

## Relations

## 1 Why

We want a precise notion for how the elements of one set relate to elements of another set, or how elements of a set relate to other elements of the same set.

## 2 Definition

A **relation** between two non-empty sets A and B is a subset of  $A \times B$ . So then, naturally, a relation on a single set C is a subset of  $C \times C$ .

### 2.1 Notation

As relations are sets, our defacto protocol is to denote them by upper case capital letters, for example, the letter R. Let R a relation on A and B. If  $(a,b) \in R$ , we often write aRb, read aloud as "a in relation R to b."

In many cases, though, we eschew the set notation and use particular symbols. Often the symbols we use are meant to be suggestive of the relation. Some examples include  $\sim$ , =, <,  $\leq$ , and  $\prec$ .

# 3 Equivalence Relations

Here we survey a special relation on a set. Let R a relation on the nonempty set A. If aRa, then we call R **reflexive**. If aRb if and only if bRathen we call R **symmetric**. If aRb and bRc together imply aRc, then we call R **transitive**. If R is reflexive, symmetric, and transitive we call it an **equivalence relation**. For an element  $a \in A$ , we call the set of elements in relation R to a the **equivalence class** of a. The key observation, recorded and proven below, is that the equivalence classes partition the set A. A frequent technique is to define an appropriate equivalence relation on a large set A and then to work with the set of equivalence classes of A.

We call the set of equivalence classes the **quotient set** of A under R. An equally good name is the divided set of A under R, but this terminology is not standard. The language in both cases reminds us that  $\sim$  partitions the set A into equivalence classes.

### 3.1 Notation

If R is an equivalence relation on a set A, we use the symbol  $\sim$ . When alone,  $\sim$  is read aloud as "sim," but we still read  $a \sim b$  aloud as "a equivalent to b." We denote the quotient set of A under  $\sim$  by  $A/\sim$ , read aloud as "A quotient sim".

#### 3.2 Results

## 4 Orders

Here we survey a two other special relation on a set. Let R a relation on the non-empty set A. We call R anti-symmetric if for two nonequal elements  $a, b \in A$ ,  $(a, b) \in R \implies (b, a) \notin R$ . If R is reflexive, transitive, and anti-symmetric then we call R a partial order on A.

A partially ordered set is a set together with a partial order. The language partial is meant to suggest that two elements need not be comparable.j For example, suppose R is  $\{(a,a) \mid a \in A\}$ ; we may justifiably call this no order at all and call A totally unordered, but it is a partial order by our definition.

Often we want all elements of the set A to be comparable. We call R **connexive** if for all  $a, b \in A$ ,  $(a, b) \in R$  or  $(b, a) \in R$ . If R is a partial order and connexive, we call it a **total order**.

A totally ordered set is a set together with a total order. The language is a faithful guide: we can compare any two elements. Still, we prefer one word to three, and so we will use the shorter term **chain** for a totally ordered set; other terms include **simply ordered set** and **linearly ordered set**.

### 4.1 Notation

We denote total and partial orders on a set A by  $\preceq$ . We read  $\preceq$  aloud as "precedes or equal to" and so read  $a \preceq b$  aloud as "a precedes or is equal to b." If  $a \preceq b$  but  $a \neq b$ , we write  $a \prec b$ , read aloud as "a precedes b."