PROVE D'ESAME 2025 - 2024 - 2023 RELATIVA ALLA PARTE DELLA SOLA ALGEBRA RELAZIONALE. [NO SQL]. PRESENTI ANCHE ESERCIZI DI RIVISTE ONLINE.

Documento a cura di Simone Remoli.

Consiglio per affrontare tutti gli esercizi di algebra relazionale: evita pensieri procedurali, pensa a operazioni su gruppi di tuple. Inoltre simula l'effetto desiderato usando operazioni tra insiemi.

Prova d'esame del 18 febbraio 2025.

Si consideri il seguente schema relazionale:

CD(<u>Codice</u>, autore, titolo, durata) Affitto(<u>Cd, cliente</u>, data, restituito) Cliente(<u>Codice</u>, nome, città).

Query1: Trovare il codice dei CD di durata più lunga.

Incominciamo con un esercizio di estrema facilità. Proviamo a simulare ciò che deve succedere:

Codice	autore	Titolo	Durata
11	Lidia	Vattelapesca	5
22	Ugo	Intelligente	6
33	Gino	Scaffale	9
44	Nina	Mentuccia	2

Occorre trovare il CD di Gino, intitolato "Scaffale" di durata 9.

Quando si hanno questi esercizi di calcolo di "qualcosa di massimo", l'approccio da seguire è sempre lo stesso.

Voglio trovare tutti i CD che NON HANNO durata massima.

Per prima cosa rinomino la tabella CD e ne creo una copia.

 $\rho_{CD(codice1, autore1, titolo1, durata1)} \leftarrow codice, autore, titolo, durata (CD)$

Codice1	Autore1	Titolo1	Durata1
11	Lidia	Vattelapesca	5
22	Ugo	Intelligente	6
33	Gino	Scaffale	9

Quindi, stiamo prendendo una tabella dove esistono delle durate che NON sono massime. La tabella che viene fuori è la seguente:

Codice	Autore	Titolo	Durata	Codice1	Autore1	Titolo1	Durata1
11	Lidia	Vattelapes ca	5	22	Ugo	Intelligente	6
11	Lidia	Vattelapes ca	5	33	Gino	Scaffale	9
22	Ugo	Intelligent e	6	33	Gino	Scaffale	9
44	Nina	Mentuccia	2	11	Lidia	Vattelappe sca	5
44	Nina	Mentuccia	2	22	Ugo	Intelligente	6
44	Nina	Mentuccia	2	33	Gino	Scaffale	9

I codici ritrovati non sono codici che hanno durata massima. L'unico codice che ha durata massima è il 33, ma non è presente nella nostra lista. Quindi il risultato finale della query sarà:

$$\{11,22,33,44\} - \{11,22,44\} = \{33\}.$$

Che scritto in algebra relazionale è il seguente risultato:

$$\pi_{ ext{codice}}(ext{CD}) \ - \ \pi_{ ext{codice}}\left(CD \ igtriangledown_{ ext{durata} < ext{durata}} \ \left(
ho_{CD(codice1, autore1, titolo1, durata1)} \leftarrow codice, autore, titolo, durata \ (CD)
ight)
ight)$$

Questa è la query finale.

Query2: Trovare il codice dei CD di durata più corta.

Ma allora il passo è breve, basta solo togliere quelli che non hanno durata più corta, quindi quelli dove la durata>durata1.

$$\pi_{ ext{codice}}(ext{CD}) \ - \ \pi_{ ext{codice}}\left(CD \bowtie_{ ext{durata}> ext{durata}} \left(
ho_{CD(codice1,autore1,titolo1,durata1)} \leftarrow codice, autore, titolo, durata\left(CD)
ight)
ight)$$

Esercizio preso online.

Si consideri il seguente schema relazionale:

Persona(<u>CF</u>, Nome, Cognome, DataNascita, CittàNascita, CittàResidenza) Condanna(CFPersona, CFGiudice, Data, TipoReato, TipoCondanna, Durata)

Giudice(<u>CF</u>, Nome, Cognome, Tribunale, AnnoIngressoInMagistratura).

Query1: Determinare, per ciascun giudice del tribunale di Milano, la <u>massima durata delle</u> <u>condanne</u> che ha emesso.

Le tabelle interessate sono Giudice e Condanna.

Simuliamo le tabelle.

CF	Nome	Cognome	Tribunale	AnnolngressolnM agistratura
1	Dino	Sauro	Roma	1988
2	Gino	Sparone	Milano	1987
3	Richard	Ramirez	New York	1998
4	Aileen	Wuornos	New York	1992
5	Bruno	Fendente	Trapani	2000
6	Marta	Colpisci	Milano	1975
7	Viola	Sgozza	Milano	1957
8	Simone	Remoli	Roma	2025
9	Liang (梁)	Xunwei (迅蔚)	Pechino	1976
10	Valerio	Smemorato	Milano	2010
11	Sergio	Maligno	Milano	2001
12	Mihai	Stanescu	Bucarest	1959

Come primo procedimento si selezionano solo le righe dei magistrati che esercitano a Milano.

$$\sigma_{ ext{tribunale}='Milano'}(ext{Giudice})$$

Ora, per capire le durate delle condanne che un giudice ha emesso, bisogna effettuare un join con la tabella condanna. E di questo, ci serve solo proiettare il CF del giudice con la relativa durata di condanna: il risultato sarà una coppia (CF,Durata) per ogni giudice del tribunale di Milano.

$$\pi_{\mathrm{CF,\,Durata}}\left(\mathrm{Condanna}\ owtie_{\mathrm{CF=CFgiudice}}\left(\sigma_{\mathrm{tribunale}='Milano'}(\mathrm{Giudice})
ight)
ight)$$

Il risultato è molto chiaro, supponendo che la tabella condanna sia fatta così:

CFPersona	CFGiudice	Data	TipoReato	TipoCondanna	Durata
RKJL	1				10
KLJ	2				15
JHG	2				30
VBD	6				21
DFG	6				3
AWE	7				12
QWE	7				15
POL	7				19
DGH	7				3
JUI	10				12
PPL	10				13
WWS	11				19
VBE	11				18

Quindi ora la coppia (CF,Durata) dei giudici di Milano sarà composta così:

CF	Durata
2	15
2	30
6	21
6	3
7	12
7	15
7	19
7	3
10	12
10	13
11	19
11	18

Per ciascun giudice serve la durata massima.

(In SQL farei una group by sul CF, giusto(?)).

Attenzione, il procedimento ora è uguale a prima. Devo trovare il valore massimo, quindi decido di rinominare questa tabella con nuovi attributi CF1 e Durata1, e impongo una condizione di JOIN molto più restrittiva, ossia CF=CF1 e Durata<Durata1.

$$\rho_{CF1,Durata1} \leftarrow \pi_{CF,Durata} \left(\text{Condanna} \bowtie_{CF=CFgiudice} \left(\sigma_{\text{tribunale}='Milano'}(\text{Giudice}) \right) \right)$$

A questo punto effettuo il join.

$$(\pi_{CF,Durata} (ext{Condanna} \bowtie_{CF=CFgiudice} (\sigma_{tribunale='Milano'}(ext{Giudice})))) \bowtie_{CF=CF1 \land Durata < Durata1} (
ho_{CF1,Durata1} \leftarrow \pi_{CF,Durata} (ext{Condanna} \bowtie_{CF=CFgiudice} (\sigma_{tribunale='Milano'}(ext{Giudice}))$$

Avrò una tabella uguale a questa sopra e la tabella finale del Join sarà:

CF	Durata	CF1	Durata1
2	15	2	30
6	3	6	21
7	12	7	15
7	12	7	19
7	15	7	19
7	3	7	12
7	3	7	15
7	3	7	19
10	12	10	13
11	18	11	19

Ma guarda caso la proiezione di (CF,Durata) contiene tutte le coppie che non hanno durata massima.

Da un punto di vista insiemistico quindi abbiamo una sottrazione, basta sottrarre a tutte le coppie (CF,Durata) dei Giudici di Milano le coppie non massime (queste appena trovate).

La query finale sarà la seguente:

$$\pi_{CF,Durata}$$
 (Condanna $\bowtie_{CF=CFgiudice}$ ($\sigma_{tribunale='Milano'}$ (Giudice))) $-$ [($\pi_{CF,Durata}$ (Condanna $\bowtie_{CF=CFgiudice}$ ($\sigma_{tribunale='Milano'}$ (Giudice))))
 $\bowtie_{CF=CF1 \land Durata < Durata1}$ ($\rho_{CF1,Durata1} \leftarrow \pi_{CF,Durata}$ (Condanna $\bowtie_{CF=CFgiudice}$ ($\sigma_{tribunale='Milano'}$ (Giudice)))

Query2: Determinare il nome e cognome delle persone condannate nel 2002 all'ergastolo per omicidio e che hanno subito almeno una condanna per furto.

In primis bisogna prendere tutte le persone che hanno ricevuto almeno una condanna per furto.

$$\pi$$
 CFPersona(σ TipoReato='Furto'(CONDANNA))

Ora seleziono i codici fiscali delle persone condannate all'ergastolo per omicidio nell'anno 2002:

$$\pi_{\mathrm{CFpersona}}\left(\sigma_{\mathrm{tiporeato}='omicidio'\wedge\mathrm{tipocondanna}='ergastolo'\wedge\mathrm{Data}='2002'}(\mathrm{Condanna})\right)$$

Nota che la tabella tabella Condanna ha più tuple per la stessa persona, quindi si può fare.

Ora intersezione e join per conoscere il nome e cognome.

 $\pi_{\text{Nome, Cognome}}\left(\left(\pi_{\text{CFpersona}}\left(\sigma_{\text{tiporeato}='furto'}(\text{Condanna})\right)\cap\pi_{\text{CFpersona}}\left(\sigma_{\text{tiporeato}='omicidio'}\wedge\text{tipocondanna}='ergastolo'\wedge\text{Data}='2002'(\text{Condanna})\right)\right)\bowtie_{\text{CFpersona}=\text{CF}}\text{Persona}\right)$

Questa è la query finale.