Vectors and matrices

January 25, 2017

Outline

- Matrices
- 2 Trigonometry
- Vectors in 2 and 3d

Definition

- Think of matrices as as a class.
- Data: 2d table of entries of a type that can be added and multiplied
- Methods: + and *, transpose,

Examples

Entries can be

- ullet .Numbers $\mathbb{Z},\mathbb{Q},\mathbb{R}$ and \mathbb{C}
- Functions, e.g. polynomials
- Logical expressions
- Matrices
- A[i][j] is the entry in row i and column j
- We use A_{ij} in maths.

Examples

Entries can be

- ullet .Numbers $\mathbb{Z},\mathbb{Q},\mathbb{R}$ and \mathbb{C}
- Functions, e.g. polynomials
- Logical expressions
- Matrices
- A[i][j] is the entry in row i and column j
- We use A_{ij} in maths.

Examples

- Simple weighted networks = matrices (train network, internet ...)
 - A[i][j] is the weight on the arrow from j to i.
- Binary relations
- Matrices = operations on vectors (=data).
- Linear systems of equations
- 2d data of numbers (e.g. pixels on the screen)

Linear system of equations

- A linear system of equations $A \cdot x = b$ can be thought of as a matrix
 - 0, 1 or solution with parameters.
- All algorithms for solving linear system of equations over the reals have issues with rounding.
- Gaussian elimination can be used to solve the system
 - Row operations preserve solution
 - Numerically unstable
- Many other algorithms

Operations 1

- Addition: A + B
 - A and B has the same size
 - Addition is elementwise
- Multiplication: $A \cdot B$ or AB
 - num. of columns in A = num. of rows in B
- Scalar multiplication: $c \cdot A$ or cA.
 - Scalar multiplication is elementwise

Operations II

- Identity matrix denoted by I or I_n .
 - I[i][i] = 1, I[i][j] = 0 for $i \neq j$.
- A and B are square matrices
- If AB = I: B is the inverse of A, written as A^{-1} .
 - Fact: A is also the inverse of B.
- Inverses may not exist.
 - Calculated by solving a set of equations.

Operations II

- Identity matrix denoted by I or I_n .
 - I[i][i] = 1, I[i][j] = 0 for $i \neq j$.
- A and B are square matrices
- If AB = I: B is the inverse of A, written as A^{-1} .
 - Fact: A is also the inverse of B.
- Inverses may not exist.
 - Calculated by solving a set of equations.

Linear systems of equations II

- A invertible for system $A \cdot x = b$.
 - Solution is $A^{-1} \cdot b$.
 - Invert A once, can solve $A \cdot x = b$ for many b.
- If no solution: least squares approximations
 - We will look at this more carefully later in the course.

Linear systems of equations II

- A invertible for system $A \cdot x = b$.
 - Solution is $A^{-1} \cdot b$.
 - Invert A once, can solve $A \cdot x = b$ for many b.
- If no solution: least squares approximations
 - We will look at this more carefully later in the course.

Operations III

- Vectors are matrices.
 - Row vectors
 - Column vectors
- $A \cdot v$ and $w \cdot A$ are vectors (if defined)
 - So matrices transform vectors
 - E.g. Rotation, Scaling, Projection,....

Operations III

- Vectors are matrices.
 - Row vectors
 - Column vectors
- $A \cdot v$ and $w \cdot A$ are vectors (if defined)
 - So matrices transform vectors
 - E.g. Rotation, Scaling, Projection,....

Angles

- One time around the circle: 0°..360°degrees (artificial)
- One time around the circle: $0..2\pi$ radians (natural)

•
$$rad = \frac{2\pi \cdot deg}{360} = \frac{\pi \cdot deg}{180}$$
 , $deg = \frac{180 \cdot rad}{\pi}$

- rad in C when using cos, sin, tan.
- deg in many SFML functions.
- Calculators usually lets you choose

Angles

- One time around the circle: 0°..360°degrees (artificial)
- One time around the circle: $0..2\pi$ radians (natural)

•
$$rad = \frac{2\pi \cdot deg}{360} = \frac{\pi \cdot deg}{180}$$
 , $deg = \frac{180 \cdot rad}{\pi}$

- rad in C when using cos, sin, tan.
- deg in many SFML functions.
- Calculators usually lets you choose

Definitions

- We will use sine sin(x), cosine cos(x) and sometimes tangent $tan(x) = \frac{sin(x)}{tan(x)}$.
- Can be defined using right angled triangles.
- Can be defined using unit circles.
 - (cos(x), sin(x)) is the point on the unit circle when angle is x.
- Memorize the definitions!!!!

Definitions

- We will use sine sin(x), cosine cos(x) and sometimes tangent $tan(x) = \frac{sin(x)}{tan(x)}$.
- Can be defined using right angled triangles.
- Can be defined using unit circles.
 - (cos(x), sin(x)) is the point on the unit circle when angle is x.
- Memorize the definitions!!!!

Inverse function

- $sin^{-1}(x)$ or arcsin(x). asin(x), acos(x), atan(x) in C
- y = sin(x) has infinite number of solutions.
 - Gives one solution usually from half-plane $-\frac{\pi}{2}...\frac{\pi}{2}$
 - atan2(x,y) is useful

Things we should know

- A vector can be described by coordinates
- A vector can be described by length and direction (angle in 2d)
- Scalar (dot) product
- Vector (cross) product
- Length of vector
- Length: $|v| = \sqrt{x^2 + y^2}$
 - Follows from Pythagoras' theorem
 - Generalises to higher dimensions

Things we should know

- A vector can be described by coordinates
- A vector can be described by length and direction (angle in 2d)
- Scalar (dot) product
- Vector (cross) product
- Length of vector
- Length: $|v| = \sqrt{x^2 + y^2}$
 - Follows from Pythagoras' theorem
 - Generalises to higher dimensions

Things we should know

- A vector can be described by coordinates
- A vector can be described by length and direction (angle in 2d)
- Scalar (dot) product
- Vector (cross) product
- Length of vector
- Length: $|v| = \sqrt{x^2 + y^2}$
 - Follows from Pythagoras' theorem
 - Generalises to higher dimensions

Scalar product

•
$$v \cdot w = \begin{pmatrix} x_1 \\ y_2 \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = x_1 y_1 + x_2 y_2.$$

- Scalar product takes two vectors as input and produces a number
- Generalises to higher dimensions
- Really the matrix product $v^T \cdot w$ for column vectors.

$$ullet$$
 or, $cos(heta) = rac{v \cdot w}{|v||w|}$

- ullet heta is the angle between the vectors
- v and w are orthogonal if $v \cdot w = 0$

$$|v| = \sqrt{v \cdot v}$$

Scalar product

•
$$v \cdot w = \begin{pmatrix} x_1 \\ y_2 \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = x_1 y_1 + x_2 y_2$$
.

- Scalar product takes two vectors as input and produces a number
- Generalises to higher dimensions
- Really the matrix product $v^T \cdot w$ for column vectors.

$$ullet$$
 or, $cos(heta)=rac{v\cdot w}{|v||w|}$

- $oldsymbol{ heta}$ is the angle between the vectors
- v and w are orthogonal if $v \cdot w = 0$

$$|v| = \sqrt{v \cdot v}$$

Vector product

- Or. $|v \times w| = |v| \cdot |w| \cdot \sin\theta$ and $v \times w$ is (right handed) orthogonal to v and w.
 - θ is angle between ν and w.
 - $|v \times w|$ is the area of paralellogram spanned by v and w.
 - v and w are paralell if $v \times w = 0$
- Note: Two vectors as input and a vector as output.
- Generalisation to higher dimension is non-trivial

• 2d embedded in 3d:
$$\begin{pmatrix} x_1 \\ y_1 \\ 0 \end{pmatrix} \times \begin{pmatrix} x_2 \\ y_2 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ x_1 \cdot y_2 - x_2 \cdot y_2 \end{pmatrix}$$

• We will use the sign of $x_1 \cdot y_2 - x_2 \cdot y_2$

Vector product

- Or. $|v \times w| = |v| \cdot |w| \cdot \sin\theta$ and $v \times w$ is (right handed) orthogonal to v and w.
 - θ is angle between ν and w.
 - $|v \times w|$ is the area of paralellogram spanned by v and w.
 - v and w are paralell if $v \times w = 0$
- Note: Two vectors as input and a vector as output.
- Generalisation to higher dimension is non-trivial

• 2d embedded in 3d:
$$\begin{pmatrix} x_1 \\ y_1 \\ 0 \end{pmatrix} \times \begin{pmatrix} x_2 \\ y_2 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ x_1 \cdot y_2 - x_2 \cdot y_2 \end{pmatrix}$$

• We will use the sign of $x_1 \cdot y_2 - x_2 \cdot y_2$

Vector product

- Or. $|v \times w| = |v| \cdot |w| \cdot \sin\theta$ and $v \times w$ is (right handed) orthogonal to v and w.
 - θ is angle between ν and w.
 - $\bullet |v \times w|$ is the area of paralellogram spanned by v and w.
 - v and w are paralell if $v \times w = 0$
- Note: Two vectors as input and a vector as output.
- Generalisation to higher dimension is non-trivial

• 2d embedded in 3d:
$$\begin{pmatrix} x_1 \\ y_1 \\ 0 \end{pmatrix} \times \begin{pmatrix} x_2 \\ y_2 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ x_1 \cdot y_2 - x_2 \cdot y_2 \end{pmatrix}$$

• We will use the sign of $x_1 \cdot y_2 - x_2 \cdot y_2$