LECTURE 12

Conjugate transformations in a Euclidean space

Consider two distinct orthonormal bases $\{e_1, e_2, ..., e_n\}$ and $\{e_1', e_2', ..., e_n'\}$ in a Euclidean space E^n with a transition matrix S from the first basis to the second one. Since in these bases the Gram matrix is identity, we have that the expression $\Gamma_{e'} = S^T \Gamma_e S$ implies $E = S^T S$. Since the transition matrix S is regular, we have $S^{-1} = S^T$. Recall that a matrix Q satisfying to $Q^{-1} = Q^T$ is called *orthogonal*.

Properties of orthogonal matrices:

- 1) $Q^{T}Q = QQ^{T} = E$
- 2) $\det Q = \pm 1$
- 3) Orthogonal matrices (and only they) can be transition matrices from one orthonormal basis to another orthonormal basis.
- 4) Eigen-values of a linear transformation having an orthogonal matrix are equal to 1 by modulus (absolute value).

Check the last assertion: The equality $A_g f_g = \lambda f_g$ implies $f_g^T A_g^T = \lambda f_g^T$. Multiplying these equalities termwise we obtain $f_g^T A_g^T A_g f_g = \lambda^2 f_g^T f_g$. By orthogonality of A_g we have $A_g^T A_g = E$, and therefore $f_g^T f_g = \lambda^2 f_g^T f_g$, i.e. $\lambda^2 = 1$ (since eigen-vectors are non-zero).

A linear transformation A^+ given in a Euclidean space E is called *conjugate* to a linear transformation A if for all $x, y \in E$ the following holds: $(Ax, y) = (x, A^+y)$.

Example. Consider the Euclidean space formed by infinitely differentiable functions that are equal to

zero outside of some finite interval with scalar product $(x, y) = \int_{-\infty}^{\infty} x(\tau)y(\tau)d\tau$ for the linear

transformation $A = \frac{d}{d\tau}$ (differentiation) the transformation $A^+ = \frac{d}{d\tau}$ is conjugate to A.

Indeed, according to the rule of integrating these intervals by parts we have:

$$(Ax, y) = \int_{-\infty}^{+\infty} \frac{dx(\tau)}{d\tau} y(\tau) d\tau = x(\tau) y(\tau) \Big|_{-\infty}^{+\infty} - \int_{-\infty}^{+\infty} x(\tau) \frac{dy(\tau)}{d\tau} d\tau = \int_{-\infty}^{+\infty} x(\tau) \left(-\frac{dy(\tau)}{d\tau} \right) d\tau = (x, A^{+}y).$$

Consider now a finite-dimensional Euclidean space E^n with a basis $\{g_1, g_2, ..., g_n\}$ and find a connection of matrices of linear transformations A and A^+ in this basis assuming that there exists a conjugate transformation. Let A_g and A^+_g be the matrices of transformations A and A^+ respectively, and elements x and y have the coordinates $(\xi_1, \xi_2, ..., \xi_n)$ and $(\eta_1, \eta_2, ..., \eta_n)$ respectively in the basis. Then the equality $(Ax, y) = (x, A^+y)$ can be written as follows:

$$\begin{pmatrix}
A_g \begin{pmatrix} \xi_1 \\ \xi_2 \\ \dots \\ \xi_n \end{pmatrix}^T \Gamma_g \begin{pmatrix} \eta_1 \\ \eta_2 \\ \dots \\ \eta_n \end{pmatrix} = \begin{pmatrix} \xi_1 \\ \xi_2 \\ \dots \\ \xi_n \end{pmatrix}^T \Gamma_g A^+_g \begin{pmatrix} \eta_1 \\ \eta_2 \\ \dots \\ \eta_n \end{pmatrix} \text{ where } \Gamma_g \text{ is the Gram matrix of the chosen basis.}$$

Since $(AB)^T = B^T A^T$ the last equality is written as follows: $\begin{pmatrix} \xi_1 \\ \xi_2 \\ \dots \\ \xi_n \end{pmatrix} (A_g^T \Gamma_g - \Gamma_g A_g^+) \begin{pmatrix} \eta_1 \\ \eta_2 \\ \dots \\ \eta_n \end{pmatrix} = 0.$

Since this equality holds for any x and y, we conclude that $A_g^T \Gamma_g - \Gamma_g A_g^+ = 0$, i.e. $A_g^+ = \Gamma_g^{-1} A_g^T \Gamma_g$ which for an orthonormal basis $\{e_1, e_2, ..., e_n\}$ has the form: $A_g^+ = A_g^T$. **Lemma 1.** If (x, Ay) = 0 for all $x, y \in E$ then A is zero transformation.

Proof: Let for all $x, y \in E$ the equality (x, Ay) = 0 holds. Then it holds for x = Ay. But the equality (Ay, Ay) = 0 implies that Ay = 0. At last by arbitrariness of element y we have that A = 0. \square

Theorem 2. Every linear transformation in a Euclidean space E^n has a unique conjugate transformation.

Proof: An existence in E^n of an transformation A^+ that is conjugate to an transformation A follows from possibility to construct a matrix of the form $\Gamma_g^{-1}A_g^T\Gamma_g$ for any linear transformation A.

Show now a uniqueness of A^+ . Suppose that A has two conjugate transformations A^+ and A^\times . It means that for all $x, y \in E$ the following equalities hold simultaneously:

$$(Ax, y) = (x, A^{+}y)$$
 and $(Ax, y) = (x, A^{\times}y)$

Subtracting termwise, we obtain $(x,(A^+-A^\times)y)=0$. By Lemma 1 we have $A^+-A^\times=0$. \square

Theorem 3. For any linear transformations A and B acting in $E(AB)^+ = B^+A^+$.

Proof: For all $x, y \in E$ the following holds:

$$((AB)^+ x, y) = (x, ABy) = (A^+ x, By) = (B^+ A^+ x, y).$$

It means that $(((AB)^+ - B^+ A^+)x, y) = 0$ for all $x, y \in E$ and by Lemma 1 $(AB)^+ - B^+ A^+ = 0$

Theorem 4. $(A^+)^+ = A$.

Proof: For all $x, y \in E$ the following holds: $((A^+)^+ x, y) = (x, A^+ y) = (Ax, y)$. Then $((A - (A^+)^+)x, y) = 0$ for all $x, y \in E$ and consequently by Lemma 1 $A - (A^+)^+ = 0$.

Unitary space

Recall that complex numbers are expressions of the form a + bi where a and b are real numbers, i is the imaginary unit, i.e. $i^2 = -1$. The set of all complex numbers is denoted by C.

Let z = a + bi. Then the complex number a - bi is called *complex conjugate* to z and denoted by z, i.e. a + bi = a - bi.

Properties of complex conjugation:

- 1) $\overline{(\overline{z})} = z$; 2) A complex number z is real iff $\overline{z} = z$;
- 3) The number $z \cdot \overline{z} = a^2 + b^2$ is always real and nonnegative;
- 4) $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$, $\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$.

Consider such a set V of elements x, y, z, ..., in which the $sum x + y \in V$ for every x, $y \in V$ and the $product \lambda x \in V$ for every $x \in V$ and every complex number λ are determined. If an addition of elements of V and a multiplication of an element of V on a complex number satisfy the axioms of a linear space, then the set V is called a *complex linear space*.

Let in a complex linear space U every ordered pair of elements x and y is put in correspondence a complex number (x, y) called their *scalar product* so that the following holds:

- $(1) (x, y) = \overline{(y, x)};$
- (2) $(\lambda x, y) = \lambda(x, y)$ for every complex number λ ;
- (3) $(x_1 + x_2, y) = (x_1, y) + (x_2, y)$;
- (4) (x, x) is a real nonnegative number, and $(x, x) = 0 \Leftrightarrow x = 0$.

Then we say that U is a unitary space.

Remark. The form of the axiom 1 allows avoiding a problem which arises in case of using the Euclidean rule of scalar product for complex vector spaces.

Indeed, if we accept that (x, y) = (y, x) then $(x, \lambda y) = \lambda(x, y)$ and obviously for some non-zero $x \in U$ and $\lambda = i$ we have $(ix, ix) = i \cdot i(x, x) = i^2(x, x) = -(x, x)$. But then either (ix, ix) or (x, x) is not positive, and the axiom 4 doesn't hold.

In a unitary space the following holds: $(x, \lambda y) = \overline{\lambda}(x, y)$ and $(x, y_1 + y_2) = (x, y_1) + (x, y_2)$. Indeed, $(x, \lambda y) = \overline{(\lambda y, x)} = \overline{\lambda}(\overline{y, x}) = \overline{\lambda}(x, y)$; $(x, y_1 + y_2) = \overline{(y_1 + y_2, x)} = \overline{(y_1, x) + (y_2, x)} = \overline{(y_1, x) + (y_2, x)} = (x, y_1) + (x, y_2)$.

Example. 1) The space of *n*-dimensional columns
$$x = \begin{pmatrix} \xi_1 \\ \xi_2 \\ \dots \\ \xi_n \end{pmatrix}, y = \begin{pmatrix} \eta_1 \\ \eta_2 \\ \dots \\ \eta_n \end{pmatrix}$$
 where $\xi_i, \eta_i, i = 1, \dots, n$ are

complex numbers with scalar product defined by the formula $(x, y) = \sum_{i=1}^{n} \xi_i \overline{\eta}_i$ is unitary.

2) The space of continuous on $[\alpha, \beta]$ complex-valued functions with scalar product for elements $x(t) = \alpha(t) + i\beta(t)$ and $y(t) = \delta(t) + i\gamma(t)$ defined by $(x, y) = \int_{\alpha}^{\beta} x(t) \overline{y(t)} dt$ is also unitary.

Let in U^n a basis $\{g_1, g_2, ..., g_n\}$ be given. The scalar product of elements $x = \sum_{i=1}^n \xi_i g_i$ and

$$y = \sum_{j=1}^{n} \eta_{j} g_{j} \text{ is presented as } (x, y) = \left(\sum_{i=1}^{n} \xi_{i} g_{i}, \sum_{j=1}^{n} \eta_{j} g_{j}\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} \xi_{i} \overline{\eta}_{j} (g_{i}, g_{j}) = \sum_{i=1}^{n} \sum_{j=1}^{n} \gamma_{ij} \xi_{i} \overline{\eta}_{j}, \text{ where } (x, y) = \left(\sum_{i=1}^{n} \xi_{i} g_{i}, \sum_{j=1}^{n} \eta_{j} g_{j}\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} \gamma_{ij} \xi_{i} \overline{\eta}_{j}, \text{ where } (x, y) = \left(\sum_{i=1}^{n} \xi_{i} g_{i}, \sum_{j=1}^{n} \eta_{j} g_{j}\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} \gamma_{ij} \xi_{i} \overline{\eta}_{j}, \text{ where } (x, y) = \sum_{i=1}^{n} \gamma_{ij} \xi_{i} \overline{\eta}_{j}$$

 $\gamma_{ij} = (g_i, g_j)$, i, j = 1,..., n are components of the matrix Γ_g named the *basis matrix of Gram*. Then the coordinate representation of scalar product can be written as follows:

$$(x,y) = (x)_{g}^{T} \Gamma_{g}(\overline{y})_{g} = (\xi_{1} \quad \xi_{2} \quad \dots \quad \xi_{n}) \begin{pmatrix} (g_{1},g_{1}) & (g_{2},g_{1}) & \dots & (g_{n},g_{1}) \\ (g_{1},g_{2}) & (g_{2},g_{2}) & \dots & (g_{n},g_{2}) \\ \dots & \dots & \dots & \dots \\ (g_{1},g_{n}) & (g_{2},g_{n}) & \dots & (g_{n},g_{n}) \end{pmatrix} \begin{pmatrix} \overline{\eta}_{1} \\ \overline{\eta}_{2} \\ \dots \\ \overline{\eta}_{n} \end{pmatrix}$$

Observe that since $(g_i, g_j) = \overline{(g_j, g_j)}$, the following holds: $\Gamma^T = \overline{\Gamma}$.

A matrix A satisfying the property $A^T = \overline{A}$ is called *Hermitian*. A matrix A satisfying the properties $A^T \overline{A} = E$ and $\overline{A}A^T = E$ is called *unitary*.

The determinant of a unitary matrix is the complex number of which the module is equal to 1. Indeed: $\det(A^T \overline{A}) = \det A^T \det \overline{A} = \det A \overline{\det A} = |\det A|^2 = \det E = 1$.

Example. In quantum mechanics the following matrices (named *Pauli matrices*) are used:

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \ \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

It can be proved that each of these matrices is unitary.

Example. Let
$$A = \begin{pmatrix} 0 & -2i \\ 2i & 0 \end{pmatrix}$$
. Then $\overline{A} = \begin{pmatrix} 0 & 2i \\ -2i & 0 \end{pmatrix}$ and $A^T = \begin{pmatrix} 0 & 2i \\ -2i & 0 \end{pmatrix}$, i.e. A is Hermitian. But $\begin{pmatrix} 0 & 2i \\ -2i & 0 \end{pmatrix} \begin{pmatrix} 0 & 2i \\ -2i & 0 \end{pmatrix} = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} = 4E$, i.e. A is not unitary.

Linear transformations in a unitary space

A linear transformation A^+ acting in a unitary space U is called *Hermitian conjugate* to a linear transformation A if for all $x, y \in U$ the following holds: $(Ax, y) = (x, A^+y)$.

Theorem 1. For linear transformations A and B acting in a unitary space U the following holds:

$$(AB)^+ = B^+A^+$$
 and $(\lambda A)^+ = \overline{\lambda}A^+$

Proof: Prove the first assertion. We have $(ABx, y) = (Bx, A^+y) = (x, B^+A^+y)$ for all $x, y \in U$, and consequently $(AB)^+ = B^+A^+$. Similarly, $(\lambda Ax, y) = \lambda(Ax, y) = \lambda(x, A^+y) = (x, \overline{\lambda}A^+y)$ for all $x, y \in U$ and every complex number λ . \square

Theorem 2. The matrix of an transformation A^+ that is Hermitian conjugate to an transformation A in U^n in a basis

 $\{g_1,g_2,...,g_n\}$ is defined by the following equality: $A_g^+ = \Gamma^{-1}\overline{A}_g^T\Gamma$.

linear transformation A acting in this space has in the basis $\{f_1,f_2\}$ the matrix $A_f = \begin{pmatrix} 2 & 1+i \\ -1-i & 1-i \end{pmatrix}$. Find the matrix A_f^+ of Hermitian conjugate to A transformation A^+ in the orthonormal basis $\{f_1,f_2\}$. Solution: The matrix A_e^+ of the transformation A^+ in the orthonormal basis $\{e_1,e_2\}$ is connected with the matrix A_e of A by the equality: $A_e^+ = \overline{A}_e^T$. At transition to the basis $\{f_1,f_2\}$ the matrix A_e^+ is transformed by the formula: $A_f^+ = S^{-1}A_e^+S = S^{-1}\overline{A}_e^TS$ where S is the transition matrix from $\{e_1,e_2\}$ to $\{f_1,f_2\}$, i.e. $S = \begin{pmatrix} 1 & 1 \\ 1 & -i \end{pmatrix}$. Similarly, the matrix A_f is connected with A_e by the equality $A_f = S^{-1}A_eS$. Then $A_e = SA_fS^{-1}$ and consequently $\overline{A}_e^T = \left(\overline{S^{-1}}\right)^T \overline{A}_f^T \overline{S}^T$. Thus, we have $A_f^+ = S^{-1}\left(\overline{S^{-1}}\right)^T \overline{A}_f^T \overline{S}^TS$. Since $S^{-1} = \frac{1}{-1-i}\begin{pmatrix} -i & -1 \\ -1 & 1 \end{pmatrix} = \frac{1}{2}\begin{pmatrix} 1+i & 1-i \\ 1-i & -1+i \end{pmatrix}$, we have: $A_f^+ = \frac{1}{2}\begin{pmatrix} 1+i & 1-i \\ 1-i & -1+i \end{pmatrix} \cdot \frac{1}{2}\begin{pmatrix} 1-i & 1+i \\ 1-i & 1-i \end{pmatrix} \cdot \frac{1}{2}\begin{pmatrix} 1-i & 1+i \\ 1-i & 1-i \end{pmatrix} \cdot \frac{1}{2}\begin{pmatrix} 1-i & 1+i \\ 1-i & 1-i \end{pmatrix} \cdot \frac{1}{1}\begin{pmatrix} 1 & 1 \\ 1-i & 1-i \end{pmatrix} = \begin{pmatrix} 1+i & -1+i \\ 1-i & 2 \end{pmatrix}$.

<u>Example</u>. Let $\{e_1, e_2\}$ be an orthonormal basis in a unitary space U, $f_1 = e_1 + e_2$, $f_2 = e_1 - ie_2$. A

Glossary

conjugate — сопряженный; **unitary space** — унитарное пространство **Hermitian matrix** — эрмитова матрица

Exercises for Seminar 12

12.1. Let $\{e_1, e_2, e_3\}$ be a basis in a Euclidean space E. Find the Gram matrix Γ for this basis if $e_1 = (1, 0, -1), e_2 = (0, -1, -1), e_3 = (-1, 1, 0).$

12.2. Let $A = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}$ be the matrix of a transformation A in a basis $\{e_1, e_2\}$ with Gram matrix $\Gamma = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$. Find the matrix of the conjugate transformation A^+ .

matrix $\Gamma = \begin{pmatrix} 6 & 4 & 1 \\ 4 & 5 & 2 \\ 1 & 2 & 1 \end{pmatrix}$. Find the matrix of the conjugate transformation A^+ .

12.4. In the space P_2 of polynomials of degree ≤ 2 with standard scalar product $(p,q)=\int_{-1}^{1}p(t)q(t)dt$ for polynomials p and q the transformation A assigns to a polynomial its derivative. Find the matrix of the conjugate transformation A^+ : a) in the basis 1, t, t^2 ; b) in the basis 1, t, $(3t^2-1)/2$.

12.5. Is a transformation $Ax = -\xi_1 e_1 + \xi_2 e_2 + \xi_3 e_3 + \xi_4 e_4$ orthogonal (where $x = \xi_1 e_1 + \xi_2 e_2 + \xi_3 e_3 + \xi_4 e_4$ is an arbitrary vector and e_1, e_2, e_3, e_4 is an orthonormal basis)?

12.6. Is a transformation being the turning any vector lying in plane xOy on a fixed angle α orthogonal?

12.7. Whether the complex 2-dimensional linear space is unitary if scalar product is defined for vectors $x = (x_1, x_2)$ and $y = (y_1, y_2)$ as follows: a) $(x, y) = x_1y_1 + x_2y_2$; b) $(x, y) = \overline{x}_1y_1 + \overline{x}_2y_2$.

12.8. In the complex arithmetic space with standard scalar product find the scalar product of the following pair vectors: a) (1,i), (i,1); b) (1+2i,-1+2i), (2-i,2+i). Find the length of the first vector.

12.9. Find the scalar product of vectors of a unitary space by their coordinates in a basis $\{g_1, g_2, ..., g_n\}$ and the Gram matrix Γ of this basis:

a)
$$(1, i)$$
, $(2i, 1)$, $\Gamma = \begin{pmatrix} 2 & i \\ -i & 2 \end{pmatrix}$; b) $(2+i, 0, 1+2i)$, $(2-i, 1, 2+i)$, $\Gamma = \begin{pmatrix} 1 & i & 0 \\ -i & 2 & -i \\ 0 & i & 2 \end{pmatrix}$.

- 12.10. By using the procedure of orthogonalization construct an orthonormal basis in the linear hull of the following vectors of the complex arithmetic space with standard scalar product:
- a) (1, i), (1, 1); b) (1, i, 1), (i, 1, 0), (-1, 0, 1).
- 12.11. A linear transformation A acting in a unitary space U^2 has in an orthonormal basis $\{e_1, e_2\}$

the matrix $A_e = \begin{pmatrix} 2 & 1+i \\ -1-i & 1-i \end{pmatrix}$. Find the matrix of Hermitian conjugate transformation A^+ in the

basis $\{f_1, f_2\}$ if $f_1 = e_1 + e_2, f_2 = e_1 - ie_2$.

Exercises for Homework 12

12.12. Let $\{e_1,e_2,e_3\}$ be a basis in a Euclidean space E. Find the Gram matrix Γ for this basis if $e_1 = (1, 2, 3), e_2 = (2, 3, 1), e_3 = (3, 1, 2).$

12.13. Let $A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$ be the matrix of a transformation A in a basis $\{e_1, e_2\}$ with Gram matrix

 $\Gamma = \begin{pmatrix} 5 & -3 \\ -3 & 2 \end{pmatrix}.$ Find the matrix of the conjugate transformation A^+ .

12.14. Let $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ be the matrix of a transformation A in a basis $\{e_1, e_2, e_3\}$ with Gram

matrix $\Gamma = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix}$. Find the matrix of the conjugate transformation A^+ .

12.15. In the space P_2 of polynomials of degree ≤ 2 with scalar product $(p,q) = \sum_{k=0}^{n} \alpha_k \beta_k$

polynomials p and q (where α_k and β_k are the coefficients of p and q at the same degrees) the transformation A assigns to a polynomial its derivative. Find the conjugate transformation A^+ . Write the matrix of A^+ : a) in the basis 1, t, t^2 ; b) in the basis 1, t, $(3t^2 - 1)/2$.

12.16. What values λ is a transformation A defined by the equality $Ax = \lambda x$ orthogonal for?

12.17. Let $e_1, e_2, e_3, e_4, e_5, e_6$ be an orthonormal basis. Prove that A is an orthogonal transformation if

$$Ae_1 = e_1, Ae_2 = -e_2, Ae_3 = e_3 \cos \alpha + e_4 \sin \alpha, Ae_4 = -e_3 \sin \alpha + e_4 \cos \alpha,$$

 $Ae_5 = e_5 \cos \beta + e_6 \sin \beta, Ae_6 = -e_5 \sin \beta + e_6 \cos \beta.$

12.18. Whether the complex 2-dimensional linear space is unitary if scalar product is defined for vectors $x = (x_1, x_2)$ and $y = (y_1, y_2)$ as follows: a) $(x, y) = \bar{x}_1 \bar{y}_1 + \bar{x}_2 \bar{y}_2$; b) $(x, y) = \bar{x}_1 \bar{y}_1 + x_2 y_2$.

12.19. In the complex arithmetic space with standard scalar product find the scalar product of the following pair vectors: a) (1,-i), (1,-i); b) (1, i, 1), (i, 1, i). Find the length of the first vector.

12.20. Find the scalar product of vectors of a unitary space by their coordinates in a basis $\{g_1,g_2,...,g_n\}$ and the Gram matrix Γ of this basis:

a)
$$(1+i, i)$$
, $(1, 1-i)$, $\Gamma = \begin{pmatrix} 3 & 1+i \\ 1-i & 1 \end{pmatrix}$; b) $(-1, 2+i, 1)$, $(1, -i, 1+i)$, $\Gamma = \begin{pmatrix} 1 & 1-i & 0 \\ 1+i & 3 & i \\ 0 & -i & 2 \end{pmatrix}$.

- 12.21. By using the procedure of orthogonalization construct an orthonormal basis in the linear hull of the following vectors of the complex arithmetic space with standard scalar product:
- a) (2-i, i), (4-i, 2-3i); b) (1+i, 2+i, 1-i), (-2, 4+i, 1-i), (1, 2+i, 2-i).
- 12.22. Let $\{e_1, e_2, e_3\}$ be an orthonormal basis in a unitary space U^3 , $f_1 = e_1, f_2 = ie_1 + e_2$, $f_3 = -ie_1 + e_2 + e_3$. A linear transformation A acting in this space has in the basis $\{f_1, f_2, f_3\}$ the

following matrix: $A_f = \begin{pmatrix} i & -i & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix}$. Find the matrix of Hermitian conjugate transformation A^+ in

the basis $\{f_1, f_2, f_3\}$.