Kryptografia z elementami algebry, wykład 2

Maciej Grześkowiak

18 października 2021

Elementy algebry

Kryptografia, złożoność obliczeniowa

KRYPTOLOGIA

KRYPTOLOGIA

KRYPTOGRAFIA

KRYPTOLOGIA

KRYPTOGRAFIA

KRYPTOANALIZA

KRYPTOLOGIA

KRYPTOGRAFIA

Projektowanie:

Protokoły

Algorytmy

KRYPTOANALIZA

KRYPTOLOGIA

KRYPTOGRAFIA

Projektowanie:

Protokoły

Algorytmy

KRYPTOANALIZA

Łamanie:

Protokoły

Algorytmy

Protokoły kryptograficzne

Definicja Protokół jest szeregiem kroków, obejmujących dwie lub wiecej stron, które należy wykonać w celu realizacji zadania.

Własności protokołów

- Każdy użytkownik musi go znać i kolejno wykonywać wszystkie kroki,
- Każdy użytkownik musi zgodzić się na jego stosowanie,
- Protokół musi być nie mylący. Każdy krok powinien być dobrze zdefiniowany i nie może wystapić szansa na jakiekolwiek nieporozumienie,
- Protokół musi być kompletny. Dla każdej możliwej sytuacji musi być podany odpowiedni sposób postępowania

Protokoły kryptograficzne

Definicja Protokół kryptograficzny jest protokołem, który wykorzystuje kryptografię. Strony uczestniczące w protokole mogą być bezwarunkowo ufającymi sobie osobami, albo być całkowicie nieufającymi sobie adwersarzami.

Uczestnicy protokołu: Alice i Bob

Uczestnicy protokołu: Mallet

Algorytmy kryptograficzne

- ullet Przestrzeń wiadomości \mathcal{M} ,
- ullet Przestrzeń szyfrogramów ${\mathcal C}$
- ullet Przestrzeń kluczy ${\cal K}$,

Algorytmy kryptograficzne

- Przestrzeń wiadomości M,
- ullet Przestrzeń szyfrogramów ${\mathcal C}$
- Przestrzeń kluczy K,

- Algorytm generowania klucza G,
- Algorytm szyfrowania E,
- Algorytm deszyfrowania D

Algorytmy kryptograficzne

- Przestrzeń wiadomości \mathcal{M} ,
- ullet Przestrzeń szyfrogramów ${\mathcal C}$
- Przestrzeń kluczy K,

- Algorytm generowania klucza G,
- Algorytm szyfrowania E,
- Algorytm deszyfrowania D

$$E_k(m) = c, \qquad D_k(c) = m$$

Kryptografia może zapewnić poufność

Symetryczny Protokół Szyfrowania

ALICE, BOB

cel: Poufne przekazywanie informacji

- Uzgadniają jawnie (E, D)
- Uzgadniają w bezpieczny sposób K
- Alice tworzy M
- Alice wysyła do Boba C
- **o** Bob oblicza $D_K(C) = M$

Symetryczny protokół wymiany klucza, tajne klucze k_A i k_B

Cel: Bezpieczna dystrybucja klucza sesyjnego.

- Alice, aby połączyć się z Bobem kieruje zamównie na klucz sesyjny do centrali dystrybucji kluczy KDC. (Key distribution center)
- ② KDC generuje klucz sesyjny k i szyfruje k otrzymując $c_A = E_{k_A}(k)$ oraz $c_B = E_{k_B}(k)$. Ponadto szyfruje kluczem k_B informację o tożsamości Alice m otrzymując $c = E_{k_B}(m)$.
- **Solution** States C_A , C_B do Alice.
- $oldsymbol{0}$ Alice deszyfruje $c_{\mathcal{A}}$ i w ten sposób otrzymuje k.
- **5** Alice wysyła c_B , c do Boba
- Bob deszyfruje c_B oraz c i w ten sposób otrzymuje k. Wykorzystuje m do określenia kim jest Alice.
- Alice i Bob wykorzystują k do bezpiecznej komunikacji.

Bezpieczeństwo doskonałe

Definicja 1 Schemat szyfrowania (G, E, D) nad \mathcal{M} jest doskonały, jeśli dla każdego rozkładu prawdopodobieństwa nad \mathcal{M} , dla każdego $m \in \mathcal{M}$, i każdego $c \in \mathcal{C}$, Pr[C = c] > 0 mamy

$$Pr[M = m | C = c] = Pr[M = m].$$

Bezpieczeństwo doskonałe

Definicja 1 Schemat szyfrowania (G, E, D) nad \mathcal{M} jest doskonały, jeśli dla każdego rozkładu prawdopodobieństwa nad \mathcal{M} , dla każdego $m \in \mathcal{M}$, i każdego $c \in \mathcal{C}$, Pr[C = c] > 0 mamy

$$Pr[M = m | C = c] = Pr[M = m].$$

Lemat Schemat szyfrowania (G, E, D) nad \mathcal{M} jest doskonały wtedy i tylko wtedy, gdy dla każdego rozkładu prawdopodobieństwa nad \mathcal{M} , dla każdego $m \in \mathcal{M}$, i każdego $c \in \mathcal{C}$, Pr[C = c] > 0 mamy

$$Pr[M = m | C = c] = Pr[C = c].$$

One-time pad

Ustalmy l > 0. Niech $\mathcal{M}, \mathcal{C}, \mathcal{K} \in \{0,1\}^l$. Niech \oplus oznacza pobitowy xor.

- **①** *G* generuje klucz $k \in \mathcal{K}$ w sposób jednostajny tj. $P[K = k] = \frac{1}{2^l}$.
- ② E: Dla danych $m \in \mathcal{M}$, $k \in \mathcal{K}$ algorytm oblicza $c \in \mathcal{C}$, gdzie $c = m \oplus k$.
- **③** *D* : Dla danych $c \in \mathcal{M}$, $k \in \mathcal{K}$ algorytm oblicza $m \in \mathcal{C}$, gdzie $m = c \oplus k$.

Bezpieczeństwo One-time pad

Twierdzenie: Schemat szyfrowania One-time pad jest doskonały.

Dowód: Ustalmy rozkład prawdopodobieństwa na $\mathcal M$ oraz $m\in\mathcal M$, $c\in\mathcal C$. Mamy,

$$Pr[C = c | M = m] = Pr[M \oplus K = c | M = m] =$$

$$= Pr[m \oplus K = c] = Pr[K = m \oplus k] = \frac{1}{2^{l}}$$

Powyższe obliczenia są prawdziwe dla każdego $m \in \mathcal{M}$ oraz każdego $c \in \mathcal{C}$. W szczególności dla $m_0, m_1 \in \mathcal{M}$ mamy,

$$Pr[C = c|M = m_0] = \frac{1}{2^l} = Pr[C = c|M = m_1].$$

Z Lematu 2 dostajemy, że One-Time Pad jest doskonały.

Bezpieczeństwo doskonałe

Twierdzenie: Niech schemat szyfrowania (G, E, D) nad \mathcal{M} będzie doskonały. Niech \mathcal{K} będzie przestrzenią kluczy generowaną przez G. Wtedy $|\mathcal{K}| \geq |\mathcal{M}|$.

Bezpieczeństwo obliczeniowe

Operacje elementarne na bitach

р	0	0	0	0	1	1	1	1
r_1	0	0	1	1	0	0	1	1
<i>r</i> ₂	0	1	0	1	0	1	0	1
W	0	1	1	0	1	0	0	1
np	0	0	0	1	0	1	1	1

Notacja wielkie-O

Definicja Niech $f,g:\mathbb{N}\mapsto\mathbb{R}$. Mówimy, że

$$f(n) = O(g(n))$$

jeśli istnieje stała c>0 taka, że dla każdego $n\geq n_0$ mamy

$$|f(n)| \leq cg(n)$$
.

Algorytm czasu wielomianowego i wykładniczego

Definicja: Mówimy, że algorytm \mathcal{A} działający na danych o liczbie bitów k jest czasu wielomianowego (wykładniczego), jeżeli istnieje stała c>0 taka, że liczba operacji elementarnych na bitach potrzebnych do wykonania tego algorytmu jest rzędu $O(k^c)$ ($O(e^{ck})$).

Operacje elementarne na bitach, przykład

Zadanie: Niech $a, b \in \mathbb{N}$, gdzie $a \ge b$. Ile elementarnych operacji na bitach potrzeba do obliczenia S(a, b) = a + b?

Zadanie: Niech $a, b \in \mathbb{N}$, gdzie $a \ge b$. Ile elementarnych operacji na bitach potrzeba do obliczenia I(a, b) = ab?

Operacje elementarne na bitach, przykład

Przykład: Niech $a = (1011)_2, b = (1001)_2$, to

Stąd, wykonujemy $O(\log a)$ operacji elementarnych na bitach.

Operacje elementarne na bitach, przykład

Przykład: Niech $a = (1011)_2, b = (1001)_2$, to

Stąd, wykonujemy $O(\log a)O(\log b) = O(\log^2 a)$ operacji elementarnych na bitach.

Asymetryczny Protokół Szyfrowania

ALICE, (Generowania kluczy)

- Wybiera jawnie (E, D)
- ② Generuje klucze (K_A, k_A) do (E, D)
- \odot Upublicznia K_A i zachowuje w sekrecie k_A

Asymetryczny Protokół Szyfrowania

BOB, (Szyfrowanie)

- Pobiera K_A
- Ustala M
- Wysyła C do Alice

Asymetryczny Protokół Szyfrowania

Alice, (Deszyfrowanie)

- Pobiera C
- Oblicza $D_{k_A}(C) = M$