NAME: Key

MATH 1 MIDTERM 1

October 17, 2007

INSTRUCTIONS: This is a closed book, closed notes exam. You are not to provide or receive help from any outside source during the exam.

- Print your name clearly in the space provided.
- You may not use a calculator.

HONOR STATEMENT:

I have neither given nor received help on this exam, and all of the answers are my own.

Signature

Question	Points	Score
1	9	9
2	12	12
3	4	4
4	6	6
5	10	10
6	10	10
7	8	8
8	10	10
9	11	11
10	20	20
Total:	100	100

1. Determine the inverse function $f^{-1}(x)$.

- (a) [1 point] $f(x) = x^3$ $y = x^3$: swap x + y; $x = y^3$
- (b) [1 point] $f(x) = 2^x$ $y = 2^x$: Swap x dy; $x = 2^y$ $\log_2 x = \log_2 x = \log_2 x = \log_2 x = y \log_2 x$
- (c) [1 point] $f(x) = e^x$ Same as previous problem, but with base e instead of 2: $f^{-1}(x) = \log_2 x = y$. $f^{-1}(x) = \log_2 x = y$.
- (d) [1 point] $f(x) = \log_3 x$ $y = \log_3 x$ $\Rightarrow x = \log_3 y$, $\Rightarrow x = \log$
- (e) [1 point] $f(x) = \tan x$ Inverse of tangent is arctan or tan-1. $f^{-1}(x) = \arctan x \quad \text{or} \quad \tan^{-1}(x)$
- (f) [2 points] $f(x) = -\frac{1}{x}$ $y = -\frac{1}{x} \xrightarrow{\text{swap}} x = -\frac{1}{y} \xrightarrow{\text{multiply } y} yx = -\frac{1}{x} \xrightarrow{\text{divide } x} y = -\frac{1}{x}.$ $f''(x) = -\frac{1}{x} \leftarrow \text{If is the same as } f(x)!$
- (g) [2 points] $f(x) = \sqrt{2x 1}$ $y = \sqrt{zx - 1}$ Swap $x = \sqrt{2y - 1}$ Square $x^2 = 2y - 1$ add 1 $x^2 + 1 = 2y$ divide 2 $\frac{x^2 + 1}{2} = y$ $f''(x) = \frac{x^2 + 1}{2}$

2. State the domain and range of the following functions.

(a) [2 points] $f(x) = x^2$

Domain: (-∞,∞)

Range: $[o, \infty)$

Can plug in any real number, out comes a nonnegative number.

(b) [2 points] $f(x) = \sqrt{x}$

Domain: [0,0)

Range: $[0, \infty)$

(c) [2 points] $f(x) = x^3$

Domain: $(-\infty, \infty)$

Range: $(-\infty,\infty)$

These are inverses of each other, so the domains and ranges swap.

Con't really tell

(d) [2 points] $f(x) = \sqrt[3]{x}$

Domain: $(-\infty, \infty)$

Range: $(-\infty, \infty)$

Con't really tell here, though...

(e) [2 points] $f(x) = \frac{1}{x}$

Domain: $(-\infty, 0) \cup (0, \infty)$

Range: $(-\infty,0) \cup (0,\infty) \stackrel{<}{\leq}$

(f) [2 points] $f(x) = \arctan x$

Domain: $(-\infty, \infty)$

Range: $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

- 3. Let $f(x) = x^3 2x + 1$.
 - (a) [1 point] Compute f(0).

$$f(0) = 0^3 - 2(0) + 1$$

$$= 0 - 0 + 1$$

$$= 1$$

(b) [1 point] Compute f(2).

$$f(z) = 2^{3} - 2(z) + 1$$

$$= 8 - 4 + 1$$

$$= 5$$

(c) [1 point] Find the slope of the line passing through the points (0, f(0)) and (2, f(2)).

$$m = \frac{f(z) - f(0)}{2 - 0} = \frac{5 - 1}{2} = \frac{4}{2} = 2$$

(d) [1 point] Find the equation of the line passing through the points (0, f(0)) and (2, f(2)).

$$m = \frac{y - f(0)}{x - 0}$$

$$2 = \frac{y-1}{x}$$
, $2x = y-1$, $y = 2x+1$.

- 4. Let $d(t) = t^2 1$ represent the distance an object has traveled in time t.
 - (a) [2 points] Determine the average velocity of the object in the interval [1, 2].

The object starts at 1, ends at 2:
average velocity =
$$\frac{d(z) - d(1)}{2 - 1} = \frac{(z^2 - 1) - (1^2 - 1)}{1}$$

= $\frac{3 - 0}{1} = \boxed{3}$

(b) [2 points] Evaluate and simplify $\frac{d(1+h)-d(1)}{h}$.

$$\frac{d(1+h) - d(1)}{h} = \frac{(1+h)^2 - 1 - (1^2 - 1)}{h}$$

$$= \frac{1 + 2h + h^2 - 1 - 0}{h}$$

$$= \frac{2h + h^2}{h} = \frac{1}{1+h} = \frac{1}{1+h}$$

(c) [2 points] The expression above represents the average velocity of the object in an interval [1, 1 + h]. Plug in h = 0.1, 0.01, and 0.001 into the simplified form of the expression (or the complicated one if you prefer!) and estimate

$$\lim_{h \to 0} \frac{d(1+h) - d(1)}{h}.$$

- 5. Starting with the function $y = \frac{1}{x}$, obtain f(x) by taking $\frac{1}{x}$ and translating it right one unit followed by reflecting it about the x-axis. Obtain g(x)by taking $\frac{1}{x}$ and reflecting it about the x-axis followed by translating it up one unit.
 - (a) [2 points] What is f(x)?

start with
$$\frac{1}{x}$$
 replace x by $x-1$: $\frac{1}{x-1}$ replace $f(x)$ by $-f(x)$: $-\frac{1}{x-1}$

$$f(x) = -\frac{1}{x-1}$$

(b) [2 points] What is g(x)?

Start with
$$\frac{1}{x}$$
replace $f(x)$ by $-f(x)$: $-\frac{1}{x}$
replace $-f(x)$ by $-f(x)+|: -\frac{1}{x}+|$.

(i.e., just add 1) $g(x) = -\frac{1}{x}+1$

(c) [2 points] Compute $f \circ g$.

$$f \circ g(x) = f(g(x)) = -\frac{1}{g(x)-1} = -\frac{1}{(-\frac{1}{x}+1)-1} = -\frac{1}{-\frac{1}{x}} = -1 \cdot (-x) = x$$

(d) [2 points] Compute $g \circ f$.

[2 points] Compute
$$g \circ f$$
.
 $g \circ f(x) = g(f(x)) = -\frac{1}{f(x)} + 1 = -\frac{1}{-\frac{1}{x-1}} + 1$
 $= -1 \cdot (-(x \cdot 1)) + 1 = x$

(e) [2 points] Given the results from parts (c) and (d), what relationship exists between f and g?

Since
$$f \circ g$$
 and $g \circ f$ both are x , f and g are inverse functions.

 $\cos \pi = -1$

- 6. Simplify the following expressions:
 - (a) [2 points] $16^{-3/4}$ $16^{-3/4} = \frac{1}{(\sqrt[4]{16})^3}$ (This is also $\frac{1}{\sqrt[4]{(16^3)}}$, but I'd rather not do 16^3 first!) $= \frac{1}{2^3} = \frac{1}{8}$
 - (b) [2 points] $\frac{x}{y} \frac{y}{x}$ $\frac{x}{y} \frac{y}{x} = \frac{x}{y} \cdot \frac{x}{x} \frac{y}{x} \cdot \frac{y}{y} \qquad (\text{to get a common denominal})$ $= \frac{x^2}{xy} \frac{y^2}{xy} = \frac{x^2 y^2}{xy}.$
 - (c) [2 points] $\log_8(64)$ $\log_8 64 = \log_8 (8^2) = 2 \log_8 8 = 2 \cdot 1 = 2$
 - (d) [2 points] $\log_2(6) \log_2(15) + \log_2(20)$ $\log_2(\frac{6}{15}) + \log_2 20 = \log_2(\frac{2}{5} \cdot 20)$ $= \log_2 8$ $= \log_2(2^3) = 3\log_2 2 = 3 \cdot 1 = 3$
 - (e) [2 points] arccos(-1)

arccos (-1) = θ \rightleftharpoons $\cos \theta = -1$ arccos x has range $[0, \pi]$
(since we choose this domain of \cos .)

to take the inverse of.

7. Let

$$f(x) = \begin{cases} x+2 & \text{if } x < -1 \\ x^2 & \text{if } x > -1 \\ 4 & \text{if } x = -1 \end{cases}$$

(a) [4 points] Graph f(x).

(b) [1 point] Find
$$\lim_{x \to -1^{-}} f(x)$$
.

$$\lim_{x \to -1^{-}} f(x) = 1$$

(c) [1 point] Find
$$\lim_{x \to -1^+} f(x)$$
.

$$\lim_{x \to -1^+} f(x) = 1$$

(d) [1 point] Find $\lim_{x\to -1} f(x)$.

Since
$$\lim_{x \to -1} f(x)$$
 and $\lim_{x \to -1^+} f(x)$ are both 1, so is $\lim_{x \to -1} f(x)$.

Since $\lim_{x \to -1^-} f(x)$ and $\lim_{x \to -1^+} f(x) = 1$.

(e) [1 point] Find f(-1).

8. Solve for x.

- (a) [2 points] $x-3=2-\frac{x}{2}$ Multiply by 2: 2x-6=4-xAdd x: 3x-6=4Add 6: 3x=10Divide $3: x=\frac{10}{3}$
- (b) [2 points] $(\frac{1}{3})^x = 27$

(b) [2 points] (3)
$$= 27$$

Now take \log_3 on both sides:
$$(3^{-1})^x = 27$$

$$\log_3 (3^{-x}) = \log_3 (3^3)$$

$$\log_3 (3^{-x}) = \log_3 (3^3)$$
Power rule: $-x \log_3 3 = 3 \log_3 3$

$$\log_3 3 = 1 : -x = 3$$

$$\log_3 3 = 1 : -x = 3$$

$$\log_3 3 = 1 : -x = 3$$
(c) [2 points] $\tan(x) = 1$ with x in the interval $(-\frac{\pi}{2}, \frac{\pi}{2})$

Draw a triangle with $\frac{opp.}{adj.} = 1:$ This is one of the "special triangles," xwith angle $\frac{T}{4}$. Since this is in our interval, $x = \frac{T}{4}$.

(d) [2 points]
$$\sin(\arcsin(x)) = 1$$

 \sin and arcsin are inverse functions, so they cancel.
 $x = 1$.

(e) [2 points] $\ln((x+1)^3) = 3$

Power rule:
$$3 \ln (x+1) = 3$$

Divide by 3: $\ln (x+1) = 1$
Take e to both sides: $e^{\ln(x+1)} = e^{\ln(x+1)}$
e and \ln are inverses: $(x+1) = e$
Subtract 1: $x = e-1$.

9. [1 point] Sketch the graph of $f(x) = \sqrt{x}$.

Write the equations for the graphs that are obtained from the graph of f(x) as follows:

(a) [2 points] Translate to the left by 3 units.

Replace x by x+3:

(b) [2 points] Stretch horizontally by a factor of 4.

Replace ∞ by $\frac{\chi}{4}$:

(c) [2 points] Reflect about the y-axis.

Replace x by -x:

2+3

(d) [2 points] First (a) then (c).

From (a) we have \$\square \chi \times +3.

(e) [2 points] First (b) then (a).

From (b) we have: $\sqrt{\frac{x}{4}}$

Replace x by x+3:

10. Consider the function $f(x) = \frac{1}{x^2}$ graphed below.

(a) [2 points] Find the domain of f.

(b) [2 points] Find the range of f.

(c) [1 point] Is f one-to-one?

No, it's easy to find two x-values with the same y-value, say (-1,1) and (1,1). (Also fails horiz. (d) [1 point] What kind of symmetry does f have (even, odd, neither)? line test.)

Even. Fold the paper along the y-axis and see. Better yet: Replace x by -x: $f(-x) = \frac{1}{(-x)^2} = \frac{1}{x^2}$, so f(-x) = f(x).

(e) [2 points] Determine the two transformations (in order) needed to obtain $g(x) = -\frac{1}{(x+1)^2}$ from f(x).

Actually, in this case order doesn't matter.

Do one of these followed by the other:

reflect around x-axis, translate left by 1 unit.

(f) [1 point] Sketch the graph of g(x).

(g) [2 points] Find the domain of g.

 $(-a_0,-1) \cup (-1,a_0) \in$ It's the domain of f shifted

(h) [2 points] Find the range of g. (-0,0)

Negative of range of f.

- (i) [1 point] Find $\lim_{x\to 0^+} g(x)$.
- (j) [1 point] Find $\lim_{x\to 0^-} g(x)$. 1
- (k) [1 point] Find $\lim_{x\to 0} g(x)$. 1

(since lim g(x) and lim g(x) are both - 1.)

- (l) [1 point] Find g(0). -1
- (m) [1 point] Find $\lim_{x \to -1^+} g(x)$. $-\infty$
- (n) [1 point] Find $\lim_{x \to -1^-} g(x)$. $-\infty$

(o) [1 point] Find $\lim_{x\to -1} g(x)$. $-\infty$ (Again, $\lim_{x\to -1^+} g(x)$ and $\lim_{x\to -1^-} g(x)$

we the same and are both $-\infty$, so $\lim_{x\to -1} g(x) = -\infty$.