Optical record carrier and method for recording and reproducing signals therefrom

Patent number:

JP11505358T

Publication date:

1999-05-18

Inventor: Applicant: Classification:

- international:

G11B20/12; G11B7/00; G11B7/007; G11B20/10;

G11B20/18

- european:

G11B7/007S; G11B7/013; G11B20/10; G11B20/12D;

G11B20/22; G11B27/30C

Application number: JP19960530862T 19960401

Priority number(s): WO1996JP00877 19960401; JP19950083982 19950410

Also published as:

WO9632716 (A1) EP0820629 (A1)

US5732066 (A1)

EP0820629 (B1) CA2217005 (C)

Report a data error here

Abstract not available for JP11505358T Abstract of corresponding document: US5732066

An optical record carrier and methods and apparatuses for recording and reproducing an information on and from said optical recording carrier, whereby the effects of crosstalk from adjacent tracks is reduced, and stable tracing control is possible, is achieved. A recording track to which information divided into sector units is recorded is formed in a spiral or concentric pattern on the surface of the optical record carrier. Each sector further comprises sixty frames. Each frame comprises a re-sync pattern, frame address, data, and postamble fields. Identification information identifying the sector location of the information is recorded to the data block of the first frame. The user data is recorded after the data is scrambled using a value generated by a fifteen-stage maximum-length sequence generator based on the value of this identification information. The correlation between signals on adjacent tracks is thus reduced, and the effects of crosstalk are randomized, thus reducing the effect on the track error signal and enabling extremely stable tracking control.

Data supplied from the esp@cenet database - Worldwide

(12) 公表特許公報(A)

(11)特許出願公表番号

特表平11-505358

(43)公表日 平成11年(1999)5月18日

(51) Int.Cl. ⁶	識別記号	F I			
G11B 20/1	2	G11B 2	20/12		
7/0	0		7/00	Q	
7/0	07		7/007		
20/1	0 301	2	20/10	301Z	
20/1	8 570	2	20/18	570G	
		審査請求 未請求 予備領	審査請求有	(全 56 頁)	最終頁に続く

(21)出願番号 特願平8-530862 (86) (22)出顧日 平成8年(1996)4月1日 (85)翻訳文提出日 平成9年(1997)10月7日 (86)国際出願番号 PCT/JP96/00877 (87) 国際公開番号 WO96/32716 (87)国際公開日 平成8年(1996)10月17日 (31)優先権主張番号 7/83982 (32)優先日 1995年4月10日 (33)優先権主張国 日本国(JP)

(81)指定国 EP(AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), CA, CN, JP, KR, MX, SG, VN

(71)出願人 松下電器産業株式会社

大阪府門真市大字門真1006番地

(71)出願人 株式会社東芝

神奈川県川崎市幸区堀川町72番地

(72)発明者 守屋 充郎

奈良県生駒市ひかりが丘3丁目1番29号

(72)発明者 田中 伸一

京都府綴喜郡田辺町山手東1丁目42番14号

(72)発明者 平山 康一

神奈川県横浜市戸塚区汲沢1丁目7番10号

(74)代理人 弁理士 青山 葆 (外1名)

(54) 【発明の名称】 光学式記録担体及び信号の記録再生方法

(57)【要約】

隣接トラツク(TR)からのクロストークの影響を抑え て安定したトラック制御が可能な、光学的記録担体(R C及びRC') に情報を記録再生するための光学的記録 担体(RC及びRC7')、方法、及び装置である。光 学的記録担体の表面には、情報がセクタ単位に分割され て記録される記録トラック(TR)が螺旋状或いは同心 円上に形成されている。セクタのそれぞれは60フレー ム (FRf) を有する。各フレーム (FR) は更に、リ シンクパターン(RS)、フレームアドレス(FA)、 データ(INF)、及びポストアンブル(PA)の領域 を有する。情報(INF)を記録しているセクタ位置を 識別する識別情報 (SA) が、第一フレーム (FRI) のデータブロックに記録されている。この識別情報(S A) の値に基づいて、15段の最大長周期系列発生器 (603)によって発生された値(SR)を用いて、デ ータ(INF)がスクランプルされた後に、ユーザデー タ(UDf)が記録される。このようにして、隣接トラ ック(TR)の信号間干渉が低減できる。そしてランダ ム化により、トラックエラー信号に対するクロストーク

【特許請求の範囲】

Ξ,

7,

1. 情報 (Sm) を記録する光学式記録担体 (RC及びRC') であって、

螺旋形状或いは同心円状の何れかのパターンに形成された記録トラック(TR)と、

該記録トラック(TR)上に形成された複数のセクタ(Sn)とを有し、該セクタ(Sn)のそれそれは該情報(Sm)を記録すると共に、該記録されたセクタの位置を示すセクタ情報(SA)を記録し、

該情報(Sm)は所定の段数(X)を有する最大長周期系列発生方法により、 該記録トラック(TR)の1周当たり少なくとも1回は更新される初期値(SI)に関して発生される値(SR)を用いてランダム化された後に記録されること を特徴とするもの。

- 2. 請求の範囲1に記載の光学式記録担体(RC及びRC')であって、前記所定の段数 (X) は、前記セクタ (S) に記録されている情報 (Sm) のデータ量に基づいて決定されることを特徴とするもの。
- 3. 請求の範囲 2 に記載の光学式記録担体(R C 及びR C')であって、前記所定の段数 (X) は、15以上であることを特徴とするもの。
- 4. 請求の範囲1に記載の光学式記録担体(RC及びRC')であって、前記初期値(SI)は前記セクタ(S)が所定数(Y)連続する間隔で更新されることを特徴とするもの。
- 5. 請求の範囲4に記載の光学式記録担体(RC及びRC')であっ

て、前記所定数(Y)は8以上であることを特徴とするもの。

- 6. 請求の範囲 4 に記載の光学式記録担体(R C 及びR C')であって、前記所定数 (Y) は 1 6 であることを特徴とするもの。
- 7. 光学式記録担体(RC及びRC')上に螺旋形状或いは同心円状の何かのパターンに形成された、複数のセクタ(S)を有する記録トラック(TR)に情報を記録する方法であって、

該情報(Sm)に基づいて、該セクタ(S)に記録するに適した情報単位(Sm)を生成するステップと、

R 1

該生成された情報単位(Sm)を記録するセクタ(Sn)の位置を示すセクタ 情報(SA)を生成するステップと、

該セクタ情報 (SA) に基づいて、初期値 (SI) を生成するステップと、

該初期値(SI)に基づいて、該情報単位(S)の量に応じて定められる第一の所定段数(X)を有する最大長周期系列発生方法によりランダム化数(SR)を生成するステップと、

該ランダム化数(SR)で該情報単位(S)をスクランブルするステップを有することを特徴とする方法。

- 8. 請求の範囲 7 に記載の記録方法であって、前記初期値 (SI) は該トラック (TR) 1 周当たり少なくとも 1 回は更新されることを特徴とする方法。
- 9. 請求の範囲7に記載の記録方法であって、前記セクタ情報 (SA) は、前記セクタ (S) が第二の所定数 (Y) 連続する間隔で更新されることを特徴とする方法。
- 10. 請求の範囲9に記載の記録方法であって、前記第二の所定数 (Y) は8 以上であることを特徴とする方法。
- 11. 請求の範囲9に記載の記録方法であって、前記所定数 (Y) は16であることを特徴とする方法。
- 12. 請求の範囲7に記載の記録方法であって、前記第一の所定数 (X) は15以上であることを特徴とする方法。
- 13. 光学式記録担体(RC及びRC')上に螺旋形状或いは同心円状の何かのパターンに形成された、複数のセクタ(S)を有する記録トラック(TR)に情報を記録する記録装置(WA)であって、

該情報(Sm)に基づいて、該セクタ(S)に記録するに適した情報単位(Sm)を生成する情報単位生成手段(506)と、

該情報単位 (Sm) を記録するセクタ (Sn) の位置を示すセクタ情報 (SA) を生成するセクタ情報生成手段 (502) と、

該セクタ情報 (SA) に基づいて、初期値 (SI) を生成する初期値生成手段と、

該初期値(SI)に基づいて、該情報単位(S)の量に応じて定められる第一の所定段数(X)を有する最大長周期系列発生方法によりランダム化数(SR)で該情報単位(S)をスクランブルするスクランブル手段とを有することを特徴とするもの。

- 14. 請求の範囲13に記載の光学式記録装置(WA)であって、前記第一の 所定段数 (X) は、15以上であることを特徴とするもの。
- 15. 請求の範囲13に記載の記録装置(WA)であって、前記初期値(SI)は前記トラック(TR)1周当たり少なくとも1回は更新されることを特徴とするもの。
- 16. 請求の範囲 13 に記載の記録装置 (WA) であって、前記セクタ情報 (SA) は、前記セクタ (S) が第二の所定数 (Y) 連続する間隔で更新されることを特徴とするもの。
- 17. 請求の範囲 16に記載の記録装置(WA)であって、前記第二の所定数 (Y)は8以上であることを特徴とするもの。
- 18. 請求の範囲 16に記載の記録装置(WA)であって、前記第二の所定数 (Y)は16であることを特徴とするもの。
- 19. 光学式記録担体(R C 及びR C ')上に螺旋形状或いは同心円状の何かのパターンに形成された複数のセクタ(S)を有する記録トラック(T R)から、情報(S m)を再生する再生方法であって、該トラック(T R)には該情報(S m)と共に該情報が記録されているセクタ(S n)の位置を示すセクタ情報(S A)が記録されており、更に該情報(S m)は該セクタ情報(S A)に基づいて該記録トラック(T R)の一周当たり少なくとも1回は更新される初期値(S)に関して該初期値(S I)に基づいて第一の所定段数(X)を有する最大長周期系列発生器(6 0 3)により生成されるランダム数(S R)でランダム化されており、該方法は、

該セクタ(Sm)から該スクランブルされたセクタ情報(SA)とスクランブルされた情報(Sm)を再生するステップと、

該再生されたセクタ情報 (SA) に基づいて、初期値 (SI) を再生

. .

するステップと、

該再生された初期値(SI)に基づいて、記録に用いられたの同一の最大長周期系列発生方法を用いて該ランダム化数(SR)を再生するステップと、

該再生されたランダム化数(SR)で該再生されたスクランブル化情報(S) をデスクランブルするステップを有することを特徴とする方法。

- 20. 請求の範囲19に記載の再生方法であって、該セクタ情報(SA)は前記セクタ(S)が第二の所定数(Y)連続する間隔で更新されることを特徴とする方法。
- 21. 請求の範囲20記載の記録方法であって、前記第二の所定数 (Y) は8 以上であることを特徴とする方法。
- 22. 請求の範囲20に記載の記録方法であって、前記第二の所定数(Y)は 16であることを特徴とする方法。
- 2 3. 請求の範囲 1 9 に記載の記録方法であって、前記第一の所定数 (X) は 1 5 以上であることを特徴とする方法。
- 24. 光学式記録担体(R C 及びR C')上に螺旋形状或いは同心円状の何かのパターンに形成された複数のセクタ(S)を有する記録トラック(T R)から、情報(S m)を再生する再生装置(R A)であって、該トラック(T R)には該情報(S m)と共に該情報が記録されているセクタ(S n)の位置を示すセクタ情報(S A)が記録されており、更に該情報(S m)は該セクタ情報(S A)に基づいて該記録トラック(T
- R)の一周当たり少なくとも1回は更新される初期値(S)に関して該初期値(ST)に基づいて第一の所定段数(X)を有する最大長周期系列発生器(603)により生成されるランダム数(SR)でランダム化されており、該装置は、

該セクタ (Sm) から該セクタ情報 (SA) とスクランブルされた情報 (Sm) を再生する再生手段 (104R、142、及び1101) と、

該再生されたセクタ情報 (SA) に基づいて、初期値 (SI) を再生する初期 値再生手段 (1202) と、

該再生された初期値(SI)に基づいて、記録に用いられたの同一の最大長周

期系列発生方法を用いて該ランダム化数 (SR) を再生する手段 (1203) と

該再生されたランダム化数(SR)で該再生されたスクランブル化情報(S)をデスクランブルするデスランブル手段(1203及び1205)を有することを特徴とするもの。

- 25. 請求の範囲 24 に記載の再生装置であって、該セクタ情報 (SA) は前記セクタ (S) が第二の所定数 (Y) 連続する間隔で更新されることを特徴とするもの。
- 26. 請求の範囲 25記載の再生装置であって、前記第二の所定数 (Y) は8以上であることを特徴とするもの。
- 27. 請求の範囲 25 に記載の記録方法であって、前記第二の所定数 (Y) は 16 であることを特徴とするもの。
- 28. 請求の範囲20に記載の記録方法であって、前記第一の所定数
- (X) は15以上であることを特徴とするもの。

【発明の詳細な説明】

情報を読み取る。

光学式記録担体及び信号の記録再生方法

技術分野

この発明は、収束された光ビームを照射して情報の読み取りを行う光学式記録 担体及び同担体に対して信号を記録及び再生する方法に関するものである。 背景技術

近年、再生専用の光学式記録担体(以下、記録担体と呼ぶ)は、大容量のデータを保持できると共に再生できることから、音声情報データ、映像情報データ等の各種情報データを保存する媒体としてより重要な地位を占めつつある。更に、大容量化あるいは装置の小型化が求められているが、この要求を満たすためには記録担体上の情報記録密度をさらに向上させる必要がある。

従来の記録担体は、円盤状の樹脂基板表面にピットとランドよりなる情報トラックをスパイラル状あるいは同心円状に形成されている。この基板の情報担体面上にスパッタリング等の手法でアルミニウム等の反射膜が設けられている。この種の記録担体から情報を再生する場合、半導体レーザから照射された光ビームを記録担体上に収束照射して、反射されたビームを検出するこによって、そのレーザービームが記録担体上のトラックを追随するように制御されている。記録担体上のピットとランドに起因する反射光量の変化を検出して、記録されている

1977年11月8日にジョセフ(Josephus)他に発行された米国特許番号4057833、及び1988年4月26日にタナカ(Tanaka)他に発行された米国特許4740940に開示されている位相差法がトラ

ッキング制御の制御信号、すなわち記録担体上の光ビームとトラックとの位置ずれに対応したトラックずれ信号の検出に用いられている。

この位相差法は、記録担体からの反射光を検出面上におけるトラック方向及びトラック幅方向に4分割された光検出器を用いて、相対角する検出器の出力の和信号の位相差によりトラックずれを検出するものである。

1975年4月8日にギスバート(Gijsbertus)に発行された米国特許番号38

()

76842に3ビーム法が開示されている。この方法は、、読み取り用ビームと 2つの補助ビームとの合わせて3つの光ビームを記録担体上に照射し、それぞれ の反射ビームを光検出器で検出し、反射補助ビームの光量或いは光密度の差に基 づいてトラックずれを検出するものである。

記録担体上の情報記録密度は情報トラックのピッチ及びトラック方向の情報密度すなわち情報の線密度で決まる。しかしながら、トラックピッチを狭くすると隣接トラックからのクロストークが増大し、隣接トラックに記録されている信号との相関性が強いとトラックずれ信号に疑似的な信号が発生し、トラッキング制御が安定しない。位相差法に於けるこのような現象について、図16及び図17を参照して以下に述べる。

図16に、記録担体から反射したレーザビームを受光して、フォーカスエラー信号、トラッキングエラー信号、及び情報信号を検出する光検出器104eの好ましい例が示されている。図16に示すように、光検出器104eは好ましくは、それぞれの二辺が他のセルに接するように配列された4つの矩形セルC1、C2、C3、及びC4から構成されている。矩形セルC1、C2、C3、及びC4のそれぞれが、受光したレーザースポットに応じて、パイロット信号Sc1、Sc2、Sc3、及びSc4を生成する。

以下に述べるように、このパイロット信号Sc1、Sc2、Sc3、

及びSc4を利用して、レーザビームのトラッキング制御が実施される。対角位置にあるセルC1及びC4から生成されるパイロット信号Sc1とSc4の和をとり第一サブトラッキング信号ST1を生成する。同様に、もう一つの対角位置にあるセルC3及びC2から生成されるパイロット信号Sc3とSc2の和をとり第二サブトラッキング信号ST2が生成される。この二つのサブトラッキング信号ST1とST2の差に基づいて、レーザービームLsが案内される。

図17に、中心線に沿って、それぞれに単一の空間周波数を有する複数のピットPが記録されているトラックTr1、Tr2、及びTr3が示されている。レーザービームLsは、そのスポットがトラックTr2の中心線に沿ってピットを走査すると共に、走査したトラックTr2によって反射されるレーザービームが

()

図16に示す光検出器104eによって受光されるように位置される。

実線L1及びL2は、トラックTr2が隣接するトラックTr1及びTr3からのクロストークを有しないと言う理想的な状態に於ける第一及び第二のサプトラッキング信号ST1及びST2をそれぞれ示している。破線L1d及びL2dは、トラックTr1、Tr2、及びTr3間で干渉が生じている実際の状態に於ける第一及び第二のサブトラッキング信号ST1及びST2を示している。

理想状態では、サブトラッキング信号ST1及びST2の両方の位相は、実線L1及びL2によって明示されているように、走査中のトラックTr2上に形成されたピットPに一致する。しかしながら、隣接トラック上のピットによって、走査トラックTr2から再生されたパイロット信号Sc1、Sc2、Sc3、及びSc4には隣接トラックTr1及びTr3からのサブ信号によるクロストークが混入する。

パイロット信号Sc1、Sc2、Sc3、及びSc4に於けるクロストークは 、対角位置の和であるサブトラッキング信号ST1及びST2

の位相に影響を与える。詳細に言えば、隣接トラックに記録されているデータ間で相関性が強い場合には、サブトラッキング信号 S T 1 及び S T 2 の内、一方は時間的に早められ、他方は遅延される。この例に於いて、第一のサブトラッキング信号 S T 1 は期間 \triangle t a だけ進められ、第二のサブトラッキング信号 S T 2 は期間 \triangle t d だけ遅らされる。

トラックピッチが狭まるほど、隣接トラック間でのクロストークが大きくなる。更に、狭隘なトラックピッチで形成されている隣接トラックに、同一或いは類似パターンのデータが記録されている時には、隣接トラック間の相関性は非常に強く、進め期間△ta或いは遅延期間△tdも非常に大きくなり、トラッキング信号ST1及びST2に基づいてレーザービームを正確にトラッキングする事が不可能である。

それ故に、隣接トラックのうち、例えばTr1上のピットが、走査中のトラックTr2上のピットに対して時間的に進んだ位置にある場合には、トラックTr 1及びTr2間での干渉によって、走査中のトラックTr2から再生される信号 · /

1

が進められる。一方、残りの隣接トラックTr3上のピットが走査中トラックTr2のピットに対して遅れた位置に有る場合には、トラックTr2及びTr3間での干渉によって、再生される信号が遅らせられる。

つまり、単一の空間周波数のピットが何周にも渡って記録されていると、光ビームが位置しているトラックの信号と両隣接トラックの信号との信号相関性が非常に強い。そして、隣接トラックからのクロストークによりトラックずれ信号が 乱され、トラッキング制御が不安定となる。

このような記録担体上にディジタル画像を記録する場合、当然のことながら静止画が存在する。動画像の場合には問題無いが、静止画像記録の場合には数周に渡って相関の強い信号が記録される可能性があり、この様なトラックに於いてトラッキング制御が不安定となる。また、コンピュータのデータが記録される場合には、外周あるいは内周の数周に渡

って制御データを記録する制御データ領域が設けられる。しかしながら、この制御データ領域の全域が、常に制御データによって記録されているのではなく、空き (未記録) 領域には、例えば16進表示で「FF] 等のダミーデータが記録される。

トラッキング制御の制御帯域は一般的に数 k H z 程度であり、この制御帯域内で相関性の強い場所が存在すると、トラッキング制御力が乱れる。例えば、記録担体の回転数を 1 8 0 0 r p m とすると、半径 3.5 m m の位置のトラックで数 m m の長さに渡る強相関によって、トラッキング制御が乱れる。

均一なデータパターン及び狭隘なトラックピッチが、隣接トラック間に於ける強い相関及びクロストークを招くことは上述のとおりであるが、これはフォーカス制御及びデータ再生についても同様である。

発明の開示

本発明は、上記問題点を解決する光学式記録担体を提供することを目的とする

本発明は、上記問題を鑑みて成されたものであり、改良された光学式記録担体を提供することを目的とする。

上記目的を達成するために、情報を記録する光学式記録担体は、螺旋形状或いは同心円状の何れかのパターンに形成された記録トラックと、該記録トラック上に形成された複数のセクタとを有し、該セクタのそれぞれは該情報を記録すると共に、該記録されたセクタの位置を示すセクタ情報を記録し、該情報は所定の段数を有する最大長周期系列発生方法により、該記録トラックの1周当たり少なくとも1回は更新される初期値に関して発生される値を用いてランダム化された後に記録されることを特徴とするもの。

図面の簡単な説明

本発明に係る特徴及び構成は添付の図面を参照して成される以下の記述より明であり、さらに同様の部材に付いては同一の符号を付している。

図1は、本発明に基づく記録担体の一例を模式的に示す平面図であり、

図2は、図1に示す記録担体上に形成された記録トラックに記録されるデータのフォーマットを示す模式図であり、

図3は、図2のデータフォーマットに於けるセクタレイアウトを示す模式図であり、

図4は、図3のセクタに記録する為に準備されるデータ配列を模式的に示すシーケンス図であり、

図 5 は、図 1 に示す光学式記録担体にランダム化されたデータを記録するため の本発明に基づく記録装置を示すブロック図であり、

図6は、図5のデータフォーマッタを示すブロック図であり、

図7は、図6のスクランブラを示すブロック図であり、

図8は、図7のスクランブラの詳細を示すブロック図であり、

図 9 は、図 1 9 に示す M 系列発生器により生成されるランダム数でスクランブルされた信号に於ける相関低減を示す説明図であり、

図10は、図1の光学式記録担体からランダム化されたデータを再生する本発明に基づく再生装置を示すブロック図であり、

図11は、図10のデータデフォーマッタを示すブロック図であり、

図12は、図11のデスクランブラを示すブロック図であり、

· .

図13は、図12のデスクランブラの詳細を示すブロック図であり、

図14は、図6のスクランブラの変形例を示すブロック図であり、

図15は、図11に示すデスクランブラの変形例を示すブロック図であり、

図16は、光ディスクから反射された光ビームを電気パイロット信号に変換する光検出器を示す平面図であり、

図17は、図16のパイロット信号の相関とピットパターンとの関係を示す説明図であり、

図18A、18B、及び18Cは、本発明に適用できる各種の光学式記録担体を示す図であり、

図19は、、図8と類似した、図7のスクランブラの変形例を示すブロック図であり、

図20は、図13と類似した、図12のデスクランブラの変形例を示すブロック図である。

発明を実施するための最良の形態

図1に、本発明に係る記録担体の一例として光ディスクの記録面が示されている。光ディスクRCは、好ましくは、一記録面上にデータを保持する一本の記録トラックが設けられる。本実施形態においては、連続するピットとランドとしてデータを記録するトラックTRが円盤状記録担体RC上に螺旋状に巻回されている。

尚、トラックTRの螺旋状巻回部は互いに近接している。この意味に於いて、トラックTRのこれら近接或いは隣接した部分は、複数のトラックとして取り扱うほうがより理解し易い。

データは、トラックTRの一定長さ当たりのデータ密度を一定に保つ、つまり記録担体RCの半径位置に関わらず、一定線速度(CLV)で記録される。記録トラックTRは異なる領域R1、R2、R3等に分けることができる。尚、図8を参照して述べるように、各領域はそれぞれ同数の記録セクタを有している。

図2に、図1の記録担体RCに記録される情報のフォーマット図を示す。この記録担体RCは、トラックTRの全域に渡って連続して記録されている複数のセ

が附されている。mは整数であり、記録トラックTRには所定数のセクタが含まれている。

各データセクタSmは、60のフレームFR01からFR60よりなる。フレームFR01からFR60のそれぞれは、再生時にフレーム同期をとるためのリシンクパターン領域RSf、フレーム位置を識別するためのフレームアドレス領域FAf、フレームデータ領域INFf、及びポストアンブル領域PAfより構成されている。なお、前述の符号「FR」、「RS」、「FA」、「INF」、及び「PA」のそれぞれの末尾の「f」は、対応するフレーム番号を示す、本例に於いては、1から60の範囲内の整数である。

リシンクパターン領域RSf及びフレームアドレス領域FAfは1フレームデータ領域INFfのデータに換算してそれぞれ1バイトの長さである。また、フレームデータ領域INFfの容量は40バイトである。ポストアンブル領域PAfには多数のピットを設けてもよいが、1或いは2個のピットで十分である。

例えば、RLL(1,7)変調方式(8ビットのデータを12チャンネルビットに変換する変調方式)の場合、チャンネルクロックをTとするとピットの長さあるいはピットとピットの間のスペース間隔は2Tから11Tとなる。ポストアンブル領域PAfには少なくとも一組の2Tの長さのピットとランドを設ければよい。ポストアンブル領域PAfはフレームデータブロックINFfの読み取りを容易にするためのものであり、必要に応じて省略することができる。

リシンクパターン領域RSfに記録されるパターンは他の領域では出現しないパターンである。上述の例に於いて、RLL(1,7)変調の場合には、12T以上のランドを有するように予め決定されている。

第1フレームFR01の第一フレームデータ領域INF01は、他のフレーム FR02からFR60のフレームデータ領域INF02からI

NF60のパターンとは異なる所定のパターンにフォーマットされていることは

(

後述の通りである。第一のフレームドR O i の第一フレームデータ領域 I N F O 1 には、セクタアドレス S A を識別する 1 6 バイトのヘッダ H D と、管理情報を記録する 1 6 バイトのサブコード S C と、第一のユーザデータ U D O 1 の 8 バイトが順番に配されている。

ヘッダHDは、アドレスID0(ID1)とCRCを二重に、つまり対応する セクタSmを示す、トラックTRの内周部から外周部に向けて順番に割り当てら れたセクタ番号を二重に記録している。しかしながら、フレームFRO2からF R52のフレームデータ領域INFO2からINF52のそれぞれは、40バイ トのユーザデータUDfだけで占められている。更に、フレームFR53からF R60のフレームデータ領域INF53からINF60のそれぞれは、40バイ トを有するエラー訂正符号化(ECC)チェックバイトだけで占められている。

図3に、光ディスクRC上にセクタSmに記録されるデータのレイアウトを示す。各列は単一のフレームFRfのデータフォーマットを表しており、記録担体RC上に矢印Drで示す方向に連続して記録されていると共に、矢印Dfで示す方向にフレーム単位で記録される。各フレームFRfは、リシンクパターンブロック(RSf)、フレームアドレスブロック(FAf)、フレームデータブロック(INFf)、及びポストアンブルブロック(PAf)が記録されている。

詳述すれば、第一フレームFR01には、フレームデータ領域INF01に1 6バイトのヘッダデータブロック(HD)と、16バイトのサブコードデータブロック(SC)と、8バイトの第一ユーザデータブロック(UD01)が記録される。

フレームFRO2からFR52には、フレームデータ領域INFO2からIN F52のそれぞれには、40バイトのユーザデータブロック(UDO2からUD 52)のみが記録される。

フレームFR53からFR60には、フレーデータ領域INF53からINF 60のそれぞれには、40バイトのエラー訂正符号化チェックバイトブロック C B53からCB60のみが記録される。

それ故に、セクタSmのそれぞれは、16バイトのヘッダブロック(HD)、

(

1 6 バイトのサブコードブロック(SC)、2 0 4 8 バイトのユーザデータブロック(UD 0 1 からUD 5 2)、及び3 2 0 バイトのエラー訂正符号化チェックバイトブロック(CB 5 3 からCB 6 0)よりなる 2 4 0 0 バイトのフレームデータブロック(INF 0 1 からINF 6 0)を含む。ヘッダHD、サブコードSC、及びユーザデータブロックUD 0 1 からUD 5 2を含む、最初の5 2 個のフレームデータブロックINF 0 1 からINF 5 2 は、光ディスクRCの対応する記録セクタSm上にユーザが任意の情報を記録し、その記録を認識する為に用いられる。

つまり、第一フレームデータブロック(INF01)の最初の32バイトを含まない2048バイトの最初の52個のフレームデータブロック(INF01から1NF52)は、ユーザデータブロック(UD01からUD52)に記録されるユーザの好みのデータである。第一フレームデータブロック(FR01)の最初の32バイトは、ヘッダHD及びサブコードSCに使用される。ヘッグHDは、セクタ番号のようなアドレスを示す為に使用される。サブコードSCは、情報を取り出す光ディスクの種類、及びユーザデータの種類等を示す為に使用される。この観点から、最初の52個のフレームデータブロック(INF01からINF52)の2080バイトのデータを「情報データ」と称する。

以降のフレームデータブロック(INF53からINF60)の320バイド データは、「エラー訂正符号化(ECC)チェックバイト(CB)」であり、エ ラーが発見され場合には情報データの正しさを検査すると共に、その誤りを訂正 する為に使用される。フレームデータブロッ

クINF01からINF60のデータは、本発明に基づく各種の方法にてスクランブルされてデータ自体をランダム化して、隣接記録トラックTR或いはセクタSm間でのデータ相関を低減する。このランダム処理については、図7及び8を参照して、後程詳しく説明する。以降、Sm、FRf、RSf、PAf、INFf、PAf、HD、SC、UDf、CBfの符号は、記録担体RCに形成された領域及びその領域に対応して記録されるデータブロックの両方を示すために用いるものとする。

 \bigcap_{i}

図4に、セクタSmのフレームデータ領域INFfにデータを記録する配列パターンを模式的に示す。2080バイトの情報データは、一列当たり104バイトに、そして一行当たり20バイトに配列される。16バイトのECCチェックバイトCBが、各列に付与される。このようにして、一列当たり104バイト情報バイトと16バイトのチェックバイトCBを含む120バイト有するエラー訂正符号(ECC)を20列準備される。

従って、各セクタSmのフレームデータブロックINFの容量は、2080バイトの情報データHD、SC、及びUDと320バイトのエラー訂正用チェックバイトCBを含んで2400バイトである。この訂正方式はLDC(Long Distance Code)と呼ばれている。そして、情報データ中のヘッグHDとサブコードSCの32バイトは、図4に於いて左上から第1行C1、第2行C2と順に並べられ、第2行の残り8バイトよりユーザデータUD01が書き込まれる。

第二フレームデータ領域 INF02のデータは、第3行C3及び第4行C4に配置される。これ以降、フレームデータ領域 INFfのデータは、後続の奇数行から始まる連続二行毎に配置される。このようにして、ユーザデータ領域UD01からUD52及びチェックバイトCB53からCB60を有する全フレームデータ領域INF01からINF60のデータが、20バイト行120バイト列のマトリックス状に準備される。

第一実施例

図 5 に、光ディスク R C'のセクタ S m 上にランダム化されたデータを記録する本発明に係る記録装置を示す。この光ディスク R C'は、図 1 に示す光ディスク R C の一変形例であり、データの記録(再記録)可能な媒体である。データフォーマット及びトラック構造は、両ディスク R C 及び R C'は実質的に同一である。

記録装置WAは、図1の光ディスクRC'を保持すると共に回転させるディスクモータ102を含む。光ディスクRC'に光学的にデータを書き込む為に、光学ヘッド104が設けられている。光学ヘッド104は、光源104a、光変調器104b、フォーカスユニット104c、ハーフミラー104d、及び光検出

器 1 0 4 e を有する。

光源104aは、光変調器104b、ハーフミラー104d、及びフォーカスコニット104cを通して光ディスクRC、に向かって光ビームLsを照射する。光変調器104bは、光変調ドライバ110によって駆動されビーム強度及び照射角度を変調して、十分な記録出力を有する光ビームLsが光ディスクRC、に到達するのを防止する。この意味において、光変調器104bは、光ビームLs源のオン/オフスイッチの機能を果たしている。

光検出器 1 0 4 e は、光ディスク R C から反射された光ビーム L s をフォーカスユニット 1 0 4 c を通して受光する。図 1 6 を参照して述べたように、光検出器 1 0 4 e は、4つのセル C 1、C 2、C 3、及び C 4 に照射された光ビーム L s のスポット領域に応じて、パイロット信号 S c 1、S c 2、S c 3、及び S c 4 を生成する。

フォーカスエラー検出器 1 0 6 は、光検出器 1 0 4 e に接続されてパイロット信号S c 1 、 S c 2 、 S c 3 、及び S c 4 を受けて、フォーカスエラー信号F E を生成する。フォーカスコントローラ 1 0 8 は、フォーカスエラー検出器 1 0 6 に接続され、フォーカスエラー信号F E の入

力を得てフォーカスコントロール信号FODを生成する。

光学ヘッド104のフォーカスユニット104cは、フォーカスコントローラ108に接続され、フォーカスコントロール信号の入力を得て、光ビームLsを正しい位置に焦点を結ばせる。

光学ヘッド104の光ディスクRC、の半径方向位置を検出して、ヘッド位置信号を生成するヘッド位置検出器112が設けられている。ディスクモータコントローラ114がヘッド位置検出器112に接続されてヘッド位置信号の入力を得ると共に、ディスクモータ102に接続されて、位置信号に基づいてディスクモータ102の回転を適正に制御する。

送りモータ18はヘッド位置検出器112に接続されて、ヘッド位置信号の入力を得ると共に、さらに送りモータ116に接続されて、位置信号に基づいて送りモータ116の回転を適正に制御する。

ユーザデータUDに相当する光ディスクRC'に記録する為のオリジナルな情報データを供給するために、オリジナルソースビデオテープレコーダのようなデータ源120が設けられている。データ源120の代わりに、外部から供給されるオリジナルソースデータの入力を受ける入力端子を用いることができる。

データフォーマッタ122はデータ源120に接続されて、ユーザデータUDの入力を得て、フレームデータINFfの形態でランダム化して隣接トラックTR間あるいはセクタSm間に於ける相関を低減する。後程、図16を参照して、データフォーマッタ122の構造及び動作について説明する。

好ましくはマイクロプロセッサで構成されるメインコントローラ130は、フォーカスコントローラ108、ディスクモータコントローラ114、送りモータコントローラ118、データ源120、及びデータフォーマッタ122とバスで接続されて各種信号を交換する。言うまでも

無く、メインコントローラ130は、上述以外の全ての構成要素を含む記録装置 の全操作の制御も行う。

図 6 に、図 5 のデータフォーマッタ 1 2 2 を示す。データフォーマッタ 1 2 2 は、ヘッダデータ発生器 5 0 2 、 E C C チェックバイト発生器 5 0 3 、スクランブラ 5 0 4 、変調器 5 0 5 、及びフレームフォーマッタ 5 0 6 を含む。

ヘッダ発生器 5 0 2 は、例えば磁気ディスクドライブのようなデータ源 1 2 0 (図 5) に接続されて、ユーザデータ U D としてオリジナル情報データの入力を得る。ヘッダデータ発生器 5 0 2 は、2 0 4 8 バイトのユーザデータ U D のそれぞれの先頭に 1 6 バイトのヘッダ H D と 1 6 バイトのサブコード S C を付与して、2 0 8 0 バイトの情報データを生成する。

ECCチェックバイト発生器503はヘッダデータ発生器502に接続されて、生成された2080バイトの情報データHD、SC、及びUDの入力を得る。 ECCチェックバイト発生器503は、320バイトのECCチェックバイトCBを生成し、そのチェックバイトCBを2080バイトの情報データに付与する。このようにして、一セクタSmに記録する、図4に示す20バイト行120バイト列のデータマトリックスに相当するフレームデータINFが準備される。

スクランブラ 5 0 4 は、ECCチェックバイト発生器 5 0 3 に接続されて、図4 に示すデータマトリックスの第一行 C 1 から連続的にフレームデータ I N F の入力を得る。スクランブラ 5 0 4 は、2 0 4 8 バイトのユーザデータ U D と 3 2 0 バイトのチェックバイト C B から 1 6 バイトのヘッダ H D と 1 6 バイトのサブコード S C を除いたデータをスクランブルして、フレームデータ I N F をランダム化する。スクランブラ 5 0 4 の詳細については、図 7 を参照して後に説明する

変調器505はスクランブラ504に接続されて、ランダム化された

フレームデータINFの入力を得る。変調器505は、ランダム化されたフレームデータINFを公知の方法を用いて変調する。

フレームフォーマッタ 5 0 6 は変調器 5 0 5 に接続されて、そのように変調されたランダム化フレームデータ I N F の入力を得る。フレームフォーマッタ 5 0 6 は、入力された変調されたランダム化フレームデータ I N F の 4 0 バイトの先頭に、1 バイトのリシンクパターンR S f 及び 1 バイトのフレームアドレス F A f を付与する。更に、フレームフォーマッタ 5 0 6 はポストアンブル P A f をその 4 0 バイトの末尾に付与する。

このようにして、ヘッダデータHD、サブコードSC、ユーザデータUD、及びECCチェックバイトCBが、光ディスクRC'の記録セクタSmの各フレームFRf上に記録するに適したデータに変換される。

フレームフォーマッタ 5 0 6 は、フレームデータ I N F に基づいて光変調器 1 0 4 b を駆動する光変調ドライバ 1 1 0 (図 5) に接続されている。

図 5 に示すように、メインコントローラ 1 3 0 は記録装置W A を制御して、フォトレジスト層を有する未記録のディスク R C ⁷ を線速度が一定(C L V)となるように半径位置に反比例した回転数で回転させ、光学ヘッド 1 0 4 をトラックピッチが一定となるように半径位置に反比例した速度で移動させ、そしてアルゴンあるいはクリプトンレーザ等の光源から発生する光ビームをフレームフォーマッタ 5 0 6 よりの信号 F R f に応じて強弱に変調して信号を光ディスク R C ⁷ に記録する。

再生専用の光ディスクRCは以下に述べるようにして作成される。フォトレジスト層に覆われた記録面が完全に、情報を担っているレーザ光線に露光した後に、ディスクを現像する。このようにして、現像されたフォトレジスト層に情報を担った光ディスクの原盤が作り出される。

この光ディスク原盤に、ニッケルメッキを施して、スタンパが製造さ

れる。このスタンパから射出成形の技法により原盤から複写されたそれぞれ 0.6 mm厚さの基盤を有する樹脂製ディスクが複数個得られる。そして、アルミ合金のような適当な反射材を、原盤を複写した樹脂製ディスクの記録面にスパッタ塗装して、再生専用の光ディスクR Cが作成される。このタイプの光ディスクR Cの再生について、図 1 0 を参照して後程説明する。

記録装置は様々な既知の構成にすることができるので、そのような構成に付いての詳細な説明を省く。記録担体も又、様々な既知の構成にすることが出来るので、図18A、図18B、及び図18Cを参照して、光ディスクの三つの代表的なタイプについて簡単に説明する。

図18Aに示す光ディスクRC1は、保護層で覆われた記録面RS1を一つ有している。図18Bに示す光ディスクRC2は、一方の側に2つの記録面RS1及びRS2を有している。光ディスクRC3は、両側にそれぞれ記録面RS1及びRS2を有している。

図7に、スクランブラ504の詳細を示す。スクランブラ504はIDデータリーダ601、初期値生成器602、M系列発生器603、カウンタ604及び排他的論理和回路(2を法とする和回路)605より構成される。IDデータリーダ601はECCチェックバイト発生器503(図6)に接続されて、2400バイトのフレームデータINFの入力を得る。IDデータリーダ601は、ヘッダーブロックWPからセクタアドレスを示すアドレスデータを読み取り、アドレス信号SAを生成する。

初期値生成器 6 0 2 は I D データリーダ 6 0 1 に接続されてアドレス信号 S A の入力を得る。初期値生成器 6 0 2 は、アドレス信号 S A に基づいて初期値信号 S I を生成する。

M系列発生器 6 0 3 は初期値生成器 6 0 2 に接続されて、初期値信号 S I の入力を得る。この初期値信号 S I に基づいて、M系列発生器 6 0

3は所定の状態に設定される。

カウンタ604はECCチェックバイト発生器503に接続されて、フレームデータINFの入力を得る。そして、カウンタ604は、現在入力されているフレームデータINFのバイト数つまり長さを連続的に計数して、二値のレベル信号SSを生成する。このレベル信号SSは、フレームデータINFの最初の32バイトを計数した時点でハイになり、フレームデータINFの次の2368バイト(2400-32)を計数した時点でローになる。このことによって、ヘッグ及びサブコードブロックデータSCが既に転送されており、次に入力されるデータはスクランブルの対象であるユーザデータUD及びECCチェックバイトCBの先頭のデータであることを意味する。言うまでもなく、前述の32及び2368と言う数は、スクランブルするフレームデータの実際のフォーマットに応じて適宜決められる。

M系列発生器603はカウンタ604に接続されて、レベル信号SSの入力を得る。M系列発生器603は、ハイレベルのレベル信号SSが入力されるまでは、ゼロを出力する。それ故に、このハイレベル信号SSが入力されている間は、M系列発生器603は初期値生成器602からの初期値信号SIに基づいて、ランダム化信号SRを発生し続ける。そして上述のように、ローレベル信号SSが入力された時点で、M系列発生器603はランダム化信号の発生を止めてゼロを発生する。

排他的論理和回路605はM系列発生器603及びECCチェックバイト発生器503に接続されて、それぞれランダム化された(或いはゼロ値の)信号SR及びフレームデータINFの入力を得る。排他的論理和回路605は、入力される二つの信号INF及びSRに関して、排他的論理和演算を行うので、カウンタ604からハイ信号が入力されるまでは、フレームデータINFはスクランブルされない。これらのスクランブルされていないフレームデータINFはヘッダ及びサブコードSC

であり、排他的論理和回路605から変調器505に出力される。

カウンタ604からハイのレベル信号SSの入力に応答して、M系列発生器603は初期値生成器602から供給される初期値信号SIに基づいて、ランダム化信号SRを生成する。排他的論理和回路605は、フレームデータINF及びランダム化信号SRについて1バイト単位で排他的論理和演算を行いその結果を出力する。この観点から言えば、カウンタ604からのレベル信号SSは、スクランブラ504にスクランブル動作の開始や停止を指示すると共に、データの所望の部分のみのスクランブルを指示するスクランブルスイッチ信号である。

図8に、IDデータリーダ601、初期値生成器602、及び排他的論理和回路605と共に、M系列発生器603の構成の詳細を示す。

I Dデータリーダ 6 0 1 は、それそれがヘッダデータ H D から読み取ったアドレスデータを出力する 2 4 個の出力ポート b 0 ~ b 2 3 を含む。この 2 4 個の出力ポート b 0 ~ b 2 3 を含む。この 2 4 個の出力ポート b 0 ~ b 2 3 は最小有意ビット(L S B)から始まって順番に最大有意・ビット(M S B)に対応するように連続して配列されている。図 8 に於いて、L S B (b 0) 及び M S B (b 2 3) は、I D データリーダ 6 0 1 の右端と左端に位置している。

IDデータリーダ601は、ECCチェックバイト発生器503から入力されるフレームデータINF中から、ヘッダデータHDに特定の連続するセクタ番号として付与されているアドレス情報を読みとる。そして、IDデータリーダ601は、読みとったアドレス情報の下位4ビットから7ビット(b3~b6)の4ビットをアドレス信号SAとして、初期値生成器602に送出する。下位4ビット(b3)は8でインクリメントされるので、アドレス信号SAは8セクタ間隔で更新(1が付与)される。

初期値生成器 6 0 2 は、簡略化の為に図 8 には示していないが、それぞれが 1 ビットを出力する 1 5 個の出力ポートを有している。これらの

15個の出力ポートは、MSBからLSBに向かって連続して配列されている。 初期値生成器 602は、8セクタ毎に更新されるアドレス信号SAの4ビットに 応じて、15ビットの初期値信号SIを生成する。それ故、初期値信号SIの1 5ビットは、アドレス信号SAに応じて、8セクタ毎に変化する。

本実施例に於いて、アドレス信号SA及び初期値信号SIは、8セクタ間隔で変化或いは更新されているが、データSA及びSIの両方を更新する所定のセクタ間隔Yとして、他の適当な数を採用出来る。この所定セクタ間隔Yは、トラックTRの一周に含まれるセクタ数に応じて適宜決めることが出来る。つまり、アドレス信号SAがトラック一周当たり、一回以上更新されるようにである。

M系列発生器 6 0 3 は、好ましくは所定の X 段を有するシフトレジスタとして構成される。本実施例に於ける M 系列発生器 6 0 3 は、フィードバックを備えた 1 5 ビットシフトレジスタを形成する 1 5 個のフリップフロップ F F 0 ~ F F 1 4 から構成されており、前記の所定段数 X は 1 5 である。 9 位から 1 3 位までのフリップフロップ F F 8 ~ F F 1 2 は、簡略化の為に図 8 には示されていない。フリップフロップ F F 0 ~ F F 1 4 のそれぞれは、初期値生成器 6 0 2 の対応する出力ポートに接続されて、 1 ビットのデータ入力を得る。

フリップフロップFFO及びFF14はそれぞれい、初期値生成器602のMSBポート及びLSBポートに接続されている。フリップフロップFFO~FF14は更にカウンタ604に接続されて、スクランブルスィッチング信号SSの入力を得る。フリップフロップFF0からFF14は、前述の入力信号に基づいて演算し、図8に示すように、その演算結果をそれそれ信号Sf0~Sf14として出力する。尚同図に於いては、簡略化の為に、信号SfO、Sf4、及びSf14のみを示している。

M系列発生器603は、それぞれがフリップフロップFF0及びFF4に接続されて演算結果信号Sf0及びSf4の入力を得る二つの入力ポートを有する排他的論理和ゲート701は、フリップフロップFF14の入力ポートに接続されて、二つの入力信号SfO及びSf4との演算結果をそのポートに出力する。

カウンタ604からのスクランブルスィッチング信号SSが入力されると、初期値生成器602の出力である初期値SIの各ビットは、M系列発生器603のフリップフロップFF0~FF14の対応するそれぞれにセットされる。M系列

発生器 6 0 3 は、このようにして、初期値 S I に基づいてランダム 化信号 S R を発生させる。

排他的論理和回路605は、図8に於いて左側から右側に向かって配列されている排他的論理和ゲート605a~605hを含む。但し、同図においては、簡略化の為に一つのゲートで排他的論理和回路605b~605gを代表して表している。排他的論理和ゲート605aは、フリップフロップFF14に接続されて、演算結果信号Sf14を一ビット信号S0として出力する。同様に、排他的論理和回路605b、605c、605d、605e、605f、605g、及び605hは、それぞれ、フリップフロップFF13、FF12、FF11、FF10、FF9、FF8、及びFF7の出力ポートに接続されて、それぞれに信号Sf13、SF9、SF8、及びSF8、及びS7として入力される。

M系列発生器603が発生させたランダム化信号の8ビットS0~S7が、ランダム化信号SRとして排他的論理和回路605に供給される。このランダム化信号SRは、次式にて表現できる。

$$SR = Sk (1)$$

kは、0~7の整数である。

1

605 a~605 hの8個の排他的論理和ゲートは、ECCチェックバイト発生器503の出力ポートに接続されて、それぞれ、ユーザデータUDのD0~D7の1ビットデータが入力される。このようにして、8ビット(1バイト)のランダム化データが得られる。この8ビット(1バイト)データD0~D7は、ECCチェックバイト発生器503から1バイトずつ連続的にユーザデータDkとして、排他的論理和回路605に出力される。この1バイトユーザデータDkは次式にて表現できる。

$$UD (1 \land \land \land \land) = D k \tag{2}$$

kは、数式(1)に示したものと同じである。

第一の排他的論理和ゲート605aは、フリップフロップの出力ビットS0と データビットD0とを1ビット単位で排他的論理和演算を行い、1ビットの演算 結果をスクランブル化ビットD'O.どしで出力する。同様に、残りの排他的論理和グート605b~605hもフリップフロップからの出力ビットS2~S7とECCチェックバイト発生器503から出力ビットD1~D7のそれぞれを1ビット単位で排他的論理和演算を行い、7ビットのスクランブル化ビットD'1~D'7として出力する。結果として、排他的論理和回路605はフリップフロップからの出力ビットSf14(S0)~Sf7(S7)とECCチェックバイト発生器530から出力された8ビットD0~D7の1ビット単位の排他的論理和演算を行い、8ビット(1バイト)の演算結果データD'0~D'7を出力する

更に詳述すれば、排他的論理和回路605は、まずM系列発生器603に設定された初期値SIとECCチェックバイト発生器503から最初に送られてくる1バイトのデータDkとの排他的論理和演算を行う。続いて、M系列発生器603のフリップフロップFF0~FF14で構成されるシフトレジスタを1ビットシフトさせ、ECCチェックバイト発生器503から次に送られてくる2バイト目のデータDkとの排他的

論理和演算を行なう。

以降、同様にしてFFOからFF14で構成されるシフトレジスタを1ビットシフトさせる毎に、ECCチェックバイト発生器503から送られてくる次の1バイトのデータと1ビットシフトされた初期値SIの排他的論理和演算を順次行なう。すなわち、排他的論理和回路605の出力である1バイトのスクランブル化データをD、k は次式で表すことが出来る。

$$D' k = D k (+) S k$$
 (3)

kは、数式(1)及び(2)に示したものと同じ、(+)は排他的論理和演算の示す。図8に示す排他的論理和回路605は、シフトレジスタ系列発生器の一種であり、最大長周期系列発生器とも呼ばれ、この発生器より発生される系列を最大長周期系列、あるいはM系列と呼ぶ。M系列発生器603の生成多項式は15次であり、次式で表すことが出来る。

$$H(X) = X^{15} + X^{4} + 1$$
 (4)

M系列発生器 6 0 3 はシフトレジスタの段数が 1 5 であるから、その周期は L p = 2 ¹⁵ - 1 、つまり 3 2 7 6 ビットとなる。上述のように、フリップフロップ F F 0 ~ F F 1 4 で構成されるシフトレジスタが 1 ビットシフトされる毎に、ランダム化データ S K と、 1 バイトのスクランブルされるフレームデータ D k との排他的論理和が得られる。それ故に、周期 L p = 3 2 7 6 7 ビットのM系列発生器を用いることによって 3 2 7 6 7 バイトまで完全にランダム化することができる。

初期値 S I の設定について以下に説明する。例えば、記録担体 R C 'の直径を 1 2 0 m m 、データトラック領域を半径 2 5 m m から 5 8 m m 、線密度を 0 . 3 μ m / ビット、1 セクタを 2 5 3 0 バイトとすると、1 セクタの長さは約 6 . 1 m m となる。この場合、記録担体 R C 'の一周当り、内周では約 2 6 セクタ、外 周では約 6 0 セクタとなる。

図8に示すように、初期値生成器602はIDデータリーダ601で

読み取ったアドレスの下位4ビットから7ビットの4ビット(b3~b6)の値に応じて初期値SIを変化させる。それ故に、8セクタ毎に初期値SIが変わることとなる。この観点より、記録トラックTRは、それぞれ8セクタを有する複数の領域に分割できる。なお、図1に示すように、同一の領域内のセクタには同一の初期値SIが適用されている。

スクランブル化データ生成に適した初期値SIの一例を、以下の表1に示す。

表 1

ID.D	I.V.G	ID.D	I.V.D
b3 - b6	SI	b3 - b6	SI
0 h	0001h	8 h	0010h
1 h	5500h	9 h	5000h
2 h	0 0 0 2 h	0 A h	0020h
3 h	2 A 0 0 h	0 B h	2001h
4 h	0004h	0 C h	0040h
5 h	5400h	0 D h	4002h
6 h	0008h	0 E h	0080h
7 h	2800h	0 F h	0 0 0 5 h

表1は左右に2分割される。左半分は更に、ID. D及びI. V. Gの2列から成る。ID. DはIDデータリーダ 6 0 1を、そしてI. V. Gは初期値生成器 6 0 2を意味している。ID. Dの下に示した b 3 - b 6 は、IDデータリーダ 6 0 1 のポート b 3 ~ b 6 から出力される値 S A の 1 6 進法表現を示している。I. V. Gの下の S I は、同表の左隣列に示されている I Dデータリーダ 6 0 1 の出力に相当する初期値 S I (16進法表現)を示している。尚、右半分についても同様である。

本例に於いて、初期値SI列の各セル中の初期値は、各M系列発生の周期に1を足した値を16等分して求めた数のグループのそれぞれの最初の数に設定される。つまり、初期値0001hと5500hの間隔は

2048 (32768/16) ビットである。言い換えれば、2048バイトのデータがスクランブルされる。

初期値SIは、IDデータリーダ601で読み取ったアドレスの下位4ビットから7ビットの4ビット(b3~b6)の値に応じて初期値SIを変化させるので、初期値SIは8セクタ間隔で(8セクタ毎に)変化する。それ故に、同じデータを記録したとしても、128セクタ(=16×8)に渡ってランダム化される。更に、本例に於ける記録担体RC,の一周当りのセクタ数は最大で60セクタであるので、近接或いは隣接トラックに記録されている信号間の相関は極めて低いものとなる。

但し、上述したように、本例ではヘッダHD及びサブコードSCのデータにはスクランブルをかけない、それ故に、ヘッダHD、サブコードSCの32バイト或いはリシンクパターンデータRS及びポストアンブルデータPAが隣接トラックと半径方向に隣り合って記録されて相関が強くなる可能性がある。しかしながら、これらのデータHD及びSCの記録領域の長さは100μm以下であり問題とならない。更に言うと、ヘッダHDにスクランブルをかけないのは、再生するときに初期値が判らないとスクランブルを解くことができないからである。

サブコードデータSCには、例えば画像、音声等の情報の種類等が記録されて おり、スクランブルを解くことなくこれらの情報を読み取るためにスクランブル をかけていない。従って、サブコードデータSCにスクランブルをかけることは可能であり、この場合サブコードデータSCの読み取りに多少の時間がかかる以外に何等問題は発生しない。

表 1 を参照して説明したように、1 つの初期値STで2048バイトのデータがスクランブル出来る。本例では、スクランブルされるデータは、セクタ当たり2368バイト(2400-32)であるので、320(2368-2048)バイトのデータINFが、M系列発生器603から出力された同じランダム化信号SRでスクランブルされる。

しかしながら、320バイト長のデータは、768μm (320バイト×8×0.3)に相当するので、実際上問題は無い。更に、記録担体RC'は、最内周部でも、8セクタの倍以上の約26セクタを有している。それ故、第一領域R1に対する初期値SIとして0001hがセットされれば、第二領域R2及び第三領域R3には、5500h及び0002hがそれぞれセットされる。このことより、これらの3つの領域R1、R2、及びR3は、記録担体RC'の半径方向で決して隣り合って配置されることは無く、近接トラックからの再生信号間での相関の可能性が無いことが明白である。

図19に、図8のIDデータリーダ601と非常に類似した、その一変形例であるIDデータリーダ601Rがクランブラ504に組み込まているのが示されている。IDデータリーダ601Rは、読みとったアドレス信号SAのの下位4ビットから7ビットでは無く、下位5ビットから8ビットの4ビット(b4~b7)を初期値生成器602に送出する。下位5ビット(b4)は16でインクリメントされて、16セクタ間隔で変化(1増加)する。それ故に、初期値SIの15ビットは、アドレス信号SAに応じて、16セクタ毎に変化する。

初期値SIは、表1を用いて説明したのと同様に、ポートb4~b7からの出力に設定することが出来る。しかしながら、初期値SIは16セクタ間隔で(16セクタ毎に)に変化するので、記録データは256セクタ(16×16)に渡ってランダム化される。アドレス信号SA(b4~b7)でデータをスクランブルする方法については、図20を参照して後程説明する。

図9に、M系列発生器603により発生されたランダム化信号SRでスクランブルされた信号相関のシミュレーション結果を示す。尚、初期値生成器602にアドレス信号SAを供給するのに図19のIDデータリーダ601Rが用いられている。図9に於いて、実線Cr15及び破

線Cr18は、それぞれ15段シフトレジスタ及び18段シフトレジスタにより ランダム化された信号に付いてシミュレートされた相関を示している。

これらは、以下の条件で実施されたコンピュータシミュレーションにより得られた結果である。つまり、ユーザデータUDfはゼロ値を記録し、初期値SIは、16セクタ間隔で更新されるように設定する。

詳述すれば、光ビームで走査中の目標トラックとその隣接トラック間で、M系列発生器によるランダム化信号が△nバイトだけシフトされるとすると、この△nは1から2¹⁵-2まで徐々に変化すると想定される。このような状況で、走査されているトラックの1バイトと隣接トラックの1バイトが比較される。両データが同じ場合には1が、異なる場合にはゼロが、比較結果としてセットされる。

上述の比較結果に基づいて、隣接トラックの信号間に於ける相関は、次式で表すことができる。

$$S(t) = \sum_{i=1}^{M} \sum_{j=1}^{M} \delta(M(i-1)+j)\tau \cdot if(R(j)=R(i+j))$$
 (5)

 $M=2^{15}-2$; δ はデルタファンクション ; τ は転送レートが 1 . 8 メガバイト/秒時の 1 バイト長期間を表す。

図9において、s(t)値は、2kHzのカットオフ周波数のローパスフィルタを経て、そのピーク値で保持される。これらの各保持ピーク値を縦軸に、その保持ピーク値に対応する時間を横軸にとって示している。尚、ピーク保持時間定数は、0.55秒に設定されている。

15段シフトレジスタを有するM系列発生器の周期は2¹⁸-1ビットであり、 18段シフトレジスタを有するM系列発生器の周期は、2¹⁸-1ビットである。 それ故に、16セクタ毎に(16セクタ間隔で)初期値SIが更新されると、M 系列発生器の15段の殆ど全期間が利用される。しかしながら、18段のM系列 発生器 6 0 3 於いては、その周期の *

1/8だけが利用される。

図9に典型的に示されるように、15段レジスタの実線Cr15は全周期域において、18段レジスタの破線Cr18に比べて、非常に小さい。尚、Cr15及びCr18はそれぞれ15段シフトレジスタ及び18段シフトレジスタに対応している。このように、本発明によれば、シフトレジスタの数がより少ないM系列発生器の方が、シフトレジスタの数が多いM系列発生器よりも効果的に信号相関を低減でき、さらにより小さく作成出来る。このような信号相関低減効果は、IDデータリーダ601Rを8セクタ毎にランダム化信号SR(アドレスSA)更新するIDデータリーダ601と交換しても得られる。

図10に、図1の記録担体RCからランダム化データを再生する再生装置を示す。再生装置RAは、図8に示す記録装置WAに用いられているのと実質的に同じディスクモータ102、ディスクモータコントローラ114、送りモータ116、及び送りモータコントローラ118を含む。

再生装置RAは更に、図5に示す光学ヘッド104及びメインコントローラ130のそれぞれと非常に類似した構成及び機能を有する光学ヘッド104R及びメインコントローラ130Rを含む。光源104aの動作を制御するために、光源ドライバ146がメインコントローラ130Rに接続されている。

プリアンプ142が光検出器104eに接続されて、パイロット信号Sc1、Sc2、Sc3、及びSc4の入力を得る。プリアンプ142はこれらのパイロット信号を増幅して、フォーカスエラー信号FE、トラッキングエラー信号TE、及び再生情報信号を生成する。

コントローラ144はプリアンプ142に接続されて、フォーカスエラー信号 FE及びトラッキングエラー信号TEの入力を得て、フォーカス制御信号FRD 、トラッキング制御信号TRD、及び光学ヘッド駆動

信号TRSDを生成する。

送りモータコントローラ118は更にコントローラ144に接続されて、光学

ヘッド駆動信号TRSDの入力を得る。この信号TRSDに基づいて、送りモータコントローラ118は送りモータ116を駆動して光学ヘッド104Rを正しく位置決めする。

光学ヘッド104Rは更にコントローラ144に接続されて、フォーカス制御信号FRD及びトラッキング制御信号TRDの入力を得る。これらの信号FOD及びTRDに基づいて、光学ヘッド104Rは光ビームLsを記録担体RCの目標地点に導き、そして焦点を結ばせるように制御する。

復調器1101はプリアンプ142に接続されて、再生情報信号の入力を得て、その再生情報信号を復調して記録担体RC、上に記録されているスクランブル化信号FRfを抽出する。ディスクモータコントローラ114は更に復調器1101に接続されて、再生信号の入力を得て、その再生信号間の間隔を測定することによってディスクモータ制御信号を生成する。

デフォーマッタ1100は復調器1101に接続された、復調されたデータFRfの入力を得て、再生されたオリジナルユーザデータUDにエラー訂正及びデスクランブル処理を施す。出力ポート1405はデフォーマッタ1100に接続されて、そのポートを経由して再生されたオリジナルユーザデータUDをパーソナルコンピュータのような外部機器に供給する。

図 1 1 に、図 1 0 のデフォーマッタ 1 1 0 0 を示す。デフォーマッタ 1 1 0 0 は、デスクランブラ 1 1 0 2 及び E C C デコーダ 1 1 0 3 を含む。デスクランブラ 1 1 0 2 は復調器 1 1 0 1 (図 1 0)に接続されて復調されたデータ F R f の入力を得る。尚、同復調データ F R f はスクランブルされていないヘッダ H D 及びサブコード S C の 3 2 バイトとス

クランブルされているユーザデータUD及びチェックバイトCBから成る。

デスクランブラ1102は、スクランブルされていないヘッダデータHDから アドレスを読み取り、スクランブルされているユーザデータUD及びチェックバ イトCBをデスクランブルする。このようにして、ヘッダデータHD及びサブコ ードSCと共に、スクランブルを解かれたデータUD及びCBが得られる。

ECCデコーダ1103はデスクランブラ1102に接続されて、チェックバ

イトCBと共にスクランブルされていないデータの入力を得て、そのデータのエラー訂正処理を行う。このように、オリジナルのフレームデータINFが誤り無く再生される。

図12に、デスクランブラ1102を示す。デスクランブラ1102は、図7のスクランブラ504と実質的に同一の構成を有しており、IDデータリーダ1201、初期値生成器1202、M系列発生器1203、カウンタ1204、及び排他的論理和回路1205を含む。

稼働時には、IDデータリーダ1201が復調器1101より入力された復調信号からアドレス番号を読み取り、アドレスSAを初期値生成器1202に出力する。初期値生成器1202は、アドレス番号SAに基づいて初期値SIを生成して、その値をM系列発生器1203にプリセットする。

カウンタ1204は復調器1101より入力されたデータの長さをカウントして、二値信号をデスクランブリングスイッチング信号SDとしてM系列発生器1203に出力する。デスクランブリングスイッチング信号SDは、スクランブリングスイッチング信号と実質的に同じである。それ故、デスクランブリングスイッチング信号SDは、セクタの最初の32バイトが入力された時点でハイになり、次の2368(2400-32)バイトのフレームデータINFをカウントした時点でローになる。

M系列発生器 1 2 0 3 が、この終了信号が入力されるまでゼロを出力する。それ故、デスクランブル開始信号 S d が入力されるまでは、復調器 1 1 0 1 から出力されたデータはデスランブルされずに、排他的論理和回路 1 2 0 5 からもデスランブルされること無く出力される。

カウンタ1204からのデスクランブル開始信号Sdの入力に応答して、M系列発生器1203は初期値生成器1202より供給された初期値SIに基づいてランダム化信号を生成する。排他的論理和回路1205は更に、復調器1101及びM系列発生器1203からの入力信号の排他的論理和演算を1バイト単位で行い、演算結果を出力する。

図13に、デスランブル処理に用いられるM系列発生器1203を示す。M系

列発生器 1 2 0 3 は、図 8 に示すM 系列発生器 6 0 3 と本質的に同一のものである。つまり、排他的論理和ゲート 1 3 0 1 によって、フリップフロップ F F 0 及び F F 4 の出力の排他的論理和が得られて、フリップフロップ F F 1 4 に結果が出力される。言うまでもなく、I D データリーダ 1 2 0 1 、初期値生成器 1 2 0 2、排他的論理和回路 1 2 0 5 も、図 8 に示された相当するのものと本質的に同一である。尚、排他的論理和回路 1 2 0 5 は 8 個の排他的論理和ゲート 1 2 0 5 a ~ 1 2 0 5 h を含む。

IDデータリーダ1201はアドレスを読み取り、下位4ビットから下位7ビット(b3~b6)の値を初期値生成器1202に送出する。初期値生成器1202はこの送出値に応じた初期値SIを生成する。カウンタ1204から終了信号SDが入力されると、初期値生成器1202より入力される初期値SIが、M系列発生器1203を形成するフリップフロップFF0~FF14のそれぞれにセットされる。

このように、本実施例では、復調及びデスランブルによってアドレスを読み取ることができる。それ故、記録担体RCからデータを読み取る時に、図7を参照して述べたスクランブル方法によって、高速サーチが

可能である。しかしながら、アドレスが読み取れない場合には、初期値SIが分からないので、デスクランブルできない。それ故、アドレスの読み取りに高い信頼性が要求される。しかしながら、信号脱落や、記録担体RCのゴミ、ほこり等により、全てのアドレスを読み取ることは困難である。

信号脱落、ゴミ、ほこり等があってもアドレスの読み取りが正確にでき、スクランブル及びデスクランブルを確実に行える記録装置及び再生装置について以下に述べる。

図20に、図13のIDデータリーダ1201と非常に類似した、一変形例であるIDデータリーダ1201Rを示す。このIDデータリーダ1201Rは、図19のIDデータリーダ601Rに組み込まれたスクランブラ504によってデスランブルされるデータ用のデスクランブラ1102に組み込まれている。以降、デスクランブリング処理は、図12及び図13を参照して説明したデスクラ

ンブラ1102による処理と同じである。。、

第二実施例

図14及び図15を参照して、本実施例に基づく記録装置及び再生装置について説明する。尚、本実施例の記録装置WA及び再生装置RAは、データフォーマッタ及びデータデフォーマッタを除いて、第一実施例と同じである。それ故、データフォーマッタ及びデータデフォーマッタに関してのみ詳しく説明する。

図14に、図6のデータフォーマッタ122の一変形例を示す。本実施例にかかる、変形例のデータフォーマッタ122Rは、データフォーマッタ122の構成要素のうちECCチェックバイト発生器503とスクランブラ504を互いに置き換えた構成である。つまり、このデータフォーマッタ122Rでは、ECCチェックバイト発生器503はスクランブラ504に接続されいる。そして、このスクランブラ504は、

図9に示すように、ヘッダデータ発生器502に接続されている。

構成要素 5 0 3 及び 5 0 4 を相互に交換した結果、このデータフォーマッタ 1 2 2 R の処理は、データフォーマッタ 1 2 2 の処理と以下の点で異なる。すなわち、ヘッダデータ発生器 5 0 2 を経た 2 0 4 8 バイトのユーザデータ U D のみが、図 7 及び図 8 を参照して説明したのと実質的に同一の方法でスクランブラ 5 0 4 によってスクランブルされる。尚、本実施例では、スクランブルスィッチング信号 S S はフレームデータ I N F の最初の 3 2 バイトがカウントされた時にハイになり、そして次の 2 0 4 8 (2 0 8 0 - 3 2) バイトのフレームデータ I N F がカウントされた時点でローになる。

スクランブラ 5 0 4 によるスクランブル処理後、ECCチェックバイト発生器 5 0 3 は 3 2 0 バイトのチェックバイトCBを生成して、スクランブルされた 2 0 4 8 バイトのユーザデータに付与する。この 2 0 4 8 バイトのスクランブル化データと 3 2 0 バイトの非スルランブル化チェックバイトCBは、変調器 5 0 5 及びフレームフォーマッタ 5 0 6 によってデータフォーマッタ 1 2 2 による処理と実質的に同じ方法で処理される。しかしながら、スクランブリングスイッチング信号 S D は、セクタの最初の 3 2 バイトが入力され終わった時点でハイになり

、そして次の2048 (2400-320-32) バイトのフレームデータIN Fがカウントされた時点でローになる。

図15に、図11のデフォーマッタ1100の一変形例を示す。この変形例であるデフォーマッタ1100Rは、デスクランプラ1102及びECCデコーダ1103が相互に交換されていることを除いて、デフォーマッタ1100と同じ構成要素を有する。つまり、このデフォーマッタ1100Rでは、デスクランプラ1102は、図10に示すように復調器1101に接続されているECCデコーダ1103に接続される。

ECCデコーダ1103は、スクランブルされていない32バイトの

ヘッダデータHD及びサブコードSC、スクランブルされたユーザデータUD、 そしてスクランブルされていない320バイトのチェックバイトCBから構成されている変調されたデータの入力を得る。ECCデコーダ1103は、320バイトの非スクランブル化チェックバイトCBを用いて、プリアンプ142から入力された再生データにエラー訂正処理を施す。このようにして、2048バイトのエラー訂正されたデータHD、SC、及びUDが得られる。

デスクランブラ1102は、エラー訂正されたスクランブルされていないヘッダデータHDからアドレスを読み取り、エラー訂正されたスクランブされているユーザデータUDのみをデスランブルする。このように、デスクランブルされたデータUDと、デスランブルされていないヘッダデータHD、サブコードSC、及びチェックバイトCBが得られる。

つまり、読み出された信号は先ず復調されて、エラー訂正符号がデコードされ 、そしてアドレスが読み取られる。

上述のように、アドレスはECCデコードの後に読み取られるので、信号脱落等の要因に起因するエラーが訂正される。結果として、上述の第一実施例に比較して、アドレス読み取りに若干時間を要するものの、優れた信頼性でアドレスが読み取れて、そして高信頼性をもって信号のデスランブルが出来る。エラー訂正符号CBはデータがスクランブルされた後に付与され、データブロックはランダム化されるので、ECCチェックバイトCBはスクランブルされないがランダム

化される。それ故に、M系列周期長は短かく出来て、更にM系列発生器を簡略化出来る。

上述の実施例に於いて、M系列発生器に対する初期値SIは8セクタ毎に更新、つまり変化させられているが、16セクタ毎に初期値信号SIを更新させても良いことは言うまでもない。更に詳述すれば、初期値信号SIが最内周記録トラックで1回以上更新されるような、所定のセクタ数に相当する適当な値に更新間隔を設定するのである。

以上、記録担体を等周速度で回転させてデータを記録する定線速度(CLV) 記録に関して、本発明の実施例について説明してきたが、本発明はそれに限定されるものでは無い。

本発明は、例えば、記録担体を等角速度で回転させて記録する定各速度(CAV)記録、及び記録担体を複数のゾーンに区切り、各ゾーンに於ける内周トラックでのデータ密度がほぼ一定になるようにデータを記録するゾーンCAV(ZCAV)にも適用できる。一般に、記録担体の一周を1トラックとして半径方向に順次番号を付与するトラック番号と周方向に順次番号を付与するセクタ番号に分けてアドレスを記録する。この場合、セクタが半径方向に並ぶので、トラック番号に対応して初期値を決定される。この初期値を基にラングム化信号を発生してスクランブルすれば、隣接トラックとの信号相関を低減することができる。

また、トラック番号の最下位桁のビットとセクタ番号とに対応して初期値を決定してスクランブルしてもよい。さらに、トラック番号の最下位桁のビットとセクタ番号の最下位桁がビットに対応して初期値を決定するようにすれば、M系列の周期を短くすることができ、M系列発生器を簡単にすることができる。すなわち、トラック番号の最下位桁が零の場合には、セクタ番号が偶数のセクタには第1の初期値、奇数のセクタには第2の初期値を選択し、トラック番号の最下位桁が1の場合には、番号が偶数のセクタには第2の初期値、奇数のセクタには第1の初期値を選択するようにする。このようにすれば、セクタが半径方向に並んでいるので隣接トラックのセクタとはM系列の初期値が異なることになり、セクタ単位で相関が低減される。従って、初期値を2つとすることができ、M系列の周期

を短くすることができる。

また、M系列発生器の初期値を8セクタ毎に変える必要はなく、1セクタ毎に変えるように構成してもよいし、16セクタ毎に変えるようにしてもよい。すなわち、最内周のトラックの一周当りのセクタ数以下の

単位で初期値を変えるようにすれば、同じデータを記録したとしても隣接トラック間の相関性は低減される。

また、M系列発生器に限定されるものでなく、要は初期値に対して所定の規則でランダム化信号を発生するものであればよい。

本発明は極めて簡単な構成の最大長周期系列発生器を用い、セクタの位置を識別する識別情報の値に基づいてランダム化して情報が記録されている。それ故、隣接トラックとの信号相関が低下され、従ってクロストークの影響がランダム化されるのでトラックずれ信号に与える影響が低減され、トラッキング制御が極めて安定に行える。また、隣接トラックからのクロストークがランダム化されるので再生信号のジッターもランダム化され、信号再生時に用いるPLLのジッターも低減される。

さらに、複数のセクタに渡って同一のデータを記録する場合に、データがラン ダム化されるので、再生信号の低周波数成分が低減され、信号再生時のデジタル 処理も容易となる。

以上、本発明について述べたが、同一の内容を種々に異なるように表現することが可能である。種々の表現は、本発明の思想及びその範囲から逸脱するものではなく、そのような全ての修正が以下に示す請求項の範囲に含まれることは、当業者であれば明白である。

添付の図面を参照して、好ましい実施例に関して本発明について十分説明したが、本発明に関して尚各種の変形例或いは改善があり得ることは当業者に取って明白である。そのような変形例や改善が、添付の請求項により規定される本発明の範囲内に含まれるものである。

産業上の利用可能性

本発明は、隣接トラックからの再生信号間の相関の発生が不可避であるような

、非常な高密情報を記録する光学式記録担体に適用出来る。本発明に於いては、 隣接トラックのそれぞれは、異なるパターンでランダ

ム化された情報が記録されているので、隣接トラックにゼロのように同一の情報が記録される場合でも、それらのトラックに於ける信号間の相関が生じない。 このように、各種の情報を非常な高密度で光学式記録担体に記録できる。そして 記録された情報を、クロストークやジッターのような相関を生じることなく再生 できる。

【図1】

Fig. 1

【図2】

【図3】

[図4]

【図5】

【図6】

図6

 \bigcirc

【図7】

図7

[図8]

【図9】

Fig. 9 . .

【図10】

【図11】

図11

【図12】

図12

 \bigcap

【図14】

図14

【図15】

図15

【図16】

【図17】

Fig.17

【図18】

£. 1

Fig. 18A

Fig.18B

Fig.18C

【図19】

【国際調査報告】

INTERNATIONAL SEARCH REPORT

nal Application No

PCT/JP 96/00877 A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 G11B7/013 //G11B20/22,G11B7/09 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 6 G11B Documentation scarched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. P,X EP,A,0 686 968 (MATSUSHITA ELECTRIC IND CO 1-5, 7-10, LTD) 13 December 1995 12-17. 19-21. 23-26,28 see the whole document P,A 6,11,18, 22,27 -1--Further documents are listed in the continuation of box C. Patent family members are fisted in annex. "Special categories of cited documents: "I" later document published after the international filing date or priority date and not in conflict with the application but ched to understand the principle or theory underlying the invalidation. "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) 'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-ments, such combination being obvious to a person skilled "O" document referring to an oral disclosure, use, exhibition or "P" document published prior to the international filing date but later than the priority date claimed in the art. "A" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 10 July 1996 1 2. 08. 96 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. Still Patentiaan 2 NL - 2280 HV Rijswijk TE, (+31-70) 340-200, Tx. 31 651 epo nl, Fax: (+31-70) 340-2016 Annibal, P

Form PCT/ISA/218 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Inter nat Application No
PCT/JP 96/00877

		PCT/JP 96/00877					
C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT .,							
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.					
P,X	EP,A,0 655 739 (VICTOR COMPANY OF JAPAN) 31 May 1995 see the whole document	1-3,7, 12-14, 19,23, 24,28 4-6, 8-11, 15-18, 20-22, 25-27					
A	EP,A,0 580 876 (SONY CORP) 2 February 1994 see the whole document						

Form PCT/ISA/218 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT information on patent family members

Inte: mal Application No PCT/JP 96/00877

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP-A-0686968	13-12-95	JP-A-	8055343	27-02-96
EP-A-0655739	31-05-95	JP-A-	7161139	23-06-95
EP-A-0580876	02-02-94	JP-A- WO-A- JP-A- US-A-	6044572 9317417 5298706 5513161	18-02-94 02-09-93 12-11-93 30-04-96

Form PCT/ISA/210 (patent family annex) (July 1992)

フロントページの続き

(51) Int. Cl. 6

識別記号

FΙ

G 1 1 B 20/18

572

G 1 1 B 20/18

572C

572F

【要約の続き】

の影響が低減されると共に、非常に安定したトラッキング制御が可能になる。