

Daniel Hebenstreit daniel.hebenstreit@student.tugraz.at Data Science Master's Student

Thomas Rauter t.rauter@student.tugraz.at Biotechnology Master's Student

Theresa Doppelhofer theresa.doppelhofer@student.tugraz.at Data Science Master's Student

Ognjen Antonic ognjen.antonic@student.tugraz.at Computer Science Bachelor's Student

Table of Contents

- Exploratory Data Analysis
- Feature Engineering & Pre-processing
- Model
- Experiments
- Conclusions

Exploratory Data Analysis

- Missing data
 - Multiple engines affected
 - Multiple intervals of data missing
- Solution: Ignore missing data
 - Due to the disadvantages of imputation schemes (e.g. increased bias)
 - Too large and frequent gaps

Exploratory Data Analysis (cont.)

- Hard Problem:
 - Often no indicative pattern visible
- Assume Cylinder difference as key factor
- Prominent changes seem to happen in short time intervals

Singular Model Hypothesis

We can predict for each timestep well enough to get an accurate overall event classification

- Focus purely on predicting individual timesteps
- Post-processing for the event classification
 - Reduces number of False Positives

Feature Engineering & Pre-processing

- Information of current timestep (load, knock_control, ...)
- Information w.r.t. other cylinders of the same engine
 - Difference to station mean for all features of that timestep
- Compute sliding window mean (window_size = 30 timesteps)
 - Contains short term history

XGBoost Classification Model

- Empirically outperformed other models
 - Naïve bayes, linear classifier, random forest
- Hyperparameters: 100 estimators
- Postprocessed outputs
 - \circ < 5 non-consecutive ∈ {1, 2} set to class 0

Inputs

- Current timestep features
- Current timestep difference to station mean
- Sliding window mean

Output

• Class $\in \{0, 1, 2\}$

Experiments

- Model that takes more than just station mean into account
 - features of current + 11 random cylinders of the same station as input
 - overcomes non-homogeneous cylinder amount
 - Inconclusive results, large variance based on seed (0.1-0.5 bmcc)
- Windowed Approaches for Event Classification
 - use mixtures of window sizes (long and short range)
 - o did not perform better than single timestep prediction with postprocessing

Experiments (cont.)

- Indicators for nan values as additional feature
 - Bool if a previous value was nan
 - Number of previous values that were nan
- GMM Anomaly Detection
 - Label 0 overrepresented, A/B very sparse

Conclusions and Future Possibilities

- Our XGBoost model with window and engine information achieved 0.31 total score
 - Binary MCC: 0.15
 - Multiclass MCC: 0.06
 - Normalized Hamming Distance: 0.004
- Explore DL models (LSTM, transformer)
 - Use padding to overcome non-homogeneous number of cylinders