Digital Signal Processing EE-338 Filter Design Assignment

VINAY

19D070068 Autumn 2022 IIT BOMBAY

March 31, 2022

Contents

1	IIR	Bandpass Filter	1
	1.1	Unnormalized Specifications	1
	1.2	Normalized Specifications	1
	1.3	Analog Filter Specifications using Bilinear Transform .	2
	1.4	Analog Frequency Transformation	3
	1.5	Equivalent Analog Lowpass Filter Specifications	4
	1.6	Analog Lowpass Magnitude Response	4
	1.7	Analog Bandpass Transfer Function	8
	1.8	Discrete time Bandpass Transformation	9
2	FIR	Bandpass filter	10
	2.1	Implementation Method	11
	2.2	Kaiser Window Parameters	11
	2.3	Magnitude and Phase Response	12

3	Infi	nite Impulse Response Bandstop Filter	15						
	3.1	Unnormalized Specifications	15						
	3.2	Normalized Specifications							
	3.3	Analog Filter Specifications using Bilinear Transform.	16						
	3.4	Analog Frequency Transformation	17						
	3.5	Equivalent Analog Lowpass Filter Specifications	18						
	3.6	Analog Lowpass Magnitude Response	18						
	3.7	Analog Bandstop Transfer Function	21						
	3.8	Discrete time Bandstop Transformation	23						
4	FIR	Bandstop filter	25						
	4.1	Implementation Method	26						
	4.2	Kaiser Window Parameters							
	4.3	Magnitude and Phase Response							
5	Elliptical Bandpass Filter 29								
	5.1	Unnormalized Specifications	29						
	5.2	Normalized Specifications	29						
	5.3	Analog Filter Specifications using Bilinear Transform.	30						
	5.4	Analog Frequency Transformation	30						
	5.5	Equivalent Analog Lowpass Filter Specifications	31						
	5.6	Analog LPF Magnitude response	31						
	5.7	Jacobian Elliptic Functions	32						
	5.8	Elliptic Filter Specification	33						
	5.9	Analog Bandpass Transfer Function	36						
	5.10	Discrete time Bandpass Transformation	37						
6	Ellij	otical Bandstop Filter	39						
	6.1	Unnormalized Specifications	39						
	6.2	Normalized Specifications	40						
	6.3	Analog Filter Specifications using Bilinear Transform.	40						
	6.4	Analog Frequency Transformation	41						
	6.5	Equivalent Analog Lowpass Filter Specifications	42						
	6.6	Analog LPF Magnitude response	42						
	6.7	Jacobian Elliptic Integrals	42						
	6.8	Elliptic Filter Specification	43						
	6.9	Analog Bandstop Transfer Function	46						
		Discrete time Bandstop Transformation							

7	Comparison between IIR and FIR Filter					
8	Comparison between Butterworth and Chebyshew Filter	49				
9	Peer Review	50				
10	MATLAB Codes	50				
	10.1 BP-IIR FILTER	50				
	10.2 BP-FIR FILTER	55				
	10.3 BS-IIR FILTER	57				
	10.4 BS-FIR FILTER	62				
	10.5 BP-ELLIPTICAL FILTER	64				
	10.6 BS-ELLIPTICAL FILTER	70				

1 IIR Bandpass Filter

The filter number m = 72.So,

$$q(m) = \lceil 0.1m \rceil = 7$$

$$r(m) = m-10q(m) = 2$$

$$BL(m) = 10+5q(m)+13r(m) = 71kHz$$

'
$$BL(h) = BL(m) + 45 = 116kHZ$$

1.1 Unnormalized Specifications

- Upper Passband edge = 116kHz
- Lower Passband edge = 71kHz
- Passband tolerance = 0.15
- Stopband tolerance = 0.15
- Transition bandwidth = 3kHz
- Sampling frequency = 540 kHz
- Passband nature = Monotonic
- Stopband nature = Monotonic

1.2 Normalized Specifications

The sampling angular frequency $2\pi fs$ should map to 2π after normalization. Hence the transformation used is

$$\omega = 2\pi \frac{f}{f_s}$$

Table 1: Specification Table

Parameter	Value
ω_{p2}	0.4296π
ω_{p1}	0.2629π
ω_{s1}	0.2518π
ω_{s2}	0.4407π

- \bullet Passband and Stopband tolerance = 0.15
- Passband and Stopband nature = Monotonic

1.3 Analog Filter Specifications using Bilinear Transform

We use the following transformation to move from the z domain to the s domain. \Box

$$s = \frac{1 - z^{-1}}{1 + z^{-1}}$$

If we put $z = j\omega$ and $s = j\Omega$, we get

$$\Omega = tan(\frac{\omega}{2})$$

The filter specifications now are as follows

Table 2: Specification Table

Parameter	Value
Ω_{p2}	0.80012
Ω_{p1}	0.4381
Ω_{s1}	0.4175
Ω_{s2}	0.8291
δ_1	0.15
δ_2	0.15

1.4 Analog Frequency Transformation

Now we will do Bandpass to Lowpass frequency transformation:

$$\Omega_L = \frac{\Omega^2 - \Omega_0^2}{B\Omega}$$

Where

$$\Omega_0 = \sqrt{\Omega_{p1}\Omega p2} = 0.592$$

and

$$B = \Omega_{p2} - \Omega p1 = 0.362$$

Using the above transformation we have

- $\Omega_{Ls1} = -1.1655$
- $\Omega_{Ls2} = 1.1226$
- $\bullet \ \Omega_{Lp1} = -1$
- $\bullet \ \Omega_{Lp2} = +1$
- Passband and Stopband nature = Monotonic

1.5 Equivalent Analog Lowpass Filter Specifications

Since we have done the analog frequency transformation above, now we will find the low pass filter specifications by using the most stringent conditions

- Passband and Stopband nature = Monotonic
- $\Omega_{Ls} = \min(\Omega_{Ls2}, |\Omega_{Ls1}|) = 1.1226$
- $\bullet \ \Omega_{Lp} = +1$
- $\delta_1 = \delta_2 = 0.15$
- $D_1 = \frac{1}{(1-\delta_1)^2} 1 = 0.384$
- $D_2 = \frac{1}{\delta_2^2} 1 = 43.44$

1.6 Analog Lowpass Magnitude Response

We know that for a Butterworth filter, the response is as follows

$$H_{LPF}(-s_L)H_{LPF}(s_L) = \frac{1}{1 + (\frac{s_L}{i\Omega_C})^{2N}}$$

The parameters N and Ωc can be calculated by using the following relations:

$$N = \frac{log(\sqrt{D_2/D_1})}{log(\Omega_{Ls}/\Omega_{Lp})}$$

$$\frac{\Omega_{Lp}^{2N}}{D1} \le \Omega_c^{2N} \le \frac{\Omega_{Ls}^{2N}}{D2}$$

Using the above relations, We get

$$N = 21$$

$$1.02305 \le \Omega_c \le 1.026189$$

We choose $\Omega_c = 1.02462$. Using these values, we have

$$H_{LPF}(-s_L)H_{LPF}(s_L) = \frac{1}{1 + (\frac{s_L}{i1.02462})^{42}}$$

The poles are plotted using the matlab as shown here

Figure 1: Poles in the s_L plane

The poles which lies in the left half plane are of our interest because only LHP ensures stability of our system and hence makes our filter achievable.

- -0.2280 + 0.9989i
- -0.3743 + 0.9538i
- -0.5123 + 0.8873i
- -0.6388 + 0.8011i
- -0.7511 + 0.6969i
- -0.8466 + 0.5772i
- -0.9232 + 0.4446i
- -0.9791 + 0.3020i

- -1.0132 + 0.1527i
- -1.0246 + 0.0000i
- -1.0132 0.1527i
- -0.9791 0.3020i
- -0.9232 0.4446i
- -0.8466 0.5772i
- -0.7511 0.6969i
- -0.6388 0.8011i
- -0.5123 0.8873i
- -0.3743 0.9538i
- -0.2280 0.9989i
- -0.0766 1.0218i
- -0.0766 + 1.0218i

We can calculate the equivalent low pass filter in analog domain by using the LHP poles calculated above by the use of the following equations

$$H_{LPF}(s_L) = \frac{\Omega_c^N}{\prod_{k=1}^N (s_L - s_k)} = \frac{1.6665}{\sum_{k=1}^{21} a_k s_L^k}$$

where s_k are the LHP poles

The Magnitude and Phase response of the equivalent Butterworth LPF are

Figure 2: Magnitude Response

Figure 3: Phase Response

1.7 Analog Bandpass Transfer Function

We now use the inverse transformation to convert the equivalent Butterworth lowpass transfer function to get the Bandpass transfer function using the relation:

 $s_L \longleftarrow \frac{s^2 + \Omega_0^2}{Bs}$

Where Ω and B are the values we found in section 1.1

$$H_{LPF}(\frac{s^2 + \Omega_0^2}{Bs}) = H_{BFP} = \frac{1.6665}{\sum_{k=1}^{21} a_k s_L^k}$$

Figure 4: Magnitude Response

Figure 5: Phase Response

1.8 Discrete time Bandpass Transformation

Now we will convert the analog bandpass filter into the discrete bandpass filter by using the bilinear transformation in the normalized angular frequency domain.

$$s \longleftarrow \frac{1 - z^{-1}}{1 + z^{-1}}$$

The discrete time BPF transfer function is

$$H_{BPF}\left(\frac{1-z^{-1}}{1+z^{-1}}\right) = \frac{\sum_{k=0}^{42} a_k z^k}{\sum_{k=0}^{42} b_k z^k}$$

The coefficients for the Discrete Time Bandpass filter is given the table 3

Table 3: Coefficient Table

Coefficient	Value	Coefficient	Value	Coefficient	Value	Coefficient	Value
a_{42}	0	a_{21}	-3.2280	b_{42}	-1	b_{21}	0
a_{41}	0	a_{20}	2.4553	b_{41}	0	b_{20}	352716
a_{40}	0	a_{19}	-1.7456	b_{40}	21	b_{19}	0
a_{39}	0.0002	a_{18}	1.1589	b_{39}	0	b_{18}	-293930
a_{38}	-0.0010	a_{17}	-0.7176	b_{38}	-210	b_{17}	0
a_{37}	0.0037	a_{16}	0.4138	b ₃₇	0	b_{16}	203490
a_{36}	-0.0119	a_{15}	-0.2217	b_{36}	1330	b_{15}	0
a_{35}	0.0336	a_{14}	0.1101	b_{35}	0	b_{14}	-116280
a_{34}	-0.0835	a_{13}	-0.0505	b_{34}	-5985	b_{13}	0
a_{33}	0.1857	a_{12}	0.0213	b_{33}	0	b_{12}	54264
a_{32}	-0.3731	a_{11}	-0.0082	b_{32}	20349	b_{11}	0
a_{31}	0.6821	a_{10}	0.0029	b_{31}	0	b_{10}	-20349
a_{30}	-1.1421	a_9	-0.0009	b_{30}	-54264	b_9	0
a_{29}	1.7596	a_8	0.0003	b_{29}	0	b_8	5985
a_{28}	-2.5049	a_7	-0.0001	b_{28}	116280	b_7	0
a_{27}	3.3053	a_6	0	b_{27}	0	b_6	-1330
a_{26}	-4.0553	a_5	0	b_{26}	-203490	b_5	0
a_{25}	4.6292	a_4	0	b_{25}	0	b_4	210
a_{24}	-4.9317	a_3	0	b_{24}	293930	b_3	0
a_{23}	4.9067	a_2	0	b_{23}	0	b_2	-21
a_{22}	-4.5632	a_1	0	b_{22}	-352716	b_1	0
		a_0	3.9685			b_0	1

2 FIR Bandpass filter

The finite Impulse Response Bandpass filter is designed by approximating the infinitely long impulse response with a finite impulse response by using windowing methods. We will use the **Kaiser Window** to implement the above design, which is characterized by the width(M) and shape(β)

The normalized specification are as follows:

- $\omega_{p2} = 0.4296\pi$
- $\omega_{p1} = 0.2629\pi$
- $\omega_{s1} = 0.2518\pi$
- $\omega_{s2} = 0.4407\pi$
- Transition Bandwidth($\Delta \omega_t$) = 0.0111 π
- Passband and Stopband Tolernce(δ) = 0.15

We will use the kaiser window and multiply it with the impulse response of the ideal bandpass filter to get the FIR filter.

2.1 Implementation Method

The mean of the lower passband and lower stopband is taken as the lower passband edge of the ideal bandpass filter while the mean of the upper passband and the upper stopband is taken as the upper passband edge of the BP filter

2.2 Kaiser Window Parameters

The value of the parameter is less than 21 and therefore $\alpha=0$ and so the shaping parameter β and therefore, the kaiser window will be rectangular in shape

$$A = -20\log(\delta) = 16.47817$$

Window width M is

$$M \ge 1 + \frac{A - 8}{2.285\Delta\omega_t} = 107.29$$

I will take odd value of M:

$$M = 111$$

2.3 Magnitude and Phase Response

Figure 6: Magnitude Response of the FIR Bandpass Filter

The coefficents are:

Columns 1 through 13									
-0.0039 -0.0040 0	0.0043 0.0113	0.0059 -0.00	70 -0.0116	-0.0036	0.0047	0.0037	0.0000	0.0029	0.0074
Columns 14 through 26									
0.0015 -0.0114 -0	0.0140 -0.0002	0.0137 0.01	13 -0.0011	-0.0058	-0.0010	-0.0009	-0.0090	-0.0095	0.0064
Columns 27 through 39									
0.0211 0.0131 -0	0.0103 -0.0203	-0.0077 0.00	61 0.0038	-0.0014	0.0081	0.0199	0.0068	-0.0251	-0.0351
Columns 40 through 52									
-0.0048 0.0302 0	0.0280 0.0001	-0.0098 0.00	33 -0.0026	-0.0388	-0.0470	0.0200	0.1024	0.0833	-0.0506
Columns 53 through 65									
-0.1565 -0.0959 0	0.0815 0.1778	0.0815 -0.09	59 -0.1565	-0.0506	0.0833	0.1024	0.0200	-0.0470	-0.0388
Columns 66 through 78									
-0.0026 0.0033 -0	0.0098 0.0001	0.0280 0.03	02 -0.0048	-0.0351	-0.0251	0.0068	0.0199	0.0081	-0.0014
Columns 79 through 91									
0.0038 0.0061 -0	0.0077 -0.0203	-0.0103 0.03	31 0.0211	0.0064	-0.0095	-0.0090	-0.0009	-0.0010	-0.0058
Columns 92 through 104									
-0.0011 0.0113 6	0.0137 -0.0002	-0.0140 -0.01	14 0.0015	0.0074	0.0029	0.0000	0.0037	0.0047	-0.0036
Columns 105 through 111									
-0.0116 -0.0070 0	0.0059 0.0113	0.0043 -0.00	40 -0.0039						

Figure 7: Magnitude Response of the FIR Bandpass Filter

Figure 8: Phase Response of the FIR Bandpass Filter

Figure 9: Impulse Response of the FIR Bandpass Filter

3 Infinite Impulse Response Bandstop Filter

The filter number m = 72.So,

$$q(m) = \lceil 0.1m \rceil = 7$$

$$r(m) = m-10q(m) = 2$$

$$BL(m) = 10+3q(m)+11r(m) = 48kHz$$

$$BL(h) = BL(m) + 25 = 73kHZ$$

3.1 Unnormalized Specifications

- Upper Stopband edge = 73kHz
- Lower Stopband edge = 48kHz
- Passband tolerance = 0.15
- Stopband tolerance = 0.15
- Transition bandwidth = 3kHz
- Sampling frequency = 400kHz
- Passband nature = Equiripple
- Stopband nature = Monotonic

3.2 Normalized Specifications

The sampling angular frequency $2\pi fs$ should map to 2π after normalization. Hence the transformation used is

$$\omega = 2\pi \frac{f}{f_s}$$

Table 4: Specification Table

Parameter	Value
ω_{p1}	0.7068
ω_{s1}	0.7539
ω_{s2}	1.1466
ω_{p2}	1.1938

- \bullet Passband and Stopband tolerance = 0.15
- Stopband nature = Monotonic
- Passband nature = Equiripple

3.3 Analog Filter Specifications using Bilinear Transform

We use the following transformation to move from the s domain to the z domain.

$$s = \frac{1 - z^{-1}}{1 + z^{-1}}$$

If we put $z = j\omega$ and $s = j\Omega$, we get

$$\Omega = tan(\frac{\omega}{2})$$

The filter specifications now are as follows

Table 5: Specification Table

Parameter	Value
Ω_{p1}	0.3689
Ω_{s1}	0.3959
Ω_{s2}	0.6457
Ω_{p2}	0.6795
δ_1	0.15
δ_2	0.15

3.4 Analog Frequency Transformation

Now we will do Bandpass to Lowpass frequency transformation:

$$\Omega_L = \frac{B\Omega}{\Omega_0^2 - \Omega^2}$$

Where

$$\Omega_0 = \sqrt{\Omega_{p1}\Omega_p 2} = 0.5007$$

and

$$B = \Omega_{p2} - \Omega p1 = 0.31067$$

Using the above transformation we have

- $\Omega_{Ls1} = -1.30916$
- $\Omega_{Ls2} = 1.20699$
- $\Omega_{Lp1} = -1$
- $\bullet \ \Omega_{Lp2} = +1$
- Stopband nature = Monotonic
- Passband nature = Equiripple

3.5 Equivalent Analog Lowpass Filter Specifications

Since we have done the analog frequency transformation above, now we will find the low pass filter specifications by using the most stringent conditions

- Stopband nature = Monotonic
- Passband nature = Equiripple
- $\Omega_{Ls} = \min(\Omega_{Ls2}, |\Omega_{Ls1}|) = 1.2069$
- $\bullet \ \Omega_{Lp} = +1$
- $\bullet \ \delta_1 = \delta_2 = 0.15$
- $D_1 = \frac{1}{(1-\delta_1)^2} 1 = 0.384$
- $D_2 = \frac{1}{\delta_2^2} 1 = 43.44$

3.6 Analog Lowpass Magnitude Response

We know that for a Chebyshew filter, the response is as follows

$$H_{LPF}(-s_L)H_{LPF}(s_L) = \frac{1}{1 + \epsilon^2 C_N^2(\frac{s_L}{i\Omega_p})}$$

The parameters N and ϵ can be calculated by using the following relations:

$$\epsilon = \sqrt{D_1} = 0.6197$$

$$N = \frac{\cosh^{-1}(\sqrt{D_2/D_1})}{\cosh^{-1}(\Omega_{Ls}/\Omega_{Lp})}$$

Using the above relations, We get

$$N = 5$$

The poles are plotted using the matlab as shown here

Figure 10: Poles in the s_L plane

The poles which lies in the left half plane are of our interest because only LHP ensures stability of our system and hence makes our filter achievable.

Table 6: Left Plane Poles

Pole	Value
s_1	-0.0785 + 0.9812i
s_2	-0.2054 + 0.6064i
s_3	-0.2539 + 0.0000i
s_4	-0.2054 - 0.6064i
s_5	-0.0785 - 0.9812i

Using the poles given in the tabel 6, the equivalent lowpass transfer can be written as

$$H_{LPF}(s_L) = \frac{A}{\prod_{k=1}^{N} (s_L - s_k)}$$

We need $1-\delta_1$ magnitude response at the passband edge, by applying the above condition we have the final analog low pass transfer function as

$$H_{LPF}(s_L) = \frac{\prod_{k=1}^{5} s_k}{\prod_{k=1}^{5} (s_L - s_k)}$$

Figure 11: Magnitude Response

Figure 12: Phase Response

3.7 Analog Bandstop Transfer Function

We will now use inverse transformation to get the bandstop response from the chebyshew low pass response by using the following transformation

$$s_L \longleftarrow \frac{Bs}{s^2 + \Omega_0^2}$$

Where Ω and B are the values we found in section 3.4

$$H_{BSF} = H_{LPF} \left(\frac{Bs}{s^2 + \Omega_0^2} \right)$$

Figure 13: Magnitude Response

Figure 14: Phase Response

3.8 Discrete time Bandstop Transformation

Now we will convert the analog bandpass filter into the discrete bandpass filter by using the bilinear transformation in the normalized angular frequency domain.

$$s \longleftarrow \frac{1 - z^{-1}}{1 + z^{-1}}$$

The discrete time BSF magnitude and phase response

Figure 15: Magnitude Response

Figure 16: Phase Response

The normalized coefficients for the discrete time filter are shown below:

Table 7: Coefficient Table

Value Coefficient Coefficient Value -0.05460.1669 a_{10} a_{10} -0.79200.3271 a_9 a_9 -1.05702.0058 a_8 a_8 2.2479-3.3639 a_7 a_7 -3.46064.0887 a_6 a_6 3.9763 -3.6942 a_5 a_5 -3.46062.4901 a_4 a_4 2.2479 -1.2109 a_3 a_3 -1.0570.3918 a_2 a_2 0.3271-0.0654 a_1 a_1 -0.05460.0011 a_0 a_0

4 FIR Bandstop filter

Finite Impulse Response Bandpass filter is designed by approximating the infinitely long impulse response with a finite impulse response by using windowing methods. Here we will use the **Kaiser Window** to implement the above method which is characterized by the width(M) and shape(β) The normalized specification are as follows:

- $\omega_{p2} = 0.7068$
- $\omega_{p1} = 0.7539$
- $\omega_{s1} = 1.1466$
- $\omega_{s2} = 1.1938$
- Transition Bandwidth($\Delta \omega_t$) = 0.0471 π
- Passband and Stopband Tolernce(δ) = 0.15

We will use the kaiser window and multiply it with the impulse response of the ideal bandstop filter to get the FIR filter.

4.1 Implementation Method

The mean of the lower passband and lower stopband is taken as the lower stopband edge of the ideal bandpass filter while the mean of the upper passband and the upper stopband is taken as the upper stopband edge of the BS filter

4.2 Kaiser Window Parameters

The value of the parameter is less than 21 and therefore $\alpha=0$ and so the shaping parameter β and therefore, the kaiser window will be rectangular in shape

$$A = -20\log(\delta) = 16.47817$$

Window width M is

$$M \ge 1 + \frac{A - 8}{2.285 \Delta \omega_t} = 79.73$$

I will take odd value of M:

$$M = 93$$

4.3 Magnitude and Phase Response

Figure 17: Magnitude Response of the FIR Bandstop Filter

Figure 18: Phase Response of the FIR Bandstop Filter

Figure 19: Impulse Response of the FIR Bandstop Filter

Columns 1 through 13										
0.0085 0.0022 -0.00	20 -0.0005	0.0017	-0.0019	-0.0089	-0.0098	0.0002	0.0136	0.0166	0.0049	-0.0109
Columns 14 through 26										
-0.0159 -0.0073 0.00	39 0.0064	0.0016	0.0003	0.0069	0.0120	0.0035	-0.0153	-0.0258	-0.0134	0.0135
Columns 27 through 39										
0.0299 0.0202 -0.00	44 -0.0190	-0.0128	-0.0008	-0.0021	-0.0134	-0.0102	0.0197	0.0513	0.0418	-0.0194
Columns 40 through 52										
-0.0848 -0.0859 -0.00	45 0.0969	0.1246	0.0439	-0.0807	0.8600	-0.0807	0.0439	0.1246	0.0969	-0.0045
Columns 53 through 65										
-0.0859 -0.0848 -0.01	94 0.0418	0.0513	0.0197	-0.0102	-0.0134	-0.0021	-0.0008	-0.0128	-0.0190	-0.0044
Columns 66 through 78										
0.0202 0.0299 0.01	35 -0.0134	-0.0258	-0.0153	0.0035	0.0120	0.0069	0.0003	0.0016	0.0064	0.0039
Columns 79 through 91										
-0.0073 -0.0159 -0.01	09 0.0049	0.0166	0.0136	0.0002	-0.0098	-0.0089	-0.0019	0.0017	-0.0005	-0.0020
Columns 92 through 93										
0.0022 0.0085										

Figure 20: Coefficients of FIR filter

5 Elliptical Bandpass Filter

5.1 Unnormalized Specifications

- Upper Passband edge = 116kHz
- Lower Passband edge = 71 kHz
- Passband tolerance = 0.15
- Stopband tolerance = 0.15
- Transition bandwidth = 3kHz
- Sampling frequency = 540kHz
- Passband nature = Equiripple
- Stopband nature = Equiripple

5.2 Normalized Specifications

The sampling angular frequency $2\pi fs$ should map to 2π after normalization. Hence the transformation used is

$$\omega = 2\pi \frac{f}{f_s}$$

Table 8: Specifications

Parameter	Value
ω_{p2}	0.4296π
ω_{p1}	0.2629π
ω_{s1}	0.2518π
ω_{s2}	0.4407π

- Passband and Stopband tolerance = 0.15
- Passband and Stopband nature = Equiripple

5.3 Analog Filter Specifications using Bilinear Transform

We use the following transformation to move from the s domain to the z domain. \cdot

 $s = \frac{1 - z^{-1}}{1 + z^{-1}}$

If we put $z = j\omega$ and $s = j\Omega$, we get

$$\Omega = tan(\frac{\omega}{2})$$

The filter specifications now are as follows

Table 9: Specification Table

Parameter	Value
Ω_{p2}	0.80012
Ω_{p1}	0.4381
Ω_{s1}	0.4175
Ω_{s2}	0.8291
δ_1	0.15
δ_2	0.15

5.4 Analog Frequency Transformation

Now we will do Bandpass to Lowpass frequency transformation:

$$\Omega_L = \frac{\Omega^2 - \Omega_0^2}{B\Omega}$$

Where

$$\Omega_0 = \sqrt{\Omega_{p1}\Omega p2} = 0.592$$

and

$$B = \Omega_{p2} - \Omega p1 = 0.362$$

Using the above transformation we have

- $\Omega_{Ls1} = -1.1655$
- $\Omega_{Ls2} = 1.1226$
- $\Omega_{Lp1} = -1$
- $\Omega_{Lp2} = +1$
- Passband and Stopband nature = Equiripple

5.5 Equivalent Analog Lowpass Filter Specifications

Since we have done the analog frequency transformation above, now we will find the low pass filter specifications by using the most stringent conditions

- Passband and Stopband nature = Monotonic
- $\Omega_{Ls} = \min(\Omega_{Ls2}, |\Omega_{Ls1}|) = 1.1226$
- $\bullet \ \Omega_{Lp} = +1$
- $\bullet \ \delta_1 = \delta_2 = 0.15$
- $D_1 = \frac{1}{(1-\delta_1)^2} 1 = 0.384$
- $D_2 = \frac{1}{\delta_2^2} 1 = 43.44$

5.6 Analog LPF Magnitude response

The Transfer function for an elliptic filter is given by

$$H_{LPF}(s_L)H_{LPF}(-s_L) = \frac{1}{1 + \epsilon_p^2 F_N^2(\frac{s_L}{J\omega_n})}$$

Here N is the filter order and ϵ_p is the passband ripple factor with

$$F_N(\omega) = cd(NuK1, k1)$$

and

$$\omega = cd(uK, k)$$

where cd(x, k) denotes the Jacobian elliptic function cd with modulus k and real quarterperiod K

5.7 Jacobian Elliptic Functions

The elliptic function $\omega = \operatorname{sn}(z, k)$ can be defined through the elliptic integral:

$$z = \int_0^\phi \frac{d\theta}{\sqrt{1 - k^2 sin^2(\theta)}}$$

$$z = \int_0^\omega \frac{dt}{\sqrt{(1 - k^2 t^2)(1 - t^2)}}$$

Where

$$\omega = sin(\phi(z, k))$$

The parameter k is called the elliptic modulus and is assumed to be a real number in the interval $0 \le k \le 1$.

The three elliptic functions cn,dn,cd are defined as:

$$\begin{split} \omega &= cn(z,k) = cos\phi(z,k)\\ \omega &= dn(z,k) = cos\phi(z,k) = \sqrt{1-k^2sn^2(z,k)}\\ \omega &= cd(z,k) = \frac{cn(z,k)}{dn(z,k)} \end{split}$$

The complete elliptical integral denoted by K(k) or K is defined as the value of z at $\phi = \pi/2$

$$K = \int_0^{\pi/2} \frac{d\theta}{\sqrt{1 - k^2 sin^2(\theta)}}$$

At $\phi = \pi/2$ we have:

$$sn(K,k) = 1$$
 and $cd(K,k) = 0$

Now we will define complementary elliptic modulus $k' = \sqrt{1-k^2}$ and the associated complete elliptic integral as

$$K' = \int_0^{\pi/2} \frac{d\theta}{\sqrt{1 - k'^2 sin^2(\theta)}}$$

5.8 Elliptic Filter Specification

The order of the elliptic filter can be found the applying the constraints on the magnitude response at the passband and stopband.

$$N = \lceil \frac{KK_1'}{K'K_1} \rceil$$

Where K, K_1 are the complete elliptic integrals corresponding to the moduli k, k_1 , and K', K_1' are the complete elliptic integrals corresponding to the complementary moduli k' and k_1' For the given specifications of the Bandpass filter we have

$$k = \frac{\Omega_{Lp}}{\Omega_{Ls}} = 0.8908$$

$$k_1' = \frac{\epsilon_p}{\epsilon_s} = \sqrt{\frac{D_2}{D_1}} = 0.094$$

By applying the Jacobian for the above values of modulli we have

Parameter	Value
K	2.2427
K'	1.6629
K_1	1.5743
K_1'	3.7566

The poles and zeroes of the transfer function can be calculated by using the following equations:

$$z_{i} = j\Omega_{Lp}(k\zeta^{-1}) \quad i = 1, 2, 3,L$$

$$p_{i} = j\Omega_{Lp}cd((u_{i} - jv_{o})K, k) \quad i = 1, 2, 3,L$$

$$p_{o} = j\Omega_{Lp}sn(jv_{o}K, k) \quad i = 1, 2, 3,L$$
(1)

Where

$$u_{i} = \frac{2i - 1}{N} \quad i = 1, 2, 3, \dots L$$

$$\zeta_{i} = cd(u_{i}K, k) \quad i = 1, 2, 3, \dots L$$

$$v_{o} = \frac{-j}{NK_{1}}sn^{-1}(\frac{j}{\epsilon_{p}}, k_{1})$$

$$L = \lfloor \frac{N}{2} \rfloor$$

The zeros z_i are the poles of the $F_N(\omega)$ and the poles p_i are the zeroes of the denominator i.e. $1 + \epsilon_p^2 F_N^2(\omega) = 0$.

For the odd filter order N we have an additional real valued left hand s-plane pole p_o which can be obtained from eq 2

I get ${\bf N}={\bf 4}$ for the above filter specifications and the poles and zeroes of the lowpass filter are

Zeroes	Poles
0.0000 + 1.0639i	-0.3536 - 0.7071i
0.0000 + 1.7690i	-0.3536 + 0.7071i
0.0000 - 1.7690i	-0.0310 - 0.9995i
0.0000 - 1.0639i	-0.0310 + 0.9995i

$$H_L PF(s_L) H_L PF(-s_L) = \frac{0.85 * [(1 + 0.8835 * sl^2) * (1 + 0.3196 * sl^2)]}{(1 + 0.0619 * sl + sl^2) * (1 + 1.1314 * sl + 1.5998 * sl^2)}$$

NOTE:

I have updated the value of the k' by using the ellipdeg function in the matlab code. This function do the following operation:

$$k' = (k_1')^N \prod_{i=1}^L sn^4(u_i K_1', k_1')$$

By updating the value of the k' the filter response is more stringent in the stopband only. So if we do not update the value of k' the response will remain same but the magnitude in the stopband is more stringent

Figure 21: Magnitude Response

Figure 22: Phase Response

5.9 Analog Bandpass Transfer Function

We now use the inverse transformation to convert the equivalent Elliptic lowpass transfer function to get the Bandpass transfer function using the relation:

$$s_L \longleftarrow \frac{s^2 + \Omega^2}{Bs}$$

Where Ω and B are the values we found in section 5.4

$$H_{BFP} = H_{LPF}(\frac{s^2 + \Omega_0^2}{Bs})$$

$$H_{BPF} = \frac{0.15s^8 + 0.2941s^6 + 0.1784s^4 + 0.0361s^2 + 0.0023}{s^8 + 0.2784s^7 + 1.6205s^6 + 0.3281s^5 + 0.9010s^4 + 0.1150s^3 + 0.1990s^2 + 0.012s + 0.0151}$$

Figure 23: Magnitude Response

5.10 Discrete time Bandpass Transformation

Now we will convert the analog bandpass filter into the discrete bandpass filter by using the bilinear transformation in the normalized angular frequency

domain.

$$s \longleftarrow \frac{1 - z^{-1}}{1 + z^{-1}}$$

The discrete time BPF transfer function is

$$H_{BPF}\left(\frac{1-z^{-1}}{1+z^{-1}}\right)$$

$$H_{BPF} = \frac{0.1479z^8 - 0.4954z^7 + 1.09z^6 - 1.620z^5 + 1.886z^4 - 1.62z^3 + 1.09z^2 - 0.495z + 0.1479}{z^8 - 3.488z^7 + 7.893z^6 - 11.617z^5 + 13.037z^4 - 10.52z^3 + 6.47z^2 - 2.5823z + 0.6717}$$

Figure 24: Magnitude Response

Figure 25: Phase Response

6 Elliptical Bandstop Filter

6.1 Unnormalized Specifications

- \bullet Upper Stopband edge = 73kHz
- Lower Stopband edge = 48 kHz
- Passband tolerance = 0.15
- Stopband tolerance = 0.15
- Transition bandwidth = 3kHz
- Sampling frequency = 400 kHz
- Passband nature = Equiripple
- Stopband nature = Equiripple

6.2 Normalized Specifications

The sampling angular frequency $2\pi fs$ should map to 2π after normalization. Hence the transformation used is

$$\omega = 2\pi \frac{f}{f_s}$$

Parameter	Value
ω_{p1}	0.7068
ω_{s1}	0.7539
ω_{s2}	1.1466
ω_{p2}	1.1938

- \bullet Passband and Stopband tolerance = 0.15
- Stopband nature = Equiripple
- $\bullet \ {\it Passband \ nature} = {\it Equiripple}$

6.3 Analog Filter Specifications using Bilinear Transform

We use the following transformation to move from the s domain to the z domain.

$$s = \frac{1 - z^{-1}}{1 + z^{-1}}$$

If we put $z = j\omega$ and $s = j\Omega$, we get

$$\Omega = tan(\frac{\omega}{2})$$

The filter specifications now are as follows

Parameter	Value
Ω_{p1}	0.3689
Ω_{s1}	0.3959
Ω_{s2}	0.6457
Ω_{p2}	0.6795
δ_1	0.15
δ_2	0.15

6.4 Analog Frequency Transformation

Now we will do Bandpass to Lowpass frequency transformation:

$$\Omega_L = \frac{B\Omega}{\Omega_0^2 - \Omega^2}$$

Where

$$\Omega_0 = \sqrt{\Omega_{p1}\Omega p2} = 0.5007$$

and

$$B = \Omega_{p2} - \Omega p1 = 0.31067$$

Using the above transformation we have

- $\Omega_{Ls1} = -1.30916$
- $\Omega_{Ls2} = 1.20699$
- $\Omega_{Lp1} = -1$
- $\bullet \ \Omega_{Lp2} = +1$
- Stopband nature = Equiripple
- Passband nature = Equiripple

6.5 Equivalent Analog Lowpass Filter Specifications

Since we have done the analog frequency transformation above, now we will find the low pass filter specifications by using the most stringent conditions

- Passband and Stopband nature = Equiripple
- $\Omega_{Ls} = \min(\Omega_{Ls2}, |\Omega_{Ls1}|) = 1.2069$
- $\Omega_{Lp} = +1$
- $\delta_1 = \delta_2 = 0.15$
- $D_1 = \frac{1}{(1-\delta_1)^2} 1 = 0.384$
- $D_2 = \frac{1}{\delta_2^2} 1 = 43.44$

6.6 Analog LPF Magnitude response

The Transfer function for an elliptic filter is given by

$$H_{LPF}(s_L)H_{LPF}(-s_L) = \frac{1}{1 + \epsilon_p^2 F_N^2(\frac{s_L}{J\omega_p})}$$

Here N is the filter order and ϵ_p is the passband ripple factor with

$$F_N(\omega) = cd(NuK1, k1)$$

and

$$\omega = cd(uK, k)$$

where cd(x, k) denotes the Jacobian elliptic function cd with modulus k and real quarterperiod K

6.7 Jacobian Elliptic Integrals

The elliptic function $\omega = \operatorname{sn}(z, k)$ can be defined through the elliptic integral:

$$z = \int_0^\phi \frac{d\theta}{\sqrt{1 - k^2 sin^2(\theta)}}$$

$$z = \int_0^{\omega} \frac{dt}{\sqrt{(1 - k^2 t^2)(1 - t^2)}}$$

Where

$$\omega = \sin(\phi(z,k))$$

The parameter k is called the elliptic modulus and is assumed to be a real number in the interval $0 \le k \le 1$.

The three elliptic functions cn,dn,cd are defined as:

$$\omega = cn(z,k) = cos\phi(z,k)$$

$$\omega = dn(z,k) = cos\phi(z,k) = \sqrt{1-k^2sn^2(z,k)}$$

$$\omega = cd(z,k) = \frac{cn(z,k)}{dn(z,k)}$$

The complete elliptical integral denoted by K(k) or K is defined as the value of z at $\phi = \pi/2$

$$K = \int_0^{\pi/2} \frac{d\theta}{\sqrt{1 - k^2 sin^2(\theta)}}$$

At $\phi = \pi/2$ we have:

$$sn(K,k) = 1$$
 and $cd(K,k) = 0$

Now we will define complementary elliptic modulus $k'=\sqrt{1-k^2}$ and the associated complete elliptic integral as

$$K' = \int_0^{\pi/2} \frac{d\theta}{\sqrt{1 - k'^2 sin^2(\theta)}}$$

6.8 Elliptic Filter Specification

The order of the elliptic filter can be found the applying the constraints on the magnitude response at the passband and stopband.

$$N = \lceil \frac{KK_1'}{K'K_1} \rceil$$

Where K, K_1 are the complete elliptic integrals corresponding to the moduli k, k_1 , and K', K_1' are the complete elliptic integrals corresponding to the complementary moduli k' and k_1' For the given specifications of the Bandstop filter we have

$$k = \frac{\Omega_{Lp}}{\Omega_{Ls}} = 0.8286$$

$$k_1' = \frac{\epsilon_p}{\epsilon_s} = \sqrt{\frac{D_2}{D_1}} = 0.094$$

By applying the Jacobian for the above values of modulli we have The poles

Parameter	Value
K	2.056
K'	1.7219
K_1	1.5743
K_1'	3.7566

and zeroes of the transfer function can be calculated by using the following equations:

$$z_{i} = j\Omega_{Lp}(k\zeta^{-1}) \quad i = 1, 2, 3,L$$

$$p_{i} = j\Omega_{Lp}cd((u_{i} - jv_{o})K, k) \quad i = 1, 2, 3,L$$

$$p_{o} = j\Omega_{Lp}sn(jv_{o}K, k) \quad i = 1, 2, 3,L$$
(2)

Where

$$u_i = \frac{2i - 1}{N} \quad i = 1, 2, 3, \dots L$$
$$\zeta_i = cd(u_i K, k) \quad i = 1, 2, 3, \dots L$$
$$v_o = \frac{-j}{NK_1} sn^{-1} (\frac{j}{\epsilon_p}, k_1)$$
$$L = \lfloor \frac{N}{2} \rfloor$$

The zeros z_i are the poles of the $F_N(\omega)$ and the poles p_i are the zeroes of the denominator i.e. $1 + \epsilon_p^2 F_N^2(\omega) = 0$.

For the odd filter order N we have an additional real valued left hand s-plane pole p_o which can be obtained from eq 2

I get N=3 for the above filter specifications and the poles and zeroes are

Zeroes	Poles
0.0000 + 1.2604i	-0.1153 - 0.9936i
0.0000 - 1.2604i	-0.1153 + 0.9936i
	-0.6232 + 0.0000i

$$H_L PF(s_L) H_L PF(-s_L) = \frac{(1 + 0.6295 * sl^2)}{(1 + 1.6047 * sl) * (1 + 0.2305 * sl + 0.9994 * sl^2)}$$

Figure 26: Magnitude Response

Figure 27: Phase Response

6.9 Analog Bandstop Transfer Function

We now use the inverse transformation to convert the equivalent Elliptic lowpass transfer function to get the Bandstop transfer function using the relation:

$$s_L \longleftarrow \frac{Bs}{s^2 + \Omega_0^2}$$

Where Ω and B are the values we found in section 5.4

$$H_{BSF} = H_{LPF} (\frac{Bs}{s^2 + \Omega_0^2})$$

$$H_{BPF} = \frac{s^6 + 0.8129s^4 + 0.2038s^2 + 0.01576}{s^6 + 0.5701s^5 + 0.8843s^4 + 0.334s^3 + 0.2217s^2 + 0.03583s + 0.01576}$$

Figure 28: Magnitude Response

6.10 Discrete time Bandstop Transformation

Now we will convert the analog bandstop filter into the discrete bandstop filter by using the bilinear transformation in the normalized angular frequency domain.

$$s \longleftarrow \frac{1 - z^{-1}}{1 + z^{-1}}$$

The discrete time BSF transfer function is

$$H_{BSF}\left(\frac{1-z^{-1}}{1+z^{-1}}\right)$$

$$H_{BPF} = \frac{0.6638z^6 - 2.327z^5 + 4.644z^4 - 5.634z^3 + 4.644z^2 - 2.327z + 0.6638}{z^6 - 3.06z^5 + 5.278z^4 - 5.564z^3 + 3.953z^2 - 1.664z + 0.386}$$

Figure 29: Magnitude Response

Figure 30: Phase Response

7 Comparison between IIR and FIR Filter

The FIR filters are always stable whereas IIR filters may be unsable. The FIR filters have a linear phase respose but IIR filters do not have a well defined phase response. IIR filters requires less number of taps for their implementation and have limited number of cycles when comapred with FIR filter. The order for the FIR design is (N=93) which is very high compared to the IIR order (N=21)

8 Comparison between Butterworth and Chebyshew Filter

The frequency response is monotonic in both passband and stopband but in case of chebyshew design we have equiripple in the passband edge. We can see from the magnitude response that butterworth filter has a slower roll-off and therefore it needs higher order to implement particular specifications. The phase response is more linear in the passband for butterworth filter.

Elliptic Filters are equiripple in both passband and stopband and elliptic filter requires lowest order to meet given specification in comparison to the other filters. For a given filter order, elliptic filters have minimum transition width between passband and stopband

- The use of elliptic approximation gives the minimum order for given specifications. The order calculated are as follows: Elliptic(4) < Chebyshew(5) < ButterWorth(21) < Kaiser-FIR(113)
- FIR design gives a linear phase response. The non-linearity in the phase response follows the given order:
 Elliptic>Chebyshew>ButterWorth>Kaiser FIR
- For the identical parameters, the elliptic filter has the sharpest transition from passband to stopband or vice versa. The diminishing order of transition band sharpness is:

 Elliptic>Chebyshev>Butterworth>Kaiser FIR

9 Peer Review

PEER REVIEW GIVEN TO BANDI DANY HEMANTH

I have **reviewed** the filter design report made by **Bandi Dany Hemanth**,I have checked that he has completed all the steps for designing the bandpass and bandstop filter by using IIR,FIR and elliptic methods but the bandpass IIR discrete response is not correct..The magnitude and phase response plots for IIR, FIR, and elliptic filters show that the specifications of the filters are satisfied.

PEER REVIEW REVIEWED FROM APOORVA HOTKAR

I have **reviewed** the filter design report made by **Vinay**,I have checked that he has completed all the steps for designing the bandpass and bandstop filter by using IIR,FIR and elliptic methods but the bandpass IIR discrete response is not correct. The magnitude and phase response plots for IIR, FIR, and elliptic filters show that the specifications of the filters are satisfied.

10 MATLAB Codes

10.1 BP-IIR FILTER

```
1 clc; close all;
  tic;
  \% Poles of H<sub>-</sub>{analog}(s<sub>-</sub>L) H<sub>-</sub>{analog}(-s<sub>-</sub>L)
_{4} N = 21;
  Omega_c = 1.02462;
  a = 1:2*N;
  poles = Omega_c .* \exp(1i \cdot * (pi/2) \cdot * (1 + (2.*a + 1))
      ./ N));
  figure();
  plot(poles, '*', 'MarkerSize', 10);
  hold on;
_{11} x = linspace(-pi, pi, 10000);
  a = Omega_c .* cos(x);
b = Omega_c .* sin(x);
14 plot (a,b);
15 hold on;
```

```
plot (0,0,'r*');
 LHP = [];
  for i=1:size (poles, 2)
       hold on;
       plot([0, real(poles(1,i))], [0, imag(poles(1,i))],
20
          'r-');
       if real (poles (1,i)) < 0
              disp(poles(1,i));
22
           LHP = [LHP, poles(1,i)];
23
       end
24
  end
  plot([0, 0],[-1.5, 1.5], 'k-');
  plot([-1.5, 1.5], [0, 0], 'k-');
  title ('Poles of H_{LPF}(s_L) \setminus H_{LPF}(-s_L) in the
     $s_L$ plane', 'Interpreter', 'latex');
  xlabel('\Sigma_k');
  ylabel('\Omega_k');
  % Finding poles of H<sub>-</sub>{analog}(s<sub>-</sub>L)
  syms s x;
  temp = 1;
  for i=1: size (LHP, 2)
       temp = temp * (s - LHP(1, i));
  end
  % Magnitude and Phase response of H<sub>-</sub>{analog}(s<sub>-</sub>L)
  den_coeff = sym2poly(temp);
  num = 1.665;
  w = linspace(0, 2, 1000);
  h = freqs (num, den_coeff, w);
  figure();
  plot(w, abs(h));
 hold on;
  fplot(s - s - 0.15 + 1, 'k-', 'Markersize', 10);
46 hold on;
  fplot (x-x+1, 'k-', 'Markersize', 10);
 hold on;
 fplot (x - x + 0.15, 'r-', 'Markersize', 10);
  xline(1, 'm-');
  hold on;
```

```
xline (1.1226, 'm-');
  axis([0 \ 2 \ 0 \ 1.2]);
  set (gca, 'Fontsize', 5, 'XTick', [0, 1, 1.1226], '
      xticklabel', {'0', '\Omega_{Lp} = 1', '\Omega_{Ls} =
      1.1226');
  set(gca, 'YTick', [0.15, 0.85, 1], 'yticklabel', {'\
     delta_2 = 0.15', '1 - delta_1 = 0.85', '1');
  daspect ([1 1 1]);
  title ('Equivalent Butterworth Lowpass filter mangitude
     response');
  xlabel('\Omega_L');
  ylabel('|H(j \backslash Omega_L)|');
  figure();
  plot (w, angle (h));
  xlabel('\Omega_L');
  ylabel('\angle H(j \Omega_L)');
  title ('Equivalent Butterworth Lowpass filter phase
     response');
66
67
  % Bandpass analog frequency transformation
  syms s1;
  Omega_0 = 0.592;
 B = 0.362;
  s1 = (s^2 + Omega_0^2) ./ (B * s);
  h = subs(temp, s, s1);
 H = 1.6665/h;
76 % Normalization of the coefficients
  [\text{num}, \text{den}] = \text{numden}(H);
  k = subs(num(1), s, 1);
                            % numerator coefficient
  num\_coeff = sym2poly(num/k);
  den_coeff = sym2poly(den/k);
81 % magnitude and phase plot of BPF
_{82} \text{ w} = \lim \text{space}(0, 2, 1000);
83 [g,w] = freqs(num_coeff,den_coeff,w);
sa figure();
```

```
plot(w, abs(g));
   set (gca, 'Fontsize', 4, 'XTick', [0.4175, 0.4381, 0.80012,
       0.8291]\,, \quad \texttt{'xticklabel'}\,, \quad \texttt{\{'\backslash Omega\_\{s1\}', \quad '\backslash Omega\_\{p1\}\}}
      ', '\Omega_{p2}', '\Omega_{s2}'});
   set (gca, 'YTick', [0.15, 0.85, 1], 'yticklabel', {'\
      delta_2 = 0.15', '1 - delta_1 = 0.85', '1');
   hold on;
   xline(0.4175, 'm-'); hold on;
   xline (0.4381, 'm-'); hold on;
   xline (0.80012, 'm-'); hold on;
   xline(0.8291, 'm-');
   hold on;
   fplot (s - s - 0.15 + 1, 'k-', 'Markersize', 10);
   hold on;
   fplot(x-x+1, 'k-', 'Markersize', 10);
   hold on;
   fplot (x - x + 0.15, 'r-', 'Markersize', 10);
   daspect ([1 1 1]);
   title ('Butterworth Bandpass filter mangitude response')
   xlabel('\Omega');
   ylabel('|H(j \land Omega)|');
102
   axis ([0 1.2 0 1.2]);
104
   figure();
105
   hold on;
   plot (w, angle (g));
107
   title ('Butterworth Bandpass filter phase response');
   xlabel('\Omega');
   ylabel('\angle H(j \Omega)');
111
  % Discrete domain transformation
   syms w;
   c = subs(H, s, (1-1/w) / (1+1/w));
   disp(c);
   [\text{num}, \text{den}] = \text{numden}(c);
   k = -subs(num(1), w, 0);
   num_coeff = sym2poly(num/k);
```

```
\begin{array}{lll} & \texttt{den\_coeff} = \texttt{sym2poly}(\texttt{den/k})\,; \\ & \texttt{120} \ \% \ \texttt{disp}(\texttt{num\_coeff})\,; \\ & \texttt{121} \ \% \ \texttt{disp}(\texttt{den\_coeff})\,; \\ & \texttt{122} \ \texttt{w} = \texttt{linspace}(0\,,2\,,1024)\,; \\ & \texttt{123} \ [\texttt{g,w}] = \texttt{freqz}(\texttt{num\_coeff}\,,\texttt{den\_coeff}\,,1024\,,540\,e3)\,; \\ & \texttt{124} \ \texttt{figure}()\,; \\ & \texttt{125} \ \texttt{plot}(\texttt{w},\texttt{abs}(\texttt{g}))\,; \\ & \texttt{126} \ \texttt{figure}()\,; \\ & \texttt{127} \ \texttt{plot}(\texttt{w},\texttt{angle}(\texttt{g}))\,; \\ \end{array}
```

10.2 BP-FIR FILTER

```
1 clc; clear all; close all;
2 % BP Filter Specifications
  omega_s1 = 0.2518 * pi;
  omega_s2 = 0.4407 * pi;
  omega_p2 = 0.4296 * pi;
  omega_p1 = 0.2629 * pi;
_{7} transition_bw = 0.0111 * pi;
a = 0.15;
  omega_c1 = (omega_p1 + omega_s1)/2;
omega_c2 = (\text{omega_p2} + \text{omega_s2})/2;
11 % Kaiser window parameters
_{12} A = -20 * log 10 (delta);
  \min_{\text{width}} = \text{ceil} \left( 1 + \left( (A - 8) / (2.285 * \text{transition\_bw}) \right) \right)
      );
14
  alpha = -1;
   if A < 21
       alpha = 0;
   elseif A >= 21 \&\& A <= 50
       alpha = 0.5842 * (A - 21) ^ 0.4 + 0.07886 * (A -
           21);
   elseif A > 50
       alpha = 0.1102 * (A - 8.7);
21
   else
23
  end
  beta = alpha /min_width;
  % kaiser window multiplication
  M = \min_{\text{width}} + 3;
  K = kaiser(M, beta);
  BPF_IDEAL = ideal_lpf(omega_c2, M) - ideal_lpf(omega_c1)
      , M);
  BPF_FIR= BPF_IDEAL .* K';
  [H, f] = freqz(BPF\_FIR, 1, 1024, 540e3);
32 figure();
\operatorname{plot}(f, \operatorname{abs}(H));
```

```
hold on;
  xline (71e3, 'm—', 'LineWidth', 1.5);
  hold on;
 xline (116e3, 'm—', 'LineWidth', 1.5);
  hold on;
  xline (68e3, 'm—', 'LineWidth', 1.5);
  hold on;
  xline (119e3, 'm—', 'LineWidth', 1.5);
  hold on;
  yline (1.15, 'r—', 'LineWidth', 1.5);
  hold on;
  yline (0.85, 'r—', 'LineWidth', 1.5);
  hold on;
  yline (0.15, 'r—', 'LineWidth', 1.5);
  xlabel('f in 10^4 Hz');
  ylabel('|H(e^{j2} \neq j1)');
  title ('Magnitude Response of Discrete Time FIR Bandpass
      Filter');
  set (gca, 'XTick', [68e3, 71e3, 116e3, 119e3], '
     xticklabel', {'f_{s1}', 'f_{p1}', 'f_{p2}', 'f_{s2}'
     });
  set (gca, 'YTick', [0.15, 0.85, 1, 1.15], 'yticklabel',
     \{ \ '\ delta_2 = 0.15', \ '1 - \ delta_1 = 0.85', \ '1', \ '1 + \ 
      \delta_1 = 1.15');
53 % displays the impulse and the phase response
  fvtool(BPF_FIR, 'Analysis', 'Phase');
  fvtool(BPF_FIR, 'Analysis', 'Impulse');
  % ideal lpf code
  function lpass = ideal_lpf(wc,M);
  alpha = (M-1)/2;
n = [0:1:(M-1)];
62 \text{ m} = \text{n} - \text{alpha} + \text{eps};
  lpass = sin(wc*m) . / (pi*m);
 end
```

10.3 BS-IIR FILTER

```
1 clc; close all;
2 % FILTER SPECIFICATIONS
^{3} \text{ wp1} = 0.706;
4 \text{ ws}1 = 0.754;
 ws2 = 1.146; 
6 \text{ wp2} = 1.194;
_{7} op1= 0.3689194771098271;
  os1 = 0.3959280087977212;
9 \text{ os } 2 = 0.645691821042554;
  op2 = 0.6795992982245265;
11 % Pole plot of LPF
_{12} N = 5;
_{13} \text{ Omega}_{-0} = 0.5007;
_{14} B = 0.31067;
15 % EQUIVALENT LOWPASS FILTER SPECIFICATIONS
D2 = 43.44;
D1 = 0.384;
_{18} \text{ Omega\_ls} = 1.2069;
Omega_lp = 1;
_{20} epsilon = sqrt(D1);
_{21} N = ceil ((acosh (sqrt (D2/D1))) / (acosh (Omega_ls /
      Omega_lp)));
  fprintf('N = %d n', N);
23 % LHP POLES
a = 0:2 * N - 1;
A = (2 * a + 1) .* (pi /(2 * N));
 B = (1 / N) * asinh(1 / epsilon);
  poles = (-1 * sin(A) * sinh(B)) + 1i * (cos(A) * cosh(B))
      ));
  figure();
  plot (poles, '.', 'MarkerSize', 20);
30 daspect ([1 1 1]);
31 hold on;
_{32} x = linspace(-pi, pi, 10000);
a = \sinh(B) \cdot * \cos(x);
_{34} b = \cosh(B) .* \sin(x);
```

```
plot (a,b);
  hold on;
  plot (0,0, 'g*');
  LHP = [];
  for i=1:size (poles, 2)
       hold on;
       plot([0, real(poles(1,i))], [0, imag(poles(1,i))],
41
          'r-');
       if real (poles (1,i)) < 0
42
           disp(poles(1,i));
43
           LHP = [LHP, poles(1,i)];
44
       end
45
  end
  plot([0, 0], [-1.5, 1.5], 'k-');
  plot([-1.5, 1.5],[0, 0], 'k-');
  title ('Poles of H_{LPF}(s_L) \setminus H_{LPF}(-s_L) in the
     $s_L$ plane', 'Interpreter', 'latex');
  xlabel('\Sigma_k');
  ylabel('\Omega_k');
  % ANALOG LOWPASS TRansfer function
  syms s;
  den=1;
  num = 1;
  for i=1: size (LHP, 2)
      num = num * LHP(1, i);
       den = den * (s - LHP(1, i));
  end
  H_{LPF} = num/den;
  num_f = num;
  den_f = den;
  den = sym2poly(den);
 w = linspace(0, 2.5, 1000);
 h = freqs (num, den, w);
  figure();
plot (w, abs(h), 'LineWidth', 1);
68 hold on;
  yline (0.85,['--','r']);
 xline(1,['--','g']);
```

```
xline (1.2069, ['—', 'g']);
  yline(1.,['--','r']);
  yline (0.15,['--','r']);
  ylim ([0, 1.2]);
   title ("Equivalent Chebyshew Low Pass Magnitude Response
      ");
   xlabel("\Omega_L");
   ylabel("|H(j\backslash Omega_L|");
   set (gca, 'Fontsize', 5, 'XTick', [0, 1, 1.2069], '
      xticklabel', {'0', '\Omega_{Lp} = 1', '\Omega_{Ls} =
      1.2069 ' });
  set (gca, 'YTick', [0, 0.15, 0.85,1], 'yticklabel', {'0'
      , ' \det a = 1', '1 - \det a = 0.85', '1' \});
   figure();
   plot (w, angle (h));
   title ("Equivalent Chebyshew Low Pass Phase Response");
   xlabel("\Omega_L");
   ylabel("\angle H(j\Omega_L");
  1 ANALOG BANDPASS TRANSFORMATION
87
  syms s1;
   Omega_0 = 0.5007;
  B = 0.31067;
  s1 = (B * s)./(s^2 + Omega_0^2);
  h = subs(den_f, s, s1);
  H_{-}BSF = subs(H_{-}LPF, s, s1);
  H = num_f/h;
  7% MAGNITUDE AND PHASE PLOT
   [\text{num}, \text{den}] = \text{numden}(H);
  k = subs(num(1), s, 1);
   num\_coeff = sym2poly(num/k);
   den_coeff = sym2poly(den/k);
  % disp
      102 % disp(num_coeff);
```

```
<sup>103</sup> % disp(den_coeff);
  w = linspace(0, 2, 1000);
  [g,w] = freqs(num_coeff,den_coeff,w);
107 %disp(g);
  figure();
  plot(w, abs(g), 'LineWidth', 1);
  hold on;
  yline (0.85,['--','r']);
  xline(os1,['--','g']);
  xline (os2, ['--', 'g']);
  xline(op1,['--','g']);
  xline(op2,['--','g']);
  yline (1.,['--','r']);
  yline (0.15,['--','r']);
  ylim([0,1.2]);
  x \lim ([0,1])
  title ("Chebyshew Bandstop Filter Magnitude Response");
   xlabel("\Omega");
  ylabel("|H(j\backslash Omega|");
  set(gca, 'XTick', [op1, os1, os2, op2], 'xticklabel', {
      \label{eq:constraint} $$ '\operatorname{Omega_{s1}', '\operatorname{Omega_{s2}', '}} $$
      Omega_{p2}');
  set(gca, 'YTick', [0.15, 0.85, 1], 'yticklabel', {'\
      delta_2 = 0.15', '1 - delta_1 = 0.85', '1');
  % phase response
  figure();
  plot (w, angle (g), 'LineWidth', 1);
   hold on;
   title ("Chebyshew Bandstop Filter Phase Response");
   xlabel("\Omega");
   ylabel('\angle H(j \Omega)');
  % Discrete domain transformation
  syms z;
  c = subs(H_BSF, s, (z-1) / (z+1));
   disp(c);
136
```

```
[\text{num}, \text{den}] = \text{numden}(c);
         num\_coeff = sym2poly(num);
         den_coeff = sym2poly(den);
140 % disp
                  disp(num_coeff);
         disp (den_coeff);
        w = linspace(0,2,1024);
        [g,w] = freqz (num\_coeff, den\_coeff, 1024*1024, 400e3);
         figure();
        plot (w, abs (g), 'Linewidth', 1);
        hold on;
         yline (0.85, ['--', 'r']);
         xline (45e3,['--','g']);
         xline (48e3,['--','g']);
         xline (73e3, ['--', 'g']);
         xline (76e3,['--','g']);
        yline(1.,['--','r']);
        yline (0.15,['--','r']);
         ylim ([0, 1.2]);
         x \lim ([0, 140 e3])
         title ("Discrete Time Bandstop Filter Magnitude Response
                  ");
         xlabel("\Omega");
         ylabel("|H(j\Omega|");
         set (gca, 'XTick', [45e3, 48e3, 73e3, 76e3], 'xticklabel
                      , \{ f_{-} \{p1\}', f_{-} \{s1\}', f_{-} \{s2\}', f_{-} \{p2\}' \};
        set (gca, 'YTick', [0.15, 0.85, 1, 1.15], 'yticklabel',
                  \{ \ '\ delta_2 = 0.15', \ '1 - \ delta_1 = 0.85', \ '1', \ '1 + \ delta_2 = 0.85', \ '1', \ '1' + \ delta_2 = 0.85', \ '1', \ '1' + \ delta_2 = 0.85', \ '1', \ '1' + \ delta_2 = 0.85', \ '1', \ '1' + \ delta_2 = 0.85', \ '1', \ '1' + \ delta_2 = 0.85', \ '1', \ '1' + \ delta_2 = 0.85', \ '1', \ '1' + \ delta_2 = 0.85', \ '1', \ '1' + \ delta_2 = 0.85', \ '1', \ '1' + \ delta_2 = 0.85', \ '1', \ '1' + \ delta_2 = 0.85', \ '1', \ '1' + \ delta_2 = 0.85', \ '1', \ '1', \ '1' + \ delta_2 = 0.85', \ '1', \ '1', \ '1' + \ delta_2 = 0.85', \ '1', \ '1' + \ delta_2 = 0.85', \ '1', \ '1' + \ delta_2 = 0.85', \ '1', \ '1' + \ delta_2 = 0.85', \ '1', \ '1', \ '1' + \ delta_2 = 0.85', \ '1', \ '1', \ '1' + \ delta_2 = 0.85', \ '1', \ '1', \ '1' + \ delta_2 = 0.85', \ '1', \ '1', \ '1' + \ delta_2 = 0.85', \ '1', \ '1', \ '1' + \ delta_2 = 0.85', \ '1', \ '1', \ '1' + \ delta_2 = 0.85', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ '1', \ 
                     \det_1 = 1.15');
         figure();
         plot(w, angle(g), 'LineWidth',1);
        hold on;
         title ("Discrete Time Bandstop Filter Phase Response");
         xlabel("\Omega");
         ylabel('\angle H(j \Omega)');
```

10.4 BS-FIR FILTER

```
1 clc; clear all; close all;
 % BS Filter Specs
  omega_s1 = 0.240 * pi;
  omega_s2 = 0.365 * pi;
  omega_p2 = 0.380 * pi;
  omega_p1 = 0.225* pi;
  transition_b w = 0.0471;
  delta = 0.15;
  omega_c1 = (omega_p1 + omega_s1)/2;
 omega_c2 = (omega_p2 + omega_s2)/2;
11 % Kaiser window parameters
_{12} A = -20 * log 10 (delta);
  \min_{\text{width}} = \text{ceil} \left( 1 + \left( (A - 8) / (2.285 * \text{transition\_bw}) \right) \right)
      );
14
  alpha = -1;
  if A < 21
       alpha = 0;
  elseif A >=21 && A <= 50idea
       alpha = 0.5842 * (A - 21) ^ 0.4 + 0.07886 * (A -
          21);
  elseif A > 50
       alpha = 0.1102 * (A - 8.7);
21
  else
22
23
  end
  beta = alpha /min_width;
  % Magnitude Response
  M = \min_{\text{width}} + 13;
  w = kaiser(M, beta);
  BSF_IDEAL = ideal_lpf(pi,M) - ideal_lpf(omega_c2,M) +
      ideal_lpf(omega_c1,M);
  BSF\_FIR = BSF\_IDEAL .* w';
  [H, f] = freqz(BSF\_FIR, 1, 1024, 400e3);
  figure();
 plot(f, abs(H));
```

```
hold on;
       xline (48e3, 'm—', 'LineWidth', 1.5);
       hold on;
     xline (73e3, 'm—', 'LineWidth', 1.5);
       hold on;
       xline (45e3, 'm—', 'LineWidth', 1.5);
       hold on;
       xline (76e3, 'm—', 'LineWidth', 1.5);
       hold on;
       yline (1.15, 'r—', 'LineWidth', 1.5);
       hold on;
      yline (0.85, 'r—', 'LineWidth', 1.5);
      hold on;
       yline (0.15, 'r—', 'LineWidth', 1.5);
       xlabel('f in 10^4 Hz');
       ylabel('|H(e^{j2} \neq j1)');
       title ('Magnitude Response of Discrete Time FIR Bandstop
                    Filter');
      set (gca, 'YTick', [0.15, 0.85, 1, 1.15], 'yticklabel',
                 \{ \ '\ delta_2 = 0.15 \ ', \ '1 - \ delta_1 = 0.85 \ ', \ '1', \ '1' + \ delta_2 = 0.85 \ ', \ '1', \ '1' + \ delta_1 = 0.85 \ ', \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' \ '1' 
                   \det_1 = 1.15');
      % phase and impulse response
<sup>54</sup> disp (BSF_FIR);
     fvtool(BSF_FIR, 'Analysis', 'Phase');
      fvtool(BSF_FIR, 'Analysis', 'Impulse');
57 % ideal lpf code
       function lpass = ideal_lpf(wc,M);
       alpha = (M-1)/2;
n = [0:1:(M-1)];
m = n - alpha + eps;
     lpass = sin(wc*m) . / (pi*m);
64
     \operatorname{end}
```

10.5 BP-ELLIPTICAL FILTER

```
1 % Please execute section wise
    clc; clear; close all;
3 % elliptical filter parameter specifications
      calculations
_{4} \text{ ws } = 1.1226;
_{5} \text{ wp}=1;
_{6} Gp = 0.85;
7 D1 = 0.384;
D2 = 43.44;
_{9} Ap = 1.4116;
_{10} As = 16.478;
11 ep = sqrt(10^{\circ}(Ap/10) - 1); % ripple factors
  es = \operatorname{sqrt}(10^{\circ}(\operatorname{As}/10) - 1); % ripple factors
  k = wp/ws;
k1 = ep/es;
kf = sqrt(1-k^2);
t = (k1)^2;
  kf1 = sqrt(1-t);
  % JACOBIAN INTEGRAL CALCULATION
19 Syms X;
  f = 1/sqrt(1-k^2*sin(x)^2);
  g = 1/sqrt(1-kf^2*sin(x)^2);
  h = 1/sqrt(1-k1^2*sin(x)^2);
  i = 1/sqrt(1-kf1^2*sin(x)^2);
  K = double(int(f, 0, pi/2));
  Kf = double(int(g, 0, pi/2));
  K1 = double(int(h, 0, pi/2));
_{27} Kf1 = double(int(i,0,pi/2));
  disp(K);
               %Jacobian integral output
  disp(Kf);
  disp(K1);
  \operatorname{disp}\left(\operatorname{Kf1}\right);
N = ceil((Kf1*K)/(K1*Kf)); %filter order
_{33} disp(N);
34 % updation of k value
u1 = 1/N;
```

```
u2 = Kf1/4;
_{37} \text{ m} = (\text{Kf1}*3)/4;
 \%kj = (((kf1)^N)*(sne(u1, kf1)^4)*(sne(u2, kf1)^4)); %
     ellipdeg uses this eqn
 kj = ellipdeg(N, k1);
40 % pole zero calculation for the above specifications
L = floor (N/2); r = mod(N,2); % L is the number of
     second-order sections
 i = (1:L)'; u = (2*i-1)/N; zeta_i = cde(u, kj);
 z = wp*1j./(kj*zeta_i); % zeros of elliptic rational
     function
 ZEROES = z;
  v0 = -1j * asne(1j/ep, k1)/N;
  p = wp*1j*cde((u-1j*v0), kj); \% filter poles
  poles = p;
  p0 = wp*1j*sne(1j*v0, kj); \% first-order pole, needed
     when N is odd
 B = [ones(L,1), -2*real(1./z), abs(1./z).^2]; \% second-
     order numerator coefficients
_{50} A = [ones(L,1), -2*real(1./p), abs(1./p).^2]; \% second-
     order denominator coefficients
  if r==0 % prepend first-order sections
      B = [Gp, 0, 0; B]; A = [1, 0, 0; A];
  else
53
      B = [1, 0, 0; B]; A = [1, -real(1/p0), 0; A];
  end
  ZEROES = cplxpair ([ZEROES; conj(ZEROES)]); % append
     conjugate zeros
  p = cplxpair([p; conj(p)]); \% append conjugate poles
  if r==1, p = [p; p0]; end % append first-order pole
     when N is odd
 H0 = Gp^{(1-r)}; \% dc gain
  % Elliptic Lowpass filter transfer function and plots
61 syms sl Omega_L;
 \text{HLPF} = ((1 + 0.8835 * \text{sl}^2) * (1 + 0.3196 * \text{sl}^2) * 0.85)
     /((1 + 0.0619 * sl + sl^2) * (1 + 1.1314 * sl +
     1.5998 * sl^2);
_{63} H_LPF_freq = subs(H_LPF, sl, 1i * Omega_L);
```

```
[ns, ds] = numden(H_LPF);
 nsl = sym2poly(ns);
dsl = sym2poly(ds);
67 \text{ kn} = ds(1);
 nsl = nsl / kn;
ds = ds / kn;
70 disp(nsl);
71 disp (dsl);
figure();
<sup>73</sup> fplot (abs (H_LPF_freq), 'LineWidth',1);
74 hold on;
 fplot(sl - sl - 0.15 + 1, 'g-', 'Markersize', 10);
 hold on;
77 fplot(sl-sl+1, 'g-', 'Markersize', 10);
78 hold on:
 fplot(sl - sl + 0.15, 'g-', 'Markersize', 10);
  xline (1, 'm—', 'LineWidth',1);
81 hold on;
82 xline (1.1226, 'm—', 'LineWidth',1);
  axis([0 \ 2 \ 0 \ 1.2]);
  set (gca, 'FontSize', 5, 'XTick', [0, 1, 1.1226],
     xticklabel', {'0', '\Omega_{Lp} = 1', '\Omega_{Ls} =
     1.1226'});
  set (gca, 'YTick', [0.15, 0.85, 1], 'yticklabel', {'\
     delta_2 = 0.15', '1 - delta_1 = 0.85', '1');
  daspect ([1 1 1]);
  title ('Equivalent Elliptic Lowpass filter mangitude
     response');
  xlabel('\Omega_L');
  ylabel('|H(j \land Omega_L)|');
  figure();
  fplot (angle (H_LPF_freq));
  xlabel('\Omega_L');
  vlabel('\angle H(j \Omega_L)');
  title ('Equivalent Butterworth Lowpass filter phase
     response');
   Manalog lowpass to bandpass frequency transformation
```

```
syms s Omega;
    Omega_0 = 0.592;
    B1 = 0.362;
99
    H\_BPF = subs(H\_LPF, sl, (s^2 + Omega\_0^2) / (B1 * s));
100
   [ns, ds] = numden(H_BPF);
101
   ns = sym2poly(ns);
   ds = sym2poly(ds);
   kn = ds(1);
   ns = ns . / kn;
   ds = ds ./ kn;
   disp(ns);
   \operatorname{disp}(\operatorname{ds});
   H_BPF_freq = subs(H_BPF, s, 1i * Omega);
110 figure ();
fplot(abs(H_BPF_freq), 'LineWidth',1);
  set (gca, 'XTick', [0.4175, 0.4381, 0.8001, 0.8291],
      xticklabel', {'\Omega_{s1}}', '\Omega_{p1}}', '\Omega_
      \{p2\}', 'Omega_{s2}'\};
  set(gca, 'YTick', [0.15, 0.85, 1], 'yticklabel', {'}
      delta_2 = 0.15', '1 - delta_1 = 0.85', '1');
  hold on;
   xline (0.4175, 'r--'); hold on;
   xline (0.4381, 'r---'); hold on;
   xline (0.8001, 'r--'); hold on;
   xline(0.8291, 'r—');
   hold on;
   fplot (s - s - 0.15 + 1, 'g-', 'Markersize', 10);
   hold on;
  fplot(s-s+1, 'g-', 'Markersize', 10);
   hold on;
  fplot (s - s + 0.15, 'g-', 'Markersize', 10);
   daspect ([1 1 1]);
   title ('Elliptic Bandpass filter mangitude response');
   xlabel('\Omega');
   ylabel('|H(j \land Omega)|');
   axis([0 \ 1.2 \ 0 \ 1.2]);
130 %
```

```
131 % Analog to z bilinear transformation
  syms z;
_{133} Hz = subs(H_BPF, s, (z-1)/(z+1));
   [Nz, Dz] = numden(Hz);
  Nz = sym2poly(Nz);
  Dz = sym2poly(Dz);
  kn = Dz(1);
  Nz = Nz / kn;
  Dz = Dz / kn;
  disp(Nz);
  \operatorname{disp}(\operatorname{Dz});
  [H, f] = freqz(Nz, Dz, 1024*1024, 540e3);
143 figure ();
   plot(f, abs(H), 'LineWidth',1);
   axis([0 170e3 0 1.3]);
  hold on;
   yline (1.00, 'g—', 'LineWidth', 1);
   hold on;
   yline (0.85, 'g-', 'LineWidth', 1);
   hold on;
   yline (0.15, 'g-', 'LineWidth', 1);
   hold on;
   xline(71e3, 'r—', 'LineWidth', 1);
   hold on;
   xline (116e3, 'r—', 'LineWidth', 1);
   hold on;
156
   xline (69e3, 'r—', 'LineWidth', 1);
   hold on;
   xline (119e3, 'r—', 'LineWidth', 1);
   xlabel('f in 10^4 Hz');
   ylabel('|H(e^{f_i}) 2 pi f_i))';
   title ('Magnitude Response of the Discrete Time Bandpass
       Filter');
   set (gca, 'XTick', [68e3, 71e3, 116e3, 119e3], '
      xticklabel', \{ f_{s1} ', f_{s1} ', f_{s1} ', f_{s2} ', f_{s2} ' \}
      });
set (gca, 'YTick', [0.15, 0.85, 1, 1.15], 'yticklabel',
```

10.6 BS-ELLIPTICAL FILTER

```
1 % Please execute section wise
2 clc; clear; close all;
3 % elliptical filter parameter specifications
      calculations
  ws = 1.2069;
_{5} \text{ wp}=1;
_{6} Gp = 0.85;
7 D1 = 0.384;
D2 = 43.44;
_{9} Ap = 1.4116;
_{10} As = 16.478;
11 ep = sqrt(10^{\circ}(Ap/10) - 1); % ripple factors
  es = sqrt(10^{(As/10)} - 1);
_{13} k = wp/ws;
_{14} k1 = ep/es;
kf = sqrt(1-k^2);
t = (k1)^2;
  kf1 = sqrt(1-t);
  % JACOBIAN INTEGRAL CALCULATION
19 Syms X;
  f = 1/sqrt(1-k^2*sin(x)^2);
  g = 1/sqrt(1-kf^2*sin(x)^2);
  h = 1/sqrt(1-k1^2*sin(x)^2);
  i = 1/sqrt(1-kf1^2*sin(x)^2);
 K = double(int(f, 0, pi/2));
 Kf = double(int(g, 0, pi/2));
  K1 = double(int(h, 0, pi/2));
_{27} Kf1 = double(int(i,0,pi/2));
  disp(K);
              %Jacobian integral output
  disp(Kf);
  disp(K1);
  \operatorname{disp}\left(\operatorname{Kf1}\right);
N = ceil((Kf1*K)/(K1*Kf)); %filter order
_{33} disp(N);
34 % updation of k value
u1 = 1/N;
```

```
u2 = Kf1/4;
_{37} \text{ m} = (\text{Kf1}*3)/4;
\%kj = (((kf1)^N)*(sne(u1,kf1)^4)*(sne(u2,kf1)^4);
kj = ellipdeg(N, k1);
40 %% pole zero calculation for the above specifications
L = floor (N/2); r = mod(N,2); % L is the number of
     second-order sections
 i = (1:L)'; u = (2*i-1)/N; zeta_i = cde(u,kj);
  z = wp*1j./(kj*zeta_i); % zeros of elliptic rational
     function
  ZEROES = z;
  v0 = -1j * asne(1j/ep, k1)/N;
p = wp*1j*cde((u-1j*v0), kj); \%  filter poles
 poles = p;
  p0 = wp*1j*sne(1j*v0, kj); \% first-order pole, needed
     when N is odd
_{49} B = [ones(L,1), -2*real(1./z), abs(1./z).^2]; \% second-
     order numerator coefficients
 A = [ones(L,1), -2*real(1./p), abs(1./p).^2]; \% second-
     order denominator coefficients
  if r==0 % prepend first-order sections
      B = [Gp, 0, 0; B]; A = [1, 0, 0; A];
  else
53
      B = [1, 0, 0; B]; A = [1, -real(1/p0), 0; A];
54
  end
  ZEROES = cplxpair ([ZEROES; conj(ZEROES)]); % append
     conjugate zeros
  p = cplxpair([p; conj(p)]); \% append conjugate poles
  if r==1, p = [p; p0]; end % append first-order pole
     when N is odd
 H0 = Gp^{(1-r)}; % dc gain
  % Elliptic Lowpass filter transfer function and plots
 syms sl Omega_L;
  HLPF = (1 + 0.6295 * sl^2) / ((1 + 1.6047 * sl) * (1 +
     0.2305 * sl + 0.9994 * sl^2);
_{63} H_LPF_freq = subs(H_LPF, sl, 1i * Omega_L);
  [ns, ds] = numden(H_LPF);
nsl = sym2poly(ns);
```

```
dsl = sym2poly(ds);
67 \text{ k} = ds(1);
nsl = nsl / k;
ds = ds / k;
70 disp (nsl);
71 disp (dsl);
72 figure();
<sup>73</sup> fplot (abs (H_LPF_freq), 'LineWidth', 1);
74 hold on;
 fplot (sl - sl - 0.15 + 1, 'g-', 'Markersize', 10);
76 hold on;
77 fplot(sl-sl+1, 'g-', 'Markersize', 10);
 hold on;
<sup>79</sup> fplot(sl - sl + 0.15, 'g—', 'Markersize', 10);
 xline(1, 'magenta—', 'LineWidth',1);
81 hold on;
  xline (1.2069, 'magenta--', 'LineWidth',1);
83 axis ([0 2 0 1.2]);
  set (gca, 'FontSize', 5, 'XTick', [0, 1, 1.2069], '
     xticklabel', {'0', '\Omega_{Lp} = 1', '\Omega_{Ls} =
     1.2069 ' });
  set (gca, 'YTick', [0.15, 0.85, 1], 'yticklabel', {'\
     delta_2 = 0.15', '1 - delta_1 = 0.85', '1');
  daspect ([1 1 1]);
  title ('Equivalent Elliptic Lowpass filter mangitude
     response');
  xlabel('\Omega_L');
  ylabel('|H(j \land Omega_L)|');
  figure();
  fplot (angle (H_LPF_freq));
  xlabel('\Omega_L');
  ylabel('\angle H(j \Omega_L)');
  title ('Equivalent elliptic Lowpass filter phase
     response');
95
   M Analog lowpass to bandpass frequency transformation
   syms s Omega;
97
   Omega_0 = 0.5007;
```

```
B1 = 0.31067;
   H_BSF = subs(H_LPF, sl_s(B1 * s)/(s^2 + Omega_0^2));
   [ns, ds] = numden(H_BSF);
101
  ns = sym2poly(ns);
   ds = sym2poly(ds);
  k = ds(1);
  ns = ns . / k;
  ds = ds ./ k;
  disp(ns);
  disp (ds);
   sys = tf(ns, ds); % Analog BSF transfer function
  H_BSF_freq = subs(H_BSF, s, 1i * Omega);
  figure();
fplot(abs(H_BSF_freq), 'LineWidth',1);
  set (gca, 'XTick', [0.3689, 0.3959, 0.6457, 0.6795],
      xticklabel', {'\Omega_{p1}}', '\Omega_{s1}}', '\Omega_
     \{s2\}', 'Omega_{p2}'\};
  set (gca, 'YTick', [0.15, 0.85, 1], 'yticklabel', {'\
      delta_2 = 0.15', '1 - delta_1 = 0.85', '1');
  hold on;
   xline (0.3689, 'r—'); hold on;
   xline (0.3959, 'r--'); hold on;
  xline(0.6457, 'r--'); hold on;
   xline(0.6795, 'r—');
  hold on;
  fplot(s - s - 0.15 + 1, 'g-', 'Markersize', 10);
  hold on;
  fplot(s-s+1, 'g--', 'Markersize', 10);
  hold on;
  fplot(s - s + 0.15, 'g-', 'Markersize', 10);
  daspect ([1 1 1]);
   title ('Elliptic Bandstop filter mangitude response');
  xlabel('\Omega');
  ylabel('|H(j \land Omega)|');
  axis([0 1.5 0 1.2]);
131 %
```

```
% Analog to z bilinear transformation
  syms z;
_{134} Hz = subs(H<sub>BSF</sub>, s, (z-1)/(z+1));
  [Nz, Dz] = numden(Hz);
  Nz = sym2poly(Nz);
  Dz = sym2poly(Dz);
  k = Dz(1);
  Nz = Nz / k;
  Dz = Dz / k;
  disp(Nz);
   disp(Dz);
   [H, f] = freqz(Nz, Dz, 1024*1024, 400e3);
  SYS = tf(Nz, Dz);
  figure();
   plot(f, abs(H), 'LineWidth',1);
   axis([20e3 100e3 0 1.3]);
  hold on;
   yline (1.00, 'g—', 'LineWidth', 1);
   hold on;
  yline (0.85, 'g-', 'LineWidth', 1);
  hold on;
   yline (0.15, 'g-', 'LineWidth', 1);
  hold on;
   xline (45e3, 'r—', 'LineWidth', 1);
  hold on;
   xline (48e3, 'r—', 'LineWidth', 1);
   hold on;
158
   xline (73e3, 'r--', 'LineWidth', 1);
   hold on;
   xline (76e3, 'r—', 'LineWidth', 1);
   xlabel('f in 10<sup>4</sup> Hz');
   ylabel('|H(e^{f_i}) 2 \neq f_i))');
   title ('Magnitude Response of the Discrete Time Bandstop
       Filter');
   set (gca, 'XTick', [45e3, 48e3, 73e3, 76e3], 'xticklabel
      ', \{ f_{-}\{p1\}', f_{-}\{s1\}', f_{-}\{s2\}', f_{-}\{p2\}' \} \};
  set (gca, 'YTick', [0.15, 0.85, 1, 1.15], 'yticklabel',
```

```
\delta_1 = 1.15'});
167 fvtool(Nz, Dz, 'Analysis', 'Phase');
```