Local Search and Genetic Algorithms

Dr. Demetrios Glinos University of Central Florida

CAP4630 - Artificial Intelligence

Today

- Local Search
- Hill Climbing
- Simulated Annealing
- Beam Search
- Genetic Algorithms

Classic Search Problems Revisited

- Recall how we first defined a search problem
 - state space
 - successor function
 - start state
 - goal test
 - solution is a sequence of actions (the plan) that transforms the start state into a goal state
- We could use tree search algorithms to find optimal solutions
 - e.g., BFS, UCS
- We could also use heuristic algorithms
 - e.g., Greedy, A*

Optimization Problems

- Consider
 - state space too large to exhaustively enumerate
 - no particular start state
 - we don't know if we are in a goal state
 - path to a goal state doesn't matter, as long as we get there
 - optimal solution desirable, but not required
- This is the domain of many optimization problems
 - e.g., manufacturing process optimization, TSP
- Local search methods can often find reasonable solutions

Local Search

- Recall: Tree search keeps still-viable unexplored alternatives on a fringe
 - ensures completeness, goal is to find any goal state
- Local search:
 - An optimization technique for seaching a space that cannot be exhaustively enumerated
 - Goal is to find the global maximum
 - Basic idea: Improve a single option until you can't make it better
- Since there is no fringe:
 - Generally, much faster and uses less memory
 - BUT, incomplete and suboptimal
- Requirement: an evaluation function
 - to determine what is an improvement

Today

- Local Search
- Hill Climbing
- Simulated Annealing
- Beam Search
- Genetic Algorithms

Hill Climbing

- Hill climbing (aka greedy local search)
- Basic idea:
 - Use an evaluation (heuristic) function for the states
 - Start anywhere
 - Move in direction of steepest gradient
 - If no neighbor better than current, then stop
- Can get stuck at local maximum
- Completeness and optimality not assured
- Nevertheless, can be useful in practice
 - when a "good" solution is good enough.
 - when the search space is relatively well behaved

Example: CSP Min Conflicts

Map-coloring CSP:

- Basic idea
 - Start with a complete assignment with unsatisfied constraints
 - Use operators to reassign variable values
 - Iterate until a solution found or exhaust all possibilities
 - Note: No fringe work with just one assignment!
- Iterative Min Conflicts algorithm
 - Variable selection: random choice from among conflicting variables
 - "Min conflicts" value selection: choose value that results in fewest constraint violations
 - → This is hill climbing with the function: heuristic h(n) = total number of constraints violated

Hill-Climbing Example: 4-Queens

- States:
 - 4 queens, 1 in each column (4⁴ = 256 total states)
- Operator:
 - Move a queen vertically in its column
- Goal test:
 - No queen threatens another
- Heuristic:
 - h(n) = number of bidirectional attacks

Example: Local Maximum

- (a) (b) source: Fig. 4.3
- Consider: 8-queens problem, where each queen can move only within its column
- case (a): h = 17; best moves for each queen are marked
- case (b): a local maximum with h = 1 (not a goal state); every possible move has a higher cost

Improving Hill Climbing

- Basic hill climbing is steepest ascent
- Stochastic hill climbing
 - choose randomly from among several uphill choices
 - can weight choices by the steepness of the gradient

- First choice hill climbing
 - generate successors until find one that improves cost, and then take it
 - suitable where a state can have many (e.g., thousands) of successors
- · Random restart hill climbing
 - perform as many climbs as needed until find an acceptable solution
 - each climb starts at a different random state
 - number of trials needed = 1/p, where p = prob of success for 1 trial
 - e.g., for 8-queens (column moves only), $p \approx 0.14$, so need roughly 7 trials

Today

- Local Search
- Hill Climbing
- Simulated Annealing
- Beam Search
- Genetic Algorithms

Simulated Annealing

Annealing, in metallurgy, involves heating and slowly cooling a metal, allowing it to form a more regular crystalline structure, which allows the metal to be deformed and to be shaped more easily

Simulated Annealing

- Purpose: to escape local maxima
- How: incorporate a temperature parameter into hill climbing
 - at high temperatures: more exploration
 - at low temperatures: more exploitation

Basic Algorithm for Simulated Annealing

Goal: find the global minimum

- 1. Start with a candidate solution
- 2. Calculate its value using some cost function
- 3. Generate a neighboring solution
- 4. Calculate the neighboring solution's cost
- 5. Compare them:
 - a. If cost_{new} < cost_{old}, accept the new solution
 - b. If $cost_{new} > cost_{old}$, maybe accept the new solution, depending on the temperature
- 6. Repeat steps 3 to 5 above, slowly reducing the temperature, until convergence or reach a max limit on iterations

Simulated Annealing Details

- Initial candidate:
 - can be truly random
- Cost function:
 - can be anything appropriate (e.g., total distance traveled for TSP)
- Neighboring soluton:
 - must differ from current only slightly (must be a neighbor in the search space)
 - choose randomly among the neighbors
- Always accept a lower cost candidate: $\Delta \text{Cost} = \text{cost}_{\text{new}} \text{cost}_{\text{old}} < 0$
- Acceptance function for higher-cost candidate:
 - Metropolis-Hastings algorithm: accept if e ΔCost/Temp > Random(0, 1)
 - threshold acceptance algorithm: accept if ∆Cost < threshold
- Temperature schedule:
 - Start temp at value 1.0 and reduce by α every n iterations
 - Typically, $0.8 < \alpha < 0.99$
 - Temp_i = α^i

Example: Simulated Annealing

Sweet spot: Combinatorial optimization, such as Traveling Salesperson Problem (TSP)

Search space for 20-city TSP is $20! = 1.55 \times 10^{25}$

Demo: Simulated Annealing TSP

- Random locations for nodes
- Random initial sequence
 - complete Hamiltonian circuit
- Neighboring solution selection:
 - choose 2 random nodes
 - reverse the path between them and tie into full path
 - compare total cost for revised sequence to current cost
- Cost function: total Euclidean path length
- Cooling rate: $\alpha = 0.9999$

before: solid arrows

after: dashed arrows

cuts as shown

Demo: Simulated Annealing TSP

demo: SimulatedAnnealing.jar

Today

- Local Search
- Hill Climbing
- Simulated Annealing
- Beam Search
- Genetic Algorithms

Beam Search

- Like local greedy search, except
 - start with K random initial states
 - at each step, generate all successors of all K states
 - but keep only the K "best" states for next iteration

Local greedy Search

Beam Search

Q: How is this different from having K random restarts?

Improving Beam Search

Basic beam search

- choose the "best" k successors from the pool of candidate successors
- can suffer from the lack of diversity among the k states
- population can be concentrated in a local region of the state space

Stochastic beam search

- choose a random set of k successors
- weight each choice according to its value
- analogy to natural selection
 - population at next step consists of some subset of the successors (offspring) of the current state (population organism)

Today

- Local Search
- Hill Climbing
- Simulated Annealing
- Beam Search
- Genetic Algorithms

Genetic Algorithms

- Based on genetics in biology
 - Chromosomes encode traits
 - Offspring inherit "chromosomes" from both parents
 - Mutations can occur
 - Some mutations more successful than others

Genetic Algorithms

- encode candidate solutions as a population of chromosomes
- use genetics-inspired operators to generate offspring
 - selection of parents
 - crossover inheriting from both parents
 - mutation random changes in components of candidate solutions
- evaluate offspring according to a fitness function
- replace the population with the next generation

GA Details

- Chromosomes are generally sequences of symbols, that can represent
 - solutions of complex functions
 - finding sequences of amino acids that will fold to a desired 3-D protein structure
 - sequences of motion for a robot crawler
 - whether or not all the same length depends on the problem

GA Details

Selection

- fitness-proportionate the more fit a chromosome, the more likely it will be selected as a parent
- generally done with replacement (same chromosome can be parent to > 1)

Crossover

- usually at 1 randomly-chosen point, with uniform probability p_c
- point can be different on each chromosome
- multi-point crossover also possible

Mutation

- random change to a gene in each chromosome, with probability p_m
- can restrict to 1 or >1 mutation per chromosome

Fitness function

- custom for each problem
- Next Generation
 - can select top n most fit chromosomes
 - can propagate elites (the top few always make it to the next generation)

- State space
 - discretized
 - green upper arm: +/- 45 degrees from horizontal
 - red lower arm: +/- 45 degrees from perpendicular to green arm

Chromosome

- start with green horizontal and red vertical, touching ground
- random sequence of NSEW movements
- do not need all to be same length
- must validate for
 - movement out of range
 - loops, including stutter

Fitness

- wish to reward forward motion +500, backward -500, within a loop
- "forward motion" defined to be left corner to the right of previous spot with right corner on ground
- also reward longer sequences, so +1 for every element of sequence outside of a loop

- Crossover
 - Single point, must validate
- Mutation
 - Single point, must validate
- Population
 - Start with 30
 - Use elites

demo: CrawlGA

GA Problem: Rover Path Planner

- Consider a planetary rover
 - current position known
 - goal position determined externally
 - sensors on board
 - obstacles on path to goal position

- Goal
 - find a safe path to goal position

Path Planner Design

State space

- discretized
- use Cartesian grid
- could also use hexagonal grid, etc.

Chromosome

- sequence of moves
- must avoid obstacles

Move

- vector representation: direction + length
- 8 directions
- endpoint must "snap" to center of a grid cell

Path Planner Operators

Mutation

- add random number (bounded) of "legs" to current path
- each leg can be in 1 of 8 possible directions
- each leg can be a random length (bounded)
- prune path if bumps into wall or goes off the board

Crossover

- single point
- prune both paths as appropriate

Fitness function

use heuristic: Euclidean distance to goal

Tuning parameters

crossover rate, random mutation and crossover parameters

GA Demo: Rover Path Planner

GA Demo: Rover Path Planner

Improving the Path Found

Cut out loops

Straighten out bights

Cut corners

Note: Can also choose key points in the path and fit a smooth curve (e.g., spline)