Extra practice problems, ungraded

- 1. Gradients. Compute the gradients of the following functions. Give the exact dimension of the output.
 - (a) Linear regression. $f(x) = \frac{1}{40} ||Ax b||_2^2$, $A \in \mathbb{R}^{20 \times 10}$

Ans. Actually, the best way to do this is to invoke the chain rule, which you will prove in the first graded problem. Write $g(v) = \frac{1}{40} ||v - b||_2^2$. Then since $b \in \mathbb{R}^{20}$,

$$\nabla g(v) = \nabla_v \left(\frac{1}{40} \sum_{i=1}^{20} (v[i] - b[i])^2 \right) \stackrel{\text{linearity}}{=} \frac{1}{40} \sum_{i=1}^{20} \nabla_v \left((v[i] - b[i])^2 \right).$$

Note that

$$\nabla_{v}(v[i] - b[i])^{2} = \begin{bmatrix} \frac{\partial}{\partial v[1]}(v[i] - b[i])^{2} \\ \frac{\partial}{\partial v[2]}(v[i] - b[i])^{2} \\ \vdots \\ \frac{\partial}{\partial v[20]}(v[i] - b[i])^{2} \end{bmatrix}$$

and

$$\frac{\partial}{\partial v[k]} (v[i] - b[i])^2 = \begin{cases} 2(v[i] - b[i]) & \text{if } i = k \\ 0 & \text{else.} \end{cases}$$

So,

$$\sum_{i=1}^{20} \nabla_v (v[i] - b[i])^2 = 2 \begin{bmatrix} (v[1] - b[1]) \\ (v[2] - b[2]) \\ \vdots \\ (v[20] - b[20]) \end{bmatrix} = 2(v - b).$$

and $\nabla g(v) = \frac{1}{20}(v-b)$.

Now, we invoke the chain rule. (Note that f and g are flipped as to their position in 1.(b).) Then

$$\nabla f(x) = A^T \nabla g(Ax) = A^T (\frac{1}{20} (Ax - b)) = \frac{1}{20} A^T (Ax - b).$$

To get the dimension, you can do this in two ways. One, you notice that A has 10 columns, so A^T has 10 rows. Two, you notice that the gradient $\nabla f(x)$ should always have the same number of elements as x, which is 10. In either case, $\nabla f(x) \in \mathbb{R}^{10}$.

(b) Sigmoid. $f(x) = \sigma(c^T x), c \in \mathbb{R}^5, \sigma(s) = \frac{1}{1 + \exp(-x)}$. Hint: Start by showing that $\sigma'(s) = \sigma(s)(1 - \sigma(s))$.

Ans. We start with the hint, noting that

$$\sigma'(s) = \frac{\exp(-x)}{(1 + \exp(-x))^2} = \frac{1}{1 + \exp(-x)} \cdot \left(1 - \frac{1}{1 + \exp(-x)}\right) = \sigma(s)(1 - \sigma(s)).$$

Then using chain rule, (where $A = c^T$) we can get

$$\nabla f(x) = \sigma'(c^T x)c = \sigma(c^T x)(1 - \sigma(c^T x))c \in \mathbb{R}^5.$$

Main assignment, graded

1. (1 pts, 0.5 pts each) Linearity. A function $f: \mathbb{R}^n \to \mathbb{R}$ is linear if for any x and y in the domain of f, and any scalar α and β ,

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y).$$

Are the following functions linear? Justify your answer.

- (a) $f(x) = ||x||_2^2$
- (b) $f(x) = c^T x + b^T A x$
- 2. (1 pt, 0.5 each) A function $f: \mathbb{R}^n \to \mathbb{R}$ is a norm if it satisfies three properties:
 - Nonnegativity: $f(x) \ge 0$ for all x and f(x) = 0 only when x = 0
 - Positive homogeneity $f(\alpha x) = \alpha f(x)$ whenever $\alpha \ge 0$
 - Triangle inequality $f(x+y) \le f(x) + f(y)$.

Using the properties of norms, verify that the following are norms, or prove that they are not norms by finding a counterexample.

- (a) Sum of square roots, squared. $f: \mathbb{R}^d \to \mathbb{R}, f(x) = \left(\sum_{k=1}^d \sqrt{|x[k]|}\right)^2$
- (b) Weighted 2-norm. $f: \mathbb{R}^d \to \mathbb{R}, f(x) = \sqrt{\sum_{k=1}^d \frac{|x[k]|^2}{k}}$
- 3. Gradient properties. (1 pt, 0.5 pts each.) Prove the following two properties of gradients:
 - (a) Linearity. If $h(x) = \alpha f(x) + \beta g(x)$, then $\nabla h(x) = \alpha \nabla f(x) + \beta \nabla g(x)$.
 - (b) Chain rule. Show that if g(v) = f(Av), then $\nabla g(v) = A^T \nabla f(Av)$.
- 4. Gradients. (2 pts, 1 pt each.) Compute the gradients of the following functions. Give the exact dimension of the output.
 - (a) Quadratic function. $f(x) = \frac{1}{2}x^TQx + p^Tx + r$, $Q \in \mathbb{R}^{12 \times 12}$ and Q is symmetric (Q[i,j] = Q[j,i]).
 - (b) Softmax function. $f(x) = \frac{1}{\mu} \log(\sum_{i=1}^{8} \exp(\mu x[i])), x \in \mathbb{R}^{8}, \mu \text{ is a positive scalar}$

- 5. Polyfit via linear regression. (3 pts)
 - Download weatherDewTmp.mat. Plot the data. It should look like the following

• We want to form a polynomial regression of this data. That is, given w = weeks and d = dew readings, we want to find $\theta_1, ..., \theta_p$ as the solution to

$$\underset{\theta \in \mathbb{R}^p}{\text{minimize}} \quad \frac{1}{2} \sum_{i=1}^m (\theta_1 + \theta_2 w_i + \theta_3 w_i^2 + \dots + \theta_p w_i^{p-1} - d_i)^2. \tag{1}$$

Form X and y such that (1) is equivalent to the least squares problem

$$\underset{\theta \in \mathbb{R}^p}{\text{minimize}} \quad \frac{1}{2} \|X\theta - y\|_2^2. \tag{2}$$

That is, for w the vector containing the week number, and y containing the dew data, form

$$X = \begin{bmatrix} 1 & w_1 & w_1^2 & w_1^3 & \cdots & w_1^{p-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & w_m & w_m^2 & w_m^3 & \cdots & w_m^{p-1} \end{bmatrix}.$$

- (a) Linear regression. (1pt)
 - i. Write down the normal equations for problem (2).
 - ii. Fill in the code to solve the normal equations for θ , and use it to build a predictor. To verify your code is running correctly, the number after check number should be 1.759 (implemented correctly) or 1.341 (also accepted).
 - iii. Implement a polynomial fit of orders p = 1, 2, 3, 10, 100, for the weather data provided. Include a figure that plots the original signal, overlaid with each polynomial fit. Comment on the "goodness of fit" for each value of p.
- (b) Ridge regression. (0.5pt) Oftentimes, it is helpful to add a regularization term to (2), to improve stability. In other words, we solve

$$\underset{\theta \in \mathbb{R}^p}{\text{minimize}} \quad \frac{1}{2} \|X\theta - y\|_2^2 + \frac{\rho}{2} \|\theta\|_2^2.$$
(3)

for some $\rho > 0$.

- i. Again, write down the normal equations for (3). Your equation should be of form $A\theta = b$ for some matrix A and vector b that you specify.
- ii. Write the code for solving the ridge regression problem and run it. To verify your code is running correctly, the number after check number should be *Checknumber*: 1.636 (implemented correctly) or 1.206 (also accepted).
- iii. Using $\rho = 1.0$, plot the weather data with overlaying polynomial fits with ridge regression. Provide these plots for p = 1, 2, 3, 10, 100. Comment on the "goodness of fit" and the stability of the fit, and also compare with the plots generated without using the extra penalty term.

- (c) Conditioning. (1pt)
 - i. An unconstrained quadratic problem is any problem that can be written as

$$\underset{\theta}{\text{minimize}} \quad \frac{1}{2}\theta^T Q \theta + c^T \theta + r \tag{4}$$

for some symmetric positive semidefinite matrix Q, and some vector c and some scalar r. Show that the ridge regression problem (3) is an unconstrained quadratic problem by writing down Q, c, and r in terms of X and y such that (4) is equivalent to (3). Show that the Q you picked is positive semidefinite.

ii. In your code, write a function that takes in X and y, constructs Q as specified in the previous problem, and returns the condition number of Q. Report the condition number $\kappa(Q)$ for varying values of p and ρ , by filling in the following table. Here, m=742 is the total number of data samples. Report at least 2 significant digits. Comment on how much ridge regression is needed to affect conditioning.

p	$\rho = 0$	$\rho = m$	$\rho = 10m$	$\rho = 100m$
1				
2				
5				
10				

iii. Under the same experimental parameters as the previous question, run ridge regression for each choice of p and ρ , and fill in the table with the mean squared error of the fit:

$$\mathbf{mean\ squared\ error} = \frac{1}{m} \sum_{i=1}^m (x_i^T \theta - y[i])^2$$

where x_i is the *i*th row of X. Comment on the tradeoff between using larger ρ to improve conditioning vs its affect on the final performance.

p	$\rho = 0$	$\rho = m$	$\rho = 10m$	$\rho = 100m$
1				
2				
5				
10				

(d) Forcasting. (0.5pt) Picking your favorite set of hyperparameters (p, ρ) , forecast the next week's dew point temperature. Plot the forecasted data over the current observations. Do you believe your forecast? Why?

4

6. PAC learning. (2pts) Consider the following hypothesis class in \mathbb{R}^2 :

$$\mathcal{H} = \left\{ h_a : [-2, 2]^2 \to \mathbb{R} : h_a(x) = \begin{cases} 1 & \text{if } |x[1] - x[2]| \le a \\ 0 & \text{else.} \end{cases}, \quad 0 \le a \le 1. \right\}$$

The notation $h_a:[-2,2]^2\to\mathbb{R}$ means that the inputs x are restricted in the two-dimensional domain

$$\begin{bmatrix} -2\\ -2 \end{bmatrix} \le x \le \begin{bmatrix} 2\\ 2 \end{bmatrix}.$$

We now consider a scenario where the true function y = f(x) is realizable, e.g. $f \in \mathcal{H}$. We draw samples $\mathcal{S} = \{(x_1, y_1), ..., (x_m, y_m)\}$ where $y_i = f(x_i)$ and compute an ERM

$$h_{\mathcal{S}} = \underset{h \in \mathcal{H}_{\mathrm{in}}}{\operatorname{argmin}} \mathcal{L}_{\mathcal{S}}(h)$$

where $\mathcal{L}_{\mathcal{S}}$ is the empirical risk.

- (a) (0.25 pts) Draw a picture of one possible hypothesis in \mathcal{H} . That is, draw the 2-D region where the area for x where $h_a(x) = 1$ is shaded, and $h_a(x) = 0$ is not shaded, for some plausible a.
- (b) (0.25 pts) Propose a training sampling strategy (e.g. a distribution \mathcal{D} where we draw $x_i \sim \mathcal{D}$) that guarantees PAC learning.
- (c) (0.25 pts) On the image above, indicate the region where no samples in S exist in order for the ERM estimate of \hat{a} to be wrong by β , e.g. $|a \hat{a}| = \beta$. Calculate the area of that region. (Your answer will be in terms of a.)
- (d) (0.25 pts) Next, suppose that $\hat{a} = a + \beta$. What is $\mathcal{L}_{\mathcal{D}}(h_{\hat{a}})$? (Your answer will be in terms of a.)
- (e) (0.25 pts) Next, suppose that $\hat{a} = a \beta$. What is $\mathcal{L}_{\mathcal{D}}(h_{\hat{a}})$? (Your answer will be in terms of a.)
- (f) (0.75 pts) Put the pieces together to prove that \mathcal{H} is PAC-learnable by computing the number of samples m needed such that

$$\mathbf{Pr}(\mathcal{L}_{\mathcal{D}}(h_{\mathcal{S}}) \geq \epsilon) \leq \delta$$

for general $0 \le (\delta, \epsilon) \le 1$. At this point your answer should *not* depend on a, so you need to find the most extreme value of a such that your bound holds tight.

Hint: use $(1-x)^m \le \exp(-xm)$ and $x - \sqrt{4x+9} + 3 \ge x/3$ for $x \ge 0$.