Problem 1

a: From the pmf given, we have

$$0.2 + 0.4 + a + 0.1 + 0.1 = 1$$

 $a = 0.2$

b: The expectation of X is

$$E[X] = \sum xp(x)$$
= -2 * 0.2 + (-1) * 0.4 + 0 * a + 1 * 0.1 + 2 * 0.1
= -0.5

, while the varience of X is

$$Var[X] = E[X^{2}] - (E[X])^{2}$$

$$= 4 * (0.2 + 0.1) + 1 * (0.4 + 0.1) + a * 0 - (0.4)^{2}$$

$$= 1.45$$

c: The sample space of X given A is $\{-2, -1\}$ (omit the event "otherwise" with probability 0), and the probability of these events are

$$p_{X|A}(X = -2) = \frac{0.2}{0.2 + 0.4} = \frac{1}{3}$$

 $p_{X|A}(X = -1) = \frac{0.4}{0.2 + 0.4} = \frac{2}{3}$

 \mathbf{d}

$$E[X|A] = \sum xp_{X|A}(x)$$

$$= (-2) * \frac{1}{3} + (-1) * \frac{2}{3}$$

$$= -\frac{4}{3}$$

$$\begin{split} Var[X|A] &= E[X^2] - (E[X])^2 \\ &= \sum x^2 p_{X|A}(x) - (E[X])^2 \\ &= 4 * \frac{1}{3} + 1 * \frac{2}{3} - (-\frac{4}{3})^2 \qquad = \frac{2}{9} \end{split}$$

e The sample space of Y is $\{-1, 1, 3, 5, 9\}$ (omit the event "otherwise" with probability being 0), and the probability of these events are 0.2, 0.4, 0.2, 0.1, 0.1 respectively.

Problem 2

a: The pmfs of Transmitter 1 and 2 are

$$P_1(x) = \frac{1}{3} * (\frac{2}{3})^{x-1}$$

$$P_2(x) = \frac{1}{2} * (\frac{1}{2})^{x-1},$$

where $x \in N^+$.

From the problem, we have $P(x) = 0.7 * P_1(x) + 0.3 * P_2(x)$, thus the pmf of X is

$$P(X) = 0.7 * \frac{1}{3} * (\frac{2}{3})^{x-1} + 0.3 * \frac{1}{2} * (\frac{1}{2})^{x-1}, \quad X \in \mathbb{N}^+$$

b:

$$E[X] = \sum_{1}^{+\infty} xP(x)$$

$$= \sum_{1}^{+\infty} x(0.7 * P_1(x) + 0.3 * P_2(x))$$

$$= 0.7 * \sum_{1}^{+\infty} xP_1(x) + 0.3 * \sum_{1}^{+\infty} xP_2(x)$$

$$= 0.7 * 3 + 0.3 * 2$$

$$= 2.7$$

c: Theorem 1: The expectation of X^2 is $\frac{2-p}{p^2}$, where X is a geometric random variable ranging from 1 to infinity with mean $\frac{1}{p}$.

Proof:

$$E[X^{2}] = Var[X] + (E[X])^{2}$$

$$= \frac{1-p}{p^{2}} + (\frac{1}{p})^{2}$$

$$= \frac{2-p}{p^{2}}$$

So, the varience of X is

$$Var[X] = E[X^{2}] - (E[X])^{2}$$

$$= \sum_{1}^{+\infty} x^{2} P(x) - (E[X])^{2}$$

$$= \sum_{1}^{+\infty} x^{2} (0.7 * P_{1}(x) + 0.3 * P_{2}(x)) - (E[X])^{2}$$

$$= 0.7 * \sum_{1}^{+\infty} x^{2} P_{1}(x) + 0.3 \sum_{1}^{+\infty} x^{2} P_{2}(x) - (E[X])^{2}$$

$$= 0.7 * 15 + 0.3 * 6 - 2.7^{2}$$

$$= \text{calculate later}$$