1. Na figura está representado, em referencial o.n. xOy a circunferência trigonométrica e um trapézio [ABCD].

Sabe-se que:

- ullet O é a origem do referencial
- A é um ponto móvel que se descola sobre a circunferência ao longo do primeiro quadrante
- α é a amplitude, em radianos, do ângulo formado entre o semi-eixo positivo Ox e a semi-reta OA, com $\alpha \in \left]0, \frac{\pi}{2}\right[$
- B acompanha o movimento do ponto A deslocando-se sobre a circunferência ao longo do segundo quadrante de modo que $\angle AOB$ é sempre um ângulo reto
- os pontos C e D são simétricos dos pontos B e de A, respectivamente, em relação ao eixo das abcissas.

Considere A e P as funções que a cada valor de α fazem corresponder, respetivamente, os valores da área e do perímetro do trapézio [ABCD].

Resolva os itens seguintes por processos exclusivamente analíticos:

- (a) Mostre que $A(\alpha) = (\sin \alpha + \cos \alpha)^2$, com $\alpha \in \left]0, \frac{\pi}{2}\right[$.
- (b) Determine o valor de α para o qual é máxima a área de [ABCD]. Interprete geometricamente o resultado obtido.
- (c) Mostre que $P(\alpha) = 2\left(\sin \alpha + \cos \alpha + \sqrt{2}\right)$, com $\alpha \in \left]0, \frac{\pi}{2}\right[$.
- (d) Determine os valores de α para os quais o perímetro do trapézio [ABCD] é igual a $2\sqrt{2} + \sqrt{3} + 1$.

Sugestão: Poderá ser-lhe útil determinar o valor exato de $\cos \frac{\pi}{12}$.

Autor: Carlos Frias