Fonctions usuelles - TD2 Fonctions trigonométrique; Résoudre f(x) = 0

Exercice 1. Echauffement

- a) Simplifier $\sin(x + 2011\pi)$
- b) Simplifier $\sin(x + \frac{7\pi}{2})$
- c) Calculer la dérivée de $\cosh(x)\cos(x) + \sinh(x)\sin(x)$
- d) Simplifier $\cosh(x)^3 \sinh(x) + \cosh(x) \sinh(x)^3$

Solution de l'exercice 1.

- a) On a $\sin(x + 2011\pi) = \sin(x + \pi)$
- b) On a $\sin(x + \frac{7\pi}{2}) = \sin(x \frac{\pi}{2}) = -\sin(-x + \frac{\pi}{2}) = -\cos(x)$
- c) On trouve $2\cos(x)\sinh(x)$
- d) On utilise $\cosh(x) \sinh(x) = \frac{\sinh(2x)}{2}$ et $\sinh(x)^2 + \cosh(x)^2 = \cosh(2x)$ pour trouver $\frac{1}{4} \sinh(4x)$

Exercice 2. Résolution d'équations trigonométriques

Résoudre dans \mathbb{R} les équations trigonométriques suivantes :

- a) $\sin(x) = 0$
- b) $\cos(2x^2) = 1$
- c) $\cos(x) = \frac{1}{2}$
- d) $\cos(x^2) = \cos(3x)$

Solution de l'exercice 2.

- a) On a comme solution $x=0+2k\pi$ ou $x=\pi+2k\pi$ ce qui peut se résumer sous la forme $x=0+k\pi$
- b) On a $2x^2 = 0 + 2k\pi$ d'où $x = \pm \sqrt{k\pi}$ pour $k \in \mathbb{N}$
- c) On a $x = \frac{\pi}{3} + 2k\pi$ ou $x = -\frac{\pi}{3} + 2k\pi$
- d) On a $x^2 = 3x + 2k\pi$ ou $x^2 = -3x + 2k\pi$ ce qui donne $x = \frac{\pm 3\pm\sqrt{9-8k\pi}}{2}$ pour $k \in \mathbb{Z}^-$.

Exercice 3. Résolution de f(x) = 0 par dichotomie

Soit $f: I \longrightarrow \mathbb{R}$ une fonction continue sur l'intervalle I. On suppose qu'il existe $a, b \in I$ tels que $f(a) \leq 0$ et $f(b) \geq 0$. On définit les suites $(a_n)_{n \in \mathbb{N}}$ et $(b_n)_{n \in \mathbb{N}}$ par $a_0 = a, b_0 = b$ et

$$a_n = \begin{cases} \frac{a_{n-1} + b_{n-1}}{2} & \text{si } f(\frac{a_{n-1} + b_{n-1}}{2}) \le 0 \\ a_{n-1} & \text{sinon} \end{cases}, \quad b_n = \begin{cases} \frac{a_{n-1} + b_{n-1}}{2} & \text{si } f(\frac{a_{n-1} + b_{n-1}}{2}) > 0 \\ b_{n-1} & \text{sinon} \end{cases}$$
(1)

- a) Montrer que $\forall n \in \mathbb{N}, |a_n b_n| = \frac{|a-b|}{2^n}$
- b) Montrer que les suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ sont adjacentes.

c) En déduire qu'il existe $\lambda \in I$ tel que $f(\lambda) = 0$ et que $\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} b_n = \lambda$

Solution de l'exercice 3.

- a) On procède par récurrence. L'initialisation est claire. Soit $n \in \mathbb{N}$ tel que $|a_n b_n| = \frac{|a-b|}{2^n}$. Alors $|a_{n+1} b_{n+1}| = |\frac{a_n + b_n}{2} b_n| = |\frac{a_n b_n}{2}| = \frac{|a-b|}{2^{n+1}}$ si $f(\frac{a_{n-1} + b_{n-1}}{2}) \le 0$ et $|a_{n+1} b_{n+1}| = |a_n \frac{a_n + b_n}{2}| = |\frac{a_n b_n}{2}| = \frac{|a-b|}{2^{n+1}}$ si $f(\frac{a_{n-1} + b_{n-1}}{2}) > 0$. Dans tous les cas on a la conclusion
- b) On raisonne encore par récurrence sur la proposition $\mathcal{P}(n)$ "On a $a_n \geq a_{n-1}, b_n \leq b_{n-1}$ et $a_n \leq b_n$ ".
- c) Par le théorème des suites adjacentes, on a que (a_n) et (b_n) tendent vers la même limite λ . De plus on montre par récurrence que $\forall n \in \mathbb{N}, f(a_n) \leq 0$ et $f(b_n) \geq 0$ donc en prenant la limite, on conclut que $f(\lambda) = 0$.

Exercice 4. Résolution de f(x) = 0 par la méthode de Newton

Soit $f: I \longrightarrow \mathbb{R}$ une fonction de classe \mathcal{C}^2 sur un intervalle ouvert I. On suppose que f s'annule en un unique point $a \in I$, et que f' ne s'annule pas sur I, et on définit $g: I \longrightarrow \mathbb{R}$ par g(x) = x - f(x)/f'(x). On suppose en outre qu'on peut trouver un intervalle compact $K \subset I$ contenant a et tel que $g(K) \subset K$. Enfin on fixe $x_0 \in K$ et on définit par récurrence la suite $(x_n)_{n \in \mathbb{N}}$ par $x_{n+1} = g(x_n)$.

- a) Montrer que si la suite $(x_n)_{n\in\mathbb{N}}$ converge, sa limite est nécessairement a.
- b) Justifier que f' et f'' sont bornées sur K. On note $M_2 = \max_{x \in K} |f''(x)|$ et $m_1 = \min_{x \in K} |f'(x)|$. Justifier que $m_1 \neq 0$.
- c) Montrer que

$$\forall x \in K, |g(x) - a| \le \frac{M_2}{2m_1}|x - a|^2$$

- d) En déduire une condition suffisante sur x_0 pour que la suite $(x_n)_{n\in\mathbb{N}}$ converge.
- e) Cet algorithme est-il plus rapide que la dichotomie ou plus lent?

Solution de l'exercice 4.

- a) Supposons que (x_n) converge vers b avec $b \neq a$. Alors, on a g(b) = b car g est continue. En résolvant l'équation, on trouve f(b) = 0 d'où la contradiction.
- b) f' et f'' sont des fonctions continues sur un compact. Elles sont donc bornées et leur bornes sont atteintes ce qui exclut $m_1 = 0$.
- c) D'après la formule de Taylor-Lagrange, on a $\forall x \in K, \exists \xi \in (]a; x[\text{ ou }]x; a[), 0 = f(a) = f(x) + (a-x)f'(x) + (a-x)^2 \frac{f''(\xi)}{2}$. D'où $|g(x) a| = |x a (x-a)\frac{f'(x)}{f'(x)} (a-x)^2 \frac{f''(\xi)}{2f'(x)}| = |(a-x)^2 \frac{f''(\xi)}{2f'(x)}| \le \frac{M_2}{2m_1}|x-a|^2$
- d) Par récurrence, on a facilement que $\frac{M_2}{2m_1}|x_n-a| \leq \left(\frac{M_2}{2m_1}|x_0-a|\right)^{2^n}$. Donc une condition suffisante pour que la suite converge est $\frac{M_2}{2m_1}|x_0-a|^2 < 1$.
- e) La vitesse de convergence est quadratique ce qui est beaucoup mieux que la dichotomie qui est seulement linéaire.