Regression and practical advice

Toby Dylan Hocking

Supervised machine learning

- ▶ Goal is to learn a function $f(\mathbf{x}) = y$ where $\mathbf{x} \in \mathbb{R}^p$ is an input/feature vector and y is an output/label.
- ▶ This week we will study linear models and neural networks for regression, meaning labels represented by $y \in \mathbb{R}$ is a real number.
- ▶ air foil self-noise data: $\mathbf{x} = \text{Frequency (Hertz)}$, Angle of attack (degrees), Chord length (meters), Free-stream velocity (meters per second), $y \in \mathbb{R}$ Scaled sound pressure level, in decibels.
- ▶ forest fires data: $\mathbf{x} =$ meteorological and other data, $y \in \mathbb{R}_+$ burned area.
- some practical advice for getting gradient descent learning to work better (scaling, log transform, feature transform)

air foil self-noise data

##		Hertz	degrees		meters	decibels
##	0	800	0.0		0.002663	126.201
##	1	1000	0.0		0.002663	125.201
##	2	1250	0.0		0.002663	125.951
##	3	1600	0.0		0.002663	127.591
##	4	2000	0.0		0.002663	127.461
##						
##	1498	2500	15.6		0.052849	110.264
##	1499	3150	15.6		0.052849	109.254
##	1500	4000	15.6		0.052849	106.604
##	1501	5000	15.6		0.052849	106.224
##	1502	6300	15.6		0.052849	104.204
##						
##	[1503 rows x 6 columns]					

Need to scale label vector, to avoid numerical instability in gradient descent.

Labels in data=air_foil

Labels in data=air foil

log(decibels)

forest fires data

```
##
              month
                       ... wind
                                  rain
                                          area
##
         7
            5
                                   0.0
                                          0.00
                 mar
                            6.7
##
        7
                 oct
                       . . .
                            0.9
                                   0.0
                                          0.00
##
        7
                            1.3
                                   0.0
                                          0.00
                 oct
         8
                                   0.2
                                          0.00
##
   3
            6
                            4.0
                 mar
         8
##
            6
                 mar
                          1.8
                                   0.0
                                          0.00
##
## 512
           3
                            2.7
                                   0.0
                                          6.44
                 aug
## 513
                                         54.29
                            5.8
                                   0.0
                 aug
                       . . .
   514
                            6.7
                                   0.0
                                         11.16
                 aug
                       . . .
   515
##
            4
                 aug
                            4.0
                                   0.0
                                          0.00
                       . . .
## 516
            3
                            4.5
                                   0.0
                                          0.00
                 nov
##
   [517 rows x 13 columns]
```

For categorical variables like month, need to ignore, or re-encode (ordinal or one-hot encoding).

Labels in data=forest_fires

Labels in data=forest_fires

Labels in data=forest fires

Labels in data=forest_fires, zeros excluded

Enforcing non-negative predictions

Assume a label y > 0. How to make sure that we get a positive prediction from our neural network?

Neural network predicts f(x), a real number (maybe negative).

Log-normal loss: for a given label y, loss is $(\log[\exp f(x)] - \log[y])^2$, which is defined for any positive predictions $\exp f(x) > 0$.

How to handle y = 0? Binary classification then regression.

Real data feature distribution

Feature distribution in air_foil data

Real data feature distribution

Simulated data feature distribution

Pattern in simulated data has continuity over 0/360 edge

Non-linear basis expansion

Nearest neighbors, baseline/code

- ▶ In binary classification, we predict the most frequent class among the K nearest neighbors (K=N is the featureless baseline).
- ► In regression we predict mean label of K nearest neighbors (instead of most frequent label / mode).
- ► That is the only difference between KNeighborsRegressor and KNeighborsClassifier in sklearn.neighbors.

Train nearest neighbor regression

Learned function not continuous over 0/360

KNN Train features: degrees

sin/cos features enforce continuity

KNN Train features: sin,cos

How are the neural network weights learned?

- Typically we use some version of gradient descent.
- ► This algorithm requires definition of a differentiable loss function to minimize on the train set.
- For regression problems $(y \in \mathbb{R})$ we use the square loss, $\ell[f(\mathbf{x}), y) = [f(\mathbf{x}) y]^2$.

Visualization of square loss gradient/derivative

Interactive visualization of gradient descent for regression

http://ml.nau.edu/viz/2022-02-02-gradient-descent-regression/

TODO slides

Comparison with ReLU act in last layer to force non-negative predictions (including zeros).

Possible exam questions

Say x = [5, -3, 10], w = [2, 3, 1], y = 6, and we are doing regression (square loss). Compute loss L, gradient $\nabla_w L$, and new weights after one step of gradient descent with learning rate / step size = 0.1.