

THỊ GIÁC MÁY TÍNH TRONG TƯƠNG TÁC NGƯỜI MÁY

Computer Vision in Human - Computer Interaction

AI Career Pathways

Executive Summary

Developing an AI project development life cycle involves five distinct tasks:

- **Data engineering:** People responsible for data engineering prepare data and transform data into formats that other team members can use.
- Modeling: People assigned to modeling look for patterns in data that can help a company predict outcomes of various decisions, identify business risks and opportunities, or determine cause-and-effect relationships.
- **Deployment:** People in charge of deployment take a stream of data, combine it with a model, and test the integration before putting the model into production.
- Business analysis: Team members responsible for business analysis evaluate a deployed
 model's performance and business value and adjust accordingly to maximize benefit or abandon unproductive models.
- AI infrastructure: People who work in AI infrastructure build and maintain reliable, fast, secure, and scalable software systems to help people working in data engineering, modeling, deployment and business analysis.

Data engineering work includes:

Subtask	Examples	Skills involved
Defining data requirements	- Creating a data model - Defining the features of high-quality data - Defining the covariates to be collected to achieve a desired functionality - Providing feedback regarding the clarity and completeness of data requirements	Machine learning Business acumen Software engineering
Collecting data	 Setting up a Mechanical Turk project Collecting data by manually taking images of cats Coding a JavaScript tracker on a website to collect user data Scraping the web and, if necessary, synchronizing data from different sources 	Machine learning Software engineering
Labeling data	- Drawing bounding boxes on images - Building a labeling pipeline using Mechanical Turk - Writing a labeling tutorial for workers - Relabeling mislabeled data - Evaluate the labeling performance of workers	Machine learning Software engineering
Inspecting and cleaning data	 Replacing all non-usable structured data records by NaN using a Python library (e.g. pandas) Converting a continuous feature into a categorical feature using bucketing Reformatting a data set (for instance, converting images to jpeg and squaring them) Cleaning a text dataset (for instance, removing special characters) 	Machine learning Algorithmic coding

Data engineering work includes:

Augmenting data	- Writing a Python script using skimage to rotate, warp, translate, or blur images - Using test-time augmentation to reduce the variance of an algorithm - Synthesizing speech by overlaying distinct audio signals	Machine learning Algorithmic coding
Moving data and building data pipelines	 Writing a script to allow online learning for a model Designing an ETL system Writing a script to preprocess training data and send it as input to a model automatically Writing a script to record model predictions in a database 	Domain-specific (for instance, data query) languages
Querying data	- Pulling data from a database	Domain-specific (for instance, data query) languages
Tracing data	- Keeping track of data sources - Setting up a data version control system	Software engineering

Modeling work includes:

Subtask	Examples	Skills involved
Training machine learning models	- Using one of the following methods: Linear Regression, Logistic Regression, Decision Trees, Random Forest, XGBoost, Support Vector Machines, K-means, K-Nearest Neighbors, Neural Networks, Principal Component Analysis, Naive Bayes Classifier, Lasso/Ridge regression, etc.	Machine learning Algorithmic coding Mathematics Data science
Fitting probabilistic or statistical models	- Fitting a probabilistic graphical model - Testing hypotheses via data experiments - Applying a dimensionality reduction on a dataset to facilitate model training or gather insights	Data science Algorithmic coding Mathematics
Training deep learning models	 Using deep learning for a domain-specific application such as fraud detection, text summarization, machine translation, speech recognition, or object classification, detection, or segmentation Tuning hyperparameters involved in neural network optimization 	Deep learning Algorithmic coding Mathematics Data science
Accelerating training	- Setting up code to train a model on multiple machines in parallel	Domain-specific languages (for instance, CUDA) Algorithmic coding
Defining evaluation metrics (usually also involves a data product manager)	- Choosing F1-score to evaluate a model's performance on a classification task - Implementing evaluation metrics such as accuracy, precision, recall, intersection over union, or mean average precision (mAP)	Machine learning Algorithmic coding Mathematics

Modeling work includes:

Speeding up prediction time	- Applying techniques such as pruning, quantization, or compression to reduce memory requirements - Running inference speed vs. accuracy experiments on a model	Machine learning Algorithmic coding
Iterating over the virtuous cycle of machine learning projects: Idea, Code, Experiment	 Translating a business problem into a machine learning problem. For instance, depending on the quality and quantity of accessible data, an end-to-end network might lead to better results than a pipeline network Implementing the three-step cycle of ideating with your team, coding to set up experiments, analyzing results 	Machine learning Business acumen
Searching hyperparameters	- Organizing experiments to get results in the shortest time period - Setting up hyperparameter search experiments using tools such as AutoML	Machine learning Algorithmic coding
Keeping your knowledge up to date	- Reading research papers - Watching conference lectures or attending conferences	Research Mathematics Data science Machine learning

Deploy work includes:

Subtask	Examples	Skills involved
Converting prototyped code into production code	 Refactoring a repository's code Minimizing duplicate code Writing clean code to improve readability and consistency, for example, by following the PEP8 guidelines in Python 	Software engineering
Setting up a cloud environ- ment to deploy the model	- Mastering cloud tools and infrastructure provided by AWS, GCP, Azure, and the like - Preparing files (usually model architecture and parameters) for deployment	Software engineering
Branching (version control)	- Designing a branching workflow, and using development, staging and production branches - Participating in or leading code reviews	Software engineering
Improving response times and saving bandwidth	- Setting up load-balancing requirements with engineers in charge of AI Infrastructure	Software engineering

Deploy work includes:

	I .	
Encrypting files that store model parameters, architecture, and data	- Understanding encryption at a high level and leveraging existing functions	Software engineering
Building APIs for an application to use a model	Setting up HTTP RESTful API services to facilitate communications between software components Setting up authorization and authentication to access the API	Software engineering
Retraining machine learning models (lifelong learning)	- Monitoring changes in data distribution and staging model updates	Software engineering Machine learning
Fitting models on resource- constrained devices	- Pruning or quantizing a model so it fits memory requirements - Deploying a model on a mobile device using TensorFlow	Software engineering Machine learning

Business Analysis work includes:

Subtask	Examples	Skills involved
Building data visualizations	 Visualizing high-dimensional data in lower dimensions using methods such as PCA or t-SNE Building and presenting graphs produced using Tableau, ggplot or matplotlib Building visualizations in JavaScript, HTML, or CSS 	Domain-specific programming languages Data science Mathematics Business acumen
Building dashboards for business intelligence	- Writing a script that periodically notifies business leaders of trends in the data	Domain-specific programming languages Business acumen
Presenting technical work to clients or colleagues	- Preparing presentations (e.g., PowerPoints decks) - Communicating effectively with team members - Giving technical talks to present research outcomes	Communication Business acumen
Translating statistics into actionable business insights	- Making marketing decisions based on analysis of various sources	Data Science Business Acumen

Business Analysis work includes:

Analyzing datasets	 Plotting a correlation matrix to analyze covariates Computing statistical variables such as mean, variance, and mode Segmenting customers into groups 	Data science Algorithmic coding Mathematics
Running experiments to evaluate deployed models	 Working with the deployment team to evaluate business performance of a deployed model Helping the deployment team make decisions Translating model performance into business outcomes such as revenue 	Data science Algorithmic coding
Running A/B tests	- Optimizing web pages - Evaluating systems in production	Data science Algorithmic coding Business acumen

AI infrastructure work includes:

Subtask	Examples	Skills involved
Making software design decisions	- Reducing latency by locating a model close to data	Software engineering
Building distributed storage and data- base systems	- Building databases (SQL, NoSQL, MySQL, Cassandra, etc.) to store data and facilitating access by other team members	Software engineering Domain-specific languages
Designing for scale	- Adding GPU compute or storage as needed	Software engineering
Maintaining software infrastructure	- Managing software upgrades and driving stability through automated monitoring and alerting	Software engineering
Networking	- Controlling access to all infrastructure elements	Software engineering

AI infrastructure work includes:

	I .	
Networking	- Controlling access to all infrastructure elements	Software engineering
Securing data and models	- Building security features that allow for production deployments into regulated organizations, satisfying the needs for privacy and security	Software engineering
Writing tests	- Writing unit and functional tests for multiple components across tasks of the AI project life cycle	Software engineering
Carrying out various software tasks	- Building a labeling program, A/B testing framework, or analysis environment	Software engineering

Data Scientist

- Data science organizations help a firm's leaders make scientific or data-driven decisions to run their business more effectively.

 Team members collect data, analyze datasets, and suggest hypotheses and actions.
- **Machine learning organizations** automate tasks to reduce costs or scale products. The output is the automation itself achieved by collecting data, training models, and deploying them.

Data Scientist

SKILLS

TOOLS

- Modeling in Python using packages such as numpy, scikit-learn, TensorFlow, and PyTorch
- **Data engineering** in Python and/or SQL or other domain-specific query languages
- Business analysis in Python, R, other domain-specific tools such as Tableau or Excel, or presentation software applications such as PowerPoint or Keynote
- Collaboration and workflow using a version control system such as Git, Subversion, or Mercurial along with a command line interface (CLI) such as Unix and an integrated development environment (IDE) such as Jupyter Notebook or Sublime

Machine Learning Engineer vs Data Scientist

Data Engineer

Data Scientist

Design, build, and arrange data to be cleaned.

Create hypothesis, test, analyze, and translate using clean data

Advanced Programming

Analysis

Advanced Math/Statistics

Distributed Systems

Programming

Machine Learning

Data Pipelines

Big Data

Advanced Analytics

Features	Data Scientist	Data Analyst
Background	A Data Scientist deals with various data operations.	A Data Analyst's role is related to data cleaning, transforming and generating inferences from data.
Scope	Involved with several underlying data procedures	Involvement is limited to small data and static inferences.
Type of Data	Handles structured & unstructured data	Deals with structured data only
Skills	Possesses knowledge of mathematics, statistics & machine learning algorithms	Has problem solving skills, knowledge of basic statistics
* Tools	Proficient in SAS, Python, R, TensorFlow, Hadoop, Spark	Knows Excel, SQL, R (in some cases), Tableau

SKILLS

TOOLS

- Data engineering in Python and/or SQL or other domain-specific query languages
- Business analysis in Python, R, other domainspecific tools such as Tableau and Excel, presentation software applications such as PowerPoint and Keynote, and external software services for A/B testing

Machine learning Engineer

Machine learning Engineer

Machine Learning Engineer vs Data Scientist

Machine learning Engineer

Machine learning Engineer

SKILLS

TOOLS

- Data Engineering in Python and/or SQL or other domain-specific query languages
- Modeling in Python using packages such as numpy, scikit-learn, TensorFlow, and PyTorch
- **Deployment** using an object-oriented programming language (such as Python, and Java, C++,) and cloud technologies such as AWS, GCP, and Azure
- Collaboration and workflow using a version control system (for instance, Git, Subversion, and Mercurial), a command line interface (CLI) like Unix, an integrated development environment (IDE) such as Jupyter Notebook, and Sublime, and an issue tracking product like JIRA

Software Development Team

Focused on developing a feature, product component, or an entire project.

Codes and then delivers the web or app developed software to the client.

Support & Operations Team

The support team ensures the software development team product's functionality over time.

Is in charge of incident management, product testing, troubleshooting, bug fixing, monitoring and alerting, etc.

Cafeto

What is DevOps?

DevOps infinity loop

From **Devops** to **MLOPS**

MLOps = ML + DEV + OPS

Develop

- Algorithm Training + Testing
- ETL (Data Pipelines)
- Continuous Integtation / Continuous Deployment

Operate

- Continuous Delivery
- Model Inference
- Monitoring and Management

Machine learning ReSearcher

Machine learning research is really all about the *science*. A machine learning researcher is trying to push the boundaries of science, specifically in the field of Artificial Intelligence. These people typically have a Masters or PhD in CS and have many publications in top machine learning conferences. They're super popular in the

research space!

Machine learning ReSearcher

TOOLS

- **Data Engineering** in Python and/or SQL (or other domain-specific query languages)
- Modeling in Python using packages such as numpy, scikit-learn, TensorFlow, PyTorch, and the like
- Collaboration and workflow using a version control system like Git, Subversion, and Mercurial, a command line interface (CLI) like Unix, an integrated development environment (IDE) such as Jupyter Notebook or Sublime, and an issue tracking product like JIRA
- Research by following updates via channels such as Twitter, Reddit, Arxiv, and conferences such as NeurIPS, ICLR, ICML, CVPR, and ACM

Software Engineer - Machine Learning VS Software Engineer

Data science Business acumen Oceretoring Recinium Recinium Algorithmic coding

SKILLS

Software Engineer - Machine Learning VS Software Engineer

TOOLS

- Modeling in Python using packages such as numpy, scikit-learn, TensorFlow, and PyTorch
- Data engineering in Python and/or SQL (or other domain-specific query languages)
- Deployment and AI infrastructure using an object-oriented programming language such as Python, Java, or C++ and cloud technologies such as AWS, GCP, or Azure
- Collaboration and workflow using a version control system like Git, Subversion, or Mercurial, a command line interface (CLI) like Unix, an integrated development environment (IDE) like Jupyter Notebook or Sublime, and an issue tracking product such as JIRA

TOOLS

- **Data engineering** in Python and/or SQL (or other domain-specific query languages)
- AI infrastructure using an object-oriented programming language such as Python, Java, or C++
 and cloud technologies such as AWS, GCP, and
 Azure
- Collaboration and workflow using a version control system like Git, Subversion, or Mercurial, a command line interface (CLI) like Unix, an integrated development environment (IDE) like Jupyter Notebook and Sublime, and an issue tracking product like JIRA

