MATH237 Lecture 04

Peter He

January 13 2020

1 Last Class

Recall the definition of a limit.

Definition 1.1 (Neighbourhood). The neighbourhood of a point a is a ball B(r, a), r > 0.

Definition 1.2 (Limit).

1.1 Showing a limit doesn't exist

Calculate the limit along the lines y = mx - If different values are obtained along different lines, the limit does not exist.

If a single value of L is obtained, the limit might exist. If it does, then it's L.

1.2 Showing a limit exists

- Limit theorems
- Squeeze theorem

1.3 Exercise

Show that

$$\lim_{\underline{x} \to \underline{0}} \frac{xy}{\sqrt{x^2 + y^2}}$$

exists. What is the limit?

Question: What technique should be used? It should be the Squeeze theorem.

What is the limit? - 0

Proof that the limit is 0:

$$0 \le \left| \frac{xy}{\sqrt{x^2 + y^2}} - 0 \right| \le \frac{|x||y|}{\sqrt{x^2}}$$
$$= |y|$$

Since $\lim_{\underline{x}\to\underline{0}}|y|=0$, by the Squeeze theorem $\lim_{\underline{x}\to\underline{0}}\frac{xy}{\sqrt{x^2+y^2}}=0$

2 Continuous Functions

Definition 2.1. A function $f: \mathbb{R}^n \to \mathbb{R}$ is continuous at \underline{a} if

$$\lim_{x \to a} f(\underline{x}) = f(\underline{a}).$$

There are 3 parts to the definition:

- f is defined at \underline{a}
- $\lim_{x\to a} f(x)$ exists
- $\lim_{\underline{x} \to \underline{a}} f(x) = f(\underline{a})$

Let $f: D(f) \subset \mathbb{R}^n \to \mathbb{R}, g: D(g) \subset \mathbb{R}^n \to \mathbb{R}$, then define for $\underline{x} \in D(f) \cap D(g)$,

- sum $(f+g)(\underline{x}) = f(\underline{x}) + g(\underline{x})$
- product $(fg)(\underline{x}) = f(\underline{x})g(\underline{x})$
- quotient $(f/g)(\underline{x}) = f(\underline{x})/g(\underline{x})$
- composition $(g \circ f)(\underline{x}) = g(f(\underline{x}))$

Continuity theorems: Consider $f: B(r,\underline{a}) \subset \mathbb{R}^n \to \mathbb{R}$ and $g: B(r,\underline{a}) \subset \mathbb{R}^n \to \mathbb{R}$ for some r > 0. If f and g are continuous at \underline{a} ,

- f + g is continuous at \underline{a}
- fg is continuous at \underline{a} .
- if $g(\underline{a}) \neq 0$, f/g is continuous at \underline{a} .
- If $f: \mathbb{R}^n \to \mathbb{R}$ at \underline{a} and $g: \mathbb{R} \to \mathbb{R}$ is continuous at $f(\underline{a})$ then $(g \circ f)$ is continuous at \underline{a} .