References

- 1. Alataris K., Berger T. W., Marmarelis V. Z. (2000) A novel network for nonlinear modeling of neural systems with arbitrary point-process inputs. Neural Networks, 13:255–266.
- 2. Al-Duwaish H., Karim M. N., Chandrasekar V. (1996) Use of multilayer feedforward neural networks in identification and control of Wiener model. Proc. *IEE - Contr. Theory Appl.*, 143:225–258.
- 3. Al-Duwaish H., Nazmul Karim M., Chandrasekar V. (1997) Hammerstein model identification by multilayer feedforward neural networks. Int. J. Syst. Sci., 18:49-54.
- 4. Al-Duwaish H., Karim M. N. (1997) A new method on the identification of Hammerstein model. Automatica, 33:1871–1875.
- 5. Al-Duwaish H. (2000) A genetic approach to the identification of linear dynamical systems with static nonlinearities. Int. J. Contr., 31:307–313.
- 6. Aoubi M. (1998) Comparison between the dynamic multi-layered perceptron and generalised Hammerstein model for experimental identification of the loading process in diesel engines. Contr. Enging. Practice, 6:271–279.

 7. Bai E.-W. (1998) An optimal two-stage identitication algorithm for Hammer-
- stein-Wiener nonlinear systems. Automatica, 34:333–338.
- 8. Bai E.-W. (2002) Identification of linear systems with hard input nonlinearities of known structure. Automatica, 38:853–860.
- 9. Bai E.-W. (2002) A blind approach to the Hammerstein-Wiener model identification. Automatica, 38:967–979.
- 10. Bai E.-W. (2003) Frequency domain identification of Wiener models. Automatica, 39:1521–1530.
- 11. Bai E.-W. (2004) Decoupling the linear and nonlinear parts in Hammerstein model identication. Automatica, 40:671–676.
- 12. Barker H. A., Tan A. H., Godfrey K. R. (2003) Automatica, 39:127–133.
- 13. Bars R., Haber R., Lengyel O. (1997) Extended horizon nonlinear adaptive predictive control applied for the parametric Hammerstein model. In: Domek S., Emirsajow Z., Kaszyński R. (eds), Proc. 4th Int. Symp. Methods and Models in Automation and Robotics, MMAR'97, Technical University of Szczecin Press, Szczecin, 447–451.
- 14. Billings S. A., Fakhouri S. Y. (1978a) Theory of separable processes with applications to the identification of non-linear systems. Proc. IEE, 125:1051-
- 15. Billings S. A., Fakhouri S. Y. (1978b) Identification of a class of nonlinear systems using correlation analysis. Proc. IEE, 125:691–697.
- 16. Billings S. A., Fakhouri S. Y. (1979) Non-linear system identification using the Hammerstein model. Int. J. Syst. Sci., 10: 567–578.
- 17. Billings S. A., Fakhouri S. Y. (1982) Identification of systems containing linear dynamic and static non-linear elements. Automatica, 18:15–26.

- 18. Billings S. A., Chen S., Korenberg M. J. (1989) Identification of MIMO nonlinear systems using a forward-regression orthogonal estimator. Int. J. Contr., 49:2157-2189.
- 19. Bloemen H. H. J., Boom T. J. J., Verbruggen H. B. (2001) Model-based predictive control for Hammerstein-Wiener systems. Int. J. Contr., 74:482–495.
- 20. Bloemen H. H. J., Chou C. T., Boom T. J. J., Verdult V., Verhaegen M., Backx T. C. (2001) Wiener model identification and predictive control for dual composition control of a distillation column. J. Process Contr., 11:601-620.
- 21. Boutayeb M., Darouach M. (1995) Recursive identification method for MISO Wiener-Hammerstein model. IEEE Trans. Automat. Contr., 40:287–291.
- 22. Boutayeb M., Aubry D., Darouach M. (1996) A robust and recursive identification method for MIMO Hammerstein model. In: Proc. Int. Conf. Contr., UKACC'96, Exeter, UK, 482–495.
- 23. Campolucci P., Uncini A., Piazza F., Rao B. D. (1999) On-line learning algorithms for locally recurrent neural networks. IEEE Trans. Neural Networks, 10:253-271.
- 24. Carlos A., Corripio A. B. (1985) Principles and practice of automatic control.
- John Wiley and Sons, New York. 25. Celka P., Bershad N. J., Vesin J. (2001) Stochastic gradient identification of polynomial Wiener systems: analysis and application. IEEE Trans. Signal Processing, 49:301-313.
- 26. Cervantes A. L., Agamennoni O. E., Figueroa J. L. (2003) A nonlinear model predictive control based on Wiener piecewise linear models. J. Process Contr., 13:655-666.
- 27. Chang F. H. I., Luus R. (1971) A noniterative method for identification using Hammerstein model. IEEE Trans. Automat. Contr., AC-16:464-468.
- 28. Chen G., Chen Y., Ogmen H. (1997) Identifying chaotic systems via a Wiener-
- type cascade model. *IEEE Contr. Syst. Mag.*, 17:29–36.
 29. Chen S., Billings S. A., Grant P. M. (1990) Non-linear system identification using neural networks. Int. J. Contr., 51:1191-1214.
- 30. Chen J., Patton R. J. (1999) Robust model-based fault diagnosis for dynamic systems. Kluwer Academic Publishers, London.
- 31. Cybenko G. (1989) Approximation by superposition of sigmoidal functions.
- Math. Contr. Signals and Syst., 2:359–366.

 32. Davide F. A. M., Di Natale C., D'Amico A., Hierlemann A., Mitrovics J., Schweizer M., Weimar U., Göpel W. (1995) Structure identification of nonlinear models for QMB polymer-coated sensors. Sensors and Actuators, B 24-25:830-842.
- 33. Drewelow W., Simanski O., Hofmockel R., Pohl B. (1997) Identification of neuromuscular blockade in anaesthesia. In: Domek S., Emirsajow Z., Kaszyński R. (eds) Proc. 4th Int. Symp. Methods and Models in Automation and Robotics,
- MMAR'97, Technical University of Szczecin Press, Szczecin, 781–784.
 34. Eskinat E., Johnson S. H., Luyben W. L. (1991) Use of Hammerstein models in identification of nonlinear systems. AIChE J., 37:255–268.
- 35. Eykhoff P. (1980) System identification. Parameter and state estimation. John Wiley and Sons, London.
- 36. Fahlman S., Lebiere C. (1990) The cascase-correlation learning architecture. In: Touretzky D. S. (ed.) Advances in Neural Information Processing Syst. 2, Morgan Kaufmann, San Mateo.
- 37. Fine T. L. (1999) Feedforward neural network methodology. Springer, New York, Berlin, Heidelberg.
- 38. Frank P. M. (1990) Fault diagnosis in dynamical systems using analytical and knowledge-based redundancy – A survey of some new results. Automatica, 26:459-474.
- 39. Fruzzetti K. P., Palazogğlu A., McDonald K. A. (1997) Nonlinear model predictive control using Hammerstein models. J. Process Contr., 7:31-41.
- 40. Gallman P. (1975) An iterative method for the identification of nonlinear systems using a Uryson model. IEEE Trans. Automat. Contr., AC-20:771-775.

- 41. Gallman P. (1976) A comparison of two Hammerstein model identification algorithms. *IEEE Trans. Automat. Contr.*, AC-21:124-77.
- 42. Gerkšič S., Juričič D., Strmčnik S., Matko D. (2000) Wiener model based nonlinear predictive control. Int. J. Syst. Sci., 31:189–202.
- 43. Giri F., Chaoui F. Z., Rochdi Y. (2001) Parameter identification of a class of Hammerstein plants. Automatica, 37:749–756.
- 44. Gómez J. C., Baeyens E. (2004) Identification of block-oriented nonlinear systems using orthonormal bases J. Process Contr., 14:685–697.
 45. Greblicki W. (1989) Non-parametric orthogonal series identification of Ham-
- merstein systems. *Int. J. Syst. Sci.*, 20: 2355–2367.
- 46. Greblicki W. (1992) Nonparametric identification of Wiener systems. *IEEE*. Trans. Inf. Theory, 38:1487–1492.
- 47. Greblicki W. (1994) Nonparametric identification of Wiener systems by orthogonal series. IEEE Trans. Automat. Contr., 39:2077–2086.
- 48. Greblicki W. (1997) Nonparametric approach to Wiener system identification. IEEE Trans. Circ. Syst. I, 44:538–545.
- 49. Greblicki W. (1998) Continuous-time Wiener system identification. IEEE Trans. Automat. Contr., 43:1488-1493.
- 50. Greblicki W. Recursive identification of continuous-time Wiener systems. (1999) Int. J. Contr., 72:981-989.
- 51. Greblicki W. (2001) Recursive identification of Wiener systems. Int. J. Appl. Math. and Comp. Sci., 11:977–991.
- 52. Greblicki W. (2002) Recursive identification of continuous-time Hammerstein systems. Int. J. Syst. Sci., 33: 969–977.
- 53. Greblicki W., Krzyżak A. (1979) Non-parametric identification of a memoryless system with a cascade structure. Int. J. Syst. Sci., 10:1311–1321.
- 54. Greblicki W., Pawlak M. (1985) Fourier and Hermite series estimates of regression functions. Ann. Inst. Statist. Math., 37:443–454.
- 55. Greblicki W., Pawlak M. (1986) Identification of discrete Hammerstein systems using kernel regression estimates. IEEE Trans. Automat. Contr., AC-31:74-77.
- 56. Greblicki W., Pawlak M. (1987) Hammerstein system identification by nonparametric regression estimation. Int. J. Contr., 45:343–354.
- 57. Greblicki W., Pawlak M. (1989) Nonparametric identification of Hammerstein
- systems. *IEEE Trans. Inf. Theory*, 35:409–417.
 58. Greblicki W., Pawlak M. (1989) Recursive nonparametric identification of Hammerstein systems. J. Franklin Inst., 326:461–481.
- 59. Greblicki W., Pawlak M. (1994) Nonparametric recovering nonlinearities in block oriented systems with the help of Laguerre polynomials. Contr. Theory Advanced Techn., 10:771-791.
- 60. Gupta M. M., Jin L., Homma N. (2003) Neural networks. From fundamentals to advanced theory. John Wiley and Sons, Hoboken.
- 61. Haber R., Unbehauen H. (1990) Structure identification of non-linear dynamic systems – a survey on input/output approaches. Automatica, 26:651–677.
- 62. Haber R. (1995) Predictive control of nonlinear dynamic processes. Appl. Math. and Comp., 70: 169-184.
- 63. Haist N. D., Chang F. H. I., Luus R. (1973) Nonlinear identification in the presence of correlated noise using Hammerstein model. IEEE Trans. Automat. Contr., AC-18:552–555.
- 64. Hasiewicz Z. (1999) Hammerstein system identification by the Haar multiresolution approximation. Int. J. Adaptive Contr. Signal Processing, 13:697–717.
- 65. Hasiewicz Z. (2000) Modular neural networks for nonlinearity recovering by the Haar approximation. Neural Networks, 13:1107–1133.
- 66. Hasiewicz Z. (2001) Non-parametric estimation of nonlinearity in a cascade time series system by multiscale approximation. Signal Processing, 81:791–807.
- 67. Hassibi B., Stork D. G. (1993) Second derivatives for network pruning: optimal brain surgeon. In: Hanson S. J., Cowan J. D., Giles C. L. (eds) Advances in Neural Information Processing Syst. 5, Morgan Kaufmann, San Mateo.

- 68. Haykin S. (1999) Neural networks. A comprehensive foundation. Prentice Hall, Upper Saddle River.
- 69. Hertz J., Krogh A., Palmer R. G. (1991) Introduction to the theory of neural computation. Addison-Wesley, Redwood City.
- 70. Hunt K. J., Sbarbaro D., Zbikowski R., Gawthrop P. J. (1992) Neural networks
- for control systems a survey. *Automatica*, 28:1083–1112.
 71. Hunter I. W., Korenberg M. J. (1986) The identification of nonlinear biological systems: Wiener and Hammersein cascade models. Biol. Cybern., 55:135–144.
- 72. Ikonen E., Najim K. (2001) Identification of Wiener systems with steady-state non-linearities. In: Proc. Europ. Contr. Conf., ECC'01, Porto, Portugal, CD-
- 73. Janczak A. (1995) Identification of a class of non-linear systems using neural networks. In: Bańka S., Domek S., Emirsajow Z. (eds) Proc. 2nd Int. Symp. Methods and Models in Automation and Robotics, MMAR'95, Technical University of Szczecin Press, Szczecin, 697–702.
- 74. Janczak A. (1997) Identification of Wiener models using recurrent neural networks. In: Domek S., Emirsajow Z., Kaszyński R. (eds) Proc. 4th Int. Symp. Methods and Models in Automation and Robotics, MMAR'97, Technical University of Szczecin Press, Szczecin, 727–732.
- 75. Janczak A. (1997) Recursive identification of Hammerstein systems using recurrent neural models. In: Tadeusiewicz R., Rutkowski L., Chocjan J. (eds) Proc. the 3rd Conf. Neural Networks and Their Applications, Polish Neural Networks Society Press, Częstochowa, 517–522.
- 76. Janczak A. (1998) Recurrent neural network models for identification of Wiener systems. In: Borne P., Ksouri M., El Kamel A. (eds) Proc. 2nd IMACS Multiconference, CESA'98, Nabeul-Hammamet, 965-970.
- 77. Janczak A., (1998) Gradient descent and recursive least squares learning algorithms for on line identification of Hammerstein systems using recurrent neural network models. In: Heiss M. (ed.) Proc. Int. ICSC/IFAC Symp. Neural Computation, NC'98, ICSC Academic Press, Vienna, 565–571.
- 78. Janczak A. (1999) Fault detection and isolation in Wiener systems with inverse model of static nonlinear element. In: Proc. Europ. Contr. Conf., ECC'99, Karlsruhe, F1046-5, CD-ROM.
- 79. Janczak A. (1999) Parameter estimation based fault detection and isolation in Wiener and Hammerstein systems. Int. J. Appl. Math. and Comp. Sci., 9:711-735.
- 80. Janczak A. (2000) Least squares identification of Wiener systems. In: Domek S., Kaszyński R. (eds) Proc. 6th Int. Conf. Methods and Models in Automation and Robotics, MMAR'2000, Technical University of Szczecin Press, Szczecin,
- 81. Janczak A. (2000) Neural networks in identification of Wiener and Hammerstein systems. In: Duch W., Korbicz J., Rutkowski L., Tadeusiewicz R. (eds) Biocybernetics and biomedical engineering 2000. Neural networks, Akad. Offic. Wyd. EXIT, Warsaw, 419–458, (in Polish).
- 82. Janczak A. (2000) Parametric and neural network models for fault detection and isolation of industrial process sub-modules. In: Edelmayer M., Banyssz C. (eds) Prepr. 4th Symp. Fault Detection Supervision and Safety for Technical Processes, SAFEPROCESS'2000, Budapest, Hungary, 348–351.
- 83. Janczak A. (2001) On identification of Wiener systems based on a modified serial-parallel model. In: Proc. Europ. Contr. Conf., ECC'2001, Porto, Portugal, 1852-1857.
- 84. Janczak A. (2001) Training neural network Hammerstein models with truncated back-propagation through time algorithm. In: Kaszyński R. (ed.) Proc. 7th IEEE Int. Conf. Methods. and Models in Automation and Robotics, MMAR'2001, Technical University of Szczecin Press, Szczecin, 499–504.
- 85. Janczak A. (2002) Prediction error approach to identification of polynomial Wiener systems. In: Domek S., Kaszyński R. (eds) Proc. 8th IEEE Int. Conf. Methods and Models in Automation and Robotics, MMAR'2002, Technical University of Szczecin Press, Szczecin, 457-461.

- 86. Janczak A. (2002) Identification of Wiener systems with pseudolinear regression approach method. In: Bubnicki Z., Korbicz J. (eds) *Proc. 14th Polish Conf. Automation, XIV KKA*, Zielona Góra, 413–416, (in Polish).
- 87. Janczak A. (2002) Training of neural network Wiener models with recursive prediction error algorithm. In: Rutkowski L., Kacprzyk J. (eds) Advances in Soft Computing. Neural Networks and Soft Computing, Proc. 6th Int. Conf. Neural Networks and Soft Computing, Physica-Verlag, Heidelberg, New York, 692–697.
- 88. Janczak A. (2003) Identification of Wiener and Hammerstein systems with neural networks and polynomial models. Methods and applications. University of Zielona Góra Press, Zielona Góra.
- 89. Janczak A. (2003) A comparison of four gradient learning algorithms for neural network Wiener models. *Int. J. Syst. Sci.*, 34:21–35
- 90. Janczak A. (2003) Neural network approach for identification of Hammerstein systems *Int. J. Contr.*, 76:1749–1766.
- 91. Janczak A. (2004) Parametric and neural network models in fault detection and isolation. In: Korbicz J., Kościelny J. M., Kowalczuk Z., Cholewa W. (eds) Fault diagnosis, models, artificial intelligence, applications, Springer, Berlin, Heidelberg, New York, 381–410.
- 92. Janczak A., Korbicz J. (1999) Neural network models of Hammerstein systems and their application to fault detection and isolation In: *Proc. 14th World Congress of IFAC*, Beijing, P.R.C., P:91–96.
- 93. Janczak A., Mrugalski M (2000) Neural network approach to identification of Wiener systems in a noisy environment. In: Bothe H., Rojas R. (eds) *Proc. Int. ICSC Symp. Neural Computation, NC'2000*, Berlin.
- 94. Juditsky A., Hjalmarsson H., Benveniste A., Delyon B., Ljung L., Sjöberg J., Zhang O. (1995) Nonlinear Black-box modeling in system identification: mathematical foundations. *Automatica*, 31:1725–1750.
- 95. Kalafatis A. D., Arifin N., Wang L., Cluett W. R. (1995) A new approach to the identification of pH processes based on the Wiener model. *Chem. Engng Sci.*, 50:3693–3701.
- 96. Kalafatis A. D., Wang L., Cluett W. R. (1997) Identification of Wiener-type non-linear systems in a noisy environment. *Int. J. Contr.*, 66:923–941.
- 97. Kang H. W., Cho Y. S., Youn D. H. (1998) Adaptive precomensation of Wiener systems. *IEEE Trans. Signal Processing*, 46:2825–2829.
- 98. Knohl T., Unbehauen H. (2000) Adaptive position control of electrohydraulic servo systems using ANN. *Mechatronics*, 10:127–143.
- 99. Knohl T., Xu W. M., Unbehauen H. (2003) Indirect adaptive dual control for Hammerstein systems using ANN. Contr. Engng Practice, 11:377–385.
- Korbicz J., Janczak A. (1996) A neural network approach to identification of structural systems. In: Proc. IEEE Int. Symp. Industrial Electronics, ISIE'96, Warsaw, pp. 97–103.
- Korbicz J., Janczak A. (2002) Artificial neural network models for fault detection and isolation of industrial processes. Comp. Assist. Mech. and Engng Sci., 9:55–69.
- Krzyżak A. (1989) Identification of discrete Hammerstein systems by the Fourier series regression estimate. Int. J. Syst. Sci., 20:1729–1744
- 103. Krzyżak A. (1990) On nonparametric estimation of nonlinear dynamic systems by the Fourier series estimate. *Signal Processing*, 52:299–321.
- 104. Krzyżak A. (1996) On estimation of a class of nonlinear systems by the kernel regressin estimate. *IEEE Trans. Inf. Theory*, 36:141–152.
- 105. Krzyżak A., Partyka M. A. (1993) On identification of block-oriented systems by non-parametric techniques. *Int. J. Syst. Sci.*, 24:1049–1066.
 106. Krzyżak A., Sąsiadek J. Z., Kégl B. (2001) Non-parametric identification of
- 106. Krzyżak A., Sąsiadek J. Ž., Kégl B. (2001) Non-parametric identification of dynamic nonlinear systems by a Hermite series approach. Int. J. Syst. Sci., 32:1261–1285
- 107. Le Cun Y., Kanter I., Solla S. A. (1990) Optimal brain damage. In: Touretzky D. S. (ed.) Advances in Neural Information Processing Syst. 2, Morgan Kaufmann, San Mateo.

- 108. Leontaritis I. J., Billings S. A. (1985) Input-output parametric models for non-linear systems. Part I: deterministic non-linear systems. Int. J. Contr., 41:303–328.
- 109. Leontaritis I. J., Billings S. A. (1985) Input-output parametric models for nonlinear systems. Part II: stochastic non-linear systems. Int. J. Contr., 41:329-
- 110. Ling W.-M., Rivera D. (1998) Nonlinear black-box identification of distillation column models — design variable selection for model performance enhancement. Appl. Math. and Comp. Sci., 8:794-813.
- 111. Lissane Elhaq S., Giri F., Unbehauen H. (1999) Modelling, identification and control of sugar evaporation – theoretical design and experimental evaluation. Contr. Engag Practice, 7:931–942.
- 112. Ljung L. (1999) System identification. Theory for the user. Prentice Hall, Upper Saddle River.
- 113. Lovera M., Gustafsson T., Verhaegen M. (2000) Recursive subspace identification of linear and non-linear Wiener state-space models. Automatica, 36:1639—
- 114. Luyben W. L., Eskinat E. (1994) Nonlinear auto-tune identification. Int. J. Contr., 59:595–626.
- 115. Mak M. W., Ku K. W., Lu Y. L. (1999) On the improvement of the real time recurrent learning algorithm for recurrent neural networks. Neurocomputing, 24:13-36.
- 116. Marciak C., Latawiec K., Rojek R., Oliveira G. H. C. (2001) In: Kaszyński R. (ed.) *Proc. 7th IEEE Int. Conf. Methods and Models in Automation and* Robotics, MMAR'2001, Technical University of Szczecin Press, Szczecin, 965-
- 117. Marmarelis V. Z., Zhao X. (1997) Volterra models and three-layer perceptrons. IEEE Trans. Neural Networks, 8:1421–1432.
- 118. Menold P. H., Allgöwer F., Pearson R. K. (1997) Nonlinear structure identification of chemical processes. Computers and Chem. Engng, 21:S137–S142.
- 119. Mzyk G. (2002) Instrumental variables in Wiener system identification. In: Domek S., Kaszyński R. (eds) Proc. 8th IEEE Int. Conf. Methods and Models in Automation and Robotics, MMAR'2002, Technical University of Szczecin Press, Szczecin, 463–468.
- 120. Narendra K. S., Gallman P. G. (1966) An iterative method for the identification of nonlinear systems using Hammerstein model. IEEE Trans. Automat. Contr., AC-11:546-550.
- 121. Narendra K. S., Parthasarathy K. (1990) Identification and control of dynamical systems using neural networks. IEEE Trans. Neural Networks, 1:4–26.
- 122. Narendra K. S., Parthasarathy K. (1991) Gradient methods for the optimization of dynamical systems containing neural networks. IEEE Trans. Neural
- Networks, 2:252–262. 123. Nelles O. (2001) Nonlinear system identification. From classical approaches to neural networks and fuzzy models. Springer, New York, Berlin, Heidelberg.
- 124. Nešić D. (1997) A note on dead-beat controllability of generalized Hammer-
- stein systems. Syst. and Contr. Letters, 29:223–231.

 125. Nešić D., Mareels I. M. Y. (1998) Dead-beat control of simple Hammerstein models. IEEE Trans. Automat. Contr., 43:1184–1188.
- 126. Ninnes B., Gibson S. (2002) Quantifying the accuracy of Hammerstein model
- estimation. Automatica, 38:2037–2051. 127. Nørgaard M., Ravn O., Poulsen N. K., Hansen L. K. (2000) Neural networks for modelling and control. Springer, New York, Berlin, Heidelberg.
- 128. Norquay S. J., Palazoglu A., Romagnoli J. A. (1998) Model predictive control based on Wiener models. Chem. Engng Sci., 53:75–84.
- 129. Norquay S. J., Palazoglu A., Romagnoli J. A. (1999) Application of Wiener model predictive control (WMPC) to an industrial C2-splitter. J. Process Contr., 9:461–473.
- 130. Norquay S. J., Palazoglu A., Romagnoli J. A. (1999) Application of Wiener model predictive control (WMPC) to a pH neutralization experiment. IEEE Trans. Contr. Syst. Technology, 7:437–445.

- 131. Pacut A. (2000) Stochastic modelling at diverse scales. From Poisson to network neurons. Warsaw University of Technology Press, Warsaw.
- 132. Pacut A (2002) Symmetry of backpropagation and chain rule. In: Proc. 2002 Int. Joint Conf. Neural Networks, Honolulu, HA, IEEE Press, Piscataway.
- 133. Pajunen G. (1992) Adaptive control of Wiener type nonlinear systems. Automatica, 28:781–785.
- 134. Patwardhan R. S., Lakshminarayanan S., Shah S. L. (1998) Constrained nonlinear MPC using Hammerstein and Wiener models. AIChE J., 44:1611–1622
- 135. Patton R. J., Frank M., Clark R. N. (1990) Fault diagnosis in dynamic systems. Theory and applications. Prentice-Hall, New York.
- 136. Pawlak W. (1991) On the series expansion approach to the identification of Hammerstein systems. *IEEE Trans. Automat. Contr.*, 36:763–767. 137. Pawlak W., Hasiewicz Z. (1998) Nonlinear system identification by the Haar
- multiresolution analysis. IEEE Trans. Circ. and Syst. I: Fund. Theory and Appl., 45:945-961.
- 138. Pearson R. K., Pottmann M. (2000) Gray-box identification of block-oriented
- non-linear models. J. Process Contr., 10:301–315. 139. Piché S. W. (1994) Steepest descent algorithms for neural network controllers. IEEE Trans. Neural Networks, 5:198–212.
- 140. Pomerleau D., Hodouin D., Poulin É. (2003) Performance analysis of a dynamic phenomenological controller for a pellet cooling process. J. Process Contr., 13:139-153.
- 141. Quaglini V., Previdi F., Contro R., Bittanti S. (2002) A discrete-time nonlinear Wiener model for the relaxation of soft biological tissues. Medical Engna and Physics, 24:9-19.
- 142. Rollins D. K., Bhandari N. (2004) Constrained MIMO dynamic discrete-time modeling exploiting optimal experimental design. J. Process Contr., 14:671-
- 143. Roux G., Dahhou B., Queinnec I. (1996) Modelling and estimation aspects of adaptive predictive control in a fermentation process. Contr. Engng Practice,
- 144. Rutkowski L. (2004) New soft computing techniques for system modelling, pattern classification and image processing. Springer, Berlin, Heidelberg.
- 145. Schetzen M. (1980) The Volterra and Wiener theories of ninlinear systems. John Wiley and Sons, New York.
- 146. Sentoni G., Agamennoni O., Desages A., Romagnoli J. (1996) Aproximate models for nonlinear process control. AIChE J., 42:2240–2250.
- 147. Sieben S. (1996) The Wiener model an approach by deterministic inputs. In: Proc. 1st IMACS Multiconference, CESA'96, Lille, France, 465–469.
- 148. Sjöberg J., Zhang O., Ljung L., Benveniste A., Delyon B., Glorennec P., Hjalmarsson H., Juditsky A. (1995) Nonlinear black-box modeling in system identification: a unified overview. Automatica, 31:1691–1724.
- 149. Söderström T., Stoica P. (1994) System identification. Prentice Hall Int., Lon-
- 150. Srinivasan B., Prasad U. R., Rao N. J. (1994) Back propagation through adjoints for the identification of nonlinear dynamic systems using recurrent neural models. IEEE Trans. Neural Networks, 5:213–228.
- Stapleton J. C., Baas S. C. (1985) Adaptive noise cancellation for a class of nonlinear systems. *IEEE Trans. Circ. and Syst.*, 32:143–150.
- 152. Stoica P., Söderström T. (1982) Instrumental-variable methods for identification of Hammerstein systems. Int. J. Contr., 35:459–476.
- 153. Su H.-T., McAvoy T. J. (1993) Integration of multilayer perceptron networks and linear dynamic models: A Hammerstein modeling approach. Ind. Engng
- Chem. Res., 32:1927–1936.
 154. Sung S. W., Lee J. (2004) Modeling and control of Wiener-type processes. Chem. Engng Sci., 59:1515–1521
- 155. Śliwiński P., Hasiewicz Z. (2002) Computational algorithms for wavelet-based system identification. In: Domek S., Kaszyński R. (eds) Proc. 8th IEEE Int. Conf. Methods and Models in Automation and Robotics, MMAR'2002, Technical University of Szczecin Press, Szczecin, 495–500.

- Thathachar M. A. L., Ramaswamy S. (1973) Identification of a class of nonlinear systems. Int. J. Contr., 18:741–752.
- 157. Verhaegen M., Westwick D. (1996) Identifying MIMO Hammerstein systems in the context of subspace model identyfication methods. *Int. J. Contr.*, 63:331–349.
- 158. Verhaegen M., Westwick D. (1996) Identifying MIMO Wiener systems using subspace model identyfication methods. Signal Processing, 52:235–258.
- Visala A., Pitkänen H., Aarne H. (2001) Modeling of chromatographic separation process with Wiener-MLP representation. J. Process Contr., 78:443–458.
- Vörös J. (1997) Parameter identification of discontinuous Hammerstein systems. Automatica, 33:1141–1146.
- Vörös J. (1999) Iterative algorithm for identification of Hammerstein systems with two-segment nonlinearities. IEEE Trans. Automat. Contr., 44:2145–2149.
- 162. Vörös J. (2001) Parameter identification of Wiener systems with discontinuous nonlinearities. Syst. and Contr. Letters, 44:363–372.
- 163. Werbos P. J. (1990) Backpropagation through time: What it does and how to do it. *Proc. IEEE*, 78:1550–1560.
- 164. Westwick D., Verhaegen M. (1996) Identifying MIMO Wiener systems using subspace identification methods. *Signal Processing*, 52:235–258.
- Wigren T. (1993) Recursive prediction error identification using the non-linear Wiener model. Automatica, 39:1011–1025.
- 166. Wigren T. (1994) Convergence analysis of recursive identification algorithms based on the non-linear Wiener model. *IEEE Trans. Automat. Contr.*, 39:2191–2206.
- 167. Williams R. J., Zipser D. (1989) A learning algorithm for continually running fully recurrent neural networks. *Neural Computations*, 1:271–280.
- Xu M., Chen G., Tian Y.-T. (2001) Identifying chaotic systems using Wiener and Hammerstein cascade models. Math. and Computer Modelling, 33:483– 493.
- Zurada J. M. (1992) Introduction to artificial neural systems. West Publishing Company, St. Paul.

Index

AR model, 6 ARMA model, 7 ARMAX model, 7 ARX model, 6, 61, 182	algorithm, 31 methods, 17, 70 continuous stirred tank reactor, 160
backpropagation algorithm, 17, 29, 52, 84 learning algorithm, 17, 24 method, 31, 40–42, 46–47, 84–85, 87–90, 98, 105, 108	Daubechies wavelets, 28 discrete Fourier transform, 21 discrete Laguerre functions, 149 discrete-time chaotic systems, 165 distillation column, 159, 162–163
for parallel models, 31, 42, 47–48, 85–86, 90 through time, 31, 40, 43–46, 48, 77,	electro-hydraulic servo system, 164 equation error, 10, 81, 117
84, 86–87, 91 through time, truncated, 45, 49–51, 87, 91–96, 107, 108, 110, 112, 113 batch mode, 43, 78, 99, 106 bias/variance	FIR models, 5 Fourier series, 8, 27 frequency sampling filter, 20 fuzzy models, 8
dilemma, 18 tradeoff, 18 black box models, 11 Box-Jenkins model, 8 BPP method, see backpropagation for parallel models BPS method, see backpropagation method BPTT method, see backpropagation through time	Gauss-Newton method, 66 Gaussian noise, 54, 67, 98, 133 signal, 20, 25, 164 gradient calculation accuracy, 49, 77, 91, 94, 96 degrees, 51, 55, 95, 99 algorithms, 51, 77, 96 gray box models, 11
C2-splitter, 162 charging process in diesel engines, 164 chromatographic separation proces, 163 combined steepest descent and least squares learning algorithms, 99-105 complexity penalty term, 19 regularization methods, 19 computational complexity, 52, 96 conjugate gradient	Haar multiresolution approximation, 28 Hammerstein model, 1, 12, 30 MIMO, 12 SISO, 12, 25 state space, 15 Hammerstein-Wiener model, 14 heat exchanger, 162 Hermite orthogonal functions, 22 series, 27 Hessjan, 18, 19

identification of Hammerstein systems, 24	MLP, see multilayer perceptron model predictive control, 160–162, 165
correlation methods, 25	model reference adaptive control, 160
in presence of correlated noise, 147 instrumental variables methods, 25	model-based fault detection and isolation methods, 166
iterative least squares method,	modified equation error, 141
145–147	modified series-parallel model, see po-
Laguerre function expansion method, 149–151	lynomial Wiener model; modified series-parallel model
linear optimization methods, 25	MPC, see model predictive control
non-iterative least squares method, 143–145	multilayer perceptron, 2, 16–19, 24, 29, 34, 37, 40, 79, 163, 181
nonlinear optimization methods, 28 nonparametric regression methods, 26	universal approximation property, 2 multiple-effect sugar evaporator, 180 experimental models steam pressure
prediction error method, 151–152	dynamics, 181
pseudolinear regression method,	theoretical model, 180–181
153–154	muscle relaxation process, 165
steepest descent method, 79	
with two-segment nonlinearities, 155–157	NAR model, 8
identification of Wiener systems, 19	NARMA model, 8
combined least squares-instrumental	NARMAX model, 8, 159
variables method, 141	NARX model, 8, 162
correlation methods, 19, 163, 164	NBJ model, 8 network
instrumental variables method, 125	growing, 18, 19
least squares method, 122, 123	pruning, 19
linear optimization methods, 20 nonlinear optimization methods, 22	neural network Hammerstein model,
nonparametric regression methods,	79–84, 165
22	model of MIMO nonlinear element,
pseudolinear regression method,	82, 89
134–138	model of SISO nonlinear element, 79, 85
recursive prediction error method,	parallel MIMO model, 83, 90–91
132	parallel SISO model, 81, 85–87
steepest descent method, 54 indirect adaptive control, 164	series-parallel MIMO model, 83, 87
internal model control, 160	series-parallel SISO model, 81, 84
iron oxide pellet cooling process, 165	neural network Wiener model, 24, 31,
	32, 34–39, 165
Kautz filters, 10	model of MIMO inverse nonlinear element, 39, 47
kernel regression estimate, 27	model of MIMO nonlinear element,
Kolmogorov-Gabor models, 9	38, 46
Laguerre	model of SISO inverse nonlinear
filter bank, 24	element, 35, 41
filters, 21, 24, 125	model of SISO nonlinear element, 34,
function expansion method, see	41 perellel MIMO model 27 28 48 40
identification of Hammerstein sys-	parallel MIMO model, 37–38, 48–49 parallel SISO model, 24, 34, 36, 42–46
tems Laguerre function expansion method	series-parallel MIMO model, 39,
polynomials, 27	46–47
Legendre orthogonal functions, 22	series-parallel SISO model, 36, 40–42
Levenberg-Marquardt	NFIR model, 8
method, 17, 23, 24, 152, 157	NMA model, 8
linear models, 5	NOBF model, 9
general model, 5	NOE model, 8 nonlinear models, 8–16
MA model, 6	models composed of sub-models, 11
,	<u> </u>

state space models, 10 nonlinear orthonormal basis function	recursive pseudolinear regression, 29, 77, 105, 154
models, see NOBF model	RLS algorithm, see recursive least squares
OE model, 7	algorithm
optimal brain damage, 19	learning algorithms, 17, 70
optimal brain surgeon, 19	method, see recursive least squares
orthonormal bases with fixed poles, 22	method
output error, 10, 32, 81	RPE, see recursive prediction error
model, 105	method
	RPLR, see recursive pseudolinear
parallel models, 10	regression
pH neutralization process, 159–161	
pneumatic valve simulation example,	saliency, 19
66, 133	scaling, 18
polymerization reactor, 163	sensitivity
polynomial	method, 29, 31, 40, 42–43, 48, 77,
Hammerstein model, 143	84–86, 90–91, 132
parallel, 143	models, 23, 31, 43, 49, 73, 74, 77, 86,
model, 137, 143, 153, 155, 157, 163	110, 112
of inverse nonlinear element, 117,	sequential mode, 33, 43, 51–52, 78, 87, 96, 99, 106
of nonlinear element, 117, 130, 143,	series-parallel models, 10
157, 160, 162, 164, 165	SM method, see sensitivity method
models, 1, 9	splines, 1
Wiener model, 119–125, 131	state space models, 10–11
inverse series-parallel, 120	Hammerstein models, see Hammer-
modified series-parallel, 119–125	stein model, state space
nonlinear characteristic with linear	Wiener models, see Wiener model,
term, 120, 126	state space
nonlinear characteristic without	steepest descent algorithm, 31, 77, 143,
linear term, 122, 128	165
parallel, 119	stochastic approximation, 150
series-parallel, 119, 120	
PRBS, see pseudo-random binary	Taylor expansion, 19
sequence	two-tank system, 61
precompensation of nonlinear distortion,	
164	variable metric methods, 70
prediction error method, 65–66, 151–152	Volterra
pseudo-random binary sequence, 26,	series models, 8, 24, 162
162	1 + 1 0 10
augusta mianahalanaa naluman aastad	wavelets, 1, 8, 19
quartz microbalance polymer-coated	Weierstrass theorem, 1
sensors, 163 quasi-Newton algorithm, 31	white box models, 11
quasi-newton algorithm, 51	Wiener model, 1, 12
radial basis functions, 8, 164	general, 13 inverse, 118
neural network, 164	MIMO, 12, 22
real time recurrent learning algorithm,	MISO, 24
52	pseudolinear-in-parameters, 137
recursive least squares	SISO, 12
algorithm, 24, 77, 164, 172	state space, 14
method, 122, 123	Wiener model-based predictive control,
recursive prediction error method, 22,	161
65–66	Wiener-Hammerstein model, 14