Math 110B Final Practice

Sava Spasojevic

March 18, 2019

3) (i) Prove that a group G of order p^n for p a prime has a non-trivial center (i.e. the center Z(G) of G has order > 1).

Proof. Let G be a p-group with p prime. Let G act on itself by conjugation, i.e. $\varphi: G \to S_{|G|}$ with $g \mapsto c_g$, where $c_g(k) = gkg^{-1}$. We know that $\{Orb_G(x)\}$ defines a partition of X = G. So

$$\sum_{\text{representatives}} |Orb_G(x)| = |G| \equiv 0 \mod p$$

But, $|Orb_G(x)|||G|$ which implies that $|Orb_G(x)| \equiv 0 \mod p$ or 1. So

$$\sum |Orb_G(x)| = \sum 1 = |Z(G)| \equiv 0 \mod p$$

But, $|Z(G)| \neq 0$, which means that |Z(G)| has to be divisible by p. Thus, the center is nontrivial.

(ii) Prove that a group of order p^2 is abelian.

Proof. Let G be a group of order p^2 . Then by the theorem above, $|Z(G)| = p^2$ or p. If $|Z(G)| = p^2$ then Z(G) = G and we're done. If |Z(G)| = p, |G/Z(G)| = p so it is cyclic. This means $\langle gZ(G)\rangle = G/Z(G)$, for some $g \in G$. Let $g \in G$. Then, for some $m \in \mathbb{Z}$

$$qZ(G) = g^{m}Z(G)$$
$$qg^{-m} = z \in Z(G)$$
$$q = q^{m}z$$

This shows that any arbitrary element in G can be written as the product of some power of g and some element in the center. So for $a, b \in G$, $z, z' \in Z(G)$, $m, n \in \mathbb{Z}$,

$$ab = g^m z g^n z'$$

$$= g^m g^n z z'$$

$$= g^n g^m z z'$$

$$= g^n z' g^m z$$

$$= ba$$

Thus, G is abelian.

5) If $\sigma, \tau \in G$ have orders that are distinct primes p, q, and if $\sigma \tau = \tau \sigma$ then the order of $\sigma \tau$ is pq. Show that this need not be true if σ, τ do not commute

Proof. Since $\sigma \tau = \tau \sigma$ we have that $(\sigma \tau)^{pq} = \sigma^{pq} \tau^{pq} = (\sigma^p)^q (\tau^q)^p = e^q e^p = ee = e$. Let $o(\sigma \tau) = k$. We know that k|pq. This means k = 1, p, q, or pq. If k = 1 then $\sigma \tau = e$ which is not true since neither σ nor τ are the identity. If k = p then $(\sigma \tau)^p = \sigma^p \tau^p = \tau^p = e$. This is not true since $o(\tau) = q \neq p$ and q does not divide p. Similar case when k = p. So k = pq. Consider $\sigma, \tau \in S_3$. We know that $\sigma \tau \neq \tau \sigma$ and $o(\sigma \tau) \neq o(\sigma)o(\tau)$

6) (i) For a prime p classify all abelian groups of order p^3 .

Proof. We consider three cases.

case I: $\exists g \in G : o(g) = p^3$. Then $G \cong \mathbb{Z}_{p^3}$.

<u>case II:</u> $\exists g \in G : o(g) = p^2$. Consider $\langle g \rangle$. Take $h \notin \langle g \rangle$. Then we have $G/\langle g \rangle \cong \mathbb{Z}_p = \langle h \langle g \rangle \rangle$. So $G \cong \langle g \rangle \times \langle h \rangle \cong \mathbb{Z}_{p^2} \times \mathbb{Z}_p$.

case III:
$$\exists g \in G : o(g) = p$$
. Then $G \cong \mathbb{Z}_p \times \mathbb{Z}_p \times \mathbb{Z}_p$.

(ii) give an example of a nonabelian group of order p^3

 D_4 is nonabelian. $|D_4| = 8 = 2^3$.

7) Given a positive integer n, and an integer k prime to the Euler function $\phi(n) = |\mathbb{Z}_n^*|$ show that every element $a \in \mathbb{Z}_n^*$ can be written as $a = b^k$ for a unique $b \in \mathbb{Z}_n^*$. Further show that $b = a^l$ for an integer l such that kl is 1 mod $\phi(n)$.

Proof. Let $a \in \mathbb{Z}_n^*$. We know that the order of a divides that order of the group, i.e. $o(a)|\phi(n)$. Suppose o(a) = s. Then the above statement becomes $st = \phi(n)$ for some $t \in \mathbb{Z}$ with $a^s = e$. We know that since k is prime to the Euler function $\phi(n)$, we have that $mk + \phi(n)l = 1$ for some $k, l \in \mathbb{Z}$. So,

$$a = a^1 = a^{mk + \phi(n)l} = a^{mk}a^{\phi(n)l} = a^{mk}a^{stl} = (a^m)^k(a^s)^{tl} = (a^m)^ke^{tl} = (a^m)^k$$

Take $b = a^m \in \mathbb{Z}_n^*$ since this group is closed under multiplication. This element is clearly unique. Thus, $a = b^k$. To show the second statement, we suppose that $kl \equiv 1 \mod \phi(n)$. That is, $kl + \phi(n)m = 1$ for some $m \in \mathbb{Z}$. Suppose o(b) = w. Then $w|\phi(n)$, i.e. $wr = \phi(n)$ for some $r \in \mathbb{Z}$. We have,

$$b = b^1 = b^{kl + \phi(n)m} = b^{kl}b^{\phi(n)m} = b^{kl}b^{wrm} = (b^k)^l(b^w)^{rm} = a^le^{rm} = a^l$$

Thus, $b = a^l$.

9) Prove that if N_1, N_2 are normal subgroups of G which intersect trivially, then N_1N_2 is isomorphic to $N_1 \times N_2$.

Proof. Let $N_1, N_2 \subseteq G$ with $N_1 \cap N_2 = \{e\}$. Consider the map

$$\varphi: N_1 \times N_2 \to N_1 N_2$$
$$(n_1, n_2) \mapsto n_1 n_2$$

We first show it is a homomorphism. Let $n_1' \in N_1$ and $n_2 \in N_2$. Since N_1 is normal, $n_2 n_1' n_2^{-1} \in N_1$. Since $n_1'^{-1} \in N_1$, $n_1'^{-1} n_2 n_1' n_2^{-1} \in N_1$. Since N_2 is normal $n_1'^{-1} n_2 n_1' \in N_2$. Since $n_2^{-1} \in N_2$, we have $n_1'^{-1} n_2 n_1' n_2^{-1} \in N_2$. Thus, $n_1'^{-1} n_2 n_1' n_2^{-1} = e$. So, for $(n_1, n_2), (n_1', n_2') \in N_1 \times N_2$, we have

$$\varphi((n_1, n_2)(n'_1, n'_2)) = \varphi((n_1 n'_1, n_2 n'_2))
= n_1 n'_1 n_2 n'_2
= n_1 n'_1 e n_2 n'_2
= n_1 n'_1 n'_1^{-1} n_2 n'_1 n_2^{-1} n_2 n'_2
= n_1 n_2 n'_1 n'_2
= \varphi((n_1, n_2)) \varphi((n'_1, n'_2))$$

So, this map is a homomorphism. It is clearly bijective, thus it is an isomorphism.

10) Show that if a group G acts on a set X, and if x = gy for $g \in G$, $x, y \in X$, then $Stab_G(y) = gStab_G(x)g^{-1}$. Using this, show for a subgroup H of G that the kernel of the homomorphism $\pi: G \to A(G/H)$ given by $\pi(g)(xH) = gxH$ is H if and only if H is normal in G.

Proof. Let $g \in Stab_G(y)$. Then, y = gy = x. We have that $gxg^{-1} = gyg^{-1} = xg^{-1}$. Multiplying by g on the right gives gx = x, which means $g \in gStab_G(x)g^{-1}$. So $Stab_G(y) \subseteq gStab_G(x)g^{-1}$. Let $h \in gStab_G(x)g^{-1}$. We need to show $g^{-1}hg \in Stab_G(y)$. $g^{-1}hgy = g^{-1}hx = g^{-1}x = y$.

11) Using Sylow theorems or otherwise, prove that there is no simple group of order 56.

Proof. Let G be a group such that |G| = 56. We need to show that $\exists N \subseteq G$ such that $N \neq e, G$, i.e. there is a nontrivial normal subgroup. Note that $56 = 2^3 \cdot 7$. Let P be a Sylow 7-subgroup. The Third Sylow Theorem says the $n_7 \equiv 1 \mod 7$ and $n_7|8$. Therefore, $n_7 = 1$ or $n_7 = 8$. Suppose that $n_7 = 1$. Then P is normal and we are done.

Suppose now that $n_7 = 8$. This means there are 8 Sylow 7-subgroups. We begin by listing them $P = P_1, P_2, \ldots, P_8$. Consider the intersection of these groups $P_i \cap P_j$ $(1 \le i \le j \le 8)$. Notice that $P_i \cap P_j = \{e\}$ and

 $P_i \cap P_j \leq P_i$ and $P_i \cap P_j \leq P_j$ as P_i and P_j are distinct and of prime order. Consider $\bigcup_{i=1}^8 P_i$. These are all elements of G of order dividing 7. So,

$$\left| \bigcup_{i=1}^{8} P_i \right| = 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7 - 7 = 49$$

$$\left| G \middle/ \bigcup_{i=1}^{8} P_i \right| = 56 - 49 = 7$$

There is a sylow 8-subgroup, call it Q. Notice that $Q/\{e\} \subseteq G/\bigcup_{i=1}^8 P_i$ and $Q = (G/\bigcup_{i=1}^8 P_i) \cup \{e\}$. This applies to any Sylow 8-subgroup and thus there is a unique Sylow 8-subgroup. Therefore G is not simple. \square

12) Using groups acting on sets (for eg H acting on a set of cosets K in G), or otherwise prove that if H, K are subgroupds of a finite group G, and $HK = \{hk : h \in H, k \in K\}$, then

$$|HK| = |H||K|/|H \cap K|$$

Proof. Let H act on HK/K where $h \times h_1k \mapsto hh_1k$. We have the following

$$Orb(eK) = \{hK : h \in H\} = HK/K$$
$$Stab(eK) = \{h \in K\} = H \cap K$$

By orbit-stabilizer theorem $|HK|/|K| = |H|/|H \cap K|$.

14) Given an *n*-cycle $\sigma \in S_n$, and a postive integer r, show that σ^r is conjugate to σ in S_n if and only if r is prime to n.

Proof. Let $\sigma \in S_n$ and $r \in \mathbb{Z}^+$. Suppose that $o(\sigma) = k$.

$$e = \sigma^k = g^k (\sigma^r)^k g^{-k} \Longrightarrow g^{-k} g^k = (\sigma^r)^k$$
$$\Longrightarrow e = (\sigma^r)^k$$
$$\Longrightarrow o(\sigma^r) | o(\sigma) = k$$

Now, suppose that $o(\sigma^r) = j$.

$$\begin{split} e &= (\sigma^r)^j = g^j \sigma^j g^{-j} \Longrightarrow g^{-j} g^j = \sigma^j \\ &\Longrightarrow e = \sigma^j \\ &\Longrightarrow o(\sigma) | o(\sigma^r) = j \end{split}$$

This gives the equality $o(\sigma) = o(\sigma^r)$. Recall that if G is a group and $a \in G$, $o(a^k) = \frac{o(a)}{(k.o(a))}$

So we have that

$$o(\sigma^r) = \frac{o(\sigma)}{(r, o(\sigma))}$$

But, $o(\sigma) = n$ since its an n-cycle, which means (r, n) = 1.