МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №5
по дисциплине «Алгоритмы и структуры данных»
Тема: Леонардовы кучи.

Студент гр. 9304	Попов Д.С.
Преподаватель	Филатов А.Ю

Санкт-Петербург 2020

Цель работы.

Изучить методы сортировок в массиве. Применить усовершенствованные методы сортировок на практике.

Задание.

34) Дан массив чисел. Проверить, что он представляет кучу Леонардовых куч. Вывести рекурсивное разложение массива на Леонардовы подмассивы.

Выполнение работы.

Программе на вход подается вектор целочисленных значений, который рекурсивно разбит Леонардовы должен на кучи. Функция leonardo numbers(const unsigned arrSize) принимает на вход размер массива, и на его основе строит массив чисел Леонардо, который понадобится для определения размеров подмассивов. Рекурсивная лямбда PR принимает в качестве аргумента позицию итератора, который определяет границу предыдущей кучи. Условием выхода из рекурсии является 0 в значений *arrSize*, который достигается вычитанием Леонардовых чисел. Каждый сопровождается выводом в консоль значений одной из куч.

Разработанный программный код см. в приложении А.

Формат входных и выходных данных.

На вход программе подается строка с целочисленными значениями.

Программа должна вывести результат разложения массива на Леонардовы кучи.

Тестирование.

Для проведения тестирования был написан bash-скрипт ./script .Скрипт запускает программу где в качестве входных аргументов служат заранее подготовленные файлы, расположенные в папке ./Tests

```
Test 1:
Начальная строка = 2 4 -6 8 -10 12 43 65 76
Размер массива - 9
Куча 1 [9]: 2 4 -6 8 -10 12 43 65 76
Test 2:
Начальная строка = 1
Размер массива - 1
Куча 1 [1]: 1
Test 3:
Начальная строка = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Размер массива - 22
Куча 1 [15]: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Куча 2 [5]: 16 17 18 19 20
Куча 3 [1]: 6
Куча 4 [1]: 2
Test 4:
Начальная строка = 93 23 13 14
Размер массива - 4
Куча 1 [3]: 93 23 13
Куча 2 [1]: 14
Test 5:
Начальная строка = -3 4 5 6 -4 23 -12 65 -76 -1 23 455
Размер массива - 12
Куча 1 [9]: -3 4 5 6 -4 23 -12 65 -76
Куча 2 [3]: -1 23 455
Test 6:
Начальная строка = -1 32 56 7 34 7 87 23 45 54
Размер массива - 10
Куча 1 [9]: -1 32 56 7 34 7 87 23 45
Куча 2 [1]: 54
Test 7:
Начальная строка = 945 34 23 656 834 734 232
Размер массива - 7
Куча 1 [5]: 945 34 23 656 834
Куча 2 [1]: 734
Куча 3 [1]: 34
```

Рисунок 1 — Вывод всех тестов.

Выводы.

В процессе работы ознакомились с Леонардовыми числами, реализовали программу, выводящую Леонардовы подмассивы на основе введенных элементов .

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: main.cpp

```
#include <iostream>
#include <sstream>
#include <iterator>
#include <vector>
std::vector<unsigned> leonardo numbers(const unsigned sizeVec) {
    std::vector<unsigned> leonardo {};
    unsigned a = 1;
    unsigned b = 1;
    unsigned c = 1;
    while(b <= sizeVec) {</pre>
        leonardo.emplace back(b);
        a = b;
        b = c;
        c = a + b + 1;
    return leonardo;
}
int main(){
    std::string inputString {};
    getline(std::cin, inputString);
    std::stringstream strStream(inputString);
    std::vector<int> vec {};
    std::copy(std::istream iterator<int>(strStream), {},
back inserter(vec));
    std::vector<unsigned> leonardo = leonardo numbers(vec.size());
    unsigned arrSize = vec.size();
    unsigned count = 0;
    std::cout << "Размер массива - " << arrSize << '\n';
    auto PR = [&arrSize, &leonardo, &count, &vec] (unsigned iter, auto
&&PR) {
        ++count;
        if(arrSize == 0){
            return;
```

```
for(size t i = leonardo.size() - 1; i >= 0; i--){
            if(arrSize >= leonardo[i]) {
                arrSize -= leonardo[i];
                std::cout << "Куча " << count << " [" << leonardo[i] <<
"]: ";
                for(size t j = 0; j < leonardo[i]; j++) {
                     std::cout << vec[j + iter] << ' ';
                }
                std::cout << std::endl;</pre>
                PR(leonardo[i], PR);
                break;
            }
        }
    };
    PR(0, PR);
    return 0;
}
```

Название файла: script