PRINCIPIO di INCLUSIONE-ESCLUSIONE

Prof. Francesco Rizzotto

September 5, 2011

Abstract

Dimostrazione del Principio di inclusione-esclusione, sua applicazione al calcolo del numero di permutazioni senza elementi fissi e, successivamente, al calcolo della probabilità di sbagliare tutti gli abbinamenti fra gli elementi di due insiemi correlati.

PRINCIPIO DI INCLUSIONE-ESCLUSIONE

Ovvero: Come calcolare il numero di elementi dell'unione di insiemi

$$\begin{aligned} |A_1 \cup A_2 \cup \cup A_n| &= \sum_{i=1}^n |A_i| - \sum_{i < j} |A_i \cap A_j| + \sum_{i < j < k} |A_i \cap A_j \cap A_k| - + \\ (-1)^{n-1} |A_1 \cap A_2 \cap A_3 \cap \cap A_n| \end{aligned}$$

(Con il simbolo |.....| si indica la cardinalità dell'insieme, cioè il numero dei suoi elementi.)

DIMOSTRAZIONE

Per provare che la formula è corretta bisogna verificare se, considerato un qualsiasi elemento $x \in A_1 \cup A_2 \cup \cup A_n$, essa lo conta una sola volta.

Poniamo che l'elemento scelto appartenga a 4 degli n insiemi (quelli da 1 a 4).

Considerate le componenti della formula, esso viene contato:

- per ciascuno dei singoli insiemi, 4 volte;
- per ciascuna delle intersezioni doppie, $\binom{4}{2} = 6$ volte;
- per ciascuna delle intersezioni triple, $\binom{4}{3} = 4$ volte;
- infine, nell'intersezione quadrupla, una volta.

Pertanto, nella formula esso viene contato: $4 - \binom{4}{2} + \binom{4}{3} - 1 = 4 - 6 + 4 - 1 = 1$

Poniamo che l'elemento scelto appartenga a 5 degli n insiemi.

Considerate le componenti della formula, esso viene contato:

- per ciascuno dei singoli insiemi, 5 volte;
- per ciascuna delle intersezioni doppie, $\binom{5}{2} = 10$ volte;
- per ciascuna delle intersezioni triple, $\binom{5}{3} = 10$ volte;
- per ciascuna delle intersezioni quadruple, $\binom{5}{4} = 5$ volte;
- infine, nell'intersezione di tutti 5, una volta.

10 - 5 + 1 = 1

In generale, un elemento appartenente all'intersezione di h insiemi, nella formula viene contato $h - \binom{h}{2} + \binom{h}{3} - \dots + (-1)^{h-1} \binom{h}{h}$ volte e, pertanto, il calcolo sarà corretto se l'espressione appena vista vale sempre 1. Ciò equivale a dire che: $1 - h + \binom{h}{2} - \binom{h}{3} - \dots + (-1)^h \binom{h}{h} = 0$ Quest'ultima è vera in quanto è la somma, a segni alterni, dei numeri pre-

senti in una riga del triangolo di Tartaglia che sappiamo essere sempre nulla.

Applicazione: calcolo delle permutazioni senza elementi fissi

Proviamo a contare tutte le permutazioni di n elementi $\{1, 2, 3, ..., n\}$ tali che $f(i) \neq i, \forall i$; cioè tutte le permutazioni in cui nessun elemento resta fermo.

Per ottenere questo risultato, proviamo a contare gli elementi dell'insieme complementare, cioè dell'insieme delle permutazioni in cui almeno un elemento resta fermo.

Definiamo, a tale scopo, gli insiemi:

 $A_1 = \{f \mid f(1) = 1\}$ insieme delle permutazioni con 1 fisso

 $A_2 = \{f \mid f(2) = 2\}$ = insieme delle permutazioni con 2 fisso

 $A_3 = \{f \mid f(3) = 3\}$ = insieme delle permutazioni con 3 fisso

 $A_n = \{f \mid f(n) = n\}$ = insieme delle permutazioni con n fisso

A questo punto deve essere chiaro che l'insieme delle permutazioni in cui almeno un elemento resta fermo è equivalente all'unione degli insiemi appena definiti.

Prima di andare avanti, serve precisare che in ciascuno di tali insiemi ci sono (n-1)! permutazioni, mentre in ciascun insieme del tipo $A_i \cap A_j$ ci sono (n-2)!permutazioni e in quelli del tipo $A_i \cap A_j \cap A_k$ ci sono (n-3)! permutazioni e così via.

Pertanto, dovendo calcolare il numero degli elementi dell'insieme $A_1 \cup A_2 \cup$ $A_3 \cup \dots \cup A_n$ possiamo applicare la formula vista in precedenza ricavando quanto segue:

$$\begin{aligned} |A_1 \cup A_2 \cup \ldots \cup A_n| &= \sum_{i=1}^n |A_i| - \sum_{i < j} |A_i \cap A_j| + \sum_{i < j < k} |A_i \cap A_j \cap A_k| - \ldots + \\ (-1)^{n-1} |A_1 \cap A_2 \cap A_3 \cap \ldots \cap A_n| &= n(n-1)! - \binom{n}{2}(n-2)! + \binom{n}{3}(n-3)! - \\ \ldots + (-1)^{n-1} &= n! - \frac{n!}{2!} + \frac{n!}{3!} - \ldots + (-1)^{n-1} \end{aligned}$$

A questo punto, la totalità delle permutazioni senza punti fissi è data dalla differenza fra tutte le possibili permutazioni (n!) e quelle con almeno un ele-

Quindi:
$$n! - \left(n! - \frac{n!}{2!} + \frac{n!}{3!} - \dots + (-1)^{n-1}\right) = n! \left(\frac{1}{2!} - \frac{1}{3!} + \dots + \frac{(-1)^n}{n!}\right)$$

ESEMPIO 1 Dati 3 elementi (a, b, c) le permutazioni che spostano tutti gli elementi sono (b,c,a) e (c,a,b); cioè solo 2 come da formula: $= 3! \left(\frac{1}{2!} - \frac{1}{3!} \right) =$ $6 \cdot \frac{3-1}{6} = 2$

ESEMPIO 2 Dati 4 elementi (a,b,c,d), le permutazioni che spostano tutti gli elementi sono: (b,a,d,c) (b,d,a,c) (b,c,d,a) (c,a,d,b) (c,d,a,b) (c,d,b,a) (d,a,b,c)(d,c,a,b) (d,c,b,a).

In tutto sono 9 come da formula: $4! \left(\frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} \right) = 24 \cdot \frac{12 - 4 + 1}{24} = 9$

ESEMPIO 3: PROBLEMA DELLE BUSTE Quante sono le possibilità di infilare a caso 5 lettere indirizzate nelle buste con i relativi indirizzi, in modo che nessuna lettera sia messa nella busta corrispondente. Soluzione: 5! $\left(\frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!}\right) = 120 \cdot \frac{60 - 20 + 5 - 1}{120} = 44$

Soluzione:
$$5! \left(\frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} \right) = 120 \cdot \frac{60 - 20 + 5 - 1}{120} = 44$$

ESEMPIO 4: PROBLEMA DEL TEST In un test vengono forniti un insieme di 6 avvenimenti, un insieme di altrettante date storiche e bisogna saper collegare ciascuna data all'avvenimento corrispondente.

Purtroppo non si è preparati e non si sa quali collegamenti fare. Domanda:

quante sono le possibilità, and
ando a caso, di sbagliare tutti i collegamenti. Soluzione: 6!

$$\left(\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\frac{1}{5!}+\frac{1}{6!}\right)=720\cdot\frac{360-120+30-6+1}{720}=265$$

APPLICAZIONE AL CALCOLO DELLE PROBABILITÀ

Problema1: Hai davanti 5 persone che non conosci e hai in mano 5 cartoncini con scritti i loro nomi.

Qual è la probabilità che, consegnando a ciascuna delle 5 persone un cartoncino a caso, tu riesca a indovinarli tutti.

A questa domanda è facile rispondere; c'è solo un caso favorevole e 5! casi possibili, pertanto la probabilità è: $\frac{n.\ casi\ favorevoli}{n.\ casi\ possibili} = \frac{1}{5!}$.

Molto più difficile è rispondere al quesito opposto: qual è la probabilità di sbagliarli tutti.

Alla luce di quanto visto prima, però, diventa facile calcolare anche questa probabilità.

In base all'impostazione classica del calcolo delle probabilità, si ottiene: $probabilit\grave{a} = \frac{n.\,casi\,favorevoli}{n.\,casi\,possibili} = \frac{5!\left(\frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!}\right)}{5!} = \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!}$

Problema2: Nel test in cui vengono forniti un insieme di 6 avvenimenti, un insieme di altrettante date storiche e bisogna saper collegare ciascuna data all'avvenimento corrispondente ma non si sa come fare e quindi si tira a indovinare, calcolare la probabilità di indovinare tutti i collegamenti.

Semplice: c'è solo un caso favorevole e 6! casi possibili, pertanto la probabilità $\frac{n.\,casi\,favorevoli}{n.\,casi\,possibili} = \frac{1}{6!}.$

Proviamo, ora, a calcolare la probabilità dell'evento opposto, cioè di sbagliare $tutti\ i\ collegamenti.$

Abbiamo calcolato prima che le possibilità di sbagliare tutti i collegamenti sono $6! \left(\frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \frac{1}{6!} \right)$, pertanto la probabilità richiesta è data da = $\frac{6! \left(\frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \frac{1}{6!} \right)}{6!} = \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \frac{1}{6!}$

In generale, dati due insiemi con n elementi ciascuno e correlati fra loro, la probabilità di sbagliare tutti gli abbinamenti fra ogni elemento del primo insieme e il corrispondente del secondo è data da:

$$\frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \dots + (-1)^n \frac{1}{n!} = \sum_{k=2}^n (-1)^k \frac{1}{k!}$$

NB. In analisi matematica si dimostra che:
$$\frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \dots + (-1)^n \frac{1}{n!} + \dots = \sum_{k=2}^{\infty} (-1)^k \frac{1}{k!} = \frac{1}{e}$$

Pertanto si può concludere che, al crescere del numero di elementi, la probabilità di sbagliare tutti gli abbinamenti tende al reciproco del numero trascendente e.