CONCOURS D'ADMISSION 2008

PREMIÈRE COMPOSITION DE MATHÉMATIQUES

(Durée : 4 heures)

L'utilisation des calculatrices n'est pas autorisée pour cette épreuve.

Équations différentielles de Sturm-Liouville

Ce problème est consacré à l'étude d'une équation différentielle avec paramètre. On désigne par $C^{\infty}([0,1])$ l'espace des fonctions réelles de classe C^{∞} sur [0,1].

Première partie

Dans cette première partie, étant donné deux fonctions p et q de $C^{\infty}([0,1])$, on désigne par $A_{p,q}$ l'endomorphisme de $C^{\infty}([0,1])$ défini par

$$A_{p,q}(y) = y'' + py' + qy$$

et par $(D_{p,q})$ l'équation différentielle sur $[0,1]:A_{p,q}(y)=0$.

- 1. Soit y une solution non identiquement nulle de $(D_{p,q})$.
- 1.a) Montrer que les fonctions y et y' ne s'annulent pas simultanément.
- **1.b)** Montrer que les zéros de y sont en nombre fini.
- **2.** Soit y_1 et y_2 deux solutions linéairement indépendantes de $(D_{p,q})$; on suppose que y_1 admet au moins deux zéros et on note a et b deux zéros consécutifs.
- **2.a)** Montrer que y_2 admet au moins un zéro dans l'intervalle ouvert]a,b[. [On pourra procéder par l'absurde et considérer le wronskien W de y_1 et y_2 .]
 - **2.b)** La fonction y_2 peut-elle avoir plusieurs zéros dans a, b?

Étant donné deux fonctions u et v de $C^{\infty}([0,1])$, u ne s'annulant en aucun point, on désigne par $B_{u,v}$ l'endomorphisme de $C^{\infty}([0,1])$ défini par

$$B_{u,v}(y) = (uy')' + vy$$

et par $(E_{u,v})$ l'équation différentielle sur $[0,1]:B_{u,v}(y)=0$.

3.a) Soit y_1 et y_2 deux solutions linéairement indépendantes de $(D_{p,q})$ et soit W leur wronskien. Vérifier la relation

$$y_1 B_{u,v}(y_2) - y_2 B_{u,v}(y_1) = (u' - up)W$$
.

- **3.b)** Montrer que, pour tout couple (p,q), il existe des couples (u,v) tels que Ker $A_{p,q} = \text{Ker } B_{u,v}$ et déterminer tous ces couples (u,v).
 - **4.** On se donne trois fonctions u, v_1, v_2 de $C^{\infty}([0,1])$ et on suppose

$$u(x) > 0$$
 , $v_2(x) < v_1(x)$ pour tout $x \in [0, 1]$.

Pour i = 1, 2, on note y_i une solution non identiquement nulle de l'équation (E_{u,v_i}) ; on suppose que y_2 admet au moins deux zéros et on note a et b deux zéros consécutifs.

4.a) Vérifier la relation

$$[uy_1y_2']_a^b = \int_a^b (v_1(x) - v_2(x))y_1(x)y_2(x) dx.$$

[On pourra considérer $\int_a^b \left(y_1 B_{u,v_2}(y_2) - y_2 B_{u,v_1}(y_1)\right) dx$.]

4.b) Montrer que y_1 admet au moins un zéro dans l'intervalle]a,b[. [On pourra procéder par l'absurde.]

Dans toute la suite du problème on note r une fonction de $C^{\infty}([0,1])$; pour tout nombre réel λ on considère l'équation différentielle sur [0,1]:

$$(D_{\lambda}) y'' + (\lambda - r)y = 0.$$

On note y_{λ} l'unique solution de (D_{λ}) satisfaisant $y_{\lambda}(0) = 0$, $y'_{\lambda}(0) = 1$, et E_{λ} l'espace vectoriel (éventuellement réduit à zéro) des solutions de (D_{λ}) satisfaisant y(0) = y(1) = 0; si cet espace n'est pas réduit à zéro, on dit que λ est valeur propre.

Deuxième partie

- **5.a)** Quelles sont les valeurs possibles de dim E_{λ} ?
- **5.b)** Démontrer l'équivalence des conditions $E_{\lambda} \neq \{0\}$ et $y_{\lambda}(1) = 0$.
- 6. Démontrer les assertions suivantes :
- **6.a)** Toute valeur propre est supérieure ou égale à $\inf_{x \in [0,1]} r(x)$.

6.b) Si
$$y_1 \in E_{\lambda_1}, y_2 \in E_{\lambda_2}$$
 avec $\lambda_1 \neq \lambda_2$, alors $\int_0^1 y_1(x)y_2(x) dx = 0$.

Troisième partie

Dans les troisième et quatrième parties, on désigne par $N(\lambda)$ le nombre des zéros de la fonction y_{λ} dans [0,1] et on se propose d'étudier $N(\lambda)$ en lien avec les valeurs de $y_{\lambda}(1)$, ainsi que la répartition des valeurs propres.

- 7. Dans cette question on examine le cas où r=0 et $\lambda>0$. On désigne par E(a) la partie entière d'un nombre réel a.
 - **7.a)** Calculer $y_{\lambda}(x)$ pour $x \in [0, 1]$.
 - **7.b)** Calculer $N(\lambda)$.
 - **7.c)** Préciser le comportement de $N(\lambda)$ au voisinage d'un point λ_0 .

On ne suppose plus r=0 ni $\lambda>0$. On admettra que la fonction de deux variables $(\lambda,x)\mapsto y_{\lambda}(x)$ est de classe C^{∞} .

8. Dans cette question, on se propose de démontrer que, si $y_{\lambda_0}(1)$ est non nul, $N(\lambda)$ est constant dans un voisinage de λ_0 .

On désigne par $c_1, \ldots, c_n, n \ge 1$, les zéros de y_{λ_0} dans [0,1] avec

$$0 = c_1 < c_2 < \ldots < c_n < 1$$
.

- **8.a)** Montrer qu'il existe une suite strictement croissante $(\xi_j)_{0 \le j \le 2n}$ de nombres réels, possédant les propriétés suivantes :
 - (i) $\xi_0 = 0$, $\xi_{2n} = 1$, $0 < \xi_1 < \xi_2$, $\xi_{2i-2} < c_i < \xi_{2i-1}$ pour $j = 2, \dots, n$;
 - (ii) $(-1)^{j+1}y_{\lambda_0} > 0$ sur $[\xi_{2j-1}, \xi_{2j}], j = 1, \dots, n$;
- (iii) $(-1)^j y'_{\lambda_0} > 0 \text{ sur } [\xi_{2j}, \xi_{2j+1}], j = 0, \dots, n-1.$
- **8.b)** Dans cette question, on considère une fonction F de classe C^{∞} définie sur un ouvert contenant un rectangle compact $I \times J$ de \mathbf{R}^2 . Démontrer l'assertion suivante : pour tout $\varepsilon > 0$ il existe $\delta > 0$ tel que les conditions $s_1, s_2 \in I$ et $|s_1 s_2| < \delta$ impliquent

$$|F(s_1,t) - F(s_2,t)| < \varepsilon$$
 pour tout $t \in J$.

- **8.c)** Montrer que, pour tout λ suffisamment voisin de λ_0 , y_{λ} a exactement un zéro dans chacun des intervalles $[\xi_{2j}, \xi_{2j+1}]$, mais n'en a aucun dans les intervalles $[\xi_{2j-1}, \xi_{2j}]$. Conclure.
 - **9.** Montrer que, pour tout $\lambda \geqslant \rho = \sup_{x \in [0,1]} r(x)$, on a

$$N(\lambda) \geqslant E((\lambda - \rho)^{1/2}\pi^{-1})$$
.

[On pourra utiliser la question 4 et la question 7 en y remplaçant λ par un réel quelconque $\mu < \lambda - \rho$.]

3

- **10.a)** Montrer que, si $y_{\lambda}(1)$ est non nul pour tout λ appartenant à un intervalle I, $N(\lambda)$ est constant dans I.
 - 10.b) L'ensemble des valeurs propres est-il vide ou non vide? fini ou infini?

Quatrième partie

Dans cette quatrième partie, on étudie le comportement de $N(\lambda)$ au voisinage d'un point λ_0 tel que $y_{\lambda_0}(1) = 0$. On écrira $y(\lambda, x)$ au lieu de $y_{\lambda}(x)$, et on rappelle que cette fonction de deux variables est de classe C^{∞} ; l'équation (D_{λ}) s'écrit donc :

(i)
$$\frac{\partial^2 y}{\partial x^2} + (\lambda - r)y = 0.$$

11. Démontrer que la relation (i) entraı̂ne les relations suivantes :

(ii)
$$\frac{\partial^3 y}{\partial x^2 \partial \lambda} + (\lambda - r) \frac{\partial y}{\partial \lambda} + y = 0$$

(iii)
$$\frac{\partial^2 y}{\partial x^2} \frac{\partial y}{\partial \lambda} - \frac{\partial^3 y}{\partial x^2 \partial \lambda} y - y^2 = 0$$

(iv)
$$\frac{\partial y}{\partial \lambda}(\lambda_0, 1) \frac{\partial y}{\partial x}(\lambda_0, 1) = \int_0^1 y(\lambda_0, x)^2 dx > 0.$$

- 12. Montrer qu'il existe un réel $\varepsilon > 0$ ayant les propriétés suivantes :
- (i) si $\lambda \in [\lambda_0 \varepsilon, \lambda_0[$, on a $N(\lambda) = N(\lambda_0) 1;$
- (ii) si $\lambda \in [\lambda_0, \lambda_0 + \varepsilon]$, on a $N(\lambda) = N(\lambda_0)$.
- 13. Montrer qu'on peut écrire les valeurs propres comme une suite croissante infinie $\lambda_1 < \lambda_2 < \dots$, et exprimer $N(\lambda_n)$ en fonction de n.

* *

*