1 DDH-IP Encryption

Let GroupGen be a probabilistic polynomial time algorithm that takes as input a security parameter 1^{λ} , and outputs a triplet (\mathbb{G},p,g) where \mathbb{G} is a group of order p that generated by $g \in \mathbb{G}$ where p is an λ -bit number. For any two tuples (g,g^a,g^b,g^{ab}) and (g,g^a,g^b,g^c) , they are computationally indistinguishable, where $(\mathbb{G},p,g) \leftarrow GroupGen(1^{\lambda})$ and $a,b,c \in \mathbb{Z}_p$ are chosen independently and uniformly at random. A simple innerproduct functional encryption scheme is described as IP = (Setup, KeyDer, Encrypt, Decrypt) and each component is explained as follows. The scheme input is $\mathbf{x} = (x_1, x_2, \dots, x_{\ell})$ from an entity A, and another entity B with $\mathbf{y} = (y_1, y_2, \dots, y_{\ell})$ outputs $\mathbf{x} \cdot \mathbf{y}$ with DDH assumption based security.

- $Setup(1^{\lambda}, 1^{\ell}) \to (mpk, msk)$. A triplet (\mathbb{G}, p, g) is sampled based on $GroupGen(1^{\lambda})$. Set $s = (s_1, s_2, \dots, s_{\ell}) \leftarrow \mathbb{Z}_p^{\ell}$ and $h = (h_1 = g^{s_1}, h_2 = g^{s_2}, \dots, h_{\ell} = g^{s_{\ell}})$. The outputs are obtained as msk = s and mpk = h.
- $Encrypt(mpk, \boldsymbol{x}) \to \boldsymbol{Ct}$. Choose a random $r \leftarrow \mathbb{Z}_p$ and compute $ct_0 = g^r$ then for each $i \in [\ell]$, $ct_i = h_i^r \cdot g^{x_i}$. Then ciphertext $\boldsymbol{Ct} = (ct_0, (ct_i)i \in [\eta])$.
- $KeyDer(msk, y) \rightarrow sk_y$. Calculate $sk_y = y \cdot msk$.
- $Decrypt(mpk, Ct, sk_y, y)$. It returns the inner product $x \cdot y$ as logorithm in basis g of $\Pi_{i \in [\ell]} ct_i^{y_i} / ct_0^{sk_y}$.

Finally, the entity B calculates the inner product x and y with the privacy of x reserved according to Eq.(1).

$$g^{x \cdot y} = \prod_{i \in [\ell]} c t_i^{y_i} / c t_0^{sk_y}. \tag{1}$$