Machine Learning 520 Advanced Machine Learning

Lesson 7: Natural Language Processing

Today's Agenda

- Bag of words
- Term frequency inverse document frequency
- Jaccard distance
- Information retrieval
- Sentiment analysis
- Topic modeling

Learning Objectives

- Use a bag-of-words representation for text.
- Use term frequency inverse document frequency values to represent text
- Use Jaccard distance to measure the similarity between two documents.
- Use TF-IDF to retrieve the most relevant documents for a query.
- Apply classification models for sentiment analysis.
- Use topic model predictions as additional features for classification.

Overview of NLP

- Human natural language is a commonly encountered unstructured data type
- NLP seeks to extract information from and model human natural language
- Various estimates of what percent of ML solutions use NLP methods
 Take estimates with a grain of salt
- About 70% of web data is natural language
- In 2019 Gartner group claims 50% of analytical queries involve NLP
- NLP is part of daily life for many people

Motivation: Harnessing Big Text Data

Gaining Intuition:

I'm given a task. What approach will work?

Overview of NLP

- In this lesson we focus on natural language processing NLP attempts to model or process natural language
 - The goal of NLP is classification, prediction, and simple generation
 - The machine does not actually have any understanding of meaning
 - NLP is a form of weak AI
- We will not address natural language understanding NLU is a form of strong AI
 - For strong AI, the machine must actually **understands the meaning** of what is being said and what it is saying
 - NLU is the basis of the famous Touring test
 - NLU is a research frontier

Why is NLP hard?

- Human language is imprecise
- Computer languages have strict grammar and semantics
- Human languages use loose grammars and ambiguous semantics, at best
- Example; I ask an intelligent agent 'do you know what time it is?', what answer do I expect?
 - Yes. -The agent does know the time
 - It is 10:45. –The answer I wanted
- Example; But, if I say, 'Tell me what time it is.', the answer is unambiguous
 - A human would not notice a semantic ambiguity between these cases

Main approaches in NLP

- Rule-based methods
 - Regular expressions
 - Context free grammar
- Probabilistic modelling and machine learning
 - Linear classifiers
 - Likelihood maximization
- Deep Learning
- CNN, RNN, LSTM, etc.

Examples (rule-based methods)

- > Semantic slot filling
- > Context free grammar
- > Parsing

Examples (traditional ML based methods)

- Training corpus (with some markups)
- Feature engineering
 - Is the word capitalized?
 - What are the previous words?
 - etc...
- Define a Probabilistic graphical model
- Conditional Random Field: p(tags|words)

Some useful libraries and tools

- NLTK
 - Small but useful datasets with markup
 - Preprocessing tools: normalization, tokenazition, etc.
 - Pre-trained models for parsing, POS-tagging, etc.
- spaCy: python and cython library for NLP
- Gensim: python library for text analysis (word embedding, topic modelling, etc.)

Text classification

- Example: sentiment analysis
 - Input: text of review
 - Output: class of sentiment (e.g. positive vs negative)
- Positive example:
 - The movie was great with likeable characters
 - The mayor has done a splendid job in revitalizing the downtown
- Negative example:
 - The worst performance by Actor John Doe, no wonder the film bombed
 - Don't buy this product, run for your wallets!

Organization of text data

- We organize text data in a corpus
- A corpus is a collection of documents
- What constitutes a document?
- Most any unit of text can be a document for NLP
 - An entire book, a chapter from a book, a paragraph, or a single sentence
 - Email, text message, or tweet
 - Blog post
 - Tweet
 - Movie review
 - A contract
 - Instructions to assemble my new office chair
 - ...

Text preprocessing

➤ What is text?

Sequence of words

➤ What is a word?

• A single distinct meaningful element of speech or writing, used with others (or sometimes alone) to form a sentence and typically shown with a space on either side when written or printed (Ref: Oxford dictionary).

Input: The dog ate the fish, then took a nap. Output: The dog ate the fish then took a nap

Text preprocessing

German has some compound words which are written without space

rindfleischetikettierungsüberwachungsaufgabenübertragungsgeset z

that's 63 letters long meaning "the law for the delegation of monitoring beef labeling."

► In Chinese there are no spaces at all! 如果你能看懂这句话那么你的中文很厉害!

Text Preparation

- Text data is messy
- Considerable preprocessing typically required
- Be careful! Make sure you do not remove the parts you need!
- Normalize text
- Stop words are removed
- Stemming to represent forms of a word as same token
- Limit vocabulary to remove bias from rare words
- Document is tokenized

Text Preparation

- Text Normalize prevents creation of spurious tokens
- Example; for sentence:
 - Is this the right way to solve the problem?
 - We do not want a token 'problem?'
- Steps of text normalization can include
 - All characters to lower case -'Shovel' and 'shovel' are same token
 - Remove punctuation
 - Remove numbers and special characters
- Several possible pitfalls
 - Should the punctuation be removed in words like 'can't'?
 - Some numbers can be important tokens
 - How should dates be handled?

Tokenization

- Process that split an input sequence into tokens
- Tokens are useful unit for semantic processing (can be a word, sentence, paragraph, etc.)

Example:

```
>>> from nltk.tokenize import word_tokenize
>>> s = '''Good muffins cost $3.88\nin New York. Please buy me
... two of them.\n\nThanks.'''
>>> word_tokenize(s)
['Good', 'muffins', 'cost', '$', '3.88', 'in', 'New', 'York', '.',
'Please', 'buy', 'me', 'two', 'of', 'them', '.', 'Thanks', '.']
```


Token normalization

- Process of canonicalizing tokens so that matches occur despite superficial differences in the character sequences of the tokens
 - Dog, dogs dog
 - Wife, wives ____ wife

Stemming

 A process of removing and replacing suffixes to get to the root form of the word, called a stem

Lemmatization

return the base or dictionary form of a word, which is known as the lemma

Example (stemmer)

```
from nltk.stem.porter import PorterStemmer

example_words = ["maximum", "presumably", "pythoning", "provision", "ear"]
ps = PorterStemmer()
for w in example_words:
    print(ps.stem(w))

maximum
presum
python
provis
ear
```

Problem: fails on irregular forms & produces non words

Example (lemmatization)

- ➤ WordNet lemmatizer
 - Uses the WordNet database to lookup lemmas
 - churches © church dogs © dog
 - Wolves @ wolf maximum @ maximum

```
from nltk.stem import WordNetLemmatizer

example_words = ["churches", "dogs", "wolves", "maximum"]
wordnet_lemmatizer = WordNetLemmatizer()

for w in example_words:
    print(wordnet_lemmatizer.lemmatize(w))

church
dog
wolf
maximum
```

Problem: not all words are reduced

Stemming Vs. Lemmatization

When to use what!

- If you need speed, then use stemming
- If you have time, then use lemmatizers as it scans a corpus
- If you are building a language application, then use lemmatization to ensure match to root forms.

- Most common ways to extract numerical features from text content
 - **tokenizing** strings and giving an integer id for each possible token, for instance by using white-spaces and punctuation as token separators.
 - counting the occurrences of tokens in each document.
 - normalizing and weighting with diminishing importance tokens that occur in the majority of samples / documents.

- Most common ways to extract numerical features from text content
 - **tokenizing** strings and giving an integer id for each possible token, for instance by using white-spaces and punctuation as token separators.
 - counting the occurrences of tokens in each document.
 - normalizing and weighting with diminishing importance tokens that occur in the majority of samples / documents.
- In this scheme, features and samples are defined as follows:
 - each individual token occurrence frequency (normalized or not) is treated as a feature.
 - the vector of all the token frequencies for a given document is considered a multivariate sample.
 - A corpus of documents can thus be represented by a matrix with one row per document and one column per token (e.g. word) occurring in the corpus.

Great instructor	l	great	instructor	not	а	do	like
Not a great instructor		1	1	0	0	0	0
		1	1	1	1	0	0
Do not like		0	0	1	0	1	1

• Limitations:

- Word orders is lost hence BOW cannot capture phrases and multi-word expressions
- BOW model doesn't account for potential misspellings or word derivations.

►N-grams

Instead of building a simple collection of unigrams (n=1), one might prefer a
collection of bigrams (n=2), where occurrences of pairs of consecutive words are
counted.

Great instructor	instructor	Do not	а	Not like	
1	1	0	0	0	•••
1	1	0	1	0	•••
0	0	1	0	1	

Reduce the number of features in n-grams

- High frequency n-grams (e.g. stop words)
- Low frequency n-grams (e.g. typos)
- Medium frequency n-grams are usually good n-grams

Problem: If we were to feed the direct count data directly to a classifier very frequent terms would shadow the frequencies of rarer yet more interesting terms. Therefore we need to re-weight the count features into floating point values suitable for usage by a classifier

- Text Frequency: Word frequency or TF
 - Count how many times a word appears in a single document.
 - Terms that occur in fewer documents are more descriptive and may contain more information (Rarity matters).
- Inverse Document Frequency (IDF)
 - Inverse of the proportion of documents containing term in the whole collection.
 - #documents / #documents with word might be too severe.
 - A word appearing twice instead of once shouldn't have twice the impact

$$IDF = \log \left(\frac{"Documents"}{"Documents" with Word} \right)$$

- Maybe we should tie these together:
- TF-IDF: Rare terms in whole collection that appear frequently in some documents maybe very important!
 - Multiply these two

How to Use TF-IDF

$$TF - IDF = \log \left(\frac{iDocuments}{iDocuments with Word} \right) \times f(Word)$$

- Finding important words to describe the document collections or subgroups of collections.
- Using the count of important words as a feature in a model.
- Using the distribution of a document's TF-IDF values.
 - Characterize writing styles
 - Comparing authors
 - Determining original authors
 - Finding plagiarism

Example

	good	good instructor	instructor	like	not
0	0.506204	0.609818	0.609818	0.000000	0.000000
1	0.432183	0.520646	0.520646	0.000000	0.520646
2	0.000000	0.000000	0.000000	0.707107	0.707107
3	0.000000	0.000000	0.000000	1.000000	0.000000
4	1.000000	0.000000	0.000000	0.000000	0.000000

Document classification

- Document classification is a common NLP application
- Many applications of document classification
- Organize articles; sport, business, local, weather,...
- Organize books; romance, mystery, business, science,....
- Detect SPAM emails
- Determine sentiment in reviews and social media
- Detect language a document is written in
- ...

Notebook Time

Language modeling

Assign a probability to a sentence

Why?

- Machine translation (e.g. P(the average probability) > P(the mean probability))
- \triangleright Spell correction (e.g. P(I'm **enjoying** this class) > P(I'm **enjoiing** this class))
- Speech recognition (e.g. P(I'm gonna take a walk)> P(am gonna take a wok)
- Handwriting recognition
- Etc.

Language modeling

Compute the probability of a sentence or sequence of words

Compute the probability of an upcoming word

A model that computes either of these or is called a language model.

Example

Toy corpus

- This is the house that Jack built.
- This is the malt
- That lay in the house that Jack built.
- This is the rat,
- That ate the malt
- That lay in the house that Jack built.
- This is the cat,
- That killed the rat,
- That ate the malt
- That lay in the house that Jack built.

What is P(house | this is the)?

Example

Language modeling intuition

Predict probability of a sequence of words)

Chain rule:

Markov assumption:

Bigram language model

For

- Example:
 - This is the malt
 - That lay in the house that Jack built

Bigram language model summarized

► Define the model

Estimate the probabilities:

N-gram language model summarized

► Define the model

How to train n-gram models

Log-likelihood maximization:

Estimates for parameters:

Where is the length of the train cor pus.

Example Generated Shakespeare

- Accuracy increases as N increases
 - Train various N-gram models and then use each to generate random sentences.
- Example Corpus: Complete works of Shakespeare
 - Unigram: To him swallowed confess hear both. Which. Of save on trail for are ay device and rote life have.
 - Bigram: What means, sir. I confess she? Then all sorts, he is trim, captain.
 - Trigram: Fly, and will rid me these news of price. Therefore the sadness of parting, as they say, 'tis done.
 - Quadrigram: King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch.

Evaluating Language Models

- The best might depend on how much data you have
 - · Bigrams might not be enough
 - 8-grams might never occur

> Extrinsic evaluation:

- Best evaluation for comparing model A and B
 - Put each model in a task(e.g. machine translation, spelling corrector, etc.)
 - Run the task, get an accuracy for A and for B (e.g. how many misspelled words corrected properly, how many words translated correctly)
 - Compare accuracy for A and B

Evaluating Language Models

> Extrinsic evaluation:

- Time-consuming (can take days, weeks, etc.)
- How to address that?
 - Use intrinsic evaluation: perplexity
 - **Perplexity** is the inverse of the probability of the test set (as assigned by the language model), normalized by the number of word tokens in the test set.

Evaluating Language Models

Likelihood:

Perplexity:

