Discrete Probability Distributions

Objectives

Create a probability distribution

Determine the expected value of a probability distribution

Oetermine the variance and standard deviation of a probability distribution

Probability Distribution

A **probability distribution** is a listing of each outcome of a probability experiment with their probabilities.

Probability Distribution

A **probability distribution** is a listing of each outcome of a probability experiment with their probabilities.

A discrete probability distribution is one in which the outcomes of each experiment are discrete (countable) values.

Probability Distribution

A **probability distribution** is a listing of each outcome of a probability experiment with their probabilities.

A discrete probability distribution is one in which the outcomes of each experiment are discrete (countable) values.

Familiar Characteristics:

Probability Distribution

A **probability distribution** is a listing of each outcome of a probability experiment with their probabilities.

A discrete probability distribution is one in which the outcomes of each experiment are discrete (countable) values.

Familiar Characteristics:

ullet 0 \leq each probability ≤ 1

Probability Distribution

A **probability distribution** is a listing of each outcome of a probability experiment with their probabilities.

A discrete probability distribution is one in which the outcomes of each experiment are discrete (countable) values.

Familiar Characteristics:

- ullet 0 \leq each probability ≤ 1
- The sum of all probabilities in a distribution equals 1

Probability Distribution

A **probability distribution** is a listing of each outcome of a probability experiment with their probabilities.

A discrete probability distribution is one in which the outcomes of each experiment are discrete (countable) values.

Familiar Characteristics:

- ullet 0 \leq each probability ≤ 1
- The sum of all probabilities in a distribution equals 1
- P(A or B) = P(A) + P(B)

	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	5 6 7 8 9 10	11	12

We can create a probability distribution of the sums of rolling two dice.

	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	5 6 7 8 9	11	12

We can create a probability distribution of the sums of rolling two dice.

We use the notation P(X = x) where X is our random variable and x represents the outcomes, such as 2, 3, 4, ..., 12.

X	P(X=x)
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	

X	P(X=x)
2	1/36
3 4	
4	
5	
6	
7	
8	
9	
10	
11	
12	

X	P(X=x)
2	1/36
3	1/18
4	
5	
6	
7	
8	
9	
10	
11	
12	

X	P(X=x)
2	1/36
3	1/18
4	1/12
5	
6	
7	
8	
9	
10	
11	
12	

X	P(X=x)
2	1/36
3	1/18
4	1/12
5	1/9
6	
7	
8	
9	
10	
11	
12	

X	P(X=x)
2	1/36
3	1/18
4	1/12
5	1/9
6	5/36
7	
8	
9	
10	
11	
12	

X	P(X=x)
2	1/36
3	1/18
4	1/12
5	1/9
6	5/36
7	1/6
8	
9	
10	
11	
12	

X	P(X=x)
2	1/36
3	1/18
4	1/12
5	1/9
6	5/36
7	1/6
8	5/36
9	
10	
11	
12	

X	P(X=x)
2	1/36
3	1/18
4	1/12
5	1/9
6	5/36
7	1/6
8	5/36
9	1/9
10	
11	
12	

Х	P(X=x)
2	1/36
	,
3	1/18
4	1/12
5	1/9
6	5/36
7	1/6
8	5/36
9	1/9
10	1/12
11	
12	

X	P(X=x)
2	1/36
3	1/18
4	1/12
5	1/9
6	5/36
7	1/6
8	5/36
9	1/9
10	1/12
11	1/18
12	

X	P(X=x)
2	1/36
3	1/18
4	1/12
5	1/9
6	5/36
7	1/6
8	5/36
9	1/9
10	1/12
11	1/18
12	1/36

Probability Histogram of Rolling 2 Dice

(a) Create a probability distribution for flipping a coin three times, where X represents the number of times heads is flipped.

(a) Create a probability distribution for flipping a coin three times, where X represents the number of times heads is flipped.

(a) Create a probability distribution for flipping a coin three times, where X represents the number of times heads is flipped.

x	P(X=x)
0	
1	
2	
3	

(a) Create a probability distribution for flipping a coin three times, where X represents the number of times heads is flipped.

x	P(X=x)
0	1/8
1	
2	
3	

(a) Create a probability distribution for flipping a coin three times, where X represents the number of times heads is flipped.

x	P(X=x)
0	1/8
1	3/8
2	
3	

(a) Create a probability distribution for flipping a coin three times, where X represents the number of times heads is flipped.

X	P(X=x)
0	1/8
1	3/8
2	3/8
3	

(a) Create a probability distribution for flipping a coin three times, where X represents the number of times heads is flipped.

x	P(X=x)
0	1/8
1	3/8
2	3/8
3	1/8

(b) Create a probability distribution histogram for the number of times heads appears when flipping a coin 3 times.

(b) Create a probability distribution histogram for the number of times heads appears when flipping a coin 3 times.

The distribution below represents the percentage of households that have x dogs according to a recent study.

x	P(X=x)
0	44%
1	27%
2	18%
3 or more	11%

How many households have at least 1 dog?

The distribution below represents the percentage of households that have x dogs according to a recent study.

x	P(X=x)
0	44%
1	27%
2	18%
3 or more	11%

How many households have at least 1 dog?

Using the Complement Rule: 100% - 44% = 56%

Objectives

Create a probability distribution

2 Determine the expected value of a probability distribution

3 Determine the variance and standard deviation of a probability distribution

Expected Value

Expected Value

The **expected value** of a probability distribution is the outcome we would expect to happen if the experiment was performed a very large number of times.

Expected Value

Expected Value

The **expected value** of a probability distribution is the outcome we would expect to happen if the experiment was performed a very large number of times.

In other words, it is a **weighted mean** of the distribution of outcomes:

$$E(X) = \sum (x \cdot P(x))$$

Determine the expected value of rolling two dice.

Determine the expected value of rolling two dice.

P(X = x)	$x \cdot P(x)$
1/36	1/18
1/18	1/6
1/12	1/3
1/9	5/9
5/36	5/6
	1/36 1/18 1/12 1/9

X	P(X=x)	$x \cdot P(x)$
7	1/6	7/6
8	5/36	10/9
9	1/9	1
10	1/12	5/6
11	1/18	11/18
12	1/36	1/3

The expected value is the sum of all of the entries in the last column:

The expected value is the sum of all of the entries in the last column:

$$\frac{1}{18} + \frac{1}{6} + \frac{1}{3} + \dots + \frac{11}{18} + \frac{1}{3} = 7$$

Calculating the weighted mean of our distribution, the expected value of rolling two dice is 7.

The distribution below represents the percentage of households that have x dogs according to a recent study.

X	P(X=x)
0	44%
1	27%
2	18%
3	11%

What is the expected number of dogs per household?

The distribution below represents the percentage of households that have x dogs according to a recent study.

X	P(X=x)
0	44%
1	27%
2	18%
3	11%

What is the expected number of dogs per household?

$$0(0.44) + 1(0.27) + 2(0.18) + 3(0.11)$$

The distribution below represents the percentage of households that have x dogs according to a recent study.

X	P(X=x)
0	44%
1	27%
2	18%
3	11%

What is the expected number of dogs per household?

$$0(0.44) + 1(0.27) + 2(0.18) + 3(0.11) = 0.96$$

The distribution below represents the percentage of households that have x dogs according to a recent study.

X	P(X=x)
0	44%
1	27%
2	18%
3	11%

What is the expected number of dogs per household?

$$0(0.44) + 1(0.27) + 2(0.18) + 3(0.11) = 0.96$$

There is about 1 dog per household.

Objectives

Create a probability distribution

2 Determine the expected value of a probability distribution

3 Determine the variance and standard deviation of a probability distribution

Variance and Standard Deviation

Previously, we saw that variance, which was the average squared deviation the data values are from the mean, was

$$\frac{\sum (x-\mu)^2}{n}$$

Variance and Standard Deviation

Previously, we saw that variance, which was the average squared deviation the data values are from the mean, was

$$\frac{\sum (x-\mu)^2}{n}$$

Similarly, the variance for probability distributions is given as

$$\sigma^2 = \sum ((x - \mu)^2 \cdot P(x))$$

Variance and Standard Deviation

Previously, we saw that variance, which was the average squared deviation the data values are from the mean, was

$$\frac{\sum (x-\mu)^2}{n}$$

Similarly, the variance for probability distributions is given as

$$\sigma^2 = \sum ((x - \mu)^2 \cdot P(x))$$

from which the standard deviation is

$$\sigma = \sqrt{\sum ((x - \mu)^2 \cdot P(x))}$$

Variance and Standard Deviation Alternate Definition

$$\sigma^2 = \sum ((x - E(x))^2 \cdot P(x))$$

Variance and Standard Deviation Alternate Definition

$$\sigma^2 = \sum ((x - E(x))^2 \cdot P(x))$$

and

$$\sigma = \sqrt{\sum ((x - E(x))^2 \cdot P(x))}$$

What is the standard deviation of rolling two dice?

What is the standard deviation of rolling two dice?

From a previous example, we have $\mu = E(x) = 7$.

What is the standard deviation of rolling two dice?

From a previous example, we have $\mu = E(x) = 7$.

2:
$$(2-7)^2 \cdot \frac{1}{36} = \frac{25}{36}$$

What is the standard deviation of rolling two dice?

From a previous example, we have $\mu = E(x) = 7$.

2:
$$(2-7)^2 \cdot \frac{1}{36} = \frac{25}{36}$$

3:
$$(3-7)^2 \cdot \frac{1}{18} = \frac{8}{9}$$

What is the standard deviation of rolling two dice?

From a previous example, we have $\mu = E(x) = 7$.

2:
$$(2-7)^2 \cdot \frac{1}{36} = \frac{25}{36}$$

3:
$$(3-7)^2 \cdot \frac{1}{18} = \frac{8}{9}$$

:

What is the standard deviation of rolling two dice?

From a previous example, we have $\mu = E(x) = 7$.

2:
$$(2-7)^2 \cdot \frac{1}{36} = \frac{25}{36}$$

3:
$$(3-7)^2 \cdot \frac{1}{18} = \frac{8}{9}$$

:

12:
$$(12-7)^2 \cdot \frac{1}{36} = \frac{25}{36}$$

Adding up all of the results and then taking the square root, we get

$$\sigma \approx$$
 2.415