ODE 复习

刘晓龙

问题 1 (张祥 P20 页例). 设 f(y) 在 $|y-a| \le \sigma$, 且 y=a 为 f(y) 唯一零点, 则微 分方程 y'(x)=f(y) 从 y=a 上每一点出发的解都唯一当且仅当 $\left|\int_a^{a\pm\sigma} \frac{dy}{f(y)}\right|=\infty$.

解答. 考虑必要性, 取 (x_0, y_0) 是 $0 < |y - a| < \sigma$ 中的任一点, 不妨设 $y_0 > a$, 则由 Peano 定理知过 (x_0, y_0) 必有一个解 $\phi(x)$, 由于 y = a 为 f(y) 唯一零点, 则不妨设 $y \in (a, a + \sigma)$ 上有 f(y) > 0, 则 $\phi(x)$ 随着 x 从 x_0 减小而减小. 但是过 y = a 上每一点出发的解都唯一, 则 x 减小的过程中 $\phi(x) > a$, 那设 $b = \lim_{x \to -\infty} \phi(x) \ge a$, 则不难得知 $\int_b^{y_0} \frac{dy}{f(y)} = \int_{-\infty}^{x_0} \frac{y'(x)}{f(y)} dx = \int_{-\infty}^{x_0} dx = \infty$, 则 $\int_a^{a+\sigma} \frac{dy}{f(y)} = \infty$, 则得到结论.

考虑充分性,假设方程过 (x_0, a) 有另一个解 $\psi(x)$,则有两个解 $y = a, y = \psi(x)$,那么存在 $x_1 \in J$ 使得 $y_1 = \psi(x_1) \in (a - \sigma) \cup (a + \sigma)$,则有 $\left| \int_{a-\sigma}^{y_1} \frac{dy}{f(y)} \right| < \infty$ 或者 $\left| \int_{y_1}^{a+\sigma} \frac{dy}{f(y)} \right| < \infty$,则有 $\infty = \left| \int_a^{y_1} \frac{dy}{f(y)} \right| = \left| \int_{x_0}^{x_1} dx \right| < \infty$,矛盾.

定理 1 (一阶线性微分方程解). 方程 $y' + p(x,\lambda)y = q(x,\lambda)$ 的通解为

$$y(x,\lambda,c) = e^{-\int p(x,\lambda)dx} \left(C + \int q(x,\lambda)e^{\int p(x,\lambda)dx} dx \right).$$

方程 y' + p(x)y = q(x) 的通解的定积分形式为

$$y(x) = Ce^{-\int_{x_0}^x p(t)dt} + \int_{x_0}^x q(s)e^{-\int_s^x p(t)dt}ds.$$

问题 2 (丁同仁习题 2.3.3). 设 $y = \varphi(x)$ 满足微分不等式 $y' + a(x)y \le 0, (x \ge 0)$, 求证 $\varphi(x) \le \varphi(0)e^{-\int_0^x a(s)ds}$.

解答. 考虑不等式 $\varphi'(x) + a(x)\varphi(x) \leq 0$, 得到 $\varphi'(x)e^{\int_0^x a(s)ds} + a(x)\varphi(x)e^{\int_0^x a(s)ds} \leq 0$, 两边对 0 到 x 积分即可.

问题 **3** (丁同仁习题 2.3.5). 考虑方程 y' + p(x)y = q(x), 其中 p,q 以 $\omega > 0$ 为周期的连续函数. 证明:

- (1) 若 $q(x) \equiv 0$,则方程的非零解以 ω 为周期当且仅当 $\overline{p} = \frac{1}{\omega} \int_0^\omega p(x) dx = 0$;
- (2) 若 q(x) 不恒为零,则方程有唯一的 ω 周期解当且仅当 $\overline{p} \neq 0$.
- 解答. (1) 解为 $\phi(x) = Ce^{-\int_{x_0}^x p(t)dt}$, 考虑 $\phi(x+\omega) = \phi(x)$ 即可;
- (2) 考虑通解 $\phi(x) = Ce^{-\int_{x_0}^x p(t)dt} + \int_{x_0}^x q(s)e^{-\int_s^x p(t)dt}ds$, 我们只需要选取 c 使得 $\phi(x+\omega) = \phi(x)$. 根据下面的引理, 我们只需考虑 $\phi(\omega) = \phi(0)$ 即可解出这样唯一的 c, 然后不难看出 c 存在当且仅当 $\bar{p} \neq 0$.

问题 4 (周期解的一个引理). 考虑方程 y'+p(x)y=q(x), 其中 p,q 以 $\omega>0$ 为周期的连续函数, 则解 $\phi(x)$ 以 ω 为周期当且仅当存在某个点 a 使得 $\phi(a)=\phi(a+\omega)$.

解答. 只需考虑存在某个点 a 使得 $\phi(a) = \phi(a+\omega)$ 的情况. 由于 p,q 以 $\omega>0$ 为 周期的连续函数,则显然 $\phi(x+\omega)$ 也是一个解,那么 $u(x) = \phi(x+\omega) - \phi(x)$ 为 y'+p(x)y=0 满足初值条件 y(a)=0 的解. 不难得知此方程的解要么恒为零,要么恒不为零,则 u(x)=0.

问题 5 (丁同仁习题 2.3.6). 连续函数 f(x) 在 \mathbb{R} 上有界, 证明方程 y' + y = f(x) 在 \mathbb{R} 上有唯一有界解.

解答. 解为 $\phi = Ce^{-x} + \int_0^x f(s)e^{s-x}ds$, 由于 f 有界, 则 ϕ 有界当且仅当 $C = \int_{-\infty}^0 f(s)e^sds$.

问题 6 (丁同仁习题 2.3.7).考虑 $H^0=\{f(x)\in C^0: f(x+2\pi)=f(x), \forall x\}$,则其构成一个 \mathbb{R} -线性空间,定义范数 $\|f\|=\max_{0\leq x\leq 2\pi}|f(x)|$,则

- (1) 证明 H⁰ 是一个 Banach 空间;
- (2) 考虑线性算子 $\varphi(f) = \frac{1}{e^{2a\pi-1}} \int_x^{x+2\pi} e^{-a(x-s)} f(s) ds, a > 0$, 证明对任何 $f \in H^0$, 存在常数 k > 0 使得 $\|\varphi(f)\| \le k\|f\|$.

解答. (1) 取 Cauchy 列 $\{f_n(x)\}$ 满足 $\forall \varepsilon > 0, \exists N > 0$ 使得当 m, n > N 时有 $\|f_m(x) - f_n(x)\| = \max_{0 \le x \le 2\pi} |f_m(x) - f_n(x)| < \varepsilon$, 那么有 $|f_m(x) - f_n(x)| < \varepsilon$, 从这里不难得到 $f_n(x)$ 一致收敛于某个 f(x), 则不难得知 H^0 是一个 Banach 空间.

(2) 不难得知

$$\begin{split} &\|\varphi(f)\| = \frac{1}{e^{2a\pi} - 1} \max_{0 \le x \le 2\pi} \left| \int_x^{x + 2\pi} e^{-a(x - s)} f(s) ds \right| \\ &\le \frac{\|f\|}{e^{2a\pi} - 1} \max_{0 \le x \le 2\pi} \left| \int_x^{x + 2\pi} e^{-a(x - s)} ds \right| = \frac{\|f\|}{e^{2a\pi} - 1} \max_{0 \le x \le 2\pi} \left| \frac{e^{2ax}}{a} (e^{2\pi a} - 1) \right| \\ &= \frac{e^{4\pi a}}{a} \|f\| = k \|f\|, \end{split}$$

从而得到结论.

定理 2 (积分因子). 假设 μ 是 P(x,y)dx+Q(x,y)dy=0 的积分因子使得 $\mu P(x,y)dx+\mu Q(x,y)dy=d\Phi(x,y)$, 则 $\mu(x,y)g(\Phi(x,y))$ 也是其一个积分因子, 其中 g 为任一可 微非零函数. 反之, 对该方程的另一积分因子 μ' , 都有 $\mu'=\mu g(\Phi)$ 的形式.

问题 7 (丁同仁习题 2.5.5). 设函数 $P(x,y), Q(x,y), \mu_1(x,y), \mu_2(x,y)$ 是连续可微的,假设 μ_1, μ_2 是 P(x,y)dx + Q(x,y)dy = 0 的积分因子,且 $\frac{\mu_1}{\mu_2}$ 不恒为常数. 证明 $\frac{\mu_1}{\mu_2} = C$ 为方程的一个通积分.

解答. 那么不难得知 $\mu_2 = \mu_1 g(\Phi) = \mu_1 \Phi$ 是积分因子, 其中 $g = \mathrm{id}$, 且 Φ 为通积分, 则证明完毕.

定义 1 (Osgood). 设函数 f(x,y) 在区域 G 内连续,且满足 $|f(x,y_1) - f(x,y_2)| \le F(|y_1 - y_2|)$,其中 F(r) > 0 是 r > 0 的连续函数,而且瑕积分 $\int_0^{r_1} \frac{dr}{F(r)} = \infty$,其中 r_1 为常数. 则称 f(x,y) 在 G 内对 g 满足 G Osgood 条件.

问题 8 (丁同仁定理 3.2). 设函数 f(x,y) 在区域 G 内对 y 满足 Osgood 条件, 则方程 y'=f(x,y) 在 G 内经过每一点的解都是唯一的.

解答. 假设不然, 则经过 (x_0, y_0) 有两个解 $y_1(x), y_2(x)$, 不妨设存在 $x_1 > x_0$ 使得 $y_1(x_1) > y_2(x_1)$. 记 $\overline{x} = \sup\{x < x_1 : y_1(x) = y_2(x)\}$, 则 $x_0 \leq \overline{x} < x_1$. 则对于 $\overline{x} < x \leq x_1$ 有 $r(x) = y_1(x) - y_2(x) > 0$, 则

$$r'(x) = y_1'(x) - y_2'(x) = f(x, y_1(x)) - f(x, y_2(x)) \le F(|y_1 - y_2|),$$

则
$$\infty = \int_0^{r_1} \frac{dr}{F(r(x))} = \int_{\overline{x}}^{x_1} \frac{r'(x)}{F(r(x))} dx \le \int_{\overline{x}}^{x_1} dx = x_1 - \overline{x} < \infty,$$
矛盾.

问题 9 (丁同仁习题 3.2.1 和 3.2.2). (1) 用 Ascoli 引理证明: 若某一函数列在有限区间 I 上一致有界且等度连续,则存在子列一致收敛;

(2) 举例说明当 I 为无限区间的时候上述结论不成立.

解答. (1) 不妨设 I = [a,b),则由 Ascoli 引理知对任意的函数列中的函数 f(x) 都可以延拓到 [a,b],也就只需证明 $\lim_{x \to b^-} f(x)$ 存在. 取数列 $\{x_n\} \subset I$ 且满足 $\lim_{n \to \infty} x_n = b$,则由等度连续知 $\forall \varepsilon > 0$,存在 $\delta > 0$ 使得当 $|c-d| < \delta$ 时有 $|f(c) - f(d)| < \varepsilon$,那么考虑当存在 N > 0 使得 m,n > N 时有 $|x_m - x_n| < \delta$ 可知 $\{f(x_n)\}$ 是 Cauchy 列,则必然收敛,由 Heine 定理知极限 $\lim_{x \to b^-} f(x)$ 存在.

问题 10 (丁同仁 3.3 节例 1). 微分方程 $y' = x^2 + y^2$ 任意解的存在区间都是有界的.

解答. 考虑满足 $y(x_0)=y_0$ 的解 y(x), 设其右侧最大存在区间为 $J=[x_0,m)$, 其中 m>0, 但不一定是有限值, 不失一般性, 只需证明 m 是有限值即可. 若 $m\leq 0$, 则命题成立, 考虑 m>0. 存在 $x_1>0$ 使得 $[x_1,m)\in J$, 则 $y'(x)=x^2+y^2(x)$ 对所有 $0< x_1\leq x< m$ 存在, 则得到 $y'(x)\geq x_1^2+y^2(x)(x_1\leq x< m)$. 也就是说 $\frac{y'(x)}{x_1^2+y^2(x)}\geq 1(x_1\leq x< m)$, 积分得到

$$0 \le x - x_1 \le \int_{x_1}^x \frac{y'(x)}{x_1^2 + y^2(x)} dx = \frac{1}{x_1} \left(\arctan \frac{y(x)}{x_1} - \arctan \frac{y(x_1)}{x_1} \right),$$

也就是说 $0 \le x - x_1 \le \frac{\pi}{x_1}$ 对任意的 $x_1 \le x < m$ 成立, 则 m 有限.

问题 11 (丁同仁习题 3.3.2). 讨论微分方程 $y' = \frac{1}{x^2 + y^2}$ 的解的区间.

解答. 假设右侧最大存在区间为 $J=[x_0,m)$, 则考虑 $x\to m$, 则必然 $\frac{1}{x^2+y^2}$ 有界, 则 y' 有界, 故 y 不可能无界, 故 y 有界, 则由于解是到无穷远的, 则矛盾.

定理 3 (关于初值的偏导数之结论)。考虑初值问题 $y' = f(x, y, \lambda), y(x_0) = y_0$. 假设 $f(x, y, \lambda), f_y \in C(\Omega \times \Lambda)$, 且 $y = w(x, \lambda, x_0, y_0)$, 则

(a) 偏导数 $\partial_{x_0} w$ 是初值问题

$$\frac{d\boldsymbol{z}}{dx} = \boldsymbol{f}_{\boldsymbol{y}}(x, \boldsymbol{w}(x, \lambda, x_0, \boldsymbol{y}_0), \lambda) \boldsymbol{z}, \boldsymbol{z}(x_0) = -\boldsymbol{f}(x_0, \boldsymbol{y}_0, \lambda)$$

的解, 因而偏导数 $\partial_{x_0} w$ 连续;

(b) Jacobi 矩阵 w_{y_0} 是矩阵初值问题

$$\frac{d\mathbf{Z}}{dx} = \mathbf{f}_{y}(x, \mathbf{w}(x, \lambda, x_0, \mathbf{y}_0), \lambda)\mathbf{Z}, \mathbf{Z}(x_0) = \mathbf{I}$$

的解, 因而 Jacobi 矩阵 w_{y_0} 连续.

定理 4 (广义幂级数). 设 x_0 是方程 y''+p(x)y'+q(x)y=0 的正则奇点, 且 $p(x)=\frac{P(x)}{x-x_0},q(x)=\frac{Q(x)}{(x-x_0)^2}$,则该微分方程在 x_0 的某邻域内有收敛的广义幂级数解

$$y(x) = (x - x_0)^{\nu} \sum_{k=0}^{\infty} c_k (x - x_0)^k, c_0 \neq 0,$$

其中 $c_k(k \ge 1)$ 可以迭代的求出,而 ν 是方程的指标方程 $s(s-1)+P(x_0)s+Q(x_0)=0$ 的根之一 ℓ 如果都为实根,则取最大者;如果为共轭复根,则取任意一个 ℓ .

定理 5. 对线性微分方程组 $\frac{dy}{dx} = A(x)y + f(x)$ 对应齐次方程的基解矩阵为 $\Phi(x)$, 则通解为

$$\mathbf{y}(x) = \mathbf{\Phi}(x) \left(\mathbf{c} + \int_{x_0}^x \mathbf{\Phi}^{-1}(s) \mathbf{f}(s) ds \right),$$

若有初值 $\mathbf{y}(x_0) = \mathbf{y}_0$, 则为

$$\boldsymbol{y}(x) = \boldsymbol{\Phi}(x) \left(\boldsymbol{\Phi}^{-1}(x_0) \boldsymbol{y}_0 + \int_{x_0}^x \boldsymbol{\Phi}^{-1}(s) \boldsymbol{f}(s) ds \right).$$

定理 6. 对微分方程 $y^{(n)}+a_1(x)y^{(n-1)}(x)+...+a_{n-1}(x)y'+a_n(x)y=f(x)$,考虑基 础解组 $\phi_1(x),...,\phi_n(x)$ 的 Wronsky 行列式 W(x),方程通解为 $y(x)=c_1\phi_1(x)+...+$ $c_n\phi_n(x) + \phi^*(x)$,特别的,我们可以如此计算

$$\phi^*(x) = \sum_{k=1}^n \phi_k(x) \int_{x_0}^x \frac{W_k(s)}{W(s)} f(s) ds,$$

其中 $W_k(x)$ 是 W(x) 的 (n,k) 代数余子式.

注 1. 当 n=2 的时候我们有

$$\phi^*(x) = \int_{x_0}^x \frac{\phi_1(s)\phi_2(x) - \phi_2(s)\phi_1(x)}{\phi_1(s)\phi_2'(s) - \phi_2(s)\phi_1'(s)} f(s)ds.$$

- 定理 7. 对常系数线性微分方程组 $\frac{d\mathbf{y}}{dx} = \mathbf{A}\mathbf{y} + \mathbf{f}(x)$, 我们有 (1) 矩阵 $\mathbf{Y}(x) = e^{x\mathbf{A}}$ 是常系数齐次线性微分方程组 $\frac{d\mathbf{Y}}{dx} = \mathbf{A}\mathbf{Y}$ 的基解矩阵;
 - (2) 微分方程组 $\frac{dy}{dx} = Ay + f(x)$ 的通解是

$$\boldsymbol{y}(x) = e^{x\boldsymbol{A}}\boldsymbol{c} + \int_{x_0}^x e^{(x-s)\boldsymbol{A}}\boldsymbol{f}(s)ds,$$

若有初值 $\mathbf{y}(x_0) = \mathbf{y}_0$, 则为

$$\boldsymbol{y}(x) = e^{(x-x_0)\boldsymbol{A}}\boldsymbol{y}_0 + \int_{x_0}^x e^{(x-s)\boldsymbol{A}}\boldsymbol{f}(s)ds.$$

定理 8. 对 A 互不相同的特征值为 $\lambda_1,...,\lambda_s$, 重数为 n_i , 设 $m{r}_{10}^{(i)},...,m{r}_{n_i0}^{(i)}$ 是 $\ker(\lambda_i m{I} -$

 $A)^{n_i}$ 的基, 则

- (1) 若 s = n, 则齐次方程基解矩阵为 $\Phi(x) = (e^{\lambda_1 x} \mathbf{r}_{10}^{(1)}, ..., e^{\lambda_1 x} \mathbf{r}_{10}^{(n)});$
- (2) 若 s < n, 令 $\mathbf{r}_{jl}^{(i)} = (\lambda_i \mathbf{I} \mathbf{A}) \mathbf{r}_{j,l-1}^{(i)}$, 令 $P_j^{(i)}(x) = \sum_{k=0}^{n_i-1} \frac{x^k}{k!} \mathbf{r}_{jk}^{(i)}$, 则齐次方程基解矩阵为 $\mathbf{\Phi}(x) = (e^{\lambda_1 x} P_1^{(1)}, ..., e^{\lambda_1 x} P_{n_1}^{(1)}, ..., e^{\lambda_s x} P_1^{(s)}, ..., e^{\lambda_s x} P_{n_s}^{(s)})$.
- 注 2. 若特征值是复数,则其共轭也是特征值,故计算时取某一个的实部和虚部即可.
- 定理 9. 对微分方程 $y^{(n)} + a_1 y^{(n-1)}(x) + ... + a_{n-1} y' + a_n y = f(x)$ 对应特征方程 $P(\lambda) = \lambda^n + a_1 \lambda^{n-1} + ... + a_n = 0$ 的不同根 $\lambda_1, ..., \lambda_s \in \mathbb{C}$, 重数为 n_i , 则基本解组为 $e^{\lambda_1 x}, x e^{\lambda_1 x}, ..., x^{n_1 1} e^{\lambda_1 x}, ..., e^{\lambda_s x}, x e^{\lambda_s x}, ..., x^{n_s 1} e^{\lambda_s x}$.
- 命题 1. 对方程 $y^{(n)}+a_1y^{(n-1)}(x)+...+a_{n-1}y'+a_ny=f(x)$ 和对应特征方程 $P(\lambda)=\lambda^n+a_1\lambda^{n-1}+...+a_n=0$, 我们有:
- (1) 若 $f(x) = P_m(x)e^{\mu x}$, 则 $\phi^*(x) = x^kQ_m(x)e^{\mu x}$, 其中 k 为 μ 为特征方程根的重数, 而 $Q_m(x)$ 为待定多项式;
- (2) 若 $f(x) = (A_m(x)\cos bx + B_m(x)\sin bx)e^{ax}$, 其中 $\max(\deg A_m, \deg B_m) = m$, 则 $\phi^*(x) = x^k(C_m(x)\cos bx + D_m(x)\sin bx)e^{ax}$, 其中 k 为 a+bi 为特征方程根的重数, 而 C_m, D_m 为待定多项式.