МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра информационной безопасности

ОТЧЕТ

По лабораторной работе № 4 по дисциплине «Криптография и защита информации» Тема: Исследование шифров DES, 3DES, Магма

Студент гр. 0303	Болкунов В.О.
Преподаватель	Племянников А. К

Санкт-Петербург 2023

Цель работы.

Цель работы: исследовать шифры DES, 3DES и Магма и получить практические навыки работы с ними, с использованием приложений Cryptool 1/2 и Литорея.

Порядок выполнения работы.

- 1. Изучить преобразования DES по шаблонной схеме DES Visualisation из CrypTool 2 с учетом рекомендаций Методического пособия (задание на с. 20)
- Провести исследование DES в режимах работы ECB и CBC, используя
 СтурТооl 1 и с учетом рекомендаций Методического пособия (задание на с.
 22 оценка трудоемкости атаки "грубой силы")
- **3.** 3. Разработать схему в CrypTool 2 для экспериментального определения версии 3-DES.
- **4.** Изучить преобразования шифра Магма с помощью приложения ЛИТОРЕЯ, с учетом рекомендаций Методического пособия (задание на с. 20)
- **5.** Провести исследование шифра Магма в режимах работы простой замены и простой замены с зацеплением, используя приложение ЛИТОРЕЯ и с учетом рекомендаций Методического пособия (задание на с. 21 шифрование изображения в разных режимах работы)

Выполнение работы.

1. Шифр DES

Были выбраны следующие исходные данные:

- Открытый текст M = "bolkunov"
- Ключ K = "030304_o"

Соответственно их байтовое представление:

- $M_{16} = 62 \text{ 6F 6C 6B 75 6E 6F 76}$
- $K_{16} = 30 \ 33 \ 30 \ 33 \ 30 \ 34 \ 5F \ 6F$

1.1 Ручные преобразования первого раунда

1.1.1. Раундовый ключ

Преобразуем ключ к бинарному виду:

 $\mathbf{K_2} = 00110000\ 00110011\ 00110000\ 00110011\ 00110000\ 00110100\ 01011111$

Удаляем биты проверки (8, 16, 24, 32, 40, 48, 56, 64):

(

Переставляем биты ключа в соответствии со следующей перестановкой

$$P_c = 57 \ 49 \ 41 \ 33 \ 25 \ 17 \ 9 \ 1 \ 58 \ 50 \ 42 \ 34 \ 26 \ 18 \ 10 \ 2 \setminus 59 \ 51 \ 43 \ 35 \ 27 \ 19 \ 11 \ 3 \ 60 \ 52 \ 44 \ 36$$

$$P_d = 63 \ 55 \ 47 \ 39 \ 31 \ 23 \ 15 \ 7 \ 62 \ 54 \ 46 \ 38 \ 30 \ 22 \ 14 \ 6 \setminus 61 \ 53 \ 45 \ 37 \ 29 \ 21 \ 13 \ 5 \ 28 \ 20 \ 12 \ 4$$

Получаем следующие половины преобразований ключа:

 $\mathbf{C} = 000000000 \ 110000000 \ 101111111 \ 01111$

 $\mathbf{D} = 11001010 \ 111000000 \ 110000000 \ 1111$

Циклически сдвигаем последовательности C, D на 1 бит влево, в соответствии с таблицей сдвигов DES:

 $C_{s1} = 00000001 10000001 01111110 1110$

 $\mathbf{D_{s1}} = 10010101 \ 110000001 \ 100000001 \ 11111$

Объединяем половины ключа с помощью Р-блока сжатия:

Итого ключ первого раунда:

 $K_1 = 00000000\ 00101100\ 11101100\ 01010100\ 01001001\ 11000111$

1.1.2. Начальное преобразование

Преобразуем блок сообщения к бинарному виду

$$M_2 =$$

$01100010 \ 01101111 \ 01101100 \ 01101011 \ 01110101 \ 01101110 \ 01101111 \ 01110110$

← ←

Выполним начальную перестановку блока в соответствии с таблицей IP DES

$$\mathbf{P}_{IP} = 58\ 50\ 42\ 34\ 26\ 18\ 10\ 2\ 60\ 52\ 44\ 36\ 28\ 20\ 12\ 4\ 62\ 54\ 46\ 38\ 30\ 22\ 14\ 6\ 64\ 56\ 48\ 40\ 32\ 24\ 16\ 8\ 57\ 49\ 41\ 33\ 25\ 17\ 9\ 1\ 59\ 51\ 43\ 35\ 27\ 19\ 11\ 3\ 61\ 53\ 45\ 37\ 29\ 21\ 13\ 5\ 63\ 55\ 47\ 39\ 31\ 23\ 15\ 7$$

Получаем половины начального блока сообщения:

 $L_0 = 11111111 10010000 11110110 01011010$

 $R_0 = 00000000 \ 111111111 \ 01101110 \ 11101011$

1.1.3. Раундовое преобразование

Выполним расширение блока R_0 в соответствии с перестановкой Р-блока расширения:

 $R_{0e} = 10000000\ 00010111\ 111111110\ 10110101\ 11010111\ 01010110$

Выполним побитовое XOR с раундовым ключом K₁:

$$R_{0x} = R_{0e} xor K_1 =$$

100000 000011 101100 010010 111000 011001 111010 010001

Выполним преобразования S-блоков в соответствии с таблицами подстановок S-блоков.

1.
$$R_{S1} = 1000000$$
; $y = 2$; $x = 0$; $S_1 = 4 = 0100$

2.
$$R_{S2} = 000011$$
; $y = 1$; $x = 1$; $S_1 = 13 = 1101$

3.
$$R_{S3} = 101100$$
; $y = 2$; $x = 6$; $S_1 = 3 = 0011$

4.
$$R_{S4} = 010010$$
; $y = 0$; $x = 9$; $S_1 = 2 = 0010$

5.
$$R_{S5} = 111000$$
; $y = 2$; $x = 12$; $S_1 = 6 = 0110$

6.
$$R_{S6} = 011001$$
; $y = 1$; $x = 12$; $S_1 = 0 = 0000$

7.
$$R_{S7} = 111010$$
; $y = 2$; $x = 13$; $S_1 = 5 = 0101$

8.
$$R_{S8} = 010001$$
; $y = 1$; $x = 8$; $S_1 = 12 = 1100$

Итого $R_s = 01001101 \ 00110010 \ 01100000 \ 01011100$

Выполним преобразование прямого Р-блока в соответствии с таблицей перестановок прямого Р-блока

Итого $f(K_1, R_0) = 00001110 \ 01011100 \ 11000000 \ 10110100$

Для получения второго блока первого раунда сложим по модулю 2 результат раундовой функции f с L_0 :

$$R_1 = L_0 xor f(K_1, R_0)$$
 = 11110001 11001100 00110110 11101110
 $L_1 = R_0$ = 00000000 11111111 01101110 11101011

1.2 Преобразования CrypTool

1.2.1 Раундовый ключ

В разделе РС1 выполняется начальная перестановка ключа (рис. 1)

Рисунок 1: начальная перестановка ключа

Программа вычислила следующие половины ключа (рис 2):

 $C_0 = 00000000 \ 110000000 \ 101111111 \ 0111$

 $\mathbf{D_0} = 11001010 \ 1111000000 \ 110000000 \ 11111$

Рисунок 2: вычислены начальные половины ключа

Далее программа вычисляет циклические сдвиги для C_0 и D_0 (рис. 3-4), получая следующие значения:

 $C_{s1} = 00000001 \ 10000001 \ 011111110 \ 1110$

 $\mathbf{D_{s1}} = 10010101 \ 110000001 \ 100000001 \ 11111$

Рисунок 3: циклический сдвиг С0

Рисунок 4: Циклический сдвиг D0

После чего программа применяет перестановку (Р-блок сжатия), объединяя половины ключа (рис. 5)

Рисунок 5: работа Р-блока сжатия

Итого программа собирает ключ для первого раунда (рис. 6):

$\mathbf{K_1} = 00000000\ 00101100\ 11101100\ 01010100\ 01001001\ 11000111$

Рисунок 6: ключ первого раунда

1.2.2 Начальное преобразование

Программой было выполнено начальное преобразование блока сообщения (рис. 7-8).

Рисунок 7: начальная перестановка (IP)

Рисунок 8: начальные половины блока сообщения

Полученные половины начального блока:

 $L_0 = 11111111 10010000 11110110 01011010$

 $R_0 = \boldsymbol{00000000} \ \boldsymbol{11111111} \ \boldsymbol{01101110} \ \boldsymbol{11101011}$

1.2.3 Раундовое преобразование

Программа выполнила начальное расширение блока R_0 (рис. 9)

Рисунок 9: работа Р-блока расширения

Получив: R_{0e} = 10000000 00010111 11111110 10110101 11010111 01010110

Далее программа выполняет **хог** полученного 48-битного блока R_{0e} с раундовым ключом (рис. 10), получая на выходе:

$R_{0x} = \textbf{100000 000011 101100 010010 111000 011001 111010 010001}$

Рисунок 10: xor c раундовым ключом

Далее программа выполняет преобразования S-блоков (рис. 11)

Рисунок 11: преобразования S-блоков

Получая $R_s = 01001101 \ 00110010 \ 01100000 \ 01011100$

После данной операции программа выполняет преобразование прямого Р-блока (рис. 11)

Рисунок 12: преобразование прямого Р-блока

Получая значение $f(K_1, R_0) = \mathbf{00001110} \ \mathbf{01011100} \ \mathbf{11000000} \ \mathbf{10110100}$

Для вычисления правой части блока первого раунда остаётся сложить по модулю 2 результат раундовой функции f с L_0 (рис. 13)

Рисунок 13: вычисление R1

Итого с помощью средств CrypTool 2 был проведён первый раунд шифрования блока DES (рис. 14):

$L_1 = 000000000 111111111 011011110 11101011$

Рисунок 14: результат первого раунда

Результаты вычислений инструмента DES Visualizer полностью совпадают с полученными вручную результатами шифрования.

1.3 Обратное преобразование

Выполним обратное преобразование первого раунда, имея R_1 и L_1 и ключ первого раунда K_1

 $L_1 = 000000000 1111111111 011011110 11101011$

 $K_1 = 00000000\ 00101100\ 11101100\ 01010100\ 01001001\ 11000111$

Очевидно, $R_0 = L_1$ и не требует вычислений.

Вычислим L_0 . Для этого, зная значение блока R_0 найдём значение раундовой функции $f(K_1, R_0)$ (п. 1.1.3.)

 $f(K_1, R_0) = 00001110 \ 01011100 \ 11000000 \ 10110100$

Тогда: $R_1 = L_0 xor f(K_1, R_0) \rightarrow L_0 = R_1 xor f(K_1, R_0)$

Так как $L_0 xor f(K_1, R_0) xor f(K_1, R_0) = L_0 xor 0 = L_0$

Итого $L_0=$ **1111 1111 1001 0000 1111 0110 0101 1010**, что полностью совпадает с исходными данными.

2. Шифр DES: режимы работы

2.1. ECB

Было подготовлено и зашифровано с помощью средств CrypTool 1 достаточно большое текстовое сообщение в режиме ECB (рис. 15)

Рисунок 15: DES/ECB

После чего на данный шифр была проведена атака грубой силы, в таблице 1 представлены результаты оценки времени подбора ключа при разном количестве известных байтов ключа.

Таблица 1: результаты криптоанализа DES/ECB

N известных байтов	Оценка времени взлома
0	1.6 * 10 ⁴ лет
1	$1.2 * 10^2$ лет
2	≈ 360 дней
3	2.8 дней
4	33 минуты
5	15 секунд
6	≈ мгновенно
7	≈ мгновенно

2.2. CBC

Аналогичным образом исходный текст был зашифрован в режиме CBC (рис. 16)

Рисунок 16: DES/CBC

После чего средствами CrypTool 1 был проведён криптоанализ для оценки времени подбора ключа при разных количествах известных байтов ключа, результаты представлены в таблице 2.

Таблица 2: результаты криптоанализа DES/CBC

N известных байтов	Оценка времени взлома						
0	2. 6 * 10 ⁴ лет						
1	2 * 10 ² лет						
2	1.6 лет						
3	4. 6 дней						
4	52 минуты						
5	24 секунд						
6	≈ мгновенно						
7	≈ мгновенно						

Можно заметить, что в большинстве случаев атака на шифр DES в режиме CBC занимает больше времени, происходит это за счёт большей энтропии (битовые последовательности более хаотичны).

3. Модификация 3-DES

Для определения версии шифра 3-DES используемого в среде CrypTool 2 были вручную построены следующие схемы шифрования 3-DES разными способами (EEE и EDE). Для 24-ёх и 16-ти байтного ключа схемы определения версии представлены соответственно на рисунках 17 и 18.

Рисунок 17: схема определения версии 3-DES для 24-ёх байтного ключа

Рисунок 18: схема определения версии 3-DES для 16-ти байтного ключа

Как можно заметить сообщение зашифрованное DES-EDE3 и DES-EDE2 успешно расшифровалось стандартным инструментом расшифровки 3DES, что свидетельствует о том, что в CrypTool 2 используются данные версии шифра.

4. Шифр Магма

Были выбраны следующие исходные данные:

- Открытый текст M = "Bolkunov"
- Ключ K = "030304O030304O030304O030303"

Соответственно их байтовое представление:

• $M_{16} = 42 \text{ 6F 6C 6B 75 6E 6F 76}$

• $K_{16} = 3033303330344F$

30 33 30 33 30 34 4F \

30 33 30 33 30 34 4F \

30 33 30 33 30 34 4F \

30 33 30 33 30

4.1 Ручные преобразования первого раунда

Разбиваем ключ на 4-ёх-байтовые последовательности и берём первую в соответствии со схемой использования раундовых ключей; и получаем раундовый ключ первого раунда:

$$K_1 = 30 33 30 33$$

Разобьём блок сообщения на две половины:

 $L_0 = 42 \text{ 6F 6C 6B}$

 $R_0 = 75 6E 6F 76$

Следующий шаг шифра: сложение R_0 с раундовым ключом:

$$R_{0+} = R_0 + K_1 \text{ mod } 2^{32} = \mathbf{A5} \mathbf{A1} \mathbf{9F} \mathbf{A9}$$

Далее осуществляем перестановки S-блоков в соответствии с таблицей S-блоков (рис. 19)

H C E		Значение														
Номер S-блока	ока 0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
1	1	7	Е	D	0	5	8	3	4	F	A	6	9	С	В	2
2	8	Е	2	5	6	9	1	С	F	4	В	0	D	A	3	7
3	5	D	F	6	9	2	С	A	В	7	8	1	4	3	Е	0
4	7	F	5	A	8	1	6	D	0	9	3	Е	В	4	2	C
5	С	8	2	1	D	4	F	6	7	0	A	5	3	Е	9	В
6	В	3	5	8	2	F	A	D	Е	1	7	4	С	9	6	0
7	6	8	2	3	9	A	5	С	1	Е	4	7	В	D	0	F
8	С	4	6	2	A	5	В	9	Е	8	D	7	0	3	F	1

Рисунок 19: S-блоки магмы

1.
$$A \rightarrow A = 0001$$

2. 5
$$\rightarrow$$
 9 = 1101

3.
$$A \rightarrow 8 = 1100$$

4.
$$1 \rightarrow F = 0111$$

5.
$$9 \rightarrow 0 = 0100$$

6.
$$F \rightarrow 0 = 1110$$

7.
$$A \rightarrow 4 = 0001$$

8.
$$9 \rightarrow 8 = 0010$$

Тогда $R_{0s} = \mathbf{A9} \ \mathbf{8F} \ \mathbf{00} \ \mathbf{48}$

Следующим шагом осуществляем циклический сдвиг влево на 11 бит:

$$R_{0L} \quad = 1010 \ 1001 \ 1000 \ 1111 \ 0000 \ 0000 \ 0100 \ 1000 <<11$$

$$= 0111\ 1000\ 0000\ 0010\ 0100\ 0101\ 0100\ 1100$$

= **78 02 45 4C**

Чтобы получить R_1 остаётся только применить **хог** к полученному на предыдущем шаге R_{0L} с L_0 :

$$R_1 = R_{0L} xor L_0 = 78 02 45 4C xor 42 6F 6C 6B = 3A 6D 29 27$$

 $L_1 = R_0 = 75 6E 6F 76$

4.2 Преобразования LitoreR

В программу Литорея были введены индентичные исходные данные (рис. 20)

Рисунок 20: ввод исходных данных Магма

На рисунке 21 представлены результаты работы программы на первом раунде. Получены следующие данные:

Раундовый ключ $K_1 = 30 33 30 33$

Субблоки: $L_0 = 42$ 6F 6C 6B; $R_0 = 75$ 6E 6F 76

Сложение по модулю 2: $R_{0+} = A5 A1 9F A9$

Подстановки s-блоков: $R_{0s} = \ \mathbf{A9\ 8F\ 00\ 48}$

Циклический сдвиг: $R_{0L} = 42 \text{ 6F 6C 6B*}$

Сложение xor: $R_1 = 3A 6D 29 27$

Рисунок 21: работа шифра Магма на первом раунде

Полученные значения совпадают* с вычисленными вручную.

4.3 Обратное преобразование

Выполним обратное преобразование первого раунда, имея R_1 и L_1 и ключ первого раунда K_1

 $R_1 = 3A 6D 29 27$

 $L_1 = 75 \text{ 6E 6F } 76$

 $K_1 = 30 \ 33 \ 30 \ 33$

Очевидно, $R_0 = L_1$ и не требует вычислений.

Вычислим L_0 . Для этого выполним первые три шага шифрования зная R_0 (пункт 4.1)

Сложение по модулю 2: $R_{0+} = A5 A1 9F A9$

Подстановки s-блоков: $R_{0s} = \ {f A9\ 8F\ 00\ 48}$

Циклический сдвиг: $R_{0L} = 78~02~45~4C$

Выполним сложение R_1 **хог** с R_{0L} чтобы найти L_0

Так как
$$R_1 = R_{0L} xor L_0 \rightarrow L_0 xor R_{0L} xor R_{0L} = L_0 = R_1 xor R_{0L}$$

 $L_0 = 3A 6D 29 27 xor 78 02 45 4C = 42 6F 6C 6B$

Полученные расшифрованные субблоки полностью совпадают с исходными.

5. Шифр Магма: режимы работы

Было подготовлено следующее изображение, содержащие буквы и цифры в формате bmp (рис. 22):

Рисунок 22: исходное изображение

5.1 Режим простой замены

Исходное изображение было зашифровано в программе Литорея с использованием режима простой замены (рис. 23)

Рисунок 23: магма: режим простой замены

Как можно заметить текст на изображении различим.

Полученное изображение было сжато средствами CrypTool 1.

Результаты сжатия представлены на рисунке 24. Коэффициент сжатия составил 0.2 (20%)

Рисунок 24: сжатие изображения зашифрованного в режиме простой замены

5.2 Режим простой замены с зацеплением

Идентичное изображение было зашифровано в режиме простой замены с зацеплением. Результат шифрования представлен на рисунке 25.

Рисунок 25: шифрование изображения в режиме простой замены с зацеплением

Полученное изображение было аналогично сжато средствами CrypTool 1 (рис. 26). В результате коэффициент сжатия составил 0 (0%), что говорит о крайне высокой энтропии зашифрованных данных.

Рисунок 26: сжатие изображения зашифрованного в режиме простой замены с зацеплением

Выводы:

В ходе лабораторной работы были исследованы шифры DES, 3-DES и Магма, и режимы их работы: ECB / CBC и простая замена / простая замена с зацеплением соответственно для DES и Магма.

- Для шифра DES были изучены преобразования в среде CrypTool 2. Результаты работы шифра на первом раунде были успешно сопоставлены с ручными вычислениями результатов первого раунда шифрования.
- На основе выбранного текста была изучена работа режимов шифра DES: ЕСВ и СВС в среде CrypTool. Для результатов шифрования была проведена оценка атаки грубой силы средствами программы CrypTool. В среднем оценка времени атаки оказалась больше для режима СВС, что объясняется значительно более высокой энтропией по сравнению с режимом ЕСВ.
- В среде CrypTool 2 была разработана схема для экспериментального определения версии шифра 3-DES: вручную были созданы 4 версии данного шифра (EEE2, EDE2, EEE3 и EDE3); результаты их шифрования были сопоставлены со встроенным шифром 3-DES. По итогам эксперимента было выявлено что в данной программе используется версия EDE2 и EDE3 для 16-байтового и для 24-байтового ключа соответственно.
- Для шифра Магма были изучены преобразования в программе Литорея. Результаты работы шифра на первом раунде были успешно сопоставлены с самостоятельными вычислениями значений первого раунда.

• В программе Литорея были исследованы режимы работы шифра магма. Было подготовлено изображение, содержащее символы, после чего зашифровано в режимах простой замены и простой замены с зацеплением. После шифрования изображения были сжаты средствами программы CrypTool. В результате степень сжатия файла, зашифрованного в режиме значительно файла, простой замены, оказалась выше, чем ДЛЯ зашифрованного в режиме простой замены с зацеплением, также в случае простой замены символы на изображении были достаточно хорошо различимы, в отличие от режима простой замены с зацеплением; что говорит о значительно более высокой энтропии в данных после шифрования в режиме простой замены с зацеплением по сравнению с режимом простой замены.

приложение а. примечания.

* - в программе Литорея некорректно отображается результат циклического сдвига (вместо него показывается левый субблок L_0).