

Ejercicios-explicacion002.pdf

PruebaAlien

Fundamentos de Redes

3º Grado en Ingeniería Informática

Escuela Técnica Superior de Ingenierías Informática y de Telecomunicación Universidad de Granada

Descarga la APP de Wuolah.

Ya disponible para el móvil y la tablet.

Descarga la APP de Wuolah.

Ya disponible para el móvil y la tablet.

Continúa do

405416 arts esce ues2016juny.pdf

Top de tu gi

Al inicio de una conexión TCP, en una línea sin congestión con 30 ms de tiempo de propagación y 1 Gbps de velocidad de transmisión, ¿cuánto tiempo se emplea en enviar y recibir confirmación de 50 KB con las siguientes asunciones (añada cualquier asunción adicional que crea conveniente)? Realice el diagrama de tiempos de la transmisión.

- a) Ventana ofertada de control de flujo de 10 KB continuada
- b) Inicio lento configurado para comenzar a 2MSS
- Todos los segmentos se ajustan a un MSS (Maximum segment Size) de 2 KB
- d) Umbral de congestión de 16 KB
- Respuesta ACK retardada en el receptor de acuerdo a la teoría.

 $t_p = (tiempo de propagación) ms$

 $V_t = (velocidad de transmisión),$

$$ejemplo: V_t = 1Gbps = 10^9 bps$$

$$ejemplo: V_t = 5Mbps = 5 * 10^6 bps$$

$$RTT = (Round Trip Time) ms$$

Todos los segmentos se ajustan a 1 MSS (Maximum Segment Size) de 2KB

$$t_t = \frac{1MSS}{V_t} = \frac{2KB}{10^9} = \frac{2 * 1024 * 8}{10^9}$$
$$= 0.0000163s * 100000 = 16.3 \,\mu s$$

Si fuera $V_t = 5 * 10^6$

$$t_t = \frac{1MMS}{V_t} = \frac{2KB}{5*10^6} = \frac{2*1024*8}{5*10^6}$$
$$= 0.0032768s*1000 = 3.277 \text{ ms}$$

Despreciamos cabeceras

Numero de segmentos =
$$\frac{50KB}{2KB}$$
 = 25

Control de fujo =

(ventana of ertada de control de flujo) =
$$10KB$$

= $\frac{10KB}{2KB}$ = $5MSS$

tiempo se emplea en enviar y recibir confirmación de 50 KB con las siguientes asunciones:

$$t_{total} = (n^{\circ} t_t) * t_t + (n^{\circ} t_p) * t_p + 500ms$$

= 11 * t_t + 14 * t_p + 500ms
= 920ms

PARA HACER EL DIBUJO:

Cada mensaje que envia de A a B, inicialmente son 2MSS = 4KB, con lo cual ventanaCongesti'on = 1*2MSS = 4KB, como el Umbral es de 16KB, mientras la ventanaCongesti\'on < Umbral = 16KB, puede enviar, de tal forma que el siguiente mensaje ventanaCongesti'on += MSS = 2KB y se repite.

SUPONGO QUE EL NUMERO DE t_p + t_t = 25

DE TAL FORMA QUE CADA CONJUNTO SON 2 t_p Y EL RESTO SE REPARTEN ENTRE 2 t_t Y 1 t_t

Señale las subredes que encuentre en la topología mostrada y asigne las direcciones privadas que considere necesario para poder interconectar todos los dispositivos de la red. Asigne una dirección pública a la red hacia internet.

¿Por qué pasamos de 192.168.4.0 a 192.168.8.0?

Porque Hay 2 subredes globales y tienen que ser distintos, con lo cual

- 192.168.4.0 → 192.168.00000**100.00000000**
- 192.168.8.0 → 192.168.0000**1000.00000000**

Especifique la tabla de encaminamiento para el Router R1 y R8 de forma tal que se minimicen el número de entradas en la misma.

Router R1

Red Destino	Mascara	Siguiente Salto
Default	/0	200.200.200.2/30
192.168.0.0	/24	-
200.200.200.0	/30	-
<mark>192.168.0.0</mark>	<mark>/22</mark>	192.168.0.2 (R2)
192.168.4.0	/24	192.168.0.3 (R3)
<mark>192.168.8.0</mark>	<mark>/22</mark>	192.168.0.4 (R4)

Es 192.168.0.0 para acceder al router R2, porque hay mas subredes (192.168.1.0, 192.168.2.0 y 192.168.3.0)

- $192.168.1.0 \rightarrow 192.168.000000 | 01.00000000$
- 192.168.2.0 → 192.168.000000 | **10.00000000**
- 192.168.3.0 \rightarrow 192.168.000000 | **11.00000000**

$8 + 8 + 6 = 22 \rightarrow MASCARA / 22$

En la 192.168.8.0 para acceder al router R4, porque hay mas subredes (192.168.8.0, 192.168.9.0, 192.168.10.0 y 192.168.11.0)

- 192.168.8.0 → 192.168.000010 **00.00000000**
- 192.168.9.0 → 192.168.000010 **01.00000000**
- 192.168.10.0 → 192.168.000010 10.00000000
- 192.168.11.0 → 192.168.000010 **11.00000000**

Router R8

Red Destino	Mascara	Siguiente Salto
Default	-	192.168.8.1 (R4)
192.168.8.0	/24	-
192.168.11.0	/24	-

Otro ejemplo:

Descarga la APP de Wuolah. Ya disponible para el móvil y la tablet.

Continúa do

405416_arts_esce ues2016juny.pdf

Top de tu gi

7CR

Rocio

pony

Tabla de encaminamiento de R2

Red Destino	Mascara	Siguiente salto
192.168.0.0	/24	-
192.168.1.0	/24	-
0.0.0.0 (default)	/0	192.168.0.1 (R1)
192.168.2.0	/24	192.168.1.4 (R4)
192.168.0.0	/21	192.168.1.5 (R5)
192.168.8.0	/22	192.168.0.3 (R3)

Es /21, porque: (ocupan 3 bits, con lo cual serian 24 – 3 = 21), cogemos los bits en comun

10101000.00000|**011** \rightarrow 168.3.0

 $10101000.00000 | 100 \rightarrow 168.4.0$

10101000.00000 | **001** → 168.1.0

3. (1 pto) Suponga la red mostrada en la siguiente figura. Ana desea enviarle un correo a Bea.

Suponiendo que todos los equipos tienen configurado completamente el encaminamiento, las tablas ARP llenas y el servidor DNS configurado y cachés vacías. El servidor DNS contiene todos los registros necesarios para resolver los dominios a.org y b.com. Con la ayuda de la tabla, explique el proceso completo y las diferentes solicitudes y respuestas de los protocolos implicados que los equipos deben realizar entre sí, desde que Ana le envía un correo a Bea hasta que ésta lo lee

Petición DNS y respuesta en Ana

ORIGEN	DESTINO	PROTOCOLO	MENSAJE	COMENTARIOS
Ana	DNS	DNS	Solicitud DNS, MX dominio a.org	Paquete único sobre UDP
DNS	Ana	DNS	Respuesta DNS IP MX dominio a.org	Paquete único sobre UDP

Establecimiento conexión TCP, acceso al correo y envio de mensaje

ORIGEN	DESTINO	PROTOCOLO	MENSAJE	COMENTARIOS
Ana	MX a.org	SMTP/HTTP	Envio del correo	Establecimiento conexión TCP,
				incluye el acceso al correo y
				envio del correo (ej: HELLO)
MX a.org	DNS	DNS	Solicitud DNS, MX dominio b.org	Paquete único sobre UDP
DNS	MX a.org	DNS	Respuesta DNS IP, MX dominio	Paquete único sobre UDP
			b.org	
MX a.org	MX b.com	SMTP	Envio del correo	Conexión TCP interactiva

Petición DNS y respuesta en Bea

ORIGEN	DESTINO	PROTOCOLO	MENSAJE	COMENTARIOS
Bea	DNS	DNS	Solicitud DNS, MX dominio b.com	Paquete único sobre UDP
DNS	Bea	DNS	Respuesta DNS IP MX dominio b.com	Paquete único sobre UDP

Establecimiento conexión TCP, acceso al correo y recepción del mensaje

ORIGEN	DESTINO	PROTOCOLO	MENSAJE	COMENTARIOS
Bea	MX b.com	POP3 /IMAP /HTTP	Descarga del correo	Establecimiento conexión TCP
				interactiva

