ДОДАТОК. Хвильові функції електрона у кулонівському полі для $n=1\div 3$

Квантові		гові	
числа		1	$\Psi_{nlm_l}(r,\theta,\varphi) = R_{nl}(r)Y_{lm_l}(\theta,\varphi)$
n	ι	m_l	3/2
1	0	0	$\frac{1}{\sqrt{\pi}} \left(\frac{Z}{r_0}\right)^{3/2} \cdot \exp\left(-\frac{Z}{r_0}r\right)$
2	0	0	$\frac{1}{4\sqrt{2\pi}} \left(\frac{Z}{r_0}\right)^{3/2} \left(2 - \frac{Z}{r_0}r\right) \cdot \exp\left(-\frac{Z}{2r_0}r\right)$
2	1	0	$\frac{1}{4\sqrt{2\pi}} \left(\frac{Z}{r_0}\right)^{3/2} \left(\frac{Z}{r_0}r\right) \cdot \exp\left(-\frac{Z}{2r_0}r\right) \cdot \cos\theta$
2	1	+1	$\frac{1}{8\sqrt{\pi}} \left(\frac{Z}{r_0}\right)^{3/2} \left(\frac{Z}{r_0}r\right) \cdot \exp\left(-\frac{Z}{2r_0}r\right) \cdot \sin\theta \cdot \exp(i\varphi)$
2	1	-1	$\frac{1}{8\sqrt{\pi}} \left(\frac{Z}{r_0}\right)^{3/2} \left(\frac{Z}{r_0}r\right) \cdot \exp\left(-\frac{Z}{2r_0}r\right) \cdot \sin\theta \cdot \exp(-i\varphi)$
3	0	0	$\frac{1}{81\sqrt{3\pi}} \left(\frac{Z}{r_0}\right)^{3/2} \left(27 - 18\frac{Z}{r_0}r + 2\left(\frac{Z}{r_0}r\right)^2\right) \cdot \exp\left(-\frac{Z}{3r_0}r\right)$
3	1	0	$\frac{\sqrt{2}}{81\sqrt{\pi}} \left(\frac{Z}{r_0}\right)^{3/2} \left(6 - \frac{Z}{r_0}r\right) \cdot \frac{Z}{r_0} r \cdot \exp\left(-\frac{Z}{3r_0}r\right) \cdot \cos\theta$
3	1	+1	
3	1	-1	$\frac{1}{81\sqrt{\pi}} \left(\frac{Z}{r_0}\right)^{3/2} \left(6 - \frac{Z}{r_0}r\right) \cdot \frac{Z}{r_0}r \cdot \exp\left(-\frac{Z}{3r_0}r\right) \cdot \sin\theta \cdot \exp(-i\varphi)$
3	2	0	$\frac{1}{81\sqrt{6\pi}} \left(\frac{Z}{r_0}\right)^{3/2} \left(\frac{Z}{r_0}r\right)^2 \cdot \exp\left(-\frac{Z}{3r_0}r\right) \cdot \left(3\cos^2\theta - 1\right)$
3	2	+1	$\frac{\sqrt{2}}{81\sqrt{\pi}} \left(\frac{Z}{r_0}\right)^{3/2} \left(\frac{Z}{r_0}r\right)^2 \cdot \exp\left(-\frac{Z}{3r_0}r\right) \cdot \sin\theta \cdot \cos\theta \cdot \exp(i\varphi)$