Magnetised dust in star formation: A proposal

James Wurster

1st European Phantom Users Workshop University of Milano, 19 June 2018

Magnetic fields in molecular clouds

> Strong field; large-scale structure

Density (rendered) + Magnetic field lines. Ideal MHD.

Left: Typical (idealised) initial conditions in numerical simulations (collapsing spherical cores).

Right: at $\rho_{\text{max}} = 10^{-9} \,\text{g cm}^{-3}$

Magnetic fields in molecular clouds

> Strong field; small-scale structure

- ➤ Non-ideal MHD includes assumptions about chemical networks and grains
 - For Grains are assumed to have fixed properties of $a = 0.1 \mu m$, $\rho_{\text{bulk}} = 3 \text{g cm}^{-3}$, $f_{\text{dg}} = 0.01$

Disc formation in a magnetised medium

Disc formation in a magnetised medium

Outflows

Wurster, Bate & Price (submitted)

Dust in molecular clouds

Dust in non-ideal magnetohydrodynamics

Assumes fixed properties of $a = 0.1 \mu m$, $\rho_{\text{bulk}} = 3 \text{g cm}^{-3}$, $f_{\text{dg}} = 0.01 \log \rho_{\text{n}} \text{ (g cm}^{-3)}$

Dust in molecular clouds

The remaining slides contain proprietory information, thus will not be made public. For information, please contact me at j.wurster@exeter.ac.uk

Conclusions

The conclusions contain propitiatory information which has been redacted.

