RAD HRVATSKE AKADEMIJE ZNANOSTI I UMJETNOSTI MATEMATIČKE ZNANOSTI

L. H. Gallardo Artin-Schreier, Erdős, and Kurepa's conjecture

Manuscript accepted for publication

This is a preliminary PDF of the author-produced manuscript that has been peer-reviewed and accepted for publication. It has not been copy-edited, proofread, or finalized by Rad HAZU Production staff.

ARTIN-SCHREIER, ERDŐS, AND KUREPA'S CONJECTURE

Luis H. Gallardo

ABSTRACT. We discuss possible generalizations of Erdős's problem about factorials in \mathbb{F}_p to the Artin-Schreier extension \mathbb{F}_{p^p} of \mathbb{F}_p . The generalizations are related to Bell numbers in \mathbb{F}_p and to Kurepa's conjecture.

1. Introduction

Erdős [20, Section B44] asked for primes p > 5 for which $2!, 3!, \ldots, (p-1)!$ are all distinct in \mathbb{F}_p , the finite field with p elements. Trudgian [37] discovered new congruences for p and proved that $p > 10^9$. More recently Andrejic and Tatarevic [2] improved the result to $p > 2^{34}$ and Andejic et al. [4] to $p > 2^{40}$ as a by-product of the computations that proved that Kurepa's conjecture holds for $p \le 2^{40}$.

Probably, a preliminary question was to find the primes p for which all factorials

$$0!, 1!, \ldots, (p-1)!$$

are distinct in \mathbb{F}_p , but of course 0! = 1! eliminate this case immediately. We might think that the next case was to consider, instead, the factorials $1!, \ldots, (p-1)!$, and observe that 1! = (p-2)! eliminate this case as well.

Let r be a zero of $x^p - x - 1$ in a fixed algebraic closure $\overline{\mathbb{F}_p}$ of \mathbb{F}_p . The value of r is fixed throughout the entire paper.

Put $q=p^p$. The field $\mathbb{F}_q=\mathbb{F}_p(r)$ is the Artin-Schreier extension of degree p of \mathbb{F}_p .

 $^{2010\} Mathematics\ Subject\ Classification.\ \ 11T55,\ 11T06,\ 11B73,\ 11B65,\ 05A10,\ 12E20,\ 11A07,\ 11A25.$

 $Key\ words\ and\ phrases.$ Artin-Schreier extension, Bell numbers, Erdős's problem on factorials modulo p, Kurepa's Conjecture.

Gallardo and Rahavandrainy [12] generalized the Stirling numbers in \mathbb{F}_p to the generalized Stirling numbers

$$S(n,k) = (r+p-1)^{p-1-k}(r+k)^n \in \mathbb{F}_q$$

(see Definition 2.1). Thus, $\beta(n) = \sum_{k=0}^{p-1} S(n,k) \in \mathbb{F}_q$ (see Definition 2.2) play the role in \mathbb{F}_q of the Bell number $B(n) \in \mathbb{F}_p$. More precisely (see Lemma 3.8 (c)), one has that -B(n) equals the trace of $\beta(n)$. We can think that $\beta(n)$ extends the Bell number B(n) in \mathbb{F}_p to \mathbb{F}_q .

We discuss two analogous problems in \mathbb{F}_q . First, we replace the factorials k! by $S_q(k) \in \mathbb{F}_q$ defined by

$$S_q(k) := S(-1, k)$$

in the statement of Erdős's question. Second, we replace these factorials by $\beta(n) \in \mathbb{F}_q$.

The common point of the two problems is that both are related to Kurepa's conjecture. More precisely, they are related to the values in \mathbb{F}_p that take the *left factorial* function of a prime p:

$$!p = 0! + 1! + \dots + (p-1)!.$$

The following recalls some known facts.

Definition 1.1. The Bell numbers B(n) are defined by B(0) = 1, and

$$B(n+1) = \sum_{k=0}^{n} \binom{n}{k} B(k).$$

The Bell numbers B(n) (see sequence A000110 of the OEIS [32]) are positive integers that arise in combinatorics:

$$(1.2) 1, 1, 2, 5, 15, 52, 203, 877, \dots$$

D'Ocagne [10, page 371] began work on Bell numbers. Becker and Riordan [7] give the first formal definition in English. Later, Aigner [1], Dalton and Levine [9], and more recently Montgomery et al. [24] do progress in the subject.

Barsky and Benzaghou [5], showed that the link of r with the Bell numbers B(n) modulo p is the following equality in \mathbb{F}_p (see also Lidl and Niederreiter [21, Theorem 8.24]), using the notation defined in Section 2,

(1.3)
$$B(n) = -\text{Tr}(r^{c(p)})\text{Tr}(r^{n-c(p)-1}).$$

Moreover, Kurepa [16] proposed the following conjecture (Kurepa's conjecture), using the notation in (1.1). For any odd prime number p, we have

$$(1.4) !p \neq 0 \in \mathbb{F}_p.$$

The conjecture becomes a long-standing difficult conjecture (see also [2, 3, 4, 5, 6, 8, 11, 12, 13, 15, 16, 17, 18, 22, 23, 25, 26, 27, 30, 34, 35, 37, 38, 31]).

The link between Bell numbers and Kurepa's conjecture (see Lemma 3.8 (d)) is the following.

$$(1.5) B(p-1) = !p+1 \in \mathbb{F}_p.$$

Left factorial numbers $!p \in \mathbb{F}_p$ appear in sequence A100612 of the OEIS [32]:

$$(1.6) 0, 1, 4, 6, 1, 10, 13, 9, 21, 17, 2, 5, 4, 16, 18, 13, 28, \dots$$

Gallardo and Rahavandrainy [12, Theorem 38] proved a more general result equivalent to Kurepa's conjecture. The result easily implies our first theorem:

THEOREM 1.2. We have that $S_g(1), \ldots, S_g(p)$ are \mathbb{F}_p -linearly independent if and only if $!p \neq 0 \in \mathbb{F}_p$.

Now consider the $\beta(n)$ in \mathbb{F}_q . Theorem 3.1 implies that $\beta(0) = \beta(1)$. We might think that this equality is an analogue of $0! = 1! \in \mathbb{F}_p$. Thus, we consider the case when $\beta(1), \beta(2), \ldots, \beta(p-1)$ are all distinct.

REMARK 1.3. Barsky and Benzaghou [5, Lemme 3] (see Lemma 3.4), proved that $\beta(n)$ is of the form $kr^{c(p)}$ for some $k \in \mathbb{F}_p$.

Moreover, (see Lemma 3.9) Shparlinski's [33] work implies that for any $k \in \mathbb{F}_p$ we have that $kr^{c(p)}$ is of the form $\beta(n)$ for some integer n.

Our second result is the following.

THEOREM 1.4. Assume that $\beta(1), \beta(2), \dots, \beta(p-1)$ are all distinct. Then for some $k_0 \in \mathbb{F}_p$, and some integer $n \geq p$ one has

- $\beta(n) = k_0 r^{c(p)}$, and
- $B(n) = 1 !p \in \mathbb{F}_p$.

Moreover,

- (a) When $k_0 = 0$ we have $\beta(n) = 0$ for some $n \ge p+1$ so that p = 1. This implies that $p > 2^{40}$.
- (b) When $k_0 \neq 0$ and n one has
 - (1) n = p and !p = -1 in \mathbb{F}_p , so that $p \in \{5, 7, 274453, 39541338091\}$ or $p > 2^{40}$, or
 - (2) n = p + 1 and !p = -2 in \mathbb{F}_p , so that $p \in \{3, 23, 67, 227, 10331\}$ or $p > 2^{40}$, or
 - (3) n = p + 2 and !p = -6 in \mathbb{F}_p , so that $p \in \{349, 1278568703\}$ or $p > 2^{40}$.
- (c) If either $k_0 = 0$ or $n , then one has <math>p > 2^{40}$, besides possibly for

$$p \in \{1278568703, 39541338091\}.$$

Remark 1.5. Andrejić and Tatarevic [2] proved that a solution p of Erdős's problem satisfies

•
$$(!p-1)^2 = -1 \in \mathbb{F}_p$$
, and

•
$$p > 2^{40}$$
.

For the convenience of the reader we give short proofs of some of our results in [12] (see Section 3). Section 4 contains the proof of Theorem 1.2, while Section 5 contains the proof of Theorem 1.4.

2. Notation

We call an integer d a period of $B(n) \pmod{p}$ if for all nonnegative integers n one has $B(n+d) \equiv B(n) \pmod{p}$. Williams [39] proved that, for each prime number p, the sequence $B(n) \pmod{p}$ is periodic.

We let Tr denote the trace function from \mathbb{F}_q onto \mathbb{F}_p . We let N denote the norm function from \mathbb{F}_q into \mathbb{F}_p . Likewise, we let σ denote the Frobenius from \mathbb{F}_q onto \mathbb{F}_q . We let $\sigma^{(i)}$ denote the composition of σ with itself i times. In other words, for $a \in \mathbb{F}_q$ one has $\sigma^{(0)}(a) = a$, and for each i > 0, $\sigma^{(i)}(a) = \sigma(\sigma^{(i-1)}(a))$.

We put
$$c(p) = 1 + 2p + 3p^2 + \dots + (p-1)p^{p-2}$$
.

Graham et al. [19, pages 248–250]) defined the falling and rising powers. The following definition is an extension of these definitions.

Definition 2.1. (1) Extension of falling powers. Set

$$(r+p-1)_{p-i-1} = (r+p-1)^{\underline{p-1-i}} = (r+i+1)\cdots(r+p-1)$$

 $in \ \mathbb{F}_q \ for \ i=0,\ldots,p-2, \ and \ (r+p-1)_0 = (r+p-1)^{\underline{0}} = 1, (r+p-1)_{-1} = (r+p-1)^{\underline{-1}} = (r+p-1)_{p-1}. \ More \ generally, \ we \ extend the definition to any integer n by putting $(r+p-1)_{p-n-1} = (r+p-1)_{p-1-(n \pmod{p})}$.$

(2) Extension of rising powers. Set
$$(r+p-1)^{(1)} = (r+p-1)^{\overline{1}} = r$$
, $(r+p-1)^{(p-i-1)} = (r+p-1)^{\overline{p-1-i}} = r(r+1)\cdots(r+i)$ in \mathbb{F}_q for $i=1,\ldots,p-2$, and $(r+p-1)^{(p)} = (r+p-1)^{\overline{p}} = 1$. More generally, we extend the definition to any integer n by putting $(r+p-1)^{(p-n-1)} = (r+p-1)^{(p-1-(n\pmod{p}))}$.

Definition 2.2. We put for every integer n

(2.7)
$$\beta(n) = \sum_{i=0}^{p-1} (r+p-1)^{\underline{p-1-i}} (r+i)^n.$$

3. Tools

First, we have a formula for $\beta(n)$ that follows from [12, Lemma 13 and Corollary 19 (a)].

Theorem 3.1. One has the following equality:

$$\beta(n) = -\frac{r^{c(p)}}{\operatorname{Tr}(r^{c(p)})}B(n).$$

PROOF. We compute $(r+p-1)^{\underline{p-1-i}}(r+i)^n$ by using the action of the Frobenius σ on r and on $r^{-c(p)}$, and formula

$$N(r) = r(r+1)\cdots(r+p-1) = 1,$$

as follows:

$$(r+p-1)^{\underline{p-1-i}}(r+i)^n = \frac{(r+i)^{n-1}}{(r+p-1)^{\overline{p-i}}} = r^{c(p)}\sigma^{(i)}(r^{-c(p)})\sigma^{(i)}(r^{n-1})$$
$$= r^{c(p)}\sigma^{(i)}(r^{-c(p)+n-1}).$$

Hence, by definition of $\beta(n)$, we obtain the following:

(3.8)
$$\beta(n) = r^{c(p)} \text{Tr}(r^{-c(p)+n-1}).$$

The result follows from equations (3.8) and (1.3).

Remark 3.2. Clearly, equation (1.3) implies that

$$\operatorname{Tr}(r^{c(p)}) = B(c(p)) \in \mathbb{F}_p.$$

Thus, Kahale's result [14, formula (3)] (see also [29]):

$$B(c(p)) = (-1)^{\frac{(p-1)(p-3)}{8}} \left(\frac{p-1}{2}\right)!,$$

and Theorem 3.1 imply that

$$\beta(n) = r^{c(p)} \cdot \frac{(-1)^{\frac{(p+1)(p-5)}{8}}}{(\frac{p-1}{2})!} \cdot B(n).$$

But $\left(\frac{p-1}{2}\right)!^2 \in \{-1,1\}$ in \mathbb{F}_p . Thus,

$$\beta(n)^2 = \pm r^{2c(p)}B(n)^2.$$

Corollary 3.3. One has

$$\beta(n) = k \cdot r^{c(p)} \cdot B(n)$$

where $k \in \mathbb{F}_p$, satisfies

$$k^2 \in \{-1, 1\} \ in \ \mathbb{F}_p.$$

Second, we have some useful results of Barsky and Benzaghou, Touchard, and Shparlinski.

Barsky and Benzaghou [5, Lemme 3] proved the following result about 0 and the p-1 roots of r.

LEMMA 3.4. The set of $y \in \mathbb{F}_q$ such that $y^p = ry$ equals $\{kr^{c(p)} : k \in \mathbb{F}_p\}$

Touchard (see [36]) proved the following.

Lemma 3.5. (Touchard's congruence) Let p be an odd prime number. Then for any non-negative number n one has

$$B(n) + B(n+1) \equiv B(n+p) \pmod{p}$$
.

Shparlinski [33, Theorem 2] proved the following result.

LEMMA 3.6. For any $k \in \mathbb{F}_p$ there exist at least one integer n such that k = B(n). Moreover, $n \leq \frac{1}{2} \binom{2p}{p}$.

Third, we collect some results of Gallardo and Rahavandrainy [12] useful for the proof of both theorems.

More precisely, we display [12, Lemma 49] as Lemma 3.7, and [12, Lemma 40], [12, Theorem 3], [12, Theorem 14], [12, Proposition 33], [12, Theorem 15] as parts (a), (b), (c), (d), (e) of Lemma 3.8.

Lemma 3.7. The following result holds. For any period d of B(n) modulo p one has

$$\beta(d-1) = \sum_{j=0}^{p-1} \beta(j).$$

PROOF. Since $t_p = \frac{p^p-1}{p-1}$ is a period of B(n) (see [5, 28]), Theorem 3.1 implies that t_p is a period for $\beta(n)$. We extend the Bell numbers B(n) to negative integers (see [5, Théorème 2]) using the equality (1.3). Hence, t_p is a period of B(n) for $n \in \mathbb{Z}$. We now prove that d is also a period for B(n), with $n \in \mathbb{Z}$, by replacing the period t_p by $n + kt_p \geq 0$ as follows:

$$B(n+d) = B(n+d+kt_p) = B(n+kt_p) = B(n).$$

Hence,

(3.9)
$$\beta(d-1) = \beta(-1) = r^{c(p)} \operatorname{Tr}(r^{-c(p)-2}),$$

and, following (3.8) one has

$$\sum_{j=0}^{p-1} \beta(j) = r^{c(p)} \sum_{j=0}^{p-1} \operatorname{Tr}(r^{-c(p)+j-1}) = r^{c(p)} \operatorname{Tr} \left(r^{-c(p)-1} \cdot \frac{1 - (r+1)}{1 - r} \right)$$
$$= r^{c(p)} \operatorname{Tr} \left(\frac{r^{-c(p)}}{r - 1} \right)$$

But $r^{t_p} = 1$, $r^{p^p} = r$, and (see [5], [12, page 5])

(3.10)
$$-c(p)p = t_p - p^p - c(p).$$

Thus, the result follows from (3.10), since for $x \in \mathbb{F}_q$, we have $\text{Tr}(x) = \text{Tr}(\sigma(x))$. More precisely,

$$\operatorname{Tr}\left(\frac{r^{-c(p)}}{r-1}\right) = \operatorname{Tr}\left(\sigma\left(\frac{r^{-c(p)}}{r-1}\right)\right) = \operatorname{Tr}\left(\frac{r^{-c(p)p}}{r}\right) = \operatorname{Tr}\left(\frac{r^{-c(p)-1}}{r}\right) = \operatorname{Tr}(r^{-c(p)-2}).$$

Lemma 3.8. The following results hold.

(a) For any period d of B(n) modulo p one has

$$\beta(d-1) = \beta(p-1) - \beta(0).$$

(b) For any integer n one has

$$\beta(n)^p = r\beta(n).$$

(c) Let n be any non-negative integer. With the same notations as before we have in \mathbb{F}_p :

$$Tr(\beta(n)) = -B(n).$$

- (d) One has that $\operatorname{Tr}(\beta(d-1)) = -!p \in \mathbb{F}_p$.
- (e) For a prime number p and an integer k there exists a non-negative integer n such that $B(n) = k \in \mathbb{F}_p$ if and only if $\beta(n) = k\beta(0) \in \mathbb{F}_q$.

PROOF. We prove (a): Clearly, we can extend Touchard's congruence (see Lemma 3.5) to $n \in \mathbb{Z}$. This implies that B(p-1)-B(0)=B(-1) (see also [5, Lemme 5]). Since $\beta(d-1)=\beta(-1)$, the result follows from Theorem 3.1.

We prove (b): By (3.8) the formula is equivalent to $r^{(p-1)c(p)} = r$ that follows from (3.10).

We prove (c): From Theorem 3.1 one has

$$\operatorname{Tr}(\beta(n)) = -\frac{\operatorname{Tr}(r^{c(p)})}{\operatorname{Tr}(r^{c(p)})}B(n) = -B(n).$$

We prove (d): Follows from (3.9) and [5, Lemme 7 or Lemme 5]. Finally, we prove (e): Follows immediately from Theorem 3.1. This proves the lemma.

The next lemma follows from Theorem 3.1 and Lemma 3.6.

LEMMA 3.9. For any $\ell \in \mathbb{F}_p$ there exist at least one integer $n \leq \frac{1}{2} {2p \choose p}$ such that $\ell r^{c(p)} = \beta(n) \in \mathbb{F}_q$.

Gallardo and Rahavandrainy [12, Theorem 38] also proved the following result. This result is key for the proof of Theorem 1.2.

LEMMA 3.10. Let n be an integer and $k \in \{1, ..., p\}$, with p a prime number. Then the \mathbb{F}_p -vector space generated by the vectors $S(n, 1), ..., S(n, p) \in \mathbb{F}_q$ has dimension less than p if and only if

$$\beta(n) = 0.$$

4. Proof of Theorem 1.2

Let d be a period of $B(n) \pmod{p}$. Assume that the $S_g(k)$ for $k = 1, \ldots, p$ are \mathbb{F}_p -linearly dependent. Putting n = d-1 in the statement of Lemma 3.10, we obtain $\beta(d-1) = 0$. Then apply Lemma 3.8 (d) to get p = 0.

If !p = 0 then Lemma 3.8 (c) implies that B(d-1) = 0. Thus, Theorem 3.1 proves that $\beta(d-1) = 0$. Hence, as before, by putting n = d-1 in the statement of Lemma 3.10, we obtain that the $S_q(k)$ are \mathbb{F}_p -linearly dependent.

Remark 4.1. Observe that it is easy to prove (using that the minimal polynomial of r has degree p) that the $S_g(k)$ are all distinct. Similarly, we can prove that the \mathbb{F}_p -vector space generated by them has dimension > 1.

5. Proof of Theorem 1.4

Let

$$(5.11) S = \{kr^{c(p)} : k \in \mathbb{F}_p\}.$$

By Lemma 3.8 (b) and Lemma 3.4 we have that

(5.12)
$$S = \{\beta(1), \dots, \beta(p-1), k_0 r^{c(p)}\}\$$

for some $k_0 \in \mathbb{F}_p$. By Lemma 3.9

$$(5.13) k_0 r^{c(p)} = \beta(n)$$

for some non-negative integer n.

Since the $\beta(j)$ are all distinct, one has that $n \geq p$.

Observe that

(5.14)
$$\sigma = \sum_{s \in S} s = r^{c(p)} \sum_{k \in \mathbb{F}_p, k \neq 0} k = r^{c(p)} \cdot p(p-1)/2 = 0.$$

Observe that (5.12), (5.13), and Lemma 3.7, together, implies that

$$\beta(d-1) + \beta(n) = \sigma + \beta(0)$$

for some period d, of B(n) modulo p. Thus, (5.14) implies that

(5.16)
$$\beta(n) = \beta(0) - \beta(d-1).$$

But Lemma 3.8 (a) says that

(5.17)
$$\beta(p-1) = \beta(0) + \beta(d-1).$$

Adding both equations (5.15) and (5.16), we obtain

(5.18)
$$\beta(n) = 2\beta(0) - \beta(p-1).$$

Take the trace in both sides of (5.18). By Lemma 3.8 (c) we obtain

$$(5.19) B(p-1) = 2 - B(n).$$

Lemma 3.8 (c) and Lemma 3.8 (d) implies

$$(5.20) B(p-1) = !p+1$$

by taking the trace in both sides of (5.17). The result

$$(5.21) B(n) = 1 - !p$$

follows then from (5.19) and (5.20).

Let $k_0 = 0$. Thus, B(n) = 0 by Theorem 3.1. Therefore, (5.21) implies that

$$(5.22)$$
 $!p = 1.$

But Andrejić and Tatarevic [3], and Andrejić et al. [4] proved that (5.22) implies $p > 2^{40}$. This proves (a). The proof of (b) is similar. More precisely, when n = p, we obtain from Lemma 3.5 that B(p) = 2 so that

$$(5.23) !p = -1.$$

When n = p + 1 we get by a similar computation B(p + 1) = 3 so that

$$(5.24) !p = -2.$$

Finally, when n = p + 2, proceeding as before, we obtain

$$(5.25) !p = -6.$$

Observe that [3, 4] implies the existence of the specific primes (in the statement of (b)) for which (5.23), (5.24), and (5.25) hold, and also the inequality $p > 2^{40}$.

Part (c) follows from parts (a) and (b), and from a straightforward computation in gp-PARI, based on Lemma 3.8 (e). The computation showed that for all primes

$$p \in \{3, 5, 7, 23, 67, 227, 349, 10331, 274453\}$$

the $\beta(1), \ldots, \beta(p-1)$ are *not* all distinct in \mathbb{F}_q . More precisely, the list of triplets [b, a, p] with $1 \leq a < b \leq p-1$ for which we have $\beta(a) = \beta(b)$ in \mathbb{F}_q and a, b minimal, is as follows:

$$(5.26)$$
 $[3, 2, 3], [4, 3, 5], [4, 0, 7], [11, 0, 23], [6, 2, 67], [24, 23, 227], [16, 9, 349],$

$$[186, 119, 10331], [659, 471, 274453].$$

For $p \in \{1278568703, 39541338091\}$ we do not know if the same result holds.

ACKNOWLEDGEMENTS.

We are indebted to the referee for useful suggestions. As a consequence, the presentation of the paper is greatly enhanced.

References

- M. Aigner, A characterization of the Bell numbers, Discrete Math. 205 (1999), 207– 210.
- [2] V. Andrejić and M. Tatarevic, On distinct residues of factorials, Publ. Inst. Math. Nouv. Sér. 100 (2016), 101–106.
- [3] V. Andrejić and M. Tatarevic, Searching for a counterexample to Kurepa's conjecture, Math. Comput. 85 (2016), 3061–3068.
- [4] V. Andrejić, A. Bostan, and M. Tatarevic, Improved algorithms for left factorial residues, Inf. Process. Lett. 167 (2021), Article ID 106078, 4 p..

- [5] D. Barsky and B. Benzaghou, Nombres de Bell et somme de factorielles, J. Théor. Nombres Bordeaux 16 (2004), 1–17.
- [6] D. Barsky and B. Benzaghou, Erratum à l'article Nombres de Bell et somme de factorielles, J. Théor. Nombres Bordeaux 23 (2011), 527.
- [7] H. W. Becker and J. Riordan, The arithmetic of Bell and Stirling numbers, Amer. J. Math. 70 (1948), 385–394.
- [8] L. Carlitz, A note on the left factorial function, Math. Balkanica 5 (1975), 37-42.
- [9] R. E. Dalton and J. Levine, Minimum periods, modulo p, of first order Bell exponential integers, Math. Comp. 16 (1962), 416–423.
- [10] M. d'Ocagne, Sur une classe de nombres remarquables Amer. J. Math. 9 (1887), 353–380.
- [11] B. Dragović, On some finite sums with factorials, Facta Univ., Ser. Math. Inf. 14 (1999), 1–10.
- [12] L. H. Gallardo and O. Rahavandrainy, Bell numbers modulo a prime number, traces and trinomials, Electron. J. Comb. 21 (2014), Research Paper P4.49, 30 p..
- [13] A. Ivić and Ž. Mijajlović, On Kurepa's problems in number theory, in: Duro Kurepa memorial volume, Publ. Inst. Math. (Beograd) (N.S.), Vol. 57, 1995, 19–28.
- [14] N. Kahale, New modular properties of Bell numbers, J. Combin. Theory Ser. A 58 (1991), 147-152.
- [15] W. Kohnen, A remark on the left-factorial hypothesis, Univ. Beograd. Publ. Elektrotechn. Fak. Ser. Mat. 9 (1998), 51-53.
- [16] D. Kurepa, On the left factorial function !n, Math. Balkanica 1 (1971), 147–153.
- [17] D. R. Kurepa, Right and left factorials, in: Conferenze tenuti in occasione del cinquantenario dell' Unione Matematica Italiana 1972 Boll. Un. Mat. Ital, Vol. 4, 1971, 171–189.
- [18] D. Kurepa, On some new left factorial propositions, Math. Balkanica 4 (1974), 383–386.
- [19] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete mathematics, A foundation for computer science, Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1989.
- [20] R. Guy, Unsolved Problems in Number Theory, Springer-Verlag, 2004.
- [21] R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1996.
- [22] Ž. Mijajlović, On some formulas involving !n and the verification of the !n-hypothesis by use of computers, Publ. Inst. Math. (Beograd) (N.S.) 47 (1990), 24–32.
- [23] Ž. Mijajlović, Fifty years of Kurepa's hypothesis, Bull., Cl. Sci. Math. Nat., Sci. Math. 46 (2021), 169–181.
- [24] P. Montgomery, S. Nahm, and S. S. Wagstaff, Jr., The period of the Bell numbers modulo a prime, Math. Comp. 79 (2010), 1793–1800.
- [25] A. Petojević, On Kurepa's hypothesis for the left factorial, Filomat 12 (1998), 29–37.
- [26] A. Petojević and M. Žižović, Trees and the Kurepa hypothesis for left factorial, Filomat 13 (1999), 31–40.
- [27] A. Petojević, M. Žižović, and S. D. Cvejić, Difference equations and new equivalents of the Kurepa hypothesis, Math. Morav. 3 (1999), 39–42.
- [28] C. Radoux, Nombres de Bell, modulo p premier, et extensions de degré p de F_p, C. R. Acad. Sci. Paris Sér. A-B 281 (1975), A879−A882.
- [29] C. Radoux, Déterminants de Hankel et théorème de Sylvester, in: Séminaire Lotharangien de Combinatoire (Saint-Nabor, 1992), Publ. Inst. Rech. Math. Av., Univ. Louis Pasteur, Strasbourg, Vol. 498, 1992, 115–122.
- [30] Z. Sămi, On generalization of functions n! and !n, Publ. Inst. Math., Nouv. Sér. 60 (1996), 5–14.

- [31] Z. N. Sămi, A sequence $u_{n,m}$ and Kurepa's hypothesis on left factorial, in: Symposium Dedicated to the Memory of Duro Kurepa (Belgrade, 1996), Sci. Rev. Ser. Sci. Eng., Vol. 19–20, 1996, 105–113.
- [32] N. J. A. Sloane et al., *The On-Line Encyclopedia of Integer Sequences*, published electronically at https: \\oeis.org, 2019.
- [33] I. E. Shparlinskiy, On the distribution of Values of Recurring Sequences and the Bell Numbers in Finite Fields, Europ. J. Combinatorics 12 (1991), 81–87.
- [34] J. Stanković, Über einige Relationen zwischen Fakultäten und den linken Fakultäten, Math. Balkanica 3 (1973), 488–495.
- [35] J. Stanković and M. Žižović, Noch einige Relationen zwischen den Fakultäten und den linken Fakultäten, Math. Balkanica 4 (1974), 555–559.
- [36] J. Touchard, Nombres exponentiels et nombres de Bernoulli, Canad. J. Math. 8 (1956), 305–320.
- [37] T. Trudgian, There are no socialist primes less than 10⁹, Integers 14 (2014), Paper A63, 4 p..
- [38] V. S. Vladimirov, Left factorials, Bernoulli numbers, and the Kurepa conjecture, Publ. Inst. Math. (Beograd) (N.S.) 72 (2002), 11–22.
- [39] G. T. Williams, Numbers generated by the function e^{e^x-1}, Amer. Math. Monthly. 52 (1945), 323-327.

Naslov

Prvi autor, drugi autor i treći autor

Sažetak. Hrvatski prijevod sažetka.

Luis H. Gallardo Univ. Brest UMR CNRS 6205 Laboratoire de Mathématiques de Bretagne Atlantique, F-29238 Brest France

 $E ext{-}mail:$ Luis.Gallardo@univ-brest.fr