ROM MEMORY AND DECODERS

INEL4207

RANDOM ACCESS MEMORY

- Random Access Memory (RAM)
 - read and write memory
 - volatile
- Static RAM (SRAM)
 - store information as long as power is applied
 - will not lose data during a read cycle
- Dynamic RAM (DRAM)
 - uses a capacitor to store data
 - must be refreshed periodically to prevent data loss
 - read cycles destroy DRAM data (must be re-written)
- SRAM takes ~ 4 x DRAM Silicon area

READ-ONLY MEMORY (ROM)

- Non-volatile
- ROM is often needed in digital systems such as:
 - -Holding the instruction set for a microprocessor
 - -Firmware
 - -Calculator plug-in modules
 - -Cartridge style video games

A 256-MBYTE MEMORY CHIP

- Memory block contains 2^{M+N} storage locations
- When a bit is selected,
 - sense amplifiers: used to read/write to the RAM location
- Horizontal rows: wordlines
- Vertical lines: bitlines

READ-ONLY MEMORY (ROM)

- The basic structure of the NMOS static ROM is shown in the figure
- The existence of a NMOS means a "0" is stored at that address otherwise a "1" is stored
- The major downfall to this particular circuit is that it dissipates a lot of power

Figure 16.30 A simple MOS ROM organized as 8 words $\times 4$ bits.

READ-ONLY MEMORY (ROM)

 The domino CMOS ROM is one technique used to lower the amount of power dissipation

NAND-ARRAY STRUCTURE ROM

- Can be directly used with NAND decoder
- Active-low word bits:
 - All W's are HIGH except selected row
 - absence of FET makesbit low;
 - presence makes bit high

NMOS NOR ADDRESS DECODERS

Output 0 is high if both A0 and A1 are low

Row
$$0 = (AI + A0)'$$

Row
$$I = (AI + A0')'$$

Row
$$2 = (AI' + A0)'$$

Row
$$3 = (A1' + A0')'$$

Figure 16.25 A NOR address decoder in array form. One out of eight lines (row lines) is selected using a 3-bit address.

NMOS NAND ADDRESS DECODERS

 Output 3 is low if both A0 and A1 are high

Row
$$0 = (A_1'A_0')'$$

Row
$$I = (A_1'A_0)'$$

Row 2 =
$$(A_1 \cdot A_0')'$$

Row
$$3 = (A_1 \cdot A_0)'$$

DOMINO CMOS ADDRESS DECODERS

PASS-TRANSISTOR COLUMN DECODER

3-bit column data selector using pass-transistor logic

Figure 16.27 A tree column decoder. Note that the colored path shows the transistors that are conducting when $A_0 = 1$, $A_1 = 0$, and $A_2 = 1$, the address that results in connecting B_5 to the data line.

Figure 16.26 A column decoder realized by a combination of a NOR decoder and a pass-transistor multiplexer.

