Buscas em grafos

MO417 - Complexidade de Algoritmos I

Santiago Valdés Ravelo https://ic.unicamp.br/~santiago/ ravelo@unicamp.br

"The important graphs are the ones where some things are not connected to some other things."

Eliezer Yudkowsky

Noções básicas

Buscas em grafos

Como percorrer os vértices de um grafo?

- Mais complicado que lista, vetor, árvore binária.
- Podem ser direcionados ou não direcionados.
- Queremos descobrir informações sobre sua estrutura.
- Podemos pensar em cada componente separadamente.
- Objetivo: encontrar uma ÁRVORE GERADORA.

Buscas em grafos

Dois algoritmos:

- 1. Busca em largura (BFS, do inglês **BREADTH-FIRST SEARCH**).
- Busca em profundidade (DFS, do inglês DEPTH-FIRST SEARCH).

Representação de árvores

Como representar uma árvore de busca?

- ► A enraizamos em um **VÉRTICE DE ORIGEM s**.
- \blacktriangleright A representamos com um vetor π de pais.
- ▶ O pai de um vértice \mathbf{v} é $\pi[\mathbf{v}]$.
- ightharpoonup convencionamos que $\pi[s] = NIL$

Algumas propriedades:

- **Existe aresta de** $\pi[\mathbf{v}]$ até \mathbf{v} .
- O caminho de s a v na árvore é:

$$\mathbf{s} \to \cdots \to \pi[\pi[\pi[\mathbf{v}]]] \to \pi[\pi[\mathbf{v}]] \to \pi[\mathbf{v}] \to \mathbf{v}$$

Exemplo com grafo não direcionado

vértice	r	S	t	u	V	w	x	у
π	S	N	w	t	r	S	W	X

Exemplo com grafo direcionado

vértice	r	S	t	u	V	w	X	у
π	Ν	N	S	t	w	X	t	u

1 se v = s

Caminho da árvore

Algoritmo 1: Print-Path(G, s, v)

```
2 imprima s
```

```
senão se \pi[v] = NIL
```

4 imprima não existe caminho de s a v

```
5 senão
```

```
PRINT-PATH(G, s, \pi[v])
```

7 imprima *v*

- Imprime o caminho de s a v na árvore de raiz s.
- Gasta tempo linear no tamanho desse caminho.

Busca em largura

Distância entre vértices

Vértices alcançáveis:

- Alcançamos v a partir de s se há caminho de s a v.
- Pode haver diversos caminhos entre s a v.
- Queremos algum com o menor COMPRIMENTO.

A **DISTÂNCIA** de **s** a **v** é o comprimento de um caminho mais curto de **s** a **v**:

- Denotamos este valor por dist(s, v).
- Se v não for alcançável, definimos dist $(s, v) = \infty$.

Busca em largura

Buscando os vértices alcançáveis em LARGURA:

- Primeiro o vértice de origem.
- Depois os vizinhos do vértice de origem.
- Depois os vizinhos dos vizinhos do vértice de origem.
- etc.

Descobrindo a distância

- Um produto da busca são as distâncias à origem.
- A árvore de busca fornece um caminho mais curto.

Construindo uma árvore de busca

Ideia do algoritmo:

- Percorremos os vértices usando uma **FILA** Q.
- ► Começamos adicionando o vértice de origem s em Q.
- ► Enquanto houver vértices em *Q*, repetimos o seguinte processo:
 - Removemos o primeiro vértice de Q, u.
 - Para cada vizinho v do vértice atual u:
 - Adicionamos uma aresta (u,v) à árvore de busca.
 - Inserimos v na fila de processamento.

Cores dos vértices

Vamos pintar o grafo durante a busca:

- 1. cor[v] = branco se não descobrimos v ainda.
- 2. cor[v] = cinza se já descobrimos, mas não finalizamos v.
- 3. cor[v] = preto se já descobrimos e já finalizamos v.

Observações:

- Não é necessário em uma implementação.
- Facilita o entendimento do algoritmo.

Q	S
distância	0

Q	w	r
distância	1	1

Q	r	t	X
distância	1	2	2

Q	t	X	V
distância	2	2	2

Q	x	V	u
distância	2	2	3

Q	V	u	у
distância	2	3	3

Q	u	у
distância	3	3

Q	у
distância	3

Q	Ø
distância	

Algoritmo BFS

Observações:

- Representamos G com listas de adjacências.
- A árvore de busca em largura é representada por π .
- ► Calculamos a distância d[v] de s a v.

Algoritmo BFS

Algoritmo 2: BFS(G, s)

```
1 para cada u \in V[G]
    \operatorname{cor}[u] \leftarrow \operatorname{branco}, d[u] \leftarrow \infty, \pi[u] \leftarrow \operatorname{NIL}
   cor[s] \leftarrow cinza
    d[s] \leftarrow 0
    Q \leftarrow \emptyset
    Enqueue(Q, s)
    enquanto Q \neq \emptyset
           u \leftarrow \text{Dequeue}(Q)
           para cada v \in Adj[u]
                   se cor[v] = branco
10
                          cor[v] \leftarrow cinza
11
                         d[v] \leftarrow d[u] + 1
12
                          \pi[v] \leftarrow u
13
                          ENQUEUE (Q, v)
14
           cor[u] \leftarrow preto
```


Análise de complexidade

Analisamos de forma AGREGADA:

- 1. O tempo de inicialização é O(V).
- 2. Um vértice não volta a ser branco:
 - Enfileiramos cada vértice no máximo uma vez.
 - Desenfileiramos cada vértice no máximo uma vez.
 - Cada operação na fila leva tempo O(1).
 - ightharpoonup O tempo gasto com a fila é O(V).
- 3. Processamos cada vértice uma vez:
 - Cada lista de adjacências é percorrida uma vez.
 - No pior caso, percorremos todas as listas.
 - ightharpoonup O tempo gasto percorrendo adjacências é O(E).

A complexidade da busca em largura é O(V + E).

Correção do algoritmo

Teorema

Seja G = (V, E) um grafo e s um vértice de G. Então, depois de executar BFS(G, s), temos:

- 1. π define uma árvore enraizada em s,
- 2. d[v] = dist(s, v) para todo $v \in V$.

Precisamos de dois lemas:

- **Lema 1:** O caminho de s a v na árvore tem tamanho d[v].
- **Lema 2:** A fila Q respeita a ordem de d[v].

Lema 1

Lema (1)

Seja T a árvore induzida por π . Se $d[v] < \infty$, então:

- 1. v é um vértice de T,
- 2. o caminho de s a v em T tem comprimento d[v].

Demonstração:

- Por indução no número de vezes que executamos ENQUEUE.
- Após executar ENQUEUE pela primeira vez:
 - ightharpoonup T contem apenas s e vale d[s] = 0
 - Como d[s] nunca mais muda, isso completa a base.

Demonstração do lema

Considere o instante em que enfileiramos v:

- ► Então, v foi descoberto percorrendo os vizinhos de u.
- Logo, u havia sido enfileirado antes desse instante.
- Pela hipótese de indução:
 - 1. Existe um caminho de s a u em T com comprimento d[u].
- Portanto:
 - 1. Há um caminho de s a v em T, passando por u, com comprimento $d[\mathbf{v}] = d[\mathbf{u}] + 1$, pois $\pi[\mathbf{v}] = \mathbf{u}$.
- Com isso, completamos a indução.

Corolário (1)

Durante a execução, $d[v] \ge \operatorname{dist}(s,v)$ para todo $v \in V$.

Lema 2

Lema (2)

Suponha que $\langle \mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_r} \rangle$ seja a disposição da fila Q em alguma iteração do algoritmo. Então

$$d[\mathbf{v_1}] \le d[\mathbf{v_2}] \le \cdots \le d[\mathbf{v_r}] \le d[\mathbf{v_1}] + 1.$$

Demonstração:

- Por indução no número de iterações.
- Antes da primeira iteração, $Q = \langle s \rangle$ e o lema vale.

Demonstração do lema

Considere uma execução do laço:

- No início da iteração, a fila é (v_1, v_2, \dots, v_r) .
- Na iteração, removemos v_1 e inserimos v_{r+1}, \dots, v_{r+t} .
- No final da iteração, a fila será $\langle v_2, \dots, v_r, v_{r+1}, \dots, v_{r+t} \rangle$.

Inserimos vizinhos de v₁:

- Se v_i é um vértice inserido, então $d[v_i] = d[v_1] + 1$.
- Pela hipótese de indução:

$$d[\mathbf{v_1}] \leq d[\mathbf{v_2}] \leq \cdots \leq d[\mathbf{v_r}] \leq d[\mathbf{v_1}] + 1 \leq d[\mathbf{v_2}] + 1.$$

Portanto:

$$d[\mathbf{v_2}] \le \cdots \le d[\mathbf{v_r}] \le d[\mathbf{v_{r+1}}] \le \cdots \le d[\mathbf{v_{r+t}}] \le d[\mathbf{v_2}] + 1.$$

Demonstração do teorema

Teorema

Seja G = (V, E) um grafo e s um vértice de G. Então, depois de executar BFS(G, s), temos:

- 1. π define uma árvore enraizada em s,
- 2. d[v] = dist(s, v) para todo $v \in V$.

Demonstração:

- Note que π define uma árvore enraizada em s. Por quê?
- Pelo Corolário 1, se dist(\mathbf{s}, \mathbf{v}) = ∞ , então $d[\mathbf{v}] = \infty$.
- ▶ Resta provar que, se $dist(s, v) < \infty$, então d[v] = dist(s, v).

Demonstração do teorema

Considere um vértice \mathbf{v} com dist $(\mathbf{s}, \mathbf{v}) = k$:

- lremos provar que d[v] = k por indução em k.
- Se k = 0, devemos ter $\mathbf{v} = \mathbf{s}$ e a afirmação vale.

Considere o caso em que $k \ge 1$. Por hipótese de indução, $d[\mathbf{u}] = \operatorname{dist}(\mathbf{s}, \mathbf{u})$ para todo \mathbf{u} com $\operatorname{dist}(\mathbf{s}, \mathbf{u}) < k$:

- Seja v um vértice com dist(s, v) = k e considere um caminho de comprimento k de s a v.
- Chame de u o vértice que antecede v nesse caminho.
- ► Temos que, dist(\mathbf{s}, \mathbf{u}) = k 1 e portanto $d[\mathbf{u}] = k 1$.

Demonstração do teorema

Considere o instante em que \mathbf{u} foi removido de Q:

- ► Suponha (por contradição) que v seja preto:
 - ► Então v foi removido de Q antes de u.
 - Pelo Lema 2 temos que $d[v] \le d[u] < k$.
 - Mas o Corolário 1 implica que $k = \text{dist}(s, v) \le d[v]$.
 - Logo, temos uma contradição e v NÃO pode ser preto.
- Assim, nesse instante, v só pode ser branco ou cinza:
 - Se v for branco:
 - v será inserido na fila nessa iteração.
 - ► Logo, d[v] = d[u] + 1 = k.
 - Se v for cinza:
 - v já estava na fila.
 - Pelo Lema 2 temos que $d[v] \le d[u] + 1 = k$
 - Pelo Corolário 1 temos que $k \le d[v]$, portanto d[v] = k.
 - Em qualquer caso, concluímos a indução.

Buscas em grafos

MO417 - Complexidade de Algoritmos I

Santiago Valdés Ravelo https://ic.unicamp.br/~santiago/ ravelo@unicamp.br

