Section 03: Hétéroscédasticité (Application Stata)

GSF-6053: Économétrie Financière

Simon-Pierre Boucher¹

¹Département de finance, assurance et immobilier Faculté des sciences de l'administration Université Laval

15 février 2022

- Nous allons maintenant regarder si notre régression présente un problème d'hétéroscédasticité.
- Nous allons reprendre les mêmes données que lors de l'application STATA de la section 2.
- Afin de détecter s'il y a présence d'hétéroscédasticité, nous allons effectuer les deux tests suivants:
 - ► Test de White
 - Test de Breusch-Pagan

Rappel de la régression (fait dans section 2)

Code 1: $wage = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 tenure + \epsilon$ reg wage educ exper tenure

Output 1:

Source	ss	df	MS		er of ob		526
Model Residual	2194.1116 4966.30269	3 522	731.37053 9.5139898	2 Prob 4 R-sq	522) > F uared R-square	= = =	76.87 0.0000 0.3064 0.3024
Total	7160.41429	525	13.638884			=	3.0845
wage	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
educ exper tenure _cons	.5989651 .0223395 .1692687 -2.872735	.0512835 .0120568 .0216446 .7289643	11.68 1.85 7.82 -3.94	0.000 0.064 0.000 0.000	.4982 0013 .1267 -4.304	3464 7474	.6997126 .0460254 .2117899 -1.440671

Test de White:

► Régression auxiliaire:

$$\begin{split} \hat{\epsilon}^2 &= \alpha_0 + \alpha_1 \textit{educ} + \alpha_2 \textit{exper} + \alpha_3 \textit{tenure} \\ &+ \alpha_{11} \textit{educ}^2 + \alpha_{22} \textit{exper}^2 + \alpha_{33} \textit{tenure}^2 \\ &+ \alpha_{12} (\textit{educ} \times \textit{exper}) + \alpha_{13} (\textit{educ} \times \textit{tenure}) \\ &+ \alpha_{23} (\textit{exper} \times \textit{tenure}) \end{split}$$

La statistique de test :

$$WHITE = T \times R_{reg.aux}^2$$

Sachant que $R_{reg.aux}^2$ est le R^2 de la régression auxiliaire.

Code 2: Régression auxiliaire du test de White

- predict resid, residuals
- gen resid2 = resid^2
- ▶ gen educ2 = educ^2
- gen exper2 = exper^2
- gen tenure2 = tenure^2
- gen educexper = educ*exper
- ▶ gen eductenure = educ*tenure
- gen expertenure = exper*tenure
- reg resid2 educ exper tenure educ2 exper2 tenure2 educexper eductenure expertenure

Output 2:

Source	SS	df	MS		er of obs	=	526 7.94
Model	36918.0322	9	4102.00358		> F	=	0.0000
Residual	266691.75	516	516.844476	i R-sq	uared	=	0.1216
				– Adj	R-squared	=	0.1063
Total	303609.782	525	578.304347	Root	MSE	=	22.734
resid2	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
educ	-6.380091	2.58171	-2.47	0.014	-11.4520)5	-1.308135
exper	.1223616	.6353927	0.19	0.847	-1.12591	.3	1.370636
tenure	0206106	.9469691	-0.02	0.983	-1.88	31	1.839778
educ2	.2737643	.0895692	3.06	0.002	.097799	1	.4497295
exper2	0112936	.0074615	-1.51	0.131	025952	4	.0033651
tenure2	0046583	.0169518	-0.27	0.784	037961	2	.0286447
educexper	.0400745	.0382609	1.05	0.295	035091	.8	.1152409
eductenure	.0820283	.056698	1.45	0.149	029358	9	.1934156
expertenure	0066229	.0187838	-0.35	0.725	04352	25	.0302791
_cons	35.63939	19.09955	1.87	0.063	-1.88304	18	73.16183

Test de White

- Valeur critique de White
 - Le nombre de degré de liberté est le nombre de variables dans la régression auxiliaire, soit df = 9.
 - Nous trouverons cette valeur critique en utilisant une table chi-carré
 - On utilise également une significativité de 5%

$$X^2(H) = X^2(9)$$

- Hypothèse nulle: la variance est homoscedastique
- Hypothèse alternative: la variance est heteroscedastique

Table Chi-Carré

df	0.995	0.99	0.975	0.95	0.90	0.10	0.05	0.025	0.01	0.005
1			0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879
2	0.010	0.020	0.051	0.103	0.211	4.605	0.00 .	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.833	15.086	16.750
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.278
	344	1.646	2.180	2.733	3.490	13.362	10.001	17.535	20.090	21.955
9	735	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	23.589
	156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188
11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725	26.757
12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217	28.300
13	3.565	4.107	5.009	5.892	7.042	19.812	22.362	24.736	27.688	29.819
14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31.319
15	4.601	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.578	32.801
16	5.142	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000	34.267
17	5.697	6.408	7.564	8.672	10.085	24.769	27.587	30.191	33.409	35.718
18	6.265	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34.805	37.156
19	6.844	7.633	8.907	10.117	11.651	27.204	30.144	32.852	36.191	38.582
20	7.434	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566	39.997

Valeur critique de White

$$X^2(H) = X^2(9) = 16.919$$

Statistique de White

$$WHITE = T \times R_{reg.aux}^2 = 526 \times 0.1216 = 63.9616$$

Décision

La statistique de White WHITE = 63.9616 est supérieur à la valeur critique $X^2(9) = 16.919$

WHITE =
$$63.9616 > X^2(9) = 16.919$$

- On rejette donc l'hypothèse nulle que la variance est homoscedastique.
- Nous avons possiblement une régression ayant une problème d'heteroscedastique.

Code 3: Test de White avec commande rapide estat imtest, white

Output 3:

```
White's test for Ho: homoskedasticity
against Ha: unrestricted heteroskedasticity

chi2(9) = 63.96
Prob > chi2 = 0.0000
```

- On peut voir que la valeur de la statistique est la même que celle obtenue avec la méthode de la régression auxiliaire.
- Et la P-value de 0.000 confirme notre décision de rejetter l'hypthèse nulle.

Test de Breusch-Pagan:

► Régression auxiliaire:

$$\hat{\epsilon}^2 = \alpha_0 + \alpha_1 educ + \alpha_2 exper + \alpha_3 tenure$$

La statistique de test :

$$BP = T \times R_{reg.aux}^2$$

Sachant que $R_{reg.aux}^2$ est le R^2 de la régression auxiliaire.

Code 4: Régression auxiliaire du test de Breusch-Pagan

- predict resid, residuals
- gen resid2 = resid^2
- reg resid2 educ exper tenure

Output 4:

Source	SS	df	MS		er of obs	=	526
Model	24875.0022	3	8291.66739	- F(3, Prob		=	15.53 0.0000
Residual	278734.78	522	533.974674	I R−squ	ıared	=	0.0819
T-4-1	202600 702		F70 20424	•	R-squared	=	0.0767
Total	303609.782	525	578.304347	Root	MSE	=	23.108
resid2	Coef.	Std. Err.	t	P> t	[95% Con	f.	Interval]
educ	1.570524	.3841997	4.09	0.000	.8157566		2.325292
exper	.1104628	.090326	1.22	0.222	0669843		.28791
tenure	.6931533	.1621544	4.27	0.000	.3745979		1.011709
_cons	-15.70645	5.461164	-2.88	0.004	-26.43501		-4.977886

Test de Breusch-Pagan

- Valeur critique de Breusch-Pagan
 - Le nombre de degré de liberté est le nombre de variables dans la régression auxiliaire, soit df = 3.
 - Nous trouverons cette valeur critique en utilisant une table chi-carré
 - On utilise également une significativité de 5%

$$X^2(H) = X^2(3)$$

- Hypothèse nulle: la variance est homoscedastique
- ▶ Hypothèse alternative: la variance est heteroscedastique

Table Chi-Carré

df	0.995	0.99	0.975	0.95	0.90	0.10	0.05	0.025	0.01	0.005
1			0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879
	.010	0.020	0.051	0.103	0.211	4.605		7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838
).207	0.297	0.484	0.711	1.064	7.779		11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.833	15.086	16.750
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.278
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.955
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	23.589
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188
11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725	26.757
12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217	28.300
13	3.565	4.107	5.009	5.892	7.042	19.812	22.362	24.736	27.688	29.819
14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31.319
15	4.601	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.578	32.801
16	5.142	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000	34.267
17	5.697	6.408	7.564	8.672	10.085	24.769	27.587	30.191	33.409	35.718
18	6.265	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34.805	37.156
19	6.844	7.633	8.907	10.117	11.651	27.204	30.144	32.852	36.191	38.582
20	7.434	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566	39.997

Valeur critique de Breusch-Pagan

$$X^2(H) = X^2(3) = 7.815$$

Statistique de White

$$BP = T \times R_{reg.aux}^2 = 526 \times 0.0819 = 43.0794$$

Décision

► La statistique de Breusch-Pagan BP = 43.0794 est supérieur à la valeur critique $X^2(9) = 7.815$

$$BP = 43.0794 > X^2(3) = 7.815$$

- On rejette donc l'hypothèse nulle que la variance est homoscedastique.
- Nous avons possiblement une régression ayant une problème d'heteroscedastique.

Code 5: Test de Breusch-Pagan avec commande rapide estat hettest educ exper tenure, iid

Output 5:

```
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: educ exper tenure

chi2(3) = 43.10
Prob > chi2 = 0.0000
```

- On peut voir que la valeur de la statistique est la même que celle obtenue avec la méthode de la régression auxiliaire.
- Et la P-value de 0.000 confirme notre décision de rejetter l'hypthèse nulle.

Code 6: Correcteur de White (Correction pour hétéroscédasticité)

reg wage educ exper tenure, robust

Output 6:

Linear regression	Number of obs	=	526
-	F(3, 522)	=	41.59
	Prob > F	=	0.0000
	R-squared	=	0.3064
	Root MSE	=	3.0845

wage	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
educ	.5989651	.0610139	9.82	0.000	.4791021	.7188281
exper	.0223395	.0105548	2.12	0.035	.0016044	.0430747
tenure	.1692687	.0292784	5.78	0.000	.1117508	.2267865
_cons	-2.872735	.8074154	-3.56	0.000	-4.458918	-1.286552

Analyse régression corrigée pour hétéroscédasticité

- Comme on peut voir, les coefficients sont restés identiques.
- C'est normal, étant donné que le correcteur de White change simplement la variance des estimateurs et leur valeur.
- Le fait que la variance de ses estimateurs soit affectée, implique que la décision de rejet de certains coefficients pourrait changer.
- Les coefficients des variables **educ** et **tenure** reste significatif.
- Cependant, dans la régression OLS, le coefficient de la variable exper n'était pas significatif.
- Suite à l'application du correcteur de White, le coefficient de la variable exper devient significatif.