Faculté des Sciences Aix*Marseille Université

Calculatrices autorisées : NON

Année universitaire 2018/2019

Site : 🛮 Lumii	y \square St-Charles	□ St-Jérôme	\Box Cht-Gombert	⊠ Aix-Montperrin	\square Aubagne-SATIS
Sujet de : $\boxtimes 1^{\text{er}}$ semestre $\square 2^{\text{ème}}$ semestre \square Session 2 Durée de l'épreuve : 2h					: 2h
Examen de : L2		Nom du diplôme : Licence d'Informatique			
Code du module : SIN3U07TA		Libellé du module : Probabilite pour l'informatique			

Exercice 1. Combinatoire (2pt)

Sur chaque pièce d'un jeu de dominos figurent deux symboles, qui peuvent être identiques, pris parmi {0;1;2;3;4;5;6}. L'ordre des deux symboles sur la pièce n'est pas significatif. Deux pièces ne peuvent pas être identiques.

Combien y a-t-il de pièces dans un jeu de dominos?
 28 pièces = (⁷₂) pièces avec des symboles différents + 7 pièces avec des symboles identiques

Documents autorisés : NON

- **2.** On considère l'expérience qui consiste è tirer au hasard un domino. Quelle est la probabilité p de tirer un domino qui contient au moins un six ?
 - Il y a 7 pièces contenant 1 six, donc la probabilité est de 7/28=1/4

Exercice 2.

Axiomes des probabilités et indépendance (3pt)

En France, environ 30% des hommes fument des cigarettes normales et 10% des hommes utilisent la cigarette électronique. La proportion d'hommes qui ne fument aucun type de cigarette (ni normale, ni électronique) est de 63%.

- 1. Quelle est la proportion d'hommes qui fument les deux types de cigarette?
 - Si N est l'événement "fumer la cigarette normale" et E "utiliser la cigarette électronique", alors $P(N\cap E)=P(N)+P(E)-P(N\cup E)$. Sachant que $P(\overline{N\cup E})=0,63$, $P(N\cup E)=1-P(\overline{N\cup E})=0,37$, donc $P(N\cap E)=0,3+0,1-0,37=0,03=3\%$ des hommes.
- **2.** Quelle est la proportion d'hommes qui fument uniquement des cigarettes normales, et n'utilisent pas la cigarette électronique?
 - $P(N \cap \overline{E}) + P(N \cap E) = P(N)$, donc $P(N \cap \overline{E}) = P(N) P(N \cap E) = 0, 3 0, 03 = 0, 27 = 27\%$ deshommes.
- 3. Les événements N = "fumer la cigarette normale" et E = "utiliser la cigarette électronique" sont-ils indépendants ? Pourquoi ?
 - $P(N \cap E) = 0.03 = 0.3 \times 0.1 = P(N) \times P(E)$ donc oui, les événements sont indépendants.

Exercice 3.

Probabilité conditionnelle (3pt)

Dans une entreprise deux ateliers fabriquent les mêmes pièces. L'atelier 1 fabrique en une journée deux fois plus de pièces que l'atelier 2. Le pourcentage de pièces défectueuses est 3% pour l'atelier 1 et 4% pour l'atelier 2. On prélève une pièce au hasard dans l'ensemble de la production d'une journée. Déterminer :

- 1. la probabilité que cette pièce provienne de l'atelier 1;
- 2. la probabilité que cette pièce provienne de l'atelier 1 et qu'elle soit défectueuse;
- 3. la probabilité que cette pièce provienne de l'atelier 1 sachant qu'elle est défectueuse.
- Notons A l'événement "la pièce provient de l'atelier 1", B l'événement "la pièce provient de l'atelier 2" et D l'événement "la pièce est défectueuse".
- 3.1 L'énoncé nous dit que les 2/3 des pièces produites proviennent de l'atelier 1. Donc P(A) = 2/3.
- 3.2 $P(A \cap D) = P(D|A) \cdot P(A) = 0,03 \times \frac{2}{3} = \frac{1}{50}$.
- 3.3 De la même façon, on obtient $P(B \cap D) = \frac{1}{75}$. Donc $P(D) = P(A \cap D) + P(B \cap D) = \frac{1}{30}$. Ainsi, $P(A|D) = \frac{P(A \cap D)}{P(D)} = \frac{3}{5}$.

Exercice 4. *Combinatoire* (2pt)

Considérez trois groupes d'étudiants en L2 informatique contenant le même nombre n d'étudiants chacun. On veut choisir un comité de représentants contenant 3 membres. Les étudiants sont tous distinguables, et l'ordre dans le comité n'est pas significatif.

- Précision barème : 0,5 point par question
 - 1. Combien de comités différents peut-on former si on choisit les étudiants au hasard parmi les 3n étudiants? \mathbb{R} $\binom{3n}{3}$
 - 2. Combien de comités différents peut-on former si on choisit un étudiant par groupe?
 - 3. Combien de comités différents peut-on former si on choisit trois étudiants du même groupe? $3 \times \binom{n}{3}$
 - 4. Combien de comités différents peut-on former si on choisit deux étudiants d'un même groupe, et un étudiant d'un autre groupe?
 - On choisit d'abord 2 groupes parmi les 3, où l'ordre est significatif (car un groupe aura 2 membres du comité, l'autre seulement 1) = $A_3^2 = 6$ Ensuite, on choisit un membre parmi n du groupe 1, et deux membres parmi n du groupe 2. $\binom{n}{2}\binom{n}{1}A_3^2 = 3n^2(n-1)$

Exercice 5. Theorème de Bayes (2pt)

Un lot de 100 dés contient 25 dés pipés tels que la probabilité d'apparition d'un six soit de 1/2. On choisit un dé au hasard, on le jette, et on obtient un 6. Quelle est la probabilité que le dé soit pipé?

Précision barème : 1 point pour le numérateur, 1 point pour le dénominateur. 0,5 si uniquement la modélisation est correcte.

On note D l'événement : "le dé est pipé", et S l'événement : "on obtient 6". L'énoncé donne P(D)=25/100=1/4 et P(S|D) = 1/2. La formule de Bayes nous permet de calculer P(D|S). Comme on a $P(\overline{D}) = 1 - P(D) = 3/4$ et $P(S|\overline{D}) = 1/6$, on obtient finalement :

$$P(D|S) = \frac{P(D)P(S|D)}{P(D)P(S|D) + P(\overline{D})P(S|\overline{D})}$$
$$= \frac{1/4 * 1/2}{1/4 * 1/2 + 3/4 * 1/6}$$
$$= \frac{1/8}{1/8 + 1/8}$$

= 1/2

Exercice 6. Variables aléatoires discrètes : la loi binomiale (3pt)

Une entreprise pharmaceutique décide de faire des économies sur les tarifs d'affranchissements des courriers publicitaires à envoyer aux clients. Pour cela, elle décide d'affranchir, au hasard, une proportion de 3 lettres sur 5 au tarif urgent, les autres au tarif normal.

- 1. Quelle est la probabilité p qu'une lettre soit affranchie au tarif urgent? p = 3/5
- 2. Soit X la variable aléatoire discrète "nombre de lettres affranchies au tarif urgent parmi 10 lettres", quelle est la loi de probabilité de X, quelle est son espérance, et quelle est sa variance? \mathbb{Z} X suit une loi binomiale de paramètres p=3/5 et n=10. Son espérance E[X]=np=6 et sa variance
- $Var(X) = np(1-p) = \frac{12}{5}$
- 3. Quatre lettres sont envoyées dans un cabinet médical de quatre médecins : quelle est la probabilité des événements : A = "Exactement 2 médecins sur les quatre reçoivent une lettre au tarif urgent" et B = "Au moins l'un d'entre eux reçoit une lettre au tarif urgent".

Le nombre de lettres N affranchies au tarif urgent suit une loi binomiale avec n=4 et p=3/5.

$$P(A) = P(N = 2) = {4 \choose 2}(3/5)^2(2/5)^2 = \frac{216}{625}$$

$$P(B) = P(N > 0) = 1 - P(N = 0) = 1 - {4 \choose 0}(3/5)^0(2/5)^4 = 1 - \frac{16}{625} = \frac{609}{625}$$

Une tension de bruit électronique est modélisée par une variable réelle aléatoire centrée (i.e. avec espérance nulle), X, qui suit une loi normale f_X de variance σ^2 .

1. Exprimez la variable normale centrée réduite correspondante Z en fonction de X. Quelle est l'espérance et la variance de Z?

$$Z = \frac{X}{\sigma}$$

Comme pour toute variable normale centrée réduite, $E[Z] = \mu = 0$ et Var(Z) = 1.

2. Quelle est la probabilité que la valeur absolue de cette tension dépasse 2σ ? Donnez votre réponse en fonction de la fonction de répartition $\Phi(a)$ de Z.

$$P(|X| > 2\sigma) = P(X < -2\sigma) + P(X > 2\sigma) = P(Z < -2) + P(Z > 2) = 2 \times \Phi(-2) = 2 \times (1 - \Phi(2))$$

Exercice 8. La loi triangulaire (3pt)

La loi triangulaire est beaucoup utilisée en traitement du son. Notamment, soit X la variable aléatoire continue de densité $f_X(x)$ donnée par la formule

$$f_X(x) = \begin{cases} \frac{1}{a^2}(a - |x|) & -a \le x \le a \\ 0 & \text{sinon,} \end{cases}$$

où a est un paramètre strictement positif.

1. Vérifier que f_X est bien une densité de probabilité. Rappel $\int |x| \, dx = \frac{x|x|}{2}$

$$\int_{-a}^{a} \frac{1}{a^{2}} (a - |x|) dx = \frac{1}{a^{2}} \left[a \int_{-a}^{a} dx - \int_{-a}^{a} |x| dx \right]$$

$$= \frac{1}{a^{2}} \left[ax \Big|_{-a}^{a} - \frac{x|x|}{2} \Big|_{-a}^{a} \right]$$

$$= \frac{1}{a^{2}} \left[a^{2} + a^{2} - \left(\frac{a^{2}}{2} + \frac{a^{2}}{2} \right) \right]$$

$$= \frac{a^{2}}{a^{2}}$$

$$= 1$$

- **2.** Représenter cette densité sur un graphique avec X en abscisse et f_X en ordonnée Triangle de coordonnées (-a,0), (a,0) et (0,1/a).
- **3.** Calculer l'espérance E[X]

$$E[X] = \int_{-a}^{a} \frac{x}{a^{2}} (a - |x|) dx$$

$$= \frac{1}{a^{2}} \left[a \int_{-a}^{a} x dx - \int_{-a}^{a} x |x| dx \right]$$

$$= \frac{1}{a^{2}} \left[a \frac{x^{2}}{2} \Big|_{-a}^{a} - \frac{x^{2}|x|}{3} \Big|_{-a}^{a} \right]$$

$$= \frac{1}{a^{2}} \left[\frac{a^{3}}{2} - \frac{a^{3}}{2} - \left(\frac{a^{3}}{3} - \frac{a^{3}}{3} \right) \right]$$

$$= 0$$