Preliminary Research Exam

Ronak Mehta

Spring 2022

Contents

A	Foundations	2
	A.1 Conditional Probability	2

A Foundations

A.1 Conditional Probability

In this section, we define conditional probability in the language of measure theory. Let $(\Omega, \mathcal{F}_0, P)$ be a probability space, $\mathcal{F} \subseteq \mathcal{F}_0$ be a σ -algebra, $(\mathbb{R}, \mathcal{R})$ be the real line equipped with the Borel σ -algebra, and $X: \Omega \to \mathcal{R}$ be a $(\mathcal{F}_0, \mathcal{R})$ -measurable random variable.

Definition A.1 (Conditional expectation). Let $\mathbb{E}[|X|] < \infty$. We define the *conditional expectation of* X *given* \mathcal{F} , or $\mathbb{E}[X|\mathcal{F}]$, to be any random variable Y that satisfies

- (i) Y is $(\mathcal{F}, \mathcal{R})$ -measurable, and
- (ii) for all $A \in \mathcal{F}$, $\int_A X dP = \int_A Y dP$.

Such a Y is called a version of $\mathbb{E}[X|\mathcal{F}]$.

Next, we establish some properties of conditional expectation.

Lemma A.2 (Integrability). If $Y = \mathbb{E}[X|\mathcal{F}]$ (a.e.), then Y is integrable.

Proof. Let $A = \{\omega \in \Omega : Y(\omega) > 0\}$, which is a \mathcal{F} -measurable set, as $(0, \infty) \in \mathcal{R}$ and Y is a measurable function. Then, use property (ii) twice.

$$\begin{split} \int_A Y \mathrm{d}P &= \int_A X \mathrm{d}P \leq \int_A |X| \, \mathrm{d}P. \\ \int_{A^c} -Y \mathrm{d}P &= \int_{A^c} -X \mathrm{d}P \leq \int_{A^c} |X| \, \mathrm{d}P. \end{split}$$

Then,

$$\mathbb{E}\left[\left|Y\right|\right] = \int_{A} Y \mathrm{d}P + \int_{A^{c}} -Y \mathrm{d}P \leq \int_{A} \left|X\right| \mathrm{d}P + \int_{A^{c}} \left|X\right| \mathrm{d}P = \mathbb{E}\left[\left|X\right|\right] < \infty.$$

Lemma A.3 (Uniqueness). If Y' also satisfies (i) and (ii),

$$\int_A Y dP = \int_A Y' dP \text{ for all } A \in \mathcal{F}.$$

Proof. Take any $\epsilon > 0$ and let $A = \{\omega \in \Omega : Y(\omega) - Y'(\omega) \le \epsilon\}$, which is \mathcal{F} measurable because Y - Y' is

measurable and $[\epsilon, \infty) \in \mathcal{R}$. Then,

$$\begin{split} 0 &= \int_A X - X \mathrm{d}P \\ &= \int_A X \mathrm{d}P - \int_A X \mathrm{d}P \\ &= \int_A Y \mathrm{d}P - \int_A Y' \mathrm{d}P \\ &= \int_A Y - Y' \mathrm{d}P \\ &\geq \epsilon P(A), \end{split}$$

indicating that $P(A) = P(Y - Y' \ge \epsilon) = 0$, or that $Y \ge Y'$ a.e.. Switching the roles of Y and Y' gives that Y = Y' a.e..

Before showing existence, we recall the following definitions and results.

Definition A.4 (Absolute continuity). Let ν and μ be measures defined on the same measurable space. Then, ν is absolutely continuous with respect to μ (written $\nu \ll \mu$), if $\mu(A) = 0$ implies $\nu(A) = 0$ for all measurable sets A.

Definition A.5 (σ -finite measure). A measure μ on measurable space (Ω, \mathcal{F}) is called σ -finite is there exists a sequence $A_1, A_2, ... \in \mathcal{F}$ such that

- $\mu(A_i) < \infty$ for each i = 1, 2, ..., and
- $\bigcup_{i=1}^{\infty} A_i = \Omega$.

In other words, the entire set can be written as a countable union of sets of finite measure.

Theorem A.6 (Radon-Nokodym theorem). Let ν and μ be two σ -finite measures on (Ω, \mathcal{F}) . If $\nu \ll \mu$, then there is a $(\mathcal{F}, \mathcal{R})$ -function $f : \Omega \to \mathbb{R}$ such that for all $A \in \mathcal{F}$,

$$\int_A f d\mu = \nu(A).$$

THe function f is written $\frac{d\nu}{d\mu}$ and called the Radon-Nikodym derivative.

Lemma A.7 (Existence). There exists a Y that satisfies the defining properties of conditional expectation.

Proof. First, suppose that $X \ge 0$, let $\mu = P$, and define

$$\nu(A) := \int_A X dP$$
 for any $A \in \mathcal{F}$.

The monotone convergence theorem, along with a sequence of non-negative simple functions $X_n:\Omega\to [0,\infty)$] that approach X pointwise, can be used to show that ν is a measure. Then, the definition clearly shows that $\mu(A)=0 \implies \nu(A)=0$, so $\nu\ll\mu$. Thus, by the Radon-Nikodym theorem,

$$\int_{A} X dP = \nu(A) = \int_{A} \frac{d\nu}{d\mu} dP.$$

Letting $A=\Omega$, we have that $Y:=\frac{\mathrm{d}\nu}{\mathrm{d}\mu}$ is $(\mathcal{F},\mathcal{R})$ -measurable and integrable, and because its non-negative, $\mathbb{E}\left[|Y|\right]<\infty$. Thus, both properties are satisfied, and Y is a version of $\mathbb{E}\left[X|\mathcal{F}\right]$.

For the general case, let X^+ and X^- be the nonnegative and nonpositive parts of X, and let $Y_1 = \mathbb{E}\left[X^+ | \mathcal{F}\right]$ and $Y_2 = \mathbb{E}\left[X^- | \mathcal{F}\right]$. Now, $Y_1 - Y_2$ is integrable, and for all $A \in \mathcal{F}$, we have

$$\int_A X dP = \int_A X^+ dP - \int_A X^- dP$$
$$= \int_A Y_1 dP - \int_A Y_2 dP$$
$$= \int_A (Y_1 - Y_2) dP.$$

Thus, $Y_1 - Y_2$ is a version of $\mathbb{E}[X|\mathcal{F}]$.