CS1231S: Discrete Structures Tutorial #3: Sets

(Week 5:7 - 11 February 2022)

1. Discussion Questions

These are meant for you to discuss on the LumiNUS Forum. No answers will be provided.

D1 Which of the following are true? Which are false?

(a)
$$\emptyset \in \emptyset$$
.

(e)
$$\{\emptyset, 1\} = \{1\}.$$

(b)
$$\emptyset \subseteq \emptyset$$
.

(f)
$$1 \in \{\{1,2\}, \{2,3\}, 4\}.$$

(c)
$$\emptyset \in \{\emptyset\}$$
.

(g)
$$\{1,2\} \subseteq \{3,2,1\}$$
.

(d)
$$\emptyset \subseteq \{\emptyset\}$$
.

(h)
$$\{3,3,2\} \subseteq \{3,2,1\}$$
.

D2. Let
$$A = \{1, \{1,2\}, 2, \{2,1,1\}\}$$
. Find $|A|$.

D3. Let
$$A = \{0,1,4,5,6,9\}$$
 and $B = \{0,2,4,6,8\}$. Find $|A \cap B|$ and $|A \cup B|$.

2. Tutorial Questions

Note that the sets here are finite sets, unless otherwise stated.

- 1. Google for the **Principle of Inclusion-Exclusion** (PIE) on two sets.
 - a. Write out the formula for $|A \cup B|$ on sets A and B.
 - b. Use the formula to verify your answer for $|A \cup B|$ in D3.
 - c. Under what condition does $|A \cup B| = |A| + |B|$?
- 2. Let $\wp(A)$ denotes the power set of A. Find the following:

a.
$$\wp(\{a, b, c\});$$

b.
$$\wp(\wp(\wp(\emptyset)))$$
.

3. Let $A = \{5,6,7,...,12\}$. Find the following:

a.
$$\{n \in A : n \text{ is even}\};$$

b.
$$\{n \in A : n = m^2 \text{ for some } m \in \mathbb{Z}\};$$

c.
$$\{-5, -4, -3, ..., 5\} \setminus \{1, 2, 3, ..., 10\};$$

d.
$$\overline{\{5,7,9\} \cup \{9,11\}}$$
, where *A* is considered the universal set;

e.
$$\{(x,y) \in \{1,3,5\} \times \{2,4\} : x + y \ge 6\}$$
;

CS1231S: Discrete Structures Tutorial #3: Sets

Answers

2. Tutorial Questions

Note that the sets here are finite sets, unless otherwise stated.

- 1. Google for the **Principle of Inclusion-Exclusion** (PIE) on two sets.
 - a. Write out the formula for $|A \cup B|$ on sets A and B.
 - b. Use the formula to verify your answer for $|A \cup B|$ in D3.
 - c. Under what condition does $|A \cup B| = |A| + |B|$?

Answers:

- a. $|A \cup B| = |A| + |B| |A \cap B|$.
- b. D3: $|A \cup B| = |A| + |B| |A \cap B| = 6 + 5 3 = 8$.
- b. When $|A \cap B| = 0$, or $A \cap B = \emptyset$, that is, A and B are disjoint.
- 2. Let $\wp(A)$ denotes the power set of A. Find the following:
 - a. $\wp(\{a, b, c\});$
 - b. $\wp(\wp(\wp(\emptyset)))$.

Answers:

- a. $\mathscr{D}(\{a,b,c\}) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\}.$
- $b. \quad \wp \left(\wp \left(\wp (\wp (\emptyset)\right)\right) = \Big\{\emptyset, \ \{\emptyset\}, \ \big\{\{\emptyset\}\big\}, \ \big\{\emptyset, \{\emptyset\}\big\}\big\}.$
- 3. Let $A = \{5,6,7,...,12\}$. Find the following:
 - a. $\{n \in A : n \text{ is even}\};$
 - b. $\{n \in A : n = m^2 \text{ for some } m \in \mathbb{Z}\};$
 - c. $\{-5, -4, -3, ..., 5\} \setminus \{1, 2, 3, ..., 10\};$
 - d. $\overline{\{5,7,9\}} \cup \{9,11\}$, where *A* is considered the universal set;
 - e. $\{(x,y) \in \{1,3,5\} \times \{2,4\} : x + y \ge 6\}$;

Answers:

- a. $\{6, 8, 10, 12\}$
- b. {9}
- c. $\{-5, -4, -3, -2, -1, 0\}$
- d. $\overline{\{5,7,9\}} \cup \{9,11\} = \overline{5,7,9,11} = \{6,8,10,12\}$ where *A* is considered the universal set.
- e. $\{(3,4), (5,2), (5,4)\}$

4. Let $A = \{2n + 1 : n \in \mathbb{Z}\}$ and $B = \{2n - 5 : n \in \mathbb{Z}\}$. Is A = B? Prove that your answer is correct.

Answer:

Yes, A = B. Proof as shown below. (Recall that: $A = B \Leftrightarrow A \subseteq B \land B \subseteq A$.)

- 1. (⊆)
 - 1.1. Let $a \in A$.
 - 1.2. Use the definition of A to find an integer n such that a = 2n + 1.
 - 1.3. Then a = 2n + 1 = 2(n + 3) 5.
 - 1.4. $n+3 \in \mathbb{Z}$ (by closure of integers under +).
 - 1.5. Therefore, $a \in B$ (by the definition of B).
- 2. (⊇)
 - 2.1. Let *b* ∈ *B*.
 - 2.2. Use the definition of B to find an integer n such that b = 2n 5.
 - 2.3. Then b = 2n 5 = 2(n 3) + 1.
 - 2.4. $n-3 \in \mathbb{Z}$ (by closure of integers under -).
 - 2.5. Therefore, $b \in A$ (by the definition of A).
- 3. Therefore, A = B (by the definition of set equality).
- 5. Using definitions of set operations (also called the **element method**), prove that for all sets A, B, C,

$$A \cap (B \setminus C) = (A \cap B) \setminus C$$
.

Answer:

- 1. $A \cap (B \setminus C) = \{x : x \in A \land x \in (B \setminus C)\}$ by the definition of \cap
- 2. = $\{x : x \in A \land (x \in B \land x \notin C)\}$ by the definition of \
- 3. = $\{x : (x \in A \land x \in B) \land x \notin C\}$ by the associativity of \land
- 4. = $\{x : (x \in A \cap B) \land x \notin C\}$ by the definition of \cap
- 5. = $(A \cap B) \setminus C$ by the definition of \setminus

6. (AY2009/10 Semester 2 exam question)

Using set identities (Theorem 6.2.2), prove that for all sets A and B,

$$(A \cup \overline{B}) \cap (\overline{A} \cup B) = (A \cap B) \cup (\overline{A} \cap \overline{B}).$$

(You do not need to apply the set identities as strictly as you did for laws for logical equivalence.)

Answer:

- 1. $(A \cup \overline{B}) \cap (\overline{A} \cup B)$
- 2. = $((A \cup \overline{B}) \cap \overline{A}) \cup ((A \cup \overline{B}) \cap B)$ by the Distributive Law
- 3. = $((A \cap \bar{A}) \cup (\bar{B} \cap \bar{A})) \cup ((A \cap B) \cup (\bar{B} \cap B))$ by the Distributive Law
- 4. = $(\emptyset \cup (\bar{B} \cap \bar{A})) \cup ((A \cap B) \cup \emptyset)$ by the Complement Law
- 5. $= (\bar{B} \cap \bar{A}) \cup (A \cap B)$ by the Identity Law
- 6. $= (A \cap B) \cup (\bar{A} \cap \bar{B})$ by the Commutative Law
- 7. For sets A and B, define $A \oplus B = (A \setminus B) \cup (B \setminus A)$.
 - a. Let $A = \{1,4,9,16\}$ and $B = \{2,4,6,8,10,12,14,16\}$. Find $A \oplus B$.
 - b. Using set identities (Theorem 6.2.2), prove that for all sets A and B,

$$A \oplus B = (A \cup B) \setminus (A \cap B).$$

Answers:

- a. $A \setminus B = \{1,9\}; B \setminus A = \{2,6,8,10,12,14\}.$ Therefore, $A \oplus B = \{1,2,6,8,9,10,12,14\}.$
- b.
 - 1. $A \oplus B$
 - 2. $= (A \setminus B) \cup (B \setminus A)$ by the definition of \oplus
 - 3. = $((A \cap \overline{B}) \cup (B \cap \overline{A}))$ by the Set Difference Law
 - 4. = $((A \cap \bar{B}) \cup B) \cap ((A \cap \bar{B}) \cup \bar{A})$ by the Distributive Law
 - 5. = $((A \cup B) \cap (\bar{B} \cup B)) \cap ((A \cup \bar{A}) \cap (\bar{B} \cup \bar{A}))$ by the Distributive Law
 - 6. = $((A \cup B) \cap U) \cap (U \cap (\overline{B} \cup \overline{A}))$ by the Complement Law
 - 7. $= (A \cup B) \cap (\overline{B} \cup \overline{A})$ by the Identity Law
 - 8. = $(A \cup B) \cap (\bar{A} \cup \bar{B})$ by the Commutative Law
 - 9. $= (A \cup B) \cap (\overline{A \cap B})$ by De Morgan's Law
 - 10. = $(A \cup B) \setminus (A \cap B)$ by the Set Difference Law

8. Let A and B be set. Show that $A \subseteq B$ if and only if $A \cup B = B$.

Answer:

```
1. (⇒)
    1.1. Suppose A \subseteq B.
          (To show A \cup B = B, we need to show A \cup B \subseteq B and B \subseteq A \cup B.)
    1.2. (To show A \cup B \subseteq B)
          1.2.1. Let z ∈ A \cup B.
           1.2.2. Then z \in A or z \in B (by the definition of \cup).
           1.2.3. Case 1: Suppose z \in A, then z \in B as A \subseteq B from line 1.1.
           1.2.4. Case 2: Suppose z \in B, then z \in B.
           1.2.5. In either case, we have z \in B.
    1.3. (To show A \cup B \supseteq B)
          1.3.1. Let z \in B.
           1.3.2. Then z \in A or z \in B (by generalization).
           1.3.3. So z \in A \cup B (by the definition of \cup).
    1.4. Therefore, A \cup B = B (by the definition of set equality).
2. (⇐)
   2.1. Suppose A \cup B = B.
   2.2. Let z \in A.
           2.2.1. Then z \in A or z \in B (by generalization).
           2.2.2. So z \in A \cup B (by the definition of \cup).
```

- 2.3. Therefore, A ⊆ B.
 3. Therefore, A ⊆ B if and only if A ∪ B = B (from 1 and 2).
- 9. Hogwarts School of Witchcraft and Wizardry where Harry Potter attended was divided into 4 houses: Gryffindor, Hufflepuff, Ravenclaw and Slytherin.

2.2.3. So $z \in B$ since $A \cup B = B$ (from line 2.1).

Let HSWW be the set of students in the Hogwarts School of Witchcraft and Wizardry, and G, H, R and S be the sets of students in the 4 houses.

What are the necessary conditions for $\{G, H, R, S\}$ to be a partition of HSWW? Explain in English and the write logical statements.

Answers:

The necessary conditions are every student is in exactly one of the four houses, and every house has at least one student.

```
G \cap H = G \cap R = G \cap S = H \cap R = H \cap S = R \cap S = \emptyset. (That is, the houses are mutually disjoint sets.)
G \cup H \cup R \cup S = HSWW. (That is, every Hogwarts student is in one of the houses.)
G \neq \emptyset \wedge H \neq \emptyset \wedge R \neq \emptyset \wedge S \neq \emptyset. (That is, every house has at least one student.)
```

For questions 10 to 12, for sets A_m , A_{m+1} , ..., A_n , we define

$$\bigcup_{i=m}^{n} A_i = A_m \cup A_{m+1} \cup \dots \cup A_n$$

and

$$\bigcap_{i=m}^{n} A_i = A_m \cap A_{m+1} \cap \dots \cap A_n$$

10. Let $A_i = \{x \in \mathbb{Z} : x \ge i\}$ for all integers i. Write down $\bigcup_{i=2}^5 A_i$ and $\bigcap_{i=2}^5 A_i$ in roster notation.

Answers:

$$\bigcup_{i=2}^{5} A_i = \{2,3,4,\dots\}$$

$$\bigcap_{i=2}^{5} A_i = \{5,6,7,\dots\}$$

11. Let $V_i = \left\{ x \in \mathbb{R} : -\frac{1}{i} \le x \le \frac{1}{i} \right\} = \left[-\frac{1}{i}, \frac{1}{i} \right]$ for all positive integers i.

- a. What is $\bigcup_{i=1}^4 V_i$?
- b. What is $\bigcap_{i=1}^4 V_i$?
- c. What is $\bigcup_{i=1}^{n} V_i$, where n is a positive integer?
- d. What is $\bigcap_{i=1}^{n} V_i$, where n is a positive integer?
- e. Are V_1 , V_2 , V_3 , ... mutually disjoint?

Answers:

$$V_1 = [-1,1]; \ V_2 = \left[-\frac{1}{2}, \frac{1}{2}\right]; \ V_3 = \left[-\frac{1}{3}, \frac{1}{3}\right]; \ V_4 = \left[-\frac{1}{4}, \frac{1}{4}\right].$$

- a. $\bigcup_{i=1}^4 V_i = [-1,1].$
- b. $\bigcap_{i=1}^4 V_i = \left[-\frac{1}{4}, \frac{1}{4} \right].$
- c. $\bigcup_{i=1}^{n} V_i = [-1,1].$
- $d. \quad \bigcap_{i=1}^n V_i = \left[-\frac{1}{n}, \frac{1}{n} \right].$
- e. V_1, V_2, V_3, \dots are not mutually disjoint. They have the element 0.

12. Let $B_1, B_2, B_3, \dots, B_k$ and $C_1, C_2, C_3, \dots, C_l$ be sets such that

$$\bigcup_{i=1}^k B_i \subseteq \bigcap_{j=1}^l C_j$$

Show that $B_i \subseteq C_i$ for any $i \in \{1, 2, ..., k\}$ and any $j \in \{1, 2, ..., l\}$.

Answer:

- 1. Let $r \in \{1, 2, ..., k\}$ and $s \in \{1, 2, ..., l\}$.
- 2. Take any $z \in B_r$.
 - 2.1. Then $z \in B_1 \lor z \in B_2 \lor ... \lor z \in B_k$ as $r \in \{1, 2, ..., k\}$.
 - 2.2. So, $z \in B_1 \cup B_2 \cup ... \cup B_k = \bigcup_{i=1}^k B_i$ (by the definition of \cup).
 - 2.3. Hence, $z \in \bigcap_{j=1}^l C_j = C_1 \cap C_2 \cap ... \cap C_l$ (as we are given $\bigcup_{i=1}^k B_i \subseteq \bigcap_{j=1}^l C_j$).
 - 2.4. Thus $z \in C_1 \land z \in C_2 \land ... \land z \in C_l$ (by the definition of \cap).
 - 2.5. In particular, $z \in C_s$ as $s \in \{1, 2, ..., l\}$.
- 3. Therefore, $B_i \subseteq C_i$ for any $i \in \{1, 2, ..., k\}$ and any $j \in \{1, 2, ..., l\}$.