N°: Nome: Curso:

${ m ALGA~I} - 2011/2012$	Perg.	Cotação	
2 ^a Chamada - 25 de Janeiro de 2012	1-4	(12x0.5) 6.0	
Exame A	5	1.0	
AVISO:	6	6	
O Exame que vai realizar é constituído por duas partes.	7	2.5	
As respostas às perguntas/alíneas da 1ª Parte devem	8	3.0	
ser dadas unicamente nos respectivos espaços, não	9	1.5	
sendo necessário apresentar os cálculos intermédios.			
Na resolução da 2ª Parte deve apresentar todos os			
cálculos e todas as justificações necessárias.	Total	20.0	

1^a Parte

1. Considere as matrizes reais

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 3 \\ 0 & 2 & 3 \end{bmatrix}, \quad B = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \quad C = \begin{bmatrix} -1 & -2 & -4 \\ 1 & 1 & 3 \\ 0 & 2 & 3 \end{bmatrix}$$

(a) Complete:

i.
$$BB^T =$$

$$A + C^T =$$

ii.
$$det(2A) =$$

$$\det\left(2BB^TA\right) =$$

iii.
$$A^{-1} =$$

- (b) Indique:
 - i. uma matriz elementar E tal que $E^{-1}C=A$.
 - ii. uma solução do sistema AX = B.

2.	Para cada k pertencente a \mathbb{R} , considere o sistema de equações lineares, nas incógnitas x_1, x_2, x_3 e coeficientes reais,
	$S_k = \begin{cases} x_1 - x_2 + x_3 = 1\\ x_2 + x_3 = 2\\ 4x_1 - 4x_2 + k^2 x_3 = k + 2 \end{cases}$
	Complete cada alínea, em função de k , de modo a obter uma afirmação verdadeira.
	(i) O sistema S_k é de Cramer se e só se
	(ii) O sistema S_k é impossível se e só se
3.	Indique uma base para o subespaço vectorial $H=\{ax^2+bx+c\in\mathbb{R}_2[x]:a,b,c\in\mathbb{R}\wedge2a+b=0\}$ de $\mathbb{R}_2[x]$.
4.	No espaço vectorial real \mathbb{R}^4 , munido do produto interno canónico, considere o subespaço vectoria
	F = <(1, 2, 3, 4), (1, 2, 0, 0), (-1, -2, 3, 4), (3, 6, 3, 4) > .
	Indique:
	(a) uma base de F
	(b) um suplementar de F
	(c) a dimensão de F^{\perp}
	(d) os valores de y e z para os quais $(0, y, z, 3) \in F^{\perp}$
5.	Enuncie o Teorema de Steinitz.

.....

2^a Parte

Na resolução da 2ª Parte deve apresentar todos os cálculos e todas as justificações necessárias.

6. Considere o espaço vectorial real \mathbb{R}^3 munido do produto interno canónico e os seus subespaços

$$F = <(1,1,1), (1,2,2)>$$

е

$$G = \{(b, a+b, 2b-a) : a, b \in \mathbb{R} \}.$$

- (a) Determine uma base de G. Justifique.
- (b) Caracterize os vectores de F por meio de condições nas suas coordenadas. Justifique.
- (c) Indique, justificando, uma base de F + G.
- (d) Determine uma base e a dimensão de $F \cap G$. Justifique.
- (e) Determine $(0, 1, -1) \land (1, 2, 2)$.

7. Seja V um espaço vectorial real de dimensão 3 e sejam $v_1,v_2,v_3,v_4\in V$ tais que

$$V = \langle v_1, v_2, v_3, v_4 \rangle$$

e

$$v_1 + v_2 + v_3 + v_4 = 0.$$

- (a) Mostre que $\alpha = (v_1, v_2, v_3)$ e $\beta = (v_1, v_3, v_4)$ são bases de V.
- (b) Determine a matriz de mudança da base α para a base β .
- 8. Diga, justificando, se são verdadeiras ou falsas as afirmações seguintes.
 - (a) Para qualquer $B \in M_2(\mathbb{R})$, existem $L, U \in M_2(\mathbb{R})$, sendo L triangular inferior e U triangular superior, tais que B = LU.
 - (b) Se $A = [a_{ij}] \in M_3(\mathbb{R})$ é uma matriz triangular superior com determinante nulo, então existe $i \in \{1, 2, 3\}$ tal que $a_{ii} = 0$.
 - (c) Se T e L são subespaços vectoriais de \mathbb{R}^3 e $T \cap L = \{0_{\mathbb{R}^3}\}$, então $dimT + dimL \leq 3$.
- 9. Sejam $p, q, n \in \mathbb{N}$, $A \in M_{p \times q}(\mathbb{R})$ e $B \in M_{q \times n}(\mathbb{R})$. Mostre que $r(AB) \leq r(B)$.

Sugestão: Considere os subespaços F e G de \mathbb{R}^n constituídos, respectivamente, pelas soluções de BX = 0 e pelas soluções de (AB)X = 0.