Date: -----

EXPERIMENT #8 ANALOG TO DIGITAL CONVERSION

I OBJECTIVES

The objective of this experiment is to familiarize the student with the basic principles of analog to digital conversion. The aspects of converting a uni-polar analog signal to a 8-bit digital signal are explored. The emphasis will be on the Successive Approximation technique based conversion.

II COMPONENTS AND INSTRUMENTATION

The focus will be on the ADC0809 which is a 8-bit Successive Approximation type ADC. For power, you will use +5 V. As well, you need some resistors, capacitors and a few LEDs. Also a hex inverter IC (SN7414) for generating the clock signal. Note that it is important to bypass the power supplies directly on your prototyping

board, using, for each supply, a parallel combination of a $100\mu F$ tantalum or electrolyte capacitors and or $0.1~\mu F$ low inductance ceramic capacitor. For measurement, you will use a bench multimeter.

III BRIEF THEORY

To convert an analog signal to digital form (i.e. to represent an analog voltage of 2.83623V using a binary number such as 101) we must know both the maximum possible range of the input signal (from 0V to a maximum, traditionally called $V_{\rm ref}$) and the number of bits that will be used to represent it (called N). Dividing a 0-4V range into 4 distinct levels gives four 1V steps: these are 0, 1, 2, and 3V (NOT 4V). So, in summary, if you power your A/D converter with 0 and $V_{\rm ref}$ volts, you can get out of it anything from 0V to just 1 step less than $V_{\rm ref}$, which mathematically is 0V to $V_{\rm ref}(2^{\rm N}-1)$.

Fig. 8.1 Pin diagram of ADC 0809 (refer to data sheets for more details)

The following general formula converts an analog input voltage V_{analog} to a digital output V_{out} (decimal equivalent of N-bit binary input with scaling):

 $Vout = \frac{B}{2^N} V_{ref}$ (8.1) where 'B' is the decimal equivalent of the N-bit binary output. That is

$$B = \sum_{i=0}^{N-1} b_i \, 2^i$$

Fig. 8.2 shows the transfer characteristics which is also known as the stair-case waveform of a 3-bit ADC. This is extended to 256 steps in a 8-bit ADC such as ADC0809. The operation of ADC-0809 is based on 'Successive Approximation' principle using (8.1).

The digital output voltage can be computed as

$$V_{out} = \frac{V_{ref}}{256} \left[\sum_{i=0}^{7} b_i 2^i \right]$$

Fig. 8.2 Transfer characteristics for a 3-bit ADC

The resolution of an ADC is the smallest change in the analog signal that can be processed by the ADC. It is given by

Resolution = $\frac{1}{2^N} pu$.

IV PREPARATION

- 1. An 8-bit ADC outputs all 1's when the input voltage is 5.1V. Calculate the resolution. Find the output voltage for an input of a)1 V b) 2.50 V c) 3.40V d) 4.68 V
- 2. An ADC converts a given positive analog signal into a digital signal. The reference voltage is 5 V. The least measurable voltage is not greater than 0.0048828 V. What is the number of bits at output?
- 3. What is the purpose of a clock input signal in the experiment using ADC-0809?
- 4. Specify the required voltages at AD A, AD B and AD C for selecting input channel 3 in ADC0809. (refer to data sheets)

V EXPLORATIONS

5.1

5.11 Design: Configure the voltage levels at AD A, AD B and AD C for selecting input channel in your set up using ADC0809. Use Vref= +5V. Indicate how the channel is selected.

5.12 Draw a neat circuit dia selection, clock frequency).	gram with all c	letails for your	ADC circuit.(Include	details of input of	channel

5.2 Procedure:

- 1. Make the connections as shown in the circuit diagram.
- 2. Set the analog signal input at the minimum level.
- 3. Set the **ALE** pin to logical high.
- 4. Set the **SOC** pin to logical high momentarily and then connect back to ground.
- 5. Set the **ALE** pin to back to logical low. The **EOC** should now be seen (indicated by the glow of the EOC LED).
- 6. Record the state of the output bits (logical high or low, indicated by the corresponding LED glowing or otherwise). Compute the equivalent analog output voltage.
- 7. Repeat the above steps (2-6) for different values of analog inputs (from 0 V to 5 V) and fill in the rest of the Table 8.1.

S.No.	Analog input V	Digital output (logical '0' or '1')							Decimal count	V _{out} (measured)	% error	
1		b 7	b 6	b 5	b4	b 3	b2	b1	b 0	(B)		
2		0	0	0	0	0	0	0	0			
3												
4												
5												
6												
7												
8												
9												
10												
11												
12												
13												
14												
15												
16		1	1	1	1	1	1	1	1			

5.3 Plot the transfer characteristics for the ADC0809 using both predicted (continuous line) and your measured
data (markers).

VI. INFERENCE/CONCLUSIONS