PHYS12 CH: 4.1-4.4, 4.6-4.8

Force, Mass, Systems, and Fundamental Forces

Mr. Gullo

September 17, 2024

• Understand the definition of **force** as a vector.

- Understand the definition of **force** as a vector.
- Define mass and inertia.

- Understand the definition of force as a vector.
- Define mass and inertia.
- State and apply Newton's First, Second, and Third Laws of Motion.

- Understand the definition of **force** as a vector.
- Define mass and inertia.
- State and apply Newton's First, Second, and Third Laws of Motion.
- Define a system of interest and distinguish between external and internal forces.

- Understand the definition of **force** as a vector.
- Define mass and inertia.
- State and apply Newton's First, Second, and Third Laws of Motion.
- Define a system of interest and distinguish between external and internal forces.
- Draw and use Free-Body Diagrams (FBDs) to solve problems.

- Understand the definition of **force** as a vector.
- Define mass and inertia.
- State and apply Newton's First, Second, and Third Laws of Motion.
- Define a system of interest and distinguish between external and internal forces.
- Draw and use Free-Body Diagrams (FBDs) to solve problems.
- Apply Newton's laws to solve problems for both single objects and multi-body systems.

From Physics 11 to Physics 12

Review from Physics 11

- Newton's Laws for a single object.
- Drawing a Free-Body Diagram for one object.
- Identifying forces like gravity (\vec{w}) , normal force (\vec{N}) , and tension (\vec{T}) .
- Solving for acceleration or force on one object using $\sum \vec{F} = m\vec{a}$.

New in Physics 12

- Applying Newton's Laws to systems of multiple objects.
- Strategically choosing the "system of interest" to simplify problems.
- Understanding how internal forces cancel out within a system.
- Solving for forces between connected objects.

• A force is fundamentally a **push** or a **pull**.

- A force is fundamentally a push or a pull.
- It is a **vector quantity**, meaning it has both magnitude (how strong it is) and direction.

- A force is fundamentally a push or a pull.
- It is a **vector quantity**, meaning it has both magnitude (how strong it is) and direction.
- The standard unit of force is the Newton (N).
 - $1 \text{ N} = 1 \text{ kg} \cdot \text{m/s}^2$

- A force is fundamentally a **push** or a **pull**.
- It is a **vector quantity**, meaning it has both magnitude (how strong it is) and direction.
- The standard unit of force is the Newton (N).
 - $1 \text{ N} = 1 \text{ kg} \cdot \text{m/s}^2$
- Forces are added together using vector addition to find the **net force** (\vec{F}_{net}) .

A Free-Body Diagram is a simplified drawing used to analyze the forces on an object or system.

• The system of interest is represented by a single **dot**.

A Free-Body Diagram is a simplified drawing used to analyze the forces on an object or system.

- The system of interest is represented by a single **dot**.
- We draw vector arrows representing all external forces acting on the system.

A Free-Body Diagram is a simplified drawing used to analyze the forces on an object or system.

- The system of interest is represented by a single dot.
- We draw vector arrows representing all external forces acting on the system.
- We do **not** draw internal forces or forces exerted by the system.

A Free-Body Diagram is a simplified drawing used to analyze the forces on an object or system.

- The system of interest is represented by a single dot.
- We draw vector arrows representing all external forces acting on the system.
- We do **not** draw internal forces or forces exerted by the system.
- The FBD is the most critical first step for solving almost any dynamics problem.

Context: Visualizing Net Force

• Let's visualize how forces on an object combine to produce a net force using a Free-Body Diagram.

Context: Visualizing Net Force

- Let's visualize how forces on an object combine to produce a net force using a Free-Body Diagram.
- We will use the example of two ice skaters pushing a third skater from Figure 4.3 in your textbook.

Context: Visualizing Net Force

- Let's visualize how forces on an object combine to produce a net force using a Free-Body Diagram.
- We will use the example of two ice skaters pushing a third skater from Figure 4.3 in your textbook.
- The two pushes $(\vec{F_1} \text{ and } \vec{F_2})$ are individual external forces. The **net force** $(\vec{F_{tot}})$ is their vector sum, which determines the direction of acceleration.

Visualization: Adding Forces on an FBD

[Diagram based on Figure 4.3] **Physical Situation:**

• An overhead view shows two skaters applying forces \vec{F}_1 and \vec{F}_2 to a third skater.

[Image of two skaters pushing a third skater]

Free-Body Diagram:

- The third skater is a dot.
- $\vec{F_1}$ and $\vec{F_2}$ are drawn tail-to-dot.
- The resultant vector \vec{F}_{tot} shows the net force.

[FBD showing two force vectors from a point]

• "A body at rest remains at rest, or, if in motion, remains in motion at a constant velocity unless acted on by a **net external force**."

- "A body at rest remains at rest, or, if in motion, remains in motion at a constant velocity unless acted on by a net external force."
- This means an object's velocity **will not change** if the net force on it is zero ($\vec{F}_{net} = 0$).

- "A body at rest remains at rest, or, if in motion, remains in motion at a constant velocity unless acted on by a net external force."
- This means an object's velocity **will not change** if the net force on it is zero $(\vec{F}_{net} = 0)$.
- **Inertia** is the property of an object to resist changes in its state of motion.

- "A body at rest remains at rest, or, if in motion, remains in motion at a constant velocity unless acted on by a net external force."
- This means an object's velocity **will not change** if the net force on it is zero $(\vec{F}_{net} = 0)$.
- Inertia is the property of an object to resist changes in its state of motion.
- Mass (m) is the quantitative measure of inertia. More mass means more inertia.

 "Whenever one body exerts a force on a second body, the first body experiences a force that is equal in magnitude and opposite in direction to the force that it exerts."

- "Whenever one body exerts a force on a second body, the first body experiences a force that is equal in magnitude and opposite in direction to the force that it exerts."
- Mathematically: $\vec{F}_{A \text{ on } B} = -\vec{F}_{B \text{ on } A}$

- "Whenever one body exerts a force on a second body, the first body experiences a force that is equal in magnitude and opposite in direction to the force that it exerts."
- Mathematically: $\vec{F}_{A \text{ on } B} = -\vec{F}_{B \text{ on } A}$
- CRITICAL POINT: The two forces in an action-reaction pair always act on different objects.

- "Whenever one body exerts a force on a second body, the first body experiences a force that is equal in magnitude and opposite in direction to the force that it exerts."
- Mathematically: $\vec{F}_{A \text{ on } B} = -\vec{F}_{B \text{ on } A}$
- CRITICAL POINT: The two forces in an action-reaction pair always act on different objects.
 - Therefore, they never cancel each other out when analyzing the motion of a single object.

Context: Visualizing Action-Reaction

• Let's visualize how action-reaction pairs work. The key is to see that the forces act on different systems.

Context: Visualizing Action-Reaction

- Let's visualize how action-reaction pairs work. The key is to see that the forces act on different systems.
- We will look at a swimmer pushing off the wall of a pool (based on Figure 4.9).

Context: Visualizing Action-Reaction

- Let's visualize how action-reaction pairs work. The key is to see that the forces act on different systems.
- We will look at a swimmer pushing off the wall of a pool (based on Figure 4.9).
- The "action" is the swimmer pushing on the wall.
- The "reaction" is the wall pushing on the swimmer. Only the reaction force affects the swimmer's motion.

Visualization: Swimmer at the Wall

[Diagram based on Figure 4.9]

• Force 1 (Action): The swimmer's feet exert a force $\vec{F}_{feet_on_wall}$ on the wall. This force acts ON THE WALL.

Visualization: Swimmer at the Wall

[Diagram based on Figure 4.9]

- Force 1 (Action): The swimmer's feet exert a force $\vec{F}_{feet_on_wall}$ on the wall. This force acts ON THE WALL.
- Force 2 (Reaction): The wall exerts an equal and opposite force $\vec{F}_{wall_on_feet}$ on the swimmer. This force acts ON THE SWIMMER.

Visualization: Swimmer at the Wall

[Diagram based on Figure 4.9]

- Force 1 (Action): The swimmer's feet exert a force $\vec{F}_{feet_on_wall}$ on the wall. This force acts ON THE WALL.
- Force 2 (Reaction): The wall exerts an equal and opposite force $\vec{F}_{wall_on_feet}$ on the swimmer. This force acts ON THE SWIMMER.
- The swimmer accelerates because the net external force on *her* (from the wall) is not zero.

[Image showing swimmer pushing off a wall, with force vectors on both swimmer and wall]

The "System": A Key Problem-Solving Tool

• In physics, a **system** is the object or collection of objects we choose to analyze.

The "System": A Key Problem-Solving Tool

- In physics, a system is the object or collection of objects we choose to analyze.
- External forces act on the system from the outside.
 - These are the forces that cause the system to accelerate.
 - They are the only forces shown on an FBD of the system.

The "System": A Key Problem-Solving Tool

- In physics, a **system** is the object or collection of objects we choose to analyze.
- External forces act on the system from the outside.
 - These are the forces that cause the system to accelerate.
 - They are the only forces shown on an FBD of the system.
- **Internal forces** are forces that objects within the system exert on each other.
 - These forces always come in action-reaction pairs and cancel out, so they do not affect the system's overall acceleration.

Context: Choosing a System

• The choice of system is a strategic decision that can make a problem much easier to solve.

Context: Choosing a System

- The choice of system is a strategic decision that can make a problem much easier to solve.
- Let's see how changing the system changes which forces are external.

Context: Choosing a System

- The choice of system is a strategic decision that can make a problem much easier to solve.
- Let's see how changing the system changes which forces are external.
- We'll use the example of a professor pushing a cart from Figure 4.10.

Visualization: Professor and Cart Systems

[Diagram based on Figure 4.10] System 1: (Professor + Cart)

- External forces: Force from floor on feet, friction.
- Internal force: Professor pushing cart, cart pushing professor. These cancel.

System 2: (Cart Only)

- External forces: Force from professor on cart, friction.
- No internal forces to consider.

[Image showing a professor pushing a cart, with boxes drawn around "System 1" and "System 2"]

Newton's Second Law: The Law of Acceleration

 "The acceleration of a system is directly proportional to and in the same direction as the **net external force** acting on the system, and is inversely proportional to its total mass."

Newton's Second Law: The Law of Acceleration

- "The acceleration of a system is directly proportional to and in the same direction as the **net external force** acting on the system, and is inversely proportional to its total mass."
- This is the central, quantitative law of dynamics. It connects force, mass, and motion.

Essential Equations

Newton's Second Law

$$\vec{F}_{net} = m\vec{a}$$

- \vec{F}_{net} is the vector sum of all external forces on the system.
- *m* is the total mass of the system.
- \vec{a} is the acceleration of the system.

Essential Equations

Newton's Second Law

$$\vec{F}_{net} = m\vec{a}$$

- \vec{F}_{net} is the vector sum of all external forces on the system.
- *m* is the total mass of the system.
- \vec{a} is the acceleration of the system.

Weight (Force of Gravity)

$$\vec{w} = m\vec{g}$$

- \vec{w} is the force of gravity on an object.
- *m* is the object's mass.
- \vec{g} is the acceleration due to gravity (approx. 9.8 m/s² down on Earth).

4 D > 4 D > 4 D > 4 D > 3 P 9 Q P

I Do: Getting up to Speed (Example 4.3)

Problem

A professor (65.0 kg) pushes a cart (12.0 kg) with equipment (7.0 kg). She exerts a 150 N backward force on the floor. All forces opposing the motion total 24.0 N. Calculate the acceleration.

I Do: Getting up to Speed (Example 4.3)

Problem

A professor (65.0 kg) pushes a cart (12.0 kg) with equipment (7.0 kg). She exerts a 150 N backward force on the floor. All forces opposing the motion total 24.0 N. Calculate the acceleration.

System of Interest

For this question, our system is the **professor** + **cart** + **equipment** because we want the acceleration of everything together.

I Do: GUESS Method (G & U)

G - Givens

- $m_{prof} = 65.0 \text{ kg}$
- $m_{cart} = 12.0 \text{ kg}$
- $m_{equip} = 7.0 \text{ kg}$
- Force on floor = 150 N
- \Longrightarrow $F_{floor_on_prof} = 150 \text{ N}$ [forward]
- f = 24.0 N [backward]

U - Unknown

Acceleration, a =?

E - Equation

• Start with Newton's Second Law for the whole system:

$$F_{net} = m_{total}a$$

E - Equation

• Start with Newton's Second Law for the whole system:

$$F_{net} = m_{total}a$$

 The net external force is the forward force from the floor minus the backward friction:

$$F_{net} = F_{floor_on_prof} - f$$

E - Equation

• Start with Newton's Second Law for the whole system:

$$F_{net} = m_{total}a$$

 The net external force is the forward force from the floor minus the backward friction:

$$F_{net} = F_{floor_on_prof} - f$$

• The total mass is the sum of all parts:

$$m_{total} = m_{prof} + m_{cart} + m_{equip}$$

E - Equation

Start with Newton's Second Law for the whole system:

$$F_{net} = m_{total}a$$

 The net external force is the forward force from the floor minus the backward friction:

$$F_{net} = F_{floor_on_prof} - f$$

• The total mass is the sum of all parts:

$$m_{total} = m_{prof} + m_{cart} + m_{equip}$$

Rearrange for the unknown, a:

$$a = \frac{F_{net}}{m_{total}} = \frac{F_{floor_on_prof} - f}{m_{prof} + m_{cart} + m_{equip}}$$

I Do: GUESS Method (S & S)

S - Substitute

First, calculate total mass:

$$m_{total} = 65.0 + 12.0 + 7.0 = 84.0 \text{ kg}$$

Now substitute into the acceleration equation:

$$a = \frac{150 \text{ N} - 24.0 \text{ N}}{84.0 \text{ kg}}$$

I Do: GUESS Method (S & S)

S - Substitute

First, calculate total mass:

$$m_{total} = 65.0 + 12.0 + 7.0 = 84.0 \text{ kg}$$

Now substitute into the acceleration equation:

$$a = \frac{150 \text{ N} - 24.0 \text{ N}}{84.0 \text{ kg}}$$

S - Solve

Calculate the final value:

$$a = \frac{126 \text{ N}}{84.0 \text{ kg}} = 1.5 \text{ m/s}^2$$

• $a = 1.5 \text{ m/s}^2 \text{ [forward]}$

We Do: Force on the Cart (Example 4.4)

Problem

Using the data from the previous problem, calculate the force the professor exerts on the cart.

We Do: Force on the Cart (Example 4.4)

Problem

Using the data from the previous problem, calculate the force the professor exerts on the cart.

New System of Interest

Now, our system must be the **cart** + **equipment** because the force from the professor is an *external force* on this new system.

We Do: GUESS Method (G & U)

G - Givens

- $m_{cart} = 12.0 \text{ kg}$
- $m_{equip} = 7.0 \text{ kg}$
- $m_{sys2} = 19.0 \text{ kg}$
- $a = 1.5 \text{ m/s}^2 \text{ (from "I do")}$
- f_{total} = 24.0 N (The problem states this friction applies to cart wheels and air resistance, so it acts on the cart system).

U - Unknown

Force from professor on cart,
 F_{prof} =?

E - Equation

Apply Newton's Second Law to our new system (the cart + equipment):

$$F_{net} = m_{sys2}a$$

E - **Equation**

Apply Newton's Second Law to our new system (the cart + equipment):

$$F_{net} = m_{sys2}a$$

- **Question:** What forces make up F_{net} for this system?
 - Answer: The forward push from the professor (F_{prof}) and the backward friction (f).

$$F_{prof} - f = m_{sys2}a$$

E - **Equation**

 Apply Newton's Second Law to our new system (the cart + equipment):

$$F_{net} = m_{sys2}a$$

- **Question:** What forces make up F_{net} for this system?
 - Answer: The forward push from the professor (F_{prof}) and the backward friction (f).

$$F_{prof} - f = m_{sys2}a$$

- Question: How do we rearrange for the unknown, F_{prof} ?
 - Answer: Add friction f to both sides.

$$F_{prof} = m_{sys2}a + f$$

We Do: GUESS Method (S & S)

S - Substitute

• Now we plug in the values for our system.

We Do: GUESS Method (S & S)

S - Substitute

- Now we plug in the values for our system.
- Question: What values should we use for m_{sys2} , a, and f?
 - $m_{sys2} = 19.0 \text{ kg}$
 - $a = 1.5 \text{ m/s}^2$
 - f = 24.0 N

$$F_{prof} = (19.0 \text{ kg})(1.5 \text{ m/s}^2) + 24.0 \text{ N}$$

We Do: GUESS Method (S & S)

S - Substitute

- Now we plug in the values for our system.
- Question: What values should we use for m_{sys2} , a, and f?
 - $m_{svs2} = 19.0 \text{ kg}$
 - $a = 1.5 \text{ m/s}^2$
 - f = 24.0 N

$$F_{prof} = (19.0 \text{ kg})(1.5 \text{ m/s}^2) + 24.0 \text{ N}$$

S - Solve

Let's calculate the result.

$$F_{prof} = 28.5 \text{ N} + 24.0 \text{ N} = 52.5 \text{ N}$$

• $F_{prof} = 53 \text{ N}$

You Do: Drag Force on a Barge (Example 4.7)

Problem

Two tugboats push on a barge. Tugboat 1 exerts a force of 2.7×10^5 N in the x-direction. Tugboat 2 exerts a force of 3.6×10^5 N in the y-direction. The mass of the barge is 5.0×10^6 kg and its acceleration is observed to be 7.5×10^{-2} m/s² in the direction of the net applied force from the tugboats.

What is the drag force of the water on the barge resisting the motion?

Hint

1. Find the magnitude and direction of the total applied force from the tugboats. 2. Calculate the net force needed to cause the observed acceleration ($F_{net} = ma$). 3. The drag force is the difference between the applied force and the net force.

Example: Rugby Players (Problem 16)

A rugby player (90.0 kg) is accelerating at 1.20 $\rm m/s^2$ backward while being pushed by an opposing player exerting 800 N.

- (a) What is the force of friction between the losing player's feet and the grass?
- (b) What force must the winning player (110 kg) exert on the ground to move forward at the same acceleration?

Problem 16 - Solution (a)

System of Interest: Losing Player

- $F_{\text{net}} = F_{push} f = ma$
- $f = F_{push} ma$
- f = 800 N (90.0 kg)(1.20 m/s²)
- f = 800 N 108 N
- f = 692 N

Problem 16 - Solution (b)

System of Interest: Both Players

- Let F_{ground} be the force the winner exerts on the ground.
- $\bullet \ \ F_{net} = F_{ground} f = (m_1 + m_2)a$
- $F_{ground} = (m_1 + m_2)a + f$
- $F_{ground} = (90.0+110) \text{kg}(1.20 \text{m/s}^2) + 692 \text{N}$
- $F_{ground} = 240N + 692N$
- \bullet $|F_{ground} = 932N$

Complex Systems and Multi-Dimensional Forces

Newton's laws apply to more complex scenarios:

Complex Systems and Multi-Dimensional Forces

- Newton's laws apply to more complex scenarios:
 - Two-dimensional force problems with vector addition
 - Objects with multiple forces at different angles
 - Real-world applications with drag and resistance

Complex Systems and Multi-Dimensional Forces

- Newton's laws apply to more complex scenarios:
 - Two-dimensional force problems with vector addition
 - Objects with multiple forces at different angles
 - Real-world applications with drag and resistance
- These problems integrate kinematics with dynamics

Complex Systems and Multi-Dimensional Forces

- Newton's laws apply to more complex scenarios:
 - Two-dimensional force problems with vector addition
 - Objects with multiple forces at different angles
 - Real-world applications with drag and resistance
- These problems integrate kinematics with dynamics
- Strategic use of coordinate systems and trigonometry is essential

Example: Drag Force on a Barge (Example 4.7)

Problem Summary

Two tugboats push a barge at perpendicular angles ($F_1 = 2.7 \times 10^5$ N in x-direction, $F_2 = 3.6 \times 10^5$ N in y-direction). The barge (mass 5.0×10^6 kg) accelerates at 7.5×10^{-2} m/s². Find the drag force.

Example: Drag Force on a Barge (Example 4.7)

Problem Summary

Two tugboats push a barge at perpendicular angles ($F_1=2.7\times10^5$ N in x-direction, $F_2=3.6\times10^5$ N in y-direction). The barge (mass 5.0×10^6 kg) accelerates at 7.5×10^{-2} m/s². Find the drag force.

Solution Approach

- Find total applied force: $F_{app} = \sqrt{F_1^2 + F_2^2} = 4.5 \times 10^5 \text{ N}$
- Apply Newton's 2nd Law: $F_{net} = F_{app} F_D = ma$
- Result: $F_D = 7.5 \times 10^4$ N (opposite to motion direction)

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ②

Visualization: Barge Problem (Figure 4.21)

[Diagram based on Figure 4.21]

Two-Dimensional Force Analysis:

- Two tugboats apply perpendicular forces to a barge
- Force vectors add using Pythagorean theorem
- Resultant \vec{F}_{app} points at angle: $\theta = \tan^{-1}(F_2/F_1) = 53$
- Drag force \vec{F}_D opposes motion (fluid resistance)
- Net force determines acceleration via $\vec{F}_{net} = m\vec{a}$

[Image: Top view of barge with two tugboat force vectors and drag]

Understanding the Fundamental Forces of Nature

• One of the most remarkable simplifications in physics:

Understanding the Fundamental Forces of Nature

- One of the most remarkable simplifications in physics:
- Only four distinct forces account for ALL known phenomena

Understanding the Fundamental Forces of Nature

- One of the most remarkable simplifications in physics:
- Only four distinct forces account for ALL known phenomena
- Nearly all forces we experience directly are due to ONE basic force: the electromagnetic force

Understanding the Fundamental Forces of Nature

- One of the most remarkable simplifications in physics:
- Only four distinct forces account for ALL known phenomena
- Nearly all forces we experience directly are due to ONE basic force: the electromagnetic force
- The gravitational force is the only other force we experience directly

- Gravitational Force
- ② Electromagnetic Force

- Gravitational Force
- ② Electromagnetic Force
- Weak Nuclear Force

- Gravitational Force
- ② Electromagnetic Force
- Weak Nuclear Force
- Strong Nuclear Force

- Gravitational Force
- ② Electromagnetic Force
- Weak Nuclear Force
- Strong Nuclear Force

Key Concept

All forces act through the exchange of microscopic carrier particles. The characteristics of basic forces are determined by the types of particles exchanged.

Properties of the Four Basic Forces

Force	Strength	Range	Туре	Carrier
Gravitational	10^{-38}	∞	Attractive only	Graviton
Electromagnetic	10^{-2}	∞	Both	Photon
Weak Nuclear	10^{-6}	$< 10^{-18} \; {\rm m}$	Both	W^+, W^-, Z^0
Strong Nuclear	1	$pprox 10^{-15} \; ext{m}$	Both	Gluons

Properties of the Four Basic Forces

Force	Strength	Range	Туре	Carrier
Gravitational	10^{-38}	∞	Attractive only	Graviton
Electromagnetic	10^{-2}	∞	Both	Photon
Weak Nuclear	10^{-6}	$< 10^{-18} \; {\rm m}$	Both	W^+, W^-, Z^0
Strong Nuclear	1	$pprox 10^{-15} \; \mathrm{m}$	Both	Gluons

- Strengths are relative to the strong nuclear force
- Nuclear forces act over extremely short ranges (size of nucleus or less)

 \bullet Weakest of all forces (relative strength: 10^{-38})

- Weakest of all forces (relative strength: 10^{-38})
- Always attractive this is why we notice it despite its weakness

- Weakest of all forces (relative strength: 10^{-38})
- Always attractive this is why we notice it despite its weakness
- Long-range: acts over infinite distances

- Weakest of all forces (relative strength: 10^{-38})
- Always attractive this is why we notice it despite its weakness
- Long-range: acts over infinite distances
- Dominant force on astronomical scales (planets, stars, galaxies)

- Weakest of all forces (relative strength: 10^{-38})
- Always attractive this is why we notice it despite its weakness
- Long-range: acts over infinite distances
- Dominant force on astronomical scales (planets, stars, galaxies)
- Affects the nature of space and time (general relativity)

- Weakest of all forces (relative strength: 10^{-38})
- Always attractive this is why we notice it despite its weakness
- Long-range: acts over infinite distances
- Dominant force on astronomical scales (planets, stars, galaxies)
- Affects the nature of space and time (general relativity)
- Carrier particle: Graviton (proposed but not yet observed)

• Combination of electrical forces and magnetic forces

- Combination of electrical forces and magnetic forces
- Can be attractive or repulsive

- Combination of electrical forces and magnetic forces
- Can be attractive or repulsive
- Long-range: acts over extremely large distances

- Combination of electrical forces and magnetic forces
- Can be attractive or repulsive
- Long-range: acts over extremely large distances
- Forces nearly cancel for macroscopic objects

- Combination of electrical forces and magnetic forces
- Can be attractive or repulsive
- Long-range: acts over extremely large distances
- Forces nearly cancel for macroscopic objects
 - If they didn't cancel, they would overwhelm gravitational force

- Combination of electrical forces and magnetic forces
- Can be attractive or repulsive
- Long-range: acts over extremely large distances
- Forces nearly cancel for macroscopic objects
 - If they didn't cancel, they would overwhelm gravitational force
- Responsible for friction, tension, and all other everyday forces (except gravity)

- Combination of electrical forces and magnetic forces
- Can be attractive or repulsive
- Long-range: acts over extremely large distances
- Forces nearly cancel for macroscopic objects
 - If they didn't cancel, they would overwhelm gravitational force
- Responsible for friction, tension, and all other everyday forces (except gravity)
- Carrier particle: Photon

• **Static electricity**: When you rub a balloon on your hair, electromagnetic forces cause attraction

- **Static electricity**: When you rub a balloon on your hair, electromagnetic forces cause attraction
- Friction: Electromagnetic interactions between atoms prevent surfaces from sliding

- **Static electricity**: When you rub a balloon on your hair, electromagnetic forces cause attraction
- Friction: Electromagnetic interactions between atoms prevent surfaces from sliding
- Tension: Electromagnetic bonds in rope or wire resist being pulled apart

- **Static electricity**: When you rub a balloon on your hair, electromagnetic forces cause attraction
- Friction: Electromagnetic interactions between atoms prevent surfaces from sliding
- Tension: Electromagnetic bonds in rope or wire resist being pulled apart
- **Chemistry**: All chemical reactions are electromagnetic interactions between electrons

Nuclear Forces

Weak Nuclear Force

- Relative strength: 10^{-6}
- Range: $< 10^{-18} \text{ m}$
- Responsible for radioactive decay
- Determines nuclear stability
- Carrier: W^+ , W^- , Z^0 bosons

Strong Nuclear Force

- **Strongest** force (reference: 1)
- Range: $\approx 10^{-15}$ m
- Holds protons and neutrons together in nucleus
- Determines relative abundance of elements
- Carrier: Gluons (8 types)

Nuclear Forces

Weak Nuclear Force

- Relative strength: 10^{-6}
- Range: $< 10^{-18}$ m
- Responsible for radioactive decay
- Determines nuclear stability
- Carrier: W^+ , W^- , Z^0 bosons

Strong Nuclear Force

- **Strongest** force (reference: 1)
- Range: $\approx 10^{-15}$ m
- Holds protons and neutrons together in nucleus
- Determines relative abundance of elements
- Carrier: Gluons (8 types)

Important

We don't experience nuclear forces directly, but they determine the structure of all matter.

• All forces act at a distance (no physical contact required)

- All forces act at a distance (no physical contact required)
- Example: Earth and Moon interact without touching

- All forces act at a distance (no physical contact required)
- Example: Earth and Moon interact without touching
- How is force "carried" between objects?

- All forces act at a distance (no physical contact required)
- Example: Earth and Moon interact without touching
- How is force "carried" between objects?
- Answer: Through a force field

Concept: Action at a Distance

- All forces act at a distance (no physical contact required)
- Example: Earth and Moon interact without touching
- How is force "carried" between objects?
- Answer: Through a force field

Force Field

A force field surrounds an object that creates a force. A second object placed in this field experiences a force that depends on its location. The field itself "carries" the force from one object to another.

• A force field is a characteristic of the object creating it

- A force field is a characteristic of the object creating it
- The field does NOT depend on test objects placed in it

- A force field is a characteristic of the object creating it
- The field does NOT depend on test objects placed in it
- Example: Earth's gravitational field is a function of Earth's mass and distance from its center

- A force field is a characteristic of the object creating it
- The field does NOT depend on test objects placed in it
- Example: Earth's gravitational field is a function of Earth's mass and distance from its center
- We can write equations for force fields and calculate motions

Visualization: Electric Force Field (Figure 4.24)

[Diagram based on Figure 4.24]

Electric field between opposite charges:

- Field lines show the direction of force on a positive test charge
- Between a positive and negative charge, field lines point from positive to negative
- Closer field lines indicate stronger force
- When a test charge is placed in the field, it experiences a force along the field line direction
- This visualizes how electromagnetic force acts at a distance

[Image showing electric field lines between positive and negative charges]

• Modern theory (Yukawa, 1935): All forces transmitted by exchange of elementary particles

- Modern theory (Yukawa, 1935): All forces transmitted by exchange of elementary particles
- Analogy: Two people passing a basketball back and forth

- Modern theory (Yukawa, 1935): All forces transmitted by exchange of elementary particles
- Analogy: Two people passing a basketball back and forth
 - Person throwing exerts force on ball toward other person
 - Person throwing feels reaction force away from other person
 - Person catching exerts force to stop the ball
 - Both feel a force without touching each other!

- Modern theory (Yukawa, 1935): All forces transmitted by exchange of elementary particles
- Analogy: Two people passing a basketball back and forth
 - Person throwing exerts force on ball toward other person
 - Person throwing feels reaction force away from other person
 - Person catching exerts force to stop the ball
 - Both feel a force without touching each other!
- This is how subatomic carrier particles transmit forces

Visualization: Particle Exchange (Figure 4.25)

[Diagram based on Figure 4.25]

Exchange of masses resulting in repulsive forces:

- Person 1 throws basketball toward Person 2
- ullet Force $ec{F}_{p1}$ on ball creates reaction force $ec{F}_B$ pushing Person 1 backward
- ullet Person 2 catches ball and exerts force $ec{F}_{p2}$ to stop it
- ullet Force $ec{F}_{p2}$ creates reaction pushing Person 2 backward
- Both people experience repulsive force without direct contact
- Microscopic version: Particles exchange carrier particles (photons, gluons, etc.)

[Image: Two people exchanging basketball with force vectors shown]

Scientists seek to find connections between forces

- Scientists seek to find connections between forces
- Grand Unified Theories (GUTs): Attempts to unify all forces into one

- Scientists seek to find connections between forces
- Grand Unified Theories (GUTs): Attempts to unify all forces into one
- Success so far: Under extreme conditions (early universe),
 electromagnetic and weak nuclear forces are indistinguishable

- Scientists seek to find connections between forces
- Grand Unified Theories (GUTs): Attempts to unify all forces into one
- Success so far: Under extreme conditions (early universe),
 electromagnetic and weak nuclear forces are indistinguishable
- Combined: Electroweak Force

- Scientists seek to find connections between forces
- Grand Unified Theories (GUTs): Attempts to unify all forces into one
- Success so far: Under extreme conditions (early universe),
 electromagnetic and weak nuclear forces are indistinguishable
- Combined: Electroweak Force
- Challenge: Including gravitational force, which affects space and time itself

- Scientists seek to find connections between forces
- Grand Unified Theories (GUTs): Attempts to unify all forces into one
- Success so far: Under extreme conditions (early universe),
 electromagnetic and weak nuclear forces are indistinguishable
- Combined: Electroweak Force
- Challenge: Including gravitational force, which affects space and time itself

Profound Simplicity

The universe exhibits remarkable simplicity beneath its apparent complexity. Four forces explain everything we observe.

Modern Research: Large Hadron Collider (Figure 4.26)

[Diagram based on Figure 4.26]

World's largest particle accelerator (Switzerland-France border):

- 27-kilometer circular tunnel underground
- Two high-energy proton beams travel in opposite directions
- Collisions occur at nearly the speed of light
- Energy: 14 trillion electron volts available
- Goal: Detect new particles and force carriers
- Notable discovery: Higgs boson (explains why particles have mass)
- External magnets control beam path

[Image: Cross-section of LHC collision tube with beam paths]

Detecting Gravitational Waves: LISA Project (Figure 4.27)

[Diagram based on Figure 4.27]

Space-based gravitational wave detector:

- Three satellites in space above Earth
- Arranged in equilateral triangle (5,000,000 km sides!)
- Measures relative positions to detect passing gravitational waves
- Required accuracy: within 10% of atomic size
- Predicted launch: 2030s
- Will confirm predictions of general relativity
- Graviton (carrier particle) not yet directly observed

[Image: LISA satellite triangle configuration orbiting Earth]

Black Hole Imaging: Event Horizon Telescope (Figure 4.28)

[Diagram based on Figure 4.28]

Supermassive black hole at center of M87 galaxy:

- Image shows polarization from powerful magnetic fields
- Demonstrates electromagnetic force at extreme scales
- Created by combining data from telescopes worldwide
- Black hole's gravity (weakest force!) dominates at massive scales
- Event horizon: boundary where gravity prevents light escape
- Magnetic fields (electromagnetic force) create jets of material

[Image: Polarized light around M87 black hole showing magnetic field structure]

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - 夕 Q (C)

Reading Homework

Please read the following section from Chapter 4 in your textbook:

- Section 4.5: Normal, Tension, and Other Examples of Forces
 - Detailed examples of Normal Force on inclines and Tension in various scenarios
 - These are specific applications of the electromagnetic force

• **Newton's First Law** defines inertia and the condition for constant velocity ($\vec{F}_{net} = 0$).

- **Newton's First Law** defines inertia and the condition for constant velocity $(\vec{F}_{net} = 0)$.
- Newton's Third Law describes action-reaction pairs, which act on different objects.

- **Newton's First Law** defines inertia and the condition for constant velocity ($\vec{F}_{net} = 0$).
- Newton's Third Law describes action-reaction pairs, which act on different objects.
- Newton's Second Law ($\vec{F}_{net} = m\vec{a}$) is the core problem-solving tool that links forces to motion.

- **Newton's First Law** defines inertia and the condition for constant velocity ($\vec{F}_{net} = 0$).
- Newton's Third Law describes action-reaction pairs, which act on different objects.
- Newton's Second Law ($\vec{F}_{net} = m\vec{a}$) is the core problem-solving tool that links forces to motion.
- The key to solving complex dynamics problems is to correctly define the system of interest.

- **Newton's First Law** defines inertia and the condition for constant velocity ($\vec{F}_{net} = 0$).
- Newton's Third Law describes action-reaction pairs, which act on different objects.
- Newton's Second Law ($\vec{F}_{net} = m\vec{a}$) is the core problem-solving tool that links forces to motion.
- The key to solving complex dynamics problems is to correctly define the system of interest.
- All forces in nature can be explained by just four fundamental forces.

- **Newton's First Law** defines inertia and the condition for constant velocity ($\vec{F}_{net} = 0$).
- Newton's Third Law describes action-reaction pairs, which act on different objects.
- Newton's Second Law ($\vec{F}_{net} = m\vec{a}$) is the core problem-solving tool that links forces to motion.
- The key to solving complex dynamics problems is to correctly define the system of interest.
- All forces in nature can be explained by just four fundamental forces.
- Every analysis should begin with a Free-Body Diagram for your chosen system.