Practice Sheet

MAT120

Separable Variables

(i) Solve the given differential equation by separation of variables:

$$1.\frac{dy}{dx} = \sin 5x, \quad 2. \ dx + e^{3x} dy = 0, \quad 3. \ x \frac{dy}{dx} = 4y, \quad 4. \ \frac{dy}{dx} + 2xy = 0, \quad 5. \frac{dy}{dx} = e^{3x+2y},$$

$$6. \ e^{x} y \frac{dy}{dx} = e^{-y} + e^{-2x-y}, \quad 7. \ y \ln x \frac{dx}{dy} = \left(\frac{y+1}{x}\right)^{2},$$

$$8. \ (e^{y} + 1)^{2} e^{-y} dx + (e^{x} + 1)^{3} e^{-x} dy = 0.$$

(ii) Solve the given initial-value problem:

1.
$$\frac{dx}{dt} = 4(x^2 + 1)$$
, $x(\pi/4) = 1$; 2. $\frac{dy}{dx} = \frac{y^2 - 1}{x^2 - 1}$, $y(2) = 2$
3. $x^2 \frac{dy}{dx} = y - xy$, $y(-1) = -1$; 4. $\frac{dy}{dt} + 2y = 1$, $y(0) = \frac{5}{2}$

Linear Equations

(i) Find the general solution of the given differential equations:

$$1.\frac{dy}{dx} = 5y, \quad 2.\frac{dy}{dx} + 2y = 0, \quad 3.\frac{dy}{dx} + y = e^{3x}, \quad 4.(x^2 - 1)\frac{dy}{dx} + 2y = (x + 1)^2,$$

$$5.x\frac{dy}{dx} - y = x^2 \sin x, \quad 6.x\frac{dy}{dx} + 2y = 3, \quad 7.x\frac{dy}{dx} + 4y = x^3 - x,$$

$$8.(1 + x)\frac{dy}{dx} - xy = x + x^2, \quad 9.x^2y' + x(x + 2)y = e^x, \quad 10.ydx - 4(x + y^6)dy = 0,$$

$$11.(x + 1)\frac{dy}{dx} + (x + 2)y = 2xe^{-x}, \quad 12.x\frac{dy}{dx} + (3x + 1)y = e^{-3x}, \quad 13.3\frac{dy}{dx} + 12y = 4.$$

(ii) Solve the given initial-value problem:

1.
$$xy' + y = e^x$$
, $y(1) = 2$; 2. $y \frac{dx}{dy} - x = 2y^2$, $y(1) = 5$;
3. $(x+1)\frac{dy}{dx} + y = \ln x$, $y(1) = 10$; 4. $y' + (\tan x)y = \cos^2 x$, $y(0) = -1$.

Exact Equations

(i) Determine whether the given differential equation is exact. If it is exact, solve it.

1.
$$(2x-1) dx + (3y+7) dy = 0$$
, 2. $(2x+y) dx - (x+6y) dy = 0$,

$$3.2xy dx + (x^2 - 1) dy = 0$$
, $4.(x^2 - y^2)dx + (x^2 - 2xy)dy = 0$,

5.
$$(e^{2y} - y \cos xy) dx + (2xe^{2y} - x \cos xy + 2y) dy = 0$$
,

6.(
$$\sin y - y \sin x$$
) $dx + (\cos x + x \cos y - y) dy = 0$,

7.
$$\left(1 + \ln x + \frac{y}{x}\right) dx = (1 - \ln x) dy$$
, 8. $x \frac{dy}{dx} = 2xe^x - y + 6x^2$,

$$9.(x - y^3 + y^2 \sin x) dx = (3xy^2 + 2y \cos x) dy,$$

$$10.(y \ln x - e^{-xy}) dx + \left(\frac{1}{y} + x \ln y\right) dy = 0, \quad 11.\left(x^2 y^3 - \frac{1}{1 + 9x^2}\right) \frac{dx}{dy} + x^3 y^2 = 0,$$

12.
$$(\tan x - \sin x \sin y) dx + \cos x \cos y dy = 0$$
,

$$13.(4t^3y - 15t^2 - y) dt + (t^4 + 3y^2 - t) dy = 0.$$

(ii) Solve the given initial-value problem:

$$1.(x+y)^2 dx + (2xy + x^2 - 1) dy = 0, \quad y(1) = 1;$$

$$2.(4y+2t-5) dt + (6y+4t-1) dy = 0, \quad y(-1) = 2;$$

3.
$$\frac{dy}{dx} = \frac{xy^2 - \cos x \sin x}{y(1 - x^2)}$$
, $y(0) = 2$;

4.
$$(y^2 \cos x - 3x^2y - 2x) dx + (2y \sin x - x^3 + \ln y) dy = 0$$
, $y(0) = e$.

BRAC UNIVERSITY MAT 120 (Mathematics II)

Practice Sheet

Solutions by Substitutions

(i) Solve the given homogeneous equation by using an appropriate substitution:

1.
$$(x - y)dx + xdy = 0$$
, 2. $(x + y) dx + x dy = 0$, 3. $x dx + (y - 2x) dy = 0$,
4. $y dx = 2(x + y) dy$, 5. $(y^2 + yx) dx - x^2 dy = 0$, 6. $\frac{dy}{dx} = \frac{y - x}{y + x}$,
7. $-y dx + (x + \sqrt{xy}) dy = 0$, 8. $(x^2 + y^2) dx + (x^2 - xy) dy = 0$.

(ii) Solve the given initial value problem:

1.
$$\frac{dy}{dx} = (-2x + y)^2 - 7$$
, $y(0) = 0$;
2. $xy^2 \frac{dy}{dx} = y^3 - x^3$, $y(1) = 2$;
3. $(x + ye^{y/x}) dx - xe^{y/x} dy = 0$, $y(1) = 0$.

Reduction of Order

The indicated function $y_1(x)$ is a solution of the given differential equation. Use reduction of order, to find a second solution $y_2(x)$.

1.
$$y'' - 4y' + 4y = 0$$
; $y_1 = e^{2x}$, 2. $y'' + 2y' + y = 0$; $y_1 = xe^{-x}$, 3. $y'' + 16y = 0$; $y_1 = \cos 4x$, 4. $y'' + 9y = 0$; $y_1 = \sin 3x$, 5. $9y'' - 12y' + 4y = 0$; $y_1 = e^{2x/3}$, 6. $xy'' + y' = 0$; $y_1 = \ln x$, 7. $(1 - 2x - x^2)y'' + 2(1 + x)y' - 2y = 0$; $y_1 = x + 1$, 8. $y'' - 25y = 0$; $y_1 = e^{5x}$, 9. $x^2y'' + 2xy' - 6y = 0$; $y_1 = x^2$, 10. $(1 - x^2)y'' + 2xy' = 0$; $y_1 = 1$.

<u>Homogeneous Linear Equations</u> With Constant Coefficients

(i) Find the general solution of the given second-order differential equations:

$$1.4y'' + y' = 0$$
, $2.y'' - y' - 6y = 0$, $3.y'' + 8y' + 16y = 0$, $4.y'' + 9y = 0$
 $5.y'' - 4y' + 5y = 0$, $6.3y'' + 2y' + y = 0$, $7.2y'' - 3y' + 4y = 0$.

(ii) Find the general solution of the given higher-order differential equations:

1.
$$y''' - 4y'' - 5y' = 0$$
, 2. $y''' - 5y'' + 3y' + 9y = 0$, 3. $y^{(4)} + y''' + y'' = 0$, 4.16 $y^{(4)} + 24y'' + 9y = 0$.

(iii) Solve the given initial-value problems:

1.
$$y'' + 16y = 0$$
, $y(0) = 2$, $y'(0) = -2$; 2. $\frac{d^2y}{d\theta^2} + y = 0$, $y(\pi/3) = 0$, $y'(\pi/3) = 2$;
3. $\frac{d^2y}{dt^2} - 4\frac{dy}{dt} - 5y = 0$, $y(1) = 0$, $y'(1) = 2$; 4. $y'' + y' + 2y = 0$, $y(0) = y'(0) = 0$;
5. $y''' + 12y'' + 36y' = 0$, $y(0) = 0$, $y'(0) = 1$, $y''(0) = -7$.

(iv) Solve the given boundary- value problems:

$$1. y'' - 10y' + 25y = 0$$
, $y(0) = 1$, $y(1) = 0$; $2. y'' + y = 0$, $y'(0) = 0$, $y'(\pi/2) = 2$.

<u>Undetermined Coefficients (Annihilator Approach)</u>

Solve the given differential equation by undetermined coefficients.

1.
$$y'' - 9y = 54$$
, 2. $y'' + 3y' = 4x - 5$, 3. $y'' + 4y' + 4y = 2x + 6$,
4. $y'' - 2y' + y = x^3 + 4x$, 5. $y'' + 6y' + 8y = 3e^{-2x} + 2x$,
6. $y'' + 25y = 6\sin x$, 7. $y'' + 25y = 20\sin 5x$, 8. $y'' - 2y' + 5y = e^x \sin x$

Variation of Parameters

Solve each differential equation by variation of parameters.

1.
$$y'' + y = \sec x$$
, 2. $y'' + y = \tan x$, 3. $y'' + y = \sin x$,
4. $y'' - 4y = \frac{e^{2x}}{x}$, 5. $y'' + 3y' + 2y = \frac{1}{1 + e^x}$, 6. $y'' + 2y' + y = e^{-t} \ln t$,
7. $y'' + y = \cos^2 x$, 8. $3y'' - 6y' + 6y = e^x \sec x$,
9. $y'' + y = \sec^2 x$, 10. $y'' - 9y = \frac{9x}{e^{3x}}$.