LPC82X 培训资料

通讯接口-SPI 动手实验

MAY, 2016

动手实验1 SPI主/从模式下数据收发

内容

- •实验简介(目的,内容,结果)
- 软/硬件环境搭建
- 实验步骤
- 相关底层驱动APIs说明

实验简介

- •目的:通过本实验,理解和掌握LPC82x SPI接口关于以下几点:
 - -工作于主模式或从模式时,如何对其进行配置
 - -主模式或从模式下,如何进行数据收发
 - -如何使用中断方式进行数据收发
- •描述:本实验实现SPI主模式和从模式的数据收发通讯(中断方式)。其中,SPI0为主,SPI1为从。SPI0和SPI1同时向对方发送数据。
- ·结果:主SPIO和从SPI1都正确收到对方发送的数据,即成功

软/硬件环境搭建

• 硬件

-评估板:LPC824Lite-V1.0

• 工程位置

-..\peri_example\spi\handson_spi_sm_int\project_spi_sm_int.uvprojx

• 硬件连接

	SCK	SSLE	MISO	MOSI
SPI0(Master)	P0_24	P0_15	P0_25	P0_26
SPI1(Slave)	P0_20	P0_17	P0_28	P0_13

实验步骤

- 第一步 动手添加代码 (答案在readme文件中)
 - -根据主模式的配置,配置从模式及其相位,极性,MSB/LSB,片选信号 极性(*在main_spi_sm_int.c中搜索"ToDo"字符串,即可找到代码添加处*)
- 第二步 根据连接指示, 搭建好硬件环境
- 第三步 编译下载程序,运行。LED2亮,表明通讯成功;LED1亮, 表明通讯失败

相关底层驱动APIs说明-配置

- 1. 初始化SPI。使能SPI时钟供给和软复位SPI模块 STATIC INLINE void Chip_SPI_Init(LPC_SPI_T *pSPI);
- 2. 配置SPI。配置SPI CFG寄存器以及对于主模式,使所有片选信号无效。 STATIC INLINE void Chip_SPI_ConfigureSPI(LPC_SPI_T *pSPI, uint32_t config);
- 3. 设置SPI模式速率(位率) uint32_t Chip_SPIM_SetClockRate(LPC_SPI_T *pSPI, uint32_t rate);
- 4. 设置SPI延时参数
 void Chip_SPIM_DelayConfig(LPC_SPI_T *pSPI, SPIM_DELAY_CONFIG_T *pConfig);
- 5. 使能SPI中断 STATIC INLINE void Chip_SPI_EnableInts(LPC_SPI_T *pSPI, uint32_t Flag);
- 6. 设置从模式数据发送的一帧位数 STATIC INLINE void Chip_SPI_SetXferSize(LPC_SPI_T *pSPI, uint32_t ctrlBits);

相关底层驱动APIs说明-通讯

1. 启动SPI准备收发数据

STATIC INLINE void Chip_SPI_FlushFifos(LPC_SPI_T *pSPI);

2. 开始非阻塞式的主模式收发数据

void Chip_SPIM_Xfer(LPC_SPI_T *pSPI, SPIM_XFER_T *xfer);

3. 主模式数据收发处理

void Chip_SPIM_XferHandler(LPC_SPI_T *pSPI, SPIM_XFER_T *xfer);

4. 从模式数据收发处理

uint32_t Chip_SPIS_XferHandler(LPC_SPI_T *pSPI, SPIS_XFER_T *xfer);

动手实验2 SPI读写FLASH(DMA方式)

内容

•实验简介(目的,内容,结果)

• 软/硬件环境搭建

• 实验步骤

• 相关底层驱动APIs说明

实验简介

- •目的:通过本实验,理解和掌握LPC82x SPI接口关于以下几点:
 - -工作于主模式时,如何对其进行配置
 - -如何使用DMA方式实现SPI收发数据
- 描述:本实验实现SPI主模式以DMA方式往板上的 SPI Flash 发出写命令和写入数据,然后以DMA方式从同一位置发读命令并读出数据

•结果:写入和读出的数据相同,即成功

软/硬件环境搭建

• 硬件:

-评估板:LPC824Lite-V1.0

• 工程位置

-..\peri_example\spi\handson_spi_flash_dma\project_spi_flash_dm a.uvprojx

实验步骤

- 第一步 动手添加代码,配置发送DMA描述符的源地址和目标地址 (在main_spi_flash_dma.c中搜索"ToDo"字符串,即可找到添加处)
- 第二步 编译下载程序,运行。LED2亮,表明通讯成功;LED1亮, 表明通讯失败

相关底层驱动APIs说明

- 1. 初始化SPI。使能SPI时钟供给和软复位SPI模块 STATIC INLINE void Chip_SPI_Init(LPC_SPI_T *pSPI);
- 2. 配置SPI。配置SPI CFG寄存器以及对于主模式,使所有片选信号无效 STATIC INLINE void Chip_SPI_ConfigureSPI(LPC_SPI_T *pSPI, uint32_t config);
- 3. 设置SPI模式速率(位率)
 uint32_t Chip_SPIM_SetClockRate(LPC_SPI_T *pSPI, uint32_t rate);
- 4. 设置SPI延时参数
 void Chip_SPIM_DelayConfig(LPC_SPI_T *pSPI, SPIM_DELAY_CONFIG_T *pConfig);

SECURE CONNECTIONS FOR A SMARTER WORLD