Mathématiques : Devoir maison n° 5

Thomas Diot, Jim Garnier, Jules Charlier, Pierre Gallois 1E1

Partie A - Méthode de Cardan

$$x^3 + ax^2 + bx + c = 0 (E_0)$$

1)

$$X = x + \frac{a}{3} \Leftrightarrow x = X - \frac{a}{3}$$

On remplace x dans (E_0) .

$$(X - \frac{a}{3})^3 + a(X - \frac{a}{3})^2 + b(X - \frac{a}{3}) + c = 0$$

$$\Leftrightarrow X^3 - 3X^2(\frac{a}{3}) + 3X(\frac{a}{3})^2 - (\frac{a}{3})^3 + a(X^2 - 2X(\frac{a}{3}) + (\frac{a}{3})^2) + bX - \frac{ab}{3} + c = 0$$

$$\Leftrightarrow X^3 - aX^2 + aX^2 + bX + \frac{a^2}{3}X - 2(\frac{a^2}{3}X) - \frac{a^3}{3^3} + \frac{a^3}{3^2} - \frac{ab}{3} + c = 0$$

$$\Leftrightarrow X^3 + (b - \frac{a^2}{3})X + \frac{2a^3}{3^3} - \frac{ab}{3} + c = 0$$

$$\Leftrightarrow X^3 + pX + q = 0 \qquad (E_1)$$

avec $p,q\in\mathbb{R}$ tel que $\left\{ \begin{array}{l} p=(b-\frac{a^2}{3})\\ q=\frac{2a^3}{3^3}-\frac{ab}{3}+c \end{array} \right.$

2)

a)

$$X = u + v$$
 avec $u, v \in \mathbb{R}$

On remplace X dans (E_1) .

$$(u+v)^{3} + p(u+v) + q = 0$$

$$\Leftrightarrow u^{3} + 3u^{2}v + 3uv^{2} + v^{3} + pu + pv + q = 0$$

$$\Leftrightarrow u^{3} + v^{3} + v(3uv + p) + u(3uv + p) + q = 0$$

$$\Leftrightarrow u^{3} + v^{3} + (u+v)(3uv + p) + q = 0$$
(E₂)

b)

On impose 3uv + p = 0 donc (E_2) devient :

$$u^3 + v^3 + q = 0 (E_3)$$

c)

$$3uv+p=0 \qquad \qquad \text{(relation imposée)}$$

$$\Leftrightarrow \qquad uv=\frac{-p}{3}$$

$$\Leftrightarrow \qquad u^3v^3=\frac{-p^3}{3^3} \qquad \qquad \text{(on élève au cube)} \qquad (E_4)$$

d)

$$u^{3} + v^{3} + q = 0 \qquad \qquad \text{d'après } (E_{3})$$

$$\Leftrightarrow \qquad u^{3} + \frac{u^{3}v^{3}}{u^{3}} + q = 0 \qquad \qquad (*)$$

$$\Leftrightarrow \qquad u^{3} + \frac{-p^{3}}{3^{3}u^{3}} + q = 0 \qquad \qquad \text{d'après } (E_{4})$$

$$\Leftrightarrow \qquad u^{6} - \frac{p^{3}}{3^{3}} + qu^{3} = 0 \qquad \qquad (\text{on multiplie par } u^{3})$$

Avec
$$U=u^3$$
 on a :
$$U^2+qU-\left(\frac{p}{3}\right)^3=0 \eqno(E_5)$$

qui est une équation du second degré, u^3 est donc solution d'une équation du second degré.

À l'étape (*) nous aurions pu multipler et diviser par v^3 sur u^3 , nous aurions alors obtenu une équation similaire à (E_5) mais avec v à la place de u.

 u^3 et v^3 sont donc solution d'une fonction du second degré.