

运算放大器

戴佳乐 PB18020556 苗立扬 PB19000132

1 实验目的

- 1. 掌握集成运放的基本特性和工作原理。
- 2. 熟悉集成运放在模拟运算方面的应用。

2 实验原理

2.1 集成运算放大器

集成运算放大器,是具有两个输入端、一个输出端的高增益、高输入阻抗的多级直接耦合放大电路。 集成运算放大器的方框图如下

输入级: 高性能差放电路; 输入电阻大、共模抑制比大、静态电流小。

中间级:复合管共射电压放大电路;提供电压放大。 输出级:互补对称输出电路。带载能力强、失真小。 偏置电路:电流源电路;提供合适的静态工作点。

2.2 反相比例运算电路

反相比例运算电路可以对反向后的输入信号进行比例运算,其原理图如图 1 所示通过 R_F 引入负反馈,输出电压与输入电压反相并且比值受到反馈电阻和输入端 R_1 影响。输出电压

和输入电压的关系为

$$V_o = -\frac{R_F}{R_1} V_i$$

2.3 反相比例求和运算电路

原理图如图 2 所示 输出电压和输入电压的关系为

$$V_o = -\frac{R_F}{R_1} V_{i1} - \frac{R_F}{R_2} V_{i2}$$

图 1: 反相比例运算电路

图 2: 反相比例求和运算电路

2.4 同相比例运算电路

原理图如图 3 所示

图 3: 同相比例运算电路

输出电压和输入电压的关系为

$$V_o = \frac{R_F}{R_1} V_i + V_i$$

2.5 差动放大器

原理图如图 4 所示

图 4: 差动放大器

输出电压和输入电压的关系为

$$V_o = \frac{R_F}{R_1} \left(V_{i1} + V_{i2} \right)$$

2.6 积分电路

原理图如图 5 所示

图 5: 积分电路

对输出信号 V。有

$$V_o = -V_c = -\frac{1}{R_1 C} \int_0^{t_1} u_i \, dt + V_c(0)$$

2.7 微分电路

原理图如图 6 所示

图 6: 微分电路

输出电压

$$V_o = -R_F C \frac{\mathrm{d}V_i}{\mathrm{d}t}$$

3 LM324 型集成电路

LM324 是四运放集成电路,它采用 14 脚双列直插塑料封装,示意图如图 7 所示。它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。

图 7: LM324 集成电路示意图

4 实验数据与数据分析

4.1 反相比例运算电路

4.1.1 反相比例运算电路实验数据

实验数据如表 1 所示: 实验所得的 U_i 图与 U_o 图在示波器上的图像如实验报告纸所示。

表 1: 反向比例运算电路实验数据

V_i	V_o	A_v	A_v
0.1678	1.649	-9.83	-10

4.1.2 反相比例运算电路数据分析

从实验中我们看到,反相电路的输出波形与输入波形波形大致相反,信号幅度显著放大,初步验证了 该运算放大电路的作用。与此同时,通过对理论值与实验实际测量的放大倍数的对比,我们得出误差为

$$\delta = \left| \frac{-9.83 + 10}{10} \right| \times 100\% = 1.7\%$$

实验值与理论值吻合得很好。

4.2 反相比例求和运算电路

4.2.1 反相比例求和运算电路实验数据

实验数据如表 2 所示:

4.2.2 反相比例求和运算电路数据分析

将测量得到的输出实际值与理论值对比,我们的误差最大不超过 $|\frac{9.4415-9.9229}{9.9229}|=4\%$ 。考虑可能存在的电阻值误差与测量误差,我们得出结论,我们较好地验证了反向比例求和运算电路的关系式

表 2: 反相比例求和运算电路实验数据

$V_{i1} \mid 0.28271 \mid 0.38074$	0.47918	-0.2813	-0.38014	-0.47906
$V_{i2} \mid 0.42847 \mid 0.62612$	1.02623	-0.4276	-0.62594	-1.02623
$V_o \mid -4.8974 \mid -6.8499$	-9.4415	4.9358	6.9007	9.8719
$V_o \mid -4.9695 \mid -6.938$	-9.9229	4.951	6.9311	9.9218

4.3 同相比例运算电路

4.3.1 同相比例运算电路实验数据

实验数据如表 3 所示:

表 3: 同相比例运算电路实验数据

V_i	V_o	A_v	A_v
0.1682	1.82	10.82	11

实验所得的 U_i 图与 U_o 图在示波器上的图像如实验报告纸所示。

4.3.2 同相比例运算电路数据分析

从实验中我们看到,同相电路的输出波形与输入波形波形大致相同,信号幅度显著放大,初步验证了 该运算放大电路的作用。与此同时,通过对理论值与实验实际测量的放大倍数的对比,我们得出误差为

$$\delta = \left| \frac{11 - 10.82}{11} \right| \times 100\% = 1.6\%$$

实验值与理论值吻合得很好。

4.4 差动放大电路

4.4.1 差动放大电路实验数据

实验数据如表 2 所示:

表 4: 差动放大电路实验数据

V_{i1}	0.18281	0.47861	0.67627	-0.18261	-0.47855	-67617
V_{i2}	0.52688	0.82376	1.0259	-0.52675	-0.8237	-1.0258
V_o	3.4222	3.4317	3.4733	-3.3853	-3.3949	-3.38
V_o	3.4407	3.4515	3.4963	-3.4414	-3.4515	-3.4963

4.4.2 差动放大电路数据分析

将测量得到的输出实际值与理论值对比,我们的误差最大不超过 $|\frac{3.380-3.4963}{3.4963}|=3\%$ 。考虑可能存在的电阻值误差与测量误差,我们得出结论,我们较好地验证了差动放大电路的关系式

4.5 积分电路

搭载电路如图 5 所示。接入方波后,输出电压的交流电成分为近似的三角波,与实验分析的结果一致,其中三角波斜率与电压的关系符合理论分析的结果,为 $-\frac{U}{BC}=0.5$,与实验测得的 0.5 相近。

通过该波形, 我们较好验证了积分电路的波形与输入电压的积分关系。

4.6 微分电路

搭载电路如图 6 所示。接入三角波后,输出电压的交流电成分为近似的方波,与实验分析的结果一致,其中方波大小与电压的关系符合理论分析的结果,为 $-\frac{U}{RC} \times 4 = 8$,与实验测得的 8.625 相近。

通过该波形,我们较好验证了微分电路的波形与输入电压的积分关系。

5 思考题

5.1 如何判断集成运算放大器的好坏? 为了不损坏集成运算放大器,实验中应注意什么问题?

良好的集成运放符合虚短与虚断的性质。测量集成运放两输入端的电压,若电压相同,电流很小,说明集成运放工作在正常工作区且无损坏。反之,说明运放出现了故障,有 PN 结被击穿损坏。

为了不损坏集成运放,实验中需要注意接入电源的极性与电压的大小,避免 PN 结在过高偏置下被击穿失去功能。

5.2 在反相比例求和电路图 7-2 中,如果 Vi1 和 Vi2 均采用直流信号,并选定 Vi2=-1V, 考虑到运算放大器的最大输出幅度为 ± 12 V, Vi1 的绝对值不应超过多少伏?

考虑输出与输入电压的关系为

$$V_o = -\frac{R_F}{R_1}V_{i1} - \frac{R_F}{R_2}V_{i2} = -10V_{i1} - 5V_{i2}$$

 V_{i1} 最大为 +1.7V,最小为 0.7V 所以 V_{i1} 的绝对值不超过 1.7V

5.3 设计两个能实现下列运算关系的运算电路。

5.3.1
$$V_0 = 2V_{11} + 2V_{12} - 4V_{13}$$

将 V_{11} 与 V_{12} 接入反相求和运算电路,设置 $R_1=100k\Omega$, $R_2=100k\Omega$, $R_F=200k\Omega$, $R_P=40k\Omega$ 得 到- $2V_{12}$ - $2V_{11}$ 。随后将该电压与 V_{13} 接入另一反相比例放大器,设置 $R_1=100k\Omega$, $R_2=25k\Omega$, $R_F=100k\Omega$, $R_P=17k\Omega$,得到所需电压。

5.3.2 $V_o = 2V_{11} - 3V_{12}$

将 V_{11} 接入反相比例运算电路,设置 $R_1=10k\Omega$, $R_F=20k\Omega$, $R_P=6.7k\Omega$ 得到- $2V_{11}$,再将- $2V_{11}$ 与 V_{12} 接入反相求和电路,设置 $R_1=100k\Omega$, $R_2=33k\Omega$, $R_F=100k\Omega$, $R_P=19.8k\Omega$,此时反向求和运放得到的就是我们所需的电压。