4. Séries génératrices - transformée en Z

Définition : Soit $a = (a_n)_{n \in \mathbb{N}}$ une suite de réels ou de complexes.

On lui associe la fonction
$$f(z) = \sum_{n=0}^{\infty} a_n \left(\frac{1}{z}\right)^n : (a_n) \xrightarrow{\text{transformée en } Z} \sum_{n=0}^{\infty} a_n \left(\frac{1}{z}\right)^n$$

La série entière $\sum_{n=0}^{\infty} a_n z^n$ étant définie et de classe C^{∞} dans le disque de convergence |z| < R,

la fonction f est définie et de classe C^{∞} dans le domaine $|z| > \frac{1}{R}$ (si $R \neq 0$)

Exemples:

- Si a = (1,0,0,...) $(a_0 = 1 \text{ et } \forall n \ge 1/a_n = 0)$ alors f(z) = 1
- Si $\forall n \ge k / a_n = 0$ alors $f(z) = a_0 + \frac{a_1}{z} + \frac{a_2}{z^2} + \dots + \frac{a_k}{z^k} = \frac{a_0 z^k + a_1 z^{k-1} + \dots + a_{k1} z + a_k}{z^k}$
- Si $\forall n/a_n = 1$ alors $f(z) = \sum_{n=0}^{\infty} \left(\frac{1}{z}\right)^n = \frac{1}{1 \frac{1}{z}} = \frac{z}{z 1}$ (pour |z| > 1)
- Si $\forall n/a_n = \alpha^n$ (α constante non nulle) alors $f(z) = \sum_{n=0}^{\infty} \left(\frac{\alpha}{z}\right)^n = \frac{1}{1 \frac{\alpha}{z}} = \frac{z}{z \alpha}$ (pour $|z| > |\alpha|$)

Propriétés

- Unicité: Si $(a_n) \to f(z)$ et $(b_n) \to f(z)$ et si le RdC est > 0, alors $\forall n \in \mathbb{N} / a_n = b_n$
- Linéarité : Si $(a_n) \to f(z)$ et $(b_n) \to g(z)$ alors $\forall \alpha, \beta \in \mathbb{C}$ $(\alpha a_n + \beta b_n) \to \alpha f(z) + \beta g(z)$

Exemples

$$(\cos(\omega n)) \rightarrow \frac{z(z-\cos\omega)}{z^2-2z\cos\omega+1}, (2a^n-b^n) \rightarrow 2\frac{z}{z-a} - \frac{z}{z-b} = \frac{z^2+(a-2b)z}{(z-a)(z-b)}$$

- Homothétie : Si $(a_n) \to f(z)$, alors pour α non nul fixé, $(\alpha^n a_n) \to f(\frac{z}{\alpha})$ ③
- Dérivée en z Si $(a_n) \to f(z)$ alors $(na_n) \to -z f'(z)$

Exemples: Si
$$\forall n/a_n = n$$
, $f(z) = \frac{z}{(z-1)^2}$, Si $\forall n/a_n = n$ α^n , $f(z) = \frac{\alpha z}{(z-\alpha)^2}$

Notation : la suite (a_{n-1}) est la suite (b_n) telle que $b_0 = 0$ et $\forall n \ge 1 / b_n = a_{n-1}$

- Retard en n: Si $(a_n) \to f(z)$ alors $(a_{n-1}) \to \frac{1}{z} f(z)$ Si
- Avance en n: Si $(a_n) \to f(z)$ alors $(a_{n+1}) \to z f(z) a_0 z$ ©

Application : Équations de récurrence

Exemple 1
$$u_{n+1} = a u_n + b$$

Appelons f(z) la transformée en z de (u_n) .

Alors la transformée en z de u_{n+1} est $z f(z) - u_0 z$, celle de $(u_{n+1} - a u_n)$ est $z f(z) - u_0 z - a f(z)$ (© et \mathbb{Q})

Celle de
$$(b)$$
 est $\frac{b z}{z-1}$, donc par unicité \oplus , $f(z) = \frac{u_0 z}{z-a} + \frac{b z}{(z-a)(z-1)} = \frac{u_0 z}{z-a} + \frac{b}{a-1} \left(\frac{z}{z-a} - \frac{z}{z-1}\right)$

Comme $\frac{z}{z-a}$ est la transformée de (a^n) et $\frac{z}{z-1}$ la transformée de (a^n) , on obtient $u_n = u_0 a^n + \frac{b}{a-1} (a^n-1)$

Exemple 2 $u_{n+2} = 2$ $u_{n+1} - u_n + 2^n$, $u_0 = 1$, $u_1 = 1$ (équation linéaire du $2^{\text{ème}}$ ordre non homogène) Appelons f(z) la transformée en z de (u_n) .

Alors la transformée en
$$z$$
 de u_{n+1} est z f $(z) - u_0$ $z = z$ f $(z) - z$, celle de u_{n+2} est donc z $(z$ f $(z) - u_0$ $z) - u_1 z = z^2$ f $(z) - z^2 - z$

Celle de
$$(2^n)$$
 est $\frac{z}{z-2}$, donc par unicité, $z^2 f(z) - z^2 - z = 2(z f(z) - z) - f(z) + \frac{z}{z-2}$
On obtient $f(z) = \frac{z}{z-1} + \frac{z}{(z-1)^2(z-2)} = -\frac{z}{(z-1)^2} + \frac{z}{z-2}$ et par suite $u_n = -n + 2^n$

Méthode

- 1. Appliquer la transformée en Z aux 2 membres de l'équation aux différences en u_n
- 2. Calculer f(z) en utilisant les propriétés de la transformée en Z
- 3. Décomposer $\frac{1}{z}f(z)$ en éléments simples
- 4. Utiliser la table de transformée pour obtenir u_n par transformée inverse

Table de transformées en Z

R est le RdC de la série $\sum u_n z^n$, a est un complexe non nul, ω un réel.

u_n^2 , u est un complexe non nui, w un rech		
$\sum u_n$	Transformée $f(z)$	Domaine de
	<i>3</i> ()	convergence
1		z > 1
	$\frac{z}{z-1}$	
a^n	<u>z</u>	z > a
	z-a	
$n a^n$	a z	z > a
n a		$ z \geq a $
	$(z-a)^2$	
$n^2 a^n$	$\frac{az(z+a)}{\big(z-a\big)^3}$	z > a
	$\frac{\omega - (-1)\omega}{(-1)^3}$	
	$(z-a)^{r}$	
$\cos(\omega n)$	$z(z-\cos\omega)$	z > 1
	$\frac{z^2-2z\cos\omega+1}{z^2-2z\cos\omega+1}$	
	$z^2 - 2z\cos\omega + 1$	
$\sin(\omega n)$	$z\sin\omega$	z > 1
	$\overline{z^2-2z\cos\omega+1}$	
u_{n+1}	$z f(z) - u_0 z$	$ z > \frac{1}{z}$
		$ z > \frac{1}{R}$
u_{n+2}	$z^2 f(z) - z^2 u_0 - z u_1$	1
u_{n+2}	$z \ j \ (z) - z \ u_0 - z \ u_1$	$ z > \frac{1}{R}$
		R
$a^n u_n$	$_{\mathcal{L}}$ $\left(z\right)$	$ z > \frac{ a }{R}$
	$J\left(\frac{-}{a}\right)$	$ z > \frac{1}{R}$
	(**/	11