OM 2020 — Stage 1

Jakub Kądziołka

October 9, 2020

Contents

1 Series I (September) 1.1 Problem 1
1 Series I (September)
1.1 Problem 1
theory Problem1 imports Complex-Main begin
Let a,b be real numbers. Let's assume that, for all real numbers x,y the inequality $ (ax+by)(ay+bx) \le x^2+y^2$ is satisfied. Show that $a^2+b^2 \le 2$
theorem $OM1$: fixes $a\ b$:: $real$ assumes $given$: $\bigwedge x\ y$:: $real$. $ (a*x + b*y)*(a*y + b*x) \le x^2 + y^2$ shows $a^2 + b^2 \le 2$ proof $-$
from given [where $x=1$ and $y=1$] have $(a+b)^2 \le 2$ by $(simp\ add:\ power2\text{-}eq\text{-}square)$
moreover from given [where $x=1$ and $y=-1$] have $(a-b)^2 \le 2$ by $(simp\ add:\ power2\text{-}eq\text{-}square\ right\text{-}diff\text{-}distrib')$ ultimately have $(a+b)^2+(a-b)^2\le 4$ by $auto$ moreover have $(a+b)^2+(a-b)^2=2*(a^2+b^2)$ by $algebra$ ultimately show $a^2+b^2\le 2$ by $auto$
qed end