

MoS₂ as non-noble-metal co-catalyst for photocatalytic hydrogen evolution over hexagonal ZnIn₂S₄ under visible light irradiations

Liang Wei, Yongjuan Chen, Yiping Lin, Haishan Wu, Rusheng Yuan, Zhaohui Li*

Research Institute of Photocatalysis, Fujian Provincial Key Laboratory of Photocatalysis-State Key Laboratory Breeding Base, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350002, PR China

ARTICLE INFO

Article history:

Received 14 May 2013

Received in revised form 23 July 2013

Accepted 28 July 2013

Available online 7 August 2013

Keywords:

MoS₂

Co-catalyst

Photocatalytic

Hydrogen evolution

Visible light

ABSTRACT

MoS₂/ZnIn₂S₄ nanocomposites were prepared by impregnating the hydrothermally prepared hexagonal ZnIn₂S₄ microspheres with an aqueous solution of (NH₄)₂MoS₄, followed by a treatment in H₂S flow at high temperatures to transform Mo(VI) to Mo(IV). The as-prepared MoS₂/ZnIn₂S₄ nanocomposites were characterized by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). Their photocatalytic performance for hydrogen evolution under visible light irradiations was also investigated. It was found that the photocatalytic hydrogen evolution activity over hexagonal ZnIn₂S₄ can be significantly increased by loading MoS₂ as a co-catalyst and the photocatalytic activity of MoS₂/ZnIn₂S₄ nanocomposites could be even higher than that of Pt/ZnIn₂S₄ under similar reaction condition. Amorphous MoS₂ was for the first time shown to exhibit excellent promoting effect for photocatalytic hydrogen evolution. The promoting effect played by amorphous MoS₂ can be ascribed to the existence of many defect sites in amorphous MoS₂ which can act as adsorption sites for hydrogen atoms and eventually leads to hydrogen evolution. This work demonstrates a high potential of the developing of environmental friendly, cheap noble metal-free co-catalyst for semiconductor-based photocatalytic hydrogen evolution.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Hydrogen is a clean and green fuel. The conversion and store solar energy in the form of hydrogen by photocatalytic water splitting holds great promise to meet the future energy and environment requirement [1–4]. Ever since the initial study of a photoelectrochemical cell using Pt-TiO₂ electrodes for hydrogen evolution by Fujishima and Honda in 1972, great efforts have been devoted to the development of highly efficient semiconductor photocatalysts for H₂ production [5]. So far, a variety of active photocatalysts for H₂ production, including metal oxides [6–8], sulfides [9,10] and oxynitrides [11,12], have already been developed. Among the numerous types of semiconductor systems studied, metal sulfides have demonstrated promising activities toward H₂ production from water containing sacrificial reagents under visible light. ZnIn₂S₄ is a ternary chalcogenide which has a suitable band gap (2.34–2.48 eV) well corresponding to the visible light absorption. ZnIn₂S₄ exhibits two distinct polymorphs based on cubic and hexagonal lattices. Previous studies have revealed that both polymorphs of ZnIn₂S₄ are active for photocatalytic H₂ generation

under visible light irradiations and show considerable chemical stability [13–16]. However, the photocatalytic H₂ evolution activity over bare ZnIn₂S₄ is low because of the short lifetimes of the photo-generated electron–hole pairs. Co-catalyst like Pt should be loaded onto ZnIn₂S₄ to enhance the photocatalytic H₂ production activity of ZnIn₂S₄.

Studies on semiconductor-based photocatalysts revealed that co-catalysts loaded on the surface of semiconductor photocatalysts play important roles in promoting their photocatalytic performance. An appropriate co-catalyst can suppress the recombination of the photo-generated charge carriers, lower the over potential for hydrogen evolution and also provide redox reaction sites for H₂ evolution to avoid back reactions. Due to their negligible overpotential for H₂ evolution and excellent kinetics for driving the hydrogen evolution reaction (HER), noble metals like Pt [17,18], Rh [19], Au [20–22] and their oxides like RuO₂ [23], Rh_xCr_{2-x}O₃ [24] are generally used as the co-catalysts for photocatalytic hydrogen evolution. However, the precious metals are expensive and to reduce the cost of renewable H₂ production, it is necessary to explore alternative co-catalysts based on inexpensive transition metals.

Recently transition metal sulfides like MoS₂ [25–28], WS₂ [29] and NiS [30] have been demonstrated to be excellent co-catalyst for CdS and TiO₂ in the photocatalytic hydrogen evolution. Among

* Corresponding author. Tel.: +86 591 83779260; fax: +86 591 83779260.

E-mail addresses: zhaohuili1969@yahoo.com, zhaohuili@fzu.edu.cn (Z. Li).

these transition metal sulfide co-catalysts, MoS₂ nanomaterial has received a lot of attention since it is a good electrocatalyst for H₂ evolution, and its HER activity stemmed from the sulfur edges of the MoS₂ crystal layers [31]. MoS₂ has an intrinsic layered structure consisting of S-Mo-S sheets held together in stacks by van der Waals interactions. Dai et al. [32] reported that nano-structured MoS₂ grown on RGO exhibited excellent HER activity due to its high exposure of the edges and its strong electronic coupling with the underlying RGO. Recently, MoS₂ grown on g-C₃N₄ is demonstrated to show high activity for photocatalytic hydrogen evolution due to the formation of the layered nanojunction between MoS₂ and g-C₃N₄ [33].

Similar to g-C₃N₄, hexagonal ZnIn₂S₄ has an intrinsic layered structure based on a stacking of packets of S-Zn-S-In-S-In-S layers. It is expected that it is facile to grow layer MoS₂ on hexagonal ZnIn₂S₄ surface due to their analogous layered structures which can minimize the lattice mismatch. Besides this, the position of the conduction band of MoS₂ lies between -0.5 and -0.9 vs. NHE according to their dimension based on the study by Thurston and Wilcoxon [34]. The conduction band position of MoS₂ is less negative as compared to that of hexagonal ZnIn₂S₄ (-1.1 eV vs. NHE) and thus provides possibility for a directional transfer of the photo-generated electrons from ZnIn₂S₄ to MoS₂. Moreover, the electrons transferred to the conduction band of MoS₂ can still maintain enough chemical potential to reduce H⁺ to hydrogen at HER active sites of MoS₂. Therefore, it is supposed that MoS₂ can be an ideal candidate as a non-noble-metal co-catalyst for hexagonal ZnIn₂S₄ in photocatalytic H₂ evolution.

In this manuscript, we reported the preparation of MoS₂/ZnIn₂S₄ nanocomposites for photocatalytic hydrogen evolution under visible light irradiations. MoS₂/ZnIn₂S₄ nanocomposites were prepared by impregnating the hydrothermally prepared hexagonal ZnIn₂S₄ with an aqueous solution of (NH₄)₂MoS₄, followed by a treatment in H₂S flow at high temperatures. Their photocatalytic performance for hydrogen evolution was evaluated under visible light irradiations. It was found that the photocatalytic hydrogen evolution activity over hexagonal ZnIn₂S₄ can be significantly increased by loading MoS₂ as a co-catalyst. The photocatalytic activity of MoS₂/ZnIn₂S₄ can be even higher than that of Pt/ZnIn₂S₄ under similar reaction conditions.

2. Experimental

2.1. Preparations

All the reagents are analytical grade and used without further purifications. Hexagonal ZnIn₂S₄ powder was synthesized according to our previously reported method [14]. (NH₄)₂MoS₄ was prepared according to the literature and was used as precursor for MoS₂ to be loaded on ZnIn₂S₄ [35]. Different amounts of molybdenum species were loaded on ZnIn₂S₄ by an impregnation method from solution containing different amounts of (NH₄)₂MoS₄. After vacuum drying at 333 K for 6 h, (NH₄)₂MoS₄/ZnIn₂S₄ precursors were calcinated for 3 h at temperatures 623 and 723 K respectively in 10% H₂S-90% H₂ mixed gas atmosphere to obtain the MoS₂/ZnIn₂S₄ nanocomposites. Samples obtained at temperature 623 K and 723 K was denoted as MoS₂/ZnIn₂S₄-623 K and MoS₂/ZnIn₂S₄-723 K, respectively.

1.0 wt% Pt/ZnIn₂S₄ photocatalyst was prepared by a photo-deposited method using H₂PtCl₆·6H₂O as the starting material. Pure MoS₂ sample (denoted as MoS₂-c) was obtained using (NH₄)₂MoS₄ as precursor and calcinated at 623 K in H₂S flow.

2.2. Characterizations

X-ray diffraction (XRD) patterns were collected on a Bruker D8 Advance X-ray diffractometer with Cu K_α radiation. Raman spectra were recorded with a confocal Raman micro-spectrometer (Renishaw, Great Britain) in the range of 500–2100 cm⁻¹ under a 785 nm diode laser excitation. The spectra were collected in a backscattering geometry using a microscope equipped with a Leica 20× objective in a spectral resolution of 2 cm⁻¹. The detection of the Raman signal was carried out with a Peltier cooled charge-coupled device (CCD) camera. The software package WIRE 2.0 (Renishaw) was employed for acquisition and analysis. UV-visible diffraction spectra (UV-vis DRS) of the powders were obtained for the dry pressed disk samples using a UV-visible spectrophotometer (Cary 500 Scan Spectrophotometers, Varian). BaSO₄ was used as a reflectance standard. The transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) images were measured by a JEOL model JEM 2010 EX instrument at an accelerating voltage of 200 kV. The powder particles were supported on a carbon film coated on a 3 mm diameter fine-mesh copper grid. A suspension in ethanol was sonicated and a drop was dripped on the support film. The morphology of the sample was characterized by field emission scanning electron microscopy (SEM) (JSM-6700F). X-ray photoelectron spectroscopy (XPS) measurements were performed on a PHI Quantum 2000 XPS system with a monochromatic Al K_α source and a charge neutralizer. All of the binding energies were referred to the C 1s peak at 284.8 eV of the surface adventitious carbon.

2.3. Photocatalytic H₂ evolution

Photocatalytic H₂ evolution experiments were carried out in a closed gas circulation and evacuation system fitted with a top Pyrex window. 50 mg of photocatalyst was dispersed in 100 ml of aqueous solution containing 0.5 M Na₂SO₃ and 0.43 M Na₂S as sacrificial reagents. The suspension was irradiated with a 300 W Xe lamp equipped with a 420 nm cutoff filter to provide the visible light irradiations. The temperature of the reactant solution was maintained at room temperature by a flow of cooling water during the photocatalytic reaction. The amount of H₂ evolved was determined with an on-line gas chromatography equipped with a TCD detector.

3. Results and discussion

ZnIn₂S₄ was prepared according to our previously reported method [14]. Since (NH₄)₂MoS₄ starts to decompose to form MoS₂ at 623 K, MoS₂/ZnIn₂S₄ nanocomposites were prepared by treating the (NH₄)₂MoS₄/ZnIn₂S₄ precursors at temperatures higher than 623 K in 10% H₂S-90% H₂ to obtain the MoS₂/ZnIn₂S₄ composites. Fig. 1 shows the X-ray diffraction patterns of ZnIn₂S₄ and 1.0 wt% MoS₂/ZnIn₂S₄ obtained at 623 and 723 K. As shown in Fig. 1b, 1.0 wt% MoS₂/ZnIn₂S₄-623 K shows 2θ peaks at values of 21.6°, 27.7°, 30.4°, 39.8°, 47.2°, 52.4° and 55.6°, which can be assigned to (0 0 6), (1 0 2), (1 0 4), (1 0 8), (1 1 0), (1 1 6) and (0 2 2) crystallographic planes of hexagonal ZnIn₂S₄ phase (JCPDS-03-065-2023). However, in addition to peaks corresponding to hexagonal ZnIn₂S₄, MoS₂/ZnIn₂S₄-723 K shows additional 2θ diffraction peaks at values of 27.0° and 27.9°, which can be assigned to (1 0 4) and (1 0 7) crystallographic planes of rhombohedral ZnIn₂S₄ phase, indicating that calcinating at 723 K partially transform the hexagonal ZnIn₂S₄ to rhombohedral one. In the XRD patterns of both samples, diffraction peaks assigned to MoS₂ were not observed, probably due to the low amount of MoS₂ and its high dispersion on ZnIn₂S₄.

The Raman spectroscopy studies were performed on the as-prepared MoS₂/ZnIn₂S₄ nanocomposites and were compared with

Fig. 1. XRD patterns of (a) bare ZnIn₂S₄; (b) 1.0 wt% MoS₂/ZnIn₂S₄-623 K; (c) 1.0 wt% MoS₂/ZnIn₂S₄-723 K. (◆) Rhombohedral ZnIn₂S₄; (◆) hexagonal ZnIn₂S₄.

that of bulk MoS₂, MoS₂-c and pure hexagonal ZnIn₂S₄. As shown in Fig. 2, in addition to the peaks corresponding to pure hexagonal ZnIn₂S₄, typical MoS₂ peaks at about 379 cm⁻¹ arising from the in-plane E¹ _{2g} vibration and 401 cm⁻¹ arising from the out-of-plane A_{1g} vibration were observed in both MoS₂/ZnIn₂S₄ nanocomposites obtained at different calcination temperature [36,37]. Similar to those observed over MoS₂-c, these bands in MoS₂/ZnIn₂S₄ nanocomposites are much broader than those observed over bulk

Fig. 2. Raman spectra of bulk MoS₂; MoS₂-c; bare ZnIn₂S₄; MoS₂/ZnIn₂S₄-623 K and MoS₂/ZnIn₂S₄-723 K.

MoS₂. Previous study found that the single-layer MoS₂ nanosheet exhibits much broader Raman bands relative to their bulk counterpart due to the phonon confinement in the ultra-thin structure [38]. The Raman results indicate that thin-layer MoS₂ has been successfully incorporated within ZnIn₂S₄.

XPS analyses were carried out on a typical MoS₂/ZnIn₂S₄ sample. The XPS spectrum of MoS₂/ZnIn₂S₄ in the Mo 3d region shows binding energy at 228.9 eV for Mo 3d_{5/2} and 231.9 eV for Mo 3d_{3/2}

Fig. 3. XPS spectra of MoS₂/ZnIn₂S₄ and ZnIn₂S₄ (a) Mo 3d; (b) S 2p; (c) Zn 2p and (d) In 3d.

Fig. 4. MoS₂-ZnIn₂S₄-623 K (a) SEM image; (b) TEM image; (c) HRTEM image (inset: EDS); MoS₂/ZnIn₂S₄-723 K; (d) HRTEM image; (e) TEM image.

respectively, suggesting that Mo exist in the chemical states of Mo⁴⁺ (Fig. 3a). These values are close to those previously reported for MoS₂ [39,40]. The high resolution XPS spectra of S 2p region can be deconvoluted into two peaks at around 161.7 and 162.8 eV, which can be assigned to S²⁻ in ZnIn₂S₄ and MoS₂, respectively (Fig. 3b). As compared to the binding energy of Zn 2p observed over MoS₂-free ZnIn₂S₄ (1020.7 and 1043.6 eV), a higher binding energy shift was observed over MoS₂/ZnIn₂S₄ nanocomposite (1022.3 and 1045.2 eV) (Fig. 3c). Similar high binding energy shift has also been observed over the high resolution XPS spectra of In 3d (Fig. 3d). Such a shift to high binding energy may suggest a strong interaction between ZnIn₂S₄ and MoS₂. A decrease of the electron density of Zn²⁺ and In³⁺ in the MoS₂/ZnIn₂S₄ nanocomposite due to the electron transfer from ZnIn₂S₄ to the more electronegative MoS₂ when ZnIn₂S₄ are connected with MoS₂ may explain such a high binding energy shift.

The SEM and TEM images reveal that the MoS₂/ZnIn₂S₄-623 K nanocomposite was composed of microspheres with dimension in the range of 2–6 μm assembled by densely packed petals, indicating that the morphology of ZnIn₂S₄ was not significantly changed after the incorporation of MoS₂ (Fig. 4a and b). Although the HRTEM image does not show lattice fringes corresponding to MoS₂, the existence of Mo and S is evidenced from the energy-dispersive X-ray spectrometry (EDS), suggesting that MoS₂ existing in amorphous state in the as-prepared MoS₂/ZnIn₂S₄-623 K (Fig. 4c and inset). On the contrary, clear lattice fringe of 0.62 nm corresponding to the (002) plane of hexagonal MoS₂ can be observed on the HRTEM image of MoS₂/ZnIn₂S₄-723 K, indicating that amorphous MoS₂ gradually transform to crystalline MoS₂ at elevated temperature (Fig. 4d). However when calcinated at 723 K, the microspheres observed on the TEM image of MoS₂/ZnIn₂S₄-623 K were partially decomposed and aggregated (Fig. 4e).

Fig. 5. UV-vis DRS of 1.0 wt% $\text{MoS}_2/\text{ZnIn}_2\text{S}_4$ and pure ZnIn_2S_4 .

The UV-vis DRS of the $\text{MoS}_2/\text{ZnIn}_2\text{S}_4$ nanocomposite obtained at different temperature does not show much difference and a typical one was shown in Fig. 5. The UV-vis DRS of the $\text{MoS}_2/\text{ZnIn}_2\text{S}_4$ nanocomposite showed characteristic absorption corresponding to that of ZnIn_2S_4 and enhanced absorption in the region of 500–700 nm which can be ascribed to the absorption of MoS_2 .

Photocatalytic hydrogen production experiments were carried out over the as-prepared $\text{MoS}_2/\text{ZnIn}_2\text{S}_4$ nanocomposites in the presence of $\text{Na}_2\text{S}/\text{Na}_2\text{SO}_3$ as sacrificial agent under visible light irradiations. Fig. 6 shows the hydrogen evolution rate for 1.0 wt% $\text{MoS}_2/\text{ZnIn}_2\text{S}_4$ nanocomposites obtained at different temperature and compared to that of pure ZnIn_2S_4 and MoS_2 . No H_2 was detected when MoS_2 used as photocatalyst alone, suggesting that MoS_2 alone is not active for photocatalytic hydrogen evolution. In the absence of MoS_2 , ZnIn_2S_4 only had a very low activity with the hydrogen evolution rate at 14.1 $\mu\text{mol}/\text{h}$. The hydrogen evolution rate over 1.0 wt% $\text{MoS}_2/\text{ZnIn}_2\text{S}_4$ -623 K is significantly enhanced to 141 $\mu\text{mol}/\text{h}$, which is 10 times of that over bare ZnIn_2S_4 under similar condition. Although 1.0 wt% $\text{MoS}_2/\text{ZnIn}_2\text{S}_4$ -723 K still showed a high photocatalytic activity for hydrogen evolution (70.8 $\mu\text{mol}/\text{h}$) as compared to bare ZnIn_2S_4 , the increasing of the calcination temperature to 723 K in the preparation of $\text{MoS}_2/\text{ZnIn}_2\text{S}_4$ nanocomposite lead to a lower of its photocatalytic activity for hydrogen evolution. The lower photocatalytic hydrogen evolution observed

Fig. 6. Photocatalytic hydrogen evolution rate over (1) pure MoS_2 ; (2) pure ZnIn_2S_4 ; (3) 1.0 wt% $\text{MoS}_2/\text{ZnIn}_2\text{S}_4$ -623 K and (4) 1.0 wt% $\text{MoS}_2/\text{ZnIn}_2\text{S}_4$ -723 K (reaction conditions: catalyst, 0.05 g; 100 ml H_2O containing 0.43 M Na_2S and 0.5 M Na_2SO_3).

Fig. 7. Photocatalytic hydrogen evolution rate over (1) pure ZnIn_2S_4 ; ZnIn_2S_4 with different amounts of MoS_2 ; (7) 1.0 wt% $\text{Pt}/\text{ZnIn}_2\text{S}_4$ (reaction conditions: catalyst, 0.05 g; 100 ml H_2O containing 0.43 M Na_2S and 0.5 M Na_2SO_3).

over $\text{MoS}_2/\text{ZnIn}_2\text{S}_4$ -723 K as compared to $\text{MoS}_2/\text{ZnIn}_2\text{S}_4$ -623 K may be explained by the partial transformation of hexagonal ZnIn_2S_4 to rhombohedral one since it has already been well established that semiconductors with different polymorphs usually exhibit different photocatalytic activity.

Since the HRTEM image shows that MoS_2 in $\text{MoS}_2/\text{ZnIn}_2\text{S}_4$ -623 K nanocomposite exists in amorphous state, while that in product obtained at 723 K is crystallized MoS_2 , the current study indicates that even the amorphous MoS_2 can be excellent co-catalyst to promote the photocatalytic hydrogen evolution reaction. This is different from previous results since almost all the previous studies using MoS_2 as co-catalyst to promote the photocatalytic hydrogen evolution involves crystalline MoS_2 instead of amorphous one. However, the promoting effect on the photocatalytic hydrogen evolution played by the amorphous MoS_2 is not so surprising since amorphous MoS_2 have already been demonstrated to show excellent HER activity. Previous DFT studies on MoS_2 reveals that $\text{Mo}(10\bar{1}0)$ edge sites with 50% S adsorption are active for HER because the adsorbed sulfur atoms at the edge sites are unsaturated and can act as the adsorption site for H atoms [31]. Although the amorphous MoS_2 lacks such well-defined $\text{Mo}(10\bar{1}0)$ edge sites, there exists many defect sites in the amorphous MoS_2 . These defect sites possess many coordinately and structurally unsaturated sulfur atoms, which also can act as adsorption site for hydrogen atoms and eventually leads to hydrogen evolution [41]. Our current result demonstrated that as that observed over MoS_2 for HER, amorphous MoS_2 can also show excellent promoting effect for photocatalytic hydrogen evolution.

The effect of MoS_2 loading amount on the photocatalytic hydrogen evolution is also investigated. Fig. 7 shows that the photocatalytic hydrogen evolution rate over $\text{MoS}_2/\text{ZnIn}_2\text{S}_4$ -623 K loaded with different amounts of MoS_2 . It shows that the introduction of only a little amount of MoS_2 (0.3 wt%) can significantly increase the hydrogen evolution rate to 130 $\mu\text{mol}/\text{h}$, an almost 9.3 times as that over bare ZnIn_2S_4 (14.1 $\mu\text{mol}/\text{h}$). An optimum MoS_2 loading amount is found at 0.6 wt%, which exhibit the highest photocatalytic hydrogen evolution rate of 153 $\mu\text{mol}/\text{h}$. This value is much higher than that observed over 1.0 wt% $\text{Pt}/\text{ZnIn}_2\text{S}_4$ nanocomposite (129 $\mu\text{mol}/\text{h}$). A further increase in the amount of MoS_2 results in a decrease in the photocatalytic hydrogen evolution rate. Such a decrease in the activity of samples with a heavy loading of MoS_2 is likely due to the shading effect of MoS_2 , which can block the absorption of the incident light by ZnIn_2S_4 .

Fig. 8. Amount of hydrogen evolved over 1.0 wt% MoS₂/ZnIn₂S₄-623 K system in a 15 h photocatalytic reaction (reaction conditions: catalyst, 0.05 g; 100 mL H₂O containing 0.43 M Na₂S and 0.5 M Na₂SO₃).

The stability of MoS₂/ZnIn₂S₄ during the photocatalytic reaction was confirmed by the XRD of the photocatalyst after the reaction (supporting information Fig. S1). In addition to this, a prolonged photocatalytic reaction in 15 h revealed that no obvious loss of the activity during the whole reaction period, another confirmation of the stability of MoS₂/ZnIn₂S₄ during the photocatalytic hydrogen evolution (Fig. 8).

Scheme 1 shows the mechanism proposed for the enhanced hydrogen evolution over MoS₂/ZnIn₂S₄ nanocomposite. Since the conduction band of MoS₂ is less negative than that of hexagonal ZnIn₂S₄, a directional transfer of the photogenerated electrons from ZnIn₂S₄ to MoS₂ is feasible. In addition to this, the electrons transferred to the conduction band of MoS₂ exhibit enough redox potential to reduce H⁺ to produce hydrogen at HER active sites of MoS₂, while the holes left in ZnIn₂S₄ can oxidize the sacrificial agent. Controlled experiment performed on a mixture of ZnIn₂S₄ and MoS₂ under similar reaction condition revealed that the photocatalytic performance of ZnIn₂S₄ can also be enhanced. However, the rate for hydrogen evolution over a mechanical mixture of ZnIn₂S₄ and MoS₂ (53.7 μmol/h) is much smaller than that observed over MoS₂/ZnIn₂S₄ nanocomposite (Supporting materials Table S1). Due to their analogous intrinsic layered structures, the formation of a good junction between ZnIn₂S₄ and MoS₂ is believed to benefit the directional migration of the photo-excited electrons from ZnIn₂S₄ to MoS₂, which lead to a highly enhanced photocatalytic performance for hydrogen evolution over MoS₂/ZnIn₂S₄ nanocomposites.

Scheme 1. Proposed mechanism for photocatalytic hydrogen evolution over MoS₂/ZnIn₂S₄ nanocomposite under visible light irradiations.

4. Conclusion

In summary, MoS₂/ZnIn₂S₄ nanocomposites prepared by impregnating hexagonal ZnIn₂S₄ with (NH₄)₂MoS₄, followed by a treatment in H₂S flow at high temperatures showed highly enhanced photocatalytic performance for hydrogen evolution under visible light irradiations. The photocatalytic activity of MoS₂/ZnIn₂S₄ nanocomposites can be even higher than that of Pt/ZnIn₂S₄. Due to the existence of many defect sites which act as adsorption site for hydrogen atoms and eventually leads to hydrogen evolution, amorphous MoS₂ was shown for the first time to exhibit excellent promoting effect for photocatalytic hydrogen evolution. This work demonstrates a high potential of developing the environmental friendly, cheap non-noble-metal co-catalyst for semiconductor-based photocatalytic hydrogen evolution.

Acknowledgments

The work was supported by NSFC (21273035, J1103303), 973 Programs (2014CB239303, 2011CB612314 and 2013CB632405) and Specialized Research Fund for the Doctoral Program of Higher Education (20123514110002). Z. Li thanks the Award Program for Minjiang Scholar Professorship for financial support.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at <http://dx.doi.org/10.1016/j.apcatb.2013.07.064>.

References

- [1] J.A. Turner, Science 305 (2004) 972–974.
- [2] N.S. Lewis, D.G. Nocera, Proceedings of the National Academy of Sciences of the United States of America 103 (2006) 15729–15735.
- [3] H. Tong, S.X. Ouyang, Y.P. Bi, N. Umezawa, M. Oshikiri, J.H. Ye, Advanced Materials 24 (2012) 229–251.
- [4] X.B. Chen, S.H. Shen, L.J. Guo, S.S. Mao, Chemical Reviews 110 (2010) 6503–6570.
- [5] A. Fujishima, K. Honda, Nature 238 (1972) 37–38.
- [6] W.J. Ren, Z.H. Ai, F.L. Jia, L.Z. Zhang, X.X. Fan, Z.G. Zou, Applied Catalysis B: Environmental 69 (2007) 138–144.
- [7] Y.F. Wang, M.C. Hsieh, J.F. Lee, C.M. Yang, Applied Catalysis B: Environmental 142/143 (2013) 626–632.
- [8] M. Altomare, M. Pozzi, M. Alletta, L.G. Bettini, E. Selli, Applied Catalysis B: Environmental 136/137 (2013) 81–88.
- [9] Q.J. Xiang, B. Cheng, J.G. Yu, Applied Catalysis B: Environmental 138/139 (2013) 299–303.
- [10] I. Tsuji, H. Kato, H. Kobayashi, A. Kudo, Journal of the American Chemical Society 126 (2004) 13406–13414.
- [11] W.J. Luo, Z.S. Li, X.J. Jiang, T. Yu, L.F. Liu, X.Y. Chen, J.H. Ye, Z.G. Zou, Physical Chemistry Chemical Physics 10 (2008) 6717–6723.
- [12] R. Sasaki, K. Maeda, Y. Kako, K. Domen, Applied Catalysis B: Environmental 128 (2012) 72–76.
- [13] Z.B. Lei, W.S. You, M.Y. Liu, G.H. Zhou, T. Takata, M. Hara, K. Domen, C. Li, Chemical Communications 17 (2003) 2142–2143.
- [14] Y.J. Chen, S.W. Hu, W.J. Liu, X.Y. Chen, L. Wu, X.X. Wang, P. Liu, Z.H. Li, Dalton Transactions 40 (2011) 2607–2613.
- [15] S.H. Shen, L. Zhao, L.J. Guo, International Journal of Hydrogen Energy 33 (2008) 4501–4510.
- [16] B. Chai, T.Y. Peng, P. Zeng, X. Zhang, X.J. Liu, Journal of Physical Chemistry C 115 (2011) 6149–6155.
- [17] I. Tsuji, H. Kato, H. Kobayashi, A. Kudo, Chemistry of Materials 18 (2006) 1969–1975.
- [18] H. Kominami, H. Nishimune, Y. Ohta, Y. Arakawa, T. Inaba, Applied Catalysis B: Environmental 111/112 (2012) 297–302.
- [19] B. Pal, T. Torimoto, K. Okazaki, B. Ohtani, Chemical Communications 5 (2007) 483–485.
- [20] P.C. Shen, S. Zhao, D. Su, Y. Li, A. Orlov, Applied Catalysis B: Environmental 126 (2012) 153–160.
- [21] S.S. Rayalu, D. Jose, M.V. Joshi, P.A. Mangrulkar, K. Shrestha, K. Klabunde, Applied Catalysis B: Environmental 142/143 (2013) 684–693.
- [22] H. Yuzawa, T. Yoshida, H. Yoshida, Applied Catalysis B: Environmental 115/116 (2012) 294–302.
- [23] D. Chen, J.H. Ye, Chemistry of Materials 21 (2009) 2327–2333.
- [24] T. Takata, K. Domen, Journal of Physical Chemistry C 113 (2009) 19386–19388.

- [25] X. Zong, H.J. Yan, G.P. Wu, G.J. Ma, F.Y. Wen, L. Wang, C. Li, *Journal of the American Chemical Society* 130 (2008) 7176–7177.
- [26] G.P. Chen, D.M. Li, F. Li, Y.Z. Fan, H.F. Zhao, Y.H. Luo, R.C. Yu, Q.B. Meng, *Applied Catalysis A: General* 443/444 (2012) 138–144.
- [27] S. Kanda, T. Akita, M. Fujishima, H. Tada, *Journal of Colloid and Interface Science* 354 (2011) 607–610.
- [28] Q.J. Xiang, J.G. Yu, M. Jaroniec, *Journal of the American Chemical Society* 134 (2012) 6575–6578.
- [29] X. Zong, J.F. Han, G.J. Ma, H.J. Yan, J.P. Wu, C. Li, *Journal of Physical Chemistry C* 115 (2011) 12202–12208.
- [30] W. Zhang, Y.B. Wang, Z. Wang, Z.Y. Zhong, R. Xu, *Chemical Communications* 46 (2010) 7631–7633.
- [31] B. Hinnemann, P.G. Moses, J. Bonde, K.P. Jørgensen, J.H. Nielsen, S. Horch, I. Chorkendorff, J.K. Nørskov, *Journal of the American Chemical Society* 127 (2005) 5308–5309.
- [32] Y.G. Li, H.L. Wang, L.M. Xie, Y.Y. Liang, G.S. Hong, H.J. Dai, *Journal of the American Chemical Society* 133 (2011) 7296–7299.
- [33] Y.D. Hou, A.B. Laursen, J.S. Zhang, G.G. Zhang, Y.S. Zhu, X.C. Wang, S. Dahl, I. Chorkendorff, *Angewandte Chemie International Edition* 52 (2013) 1–6.
- [34] T.R. Thurston, J.P. Wilcoxon, *Journal of Physical Chemistry B* 103 (1999) 11–17.
- [35] D. Genuit, P. Afanasiev, M. Vrinat, *Journal of Catalysis* 235 (2005) 302–317.
- [36] S.J. Sandoval, D. Yang, R.F. Frindt, J.C. Irwin, *Physical Review B* 44 (1991) 3955–3962.
- [37] Z.Y. Zeng, Z.Y. Yin, X. Huang, H. Li, Q.Y. He, G. Lu, F. Boey, H. Zhang, *Angewandte Chemie International Edition* 50 (2011) 11093–11097.
- [38] H.S.S. Ramakrishna Matte, A. Gomathi, A.K. Manna, D.J. Late, R. Datta, S.K. Pati, C.N.R. Rao, *Angewandte Chemie International Edition* 49 (2010) 4059–4062.
- [39] B.A. Vanchura, P.G. He, V. Antochshuk, M. Jaroniec, A. Ferryman, D. Barbash, J.E. Fulghum, S.D. Huang, *Journal of the American Chemical Society* 124 (2002) 12090–12091.
- [40] W.K. Ho, J.C. Yu, J. Lin, J.G. Yu, P.S. Li, *Langmuir* 20 (2004) 5865–5869.
- [41] D. Merki, X.L. Hu, *Energy & Environmental Science* 4 (2011) 3878–3888.