Weil Conjectures for Elliptic Curves

Tianyang WANG

Sorbonne Université

12 juin 2024

Table des matières

- Motivation
- 2 Vocabularies
- Towards the Question
- 4 Differential
- 6 Riemann-Roch
- Tate Module

Riemann Hypothesis

Conjecture (Riemann Hypothesis)

The Riemann zeta function is defined as

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

Then, the non-trivial zeros of the Riemann zeta function all have a real part equal to 1/2.

Zeta Function for Projective Varieties

Definition (Zeta Function for Projective Varieties)

Let V be a projective variety over \mathbb{F}_q . The zeta function of V is the formal series

$$Z(V/\mathbb{F}_q;T) = \exp\left(\sum_{n=1}^{\infty} (\#V(\mathbb{F}_{q^n})) \frac{T^n}{n}\right) \in \mathbb{Q}[[T]],$$

where $\exp(F(T))$ denotes the formal series $\sum_{i=0}^{\infty} F(T)^i / i!$ for a formal series without a constant term.

Weil Conjecture

Taking a change of variable $T = q^{-s}$, we define the zeta function as:

$$\zeta(s) = Z(E/\mathbb{F}_q; q^{-s}).$$

Theorem (Weil Conjecture (Part))

(Deligne 1973) Let V be a smooth projective variety over \mathbb{F}_q of dimension n. The Riemann hypothesis holds for the zeta function. That is, the zeros of the zeta function all have a real part equal to 1/2.

Main Theorem

GOAL: Weil Conjectures for Elliptic Curves, in other words:

Theorem (Main Theorem)

(Hasse) Let E be an elliptic curve over \mathbb{F}_q . Then there exists $a \in \mathbb{Z}$ such that

$$Z(E/\mathbb{F}_q;T) = \frac{(1-\alpha T)(1-\beta T)}{(1-T)(1-qT)}$$
 (Rationality),

$$Z(E/\mathbb{F}_q; \frac{1}{qT}) = Z(E/\mathbb{F}_q; T)$$
 (Functional Equation),

and

$$1-aT+qT^2=(1-\alpha T)(1-\beta T)$$
 with $|\alpha|=|\beta|=\sqrt{q}$ (Riemann Hypothesis).

Table des matières

- Motivation
- 2 Vocabularies
- Towards the Question
- 4 Differential
- 6 Riemann-Roch
- Tate Module

Projective Curve

Definition (Projective Curve)

Let the projective plane $\mathbb{P}^2(k)$ be the quotient $(k^3\setminus\{0\})/k^\times$. The class of a point $\tilde{P}=(x_0,x_1,x_2)\in\mathbb{A}^3$ is denoted $P:=[x_0,x_1,x_2]$ in $\mathbb{P}^2(k)$. A projective curve is a closed subvariety of a projective plane. It can be written as

$$V(f) := \{ [x_0, x_1, x_2] \in \mathbb{P}^2 : f([x_0, x_1, x_2]) = 0 \}$$

where f is a homogeneous polynomial in $k[T_0, T_1, T_2]$.

Why projective?

Example (Weierstrass Equation)

$$Y^2Z + a_1XYZ + a_3YZ^2 = X^3 + a_2X^2Z + a_4XZ^2 + a_6Z^3$$
.

Anti-Equivalence

Theorem

There is an anti-equivalence between the two categories:

Objects: extensions of k

of finite type and of transcendence degree 1

degree 1

Morphisms: field extensions

Objects:

smooth

projective

projective curves Morphisms: dominant

morphisms

Anti-Equivalence

Démonstration.

(Idea)

- <>: Just take the function field.
- \leftarrow : for K/k, a finite type extension of transcendence degree 1, suppose

$$C_K := \{ \text{valuation of } K/k \ v : K^{\times} \twoheadrightarrow \mathbb{Z} \}$$

endowed with the cofinite topology. We can give a sheaf structure on C_K and verify that it is indeed a smooth projective curve.

Elliptic Curve

Definition (Elliptic Curve)

An elliptic curve over k is a pair (E,O) where E is a smooth projective curve of genus 1 defined over k and O is a k-rational point.

Degree

Definition (Degree, Algebraic Side)

Let $\varphi: C \to C'$ be a dominant morphism. We define its degree

 $deg(\varphi) := [k(C) : k(C')]$, and its separable degree

 $deg_s(\varphi) := [k(C)_{sep} : k(C')] = [k(C) : k(C')]_s.$

Lemma (Geometric Side)

Let $\varphi: C \to C'$ be a morphism between two smooth projective curves, then for any $Q \in C'$,

$$extit{deg}(arphi) = \sum_{P \in arphi^{-1}(Q)} e_P(arphi)$$

Table des matières

- Motivation
- 2 Vocabularies
- Towards the Question
- 4 Differential
- 6 Riemann-Roch
- Tate Module

Proposition

Proposition

Let \mathbb{F}_{q^n} denote the extension of \mathbb{F}_q of degree n, and $E(\mathbb{F}_{q^n})$ the \mathbb{F}_{q^n} -rational points of E. We have

$$\#E(\mathbb{F}_{q^n}) = 1 - \alpha^n - \beta^n + q^n$$

where α , $\beta \in \mathbb{C}$ are two complex conjugate numbers with ordinary norm \sqrt{q} in \mathbb{C} .

Proof of the Main Theorem Assuming the Previous Proposition.

$$\log Z(E/\mathbb{F}_q; T) = \sum_{n=1}^{\infty} (1 - \alpha^n - \beta^n + q^n) \frac{T^n}{n}$$
$$= -\log(1 - T) + \log(1 - \alpha T) + \log(1 - \beta T)$$
$$-\log(1 - qT).$$

This implies that

$$Z(E/\mathbb{F}_q;T) = \frac{(1-\alpha T)(1-\beta T)}{(1-T)(1-qT)}$$

where α , $\beta\in\mathbb{C}$ are two complex conjugate numbers with ordinary norm \sqrt{q} in \mathbb{C} and

$$a := \alpha + \beta = Tr(\phi_{\lambda}) = 1 + q - \deg(1 - \phi) \in \mathbb{Z}.$$

We can verify that it is the desired form.

Weierstrass Equation

Lemma

Let (E,O) be an elliptic curve over k. There exists an embedding $\iota: E \hookrightarrow \mathbb{P}^2$ defined over k whose image is the curve defined by a Weierstrass equation

$$Y^2Z + a_1XYZ + a_3YZ^2 = X^3 + a_2X^2Z + a_4XZ^2 + a_6Z^3$$
.

Problems

- **Problem 1**: Is the morphism $id \phi^n$ unramified? **Solution**: Use differentials.
- Problem 2: Write any elliptic curve in Weierstrass form.
 Solution: Use the Riemann-Roch theorem.
- Problem 3: Compute the degree.
 Solution: Use the Tate module.

Table des matières

- Motivation
- 2 Vocabularies
- Towards the Question
- 4 Differential
- 6 Riemann-Roch
- Tate Module

Kähler Differential

Definition

Let $A \to B$ be a morphism of rings. We define the B-module $\Omega_{B/A}$ of Kähler differentials as the quotient of the B-module generated by the symbols dx, $x \in B$ by the relations d(x + y) = dx + dy, d(xy) = xdy + ydx, dx = 0 if $x \in A$. It is thus equipped with an A-linear map $x \mapsto dx$. We can also define it as:

$$\Omega_{B/A} := I/I^2$$
, where $I := \ker(B \otimes_A B \stackrel{mult}{\rightarrow} B)$,

in which case, $dx = (x \otimes 1 - 1 \otimes x) \mod I^2$.

We have the universal property: for any B-module M, we have the isomorphism

$$\operatorname{\mathsf{Hom}}_B(\Omega_{B/A},M)\stackrel{\simeq}{ o}\operatorname{\mathsf{Der}}_A(B,M),$$

where an A-linear derivation on B is an A-module morphism $d: B \to M$ satisfying the Leibniz rule d(fg) = fdg + gdf.

Properties of Differential Modules

Lemma

We have the following properties for the module of differentials.

- (i) If B is generated as an A-algebra by elements x_1, \ldots, x_n , then $\Omega_{B/A}$ is generated by the dx_i as a B-module.
- (ii) If $B = A[X_1, ..., X_n]$, then $\Omega_{B/A}$ is free over B with basis $dX_1, ..., dX_n$.
- (iii) For $A \rightarrow B \rightarrow C$, we have an exact sequence

$$C \otimes_B \Omega_{B/A} \to \Omega_{C/A} \to \Omega_{C/B} \to 0.$$

• (iv) For L/K a finite type extension of k, the morphism $L \otimes_K \Omega_{K/k} \to \Omega_{L/k}$ is an isomorphism if and only if L/K is a separable extension.

Examples

Example

- (i) Let $L = \mathbb{F}_p(X)$ and $K = \mathbb{F}_p(X^p)$. Since any \mathbb{F}_p -linear derivation of L is zero on K, by the universal property we have $\Omega_{L/K} = \Omega_{L/\mathbb{F}_p} = L \cdot dX$.
- (ii) Let L/K be a separable extension. For any $x \in L$, suppose f is a polynomial that annihilates x such that $f'(x) \neq 0$. Then we have f(x) = 0, and hence 0 = df(x) = f'(x)dx. It follows that dx = 0. We conclude that $\Omega_{L/K} = 0$.

Meromorphic Differential on a Smooth Curve

Proposition

Let C be a smooth curve. We denote $\Omega_C := \Omega_{k(C)/k}$, called the space of meromorphic differentials on C.

- (i) Ω_C is a k(C)-vector space of dimension 1.
- (ii) Let $\varphi: C \to C'$ be a non-constant morphism of elliptic curves. The extension $\varphi^*: k(C') \to k(C)$ induces a k(C')-linear map

$$\Omega_{C'} \to \Omega_C, \sum f_i dx_i \mapsto \sum (\varphi^* f_i) d(\varphi^* x_i).$$

This map is non-zero (and thus injective) if and only if φ is separable.

Démonstration.

(Proof of (ii)) We use (iii) and (iv) of the previous lemma.

Problem 1

Lemma

Let $\varphi: E_1 \to E_2$ be a non-constant morphism of varieties between two elliptic curves. If φ is non-constant, we have:

- (i) $deg_i(\varphi) = e_P(\varphi)$ does not depend on P.
- (ii) $deg_s(\varphi) = \#\varphi^{-1}(Q)$ for all $Q \in E_2$.

The Riemann-Hurwitz formula can be used to prove this.

Problem 1: Choose a non-zero differential $\omega \in \Omega_{C'}$. Since the Frobenius morphism ϕ is inseparable, we have $(id - \phi)^*\omega = \omega \neq 0$.

Table des matières

- Motivation
- 2 Vocabularies
- Towards the Question
- 4 Differential
- 6 Riemann-Roch
- Tate Module

Divisor

Definition

Let C be a smooth curve. We denote Div(C) the free abelian group generated by the points of C. If $D=\sum_P a_P[P]$ is a divisor, its degree deg(D) is the integer $\sum_P a_P$. Let D,D' be two divisors, we say $D\leq D'$ if for all points $P\in C$, the coefficient of D is less than or equal to that of D'. We say D is effective if $D\geq 0$. Furthermore, we define a map

$$\operatorname{div}: k(C)^{\times} \to \operatorname{Div}(C), f \mapsto \sum_{P} v_{P}(f)[P].$$

Let $\ell(D)$ be the dimension of the k-vector space

$$\mathcal{L}(D) := \{ f \in k(C) : \operatorname{div}(f) + D \ge 0 \}.$$

Example

Let C be a projective curve. If there exists $P \in C$ such that $\ell([P]) = 2$, then $C \simeq \mathbb{P}^1$.

Riemann-Roch Theorem

Theorem

Let C be a (smooth projective) curve. Then for any $D \in Div(C)$, we have

$$\ell(D) - \ell(K_C - D) = \deg(D) + 1 - g(C).$$

Note that $\deg(K_C)=0$ for an elliptic curve. Using Riemann-Roch, we obtain the relationship between the number $\ell(D)$ of a divisor and its degree $\deg(D)$ as shown in the table below.

$\deg(D)$:	• • •	-2	-1	0	1	2	3	• • •
$\ell(D)$:		0	0	0 or 1	1	2	3	

That is, $\ell(D)$ is determined by $\deg(D)$ except when $\deg(D)=0$. But when $\deg(D)=0$, $\ell(D)=1$ if D is principal, and $\ell(D)=0$ otherwise.

Weierstrass Equation

Démonstration.

Since O is a k-rational point, the divisor 3[O] is defined over k. By the corollary of Riemann-Roch, we have $\ell(2[O]) = 2$, $\ell(3[O]) = 3$. We can find $x \in \mathcal{L}(2[O]) \setminus \mathcal{L}([O])$, and $y \in \mathcal{L}(3[O]) \setminus \mathcal{L}(2[O])$. Then $\{1, x, y\}$ forms a k-basis of $\mathcal{L}(3[O])$ which provides an embedding $\iota: E \to \mathbb{P}^2$. To compute an equation, note that the family of 7 functions $\{y^2, x^3, yx, x^2, y, x, 1\}$ lives in $\mathcal{L}(6[O])$ whose dimension is 6. It follows that the family is k-linearly dependent. Moreover, note that the orders of pole at O of these functions are respectively 6,6,5,4,3,2,0, the families obtained by removing y^2 or x^3 are independent. Therefore, both terms must appear in the equation. After a reasonable multiplication, we can arrange the equation in the form where the coefficients of y^2 and x^3 are 1. Thus, $\iota(E)$ is included in a Weierstrass equation C.

Table des matières

- Motivation
- 2 Vocabularies
- Towards the Question
- 4 Differential
- 6 Riemann-Roch
- Tate Module

Torsion Subgroup

Definition

Let E be an elliptic curve and $m \in \mathbb{Z}^{\times}$. We define the m-torsion subgroup

$$E[m] := \{ P \in E : [m]P = 0 \}.$$

Proposition

Let E be an elliptic curve and $m \in \mathbb{Z}^{\times}$ such that $\gcd(m, \operatorname{char}(k)) = 1$. Then we have

$$E[m] = \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$$
.

Tate Module

Definition (Tate Module)

Let E be an elliptic curve and λ a prime number. We have a projective system

$$\cdots \to E[\lambda^{n+1}] \stackrel{[\lambda]}{\to} E[\lambda^n] \to \cdots \to E[\lambda].$$

The $(\lambda$ -adic) Tate module is the projective limit of this system

$$T_{\lambda}(E) := \varprojlim_{n} E[\lambda^{n}]$$

which is naturally a \mathbb{Z}_{λ} -module.

Structure of the Tate Module

Proposition

If $\lambda \neq \operatorname{char}(k)$, we have

$$T_{\lambda}(E) \simeq \mathbb{Z}_{\lambda} \times \mathbb{Z}_{\lambda}.$$

Démonstration.

We take the projective limit in the previous proposition.

Isogenies and Tate Modules

Let $\varphi: E_1 \to E_2$ be an isogeny between two elliptic curves, then φ induces a map $E_1[\lambda^n] \to E_2[\lambda^n]$, hence a $(\mathbb{Z}_{\lambda}$ -linear) map between Tate modules

$$T_{\lambda}(E_1) \rightarrow T_{\lambda}(E_2).$$

We obtain a map

$$\mathsf{Hom}(E_1,E_2) \to \mathsf{Hom}(T_\lambda(E_1),T_\lambda(E_2))$$

and in particular for any elliptic curve,

$$\operatorname{End}(E) \to \operatorname{End}(T_{\lambda}(E)), \psi \mapsto \psi_{\lambda}$$

which is indeed a ring homomorphism. After choosing a \mathbb{Z}_{λ} -basis for $T_{\lambda}(E)$, we can write ψ_{λ} as a 2 × 2 matrix in $GL_{2}(\mathbb{Q}_{\lambda})$.

Completion of the Proof

Proposition

Let E be an elliptic curve, $\psi \in \operatorname{End}(E)$ an endomorphism. Recall that we have a Tate module endomorphism $\psi_{\lambda} \in \operatorname{End}(T_{\lambda}(E))$. Then we have

$$\det(\psi_{\lambda}) = \deg(\psi)$$

and

$$\mathsf{Tr}(\psi_{\lambda}) = 1 + \mathsf{deg}(\psi) - \mathsf{deg}(1 - \psi).$$

In particular, $det(\psi_{\lambda})$ and $Tr(\psi_{\lambda})$ do not depend on the choice of λ .

Completion of the proof.

An example.

Bibliography

Jean-François Dat, Variétés algébriques, Link to document

Joseph H. Silverman, *The Arithmetic of Elliptic Curves*, Graduate Texts in Mathematics 106, Springer 2009.

Jean-François Dat, Introduction aux courbes elliptiques, Link to document