电磁场与电磁波 公式总结

编者:

朱桐

审校:

郑晓静

For my Angel – Miss. Zheng

目录

第一章	、矢量分析	1
1.1	矢量代数	1
1.2	三种常用的正交曲线坐标系	1
1.3	标量场的梯度	2
1.4	矢量场的通量与散度	2
1.5	矢量场的环流和旋度	4
1.6	拉普拉斯运算与格林定理	5
1.7	亥姆霍兹定理	5
第二章	电磁场的基本规律	7
2.1	电子电荷值	7
2.2	电荷密度	7
2.3	电流	8
2.4	库仑定律 (Coulomb)	9
2.5		10
2.6	静电场	10
2.7	安培力定律	11
2.8	at by a series	11
2.9	恒定磁场的散度和旋度	12
2.10		12
2.1		13
2.13		13
2.13	3 磁场强度	14

2.14	欧姆定律	15
2.15	法拉第电磁感应定律	15
2.16	全电流定理	16
2.17	麦克斯韦方程组	16
2.18	边界条件的一般表达式	17
第三章	静态电磁场及其边值问题的解	19
3.1	静电场基本方程	19
3.2	静电场边界条件	19
3.3	场矢量的折射关系	20
3.4	导体表面的边界条件	20
3.5	电位函数	20
3.6	电位的微分方程(泊松与拉普拉斯方程)	21
3.7	静电位的边界条件	22
3.8	电容	22
3.9	静电场的能量和能量密度	23
3.10	恒定电场基本方程及边界条件	24
3.11	恒定电场与静电场的比拟(图 3.3)	25
3.12	漏电导	26
3.13	恒定磁场的基本方程和边界条件	27
3.14	恒定磁场的矢量磁位	28
3.15	恒定磁场的标量磁位	29
3.16	磁标位与静电位的比较(图 3.4)	31
3.17	磁通量	31
3.18	自感	31

第一章 矢量分析

1.1 矢量代数

1.

$$\vec{A} \cdot \vec{B} = AB\cos\theta \tag{1.1}$$

$$\vec{A} \perp \vec{B} \Rightarrow \vec{A} \cdot \vec{B} = 0 \tag{1.2}$$

$$\vec{A} \parallel \vec{B} \Rightarrow \vec{A} \cdot \vec{B} = AB \tag{1.3}$$

2.

$$\vec{A} \times \vec{B} = \vec{e}_n A B \sin \theta \tag{1.4}$$

$$\vec{A} \times \vec{B} = \begin{vmatrix} \vec{e}_x & \vec{e}_y & \vec{e}_z \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$$

$$\vec{A} \perp \vec{B} \Rightarrow |\vec{A} \times \vec{B}| = AB$$

$$(1.5)$$

$$\vec{A} \perp \vec{B} \Rightarrow \left| \vec{A} \times \vec{B} \right| = AB$$
 (1.6)

$$\vec{A} \parallel \vec{B} \Rightarrow \left| \vec{A} \times \vec{B} \right| = 0 \tag{1.7}$$

$$\vec{A} \cdot (\vec{B} \times \vec{C}) = \vec{B} \cdot (\vec{C} \times \vec{A}) = \vec{C} \cdot (\vec{A} \times \vec{B})$$
 (1.8)

$$\vec{A} \times (\vec{B} \times \vec{C}) = (\vec{A} \cdot \vec{C}) \vec{B} - (\vec{A} \cdot \vec{B}) \cdot \vec{C} \tag{1.9}$$

三种常用的正交曲线坐标系

- 1. 直角坐标系图 1.1
- 2. 圆柱坐标系图 1.2

图 1.1: 直角坐标系

3. 球坐标系图 1.3

1.3 标量场的梯度

1. 方向导数

$$\frac{\partial u}{\partial l}|_{M_0} = \lim_{\Delta l \to 0} \frac{\Delta u}{\Delta l} = \frac{\partial u}{\partial x} \cos \alpha + \frac{\partial u}{\partial y} \cos \beta + \frac{\partial u}{\partial z} \cos \gamma$$
 (1.10)

2. 梯度

$$\nabla u = \vec{e}_x \frac{\partial u}{\partial x} + \vec{e}_y \frac{\partial u}{\partial y} + \vec{e}_z \frac{\partial u}{\partial z}$$
 (1.11)

1.4 矢量场的通量与散度

1. 通量

$$\psi = \int d\psi = \int_{S} \vec{F} \cdot d\vec{S} = \int_{S} \vec{F} \cdot \vec{e}_{n} dS$$
 (1.12)

图 1.2: 圆柱坐标系

图 1.3: 球坐标系

2. 散度

$$\nabla \cdot \vec{F}(x, y, z) = \lim_{\Delta V \to 0} \frac{\oint_{S} \vec{F}(x, y, z) \cdot d\vec{S}}{\Delta V}$$

$$\nabla \cdot \vec{F} = \frac{\partial F_{x}}{\partial x} + \frac{\partial F_{y}}{\partial y} + \frac{\partial F_{z}}{\partial z}$$
(1.13)

$$\nabla \cdot \vec{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z} \tag{1.14}$$

矢量场的环流和旋度 1.5

1. 环流

$$\Gamma = \oint_C \vec{F}(x, y, z) \cdot d\vec{l}$$
 (1.15)

2. 环流面密度

$$\operatorname{rot}_{n}\vec{F} = \lim_{\Delta S \to 0} \frac{1}{\Delta S} \oint_{C} \vec{F} \cdot d\vec{l}$$
 (1.16)

3. 旋度

$$\begin{aligned} \operatorname{rot}_{n}\vec{F} &= \vec{e}_{n} \cdot \nabla \times \vec{F} \\ \nabla \times \vec{F} &= \vec{e}_{n} [\operatorname{rot}_{n} \vec{F}]_{\max} \\ &= \vec{e}_{x} \left(\frac{\partial F_{z}}{\partial y} - \frac{\partial F_{y}}{\partial z} \right) + \vec{e}_{y} \left(\frac{\partial F_{x}}{\partial z} - \frac{\partial F_{z}}{\partial x} \right) + \vec{e}_{z} \left(\frac{\partial F_{y}}{\partial x} - \frac{\partial F_{x}}{\partial y} \right) \\ &= \begin{vmatrix} \vec{e}_{x} & \vec{e}_{y} & \vec{e}_{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_{x} & F_{y} & F_{z} \end{vmatrix} \end{aligned}$$

4. 两个恒等式

$$\nabla \cdot (\nabla \times \vec{F}) \equiv 0 \tag{1.17}$$

$$\nabla \times (\nabla u) \equiv 0 \tag{1.18}$$

5. Stocks 定理

$$\oint_C \vec{F} \cdot d\vec{l} = \int_S \nabla \times \vec{F} \cdot d\vec{S}$$
 (1.19)

1.6 拉普拉斯运算与格林定理

1. 格林定理 (第一条是第一定理,后两条是第二定理)

$$\int_{V} (\nabla \Psi \cdot \nabla \Phi + \Psi \nabla^{2} \Phi) dV = \oint_{S} (\Psi \nabla \Phi) \cdot d\vec{S}$$
 (1.20)

$$\int_{V} (\Psi \nabla^{2} \Phi - \Phi \nabla^{2} \Psi) dV = \oint_{S} (\Psi \nabla \Phi - \Phi \nabla \Psi) \cdot d\vec{S}$$
 (1.21)

$$\int_{V} (\Psi \nabla^{2} \Phi - \Phi \nabla^{2} \Psi) dV = \oint_{S} (\Psi \frac{\partial \Phi}{\partial n} - \Phi \frac{\partial \Psi}{\partial n}) dS$$
 (1.22)

1.7 亥姆霍兹定理

1. 亥姆霍兹定理

$$\vec{F}(\vec{r}) = -\nabla u(\vec{r}) + \nabla \times \vec{A}(\vec{r})$$
 (1.23)

$$u(\vec{r}) = \frac{1}{4\pi} \int_{V} \frac{\nabla' \cdot \vec{F}(\vec{r}')}{|\vec{r} - \vec{r}'|} dV'$$
 (1.24)

$$\vec{A}(\vec{r}) = \frac{1}{4\pi} \int_{V} \frac{\nabla' \times \vec{F}(\vec{r}')}{|\vec{r} - \vec{r}'|} dV'$$
 (1.25)

第二章 电磁场的基本规律

2.1 电子电荷值

$$e = 1.60219933 \times 10^{-19}$$
 C

2.2 电荷密度

电荷体密度

$$\rho(\vec{r}) = \lim_{\Delta V \to 0} \frac{\Delta q(\vec{r})}{\Delta V} = \frac{\mathrm{d}q(\vec{r})}{\mathrm{d}V} \quad C/m^3$$
$$q = \int_{V} \rho(\vec{r}) \mathrm{d}V$$

电荷面密度

反过来求电荷:

$$\rho(\vec{r}) = \lim_{\Delta S \to 0} \frac{\Delta q(\vec{r})}{\Delta S} = \frac{\mathrm{d}q(\vec{r})}{\mathrm{d}S} \quad C/m^2$$
$$q = \int_{S} \rho_{S}(\vec{r}) \mathrm{d}S$$

电荷线密度

$$\rho(\vec{r}) = \lim_{\Delta l \to 0} \frac{\Delta q(\vec{r})}{\Delta l} = \frac{\mathrm{d}q(\vec{r})}{\mathrm{d}l} \quad C/m$$

$$q = \int_{S} \rho_{S}(\vec{r}) dl$$

点电荷密度

$$\rho(\vec{r}) = q \cdot \delta(\vec{r} - \vec{r}')$$

其中,带"′"的是源点,不带的是场点。

2.3 电流

$$i = \lim_{\Delta t \to 0} \frac{\Delta q}{\Delta t} = \frac{\mathrm{d}q}{\mathrm{d}t} \quad A$$

电流方向为正电荷流动方向。不随时间变化的电流称为恒定电流:"I"。

体电流

电流密度矢量:

$$\vec{J} = \vec{e_n} \lim_{\Delta S \to 0} \frac{\Delta i}{\Delta S} = \vec{e_n} \cdot \frac{\mathrm{d}i}{\mathrm{d}S} \quad A/m^2$$

流过任意曲面的电流:

$$i = \int_{S} \vec{J} \cdot d\vec{S}$$

面电流

电流密度矢量:

$$\vec{J}_S = \vec{e_t} \lim_{\Delta l \to 0} \frac{\Delta i}{\Delta l} = \vec{e_t} \cdot \frac{\mathrm{d}i}{\mathrm{d}l} \quad A/m$$

通过薄导体层上任意有向曲线 1 的电流为:

$$i = \int \vec{J} \cdot \left(\vec{e_n} \times d\vec{l} \right)$$

其中, $\vec{e_n}$ 为平面法线方向, $\vec{e_t}$ 为有向曲线方向。

9

线电流

长度元 dl; 电流元: Idl。

电流连续性方程

流出闭曲面的电流等于体积 V 内单位时间所减少的电荷量。积分式 (总电荷增加率的负值):

$$I = \oint_{S} \vec{J} \cdot d\vec{S} = -\frac{dq}{dt} = -\frac{d}{dt} \int_{V} \rho dV$$

微分式(电荷密度增加率):

$$\nabla \cdot \vec{J} = -\frac{\partial \rho}{\partial t}$$

恒定电流的连续性方程:

$$\frac{\partial \rho}{\partial t} = 0 \Rightarrow \nabla \cdot \vec{J} = 0, \quad \oint_{S} \vec{J} \cdot d\vec{S} = 0$$

恒定电流是无源场,电流线是连续的闭合曲线,既无起点也无终点。

传导电流密度

$$\vec{J} = \rho \vec{v}$$

2.4 库仑定律 (Coulomb)

真空中静止点电荷 q_1 对 q_2 的作用力:

$$\vec{F}_{12} = \vec{e}_R \frac{q_1 q_2}{4\pi\varepsilon_0 R_{12}^2} = \frac{q_1 q_2 \vec{R}_{12}}{4\pi\varepsilon_0 R_{12}^3}$$

(自由空间中) ε_0 : 真空中的介电常数, $\varepsilon_0 \approx \frac{1}{36\pi} \times 10^{-19} \approx 8.85 \times 10^{-12}$ F/m

2.5 电场强度

$$\vec{E}(\vec{r}) = \lim_{q_0 \to 0} \frac{\vec{F}(\vec{r})}{q_0}$$

 q_0 为试验电荷。真空中静止点电荷 q 激发的电场为:

$$\vec{E}(\vec{r}) = \frac{q\vec{R}}{4\pi\varepsilon_0 R^3} \quad (\vec{R} = \vec{r} - \vec{r}')$$

体密度为 $\rho(\vec{r})$ 的体分布电荷产生的电场强度:

$$\vec{E}(\vec{r}) = \sum_{i} \frac{\rho(\vec{r}_{i}') \ V'_{i} \vec{R}_{i}}{4\pi\varepsilon_{0} R_{i}^{3}}$$
$$= \frac{1}{4\pi\varepsilon_{0}} \int_{V} \frac{\rho(\vec{r}') \vec{R}}{R^{3}} dV'$$

面密度为 $\rho_S(\vec{r})$ 的面分布电荷的电场强度:

$$\vec{E}(r') = \frac{1}{4\pi\varepsilon_0} \int_S \frac{\rho_S(\vec{r'})\vec{R}}{R^3} dS'$$

线密度为 $\rho_l(\vec{r})$ 的线分布电荷的电场强度:

$$\vec{E}(r') = \frac{1}{4\pi\varepsilon_0} \int_C \frac{\rho_l(\vec{r'})\vec{R}}{R^3} dl'$$

2.6 静电场

静电场散度与高斯定理

静电场散度:

微分形式:

$$\nabla \cdot \vec{E}(\vec{r}) = \frac{\rho(\vec{r})}{\varepsilon_0}$$

积分形式 (高斯定理):

$$\oint_{S} \vec{E}(\vec{r}) \cdot d\vec{S} = \frac{1}{\varepsilon_0} \int_{V} \rho(\vec{r}) dV$$

静电场是有源场。

2.7 安培力定律

静电场旋度与环路定理

静电场旋度: 微分:

$$\nabla \times \vec{E}(\vec{r}) = 0$$

11

积分 (环路定理):

$$\oint_C \vec{E}(\vec{r}) \cdot d\vec{l} = 0$$

静电场是无旋场(保守场),电场力做功与路径无关。

2.7 安培力定律

真空中载流回路 C_1 对载流回路 C_2 的作用力:

$$\vec{F}_{12} = \frac{\mu_0}{4\pi} \oint_{C_2} \oint_{C_1} \frac{I_2 d\vec{l}_2 \times (I_1 d\vec{l}_1 \times \vec{R}_{12})}{R_{12}^3}$$

$$\vec{F}_{12} = \oint_{C_2} I_2 d\vec{l}_2 \times \left(\frac{\mu_0}{4\pi} \oint_{C_1} \frac{I_1 d\vec{l}_1 \times \vec{R}_{12}}{R_{12}^3}\right) = \oint_{C_2} I_2 d\vec{l}_2 \times \vec{B}_1(\vec{r}_2)$$

其中, $\vec{B}_1(\vec{r}_2)=\frac{\mu_0}{4\pi}\oint_{C_1}\frac{I_1\mathrm{d}\vec{l}_1\times\vec{R}_{12}}{R_{12}^3}$ 为电流 I_1 在电流元 $I_2\mathrm{d}\vec{l}_2$ 处产生的磁感应强度。

2.8 磁感应强度

任意电流回路 C 产生的磁感应强度

$$\vec{B}(\vec{r}) = \frac{\mu_0}{4\pi} \oint_C \frac{I d\vec{l'} \times (\vec{r} - \vec{r'})}{|\vec{r} - \vec{r'}|^3} = \frac{\mu_0}{4\pi} \oint_C \frac{I d\vec{l'} \times \vec{R}}{R^3}$$

电流元 Idl 产生的磁感应强度

$$d\vec{B}(\vec{r}) = \frac{\mu_0}{4\pi} \frac{I d\vec{l'} \times (\vec{r} - \vec{r'})}{|\vec{r} - \vec{r'}|^3}$$

体电流激发的磁场

$$\vec{B}(\vec{r}) = \frac{\mu_0}{4\pi} \int_V \frac{J(\vec{r}') \times \vec{R}}{R^3} dV'$$

面电流激发的磁场

$$\vec{B}(\vec{r}) = \frac{\mu_0}{4\pi} \int_S \frac{J_S(\vec{r}') \times \vec{R}}{R^3} dS'$$

2.9 恒定磁场的散度和旋度

恒定磁场的散度与磁通连续性原理: 恒定场散度:

$$\nabla \cdot \vec{B}(\vec{r}) = 0$$

磁通连续性原理:

$$\oint_{S} \vec{B}(\vec{r}) \cdot d\vec{S} = 0$$

恒定磁场是无源场,磁感应线是无起点和终点的闭合曲线。恒定磁场的旋度与安培环路定理:恒定磁场的旋度(微分形式):

$$\nabla \times \vec{B}(\vec{r}) = \mu_0 \vec{J}(\vec{r})$$

安培环路定理(积分形式):

$$\oint_C \vec{B}(\vec{r}) \cdot d\vec{l} = \mu_0 \int_S \vec{J}(\vec{r}) \cdot d\vec{S} = \mu_0 I$$

恒定磁场是有旋场,是非保守场、电流是磁场的旋涡源。

2.10 极化强度矢量 \vec{P} (C/m^2)

介质极化程度:

$$\vec{P} = \lim_{\Delta V \to 0} \frac{\sum \vec{p_i}}{\Delta V} = n\vec{p} = \chi_e \varepsilon_0 \vec{E}$$

2.11 电位移矢量 13

其中, $\vec{p}=q\vec{l}$: 分子平均电偶极矩; $\chi_e(>0)$: 电介质的电极化率。面积 S 所围体积内的极化电荷 q_p 为:

$$q_P = -\oint_{S} \vec{P} \cdot d\vec{S} = -\int_{V} \nabla \cdot \vec{P} dV \Rightarrow \rho_p = -\nabla \cdot \vec{P}$$

电介质表面极化电荷面密度:

$$\rho_{SP} = \vec{P} \cdot \vec{e}_n$$

2.11 电位移矢量

$$\vec{D} = \varepsilon_0 \vec{E} + \vec{P} \quad (C/m^2)$$
$$\nabla \vec{D} = \rho$$
$$\oint \vec{D} d\vec{S} = \int_V \rho dV$$

任意闭合曲面电位移矢量 D 的通量等于该曲面包含自由电荷的代数和。

$$\begin{cases} \nabla \vec{D} = \rho \\ \nabla \times \vec{E} = 0 \end{cases}, \qquad \begin{cases} \oint_{S} \vec{D} \cdot d\vec{S} = \int_{V} \rho dV \\ \oint_{C} \vec{E}(\vec{r}) \cdot d\vec{l} = 0 \end{cases}$$

$$\vec{P} = \chi_e \varepsilon_0 \vec{E}$$

$$\vec{D} = \varepsilon_0 (1 + \chi_e) \vec{E} = \varepsilon \vec{E} = \varepsilon_r \varepsilon_0 \vec{E}$$

有源无旋场。

2.12 磁化强度矢量

$$\vec{M} = \lim_{\Delta V \rightarrow 0} \frac{\sum \vec{p}_{\mathrm{m}}}{\Delta V} = n \vec{p}_{\mathrm{m}} \quad A/m$$

$$dI_M = n\vec{p_m} \cdot d\vec{l} = \vec{M} \cdot d\vec{l}$$

穿过曲面 S 的磁化电流:

$$I_M = \oint_C \mathrm{d}I_M = \oint_C \vec{M} \cdot \mathrm{d}\vec{l} = \int_S \nabla \times \vec{M} \cdot \mathrm{d}\vec{S}$$

磁化电流体密度:

$$\vec{J}_{\mathrm{M}} = \nabla \times \vec{M}$$

磁化电流面密度:

$$\vec{J}_{\rm SM} = \vec{M} \times \vec{e}_{\rm p}$$

2.13 磁场强度

$$\vec{H} = \frac{\vec{B}}{\mu_0} - \vec{M}$$

即:

$$\vec{B} = \mu_0(\vec{H} + \vec{M})$$

介质中的安培环路定理:

$$\oint_C \vec{H}(\vec{r}) \cdot d\vec{l} = \int_S \vec{J}(\vec{r}) \cdot d\vec{S} \qquad \nabla \times \vec{H}(\vec{r}) = \vec{J}(\vec{r})$$

磁通连续性定理:

$$\oint_{S} \vec{B}(\vec{r}) \cdot d\vec{S} = 0 \qquad \nabla \cdot \vec{B}(\vec{r}) = 0$$

恒定磁场是有源无旋场,磁介质中的基本方程:

$$\begin{cases} \nabla \times \vec{H}(\vec{r}) = \vec{J}(\vec{r}) \\ \nabla \vec{B}(\vec{r}) = 0 \end{cases},$$

$$\begin{cases} \oint_C \vec{H}(\vec{r}) d\vec{l} = \int_S \vec{J}(\vec{r}) d\vec{S} \\ \oint_S \vec{B}(\vec{r}) d\vec{S} = 0 \end{cases}$$

$$\vec{M} = \chi_m \vec{H}$$

$$\vec{B} = \mu_0 (1 + \chi_m) \vec{H} = \mu \vec{H}$$

$$\mu = \mu_0 (1 + \chi_m) = \mu_0 \mu_r$$

 χ_m : 介质的磁化率 (磁化系数), μ 介质磁导率, μ_r : 介质相对磁导率。

2.14 欧姆定律

15

2.14 欧姆定律

欧姆定律的微分形式, σ 为煤质的电导率 (S/m):

$$\vec{J} = \sigma \vec{E}$$

2.15 法拉第电磁感应定律

感应电动势:

$$\varepsilon_{in} = -\frac{\mathrm{d}\Phi}{\mathrm{d}t}$$
$$= -\frac{\mathrm{d}}{\mathrm{d}t} \int_{S} \vec{B} \, \mathrm{d}\vec{S}$$

 Φ : 回路所围面积的磁通量

$$\varepsilon_{in} = \oint_C \vec{E}_{in} \cdot d\vec{l}$$

 \vec{E}_{in} : 感应电场强度

$$\oint_C \vec{E}_C \cdot d\vec{l} = 0 \Rightarrow \oint_C \vec{E}_{in} \cdot d\vec{l} = -\frac{d}{dt} \int_S \vec{B} \cdot d\vec{S}$$

$$\vec{E} = \vec{E}_{in} + \vec{E}_C$$

$$= 感应电场 + 库伦电场$$

回路不变,磁场随时间变化(感生电动势):

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{S} \vec{B} \cdot \mathrm{d}\vec{S} = \int_{S} \frac{\partial \vec{B}}{\partial t} \cdot \mathrm{d}\vec{S} \Rightarrow \oint_{C} \vec{E} \cdot \mathrm{d}\vec{l} = -\int_{S} \frac{\partial \vec{B}}{\partial t} \cdot \mathrm{d}\vec{S}$$

微分形式:

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

导体回路在恒定磁场中运动(动生电动势):

$$\varepsilon_{in} = \oint_C \vec{E} \cdot d\vec{l} = \oint_C (\vec{v} \times \vec{B}) \cdot d\vec{l}$$

回路在时变磁场中运动:

$$\varepsilon_{in} = \oint_C \vec{E} \cdot d\vec{l} = \oint_C (\vec{v} \times \vec{B}) \cdot d\vec{l} - \int_S \frac{\partial \vec{B}}{\partial t} \cdot d\vec{S}$$

2.16 全电流定理

微分形式:

$$\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$$

积分形式:

$$\oint_C \vec{H} \cdot \mathrm{d}\vec{l} = \int_s (\vec{J} + \frac{\partial \vec{D}}{\partial t}) \cdot \mathrm{d}\vec{S}$$

位移电流密度

$$\vec{J}_{\rm d} = \frac{\partial \vec{D}}{\partial t}$$

注: 在绝缘介质中,无传导电流,但有位移电流。在理想导体中,无位移电流,但有传导电流。在一般介质中,既有传导电流,又有位移电流。只有位移电流时:

$$\vec{E} = \frac{\vec{D}}{\varepsilon_0} \Leftarrow \left\{ \begin{array}{l} \nabla \cdot \vec{E}(\vec{r}) = \frac{\vec{\rho}(\vec{r})}{\varepsilon_0} \\ \nabla \cdot \vec{D} = \rho \end{array} \right.$$

2.17 麦克斯韦方程组

积分形式:

$$\oint_{S} \vec{J} \cdot d\vec{S} = -\int_{V} \rho dV$$

微分形式:

$$\begin{cases} \nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t} & \text{传导电流和变化的电场都能产生磁场} \\ \nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} & \text{变化的磁场产生电场} \\ \nabla \cdot \vec{B} = 0 & \text{磁场是无源场,磁感线总是闭合曲线} \\ \nabla \cdot \vec{D} = \rho & \text{电荷产生电场} \end{cases}$$

线型媒质本构关系:

$$\begin{cases} \vec{D} = \varepsilon \vec{E} \\ \vec{B} = \mu \vec{H} \Rightarrow \\ \vec{J} = \sigma \vec{E} \end{cases} \begin{cases} \nabla \times \vec{H} = \sigma \vec{E} + \varepsilon \frac{\partial \vec{E}}{\partial t} \\ \nabla \times \vec{E} = -\mu \frac{\partial \vec{H}}{\partial t} \\ \nabla \cdot \vec{H} = 0 \\ \nabla \cdot \vec{E} = \frac{\rho}{\varepsilon} \end{cases}$$

2.18 边界条件的一般表达式

前两项为切向边界条件,切向分量连续。后两项为法向边界条件,法向分量连续:

$$\begin{cases} \oint_{C} \vec{H} \cdot d\vec{l} = \int_{S} (\vec{J} + \frac{\partial \vec{D}}{\partial t}) \cdot d\vec{S} \\ \oint_{C} \vec{E} \cdot d\vec{l} = -\int_{S} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{S} \\ \oint_{C} \vec{B} \cdot d\vec{S} = 0 \end{cases} \Rightarrow \begin{cases} \vec{e_{n}} \times (\vec{H_{1}} - \vec{H_{2}}) = \vec{J_{S}} \\ \vec{e_{n}} \times (\vec{E_{1}} - \vec{E_{2}}) = 0 \\ \vec{e_{n}} \cdot (\vec{B_{1}} - \vec{B_{2}}) = 0 \\ \vec{e_{n}} \cdot (\vec{D_{1}} - \vec{D_{2}}) = \rho_{S} \end{cases}$$

理想导体的 E_2 、 D_2 、 H_2 、 B_2 均为 0, 故有:

$$\begin{cases} \vec{e}_n \times \vec{H} = \vec{J}_S & \text{理想导体表面上的电流密度等于}\vec{H}\text{的切向分量} \\ \vec{e}_n \times \vec{E} = 0 & \text{理想导体表面上的}\vec{E}\text{的切向分量为 0} \\ \vec{e}_n \cdot \vec{B} = 0 & \text{理想导体表面上的}\vec{B}\text{的法向分量为 0} \\ \vec{e}_n \cdot \vec{D} = \rho_S & \text{理想导体表面上的电荷密度等于}\vec{D}\text{的法向分量} \end{cases}$$

第三章 静态电磁场及其边值问题 的解

3.1 静电场基本方程

理想导体的 E_2 、 D_2 、 H_2 、 B_2 均为 0, 故有:

$$\begin{cases} \nabla \times \vec{E} = 0 & \text{理想导体表面上的}\vec{E}$$
的切向分量为 0
$$\nabla \cdot \vec{D} = \rho_S & \text{理想导体表面上的电荷密度等于}\vec{D}$$
的法向分量

积分形式:

$$\begin{cases} \oint_C \vec{E} \cdot d\vec{l} = 0 \\ \oint_S \vec{D} \cdot d\vec{S} = q \end{cases}$$

本构关系:

$$D = \varepsilon E$$

3.2 静电场边界条件

$$\begin{cases} \vec{e}_n \times (\vec{E}_1 - \vec{E}_2) = 0 \\ \vec{e}_n \cdot (\vec{D}_1 - \vec{D}_2) = \rho_S \end{cases}$$

若分界面的电荷为 0, 则 $\rho_S = 0$ 。

3.3 场矢量的折射关系

图 3.1: 场矢量折射关系

$$\frac{\tan \theta_1}{\tan \theta_2} = \frac{E_{1\mathrm{t}}/E_{1\mathrm{n}}}{E_{2\mathrm{t}}/E_{2\mathrm{n}}} = \frac{\varepsilon_1/D_{1\mathrm{n}}}{\varepsilon_2/D_{2\mathrm{n}}} = \frac{\varepsilon_1}{\varepsilon_2}$$

3.4 导体表面的边界条件

在静电平衡的情况下,导体内部的电场为 0,则导体表面的边界条件为:

$$\begin{cases} \vec{e}_n \times \vec{E} = 0 \\ \vec{e}_n \cdot \vec{D} = \rho_S \end{cases}$$

3.5 电位函数

电位函数

静电场可以用一个标量函数的梯度来表示,标量函数 ϕ 称为静电场的标量电位或简称电位。

$$\nabla \times \vec{E} = 0 \Rightarrow \vec{E} = -\nabla \phi$$

电位

连续体分布电荷电位:

$$\phi(\vec{r}) = \frac{1}{4\pi\varepsilon} \int_{V} \frac{\rho(\vec{r'})}{R} dV' + C$$

其中, C 为积分操作时产生的常数。

面电荷电位:

$$\phi(\vec{r}) = \frac{1}{4\pi\varepsilon} \int_{S} \frac{\rho_{S}(\vec{r}')}{R} dS' + C$$

线电荷电位:

$$\phi(\vec{r}) = \frac{1}{4\pi\varepsilon} \int_{l} \frac{\rho_{l}(\vec{r'}')}{R} dl' + C$$

点电荷电位:

$$\phi(\vec{r}) = \frac{1}{4\pi\varepsilon R} + C$$

电位差

电场力做功(将单位正电荷从 P 移向 Q)等于 P、Q 两点之间的电位差:

$$\int_{P}^{Q} E \cdot d\vec{l} = -\int_{P}^{Q} d\phi = \phi(P) - \phi(Q)$$

3.6 电位的微分方程(泊松与拉普拉斯方程)

在均匀介质中,有泊松方程:

$$\nabla^2 \phi = -\frac{\rho}{\varepsilon}$$

在无源区域,因为 $\rho=0$,所以有:

$$\nabla^2 \phi = 0$$

3.7 静电位的边界条件

设 P_1 和 P_2 是介质分界面两侧紧贴界面的相邻两点,其电位分别为 ϕ_1 和 ϕ_2 。当两点间距离 $\Delta l \to 0$ 时, $\phi_1 = \phi_2$ 。

$$\begin{cases} \vec{e_n} \cdot (\vec{D_1} - \vec{D_2}) = \rho_S \\ \vec{D} = -\varepsilon \nabla \phi \end{cases} \Rightarrow \varepsilon_2 \frac{\partial \phi_2}{\partial n} - \varepsilon_1 \frac{\partial \phi_1}{\partial n} = \rho_S$$

若介质分界面上无自由电荷,即 $\rho_S = 0$,则:

$$\varepsilon_2 \frac{\partial \phi_2}{\partial n} = \varepsilon_1 \frac{\partial \phi_1}{\partial n}$$

导体表面上电位的边界条件 (ϕ 为常数):

$$\varepsilon \frac{\partial \phi}{\partial n} = -\rho_S$$

3.8 电容

孤立导体的电容定义为所带电量 q 与其电位 ϕ 的比值,即

$$C = \frac{q}{\phi}$$

电容的大小只与导体系统的几何尺寸、形状和及周围电介质的特性参数有关,而与导体的带电量和电位无关。

计算电容的一般方法

- 1. 假定两导体上分别带电荷 +q 和 -q;
- 2. 计算两导体间的电场强度 E;
- 3. 由由 $U = \int_1^2 \vec{E} \cdot d\vec{l}$,求出导体间的电位差;
- 4. 用比值法 $C = \frac{q}{U}$ 求解电容。

3.9 静电场的能量和能量密度

静电场能量

$$W_{\rm e} = \frac{1}{2} q \phi$$

$$\mathrm{d}W_\mathrm{e} = \frac{1}{2}\rho\phi\mathrm{d}V$$

体分布电荷的电场能量:

$$W_{\rm e} = \frac{1}{2} \int_{V} \rho \phi \mathrm{d}V$$

面分布电荷的电场能量:

$$W_{\rm e} = \frac{1}{2} \int_{S} \rho_S \phi \mathrm{d}S$$

静电场的能量密度

电场能量密度:

$$w_{\rm e} = \frac{1}{2} \vec{D} \cdot \vec{E}$$

静电场的总能量:

$$W_{\rm e} = \frac{1}{2} \int_{V} \vec{D} \cdot \vec{E} dV$$

对于线性、各向同性介质,则有:

$$w_{\rm e} = \frac{1}{2} \vec{D} \cdot \vec{E} = \frac{1}{2} \varepsilon \vec{E} \cdot \vec{E} = \frac{1}{2} \varepsilon E^2$$

$$W_{\rm e} = \frac{1}{2} \int_V \vec{D} \cdot \vec{E} \mathrm{d}V = \frac{1}{2} \int_V \varepsilon \vec{E} \cdot \vec{E} \mathrm{d}V = \frac{1}{2} \int_V \varepsilon E^2 \mathrm{d}V$$

推证:

$$W_e = \frac{1}{2} \oint_S \phi \vec{D} \cdot d\vec{S} + \frac{1}{2} \int_V \vec{E} \cdot \vec{D} dV$$

3.10 恒定电场基本方程及边界条件

恒定电场基本方程

微分形式:

$$\left\{ \begin{array}{l} \nabla \cdot \vec{J} = 0 \\ \nabla \times \vec{E} = 0 \end{array} \right.$$

积分形式:

$$\begin{cases} \oint_{S} \vec{J} \cdot d\vec{S} = 0 \\ \oint_{C} \vec{E} \cdot d\vec{l} = 0 \end{cases}$$

线性各向同性导电媒质的本构关系:

$$\vec{J} = \sigma \vec{E}$$

若媒质是均匀的,则:

$$\nabla \cdot \vec{J} = \nabla \cdot (\sigma \vec{E}) = \sigma \nabla \cdot \vec{E} = 0 \Rightarrow \nabla \cdot \vec{E} = 0$$

恒定电场的电位函数:

$$\nabla \times \vec{E} = 0 \Rightarrow \vec{E} = -\nabla \phi$$

$$\nabla \cdot \vec{J} = 0 \Rightarrow \nabla \cdot (\sigma \nabla \phi) = 0 \Rightarrow \nabla^2 \phi = 0$$

恒定电场的边界条件

场矢量的边界条件:

$$\oint_{S} \vec{J} \cdot d\vec{S} = 0 \Rightarrow \vec{e}_{n} \cdot (\vec{J}_{1} - \vec{J}_{2}) = 0 \Rightarrow J_{1n} = J_{2n}$$

$$\oint_{C} \vec{E} \cdot d\vec{l} = 0 \Rightarrow \vec{e}_{n} \times (\vec{E}_{1} - \vec{E}_{2}) = 0 \Rightarrow E_{1t} = E_{2t}$$

场矢量的折射关系,图 3.2:

$$\frac{\tan \theta_1}{\tan \theta_2} = \frac{E_{1t}/E_{1n}}{E_{2t}/E_{2n}} = \frac{\sigma_1/J_{1n}}{\sigma_2/J_{2n}} = \frac{\sigma_1}{\sigma_2}$$

图 3.2: 恒定电场的场矢量折射关系

导电媒质分界面上的电荷面密度:

$$\rho_S = \overrightarrow{e_n} \cdot (\overrightarrow{D_1} - \overrightarrow{D_2}) = \overrightarrow{e_n} \cdot (\frac{\varepsilon_1}{\sigma_1} \overrightarrow{J_1} - \frac{\varepsilon_2}{\sigma_2} \overrightarrow{J_2}) = (\frac{\varepsilon_1}{\sigma_1} - \frac{\varepsilon_2}{\sigma_2}) J_n$$

电位的边界条件:

$$\phi_1 = \phi_2, \quad \sigma_1 \frac{\partial \phi_1}{\partial n} = \sigma_2 \frac{\partial \phi_2}{\partial n}$$

注: 恒定电场同时存在于导体内部和外部,在导体表面上的电场既有 法向分量又有切向分量,电场并不垂直于导体表面,因而导体表面不是等 位面。

3.11 恒定电场与静电场的比拟(图 3.3)

PS: 吐个槽,因为公式太多懒得画表格,就从 PPT 里面直接另存为图片的。不得不说,MathType 的公式真·吃藕。也可能是写公式的人比较懒吧。

	静电场 (ρ=0区域)	恒定电场(电源外)
基本方程	$\oint_{S} \vec{\mathbf{D}} \cdot d\vec{\mathbf{S}} = 0, \oint_{C} \vec{\mathbf{E}} \cdot d\vec{\mathbf{I}} = 0$	$\oint_{S} \vec{\mathbf{J}} \cdot d\vec{\mathbf{S}} = 0, \oint_{C} \vec{\mathbf{E}} \cdot d\vec{\mathbf{l}} = 0$
	$\nabla \cdot \vec{D} = 0, \ \nabla \times \vec{E} = 0$	$\nabla \cdot \vec{\mathbf{J}} = 0, \nabla \times \vec{\mathbf{E}} = 0$
本构关系	$\vec{\mathbf{D}} = \varepsilon \vec{\mathbf{E}}$	$\vec{\mathbf{J}} = \sigma \vec{\mathbf{E}}$
位函数	$\vec{\mathbf{E}} = -\nabla \phi, \qquad \nabla^2 \phi = 0$	$\vec{\mathbf{E}} = -\nabla \phi, \nabla^2 \phi = 0$
江田夕加	$E_{1t} = E_{2t} D_{1n} = D_{2n}$	$E_{\mathrm{lt}} = E_{\mathrm{2t}} J_{\mathrm{ln}} = J_{\mathrm{2n}}$
边界条件	$\phi_1 = \phi_2, \varepsilon_1 \frac{\partial \phi_1}{\partial n} = \varepsilon_2 \frac{\partial \phi_2}{\partial n}$	$\phi_1 = \phi_2, \sigma_1 \frac{\partial \phi_1}{\partial n} = \sigma_2 \frac{\partial \phi_2}{\partial n}$
	静电场 $ec{E}$ $ec{D}$	ϕ q ε C
对应物理量		<i>1 1 C</i>

图 3.3: 恒定电场与静电场的比拟

3.12 漏电导

漏电流与电压之比为漏电导,即:

$$G = \frac{I}{U}$$

其倒数称为绝缘电阻,即:

$$R = \frac{1}{G} = \frac{U}{I}$$

计算电导的方法

法一

- 1. 假定两电极间的电流为 I;
- 2. 计算两电极间的电流密度矢量 \vec{J} ;
- 3. 由 $J = \sigma E$ 得到 E;

- 4. 由 $U = \int_1^2 \vec{E} \cdot d\vec{l}$,求出两导体间的电位差。
- 5. 求比值 $G = \frac{I}{U}$,即得出所求电导。

法二

- 1. 假定两电极间的电位差为 U;
- 2. 计算两电极间的电位分布 φ ;
- 3. 由 $\vec{E} = -\nabla \phi$ 得到 \vec{E} ;
- 4. 由 $J = \sigma E$ 得到 J。
- 5. 由 $I = \int_{S} \vec{J} \cdot d\vec{S}$,求出两导体间电流。
- 6. 求比值 $G = \frac{I}{U}$,即得出所求电导。

法三

经典比拟法:

$$\frac{G}{C} = \frac{\sigma}{\varepsilon}$$

3.13 恒定磁场的基本方程和边界条件

恒定磁场的基本方程

微分形式:

$$\left\{ \begin{aligned} \nabla \times \vec{H} &= \vec{J} \\ \nabla \cdot \vec{B} &= 0 \end{aligned} \right.$$

积分形式:

$$\begin{cases} \oint_C \vec{H} \cdot d\vec{l} = \int_S \vec{J} \cdot d\vec{S} \\ \oint_S \vec{B} \cdot d\vec{S} = 0 \end{cases}$$

本构关系:

$$\vec{B} = \mu \vec{H}$$

恒定磁场的边界条件

边界条件方程:

$$\begin{cases} \vec{e}_{n} \cdot (\vec{B}_{1} - \vec{B}_{2}) = 0 \\ \vec{e}_{n} \times (\vec{H}_{1} - \vec{H}_{2}) = \vec{J}_{S} \end{cases}$$

若分界面上不存在面电流,即 $J_S = 0$,则:

$$\begin{cases} \vec{e}_{n} \cdot (\vec{B}_{1} - \vec{B}_{2}) = 0 \\ \vec{e}_{n} \times (\vec{H}_{1} - \vec{H}_{2}) = 0 \end{cases}$$

3.14 恒定磁场的矢量磁位

恒定磁场可以用一个矢量函数的旋度来表示:

$$\nabla \cdot \vec{B} = 0 \Rightarrow \vec{B} = \nabla \times \vec{A}$$

库仑规范

与电位一样,磁矢位也不是惟一确定的,它加上任意一个标量 Ψ 的梯度以后,仍然表示同一个磁场:

$$\vec{A}' = \vec{A} + \nabla \psi \Rightarrow \nabla \times \vec{A}' = \nabla \times \vec{A} + \nabla \times (\nabla \psi) = \nabla \times \vec{A}$$

其中, \vec{A} 为矢量磁位或称磁矢位磁矢位的任意性是因为只规定了它的旋度,没有规定其散度造成的。为了得到确定的 A,可以对 A 的散度加以限制,在恒定磁场中通常规定 ,并称为库仑规范。

磁矢位方程

微分方程:

$$\left. \begin{array}{l} \vec{B} = \nabla \times \vec{A} \\ \nabla \times \vec{B} = \mu \vec{J} \end{array} \right\} \Rightarrow \nabla \times \nabla \times \vec{A} = \mu \vec{J} \Rightarrow \nabla (\nabla \cdot \vec{A}) - \nabla^2 \vec{A} = \mu \vec{J}$$

矢量泊松方程:

$$\nabla \cdot \vec{A} = 0 \Rightarrow \nabla^2 \vec{A} = -\mu \vec{J}$$

无源区 $\vec{J} = 0$ 时,有矢量拉普拉斯方程:

$$\nabla^2 \vec{A} = 0$$

磁矢位的表达式

$$\nabla \times (\frac{\vec{J}(\vec{r'})}{R}) = \vec{J}(\vec{r'}) \times \nabla (\frac{1}{R}) - \frac{1}{R} \nabla \times \vec{J}(\vec{r'}) = \vec{J}(\vec{r'}) \times \nabla (\frac{1}{R}) \Rightarrow \vec{A'}(\vec{r'}) = \frac{\mu}{4\pi} \int_{V} \frac{\vec{J'}(\vec{r'})}{R} dV'$$

面电流磁矢位:

$$\vec{A'}(\vec{r'}) = \frac{\mu}{4\pi} \int_{S} \frac{\vec{J'}(\vec{r'})}{R} dS'$$

细线电流磁矢位:

$$\vec{A'}(\vec{r'}) = \frac{\mu}{4\pi} \int_C \frac{\vec{J'}(\vec{r'})}{R} d\vec{l'}$$

利用磁矢位计算磁通量:

$$\Phi = \int_{S} \vec{B} \cdot d\vec{S} = \int_{S} \nabla \times \vec{A} \cdot d\vec{S} = \oint_{C} \vec{A} \cdot d\vec{l}$$

磁矢位的边界条件:

$$\oint \vec{A} \cdot d\vec{l} = \int_{S} \vec{B} \cdot d\vec{S} \Rightarrow A_{1t} = A_{2t}$$

$$\nabla \cdot \vec{A} = 0 \Rightarrow \oint_{S} \vec{A} \cdot d\vec{S} = 0 \Rightarrow A_{1n} = A_{2n}$$

$$\Rightarrow \vec{A}_{1} = \vec{A}_{2}$$

$$\vec{e_n} \times (\vec{H_1} - \vec{H_2}) = \vec{J_S}$$

$$\vec{H} = \nabla \times \frac{\vec{A}}{\mu}$$

$$\Rightarrow \vec{e_n} \times (\frac{1}{\mu_1} \nabla \times \vec{A_1} - \frac{1}{\mu_2} \nabla \times \vec{A_2}) = \vec{J_S}$$

3.15 恒定磁场的标量磁位

标量磁位或磁标位:

$$\vec{H} = -\nabla \varphi_{\rm m}$$

即在无传导电流(J=0)的空间中,可以引入一个标量位函数来描述磁场。

磁标位的微分方程:

$$\nabla \cdot \vec{B} = 0, \vec{B} = \mu_0(\vec{H} + \vec{M}) \Rightarrow \nabla \cdot \vec{H} = -\nabla \cdot \vec{M} = \frac{\rho_{\rm m}}{\mu_0}$$

其中,等效磁荷体密度:

$$\rho_{\rm m} = -\mu_0 \nabla \cdot \vec{M}$$

将
$$\vec{H} = -\nabla \varphi_{\rm m}$$
 代入 $\nabla \cdot \vec{H} = \frac{\rho_{\rm m}}{\mu_0}$ 得:

$$\nabla^2 \varphi_{\rm m} = -\frac{\rho_{\rm m}}{\mu_0}$$

在线性、各向同性的均匀媒质中:

$$\nabla^2 \varphi_{\rm m} = 0$$

标量磁位的表达式

与静电位比较,有:

$$\varphi(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int_V \frac{\rho(\vec{r}')}{R} dV' \Rightarrow \varphi_{\rm m}(\vec{r}) = \frac{1}{4\pi\mu_0} \int_V \frac{\rho_{\rm m}(\vec{r}')}{R} dV'$$

标量磁位的边界条件

$$\varphi_{m1} = \varphi_{m2}, \quad \mu_1 \frac{\partial \varphi_{m1}}{\partial n} = \mu_2 \frac{\partial \varphi_{m2}}{\partial n}$$

或:

$$\varphi_{m1} = \varphi_{m2}, \quad \frac{\partial \varphi_{m2}}{\partial n} - \frac{\partial \varphi_{m1}}{\partial n} = -\frac{\rho_{mS}}{\mu_0}$$

其中,有等效磁荷面密度:

$$\rho_{\mathrm{m}S} = -\mu_0 \vec{e}_{\mathrm{n}} \cdot (\vec{M}_2 - \vec{M}_1)$$

静电位 磁标位
$$\nabla \times \vec{E} = 0, \nabla \cdot \vec{D} = \rho \qquad \nabla \times \vec{H} = 0, \nabla \cdot \vec{B} = 0$$

$$\vec{E} = -\nabla \varphi \qquad \vec{H} = -\nabla \varphi_{\rm m}$$

$$\nabla^2 \varphi = -(\rho + \rho_{\rm P})/\varepsilon_0 \qquad \nabla^2 \varphi_{\rm m} = -\rho_{\rm m}/\mu_0$$

$$\rho_{\rm P} = -\nabla \cdot \vec{P} \qquad \rho_{\rm m} = -\mu_0 \nabla \cdot \vec{M}$$

$$\rho_{\rm PS} = -\vec{e}_{\rm n} \cdot (\vec{P}_2 - \vec{P}_1) \qquad \rho_{\rm mS} = -\mu_0 \vec{e}_{\rm n} \cdot (\vec{M}_2 - \vec{M}_1)$$

$$\varphi_1 = \varphi_2, \varepsilon_1 \frac{\partial \varphi_1}{\partial n} = \varepsilon_2 \frac{\partial \varphi_2}{\partial n} \qquad \varphi_{\rm m1} = \varphi_{\rm m2}, \mu_1 \frac{\partial \varphi_{\rm m1}}{\partial n} = \mu_2 \frac{\partial \varphi_{\rm m2}}{\partial n}$$
静电位 \vec{E} \vec{D} \vec{P} φ ε_0 $\rho_{\rm P}$
磁标位 \vec{H} \vec{B} $\mu_0 \vec{M}$ $\varphi_{\rm m}$ μ_0 $\rho_{\rm m}$

图 3.4: 磁标位与静电位的比较

3.16 磁标位与静电位的比较(图 3.4)

3.17 磁通量

单匝线圈形成的回路的磁链定义为穿过该回路的磁通量:

$$\Psi = \Phi$$

多匝线圈形成的导线回路的磁链定义为所有线圈的磁通总和:

$$\Psi = \sum_{i} \Phi_{i}$$

3.18 自感

设回路 C 中的电流为 I,所产生的磁场与回路 C 交链的磁链为 Ψ ,则磁链 Ψ 与回路 C 中的电流 I 有正比关系,其比值

$$L = \frac{\Psi}{I}$$

称为回路 C 的自感系数, 简称自感。

粗导体回路的自感:

$$L = L_i + L_o$$

其中, $L_i = \frac{\Psi_i}{I}$ 为内自感, $L_o = \frac{\Psi_o}{I}$ 为外自感。

3.18 自感 33

未完待续: P71-P85