: the real Grothendieck group.

The Euler form

 $K_0(\operatorname{proj} A)$ and $K_0(\operatorname{mod} A)$ are free abelian groups.

Proposition (see [Happel])

- (1) $K_0(\operatorname{proj} A) = K_0(\mathsf{K}^{\mathsf{b}}(\operatorname{proj} A)) = \bigoplus_{i=1}^n \mathbb{Z}[P_i].$
- (2) $K_0(\operatorname{mod} A) = K_0(\operatorname{D^b}(\operatorname{mod} A)) = \bigoplus_{i=1}^n \mathbb{Z}[S_i].$
- (3) $\langle [P_i], [S_j] \rangle = \delta_{i,j}$, where

$$\langle \cdot, \cdot \rangle \colon K_0(\operatorname{proj} A) \times K_0(\operatorname{mod} A) \to \mathbb{Z}$$

is the Euler form.

These are naturally extended to the real Grothendieck groups. Via the Euler form, each $\theta \in K_0(\operatorname{proj} A)_{\mathbb{R}}$ induces the \mathbb{R} -linear form

$$\theta := \langle \theta, \cdot \rangle \colon K_0(\mathsf{mod}\,A)_{\mathbb{R}} \to \mathbb{R}.$$

Wall-chamber structures

Definition [King]

Let $\theta \in K_0(\operatorname{proj} A)_{\mathbb{R}}$.

- (1) $M \in \text{mod } A$: θ -semistable : \iff $\theta(M) = 0$ and $\theta(N) \ge 0$ for any quotient N of M.
- **(2)** $W_{\theta} := \{\text{all } \theta\text{-semistable modules}\} \subset \text{mod } A.$

Definition [Brüstle-Smith-Treffinger, Bridgeland]

- (1) For $M \in \operatorname{mod} A \setminus \{0\}$, set $\Theta_M := \{\theta \in K_0(\operatorname{proj} A)_{\mathbb{R}} \mid M \in \mathcal{W}_{\theta}\}$.
- (2) We consider the wall-chamber structure on $K_0(\operatorname{proj} A)_{\mathbb{R}}$ whose walls are Θ_M for all $M \in \operatorname{mod} A \setminus \{0\}$.

Remark

To get the wall-chamber structure, it suffices to consider indec. modules.

Example of walls

Let $A = K(1 \rightarrow 2)$, then the indec. modules are S_2 , P_1 , S_1 .

There are 5 chambers.

Example of walls

Let
$$A = K(1 \stackrel{\rightarrow}{\Rightarrow} 2)$$
.

There are infinitely many chambers.

TF equivalence

Definition [Baumann-Kamnitzer-Tingley]

Let $\theta \in K_0(\operatorname{proj} A)_{\mathbb{R}}$.

We define numerical torsion pairs $(\overline{\mathcal{T}}_{\theta}, \mathcal{F}_{\theta})$ and $(\mathcal{T}_{\theta}, \overline{\mathcal{F}}_{\theta})$ in mod A by

$$\overline{\mathcal{T}}_{\theta} := \{ M \in \operatorname{mod} A \mid \theta(N) \geq 0 \text{ for any quotient } N \text{ of } M \},$$

$$\mathcal{F}_{\theta} := \{ M \in \operatorname{mod} A \mid \theta(L) < 0 \text{ for any submodule } L \neq 0 \text{ of } M \},$$

$$\mathcal{T}_{\theta} := \{ M \in \operatorname{mod} A \mid \theta(N) > 0 \text{ for any quotient } N \neq 0 \text{ of } M \},$$

$$\overline{\mathcal{F}}_{\theta} := \{ M \in \operatorname{mod} A \mid \theta(L) \leq 0 \text{ for any submodule } L \text{ of } M \}.$$

Definition

$$\theta, \theta' \in K_0(\operatorname{proj} A)_{\mathbb{R}}$$
 are TF equivalent : \iff

$$(\overline{\mathcal{T}}_{\theta},\mathcal{F}_{\theta})=(\overline{\mathcal{T}}_{\theta'},\mathcal{F}_{\theta'}),\quad (\mathcal{T}_{\theta},\overline{\mathcal{F}}_{\theta})=(\mathcal{T}_{\theta'},\overline{\mathcal{F}}_{\theta'}).$$

Example of TF equiv. classes

Let $A = K(1 \rightarrow 2)$, $S_2 S_1$ are the indec. A-modules.

Then, $\overline{\mathcal{T}}_{\theta}$ and $\overline{\mathcal{F}}_{\theta}$ are given as follows.

(●: belong, o: not belong)

Example of TF equiv. classes

Let $A=K(1\to 2), \ \frac{P_1}{S_2-S_1}$ are the indec. A-modules. There are exactly 11 TF equivalence classes.

Walls and TF equiv. classes

Proposition [A]

Let $\theta \neq \theta' \in K_0(\operatorname{proj} A)_{\mathbb{R}}$, then TFAE.

- (a) θ and θ' are TF equivalent.
- **(b)** $W_{\theta''}$ is constant for $\theta'' \in [\theta, \theta']$.
- (c) $\nexists S \in \text{brick } A, [\theta, \theta'] \cap \Theta_S \text{ is one point.}$

Example

If $A = K(1 \stackrel{\rightarrow}{\Rightarrow} 2)$, then the TF equivalence classes are

- {0},
- $\mathbb{R}_{>0}(i,-(i+1)), \mathbb{R}_{>0}(i+1,-i),$
- $\bullet \ \ \mathbb{R}_{>0}(i,-(i+1)) + \mathbb{R}_{>0}(i+1,-(i+2)), \, \mathbb{R}_{>0}(i+1,-i) + \mathbb{R}_{>0}(i+2,-(i+1)),$
- $\mathbb{R}_{>0}(1,-1)$

where we consider all $i \in \mathbb{Z}_{>0}$.

Presilting complexes

Definition [Keller-Vossieck]

Let $U = (U^{-1} \to U^0) \in \mathsf{K}^\mathsf{b}(\mathsf{proj}\,A)$ be a 2-term complex.

- (1) U: presilting : \iff Hom_{K^b(proj A)}(U, U[1]) = 0.
- (2) U: silting : $\iff U$: presilting, thick_{Kb(proj A)} $U = K^b(proj A)$.

2-psilt $A := \{ \text{basic 2-term presilting complexes} \}/\cong$.

2-silt $A := \{ \text{basic 2-term silting complexes} \}/\cong$.

Proposition [(1) Aihara, (2) Adachi-Iyama-Reiten]

- (1) $\forall U \in 2\text{-psilt } A, \exists T \in 2\text{-silt } A \text{ s.t.}$ U is a direct summand of T.
- (2) $U \in 2$ -silt $A \iff U \in 2$ -psilt A, |U| = n.

Presilting and func. fin. torsion pairs

For each $U \in 2$ -psilt A, we set

$$\begin{split} &(\overline{\mathcal{T}}_U,\mathcal{F}_U) := ({}^\perp H^{-1}(\nu U), \operatorname{Sub} H^{-1}(\nu U)), \\ &(\mathcal{T}_U,\overline{\mathcal{F}}_U) := (\operatorname{Fac} H^0(U), H^0(U)^\perp). \end{split}$$

Then, $\mathcal{T}_U \subset \overline{\mathcal{T}}_U$ and $\mathcal{F}_U \subset \overline{\mathcal{F}}_U$.

Theorem [Smalø, Auslander-Smalø, AIR]

Let $U \in 2$ -psilt A.

- (1) $(\overline{\mathcal{T}}_U, \mathcal{F}_U), (\mathcal{T}_U, \overline{\mathcal{F}}_U)$ are func. fin. torsion pairs.
- (2) All func. fin. torsion(-free) classes are obtained in this way.

Presilting cones

Let $U = \bigoplus_{i=1}^m U_i \in 2$ -psilt A with U_i : indec.

Proposition [Aihara-lyama]

 $[U_1], \ldots, [U_m] \in K_0(\operatorname{proj} A)$ are linearly independent. If $U \in \operatorname{2-silt} A$, they are a \mathbb{Z} -basis of $K_0(\operatorname{proj} A)$.

Definition

We define the presilting cone $C^+(U)$ in $K_0(\operatorname{proj} A)_{\mathbb{R}}$ by

$$C^+(U) := \sum_{i=1}^m \mathbb{R}_{>0}[U_i].$$

Proposition [Demonet-Iyama-Jasso]

If $U \neq U' \in 2$ -psilt A, then $C^+(U) \cap C^+(U') = \emptyset$.

Presilting cones are TF equiv. classes

Theorem (\Rightarrow): [Yurikusa, Brüstle-Smith-Treffinger], (\Leftarrow): [A] Let $U \in 2$ -psilt A.

Then, $C^+(U)$ is a TF equiv. class such that

$$\eta \in C^+(U) \iff \overline{\mathcal{T}}_\eta = \overline{\mathcal{T}}_U, \; \overline{\mathcal{F}}_\eta = \overline{\mathcal{F}}_U.$$

Theorem [A]

The following sets coincide.

- The set of chambers in the wall-chamber structures.
- The set of TF equiv. classes whose interiors are nonempty.
- $\{C^+(T) \mid T \in 2\text{-silt } A\}.$

Example of presilting and TF equiv. classes

Let $A = K(1 \stackrel{\rightarrow}{\Rightarrow} 2)$.

The TF equivalence classes in $K_0(\text{proj }A)_{\mathbb{R}}$ are

- $C^+(U)$ for all $U \in 2$ -psilt A,
- $\mathbb{R}_{>0}(1,-1)$ (this does not come from 2-psilt A).

Presentation spaces

Definition [Derksen-Fei]

Let $\theta \in K_0(\operatorname{proj} A)$.

- (1) Take $P_+, P_- \in \operatorname{proj} A$ (unique up to iso.) such that $\theta = [P_+] [P_-]$ and add $P_+ \cap \operatorname{add} P_- = \{0\}$.
- (2) $\operatorname{Hom}(\theta) := \operatorname{Hom}_A(P_-, P_+)$: the presentation space of θ .
- (3) For each $f \in \operatorname{Hom}(\theta)$, set $P_f := (P_- \xrightarrow{f} P_+) \in \operatorname{K}^b(\operatorname{proj} A)$ (the terms except -1st and 0th ones vanish).

 $Hom(\theta)$ is an irreducible algebraic variety.

Convention

"Any general $f \in \operatorname{Hom}(\theta)$ satisfies (P)" means "there exists $X \subset \operatorname{Hom}(\theta)$: nonempty and open (thus dense) such that any $f \in X$ satisfies (P)".

Direct sums in $K_0(\text{proj } A)$

Definition [DF]

We say a direct sum $\bigoplus_{i=1}^m \theta_i$ holds in $K_0(\operatorname{proj} A)$ if

$$\text{for general } f \in \operatorname{Hom}\left(\sum_{i=1}^m \theta_i\right), \, \exists f_i \in \operatorname{Hom}(\theta_i), \, P_f \cong \bigoplus_{i=1}^m P_{f_i}.$$

In this case, we also write $\sum_{i=1}^{m} \theta_i = \bigoplus_{i=1}^{m} \theta_i$.

This condition can be checked pairwisely.

Proposition [DF]

$$\bigoplus_{i=1}^m \theta_i \iff \forall i \neq j, \ \exists (f,g) \in \mathsf{Hom}(\theta_i) \times \mathsf{Hom}(\theta_j),$$

$$\text{Hom}(P_f, P_g[1]) = 0$$
, $\text{Hom}(P_g, P_f[1]) = 0$.

Canonical decompositions

Definition

 θ : indecomposable in $K_0(\operatorname{proj} A) : \iff$ for any general $f \in \operatorname{Hom}(\theta), P_f \in \operatorname{K}^b(\operatorname{proj} A)$ is indec.

Theorem [DF, Plamondon]

Any $\theta \in K_0(\operatorname{proj} A)$ admits a decomposition unique up to reordering

$$\theta = \bigoplus_{i=1}^{m} \theta_i$$
 (θ_i : indecomposable).

We call it the canonical decomposition of θ .

Direct sums and TF equiv. classes

Theorem 1 [AI] (with Demonet)

Let $\bigoplus_{i=1}^m \theta_i$ in $K_0(\operatorname{proj} A)$. Then,

$$\eta \in \sum_{i=1}^m \mathbb{R}_{>0} \theta_i \Longrightarrow \overline{\mathcal{T}}_{\eta} = \bigcap_{i=1}^m \overline{\mathcal{T}}_{\theta_i}, \ \overline{\mathcal{F}}_{\eta} = \bigcap_{i=1}^m \overline{\mathcal{F}}_{\theta_i}.$$

Thus, for any i, $\mathcal{T}_{\theta_i} \subset \mathcal{T}_{\eta} \subset \overline{\mathcal{T}}_{\eta} \subset \overline{\mathcal{T}}_{\theta_i}$, $\mathcal{F}_{\theta_i} \subset \mathcal{F}_{\eta} \subset \overline{\mathcal{F}}_{\eta} \subset \overline{\mathcal{F}}_{\theta_i}$.

We can recover the following sign-coherence.

Proposition [Plamondon]

Let $\theta \oplus \theta'$ in $K_0(\operatorname{proj} A)$, $\theta = \sum_{i=1}^n a_i[P_i]$ and $\theta' = \sum_{i=1}^n a_i'[P_i]$. Then, $a_i a_i' \geq 0$ for all i.

$$\therefore$$
 If $a_i > 0$ and $a'_i < 0$, then $S_i \in \mathcal{T}_{\theta} \cap \mathcal{F}_{\theta'} \subset \mathcal{T}_{\theta+\theta'} \cap \mathcal{F}_{\theta+\theta'} = \{0\}$.

Canon. decomp. and TF equiv. classes

By Theorem 1, if $\theta = \bigoplus_{i=1}^m \theta_i$ is a canon. decomp. in $K_0(\text{proj }A)$, then

$$C^+(\theta) := \sum_{i=1}^m \mathbb{R}_{>0} \theta_i$$

is contained in some TF equiv. class in $K_0(\operatorname{proj} A)_{\mathbb{R}}$. Is $C^+(\theta)$ really a TF equiv. class?

Theorem 2 [AI]

Assume that

- A is a hereditary algebra; or
- A is E-tame, i.e. $\theta \oplus \theta$ holds for any $\theta \in K_0(\text{proj } A)$.

If $\theta = \bigoplus_{i=1}^m \theta_i$ is a canon. decomp. in $K_0(\operatorname{proj} A)$, then $C^+(\theta)$ is a TF equiv. class in $K_0(\operatorname{proj} A)_{\mathbb{R}}$.

E-tame algebras

Though it is not easy to check the E-tameness, we have the following.

Theorem [Geiss-Labardini-Fragoso-Schröer, (Plamondon-Yurikusa)]

Let A be representation-finite or tame.

Then, A is E-tame.

Why did we assume E-tameness?

Because our proof of Theorem 2 uses the following result.

Theorem [Fei]

If $\theta \in K_0(\operatorname{proj} A)$ and $M \in \operatorname{mod} A$, then TFAE.

- (a) $M \in \overline{\mathcal{F}}_{\theta}$.
- **(b)** $\exists l \in \mathbb{Z}_{\geq 1}, \exists f \in \text{Hom}(l\theta), \text{Hom}_A(\text{Coker } f, M) = 0.$

Moreover, we may let l = 1 if $\theta \oplus \theta$.

Example of Theorem 2

Let Q be an extended Dynkin quiver, and A := KQ.

- Consider an indec. module $M \in \text{mod } A$ in a regular homog. tube.
- Take the min. proj. resol. $P_1^M \to P_0^M \to M \to 0$, and set $\eta := [P_0^M] [P_1^M]$.
- $E := \{U \in \operatorname{2-psilt} A \mid [U] \oplus \eta\}.$
 - $[U] \oplus \eta \iff [U] \in \Theta_M \iff H^0(U), H^{-1}(\nu U)$ are regular.

Proposition

Under the setting above, the TF equiv. classes in $K_0(\operatorname{proj} A)_{\mathbb{R}}$ are

- $C^+(U)$ for all $U \in 2$ -psilt A and
- $C^+([U] \oplus \eta) = C^+(U) + \mathbb{R}_{>0}\eta$ for all $U \in E$.

In particular, all TF equiv. classes come from canon. decomp.

Remark on Theorem 2

In general, even if A is E-tame,

Theorem 2 does not necessarily give all TF equiv. classes.

- We cannot obtain any TF equiv. class X ⊂ K₀(proj A)_R such that X ∩ K₀(proj A) = Ø from Theorem 2.
- The following gentle algebra admits a TF equiv. class $\mathbb{R}_{>0}(1-t,-1+2t,-t)$ for each $t \in [0,1] \setminus \mathbb{Q}$:

$$A = K(\ 1 \xrightarrow{\alpha \atop \beta} 2 \xrightarrow{\gamma \atop \delta} 3\)/\langle \alpha \delta, \beta \gamma \rangle.$$

Non-rigid regions

Recall that the non-rigid region of $K_0(\text{proj }A)_{\mathbb{R}}$ is

$$NR = K_0(\operatorname{proj} A)_{\mathbb{R}} \setminus \bigcup_{U \in 2\operatorname{-psilt} A} C^+(U).$$

My 2nd talk deals with a nice decomposition of NR.

Strategy

We will define $R_U \supset C^+(U)$ for each $U \in \operatorname{2-psilt} A$ such that

$$K_0(\operatorname{proj} A)_{\mathbb{R}} = \coprod_{U \in \operatorname{2-psilt} A} R_U,$$

$$\operatorname{NR} = \coprod_{U \in \operatorname{2-psilt} A} (R_U \setminus C^+(U)).$$

Nice subsets including presilting cones

For
$$U \in 2$$
-psilt A , we define $N_U, R_U \supset C^+(U)$ by

$$\begin{split} N_U &:= \{\theta \in K_0(\operatorname{proj} A)_{\mathbb{R}} \mid \mathcal{T}_U \subset \mathcal{T}_\theta, \ \mathcal{F}_U \subset \mathcal{F}_\theta \}, \\ R_U &:= N_U \setminus \bigcup_{V \in 2\operatorname{-psilt}_U A \setminus \{U\}} N_V, \end{split}$$

where 2-psilt $_UA:=\{V\in \text{2-psilt }A\mid U \text{ is a direct summand of }V\}.$ We call R_0 the purely non-rigid region.

Main theorem of 2nd talk [Al]

We have

$$\begin{split} \mathsf{NR} &= \coprod_{U \in 2\text{-psilt }A} (R_U \setminus C^+(U)) \\ &= \coprod_{U \in 2\text{-psilt }A} (C^+(U) + ((\overline{N_U} \cap R_0) \setminus \{0\})). \end{split}$$

Example of non-rigid regions

For
$$A = K(1 \xrightarrow{\alpha \atop \beta} 2 \xrightarrow{\gamma \atop \delta} 3)/\langle \alpha \delta, \beta \gamma \rangle$$
, NR is described as

The red line is R_0 .

Each blue segment is $R_U \setminus C^+(U)$ for some indec. $U \in 2$ -psilt A (the upper or the lower endpoint is $C^+(U)$).

Open neighborhoods of presilting cones

Definition

For any $U \in 2$ -psilt A, we set

$$N_U := \{ \theta \in K_0(\operatorname{proj} A)_{\mathbb{R}} \mid \mathcal{T}_U \subset \mathcal{T}_{\theta}, \ \mathcal{F}_U \subset \mathcal{F}_{\theta} \}.$$

This is related to τ -tilting reduction by [Jasso].

Lemma

Let $U, V \in 2$ -psilt A.

- (1) N_U is a union of TF equiv. classes.
- (2) N_U is an open neighborhood of $C^+(U)$.
- (3) $\overline{N_U} = \{ \theta \in K_0(\operatorname{proj} A)_{\mathbb{R}} \mid \mathcal{T}_U \subset \overline{\mathcal{T}}_{\theta}, \ \mathcal{F}_U \subset \overline{\mathcal{F}}_{\theta} \}.$
- **(4)** $U \oplus V$: 2-term presilting $\iff N_U \cap N_V \neq \emptyset \iff [V] \in \overline{N_U}$. In this case, $N_U \cap N_V = N_{U \oplus V}$.
- (5) $U \in \operatorname{add} V \iff N_U \supset N_V$.

Purely non-rigid regions

2-psilt $_U A := \{ V \in \text{2-psilt } A \mid U \text{ is a direct summand of } V \}.$

Definition

For $U \in 2$ -psilt A, we set

$$R_U := N_U \setminus \bigcup_{V \in 2\text{-psilt}_U A \setminus \{U\}} N_V.$$

In particular, we call R_0 the purely non-rigid region:

$$R_0 = K_0(\operatorname{proj} A)_{\mathbb{R}} \setminus \bigcup_{V \in 2\operatorname{-psilt} A \setminus \{0\}} N_V.$$

- R_0 is a closed set, and $0 \in R_0$.
- $R_0 = \{0\} \iff NR = \emptyset \iff A \text{ is } \tau\text{-tilting finite.}$
- $(R_U)_{U \in 2\text{-psilt }A}$ is a stratification of $K_0(\text{proj }A)_{\mathbb{R}}$.

Decompositions of non-rigid regions

Theorem 3 [AI]

- (1) Let $U \in 2$ -psilf A and $\theta \in R_U$. Then, there uniquely exist $\theta_1 \in C^+(U)$ and $\theta_2 \in \overline{N_U} \cap R_0$ such that $\theta = \theta_1 + \theta_2$.
- (2) We have

$$\begin{aligned} \mathsf{NR} &= \coprod_{U \in 2\text{-psilt }A} (R_U \setminus C^+(U)) \\ &= \coprod_{U \in 2\text{-psilt }A} (C^+(U) + ((\overline{N_U} \cap R_0) \setminus \{0\})). \end{aligned}$$

Thus, the non-rigid region is determined by the 2-term presilting complexes and the purely non-rigid region.

Example of Theorem 3

Let
$$A = K(1 \xrightarrow{\alpha \atop \beta} 2 \xrightarrow{\gamma \atop \delta} 3)/\langle \alpha \delta, \beta \gamma \rangle.$$

The red line is R_0 , and the blue is the rest non-rigid region.

For
$$U \in 2$$
-psilt A with $[U] = (3, -2, 0)$,

 N_U is the green triangle, and $C^+(U)$ is the point in it.

Example of Theorem 3

Let
$$A = K(1 \xrightarrow{\alpha \atop \beta} 2 \xrightarrow{\gamma \atop \delta} 3)/\langle \alpha \delta, \beta \gamma \rangle.$$

The red line is R_0 , and the blue is the rest non-rigid region. For $U \in 2$ -psilt A with [U] = (3, 0, -2),

 N_U is the green triangle, and $C^+(U)$ is the point in it.

Let
$$A = K(1 \xrightarrow{\alpha \atop \beta} 2 \xrightarrow{\gamma \atop \delta} 3)/\langle \alpha \delta, \beta \gamma \rangle.$$

Proposition

- (1) $R_0 = \mathbb{R}_{\geq 0}(1, -1, 0) + \mathbb{R}_{\geq 0}(0, 1, -1).$
- (2) $R_{P_3} = \mathbb{R}_{>0}(0,0,1) + \mathbb{R}_{\geq 0}(1,-1,0), R_{P_3[1]} = \mathbb{R}_{>0}(0,0,-1) + \mathbb{R}_{\geq 0}(1,-1,0), R_{P_1} = \mathbb{R}_{>0}(1,0,0) + \mathbb{R}_{\geq 0}(0,1,-1), R_{P_1[1]} = \mathbb{R}_{>0}(-1,0,0) + \mathbb{R}_{\geq 0}(0,1,-1).$
- (3) For any $k < l \in \mathbb{Z}_{\geq 1}$ with $\gcd(k, l) = 1$, there exist $U_+, U_- \in 2$ -psilt A such that

$$\begin{aligned} [U_{\pm}] &= (l-k\pm 1, -l+2k\mp 1, -k\pm 1), \\ \overline{N_{U_{\pm}}} \cap R_0 &= \mathbb{R}_{\geq 0}(l-k, -l+2k, -k), \\ R_{U_{\pm}} &= \mathbb{R}_{> 0}(l-k\pm 1, -l+2k\mp 1, -k\pm 1) + \mathbb{R}_{\geq 0}(l-k, -l+2k, -k). \end{aligned}$$

(4) For the other $U \in 2$ -psilt A, $R_U = C^+(U)$.

Relationship with canon. decomp.

Definition

Let $\theta \in K_0(\operatorname{proj} A)$.

- We say θ is rigid if $\exists U \in 2$ -psilt $A, \theta \in C^+(U)$.
- We set θ_{ri} as the max. rigid direct summand of θ .

For any $\theta \in K_0(\operatorname{proj} A)$ and $U \in \operatorname{2-psilt} A$,

- $\theta \in N_U \iff \exists l \in \mathbb{Z}_{\geq 1}, [U]$ is a direct summand of $l\theta$.
- $\theta \in \overline{N_U} \iff \exists l \in \mathbb{Z}_{\geq 1}, [U] \oplus l\theta.$

Corollary

Let $\theta \in K_0(\operatorname{proj} A)$.

Then, $\exists l \in \mathbb{Z}_{\geq 1}, \forall m \in \mathbb{Z}_{\geq 1}, (ml\theta)_{ri} = m \cdot (l\theta)_{ri}$.

Moreover, we can let l = 1 if A is E-tame.

au-tilting reduction

Let $U \in 2$ -psilt A, and take its Bongartz completion $T \in 2$ -silt A. Set $B = B_U := \operatorname{End}_A(H^0(T))/[H^0(U)]$, then |B| + |U| = |A|.

Theorem [Jasso]

There exists a bijection red: 2-psilt $_UA \rightarrow$ 2-psilt B.

Proposition

There exists an \mathbb{R} -linear surj. $\pi \colon K_0(\operatorname{proj} A)_{\mathbb{R}} \to K_0(\operatorname{proj} B)_{\mathbb{R}}$ such that

$$\pi(C^+(V)) = C^+(\text{red}(V)), \ \pi(N_V) = N_{\text{red}(V)}, \ \pi(R_V) = R_{\text{red}(V)}$$

in $K_0(\operatorname{proj} B)_{\mathbb{R}}$ for any $V \in \operatorname{2-psilt}_U A$.

In particular, $\pi(R_U) = R_0(B)$, so

$$R_U = C^+(U) \iff B \text{ is } \tau\text{-tilting fin.}$$

Special biserial algebras

- \widehat{KQ} : The complete path algebra of a fin. quiver $Q = (Q_0, Q_1)$.
- $I \subset \langle Q_1 \rangle^2 \subset \widehat{KQ}$: a two-sided ideal of \widehat{KQ} .
- The arguments before are valid for $A = \overline{KQ}/I$ [Yuta Kimura, van Garderen].

Definition

 $A = \widehat{KQ}/I$ is called a complete special biserial algebra if

- (a) I is generated by a finite set of paths and p-q (p, q: paths).
- **(b)** For each $i \in Q_0$, there exist at most two arrows starting at i.
- (c) For each $i \in Q_0$, there exist at most two arrows ending at i.
- (d) For each $\alpha \in Q_1$, there exists at most one $\beta \in Q_1$ s.t. $\alpha \beta \notin I$.
- (e) For each $\alpha \in Q_1$, there exists at most one $\beta \in Q_1$ s.t. $\beta \alpha \notin I$.

We want to determine R_0 for complete special biserial algebras.

Gentle algebras

Definition

 $A = \widehat{KQ}/I$ is called a complete gentle algebra if

- (a) $A = \overline{KQ}/I$ is a complete special biserial algebra.
- **(b)** I is generated by paths of length 2.
- (c) For each $\alpha \in Q_1$, there exists at most one $\beta \in Q_1$ such that $\alpha\beta$ is a path in Q and $\alpha\beta \in I$.
- (d) For each $\alpha \in Q_1$, there exists at most one $\beta \in Q_1$ such that $\beta \alpha$ is a path in Q and $\beta \alpha \in I$.

If $A = \widehat{KQ}/I$ is a complete special biserial algebra, we can choose $\widetilde{I} \subset I$ such that $\widetilde{A} = \widehat{KQ}/\widetilde{I}$ is a complete gentle algebra. Then, A is a quotient algebra of \widetilde{A} , so $R_0(A) \subset R_0(\widetilde{A})$.

Maximal nonzero paths

Definition

Let $A = \overline{KQ}/I$ be a complete gentle algebra.

- $MP(A) := \{ paths \ p \notin I \ of \ length \ge 1 \ s.t. \ \forall \alpha \in Q_1, \ \alpha p, p\alpha \in I \}.$
- $\overline{\mathsf{MP}}(A) := \mathsf{MP}(A) \cup \{e_i \mid i \in Q_0 \text{ satisfying } (*)\};$ (*): at most one arrow starting at i, and at most one arrow ending at i.
- Cyc(A) := {minimal cycles c s.t. $\forall m \geq 1, c^m \notin I$ }.

For any path $p \notin I$ in Q, a string module $M(p) \in \text{mod } A$ is defined.

Theorem 4 [A]

Let $A = \overline{KQ}/I$ be a complete gentle algebra.

Then, $R_0 = \{\theta \in K_0(\operatorname{proj} A)_{\mathbb{R}} \mid (a), (b)\}.$

- (a) $\forall p \in \overline{\mathsf{MP}}(A), M(p) \in \mathcal{W}_{\theta}.$
- **(b)** $\forall c \in \text{Cyc}(A), \ \theta(M(c)/\text{soc}\ M(c)) = 0.$

Let
$$A = K(1 \xrightarrow{\alpha \atop \beta} 2 \xrightarrow{\gamma \atop \delta} 3)/\langle \alpha \delta, \beta \gamma \rangle$$
.

In this case,

$$\overline{\mathsf{MP}}(A) = \{\alpha\gamma, \beta\delta\}, \ \mathsf{Cyc}(A) = \emptyset.$$

Thus, for $\theta \in K_0(\operatorname{proj} A)_{\mathbb{R}}$,

$$\begin{split} \theta \in R_0 &\iff M(\alpha \gamma), M(\beta \delta) \in \mathcal{W}_\theta \\ &\iff \theta \in \mathbb{R}_{\geq 0}(1, -1, 0) + \mathbb{R}_{\geq 0}(0, 1, -1). \end{split}$$

Let
$$A = K(1 \xrightarrow{\alpha \atop \beta} 2 \xrightarrow{\gamma \atop \delta} 3)/\langle \alpha \gamma, \delta \beta \rangle$$
. In this case.

$$\overline{\mathsf{MP}}(A) = \{e_1, e_3\}, \; \mathsf{Cyc}(A) = \{\alpha\beta, \beta\alpha, \gamma\delta, \delta\gamma\}.$$

We can use a complete representative set of $\mathrm{Cyc}(A)/\{\mathrm{cyc.\ perm.}\}$ instead of $\mathrm{Cyc}(A)$ in Theorem 4.

Thus, for $\theta \in K_0(\operatorname{proj} A)_{\mathbb{R}}$,

$$\theta \in R_0 \iff M(e_1), M(e_3) \in \mathcal{W}_{\theta}, \ \theta(M(\alpha)) = \theta(M(\gamma)) = 0$$
 $\iff \theta = 0.$

Therefore, $R_0 = \{0\}$, and #2-silt $A < \infty$ (A is " τ -tilting finite").

For any complete special biserial algebra A,
 2-silt A → 2-silt(A/⟨Cyc(A)⟩) is a bij. [Yuta Kimura].

Let
$$A = K(\underbrace{\bigcap^{\lambda} 1 \xleftarrow{\alpha} 2 \xleftarrow{\gamma} 3}_{\beta})/\langle \alpha \gamma, \delta \beta, \lambda^2, \mu^2 \rangle$$
. In this case,

$$\overline{\mathsf{MP}}(A) = \emptyset, \ \mathsf{Cyc}(A) = \{\alpha\beta\lambda, \beta\lambda\alpha, \lambda\alpha\beta, \delta\gamma\mu, \gamma\mu\delta, \mu\delta\gamma\}.$$

Thus, for $\theta \in K_0(\operatorname{proj} A)_{\mathbb{R}}$,

$$\theta \in R_0 \iff \theta(M(\alpha\beta)) = \theta(M(\delta\gamma)) = 0$$

 $\iff \theta = \mathbb{R}(1, -2, 1).$

Main result for special biserial algebras

Let $A = \widehat{KQ}/I$ be a complete special biserial algebra. Fix $\widetilde{I} \subset I$: an ideal of \widetilde{KQ} such that $\widetilde{A} = \widehat{KQ}/\widetilde{I}$ is complete gentle. Define $\widetilde{W_{\theta}} \subset \operatorname{mod} \widetilde{A}$ by

$$\widetilde{\mathcal{W}}_{\theta} := \operatorname{Filt}_{\widetilde{A}} \mathcal{W}_{\theta} \quad (\mathcal{W}_{\theta} \subset \operatorname{mod} A).$$

For any path \widetilde{p} admitted in \widetilde{A} , $M(\widetilde{p}) \in \widetilde{\mathcal{W}_{\theta}}$ if and only if $\exists q_1, \ldots, q_m$: paths admitted in A, $\exists \alpha_1, \ldots, \alpha_{m-1} \in Q_1$,

$$\widetilde{p} = q_1 \alpha_1 \cdots q_{m-1} \alpha_{m-1} q_m, \quad \forall i, M(q_i) \in \mathcal{W}_{\theta}.$$

Theorem 5 [A]

In above, we have $R_0 = \{\theta \in K_0(\operatorname{proj} A)_{\mathbb{R}} \mid (a), (b)\}.$

- (a) $\forall \widetilde{p} \in \overline{\mathsf{MP}}(\widetilde{A}), M(\widetilde{p}) \in \widetilde{\mathcal{W}}_{\theta}.$
- $\textbf{(b)} \ \ \forall \widetilde{c} \in \mathrm{Cyc}(\widetilde{A}), \ \exists \widetilde{d} \colon \text{a cyc. perm. of } \widetilde{c} \text{ s.t. } M(\widetilde{d})/\mathrm{soc} \ M(\widetilde{d}) \in \widetilde{\mathcal{W}}_{\theta}.$

Let
$$A = K(1 \xrightarrow{\alpha \atop \beta} 2 \xrightarrow{\gamma \atop \delta} 3)/\langle \alpha \delta, \beta \gamma, \alpha \gamma, \beta \delta \rangle.$$

Take the gentle algebra $\widetilde{A} = K(1 \xrightarrow{\alpha \atop \beta} 2 \xrightarrow{\gamma \atop \delta} 3)/\langle \alpha \delta, \beta \gamma \rangle$. In this case,

$$\overline{\mathsf{MP}}(\widetilde{A}) = \{\alpha\gamma, \beta\delta\}, \ \mathsf{Cyc}(\widetilde{A}) = \emptyset.$$

Thus, for $\theta \in K_0(\operatorname{proj} A)_{\mathbb{R}}$,

$$\theta \in R_0 \iff M(\alpha \gamma), M(\beta \delta) \in \widetilde{\mathcal{W}}_{\theta}$$

$$\iff \begin{bmatrix} M(\alpha), M(e_3) \in \mathcal{W}_{\theta} \text{ or } M(e_1), M(\gamma) \in \mathcal{W}_{\theta}; \\ M(\beta), M(e_3) \in \mathcal{W}_{\theta} \text{ or } M(e_1), M(\delta) \in \mathcal{W}_{\theta} \end{bmatrix}$$

$$\iff \theta \in \mathbb{R}_{\geq 0}(1, -1, 0) \cup \mathbb{R}_{\geq 0}(0, 1, -1).$$

In this case, R_0 is not convex.

R_0 and the sum of the simple modules

Set $h := \sum_{i=1}^{n} [S_i] \in K_0(\text{mod } A)$. If A is a complete gentle algebra, then we can check

$$2h \in \sum_{p \in \overline{\mathsf{MP}}(A)} \mathbb{Z}[M(p)] + \sum_{c \in \mathsf{Cyc}(A)} \mathbb{Z}[M(c)/\mathsf{soc}\,M(c)].$$

Corollary

Let A be a complete special biserial algebra.

Then, R_0 is contained in the hyperplane $Ker\langle \cdot, h \rangle \subset K_0(\operatorname{proj} A)_{\mathbb{R}}$.

Remark

If A is complete gentle, then R_0 is a rational polyhedral cone.

If A is complete special biserial,

then R_0 is a union of finitely many rational polyhedral cones.

Connection with τ -tilting reduction

Let $A = \widehat{KQ}/I$ be a (fin. dim.) special biserial algebra.

Fix $U \in 2$ -psilt A, and consider the algebra $B = B_U$.

Then, $\mathcal{W}_U := \overline{\mathcal{T}}_U \cap \mathcal{F}_U$ is equiv. to mod B_U [Jasso].

Proposition

 B_U is a (fin. dim.) special biserial algebra.

Set $h_U := \sum_{X \in \text{sim } \mathcal{W}_U} [X] \in K_0(\text{mod } A)$.

Corollary [A]

 $R_U \cap NR$ is contained in $Ker\langle \cdot, h_U \rangle \subset K_0(proj A)_{\mathbb{R}}$.

Since 2-psilt *A* is at most a countable set,

NR is contained in a union of countably many hyperplanes of codim. 1. Thus, the interior of NR is empty, i.e. *A* is g-tame.

Thus, the interior of Nix is empty, i.e. A is grante

Application to Brauer graph algebras

Let A be the Brauer graph algebra of G = (V, E, m).

The simple A-modules are S_e for all $e \in E$.

For each $v \in V$, take the cyclic order $e_1, \ldots, e_l \in E$ around v, and set $x_v := \sum_{i=1}^l [S_{e_i}] \in K_0(\text{mod }A)$.

Corollary [A]

In above, $R_0 = \bigcap_{v \in V} \operatorname{Ker} \langle \cdot, x_v \rangle$.

Thus, if $R_0 = \{0\}$, then $\#V \le \#E$, so G contains at most one cycle. Any vertex with only one half-edge does not matter whether $R_0 = \{0\}$.

- If G is an odd cycle, then $R_0 = \{0\}$.
- If *G* is an even cycle, then $R_0 = \mathbb{R}(1, -1, 1, -1, \dots, 1, -1)$.

Recovered Theorem [Adachi-Aihara-Chan]

A is au-tilting finite if and only if

G contains at most one odd cycle and no even cycle.

Thank you for your attention.

s-asai@ist.osaka-u.ac.jp