Федеральное государственное автономное образовательное учреждение высшего образования «Московский физико-технический институт (национальный исследовательский университет)»

Отчёт по лабораторной работы 4.7.1 ДВОЙНОЕ ЛУЧЕ ПРЕЛОМЛЕНИЕ

> Выполнил студент: Сериков Алексей Романович

группа: Б03-103

Аннотация

Цель работы:

Изучение зависимости показателя преломления необыкновенной волны от направления в двояко преломляющем кристалле; определение главных показателей преломления n_0 — обыкновенной и n_e — необыкновенной волны в кристалле наблюдение эффекта полного внутреннего отражения.

В работе используются:

Гелий-неоновый лазер, вращающийся столик с неподвижным лимбом, призма из исландского шпата, поляроид.

Теоретическая справка:

При падении световой волны на границу изотропной среды в этой среде от границы распространяется одна волна. Если среда анизотропна, то в ней в общем случае возникают две волны, распространяющиеся от границы в разных направлениях и с разными скоростями. Это явление называется двойным лучепреломлением.

Плоские волны в кристаллах.

Фундаментальные уравнения Максвелла справедливы без всяких изменений и в кристаллических средах. В отсутствие электрических зарядов и токов они имеют вид

$$\operatorname{rot} \vec{H} = \frac{1}{c} \frac{\partial \vec{D}}{\partial t}, \quad \operatorname{rot} \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}. \tag{1}$$

Если среды прозрачны и однородны, то в них могут распространяться плоские монохроматические волны. Запишем такую волну в комплексном виде:

$$\vec{E} = \vec{E}_0 e^{i(\omega t - \vec{k}\vec{r})}; \quad \vec{B} = \vec{H} = \vec{H}_0 e^{i(\omega t - \vec{k}\vec{r})}; \quad \vec{D} = \vec{D}_0 e^{i(\omega t - \vec{k}\vec{r})}$$

Здесь ω — круговая частота, \vec{k} — волновой вектор, а амплитуды \vec{E}_0 , \vec{H}_0 , \vec{D}_0 постоянны. Вектор \vec{B} совпадает с \vec{H} , так как $\mu=1$. Дифференцируя по времени, получаем $\partial \vec{D}/\partial t=i\omega \vec{D}$, то есть операции дифференцирования сводится в этом случае к умножению на $i\omega$. Аналогично дифференцирование по координатам x,y,z сводится к умножению на $-ik_x,-ik_y,-ik_z$. Заметив это и обозначив координатные орты через $\vec{e}_x,\vec{e}_y,\vec{e}_z$, получаем

$$\operatorname{rot} \vec{H} = \left| \begin{array}{ccc} \vec{e_x} & \vec{e_y} & \vec{e_z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ H_x & H_y & H_z \end{array} \right| = -i \left| \begin{array}{ccc} \vec{e_x} & \vec{e_y} & \vec{e_z} \\ k_x & k_y & k_z \\ H_x & H_y & H_z \end{array} \right| = -i[\vec{k}\vec{H}]$$

и аналогично для $rot \vec{E}$. В результате (1) перейдут в

$$\[\vec{k}\vec{H}\] = -\frac{\omega}{c}\vec{D}; \quad \[\vec{k}\vec{E}\] = \frac{\omega}{c}\vec{B}.$$

Введем единичный вектор нормали \vec{N} к фронту волны и скорость распространения фронта в направлении этой нормали v. Тогда $\vec{k} = \frac{\omega}{c} \vec{N}$ и предыдущие соотношения перейдут в

$$\vec{D} = \frac{c}{v} \left[\vec{N} \vec{H} \right]; \quad \vec{B} = \frac{c}{v} \left[\vec{N} \vec{E} \right]. \tag{2}$$

Отсюда видно, что векторы $\vec{D}, \vec{H}, \vec{N}$ взаимно перпендикулярны. Значит, плоские волны в кристалле поперечные в отношении векторов \vec{D} и \vec{H} . Однако в общем случае они не поперечные в отношении вектора \vec{E} .

Рис. 1: Расположение векторов $\vec{D}, \vec{E}, \vec{N}, \vec{S}$ в анизотропной среде

В изотропной среде связь между вектором напряженности электрического поля \vec{E} и вектором индукции \vec{D} дается материальным уравнением $\vec{D} = \varepsilon \vec{E}$, где ε — постоянная, не зависящая от направления величина, называемая диэлектрической проницаемостью. Для характеристики оптических свойств анизотропной среды требуется девять величин ε_{ij} , образующих тензор диэлектрической проницаемости. Он вводится посредством отношений

$$D_i = \sum_{j} \varepsilon_{ij} E_j \quad (i, j = x, y, z). \tag{3}$$

Благодаря тензорной связи между \vec{D} и \vec{E} направления этих векторов в кристаллах, вообще говоря, не совпадают. Плоскость $\left(\vec{E},\vec{H}\right)$ обладает тем свойством, что перпендикуляр к ней определяет направление вектора Пойнтинга $\vec{S} = \frac{c}{4\pi} \left[\vec{E} \vec{H} \right]$, то есть направление распространения световых лучей. Четыре вектора $\vec{D}, \vec{E}, \vec{N}, \vec{S}$ лежат в одной плоскости, перпендикулярной вектору \vec{H} . Взаимное расположение этих векторов показано на рис. 1.

Оптически одноосные кристаллы.

Всю совокупность возможных значений тензора диэлектрической проницаемости можно представить при помощи трехосного эллипсоида. Значение диэлектрической проницаемости для любого направления выражается длиной радиуса-вектора эллипсоида, проведенного по этому направлению. Три значения диэлектрической проницаемости $\varepsilon_x, \varepsilon_y, \varepsilon_z$, соответствующие осям эллипсоида, называются главными значениями диэлектрической проницаемости и соответственно $\sqrt{\varepsilon_x}, \sqrt{\varepsilon_y}, \sqrt{\varepsilon_z}$ — главными показателями преломления.

В системе координат, оси которой совпадают с главными осями эллипсоида, тензор диэлектрической проницаемости приводится к диагональному виду, и проекции векторов D и E на оси координат связаны простыми соотношениями:

$$D_x = \varepsilon_x E_x, \quad D_y = \varepsilon_y E_y, \quad D_z = \varepsilon_z E_z.$$

В оптически одноосном кристалле, каковым является исландский шпат, эллипсоид диэлектрической проницаемости представляет собой эллипсоид вращения. В нём оптическая ось совпадает с осью вращения эллипсоида диэлектрических проницаемостей. Для главных значений диэлектрических проницаемостей приняты обозначения $\varepsilon_z = \varepsilon_{\parallel}$ и $\varepsilon_x = \varepsilon_y = \varepsilon_{\perp}$. В дальнейшем нам потребуется связь между проекциями векторов \vec{D} и \vec{E} на оптическую ось кристалла (\vec{D}_{\parallel} и \vec{E}_{\parallel}) и на плоскость, перпендикулярную оси (\vec{D}_{\perp} и \vec{E}_{\perp}):

$$\vec{D}_{\parallel} = \varepsilon_{\parallel} \vec{E}_{\parallel}, \quad \vec{D}_{\perp} = \varepsilon_{\perp} \vec{E}_{\perp}. \tag{4}$$

Рис. 2: расположение векторов \vec{N} и \vec{D} в анизотропной среде: $(\vec{D} = \vec{D}_o + \vec{D}_e; \vec{D}_o \perp \vec{D}_e; \vec{D} \perp \vec{N}); \vec{N}$ и \vec{D}_e лежат в плоскости $(Z,Y); \vec{D}_o$ перпендикулярен плоскости (Z,Y)

Волну, распространяющуюся в одноосном кристалле, можно разделить на две линейно поляризованные волны: обыкновенную, вектор электрической индукции \vec{D}_o которой перпендикулярен главному сечению, и необыкновенную, с вектором электрической индукции \vec{D}_e , лежащим в главном сечении (рис. 2) Главным сечением кристалла называется плоскость, в которой лежит оптическая ось кристалла и нормаль к фронту волны.

Рассмотрим вначале обыкновенную волну, которой вектор $\vec{D_o}$ перпендикулярен главному сечению. Тогда $D_{oz}=0$, и из условия $D_z=\varepsilon_z E_z$ следует, что $E_{oz}=0$. Кроме того, так как $D_{oy}=\varepsilon_\perp E_{oy}$ и $D_{ox}=\varepsilon_\perp E_{ox}$, то можно записать

$$\vec{D}_o = \varepsilon_\perp \vec{E}_o. \tag{5}$$

Таким образом, для обыкновенной волны материальное уравнение имеет такой же вид, как и в изотропной среде. Найдем с помощью этого уравнения скорость распространения обыкновенной волны и соответствующий показатель преломления. Из (2) имеем

$$D_o = \frac{c}{v_o} H_o, \quad H_o = \frac{c}{v_o} E_o$$

или, учитывая (5),

$$\varepsilon_{\perp} E_o = \frac{c}{v_o} H_o, \quad H_o = \frac{c}{v_o} E_o,$$

откуда

$$v_o = \frac{c}{\sqrt{\varepsilon_\perp}}$$
 и $n_o = \frac{c}{v_o} = \sqrt{\varepsilon_\perp}$.

Таким образом, скорость распространения обыкновенной волны и ее показатель преломления не зависят от направления распространения.

У необыкновенной волны вектор \vec{D}_e не параллелен \vec{E}_e , и связь между ними сложнее, чем в (5).

Для того чтобы найти скорость распространения v и показатель преломления необыкновенной волны n=c/v, достаточно найти связь между вектором электрической индукции этой волны \vec{D}_e и проекцией на него вектора электрического поля волны E_{eD} . Тогда, подставляя $D_e=\varepsilon E_{eD}$ в (2), приходим к соотношения

$$\varepsilon E_{eD} = \frac{c}{v} H_e; \quad H_e = \frac{c}{v} E_{eD},$$

формально тождественным с соотношениями для обыкновенной волны. Роль величины ε_{\perp} теперь играет величина ε , а показатель преломления необыкновенной волны равен $\sqrt{\varepsilon}$.

Найдём связь между D_e и E_{eD} . Для этого разложим векторы \vec{D}_e и \vec{E}_e на составляющие, параллельные и перпендикулярные оси кристалла:

$$\vec{D}_e = \vec{D}_{e\parallel} + \vec{D}_{e\perp}.$$

$$\vec{E}_e = \vec{E}_{e\parallel} + \vec{E}_{e\perp}.$$

Учитывая (4), находим

$$E_{eD} = \frac{\vec{E}_{e}\vec{D}_{e}}{D_{e}} = \frac{E_{e\parallel}D_{e\parallel} + E_{e\perp}D_{e\perp}}{D_{e}} = \frac{D_{e\parallel}^{2}/\varepsilon_{\parallel} + D_{e\perp}^{2}/\varepsilon_{\perp}}{D_{e}}$$

или

$$E_{eD} = D_e \left(\frac{\sin^2 \theta}{\varepsilon_{\parallel}} + \frac{\cos^2 \theta}{\varepsilon_{\perp}} \right) = \frac{D_e}{\varepsilon},$$

где θ — угол между оптической осью Z и волновой нормалью N:

$$\sin \theta = \frac{D_{e\parallel}}{D_e}, \quad \cos \theta = \frac{D_{e\perp}}{D_e}. \tag{6}$$

Таким образом, ε и соответственно скорость распространения и показатель преломления необыкновенной волны зависят от угла между оптической осью кристалла и направлением распространения волны.

Выпишем выражение для показателя преломления необыкновенной волны $n=\sqrt{\varepsilon}$ через главные показатели преломления n_o, n_e и угол θ :

$$\frac{1}{[n(\theta)]^2} = \frac{\sin^2 \theta}{n_e^2} + \frac{\cos^2 \theta}{n_o^2}.$$
 (7)

При $n_o-n_e\ll n_o$ и n_e (для исландского шпата $n_o=1,655, n_e=1,485$ для $\lambda=0,63$ мкм) (7) можно упростить:

$$n(\theta) \approx n_e + (n_o - n_e) \cos^2 \theta.$$
 (8)

Двойное лучепреломление в призме из исландского шпата.

Рассмотрим, как по преломлению лучей в кристаллической призме можно определить показатели преломления для обыкновенной и необыкновенной волны. В работе исследуется одна из двух призм, составляющих поляризатор (рис. 3).

Рис. 3: а) Исследуемая призма из исландского шпата. Штриховкой указано направление оптической оси кристалла. б) Ход лучей в поляризационной призме

В исследуемой призме ось кристалла лежит в плоскости, параллельной верхней грани призмы, причем она параллельна входной грани призмы (длинному катету). При этом в обыкновенной волне вектор \vec{D}_o перпендикулярен верхней грани призмы, а в необыкновенной волне вектор \vec{D}_e параллелен верхней грани.

Рис. 4: Ход лучей в призме

Волну, падающую на входную грань призмы, можно представить в виде суммы двух ортогональных линейно поляризованных волн. Преломление этих двух волн на грани призмы можно рассматривать независимо. Волна, в которой вектор \vec{D} направлен вертикально (перпендикулярно верхней грани и оси кристалла), внутри кристалла будет распространяться как обыкновенная. Для этой волны выполняется закон Снеллиуса, а показатель преломления призмы для нее равен n_o . Волна, в которой вектор \vec{D} направлен горизонтально, в кристалле будет распространяться как необыкновенная. Для этой волны также будет выполняться закон Снеллиуса, но с тем отличием, что показатель преломления призмы для нее будет зависеть от угла между осью кристалла и волновой нормалью.

Значение показателя преломления и угол, под которым преломилась волна в призме, можно найти, измерив угол падения на входную грань призмы ϕ_1 и угол ϕ_2 на выходе призмы (рис. 4). Запишем закон Снеллиуса для одной из волн применительно к первой и второй граням призмы:

$$\sin \phi = n \sin \beta_1;$$

$$\sin \phi_2 = n \sin \beta_2 = n \sin(A - \beta_1).$$

При этом мы выразили угол падения на вторую грань призмы β_2 через угол преломления на первой грани призмы β_1 и угол при вершине призмы A. Как видно из рис. 4, эти углы связаны простым соотношением $A = \beta_1 + \beta_2$. Учитывая, что угол преломления β_1 связан с углом θ между осью кристалла и волновой нормалью \vec{N} соотношением $\theta + \beta_1 = \pi/2$, находим n и θ :

$$n = \frac{1}{\sin A} \sqrt{\sin^2 \varphi_1 + \sin^2 \varphi_2 + 2\sin \varphi_1 \sin \varphi_2 \cos A};$$

$$\cos \theta = \frac{\sin \varphi_1}{n}.$$
(9)

Для обыкновенной волны n не будет зависеть от угла θ , а для необыкновенной волны зависимость n от θ должна описываться выражением (7).

Показатель преломления призмы из изотропного материала удобно находить по углу нименьшего отклонения луча от первоначального направления. Угол отклонения луча призмой (ψ на рис. 4) минимален для симметричного хода лучей, то есть когда $\varphi_1 = \varphi_2$. Тогда показатель преломления можно рассчитать по формуле

 $n = \frac{\sin\left(\frac{\psi_m + A}{2}\right)}{\sin\left(\frac{A}{2}\right)},\tag{10}$

где ψ_m — угол наименьшего отклонения.

Если призма неизотропна, то этой формулой, строго говоря, можно воспользоваться только для обыкновенной волны, которая, как это было показано ранее, распространяется так же, как и в изотропной среде. Но если учесть, что угол при вершине призмы мал, и при угле наименьшего отклонения преломлённый луч в призме распространяется под углом к оси кристалла близким к $\pi/2$, то в качестве оценки формулу (10) можно использовать для определения n_e .

Экспериментальная установка

Рис. 5: Схема экспериментальной установки

Ход работы и обработка результатов.

Погрешности измерений:

Линейка поворотного столика: $\sigma=\pm0.5^\circ$

Формула погрешности произведения и частного:

$$\frac{\sigma_u}{u} = \sqrt{\left(\frac{\sigma_x}{x}\right)^2 + \left(\frac{\sigma_y}{y}\right)^2} \tag{11}$$

Формула погрешности разности и суммы:

$$\sigma_u = \sqrt{\sigma_x^2 + \sigma_y^2} \tag{12}$$

Измерение преломляющего угла призмы:

 ϕ - отсчёт по шкале угла отраженного луча, ψ_1 - отсчет по риске при отражении от гипотенузы, ψ_2 - отсчет по риске при отражении от большего катета.

$\phi,^{\circ}$	$\psi_1,^{\circ}$	$\psi_2,^{\circ}$
10	52	194
20	57	198
30	62.5	204
40	67.5	209
50	72.5	214
60	77.5	219
70	82.5	224
80	87.5	239
90	92.5	234.5
100	95	239

Таблица 1: Таблица с данными измерения преломляющего угла призмы.

Измерение главных показателей преломления:

 ϕ - отсчёт по шкале угла отраженного луча, ψ_1 - отсчет угла преломления для обыкновенного луча, ψ_2 - отсчет угла преломления для необыкновенного луча.

$\phi,^{\circ}$	$\psi_1,^{\circ}$	$\psi_2,^{\circ}$
10	205	219
20	203	214
30	202	211
40	201.5	209
50	201.5	208
60	201.5	208
70	202	208
80	203	209
90	204.5	210
100	206	211
110	208	213
120	210	215
130	213	218
140	217	222

Таблица 2: Таблица с данными измерения главных по-казателей преломления.

Оценка главных показателей преломления:

Для обыкновенного луча полное внутреннее отражение возникает при $\phi=105^\circ$. При угле падения равном нулю, угол преломления необыкновенного луча равен $\psi=290^\circ$

По формулам (9) и (10) рассчитаем главные показатели преломления:

$$\frac{n_0 = 1.53 \pm 0.02}{n_e = 1.61 \pm 0.01}$$

Обработка экспериментальных данных:

Обработка данных происходит в приложение Mathead11 Thinstall.

Рис. 6: Результаты обработки данных

Обсуждение результатов и выводы:

В работе были получены значения показателей преломления для обыкновенной и необыкновенной волн в исландском шпате. Легко убедиться, что значения совпадают с теоретическими с учётом погрешностей. Теория подтверждена экспериментально.