MTH362 Spring 2016

B. Honohan, A. Johnson, S. McAlister, F. Mooney, K. O'Donnell, E. Quinn, R. Selbert, E. Wiley

Contents

Chapter 1. Review	1
1.1. Preliminaries and Definitions	1
Convergence	3
Topology Review	4
1.2. Metric Spaces	8
1.3. Sequences and Series of Functions	9
1.4. The Differentiable Limit Theorem	14
1.5. Series of Functions	17
Chapter 2. Homework Problems	21
2.1. Week 1 Homework (assignment 1)	21
Team 1 (Ali, Emily, Frank)	21
Team 2 (Blaine, Katie, Siobhan, Rachel)	22
2.2. Week 1 Homework (assignment 2)	23
Team 1 (Ali, Emily, Frank)	23
Team 2 (Blaine, Katie, Siobhan, Rachel)	23
2.3. Homework (assignment 3)	24
Team 1 (Ali, Emily, Frank)	24
Team 2 (Blaine, Katie, Siobhan, Rachel)	24
2.4. Homework (assignment 4)	25
Team 1 (Ali, Emily, Frank)	25
Team 2 (Blaine, Katie, Siobhan, Rachel)	25
2.5. Homework (assignment 5)	26
Teams 1 and 2	26

CHAPTER 1

Review

1.1. Preliminaries and Definitions

DEFINITION 1.1.1 (binary operation). A binary operation on a set S is a function from $S \times S$ into S.

Examples of binary operations:

- \bullet + : $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$ Addition of natural numbers
- \bullet $\cdot: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ Multiplication of natural numbers

Definition 1.1.2 (group). A group consists of:

- \bullet A set G
- A binary operation $+: G \times G \to G$ with the following properties:

```
\begin{array}{ll} x+(y+z)=(x+y)+z \ \forall x,y,z\in G & (associativity) \\ \exists 0\in G \ such \ that \ a+0=0+a=a \ \forall a\in G & (identity) \\ \forall a\in G \ \exists \ a^{-1} \ such \ that \ a+a^{-1}=a^{-1}+a=0 & (inverse) \end{array}
```

Definition 1.1.3 (field). A field consists of:

- A set F
- A binary operation $+: F \times F \to F$ with the following properties:

```
\begin{array}{ll} x+y=y+x \ \forall x,y\in F & (additive \ commutativity) \\ x+(y+z)=(x+y)+z \ \forall x,y,z\in F & (additive \ associativity) \\ \exists 0\in F \ such \ that \ a+0=0+a=a \ \forall a\in F & (additive \ identity) \\ \forall a\in F \ \exists \ a^{-1} \ such \ that \ a+a^{-1}=a^{-1}+a=0 & (additive \ inverse) \end{array}
```

• A binary operation: $F \times F \to F$ with the following properties:

```
\begin{array}{lll} xy = yx \ \forall x,y \in F & (multiplicative \ commutativity) \\ x(yz) = (xy)z \ \forall x,y,z \in F & (multiplicative \ associativity) \\ \exists 1 \in F \ such \ that \ a1 = 1a = a \ \forall a \in F & (multiplicative \ identity) \\ \forall a \in F \setminus 0 \ \exists \ a^{-1} \ such \ that \ aa^{-1} = a^{-1}a = 1 & (multiplicative \ inverse) \\ x(y+z) = xy + xz \ \ \forall x,y,z \in F & (distributive \ property) \end{array}
```

2 1. REVIEW

Definition 1.1.4 (vector space). A vector space or linear space consists of:

- A field F of elements called **scalars**
- A commutative group V of elements called **vectors** with respect to a binary operation +
- A binary operation: $F \times V \to V$ called **scalar multiplication** that associates with each scalar $\alpha \in F$ and vector $v \in V$ a vector αv in such a way that:

$$1v = v \quad \forall v \in V$$

$$(\alpha\beta)v = \alpha(\beta v) \quad \forall \alpha, \beta \in F, \ v \in V$$

$$\alpha(v + w) = \alpha v + \alpha w \quad \forall \alpha \in F, \ v, w \in V$$

$$(\alpha + \beta)v = \alpha v + \beta v \quad \forall \alpha, \beta \in F, \ v \in V$$

DEFINITION 1.1.5 (norm). A nonnegative real-valued function $\| \| : V \to \mathbb{R}$ is called a **norm** if:

- $||v|| \ge 0$ and $||v|| = 0 \Leftrightarrow v = \vec{0}$
- $||v + w|| \le ||v|| + ||w||$ (triangle inequality)
- $\|\alpha v\| = |\alpha| \|x\| \quad \forall \alpha \in F, \ v \in V$

DEFINITION 1.1.6 (normed linear space). A linear space V together with a norm $\|\cdot\|$, denoted by the pair $(V, \|\cdot\|)$, is called a **normed** linear space

DEFINITION 1.1.7 (inner product). Let the field F be either \mathbb{R} or \mathbb{C} and a set V of vectors which together with F form a vector space. An inner product on V is a map

$$\cdot: V \times V \to \mathbb{F}$$

with the following properties:

$$\begin{array}{ll} (u+v)\cdot w = u\cdot w \ + \ v\cdot w & \forall u,v,w\in V \\ (\alpha u)\cdot v = \alpha(u\cdot v) & \forall \alpha\in F,\ u,v\in V \\ u\cdot v = (\overline{v\cdot u}) & \forall u,v\in V \\ u\cdot u\geq 0 & \forall u\in V \ \textit{with equality when } u=\vec{0} \end{array}$$

If the underlying field is \mathbb{R} , the fourth condition can be replaced by

$$u \cdot v = v \cdot u \quad \forall u, v \in V$$

since a real number is its own conjugate. In this case, the condition just says the inner product is commutative.

Definition 1.1.8 (metric). A metric on a set S is a function

$$\rho: S \times S \to \mathbb{R}$$

where ρ has the following three properties for any $x, y, z \in S$:

$$\rho(x,y) \ge 0 \text{ and } \rho(x,y) = 0 \Leftrightarrow x = y$$

$$\rho(x,y) = \rho(y,x)$$

$$\rho(x,y) \le \rho(x,z) + \rho(z,y)$$

DEFINITION 1.1.9 (metric space). A **metric space** is a pair $\{S, \rho\}$ where S is a set and ρ is a metric defined on S.

DEFINITION 1.1.10 (topology). A **topology** is a set X and a collection \mathcal{J} of subsets of X having the following properties:

- \emptyset and X are in \mathcal{J}
- ullet The union of any subcollection of elements of ${\mathcal J}$ belongs to ${\mathbb J}$
- ullet The intersection of any finite subcollection of ${\mathcal J}$ belongs to ${\mathcal J}$

Convergence

Definition 1.1.11 (sequence). A sequence is a function whose domain is \mathbb{N} .

DEFINITION 1.1.12 (convergent sequence). A sequence x_n in \mathbb{R} converges to x if, for every $\epsilon > 0$, there is an $N \in \mathbb{N}$ such that

$$|x_n - x|, \epsilon \quad whenever \quad n \ge N$$

DEFINITION 1.1.13 (Cauchy sequence). A sequence x_n in \mathbb{R} is said to be a Cauchy sequence if, for every $\epsilon > 0$, there is an $N \in \mathbb{N}$ such that

$$|x_n - x_m|, \epsilon \quad whenever \quad n, m \ge N$$

1. REVIEW

4

Topology Review

DEFINITION 1.1.14 (ϵ -neighborhood). If $x \in \mathbb{R}$ and $\epsilon > 0$, the ϵ -neighborhood $V_{\epsilon}(x)$ is defined by

$$V_{\epsilon} = \{ y \in \mathbb{R} : |x - y| < \epsilon \}$$

DEFINITION 1.1.15 (limit point). A real number $x \in A$ is a limit point of A if for every $\epsilon > 0$, $V_{\epsilon}(x)$ contains elements of A other than x.

DEFINITION 1.1.16 (isolated point). A element $x \in A$ is an isolated point of A if $x \in A$ and x is not a limit point of A.

DEFINITION 1.1.17 (open set). A set $A \subseteq \mathbb{R}$ is open if, for every $a \in A$, there is an $\epsilon > 0$ such that

$$V_{\epsilon}(a) \subseteq A$$

That is, there is an ϵ -neighborhood of every element of A that is contained entirely in A.

Definition 1.1.18 (closed set). A set $A \subseteq \mathbb{R}$ is closed if it contains all of its limit points.

DEFINITION 1.1.19 (closure). The closure of a set $A \subseteq \mathbb{R}$ denoted by \overline{A} is the union of A and its limit points.

DEFINITION 1.1.20 (compact set). A set $A \subseteq \mathbb{R}$ is compact if every sequence in A has a convergent subsequence whose limit is in A.

DEFINITION 1.1.21 (perfect set). A set $A \subseteq \mathbb{R}$ is perfect if it is closed and has no isolated points.

DEFINITION 1.1.22 (bounded set). A set $A \subseteq \mathbb{R}$ is bounded if there exists an M > 0 such that

$$|a| < M$$
 for all $a \in A$

DEFINITION 1.1.23 (separated sets). Two nonempty sets $A, B \subseteq \mathbb{R}$ are separated if

$$A \cap \overline{B} = \emptyset = \overline{A} \cap B$$

DEFINITION 1.1.24 (disconnected set). A set $E \subseteq \mathbb{R}$ is disconnected if it can be written as

$$E = A \cup B$$

where A and B are nonempty separated sets.

DEFINITION 1.1.25 (connected set). A set $A \subseteq \mathbb{R}$ is connected if it is not disconnected.

THEOREM 1.1.1. A set $A \subseteq \mathbb{R}$ is open if and only if its compliment A^c is closed.

PROOF. (\Rightarrow) Let $A \subseteq \mathbb{R}$ be open. Suppose for the sake of contradiction that $a \in A$ is a limit point of A^c . By definition, for every $\epsilon > 0$, $V_{\epsilon}(a)$ contains points of A^c . This means that no ϵ -neighborhood of a is entirely contained in A, contradicting the assumption that A is open.

(\Leftarrow) Now suppose $A \subseteq \mathbb{R}$ with A^c closed. Let a be an element of $(A^c)^c = A$. By hypothesis, A^c is closed, so a cannot be a limit point of A^c because $a \notin A$. By definition, this means there must be an $\epsilon > 0$ such that $V_{\epsilon}(a)$ contains no points of A^c . Therefore, $V_{\epsilon}(a) \subseteq A$. Since a was arbitrarily chosen, we can find an ϵ -neighborhood of every element of A that is entirely contained in A, so by definition A is open. \square

THEOREM 1.1.2 (Heine-Borel Theorem). A set $K \subseteq \mathbb{R}$ is compact if and only if it is closed and bounded.

PROOF. (\Rightarrow) Let $K \subseteq \mathbb{R}$ be compact. Suppose for the sake of contradiction that K is not bounded. By definition, for any $M \in \mathbb{R}$, there exists an element x_M of K with $|x_M| > M$. We will use this fact to construct a sequence in K that has no convergent subsequence. If K is unbounded, there must be an $x_1 \in K$ with $|x_1| > 1$. By the same argument, there must be an element x_2 in K with $|x_2| > 2$. Continuing in this fashion, we may construct a sequence

$$x_1, x_2, x_3, \dots, x_n, \dots$$
 with $|x_n| > n$ for every $n \in \mathbb{N}$

Now suppose (x_{n_k}) is a subsequence of (x_n) . Since $|x_{n_k}| > n_k$ and n_k is unbounded, every subsequence is unbounded. Since all convergent sequences are bounded, this means that no subsequence is convergent, contradicting the assumption that K is compact.

This establishes that K is bounded. To show that K is closed, suppose x is a limit point of K. Then there is a sequence (x_n) in K that converges to x. By hypothesis, K is compact, so by definition (x_n) has a convergent subsequence whose limit is in K. However, by an earlier theorem, any subsequence of a convergent sequence is also convergent, and has the same limit x. Therefore both (x_n) and its subsequence have the same limit, which must belong to K. Since x was arbitrarily chosen, this is true of any limit point, so K must contain all of its limit points and therefore is closed.

 (\Leftarrow) Now suppose K is closed and bounded. Let (x_n) be an arbitrary sequence in K. Then (x_n) must be bounded, and by the Bolzano-Weierstrass theorem, it must have a convergent subsequence (x_{n_k}) . The limit of this subsequence is, by definition, a limit point of K, and by hypothesis K is closed and therefore contains its limit points. Therefore, every sequence in K has a subsequence that converges to a point in K, and by definition, K is compact.

THEOREM 1.1.3. A set $E \subseteq \mathbb{R}$ is connected if and only if, for all nonempty disjoint sets A and B satisfying $E = A \cup B$ there always exists a convergent sequence $(x_n) \to x$ with (x_n) contained in one of A and B, and x an element of the other.

PROOF. (\Rightarrow) Let E be a connected set. Suppose $E = A \cup B$ where A and B are disjoint, nonempty sets. By hypothesis, E is connected, so A and B are not separated. This means that one of $A \cap \overline{B}$ and $\overline{A} \cap B$ is not empty. Without loss of generality, assume that $x \in \overline{A} \cap B$. Then $x \in \overline{A}$ and $x \in B$. But A and B are disjoint, so $x \notin A$. By definition, \overline{A} is the union of A and its limit points, and since $x \notin A$, x must be a limit point of A. By an earlier theorem, there is a sequence in A that converges to x.

 (\Leftarrow) (contrapositive argument) Suppose $E \subseteq \mathbb{R}$ is disconnected. We need to find two nonempty, disjoint sets A and B such that $E = A \cap B$ and there does not exist a convergent sequence (x_n) in A with its limit x in B, or vice-versa. By hypothesis, E is separated, so there exist separated sets A and B with $E = A \cup B$. Now suppose (x_n) is a convergent sequence contained in A whose limit is x. By definition, since x is a limit of a sequence in A, x belongs to \overline{A} . Because A and B are disconnected, by definition $\overline{A} \cap B$ is empty, so $x \notin B$. Since (x_n) was an arbitrary sequence, no convergent sequence in A has its limit in B. A similar argument shows that no convergent sequence in B has its limit in A.

DEFINITION 1.1.26 (continuous function). In a metric space (X, ρ) a function $f: D \subseteq X \to X$ is continuous if, for every $\epsilon > 0$, there is a $\delta > 0$ such that

$$\rho(f(x), f(y)) < \epsilon$$
 whenever $\rho(x, y) < \delta$

LEMMA 1.1.1. If (X, ρ) is a metric space and $f : D \subseteq X \to X$ is continuous, and (x_n) is a convergent sequence in D whose limit x is also in D, then $\lim f(x_n) = f(x)$.

PROOF. Let $\epsilon>0$ be given. We need to show that there is an $N\in\mathbb{N}$ such that

$$\rho(f(x_n), f(x)) < \epsilon$$
 whenever $n \ge N$

By hypothesis, f is continuous, so by definition for every $\epsilon > 0$, there is a $\delta > 0$ such that

$$\rho(f(x_n), f(x)) < \epsilon$$
 whenever $\rho(x, x_n) < \delta$

1. REVIEW

8

Also by hypothesis, (x_n) is convergent with limit x, so by definition there is an $N \in \mathbb{N}$ such that

$$\rho(x_n, x) < \delta$$
 whenever $n \ge N$

But by the continuity of f, this is equivalent to saying that $\rho(f(x_n), f(x)) < \epsilon$ whenever $n \geq \mathbb{N}$.

THEOREM 1.1.4. If $f : \mathbb{R} \to \mathbb{R}$ and $K \subseteq \mathbb{R}$ is compact, then f[K], the image of K under f, is also compact.

PROOF. Let y_n be a sequence in f[K]. By hypothesis, $y_n \in f[K]$ for each $n \in \mathbb{N}$ so there is at least one $x \in K$, call it x_n , with $f(x_n) = y_n$. Because K is compact, the sequence (x_n) in K must have a convergent subsequence (x_{n_k}) whose limit x is in K. By the previous lemma, with the hypothesis that f is continuous it must be true that that (y_{n_k}) is convergent with limit y = f(x). Since (y_n) was an arbitrary sequence in f(K), it follows that every sequence in f(K) has a convergent subsequence whose limit is in f(K), and therefore f(K) is compact. \square

1.2. Metric Spaces

The following definitions are straightforward generalizations of definitions we have previously encountered.

DEFINITION 1.2.1 (convergence). A sequence (x_n) in a metric space (X,d) is said to converge to a limit x if, for every $\epsilon > 0$, there is an $N \in \mathbb{N}$ such that

$$d((x_n, x) < \epsilon \quad whenever \quad n \ge N$$

DEFINITION 1.2.2 (Cauchy sequence). A sequence (x_n) in a metric space (X, d) is said to be Cauchy if, for every $\epsilon > 0$, there is an $N \in \mathbb{N}$ such that

$$d((x_n, x_m) < \epsilon \quad whenever \quad m, n \ge N$$

DEFINITION 1.2.3 (discrete metric). If X is a set, the function $d: X \times X \to \mathbb{R}^+$ defined by:

$$d(x,y) = \begin{cases} 0 & if \ x = y \\ 1 & if \ x \neq y \end{cases}$$

is a metric on X.

Theorem 1.2.1. The metric space consisting of \mathbb{R}^2 with the discrete metric is complete.

PROOF. To show that $X = (\mathbb{R}^2, d)$ is complete, we must show that every Cauchy sequence in X converges to a limit in X. Suppose (x_n) is a Caucy sequence in X. By definition, for every $\epsilon > 0$, there is an $N \in \mathbb{N}$ such that

$$d(x_n, x_m) < \epsilon$$
 whenever $m, n \ge N$

Let $\epsilon = 1/2$. Then there is an $N \in \mathbb{N}$ such that

$$d(x_n, x_m) < \frac{1}{2}$$
 whenever $n, m \ge N$

But $d(x_n, x_m) < 1/2$ can only be true if $x_n = x_m$, so we can say that $x_n = x_m$ whenever $n, m \ge N$, and therefore all terms (x_n) with $n \ge N$ are equal, and therefore the sequence is eventually constant and therefore convergent.

1.3. Sequences and Series of Functions

We will consider how to extend the idea of a sequence of numbers to a sequence of functions (f_1, f_2, f_3, \ldots) .

To simplify things, we'll let the domain of each function f_n is the same set A.

DEFINITION 1.3.1 (pointwise convergence). For each $n \in \mathbb{N}$ let f_n be a function defined on a set $A \subseteq \mathbb{R}$. The sequence (f_n) of functions converges pointwise on A to a function f if, for all $x \in A$, the sequence of real numbers $f_n(x)$ converges to f(x).

Example 1.3.1. Let

$$f_n(x) = (x^2 + nx)/n \quad x \in \mathbb{R}$$

Then

$$f_1(x) = x^2 + x$$
, $f_2(x) = \frac{x^2 + 2x}{2}$, $f_3(x) = \frac{x^2 + 3x}{3}$, ...

and

$$f_n(x) = \frac{x^2 + nx}{n} = \frac{x^2}{n} + x \to x \quad as \quad n \to \infty$$

Therefore, (f_n) converges pointwise to f(x) = x.

EXAMPLE 1.3.2. Let $g_n(x) = x^n$ for $x \in [0, 1]$. For $x \in [0, 1)$,

$$g_n(x) \to 0$$
 as $n \to 0$

but if x = 1, $g_n(1) = 1$ for all $n \in \mathbb{N}$, so

$$\lim_{n \to \infty} g_n(x) = g(x) = \begin{cases} 0 & \text{if } 0 \le x < 1\\ 1 & \text{if } x = 1 \end{cases}$$

Note that each g_n is continuous on [0,1], but g is not. This illustrates the fact that the pointwise limit of a sequence of continuous functions may not be continuous.

Example 1.3.3. Let

$$h_n(x) = x^{1 + \frac{1}{2n-1}}$$
 $x \in [-1, 1]$

Then

$$h_1(x) = x \cdot x, \quad h_2(x) = x \cdot x^{\frac{1}{3}}, \quad h_2(x) = x \cdot x^{\frac{1}{5}},$$

For a fixed x,

$$\lim_{n\to\infty}=x\lim_{n\to\infty}x^{\frac{1}{2n-1}}=|x|$$

In this example, for each n, $g_n(x)$ is differentiable on [-1,1], but the pointwise limit g(x) is not.

THEOREM 1.3.1 (Cauchy criterion for uniform convergence). A sequence of functions (f_n) defined on $A \subseteq \mathbb{R}$ converges uniformly on A if and only if, for every $\epsilon > 0$, there is an $N \in \mathbb{N}$ such that

$$|f_n(x) - f_m(x)| < \epsilon$$
 whenever $n, m \ge N$ and $x \in A$

PROOF. (\Leftarrow) Suppose (f_n) is a series of functions on $A \subseteq \mathbb{R}$ that converges uniformly on A to f. Let $\epsilon > 0$ be given. Then by the definition of uniform convergence there exists an $N \in \mathbb{N}$ such that

$$|f_k(x) - f(x)| < \frac{\epsilon}{2}$$
 whenever $k \ge N$ and $x \in A$

and, for $n, m \geq N$,

$$|f_n(x) - f_m(x)| = |f_n(x) - f(x) + f(x) - f_m(x)| \le |f_n(x) - f(x)| + |f_m(x) - f(x)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$
 whenever $n, m \ge N$ and $x \in A$.

 (\Rightarrow) Now suppose (f_n) is a sequence of functions defined on $A \subseteq \mathbb{R}$ with the property that, for any $\epsilon > 0$, there exists an $n \in \mathbb{N}$ such that

$$|f_n(x) - f_m(x)| < \epsilon$$
 whenever $m, n \ge N$ and $x \in A$

Let $\epsilon > 0$ be given. By hypothesis there is an $N \in \mathbb{N}$ such that

$$|f_n(x) - f_m(x)| < \frac{\epsilon}{2}$$
 whenever $n \ge N$ and $x \in A$

For any $x \in A$, we can say that $(f_n(x))$ is a Cauchy sequence in \mathbb{R} , and by the Cauchy criterion for real sequences, for any fixed $x \in A$, the sequence $(f_n(x))$ converges. For every $x \in A$, define f(x) to be the limit of the sequence $f_n(x)$. Then because f(x) is the limit of the sequence $(f_n(x))$, there is an $N_x \in \mathbb{N}$ such that

$$|f_k(x) - f(x)| < \epsilon$$
 whenever $k \ge N_x$ with $N_x \ge N$

(note: we can assume without loss of generality that $N_x \geq N$ because even if a smaller value will work, so will any larger value, so we can always increase the original N_x to N)

Then for $n \geq N$, for any $x \in A$,

$$|f_n(x) - f(x)| = |f_n(x) - f_{N_x}(x) + f_{N_x}(x) - f(x)|$$

$$\leq |f_n(x) - f_{N_x}(x)| + |f_{N_x} - f(x)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Since this is true for any $x \in A$, (f_n) converges uniformly to f. (Note: the N_x values may depend on x, but they are always greater than or equal to N, and for this reason no matter what N_x is,

$$|f(x_n) - f_{N_x}| < \frac{\epsilon}{2}$$

for any $N_x > N$. The particular choice of N_x does not matter, and we can always choose N_x large enough to make the other term smaller than $\epsilon/2$.

1. REVIEW

Conjecture 1.3.1. If $f_n \to f$ pointwise on a compact set K, then $f_n \to f$ uniformly on K.

Remark 1. The conjecture is false. Consider the sequence from an earlier example:

$$f_n(x) = x^n \quad x \in [0, 1]$$

In this case K = [0,1] is compact, and $f_n \to f$ pointwise on K with

$$f(x) = \left\{ \begin{array}{ll} 0 & if & x < 1 \\ 1 & if & x = 1 \end{array} \right\}$$

In this case the limit of a sequence of continuous functions on a compact set is not continuous. We have a theorem stating that the uniform limit of a sequence of continuous functions is continuous, so the convergence cannot be uniform.

Conjecture 1.3.2. If $f_n \to f$ on A and g is bounded on A, then $f_n g \to f g$ on A.

PROOF. Let $\epsilon > 0$ be given. By hypothesis, g is bounded on A, so there is an $M \in (0, \infty)$ such that

$$|g(x)| \le M$$
 for all $x \in A$

We have to show that there exists an $N \in \mathbb{N}$ such that when $n \geq N$,

$$|f_n g - f g| < \epsilon$$

By hypothesis, $f_n \to f$ uniformly on A, so there is an $N \in \mathbb{N}$ such that

$$|f_n - f| < \frac{\epsilon}{M}$$
 whenever $n \ge N$

Then for $n \geq N$,

$$|f_n g - f g| = |g||f_n - f| \le M|f_n - f| < M\frac{\epsilon}{M} = \epsilon$$

Conjecture 1.3.3. If $f_n \to f$ uniformly on A and each f_n is bounded, then f is bounded.

PROOF. By hypothesis, $f_n \to f$ uniformly on A. By definition, for $\epsilon = 1$, there exists an $N \in \mathbb{N}$ such that

$$|f_N - f| < 1$$

(this is a special case of the statement than $|f_n - f| < \epsilon$ when $n \ge N$) By hypothesis, f_N is bounded, so there is an $M \in (0, \infty)$ such that

$$|f_N(x)| < M$$
 for all $x \in A$

Then for all $x \in A$,

$$|f(x)| = |-f(x)| = |f_N(x) - f(x) + f_N(x)| \le |f_N(x) - f(x)| + |f_N(x)| < 1 + M$$
 so f is bounded.

Conjecture 1.3.4. If $f_n \to f$ uniformly on A and $f_n \to f$ uniformly on B, then $f_n \to f$ uniformly on $A \cup B$.

PROOF. Let $\epsilon > 0$ be given. By hypothesis, $f_n \to f$ uniformly on A, so there is an $N_A \in \mathbb{N}$ such that for all $n \in \mathbb{N}$ and all $x \in A$,

$$|f_n - f| < \epsilon$$
 whenever $n \ge N_A$

Also by hypothesis, $f_n \to f$ uniformly on B, so there is an $N_B \in \mathbb{N}$ such that for all $n \in \mathbb{N}$ and all $x \in B$,

$$|f_n - f| < \epsilon$$
 whenever $n \ge N_B$

Let N be the larger of N_A and N_B . Then for all $x \in A \cup B$,

$$|f_n(x) - f(x)| < \epsilon$$
 whenever $n \ge N$

Conjecture 1.3.5. If $f_n \to f$ uniformly on an interval A and if each f_n is increasing, then f is increasing.

PROOF. Let a, b be arbitrary points in A with a < b. By hypothesis, f_n is increasing for every $n \in \mathbb{N}$, so we can write

$$f_n(a) \le f_n(b)$$
 for all n

By the order limit theorem, this means

$$\lim f_n(a) \le \lim f_n(b)$$

But $\lim f_n = f$, so $f_n(a) \to f(a)$ and $f_n(b) \to f(b)$, and therefore

$$f(a) \le f(b)$$

Conjecture 1.3.6. If $f_n \to f$ pointwise on an interval A and if each f_n is increasing, then f is increasing.

PROOF. The proof in the case of uniform convergence did not use uniform convergence, only pointwise convergence, so this is true by the same proof. $\hfill\Box$

Conjecture 1.3.7. Let $f_0(x) = x$ for $x \in [0, 1]$.

Now let

$$f_1(x) = \begin{cases} (3/2)x & \text{if } 0 \le x \le 1/3\\ 1/2 & \text{if } 1/3 < x < 1/3\\ (3/2)x - 1/2 & \text{if } 2/3 \le x \le 1 \end{cases}$$

Then f is continuous and increasing on [0,1], and constant on the middle third.

Conjecture 1.3.8. Let

$$f_2(x) = \begin{cases} f_1(3x)/2 & \text{if } 0 \le x \le 1/3\\ f_1(x) & \text{if } 1/3 < x < 1/3\\ f_1(3x-2)/2 - 1/2 & \text{if } 2/3 \le x \le 1 \end{cases}$$

If we continue this process, $f_n \to f$ uniformly on [0,1].

1.4. The Differentiable Limit Theorem

In this section we will show that if we start with a pointwise-convergent sequence of differentiable functions $f_n \to f$, and the sequence of derivatives (f'_n) converges uniformly to a function g, then g is differentiable and f' = g.

THEOREM 1.4.1 (Differentiable Limit Theorem). Let $f_n \to f$ pointwise on the closed interval [a,b], and assume that each f_n is differentiable. If the sequence $(f'_n) \to g$ uniformly on [a,b], then f is differentiable and f' = g.

PROOF. Choose a fixed $c \in [a, b]$. To show that f'(c) exists and is equal to g(c), where

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

To show this, we need to show that

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = g(c)$$

(Note that this statement implies that f'(c) exists and is equal to g(c).)

Let $\epsilon > 0$ be given. Then we need to show there exists a $\delta > 0$ such that

$$\left| \frac{f(x) - f(c)}{x - c} - g(c) \right| < \epsilon$$
 whenever $0 < |x - c| < \delta$

As usual we employ a clever substitution and the triangle inequality:

$$\left| \frac{f(x) - f(c)}{x - c} - g(c) \right| =$$

$$\left| \frac{f(x) - f(c)}{x - c} - \frac{f_n(x) - f_n(c)}{x - c} + \frac{f_n(x) - f_n(c)}{x - c} - f'_n(c) + f'_n(c) - g(c) \right|$$

$$\left| \frac{f(x) - f(c)}{x - c} - g(c) \right| \le \left| \frac{f(x) - f(c)}{x - c} - \frac{f_n(x) - f_n(c)}{x - c} \right| +$$

$$\left| \frac{f_n(x) - f_n(c)}{x - c} - f'_n(c) \right| + |f'_n(c) - g(c)|$$

This equality holds no matter what the value of $n \in \mathbb{N}$ is, i.e, it holds for every $n \in \mathbb{N}$.

We will show that for any $\epsilon>0$, there exists an $N\in\mathbb{N}$ and a $\delta>0$ that makes each of the three terms on the right hand side less than $\epsilon/3$ when $0<|x-c|<\delta$

By hypothesis, $(f'_n) \to g$ uniformly on [a, b], so by the definition of uniform convergence for sequences of functions, there is an $N_1 \in \mathbb{N}$ such that

$$|f'_n(c) - g(c)| < \frac{\epsilon}{3}$$
 whenever $n \ge N_1$ for any $c \in [a, b]$

Furthermore, the Cauchy criterion for uniform convergence, there is an $N_2 \in \mathbb{N}$ such that

$$|f'_m(x) - f'_n(x)| < \frac{\epsilon}{3}$$
 when $m, n \ge N_2$ for every $x \in [a, b]$

Let N be the larger of N_1 and N_2 . By hypothesis, f_n is differentiable on [a, b] for each n, so f_N is differentiable, and so by definition

$$\lim_{x \to c} \frac{f_N(c) - f_N(x)}{x - c} \to f'_N(c)$$

for any $c \in [a, b]$, so for any c there is a $\delta > 0$ such that

16 1. REVIEW

$$\left| \frac{f_N(x) - f_N(c)}{x - c} - f'_N(c) \right| < \frac{\epsilon}{3}$$
 whenever $0 < |x - c| < \delta$

It remains to show that for this δ and this N,

$$\left| \frac{f(x) - f(c)}{x - c} - \frac{f_N(x) - f_N(c)}{x - c} \right| < \frac{\epsilon}{3}$$

Let x be any value for which $0 < |x - c| < \delta$. Without loss of generality, assume x > c. By hypothesis, each f_n is differentiable on [a, b], so f_N is differentiable on [x, c], and we can apply the mean value theorem to the function $f_m - f_N$, where m > N, to establish that there is an $\alpha \in (x, c)$ such that

$$f'_n(\alpha) - f'_N(\alpha) = \frac{(f_m(x) - f_N(x)) - (f_m(c) - f_N(c))}{x - c}$$

Our choice of m and N together with the Cauchy criterion for uniform convergence guarantees that

$$|f'_n(\alpha) - f'_N(\alpha)| < \frac{\epsilon}{3}$$

so by substitution

$$\left| \frac{(f_m(x) - f_N(x)) - (f_m(c) - f_N(c))}{x - c} \right| < \frac{\epsilon}{3}$$

which we can write as

$$\left| \frac{(f_m(x) - f_N(x))}{x - c} - \frac{(f_m(c) - f_N(c))}{x - c} \right| < \frac{\epsilon}{3}$$

By hypothesis $f_n \to f$ so can apply the Order Limit Theorem to write

$$\left| \frac{(f(x) - f_N(x))}{x - c} - \frac{(f(c) - f_N(c))}{x - c} \right| \le \frac{\epsilon}{3}$$

Now we combine these results to write

$$\left| \frac{f(x) - f(c)}{x - c} - g(c) \right| \le \left| \frac{f(x) - f(c)}{x - c} - \frac{f_N(x) - f_N(c)}{x - c} \right| + \left| \frac{f_N(x) - f_N(c)}{x - c} - f'_n(c) \right| + \left| f'_N(c) - g(c) \right| < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon$$

1.5. Series of Functions

DEFINITION 1.5.1 (pointwise convergence of a series). Let f_n for each $n \in \mathbb{N}$ and f be functions defined on a set $a \subseteq \mathbb{R}$. The infinite series

$$\sum_{n=1}^{\infty} f_n(x) = f_1(x) + f_2(x) + f_3(x) + \cdots$$

converges pointwise on A to f(x) if the sequence $s_k(x)$ of partial sums,

$$s_k(x) = f_1(x) + f_2(x) + \dots + f_k(x)$$

converges pointwise to f(x).

The series converges uniformly to f on A if the sequence $s_k(x)$ converges uniformly to f(x) on A.

Adapting the Cauchy criterion for sequences of functions to series:

Theorem 1.5.1 (Cauchy Criterion for Uniform Convergence of Series). $A\ series$

$$\sum_{n=1}^{\infty} f_n$$

converges uniformly on $A \subseteq \mathbb{R}$ if and only if, for every $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that

$$|f_{m+1}(x)+f_{m+2}(x)+\cdots+f_n(x)|<\epsilon$$
 whenever $m,n\geq N$ for all $x\in A$

1. REVIEW

THEOREM 1.5.2 (Weierstrass M-Test). For each $n \in \mathbb{N}$, let f_n be a function defined on a set $A \subseteq \mathbb{R}$, and let $M_n > 0$ be a real number satisfying

$$|f_n(x)| \leq M_n$$

for all $x \in A$. If

18

$$\sum_{n=1}^{\infty} M_n$$

converges, then

$$\sum_{n=1}^{\infty} f_n$$

converges uniformly on A.

Proof. Suppose

$$\sum_{n=1}^{\infty} M_n$$

converges. Let $\epsilon > 0$ be given. We need to show that there exists an $N \in \mathbb{N}$ such that

 $|f_{m+1}(x)+f_{m+2}(x)+\cdots+f_n(x)|<\epsilon$ whenever $m,n\geq N$ for all $x\in A$ By hypothesis, $\sum M_n$ converges, so by the Cauchy Criterion there is an $N\in\mathbb{N}$ such that

$$M_{m+1} + M_{m+2} + \cdots + M_n < \epsilon$$
 whenever $m, n \ge N$

Then by the triangle inequality,

$$|f_{m+1}(x)+f_{m+2}(x)+\cdots+f_n(x)| \le |f_{m+1}(x)+f_{m+2}(x)+\cdots+f_{n-1}(x)|+|f_n(x)|$$

$$\le |f_{m+1}(x)+f_{m+2}(x)+\cdots+f_{n-1}(x)|+M_n$$

Applying the triangle inequality again gives

$$|f_{m+1}(x)+f_{m+2}(x)+\cdots+f_n(x)| \le |f_{m+1}(x)+f_{m+2}(x)+\cdots+f_{n-2}(x)|+M_{n-1}+M_n$$

And eventually

$$|f_{m+1}(x)+f_{m+2}(x)+\cdots+f_n(x)| \le M_{m+1}+M_{m+2}+\cdots+M_n < \epsilon$$
 whenever $m,n \ge N$ for all $x \in A$.

Definition 1.5.1 (power series). A function of the form

$$f(x) = \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \cdots$$

is called a power series.

Theorem 1.5.3. The power series

$$f(x) = \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \cdots$$

converges to a_0 if x = 0.

PROOF. The result follows by substitution of x=0 into the power series:

$$f(0) = \sum_{n=0}^{\infty} a_n x^n = a_0 + 0 + 0 + 0 + \cdots$$

Theorem 1.5.4. If a power series

$$\sum_{n=0}^{\infty} a_n x^n$$

converges at some point $x_0 \in \mathbb{R}$ then it converges uniformly on the closed interval [-c,c] where

$$c = |x_0|$$

Proof. Set

$$M_n = |a_n x_0^n|$$

By hypothesis, the series converges absolutely, so we can write

$$\sum_{n=0}^{\infty} n = 0^{\infty} |a_n x_0^n| = \sum_{n=0}^{\infty} M_n$$

so $\sum M_n$ converges. For any $x \in [-c, c]$,

$$|a_n x^n| \le |a_n x_0^n| = M_n$$

so the Weierstrass M-test guarantees that $\sum_{x=0}^{\infty} a_n x^n$ converges uniformly on [-c, c].

CHAPTER 2

Homework Problems

2.1. Week 1 Homework (assignment 1)

Team 1 (Ali, Emily, Frank).

PROBLEM 2.1.1. Let S be the set of ordered n-tuples in \mathbb{R} :

$$S = \{ (x_1, x_2, \dots, x_n) : x_i \in \mathbb{R}, \quad 1 \le i \le n \}$$

- a) Define a binary operation on $S \times S$, an identity element, and an inverse that makes S into an Abelian group.
- b) Define a multiplication operation on $\mathbb{R} \times S$ that makes S into a vector space over \mathbb{R} .

PROBLEM 2.1.2. Let S be set of real-valued functions on [-1, 1]:

$$S = \{ f : [-1, 1] \to \mathbb{R} \}$$

- a) Define a binary operation on $S \times S$, an identity element, and an inverse that makes S into an Abelian group.
- b) Define a multiplication operation on $\mathbb{R} \times S$ that makes S into a vector space over \mathbb{R} .

PROBLEM 2.1.3. Let V be \mathbb{R}^3 , the set of ordered triples of real numbers, with addition defined in the usual way:

$$u + v = (u_1 + v_1, u_2 + v_2, u_3 + v_3) \quad \forall u, v \in V$$

Define the **sum norm** on this vector space as:

$$||v||_1 = |v_1| + |v_2| + |v_3|$$

Show that the sum norm satisfies the triangle inequality.

Presenters:

• 2.1.1 Ali

- 2.1.2 Frank
- 2.1.3 Emily

Team 2 (Blaine, Katie, Siobhan, Rachel).

PROBLEM 2.1.4. Let $S^{m \times n}$ be the set of all $m \times n$ matrices over \mathbb{R} .

$$S = \{ x_{i,j} : 1 \le i \le m, \ 1 \le j \le n, x_{i,j} \in \mathbb{R} \}$$

- a) Define a binary operation on $S \times S$, an identity element, and an inverse that makes S into an Abelian group.
- b) Define a multiplication operation on $\mathbb{R} \times S$ that makes S into a vector space over \mathbb{R} .

PROBLEM 2.1.5. Let P be set of polynomial functions on \mathbb{R} : $P = \{ p : \mathbb{R} \to \mathbb{R} \text{ such that for } x \in \mathbb{R}, \ p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n \}$ where $a_1, a_1, \dots, a_n \in \mathbb{R}$ and $n \in \mathbb{N}$.

- a) Define a binary operation on $P \times P$, an identity element, and an inverse that makes P into an Abelian group.
- b) Define a multiplication operation on $\mathbb{R} \times P$ that makes P into a vector space over \mathbb{R} .

PROBLEM 2.1.6. Let V be \mathbb{R}^3 , the set of ordered triples of real numbers, with addition defined in the usual way:

$$u + v = (u_1 + v_1, u_2 + v_2, u_3 + v_3) \quad \forall u, v \in V$$

Define the **max norm** on this vector space as:

$$||v||_{\infty} = \max(|v_1|, |v_2|, |v_3|)$$

Show that the max norm satisfies the triangle inequality.

PROBLEM 2.1.7. Let V be \mathbb{R}^3 , the set of ordered triples of real numbers, with zero element:

$$\vec{0} = (0, 0, 0)$$

Define the **sum norm** on this vector space as:

$$||v||_1 = |v_1| + |v_2| + |v_3|$$

Show that the sum norm satisfies the required condition

$$||v|| = 0$$
 if and only if $v = \vec{0}$

Presenters:

- 2.1.4 Blaine
- 2.1.5 Katie
- 2.1.6 Rachel
- 2.1.7 Siobhan

2.2. Week 1 Homework (assignment 2)

Team 1 (Ali, Emily, Frank).

Problem 2.2.1. Prove that arbitrary unions of open sets are open.

Problem 2.2.2. Prove that a finite union of closed sets is closed.

PROBLEM 2.2.3. Prove that a point x is a limit point of A if and only if $x = \lim a_n$ for some sequence (a_n) in A satisfying $a_n \neq x$ for all $n \in \mathbb{N}$.

Presenters:

- 2.2.1 Ali
- 2.2.2 Frank
- 2.2.3 Emily

Team 2 (Blaine, Katie, Siobhan, Rachel).

Problem 2.2.4. Prove that finite intersections of open sets are open.

PROBLEM 2.2.5. Prove that a set O is open if and only if its compliment, O^c , is closed.

PROBLEM 2.2.6. Prove that a set F is closed if and only if its compliment F^c is open.

Problem 2.2.7. Prove that arbitrary intersections of closed sets are closed.

Presenters:

- 2.2.4 Blaine
- 2.2.5 Katie
- 2.2.6 Rachel
- 2.2.7 Siobhan

2.3. Homework (assignment 3)

Team 1 (Ali, Emily, Frank).

PROBLEM 2.3.1. Prove that in a metric space (X, ρ) arbitrary unions of open sets are open.

PROBLEM 2.3.2. Prove that in a metric space (x, ρ) a finite union of closed sets is closed.

PROBLEM 2.3.3. Prove that a point x is a limit point of A if and only if $x = \lim a_n$ for some sequence (a_n) in A satisfying $a_n \neq x$ for all $n \in \mathbb{N}$.

Presenters:

- 2.3.1 Ali
- 2.3.2 Frank
- 2.3.3 Emily

Team 2 (Blaine, Katie, Siobhan, Rachel).

PROBLEM 2.3.4. Prove that in a metric space (X, ρ) finite intersections of open sets are open.

PROBLEM 2.3.5. Prove that in a metric space (X, ρ) a set O is open if and only if its compliment, O^c , is closed.

PROBLEM 2.3.6. Prove that in a metric space (X, ρ) a set F is closed if and only if its compliment F^c is open.

PROBLEM 2.3.7. Prove that in a metric space (X, ρ) arbitrary intersections of closed sets are closed.

Presenters:

- 2.3.4 Blaine
- 2.3.5 Katie
- 2.3.6 Rachel
- 2.3.7 Siobhan

2.4. Homework (assignment 4)

Team 1 (Ali, Emily, Frank).

PROBLEM 2.4.1. Define a sequence of functions on \mathbb{R} by

$$f_n(x) = \begin{cases} 1 & if & x = 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots \\ 0 & otherwise \end{cases}$$

- a) Is each f_n continuous at zero?
- b) Does $f_n \to f$ uniformly on \mathbb{R} ?
- c) Is f continuous at zero?

Team 2 (Blaine, Katie, Siobhan, Rachel).

PROBLEM 2.4.2. Define a sequence of functions on \mathbb{R} by

$$f_n(x) = \begin{cases} x & if & x = 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots \\ 0 & otherwise \end{cases}$$

- a) Is each f_n continuous at zero?
- b) Does $f_n \to f$ uniformly on \mathbb{R} ?
- c) Is f continuous at zero?

2.5. Homework (assignment 5)

Teams 1 and 2.

PROBLEM 2.5.1 (Arzela-Ascoli Theorem). For each $n \in \mathbb{N}$, let f_n be a function defined on [0,1]. If (f_n) is bounded on [0,1], i.e., if there exists an M > 0 such that

$$|f_n(x)| < M$$
 for all $n \in \mathbb{N}$ ane $x \in [0, 1]$

and if the collection (f_n) is equicontinuous, show that (f_n) contains a uniformly convergent subsequence.

Part a): Assume the results of problem 6.2.13 (2nd edition), which states the following:

Let A be a countable set $A = \{x_1, x_2, x_3, \ldots\}$. For each $n \in \mathbb{N}$, let h_n be a bounded, real-valued function defined on A. Then there exists a subsequence of (h_n) that converges pointwise on A.

Show that there exists a subsequence of (f_n) that converges pointwise at every rational point in [0,1]. To simplify te notation, let

$$g_k = f_{n_k}$$

Part b): Let $\epsilon > 0$ be given. By hypothesis, (f_n) is equicontinuous. Argue that there exists a $\delta > 0$ such that

$$|g_k(x) - g_k(y)| < \frac{\epsilon}{3}$$
 whenever $|x - y| < \delta$ for all $k \in \mathbb{N}$

Part c): Using this delta, let $r_1, r_2, r_3, \ldots, r_n$ be a finite collection of rational points with the property that

$$[0,1] \subseteq \bigcup_{i=1}^{n} V_{\delta}(r_i)$$

(i.e., the union of the δ -neighborhoods of the r_i contains the entire interval [0,1].

Argue that there must exist an $N \in \mathbb{N}$ such that

$$|g_s(r_i) - g_t(r_i)| < \frac{\epsilon}{3}$$
 for all $s, t \ge N$ and r_i , $i = 1, 2, /ldots, n$

Part d): Complete the argument by showing that for arbitrary $x,y\in[0,1],$

$$|g_s(x) - g_t(y)| < \epsilon \quad for \ all \quad s, t \in \mathbb{N}$$