MAE 5930 Optimization Homework 6

Purpose: The problems assigned help develop your ability to

- understand and recognize convexity.
- implement numerical algorithms for linearly constrained optimization.
- solve convex programs using MATLAB's quadprog.
- solve convex programs using Newton's Method.

NOTE: Please write or type your formulations clearly so that a reader can understand what you are doing. You are welcome to use the equivalent functions in Python.

Definition 1 (Convex Function). A function $f: D \to \mathbb{R}$ is convex if

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

for all $x, y \in D$ and all $\theta \in [0, 1]$.

Definition 2 (Convex Set). A set C is convex if

$$\theta x + (1 - \theta)y \in C$$

for all $x, y \in C$ and all $\theta \in [0, 1]$.

Theorem 1 (Hessian Test). Let $f: D \to \mathbb{R}$ be a twice continuously differentiable function defined on a convex domain D. The function f is convex on D if and only if the Hessian matrix of f is positive semidefinite for all $x \in D$.

Problem 1: Let Q be an n-by-n symmetric matrix. Use the definition of a convex function to show under what conditions the quadratic function $f(x) = x^{\top}Qx$ is convex.

Problem 2: Let S be the set of points contained in the unit square, i.e.,

$$S = \{(x_1, x_2) : -1 \le x_1 \le 1 \text{ and } -1 \le x_2 \le 1\},\$$

which reads, "S is the set of all points x_1 and x_2 such that $-1 \le x_1 \le 1$ and $-1 \le x_2 \le 1$." Use the definition of a convex set to show that S is convex. (You know that the filled-in square is convex because it does not have any holes or indentations. I am asking you to formalize this mathematically.)

Problem 3: Let D be the set of points contained in an annulus (or donut) with inner radius R_i and outer radius R_o , i.e.,

$$D = \{(x_1, x_2) : R_i^2 \le x_1^2 + x_2^2 \le R_o^2\}.$$

Use the definition of a convex set to show that D is non-convex. (Again, you can draw a picture and see that the set is non-convex because it has a hole. I am asking you to formalize this mathematically.)

Problem 4: For each of the following functions, use the Hessian test to determine if the function is convex.

(a)
$$f: \mathbb{R} \to \mathbb{R}, f(x) = -8x^2$$

(b)
$$f: \mathbb{R}^3 \to \mathbb{R}, f(x) = 4x_1^2 + 3x_2^2 + 5x_3^2 + 6x_1x_2 + x_1x_3 - 3x_1 - 2x_2 + 15$$

(c)
$$f: \mathbb{R}^2 \to \mathbb{R}, f(x) = -2x_1x_2 + x_1^2 + x_2^2$$

(d)
$$f: \mathbb{R}^n \to \mathbb{R}, f(x) = \alpha_1 x_1 + \ldots + \alpha_n x_n$$

(e)
$$f:(0,\pi/2) \to \mathbb{R}, f(x) = \sin(x)$$

Problem 5: Program Newton's Method with Equality Constraints as described by Boyd on page 528. (Note that Boyd considers gradient vectors to be column vectors instead of row vectors.)

- (a) Inputs to the function are the objective, gradient, Hessian, A matrix, and feasible starting point.
- (b) Within the function, set $\epsilon = 1e 6$.
- (c) Solve the following problem using MATLAB's quadprog and your code. You should get the same answer. Problem data is shown on the next page.

$$\min ||x||$$
 subject to $Ax = b$

A=[4	4	4	9	10	10	3	6	0	1;
	7	5	6	9	5	7	1	1	5	8;
	0	4	1	1	7	3	0	6	7	4;
	3	7	2	0	3	8	7	7	5	2;
	1	2	8	2	7	1	2	1	9	9;
	1	9	10	9	8	4	3	4	6	3;
	2	0	3	1	0	9	5	7	9	8;
	3	7	7	4	8	3	1	4	1	7];
b =	[9	6	8	3	3	9	4	10]';		