Starboard Matlab Team Final Presentation

By Peter Le, Jeremy Doan, Christopher Valerio, Peter Gomez

Table of contents

- 01 Overview of Code 02 Micromechanics
- 03 Laminate Layup 04 Structures
- 05 Loads 06 SE 160A Code
- 07 Failure Criteria 08 Validation

Overview of Matlab Code

Inputs Files:

- Master Input
- Aerodynamics Input

Code Functions

- Laminate Properties
- Wing structure
- Loads
- SE 160A Code (Structural Mechanics)
- Laminate Analysis

Output File

Master Output

Micromechanics

```
% Convert AFW units
   iAFW = Input Properties. Input Units:
       Input Properties.AFW = Input Properties.AFW*4.82253e-5; % convert to 1b/in^2
       Input Properties.AFW = Input Properties.AFW*0.001; % convert to kg/m^2
Vf = 1 / (1+ (Fiber.pf + Resin.pm)) * (Input Properties.RC / (100 - Input Properties.RC)); % Fiber Volume Fraction
Vm = 1 - Vf; % Matrix Volume Fraction
% t ply = (Input Properties.AFW / Fiber.pf) * ((1 + (Fiber.pf / Resin.pm)) * (Input Properties.RC / (100 - Input Properties.RC)));
t ply = Input Properties.AFW / (Fiber.pf * Vf); % Lamina (Ply) Thickness
rho_c = Input_Properties.AFW / ((1 - (Input_Properties.RC/100)) * t_ply); % Composite Density
E L = Fiber.Efl * Vf + Resin.Em * Vm; % Young's Modulus (Longitudinal) E1
E_T = Resin.Em / ((1 - Vf) * (1 - (Resin.Em / Fiber.Eft))); % Young's Modulus (Transverse) E2
G LT = abs(Resin.Gm / (1 - Vf * ((1 - Resin.Gm) / Fiber.GFLT))); % Shear Modulus (Transverse) G12
v LT = (Fiber.vFLT * Vf) + (Resin.vm * Vm); % Poisson's Ratio v12
v TT = (Fiber.vFTT * Vf) + (Resin.vm * Vm); % Poisson's Ratio, Transverse v22
G TT = E T / (2 * (1 + v TT)); % Shear Modulus, Transverse G22
F_fT = Fiber.Efl * Fiber.emt;
F_1T = F_fT * (Vf + (Resin.Em / Fiber.Efl) * Vm); % Fiber Tension Strength
```

Purpose:

- Analyze the properties of a single-layer lamina by combining fiber and resin data.
- Feed effective properties into later laminate-level structural and failure analysis.

Process:

- Import material properties from excel file, containing values for mechanical, thermal, and physical properties.
- User defines material combination and conditions
 - o Input: AFW, RC, fiber/matrix properties from student database
- Code then uses Micromechanic equations to blend the fiber and resin contributions into effective lamina properties.
 - Output: Lamina properties are written into Student Database

Variable	Description	Units		Car	bon		Boron	Kevlar	Glass
	Material ID Number		101	102	103	104	105	106	107
	Material Name:		T300	IM6	IM7	Ultra Mod Carbon	Boron	Kevlar 49	S2 Glass
	Fiber Diameter	inch	0.0003	0.0003	0.0003	0.0003	0.0056	0.00046	0.00036
Eft	Young's Modulus (Longitudinal)	lb/in ²	33500000	36330000	40030000	70000000	59030400	6300000	12750000
Err	Young's Modulus (Transverse)	lb/in ²	2175000	2020000	2755700	1100000	5764370	1000000	12750000
G _{fLT}	Shear Modulus (L-T plane)	lb/in ²	4000000	7390000	3916000	2700000	2596100	400000	5170000
G _{fTT}	Shear Modulus (T-T plane)	lb/in ²	1015000	1200000	1015000	700000	2377000	220000	5170000
V _{fLT}	Poisson ratio (L-T plane)		0.2	0.26	0.2	0.2	0.25	0.36	0.2
V _{fTT}	Poisson ratio (T-T plane)		0.2	0.33	0.2	0.25	0.21245	0.36	0.2
Pr	Weight Density	lb/in ³	0.06358	0.063	0.0643	0.072	0.09393	0.052	0.089
$\alpha_{\rm fL}$	Thermal expansion coefficient (Longitidinal)	(in/in)/°F	-0.0000004	-0.000000566	-0.0000001	-0.00000055	0.0000089	-0.0000027	0.0000031
α_{fT}	Thermal expansion coefficient (Tranverse)	(in/in)/°F	0.0000067	0.0000018	0.0000056	0.0000056	0.0000089	0.0000033	0.0000031
Kr	Heat Conduction (Longitudinal)	BTU/hr/ft²/°F/in	580	580	600	600	22	1.7	21
Kπ	Heat Conduction (Transverse)	BTU/hr/ft²/°F/in	58	58	60	60	22	1.7	21
FR	Tension strength	lb/in ²	362590	415000	751295	150000	392900	435000	665720
F _{FC}	Compression strength	lb/in ²	-290000	-367000	-464120	-150000	-936070	-75000	-355340
€ _{mt}	Tension Strain - Ultimate	in/in	0.0109	0.0115	0.0188	0.0022	0.0067	0.075	0.0523
E mr	Compression Strain - Ultimate	in/in	-0.0087	-0.0102	-0.0116	-0.0022	-0.0159	-0.0042	-0.028

Variable	Description	Units		Ероху		Polyester	Vinyl Ester
	Material ID Number		201	202	203	204	205
	Material Name:		3501-6	8551-7	5250-4 RTM	polyester	vinyl ester
Em	Young's Modulus	lb/in ²	630000	591700	670000	470000	500000
G _m	Shear Modulus	lb/in ²	231600	214366	248000	170000	170000
Vm	Poisson ratio		0.36	0.38	0.35	0.38	0.38
ρπ	Weight Density	lb/in ³	0.0469	0.046	0.045	0.042	0.0457
α_n	Thermal expansion coefficient	(in/in)/°F	0.0000309	0.00002	0.00002	0.00006	0.00035
Κ,	Heat Conduction	BTU/hr/ft²/°F/in	1.25	1.25	1.25	1.25	1.25
β	Moisture Absorption	(in/in)/(%)	0.33	0.33	0.33		
F _{mt}	Tension strength	lb/in ²	8085	14358	14900	10400	11000
F _{mc}	Compression strength	lb/in ²	-17180	-18850	-30380	-51080	-54030
F _{ms}	Shear Strength	lb/in ²	12600	16070	17930	21400	22700
€ mt	Tension Strain - Ultimate	in/in	0.04	0.04	0.04	0.04	0.04
εmc	Compression Strain - Ultimate	in/in	-0.05	-0.05	-0.05	-0.03	-0.03
γm	Shear Strain - Ultimate	in/in	0.06	0.09	0.09	0.15	0.15
T _{glass}	Glass Transition Temperature	°F	420	390	390	150	
T _{max}	Maximum Operating Temperature	°F	300	300	300		
	Reference						

Carbon Properties

Resin Properties

Variab	ole Description	Units		Carbon/epoxy				Kevlar-49/epoxy	S2-glass/epoxy
1	Material ID Number		301	302	303	304	Boron/epoxy 305	306	307
2	Material Name:		T300/3501-6	uni (IM6/3501-6)	uni (IM7/977-3)	Woven (AGP370-5H/3501-€	uni (Boron/epoxy)	uni (kevlar/epoxy)	uni (Sglass/epoxy)
3	V _f Fiber Volume Fraction		0.63	0.635 (.66)	0.65	0.62	0.5	0.6	0.5
4	E ₁ Young's Modulus (Longitudinal)	lb/in ²	21300000	23300000	27700000	11200000	29200000	11600000	6500000
5	E ₂ Young's Modulus (Transverse)	lb/in ²	1500000	1395000	1440000	10900000	3150000	800000	1600000
6	E ₃ Young's Modulus (Out-of-Plane)	lb/in ²	1500000	1395000	1440000	2000000	3150000	800000	1600000
7	G ₁₂ Shear Modulus (1-2 plane)	lb/in ²	1000000	916000	1130000	940000	780000	310000	660000
8	G ₁₃ Shear Modulus (1-3 plane)	lb/in ²	1000000	916000	1130000	740000	780000	310000	660000
9	G ₂₃ Shear Modulus (2-3 plane)	lb/in ²	540000	520000	600000	590000	600000	260000	550000
LO	v ₁₂ Poisson Ratio (1-2 plane)		0.27	0.2965	0.35	0.06	0.17	0.34	0.29
1	v ₁₃ Poisson Ratio (1-3 plane)		0.27	0.2965	0.35	0.37	0.17	0.34	0.29
12	v ₂₃ Poisson Ratio (2-3 plane)		0.45	0.468	0.45	0.45	0.4	0.4	0.45
L3	ρ Weight Density	lb/in ³	0.058	0.0571	0.058	0.058	0.073	0.05	0.072
14	α_{11} Thermal Expansion Coefficient (Longiitudinal)	(in/in)/°F	-0.0000005	-0.0000005	-0.0000005	0.0000019	0.0000034	-0.0000011	0.0000039
15	α 22 Thermal Expansion Coefficient (Transverse)	(in/in)/°F	0.000015	0.0000124	0.0000124	0.0000021	0.000017	0.000033	0.0000167
16	α 33 Thermal Expansion Coefficient (Out-of-Plane)	(in/in)/°F	0.000015	0.0000124	0.0000124	0.000029	0.000017	0.000033	0.0000167

Combination Properties

Laminate Layup

- Defines the stacking sequence, ply thickness, and orientation.
- Each row shows a single ply with:
 - o Lamina ID
 - Orientation angle
 - thickness

	La	1			
	Total Numb	per of Plies:	4		
	Lamina ID	Lamina ID θ_i (degree)			
12					
11					
10					
9					
8					
7					
6			5 S		
5					
4	301	45	0.006		
3	301	-45	0.006		
2	301	-45	0.006		
1	301	45	0.006		

Structures

- Assumes Eppler e1230 airfoil
 - Linear interpolation is conducted between three airfoils along the wing to create profiles for the entire wing
- Each segment is assigned an laminate ID which will provide the segment's mechanical properties

Structures

- Inputs:
 - Airfoils along the wing
 - Segment laminate ID assignments
- Outputs:
 - Modulus weighted centroid (MWC)
 - Modulus weighted moment of inertia (MWMI)
 - Area and perimeter of each segment
 - Area encompassed between segment centroids and MWC
 - Relevant for shear flow calculation

Laminate ID	(#)	node (i)	node (j)	Н	t inch	ρ lb/in^3	Ex Msi	Gxy Msi
1	1	1	2		2	2	5	6
2	2	2	3		2	2	5	6
3	3	3	4		2	2	5	6
4	4	4	5		2	2	5	6
5	5	5	6		2	2	5	6
6	6	6	7		2	2	5	6
1	7	7	8		2		5	6
2	8	8	9		2	2	5	6
3	9	9	10		2	2	5	6

Loads

The loads section of the MATLAB code defines the aerodynamic loading applied to the wing and calculates the corresponding stress resultants.

					V-N Diagram With Gust Diamond	/ 4 . 7
Variable	Description	Value	Units		PHAA (137,4,10,0) PLAA (190,0,10,0)	/ ↑ ↑ 2
dC _L /da	Lift Curve Slope	0.0843	1/degree	10		pz ^{def} <u>Lift</u> /≱
a _o	Zero Lift Angle	-2.3	degree			$pz = \underline{Ent}$
C _{L-max} (+)	Max Lift at Stall (+)	1.61	1			
a _{stall} (+)	Stall Angle (+)	16	degree			// // y
C _{L-max} (-)	Max Lift at Stall (-)	-1.56	1			$\mathcal{L} = \mathcal{L} = $
a _{stall} (-)	Stall Angle (-)	-20	degree	pr.(b)		
C mo	Wing Moment Coefficient	-0.045	1	Street		
C_{DoA}	Parasitic Drag - Fuselage	0.024	1		Vcruise Vdive Vflutter	
C_{DoW}	Parasitic Drag - Wing	0.008	1			mx def Dist.
C_{DiW}	Induced Drag Coefficient	0.0558	1			
\mathbf{d}_0	Spanwise drag amplification	1	1			Moment py ^{def} Drag
d ₁₀	Spanwise drag amplification	0.2	1		NHAA (753, -3.0) NLAA (190.0, -3.0)	—
Hp	Maximum Motor Power	350	Нр	nd.		
η	2-Bladed Propeller (75" Dia) Efficiency	90	%]	0 50 100 150 200 250	Y
					Aircraft Speed (Knots)	$X \qquad W \stackrel{\text{def}}{=} \underline{\text{Weight}}$

SE 160A Code: Axial Stress

• Inputs:

- Segment Centroid location
- Segment Modulus
- Airfoil EA
- Segment MWMI
- Segment Thickness

Outputs

- Axial stress/ Nx
- Bending compliance

$$\sigma_{xx} = E_t\{1, -y, -z\} \begin{bmatrix} \frac{1}{EA} & 0 & 0\\ 0 & k_{yy} & -k_{yz}\\ 0 & -k_{yz} & k_{zz} \end{bmatrix} \begin{Bmatrix} V_x\\ M_z\\ -M_y \end{Bmatrix}$$

Non Homogeneous Euler Beam Theory Equation for Axial Stress

$$k_{yy} = \frac{EI_{yy}}{EI_{yy}EI_{zz} - EI_{yz}^2}$$

$$k_{zz} = rac{EI_{zz}}{EI_{yy}EI_{zz} - EI_{yz}^2}$$
 $k_{yz} = rac{EI_{yz}}{EI_{yy}EI_{zz} - EI_{yz}^2}$

Bending Compliance Formulas

SE 160A Code: Shear Flow

- Inputs
 - Airfoil MWMI
 - Segment Modulus
 - Segment Centroid
 - Airfoil EA
- Outputs
 - Shear Stress/Flow
 - Shear Center
 - Wing Twist/ Twist Rate

Matrix approximate shear flow solution

$$\theta = \sum_{n} \frac{d\theta}{dx} * L$$

Wing Twist Equation

Note: Airfoil is assumed to have two cells due to the shear web

Laminate Analysis

Inputs:

- Ply mat'l ID
- Ply orientations
- Ply thicknesses

Outputs:

- Eff. moduli
- Ply failure num.
- Ply failure type
- Ply failure phase
- Failure ratio/MS

Variable	Description	Value	U	nits
	Input Units (1 = US, 2 = SI)	1		
	Output Units (1 = US, 2 = SI)	1		
n	Number of plies (12 maximum)			Į.
N_{χ}	Inplane x-direction load	0.00E+00	(lb/in	
N_{y}	Inplane y-direction load	0	(lb/in	То
N_{xy}	Inplane shear load	0	(lb/in	_
M_{x}	Bending Moment (about x-axis	0	(lb-in)	La
M_v	Bending Moment (about y-axis	0	(lb-in/	
M_{xy}	Twisting Moment	0	(lb-in)	
TREF	Temperature (Reference)	0	(-F) O	
T	Temperature (Operating)	0	(°F) o	
SF	Safety Factor:			
F* ₁₂	Tsai-Wu Stress Interaction Factor			3
	Laminate Region for analysis	2	_	
	10 1000			

La	2	
Total Numb	er of Plies:	8
Lamina ID	θ_i (degree)	t _{ply} (inch)
301	-45	0.006
301	45	0.006
301	-45	0.006
301	45	0.006
301	-45	0.006
301	45	0.006
301	-45	0.006
301	45	0.006

Laminate Analysis cont.

Inputs:

- Ply mat'l ID
- Ply orientations
- Ply thicknesses

Outputs:

- Eff. moduli
- Ply failure num.
- Ply failure type
- Ply failure phase
- Failure ratio/MS

Laminate Analysis cont.

Failure Criteria

- Max Stress

$$ratio = \frac{\sigma_{mech,p}}{\sigma^*}$$

$$MS = \frac{\sigma^*}{\sigma_{max}} - 1$$

Stress Component	Failure Phase	Failure Type
$\sigma_{_{\scriptscriptstyle X}}$	Fiber	Tension (if positive), Compression (if negative), Evaluate based on F _{1C} : Fiber compression Micro-buckling Delamination
σ_{y}	Matrix	Tension (if positive), Compression (if negative)
τ_{xy}	Matrix	Shear

Buckling

New formulations (Prof. H. Kim's slides)

- Uses D matrix terms
- For combined loading
- Assumes 2 compression loaded SS edges, transverse edges are clamped
 - o CBF ranges from 0.25 6
- 4 SS edges
 - o CBF ranges from 0.25 3

$$N_{xcr} = \lambda_{cr} \frac{\pi^2 D_{11}}{b^2}$$

$$\sigma_{c,crit} = rac{N_{x,crit}}{t_{tot}}$$

Failure Criteria (Buckling)

- Max Stress

$$\sigma_{c,crit} = rac{N_{x,crit}}{t_{tot}}$$

$$ratio_{combined} = \left(\frac{\sigma_c}{\sigma_{c,crit}}\right) + \left\| \left(\frac{\tau}{\tau_{crit}}\right) \right\|$$

$$ratio = \frac{\sigma_{mech,p}}{\sigma^*}$$

Validation: Shear Flow

Validation: Twist and Shear Center

- Geometry: 12 in x 12 x 144 in hollow cube with a shear web at 4 in
 - Wall Thickness = .1 in
- Load Case: Applied point of 1000 lbf upward on Y = 12 in, Z = 0
- Twist: Matlab = .0723 degrees, Hand Calculation = .083, Solidworks = .0826
- Shear center calculated to be Y = 5.39 in, Z = 6 in Matlab and Solidworks

Validation: Buckling Stress

$$\tau_{CR} = \frac{k\pi^2 p_{66}}{a^2}$$
; where $k = 4(\frac{a}{b})$

$$N_{xcr} = \lambda_{cr} \frac{\pi^2 D_{11}}{b^2} D_{ij} = \frac{1}{3} \sum_{k=1}^{n} \overline{Q}_{ij}^{k} (z_k^3 - z_{k-1}^3)$$

sig_cr_comp	4.7378e+03
sig_cr_shear	2.6152e+03

- Critical Buckling Factor Scaled by 2 = 0.5
- Ks = 0.6
- (σ cr)compression % error = 3.7%
- (σcr)shear % error = 5.7%

 Compared to Abaqus Analysis