Segurança da Informação

Márcio Moretto Ribeiro

22 de Agosto de 2017

Apresentação

Essas são notas de aula da disciplina Segurança da Informação ministrados no segundo semestre de 2017 para as turmas do período diurno e noturno do curso de Sistemas de Informação da Escola de Artes Ciências e Humanidades (EACH) da USP. A primeira versão desta apostila foi escrita para o curso de verão ministrado entre os os dias 2 e 6 de fevereiro de 2015 também no campus leste da Universidade de São Paulo. O curso de verão foi oferecido como parte das atividades do projeto de Privacidade e Vigilância do Grupo de Políticas Públicas em Acesso à Informação (GPoPAI) e foi inspirado pelo curso online oferecido gratuitamente pela plataforma Coursera e ministrado pelo professor D. Boneh.

Aos alunos que pretendem se aprofundar no tema sugerimos as seguintes referências bibliográficas:

- J. Katz e Y. Lindell Introduction to Modern Cryptography
- W. Stallings Criptografia e Segurança da Informação
- C. Paar e J. Pelzl Understanding Cryptography

Agradecemos aos alunos que participaram do curso de verão em 2015 e dos cursos de gradução em 2016 e 2017, suas contribuião serviram de importante feedback para escrita dessas notas.

Alguns direitos sobre o conteúdo desta apostila são protegidos pelo autor sob licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). Ou seja, você é livre para distribuir cópias e adaptar este trabalho desde que mantenha a mesma licença, dê o devido crédito ao autor e não faça uso comercial.

Capítulo 1

Introdução

1.1 Privacidade

As primeiras tentativas de conceitualizar a privacidade datam do final do século XIX. Em um famoso artigo de 1890, os colegas da faculdade de direito de Bosto, Louis Brandeis e Samuel Warren denunciam que o advento da fotografia instantânea e o jornalismo haviam "invadido o recinto sagrado da vida privada" ferindo o que eles apontam como o direito individual de "ser deixado em paz". Assim, eles argumentam que o escopo do direito comun (Common Law), que originalmente se concentrava apenas na proteção contra agreções e já havia sido ampliado para incluir a proteção à propriedade deveria ser novamente alargado para finalmente reconhecer a "natureza espiritual do homem" [WB90].

Essa visão da privacidade como proteção à intimidade ou, nas palavras dos autores, como o "direito de ser deixado em paz" é a chave de interpretação que prevalece no debate público. Duas contribuições que não fogem a esse espírito, porém, merecem destaque nessas notas introdutórias. Em um influente artigo de 1977, Richard Posner propõe que as disputas sobre direito à privacidade sejam interpretadas em sua dimensão econômica. Para Posner, as informações privadas possuem valor. De um lado há o interesse de quem busca construir uma imagem pública sobre si, uma reputação e, de outro, há o interesse de se conhecer o outro para melhor saber como se relacionar com ele ou aprender sobre sua trajetória. Caso fosse permitido qualquer tipo de intrusão à privacidade, o efeito seria um esforço maior em não revelar, ou inclusive não produzir, dados potencialmente valiosos. Assim, a questão

da privacidade, se resumiria a uma questão de eficiência econômica. Caberia ao legislador regular o direito ao controle da reputação procurando um equilíbrio que maximizasse os fluxos de informação [Pos77].

O risco tanto para o indivíduo cuja paz é perturbada pelas fotos não autorizadas, quanto para aquele que perde o controle sobre sua reputação é de que algo que pertencia a sua esfera privada se tornasse pública. Para Nissenbaum, essa dicotomização entre público e privado não dá conta dos problemas associados a quebra de privacidade. Por exemplo, um paciente espera que as informações sobre sua condição de saúde sejam eventualmente compartilhadas com outros médicos ou médicas com o intuito de melhor diagnosticá-lo, assim como um cliente espera que seu gerente de banco use suas informações bancárias para sugerir-lhe melhores investimentos. Porém, há uma flagrante quebra de privacidade se as informações médicas forem compartilhadas com o banco, com quem eventualmente o paciente negociará um plano de saúde. Esse cenário exemplifica o que a autora chama de rompimento da "integridade contextual do fluxo de informações" [Nis09].

1.2 Vigilância

Associado ao tema da privacidade, mas ligado a outra matriz teórica, estão os debates sobre vigilância. Diferente dos estudos sobre privacidade cujos principais autores são juristas preocupados com o direito individual, os estudos sobre vigilância focam em relações de poder. Foucault descreve a vigilância como uma técnica que teria alterado profundamente as formas de exercer o poder durante os séculos XVII e XIX. O poder do senhor feudal durante a idade média era exercído por meio do suplício, a pena corporal em que o açoitado pedia misericórdia eventualmente concedida. Após a revolução francesa o suplício foi sendo substituido pela prisão e aos poucos seria desenvolvida a técnica da disciplina e da vigilância. Para o autor, a imagem que melhor descreve a técnica é uma estrutura arquitetônica proposta por Jeremy Bentham no final do século XVII. Bentham arquitetou um modelo de prisão em que os vigias ficariam no centro aonde poderiam observar todas as celas, porém, aqueles que ocupam as celas não poderiam observar o vigia. A sensação constante de estar sendo vigiado introgetaria a disciplina, outra técnica deste período, nos condenados. O propósito da vigilância e da disciplina é o de produzir corpos dóceis e obedientes [Fou96].

Em 1992, em um curto texto, Giles Deleuze propos uma atualização dos

conceitos de Foucault que antecipariam o que hoje compreendemos como vigilância. Na sociedade disciplinar, descrita por Foucault, durante a vida o indivíduos passa de uma instituição disciplinar a outra: da escola, ao exército, do exército à fábrica e da fábrica ao hospital. Cada instituição disciplina o indivíduo e o modela da maneira mais eficiente à instituição. Na sociedade do controle, conforme descrita por Deleuze, o poder é exercido de maneira mais intermitente e mais sutil. O indivíduo prototípico da sociedade do controle seria o endividado cujo controle atravessa as instituições [Del92].

Desde os trabalhos de Foucault, a vigilância se tornou um tema importante de investigação dentro das ciências sociais. Diversos autores escreveram trabalhos mais ou menos importantes sobre o tema. Um autor particularmente proeminente e que merece ser citado é David Lyon que escreveu uma serie de livros e organizou diversas coletâneas de artigos [Lyo94, Lyo05]. Uma entrevista de Lyon a outro importante sociólogo contemporâneo, Zigmund Bauman, produziu um livro com tradução para o português [Bau14].

1.3 Marco Regulatório

Antes ainda dos primeiros computadores, as chamadas máquinas Hollerith revolucioram a capacidade de processamento de dados. Durante a década de trinta elas dinamizaram o processamento dos dados do censo nos EUA e na década de 40 foram usadas pelos nazistas para classificar aqueles, principalmente judeus, mas também comunistas e homossexuais, que deveriam ser transportados para os guetos, dos guetos para os campos de concentração e finalmente para as câmaras de gás [Bla01]. Finda a guerra, a evolução dos modernos Estados de bem estar social Europeu e seu necessário processamento massivo de dados casou muito bem com o desenvolvimento computacional e assustou os cidadãos com sua centralidade de processamento. Assim, começaram a surgir as primeiras leis de proteção de dados pessoais.

Mayer-Schonberger argumenta que, uma vez que as leis de proteção de dados pessoais na Europa partem todas das mesmas bases e diferem apenas em detalhes, é mais frutífero estudá-las em conjunto do que seguindo uma análise comparativa. Ele propõe uma abordagem geracional como se existisse uma tendência evolutiva das normas. A primeira geração, no começo dos anos 70, focou na regulamentação técnica dessas bases centralizadas de dados. O surgimento de mini-computadores, que favorecia o processamento descentralizado, levou a uma adaptação na legislação. A segunda geração, no

final dos anos 70, focou na liberdade negativa, o direito civíl de "ser deixado em paz" nas palavras de Brandeis e Warren. A autonomia do indivíduo é, porém, contraposta a sua inclusão nos programas sociais do Estado. Então, a terceira geração legislativa, em meados dos anos 80, foge um pouco das liberdades negativas e foca em uma abordagem participativa de autodeterminação informacional. A pergunta deixa de ser se alguém quer participar ou não de processos sociais, mas como. Ainda assim, porém, os indivíduos estavam em uma posição frágil nas relações de negociação o que os levava, via de regra, a abdicar dos seus direitos. A quarta geração, de meados dos ano 90, procurou de um lado equalizar as posições de negociação ainda apostando na autonomia do indivíduo, mas também incluiu diversos mecanismos mais paternalistas excluindo certas liberdades participativas e as sujeitando à proteção juridica obrigatória. Nessa fase surgem órgãos de defesa, não apenas de auxílio aos cidadãos, mas com papel decisório para delibera contra violações [MS97].

No Brasil, o Marco Civil da Internet aprovado em 2013 não aborda diretamente as questões de proteção de dados pessoais. Carecemos de um marco legal que imponha, pelo menos, que o uso de dados pessoas dependa necessariamente do consentimento explicito e informado e cuja autorização seja dada para um fim específico.

1.4 Vigilância Digital em Massa

Em 2013 Edward Snowden revelou ao mundo o alacance dos programas de vigilância em massas das agências de espionagem dos EUA. O jornalista Glen Greenwald e a cineasta Laura Poitras divulgaram o caso em uma serie de matérias e um documentário [Gre14, Poi14]. O vazamento demonstra que a agência de segurança nacional dos EUA (NSA) tem acesso a toda a comunicação por telefone e pelos principais meios de comunicação online do mundo. O moderno modelo de negócios das empresas de internet baseado na propaganda direcionada depende da construção de perfis digitais que por sua vez dependem da produção e aquisição de uma grande escala dados pessoas. Essa competição por dados pessoais cria o que chamamos de pontos únicos de falha. A violação dessas bases permitiu à NSA produzir um banco de dados pesquisável da agência possui toda comunicação pública e privada que passa pelos servidores da Google, do Facebook, da Microsof e da Apple.

A vigilância digital em massa eleva o problema da privacidade para um

outro patamar. Não se trata apenas de proteger a intimidade, ou a inviolabilidade do lar, ou do controle na construção da reputação. Nesse contexto, o problema da privacidade é também coletivo. A privacidade deve ser também enchergada como um direito civil, uma limitação ao poder do estado de antecipar as ações de grupos políticos. Para tanto, é preciso de ação politica de concientização, de regulamentação para restringir o poder das empresas que controlam o armazenamento dos dados pessoais e também desnvolvimento técnico.

1.5 Segurança da Informação

A internet é um meio intrinsecamente promíscuo []. Por uma decisão de projeto, não temos controle por onde nossas informações passam quando nos comunicamos pela rede. Conforme produzimos mais informações pessoais e permitimos que elas circulem, maior o risco de quebra da integridade dos fluxos contextuais. Em particular há atores poderosos com capacidade conhecida de observar a comunicação em escala global o que traz um risco coletivo tanto à soberania nacional dos países perifércos, como o Brasil, quanto à democracia. A regulamentação, absolutamente necessaria para controlar minimamente esses processos e garantir pelo menos o consentimento no uso de nossas informações pessoais, certamente não é suficiente. A compreensão, o desenvolvimento e a difusão de ferramentas de segurança da informação, combinada com a incorporação de uma cultura de segurança [Cul01] podem colaborar nesse sentido. Concluiremos o capítulo com uma história motivadora.

Após as denúncias de Snowden houve uma espécie de consenso nos meios ativistas sobre a importância de focar forças em desenvolver ferramentas que garantissem a criptografia ponta a ponta. O paradigma mais comum de comunicação na rede é criptografar a comunicação entre cada cliente e o servidor. Como já dissemos, conforme poucos servidores consentram a maior parte da comunicação online, a informação armazenada nesses servidores passa a ser um bem muito requisitado. A ideia para superar isso seria criptografar a comunicação entre clientes. Assim, a informação armazenada nos servidores não seria compreensível seja pelos engenheiros das empresa que controla a comunicação, seja para um ator externo como um hacker ou a NSA. O principal protocolo de criptografia ponta a ponta na época era o PGP, que havia sido criado no começo da década de 90, antes do advento da web. As

tentativas mal sucedidas de ressucitar o protocolo logo foram substituídas por um esforço em atualizá-lo. Duas aplicações que garantiam criptografia ponta a ponta em celulares se popularizaram nesse período: Telegram e o Textsecure. A primeira foi desenvolvida por uma compania russa e oferece serviço de criptografia ponta a ponta em comunicação síncrona usando um protocolo desenvolvido por seus engenheiros. A segunda foi desenvolvida por uma pequena empresa no Vale do Silício e se inspirou no protocolo OTR, que por sua vez se inspirou no PGP, adaptando-o para o contexto assíncrono mais adequado para a comunicação móvel. Os esforços de ativistas em promover esse tipo de ferramenta culminou com a adoção do protocolo do Textsecure, rebatizado como Signal, no Whatsapp, a ferramenta de comunicação móvel mais usada no mundo todo. A popularização da criptografia ponta a ponta em grande parte da comunicação interpessoal muda muito o cenário de proteção de direitos civis e de liberdade de organização. É certo que os metadados das comunicações - quem fala com quem, quando e de onde - não estão protegidos, é certo que a maior parte da comunicação interpessoal não está livre de intrusão seja de hackers, seja de agências governamentais, é certo que há serviços - como agenda online - em que simplesmente não há alternativa segura e, portanto, é necessaria muita ação política e desenvolvimento técnico nessa área.

Capítulo 2

Cifras Clássicas

Como argumentamos no primeiro capítulo, a internet é um meio de comunicação promíscuo. As partes que se comunicam pela rede não tem controle sobre por quais caminhos sua comunicação irá trafegar. Essa característica, porém, não se restringe a esse meio. Durante o século XVIII, por exemplo, toda correspondência que passava pelo serviço de correios de Viena na Austria era encaminhada para um escritório – black chamber – que derretia o selo, copiava seu conteúdo, recolocava o selo e reincaminhava para o destinatário. Todo esse processo durava cerca de três horas para não atrasar a entrega. Como a Áustria, todas as potências européias desse período operavam suas back-chambers. As invenções do telegrafo e do rádio só facilitaram a capacidade de criar grampos, no primeiro caso, ou simplesmente captar a comunicação no segundo [Kah96].

Partiremos, portanto, do seguinte modelo de comunicação. Duas partes, o remetente e o destinatário, buscam se comunicar. Tradicionalmente denominaremos o remetente de Alice e o destinatário de Bob. Nossa suposição principal é que o canal de comunicação entre as partes é inseguro. Ou seja, assumiremos que terceiros, que denominaremos de Eva, são capazes de observar as mensagens que trafegam pelo canal de comunicação. Essa suposição é conhecida em alguns meios como "hipótese da comunicação hacker". Para efeitos deste curso, sempre assumiremos essa hipótese.

A criptografia (do grego "escrita secreta") é a pratica e o estudo de técnicas de comunicação segura na presença de terceiros chamados de adversários. Nosso primeiro desafio no curso é apresentar sistemas de comunicação que garantam a confidencialidade. Ou seja, toda mensagem enviada de Alice para Bob deve ser compreensível apenas para Alice e Bob e deve ser

incompreensível para Eva:

Se a importância da comunicação confidencial entre civis tem se tornado cada vez mais urgente, no meio militar é difícil remontar suas origens. Suetônio (69 - 141) por volta de dois mil anos atrás descreveu como o imperador Júlio César (100 a.c. - 44 a.c.) escrevia mensagens confidenciais:

"Se ele tinha qualquer coisa confidencial a dizer, ele escrevia cifrado, isto é, mudando a ordem das letras do alfabeto, para que nenhuma palavra pudesse ser compreendida. Se alguém deseja decifrar a mensagem e entender seu significado, deve substituir a quarta letra do alfabeto, a saber 'D', por 'A', e assim por diante com as outras."

O esquema que chamaremos de cifra de César é ilustrado pelo seguinte exemplo:

Mensagem: transparenciapublicaopacidadeprivada Cifra: XUDQVSDUHQFLDSXEOLFDRSDFLGDGHSULYDGD

Como descrito Suetônio, a regra para encriptar uma mensagem consiste em substituir cada letra da mensagem por aquela que está três posições a sua frente na ordem alfabética. Para descriptografar a cifra, substituir cada letra por aquela que está três posições atrás. O problema com este tipo de sistema é que basta conhecer a regra de criptografia para decifrá-lo. Em outras palavras, o segredo da cifra é sua própria regra.

Embora técnicas de criptografia e criptoanálise existam desde o império romano, foi com o advento do teléfgrafo e sua capacidade de comunicação eficiente, que o campo se estruturou. No fim do século XIX Auguste Kerckhoff estabeleceu seis princípios que as cifras militares deveriam satisfazer:

1. O sistema deve ser indecifrável, se não matematicamente, pelo menos na prática.

- 2. O aparato não deve requerer sigilo e não deve ser um problema se ele cair nas mãos dos inimigos.
- 3. Deve ser possível memorizar uma chave sem ter que anotá-la e deve ser possível modificá-la se necessário.
- 4. Deve ser possível aplicar a sistemas telegráficos.
- 5. O aparato deve ser portátil e não deve necessitar de muitas pessoas para manipulá-lo e operá-lo.
- 6. Por fim, dadas ascircunstâcias em que ele será usado, o sistema deve ser fácil de usar e não deve ser estressante usá-lo e não deve exigir que o usuário conheça e siga uma longa lista de regras.

O segundo princípio ficou conhecido como princípio de Kerckhoff. Ele estabelece que a regra usada para criptografar uma mensagem, mesmo que essa regra esteja codificada em um mecanismo, não deve ser um segredo e não deve ser um problema caso ela caia nas mãos do adversário. Nas palavras de Claude Shannon: "o inimigo conhece o sistema". Whitfield Diffie coloca o debate nos seguintes termos:

"Um segredo que não pode ser rapidamente modificado deve ser interpretado como uma vulnerabilidade"

Ou seja, em uma comunicação confidencial as partes devem compartilhar algo que deve ser "possível de modificar caso necessário". Esse segredo compartilhado é o que chamaremos de *chave* da comunicação e assumiremos que ela é a única parte sigilosa do sistema. Trazendo o debate para uma discução mais moderna, o sigilo do código-fonte de um sistema não deve em hipótese alguma ser aquilo que garanta sua segurança.

O modelo de criptografia simétrica, portanto, pode ser descrito da seguite maneira: o remetente usa um algoritmo público (E) que, dada uma chave (k), transforma uma mensagem (m) em um texto incompreensível chamado de cifra (c), a cifra é enviada para o destinatário por um meio assumidamente inseguro (hipótese da comunicação hacker) e o destinatário utiliza a mesma chave em um algoritmo (D) que recupera a mensagem a partir da cifra.

2.1 Cifra de Deslocamento

O que chamamos na seção anterior como "cifra de César" não deve ser propriamente considerado uma cifra, pois não possui uma chave. Porém, é possível e simples adaptar esse esquema para incorporar uma chave. Para tanto faremos a seguinte alteração no esquema. Ao invés de deslocar as letras sempre três casas para frente vamos assumir que foi sorteado previamente um número k entre 0 e 23. Esse número será a chave da comunicação e, portanto, assumiremos que as partes a compartilham. O mecanismo para criptografar uma mensagem será o de deslocar cada letra k posições para a direita e para descriptografá-la basta deslocar cada letra as mesmas k posições para a esquerda.

Para formalizar este mecanismo vamos assumir que cada letra do alfabeto seja representada por um número: a letra a será representada pelo 0, a letra b pelo 1 e assim por diante. O universo de todas as chaves possíveis é o conjunto $K = \{0...23\}$ (chamaremos este conjunto de \mathbb{Z}_{26} ou de maneira mais genérica $\mathbb{Z}_n = \{0, 1, \ldots, n-1\}$) e o universo de todas as mensagens possíveis é representado pelo conjunto $M = \mathbb{Z}_{26}^*$, ou seja, todas as sequências de números entre 0 e 23. Além disso, o conjunto das possíveis cifras é C = M. Precisamos descrever três algorítmos:

- Gen que gera a chave $k \in K$,
- E que recebe uma chave $k \in K$ e uma mensagem $m \in M$ e produz uma cifra $c \in C$ (i.e.: $E: K \times M \to C$) e
- D que recebe uma chave $k \in K$ e uma cifra $c \in C$ e produz uma mensagem $m \in M$ (i.e.; $D: K \times C \to M$).

Um sistema de criptografia simétrica Π é formado por essa tripla de algoritmos $\Pi = \langle Gen, E, D \rangle$. Além disso, precisamos garantir que quem possui

a chave seja capaz de descriptografar a cifra. Ou seja, precisamos garantir que:

$$D(k, E(k, m)) = m$$

O mecanismo que gera uma chave na cifra de substituição é bastante simples, ele simplesmente sorteia com uma distribuição de probabilidade uniforme um número entre 0 e 23. Escreveremos da seguinte forma:

$$Gen := k \leftarrow \mathbb{Z}_{26}$$

Utilizaremos a partir daqui a convenção de usar uma seta da direita para esquerda indicando que será escolhido um elemento do conjunto com probabilidade uniforme.

O algoritmo para criptografar uma mensagem traz um pequeno problema. Escreveremos $m=m_0m_1m_2\ldots m_n$ uma mensagem m com n+1 letras cuja primeira letra é m_0 , a segunda é m_1 e assim por diante. Nossa primeira tentativa de formalizar E seria somar k a cada uma das letras m_i . O problema é que esta soma pode resultar em um valor que não corresponde a nenhuma letra i.e. $m_i+k>23$. Para evitar este problema utilizaremos não a aritmética convencional, mas a $aritmética \ modular$.

Dizemos que um número a divide b (escrevemos a|b) se existe um número inteiro n tal que a.n=b. Dois números são equivalentes módulo n (escrevemos $a\equiv b\ (mod\ n)$) se n|(b-a). Em outras palavras, dois números são equivalentes módulo n se o resto da divisão de cada um por n for o mesmo reultado. O conjunto de todos os números equivalentes módulo n forma uma classe de equivalência que representaremos como $[a\ mod\ n]=\{b\in\mathbb{Z}: a\equiv (b\ mod\ n)\}$. Por exemplo $[5+7\ mod\ 10]=[2\ mod\ 10]$ pois 5+7=12 e o resto de 12 por 10 é 2.

Estamos finalmente em condições de formalizar o sistema da cifra de deslocamento $\Pi = \langle Gen, E, D \rangle$:

- $Gen := k \leftarrow \mathbb{Z}_{26}$
- $E(k, m) = [m_0 + k \mod 26] \dots [m_n + k \mod 26]$
- $D(k,c) = [c_0 k \mod 26] \dots [c_n k \mod 26]$

Exemplo 1. Considere a palavra XUXA. Usando a cifra de César com chave k=3 obtemos a cifra BZBD.

• $E(3, 24 \ 21 \ 24 \ 0) = [1 \ mod \ 26][21 \ mod \ 26][1 \ mod \ 26][3 \ mod \ 26]$

• $D(3, 1 \ 21 \ 1 \ 3) = [24 \ mod \ 26][21 \ mod \ 26][24 \ mod \ 26][0 \ mod \ 26]$

Note que $[27 \mod 26] = [1 \mod 26]$ e que $[-2 \mod 26] = [24 \mod 26]$.

2.2 Cifra de Substituição

Em 1567 a residência da rainha da Mary da Escócia foi destruída por uma explosão que levou a morte do então rei, primo de Mary. O principal suspeito do assinato foi dispensado da pena e se casou com Mary no mês seguinte. O episódio levou-a a prisão na Inglaterra. Neste tempo, para a maioria dos católicos, Mary era a legítima herdeira do trono inglês - ocupado pela protestante Elizabeth I. Durante o tempo na prisão Mary consiporou com aliados pela morte de Elizabeth. Em 1587 Mary foi executada pelo que ficou conhecido como a conspiração de Babington. A principal prova utilizada para a condenação foi uma troca de cartas cifradas interceptadas e decifradas [Sin04].

A cifra usada pelos conspiradores é conhecida hoje como *cifra de substituição* ou *cifra monoalfabética*. Neste tipo de criptografia, cada letra ou par de letras é substituída por um símbolo, que pode ser inclusive uma outra letra. Assim, a chave desse tipo de cifra é um alfabeto.

Exemplo 2. Considere a seguinte chave de uma cifra monoalfabética. Neste caso os símbolos utilizados letras do mesmo alfabeto em ordem embaralhada:

Alfabeto: abcdefghijklmnopqrstuvwxyz Permutação: ZEBRASCDFGHIJKLMNOPQTUVWXY

A partir desta chave podemos produzir textos substituindo cada letra pela letra correspondente na chave. Para descriptografar, basta fazer o processo inverso, a saber, substituir a letra da cifra pela do alfabeto.

Mensagem: transparenciapublicaopacidadeprivada Cifra: QOZKPMZOAKBFZMTEIFBZLMZBFRZRAMOFUZRZ

O desfecho da história da conspiração de Babington sugere que a cifra monoalfabética não é muito segura. De fato, no próximo capítulo discutiremos melhor as técnicas de criptonálise para este tipo de cifra. Não obstante, até o desenvolvimento das primeiras máquinas de criptografar, versões das cifras monoalfabéticas foram eram as cifras mais populares no mundo todo. Nos anos 70 a editora abril publicou no Brasil o famoso Manual do Escoteiro Mirim da Disney que apresentava uma cifra monoalfabética. Mais recentemente, o curioso caso do desaparecimento de um rapaz no Acre viralizou quando seus familiares revelaram que no seu quarto havia uma coleção de livros que ele havia escrito de maneira criptografada. Mais tarde foi descoberto que o rapaz usara uma cifra de substituição cuja chave foi eventualmente encontrada.

Para fechar esta seção buscaremos formalizar o sistema de cifra de substituição simples. Uma permutação sobre um conjunto Σ qualquer é uma função bijetora $p:\Sigma\to\Sigma$. Funções bijetoras possuem a característica de serem inversíveis, ou seja, existe $q:\Sigma\to\Sigma$ tal que p(q(x))=q(p(x))=x. A função q é chamada de inversa de p, é única e será representada como p^{-1} . O conjunto de todas as permutações, todas as funções bijetoras, de Σ será representado como $Perm(\Sigma)$. A chave de uma cifra de substituição é uma permutação do alfabeto \mathbb{Z}_{26} escolhida aleatoriamente. Para encriptar uma mensagem basta aplicar essa permutação a cada uma das mensagens e para descriptografá-la basta aplicar a função inversa.

Formalmente temos que $\Pi = \langle Gen, E, D \rangle$ em que:

- $Gen := k \leftarrow Perm(\mathbb{Z}_{26})$
- $E(k,m) = k(m_0) \dots k(m_n)$
- $D(k,c) = k^{-1}(c_0) \dots k^{-1}(c_n)$

2.3 Cifra de Vigenère

A cifra de Vigènere foi criada no século XV e ainda no começo do século XX era considerada inquebrável – em 1868 o matemático e autor de Alice no País das Maravilhas, descreveu a cifra como "inquebrável" e um artigo da Scientific American de 1917 a descrevia como "impossível de traduzir". Veremos no próximo capítulo que há um exagero nessas descrições, porém, a sofisticação desse tipo de cifra chamado de *polialfabética* tornava sua criptoanálise muito mais sofisticado.

Em poucas palavras, a cifra de Vigenère consiste em deslocar as letras do texto original em distâncias diferentes. Em sua versão mais simples, sua chave consiste de uma palavra cuja primeira letra indica quantas casas

devemos deslocar a primeira letra da mensagem, a segunda letra da chave indica quantas casa devemos deslocar a segunda letra e assim por diante. Quando a mensagem ultrapassa o tamanho da chave, repetimos a chave e continuamos o processo.

Para facilitar a conta na hora de criptografar e descriptografar, podemos usar uma tabela que indica para cada letra da mensagem e cada letra da chave qual é a letra correspondente na cifra. Essa tabela é chamada de tabula recta e está representada na Figura 2.1.

Figura 2.1: Tabula Recta

Exemplo 3. Considere a seguinte mensagem criptografada com a chave senha usando a cifra de Vigenère:

Mensagem: transparenciapublicaopacidadeprivada

Para fechar o capítulo vamos fazer o exercício de formalizar a cifra de Vigenère. A chave consiste em uma sequência de letras, tipicamente escolhidas em um dicionário, mas vamos aqui supor que a escolha seja aleatória e com um tamanho fixado l. A partir dessa semente, podemos gerar uma chave auxiliar k' obtida repetindo k quantas vezes forem necessárias até que |k'| = |m| = n. Para criptografar basta desolcar m_i por k'_i posições. Formalmente temos que $\Pi = \langle Gen, E, D \rangle$

- $Gen := k \leftarrow \mathbb{Z}_{26}^l$
- $E(k,m) = [m_0 + k_0' \mod 26] \dots [m_n + k_n' \mod 26]$
- $D(k,c) = [c_0 k_0' \mod 26] \dots [c_n k_n' \mod 26]$

2.4 Maquinas de Criptografar

No final da primeira década do século XX foram inventadas as primeiras máquinas de criptografar. A componente principal dessas maquinas eletromecânicas é um conjunto de rotores. A configuração inicial dos rotores contém a chave da criptografia. Cada vez que o operador pressiona uma tecla o rotor embaralha as letras. Dessa forma, essas máquinas rotoras se comportam como uma sofisticada cifra polialfabética. Para descriptografar a mensagem, o operador precisa ajustar a máquina em modo de descriptografia, ajustar a configuração inicial com a chave secreta e digitar o texto cifrado. A máquina então irá se rearrajar para produzir o texto original quando digitado.

As máquinas rotora mais conhecida são da série Enigma. Elas foram criadas por um inventor alemão no final da primeira guerra mundial e versões mais modernas foram extensamente usadas durante a segunda guerra pelo exército nazista. As versões mais simples da máquina possuiam três rotores capazes de gerar $26^3 \approx 175.000$ possíveis configurações iniciais. Além disso, era possível trocar a ordem dos rotores multiplicando por 6 o número de combinações possíveis e chegando a um total de cerca de 105 mil possibilidades. A versão utilizada pelo exercito nazista, porém, permitia cerca de 150 trilhões de possibilidades. Em 1939 Alan Turing desenvolveu uma

máquina eletromecânica chamada *Bombe* capaz de decifrar algumas cifras de máquinas Enigma com 3 rotores e, posterioirmente foi melhorada para decifrar mensagens de máquinas Enigma mais sofisticadas.

A história da computação esbarra na história da criptografia neste ponto. Poucos anos antes da guerra, Alan Turing demonstrara que a satisfatibilidade da lógica de primeira ordem é um problema indecidível. Para tanto ele propôs um modelo computacional que hoje chamamos de Máquinas de Turing. Diferente dos modelos computacionais anteriores como o cálculo lambda de Church ou as funções recursivas de Gödel, o modelo de Turing era intuitivo. Além disso, Turing mostrou que era possível construir com seu modelo uma Máquina Universal capaz de simular qualquer outra Máquina de Turing. Esse resultado magnífico é o que dá origem a computação. O primeiro modelo de computador desenvolvido por Turing e sua equipe em Bechley Park foi batizado de Colossus e tinha como principal propósito quebrar outra cifra usada pelos nazistas durante a guerra, a cifra de Lorenz. A cifra de Lorenz é uma versão do que estudaremos com o nome de cifra de fluxo. Para decifrar os códigos das máquinas Enigma e da cifra de Lorenz os ingleses tiveram que contar, não apenas com o texto criptografado que interceptavam sem grandes dificuldades, mas também com uma série cifras cujas mensagens eles conheciam previamente. Veremos mais pra frente a importância desta informação. A capacidade dos aliados de decifrar as mensagens de seus adversários foi central para sua vitória.

O começo do século XX marcou o surgimento das primeiras máquinas de criptografar, as primeiras máquinas de criptoanálise. Na metade do século começaram a surgir os primeiros computadores. Nos anos 70 a comunicação seria revolucionada pelo advento da internet, mas antes disso já ficara claro que era necessário compreender melhor o que faz uma cifra ser segura.

2.5 Exercício

Exercício 1. Considere a seguinte mensagem:

privacidadepublicatranparenciaprivada

• Criptografe essa mensagem utilizando a cifra de deslocamento com k = 3.

2.5. EXERCÍCIO 21

• Criptografe essa mensagem utilizando a cifra de substituição com a seguinte permutação de letras: ZEBRASCDFGHIJKLMNOPQTUVWXY

• Criptografe essa mensagem utilizando a cifra de Vigenère com chave senha.

Exercício 2. Mostre que a operação de adição + modulo n é um anel para qualquer valor de n. Ou seja, para qualquer $a, b, c, n \in \mathbb{Z}$ temos que:

- associatividade: $(a+b)+c \equiv a+(b+c) \mod n \ e \ (ab)c \equiv a(bc) \mod n$
- elemento neutro: $a + 0 \equiv a \mod n$ e $a.1 \equiv a \mod n$
- inverso: existe -a tal que $a + (-a) \equiv 0 \mod n$
- distributividade: $a(b+c) \equiv ab + ac \mod n$

Exercício 3. Mostre que se n|a e n|b então n|(ra+sb) para quaisquer $r, s \in \mathbb{Z}$.

Exercício 4. Dizemos que a é o inverso multiplicativo de b em \mathbb{Z}_n sse $ab \equiv 1 \mod n$.

- Mostre que 2 é o inverso multiplicativo de 5 em \mathbb{Z}_9 .
- Mostre que 6 não possui inverso multiplicativo em \mathbb{Z}_{12}

Exercício 5. Proponhe um sistema de criptografia simétrica e argumento porque ele é mais seguro do que os sistemas que vimos até aqui.

Capítulo 3

Criptoanálise

Nos capítulos anteriores vimos uma série de cifras que a história deu conta de mostrar que não são seguras. Neste capítulo focaremos nas técnicas para quebrar essas cifras. O estudo e a análise dos sistemas de informação com a intenção de desvelar seus segredos é o que chamamos de *criptoanálise*.

3.1 Ataques Força Bruta

Uma forma universal de quebrar uma cifra é conhecido como ataque força bruta. Ele consiste no seguinte procedimento. O adversário utiliza o esquema D, que sempre assumimos ser de conhecimento público, numa cifra c com uma primeira tentativa de chave k_0 para produzir $D(k_0, c) = m_0$. A mensagem m_0 provavelmente não fará nenhum sentido, então o adversário repete o processo com uma outra chave k_1 e em seguida com k_2 e assim por diante até que mensagem produzida seja coerente.

Consideremos a cifra de deslocamento. Estabelecemos que uma chave nesse tipo de sistema é escolhida aleatoriamente no conjunto \mathbb{Z}_{26} . Assim existem exatamente 26 possibilidades de chave, porque $|\mathbb{Z}_{26}| = 26$. O número esperado de tentativas até se encontrar a chave procurada é $\frac{|K|}{2}$, neste caso 13. Ou seja, a cifra de deslocamento é muito vulnerável a ataques de força bruta porque seu universo de chaves é extremamente pequeno.

Em contraste vamos calcular o universo de chaves da cifra de substituição. Vimos que o universo das chaves de uma cifra de substituição é $Perm(\mathbb{Z}_{26})$. Calcular $|Perm(\mathbb{Z}_{26})|$ é um exercício simples de análise combinatória.

```
|Perm(\mathbb{Z}_{26}|) = 26!
= 26.25.24...1
\approx 4.10^{26}
\approx 2^{88}
```

O universo de chaves na cifra de deslocamento é tão pequeno que é possível testar na mão todas as possibilidades de chaves. Certamente não é possível testar as possibilidades de chaves da cifra de substituição na mão. Ataques força bruta, porém, são facilmente automatizáveis. Voltaremos a pergunta sobre o tamanho do universo de chaves para uma comunicação segura no capítulo ??.

Exemplo 4. Muitos dos roteadores modernos possuem um mecanismo chamado de WPS (Wi-Fi Protected Setup) que supostamente simplificaria o processo de conexão, especialmente na configuração do hardware. O WPS permite que um usuário se conecte remotamente e sem fio no roteador desde que possua um PIN (Personal Identification Number). Esse PIN é uma sequência de oito digitos de 0 a 9. Ou seja, o universo das chaves é $10^8 \approx 2^{27}$. Neste contexto, um ataque força-bruta é possível e toma entre 4 e 8 horas.

3.2 Ataques de Frequência

A cifra de substituição é suficientemente segura contra ataques de forçabruta. Como vimos, porém, ela não é tão segura quanto a rainha Mary da Escócia gostaria. A forma como os funcionários da rainha Elizabeth quebraram a cifra de substituição é o que chamamos de ataque de frequência. A ideia por trás desse tipo de ataque é bastante simples. Na cifra de substituição, cada letra é substituída por um símbolo. Portanto, a frequência de cada símbolo em um texto suficientemente longo deve ser parecida com a frequência média de cada letra naquela língua. Por exemplo, no português, esperamos que os símbolos mais comuns sejam o a, o e e o o. Para piorar — ou melhorar dependendo da perspectiva — na maioria das línguas há digrafos particulares, por exemplo, no português dois símbolos repetídos provavelmente representam o r ou o s e o h quase sempre vem depois do 1 ou do n. Se o texto a ser decifrado for suficientemente longo, essas pistas podem ser suficientes para quebrar a cifra.

25

No seguinte trecho de "O escaravelho de ouro" de Edgar Allan Poe a personagem descreve essa técnica que ela utilizou para decifrar um texto em inglês []:

"Ora, no inglês, a letra que ocorre com mais frequência é a letra e. Depois dela, a sucessão é: a o i d h n r s t u y c f g l m w b k p q x z. O e prevalece de tal maneira que quase nunca se vê uma frase isolada em que ele não seja predominante. Aqui nós temos, portanto, bem no início, uma base que permite mais do que um mero palpite. O uso que se pode fazer da tabela é óbvio, mas, neste criptograma em particular, não precisamos nos valer dela por inteiro. Como nosso caractere dominante é o 8, começaremos assumindo que este é o e do alfabeto normal. (...)"

Em português, faz sentido separar as letras em cinco blocos, com frequência de ocorrência decrescente:

```
1. a, e e o
```

```
2. s, r e i
```

```
3. n, d, m, u, t e c
```

3.3 Ataques à "Cifra Invencível"

Apesar da fama de "inquebrável" que a cifra de Vigenère oustentou até o começo do século XX, desde a metade do século anterior já eram conhecidos métodos de criptoanálise capazes de detorratar esse tipo de cifra. Em 1854 John Hall Brock Thwaites submeteu um texto cifrado utilizando uma cifra supostamente por ele inventada. Charles Babbage, o inventor das máquinas que precederam o computador moderno, mostrou que no fundo a cifra de Thwaites era equivalente a cifra de Vigenère. Após ser desafiado, Babbage, decifrou uma mensagem criptografada por Thwaites duas vezes com chaves diferentes.

Em 1863 Friedrich Kasiski formalizou um ataque contra a cifra de Vigenère que ficou conhecido como teste de Kasiski. O ataque considera o fato de que a chave se repete com uma frequência fixa e, portanto, há uma probabilidade de produzir padrões reconhecíveis. Considere o exemplo extraído da Wikipédia:

Exemplo 5. Mensagem: cryptoisshortforcryptography

Chave: abcdabcdabcdabcdabcdabcd Cifra: CSASTPKVSIQUTGQUCSASTPIUAQJB

Note que o padrão CSASTP se repete na cifra. Isso ocorre porque o prefixo crypto foi criptografado com a mesma chave. Uma vez encontrado um padrão como este, é calculada a distância entre as repetições. Neste caso a distância é 16, o que significa que o tamanho da chave deve ser um divisor de 16 (2, 4, 8 ou 16). Com esta informação, podemos aplicar um ataque de frequência nos caracteres de 2 a 2, de 4 a 4, de 8 a 8 e de 16 a 16.

3.4 Exercícios

Exercício 6. Calculo o tamanho do universo das chaves em uma cifra de Vigenère da forma como usada normalmente (escolhendo um palavra) e na forma como apresentamos formalmente (sequência aleatória com tamanho fixo l)?

Exercício 7. Construa um script que extraia um corpus do português moderno (por exemplo, textos da wikipedia) e calucule a frequência de ocorrência das letras do alfabeto.

Exercício 8. Em 2017 um rapaz que ficou conhecido como menino do Acre ficou dias desaparecido e deixou uma serie de livros criptografados com cifra de substituição em seu quarto. A Figura 3.1 está reproduzida uma página de um desses livros. Utilize a análise de frequência para decifrar o texto.

OLTANUS XA4AOAE

OTUS SO XULTOTALS IN SECULT TANTE I TOTAL SO XULTOTALS I THOUSED THE OFFI SECULT TOTAL SECULT SECULT

T- 4 LONE LOTATILE & MUS XTEXT OF VENGT TY THAUNTALS PUT T. TARTAR XU + VOVE T. PUTH-XE FXULTE FNTTMXT + PUT IT THE UNITER TERTES & HAT XTEXT OFUENOR < 800 2 45 OFTE 180 PUT 4627 OF 877778. 18 801419 OLEL< \$15, 91 <801 71 1NNO-TARE TE PURL OUGES TOTAGUESS X8 STUS C. Ut XIIII TERNITIE OLTES 08208 TILTINIA, TEDINXE ONE PUT TETTET T STRONG OF OFFICE OF STRONG OF -UTILE T STRONG BY STRUCTORITE BAR & STRUCTURE LRS, OSE NEL ELSSE ORNOTNIETAL XX OLSSELS NA-EL; 80, 00 LIBALANXE-8 GAOLI NE OEN48 LERFEE, L. OTUTIONS & ORNOTUTE AT STEEDUN XEAT Y AT STNTV-AR AT CUAT TERDITIAR WILL RUNUT T WILL BEOU TACAT THICK OCCUPITIONS SENT FOR SEN WEST AS OFT. UNDS STOUL WIRE I BUSOF MIET STRIKE TESS. ENTL. FOR ST THPUTATE ME STRUNGE & COLE, 80 THE STATES HOT DESCRIPTION AT 1848 OFF PUNTA AT OPENACE PUT ENT ERE THREE OFAR THIEF THEY \$ INVY OLL FIR NO UNCHO INDIVER AT STROUGH XT NC DEVOTE OF STO STREE THISTMAR IS US OFF ANUE BLAS OF COLLECUXE, NE HALE NOL BANGEAL ST

Figura 3.1: Texto criptografado pelo Menino do Acre

Capítulo 4

Sigilo Perfeito

No final dos anos 40, com o desenvolvimento dos primeiros computadores e a experiência da quebra das cifras mecanicamente produzidas por poderosas máquinas desenvolvidas pelo esforço de guerra do nazismo, alguns cientístas se voltaram para um problema central no campo da criptografia: o que torna um sistema de criptografia seguro? As cifras que vimos até agora são conhecidas como "cifras clássicas" extamente porque elas precedem desse debate moderno, e não a toa foram todas derrotadas cedo ou tarde. Informalmente, poderíamos dizer que o problema dos esquemas clássicos de criptografia é que eles guardam muita informação sobre a mensagem (frequência das letras, dos dígrafos, letras duplas etc.). Não é uma coincidência, portanto, que a primeira tentativa de formalizar o conceito de segurança tenha sido proposto por Claude Shannon, o fundador da teoria da informação. Shannon definiu o que hoje chamamos de sigilo perfeito. Um esquema de criptografia garante o sigilo perfeito se a cifra não guarda nenhuma informação sobre a mensagem que a gerou. Ou, de maneira um pouco mais descritiva, se a probabilidades da cifra ocorrer é independente da probabilidade da mensagem:

Definição 1. Um esquema de criptografia simétrica $\Pi = \langle Gen, E, D \rangle$ garante o sigilo perfeito se, supondo que Pr[C = c] > 0, para toda distribuição de probabilidade sobre M temos que:

$$\Pr[M=m|C=c] = \Pr[M=m]$$

Ou de maneira equivalente se para todo $m_0, m_1 \in M$ e todo $c \in C$ temos que:

$$Pr[C = c|M = m_0] = Pr[C = c|M = m_1]$$

Essa segunda formulação é mais intuitiva, ela estabelece que um sistema garante o sigilo perfeito se a probabilidade de m_0 produzir a cifra c é idêntica a probabilidade de qualquer outra mensagem m_1 produzir a mesma cifra c. O exemplo a seguir mostra que a cifra de substituição não garante o sigilo perfeito:

Exemplo 6. Seja $\Pi = \langle Gen, E, D \rangle$ o sistema de criptografia de substituição e sejam c = ANA, $m_0 = OVO$ e $m_1 = EVA$. Como o sistema Π substitui cada letra da mensagem por uma letra na cifra, existem chaves k tal que $E(k, m_0) = c$ – basta que k(O) = A e k(V) = N, de fato a chance de escolher uma chave assim é $\frac{1}{26^2} = \frac{1}{676}$ –, mas não existe nenhuma chave k' tal que $E(k', m_1) = c$. Portanto temos que:

$$Pr[C = c|M = m_0] = \frac{1}{676} \neq Pr[C = c|M = m_1] = 0$$

Uma forma equivalente, e útil como veremos mais para frente, de definir sigilo perfeito é a partir de um jogo. Imaginamos que há um adversário \mathcal{A} cujo objetivo é quebrar a cifra produzida pelo sistema Π . O jogo funciona da seguinte maneira:

- 1. \mathcal{A} escolhe duas mensagens m_0 e m_1 com o mesmo tamanho ($|m_0| = |m_1|$) e envia para o sistema Π .
- 2. O sistema gera uma chave k usando o algoritmo Gen e sorteia aleatoriamente uma das mensagens para criptografar (Π sorteia $b \leftarrow \{0, 1\}$ e criptografa m_b).
- 3. A cifra produzida $E(k, m_b) = c$ e enviada de volta para o adversário.

O desafio do adversário é acertar qual das duas mensagens foi cifrada. O diagrama abaixo ilustra o processo:

Chamamos o experimento ilustrado pelo diagrama de $PrivK_{\Pi,A}^{eav}$. Os subscritos indicam que o experimento depende do sistema Π e do adversário \mathcal{A} . O resultado do experimento deve ser 0 se o adversário perdeu o desafio e 1 caso contrário. Formalmente temos que:

$$PrivK_{\Pi,\mathcal{A}}^{eav} = \begin{cases} 1 & \text{se} \quad b = b' \\ 0 & \text{c.c.} \end{cases}$$

É possível provar que um sistema Π garante o sigilo perfeito se e somente se para qualquer adversário \mathcal{A} temos que:

$$Pr[PrivK_{\Pi,\mathcal{A}}^{eav}=1]=\frac{1}{2}$$

Em palavras, o sistema possui sigilo perfeito se nenhum adversário é capaz de acertar qual ads mensagens produziu a cifra c com probabilidade melhor do que um meio.

4.1 One Time Pad

Temos agora uma definição formal de segurança. Vimos que a cifra de substituição não satisfaz essa definição, mas na verdade nenhuma das cifras clássica a satisfaz. Não seria desejável que essas cifras satisfizessem a definição, pois vimos no capítulo anterior que nenhuma das cifras clássicas é segura e todas podem ser derrotadas se o adversário tiver acesso a uma cifra de tamanho suficientemente grande. Ficamos então com o desafio de encontrar algum sistema que satisfaça essa definição, caso tal sistema exista.

No que segue apresentaremos um sistema chamado $One\ Time\ Pad\ (OTP)$, também conhecida como $cifra\ de\ Vernan$, e mostraremos que ele garante o sigilo perfeito. A partir deste ponto, conforme começaremos a investigar sistemas a serem implementados computacionalmente, consideraremos que o espaço M das mensagens (assim como o espaço C das cifras) será representado como sequências de bits. No caso específico do OTP assumiremos que as mensagens e a cifras possuem um tamanho fixo n. Mais importante é o fato de que o universo das chaves é também um conjunto de sequências de bits do mesmo tamanho. Assim temos que $M=C=K=\{0,1\}^n$. O sistema $\Pi=\langle Gen,E,D\rangle$ é definido pelos seguintes algoritmos:

$$\bullet \ Gen := k \leftarrow \{0,1\}^n$$

- $E(k,m) = [m_0 + k_0 \mod 2] \dots [m_n + k_n \mod 2] = m \oplus k$
- $D(k,c) = [c_0 + k_0 \mod 2] \dots [c_n + k_n \mod 2] = c \oplus k$

Para verificar a corretude do sistema basta notar que:

$$D(k, E(k, m)) = D(k, k \oplus m)$$

$$= k \oplus (k \oplus m)$$

$$= (k \oplus k) \oplus m$$

$$= m$$

A derivação usa o fato de que a operação de ou exclusivo \oplus é associativa, que $x \oplus x = 1$ e $1 \oplus x = x$ para todo sequência de bits $x \in \{0,1\}^*$. Deixamos como exercício mostrar essas três propriedades da operação.

Exemplo 7. Considere uma mensagem m = 101010 e uma chave k = 010001. Usando o sistema One Time Pad a cifra produzida é a sequite:

$$m \oplus k = c$$
 $101010 \oplus 010001 = 111011$

Como antecipado, é possível, e relativamente simples provar que o OTP possui sigilo perfeito.

Teorema 1. O sistema de criptografia One Time Pad possui sigilo perfeito.

Demonstração. Seja $K=M=C=\{0,1\}^n$. Dada uma cifra $c\in C$ e uma mensagem qualquer $m\in M$, existe uma única chave $k\in K$ tal que E(k,m)=c. A chave é exatamente $k=m\oplus c$, pois:

$$E(k,m) = k \oplus m$$

$$= (m \oplus c) \oplus m$$

$$= (m \oplus m) \oplus c$$

$$= c$$

Como existe exatamente uma chave possível que faz com que E(k, m) = c, temos que a probabilidade se produzir c dado uma mensagem qualquer m é

igual a probabilidade de sortear uma chave específica no universo $K = \{0,1\}^n$ que é $\frac{1}{2^n}$:

$$Pr[C = c|M = c] = \frac{1}{2^n}$$

Essa probabilidade é idêntica para qualquer $m \in M$. Portanto, temos que $Pr[C = c|M = m_0] = Pr[C = c|M = m_1] = \frac{1}{2^n}$.

O One Time Pad possui duas severas limitações. A primeira é indicada pelo próprio nome do sistema. A sistema supõe que a chave de criptografia k seja usada exatamente uma vez ("one time"). Caso o mesmo k seja usada para criptografar duas mensagens distintas m_1 e m_2 , o sistema se torna completamente inseguro.

Para ilustrar essa limitação considere que duas cifras c_0 e c_1 foram produzidas usando a mesma chave k. Assim temos que $c_0 = k \oplus m_0$ e $c_1 = k \oplus m_1$. Note o que acontece quando aplicamos o ou exclusivo entre as duas cifras eliminamos a chave:

$$c_0 \oplus c_1 = (k \oplus m_0) \oplus (k \oplus m_1)$$
$$= (k \oplus k) \oplus (m_0 \oplus m_1)$$
$$= m_0 \oplus m_1$$

Uma vez eliminada a chave, é fácil separar as mensagens m_0 de m_1 utilizando um técnica similar ao ataque de frequência.

A segunda e mais crítica limitação do OTP é o tamanho de sua chave. A suposição que fizemos é que o tamanho da chave deve ser tão grande quanto a mensagem a ser cifrada. Há uma série de problemas práticos com isso. Computacionalmente não é possível gerar chaves aleatórias muito grandes, o que limita o tamanho das mensagens que podemos cifrar. Além disso, assumimos que as chaves são compartilhadas entre as partes. Deixamos os detalhes sobre a distribuição de chaves para o capítulo ??, mas por ora podemos adiantar que se nossa chave é tão grande quanto a mensagem, porque não enviamos a mensagem pelo mesmo canal que enviaríamos a mensagem? Enfim, um sistema cuja a chave seja tão grande quanto a mensagem é de muito pouca utilidade prática.

Encerramos este capítulo mostrando que esta segunda limitação do OTP infelizmente não é uma peculiaridade do sistema. Na verdade todo sistema que possua sigilo perfeito está fadado a ter chaves tão grandes o maiores do

que a mensagem. Esse resultado negativo foi proposto e demonstrado pelo próprio Shannon ainda nos anos 40.

Teorema 2 (Teorema de Shannon). Seja $\Pi = \langle Gen, E, D \rangle$ um sistema que garante o sigilo perfeito, então temos que $|K| \geq |M|$.

Demonstração. Consideraremos M(c) como o conjuto de todas as mensagens que podem produzir c, ou seja, as mensagens $m \in M$ tal que E(k,m) = c para algum $k \in K$. É claro que $|M(c)| \leq |K|$. Agora suponha por absurdo que |K| < |M|. Neste caso existiria uma mensagem $m \notin M(c)$ e, portanto, $Pr[M=m] \neq 0$. Mas, por definição, temos que Pr[C=c|M=m] = 0 contradizendo a hipótese deu que Π garante o sigilo perfeito. \square

A definição de Shannon foi a primeira tentativa séria de definir segurança de sistemas de criptografia, mas o próprio autor da definição foi capaz de demonstrar suas limitações. Nos próximos capítulos apresentaremos definições de segurança mais fracas e mais úteis para nossos propósitos.

4.2 Exercício

Exercício 9. Mostre que o 1 é elementro neutro na operação \oplus , ou seja, que para todo $x \in \{0,1\}^*$ temos que $x \oplus 1 = 1 \oplus x = x$.

Exercício 10. Mostre que a operação \oplus é associativa, ou seja, que para todo $x, y, z \in \{0, 1\}^*$ temos que $x \oplus (y \oplus z) = (x \oplus y) \oplus z$.

Exercício 11. Mostre que a operação \oplus é comutativa, ou seja, que para todo $x, y \in \{0, 1\}^*$ temos que $x \oplus y = x \oplus y$.

Exercício 12. Mostre que para qualquer sequência de bits $x \in \{0,1\}^*$ temos que $x \oplus x = 1$.

Exercício 13. Mostre que a cifra de deslocamento não garante sigilo perfeito.

Capítulo 5

Criptografia Moderna

No capítulo anterior apresentamos uma primeira tentativa de definir formalmente segurança de sistemas de criptografia. A definição, proposta por Shannon, estabelece que um sistema garante o *sigilo perfeito* se a cifra não guarda nenhuma informação da mensagem que a produziu. No final do capítulo, porém, vimos que esta definição não é muito útil na prática, pois obriga o universo de chaves ser pelo menos tão grande quanto o universo das mensagens.

Apesar do fracasso desta primeira tentativa de formalizar o conceito de segurança, não abandonaremos a ideia geral. A abordagem da *criptografia moderna*, que utilizaremos nesta apostila, segue três princípios básicos:

- 1. definições formais: As noções de segurança utilizadas serão apresentadas de maneira formal por meio de definições. As definições prévias nos ajudam a comparar sistemas e avaliar sua segurança a partir de critérios estabelecidos previamente.
- 2. suposições precisas: Na maioria dos casos seremos forçados a fazer suposições sobre os sistemas de criptografia que não seremos capazes de demonstrar. Ainda assim, é imprescindível explicitar essas suposições de maneira clara e formal. Nossa incapassidade de provar tais suposições não nos impede de validá-las empiricamente. Grande parte do trabalho envolvido na criptografia moderna consiste em validar testar as suposições sobre um sistema e buscar suposições mais simples e básicas.
- 3. demonstrações formais: Quando somos capazes de formalizar nossas

suposições e a definição de segurança desejada, eventualmente podemos demonstrar que um sistema que satisfaz as suposições garante determinada noção de segurança. Esse tipo de demonstração reduz o problema da segurança às suposições do sistema que devem ser mais simples e mais fáceis de validar empiricamente. Esta redução permite que se substitua um sistema cuja suposição foi falseada antes que ele seja quebrado.

As definições de segurança em geral possuem dois componentes: uma garantia de segurança – o que pode ser considerado um ataque bem sucedido – e um modelo de ameaças. Por exemplo, na definição de sigilo perfeito a garantia de segurança é que nenhuma informação sobre a mensagem esteja contida na cifra – ou como formulamos, a probabilidade de ocorrência da cifra deve ser independente da probabilidade de ocorrência da mensagem – e o modelo de ameaça assume que o adversário tem acesso apenas ao texto cifrado e nada mais. Os modelos de ameaças que estudaremos no livros incluem:

- ataque ciphertext-only: Este é o modelo assumido na definição de sigilo perfeito. Nele assumimos que o adversário tem acesso apenas a um texto cifrado de tamanho arbitrário.
- ataque chosen-plaintext: Neste modelo, além de assumir que o adversário tem acesso à cifra, assumimos que ele é capaz de escolher uma quantidade de mensagens e verificar como elas seriam cifradas pelo sistema.
- ataque chosen-ciphertext: Neste modelo assumimos que o adversário é também capaz de escolher certas cifras e verificar como elas seriam decifras pelo sistema.

Essas definições são progressivamente mais fortes, ou seja, assumem progressivamente maior capacidade de ataque do adversário. Note que nossos modelos de ataque não fazem qualquer suposição sobre a estratégia utilizada pelo adversário. Em geral, a definição mais adequada depende das necessidades do problema em mãos – eventualmente pode ser desejável um sistema mais fraco e mais eficiente.

Nossa primeira tentativa de definir segurança esbarrou na limitação inconveniente expressa pelo teorema de Shannon. Afirmamos no capítulo anterior que o sigilo perfeito pode ser definido por meio de um jogo. O sigilo perfeito

37

é garantido se nenhum adversário for capaz de distinguir qual mensagem foi encriptada pelo sistema. Para contornar as limitações expressas pelo teorema de Shannon, enfraqueceremos este tipo de definição de duas formas:

- O adversário deve ser *eficiente* e usar sua estratégia em um tempo razoável. Ou seja, eventualmente um adversário pode derrotar o sistema desde que seja dado a ele tempo suficiente. A existência de um adversário como este não violará nossa definição de segurança, pois não traz uma real ameaça na prática.
- O adversário pode eventualmente derrotar o sistema, mas com uma probabilidade muito pequena. Colocado de outra maneira, a cifra pode guardar alguma informação sobre a mensagem desde que seja muito pouca.

5.1 Abordagem Assintótica

Em termos práticos o que buscamos uma noção de segurança em que para um adversário ter sucesso ele precisaria rodar seu algoritmo em uma máquina excelente por um intervalo bem grande de tempo. Alternativamente esperamos que eventualmente o adversário derrote o sistema em pouco tempo, mas com uma probabilidade muito baixa. O problema com essa abordagem é como definir o que seria uma "máquina excelente", uma "intervalo bem grande de tempo" e uma "probabilidade muito baixa". Essas questões são particularmente complicados em um contexto em que a capacidade computacional evolui de maneira acelerada.

Ao invés de estabelecer valores fixos para definir esses limites, partiremos de uma abordagem assintótica. Suporemos que o algoritmo de geração de chaves Gen recebe um parâmetro de segurança n e estabeleceremos nossos limites em função deste parâmetro – tipicamente denotaremos esse valor usando a notação unária 1^n , pois a tempo de execução costuma ser calculado como uma função do tamanho da entrada. Para os efeitos desta apostila podemos assumir que o parâmetro está relacionado ao tamanho da chave a ser gerada e que é de conhecimento público. O parâmetro de segurânça permite que as partes ajustem seu sistema para o nível desejado de segurança – aumentar seu tamanho costuma refletir em um aumento no tempo de processamento do sistema e em um aumento no tamanho da chave, portanto, quem projeta o sistema tem um incentivo para querer minimizá-lo as custas de

diminuir sua segurança. A capacidade de ajustar o parâmetro de segurânça possui grandes vantagens práticas, pois permite se defender de adversários com poder computacional mais forte com o passar do tempo.

Vamos estabelecer que o adversário buscará quebrar a cifra usando um algorítmo randomizado polinomial em n e que ele pode vencer com uma probabilidade desprezível em n. A suposição de que o adversário usa um algoritmos randomizado é forte, significa que ele é capaz de acessar uma quantidade arbitrária de bits aleatórios. Isso certamente não é possível na prática, mas serve bem aos propósitos de uma análise de pior caso. Já a probabilidade ser desprezível significa que ela cresce assintoticamente mais devagar do que o inverso de qualquer polinômio. Formalmente, $\varepsilon: \mathbb{N} \to \mathbb{N}$ é desprezível se para todo polinômio p existe um número positivo N tal que para todo n > N temos que $\varepsilon(n) < \frac{1}{n}$.

Estamos agora em condições de reescrever a definição de segurança formalmente incorporando os enfraquecimentos descritos neste capítulo.

Definição 2. Considere o jogo apresentado no Capítulo 4, um sistema $\Pi = \langle Gen, E, D \rangle$ é seguro contra ataques ciphertext-only se para todo adversário polinomial A existe uma função desprezível ε tal que para todo n:

$$Pr[PrivK_{\Pi,\mathcal{A}}^{eav}(n) = 1] \le \frac{1}{n} + \varepsilon(n)$$

Lembrando que agora o algoritmo Gen recebe como o parâmetro de segurança n em notação unária para gerar a chave de tamanho apropriado. Em palavras, a definição estabelece que um sistema é seguro contra ataques ciphertext-only se nenhum algoritmo eficiente é capaz de derrotá-lo com probabilidade consideravelmente maior do que $\frac{1}{2}$. Resta mostrar um sistema que satisfaça essa definição.

5.2 Exercícios

Exercício 14. Sejam ε_1 e ε_2 duas funções desprezíveis. Mostre que $\varepsilon_1 + \varepsilon_2$ é desprezível.

Exercício 15. Seja ε uma função desprezível e p um polinômio. Mostre que $p\varepsilon$ é desprezível.

Capítulo 6

Cifras de Fluxo

No capítulo anterior apresentamos uma definição formal para segurança contra ataques em que o adversário tem acesso apenas ao texto cifrado. Neste capítulo vamos apresentar uma forma de construir um sistema que satisfaz essa definição. A ideia geral da construação é a seguinte: partimos de uma sequência aleatória de bits chamado de semente e a partir dela geramos uma sequência maior de bits a ser usada para encriptar a mensagem usando o ou exclusivo como no OTP. Apesar desta sequência ser gerada de maneira determinística, a segurança do sistema depende do fato de que ela se pareça aleatória. Informalmente, um gerador de números pseudoaleatórios (PRG) é essa função que recebe uma semente aleatória e a expande em uma sequência com cara de aleatória.

Sistemas de cifra de fluxo foram estudados extensamente nos anos 80. A abordagem para verificar se o gerador de números pseudoaleatórios é suficientemente forte consistia em aplicar uma série de testes estatísticos na sequência gerada para tentar distinguí-lo de uma sequência aleatória. Assim, por exemplo, um teste pode verificar se a probabilidade de o primeiro bit da sequência ser igual 1 é $\frac{1}{2}$ ou que a probabilidade de ocorrência de pelos menos três 0s em qualquer subsequência de tamanho 4 deve ser $\frac{5}{16}$ – existem uma sequência em que o 0 ocorre quatro vezes e mais quatro sequências possíveis em que ele ocorre três vezes. Um teste como recebe uma sequencia produzida por um PRG e deve retornar 1 se o teste passou e 0 caso contrário. O objetivo do teste é distinguir as sequências de bits produzidas por um PRG de uma sequência realmente aleatória. Por este motivo, esses testes são chamados distinguidores.

Uma bateria de distinguidores pode ser usada para verificar a qualidade

de um PRG. Idealmente nenhum teste eficiente deveria ser capaz de distinguir o PRG de uma sequência aleatória, ou pelo menos incapaz de fazê-lo com probabilidade considerável. Definiremos um gerador de números pseudo-aleatórios como um algoritmo G que recebe uma semente s de tamanho n e produz G(s) de tamanho l(n) onde l é um polinômio que define o fator de expansão do PRG — quão maior é a sequência produzida em relação a semente — e tal que nenhum algoritmo polinomial D é capaz de distinguir G(s) de um sequencia r escolhida aleatóriamente em $\{0,1\}^{l(n)}$ com probabilidade não desprezível. Formalmente temos o seguinte:

Definição 3. Seja l um polinômio e G um algoritmo determinístico polinomial que recebe $s \in \{0,1\}^n$ e retorna $G(s) \in \{0,1\}^{l(n)}$ e seja $r \leftarrow \{0,1\}^{l(n)}$. O algoritmo G é um gerador de números pseudo-aleatórios se:

- 1. l(n) > n para todo n e
- 2. para todo algoritmo polinomial D existe uma função desprezível ε tal que:

$$|Pr[D(r) = 1] - Pr[D(G(s)) = 1]| \le \varepsilon(n)$$

Exemplo 8. Considere um algoritmo G que recebe $s \in \{0,1\}^n$ e devolve $0^{l(n)}$. Certamente G não é um PRG e podemos mostrar isso com um distinguidor D que recebe $w \in \{0,1\}^{l(n)}$ e devolve 1 se $w = 0^{l(n)}$ e 0 caso contrário. É fácil ver que para $r \leftarrow \{0,1\}^{l(n)}$ e $s \leftarrow \{0,1\}^n$ temos que $Pr[D(r) = 1] = \frac{1}{2^{l(n)}}$ e Pr[D(G(s)) = 1] = 1 e, portanto, temos que:

$$|Pr[D(r) = 1] - Pr[D(G(s)) = 1]| = 1 - \frac{1}{2^{l(n)}}$$

A restrição de que o distinguidor seja eficiente é extritamente necessária. Em particular é sempre possível construir um distinguidor usando uma espécie de ataque de força bruta. Dado uma sequência w, o algoritmo D testa todos as possíveis sementes s e verifica se G(s) = w e devolve 1 caso exista e 0 caso contrário. Esse teste é eficaz pois $Pr[D(G(s)) = \frac{1}{2^n}] = 1$, mas $Pr[D(r) = 1] = \frac{1}{2^{l(n)}}$. Porém, o teste não é eficiente. De fato D não é polinomial, mas exponencial, pois o tempo esperado para testar todos os valores de s é 2^{n-1} .

41

6.1 Segurança das Cifras de Fluxo

Como adiantamos no capítulo anterior, uma vez definida claramente a suposição que estamos fazendo podemos tentar provar que com essa suposição somos capazes de construir um sistema seguro. A abordagem para este tipo de prova é uma redução aos moldes das reduções que vimos em Teoria da Computação. Neste caso vamos reduzir o problema de construir um sistema seguro contra ataques *ciphertext only* ao problema de construir um PRG.

Teorema 3. Se G é um gerador de números pseudo-aleatórios com fator de expansão l então o seguinte sistema $\Pi = \langle Gen, E, D \rangle$ é seguro contra ataques ciphertext only para mensagens de tamanho fixo $m \in \{0,1\}^{l(n)}$:

- $Gen(1^n) := k \leftarrow \{0, 1\}^n$
- $E(k,m) = G(k) \oplus m$
- $D(k,c) = G(k) \oplus c$

Demonstração. Seja \mathcal{A} um algoritmo polinomial. Construiremos um distinguidor D que recebe um string $w \in \{0,1\}^{l(n)}$ e faz o seguinte:

- Roda $\mathcal{A}(1^n)$ para obter o par de mensagens $m_0, m_1 \in \{0, 1\}^{l(n)}$
- Escolhe $b \leftarrow \{0,1\}$ e computa $c = w \oplus m_b$.
- Entrega c para \mathcal{A} e devolve 1 se o resultado for igual a b e 0 caso contrário.

Pela definição, D devolve 1 exatamente nas mesmas situações em que $\mathcal A$ vence o desafio. Portanto temos que:

$$Pr[D(G(k)) = 1] = Pr[PrivK_{\Pi,A}^{eav}(n) = 1]$$

Além disso, sendo Π' o sistema do OTP e $w \leftarrow \{0,1\}^{l(n)}$ temos que:

$$Pr[D(w) = 1] = Pr[PrivK_{\Pi',\mathcal{A}}^{eav}(n)] = \frac{1}{2}$$

Como G é um PRG temos que existe uma função desprezível ε tal que $|Pr[D(G(k))=1]-Pr[D(w)=1]| \le \varepsilon(n)$ e, portanto:

$$|Pr[PrivK_{\Pi,\mathcal{A}}^{eav}(n) = 1] - \frac{1}{2}| \le \varepsilon(n)$$

Ou equivalentemente:

$$Pr[PrivK_{\Pi,\mathcal{A}}^{eav}(n) = 1] \le \frac{1}{2} + \varepsilon(n)$$

Algoritmos validados empiricamente como bons PRG podem ser usados portanto para gerar cifras seguras, ao menos contra ataques *ciphertext-only*. Nos próximos capítulos exploraremos definições mais fortes de segurança e suas respectivas suposições. Para fechar este capítulo lembramos que as cifras de fluxo sofrem do mesmo problema do OTP quanto à repetição do uso de uma mesma chave.

6.2 Construções Práticas

A existência de PRGs não foi demonstrada matematicamente. No capítulo ?? mostraremos porque é tão difícil encontrar uma PRG demonstradamente seguro. Assim, a abordagem utilizada em relação a PRG é empírica. Ou seja, os candidatos a PRG são empiricamente validados a cada tentativa frustrada de construir um distinguidor empírico para eles.

Assim, na prática utilizamos um par de algoritmos $\langle Init, GenGits \rangle$. O primeiro algoritmo recebe a semente s como entrada e opcionalmente um vetor inicial IV (ver seção seguinte) e devolve um estado inicial st_0 . O segundo algoritmo recebe como entrada o estado atual st_i , devolve um bit y e atualiza o estado para st_{i+1} . Assim para cada semente, o algoritmo produz um fluxo infinito de bits – sendo os l(n) primeiros bits geram G(s).

6.2.1 Linear-Feedback Shift Registers

Um exemplo deste tipo de algoritmo são os chamados Linear-Feedback Shift Registers (LFSRs). Um LFSR consiste de um vetor de registradores $s_{n-1} \dots s_0$, que guardam exatamente um bit cada, e uma sequência de bits $c_{n-1} \dots c_0$ chamada coeficientes de feedback. A cada passo o estado é atualizado deslocando todo vetor uma posição para a direita e produzindo um novo bit que é calculado como

$$s_{n-1} := \bigoplus_{i=0}^{n-1} c_i s_i$$

Exemplo 9. Considere um LFSR com quatro registradores sendo o primeiro e o terceiro parte do coeficiete de feedback. Se a configuração inicial dos registradores é $\langle 0, 0, 1, 1 \rangle$ os próximos passos são os seguintes:

$$\langle 0, 0, 1, 1 \rangle \vdash \langle 1, 0, 0, 1 \rangle \vdash \langle 1, 1, 0, 0 \rangle \vdash \langle 1, 1, 1, 0 \rangle \vdash \langle 1, 1, 1, 1 \rangle$$

Um LSFR com n registradores é capaz de gerar no máximo 2^n bits até começar a repetir sua sequência.

O único segredo do LFSR são os coeficientes de feedback $c_{n-1} \dots c_0$. Um ataque relativamente simples a um LFSR consiste em observar os n primeiros bits gerados $y_{n+1} \dots y_{2n}$ e resolver o seguinte sistema linear:

$$y_{n+1} = c_{n-1}y_n \oplus \ldots \oplus c_0y_1$$

$$\vdots$$

$$y_{2n} = c_{n-1}y_{2n-1} \oplus \ldots \oplus c_0y_n$$

É possível mostrar que essas equações são linearmente independentes e, portanto, elas determinam unicamente os coeficientes. Uma vez determinados os coeficientes, podemos prever cada novo bit o que torna simples a tarefa de construir um distinguidor para o gerador.

Resumindo, o LFSR não é seguro pois a operação que gera novos bits é linear o que permite que ela seja previsível. LFSRs não são PRG seguros, mas muitos PRGs nada mais são do que versões alteradas deste esquema geral. Tipicamente os PRGs usados na prática substituem a operação de ou exclusivo por alguma operação não linear.

6.2.2 Trivium

Em um concurso científico de 2008 para produção de cifras de fluxo seguras, uma série de algoritmos foram apresentados como alternativas seguras e eficientes para este problema. Um dos algoritmos selecionados pelo projeto eSTREAM é o *Trivium*. Este algoritmo recebe dois valores como entrada ambos com 80 bits, a semente e o vetor incial. Um estado no Tivium é um vetor com 288 bits e seu ciclo tem tamanho 2^{64} , ou seja, $Triv: \{0,1\}^{80} \times \{0,1\}^{80} \to \{0,1\}^{264}$.

O Trivium possui três registradores A, B e C de tamanhos de 93, 84 e 111 respectivamente, somando 288 bits. Em cada passo cada registrador:

- calcula o AND do penúltimo com o ante-penúltimo bit e calcula o XOR do bit resultante com o último bit e com mais um bit de uma certa posição fixa chamado feedfoward bit para produzir um bit chamado bit de saída,
- 2. o bit de saída é enviado para o registrador adjacente A envia para B, B para C e C para A,
- 3. cada registrador move seus bits uma posição para a direita, como no LFSR,
- 4. cada registrador aplica o XOR do bit que recebeu com um bit de uma certa posição fixa, chamado *feedbackward bit*, e insere bit resultante na primeira posição e, por fim,
- 5. calcula-se o XOR dos três bits de saída para produzir um bit do fluxo.

A chave do Trivium é inserida nas primeiras posições do registrador A, e o vetor inicial nas úlitmas posições do registrador B. As demais posições são preenchidas com 0 excetos as últimas três do registrador C que são preenchidas com 1. Antes de começar a produzir o fluxo de bits, o processo roda $4 \times 288 = 1152$ no que é chamado de fase de aquecimento. Até a escrita destas notas, não existem ataques conhecidos ao algoritmo mais eficientes do que o ataque de força-bruta.

A escolha de um bom gerador de números pseudo-aleatórios é central para a segurança de uma cifra de fluxo. Um erro típico é utilizar funções padrão, como a função rand da biblioteca padrão do C, que não são adequadas para aplicações de segurança. A orientação geral é buscar os geradores selecionados pelo projeto eSTREAM como o Trivium mencionado nesta seção ou o SALSA20.

6.3 Modos de Operação

Há uma pequena distância entre o resultado do Teorema 3 e as aplicações práticas das cifras de fluxo da seção 6.2.1, pois o resultado do teorema vale apenas para mensagens de tamanho fixo previamente conhecido. Em todas situações práticas estamos interessados em criptografar cifras de tamanho arbitrário. Há duas possíveis soluções para este problema, dois modos de operação para as cifras de fluxo: síncrono e assíncrono.

No modo síncrono consideramos uma sequência de mensagens m_0, m_1, \ldots como uma única grande mensagem m. O algoritmo Init(s) gera o estado inicial st_0 e a cada comunicação GetBits parte do estado anterior e gera os bits necessários para encriptar a nova parte da mensagem enviada na comunicação. A limitação desta abordagem é que as partes precisam mater o estado atual sincronizado, ou seja, quando Alice atualiza st, Bob precisa atualizar também.

O outro modo é assíncrono. Neste assumimos que além da semente s a algoritmo G recebe uma sequência de bits chamada $vetor\ inicial\ IV$. O vetor inicial não é sigiloso, mas deve mudar cada vez que uma nova mensagem é criptografada. Desta forma garantimos que a sequência produzida por G com a mesma chave seja distinta e assim impedimos que ataques de repetição de chaves como mostramos no capítulo 4.

Exemplo 10. O Wired Equivalent Privacy (WEP) era o padrão para segurança em conexões WiFi desde 97 e é essencialmene uma cifra de fluxo que opera de modo assíncrono. Para gerar um fluxo de bits pseudo-aleatórios o WEP utiliza o RC4 – um PRG proposto por Ron Rivest em 87 – que recebe como entrada a semente de 40 ou 104 bits e um vetor inicial não sigiloso de 24 bits. Para cada pacote transimitido, o WEP gera um novo IV e utiliza a mesma chave para criptografar seu conteúdo. Acontece que 24 bits é um tamanho consideravelmente pequeno e se repete com 50% de chance a cada 5000 pacotes tornando-o completamente inseguro.

Hoje em dia, um script que implementa este tipo de ataque chamado aircrack-ng é capaz de quebrar uma senha WEP usando uma computador pessoal em questão de minutos. Esse tipo de vulnerabilidade do protocolo WEP levou-o a ser substituído em pelo protocolo WPA e em seguida pelo WPA2 entre 2004 e 2006.

6.4 Exercicios

Exercício 16. Mostre que o gerador G com fator de expansão l(n) = n + 1 que recebe $s \in \{0,1\}^n$ e devolve s concatenado com $\bigoplus_{i=0}^n s_i$ não é um PRG.

Exercício 17. Construa um dintinguidor eficiente D para o LFSR simples.

Exercício 18. Por que em uma cifra de fluxo não podemos criptografar duas mensagens distintas com a mesma chave?

Exercício 19. Sejam $y_0, y_1, y_2...$ os bits gerados pelo algoritmo RC4. É possível mostrar que para uma distribuição uniforme de sementes e vetores iniciais, a probabilidade dos bits $y_9, ..., y_{16}$ serem todos iguais a $0 \in \frac{2}{256}$. Mostre como construir um algoritmo eficiente D capaz de distinguir as sequências de bits produzidas pelo RC4 de uma sequência realmente aleatória.

Exercício 20. Considere a seguinte implementação de uma cifra de fluxo:

- 1. Utilizamos o número de segundos desde primeiro de janeiro de 1970 até o momento atual para gerar uma semente s que armazenamos em um local seguro.
- 2. Utilizamos, então, a implementação rand da biblioteca padrão do C para gerar uma sequência de n bits G(s).
- 3. Produzimos a cifra $c = G(s) \oplus m$ supondo que |m| = n.
- 4. Para descriptografar recuperamos s, aplicamos $G(s) \oplus c$.

Descreva duas vulnerabilidades deste protocolo.

Capítulo 7

Cifras de Bloco

No capítulo anterior mostramos que somos capazes de construir um sistema seguro contra ataques do tipo *ciphertext only*. Para isso precisamos supor a existência um gerador de números pseudo-aleatórios, ou seja, um algoritmo capaz de gerar uma sequência de bits indintinguível, para todos efeitos práticos, de uma sequência aleatória. Nossa definição de ataque é um pouco mais fraca do que a apresentada no Capítulo ??, mas nosso sistema não requer chaves tão grandes. As cifras de fluxo, porém, compartilham com o OTP dois problemas: são totalmente inseguras caso haja repetição de chaves e não apresentam qualquer garantia de segurança caso o adversário conheça partes do mensagem.

O modelo das cifras de fluxo é adequado para descrever as Máquinas Enigma utilizadas pelo exército nazista nos anos 40. Sua cifra, porém, foi derrotada não apenas pelo desenvolvimento tecnológico que levou a contrução da máquina Bombe e do Colossus, mas porque os aliados tiveram acesso a trechos de mensagens descriptografas. Com a teoria da criptografia moderna, diríamos hoje que o tipo de ataque que os ingleses fizeram foi do tipo known plaintext.

Neste capítulo nos voltaremos para um modelo de ataque ainda mais poderoso. Ataques do tipo *chosen plaintext* (CPA) supõe que o adversário, além de acessar o texto cifrado, é capaz de fazer com que o sistema produza as cifras de mensagens produzidas por ele. É evidente que ataques do tipo *known plaintext* são um caso particular deste, mas existem situações em que devemos assumir esse poder maior por parte do adversário.

Vamos formalizar segurança contra ataques CPA de forma análoga à segurança contra ataques *ciphertext only*. Considere o seguinte jogo.

- 1. O adversário \mathcal{A} escolhe duas mensagens m_0 e m_1 com o mesmo tamanho $(|m_0| = |m_1|)$ e envia para o sistema Π .
- 2. O sistema gera uma chave k usando o algoritmo Gen e sorteia aleatoriamente uma das mensagens para criptografar (Π sorteia $b \leftarrow \{0, 1\}$ e criptografa m_b).
- 3. Durante todo o processo \mathcal{A} possui acesso a um *oráculo* E_k que ele pode usar para verificar como seria criptografadas qualquer mensagem m.
- 4. A cifra produzida $E(k, m_b) = c$ e enviada de volta para o adversário.

O desafio de \mathcal{A} é acertar qual das duas mensagens foi encriptada. Chamamos o experimento de $PrivK_{\Pi A}^{cpa}$:

$$PrivK_{\Pi,\mathcal{A}}^{cpa}(n) = \begin{cases} 1 & \text{se} \quad b = b' \\ 0 & \text{c.c.} \end{cases}$$

Um sistema Π é seguro contra CPA se para todo adversário polinomial \mathcal{A} temos que existe uma função desprezível ε tal que:

$$Pr[PrivK_{\Pi,\mathcal{A}}^{cap} = 1] = \frac{1}{2} + \varepsilon(n)$$

Para construir um sistema seguro contra CPA assumiremos a existência de funções pseudoaleatórias. Considere o conjunto de todas as funções $f: \{0,1\}^n \to \{0,1\}^n$. Chamaremos esse conjunto de $Func_n$ e não é difícil calcular que $|Func_n| = 2^{n2^n}$. Gostaríamos de escolher aleatoriamente uma função $f \leftarrow Func_n$, mas isso não é possível, o melhor que podemos fazer é escolher uma chave $k \leftarrow \{0,1\}^n$ e tentar produzir uma função $f_k: \{0,1\}^n \to \{0,1\}^n$ que se pareça com uma função escolhida aleatoriamente. Assim, como um PRG, uma função pseudoaleatória (PRF) é tal que não existe algoritmo efeciente capaz de distingui-la de uma função aleatória com probabilidade considerável.

Uma cifra de bloco é uma permutação pseudoaleatória (PRP), uma função bijetora $p_k : \{0,1\}^n \to \{0,1\}^n$ (permutação), cuja inversa p_k^{-1} pode ser calculado de maneira eficiente e não existe algoritmo polinomial capaz de distinguir p_k de uma permutação aleatória com probabilidade não desprezível.

Uma cifra de bloco é capaz de criptografar uma mensagem de tamanho fixo $m \in \{0, 1\}^n$, chamado de bloco, de maneira trivial $p_k(m) = c$ e decifrar usando

sua inversa $p_k^{-1}(p_k(m)) = m$. Na Seção 7.2 mostraremos como combinar os blocos para criptografar um mensagem de tamanho arbitrário e provaremos a segurança desses sistemas. Antes disso, porém, vamos apresentar algumas construções usadas na prática.

7.1 Construções Práticas

Como explicitamos na seção anterior, um PRP é uma permutação $p:\{0,1\}^n \times \{0,1\}^l \to \{0,1\}^l$ em que n é o tamanho da chave e l o tamanho do bloco. Assim, dado $k \leftarrow \{0,1\}^n$ construímos p_k que deve ser indistinguível na prática de $p \leftarrow Perm(\{0,1\}^l)$. Não conhecemos um sistema demonstradamente pseudoaleatório, mas os sistemas que apresentaremos, especialmente o AES, tem sido validado na prática.

Nosso desafio será construir um algoritmo em que a mudança de um único bit, seja na mensagem ou na chave, afeta — mas não necessarimante altera — todos os bits da cifra. Para essa tarefa partiremos do paradigma proposto por Shannon chamado de *confusão e difusão*.

A ideia da confusão é dividir o bloco em partes menores, digamos de 8 bits cada, e aplicar uma tabela que indique para cada sequência de 8 bits da entrada qual seria a saída. Apenas a confusão não é suficiente para nosso objetivo, pois a alteração do primeiro bit, por exemplo, afetaria apenas os 8 primeiros bits da cifra. A difusão então seria responsável por embaralhar os bits, espalhando a mudança de uma partes nas demais partes. Nas cifras de bloco fases de confusão e difusão são repetidas um número de vezes.

7.1.1 Data Encryption Standard (DES)

O Data Encryption Standard (DES) foi o padrão para a cifras de bloco do fim dos anos 70 até o fim dos anos 90. Projetado pela IBM o algoritmos sofreu importantes alterações pela NSA antes de se tornar um padrão internacional.

O DES utiliza uma técnica chamada rede de Feistel que utiliza uma serie de funções $f_i: \{0,1\}^{l/2} \to \{0,1\}^{l/2}$ para produzir umafunção eficientemente inversível. A entrada $m \in \{0,1\}^l$ da rede é dividia ao meio $L:=m_0\dots m_{(l/2)-1}$ e $R:=m_{l/2}\dots m_l$ e em cada rodada i é produzido L_iR_i da seguinte forma:

$$L_i := R_{i-1} \in R_i := L_{i-1} \oplus f_i(R_{i-1})$$

Dada a saída $\langle L_i, R_i \rangle$ da *i*-ésima rodada de uma rede de Feistel, podemos recuperar o valor de $\langle L_{i-1}, R_{i-1} \rangle$ primeiro fazendo $R_{i-1} := L_i$ e em seguinda calculando:

$$L_{i-1} := R_i \oplus f_i(R_{i-1})$$

Esse procedimento pode ser repetido para todas as rodadas da rede para inverter a função.

O DES é uma rede de Feistel com 16 rodadas. Ela recebe uma chave de 64 e prontamente descarta 8, portanto, e criptografa blocos de 64 bits, ou seja, $DES: \{0,1\}^{56} \times \{0,1\}^{64} \to \{0,1\}^{64}$. A chave de 56 passa por um processo chamado key schedule que produz 16 subchaves de 48 bits. As funções em cada rodada do DES são identicas, recebem uma subchave de 48 bits e um bloco de 32 bits (metade do bloco total) e produz um bloco de 32 bits $f: \{0,1\}^{48} \times \{0,1\}^{32} \to \{0,1\}^{32}$. Resta, portanto, apresentar a função f:

- 1. o bloco é expandido para uma sequência de 48 bits,
- 2. aplica-se o XOR do bloco expandido com a subchave,
- 3. o resultado é dividido em 8 pedaços de 6 bits cada,
- 4. aplica-se uma substituição (S-Box) diferentes para cada um desses pedaços (fase de confusão),
- 5. o resultado é reduzido para uma sequência de 32 bits e, por fim,
- 6. os bits são misturados (fase de difusão).

A adoção do padrão DES foi cheia de controvérsias. Não foi esclarecido o motivo do descarte do 8 bits da chave. Uma chave de 56 bits é hoje considerada insegura contra um ataque de força bruta e estava no limite da segurança nos anos 70. Além disso, e mais suspeito, os S-Boxes foram alterados pela NSA sem grandes explicações antes do algoritmos ser adotado como padrão. Anos mais tarde pesquisadores apresentaram uma técnica chamada criptoanálise diferencial. Diversas cifras se tornaram inseguras com o anúncio desta técnica, mas supreendentemente o DES não. Desconfia-se que os pesquisadores da NSA conheciam a técnica e alteraram a cifra de forma que ela se torna-se segura contra este tipo de ataque.

7.1.2 Advanced Encryption Standard (AES)

As desconfianças em torno do DES e o ataque força bruta iminete contra sua chave levaram o orgão estadunidense responsável pela estabelecimento de padrões internacionais (NIST) a propor um concurso acadêmico em 1997 para elaboração de um novo padrão. Cada concorrente, além de propor o algoritmo tinha a tarefa de encontrar vulnerabilidades nos demais algoritmos propostos. Cinco finalistas foram considerados adequados e em abril de 2000 o algoritmos *Rijndael* foi anunciado como vencedor e passou a ser chamado de AES.

O AES criptografa blocos de 128 bits possui três versões: uma com chaves de 128 bits e 10 rodadas, uma com chaves de 196 bits e 12 rodadas e uma com chaves de 256 bits e 14 rodadas. Diferente do DES, o AES não usa uma rede de Feistel, mas uma técnica que chama-se rede de substituição e permutação.

O bloco no AES é dividido em 8 sequência de 16 bits que é tratada com um quadrado de 4 por 4 chamado de *estado*. Em cada rodada o algoritmo repete os seguintes passos:

- 1. AddRoundKey: O key schedule do AES produz uma subchave de 128 bits para cada rodada e aplicamos o XOR dessa subchave com o estado.
- 2. SubBytes: Cada byte do estado é substituído por um novo byte definido por um SBox único que é bijetor (fase de confusão).
- 3. ShiftRow: Rotacionamos a segunda linha do estado em uma posição, a terceira em duas posições e a quarta e três posições para a direita.
- 4. *MixColumns:* As quatro linhas do estado são interpretados com um vetor que é multiplicado por uma matriz específica e fixa. Essa transformação é de tal forma que garante que cada byte de entrada influencie quatro bytes de saída (fase de difusão).

Na última rodada a fase *MixColumn* é substituída pela *AddRoundKey*. O AES é construído cuidadosamente de forma ser efecientemente inversível na presença da chave. Até a escrita destas notas não se conhece um ataque contra o AES mais eficiente do que o ataque força bruta.

7.2 Modos de Operação

Uma cifra de bloco é usada para criptografar um bloco de tamanho fixo, por exemplo 128 bits no caso do AES e 64 bits no caso do DES. Tipicamente, porém, desejamos criptografar uma mensagem de tamanho arbitrário $m \in \{0,1\}^*$. Para tanto temos que combinar de alguma forma os blocos criptografados pelas cifra de bloco. A forma mais natural, e insegura, de fazer isso é chamada *Eletronic Code Book* (ECB). Neste modo de operação dividimos a mensagem m em pedaços do tamanho do bloco $(m = m_0 m_1 \dots m_l)$ onde $|m_i| = n$, usamos a cifra de bloco p_k para criptografar cada bloco e contatenos eles, ou seja, $c = p_k(m_0) \dots p_k(m_l)$. Este modo de operação não garante a segurança contra ataques ciphertext only porque blocos iguais são criptografados de maneira igual. Considere o seguinte adversário \mathcal{A} que derrota esta cifra:

- 1. \mathcal{A} envia $m_0 = mm$ e $m_1 = mm'$ para Π de forma que $m \neq m'$ e |m| = |m'| = n onde n é o tamanho do bloco,
- 2. Π vai sortear uma das duas mensagens $(b \leftarrow \{0,1\})$ e devolve $E(k,m_b) = c$,
- 3. se c for formado por dois blocos idênticos \mathcal{A} devolve 0, caso contrário devolve 1.

Essa maneira ingênua de combinar os blocos não garante a segurança contra o modelos de ataque mais simples que apresentamos. Queremos um sistema que seja seguro contra CPA.

Pela definição de segurança contra CPA que apresentamos, o adversário possui acesso a um oráculo que ele pode consultar para verificar como uma mensagem seria criptografada. Essa definição força o algoritmo E de criptografia a ser não determinístico. Caso contrário, o adversário poderia derrotar o sistema simplesmente enviando duas mensagens que cuja cifra ele consultou.

Para garantir o não determinismo do sistema incluiremos um bloco aleatório no começo da mensagem chamado de *vetor inicial*. Como no caso da cifra de fluxo, o vetor inicial não é um segredo, mas garante que toda mensagem será criptografada de maneira diferente.

No modo de operação Cipher Block Chaining cada bloco depende não apenas da cifra de bloco p e do bloco m_i a ser encriptado, mas também da

53

cifra do bloco imediatamente anterior c_{i-1} . O algoritmo $E(k,m) := c_0 c_1 \dots c_l$ onde cada c_i tem o tamanho de um bloco n e cada c_i é computado da seguinte maneira:

$$c_0 := IV \leftarrow \{0,1\}^n$$

 $c_i := p_k(c_{i-1} \oplus m_i) \text{ para cada } i = 0, \dots, l$

Para descriptografar precisamos aplicar $D(k,c) := m_0 \dots m_l$ da seguinte forma:

$$m_i := p_k^{-1}(c_{i+1}) \oplus c_i$$
 para cada $i = 0, \ldots, l-1$

É possível provar que este sistema é seguro contra CPA.

Teorema 4. Se p é uma PRP então o sistema Π tal qual apresentado acima, modo CBC, é seguro contra CPA.

A principal limitação do modo CBC é que os blocos precisam ser processados em sequência, ou seja, o algoritmo não é paralelizável. O $modo\ contador\ (Ctr)$, por outro lado, não tem essa limitação. Este modo opera de maneira muito similar a uma cifra de fluxo. Como no modo CBC o primeiro bloco é uma sequência de bits aleatória (IV). Para ada bloco é calculado somando o índice do bloco com IV e aplicado uma função pseudoaleatória ao resultado. Calculamos por fim o XOR do valor obtido com o bloco da mensagem:

$$c_0 := IV \leftarrow \{0,1\}^n$$

 $c_i := m_i \oplus f_k(IV + i)$ para cada $i = 1, \dots, l$

O algoritmo D(k,c) é exatamente a mesma coisa, como se poderia esperar:

$$m_i := c_{i+1} \oplus f_k(c_0+i)$$
 para cada $i = 0, \dots, l-1$

A segurança do modo contador exige apenas uma função pseudoaleatória que não precisa ser inversível:

Teorema 5. Seja f uma função pseudoaleatória, o sistema Π tal qual apresentado acima, modo Ctr, \acute{e} segura contra CPA.

Demonstração. Seja Π o sistema de criptografia usando uma função pseudoaleatória em modo Ctr e Π' o mesmo sistema, mas usando uma função realmente aleatória. Usamos o adversário \mathcal{A} para construir um distinguidor D que recebe uma entrada 1^n e acesso a um oráculo $O: \{0,1\}^n \to \{0,1\}^n$ da seguinte forma:

- 1. Sempre que \mathcal{A} fizer uma consulta a seu oráculo em um mensagem m, fazemos o seguinte:
 - (a) Geramos $IV \leftarrow \{0,1\}^n$.
 - (b) Consultamos O(IV+i) para cada $i \in 0, ..., l$ para receber $y_0, ..., y_l$ como resposta.
 - (c) Devolvemos $y_0 \oplus m_0 \dots y_l \oplus m_l$ para \mathcal{A}
- 2. Quando \mathcal{A} envia m_0 e m_1 para o sistema, escolhemos $b \leftarrow \{0,1\}$ e:
 - (a) Geramos $IV \leftarrow \{0,1\}^n$.
 - (b) Consultamos O(IV+i) para cada $i \in 0, ..., l$ para receber $y_0, ..., y_l$ como resposta.
 - (c) Devolvemos $y_0 \oplus m_{b0} \dots y_l \oplus m_{bl}$ para \mathcal{A}
- 3. Quando \mathcal{A} devolve o bit b' devolvemos 1 se b = b' e 0 caso contrário.

D opera em tempo polinomial, pois \mathcal{A} também opera em tempo polinomial e conforme ambos operam da maneira idêntica, temos que:

$$Pr_{k \leftarrow \{0,1\}^n}[D^{f_k}(1^n) = 1] = Pr[PrivK^{cpa}_{\mathcal{A},\Pi}(n) = 1]$$

 $Pr_{f \leftarrow Func_n}[D^f(1^n) = 1] = Pr[PrivK^{cpa}_{\mathcal{A},\Pi'}(n) = 1]$

Como f é uma função pseudoaleatória, por definição, temos que existe ε desprezível tal que:

$$|Pr_{k \leftarrow \{0,1\}^n}[D^{f_k}(1^n) = 1] - Pr_{f \leftarrow Func_n}[D^f(1^n) = 1]| \le \varepsilon(n)$$

Juntando tudo temos que:

$$|Pr[PrivK_{A\Pi}^{cpa}(n)=1] - Pr[PrivK_{A\Pi'}^{cpa}(n)=1]| \le \varepsilon(n)$$

Se conseguirmos mostrar que $Pr[PrivK^{cpa}_{\mathcal{A},\Pi'}(n)=1]<\frac{1}{2}+\varepsilon'(n)$ para um ε' desprezível, então resolvemos o problema, pois teremos:

$$Pr[PrivK^{cpa}_{\mathcal{A},\Pi}(n) = 1] < \frac{1}{2} + \varepsilon(n) + \varepsilon'(n)$$

Vamos chamar de IV o primeiro bloco da cifra c produzida pelo sistema Π' e IV_i o primeiro bloco de cada cifra c_i resultado das consultas de \mathcal{A} ao oráculo.

- 1. Se para nenhuma IV+j usado para encriptar algum bloco j de m_b coincidir com nenhum IV_i+j' de algum bloco j' de uma consulta então Π' se comporta exatamente como um OTP e temos que $Pr[PrivK^{cpa}_{\mathcal{A},\Pi'}(n) = 1] = \frac{1}{2}$.
- 2. Caso contrário é possível que o A seja capaz de distinguir as mensagens.

Resta, portanto, calcular a probabilidade de uma coincidência como essa ocorrer. Como \mathcal{A} tem que ser polinomial, o número de consultas máximo que ele pode fazer está limitado a q(n) onde q é um polinômio. Seja l o número de blocos de c e l'_i o número de blocos da i-ésima consulta. Essa coincidência quando $IV + 1 \dots IV + l$ intersecciona $IV_i + 1 \dots IV_i + l'$, ou seja, quando:

$$IV - l' + 1 \le IV_i \le IV + l - 1$$

Ou seja, existem l+l'-1 casos em que ocorre uma intersecção, num universo de 2^n valores. Assim, a probabilidade dessa coincidência é $\frac{l+l'-1}{2^n}$. Essa probabilidade é maximizada para os maiores valores possíveis de l e l', a saber, q(n). Portanto a maior probabilidade possível para essa intersecção é $\frac{2q(n)-1}{2^n}$ que é desprezível. Concluímos que:

$$Pr[PrivK_{A,\Pi'}^{cpa}(n) = 1] < \frac{1}{2} + \frac{2q(n) - 1}{2^n}$$

A demonstração indica que o tamanho dos blocos também influencia em sua segurança. Isso ocorre, pois quanto menos os blocos maior a chance de gerar vetores inciais idênticos, e portanto, de criptografar duas mensagens distintas com a mesma chave. Como exemplo, tomando o caso concreto do DES, seu bloco tem tamanho 64 e,portanto, esperamos uma colisão depois de 2³² blocos (ver Capítulo ??), ou cerca de 4Gb. No momento em que estas notas são escritas, este valor é alto, mas plausível em muitas aplicações práticas.

7.3 Exercícios

Exercício 21. Mostre que a operação $R_i \oplus f_i(R_{i-1})$ na rede de Feistel de fato recupera o valor de L_{i-1} .

Exercício 22. Mostre a corretude dos modos CBC e Ctr, ou seja, que em ambos os casos D(k, E(k, m)) = m;

Bibliografia

- [Bau14] Z. Bauman. Vigilância Líquida. Zahar, 2014.
- [Bla01] E. Black. IBM e o Holocausto: a aliança estratégica entre a Alemanha nazista e a mais poderosa empresa americana. Editora Campus, 2001.
- [Cul01] Cultura de segurança: Um manual para ativistas, 2001. Acessado em http://bit.ly/2wBcCDe em 11 de agosto de 2017.
- [Del92] Gilles Deleuze. Postscript on the societies of control. *October*, 59:3–7, 1992.
- [Fou96] M. Foucault. Vigiar e punir: história da violência nas prisões. Vozes, 1996.
- [Gre14] G. Greenwald. No Place to Hide: Edward Snowden, the NSA, and the U.S. Surveillance State. Henry Holt and Company, 2014.
- [Kah96] D. Kahn. The Codebreakers: The Comprehensive History of Secret Communication from Ancient Times to the Internet. Scribner, 1996.
- [Lyo94] D. Lyon. The Electronic Eye: The Rise of Surveillance Society. University of Minnesota Press, 1994.
- [Lyo05] D. Lyon. Surveillance as Social Sorting: Privacy, Risk and Automated Discrimination. Taylor & Francis, 2005.
- [MS97] Viktor Mayer-Schönberger. Technology and privacy. chapter Generational Development of Data Protection in Europe, pages 219–241.
 MIT Press, Cambridge, MA, USA, 1997.

58 BIBLIOGRAFIA

[Nis09] H. Nissenbaum. Privacy in Context: Technology, Policy, and the Integrity of Social Life. Stanford Law Books. Stanford University Press, 2009.

- [Poi14] Laura Poitras. Citizenfour. Docummentary, 2014.
- [Pos77] Richard A. Posner. The right of privacy. Sibley Lecture Series, 22, 1977.
- [Sin04] S. Singh. O livro dos códigos. RECORD, 2004.
- [WB90] Samuel D. Warren and Louis D. Brandeis. The right to privacy. Harward Law Review, 4(5):193–220, December 1890.