

Hacking Wireless Networks

Rumman Ahmed Wasfi Momen

Cryptography

Introduction

- ▶ The data communicated can be seen by everyone in the network, so it is important to keep the communication secure
- ► Why hack Wi-Fi?
 - Go on the internet anonymously
 - ▶ Use someone else's bandwidth to download your own large files or torrents
 - ■Spy on user traffic and intercept sensitive info

Security Protocols

- ► There are established security protocols when dealing with the connection to wireless networks
- ► The reason these protocols are in place:
 - ▶ To prevent random users from connecting to your network
 - ▶ To encrypt the communication over the network
- ► They have changed throughout the years, mainly because major security flaws were discovered in the former

WEP (Wired Equivalent Privacy)

- Original standard developed for wireless networks
- Flawed because it allows keys to be reused in the encryption and only had a 24-bit initialization vector (IV), which is very small
 - IVs are used along with a secret key to encrypt data
- For a busy network, the same IV may be used for two clients, which allows attackers to decipher the key

How to Hack WEP...Just Use Google

About 392,000 results (0.35 seconds)

How to Hack Wi-Fi: Cracking WEP Passwords with Aircrack-Ng « Null ...

https://null-byte.wonderhowto.com/how-to/hack-wi-fi-cracking-wep-passwords-with-... ▼
Oct 20, 2013 - Let's take a look at cracking WEP with the best wireless hacking tool available, aircracking! Hacking wireless is one of my personal favorites!

How to Crack Wi-Fi Passwords-For Beginners! « Hacks, Mods ...

https://mods-n-hacks.gadgethacks.com/how-to/crack-wi-fi-passwords-for-beginners-0... ▼ Mar 12, 2015 - **Hacking WEP** passwords is relatively fast, so we'll focus on how to crack them for this guide. If the only networks around you use WPA ...

simple_wep_crack [Aircrack-ng]

https://www.aircrack-ng.org/doku.php?id=simple_wep_crack ▼
Aug 29, 2010 - This tutorial walks you though a very simple case to crack a WEP key. It is intended to build your basic skills and get you familiar with the ...
Introduction · Assumptions · Equipment used · Solution

How to Crack a Wi-Fi Network's WEP Password with BackTrack

https://lifehacker.com/.../how-to-crack-a-wi-fi-networks-wep-password-with-backtrac... ▼ Oct 28, 2011 - You already know that if you want to lock down your Wi-Fi network, you should opt for WPA encryption because **WEP** is easy to **crack**. But did ...

How To Hack Into A WEP Encrypted Wi-Fi Network (Using Windows ...

https://www.youtube.com/watch?v=P3P_s4isn2A ▼ Aug 7, 2012 - Uploaded by Hckr

This video shows **how to hack** a wi-fi network that uses **WEP** encryption. The **>2:48** software I used were commview ...

How to Break WEP Encryption (with Pictures) - wikiHow

https://www.wikihow.com/Break-WEP-Encryption ▼

How to Break **WEP** Encryption. Breaking any encryption coding or codes involves knowing a few things. First, you have to know that there is an encryption ...

How to Hack Wi-Fi (WEP) | Hacking Tutorials by Xeus - XeusHack

WPA (Wi-Fi Protected Access)

- ► This was a partial new standard implemented when the flaws of WEP were discovered
- Increased the initialization vector (48 bits) and the master key (128 bits)
- Introduces Temporal Key Integrity Protocol (TKIP), which is a set of algorithms to help with encryption (now deprecated)

WPA2

- ► This is the full implementation of the WPA standard, finalized in 2004
- ► Most important addition is the use of CCMP and AES for key encryption
- This standard was mathematically proven to be secure

How to Hack WPA/WPA2

- ▶ ARP Spoofing: used to make the access point think the attacker is the real user (man in the middle attack)
- ► WPA2-PSK vs WPA2-Enterprise
 - ► WPA2-PSK is used by home networks and places like coffee shops. Anyone who connects can observe and decrypt other's traffic because of a shared key
 - WPA2-Enterprise fixes this as every client has a unique key

SSID:

Protocol: 802.11n

Security type: WPA2-Enterprise

GSU

How to Hack WPA/WPA2

- ► The former techniques require you to actually connect to the network
- You are protected if your traffic is encrypted (HTTPS)
- ▶ Up until earlier this year, these techniques were assumed the only ways to compromise wireless networks
- Now there's a way to hack a protected WPA2 network even without the password

Key Reinstallation Attack (KRACK)

- ► This exploit was discovered by Mathy Vanhoef and presented at the ACM security conference in the beginning of November 2017
- The hack compromises all modern WPA2 networks, with Linux and Android devices being the most vulnerable
- Attackers, who are within range of the device or access point, can intercept data, including passwords, emails, and all other encrypted data

4-Way Handshake

- ► KRACK targets the 4-way handshake that occurs when a client connects to a WPA2 network
- During the handshake:
 - ► Verifies the client has the correct credentials
 - ▶ Generates an encryption key for the communication

4-Way Handshake (continued)

- After message 3, the key is sent from the access point to the client and installed
- ► However, if messages are lost (if message 3 was never received), the access point will resend and install the same key
- This prompts the IV to be reset to the same value each time
- Attackers can now use the IV to launch a replay attack to figure out what they key is

Effects

- ► This exploit affects all modern WPA2 networks
- Android and Linux devices are much more vulnerable, as the IV gets reset to 0 instead of what it was initially, so attackers don't even have to figure out the IV
- ► Windows and iOS devices don't allow the retransmission of message 3, so they are considered more safe

Effects

- ▶ Both the clients (our phones, laptops, and other Wi-Fi capable devices) and the access points will need to be updated
- Security patches have been rolling out since the discovery (privately told to some vendors in July)
- It is important to be kept up to date with wireless security, considering how much sensitive data we send and receive

Implementation of key exchange in WPA2 handshake

- Try to model how tools and routers compute these keys in the exchange
- Coffee shop wifi setup, we know the password
- ▶ Use Wireshark to capture the handshake
- ► Use Python to derive keys
- ► Algorithms: HMAC-SHA1, PBKDF2

Capture Handshake


```
Wireshark · Packet 1 · Successful
Frame 1: 135 bytes on wire (1080 bits), 135 bytes captured (1080 bits) on interface 0
Ethernet II, Src: Netgear 21:6e:8a (20:0c:c8:21:6e:8a), Dst: IntelCor bd:00:f7 (80:86:f2:bd:00:f7)
▼ 802.1X Authentication
   Version: 802.1X-2004 (2)
   Type: Key (3)
   Length: 117
   Key Descriptor Type: EAPOL RSN Key (2)
  ▶ Key Information: 0x008a
   Key Length: 16
   Replay Counter: 0
   WPA Key Nonce: 0d27c9ec7ad78cc4c8ccba8239af3ffe681d8cb00138d5fc...
   WPA Key RSC: 00000000000000000
   WPA Key ID: 00000000000000000
   WPA Key Data Length: 22
  WPA Key Data: dd14000fac048fa027f33ea89063500bebcfa4a42237
   ▼ Tag: Vendor Specific: Ieee8021: RSN
       Tag Number: Vendor Specific (221)
       Tag length: 20
       OUI: 00-0f-ac (Ieee8021)
       Vendor Specific OUI Type: 4
       RSN PMKID: 8fa027f33ea89063500bebcfa4a42237
```

Derive the PMK

```
# Change these to the network you are on.
SSID = "Circle of Hell"
password = "Inferno09"
```

Derive the PTK

```
# need nonces, you can grab them using wireshark and filtering by the EAPOL transport protocol
# calculated using any pseudorandomfunction with 256 bits, typically HMAC
ANonce = binascii.a2b_hex("0d27c9ec7ad78cc4c8ccba8239af3ffe681d8cb00138d5fc2fad8ff003878b5c")
SNonce = binascii.a2b_hex("e9aeeff31097a2e98bb507e55d6e4870b007d7ea30a2f4e74198821aced42225")
# get these from wireshark
Auth_MAC = binascii.a2b_hex("200cc8216e8a") # Mac address of authenticator (router)
Supplicant_MAC = binascii.a2b_hex("8086f2bd00f7") # Mac address of supplicant (client/victim)
Data = "dd14000fac048fa027f33ea89063500bebcfa4a42237" # data given from authentication to supplicant in step 1
```

```
print("\nCreating Pairwise Transient Key...\n");

# PTK is typically 512 bits and a version of HMAC
# http://etutorials.org/Networking/802.11+security.+wi-fi+protected+access+and+802.11i/Part+I1+The+Design+of+Wi-Fi+Security/Chapter+10.+WPA+and+RSN+Key+Hierarchy/Computing+the+Temporal
# input parameters are:
# the PWK
# a string, normally "Pairwise Key Expansion"
# concatenation of our nonces and mac addresses of the supplicant and authenticator

def PRF(pmk, str, concat):
numBytes = 64 # max allowed in EAPOL

i = 0 # intial count
R = " # register

while (i <= (numBytes * 8 + 159) / 160):
hmacshal = hmac.new(pmk, str+chr(0x00)+concat+chr(i), hashlib.shal) # supplied parameters are pmk, the concat string with padding and sha-1 hash
i+-1
R = R + hmacshal.digest()
return R[0:numBytes] # return bit 0 till 64th bit

str_concat = min(Auth_MAC, Supplicant_MAC) + max(Auth_MAC, Supplicant_MAC) + min(ANonce, SNonce) # from the standard
PTK = PRF(PMK, "Pairwise Key Expansion", str_concat).encode("hex")

print("Pairwise Transient Key: \n" + PTK)
```

Conclusion

- ▶ By researching past vulnerabilities of cryptography algorithms and simulating the handshake process, we were able to understand how different attacks can compromise data transmitted between two parties via a wireless network.
- ▶ Passphrase really does matter.
- ▶ WPA3 is scheduled to be announced as a new amendment to the 802.11 standard very soon.
- ▶ There are still some issues not addressed, like deauthentication attack and coffee shop wifi sniffing

References

- https://papers.mathyvanhoef.com/ccs2017.pdf
- https://www.krackattacks.com/
- http://searchsecurity.techtarget.com
- https://www.veracode.com/security/arpspoofing
- https://www.howtogeek.com/204335/warningencrypted-wpa2-wi-fi-networks-are-stillvulnerable-to-snooping/

Thank you