1 Main Equations

$$\begin{split} \frac{\partial A}{\partial t} &= p(I,q)A - l_{bg}A - v\frac{\partial A}{\partial z} + d\frac{\partial^2 A}{\partial z^2} \\ \frac{\partial R_b}{\partial t} &= \rho(q,R_d)A - l_{bg}Rb - v\frac{\partial R_b}{\partial z} + d\frac{\partial^2 R_b}{\partial z^2} \\ \frac{\partial R_d}{\partial t} &= -\rho(q,R_d)A + l_{bg}Rb + d\frac{\partial^2 R_d}{\partial z^2} \\ I(z) &= I_0 exp - \left(\int_0^z kAdz + k_{bg}z\right) \\ \frac{\partial R_s}{\partial t} &= vR_b(z_max) - rR_s \end{split}$$

2 Other Equations

Algal nutrient quota: $q = \frac{R_b}{A}$ **Note:** this calculation for q is correct as long as v = d in equation $\frac{\partial A}{\partial t}$?

Specific algal growth rate: $p(I,q) = \mu_{max} \left(\frac{q - q_{min}}{q} \right) \frac{I}{h + I}$

Specific algal nutrient uptake rate: $\rho(q, R_d) = \rho_{max} \left(\frac{q_{max} - q}{q_{max} - q_{min}}\right) \frac{R_d}{m + R_d}$

3 First Order Equations

$$A'_{1} = A_{2}$$

$$A'_{2} = \frac{1}{d} (vA_{2} - p(I, q)A_{1} + l_{bg}A_{1})$$

$$R'_{b1} = R_{b2}$$

$$R'_{b2} = \frac{1}{d} (vR_{b2} - \rho(q, R_{d1})A_{1} + l_{bg}R_{b1})$$

$$R'_{d1} = R_{d2}$$

$$R'_{d2} = \frac{1}{d} (\rho(q, R_{d1})A_{1} - l_{bg}R_{b1})$$

$$I' = -(kA_{1} + k_{bg}z)I$$

Boundary Conditions 4

$$vA(0) - dA'(0) = 0$$
 $A'(z_{max}) = 0$
 $vR_b(0) - dR'_b(0) = 0$ $R'_b(z_{max}) = 0$
 $R'_d(0) = 0$ $dR'_d(z_{max}) - vR_b(z_{max}) = 0$
 $I(0) = I_0$

5 Values

Initial guesses for shooting method taken from the Standard Model:

$$A_1 = 100 \, mg \, C \, m^{-3}$$

 $R_{b1} = 2.2 \, mg \, P \, m^{-3}$
 $R_{d1} = 30 \, mg \, P \, m^{-3}$

But currently using $R_{b1} = 5 * (q_{min}A_1)$ to keep uptake function positive and $R_{d1} = 89.333$.

Following the Standard Model

d = 0.01 - 1,000	v = 0.25
$z_{max} = 10 - 60$	$I_0 = 300$
h = 120	$l_{bg} = 0.1$
k = 0.0003	$k_{bg} = 0.4$
$\mu_{max} = 1.2$	$\rho_{max} = 0.2$
$q_{min} = 0.004$	$q_{max} = 0.04$
m = 15	

Redfield Ratio: 0.022 mg P mg C - 1

6 Finite Difference Approximations

$$\begin{split} A_z^{t+1} &= \Delta t \left(\frac{d}{\Delta z^2} - \frac{v}{2\Delta z}\right) A_{z+1}^t + \Delta t \left(\frac{1}{\Delta t} + p(I_z^t, q_z^t) - l_{bg} - \frac{2d}{\Delta z^2}\right) A_z^t + \Delta t \left(\frac{d}{\Delta z^2} - \frac{v}{2\Delta z}\right) A_{z-1}^t \\ Rb_z^{t+1} &= \Delta t \left(\frac{d}{\Delta z^2} - \frac{v}{2\Delta z}\right) Rb_{z+1}^t + \Delta t \left(\frac{1}{\Delta t} - l_{bg} - \frac{2d}{\Delta z^2}\right) Rb_z^t + \Delta t \left(\frac{d}{\Delta z^2} - \frac{v}{2\Delta z}\right) Rb_{z-1}^t + \Delta t \rho(q_z^t, Rd_z^t) \\ Rd_z^{t+1} &= \Delta t \frac{d}{\Delta z^2} Rd_{z+1}^t + \Delta t \left(\frac{1}{\Delta t} - \frac{2d}{\Delta z^2}\right) Rd_z^t + \Delta t \frac{d}{\Delta z^2} Rd_{z-1}^t - \Delta t \rho(q_z^t, Rd_z^t) A_z^t + \Delta t l_{bg} Rb_z^t \end{split}$$