Machine Learning – Regime Switching HMM Phase II

November 2021

By: Corbin Apple & Young Seok Seo

Table of Contents

- 1. Project Summary
- 2. Model Overview
- 3. Code Breakdown
- 4. Data Analysis
- 5. Empirical Results
- 6. Next Steps
- 7. References

Project Summary

Summary

- Main Idea: Take advantage of changing market dynamics
- Model: Hidden Markov Model, identifying stable, low variance regimes and unstable, high variance regimes
- Idealized Results: Construct a replicating portfolio that avoids market drawdowns, but capitalizes on positive performance

Model Overview

Overview

Our Idea:

- 1. Fit a Hidden Markov Model using a rolling window
- 2. Estimate the current state we are in at each time step, using only historical data
- 3. Construct a portfolio in which we are fully invested if we are currently in a positive market, and fully divested in a negative market

Reasoning:

- Predicting future daily returns is very challenging
- This method allows for model construction purely on actual returns
- Ease of implementation and reproducibility

Code Breakdown

Breakdown (1 of 11)

Import necessary packages

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import seaborn as sns
import datetime
from hmmlearn import hmm

import warnings
warnings.filterwarnings("ignore")
```


Breakdown (2 of 11)

Import Bank of America historical data

```
input_df = pd.read_csv('~/Desktop/Corbin SBU/AMS 520/Project/BofA Projects Data/EOD_20210908.csv',
 2
                           header = None,
 3
                           names = ['Ticker', # Label columns
                                     'Date',
 4
 5
                                     'Open',
                                     'High',
 6
                                     'Low',
                                     'Close',
 8
                                     'Volume',
 9
                                     'Dividend',
10
11
                                     'Stock_split',
12
                                     'Adj_open',
                                     'Adj high',
13
14
                                     'Adj low',
15
                                     'Adj_close',
                                     'Adj volume'])
16
```


Breakdown (3 of 11)

- Select chosen index (SPY)
- Calculate daily percentage returns
- Calculate volatility of daily returns over selected time window (500 days)

```
# Proposed Idea: Create a HMM for the recent Neff days, and for all days after the Neff'th day
# Predict which state we are currently in based on the Neff recent days
# Be fully invested if in a positive market, fully divested in a negative market

data = input_df.loc[input_df['Ticker'] == 'SPY'] # Select which index to use for analysis
data.reset_index(inplace=True, drop=True)

Neff = 500 # Lookback length

# Calculate daily percentage returns
Return = 100*(data['Adj_close'] - data['Adj_close'].shift(1)) / data['Adj_close'].shift(1)

data['Return'] = Return
```


Data Analysis

Data Details

	Ticker	Date	Open	High	Low	Close	Volume	Dividend	Stock_split	Adj_open	Adj_high	Adj_low	Adj_close	Adj_volume	Return	Volatility
0	SPY	1993- 01-29	43.9687	43.9687	43.7500	43.9375	1003200.0	0.0	1.0	25.804239	25.804239	25.675889	25.785928	1003200.0	NaN	0.000000
1	SPY	1993- 02-01	43.9687	44.2500	43.9687	44.2500	480500.0	0.0	1.0	25.804239	25.969328	25.804239	25.969328	480500.0	0.711238	0.000000
2	SPY	1993- 02-02	44.2187	44.3750	44.1250	44.3437	201300.0	0.0	1.0	25.950958	26.042687	25.895968	26.024318	201300.0	0.211751	0.000000
3	SPY	1993- 02-03	44.4062	44.8437	44.3750	44.8125	529400.0	0.0	1.0	26.060998	26.317757	26.042687	26.299446	529400.0	1.057196	0.000000
4	SPY	1993- 02-04	44.9687	45.0937	44.4687	45.0000	531500.0	0.0	1.0	26.391117	26.464476	26.097678	26.409486	531500.0	0.418410	0.000000
						·							•			
7199	SPY	2021- 08-31	452.1300	452.4900	450.9200	451.5600	58631140.0	0.0	1.0	452.130000	452.490000	450.920000	451.560000	58631140.0	-0.148155	1.577472
7200	SPY	2021- 09-01	452.5600	453.1100	451.5450	451.8000	48667698.0	0.0	1.0	452.560000	453.110000	451.545000	451.800000	48667698.0	0.053149	1.577512
7201	SPY	2021- 09-02	453.3200	454.0500	451.9100	453.1900	42479834.0	0.0	1.0	453.320000	454.050000	451.910000	453.190000	42479834.0	0.307658	1.577511
7202	SPY	2021- 09-03	451.9800	453.6300	451.5500	453.0800	47155405.0	0.0	1.0	451.980000	453.630000	451.550000	453.080000	47155405.0	-0.024272	1.577528
7203	SPY	2021- 09-07	452.7100	452.8100	450.7423	451.4600	51477698.0	0.0	1.0	452.710000	452.810000	450.742300	451.460000	51477698.0	-0.357553	1.577303

7204 rows × 16 columns

Breakdown (4 of 11)

• Fit the Hidden Markov Models and predict the regime given the current observations

```
# Initialize a HMM
2 states = 2
3 max iterations = 100 # For EM algorithm
  current state = np.array([]) # Initialize an array to track the current regimes
   # Exclude first (to calculate trailing volatility) and
  # second (to have a full set of observations to fit a HMM) Neff observations
  for i in range(1, len(data) - 2*Neff):
       # Initialize a Gaussian HMM
10
       model = hmm.GaussianHMM(n components = states, covariance type="full", n iter = max iterations);
11
       # Pull Neff observations of Volatility and Returns
12
       observations = np.stack((data['Volatility'][Neff+i:Neff*2+i], data['Return'][Neff+i:Neff*2+i]), axis=1)
13
       model.fit(observations) # Fit the model to the observations
14
       print(f'i = {i}') # Print to ensure loop is running
15
       # Model randomly allocates a '0' or a '1' to a state, so check which state has the higher mean return
16
       if model.means [0,1] > model.means [1,1]:
17
           positive state = 0
18
       else:
19
           positive state = 1
20
       predictions = model.predict(observations) # Predict the state for each observation
21
       if positive state == 1: # If the state with the higer mean return is state 1, do nothing, if not...
22
23
       else: # Switch the predicted regimes to ensure state 1 is always the regime with a greater mean return
24
           zeros = np.where(predictions == 0)
25
           ones = np.where(predictions == 1)
26
           predictions[zeros] = 1
27
           predictions[ones] = 0
28
       # Append the current state to the regime tracker
       current state = np.append(current state, predictions[-1])
  # Switch values from type float to type int for later calculations
  current state = current state.astype(np.int64)
```


Breakdown (5 of 11)

Initial review of the regime switching frequency

```
total_regime_switches = sum(np.abs(current_state[1:] - current_state[:-1]))
years_of_data = len(current_state) / 252 # Approximately 252 trading days in a year
avg_regime_changes_per_year = total_regime_switches / years_of_data

print(f'Total regime switches: {total_regime_switches}')
print(f'Average number of regime switches per year: {avg_regime_changes_per_year:.01f}')
```

Total regime switches: 349
Average number of regime switches per year: 14.2

Breakdown (6 of 11)

Visually consider the projected regime switching

```
# Plot regime switches to graphically analyze

dates = [datetime.datetime.strptime(d,"%Y-%m-%d").date() for d in data.Date[2*Neff + 1:]]

fig, ax = plt.subplots(figsize=(18,4))

formatter = mdates.DateFormatter("%Y")

ax.xaxis.set_major_formatter(formatter)

fmt_half_year = mdates.MonthLocator(interval=24)

ax.xaxis.set_major_locator(fmt_half_year)

ax.plot(dates, current_state, '.', color = 'royalblue');
```


Breakdown (7 of 11)

• Numerically analyze the mean return and volatility of the two states

```
1 state 0 = np.where(current state == 0)[0] + 2*Neff + 1
 2 state 1 = np.where(current state == 1)[0] + 2*Neff + 1
    # Calculate and view statistics of the two states
 3 print(f'Number of occurences of state 0: {len(state 0)}')
   print(f'Mean return of state 0: {data.loc[state 0].Return.mean():.03f}')
 5 print(f'Volatility of state 0: {data.loc[state 0].Return.std():.03f}')
 6 print('\n')
 7 print(f'Number of occurences of state 1: {len(state 1)}')
 8 print(f'Mean return of state 1: {data.loc[state 1].Return.mean():.03f}')
 9 print(f'Volatility of state 1: {data.loc[state 1].Return.std():.03f}')
Number of occurences of state 0: 2708
Mean return of state 0: 0.050
Volatility of state 0: 1.469
Number of occurences of state 1: 3495
Mean return of state 1: 0.038
Volatility of state 1: 1.040
```


Breakdown (8 of 11)

Plot the HMM portfolio against the actual results

```
# Calculate the growth of a theoretical portfolio
# Assume fully invested if state 1, fully divested if state 0

current_portfolio = data.Adj_close[2*Neff+1] * np.cumprod(current_state * data.Return[2*Neff+1:] / 100 + 1)
```

```
# Plot the return portfolio dynamics

plot = sns.relplot(x = range(0,len(current_state)),

y = "Adj_close",

data = data[2*Neff+1:],

hue = current_state,

linewidth = 0,

palette = "Set2",

s = 10);

plt.plot(range(0,len(current_state)), current_portfolio, color='royalblue')

plot.fig.set_size_inches(18,10)
```


Breakdown (9 of 11)

Breakdown (10 of 11)

Consider alternative rolling windows

```
# Import previous iterations using different Neff window lengths
test_portfolio_750 = np.loadtxt("test_portfolio_750.csv")
test_portfolio_500 = np.loadtxt("test_portfolio_500.csv")
test_portfolio_250 = np.loadtxt("test_portfolio_250.csv")

fig, ax = plt.subplots(figsize=(18,4))

ax.plot(range(0,len(current_state)+500), data.Adj_close[2*250+1:], color='slategray');
ax.plot(range(1000,len(current_state)+500), test_portfolio_750, color='royalblue');
ax.plot(range(500,len(current_state)+500), test_portfolio_500, color='darkgreen');
ax.plot(range(0,len(current_state)+500), test_portfolio_250, color='darkviolet');

ax.legend(['SPY','HMM (750-day rolling window)', 'HMM (500-day rolling window)', 'HMM (250-day rolling window)']);
```


Breakdown (11 of 11)

Calculate empirical results

```
# Empirical results
   spy sharpe = data.Return[2*Neff+1:].mean() / data.Return[2*Neff+1:].std()
   test portfolio 750 returns = (test portfolio 750[1:] - test portfolio 750[:-1]) / test portfolio 750[:-1]
   test portfolio 750 sharpe = test portfolio 750 returns.mean()/test portfolio 750 returns.std()
   test portfolio 500 returns = (test portfolio 500[1:] - test portfolio 500[:-1]) / test portfolio 500[:-1]
   test portfolio 500 sharpe = test portfolio 500 returns.mean()/test portfolio 500 returns.std()
10
   test portfolio 250 returns = (test portfolio 250[1:] - test portfolio 250[:-1]) / test portfolio 250[:-1]
   test portfolio 250 sharpe = test portfolio 250 returns.mean()/test portfolio 250 returns.std()
14 print(f'SPY average return: {spy mean return:.03f}')
15 print(f'SPY volatility: {spy vol:.03f}')
16 print(f'SPY Sharpe Ratio: {spy sharpe:.03f}')
17 print('\n')
18 print(f'HMM (750-day rolling window) average return: {data.Return[2*Neff+1:].mean():.05f}')
19 print(f'HMM (750-day rolling window) volatility: {data.Return[2*Neff+1:].std():.05f}')
20 print(f'HMM (750-day rolling window) Sharpe Ratio: {test portfolio 750 sharpe:.03f}')
21 print('\n')
22 print(f'HMM (500-day rolling window) average return: {test portfolio 500 returns.mean():.05f}')
23 print(f'HMM (500-day rolling window) volatility: {test portfolio 500 returns.std():.05f}')
24 print(f'HMM (500-day rolling window) Sharpe Ratio: {test portfolio 500 sharpe:.03f}')
25 print('\n')
26 print(f'HMM (250-day rolling window) average return: {test portfolio 250 returns.mean():.05f}')
27 print(f'HMM (250-day rolling window) volatility: {test portfolio 250 returns.std():.05f}')
28 print(f'HMM (250-day rolling window) Sharpe Ratio: {test portfolio 250 sharpe:.03f}')
```


Empirical Results

Initial Results

```
SPY average return: 0.043
SPY volatility: 1.246
SPY Sharpe Ratio: 0.035
HMM (750-day rolling window) average return: 0.04337
HMM (750-day rolling window) volatility: 1.24552
HMM (750-day rolling window) Sharpe Ratio: 0.026
HMM (500-day rolling window) average return: 0.00021
HMM (500-day rolling window) volatility: 0.00781
HMM (500-day rolling window) Sharpe Ratio: 0.027
HMM (250-day rolling window) average return: 0.00019
HMM (250-day rolling window) volatility: 0.00747
HMM (250-day rolling window) Sharpe Ratio: 0.025
```

Sharpe Ratios: SPY > HMM (500) > HMM (750) > HMM (250)

Next Steps

Future Ideas for Phase III

- Performing this same analysis with adjusted factors, including using:
 - Different rolling window lengths (e.g. 10-1,000 days), in search of an "optimal" lookback timeframe
 - > Other indices (domestic and international), to see if an "optimal" window length is consistent across funds and markets
 - Incorporating transaction costs each time we switch regimes, with the goal of penalizing models that recommend frequent rebalancings
- Should we decide to go down the route of predicting day-ahead returns, incorporating these forecasts into out Hidden Markov Model, we will likely try to implement a standard time series model (e.g. GARCH, ARMA-GARCH)
 - Predict future states by fitting forecasted observations
 - Make optimal investment decisions in advance of realized returns
- Reorganize main code as a single function to support easy reproducibility of results
- Produce results with visualization package (based on Shiny framework, QuantStats)

References

Reference List

- Peter Nystrup, Henrik Madsen & Erik Lindström (2018) Dynamic portfolio optimization across hidden market regimes, Quantitative Finance, 18:1, 83-95, DOI: 10.1080/14697688.2017.1342857
- Wang M, Lin Y-H, Mikhelson I. Regime-Switching Factor Investing with Hidden Markov Models. Journal of Risk and Financial Management. 2020; 13(12):311. https://doi.org/10.3390/jrfm13120311

