Randomization Inference

Kosuke Imai

Harvard University

STAT186/GOV2002 CAUSAL INFERENCE

Fall 2018

Randomization-based Confidence Intervals

- Permutation tests are useful but tell us nothing about effect size
- Invert a α -level test generates $(1 \alpha) \times 100\%$ confidence set
- Inverting a permutation test:
 - Consider the constant additive effect model

$$Y_i(1) - Y_i(0) = \tau_0$$
 for all *i*

2 Collect all null values τ_0 that cannot be rejected by α -level test

$$A_{\alpha} = \{ \tau_0 : \Pr(f(\{Y_i, T_i^{obs}\}_{i=1}^n, T_i^{obs}, \tau_0) \leq f(\{Y_i, T_i^{obs}\}_{i=1}^n, T_i, \tau_0)) \geq \alpha \}$$

where A_{α} is the $(1 - \alpha) \times 100\%$ confidence set

Revising the California Alphabet Lottery

- For each candidate, we test $H_0: Y_i(1) Y_i(0) = \tau_0$ for a range of τ_0 values using the permutation test at the 0.05 level
- We collect all τ_0 values where we cannot reject the null

Page Effect on Major Candidates

Page Effect on Minor Candidates

Heterogenous Treatment Effects

- Most randomization inference assumes a homogeneous treatment effect, e.g., constant additive effect model
- In some cases, we can allow for heterogenous treatment effects under an alternative assumption
- Rank-sum test for continuous outcome with no ties
 - The reference distribution does not depend on unit index:

$$Pr(\text{each set of ranks}) = \frac{1}{\binom{n}{n_1}}$$

Non-sharp null hypothesis:

$$H_0: \Pr(Y(1) \le y) = \Pr(Y(0) \le y) \text{ for all } y$$

Population inference is identical to sample inference

Point Estimation under the Population Shift Model

• The model:

$$H_0: \Pr(Y(0) \le y) = \Pr(Y(1) - \tau_0 \le y)$$

- Inverting the Wilcoxon's rank-sum test → a confidence interval
- Hodges and Lehmann estimator (Hodges & Lehmann. 1963. Ann. Math. Stat.)
 - Idea: choose $\hat{\tau}$ to remove the treatment effect treatment effect s.t.

$$\Pr(Y_i - \hat{\tau} \leq y \mid T_i = 1) = \Pr(Y_i \leq y \mid T_i = 0)$$
 for all y

- Wilcoxon's rank-sum test: $S_{\tau} = \sum_{i=1}^{n} T_i R_i (Y_i \tau T_i)$
- Estimator:

$$S_{\hat{\tau}} = \frac{n_1(n+1)}{2}$$

- Computation: S_{τ} is non-increasing in τ
- No exact solution \leadsto take the average of the smallest τ that is too large and the largest τ that is too small

The Project STAR (Mosteller. 1997. Bull. Am. Acad. Arts Sci.)

- The Student-Teacher Achievement Ratio Project (1985–1989)
 - More than 10,000 students involved with the cost of \$12 million
 - Effects of class size in early grade levels
 - 3 arms: Small class, Regular-sized class, Regular class with aid
- Effect of kindergraden class size on 8th grade reading score:

Wilcoxon's rank-sum test (there are some ties):
 p-value < 0.001, 95% conf. int. = [72.3, 80.0], est. = 77.0

Causal Heterogeneity for Binary Outcome

- Back to Fisher's exact test for 2 × 2 table
- Long-term impact of class size:

	Small class	Regular-sized class
Graduate	754	892
Not graduate	148	189
Total	902	1081

- Can't assume a constant additive model for binary outcome
- Monotonicity assumption: $Y_i(1) \ge Y_i(0)$ for all i
- Attributable effects = number of successes in the treatment group caused by the treatment:

$$A = \sum_{i=1}^{n} T_{i}(Y_{i}(1) - Y_{i}(0))$$

Attributable Effects (Rosenbaum, 2001, Biometrika)

• Attributable effects as a pivot:

$$S - A = \sum_{i=1}^{n} T_i Y_i(0)$$
, where $S = \sum_{i=1}^{n} T_i Y_i(1)$

Adjusted 2 × 2 table:

Treated
$$(T = 1)$$
 Control $(T = 0)$

Success $(Y = 1)$ $\sum_{i=1}^{n} T_i Y_i(0)$ $\sum_{i=1}^{n} (1 - T_i) Y_i(0)$

Failure $(Y = 0)$ $\sum_{i=1}^{n} T_i (1 - Y_i(0))$ $\sum_{i=1}^{n} (1 - T_i) (1 - Y_i(0))$

Total n_1 n_0

- The reference distribution → hypergeometric
- Allows for heterogeniety, Inversion gives a confidence interval
- STAR example: p-value = 0.55, 95% conf. int. = [0, 41]

Testing Spillover Effects (Aronow. 2012. Sociol. Methods Res.)

- So far, we have assumed no spillover effect
- Sharp null hypothesis of no effect implies no spillover effect as well as no effect of one's own treatment
- Choose a set of focal units \mathcal{F}
- Perform a permutation test using *conditional* randomization distribution given the treatment assignments of focal units Ω
- Sharp null hypothesis of no spillover effect among focal units:

$$H_0: Y_i(T_i, \mathbf{t}_{-i}) = Y_i(T_i, \mathbf{t}'_{-i})$$
 where $i \in \mathcal{F}$, and $\mathbf{t}_{-i} \in \Omega$

- Any dependence between the outcomes of forcal units and the treatment assignments of others is evidence of spillover effects
- Many choices: focal units, test statistics
- Extensions (Athey et al. 2017. J. Amer. Stat. Assoc.)

Spillover of Voter Mobilization (Nickerson. 2008. Am. Political Sci. Rev.)

- Randomized GOTV experiment in 2002 Congressional Primary (Denver and Minneapolis)
- Do interpersonal relationships affect turnout decision?
- Observational studies → selection bias
- Placebo controlled design with two voter households:

	GOTV	Recycling	Control
Number of households	1285	1289	1286
Contacted	37.7%	36.5%	0%
Turnout	34.0%	31.7%	31.2%
contacted	39.3%	29.8%	
cohabitant of contacted	34.7%	28.9%	
noncontacted households	32.1%	33.1%	31.2%

- Focal units = cohabitants of contacted voters
- Fisher's exact test among contacted households: *p*-value = 0.061

Summary

- Inference about effect size, going beyond hypothesis test
- Inverting a permutation test gives a randomization-based confidence interval → no asymptotic approximation

- Overcoming the limitations of randomization inference
 - heterogenous treatment effects
 - spillover effects
- They often require additional assumptions