E1 222 Stochastic Models and Applications Problem Sheet 3–3

- 1. Let X, Y be independent discrete random variables uniformly distributed over $\{0, 1, \dots, N\}$. Find the pmf of Z when (i). Z = |Y X|, (ii). Z = X + Y
- 2. Let X, Y be *iid* geometric random variables. Find pmf of Z = X + Y.
- 3. Let (X,Y) have joint density

$$f_{XY}(x,y) = x + y, \ 0 < x < 1, \ 0 < y < 1.$$

Find the marginal densities, the conditional densities and ρ_{XY} . Find P[X > 2Y]. Are X, Y independent?

- 4. Let X, Y have a joint distribution that is uniform over the quadrilateral with vertices at (-1,0), (1,0), (0,-1) and (0,1). Find P[X > Y]. Are X, Y independent? (Hint: Can you decide on independence without calculating the marginal densities?)
- 5. Let X, Y be *iid* uniform over (0, 1). Let $Z = \max(X, Y)$ and $W = \min(X, Y)$. Find the density of Z W.
- 6. Let X, Y be iid exponential random variables with mean 1. Let Z = X + Y and W = X Y. Find the conditional density $f_{W|Z}$
- 7. Let X, Y be independent random variables each having normal density with mean zero and variance unity. Find the joint density of aX + bY and bX aY.
- 8. Let X, Y be independent Gaussian random variables with mean zero and variance unity. Define random variables D and θ by

$$D = X^2 + Y^2; \quad \theta = \tan^{-1}(Y/X)$$

(where, by convention, we assume θ takes values in $[0, 2\pi]$; for this we first calculate $\tan^{-1}(|Y|/|X|)$ in the range $[0, \pi/2]$ and then put that angle in the appropriate quadrant based on signs of Y and X). Find the joint density of D and θ and their marginal densities. Are D and θ independent? (Hint: Note that the (D, θ) to (X, Y) mapping is invertible. Hence you can use the formula).

- 9. Consider the following algorithm for generating random numbers X and Y:
 - 1. Generate U_1 and U_2 uniform over [0, 1].

2. Set
$$X = \sqrt{-2\log(U_1)}\cos(2\pi U_2)$$
 and $Y = \sqrt{-2\log(U_1)}\sin(2\pi U_2)$.

What would be the joint distribution of X and Y? (Hint: Recall that when U is uniform over $[0, 1] - a \log(U)$ is exponential with parameter 1/a and $2\pi U$ is uniform over $[0, 2\pi]$).

- 10. Consider the following algorithm for generating random variables V_1 and V_2 :
 - 1. Generate X_1 and X_2 uniform over [-1, 1].
 - 2. If $X_1^2 + X_2^2 > 1$ then go to step 1; else set $V_1 = X_1$, $V_2 = X_2$ and exit.

What would be the joint distribution of V_1 and V_2 ?

11. Suppose we have access to a random number generator that can generate random numbers uniformly distributed over (0, 1). Using the results of the previous problems, suggest a method for generating samples of X when X has Gaussian density with mean zero and variance unity.