Chapter 6 – Thick tails in higher dimensions

- Section 6.2 Elliptical distribution assumption
- Key assumption underlying Solvency II capital calculations (Article 164 https://eur-lex.europa.eu/legalcontent/EN/TXT/PDF/?uri=CELEX:32015R0035&from=EN)

i	Interest rate	Equity	Property	Spread	Concentration	Currency
Interest rate	1	Α	Α	Α	0	0,25
Equity	A	1	0,75	0,75	0	0,25
Property	A	0,75	1	0,5	0	0,25
Spread	A	0,75	0,5	1	0	0,25
Concentration	0	0	0	0	1	0
Currency	0,25	0,25	0,25	0,25	0	1

Chapter 6 – EigenVector / Values

- Brief interlude to mention Eigen values / vectors
- These are needed to find the directions in which there is most variability to
- Defined as Matrix * (EigenVector) = (EigenValue) * (EigenVector)
- (i.e. $M * v = \lambda * v$)
- EigenValues and EigenVectors are used extensively for matrix transformations
- They are directly used in PCA and it turns out that the direction of most variance is the first EigenVector; the direction of second most variance is the second EigenVector and so on...
- Calculating EigenVectors and EigenValues usually requires numerical methods for large matrices. Code freely available in VBA and R (e.g. one line of code in R: eigen())
- For PCA we calculate these values on the correlation or covariance matrix of the data
- Book on random matrices https://arxiv.org/pdf/1712.07903.pdf