

AN EFFICACY RATING FOR MARCH MADNESS TOURNAMENT SEEDING

Dr. Joe DeMaio and Nathalie Jones

BACKGROUND

March Madness & NCAA Seeding

- Tournament began seeding in 1979
 - → Initially, 32 Team bracket
- 64-team bracket began in 1985:
 - → Teams split into 4 regions
 - → Ranked 1 16 within each region
- Lower seeds expected to place higher in the tournament

BACKGROUND

March Madness & NCAA Seeding

- Tournament began seeding in 1979
 - → Initially, 32 Team bracket
- 64-team bracket began in 1985:
 - → Teams split into 4 regions
 - → Ranked 1 16 within each region
- Lower seeds expected to place higher in the tournament

PROJECT PURPOSE

- How accurate are team seedings?
- Has seeding efficacy increased or decreased over time?
- What influential factors exist?
- Does seeding efficacy vary across tournaments?

ABOUT THE DATA

Data Collected

- NCAA bracket information
 - 1985 2023 Men's tournament
 - 1994 2023 Women's tournament
- Player Salaries
 - **36 years** of NBA player salaries
 - 5 years of WNBA player salaries
- Early Entrant Players
 - 38 years of NBA early entrant players
 - 2 years of WNBA early entrant players

ABOUT THE DATA

Data Scraping Methods

- Python libraries: "requests," "beautifulsoup"
- NBA data available but scattered across various websites and webpages
 - → Wikipedia
 - → ESPN
 - → Basketballreference.com
- Limited sources of WNBA data
 - → Spotrac (player salaries)
 - → DraftKings (early entrants)

PROPOSED METRIC

Proposed metric sums seed value for each team at a fixed round, i:

$$E(year, gender) = \sum_{i} R(year, round(i), gender)$$

The error rate can then be calculated by:

$$e = \frac{E(year, gender) - Best Score}{Worst Score - Best Score}$$

MEASURING TEAM SEEDING EFFICACY

$$(36 + 10 + 3 + 1) \times 4 \text{ Regions} + 1 + 1 + 1 = 203$$

→ If the tournament goes as expected,

E(year, gender) = 203

$$e = \frac{203 - 203}{868 - 203} = \frac{0}{665} = 0.0$$

MEASURING TEAM SEEDING EFFICACY

$$(100 + 58 + 31 + 16) \times 4 \text{ Regions} + 16 + 16 + 16 = 868$$

→ In the worst case,

E(year, gender) = 868

$$e = \frac{868 - 203}{868 - 203} = \frac{665}{665} = 1.0$$

ERROR RATE EXAMPLE

Round Number	<i>E</i> (2023, m)	Best Score	Worst Score
1	191	144	400
2	78	40	232
3	37	12	124
4	23	4	64
5	9	2	32
6	4	1	16
Sum Total	342	203	868

$$e = \frac{E(2023, m) - Best Score}{Worst Score - Best Score} = \frac{342 - 203}{868 - 203} = \frac{139}{665} = 0.201$$

ERROR RATE ACROSS TOURNAMENTS

Distribution of Year Error Rates for NCAA Men's & Women's Leagues

Average Error Rates Overall			
Men's	Women's		
15 %	7 %		

 Slightly less variation in women's tournaments error rates

ERROR RATE BY GENDER OVER TIME

Year Error Rates for Men's & Women's Tournaments Over Time

- Lower error rate in women's tournaments every year except 2006
- Slight overall increase in men's tournaments
- 1998 Largest error rate in women's history
- Harvard (16) vs.
 Stanford (1), 1998

Average Salary for NBA and WNBA Players

EXTREME PAY DISPARITY

INFLUENCING FACTORS: SALARY

Name	Position	2022 Salary
	Average WNBA Player	\$97,381
	Average NBA Player	\$8.2 Million
Steph Curry	Highest paid NBA player	\$51.9 Million
Diana Taurasi	Highest paid WNBA player	\$235,936
Rocky the Mountain Lion	NBA Mascot	\$625K
Harry the Hawk	NBA Mascot	\$600K
Benny the Bull	NBA Mascot	\$400K
Go the Gorilla	NBA Mascot	\$200K

CONCLUSION

	NCAA March Madness Tournament	
Project Purpose	Women's Tournament	Men's Tournament
1. How Accurate are Team Seedings?	7% error rate (overall)	15% error rate (overall)
2. Has Seeding Efficacy Increased or Decreased Over Time?	Relatively steady	Slightly increasing
3. What Influential Factors Exist?	Men's & Women's salaries significantly disparate	
4. Does Seeding Efficacy Vary Across Leagues?	Women's error rate significantly lower	

QUESTIONS

THANK YOU!

APPENDIX

FUTURE WORK

Tournament Simulation

- Aim to study relative distribution of e to different probability estimators
- Fix win probabilities at 50% for each team
- Use historical probabilities for the likelihood that seed i beats seed j for $i \neq j$

Men's vs. Women's Tournament Comparisons

- Analyze time spent playing for top earners within each league
- Analyze the number of top-performing players not drafted
- Analyze placement of top players during the draft

NBA & WNBA SALARIES

AVERAGE NBA PLAYER SALARY (1985 – 2023)

- Little data on WNBA players, only 5 years publicly available
- NBA player salaries display a positive, increasing relationship
- Time accounts for 72.27% of the variation in NBA player salaries
- Salaries should increase by \$176,262
 - \$213,890 per year

NUMBER OF EARLY ENTRANT PLAYERS

- Little data on WNBA early entrant players
- Positive, increasing relationship
- The number of early NBA entrants should increase by 1 – 2 players each year

RELATIONSHIP BETWEEN FACTORS

INFLUENCING FACTORS' RELATIONSHIP

Correlation Between Average NBA Salaries and Number of NBA Early Entrants

- Correlation: 51%, p-value: 0.0011**
- Relatively strong, positive relationship
- As salaries increase, so should the number of NBA early-entrant players

CODE USED


```
ODS all close;
ODS html path = "&filepat" file = "visuals.html";
ODS graphics / outputfmt = svg;
PROC sqplot
 DATA = out.yr clean;
 HISTOGRAM NBA YEAR ERROR /
   fillattrs = (color = "#5B993D")
   transparency = 0.5 name = "men"
   legendlabel = "NCAA Men's Year Error Rate";
 HISTOGRAM WNBA YEAR ERROR /
   fillattrs = (color = "#CBA8E5")
   transparency = 0.5 name = "women"
   legendlabel = "NCAA Women's Year Error Rate";
 DENSITY NBA YEAR ERROR / lineattrs = (color = black)
   transparency = 0.3;
 DENSITY WNBA YEAR ERROR / lineattrs = (color = black)
   transparency = 0.3;
 KEYLEGEND "men" "women" / autoitemsize down = 2
   valueattrs = (size = 12 weight = Bold);
 XAXIS label = "Error Rate"
   values = (0.00 \text{ to } 0.25 \text{ by } 0.05)
   labelattrs = (size = 16 style = Italic weight = Bold)
   valueattrs = (size = 11 weight = Bold);
 YAXIS label = "Frequency"
   labelattrs = (size = 16 style = Italic weight = Bold)
   valueattrs = (size = 12 weight = Bold);
RUN;
ODS html close;
ODS listing;
```


Distribution of Year Error Rates for NCAA Men's & Women's Leagues


```
ODS all close;
ODS html path = "&filepat" file = "visuals.html";
ODS graphics / outputfmt = svg;
PROC sqplot
 DATA = out.yrlg clean;
 STYLEATTRS datacontrastcolors = ("#5B993D" "#CBA8E5");
 SERIES x = YEAR y = YEAR ERROR / group = LEAGUE ID
   markers lineattrs = (thickness = 2) name = "lines"
   markerattrs = (symbol = circlefilled color = black
    size = 3);
 KEYLEGEND "lines" / down = 2
   valueattrs = ( size = 12 weight = Bold);
 XAXIS label = "Year Season Started"
   values = (1985 to 2023 by 1)
   labelattrs = (size = 16 style = Italic weight = Bold)
   valueattrs = (size = 12 weight = Bold);
 YAXIS label = "Error Rate"
   values = (0.000 \text{ to } 0.250 \text{ by } 0.025)
   labelattrs = (size = 16 style = Italic weight = Bold)
   valueattrs = (size = 12 weight = Bold);
RUN:
ODS html close;
ODS listing;
```


Year Error Rates for Men's & Women's Tournaments Over Time


```
ODS all close;
ODS html path = "&filepat" file = "visuals.html";
ODS graphics / outputfmt = svg;
PROC sqplot
 DATA = out.yrlg clean;
 SCATTER x = EARLY ENTRANT PLAYERS y = NBA AVG SALARY;
 INSET ("Observations" = "38" "Correlation" = "0.5104"
   "p-Value" = "0.0011**") / border position = NW
   textattrs = (size = 12 weight = Bold);
 XAXIS labelattrs = (size = 16 style = Italic weight =
Bold)
   valueattrs = (size = 12 weight = Bold);
 YAXIS values = (0 2000000 4000000 6000000 8000000
    10000000)
   valuesdisplay = ("0" "2 million" "4 million"
    "6 million" "8 million" "10 million")
   labelattrs = (size = 16 style = Italic weight = Bold)
   valueattrs = (size = 12 weight = Bold);
RUN;
ODS html close:
ODS listing;
```


Correlation Between Average NBA Salaries and Number of NBA Early Entrants

INFLUENCING FACTORS' RELATIONSHIP

- ► ESPN Internet Ventures. (n.d.). NBA Player Salaries 2023-2024. ESPN. https://www.espn.com/nba/salaries
- ► HoopsHype. (n.d.). *NBA Salaries*. HoopsHype. https://hoopshype.com/salaries/
- McDermott, G. (2023, April 10). Which NCAA players have declared for the 2023 WNBA draft?. DraftKings Network. https://dknetwork.draftkings.com/2023/4/10/23674042/wnba-draft-player-list-2023-early-entrants-eligibility-criteria-ncaa-renounce
- NCAA.com. (2023, April 4). Latest bracket, schedule and scores for 2023 NCAA Men's Tournament. https://www.ncaa.com/news/basketball-men/mml-official-bracket/2023-04-04/latest-bracket-schedule-and-scores-2023-ncaa-mens-tournament

- Sporting News Editorial Team. (2021, September 18). How to get free lunch at Little Caesars Today for UMBC's historic win. Sporting News. https://www.sportingnews.com/us/ncaa-basketball/news/free-lunch-little-caesars-april-2-umbcs-march-madness-win/1bybkpmaoo2a91b05myvtornhy
- Spotrac.com. (n.d.). WNBA rankings. Spotrac.com. https://www.spotrac.com/wnba/rankings/
- Wikimedia Foundation. (2023a, October 7). NCAA Division I men's basketball tournament.
 Wikipedia. https://en.wikipedia.org/wiki/
 NCAA Division I men%27s basketball tournament
- Wikimedia Foundation. (2023b, October 5). 2023 NBA draft. Wikipedia. https://en.wikipedia.org/wiki/2023_NBA_draft

- Wikimedia Foundation. (2023c, October 5). 2023 NBA draft: Early Entrants. Wikipedia. https://en.wikipedia.org/wiki/2023_NBA_draft#Early_entrants
- Wikimedia Foundation. (2023d, September 27). NCAA Division I women's basketball tournament. Wikipedia. https://en.wikipedia.org/wiki/ NCAA_Division_I_women%27s_basketball_tournament