Fuzzy szabályozással megvalósított városi forgalomirányító rendszer

Név: Mikló József-Péter

Szak: Automatika és

alkalmazott informatika

Vezető tanárok: Dr. Dávid

László, Dr. Farkas Csaba

Év: 2024

Tartalomjegyzék

- Bevezető
- Célkitűzések
- Matematikai modellezés
- SUMO szimulációs szoftver
- Fuzzy szabályozás
- Szomszédos kereszteződésben lévő jelzőlámpák összehangolása
- Mérések
- Következtetések

Bevezető

- Utak lényege
- Forgalmi dugók kialakulása
- Fix időzítésű jelzőlámpák
- Intelligens forgalomirányító rendszerek

Célkitűzések

- Torlódások elkerülése és enyhítése
- Forgalom megfelelő irányítása nagy és kis forgalom esetén is
- Zöldhullám kialakítása
- Elkerülő utak ütemezése

Matematikai modellezés

FVDM modell: $\ddot{x_n}(t) = \alpha \left[V(\Delta x_n(t)) - v_n(t) \right] + \lambda \Delta v_n(t)$ $\Delta x_n(t) = x_{n+1}(t) - x_n(t) \rightarrow (n+1)$ -dik és n-dik autó közötti távolság

 $\alpha \in [0,1] \rightarrow \text{vezető érzékenysége} \quad v_n(t) \rightarrow \text{n-dik autó sebessége}$

 $\Delta v_n(t) = v_{n+1}(t) - v_n(t) \rightarrow (n+1)$ -dik és n-dik autó sebességkülönbsége

 $\lambda \in [0,1] \rightarrow \text{vezető érzékenysége a sebességkülönbséghez}$

 $V(.) \rightarrow$ optimális sebességfüggvény $\ddot{x_n}(t) \rightarrow$ n-dik autó gyorsulása

FVDAM modell: $\ddot{x_n}(t) = \alpha [V(\Delta x_n(t)) - v_n(t)] + \lambda \Delta v_n(t) + ka_{n+1}(t)$

k → követő autó érzékenységi együtthatója

 $a_{n+1}(t) \rightarrow (n+1)$ -dik autó gyorsulása

Modellek szimulációja

A közlekedési jelzőlámpa piros és 10 autó várakozik a piros lámpánál 7.4 m követési távolsággal egymástól. A lámpa t=0-ban zöldre vált és az autók elindulnak.

SUMO szimulációs szoftver

- Nyílt forráskódú
- Saját irányítási algoritmusok beépítése
- Beépített függvények
- TraCl interfész
- Python-ból való indítás

Fuzzy szabályozás tömbvázlata

Kereszteződés felosztása szekvenciákra

Szekvenciák:

- 1. NY, $K \rightarrow előre és jobbra$
- 2. NY, $K \rightarrow balra$
- 3. É, D \rightarrow előre és jobbra
- 4. É, D \rightarrow balra

Szimulációs környezet

Sávterület detektorok

Autók a szimulációban

Kereszteződésben lévő irányok

Fuzzy bemeneti és kimeneti tagsági függvények

15

-10

20

25

lárművek számának változása

Szomszédos kereszteződésben lévő jelzőlámpák összehangolása

Mérések

"Ștefan cel Mare" utcai kereszteződés

 Összesen áthaladt autók a kereszteződésen

Központi kereszteződés

5 percenként áthaladt autók2.5 percenként mérve

Következtetések

- Felépítettünk egy fuzzy szabályozót a jelzőlámpák irányítására
- A fuzzy szabályozót sikeresen összekötöttük a szimulációval
- Felépítettünk egy fuzzy szabályozót a szomszédos kereszteződések jelzőlámpáinak összehangolására
- Az összehangoló fuzzy szabályozót is beleépítettük a szimulációba

Továbbfejlesztési lehetőségek

- A város összes jelzőlámpával irányított kereszteződésének irányítása fuzzy szabályozással
- FVDAM modell segítségével modell prediktív irányítással irányítani a jelzőlámpákat
- Hosszabb útvonalon zöldhullám effektus létrehozása, akár több irányban egyidejűleg

