2 10 -6 +0 LI

GEOMETRIA ANALÍTICA (2024-1)

Prova 3

ICEx/UNIFAL-MG

Ciência da Computação

Prof. Tiago J. Arruda

Exercícios Propostos¹

1. (2,5 pt.) Resolva os exercícios abaixo.

(a) (1,5 pt.) Sendo $\overrightarrow{AB} = \overrightarrow{u}$, $\overrightarrow{AH} = \overrightarrow{v} \in \overrightarrow{AC} = \overrightarrow{w}$, utilize o paralelepípedo da figura ao lado para determinar os vetores $\overrightarrow{a} = 2\overrightarrow{BC} - \overrightarrow{AF} \in \overrightarrow{b} = 3\overrightarrow{CF} + \overrightarrow{BE} - 2\overrightarrow{DH}$ em

- (6m - 4,5m2) (b) (1,0 pt.) Em um triángulo $\triangle ABC$, seja X um ponto no lado BC tal que $3\overline{BX}$ = $5\overrightarrow{XC}$. Sendo M o ponto médio do lado AB, escreva o vetor \overrightarrow{MX} em função de

2. (2,0 pt.) Considere os exercícios abaixo.

- (a) (1,0 pt.) Fixada uma base $\mathcal{B} = (\vec{i}, \vec{j})$, determine os valores de m para os quais os vetores $\vec{a} = (3\vec{i} + (2 - \frac{3\vec{m}}{2}))\vec{j} \in \vec{b} = (3\vec{m})\vec{j} = (2\vec{j} + (2\vec{m})\vec{j})\vec{j}$ vetores $\vec{a} = (3\vec{i} + (2 - \frac{3\vec{m}}{2}))\vec{j} \in \vec{b} = (3\vec{m})\vec{j}$
- (b) (1,0 pt.) Sendo $\vec{u} = (1, 1-m, 3), \vec{v} = (-2, m, -1) \in \vec{w} = (1, 2, 1),$ calcule m para que os vetores sejam L.D.
- 3. (2,5 pt.) Sejam $\vec{u} = (1,2,0), \vec{v} = (1,-1,2)$ e $\vec{w} = (0,1,-2)$ vetores expressos na base canônica do \mathbb{R}^3 .
 - (a) (0,5 pt.) O vetor \vec{u} é uma combinação linear de \vec{v} e \vec{w} ? Justifique.
 - (b) (1,0 pt.) Determine o ângulo entre os vetores \vec{a} e \vec{b} , onde $\vec{a} = \vec{u} + 2\vec{v}$ e $\vec{b} = \vec{v} 3\vec{w}$.
 - (c) (1,0 pt.) Escreva $\vec{t} = (2,3,6)$ como combinação linear de \vec{u} , \vec{v} e \vec{w} e determine os coeficientes dessa combinação.
- 4. (3,0 pt.) São dados os pontos A = (1, 2, -1), B = (0, 1, 1), C = (2, 0, 0) e D = (2, 0, -1)expressos na base canónica do \mathbb{R}^3 .
 - (a) (1,0 pt.) Mostre que os pontos A, B e C não são colineares e formam um triângulo equilátero em \mathbb{R}^3 , e calcule a área do triângulo.
 - (b) (1,0 pt.) Determine o vetor projeção ortogonal de \overrightarrow{AB} na direção de \overrightarrow{AC} (isto é, $\operatorname{Proj}_{\overrightarrow{AC}}A\overrightarrow{B}$) e comente o resultado com base no item anterior.
 - (c) (1,0 pt.) Calcule o volume do tetraedro ABCD e determine sua altura em relação à face ABD. -2-2-4

 $2 \cdot \begin{vmatrix} 1-2 \\ 1-2 \end{vmatrix} - \begin{vmatrix} -1-1 \\ 1-2 \end{vmatrix}$ $2 \cdot (-2+2) - (2-(-1))$ $2 \cdot 0 - 3$

¹Coloque o nome completo nas folhas de prova e escreva o resultado final das questões à caneta Respostas sem resolução e/ou justificativa não serão consideradas. Não é permitido o uso de quaisquer equipamentos eletrónicos. Data da Avaliação: 15/05/2024

-46 = 4

Oh - 2(-1+3b)=6 26 + 2 - 66 = 6

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 2 \\ 3 & 0 & 3 \\ 2 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 0 & 2 \\ 2 & 2 & 2 \end{bmatrix}$$
 1 de 1

