$\S7.2 \lambda$ - 矩阵的法式 习题参考答案

1. 用
$$\lambda$$
 矩阵的初等变换的方法求下列矩阵的法式.
(1) $A(\lambda) = \begin{pmatrix} 1 - \lambda & 2\lambda - 1 & \lambda \\ \lambda & \lambda^2 & -\lambda \\ \lambda^2 + 1 & \lambda^2 + \lambda - 1 & -\lambda^2 \end{pmatrix}$
(2) $A(\lambda) = \begin{pmatrix} \lambda - 1 & -2 & 1 \\ 0 & \lambda - 1 & -1 \\ 0 & 0 & \lambda + 2 \end{pmatrix}$.
解.
(1) $A(\lambda) = \begin{pmatrix} 1 - \lambda & 2\lambda - 1 & \lambda \\ \lambda & \lambda^2 & -\lambda \\ \lambda^2 + 1 & \lambda^2 + \lambda - 1 & -\lambda^2 \end{pmatrix}$
 $\rightarrow \begin{pmatrix} 1 & \lambda^2 + 2\lambda - 1 & 0 \\ 0 & \lambda^2 & -\lambda \\ 1 & \lambda^2 + \lambda - 1 & -\lambda^2 \end{pmatrix}$
 $\rightarrow \begin{pmatrix} 1 & \lambda^2 + 2\lambda - 1 & 0 \\ 0 & \lambda^2 & -\lambda \\ 1 & \lambda^2 + \lambda - 1 & -\lambda^2 \end{pmatrix}$
 $\rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & \lambda^2 & -\lambda \\ 1 & \lambda^2 + \lambda - 1 & -\lambda^2 \end{pmatrix}$
 $\rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & \lambda^2 & -\lambda \\ 0 & -\lambda & -\lambda^2 \end{pmatrix}$
 $\rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -\lambda \\ 0 & -\lambda & -\lambda^2 \end{pmatrix}$
 $\rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & \lambda - \lambda^3 & -\lambda^2 \end{pmatrix}$
 $\rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & \lambda - 1 & -1 \\ 0 & 0 & \lambda + 2 \end{pmatrix}$
 $\rightarrow \begin{pmatrix} 1 & -2 & \lambda - 1 \\ 0 & \lambda - 1 & -1 \\ 0 & 0 & \lambda + 2 \end{pmatrix}$
 $\rightarrow \begin{pmatrix} 1 & -2 & \lambda - 1 \\ 0 & \lambda - 3 & \lambda - 1 \\ \lambda + 2 & 2(\lambda + 2) & -(\lambda + 2)(\lambda - 1) \end{pmatrix}$
 $\rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & \lambda - 3 & 2 \\ 0 & (\lambda + 2)(\lambda - 1) & -(\lambda + 2)(\lambda - 1) \end{pmatrix}$
 $\rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & \lambda - 3 & 2 \\ 0 & (\lambda + 2)(\lambda - 1) & -(\lambda + 2)(\lambda - 1) \end{pmatrix}$
 $\rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & (\lambda + 2)(\lambda - 1)^2 \end{pmatrix}$.

2. 若 $(f(\lambda), g(\lambda)) = 1$, 证明下列 $3 \uparrow \lambda$ 矩阵相抵:

$$\left(\begin{array}{cc} f(\lambda) & 0 \\ 0 & g(\lambda) \end{array}\right), \ \left(\begin{array}{cc} g(\lambda) & 0 \\ 0 & f(\lambda) \end{array}\right), \ \left(\begin{array}{cc} 1 & 0 \\ 0 & f(\lambda)g(\lambda) \end{array}\right).$$

证明: 由已知 $(f(\lambda),g(\lambda))=1$, 存在多项式 $u(\lambda),v(\lambda)$, 使 $f(\lambda)u(\lambda)+g(\lambda)v(\lambda)=1$. 则 $\begin{pmatrix} g(\lambda) & 0 \\ 0 & f(\lambda) \end{pmatrix} \rightarrow \begin{pmatrix} g(\lambda) & 0 \\ f(\lambda)u(\lambda) & f(\lambda) \end{pmatrix}$ $\rightarrow \begin{pmatrix} g(\lambda) & 0 \\ f(\lambda)u(\lambda)+g(\lambda)v(\lambda) & f(\lambda) \end{pmatrix} = \begin{pmatrix} g(\lambda) & 0 \\ 1 & f(\lambda) \end{pmatrix}$ $\rightarrow \begin{pmatrix} g(\lambda) & -f(\lambda)g(\lambda) \\ 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & f(\lambda)g(\lambda) \\ 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 \\ 0 & f(\lambda)g(\lambda) \end{pmatrix}$ 从而 $\begin{pmatrix} f(\lambda) & 0 \\ 0 & g(\lambda) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & f(\lambda)g(\lambda) \end{pmatrix}$ 相抵.又 $\left(\begin{array}{cc} f(\lambda) & 0 \\ 0 & g(\lambda) \end{array}\right) \to \left(\begin{array}{cc} 0 & f(\lambda) \\ g(\lambda) & 0 \end{array}\right) \to \left(\begin{array}{cc} f(\lambda) & 0 \\ 0 & g(\lambda) \end{array}\right).$ 从而 $\left(egin{array}{cc} f(\lambda) & 0 \\ 0 & g(\lambda) \end{array}
ight)$ 与 $\left(egin{array}{cc} g(\lambda) & 0 \\ 0 & f(\lambda) \end{array}
ight)$ 相抵.所以上述三个 3 个 λ — 矩阵相抵. \square

3. 设 $A \in F^{n \times n}$. 证明:

- (1) $(\lambda E A)$ 与 diag $\{1, \cdots, 1, d_1(\lambda), \cdots, d_m(\lambda)\}$ 相抵,其中 $d_i(\lambda) \mid d_{i+1}(\lambda)$ ($i = 1, 2, \cdots, n-1$), $d_j(\lambda)$ ($j = 1, 2, \cdots, n$) 为首一多项式,且 $f_A(\lambda) = d_1(\lambda) \cdots d_m(\lambda)$.
 - (2) 上式中 $\mathrm{deg}d_1(\lambda)\neq 0$ 的充分必要条件是 $A=aE_n.$

证明: 由定理 7.2.1 知 $\lambda E-A$ 是一个 n 阶 $\lambda-$ 矩阵,且 $r(\lambda E-A)=n$,则 $\lambda E-A$ 与矩阵 diag $\{d_1(\lambda),\cdots,d_n(\lambda)\}$ 相抵,其中 $d_i(\lambda)\mid d_{i+1}(\lambda)$ ($i=1,2,\cdots,n-1$), $d_j(\lambda)$ ($j=1,2,\cdots,n$) 为 首一多项式,即有可逆 $\lambda-$ 矩阵 $M(\lambda),N(\lambda)$,使得

$$M(\lambda)(\lambda E - A)N(\lambda) = \operatorname{diag}\{d_1(\lambda), \dots, d_n(\lambda)\}.$$

对可逆 λ — 矩阵 $M(\lambda), N(\lambda),$ 有 $\det M(\lambda) = c_1, \det N(\lambda) = c_2,$ 其中 c_1, c_2 为非零常数. 从而

$$\det(\lambda E - A) = c_1^{-1} c_2^{-1} \det(\operatorname{diag}\{d_1(\lambda), \cdots, d_n(\lambda)\}) = c_1^{-1} c_2^{-1} d_1(\lambda), \cdots, d_n(\lambda).$$

又 $\det(\lambda E-A)$, $d_j(\lambda)$ $(j=1,2,\cdots,n)$ 均为首一多项式,所以 $c_1^{-1}c_2^{-1}=1$, 即 $\det(\lambda E-A)=d_1(\lambda)\cdots d_n(\lambda)$. \square

(2) 必要性: 若 $\deg d_1(\lambda) \neq 0$,则 $\deg d_1(\lambda) \geq 1$. 又由 $d_i(\lambda) \mid d_{i+1}(\lambda)$ 可知 $\deg d_i(\lambda) \geq 1$. $f_A(\lambda)$ 是 n 次多项式,且 $f_A(\lambda) = \det(\lambda E - A) = d_1(\lambda) \cdots d_n(\lambda)$,所以 $\deg d_1(\lambda)$ 只能是 1 次多项式。注意 到 $d_i(\lambda) \mid d_{i+1}(\lambda)$ ($i=1,2,\cdots,n-1$), $d_j(\lambda)$ ($j=1,2,\cdots,n$) 首一,因此 $d_1(\lambda) = d_2(\lambda) = \cdots = d_n(\lambda) = x-a$,则 $A=aE_n$.

充分性: 若 $A=aE_n,$ 有 $\lambda E-A=\mathrm{diag}\{\lambda-a,\cdots,\lambda-a\}$ 已是 $\lambda E-A$ 的法式,故 $d_1(\lambda)=\lambda-a,$ 有 $\mathrm{deg}d_1(\lambda)=1\neq 0.$ \square

(李小凤解答)