TÀI LIỆU ĐƯỢC SỬ DỤNG CHO MÔN THI TOÁN KINH TẾ

Họ tên : Lương Tuấn Long

MSSV : 0044968

Mã 1:

```
c = [-1; -1/3]

A = [1, 1; 1, 1/4; 1, -1; -1/4, -1; -1, -1; -1, 1]

b = [2; 1; 2; 1; -1; 2]

Ae = [1, 1/4]

be = [1/2]

1 = [-1; -0.5]

u = [1.5; 1.25]

[x, f] = linprog(c, A, b, Ae, be, 1, u)
```

Mã 2:

Mã 3:

```
f = 0(x, y) y - x
                            % VD2: f = Q(x, y) [x*y(1) - y(2), y(1) + y(2) - 1]
                            % VD3: f = Q(x, y) [y(2), y(3), x*y(3) - y(1)]
X = [0, 0.2, 0.3, 0.5] % VD2: X = [1, 1.1, 1.3, 1.5]
                            % VD3: X = [-1, -0.8, -0.6, -0.5]
5 y = 2
                            % VD2: y = [-1, 2]
                            % VD3: y = [1, 0, -2]
  for n = 1:2
      h = X(n+1) - X(n);
      k1 = h * f(X(n), y);
9
      k2 = h * f(X(n) + h/2, y + k1/2);
      k3 = h * f(X(n) + h/2, y + k2/2);
11
      k4 = h * f(X(n) + h, y + k3);
      y = y + (k1 + 2*k2 + 2*k3 + k4) / 6
13
14 end
```

Mã 4:

```
fplot(abs(diff(f(x), 2)), [0, 2])
_{14} M2 = 700
15 M2 * (2 - 0)^3 / 12 / 8^2
16 % Simpson
17 I = 0
18 for i = 1:4
     I = I + (X(2*i+1) - X(2*i-1)) * (Y(2*i+1) + 4*Y(2*i) + Y(2*i-1))
19
     ) / 6;
20 end
21 I
22 diff(f(x), 4)
simplify(diff(f(x), 4))
24 fplot(abs(diff(f(x), 4)), [0, 2])
_{25} M4 = 4500
^{26} M4 * (2 - 0)^5 / 180 / 8^4
```

Mã 5:

Mã 6:

```
f = @(x) x^3 - x^2 - 3

syms x

fplot(f(x), [1, 4])

diff(f(x))
```

```
5 fplot(diff(f(x)), [1, 4])
diff(f(x), 2)
7 fplot(diff(f(x), 2), [1, 4])
8 f(1)
9 f (4)
fplot(abs(diff(f(x), 2)), [1, 4])
11 M = 22
12 syms t
df = Q(x) subs(diff(f(t)), x)
m = \min(abs(df(1)), abs(df(4)))
15 \times 0 = 4
                                              x_{n-1}
16 for n = 1:3
      n
      x = vpa(x0 - f(x0) / df(x0), 6)  % x_n
      e = vpa(M / 2 / m * (x - x0)^2, 6)
                                             % \varepsilon_n
      x0 = x;
20
21 end
```

Mã 7:

14 I

Mã 8:

```
1 X = [-1, 0, 1, 2]
_{2} Y = [4, 3, 2, 7]
d = zeros(4, 4);
d(1, :) = Y
5 for k = 2:4
      for i = 1:5-k
          d(k, i) = d(k-1, i+1) - d(k-1, i);
      end
9 end
10 d
11 syms t x
12 P = 0;
13 for k = 0:3
     N = d(k+1, 1) / factorial(k); % d(k+1, 4-k)
14
     for i = 0:k-1
15
          N = N * (t - i);
                                      % t + i
16
      end
17
      P = P + N;
18
19 end
20 P = subs(P, t, (x-X(1)) / 1) % X(4)
21 expand(P)
```

Mã 9:

```
12 end

(-Y(3) + 4*Y(2) - 3*Y(1)) / 2 / h

14 (3*Y(6) - 4*Y(5) + Y(4)) / 2 / h

15 % Đạo hàm cấp 2: công thức 3 điểm

16 for i = 2:5

(Y(i+1) - 2*Y(i) + Y(i-1)) / h^2

end

19 (Y(3) - 2*Y(2) + Y(1)) / h^2

20 (Y(6) - 2*Y(5) + Y(4)) / h^2
```

Mã 10:

```
A = [-15.4, 1, 6.3;
       -4.2, 10.8, 3.3;
       -2.4, 5.3 , 15.9]
a b = [30; 25; -10]
_{5} B = zeros(3, 3)
g = zeros(3, 1)
7 for i = 1:3
     for j = 1:3
          if i ~= j
9
              B(i, j) = -A(i, j) / A(i, i);
10
          end
11
     end
      g(i) = b(i) / A(i, i);
13
14 end
15 B
16 g
17 % Lặp điểm bất động
x = [0; 0; 0]
19 for k = 1:5
     k
     x = B*x + g
22 end
23 % Lặp Gauss - Seidel
x = [0; 0; 0]
25 for k = 1:5
```

```
for i = 1:3

x(i) = B(i, :) * x + g(i);

end

x

end
```

Mã 11:

```
f = Q(x) x<sup>3</sup> + 2*x - 1 % khai báo hàm số f(x) = x^3 + 2x - 1
2 f(0)
                                  \% \rightarrow -1
3 f(2)
                                  \% \rightarrow 11
a = 0;
5 b = 2;
  for n = 1:5
6
       c = (a+b) / 2;
       if f(c) == 0
8
             С
            break
10
        elseif f(a) * f(c) < 0
11
            b = c;
12
        else
13
            a = c;
14
        end
15
        ss = b - a
16
        [n, a, b, ss] % n, a_n, b_n, \varepsilon_n
17
18 end
```

Mã 12:

```
f = @(x) 100*(x(2) - x(1)^2)^2 + (1 - x(1))^2

x = sym('x', [2, 1])

g = [diff(f(x), x(1)); diff(f(x), x(2))]

H = [diff(g, x(1)), diff(g, x(2))]

X = [-1.2; 1]

f(X)

for k = 1:5

    X = vpa(X - (subs(H, x, X))^-1 * subs(g, x, X), 6)
    vpa(f(X), 6)
```

```
10 end
```

Mã 13:

```
_{1} B = [-0.21, -0.28, 0.05;
       0.19, 0.01, -0.26;
       0.39, -0.12, -0.06]
g = [-0.9; 3.8; -2.9]
q = norm(B, inf)
6 % Lặp điểm bất động
7 \times 0 = [0; 2; -1]
8 for k = 1:5
     x = B*x0 + g
     ss = q / (1-q) * norm(x-x0, inf)
     x0 = x;
12 end
13 % Lặp Gauss-Seidel
x0 = [0; 2; -1]
15 for k = 1:5
     x = x0;
16
     for i = 1:3
17
         x(i) = B(i, :) * x + g(i);
18
     end
19
     X
     ss = norm(x-x0, inf)
      x0 = x;
22
23 end
```

Mã 14:

Mã 15:

```
f = 0(x, y) x * exp(y)
2 % Chia lưới
a = 0; b = 1; c = 1; d = 1.4;
4 n = 5; m = 4;
b = (b-a)/n, k = (d-c)/m
6 % Các phép tính lặp lại nhiều lần
_{7} aL = "A(r, r-1) = 1;"
                                                % hệ số của u_{i-1,i}
aR = "A(r, r+1) = 1;"
                                                9 aD = "A(r, r-n+1) = (h/k)^2;"
                                                \% . . . . . u_{i,i-1}
aU = "A(r, r+n-1) = (h/k)^2;"
                                                11 lh = "B(r) = h^2 * f(a+i*h, b+j*k)"
                                                % h^2 f(x_i, y_i), chưa có dấu ; để còn
    nối phép tính
sL = "- g(a+(i-1)*h, b+j*k)"
                                                -g(x_{i-1}, y_i)
                                                -g(x_{i+1}, y_i)
13 sR = "- g(a+(i+1)*h, b+j*k)"
sD = "- (h/k)^2 * g(a+i*h, b+(j-1)*k)" % -(\frac{h}{k})^2 g(x_i, y_{i-1})
sU = "- (h/k)^2 * g(a+i*h, b+(j+1)*k)"
                                                (-(\frac{h}{k})^2 g(x_i, y_{i+1})
16 % Lập hệ phương trình
17 A = zeros((n-1)*(m-1));
18 B = zeros((n-1)*(m-1), 1);
19 for i = 1:n-1
                                               % duyệt từng cột trên hình
      for j = 1:m-1
20
           r = (j-1)*(n-1) + i;
                                              % phương trình thứ <math>r
21
           A(r, r) = -2 * ((h/k)^2 + 1); % hệ số của <math>u_{ii}
22
           if i == 1 && j == 1
                                              % góc dưới trái
23
                eval(aR + aU + lh + sL + sD + ";")
24
           end
25
           if i == 1 && j == m-1
                                               % góc trên trái
```

```
eval(aR + aD + lh + sL + sU + ";")
          end
          if i == n-1 && j == 1
                                    % góc dưới phải
              eval(aL + aU + lh + sR + sD + ";")
30
          end
31
          if i == n-1 \&\& j == m-1 % góc trên phải
32
              eval(aL + aD + lh + sR + sU + ";")
33
          end
          if i == 1 && 1 < j && j < m-1</pre>
                                                       % cạnh trái
35
              eval(aR + aD + aU + lh + sL + ";")
36
          end
37
          if i == n-1 && 1 < j && j < m-1
                                                       % cạnh phải
38
              eval(aL + aD + aU + lh + sR + ";")
39
          end
40
          if j == 1 && 1 < i && i < n-1</pre>
                                                       % canh dưới
41
              eval(aL + aR + aU + lh + sD + ";")
42
          end
43
          if j == m-1 && 1 < i && i < n-1
                                                       % cạnh trên
44
              eval(aL + aR + aD + lh + sU + ";")
45
          end
46
          if 1 < i && i < n−1 && 1 < j && j < m−1 % giữa
47
               eval(aL + aR + aD + aU + lh + ";")
48
          end
49
      end
51 end
52 A
53 B
54 % Giải hệ và hiển thị kết quả
u = linsolve(A, B)
sol = flipud(reshape(u, n-1, m-1)')
57 % So sánh với nghiệm đúng
u = 0(x, y) x * exp(y)
U = zeros(n-1, m-1)
60 for i = 1:n-1
      for j = 1:m-1
          x = a + i*h; y = b + j*k;
62
          U(i, j) = u(x, y);
63
      end
```

```
65 end
66 U
67 flip(U')
function val = g(x, y) % khai báo trước ở ô cuối cùng của số tay
69 if x == 0
   val = 0;
70
  end
_{72} if x == 1
  val = exp(y);
73
74 end
_{75} if y == 1
   val = \exp(1) * x;
76
77 end
_{78} if y == 1.4
   val = \exp(1.4) * x;
79
80 end
81 end
```

Mã 16:

```
g = @(x) [(x(1)^2 + x(2)^2 + 3) / 8;

(-x(1)^2 + 2*x(1)*x(2) + 17) / 10]

x0 = [-1; 2.4] % x0 \leftarrow x^{(k-1)}

for k = 1:5

k

x = g(x0) % x \leftarrow x^{(k)}

e = norm(x - x0, inf) % e \leftarrow \varepsilon_k

x0 = x;
```

Mã 17:

```
g = @(x) nthroot(x^2 + 3, 3)

syms x

fplot(g(x), [1, 4])

diff(g(x))
fplot(abs(diff(g(x))), [1, 4])
```

```
6 q = ...

x0 = 2.5 % x_{n-1}

8 for n = 1:3

9 n

10 x = g(x0) % x_n

11 e = q / (1-q) * abs(x - x0) % \varepsilon_n

12 x0 = x;

13 end
```

Mã 18:

```
f = @(x) x.^2/10 - 2*sin(x)

syms t

df = @(x) subs(diff(f(t)), x)

d2f = @(x) subs(diff(f(t), 2), x)

x = 2.5

f(x)

for n = 1:3
    x = vpa(x - df(x) / d2f(x), 6)
    vpa(f(x), 6)

end
```

Mã 19: