The Impressive Power of Stopwatches Frank Cassez*, Kim Larson†

Naman Kumar

*IRCCyN/CNRS UMR 6597, France †Dep. of Computer Science, Aalborg University, Denmark

Delivered at: Chennai Mathematical Institute

November 13, 2022

- Introduction
- 2 Linear Hybrid Automatons
- From LSWA to SWA
- 4 From LHA to LSWA
- 5 Applications & Conclusion

What is this Presentation About?

- Verification considers the properties of real-time systems and represents them as ideal mathematical models, running the underlying 'tests' on the model itself
- One of the most important tests on timed automata is reachability analysis
- This presentation is about two generalizations of timed automata and their consequences on reachability analysis:
 - Linear Hybrid Automata, a very strong generalization of timed automata that models both discrete and continuous systems
 - Stopwatch Automata, a much weaker extension of timed automata

A Generalization of Timed Automata

- Linear Hybrid Automata (HA) are a strong extension of timed automata that model discrete as well as continuous evaluations of variables
- 2 LHA generalize almost every aspect of timed automata, including
 - clocks
 - guards
 - resets
 - even the passing of time!
- We will consider each one of these separately and then consider the semantics

States, Clocks and Symbols

- **1 LHA** operate over a finite set of **states** *N*, called **locations**
 - The initial location is represented as l_0
- - At any given time, variables have a **valuation** $v \in \mathbb{R}^V$
 - The initial valuation v_0 need not be $\mathbf{0}$
- **3** Each symbol represents an **action** $a \in A$

Figure: A basic LHA

Guards

Linear Constraints

A linear expression $\phi(v)$ over V is of the form $\sum a_i v_i$ with $v_i \in V$, $a_i \in \mathbb{Z}$. A linear constraint is a propositional formula using \wedge, \vee, \neg over the atomic formulae

$$\phi(v)\bowtie c$$

where $c \in \mathbb{N}$ and $\bowtie \in \{<, \leq, =, \geq, >\}$.

- **1** Simple constraints are of the form $v v' \bowtie c$ and $v \bowtie c$
- Timed automata only allow simple constraints
- LHA allow all linear constraints!

Resets

Linear Assigments

A linear assignment over V is an expression of the form

$$v := Av + b$$

where $A \in \mathbb{Z}^{n \times n}$ and $b \in \mathbb{Z}^n$.

- **Simple assigments** only let *A* have entries 0 and 1 with a single 1 per row
- Timed automata only allow simple assignments
- **3 LHA** allow all linear assignments!

Variable Rate of Change

- UHA allow for variables to move at differing rates of change
- ② In a normal timed automaton, each clock moves forward by 1 second if 1 second passes
- This is not necessarily the case for LHA!
 - Each variable has a *derivative* $d_v \in \mathbb{Z}$ associated with it
 - Each location has a range of derivatives $[d_1, d_2]$ for each variable that it allows

Continuous Change

Given $t \in \mathbb{R}^+$, the valuation v + dt is defined as v(x) + d(x)t.

Semantics of an LHA

LHAs allow two kinds of transitions:

Location Transitions: In which the location of the automaton changes.

$$\langle I, v \rangle \xrightarrow{a} \langle I', v' \rangle$$

iff there exists a transition $(I, \gamma, a, \alpha, I')$ such that the guard $\gamma(v)$ is true, a is the action taken, and v' is as per the assignment $v' = \alpha(v)$

Time-Delay Transitions: In which there is a time delay on a single location.

$$\langle I, v \rangle \xrightarrow{e} \langle I', v' \rangle$$

iff I = I' and $\exists d$ in the set of derivatives for the location I such that v' = v + dt.

The Water-Level Monitor

Figure: An LHA for a Water-Level Monitor

Unobservable Transitions

- LHAs also accomodate for unobservable time-delays
- ② In this case, at any given location, the variables are delayed as usual but time remains the same
- $\textbf{ § Such transitions are represented as } \langle \textit{I}, \textit{v} \rangle \xrightarrow{\tau(\textit{e})} \langle \textit{I}', \textit{v}' \rangle$

Other Classes of Automaton

- Timed Automata: LHA which only allow simple constraints and simple assignments, and the derivatives of all variables
 1
- **Stopwatch Automata**: Timed automata in which the derivative of a variable is allowed to be either 0 or 1, ie. a clock can be stopped on any location
- Linear Stopwatch Automata: LHA in which the derivative is allowed to be only 0 and 1

We let TL_C be the set of timed languages accepted by class C.

The Main Theorem

Theorem 1

The classes **LHA** and **SWA** are equally expressive in the sense that $TL_{LHA} = TL_{SWA}$.

- It turns out that LHA and SWA have the same power
- The only additional power of LHA is the ability to stop time
- Everything else can be simulated by a regular timed automaton with unobservable transitions
- We will now look at a proof sketch of theorem 1

What do we Need to Deal With?

There are three differences we need to accomodate for:

- Negative Values: SWA do not allow for negative valuations, but LSWA do (via assignments)
- Linear Constraints: SWA only allow simple constraints
- Linear Assigments: SWA only allow simple assignments

We will look at each of these three in order.

Negative Values

- **Idea**: Split each variable x into (x^+, x^-)
- If x := 0 do nothing, if x := 1 put $(x^+, x^-) := (1, 0)$.
- If x can take a transition by satisfying the guard $\phi(x)$,
 - Set $x^+ := \phi(x)$ if $\phi(x) \ge 0$
 - Set $x^- := -\phi(x)$ otherwise
- Finally, replace x with $x^+ x^-$

This ensures that $x = x^+ - x^-$ while $x^+, x^- \ge 0$.

Linear Guards

- **Idea**: Write $\sum a_i x_i = \sum b_j x_j \sum c_k x_k$ where the negative values in a_i are replaced by the $c_i = -a_i$
- Introduce two new variables u, v, which count the two sums, then replace by $u v \bowtie c$
- To count sums, introduce the following unobservable states:

$$t := x_1, k \ge 1, k = k - 1$$

$$k = t = 0, k := a_2, t := 0$$

$$\dot{V} = \dot{v} = 0, \dot{t} = \dot{u} = 1$$

Figure: Replacement States

Linear Assignments

- Same idea as linear guards
- Set up new variables u_i to count $\sum_j a_{ij} x_j$
- Finally, set $x_i := u_i + b_i$ (this can be done using an assignment/reset interplay)
- ullet Add |V| new unobservable states to perform the addition
- **Total Complexity**: For n states, m transitions and k clocks, the total number of stopwatches is 3k + 3 and number of states is n + 4m(3k + 3)

What do we Need to Deal With?

- We have already seen the case of linear guards and assignments
- Next, we reduce LHA to LSWA
- We thus need to deal with variable derivatives different from 0 and 1
- There are two cases:
 - **1** Integer slopes of the form $\dot{x} := c$
 - 2 Interval slopes of the form $\dot{x} \in [c_1, c_2]$

Integer Slopes

- Complete construction is involved, but we will give a brief sketch
- Slopes are only required for time-delay transitions
- First, add a variable t that measures how long the machine stays at state I
- Second, add an auxiliary variable y used to update x
- Two new unobservable states:
 - ① Only a single self-transition when y = t and then decrements t by 1, as a consequence x increases by y t times \Longrightarrow v'(x) = v(x) + yt
 - 2 Placeholder with all $\dot{x} = \dot{t} = 0$

Interval Slopes

- Same construction with one extra state that can only be nondeterministically reached within the interval $[c_1, c_2]$
- In case of negative slope, similar construction with two variables
- We have shown that LSWA = LHA

Thus, the expressive power of **LHA** is the same as **SWA**, and $TL_{LHA} = TL_{SWA}$.

- Reachability in **LHA** is undecidable
- Reachability in SWA is also undecidable, but reachability analysis is much easier due to less constraints
- One-one correspondence between the language of LHA and that of the corresponding SWA
- The authors extend the model-checking tool UPPAAL to SWA classes, and have discovered a low price of approximation.

Thank You Questions?