Relazione Wireshark TCP 3-Way Handshake Process

Nella seguente immagine avvio la VM CyberOps Workstation

Dal terminale uso il comando di seguito per utilizzare mininet

[analista@secOps ~]\$ sudo lab.support.files/scripts/cyberops_topo.py

Dopo aver eseguito il comando sopra riportato utilizzo i seguenti comandi per aprire due terminali diversi, nei quali eseguirò i comandi riportati di seguito:

mininet > xterm H1

mininet> xterm H4

Nel terminale **Node: H1** avvio con il comando **firefox &** il browser, che utilizzero per inserire l'IP da scansionare successivamente con il tool **Wireshark**

Nel terminale **Node: H4** utilizzo il comando specifico per collegarmi e mettermi in ascolto e con il quale posso vedere i **pacchetti catturati** ed i **pacchetti ricevuti** nella trasmissione:

[analista@secOps ~]\$ sudo tcpdump -i H1-eth0 -v -c 50 -w /home/analista/capture.pcap

```
[analyst@secOps ~]$ sudo tcpdump -i H1-eth0 -v -c 50 -w /home/analyst/capture.pcap
tcpdump: listening on H1-eth0, link-type EN1OMB (Ethernet), capture size 262144 bytes
50 packets captured
54 packets received by filter
0 packets dropped by kernel
```

Dopo aver eseguito il comando per mettermi in ascolto, come illustrato in precedenza, vado sulla pagina del Browser e sulla barra URL scrivo l'indirizzo IP sul quale mi metto in ascolto, come di seguito, avrò la pagina **Welcome ti nginx!**

172.16.0.40

172.16.0.40

Welcome to nginx!

If you see this page, the nginx web server is successfully installed and working. Further configuration is required.

For online documentation and support please refer to <u>nginx.org</u>. Commercial support is available at <u>nginx.com</u>.

Thank you for using nginx.

Successivamente alle operazioni descritte ed illustrate in precedenza, aprò il tool Wireshark con il quale vedo il traffico di rete, come riportato di seguito

	11 2.134415	10.0.0.11	172.16.0.40	TCP	74 53740 → 80 [SYN] Seq=0 Win=29200 Len=0 MSS=1460 SACK_PERM
	12 2.134464	172.16.0.40	10.0.0.11	TCP	74 80 → 53740 [SYN, ACK] Seq=0 Ack=1 Win=28960 Len=0 MSS=1460
	13 2.134472	10.0.0.11	172.16.0.40	TCP	66 53740 → 80 [ACK] Seq=1 Ack=1 Win=29696 Len=0 TSval=27553022
	14 2.134639	10.0.0.11	172.16.0.40	HTTP	377 GET / HTTP/1.1
	15 2.134655	172.16.0.40	10.0.0.11	TCP	66 80 → 53740 [ACK] Seq=1 Ack=312 Win=30208 Len=0 TSval=166561
	16 2.160254	172.16.0.40	10.0.0.11	TCP	304 80 → 53740 [PSH, ACK] Seq=1 Ack=312 Win=30208 Len=238 TSval=
	17 2.160262	10.0.0.11	172.16.0.40	TCP	66 53740 → 80 [ACK] Seq=312 Ack=239 Win=30720 Len=0 TSval=2755
	18 2.160909	172.16.0.40	10.0.0.11	HTTP	678 HTTP/1.1 200 OK (text/html)
	19 2.160912	10.0.0.11	172.16.0.40	TCP	66 53740 → 80 [ACK] Seq=312 Ack=851 Win=31744 Len=0 TSval=2755
	20 2.211827	10.0.0.11	172.16.0.40	HTTP	358 GET /favicon.ico HTTP/1.1
	21 2.212305	172.16.0.40	10.0.0.11	HTTP	390 HTTP/1.1 404 Not Found (text/html)
	22 2.212344	10.0.0.11	172.16.0.40	TCP	66 53740 → 80 [ACK] Seq=604 Ack=1175 Win=32768 Len=0 TSval=275
	11 2.134415	10.0.0.11	172.16.0.40	TCP	74 53740 → 80 [SYN] Seq=0 Win=29200 Len=0 MSS=1460 SACK_PERM
	12 2.134464	172.16.0.40	10.0.0.11	TCP	74 80 → 53740 [SYN, ACK] Seq=0 Ack=1 Win=28960 Len=0 MSS=1460
-	13 2.134472	10.0.0.11	172.16.0.40	TCP	66 53740 → 80 [ACK] Seq=1 Ack=1 Win=29696 Len=0 TSval=27553022

- Frame 11: 74 bytes on wire (592 bits), 74 bytes captured (592 bits)
- Ethernet II, Src: f2:25:82:c9:a9:ed (f2:25:82:c9:a9:ed), Dst: ee:a6:fb:f5:ff:3d (ee:a6:fb:f5:ff:3d)
- ▶ Internet Protocol Version 4, Src: 10.0.0.11, Dst: 172.16.0.40
- ▶ Transmission Control Protocol, Src Port: 53740, Dst Port: 80, Seq: 0, Len: 0

Per la visualizzazione dei processi attivati all'inizio, utilizzo da terminale della VM CyberOps

man tcpdump

```
TCPDUMP(1)

General Commands Manual

TCPDUMP(1)

NAME

tcpdump - dump traffic on a network

SYNOPSIS

tcpdump [ -AbdDefhHIJKllnNOpqStuUvxX# ] [ -B buffer_size ]

[ -c count ]

[ -c file_size ] [ -6 rotate_seconds ] [ -F file ]

[ -i interface ] [ -j tstamp_type ] [ -m module ] [ -H secret ]

[ -number ] [ -Q inloutlinout ]

[ -r file ] [ -V file ] [ -s snaplen ] [ -T type ] [ -w file ]

[ -W filecount ]

[ -E spi@ipaddr algo:secret,... ]

[ -y datalinktype ] [ -z postrotate-command ] [ -Z user ]

[ --time-stamp-precision=tstamp_precision ]

[ --immediate-mode ] [ --version ]
```

Per operare con mininet nel mio terminale utilizzo il seguente comando

[analista@secOps ~]\$ sudo lab.support.files/scripts/cyberops_topo.py

Di seguito per visualizzare i primi 3 pacchetti dati con protocollo TCP, utilizzo il comando scritto di seguito:

[analista@secOps ~]\$ tcpdump -r /home/analista/capture.pcap tcp -c 3

```
[analyst@secOps ~]$ tcpdump -r /home/analyst/capture.pcap tcp -c 3
reading from file /home/analyst/capture.pcap, link-type EN10MB (Ethernet)
03:51:02.340010 IP 10.0.0.11.53740 > 172.16.0.40.http: Flags [S], seq 179890254,
win 29200, options [mss 1460,sackOK,TS val 2755302284 ecr 0,nop,wscale 9], leng
th 0
03:51:02.340059 IP 172.16.0.40.http > 10.0.0.11.53740: Flags [S.], seq 419916434
3, ack 179890255, win 28960, options [mss 1460,sackOK,TS val 1665610627 ecr 2755
302284,nop,wscale 9], length 0
03:51:02.340067 IP 10.0.0.11.53740 > 172.16.0.40.http: Flags [.], ack 1, win 58,
options [nop,nop,TS val 2755302284 ecr 1665610627], length 0
```

In conclusione per chiudere i processi attivi utilizzo il comando **quit**, come illustrato di seguito e per pulire tutti i processi utilizzo il comando **sudo mn -c**

```
Starting CLI:
mininet> quit
           Stopping 0
                                               controllers
* * *
            Stopping
                                         5 links
***
           Stopping
                                         1 switches
31
            Stopping 5 hosts
        H2 H3
                           H4
                                     R1
 11
* * *
           Done
analyst@secOps ~]$ sudo mn -c
** Removing excess controllers/ofprotocols/ofdatapaths/pings/noxes
illall controller ofprotocol ofdatapath ping nox_core lt-nox_core ovs-openflowd ovs-controller udpbwtest mnexec ivs 2> /dev/null
killall –9 controller ofprotocol ofdatapath ping nox_core lt-nox_core ovs-openflowd ovs-controller udpbwtest mnexec ivs 2> /dev/null
pkill –9 –f "sudo mnexec"
*** Removing junk from /tmp
m -f /tmp/vconn* /tmp/vlogs* /tmp/*.out /tmp/*.log
** Removing old X11 tunnels
*** Removing excess kernel datapaths
s ax | egrep -o 'dp[0-9]+' | sed 's/dp/n1:/'
** Removing OVS datapaths
vs-vsctl --timeout=1 list-br
ys-vsctl --timeout=1 list-br
** Removing all links of the pattern foo-ethX
ip link show | egrep -o '([-_.[:alnum:]]+-eth[[:digit:]]+)'
ip link show
*** Killing stale mininet node processes
okill -9 -f mininet:
*** Shutting down stale tunnels
okill -9 -f Tunnel=Ethernet
okill –9 –f .ssh/mn
m -f ~/.ssh/mn/*
** Cleanup complete.
```

Report finale

Dall'analisi finale dei vari processi attivati in precedenza nelle varie illustrazioni, posso identificare che:

- > numero della porta sorgente analizzata su Wireshark, da immagini precedenti è la porta:
 - 80
- la porta sulla quale sono in ascolto (listening) può essere:
 - privata
 - dinamica
- il numero della porta di destinazione è la porta del protocollo TCP è:
 - 53740
- il protocollo di destinazione in ascolto è:
 - http
- ➤ il flag delle 3-Way Handshake è:
 - SYN/ACK
- ➤ Il numero della sequenza di trasmissione è: 0
- ➤ Il numero di conferma di trasmissione è: 1