Shooting Method:Non-linear Boundary value problem Lab Report for Assignment No. 10

SHASHVAT JAIN (2020PHY1114) HARSH SAXENA (2020PHY1162)

S.G.T.B. Khalsa College, University of Delhi, Delhi-110007, India.

April 29, 2022

Submitted to Dr. Mamta "32221401 - MATHEMATICAL PHYSICS III"

Contents

1	Theory		
	1.1 Shooting Method for Non Linear two Point Boundary Value Problem	1	
	1.2 Secant Method	2	
2	Algorithm	3	
3	Programming	5	
4	Discussion	8	
	4.1 Dirichlet condition	8	
	4.2 Neumann condition	9	
	4.3 Robin Condition	10	
	4.4 Errors	12	

1 Theory

1.1 Shooting Method for Non Linear two Point Boundary Value Problem

The general second order differential equation is:

$$y'' = f(x, y, y');$$
 a < x < b

with robin boundary conditions:

$$\alpha_1 y(a) + \alpha_2 y'(a) = \alpha_3 \tag{1}$$

$$\beta_1 y(b) + \beta_2 y'(b) = \beta_3 \tag{2}$$

- 1. **case 1** if $\alpha_2 = \beta_2 = 0$ i.e $y(a) = \alpha$ and $y(b) = \beta$ It becomes Dirichlet Boundary condition
- 2. case 2 if $\alpha_1 = \beta_1 = 0$ i.e y'(a)= α and y'(b) = β It becomes Neumann Boundary condition.

1. In the case of Dirichlit Boundary conditions:

The solution to the boundary value is approximated by using the solution to a sequence of initial value problem involving a parameter S having the form,

$$y'' = f(x, y, y')$$
 for $a \le x \le b$

with $y(a) = \alpha$ and y'(a) = S (guess) This converts the problem into an IVP.

Let, y(x,s) be the solution of this IVP.

The solution of this problem satisfy:

$$y(b,s) = \beta$$

If
$$\phi(s) = y(b, s) - \beta$$

Thus the problem reduces to finding $s=S^*$ such that $\phi(s^*=0)$.

Thus, we solve that BVP by using the solution of a sequence of IVP's involving parameter 'S'. we choose $s = s_k$ such that:

$$\lim_{n \to \infty} y(b, s_k) = y(b) = \beta$$

where $y(x,s_k)$ denotes the solution of the IVP with $s = s_k$.

while y(x) denotes the solution of the BVP.

we choose the values of the x_k untill $y(b,s_k)$ is sufficiently close to β .

$$y(b, s_k) - \beta = 0$$

This is an non linear equation which we can solve using Newton Raphson or Secant Method.

2. In the case of Neumann Boundary conditions:

$$y'(a) = \alpha$$
 and $y'(b) = \beta$

Now y(a) is approximated and then improved in each iteration.

we use the initial conditions:

$$y(a) =$$
sand $y'(a) = \alpha$

s is chosen such that

$$\phi(s) = y'(b, s) - y'(b)$$
$$= y'(b, s) - \beta$$
$$= 0$$

where, y(x) is the solution of BVP and y(x,s) is the solution of IVP with y(a)=s.

3. In the case of Robin Boundary conditions:

Let us take an example where:

$$y(a) = \alpha$$

 $\beta_1 y(b) + \beta_2 y'(b) = \beta$ is given

we have to guess y'(a) = s for this to convert it into a IVP. Therefore, the objective function whose roots are to be determined becomes:

$$\phi(s) = \beta - \beta_1 y(b, s) - \beta_2 y'(b, s)$$

we will find the value of s iteratively such that $\phi(s)$ approaches 0. similarly, it can be done for the different cases .

1.2 Secant Method

Here we need two initial approximations, s_0 and s, then the remaining terms of the sequence are generated by:

$$s_k = s_{k-1} - \phi(s_{k-1}) \left[\frac{s_{k-1} - s_{k-2}}{\phi(s_{k-1}) - \phi(s_{k-2})} \right]$$
(3)

for k=2,3,4,....

The initial value problem is solved initially for two values s_0 and s_1 . The iteration is stopped when $|\phi(s_k)| <$ tolerance

2 Algorithm

Algorithm 1 Objective

Data: INPUT -: all α 's and β 's are the values of boundary conditions, x_0 and x_f are the starting and ending point for x values, function is the slope given for solving IVP, n is the order of Equation, N is the number of x points, guess value s

Result: OUTPUT -: returns the value of objective(psi) function, solution(y values), the x values 1 x_{val} = array of x values from x_0 to x_f ; /* forms an array of y values using function from x values */ 2 if alpha2 = 0 then initial conditions are α_1 and $s(guess \ value)$ 4 end 5 /* if value of f(a) is given */ initial value $=\frac{\beta_1 - s \times \alpha_1}{\alpha_2}$ 8 end 9 /* if f(a) is not given */ 10 y = rk4(all required parameters) /* calculate the y values*/ 11 objective $= \beta_2$ - calculated β_2 value /* calculating the value of psi */

Algorithm 2 byp $_solution$

Data: INPUT -: all α 's and β 's are the values of boundary conditions, x_0 and x_f are the starting and ending point for x values, function is the slope given for solving IVP, n is the order of Equation, N is the number of x points, guess values, max no of iterations, s_0 , s_1 , tolerance of solution

Result: OUTPUT -: returns the value of y separately as y1 and y2, array of guess values , and x values */ * initialise the y arrays , s arrays */

```
13 /* now get the output of objective function at s = 0
                                                                                                        */
14 objective(\psi) = objective(required parameters) if \psi < tolerance then
      stop the function and give output
16 end
17 else
18 end
*now get the output of objective function at s=1
    objective(\psi) = objective(required parameters)
    if \psi < tolerance then
     stop the function and return the output
21 end
22 else
      calculate s_k = \text{secant method}(s_0, s_1, \psi(s_0).\psi(s_1))
          /* now get the output of objective function at s = s_k
                                                                                                        */
      objective(\psi) = objective(required parameters)
24
25 end
26 /* if this objective is less than tolerance than stop the function otherwise continue
```

the above process till you reach $k = \max_{i} terations$

3 Programming

```
import numpy as np
 2 import matplotlib.pyplot as plt
 3 from MyIVP import *
 4 import pandas as pd
 5 from scipy import stats
 7 def slope(x,S):
                return [*S[1:],2*S[0]**3]
 9
     #Dirichlet or neumann bc
12
def linearshooting(a,b,z_a,z_b,M,f,s0,s1,tol,key = 'd',cf = None):
                dict1 = {'d':0,'n':1,'r':0}
14
                def phi(s):
                          if key == 'd':
16
                                  Ic = [z_a, s]
17
                          elif key == 'n':
                                    Ic = [s,z_a]
                          elif key =='r':
20
                                    Ic = [s, (cf*s + z_a)]
21
22
                          res = RK4_vec(Ic,a,b,M,2,f)
23
24
                          y_c = res[1][:,dict1[key]]
                          return abs(z_b - y_c[-1]),res
                S = np.zeros(1000)
28
                S[0] = s0 ; S[1] = s1
29
                res_list = [phi(S[0])[1], phi(S[1])[1]]
30
                for i in range(2,len(S)):
31
                          S[i] = S[i-1] - (((S[i-1]-S[i-2])*(phi(S[i-1])[0]))/(phi(S[i-1])[0] - phi(S[i-1])[0])
              -2])[0]))
                          res_list.append(phi(S[i])[1])
34
                          if phi(S[i])[0] <= tol:</pre>
35
                                  return phi(S[i])[1],S[:i],res_list
36
                return phi(S[-1])[1]
37
38
39
40 def Y_anay(x):
                return 1/(x+3)
41
42
43 Y_anay = np.vectorize(Y_anay)
44
45
46 def plotting(f,arr,N,title,k_p,sp1_title,sp2_title):
                sig_1 = ['o', '1', 'v', '*', '2', 'x', 'o', '2', 'x', '*', 'v', 'd']
47
                fig,(ax1,ax2) = plt.subplots(1,2)
                plt.suptitle(title)
49
50
                for i in range(len(N)):
51
                          ax1.plot(arr[i][0], arr[i][1][:,0], f'--\{sig_l[i]\}', label = f'for \{k_p\} = \{N[i], label = f'for \}
             ]}')
                          ax2.plot(arr[i][0], arr[i][1][:,1], f'--\{sig_1[i]\}', label = f'for \{k_p\} = \{N[i, arr[i], arr
             1}')
                ax1.plot(arr[4][0],f(arr[4][0]),'b')
                ax1.legend()
55
                ax2.legend()
56
                ax1.set_title(sp1_title)
57
```

```
ax2.set_title(sp2_title)
58
       ax1.set_xlabel('X')
59
       ax1.set_ylabel('Y')
60
       ax2.set_xlabel('X')
61
       ax2.set_ylabel("Y'")
62
64
  def plot_s(a,b,z_a,z_b,key,tol,condition,cf = None):
66
       S_arr = linearshooting(a,b,z_a,z_b,32,slope,0,1,tol,key,cf)[1:]
67
       itr = S_arr[0]
       plt_ar = S_arr[1]
69
       plotting(Y_anay,plt_ar,itr,condition,'s',f'Y vs X for N = 32 and tol = \{tol\}', f''\}
      Y' vs X for N = 32 and tol = \{tol\}")
72
73
N = \text{np.logspace}(1,6,\text{base=2,num} = 6)
75
  def solve_cnt(a,b,z_a,z_b,key,tol,condition,cf = None):
76
78
       for i in range(len(N)):
79
           df1 = linearshooting(a,b,z_a,z_b,N[i],slope,0,1,tol,key,cf)[0]
80
           df.append(df1)
81
82
       plotting(Y_anay, df, N, condition, 'N', 'Y vs X', "Y' vs X")
83
87 #dirichlet bc
88 #solve_cnt(0,1,1/3,1/4,'d',10**(-8),'Dirichlet BC')
89 plot_s(0, 1,1/3,1/4,'d',10**(-8),'Dirichlet BC')
90 #neumann Bc
91 #solve_cnt(0,1,-1/9,-1/16,'n',10**(-3),'Neumann BC')
92
93 #Robin 1
94 #solve_cnt(0,1,-2/9,1/4,'r',10**(-3),'Robin-1 BC',1/3)
95 plot_s(0, 1,-2/9,1/4,'r',10**(-6),'Robin-1 BC',1/3)
96 #Robin 2
97 #solve_cnt(1,0,3/16,1/3,'r',10**(-3),'Robin-2 BC',-1)
98 plot_s(1,0,3/16,1/3,'r',10**(-3),'Robin-2 BC',-1)
100
  def Error(a,b,f,N,tol):
101
       mat = linearshooting(a,b,1/3,1/4,\mathbb{N},slope,0,1,tol)[0]
       x = mat[0]
103
       h = x[1] - x[0]
104
       ynum = mat[1][:,0]
       E_1 = abs(ynum - f(x))
106
       E_n = max(E_1)
       E_r = np.sqrt(np.sum(np.power(E_1,2))/len(E_1))
       data = {'x':x,'y_num':ynum,'y_analytic':f(x),'Error':E_l}
          = pd.DataFrame(data)
       return np.log(N),np.log(h),np.log(E_n),np.log(E_r),df
113
114 Error = np.vectorize(Error,otypes = [float,float,float,float,pd.DataFrame])
rev_t = Error(0,1,Y_anay,N,10**(-8))
117
118 data1 = {'N':N,'h':np.exp(rev_t[1]),'E_max':np.exp(rev_t[2]),'E_rms':np.exp(rev_t[3])
```

```
}
119 df2 = pd.DataFrame(data1)
df2.to_csv('er_n.csv')
121 print (df2)
123 \text{ cnv_max} = []
124 cnv_rms = []
125 for i in range(len(rev_t[2])-1):
       cnv_max.append(rev_t[2][i+1]/rev_t[2][i])
       cnv_rms.append(rev_t[3][i+1]/rev_t[3][i])
128
129 data5 = {'N':N[1:],'Ratio of Max err':cnv_max,'Ratio of rms error':cnv_rms}
130 df5 = pd.DataFrame(data5)
df5.to_csv('er_ratio.csv')
132 print (df5)
133
135 rev_t[4][1].to_csv('y_er_4.csv')
136 rev_t[4][2].to_csv('y_er_8.csv')
  def err_line(mat,key=0):
138
       dict2 = \{0:'N', 1:'h'\}
139
140
       slope_max, intercept_max,r_value, p_value, std_err = stats.linregress(mat[key],
141
      mat [2])
       slope_rms, intercept_rms,r_value, p_value, std_err = stats.linregress(mat[key],
142
      mat [3])
143
       fig,ax = plt.subplots(1,2)
       plt.suptitle(f'Log Error plots vs {dict2[key]}')
145
       ax[0].plot(mat[key],mat[2],'o',label = 'error points')
146
       ax[0].plot(mat[key],mat[key]*slope_max + intercept_max,label = f'Slope = {
147
      slope_max}')
       ax[1].plot(mat[key],mat[3],'x',label = 'error points')
148
       ax[1].plot(mat[key],mat[key]*slope_rms + intercept_rms,label = f'Slope = {
149
      slope_rms}')
       ax[0].set_title(f'E_max vs {dict2[key]}')
       ax[1].set_title(f'E_rms vs {dict2[key]}')
       ax[0].set_xlabel(f'log{dict2[key]}')
       ax[1].set_xlabel(f'log{dict2[key]}')
153
       ax[0].set_ylabel('log(E_max)')
154
       ax[1].set_ylabel('log(E_rms)')
       ax[0].legend()
156
       ax[1].legend()
       plt.show()
158
159
       return slope_max,slope_rms
Yu = err_line(rev_t,1)
163
tu = err_line(rev_t,0)
166 data2 = {'err':['E_max','E_rms'],'h':Yu,'N':tu}
167
168 df3 = pd.DataFrame(data2)
df3.to_csv('slope.csv')
170 print(df3)
<sub>171</sub> ,,,
```

4 Discussion

4.1 Dirichlet condition

Figure 1: Dirichlet condition

We have determined the function y for given differential equation and -

$$y" = 2y^3 \qquad 0 \le x \le 1$$

with Dirichlet boundary condition as -

$$y(0) = \frac{1}{3}, y(1) = \frac{1}{4}$$

- 1. We have determined the solution using shooting method, starting with guessing y'(0) for the tolerence 10^{-8} .
- 2. Note that as we increase The no. of terms N our shooted solution will match the analytic solution
- 3. as for the y'(x) for the given tolerence on s our y'(0) \approx -0.11

Dirichlet BC

Figure 2: shooting for Dirichlet condition

4.2 Neumann condition

Figure 3: Neumann condition

$$y'(0) = -\frac{1}{9}, y(1) = -\frac{1}{16}$$

- 1. We have determined the solution using shooting method, starting with guessing y(0) for the tolerence 10^{-3} .
- 2. Note that as we increase The no. of terms **N** our shooted solution will match the analytic solution of y'(x) and y(x)

3. as for the y(x) for the given tolerence s our y(0) ≈ 0.325

4.3 Robin Condition

Figure 4: Robin - 1 condition

condition: $3y(0) - 9y'(0) = 2, y(1) = \frac{1}{4}$

Figure 5: shooting for Dirichlet condition

Robin-2 BC

Figure 6: Robin - 2 condition

condition:
$$y(0) = \frac{1}{3}, 2y(1) + 2y'(1) = \frac{3}{8}$$

Figure 7: shooting for Dirichlet condition

We observe that we get approximately same solution for all the boundary condition.

4.4 Errors

	N	h	\mathbf{E}_{max}	E_{rms}
0	2	0.5	2.88E-06	1.66E-06
1	4	0.25	1.72E-07	1.14E-07
2	8	0.125	1.06E-08	7.30E-09
3	16	0.0625	6.52E-10	4.60E-10
4	32	0.03125	4.04E-11	2.90E-11
5	64	0.015625	2.59E-12	1.90E-12

Table 1: Data for E_{max} and E_{rms}

We observe that E_{rms} is less than E_{max}

	N	Ratio of Max err	Ratio of rms error
0	4.0	1.2210233244540545	1.2011221336016977
1	8.0	1.1787828603493995	1.1721425508872567
2	16.0	1.1518522312705337	1.1475281335959933
3	32.0	1.1314164681263084	1.128640424367299
4	64.0	1.1147601612022222	1.1123097852123878

Table 2: Data for E_N/E_{2N}

Note that as we increase N the ratio of errors converges to 1 i.e, the truncation error in RK4 reduces as we decrease step size.

	X	y_{num}	$y_{analytic}$	Error
0	0	0.333333333	0.333333333	0
1	0.25	0.307692462	0.307692308	1.54E-07
2	0.5	0.285714457	0.285714286	1.72E-07
3	0.75	0.266666777	0.266666667	1.10E-07
4	1	0.25	0.25	2.07E-13

Table 3: Data for Error in Y values using Dir-Condition

	X	y_{num}	Yanalytic	Error
0	0	0.333333333	0.333333333	0
1	0.125	0.320000006	0.32	6.01E-09
2	0.25	0.307692317	0.307692308	9.31E-09
3	0.375	0.296296307	0.296296296	1.06E-08
4	0.5	0.285714296	0.285714286	1.04E-08
5	0.625	0.275862078	0.275862069	8.95E-09
6	0.75	0.266666673	0.266666667	6.64E-09
7	0.875	0.25806452	0.258064516	3.61E-09
8	1	0.25	0.25	2.17E-13

Table 4: Data for Error in Y values using Dir-Condition

As We have increased number of terms the error in each y is reduced.

Log Error plots vs h

Figure 8: log(E) vs log(h)

Figure 9: log(E) vs log(N)

	err	h	N
0	$E_m ax$	4.016694154112981	-4.016694154112981
1	$\mid E_r ms \mid$	3.958016081323456	-3.958016081323456

Table 5: tabulated slopes for error line

As we have used RK4 method to numerically determine the solution the global error in y is reducing as expected i.e, $E \propto h^4$