- 1) Fill in the blanks /Short answer (30 points, 3 points each)
 - a) ... Speculation is a method of resolving a branch hazard that assumes a given outcome for the branch and proceeds based on that assumption rather than waiting for the actual outcome.
 - b) Increasing block size can improve hit ratio due to temporal locality.
 - c) In a direct-mapped cache each block has only one word. True or False.
 - d) The five stages in a pipeline implementation require 4, 5, 4, 2, and , 3 nanoseconds. What is the fastest clock rate at which this datapath can operate?
 - e) List two primary methods for enhancing instruction-level parallelism.
 - I. Deeper pipeline II. Multi-issue pipeline
 - f) Block is the unit of information transferred between the cache and main memory on a miss.
 - g)..... is a scheme (policy) which handles writes by updating values only to the block in the cache, then writing the modifies block to the lower level of the hierarchy when the block is replaced.
 - h) Temporal locality is the principle stating that if a data location is referenced, then it will tend to be referenced again soon.

T, NT, NT, NT, T, T, T, T, T, T

- j) List three types of hazards that can degrade the performance of a pipelined datapath.
 - i) Control
 - ii) Vata
 - iii) structural

12048"	024 312 256	128 64 32 16	8421	00->1	= 10			
			23 22 2 20	16 10 -72		0	0-9	9
				32 26 -> 1	E 47	10	ANF	*
				32 26-1	DE L	16	10-19	13
	00 10 E 142 E	· · · · · · · ·		48 42 ->	Name			
	CSc/CpE 142 – Ex	uses 16-bit addresse ag 32 (thirty two) 4	s, with byte addr	essable location	ons. Assume th	is system h	as a	0
	implementation	of the cache assum	ing 4-way set as	sociativity.		on the		
					ato different			15
answer	You nee	ed to show how a give eference. Show all r	ven 16-bit addre	nents of the ca	iche. Provide t	rts to perfor	rm a	')
rextac	compon	ent and the widths	of its inputs and	outputs, if app	officable. (15 p	oints)	11	-
P					lansu	ver on ne	12/	245
	Assume address	the cache is empty, sequence: 0, 5, 4, 7	7, 20, 21, 23, 8, 0	C, FC. (10 poin	nts)	g hexadecin	nal	cache
cache . 27	4-word bloc	ks =7 4 wo	rds/block	32 610	cks x 4 66	+ 6	-	
SIZE	1 2010 000	=7 32 1	Incks	cache	× 41 1/4	= (8 sets	
word : 16 6	140	32	0.00.3	Call	7 04	ock?	cach	2
		. /	index : 10	928 3 5	sits			
4 way set	= / 4 block	5/97		1 (1)		. , ,		
16 bit address			byte offset	: log = lay	e in word) =	1092 3)=1	bits
			word offse	t: 1092 (4	pord in block) = ba	400	. 1-
w/w/w/w				3.		1 19	1 2	6175
++++							h.lm	in block
16 16 16 16							syres !	IN PLOCE
16 16 16								0.00
block 0	Į	stock t	block 2		block 3			33.00
10	F) R) 25	126	17	T42	2F		
1		1			140			41
								1
O : mis	5			M				A 29
5: hit	-		5					11
4: hit			7 4	h				6 30
7: hit	. / -	=> 3 misse	\$1	1			6	0 3
20 ; (mis	<		32	m			0	
zi i mis		r	33	m				E
		1	32	h				1
23: hit	1)	solvri o	8	h				16 10
8: hit	V	Sul	12	h				17 11
c: hit		3	1512	m				18 12
FC: MIS	s I land	//	1312	.11.				19 13
	h/1 //							20 14
		1 1					0	421 15
		a My					0	55 18
		Mehr						23 5
	lule 1	7						24 1
. 1/4	(0,0)	. 3!						25,
Mill	, ,	MINN by						26
. \	10 1/10	1						75
		Marie Company of the	CONTRACTOR STREET					L

CSc/CpE 142 - Exam 2

4) Consider a hypothetical 16-bit assembly language with only three instructions. The format for these instructions is given below. Design a pipelined CPU which can fetch and execute any of these instructions. Show all necessary components. Label each component (including its ports). Assume that the memory is byte-addressable. The internal design of the control logic is not required. You must use minimum number of components possible. (25 points)

	Bits (15 - 12)	bits (11 - 8)	bits (7 - 4)	bits (3 - 0)			
Instruction	opcode	operand 1	operand 2				
SWAP			operand 2	Operand 3	operation		
	0000	Reg 1	Reg 2	not used	Swaps the contents of operand 1 and operan2;		
	0000				Reg 1 <= Reg 2		
ADD	0010	Reg 1	Reg 2	D 2	Reg 2 <= Reg1		
SUB	1000	D I		Reg 3	Reg 1 = Reg 3 + Reg 2		
-	1000	Reg 1	Reg 2	Reg 3	Reg 1 = Reg 3 - Reg 2		

