Factors Affecting Student Performance at the University Level

This project aims to understand how certain factors affect student performance within higher education, which I am measuring by examining the proportion of students that graduate as well as their earnings after graduation. In looking at all these factors, I hope to determine if certain elements are more influential in determining the overall success of students.

<u>College Scorecard (https://collegescorecard.ed.gov/)</u> draws most of its data from IPEDS (Integrated Postsecondary Education Data System), compiling statistics varying from average cost to demographics to location. The scorecard was created to increase transparency regarding higher education and to help prospective students weigh out the costs and values of each school.

The factors that I will examine are control (public, private nonprofit, private for-profit) and ranking.

This project will include:

- Basic statistics about 4-year universities from the 2016-2017 academic year
- · Comparisons amongst schools based on controls, ranking, and location by state
- Visualization (graphs) of the relationship between each factor and graduation rates/earnings

Data about the schools' control, graduation rates, and students' earnings comes from <u>College Scorecard</u> (<a href="https://collegescorecard.ed.gov/">https://collegescorecard.ed.gov/</a>). School rankings will come from <u>US News & World Report</u> (<a href="https://www.usnews.com/best-colleges/rankings/national-universities">https://www.usnews.com/best-colleges/rankings/national-universities</a>). In this project, I will only be looking at 4-year undergraduate universities.

## **Important Variables:**

Control defines how the school is owned. The three different kinds of ownership are public, private nonprofit, and private for-profit. College Scoreboard denotes them as 1, 2, and 3, respectively.

Rankings of the universities are published by a variety of sources, but I will be using US News & World Report. I will be examining the top 25 universities and top 25 liberal arts colleges and comparing them with the rest of the universities.

Graduation rates is the completion rate for first-time, full-time students at four-year institutions (100% of expected time to completion - 4 years).

*Earnings* are determined by calculating the mean earnings of students working and not enrolled 10 years after entry and the Median earnings of students working and not enrolled 10 years after entry.

# Data Dictionary:

Below are the names of columns I am pulling from the data and their coinciding data descriptions as provided by College Scorecard.

INSTNM: Institution name

STABBR: State postcode

PREDDEG: Predominant undergraduate degree awarded

- · 0 Not classified
- · 1 Predominantly certificate-degree granting

- · 2 Predominantly associate's-degree granting
- · 3 Predominantly bachelor's-degree granting
- · 4 Entirely graduate-degree granting

#### CONTROL: Control of institution

- 1 Public
- · 2 Private nonprofit
- · 3 Private for-profit

MN\_EARN\_WNE\_P10: Mean earnings of students working and not enrolled 10 years after entry

C100\_4: Completion rate for first-time, full-time students at four-year institutions (100% of expected time to completion)

```
In [1]: # importing necessary packages

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import decimal
```

# **Reading in College Scorecard Data**

```
In [2]: # link to most recent data
    file_url1 = "https://ed-public-download.app.cloud.gov/downloads/Most-Rec
    ent-Cohorts-All-Data-Elements.csv"

In [4]: # read into pandas
    scorecard = pd.read_csv(file_url1)
```

# **Cleaning up Scorecard Data**

```
In [7]: # renaming columns
          scorecard.rename(columns={"INSTNM":"School_Name", "STABBR": "State", "PR
          EDDEG": "Degree_Type", "CONTROL":
                                       "Ownership", "MN_EARN_WNE_P10": "Earnings",
                                       "C100 4": "Completion Rate"}, inplace=True)
 In [8]: # replacing missing data in "Earnings" column with NaN so that datatype
           of the column can be converted to float
          scorecard.replace({"PrivacySuppressed": np.nan}, inplace = True)
 In [9]: scorecard.head()
 Out[9]:
                            School_Name State Degree_Type Ownership Earnings Completion_Rate
           0
                    Alabama A & M University
                                          AL
                                                                     35500
                                                                                   0.0643
                     University of Alabama at
           1
                                          ΑL
                                                       3
                                                                1
                                                                     48400
                                                                                   0.3018
                              Birmingham
                         Amridge University
                                                                     47600
                                                                                   0.1429
           2
                                          ΑL
                                                       3
              University of Alabama in Huntsville
                                          ΑL
                                                       3
                                                                1
                                                                     52000
                                                                                   0.1533
                                          ΑL
                                                                     30600
                     Alabama State University
                                                       3
                                                                                   0.0725
           4
                                                                1
In [36]: # convert "Earnings" dtype from object to float
          scorecard.Earnings = scorecard.Earnings.astype("float64", inplace = True
          scorecard.dtypes
Out[36]: School Name
                                object
          State
                                object
                                 int64
          Degree Type
          Ownership
                                 int64
          Earnings
                               float64
          Completion Rate
                               float64
          dtype: object
```

# **Read in Ranking Data**

```
In [12]: ranking.head()
```

Out[12]:

| NU | J_Rank | NU_School                                | NU_State | LA_Rank | LA_School             | LA_State |
|----|--------|------------------------------------------|----------|---------|-----------------------|----------|
| 0  | 1      | Princeton University                     | NJ       | 1.0     | Williams College      | MA       |
| 1  | 2      | Harvard University                       | MA       | 2.0     | Amherst College       | MA       |
| 2  | 3      | Columbia University                      | NY       | 3.0     | Swarthmore<br>College | PA       |
| 3  | 3      | Massachusetts Institute of<br>Technology | MA       | 3.0     | Wellesley College     | MA       |
| 4  | 3      | University of Chicago                    | IL       | 5.0     | Bowdoin College       | ME       |

# Control

## Out[38]:

|   | School_Name                            | State | Degree_Type | Ownership | Earnings | Completion_Rate |
|---|----------------------------------------|-------|-------------|-----------|----------|-----------------|
| 0 | Alabama A & M University               | AL    | 3           | 1         | 35500.0  | 0.0643          |
| 1 | University of Alabama at<br>Birmingham | AL    | 3           | 1         | 48400.0  | 0.3018          |
| 3 | University of Alabama in Huntsville    | AL    | 3           | 1         | 52000.0  | 0.1533          |
| 4 | Alabama State University               | AL    | 3           | 1         | 30600.0  | 0.0725          |
| 5 | The University of Alabama              | AL    | 3           | 1         | 51600.0  | 0.4385          |

### Out[39]:

|    | School_Name                 | State | Degree_Type | Ownership | Earnings | Completion_Rate |
|----|-----------------------------|-------|-------------|-----------|----------|-----------------|
| 2  | Amridge University          | AL    | 3           | 2         | 47600.0  | 0.1429          |
| 10 | Birmingham Southern College | AL    | 3           | 2         | 53100.0  | 0.6196          |
| 12 | Concordia College Alabama   | AL    | 3           | 2         | 25400.0  | 0.0056          |
| 16 | Faulkner University         | AL    | 3           | 2         | 40700.0  | 0.1810          |
| 23 | Huntingdon College          | AL    | 3           | 2         | 43600.0  | 0.2620          |

## Out[40]:

|     | School_Name                                   | State | Degree_Type | Ownership | Earnings | Completion_Rate |
|-----|-----------------------------------------------|-------|-------------|-----------|----------|-----------------|
| 13  | South University-Montgomery                   | AL    | 3           | 3         | 40200.0  | 0.1053          |
| 82  | Southwest University of Visual<br>Arts-Tucson | AZ    | 3           | 3         | 32600.0  | 0.7059          |
| 95  | Grand Canyon University                       | AZ    | 3           | 3         | 58500.0  | 0.3566          |
| 120 | Western International University              | AZ    | 3           | 3         | 42500.0  | 0.0049          |
| 184 | Academy of Art University                     | CA    | 3           | 3         | 47300.0  | 0.0488          |

# Public, Private Nonprofit, For-Profit Universities: Graduation Rates

```
In [41]: # converting series into numpy arrays

pub_cr = public.Completion_Rate.get_values()

nonprof_cr = nonprof.Completion_Rate.get_values()

forprof_cr = forprof.Completion_Rate.get_values()
```

```
In [42]: # removing NaN values
    filtered_pub_cr = pub_cr[~np.isnan(pub_cr)]
    filtered_nonprof_cr = nonprof_cr[~np.isnan(nonprof_cr)]
    filtered_forprof_cr = forprof_cr[~np.isnan(forprof_cr)]
```

```
In [43]: # plotting completion rates by type of institution

fig, ax = plt.subplots(nrows = 1, ncols = 3, figsize = (16, 6))

fig.suptitle("Completion Rate of Different Kinds of Institutions", fonts ize = 16, fontweight = "bold")

ax[0].boxplot(filtered_pub_cr)
ax[0].set_title("Public Universities")

ax[1].boxplot(filtered_nonprof_cr)
ax[1].set_title("Private Non-Profit Universities")

ax[2].boxplot(filtered_forprof_cr)
ax[2].set_title("Private For-Profit Universities")

for var in ax:
    var.set_ylim(-0.1, 1.1)
```

### **Completion Rate of Different Kinds of Institutions**



## Public, Private Nonprofit, For-Profit Universities: Earnings

```
In [44]: # converting series into numpy arrays

pub_earn = public.Earnings.get_values()

nonprof_earn = nonprof.Earnings.get_values()

forprof_earn = forprof.Earnings.get_values()
```

```
In [45]:
        # removing NaN values
         filtered_pub_earn = pub_earn[~np.isnan(pub_earn)]
         filtered nonprof earn = nonprof earn[~np.isnan(nonprof earn)]
         filtered forprof earn = forprof_earn[~np.isnan(forprof_earn)]
In [46]: # plotting earnings by type of institution
         fig, ax = plt.subplots(nrows = 1, ncols = 3, figsize = (16, 6))
         fig.suptitle("Earnings of Different Kinds of Institutions", fontsize = 1
         6, fontweight = "bold")
         plt.subplots_adjust(left = None, bottom = None, right = None, top = None
         , wspace = 0.25, hspace = None)
         ax[0].boxplot(filtered_pub_earn)
         ax[0].set_title("Public Universities")
         ax[1].boxplot(filtered_nonprof_earn)
         ax[1].set_title("Private Non-Profit Universities")
         ax[2].boxplot(filtered forprof earn)
         ax[2].set title("Private For-Profit Universities")
```



for var in ax:

plt.show()

var.set\_ylim(0, 200000)



Public, Private Nonprofit, For-Profit Universities: Earnings and Completion Rate

```
In [47]: # scatterplot comparing earnings and completion rates of each kind of in
         stitution
         fig, ax = plt.subplots(figsize = (16, 8))
         fig.suptitle("Completion Rate and Earnings of Different Kinds of Institu
         tions", fontsize = 16,
                      fontweight = "bold")
         ax.scatter(public["Completion_Rate"], public["Earnings"], alpha = 0.5, 1
         abel = "Public") # public
         ax.scatter(nonprof["Completion_Rate"], nonprof["Earnings"], color = "r",
         alpha = 0.5,
                    label = "Private Nonprofit") # nonprofit
         ax.scatter(forprof["Completion_Rate"], forprof["Earnings"], color = "g",
         alpha = 0.5,
                   label = "Private For-Profit") # for-profit
         # legend
         ax.legend(frameon = False)
         # formatting
         ax.set_xlabel("Completion Rate", fontsize = 12)
         ax.set_ylabel("Earnings ($)", fontsize = 12)
         ax.spines["right"].set_visible(False)
         ax.spines["top"].set visible(False)
         plt.show()
```

#### Completion Rate and Earnings of Different Kinds of Institutions



# **Rankings**

In this part, I want to examine whether or not rankings really matter for student success. To do so, I refer to US News & World Report's rankings, pulling the top 50 national universities and top 50 liberal arts colleges. By comparing the graduation rates and earnings data of these top institutions with rankings, I hope to understand the relationship between rankings and student success.

```
In [51]: # merging scorecard and nu_rank dataframes to compare school ranking wit
h earnings and completion rate

nu_rank_merged = pd.merge(nu_rank, ranking[["NU_School", "NU_Rank"]], on
= "NU_School", how = 'inner')
nu_rank_merged
```

|    | NU_School                                     | State | Degree_Type | Ownership | Earnings | Completion_Rate | NU_Rank |
|----|-----------------------------------------------|-------|-------------|-----------|----------|-----------------|---------|
| 0  | California Institute of<br>Technology         | CA    | 3           | 2         | 106300.0 | 0.8136          | 12      |
| 1  | University of<br>California-Berkeley          | CA    | 3           | 1         | 79000.0  | 0.7618          | 22      |
| 2  | University of<br>California-Davis             | CA    | 3           | 1         | 68100.0  | 0.5491          | 38      |
| 3  | University of<br>California-Irvine            | CA    | 3           | 1         | 65800.0  | 0.7132          | 33      |
| 4  | University of<br>California-Los<br>Angeles    | CA    | 3           | 1         | 73200.0  | 0.7392          | 19      |
| 5  | University of<br>California-San Diego         | CA    | 3           | 1         | 69600.0  | 0.5888          | 41      |
| 6  | University of<br>California-Santa<br>Barbara  | CA    | 3           | 1         | 62400.0  | 0.6907          | 30      |
| 7  | Pepperdine University                         | CA    | 3           | 2         | 77600.0  | 0.7638          | 46      |
| 8  | University of Southern<br>California          | CA    | 3           | 2         | 88800.0  | 0.7708          | 22      |
| 9  | Yale University                               | СТ    | 3           | 2         | 124400.0 | 0.8645          | 3       |
| 10 | Georgetown<br>University                      | DC    | 3           | 2         | 125200.0 | 0.9012          | 22      |
| 11 | University of Florida                         | FL    | 3           | 1         | 65700.0  | 0.6738          | 35      |
| 12 | Emory University                              | GA    | 3           | 2         | 84400.0  | 0.8516          | 21      |
| 13 | University of Georgia                         | GA    | 3           | 1         | 59100.0  | 0.6220          | 46      |
| 14 | University of Chicago                         | IL    | 3           | 2         | 103000.0 | 0.8944          | 3       |
| 15 | University of Illinois at<br>Urbana-Champaign | IL    | 3           | 1         | 70900.0  | 0.6988          | 46      |
| 16 | Northwestern<br>University                    | IL    | 3           | 2         | 93400.0  | 0.8396          | 10      |
| 17 | University of Notre<br>Dame                   | IN    | 3           | 2         | 98400.0  | 0.8979          | 18      |
| 18 | Johns Hopkins<br>University                   | MD    | 3           | 2         | 89300.0  | 0.8699          | 10      |
| 19 | Boston College                                | MA    | 3           | 2         | 92500.0  | 0.8929          | 38      |
| 20 | Boston University                             | MA    | 3           | 2         | 75900.0  | 0.8096          | 42      |
| 21 | Brandeis University                           | MA    | 3           | 2         | 69000.0  | 0.8294          | 35      |
| 22 | Harvard University                            | MA    | 3           | 2         | 139100.0 | 0.8623          | 2       |
| 23 | Massachusetts<br>Institute of<br>Technology   | MA    | 3           | 2         | 153600.0 | 0.8448          | 3       |
| 24 | Northeastern<br>University                    | MA    | 3           | 2         | 74200.0  | 0.0000          | 44      |

|    | NU_School                                      | State | Degree_Type | Ownership | Earnings | Completion_Rate | NU_Rank |
|----|------------------------------------------------|-------|-------------|-----------|----------|-----------------|---------|
| 25 | Tufts University                               | MA    | 3           | 2         | 103300.0 | 0.8667          | 27      |
| 26 | University of<br>Michigan-Ann Arbor            | МІ    | 3           | 1         | 79000.0  | 0.7650          | 27      |
| 27 | Washington University in St Louis              | МО    | 3           | 2         | 87900.0  | 0.8833          | 19      |
| 28 | Dartmouth College                              | NH    | 3           | 2         | 110200.0 | 0.8812          | 12      |
| 29 | Princeton University                           | NJ    | 3           | 2         | 116300.0 | 0.8917          | 1       |
| 30 | Cornell University                             | NY    | 3           | 2         | 101200.0 | 0.8711          | 16      |
| 31 | New York University                            | NY    | 3           | 2         | 78600.0  | 0.8186          | 30      |
| 32 | Rensselaer<br>Polytechnic Institute            | NY    | 3           | 2         | 86000.0  | 0.6102          | 49      |
| 33 | University of Rochester                        | NY    | 3           | 2         | 74300.0  | 0.0920          | 33      |
| 34 | Duke University                                | NC    | 3           | 2         | 114500.0 | 0.8634          | 8       |
| 35 | University of North<br>Carolina at Chapel Hill | NC    | 3           | 1         | 68800.0  | 0.8365          | 30      |
| 36 | Wake Forest<br>University                      | NC    | 3           | 2         | 79600.0  | 0.8373          | 27      |
| 37 | Case Western<br>Reserve University             | ОН    | 3           | 2         | 89300.0  | 0.6428          | 42      |
| 38 | Carnegie Mellon<br>University                  | PA    | 3           | 2         | 103000.0 | 0.7540          | 25      |
| 39 | University of<br>Pennsylvania                  | PA    | 3           | 2         | 131600.0 | 0.8460          | 8       |
| 40 | Villanova University                           | PA    | 3           | 2         | 87600.0  | 0.8634          | 49      |
| 41 | Brown University                               | RI    | 3           | 2         | 89100.0  | 0.8368          | 14      |
| 42 | Vanderbilt University                          | TN    | 3           | 2         | 86200.0  | 0.8742          | 14      |
| 43 | Rice University                                | TX    | 3           | 2         | 91600.0  | 0.8294          | 16      |
| 44 | The University of<br>Texas at Austin           | TX    | 3           | 1         | 73900.0  | 0.5512          | 49      |
| 45 | College of William and Mary                    | VA    | 3           | 1         | 74500.0  | 0.8453          | 38      |
| 46 | University of Wisconsin-Madison                | WI    | 3           | 1         | 68000.0  | 0.5637          | 49      |
| 47 | Stanford University                            | CA    | 3           | 2         | 141300.0 | 0.7500          | 7       |

In [52]: # creating new dataframe out of scorecard with the just the top 50 liber al arts colleges

la\_rank = scorecard[scorecard.School\_Name.isin(ranking.LA\_School)]

```
In [53]: # same as nu_rank
la_rank.rename(columns = {"School_Name": "LA_School", "State": "LA_State"); inplace = True)
```

|    | LA_School                    | LA_State | Degree_Type | Ownership | Earnings | Completion_Rate | LA_Rank |
|----|------------------------------|----------|-------------|-----------|----------|-----------------|---------|
| 0  | Claremont<br>McKenna College | CA       | 3           | 2         | 93200.0  | 0.8567          | 9.0     |
| 1  | Harvey Mudd<br>College       | CA       | 3           | 2         | 104200.0 | 0.8505          | 18.0    |
| 2  | Occidental College           | CA       | 3           | 2         | 59400.0  | 0.7609          | 39.0    |
| 3  | Pitzer College               | CA       | 3           | 2         | 51500.0  | 0.8285          | 41.0    |
| 4  | Pomona College               | CA       | 3           | 2         | 77300.0  | 0.9202          | 5.0     |
| 5  | Scripps College              | CA       | 3           | 2         | 61800.0  | 0.7985          | 30.0    |
| 6  | Thomas Aquinas<br>College    | CA       | 3           | 2         | 45900.0  | 0.7529          | 43.0    |
| 7  | Colorado College             | CO       | 3           | 2         | 49900.0  | 0.8243          | 27.0    |
| 8  | Connecticut<br>College       | СТ       | 3           | 2         | 62900.0  | 0.8094          | 46.0    |
| 9  | Trinity College              | СТ       | 3           | 2         | 74300.0  | 0.8003          | 46.0    |
| 10 | Wesleyan<br>University       | СТ       | 3           | 2         | 63400.0  | 0.8717          | 18.0    |
| 11 | Grinnell College             | IA       | 3           | 2         | 61000.0  | 0.8096          | 11.0    |
| 12 | Centre College               | KY       | 3           | 2         | 53800.0  | 0.8455          | 46.0    |
| 13 | Union College                | KY       | 3           | 2         | 36400.0  | 0.2602          | 39.0    |
| 14 | Union College                | NE       | 3           | 2         | 47700.0  | 0.2338          | 39.0    |
| 15 | Union College                | NY       | 3           | 2         | 80200.0  | 0.8105          | 39.0    |
| 16 | Bates College                | ME       | 3           | 2         | 74300.0  | 0.8384          | 22.0    |
| 17 | Bowdoin College              | ME       | 3           | 2         | 83300.0  | 0.8935          | 5.0     |
| 18 | Colby College                | ME       | 3           | 2         | 71000.0  | 0.8430          | 18.0    |
| 19 | Amherst College              | MA       | 3           | 2         | 83300.0  | 0.8569          | 2.0     |
| 20 | College of the<br>Holy Cross | MA       | 3           | 2         | 88600.0  | 0.8872          | 35.0    |
| 21 | Mount Holyoke<br>College     | MA       | 3           | 2         | 53900.0  | 0.7805          | 30.0    |
| 22 | Smith College                | MA       | 3           | 2         | 51100.0  | 0.8571          | 11.0    |
| 23 | Wellesley College            | MA       | 3           | 2         | 71800.0  | 0.8257          | 3.0     |
| 24 | Williams College             | MA       | 3           | 2         | 89800.0  | 0.8595          | 1.0     |
| 25 | Carleton College             | MN       | 3           | 2         | 67900.0  | 0.8826          | 5.0     |
| 26 | Macalester<br>College        | MN       | 3           | 2         | 55800.0  | 0.8427          | 27.0    |
| 27 | Barnard College              | NY       | 3           | 2         | 69700.0  | 0.8246          | 25.0    |
| 28 | Colgate University           | NY       | 3           | 2         | 81100.0  | 0.8492          | 16.0    |
| 29 | Hamilton College             | NY       | 3           | 2         | 74300.0  | 0.8865          | 16.0    |

|    | LA_School                                 | LA_State | Degree_Type | Ownership | Earnings | Completion_Rate | LA_Rank |
|----|-------------------------------------------|----------|-------------|-----------|----------|-----------------|---------|
| 30 | Skidmore College                          | NY       | 3           | 2         | 57000.0  | 0.8503          | 41.0    |
| 31 | Vassar College                            | NY       | 3           | 2         | 61500.0  | 0.8662          | 11.0    |
| 32 | Davidson College                          | NC       | 3           | 2         | 71100.0  | 0.9058          | 10.0    |
| 33 | Denison University                        | ОН       | 3           | 2         | 57600.0  | 0.7737          | 43.0    |
| 34 | Kenyon College                            | ОН       | 3           | 2         | 54500.0  | 0.8882          | 30.0    |
| 35 | Oberlin College                           | ОН       | 3           | 2         | 45500.0  | 0.7110          | 30.0    |
| 36 | Bryn Mawr<br>College                      | PA       | 3           | 2         | 61000.0  | 0.7805          | 27.0    |
| 37 | Bucknell<br>University                    | PA       | 3           | 2         | 82400.0  | 0.8418          | 36.0    |
| 38 | Franklin and<br>Marshall College          | PA       | 3           | 2         | 69200.0  | 0.8347          | 36.0    |
| 39 | Gettysburg<br>College                     | PA       | 3           | 2         | 66300.0  | 0.8417          | 49.0    |
| 40 | Haverford College                         | PA       | 3           | 2         | 75100.0  | 0.8646          | 11.0    |
| 41 | Lafayette College                         | PA       | 3           | 2         | 80500.0  | 0.8534          | 36.0    |
| 42 | Swarthmore<br>College                     | PA       | 3           | 2         | 70000.0  | 0.8760          | 3.0     |
| 43 | Sewanee-The<br>University of the<br>South | TN       | 3           | 2         | 51700.0  | 0.7905          | 49.0    |
| 44 | Middlebury<br>College                     | VT       | 3           | 2         | 71900.0  | 0.8458          | 5.0     |
| 45 | University of Richmond                    | VA       | 3           | 2         | 78900.0  | 0.8395          | 25.0    |
| 46 | Washington and<br>Lee University          | VA       | 3           | 2         | 93300.0  | 0.8787          | 11.0    |
| 47 | Soka University of<br>America             | CA       | 3           | 2         | NaN      | 0.8544          | 22.0    |

```
In [56]: # dropping the wrong Union Colleges
la_rank_merged = la_rank_merged.drop([13, 14], axis = 0)
```

# Rankings vs. Graduation Rate

```
In [57]: # examining the relationship with rankings and graduation rates
         # Does ranking really matter?
         fig, ax = plt.subplots(nrows = 1, ncols = 2, figsize = (16, 5))
         fig.suptitle("Rankings vs. Graduation Rate", fontsize = 16, fontweight =
         "bold")
         # NATIONAL UNIVERSITY RANK VS. GRADUATION RATE
         ax[0].scatter(nu_rank_merged["NU_Rank"], nu_rank_merged["Completion_Rat
         e"])
         ax[0].set_title("National Universities", fontsize = 14)
         # LIBERAL ARTS COLLEGE RANK VS. GRADUATION RATE
         ax[1].scatter(la rank merged["LA Rank"], la rank merged["Completion Rat
         e"])
         ax[1].set title("Liberal Arts Colleges", fontsize = 14)
         # formatting
         for var in ax:
             var.set ylim(-0.1, 1.1)
             var.set_xlabel("Rank", fontsize = 12)
             var.set ylabel("Graduation Rate", fontsize = 12)
             var.spines["right"].set visible(False)
             var.spines["top"].set visible(False)
             var.yaxis.grid(alpha= 0.5, linestyle= "--")
         plt.show()
         # note: the two data points on the National Universities scatter plot a
         re seemingly outliers.
         # upon further examination, the data pulled from College Scorecard may o
         r may not have mistakes.
```



## Rankings vs. Mean Earnings

```
In [58]:
         # examining the relationship with rankings and earnings
         # Does ranking really matter?
         fig, ax = plt.subplots(nrows = 1, ncols = 2, figsize = (16, 5))
         fig.suptitle("Rankings vs. Mean Earnings", fontsize = 16, fontweight =
         "bold")
         # NATIONAL UNIVERSITY RANK VS. EARNINGS
         ax[0].scatter(nu rank merged["NU Rank"], nu rank merged["Earnings"])
         ax[0].set title("National Universities", fontsize = 14)
         # LIBERAL ARTS COLLEGE RANK VS. EARNINGS
         ax[1].scatter(la rank merged["LA Rank"], la rank merged["Earnings"])
         ax[1].set_title("Liberal Arts Colleges", fontsize = 14)
         # formatting
         for var in ax:
             var.set ylim(40000, 160000)
             var.set_xlabel("Rank", fontsize = 12)
             var.set ylabel("Earnings ($)", fontsize = 12)
             var.spines["right"].set visible(False)
             var.spines["top"].set visible(False)
             var.yaxis.grid(alpha= 0.5, linestyle= "--")
         plt.show()
```



# **Graduation and Earnings Based on State**

```
In [59]: # grouping schools by state
    state_group = scorecard.groupby(["State"])
    transform_dict = {"Earnings": "mean", "Completion_Rate": "mean"}
    # aggregating data to find the mean earnings and mean completion rate fo
    r each state
    state_agg = state_group.agg(transform_dict)
    # dropping Guam and Puerto Rico from the data
    state_agg = state_agg.drop(["GU", "PR"], axis = 0)
    state_agg
```

## Earnings Completion\_Rate

| State |              |          |
|-------|--------------|----------|
| AK    | 47200.000000 | 0.206333 |
| AL    | 41990.625000 | 0.206650 |
| AR    | 42950.000000 | 0.269490 |
| AZ    | 48973.913043 | 0.302918 |
| CA    | 57203.225806 | 0.389475 |
| СО    | 47203.448276 | 0.294607 |
| СТ    | 58920.000000 | 0.463604 |
| DC    | 60300.000000 | 0.343167 |
| DE    | 49500.000000 | 0.336900 |
| FL    | 47304.615385 | 0.305798 |
| GA    | 45092.857143 | 0.262621 |
| н     | 45877.777778 | 0.180422 |
| IA    | 47741.176471 | 0.429836 |
| ID    | 44755.55556  | 0.198456 |
| IL    | 52506.493506 | 0.370362 |
| IN    | 48238.000000 | 0.385044 |
| KS    | 45026.666667 | 0.268055 |
| KY    | 42625.000000 | 0.325504 |
| LA    | 52244.000000 | 0.242250 |
| MA    | 59910.810811 | 0.525924 |
| MD    | 57332.142857 | 0.351042 |
| ME    | 48805.555556 | 0.431372 |
| MI    | 48286.666667 | 0.301528 |
| MN    | 50619.512195 | 0.385839 |
| МО    | 45941.509434 | 0.335465 |
| MS    | 40225.000000 | 0.278700 |
| MT    | 43888.888889 | 0.210556 |
| NC    | 44322.807018 | 0.355398 |
| ND    | 47644.444444 | 0.233478 |
| NE    | 49533.333333 | 0.386305 |
| NH    | 52723.076923 | 0.506473 |
| NJ    | 56629.411765 | 0.323189 |
| NM    | 40000.000000 | 0.163514 |

## Earnings Completion\_Rate

| State |              |          |
|-------|--------------|----------|
| NV    | 46014.285714 | 0.117425 |
| NY    | 55055.303030 | 0.364510 |
| ОН    | 47808.219178 | 0.392678 |
| ок    | 45750.000000 | 0.231889 |
| OR    | 50655.172414 | 0.350911 |
| PA    | 54228.455285 | 0.458384 |
| RI    | 59690.000000 | 0.592411 |
| sc    | 43319.444444 | 0.352375 |
| SD    | 44600.000000 | 0.297633 |
| TN    | 44328.888889 | 0.320578 |
| TX    | 52291.208791 | 0.264281 |
| UT    | 52153.846154 | 0.209677 |
| VA    | 50861.111111 | 0.373517 |
| VI    | 35500.000000 | 0.096200 |
| VT    | 44233.333333 | 0.441847 |
| WA    | 51540.000000 | 0.409210 |
| WI    | 47822.500000 | 0.340672 |
| wv    | 43925.000000 | 0.251979 |
| WY    | 54200.000000 | 0.266000 |

```
In [60]: fig, ax = plt.subplots(nrows = 2, ncols = 1, figsize = (16, 10))
         plt.subplots adjust(left = None, bottom = None, right = None, top = None
         , wspace = None, hspace = 0.25)
         # MEAN EARNINGS BY STATE
         ax[0].bar(state_agg.index, state_agg["Earnings"], width = 0.75, color =
         "g", alpha = 0.5)
         ax[0].set_title("Average Earnings After Graduation by State", fontsize =
         16, fontweight = "bold") # graph title
         ax[0].set_ylabel("Earnings ($)") # y-axis label
         # overall average earnings for the country
         ax[0].axhline(y = state_agg["Earnings"].mean(), color = "r", alpha = 0.7
         5, linestyle = "--", linewidth = 1.5)
         # label for the horizontal line created in line 12
         ax[0].text(-2.5, state_agg["Earnings"].mean() + 2000,
                    "Overall Average Earnings = $" + str(round(state agg["Earning
         s"].mean(), 2)), fontsize = 10,
                    horizontalalignment='left')
         # MEAN GRADUATION RATE BY STATE
         ax[1].bar(state_agg.index, state_agg["Completion_Rate"], width = 0.75, a
         lpha = 0.5)
         ax[1].set title("Average Graduation Rate by State", fontsize = 16, fontw
         eight = "bold") # graph title
         ax[1].set_ylabel("Completion Rate") # y-axis label
         # overall average graduation rate for the country
         ax[1].axhline(y = state agg["Completion Rate"].mean(), color = "r", alph
         a = 0.75, linestyle = "--",
                       linewidth = 1.5)
         # label for the horizontal line created in line 27
         ax[1].text(-2.5, state agg["Completion Rate"].mean() + 0.02,
                    "Overall Average Completion Rate = " + str(round(state agg["C
         ompletion_Rate"].mean(), 2)),
                    fontsize = 10, horizontalalignment='left')
         # formatting
         for var in ax:
             var.set xlabel("State", fontsize = 14, fontstyle = "italic")
             var.spines["right"].set visible(False)
             var.spines["top"].set_visible(False)
         plt.show()
```





## **Conclusion**

After conducting all of the comparisons across various factors, I have found the following for each of the factors.

### Control

Public and private nonprofit universities have higher median completion rates than private forprofit universities. However, the median earnings for the three kinds of universities are approximately the same. Public and private nonprofit universities have significantly higher earnings outside of the interquartile range.

## **Rankings**

When comparing the top 50 national universities and liberal arts colleges, there seems to be a slight correlation where higher ranked universities have higher completion rates. This difference is much more pronounced for national universities than it is for liberal arts colleges. The opposite is true when it comes to earnings - higher ranked national universities have higher mean earnings than those that are ranked lower.

### State

While average graduation rates of each state vary a lot, the average earnings after graduation by state vary less so. In many cases, states that have below-average graduation rates also have below-average earnings after graduation.

## **Final Thoughts**

While some conclusions can be drawn from the data, these insights can be broken down even further. For example, I only examined 4-year graduation rates, but schools themselves often look at 6-year graduation rates. Furthermore, in the rankings comparisons, there are many other factors at play that affect graduation rates and earnings, such as students who leave school to start their own businesses, transfers, and college major.

| In [ ]: |  |
|---------|--|
|         |  |