Risk and Portfolio Management Spring 2010

Auto-regressive Models

ARCH(p), GARCH(p,q)

Following R. Engle and T. Bollerslev

Conditional Mean and Conditional Variance

$$y_t$$
, $t = 1,2,3,...,T$

Given time series

$$p(y_t | y_{t-1}, y_{t-2},...) = p(y_t | \Phi_{t-1})$$

Model the <u>conditional distributions</u>

$$y_t = \mu(\Phi_{t-1}) + \sigma(\Phi_{t-1})\varepsilon_t, \quad E(\varepsilon_t) = 0, \ E(\varepsilon_t^2) = 1$$

Example:
$$y_t \mid \Phi_{t-1} \sim N(\mu(\Phi_{t-1}), \sigma^2(\Phi_{t-1}))$$

ARCH(p) (Engle, 1982)

$$y_t = \alpha + \beta x_t + u_t$$

Uncorrelated residuals does not necessarily imply independent residuals

$$u_t = h_t^{1/2} \mathcal{E}_t$$

$$E(\varepsilon_t) = 0, \quad E(\varepsilon_t^2) = 1$$

$$h_{t} = a_0 + a_1 u_{t-1}^2$$

Unlike in AR, the error is not assumed to have constant variance.

More generally,

$$h_{t} = a_{0} + \sum_{k=1}^{p} a_{k} u_{t-k}^{2}$$

Conditional variance is a lagged sum of squared residuals, eg.

$$h_{t} = \frac{1}{T} \sum_{k=1}^{T} u_{t-k}^{2}$$

GARCH(p,q) (Bollerslev, 1986)

$$u_t = h_t^{1/2} \varepsilon_t$$
 $E(\varepsilon_t) = 0, \quad E(\varepsilon_t^2) = 1$

$$h_{t} = \omega + \sum_{i=1}^{p} \alpha_{i} u_{i}^{2} + \sum_{j=1}^{q} \beta_{j} h_{t-j}$$

Dependence on previous squared returns and previous conditional variances.

Most famous versions in practice: GARCH(1,1) or GARCH (1,p) which are basically AR(p) processes on the conditional variance driven by the squared-returns process

GARCH(1,1)

$$h_{t} = \omega + \alpha u_{t-1}^{2} + \beta h_{t-1}$$

1-lag dependence

$$h_{t} = \omega + \alpha u_{t-1}^{2} + \beta (\omega + \alpha u_{t-2}^{2} + \beta h_{t-2})$$

$$= \omega + \beta \omega + \alpha (\beta u_{t-2}^{2} + u_{t-1}^{2}) + \beta^{2} h_{t-2}$$

$$\vdots$$

$$h_{t} = \frac{\omega}{1 - \beta} + \alpha \sum_{k=1}^{\infty} \beta^{k} u_{t-k}^{2}$$

GARCH(1,1) is an exponentially weighted moving average of squared-errors. Beta determines the effective ``window size'' for estimation of conditional variance.

GARCH(1,2)

$$\begin{pmatrix} h_t \\ h_{t-1} \end{pmatrix} = \begin{pmatrix} \omega \\ 0 \end{pmatrix} + \begin{pmatrix} \alpha & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} u_{t-1}^2 \\ 0 \end{pmatrix} + \begin{pmatrix} \beta_1 & \beta_2 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} h_{t-1} \\ h_{t-2} \end{pmatrix}$$
 Vector AR(1)

Stability condition: $\lambda^2 - \beta_1 \lambda - \beta_2 = 0 \Rightarrow |\lambda| < 1$

$$h_{t} = h + A \sum_{k=1}^{\infty} \lambda_{1}^{k} u_{t-k}^{2} + B \sum_{k=1}^{\infty} \lambda_{2}^{k} u_{t-k}^{2}$$

Steady-state solution

Intuitively, GARCH(1,2) is the sum of two EWMA with different time-scales (decay rates).

Notice however that the right-hand side depends on *h* as well, so the PDF of the conditional variance is not a chi-squared.

GARCH(1,p) is the sum of (at most) p EWMAs.

Returns of S&P 500 Index 12/1/2000-2/26/2010

Fitting to GARCH(1,p)

We know that the tails of SPY are heavy and behave like Student t with df~3.5

This heavy-tailed behavior of stock prices can be modeled by assuming a static distribution (Student) or a time-dependent distribution with a GARCH-type stochastic conditional variance.

The latter approach (GARCH) has the advantage that it incorporates dynamics so it may capture ``persistence'' of volatility across time.

From a portfolio risk-management perspective, the situation is ``cured'' by assuming a Student-t distribution with 3.5 degrees of freedom for returns (to capture tail behavior) and an EWMA variance which is adjusted daily to capture volatility clustering effects.

The question that remains is: what is the correct estimation window?

GARCH(1,1) estimation of SPY returns

Method: ML - BFGS with analytical gradient

date: 03-02-10 time: 18:10

Included observations: 2320

Convergence achieved after 56 iterations

	Coefficient	Std. Error	z-Statistic	Prob.
omega	2.85989E-06	3.9342E-07	7.269290633	3.61489E-13
alpha_1	0.698241421	0.020073908	34.78353205	q
beta_1	0.508888808	0.050794297	10.01862092	q
Log				
Likelihood	7053.473574			
Jarque				
Bera	12844.90612	F	Prob	o
Ljung-Box	65535	F	Prob	65535

GARCH(2,1) estimation

Method: ML - BFGS with analytical gradient

date: 03-03-10

time: 13:25

Included observations: 2320

Convergence achieved after 45 iterations

	Coefficient	Std. Error	z-Statistic	Prob.
omega	2.69557E-05	2.4E-06	11.25236	0
alpha_1	0.541398855	0.073788	7.337198	2.1805E-13
alpha_2	0.355438292	0.035892	9.90302	O
beta_1	0.268210539	0.045356	5.913404	3.3511E-09
Log Likelihood	7060.668319			
Jarque Bera	12844.90612	P	rob	0
Ljung-Box	65535	P	rob	65535

Garch(1,2)

Method: ML - BFGS with analytical gradient

date: 03-03-10

time: 13:34

Included observations: 2320

Convergence achieved after 54 iterations

	Coefficient	Std. Error	z-Statistic	Prob.
omega	1.93253E-06	3.45079E-07	5.600257981	2.14033E-08
alpha_1	0.347594236	0.053959618	6.441747563	1.18106E-10
beta_1	0.417978993	0.040988575	10.19745117	0
beta_2	0.329591408	0.064169394	5.136271201	2.80243E-07
Log Likelihood	7119.174476			
Jarque Bera	12844.90612	Р	rob	0
Ljung-Box	65535	Р	rob	65535

Which model should we use?

All three GARCH models fit the data very well, with high z-statistics.

Preference should be given to the model with smallest number of parameters, so GARCH(1,1) should be suitable.

Cointegration and Pairs Trading

 X_t = return on XLK

 Y_t = return on EBAY

Perform m – day regression to construct residuals

In the previous lecture we saw some examples of pairs trading with ETFs

$$Y_{t} = \beta X_{t} + \varepsilon_{t}$$

$$\beta = \text{SLOPE}((Y_{t-m},...,Y_{t-1}),(X_{t-m},...,X_{t-1}))$$

$$\varepsilon_t = Y_t - \beta X_t$$

P & L = 100 *
$$\prod_{k=1}^{t} (1 + \varepsilon_k)$$
 $y_t = y_0 + \sum_{k=1}^{t} \ln(1 + \varepsilon_k)$

Question of interest : is y_t stationary? Does y_t have a `unit root'?

Dickey-Fuller Test for Unit Roots (aka Augmented Dickey-Fuller test)

The Dickey-Fuller test is used to <u>test for unit roots</u> in statistical data.

Consider the following model for the differentiated time-series:

$$\Delta y_t = \alpha + \beta t + \delta_0 y_{t-1} + \sum_{k=1}^n \delta_k \Delta y_{t-k} + \varepsilon_t, \quad \Delta y_t = y_t - y_{t-1}$$

Null hypothesis: there is a unit root, i.e.
$$\delta_0 = 0$$
. $DF = \frac{\delta_0}{\text{stdev}(\hat{\delta}_0)}$

n is determined dynamically as part of the test (Akaike Information Criterion)

EBAY vs. XLK residuals

 Y_t = daily return of EBAY

 $X_t = \text{daily return of XLK}$

Augmented DF test for EBAY/XLK

Variable	Coefficient	Std. Error	t-Statistic	Prob	Best lag fit: 9
		_			
tseries(-1)	-0.025582	0.009132	-2.801401	0.005222	_
D(tseries(-1))	-0.104975	0.036984	-2.838362	0.004660	@ 90% level
D(tseries(-2))	0.032844	0.037145	0.884206	0.376875	
D(tseries(-3))	0.041696	0.036765	1.134124	0.257113	
D(tseries(-4))	-0.139433	0.036498	-3.820306	0.000145	
D(tseries(-5))	0.023322	0.036852	0.632844	0.527033	
D(tseries(-6))	-0.103297	0.036384	-2.839106	0.004649	
D(tseries(-7))	-0.123580	0.036566	-3.379630	0.000764	
D(tseries(-8))	0.062589	0.036842	1.698850	0.089771	
D(tseries(-9))	0.103669	0.036604	2.832135	0.004751	
С	0.120657	0.043010	2.805296	0.005160	
@trend	-0.000006	0.000003	-2.076142	0.038228	

EBAY vs. QQQQ residuals

ADF for EBAY/QQQQ

Null Hypothesis: tseries has a unit root

Exogenous: Constant and linear Trend

Lag Length: 4 (Automatic Based on AIC, MAXLAG=10)

Variable	Coefficient	Std. Error	t-Statistic	Prob
tseries(-1)	-0.023280	0.008338	-2.791940	0.005374
D(tseries(-1))	-0.078624	0.036419	-2.158873	0.031179
D(tseries(-2))	0.019488	0.036533	0.533428	0.593897
D(tseries(-3))	0.030306	0.036525	0.829726	0.406960
D(tseries(-4))	-0.114959	0.036359	-3.161785	0.001632
С	0.109870	0.039251	2.799187	0.005256
@trend	-0.000002	0.000002	-0.918302	0.358759

ARMA(p,q) process

$$y_{t} = a_{0} + \sum_{k=1}^{p} a_{k} y_{t-k} + \sum_{l=1}^{q} b_{k} u_{t-k} + u_{t}$$

Combines autorregressive models with moving average models

Simple linear time-series model

Fitting to an ARMA(1,1)

timeseries: y				
Method: Nonlinear Least Squares (Levenberg-Marquardt)				
date: 03-03-10 time: 18:52				
Included observations: 755				
p = 1 - q = 1 - constant - manual selection				
		Std.		
	Coefficient E	rror	t-Statistic	Prob.
	4.627335411	0	148.9024	0
AR(1)	0.986154258	0	159.9401	0
MA(1)	-0.110605985	0	-2.998961	0.002798377
		Mos	n dependent	
R-squared	0.965239	var	in dependent	4.628068
Adjusted R-squared	0.965147	S.D.	dependent var	0.071188
	0.012200	۵۱.۵	ile info subsuice	F 7010FF
S.E. of regression	0.013290	Akai	ike info criterion	-5.791955
Sum squared resid	0.132821	Schv	warz criterion	-5.773571
og likelihood	2189.462984	Durl	bin-Watson stat	2.007356
nverted AR-roots	0.99			
nverted MA-roots	0.11			

Fitting y to an AR(1) process

timeseries: y

Method: Nonlinear Least Squares (Levenberg-Marquardt)

date: 03-03-10 time: 18:49 Included observations: 755

p = 1 - q = 0 - constant - manual selection

		Std.		
	Coefficient	Error	t-Statistic	Prob.
c	4.627528	0.03	168.4630632	0
AR(1)	0.98229241	0.01	143.6624447	0
R-squared	0.964800	Mean	dependent var	4.628068
Adjusted R-				
squared	0.964753	S.D. d	ependent var	0.071188
S.E. of				
regression	0.013365	Akaike	e info criterion	-5.782052
Sum squared				
resid	0.134501	Schwa	arz criterion	-5.769796
Log likelihood	2184.724802	Durbii	n-Watson stat	2.225006

AR(1) coefficient for y estimated over a 60-day period

Red= upper bound for MR in 10 days, Green= upper bd for MR in 5 days

Dickey-Fuller over Sep 2008/March 2009

Augmented Dickey-Fuller to	est statistic		-2.593218	0.284178
Test critical values:	1% level		-4.027516	
	5% level		-3.443485	
	10% level		-3.146482	
Variable	Coefficient	Std. Error	t-Statistic	Prob
tseries(-1)	-0.11372	. <mark>8</mark> 0.043856	-2.593218	0.010671
D(tseries(-1))	-0.11153	0.090621	-1.230747	0.220785
D(tseries(-2))	0.16264	7 0.087448	3 1.859935	0.065303
D(tseries(-3))	0.04001	.8 0.088750	0.450911	0.652854
D(tseries(-4))	-0.26763	0.085738	3 -3.121501	0.002247
D(tseries(-5))	0.07657	0.086639	0.883828	0.378528
D(tseries(-6))	-0.13943	0.085911	L -1.623007	0.107169
D(tseries(-7))	-0.24274	3 0.082689	-2.935598	0.003980
D(tseries(-8))	0.09002	.6 0.085786	1.049428	0.296056
D(tseries(-9))	0.18907	7 0.084225	2.244910	0.026575
D(tseries(-10))	-0.10644	0.084083	-1.265896	0.207962
С	0.51142	0.199365	2.565270	0.011521
@trend	0.00009	0.000044	1 2.058864	0.041636

AR-1 coefficient for the period Sep 2008/march 2009

timeseries: ebay/xlk

Method: Nonlinear Least Squares (Levenberg-Marquardt)

date: 03-03-10 time: 18:40 Included observations: 145

p = 1 - q = 0 - constant - manual selection

	Coefficient	Std. Error	t-Statistic	Prob.
c	4.55489463	0.013841	329.0952386	0
AR(1)	0.88029659	0.035204	25.00582423	-2.2E-16
R-squared	0.813873	Mean dependent var		4.558974
Adjusted R-squared	0.812571		S.D. dependent var	
S.E. of regression	0.019853	Akaike info criterion		-4.952615
Sum squared resid	0.056364	Schwarz criterion		-4.911557
Log likelihood	361.064616		Durbin-Watson stat	2.312544

Conclusions

ARCH, GARCH: models for volatility of financial series.

Volatility analysis via ARCH and GARCH lead to exponential moving averages of squared returns.

The advantage of GARCH over a fixed window is that GARCH is endogenous. However, fixed estimation windows for volatilities and correlations or exogenous EWMAs also make sense from a risk-management perspective.

Cointegration of stock prices via pairs is not easy to establish econometrically.

Unit root test: tests for stationarity

ARMA, AR: models for mean-reversion