

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: (11) International Publication Number: WO 92/21752 C12N 15/00, 15/10, 15/12 A1 (43) International Publication Date: 10 December 1992 (10.12.92) A61K 35/20 (74) Agents: SCOTT, Watson, T. et al.; Cushman, Darby & Cushman, Ninth Floor, 1100 New York, N.W., Wash-(21) International Application Number: PCT/US92/04012 (22) International Filing Date: 21 May 1992 (21.05.92) ington, DC 20005-3918 (US). (30) Priority data: (81) Designated States: AT (European patent), AU, BE (European patent), CA, CH (European patent), AU, BE (European patent), DK (European patent), ES (European patent), FR (European patent), GB (European patent), GR (European patent), IT (European patent), JP, LU (European patent), MC (European patent), NL (European patent) 707,502 31 May 1991 (31.05.91) US (71) Applicant: THE UNITED STATES OF AMERICA represented by THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES [US/US]; Natent), SE (European patent). tional Institutes of Health, Office of Technology Transfer, Patent Branch, Bethesda, MD 20892 (US). **Published** (72) Inventors: TENG, Christina; 8709 Lakewood Drive, Raleigh, NC 27613 (US). PANELLA, Timothy, J.; 6827 With international search report. Lindal Road, Knoxville, TN 37931 (US).

(54) Title: HUMAN LACTOFERRIN

(57) Abstract

The present invention relates to a human lactoferrin cDNA gene obtained from human breast tissue and the protein encoded therefrom. The present invention further relates to methods for detecting malignancy arising from tissues that normally secrete lactoferrin using the cDNA gene probe of the present invention. Another aspect of the present invention relates to the promotor region that regulates the human lactoferrin gene.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT.	Austria	FI	Finland	MI	Mali
ΑU	Australia	FR	France	MN	Mongolia
BB	Barbados	GA	Gabon	MR	Mauritania
BE	Belgium	GB	United Kingdom	MW	Malawi
BF	Burkina Faso	GN	Guinea	NI.	Netherlands
BG	Bulgaria	GR	Greece	NO	Norway
BJ	Benin	HU	Hungary	PL	Poland
BR	Brazil	ΙE	Ireland	RO	Romania
CA	Canada	IT	Italy	RU	Russian Federation
CF	Central African Republic	JР	Japan	SD	Sudan
CC	Congo .	KP	Democratic People's Republic	SE	Sweden
CH	Switzerland		of Koreá	SN	Senegal
CI	Côte d'Ivoire	KR	Republic of Korea	รบ	Soviet Union
CM	Cameroon	LI	Liechtenstein	TD	Chad
CS	Czechoslovakia	LK	Srî Lanka	TG	Togo
DE	Germany	LU	Laxembourg	US	United States of America
DK	Denmark	MC	Monaco		
ES	Spain	MG	Madagascar		

10

15

20

25

30

HUMAN LACTOFERRIN

BACKGROUND OF THE INVENTION

FIELD OF THE INVENTION

The present invention relates to a human lactoferrin gene isolated from breast tissue and to the protein product encoded therein. The present invention further relates to the promotor region of human lactoferrin gene and to methods for detecting and analyzing malignancies arising from tissues that normally secrete lactoferrin using a novel human lactoferrin cDNA gene sequence.

BACKGROUND INFORMATION

Lactoferrin is a single polypeptide molecule (M, 76,000) with sites where two oligosaccharide chains can attach (B.F. Anderson et al., J. Mol. Biol. 209:711-734 (1989)). This protein shares significant homology with transferrin, however, its role in iron transport is limited since it binds iron 260 times stronger than transferrin (B.F. Anderson et al., (1989)). Two and possibly three isoforms of lactoferrin have been isolated using an affinity chromatography (P. Furnamski et al., J. Exp. Med. 170:415-429 (1989); A. Kijlstra et al., Current Eye Res., 8:581-588 (1989)). Lactoferrin has been shown to inhibit bacterial growth by chelating iron and directly attacking the cell wall (R.T. Ellison et al., Infect Immun., 56:2774-2781 (1988)), contribute to the anemia of chronic disease (Birgens. Scand. J. Haematol., 33:225-230 (1984)), improve intestinal absorption of iron in infants (Birgens., (1984)) inhibit myelopoiesis (H.E. Broxmeyer et al., Blood Cells

1

5

10

2

13:31-48 (1987)), and degrade mRNA (P. Furmanski et al., (1989); M.R. Das et al., Nature 262:802-805 (1976); P. Furmanski and Z.P. Li, Exp. Hematol 18:932-935 (1990). Large quantities of lactoferrin are found in breast milk (B. Lonnerdal et al., Nutrition Report Int., 13:125-134 (1976)), in estrogen-stimulated uterine epithelium (B.T. Pentecost and C.T. Teng, J. Biol. Chem. 262:10134-10139 (1987)), and in neutrophilic granulocytes (P.L. Masson et al., J. Exp. Med., 130:643-658 (1969)) with smaller amounts in tears, saliva, serum, and seminal fluid (D.Y. Mason and C.R. Taylor, J. Clin. Path., 31:316-327 (1978)).

While normal breast ductal epithelium and neutrophilic granulocytes contain lactoferrin, their malignant counterparts frequently do not (C. Charpin 15 et al., Cancer, 55:2612-2617 (1985); T.A. Rado et al., Blood, 70:989-993 (1987)). This has been evaluated at the protein level and in a few samples at the messenger RNA level (T.A. Rado et al., (1987)). Analysis at the genomic level has not been 20 performed. DNA variations, that are detected in the coding regions, may lead to abnormal protein structure and loss of normal function. Variations, such as mutations, deletions, or changes in methylation, at the promoter regions could lead to 25 altered regulation of the gene. Evaluation of the lactoferrin gene may provide interesting insight concerning the production of lactoferrin in malignant cells. Thus, the need exists for the structure of the lactoferrin gene including the cDNA 30 and the promotor region. The present invention provides such a description of the structure of a

3

human lactoferrin cDNA and promotor region of the gene.

Using a lactoferrin cDNA clone isolated from human breast tissue, the applicants have evaluated restriction fragment length changes in DNA from the white blood cells of 10 normal controls, acute non-lymphocyte leukemia (ANLL) cells from 7 patients, T-cell acute lymphocyte leukemia (ALL) from one patient, 3 leukemia cell lines, and 7 breast cancer cell lines. A comparative study of the lactoferrin gene in these different cell types is provided herein.

The present invention further relates, in part, to a human lactoferrin cDNA and the protein product encoded therein. In another aspect, the present invention relates to methods for detecting malignancy in tissues that normally secrete lactoferrin by evaluating restriction patterns in DNA using a lactoferrin gene probe of the present invention.

SUMMARY OF THE INVENTION

5

10

15

20

25

30

It is an object of the present invention to provide a DNA sequence of the human lactoferrin gene including the cDNA and the promotor region and to the protein product encoded therein.

In one embodiment, the present invention relates to a DNA segment encoding human lactoferrin according to the sequence identification number In another embodiment, the present invention relates to the human lactoferrin protein encoded by the sequences given in identification number 2.

4

In yet another embodiment, the present invention relates to a DNA segment of the promotor region for human lactoferrin according to the sequence identification number 5 and allelic variations thereof.

In a further embodiment, the present invention relates to a recombinant DNA construct comprising the DNA segments encoding the human lactoferrin gene sequences described above and a vector.

5

10

15

20

25

30

In another embodiment, the present invention relates to a recombinant DNA construct comprising the DNA segment encoding the human lactoferrin gene described above and a DNA promotor regulatory region for human lactoferrin according to sequence identification number 5 or portion thereof operatively linked to the DNA fragment.

In a further embodiment, the present invention relates to a host cell comprising the above described constructs.

Another embodiment of the present invention relates to a method of treating a condition in a patient characterized by a deficiency in lactoferrin by administering to the patient an amount of human lactoferrin according to the present invention in sufficient quantities to eliminate the deficiency. The conditions include neutropenia, AIDS, skin infection, gastrointestinal bacterial overgrowth syndrome, vaginal infection and septic shock.

In yet another embodiment, the present invention relates to methods of diagnosing malignancy or detecting the recovery of a malignancy

10

15

20

25

30

from a biological sample comprising the steps of isolating DNA from the biological sample and from normal control samples, cutting the DNA with a restriction enzyme called Xba I, hybridizing the cut DNA with a DNA segment of the human lactoferrin gene of the present invention described above or portion thereof under conditions such that hybridization is effected and comparing the hybridization product patterns of the biological sample and the normal control sample with each other.

In a further embodiment, the present invention relates to a method for detecting small insertions, deletions or mutations surrounding the human lactoferrin gene comprising the steps of isolating the DNA from a biological sample suspected of having such an insertion, deletion or mutation, amplifying the DNA using the human lactoferrin gene segment of the present invention described above or portion thereof in a polymerase chain reaction followed by enzymatically cutting the amplified DNA with Xba I, and hybridizing this DNA with the human lactoferrin gene segment described above under conditions such that hybridization is effected and sequencing the hybridized DNA.

Various other objects and advantages of the present invention will become obvious from the drawings and detailed description of the invention.

The entire contents of all publications mentioned herein are hereby incorporated by reference.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows the immunocytochemical staining of normal bone marrow (A) \times 400, and breast cancer cell line SKB R3 (B) \times 680 using anti-lactoferrin antibody at 1:1500.

Figure 2 depicts the restriction fragments produced with DNA from normal cells (A) or from leukemia cells (B) using lactoferrin cDNA (HLF 1212) as the probe. Normal samples (n=9) and DNA from 10 different leukemia cells types were digested with indicated enzyme, run in one gel and representative lanes cut out for comparison.

Figure 3 depicts the restriction fragments produced using DNA from normal samples (A) and from breast cancer cell lines (B), using lactoferrin cDNA (HLF 1212) as a probe. Normal samples (n=2) and DNA from eight cancer lines were digested with indicated enzyme, run in the same gel, and representative lanes cut out for comparison.

Figure 4 shows the restriction fragments produced
using Msp I and lactoferrin cDNA (HLF 1212) as the
probe. Lanes 1 - 9 are DNA from normal donors.
Lanes 10 - 16 represent DNA from leukemia cells from
patients. Lane 17 is cell line K562, lane 18 is KG
1, and lane 19 is U937.

Figure 5 represents the restriction fragments produced using Msp I and lactoferrin cDNA (HLF 1212) as the probe. Lanes 1 and 2 are DNA from normal donors. Lanes 3 - 9 represent DNA from breast

cancer cell lines. The cell lines are in the following order: Lane 3 - MDAMB 468, lane 4 - MCF 7, lane 5 - BT 474, lane 6 - HBL 100, lane 7 - MDA 175, lane 8 - SKB R3, lane 9 - ZR 75-1.

- Figure 6 shows the restriction fragments produced using Xba I and lactoferrin cDNA (HLF 1212) as the probe. Lanes 1 9 are DNA from normal donors.

 Lanes 10 16 are DNA from leukemia cells from patients and lanes 17 19 DNA from leukemia cell lines (lane 17 K562, lane 18 KG1, lane 19 U937). Arrow A is the band found is patterns A (lanes 1, 2, and 7), B, and C. Arrow B is the band found in patterns B (lanes 3 6, 8 10, 13, 14) and C. Arrow C is only found in pattern C (lanes 11, 12, 16). Insert is the same specimens run on a 0.7% agarose gel.
- Figure 7 depicts the restriction fragments produced using Xba I and lactoferrin cDNA (HLF 1212) as the probe. Lanes 1 and 2 are DNA from normal donors.

 Lanes 3 9 are DNA from breast cancer cell lines. The order is: Lane 3 MDAMB 468, lane 4 BT 474, lane 5 HBL 100, lane 6 -MDA 175, lane 7 SKB R3, lane 8 ZR 75-1, lane 9 ZR 75-30. Restriction fragment patterns as discussed in the text are in the following lanes: pattern A is seen in lane 1, pattern B in lane 2, and pattern D in lanes 3 9.

Figure 8 shows the restriction fragments produced using Hpa II and lactoferrin cDNA (HLF 1212) as the probe. Lanes 1 - 9 are DNA from normal donors.

Lanes 10 - 16 are DNA from leukemia cells from

10

25

8

patients. Lane 17 is cell line KG1, lane 18 is U937, and lane 19 is HL 60.

Figure 9 shows the restriction fragments produced using Hpa II and lactoferrin cDNA (HLF 1212) as the probe. Lanes 1 and 2 are DNA from normal donors.

Lanes 3 - 10 are breast cancer cell lines in the following order: lane 3 - MDAMB 468, lane 4 - MCF 7, lane 5 - BT 474, lane 6 - HBL 100, lane 7 - MDA 175, lane 8 - SKB R3, lane 9 - ZR 75-1, lane 10 - ZR 75-30.

Figure 10 depicts a sequence data of HLF 1212.

Differences between the published protein derived AA sequence and our cDNA derived sequence are indicated by underlining the extra AA in our sequence or indicating substitutions beneath our sequence.

Nucleotide differences based on published sequence data are indicated above our sequence. Nucleotide changes resulting in a different AA are typed below the area of substitution.

20 DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to a cDNA sequence for human lactoferrin and the protein encoded therein. The cDNA called HLF1212 was isolated from human breast tissue and is 2117 kb in length. The sequence agrees with the modified amino acid sequence of iron-binding lactoferrin in all areas except the 3 sites in the N-terminal region. One further change is in arginine in place of a lysine at amino acid 200.

Another aspect of the present invention relates to methods for diagnosing malignancy by

25

30

restriction fragment length polymorphisim (RFLP) analysis of DNA extracted from normal peripheral blood and leukemia cells from patients using the cDNA of the present invention as the probe. Southern analysis indicates that the human 5 lactoferrin gene is polymorphic when tested using Msp I and Xba I restriction enzymes. Further analysis indicates that the changes in the XbaI recognition site could be explained by alterations in DNA caused by or resulting in malignancy. 10 present invention, the DNA from normal and malignant cells are digested with XbaI and the fragment pattern compared using methods well known in the The Xba I restriction is associated with 4 patterns in normal and malignant cells (Example 3 15 and Figures 6 and 7). The most striking change is the deletion of many bands found only in DNA obtained from malignant cells or cell lines derived from either leukemia or breast cancer.

If the patterns found in Example 3 (Xba I RFLP pattern C + D) are found in women before breast cancer occurs, it may be easy to screen women at high risk of breast cancer for these changes using cDNA probe of the present invention and RFLP methodologies well known in the art. For example, lymphocytes may be separated from peripheral blood, DNA extracted, and cut with XbaI. This DNA can then be probed with HLF 1212 or a small piece of HLF 1212 and patterns determined. High risk patients may be placed on preventive medicines such as Tamoxifen retinoids or have surgery. The same may hold for other hormonally responsive tumors such as prostrate, uterus, or tumors arising from

10

lactoferrin secreting organs such as leukemia, or salivary gland.

5

10

15

20

25

30

Another aspect of the present invention relates to RFLP methods to measure the prognosis of certain types of cancer patients that are given therapeutics. One may place patients with breast, prostrate, uterine, or salivary cancer into risk groups. Those with a specific pattern may be at different risks of disease reoccurence. Thus, RFLP analysis using the cDNA probe of the present invention may provide prognostic information for patients with cancer.

Another aspect of the present invention relates to methods for detecting small insertions, deletions or mutations surrounding the human lactoferrin gene. Either of the above described RFLP methods could be combine with polymerase chain reaction (PCR) analysis. The abnormal area of the gene may be amplified using methods well known in the art and then mutations detected using restriction analysis (i.e. Xba I) and sequencing.

Yet another aspect of the present invention relates to methods for detecting tumors in pathological specimens that may contain too few malignant cells to be detected by standard methods. This method may involve PCR of DNA extracted from specimens (biopsy of tissue or bone marrow) and subsequent analysis using the RFLP techniques and DNA probes described above and in the Examples.

In another embodiment, the present invention relates to the cDNA clone for human lactoferrin called HLF 1213 and the protein encoded therein. The sequence of HLF 1213 (sequence ID

11

NO:3) is a combination of clones HLF 1212 (sequence ID NO: 1), 031A (sequence ID NO: 5) and other clones isolated in the same method as HLF 1212. (See Example 2). This clone is a composite of the complete human lactoferrin cDNA. This clone may be constructed by splicing 2 clones together with HLF 1212 (031A, and HLF 1212). Both HLF 1212 or this combined fragment called HLF 1213 may be used to make recombinant human lactoferrin.

5

10

15

20

25

30

In another embodiment, the present invention relates to the human lactoferrin protein obtained from HLF 1212 and HLF 1213 called sequence ID Numbers 2 and 4 respectively.

In yet another embodiment, the present invention relates to recombinant human lactoferrin expressed <u>in vitro</u> through molecular genetic engineering technology.

The present invention also relates to the recombinant DNA molecules and to host cells transformed therewith. Using standard methodology well known in the art and described briefly below, a recombinant DNA molecule comprising a vector, for example, a Bacculovirus transfer vector and a DNA fragment encoding human lactoferrin, for example, HLF 1212 or 1213, can be constructed without undue experimentation.

The methods of choice is the Baculovirusinsect cell expression system (M.D. Summers and G.E.
Smith, Texas Agriculture Experiment Station Bulletin No. 1555, (1987);
V.A. Luckow et al., Bio/technology 6:47-55 (1988)). This
system has been used successfully to produce
commercial quantities of recombinant mammalian
glycoproteins. Other expression systems known in

the art can also be used to produce the recombinant protein, for example, yeast, bacterial or mammalian cells.

The 2.2 Kb Eco-R1 fragment containing the entire human lactoferrin coding region may be 5 removed from plasmid HLF 1212 or HLF 1213. lactoferrin cDNA may be subcloned into Baculovirus transfer vector pAc 700 series (T. Maniatis et al., Molecular Cloning: a laboratory manual, Cold Spring Harbor Laboratories, Cold Spring Harbor, New York). 10 Recombinant plasmid (Achlf) may be co-transfected into Sf9 cells along with wild-type AcNPV viral DNA by calcium phosphate transfection procedure (M.D. Summus and G.E. Smith). In vivo homologous recombination between the polyhedron sequences in 15 the wild type viral DNA and the recombinant plasmid results in the generation of recombinatn viruses coding for a fused gene product. The recombinant viruses may be plaque purified by screening for the occlusion negative (polyhderon negative) phenotype 20 or by colony hybridization using "P-DNA probes covering the HLF-coding region. Characterization of the recombinant viral DNA may be carried out as described by Maniatis et al. Sf9 cells may be plated in 24-well dishes (Costar) at 3 x 10' 25 cells/well and allowed to attach for 2 hours in complete Graces medium. Cells are then infected with wild type AcNPV or recombinant virus AchLF. Two days post-infection, the cell layer and the condition medium may be collected and assayed for 30 the presence of hLF. HLF can be analyzed by SDA-PAGE and Western blotting. Iron binding capacity and anti-bacterial acitivity may also be examined.

The present invention further relates to treatment of antibacterial and antiviral infections using pharmaceutical doses of human lactoferrin of the present invention (HLF 1212 and 1213 corresponding to sequence ID Nos. 2 and 4 respectively) or recombinant human lactoferrin protein of the present invention.

The actions of lactoferrin are varied; the best established function is antibacterial (R.R. Arnold et al., Science 197:263-265 (1977)). Patients have been found whose neutrophils are deficient in lactoferrin (K.J. Lomax et al., J. Clin. Invest. 83:514-519 (1989)). These patients are prone to recurrent infections. Lactoferrin also has been found to decrease release of CSF or monokines, enhancement monocyte natural killer activity, enhancement of hydroxyl radical production and modulate the activation of the complement system (Birgens, Scand. J. Haematol 33:225-230 (1984)). There is also early in vivo evidence of lactoferrin antiviral activity.

In the past few years, HIV infection has become a significant health problem. HIV causes morbidity by crippling the body's defense mechanism and allowing development of opportunistic infections. Present treatment is less than ideal and involves treating opportunistic infections as they occur or inhibiting reverse transcriptase. Human lactoferrin is the natural product of the human defense machinery and has been given to patients both orally and intravenously with no side effects. Due to its bacteriocidal, antifungal, and immunoregulatory activity, administering pharmaceutical acceptable doses of lactoferrin of

14

the present invention could prove an effective agent to treat patients with AIDS or patients with neutropenia.

Other possible uses of the human

lactoferrin of the present invention include
treatment of lactoferrin in pharmaceutical doses,
either orally or intravenously to patients with skin
infections (burn patients), gastrointestinal
bacterial overgrowth syndromes, vaginal infections,
septic shock, and numerous other disorders.

In yet another embodiment, the present invention relates to the genomic human lactoferrin promotor region (sequence ID No: 5). This sequence contains the entire human lactoferrin promotor region fragment including exon 1 of human lactoferrin clone 1212.

15

The 5' genomic regulatory region of the present invention has the ability to regulate DNA in a tissue specific manner, i.e., it can be on in breast tissue and off in skin. It also can be hormonally regulated, i.e., on in mid-cycle menstrual cycle, off at menses. This regulation ability may be used in several ways. Genes targeted for transgenic mice may use the lactoferrin promotor. Genes to be used in therapy of human disease (gene therapy) may be linked to the lactoferrin promotor and thus the therapeutic gene regulated in a tissue specific or hormonal pattern.

The invention is described in further detail in the following non-limited examples.

10

15

20

25

30

15

EXAMPLES

The following procedures and materials were used througout the Examples.

Human tissue.

150 ml of heparinized blood or 5 ml heparinized bone marrow was obtained from normal paid donors after informed consent was obtained. Informed consent and leukemia cells were obtained from seven patients with acute leukemia undergoing emergent leukapheresis. The FAB classification of the patients were: two patients with M2, two patients with M7, and one patient each with M4, M7, ANLL not further specified, and T-cell ALL. Nucleated cells were obtained from 80 ml of blood from normal donors after first incubating cells at 37° C for 30 min. in 1:20 diluted methylcellulose (30 g/500 ml Hank balanced salt solution (HBSS) to sediment the red blood cells. The leukocyte-rich fraction was removed, and centrifuged into a pellet at 500 x g for 10 min. at 4° C. Cells from patients with leukemia were either used fresh or diluted in RPMI 1640 containing 20% fetal calf serum and 10% dimethylsulfoxide (DMSO), then frozen at -70° C until use. Human leukocyte antigen (HLA) typing. cytogenetic analysis, and bone marrow biopsy results were available for all but one patient who died shortly after leukapheresis. All cell lines were originally obtained from ATCC (Rockville, MD) and maintained at 37° C, 93% humidity, and 5% CO2. Breast cancer cell lines and HBL 100 (a cell line derived from a lactating breast) were maintained and provided by Dr. J. Dirk Iglehart (Department of

25

30

Surgery, Duke University). Cells were grown to confluence and separated from dishes with trypsin 0.05%/EDTA (Gibco), washed, and centrifuged. For all samples, DNA was isolated according to standard methodology (W.M. Strauss in Current Protocols in Molecular Biology. F.A. Ausebel, et al., (eds.), pp. 2.2.1 - 2.2.3 1990. Greene Publishing and Wiley-Interscience, New York.

Isolation of cDNA

Dreast tissue (HL 1037b) was plated in host cells
Y1090, filter-lifted and probed with mouse
lactoferrin cDNA T267 (B.T. Pentecost and C.T. Teng,
(1987)). Positive clones were plaque-purified, and
the inserts subcloned into the Eco R1 site of
Bluescript II SK+ (Stratagene). The recombinant
clones were transformed into XL1 Blue cells
(Stratagene). A 2.1 Kb insert (HLF 1212) was
isolated and sequenced using the dideoxy nucleotide
termination reaction and ["S]dATP label under
contract by Lark sequencing company.

Southern Analysis

Ten μg of DNA was digested at 37° C for three hours with Eco R1, Bam H1, Hind III, Pvu II, Pst I, Msp I, Xba I, Hpa II, Mbo I or Sau 3AI under conditions specified by the manufacturer (BRL). Hpa II and Sau 3AI will not cleave DNA when specific bases within their recognition sites are methylated. Msp I and Mbo I respectively, recognize these same sites and are methylation insensitive. DNA was loaded into 0.7, 0.8, or 1.2% agarose gels, run

10

15

20

25

30

overnight, and transferred either to Genescreen Plus (nylon, DuPont) or BA-S NC (nitrocellulose, Schleicher & Schuel). Lactoferrin cDNA was removed from plasmid with Eco RI, redigested with Pst I, and gel purified. Both fragments were labeled with ["P]dCTP using a random primer kit (Stratagene) to a specific activity of 1 x 10°. Hybridization was performed exactly according to Genescreen instructions or a modification of BA-S NC instructions (hybridization solution - 50% formamide, 5x SSPE, 1% SDS, 4x Denhardt, 100 μ g/ml single stranded DNA. 7.5% dextran, pre-hybridization solution - the same as above with 5% formamide and no dextran). Filters were washed at high stringency at 60° C and exposed to Kodak XOMAT AR film using intensifying screens for 3-7 days. DNA from normal and leukemic cells was probed with histone cDNA (Oncore) as a control; no polymorphic pattern was found.

Immunocytochemistry

Antibody against human milk lactoferrin (Sigma) was raised in rabbits and the IgG fraction was prepared as described previously (C.T. Teng et al., Endocrinology 124:992-999 (1989)). All cell lines, normal cells, and leukemia patient's cells were examined using this antibody. Ten normal bone marrow specimens were stained to define the specific cell in bone marrow that begins to produce lactoferrin. Cells were smeared onto alcoholwashed, pre-cleaned slides, air dried 1 hour, and fixed in 95% methanol, and 1.7% formalin for 10 min. Slides were next rinsed in dH₂O and either air dried and stored in a moisture proof container at 4°C or

10

15

used immediately. Staining procedure was followed directions provided with Vector ABC-AP kit using levamisol as the blocking agent, antibody dilution of 1:1500, and hematoxylin (gill #3) counterstain. Three-hundred cells per sample were scored manually as negative, trace, or positive.

Example 1. Immunocytochemical staining.

As shown in Table 1 and Figure 1A, bone marrow lactoferrin began to appear in the myelocyte stage with almost all cells staining positively by the metamyelocyte stage. None of the leukemia cells from patients or leukemia cell lines contained stainable lactoferrin. Occasional positive granulocytes could be seen in with the leukemic cells from patients. Breast cancer cell lines stained negatively for lactoferrin except for 1.5% trace positive cells in SKB R3 (Figure 1B).

Immunocytochemical staining of normal bone marrow using anti-lactoferrin antibody Table 1.

	Blasts and Promyelocytes Myelocytes	ytes Myelocytes	Metamyelocytes	Bands	Neutrophils
Negative	93% (8.6)	30% (20.4)	12% (7.5)	3% (1.2)	1\$ (1)
Trace	6% (8.2)	38% (8.3)	40% (10.6)	10% (5:2)	2% (2)
Positive	0.3% (0.4)	32% (19.2)	48% (17)	88% (4:5)	97% (2)

lpha - values represent the mean of 10 bone marrow samples stained with the standard deviation in parenthesis, >300 cells counted per sample.

10

15

20

25

30

35

Example 2. Library screening, isolation and characterization of HLF 1212 clone.

Thirty human lactoferrin clones were isolated from the breast tissue cDNA library. longest (HLF 1212) was sequenced completely. This clone is 2117 bp's in length and includes a 17 amino acid (AA) leader sequence (no ATG site) and is 4 AA shy of the 3' terminus (Figure 10). The AA sequence coded for by HLF 1212 has 4 sites that differ from the previously published revised AA sequence derived from the protein (B.F. Anderson et al., (1989)). the sequence of the present invention, there is one insertion (Arginine (Arg) at AA 22, bp 64-6) and three substitutions (Glutamine (Gln) for Asparagine (Asn) at AA 31, bp 91-3; Isoleucine (Ile) for Leucine (Leu) at AA 55, bp 163-5; and Arg for Lysine (Lys) at AA 218, bp 652-4). The first three of these changes are clustered at the 5' end. Contained within HLF 1212, but not in any of the 10 other partially sequenced isolates, is a deleted cytosine at bp 2097 (AA 699) which caused a frameshift at the 3' end of the protein. This extra base was confirmed by repeated bi-directional sequencing. The deletion at 2097 is now thought to be either a cloning artifact or a rare species of mRNA.

In addition to cDNA of the present invention, three other authors have published lactoferrin cDNA sequence data (T.A. Rado, et al., (1987); M.J. Powell and J.E. Ogden, Nucleic Acids Res., 18:4013, (1990); M.W. Rey et al., Nucelic Acids Res., 18:5288, (1990)). All of these sequences are different, and a comparison between the AA data derived from the protein and sequence changes derived from the cDNA, are presented in Figure 10. When compared to HLF 1212, all of the sequences

contain an extra cytosine at bp 2097 (AA 699).

Powell et al., (1990) isolated a 2.3 kb sequence

from breast tissue that, except for the extra

cytosine, is identical to our cDNA in the areas of

overlap. The isolate of the present invention

differs from that of Rado's 3' 1023 base fragment in

4 locations (T.A. Rado et al., (1987)) with one

resulting difference in the AA sequence (Gly for Ala

at AA 486, bp 1456-8). Two silent mutations and the

extra cytosine make up the remainder of the changes.

Ray et al have also published a cDNA sequence

isolated from human mammary tissue that contains two

AA changes (Ile for Thr at AA 147, bp 440-2; and Gly

for Cys at AA 421, bp 1261-3) and one silent base

difference (M.W. Rey et al., (1990)).

<u>Example 3</u>. Evaluation of restriction fragments using lactoferrin HLF 1212 as probe.

The fragments produced by digestion with Eco RI, Bam HI, Hind III, Pst I, Pvu II, Sau 3AI, or Mbo I, were nearly identical whether the DNA was from normal or malignant cells. The fragment patterns produced by these restriction enzymes in DNA from leukemic and breast cancer cells are shown in Figures 2 and 3. Restriction with Msp I indicated the deletion of a 3.5 Kb band in 3 of 10 leukemic cells (Figure 4), 4 of 7 breast cancer cell lines (Figure 5), and a much fainter hybridization of this band in 2 of 9 normal specimens (Figure 4). An extra 1.3 Kb band also occurred in the breast cancer line MDA 175 (Figure 5, lane 7). There was no relationship between the phenotype or chromosome

10

15

20

25

30

analysis of the leukemia patients and the Msp I changes.

Fragments produced by Xba I fell into 4 patterns. All patterns contained 4 unchanged bands (~6.5 kb, ~4.2 kb, ~3.0 kb, and ~2.2 kb). Pattern A occurred in 3 of 9 normal samples and contained a 3.5 Kb band and three light < 2.0 kb bands in addition to the unchanged bands (Figure 6, lanes 1, 2, and 7; Figure 7, lane 1). Pattern B was seen in 6 of 9 normal and 3 of 7 leukemia cells from patients and contained extra 3.5, 5.0, and 6.7 Kb bands along with the three light < 2.0 kb bands and the unchanged bands (Figure 6, lanes 3-6, 8, 9, 10, 13, 14; Figure 7, lane 2). The last patterns were only seen in DNA obtained from malignant tissue. In pattern C, an extra 9.0 Kb band together with the 3.5, 5.0, and 6.6 kb and unchanged bands were observed in three leukemia patient samples (Figure 6 lanes 11, 12 (see insert) and lane 16). Also noted is the absence of the light < 2.0 kb bands. D contained only the 4 unchanged and the three light < 2.0 kb bands and was present in DNA obtained from all three leukemia and all seven breast cancer cell lines, (Figure 6, lanes 17 - 19, and Figure 7, lanes 3 - 9). There was one patient (M2 leukemia) with a restriction pattern like that of the cell lines (Figure 6, lane 15). There were no chromosomal abnormalities, French-American-British (FAB) categories, or phenotypic types associated with any polymorphic Xba I pattern.

23

Example 4. Isolation and characterization of the genomic lactoferrin promotor region.

5

10

15

20

was plated on LE 392 bacterial cells and screened and probed with the 5' end of HLF 1212 (1.3Kb).

Positive clones were cut with SAC 1 and rescreened using a 25 base oligonucleotide (synthesized to match Exon 1 of p1212). All SAC 1 fragments from clone 031A were transformed into Bluescript II KS (stratagene) plasmid. Clone 031A-30 was 2.0 kb and hyridized to Exon 1 oligonucleotide probe. This was sequenced using dideoxynucleotide chain termination and synthesized oligonucleotide primers. Sequence ID NO. 5 shows the sequence of the entire fragment (5' - 3') that includes Exon 1.

While the foregoing invention has been described in some detail for purpose of clarity and inderstanding, it will be clear to one skilled in the art from a reading of this diclocure that various changnes in form and detail can be made without departing from the true scope of the invention.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT: Teng, Christina Panella, Timothy J.
- (ii) TITLE OF INVENTION: HUMAN LACTOFERRIN
- (iii) NUMBER OF SEQUENCES: 5
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: CUSHMAN, DARBY & CUSHMAN
 - (B) STREET: 1615 L. STREET N.W., ELEVENTH FLOOR
 - (C) CITY: WASHINGTON
 - (D) STATE: D.C.
 - (E) COUNTRY: USA
 - (F) ZIP: 20036-5601
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: SCOTT, WATSON T.
 - (B) REGISTRATION NUMBER: 26,581
 - (C) REFERENCE/DOCKET NUMBER: WTS/5683/84482/KIK
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (202) 861-3000
 - (B) TELEFAX: (202) 822-0944
 - (C) TELEX: 6714627 CUSH
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2117 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(ix) FEATURE:

(A) NAME/KEY: CDS (B) LOCATION: 1..2117

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

CTT Leu 1	GTC Val	TTC Phe	CTC Leu	GTC Val 5	CTG Leu	CTG Leu	TTC Phe	CTC Leu	GGG Gly 10	GCC Ala	CTC Leu	GGA Gly	CTG Leu	TGT Cys 15	CTG Leu	48
GCT Ala	GGC Gly	CGT Arg	AGG Arg 20	AGA Arg	AGG Arg	AGT Ser	GTT Val	CAG Gln 25	TGG Trp	TGC Cys	GCC Ala	GTA Val	TCC Ser 30	CAA Gln	CCC Pro	96
GAG Glu	GCC Ala	ACA Thr 35	AAA Lys	TGC Cys	TTC Phe	CAA Gln	TGG Trp 40	CAA Gln	AGG Arg	AAT Asn	ATG Met	AGA Arg 45	AAA Lys	GTG Val	CGT Arg	144
GGC Gly	CCT Pro 50	CCT Pro	GTC Val	AGC Ser	TGC Cys	ATA Ile 55	AAG Lys	AGA Arg	GAC Asp	TCC Ser	CCC Pro 60	ATC Ile	CAG Gln	TGT Cys	ATC Ile	192
CAG Gln 65	GCC Ala	ATT Ile	GCG Ala	GAA Glu	AAC Asn 70	AGG Arg	GCC Ala	GAT Asp	GCT Ala	GTG Val 75	ACC Thr	CTT Leu	GAT Asp	GGT Gly	GGT Gly 80	240
TTC Phe	ATA Ile	TAC Tyr	GAG Glu	GCA Ala 85	GGC Gly	CTG Leu	GCC Ala	ccc Pro	TAC Tyr 90	AAA Lys	CTG Leu	cga Arg	CCT Pro	GTA Val 95	GCG Ala	288
GCG Ala	GAA Glu	GTC Val	TAC Tyr 100	GGG Gly	ACC Thr	GAA Glu	AGA Arg	CAG Gln 105	CCA Pro	CGA Arg	ACT Thr	CAC His	TAT Tyr 110	TAT Tyr	GCC Ala	336
GTG Val	GCT Ala	GTG Val 115	GTG Val	AAG Lys	AAG Lys	GGC Gly	GGC Gly 120	AGC Ser	TTT Phe	CAG Gln	CTG Leu	AAC Asn 125	GAA Glu	CTG Leu	CAA Gln	384
GGT Gly	CTG Leu 130	AAG Lys	TCC Ser	TGC C ys	CAC His	ACA Thr 135	GGC Gly	CTT Leu	CGC Arg	AGG Arg	ACC Thr 140	GCT Ala	GGA Gly	TGG Trp	AAT Asn	432
GTC Val 145	CCT Pro	ATA Ile	GGG Gly	ACA Thr	CTT Leu 150	CGT Arg	CCA Pro	TTC Phe	TTG Leu	AAT Asn 155	TGG Trp	ACG Thr	GGT Gly	CCA Pro	CCT Pro 160	480

GAG Glu	ccc Pro	ATT Ile	GAG Glu	GCA Ala 165	gct Ala	GTG Val	GCC Ala	AGG Arg	TTC Phe 170	TTC Phe	TCA Ser	GCC Ala	AGC Ser	TGT Cys 175	GTT Val	528
Pro	Gly	Ala	Asp 180	Lys	GGA Gly	GIN	Pne	185	ASII	Leu	Cys	my	190	Q ₁ U	••••	576
GGG Gly	ACA Thr	GGG Gly 195	GAA Glu	AAC Asn	AAA Lys	TGT Cys	GCC Ala 200	TTC Phe	TCC Ser	TCC Ser	CAG Gln	GAA Glu 205	CCG Pro	TAC Tyr	TTC Phe	624
AGC Ser	TAC Tyr 210	TCT	GGT Gly	GCC Ala	TTC Phe	AAG Lys 215	TGT Cys	CTG Leu	AGA Arg	GAC Asp	GGG Gly 220	GCT Ala	GGA Gly	GAC Asp	GTG Val	672
GCT Ala 225	TTT Phe	ATC Ile	AGA Arg	GAG Glu	AGC Ser 230	ACA Thr	GTG Val	TTT Phe	GAG Glu	GAC Asp 235	CTG Leu	TCA Ser	GAC Asp	GAG Glu	GCT Ala 240	720
GAA Glu	AGG Arg	GAC Asp	GAG Glu	TAT Tyr 245	GAG Glu	TTA Leu	CTC Leu	TGC Cys	CCA Pro 250	GAC Asp	AAC Asn	ACT Thr	CGG Arg	AAĠ Lys 255	CCA Pro	768
GTG Val	GAC Asp	AAG Lys	TTC Phe 260	AAA Lys	GAC Asp	TGC Cys	CAT His	CTG Leu 265	GCC Ala	CGG Arg	GTC Val	CCT Pro	TCT Ser 270	CAT His	GCC Ala	816
GTT Val	GTG Val	GCA Ala 275	Arg	AGT Ser	GTG Val	AAT Asn	GGC Gly 280	AAG Lys	GAG Glu	GAT Asp	GCC Ala	ATC Ile 285	TGG Trp	AAT Asn	CTT Leu	864
CTC Leu	CGC Arg 290	CAG Gln	GCA Ala	CAG Gln	GAA Glu	AAG Lys 295	TTT Phe	GGA Gly	AAG Lys	GAC Asp	AAG Lys 300	TCA Ser	CCG Pro	AAA Lys	TTC Phe	912
Gln 305	Leu	Phe	Gly	Ser	CCT Pro 310	ser	GTĀ	GIN	гåг	315	Leu	Ter	rne	Lys	320	960
TCT Ser	GCC Ala	ATT Ile	GGG Gly	TTT Phe 325	TCG Ser	AGG Arg	GTG Val	CCC Pro	CCG Pro 330	AGG Arg	ATA Ile	GAT Asp	TCT Ser	GGG Gly 335	CTG Leu	1008
TAC Tyr	CTT Leu	GGC Gly	TCC Ser 340	GGC Gly	TAC Tyr	TTC Phe	ACT Thr	GCC Ala 345	ATC Ile	CAG Gln	AAC Asn	TTG Leu	AGG Arg 350	AAA Lys	AGT Ser	1056

GAG Glu	GAG Glu	GAA Glu 355	GTG Val	GCT Ala	GCC Ala	CGG Arg	CGT Arg 360	GCG Ala	CGG Arg	GTC. Val	GTG Val	TGG Trp 365	TGT Cys	GCG Ala	GTG Val	1104
GGC Gly	GAG Glu 370	CAG Gln	GAG Glu	CTG Leu	CGC Arg	AAG Lys 375	TGT Cys	AAC Asn	CAG Gln	TGG Trp	AGT Ser 380	GGC Gly	TTG Leu	AGC Ser	GAA Glu	1152
GGC Gly 385	AGC Ser	GTG Val	ACC Thr	TGC Cys	TCC Ser 390	TCG Ser	GCC Ala	TCC Ser	ACC Thr	ACA Thr 395	GAG Glu	GAC Asp	TGC Cys	ATC Ile	GCC Ala 400	1200
CTG Leu	GTG Val	CTG Leu	AAA Lys	GGA Gly 405	GAA Glu	GCT Ala	GAT Asp	GCC Ala	ATG Met 410	AGT Ser	TTG Leu	GAT Asp	GGA Gly	GGA Gly 415	TAT Tyr	1248
GTG Val	TAC Tyr	ACT Thr	GCA Ala 420	GGC Gly	AAA Lys	TGT Cys	GGT Gly	TTG Leu 425	GTG Val	CCT Pro	GTC Val	CTG Leu	GCA Ala 430	GAG Glu	AAC Asn	1296
TAC Tyr	AAA Lys	TCC Ser 435	CAA Gln	CAA Gln	AGC Ser	AGT Ser	GAC Asp 440	CCT Pro	GAT Asp	CCT Pro	AAC Asn	TGT Cys 445	GTG Val	GAT Asp	AGA · Arg	1344
CCT Pro	GTG Val 450	GAA Glu	GGA Gly	TAT Tyr	CTT Leu	GCT Ala 455	GTG Val	GCG Ala	GTG Val	GTT Val	AGG Arg 460	AGA Arg	TCA Ser	GAC Asp	ACT Thr	1392
AGC Ser 465	CTT Leu	ACC Thr	TGG Trp	AAC Asn	TCT Ser 470	GTG Val	AAA Lys	GGC Gly	AAG Lys	AAG Lys 475	TCC Ser	TGC Cys	CAC His	ACC Thr	GCC Ala 480	1440
GTG Val	GAC Asp	AGG Arg	ACT Thr	GCA Ala 485	GGC Gly	TGG Trp	AAT Asn	ATC Ile	CCC Pro 490	ATG Met	GGC Gly	CTG Leu	CTC Leu	TTC Phe 495	AAC Asn	1488
CAG Gln	ACG Thr	GGC Gly	TCC Ser 500	TGC Cys	AAA Lys	TTT Phe	GAT Asp	GAA Glu 505	TAT Tyr	TTC Phe	AGT Ser	CAA Gln	AGC Ser 510	TGT Cys	GCC Ala	1536
CCT Pro	GGG Gly	TCT Ser 515	GAC Asp	CCG Pro	aga Arg	TCT Ser	AAT Asn 520	CTC Leu	TGT Cys	GCT Ala	CTG Leu	TGT Cys 525	ATT Ile	GGC Gly	GAC Asp	1584
GAG Glu	CAG Gln 530	GGT Gly	GAG Glu	AAT Asn	AAG Lys	TGC Cys 535	GTG Val	CCC Pro	AAC Asn	AGC Ser	AAC Asn 540	GAG Glu	AGA Arg	TAC Tyr	TAC Tyr	1632

GGC Gly 545	Tyr	ACT Thr	GGG Gly	GCT Ala	TTC Phe 550	Arg	TGC Cys	CTG Leu	GCT Ala	GAG Glu 555	AAT Asn	GCT Ala	GGA Gly	GAC Asp	GTT Val 560	1680
GCA Ala	TTT Phe	GTG Val	AAA Lys	GAT Asp 565	GTC Val	ACT Thr	GTC Val	TTG Leu	CAG Gln 570	AAC Asn	ACT Thr	GAT Asp	GGA Gly	AAT Asn 575	AAC Asn	1728
AAT Asn	GAG Glu	GCA Ala	TGG Trp 580	GCT Ala	AAG Lys	GAT Asp	TTG Leu	AAG Lys 585	Leu	GCA Ala	GAC Asp	TTT Phe	GCG Ala 590	CTG Leu	CTG Leu	1776
TGC Cys	CTC Leu	GAT Asp 595	GGC Gly	AAA Lys	CGG Arg	AAG Lys	CCT Pro 600	GTG Val	ACT Thr	GAG Glu	GCT Ala	AGA Arg 605	AGC Ser	TGC Cys	CAT His	1824
CTT Leu	GCC Ala 610	ATG Met	GCC Ala	CCG Pro	AAT Asn	CAT His 615	GCC Ala	GTG Val	GTG Val	TCT Ser	CGG Arg 620	ATG Met	GAT Asp	AAG Lys	GTG Val	1872
GAA Glu 625	CGC Arg	CTG Leu	AAA Lys	CAG Gln	GTG Val 630	TTG Leu	CTC Leu	CAC His	CAA Gln	CAG Gln 635	GCT Ala	AAA Lys	TTT Phe	GGG Gly	AGA Arg 640	1920
AAT Asn	GGA Gly	TCT Ser	GAC Asp	TGC Cys 645	CCG Pro	GAC Asp	AAG Lys	TTT Phe	TGC Cys 650	TTA Leu	TTC Phe	CAG Gln	TCT Ser	GAA Glu 655	ACC Thr	1968
AAA Lys	AAC Asn	CTT Leu	CTG Leu 660	TTC Phe	AAT Asn	GAC Asp	AAC Asn	ACT Thr 665	GAG Glu	TGT Cys	CTG Leu	GCC Ala	AGA Arg 670	CTC Leu	CAT His	2016.
GGC Gly	AAA Lys	ACA Thr 675	ACA Thr	TAT Tyr	GAA Glu	AAA Lys	TAT Tyr 680	TTG Leu	GGA Gly	CCA Pro	CAG Gln	TAT Tyr 685	GTC Val	GCA Ala	GGC Gly	2064
ATT Ile	ACT Thr 690	AAT Asn	CTG Leu	AAA Lys	AAG Lys	TGC Cys 695	TCA Ser	ACC Thr	TCC Ser	CCC Pro	TCC Ser 700	TGG Trp	AAG Lys	CCT Pro	GTG Val	2112
AAT Asn 705	TC															2117

PCT/US92/04012

WO 92/21752

29

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 705 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:
- Leu Val Phe Leu Val Leu Leu Phe Leu Gly Ala Leu Gly Leu Cys Leu
- Ala Gly Arg Arg Arg Ser Val Gln Trp Cys Ala Val Ser Gln Pro
- Glu Ala Thr Lys Cys Phe Gln Trp Gln Arg Asn Met Arg Lys Val Arg
- Gly Pro Pro Val Ser Cys Ile Lys Arg Asp Ser Pro Ile Gln Cys Ile
- Gln Ala Ile Ala Glu Asn Arg Ala Asp Ala Val Thr Leu Asp Gly Gly
- Phe Ile Tyr Glu Ala Gly Leu Ala Pro Tyr Lys Leu Arg Pro Val Ala
- Ala Glu Val Tyr Gly Thr Glu Arg Gln Pro Arg Thr His Tyr Tyr Ala
- Val Ala Val Lys Lys Gly Gly Ser Phe Gln Leu Asn Glu Leu Gln 120
- Gly Leu Lys Ser Cys His Thr Gly Leu Arg Arg Thr Ala Gly Trp Asn
- Val Pro Ile Gly Thr Leu Arg Pro Phe Leu Asn Trp Thr Gly Pro Pro
- Glu Pro Ile Glu Ala Ala Val Ala Arg Phe Phe Ser Ala Ser Cys Val 165
- Pro Gly Ala Asp Lys Gly Gln Phe Pro Asn Leu Cys Arg Leu Cys Ala 185
- Gly Thr Gly Glu Asn Lys Cys Ala Phe Ser Ser Gln Glu Pro Tyr Phe 195

	210				Phe	215					220				
225					Ser 230					235					240
Glu	Arg	Asp	Glu	Tyr 245	Glu	Leu	Leu	Cys	Pro 250	Asp	Asn	Thr	Arg	Lys 255	Pro
Val	Asp	Lys	Phe 260	Lys	Asp	Cys	His	<u>Leu</u> 265	Ala	Arg	Val	Pro	<u>Ser</u> 270	His	Ala
Val	Val	Ala 275	Arg	Ser	Val	Asn	Gly 280	Lys	Glu	Asp	Ala	Ile 285	Trp	Asn	Leu
Leu	Arg 290	Gln	Ala	Gln	Glu	Lys 295	Phe	Gly	Lys	Asp	Lys 300	Ser	Pro	Lys	Phe
Gln 305	Leu	Phe	Gly	Ser	Pro 310	Ser	Gly	Gln	Lys	Asp 315	Leu	Leu	Phe	Lys	Asp 320
Ser	Ala	Ile	Gly	Phe 325	Ser	Arg	Val	Pro	Pro 330	Arg	Ile	Asp	Ser	Gly 335	Leu
Tyr	Leu	Gly	Ser 340	Gly	Tyr	Phe	Thr	Ala 345	Ile	Gln	Asn	Leu	Arg 350	Lys	Ser
Glu	Glu	Glu 355	Val	Ala	Ala	Arg	Arg 360	Ala	Arg	Val	Val	Trp 365	Cys	Ala	Val
Gly	Glu 370	Gln	Glu	Leu	Arg	Lys 375	Cys	Asn	Gln	Trp	Ser 380	Gly	Leu	Ser	Glu
Gly 385	Ser	Val	Thr	Cys	Ser 390	Ser	Ala	Ser	Thr	Thr 395	Glu	Asp	Cys	Ile	Ala 400
Leu	Val	Leu	Lys	Gly 405	Glu	Ala	Asp	Ala	Met 410	Ser	Leu	Asp	Gly	Gly 415	Tyr
Val	Tyr	Thr	Ala 420	Gly	Lys	Cys	Gly	Leu 425	Val	Pro	Val	Leu	Ala 430	Glu	Asn
Tyr	Lys	Ser 435	Gln	Gln	Ser	Ser	Asp 440	Pro	Asp	Pro	Asn	Cys 445	Val	Asp	Arg
Pro	Val 450	Glu	Gly	Tyr	Leu	Ala 455	Val	Ala	Val	Val	Arg 460	Arg	Ser	Asp	Thr
Ser 465	Leu	Thr	Trp	Asn	Ser 470	Val	Lys	Gly	Lys	Lys 475	Ser	Cys	His	Thr	Ala 480

Val Asp Arg Thr Ala Gly Trp Asn Ile Pro Met Gly Leu Leu Phe Asn 490 Gln Thr Gly Ser Cys Lys Phe Asp Glu Tyr Phe Ser Gln Ser Cys Ala Pro Gly Ser Asp Pro Arg Ser Asn Leu Cys Ala Leu Cys Ile Gly Asp Glu Gln Gly Glu Asn Lys Cys Val Pro Asn Ser Asn Glu Arg Tyr Tyr Gly Tyr Thr Gly Ala Phe Arg Cys Leu Ala Glu Asn Ala Gly Asp Val Ala Phe Val Lys Asp Val Thr Val Leu Gln Asn Thr Asp Gly Asn Asn Asn Glu Ala Trp Ala Lys Asp Leu Lys Leu Ala Asp Phe Ala Leu Leu 585 Cys Leu Asp Gly Lys Arg Lys Pro Val Thr Glu Ala Arg Ser Cys His 600 Leu Ala Met Ala Pro Asn His Ala Val Val Ser Arg Met Asp Lys Val Glu Arg Leu Lys Gln Val Leu Leu His Gln Gln Ala Lys Phe Gly Arg 625 630 Asn Gly Ser Asp Cys Pro Asp Lys Phe Cys Leu Phe Gln Ser Glu Thr Lys Asn Leu Leu Phe Asn Asp Asn Thr Glu Cys Leu Ala Arg Leu His Gly Lys Thr Thr Tyr Glu Lys Tyr Leu Gly Pro Gln Tyr Val Ala Gly 680 Ile Thr Asn Leu Lys Lys Cys Ser Thr Ser Pro Ser Trp Lys Pro Val 695

Asn 705

(2) INFORMATION	FOR	SEQ	ID	NO:3:
-----------------	-----	-----	----	-------

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2124 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(ix) FEATURE:

- (A) NAME/KEY: CDS
 (B) LOCATION: 1..2124

(vi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

	(XI) DE	SOEM	JE D	EOCK.	TT T-	J11 • .	J								
ATG	AAA	CTT	GTC	TTC	CTC	GTC	CTG	CTG	TTC	CTC	GGG	GCC	CTC	GGA	CTG	48
Met 1	Lys	Leu	Val	Phe 5	Leu	Val	Leu	Leu	Phe 10	Leu	Gly	Ala	Leu	Gly 15	Leu	
TGT	CTG	GCT	GGC	CGT	AGG	AGA	AGG	AGT	GTT	CAG	TGG	TGC	GCC	GTA	TCC	96
Cys	Leu	Ala	Gly 20	Arg	Arg	Arg	Arg	Ser 25	Val	Gln	Trp	Cys	Ala 30	Val	Ser	
CAA	ccc	GAG	GCC	ACA	AAA	TGC	TTC	CAA	TGG	CAA	AGG	AAT	ATG	AGA	AAA	144
Gln	Pro	Glu 35	Ala	Thr	Lys	Cys	Phe 40	Gln	Trp	Gln	Arg	Asn 45	Met	Arg	Lys	
GTG	CGT	GGC	CCT	CCT	GTC	AGC	TGC	ATA	AAG	AGA	GAC	TCC	CCC	ATC	CAG	192
Val	Arg 50	Gly	Pro	Pro	Val	Ser 55	Cys	Ile	Lys	Arg	Asp 60	Ser	Pro	Ile	Gln	
TGT	ATC	CAG	GCC	ATT	GCG	GAA	AAC	AGG	GCC	GAT	GCT	GTG	ACC	CTT	GAT	240
Cys 65	Ile	Gln	Ala	Ile	Ala 70	Ğlu	Asn	Arg	Ala	Asp 75	Ala	Val	Thr	Leu	Asp 80	
GGT	GGT	TTC	ATA	TAC	GAG	GCA	GGC	CTG	GCC	ccc	TAC	AAA	CTG	CGA	CCT	288
Gly	Gly	Phe	Ile	Tyr 85	Glu	Ala	Gly	Leu	Ala 90	Pro	Tyr	Lys	Leu	Arg 95	Pro	
GTA	GCG	GCG	GAA	GTC	TAC	GGG	ACC	GAA	AGA	CAG	CCA	CGA	ACT	CAC	TAT	336
Val	Ala	Ala	Glu	Val	Tyr	Gly	Thr	Glu 105	Arg	Gln	Pro	Arg	Thr 110	His	Tyr	

TAT	GCC	GTG	GCT	GTG	GTG	AAG	AAG	GGC	GGC	AGC	TTT	CAG	CTG	AAC	GAA	384
Tyr	Ala	Val 115	Ala	Val	Val	Lys	Lys 120	Gly	Gly	Ser	Phe	Gln 125	Leu	Asn	Glu	
CTG	CAA	GGT	CTG	AAG	TCC	TGC	CAC	ACA	GGC	CTT	CGC	AGG	ACC	GCT	GGA	432
Leu	Gln 130	Gly	Leu	Lys	Ser	Cys 135	His	Thr	Gly	Leu	Arg 140	Arg	Thr	Ala	Gly	
TGG	AAT	GTC	CCT	ATA	GGG	ACA	CTT	CGT	CCA	TTC	TTG	AAT	TGG	ACG	GGT	480
Trp 145	Asn	Val	Pro	Ile	Gly 150	Thr	Leu	Arg	Pro	Phe 155	Leu	Asn	Trp	Thr	Gly 160	
CCA	CCT	GAG	CCC	ATT	GAG	GCA	GCT	GTG	GCC	AGG	TTC	TTC	TCA	GCC	AGC	528
Pro	Pro	Glu	Pro	Ile 165	Glu	Ala	Ala	Val	Ala 170	Arg	Phe	Phe	Ser	Ala 175	Ser	
TGT	GTT	ccc	GGT	GCA	GAT	AAA	GGA	CAG	TTC	CCC	AAC	CTG	TGT	CGC	CTG	576
Cys	Val	Pro	Gly 180	Ala	Asp	Lys	Gly	Gln 185	Phe	Pro	Asn	Leu	Cys 190	Arg	Leu	
TGT	GCG	GGG	ACA	GGG	GAA	AAC	AAA	TGT	GCC	TTC	TCC	TCC	CAG	GAA	CCG	624
Cys	Ala	Gly 195	Thr	Gly	Glu	Asn	Lys 200	Cys	Ala	Phe	Ser	Ser 205	Gln	Glu	Pro	
TAC	TTC	AGC	TAC	TCT	GGT	GCC	TTC	AAG	TGT	CTG	AGA	GAC	GGG	GCT	GGA	672
Tyr	Phe 210	Ser	Tyr	Ser	Gly	Ala 215	Phe	Lys	Cys	Leu	Arg 220	Asp	Gly	Ala	Gly	
GAC	GTG	GCT	TTT	ATC	AGA	GAG	AGC	ACA	GTG	TTT	GAG	GAC	CTG	TCA	GAC	720
Asp 225	Val	Ala	Phe	Ile	Arg 230	Ğlu	Ser	Thr	Val	Phe 235	Glu	Asp	Leu	Ser	Asp 240	
GAG	GCT	GAA	AGG	GAC	GAG	TAT	GAG	TTA	CTC	TGC	CCA	GAC	AAC	ACT	CGG	768
Glu	Ala	Glu	Arg	Asp 24 5	Glu	Tyr	Glu	Leu	Leu 250	Cys	Pro	Asp	Asn	Thr 255	Arg	
AAG	CCA	GTG	GAC	AAG	TTC	AAA	GAC	TGC	CAT	CTG	GCC	CGG	GTC	CCT	TCT	816
Lys	Pro	Val	Asp	Lys	Phe	Lys	Asp	Cys	His	Leu	Ala	Arg	Val	Pro	Ser	

CAT	GCC	GTT	GTG	GCA	CGA	AGT	GTG	AAT	GGC	AAG	GAG	GAI	GCC	ATC	TGG	864
His	Ala	Val 275		Ala	Arg	Ser	Val 280	Asn	Gly	Lys	Glu	Asp 285	Ala	Ile	Trp	
AAT	CTT	CTC	CGC	CAG	GCA	CAG	GAA	AAG	TTT	GGA	AAG	GAC	AAG	TCA	CCG	912
Asn	Leu 290	Leu	Arg	Gln	Ala	Gln 295	Glu	Lys	Phe	Gly	Lys 300	Asp	Lys	Ser	Pro	
AAA	TTC	CAG	CTC	TTT	GGC	TCC	CCT	AGT	GGG	CAG	AAA	GAT	CTG	CTG	TTC	960
Lys 305	Phe	Gln	Leu	Phe	Gly 310	Ser	Pro	Ser	Gly	Gln 315	Lys	Asp	Leu	Leu	Phe 320	
AAG	GAC	TCT	GCC	ATT	GGG	TTT	TCG	AGG	GTG	ccc	CCG	AGG	ATA	GAT	TCT	1008
Lys	Asp	Ser	Ala	Ile 325	Gly	Phe	Ser	Arg	Val 330	Pro	Pro	Arg	Ile	Asp 335	Ser	•
GGG	CTG	TAC	CTT	GGC	TCC	GGC	TAC	TTC	ACT	GCC	ATC	CAG	AAC	TTG	AGG	1056
Gly	Leu	Tyr	Leu 340	Gly	Ser	Gly	Tyr	Phe 345	Thr	Ala	Ile	Gln	Asn 350	Leu	Arg	
AAA	AGT	GAG	GAG	GAA	GTG	GCT	GCC	CGG	CGT	GCG	CGG	GTC	GTG	TGG	TGT	1104
Lys	Ser	Glu 355	Glu	Glu	Val	Ala	Ala 360	Arg	Arg	Ala	Arg	Val 365	Val	Trp	Cys	
GCG	GTG	GGC	GAG	CAG	GAG	CTG	CGC	AAG	TGT	AAC	CAG	TGG	AGT	GGC	TTG	1152
Ala	Val 370	Gly	Glu	Gln	Glu	Leu 375	Arg	Lys	Cys	Asn	Gln 380	Trp	Ser	Gly	Leu	
AGC	GAA	GGC	AGC	GTG	ACC	TGC	TCC	TCG	GCC	TCC	ACC	ACA	GAG	GAC	TGC	1200
Ser 385	Glu	Gly	Ser	Val	Thr 390	Cys	Ser	Ser	Ala	Ser 395	Thr	Thr	Glu	Asp	Cys 400	
ATC	GCC	CTG	GTG	CTG	AAA	GGA	GAA	GCT	GAT	GCC	ATG	AGT	TTG	GAT	GGA	1248
Ile	Ala	Leu	Val	Leu 405	Lys	Gly	Glu	Ala	Asp 410	Ala	Met	Ser	Leu	Asp 415	Gly	•
GGA	TAT	GTG	TAC	ACT	GCA	GGC	AAA	TGT	GGT	TTG	GTG	CCT	GTC	CTG	GCA	1296
Gly	Tyr	Val	Tyr 420	Thr	Ala	Gly	Lys	Cys 425	Gly	Leu	Val	Pro	Val 430	Leu	Ala	

GAG	AAC	TAC	: AAA	TCC	CAA	CAA	AGC	AGI	GAC	CCI	GAT	CCI	AA	TG1	r GTG	134
Glu	Asn	Tyr 435		Ser	Gln	Gln	Ser 440		Asp	Pro) Asp	Pro 445		n Cys	s Val	
GAT	' AGA	CCT	GTG	GAA	GGA	TAT	CTT	GCT	GTG	GCG	GTG	GTI	AGG	AGA	TCA	1392
Asp	Arg 450		Val	Glu	Gly	Tyr 455		Ala	Val	Ala	Val 460		Arg	J Arg	Ser	
GAC	ACT	AGC	CTT	ACC	TGG	AAC	TCT	GTG	AAA	GGC	AAG	AAG	TCC	TGC	CAC	1440
Asp 465		Ser	Leu	Thr	Trp 470		Ser	Val	Lys	Gly 475	_	Lys	Ser	Cys	His 480	
ACC	GCC	GTG	GAC	AGG	ACT	GCA	GGC	TGG	AAT	ATC	ccc	ATG	GGC	CTG	CTC	1488
Thr	Ala	Val	Asp	Arg 485	Thr	Ala	Gly	Trp	Asn 490	Ile	Pro	Met	Gly	Leu 495	Leu	
TTC	AAC	CAG	ACG	GGC	TCC	TGC	AAA	TTT	GAT	GAA	TAT	TTC	AGT	CAA	AGC	1536
Phe	Asn	Gln	Thr 500	Gly	Ser	Cys	Lys	Phe 505	Asp	Glu	Tyr	Phe	Ser 510	Gln	Ser	
TGT	GCC	CCT	GGG	TCT	GAC	CCG	AGA	TCT	AAT	CTC	TGT	GCT	CTG	TGT	ATT	1584
Cys	Ala	Pro 515	Gly	Ser	Asp	Pro	Arg 520	Ser	Asn	Leu	Суз	Ala 525	Leu	Cys	Ile	
GGC	GAC	GAG	CAG	GGT	GAG	AAT	AAG	TGC	GTG	CCC	AAC	AGC	AAC	GAG	AGA	1632
3ly	Asp 530	Glu	Gln	Gly	Glu	Asn 535	Lys	Cys	Val	Pro	Asn 540	Ser	Asn	Glu	Arg	
rac	TAC	GGC	TAC	ACT	GGG	GCT	TTC	CGG	TGC	CTG	GCT	GAG	AAT	GCT	GGA	1680
Tyr 545	Tyr	Gly	Tyr	Thr	Gly 550	Ala	Phe	Arg	Cys	Leu 555	Ala	Glu	Asn	Ala	Gly 560	
BAC	GTT	GCA	TTT	GTG	AAA	GAT	GTC	ACT	GTC	TTG	CAG	AAC	ACT	GAT	GGA	1728
Asp	Val	Ala	Phe	Val 5 6 5	Lys	Asp	Val	Thr	Val 570	Leu	Gln	Asn	Thr	Asp 575	Gly	
AT	AAC	AAT	GAG	GCA	TGG	GCT	AĄG	GAT	TTG	AAG	CTG	GCA	GAC	TTT	GCG	1776
sn	Asn		Glu 580	Ala	Trp	Ala		Asp 585	Leu	Lys	Leu		Asp 590	Phe	Ala	

CTG	CTG	TGC	CTC	GAT	GGC	AAA	CGG	AAG	CCT	GTG	ACT	GAG	GCT	AGA	AGC	182
Leu	Leu	Cys 595	Leu	Asp	Gly	Lys	Arg 600	Lys	Pro	Val	Thr	Glu 605	Ala	Arg	Ser	
TGC	CAT	CTT	GCC	ATG	GCC	CCG	AAT	CAT	GCC	GTG	GTG	TCT	CGG	ATG	GAT	1872
Cys	His 610		Ala	Met	Ala	Pro 615	Asn	His	Ala	Val	Val 620	Ser	Arg	Met	Asp	
AAG	GTG	GAA	CGC	CTG	AAA	CAG	GTG	TTG	CTC	CAC	CAA	CAG	GCT	AAA	TTT	1920
Lys 625	Val	Glu	Arg	Leu	Lys 630	Gln	Val	Leu	Leu	His 635	Gln	Gln	Ala	Lys	Phe 640	
GGG	AGA	AAT	GGA	TCT	GAC	TGC	CCG	GAC	AAG	TTT	TGC	TTA	TTC	CAG	TCT	1968
Gly	Arg	Asn	Gly	Ser 645	Asp	Cys	Pro	Asp	Lys 650	Phe	Cys	Leu	Phe	Gln 655	Ser	
GAA	ACC	AAA	AAC	CTT	CTG	TTC	AAT	GAC	AAC	ACT	GAG	TGT	CTG	GCC	AGA	2016
Glu	Thr	Lys	Asn 660	Leu	Leu	Phe	Asn	Asp 665	Asn	Thr	Glu	Cys	Leu 670	Ala	Arg	
CTC	CAT	GGC	AAA	ACA	ACA	TAT	GAA	AAA	TAT	TTG	GGA	CCA	CAG	TAT	GTC	2064
Leu	His	Gly 675	Lys	Thr	Thr	Tyr	Glu 680	Lys	Tyr	Leu	Gly	Pro 685	Gln	Tyr	Val	
GCA	GGC	ATT	ACT	AAT	CTG	AAA	AAG	TGC	TCA	ACC	TCC	CCC	CTC	CTG	GAA	2112
Ala	Gly 690	Ile	Thr	Asn		Lys 695	Lys	Cys	Ser	Thr	Ser 700	Pro	Leu	Leu	Glu	
GCC	TGT	GAA	TTC													2124
Ala 705	Cys	Glu	Phe													

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 708 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Lys Leu Val Phe Leu Val Leu Leu Phe Leu Gly Ala Leu Gly Leu

1 5 10 15

Cys Leu Ala Gly Arg Arg Arg Ser Val Gln Trp Cys Ala Val Ser 20 25 30

Gln Pro Glu Ala Thr Lys Cys Phe Gln Trp Gln Arg Asn Met Arg Lys 35 40 45

Val Arg Gly Pro Pro Val Ser Cys Ile Lys Arg Asp Ser Pro Ile Gln 50 55 60

Cys Ile Gln Ala Ile Ala Glu Asn Arg Ala Asp Ala Val Thr Leu Asp 65 70 75 80

Gly Gly Phe Ile Tyr Glu Ala Gly Leu Ala Pro Tyr Lys Leu Arg Pro 85 90 95

Val Ala Ala Glu Val Tyr Gly Thr Glu Arg Gln Pro Arg Thr His Tyr
100 105 110

Tyr Ala Val Ala Val Lys Lys Gly Gly Ser Phe Gln Leu Asn Glu 115 120 125

Leu Gln Gly Leu Lys Ser Cys His Thr Gly Leu Arg Arg Thr Ala Gly
130 135 140

Trp Asn Val Pro Ile Gly Thr Leu Arg Pro Phe Leu Asn Trp Thr Gly
145 150 155 160

Pro Pro Glu Pro Ile Glu Ala Ala Val Ala Arg Phe Phe Ser Ala Ser 165 170 175

Cys Val Pro Gly Ala Asp Lys Gly Gln Phe Pro Asn Leu Cys Arg Leu 180 185 190

Cys Ala Gly Thr Gly Glu Asn Lys Cys Ala Phe Ser Ser Gln Glu Pro 195 200 205

Tyr	Phe 210	Ser	Tyr	Ser	Gly	Ala 215	Phe	Lys	Cys	Leu	Arg 220	Asp	Gly	Ala	Gly
Asp 225	Val	Ala	Phe	Ile	Arg 230	Glu	Ser	Thr	Val	Phe 235	Glu	Asp	Leu	Ser	240
Glu	Ala	Glu	Arg	Asp 245	Glu	Tyr	Glu	Leu	Leu 250	Cys	Pro	Asp	Asn	Thr 255	Arg
Lys	Pro	Val	Asp 260	Lys	Phe	Lys	Asp	Cys 265	His	Leu	Ala	Arg	Val 270	Pro	Sei
His	Ala	Val 275	Val	Ala	Arg	Ser	Val 280	Asn	Gly	Lys	Glu	Asp 285	Ala	Ile	Tr
Asn	Leu 290	Leu	Arg	Gln	Ala	Gln 295	Glu	Lys	Phe	Gly	Lys 300	Asp	Lys	Ser	Pro
Lys 305	Phe	Gln	Leu	Phe	Gly 310	Ser	Pro	Ser	Gly	Gln 315	Lys	Asp	Leu	Leu	Phe 320
Lys	Asp	Ser	Ala	Ile 325	Gly	Phe	Ser	Arg	Val 330	Pro	Pro	Arg	Ile	Asp 335	Ser
Gly	Leu	Tyr	Leu 340	Gly	Ser	Gly	Tyr	Phe 345	Thr	Ala	Ile	Gln	Asn 350	Leu	Arg
Lys	Ser	Glu 355	Glu	Glu	Val	Ala	Ala 360	Arg	Arg	Ala	Arg	Val 365	Val	Trp	Cys
Ala	Val 370	Gly	Glu	Gln	Glu	Leu 375	Arg	Lys	Cys	Asn	Gln 380	Trp	Ser	Gly	Leu
Ser 385	Glu	Gly	Ser	Val	Thr 390	Cys	Ser	Ser	Ala	Ser 395	Thr	Thr	Glu	Asp	Cys 400
Ile	Ala	Leu	Val	Leu 405	Lys	Gly	Glu	Ala	Asp 410	Ala,	Met	Ser	Leu	Asp 415	Gly
Gly	Tyr		Tyr 420		Ala	Gly	Lys	Cys 425	Gly	Leu	Val	Pro	Val 430	Leu	Ala
Glu	Asn	Tyr 435	Lys	Ser	Gln	Gln	Ser 440	Ser	Asp	Pro	Asp	Pro 445	Asn (Cys	Val
Asp	Arg 450	Pro	Val	Glu	Gly	Tyr 455	Leu	Ala	Val	Ala	Val 460	Val	Arg	Arg	Ser
Asp	Thr	Ser	Leu	Thr	Trp 470	Asn	Ser	Val	Lys	Gly 475	Lys	Lys	Ser	Cys	His 480

Thr Ala Val Asp Arg Thr Ala Gly Trp Asn Ile Pro Met Gly Leu Leu 485 490 495

Phe Asn Gln Thr Gly Ser Cys Lys Phe Asp Glu Tyr Phe Ser Gln Ser 500 505 510

Cys Ala Pro Gly Ser Asp Pro Arg Ser Asn Leu Cys Ala Leu Cys Ile 515 520 525

Gly Asp Glu Gln Gly Glu Asn Lys Cys Val Pro Asn Ser Asn Glu Arg 530 540

Tyr Tyr Gly Tyr Thr Gly Ala Phe Arg Cys Leu Ala Glu Asn Ala Gly 545 550 550 560

Asp Val Ala Phe Val Lys Asp Val Thr Val Leu Gln Asn Thr Asp Gly 565 570 575

Asn Asn Asn Glu Ala Trp Ala Lys Asp Leu Lys Leu Ala Asp Phe Ala 580 585 590

Leu Leu Cys Leu Asp Gly Lys Arg Lys Pro Val Thr Glu Ala Arg Ser 595 600 605

Cys His Leu Ala Met Ala Pro Asn His Ala Val Val Ser Arg Met Asp 610 615 620

Lys Val Glu Arg Leu Lys Gln Val Leu Leu His Gln Gln Ala Lys Phe 625 630 635 640

Gly Arg Asn Gly Ser Asp Cys Pro Asp Lys Phe Cys Leu Phe Gln Ser 645 650 655

Glu Thr Lys Asn Leu Leu Phe Asn Asp Asn Thr Glu Cys Leu Ala Arg
660 665 670

Leu His Gly Lys Thr Thr Tyr Glu Lys Tyr Leu Gly Pro Gln Tyr Val 675 680 685

Ala Gly Ile Thr Asn Leu Lys Lys Cys Ser Thr Ser Pro Leu Leu Glu 690 695 700

Ala Cys Glu Phe 705

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2086 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double

- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

CGAGGATCAT	GGCTCACTGC	CACCTTCATC	TCCCAGGCTC	AAATGGTCCI	CCCACTTTAG	60
CCTCCCAAGT	AGCTGGGACC	ATAGGCATAC	ACCACCATGO	: TGGGCTAATI	TTTGTATTT	120
TTGTAGAGAT	GGGGGTTTCC	CTATGAAGCC	CAGGCTAGTC	TTGAACTCCI	GGGCTCAAGC	180
GATCCTCCCA	TCTTGGCCTC	CCAAAGTGCT	GGGATTACAG	GCATGAGCCA	CTGTGCCCTG	240
CCTAGTTACT	CTTGGGCTAA	GTTCACATCC	ATACACACAG	GATATTCTTT	CTGAGGCCCC	300
CAATGTGTCC	CACAGGCACC	ATGCTGTATG	TGACACTCCC	CTAGAGATGG	ATGTTTAGTT	360
TGCTTCCAAC	TGATTAATGG	CATGCAGTGG	TGCCTGGAAA	CATTTGTACC	TGGGGTGCTG	420
TGTGTCATGG	GAATGTATTT	ACGAGATGTA	TTCTTAGAAG	CAGTATTCTA	GCTTTTGAAT	480
TTTAAAATCT	GACATTTATG	GCGATTGTTA	AAATGAGGTT	ACCATTTCCT	ACTGAATACT	540
ATCAACACCA	AAAAAGAAGA	AGGAGGAGAT	GGAGAAAAA	AAGACAAAAA	AAAAAAAAGT	600
GGTAGGGCAT	CTTAGCCATA	GGGCATCTTT	CTCATTGGCA	AATAAGAACA	TGGAACCAGC	660
CTTGGGTGGT	GGCCATTCCC	CTCTGAGGTC	CCTGTCTGTT	TTCTGGGAGC	TGTATTGTGG	720
GTCTCAGCAG	GGCAGGGAGA	TACCCCATGG	GCAGCTTGCC	TGAGACTCTG	GGCAGCCTCT	780
CTTTTCTCTG	TCAGCTGTCC	CTAGGCTGCT	GCTGGGGGTG	GTCGGGTCAT	CTTTTCAACT	840
CTCAGCTCAC	TGCTGAGCCA	AGGTGAAAGC	AAACCCACCT	GCCCTAACTG	GCTCCTAGGC	900
ACCTTCAAGG	TCATCTGCTG	AAGAAGATAG	CAGTCTCACA	GGTCAAGGCG	ATCTTCAAGT	960
AAAGACCCTC	TGCTCTGTGT	CCTGCCCTCT	AGAAGGCACT	GAGACCAGAG	CTGGGACAGG	1020
GCTCAGGGGG	CTGCGACTCC	TAGGGGCTTG	CAGACCTAGT	GGGAGAGAAA	GAACATCGCA	1080

WO 92/21752 PCT/US92/04012

GCAGCCAGGC	: AGAACCAGGA	CAGGTGAGGT	GCAGGCTGG	TTTCCTCTCG	CAGCGCGGTG	114
TGGAGTCCTG	TCCTGCCTCA	GGGCTTTTCG	GAGCCTGGAT	CCTCAAGGAA	CAAGTAGACC	1200
TGGCCGCGGG	GAGTGGGGAG	GGAAGGGGTG	TCTATTGGGC	: AACAGGGCGG	GGCAAAGCCC	1260
TGAATAAAGG	GGCGCAGGGC	AGGCGCAAGT	GGCAGAGCCT	TCGTTTGCCA	AGTCGCCTCC	1320
AGACCGCAGA	CATGAAACTT	GTCTTCCTCG	TCCTGCTGTT	CCTCGGGGCC	CTCGGTGAGT	1380
GCAGGTGCCT	GGGGGCGCGA	GCCGCCTGAT	GGGCGTCTCC	TGCGCCCTGT	CTGCTAGGCG	1440
CTTTGGTCCC	TGTGTCCGGT	TGGCTGGGCG	CGGGGTCTCT	GCGCCCCGCG	GTCCCAGCGC	1500
CTACAGCCGG	GAGGCGGCCC	GGACGCGGGG	CCAGTCTCTT	TCCCACATGG	GGAGGAACAG	1560
GAGCTGGGCT	CCTCAAGCCG	GATCGGGGCA	CGCCTAGCTC	TGCTCAGAGC	TTCTCAAAAG	1620
GCCTCCCAGG	CCCCTGTCCC	TTTGTGTCCC	GCCTAAGGAT	TTGGTCCCCA	TTGTATTGTG	1680
ACATGCGTTT	TACCTGGGAG	GAAAGTGAGG	CTCAGAGAGG	GTGAGCGACT	AGCTCAAGGA	1740
CCCTAGTCCA	GATCCTAGCT	CCTGCGAGGA	CTGTGAGACC	CCAGCAAGAC	CGAGCCTTTA	1800
TGAGACTTAG	TTTCTTCACT	TAAAGAAACG	GCCTAACCAT	GGGTCCACAG	GGTTGTGAGG	1860
AGGAGATGGG	GCATTCGCAC	ACCTTCCGTG	GCAGAGGGTT	GTGGAGGGGT	GCGGTGCTCC	1920
TGATGGAACC	CTGTGTCAGA	GGGTTTGAGA	GGGAAATGTC	AGCCAAACAG	AAGGAAGGAG	1980
CAGAAGGAAG	GAAACAATTG	TCAGTTCCAT	AACCAAAGTA	ATTTCTCGGG	TGCTCAGAGG	2040
GCACTCCCCA	GCGCTGCACA	TTAGTGACCT	AAATGCGTGA	GTGCGG		2086

15

WHAT IS CLAIMED IS:

- 1. A DNA segment encoding human lactoferrin according to sequence I.D. No.: 1.
- 2. Human lactoferrin protein according to sequence I.D. No.: 2.
 - 3. A DNA promotor region for human lactoferrin according to sequence I.D. No.: 5 and allelic variations thereof.
- 4. A recombinant DNA construct comprising:

 10

 i) said DNA segment according to claim 1 and
 ii) a vector
 - 5. The DNA construct according to claim 4 further comprising the regulating sequence according to sequence I.D. No.: 5 or portion thereof operatively linked to said DNA fragment.
 - 6. The DNA construct according to claim 4 or 5 wherein said vector is pAc 700 series.
 - 7. A host cell comprising said DNA construct according to claim 4 or 5.
- 20 8. The cell according to claim 7, wherein said host cell is Sf9 cells.
 - 9. A recombinant lactoferrin protein expressed in the host cell of claim 7.
- 10. A method of treating a condition in a patient characterization by a deficiency in

10

15

20

lactoferrin, administering to said patient an amount of human lactoferrin according to claims 2 or 9 sufficient to eliminate said deficiency.

- 11. The method of claim 10 wherein said condition is neutropenia, AIDS, skin infection, gastrointestinal bacterial overgrowth syndrome, vaginal infection or septic shock.
 - 12. A method of diagnosing malignancy in a biological sample comprising the steps of:
 - i) isolating DNA from said biological sample and normal control sample
 - ii) cutting said DNA with restriction enzyme,Xba I,
 - iii) hybridizing said cut DNA of step (ii) with a DNA segment according to claim 1 or 2 or portion thereof under conditions such that hybridization is effected and
 - iv) comparing the hybridization products of step 3 from said biological sample and normal sample to each other.
 - 13. A method of detecting recovery of a disease in a patient given a therapeutic comprising the steps of:
 - i) isolating DNA from a biological sample of said patient and normal human control sample,
 - ii) cutting said DNA with Xba I,
 - iii) hybridizing said cut DNA of step (ii) with a DNA segment according to claim 1 or

15

- portion thereof under conditions such that hybridization is effected and iv) comparing the hybridization products of the biological sample in step 3 to the hybridization products of normal sample in step 3 to determine the relatedness to normal samples.
- 14. A method for detecting insertions, deletions or mutations surrounding the human lactoferrin gene comprising the steps of

 i) isolating DNA from a biological sample suspected of having said insertion,
 - deletion or mutation,

 ii) amplifying said DNA using the DNA fragment
 - of claim 1 or portion thereof in a polymerase chain reaction,

 iii) cuting said amplified DNA with restriction
 - enzyme Xbu I,

 iv) hybridizing said DNA from steo (iii) with
 the DNA fragment according to claim 1 or
 portion thereof under condistions such
 that hybridization is effected and
 - v) sequencing said DNA of step (iv).

FIG. 1A

FIG. IB SUBSTITUTE SHEET

F16.

FIG. 5

FIG. 7

SUBSTITUTE SHEET

FIG. 9

AAG Lys

ATA Ile Leu

TGC

AGC

GTC

<u>8</u>

CTG TGT CTG GGA G1y CTC GCC GGG Gly CTC CTG TTC Leu Phe CTG GTC Val CIC Leu TTC GTC CTT

AGG CGT GGC Gly GCT

GCC TGC \mathbf{TGG} CAG Gln GTT Val AGT Ser AGG AGA

Arg

61

Lys

AAA

ACA

GCC

Pro

CAA Gln Asn

TCC

GTA Val

GAG Glu

ည္သည

TGG Gln CAA TTC Phe TGC

CCT Pro CCT Pro 66C (CGT GTG AAA Lys AGA Arg ATG Met AAT Asn AGG Arg CAA

121

CCC Pro TCC Ser GAC AGA Arg

ACC GTG Val GCT GAT GCC Ala GAA AAC AGG Glu Asn Arg GCG ATT Ile gcc Ala CAG Gln ATC \mathbf{TGT} Cys CAG ATC Ile

181

GGT GGT Gly GAT Asp CTT

FIG. 10B

GTA Val CCT CGA CTG TAC AAA Tyr Lys CCC GCC CTG GGC Gly GCA Ala GAG Glu TAC ATA Ile TTC

GCG GAA GTC TAC Ala Glu Val Tyr

241

GTG GCT GTG GCC TAT TAT CAC His ACT CGA Arg CCA CAG Gln AGA GAA Glu ACC Thr GGG Gly

GTG Val

> AAG AAG GGC GGC Lys Lys Gly Gly

TTT CAG CTG AAC GAA CTG CAA GGT CTG AAG Phe Gln Leu Asn Glu Leu Gln Gly Leu Lys

AGC

361

11/18

GGC Gly

CAC His

TCC

TGC

CTT CGC AGG ACC Leu Arg Arg Thr

AAT Asn TTG TTC CCA CGT Arg CTT ACA GGG Gly C ATA Ile Thr CCT GTC Val AAT Asn TGG Trp GGA G1y 421

ACG GGT CCA CCT Thr Gly Pro Pro

SUBSTITUTE SHEET

TGT

AAG Lys

TTC

GCC

GGT Gly

TCT Ser

TAC

AGC Ser

TTC

TAC

FIG. 10C

TGT AGC GCC TCA TTC TTC Phe GCC AGG Ala Arg GTG Val GCT Ala GCA GAG Glu ATT Ile CCC GAG Glu

481

GAT GCA GGT Gly CCC

ACA GGG GCG Ala TGT Cys CTG CGC Arg TGI Cys CTG Leu Asn AAC CCC Pro TTC Phe CAG Gln GGA Gly AAA Lys

GAA

GGG

GCC

TGT Cys AAA Lys AAC

CCG GAA Glu CAG Gln TCC Ser TCC TTC

601

GGG Gly GAC AGA Arg Lys CTG

661

CTG Leu GAC GAG Glu TTT GTG Val ACA AGC GAG AGA Arg ATC Ile TIT Phe Ala GCT Val GAC Asp GGA Gly GCT

GAG Glu GAC TCA

FIG. 10[

721

CCA Pro AAG Lys CGG ACT AAC Asn GAC CCA Pro CTC TGC Leu Cys Leu Leu TTA Glu GAG TAT Tyr GAG Glu TTC GAC Asp AAG Lys GAC AGG GAA GTG Val

GTT Val GCC Ala CAT Ser TCT CCT GTC SSS CCC Ala Leu CTG CAT His TGC Cys GAC Asp AAA Lys

CGA

GTG

Val

AGT GTG AAT GGC
Ser Val Asn Gly
AAG GAG GAT GCC ATC TGG AAT CTT CTC
Lys Glu Asp Ala Ile Trp Asn Leu Leu

CAG ccc Arg CTC CTT Leu Asn TGG Trp AAG Lys Asp GAC Asp AAG Lys Lys GGA Gly 841

13/18

TTT Phe

AAG Lys

GAA Glu

Gln

CAG

GCA Ala

CTG GAT Asp AAA Lys CAG 999 AGT Ser CCI Pro TCC GGC Gly TTT Phe CTC CAG Gln TTC Phe AAA Lys CCG Ser TCA

901

CTG TTC AAG GAC Leu Phe Lys Asp

SUBSTITUTE SHEET

cys TGT

AAG Lys

ပ္ပင္ပ Arg

Leu CTG

GAG

CAG Gln

GAG Glu

CGC Gly

GTG Val

F1G.

CTG GGG Gly TCT GAT Asp ATA Ile CCG AGG Pro CCC Pro GTG Val AGG Arg Ser TCG TTT Phe GGG ATT Ile GCC TCT

961

TCC **000** CTT TAC

Ser Gly Leu

GAG Glu GAG Glu AGT AAA Lys AGG Arg Leu TTG Asn AAC CAG Gln ATC Ile ပ္ပင္သ Ala ACT Thr TIC Phe TAC Tyr GGC

Val

Glu GAA

> CGT වුවුට GCC GCT

Arg

GCG Ala \mathbf{TGT} Cys TGG Trp GTG Val GTC Val CGG Arg GCG Ala

1081

AGT CAG Gln AAC

TGG Trp

ACC Thr TCC GCC TCG Ser TCC TGC ACC GTG Val AGC Ser GGC Gly GAA Glu AGC TTG Leu GGC Gly

1141

CTT TAC

66C G1y

•								
	TAT Tyr		CAA Gln		GTG Val		TCC	
	GGA Gly		TCC Ser		GCT Ala		AAG Lys	
	GGA		AAA Lys		CTT		AAG Lys	
	GAT GGA Asp Gly		TAC Tyr		TAT Tyr		GGC	
	TTG Leu		AAC Asn		GGA G1y		AAA GGC Lys Gly	
	AGT Ser		GAG Glu		GAA		GTG Val	
	ATG		GCA Ala		GTG Val		TCT Ser	
	GCC		CTG		CCT Pro		AAC Asn	
10F	GAT Asp		GTC Val		AGA CCT Arg Pro		TGG Trp	
FIG.	GCT		CCT		GAT Asp		ACC Thr	
 	GAA Glu		GTG Val		GTG Val		CTT Leu	
	GGA G1y	•	TTG	÷	TGT		AGC Ser	
	AAA Lys	GCA Ala	GGT	GAC Asp	AAC Asn	AGG Arg	ACT	GCC
٠	CTG	ACT	TGT	AGT Ser	CCT	GTT Val	GAC	ACC Thr
	GTG Val	TAC	AAA Lys	AGC Ser	GAT Asp	GTG Val	TCA	CAC His
	CTG	GTG Val	T GGC Gly Cys	CAA	CCT	GCG Ala	aga Arg	TGC
	201		261		321		381	

	1	6	1	1	8
--	---	---	---	---	---

	AAC Asn		GAC	ı	GTG Val		AAT Asn	
	TTC Phe		TCT Ser		TGC Cys		GAG	
	CTC		666 G1y	l	AAG Lys		GCT Ala	٠
	CTG		CCT		AAT	·	CTG GCT Leu: Ala	٠.
	GGC Gly		GCC		GAG Glu		TGC	
•	ATG Met		TGT Cys		GGT G1y		CGG Arg	
9	CCC		AGC		CAG Gln		TTC Phe	
FIG. 10G	ATC Ile		CAA Gln		GAG Glu		GCT Ala	
E E	AAT		AGT Ser		gac Asp		666 61y	
	TGG Trp		TTC		66C G1y		ACT Thr	
נ	GGC Gly Ala		TAT		ATT Ile		TAC Tyr	
	GCA Ala		GAA Glu		TGT Cys		GGC Gly	
	ACT Thr	TCC	GAT Asp	AAT	CTG	T AAC Asn	TAC Tyr	GTT Val
	AGG Arg	GGC G1y	TTT Phe	TCT Ser	GCT	AGC Ser	TAC Tyr	GAC
	GAC Asp	ACG	AAA Lys	AGA Arg	TGT Cys	AAC	AGA Arg	GGA Gly
	GTG Val	CAG Gln	TGC	CCG	CIC	CCC	GAG Glu	GCT Ala
	1441		1501		1561		1621	

SUBSTITUTE SHEET

AGA Arg

GGG Gly

_

AAC Asn		66c 61y		GCC		GCT
AAT		GAT		CAT		CAG 31n
GGA Gly		CTC		AAT Asn		CAA Gln
GAT GGA A		TGC		CCG AAT Pro Asn		CAC CAA (His Gln (
ACT		CTG		GCC		CTC
AAC A		CTG		GCC ATG Ala Met		C GTG TTG Val Leu
CAG 7		GCG		GCC		GTG Val
TTG		TTT		CTT		CAG Gln
GTC TTG Val Leu		GAC Asp		CAT His		AAA CAG Lys Gln
GTC ACT		GCA		TGC Cys		CTG
GTC Val		CTG Leu		AGA AGC TGC Arg Ser Cys		CGC
AAA GAT Lys Asp		AAG Lys		AGA Arg		GAA Glu
AAA Lys	TGG	TTG	CCT	GCT	CGG Arg	GTG Val
GTG Val	GCA Ala	GAT Asp	AAG Lys	GAG	TCT	AAG Lys
TTT GTG Phe Val	GAG Glu	AAG Lys	CGG Arg	ACT Thr	GTG Val	GAT Asp
GCA Ala	AAT	GCT	AAA Lys	GTG Val	GTG Val	ATG
1681		1741				1861

17/18

SUBSTITUTE SHEET

16. 10I

921	AAT Asn	GGA G1y	TCT Ser	GAC	TGC	CCG	GAC ASP	AAG Lys	TTT Phe	TGC	TTA	TTC Phe	CAG Gln	TCT Ser	GAA Glu	ACC	
	AAA Lys	AAC	CTT	CTG													
981	TTC Phe	AAT Asn	gac Asp	AAC Asn	ACT	GAG Glu	TGT Cys	CTG	GCC	aga Arg	CTC	CAT His	GGC AAA Gly Lys	AAA Lys	ACA	ACA Thr	
	TAT Tyr	GAA Glu	AAA Lys	TAT TYE							·						
041	TTG	GGA G1y	CCA	CAG Gln	TAT Tyr	GTC Val	GCA Ala	GGC	ATT	ACT Thr	AAT Asn	CTG	AAA Lys	AAG Lys	TGC	TCA Ser	
	ACC Thr	TCC	CCC	C TCC Ser Leu													
101	TGG Trp Leu	AAG Lys Glu	CCT Pro Ala	GTG Val Cys	AAT Asn Glu	TC 2 Phe	2117				·						

SUBSTITUTE SHEET

INTERNATIONAL SEARCH REPORT

International application No. PCT/US92/04012

			PC170592/04	012
A. CL	ASSIFICATION OF SUBJECT MATTER			
IPC(5)	:C12N 15/00, 15/10, 15/12; A61K 35/20 :435/6, 69.1, 320.1; 514/6; 530/395, 400; 536/27	•		
According	to International Patent Classification (IPC) or to be	/ oth national classification	and IPC	
1	LDS SEARCHED	- House Hall Classification		
	documentation searched (classification system follow	wed by classification sym	hole)	
1	435/6, 69.1, 69.6, 320.1; 514/6; 530/350, 395, 4	· ·	000)	
Documente	ation searched other than minimum documentation to	the extent that such docum	nents are included	d in the fields searched
APS, MI	data base consulted during the international search EDLINE, BIOSIS, World Patents Index rms: lactoferrin, gene, DNA, cDNA, breast cance	= ==	vhere practicable	, scarch terms used)
C. DO	CUMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where	appropriate, of the releva	int passages	Relevant to claim No.
<u>X</u> Y	Clinica Chimica Acta, Vol. 151, issued 1985, immunosorbent assay for lactoferrin. Plasma and t document.	W.R. Bezwoda et al, "issue measurements", pag	Enzyme linked es 61-69, entire	2.9 1,3-8,10-11
<u>X</u> Y	Clinica Chimica Acta, Vol. 157, issued 1986, characterisation of lactoferrin separate from humusing Cibacron Blue F3G-A linked affinity adsort	an whey by adsorption of	hromatography	2.9 1,3-8
<u>X</u> Y	FEBS Letters, Vol. 109, no. 2, issued January lactoferrin from human whey by a single chrom document.	1980, L. Blackberg et a atographic step", pages	l, "Isolation of 180-184, entire	2.9 1,3-8
Y	J. Sambrook et al., "Molecular cloning technique by Cold Spring Harbor Laboratory Press, pages 1	s, a laboratory manuel", p 2.2-12.15, entire docume	published 1989 nt.	1,3-8
X Furthe	er documents are listed in the continuation of Box (C. See patent f	amily annex.	•
A" docu	cial categories of cited documents; ument defining the general state of the art which is not considered	date and not in cor		national filing date or priority ion but cited to understand the
	e part of particular relevance ier document published on or after the international filing date	"X" document of parti	icular relevance; the	claimed invention cannot be
L° docu cited	ment which may throw doubts on priority claim(s) or which is	considered novel of when the documen	er cannot be considere at is taken alone	d to involve an inventive step
	ial reason (as specified) ment referring to an oral disclosure, use, exhibition or other ns	considered to inv	roive an inventive s	claimed invention cannot be tep when the document is documents, such combination art
P docu the p	ment published prior to the international filing date but later than priority date claimed		of the same patent fo	
ate of the a	ctual completion of the international search	Date of mailing of the in	nternational sear	ch report
23 July 199	2	31.	JUL 1992	1/
Commissione	niling address of the ISA/ or of Patents and Trademarks	Authorized officer	2/11	assie
Box PCT Washington,	D.C. 20231	DIAN COOK	/ / (
esimile No.	NOT APPLICABLE	Telephone No. (703)	308-0196	

Form PCT/ISA/210 (second sheet)(July 1992)*

INTERNATIONAL SEARCH REPORT

International application No. PCT/US92/04012

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
	Cancer Research, Vol. 46, no. 3, issued March 1986, K. Shirasuna et al, "Isolation and characterization of different clones including myoepithelial-like variants from a clonal neoplastic epithelial duct cell line of human salivary gland origin", pages 1418-1426, especially abstract.	12-14
	·	
	,	,