Lie Derivatives

To bad Baez and Munian don't give a treatment of Lie derivatives... Let's just do it ourselves!

The basic idea behind the lie derivative is that it is the derivative (of whatever) along a flow defined by a vector field v.

Start with the vector field v and let $\phi_t(p)$ be the integral curve through the point p, parameterited by t.

The maps of: M -> M define the flow, whose defining equation is

$$\frac{d}{dt'} \phi_{t'}(p) \Big|_{t'=t} = V \phi_{t}(p) \leftarrow \text{vector } V \text{ at point } \phi_{t}(p)$$

integral curve and then evaluated at t

differentiated wrt t'

(Note: Baez leaves out the liet part; being more explicit will help later,)

Now consider a function $f:M \to \mathbb{R}$. We can compare the function value at a point p and one a little farther along the flow, at $\phi_t(p)$:

$$\Delta f_{t}(p) = f(\phi_{t}(p)) - f(p)$$

This is nothing other than the pullback of $f = f(\varphi_t|p) = \varphi_t^* f(p)$, so

$$\Delta f_t(p) = \phi_t^* f(p) - f(p)$$

Using the pullback, we can formulate the change in the function along the flow starting from p in terms of functions evaluated only at p.

Then we can define the derivative £vf of f along by n the usual manner:

which is nothing other than the directional derivative:

$$\mathcal{L}_{V}f\big|_{p} = \left[\frac{d}{dt}\,\phi_{t}(p)\big|_{t=0}\right]f = V_{p}f.$$

What about the derivative of a vector field or one-form?

For these we follow the same procedure. The flow gives us a way to push vectors forward, ϕ_{tx} , in accordance with

$$(\phi_{t*} \vee) f = \vee (\phi_{t}^* f)$$

Under the flow the tangent vector v_P gets mapped to a new tangent vector $\phi_{t*}v$, now located at $\phi_{t}(P)$.

Sometimes this is a little confusing, but if we think of $\phi: M \to N$ and f as a function on N, then when evaluating the above definition at some point $\phi \in M$, we must have

$$[(\phi_* \vee) f](\phi(p)) = [\vee (\phi^* f)](p)$$

the moral is: if we pull f back, we have to evaluate it at the pulled-back point.

Keeping this in mind, we can show that the tangent vectors themselves are similarly transformed; (This is Baez I.18)

$$(\phi_{\star} V)_q = \phi_{\star} (V_p)$$
 for $q = \phi(p)$

$$(\phi_* v)_q f = [\phi_* v(f)](q) = [\phi_* v(f)](\phi(p))$$
 here we go back to the original point, since we go back to the original field $v = (\phi_* v_p) f$

Observe that in the definition of the Lie derivative of a function, the pullback was used to bring the function value at some point $q=\phi_{\mathcal{L}}(p)$ further along the flow back to the point p.

However, we cannot pull vectors back under the flow ϕ_{t} , only push them forward. To achieve the same ends, we can simply push the vector field forward under the inverse flow!

Thus, before we can define the Lie derivative of a vector field, we need to consider inverse flows.

What is the vector field associated with ϕ_{-t} ? Intuitively, it's just -v but we should prove this, and further test our skills with the notation. The proof technique is the same as ever—apply it to a function and look at the result.

Let w give rise to a flow ψ_t , which happens to equal ϕ_{-t} , where ϕ_t is the flow given by v. We want to show that w=-v, Apply wp to an arbitrary function f:

wf(p) = $\frac{d}{ds}f(\psi_s(p)) = \frac{d}{ds}f(\phi_{-s}(p)) = \frac{d}{dt}f(\phi_t(p))\frac{ds}{dt}$ where t=-s by the usual chain rule, Thus

$$Wf(p) = -\frac{d}{dt}f(\phi_t(p)) = -Vf(p)$$
 so $W = -V$

An entirely similar argument shows that if $\psi_t = \phi_{g(t)}$, then $W_P = g'(p) V_P$

Now we are ready to define $\mathbb{E}_{v}(u)$, the derivative of v along some vector field u. We want to compare up with $u_{t}(p)$, a little further along the flow, But these vectors live in different tangent spaces, so this isn't immediately possible. By pushing $u_{t}(p)$ forward along the inverse flow ϕ_{t} , it ends up in the tangent space at p, and we can then sensibly take their difference. This reasoning leads to the definition

$$\left. \pm \left\langle \left(\mathsf{u} \right) \right|_{p} = \lim_{t \to 0} \frac{\phi_{-t} \times \left(\mathsf{u}_{\phi_{t}(p)} \right) - \mathsf{u}_{p}}{t}$$

$$f_{v}(u)|_{\phi_{t_{i}}(P)} = f_{v}(u)|_{\phi_{t_{z}}(P)} = \lim_{t_{z}\to t_{i}} \frac{\phi_{-\Delta t *}(u_{\phi_{t_{z}}(P)}) - u_{\phi_{t_{i}}(P)}}{t_{z}-t_{i}}$$

Choosing $t_1=0$, $t_2=t$ gives the above definition, but we will shortly have occasion to use this more general form.

As a definition, this form is all well and good. But is there a more useful form? Does the Lie derivative of a vector field equal something we can calculate? Yes! In fact, it's just the Lie bracket:

$$f_{V}(u)|_{p} = [V, u]_{p}$$
 following Carroll

There are a couple of ways to prove this. The simplest is to $\mathbb Z$ use the initial definition and make a judicious choice of coordinates. Since the integral curves of $\mathbb Z$ form a congruence and "fill" the manifold, at least locally near $\mathbb Z$, in the sense that through any point $\mathbb Z$ is a unique integral curve of $\mathbb Z$, we can use them to define a coordinate system. Let $\mathbb Z$ be the parameter along the integral curves and the other $\mathbb Z$ be the chosen arbitrarily. Then $\mathbb Z=\partial_1$ and moreover, the pushforward takes on a simple form. Under the flow $\mathbb Z$ the point $\mathbb Z$ with coordinates $\mathbb Z^M(\mathbb Z)$ goes to $\mathbb Z=\mathbb Z$ and $\mathbb Z$ the point $\mathbb Z$ with coordinates $\mathbb Z$ \mathbb

Then $\phi_{t*}\partial_{k} = \partial_{k}$ since $(\phi_{t*}\partial_{k})f = \partial_{k}\phi_{t}^{*}f = \partial_{k}f\circ\phi_{t} = \frac{\partial f}{\partial y^{j}}\frac{\partial y^{j}}{\partial x^{k}} = \frac{\partial f}{\partial x^{k}}$ for $y^{j} = (\phi_{t})^{j}$, and $\frac{\partial y^{j}}{\partial x^{k}} = \delta^{j}_{k}$ $= \partial_{k}f$

(see Baez I.19) should imagine flow maps M-) N and use different symbols for coords on M and N

Thus, for any u= umd,, +x u= umd, S vector field, not tangent vector In the definition of £u(u)|p we therefore have tv(u)|p= 1,m + (p-+x uq(p) - up) $=\lim_{t\to 0}\frac{1}{t}\left(\left.\mathsf{U}^{\mathsf{M}}(\phi_{\mathsf{t}}(\mathsf{P}))\phi_{-\mathsf{t}}_{\mathsf{A}}(\emptyset_{\mathsf{M}}|_{\phi_{\mathsf{t}}(\mathsf{P})})-\left.\mathsf{U}^{\mathsf{M}}(\mathsf{P})\partial_{\mathsf{M}}\right|_{\mathsf{P}}\right)$ $= \lim_{t \to 0} \frac{1}{t} \left(u^{M} \left(\phi_{t}(p) \right) \left(\phi_{-t} \partial_{M} \right)_{p} - u^{M}(p) \partial_{M} \Big|_{p} \right)$ = lim 1 (um (pt(p)) - um(p)) Julp $-\frac{d}{dt}, N_{W}(\phi_{t}(b))\Big|_{t_{1}^{2}=t} \int_{W} \int_{b}$ = V UM (9) DN = V W / P Now consider unlp = nm(p) dulp v"(p) dulp =0 since $V^{V}(P) = 8^{V1}$

So $\pm v(u)|_{p} = [v,u]_{p}$, at least in this coordinate system

But because $[v,u]_{p}$ is a tangent vector, as is the Lie derivative,

this equality holds irrespective of coordinate system. (vu is not a tangent vector)

We can also prove this in a coordinate-free manner by using the slightly more general definition. Consider

$$f_{V}(u)|_{\phi_{t_{2}}(p)} = \lim_{t_{2} \to t_{1}} \frac{\phi_{-\Delta t} * (U \phi_{t_{2}}(p)) - U \phi_{t_{1}}(p)}{t_{2} - t_{1}}$$

and take $t_z(p) = r$, $t_z - t_1 = \Delta t = t$ so that we have

$$f_{v}(u)|_{r} = \lim_{t\to 0} \frac{1}{t} \left(\phi_{-t} u_r - u \phi_{+t}(r) \right)$$

This is akin to
$$\frac{df}{dx}\Big|_{x=a} = \lim_{h \to 0} \frac{f(a) - f(a-h)}{h}$$

Now apply to an arbitrary function:

$$=\lim_{t\to 0}\frac{1}{t}\left(\left(\phi_{-t}*\mathcal{N}\right)_{\phi_{-t}(r)}f-\mathcal{N}_{\phi_{-t}(r)}f\right)$$

$$= \lim_{t\to 0} \frac{1}{t} \left[(p_{-t*}u)f \right] (p_{-t}(r)) - uf (p_{-t}(r)) \right)$$

$$=\lim_{t\to 0}\frac{1}{t}\left[\left(u\left(t+t\right)\right)(r)-uf\left(t+t\right)\right)$$

The vector field u has its own flow, which we call 4s. From the defining equation applied to a function, one gets

$$U_{\psi_{s}(P)}f = \left[vf \right] \left(\psi_{s}(P) \right) = \left[\frac{d}{ds'} \psi_{s'}(P) \right] f = \left[\frac{d}{ds'} f \left(\psi_{s'}(P) \right) \right]$$

Setting s=0 gives
$$u_p f = \frac{d}{ds} f(\psi_s(p))|_{s=0}$$
. And so

$$f_{v}(u)|_{r} f = \lim_{t \to 0} \frac{1}{t} \frac{d}{ds} \left(\phi_{-t}^{*} f(\psi_{s}(r)) - f(\psi_{s}(\phi_{-t}(r))) \right)_{s=0}$$

$$= \lim_{t \to 0} \frac{1}{t} \frac{d}{ds} \left(f(\phi_{-t}(\psi_{s}(r))) - f(\psi_{s}(\phi_{-t}(r))) \right)_{s=0}$$

Drawing a little diagram reveals what's going on geometrically:

Inside the brackets is simply f(A) - f(B), which is precisely what is measured by the Lie bracket. To see this formally, first add and subtract a term $f(\psi_s(r)) = f(\phi_o(\psi_s(r))) = f(\psi_s(\phi_o(r)))$. Then $\lim_{t\to 0} \frac{1}{t} \left(f(\phi_{-t}(\psi_s(r))) - f(\phi_{-o}(\psi_s(r))) \right) = \frac{d}{dt} f(\phi_{-t}(\psi_s(r))) \Big|_{t=0}$, and similarly for the other two terms so we obtain

$$f_{v}(u) \Big|_{r} f = \frac{d^{2}}{dtds} \left[f(\phi_{-t}(\psi_{s}(r))) - f(\psi_{s}(\phi_{-t}(r))) \right]_{s=t=0}$$

By the results of Baez I.23 this is nothing other than $[u,-v]_r$, meaning $\angle v(u)|_r = [v,u]_r$ or just $\triangle v(u) = [v,u]$

Next, what about the Lie derivative of a one-form ω ? Following the logic above, we define it as

$$f_{V}\omega = \lim_{p \to 0} \frac{1}{t} \left[p_{t}^{*}\omega_{p_{t}(p)} - \omega_{p} \right] = \lim_{t \to 0} \frac{1}{t} \left[(p_{t}^{*}\omega)_{p} - \omega_{p} \right]$$

This form is also not very useful by itself. But we can prove a key property in a flash, namely, that the Lie derivative commutes with the exterior derivative d. This follows immediately from the fact that do*f = o*df, i.e. the exterior derivative commutes with pullbacks. (Actually, this is true for any p-form w

$$\begin{aligned} \left[f_{v} df \right]_{p} &= \lim_{t \to 0} \frac{1}{t} \left[\left(\phi_{t}^{*} df \right)_{p} - df_{p} \right] = d \left[\lim_{t \to 0} \frac{1}{t} \left[\left(\phi_{t}^{*} f \right)_{p} - f_{p} \right] \right] \\ &= d \left[f_{v} f \right]_{p} \end{aligned}$$

$$= d \left[f_{v} d\omega \right]_{p}$$

With this in hand we can prove the Leibniz rule:

$$f_{v} \omega(u) = (f_{v} \omega) u + \omega f_{v}(u)$$

Consider an exact form of; since these span the space of one-forms, the proof for an arbitrary one-form follows by linearity. The LHS is

$$\pm_{v} df(u) = v(df(u)) = vuf$$

Meanwhile, on the RHS we have

$$(f_v df)u + df f_v(u) = [d(f_v f)]u + df[v,u]$$

$$= u f_v f + [v,u]f = u v f + v u f - u v f$$

So the Leibniz rule holds. (phew!)

This could have been taken as the definition of $\pm v \omega$, so it's good to see that everything is consistent.

Still to prove:
$$f_v \omega = d[\omega(v)] + d\omega(v)$$