MA571 Problem Set 5

Carlos Salinas

September 28, 2015

Problem 5.1 (Munkres §23, Ex. 3)

Let $\{A_{\alpha}\}$ be a collection of connected subspaces of X; let A be a connected subspace of X. Show that if $A \cap A_{\alpha} \neq \emptyset$ for all α , then $A \cup (\bigcup A_{\alpha})$ is connected.

Proof. We shall aim to prove this result by using Theorem 23.3 from Munkres. Define the collection $\{B_{\alpha}\}$ by setting $B_{\alpha} = A \cup A_{\alpha}$. Note that by Theorem 23.3, B_{α} is connected for all α , since $A \cap A_{\alpha} \neq \emptyset$ and both A and A_{α} are connected. Next observe that the intersection $B_{\alpha} \cap B_{\beta} \neq \emptyset$ for all α and β , in particular, the subspace A is contained in the intersection since $A \subset B_{\alpha}$ and $A \subset B_{\beta}$ for all α and β . Therefore, $\{B_{\alpha}\}$ is a collection of connected subspaces of X that have a point in common. Applying Theorem 23.3 one last time, we see that the union

$$\bigcup B_{\alpha} = \bigcup (A \cup A_{\alpha}) = A \cup \left(\bigcup A_{\alpha}\right)$$

is connected.

Problem 5.2 (Munkres §23, Ex. 6)

Let $A \subset X$. Show that if C is a connected subspace of X that intersects both A and $X \setminus A$, then C intersects ∂A .

Proof. We shall proceed by contradiction. Suppose that $C \cap \partial A = \emptyset$, then we shall show that the pair $C \cap A$ and $C \cap (X \setminus A)$ forms a separation of C. Recall that by definition (see Munkres §17, p. 102) the boundary $\partial A = \overline{A} \cap \overline{X \setminus A}$. Then we claim that $\overline{A} = \partial A \cup \operatorname{int} A$:

Lemma 13. Let X be a topological space and $A \subset X$. Then ∂A and int A are disjoint and $\overline{A} = \partial A \cup \operatorname{int} A$.

Proof of lemma. The point $x \in \partial A$ if and only if $x \in \overline{A}$ and $x \in \overline{X} \setminus \overline{A}$. Thus, for every neighborhood U of x, the intersection $U \cap X \setminus A \neq \emptyset$, in particular $U \not\subset A$ so x is not an interior point of A. Hence, we see that $\partial A \cap \operatorname{int} A = \emptyset$. To prove the last statement note that $\partial A \subset \overline{A}$ and $\operatorname{int} A \subset A \subset \overline{A}$ (cf. Munkres §17, p. 95), so that $\partial A \cup \operatorname{int} A \subset \overline{A}$ hence, it suffices to show the reverse inclusion, namely, $\overline{A} \subset \partial A \cup \operatorname{int} A$. Let $x \in \overline{A}$. If $x \in \operatorname{int} A$, then clearly $x \in \partial A \cup \operatorname{int} A$. Suppose $x \notin \operatorname{int} A$. Then, by Theorem 17.5(a), for every neighborhood U of x, the intersection $U \cap A \neq \emptyset$ and $U \not\subset A$. Thus, $U \cap (X \setminus A) \neq \emptyset$ so $x \in \overline{X \setminus A}$. It follows that $x \in \overline{A} \cap \overline{X \setminus A} = \partial A$.

Lemma 14. Let X be a topological space and $A \subset X$. Then $\partial A = \partial (X \setminus A)$.

Proof of lemma. Replace A by $X \setminus A$ in the definition of the boundary of A. Then we have:

$$\begin{split} \partial(X \smallsetminus A) &= \overline{X \smallsetminus A} \cap \overline{X \smallsetminus (X \smallsetminus A)} \\ &= \overline{X \smallsetminus A} \cap \overline{A} \\ &= \overline{A} \cap \overline{X \smallsetminus A} \\ &= \partial A. \end{split}$$

Now, by Theorem 17.4, we have that $\overline{C \cap A} = C \cap \overline{A}$ and $\overline{C \cap (X \setminus A)} = C \cap \overline{X \setminus A}$. But by Lemma 13 and Lemma 14, the latter sets are equivalent to $\overline{C \cap A} = C \cap (\partial A \cup \operatorname{int} A)$ and $\overline{C \cap (X \setminus A)} = C \cap (\partial A \cup \operatorname{int}(X \setminus A))$. But since $C \cap \partial A = \emptyset$ by assumption, we have

$$\overline{C \cap A} \cap (C \cap (X \setminus A)) = (C \cap (\partial A \cup \operatorname{int} A)) \cap (C \cap (X \setminus A))$$

$$= ((C \cap \partial A) \cup (C \cap \operatorname{int} A)) \cap (C \cap (X \setminus A))$$

$$= (C \cap \operatorname{int} A) \cap (C \cap (X \setminus A))$$

$$= \emptyset$$

since $C \cap \text{int } A \subset A$ and $C \cap (X \setminus A) \subset X \setminus A$. Similarly, we have that the intersection $\overline{C \cap (X \setminus A)} \cap (C \cap A) = \emptyset$. So by Lemma 23.1, $C \cap A$ and $C \cap (X \setminus A)$ form a separation of C. This contradicts the assumption that C is connected. Therefore, we conclude that $C \cap \partial A \neq \emptyset$.

PROBLEM 5.3 (MUNKRES §23, Ex. 7)

Is the space \mathbf{R}_{ℓ} connected? Justify your answer.

Proof. No. The space \mathbf{R}_{ℓ} is not connected and we may exhibit an explicit separation. Namely, consider the basis elements $(-\infty,0)$ and $[0,\infty)$. Then $\mathbf{R}=(-\infty,0)\cup[0,\infty)$, hence $(-\infty,0)$ and $[0,\infty)$ form a separation of \mathbf{R} with the lower limit topology.

Alternatively, one may note that $\mathbf{R} \setminus (-\infty, 0) = [0, \infty)$ is open in \mathbf{R}_{ℓ} so $(-\infty, 0)$ is both open and closed. Hence, by Munkres's alternative formulation of connectedness (cf. Munkres §23, p. 148 the italicized paragraph), \mathbf{R}_{ℓ} is disconnected.

Problem 5.4 (Munkres §23, Ex. 9)

Let A be a proper subset of X, and let B be a proper subset of Y. If X and Y are connected, show that

$$(X \times Y) \setminus (A \times B)$$

is connected.

Proof. Consider the family of embeddings $\{i_{\alpha}\}$ where $i_{\alpha} \colon X \hookrightarrow X \times Y$ maps $x \mapsto x \times y_{\alpha}$ for $y_{\alpha} \notin B$, for all α . By Theorem 23.5, $i_{\alpha}(X) = X \times y_{\alpha}$ is connected subspace of $X \times Y$. Moreover $X \times y_{\alpha} \subset (X \times Y) \setminus (A \times B)$ so $X \times y_{0}$, in particular, we have that is a connected subspace of $(X \times Y) \setminus (A \times B)$. Similarly, consider the family of embeddigs $\{j_{\alpha}\}$ where $j_{\alpha} \colon Y \hookrightarrow X \times Y$ maps $y \mapsto x_{\alpha} \times y$ for $x_{\alpha} \notin A$. We similarly have that $j_{\alpha}(Y) = x_{\alpha} \times Y$ is a connected subspace of $(X \times Y) \setminus (A \times B)$. Then we claim that

$$(X \times Y) \setminus (A \times B) = \bigcup (X \times y_{\alpha}) \cup (x_{\beta} \times Y).$$

It is clear that the union on the right is a subset of $(X \times Y) \setminus (A \times B)$ since each $X \times y_{\alpha}$ and $x_{\beta} \times Y$ is a subset of $(X \times Y) \setminus (A \times B)$. To see the reverse containment, take $x \times y$ in the union $\bigcup (X \times y_{\alpha}) \cup (x_{\beta} \times Y)$. Then $x \times y$ is in some $(X \times y_{\alpha}) \cup (x_{\beta} \times Y)$ so $x \times y \in X \times y_{\alpha}$ or $x \times y \in x_{\beta} \times Y$. If $x \times y \in \bigcup X \times y_{\alpha}$, then $y_{\alpha} \notin B$ so $x \times y \notin A \times B$, hence $x \times y \in (X \times Y) \setminus (A \times B)$. If $x \times y \in \bigcup x_{\beta} \times Y$ then $x \notin A$, hence $x \times y \notin A \times B$ so $x \times y \in (X \times Y) \setminus (A \times B)$. Thus, we have that $(X \times Y) \setminus (A \times B) = \bigcup (X \times y_{\alpha}) \cup (x_{\beta} \times Y)$. Then, note that by Theorem 23.3, since $X \cap y_{\alpha} \cap x_{\beta} \cap Y \neq \emptyset$, in particular, $x_{\beta} \times y_{\alpha}$ is in the intersection, $(X \times y_{\alpha}) \cup (x_{\beta} \times Y)$ is connected for all α and all β . Thus, the subspace $(X \times Y) \setminus (A \times B)$ is connected.

PROBLEM 5.5 (MUNKRES §24, Ex. 1(AC))

- (a) Show that no two of the spaces (0,1), (0,1] and [0,1] are homeomorphic. [Hint: What happens if you remove a point from each of these spaces?]
- (c) Show \mathbf{R}^n and \mathbf{R} are not homeomorphic if n > 1.

Proof. (a) Suppose $\varphi:(0,1]\to(0,1)$ is a homeomorphism. We claim that the restriction of φ to $(0,1)\subset(0,1]$ gives a homeomorphism to $(0,1)\setminus\{\varphi(1)\}$, more generally, the following result holds:

Lemma 15. Suppose $\varphi \colon X \to Y$ is a homeomorphism and $U \subset X$. Then the restriction $\varphi|_U \colon U \to \varphi(U)$ is a homeomorphism.

Proof of lemma. The restriction $\varphi_U = \varphi|_U \colon U \to \varphi(U)$ has a canonical inverse, namely, $\varphi_U^{-1} = \varphi^{-1}|_{\varphi(U)} \colon \varphi(U) \to U$ since φ is a bijection. By Theorem 18.2(d,e) both φ_U and φ_U^{-1} are continuous hence, $U \approx \varphi(U)$.

Now remove 1 from (0,1]. Then, since $\varphi(1)$ is bijective, there exists $y \in (0,1)$ such that $\varphi(1) = y$ with 0 < y < 1. Then $(0,1) \setminus \{y\} = (0,y) \cup (y,1)$ is disconnected, but $(0,1] \setminus \{1\} = (0,1)$ is connected. This contradicts Theorem 23.5 that the image of (0,1] under a continuous map is connected. The same argument shows that $(0,1) \not\approx [0,1]$ (in fact, if we allow ourselves results from §26 and §27 we have that [0,1] is compact by 27.3 (Heine–Borel), but (0,1) is not compact, by 26.5 it follows that they are not homeomorphic).

Similarly, if $[0,1] \approx (0,1]$ via φ then $[0,1] \setminus \{0,1\} \approx (0,1] \setminus \{\varphi(0),\varphi(1)\}$.

(b) From Example 4 of §24, the punctured Euclidean space $\mathbf{R} \setminus \{\mathbf{0}\}$ is path-connected, in particular, connected. But \mathbf{R} minus a point is disconnected. More precisely, if $\mathbf{R}^n \approx \mathbf{R}$ via φ , by Lemma 15, $\mathbf{R}^n \setminus \{0\} \approx \mathbf{R} \setminus \{\varphi(0)\}$, but $\mathbf{R} \setminus \{\varphi(0)\}$ is disconnected, contradicting Theorem 23.5.

Remarks. I realized too late that Lemma 15 here is the same as Lemma A given to us in lecture.

Problem 5.6 (Munkres §24, Ex. 2)

Let $f: S^1 \to \mathbf{R}$ be a continuous map. Show there exists a point x of S^1 such that f(x) = f(-x).

Proof. Consider the map $g \colon S^1 \to \mathbf{R}$ given by g(x) = f(x) - f(-x). This map is continuous by Lemma 9(i) (proved on Homework 4 which showed that if f, g are continuous real valued maps on a metric space X then (i) f+g and (ii) fg are continuous; moreover S^1 is naturally a metric space as a subspace of \mathbf{R}^2 which is how Munkres defines it in Example 5 on §24). Fix $x_0 \in S^1$ and suppose, without loss of generality, that $g(x_0) > 0$ (for if $g(x_0) = 0$ we are done, i.e, $f(x_0) = f(-x_0)$ and if $g(x_0) < 0$ we reverse the direction of < in the following argument). Then

$$g(-x_0) = f(-x_0) - f(-(-x_0)) = -f(x_0) + f(-x_0) = -g(x_0).$$

Then $g(-x_0) = -g(x_0) < g(x_0)$ and by the Intermediate Value Theorem (Theorem 24.3) there exists $y \in S$ such that g(y) = 0, i.e, f(y) = f(-y).

PROBLEM 5.7 (MUNKRES §25, Ex. 2(B))

(b) Consider \mathbf{R}^{ω} in the uniform topology. Show that \mathbf{x} and \mathbf{y} lie in the same component of \mathbf{R}^{ω} if and only if the sequence

$$\mathbf{x} - \mathbf{y} = (x_1 - y_1, x_2 - y_2, ...)$$

is bounded. [Hint: It suffices to consider the case where y = 0.]

Proof. \implies Suppose that **x** and **y** lie in the same connected component, call it C. Consider the set

$$U = \{ \mathbf{z} \mid \mathbf{x} - \mathbf{z} \text{ is bounded} \}$$
 and $X \setminus U = \{ \mathbf{z} \mid \mathbf{z} - \mathbf{z} \text{ is unbounded} \}.$

These sets are open in the uniform topology since, in the case of U: for any $\mathbf{z} \in U$ for $\varepsilon = 1/2$, the open ball $B_{\bar{\rho}}(\mathbf{z}, \varepsilon) \subset U$ since for every $\mathbf{z}' \in B_{\bar{\rho}}(\mathbf{z}, \varepsilon)$ the difference $\mathbf{x} - \mathbf{z}'$ is bounded, i.e.,

$$\bar{\rho}(\mathbf{x}, \mathbf{z}') \le \bar{\rho}(\mathbf{x}, \mathbf{z}) + \bar{\rho}(\mathbf{z}, \mathbf{z}')$$

$$\le M + \varepsilon$$

$$= M + \frac{1}{2}$$

for some positive real number $M < \infty$. In the case of $X \setminus U$: Take $\mathbf{z} \in X \setminus U$ and take the open ball of radius 1/2, $B_{\bar{\rho}}(\mathbf{z}, 1/2)$ then if $\mathbf{z}' \in B_{\bar{\rho}}(\mathbf{z}, 1/2)$ then, by the Reverse Triangle Inequality, the sequence

$$|x_n - z'_n| \ge ||x_n - z_n| - |x_n - z'_n||$$

$$\ge \left||x_n - z_n| - \frac{1}{2}\right|$$

$$> \left|M - \frac{1}{2}\right|$$

for every positive real number M, hence $\mathbf{x} - \mathbf{z}'$ is unbounded. Then, by Theorem 23.2, $C \subset U$ or $C \subset (X \setminus U)$. But $\mathbf{x} \in U$ so $C \subset U$, i.e., $\mathbf{x} - \mathbf{y}$ is bounded.

 \Leftarrow Suppose $\mathbf{x} - \mathbf{y}$ is bounded. Then for every $\varepsilon > 0$, there exists a positive integer N such that $|x_n - y_n| < \varepsilon$ for all $n \ge N$. We will show that there exists a path $f : [0,1] \to \mathbf{R}^{\omega}$ from \mathbf{x} to \mathbf{y} . Consider the path

$$f(t) = \mathbf{x} - t(\mathbf{x} - \mathbf{v}).$$

Note that $f(0) = \mathbf{x}$ and $f(1) = \mathbf{y}$. Now we show that f is indeed continuous. By Lemma 8 (the equivalence of the ε - δ definition to the metric topology which I proved on Homework 4) it suffices to show that for every $\varepsilon > 0$ there exists a $\delta > 0$ such that $s, s' \in B(t, \delta)$ implies $f(s), f(s') \in B_{\bar{\rho}}(\mathbf{z}, \varepsilon)$. In particular, chose $\delta = \varepsilon/M$ where $M > |x_n - y_n|$ for all n, then we have

$$|f(s) - f(s)'| = |\mathbf{x} - s(\mathbf{x} - \mathbf{y}) - (\mathbf{x} - s'(\mathbf{x} - \mathbf{y}))|$$

$$= |(s - s')(\mathbf{x} - \mathbf{y})|$$

$$= |(s - s')||\mathbf{x} - \mathbf{y}|$$

$$< \delta |\mathbf{x} - \mathbf{y}|$$

$$< \varepsilon.$$

Thus x and y are path-connected, in particular, by Theorem 25.2, x and y lie in the same connected component.

PROBLEM 5.8 (MUNKRES §25, Ex. 4)

Let X be locally path connected. Show that every connected open set in X is path connected.

Proof. First we prove the following claim:

Claim. If U is an open subset of X, then it is locally path-connected.

Proof of claim. Let $x \in U$ and let $V \subset U$ be a neighborhood of x then, by Lemma 16.2, since V is open in X and X is locally path-connected, there exists path-connected neighborhood W of x contained in V, hence contained in U. Thus, U is locally path-connected.

Now, suppose U is a connected open subset of X. Then U has one component by Theorem 25.2. Moreover, by Theorem 25.5, since U is locally path-connected the components of U and path-components are equivalent. Thus, U has exactly one path component, i.e, U is path-connected.

Problem 5.9 (Munkres §25, Ex. 6)

A space X is said to be weakly locally path connected at x if for every neighborhood U of x, there is a connected subspace of X contained in U that contains a neighborhood of x. Show that if X is weakly locally connected at each of its points, then X is locally connected. [Hint: Show that components of open sets are open.]

Proof. By Theorem 25.5, it suffices to show that for every open set U of X, each component of U is open in X. Let $x \in U$. Then, by Theorem 25.2, x lies in some component of U, say C. Since X is weakly locally path-connected, there is a connected subspace, say C_x , contained in U that contains a neighborhood V_x of x. Then by Theorem 25.2, $C_x \subset C$. In particular, for every $x \in C$ we have a neighborhood V_x of x contained in x, i.e., x is the union x of x of open subsets. Thus, x is open in x.

CARLOS SALINAS PROBLEM 5.10(A)

PROBLEM 5.10 (A)

Let X be a topological space. The quotient space $(X \times [0,1])/(X \times 0)$ is called the *cone* of X and denoted CX.

Prove that if X is homeomorphic to Y then CX is homeomorphic to CY (Hint: There are maps in both directions).

Proof. Let $\varphi \colon X \to Y$ be a homeomorphism and let p and q denote the quotient maps the pairs $(X \times [0,1], CX)$ and $(Y \times [0,1], CY)$, respectively. Then we get a canonical homeomorphism $\Phi \colon X \times [0,1] \to Y \times [0,1]$ given by the map $(x,z) \mapsto (\varphi(x),z)$. Note that Φ is continuous, by Theorem 18.4, since φ and $\mathrm{id}_{[0,1]}$ are continuous and its inverse is given by $\Phi^{-1} = (\varphi^{-1}, \mathrm{id}_{[0,1]})$ (which is continuous by 18.4). Now, we claim that the map $\Phi^* \colon CX \to CY$ given by $[(x,z)] \mapsto [\Phi(x,z)] = [(\varphi(x),z)]$ defines a homeomorphism $CX \approx CY$.

First we will prove that Φ^* is well-defined. Fix an equivalence class [(x,z)] in CX and choose two representatives (x_1,z_1) and (x_2,z_2) of [(x,z)] in $X\times[0,1]$. Then, by the definition of the quotient space (cf. Homework 4, Problem F), $(x_1,z_1)\sim(x_2,z_2)$ if and only if $(x_1,z_1)=(x_2,z_2)$ or $z_1=z_2=0$, i.e, $\{(x_1,z_1),(x_2,z_2)\}\subset X\times 0$. In the former case $\Phi(x_1,z_1)=\Phi(x_2,z_2)=(\varphi(x_1),z_1)$ and we see that

$$\Phi^*([(x_1, z_1)] = [\Phi(x_1, z_1)] = [(\varphi(x_1), z_1)] = [\Phi(x_2, z_2)] = \Phi^*([(x_2, z_2)])$$

and in the latter $\Phi(x_1,0)=(\varphi(x_1),0)$ and $\Phi(x_2,0)=(\varphi(x_2),0)$ so $(\varphi(x_1),0)\sim(\varphi(x_2),0)$, hence

$$\Phi^*([(x_1,0)] = [\Phi(x_1,0)] = [(\varphi(x_1),0)] = [\Phi(x_2,0)] = \Phi^*([(x_2,0)]).$$

Thus Φ is well-defined.

Now we will show that Φ^* is a continuous bijection and with a continuous inverse. To show bijectivity we construct an explicit inverse, namely, define $(\Phi^*)^{-1} : CY \to CX$ by $[(y,z)] \mapsto [\Phi^{-1}(y,z)] = [\varphi^{-1}(x),z]$. The map $(\Phi^*)^{-1}$ is clearly well-defined (by a similar argument to showing that Φ is well-defined) and we have that

$$\Phi^* \circ (\Phi^*)^{-1}([y,z]) = \Phi^*([\Phi^{-1}(y,z)] \qquad (\Phi^*)^{-1} \circ \Phi^*([x,z]) = (\Phi^*)^{-1}([\Phi(x,z)])$$

$$= [\Phi(\Phi^{-1}(y,z)] \qquad = [\Phi^{-1}(\Phi(x,z))]$$

$$= [(y,z)] \qquad = [(x,z)]$$

$$= \mathrm{id}_{CY} \qquad = \mathrm{id}_{CX}.$$

It is clear that Φ^* is continuous since, by Theorem Q.2, $\Phi^* \circ p = q \circ \Phi$ is continuous. Let U_{\sim} be open in CX. Then $U = p^{-1}(U_{\sim})$ is open in $X \times [0,1]$ then $\Phi(U)$ is open in $Y \times [0,1]$ since Φ is a homeomorphism. The same argument applies to showing that $(\Phi^*)^{-1}$ is continuous in the reverse direction, that is, consider the composition $(\Phi^*)^{-1} \circ q = p \circ \Phi^{-1}$ and apply Theorem Q.2.