```
In [1]: import numpy as np
    import pandas as pd
    import seaborn as sns
    import matplotlib.pyplot as plt
    from sklearn import preprocessing,svm
    from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LinearRegression
```

```
In [2]: df=pd.read_csv(r"C:\Users\HP\Downloads\bottle.csv.zip")
df
```

C:\Users\HP\AppData\Local\Temp\ipykernel_28448\508500159.py:1: DtypeWarning:
Columns (47,73) have mixed types. Specify dtype option on import or set low_m
emory=False.

df=pd.read_csv(r"C:\Users\HP\Downloads\bottle.csv.zip")

	Cst_Cnt	Btl_Cnt	Sta_ID	Depth_ID	Depthm	T_degC	SaInty	O2ml_L	STheta	O25
0	1	1	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0000A-3	0	10.500	33.4400	NaN	25.64900	Ni
1	1	2	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0008A-3	8	10.460	33.4400	NaN	25.65600	Ni
2	1	3	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0010A-7	10	10.460	33.4370	NaN	25.65400	Ni
3	1	4	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0019A-3	19	10.450	33.4200	NaN	25.64300	Ni
4	1	5	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0020A-7	20	10.450	33.4210	NaN	25.64300	Ni
864858	34404	864859	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0000A-7	0	18.744	33.4083	5.805	23.87055	108.
864859	34404	864860	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0002A-3	2	18.744	33.4083	5.805	23.87072	108.
864860	34404	864861	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0005A-3	5	18.692	33.4150	5.796	23.88911	108.
864861	34404	864862	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0010A-3	10	18.161	33.4062	5.816	24.01426	107.

```
20-
1611SR-
864862 34404 864863 093.4 MX-310-
026.4 2239-
09340264-
0015A-3 15 17.533 33.3880 5.774 24.15297 105.
```

864863 rows × 74 columns

```
In [3]: df=df[['Salnty','T_degC']]
df.columns=['Sal','Temp']

In [4]: df.head(10)

Out[4]: Sal Temp
```

Out[4]: Sal Temp

0 33.440 10.50**1** 33.440 10.46

2 33.437 10.46

3 33.420 10.45

4 33.421 10.45

5 33.431 10.45

6 33.440 10.45

7 33.424 10.24

8 33.420 10.06

9 33.494 9.86

In [5]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 864863 entries, 0 to 864862
Data columns (total 2 columns):
 # Column Non-Null Count Dtype
--- 0 Sal 817509 non-null float64
1 Temp 853900 non-null float64

dtypes: float64(2)
memory usage: 13.2 MB

```
In [6]: df.fillna(method="ffill",inplace=True)
```

C:\Users\HP\AppData\Local\Temp\ipykernel_28448\1844562654.py:1: SettingWithCo
pyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s table/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df.fillna(method="ffill",inplace=True)

```
In [7]: x=np.array(df['Sal']).reshape(-1,1)
y=np.array(df['Temp']).reshape(-1,1)
```

```
In [9]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
    regr=LinearRegression()
    regr.fit(x_train,y_train)
    print(regr.score(x_test,y_test))
```

0.2022174608873305

```
In [10]: y_pred=regr.predict(x_test)
    plt.scatter(x_test,y_test,color='b')
    plt.plot(x_test,y_pred,color='k')
    plt.show()
```



```
In [13]: df500=df[:][:500]
    sns.lmplot(x="Sal",y="Temp",data=df500,order=1,ci=None)
    df500.fillna(method='ffill',inplace=True)
    x=np.array(df500['Sal']).reshape(-1,1)
    y=np.array(df500['Temp']).reshape(-1,1)
    df500.dropna(inplace=True)
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
    regr=LinearRegression()
    regr.fit(x_train,y_train)
    print("Regression:",regr.score(x_test,y_test))
    y_pred=regr.predict(x_test)
    plt.scatter(x_test,y_test,color='b')
    plt.scatter(x_test,y_pred,color='k')
    plt.show()
```

Regression: 0.8462427959276528


```
In [17]: from sklearn.linear_model import LinearRegression
    from sklearn.metrics import r2_score
    model=LinearRegression()
    model.fit(x_train,y_train)
    y_pred=model.predict(x_test)
    r2=r2_score(y_test,y_pred)
    print(r2)
```

vehical data collection

```
In [2]: import numpy as np
   import pandas as pd
   import seaborn as sns
   import matplotlib.pyplot as plt
   from sklearn import preprocessing,svm
   from sklearn.model_selection import train_test_split
   from sklearn.linear_model import LinearRegression
```

In [7]: df=pd.read_csv(r"C:\Users\HP\Downloads\fiat500_VehicleSelection_Dataset (2).cs
 df

Out[7]:		ID	model	engine_power	age_in_days	km	previous_owners	lat	lon
	0	1	lounge	51	882	25000	1	44.907242	8.611560
	1	2	рор	51	1186	32500	1	45.666359	12.241890
	2	3	sport	74	4658	142228	1	45.503300	11.417840
	3	4	lounge	51	2739	160000	1	40.633171	17.634609
	4	5	рор	73	3074	106880	1	41.903221	12.495650
	1533	1534	sport	51	3712	115280	1	45.069679	7.704920
	1534	1535	lounge	74	3835	112000	1	45.845692	8.666870
	1535	1536	рор	51	2223	60457	1	45.481541	9.413480
	1536	1537	lounge	51	2557	80750	1	45.000702	7.682270
	1537	1538	pop	51	1766	54276	1	40.323410	17.568270

1538 rows × 9 columns

```
In [8]: df=df[['age_in_days','km']]
df.columns=['age','k']
```

```
In [9]: | df.head(10)
 Out[9]:
                      k
             age
          0
             882
                  25000
            1186
                  32500
          2 4658 142228
          3 2739 160000
            3074 106880
            3623
                  70225
             731
                  11600
            1521
                  49076
            4049
                  76000
          9 3653
                  89000
In [10]: |df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 1538 entries, 0 to 1537
         Data columns (total 2 columns):
              Column Non-Null Count Dtype
               -----
          0
              age
                      1538 non-null
                                      int64
          1
              k
                      1538 non-null
                                      int64
         dtypes: int64(2)
         memory usage: 24.2 KB
In [11]: | df.fillna(method="ffill",inplace=True)
         C:\Users\HP\AppData\Local\Temp\ipykernel_25884\1844562654.py:1: SettingWithCo
         pyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s
         table/user_guide/indexing.html#returning-a-view-versus-a-copy (https://panda
         s.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-ver
         sus-a-copy)
           df.fillna(method="ffill",inplace=True)
In [12]: | x=np.array(df['age']).reshape(-1,1)
         y=np.array(df['k']).reshape(-1,1)
In [13]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
         regr=LinearRegression()
         regr.fit(x_train,y_train)
         ..print(regr.score(x_test,y_test))
```

```
In [14]: y_pred=regr.predict(x_test)
plt.scatter(x_test,y_test,color='b')
plt.plot(x_test,y_pred,color='k')
plt.show()
```



```
In [15]:
    df500=df[:][:500]
    sns.lmplot(x="age",y="k",data=df500,order=1,ci=None)
    df500.fillna(method='ffill',inplace=True)
    x=np.array(df500['age']).reshape(-1,1)
    y=np.array(df500['k']).reshape(-1,1)
    df500.dropna(inplace=True)
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
    regr=LinearRegression()
    regr.fit(x_train,y_train)
    print("Regression:",regr.score(x_test,y_test))
    y_pred=regr.predict(x_test)
    plt.scatter(x_test,y_test,color='b')
    plt.scatter(x_test,y_pred,color='k')
    plt.show()
```

Regression: 0.7130750653438346


```
In [14]: from sklearn.linear_model import LinearRegression
    from sklearn.metrics import r2_score
    model=LinearRegression()
    model.fit(x_train,y_train)
    y_pred=model.predict(x_test)
    r2=r2_score(y_test,y_pred)
    print(r2)
```

House price prediction

```
In [2]: import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import preprocessing,svm
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
```

```
In [3]: df=pd.read_csv(r"C:\Users\HP\Downloads\kc_house_data.csv.zip")
df
```

Out[3]:		id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floo
	0	7129300520	20141013T000000	221900.0	3	1.00	1180	5650	1
	1	6414100192	20141209T000000	538000.0	3	2.25	2570	7242	2
	2	5631500400	20150225T000000	180000.0	2	1.00	770	10000	1
	3	2487200875	20141209T000000	604000.0	4	3.00	1960	5000	1
	4	1954400510	20150218T000000	510000.0	3	2.00	1680	8080	1
	21608	263000018	20140521T000000	360000.0	3	2.50	1530	1131	3
	21609	6600060120	20150223T000000	400000.0	4	2.50	2310	5813	2
	21610	1523300141	20140623T000000	402101.0	2	0.75	1020	1350	2
	21611	291310100	20150116T000000	400000.0	3	2.50	1600	2388	2
	21612	1523300157	20141015T000000	325000.0	2	0.75	1020	1076	2

21613 rows × 21 columns

```
In [4]: df=df[['sqft_living','sqft_lot']]
df.columns=['live','lot']
```

```
In [5]: | df.head(10)
 Out[5]:
             live
                     lot
          0 1180
                   5650
          1 2570
                   7242
             770
                  10000
          2
            1960
                   5000
            1680
                   8080
            5420 101930
            1715
                   6819
            1060
                   9711
            1780
                   7470
            1890
                   6560
 In [6]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 21613 entries, 0 to 21612
         Data columns (total 2 columns):
              Column Non-Null Count Dtype
               -----
          0
              live
                      21613 non-null int64
          1
              lot
                      21613 non-null int64
         dtypes: int64(2)
         memory usage: 337.8 KB
 In [7]: | df.fillna(method="ffill",inplace=True)
         C:\Users\HP\AppData\Local\Temp\ipykernel_8876\1844562654.py:1: SettingWithCop
         vWarning:
         A value is trying to be set on a copy of a slice from a DataFrame
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s
         table/user_guide/indexing.html#returning-a-view-versus-a-copy (https://panda
         s.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-ver
         sus-a-copy)
           df.fillna(method="ffill",inplace=True)
 In [8]: | x=np.array(df['live']).reshape(-1,1)
         y=np.array(df['lot']).reshape(-1,1)
In [10]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
         regr=LinearRegression()
         regr.fit(x_train,y_train)
         print(regr.score(x_test,y_test))
```

```
In [11]: y_pred=regr.predict(x_test)
plt.scatter(x_test,y_test,color='b')
plt.plot(x_test,y_pred,color='k')
plt.show()
```



```
In [12]: df500=df[:][:500]
    sns.lmplot(x="live",y="lot",data=df500,order=1,ci=None)
    df500.fillna(method='ffill',inplace=True)
    x=np.array(df500['live']).reshape(-1,1)
    y=np.array(df500['lot']).reshape(-1,1)
    df500.dropna(inplace=True)
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
    regr=LinearRegression()
    regr.fit(x_train,y_train)
    print("Regression:",regr.score(x_test,y_test))
    y_pred=regr.predict(x_test)
    plt.scatter(x_test,y_test,color='b')
    plt.scatter(x_test,y_pred,color='k')
    plt.show()
```

Regression: 0.040148522263719566


```
In [13]: from sklearn.linear_model import LinearRegression
    from sklearn.metrics import r2_score
    model=LinearRegression()
    model.fit(x_train,y_train)
    y_pred=model.predict(x_test)
    r2=r2_score(y_test,y_pred)
    print(r2)

0.040148522263719566

In [ ]:
```