ประวัติศาสตร์ของคอม

เจนเนอเรชั่นแรก vacuum tubes (หลอดสูญญากาศ)

ENIAC (Electronic Numerical Integrator and Computer) เป็นคอมพิวเตอร์ที่สร้างขึ้น ในช่วงกลางของศตวรรษที่ 20 ที่มีความสามารถในการประมวลผลตัวเลข. คอมพิวเตอร์นี้ถูกสร้างขึ้นใน มหาวิทยาลัยเพนซิลเวเนียโดยทีมนักวิจัยที่นำโดย John W. Mauchly และ J. Presper Eckert ในปี 1943. สำเร็จในปี 1946

ENIAC เป็นคอมพิวเตอร์ที่ใช้หลอดสูญญากาศเป็นตัวขยายสัญญาณไฟฟ้า และมีขนาดใหญ่มาก, ใช้พื้นที่มาก, และต้องการการบำรุงรักษาในการทำงาน. มันสามารถทำงานกับตัวเลขที่มีขนาดใหญ่ได้, เช่น การคำนวณในการจำลองทดลองนิวเมนต์และการคำนวณทางทหาร.

ENIAC เป็นที่รู้จักในฐานะคอมพิวเตอร์ที่สามารถโปรแกรมได้ ซึ่งหมายถึงมันสามารถทำงานกับ โปรแกรมที่แตกต่างกันได้, ไม่ต้องทำการปรับเปลี่ยนโครงสร้างภายในของเครื่อง เป็นเป็นแรกของ คอมพิวเตอร์ที่เป็นที่ทราบในประวัติศาสตร์ของคอมพิวเตอร์.

ENIAC ได้เป็นแรงบันดาลใจสำคัญในการพัฒนาคอมพิวเตอร์ต่อมา, และการเป็นครูในการศึกษา เกี่ยวกับทฤษฎีและการออกแบบคอมพิวเตอร์.

John von Neumann

EDVAC (Electronic Discrete Variable Computer)

Electronic Discrete Variable Automatic Computer (EDVAC) เป็นคอมพิวเตอร์ที่ถูก ออกแบบขึ้นในยุคที่หลังจาก ENIAC (Electronic Numerical Integrator and Computer). EDVAC ถูก พัฒนาขึ้นโดยทีมนักวิจัยที่นำโดย John von Neumann, ซึ่งเป็นนักคณิตศาสตร์และนักวิทยาการคอมพิวเตอร์ที่มี ชื่อเสียง.

เป็นคอมพิวเตอร์ที่แรกที่นำเสนอแนวคิดของ "stored-program" หรือ "von Neumann architecture" ที่กล่าวถึงการจัดเก็บโปรแกรมในหน่วยความจำเพื่อการประมวลผล. นี้เป็นพื้นฐานที่สำคัญของ คอมพิวเตอร์ทุกเครื่องในปัจจุบัน.

EDVAC มีความสามารถในการเก็บโปรแกรมในหน่วยความจำ, ประมวลผลข้อมูลตัวเลข, และให้ผลลัพธ์ ออกมา. นอกจากนี้, การออกแบบของ EDVAC ได้มีผลกระทบอย่างมากต่อการพัฒนาคอมพิวเตอร์ต่อไป.

IAS Memory Formats เป็นลักษณะการจัดรูปแบบหน่วยความจำของคอมพิวเตอร์ IAS, ซึ่งเป็นคอมพิวเตอร์ที่ ได้รับการพัฒนาโดย Institute for Advanced Study ในยคที่หลังจากสงครามโลกที่สอง.

รูปแบบหน่วยความจำของ IAS ได้รับความสนใจเป็นพิเศษเนื่องจากมีความแตกต่างจากรูปแบบอื่น ๆ ที่ใช้ในขณะนั้น. ลักษณะที่น่าสนใจที่สุดคือการใช้ "address + 1" เพื่อทำให้สามารถทำการคำนวณ "address" ได้ทันทีโดยไม่ต้อง ใช้ตัวคูณ. นอกจากนี้, IAS Memory Formats ยังมีลักษณะอื่น ๆ ที่มีผลต่อการประมวลผลและการจัดการ หน่วยความจำ.

รูปแบบของหน่วยความจำใน IAS ได้มีบทบาทสำคัญในการพัฒนาโครงสร้างของคอมพิวเตอร์ในอนาคต, และ การศึกษาเกี่ยวกับ IAS Memory Formats ได้มีความสำคัญในการเข้าใจเกี่ยวกับการพัฒนาคอมพิวเตอร์และ ทฤษฎีทางคอมพิวเตอร์.

1. Memory Buffer Register (MBR):

• เก็บข้อมูลที่ถูกดึงมาจากหน่วยความจำหรือที่กำลังจะถูกเขียนลงในหน่วยความจำ.

2. Memory Address Register (MAR):

• เก็บที่อยู่ของหน่วยความจำที่จะถูกอ่านหรือเขียน.

3. Instruction Register (IR):

• เก็บคำสั่งที่ถูกดึงมาจากหน่วยความจำเพื่อทำการประมวลผล.

4. Program Counter (PC):

• เก็บที่อยู่ของคำสั่งถัดไปที่จะถูกดำเนินการ.

5. Memory Buffer Register (MFR):

• เก็บสถานะของการดำเนินการที่เกิดขึ้นในหน่วยความจำ.

6. General Purpose Registers:

• ชุดของเรจิสเตอร์ที่ใช้เก็บข้อมูลทั่วไปในกระบวนการทางคณิตและตรรกะ.

7. Index Register:

• ใช้ในการทำงานที่เกี่ยวข้องกับการชี้ที่อยู่ในหน่วยความจำ.

8. Multiplier Quotient Register (MQ):

• เก็บผลลัพธ์ของการคูณและหาร.

9. Overflow Register:

• เก็บสถานะการทำงานเมื่อมีการเกิด Overflow.

10. Comparison Register:

• เก็บผลลัพก์ของการเปรียบเทียบ

11. Interrupt Register:

• ใช้ในการจัดการกับการสั่งหยุดการทำงานในกรณีของการหยุดโดยเฉพาะ.

UNIVAC (Universal Automatic Computer) เป็นคอมพิวเตอร์ที่สำคัญในประวัติศาสตร์ของ คอมพิวเตอร์ และเป็นหนึ่งในคอมพิวเตอร์ที่แรกที่ใช้ในการประมวลผลทางธุรกิจและงานวิทยาศาสตร์.

UNIVAC ถูกพัฒนาโดย J. Presper Eckert และ John Mauchly ที่บริษัท Eckert-Mauchly Computer Corporation (ซึ่งต่อมากลายเป็นส่วนหนึ่งของ Remington Rand) และเปิดตัวในปี 1951. เครื่อง UNIVAC I ได้รับการประกาศเป็น "คอมพิวเตอร์ที่ใช้งานเพื่อวิจัยและการพัฒนาที่สำคัญ" โดย IEEE (Institute of Electrical and Electronics Engineers) เมื่อปี 1987.

UNIVAC I มีความสามารถในการประมวลผลข้อมูลที่ซับซ้อน, โดยมีความสามารถในการทำงานกับข้อมูลทั้งตัวเลข และตัวอักษร. นอกจากนี้, UNIVAC I ยังเป็นคอมพิวเตอร์ที่สามารถให้ผลลัพธ์ในรูปแบบที่สามารถอ่านได้โดยตรง, ทำให้มีการนำไปใช้ในงานสถิติการเลือกตั้งทางการเมืองในการเลือกตั้งประธานาธิบดีของสหรัฐอเมริกาในปี 1952 และ 1956.

UNIVAC I เป็นต้นแบบของคอมพิวเตอร์ที่ใช้งานได้หลายปีในอดีตและได้มีผลกระทบมากในการพัฒนาของโลก คอมพิวเตอร์.

เจนเนอเรชั่นสอง ทรานซิสเตอร์

เล็กกว่า ถูกกว่า กระจายความร้อนน้อยกว่า

คือ อุปกรณ์*โซลิดสเตต*ทำจากซิลิคอน

ถูกประดิษฐ์ขึ้นที่ Bell Labs ในปี 1947

จนกระทั่งช่วงปลายทศวรรษ 1950 คอมพิวเตอร์ที่มีทรานซิสเตอร์เต็มรูปแบบจึงมีจำหน่ายในท้องตลาด

คอมพิวเตอร์ยุคที่สอง

หน่วยทางคณิตศาสตร์และลอจิกและหน่วยควบคุมที่ซับซ้อนยิ่งขึ้น

การใช้ระดับสูงภาษาโปรแกรม

บทบัญญัติของซอ*ฟต์แวร์ระบบ*ซึ่งให้ความสามารถในการ:

ใหลดโปรแกรม

ย้ายข้อมูลไปยังอุปกรณ์ต่อพ่วงและไลบรารี

ดำเนินการคำนวณทั่วไป

การก่อตั้งบริษัทดิจิทัล อีควิปเม้นท์ คอร์ปอเรชัน (DEC) ในปี 1957

PDP-1 เป็นแผนแรกของ DECคอมพิวเตอร์

นี่เป็นจุดเริ่มต้นของปรากฏการณ์มินิคอมพิวเตอร์ที่จะโดดเด่นมากในรุ่นที่สาม

คอมพิวเตอร์ยุคที่สาม

- 1958 การคิดค้นวงจรบนซิป (Integrated Circuit)
 - ในปี 1958 เกิดการคิดค้นวงจรบนชิป ซึ่งเป็นการรวมองค์ประกอบหลายตัวลงในชิปอันเล็ก โดยมีผลสำคัญ ในการลดขนาดของวงจรและเพิ่มประสิทธิภาพการทำงานของอุปกรณ์อิเล็กทรอนิกส์

■ Discrete component

 องค์ประกอบแยกต่างหาก (Discrete component) คือ องค์ประกอบทางอิเล็กทรอนิกส์ที่ผลิตแยกจาก กัน และมักจะถูกนำมาจัดเก็บในบรรจุภัณฑ์ของตัวเอง และมักถูกเชื่อมต่อหรือลวดลายกันบนแผ่นวงจรที่ คล้ายกับกระดานเมซาไหล

■ Single, self-contained transistor

- ทรานซิสเตอร์เดี่ยวที่มีอยู่ในตัวเองและเป็นตัวควบคุมเดียว โดยไม่ต้องการองค์ประกอบเพิ่มเติม
- ผลิตแยกกัน, จัดเก็บในบรรจุภัณฑ์ของตัวเอง, และเชื่อมต่อหรือลวดลายกันบนแผ่นวงจรที่คล้ายกับกระดานเมซา ไหล
 - วิธีการผลิตแยกกันและจัดเก็บในบรรจุภัณฑ์ของตัวเองทำให้กระบวนการผลิตเป็นไปได้ และถูกนำไปใช้ใน การประกอบวงจรที่มีขนาดใหญ่
- กระบวนการผลิตที่ทันสมัยและกระหายค่าใช้จ่าย
 - กระบวนการผลิตที่แพงและซับซ้อนของวงจรแบบ Discrete component ถูกแทนที่ด้วยวงจรบนซิปที่มี
 การผลิตที่ทันสมัยและมีค่าใช้จ่ายที่ต่ำลง
- สองสมาชิกที่สำคัญในรุ่นที่สามคือ IBM System/360 และ DEC PDP-8
 - สองรุ่นสำคัญในรุ่นที่สามคือ IBM System/360 และ DEC PDP-8 ที่มีบทบาทสำคัญในการเปลี่ยนแปลง และนำเสนอคอมพิวเตอร์รุ่นที่สามที่มีประสิทธิภาพสูงและสามารถให้บริการตลอดจนถึงระบบต่าง ๆ ในธุรกิจ และวิทยาศาสตร์

วงจรบนซิป (Integrated Circuits) ■ คอมพิวเตอร์ประกอบด้วยประตู (gates), เซลล์หน่วยความจำ (memory cells), และการเชื่อมต่อระหว่างองค์ประกอบเหล่านี้

- ประตูและเซลล์หน่วยความจำถูกสร้างขึ้นจากองค์ประกอบอิเล็กทรอนิกส์ดิจิทัลที่เรียบง่าย
- การจัดเก็บข้อมูล ให้บริการโดยเซลล์หน่วยความจำ
- การประมวลผลข้อมูล ให้บริการโดยประตู
- การเคลื่อนย้ายข้อมูล ทางเดินระหว่างส่วนประกอบถูกใช้ในการย้ายข้อมูลจากหน่วยความจำไปยัง หน่วยความจำและจากหน่วยความจำผ่านประตูไปยังหน่วยความจำ
- ควบคุม ทางเดินระหว่างส่วนประกอบสามารถถือสัญญาณควบคุมได้
- ใช้ประโยชน์จากการที่องค์ประกอบเช่นทรานซิสเตอร์, เรซิสเตอร์, และตัวนำสามารถผลิตได้จากวัสดุนำสัญญาณ อย่างไรก็ตาม
- ทรานซิสเตอร์หลายตัวสามารถถูกผลิตพร้อมกันบนแผ่นซิลิคอนเดียว
- ทรานซิสเตอร์สามารถเชื่อมต่อกับการผลิตด้วยวิธีการติดเมทัลไลเซชันเพื่อสร้างวงจร

กฎของ Moore (Moore's Law) คือกฎที่ถูกนำเสนอโดย Gordon Moore, ผู้ร่วมก่อตั้งบริษัท Intel Corporation, ในปี 1965. กฎนี้ทำนายว่าจำนวนของ Transistors ที่สามารถบรรจุในวงจรบนชิป (Integrated Circuit) จะเพิ่มขึ้นทวีคูณทุก 18-24 เดือน โดยคำบอกเล่าต้นฉบับว่า "จำนวนของ Transistors ที่บรรจุในวงจรบน ชิปจะเพิ่มขึ้นเป็นคูณของ 2 ทุก 18 เดือน."

กฎนี้มีผลกระทบใหญ่ในวงการอุตสาหกรรมอิเล็กทรอนิกส์และคอมพิวเตอร์ เนื่องจากการเพิ่มจำนวน Transistors บนวงจรบนชิปช่วยให้คอมพิวเตอร์มีประสิทธิภาพที่ดีขึ้น, ขนาดเล็กลง, และราคาลดลง.

ถึงแม้กฎของ Moore จะไม่ได้เป็นกฎที่แน่นอน แต่ตลอดกลางศตวรรษที่ผ่านมา, มีการสังเกตว่าพยายามในการรักษา กฎนี้ยังคงมีอยู่ แม้ว่าจะมีความคับแคบขึ้นเมื่อพบว่าเทคโนโลยีที่ใช้ในการผลิตวงจรบนชิปมีข้อจำกัดหรือต้องการ นวัตกรรมใหม่เพื่อดำเนินการต่อไป.

ไมโครโปรเซสเซอร์ (Microprocessors)

- ความหนาแน่นขององค์ประกอบบนชิปโปรเซสเซอร์ยังคงเพิ่มขึ้น
- มีการวางองค์ประกอบมากมายบนแต่ละชิปเพื่อลดจำนวนชิปที่จำเป็นในการสร้างโปรเซสเซอร์คอมพิวเตอร์เพียง ชิปเดียว
- ในปี 1971, อินเทล (Intel) พัฒนาชิป 4004
- เป็นชิปแรกที่มีทุกส่วนประกอบของหน่วยประมวลผล (CPU) บนชิปเดียว
- เกิดนวัตกรรมในตัวอย่างขนาดย่อม
- ในปี 1972, อินเทล (Intel) พัฒนาชิป 8008
- เป็นไมโครโปรเซสเซอร์ 8 บิตแรก
- ในปี 1974, อินเทล (Intel) พัฒนาชิป 8080
- เป็นไมโครโปรเซสเซอร์ชนิดทั่วไปแรก
- มีความเร็วสูง, มีชุดคำสั่งที่หลากหลาย, และมีความสามารถในการทำงานกับที่อยู่ได้มาก

การพัฒนานี้ทำให้ไมโครโปรเซสเซอร์มีความสามารถที่มากขึ้น, ขนาดที่เล็กลง, และเป็นไปได้ในการสร้างคอมพิวเตอร์ ทั้งหลายด้วยชิปเดียว

การปรับปรุงในการจัดโครงสร้างและสถาปัตยกรรมชิป

- เพิ่มความเร็วของฮาร์ดแวร์ของโปรเซสเซอร์
- เนื่องจากการลดขนาดของลอจิกเกต (logic gate)
- มีจำนวนของลอจิกเกตมากขึ้น, จัดเต็มติดกันมากขึ้น, เพิ่มอัตรานาฬิกา
- เวลาการกระจายสัญญาณลดลง
- เพิ่มขนาดและความเร็วของแคช (caches)

- การจัดสร้างส่วนหนึ่งของชิปโปรเซสเซอร์
- เวลาเข้าถึงแคชลดลงอย่างมีนัยสำคัญ
- เปลี่ยนแปลงการจัดโครงสร้างและสถาปัตยกรรมโปรเซสเซอร์
- เพิ่มความเร็วที่สามารถทำงานได้ของการดำเนินการคำสั่ง
- การประสานงาน (Parallelism)

ปัญหาเกี่ยวกับความเร็วของนาฬิกาและความหนาแน่นของตัวต้านทานลอจิก

- พลังงาน
- ความหนาแน่นของตัวต้านทานลอจิกและความเร็วของนาฬิกา ทำให้ความหนาแน่นของพลังงานเพิ่มขึ้น
- การส่งเสริมความร้อน
- ความล่าช้าของ RC (Resistance-Capacitance)
- ความเร็วที่อิเล็กตรอน ใหลจำกัด โดยความต้านทานและความจุของลวด โลหะที่เชื่อมต่อกัน
- ความล่าช้าเพิ่มขึ้นเมื่อผลคูณ RC เพิ่มขึ้น
- ลวดเชื่อมต่อบางส่วนบางส่วนเล็กลง, เพิ่มความต้านทาน
- ลวดใกล้กันมากขึ้น, เพิ่มความจุ
- ล่าช้าในหน่วยความจำ
- ความเร็วของหน่วยความจำช้าหล่นลงต่ำกว่าความเร็วของโปรเซสเซอร์

Multicore

การใช้หลายๆ โปรเซสเซอร์บนชิปเดียวกันมีศักยภาพในการเพิ่มประสิทธิภาพโดยไม่ต้องเพิ่มอัตรานาฬิกา กลยุทธ์คือ การใช้โปรเซสเซอร์สองตัวที่เรียบง่ายกว่าบนชิปนึงที่ซับซ้อนมากขึ้น ด้วยโปรเซสเซอร์สองตัว, การให้แคชมีขนาดใหญ่มี ความสมเหตุสมผล เมื่อแคชกลายเป็นขนาดใหญ่ขึ้น, จึงเป็นที่จำเป็นที่จะสร้างแคชระดับสองและระดับสามบนชิปเพื่อ เพิ่มประสิทธิภาพ