

CPU-OS SIMULATOR

Dr. Lucy J. Gudino WILP & Department of CS & IS

Agenda

- Introduction to CPU OS Simulator
 - CPU Simulator
 - Compiler Simulator
 - OS Simulator
- Introduction to CPU Simulator
- Instruction set architecture
- Examples
- Question and Answer Session

Introduction

- Developed by Besim Mustafa, Department of Computing, Edge Hill University, U.K.
- Link to down load CPU-OS Simulator Version 7.5: http://www.teach-sim.com/
- Three components of CPU-OS simulator
 - The CPU Simulator
 - The Compiler Simulator
 - The OS Simulator

Instruction set architecture

7 groups:

- Data Transfer instructions
- Arithmetic instructions
- Logical instructions
- Control transfer instructions
- Comparison instructions
- I/O instructions
- Miscellaneous instructions

innovate achieve lead

Data Transfer Instructions

- MOV SRC DST
 - Move SRC to DST
 - Move immediate Data to Register
 - Move Register to Register
- Example:
 - MOV #2, R01 → Move number 2 in to register R01
 - MOV R01, R02 → Move contents of register R01 to R02

innovate achieve lead

Data Transfer Instructions

STB SRC MEM

- Store a byte in to memory
- SRC can be a register or immediate value
- Address of the memory can specified directly or indirectly
- Example: Direct Memory Addressing
 - STB R02, 0001, → Stores a byte in register R02 to memory whose address is 0001
- Example: Indirect Memory / Indirect Register Addressing
 - STB R02, @R08 → Stores a byte in register R02 to memory whose address is in Register R08
- Example: Immediate Source
 - STB #02,0002

innovate achieve lead

Data Transfer Instructions

STW SRC MEM

- Store a WORD (2 Bytes) in to memory
- SRC can be a register or immediate value
- Address of the memory can specified directly or indirectly
- Example: Direct Addressing
 - STW R02, 0000, → Stores a byte in register R02 to memory whose address is 0000
- Example: Indirect Addressing
 - STW R02, @R08 → Stores a byte in register R02 to memory whose address is in Register R08
- Example: Immediate Source
 - STW #1023, 0002

Example3_1.sas

Data Transfer Instructions

LDB MEM REG

- Load a byte from memory to register
- Address of the memory can specified directly indirectly
- Example: Direct Addressing
 - LDB 0001, R01 → Loads a byte from memory address 0001 into register R01
- · Example: Indirect Addressing
 - LDB @RO2, RO1 → Loads a byte from memory location whose address is in Register RO2 into register RO1

Data Transfer Instructions

LDW MEM REG

- Load a byte from memory to register
- Address of the memory can specified directly indirectly
- Example: Direct Addressing
 - LDW 0001, R01 → Loads a word from memory address 0001 into register R01
- · Example: Indirect Addressing
 - LDW @R02, R01 → Loads a word from memory location whose address is in Register R02 into register R01

Example5.sas

Data Transfer Instructions

PUSH

- Push data to top of hardware stack (TOS); push register to TOS
- Examples:
 - PSH #6 ; pushes number 6 on top of the stack
 - PSH RO3 ; pushes the contents of register RO3 on top of the stack

- POP
 - Pop data from top of hardware stack to register
 - Example:
 - POP RO5 ;pops contents of top of stack into register RO5

- MVS SRC DST
 - Moves a string from SRC to DST
- Addressing modes for SRC and DST
 - Direct
 - Indirect
 - Register Indirect

Exercise...

Edit Example 7. sas with the following:

- 1) MVS 0, 40
- 2) MVS 1, 40
- 3) MVS @16, 40

- SWAP REG1 REG2
 - Swaps the contents of two registers.
 - · Only register addressing mode
- Example:
 - SWAP R01, R02

LDBI

- Loads Byte from memory into register, increments indirect source address
- Example:
 - LDBI @R00, R01

LDWI

- Loads word from memory into register, increments indirect source address
- Example:
 - LDWI @R00, R01

STBI

- Stores Byte to memory, increments indirect destination address
- Example:
 - STBI R01, @R00

STWI

- Stores word to memory, increments indirect destination address
- Example:
 - STWI R01, @R00

ADD SRC DST

- Adds values in registers or adds immediate value to register
- DST ← DST + SRC
- SRC can be immediate or Register Addressing mode but uses only register addressing mode for DST
- Example:
 - ADD R01, R02
 - ADD #1, RO3

SUB SRC DST

- subtracts values in registers or subtracts immediate value from a register
- DST ← DST SRC
- SRC can be immediate or Register Addressing mode but uses only register addressing mode for DST
- Example:
 - SUB R01, R02
 - SUB #1, RO3

SUBU SRC DST

- subtracts values in registers or subtracts immediate value from a register with unsigned result
- DST ← DST SRC
- SRC can be immediate or Register Addressing mode but uses only register addressing mode for DST
- Example:
 - SUBU R01, R02
 - SUBU #1, RO3

- MUL SRC DST
 - Multiply values in SRC and DST
 - DST ← DST * SRC
 - SRC can be immediate or Register Addressing mode but uses only register addressing mode for DST
 - Example:
 - MUL R01, R02
 - MUL #1, RO3

innovate achieve lead

Arithmetic Instructions

DIV SRC DST

- Divides values in SRC and DST
- DST ← DST / SRC
- Remainder is lost and quotient is saved in DST
- SRC can be immediate or Register Addressing mode but uses only register addressing mode for DST
- Example:
 - DIV R01, R02
 - DIV #1, RO3

- INC SRC
 - Increments value in SRC by 1
 - SRC ← SRC + 1
- DEC SRC
 - Decrements value in SRC by 1
 - SRC ← SRC 1
- SRC uses Register Addressing mode
- Example:
 - INC R01

Logical Instructions

AND

Inputs		Output
Α	В	F
0	0	0
1	0	0
0	1 0	
1	1	1

- AND SRC DST
 - Logical AND of values in SRC and DST
 - DST ← DST & SRC
 - SRC can be immediate or Register Addressing mode but uses only register addressing mode for DST
 - Example:
 - AND R01, R02
 - AND #1, RO3

Logical Instructions

OR

Inputs		Output	
Α	В	F	
0	0	0	
1	0	1	
0	1	1	
1	1	1	

- OR SRC DST
 - Logical OR of values in SRC and DST
 - DST ← DST | SRC
 - SRC can be immediate or Register Addressing mode but uses only register addressing mode for DST
 - Example:
 - OR R01, R02
 - OR #1, RO3

NOT

Input	Output	
I	F	
0	1	
1	0	

Logical Instructions

- NOT SRC DST
 - Logical NOT of value in SRC
 - DST ← !SRC
 - SRC can be immediate or Register Addressing mode but uses only register addressing mode for DST
 - Example:
 - NOT R01 R02
 - NOT #5, R02

Logical Instructions

- SHL CNT DST
 - Shift to left value in DST
 - DST ← Shift Left DST (CNT times)
 - CNT can be Immediate or Register Addressing mode but uses only register addressing mode for DST
 - Example:
 - SHL 2, R00
 - SHL R01, R02

Logical Instructions

SHR CNT DST

- Shift to Right value in DST
- DST ← Shift Right DST (CNT times)
- CNT can be Immediate or Register Addressing mode but uses only register addressing mode for DST
- Example:
 - SHR 2, R00
 - SHR R01, R02

innovate achieve lead

Comparison Instructions

- CMP SRC DST
 - Compares SRC and DST contents
 - If
 - DST = SRC → Zero flag is set
 - DST < SRC → Negative flag is set
 - DST > SRC → Zero and Negative flags are reset
 - SRC can be immediate or Register Addressing mode but uses only register addressing mode for DST
 - Example:
 - CMP ROO, RO1
 - CMP #5, R01

Comparison Instructions

- CPS SRC DST
 - Compares SRC and DST strings
 - If
 - DST = SRC → Zero flag is set
 - DST < SRC → Negative flag is set
 - DST > SRC → Zero and Negative flags are reset
 - SRC and DST can be Direct Memory or register indirect addressing mode
 - Example:
 - CPS 0, 16
 - CPS @R01, @R02
 - CPS @R01, 8

Control Transfer Instructions

Instruction	Description	Example
JMP TARGET	Jumps Unconditionally	JMP 100
JLT TARGET	Jumps if less than	JLT 100 jumps to address location 100 if the previous comparison instruction result has set the N status flag.
JGT TARGET	Jumps if greater than	JGT 100 jumps to address location 100 if the previous comparison instruction result has not set the N and Z status flag.
JEQ TARGET	Jumps if equal	JEQ 100 jumps to address location 100 if the previous comparison instruction result has set Z status flag.
JNE TARGET	Jumps if not equal	JNE 100 jumps to address location 100 if the previous comparison instruction result indicates DST is less than SRC (i.e. the N status flag is set).

BITS Pilani, Pilani Campus

Control Transfer Instructions

Instruction	Description	Example
JGE TARGET	Jumps if greater than or equal	JGE 100
JLE TARGET	Jumps if less than or equal	JLE 100
JNZ TARGET	Jumps if not zero	JNZ 100
JZR TARGET	Jumps if zero	JZR 100
LOOP TARGET, REG	Loops if REG value is greater than 0	LOOP 100, R00

Control Transfer Instructions

- · HLT
 - · Halts the simulator

Subroutine

- CAL <SUB_ADDRESS>
 - Calls a subroutine
- RET
 - Returns from subroutine
 - The last instruction in a subroutine must always be the following instruction
 - Execution of RET instruction retrieves the context and will jump to the instruction
- MSF
 - Mark Stack Frame

Write a program to add two numbers using a subroutine.

START: MOV #05, R00

MOV #06, R01

MSF

CAL < ADD_SUB>

STB R03, 8

HLT

ADD_SUB: ADD ROO, RO1

MOV R01, R03

RET

I/O Instructions

- IN PORT_NO DESTINATION
 - Gets input into register or memory from I/O Device
 - PORT_NO for keyboard is 00
 - Destination can be register or memory
- OUT SOURCE PORT_NO
 - Puts output from register or memory to I/O device
 - PORT_NO for monitor is 01
 - Source can be register or memory

Miscellaneous Instructions

- NOP
 - No operation

Next Webinar...

- Thursday, 29/11/2018 @ 7.30 PM
- Topics to be covered
 - Cache Memory
 - Direct Mapped
 - Associative Cache
 - Set Associative Cache
 - Replacement Policy
 - Write Policy
- Resource Person: Prof. Chandrashekar R K

Thank You

BITS Pilani

Pilani Campus