ADVANCED BAYESIAN MODELING

Inverse Wishart Prior

In a varying coefficient model, coefficient vectors $\beta^{(j)}$ may have arbitrary (positive definite) covariance matrix:

$$\operatorname{var}(\beta^{(j)} \mid \mu_{\beta}, \Sigma_{\beta}) = \Sigma_{\beta}$$

Generally, data should be used to estimate Σ_{β} , so it needs a prior.

What would be a natural choice for the distribution of a positive definite matrix?

Wishart Distribution

A mathematically convenient distribution on positive definite matrices is the **Wishart distribution**

$$Wishart_{\nu}(S)$$

with ν degrees of freedom, and positive definite scale matrix S.

lf

$$W \sim \operatorname{Wishart}_{\nu}(S)$$
 is $k \times k$

then, for $\nu > k-1$,

$$p(W) \propto |W|^{(\nu-k-1)/2} \, e^{-\operatorname{tr}(S^{-1}W)/2} \qquad W$$
 positive definite
$$E(W) \ = \ \nu S$$

(There are Wishart distributions with $\nu \leq k-1$, but they are degenerate.)

Wishart generalizes the gamma distribution:

$$Gamma(\alpha, \beta) = Wishart_{2\alpha}((2\beta)^{-1})$$

Recall: Scaled inverse chi-square is (partially) conjugate for a normal variance.

Since this is a type of inverse gamma, perhaps a (partially) conjugate prior for a multivariate normal covariance matrix might be *inverse* Wishart ...

Inverse Wishart Distribution

If $W \sim \operatorname{Wishart}_{\nu}(S)$ then W^{-1} has the inverse Wishart distribution:

$$W^{-1} \sim \text{Inv-Wishart}_{\nu}(S)$$

(in parameterization of BDA3, Sec. A.1)

The inverse Wishart is conjugate for a normal covariance matrix.

Indeed, it generalizes the scaled inverse chi-square:

$$Inv-\chi^2(\nu, s^2) = Inv-Wishart_{\nu}((\nu s^2)^{-1})$$

Inverse Wishart on $k \times k$ matrices exists only when $\nu > k-1$.

As a prior, it is less informative when ν is smaller.

Typical default choices for ν :

- $\nu = k$: smallest possible integer value
- $\triangleright \nu = k+1$: recommended in BDA3 correlations are marginally uniform

Remark: Setting ν almost to k-1 is *not* recommended for a hyperprior.

Inverse Wishart Hyperprior

Could choose

$$\Sigma_{\beta} \sim \text{Inv-Wishart}_{K}(\Sigma_{0}^{-1}/K)$$

or

$$\Sigma_{\beta} \sim \text{Inv-Wishart}_{K+1} \left(\Sigma_0^{-1} / (K+1) \right)$$

for both of which Σ_{β}^{-1} has mean Σ_{0}^{-1} .

Criticized in BDA3 for being too constrained (informative).

In practice, results can be sensitive to choice of Σ_0 – it's tempting to choose Σ_0 based on the data.

In JAGS

JAGS favors using precision matrix Σ_{β}^{-1} :

$$\Sigma_{\beta}^{-1} \sim \operatorname{Wishart}_{K}(\Sigma_{0}^{-1}/K)$$

or $\Sigma_{\beta}^{-1} \sim \operatorname{Wishart}_{K+1}(\Sigma_{0}^{-1}/(K+1))$

The first might appear in a JAGS model as

Sigmabetainv ~ dwish(K * SigmaO, K)

Note:

- ▶ Ordering of arguments to dwish
- ▶ Matrix argument is $K\Sigma_0$ instead of Σ_0^{-1}/K

Scaled Inverse Wishart

BDA3 instead recommends using

$$\Sigma_\beta \ = \ \mathrm{Diag}(\xi) \, \Sigma_\eta \, \mathrm{Diag}(\xi)$$

$$\Sigma_\eta \ \sim \ \mathrm{Inv\text{-}Wishart}_K(I) \qquad \xi \ \sim \ \mathsf{diffuse} \ \mathsf{or} \ \mathsf{flat} \ \mathsf{on} \ \mathbb{R}_+^K$$

Advantage: No need for sensitive choice of Σ_0 .

Can be implemented as

$$\beta^{(j)} = \mu_{\beta} + \xi \circ \eta^{(j)} \qquad \eta^{(j)} \sim \mathrm{N}(0, \Sigma_{\eta})$$

where o is elementwise product.