a) howrite the fregram so that step counts are introduced into the function. void multion a [] [NAX_SIZE], of b[][MAX_SIZE], or c[][MAX_SIZE], of MiK; sforli=0; KMAX_SIZE; iH) count++; // counts for each i in [0, MAX_SIZE-1] for (= 0; JKMAX_SIZE; jut) count++; // for each j in [o, MAX_SIZE-1] C[][]=01 count+; // for the initialization of prod matrix for (X=0; KKMAX_SIZE; KH) count++; // for each K in [0, MAX_SIZE-1] C[i][i] += a[i][K] * b[K][i];count++; // for each unit multiplied county; 1/K=MAX_SIZE count +; // j= MAX_SIZE Scount++; // i=MAX_SIZE b) Simplify the resulting function by eliminating statements void mult (out al] [MAX_SIZE], but b[][MAX_SIZE], int c[][MAX_SIZE] c) Determine the value of court int i, j, K; for(i=0; iXMAX_SIZE; 4+) when the function ends court = 2MAX_SIZE+ 3MAX_SIZE court = court +2; 1+2MAX_SIZES+1 for (i= O; j < MAX_SIZE; j++) court = court +31 for(K=O; K<MAX_SIZE; KH) count=count+2/ count++;