

通信矩阵设计

北京经纬恒润科技有限公司 汽车电子事业部 2012年9月20日

目录

- 设计流程
- CAN通信矩阵设计
- 网关报文和路由设计

目录

- 设计流程
- CAN通信矩阵设计
- 网关报文和路由设计

设计流程

■ V模式开发流程

设计流程

- 信号列表整理
- 通信矩阵设计(xls/dbc/ldf)

设计流程

目录

- 设计流程简介
- CAN通信矩阵设计
 - * 信号列表
 - * 通信矩阵
 - * 信号可靠性
 - * 优化准则
- 网关报文和路由设计

■ 信号列表模板

■ 信号描述

从网络接收的信号(输入-From Net)										
++	Signal Name	Bit Length	Resolution	Offset	Physical Range	Default Value	Invalid Value	Unit	Period	Remarks
#	信号名称	信号长度	精度	编移量	物理值范围	默认值	无效值	単位	希望周期	番注
1										
2										

- 信号名称:一般以发送节点的名称开头;
 - ❖ 例如: ABS_FrontLeftWheelSpeed
- 信号长度: 描述信号的长度, 单位bit;

■ 信号描述

从网络接收的信号(输入-From Net)										
#	Signal Name	Bit Length	Resolution	Offset	Physical Range	Default Value	Invalid Value	Unit	Period	Remarks
	信号名称	信号长度	精度	偏移量	物理值范围	默认值	无效值	単位	希望周期	备注
1										
2										

- 精度/偏移量: 共同描述信号物理值的计算方法;
 - * 信号物理值 = x*精度+偏移量
 - * 例如: ABS_FrontLeftWheelSpeed物理值计算:
 - □ E=N*0.05625+0
- 物理值范围: 经过物理值转换后的最大最小值;
 - ❖ 例如: ABS_FrontLeftWheelSpeed物理值范围为: 0~3686.2875

■ 信号描述

	从网络接收的信号(输入-From Net)										
Π	#	Signal Name	Bit Length	Resolution	Offset	Physical Range	Default Value	Invalid Value	Unit	Period	Remarks
**	#	信号名称	信号长度	精度	编移量	物理值范围	默认值	无效值	単位	希望周期	备注
	1										
Ī	2										
-	-										

- 默认值:
 - ❖ 根据通信需求规范,接收节点在某些时候将信号默认值传递给应 用程序;
 - □ 例如:发送节点超时未发送、发送节点发送无效值等
- 无效值:
 - * 根据通信需求规范,发送节点在某些时候发送无效值;
 - □ 例如:传感器失效时
- 単位:
- 希望周期:
- 备注:

- 默认值和无效值
 - * 情景一: 传感器失效时

- 默认值和无效值
 - 情景二:报文超时未发送

- 默认值和无效值
 - * 情景二: 报文超时未发送

目录

- 设计流程
- CAN通信矩阵设计
 - 信号列表
 - 通信矩阵
 - * 信号可靠性
 - * 优化准则
- LIN通信矩阵设计
- 网关报文和路由设计

通信矩阵设计

- 通信矩阵相关参数
 - ID
 - 信号映射
 - 发送方式

目录

- 设计流程
- CAN通信矩阵设计
 - 信号列表
 - 通信矩阵
 - ID
 - 信号映射
 - 发送方式
 - * 信号可靠性
 - * 优化准则
- LIN通信矩阵设计
- 网关报文和路由设计

CANID

与优先级相关

CAN ID layout

8-10 bit 消息组

- 应用报文+发送类型(Application + Transmission Types)
- 网络管理(NM)
- 诊断(Diagnostic)
- 开发(Development)

■ CAN ID 范围示例:

消息组	ID (Min)	ID (Max)
应用报文- On event	0x000	0x0FF
应用报文- Periodic and on event	0x100	0x1FF
应用报文 - If active or Periodic	0x200	0x2FF
and if active		
应用报文 - Periodic	0x300	0x3FF
网络管理报文 - Network	0x400	0x4FF
Management		
应用报文 - 保留	0x500	0x5FF
开发	0x600	0x6FF
诊断报文	0x700	0x7FF

ID layout

	der de la constante de la cons		7	6	5	4	3	2	1	0		
			Sub priority or Sub group		Acceptance filtering or Serial number							
***************************************	Group			ECU Address								

0-7 bit 不同的消息组有不同的含义

- 应用报文:次级优先级或者次级消息组+用于报文过滤的寻址 信息或者简单的序列号;
- 网络管理和诊断: ECU地址;
- □ 开发:次级消息组(ECU特有/标定)+序列号

目录

- 设计流程
- CAN通信矩阵设计
 - 信号列表
 - 通信矩阵

 - 信号映射
 - 发送方式
 - * 信号可靠性
 - * 优化准则
- 网关报文和路由设计

- 信号在报文中的位置取决于以下几个因素:
 - bit顺序;
 - Byte顺序;

bit顺序

- 在一个Byte中,bit可以升序或者降序排列,即最高有 效位(most significant bit)处于Byte的最左边还是 最右边;
- bit降序排列(CAN或者FlexRay)

bit升序排列(LIN)

注: msb: most significant bit; lsb: least significant bit

- Byte顺序
 - 对于长度超过一个字节的信号,需要考虑在报文中的 顺序:
 - Intel (小端模式)

Motorola (大端模式)

注: MSB: most significant byte; LSB: least significant byte

■ 示例: CAN帧, Byte顺序: Intel模式

Signal 0: 1, 起始位置: 0

Signal 1: 0,起始位置: 1

Signal 2: 11, 起始位置: 2

Signal 3: 101000111101,起始位置: 4

示例: CAN帧, Byte顺序: Motorola模式

Signal 0: 1, 起始位置: 4

Signal 1: 0, 起始位置: 5

Signal 2: 10, 起始位置: 6

Signal 3: 101000111101, 起始位置: 8

- 报文封装原则
 - 同一报文的所有信号须由同一节点提供
 - 同一报文的所有信号的发送时机尽可能相同
 - 高速信号置于低速报文中,影响实时性
 - 低速信号置于高速报文中,浪费总线带宽
 - 如果高速报文中未填满,可放置低速信号
 - 同一报文中的信号应用场景尽量一致(避免跨网段)
 - 小于或等于8位的信号不应跨越字节(Byte)边界
 - 小于或等于16位的信号不应跨越字(Word)边界
 - 信号从每个字节的起始位开始排列
 - * 信号排列应紧凑

报文封装原则?

目录

- 设计流程
- CAN通信矩阵设计
 - 信号列表
 - 通信矩阵

 - 信号映射
 - 发送方式
 - * 信号可靠性
 - * 优化准则
- 网关报文和路由设计

- 应用报文发送类型-Transmission Types
 - 周期型:
 - Periodic
 - ❖ 事件型:
 - On event
 - 使能型
 - If active
 - 周期事件型:
 - Periodic and on event
 - * 周期使能型:
 - Periodic and if active

- 周期型:
 - 报文以一定的间隔时间tCycleP发送

- 事件型:
 - * 事件触发指报文中所规定的信号值发生改变。

- 使能型
 - 报文在只要有一个触发信号的信号约束条件满足,须 以快速周期时间tFastCycleA发送。

- 周期事件型:
 - 周期型+事件型;
 - 报文以周期时间tCyclePOE周期性发送,当事件触发 时,在周期报文中插入事件报文。

- 周期使能型:
 - 周期型+使能型
 - 报文以周期时间tCyclePA周期性发送,只要有一个触 发信号的信号约束条件满足,以快速周期时间 tFastCyclePA发送

- 通信矩阵设计流程
- CAN通信矩阵设计
 - 信号列表
 - * 通信矩阵
 - * 信号可靠性
 - * 优化准则
- 网关报文和路由设计

信号可靠性

- 信号可靠性
 - **Checksum**
 - 防止信号改变
 - 例如: Checksum = (byte0+byte1+...+ byte 6) XOR 0xFF
 - Heartbeat信号
 - 防止报文丢失
 - 避免应用程序误操作
 - 例如: 扭矩请求报文 Oriented

- 通信矩阵设计流程
- CAN通信矩阵设计
 - 信号列表
 - 通信矩阵
 - * 信号可靠性
 - * 优化准则
- 网关报文和路由设计

优化准则

- 首要准则
 - 延时
 - 负载率
 - * CPU负载
- 次要准则
 - 灵活性和复用性
 - 鲁棒性
 - 网关路由

比较

通信矩阵相关参数与首要准则

	延时	总线负载率	CPU负载率
ID	优先级	-	硬件滤波
信号映射	短报文传送得更快; 短的报文占用更 少的总线仲裁时 间。	长报文减少帧 header信息 (ID,DLC,CRC)	同一 ECU 接收的信号放在同一报文中
报文填充方式	-	如果使用该准则, 尽量避免位填充	-

次要准则

- 灵活性和复用性
 - 保持重用ECU ID的稳定性
 - * 将含义类似的信号组合
- 鲁棒性
 - ❖ 重要的信息周期发送(周期事件型)
- 网关路由
 - 将网关路由的信号组合

- 通信矩阵设计流程
- CAN通信矩阵设计
- 网关报文和路由设计

- 网关报文设计
 - * 报文路由
 - ❖ 信号路由
- 路由方式选择
 - * 输入无关
 - * 输入触发

■ 网关报文设计

- * 报文路由
 - □ 将完整报文从一个网段传输到另一个网段
 - □ 实现简单,网关负担较低
 - □ 通常将一些无关信号也转发到目标网段,增加目标网段的负 载率

* 信号路由

- □ 只转发目标网段需要的信号
- □ 需要信号的重新组合,网关负担较重
- □ 避免增加目标网段不必要的负载率
- □ 由于网关需要重新组合信号,延时时间稍长

- 路由方式设计
 - 输入无关
 - 不管源网络是否接收到报文,网关需要执行使用"输入无关" 操作
 - 可更改发送周期
 - 可更改报文长度
 - 源网段超时监测
 - 输入触发
 - 事件发生的报文须立即路由
 - 无需源网络报文超时监测

网关路由表

Message Name 报文名称	CAN ID CAN标识符	DLC 数据长度	Send Type 发送方式	Source Period 源周期	Destination Period 目标周期
Message1	0x4D4	8	周期/事件		_
Message2	0x2D7	8	周期/事件		_
Message3	0x130	8	周期/事件		_
Message4	0x268	4	周期/事件		_
Message4	0x28A	5	周期	100ms	100ms
Message5	0x094	8	周期	10ms	100ms
Message6	0x288	7	周期	100ms	100ms
Message7	0x120	8	周期	10ms	100ms

Source Network 源网络	Destination Network 目标网络	Routing Method 路由方式	Input indep/triggered 输入无关/触发
BCAN	PCAN	基于报文方式	输入触发方式
BCAN	PCAN	基于报文方式	输入触发方式
BCAN	PCAN	基于报文方式	输入触发方式
BCAN	PCAN	基于报文方式	输入触发方式
PCAN	BCAN	基于报文方式	输入触发方式
PCAN	BCAN	基于报文方式	输入无关方式
PCAN	BCAN	基于报文方式	输入触发方式
PCAN	BCAN	基于报文方式	输入无关方式

- 通信矩阵设计流程
- CAN通信矩阵设计
- 网关报文和路由设计

谢谢