

ВВЕДЕНИЕ В КОМПЬЮТЕРНОЕ ЗРЕНИЕ

Лекция № 3

Обработка изображений

План лекции

- 1. Гистограммная обработка
- 2. Колоризация и бинаризация
- 3. Морфологические операции
- 4. Пирамиды

01

Гистограммная обработка

Гистограмма фиксирует распределение уровней серого на изображении

Как часто на изображении встречается каждый уровень серого

Гистограммы могут показывают локальную характеристику о распределении интенсивности изображения

Count: 10192 Mean: 133.711 StdDev: 55.391 Min: 9 Max: 255 Mode: 178 (180)

Count: 10192 Mean: 104.637 StdDev: 89.862 Min: 11 Max: 254 Mode: 23 (440)

02

Колоризация и бинаризация

Линейная коррекция яркости

Хотим изменить распределение значений пикселей с помощью преобразования **T**:

Линейное преобразование:

$$T = f^{-1}(y) = (y - y_{\min}) * \frac{(255 - 0)}{(y_{\max} - y_{\min})}$$

Линейная коррекция яркости

Линейное преобразование:

$$T = f^{-1}(y) = (y - y_{\min}) * \frac{(255 - 0)}{(y_{\max} - y_{\min})}$$

Тон	Насыщенность	Интенсивность	Исходное изображение

Нелинейная коррекция яркости

Гамма коррекция

$$Y = c * X^{\gamma}$$

Адаптивная нормализация гистограмм

Алгоритм нормализации гистограмм изображений - contrast limited adaptive histogram equalization (CLAHE)

Бинаризация изображений

Алгоритм Оцу

Метод Оцу ищет порог, уменьшающий дисперсию внутри класса, которая определяется как взвешенная сумма дисперсий двух классов

$$\sigma_b^2(t) = \sigma^2 - \sigma_w^2(t) = \omega_1(t)\omega_2(t)[\mu_1(t) - \mu_2(t)]^2$$

03

Морфологические операции

Операция расширения (🕀)

Операция сужения (🖯)

а) исходное изображение

b) шаблон (центр – ведущий элемент)

с) результат дилатации

d) результат эрозии

1.Открытие (A о $B=(A \ominus B) \oplus B$)

2. Закрытие (A • $B=(A \bigoplus B) \bigoplus B$)

3. Градиент

Morphological Gradient

Исходное изображение

Открытие с ядром 7

Закрытие с ядром 7

Исходное изображение

Открытие – закрытие

Закрытие – открытие

04

Пирамиды

Пирамиды изображений

Для подвыборки мы берем каждый второй пиксель из исходного изображения и создаем новое изображение в два раза меньшего размера.

Субдискретированные изображения

Пирамиды изображений

Субдискретированные изображения

Достигается эффект масштабирования изображений!

Пирамиды Гаусса

Может варьировать значение сигмы в распределении Гаусса и получать изображения по шкале размытий — **октаву пирамиды**

Разрешение 2.4 см

Разрешение 2.1 см

Разрешение 1.95 см

Разрешение 1.65 см

Разрешение 1.25 см

Разрешение 1 см

Совмещение изображений

Альфа блендинг

Альфа блендинг

Distance transform

Alpha = blurred

Lowpass Images

Bandpass Images

$$\begin{matrix} 1 & + & \bigvee \\ 0 & + & \underline{\wedge} \end{matrix}$$

Left pyramid

blend

Right pyramid

Блендинг Пуассона

Пусть замкнутое множество $P \subset \mathbb{R}2$ — область, на которой определено изображение S, а замкнутое множество $\Omega \subset P$ с границей $\partial \Omega$ и внутренностью $int(\Omega)$ — область вставки изображения I.

Пусть fS — скалярная функция, определенная на $P\setminus int(\Omega)$, задает фоновое изображение S;

f — неизвестная скалярная функция (блендинг в области вставки).

vI — векторное поле, определенное на Ω .

$$\min_{f} \iint_{\Omega} |\nabla f - v_{I}|^{2},$$
где $f|_{\partial\Omega} = f_{S}|_{\partial\Omega}.$

 $abla^2 f =
abla^2 f_I$ на $\Omega, f|_{\partial\Omega} = f_S|_{\partial\Omega}$, где $abla^2$ — оператор Лапласа.

Рисунок 1.1: Пример перепада яркости \Box при простой вставке $^{[1]}$

см. Дискретный случай

Место для ваших вопросов