

CAMILE EARCHA #200090: d) UCS 1s indeed a special case of A*: At will expand given for cost-so-far + cost-to-go.

If the cost-to-go houristic is o + nodes in the graph, the At run on the graph will behave the same as UCS with its "cheapert first" houristic. a) A CSP is comprised of: Q4 - A set of Variables: X = ER, R, R, R, R, R, 3 simply an identifier for K different rooks. - A set of Domains: D = E[:n,:n]} + R; EX where [:11,:11) represents the row, col position any rook could take. - A set of Constraints: C= R; [x] \neq R; [x] \neq i\neq j

R; [y] \neq R; [y] \neq i\neq j

In other words, no 2 rooks can have any of
their components (x,y) the same. expanding the constraints yields: (e.g. K=2, N=2) (R: (0,0), R: (1,1)), (R: (0,1), R: (1,0)), (R: (1,0), R: (0,1)), (R: (1,1), R: (0,0))

O Q1	6) Transaction cost = number of tile to be moved
W	
	for the hourstice to be admissible, it must underestimate
	the distance to the goal from every node.
	Gruen the following exemple: 142 102 012
	3 0 3 5 4 3 5 4 2
	Manhattan distance heuristic: h: 2 h: 1 h: 0 Transaction cost: h: 5 h: 1 h: 0
	Transaction cost: h: 5 h: 1 h: 00
	Because, Manligtlan distance heuristic was an admissible
	consistent houristic for unit cost in-pozzle and that the
	change in transaction cost increments the real shortest path
	cost h* Manhortan will remain an admissible heuristic! h(n) < h*(n)
	for all files, even the smallest valued one: 1. In addition as seen in state M, even when moving the
	Smallest cost tile Manhattan satisfies the definition of a
	consistent or monotone beenstic: h(s) < c(s,s') + h(s')
- \	Manual Marie Company of the Company
	() 1 10 are polyur coco horaste / (11) 2/1 (11)
	which still sature admissibility for A*.
	We are bound by state B where hy(0) = 1 and C(B)=1
	house $h_2(B) = 1$. Lets visualize $h_1(a)$
	142 142 102 012
	5 3 0 5 0 3 5 4 3 5 4 3
	9:0 9:3 9:7 9:8
—	h; 3 h; 2 h; 1 h; 0
	h*: 8 h*: 5 h*: 1 h:: 0
	h_2 q h_3 q h_3 $h_$

Jo I propose how (n) = cost of the largest the blot weeds to be moved. One could call it what manhattan. e.g. 11 you look back at states A-D, how represents: A: must the to be moved ->4 B: C: ->1 D: ->0 A: must the to be moved ->4 C: ->1 D: ->0 A: must the to be moved ->4 B: C: ->1 D: ->0 A: must the to be moved ->4 B: C: ->1 D: ->0 A: must the to be moved ->4 B: C: ->1 D: ->0 A: must the to be moved ->4 B: C: ->1 D: ->0 A: must the to be moved ->4 B: A: must the the the must the the must the the must the the must the must the must the must th		
e.g. If you look back at states $A-D$, h_2 represents: A: max tile to be noved $\rightarrow 4$ B: C: $\rightarrow 1$ D: $h_2(n) \ge h$, (a) $\neq n$ C: $h_3(n) \ge h$, (b) $\neq n$ C: $h_4(n) \ge h$ C: $h_4(n) \ge$		
e.g. If you look back at states $A-D$, h_2 represents: A: max tile to be noved $\rightarrow 4$ B: C: $\rightarrow 1$ D: $h_2(n) \ge h$, (a) $\neq n$ C: $h_3(n) \ge h$, (b) $\neq n$ C: $h_4(n) \ge h$ C: $h_4(n) \ge$		
e.g. If you look back at states $A-D$, h_2 represents: A: max tile to be noved $\rightarrow 4$ B: C: $\rightarrow 1$ D: $h_2(n) \ge h$, (a) $\neq n$ C: $h_3(n) \ge h$, (b) $\neq n$ C: $h_4(n) \ge h$ C: $h_4(n) \ge$		So I propose ha (n) = cost of the largest tile that 100
A: max tile to be moved ->4 B: C: ->1 D: ->0 h_2(n) > h, (u) + n h_2(n) > h, (u		needs to be moved. One could call it Max Manhattan.
A: max tile to be moved ->4 B: C: ->1 D: ->0 h_2(n) > h, (u) + n h_2(n) > h, (u		e e 11 11 and book book at chales 1 D to movember
B: C: $\Rightarrow 1$ D: $\Rightarrow 0$ A $= 2$ $\Rightarrow 0$ A $= 2$ $\Rightarrow 0$ A $= 2$ A $= 0$		e.g. 11 you look back at states A-D, n2 represents:
D: $\rightarrow 0$ A) $L/R = 2$ $U/D = V_2$ In this new problem, we now have a transaction cost less than the unit cost. The following counter example showcases a scenario where manhattan humitin coverestimates the distance to the goal. [S] 1 2 h,:1 3 h, (n) > h* \rightarrow madmissible h. 0 4 3 h*: V_2		A: max tile to be moved ->4
D: $\rightarrow 0$ A) $L/R = 2$ $U/D = V_2$ In this new problem, we now have a transaction cost less than the unit cost. The following counter example showcases a scenario where manhattan humitin coverestimates the distance to the goal. [S] 1 2 h,:1 3 h, (n) > h* \rightarrow madmissible h. 0 4 3 h*: V_2		$\beta:$ $\rightarrow 4$ $(h_2(n) \ge h_1(u) \neq N$
d) L/R=2 U/D=1/2 In this new problem, we now have a transaction cost less than the unit cost. The following counter example showcases a scenario where manhattan heuristic over estimates the distance to the goal. [5 1 2 h:1 3 h:1/2 h.(n) > h* => madmissible h. [6 4 3 h*:1/2 h.(n) > h* => madmissible h.	- N. N.	
In the new problem, we now howe a trawaction cost less than the unit cost. The following counter of example showcases a scenario where manhattan humitin over estimates the distance to the goal. [5 1 2 h.: 1 3 h. (n) > h* -> madmissible h. 0 4 3 h*: 1/2 }		
In the new problem, we now howe a trawaction cost less than the unit cost. The following counter of example showcases a scenario where manhattan humitin over estimates the distance to the goal. [5 1 2 h.: 1 3 h. (n) > h* -> madmissible h. 0 4 3 h*: 1/2 }		trantan las establicas en propinsiones de la companya del companya de la companya de la companya del companya de la companya del companya de la companya de la companya de la companya de la companya del companya de la
In the new problem, we now howe a trawaction cost less than the unit cost. The following counter of example showcases a scenario where manhattan humitin over estimates the distance to the goal. [5 1 2 h.: 1 3 h. (n) > h* -> madmissible h. 0 4 3 h*: 1/2 }	2011	1) 110 = 2 1110 - 1/2
cost less than the unit cost. The following counter example showcases a scenario where manhattan heuristic over estimates the distance to the goal: [S 1 2 h.: 1 3 h. (n) > h* => madmissible h. [O 413 h*: 1/2] [S 1 3 h*: 1/2] [S 1 4 3 h*: 1/2]		a) 2/1 2 0/0 12
example showcases a scenario where manhattan haustin over estimates the distance to the goal. S 2 h:1 3 h. (n) > h* -> mad missible h. O 4 3 h*: 1/2 3 h. (n) > h* -> mad missible h.		In the new problem, we now howe a trawaction
over estimates the distance to the goal: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		cost less than the unit cost. The following counter
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	115	
a) i sidessa 131 h = can i amail-		5 1 2 h:1 3 h. (n) > h+ => mad missible h.
a) i sidessa 131 h = can i amail-		THE STATE OF THE WORLD BY STATE OF THE STATE OF
a) i sidessa 131 h = can i amail-		- Piet Majori bezandec' aspekse lide ikada
a) i sidessa 131 h = can i amail-	ler There	and the College of the state of the last of the state of the last of the state of t
		na i sadima 132 k 2000 i omali
	q	A A
	1 1 1 1	
	[1]	

January 30, 2018

0.1 Q3

NOTE

The clear formatted output of the requested values (# iterations, final (x,y)) for each parameter (step-size, T, cooling coeff) can be found in #Output.

The visual, simplified representation of the results is presented in this notebook for reference. The individual figures can be found under **./Figures**. ### A) Hill Climbling First we will display the function we will work with along with the points at which we will perform Hill Climbing:

```
In [1]: %matplotlib inline
        import math
        import numpy as np
        import matplotlib.pyplot as plt
        fig_counter = 0
        MIN_X, MAX_X = 0, 10
        def increment_counter():
            global fig_counter
            fig_counter += 1
            return fig_counter
        Y = lambda x: math.sin(math.pow(x, 2) / 2) / math.log((x + 4), 2)
        def plot_model(x_axis, y_model, xs, es, title):
            fig, ax = plt.subplots(figsize=(10,10))
            plt.rc('xtick',labelsize=13)
            plt.rc('ytick',labelsize=13)
            ax.plot(x_axis, y_model, 'b')
            ax.scatter(xs, es, marker='D', color='r')
            ax.spines['right'].set_color('none')
            ax.spines['top'].set_color('none')
            ax.spines['left'].set_position(('data',0))
            ax.spines['bottom'].set_position(('data',0))
            plt.title(title, fontsize=20)
```

```
fig.savefig('./Figures/fig_{}.png'.format(increment_counter()))

plt.show()

x_axis = np.linspace(MIN_X, MAX_X, 100)
y_model = [Y(x) for x in x_axis]

init_x = np.linspace(MIN_X, MAX_X, 11)
init_e = [Y(x) for x in init_x]

plot_model(x_axis, y_model, init_x, init_e, 'Initial points')
```


Now we will perform hill climbing for each of the initial states with step sizes \in [0.01, 0.1]:

```
In [2]: # given an initial state and a step size,
                    # return the local max x, its energy and the number of iterations it took to reach
                    def hill_climbing(x_0, step):
                              curr_x = x_0
                              iterations = 0
                              while True:
                                        iterations += 1
                                        left_x = curr_x - step
                                        right_x = curr_x + step
                                        # only take into consideration points inside domain
                                        left_e = Y(left_x) if left_x >= MIN_X else -float('inf')
                                        right_e = Y(right_x) if right_x <= MAX_X else -float('inf')</pre>
                                        max_x, max_e = (left_x, left_e) if left_e > right_e else (right_x, right_e)
                                        curr_e = Y(curr_x)
                                        if curr_e < max_e:</pre>
                                                  curr_x = max_x
                                        else:
                                                  break
                              return curr_x, curr_e, iterations
                    step_sizes = np.linspace(0.01,0.1,10)
                    avg_iters = []
                    with open('./Output/Q3a.txt', 'w') as f:
                              for step in step_sizes:
                                        f.write('\n'.format(step))
                                        xs, es, iterations = [], [], []
                                        for x_0 in init_x:
                                                  x, e, i = hill_climbing(x_0, step)
                                                 xs.append(x)
                                                  es.append(e)
                                                  iterations.append(i)
                                                  f.write('Initial X = {:.0f}\tFinal (X,Y) = ({:.2f},{:.2f})\tIterations: {}\tIterations: {}\tIterations = {:.0f}\tIterations = {:.0f}\
                                        avg_i = sum(iterations) / len(iterations)
                                        f.write('Average iterations to converge: {:.1f}\n'.format(avg_i))
                                        print('step size {:.2f} took in avg {:.1f} iterations to converge.'.format(step,
                                        avg_iters.append(avg_i)
step size 0.01 took in avg 49.4 iterations to converge.
step size 0.02 took in avg 25.1 iterations to converge.
```

```
step size 0.03 took in avg 17.2 iterations to converge. step size 0.04 took in avg 13.1 iterations to converge. step size 0.05 took in avg 10.6 iterations to converge. step size 0.06 took in avg 8.9 iterations to converge. step size 0.07 took in avg 8.1 iterations to converge. step size 0.08 took in avg 7.2 iterations to converge. step size 0.09 took in avg 6.3 iterations to converge. step size 0.10 took in avg 5.7 iterations to converge.
```

The local maximum points found are shown below:

```
In [3]: title = 'Converged points'
     plot_model(x_axis, y_model, xs, es, title)
```


The corresponding Y values found for each initial state can be found in the text file ./Out-put/Q3a.txt

Next we plot how many iterations in average it took for each set of initial points to converge given different step sizes:

```
In [4]: def plot_convergence(x, y, title, x_label, y_label):
    fig, ax = plt.subplots(figsize=(10,10))
    ax.plot(x, y)
    ax.scatter(x, y)
    plt.title(title, fontsize=20)
    plt.xlabel(x_label, fontsize=15)
    plt.ylabel(y_label, fontsize=15, rotation=0, labelpad=30)

    fig.savefig('./Figures/fig_{}.png'.format(increment_counter()))
    if print:
        plt.show()

    title = 'Iterations to converge for different step sizes'
    x_label = 'Step Size'
    y_label = 'Iterations'
    plot_convergence(step_sizes, avg_iters, title, x_label, y_label)
```


Based on the above graph we see that a step size of 0.1 yield the minimal amount of iterations while still finding all the local maxima:

0.06

Step Size

0.08

0.10

0.04

0.02

0.1.1 B) Simulated Annealing

The corresponding Y values found for each initial Temperature and Cooling coefficient can be found in the text file ./Output/Q3b.txt

```
In [6]: import random
```

```
def sim_annealing(x_0, step, T, cooling_coef):
   curr_x = x_0
   iterations = 0
   while True:
       if float('{:.3f}'.format(T)) <= 0: break</pre>
       left_x = curr_x - step
       right_x = curr_x + step
       left_e = Y(left_x)
       right_e = Y(right_x)
        # choose the next direction keeping into consideration domain limits
       if left_x <= MIN_X:</pre>
           next_x, next_e = (right_x, right_e)
       elif right_x >= MAX_X:
           next_x, next_e = (left_x, left_e)
       else:
           direction = random.choice(['left', 'right'])
           next_x, next_e = (left_x, left_e) if direction == 'left' else (right_x, right)
       curr_e = Y(curr_x)
       delta_e = curr_e - next_e
       if delta_e > 0:
           curr_x = next_x
       else:
           if random.random() < (math.exp(-(delta_e) / T)):</pre>
               curr_x = next_x
           T *= cooling_coef
       iterations += 1
   return curr_x, Y(curr_x), iterations
temperatures = np.linspace(1000,5000, 5)
cooling_coefs = np.linspace(0.1, 0.5, 5)
iters = []
with open('./Output/Q3b.txt', 'w') as f:
   for t in temperatures:
       f.write('\n'.format(t))
       avg_iters = []
       for c in cooling_coefs:
           f.write('\n'.format(c))
           xs, es, iterations = [], [], []
           for x_0 in init_x:
               x, e, i = sim_annealing(x_0, optimal_step, t, c)
```

```
xs.append(x)
es.append(e)
iterations.append(i)
f.write('Initial X = {:.0f}\tFinal (X,Y) = ({:.2f},{:.2f})\tIterations:

# plot the new location of eacth agent
plot_model(x_axis, y_model, xs, es, 'Temp {:.2f}, Cooling {:.2f}'.format(t,c)
avg_i = sum(iterations) / len(iterations)
avg_iters.append(avg_i)
f.write('Average iterations to converge: {:.1f}\n'.format(avg_i))
iters.append(avg_iters)
```

Temp 1000.00, Cooling 0.10

It is easier to visualize the changes in number of iterations to converge with the following graph:

```
In [7]: fig, ax = plt.subplots(figsize=(10,10))
    for idx, t in enumerate(iters):
        ax.plot(cooling_coefs, t, label='T = {:.2f}'.format(temperatures[idx]))

plt.title('Avg iterations for different Temps over various cooling coefs.', fontsize=20)
    plt.xlabel('Cooling Coefficients', fontsize=20)
    plt.ylabel('Iterations', fontsize=20)
    plt.legend(loc='best', prop={'size':15}, frameon=False)

fig.savefig('./Figures/fig_{}.png'.format(increment_counter()))

plt.show()
```


Note that if we had let the algorithm run until it found a neighbour wiht smaller Energy as the current node (i.e. Hill Climbing) after T = 0, All the points would have ended in a local maxima. An example of such algorithm is presented next:

```
In [8]: import random

def sim_annealing(x_0, step, T, cooling_coef):
    curr_x = x_0
    iterations = 0

while True:
    left_x = curr_x - step
    right_x = curr_x + step

left_e = Y(left_x)
```

```
right_e = Y(right_x)
        # choose the next direction keeping into consideration domain limits
        if left_x <= MIN_X:</pre>
            next_x, next_e = (right_x, right_e)
        elif right_x >= MAX_X:
            next_x, next_e = (left_x, left_e)
        elif float('{:.3f}'.format(T)) > 0:
            direction = random.choice(['left', 'right'])
            next_x, next_e = (left_x, left_e) if direction == 'left' else (right_x, right_x)
        else:
            next_x, next_e = (left_x, left_e) if left_e > right_e else (right_x, right_e
        curr_e = Y(curr_x)
        delta_e = curr_e - next_e
        if float('{:.3f}'.format(T)) > 0:
            if delta_e > 0:
                curr_x = next_x
            else:
                if random.random() < (math.exp(-(delta_e) / T)):</pre>
                    curr_x = next_x
                T *= cooling_coef
        elif curr_e < next_e:</pre>
            curr_x = next_x
        else:
            break
        iterations += 1
    return curr_x, Y(curr_x), iterations
temperatures = np.linspace(10, 1000, 5)
cooling_coefs = np.linspace(0.5, 0.5, 1)
iters = []
for t in temperatures:
    avg_iters = []
    for c in cooling_coefs:
        xs, es, iterations = [], [], []
        for x_0 in init_x:
            x, e, i = sim_annealing(x_0, optimal_step, t, c)
            xs.append(x)
            es.append(e)
            iterations.append(i)
        # plot the new location of eacth agent
        plot_model(x_axis, y_model, xs, es, 'Temp {:.2f}, Cooling {:.2f}'.format(t,c))
```

