Lecture 6: Explicit Runge-Kutta Methods

Explicit Runge-Kutta (ERK) methods, and their order and stability

Book: 14.3, 14.4

Recap: Notation

IVP: $\dot{y} = f(y, t), \quad y(t_0) = y_0$

Simulation: $y_{n+1} = y_n + h\phi(y_n, t_n)$

Local solution:

$$\dot{y}_L(t_n;t) = f(y_L(t_n;t),t), \quad y_L(t_n;t_n) = y_n$$

- Local error: $e_{n+1} = y_{n+1} y_L(t_n; t_{n+1})$
- Global error: $E_{n+1} = y_{n+1} y(t_{n+1})$
- If local error is $O(h^{p+1})$ then we say method is of order p

Order (accuracy)

Given IVP:

$$\dot{y} = f(y, t), \quad y(0) = y_0$$

One-step method:

$$y_{n+1} = y_n + h\phi(y_n, t_n), \quad h = t_{n+1} - t_n$$

If we can show that

$$y_{n+1} = y_n + hf(y_n, t) + \frac{h^2}{2} \frac{\mathrm{d}f(y_n, t)}{\mathrm{d}t} + \dots + \frac{h^p}{p!} \frac{\mathrm{d}^{p-1}f(y_n, t)}{\mathrm{d}t^{p-1}} + O(h^{p+1})$$

- Then:
 - Local error is $O(h^{p+1})$
 - Method is order p

Linearization

(14.2.4)

- System $\dot{y} = f(y,t)$, $y = (y_1, \dots, y_d)^{\mathsf{T}}$
- Linearize around operating point y^* : $\Delta \dot{y} = J \Delta y, \quad J = \frac{\partial f}{\partial y}\Big|_{y=y^*}$ Diagonalize: $Jm_i = \lambda_i m_i, \quad \text{where} \quad \begin{cases} m_i : \text{eigenvectors of } J \\ \lambda_i : \text{eigenvalues of } J \end{cases}$
- Define $q = M^{-1}\Delta y$:

$$\dot{q} = M^{-1}J\Delta y = M^{-1}JMq = \Lambda q, \qquad \Lambda = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_d \end{pmatrix}$$

That is, $\dot{q}_i = \lambda_i q_i$ from which we can find $\Delta y(t) = Mq = \sum q_i(t) m_i$

We can study properties of a method used to simulate the system $\Delta \dot{y} = J \Delta y$, by study properties of the method for the systems $\dot{q}_i = \lambda_i q_i, \quad i = 1, \dots, d$.

Example linearization

System:

Linearization about $(y_1^*, y_2^*)^T$:

$$\dot{y}_1 = y_2$$

$$\dot{y}_2 = -y_1^3 - cy_2$$

$$\begin{pmatrix} \Delta \dot{y}_1 \\ \Delta \dot{y}_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -3 \left(y_1^* \right)^2 & -c \end{pmatrix} \begin{pmatrix} \Delta y_1 \\ \Delta y_2 \end{pmatrix}$$

Eigenvalues:

$$\lambda^2 + c\lambda + 3\left(y_1^*\right) = 0$$

$$\lambda_{1,2} = -\frac{c}{2} \pm \sqrt{\left(\frac{c}{2}\right)^2 - 3(y_1^*)^2}$$

$$y_1^* = 0: \quad \lambda_1 = 0, \ \lambda_2 = -c$$

$$y_1^* = \text{large}: \quad \lambda_{1,2} \to \pm j\omega_0$$

Test system, stability function

One step method:

$$y_{n+1} = y_n + h\phi(y_n, t_n)$$

Apply it to scalar test system:

$$\dot{y} = \lambda y$$

• We get:

$$y_{n+1} = R(h\lambda)y_n$$

where $R(h\lambda)$ is stability function

• The method is stable (for test system!) if $|y_{n+1}| \le |y_n|$

$$|R(h\lambda)| \le 1$$

Simplest method: Euler

Slope:

$$\frac{y_{n+1} - y_n}{h} = f(y_n, t_n)$$

Euler's method:

$$y_{n+1} = y_n + hf(y_n, t) + \frac{h^2}{2} \frac{\mathrm{d}f(y_n, t)}{\mathrm{d}t} + \dots + \frac{h^p}{p!} \frac{\mathrm{d}^{p-1}f(y_n, t)}{\mathrm{d}t^{p-1}} + O(h^{p+1})$$

$$y_{n+1} = y_n + hf(y_n, t_n)$$

Example Euler's method

ODE: $\dot{y} = -y, \quad y(0) = 1$

Euler simulation: $y_{n+1} = y_n + h(-y_n), \quad y_0 = 1$

Example, h = 0.1:

n	t _n	y _n
0	0	1
1	0.1	
2	0.2	
3	0.3	
4	0.4	

Example: Euler's method stability

ODE:

$$\dot{y} = -y, \quad y(0) = 1$$
 $y_{n+1} = y_n + h(-y_n), \quad y_0 = 1$

Euler simulation:

Example Euler's method

ODE: $\dot{y} = -y, \quad y(0) = 1$

Euler simulation: $y_{n+1} = y_n + h(-y_n), \quad y_0 = 1$

Stability: $|R(h\lambda)| = |1 - h| \le 1 \Rightarrow 0 \le h \le 2$

Simplest method: Euler

Slope:

$$\frac{y_{n+1} - y_n}{h} = f(y_n, t_n)$$

• Euler's method:

$$y_{n+1} = y_n + hf(y_n, t_n)$$

Euler method

Improved Euler illustration

 $\dot{y} = -y, \quad y(0) = 1$

Improved Euler: $k_1 = f(y_n), k_2 = f(y_n + hk_1)$ $y_{n+1} = y_n + \frac{h}{2}(k_1 + k_2)$

Improved Euler vs Euler

Order of improved Euler method

$$k_1 = f(y_n), \quad k_2 = f(y_n + hk_1)$$

 $y_{n+1} = y_n + \frac{h}{2}(k_1 + k_2)$

• Taylor series expansion of k_2 :

$$k_2 = f(y_n, t_n) + h \frac{df(y_n, t_n)}{dt} + \frac{h^2}{2} \frac{d^2 f(y_n, t_n)}{dt^2} + O(h^3)$$

$$y_{n+1} = y_n + hf(y_n, t) + \frac{h^2}{2} \frac{\mathrm{d}f(y_n, t)}{\mathrm{d}t} + \dots + \frac{h^p}{p!} \frac{\mathrm{d}^{p-1}f(y_n, t)}{\mathrm{d}t^{p-1}} + O(h^{p+1})$$

Order of improved Euler method

$$y_{n+1} = y_n + hf(y_n, t) + \frac{h^2}{2} \frac{\mathrm{d}f(y_n, t)}{\mathrm{d}t} + \ldots + \frac{h^p}{p!} \frac{\mathrm{d}^{p-1}f(y_n, t)}{\mathrm{d}t^{p-1}} + O(h^{p+1})$$

Stability of improved Euler method

$$k_1 = f(y_n), \quad k_2 = f(y_n + hk_1)$$

 $y_{n+1} = y_n + \frac{h}{2}(k_1 + k_2)$

• Test system: $\dot{y} = \lambda y$

Accuracy and stability

- Lots of different methods, with different complexity. How to quantify their behaviour?
- Two aspects are important: accuracy and numerical stability.
 - Accuracy: How does the local error vary with step-size?
 - Numerical stability: How to avoid that the simulation diverges?
- What decides accuracy and numerical stability?
 - Accuracy: Method and choice of step-size
 - Stability: Method, system eigenvalues, and choice of step-size
- Why are we interested in both accuracy and numerical stability?
 - We always need stability, but stability not enough: Many stable methods are not very accurate!

Stability regions for ERK methods

Explicit Runge-Kutta method I

Explicit Runge-Kutta method II

Butcher array

Butcher array: Examples

1. Explicit Euler:

$$k_1 = f(y_n, t_n)$$
$$y_{n+1} = y_n + hk_1$$

2. Improved Euler:

$$k_1 = f(y_n, t_n)$$

$$k_2 = f(y_n + hk_1, t_n + h)$$

$$y_{n+1} = y_n + h/2(k_1 + k_2)$$

3. Heun's method:

$$k_1 = f(y_n, t_n)$$

$$k_2 = f(y_n + \frac{1}{3}hk_1, t_n + \frac{1}{3}h)$$

$$k_3 = f(y_n + \frac{2}{3}hk_2, t_n + \frac{2}{3}h)$$

$$y_{n+1} = y_n + \frac{1}{4}hk_1 + \frac{3}{4}hk_3$$

Butch array: Try yourself

- Write down the equations of the method!
- ERK 4:

0	0	0	0	0
1/2	1/2	0	0	0
1/2	0	1/2	0	0
1	0	0	1	0
0	1/6	1/3	1/3	1/6

Stability regions for ERK methods

Stability of ERK I

Stability of ERK II

Stability of ERK III

$$(I - h\lambda A)\kappa = \lambda \mathbf{1} y_n$$
$$y_{n+1} = y_n + hb^T \kappa$$

Stability of ERK IV

Homework

- Write the Butcher array for the improved Euler method (Slide 24)
- Write down the equations of the ERK4 method on slide 25.
- For Monday: Read 14.12 (only until 14.12.1)
- For Thursday: Read 14.5

Next lecture ...

Fact: For $1 \leq \sigma \leq 4$, one can devise ERK methods with order $p = \sigma$

For these methods, per definition

$$y_{n+1} = y_n + hf(y_n, t_n) + \ldots + \frac{h^p}{p!} \frac{\mathrm{d}^{p-1}}{\mathrm{d}t^{p-1}} f(y_n, t_n) + O(h^{p+1})$$

• For test system $\dot{y} = \lambda y$,

$$y_{n+1} = y_n + h\lambda y_n + \dots + \frac{h^p \lambda^p}{p!} y_n + O(h^{p+1})$$
$$= \left(1 + h\lambda + \dots + \frac{h^p \lambda^p}{p!}\right) y_n + O(h^{p+1})$$

• From before, we know that $y_{n+1} = R_E(h\lambda)y_n$, where $R_E(h\lambda)$ is polynomial of degree less than or equal to $\sigma = p$

That is: For ERK methods with order $p = \sigma$, for $\sigma \le 4$:

$$R_E(h\lambda) = 1 + h\lambda + \ldots + \frac{h^p\lambda^p}{p!}$$

Case: Pneumatic spring

Model from Newton's 2nd law:

$$\ddot{x} + g(1 - x^{-\kappa}) = 0$$

"mass-spring-damper with nonlinear spring and no damping"

• On states-space form $\dot{y} = f(y, t)$

$$\begin{pmatrix} \dot{y}_1 \\ \dot{y}_2 \end{pmatrix} = \begin{pmatrix} y_2 \\ -g(1 - y_1^{-\kappa}) \end{pmatrix}$$

• Linearization about equilibrium ($y_1 = 1$):

$$\frac{\partial f}{\partial y} = \begin{pmatrix} 0 & 1 \\ -g\kappa & 0 \end{pmatrix}, \qquad \lambda_{1,2} = \pm j\omega_0, \quad \omega_0 = \sqrt{g\kappa} \approx 3.7$$

Simulation

Euler: 2000 function evaluations RK4: 400 function evaluations

Stability, RK4

- Theoretical: $\omega_0 h \approx 2.83 \quad \Rightarrow \quad h \approx 0.76$

- Practically: $h \approx 0.52$

Accuracy: Energy should be constant

