Exercice 12

(G)
$$\begin{cases}
E \to E + E \\
E \to E * E \\
E \to int
\end{cases}$$

Considérons une grammaire augmenté (G') de (G) tel que

(G')
$$\begin{cases} E' \to E(0) \\ E \to E + E(1) \\ E \to E * E(2) \\ E \to int(3) \end{cases}$$

$$First(E) = \{int\}; Follow(E) = \{\$,+,*\}$$

1) Construction des items LR(1)

```
 I_0 = \text{Fermeture}([E' \to .E, \$]) = \{[E' \to .E, \$], [E \to .E + E, \$], [E \to .E * E, \$], [E \to .int, \$]\}   I_1 = \text{Transition}(I_0, E) = \text{Fermeture}([E' \to E., \$], [E \to E. + E, \$], [E \to E. * E, \$]) = \{[E' \to E., \$], [E \to E. + E, \$], [E \to E. * E, \$]\}   I_2 = \text{Transition}(I_0, \text{ int}) = \text{Fermeture}([E \to \text{int., \$}]) = \{[E \to \text{int., \$}]\}   I_3 = \text{Transition}(I_1, +) = \text{Fermeture}([E \to E + .E, \$]) = \{[E \to E + .E, \$], [E \to .E + .E, \$], [E \to .E * .E, \$], [E \to .int, \$]\}   I_4 = \text{Transition}(I_1, *) = \text{Fermeture}([E \to E + .E, \$]) = \{[E \to E + .E, \$], [E \to .E + .E, \$], [E \to .E + .E, \$], [E \to ..int, \$]\}   I_5 = \text{Transition}(I_3, E) = \text{Fermeture}([E \to E + .E, \$], [E \to E + .E, \$], [E \to E + .E, \$]) = \{[E \to E + .E, \$], [E \to .E + .E, \$], [E \to .E + .E, \$]\}   \text{Transition}(I_3, \text{int}) = \text{Fermeture}([E \to int., \$]) = \{[E \to int., \$]\} = I_2   I_6 = \text{Transition}(I_4, E) = \text{Fermeture}([E \to E + .E, \$], [E \to E + .E, \$], [E \to E + .E, \$]) = \{[E \to E + .E, \$], [E \to E + .E, \$], [E \to E + .E, \$]\}   \text{Transition}(I_4, \text{int}) = \text{Fermeture}([E \to E + .E, \$]) = I_3   \text{Transition}(I_5, *) = \text{Fermeture}([E \to E + .E, \$]) = I_4   \text{Transition}(I_6, +) = \text{Fermeture}([E \to E + .E, \$]) = I_4   \text{Transition}(I_6, *) = \text{Fermeture}([E \to E + .E, \$]) = I_4   \text{Transition}(I_6, *) = \text{Fermeture}([E \to E + .E, \$]) = I_4   \text{Transition}(I_6, *) = \text{Fermeture}([E \to E + .E, \$]) = I_4
```

2) Construction de la table Action/Goto

Etat	Action				Goto
	int	+	*	\$	E
0	S_2			Accept	1
1		S_3	S ₄		
2		R_3	R_3	R_3	
3	S_2				5
4	S_2				6
5		$R_1 S_3$	R ₁ S ₄	R_1	
6		$R_2 \atop S_3$	R ₂ S ₄	R ₂	

 R_i = Reduce i (i étant la règle de production de (G') de numéro i)

Sj = Shift j (j étant la règle de production de (G') de numéro j)