Chapter 2 RELATIONS

2.0 INTRODUCTION

Every day we deal with relationships such as those between a business and its telephone number, an employee and his or her work, a person and other person, and so on. Relationships such as that between a program and a variable it uses and that between a computer language and a valid statement in this language often arise in computer science. The relationship between the elements of the sets is represented by a structure, called relation, which is just a subset of the Cartesian product of the sets.

Relations are used to solve many problems such as determining which pairs of cities are linked by airline flights in a network or producing a useful way to store information in computer databases.

In this chapter, we will study equivalence relation, equivalence class, composition of relations, matrix of relations, and closure of relations.

2.1 RELATION

A relation is a set of ordered pairs. Let A and B be two sets. Then a relation from A to B is a subset of $A \times B$.

Symbolically, R is a relation from A to B iff $R \subseteq A \times B$.

If $(x, y) \in R$, then we can express it by writing xRy and say that "x is related to y with relation R".

Thus, $(x, y) \in R \Leftrightarrow xRy$

2.2 RELATION ON A SET

A relation R on a set A is the subset of $A \times A$, i.e., $R \subseteq A \times A$. Here both the sets A and B are same.

Example 1 Let $A = \{2, 3, 4, 5\}$ and $B = \{2, 4, 6, 10, 12\}$. Then find a relation R from A to B defined as

 $R = \{x, y\} : x \text{ divides } y, x \in A, y \in B\}$

Relations 27

Solution $R = \{(2, 2), (2, 4), (2, 6), (2, 10), (2, 12), (3, 6), (3, 12), (4, 4), (4, 12), (5, 10)\}$

2.3 DOMAIN AND RANGE OF RELATION

Let *R* be a relation from *A* to *B*. Then the set of all first coordinates of the ordered pairs in *R* is called the domain of *R* and the set of all second coordinates of the ordered pairs in *R* is called the range of *R*.

Thus,

Domain of
$$R = \{x : (x, y) \in R\}$$

Range of $R = \{y : (x, y) \in R\}$

Example 2 If $A = \{1, 2, 3, 4\}$ and $B = \{2, 4, 6, 8, 10\}$, then find a relation from A to B, defined as

$$xRy \Leftrightarrow x + y$$
 is an even number.

Also find the domain and range of *R*.

Solution According to the given relation, we have

$$R = \{(2, 2), (2, 4), (2, 6), (2, 8), (2, 10), (4, 2), (4, 4), (4, 6), (4, 8), (4, 10)\}$$

Domain of $R = \{2, 4\}$ and

Range of $R = \{2, 4, 6, 8, 10\} = B$

2.4 EMPTY AND UNIVERSAL RELATION

Let *A* and *B* be two sets. Then we know that a relation from *A* to *B* is a subset of $A \times B$. Since ϕ is a subset of every set, therefore, $\phi \subseteq A \times B$. Thus, ϕ is a relation from *A*, to *B*, and it is called empty relation.

Again we know that every set is a subset of itself, therefore

$$A \times B \subseteq A \times B$$

Thus, $A \times B$ is a relation from A to B and it is called universal relation.

2.5 IDENTITY RELATION

An identity relation on a set A is denoted by I_A and is defined as

$$I_A = \{(x, x) : x \in A\}$$

2.6 INVERSE OF A RELATION

Let R be a relation from A to B then the inverse of R is denoted by R^{-1} and it is also a relation from B to A, i.e.

$$R^{-1} = \{(y, x) : (x, y) \in R\}$$

Example 3 If $R = \{(1, 2), (2, 3), (3, 3), (4, 2), (4, 3) \text{ is a relation on set } A = \{1, 2, 3, 4\}, \text{ then } R^{-1} = \{(2, 1), (3, 2), (3, 3), (2, 4), (3, 4)\}.$

2.7 NUMBER OF RELATIONS

If *R* is a relation from a set *A* to set *B*, where |A| = m and |B| = n. Then the total number of relations from *A* to *B* is 2^{mn} as $|A \times B| = m.n$.

If *R* is a relation on set *A* with |A| = n, then the total number of relations on *A* is 2^{n^2} .

Example 4 How many relations are possible from a set $A = \{1, 2, 3\}$ to the set $B = \{a, b, c, d, e\}$?

Solution It is given that |A| = 3 and |B| = 5, therefore, $|A \times B| = 3.5 = 15$.

Thus, 2^{15} relations are possible from *A* to *B*.

2.8 REPRESENTATION OF A RELATION

There are so many methods to represent a relation *R* from set *A* to set *B*.

2.8.1 Roster Method

In this method, all the ordered pairs of the relation are enclosed within curly brackets.

For example, if $A = \{1, 2\}$ and $B = \{x, y, z\}$ then the relation $R = \{(1, x), (1, y), (2, z)\}$ is in roster form.

2.8.2 Matrix Method

Let A and B be two non-empty sets with |A| = m and |B| = n. Let R be a relation from A to B. Then the relation R can be represented by a $m \times n$ matrix denoted as M_R and this matrix is called adjacency matrix or Boolean matrix, i.e.

$$M_R = [m_{ij}]_{m \times n}$$

where

$$m_{ij} = \begin{cases} 1, & \text{if } (a_i, b_j) \in R \\ 0, & \text{if } (a_i, b_i) \notin R \end{cases}$$

Example 5 If $R = \{(1, x), (1, y), (2, y), (3, z), (4, x), (4, y), (4, z) is relation from set <math>A = \{1, 2, 3, 4\}$ to set $B = \{x, y, z\}$, then find the matrix of R.

Solution Since |A| = 4 and |B| = 3, therefore, there will be 4×3 matrix of the relation R, i.e.

$$M_R = \begin{bmatrix} x & y & x \\ 1 & 1 & 1 & 0 \\ 2 & 0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & 1 & 1 & 1 \end{bmatrix}$$

Example 6 Find the relation R on set $A = \{1, 2, 3, 4\}$, whose matrix is given below:

$$\begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$$

Solution We know that any element $(a_i, b_j) \in R$ iff $(i, j)^{th}$ element of M_R , i.e., $m_{ij} = 1$ By writing the given matrix as

$$M_R = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 3 & 0 & 1 & 1 & 0 \\ 4 & 1 & 1 & 0 & 0 \end{bmatrix}$$

We get $R = \{(1, 1), (1, 3), (1, 4), (2, 2), (3, 2), (3, 3), (4, 1), (4, 2)\}$

2.8.3 Digraph of a Relation on Sets

When a relation is defined on a set A then we can represent the relation by a digraph. First the elements of A are written down. Then arrows are drawn from each element x to each element y whenever $(x, y) \in R$.

Example 7 If $R = \{(1, 1), (1, 2), (1, 3), (2, 2), (2, 4), (3, 1), (3, 3), (3, 4), (4, 2), (4, 3) is a relation on set <math>A = \{1, 2, 3, 4\}$. Then represent the relation R by its digraph.

Solution First of all, we represent all the elements of *A* by small circles. Then we will show the relations.

Fig. 2.1

2.8.4 Set Builder Form of a Relation

In this method, the rule that associates the first and second coordinates of each ordered pair is given.

Example 8 Let $A = \{2, 3, 4\}$ and $B = \{2, 6, 8, 11, 12\}$.

If $R = \{2, 2\}, \{2, 6\}, \{2, 8\}, \{2, 12\}, (3, 6\}, (3, 12), (4, 8), (4, 12)\}$ is a relation from A to B.

Then find the set builder form of *A*.

Solution The set builder form of the given relation *R* is given as below:

$$R = \{x, y\} : x \text{ divides } y\}.$$

2.9 UNION AND INTERSECTION OF TWO RELATIONS

If *R* and *S* are two relations from set *A* to set *B*, then

$$R \cup S = \{(a, b) : (a, b) \in R \text{ or } (a, b) \in S \}$$

and

$$R \cap S = \{(a, b) : (a, b) \in R \text{ and } (a, b) \in S\}$$

where $a \in A$ and $b \in B$

Example 9 If $R = \{(1, 1), (1, 2), (2, 2), (2, 3), (3, 4), (4, 1), (4, 4)\}$ and $S = \{(1, 1), (1, 3), (2, 3), (3, 4), (4, 2), (4, 3)\}$ are two relations on set $A = \{1, 2, 3, 4\}$, then find $R \cup S$ and $R \cap S$.

Solution
$$R \cup S = \{(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 4), (4, 1), (4, 2), (4, 3), (4, 4)\}$$
 and $R \cap S = \{(1, 1), (2, 3), (3, 4)\}$

2.10 COMPOSITION OF TWO RELATIONS

Let A, B, and C be three non-empty sets. Let R and S be the relations from A to B and B to C respectively, i.e., $R \subseteq A \times B$ and $S \subseteq B \times C$.

Then we define a relation from A to C denoted by RoS (or SoR as used by certain authors) given by

$$RoS = \{(a, c) : (a, b) \in R \text{ and } (b, c) \in S \text{ for some } b \in B\}.$$

This relation is called a composition of *R* and *S* or a composite relation of *R* and *S*.

Example 10 Let $A = \{1, 2, 3, 4\}$, $B = \{p, q, r, s\}$ and $C = \{x, y, z\}$ and also $R = \{(1, p), (1, r), (1, s), (2, r), (2, s), (3, p), (4, s)\}$ and $S = \{(p, x), (p, z), (q, y), (r, y), (r, z), (s, x), (s, z)\}$. Find composition of R and S.

Solution According to the definition of *RoS*, we have

$$RoS = \{(1, x), (1, z), (1, y), (2, y), (2, z), (2, x), (3, x), (3, z), (4, x)\}$$

2.11 USE OF BOOLEAN MATRIX TO FIND UNION, INTERSECTION, COMPOSITION AND INVERSE OF RELATIONS

Let A, B, and C be three non-empty sets and let R and S be the relations from A to B and B to C respectively. Then we have to find $R \cup S$, $R \cap S$, RoS and R^{-1} with the help of Boolean matrix.

Let M_R and M_S be the matrices of the relations R and S respectively. Then

(i) The matrix of $R \cup S$ is given by

 $M_{R \cup S} = M_R \vee M_S$, i.e., the join of M_R and M_S .

(ii) The matrix of $R \cap S$ is given by

 $M_{R \cap S} = M_R \wedge M_{S'}$ i.e., the meet of M_R and M_S .

(iii) The matrix of RoS is given by

 $M_{RoS} = M_R$. $M_{S'}$ i.e., the multiplication of M_R and M_S

(iv) The matrix of R^{-1} is given by

 $M_{R-1} = (M_R)^T$, i.e., the transpose of matrix M_R

Example 11 Let $A = \{1, 2, 3, 4\}$ and let $R = \{(1, 1), (1, 2), (1, 3), (2, 4), (3, 2)\}$ and $S = \{(1, 3), (1, 4), (2, 3), (3, 1), (4, 1)\}$ be two relations on set A. Thus, use Boolean matrix to find $R \cup S$, $R \cap S$, RoS and R^{-1} .

Solution The matrices of the relations *R* and *S* are given as below:

$$M_R = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad \text{and} \quad M_S = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

(i) The matrix of $R \cup S$ is given by

$$M_{R \cup S} = M_R \lor M_S = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \lor \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

i.e., $R \cup S = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 1),, (3, 2), (4, 1)\}$

(ii) The matrix of $R \cap S$ is given by

i.e., $R \cap S = \{(1, 3)\}.$

 \Rightarrow

(iii) The matrix of RoS is given by

$$M_{RoS} = M_R \cdot M_S = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

i.e.,
$$RoS = \{(1, 1), (1, 3), (1, 4), (2, 1), (3, 3)\}$$

(iv) The matrix of R^{-1} is given by

$$M_{R^{-1}} = (M_R)^T = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}^T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

i.e.,
$$R^{-1} = \{(1, 1), (2, 1), (2, 3), (3, 1), (4, 2)\}$$

Theorem 1: Let *A*, *B*, *C* and *D* be four non-empty sets. Let *R*, *S* and *T* be three relations from *A* to *B*, *B* to *C* and *C* to *D* respectively. Then

$$(RoS)oT = Ro(SoT)$$

Proof: The relation (RoS)oT and Ro(SoT) are determined by Boolean matrices $M_{(RoS)oT}$ and $M_{Ro(SoT)}$.

Now,
$$M_{(RoS) oT} = M_{RoS} \cdot M_T = (M_R \cdot M_S) M_T$$
 ...(i)

and $M_{R_0(S_0T)} = M_R \cdot M_{S_0T} = M_R \cdot (M_S \cdot M_T)$...(ii)

Since the Boolean matrix multiplication is associative, therefore

$$M_{(RoS)oT} = M_{Ro(SoT)}$$

 $(RoS)oT = Ro(SoT)$. Hence proved.

Theorem 2: If R^{-1} and S^{-1} are the inverses of the relations R and S respectively, then

$$(RoS)^{-1} = S^{-1}oR^{-1} \text{ or } (SoR)^{-1} = R^{-1}oS^{-1}$$

Proof: Let A, B, and C be three non-empty sets and let R and S be the relation from A to B and B to C respectively. Then $R \subseteq A \times B$ and $S \subseteq B \times C$

⇒
$$RoS \subseteq A \times C$$

⇒ $(RoS)^{-1} \subseteq C \times A$
Now, $(c, a) \in (RoS)^{-1}$
⇒ $(a, c) \in RoS$

Relations 33

$$\Rightarrow \exists b \in B \text{ such that } (a, b) \in R \text{ and } (b, c) \in S$$

$$\Rightarrow$$
 $(b, a) \in R^{-1} \text{ and } (c, b) \in S^{-1}$

$$\Rightarrow$$
 $(c, b) \in S^{-1} \text{ and } (b, a) \in R^{-1}$

$$\Rightarrow \qquad (c, a) \in S^{-1} o R^{-1}$$

i.e.,
$$(c, a) \in (RoS)^{-1} \Rightarrow (c, a) \in S^{-1}oR^{-1}$$

Therefore,
$$(RoS)^{-1} \subseteq S^{-1}oR^{-1}$$
 ...(i)

Similarly, we can prove that

$$S^{-1}oR^{-1} \subseteq (RoS)^{-1} \qquad \dots (ii)$$

From (i) and (ii), we have

$$(RoS)^{-1} = S^{-1}oR^{-1}$$

2.12 PROPERTIES OF RELATIONS ON A SET

The following are the main properties of the relation.

(i) Reflexive Relation: A relation R on a set A is said to be reflexive if each $x \in A$, $(x, x) \in R$.

For example, if $A = \{1, 2, 3\}$, then $R = \{(1, 1), (2, 2), (3, 1), (3, 2), (3, 3)\}$ is a reflexive relation.

A reflexive relation *R* on set *A* contains the identity relation I_A , i.e., $I_A \subseteq R$.

(ii) Irreflexive Relation: *A* relation *R* on a set *A* is said to be irreflexive if for each $x \in A$, $(x, x) \notin R$.

For example, consider, $A = \{1, 2, 3\}$ and $R = \{(1, 2), (1, 3), (2, 1), (3, 2)\}$, then R is irreflexive since $(x, x) \notin r$ for each $x \in A$.

(iii) Non-reflexive Relation: *A* relation *R* is said to be non-reflexive if it is neither reflexive nor irreflexive.

For example, the relation $R = \{(1, 1), (1, 2), (2, 2), (3, 1), (3, 2)\}$ is a non-reflexive relation as it is neither reflexive nor irreflexive.

(iv) Symmetric Relation: A relation R on a set A is said to be symmetric if $xRy \Rightarrow yRx$, i.e., whenever $(x, y) \in R$ then $(y, x) \in R$ for all $x, y \in A$.

Example 12 Let *L* be the set of all straight lines in a plane. Then the relation *R* is defined as $R = \{(x, y) : x \text{ is perpendicular to } y \text{ for all, } x, y \in L\}$ is a symmetric relation because $x \perp y \Rightarrow y \perp x$ for all $x, y \in L$

Example 13 Then relation $R = \{(1, 1), (1, 2), (2, 1), (2, 3), (3, 2), (3, 3)\}$ on set $A = \{1, 2, 3\}$ is a symmetric relation.

(v) Asymmetric Relation: *A* relation *R* on a set *A* is said to be asymmetric if $(x, y) \in R \Rightarrow (y, x) \notin R$ for all $x, y \in A$.

Example 14 The relation $R = \{(1, 2), (2, 3), (3, 4), (4, 2)\}$ is an asymmetric relation on the set $A = \{1, 2, 3, 4\}$.

Example 15 If R is a relation on N (the set of all natural numbers), defined as $R = \{(x, y) : x < y$, where $x, y \in N$ } is an asymmetric relation because if x < y, then y is not less than x.

(vi) Antisymmetric Relation: A relation R on a set A is said to be antisymmetric if

$$xRy$$
 and $yRx \Rightarrow x = y$ for all $x, y \in A$

Example 16 Let N be the set of natural numbers and let R be a relation on N, defined by "x divides y" $\forall x, y \in N$. Then R is an antisymmetric relation as x divides y and y divides $x \Rightarrow x = y$.

Example 17 The relation ' \leq ' is an antisymmetric relation on the set of all natural numbers, N because $x \leq y$ and $y \leq x \Rightarrow x = y$ for all $x, y \in N$.

(vii) Transitive Relation: A relation R on a set A is said to be transitive relation if xRy and $yRz \Rightarrow xRz$ for all x, y, $z \in A$.

Example 18 The relation R on set N, defined by "x divides y" for all x, $y \in N$ is a transitive relation because if x divides y and y divides z, then x divides z.

Example 19 The relation R of parallelism in the set L of straight lines in a plane is a transitive relation because $x \parallel y$ and $y \parallel z \Rightarrow x \parallel z$ for all $x, y, z \in L$.

2.13 EQUIVALENCE RELATION

A relation *R* on a set *A* is said to be an equivalence relation if it is reflexive, symmetric and transitive.

Example 20 The relation R of parallelism on the set L, of all straight lines in the plane is an equivalence relation as R is reflexive, symmetric and transitive.

2.14 PARTIAL ORDER RELATION

A relation R on the set A is said to be a partial order relation if R is reflexive, antisymmetric and transitive.

Example 21 The relation R on the set of all natural numbers (N) defined as "x divides y" for all $x, y \in N$, is a partial order relation as R is reflexive, antisymmetric and transitive.

Theorem 3: The inverse of an equivalence relation is also an equivalence relation.

Proof: Let R be an equivalence relation on a set A, i.e., R is reflexive, symmetric and transitive on A. To prove that R^{-1} is an equivalence relation on A.

 R^{-1} is reflexive: Let $x \in A$. Then $(x, x) \in R$ as R is reflexive

$$\Rightarrow$$
 $(x, x) \in R^{-1}$

i.e., for all $x \in A$, $(x, x) \in R^{-1}$. Thus, R^{-1} is reflexive.

 R^{-1} is symmetric: Let $x, y \in A$

Let
$$(x, y) \in R^{-1}$$

$$\Rightarrow$$
 $(y, x) \in R$

 \Rightarrow $(x, y) \in R$ as R is symmetric

$$\Rightarrow$$
 $(y, x) \in R^{-1}$

Thus, R^{-1} is symmetric.

 R^{-1} is transitive: Let $x, y, z \in A$. Let (x, y) and $(y, z) \in R^{-1}$

$$\Rightarrow$$
 (y, x) and $(z, y) \in R$

$$\Rightarrow$$
 (z, y) and $(y, x) \in R$

$$\Rightarrow$$
 $(z, x) \in R$

$$\Rightarrow$$
 $(x, z) \in R^{-1}$

Thus, R^{-1} is transitive.

Hence, R^{-1} is an equivalence relation on set A.

Theorem 4: The intersection of two equivalence relations is also an equivalence relation.

Proof: Let R and S be two equivalence relations on a set A. To prove that $R \cap S$ is an equivalence relation on set A.

 $R \cap S$ is reflexive: Let $x \in A$. Then $(x, x) \in R$ and $(x, x) \in S$ as R and S are reflexive on A.

This implies $(x, x) \in R \cap S$.

Thus, $R \cap S$ is reflexive on A.

 $R \cap S$ is symmetric: Let $x, y \in A$. Let $(x, y) \in R \cap S$.

$$\Rightarrow$$
 $(x, y) \in R$ and $(x, y) \in S$

 \Rightarrow $(y, x) \in R$ and $(y, x) \in S$ as R and S are symmetric

$$\Rightarrow$$
 $(y, x) \in R \cap S$

Thus, $R \cap S$ is symmetric

 $R \cap S$ is transitive: Let x, y, $z \in A$. Let (x, y) and $(y, z) \in R \cap S$. Then (x, y) and $(y, z) \in R$ and (z, y) and $(y, z) \in S$

$$\Rightarrow$$
 $(x, y) \in R$ and $(x, z) \in S$

$$\Rightarrow$$
 $(x, z) \in R \cap S$.

Thus, $R \cap S$ is a transitive relation.

Hence, $R \cap S$ is an equivalence relation on set A.

Theorem 5: A relation R on a set is symmetric iff $R = R^{-1}$.

Proof: First suppose that *R* is symmetric, then we have to prove that $R = R^{-1}$.

Let $(x, y) \in R$. Then

$$(x, y) \in R \Rightarrow (y, x) \in R$$

 $\Rightarrow (x, y) \in R^{-1}$

 \Rightarrow

$$\therefore \qquad \qquad R \subseteq R^{-1} \qquad \qquad \dots (i)$$

Let

$$(x, y) \in R^{-1} \Rightarrow (y, x) \in R$$

 \Rightarrow $(x, y) \in R$ as R is symmetric.

$$\therefore R^{-1} \subseteq R$$
 ...(ii)

From (i) and (ii), we have $R = R^{-1}$.

Conversely, suppose that $R = R^{-1}$. Then we have to prove that R is symmetric.

Let $(x, y) \in R$. Then

$$(x, y) \in R \Rightarrow (y, x) \in R^{-1}$$

 $(y, x) \in R \text{ as } R = R^{-1}$

Thus, *R* is symmetric.

Theorem 6: A relation R on a set A is antisymmetric iff $R \cap R^{-1} \subseteq I_A$.

Proof: Suppose that the relation R on set A is antisymmetric. To prove that $R \cap R^{-1} \subseteq I_A$ Let $(x, y) \in R \cap R^{-1} \Rightarrow (x, y) \in R$ and $(x, y) \in R^{-1}$.

$$\Rightarrow$$
 $(x, y) \in R \text{ and } (y, x) \in R$

$$\Rightarrow$$
 $x = y$ [: R is antisymmetric]

$$\Rightarrow$$
 $(x, y) \in I_A$

$$\Rightarrow \qquad \qquad R \cap R^{-1} \subseteq I_A$$

Conversely, suppose that $R \cap R^{-1} \subseteq I_A$. To prove that R is antisymmetric.

Let (x, y) and $(y, x) \in R$

$$\Rightarrow \qquad (x, y) \in R \text{ and } (x, y) \in R^{-1}$$

$$\Rightarrow \qquad (x, y) \in R \cap R^{-1}$$

$$\Rightarrow \qquad (x,y) \in I_A$$

 \Rightarrow x = y, i.e., R is antisymmetric.

Theorem 7: A relation R on set A is asymmetric if and only if $R \cap R^{-1} = \emptyset$

Proof: Let *R* be an asymmetric relation on set *A*. To prove that $R \cap R^{-1} = \phi$.

Now, let $(x, y) \in R$, then $(y, x) \in R^{-1}$

But if $(x, y) \in R$ then $(y, x) \notin R$ as R is asymmetric, therefore, $R \cap R^{-1} = \emptyset$.

Conversely, suppose that $R \cap R^{-1} = \emptyset$. To prove that R is asymmetric.

Let $(x, y) \in R$ then $(y, x) \in R^{-1}$.

Now because $R \cap R^{-1} = \emptyset$, therefore, $(y, x) \notin R$

Thus, *R* is asymmetric.

Example 22 Give an example of a relation which is

- (i) Both reflexive and symmetric
- (ii) Neither reflexive nor irreflexive
- (iii) Both symmetric and antisymmetric

Relations 37

- (iv) Each reflexive, symmetric and transitive.
- (v) Both symmetric and transitive but not reflexive.

Solution

- (i) The relation $R = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3)\}$ on a set $A = \{1, 2, 3\}$ is both reflexive and symmetric.
- (ii) The relation $R = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 2) \text{ on set } A = \{1, 2, 3\} \text{ is neither reflexive nor irreflexive.}$
- (iii) Then identity relation $I_A = \{(1, 1), (2, 2), (3, 3)\}$ on set $A = \{1, 2, 3\}$ is both symmetric and antisymmetric.
- (iv) The relation $R = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 4), (4, 3), (4, 4)\}$ is reflexive, symmetric and transitive.
- (v) The empty relation ϕ on any finite set. A symmetric and transitive but not reflexive.

Example 23 Which of the following defines a relation on the set *N* of natural numbers.

 $R_1: x > y$, $R_2: x + y = 10$, $R_3 = x + 4y = 10$ for all $x, y \in N$. Determine which of the relations are

- (i) reflexive
- (ii) symmetric
- (iii) antisymmetric
- (iv) transitive

Solution

- (i) **Reflexive:** None is reflexive. For example, $(2, 2) \notin R$, S and T
- (ii) **Symmetric:** R is not symmetric because if x < y then $y \not< x$.

The relation *S* is symmetric because if $(x, y) \in S$ then x + y = 10

$$\Rightarrow \qquad y + x = 10$$

$$\Rightarrow \qquad (y, x) \in S'$$

The relation *T* is not symmetric because if $(x, y) \in T$ then x + 4y = 10, but $(y, x) \notin T$ as $y + 4x \neq 10$.

(iii) Antisymmetric: The relation *R* is antisymmetric as if x < y and $y < x \Rightarrow x = y$.

The relation *S* is not antisymmetric

The relation *T* is antisymmetric as if (x, y) and $(y, x) \in T$

$$\Rightarrow x + 4y = 10 \text{ and } y + 4x = 10$$

$$\Rightarrow x + 4y = y + 4x$$

$$\Rightarrow 3x = 3y$$

$$\Rightarrow x = y \forall x, y \in N.$$

(iv) **Transitive**: The relation *R* is transitive because if x < y and y < z

$$\Rightarrow$$
 $x < y \ \forall x, y, z \in N.$

The relation *S* is not transitive because if (x, y) and $(y, z) \in S$

$$\Rightarrow x + y = 10 \text{ and } y + z = 10$$

$$\Rightarrow x + z = 10.$$

Similarly, we can prove that T is not transitive

Example 24 Prove with an example that the union of two equivalence relations is not necessarily an equivalence relation.

Solution It can be proved by giving a counter-example.

Let
$$A = \{1, 2, 3, 4\}$$
. Let $R = \{(1, 1), (2, 2), (3, 3), (4, 4), (2, 3), (2, 4), (3, 2), (4, 2)\}$ and $S = \{(1, 1), (2, 2), (3, 3), (4, 4), (3, 4), (4, 3), (1, 2), (2, 1)\}$ be two relations on A .

It can be easily verified that *R* and *S* are equivalence relations.

$$R \cup S = \{(1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4), (4, 2), (4, 3), (4, 4)\}$$

Now,
$$(1, 2) \in R \cup S$$
 and $(2, 3) \in R \cup S$, but $(1, 3) \notin R \cup S$

 \therefore $R \cup S$ is not transitive.

Hence, we conclude that $R \cup S$ is not necessarily an equivalence relation.

Example 25 Let *L* be the set of all straight lines in the plane. Let *R* be a relation on *L*, defined as

$$R = \{(x, y) : x \text{ is parallel to } y, x, y \in L\}$$

Then prove that R is an equivalence relation.

Solution Given that for all $x, y \in L$, xRy iff x is parallel to y.

R is reflexive: Let $x \in L$. Then we can say that the line x is parallel to itself, i.e., $(x, x) \in R$. Thus, R is reflexive.

R is symmetric: Let $x, y \in L$. Let $(x, y) \in R$. Then

$$(x, y) \in R \Rightarrow x$$
 is parallel to y
 $\Rightarrow y$ is parallel to x
 $\Rightarrow (y, x) \in R$

i.e., *R* is symmetric.

R is transitive: Let x, y, $z \in L$

Let
$$(x, y)$$
 and $(y, z) \in R$

- \Rightarrow x is parallel to y and y is parallel to z
- \Rightarrow x is parallel to z
- \Rightarrow $(x, z) \in R$
- i.e. *R* is transitive

Hence, R is an equivalence relation on L.

Example 26 Let *I* be the set of all integers. Let *R* be a relation on a set *I*, defined as "xRy iff x - y is divisible by 4".

Then prove that *R* is an equivalence relation on *I*.

Solution Given that for all $x, y \in I$,

$$R = \{(x, y) : x - y \text{ is divisible by 4}\}$$

R is reflexive: Let $x \in I$. Then x - x = 0, which is divisible by 4. Thus, $(x, x) \in R$, i.e., R is reflexive.

R is symmetric: Let $(x, y) \in R$, where $x, y \in I$

- \Rightarrow x y is divisible by 4
- \Rightarrow y x is divisible by 4
- \Rightarrow $(y, x) \in R$

i.e., R is symmetric.

R is transitive: Let (x, y) and $(y, z) \in R$, where $x, y, z \in I$

- \Rightarrow x y and y z are divisible by 4
- \Rightarrow x y + y z is divisible by 4
- \Rightarrow x z is divisible by 4
- \Rightarrow $(x, z) \in R$

i.e., *R* is transitive.

Hence, *R* is an equivalence relation on *I*.

Example 27 Let *A* relation *R* on the set of real numbers be defined as

$$aRb \Leftrightarrow 1 + ab > 0$$

Prove that *R* is reflexive, symmetric but not transitive.

Solution (i) **Reflexive**: Let R' be the set of real numbers.

Let
$$a \in R' \Rightarrow 1 + a \cdot a = 1 + a^2 > 0$$

- \Rightarrow $(a, a) \in R$, i.e., R is reflexive.
- (ii) Symmetric: Let $a, b \in R'$. Let $(a, b) \in R$
- $\Rightarrow 1 + a.b > 0$
- \Rightarrow 1 + b.a > 0
- \Rightarrow $(b, a) \in R$

i.e., R is symmetric.

(iii) **Transitive**: The relation *R* is not transitive because we find that $\left(2, \frac{1}{2}\right) \in R$ and

$$\left(\frac{1}{2}, -2\right) \in R$$
 but $(2, -2) \notin R$ since $1 + 2(-2) = -3$ (which is not positive).

Hence, *R* is reflexive, symmetric but not transitive.

Example 28 Prove that the relation R on the set $N \times N$, where N is the set of natural numbers, defined as follows:

$$(a, b) R (c, d) \Leftrightarrow a + d = b + c$$

is an equivalence relation for a, b, c, $d \in N$

Solution (i) Reflexive: Let $(a, b) \in N \times N$, then a + b = b + a

- \Rightarrow (a, b) R(a, b)
- \therefore *R* is reflexive.
- (ii) Symmetric: Let (a, b), $(c, d) \in N \times N$, where $a, b, c, d \in N$.

Let
$$(a, b) R(c, d)$$

$$\Rightarrow a + d = b + c$$

$$\Rightarrow b + c = a + d$$

$$\Rightarrow c + b = d + a$$

$$\Rightarrow$$
 $(c, d) R(a, b)$

i.e., R is symmetric.

(iii) Transitive: Let (a, b), (c, d) and $(e, f) \in N \times N$, where $a, b, c, d, e, f \in N$.

Let
$$(a, b)$$
 $R(c, d)$ and (c, d) $R(e, f)$

$$\Rightarrow$$
 $a+d=b+c$

and

$$c + f = d + e$$

$$\Rightarrow \qquad (a+d)+(c+f)=(b+c)+(d+e)$$

$$\Rightarrow$$
 $a+f=b+e$

- \Rightarrow (a, b) R(e, f)
- \therefore R is transitive.

Hence, R is an equivalence relation on $N \times N$.

Example 29 Prove that the relation R on set $N \times N$, defined as

$$(a, b) R(c, d) \Leftrightarrow ad = bc \ \forall \ (a, b), \ (c, d) \in N \times N.$$

+ is an equivalence relation for a, b, c, $d \in N$

Solution Similarly, as in the previous example.

Example 30 Suppose that A is a non-empty set and f is a function that has A as its domain. Let R be the relation on A consisting of all ordered pairs (x, y), where f(x) = f(y). Show that R is an equivalence relation on A.

Solution It is given that $R = \{(x, y) : f(x) = f(y)\}$ for all $x, y \in A$.

To prove that *R* is an equivalence relation.

(i) **Reflexive:** Let
$$x \in A$$
. Then $f(x) = f(x)$

$$\Rightarrow$$
 $(x, x) \in R$

i.e., R is reflexive.

(ii) Symmetric: Let $x, y \in A$. Let $(x, y) \in R$

$$\Rightarrow f(x) = f(y)$$

$$\Rightarrow f(y) = f(x)$$

$$\Rightarrow (y, x) \in R.$$

i.e., *R* is symmetric.

(iii) Transitive: Let
$$x$$
, y , $z \in A$. Let (x, y) and $(y, z) \in R$

$$\Rightarrow \qquad f(x) = f(y)$$
and
$$f(y) = f(z)$$

$$\Rightarrow \qquad f(x) = f(y) = f(z)$$

$$\Rightarrow \qquad f(x) = f(z)$$

$$\Rightarrow \qquad (x, z) \in R$$

i.e., *R* is transitive.

Hence, *R* is an equivalence relation on set *A*.

Example 31 Let $A = \{1, 2, 3, 4, 5\}$ and $P_1 = \{1, 2\}$, $P_2 = \{3\}$, $P_3 = \{4, 5\}$ be three partitions of A. Obtain an equivalence relation R pertaining to the partition.

Solution Let R be an equivalence relation on A.

Now all elements of P_1 are in relation R

$$\Rightarrow \ \{(1,\,1),\,(2,\,2),\,(1,\,2),\,(2,\,1)\}\subseteq R$$

All elements of P_2 and P_3 are to be in R, so, we must have $\{(3, 3)\} \subseteq R$ and $\{(4, 4), (5, 5), (4, 5), (5, 4) \subseteq R$.

Thus, $R = \{(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 1), (4, 5), (5, 4), (5, 5)\}$

Example 32 Consider the set Z of integers and an integer m > 1. We say that x is congruent to y modulo m, written as $x \equiv y \pmod{m}$ if x - y is divisible by m or x - y = km, where k is any integer. Show that \equiv is an equivalence relation on Z.

Solution (i) Reflexive: Let $x \in I$. Then $x \equiv x \pmod{m}$, since $x - x \equiv 0$ is divisible by m. Hence \equiv is reflexive.

(ii) Symmetric: Let $x, y \in I$. Let $x \equiv y \pmod{m} \Rightarrow x - y$ is divisible by $m \Rightarrow y - x$ is divisible by $m \Rightarrow y \equiv x \pmod{m}$

Hence \equiv is symmetric.

(iii) Transitive: Let x, y, $z \in I$.

Let $x \equiv y \pmod{m}$ and $y \equiv z \pmod{m}$

- \Rightarrow x y and y z are divisible by m
- \Rightarrow x y + y z is also divisible by m
- \Rightarrow x z is divisible by m
- $\Rightarrow x \equiv z \pmod{m}$
- \therefore = is transitive.

Hence \equiv is an equivalence relation.

2.15 EQUIVALENCE CLASS

Let R be an equivalence relation on the non-empty set A and let $a \in A$. Then the equivalence class of a is denoted by [a] is the set of all elements of A to which a is related, i.e.,

$$[a] = \{x : aRx\}$$

The set of all equivalence classes is denoted by A/R and read as "A modulo R" or "A mod R". This is called the quotient of A by R, i.e.,

$$A/R = \{[a] : a \in A\}$$

Example 33 The relation $R = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 4), (4, 3), (4, 4), (5, 5)\}$ is an equivalence relation on set $A = \{1, 2, 3, 4, 5\}$. Find the equivalence class of each element of A. Also find the quotient set A/R.

Solution The equivalence class of the elements of *A* are as follows:

$$[1] = \{x : 1Rx\} = \{1, 2\}$$

$$[2] = \{x : 2Rx\} = \{1, 2\}$$

$$[3] = \{x : 3Rx\} = \{3, 4\}$$

$$[4] = \{x : 4Rx\} = \{3, 4\}$$

$$[5] = \{5\}$$

Now, the quotient set

$$A/R = \{[a] : a \in A\}$$

= \{[1], [2], [3], [4], [5]\}
= \{\{1, 2\}, \{3, 4\}, \{5\}\}

Remark: The set A/R is also called the partition of A induced by R. In the above example, the set $\{\{1, 2\}, \{3, 4\}, \{5\}\}$ is the partition of A induced by R.

2.16 PROPERTIES OF EQUIVALENCE CLASSES

Theorem 8: Let A be any non-empty set and let R be an equivalence relation on set A. Let $a, b \in A$. Then

- (i) $a \in [a]$
- (ii) If $b \in [a]$, then [a] = [b]
- (iii) [a] = [b] if and only if $(a, b) \in R$
- (iv) Either [a] = [b] or $[a] \cap [b] = \emptyset$, i.e., two equivalence classes are either disjoint or identical.

Proof: (i) Since *R* is reflexive, therefore for each $x \in A$, $(x, x) \in R$, i.e., xRx

But
$$[a] = \{x \in A : aRx\}$$

Thus, $aRa \Rightarrow a \in [a]$

...(i)

...(ii)

(ii) Given that
$$b \in [a]$$

 \Rightarrow

 $bRa \text{ or } (b, a) \in R \Rightarrow aRb$

Let

$$x \in [a] \Rightarrow xRa$$

Now xRa and $aRb \Rightarrow xRb$ as R is transitive

 \Rightarrow

$$x \in [b]$$

i.e.,

$$[a] \subseteq [b]$$

Now, let

$$y \in [b] \Rightarrow yRb$$

Now yRb and $bRa \Rightarrow yRa$

 \Rightarrow

$$y \in [a]$$

i.e.,

$$[b] \subseteq [a]$$

From (i) and (ii), we have

$$[a] = [b].$$

(iii) Let [a] = [b] to prove that aRb

Let $x \in [a] \Rightarrow xRa \Rightarrow aRx$

Now, $x \in [b] \Rightarrow xRb$

Now, aRx and $xRb \Rightarrow aRb$.

Conversely, suppose that aRb. To prove that [a] = [b].

Let $x \in [a] \Rightarrow xRa$.

But it is given that aRb

Thus, xRb

 \Rightarrow

$$x \in [b]$$

i.e.,

$$[a]\subseteq [b]$$

...(i)

Again, let $y \in [b]$

 $\Rightarrow yRB$

But it is given that $aRb \Rightarrow bRa$

Now yRb and $bRa \Rightarrow yRa$

 \Rightarrow

$$y \in [a]$$

i.e.,

$$[b] \subseteq [a]$$

...(ii)

From (i) and (ii), we have

$$[a] = [b]$$

(iv) Suppose that $[a] \cap [b] \neq \emptyset$, then we have to show that [a] = [b].

Now,

$$[a] \cap [b] \neq \emptyset$$

 \Rightarrow There exists at least one element $x \in [a] \cap [b]$ such that $x \in [a]$ and $x \in [b]$

 $\Rightarrow xRa \text{ and } xRb$

 \Rightarrow

aRx and xRb

[:: *R* is transitive]

 \Rightarrow

 $aRb \Rightarrow [a] = [b].$

[By part (iii)]

Hence, two equivalence classes are either disjoint or identical.

Theorem 9: An equivalence relation on a set A decomposing the set into disjoint classes. **Proof:** Let R be an equivalence relation on a set A. Let $a \in A$ and B be a subset of A consisting of all those elements which are equivalent to a i.e.,

$$B = \{x \in A : aRx\}$$

Then $a \in B$, for aRa (R is reflexive). Any two elements of B are equivalent to each other, for if x, $y \in B$, then xRa and yRa

Now,
$$xRa, yRa \Rightarrow xRa, aRy$$
 [R is symmetric] \Rightarrow xRy

Thus, *B* is an equivalence class.

Suppose that B_1 is another equivalence class

i.e.,
$$B_1 = \{x \in A : xRb\}$$

where b is not equivalent to a. Then the classes B and B_1 must be disjoint. For, if c is a common element of B and B_1 , cRa and cRb, so that bRa which is contrary to our hypothesis.

Now, the set A can be decomposed into equivalence classes B, B_1 , B_2 , ... such that every element of A belongs to one of these classes and we obtain the required partition of A as these classes are mutually disjoint.

Example 34 Let $A = \{1, 2, 3, 4, 5, 6\}$ and $R = \{(1, 1), (1, 5), (2, 2), (2, 3), (2, 6), (3, 2), (3, 3), (3, 6), (4, 4), (5, 1), (5, 5), (6, 2), (6, 3), (6, 6)\}$ on A. Find the partition of A induced by R, i.e., the quotient set A/R.

Solution Given that

Now,

$$A = \{1, 2, 3, 4, 5, 6\}$$

$$[1] = \{x \in A : 1Rx\} = \{1, 5\}$$

$$[2] = \{x \in A : 2Rx\} = \{2, 3, 6\}$$

$$[3] = \{x \in A : 3Rx\} = \{2, 3, 6\}$$

$$[4] = \{x \in A : 4Rx\} = \{4\}$$

$$[5] = \{x \in A : 5Rx\} = \{1, 5\}$$

$$[6] = \{x \in A : 6Rx\} = \{2, 3, 6\}$$

The partition of *A* induced by *R* is given by

$$A/R = \{[1], [2], [3], [4], [5], [6]\}$$

= \{\(1, 5\), \{2, 3, 6\}, \{4\}

2.17 PATH IN A RELATION

Let R be a relation on set A. Then a path of length n in R from a to b is a finite sequence a, x_1 , x_2 , x_3 , ..., x_{n-1} , b which begins with a and ends with b such that

$$aRx_1, x_1Rx_2, x_2Rx_3, ..., x_{n-1}Rb$$

The path of length n must have n + 1 elements of A. The elements may be distinct or same.

2.18 CYCLE IN A RELATION

A path that begins and ends at the same vertex is called a cycle.

Remark: The length of a path is the number of edges in the path.

Example 35 Consider the relation whose digraph is given below.

Fig. 2.2

The graph has a path P_1 = 1, 2, 4, 6 of length 3.

The graph has a path P_2 = 1, 2, 5, 3, 4, 6 of length 5.

The graph has a path P_3 = 1, 2, 4, 6, 1 of length 4.

The graph has a cycle $P_4 = 1, 2, 5, 3, 4, 6, 1$ of length 6.

Paths in a relation *R* can be used to define following 1 relation on the set *A*.

 \mathbb{R}^n : The relation \mathbb{R}^n on set A is defined as a path of length n from a to b in R.

 \mathbb{R}^{∞} : The relation \mathbb{R}^{∞} on set A is defined as some path from a to b in R and the length of path depends on a and b. This is called the connectivity relation for R.

 $R^n(x)$: It is defined as a set, having all the vertices that can be reached from x by means of a path in R of length n.

 $R^{\infty}(x)$: It is defined as a set, having all the vertices that can be reached from x by some path in R.

R*: Let R be a relation on set A, where |A| = n. Then the relation R^* of R is defined as a relation such that aR^*b if a = b or $aR^{\infty}b$. This is also called the reachability relation. In other words, we can say that b is reachable from a if either b = a or there is some path from a to b.

Example 36 Let R be a relation on set $A = \{1, 2, 3, 4, 5\}$ whose digraph is shown in Figure 2.3. Determine the digraph of the relations R^2 and R^3 on A.

Fig. 2.3

Solution To obtain the digraph of the relation R^2 , we find all the edges that connect two vertices in R^2 , when there is a path of length two connecting those vertices in R. The digraph of R^2 is shown in Fig. 2.4.

Fig. 2.4 Digraph of R^2

To obtain the digraph of the relation R^3 , we find all paths of length 3 in R from any vertex to any other vertex and then join those vertices in R^3 by a direct line. The digraph of R^3 as shown in Fig. 2.5.

Fig. 2.5 Digraph of R³

Example 37 Let R be a relation on set $A = \{1, 2, 3, 4, 5, 6, 7\}$, whose digraph is shown in Fig. 2.6.

Fig. 2.6

Determine (a) $R^2(4)$ (b) $R^2(7)$ (c) $R^{\infty}(5)$ (d) $R^{\infty}(2)$.

Solution To find $R^2(4)$ and $R^2(7)$, we find all the vertices which can be reached from 4 and 7 by means of a path of length 2 respectively. Thus,

- (i) $R^2(4) = \{7\}$
- (ii) $R^2(7) = \{3\}.$

Now, to find $R^{\infty}(5)$ and $R^{\infty}(2)$, we find all the vertices which can be reached from 5 and 2 by means of a path of some length respectively. Thus,

- (iii) $R^{\infty}(5) = \{3, 4, 6, 7\}$
- (iv) $R^{\infty}(2) = \{4, 6, 7, 5, 3\}$

2.19 COMPUTATION OF THE MATRIX OF \mathbb{R}^n , \mathbb{R}^{∞} AND \mathbb{R}^*

- (i) Let R be a relation on a finite set A. Then the matrix of R^n is given by $M_R n = M_R \cdot M_$
- (ii) Let R be a relation on finite set A. Then the matrix of R^{∞} is given by $M_{R^{\infty}} = M_R \vee M_{R^2} \vee M_{R^3} \vee ...$
- (iii) Let R be a relation on a finite set A, then the matrix of R^* is given by

$$M_R * = I_n \vee M_{R^{\infty}}$$

where I_n is the identity matrix of $n \times n$ and n is the number of elements in A.

i.e.,
$$M_{R^*} = I_n \vee M_R \vee M_{R^2} \vee M_{R^3} \vee$$

Example 38 Let $A = \{1, 2, 3, 4\}$ and let $R = \{(1, 1), (1, 2), (2, 1), (2, 3), (3, 1), (3, 3), (4, 3)\}$ be a relation on R. Then find the matrix of R^n , R^∞ and R^* .

Solution The matrix of the given relation *R* is given by

$$M_R = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

(i) The matrix of \mathbb{R}^n is given by

$$M_R^n = M_R \cdot M_R \cdot M_R \cdot M_R$$

$$= \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

(ii) The matrix of R^{∞} is given by

$$M_{R^{\infty}} = M_R \vee M_{R^2} \vee M_{R^3} \vee M_{R^4}$$

Now,
$$M_{R^2} = M_R \cdot M_R = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

$$M_{R^3} = M_{R^2} \cdot M_R = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix}, \quad M_{R^4} = M_{R^3} M_R = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

Now,
$$M_R^{\infty} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \vee \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix} \vee \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix} \vee \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

(iii) The matrix of R^* is given by

$$M_R^* = I_n \vee M_{R^\infty}$$

$$= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \lor \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{bmatrix}$$

2.20 CLOSURE OF RELATIONS

In the present study we want to consider the situation of constructing a new relation R^c from the given previous known relation R such that $R \subseteq R^c$. The relation R^c is called the closure of R.

Let R be a relation on a set A. R may or may not have some property P(say) such as reflexivity, symmetry or transitivity. If there is a relation R^c with property P and $R \subseteq R^c$ such that R^c is a subset of each relation with property P containing R, then R^c is called closure of R with property P. Now we will give the methods of obtaining some closures of the given relations.

2.20.1 Reflexive Closure

Let R be a relation on a set A, and suppose that R is not reflexive. Now we produce a reflexive relation containing R that is as small as possible. This resulting relation is called reflexive closure of R and it is denoted as R_r . The reflexive closure of R can be obtained as follows:

$$R_r = R \cup I_A$$
, where I_A is identity relation on set A .

Example 39 If $R = \{(1, 1), (1, 2), (2, 3), (3, 1), (3, 2)\}$ is a relation on the set $A = \{1, 2, 3\}$, then find the reflexive closure of R.

Solution First we find the identity relation on set *A*

i.e.,
$$I_A = \{(1, 1), (2, 2), (3, 3)\}$$

The reflexive closure of the given relation *R* is given by

$$\begin{split} R_r &= R \cup I_A \\ &= \{(1,1), (1,2), (2,2), (2,3), (3,1), (3,2), (3,3)\} \end{split}$$

Example 40 Find the reflexive closure of the relation $R = \{(x, y) : x < y\}$ on the set of natural numbers.

Solution Here
$$I_A = \{(x, x) : x \in N\}$$

The reflexive closure of *R* is given as

$$R_r = R \cup I_A = \{(x, y) : x \le y\}$$

2.20.2 Symmetric Closure

The symmetric closure of a relation R on a set A is denoted by R_s and it is defined as follows:

 $R_s = R \cup R^{-1}$, where R^{-1} is the inverse of the relation R.

Example 41 Find the symmetric closure of the relation $R = \{(a, b), (a, c), (b, a), (b, d), (c, d), (d, c), (d, d) \text{ on the set } A = \{a, b, c, d\}.$

Solution First we find R^{-1} i.e.

$$R^{-1} = \{(b, a), (c, a), (a, b), (d, b), (d, c), (c, d), (d, d)\}.$$

Now, the symmetric closure of R is given as

$$R_s = R \cup R^{-1} = \{(a, b), (a, c), (b, a), (b, d), (c, a), (c, d), (d, b), (d, c), (d, d)\}$$

Example 42 Find the symmetric closure of the relation $R = \{(x, y) : x < y\}$ on the set of natural numbers.

Solution The symmetric closure of *R* is given as

$$R_s = R \cup R^{-1} = \{(x, y) : x < y\} \cup \{(y, x) : x < y\}$$
$$= \{(x, y) : x \neq y\}$$

2.20.3 Transitive Closure

Let R be a relation on a set A. Then the transitive closure of R is denoted by R_t and it is the smallest relation which contains R as subset and which is transitive.

If the cardinality of the set A is n, i.e., |A| = n, then the transitive closure of R, i.e., R_t is given by

$$R_t = R \cup R^2 \cup R^3 \cup \cup R^n$$
, where $R^2 = RoR$, $R^3 = R^2oR$, etc.

The transitive closure of the above given relation can be calculated by an alternative method, i.e., matrix method.

The matrix of the transitive closure of R, i.e., R_t is given as below.

$$M_{R_{i}} = M_{R} \vee M_{R^{2}} \vee M_{R^{3}} \vee \vee M_{R^{n}}$$

where addition is done using Boolean arithmetic.

Example 43 Let $R = \{(1, 2), (2, 1), (2, 2), (3, 1), (4, 3)\}$ be a relation on set $A = \{1, 2, 3, 4\}$. Find the transitive closure of R.

Solution Let M_R , M_{R^2} , M_{R^3} and M_{R^4} be the matrices representing the relations R, R^2 , R^3 and R^4 respectively and M_{R^4} be the matrix of the transitive closure of R. Then

$$M_{Rt} = M_R \vee M_{R2} \vee M_{R3} \vee M_{R4}$$

Now,
$$M_R = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$M_{R^2} = M_R \; . \; M_R = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \; . \; \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

i.e., $\{(1, 1), (1, 2), (2, 1), (2, 2), (3, 2), (4, 1)\} = R^2$

$$M_{R^3} = M_{R^2} \cdot M_R = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

i.e., $\{(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2), (4, 2)\} = R^3$

$$M_{R^4} = M_{R^3} \cdot M_R = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$$

i.e., {(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2), (4, 1), (4, 2)}
Now,
$$M_{R_{+}} = M_{R} \vee M_{R^{2}} \vee M_{R^{3}} \vee M_{R^{4}}$$

$$= \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$
 (by using Boolean Algebra)

i.e., $R_t = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)\}$ which is the required transitive closure of R.

2.21 WARSHAL'S ALGORITHM

If the number of elements in the set A is large, then the above method of finding the transitive closure of the relation R on set A is very difficult. Fortunately a more efficient algorithm for computing transitive closure is available. It is known as Warshal's algorithm. We describe this algorithm as follows:

Let R be a relation on a set $A = \{a_1, a_2, ..., a_n\}$. Now for $1 \le k \le n$, we define a Boolean matrix w_k as follows. w_k has a 1 in position i, j, if and only if there is a path from a_i to a_j in R whose interior vertices, if any, come from the set $\{a_1, a_2, ..., a_k\}$.

Since any vertex come from the set A, therefore, the matrix w_n has a 1 in position i, j if and only if some path in R connects a_i with a_j . If we define w_0 to M_R , then we will have a sequence w_0 , w_1 , w_2 ,....., w_n whose first term is M_R and whose last term is M_{R^∞} , where

$$M_{R^{\infty}} = M_R \vee M_{R^2} \vee M_{R^3} \vee \dots$$

Now, we will show how to compute each matrix w_k from the previous matrix w_{k-1} . Then we can start with the matrix M_R and proceed one step at a time until, in n steps, we reach the matrix $M_{R^{\infty}}$. This procedure is called Warshal's algorithm. We have the following procedure for computing w_k from w_{k-1} .

Step 1: First copy to w_k all 1's from w_{k-1}

Step 2: List the locations c_1 , c_2 , c_3 ,, in column k of w_{k-1} , where the entry is 1, and the locations r_1 , r_2 , r_3 ,, in row k of w_{k-1} , where the entry is 1.

Step 3: Put 1's in all the positions c_i , r_i of w_k (if they are not already there).

Example 44 If $R = \{(a, b), (b, c), (c, d), (b, a)\}$ is a relation on set $A = \{a, b, c, d\}$, then find the transitive closure of R by using Warshal's algorithm.

Solution The matrix w_0 is given as

$$w_0 = M_R = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

First we compute w_1 so that $k = 1.w_0$ has 1's in location 2 of column 1 and location 2 of row 1. Thus, w_1 is just same as w_0 with a new 1 in position (2, 2).

$$w_1 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Now, we compute w_2 , i.e., k = 2. The matrix w_1 has 1's in column locations 1 and 2 of column 2 and locations 1, 2 and 3 of row 2.

Thus, to obtain w_2 , we must put 1's in positions (1, 1), (1, 2), (1, 3), (2, 1), (2, 2) and (2, 3) of matrix w_1 (if 1's are not already there), i.e.

$$w_2 = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Now, we compute w_3 i.e., k = 3. We see that column 3 of w_2 has 1's in locations 1 and 2 and row 3 of w_2 has a 1 in location 4. Thus to obtain w_3 , we must put 1's in positions (1, 4) and (2, 4) of w_2 , i.e.

$$w_3 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Finally, w_3 has 1's in locations 1, 2, 3 of column 4 and no 1's in row 4, so no new 1's are added and $M_{R^{\infty}} = M_{R_t} = w_4 = w_3$.

Thus, the transitive closure of the given relation is given as

$$R_t = \{(a, a), (a, b), (a, c), (a, d), (2, a), (2, b), (2, c), (2, d), (3, d)\}.$$

Theorem 10: If R and S are two equivalence relations on a set A, then the smallest equivalence relation containing both R and S is $(R \cup S)^{\infty}$.

Proof: Recall that I_A is the identity relation on set A and that a relation is reflexive iff it contains I_A .

Since both R and S is also symmetric. Because of this, all paths in $R \cup S$ are reflexive, therefore, $I_A \subseteq R$ and $I_A \subseteq S$

 \Rightarrow $I_A \subseteq R \cup S \subseteq (R \cup S)^{\infty}$, and $(R \cup S)^{\infty}$ is also reflexive.

Since R and S are symmetric, therefore, $R = R^{-1}$ and $S = S^{-1}$, so $(R \cup S')^{-1} = R^{-1} \cup S^{-1} = R \cup S$, and $R \cup S$ is also symmetric. Because of this, all path in $R \cup S$ are "two-way streets" and it follows from the definitions that $(R \cup S)^{\infty}$ must also be symmetric. As we know that $(R \cup S)^{\infty}$ is transitive, therefore, $(R \cup S)^{\infty}$ is an equivalence relation containing $R \cup S$.

Example 45 Let $A = \{1, 2, 3, 4, 5\}$ and $R = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 4), (4, 3), (4, 4), (5, 5)\}$ and $S = \{(1, 1), (2, 2), (3, 3), (4, 4), (4, 5), (5, 4), (5, 5)\}$ be two equivalence relations on set A. The partition A/R of A corresponding to R is $\{\{1, 2\}, \{3, 4\}, \{5\}\}$ and the partition A/S of A corresponding to R is $\{\{1\}, \{2\}, \{3\}, \{4, 5\}\}$. Find the smallest equivalence relation containing R and S, and compute the partition of A that it produces.

Solution We have

$$M_R = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad M_S = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

$$M_{R \cup S} = M_R \lor M_S = \begin{vmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{vmatrix}$$

Now, we compute $M_{(R \cup S)^{\infty}}$ by Warshal's algorithm.

First
$$w_0 = M_{R \cup S} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

Now, we compute w_1 , i.e., k = 1. Since w_0 has 1's in locations 1 and 2 of column 1 and in locations 1 and 2 of row 1. We can see that there is no change, i.e.

$$w_1 = w_0$$

Similarly, we can see that

$$w_2 = w_1$$
 and $w_3 = w_2$

Now, we compute w_4 , i.e., k = 4. Since w_3 has 1's in locations 3, 4, and 5 of column 4 and in locations 3, 4 and 5 of row 4. We must add new 1's to w_3 in partition (3, 5) and (5, 3). Thus.

$$w_4 = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

Now, we can verify that $w_5 = w_4$ and thus

$$(R \cup S)^{\infty} = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 4), (3, 5), (4, 3), (4, 4), (4, 5), (5, 3), (5, 4), (5, 5)\}$$

Now find the corresponding partition of *A*.

$$[1] = \{1, 2\}$$

$$[2] = \{1, 2\}$$

$$[3] = \{3, 4, 5\}$$

$$[4] = \{3, 4, 5\}$$

$$[5] = \{3, 4, 5\}$$

Thus,

$$A/(R \cup S)^{\infty} = \{\{1, 2\}, \{3, 4, 5\}\}$$

EXERCISE

1. A relation R on the set $A = \{2, 3, 5, 8, 10, 15\}$ is given by "x divides y", for all $x, y \in A$. Then find the domain, range, and digraph of R.

Relations 55

- 2. If $A = \{1, 2, 3\}$ and $B = \{a, b, c, d\}$, then find $A \times B$, $B \times A$, and $A \times A$.
- 3. If $A = \{a, b, c, d\}$ and $B = \{1, 2, 3\}$. If R is the relation from A to B, then find the matrix of R^{-1} and R^2 .
- 4. Which of the following relations are reflexive, symmetric and transitive on set $A = \{1, 2, 3, 4\}$
 - (i) $R_1 = \{(1, 1), (1, 2), (2, 3), (2, 4), (3, 4)\}$
 - (ii) $R_2 = \phi$, the empty relation.
 - (iii) $R_3 = A \times A$
 - (iv) R_4 = Relation \leq (less than or equal)
 - (v) R_5 = Relation | (divides)
- 5. Let *R* be a relation on set *N*, defined by the equation x + 3y = 12, i.e.
 - $R = \{(x, y) : x + 3y = 12\}.$ Write.
 - (i) *R* as the set of ordered pairs
 - (ii) Find R^{-1}
 - (iii) Find the composition of *RoR*.
- 6. Let $A = \{1, 2, 3\}$ and let P(A) be the power set of A. Define the relation R on P(A) as follows. If B and C are subsets of A, then BRC if $A \subset B$. Draw a digraph for this relation. Determine its reflexivity, transitivity and antisymmetry.
- 7. Which of the following relations are equivalence relations on the set of integers.
 - (i) aRb iff a > b
 - (ii) aRb iff a + b = 6
 - (iii) aRb iff a + b < 6
- 8. Let $R = \{(a, a), (a, b), (b, b), (b, c), (c, a), (c, c), (d, a), (d, b)\}$ be a relation on set $A = \{a, b, c, d\}$. Then find.
 - (i) reflexive, symmetric and transitive closure of *R*.
 - (ii) R^{∞} , R^n and R^* .
- 9. Let *R* be a relation defined by xRy if and only if |x-y| is even. Show that *R* is an equivalence relation on set *N*.
- 10. Partition the set $A = \{1, 2, 3, 4, 5, 6\}$ by $\{\{1, 2\}, \{3\}, \{4, 5\}, \{6\}\}$. List the symmetric relation determined by this relation.
- 11. If $A = \{1, 2, 3, 4, 5, 6, 7\}$ and $R = \{(x, y) : x y \text{ is divisible by 3}\}$, show that R is an equivalence relation. Also find the equivalence class of each element of A.
- 12. Consider a set $A = \{1, 3, 5\}$. Let R be a relation defined by $xRy \Leftrightarrow y = x + 2$ and S be a relation defined by $xSy \Leftrightarrow x \leq y$. Then find
 - (i) RoS
 - (ii) SoR
 - (iii) Is RoS = SoR.

- 13. In Q.13 find $R \cup S$, $R \cap S$, RoS and R^{-1} by using Boolean matrices.
- 14. Consider the set $A = \{1, 5, 6, 7\}$ and the relation R on set A is given by $R = \{(4, 5), (5, 6), (5, 7), (6, 6), (6, 7), (7, 6), (7, 7).$ Determine (i) R^3 (ii) R^{∞} .
- 15. Consider the digraph of the relation R on set $A = \{1, 2, 3, 4, 5\}$ as shown in Fig. 2.7.

Fig. 2.7

Determine (i) R^* (ii) R^{∞} .

- 16. Using Warshal's algorithm, find the transitive closure of R defined on $A = \{1, 2, 3, 4\}$ and $R = \{(1, 1), (2, 1), (2, 2), (2, 3), (3, 4), (4, 4)\}$
- 17. Let $A = \{a, b, c, d, e\}$ and let R and S be two relations on set A described by

$$M_R = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \end{bmatrix}, \quad M_S = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

Use Warshal's algorithm to compute the transitive closure of $R \cup S$.

- 18. Let $A = \{1, 2, 3,, 15\}$. Let R be the equivalence relation on A, defined by (a, b) R(c, d) if ad = bc. Find the equivalence class of (3, 2).
- 19. Show that the relation R, consisting of all pairs (x, y) where x and y are bits strings of length 3 or more that agree in their first three bits, is an equivalence relation on the set of all bit strings of length three or more.
- 20. Obtain the distinct equivalence classes of the relation R "congruence modulo 5" on the set I.