0.1 整数

定理 0.1 (逆归定理)

假设 S 是一个集合, $a \in S$, 并且对于每个 $n \in N$, $f_n : S \to S$ 均是函数, 则存在唯一的函数 $\varphi : N \to S$, 使得 $\varphi(0) = a$ 并且 $\varphi(n+1) = f_n(\varphi(n))(\forall n \in N)$.

证明 我们将构作 $N \times S$ 上的一个关系 R, 使得它是满足上述性质的函数 $\varphi: N \to S$ 的图象, 令

$$\mathcal{F} = \{ Y \subset \mathbb{N} \times \mathbb{S} \mid (0, a) \in \mathbb{Y}, \not \exists \exists (n, x) \in \mathbb{Y} \Rightarrow (n + 1, f_n(x)) \in \mathbb{Y} (\forall n \in \mathbb{N}) \}$$

由于 $N \times S \in \mathcal{F}$, 从而 $\mathcal{F} \neq \emptyset$. 令 $R = \bigcap_{Y \in \mathcal{F}} Y$, 则 $R \in \mathcal{F}$. 又设 M 为子集合

 $\{n \in N \mid 存在唯一的x_n \in S, 使得(n,x_n) \in R\}$

我们归纳证明 M=N. 如果 $0\notin M$, 则有 $(0,b)\in R$, 其中 $b\neq a$, 并且集合 $R-\{(0,b)\}\subset N\times S$ 属于 \mathcal{F} . 从而 $R=\bigcap_{Y\in\mathcal{F}}Y\subset R-\{(0,b)\}$, 这就导致矛盾. 因此 $0\in M$. 现在假定 $n\in M$ (即有唯一的 $x_n\in S$, 使得 $(n,x_n)\in R$), 则 $(n+1,f_n(x_n))\in R$. 如果又有 $(n+1,c)\in R$, 而 $c\neq f_n(x_n)$, 则 $R-\{(n+1,c)\}\in \mathcal{F}$ (验证!), 由此又可象上面那样导致矛盾. 因此 $x_{n+1}=f_n(x_n)$ 是 S 中唯一的元素,使得 $(n+1,x_{n+1})\in R$. 于是由归纳法 (定理 6.1) 可知 N=M, 即 $n\longmapsto x_n$ 定义了一个函数 $\varphi:N\to S$, 它的图象为 R. 由于 $(0,a)\in R$, 从而 $\varphi(0)=a$. 对于每个 $n\in N$, $(n,x_n)=(n,\varphi(n))\in R$. 由于 $R\in\mathcal{F}$, 从而 $(n+1,f_n(\varphi(n)))\in R$. 但是 $(n+1,x_{n+1})\in R$. 由 x_{n+1} 的唯一性推出 $x_n\in R$ 0, 如果 $x_n\in R$ 1 是非空集合, $x_n\in R$ 2 中的序列是一个函数 $x_n\in R$ 3 中的序列是一个函数 $x_n\in R$ 4 也称作序列,并且表示成 $x_n\in R$ 5 或者 $x_n\in R$ 6 或者 $x_n\in R$ 6 以的象. 类似地,函数 $x_n\in R$ 7 也称作序列,并且表示成 $x_n\in R$ 8 或者 $x_n\in R$ 9 或者 $x_n\in R$ 9 或者 $x_n\in R$ 9 起混乱.