# Special Topics on Basic EECS I Design Technology Co-Optimization Lecture 9

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
Department of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology (GIST)

# L9

#### Silicon fin

Target fin height = 32 nm

-Moreover, the STI depth is 30 nm.

(Our etched profile is too ideal.)

(Too thick hard mask?)



Hydrogen bromide (Wikipedia)

12-nm-node fin image (Intel)

Etch depth



## Fill the STI (shallow trench isolation).

- 100-nm-thick
  - Then, CMP (Chemical mechanical polishing)

```
depo (region="SiO2",thickness=100)
cmp (position=183)
```

Hard maks (Si<sub>3</sub>N<sub>4</sub>) as the CMP stop layer



#### Fin reveal

- Now, the STI is etched.
  - -Then, fins are revealed.
  - For simplicity, anisotropic etch

```
etch (model="model_Si02",thickness=112)
etch (model="model_Si3N4",thickness=80)
etch (model="model_Si02",thickness=3)
```

(The final structure is highly idealized.)



#### Lessons from process emulation

- We have just done the "fin patterning."
  - It is very easy to say.
  - However, several intermediate steps were required...
  - Our structure is far from the realisitic one.
- Anyway, much better than nothing!





#### **Dummy dielectric**

- The thickness of this SiO<sub>2</sub> layer is 2 nm.
  - -Protection of fins



#### **Dummy gate**

- The target thickness of this amorphous silicon layer is 95 nm.
  - Thickness controlled by the CMP (Is it mandatory or not?)

```
depo (region="AmorphousSilicon",thickness=100)

cmp (position=165)

(a) (b)

Fin structure a-Si
SiO<sub>2</sub>

Fin structure a-Si
SiO<sub>2</sub>
```

FinFET process flow before/after a-Si
CMP process (IMEC)
GIST Lecture



#### Hard mask on dummy gate

• 60 nm – Again, Si<sub>3</sub>N<sub>4</sub>

(Dummy gates are not drawn intentionally.)

```
depo (region="Si3N4", thickness=60)
```



### Now, dummy gate patterning

- Actually, another SADP.
  - -It means:

Mandrel layer

Photoresist layer

PR patterning

Mandrel etching

Sidewall deposition

Anisotropic etching

Mandrel removal

Hard mask etching

-Let's skip them all!

Table 1. Key layer lithography assumptions, widths and pitches.

| Layer               | Lithography | Width/drawn (nm) | Pitch (nm)      |
|---------------------|-------------|------------------|-----------------|
| Fin                 | SAQP        | 6.5/7            | 27              |
| Active (horizontal) | EUV         | 54/16            | 108             |
| Gate                | SADP        | 21/20            | 54              |
| SDT/LISD            | EUV         | 25/24            | 54 <sup>b</sup> |
| LIG                 | EUV         | 16/16            | 54              |
| VIA0-VIA3           | EUV         | 18/18            | 25 <sup>a</sup> |
| M1-M3               | EUV         | 18/18            | 36              |
| M4 and M5           | SADP        | 24/24            | 48              |
| VIA4 and VIA5       | LELE        | 24/24            | 34 <sup>a</sup> |
| M6 and M7           | SADP        | 32/32            | 64              |
| VIA6 and VIA7       | LELE        | 32/32            | 45 <sup>a</sup> |
| M8 and M9           | SE          | 40/40            | 80              |
| VIA8                | SE          | 40/40            | 57ª             |

#### Hard mask patterned

- Structure after those steps
  - -20-nm-thick pattern
  - -Gate pitch is 54 nm.

```
mask (name="mask_dummygate") {
    rectangle (x0= 17,y0=0,x1= 37,y1=288)
    rectangle (x0= 71,y0=0,x1= 91,y1=288)
    rectangle (x0=125,y0=0,x1=145,y1=288)
}
etch (mask="mask_dummygate",thickness=60)
```

– What's next? Dummy gate etching (Your own exercise)



GIST Lecture

**Dummy gate patterned** 

 The hard mask is also removed.

Distance between dummy gates is 34 nm.





#### Homework#9

- Due: 08:00 on Oct. 13
  - You may have plenty of time to make up.
- Submit a report through the GIST LMS system.
  - -By using the AngstromCraft code, follow L9 lecture material.
  - Your report must show structures and the input file.

# Thank you!