1. SICUREZZA WIRELESS E PROTOCOLLI DI RETE

1.1 Sicurezza wireless

1.1.1 WEP (Wired Equivalent Privacy)

- Primo protocollo di sicurezza per 802.11 (introdotto nel 1999)
- Utilizza algoritmo RC4 con chiavi da 64 o 128 bit
- Problemi:
 - Vettore di inizializzazione (IV) troppo corto (24 bit)
 - Riutilizzo di chiavi
 - Autenticazione debole
- Considerato completamente insicuro oggi
- Vulnerabilità principali:
 - Collisioni degli IV (dopo circa 5000 pacchetti)
 - Attacchi statistici (FMS)
 - Possibile decifrazione completa in pochi minuti

1.1.2 WPA (Wi-Fi Protected Access)

- Soluzione intermedia introdotta nel 2003 dopo i problemi di WEP
- Usa TKIP (Temporal Key Integrity Protocol)
- Miglioramenti rispetto a WEP:
 - IV più lungo (48 bit)
 - Mixing function per le chiavi
 - Message Integrity Check (MIC)
 - Distribuzione chiavi dinamica
- Ancora vulnerabile ad alcuni attacchi (crack di password PSK con dizionario)

1.1.3 WPA2

- Standard IEEE 802.11i rilasciato nel 2004
- Usa CCMP basato su AES invece di RC4/TKIP
- Modalità:
 - Personal (PSK): chiave precondivisa, adatta per reti domestiche/piccoli uffici
 - Enterprise: autenticazione basata su 802.1X e RADIUS, per organizzazioni più grandi
- Considerato sicuro se configurato correttamente

- Vulnerabilità note:
 - KRACK (Key Reinstallation Attack) scoperto nel 2017
 - Attacchi di forza bruta su password deboli

1.1.4 WPA3

- Introdotto nel 2018 come successore di WPA2
- Caratteristiche principali:
 - SAE (Simultaneous Authentication of Equals) sostituisce il PSK
 - Protezione dagli attacchi di dizionario offline
 - Forward secrecy
 - Crittografia a 192 bit per reti enterprise
 - Protezione migliorata per reti pubbliche (OWE)

1.2 HTTPS (HTTP Secure) e SSL/TLS

- HTTPS = HTTP su connessione crittografata (SSL/TLS)
- Funzionamento:
 - 1. Client richiede connessione sicura al server
 - 2. Server invia il suo certificato
 - 3. Client verifica il certificato e genera una chiave di sessione
 - 4. La chiave viene scambiata in modo sicuro
 - La comunicazione prosegue cifrata con la chiave di sessione
- Vantaggi:
 - Protezione contro intercettazioni (confidenzialità)
 - Verifica dell'identità del server (autenticazione)
 - Garantisce l'integrità dei dati
- Evoluzione dei protocolli:
 - SSL 2.0/3.0: obsoleti e vulnerabili
 - TLS 1.0/1.1: deprecati
 - TLS 1.2: ancora ampiamente utilizzato
 - TLS 1.3 (2018): più veloce e sicuro

1.3 Altri protocolli di sicurezza

1.3.1 IPsec (IP Security)

- Suite di protocolli per sicurezza a livello IP
- Componenti:
 - AH (Authentication Header): integrità e autenticazione
 - ESP (Encapsulating Security Payload): confidenzialità, integrità, autenticazione
 - IKE (Internet Key Exchange): gestione delle chiavi

- Modalità:
 - Transport mode: protegge solo il payload
 - Tunnel mode: protegge l'intero pacchetto IP
- Utilizzi comuni:
 - VPN site-to-site
 - Protezione del traffico sensibile
 - Implementazione del modello di sicurezza end-to-end

1.3.2 VPN (Virtual Private Network)

- Crea un tunnel sicuro attraverso una rete non sicura (Internet)
- Tipi di VPN:
 - Remote Access: connette un singolo utente a una rete
 - Site-to-Site: connette intere reti tra loro
- Protocolli comuni:
 - IPsec: sicuro, supportato da molti dispositivi
 - SSL/TLS: più facile da attraversare firewall
 - OpenVPN: soluzione open-source flessibile
 - WireGuard: moderno, veloce, codice compatto
- Usi:
 - Accesso remoto alle risorse aziendali
 - Protezione su reti Wi-Fi pubbliche
 - Connessione sicura tra sedi distaccate

1.4 Tecniche di attacco e difesa

1.4.1 Man in the Middle (MITM)

- Attacco in cui l'aggressore si posiziona tra due parti comunicanti
- Metodi:
 - ARP spoofing/poisoning
 - DNS spoofing
 - Rogue access point
 - SSL stripping
- Difese:
 - HTTPS (certificati validi)
 - HSTS (HTTP Strict Transport Security)
 - Mutual authentication
 - Certificate pinning

1.4.2 DOS/DDOS (Denial of Service)

- Attacco che mira a rendere un servizio non disponibile
- Tipi:
 - Volumetric: sovraccarica la banda (UDP flood, ICMP flood)
 - Protocol: consuma risorse server (SYN flood)
 - Application Layer: attacca vulnerabilità applicazioni (HTTP flood, Slowloris)
- Difese:
 - Filtraggio del traffico
 - Rate limiting
 - Load balancing
 - Servizi anti-DDoS

1.4.3 Firewall

- Sistema che filtra il traffico di rete in base a regole predefinite
- Tipi:
 - Packet filtering: filtra in base a header (livello 3-4)
 - Stateful inspection: tiene traccia delle connessioni
 - Application layer: analizza il traffico a livello applicativo
 - Next-gen: include IPS, antivirus, deep packet inspection
- · Regole tipiche:
 - Default deny (blocca tutto tranne il permesso)
 - Allow/Block in base a indirizzo IP, porta, protocollo
 - Limitazione delle connessioni
 - Content filtering

2. CRITTOGRAFIA E SICUREZZA DEI DATI

2.1 Crittografia simmetrica

- Usa la stessa chiave per cifrare e decifrare
- Veloce ma richiede scambio sicuro della chiave
- Algoritmi principali:
 - DES (Data Encryption Standard): obsoleto, chiave 56 bit
 - 3DES (Triple DES): applica DES tre volte, più sicuro ma lento
 - AES (Advanced Encryption Standard): standard attuale, chiavi 128/192/256 bit
 - ChaCha20: alternativa veloce ad AES, usata in TLS e applicazioni mobili

2.2 Crittografia asimmetrica

Utilizza coppia di chiavi: pubblica (per cifrare) e privata (per decifrare)

- Più lenta della simmetrica ma risolve il problema dello scambio chiavi
- Algoritmi principali:
 - RSA: basato sulla fattorizzazione di numeri primi grandi
 - Chiavi tipiche: 2048 o 4096 bit
 - Usato per cifratura e firma digitale
 - Diffie-Hellman: metodo per scambio chiavi su canale insicuro
 - ECC (Elliptic Curve Cryptography): più efficiente di RSA con chiavi più corte

2.2.1 Esempio di funzionamento RSA (semplificato)

1. Generazione chiavi:

- Scegliere due numeri primi p e q (es. p=3, q=11)
- Calcolare n = p×q = 33
- Calcolare $\varphi(n) = (p-1) \times (q-1) = 2 \times 10 = 20$
- Scegliere e (chiave pubblica) coprimo con φ(n), es. e=7
- Calcolare d (chiave privata) tale che e×d \equiv 1 mod φ (n), es. d=3
- Chiave pubblica: (n,e) = (33,7)
- Chiave privata: (n,d) = (33,3)

2. Cifratura:

- Messaggio m = 2
- Cifrato c = m^e mod n = 2^7 mod 33 = 128 mod 33 = 29

3. Decifratura:

- Cifrato c = 29
- Messaggio m = c^d mod n = 29³ mod 33 = 24389 mod 33 = 2

2.3 Funzioni di hash

- Trasformano input di lunghezza arbitraria in output di lunghezza fissa
- Proprietà:
 - One-way (non invertibile)
 - Resistenza alle collisioni
 - Effetto valanga (piccole modifiche causano output molto diversi)
- Algoritmi:
 - MD5: 128 bit, obsoleto e vulnerabile
 - SHA-1: 160 bit, considerate non sicuro
 - SHA-256/SHA-512: parte della famiglia SHA-2, standard attuali
 - SHA-3: nuova generazione, basata su costruzione a spugna

2.4 Firma digitale

Garantisce autenticità e non ripudio

- Processo:
 - 1. Creazione hash del documento
 - 2. Cifratura dell'hash con la chiave privata del mittente
 - 3. Invio del documento e della firma
 - 4. Verifica decifrando la firma con la chiave pubblica del mittente
- Applicazioni:
 - PEC (Posta Elettronica Certificata)
 - Documenti XML firmati
 - Certificati digitali
 - Smart contract

2.5 Politiche di accesso

2.5.1 DAC (Discretionary Access Control)

- Il proprietario della risorsa decide chi può accedervi
- Esempi: permessi file in Windows/Unix
- Caratteristiche:
 - Flessibile
 - Facile da gestire per piccoli sistemi
 - Vulnerabile a errori umani
 - Non adatto a policy di sicurezza complesse

2.5.2 MAC (Mandatory Access Control)

- Sistema centrale impone regole di sicurezza
- Basato su etichette di sicurezza
- Esempi: SELinux, AppArmor
- Caratteristiche:
 - Maggiore sicurezza
 - Meno flessibilità
 - Complessità di configurazione
 - Adatto ad ambienti ad alta sicurezza

3. LIVELLO APPLICATIVO (LAYER 7)

3.1 DNS (Domain Name System)

- Risolve nomi di dominio in indirizzi IP
- Gerarchia di server DNS:

- Root servers (.)
- TLD (Top-Level Domain) servers (.com, .org, .it)
- Authoritative servers (per specifici domini)
- Resolver locali (ISP, Google 8.8.8.8)
- Processo di risoluzione:
 - 1. Client interroga resolver locale
 - 2. Se non in cache, resolver interroga server root
 - 3. Root indica TLD appropriato
 - 4. TLD indica server autoritativo
 - 5. Server autoritativo fornisce risposta
- Record principali:
 - A: indirizzo IPv4
 - AAAA: indirizzo IPv6
 - CNAME: alias
 - MX: mail server
 - NS: name server
 - TXT: informazioni testuali
 - SOA: informazioni di autorità
- Query:
 - Ricorsive: resolver fa tutto il lavoro
 - Iterative: client segue i riferimenti da solo

3.2 Protocolli di posta elettronica

3.2.1 SMTP (Simple Mail Transfer Protocol)

- Protocollo per l'invio di email
- Porta standard: 25 (non cifrata), 587 (TLS)
- Comandi principali:
 - HELO/EHLO: identificazione client
 - MAIL FROM: mittente
 - RCPT TO: destinatario
 - DATA: corpo del messaggio
 - QUIT: termina la sessione
- Esempio di sessione SMTP:
- C: EHLO client.example.com
- S: 250 Hello client.example.com
- C: MAIL FROM:<mittente@example.com>
- S: 250 OK
- C: RCPT TO:<destinatario@example.org>

```
S: 250 OK
C: DATA
S: 354 Start mail input; end with <CRLF>.<CRLF>
C: From: "Mittente" <mittente@example.com>
C: To: "Destinatario" <destinatario@example.org>
C: Subject: Test email
C:
C: Questo è un test.
C: .
S: 250 OK
C: QUIT
S: 221 Bye
```

3.2.2 POP3 (Post Office Protocol v3)

- Protocollo per il recupero di email
- Porta standard: 110 (non cifrata), 995 (TLS)
- Caratteristiche:
 - Semplice, stateless
 - Tipicamente scarica e rimuove messaggi dal server
 - Adatto a connessioni intermittenti
- Comandi principali: USER, PASS, LIST, RETR, DELE
- Esempio di sessione POP3:

```
C: USER mario@example.com
S: +0K
C: PASS password
S: +OK Mailbox locked and ready
C: LIST
S: +OK 2 messages (320 octets)
S: 1 120
S: 2 200
S: .
C: RETR 1
S: +OK 120 octets
S: [contenuto del messaggio]
S: .
C: DELE 1
S: +OK message 1 deleted
C: QUIT
S: +OK Bye
```

3.2.3 IMAP (Internet Message Access Protocol)

- Alternativa più avanzata a POP3
- Porta standard: 143 (non cifrata), 993 (TLS)
- Caratteristiche:
 - Mantiene i messaggi sul server
 - Supporta cartelle e flag
 - Sincronizzazione tra dispositivi
 - Ricerca sul server
 - Download parziale dei messaggi
- Vantaggi rispetto a POP3:
 - Accessibilità da più dispositivi
 - Backup centralizzato
 - Organizzazione migliore
 - Funzionalità avanzate (ricerca, filtri)

3.3 Accesso remoto

3.3.1 SSH (Secure Shell)

- Protocollo per accesso remoto sicuro
- Sostituisce Telnet, rsh, rlogin
- Caratteristiche:
 - Crittografia forte
 - Autenticazione a chiave pubblica
 - Tunneling e inoltro porte
 - SFTP (SSH File Transfer Protocol)
 - SCP (Secure Copy)
- Porta standard: 22
- Comandi base:
 - Connessione: ssh utente@host
 - Copia file: scp file.txt utente@host:/path/
 - Tunneling: ssh -L 8080:localhost:80 utente@host

3.3.2 TELNET

- Protocollo legacy per accesso remoto
- Non sicuro: trasmette dati in chiaro
- Porta standard: 23
- Sostituito da SSH per quasi tutti gli usi
- Ancora utilizzato per debug di servizi di rete e dispositivi legacy

3.4 Scambio file e protocolli peer-to-peer

3.4.1 FTP (File Transfer Protocol)

- Protocollo classico per trasferimento file
- Utilizza due connessioni:
 - Controllo (porta 21)
 - Dati (porta 20 o dinamica)
- Modalità:
 - Attiva: server inizia connessione dati
 - Passiva: client inizia connessione dati (più sicura con firewall)
- Stato: autenticato o anonimo
- Comandi principali: USER, PASS, CWD, PWD, LIST, RETR, STOR
- Svantaggi: nessuna crittografia nativa, problemi con firewall

3.4.2 FTPS (FTP Secure)

- FTP con SSL/TLS
- Due varianti:
 - Implicito: sempre cifrato (porta 990)
 - Esplicito: negoziazione con comando AUTH (porta 21)
- Vantaggi: compatibile con client FTP esistenti, sicuro
- Svantaggi: problemi con firewall, complessità dei certificati

3.4.3 SFTP (SSH File Transfer Protocol)

- Protocollo di trasferimento file su SSH
- Singola connessione cifrata (porta 22)
- Caratteristiche:
 - Autenticazione forte
 - Integrità dei dati
 - Resume transfer
 - Directory listing
- Vantaggi: sicuro, attraversa firewall facilmente
- Svantaggi: non compatibile con client FTP tradizionali

3.4.4 BitTorrent

- Protocollo P2P per condivisione file
- Caratteristiche:
 - File suddivisi in pezzi (chunks)
 - Distribuzione parallela da più fonti

- Algoritmo "rarest first" per ottimizzare distribuzione
- Tit-for-tat per incentivare upload
- Componenti:
 - Tracker: coordina i peer
 - Seeder: utente con file completo
 - Leecher: utente che sta scaricando
 - Torrent file: metadati (hash dei pezzi, tracker, ecc.)
- Evoluzione:
 - DHT (Distributed Hash Table) per operare senza tracker
 - PEX (Peer Exchange) per scoprire nuovi peer
 - Magnet link: alternativa ai file .torrent

3.4.5 Gnutella

- Rete P2P decentralizzata (prima generazione)
- Funzionamento:
 - Messaggi di query inoltrati a tutti i peer connessi
 - Risposte inviate direttamente al richiedente
 - Trasferimento file avviene direttamente tra peer
- Caratteristiche:
 - Nessun server centrale
 - Tolleranza ai guasti
 - Problemi di scalabilità (flooding)
- Client storici: LimeWire, Morpheus, BearShare

3.5 API e microservizi

3.5.1 Concetto di API (Application Programming Interface)

- Interfaccia che permette la comunicazione tra diverse applicazioni
- Tipi di API:
 - REST: basata su HTTP, stateless, risorse identificate da URL
 - SOAP: protocollo più complesso basato su XML
 - GraphQL: permette al client di specificare i dati richiesti
 - gRPC: usa Protocol Buffers e HTTP/2 per comunicazione efficiente

3.5.2 REST (Representational State Transfer)

- Architettura per API web basata su HTTP
- Principi:
 - Risorse identificate da URI
 - Operazioni CRUD tramite metodi HTTP:

- GET: lettura
- POST: creazione
- PUT/PATCH: aggiornamento
- DELETE: eliminazione
- Stateless (ogni richiesta contiene tutte le informazioni necessarie)
- Interfaccia uniforme
- Formati comuni: JSON, XML
- Vantaggi: semplice, ampiamente supportato, cacheable
- Svantaggi: over-fetching/under-fetching, multiple richieste

3.5.3 Microservizi

- Architettura software che divide l'applicazione in servizi piccoli e indipendenti
- Caratteristiche:
 - Ogni servizio ha una singola responsabilità
 - Servizi indipendentemente sviluppabili e deployabili
 - Comunicazione tramite API (spesso REST)
 - Scalabilità e resilienza migliorate
- Pattern comuni:
 - API Gateway: punto di ingresso unificato
 - Service Registry: discovery dei servizi
 - Circuit Breaker: gestione fallimenti
- Vantaggi:
 - Deployment indipendente
 - Scalabilità granulare
 - Tecnologie eterogenee
 - Team autonomi
- Svantaggi:
 - Complessità distribuita
 - Overhead di comunicazione
 - Difficoltà nel debug

3.6 Architetture di rete

3.6.1 Client-Server

- Server centralizzato fornisce servizi a più client
- Vantaggi:
 - Controllo centralizzato
 - Sicurezza più facile da implementare
 - Backup e manutenzione semplificati

- Svantaggi:
 - Single point of failure
 - Limitazioni di scalabilità
 - Costi infrastruttura centralizzata
- Esempi: web server, email, database server

3.6.2 Peer-to-Peer (P2P)

- Ogni nodo può fungere sia da client che da server
- Tipi:
 - P2P puro: tutti i nodi sono equivalenti
 - P2P ibrido: alcuni nodi (supernodi) hanno ruoli speciali
- Vantaggi:
 - Resilienza (nessun single point of failure)
 - Scalabilità naturale
 - Costi distribuiti
- Svantaggi:
 - Sicurezza più difficile da implementare
 - Prestazioni variabili
 - Maggiore complessità
- Esempi: BitTorrent, blockchain, comunicazioni dirette

4. MALWARE E SICUREZZA DEL SOFTWARE

4.1 Tipi di malware

4.1.1 Virus

- Software malevolo che si attacca a file legittimi
- Caratteristiche:
 - Richiede azione umana per diffondersi
 - Si replica infettando altri file
 - Può restare dormiente
- Tipi:
 - File infector: infetta file eseguibili
 - Boot sector: infetta il settore di avvio
 - Macro virus: utilizza macro in documenti
 - Polymorphic: cambia forma per evitare rilevamento

4.1.2 Worm

- Programma autonomo che si propaga automaticamente
- Caratteristiche:
 - Non richiede intervento umano
 - Sfrutta vulnerabilità di rete
 - Non necessita di file host
- Esempi storici:
 - Morris Worm (1988)
 - ILOVEYOU (2000)
 - Conficker (2008)
 - WannaCry (2017)

4.1.3 Trojan

- Malware mascherato da software legittimo
- Caratteristiche:
 - Non si replica
 - Induce l'utente all'installazione
 - Spesso crea backdoor
- Categorie:
 - Backdoor: fornisce accesso remoto
 - Downloader: scarica altro malware
 - Banker: ruba credenziali bancarie
 - RAT (Remote Access Trojan): controllo completo
 - Spyware: raccoglie informazioni

4.1.4 Ransomware

- Crittografa i dati dell'utente e chiede un riscatto
- Fasi tipiche:
 - 1. Infezione (phishing, vulnerabilità)
 - 2. Scansione file
 - 3. Crittografia
 - 4. Richiesta riscatto
- Esempi:
 - CryptoLocker
 - WannaCry
 - Ryuk
 - REvil

4.2 Vettori di infezione

4.2.1 Email e allegati

- Phishing: impersonifica entità legittime
- Allegati malevoli (documenti con macro, eseguibili mascherati)
- Link a siti malevoli
- Indicatori di rischio:
 - Richieste urgenti
 - Errori grammaticali
 - Indirizzi sospetti
 - Allegati inaspettati

4.2.2 Download da Internet

- Software da fonti non affidabili
- Drive-by download: download automatico visitando siti compromessi
- Bundleware: software aggiuntivo installato con programmi legittimi
- Crack e keygen: spesso contengono malware

4.2.3 Dispositivi rimovibili

- USB infetti
- AutoRun/AutoPlay
- Firmware modificato (BadUSB)
- Cross-infezione tra sistemi

4.3 Protezione e prevenzione

4.3.1 Antivirus e antimalware

- Funzionamento:
 - Signature-based: confronto con database di firme note
 - Heuristic-based: analisi comportamentale
 - Cloud-based: analisi in tempo reale
- Limitazioni:
 - Inefficaci contro malware avanzato/nuovo
 - Falsi positivi/negativi
 - Impatto sulle prestazioni

4.3.2 Best practices

- Aggiornamenti regolari (sistema operativo e software)
- Backup frequenti (regola 3-2-1)
- Principio del privilegio minimo

- Email filtering
- Firewall personale
- Formazione degli utenti

4.3.3 Sandbox e virtualizzazione

- Esecuzione di software sospetto in ambiente isolato
- Tipi:
 - Application sandbox: limita le capacità di un'applicazione
 - System sandbox: simula un intero sistema
 - Browser sandbox: isola il browser dal sistema
- Vantaggi:
 - Protezione del sistema principale
 - Analisi sicura
 - Ripristino rapido