Ringen en Lichamen

Luc Veldhuis

30 Oktober 2017

Examen bespreking

Vraag

$$I = (2, 1 + \sqrt{-3}) \subseteq R = \mathbb{Z}[\sqrt{-3}].$$
 $II = I^2 = (2)I$
Namelijk
 $II = (2, 1 + \sqrt{-3})(2, 1 + \sqrt{-3}) = (2^2)$

$$\begin{split} & II = (2, 1+\sqrt{-3})(2, 1+\sqrt{-3}) = (2^2, 2(1+\sqrt{-3}), (1+\sqrt{-3})2, (1+\sqrt{-3})^2) = (4, 2+2\sqrt{-3}, -2+2\sqrt{3}) = (4, 2+2\sqrt{-3}) = (2)I \\ & ` \supseteq ' \ 4, 2+2\sqrt{-3} \in (4, 2+2\sqrt{-3}-2+\sqrt{-3}) ` \subseteq ' \\ & 4, 2+2\sqrt{-3}, -2+2\sqrt{-3} \in (4, 2+2\sqrt{-3}), \text{ want} \\ & (-1)4+1(2+2\sqrt{-3}). \end{split}$$

Herhaling

Al gezien in §8.2: een HIR (Hoofd ideaal ring) is een domein R zodat elk ideaal een hoofdideaal is. Voorbeeld: Euclidische ringen, ggd(a,b) bestaat voor alle $a,b\in R$ (namelijk als (a,b)=(d)) Formule van Bèzout: ax+by=d met $x,y\in R$.

Stelling

Elk priemideaal \neq (0) in HIR is een maximaal ideaal

Bewijs

Stel $(p) \neq (0)$ is een priemideaal, dus $p \neq 0$, $p \neq R^*$, want $(p) \neq R$.

Stel I is een ideaal van R met $(p) \subseteq I \subseteq R$.

Te bewijzen: I = (p) of I = R.

Schrijf I = (m) dus $(p) \subseteq (m)$, derhalve p = am met $a \in R$.

(p) is een priemideaal, $am \in (p)$, dus $a \in (p)$ of $m \in (p)$.

Als $m \in (p)$, dan $(m) \subseteq (p)$ en (m) = (p).

Als $a \in (p)$ dan is a = bp voor een $b \in R$ en dus p = am - bmp $p \neq 0 \Rightarrow 1 = bm$. Dus $m \in R^*$ en (m) = R.

Gevolg

Als R een commutatieve ring is en R[x] een HIR, dan is R een lichaam.

Bewijs

R[X] is een HIR $\Rightarrow R[X]$ is een domein $\Rightarrow R$ is een domein. Dan is (x) een priemideaal van R[X], want $R[X]/[X] \cong R$ is een

domein. Dan is (x) een priemideaai van R[X], want R[X]/[X] = R is een domein.

Dus (x) is een priemideaal \neq (0) in de HIR R[X] dus (vorige stelling) (x) is maximaal ideaal, en $R \cong R[X]/[X]$ is een lichaam.

Voorbeeld

- $\mathbb{Z}[X]$ is geen IHR
- k[x, y] = k[x][y] (k een lichaam) is geen HIR.

Idee

Imiteer de unieke ontbinding van alle $n \ge 2$ in \mathbb{Z} in priemfactoren.

Definitie

Zij R een domein.

- Een element r in R heet **irreducibel** als $r \neq 0$, $r \notin R^*$ en als r = ab met $a, b \in R$, dan is $a \in R^*$ of $b \in R^*$.
- Een element r in R heet **priemelement** als $r \neq 0$ en (r) is een priemideaal van $R \Leftrightarrow r \neq 0$, $r \notin R^*$ en r|ab implicieert r|a of r|b. De priemeigenschap.
- a en b in R heten **geassocieerd** (Assosiated) als er een $u \in R^*$ met a = ub. (a ene b zijn geassocieerd is een equivalentie relatie: het zijn banen van de werking van R^* op R door linksvermenigvuldiging)

Herhaling baan

 $G \times A \to A$ met $(g, a) \mapsto ga$ een groepswerking met G een groep. Baan van $a = Ga = \{ga | g \in G\}$.

Opmerking

In een domein R:

- a|b en $b|a \Leftrightarrow a$ en b zijn geassocieerd $\Leftrightarrow (a) = (b)$
- Als r irreducibel is, $u \in R^*$, dan is ur ook irreducibel.
- Als r priemelement is, $u \in R^*$, dan is ur ook priemelement.

Opmerking

Een priem**getal** in \mathbb{Z} is gedefinieerd als een positief irreducibel element van \mathbb{Z} .

De irreducibele elementen van \mathbb{Z} zijn $\pm p$ met p een priem**getal**.

Een priemgetal in \mathbb{Z} is ook een priem**element** volgens het lemma van Euclides: $p|ab \Rightarrow p|a \lor p|b$.

We zullen zien: de priemelementen van \mathbb{Z} zijn $\pm p$ met p priem**getal**.

Stelling

In een willekeurig domein R is elk priem element irreducibel.

Bewijs

 $r \in R$ is priem betekend: $r \neq 0$, $r \notin R^*$ en r|ab implicieert r|a of r|b.

r is irreducibel betekend $r \neq 0$, $r \notin R^*$ en als r = ab dan is $a \in R^*$ of $b \in R^*$.

Dus te bewijzen: als r = ab dan is $a \in R^*$ of $b \in R^*$.

Neem aan r=ab, dan geldt r|ab (want ab=1r) dus (r priemelement) geldt r|a of r|b.

Stel r|a, dan geldt a=rc voor een $c\in R\Rightarrow r=ab=rbc$ met $r\neq 0$ want R is een domein. Nu geldt 1=bc dus $b\in R^*$. Net zo: als r|b dan $a\in R^*$. Dus r is irreducibel.

Voorbeeld

In
$$\mathbb{Z}[\sqrt{-5}]$$
 geldt $6=2\cdot 3=(1+\sqrt{-3})(1-\sqrt{-5})$. Ga na met behulp van de norm $N(a+b\sqrt{-5})=a^2+5b^2$: $2,3,1+\sqrt{-5},1-\sqrt{-5}$ zijn irreducibel en $\mathbb{Z}[\sqrt{-5}]^*=\{\pm 1\}$. Geen van die elementen is priem: bijvoorbeeld: $2|(1+\sqrt{-3})(1-\sqrt{-5})=3\cdot 2$ maar $2 \not| 1+\sqrt{-5}$ en $2 \not| 1-\sqrt{-5}$, want $(a+b\sqrt{-5})2=2a+2b\sqrt{-5}$, maar a is niet even.

Stelling

In een HIR (bijvoorbeeld een Euclidische ring) is een irreducibel element priem (de begrippen 'irreducibel' en 'priemelement' vallen samen).

Bewijs

Zie boek voor ander bewijs.

Neem $p \in R$ irreducibel. Dan geldt per definitie: $p \neq 0$ en $p \notin R^*$.

Stel p|ab, te bewijzen: p|a of p|b.

Als p|a dan klaar.

Als $p \nmid a$ dan is $(p, a) \supseteq (p) \ a \in (p) \Leftrightarrow p \mid a$

R is HIR dus (p, a) = (d) voor een $d \in R$ met $p \in (d)$ dus p = cd voor een $c \in R$.

p is irreducibel, dus $c \in R^*$ of $d \in R^*$.

Als $c \in R^*$, dan is (p) = (d) = (p, a) tegenspraak.

Dus $d \in R^*$, dan is (p, a) = (d) = R.

 $\Rightarrow 1 = xp + ya$ voor zekere $x, y \in R$.

Dan is b = bxp + bya geeft b = p(bx + yz) met ab = pz. Dus b is deelbaar door p.

Voorbeeld

 $\mathbb{Z}[\sqrt{-5}]$ is geen HIR want het is irreducibel maar niet priem.

Definitie

Een ontbindingsring R is een domein zodat elke $r \in R$, $r \neq 0$, $r \notin R^*$ te schrijven als $r = p_1 p_2 \dots p_s$ met alle p_i irreducibel, en als $r = q_1 q_2 \dots q_t$ met q_j irreducibel, dan geldt s = t en op het hernummeren van de q_j na geldt $p_i = u_i q_i$ met $u_i \in R^*$. Dat wil zeggen p_i en q_i zijn geassocieerd.

Voorbeeld

- In $\mathbb{Z}[\sqrt{-11}]$ geldt $12 = 2 \cdot 2 \cdot 3 = (1 + \sqrt{-11})(1 \sqrt{-11})$ en $2, 3, 1 + \sqrt{-11}, 1 \sqrt{-11}$ irreducibel en $\mathbb{Z}[\sqrt{-11}]^* = \{\pm 1\}$ $\Rightarrow \mathbb{Z}[\sqrt{-11}]$ is geen ontbindingsring.
- Een lichaam heeft geen irreducibele elementen, alleen 0 en eenheden.
- Elke HIR is een ontbindingsring. (Dus euclidische ring als \mathbb{Z} , $\mathbb{Z}[i]$, k[X] k een lichaam.) later meer.
- Als R een ontbindingsring is, dan is R[X] dat ook. Voorbeeld: $\mathbb{Z}[X]$, k[x,y] = k[x][y] met k een lichaam.

Voorbeeld

In
$$\mathbb{Z}[i]$$
: $\mathbb{Z}[i]^* = \{\pm 1, \pm i\}$
2 = $(1+i)(1-i)$

Dus elementen van norm 2 zijn mogelijke delers: $\pm 1 \pm i = u(1+i)$ met u een eenheid.

 $\pm 1 \pm i$ zijn irreducibel want $N(\pm 1 \pm i) = 2$ is priemgetal.

Als $\alpha = \beta \gamma$, dan geldt $N(\alpha) = N(\beta)N(\gamma)$ in $\mathbb{N} \cup \{0\}$

$$\beta \in \mathbb{Z}[i]^* \Leftrightarrow \mathcal{N}(\beta) = 1$$

Dus als $N(\alpha)$ = priemgetal $\Rightarrow \alpha$ is irreducibel in $\mathbb{Z}[i]$.

5 = (2+i)(2-i), $N(2\pm i) = 5$ is priemgetal, dus $2\pm i$ zijn irreducibel.

Als $3 = \beta \gamma$, dan is $9 = N(3) = N(\beta)N(\gamma) = 1 \cdot 9 \vee 3 \cdot 3 \vee 9 \cdot 1$.

Maar $3 \neq a^2 + b^2$ voor $a, b \in \mathbb{Z}$.

Dus of $N(\beta) = 1$ of $N(\gamma) = 1$, dus β of $\gamma \in \mathbb{Z}[i]^*$. Dus 3 is irreducibel in $\mathbb{Z}[i]$.

