Information Technology Workshop-1 (ITWS1)

Instructor - Shiv Ram Dubey

Introduction

Overview of Discussion

What is computer?

This Class -

What is a computer?

What can computers do?

What do computers understand?

How to convert from Binary-Decimal-Hexa?

Next Class -

What are the computer basics?

How do computers solve problems?

What is computer science?

Which one is the computer?

Which one is the computer?

Is a rock a computer?

Is a rock a computer?

- Does not act or process
- No input & no output

•Computers - handle *input* and *output*

Is washing machine a computer?

Input: dirty clothes

•Output: clean clothes

Is washing machine a computer?

Input: dirty clothes

Output: clean clothes

Does not handle information

•Computers - input and output information

Is a television set a computer?

- Input: information from cables or radio waves
- Output: information as sound and picture

Is a television set a computer?

- Input: information from cables or radio waves
- Output: information as sound and picture
- Does not process information by computing it

•Computers *process* information by computing new results

Is a modern airplane a computer?

Input: information from radio waves

Output: manipulations to the airplane

Is a modern airplane a computer?

- Input: information from radio waves
- Output: manipulations to the airplane
- ·Handles specific information

·Computers are general purpose

Is ordinary calculator a computer?

- Input: numbers and mathematical operations
- Output: answer
- ·Handles any numeric task

Is ordinary calculator a computer?

- Input: numbers and mathematical operations
- Output: answer
- ·Handles any numeric task
- ·Cannot be programmed

•Computers are *programmable*

Definition of a Computer

Definition of a Computer

General purpose,
Programmable,
Computing the information
With input and output

What can computers do - today?

Business productivity managers Personal information managers Spreadsheets Database software Desktop publishing Multimedia encyclopedias Simulate the physical world Produce a music video And many more

What might computers do-tomorrow?

Diagnose diseases
Control robots that walk, talk, and learn
Compose music and create art
Information forensics
Artificial intelligence
And many more

What do computers understand?

Binary

0/1

True/False

On/Off

Decimal Notation

Decimal Notation

```
123
100 10 1 - Places
1 2 3
```

$$123 = 1 \times 100 + 2 \times 10 + 3 \times 1$$

Binary Notation

Binary Notation

$$123 = 01111011$$

Binary to Decimal

Binary to Decimal

Binary to Decimal

Binary Number							De	Decimal			Equivalent			
11₂ →									1*2	+	1*1	=	3	
1101₂ →					1*8	+	1*4	+	1*2	+	1*1	=	13	
100112			1*16	+	0*8	+	0*4	+	1*2	+	1*1	=	19	
100110₂ →	1*32	+	0*16	+	0*8	+	1*4	+	1*2	+	0*1	=	38	

Decimal to Binary

Decimal to Binary

```
Converting 19 to binary:
      19 is odd \rightarrow B = 1, D = Math.floor(19/2) = 9
9 is odd \rightarrow B = 11, D = Math.floor(9/2) = 4
4 is even \rightarrow B = 011, D = Math.floor(4/2) = 2
2 is even \rightarrow B = 0011, D = Math.floor(2/2) = 1
         1 is odd \rightarrow B = 10011, D = Math.floor(1/2) = 0
Converting 116 to binary:
 116 is even \rightarrow B = 0, D = Math.floor(116/2) = 58

58 is even \rightarrow B = 00, D = Math.floor(58/2) = 29

29 is odd \rightarrow B = 100, D = Math.floor(29/2) = 14

14 is even \rightarrow B = 0100, D = Math.floor(14/2) = 7

7 is odd \rightarrow B = 10100, D = Math.floor(7/2) = 3

3 is odd \rightarrow B = 110100, D = Math.floor(3/2) = 1

1 is odd \rightarrow B = 1110100, D = Math.floor(1/2) = 0
```

Hexadecimal: The 16 Hex Digits

$$0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F$$

 $A = 10, B = 11, ..., F = 15$

0101 1100 5 C

Binary-HEX

- Example:
- $(01000010101001011011110001)_2 = (?)_{16}$

Binary-HEX

- Example:
- $(010000101010010110111110001)_2 = (?)_{16}$
- 0100 0010 1010 0101 0110 1111 0001
- \bullet = $(4 2 A 5 6 F 1)_{16}$

HEX-Binary

- Example:
- $(AF52C)_{16} = (?)_2$

HEX-Binary

- Example:
- $(AF52C)_{16} = (?)_2$
- AF52C
- = $(1010\ 1111\ 0101\ 0010\ 1100)_2$

Representing Integers

Bit Pattern Decimal Value $(-2^{31} = -2,147,483,648)$ $(-2^{31}-1 = -2,147,483,647)$ $(-2^{31}-2 = -2,147,483,646)$ (-3)(-2)1) 2) 000000000000000000000000000000011 $(2^{31}-3 = 2,147,483,645)$ $(2^{31}-2 = 2,147,483,646)$ $(2^{31}-1 = 2,147,483,647)$ 011111111111111111111111111111111111

Representing Real Numbers

$$123.45 = 12345 \times 10^{-2}$$
 $.000042 = 42 \times 10^{6}$

Representing Real Numbers

$$123.45 = 12345 \times 10^{-2}$$

$$.000042 = 42 \times 10^{6}$$

IEEE Single Precision Floating-Point Representation (32 bits)

Representing Real Numbers

$$123.45 = 12345 \times 10^{-2}$$

$$.000042 = 42 \times 10^{6}$$

IEEE Single Precision Floating-Point Representation (32 bits)

IEEE Double Precision Floating-Point Representation (64 bits)

ASCII

(American Standard Code for Information Interchange)

$$A - 65$$

$$B - 66$$

$$b - 98$$

$$C - 67$$

$$c - 99$$

.

•

.

•

.

Representing Characters

ASCII Character Codes					
code	char	code	char	code	char
00100000	space	01000000	@	01100000	,
00100001	1	01000001	Α	01100001	a
00100010	"	01000010	В	01100010	b
00100011	#	01000011	C	01100011	С
00100100	\$	01000100	D	01100100	d
00100101	%	01000101	E	01100101	e
00100110	&	01000110	F	01100110	f
00100111		01000111	G	01100111	g
00101000	(01001000	Н	01101000	h
00101001)	01001001	I	01101001	i
00101010	**	01001010	J	01101010	j
00101011	+	01001011	K	01101011	k
00101100	*	01001100	L	01101100	1
00101101		01001101	М	01101101	m
00101110		01001110	N	01101110	n
00101111	/	01001111	0	01101111	0
00110000	O	01010000	Р	01110000	р
00110001	1	01010001	Q	01110001	q
00110010	2	01010010	R	01110010	r
00110011	3	01010011	S	01110011	s
00110100	4	01010100	Т	01110100	t
00110101	5	01010101	U	01110101	u
00110110	6	01010110	V	01110110	v
00110111	7	01010111	W	01110111	W
00111000	8	01011000	X	01111000	×
00111001	9	01011001	Y	01111001	У
00111010		01011010	Z	01111010	z
00111011	:	01011011	Ī	01111011	{
00111100	<	01011100	,	01111100	ĺ
00111101	=	01011101	j`	01111101	}
00111110	>	01011110	7	01111110	~
00111111	?	01011111		01111111	delet

The size of a file = number of bytes stored in the file

$$\mathbb{C} \ 1 \ KB = ?$$
 bytes

The size of a file = number of bytes stored in the file

 $c \ 1 \ KB = 1024 \ bytes = 2^{10} \ bytes$

The size of a file = number of bytes stored in the file

```
 c 1 KB = 1024 bytes = 2^{10} bytes
```

- $c \ 1 \ MB = 1024 \ KB = 2^{20} \ bytes$
- c 1 TB = 1024 GB = 240 bytes

Syllabus

Introduction to Computers

HTML & CSS

Unix Commands

Latex, Beamer

JavaScript and Game Development

PHP

Bash Scripting

Grading

10% Exam 1

10% Exam 2

25% Exam 3

15% Quiz

40% Lab Assignments + Projects

Course Website

https://sites.google.com/site/shivram1987/teaching/f17_itws1