1 Úvod

Poznámka (Co je diskrétní matematika)

Protipól matematiky spojité. Souhrnný název pro matematické disciplíny, zabývající se diskrétními objekty.

Poznámka (Co je potřeba)

Cvičení + zkouška z věcí z přednášky.

Poznámka (literatura)

Kapitoly z diskrétní matematiky od Matouška.

Definice 1.1 (Důkaz (neformální))

Rozebírání tvrzení na tvrzení, která už jsou zřejmá.

Definice 1.2 (Definice (neformální))

Definujeme objekty pomocí jednodušších a jednodušších, až axiomů.

Definice 1.3 (Důkaz sporem)

Dokážeme φ tím, že vyvrátíme φ

Definice 1.4 (Důkaz matematickou indukcí)

Dokážeme $\varphi(n), \forall n \in \mathbb{N}$ tak, že dokážeme $\varphi(0) \land (\forall n \in \mathbb{N})(\varphi(n) \implies \varphi(n+1))$

Definice 1.5 (Dolní a horní celá část)

 $\lceil x \rceil$ je nejbližší nižší celé číslo kx

 $\lfloor x \rfloor$ je nejbližší vyšší celé číslo kx

Definice 1.6 (Sčítání mnoha čísel)

 $\sum_{i=13}^n x_i = x_{13} + x_{14} + \ldots + x_n =$ Sčítání xod indexu 13 do indexu n

$$\sum_{\emptyset} = 0$$

Definice 1.7 (Sčítání mnoha čísel)

$$\prod_{i=13}^{n} x_i = x_{13} \cdot x_{14} \cdot \ldots \cdot x_n = \text{Násobení } x \text{ od indexu } 13 \text{ do indexu } n$$

$$\prod_{\emptyset} = 1$$

Poznámka (Klasické množiny)

 $\mathbb{N} \; \mathbb{Z} \; \mathbb{Q} \; \mathbb{R} \; \mathbb{C}$

Poznámka (Klasické množinové operace)

$$x \in \mathbb{A}$$

$$\mathbb{A}\subseteq\mathbb{B}$$

$$\mathbb{A} \cap \mathbb{B}$$

$$\mathbb{A} \cup \mathbb{B}$$

$$\mathbb{A}\setminus\mathbb{B}$$

$$\mathbb{A} \triangle \mathbb{B} = (\mathbb{A} \setminus \mathbb{B}) \cup (\mathbb{B} \setminus \mathbb{A}) = \text{disperze}$$

$$2^{\mathbb{A}} = \mathcal{P}(\mathbb{A})$$

Definice 1.8 (Uspořádaná dvojice)

Uspořádaná dvojice je (x, y) nebo $\{\{x\}, \{x, y\}\}.$

Vytváří se např. kartézským součinem $\mathbb{A} \times \mathbb{B} := \{(a,b) | a \in \mathbb{A}, b \in \mathbb{B}\}.$

Uspořádaná trojice je (x, y, z) = ((x, y), z) = (x, (y, z)). Atd. pro n-tice.

Definice 1.9 (Relace)

 $\mathbb A$ je relace (binární) mezi množinami $\mathbb X$ a $\mathbb Y \equiv \mathbb A \subseteq \mathbb X \times \mathbb Y.$

 $\mathbb A$ je relace (binární) na množině $\mathbb X \equiv$ mezi $\mathbb X$ a $\mathbb X.$

Inverze je relace mezi $\mathbb {Y}$ a $\mathbb {X}\colon R^{-1}:=\{(y,x)|(x,y)\in R\}.$

Skládání $T = R \circ S = \{(x,z) | \exists y : xRy \wedge ySz\}$

Diagonála = diagonální relace: $\triangle x := \{(x, x) \in \mathbb{X}\}$

Definice 1.10 (Funkce = zobrazení)

Funkce z množiny $\mathbb X$ do množiny $\mathbb Y$ je relace A mezi $\mathbb X$ a $\mathbb Y$ taková, že $\forall x \in \mathbb X \exists ! y \in \mathbb Y : xAy$

Definice 1.11 (Vlastnosti funkcí)

Funkce $f: \mathbb{X} \to \mathbb{Y}$ je:

- prostá (injektivní) $\equiv \exists x, x' \in \mathbb{X} : x \neq x' \land f(x) = f(x')$
- na \mathbb{Y} (surjektivní) $\equiv \forall y \in \mathbb{Y} \exists x \in \mathbb{X} : f(x) = y$
- vzájemně jednoznačná (bijektivní, 1-1 (jedna ku jedné)) $\forall y \in \mathbb{Y} \exists ! x \in \mathbb{X} : f(x) = y$

Definice 1.12 (Vlastnoti relací)

Relace R na \mathbb{X} je:

- reflexivní $\equiv \forall x \in \mathbb{X} : xRx$
- symetrická $\equiv \forall x, y \in \mathbb{X} : xRy \implies yRx (\Leftrightarrow R = R^{-1})$
- antisymetrická $\equiv \forall x, y \in \mathbb{X} : xRy \land yRx \implies x = y$
- tranzitivní $\equiv \forall x, y, z \in \mathbb{X} : xRy \land yRz \implies xRz$

Definice 1.13 (Ekvivalence)

Relace se nazývá ekvivalence, pokud je tranzitivní, reflexivní a symetrická.

Definice 1.14 (Ekvivalenční třídy)

$$R[x] = \{ y \in \mathbb{X} | xRy \}$$

Věta 1.1

$$1)\forall x \in \mathbb{X}R[x] \neq \emptyset$$

$$2) \forall x,y \in \mathbb{X} : R[x] = R[Y]XORR[x] \cap R[y] = \emptyset$$

3) $\{R[x]|x \in \mathbb{X}\}$ určuje ekvivalenci R jednoznačně

 $D\mathring{u}kaz$

- 1) triviální
 - 2) Dokážeme: pokud $R[x] \cap R[y] \neq \emptyset$, pak R[x] = R[y]. (Tranzitivita).

 \Box

Definice 1.15 (Rozklad množiny)

Množinový systém $\mathcal{S} \subseteq 2^{\mathbb{X}}$ je rozklad množiny \mathbb{X} tehdy, když

(R1) $\forall \mathbb{A} \in \mathcal{S} : \mathbb{A} \neq \emptyset$,

 $(R2) \ \forall \mathbb{A}, \mathbb{B} \in \mathcal{S} : \mathbb{A} \neq \mathbb{B} \implies \mathbb{A} \cap \mathbb{B} = \emptyset,$

(R3) $\bigcup_{\mathbb{A} \in \mathcal{S}} = \mathbb{X}$.

Definice 1.16 (Uspořádání)

Relace R na množině \mathbb{X} je uspořádání $\equiv R$ je reflexivní, antisymetrická a tranzitivní.

Poznámka

Někdy se říká částečné uspořádaní a částečně uspořádaná množina (čum), aby se zdůraznilo, že nemusí být lineární.

Definice 1.17 (Uspořádaná množina)

Dvojice (X, R), kde X je množina a R je uspořádání na ní.

Definice 1.18 (Porovnatelné prvky a lineární uspořádání)

 $xy \in X$ jsou porovnatelné $\equiv xRy \vee yRx$

Uspořádání R je lineární $\equiv \forall x, y \in X$ porovnatelné.

Definice 1.19 (Ostrá nerovnost)

 (X, \leq) ČUM $\to (X, <): x < y \equiv x \leq y \land x \neq y$

Definice 1.20 (Hasseuv diagram)

Poznámka

Splňuje následující: 1. To, co je nahoře je větší než to, co je dole

2. Nezakreslujeme tranzitivitu

Definice 1.21 (Bezprostřední předchůdce $(x \triangleleft y)$)

x je bezprostřední předchůdce y v uspořádání $\leq \equiv x < y \land (\not\exists z : x < z \land z < y)$

V hasseově diagramu jsou mezi vrcholy (prvky množiny) hrany pouze, pokud dolní vrchol je bezprostředním předchůdcem toho nahoře.

Definice 1.22 (Nejmenší, minimální, největší a maximální prvek)

- $x \in \mathbb{X}$ je nemenší $\equiv \forall y \in \mathbb{X} : x \leq y$
- $x \in \mathbb{X}$ je minimální $\equiv \nexists y \in \mathbb{X} : y < x$
- největší a maximální obdobně

Lemma 1.2

Každá konečná neprázdná ČUM má minimální prvek.

Důkaz (Důkazík)

 $x_1 \in \mathbb{X}$ zvolíme libovolně, pokud x_1 není minimální $\exists x_2 < x_1 ... \; \exists k \in \mathbb{N} x_k$ je minimální. \qed

Definice 1.23 (Řetězec)

Pro (X, \leq) ČUM $A \subseteq X$ je řetězec $\equiv \forall a, b \in A : a, b$ jsou porovnatelné.

Naopak $A \subseteq X$ je antiřetězec (nezávislá množina) $\equiv \nexists a, b \in A$ různé a porovnatelné.

Definice 1.24 (Délka nejdelšího řetězce)

 $\omega(X,\leq) := \text{maximum z délek řetězců ("výška uspořádání")}$

 $\alpha(X,\leq) := \text{maximum z "délek" (velikostí) antiřetězců ("šířka uspořádání")}$

Věta 1.3 (O dlouhém a Širokém)

$$\forall (X,\leq) \check{C}UM \colon \alpha(X,\leq) \cdot \omega(X,\leq) \geq |X|$$

(Neboli buď $\alpha \geq \sqrt{|X|}$ nebo $\omega \geq \sqrt{|X|}$.)

 \Box $D\mathring{u}kaz$

Sestrojíme $X_1 := \{x \in X | x \text{je minimální} \}.$

Když máme $X_1,\ldots,X_i,\,Z_i:=X\setminus\left(\bigcup_{j=1}^ix_j\right)$. Pokud $Z_i=\emptyset$, tak jsme skončili, jinak $X_{i+1}:=\{x\in Z_i|x$ je minimální v $Z_i\}$.

Přitom $\forall i \ X_i$ je antiřetězec, $\{X_1, \dots, X_k\}$ tvoří rozklad X a $\exists \{r_j \in X_j\}_{j=1}^k, \{r_j\}_{j=1}^k$ je řetězec. $(r_k \in X_k$ zvolíme libovolně, $r_j \notin X_{j-1} \implies \exists r_{j-1} \in X_{j-1} : r_{j-1} < r_j.)$

$$|X| = \sum_{i=1}^{k} |X_i| \le k \cdot \max_{1 \le i \le k} |X_i| \le \omega \cdot \alpha.$$