kaspersky. academy

Алгебра логики
Лекция 3. Минимизация
булевых функций

Математика в кибербезопасности

kaspersky.academy

Лекция 3. Минимизация булевых функций

Минимизация булевых функций

0:27

Любую функцию можно построить с помощью , +, -

Для минимизации используются свойства логических операций, а также законы де Моргана и поглощения.

Законы де Моргана

1:17

$$\frac{\overline{x \cdot y} = \overline{x} + \overline{y}}{\overline{x} + \overline{y}}$$

Проверим, что законы де Моргана действительно выполняются. Рассмотрим первый пример:

$$\overline{x \cdot y} = \overline{x} + \overline{y}$$

Для этого построим вектор значений для левой и правой частей уравнения:

kaspersky.academy

Считаем х · у :

х	у	х · у	<u>x · y</u>
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

Считаем $\overline{x} + \overline{y}$:

Х	у	$\overline{\mathbf{x}}$	y	$\bar{x} + \bar{y}$
0	0	1	1	1
0	1	1	0	1
1	0	0	1	1
1	1	0	0	0

Столбцы значений для функций совпадают, значит, выражение $\overline{x\cdot y} = \overline{x} + \overline{y}$ истинно

Законы поглощения

2:15

$$x \cdot (x + y) = x$$

$$x + (x \cdot y) = x$$

$$x \cdot \overline{x} = 0$$

$$x + \overline{x} = 1$$

Проверим работу закона поглощения на примере первого выражения:

$$x \cdot (x + y) = x \cdot x + x \cdot y = x + x \cdot y = x \cdot (1 + y) = x$$

kaspersky.academy

Пример минимизации функции

3:00

$$f = x_1 \cdot x_2 \cdot \overline{x_3} + \underline{x_1 \cdot \overline{x_2} \cdot \overline{x_3}} + \overline{x_1 \cdot \overline{x_2} \cdot x_3} + \underline{\overline{x_1} \cdot \overline{x_2} \cdot \overline{x_3}} =$$

- 1. Вынесем общие множители за скобки
- 2. Используем закон поглощения

$$= x_1 \cdot \overline{x_3} \cdot (\underline{x_2 + \overline{x_2}}) + \overline{x_1} \cdot \overline{x_2} \cdot (\underline{x_3 + \overline{x_3}}) =$$

$$\equiv 1$$

$$= x_1 \cdot \overline{x_3} + \overline{x_1} \cdot \overline{x_2}$$

Мы успешно минимизировали функцию!

Рассмотрим еще один пример

3:50

$$f = \overline{\overline{x_1} \cdot x_2} + x_1 \cdot x_2 \cdot x_3 + \overline{x_3} + \overline{x_1 + x_3} + \overline{x_3} =$$
Правило де Моргана

 $= \underline{x_1} + \overline{x_2} + \underline{x_1} \cdot \underline{x_2} \cdot \underline{x_3} + \overline{x_3} + \overline{x_1} \cdot \overline{x_3} + \overline{x_3} =$
 $= \underline{x_1} \cdot (\underline{1 + x_2} \cdot \underline{x_3}) + \overline{x_2} + \overline{x_3} \cdot (\underline{1 + \overline{x_1}}) =$
 $= 1$
 $= x_1 + \overline{x_2} + \overline{x_3}$