

Chương 5 DẠNG SONG TUYẾN TÍNH, DẠNG TOÀN PHƯƠNG VÀ KHÔNG GIAN EUCLID

(1)

VIỆN TOÁN ỨNG DỤNG VÀ TIN HỌC TRƯỜNG ĐAI HOC BÁCH KHOA HÀ NÔI

2023

⁽¹⁾ Email: sami@hust.edu.vn

4. DƯỜNG, MẶT BẬC HAI

Quay lại các bài toán hình học thông thường, chúng ta có các đường, mặt quen thuộc thường gặp trong quá trình học tập, nghiên cứu ở bậc đại học mà phương trình của các đường gắn liền với các dạng toàn phương, dạng tuyến tính.

Mục tiêu

- Kiến thức: Sinh viên nắm được lý thuyết về 9 dạng đường bậc hai và 17 dạng mặt bậc hai và cách nhận dạng đường mặt bậc hai.
- Kĩ năng: Thao tác biến đổi phương trình của đường, mặt để xác định các dạng đường, mặt bậc hai.

Nội dung

- 4.1 Khái niệm chung
- 4.2 Biến đổi phương trình, nhận dạng đường mặt
- 4.3 Các dạng đường bậc hai
- 4.4 Các dạng mặt bậc hai

4.1. Khái niệm chung

Cho ma trận thực $A = \left[a_{ij}\right]_{n \times n}$ là ma trận đối xứng khác không, cột $a = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$ và số thực a_0 . Tập hợp các bộ

$$x = egin{bmatrix} x_1 \ x_2 \ dots \ x_n \end{bmatrix}$$
 thỏa mãn

$$x^T A x + a^T x + a_0 = 0$$

được gọi là một siêu mặt trong không gian \mathbb{R}^n . Dạng tường minh của phương trình là :

$$\sum_{i,j=1}^{n} a_{ij} x_i x_j + \sum_{i=1}^{n} a_i x_i + a_0 = 0.$$

Khi n=2, ta gọi siêu mặt bậc hai là một đường bậc hai. Khi n=3, ta gọi siêu mặt bậc hai là một mặt bậc hai.

4.2. Biến đổi phương trình, nhận dạng đường mặt

Dùng phương pháp chéo hóa trực giao ta có ma trận trực giao Cđể $D=C^TAC$ chéo. Ta dùng phép biến đổi trực giao $x=Cy \Leftrightarrow y=C^Tx$. Ta có phương trình (*) về dạng

$$\sum_{i=1}^{n} \lambda_i x_i^2 + \sum_{i=1}^{n} b_i x_i + b_0 = 0(*)$$

Với việc sử dụng

$$ax^{2} + bx + c = a(x + \frac{b}{2a})^{2} - \frac{b^{2} - ac}{4a}$$

kết hợp với phép tịnh tiến

$$\begin{cases} x_1 = \alpha_1 + y_1 \\ x_2 = \alpha_2 + y_2 \\ \vdots \\ x_n = \alpha_n + y_n \end{cases}$$

ta sẽ đưa phương trình về dạng chính tắc và nhận dạng các đường mặt bậc hai.

4.3. Các dạng đường bậc hai

1. Elip:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

2. Elip ảo:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$$

3. Hai đường thẳng ảo cắt nhau:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$$

4. Hypebol:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

5. Hai đường thẳng cắt nhau:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$$

6. Parabol:

$$x^2 = py$$

4.3. Các dạng đường bậc hai

7. Hai đường thẳng song song:

$$x^2 = a^2$$

8. Hai đường thẳng trùng nhau:

$$x^{2} = 0$$

9. Hai đường thẳng ảo song song:

$$x^2 = -a^2$$

Hình 1: Các đường conic

Ví dụ

Hãy xác định hình dạng của đường bậc hai có phương trình:

$$x^2 - 2xy + y^2 + 4x + 2y - 6 = 0.$$

 ${\it Giải.}\ \varphi(x,y)=x^2-2xy+y^2.$, sử dụng bài toán chéo hóa trực giao và đặt

$$\left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{cc} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{array}\right] \left[\begin{array}{c} x_1 \\ y_1 \end{array}\right].$$

Khi đó dạng toàn phương $\varphi(x,y)$ trở thành

$$\varphi'(x_1, y_1) = x_1^2.$$

Vậy cuối cùng ta được phương trình:

$$x_1^2 + \sqrt{2}x_1 + 3\sqrt{2}y_1 - 6 = 0$$

$$(x_1 + \frac{\sqrt{2}}{2})^2 + 3\sqrt{2}(y_1 - \frac{13\sqrt{2}}{12}) = 0,$$

Sử dụng phép tịnh tiến ta thu được phương trình

$$x_2^2 + 3\sqrt{2}y_2 = 0.$$

Đây là phương trình của một parabol.

Ví dụ

Nhận diện đường bậc hai (C) sau $5{x_1}^2 + 8{x_2}^2 - 4{x_1}{x_2} = 36$

 $\emph{Giải}$. Ta có dạng toàn phương $h=5{x_1}^2+8{x_2}^2-4{x_1}{x_2}$ có ma trận $A=\begin{bmatrix}5&-2\\-2&8\end{bmatrix}$ Phương trình đặc trưng

$$\begin{vmatrix} 5 - \lambda & -2 \\ -2 & 8 - \lambda \end{vmatrix} = 0 \Leftrightarrow \begin{bmatrix} \lambda_1 = 4 \\ \lambda_2 = 9 \end{bmatrix}$$

Chéo hóa trực giao bằng ma trân

$$C = \begin{bmatrix} \frac{2}{\sqrt{5}} & \frac{-1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{bmatrix}$$

và đặt

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \frac{2}{\sqrt{5}} & \frac{-1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}.$$

Ta có phương trình của đường (C)

$$4y_1^2 + 9y_2^2 = 36 \Leftrightarrow \frac{y_1^2}{9} + \frac{y_2^2}{4} = 1.$$

Do đó (C) là elip với 2 bán trục là 3 và 2.

1. Elipsoid:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

2. Elipsoid ảo (hình ảnh minh họa là tập rỗng):

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = -1$$

3. Nón ảo (hình ảnh thấy được 1 điểm):

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 0$$

4. Hypeboloid 1 tầng:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

Nón:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$$

6. Hypeboloid 2 tầng:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$$

7. Paraboloid eliptic (mặt chảo):

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = pz$$

8. Paraboloid hypebolic (mặt yên ngựa):

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = pz$$

9. Trụ eliptic:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

10. Tru hypebolic:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

11. Tru parabolic:

$$x^2 = py$$

12. Trụ eliptic ảo:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$$

13. Hai mặt phẳng ảo cắt nhau:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$$

14. Hai mặt phẳng cắt nhau:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$$

15. Hai mặt phẳng song song:

$$x^2 = a^2$$

16. Hai mặt phẳng ảo song song:

$$x^2 = -a^2$$

17. Hai mặt phẳng trùng nhau:

$$x^2 = 0$$

Hình 2: Các mặt bậc hai thường gặp