1. Taylor's polynomial approximating a function is defined as follows

$$P_n(x) = f(a) + \sum_{j=1}^n \frac{f^{(j)}(a)(x-a)^j}{j!}$$

$$R_n(x) = \frac{(x-a)^{n+1}}{(n+1)!} f^{(j)}(\mu), \quad \alpha \le x \le \beta \text{ , and } a \le \mu \le x.$$

$$f(x) = P_n(x) + R_n(x).$$

i. Derive the Taylor's polynomial for $f(x) = \sin(x)$, a = 0. The derivatives $\frac{d(\sin(x))}{dx} = \cos(x)$, $\frac{d(\cos(x))}{dx} = -\sin(x)$.

Solution:
$$P_n(x) = \sum_{j=1}^{\frac{n-1}{2}} \frac{(-1)^j (x)^{2j+1}}{(2j+1)!}$$
 5pts

ii. Derive an error bound using $\max |R_n(x)|$.

$$|R_n(x)| \le \frac{|x|^{n+2}}{(n+2)!}$$
 5pts

iii. How many steps n will it take for the method to achieve in [0,1] an $error \le 10^{-6}$. $|R_n(x)| \le \frac{|x|^n}{(n+2)!} < 10^{-6}, \text{ Assume the interval } [0,1], \text{ then } (n+2)! > 10^6, n=10.5 \text{ pts}$

What is the best way to evaluate the expression $\frac{e^x-1}{x}$ when x is near zero. Explain

$$\frac{e^x - 1}{x} = 1 + \frac{x}{2!} + \frac{x^2}{3!} + \dots + \frac{x^{n-1}}{n!}$$
 5pts

A. Derive Newton's method
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
, $n = 0,1,...$ by using second order Taylor's polynomial $f(x) \cong P_1(x)$ and assuming that $P_1(x_{n+1}) = 0$ and $P_1(x) = f(a) + (x - a)f'(a)$ 5pts

$$0 = f(x_n) + (x_{n+1} - x_n)f'(x_n)$$
 is Newton's method.

The error is given from

$$f(p) = 0 = f(x_n) + (p - x_n)f'(x_n) + \frac{(p - x_n)^2 f''(\mu)}{2} = f(x_n) + (p - x_{n+1} + x_{n+1} - x_n)f'(x_n) + \frac{(p - x_n)^2 f''(\mu)}{2} \quad \text{implying}$$

$$(p - x_{n+1})f'(x_n) + \frac{(p - x_n)^2 f''(\mu)}{2} = 0$$

So we can derive the formula in B below:

B. Use the error in Taylor's polynomial

$$f(x) = P_2(x) + R_2(x)$$

to show that $p-x_{n+1}=(p-x_n)^2[-\frac{f''(c_n)}{2f'(x_n)}]$ where f(p)=0, p is the root. Explain why Newton's method always converges "near" the root.

$$p - x_{n+1} = (p - x_n)^2 \left[-\frac{f''(c_n)}{2f'(x_n)} \right] = (p - x_n)(p - x_n)M_n, where M_n = \left[-\frac{f''(c_n)}{2f'(x_n)} \right].$$
5pts

So if M_n is bounded then $|(p-x_n)M_n| < 1$ when the iteration is close to the root implying that it always converges locally(i.e. when the iteration is close to the root) 5pts

C. We want to find the roots $p=\pm\sqrt{3}=\pm\ 1.732050807568877$ of the function $f(x)=x^2-3=0$. Give Newton's iteration for this function $f(x)=x^2-3=0$. Perform two steps of the iteration starting with $x_0=2$.

$$x_1 = 2 - \frac{2^2 - 3}{2 \times 2} = \frac{7}{4} = 1.75, \ x_2 = \frac{7}{4} - \left(\left(\frac{7}{4}\right)^2 - 3\right) / (2 \times \frac{7}{4}) = 1.732142857142857$$
 5pts

 $error = 9.2 * 10^{-5}$ since the convergence is quadratic it will take two more steps: 5pts How many more steps will it take to achieve that accuracy given above for $p = \pm \sqrt{3}$ (i. e. $eps = 10^{-16}$).

D. Perform two steps for $f(x) = x^2 - 3 = 0$ using the bisection method in the interval [0,2]. Which method is faster Newton's or bisection ? Explain.

[0,2], [1.5,2], [1.5,1.75] 5pts

Newton's method is faster since it is quadratic vs linear of bisection method 5pts

3. You have to choose between the following 3 fixed point iterations:

i.
$$x_{n+1} = \frac{3}{x_n}$$
 ii. $x_{n+1} = \frac{1}{2}(x_n + \frac{3}{x_n})$ iii. $x_{n+1} = \frac{x_n(x_n^2 + 9)}{3x_n^2 + 3}$

- a. Which one converges to the root locally(i.e. near the root always converges).
 - Does not converge since $|g'(\sqrt{3})|=1$ ii. Newton's method converges, iii. Halleys method converges 5pts each=15
- b. Which one will you select and why? Iii 5pts
- c. What is the rate of convergence for each fixed point iteration. Ii quadratic iii cubic 5pts
- 4. A. Determine the Newton's form for the interpolating polynomial for the data set: $\{(-1,5), (0,1), (1,1), (2,11)\}$, where each pair represents the points (x_i, f_i) , i = 0:3.
 - i. Determine the finite difference table first. 10pts

<mark>-1</mark>	<mark>5</mark>			
<mark>0</mark>	<mark>1</mark>	<mark>-4</mark>		
<mark>1</mark>	<mark>1</mark>	<mark>0</mark>	<mark>2</mark>	
2	<mark>11</mark>	<mark>10</mark>	<mark>5</mark>	<mark>1</mark>

ii. Determine the polynomial
$$P_3 = f_0 + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + f[x_0, x_1, x_2, x_3](x - x_0)(x - x_1)(x - x_2).$$
 polynomial $P_3 = 5 - 4 * (x + 1) + 2 * (x + 1)(x) + (x + 1)(x)(x - 1) = x^3 + 2x^2 - 3x + 1$. 5pts

B. As generalized interpolation problem, find the cubic polynomial q(x) for which 10 pts

$$q(0) = -1, q'(0) = 4,$$
 $q(1) = -1, q'(1) = 4.$

$$q(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$

$$q(0) = -1 = > a_0 = -1, q'(0) = 4 = > a_1 = 4,$$

$$q(1) = -1 = -1 + 4 + a_2 + a_3 = = > a_2 + a_3 = -4$$

$$q'(1) = 4 = 4 + 2a_2 + 3a_3 = > 2a_2 + 3a_3 = 0$$

 $a_3 = 8, a_2 = -12$

$$q(x) = -1 + 4x - 12x^2 + 8x^3$$

C. For an interval [a,b] define $h=\frac{b-a}{n}$ and the evenly spaced points

$$x_i = a + jh, \quad j = 0, 1, ..., n.$$

Consider the polynomial

$$\Omega_n(x) = (x - x_0)(x - x_1) \dots (x - x_n).$$

 $|\Omega_n(x)| \le n! h^{n+1}, \quad a \le x \le b.$

Show that

The largest value is obtained if x in the first or last subintervals. Then $x - x_0 \le h, x - x_1 \le 2h, \dots x - x_n \le h$ $x_n \le nh$. Plug in above to prove the inequality. 10pts

- 5. We want to determine $\int_a^b f(x)dx = A f(x_0) + Bf''(\mu)$, $\alpha \le \mu \le b$ so it is exact for polynomials of highest possible degree, e.g. $1, x, x^2$ Type equation here.
 - Determine A and x_0 . b a = A, $(b^2 a^2)/2 = Ax_0$

$$\int_{a}^{b} f(x)dx = (b - a)f(\frac{a + b}{2}) + Bf''(\mu), \quad a \le \mu \le b$$

$$\operatorname{Set} f(x) = x^2$$

$$\frac{b^3 - a^3}{3} = \frac{(b-a)(a+b)^2}{4} + 2B$$

We use the trick set
$$a=0$$
 and solving $\frac{b^3}{3} = \frac{b^3}{4} + 2B = > B = \frac{b^3}{24}$
Replacing $b \to b - a$ we get $B = \frac{(b-a)^3}{24}$ 10pts total; 5 for each uknown

- ii. Determine the parameter B in the error $Bf''(\mu)$. $B = \frac{(b-a)^3}{24}$ 5pts
- iii. What is the name of the integration method you just derived. Midpoint 5pts
- iv. The composite form is derived by applying the above method to the following formula:

$$I(f) = \int_{a}^{b} f(x)dx = \int_{a}^{a+h} f(x)dx + \int_{a+h}^{a+2h} f(x)dx + \dots + \int_{a+(n-1)h}^{b} f(x)dx$$

where $h = \frac{b-a}{n}$ and $x_j = a + jh$, j = 0,1,...,n.

a. Approximate each integral the summation above, for example $\int_a^{a+h} f(x) dx \approx A f(x_0)$ etc, to derive the composite integration formula R(f,h)?

$$R(f,h) = hf\left(a + \frac{h}{2}\right) + hf\left(a + \frac{3h}{2}\right) + \dots + hf(a + \frac{(2n-1)h}{2})$$
 10pts

b. What is the error for the composite formula R(f,h)? HINT: Find the summation of all errors $Bf''(\mu)$.

$$E(f,h) = \frac{h^3}{24}f''(\mu_1) + \frac{h^3}{24}f''(\mu_2) + \dots + \frac{h^3}{24}f''(\mu_n) = \frac{h^3}{24}nf''(\mu) = \frac{(b-a)h^2f''(\mu)}{24}$$

v. Use Romberg's integration for the Trapezoidal rule to integrate $I(f) = \int_0^1 x^4 dx$. Start with h=1 and complete Romberg's extrapolation Table. How many divisions of h does it take to get the exact answer in the Table.

10pts

$T^0(h)$			
$T^0(\frac{h}{2})$	$T^{(1)}(h) = \frac{4 T^{(0)}(\frac{h}{2}) - T^{(0)}(h)}{2}$		
	4-1		
$T^0(\frac{h}{2^2})$	$ = \frac{4 T^{(0)} \left(\frac{h}{2}\right)}{4 - 1} $	$T^{(2)}(h) = \frac{4^2 T^{(1)}(\frac{h}{2}) - T^{(1)}(h)}{4^2 - 1}$	
$T^0(\frac{h}{2^3})$	$T^{(1)}\left(\frac{h}{2^{2}}\right) = \frac{4 T^{(0)}\left(\frac{h}{2^{3}}\right) - T^{(0)}\left(\frac{h}{2^{2}}\right)}{4 - 1}$	$T^{(2)}(h) = \frac{4^2 T^{(1)} \left(\frac{h}{2^2}\right) - T^{(1)} \left(\frac{h}{2}\right)}{4^2 - 1}$	$T^{(3)}(h) = \frac{4^3 T^{(2)} \left(\frac{h}{2}\right) - T^{(2)}(h)}{4^3 - 1}$

MIDTERM name_____

$\frac{1}{2}$ =0.5			
$\frac{9}{32}$ =0.2813	$\frac{10}{48}$ =.2083		
113 512=0.2207	77 / ₃₈₄ =.2005	$\frac{16*\frac{77}{384}-\frac{10}{48}}{15}=\frac{1}{5}=.2000$	

6. EXTRA CREDIT QUESTION: Derive a similar table to Romberg's table for $I(f) \cong R(f,h)$ integration described in problem 5. Same as Rombersgs 10pts