

FIG. 1A

2736 bp

1	ATGGCGCCGA	GCTCCCCGTC	ACCCGCCGCG	CCTACACGCG	TOTOTGGGGG
51	GAAGCGCGCC	GCCAAGGCCG	AGGAGATCCA	CCAGAACAAG	GAGGAGGAGG
101	AGGAGGTCGC	GGCGGCGTCR	TCCGCCAAGC	GCAGCCGCAA	GGCGGCATCI
151	TCCGGGAAGA	AGCCCAAGTC	GCCCCCAAG	CAGGCCAAGC	CGGGGAGGAA
201	GAAGAAGGGG	GATGCCGAGA	TGAAGGAGCC	CGTGGAGGAC	GACGTGTGCG
	CCGAGGAGCC	CGACGAGGAG	GAGTTGGCCA	TGGGCGAGGA	GGAGGCCGAG
251			GGTGGTTGCG	GTCGCGGCGG	GGTCACCCGG
301	GAGCAGGCCA	TGCAGGAGGA	GGAACGCCGC	CGCCGCCGCT	GGCGACCACG
351	GAAGAAGAGG	GTGGGGAGAA		CGGACGAGGC	GCGC/ GCAAC
401	AGCCGGAGTT	CATCGGCAGC	CCTGTTGCCG	GCAAAGAAAC	CGGATGAGGA
451	TGGCCCAAGC	GCTACGGCCG	CAGCACTGCC		GTGGACAACG
501	GGAAGAGCTC	AAGGCCAGAT	GTCACTACCG	GAGCGCTAAG	
551	TCGTCTACTG	CCTCGGGGAT	GACGTCTATG	TCAAGGCTGG	AGAAAACGAG
601	GCAGATTACA	TTGGCCGCAT	TACTGAATTT	TTTGAGGGGA	CTGACCAGTG
651	TCACTATTTT	ACTTGCCGTT	GGTTCTTCCG	AGCAGAGGAC	ACGGTTATCA
701	ATTCTTTGGT	GTCCATAAGT	GTGGATGGCC	ACAAGCATGA	CCCTAGACGT
751	GTTTTTCTTT	CTGAGGAAAA	GAACGACAAT	GTGCTTGATT	GCATTATCTC
801	CAAGGTCAAG	ATAGTCCATG	TTGATCCAAA	TATGGATCCA	AAAGCCAAGG
851	CTCAGCTGAT	AGAGAGTTGC	GACCTATACT	ATGACATGTC	TTACTCTGTT
901	GCATATTCTA	CATTTGCTAA	TATCTCGTCT	GAAAATGGGC	AGTCAGGCAG
951	TGATACCGCT	TOGGGTATTT	CTTCTGATGA	TGTGGATCTG	GAGACGTCAT
1001	CTAGTATGCC	AACGAGGACA	GCAACCCTTC	TTGATCTGTA	TTCTGGCTGT
1051	GGGGGCATGT	CTACTGGTCT	TTGCTTGGGT	GCAGCTCTTT	CTGGCTTGAA
1101	ACTTGAAACT	CGATGGGCTG	TTGATTTCAA	CAGTTTTGCG	TGCCAAAGTT
1151	TAAAATATAA	TCATCCACAG	ACTGAGGTGC	GAAATGAGAA	AGCCGATGAG
1201	TTTCTTGCCC	TCCTTAAGGA	ATGGGCAGTT	CTATGCAAAA	AATATGTCCA
1251	AGATGTGGAT	TCAAATTTAG	CAAGCTCAGA	GGATCAAGCG	GATGAAGACA
1301	GCCCTCTTGA	CAAGGACGAA	TTTGTTGTAG	AGAAGCTTGT	CGGGATATGT
	TATGGTGGCA	GTGACAGGGA	AAATGGCATC	TATTTTAAGG	TCCAGTGGGA
1351	AGGATACGGC	CCTGAGGAGG	ATACATGGGA	ACCGATTGAT	AACTTGAGTG
1401	ACTGCCCGCA	GAAAATTAGA	GAATTTGTAC	AAGAAGGGCA	CAAAAGAAAG
1451		TGCCTGGTGA	TGTTGATGTC	ATTTGTGGAG	GCCCACCATG
1501	ATTCTCCCAC		ATCGGTACAG	AAACCGTGAT	GAGCCACTCA
1551	CCAAGGTATC	AGTGGGTTTA	ATGGTGACTT	TCATGGATAT	TGTGGCGTAC
1601	AAGATGAGAA	AAACAAACAA		GTGGTGGACA	TACTCAAATT
1651	TTGAAGCCCA	AGTATGTTCT	CATGGAAAAT	GAGCTGCCTT	GTTGCTATGA
1701	TGCGGATGGT	TACCTAGGAA	AATATGCTTT		TGGTCTGCCA
1751	AGTACCAAGC	GCGGCTTGGA	ATGATCGTGG	CTGGTTGCTA	CCATGGTGCT
1801	CAGTTCAGGA	TGCGTGTGTT	CCTCTGGGGT	GCTCTTTCTT	
1851	CCCTAAGTAT	CCTCTGCCCA	CCTATGATGT	TGTAGTACGT	GGAGGAGCCC
1901	CTAATGCCTT	TTCGCAATGT	ATGGTTGCAT	ATGACGAGAC	ACAAAAACCA
1951	TCCCTGAAAA	AAGCCTTGCT	TCTTGGCGAT	GCAATTTCAG	ATTTACCAAA
2001	GGTTCAAAAT	CACCAGCCTA	ACGATGTGAT	GGAGTATGGT	GGTTCCCCCA
2051	AGACCGAATT	CCAGCGCTAC	ATTCGACTCA	GTCGTAAAGA	CATGTTGGAT
2101	TGGTCCTTCG	GTGAGGGGGC	TGGTCCAGAT	GAAGGCAAGC	TCTTGGATCA
2151	CCAGCCTTTA	CGGCTTAACA	ACGATGATTA	TGAGCGGGTT	CAACAGATTC
2201	CTGTCAAGAA	GGGAGCCAAC	TTCCGCGACC	TAAAGGGCGT	GAGGGTTGGA
2251	GCAAACAATA	TTGTTGAGTG	GGATCCAGAA	ATCGAGCGTG	TGAAACTTTC
2301	ATCTGGGAAA	CCACTGGTTC	CTGACTATGC	AATGTCATTC	ATCAAGGGCA
2351	AATCACTCAA	GCCGTTTGGG	CGCCTGTGGT	GGGACGAGAC	AGTTCCTACA
2401	GTTGTAACCA	GAGCAGAGCO	TCACAACCAG	GTTATAATTC	ATCCGACTCA
2451	AGCAAGGGTC	CTCACTATCC	GGGAGAACGC	AAGGTTACAG	GGCTTCCCCG
2501	ATTACTACCG	ATTGTTTGGC	CCGATCAAGG	AGAAGTACAT	TCAAGTCGGG
2351	AACGCAGTGG	CTGTCCCTGT	TGCCCGGGCA	CTGGGCTACT	GTCTGGGGCA
2601	AGCCTACCTG	GGTGAATCTG	AGGGGAGTGA	CCCTCTGTAC	CAGCTGCCTC
2651	CAAGTTTCAC	CTCTGTTGGA	GGACGCACTG	CGGGGCAGGC	GAGGGCCTCT
2701	CCTGTTGGCA		GGAGGTAGTT	GAGCAG	
2/01	CC101.00CA	5000.00.00			

2/39 FIG. 1B

_					
_1			AGCCCCTGCC		
51			TCTCTGGGCG		
101			GAGGAGGAGG		
151			GGCGGCATCT		
201			CGGGGAGGAA		CATGCCGAGA
251			GACGTGTGCG		CGACGAGGAG
301			GGAGGCCGAG		TGCAGGAGGA
351			GGTCACCCGG	GAAGAAGAGG	GTGGGGAGAA
401		CGCCGCCGCT		AGCCGGAGTT	CATCGGCAGC
451	CCTGTTGCCG	CGGACGAGGC	GCGCAGCAAC	TGGCCCAAGC	GCTACGGCCG
501			CGGATGAGGA		
551	GTCACTACCG	GAGCGCTAAG	GTGGACAACG	TCGTCTACTG	CCTCGGGGAT
601	GACGTCTATG	TCAAGGCTGG	AGAAAACGAG		
651	TACTGAATTT	TTTGAGGGGA	CTGACCAGTG	TCACTATTTT	ACTICCCGTI
701			ACGGTTATCA		
751	GTGGATGGCC	ACAAGCATGA	CCCTAGACGT	GTTTTTCTTT	CTGAGGAAAA
801	GAACGACAAT	GTGCTTGATT	GCATTATCTC	CAAGGTCAAG	ATAGTCCATG
851	TTGATCCAAA	TATGGATCCA	AAAGCCAAGG	CTCAGCTGAT	AGAGAGTTGC
901	GACCTATACT	ATGACATGTC	TTACTCTGTT	GCATATTCTA	CATTTGCTAA
951	TATCTCGTCT	GAAAATGGGC	AGTCAGGCAG	TGATACCGCT	TCGGGTATTT
1001	CTTCTGATGA	TGTGGATCTG	GAGACGTCAT	CTAGTATGCC	AACGAGGACA
1051	GCAACCCTTC	TTGATCTGTA	TTCTGGCTGT	GGGGGCATGT	CTACTGGTCT
1101	TTGCTTGGGT	GCAGCTCTTT	CTGGCTTGAA	ACTTGAAACT	CGATGGGCTG
1151	TTGATTTCAA	CAGTTTTGCG	TGCCAAAGTT	AATATAA	TCATCCACAG
1201	ACTGAGGTGC	GAAATGAGAA	AGCCGATGAG	TTTCTTGCCC	TCCTTAAGGA
1251	ATGGGCAGTT	CTATGCAAAA	AATATGTCCA	AGATGTGGAT	TCAAATTTAG
1301	CAAGCTCAGA	GGATCAAGCG	GATGAAGACA	GCCCTCTTGA	CAAGGACGAA
1351			CGGGATATGT		
1401			TCCAGTGGGA		
1451			AACTTGAGTG		
1501			CAAAAGAAAG		
1551			GCCCACCATG		
1601	ATCGGTACAG		GAGCCACTCA		
1651	ATGGTGACTT	TCATGGATAT	TGTGGCGTAC	TTGAAGCCCA	AGTATGTTCT
1701	CATGGAAAAT		TACTCAAATT		
1751	AATATGCTTT	GAGCTGCCTT	GTTGCTATGA	AGTACCAAGC	GCGGCTTGGA
1801	atgatggtgg		TESTCTECCA		
1851	CCTCTGGGGT		CCATGGTGCT		
1901	CCTATGATGT		GGAGGAGCCC		
1951	ATGGTTGCAT		ACAAAAACCA		
2001	TCTTGGCGAT		ATTTACCAAA		
2051	ACGATGTGAT	GGAGTATGGT		AGACCGAATT	
2101		•	CATGTTGGAT		
2151	TGGTCCAGAT		TCTTGGATCA		
2201	ACGATGATTA		CAACAGATTC		
2251		TAAAGGGCGT		GCAAACAATA	
2301			TGAAACTTTC		
2351			ATCAAGGGCA		
2401			AGTTCCTACA		-
2451			ATCCGACTCA		
2501			GGCTTCCCCG		
2551			TCAAGTCGGG		
2601			GTCTGG3GCA		
2651 2701			CAGCTGCCTC		CTCTGTTGGA
			AGGATGACAG		
2751	GUAGUTAGTT	GAGCAGTAAA	MUGATGACAG	ATCTGAGCTG	WACLAR

FIG. 2A

912 amino acids

á ⁱ	* }	1 MAP	SSPSPAA	PTRVSGRKRA	AKAEEIHQNK	EEEEEVAAAS	SAKRSRKAAS
ŧ	*;	SI SGK	KPKSPPK	QAKPGRKKKG	DAEMKEPVED	DVCAEEPDEE	ELAMGEEEAE
ŧ] 10	1 EQA	MQEEVVA	VAAGSPGKKR	VGRRNAAAAA	GDHEPEFIGS	PVAADEARSN
÷		1 WPK	RYGRSTA	AKKPDEEEEL	KARCHYRSAK	VDNVVYCLGD	DVYVKAGENE
1	. 20	1 ADY	IGRITEF	FEGTDQCHYF	TCRWFFRAED	TVINSLVSIS	VDGHKHDPRR
		1 VFL	SEEKNDN	VLDCIISKVK	IVHVDPNMDP	KAKAQLIESC	DLYYDMSYSV
±:	<i>"</i> ' 30	1 AYS	TFANISS	ENGQSGSDTA	SGISSDDVDL	ETSSSMPTRT	ATLLDLYSGC
ŧ.	35	1 GGM	STGLCLG	AALSGLKLET	RWAYDFNSFA	CQSLKYNHPQ	TEVRNEKADE
Į.	30 35 40 40	I FLA	LLKEWAV	LCKKYVQDVD	SNLASSEDQA	DEDSPLDKDE	FVVEKLVGIC
1	4.5	1 YGG	SDRENGI	YFKVQWEGYG	PEEDTWEPID	NLSDCPQKIR	EFVQEGHKRK
1	5.0	1 ILP	LPGDVDV	ICGGPPCQGI	SGFNRYRNRD	EPLKDEKNKQ	MVTFMDIVAY
		1 LKP	KYVLMEN	VVDILKFADG	YLGKYALSCL	VAMKYQARLG	MMVAGCYGLP
	60 55	1 QFR	MRVFLWG	ALSSMVLPKY	PLPTYDVVVR	GGAPNAFSQC	MVAYDETQKP
		1 SLK	KALLLGD	AISDLPKVQN	HQPNDVMEYG	GSPKTEFQRY	IRLSRKDMLD
1	£ 70	1 WSF	GEGAGPD	EGKLLDHQPL	RLNNDDYERV	QQI PVKKGAN	FRDLKGVRVG
į	75	1 ANN	IVEWDPE	IERVKLSSGK	PLVPDYAMSF	IKGKSLKPFG	RLWWDETVPT
:	90	1 VVT	RAEPHNQ	VIIHPTQARV	LTIRENARLQ	GFPDYYRLFG	PIKEKYIQVG
ŧ	75 80 85 90	1 NAV	AVPVARA	LGYCLGQAYL	GESEGSDPLY	QLPPSFTSVG	GRTAGQARAS
ì	↓ 90	1 PVG	FPAGEVV	EQ			

FIG. 2B

RAAAATAAPAMAPSSPSPAAPTRVSGRKRAAKAEEIHONKEEEEEVAAAS sakrsrkaassgkkpksppkqakpgrkkkgdaemkepveddvcaeepdee Elamgeeeaeeqamqeevvavaagspgkkrvgrrnaaaaagdhepefigs PVAADEARSNWPKRYGRSTAAKKPDEEEELKARCHYRSAKVDNVVYCLGD DVYVKAGENEADYIGRITEFFEGTDQCHYFTCRWFFRAEDTVINSLVSIS VDGHKHDFRRVFLSEEKNDNVLDCIISKVKIVHVDPNMDPKAKAQLIESC DLYYDMSYSVAYSTFANISSENGQSGSDTASGISSDDVDLETSSSMPTRT ATLLDLYSGCGGMSTGLCLGAALSGLKLETRWAVDFNSFACQSLKYNHPQ TEVRNEKADEFLALLKEWAVLCKKYVQDVDSNLASSEDQADEDSPLDKDE · FVVEKLVGICYGGSDRENGIYFKVQWEGYGPEEDTWEPIDNLSDCPQKIR EFVQEGHKRKILPLPGDVDVICGGPPCQGISGFNRYRNRDEPLKDEKNKQ MVTFMDIVAYLKPKYVLMENVVDILKFADGYLGKYALSCLVAMKYQARLG MMVAGCYGLPQFRMRVFLWGALS5MVLPKYPLPTYDVVVRGGAPNAF5QC MVAYDETQKPSLKKALLLGDAISDLPKVQNHQPNDVMEYGGSPKTEFQRY IRLSRKDMLDWSFGEGAGPDEGKLLDHQPLRLNNDDYERVQQIPVKKGAN FRDLKGVRVGANNIVEWDPEIERVKLSSGKPLVPDYAMSFIKGKSLKPFG RLWWDETVPTVVTRAEPHNQVIIHPTQARVLTIRENARLQGFPDYYRLFG PIKEKYIQVGNAVAVPVARALGYCLGQAYLGESEGSDPLYQLPPSFTSVG GRTAGQARASPVGTPAGEVVEQ*KDDRSELSW

The state of the s

FIG. 3

Primer	Sequence 5' - 3'
1F	TGGTTGCTATGGTCTGCCACAGTTCAG
1R	CCAGCTCAGCTCAGATCTGTCATCCTTT
Seg2FN	CGAAAGCTAATCTACACAAACAGC
Seg2RN	GATCCTCTGAGCTTGCTAAATTTG
3R	CTCATCTTGGAGTGGCTCATCAC
S3F	GAGCACATGAGGGAGAGTGTTG
S3R	TCTCTAATTTTCTGCGGGCAG
4F	CCTCTGCCCACCTATGATGTTGTA
5F	TAAAGGGCGTGAGGGTTGGA
7F	TCACATTTGTCATGGCAGGTTATC
8eF	CTGAGGAAAAGAACGACAATGTGC
8eR	GCAATCAAGCACATTGTCGTTCTTTTCCTC
9eF	GAAGAAGAGGTGGGGAGAAGGAACG
9eR	TTCTTTGCGGCAGTGCTGCG
11iF	GTATTGAATTGATTCTCAACTAGTGCAC
11iR	CAGGCTCAACGGCGATG
12iF	TATGCTTCATCACATAGACCCAAGTC
12iR	GATAGACCTAATGCCAAATGAGATTAAG
13iF	GCGATCTTCAGTCTCCACCATC
13iR	GAAGACGTGCCTCCATGTTTCATC
14F	GTTGGTTCTTCCGAGCAGAGG
14R	GACTGCCACATATCTTATTAATCGC
15F	GCATGTGTCAGCAATTGCTTACATTC
15R	CCTCTGCTCGGAAGAACCAAC
16F	CTGTTCGGAGATTCATGCATGATG.
16R	GGAGAACAGAATGGTTGATTCAATGG
17F	GCACTTCACTCTCGGCAAACC
17R	CGGTACGCTGCTGCTCTC
18F	CCATAGCATCTCACATATCGCAAGG
18R	GGAAAGAAGGCAGTTAGTTGTAAATGGG
MU	AGAGAAGCCAACGCCAWCGCCTCYATTTCGTC
RaceRT	CTACAACATCATAGTTGGGCAGAGG
AP2 marathon	ACTCACTATAGGGCTCGAGCGGC
T7	TAATACGACTCACTATAGGG
Sp6	GATTTAGGTGACACTATAG
M13F	GTTTTCCCAGTCACGAC
M13R	CAGGAAACAGCTATGAC

Gene Name	Organism	Function	General Structure
DNMT1:Dumt1	human/mouse	maintenance	12
METI	Arabidopsis	maintenance	X X X III III III II II II II II II II I
Zmeti	maize	putative maintenance	NLS Replication foci Lys.Gly repeat
DNATT3/12nmt3	human/mouse	de novo	Cysfith region
Zmet3	maize	putative de novo	
DRM	Arabidopsis	putative de novo	
СМІЛ	Arabidopsis	undetermined (putative CpNpG)	chromodomains
Zmet2a	maize	CpNpG (maintenance and/or de novo)	

Figure 5

tacatcaataaaataaggggcgccaacgcaattgtcccttGttttttctaacttaaagttcaagcggcaatgtcg base pairs atgtagttattttattccccgcggttgcgttaacagggaacaaaaaagattgaatttcaagttcgccgttacagc 1 to 75 MseI MseI

aaattgtaagcaaacctttcaagtctaattaattcataattacaaatgttattgtaacatcatgttaccgaatca base pairs tttaacattcqtttgqaaagttcaqattaattaagtattaatgtttacaataacattgtagtacaatggcttagt 151 to 225

ScrFI

ECORII MseI

taaactaaccaggttcccatgtgtaattagttttataattatatttaatatttgtaactaattgatgtga base pairs atttgattggtccaagggtacacattaatcaaaatattaatataatataaattataaacattgattaactacact 226 to 300

> MseI MseI MseI

cagtactaaaattaagcctcttaagccaaaaaatccacatattttagatttaaaatttgaaaacagacgtatcgg base pairs gtcatgattttaattcggagaattcggttttttaggtgtataaaattttaaacttttaaacttttgtctgcatagcc 301 to 375

HaeIII

ctagaagagccctgtcactgtcagctaatcaattacaagaagtggcccatactagttccatcaccagtccagtag base pairs

HaeIII HaeIII HhaI HhaI HpaII PVuII tccaccacccaccctacagctgggtcatctggcacgggtggagggccaacggccaaaagcgccgcgcacttcc base pairs

aggtggtggggtggggtgtggacccagtagaccgtgcccacttccccggttgccggttttcgcggcgtgaagg 451 to 525 MspI

ApaI

PstI EcoOl09I ggcgggcaccctCgcggagtcgcgggtgacagcgaaatttcaaatccataccctcccgctgcagacgggccccac base pairs

ccgccgtgggagcgcctcagcgcccactgtcgctttaaagtttaggtatgggagggcgacgtctgcccggggtg 526 to 600 HaeIII

TagI

geogteaaaatttggaegeteeegeteeetegatettttgggtttegtttteeeagtteeeaeeetetetteeae base pairs Sau3AI

> Sau3AI TaqI TaqI

cctgccctgtttccagatttgaccgatccccttcgattcgatttctacacccacggtgtccagactccagagcac base pairs ggacgggacaaaggtctaaactggctaggggaagctaaagctaaagatgtgggtgccacaggtctgaggtctcgtg 676 to 750 HinfI

ScrFI

17F ECORII

tcactetectggcaaaccectttegtetteccaaccetagagageageageagetacegeagecectgecatge base pairs agtgagaggaccgtttggggaaagcagaagggttgggatctctcqtcqtcqtcqtcqtcqgcgtcggggacggtaccg 751 to 825

BstNI

HaeIII Sau3AI HhaI SacI **HhaI** geogageteccegteaccegeegegetacacgegtetetgggeggaageggegecacaaggeegaggagateca base pairs cggctcgaggggcagtgggcggcgcggatgtgcgcagagacccgccttcgcgcgggggttccggctcctctaggt 826 to 900

SCTFI

HpaII ccagaacaaggaggaggaggaggaggtcgcggggggtcctccggcaagcgcagccgcaaggcggcatcttccgg base pairs

ggtettgtteeteeteeteeteeteeteeagegeegeaggaggeggttegegteggegtteegeegtagaaggee 901 to 975

MspI

HaeIII ScrFI

gaagaagcccaagtcgccccccaagcaggccaagccggggaggaagaagaagaggggatgccgagatgaaggagcc base pairs HpaII

8/39 FIG. 5

Hha I

Continued HaeIII

HaeIII

cqtqqaggacgacgtgtgcgccgaggagcccgacyaggaggagttggccatgggcgaggaggaggaggagaca base pairs geacticatgatgacacgeggetectegggetgatectcatacaggtaccegetectcateeggetectegt 1051 to 1125

Mspl

Hpall 9eF

ggccatgcaggaggaggtggttgcggtcgcggcggggtcacccgg<u>gaaqaaqagggtqgqqaqaaaqqc</u>ccgc base pairs coggtacgtcctcctccaccacgccagcgccccagtgggcccttcttctcccaccctcttccttgcggcg 1126 to 1200 ScrFI

SmaI

HpaII

HhaI

HaeIII

cgccgccgctggcgaccacgagccggagttcatcggcagccctgttgccgcggacgaggcgcgcagcaactggcc base pairs gcggcggcgaccgctggtgctcggcctcaagtagccgtcgggacaacggcgctgctccgcgcgtcgttgaccgg 1201 to 1275 MspI

Hhal HaeIII

caaagcgctacggccgcagcacttgccgcaaaagaagtacattattttctcccagctctggttttgatttgacca base pairs gtttcgcgatgccggcgtcgtgaacggcgttttcttcatgtaataaaagagggtcgagaccaaaactaaactggt 1276 to 1350

HpaII

Hpall Hhal

ggatgaggaggaagagctcaaggccagatgtcactaccggagcgctaaggtggacaacgtcgtctactgcctcgg base pairs cetactectecteteegaqtteeggtetacagtgatggeetegegatteeacetgttgeageagatgacggagee 1426 to 1500 MspI

Eco0109I

ggatgacgtctatgtcaaggtccttgttcatcgctttctgttgcttctgctctatttatgatgtgcatatgtgt base pairs cctactgcagatacagttccaggaacaagtagcgaaagacaacgaagacgaagtaaatactacacgtatacaca 1501 to 1575 Avall

ttqttaaqqaaqcaagaattgcttgatttttgttgccgactcgcatttccgtgacgagttctgcgtatggtcacc base pairs aacaattccttcgttcttaacgaactaaaaacaacggctgagcgtaaaggcactgctcaagacgcataccagtgg 1576 to 1650

ScrFI

TagI BstNI

Sau3AI

qqtacqtqqcactgatacacaacqtqgtatqctqqaaqtctqqtaqtatattttqcatcqaccaqqaqqtccaqa base pairs ccatgcaccgtgactatgtgttgcaccatacgaccttcagaccatcatataaaacgtagctggtcctccaggtct 1651 to 1725 EcoRII AvaII

ClaI

16iF HinfI

agetatacaegecatateacgaataaactaacgtgggacaageetetaagtacgtactacegeacaaatetactg 1726 to 1800

ScrFI

RSTNI

PvuII EcoRII PvuII

HaeIII

HhaI

HpaII qcctcccagacagctgcctgccaggcagctgattctggcccaggcgtccggaatggtgaagttgcgctggcaaga base pairs eggagggtetgtegaeggaeggteegtegaetaagaeegggteegeaggeettaecaetteaaegegaeegttet 1801 to 1875 BstNI HinfI EcoRII MspI

ScrFI

SCTFI ECORII

HaeIII

ttctcaggccacctaccaaatatgccctggagcatattgcatgcttctttttttgttctctttccttctatattt base pairs aaqaqtccggtggatggtttatacgggacctcgtataacgtacgaagaaaaaaacaagagaaaggaagatataaa 1876 to 1950 BstNI

atctcattgttagtgaagtttcacattgcacgtgtcatggaatatttactttcaaatcaacgaggagatgctagc base pairs tagagtaacaatcacttcaaagtgtaacgtgcacagtaccttataaatgaaagtttagttgctcctctacgatcg 1951 to 2025

9/39 FIG. 5 Continued

attgaggtgtgtgataattattacatactagaagatatcgtgcatgttgccattgggattgcgaagaatgtggaa base pairs taactccacactattaataatgtatgatcttctatagcacgtacaacggtaaccctaacgcttcttacacctt 2026 to 2100

ECORV

MseI MseI

agtaagtgggatatgatgtagatgacttgtgttgatgagacagaactataacatggagttggaaatgggagcagca base pairs tcattcaccctatactacatctactgaacacaacatctgtcttgatattgtacctcaacctttaccctcgtcgt 2176 to 2250

MseI

tggtcaaacataccctaaatgcctgtctctacacaatgtggtgattggtgtatagtctggtgttaaaagctggat base pairs accagtttgtatgggatttacggacagagatgtgttacaccactaaccacatatcagaccacaattttcgaccta 2251 to 2325

Scifi Hinfi Msel Xbal EcoRII

actttgattctgttgaagattgtcacacccgaatttaaggacaaatctagatacatctcatatgtgcaccaggat base pairs tgaaactaagacaacttctaacagtgtgggcttaaattcctgtttagatctatgtagagtatacacgtggtccta 2326 to 2400

agtgtatagataccaatgtcataatctttattacacgacgataatgtcttacaaaatatctggtgttacaagatg base pairs tcacatatctatggttacagtattagaaataatgtgctgctattacagaatgttttatagaccacaatgttctac 2401 to 2475

MseI MseI

15iF Sau3AI HinfI MseI tttatcctgcatcttgttttgcatgtgctagcaattgcttacattatccattatgatctctgagattctttaaaattt base pairs aaataggacgtagaacaaaacgtacacagtcgttaacgaatgtaaggtaatactagagactctaagaaatttaaa 2551 to 2625

Msel

ggaataatggttgttgtataatatcacttagtggttttgctctcacaccacatctttcatgggttctttaataata base pairs ccttattaccaacacatattatagtgaatcaccaaaacgagagtgtggtggagaaagtacccaagaaattattat 2701 to 2775

MseI HaeIII
gttactgactttaagtttcttattcctttttgtctatcttagctggagaaaacgaggcagattacattggccgc base pairs
caatqactgaaattcaaagaataaggaaaaacagatagaatcgacetcttttgctccgtctaatgtaaccggcg 2776 to 2850

14eF

attactgaattttttgaggggactgaccagtgtcactattttacttgccgttggttcttccgagcagaggacacg base pairs taatgacttaaaaaactcccctgactggtcacagtgataaaatgaacgg<u>caaccaagaaggctcgtctcc</u>tgtgc 2851 to 2925

gtgtgtatttagtattttgtcattctatgcatgtgtggatttttctggaatgtggaaaacatacagcactctctc base pairs cacacataaatcataaaacagtaagatacgtacacacctaaaaagaccttacaccttttgtatgtcgtgagagag 2926 to 3000

MseI HaeIII HaeIII

 $tacaccacacacttctagtatatgtgtacacgttaatgggccaacactagaccatggcccaacatccccct \ base \ pairs \\ atgtggtgtgtgtgtagagatcatatacacatgtgcaattacccggttgtgatctgtgtaccgggttgtaggggga \ 3001 \ to \ 3075 \\$

EcoRV

caagatgggcgatagatatcaatcatccccatcttgctacataacacatcacactcttttactcctataccctta base pairs

10/39 FIG. 5

Continued

gttctacccgctatctatagttagtaggggtagaacgatgtattgtgtagtgtgagaaaatgaggatatgggaat 3076 to 3150

HinfI

gtcaagcaatetgctatttgaccttttgagtttacatgattcaactetaaagtaccattatctaacttctetttg base pairs cagttcgttagacgataaactggaaaactcaaatgtactaagttgagatttcatggtaatagattgaagagaaac 3151 to 3225

HinfI

atgaagaatcgatcaatttccacatgttttgttctatcatgttgaactggattgttagctatattcatggctgac base pairs tacttcttagctagttaaaggtgtacaaaacaagatagtacaacttgacctaacaatcgatataagtaccgactg 3226 to 3300 Tagl

Sau3AI

HinfI MseI 18eF

ttattatcacaccataacttcagggagtcttttcttaatacattcaactctgataagagaccctttat<u>ccatagc</u> base pairs aataatagtgtggtattgaagtccctcagaaaagaattatgtaagttgagactattctctgggaaataggtatcg 3301 to 3375

HaeIII

atotoacatatogoaagggccatagctoggtattotgcttoggcggtggaacggggataccacagattgtttottg base pairs tagagtgtatagcgttcccggtatcgagccataagacgaagccgccaccttgccctatggtgtctaacaaagaac 3376 to 3450

cttctccatgatactaaatttcctccaacaacaacactatcctgaagttgaccttctatcatcatgaagcaacta base pairs gaagaggtactatgatttaaaggaggttgtttgtgtgttataggacttcaactggaagatagtagttccgttgat 3451 to 3525

ECORII MseI

ccccagtctgcatcagagtaaccttccacctttagatgaccatgacctttaaagattattccctttccaggacaa base pairs ggggtcagacgtagtctcattggaaggtggaaatctactggtactggaaatttctaataagggaaaggtcctgtt 3526 to 3600 BstNI

ScrFI

gtcttcaagtatcgcagtatacgatacactgcatcaagatgtccacttctggggtcatgcatatatcgactcacc base pairs cagaagttcatagegtcatatgctatgtgacgtagttctacaggtgaagaccccagtacgtatatagctgagtgg 3601 to 3675 Hinfl

ECORV

acactgactgcatatgtgatatcaggtcttgtatggcacaagtagatgagccgtccaacaagtctttgatacctt base pairs tgtgactgacgtatacactatagtccagaacataccgtgttcatctactcggcaggttgttcagaaactatggaa 3676 to 3750

> Sau3AI HinfI

HinfI TaqI HaeIII

tetttatteacaggateaceagatteageacataatttatgatteaagtegataggtgttgetacaggeegacae base pairs agaaataagtgtcctagtggtctaagtcgtgtattaaatactaagttcagctatccacaacgatgtccggctgtg 3751 to 3825

Sau3AI

Sau3AI

cccaacatacctgtttcatcaagtagatctaaaacatatttcctttgggagagaactattccttttggagatcga base pairs gggttgtatggacaaagtagttcatctagattttgtataaaggaaaccctctcttgataaaggaaaacctctaget 3826 to 3900 BglII TaqI

Sau3AI

BglII MseI

Sau3AI

agacatgcaatctcaagatcggcatcacctgtaataataatatcatccacatacacagctagaattgcaattcgt base pairs tetgtaegttagagttetageegtagtggaeattattattattatagtagtgtatgtgtegatettaaegttaagea 3976 to 4050

Sau3AI

cqtccaaaqtgttgataaaaaacagtgtgatctccgttgcattgtttatatcccatgctacatattgcacgtcta base pairs gcaggtttcacaactattttttttttcacaactagaggcaacgtaacaaatatagggtacgatgtataacgttgcagat 4051 to 4125

TagI

aatctgtcaaaccatgctcttggggactgcttgagaccatacaatgattttttcaatcgacaaactttcccaatt base pairs

I:1/39 FIG. 5

Continued

ttagacagtttggtacgagaacccctgacgaactctggtatgttactaaaaaagttagctgtttgaaagggttaa 4126 to 4200

ScrFI

EcoRII Sau3AI

gtctcaggctttgacaatccaggagggatctccatatagacctcctttgcaaatcaccatgtaagaaagcattc base pairs cagagtccgaaactgttaggtcctccctagaggtatatctggaggagaacgtttagtggtacattctttcgtaag 4201 to 4275

MseI HaeIII

Sau3AI

ttaacatctagttgatacaagggccatccaaaatttgcagcacaagagatcaatgtccttacagtactcattttt base pairs aattgtagatcaactatgttcccggtaggttttaaacgtcgtgttctctagttacaggaatgtcatgagtaaaaa 4276 to 4350

gccactggtgcaaatgtctcatcataatcaattccatatgtttgactataccetcttgcaaccaatcttgcttta base pairs cggtgaccacgtttacagagtagtattagttaaggtatacaaactgatatgggagaacgttggttagaacgaaat 4351 to 4425

tategttetaccetteettetgggttttgetteacagtgaatacecatttacaactaactgeettettteettta base pairs atagcaagatgggaaggaaggaagaccaaaacgaagtgteacttatgggtaaatgttgattgaeggaagaaaggaaat 4426 to 4500 laiR

XbaI MseI

ggtagttttctcaaattcccaagtttgatttttttctagagctttaagctcctccaacattgcctcacgccagtta base pairs ccatcaaagagtttaagggttcaaactaaaaaaagatctcgaaattcgaggaggttgtaacggagtgcgat 4501 to 4575

gaattacattgtgcttctttccaatctcttggaattgctacggaatgcaatgatgcaacaaatgctctatatgat base pairs cttaatgtaacacgaagaaaggttagagaaccttaacgatgctttacgttactacgttgtttacgagatatacta 4576 to 4650

Hinfl

ggtgacaaagacgcatatgagacataattgctaatgtcatgttcatatccataccttgttggggggactccagct base pairs ccactgtttctgcgtatactctgtattaacgattacagtacaagtataggtatggaacaacccccttgaggtcga 4651 to 4725

What

trageaegegeteetttegtattgeaatgggeaaateataagtgteataatetteagttteteeatgagaegte base pairs aategtgegegaggaaaageataaegttaeeegtttagtatteaeagtattagaagteaaagagtaetetgeag 4726 to 4800

aaaggtacatttatagcctctaatgtgtttggagagaactgctcagtacttgatgctgaattggtttcaggagcc base pairs tttccatgtaaatatcggagattacacaaacctctcttgacgagtcatgaactacgacttaaccaaagtcctcgg 4801 to 4875

tgaggttgcacatgggactttcttcttgtatatacttcgcccttatatcgtaagtcgtctccacaagatttatta base pairs actccaacgtgtaccctgaaagaagaacatatatgaagcgggaatatagcattcagcagaggtgttctaaataat 4876 to 4950

ttctcgtgactaggatgtgtctccaattcacttggcattacttgcatcttttgagaaggaccaatcaccacttcc base pairs aagagcactgatcctacacagaggttaagtgaaccgtaatgaacgtagaaactttcgtggttagtggtgaagg 4951 to 5025

HinfI

Taql

attttatttggttgttccattgaatcaaccattctgttctcccccttctgactagcttcatctgtgctagta base pairs taaaataaaccaacaacgataacttagttggtaagacaagaggggagagctgatcgaagtagacacgatcat 5026 to 5100 l6iR

Hinf

Sau3AI

gagacagaatcaagaaaaaatttagatetgtetteteaceatagaaaggeacagtetetetaaatgtaacatee base pairs etetgtettagttetttttaaatetagacagaagagtggtatettteegtgteagagagatttacattgtagg 5101 to 5175

BqlII

HinfI

PstI

atgettacaaacaaacgtegtteactaggaetecaacacttgtatecettttgeeetgeaggatatecaacaaaa base pairs tacgaatgtttgtttgeageaagtgateetgaggttgtgaacatagggaaaacgggaegteetataggttgtttt 5176 to 5250 EcoRV

BamHI

Sau3AI

atgracttcacagcacgaggatccaacttccccacctgaggtctatgatctctgacaaaacatgtacatccaaaa base pairs tacgtgaagtgtcgtgctcctaggttgaaggggtggactccagatactagagactgttttgtacatgtaggtttt 5251 to 5325

Sau3AI

12/39 FIG. 5

Continued

HinfI

attttaggtggaaccacaacttattctcaccgagaagaatctcacatggagtcttcattgcaagtatttttgaa base pairs taaaatccaccttggtgtttgaataagagtggctcttcttagagtgtacctcagaagtaacgttcataaaaactt 5326 to 5400

HinfI

MseI

atcagcgaacgagcaacttccaaaatgtgacgattcttcctttcagccacaccattttgtggaggtgtatcagga base pairs tagtegettgetegttgaaggttttacaetgetaagaaggaaagteggtgtggtaaaacaeetecaeatagteet 5476 to 5550

caggatgtctgatgtaatataccatttcttgacagaaatgcattaaatcccttgtttacatactcggttccattg base pairs gtoctacagactacattatatggtaaagaactgtotttacgtaatttagggaacaaatgtatgagccaaggtaac 5551 to 5625

lliF HinfI

tctqqtcttaqqattttgacttgagtattgaattgattctcaactagtgcacaaaaattttgaaaacacttcaat base pairs agaccagaatcctaaaactgaactcataacttaactaagagttgatcacgtgtttttaaaacttttgtgaagtta 5626 to 5700

TaqI 12iF

acttcatctt<u>tatgcttcatcacatagacccaagtc</u>attccgagaaaaacaatcgataaagtaacaaagtacttc base pairs tgaagtagaaatacgaagtagtgtatctgggttcagtaaggctctttttgttagctatttcattgtttcatgaag 5701 to 5775

atcccattaatagaagtcacaggacatgtccaaacatcagaatgaactagcacaaaaggagatatactcctgata base pairs tagggtaattatetteagtgteetgtacaggtttgtagtettacttgategtgtttteetetatatgaggaetat 5776 to 5850

HindIII

actgcaacctccttctcttccattcttgttgccagcatagtgcatattgtaccattagtcccctcatgatccata base pairs tga-gttggaggaagagaaggtaagaacaacggtcgtatcacgtataacatggtaatcagggagtactaggtat 6001 to 6075

ScrFI

ECORII

taccacaatccattacgcctggtagctgtcccaagtctcttccctgtttccctctcctgaattaaacaattatct base pairs atggtgttaggtaatgcggaccatcgacagggttcagagaagggacaaagggacgacttaatttgttaataga 6076 to 6150

TaqI

Sau3AI

EcoRV

cgatcaagaataatacgacaatccaattgatcaaccaaggcacttagtgatatcaagttgacaggaaaggttggc base pairs gctagttcttattatgctgttaggttaactagttggttccgtgaatcactatagttcaactgtcctttccaaccg 6151 to 6225

MseI

acatacaaaactgatgacaacttaatagatggagtgcattgcactgtgccaacacccttgatgggttgtgggtgt base pairs tgtatgttttgactactgttgaattatctacctcacgtaacgtgacacggttgtgggaactacccaacaccacat 6226 to 6300

ccatcagcagtttgtataatttctttacgtgtgggggatatcttatatatgatgtaaattcactggacgtgcct base pairs ggtagtegteaaacatattaaagaaatgeacaceeeetatagaatatataetaettaagtgaeetgeaegga 6301 to 6375

FIG. 5

HinfI

MseI Continued

gtgacatgctttgatgctcctgagtctaaaatccattttaactgtgtgacctgtgtgggtacaaaagcatgagca base pairs cactgtacgaaactacgaggactcagattttaggtaaaattgacacactggacacacccatgttttcgtactcgt 6376 to 6450

HinfI Sau3AI

taattacettcatcagtgtaggcgaagtggacaaatcccctgtgtgagactcctgatctttatctccagagatt base pairs attaatggaagtagtcacatccgcttcacctgttttaggggacacactctgaggactagaaatagaggtctctaa 6451 to 6525

tgatttttcttcctccaactttgtttcatcttcgtgttccataaatgtttcaagttcttcttgtgtagttgctgca base pairs actaaaaagaaggagttgaaacaaagtagaagcacaaggtatttacaaagttcaagaagaacacatcaacgacgt 6526 to 6600

MseI

ttegecettgeecaacteetgeeteeagacetetgeegeetetaggageecetetteeteeteecaegattaaet base pairs aagegggaaegggttgaggaeggaggtgetggagaeggagaeggagateeteggggagaaggagggtgetaattga 6601 to 6675

ttggaaggettagaacaattacgtgcaatatgtccaacattaccacaattgtaacattetetagtatetttggtt base pairs aacettecgaatettgttaatgcacgttatacaggttgtaatggtgttaacattgtaagagatcatagaaaccaa 6676 to 6750

ScrFI

HinfI HinfI EcoRII

ctcatagctgaaaacacaggatgaggcggcgtttgagaacttttctctcatcactttgagtcttgactcctcctgg base pairs gagtatcgacttttgtgtcctactccgccgcaaactcttgaaagagagtagtgaaactcagaactgaggaggagc 6751 to 6825

TagI

gatatggcagctatggcttcttgtaggctaggaagatggattgatgaaacatggaggcacgtcttccctcgaac base pairs ctataccgtcgataccgaagaacatccgatccttctcacctaa<u>ctactttgtacctccgtgcagaaagggagcttg</u> 6826 to 6900

totgagtttagocccottagoaattgaagtacaogtottttttocaoccatttottogoccaagcaacacactot base pairs agactoaaatogggggaatogttaaottoatgtgoagaaaaaaggtgggtaaagaagcgggttogttgtgtgaga 6901 to 6975

Sau3AI Sau3AI

gagtgtggtagctcaataggatcataatgatcaacatcagcccataaacattgtaactcctgaacgtactccgcc base pairs ctcacaccatcgagttatcctagtattactagttgtagtcgggtatttgtaacattgaggacttgcatgaggcgg 6976 to 7050

Sau3AI Sau3AI

13iF

PstI

gagtacatttcttcaagtgctttccacatttctgcagcacttatgattgtatcaacagtgctagcaattgctgga base pairs ctcatgtaaagaagttcacgaaaggtgtaaagacgtcgtgaatactaacatagttgtcacgatcgttaacgacct 7126 to 7200

MseI

atcatagaactcaacatccacgctgccactaaagagtttatagcatcccagtctttccattcatcacttaactta base pairs tagtatcttgagttgtaggtgcgacggtgatttctcaaatatcgtagggtcagaaaggtaagtagtgaattgaat 7201 to 7275

HinfI

MseI XhoI

Xba I

HinfI

teettgggeteaacgacateteetttaacatageeetegagtetetttgeetteaataategeaatgetetteta base pairs aggaaceegagttgetgtagaggaaattgtategggageteagagaaacggaagttattagegttacgagaagat 7276 to 7350

MseI

MseI

TaqI

atatgagcaacattgtctttaattgatgatggagcctcatccctttttgctgacagtaattcgaccaatttacca base pairs tatactcgttgtaacagaaattaactactacctcggagtagggaaaaacgactgtcattaagctggttaaatggt 7426 to 7500

FIG. 5

Continued

tettggaegagttaaggaactaaaagggggtattatatatatatattattattgateetttgatgaaceegtegaeg 7501 to 7575

ECORII

ScrFI

XbaI EcoRII BstNI HhaI gtcaagatctgggtcacaacgtctagaagccaggaccaggagcctcctcttcctcctcctcctgagctggatgg base pairs cagttttagacceagtgttgcagatetteggteettggteetegegggaggagaaggaggaggaggetegacetace 7576 to 7650 BstNI ScrFI BglII AvaII

HpaII

atctcagtcacaggacgcgggcagcaggggggagcagcagcagtgtgtgcgggcagcttcctcaagggttggac base pairs tagagtcagtgtcctgcgcccgtcgtcccccctcgtcgtcgtggacacacggccgtcgaaggagttcccaacctg 7651 to 7725 MspI

Sau3AI

gagetgeggeagetggagageeteccaageaccectatetecagateettgtegeegagtgeeegegtecae base pairs ctogacgccgregacctotoggagggttogtggggatagaggtctaggaacagcggctgctcacgggcgcaggtg 7726 to 7800

ScrFI

EcoOl09I BstNI HaeIII

gtccttggccgcctcgccttgtcggcggtggcgtcctctgtggctgtggctcgggacctgtccctggcctcctgc base pairs caggaaccggcgggagcggaacagccgccaccgcaggagacacgacaccgagccctggacagggaccggaggacg 7801 to 7875 Avall EcoRII

HaeIII

EcoRII TagI

geggeetecetgetggegteggtgtactegeeegtettetgeetggteaegteeetegeetecetegategeteg base pairs cgccggagggacgaccgcagecacatgagcgggcagaagacggaccagtgcagggagcggaggcgagctagcgagc 7876 to 7950 BstNI HaeIII Sau3AI

HaeIII Sau3AI

TaqI HaeIII

tgtgcetcggcggcctccttcggccgtcgctgatctccttctcggtggtcttctccgtcgaggccgaagacactc base pairs acacggagccgccggaggaagccggcagcgactagaggaagagccaccagaagaggcagctccggcttctgtgag 7951 to 8025

ScrFI

EcoRII

gtcaccgcgacgccatcgccgttgagcctggctctgataccatgtggatttttctggaatgtggaaaacatacag base pairs cagtggcgctgcggtagcggcaactcqqaccgagactatggtacacctaaaaagaccttacaccttttgtatgtc 8026 to 8100 lliR BstNI

MseI

HaeIII

HaeIII

cactetetetacaccacacacactetetagtatatgtgtacacgttaatgggccaacactagacacatggeccaac base pairs gtgagagagatgtgtgtgtgtgaagatcatatacacatgtgcaattacccggttgtgatctgtgtaccgggttg 8101 to 8175

agcatgtcaagtggcatagcactcacatttgtcatggcagqttatcaattctttggtgtccataagtgtggatgg base pairs tcgtacagttcaccgtatcgtgagtgtaaacagtaccgtccaatagttaagaaaccacaggtattcacacctacc 8176 to 8250

HaeIII

8eF

ccacaagcatgaccctagacgtgtttttcttt<u>ctgaggaaaagacgacaatgtgc</u>ttgattgcattatctccaa base pairs ggtgttcgtactgggatctgcacaaaaagaaagac<u>tccttttcttgctgttacacgaactaacg</u>taatagaggtt 8251 to 8325

Sau3AI

PstI

ggtcaagatagtccatgttgatccaaatgtaagtttgctgcagtttgctgagagctttgtggttttgctatacac base pairs ccagttctatcaggtacaactaggtttacattcaaacgacgtcaaa<u>cgactttcqaaacaccaaaacg</u>atatgtg 8326 to 8400 16/39 FIG. 5

Continued

BamHI

PvuII

ataatgtttctgactaccattgttttgttgcctacttgccttagatggatccaaaagccaaggctcagctgatag base pairs tattacaaagactgatggtaacaaaacaacggatgaacggaatctacctaggttttcggttccgagtcgactatc 8401 to 8475 SaulAI

agagttgcgacctatactatgacatgtcttactctgttgcatattctacatttgctaatatctcgtctggtaatt base pairs tctcaacgctggatatgatactgtacagaatgagacaacgtataagagtgtaaacgattatagagcagaccattaa 8476 to 8550

MseI

ccttctgcatcatctttttttggttgactagctgaatgcagttagctttgccaaagagttaaatacatgagttgtt base pairs ggaagacgtagtagaaaaaaccaactgatcgacttacgtcaatcgaaacggtttctcaatttatgtactcaacaa 8551 to 8625

TaqI MseI MseI cctgcactcgaaaagggatgtcaataatgtccacaaactctgaaaatgtatttttagatacttaacttgttaagt base pairs, ggacgtgagcttttccctacagttattacaggtgtttgagacttttacataaaaatctatgaacaattca 8626 to 8700

cagtaaaacctgtcagatacttgggttttgggtacgattaccatccttatgtgagtaaaactcgtcaagggatgt base pairs gtcattttggacagtctatgaacccaaaacccatgctaatggtaggaatacactcattttggacagttccctaca 8701 to 8775

TaqI Seq2FN

caatgacgtgttgattgtgtattagatattctgtttgtt<u>cgaaagctaatctacacaaacagc</u>ttatgtaatgta base pairs qttactgcacaactaacacataatctataagacaaacaagctttcgattagatgtgtttgtcgaatacattacat 8776 to 8850

HindIII HaelII

aaacctcaaacaacttgcctcttcataagcttaggtttataggattagcgtttagtgcatgtaaggcctatttg base pairs tttggagtttgtttgaacggagaagtattcgaatccaaatatcctaatcgcaaatcacgtacattccggataaac 8851 to 8925

BstNI ScrFI Scr

HaeIII SacI EcoRII TaqI EcoRII cttcacggcctccctggcgagctcctggctagacagccatcctggcgtaggtgccgaaatcgaacacctggga base pairs gaagtgccggagggacggctcgaggaccgatctgtcggtaggaccggctttagcttgtggaccct 8926 to 9000

ECORII BStNI BStN

ScrFI HaeIII

ScrFI

ECORII

gccacgtttgcactagcaggttttcctgggtgcaaaccaaacacgcctatagtgttcaagtataactgaattggt base pairs cggtgcaaacgtgatcgtccaaaaggacccacgtttggtttgtgcggatatcacaagttcatattgacttaacca 9001 to 9075

BstNI

Msel

BstNI

XhoI Hinfi

ScrFI

S3iF

ctatttctacgtttg<u>agcacatgagggagagtqttg</u>aattataagtgtgttctccatctttctctaacagatgaa base pairs gataaagatgcaaactcgtgtactccctctcacaacttaatattcacacaagaggtagaaagagattgtctactt 9226 to 9300

HinfI MseI MseI ctggtttgtgcatgtaactcaatatgatatttgagtcaaatgttactttaaaatcatagttgatgcaatttaat base pairs gaccaaacacgtacattgagttatactataaactcagtttacaaatgaaattttagtatcaactacgttaaatta 9301 to 9375

16/39

FIG. 5

Continued

aacatattttttttggtctcgtgtgagggagtgtacgtataactgaattgcacacatttccttatagcttaggttt base pairs ttgtataaaaaaaccagagcacactccctcacatgcatattgacttaacgtgtgtaaaggaatatcgaatccaaa 9376 to 9450

Sau3AI

ttgactgcaactgttggtgcatgtagctcaataactaaagttgatctggacagtctacagtgaataagtttgaca base pairs aactgacgttgacaaccacgtacatcgagttattgatttcaactagacctgtcagatgtcacttattcaaactgt 9451 to 9525

cttgtaaaatgtgcatgtatttttacaaacgctggcacttttttcctaatagaaaatgggcagtcaggcagtgat base pairs gaacattttacacgtacataaaaatgtttgcgaccgtgaaaaaaggattatcttttacccgtcagtccgtcacta 9526 to 9600

Sau3AI

accgcttcgggtatttcttctgatgatgtggatctggagacgtCatctagtatgccaacgaggacagcaaccctt base pairs tggcgaagcccataaagaagactactacacctagacctctgcagtagatcatacggttgctcctgtcgttgggaa 9601 to 9675

Sau3A1

cttgatctgtattctggctgtgggggcatgtctactggtctttgcttgggtgcagctctttctggcttgaaactt base pairs gaactagacataagaccgacacccccgtacagatgaccagaaacgaacccacgtcgagaaagaccgaactttgaa 9676 to 9750

Sau3A1

gaaactgtaatcttctaactagtcatctgttggatagaatatgttcacgatctcagaacttattctattgttctg base pairs ctttgacattagaagattgatcagtagacaacctatcttatacaagtgctagagtcttgaataagataacaagac 9751 to 9825

MseT

gcttgcagcgatgggctgttgatttcaacagttttgcgtgccaaagttttaaaatataatcatccacagactgagg base pairs cgaacgtcgctacccgacaactaaagttgtcaaaacgcacggtttcaaattttatattagtaggtgtctgactcc 9826 to 9900

HinfI

tatggatagtaaacttcatcttggattccatctgttctgtcagctactcttacaaagtgtctggatttttggatg base pairs atacctatcatttgaagtagaacctaaggtagacaagacagtcgatgatgtttcacagacctaaaaacctac 9901 to 9975

Msel

taggtgcgaaatgagaaagccgatgagtttcttgccctccttaaggaatgggcagttctatgcaaaaaatatgtc base pairs atccacgctttactctttcggctactcaaagaacgggaggaattccttacccgtcaagatacgttttttatacag 9976 to 10050

HinfI

Sau3AI

caagatgtggattcaaatttagcaagctcagaggatcaagcggatgaagacagccctcttgacaaggacgaattt base pairs gttctacacctaagtttaaatcgttcgagtctcctagttcgcctacttctgtcgggagaactgttcctgcttaaa 10051 to 10125 Seq2RN

HindIII

MseI

gttgtagagaagettgtegggatatgttatggtggeagtgacagggaaaatggeatetattttaaggtactteag base pairs caacatetettegaacagecetatacaataccacegteactgtecettttacegtagataaaattecatgaagte 10126 to 10200

Hinfl

MseI

tgtcatttgttcatttctacttgattccaacaaaaaatcaattacttaagcctgtcaaacgatggatatttctg base pairs acagtaaacaagtaaagatgaactaaggttgtttttttagttaatgaattcggacagtttgctacctataaagac 10201 to 10275

PstI

HaeIII

tatattttgctgtaacgctagatttctgcaggtccaggtgggaaggatacggccctgaggaggatacatgggaacc base pairs atataaaacgacattgcgatctaaagacgtccaggtcacccttcctatgccgggactcctcctatgtacccttgg 10276 to 10350 AvaII

HinfI

17/39

FIG. 5

Continued

ttttgcaaaccagtgactgcccgcagaaaattagagaatttgtacaagaagggcacaaaagaatgattctcccac base pairs S3eR

tgcctgtgagtatttagttcgttgtgattttgctcgctatttgtttagctccccttttttatttggtgatatctg base pairs acggacactcataaatcaagcaacactaaaacgagcgataaacaaatcgaggggaaaaaataaaccactatagac 10501 to 10575

cctattttattctttcaaagggtgatgttgatgtcatttgtggaggccaccatgccaaggtatcagtgggttta base pairs ggataaaataagaaagtttcccactacaactacagtaaacacctccgggtggtacggttccatagtcacccaaat 10576 to 10650

atog<u>gtacagaaaccgtgatgagccac</u>tcaaagatgagaaaaacaaacaggtgactttcatggatattgtgg base pairs tagecatgtetttggcactactcggtgagtttctactetttttgtttgtttaccactgaaagtacctataacacc 10651 to 10725

cqtacttqaaqcccaagtatgttctcatggaaaatgtggtggacatactcaaatttgcggatggttacctaggaa base pairs gcatgaacttcgggttcatacaagagtaccttttacaccactgtatgagtttaaacgcctaccaatggatcctt 10726 to 10800

HhaI

aatatgctttgagctgccttgttgctatgaagtaccaagcgcggcttggaatgatggtggctggttgctatggtc base pairs ttatacgaaactcgacggaacaacgatacttcatggttcgcgccgaaccttactaccaccgaccaacgataccag 10801 to 10875

ScrFI

HinfI

EcoRII

tatgcttcgctagattcatattgcactgttggctgctggctaaccaggtgtacgtgtatttgacaatttaggtgc base pairs atacgaagcgatctaagtataacgtgacaaccgacgactggtccacatgcacataaactgttaaatccacg 10951 to 11025 BstNI

RacelA

4F

teeetaagtateetctgcccaactatgatgttgtagtacgtggaggagccctaatgcctttcggtgagtgcaat base pairs agggatteataggagacgggttgatactacaacatcatgcacctcctcgggggattagggaaagccactcacgtta 11026 to 11100 RaceRT Race1B

cacaaaccactactatgaaatcatgtggaatgtgtaaaatacgctgaccaactgaatttgttgcagcaatgtatg base pairs gtgtttggtgatgatactttagtacaccttacacattttatgcgactggttgacttaaacacgtcgttacatac 11101 to 11175

gttgcatatgacgagacacaaaaaccatccctgaaaaaagccttgcttcttggcgatgcaatttcagatttacca base pairs Caacgtatactgctctgtgtttttggtagggacttttttcggaacgaagaaccgctacgttaaagtctaaatggt 11176 to 11250

MseI

aaqqcaaqtqttctgtcaagttcatgcatttctcagtgagcatgctatttaactcttctctgcaggttcaaaaatc base pairs ttccgttcacaagacagttcaagtacgtaaagagtcactcgtacgataaattgagaagagacgtccaagttttag 11251 to 11325

ECORI

HhaI TagI

accagcetaacgatgtgatggagtatggtggttccccaagaccgaattccagcgctacattcgactcagtcgtaa base pairs tggtcggattgctacactacctcataccaccaaggggttctggcttaaggtcgcgatgtaagctgagtcagcatt 11326 to 11400 HinfI

HaeIII

aggtaaaaaaccccgtgaactactactggttggccttcactacgaatatgttaggatttaatttcagaagaaccg base pairs tccattttttggggcacttgatgatgaccaaccggaagtgatgcttatacaatcctaaattaaagtcttcttggc 11401 to 11475

PstI

AvaII

ccttttttttttttggtgcttcggtactactgcagcaagctcactcttattatcatgtcagacatgttggattggt base pairs ggaaaaaaaagaaccacgaagccatgatgacgtcgtcgagtgagaataatagtacagtctgtacaacctaacca 11476 to 11550 18/39 FIG. 5

AvaII

Continued Sausai

Mse]

ccttcggtgaagggggttggtccagatgaaggcaagctcttggatcaccagcctttacggcttaacaacgatgat base pairs ggaagccacttcccccgaccaggtctacttccgttcgagaacctagtggtcggaaatgccgaattgttgctacta 11551 to 11625

HinfI

5F

tccccttctgaaacaatcatctctctttcctatgacaggagccaacttccgcgacc<u>taaaggccgtgagggttg</u> base pairs aggggaagactttgttagtagagagaaaggatactgtccctcggttgaaggcgctggatttcccgcactcccaac 11701 to 11775

BamHI TagI

gagcaaacaatattgttgagtgggatccagaaatcgagcgtgtgaaactttcatctgggaaaccactggtatgtg base pairs ctcgtttgttataacaactcaccctaggtctttagctcgcacactttgaaagtagaccctttggtgaccatacac 11776 to 11850 Sau3AI

 $tgctatttccgtgctgttgtttcctataactgtgcaacatttactttcccatattcaaactcataactgacgaga \ base \ pairs \\ acgataaaggcacgacaacaaaggatattgacacgttgtaaatgaaagggtataagtttgagtattgactgctct \ 11851 \ to \ 11925$

Hinft

tgctgcaactactgtaagattcatggctaacccatgacaacattttgcacacatctttgttatctaggttcctga base pairs acgacgttgatgacattctaagtaccgattgggtactgttgtaaaacgtgtgtagaaacaatagatccaaggact 11926 to 12000

HaeIII HhaI

ScrFI

ECORII HaeIII

ctacagttgtaaccagagcagagcctcacaaccaggtcagcttcagaaaggccactccttttcgccaatccctgc base pairs gatgtcaacattggtctcgtctcggagtgttggtccagtcgaagtctttccggtgaggaaaagcggttagggacg 12151 to 12225 BstNI

Sau3AI

atotgtatttactattagcgtgtgttcccatatgatcattaccgaacatgttgtccacacaggttataattcatc base pairs tagacataaatgataatcgcacacaagggtatactagtaatggcttgtacaacaggtgtgtccaatattaagtag 12226 to 12300

ScrFI

HinfI EcoOl09I HpalI

cgactcaagcaagggtcctcactatccgggagaacgcaaggttacagggcttccccgattattaccgattgtttg base pairs gctgagttcgttcccaggagtgataggccctcttgcgttccaatgtcccgaaggggctaataatggctaacaaac 12301 to 12375

AvaII MspI

HaeIII

Sau3AI

gcccgatcaaggagaagtaagttcctgttttcaagttgcctgtaccagatctagtcactattgaaagttttcagc base pairs cgggctagttcctcttcattcaaggacaaagttcaacggacatggtctagatcagtgataactttcaaaagtcg 12376 to 12450 Sau3AI BglII

agcaagccattcatcagttagttacagctcttgaaagccttacctctgaacatgtgtgctttctctgatggtgat base pairs tegtteggtaagtagtcaatcaatgtegagaacttteggaatggagacttgtacacaegaaagagactaccacta 12451 to 12525

MspI

Hpall

ECORII

aggtacattcaagtcgggaacgcagtggctgtccctgttgcccgggcactgggctactgtctggggcaagcctac base pairs tccatgtaagttcagcccttgcgtcaccgacagggacaacgggcccgtgacccgatgacagacccgttcggatg 12526 to 12600 ScrFI

Smal

A STATE OF THE PERSON OF THE P 38 197 ķ

19/39

ScrFI

FIG. 5

HinfI PVuII Continued

ctgggtgaatctgaggggagtgaccctctgtaccagctgcctccaagtttcacctctgttggaggacgcactgcg base pairs
gacccacttagactcccctcactgggagacatggtcgacggaggttcaaagtggagacaacctcctgcgtgacgc 12601 to 12675 BstNI

Eco01091

PstI

gggcaggcgagggcctcttcctgttggcacccctgcaggggaggtagttgagcagtaaaaggatgacagatctga base pairs cccgtccgctcccggagaaggaCaaccgtggggacgtcccctccatcaactcgtcat<u>tttcctactgtctagact</u> 12676 to 12750 HaeIII 1R BglII

THE RESERVE THE PROPERTY OF THE PERSON OF TH

FIG. 6

PROCESS	WORLD WIDE WEB SITE
sequence format conversion	<pre>http://dot.imgen.bcm.tmc.edu:9331/seq-util/Options/ readseq.html</pre>
reverse complementation	<pre>http://dot.imgen.bcm.tmc.edu:9331/seq-util/Options/ revcomp.html</pre>
sequence translation	http://dot.imgen.bcm.tmc.edu:9331/seq-util/Options/sixframe.html
protein information	http://www.expasy.ch/tools
sequence alignments using Clustal W	<pre>http://dot.imgen.bcm.tmc.edu:9331/multi-align/Optio ns/clustalw.html</pre>
sequence comparisons using BLAST 2.0	http://www.ncbi.nlm.nih.gov/gorf/bl2.html
sequence searches using BLAST 2.0	http://www.ncbi.nlm.nih.gov/blast/blast.cgi?Jform=0

21/39 FIG. 7

FIG. 8

CMTI CMTI CMTI CMTI CMTI CMTI	1 118 23 235 130	mapsspspaaptrvsgrkraakaeeihqnkeeeeevaassakrsrkaassgrkpkppkgakpgrkkkgdaemkepveddvcaeepdeeelaMdeeeaeeqamQeEvva NLS KKTVGT
METI Zmet 2 CMT1 Zmet 1 MET1	351 228 1091 1103	MOLIF I GGISTGLCARTISGLKLETRWAVDFNSFACQSLKYNHPOTEVRNEKADEFLALLKEWSVLCKKYVQDVDSALSSSEDQADEGSPLDKGEFVVEKLVGLCYGG GAMBISCHGALSTGLCGARTISGSCHALSTRWARDVIN KRAGASKÄLNHPETEVANEKADETLALLKEWSKLOKKYVQDVDSALSSSEDQADEGGSPLDKGEFVVEKLVGLCYGG GAMBISCHGASSFTRWAREVERSPERATANNERELSTONNERADETLALKEWSKLOKFSVSSTEPVESISCHGAGSSFTRWAREVERSPERATANSF
zmet2 CMT1 zmet1. MET1	zmet2 454 8 CMT1 352 1 zmet1.1156 MET1 1168 8	Chromodomain SDrenglyfkvq @GGIgpgeDIWEP iDnLsDCQQKIREFVqEGGhKrKIL <u>PLPGDVDVJCGZPPFCQGISGFRRTR</u> NrDePLKDERNKQMVFMDJVG XIXRFXVIZERNVDILKFA pqgtggktLqimvrWkGInssyDTWEPSpgdyGCERLKEXVILOEFKRYLOEFKRSHLEPEVYVVCGAPPCQGISGTWRNFGSPLGQGAGNGTLVGTJTGELKANTYLEKNYDILKFS AN
zmet2 CMT1 zmct1 MET1	569 469 1236 1248	MOLÍÉ VII ROTLGRVALSCIVANKTOR KLEMVNGSTOLFRAN TAROBEKLPSTELTHEVAKKENLPRESGOMVAVGETORP-SLKKALLIGDAIBDLPRVGKHOMVANTGGOS ROGLÉRLANDASLEMGIROTSTOLPOR ENVENTARADBEKLPSTELTHEVAKKENLPREKGIOMEÍ-KLOMEÍ-KLOMALLADAIBDLPRVGKHOS KLIZTG-GAP KOGLÉRLANASLEMGIRÓLLEMGSTOVÁRRATIWANADBEKLEMBERMHVÍSSPELKÍLÍÐGGGYYARATSLEMGIRVETIÐDLFRVGKHOS KLIZTG-GAP KOGLÉGILLASLLEMGTÚVREGILEMGATGVSGSRKRATIWANADESVLEFFRFENHVÍGVPKIKÍSLSGGHÝNAAVESTALGAPFRÞI VEDLIGDLFRVGKHOSTURETK-EVA
zmet2 CMT1 zmet1 MET1	684 585 1352	kteroryrleisk daluk sigegagedegklidegellinde perkogip-vkkaanerdik gyrvgenniveudpe je uklisggrijupdy amsfikgrsiktroplimmde typt kterentsliksellipacggadtrelidegelulgens siprokannerdikselvent sigesikselnyte salksgrivve salstrokrentent u vswrokirgsimvlinde iskenmelniirchipakspacomholipakskylisngamed 1ipuclpntakthngwrgiyarlarsenfpt vswroketrgntialide iskenmelniirckiirtroanbyride kvrtisnggreemipfolpntakthngwrgiyarlarsenfpt
zmet2 CMII zmetl METI	801 697 1442 1454	MOLIE IX VVTRARPHNQVIIHPEGARGITIEENAHLGGFPOTHLEGDIKKKIIDVGNNAKVPYKEALGTCLEGAN GESEGSDPLYGIFDSFtsvggttagGARaspvgtpagevveq VVTRARPHNQCVIHPEGARGITIEENAHLGGFPOCIKLGGLIKKKIIQVGRNANAVPYGAALGIS AEGAAS GGITD-GEPVÄKIPFKYpecmQAKGG1 SYTGDQFMGVYGKEREGGARITYBECARGGFPOSTES EGANIGIKKATGIGHAVPPPLAKALGKKLKENGTRAGRAGTAGFRYPecmQAKGG1 SYTGDQFMGKYGGFREGGARILTYBECARGGFPOSTES AGAITAKKIKTGIGHAVPLAKALGKKLKENGTAGARGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGA

23/39 FIG. 9

					
	SAM	oinding	Cytosine binding		
Motif	M.Hhal	zmet2a	M.Hhai	zmet2a	
!	Phe18	Try347			
11	Glu40	Gln407			
	Trp41	Trp408			
111	Asp60	Asp428			
١٧	Pro80	Pro516	Phe79	Pro515	
	Gln82	Gln82	Cys81	Cys517	
V	Leu100	Val542			
VI		·	Glu119	Glu559	
			Asn120	Asn560	
			Val121	Val561	
VIII			Arg165	Arg605	
Х	Asn304	Asn851			

26/39 FIG. 12

GENOTYPE	NUMBER OF PLANTS	TOTAL 5mCytosine (%)	% WT levels	% decrease
wild type	3	34.40 ± 0.55	100	0.0
heterozygous zmet2a-mu1	7	32.00 <u>+</u> 0.90	93.0	7.0
homozygous zmet2a-mu1	5	30.40 ± 0.19	88.4	11.6

FIG. 13

FIG. 16

5' LTR

catgc**TGT**TGGGCCATGTGTCTAGTGTTGGCCCATTAACGTGTACA CATATACTAGAAGTGTGTGTGTGTAGAGAGAGTGCTG<u>TATGTT</u>TT CCACATTCCAGAAAAATCC**ACA**TGGTATCAGAGCCAGG

PBS

3' LTR

PPT

GAGGGGGAG**TGT**TGGGCCATGTGTCTAGTGTTGGCCCATTAACGTG TACACATATACTAGAAGTGTGTGTGTGTAGAGAGAGTGCTGTATG TTTTCCACATTCCAGAAAAATCC**ACA**Catgc

31/39 FIG. 17

	Gag	Proteas e
SPRITE-1 -	CYNCGNVGHIARNC	TQVTQLKWILDSGASKH
hopscotch -	CQVCSRVGHTALNC	QNGSNVPWYTDTGATDH
	COVCFKRGHTAADC	SYGIDTNWYIDTGATDH
arabpolprt-	CSNCGRTGHEKKEC	GKTKLGDIILDSGASHH
	CHHCGREGHIKKDC	SVMDNCGFVLDSGAS DH

Integrase

SPRITE-1 - QVKILRPDN-GTEYVNKGFNAFLSRNGILHQTSCPDTPPQNGVAERKNRHILE
hopscotch - KIIAFQSDW-GGE--YEKLNAHFKTIGIHHQVSCPHTHQQNGAAERKHRHIVE
retrofit - KIIAMQTDWRGGR--YQKLNSFFAQIGLIIMCHVLTLIRQNGSAERKHRHIVE
arabpolprt- TVKMVRSDN-GTE--FMCLSSYFRENGIHQTSCVGTPQQNGRVERKHRHILN
copia - KVVYLYIDN-GREYLSNEMRQFCVKKGISYHLTVPHTPQLNGVSERMIRTITE

Reverse Transcriptase

SPRITE-1 - RYKARLVARGY SQTYGIDY DETFAPVAKMSTVRTLIS CAANFOW PLYQLDVKNAFLHGDLQEEVYMEIPPG (59) AILAVYVDDIII
hopscotch - RIKARLVAKGFKQQYGIDY DDTFSPVVKHSTIRLVLSLAV SQKWSLRQLDV QNAFLHGILEETVYMKQPPG (59) IYILVYVDDIII
Retrofit - RYKARLVAKGFKQRYGIDY EDTFSPVVKAATIRIILSIAV SROWSLRQLDV QNAFLHGFLEEEVYMQQPPG (59) MFVLVYVDDIIV
Arabpolprt - RYKARLVVQGNKQVEGEDY KETFAPVVRMTTVRTLLRNVAANOMEV YQMDVHNAFLHGDLEEEVYMKLPPG (59) LRVLIYVDDLLI
copia - RYKARLVARGFTQKYQIDY EETFAPVARISS FRILSLVIQYNLKVHQMDVKTAFLNGTLKEEIYMRLPQG (59) IYVLLYVDDVVI

RNase H

SPRITE-1 - DADWGSCIDDRRSTSGYCVFVGG-NLVSWRSKKQSVVSRSTAEAEYRAMAIAICEMLWIKGLL (25)NPVQHDRTKHVEIDRFF
hopscotch - DADWGSCIDDRRSTSGYALFLGP-NLISWNSKKQSTVSRSSTEAEYKAMANATAEVIWLQSLL (25)KPIFNARTKHIEVDFHF
retrofit - DADWGSIDDRKSTGGFAVFLGS-NLVSWSARKQPTVSRSSTEAEYKAVANTTAELIWVQTLL (25)NPVFHARTKHIEVDFHF
arabpolprt- DSDWGSCPLTRRSISAYVVLLGG-SPISWKTKKQDTVSHSSAEAEYRAMSYALKEIKWLRKLL (25)NPVFHERTKHIESDCHS
copia - DSDWGSEIDRKSTTGYLFKMFDFNLICWNTKRQNSVAASSTEAEYMALFEACREALWLKFLL (25)NPSCHKRAKHIDIKYHF

32/39

FIG. 18

FIG. 20

WO 00/53732

37/39

FIG. 23

GGGAATTCGATTACTCACTATAGCGCTCGAGCGGCCGCCCGGGCAGGTTCGAAAACCATC *AACCTAACGATGTAATGGAGTATGGTGGTTCCCCCAAGACAGAGTTCCAGCGCTACATTC* GACTTGGTCGTAAAGACATGTTGGATTGGTCGTTTGGTGAGGAGGCTGGTCCAGATGAAG GCAAGCTCTTGGATCACCAGCCCTTACGGCTTAACAATGATGATTATGAGCGGGTTAAGC AAATTCCTGTCAAGAAGGGAGCCAACTTCCGTGACCTAAAGGGTGTCAAGGTTGGAGCAA ATAATGTTGTTGAGTGGGATCCAGAAGTCGAACGTGTGTACCTTTCGTCTGGGAAACCAC TGGTTCCTGACTATGCGATGTCATCATCAAGGGCAAATCACTCAAGCCATTCGGGCGCC ATTGCATCCGACTCAAGCAAGAGTCTTGACTATCCGGGAGAACGCAAGGTTACAGGGCTT CCCCGATTACTACCGATTGTTTGGACCGATCAAGGAGAAGTATATTCAAGTCGGGAACGC AGTGGCAGTCCCTGTTGCACGGGCACTGGGCTACTGTCTGGGTCAAGCCTACCTGGGTGA ATCTGACGGGAGTCAGCCTCTGTACCAGCTGCCTGCAAGTTTTACCTCTGTGGGGCGAAC CGCGGTTCAGGCGAATGCCGCTTCTGTTGGCACTCCTGCGGGGGAGGTAGTCGAGCAGTA *AAAGGATAGCGGAGCAACCCTGGTTGGTATTTTGATTCGAGCCCATCCAGTAGCATGTTT* GTACTCGAGCTCGAGTGCTTGTTGTACTGTAGGTTGAGGTTTCTCATCCATTGGCCTGCC TATTTGTGGATGACGTTTCATTTCAGATTAGCAATGTGCTTATTTAAGGTTTCGTCATGT GGGCGGCCGCTCGAGCCCTATAGTGAGTAATCGAATTCCC

38/39 FIG. 24

EFDYSL*RSSGRPGRFENHQPNDVMEYGGSPKTEFQRYIRLGRKDMLDWS FGEEAGPDEGKLLDHQPLRLNNDDYERVKQIPVKKGANFRDLKGVKVGAN NVVEWDPEVERVYLSSGKPLVPDYAMSFIKGKSLKPFGRLWWDQTVPTVV TRAEPHNQVILHPTQARVLTIRENARLQGFPDYYRLFGPIKEKYIQVGNA VAVPVARALGYCLGQAYLGESDGSQPLYQLPASFTSVGRTAVQANAASVG TPAGEVVEQ*

FIG. 25

667	KVQNHQPNDVMEYGGSPKTEFQRYIRLSRKDMLDWSFGEGAGPDEGKLLDHQPLRLNNDD	726
	+ +NHQPNDVMEYGGSPKTEFQRYIRL RKDMLDWSFGE AGPDEGKLLDHQPLRLNNDD	
15	RFENHQPNDVMEYGGSPKTEFQRYIRLGRKDMLDWSFGEEAGPDEGKLLDHQPLRLNNDD	74
727	YERVQQIPVKKGANFRDLKGVRVGANNIVEWDPEIERVKLSSGKPLVPDYAMSFIKGKSL	786
	YERV+QIPVKKGANFRDLKGV+VGANN+VEWDPE+ERV LSSGKPLVPDYAMSFIKGKSL	
75	YERVKQIPVKKGANFRDLKGVKVGANNVVEWDPEVERVYLSSGKPLVPDYAMSFIKGKSL	134
787	KPFGRLWWDETVPTVVTRAEPHNQVIIHPTQARVLTIRENARLQGFPDYYRLFGPIKEKY	846
	KPFGRLWWD+TVPTVVTRAEPHNQVI+HPTQARVLTIRENARLQGFPDYYRLFGPIKEKY	
135	KPFGRLWWDQTVPTVVTRAEPHNQVILHPTQARVLTIRENARLQGFPDYYRLFGPIKEKY	194
847	IQVGNAVAVPVARALGYCLGQAYLGESEGSDPLYQLPPSFTSVGGRTAGQARASPVGTPA	906
	IQVGNAVAVPVARALGYCLGQAYLGES+GS PLYQLP SFTSV GRTA QA A+ VGTPA	
195	IQVGNAVAVPVARALGYCLGQAYLGESDGSQPLYQLPASFTSV-GRTAVQANAASVGTPA	253
907	GEVVEQ 912	
	GEVVEQ	
254	GEVVEQ 259	