Orthogonal Sets

As we deepen our focus on geometry, we will focus on orthogonality. Specifically, today we'll study the properties of **sets** of orthogonal vectors. These can be very useful.

A set of vectors $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ in \mathbb{R}^n is said to be an **orthogonal set** if each pair of distinct vectors from the set is orthogonal, i.e.,

$$\mathbf{u}_i^T \mathbf{u}_j = 0$$
 whenever $i \neq j$.

Example. Show that $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is an orthogonal set, where

$$\mathbf{u}_1 = \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}, \ \mathbf{u}_2 = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}, \ \mathbf{u}_3 = \begin{bmatrix} -1/2 \\ -2 \\ 7/2 \end{bmatrix}.$$

Solution. Consider the three possible pairs of distinct vectors, namely, $\{\mathbf{u}_1, \mathbf{u}_2\}$, $\{\mathbf{u}_1, \mathbf{u}_3\}$, and $\{\mathbf{u}_2, \mathbf{u}_3\}$.

$$\mathbf{u}_1^T \mathbf{u}_2 = 3(-1) + 1(2) + 1(1) = 0$$

$$\mathbf{u}_1^T \mathbf{u}_3 = 3(-1/2) + 1(-2) + 1(7/2) = 0$$

$$\mathbf{u}_2^T \mathbf{u}_3 = -1(-1/2) + 2(-2) + 1(7/2) = 0$$

Each pair of distinct vectors is orthogonal, and so $\{u_1, u_2, u_3\}$ is an orthogonal set. In three space they describe three lines that say are **mutually perpendicular**.

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

Question Time! Q21.1

Theorem. If $S = \{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is an orthogonal set of nonzero vectors in \mathbb{R}^n , then S is linearly independent and hence is a basis for the subspace spanned by S.

Proof. We will prove that there is no linear combination of the vectors in *S* with nonzero coefficients that yields the zero vector.

Our proof strategy will be:

we will show that for any linear combination of the vectors in *S*, if the combination is the zero vector, then all coefficients of the combination must be zero.

Specifically:

Assume $\mathbf{0} = c_1 \mathbf{u}_1 + \cdots + c_p \mathbf{u}_p$ for some scalars c_1, \dots, c_p . Then:

$$\mathbf{0} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_p \mathbf{u}_p$$

$$0 = (c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_p \mathbf{u}_p)^T \mathbf{u}_1$$

$$= (c_1 \mathbf{u}_1)^T \mathbf{u}_1 + (c_2 \mathbf{u}_2)^T \mathbf{u}_1 + \dots + (c_p \mathbf{u}_p)^T \mathbf{u}_1$$

$$= c_1 (\mathbf{u}_1^T \mathbf{u}_1) + c_2 (\mathbf{u}_2^T \mathbf{u}_1) + \dots + c_p (\mathbf{u}_n^T \mathbf{u}_1)$$

Because \mathbf{u}_1 is orthogonal to $\mathbf{u}_2, \dots, \mathbf{u}_p$:

$$= c_1(\mathbf{u}_1^T \mathbf{u}_1)$$

Since \mathbf{u}_1 is nonzero, $\mathbf{u}_1^T \mathbf{u}_1$ is not zero and so $c_1 = 0$.

We can use the same kind of reasoning to show that, c_2, \ldots, c_p must be zero.

In other words, there is no nonzero combination of \mathbf{u}_i 's that yields the zero vector –so S is linearly independent.

Definition. An **orthogonal basis** for a subspace W of \mathbb{R}^n is a basis for W that is also an orthogonal set. We have seen that for any subspace, there may be many different sets of vectors that can serve as a basis for W.

However an orthogonal basis is a particularly nice basis, because the weights (coordinates) of any point can be computed easily.

Theorem. Let $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ be an orthogonal basis for a subspace W of \mathbb{R}^n . For each \mathbf{y} in W, the weights of the linear combination

$$\mathbf{y} = c_1 \mathbf{u}_1 + \dots + c_p \mathbf{u}_p$$

are given by

$$c_j = \frac{\mathbf{y}^T \mathbf{u}_j}{\mathbf{u}_j^T \mathbf{u}_j} \quad j = 1, \dots, p$$

Proof. As we saw in the last proof, the orthogonality of $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ means that

$$\mathbf{y}^T \mathbf{u}_1 = (c_1 \mathbf{u}_1 + c_1 \mathbf{u}_2 + \dots + c_p \mathbf{u}_p)^T \mathbf{u}_1$$
$$= c_1 (\mathbf{u}_1^T \mathbf{u}_1)$$

Since $\mathbf{u}_1^T \mathbf{u}_1$ is not zero, the equation above can be solved for c_1 . To find any other c_j , compute $\mathbf{y}^T \mathbf{u}_j$ and

solve for c_j .

Example. The set *S* which we saw earlier, ie,

$$\mathbf{u}_1 = \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}, \quad \mathbf{u}_3 = \begin{bmatrix} -1/2 \\ -2 \\ 7/2 \end{bmatrix},$$

is an orthogonal basis for \mathbb{R}^3 .

Then, express the vector $\mathbf{y} = \begin{bmatrix} 6 \\ 1 \\ -8 \end{bmatrix}$ as a linear combination of the vectors in S (ie, in the basis S or in the coordinate system S).

Solution. Compute

$$\mathbf{y}^{T}\mathbf{u}_{1} = 11, \quad \mathbf{y}^{T}\mathbf{u}_{2} = -12, \quad \mathbf{y}^{T}\mathbf{u}_{3} = -33,$$

$$\mathbf{u}_1^T \mathbf{u}_1 = 11, \quad \mathbf{u}_2^T \mathbf{u}_2 = 6, \quad \mathbf{u}_3^T \mathbf{u}_3 = 33/2$$

So

$$\mathbf{y} = \frac{\mathbf{y}^{T} \mathbf{u}_{1}}{\mathbf{u}_{1}^{T} \mathbf{u}_{1}} \mathbf{u}_{1} + \frac{\mathbf{y}^{T} \mathbf{u}_{2}}{\mathbf{u}_{2}^{T} \mathbf{u}_{2}} \mathbf{u}_{2} + \frac{\mathbf{y}^{T} \mathbf{u}_{3}}{\mathbf{u}_{3}^{T} \mathbf{u}_{3}} \mathbf{u}_{3}$$
$$= \frac{11}{11} \mathbf{u}_{1} + \frac{-12}{6} \mathbf{u}_{2} + \frac{-33}{33/2} \mathbf{u}_{3}$$

$$=\mathbf{u}_1-2\mathbf{u}_2-2\mathbf{u}_3.$$

Let's stop for a moment and think about how we would have done this if we had not known that the vectors \mathbf{u}_1 , \mathbf{u}_2 , and \mathbf{u}_3 form an orthogonal set.

We would have been looking for

$$c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + c_3\mathbf{u}_3 = \mathbf{y}$$

The way we would find c_1, c_2, c_3 in that case would be to solve the linear system

$$\begin{bmatrix} \mathbf{u}_1 \ \mathbf{u}_2 \ \mathbf{u}_3 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \mathbf{y}$$

which would have been much more trouble than what we did.

Instead, because the basis is an orthogonal basis, each coefficient c_1 can be found separately, and simply.

An Orthogonal Projection

Given a nonzero vector \mathbf{u} in \mathbb{R}^n , consider the problem of decomposing a vector \mathbf{y} in \mathbb{R}^n into the sum of two vectors:

- one that is a multiple of **u**, and
- one that is orthogonal to **u**.

In other words, we wish to write:

$$\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$$

where $\hat{\mathbf{y}} = \alpha \mathbf{u}$ for some scalar α and \mathbf{z} is some vector orthogonal to \mathbf{u} .

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

That is, we are given \mathbf{y} and \mathbf{u} , and asked to compute \mathbf{z} and $\hat{\mathbf{y}}$.

To solve this, assume that we have some α , and with it we compute $\mathbf{y} - \alpha \mathbf{u} = \mathbf{y} - \hat{\mathbf{y}} = \mathbf{z}$.

We want \mathbf{z} to be orthogonal to \mathbf{u} .

Now $\mathbf{z} = \mathbf{y} - \alpha \mathbf{u}$ is orthogonal to \mathbf{u} if and only if

$$0 = (\mathbf{y} - \alpha \mathbf{u})^T \mathbf{u}$$

$$= \mathbf{y}^T \mathbf{u} - (\alpha \mathbf{u})^T \mathbf{u}$$

$$= \mathbf{y}^T \mathbf{u} - \alpha(\mathbf{u}^T \mathbf{u})$$

That is, the solution in which z is orthogonal to u happens if and only if

$$\alpha = \frac{\mathbf{y}^T \mathbf{u}}{\mathbf{u}^T \mathbf{u}}$$

and since $\hat{\mathbf{y}} = \alpha \mathbf{u}$,

$$\hat{\mathbf{y}} = \frac{\mathbf{y}^T \mathbf{u}}{\mathbf{u}^T \mathbf{u}} \mathbf{u}.$$

The vector $\hat{\mathbf{y}}$ is called the **orthogonal projection of y onto u**, and the vector \mathbf{z} is called the **component** of y orthogonal to u.

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

Now, note that if we had scaled \mathbf{u} by any amount (ie, moved it to the right or the left), we would not have changed the location of $\hat{\mathbf{y}}$.

This can be seen as well by replacing \mathbf{u} with $c\mathbf{u}$ and recomputing $\hat{\mathbf{y}}$:

$$\hat{\mathbf{y}} = \frac{\mathbf{y}^T c \mathbf{u}}{c \mathbf{u}^T c \mathbf{u}} c \mathbf{u} = \frac{\mathbf{y}^T \mathbf{u}}{\mathbf{u}^T \mathbf{u}} \mathbf{u}.$$

Thus, the projection of \mathbf{y} is determined by the *subspace* L that is spanned by \mathbf{u} – in other words, the line through \mathbf{u} and the origin.

Hence sometimes $\hat{\mathbf{y}}$ is denoted by $\operatorname{proj}_L \mathbf{y}$ and is called the **orthogonal projection of y onto** L. Specifically:

$$\hat{\mathbf{y}} = \operatorname{proj}_{L} \mathbf{y} = \frac{\mathbf{y}^{T} \mathbf{u}}{\mathbf{u}^{T} \mathbf{u}} \mathbf{u}$$

Example. Let $\mathbf{y} = \begin{bmatrix} 7 \\ 6 \end{bmatrix}$ and $\mathbf{u} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$.

Find the orthogonal projection of \mathbf{y} onto \mathbf{u} . Then write \mathbf{y} as the sum of two orthogonal vectors, one in $\mathrm{Span}\{\mathbf{u}\}$, and one orthogonal to \mathbf{u} .

Solution. Compute

$$\mathbf{y}^T \mathbf{u} = \begin{bmatrix} 7 & 6 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \end{bmatrix} = 40$$

$$\mathbf{u}^T\mathbf{u} = \begin{bmatrix} 4 & 2 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \end{bmatrix} = 20$$

The orthogonal projection of \mathbf{y} onto \mathbf{u} is

$$\hat{\mathbf{y}} = \frac{\mathbf{y}^T \mathbf{u}}{\mathbf{u}^T \mathbf{u}} \mathbf{u}$$

$$=\frac{40}{20}\mathbf{u}=2\begin{bmatrix}4\\2\end{bmatrix}=\begin{bmatrix}8\\4\end{bmatrix}$$

And the component of \mathbf{y} orthogonal to \mathbf{u} is

$$\mathbf{y} - \hat{\mathbf{y}} = \begin{bmatrix} 7 \\ 6 \end{bmatrix} - \begin{bmatrix} 8 \\ 4 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}.$$

So

$$\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$$

$$\begin{bmatrix} 7 \\ 6 \end{bmatrix} = \begin{bmatrix} 8 \\ 4 \end{bmatrix} + \begin{bmatrix} -1 \\ 2 \end{bmatrix}.$$

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

Question Time! Q21.2

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

The closest point.

Recall from geometry that given a line and a point P, the closest point on the line to P is given by the perpendicular from P to the line.

So this gives an important interpretation of $\hat{\mathbf{y}}$: it is the closest point to \mathbf{y} in the subspace L.

The distance from y to L

The distance from \mathbf{y} to L is the length of the perpendicular from \mathbf{y} to its orthogonal projection on L, namely $\hat{\mathbf{y}}$.

This distance equals the length of $y - \hat{y}$.

In this example, the distance is

$$\|\mathbf{y} - \hat{\mathbf{y}}\| = \sqrt{(-1)^2 + 2^2} = \sqrt{5}.$$

A Geometric Interpretation

Earlier today, we saw that when we decompose a vector \mathbf{y} into a linear combination of vectors $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ in a orthogonal set, we have

$$\mathbf{y} = c_1 \mathbf{u}_1 + \dots + c_p \mathbf{u}_p$$

where

$$c_j = \frac{\mathbf{y}^T \mathbf{u}_j}{\mathbf{u}_j^T \mathbf{u}_j}$$

And just now we have seen that the projection of y onto the subspace spanned by u is

$$\operatorname{proj}_{L}\mathbf{y} = \frac{\mathbf{y}^{T}\mathbf{u}}{\mathbf{u}^{T}\mathbf{u}}\mathbf{u}.$$

So a decomposition like $\mathbf{y} = c_1 \mathbf{u}_1 + \cdots + c_p \mathbf{u}_p$ is really decomposing \mathbf{y} into a sum of orthogonal projections onto one-dimensional subspaces.

For example, let's take the case where $y \in \mathbb{R}^2$. Let's say we are given \mathbf{u}_1 , \mathbf{u}_2 such that \mathbf{u}_1 is orthogonal to \mathbf{u}_2 , and so together they span \mathbb{R}^2 .

Then y can be written in the form

$$\mathbf{y} = \frac{\mathbf{y}^T \mathbf{u}_1}{\mathbf{u}_1^T \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{y}^T \mathbf{u}_2}{\mathbf{u}_2^T \mathbf{u}_2} \mathbf{u}_2.$$

The first term is the projection of y onto the subspace spanned by u_1 and the second term is the projection of y onto the subspace spanned by u_2 .

So this equation expresses y as the sum of its projections onto the (orthogonal) axes determined by u_1 and u_2 .

Question Time! Q21.3

Orthonormal Sets

A set $\{u_1, \dots, u_p\}$ is an **orthonormal set** if it is an orthogonal set of **unit** vectors.

If W is the subspace spanned by such as a set, then $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is an **orthonormal basis** for W since the set is automatically linearly independent.

The simplest example of an orthonormal set is the standard basis $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ for \mathbb{R}^n . Any nonempty subset of $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ is orthonormal as well.

Pro tip: keep the terms clear in your head:

- orthogonal is (just) perpendicular, while
- **orthonormal** is perpendicular *and* unit length.

(You can see the word "normalized" inside "orthonormal").

Matrices with orthonormal columns are particularly important.

Theorem. A $m \times n$ matrix U has orthonormal columns if and only if $U^T U = I$.

Proof. Let us suppose that U has only three columns which are each vectors in \mathbb{R}^m (but the proof will generalize to n columns).

Let $U = [\mathbf{u}_1 \ \mathbf{u}_2 \ \mathbf{u}_3]$. Then:

$$U^{T}U = \begin{bmatrix} \mathbf{u}_{1}^{T} \\ \mathbf{u}_{2}^{T} \\ \mathbf{u}_{3}^{T} \end{bmatrix} \begin{bmatrix} \mathbf{u}_{1} & \mathbf{u}_{2} & \mathbf{u}_{3} \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{u}_{1}^{T}\mathbf{u}_{1} & \mathbf{u}_{1}^{T}\mathbf{u}_{2} & \mathbf{u}_{1}^{T}\mathbf{u}_{3} \\ \mathbf{u}_{2}^{T}\mathbf{u}_{1} & \mathbf{u}_{2}^{T}\mathbf{u}_{2} & \mathbf{u}_{2}^{T}\mathbf{u}_{3} \\ \mathbf{u}_{3}^{T}\mathbf{u}_{1} & \mathbf{u}_{3}^{T}\mathbf{u}_{2} & \mathbf{u}_{3}^{T}\mathbf{u}_{3} \end{bmatrix}$$

The columns of *U* are orthogonal if and only if

$$\mathbf{u}_{1}^{T}\mathbf{u}_{2} = \mathbf{u}_{2}^{T}\mathbf{u}_{1} = 0$$
, $\mathbf{u}_{1}^{T}\mathbf{u}_{3} = \mathbf{u}_{3}^{T}\mathbf{u}_{1} = 0$, $\mathbf{u}_{2}^{T}\mathbf{u}_{3} = \mathbf{u}_{3}^{T}\mathbf{u}_{2} = 0$

The columns of *U* all have unit length if and only if

$$\mathbf{u}_1^T \mathbf{u}_1 = 1, \ \mathbf{u}_2^T \mathbf{u}_2 = 1, \ \mathbf{u}_3^T \mathbf{u}_3 = 1.$$

So $U^T U = I$.

Theorem. Let *U* by an $m \times n$ matrix with orthonormal columns, and let **x** and **y** be in \mathbb{R}^n . Then:

- 1. $||U\mathbf{x}|| = ||\mathbf{x}||$. 2. $(U\mathbf{x})^T(U\mathbf{y}) = \mathbf{x}^T\mathbf{y}$. 3. $(U\mathbf{x})^T(U\mathbf{y}) = 0$ if and only if $\mathbf{x}^T\mathbf{y} = 0$.

Properties 1. and 3. say that the linear mapping $x \mapsto Ux$ preserves lengths and orthogonality.

So, viewed as a linear operator, an orthonormal matrix is very special: the lengths of vectors, and therefore the **distances between points** is not changed by the action of *U*.

Example. Let $U = \begin{bmatrix} 1/\sqrt{2} & 2/3 \\ 1/\sqrt{2} & -2/3 \\ 0 & 1/3 \end{bmatrix}$ and $\mathbf{x} = \begin{bmatrix} \sqrt{2} \\ 3 \end{bmatrix}$. Notice that U has orthonormal columns, and

$$U^{T}U = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 2/3 & -2/3 & 1/3 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 2/3 \\ 1/\sqrt{2} & -2/3 \\ 0 & 1/3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Let's verify that ||Ux|| = ||x||.

$$U\mathbf{x} = \begin{bmatrix} 1/\sqrt{2} & 2/3 \\ 1/\sqrt{2} & -2/3 \\ 0 & 1/3 \end{bmatrix} \begin{bmatrix} \sqrt{2} \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix}$$

$$||U\mathbf{x}|| = \sqrt{9 + 1 + 1} = \sqrt{11}.$$

$$\|\mathbf{x}\| = \sqrt{2+9} = \sqrt{11}.$$

Orthonormal Square Matrices. Consider the case when *U* is square, and has orthonormal columns.

Then the fact that $U^TU = I$ implies that $U^{-1} = U^T$.

Then *U* is called an **orthogonal** matrix.

(Note that this terminology could be confusing; the columns of *U* are not just orthogonal but actually orthonormal.)