UNIVERZITA KARLOVA PŘÍRODOVĚDECKÁ FAKULTA

MATEMATICKÁ KARTOGRAFIE Výpočet souřadnic bodů v rovině Křovákova zobrazení

Jáchym Černík, Monika Novotná

1 Zadání

Úloha č. 1: Výpočet souřadnic bodů v rovině Křovákova zobrazení

GPS aparaturou změřte zeměpisné souřadnice bodů φ, λ bodů P_1, P_2 vztažené k elipsoidu WGS-84 a vypočtěte jejich obraz v rovině Křovákova zobrazení. Měření provedte na bodech o známých souřadnicích (trigonometrický bod) a to opakovaně.

Pro transformaci mezi elipsoidy použijte sedmiprvkovou Helmertovu prostorovou podobnostní transformaci danou vztahem

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = m \begin{pmatrix} 1 & \omega_z & -\omega_y \\ -\omega_z & 1 & \omega_x \\ \omega_y & -\omega_x & 1 \end{pmatrix} \begin{pmatrix} X' \\ Y' \\ Z' \end{pmatrix} + \begin{pmatrix} \Delta X \\ \Delta Y \\ \Delta Z \end{pmatrix}.$$

Parametry prostorové transformace:

ω_x	4.9984''
ω_y	1.5867"
ω_z	5.2611"
m-1	-3.5623e-6
ΔX	-570.8285 m
ΔY	-85.6769 m
ΔZ	-462.8420 m

Určení zeměpisné šířky φ obrazu bodu P na Besselově elipsoidu proveďte s přesností 0.001". Souřadnice obrazu bodu P v rovině Křovákova zobrazení určete s přesností na cm.

V bodech P_1 , P_2 dále vypočtěte:

- hodnoty délkového zkreslení m,
- \bullet hodnoty meridiánové konvergence c.

Porovnejte vliv následujících faktorů na souřadnice bodů P_1 , P_2 a vzdálenosti $||P_1 - P_2||$:

- zanedbání změny elipsoidu: souřadnice φ, λ měřeny na Besselově elipsoidu,
- zanedbání vlivu elipsoidu: souřadnice měřeny na Gaussově kouli.

Jak se budou lišit takto určené souřadnice a vzdálenosti od hodnot vztažených k elipsoidu WGS-84? Pro jaká měřítka map si taková zjednodušení můžeme dovolit?

Obrazy bodů P_1 , P_2 a jejich blízkého okolí vizualizujte s použitím vhodných podkladových geografických dat (např. WMS). Výpočty realizujte v SW Matlab.

2 Teoretický úvod ke zpracování zadání

2.1 Obcený Popis problému

Transformaci bodu $P' = [\varphi', \lambda']$ ze systému zeměpisných souřadnic vztažených ke zdrojovému referenčnímu nebo zemskému elipsoidu, který je dán parametry (a, b), na bod $P = [\varphi, \lambda]$ v systému zeměpisných souřadnic cílového referenčního/zemského elipsoidu daného parametry (a, b) lze provést následujícími kroky:

- Převod zeměpisných souřadnic bodu $P' = [\varphi', \lambda']$ zdrojového elipsoidu na geocentrické prostorové souřadnice P' = [X', Y', Z'] vztaženému k tomuto elipsoidu.
- Prostorová podobnostní transformace (Helmertova) mezi geocentrickými souřadnicemi bodu P' = [X', Y', Z'] zdrojového elipsoidu a geocentrickými souřadnicemi bodu P = [X, Y, Z] cílového elipsoidu.
- Převod geocentrických souřadnic bodu P = [X, Y, Z] cílového elipsoidu na zeměpisné souřadnice $P = [\varphi, \lambda]$ vztažené k cílovému elipsoidu.

Oba elipsoidy jsou vůči sobě posunuté, natočené, mají rozdílné hodnoty poloos a, b, jedná se o transformaci nestejnorodých souřadnic. Níže uvedené vztahy jsou přibližné a poskytují přesnost transformace v řádech cm.

2.2 Vztah zeměpisných a geocentrických souřadnic

Prvním krokem je přepočet souřadnic naměřených na elipsoidu WGS-84 na prostorové geocentrické souřadnice. Prostorové geocentrické souřadnice (X, Y, Z) pro bod určený zeměpisnými souřadnicemi (φ, λ) a ležící na povrchu referenčního elipsoidu s parametry (a, b) je možné určit ze vztahu

$$P = \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = N \begin{pmatrix} \cos \varphi \cos \lambda \\ \cos \varphi \sin \lambda \\ (1 - e^2) \sin \varphi \end{pmatrix},$$

kde N představuje příčný poloměr křivosti

$$N = \frac{a}{W},$$

W první geodetickou funkci

$$W = \sqrt{1 - e^2 \sin^2 \varphi},$$

a e^2 první excentricitu elipsoidu

$$e^2 = \frac{a^2 - b^2}{a^2}.$$

Získáním prostorových geocentrických souřadnic (X,Y,Z) na elipsoidu WGS-84 nám posléze umožní převod na geocentrické souřadnice náležící Besselovu elipsoidu. Tento převod je zprostředkován Helmerovou transformací.

2.3 Helmertova prostorová podobnostní transformace souřadnic

Helmertova transformace v \mathbb{E}^3 je sedmiprvková lineární transformace, která bodu $P_i' = [X_i', Y_i', Z_i']$ v daném souřadnicovém systému (0', X', Y', Z') přiřazuje právě jeden bod $P_i = [X_i, Y_i, Z_i]$ v souřadnicovém systému (0, X, Y, Z) a je definována vztahem

$$\mathbf{P} = m\mathbf{R}\mathbf{P}' + \mathbf{\Delta}.$$

Matice Δ vyjadřuje posun obou soustav, matice \mathbf{R} je rotační matice, jejíž koeficienty představují směrové kosiny úhlů rotace $\omega_x, \omega_y, \omega_z$ dle jednotlivých souřadnicových os, a m je měřítkový koeficient.

K výpočtu transformačního klíče ($1 \times$ měřítko, $3 \times$ rotace, $3 \times$ posuny) je nutná znalost čtyř identických bodů v obou souřadnicových systémech. Prvky matice **R** představují směrové kosiny rotací dle jednotlivých os.

$$\mathbf{R} = \mathbf{R}_x \mathbf{R}_u \mathbf{R}_z,$$

kde

$$\mathbf{R}_{x} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \omega_{x} & \sin \omega_{x} \\ 0 & -\sin \omega_{x} & \cos \omega_{x} \end{pmatrix}, \quad \mathbf{R}_{y} = \begin{pmatrix} \cos \omega_{y} & 0 & -\sin \omega_{y} \\ 0 & 1 & 0 \\ \sin \omega_{y} & 0 & \cos \omega_{y} \end{pmatrix}, \quad \mathbf{R}_{z} = \begin{pmatrix} \cos \omega_{z} & \sin \omega_{z} & 0 \\ -\sin \omega_{z} & \cos \omega_{z} & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Po roznásobení a úpravě matic lze matici rotace R vyjádřit ve tvaru

$$\mathbf{R} = \begin{pmatrix} 1 & \omega_z & -\omega_y \\ -\omega_z & 1 & \omega_x \\ \omega_y & -\omega_x & 1 \end{pmatrix}.$$

Rovnici Helmertovy transformace lze tedy rozepsat do tvaru

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = m \begin{pmatrix} 1 & \omega_z & -\omega_y \\ -\omega_z & 1 & \omega_x \\ \omega_y & -\omega_x & 1 \end{pmatrix} \begin{pmatrix} X' \\ Y' \\ Z' \end{pmatrix} + \begin{pmatrix} \Delta X \\ \Delta Y \\ \Delta Z \end{pmatrix}.$$

Transformační koeficienty lze vidět v tabulce v Zadání. Po získání P = [X, Y, Z] prostorových geocentrických souřadnic na Besselovu elipsoidu lze transformaci finalizovat převodem geocentrických souřadnic na zaměpisné souřadnice.

Geocentrické souřadnice lze vzhledem k matici N z kapitoly 2.2 vyjádřit ve tvaru:

$$X = N\cos\varphi\cos\lambda$$
$$Y = N\cos\varphi\sin\lambda$$
$$Z = N(1 - e^2)\sin\varphi.$$

Zeměpisnou délku λ je pak možné určit ze vztahu

$$\tan \lambda = \frac{Y}{X}.$$

Součet čtverců prvních dvou geocentrických souřadnic $\sqrt{X^2+Y^2}=N\cos\varphi$. Zeměpisnou šířku φ je pak možné určit ze vztahu

$$\frac{Z}{\sqrt{X^2 + Y^2}} = \frac{N(1 - e^2)\sin\varphi}{N\cos\varphi} = (1 - e^2)\tan\varphi,$$
$$\tan\varphi = \frac{Z}{(1 - e^2)\sqrt{X^2 + Y^2}}.$$

2.4 Křovákovo zobrazení

Křovákovo zobrazení je konformní zobrazení navržené Ing. Josefem Křovákem v roce 1922 pro území Československa a odráží tak jeho protáhlý a mírně zakřivený tvar. Jedná se o dvojité kuželové konformní zobrazení v šikmé poloze, které nejprve převádí Besselův elipsoid na referenční kouli (první krok je Gaussovo konformní zobrazení elipsoidu na kouli) a následně tuto kouli do roviny pomocí Lambertova konformního kuželového zobrazení. Parametry zobrazení lze vidět v Obrázku 1.

Obrázek 1: Zobrazovací parametry Křovákova zobrazení (zdroj: Multimediální učebnice Kartografie a Geoinformatiky)

Výpočet zobrazení zahrnuje několik kroků, které je možné zapsat zkráceně takto:

$$\varphi, \lambda \to U, V \to \check{S}, D \to \rho, \varepsilon \to X, Y$$

Kde:

- 1. φ, λ jsou zeměpisné souřadnice na Besselově elipsoidu.
- $2.\ U,V$ jsou souřadnice po Gaussově konformním zobrazení elipsoidu na kouli.
- 3. \check{S}, D jsou kartografické souřadnice na kouli (sférické polární souřadnice vztažené ke kartografickému pólu K).
- 4. ρ, ε jsou polární souřadnice v rovině kuželového zobrazení.
- 5. X, Y jsou výsledné rovinné pravoúhlé souřadnice S-JTSK.

Pro využité referenční plochy platí tyto parametery:

- Besselův elipsoid: a = 6377397.1550 m, b = 6356078.9633 m,
- Gaussova koule: R = 6380703.6105 m.

2.4.1 Konformní zobrazení referenčního elipsoidu na Gaussovu sféru

Tento krok (U, V) využívá Gaussovo konformní zobrazení z elipsoidu na sféru, které pracuje s jednou nezkreslenou rovnoběžkou (Obrázek 1) $\varphi_0 = 49^{\circ}30'$. Konstanty zobrazení se určují z následujících vztahů:

$$\alpha = \sqrt{1 + \frac{e^2 \cos^4 \varphi_0}{1 - e^2}},$$

$$k = \frac{\tan\left(\frac{\alpha\varphi_0}{2} + 45^\circ\right)}{\left(\frac{1 - e \sin\varphi_0}{1 + e \sin\varphi_0}\right)^{\frac{\alpha e}{2}} \tan\left(\frac{\varphi_0}{2} + 45^\circ\right)},$$

$$R = \frac{a\sqrt{1 - e^2}}{1 - e^2 \sin^2 \varphi_0},$$

$$\sin u_0 = \frac{\sin\varphi_0}{\alpha}.$$

Zobrazovací rovnice mají tvar:

$$\tan\left(\frac{u}{2} + 45^{\circ}\right) = \frac{1}{k} \left[\tan\left(\frac{\varphi}{2} + 45^{\circ}\right) \left(\frac{1 - e\sin\varphi}{1 + e\sin\varphi}\right)^{\frac{e}{2}} \right]^{\alpha},$$
$$v = \alpha\lambda_F = \alpha(\lambda + 17^{\circ}40').$$

2.4.2 Transformace zeměpisných souřadnic na kartografické souřadnice

Kartografický pól byl určen na základě vhodného bodu (Obrázek 1), který by zajišťoval vhodný průběh nezkreslené rovnoběžky a jeho souřadnice jsou:

$$u_k = 59^{\circ}42'42,6969''$$
 s.š., $v_k = 42^{\circ}31'31,41725''$ v.d. (Ferro).

Pro převod souřadnic (\check{S}, D) je využito vztahů sférické geometrie:

$$\sin \breve{s} = \sin u \sin u_k + \cos u \cos u_k \cos(v_k - v),$$

$$\sin d = \frac{\cos u}{\cos \breve{s}} \sin(v_k - v).$$

2.4.3 Konformní zobrazení Gaussovy koule do roviny

Pro zobrazení koule do roviny (ρ, ε) je využito Lambertovo konformní kuželové zobrazení s jednou nezkreslenou rovnoběžkou $\check{s}_0 = 78^{\circ}30'$. Pro konstanty zobrazení platí:

$$c = \sin u_0$$
,

$$\rho_0 = k \cdot R \cdot \cot(u_0) = 0.9999 \cdot R \cdot \cot(u_0).$$

Zobrazovací rovnice mají tvar:

$$\rho = \rho_0 \left(\frac{\tan\left(\frac{\S_0}{2} + 45^\circ\right)}{\tan\left(\frac{\S}{2} + 45^\circ\right)} \right)^c,$$

$$\varepsilon = c \cdot d$$
.

2.4.4 Transformace polárních souřadnic na pravoúhlé

Převod polárních souřadnic na pravoúhlé (X,Y) je dán vztahem:

$$x = \rho \cos \varepsilon$$

$$y = \rho \sin \varepsilon$$
.

2.4.5 Délkové zkreslení m

Délkové měřítko v rovnoběžce Křovákova zobrazení je možné určit pomocí vztahu:

$$m_r = \frac{c \cdot \rho}{R \cos \breve{s}}.$$

Pro délkové zkreslení pak platí:

$$m=m_r-1.$$

${f 2.4.6}$ Meridiánová konvergence c

Meridiánová konvergence odpovídá úhlu, který svírá obraz místního poledníku s obrazem základního poledníku. Pro Křovákovo zobrazení se určuje ze vztahu:

$$c = \varepsilon - \xi$$
,

kde ξ představuje úhel mezi obrazem zeměpisného a kartografického poledníku a je vyjádřen vztahem:

$$\sin \xi = \frac{\cos u_k \sin(180^\circ - d)}{\cos u}.$$

Meridiánovou konvergenci je také možné určit prostřednictvím řady:

$$c = 0.008257 \cdot y + 2.373 \cdot \frac{y}{x}$$
 [km].

Obrázek 2: Způsob měření

3 Vypracování

Pro účely úlohy byly GPS aparátem zaměřeny zeměpisné souřadnice φ , λ bodů P_1 , P_2 vztažené k elipsoidu WGS-84. Bod P_1 byl naměřen pomocí sportovních hodinek Garmin Instinct I (2018). Bod P_2 byl namřen pomocí novějšího modelu hodinek Garmin Instinct III Solar (2025). Způsob měření lze vidět na Obrázku 2. Měření byla prováděna na bodech o známých souřadnicích – trigonometrických bodech. Bodu P_2 tak odpovídá trigonometrický bod v Dejvicích a bodu P_1 trigonometrický bod na Divčích hradech. Souřadnice každého bodu byly měřeny třikrát a z jejich hodnot byl vypočítán aritmetický průměr. Naměřené a vypočítané souřadnice obou bodů jsou uvedeny v tabulce 1.

	φ'	λ'
	50.050572	14.384475
P_1	50.05059	14.384457
	50.05057	14.384455
P_1 – průměr	50.050580	14.384462
	50.101878	14.392657
P_1	50.101885	14.392600
	50.101895	14.392632
P_2 – průměr	50.101886	14.392629

Tabulka 1: Naměřené souřadnice bodů P_1 a P_2 a jejich průměry.

V rámci úlohy byly vypracovány dva skripty:

- uv_sd.m funkce převádí konformní souřadnice (u, v) z Gauss-Krügerovy projekce do obecné polohy vůči kartografickému pólu (s, d).
- wgs_jtsk.m hlavní skript, který obsahuje tři funkce. První z nich je převod souřadnic WGS84 do Křovákova zobrazení (wgs_jtsk). Další funkcí je výpočet na Besselově elipsoidu (bess_jtsk). Poslední funkce nebere vliv elipsoidu, ale vliv Gaussovy sféry s Lambertovo koželovým zobrazením (sphere_jtsk).

Ve skriptu jsou dále každou variantu funkce vypočtena vzdálenost mezi body P1, P2, rozdíly v souřadnicích oproti WGS84 a nakonec. Skript také obsahuje souřadnice z dat ČÚZK (2025), pro které je určena vzdálenost a odchylky.

4 Výsledky

V tabulce 2 a 3 jsou kromě vypočtených součadnic v Křovákově zobrazení bodu P1 a P2 uvedeny hodnoty jejich měřítka délek (m_r) , délkového zkreslení (v) a meridiánové konvergence (c) pro všechny tři typy převodu souřadnic. Pro kontrolu přesnosti jsou zde uvedeny hodnoty z ČÚZK (2025).

Obrázek 3: Vizualizace výsledků transformace

	Souřadnice		Charakteristiky		
	X [m]	Y [m]	m_r	ν	c
WGS84-JTKS	1046717.27	745979.04	0.999902	-0.098013	7.860587°
Bessel-JTKS	1046792.37	746067.82	0.999902	-0.098048	7.861419°
Sféra-JTKS	1042104.93	746802.88	0.999903	-0.096854	7.8760285°
ČÚZK	1046719.42	745979.37	_	_	_

Tabulka 2: Vypočtené souřadnice a charakteristiky pro bod P1

	Souřadnice		Charakteristiky		
	X [m]	Y [m]	m_r	ν	c
WGS84-JTKS	1041144.57	744619.60	0.999904	-0.095992	7.854274°
Bessel-JTKS	1041220.27	744708.75	0.999904	-0.096042	7.855110°
Sféra – JTKS	1036525.62	745442.19	0.999906	-0.094398	7.869708°
ČÚZK	1041146.32	744619.69	_	_	_

Tabulka 3: Vypočtené souřadnice a charakteristiky pro bod P_2

Na obrázku 3 lze vidět výsledné pozice souřadnic, přičemž v obou lokalitach je posun mezi varianty vizuálně podobný. Při porovnání souřadnic v tabulkách 2 a 3 je patrné, že hodnotě z ČÚZK je nejbližší převod WGS84 - JTSK. V obou případech se neliší o více jak 2,5 metru. Pokud budeme pracovat na úrovni Bessel - JTSK, kdy vynecháme určité kroky a zanedbáme změny elipsoidu, rozdíl bude dosahuvat už téměř 89 metrů. Ve třetí variantě, kde zanedbáme elipsoid jsou rozíly obrovské, dosahují přes 4,5 km.

Při porovnávání vzdáleností mezi body P1 a P2 v jednotlivých případech vidíme (tabulka 4), že se jedná o téměř stejnou vzdálenost mezi body. Nejvyšší rozdíl vykazuje pouhých 6,7 metru.

Měřítko délek (m_r) , délkové zkreslení (v) a meridiánová konvergence (c) se pohybují v každé trenasformaci na velmi podobných hodnotách.

Když zanedbáme změny elipsoidu, maximální odchylka je rovna 88,78 metru viz tabulka 8. Při grafické přesnosti 1 mm se odchylka 88,78 rovná měřítku 1 : 88 780, což znamená, že zanedbání změny elipsoidu je možno pro mapy s měřítkem 1:88 780.

Úplném zanedbání elipsoidu pak znamená, že mapy musí mít měřítko minimálně 1 : 4 612 000 viz tabulka 5.

	$ P_1 - P_2 $	Rozdíl vůči WGS84
WGS84-JTKS	5736.12	_
Bessel-JTKS	5735.45	0.6729
Sféra-JTKS	5742.84	-6.7200
ČÚZK	5736.56	-0.4409

Tabulka 4: Vzdálenost mezi body P_1 a P_2 a rozdíl vůči WGS84

	$\mathbf{bod}\ P_1$		$\mathbf{bod}\ P_2$		
	X [m]	Y [m]	X [m]	Y [m]	
Bessel-JTKS	-75.0964	-88.7798	-75.7002	-89.1438	
Sféra-JTKS	4612.3393	-823.8398	4618.9516	-822.5908	
ČÚZK	-2.1432	-0.3224	-1.7466	-0.0881	

Tabulka 5: Rozdíly mezi souřadnicemi bodů vůči WGS-84

5 Závěr

Úkolem bylo změřit zeměpisné souřadnice dvou bodů, které jsou vztažené k elipsoidu WGS-84 a poté je převést do Křovákova zobrazení. Pro tento úkol byly vytvořeny dva skripty, jeden pomocný a jeden hlavní, který se spouští a počítá charakteristiky. Bylo testováno zjednodušení převodu souřadnic, přičemž byl zanedbán vliv elipsoidu.

Výsledky, která byly komentovány v kapitole 4 ukazují, že vypočítané souřadnice jsou velmi podobné souřadnicím poskytovaným ČÚZK. Zanedbání elipsoidu přináší výrazně odlošnou hodnotu x a y. Dochází pouze k chybám v hodnotách souřadnic, nikoliv chybě vzájemné vzdálenosti.

V případě této práce byly provedeny dvě měření. Každé měření proběhlo v jinou dobu, jiným přístrojem a v jiném prostředí. Bod P1 byl měřen v březnu, v nezastavěném prostředí hodinkami Garmin Instinct I. Druhý bod P2 byl měřen v květnu, v zastavěném prostředí pomocí hodinek Garmin Instinct III Solar. Přes tyto rozdíly lze vidět na obrázku 2, že vzájemná vzdálenost bodů je stejná v obou případech.

6 Zdroje

ČÚZK (2025): Polohové bodové pole. Dostupné z: https://geoportal.cuzk.cz/(S(zvss2yko0zwqxgiwtc5 hn3oq))/default.aspx?mode=TextMetaside=bodpolemet adataID=CZ-CUZK-DBP-PBPmenu=271

7 Seznamm příloh

- $uv_sd.m$
- wgs_jtsk.m

Reference

- [1] ČUZK(2025). Geoportál Zeměměřického úřadu. dostupné z https://ags.cuzk.gov.cz/geoprohlizec/
- [2] Kaplan, V., Keptrová, K., Konečný, M., Stachoň, Z., Tajovská, K. (2020). *Multimediální učebnice Kartografie a Geoinformatiky*. Geografický ústav PřF MU Brno. Dostupné z: https://gis.geogr.muni.cz/ucebnice. [12. 4. 2025].
- [3] Bayer. T(2025) Transformace zeměpisných souřadnic mezi elipsoidy. https://web.natur.cuni.cz/~bayertom/images/courses/mmk/mmk_cv_1_navod.pdf