## Entry, Variable Markups, and Business Cycles

William Gamber New York University

November 12, 2020

#### Introduction



#### Introduction

Business formation fell dramatically during the Great Recession

- Many potential causes: credit, uncertainty, low demand
- ► This paper takes the fall as given

Question: How large is the effect of falling entry on aggregate employment?

**Account for**: the impact of missing entrants on incumbents:

- ► Falling entry ⇒ incumbent market shares rise
- Incumbents increase markups
- ▶ This leads them to reduce employment

#### Introduction

#### Method: general equilibrium business cycle model

- ► Heterogeneous firms, endogenous entry/exit
- Markups covary with size ("variable markups")
- Labor adjustment costs

#### **Finding**: Falling entry leads employment to fall significantly

- Markups rise & output allocated away from productive firms
- Response of aggregates twice as large as a constant markups model
- ▶ Adjustment costs amplify variable markups mechanism by 50%

## This paper

#### Outline:

- 1. Quantify variable markups mechanism
  - Use panel data on large firms
  - ► Large elasticity of markup to rel. sales: up to 35%

## This paper

#### Outline:

- 1. Quantify variable markups mechanism
  - Use panel data on large firms
  - ► Large elasticity of markup to rel. sales: up to 35%
- 2. Study entry and aggregate employment in a GE firm dynamics model
  - Kimball demand + labor adjustment costs
  - Calibrated to panel regression + employment dynamics
  - Compare to constant markups benchmark
  - Labor adjustment costs are key

## This paper

#### Outline:

- 1. Quantify variable markups mechanism
  - Use panel data on large firms
  - ► Large elasticity of markup to rel. sales: up to 35%
- 2. Study entry and aggregate employment in a GE firm dynamics model
  - ► Kimball demand + labor adjustment costs
  - Calibrated to panel regression + employment dynamics
  - Compare to constant markups benchmark
  - Labor adjustment costs are key
- 3. Applications to Great Recession and secular rise in concentration
  - ightharpoonup Generates a 70 basis point rise in  $\mathcal M$  and 3 percent fall in  $\mathcal L$  during GR
  - lacktriangle Effects of entry on markup pprox 3-4 times larger than they used to be



#### Literature: Pro-competitive effects of entry

Wide range of estimates of the effect of entry on the markup:

- ▶ Homogeneous firms models: large effects of entry on markups and productivity ((Jaimovich and Floetotto (2008) and Bilbiie, Ghironi and Melitz (2012)).
- Accounting for **heterogeneity** greatly reduces effects (Edmond, Midrigan and Xu (2018) and Arkolakis et al (2019)).
- Why? Falling entry ⇒ firms increase markups & employment reallocated to low-markups firms

#### This paper:

- Adjustment costs inhibit reallocation
- ► Entry matters quantitatively



#### Literature: Pro-competitive effects of entry

Weak reallocation mecahnism consistent with empirical evidence:

- ► Causal evidence on entry, markups, and employment (Suveg (2020), Felix and Maggi (2019))
- ➤ Small firms' sales are more cyclically sensitive than large firms' (Crouzet and Mehrotra (2020))

#### Literature: Pro-competitive effects of entry

Recent literature on Great Recession (Moreira (2017), Clementi and Palazzo (2016), Siemer (2014))

- Entrants are small relative to incumbents
- ▶ But account for a significant fraction of employment growth
- $\Rightarrow$  Entry has small immediate effects on aggregates but generates slow recovery

This paper: declining entry can have large immediate effects

Why? Large firms respond to lack of small firms.

### Model: Representative household

A representative household chooses consumption and labor supply to maximize

$$\sum_{t=0}^{\infty} \beta^t u(C_t, L_t)$$

They receive wages and profits as income

$$C_t \leq W_t L_t + \Pi_t$$

Labor supply satisfies an intratemporal FOC

$$-\frac{u_L}{u_C}=W$$

## Final good production

A perfectly competitive representative firm produces the final good  $Y_t$ 

▶ Given  $\{y_t(\omega)\}$  quantities of inputs,  $Y_t$  implicitly defined by:

$$\int_0^{N_t} \Upsilon\left(\frac{y_t(\omega)}{Y_t}\right) d\omega = 1$$

ightharpoonup Relative output  $q_t$  is

$$q_t \equiv rac{y_t}{Y_t}$$

▶ This paper: Klenow-Willis (2016) specification of  $\Upsilon(q)$ 

Klenow Willis (2016) Details



# Final good production

Final goods firm's optimization  $\implies$  demand system for intermediate goods

Demand curve

$$p(q; D) = \frac{\sigma - 1}{\sigma} \exp\left(\frac{1 - q^{\frac{\varepsilon}{\sigma}}}{\epsilon}\right) D$$

Demand elasticity falls with relative output:

$$\sigma(q) = \sigma q^{-\epsilon/\sigma}$$

▶ Superelasticity:  $\epsilon/\sigma$ 



#### Intermediate goods producers

#### A variable measure $N_t$ of firms each:

- Is monopolist of one differentiated intermediate variety
- ▶ Faces persistent idiosyncratic TFP  $z' \sim F(z'|z)$
- Uses constant returns production function in labor
- Faces variable demand elasticity
- Must pay labor adjustment cost c(L, L')
- lacktriangle Is exogenously destroyed at rate  $\gamma$  + endogenous exit

### Intermediate goods producers

The recursive problem of an intermediate goods producer is:

$$V(L, z; \Lambda) = \max_{p, L'} \pi(z, L', p; \Lambda) - c(L, L') + \int \max \left\{ 0, \tilde{V}(L', z, c_F; \Lambda) \right\} dJ(c_F)$$

$$\tilde{V}(L, z, c_F; \Lambda) = -c_F + \beta (1 - \gamma) \mathbb{E} \left[ m' V(L, z'; \Lambda) \right]$$

$$\pi(z, L', p; \Lambda) = \left( p - \frac{W}{L} \right) d(p; \Lambda)$$

$$y \le zL$$

## Static policies – no adjustment cost



### **Entry**

In each period, there is a measure M of potential entrants:

- lacktriangle Each draws a signal  $\phi \sim G$  about future productivity
- $\triangleright$  Decides whether to pay fixed cost to enter  $c_E$
- ▶ If enters, chooses an initial level of labor
- Produces in the following period

## Entry

Value function of a potential entrant

$$V_{E}(\phi) = \max_{L} \beta(1-\gamma) \mathbb{E}\left[m'V(L,z)|\phi\right]$$

The optimal policy is to enter if and only if

$$c_{E} \leq V_{E}(\phi)$$

Equilibrium definition

## Aggregation

Consider an aggregate production function

$$Y_t = Z_t L_t$$

Aggregate productivity is a weighted average of idiosyncratic TFPs:

$$Z_t = \left(\int\int \frac{q_t(z,L)}{z}d\Lambda_t(z,L)\right)^{-1}$$

The aggregate markup is the inverse labor share:

$$\mathcal{M}_t = \frac{Y_t}{W_t L_t}$$

It is the cost-weighted average of firm-level markups:

$$\mathcal{M}_t = \int \int \mu_t(z, L) \frac{\ell_t(z, L)}{L_t} d\Lambda_t(z, L)$$

#### Empirical framework

How strongly to markups increase with market share?

This section: quantify variable markups mechanism

- Rising markups dampen employment growth for large firms
- ► A regression of variable input use growth on revenue growth identifies the superelasticity

## Empirical framework

Firm's first order condition with respect to any variable input:

$$WL = \frac{PY}{\mu} \alpha$$
  $\mu \equiv \frac{P}{MC}$ ,  $\alpha = \frac{\partial \log Q}{\partial \log L}$ 

Taking logs:

$$\log WL = \log(PY) - \log \mu + \log \alpha$$

Estimate:

$$\log WL = \tilde{\alpha} + \beta \log(PY) + \epsilon$$

#### Dataset

Panel of US-based nonfinancial firms from Compustat:

- ▶ 1 percent of firms in the US
- ▶ 30 percent of US Nonfarm payroll
- ▶ 75 percent of Gross Domestic Income
- Organize firms into industry using Fama-French-49

Measure of variable input use:

COGS: cost of goods sold - materials, intermediate inputs, labor cost, energy

# How do variable inputs vary with relative sales?

|               |                        | log PY                   |                       |
|---------------|------------------------|--------------------------|-----------------------|
|               | (1)                    | (2)                      | (3)                   |
| log COGS      | 0.9263                 | 0.783                    | 0.654                 |
|               | (0.0007***)            | (0.002***)               | (0.002***)            |
| Specification | Log levels             | Log levels               | 1 year log difference |
| Fixed Effects | Industry $\times$ Year | $Firm \; + \;$           | Industry $	imes$ Year |
|               |                        | $Industry  \times  Year$ |                       |

Results for EMP and XLR

### How do markups vary with relative sales?

Under the static assumption, the elasticity of the markup to revenue is:

$$\frac{\partial \hat{\log \mu}}{\partial \log PY} = 1 - \hat{\beta}$$

Using the previous regression:

| $\partial \mu/\partial \log PY$ |            |            |  |  |
|---------------------------------|------------|------------|--|--|
| (1)                             | (2)        | (3)        |  |  |
| 0.0737                          | 0.217      | 0.346      |  |  |
| (0.0007***)                     | (0.002***) | (0.002***) |  |  |

#### Relaxing the static assumption

The quantity  $\mu$  can reflect any distortion to the firm's static FOC:

► Adjustment costs on variable inputs

I allow for adjustment costs in the model:

- Estimate structural model parameters using simulated method of moments
- Pin down size of adjustment costs with external data

## Calibration: super-elasticity

#### Estimate $\epsilon/\sigma$ using indirect inference:

- Compustat firms are a truncated sample of large firms
- Simulate panel of firms in the model
- ► Take a 1% sample of the largest firms
- **Estimate:**

$$\Delta \log L_{\rm ft} = \alpha + \beta \Delta \log \left( P_{\rm ft} Y_{\rm ft} \right) + \epsilon_{\rm ft}$$

# Calibration: super-elasticity



#### **Parameterization**

Firm specific TFP follows an AR(1) in logs:

$$\log z_{t+1} = \rho \log z_t + \sigma \epsilon_{t+1}, \ \epsilon_{t+1} \sim \mathcal{N}(0, 1)$$

► Entry signal *q* is Pareto distributed + truncated

$$\log z_{t+1} = \rho \log q_t + \sigma \epsilon_{t+1}, \ \epsilon_{t+1} \sim \mathcal{N}(0, 1)$$

#### **Parameterization**

Labor adjustment cost is quadratic:

$$c(L,L') = \phi_L \left(\frac{L' - (1-\delta)L}{L}\right)^2 L$$

GHH Preferences

$$u(C,L) = \frac{1}{1-\gamma} \left( C - \psi \frac{L^{1+\nu}}{1+\nu} \right)^{1-\gamma}$$

Intratemporal FOC (labor supply) is:

$$W = \psi L^{\nu}$$

#### Calibration

| Parameter    | Description                           | Value |
|--------------|---------------------------------------|-------|
| $\beta$      | Discount factor                       | 0.96  |
| $\sigma_{z}$ | Idiosyncratic tfp innovation variance | 0.53  |
| $\sigma$     | Kimball demand elasticity             | 10    |
| $\gamma$     | Exogenous exit rate                   | 1.5%  |
| M            | Mass of entrants                      | 1     |
| u            | Inverse Frisch Elasticity             | 0.5   |
| δ            | Job separation rate                   | 0.19  |

#### Calibration

| Parameter         | Description               | Value  | Targeted Moment               |
|-------------------|---------------------------|--------|-------------------------------|
| $\sigma_{s}$      | Tfp innovation dispersion | 0.29   | Dispersion, sales growth      |
| $\phi_{L}$        | Adjustment cost           | 0.0032 | Dispersion, employment growth |
| $\epsilon/\sigma$ | Super-elasticity          | 0.6    | Labor-sales regression        |
| $\mu_{F}$         | Log fixed cost mean       | -3.15  | Entry rate                    |
| $\sigma_{\it F}$  | Log fixed cost dispersion | 1.65   | Average size exiting firm     |
| $\xi$             | Signal Pareto tail        | 1.15   | Average size entering firm    |
| $\sigma$          | Elasticity parameter      | 8.6    | Average markup                |

Model fit

# Lifecycle



#### Experiment: entry-specific shock

#### Experiment:

- ▶ One time, unexpected shock to the mass of potential entrants *M*
- ▶ Shock to *M* lasts for 1 year and then returns to steady state
- Size chosen to match the fall in the number of establishments in the Great Recession relative to trend
- Perfect foresight path back to steady state

#### Stochastic discount factor:

- ► Baseline: risk-neutral SDF
- ▶ In the paper: pro-cyclical SDF amplifies results

## Entry shock response



## The markup and TFP

Aggregation implies:

$$L_t = \left(rac{1}{\psi}rac{Z_t}{\mu_t}
ight)^{rac{1}{
u}}$$

So that

$$\Delta \log L_t = \frac{1}{\nu} (\Delta \log Z_t - \Delta \log \mu_t)$$





### The markup





### **TFP**





# The role of variable markups



### **Applications**

- 1. The Great Recession
  - ► Employment at entrants fell persistently during the Great Recession
  - Experiment: find a sequence of shocks that generates the path of the number of establishments in the Great Recession
- 2. Rising markup-size relationship amplifies effects of entry
  - ► The markup-size relationship has grown over time
  - How have effects of entry grown stronger over time?

### Employment at young establishments collapsed



### Application: Great Recession



### Application: Great Recession



# How does rising market power affect business cycles?

Lots of recent research into rising markups and market concentration

- How has firm behavior changed over time?
- Recall the regression I ran earlier:

$$\log WL = \tilde{\alpha} + \beta \log(PY) + \epsilon$$

Estimate using 5-year rolling windows

# How does rising market power affect business cycles?



# How does rising market power affect business cycles?



#### Conclusion

Entry matters in a model with variable markups + adjustment costs

- ► Mechanism: incumbents increase markups
- ▶ Leads to a rise in the aggregate markup and a fall in TFP
- Doubles employment fluctuations relative to constant elasticity benchmark
- ▶ Mechanism's importance has increased over the past 30 years

### Kimball demand details

The final goods production function is

$$\int_0^{N_t} \Upsilon(y/Y) = 1$$

I use the Klenow Willis (2016) specification:

$$\Upsilon(q) = 1 + (\sigma - 1) \exp\left(rac{1}{\epsilon}
ight) \epsilon^{rac{\sigma}{\epsilon} - 1} igg[ \Gammaigg(rac{\sigma}{\epsilon}, rac{1}{\epsilon}igg) - \Gammaigg(rac{\sigma}{\epsilon}, rac{q^{\epsilon/\sigma}}{\epsilon}igg) igg]$$

where  $\sigma > 1$  and  $\epsilon \geq 0$  and where  $\Gamma(s,x)$  denotes the upper incomplete Gamma function:

$$\Gamma(s,x) = \int_{x}^{\infty} t^{s-1} e^{-t} dt$$

### Equilibrium definition

A recursive stationary equilibrium is:

- 1. aggregate output Y, consumption C, labor supply L, a wage W, and a demand index D
- 2. policy functions y(z, L) and L(z, L)
- 3. entry and production decisions
- 4. value functions V and  $V_E$  and
- 5. a distribution over states  $\Lambda(z,\ell)$

#### such that

- 1. the firms' policy functions satisfy their recursive definitions
- 2. policy functions are optimal given value functions and aggregate quantities
- 3. the labor and goods markets clear and
- 4. consumption C and labor supply L satisfy the household first order condition
- 5. the stationary distribution is consistent with the exogenous law of motion of productivity and the policy functions of the firms





### Model fit

| Moment                                                            | Target | Source       | Model moment |  |  |
|-------------------------------------------------------------------|--------|--------------|--------------|--|--|
| Labor dynamism                                                    | 7.5%   | Compustat    | 4.97%        |  |  |
| Sales dynamism                                                    | 15%    | Compustat    | 14.21%       |  |  |
| Labor–sales regression                                            | 0.55   | Compustat    | 0.57         |  |  |
| Entry rate                                                        | 11%    | BDS          | 11.38%       |  |  |
| Average size of exiting firm                                      | 59%    | CP           | 58.92%       |  |  |
| Average size of entering firm                                     | 50%    | CP           | 49.39%       |  |  |
| Cost–weighted average markup                                      | 1.25   | DLE          | 1.255        |  |  |
| Share of employment at entrants                                   | 6%     | BDS          | 3.58%        |  |  |
| Adjustment cost size                                              | 2.1 %  | Bloom (2009) | 1.81%        |  |  |
| Share of employment at young firms                                | 30%    | BDS          | 37.03%       |  |  |
| DIFILED A Landow et al. (2010). CD. Classout's and Delanes (2016) |        |              |              |  |  |

DLEU: De Loecker et al (2019), CP: Clementi and Palazzo (2016) Untargeted moments below line



### Fact 2 table

| Dependent variable |                       | $\log PY$                |                          |
|--------------------|-----------------------|--------------------------|--------------------------|
|                    | (1)                   | (2)                      | (3)                      |
| log EMP            |                       |                          | . ,                      |
| 1986-1990          | 0.888                 | 0.585                    | 0.483                    |
|                    | (0.002***)            | (0.005***)               | (0.005***)               |
| 2010-2014          | 0.802                 | 0.312                    | 0.250                    |
|                    | (0.002***)            | (0.0.005***)             | (0.005***)               |
| log XLR            |                       |                          |                          |
| 1986-1990          | 0.926                 | 0.57166                  | 0.468                    |
|                    | (0.005***)            | (0.015***)               | (0.016***)               |
| 2010-2014          | 0.812                 | 0.222                    | 0.261                    |
|                    | (0.001***)            | (0.025***)               | (0.021***)               |
| log COGS           |                       |                          |                          |
| 1986-1990          | 0.970                 | 0.810                    | 0.786                    |
|                    | (0.001***)            | (0.005***)               | (0.004***)               |
| 2010-2014          | 0.900                 | 0.466                    | 0.486                    |
|                    | (0.003***)            | (0.008***)               | (0.007***)               |
| Specification      | Log levels            | Log levels               | Log difference           |
| Fixed Effects      | Industry $	imes$ Year | Firm  +                  | $Industry  \times  Year$ |
|                    |                       | $Industry  \times  Year$ |                          |

# Fact 2 figures





### Full table 1

| Dependent variable |                       | $\log PY$              |                       |
|--------------------|-----------------------|------------------------|-----------------------|
|                    | (1)                   | (2)                    | (3)                   |
| log EMP            | 0.8384                | 0.6275                 | 0.356                 |
|                    | (0.0009***)           | (0.0016***)            | (0.0137***)           |
| log XLR            | 0.8983                | 0.6716                 | 0.4266                |
|                    | (0.003***)            | (0.007***)             | (0.007***)            |
| log <i>COGS</i>    | 0.9263                | 0.783                  | 0.654                 |
|                    | (0.0007***)           | (0.002***)             | (0.002***)            |
| Specification      | Log levels            | Log levels             | Log difference        |
| Fixed Effects      | Industry $	imes$ Year | $Firm\ +$              | Industry $	imes$ Year |
|                    |                       | $Industry \times Year$ |                       |



