See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/282442318

UNSUPERVISED FEATURE EXTRACTION BASED ON A MUTUAL INFORMATION MEASURE FOR HYPERSPECTRAL IMAGE...

Confere	nce Paper · July 2011		
CITATIONS		READS	
4		8	
3 author	rs:		
	Dr Md Ali Hossain		Mark R. Pickering
	UNSW Australia		UNSW Canberra
	10 PUBLICATIONS 23 CITATIONS		218 PUBLICATIONS 1,036 CITATIONS
	SEE PROFILE		SEE PROFILE
0	Xiuping Jia		
	UNSW Australia		
	42 PUBLICATIONS 613 CITATIONS		
	SEE PROFILE		

Some of the authors of this publication are also working on these related projects:

Knee motion in osteoarthritis using fluoroscopy and 4D imaging View project

UNSUPERVISED FEATURE EXTRACTION BASED ON A MUTUAL INFORMATION MEASURE FOR HYPERSPECTRAL IMAGE CLASSIFICATION

Md. Ali Hossain, Mark Pickering, Xiuping Jia

School of Engineering and Information Technology
The University of New South Wales, Australian Defence Force Academy, Canberra, ACT-2600

ABSTRACT

Finding the most informative features from high dimensional space for reliable class data modeling is one of the most challenging problems in hyperspectral image classification. The problem can be address using two basic techniques: feature selection and feature extraction. One of the most popular feature extraction methods is Principal Component Analysis (PCA), however its components are not always suitable for classification. In this paper, we present a feature reduction method (MI-PCA) which uses a nonparametric mutual information (MI) measure on the components obtained via PCA. Supervised classification results using a hyperspectral data set confirm that the new MI-PCA technique provides better classification accuracy by selecting more relevant features than when using either PCA or MI on the original data.

Index Terms— Hyperspectral image, mutual information, nonparametric feature extraction, principal component analysis, small sample size

1. INTRODUCTION

Hyperspectral sensors simultaneously measure hundreds of continuous spectral bands with a fine resolution, e.g. $0.001 \mu m$. For instance, the AVIRIS hyperspectral sensor has 224 spectral bands ranging from $0.4\mu m$ to $2.5\mu m$. This high resolution means that hyperspectral images have proven to be beneficial in many different applications as they provide more accurate and detailed information for classification [1]. On the other hand, this large number of spectral bands has a direct impact on the required computational cost for classification. This cost is also related to the complexity of the adopted classifier (linear, quadratic etc.). Also, as the feature space dimension increases, if the size of the training data does not grow correspondingly, a reduction in the classification accuracy of the testing data is observed due to poor parameter estimation of the supervised classifier. This effect is known as the Hughes phenomenon [2, 3, 4]. Two approaches are available to overcome this small-sample-size (SSS) problem. One is to apply a feature reduction method to reduce the dimensionality of the input data. The other is to modify the classifier design to be suitable for the SSS problem [5, 6, 7, 8]. The main purpose of the feature reduction is to mitigate the Hughes effect or the curse of dimensionality.

Feature reduction can be addressed using two basic approaches. One is the selection of the most informative feature subset in the original feature space. This approach is known as feature selection. An alternative approach is the extraction of a limited number of features after a mapping to a new feature space based on some criteria like variance [9, 10]. One well known linear feature extraction technique is Principal Component Analysis (PCA). The linear transform in PCA is derived from eigenvectors corresponding to the largest eigenvalues of the covariance matrix of the data.

PCA seeks to optimally represent the data in terms of maximal variance or minimal mean-square-error between the new representation and the original data. Although this approach can reduce the data with a significant volume it does not emphasize individual spectral classes or signatures of interest [11]. The main limitation of PCA is that it does not consider the class separability since it does not take into account the class label when generating the eigenvectors. PCA simply performs a coordinate rotation that aligns the transformed axes with the direction of maximum variance; there is no guarantee that the direction of maximum variance will contain good features for classification [12]. Another limitation of PCA is that it only considers the second order statistics of the data. There may exist some small objects which are small and do not contribute to the overall variance and hence are not included in the first few principal components.

To address this limitation, this paper propose a feature reduction method, which combines feature extraction using PCA and feature selection from the resulting principle components (PCs) using a mutual information (MI) measure. In our experiment we found that the features obtain by this new method provided better classification accuracy than using either PCA or MI on the original data. The proposed MI-PCA algorithm selects the PC transformed features with higher values of mutual information as this provides a better way to measure the relevance of the components. Our results show that the proposed method provides better class discrimination as well as a significant increase in classification accuracy with reduced dimensionality. The rest of this paper is organized as follows, section 2 contains a brief introduction to PCA and

mutual information, section 3 outlines the proposed MI-PCA feature reduction method and section 4 presents a description of experimental procedure and results. Section 5 contains the conclusions drawn from our results.

2. RELATED WORKS

2.1. Principal component analysis

The principal component transform produces a new set of uncorrelated images that are ordered by variance. This analysis mainly depends on the eigenvalue decomposition of the covariance matrix of the input hyperspectral data. The new feature space *Y* is given by

$$Y = E^T X \tag{1}$$

Where X is the input image, Y is the transformed output image and E^T is the matrix of normalized eigenvectors of the input hyperspectral image covariance matrix ordered by the respective singular eigenvalues. The first few components are often selected as extracted features.

2.2. Mutual information

According to Shannon's information theory, entropy measures the information in terms of uncertainty. For a given random variable A with marginal probability P(A) the entropy is defined by:

$$H(A) = -\sum_{A} P(A)logP(A)$$
 (2)

This concept can be extended to two random variables, where one is the measured spectral image itself and the other is the target reference image that is related to the classification objective. Measuring the mutual information (MI) between these two images provides an ideal framework to measure the similarity between them. If we consider another variable *B*, then the mutual information between these two variables is defined as follows:

$$I(A,B) = \sum_{A} \sum_{B} P(A,B) \frac{log P(A,B)}{P(A)P(B)}$$
 (3)

Mutual information can also be described using entropy as:

$$I(A, B) = H(A) + H(B) - H(A, B)$$
(4)

Where H(A) and H(B) are the entropies of A and B and H(A,B) is their joint entropy.

3. COMBINING MI AND PCA FOR FEATURE REDUCTION

In feature selection, the relevant features have important information required to produce the classification output, whereas the irrelevant features contain little information required for classification [1, 13]. The aim of feature selection is to find a subset of k < n features that is maximally informative. The success of any feature selection algorithm depends critically on how much relevant information is contained in the selected features [14]. According to Shannon's theory the problem of selecting relevant input features can be solved by computing the mutual information. In order to find informative features from the transformed features obtained by unsupervised PCA, nonparametric mutual information (MI) is proposed as the criterion since it is sensitive to the class structure and suitable for multi class problems and non-gaussian data. Consider a set of PC transformed features $\mathbf{Y}, y_i \in \mathbb{R}^d$ obtained from Eq. (1) and the reference image f_j . The mutual information between y_i and f_j is given by:

$$I(y_i, f_j) = \sum_{i} \sum_{j} P(y_i, f_j) \frac{log P(y_i, f_j)}{P(y_i) P(f_j)}$$
 (5)

where $P(y_i)$, $p(f_j)$ are marginal probabilities and $P(y_i, f_j)$ stands for the join probability of y_i and f_j . If feature f_j is believed to be the most informative image then $I(y_i, f_j)$ can be used as an indicator to quantify how informative y_i is. To use this concept for hyperspectral feature selection, the reference feature needs to be defined first. We proposed to use the mean channel over all the spectral bands. The rest of the features are then re-ranked based on the MI value between each of them and the reference feature in order of decreasing magnitude. The advantage of using the mean channel is that, averaging the channels has the power to increase the signal to noise ratio (SNR) and also increase the bit depth of the image beyond what would be possible with a single image [15, 16].

It is straight forward to perform feature selection based on the MI between the original band and their mean features (we call this method MI-Org). However the components obtained by MI-Org are very correlated and hence provide poor classification accuracy. This is why we propose to apply the feature selection process on the transformed space to improve the effectiveness of our proposed method. In this way we obtain the reduced feature set which is uncorrelated, informative in general, can avoid the Hughes problem and improve the classification accuracy for both training and test data compared to the PCA and MI-Org techniques.

4. EXPERIMENTAL RESULTS

The hyperspectral image used in our experiments was the "Indian Pine" data set. This data set consists of a 145x145 pixels of an AVIRIS [17, 18] image acquired over Northwestern Indian Pine in June 1992 [9]. All the 220 original bands are employed as an input to a principal component analysis for feature transformation. The output is then used as the input to the MI-PCA method. The new and older ranked components based on two different estimation techniques of variance and

Fig. 1. Selected principal components for the Indian Pines data set

Table 1. Top ten ranked features obtained by PCA, MI-Org and MI-PCA

Ranking Method	Ranked Features									
Ranking Mcthod	1^{st}	2^{nd}	3^{rd}	4^{th}	5^{th}	6^{th}	7^{th}	8^{th}	9^{th}	10^{th}
PCA	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10
MI-Org	B35	B99	B100	B85	B84	B94	B98	B87	B86	B88
MI-PCA	PC1	PC2	PC3	PC4	PC5	PC9	PC12	PC6	PC16	PC15

Fig. 2. Classification accuracy of training data

Fig. 3. Classification accuracy of test data

MI value are used as the input to a supervised maximum likelihood classifier (MLC) individually and their classification accuracy is measured with respect to 10 different classes. All the feature extraction methods are evaluated in terms of clas-

Table 2. No of training and testing samples in each class

Class	Class name	Pixels	Pixels of
no		training set	testing set
1	Hay-windrowed	143	144
2	Soybean-notill	182	72
3	woods	252	63
4	Wheat	78	54
5	Grass-trees	147	96
6	corn-notill	224	68
7	Corn-min	77	88
8	Soybean-min	132	198
9	Grass-pasture	88	45
10	Stone stell tower	48	24

sification accuracy and are listed in Table-1 and Fig-2 and 3. We can see that the new ranked features obtain by MI-PCA provide better discrimination than the order obtained by traditional PCA. It can also be seen that MI-PCA performs better in 7 cases out of 8 cases for both the training and test data. This is due to the fact that, mutual information orders the features according to their relevancy, whereas the PCA orders the data based on the global variance. Fig-1 shows a visual representation of the benefits of using mutual information. Notice that even though PC7 has higher variance it contains just noise where PC12 contains spatial information that can be used in the classification process. These images highlight the main limitation of PCA, i.e. maximum variance does not guarantee maximum information. From the above experimental result it can be said that, features selected using a combination of maximum spatial similarity and variance can provide better discrimination and a corresponding increase in classification accuracy.

Table 3. Feature extraction algorithms for comparison

Name	Feature extraction algorithm
PCA	Principal component analysis
MI-Org	Mutual information between origi-
	nal data and their mean channel
MI-PCA	Mutual information based principal
	component analysis

5. CONCLUSION

In this research we have demonstrated the advantages of combining nonparametric mutual information with unsupervised Principal Component Analysis and its effects on classification accuracy. The selection criterion of this method is based on maximizing MI, which has natural applicability to multi-class problems and non-Gaussian data. The proposed method can identify features that can obtain 80%(best among three) classification accuracy with only 10 features for test data.

6. REFERENCES

- [1] R. Archibald and G. Fann, "Feature selection and classification of hyperspectral images with support vector machines," *IEEE Geoscience and Remote Sensing Letters*, vol. 4 no. 4, pp. 674–677, October 2007.
- [2] G.F. Hughes, "On the mean accuracy of statistical pattern recognizers," *IEEE Transactions on Information Theory*, vol. IT-14 no. 1, pp. 55–63, January 1968.
- [3] AVIRIS, "Airborne visible/infrared imaging spectrometer," [Online], vol. Available: http://aviris.jpl.nasa.gov/.
- [4] B. Guo, R. Gunn, R.I. Damper, and J.D.B. Nelson, "https://engineering.purdue.edu/ multispec/hyperspectral.html,".
- [5] J. Yang, P. Yu, and B. Kuo, "A nonparametric feature extraction and its application to nearest neighbour classification for hyperspectral image data," *IEEE Transaction on Geoscience and Remote Sensing*, vol. 48 no. 3, pp. 1279–1293, March 2010.
- [6] S. Tajudin and D.A. Landgrebe, "Covariance estimation with limited training samples," *IEEE Transactions on Geoscience and Remote Sensing*, vol. 37, pp. 2113–2118, July 1999.
- [7] C. Lee and D.A. Landgrebe, "Feature extraction based on decision boundaries," *IEEE Transaction on Pattern Analysis and Machine Intelligence*, vol. 15 no. 4, pp. 388–400, April 1993.
- [8] L.O. Jimenez and D.A. Landgrebe, "Supervised classification in high dimensional space: Geometrical, statistical, and asymptotical properties of multivariate data,"

- *IEEE Transaction on Systems, Man, Cybernetics-Part c*, vol. 28 no. 1, pp. 39–54, February 1998.
- [9] Landgrebe D.A., *Signal Theory Methods in Multispectral Remote Sensing*, A John Wiley and Sons Publication, Hoboken, New Jersy, 2003.
- [10] Richards J.A. and X. Jia, *Remote Sensing Digital Image*Analysis, 4th Edition, Springer-verlag Berlin Heidelberg, Germany, 2006.
- [11] S. Subramanian, N. Gat, M. Sheffield, J. Barhen, and N. Toomarian, "Methodology for hyperspectral image classification using novel neural network," *Algorithms* for Multispectral and Hyperspectral Imagery III, SPIE, vol. 3071–Orlando, FL, pp. 1–9, 1997.
- [12] Borges J.S. and A.R.S. Marcal, Evaluation of Feature Extraction and Reduction Methods for Hyperspectral Images, New Developments and Challenges in Remote Sensing, Millpress, Rotterdam, ISSBN 978-90-5966-053-3, 2007.
- [13] N. Yao, Z. Lin, and J. Zhang, "Feature selection based on mutual information and its application in hyperspectral image classification," KSEM 2010 Proceedings of the 4th International Conference on Knowledge Science, Engineering and Management, pp. 561–566, 2010.
- [14] N. Kwak and C. H. Choi, "Input feature selection by mutual information based on parzen window," *IEEE Transaction on Pattern Analysis and Machine Intelligence*, vol. 24 no. 12, pp. 1065–1076, December 2002.
- [15] Gobzalez R.C. and R.E. Woods, *Digital Image Process-ing, Third Edition*, Addison-Wesley Publishing Company, 2008.
- [16] D.F. Vitale, G. Lauria, N. Pelaggi, G. Gerundo, C. Bordini, D. Leosco, C. Rengo, and F. Rengo, "Optimal number of averaged frames for noise reduction of ultrasound images," *Computers in Cardiology, Proceedings*, pp. 639 –641, September 1993.
- [17] J.A. Benediktsson, J.R. Sveinsson, and K. Arnason, "Classification and feature extraction of aviris data," *IEEE Transaction on Geoscience and Remote Sensing*, vol. 33 no. 5, pp. 1194–1205, September 1995.
- [18] S.B. Serpico and G. Moser, "Extraction of spectral channels from hyperspectral images for classification purposes," *IEEE Transaction on Geoscience and Remote Sensing*, vol. 45 no. 2, pp. 484–495, February 2007.