Séance 6 (24 octobre 2018)

Exercice 1. Soit un arbre 3-aire entier et équilibré avec 521 feuilles. Combien de sommets contient cet arbre? Quelle est la hauteur de l'arbre? Combien de sommets internes contient-il? Combien de feuilles contient-il à chaque niveau?

Exercice 2.

Construire l'arbre d'expression pour chacune des expressions suivantes:

- 1. $((x-y)+((2+z)\star y))$
- 2. $((((x \star y) + (a + b)) \star z) 2)$.

Exercice 3. Soit l'arbre enraciné ci-dessous.

- 1. Lister les labels des sommets de l'arbre selon le "pre-order" algorithm.
- 2. Lister les labels des sommets de l'arbre selon le "post-order" algorithm.

Exercice 4.

Combien d'arbres sous-tendants différents existe-t-il pour les graphes suivants?

- (a) $C_3 (= K_3)$ (b) C_4 (c) C_5 (d) K_4 .

Exercice 5.

Trouver l'arbre sous-tendant minimal du graphe pondéré suivant.

Exercice 6.

Soit W un graphe pondéré formé en prenant le graphe complet K_5 sur 5 sommets 1, 2, 3, 4, 5. Le poids de l'arête $\{x, y\}$ est donné par

$$w(\{x,y\}) = |x-y| \mod 5.$$

Trouver l'arbre sous-tendant minimal de W.

Exercice 7. Soit F une forêt qui contient t arbres. Soit n le nombre de sommets dans F et m le nombre d'arêtes dans F. Utiliser la récurrence sur n pour montrer que m = n - t pour $n \ge t$.

Exercice 8.

$$\sum_{k=0}^{n} 2^k \binom{n}{k} = ?$$

Exercice 9. Si $0 \le m \le n$, que vaut

$$\sum_{k=m}^{n} \binom{k}{m} \binom{n}{k} ?$$

(Hint: essayer une preuve bijective.)

Exercice 10. Si on jette simultanément n dés identiques, combien de résultats différents peut-on obtenir ? (Deux résultats sont considérés comme équivalents s'ils ont le même nombre de 1, le même nombre de 2, ..., le même nombre de 6.)

0