

COMBINATIONAL CIRCUIT:

A Combinational Circuit is a compound circuit consisting of the basic logic gates such as NOT, AND, OR.

DETERMINING OUTPUT FOR A GIVEN INPUT:

Indicate the output of the circuit below when the input signals are P = 1, Q = 0 and R = 0

DETERMINING OUTPUT FOR A GIVEN INPUT:

Indicate the output of the circuit below when the input signals are P = 1, Q = 0 and R = 0

SOLUTION:

Output S = 1

LABELING INTERMEDIATE OUTPUTS:

P	Q	R	X	Y	S
1	1	1	1	0	1
1	1	0	1	0	0
1	0	1	0	1	1
1	0	0	0	1	1
0	1	1	0	1	1
0	1	0	0	1	1
0	0	1	0	1	1
0	0	0	0	1	1

FINDING A BOOLEAN EXPRESSION FOR A CIRCUIT

SOLUTION:

Trace through the circuit from left to right, writing down the output of each logic gate.

Hence $(P \lor Q) \land (P \lor R)$ is the Boolean expression for this circuit. CIRCUIT CORRESPONDING TO A BOOLEAN EXPRESSION

CIRCUIT FOR INPUT/OUTPUT TABLE:

1	INPUTS	OUTPU		
P	Q	R	S	
1	1	fi	0	
1	1	0	1	
1	0	i	0	
1	0	0	0	
0	1	i	1	
0	1	0	0	
0	0	i	0	
0	0	0	0	

SOLUTION:

		OUTPUT	INPUTS		
	8	S	R	Q	P
		0	1	1	1
$P \wedge Q \wedge \sim R$	→	1	0	1	1
		0	1	0	1
		0	0	0	1
→ ~P ∧ Q ∧ R	→	1	1	1	0
		0	0	1	0
		0	1	0	0
		0	0	0	0

CIRCUIT DIAGRAM:

SOLUTION:

We find the Boolean expressions for the circuits and show that they are logically equivalent, when regarded as statement forms.

Quiz # 1

Correct the symbols in simplification according to the given circuit to get P v Q.

STATEMENT

$(P \land Q) \lor (\sim P \land Q) \land (P \land \sim Q)$

$$\equiv (P \land Q) \land (\sim P \land Q) \land (P \land \sim Q)$$

$$\equiv (P \land \sim P) \land Q \land (P \land \sim Q)$$

$$\equiv t \land O \land (P \land \neg O)$$

$$\equiv Q \wedge (P \wedge \sim Q)$$

$$\equiv (Q \land P) \land (Q \land \sim Q)$$

$$\equiv (Q \land P) \land t$$

$$\equiv (Q \lor P) \lor t$$

$$\equiv Q \vee P$$

 $\equiv P \vee Q$

REASON

Distributive law

Negation law

Identity law

Distributive law

Negation law

identity law

Commutative law