

Hierarchical Graph Neural Networks

A seminar presentation for HO-GNN WS2024/25

Mohammad Shaique Solanki – 7062950

Content

- 1. Introduction
- 2. Background
- 3. Observing Hierarchy in Graph Datasets
- 4. Fundamentals of Hierarchical GNNs
- 5. Diffpool Mechanism
- 6. Challenges and Limitations

1. Introduction

Motivation == Graphs are everywhere

1. Introduction

Objective == Learning the hierarchy in the graphs

<u>Scientists at Indian Institute of Science, Bangalore used Hierarchical GNNs for Speaker diarization problem.</u>

2. Background

What are GNNs? How do they work?

2. Background

A blueprint for GNNs

GNN layer at depth (l)

$$\mathbf{h}_i^{(l+1)} = \phi \left(egin{array}{c} \mathbf{P} ext{-invariant} & \operatorname{Message} \ \operatorname{aggregator} & \operatorname{module} \ \end{array}
ight) \left(\mathbf{h}_i^{(l)}, igoplus \psi \left(\mathbf{h}_j^{(l)}
ight)
ight) \ \sum_{\substack{j \in \mathcal{N}(i) \ \operatorname{module} \ \end{array}} \psi \left(\mathbf{h}_j^{(l)}
ight)
ight) \ \mathcal{N}(i) = \{j \mid \mathbf{A}(i,j) = 1\}$$

UNIVERSITÄT DES SAARLANDES

Uniform Processing Across Layers

Each layer uniformly transforms neighbour node features using ψ (e.g., via a weight matrix) before aggregation, applying the same operations irrespective of the layer depth.

Simple Aggregation Method

Uses a straightforward aggregation function ⊕, typically a mean or weighted sum, without adapting to node features or graph complexity, reinforcing the flat architecture design.

27.01.25 Kickoff_slides.pdf

Docs

Bioinformatics

Name	Source	Statistics			Labels/Attributes						Download (ZIP)
		Graphs	Classes	Avg. Nodes	Avg. Edges	Node Labels	Edge Labels	Node Attr.	Geometry	Edge Attr.	
DD	[6,22]	1178	2	284.32	715.66	+	-	-	-	-	DD
ENZYMES	[4,5]	600	6	32.63	62.14	+	-	+ (18)	-	-	ENZYMES
KKI	[26]	83	2	26.96	48.42	+	_	_	_	_	KKI
OHSU	[26]	79	2	82.01	199.66	+	-	-	-	-	OHSU
Peking_1	[26]	85	2	39.31	77.35	+	-	-	-	-	Peking_1
PROTEINS	[4,6]	1113	2	39.06	72.82	+	-	+ (1)	-	-	PROTEINS
PROTEINS_full	[4,6]	1113	2	39.06	72.82	+	-	+ (29)	-	-	PROTEINS_full

27.01.25 https://chrsmrrs.github.io/datasets/docs/datasets/

https://chrsmrrs.github.io/datasets/docs/datasets/

Model Architecture

Overview of results

Final Test Accuracy: 0.7232, Test Loss: 0.5846

Analysis

27.01.25

Analysis – Diving Deep

Problem	Culprit		
Over-Smoothing	<pre>self.conv1 = GCNConv(dataset.num_node_features, hidden_channels) self.conv2 = GCNConv[hidden_channels, hidden_channels] self.conv3 = GCNConv(hidden_channels, hidden_channels)</pre>		Stacking multip layers without p distinct node fe incorporate diff
Scalability Issues			layers of abstra
Inability to Capture Multi-Scale Structures			
Difficulty in Learning long-range dependencies			

iple GCN preserving features of fferent action

Analysis – Diving Deep

Problem	Culprit	
Over-Smoothing	<pre>self.conv1 = GCNConv(dataset.num_node_features, hidden_channels) self.conv2 = GCNConv(hidden_channels, hidden_channels) self.conv3 = GCNConv(hidden_channels, hidden_channels)</pre>	Using a static batch size for processing large, complex graphs like proteins, where
Scalability Issues	<pre>train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True) val_loader = DataLoader(val_dataset, batch_size=64, shuffle=False) test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)</pre>	node and edge counts vary, can cause scalability issues and inefficiencies in
Inability to Capture Multi-Scale Structures		memory and computational resources.
Difficulty in Learning long-range dependencies		

Analysis – Diving Deep

Problem	Culprit	
Over-Smoothing	<pre>self.conv1 = GCNConv(dataset.num_node_features, hidden_channels) self.conv2 = GCNConv(hidden_channels, hidden_channels) self.conv3 = GCNConv(hidden_channels, hidden_channels)</pre>	
Scalability Issues	<pre>train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True) val_loader = DataLoader(val_dataset, batch_size=64, shuffle=False) test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)</pre>	The mod convoluti
Inability to Capture Multi-Scale Structures	<pre>def forward(self, x, edge_index, batch): x = F.relu(self.conv1(x, edge_index)) x = F.relu(self.conv2(x, edge_index)) x = F.relu(self.conv3(x, edge_index)) x = global_mean_pool(x, batch)</pre>	global mea the ability scale featu
Difficulty in Learning long-range dependencies		hierarchical proteins.

27.01.25

Analysis – Diving Deep

Problem	Culprit
Over-Smoothing	<pre>self.conv1 = GCNConv(dataset.num_node_features, hidden_channels) self.conv2 = GCNConv(hidden_channels, hidden_channels) self.conv3 = GCNConv(hidden_channels, hidden_channels)</pre>
Scalability Issues	<pre>train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True) val_loader = DataLoader(val_dataset, batch_size=64, shuffle=False) test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)</pre>
Inability to Capture Multi-Scale Structures	<pre>def forward(self, x, edge_index, batch): x = F.relu(self.conv1(x, edge_index)) x = F.relu(self.conv2(x, edge_index)) x = F.relu(self.conv3(x, edge_index)) x = global_mean_pool(x, batch)</pre>
Difficulty in Learning long-range dependencies	<pre>x = F.relu(self.conv1(x, edge_index)) x = F.relu(self.conv2(x, edge_index)) x = F.relu(self.conv3(x, edge_index))</pre>

While graph convolutions theoretically capture long-range dependencies through layer stacking, in practice, the repetitive application of uniform convolutions across entire graphs fails to effectively address long-range interactions in large, complex structures.

4. Fundamentals of Hierarchical GNN

Graph Coarsening

$$H^{(l+1)} = C^{(l)}H^{(l)}W^{(l)}$$

- $\mathbf{H}^{(l)}$ is the matrix of node features at layer (l)
- **W**^(l) is the weight matrix at layer (l), which transforms the node features.
- C^(l) is the coarsening matrix which reduces the number of nodes by merging them

Capturing the Hierarchy

$$H^{(l+1)} = \sigma(Aggregate(C^{(l)}H^{(l)})W^{(l)})$$

- $oldsymbol{\sigma}$ is a nonlinear activation function that introduces nonlinearity
- AGGREGATE could be a function like sum, mean, or more complex learned function, which combines features of the nodes which have been merged together.

5. Diffpool Mechanism

5. Diffpool Mechanism - Implementation


```
class GNN(torch.nn.Module):
   def __init__(self, in_channels, hidden_channels, out_channels, normalize=False, lin=True):
       super().__init__()
       self.conv1 = DenseSAGEConv(in_channels, out_channels, normalize)
       self.bn1 = torch.nn.BatchNorm1d(out_channels)
       self.lin = torch.nn.Linear(out channels, out channels) if lin else None
   def forward(self, x, adj, mask=None):
       x = self.conv1(x, adj, mask).relu()
       x = self.bn(1, x)
       if self.lin is not None:
           x = self.lin(x).relu()
       return x
   def bn(self, i, x):
       batch_size, num_nodes, num_channels = x.size()
       x = x.view(-1, num channels)
       x = getattr(self, f'bn{i}')(x)
       x = x.view(batch size, num nodes, num channels)
       return x
class Net(torch.nn.Module):
   def __init__(self, num_features, num_classes):
       super().__init__()
       self.gnn1_pool = GNN(num_features, 64, ceil(0.25 * 640))
       self.gnn1_embed = GNN(num_features, 64, 64, lin=False)
       self.lin1 = torch.nn.Linear(64, 64)
       self.lin2 = torch.nn.Linear(64, num_classes)
   def forward(self, x, adj, mask=None):
       s = self.gnn1_pool(x, adj, mask)
       x = self.gnn1\_embed(x, adj, mask)
       x, adj, _, _ = dense_diff_pool(x, adj, s, mask)
       x = x.mean(dim=1)
       x = self.lin1(x).relu()
       x = self.lin2(x)
       return F.log_softmax(x, dim=-1)
```

5. Diffpool Mechanism - Implementation

Final Test Accuracy with diffpool: 0.78, Test Loss: 0.48

Final Test Accuracy w/o: 0.7232, Test Loss: 0.5846

5. Diffpool Mechanism

Analysis

6. Tying it all up

Flat GNN methods

Hierarchical Learning w Diffpool

Operates at a single level of graph representation, which may limit the complexity of patterns captured.

Struggles with large data due to computation limitations Risk of over-smoothing can still exist, but controlled through hierarchical processing.

Learns multi-level hierarchical representations, potentially capturing deep patterns

Better handles larger graphs through hierarchical reductions

Questions

Thank you!!!

