Sistemas Operacionais

CCP/SIF
UNISUL – Tubarão

Cassio Brodbeck Caporal

cassio{NOSPAM}ostec.com.br

Agenda

- Revisão;
- Kernel monolítico, microkernel, arquitetura em camadas;
- Princípios da concorrência;
- Interrupções e exceções;
- Operações de E/S;
- Buffering, spooling.

Agenda

- Buffering, spooling;
- Definição do trabalho final:
 - Tema;
 - Equipes;
 - Formato de apresentação.

Concorrência

A saber:

- A multiprogramação surgiu diante das necessidades apresentadas por sua predecessora;
- Sistemas monoprogramáveis despercidam recursos computacionais (utilização de CPU, memória principal);

Concorrência

- Desafios da multiprogramação:
 - Utilização concorrente de recursos;
 - Execução continuada de programas quando o mesmo "perde" o uso de processamento;
 - Integridade diante de todo sistema computacional.
- A concorrência é a base para sistemas multiprogramáveis.

- Evento assíncrono:
 - Desvio (forçado) no fluxo de execução de um programa;
 - Sinalização de algum dispositivo computacional;
 - Concorrência existe devido ao mecanismo de interrupção.
 - O tal do pacote de rede chegando...

- Unidade de Controle:
 - Ao término da execução de cada instrução, interrupções são verificadas;
 - Programa corrente é interrompido para o tratamento da exceção;
 - Rotinas específicas devem tratar cada tipo de interrupção.

- Novamente...
 - Para que um programa interrompido possa voltar a execução é necessário que certas informações sejam gravadas (preservadas);
- Novamente (2) ...
 - Para cada tipo de interrupção, existe uma rotina específica para o tratamento;

- Métodos para implantar interrupção:
 - Vetor de interrupção;
 - Estrutura com todas as informações de rotinas.
 - Registrador de status;
 - Apenas uma única rotina de tratamento.
- /proc/interrupts.

Exceção

- Evento síncrono;
- Ocorre na camada de software;
 - Tratamento de erros ou situações que podem causar mau funcionamento de uma instrução;
- O mais importante, é (ou espera-se que seja) previsível.

- Antes...
 - Operações de E/S controladas pelo próprio processador: instruções de E/S;
 - Grande dependência entre CPU e dispositivos de E/S;
- O controlador (E/S) garante o não relacionamento direto da CPU com E/S;

- Modelo de utilização do controlador:
 - Busy wait ou E/S controlada por programa:
 - Testes permanentes sobre o dispositivo de E/S para verificar a ocorrência de algum evento;
 - Grande desperdício de CPU: a execução das instruções na CPU são muuuito mais rápidas que uma operação de E/S;

- Modelo de utilização do controlador:
 - Polling:
 - Após o início da transferência a CPU fica livre;
 - Unidades de tempo verificam a ocorrência de algum evento de E/S;
 - Problema? Existência de muitos periféricos
 - Interrompimento constante de processos;
 - Solução? Interrupções.. AHHH!

- Interrupções...
 - Fim da verificação periódica da CPU pela ocorrência de algum evento;
 - O controlador funciona como um mensageiro através da utilização de interrupções, quando algo DE FATO ocorrer;
 - E/S controlada por interrupção.

- E/S controlada por interrupção:
 - Problema? Sim, grande volume de dados!
 - Muita interferência da CPU;
 - Solução? Sim, Direct Memory Access (DMA);
 - O processador só "se mete" no início e término da transferência;
 - O restante, é feito entre o controlador do E/S e a memória principal.

Buffering

- O que é um *buffer?*
 - Genericamente, um local de armazenamento de dados (temporário ou não);
- Buffering;
 - Utilização da memória principal para transferência de dados entre dispositivos de E/S;
 - Objetivo? Aumentar o desempenho do processador.

Buffering

- Novamente
 - Aumentar o desempenho não só do processador, mas de todo o sistema;
 - Permite operações simultâneas em regiões diferentes;
 - Exemplo: CPU está preocupado com o buffer e o dispositivo de E/S continua lendo ou escrevendo dados.

Buffering

- Importante contribuição desta técnica:
 - Permite diminuir a disparidade de tempo entre a execução de uma instrução pelo processador e uma operação (leitura e gravação) de um dispositivo de E/S.

Spooling

- Ahhh, os sistemas batch;
 - 1950: introduzido com o objetivo de aumentar a concorrência e eficiência em SOs;
- Utilização de uma área de disco (memória secundária);
 - Graaaande buffer, no entanto, mais lento!
- E o spool da impressora?