练习一参考答案

一、填空题

(1)
$$\lim_{x \to 3} \frac{x^2 - 2x + k}{x - 3} = 4$$
, $\lim_{x \to 3} k = \underline{\qquad}$.

【答案】-3;

(2)
$$x = 1$$
 为 $y = \frac{x^2 - 1}{x - 1}$ 的_____ 间断点

【答案】第一型可去;

(3) 设
$$f(x) = e^{3x}$$
 ,则 $f^{(n)}(x) =$ _____

【答案】3ⁿe^{3x}.

$$(4) \frac{d}{dx} \int_{x}^{x^{2}} \sqrt{1 + t^{2}} dt = \underline{\hspace{1cm}}$$

【答案】
$$2x\sqrt{1+x^4} - \sqrt{1+x^2}$$
.

(5)
$$\int_{2}^{+\infty} \frac{1}{x(\ln x)^{p}} dx$$
 收敛,则 p 的范围______

【答案】 p > 1;

二、选择题

- (1)下列命题正确的是(
 - (A)有界数列必定收敛;

(B) 无界数列必定发散;

(C) 发散数列必定无界;

(D)单调数列必有极限.

【答案】(B).

(2) 设函数 y = f(x) 在 [a,b] 上连续,则由 y = f(x) 、 x 轴、 x = a 、 x = b 所围成的图形面积 为 (

(A)
$$\int_{a}^{b} f(x) dx$$

(B)
$$\int_{a}^{a} |f(x)| dx$$

(A)
$$\int_a^b f(x) dx$$
; (B) $\int_b^a |f(x)| dx$; (C) $\left| \int_a^b f(x) dx \right|$; (D) $\int_a^b |f(x)| dx$.

(D)
$$\int_{a}^{b} |f(x)| dx$$

【答案】(D).

(3) 设在[0,1]上f''(x) > 0,则f'(0), f'(1), f(1) - f(0) 或f(0) - f(1) 的大小顺序是()

(A)
$$f'(1) > f'(0) > f(1) - f(0)$$
;

(B)
$$f'(1) > f(1) - f(0) > f'(0)$$
;

(C)
$$f(1) - f(0) > f'(1) > f'(0)$$
;

(D)
$$f'(1) > f(0) - f(1) > f'(0)$$
.

【答案】(B).

(4) 曲线
$$y = \frac{x^2}{\sqrt{x^2 - 1}}$$
 的垂直渐近线是()

(A)
$$y = \pm 1$$
;

(B)
$$x = 0$$
;

(C)
$$x = \pm 1$$
; (D) $y = 0$.

(D)
$$y = 0$$

【答案】(C).

(5) 若
$$f(x)$$
 的一个原函数是 $\sin x$,则 $\int f'(x) dx =$ (

(A)
$$\sin x + C$$
;

(B)
$$\cos x + C$$

(B)
$$\cos x + C$$
; (C) $-\sin x + C$;

(D)
$$-\cos x + C$$
.

【答案】(B).

三、计算题

$$(1) \lim_{x \to 1} \left(\frac{1}{\ln x} - \frac{1}{x - 1} \right)$$

【解】原式 =
$$\lim_{x \to 1} \frac{x - 1 - \ln x}{(x - 1) \ln x} = \lim_{x \to 1} \frac{x - 1}{x \ln x + x - 1} = \lim_{x \to 1} \frac{1}{\ln x + 2} = \frac{1}{2}$$
.

(2) 设由
$$e^{-y} + x(y-x) = 1 + x$$
 确定函数 $y = y(x)$, 求 $y'(0)$

【解】方程两边同时对x求导,得 $-e^{-y}y' + y + xy' - 2x = 1$

解得
$$y' = \frac{1+2x-y}{x-e^{-y}}$$
, 将 $x = 0$, $y = 0$ 代入, 得 $y'(0) = -1$

(3)
$$\int \frac{1}{1+e^x} dx$$

【解】原式=
$$\int \frac{1+e^x-e^x}{1+e^x} dx = \int 1 dx - \int \frac{1}{1+e^x} d(1+e^x) = x - \ln(1+e^x) + C$$

(4)
$$\int_{1}^{e} \cos(\ln x) dx$$

【解】原式=
$$x\cos(\ln x)\Big|_{1}^{e} + \int_{1}^{e} \sin(\ln x) dx = e\cos 1 - 1 + x\sin(\ln x)\Big|_{1}^{e} - \int_{1}^{e} \cos(\ln x) dx$$

移项得到 $2\int_{1}^{e} \cos(\ln x) dx = e\cos 1 - 1 + e\sin 1$,

故
$$\int_{1}^{e} \cos(\ln x) dx = \frac{1}{2} (e \cos 1 + e \sin 1 - 1).$$

四、证明: 当 $x \neq 0$ 时,有不等式 $e^x > 1 + x$.

【证明】设
$$f(x) = e^x - 1 - x$$
,由 $f'(x) = e^x - 1 = 0$ 解得 $x_0 = 0$

当
$$x < 0$$
时 $f'(x) < 0$, 当 $x > 0$ 时 $f'(x) > 0$;

故
$$f(0) = 0$$
 为 $f(x)$ 的最小值,所以 $f(x) > 0$ 即原不等式成立.

五、设f(x)对任意x有f(x+1)=2f(x),且 $f'(0)=\frac{1}{2}$,求f'(1).

【解】由
$$f(x+1)=2f(x)$$
可得 $f(1)=2f(0)$

$$f'(1) = \lim_{x \to 0} \frac{f(1+x) - f(1)}{x} = \lim_{x \to 0} \frac{2f(x) - 2f(0)}{x} = 2\lim_{x \to 0} \frac{f(x) - f(0)}{x} = 2f'(0) = 1.$$

六、求函数 $y = \frac{2x-1}{(x-1)^2}$ 的凹凸区间及拐点.

【解】
$$y' = \frac{-2x}{(x-1)^3}$$
, $y'' = \frac{4x+2}{(x-1)^4}$, $\Rightarrow y'' = 0$ 解得 $x_0 = -\frac{1}{2}$,

当
$$x < -\frac{1}{2}$$
时 $y'' < 0$, 当 $-\frac{1}{2} < x < 1$ 或 $x > 1$ 时 $y'' > 0$,

故凸区间为
$$\left(-\infty, -\frac{1}{2}\right)$$
, 凹区间为 $\left(-\frac{1}{2}, 1\right)$ \cup $\left(1, +\infty\right)$, 拐点 $\left(-\frac{1}{2}, -\frac{8}{9}\right)$.

七、设f(x)在[0,1]上连续,在(0,1)内可微,且 $8\int_{\frac{7}{6}}^{1} f(x) dx = f(0)$,

证明: 存在 $\xi \in (0,1)$, 使得 $f'(\xi) = 0$.

【证明】由 $8\int_{\frac{7}{8}}^{1} f(x) dx = f(0)$ 可得存在 $\eta \in \left(\frac{7}{8}, 1\right)$, 使得 $8f(\eta) \cdot \frac{1}{8} = f(0)$ 即 $f(\eta) = f(0)$,又f(x) 在 $[0,\eta]$ 上连续,在 $(0,\eta)$ 内可微,由罗尔中值定理可知,存在 $\xi \in (0,\eta) \subset (0,1)$,使得 $f'(\xi) = 0$.

八、设连续函数 f(x)满足 $f(x)+f(-x)=\sin^2 x$, 求 $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(x) \sin^6 x dx$.