Problems on plate load test

Important Notes:

❖ If soil is clay then

i)
$$(q_f)$$
 foundation = (q_f) plate.

ii)
$$\frac{S_F}{B_F} = \frac{S_P}{B_P}$$

If soil is sandy then

i)
$$\frac{(q_f) \text{ Plate}}{\text{width of plate}} = \frac{(q_f) \text{ foundation}}{\text{width of footing}}$$

i.e.
$$\frac{(q_f) \text{ Plate}}{B_p} = \frac{(q_f) \text{ foundation}}{B_f}$$

ii)
$$\frac{S_F}{S_P} = \left\{ \frac{B_F(B_p + 0.3)}{B_P(B_F + 0.3)} \right\}^2$$

where,

 q_f - Ultimate bearing capacity

 $S_{\,F}$ and $\,S_{\,p}$ - settlement in foundation and plate respectively.

 $B_{\,p}$ and $\,B_{\,F}$ - width of plate and footing respectively.

Problem 1) following data corresponds to the load and settlement carried out with plate of size $30 \, \text{cm} \times 30 \, \text{cm}$ on sandy soil.

Load KN/m2	Settlement (mm)
40	2
80	5
120	9
160	14
200	20
240	30

Determine

- a) Ultimate bearing capacity of plate
- b) Ultimate bearing capacity of footing 1.2 x 1.2 mt
- c) Safe bearing capacity of footing with FOS = 3
- d) Settlement of foundation at the SBC as calculated above.

Answer:

- a) Ultimate bearing capacity (q_f) Plate = 170 KN/m2 see graph
- b) Since the soil is sandy;

$$\frac{(\,q_f)\,Plate}{B_{\,p}} = \,\frac{(\,q_f)\,foundation}{B_{\,f}}$$

$$\frac{170}{0.3} = \frac{(q_f) \text{ footing}}{1.2}$$

(q_f) footing = 680 KN/m2

c) SBC
$$q_{safe} = \frac{(q_f)}{FOS} = \frac{680}{3} = 226.67$$
 KN/m2

d) Settlement in plate S_{plate} = 23.5 mm = 0.023 mt.

Problem 2) A plate load test was conducted and the test data is given below. Find ultimate bearing capacity of soil.

Load q KN/m2	Dial guage reading			
	А	В	С	
0	0	0	0	
55	186	192	192	
110	362	365	353	
165	766	758	756	
220	1886	1889	1865	
280	4810	4806	4784	
335	14006	14010	13984	

The least count of dial guage is 0.01 mm . size of the plate is 300 mm square .

Answer:

In this problem , it is not mention the type of soil. So, we are assuming the soil as clay (Cohesive)

As per note, we have (
$$q_f$$
) soil = (q_f) foundation = (q_f) plate

$$(q_f)$$
 plate = 320 KN/m2see graph

With settlement S = 18 mm

Load q	Dial guage reading		Dial guage reading Avg. value of dial	Final settlement in	
KN/m2	Α	В	С	guage reading	mm
0	0	0	0	0	0 x 0.01 = 0
55	186	192	192	190	190 x 0.01 = 1.9
110	362	365	353	360	360 x 0.01 = 3.6
165	766	758	756	760	760 x 0.01 = 7.6
220	1886	1889	1865	1880	1880 x 0.01 = 18.8
280	4810	4806	4784	4800	4800 x 0.01 = 48
335	14006	14010	13984	14000	14000 x 0.01 = 140

Problem 3) A plate load test is carried out and following results were obtained.

Load KN/m2	Settlement (mm)	
50	1.5	
100	2	
200	4	
300	7.5	
400	12.5	
500	20	
600	40	

Find ultimate bearing capacity of the soil?

In this problem , it is not mention the type of soil. So, we are assuming the soil as clay (Cohesive)

As per note, we have ($q_f)$ soil = $\,$ ($q_f)$ foundation = $\,$ ($q_f)$ plate

(q_f) plate = 530 KN/m2see graph

With settlement S = 11.5 mm