CSE 015: Discrete Mathematics Fall 2020 Homework #02 Solution

Tony Doan Lab CSE-015-11L

September 20, 2020

1. Question 1:

(a) $P(2), x < x^3$ $(2 < 2^3) = (2 < 8)$

True, because 2 is less than 8.

(b) $P(-1), x < x^3$ $(-1 < -1^3) = (-1 < -1)$

False, because -1 is not less than -1. They are equal.

(c) $\forall x P(x), x < x^3$

P(0): $(0 < 0^3) = (0 < 0)$

P(-4): $(-4 < -4^3) = (-4 < -64)$

False, because P(x) where x is equal to 1 or less is false, so it can't all be true.

(d) $\exists x P(x), x < x^3$

$$P(4)$$
: $(4 < 4^3) = (4 < 64)$

True because P(4) is one example of it being true.

(e) $\exists ! x P(x), x < x^3$

$$P(4)$$
: $(4 < 4^3) = (4 < 64)$
 $P(2)$: $(2 < 2^3) = (2 < 8)$

$$P(2)$$
: $(2 < 2^3) = (2 < 8)$

False, because P(x) where x is equal to 2 or greater is true, so there is more than one outcome where it will be true.

2. Question 2:

(a)
$$\neg \forall x (S(m) \land M(x))$$

(b)
$$\forall x(S(m) \vee M(x))$$

(c)
$$\exists x (S(x) \land \neg M(x))$$

3. Question 3:

(a)
$$\forall x (A(x) \land B(x)) \equiv \forall (A(x) \rightarrow B(x))$$

 $\forall x (A(x) \land B(x))$:

$\mathbf{A}(\mathbf{x})$	$\mathbf{B}(\mathbf{x})$	$\mathbf{A}(\mathbf{x}) \wedge \mathbf{B}(\mathbf{x})$	$\forall \mathbf{x} (\mathbf{A}(\mathbf{x}) \wedge \mathbf{B}(\mathbf{x}))$	
F	F	F	F	-
\mathbf{F}	${ m T}$	F	F	$\forall x (A(x) \land B(x)) \text{ is false}$
Τ	F	F	F	-
${ m T}$	${ m T}$	m T	m T	

$$\forall (A(x) \rightarrow B(x)):$$

$\mathbf{A}(\mathbf{x})$	$\mathbf{B}(\mathbf{x})$	$\mathbf{A}(\mathbf{x}) ightarrow \mathbf{B}(\mathbf{x})$	$orall (\mathbf{A}(\mathbf{x}) o \mathbf{B}(\mathbf{x}))$	
F	F	T	Τ	_
\mathbf{F}	${ m T}$	${ m T}$	${ m T}$	$\forall (A(x) \rightarrow B(x) \text{ is false}$
\overline{T}	F	F	F	-
${ m T}$	${ m T}$	m T	${ m T}$	

Both statements are logically equivalent because all the outcomes contain one or more false statements, therefore making them both false.

4. Question 4:

(a) $\exists x \forall y A(x,y)$

There exists a real number x for every real number y that xy = 0.

$$(1)(0) = 0$$

$$(1)(1) = 1$$

False

(b) $\exists x \exists y B(x,y)$

There exists a real number x for a real number y that x + y = 0.

$$-4 + 4 = 0$$

True

(c) $\forall x \exists y A(x,y)$

For every real number x, there exists a real number y that xy = 0.

$$(1)(0) = 0$$

$$(2)(0) = 0$$

True

(d) $\exists x \forall y (A(x,y) \land B(x,y))$

There exists a real number x for all real numbers y that xy = 0 and x + y = 0.

$$(0)(1) = 0$$
 and $0 + 1 = 1$

False

(e) $\exists x \exists y (A(x,y) \land \neg B(x,y))$

There exists a real number x for a real number y that xy = 0 and $x + y \neq 0$.

$$(4)(0) = 0$$
 and $4 + 0 \neq 0$

True

5. Question 5:

(a)
$$\neg \exists x \exists y (P(x) \rightarrow Q(y))$$

 $P(y) = \exists y (P(x) \rightarrow Q(y)), \text{ so } \neg \exists x P(y)$
 $\neg \exists x P(y) \equiv \forall x \neg P(y)$
 $\neg P(y) = \neg \exists y (P(x) \rightarrow Q(y)), \text{ so } \forall y \neg (P(x) \rightarrow Q(y))$
 $Answer: \forall x \forall y (\neg P(x) \rightarrow \neg Q(y))$

```
(b) \neg \exists y (\exists x A(x,y) \lor \forall x B(x,y))

N(x) = \exists x A(x,y); S(x) = \forall x B(x,y), so \neg \exists y (N(x) \lor S(x))

\neg \exists y (N(x) \lor S(x) \equiv \forall y \neg (N(x) \land S(x))

\neg (N(x) \land S(x)) \equiv (\neg \exists x A(x,y) \land \neg \forall x B(x,y))

(\neg \exists x A(x,y) \land \neg \forall x B(x,y)) \equiv (\forall x \neg A(x,y) \land \exists x \neg B(x,y))

Answer: \forall y (\forall x \neg A(x,y) \land \exists x \neg B(x,y))
```