# CAPÍTULO

# INTERPOLAÇÃO POLINOMIAL

### 4.1 Interpolação Polinomial

#### 4.1.1 DEFINIÇÃO DE POLINÓMIO INTERPOLADOR. INTERPOLADORA DE LAGRANGE

#### Definição 4.1

Seja  $f\in C([a,b])$  e  $x_i\in [a,b], i=0,1,...,n$ . Um polinómio P que assume os mesmos valores de f nos pontos  $x_0,x_1,...,x_n$ , isto é, que satisfaz

$$f(x_i) = P(x_i), i = 0, 1, ..., n$$

chama-se **polinómio interpolador** de f nos pontos de interpolação  $x_0, x_1, \dots, x_n$ .

#### Interpoladora de Lagrange

$$P_n(x) = \sum_{i=0}^n f(x_i) L_i(x) \quad \text{em que} \quad L_i(x) = \prod_{j=0, j \neq i}^n \frac{x-x_i}{x_i-x_j}$$

1. Considere os valores de f(x) que se apresentam na tabela seguinte :

- a) Usando a *definição* determine o polinómio de grau menor ou igual a 2 que interpole f(x) nos pontos -1, 0 e 2.
- b) Determine o polinómio de Lagrange de grau 2 que interpole f(x) nos pontos -1, 0 e 2.

#### 2. Seja a tabela:

| x    | 0.15 | 0.20 | 0.25 | 0.30 | 0.35 | 0.40 |
|------|------|------|------|------|------|------|
| f(x) | 0.12 | 0.16 | 0.19 | 0.22 | 0.25 | 0.27 |

Usando um *polinómio interpolador de Lagrange* de grau 2, dê o valor estimado de x para o qual f(x) = 0.23. Dê se possível uma estimativa do erro cometido.

- 3. Considere a função  $f(x) = \sin x$  no intervalo [0, 0.4].
  - a) Determine a interpoladora quadrática de Lagrange, utilizando os nodos  $x=0.4,\,x=0.7\ \, {\rm e}\,\,x=1.0$
  - **b)** Determine a interpoladora cúbica Lagrange, utilizando os nodos x = 0.4, x = 0.6 e x = 1.0
  - c) Calcule o valor dos dois polinómios nos pontos x = 0.5, x = 0.9 com o valor de f(x).
  - d) Compare os limites superiores para os erros das aproximações dadas por  $P_2(x)$  e por  $P_3(x)$ .
- 4. Considere a função  $f(x) = \cos x$ ,  $\cos x \in [0, \pi]$ . Determine o número de pontos a considerar no intervalo dado para que o erro máximo da aproximação de f(x) por um polinómio interpolador nesses pontos seja inferior a  $5 \times 10^{-2}$ .

#### 5. Dada a função definida pela seguinte tabela :

| x    | 0.00  | 0.10  | 0.30  | 0.40   |
|------|-------|-------|-------|--------|
| f(x) | 1.000 | 0.761 | 0.067 | -0.376 |

- a) Calcule o valor aproximado de f(0.32), utilizando a fórmula interpoladora de Lagrange
  - i) do 2º grau;
- ii) do  $3^{\circ}$  grau.
- **b)** Sabendo que  $f(x) = x^3 4x^2 2x + 1$ , calcule f(0.32).
- c) Calcule o erro das duas aproximações e compare os resultados obtidos.

Obs.: Utilize quatro casas decimais.

# 6. A população de determinada cidade portuguesa registada nos últimos censos foi a que consta na tabela seguinte :

| ano  | 1930    | 1940    | 1950    | 1960    | 1970    | 1980    |
|------|---------|---------|---------|---------|---------|---------|
| pop. | 123.203 | 131.669 | 150.697 | 179.323 | 203.212 | 226.505 |

Utilize um polinómio interpolador de Lagrange apropriado para calcular um valor aproximado da população :

- a) No ano de 1945;
- **b)** No ano de 1975;

- c) No ano de 1990.
- 7. Na tabela seguinte são apresentados os valores do calor específico da água , $C(\theta)$ , á temperatura  $\theta$ , de  $\theta=0^{\circ}$  até  $\theta=100^{\circ}$ .

| $\theta^o$  | 0     | 20    | 40    | 60    | 80    | 100   |
|-------------|-------|-------|-------|-------|-------|-------|
| $C(\theta)$ | 999.9 | 998.2 | 992.3 | 983.2 | 971.8 | 958.4 |

- a) Calcular um valor aproximado do calor específico da água à temperatura,  $\theta=30^{\circ}\text{C}$  e  $\theta=70^{\circ}\text{C}$ , utilizando um polinómio interpolador que lhe pareça adequado.
- b) A que temperatura é que o calor específico atinge a valor 965.0 ? Utilize apenas os três últimos valores da tabela para obter a estimativa de  $\theta$ .
- 8. A velocidade do som na água varia com a temperatura. Utilizando a tabela de valores seguinte, calcule o valor aproximado da velocidade do som na água a  $100^{\circ}$ C.

| t (° C) | 86.0 | 93.3 | 98.9 | 104.4 | 110.0 |  |
|---------|------|------|------|-------|-------|--|
| v (m/s) | 1552 | 1548 | 1544 | 1538  | 1532  |  |

## 4.1.2 FÓRMULA DE NEWTON DAS DIFERENÇAS DIVIDIDAS

#### Interpoladora de Newton das diferenças divididas

$$f(x) \approx P_n(x)$$

$$P_n(x) = f(x_0) + f\left[x_0, x_1\right](x - x_0) + f\left[x_0, x_1, x_2\right](x - x_0)(x - x_1) + \dots + f\left[x_0, \dots, x_n\right](x - x_0) \dots (x - x_{n-1})$$

9. Usando a forma de Newton para interpolação, obtenha o polinómio de grau 2, que interpola f(x) nos pontos dados na tabela:

| $x_{i}$  | -1 | 0 | 2 |
|----------|----|---|---|
| $f(x_i)$ | 4  | 1 | 1 |

10. Dada a tabela

| $x_{\rm i}$ | 1 | -1 | -2 |
|-------------|---|----|----|
| $f(x_i)$    | 0 | -3 | -4 |

determine uma aproximação para  $f(\theta)$ , usando interpolação quadrática.

#### 11. Dada a tabela

| $oldsymbol{x}$ | 0 | 0.1    | 0.3     | 0.4    | 0.5    |
|----------------|---|--------|---------|--------|--------|
| $y = e^x$      | 1 | 1.1052 | 1.13499 | 1.4918 | 1.6497 |

Obtenha o valor de x, tal que  $e^x = 1.3165$ .

12. Considere a função 
$$f(x) = \frac{\sin(\pi x)}{x}$$
.

Determine o polinómio interpolador, de grau 2 para f(x) com  $x \in [1,2]$ , utilizando o método de Newton das diferenças divididas.

#### 4.1.3 EXERCÍCIOS DE EXAME

- 13. Usando a teoria da Interpolação Polinomial, determine a equação f(x) da parábola que passa pelos pontos (254, 11), (257, 14) e (258, 19).
- 14. Utilizando o método de Newton das diferenças divididas, determine a equação da parábola que passa nos pontos: (81, 3) (83, 5) (87, 13).
  - a) Qual a ordenada do ponto da parábola com abcissa x = 82.
  - b) Qual a ordenada do ponto da parábola com abcissa x = 89.
  - c) Nas alíneas anteriores, cometeu erros? Justifique.
- 15. Considere a tabela de diferenças divididas de uma função f(x)

| $\overline{x}$ | f  | $f\left[ , ight]$ | f [,,] | f [,,,] |
|----------------|----|-------------------|--------|---------|
| -2             | 1  |                   |        |         |
|                |    | 0                 |        |         |
| 0              | 1  |                   |        |         |
|                |    |                   |        |         |
| 1              |    |                   | 4      |         |
|                |    | 9                 |        |         |
| 2              | 11 |                   |        |         |

- a) Complete a tabela.
- b) Calcule um valor aproximado de f(-1), utilizando uma interpoladora quadrática. Obtenha uma estimativa para o erro da aproximação.
- c) Determine a expressão analítica do polinómio interpolador de f(x), do 3º grau, e escreva-o usando o método de Horner para polinómios.

16. Considere a tabela de diferenças divididas de uma função f(x):

| $\overline{x}$ | f  | $f\left[ , ight]$ | $f\left[ ,,\right]$ | $f\left[ ,,, ight]$ |
|----------------|----|-------------------|---------------------|---------------------|
| -2             | 1  |                   |                     |                     |
|                |    | 0                 |                     |                     |
| 0              | 1  |                   |                     |                     |
|                |    |                   |                     |                     |
| 1              |    |                   | 4                   |                     |
|                |    | 9                 |                     |                     |
| 2              | 11 |                   |                     |                     |

- a) Complete a tabela.
- b) Calcule um valor aproximado de f(-1), utilizando uma interpoladora quadrática. Obtenha uma estimativa para o erro da aproximação.
- c) Determine a expressão analítica do polinómio interpolador de f(x), do 3° grau, e escreva-o usando o método de Horner para polinómios.
- d) Sobre as diferenças divididas, <u>resolva em alternativa</u> uma das seguintes alíneas:
  - i) Mostre que:  $f[x_i, x_{i+1}] = f[x_{i+1}, x_i]$ .
  - ii) Escreva o pseudo-código, correspondente à implementação do algoritmo que permite obter a tabela de diferenças divididas, numa linguagem estruturada.
- 17. Considere a função  $f(x) = \frac{\sin(\pi x)}{x}$ 
  - a) Determine o polinómio interpolador, de grau 2 para f(x) com  $x \in [1,2]$ .
  - b) Calcule, usando uma interpolação linear, um valor aproximado de f(5/4). Obtenha uma estimativa para o erro cometido.





- Parábolas de eixo vertical com vértice de abcissa 2;
- Segmentos de recta.



Determine, usando a teoria da Interpolação Polinomial, as equações da parábola e do segmento de recta que se intersectam no ponto de coordenadas (0, 1)

19. Nas festas 2002 da Cidade de Coimbra - Rainha Santa Isabel, a iluminação de algumas ruas da Cidade é feita por fios semelhantes às linhas que representam graficamente as funções:

$$f(x) = \frac{\sin(\pi x)}{x}$$
 e  $g(x) = -f(x)$ 

- a) Determine, o polinómio interpolador de grau 2 para f(x) com  $x \in [1,2]$
- b) Qual o valor lógico da seguinte afirmação? Justifique.

Atendendo a que  $h\left(x_i\right)=f\left(x_i\right),\ i=0,1,2\ \text{para}\,x_i\in[1,2]\,,$ então h(x) é uma interpoladora quadrática da função f(x) .

