Subspaces in Machine Learning Proofs for the Rank of a Product of Matrices

©Barry Van Veen 2019

Background: A matrix is rank P if there are P linearly independent columns (or rows). Vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_P$ are linearly independent if and only if

$$\sum_{i=1}^{P} \boldsymbol{v}_i c_i = \boldsymbol{0}$$

implies $c_i = 0, i = 1, 2, ..., c_P$. For convenience we may write this condition in matrix vector form as $\mathbf{V}\mathbf{c} = \mathbf{0}$ if and only if $\mathbf{c} = \mathbf{0}$ where

$$oldsymbol{V} = \left[egin{array}{cccc} oldsymbol{v}_1 & oldsymbol{v}_2 & \dots & oldsymbol{v}_P \end{array}
ight]$$

and $\mathbf{c} = \begin{bmatrix} c_1 & c_2 & \dots & c_P \end{bmatrix}^T$.

Assume that $\mathbf{R} = \mathbf{A}\mathbf{B}$ where \mathbf{R} is N-by-K, \mathbf{A} is N-by-M, and \mathbf{B} is M-by-K with $M \leq N$ and $M \leq K$. Let $\mathbf{B} = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \dots & \mathbf{b}_K \end{bmatrix}$ have columns \mathbf{b}_i and $\mathbf{R} = \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \dots & \mathbf{r}_K \end{bmatrix}$ have columns \mathbf{r}_i .

1. Rank of a general product. $rank(AB) \le min \{rank(A), rank(B)\}$

The *i*th column of R, r_i , is Ab_i . A linear combination of some set of columns of R may be expressed in terms of A as

$$\sum_j oldsymbol{r}_j d_j = \sum_j oldsymbol{A} oldsymbol{b}_j d_j = oldsymbol{A} oldsymbol{c}$$

where $\mathbf{c} = \sum_{j} \mathbf{b}_{j} d_{j}$ and the sum over j is taken with respect to any subset of the columns. Note that $\mathbf{c} = \mathbf{0}$ for $d_{j} \neq 0$ when the number of terms in the sum exceeds rank(\mathbf{B}). Hence rank(\mathbf{R}) \leq rank(\mathbf{B}). Similarly, writing $\sum_{j} \mathbf{r}_{j} d_{j} = \mathbf{A} \mathbf{c}$ indicates that rank(\mathbf{R}) is limited by rank(\mathbf{A}).

2. Rank of a product of rank M matrices. If $rank(\mathbf{A}) = M$ and $rank(\mathbf{B}) = M$, then $rank(\mathbf{R}) = M$. The converse is also true.

First suppose $\operatorname{rank}(\boldsymbol{R}) = M$. By the previous result we have $M \leq \min \{\operatorname{rank}(\boldsymbol{A}), \operatorname{rank}(\boldsymbol{B})\}$, but $\operatorname{rank}(\boldsymbol{A})$ and $\operatorname{rank}(\boldsymbol{B})$ are at most rank M (their smallest dimension). Thus $\operatorname{rank}(\boldsymbol{A}) = \operatorname{rank}(\boldsymbol{B}) = M$.

Now assume $\operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{B}) = M$. We have $\operatorname{rank}(\mathbf{R}) = M$ if and only if there is a set of M columns with indices $j = j_1, j_2, \dots j_M$ for which

$$\sum_{j=j_1,j_2,...j_M} \boldsymbol{r}_j d_j = \boldsymbol{0}$$

implies $d_j = 0, j = j_1, j_2, \dots j_M$. We have

$$\sum_{j=j_1,j_2,...j_M} oldsymbol{r}_j d_j = oldsymbol{A} \sum_j oldsymbol{b}_j d_j = oldsymbol{A} oldsymbol{c}$$

where $c = \sum_j b_j d_j$. Since rank(A) = M, we know that Ac = 0 if and only if c = 0. Now note that

$$oldsymbol{c} = \left[egin{array}{ccc} oldsymbol{b}_{j_1} & oldsymbol{b}_{j_2} & \cdots & oldsymbol{b}_{j_M} \end{array}
ight] oldsymbol{d} = ilde{oldsymbol{B}} oldsymbol{d}$$

Since rank(\mathbf{B}) = M, there is a set of M columns $j = j_1, j_2, \dots j_M$ such that $\mathbf{c} = \mathbf{0}$ if and only if $\mathbf{d} = \mathbf{0}$, which proves that rank(\mathbf{R}) = M.