Problem 1: (20 pnts) Consider gradient descent with fixed step size $\eta > 0$:

$$x_{k+1} = x_k - \eta \nabla f(x_k)$$

Given a>0, make a convex function $f_a(x)$ so that, from any initial point, the above converges linearly for all step sizes $\eta < a$, and diverges for all $\eta > a$. Here linear convergence means that there exists some c<1 such that $||x_k - x_*|| \le c^k$; of course this c will depend on η and a.

For full credit, you would need to prove both statements: that for $\eta > a$ it diverges from any initial point that is not already optimal, and for $\eta < a$ it converges linearly from any initial point.

Problem 1

Take
$$f(x) = \frac{1}{\alpha} \cdot x^{2}$$

then $\chi_{k+1} = \chi_{k} - \eta_{1} \cdot \frac{2}{\alpha} \cdot \chi_{k}$

$$= \left(1 - \frac{2\eta_{1}}{\alpha}\right) \chi_{k}$$

Note $x^{*} = 0$

$$\chi_{k} \rightarrow 0 \quad \text{if} \quad \left[1 - \frac{2\eta_{1}}{\alpha}\right] < 1$$

$$\left[\chi_{k}\right] \rightarrow \omega \quad \text{if} \quad \left[1 - \frac{2\eta_{1}}{\alpha}\right] > 1$$

As $a, \eta > 0 \quad p_{0}$

$$\left[1 - \frac{2\eta_{1}}{\alpha}\right] \stackrel{?}{\otimes} 1 \iff 1 - \frac{2\eta_{1}}{\alpha} < -1$$

$$\stackrel{?}{\otimes} \eta > a$$

Similarly $\left[1 - \frac{2\eta_{1}}{\alpha}\right] < 1 \iff 1 - \frac{2\eta_{1}}{\alpha} > -1$

$$\left(as \quad 1 - \frac{2\eta_{1}}{\alpha} > 0 \quad \forall \eta_{1} < \infty\right)$$

$$\stackrel{?}{\otimes} \eta < a$$

In many real-world scenarios our data has millions of dimensions, but a given example has only hundreds of non-zero features. For example, in document analysis with word counts for features, our dictionary may have millions of words, but a given document has only hundreds of unique words. In this question we will make l_2 regularized SGD efficient when our input data is sparse. Recall that in l_2 regularized logistic regression, we want to maximize the following objective (in this problem we have excluded w_0 for simplicity):

$$F(\mathbf{w}) = \frac{1}{N} \sum_{j=1}^{N} l(\mathbf{x}^{(j)}, y^{(j)}, \mathbf{w}) - \frac{\lambda}{2} \sum_{i=1}^{d} \mathbf{w}_{i}^{2}$$

where $l(\mathbf{x}^{(j)}, y^{(j)}, \mathbf{w})$ is the logistic objective function

$$l(\mathbf{x}^{(j)}, y^{(j)}, \mathbf{w}) = y^{(j)} (\sum_{i=1}^{d} \mathbf{w}_{i} \mathbf{x}_{i}^{(j)}) - \ln(1 + \exp(\sum_{i=1}^{d} \mathbf{w}_{i} \mathbf{x}_{i}^{(j)}))$$

and the remaining sum is our regularization penalty.

When we do stochastic gradient descent on point $(\mathbf{x}^{(j)}, y^{(j)})$, we are approximating the objective function as

$$F(\mathbf{w}) \approx l(\mathbf{x}^{(j)}, y^{(j)}, \mathbf{w}) - \frac{\lambda}{2} \sum_{i=1}^{d} \mathbf{w}_{i}^{2}$$

Definition of sparsity: Assume that our input data has d features, i.e. $\mathbf{x}^{(j)} \in \mathbb{R}^d$. In this problem, we will consider the scenario where $\mathbf{x}^{(j)}$ is sparse. Formally, let s be average number of nonzero elements in each example. We say the data is sparse when s << d. In the following questions, your answer should take the sparsity of $\mathbf{x}^{(j)}$ into consideration when possible. Note: When we use a sparse data structure, we can iterate over the non-zero elements in O(s) time, whereas a dense data structure requires O(d) time.

- [2 points] Let us first consider the case when λ = 0. Write down the SGD update rule for w_t when λ = 0, using step size η, given the example (x^(j), y^(j)).
 - * ANSWER: The update rule can be written as

$$\mathbf{w}_{i}^{(t+1)} \leftarrow \mathbf{w}_{i}^{(t)} + \eta \mathbf{x}_{i}^{(j)} \left(y^{(j)} - \frac{1}{1 + \exp(-\sum_{k} \mathbf{w}_{k} x_{k}^{(j)})} \right)$$

2. [4 points] If we use a dense data structure, what is the average time complexity to update w_t when λ = 0? What if we use a sparse data structure? Justify your answer in one or two sentences.

ANSWER: The time complexity to calculate $\sum_k \mathbf{w}_k x_k^{(j)}$ is O(d) when the data structure is dense, and O(s) when the data structure is sparse. Note that even if we update \mathbf{w}_i for all i, we only need to calculate $\sum_k \mathbf{w}_k x_k^{(j)}$ once, and then update the \mathbf{w}_i such that $\mathbf{x}_i^{(j)} \neq 0$. So the answer is O(d) for the dense case, and O(s) for the sparse case.

[2 points] Now let us consider the general case when λ > 0. Write down the SGD update rule for w_t when λ > 0, using step size η, given the example (x^(f), y^(f)).

★ ANSWER:

$$\mathbf{w}_{i}^{(t+1)} \leftarrow \mathbf{w}_{i}^{(t)} - \eta \lambda \mathbf{w}_{i}^{(t)} + \eta \mathbf{x}_{i}^{(j)} \left(y^{(j)} - \frac{1}{1 + \exp(-\sum_{k} \mathbf{w}_{k} x_{k}^{(j)})} \right)$$

- 4. [2 points] If we use a dense data structure, what is the average time complexity to update w_t when λ > 0?
 - \bigstar ANSWER: The time complexity is O(d)
- 5. [4 points] Let w_i^(t) be the weight vector after t-th update. Now imagine that we perform k SGD updates on w using examples (x^(t+1), y^(t+1)), ···, (x^(t+k), y^(t+k)), where x_i^(j) = 0 for every example in the sequence. (i.e. the i-th feature is zero for all of the examples in the sequence). Express the new weight, w_i^(t+k) in terms of w_i^(t), k, η, and λ.

 \bigstar ANSWER: When $\mathbf{x}_{t}^{(j)} = 0$,

$$\mathbf{w}_{t}^{(t+1)} = \mathbf{w}_{t}^{(t)} - \eta \lambda \mathbf{w}_{t}^{(t)} = \mathbf{w}_{t}^{(t)} (1 - \eta \lambda)$$

so the answer is

$$\mathbf{w}_{t}^{(t+k)} = \mathbf{w}_{t}^{(t)} (1 - \eta \lambda)^{k}$$

6. [6 points] Using your answer in the previous part, come up with an efficient algorithm for regularized SGD when we use a sparse data structure. What is the average time complexity per example? (Hint: when do you need to update w₄?)

```
Initialize c_i \leftarrow 0 for i \in \{1, 2, \dots, d\}

for j \in \{1, 2, \dots, n\} do
\begin{vmatrix} \hat{p} \leftarrow \frac{1}{1 + \exp(-\sum_k \mathbf{w}_k \mathbf{z}_k^{(j)})} \\ \text{for } i \text{ such that } \mathbf{x}_i^{(j)} \neq 0 \text{ do} \end{vmatrix}
\begin{vmatrix} k \leftarrow j - c_i; & \text{auxiliary variable } c_i \text{ holds the index of last time we see } \mathbf{x}_i^{(j)} \neq 0 \\ \mathbf{w}_i \leftarrow \mathbf{w}_i (1 - \eta \lambda)^k; & \text{apply all the regularization updates} \\ \mathbf{w}_i \leftarrow \mathbf{w}_i + \eta \mathbf{x}_i^{(j)} \left( y^{(j)} - \hat{p} \right); & \text{regularization is done in previous step} \\ c_i \leftarrow j; & \text{remember last time we see } \mathbf{x}_i^{(j)} \neq 0 \\ \text{end} \end{vmatrix}
```

\bigstar ANSWER: The idea is to only update \mathbf{w}_i when $\mathbf{x}_i^{(j)} \neq 0$. Before we do the update, we apply all the regularization updates we skipped before, using the answer from previous question. You can checkout Algorithm 1 for details. Using this trick, each update takes O(s) time. (Note: we can use the same trick applies for SGD with l_1 regularization)

Which of the following functions is convex in $x \in \mathbb{R}^n$?

- (a) ||x||_{1/2}
- (b) √||x||₂
- (c) max_j √x_j
- (d) $\min_i a_i^T x$
- [e] $\log \sum_{j} \exp(x_{j})$

Consider the five functions x, x^2, x^3, x^4, x^5 . Which of these functions are convex on \mathbb{R} ? Which are strictly convex on \mathbb{R} ? Which are strongly convex on \mathbb{R} ? Which are strongly convex on [0.5, 4.5]? NO EXPLANATIONS REQUIRED! [12 points]

Convex: [3 pts] x, x^2, x^4

Strictly convex: [3 pts] x^2, x^4

Strongly convex: [3 pts] x^2

Strongly convex on [0.5, 4.5]: [3 pts] x^2, x^3, x^4, x^5

(a) Given a vector $a \in \mathbb{R}^n$ and a scalar t > 0, give a closed form equation for the optimum of the following optimization problem

$$\min_{u} \qquad ||u - a||_{2}^{2}$$

$$s.t. \quad ||u||_{\infty} \le t$$

Solution: This is equivalent to $\forall_i \min_{u_i} |u_i - a_i|^2$ s.t. $u_i \leq t$. If $a_i > 0$, $u_i = \min(a_i, t)$. If $a_i < 0$, $u_i = -\min(-a_i, t)$.

(c) Let f(x), where $x \in \mathbb{R}^n$ be a convex function (not necessarily smooth). Define g(x,y) = f(x+y) for all $x,y \in \mathbb{R}^n$. Is g a convex function on \mathbb{R}^{2n} ? If yes, prove it. If no, give a simple counter-example.

Solution: $g(\lambda x_1 + (1 - \lambda)x_2, \lambda y_1 + (1 - \lambda)y_2)$

$$= f(\lambda(x_1 + y_1) + (1 - \lambda)(x_2 + y_2))$$

$$\leq \lambda f(x_1 + y_1) + (1 - \lambda)f(x_2 + y_2)$$
 f is convex.

$$= \lambda g(x_1, y_1) + (1 - \lambda)g(x_2, y_2).$$