4.3.3. Исследование разрешающей способности микроскопа методом Аббе

Дорогинин Д.В. Группа Б02-825

Цель работы: определение дифракционного предела разрешения объектива микроскопа.

В работе используются: лазер; кассета с набором сеток разного периода; щель с микрометрическим винтом; оптический стол с набором рейтеров и крепёжных винтов; экран; линейка.

Теория

Для иммерсионного микроскопа разрешающая способность объектива при *некогерентном* освещении

$$\ell_{min} \approx \frac{0.61\lambda}{n\sin u},\tag{1}$$

где u – апертурный угол объектива микроскопа (угол между оптической осью и лучом, направленным из центра объекта в край линзы).

Метод Аббе для оценки разрешающей способности состоит в разделении хода хучей на две части: сначала рассматривается картина в задней фокальной плоскости F объектива – она называется первичным изображением или фурье-образом. Это первичное изображение рассматривается как источник волн (принцип Гюйгенса-Френеля), создающий изображение в плоскости P_2 , сопряжённой плоскости предмета – вторичное изображение.

Первичное изображение есть картина дифракции Фраунгофера (на дифракционной решётке), если её период d, то для направления максимальной интенсивности φ_m

$$d\sin\varphi_m = m\lambda. \tag{2}$$

При этом проходят пучки только с $\varphi_m < u$. Можно условием разрешения считать, что $u > \varphi_1$, иначе говоря

$$\sin u \ge \lambda/d.$$

или

$$d \ge \frac{\lambda}{\sin u} \approx \frac{\lambda}{D/2f},\tag{3}$$

где D – диаметр линзы, f – фокусное расстояние.

Двумерную решётку можно рассматривать как две перпендикулярные друг другу, для максимумов которых выполняется соотношение

$$d\sin\varphi_x = m_x\lambda, \quad d\sin\varphi_y = m_y\lambda. \tag{4}$$

Экспериментальная установка

Рис. 1: Схема установки.

Схема установки приведена на Рис. 1. Предметом P_1 служат сетки в кассете C. Линза Π_1 длиннофокусная, а Π_2 короткофокусная. В F устанавливаются диафрагмы D, с помощью сеток с разными d и щелевой диафрагмы можно проверить соотношение (3). Период сеток может быть измерен либо по расстоянию между дифракционными максимумами на экране, либо по увеличенному с помощью микроскопа изображению сетки на экране. Пространственную фильтрацию (получение наклонного изображение решётки) можно получить с помощью подбора угла наклона и ширины вспомогательной щели.

Ход работы

1. Определение периода решёток по их пространственному спектру

Соберём установку согласно Рис 1, за исключением линз. Длина волны излучения лазера $\lambda = 532$ нм.

Расстояние от сетки до экрана $H=141\pm 2$ см, погрешность объясняется неопределённостью положения сетки внутри кассеты, погрешностью меток на столе, использованных при измерении, и погрешностью прямого измерения.

Измерим линейкой на экране расстояние Δx между n+1 максимумами и рассчитаем по формуле (2) с учётом $\varphi = \frac{\Delta x}{H}$ период решётки $d = \frac{n\lambda}{\Delta x}H$. Результаты приведены в Таблице 1.

Реш.	Δx cm	$\sigma_{\Delta x}$, cm	n	d, mkm	σ_d , MKM
1	22.7	0.1	6	20	3
4	22.6	0.1	9	30	3
3	25.1	0.1	20	60	3
4	22.5	0.1	35	117	3
5	22.7	0.1	48	159	4

Таблица 1: Периоды решёток, метод 1.

Погрешность измерения Δx — цена деления линейки, n — один промежуток. Погрешность d считаем по формуле

$$\sigma_d = \sqrt{\left(\frac{\partial d}{\partial \Delta x}\right)^2 \sigma_{\Delta x}^2 + \left(\frac{\partial d}{\partial n}\right)^2 \sigma_n^2 + \left(\frac{\partial d}{\partial \Delta x}\right)^2 \sigma_H^2} = \lambda \sqrt{\frac{n^2 H^2 \sigma_{\Delta x}^2}{\Delta x^4} + \frac{\Delta x^2 \sigma_n^2 \sigma_H^2}{n^2} + \frac{H^2 \sigma_n^2}{\Delta x^2}}.$$

2. Определение периода решёток по изображению, увеличинному с помощью микроскопа

Соберём модель микроскопа, добавив линзы согласно Рис. 1. Фокусные расстояния линз $F_1=110~{
m mm},\,F_2=25~{
m mm}.$ Измеряем необходимые расстояния:

$$a_1 = 120 \pm 10 \text{ MM},$$

 $a_2 + b_1 = 455 \pm 10 \text{ cM},$
 $b_2 = 815 \pm 10 \text{ cM},$

Погрешности здесь обусловлены неточностями в положенияъ сеток и линз. Из формулы тонкой линзы $a_2=\frac{b_2F_2}{b_2-F_2}=25.79$ мм, откуда $a_2\approx F_2$, поэтому в дальнейшем будем использовать это значение, следовательно $b_1=420\pm10$ мм.

Увеличение микроскопа $\Gamma = \frac{b_1 b_2}{a_1 a_2} = 114 \pm 10$. Погрешность находится по формуле

$$\sigma_{\Gamma} = \sqrt{\left(\frac{\partial \Gamma}{\partial a_1}\right)^2 \sigma_{a_1}^2 + \left(\frac{\partial \Gamma}{\partial b_1}\right)^2 \sigma_{b_1}^2 + \left(\frac{\partial \Gamma}{\partial b_2}\right)^2 \sigma_{b_2}^2}.$$

Повторим измерения периодов изображений в новой конфигурации, погрешности считаются аналогично. Измерение представлены в Таблице 2.

Реш.	Δx , cm	$\sigma_{\Delta x}$, cm	n	d, MKM	σ_d , MKM
1	3.7	0.1	16	20	2
2	15.7	0.1	49	28	3
3	25.3	0.1	38	58	5
4	24.1	0.1	18	117	12
5	23.6	0.1	13	159	19

Таблица 2: Периоды решёток, метод 2.

Здесь d определялось по формуле $d = \frac{\Delta x}{\Gamma n}$, погрешность

$$\sigma_d = \sqrt{\left(\frac{\partial d}{\partial \Delta x}\right)^2 \sigma_{\Delta x}^2 + \left(\frac{\partial d}{\partial n}\right)^2 \sigma_n^2 + \left(\frac{\partial d}{\partial \Gamma}\right)^2 \sigma_{\Gamma}^2}.$$

Обратим внимание, что значения периодов решётки совпадают в пределах погрешности.

3. Определение периода решёток по оценке разрешающей способности микроскопа

Поместим в фокальной плоскости линзы Π_1 щелевую диафрагму с микрометрическим винтом и определим минимальную толщину D при которой на экране видна двумерная решётка. В этом случае период будет вычисляться по формуле (3) в предельном случае

$$d = \frac{2\lambda F_1}{D},$$

погрешность вычисляется по формуле

$$\sigma_d = d \frac{\sigma_D}{D}.$$

Результаты приведены в Таблице 3.

D, мм	σ_D , MM	d, mkm	σ_d , MKM
4.14	0.02	28.27	3
1.960	0.010	59.7	3
1.020	0.010	114.7	3
0.810	0.010	144.5	4

Таблица 3: Периоды решёток, метод 3.

Через щель проходили только нулевой (по центру) и два первых максимумы, за исключением второй щели, где нулевой максимум был помещён к краю щели. Для первой решётки период таким методом измерить не получилось, так как ширины щели не хватает.

Рис. 2: Зависимость d = f(1/D).

Для проверки теории Аббе построим график $d=f(\frac{1}{D})$ со значениями d из части 1, погрешность $\frac{1}{D}$ рассчитывается по формуле

$$\sigma_{1/D} = \frac{\sigma_D}{D^2}.$$

Угловой коэффициент прямой из МНК $k=(124\pm8)\cdot10^{-9}~{\rm M}^2$, в пределах погрешности он совпадает с теоретическим $2\lambda F_1=117\cdot10^{-9}~{\rm M}^2$. Таким образом, теория Аббе подтвердилась.

Реш.	1/D, mm ¹	$\sigma_{1/D}, \text{ mm}^1$	d, mkm	σ_d , MKM
2	0.2415	0.0012	30	3
3	0.510	0.003	60	3
4	0.980	0.010	117	3
5	1.235	0.015	159	4

Таблица 4: Значения для графика d = f(1/D).

4. Пространственная фильтрация и мультиплицирование

Для наблюдения фильтрации на сетке 2 откроем щель так, чтобы она пропускала только максимум нулевого порядка и, поворачивая щель, наблюдаем за изменением картины. Картины представлены на Рис 3.

Рис. 3: Слева направо: горизонатальная щель $(0, m_y)$, щель на 45° $(m_x = m_y)$, вертикальная щель $(m_x, 0)$.

Для наблюдения мультиплицированния поменяем местами сетку и щель, пронаблюлюдаем мультипликацию, картина представлена на Рис. 4.

Рис. 4: Явление мультипликации.