Informe previo Práctica-3

(por orden alfabético)

<u>Pregunta 1</u>

a)

Χ	0	1
0	0	0
1	0	1

b)

c)
No, al multiplicar un numero per un dígit binari el resultat més gran que en pot resultar és el mateix número, aquesta situació es donarà quan el bit = 1.

d) Es necessiten 16 bits.

e)

f)

Totes les possibles combinacions entrada-sortida tenen el mateix temps de propagació, aquest és el temps de propagació d'una porta AND, per tant el camí crític del nostre MULBIT serà el temps de propagació de la porta AND que utilitzem.

Pregunta 2

Pregunta 3

Estado inicial		W(0) = 00000000	D(0) = 00010110	B(0) = 01001101
Iteración / ciclo j	M = MULBit (D(j), B(j)<0>)	W(j+1) = ADD(W(j), M)	D(j+1) = SL- 1(D(j))	B(j+1) = SRL- 1(B(j))
0	00010110	00010110	00101100	00100110
1	00000000	00010110	01011000	00010011
2	01011000	01101110	10110000	00001001
3	10110000	00011110	01100000	00000100
4	00000000	00011110	11000000	0000010
5	00000000	00011110	10000000	00000001
6	10000000	10011110	00000000	00000000
7	00000000	10011110	00000000	00000000
Resul. Final W		10011110		

¿Cuál es el resultado correcto de la multiplicación, $W_{u} = X_{u} \times Y_{u}$?

El resultat de
$$W_u = X_u \times Y_u = 22 \times 77 = 1964$$

¿Los 8 bits que se obtienen como resultado del algoritmo anterior, representan el resultado correcto de la multiplicación? ¿Por qué?

No és correcte, si ens hi fixem W convertit a decimal: $10011110_2 = 158_{10}$, cosa que és incorrecte ja que em comprovat que el resultat de la multiplicació és 1964. Aquest resultat erroni s'ha donat degut a que en alguns dels cicles s'ha produït *carry* que no hem tingut en compte per calcular el resultat.

Pregunta 4

Pregunta 5

1.5			R	ROM_Q	+MUL		1 1 1	
0x00	0×01	0x02	0×02	0.03	0x03	0,04	0×04	0x05
0x05	0 ×06	0 ×06	0x07	0x07	0×08	0×08	0 ×69	0×09
OxUA	AOXO	0,08	0×03	Oxoc	0x0C	0x0D	0x0D	OXOE
0x0 E	0x0 F	OXOF	0×10	Oxlo	0×11	Oxli	0,60	0x01

0x02	0,00	0000	0,00	0x00	0x00	0x00	0,00	0000
0,00	0x00	000	0,00	0200	0x00	0x00	0 x00	0 x 0 3

<u>Pregunta 6</u>

- a) REG (SL_REG) \rightarrow X·y \rightarrow ADD (ADD_REG) \rightarrow MUX (ADD_REG) \rightarrow REG
- b)
 El temps de cicle serà el temps de propagació més gran, és a dir el crític. Per tant haurem de sumar haurem de els temps de propagació dels CLC pels que passa el cam (vista en a l'apartat anterior). Tc = 100 + 20 + 610 + 50 (10+20+20 dels components de la MUX) = 780 u.t.