# Manual for Home-build AFM

Bio-mechanics Lab
Lehigh University
Xiaohui (Frank) Zhang
Wei Zhang

#### Procedure

Step 1: Turn on AFM controller; run Igor (afm-includeAll).

Step 2: Calibration

Step 3: Pulling Experiment

#### Step 1 – Turn on AFM Controller



### Step 1 – Run Igor (afm-includeAll)



Click Compile;
Go to Macros -> Init

#### Step 2 - Calibration

#### Before Calibration:

- Mount the holder to the AFM piezo properly.
- Align the laser, to make the laser shot into the photodetector.
- Keep the holder far from the dish surface when doing the sample scan.

### Step 2 – Calibration: Sample Scan



# Sample Scan Parameters:

**Range**: 1.024 V (default) Change to a higher value when necessary, for example, when using a smaller cantilever.

# Save at least 5 good sample scans.

#### Step 2 – Calibration: Sample Scan



An example of good Sample Scan.

#### Step 2 – Calibration: Hard Scan

- Approach the cantilever to the dish surface first.
- Check the sensitivity of the reflection signal.



**Beginning**: cantilever is far from dish surface.

Cantilever touches dish surface. (signal jumps)

Cantilever continues to move down a little. (signal disappears) Lift it back immediately!

#### Step 2 – Calibration: Hard Scan

Menu Bar: click

**DispFScanParameters** 

Dwell time: 0

Max signal (mV): -4000

Feedback ON

Click DoForceScan.



#### Step 2 – Calibration: Hard Scan

Save at least 5 good Hard Scans.



An example of good Hard Scan.

#### Step 2 – Calibration: Calculation

Click "Calibration & Export".

- Uncheck the followings:
- auto slope
- auto subtract Background
- auto spring

Click Calibrate.



#### Step 2 – Calibration: Slope



Select two points: Linear curve between them.

Click "Get Slope".

#### Step 2 – Calibration: Slope

| <b>≣</b> slopes |                   |             |
|-----------------|-------------------|-------------|
| R3C0            | Force005 A-B os A |             |
| Point           | slope_name        | slope_value |
| 0               | Force010_A-B_os_A | 4.21418e-08 |
| 1               | Force007_A-B_os_A | 4.10309e-08 |
| 2               | Force006_A-B_os_A | 4.12704e-08 |
| 3               | Force005_A-B_os_A | 4.12888e-08 |
| 4               | Force004_A-B_os_A | 4.08039e-08 |
| 5               | Force003_A-B_os_A | 4.12571e-08 |
| 6               | Force002_A-B_os_A | 4.05846e-08 |
| 7               | Force001_A-B_os_A | 3.99521e-08 |
| 8               |                   |             |
|                 |                   |             |
|                 |                   |             |
| 1               |                   |             |





**Slope Table:** 

Values: ~5E-08.

Save as .csv file.

#### Step 2 – Calibration: Spring





Select two points.
Click "Subtract background".

Click "Calc Spring".

#### Step 2 – Calibration: Spring



#### **Spring Table**:

Values (not fit):

~0.01 for largest triangular cantilever.





Save as .csv file.

## Step 3 – Pulling Experiment



Change data saving folders!
Type the folder name, and press Enter.