UNA VISITA RÁPIDA A SAGE

Juan Luis Varona (8 - febrero - 2010) Sage Version 4.3.1

http://wiki.sagemath.org/quickref GNU Free Document License

Sage (http://www.sagemath.org) es un entorno de cálculos matemáticos de código abierto que, gracias a los diversos programas que incorpora, permite llevar a cabo cálculos algebraicos, simbólicos y numéricos. El objetivo de Sage es crear una alternativa libre y viable a Magma, Maple, Mathematica y Matlab, todos ellos potentes (y muy caros) programas comerciales.

Sage sirve como calculadora simbólica de precisión arbitraria, pero también puede efectuar cálculos y resolver problemas usando métodos numéricos (es decir, de manera aproximada). Para todo ello emplea algoritmos que tiene implementados él mismo o que toma prestados de alguno de los programas que incorpora, como Maxima, NTL, GAP, Pari/gp, R y Singular. Y para llevar a cabo algunas tarcas puede utilizar paquetes especializados opcionales. Incluye un lenguaje de programación propio, que es una extensión de Python (Sage mismo está escrito en Python); es muy recomendable conocer Python para hacer un uso avanzado de Sage.

Sage no sólo consta del programa en sí mismo, que efectúa los cálculos, y con el que podemos comunicarnos a través de terminal, sino que incorpora un interfaz gráfico de usuario a través de cualquier navegador web; para representar las fórmulas y expresiones matemáticas utiliza jsMath, una implementación de LaTeX por medio de JavaScript. Sin necesidad de descargarlo e instalarlo en nuestro ordenador, podemos utilizar Sage en http://www.sagenb.org. Pero no nos preocupemos de ello; simplemente, jechemos un vistazo a su sintaxis y su funcionamiento!

1. Uso como calculadora:

5+4/3

2. Sage utiliza paréntesis () para agrupar:

(5+4)/3

3. Y también los usa como argumentos de funciones:

cos(C

4. Corchetes [] para formar listas (con sus elementos separados por comas):

```
v = [3,4,-6] # Alternativa: v = vector([3,4,-6])
```

5. También corchetes para acceder a elementos de listas (enumera contando desde 0, como en C y en Python):

v[2]

6. Como calculadora, Sage proporciona resultados exactos:

```
3^100  # Se usa ** o ^ para elevar a una potencia factorial(1000)
```

7. Sin embargo, no ocurre así si alguno de los números involucrados en el cálculo tiene decimales (la parte que sigue al # es un comentario):

```
3.0^100 # 3.0 es un número real, no un entero.
```

8. También efectúa cálculos exactos cuando aparecen funciones:

arctan(1

 Con los comandos n o N conseguimos aproximaciones numéricas (ambos comandos son alias de numerical_approx). El símbolo _ alude al último resultado obtenido:

10. Estas aproximaciones pueden tener la precisión que deseemos. Por ejemplo, evaluemos $\sqrt{10}$ con 50

```
cifras exactas:
N(sqrt(10), digits=50)
```

```
sqrt(10).n(digits=50)
N(sqrt(10), 170) # Significa bits de precisión, no dígitos
```

11. Definición y uso de variables simbólicas (se puede usar " o ', y poner comas o no ponerlas):

12. Sage permite operar con números complejos (i o I es la unidad imaginaria):

```
(3+4*I)^10
e^(i*pi)  # Da iguar usar e o E
```

13. Podemos definir expresiones simbólicas y manipularlas (aquí, ; sirve para separar órdenes):

```
var('x'); p = (x+1)*(x-1)^2 # El * es importante q = expand(p); q
```

14. En este ejemplo, el camino inverso lo recorreríamos con

```
factor(q)

15. Ahora, hallemos (numéricamente) una raíz de q que esté entre 0 y 3:
```

find_root(q, 0, 3)

16. Otro ejemplo de lo mismo:

```
var("theta")
find root(cos(theta) == sin(theta)+1/5, 0, pi/2)
```

17. Para conocer el tiempo empleado por Sage en efectuar un cálculo:

```
time is_prime(2^127-1)
time factor(2^128-1)
```

18. Podemos librarnos de una asignación o definición previa mediante

```
reset("a")
reset() # Reinicia todo Sage
```

19. Así se define la función $f(x) = \frac{1}{1+x^2}$:

```
f(x) = 1/(1+x^2)
```

20. Y así se usa:

```
var("r"); [f(x), f(x+1), f(3), f(r)]
```

21. La orden diff permite obtener la derivada (o derivadas parciales) de una función:

22. Así calcularíamos una primitiva de f:

```
integrate(f(x),x) # Da igual usar integral o integrate
```

23. La integral definida $\int_0^1 f(x) dx$ podemos evaluarla exactamente (mediante la regla de Barrow, por ejemplo) o numéricamente (mediante una fórmula de cuadratura):

```
var("x")
integral(x*sin(x^2), x)
show(integrate(x/(1-x^3)))
integral(x/(x^2+1), x, 0, 1)
```

24. También existe integración numérica, pero su sintaxis es diferente. En la respuesta que se obtiene, el primer elemento es el resultado, y el segundo una cota del error:

```
integral(x*tan(x), x)
integral(x*tan(x), x,0,1)  # Lo devuelve sin hacer
numerical_integral(x*tan(x), 0,1)
```

25. Cálculo de límites:

```
\label{limit(sin(x)/abs(x), x=0)} \mbox{# Se da cuenta de que no existe } \\ \mbox{limit(sin(x)/abs(x), x=0, dir="minus")} \\ \mbox{limit(sin(x)/abs(x), x=0, dir="plus")} \\
```

26. Conoce la equivalencia de Stirling:

```
\lim(factorial(x)*exp(x)/x^(x+1/2), x=oo) # oo es lo mismo que infinity
```

27. Las funciones se pueden definir a trozos:

```
g = Piecewise([[(-5,1),(1-x)/2], [(1,8),sqrt(x-1)]],x)
```

28. Para representar funciones disponemos del comando plot:

```
plot(g) # o g.plot()
    plot(cos(x^2), -5, 5, thickness=5, rgbcolor=(0.5,1,0.5), fill = 'axis')
    plot(bessel_J(2,x,"maxima"), 0, 20) # Funciona pero es muuuuuy lento
29. Así se guarda un gráfico en el disco duro:
    save(plot(sin(x)/x, -5, 5), "ruta/dibujo.pdf") # o plot(...).save("...")
30. También podemos representar funciones en paramétricas, gráficos en tres dimensiones, curvas de
    automatic_names(true)  # Ya no necesitamos predefinir las variables (v. 4.3.1)
    parametric_plot((cos(t),sin(t)), 0,2*pi).show(aspect_ratio=1, frame=true)
    plot3d(4*x*exp(-x^2-y^2), (x,-2,2), (y,-2,2))
    contour_plot(\sin(x*y), (x,-3,3), (y,-3,3), contours=5, plot_points=80)
31. Incluso funciones en implícitas en dos y tres dimensiones:
    implicit_plot(sin(x*y) + sin(x)*sin(y) == 1, (x,-5,5), (y,-5,5))
    implicit_plot3d(x^4 + y^4 + z^4 == 16,
      (x, -2, 2), (y, -2, 2), (z, -2, 2), viewer='tachyon')
32. Con + se superponen gráficos:
    plot(2*t^2/3+t, 0, 6) + plot(3*t+20, 0, 6, rgbcolor='red')
      + line([(0, 10), (6, 10)], rgbcolor='green')
33. Podemos hacer animaciones:
    onda = animate([\sin(x+k) \text{ for } k \text{ in srange}(0,10,0.5)], xmin=0, xmax=8*pi)
    onda.show(delay=30, iterations=1)
34. Y gráficos interactivos:
    f = \sin(x) \cdot e^{-x}
    dibujof = plot(f,-1,5, thickness=2)
    punto = point((0,f(x=0)), pointsize=80, rgbcolor=(1,0,0))
    @interact
    def _(orden=(1..12)):
                                    # La variable de control
      ft = f.taylor(x,0,orden)
      dibujotaylor = plot(ft,-1, 5, color="green", thickness=2)
      show(punto + dibujof + dibujotaylor, ymin = -.5, ymax = 1)
35. Para buscar ayuda sobre un comando (especialmente, su sintaxis y ejemplos de uso), basta poner?
    tras el nombre del comando; con ?? se obtiene información más técnica (sobre el código fuente);
    plot?
    numerical_integral??
36. También podemos buscar en la documentación:
    search_doc("rgbcolor")
37. La orden solve sirve para resolver equaciones (obsérvese que se emplea ==) o sistemas:
    solve(x^2-2 == 0, x)
    f = x^4 + 2*x^3 - 4*x^2 - 2*x + 3
    solve(f == 0, x, multiplicities=true)
    soluciones = solve([9*x - y == 2, x^2 + 2*x*y + y == 7], x, y)
    soluciones[0][0].rhs() # Componente x de la primera solución
38. En la versión 4.3.1, Sage aún no sabe sumar series, pero se lo podemos pedir a Maxima:
    sum(1/n^2) for n in (1..20) # No sabe si en vez de 20 ponemos oc
    maxima("sum(1/n^2,n,1,inf), simpsum")
39. Las matrices y vectores se crean así:
    A = matrix([[-4,1,0],[3,5,-2],[6,8,3]]);
    B = identity_matrix(3)
    v = vector([3,-2,8]); w = vector([-1,1,1])
    H = matrix([[1/(i+j+1) \text{ for i in } [0..2]] \text{ for j in } [0..2]])
40. Y con ellos se opera como sigue:
    T = A^2*transpose(A) - 5*B - (1/20)*det(A)*exp(B)
    v.dot_product(w) # Producto escalar
    H.inverse()
                        # También se puede usar ~H o H^(-1)
```

```
41. El sistema de ecuaciones lineales Ax = w se resuelve con (si se hace simbólico con parámetros, no
    estudia casos)
    x = A \setminus w
42. Sage nos permite resolver ecuaciones diferenciales:
    x = var("x"); y = function("y",x)
    desolve(diff(y,x,2)-2*diff(y,x)-3*y == exp(x)*sin(x),y)
    desolve(diff(y,x) + 2*y - 8 == 0, y, ics=[3,5]) # Condición inicial y(3) = 5
    desolvers? # Más órdenes para resolver ecuaciones diferenciales (o sistemas)
43. También podemos resolverlas mediante métodos numéricos (p.c., con un Runge-Kutta):
    v = function('v',x)
    sol = desolve_rk4(diff(y,x)+y*(y-2) == x-3, y, ics=[1,2], step=0.1, end_points=8)
    list_plot(sol, plotjoined=True, color="purple")
44. Usando simplify, Sage simplifica expresiones (suele ser muy cuidadoso):
    var("x"); sqrt(x^2)
    sqrt(x^4)
    simplify(_) # Sigue sin hacer nada
    assume(x>0); simplify(sqrt(x^2)) # Ya simplifica
45. También con expresiones trigonométricas:
    sin(asin(y)) # Devuelve y
    asin(sin(x)) # Lo devuelve "sin hacer"
    simplify(_) # Sigue sin hacer nada
    assume(-pi/2 \le x \le pi/2); simplify(asin(sin(x)))
    var('k t'); assume(k, 'integer'); simplify(sin(t+2*k*pi))
46. Pero Sage a veces hace chapuzas:
    find_{root}(x*exp(-x), 2, 100)
47. Obsérvese también esto:
    t=-40.0; # Número real
    sum([t^n/factorial(n) for n in [0..300]])
    t = -40 # Número entero
    N(sum([t^n/factorial(n) for n in [0..300]]))
48. Un ejemplo que muestra un programita hecho en Python (con """..."" ponemos la información que
    aparecerá al usar letraDelDNI?):
    def letraDelDNI(n):
        Esta funcion calcula la letra de un DNI espanol
        letras = "TRWAGMYFPDXBNJZSQVHLCKE"
        return letras[n%23]
    letraDelDNI(12345678)
49. Así se define una función de manera recursiva:
    def f(n):
        if n <= 1: return 1
        elif n\%2 == 0: return 2*f(n/2)
        else: return 3*f((n-1)/2)
    f(12345678)
50. Concluyamos con otro programita, el test de Lucas-Lehmer (como s está definido módulo 2^p - 1, las
    operaciones con s también son modulares):
    def is_prime_lucas_lehmer(p):
        s = Mod(4,2^p-1)
                                   # :Definimos s como un entero modular!
        for i in range(0, p-2):
            s = s^2 - 2
        return s==0
    is prime lucas lehmer(127)
                                        # Nos dice si 2^127-1 es primo (Lucas, 1876)
    time is_prime_lucas_lehmer(19937) # El mayor primo conocido en 1971
```

Sage Quick Reference

William Stein (based on work of P. Jipsen) GNU Free Document License, extend for your own use

Evaluate cell: (shift-enter)

Evaluate cell creating new cell: (alt-enter)

Split cell: (control-;)

Join cells: (control-backspace)

Insert math cell: click blue line between cells

Insert text/HTML cell: shift-click blue line between cells

Delete cell: delete content then backspace

Command line

com(tab) complete command *bar*? list command names containing "bar" command? (tab) shows documentation command??(tab) shows source code a. (tab) shows methods for object a (more: dir(a)) a._\(\tab\) shows hidden methods for object a search_doc("string or regexp") fulltext search of docs search_src("string or regexp") search source code _ is previous output

Numbers

Integers: Z = ZZ e.g. -2 -1 0 1 10^100 Rationals: Q = QQ e.g. 1/2 1/1000 314/100 -2/1Reals: $\mathbf{R} \approx RR$ e.g. .5 0.001 3.14 1.23e10000 Complex: $C \approx CC$ e.g. CC(1,1) CC(2.5,-3)Double precision: RDF and CDF e.g. CDF(2.1,3) Mod $n: \mathbb{Z}/n\mathbb{Z} = \mathbb{Z} \mod \text{e.g. Mod}(2,3)$ Zmod(3)(2)Finite fields: $F_a = GF$ e.g. GF(3)(2)GF(9, "a").0 Polynomials: R[x, y] e.g. S. $\langle x, y \rangle = QQ[]$ $x+2*y^3$ Series: R[[t]] e.g. S.<t>=QQ[[]] $1/2+2*t+0(t^2)$ p-adic numbers: $\mathbb{Z}_p \approx \mathbb{Z}_p$, $\mathbb{Q}_p \approx \mathbb{Q}_p$ e.g. 2+3*5+0(5^2) Algebraic closure: $\overline{Q} = QQbar e.g. QQbar(2^(1/5))$ Interval arithmetic: RIF e.g. sage: RIF((1.1.00001))

Arithmetic

$$ab = a*b \quad \frac{a}{b} = a/b \quad a^b = a^nb \quad \sqrt{x} = \operatorname{sqrt}(x)$$

$$\sqrt[n]{x} = x^n(1/n) \quad |x| = abs(x) \quad \log_b(x) = \log(x,b)$$
 Sums:
$$\sum_{i=k}^n f(i) = \operatorname{sum}(f(i) \text{ for i in } (k..n))$$
 Products:
$$\prod^n f(i) = \operatorname{prod}(f(i) \text{ for i in } (k..n))$$

Constants and functions

Constants: $\pi = pi$ e = e i = i $\infty = oo$ $\phi = golden_ratio \quad \gamma = euler_gamma$ Approximate: pi.n(digits=18) = 3.14159265358979324Functions: sin cos tan sec csc cot sinh cosh tanh sech csch coth log ln exp ... Python function: def f(x): return x^2

Interactive functions

Put @interact before function (vars determine controls) @interact

Symbolic expressions

Define new symbolic variables: var("t u v y z") Symbolic function: e.g. $f(x) = x^2$ Relations: f=g f < g f > gSolve f = q: solve(f(x)==g(x), x) solve([f(x,y)==0, g(x,y)==0], x,y)factor(...) expand(...) (...) simplify_... find_root(f(x), a, b) find $x \in [a, b]$ s.t. $f(x) \approx 0$

Calculus

2D graphics

line($[(x_1,y_1),\ldots,(x_n,y_n)]$, options) $polygon([(x_1,y_1),...,(x_n,y_n)],options)$ circle((x,y),r,options)text("txt",(x,y),options)options as in plot.options, e.g. thickness=pixel, rgbcolor=(r, g, b), hue=h where $0 \le r, b, g, h \le 1$ show(graphic, options) use figsize=[w,h] to adjust size use aspect_ratio=number to adjust aspect ratio $plot(f(x),(x,x_{min},x_{max}),options)$ parametric_plot((f(t),g(t)),(t, t_{\min} , t_{\max}), options) $polar_plot(f(t), (t, t_{min}, t_{max}), options)$ combine: circle((1,1),1)+line([(0,0),(2,2)]) animate(list of graphics, options).show(delay=20)

3D graphics

line3d($[(x_1, y_1, z_1), ..., (x_n, y_n, z_n)]$, options) sphere((x,y,z),r,options)text3d("txt", (x,y,z), options)tetrahedron((x,y,z), size, options)cube((x,y,z), size, options)octahedron((x,y,z), size, options)dodecahedron((x,y,z), size, options)icosahedron((x,y,z), size, options) $plot3d(f(x,y),(x,x_b,x_e),(y,y_b,y_e),options)$ parametric_plot3d($(f,g,h),(t,t_b,t_e),options$) parametric_plot3d((f(u, v), g(u, v), h(u, v)), $(u, u_{\rm b}, u_{\rm e}), (v, v_{\rm b}, v_{\rm e}), options)$ options: aspect_ratio=[1,1,1], color="red" opacity=0.5, figsize=6, viewer="tachyon"

Discrete math

Graph theory

Graph: $G = Graph(\{0:[1,2,3], 2:[4]\})$

Directed Graph: DiGraph(dictionary)

Graph families: graphs. (tab)

Invariants: G.chromatic_polynomial(), G.is_planar()

Paths: G.shortest_path()

Visualize: G.plot(), G.plot3d()

Automorphisms: G.automorphism_group(), G1.is_isomorphic(G2), G1.is_subgraph(G2)

Combinatorics

Integer sequences: sloane_find(list), sloane. \(\lambda \tab\rangle)

Partitions: P=Partitions(n) P.count()

Combinations: C=Combinations(list) C.list()

Cartesian product: CartesianProduct(P,C)

Tableau([[1,2,3],[4,5]])

Words: W=Words("abc"); W("aabca")

Posets: Poset([[1,2],[4],[3],[4],[]])

Root systems: RootSystem(["A",3])

Crystals: CrystalOfTableaux(["A",3], shape=[3,2])
Lattice Polytopes: A=random_matrix(ZZ,3,6,x=7)

L=LatticePolytope(A) L.npoints

Matrix algebra

 $\begin{pmatrix} 1 \\ 2 \end{pmatrix} = \text{vector}([1,2])$ $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \text{matrix}(QQ,[[1,2],[3,4]], \text{ sparse=False})$

 $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} = \text{matrix}(QQ,2,3,[1,2,3, 4,5,6])$

 $\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = \det(\max(QQ,[[1,2],[3,4]]))$

Av = A*v $A^{-1} = A^{-1}$ $A^{t} = A.transpose()$

Solve Ax = v: A\v or A.solve_right(v)

Solve xA = v: A.solve_left(v)

Reduced row echelon form: A.echelon_form()

Rank and nullity: A.rank() A.nullity()

Hessenberg form: A.hessenberg_form()
Characteristic polynomial: A.charpoly()

Eigenvalues: A.eigenvalues()

Eigenvectors: A.eigenvectors_right() (also left)

Gram-Schmidt: A.gram_schmidt()

Visualize: A.plot()

LLL reduction: matrix(ZZ,...).LLL()

Hermite form: matrix(ZZ,...).hermite_form()

Linear algebra

Vector space $K^n = \text{K^n e.g. QQ^3} \quad \text{RR^2} \quad \text{CC^4}$

Subspace: span(vectors, field)

E.g., span([[1,2,3], [2,3,5]], QQ)

Kernel: A.right_kernel() (also left)

Sum and intersection: V + W and V.intersection(W)

Basis: V.basis()

Basis matrix: V.basis_matrix()

Restrict matrix to subspace: A.restrict(V)

Vector in terms of basis: V.coordinates(vector)

Numerical mathematics

L.npoints() L.plot3d() Packages: import numpy, scipy, cvxopt

Minimization: var("x y z")

minimize(x^2+x*y^3+(1-z)^2-1, [1,1,1])

Number theory

Primes: prime_range(n,m), is_prime, next_prime Factor: factor(n), qsieve(n), ecm.factor(n) Kronecker symbol: $\left(\frac{a}{b}\right)$ = kronecker_symbol(a, b) Continued fractions: continued_fraction(x)

 $Bernoulli\ numbers:\ bernoulli(n),\ bernoulli_mod_p(p)$

Elliptic curves: EllipticCurve($[a_1, a_2, a_3, a_4, a_6]$)

Dirichlet characters: DirichletGroup(N)
Modular forms: ModularForms(level, weight)

Modular symbols: Modular Symbols (level, weight, sign)

Brandt modules: BrandtModule(level, weight)
Modular abelian varieties: JO(N), J1(N)

Group theory

G = PermutationGroup([[(1,2,3),(4,5)],[(3,4)]])
SymmetricGroup(n), AlternatingGroup(n)
Abelian groups: AbelianGroup([3,15])
Matrix groups: GL, SL, Sp, SU, GU, SO, GO
Functions: G.sylow_subgroup(p), G.character_table(),
G.normal_subgroups(), G.cayley_graph()

Noncommutative rings

Quaternions: Q.<i,j,k> = QuaternionAlgebra(a,b) Free algebra: R.<a,b,c> = FreeAlgebra(QQ, 3)

Python modules

import module_name
module_name.\(\tab\) and help(module_name)

Profiling and debugging

time command: show timing information
timeit("command"): accurately time command
t = cputime(); cputime(t): elapsed CPU time
t = walltime(); walltime(t): elapsed wall time
%pdb: turn on interactive debugger (command line only)
%prun command: profile command (command line only)

Sage Quick Reference: Calculus

William Stein Sage Version 3.4

http://wiki.sagemath.org/quickref GNU Free Document License, extend for your own use

Builtin constants and functions

Constants: $\pi=\text{pi}$ e=e i=I=i $\infty=\text{oo}=\text{infinity}$ NaN=NaN $\log(2)=\log 2$ $\phi=\text{golden_ratio}$ $\gamma=\text{euler_gamma}$ $0.915\approx\text{catalan}$ $2.685\approx\text{khinchin}$ $0.660\approx\text{twinprime}$ $0.261\approx\text{merten}$ $1.902\approx\text{brun}$ Approximate: $\text{pi.n(digits=18)}=3.14159265358979324}$ Builtin functions: sin cos tan sec csc cot sinh cosh tanh sech csch coth log ln exp...

Defining symbolic expressions

Create symbolic variables:

var("t u theta") or var("t,u,theta")

Use \ast for multiplication and $\hat{\ }$ for exponentiation:

 $2x^5 + \sqrt{2} = 2*x^5 + sqrt(2)$

Typeset: show(2*theta^5 + sqrt(2)) $\longrightarrow 2\theta^5 + \sqrt{2}$

Symbolic functions

Symbolic function (can integrate, differentiate, etc.):
 f(a,b,theta) = a + b*theta^2

Also, a "formal" function of theta:

f = function('f',theta)

Piecewise symbolic functions:

Piecewise([[(0,pi/2),sin(1/x)],[(pi/2,pi),x^2+1]])

Python functions

Defining:

def f(a, b, theta=1):

 $c = a + b*theta^2$

return c

Inline functions:

f = lambda a, b, theta = 1: $a + b*theta^2$

Simplifying and expanding

Below f must be symbolic (so **not** a Python function): Simplify: f.simplify_exp(), f.simplify_full(), f.simplify_log(), f.simplify_radical(), f.simplify_rational(), f.simplify_trig()

Expand: f.expand(), f.expand_rational()

Equations

Relations: f = g: f == g, $f \neq g$: f != g, $f \leq g$: f <= g, $f \geq g$: f >= g, f < g: f < g, f > g: f > g

Solve f = g: solve(f == g, x), and solve([f == 0, g == 0], x,y)

solve($[x^2+y^2==1, (x-1)^2+y^2==1], x, y$)

Solutions:

 $S = solve(x^2+x+1==0, x, solution_dict=True)$ S[0]["x"] S[1]["x"] are the solutions

Exact roots: $(x^3+2*x+1).roots(x)$

Real roots: (x^3+2*x+1).roots(x,ring=RR) Complex roots: (x^3+2*x+1).roots(x,ring=CC)

Factorization

Factored form: (x^3-y^3).factor() List of (factor, exponent) pairs: (x^3-y^3).factor_list()

Limits

 $\lim_{x \to a} f(x) = \operatorname{limit}(f(x), x=a)$ $\lim_{x \to a^+} f(x) = \operatorname{limit}(f(x), x=a, \operatorname{dir='plus'})$ $\lim_{x \to a^+} f(x) = \operatorname{limit}(f(x), x=a, \operatorname{dir='plus'})$ $\lim_{x \to a^-} f(x) = \operatorname{limit}(f(x), x=a, \operatorname{dir='minus'})$ $\lim_{x \to a^-} f(x) = \operatorname{limit}(f(x), x=a, \operatorname{dir='minus'})$

Derivatives

$$\begin{split} \frac{d}{dx}(f(x)) &= \mathrm{diff}(f(x),x) = \mathrm{f.diff}(x) \\ \frac{\partial}{\partial x}(f(x,y)) &= \mathrm{diff}(f(x,y),x) \\ \mathrm{diff} &= \mathrm{differentiate} = \mathrm{derivative} \\ \mathrm{diff}(x*y + \sin(x^2) + e^*(-x), x) \end{split}$$

Integrals

 $\int f(x)dx = \operatorname{integral}(f, \mathbf{x}) = f.\operatorname{integrate}(\mathbf{x})$ $\operatorname{integral}(\mathbf{x}*\operatorname{cos}(\mathbf{x}^2), \ \mathbf{x})$ $\int_a^b f(x)dx = \operatorname{integral}(f, \mathbf{x}, \mathbf{a}, \mathbf{b})$ $\operatorname{integral}(\mathbf{x}*\operatorname{cos}(\mathbf{x}^2), \ \mathbf{x}, \ \mathbf{0}, \ \operatorname{sqrt}(\operatorname{pi}))$ $\int_a^b f(x)dx \approx \operatorname{numerical_integral}(f(\mathbf{x}), \mathbf{a}, \mathbf{b}) \ [0]$ $\operatorname{numerical_integral}(\mathbf{x}*\operatorname{cos}(\mathbf{x}^2), \mathbf{0}, \mathbf{1}) \ [0]$ $\operatorname{assume}(\ldots): \ \operatorname{use} \ \text{if} \ \operatorname{integration} \ \operatorname{asks} \ \operatorname{a} \ \operatorname{question}$ $\operatorname{assume}(\mathbf{x}>0)$

Taylor and partial fraction expansion

Taylor polynomial, deg n about a: taylor(f,x,a,n) $\approx c_0 + c_1(x-a) + \cdots + c_n(x-a)^n$ taylor(sqrt(x+1), x, 0, 5)
Partial fraction:

(x^2/(x+1)^3).partial_fraction()

Numerical roots and optimization

Numerical root: f.find_root(a, b, x) $(x^2 - 2).find_root(1,2,x)$ Maximize: find (m,x_0) with $f(x_0) = m$ maximal f.find_maximum_on_interval(a, b, x)

Minimize: find (m,x_0) with $f(x_0) = m$ minimal f.find_minimum_on_interval(a, b, x)

Minimization: minimize(f, $start_point$) $minimize(x^2+x*y^3+(1-z)^2-1, [1,1,1])$

Multivariable calculus

Gradient: f.gradient() or f.gradient(vars)
 (x^2+y^2).gradient([x,y])
Hessian: f.hessian()
 (x^2+y^2).hessian()
Jacobian matrix: jacobian(f, vars)
 jacobian(x^2 - 2*x*y, (x,y))

Summing infinite series

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

Not yet implemented, but you can use Maxima: $s = 'sum (1/n^2,n,1,inf)$, simpsum' $SR(sage.calculus.calculus.maxima(s)) <math>\longrightarrow \pi^2/6$

Sage Quick Reference: Elementary Number Theory

William Stein Sage Version 3.4

http://wiki.sagemath.org/quickref GNU Free Document License, extend for your own use

Everywhere m, n, a, b, etc. are elements of ZZ ZZ = Z = all integers

Integers

```
\dots, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, \dots n divided by m has remainder n % m gcd(n,m), gcd(list) extended gcd g = sa + tb = \gcd(a,b): g,s,t=xgcd(a,b) lcm(n,m), lcm(list) binomial coefficient \binom{m}{n} = binomial(m,n) digits in a given base: n.digits(base) number of digits: n.ndigits(base) (base is optional and defaults to 10) divides n \mid m: n.divides(m) if nk = m some k divisors—all d with d \mid n: n.divisors() factorial—n! = n.factorial()
```

Prime Numbers

```
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, \dots
factorization: factor(n)
primality testing: is_prime(n), is_pseudoprime(n)
prime power testing: is_prime_power(n)
\pi(x) = \#\{p : p \le x \text{ is prime}\} = \text{prime_pi}(x)
set of prime numbers: Primes()
\{p: m \le p < n \text{ and } p \text{ prime}\} = \text{prime\_range}(m,n)
prime powers: prime_powers(m,n)
first n primes: primes_first_n(n)
next and previous primes: next_prime(n),
  previous_prime(n), next_probable_prime(n)
prime powers:
  next_prime_power(n), pevious_prime_power(n)
Lucas-Lehmer test for primality of 2^p - 1
  def is_prime_lucas_lehmer(p):
       s = Mod(4, 2^p - 1)
       for i in range(3, p+1): s = s^2 - 2
```

return s == 0

Modular Arithmetic and Congruences

k=12; m = matrix(ZZ, k, [(i*j)%k for i in [0..k-1] for j in [0..k-1]]); m.plot(cmap='gray')

Euler's $\phi(n)$ function: euler_phi(n)

Kronecker symbol $\left(\frac{a}{b}\right)$ = kronecker_symbol(a,b)

Quadratic residues: quadratic_residues(n)

Quadratic non-residues: quadratic_residues(n)

ring $\mathbf{Z}/n\mathbf{Z} = \mathsf{Zmod}(n) = \mathsf{IntegerModRing}(n)$ $a \bmod nodulo n$ as element of $\mathbf{Z}/n\mathbf{Z}$: Mod(a, n)

primitive root modulo $n = \mathsf{primitive_root}(n)$ inverse of $n \pmod m$: n.inverse_mod(m)

power $a^n \pmod m$: power_mod(a, n, m)

Chinese remainder theorem: $\mathbf{x} = \mathsf{crt}(\mathbf{a}, \mathbf{b}, \mathbf{m}, \mathbf{n})$

finds x with $x \equiv a \pmod{m}$ and $x \equiv b \pmod{n}$ discrete log: $\log(\text{Mod}(6,7), \text{Mod}(3,7))$ order of $a \pmod{n} = \text{Mod}(a,n).$ multiplicative_order() square root of $a \pmod{n} = \text{Mod}(a,n).$ sqrt()

Special Functions

complex_plot(zeta, (-30,5), (-8,8))

$$\begin{aligned} &\zeta(s) = \prod_p \frac{1}{1 - p^{-s}} = \sum \frac{1}{n^s} = \mathtt{zeta(s)} \\ &\mathrm{Li}(x) = \int_2^x \frac{1}{\log(t)} dt = \mathrm{Li(x)} \\ &\Gamma(s) = \int_0^\infty t^{s-1} e^{-t} dt = \mathtt{gamma(s)} \end{aligned}$$

Continued Fractions

continued_fraction(pi)

$$\pi = 3 + \frac{1}{7 + \frac{1}{15 + \frac{1}{1 + \frac{1}{292 + \cdots}}}}$$

continued fraction: c=continued_fraction(x, bits) convergents: c.convergents() convergent numerator $p_n = \text{c.pn(n)}$ convergent denominator $q_n = \text{c.qn(n)}$ value: c.value()

Elliptic Curves

EllipticCurve([0,0,1,-1,0]).plot(plot_points=300,thickness=3)

E = EllipticCurve([a_1, a_2, a_3, a_4, a_6]) $y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$

conductor N of E =E.conductor() discriminant Δ of E =E.discriminant() rank of E = E.rank() free generators for $E(\mathbf{Q})$ = E.gens() j-invariant = E.j_invariant() N_p = $\#\{\text{solutions to } E \text{ modulo } p\}$ = E.Np(prime) $a_p = p + 1 - N_p$ =E.ap(prime) $L(E,s) = \sum \frac{a_n}{n^s}$ = E.lseries()

Elliptic Curves Modulo p

EllipticCurve(GF(997), [0,0,1,-1,0]).plot()

 $\operatorname{ord}_{s=1}L(E,s) = \text{E.analytic_rank()}$

Sage Quick Reference: Linear Algebra

Robert A. Beezer Sage Version 4.8

http://wiki.sagemath.org/quickref GNU Free Document License, extend for your own use Based on work by Peter Jipsen, William Stein

Vector Constructions

Caution: First entry of a vector is numbered 0 u = vector(QQ, [1, 3/2, -1]) length 3 over rationals $v = vector(QQ, \{2:4, 95:4, 210:0\})$ 211 entries, nonzero in entry 4 and entry 95, sparse

Vector Operations

u = vector(QQ, [1, 3/2, -1])v = vector(ZZ, [1, 8, -2])

2*u - 3*v linear combination

u.dot_product(v)

u.cross_product(v) order: uxv

u.inner_product(v) inner product matrix from parent

u.pairwise_product(v) vector as a result

u.norm() == u.norm(2) Euclidean norm

u.norm(1) sum of entries

u.norm(Infinity) maximum entry

A.gram_schmidt() converts the rows of matrix A

Matrix Constructions

Caution: Row, column numbering begins at 0

A = matrix(ZZ, [[1,2],[3,4],[5,6]])

 3×2 over the integers

B = matrix(QQ, 2, [1,2,3,4,5,6])

2 rows from a list, so 2×3 over rationals

C = matrix(CDF, 2, 2, [[5*I, 4*I], [I, 6]])complex entries, 53-bit precision

Z = matrix(QQ, 2, 2, 0) zero matrix

D = matrix(QQ, 2, 2, 8)

diagonal entries all 8, other entries zero

 $E = block_matrix([[P,0],[1,R]])$, very flexible input

II = identity_matrix(5) 5×5 identity matrix

 $I = \sqrt{-1}$, do not overwrite with matrix name

 $J = jordan_block(-2,3)$

 3×3 matrix, -2 on diagonal, 1's on super-diagonal

 $var('x \ y \ z'); K = matrix(SR, [[x,y+z],[0,x^2*z]])$ symbolic expressions live in the ring SR

 $L = matrix(ZZ, 20, 80, \{(5,9):30, (15,77):-6\})$ 20×80 , two non-zero entries, sparse representation

Matrix Multiplication

u = vector(QQ, [1,2,3]), v = vector(QQ, [1,2])

A = matrix(QQ, [[1,2,3],[4,5,6]])

B = matrix(QQ, [[1,2], [3,4]])

u*A, A*v, B*A, B^6 , $B^7(-3)$ all possible

B.iterates (v, 6) produces vB^0, vB^1, \ldots, vB^5

rows = False moves v to the right of matrix powers $f(x)=x^2+5*x+3$ then f(B) is possible

B.exp() matrix exponential, i.e. $\sum_{k=0}^{\infty} \frac{1}{k!} B^k$

Matrix Spaces

M = MatrixSpace(QQ, 3, 4) is space of 3×4 matrices

A = M([1,2,3,4,5,6,7,8,9,10,11,12])

coerce list to element of M, a 3 × 4 matrix over QQ

M.basis()

M.dimension()

M.zero_matrix()

Matrix Operations

5*A+2*B linear combination

A.inverse(), A^(-1), ~A, singular is ZeroDivisionError

A.transpose()

A.conjugate() entry-by-entry complex conjugates

A.conjugate_transpose()

A.antitranspose() transpose + reverse orderings

A.adjoint() matrix of cofactors

A.restrict(V) restriction to invariant subspace V

Row Operations

Row Operations: (change matrix in place)

Caution: first row is numbered 0

A.rescale row(i,a) a*(row i)

A.add_multiple_of_row(i,j,a) a*(row j) + row i

A.swap_rows(i,j)

Each has a column variant, row→col

For a new matrix, use e.g. B = A.with_rescaled_row(i,a)

Echelon Form

A.rref(), A.echelon_form(), A.echelonize()

Note: rref() promotes matrix to fraction field

A = matrix(ZZ, [[4,2,1], [6,3,2]])A.rref() A.echelon_form()

 $\left(\begin{array}{ccc}2&1&0\\0&0&1\end{array}\right)$

A.pivots() indices of columns spanning column space A.pivot_rows() indices of rows spanning row space

Pieces of Matrices

Caution: row, column numbering begins at 0

A.nrows(), A.ncols()

A[i,j] entry in row i and column j

A[i] row i as immutable Python tuple. Thus,

Caution: OK: A[2,3] = 8, Error: A[2][3] = 8

A.row(i) returns row i as Sage vector

A.column(j) returns column j as Sage vector

A.list() returns single Python list, row-major order

A.matrix_from_columns([8,2,8])

new matrix from columns in list, repeats OK

A.matrix_from_rows([2,5,1])

new matrix from rows in list, out-of-order OK

A.matrix_from_rows_and_columns([2,4,2],[3,1]) common to the rows and the columns

A.rows() all rows as a list of tuples

A.columns() all columns as a list of tuples

A.submatrix(i,j,nr,nc)

start at entry (i, i), use nr rows, nc cols

A[2:4,1:7], A[0:8:2,3::-1] Python-style list slicing

Combining Matrices

A.augment(B) A in first columns, matrix B to the right

A.stack(B) A in top rows, B below; B can be a vector

A.block_sum(B) Diagonal, A upper left, B lower right

A.tensor_product(B) Multiples of B, arranged as in A

Scalar Functions on Matrices

A.rank(), A.right_nullity()

A.left_nullity() == A.nullity()

A.determinant() == A.det()

A.permanent(), A.trace()

A.norm() == A.norm(2) Euclidean norm

A.norm(1) largest column sum

A.norm(Infinity) largest row sum

A.norm('frob') Frobenius norm

Matrix Properties

.is_zero(); .is_symmetric(); .is_hermitian();

.is_square(); .is_orthogonal(); .is_unitary();

.is_scalar(); .is_singular(); .is_invertible();

.is_one(); .is_nilpotent(); .is_diagonalizable()

Eigenvalues and Eigenvectors

Note: Contrast behavior for exact rings (QQ) vs. RDF, CDF A. solve_right(B) _left too A.charpoly('t') no variable specified defaults to x is solution to A*X = B, who

A.characteristic_polynomial() == A.charpoly()

A.fcp('t') factored characteristic polynomial

A.minpoly() the minimum polynomial

A.minimal_polynomial() == A.minpoly()

A.eigenvalues() unsorted list, with mutiplicities

A. eigenvectors_left() vectors on left, _right tooReturns, per eigenvalue, a triple: e: eigenvalue;V: list of eigenspace basis vectors; n: multiplicity

A.eigenmatrix_right() vectors on right, _left too Returns pair: D: diagonal matrix with eigenvalues P: eigenvectors as columns (rows for left version) with zero columns if matrix not diagonalizable Eigenspaces: see "Constructing Subspaces"

....

Decompositions

Note: availability depends on base ring of matrix, try RDF or CDF for numerical work, QQ for exact "unitary" is "orthogonal" in real case

A.jordan_form(transformation=True)

returns a pair of matrices with: A == P^(-1)*J*P
J: matrix of Jordan blocks for eigenvalues

P: nonsingular matrix

A.smith_form() triple with: D == U*A*V

D: elementary divisors on diagonal

U, V: with unit determinant

A.LU() triple with: P*A == L*U

P: a permutation matrix

 $\hbox{\bf L: lower triangular matrix,} \quad \hbox{\bf U: upper triangular matrix}$

A.QR() pair with: A == Q*R

Q: a unitary matrix, R: upper triangular matrix

A.SVD() triple with: A == U*S*(V-conj-transpose)
U: a unitary matrix

S: zero off the diagonal, dimensions same as A V: a unitary matrix

A.schur() pair with: A == Q*T*(Q-conj-transpose)
O: a unitary matrix

T: upper-triangular matrix, maybe 2×2 diagonal blocks

A.rational_form(), aka Frobenius form

A.symplectic_form()

A.hessenberg_form()

A.cholesky() (needs work)

Solutions to Systems

is solution to A*X = B, where X is a vector or matrix

A = matrix(QQ, [[1,2],[3,4]])

b = vector(QQ, [3,4]), then A\b is solution (-2, 5/2)

Vector Spaces

VectorSpace(QQ, 4) dimension 4, rationals as field VectorSpace(RR, 4) "field" is 53-bit precision reals VectorSpace(RealField(200), 4)

"field" has 200 bit precision

CC^4 4-dimensional, 53-bit precision complexes

Y = VectorSpace(GF(7), 4) finite

Y.list() has $7^4 = 2401$ vectors

Vector Space Properties

V.dimension()

V.basis()

V.echelonized_basis()

V.has_user_basis() with non-canonical basis?

V.is_subspace(W) True if W is a subspace of V

V.is_full() rank equals degree (as module)?

 $Y = GF(7)^4$, T = Y.subspaces(2)

T is a generator object for 2-D subspaces of Y [U for U in T] is list of 2850 2-D subspaces of Y, or use T.next() to step through subspaces

Constructing Subspaces

span([v1,v2,v3], QQ) span of list of vectors over ring

For a matrix A, objects returned are vector spaces when base ring is a field modules when base ring is just a ring

A.left_kernel() == A.kernel() right_ too

A.row_space() == A.row_module()

A.column_space() == A.column_module()

A.eigenspaces_right() vectors on right, _left too Pairs: eigenvalues with their right eigenspaces

A.eigenspaces_right(format='galois')

One eigenspace per irreducible factor of char poly

If V and W are subspaces

V.quotient(W) quotient of V by subspace W

V.intersection(W) intersection of V and W

V.direct_sum(W) direct sum of V and W

V.subspace([v1,v2,v3]) specify basis vectors in a list

Dense versus Sparse

Note: Algorithms may depend on representation Vectors and matrices have two representations

Dense: lists, and lists of lists Sparse: Python dictionaries

.is_dense(), .is_sparse() to check

A.sparse_matrix() returns sparse version of A

A.dense_rows() returns dense row vectors of A

Some commands have boolean sparse keyword

Rings

Note: Many algorithms depend on the base ring <object>.base_ring(R) for vectors, matrices,...

to determine the ring in use

<object>.change_ring(R) for vectors, matrices,...
to change to the ring (or field), R

R.is_ring(), R.is_field(), R.is_exact()

Some common Sage rings and fields

ZZ integers, ring

QQ rationals, field

AA, QQbar algebraic number fields, exact

RDF real double field, inexact

CDF complex double field, inexact

RR 53-bit reals, inexact, not same as RDF

RealField(400) 400-bit reals, inexact

CC, ComplexField(400) complexes, too

RIF real interval field

 ${\tt GF(2)} \mod 2, \ {\tt field, \ specialized \ implementations}$

GF(p) == FiniteField(p) p prime, field

Integers (6) integers mod 6, ring only

CyclotomicField(7) rationals with $7^{\rm th}$ root of unity QuadraticField(-5, 'x') rationals with $x=\sqrt{-5}$

SR ring of symbolic expressions

Vector Spaces versus Modules

Module "is" a vector space over a ring, rather than a field Many commands above apply to modules Some "vectors" are really module elements

More Help

"tab-completion" on partial commands

"tab-completion" on <object.> for all relevant methods

<command>? for summary and examples

<command>?? for complete source code

Sage Quick Reference: Abstract Algebra

B. Balof, T. W. Judson, D. Perkinson, R. Potluri version 1.0, Sage Version 5.0.1

latest version: http://wiki.sagemath.org/quickref GNU Free Document License, extend for your own use Based on work by P. Jipsen, W. Stein, R. Beezer

Basic Help

com\(\tab\) complete command
a.\(\tab\) all methods for object a
<command>? for summary and examples
<command>?? for complete source code
foo? list all commands containing foo
_ underscore gives the previous output
www.sagemath.org/doc/reference online reference
www.sagemath.org/doc/tutorial online tutorial
load foo.sage load commands from the file foo.sage
attach foo.sage

loads changes to foo.sage automatically

Lists

L = [2,17,3,17] an ordered list L[i] the *i*th element of L

Note: lists begin with the 0th element

L.append(x) adds x to L

L.remove(x) removes x from L

L[i:j] the i-th through (j-1)-th element of L

range(a) list of integers from 0 to a-1

range(a,b) list of integers from a to b-1

[a..b] list of integers from a to b range(a,b,c)

every c-th integer starting at a and less than b len(L)—length of L

 $M = [i^2 \text{ for i in range}(13)]$

list of squares of integers 0 through 12

N = [i^2 for i in range(13) if is_prime(i)]

list of squares of prime integers between 0 and 12

M + N the concatenation of lists M and N

 $\mathtt{sorted}(\mathtt{L})$ a sorted version of \mathtt{L} (\mathtt{L} is not changed)

L.sort() sorts L (L is changed)

set(L) an unordered list of unique elements

Programming Examples

Print the squares of the integers 0,...,14:
for i in range(15):
 print i^2

Print the squares of those integers in $\{0, ..., 14\}$ that are relatively prime to 15:

for i in range(13):
 if gcd(i,15)==1:
 print i^2

Preliminary Operations

a = 3; b = 14
gcd(a,b) greatest common divisor a, b
xgcd(a,b)

triple (d, s, t) where d = sa + tb and $d = \gcd(a, b)$ next_prime(a) next prime after a previous_prime(a) prime before a prime_range(a,b) primes p such that $a \le p < b$ is_prime(a) is a prime?

b % a the remainder of b upon division by a a.divides(b) does a divide b?

Group Constructions

Permutation multiplication is left-to-right.

G = PermutationGroup([[(1,2,3),(4,5)],[(3,4)]])perm. group with generators (1,2,3)(4,5) and (3,4)

G = PermutationGroup(["(1,2,3)(4,5)","(3,4)"])
alternative syntax for defining a permutation group

S = SymmetricGroup(4) the symmetric group, S_4

A = AlternatingGroup(4) alternating group, A_4

D = DihedralGroup(5) dihedral group of order 10

Ab = AbelianGroup([0,2,6]) the group $\mathbb{Z} \times \mathbb{Z}_2 \times \mathbb{Z}_6$

 ${\tt Ab.0}\,,~{\tt Ab.1}\,,~{\tt Ab.2}~{\tt the~generators~of~Ab}$

a,b,c = Ab.gens()

shorthand for a = Ab.0; b = Ab.1; c = Ab.2

C = CyclicPermutationGroup(5)

Integers(8) the group \mathbb{Z}_8

GL(3,QQ) general linear group of 3×3 matrices

m = matrix(QQ, [[1,2], [3,4]])

n = matrix(QQ,[[0,1],[1,0]])

MatrixGroup([m,n])

the (infinite) matrix group with generators m and n u = S([(1,2),(3,4)]); v = S((2,3,4)) elements of S

S.subgroup([u,v])

the subgroup of S generated by u and v

S.quotient(A) the quotient group S/A

 $\texttt{A.cartesian_product(D)} \quad \text{the group } \texttt{A} \times \texttt{D}$

 ${\tt A.intersection}({\tt D})$ – the intersection of groups ${\tt A}$ and ${\tt D}$

D.conjugate(v) the group $v^{-1}Dv$

S.sylow_subgroup(2) a Sylow 2-subgroup of S D.center() the center of D

S.centralizer(u) the centralizer of x in S S.centralizer(D) the centralizer of D in S

S.normalizer(u) the normalizer of x in S

S.normalizer(D) the normalizer of D in S

S.stabilizer(3) subgroup of S fixing 3

Group Operations

S = SymmetricGroup(4); A = AlternatingGroup(4)

S.order() the number of elements of S

S.gens() generators of S

S.list() the elements of S

S.random_element() a random element of S

u*v the product of elements u and v of S

 $v^{(-1)}u^3v$ the element $v^{-1}u^3v$ of S

u.order() the order of u

S.subgroups() the subgroups of S

S.normal_subgroups() the normal subgroups of S

A.cayley_table() the multiplication table for A

u in S is u an element of S?

u.word_problem(S.gens())

write u as a product of the generators of S

A.is_abelian() is A abelian?

A.is_cyclic() is A cyclic?

A.is_simple() is A simple?

A.is_transitive() is A transitive?

A.is_subgroup(S) is A a subgroup of S?

A.is_normal(S) is A a normal subgroup of S?

S.cosets(A) the right cosets of A in S

S.cosets(A,'left') the left cosets of A in S

 $g = S.cayley_graph()$ Cayley graph of S

g.show3d(color_by_label=True, edge_size=0.01, vertex_size=0.03) see below:

Ring and Field Constructions ZZ integral domain of integers, Z Integers (7) ring of integers mod 7, \mathbb{Z}_7 field of rational numbers, Q RR field of real numbers, R field of complex numbers, \mathbb{C} RDF real double field, inexact CDF complex double field, inexact RR 53-bit reals, inexact, not same as RDF RealField(400) 400-bit reals, inexact ComplexField(400) complexes, too ZZ[I] the ring of Gaussian integers QuadraticField(7) the quadratic field, $\mathbb{Q}(\sqrt{7})$ CvclotomicField(7) smallest field containing \mathbb{Q} and the zeros of $x^7 - 1$ AA. QQbar field of algebraic numbers, Q FiniteField(7) the field \mathbb{Z}_7 $F.<a> = FiniteField(7^3)$ finite field in a of size 7^3 , $GF(7^3)$ SR ring of symbolic expressions M. $\langle a \rangle = \mathbb{QQ}[\text{sqrt}(3)]$ the field $\mathbb{Q}[\sqrt{3}]$, with $a = \sqrt{3}$. A.<a,b>=QQ[sqrt(3),sqrt(5)]the field $\mathbb{Q}[\sqrt{3}, \sqrt{5}]$ with $a = \sqrt{3}$ and $b = \sqrt{5}$. $z = polygen(QQ,'z'); K = NumberField(x^2 - 2,'s')$ the number field in s with defining polynomial $x^2 - 2$ s = K.O set s equal to the generator of K

Ring Operations

D = ZZ[sqrt(3)]
D.fraction_field()

Note: Operations may depend on the ring

field of fractions for the integral domain D

A = ZZ[I]; D = ZZ[sqrt(3)] some rings

A.is_ring() is A a ring?

A.is field() is A a field?

A.is_commutative() is A commutative?

A.is_integral_domain()

True is A an integral domain?

A.is_finite() is A is finite?

A.is_subring(D) is A a subring of D?

A.order() the number of elements of A

A.characteristic() the characteristic of A

A.zero() the additive identity of A

A.one() the multiplicative identity of A

A.is_exact()

False if A uses a floating point representation

```
a, b = D.gens(); r = a + b
r.parent() the parent ring of r (in this case, D)
r.is_unit() is r a unit?
```

```
Polynomials
R.\langle x \rangle = ZZ[] R is the polynomial ring \mathbb{Z}[x]
R.\langle x \rangle = QQ[]; R = PolynomialRing(QQ,'x'); R = QQ['x']
   R is the polynomial ring \mathbb{Q}[x]
S.\langle z \rangle = Integers(8)[] S is the polynomial ring \mathbb{Z}_8[z]
S.\langle s, t \rangle = QQ[] S is the polynomial ring \mathbb{Q}[s,t]
p = 4*x^3 + 8*x^2 - 20*x - 24
   a polynomial in R (= \mathbb{Q}[x])
p.is_irreducible() is p irreducible over \mathbb{Q}[x]?
q = p.factor() factor p
q.expand() expand q
p.subs(x=3) evaluates p at x=3
R.ideal(p) the ideal in R generated by p
R.cyclotomic_polynomial(7)
   the cyclotomic polynomial x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
a = x^2-1
p.divides(g) does p divide q?
p.quo_rem(q)
   the quotient and remainder of p upon division by q
gcd(p, q) the greatest common divisor of p and q
p.xgcd(q) the extended gcd of p and q
I = S.ideal([s*t+2,s^3-t^2])
   the ideal (st+2, s^3-t^2) in S (= \mathbb{Q}[s,t])
S. quotient (I) the quotient ring, S/I
```

Field Operations

A.<a,b>=QQ[sqrt(3),sqrt(5)]

C.<c> = A.absolute_field()

"flattens" a relative field extension

A.relative_degree()

the degree of the relative extension field

A.absolute_degree()

the degree of the absolute extension

r = a + b; r.minpoly()

the minimal polynomial of the field element r

C.is_galois() is C a Galois extension of Q?

Sage Quick Reference: Graph Theory

Steven Rafael Turner Sage Version 4.7

http://wiki.sagemath.org/quickref

GNU Free Document License, extend for your own use

Constructing

Adjacency Mapping:

G=Graph([GF(13), lambda i,j: conditions on i,j]) Input is a list whose first item are vertices and the other is some adjacency function: [list of vertices, function]

Adjacency Lists: $G=Graph(\{0:[1,2,3], 2:[4]\})$

 $G=Graph({0:{1:"x",2:"z",3:"a"}, 2:{5:"out"}})$

x, z, a, and out are labels for edges and be used as G.max_cut() weights.

Adjacency Matrix:

A = numpy.array([[0,1,1],[1,0,1],[1,1,0]])

Don't forget to import numpy for the NumPy matrix vertex_disjoint_paths(v1,v2) or ndarray.

M = Matrix([(...), (...), ...])

Edge List with or without labels:

G = Graph([(1,3,"Label"),(3,8,"Or"),(5,2)])Incidence Matrix:

M = Matrix(2, [-1,0,0,0,1, 1,-1,0,0,0])

Graph6 Or Sparse6 string

G=':IgMoqoCUOqeb\n:I'EDOAEQ?PccSsge\N\n' graphs_list.from_sparse6(G)

Above is a list of graphs using sparse6 strings.

NetworkX Graph

 $g = networkx.Graph({0:[1,2,3], 2:[4]})$

DiGraph(g)

 $g_2 = networkx.MultiGraph({0:[1,2,3], 2:[4]})$ Graph(g_2)

Don't forget to import networkx

Centrality Measures

G.centrality_betweenness(normalized=False)

G.centrality_closeness(v=1)

G.centrality_degree()

Graph Deletions and Additions

G.add_cycle([vertices])

G.add_edge(edge)

G.add_edges(iterable of edges)

G.add_path

G.add_vertex(Name of isolated vertex)

G.add_vertices(iterable of vertices)

G.delete_edge(v_1, v_2, 'label')

G.delete_edges(iterable of edges)

G.delete_multiedge(v_1, v_2)

G.delete_vertex(v_1)

G.delete_vertices(iterable of vertices)

G.merge_vertices([vertices])

Connectivity and Cuts

G.is.connected()

G.edge_connectivity()

G.edge_cut(source, sink

G.blocks_and_cut_vertices()

G.edge_disjoint_paths(v1,v2, method='LP')

This method can us LP (Linear Programming) or FF (Ford-Fulkerson)

G.flow(1,2)

There are many options to this function please check the documentation.

Conversions

G.to_directed()

G.to_undirected()

G.sparse6_string()

G.graph6_string()

Products

G.strong_product(H)

G.tensor_product(H)

G.categorical_product(H) Same as the tensor product.

G.disjunctive_product(H)

G.lexicographic_product(H)

G.cartesian_product(H)

Boolean Queries

G.is_tree()

G.is_forest()

G.is_gallai_tree()

G.is_interval()

G.is_regular()

G.is_chordal()

G.is_eulerian()

G.is_hamiltonian()

G.is_interval()

G.is_independent_set([vertices])

G.is_overfull()

G.is_regular(k)

Can test for being k-regular, by default k=None.

Common Invariants

G.diameter()

G.average_distance()

G.edge_disjoint_spanning_trees(k)

G.girth()

G.size()

G.order()

G.radius()

Graph Coloring

G.chromatic_polynomial()

G.chromatic_number(algorithm="DLX")

You can change DLX (dancing links) to CP (chromatic polynomial coefficients) or MILP (mixed integer linear program)

G.coloring(algorithm="DLX")

You can change DLX to MILP

G.is_perfect(certificate=False)

Planarity

G.is_planar()

G.is_circular_planar()

G.is_drawn_free_of_edge_crossings()

G.layout_planar(test=True, set_embedding=True

G.set_planar_positions()

Search and Shortest Path

list(G.depth_first_search([vertices], distance=4) list(G.breadth_first_search([vertices])

dist,pred = graph.shortest_path_all_pairs(by_weig) Choice of algorithms: BFS or Floyd-Warshall-Python

G.shortest_path_length(v_1,v_2, by_weight=True

G.shortest_path_lengths(v_1)

G.shortest_path(v_1,v_2)

Spanning Trees

G.steiner_tree(g.vertices()[:10])

G.spanning_trees_count() G.edge_disjoint_spanning_trees(2, root vertex) G.min_spanning_tree(weight_function=somefunction, G.clique_maximum() algorithm='Kruskal', starting_vertex=3) Kruskal can be change to Prim-fringe, Prim-edge, or NetworkX

Linear Algebra

Matrices

- G.kirchhoff_matrix()
- G.laplacian_matrix()

Same as the kirchoff matrix

- G.weighted_adjacency_matrix()
- G.adjacency_matrix()
- G.incidence_matrix()

Operations

- G.characteristic_polynomial()
- G.cycle_basis()
- G.spectrum()
- G.eigenspaces(laplacian=True)
- G.eigenvectors(laplacian=True)

Automorphism and Isomorphism Related

- G.automorphism_group()
- G.is_isomorphic(H)
- G.is_vertex_transitive()
- G.canonical_label()
- G.minor(graph of minor to find)

Generic Clustering

- G.cluster_transitivity()
- G.cluster_triangles()
- G.clustering_average()
- G..clustering_coeff(nbunch=[0,1,2],weights=True)

Clique Analysis

- G.is_clique([vertices])
- G.cliques_vertex_clique_number(vertices=[(0, 1), (1, 2)],algorithm="networkx") networks can be replaced with cliquer.
- G.cliques_number_of()
- G.cliques_maximum()
- G.cliques_maximal()
- G.cliques_get_max_clique_graph()
- G.cliques_get_clique_bipartite()
- G.cliques_containing_vertex()

- G.clique_number(algorithm="cliquer") cliquer can be replaced with networkx.
- G.clique_complex()

Component Algorithms

- G.is_connected()
- G.connected_component_containing_vertex(vertex)
- G.connected_components_number()
- G.connected_components_subgraphs()
- G.strong_orientation()
- G.strongly_connected_components()
- G.strongly_connected_components_digraph()
- G.strongly_connected_components_subgraphs()
- G.strongly_connected_component_containing_vertex(vertex)
- G.is_strongly_connected()

NP Problems

G.vertex_cover(algorithm='Cliquer')

The algorithm can be changed to MILP (mixed integer linear program. Note that MILP requires packages GLPK or CBC.

- G.hamiltonian_cycle()
- G.traveling_salesman_problem()