Juan Camilo Lozano Mejía

- 1. Ejercicios del Cormen:
 - a. Ejercicio 3.1-2:

Suponiendo que c1 = 2^b y $n_0 \ge 2^a$. Entonces para todos los $n \ge n_0$ tenemos que $(n + a)^b \le (2n)^b = c1n^b$ lo cual determina que $(n + a)^b = O(n^b)$, suponiendo que $c2 = c1n^b$ $(1/2)^b$, por otro lado $n/2 \le (n+a)$ entonces $(n/2)^b \le (n+a)^b$, $(n/2)^b = c2n^b = \Omega(n^b)$ por lo tanto $c2n^b \le (n+a)^b \le c1n^b$ podemos concluir que $(n+a)^b = \theta(n^b)$

b. Ejercicio 3.1-7:

Suponiendo que exista una función f(n) tal que $f(n) \in O(g(n)) \cap \omega(g(n))$

$$0 = \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

 $n^{1/lg(n)}$

Que es una contradicción.

c. Problema 3.3:

d. Ejercicio 4.4-7:

(n + 1)! 2^{2^n} $2^{2^{n+1}}$

Si suponemos que $T(n) \le c1n^2$ entonces sabemos que $c1 + (c/n) \le 1$ lo cual va a ser cierto para n muy grandes si y solo si c1 < 1 entonces sabemos así que $T(n) = (n^2)$

e. Método maestro para dar cotas:

i.
$$T(n) = 8T(n/2) + n$$

 $log_2 8 = 3, n^3 > n$ entonces $\theta(n^3)$
ii. $T(n) = 8T(n/2) + n^3$
 $log_2 8 = 3, n^3 = n^3$ entonces $\theta(n^3 \log n)$
iii. $T(n) = 8T(n/2) + n^5$
 $log_2 8 = 3, n^3 < n^5$ entonces $\theta(n^5)$

2. Dado el siguiente pseudocodigo:

```
def misterio(n):
    if n <= 1:
        return 1
    else:
        r = misterio(n / 2)
        i = 1
        while n > i*i:
            i = i + 1
        r = r + misterio(n / 2)
        return r
```

a. Plantee una ecuación de recurrencia para T(n), el tiempo que demora la función misterio(n)

```
misterio(n) = 2*misterio(n/2) para n > 1
misterio(n) = 1 para n \le 1
```

b. Dibuje el árbol de recursión y calcule:

i. La altura del mismo

lg₂n

- ii. El número de nodos por cada nivel 2ⁿ
- iii. La suma de los nodos de cada
 Si es cantidad de nodos seria 2ⁿ
 Si es complejidad entonces T(n)
- iv. La suma total Si es cantidad de nodos seria $2^{n+1}-1$ Si es complejidad entonces $[lg_2n]*T(n)$
- c. Determine el comportamiento asintótico de T(n) justificándolo de manera detallada

3. Ejercicio 22.3-1

Grafo dirigido

from\to	Black	Gray	White
Black	All kinds	Back,Cross	Back,Cross
Gray	Tree,Forward,Cross	Tree,Forward,Cross	Back,Cross
White	Cross,Tree,Forward	Cross,Back	All kinds

Grafo no dirigido

from\to	Black	Gray	White
Black	All kinds	All kinds	All kinds
Gray	-	Tree,Forward,Back	All kinds
White	-	-	All kinds

El triángulo inferior está definido por el triangulo superior

4. Ejercicio 22.3-2

Edge	Entrada	Salida
q	1	16
r	17	20
s	2	7
t	8	15
u	18	19
v	3	6
w	4	5

x	9	12
У	13	14
Z	10	11

Tree edges: (q,s),(s,v),(v,w),(q,t),(t,x),(x,z),(t,y),(r,u)

Back edges: (w,s),(y,q),(z,x) Forward edges: (q,w) Cross edges: (u,y),(r,y)

5. Ejercicio 22.4-2

Caminos(s,t):

Si s == t entonces:

Return 1

De otro modo si s.caminos j= nulo entonces:

Return s.caminos

De otro modo:

Para cada $w \in Adyacentes[u]$:

s.caminos = s.caminos + Caminos(w,t)

Return s.caminos

6. Resuelva los problemas en el sitio SPOX del curso (http://alg-unal.spox.spoj.pl/). Explique claramente su solución y haga el envió correspondiente al sitio.