Favourites Pt.1

Sadia Islam Urme Nilotpal Roy Sayon

Essence of Olympiad Geometry - Day 4 Dinajpur Math Club

October 2, 2024

1 SIU

Problem 1.1. In a quadrilateral ABCD, Suppose there exist two points E and F on BC such that $\angle EAF = \angle FDE$ and $\angle EAB = \angle FDC$. Prove that ABCD must also be a cyclic quadrilateral.

Or, Show that for ABCD to be cyclic, it is necessary and sufficient that there exist two points E and F on side BC such that $\angle EAF = \angle FDE$ and $\angle EAB = \angle FDC$.

Problem 1.2. In a triangle $\triangle ABC$, it is given that AC = BC. P is a point on the circumcircle of ABC between A and B such that it lies on the opposite site of C. D is the foot of the perpendicular from C to PB. Show that BD + PA = PD.

2 NRS

Problem 2.1. Suppose O is the circumcenter and H is the orthocenter of $\triangle ABC$. The extension of AO intersects the circumcircle of ABC at point K. Prove that A, K, and the midpoint M of side BC are collinear.

Problem 2.2. Use the notations from the previous problem. Prove that AH = 2OM.

Problem 2.3. Use the notations from the previous problem again. Prove that the midpoint of OH is the center of the Nine-point circle of $\triangle ABC$.

3 Bonus problems

Problem 3.1. ABCD is a convex quadrilateral such that $\angle ABD = \angle DBC, AD = CD, AB \neq BC$. Prove that ABCD is cyclic.

(A convex quadrilateral is a quadrilateral having all of its interior angles measuring less than 180°)

Problem 3.2. In $\triangle ABC$, $\angle BAC$ is a right angle. BP and CQ are bisectors of $\angle B$ and $\angle C$ respectively, which intersect AC and AB at P and Q respectively. Two perpendicular segments PM and QN are drawn on BC from P and Q respectively. Find the value of $\angle MAN$ with proof.

Day 3 notes can be found here-

