关系理论

1、函数依赖

- (1) 非平凡的函数依赖: X→Y, Y∉X
- (2) 平凡的函数依赖: X→Y, Y∈X

无特殊说明下,均讨论非平凡的函数依赖。即X可以推出Y,但Y不是X的亏集。因为一般某个集合总能推出其亏集(这种情况就是平凡的函数依赖),没啥用。

- (3) 完全函数依赖: X→Y, 并且对于X的任意真专集X', 都有X→Y。则积Y完全函数依赖于X。论作XEY。
- (4) 部分函数依赖:Y不完全函数依赖于X。论作X户Y。例如A→C,又有AB→C,那么C就是部分函数依赖于AB的,这种情况会造成数据冗余。

2、码

(1) 候选码: 是一个属性组 (或者属性), 通过该属性组能推出所有的属性, 并且该属性组的任意方集都不能再推出所有属性 3。即在满足完全函数 依赖的前提下, 还得是最小的属性组。

求所有候选码的方法:

例:集合U=9A, B, C, D, E, G3. 函数依赖集F=9AB→C, CD→E, E→A, A→G3

Ister 11

找出一定属于候选码的属性,可能属于候选码的属性,以及不属于候选码的属性。方法如下:

一定属于候选码的属性: 只出现在左边, 或者左右都没出现

可能属于候选码的属性: 左右都出现

不属于候选码的属性: 只出现在石边

【例题分析】

只出现在左边的是B和D,没有左右都没出现的属性,所以BD一定是属于核选码的属性。

左右都出现的有A, C, E, 因此这三个是可能属于候选码的属性, 即待定的备选。

只出现在石边的有G,因此G是不属于候选码的属性,可以不管 3。

[Step 2]

先对确定的属性求闭包, 若不能构成候选码, 再将确定的属性和待定的属性 进行组合, 做闭包运算, 直到得到的属性组能够推出全部的属性。

闭包运算:

若要求某属性组的闭包, 首先设有集合X, 令X-f该属性组3。

X^(a)自身

X"=X"中的属性所能推出的

当X"不等于X"时,X"=X"中的属性能所推出的

依次类推…直到 $X^{(n)}$ U或者 $X^{(n)}$ X $^{(n-1)}$ 就求得了属性组的闭包 $(X)_F^{\dagger}$.

ps.闭包运算还可用于判断X→Y是否成立: 当Y⊆(X广时, 有X→Y。

【例题分析】

根据stepl的分析,一定是候选码的为BD。可能是候选码的有A、C、E。

于是先对BD求闭包(这里可求得BD推不出全部的属性),因此再分别对BDA、BDC、BDE进行闭包运算,看其是否能得到全部属性。如若不能,再增加加BDAC、BDAE之类的组合,直到求出候选码为止。

以BDA为例:设X=铜DAi

X(0)=BDA

X(1)=BDACG

··X(") *X(") 有X(")=BDACGE

因此 (BDA)产为U, 所以 (BDA)产是该选码

全部进行完闭包运算后,可知集合U在F下的候选码为(LBDA), LBDC), LBDE)3

- (2) 超码: 能推出所有属性的属性组的集合, 根据概念可知, 候选码是极小的超码集, 是超码的支集
- (3) 主码: 与有多个候选码时 (如例题那样),挑出一个作为主码,简称码
- L4) 主属性: 包含在任何一个候选码中的属性, 如例题中ABCDE 都是主属性
- (5) 非主属性: 不包含在任何一个候选码中的属性, 如例题中的原
- (b) 外码:关系模式R中,若有一个属性或属性组X,它不是R的码,但X是另一个关系模式S中的码,积X是R的外码
- (7) 全码: 最极端情况下, 整个属性组都是码, 称为全码

3、 港式

(1) INF: 所有属性都是不可分割的数据项

如果某个属性, 例如学校, 还可以继续拆分为高中和大学, 就不满足INF3。

INF是关系数据库需要满足的最低要求

(2) 2NF: 在满足INF的前提下,不包含非主属性对码的部分函数依赖 (即每一个非主属性都完全函数依赖于码)

例如在关系R中,码是学号和班级,非主属性是姓名,因为通过学号就能直接推出姓名了,不需要班级,此处姓名就部分依赖于码了,不满足2NF

(3) 3NF: 在满足2NF的前提下,不包含非主属性对码的传递函数依赖 (即码 应该直接决定非主属性,不能间接决定)

传递函数依赖:若X→Y,Y→Z,且Z*Y,Y→X,有X→Z,此时积Z对X有传递函数 依赖。

例如在关系R中,码是客户姓名,非主属性是订单编号和订单负责人,通过客户姓名可以推出他的订单编号,再通过订单编号能推出订单负责人,这种情况下客户姓名和订单负责人是间接决定的,存在传递函数依赖,不满足3NF(4)BCNF: 消除任何属性对候选码的传递依赖,即每一个决定因素都包含码,表现为在函数依赖集当中,左边的都包含候选码(整个属性组!)

(5) 4NF (应该不考这个): 不允许有非平凡且非函数依赖的多值依赖多值依赖(个人理解,仅供参考,我觉得不会细考): X, Y, Z属于集合U, 且Z=U-X-Y。 与给定一组 (a, z) 值的时候,可以确定一组Y的值,但这组Y的值仅仅取决于a, 此时有X→→Y。 其实这里就是存在了一对多的关系,即一个a和一组z有关,但a并不能唯一确定一个z, 通过a和z能找到一组y, 但你只通过a也能确定y。

平凡的多值依赖: Z 是 空集

非亚凡的多值依赖: 2不是空集

判断方法与分解方法:

R为铅, B, C, D3

2NF (没有部分函数依赖): 若码是AB, F中若为 (A→C, AB→D3, 对于C, 只需要A就能推出,那么C部分函数依赖于码AB, 这种情况就不是2NF。

若要分解为2NF, 只需将不符合要求的拿出来, 即分为R,fA, B, Dj和R,fA, C3

3NF (没有部分函数依赖与传递函数依赖): 若码是AB, F若为\AB→C, C→D\,

这里不存在部分函数依赖。但是对于D,需要AB推出C后才能间接推出D,那么D

传递函数依赖于AB,不满足3NF。

若要分解为3NF, 同样将不符合要求的拿出来, 即分为R₁YA, B, C3和R YC, D3。

BCNF (没有部分函数依赖,同时每一个决定因素都包含码):

老R是 (A, B, C), F是YAC→B, AB→C, B→C3, 恢选码则是AC和AB。这里不存在部分函数依赖, 但对于B→C来说, 决定因素B不包含码, 因此它不是BCNF。

4、最小函数依赖集

求最小函数依赖集的方法

step 1: 拆分右侧

例如将A→BC拆为A→B和A→C

step 2: 去除自身求闭包

若有有AB→C, BC→E, AE→G, 去除AB自身能推出的C, 基于剩余的依赖关系求

AB的闭包,若AB通过剩余的关系也能求出C,那么删除AB→C这个依赖关系

step 3: 左侧最小化

例如目前保留的关系有ABC→D,观察左边的ABC与中,A是否能由BC推出,B是否能由AC推出,C是否能由AB推出。假设C能被AB推出,那么左侧去掉C,更新为AB→D。

例:设F=9C→A, CG→BD, CE→A, ACD→BJ, 求最小函数依赖集。

step 1:

将CG→BD拆分为CG→B和CG→D。

step 2:

 $(C)_F^{\dagger} = C$, 因此保留 $C \rightarrow A$. $(CG)_F^{\dagger} = CGADB$, 因此去掉 $CG \rightarrow B$. $(CG)_F^{\dagger} = CGA$, 因此保留 $CG \rightarrow D$. $(CE)_F^{\dagger} = CEA$, 因此去掉 $CE \rightarrow A$. $(ACD)_F^{\dagger} = ACD$, 因此保留 $ACD \rightarrow B$.

step 3:

C→A已经是最小。CG→D已经是最小。ACD当中、C可以推出A、去掉A、更新为CD→B。

因此,本题的最小函数依赖集为9C→A, CG→D, CD→B)。

5、模式分解

(1) 模式分解的准则:无振连接、保持函数依赖 (2) 无损连接: 分解后再次自然连接, 与分解前相同

判断无损连接的方法

step 1: 画表格。列表示所有的属性,有多少属性就画多少个属性列。行表示

分解后的关系,有几个关系就画几个关系行。

step 2: 根据每一行关系进行判断。找到关系中的每个属性对应第几列,并在

相应的位置上标为ai,下标i是表格里的列数。其余关系中不存在的属性则

标为bii, ij是表格对应的行数和列数。

step 3: 依次对函数依赖集里的各个依赖关系进行考察。例如有XY-Z。在属性列

中找到X和Y, 观察X和Y的行列上是否有相同的标论 (b的下标要相同)。 若有, 则查看它们对应在属性列2上的各个标记。其中若有ai,则将属性列上的这些

标记全部放为ai。 若没有ai, 则找到值最小的bii, 将这些标记全部改为bii。

step 4: 反复执行以上操作, 直到某一行全部变为a为止, 则表明具有无报连接 性。否则不具有无损连接性。

例: F=9A→C, C→D, B→C, DE→C, CE→A3。分解为R, LAD), R₂LAB), R₃LBC),

R. (COE), R. LAE)

step 1:画表格 step 3:更新表格

E

pre

P32-

Rian bo bis

bis α_{φ} pis

 R_2 a_1 a_2 bzs b24

R3 b3/ a2 az b34

Ry by by az Re a, biz bis bis at

step 4:反复更新表格

b, b, a, bus

 α_1 α_2 α_3

step 4:反复更新表格

A+C, Rz (a) az biz

R3 b31 a2 a3

R4 b41 b42 a3

ba ba Δz α, a,

Rs (a) by by by ac

A aφ

D

a, bis

bzy

αψ

E

PSt C→D

Pie bsc

R, a, b₂CE→AR₂ a,

Rz a,

Rs b3

Rx by

Rs- a1

Ь,

by az α, a₂ α,

(az)

step 4: 反复更新表格

b, (b,

az (b)

az (az)

bu (az)

bs. (b3)

step 4:反复更新表格

ax

au

Ay

ay

Por DE→C R_{Σ} R_{Σ} b31 (a2) a3 P31 a2 α, ax. bu α, Ay a_r P^{2r} Ri R, a Pr bis a3 Pr Rs a, a, ab 25

		\rightarrow																		
	step 4	1:反	复	更新	f表杉	2		ste	4 :1	反复	吏亲	月表程	<u> </u>		stej	· 4: 1	又复	更新	表格	ī
	P	1	В	C	D	E			A	В	C	D	E			A	В	C	D	E
	R ₁ (a) t	7/12	az	ay	Pir		R,	۵,	bn	α,	ay	pir		R,	aı	b_{α}	a ₃	ay	ρ'n
A→C	R ₂ (a) 0	12	a	Ay	Pr	C→D	R_{2}	α,	az	a ₃	Ay	P*2	ByC	R_{λ}	a,	az	Δ3	Ay	Pre
	R ₃ b	3/ 0	λį	a,	a _y	b _{sC}	没有	R3	P31	A ₂	az	a_y		没有		P31	az	a3	ay	βiς
	Ry a) t	7ka	az	Ay	ar	更新	R_{4}	۵,	bu	az	Aφ	ar	更新	R4	۵,	Ьu	az	Aφ	۵r
	R ₅ (a) t	, s	az	ay	as		R_{s}	aı	Pr	az	ay	as		R_{Γ}	aı	Pr	Дz	ay	as
	step	4: 仅	复	更亲	F表 木	2		ste	p 4:	反复	更著	所表书	2		ste	p 4:	反复	更新	F表*	8
		\	В	C	D	E			A	В	C	D	E			A	В	C	D	E
	R, a	, ł	7/12	a ₃	ay	pa		R,	a,	b_{α}	a ₃	ay	Ьıs	シ轮		a	b_{n}	a ₃	ay	Pr
D <u>E→C</u>	R_{2} a	, 0	λ	a3	aφ	P=2	CEJA	R ₂	α,	az	az	Aφ	bzs	扫描	, R2	a,	az	a3	a ₄	Psc
没有		3 6	λ	a,	ay	b,€	没有	R,	P31	a,	α,	a,	b _s c	没有		P31	a ₂	az	Ay	Pisc
更新	R ₄ a	., ł	7 _{sa}	az	aφ	as	更新	R,	α,	byz	a ₃	Αψ	as	更新	R,	α,	bu	a ₃	Ay	ar
	Rs a	., ł	752	Δz	ay	as		Rs	۵,	P2	Δz	ay	ar		R_{Γ}	aı	Pr	az	ay	as
	循环组	を止	-,	没有	自出	见全	为a的	行,	表	明该	分分	解不」	具有	无报	连持	性				
	分解数																考)			
	设有人		-				•		模立	1分	解后	500得	刊	多个U	的	多集				
	step 1																			
	step 2																集合	· .		
	例如20																			
	step 3																		分到	
	同一人		-							-				划分至	川同	一个	`集.	合。		
	例如后																			
	step 4	: 求	出	min 18	自恢生	机码	,	倰选	码者	K L.	述分	i 类中	出社	R, P	月单	独将	修	选码	分为	
	一类。																			-
	例如」	ン述	Fmin	的作	炎选及	马为	ADG,	可知	力其	末世	规	在各,	分类	中,	因止	V再	划分	j — /	了集	
	合和DE	汨.																		
	由上並	术拳	例	可欠	D, J	集最	终的力	莫式	分角	再为9	iG3 1	ABC3 9	id E3	9ADG	3					

关系语言

	X 10 B
١,	关系代数语言
	(1) 集合运算符 (设有关系R和关系S)
	并U:R书S,即由属于R或S的元组构成,同时去掉重复的元组
	差-: R差S, 即由属于R但不属于S的元组构成
	支∩: R交S, 即由腕属于R又属于S的元组构成
	笛卡尔积X: 即由R中的每个元组与S中的所有元组进行组合
	(2) 关系运算符
	选择6:得到表中的指定行,写作6条件(表名)
	投影n:得到表中的指定列,写作n _{列多} (表名),投影后要去除重复行
	连接M:将两个表根据指定条件连接在一起,写作RMS
	等值连接是指条件为属性R.A=S.B
	自然连接是指条件为属性RA=S.A,并且要去掉重复列,写作R SXX
	悬涉元组是指自然连接时由于S中不匹配而在R中被舍弃的元组
	外连接是指保留悬涄元组的连接,不匹配的位置填NULL,写作™
	左外连接是指只保留R中悬涄元组的连接,写作DN
	右外连接是指医保留S中悬涄元组的连接,写作≥C
	除÷:设R和S除运算的结果为T,则T包含所有在R中但不在S中的属性和值,且
	T的元组与S的元组经过组合均能出现在R中
	<u></u>

A B C B C D A $a_1 \frac{b_1}{b_2} c_2 \qquad \frac{b_1}{b_2} c_2 d_1 \qquad a_1$ $a_2 \frac{b_3}{b_3} c_7 \qquad \frac{b_2}{b_2} c_1 d_1$ $a_4 \frac{b_4}{b_4} c_6 \qquad \frac{b_2}{b_2} c_3 d_2$ $a_1 \frac{b_2}{b_4} c_3$

 a_1 by c_3 a_2 中虽然也出现 3 S 中的 b_1 c_3 ,但是 a_2 与 S 中县 余的 b_1 c_2 和 b_2 c_3 的

az bi c3 7组合并没有出现在R中

R÷ S

as be co

R

关系代数解题方法

(1) 常规题 (求某几个属性特定值)

格式一般为TULAL表名の表名))

投影运算的下标为题目要求的最终需要的列,选择运算的下标为题目给出 不等于 的属性条件。并行的条件之间用返号隔升,条件表达式的运算符有7 A V フ 5 > 5 = 。若有多个表,表之间常用自然连接。

非与或

(2) 除运算(求满足某属性全部值的其他属性)

这种题是指求是满足B表某属性全部值的在A表上的其他属性。这是除弦算的 特性, 因此在出现"全部" こ字时, 需要用除运算完成。通常分别对A和B做 投影运算,再对生成的专表进行除运算。

A中包含属性x和y, B中包含属性y, 且B中属性y的值为全集且无重复, 求全部 y的x写作: Ta, y(A)÷Tc,(B)

例如A表为学生选课表(属性包括学号和所选的课程),B表为课程信息表 (属性包括课程), 求选 3 全部课程的学生学号。全部课程只在13 表出现, 学号只在A表出现。于是先全选A表的学号字段和课程字段,再全选B表的课

程字段, 将こ者相除: 兀_{噗号、课程}(A) 亡 兀_{课程}(B)

(3) 差运算

例:有学生表SC,包含属性此名、成绩,求没有任何一门课程低于80分的学 生的 此 名。

周路: 可以先求有课程低于80分的学生哄名, 再用全表相减。

Tung(SC)-Tung(Ondesso (SC))

2、元组关系演算语言

- (1) 元组演算表达式: 针 | Ø(t)i, 其中t是元组变量, Ø(t)是公式, 它由原 亏公式和运算符组成。
- (12)原方公式
- 1、R(t) 表示t是关系R中的元组

- 2、tlijθuljj表示元组t的第i个分量和元组u的第i个分量满足比较关系θ
- 3、tlijdc或cdtlij表示元组t的第i个分量和常量c满足比较关系的
- (3) 运算符 (按优先级从高到低书写)
- 1、比较运算符: >><
- 2、量词运算符: 包括3和V。其中3的优先级大于H
- 3、逻辑运算符: 包括¬和Λ和V。其中¬的优先级大于Λ, Λ的优先级大于V

关系代数语言和元组演算语言的转换:

(1) 弁

RUS = 9 t | RLt) VS(t)3

(2) 交

 $RNS = 9 + 1 R(t) \Lambda S(t)$

(3) 差

 $R-S = 9 + 1 R(t) \wedge \neg S(t)$

(4) 笛卡尔积

 $R \times S = \{ t^{(n+m)} \mid (\exists u^{(n)}) \in U(n) \mid S(u) \land S(u) \land S(u) \land S(u) \mid S(u) \mid$

AtIn+m]=v[m] 3

其中R有n个属性, S有m个属性, 根据笛卡尔积的定义, t的目数为n+m (即有n+m个属性)

(5) 投影

 $TC_{i1,i2,\cdots,ik}(R) = 9 t^{(N)}(Jan)(R(n) \wedge t[J] = n[i] \wedge \cdots \wedge t[k] = n[ik]$

表示最终需要k列,因此t的目数为k。选取中间变量u,令u为R中的全部元组,令结果集t的第一列为R中需要的第一列(即il),最后一列k列为R中的

证列

(b) 选择

6= (R) = 9 t | R(t) AF' 3

F是选择条件, F'是F等价代换后的元组演算表达式

例题:

1、查询Student表中IS系的全体学生,其中学生所在系为第五列属性。

Sis = 9 t | Student(t) At[5] = 'IS']

- 上式表示设结果集为S_{IS}, 其中的元组t满足条件: t属于Student表且第五列为IS。
- 2、 查询Student表中学生的姓名和所在系, 其中姓名为第二列, 所在系为第五列。
- S, = 9 to (3 n) (Student(n) 1 []= n[2] 1 t[2] = n[5]) }

上式表示设结果集为S₁, 其中的元组t有两列属性,这两列属性满足条件: 设有元组u, n是Student表中的元组,结果集的第一列 (即tīl]) 为Stusent表的第二列 (即uīz]),结果集的第二列为Student表的第五列。

解题格式:

首先设结果集 (例如设为S), 令其中的元组为t。若题目中指明3需要哪些属性时,需要标注t的目数。当需要用量词运算符时,论得前后用括号括起来。各条件之间一般用交运算。在元组表达式中,论得首先要指出所设元组属于哪个关系。

如了方片了阳上了的生计划的出行人生计划 伊伊瓦姆地流的出户人地

S= 9 t 1 (量词运算) (指出元组所属的关系A元组需要满足的条件) }

M: 他个于	化九股天系	以时衣处式和	15 力安全表型	CI, M来取	的指胞积	力安全指
施						

事务调度

1、事务调度的准则

- (1) 一组事务的调度必须保证:
- 包含了所有事务的操作指令;一个事务内部的指令顺序必须保持不变
- (2) 并行事务调度必须保证:

可导性化,将所有可能的导行调度结果推演一遍,对于某个具体的并行调度 再执行一遍,看是否能与某个导行调度的结果相同

_(3) 判断可导性化的充分条件: 冲突可导性化 (冲突可导性化一定是可导性化调度, 但可导性化调度不一定是冲突可导性化)

冲突操作:不同事务对同一数据分别进行读和写;不同事务对同一数据分别

进行写和写

冲突可导性化调度即不交换不同事务的冲突操作次序,也不交换同一事务的 两个操作的次序。但可以交换不同事务对不同数据各种操作次序,也可以交 换不同事务对同一数据的读取操作次序

2、封锁

(1) X锁: 写锁, 某事务对数据对象上锁后, 可读取和修改该数据对象, 其他事务不可再对该数据对象添加锁

表示方法: 上锁Xlock() 释放锁Unlock()

(2) S锁: 读锁, 某事务对数据对象上锁后, 可读取但不可修改该数据对

象,其他事务可以对该数据对象添加S锁,但不能添加X锁

表示方法: 上锁Slock() 释放锁Unlock()

(3) 封锁协议

一级封锁协议: 写前加写锁, 事务结束释放写锁; 可防止丢失修改

二级封锁协议: 写前加写锁, 读前加读锁, 读完释放读锁, 事务结束释放写

锁;可防止去失修改和读脏数据

三级封锁协议 (常用: 支持一致性维护): 写前加写锁, 读前加读锁, 事务 结束释放各锁; 可防止去失修改、读脏数据和不可重复读

如果所有事务均遵循三级封锁协议, 由于其隔离级别高, 那么这些事务无论

怎样交叉并行, 都是可导性化的调度

(4) 两段锁协议 (2PL)

2	41).	ţţ	砾	† th.	1.7	Ы	Ы	18	ìīĿ	粒	4.	机	1 T	加	ī	兀尔	加		1B	н	ュ	甘	×	泔	亚	书		对:	た1	<i>K</i> 1	Ŧ,
			なり	则	•	ン	狄	封	锁	W	1义	头	妍	廷	冲	段	锁	W	1义	#1	绀	191]	,	莡	义	4	竹	的门	丼!	梦	
协	议																														
渶	段	锁	协	议	畢	求	:	事	务	在	对	任	何	数	据	进	竹	谗	写	蒯	,	需	畢	萩	得	对	该	数	居1	約	計
锁	;	而	当	事	务	在	释	放	任	何	_	个	封	锁	16	,	不	可	再	获	得	任	何	其	他	封	锁				
																												可自	礼	台「	‡ .
	// 锁			1/ 1	' ^	V-)~	110	'~	~	7	-1	12	1.0	~~	10	7,7	71.	, ,	,	7	ווע	1, 7	' _	V-/~	114	'~	~	7 1	"	'	<i>y</i>
40	W.	м1																													

数	掘	压	沒	ìŤ	
4 X	110	14	12	V 1	

	数 16 14 1文 11
Ι,	画E-R图 (概念结构设计)
	家体:
	关系:
	属性: 注意: 实体和关系都可以具有属性
	对 联系: 个A对应 个B
	时n联系: 个A对应n个B
	n对 n 联系: n 个A对应 m 个B n n
2.	E-R 图转换为关系模型(逻辑结构设计)
	第一步: 将各个家体的名字转换为各个关系模式的名字
	第二步: 实体的属性就是关系的属性, 实体的码就是关系的码
	第三步: 实体间联系的转换
	1对1联系: 在任意一方加入对方的主码并设为其外码, 并加入联系
	本身的属性
	1对n联系:将1方的主码加入n方作为外码,并同时将联系的属性加
	入n方
	n对m联系:将联系本身转换为一个关系模式,将联系双方的主码加
	入其中设为码,并将联系的属性也加入其中