Universidade Federal do Amazonas Bacharelado em Matemática

Laboratório de Física I Relatório I

Gabriel Bezerra de M. Armelin - 21550325 Mario Alves Pardo Junior - 21553964 Jonas Miranda Cascais Júnior - 21553844 Fabrício Yuri Costa da Silva - 21454545

Introdução

Este relatório descreve e analisa o experimento realizado em sala de aula na disciplina Laboratório de Física I do curso de Bacharelado em Matemática.

Parte Experimental

O experimento consiste em estimar a densidade de um objeto em forma de um paralelepípedo fornecido em sala de aula utilizando dois instrumentos de medição diferentes e analisar os resultados. Para isto, as atividades abaixo foram realizas pela equipe tanto para o instrumento paquímetro quanto para a régua:

- 1) Coleta de 4 amostras das 3 dimensões do objeto;
- 2) Cálculo do volume para as 4 amostras coletadas;
- 3) Cálculo da densidade para as 4 amostras coletas;
- 4) Cálculo do valor provável
- 5) Cálculo do erro médio;
- 6) Cálculo estimado da densidade do objeto

Tratamento de Dados

Esta seção apresenta os dados e cálculos em cada atividade descrita na seção Parte Experimental.

1) Coleta das amostras

A primeira atividade diz respeito a coleta das amostras das dimensões do objeto em estudo tanto com a régua quanto com o paquímetro. A tabela seguinte apresenta os valores lidos com a régua por cada aluno para as 3 dimensões do objeto.

Table 1: Amostras das dimensões do objeto coletadas com a régua.

	dim1 (mm)	dim2 (mm)	dim3 (mm)
Aluno1	24	39	100
Aluno2	24	38	100
Aluno3	24	38	100
Aluno4	24	40	100

A próxima tabela apresenta os valores lidos com o paquímetro por cada aluno para as 3 dimensões do objeto:

Table 2: Amostras das dimensões do objeto coletadas com o paquímetro.

	dim1 (mm)	dim2 (mm)	dim3 (mm)
Aluno1	24.35	38.80	100.85
Aluno2	24.25	39.10	99.60
Aluno3	24.40	38.85	99.55
Aluno4	24.25	38.70	99.90

2) Cálculo do volume

Esta seção apresenta o cálculo do volume do objeto a partir das amostras das dimensões coletadas no item anterior. A seguinte fórmula foi utilizada para o cálculo do volume:

$$V_n = \dim 1_n \times \dim 2_n \times \dim 3_n \tag{1}$$

Onde V é o volume sendo calculado pelo n-ésimo aluno e dim
1, dim 2 e dim 3 são as dimensões coletadas do n-ésimo aluno.

A próxima tabela apresenta o resultado dos cálculos dos volumes para cada aluno tanto para a régua quanto para o paquímetro:

Table 3: Volume do objeto.

	Vol Régua (mm^3)	Vol Paquímetro (mm^3)
$\overline{V_1}$	93600	95281.06
V_2	91200	94438.23
V_3	91200	94367.43
V_4	96000	93753.65

3) Cálculo da densidade

Com os volumes calculados, pode-se calcular as densidades de cada amostra. A fórmula seguinte foi utilizada para o cálculo da densidade:

$$d_n = \frac{m}{V_n} \tag{2}$$

Onde d e V são, respectivamente, as densidades e volumes calculados pelo n-ésimo aluno. m é a massa do objeto em estudo. Particularmente, neste caso, foi coletado apenas uma amostra cuja o valor é 50,31.

O resultado das densidades está apresentado na tabela seguinte:

Table 4: Densidade do objeto.

	Densidade - Régua (mm^3/g)	Densidade - Paquímetro (mm^3/g)
$\overline{d_1}$	0.00054	0.00053

	Densidade - Régua (mm^3/g)	Densidade - Paquímetro (mm^3/g)
$\overline{d_2}$	0.00055	0.00053
d_3	0.00055	0.00053
d_4	0.00052	0.00054

4) Cálculo do valor provável

O cálculo do valor provável foi realizado utilizando a seguinte fórmula:

$$V_p = \frac{d_1 + d_2 + d_3 + d_4}{4} \tag{3}$$

O que resultou em:

Table 5: Valor provável da densidade.

	Régua (mm $^3/g$)	Paquímetro (mm^3/g)
Vp	0.00054	0.00053

5) Cálculo do erro médio

Para o cálculo do erro médio, primeiramente precisa-se calcular o erro de cada amostra com relação ao valor provável. A fórmula seguinte será utilizará para realizar este cálculo:

$$e_n = |V_p - d_n| \tag{4}$$

O que resultou nos dados da tabela seguinte:

Table 6: Erro em relação à média.

	Erro - Régua (mm $^3/g$)	Erro - Paquímetro (mm^3/g)
$\overline{e_1}$	3.71300e-06	4.6067e-06
e_2	1.04317e-05	1.0570e-07
e_3	1.04317e-05	5.0540 e-07
e_4	1.71505e-05	3.9956e-06

Agora que temos o valor do erro em relação à média para cada amostra, podemos calcular o erro médido utilizando a seguinte fórmula:

$$e_m = \frac{e_1 + e_2 + e_3 + e_4}{4} \tag{5}$$

Que resultou no seguinte valor:

Table 7: Erro médio.

	Régua (mm^3/g)	Paquímetro (mm ³ /g)
$\overline{e_m}$	1.04317e-05	2.3034e-06

6) Cálculo estimado da densidade do objeto

Com o valor provável e o erro médio podemos estimar o intervalo provável do valor da densidade do objeto. A tabela seguinte apresenta estes valores:

Table 8: Intervalo inferior e superior de variação para a régua e paquímetro.

Regua-inf	Regua-sup	Paquimetro-inf	Paquimetro-sup
0.0005307812	0.0005516447	0.0005303201	0.0005349268

A diferença entre o intervalor inferior e superior tanto para a régua quanto para o paquímetro está apresentada na próxima tabela:

Table 9: Diferença entre o intervalo superior e inferior.

Regua	Paquimetro
2.08635e-05	4.6067e-06

Conclusão

De acordo com os dados apresentados, pudemos concluir que a densidade calculada a partir das medições com o paquímetro apresentou menor variação em relação à régua. Isto sugere que a densidade calculada com o paquímetro resultou uma maior precisão já que ela diminuiu o erro em relação a média.