Optimisation de pression

Estelle Baumann

December 11, 2024

1 EPFL Carbon Team

Nous sommes un projet MAKE construisant un prototype capable de capturer directement l'air ambiant (DAC, Direct Air Capture). Notre prototype principal, Astérix, peut être vu comme un grand canal d'aération. L'air circule d'un côté à l'autre grâce à un ventilateur à l'entrée, et passe ensuite à travers des structures contenant des adsorbants. C'est ici qu'à lieu le processus de capture : ces adsorbants sont de petites structures chimiques sur lesquelles le CO_2 se fixe en passant. Grâce aux variations de température imposées, le prototype capture le CO_2 à température ambiante et le relâche sous forme hautement concentrée lorsqu'on le chauffe, le rendant prêt au stockage.

En choisissant ce projet, vous rejoindrez une équipe dynamique de 60 membres provenant de nombreuses sections. Rejoindre un projet MAKE signifie que vous serez entourés d'étudiants disponibles pour vous aider et vous conseiller en cas de besoin. De plus, travailler au SPOT vous donne accès à tous les outils ou machines qui pourraient vous être utiles, ainsi qu'à des coachs très compétents prêts à vous épauler.

Chaque semestre, des étudiants en génie mécanique nous rejoignent pour des projets de semestre. Nous avons toujours reçu de bons retours, et certains d'entre eux ont choisi de rester impliqués dans l'équipe par la suite.

N'hésitez pas à consulter notre site web, et si vous avez des questions ou êtes intéressé(e) à rejoindre le projet, vous pouvez nous envoyer un mail à president carbonteam @epfl.ch.

2 Description du projet

2.1 Contexte

Nous souhaitons optimiser les pertes de pression à l'intérieur du prototype. Le problème principal se pose lorsque l'air traverse la structure contenant les adsorbants. Étant donné que ces derniers sont disposés dans une configuration assez dense, nous devons trouver la géométrie qui permet le chemin le plus facile pour le flux d'air. Pour l'instant, nous utilisons des colonnes pour contenir les adsorbants (Figure 1) : il y en a 9 en parallèle à l'intérieur d'Astérix, et une seule dans la version plus petite du prototype (« Casing » sur la Figure 2). Cette petite version du prototype, que nous aimons appeler Mini-Astérix, a été construite l'année dernière dans le cadre d'un projet de semestre similaire. Étant donné que la structure extérieure est en bois (Figure 3), nous ne pouvons pas tester la capture de CO_2 par variations de température. Mini-Astérix est utilisé uniquement pour analyser les performances générales du flux d'air.

2.2 Votre mission

Comme mentionné plus haut, pour l'instant nous utilisons des colonnes pour contenir les adsorbants, mais nous avons déjà la possibilité d'essayer une forme triangulaire à la place (Figure 4). L'objectif de ce projet est de trouver la structure optimale pour le logement des adsorbants, en utilisant le prototype Mini-Astérix.

Les tâches principales de ce projet sont :

Figure 1

Figure 2: CAO du prototype Mini-Astérix

Figure 3: Photo du prototype Mini-Astérix

- Améliorer le prototype en ajoutant les composants nécessaires pour analyser les pertes de pression.
- Comparer les résultats pour différentes structures de logement d'adsorbants (colonnes/triangles).
- Explorer d'autres géométries pour la structure et, si le temps le permet, les construire et les tester également.

Ce projet nécessitera la conception de nouvelles structures en CAO, la fabrication de celles-ci en utilisant les méthodes de prototypage disponibles au SPOT (découpe laser, impression 3D, etc.), et surtout, la lecture des valeurs des capteurs pour déterminer la solution la plus optimisée.

Si ce projet vous intéresse, nous serions ravis de vous accueillir dans l'équipe!

Figure 4: Version triangle de la structure contenant les adsorbants

2.3 Nombre de personnes nécessaires

Pour ce projet, nous attendons 2 à 3 étudiants.