Why not Linear Regression

Data

*	default [‡]	student [‡]	balance [‡]	income ‡
1	No	No	729.52650	44361.625
2	No	Yes	817.18041	12106.135
3	No	No	1073.54916	31767.139
4	No	No	529.25060	35704.494

Linear regression cannot be used for more than two categories

Why not Linear Regression

Limitations

Data

*	default [‡]	student ‡	balance [‡]	income ‡
1	No	No	729.52650	44361.625
2	No	Yes	817.18041	12106.135
3	No	No	1073.54916	31767.139
4	No	No	529.25060	35704.494

Sigmoid Function

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

Maximum Likelihood Method

$$\ell(\beta_0, \beta_1) = \prod_{i:y_i=1} p(x_i) \prod_{i':y_{i'}=0} (1 - p(x_{i'}))$$

Model	Method
Linear Regression	OLS (Ordinary Least Squares)
Logistic Regression	Maximum Likelihood method

Data

*	default [‡]	student [‡]	balance [‡]	income ‡
1	No	No	729.52650	44361.625
2	No	Yes	817.18041	12106.135
3	No	No	1073.54916	31767.139
4	No	No	529.25060	35704.494

Linear regression cannot be used for more than two categories

Result

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

• If β is zero, it means there is no relationship

Ho: There is no relationship between X and Y

Ha: There is some relationship between X and Y

$$H: \beta_1 = 0$$

 $Ha: \beta_1 \neq 0$,

Limitations

- To disapprove Ho, we calculate Z statistic $=\frac{\hat{eta}_1-0}{\mathrm{SE}(\hat{eta}_1)}$
- We also compute the probability of observing any value equal to |z| or Larger
- We call this probability the *p-value*
- A small p-value means there is an association between the predictor and the response (typically less than 5% or 1 %)

Key Takeaway

P value should be less than 0.05 (Threshold) to establish relationship

Multiple Predictors

$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}$$

- Use maximum likelihood to calculate Betas
- Fix the Boundary condition as per business requirements

Confusion matrix

		True	default	t status
		No	Yes	Total
Predicted	No	9,432	138	9,570
$default\ status$	Yes	235	195	430
	Total	9,667	333	10,000

Linear regression cannot be used for more than two categories

Confusion matrix

		True	default	t status
		No	Yes	Total
Predicted	No	9,432	138	9,570
$default\ status$	Yes	235	195	430
	Total	9,667	333	10,000

Type 1 Error

Confusion matrix

			lype Z I	Error
		True default status		t status
		No	Yes	Total
Predicted	No	9,432	138	9,570
$default\ status$	Yes	235	195	430
	Total	9,667	333	10,000

Confusion matrix

Linear Discriminant Analysis

Linear Discriminant Analysis

- Preferred when response variable has more than two classes
- Based on Bayes theorem

Height	Fit	Not Fit	
Low	13	22	35
Medium	15	25	40
High	20	5	25
	48	52	100

Linear Discriminant Analysis

Conditional Probability

Height	Fit	Not Fit	
Low	13	22	35
Medium	15	25	40
High	20	5	25
	48	52	100

- Probability of 'Fit' given 'Medium' = 15/40
- Bayes Classifier:
 Assigns conditional probability to all classes and assign the class with highest probability
- 15/100= 15/40*40/100 = 15/48*48/100

Linear Discriminant Analysis

Conditional Probability
$$p_k(x) = \frac{\pi_k \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2}(x - \mu_k)^2\right)}{\sum_{l=1}^K \pi_l \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2}(x - \mu_l)^2\right)}$$

Performance Measures

Performance Measures

		Predicted class		
		– or Null	+ or Non-null	Total
True	– or Null	True Neg. (TN)	False Pos. (FP)	Ñ
class	+ or Non-null	False Neg. (FN)	True Pos. (TP)	P
	Total	N*	P*	

Name	Definition	Synonyms
False Pos. rate	FP/N	Type I error, 1—Specificity
True Pos. rate	$\mathrm{TP/P}$	1—Type II error, power, sensitivity, recall
Pos. Pred. value	TP/P^*	Precision, 1—false discovery proportion
Neg. Pred. value	TN/N^*	

Performance Measures

K-Nearest Neighbors

KNN

K-Nearest Neighbors

KNN

K-Nearest Neighbors

KNN

Notes

- In KNN distance between observations impacts the classifier
- Therefore, scale matters
- To handle the problem of scaling we standardize the data

$$\tilde{x}_{ij} = \frac{x_{ij}}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_{ij} - \overline{x}_j)^2}}$$

Linear Regression

Test-Train
Split

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2$$

- Training error Performance of model on the previously seen data
- Test error Performance of model on the unseen data

Linear Regression

Test-Train Split Training Set - $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$

Model is trained

$$y = f(x)$$

Test Set - Previously unseen d (x_0, y_0)

Test MSE - $Ave(\hat{f}(x_0) - y_0)^2$

Other Linear Regression

Test-Train Split

Linear Regression

Test-Train ; Split Techniques

- 1. Validation set approach
 - Random division of data into two parts
 - Usual split is 80:20 (Training : Test)
 - When to use In case of large number of observations
- 2. Leave one out cross validation
 - Leaving one observation every time from training set
- 3. K-Fold validation
 - Divide the data into k set
 - We will keep one testing and K-1 for training

Results

Logistic Regression

```
Coefficients:
                          Estimate Std. Error z value Pr(>|z|)
                                     3.023162
                                               -1.253 0.210369
(Intercept)
                         -3.786667
                                     0.039074 -7.421 1.17e-13 ***
price
                         -0.289955
resid area
                                     0.031089
                          0.040238
                                                1.294 0.195575
air qual
                         -6.689560
                                     3.038370 -2.202 0.027687 *
                          1.418795
                                     0.333412
                                                4.255 2.09e-05 ***
room num
                         -0.002811
                                     0.007611
                                               -0.369 0.711843
age
                                     0.072028
teachers
                          0.297946
                                                4.137 3.53e-05 ***
                         -0.211818
                                     0.040039 -5.290 1.22e-07 ***
poor prop
airportYES
                          0.033861
                                     0.245330
                                                0.138 0.890223
n hos beds
                         0.176256
                                     0.083340
                                                2.115 0.034439 *
                         -0.079553
                                     0.056361
                                               -1.412 0.158097
n hot rooms
waterbodyLake
                         -0.062983
                                     0.370489 -0.170 0.865011
`waterbodyLake and River` -0.199015
                                     0.361962
                                               -0.550 0.582442
waterbodyRiver
                         0.080375
                                     0.293049
                                                0.274 0.783877
rainfall
                         -0.005667
                                     0.009691
                                               -0.585 0.558725
                                    27.453336
parks
                         20.411874
                                                0.744 0.457172
                         -0.427118
                                     0.115154
                                               -3.709 0.000208 ***
avg dist
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Results

Results

Method	Confusion Matrix	Accuracy
Logistic Regression	pred 0 1 NO 42 16 YES 26 36	65%
LDA	lda.class 0 1 0 44 16 1 24 36	66.6%
KNN (k=3)	testy knn.pred 0 1 0 38 24 1 30 28	55%

Summary

Steps

- > Data Collection
- ➤ Data Pre-processing
 - Outlier Treatment
 - Missing value imputation
 - Variable transformation
- ➤ Model training
 - Test-Train Split
 - Use template to train
 - Do iterations
 - Compare performance of different methods using test set
- > Select the best model
 - For prediction purposes use model with best accuracy
 - For interpretation purposes look at the coefficient values of parametric models