

E-R 다이어그램 개요

학습내용

- E-R 다이어그램 정의 및 특징
- E-R 표기법

학습목표

- E-R 다이어그램의 정의 및 특징을 설명할 수 있다.
- E-R 표기법을 이해하고 작성할 수 있다.

E-R 다이어그램 정의 및 특징

- 1 E-R 다이어그램 정의
 - 1 개체-관계 모델(E-R 모델)은 1976년 Peter Chen이 제안
 - (2) 현실 세계에 존재하는 데이터와 그들 간의 관계를 사람이 이해할 수 있는 형태로 명확하게 표현하기 위해서 가장 널리 사용되고 있는 모델
 - 3 데이터 구조를 그림 형태로 묘사하기 위해 개체, 속성, 관계의 3개의 기본 요소로 구성

E-R 다이어그램 정의 및 특징

- 2 E-R 다이어그램 특징
 - (1) 특정 유형의 데이터베이스 관리 시스템(DBMS) 및 하드웨어에 무관하게 설계 가능
 - 2
 외래 키(FK, Foreign Key), 기본 키(PK, Primary Key),

 액세스 성능, 분산 시스템 등의 물리적 시스템 환경은

 고려하지 않음
 - 3 잘 설계된 E-R 다이어그램은 비록 업무 방식이 바뀌어도 업무 영역이 바뀌지 않는 한 설계 변경이 거의 발생하지 않음

E-R 다이어그램 표현

심벌	의미	심벌	의미
	개체 타입		약한 개체 타입
	관계 타입		식별 관계 타입
	애트리뷰트		키 애트리뷰트
	부분 키 애트리뷰트		다중 값 애트리뷰트
	유도 애트리뷰트	00	복합 애트리뷰트
\Diamond	전체 참여 개체 타입		

1 E-R 다이어그램 표현

- $\left\langle 1 \right
 angle$ 개체 타입
 - 개체 이름과 속성들로 정의되고, 속성은 그 개체의 특성을 기술

강한 개체 타입 (Strong Entity Type)

- 독자적으로 존재할 수 있음
- 기본 키(Primary Key)를 가짐

약한 개체 타입 (Weak Entity Type)

- 독자적으로 존재할 수 없으며,
 자신의 속성 만으로는 기본
 키를 명세할 수 없는 개체 타입
- 부분 키(Partial Key)를 가짐

1 E−R 다이어그램 표현

$\langle 1 \rangle$ 개체 타입

1 E-R 다이어그램 표현

 $\langle 2 \rangle$ 속성

단순 속성

더 이상 작은 구성요소로 분해할 수 없는 속성

복합 속성

• 몇 개의 기본적인 단순 속성들로 분해할 수 있는 속성

단일 값 속성

특정 개체 타입에 대해 하나의 값을 갖는 속성

다중 값 속성

• 어떤 개체 타입에 대해 특정 속성은 몇 개의 값을 가질 수 있음

저장 속성

실제로 저장되어 데이터베이스에 존재하고, 유도 속성의 근원이 되는 속성

유도 속성

다른 관련 속성이나 저장 속성 값으로부터 유도되는 속성으로 DB에 저장 불필요

1 E−R 다이어그램 표현

$\langle 2 \rangle$ 속성

1 E-R 다이어그램 표현

- $\left\langle \mathbf{3} \right
 angle$ 관계 타입
 - 개체 타입의 모든 인스턴스들
 - 즉 개체 집합(Entity Set)들 사이의 대응(Correspondence)
 - 사상(Mapping)

- 1 E-R 다이어그램 표현
 - $\left\langle \overline{3} \right\rangle$ 관계 타입

설명 속성 (Descriptive Attribute)

• 관계가 가질 수 있는 속성

관계 집합의 차수 (Degree)

• 관계 집합에 참가하는 개체 집합의 수

관계 차수에 따른 유형

- 1진 관계
- 2진 관계
- 3진 관계

관계 대응수에 따른 유형

• 일대일(1:1)

• 일대다(1:N)

• 다대일(N:1)

• 다대다(M : N)

전체 참여

개체 집합(Entity Set)
 A와 B사이에 정의된
 AB 관계에서 개체 집합
 B의 모든 개체가 이 AB
 관계에 참여

부분 참여

개체 집합(Entity Set)
 A와 B사이에 정의된
 AB 관계에서 개체 집합
 B의 일부 개체만 참여

- 1 E-R 다이어그램 표현
 - (3) 관계 타입

1진 관계 (순환적 관계) 하나의 개체 타입이 동일한 개체 타입(자기자신)과 순환적으로 관계를 가지는 형태

- 1 E-R 다이어그램 표현
 - igg(4igg) 확장 E-R 다이어그램

세분화 (Specialization)

일반적인 개념에서 좀 더 구체적인 하위 개념을 구성 (하향식 개념적 설계)

일반화 (Generalization)

 여러 개체 타입의 상이한 점을 무시하고, 공통점을 찾아서 하나의 상위 클래스로 만들어 원래의 개체 타입들을 서브 클래스로 갖는 슈퍼 클래스로 정립(상향식 개념적 설계)

1 E−R 다이어그램 표현

$\langle 4 \rangle$ 확장 E-R 다이어그램

- 학생/학부생, 학생/대학원생은 두 개의 클래스/서브 클래스 관계 형성
- 학생(슈퍼 클래스)은 학부생과 대학원생(서브 클래스)으로 나눔
- D(Disjoint)의 의미는 학부생이면서 대학원생인 학생은 존재할 수 없음 (중복 허용 불가)

- $\langle 1 \rangle$ Chen
 - 대학 교재에서 가장 많이 사용되는 표기법
 - 실무적으로는 사용하지 않음

- $\langle 2 \rangle$ IDEF1X
 - Integration DEFinition for Information Modeling
 - 마름모와 원을 이용한 표기법
 - 실무에서는 일부 사용

- $\langle 3 \rangle$ IE Notation
 - Information Engineering Notation, 가장 널리 사용
 - 관계 대응수를 새발 모양의 기호로 표현
 - 새발 표기법(Crow-feet)이라고도 부름

- 2 E-R 표기법 종류
 - $\langle 3 \rangle$ IE Notation

2 E-R 표기법 종류

$\langle 3 \rangle$ IE Notation

Identifying	Non-Identifying	의미	
+		0, 1 또는 그 이상의 개체 허용	
+		1 또는 그 이상의 개체 허용	
		0 또는 1 개체 허용	
+		정확하게 1 개체만 허용	

2 E-R 표기법 종류

- $\overline{\langle 4 \rangle}$ Min-Max / ISO
 - 기수성을 정교하게 표현한 방법
 - (최소 대응수, 최소 대응수)를 이용

최소 대응수

- 0 : 참여 관계가 선택적
- 1 : 전체 참여 관계

최대 대응수

- 1 : 하나의 관계만 참여 가능
- N: 참여에 제한이 없음

2 E-R 표기법 종류

 $\overline{\langle 4 \rangle}$ Min-Max / ISO

학과 (0, N) 포함한다 교수 (1,1) 소속된다

Min-Max / ISO기법

- 학과에는 교수가 존재하지 않을 수도 있으며,
 존재한다면 여러 명의 교수를 포함함
- 교수는 반드시 학과에 소속되어야 하며,
 오직 하나의 학과에만 소속 가능

2 E-R 표기법 종류

- $\langle 5 \rangle$ UML
 - Unified Modeling Language로 표현
 - 시스템을 모델로 표현해주는 대표적인 모델링 언어
 - 스테레오 타입을 이용하여 개체 표현

〈〈 Entity 〉〉	1	교수를 포함한다		⟨⟨ Entity⟩⟩
학과			0N	교수

UML 표기법

- $\langle 6 \rangle$ 바케(Barker Notation)
 - 영국 컨설팅 회사 CACI에 의해 처음 개발되었고, 리차드 바커(Richard Barker)에 의해 업그레이드
 - 오라클에서 케이스 메소드(Case Method)로 채택하여 사용
 - 새발 표기법을 적용하면서 일부 변형되어 사용

2 E-R 표기법 종류

 $\langle 6 \rangle$ 바케(Barker Notation)

- *(Mandatory)
 - : 해당 속성에 어떤 값을 반드시 저장해야 하는 경우
- ○(Option)
 - : 해당 속성에 어떤 값이 존재할 수도 있고 존재하지 않을 수도 있는 경우

2 E-R 표기법 종류

 $\langle 6 \rangle$ 바케(Barker Notation)

 전체 참여(필수) 관계는 실선으로 표시하며, 선택적 참여 관계는 점선으로 표시

2 E-R 표기법 종류

(6) 바케(Barker Notation)

2 E-R 표기법 종류

$\langle 7 \rangle$ IE 표기법과 Barker 표기법

관계	선택성	IE표기법	Barker 표기법
1:1	필수(전체 참여)	+	
1:1	선택(부분 참여)	+	
1 : N	필수(전체 참여)	+	$\overline{}$
1 : N	선택(부분 참여)	+	

학습정리

1. E-R 다이어그램 정의 및 특징

- E-R 다이어그램 정의
 - 현실 세계에 존재하는 데이터와 그들 간의 관계를 사람이 이해할
 수 있는 형태로 명확하게 표현하기 위해서 가장 널리 사용되고
 있는 모델
- E-R 다이어그램 특징
 - 특정 유형의 데이터베이스 관리 시스템(DBMS) 및 하드웨어에 무관하게 설계 가능, 전문화, 일반화, 집단화 등의 개념들을 추가하여 확장된 개체-관계 모델(Extended E-R Model)로 발전

학습정리

2. E-R 표기법

- 강한 개체 타입(Strong Entity Type)
 - 독자적으로 존재할 수 있으며 기본 키(Primary Key)를 가짐
- 약한 개체 타입(Weak Entity Type)
 - 독자적으로는 존재할 수 없으며 자기 자신의 속성 만으로는 기본키를 명세할 수 없는 개체 타입으로, 약한 개체 타입은 부분 키(Partial Key)를 가지며 강한 개체 타입과 관련됨으로써 유일하게 식별될 수 있음
- 속성의 종류
 - 단순 속성, 복합 속성, 단일 값 속성, 다중 값 속성, 저장 속성, 유도 속성
- 설명 속성(Descriptive Attribute)
 - 관계가 가질 수 있는 속성
- 관계 집합의 차수(Degree)
 - 관계 집합에 참가하는 개체 집합의 수
- 관계 차수에 따른 유형
 - 1진 관계, 2진 관계, 3진 관계
- 관계 대응수에 따른 유형
 - 일대일(1:1), 일대다(1:N), 다대일(N:1), 다대다(M:N)

학습정리

2. E-R 표기법

• 전체 참여

- 개체 집합(Entity Set) A와 B사이에 정의된 AB 관계에서 개체 집합 B의 모든 개체가 이 AB 관계에 참여

• 부분 참여

- 개체 집합(Entity Set) A와 B사이에 정의된 AB 관계에서 개체 집합 B의 일부 개체만 참여

• 1진 관계(순환적 관계)

- 하나의 개체 타입이 동일한 개체 타입(자기자신)과 순환적으로 관계를 가지는 형태

• E-R 표기법 종류

- Chen 표기법, IDEF1X 표기법, IE Notation, Min-Max / ISO, UML 표기법, Baker 표기법