Optimal number of threads in parallel computing

Pavel Kazenin, www.linkedin.com/in/pavelkazenin/, pavel.kazenin@gmail.com

Abstract

In this article, a method for determining the optimal number of processing threads in multithreaded programs is described and experimentally verified for quick sort algorithm.

Introduction

One of the most common problems a software developer faces when developing multithreaded program is choosing optimal number of simultaneously running threads processing a data set. Increasing the number of threads reduces execution time of each thread but increases an overhead imposed by switching application context between threads and possible pre- and post-processing operations.

In this article a simple method is suggested to estimate the optimal number of threads n_{min} by making two measurements for two different arbitrary number of threads m and n. Theoretical results are then verified for parallel quick sort. Implementation of the algorithm and test programs can be found on <u>GitHub</u>.

General equations and formulas

Execution time to process volume v of data by n threads can be expressed as

$$T(v,n)=T_n=X(\frac{v}{n})+Y(vn)+V(n)+Z(v)$$

where X(p) is execution time of each thread, Y(p) is overhead caused by multithreading and post-processing of intermediate results, V(n) is time needed to set up threads before and clean them up after data processing. We can ignore V(n) as it is small comparing to X and Y for $v \gg n$: $V(n) \approx 0$. Function Z(p) is independent of n and can be determined from boundary conditions:

$$T(v,1)=X(v) \to Y(v\cdot 1)+Z(v)=0 \to Z(v)=-Y(v)$$

Final formula for T(v, n) can then be written as follows:

$$T(v,n) = T_n = X(\frac{v}{n}) + Y(vn) - Y(v)$$
(1)

The optimal number of threads n_{\min} which satisfies the criteria $T(v, n_{\min}) = \min(T(v, n))$ is a solution of partial differential equation $\partial T(v, n)/\partial n = 0$:

$$\frac{\partial T(n,v)}{\partial n} = \frac{\partial}{\partial n} \left[X(\frac{v}{n}) + Y(vn) - Y(v) \right] = -\frac{v}{n^2} X' + vY' = 0$$

where X' and Y' are derivative functions of X and Y. By solving this equation for n, we derive equation for n_{min} :

$$n_{min}^{2} = \frac{X'(\frac{v}{n_{min}})}{Y'(v n_{min})}$$
 (2)

Functions X(p) and Y(p) are proportional to their corresponding big-O complexity functions x(p) and y(p):

$$X(p) = X_0 x(p); Y(p) = Y_0 y(p)$$

$$X'(p)=X_0x'(p); Y'(p)=Y_0y'(p)$$

We can calculate coefficients X_0 and Y_0 using measurable parameters T_m and T_n :

$$\left\{ T_{m} = X_{0} x \left(\frac{v}{m} \right) + Y_{0} y(v m) - Y_{0} y(v) \\ T_{n} = X_{0} x \left(\frac{v}{n} \right) + Y_{0} y(v n) - Y_{0} y(v) \right\} \rightarrow \left\{ X_{0} = \frac{T_{n} (y(v m) - v(v)) - T_{m} (y(v n) - v(v))}{x \left(\frac{v}{n} \right) (y(v m) - v(v)) - x \left(\frac{v}{m} \right) (y(v n) - v(v))} \\ Y_{0} = \frac{T_{m} x \left(\frac{v}{n} \right) - T_{n} x \left(\frac{v}{m} \right)}{x \left(\frac{v}{n} \right) (y(v m) - v(v)) - x \left(\frac{v}{m} \right) (y(v n) - v(v))} \right\}$$

Substituting the coefficients into (2), we derive final equation for n_{min}

$$n_{min}^{2}(v) = \frac{T_{m}(y(vn) - y(v)) - T_{n}(y(vm) - y(v))}{T_{n}x(\frac{v}{m}) - T_{m}x(\frac{v}{n})} \cdot \frac{x'(\frac{v}{n_{min}})}{y'(vn_{min})}$$
(3)

Root function of this equation $n_{min}(v)$ is the optimal number of threads to process volume v of data.

Parallel quick sort

For parallel quick sort and post-sort linear merge of the results, the complexity functions are $x(p) = p \ln p$ and y(p) = p, respectively, and X(p) and Y(p) and their derivatives can be written as follows:

$$X(p) = X_0 p \ln p; Y(p) = Y_0 p$$

$$X'(p)=X_0(\ln p+1); Y'(p)=Y_0$$

Substituting the above formulas into (3), we derive equation for n_{min} :

$$n_{min}^{2} = \frac{m \, n \, (T_{m}(n-1) - T_{n}(m-1))}{T_{n} n \ln\left(\frac{v}{m}\right) - T_{m} m \ln\left(\frac{v}{n}\right)} \cdot \left(\ln\left(\frac{v}{n_{min}}\right) + 1\right) \tag{4}$$

There is no exact analytical solution of this equation, however the equation can be solved numerically:

$$n_{\min}^2 = -A \ln n_{\min} + B \tag{5}$$

where

$$A = \frac{mn(T_{m}(n-1) - T_{n}(m-1))}{T_{n}n\ln(\frac{v}{m}) - T_{m}m\ln(\frac{v}{n})}; \quad B = A(\ln v + 1)$$

See Appendix A for numeric solution of equation (5).

In case of very large data volume $v \gg n \approx m$ and $\ln v \gg \ln n \approx \ln m \approx 1$, $n_{min} = const(v)$ and

$$n_{min} \approx \left(\frac{m n (T_m(n-1) - T_n(m-1))}{T_n n - T_m m} \right)^{\frac{1}{2}}$$
 (6)

Multi-dimentional parallel computing

For multi-dimentional computing algorithms, the algorithm complexity can be written as power function of degree k: $x(p) = p^k$. For example, bubble sort of random array has complexity of $x(p) = p^{1.5}$. For such algorithms, functions X(p) and Y(p) and their derivatives can be expressed as

$$X(p)=X_0p^k$$
; $Y(p)=Y_0p$

$$X'(p) = X_0 k p^{k-1}; Y'(p) = Y_0$$

Substituting the above formulas into (3), we derive equation for n_{min} :

$$n_{min}^{2} = \frac{T_{m}v(n-1) - T_{n}v(m-1)}{T_{n}(\frac{v}{m})^{k} - T_{m}(\frac{v}{n})^{k}} \cdot k\left(\frac{v}{n_{min}}\right)^{k-1}$$

After all reductions, we get final formula for n_{min} :

$$n_{min} = \left(\frac{m^k n^k k \left(T_m(n-1) - T_n(m-1) \right)}{T_n n^k - T_m m^k} \right)^{\frac{1}{k+1}}$$
 (7)

Note that n_{min} does not depend on volume v, meaning we don't have to wait for single threaded and multithreaded processes to complete the whole data array, instead, we measure T_m and T_n for a portion of the entire data set.

Another interesting fact is that for k=1, that is, linear complexity x(p)=p, the formula reduces to expression (6) we previously derived for quick sort in case of $v \gg n \approx m$:

$$n_{\min} \approx \left(\frac{m n (T_m(n-1) - T_n(m-1))}{T_n n - T_m m}\right)^{\frac{1}{2}}$$

This is because for huge volume v, $O(v \ln v) \approx O(v)$, in other words, for large data array, the complexity of quick sort algorithm becomes linear.

Experimental results for Parallel Quick Sort algorithm

n	1	2	3	4	6	8	11	16	23	32	45	64	91	128	181
T_n	1249	671	546	437	452	469	546	686	890	1155	1514	1966	2652	3572	4914
n_{min}	4.01	4.07	4.01	4.35	4.75	5.02	5.13	5.37	5.57	5.83	5.84	6.18	6.35	6.45	6.54

Table 1. Execution time in milliseconds and calculated optimal number of threads as a function of number of threads, m=1.

Figure 1. Execution time for parallel quick sort. Data set is a random array of long integers, volume $v\!=\!10^7$.

Figure 2. Theoretical n_{min} for quick sort, m=1. Data set is a random array of long integers, volume $v=10^7$

Appendix A. Numeric solution of $x^2 = -A \ln(x) + B$

Below is implementation of numeric solution of the equation (5) in Java programming language. Root of the equation is the optimal number of threads for parallel quick sort.

```
Numeric solution of equation x^2 = -a*ln(x) + b.
   The root of the equation is the optimal number of threads for parallel quick sort.
* @param
                       volume of data set
   @param m
                       first measured number of threads
   @param n
                       second measured number of threads
   @param tm
                       execution time for m number of threads
                       execution time for n number of threads
   @param tn
* @return nOptimal optimal number of threads for parallel quick sort or -1
* @throws IlligalArgumentException when v \le 0 or m \le 0 or t = 0 or t = 0 or t = 0 or t = 0
*/
public static int calculateOptimalThreadsQuickSort (
        int v, int m, int n, long tm, long tn) throws IllegalArgumentException {
            if (v <= 0) throw new IllegalArgumentException("illegal arguments, v <= 0");</pre>
                         throw new IllegalArgumentException("illegal arguments, m <= 0");</pre>
            if (m \le 0)
            if (n <= 0) throw new IllegalArgumentException("illegal arguments, n <= 0");</pre>
            if (tm <= 0) throw new IllegalArgumentException("illegal arguments, tm <= 0");</pre>
            if (tn <= 0) throw new IllegalArgumentException("illegal arguments, tn <= 0");</pre>
            if (m == n) throw new IllegalArgumentException("illegal arguments, m == n");
            double x = 1;
            double f1, f2, df1, df2;
            double a = (n*m*(tm*(n-1)-tn*(m-1)))/(tn*n*Math.log(v/m)-tm*m*Math.log(v/n));
            double b = a*(Math.log(v)+1);
            double delta = 1;
            double sigma = 1;
            for (int i=1; Math.abs(sigma) > 0.00001 && i<100; i++) {</pre>
               f1
                     = x*x;
               df1
                     = 2*x;
                     = -1*a*Math.log(x)+b;
               f2
                     = -1*a/x;
               delta = (f1-f2)/(df1-df2);
               x = x-delta;
               sigma = delta/x;
       }
       return (x == Double.valueOf(Double.NaN) ? -1 : (int)Math.ceil(x));
}
```