M3DYN1 F2020: 3 timer skriftlig eksamen, (alle hjælpemidler tilladt)

Opgave 1 (40 %)

Figur 1

Systemet vist i figur 1 frigøres fra hvile og snoren er stram. Se bort fra masse og friktion i skiverne. Legemerne A og B regnes som partikler.

Data:
$$\mu_s = 0.25 \\ \mu_k = 0.20 \\ g = 9.81 \ m/s^2$$

Følgende ønske besvaret:

- a) Optegn FBD for legeme A og B.
- b) Begrund hvorfor legeme A bevæger sig nedad.
- c) Hvilken sammenhæng er der mellem accelerationerne af A og B?
- d) Beregn accelerationerne a_A og a_B samt snorkraften T.
- e) Beregn flytningen s_A og hastigheden v_A 10 sekunder efter frigørelsen.

Opgave 2 (40 %)

Figur 2

Figur 2 viser et T-formet legeme med den totale masse m. Legemet kan rotere om den simple understøtning i O. Legemet er fremstillet af et homogent stangmateriale med lille diameter sammenlignet med b. Legemet frigøres fra hvile i den viste position og bevæger sig ned til lodret position (120° efter frigørelse).

Følgende ønskes besvaret:

- a) Beregn afstanden r_G fra θ til massemidtpunktet θ og legemets masseinertimoment θ om θ .
- b) Beregn legemets vinkelhastighed i lodret position.
- c) Optegn FBD og KD i lodret position.
- d) Beregn reaktionerne i O.

Opgave 3 (20 %)

Figur 3

Figur 3 viser en tynd stang med længden \emph{l} , der kan rotere om punktet 0. Legemet friføres fra hvile i vinkel-position θ_0 = 0.25 rad mod uret fra ligevægtspositionen, som er horisontal. Massen af stangen er 10 kg og stivheden af fjedrene er k = 30 N/m. Dæmperen modelleres, som en viskos dæmper.

Følgende ønskes besvaret:

- a) Opskriv et udtryk for systemets cykliske egenfrekvens ω_n og dæmpningsforholdet ζ . Antag små vinkeldrejninger.
- b) Bestem dæmpningskoefficienten c så systemet er kritisk dæmpet.
- c) Opskriv en funktion for vinkeldrejningen $\theta(t)$, hvor t er tiden fra frigørelsen og skitser funktionen.