Loan Default Detection

The Problem

Financial institutions need to determine whether or not to approve someone's loan application

Why is it worth solving?

Banks want to increase their profit margins while also reducing their exposure to risk

01

Data Source

Credit Card Fraud Detection Dataset from Kaggle (https://www.kaggle.com/mishra5001/credit-card)

Loan Default Detection Raw Dataset

1 Shape

307,511 rows

Variable Types

Integers, Strings, Numerical, Logical

Predictors

	SK_ID_CURR	TARGET	NAME_CONTRACT_TYPE	CODE_GENDER	FLAG_OWN_CAR	FLAG_OWN_REALTY	CNT_CHILDREN	AMT_INCOME_TOTAL	AM'
0	100002	1	Cash loans	М	N	Υ	0	202500.0	
1	100003	0	Cash loans	F	N	N	0	270000.0	
2	100004	0	Revolving loans	М	Υ	Y	0	67500.0	
3	100006	0	Cash loans	F	N	Υ	0	135000.0	
4	100007	0	Cash loans	М	N	Υ	0	121500.0	
307506	456251	0	Cash loans	М	N	N	0	157500.0	
307507	456252	0	Cash loans	F	N	Υ	0	72000.0	
307508	456253	0	Cash loans	F	N	Υ	0	153000.0	
307509	456254	1	Cash loans	F	N	Y	0	171000.0	
307510	456255	0	Cash loans	F	N	N	0	157500.0	

307511 rows x 122 columns

02

Data Introduction

Occupation and Loan Size

Concentration of Loan Amount vs. Income

03

Cleaning our Data

Dropping Columns

- Drop repetitive mode and median columns that outline living standard
- Dropped outliers with income greater
 than or equal to \$700,000

Our resulting

dataframe now has

306773 rows, 88

columns

Adding Dummies

 Adding dummies for categorical columns using pd.get_dummies

NAME_CONTRACT_TYPE_Cash loans	NAME_CONTRACT_TYPE_Revolving loans
1	0
1	0
0	1
1	0
1	0
1	0
1	0
1	0

Resulting dataframe

now has **306773 rows**,

200 columns

Dealing with NAN values

- Created a function to calculate the amount of **missing data** in each column
- Removed columns that had missing data greater than 60%
- Resulting data frame has 306773 rows, 194 columns
- Ensured that dropped data had relatively **no correlation** with the target variable

	Total	Percent
COMMONAREA_AVG	214462	69.909021
NONLIVINGAPARTMENTS_AVG	213119	69.471238
LIVINGAPARTMENTS_AVG	209813	68.393568
FLOORSMIN_AVG	208262	67.887982
YEARS_BUILD_AVG	204127	66.540080
OWN_CAR_AGE	202681	66.068722
LANDAREA_AVG	182270	59.415268
BASEMENTAREA_AVG	179658	58.563824

Filling in NaN Values

- Tried K-Means Imputer but the process was very slow and impractical to our workflow because we had a large quantity of NaN values
- Instead, we calculated the means for each column and filled missing values based on the mean value

```
for c in df_with_dummies_drop_nan.columns:
    df_with_dummies_drop_nan[c].fillna(value = df_with_dummies_drop_nan[c].mean(),
    df_with_dummies_drop_nan.isna().sum()
```

Sampling Techniques/Split

- Randomly subsampled for 20,000 rows
- Experimented with RandomUnderSampler & NearMiss (undersampling) and SMOTE (oversampling)
 - SMOTE generates synthetic samples for minority class
 - SMOTE had relatively poor performance samples are too artificial
- Next tried NearMiss and tested out different ratios for the sampling_strategy parameter
 - We chose a **0.3** ratio between instances of default and no default
 - For every 3 defaults, there are 10 non-defaults
- After subsampling and undersampling, we have about 10,000 rows
- 80/20 Train Test Split, Standardized and Normalized
- Based on how we sampled, the baseline has an accuracy of 70%

04

Descriptive Analysis & Predictive Models

Logistic Regression

Training set accuracy: 80.90% Testing set accuracy: 82.77%

Training set accuracy: 80.90% Testing set accuracy: 82.91%

Logistic Regression

- The plot shows that the higher the income, the probability of default increases
 - We tried different parameters and all resulted in the same curve
 - We believe that this is due to bias within the dataset

Bagging

- 800

- 700

- 600

- 500

- 300

- 200

Training set accuracy: 89.41% Testing set accuracy: 73.69%

CV Bagging

Training set accuracy: 88.72% Testing set accuracy: 75.82%

Boosting

Training set accuracy: 83.33% Testing set accuracy: 79.36%

CV Boosting

Training set accuracy: 83.74% Testing set accuracy: 79.50%

Decision Tree

Decision Tree after CV (cropped)

Decision Tree

Default Decision Tree

Training set accuracy: 100% Testing set accuracy: 58.24%

CV Decision Tree

Training set accuracy: 79.26% Testing set accuracy: 77.52%

Lasso

Default Lasso

Training set accuracy: 76.48% Testing set accuracy: 78.65%

CV Lasso

Training set accuracy: 80.79% Testing set accuracy: 82.48%

Ridge

Default Ridge

Training set accuracy: 80.95% Testing set accuracy: 82.26%

CV Ridge

Training set accuracy: 80.99% Testing set accuracy: 82.12%

Elastic Net

Default Elastic Net

Training set accuracy: 79.98% Testing set accuracy: 82.20%

CV Elastic Net

Training set accuracy: 79.86% Testing set accuracy: 81.50%

Lasso, Ridge, Elastic Net

Best Model based on accuracy

- Lasso Net is the most accurate model
- Why lasso has the highest accuracy
 - Lasso some coefficients can become zero and eliminate the predictors from the model
 - Based on the heatmap, we have mostly columns that do not correlate to target

Training set accuracy: 80.79% Testing set accuracy: 82.48%

05

Feature Engineering and Profit/Loss

Risk Rating and Profit/Loss

- Interest rate is from U.S. Treasury
 Yield
- Inflation Rate of 2%
- Removed outliers in terms of loan
 size and income
- Created Risk Rating column for each individual
 - Based on ratio of Loan Size to
 Income

Feature Engineering Workflow

- Pass in each model's **predicted label** to our function
 - Using the predicted label of CV model
- Calculate profit on instances where the predicted is no default and true label indicate no default
- Calculate loss on instances where the prediction indicates no default but true label indicates default
- Calculate opportunity cost on instances where the prediction indicates default but true label indicates
 no default
- Aggregate total profit and loss to evaluate best model the goal is to maximize profit

Profit/Loss Results

Model	Profit		
Logistic Regression	\$179,461,405		
Bagging	\$157,541,475		
Boosting	\$155,338,172		
Lasso Regression	\$225,585,445		
Ridge Regression	\$189,043,931		
Elastic Net	\$188,490,977		
Decision Tree	\$212,958,162		

Lasso - Profit / Loss

CV Lasso Accuracy: 82.48%

- Profit 932 people approved and did not default
- Loss 155 people
 approved and defaulted
- Opportunity cost 167
 people rejected but would
 not default

06

Obstacles

Challenges

- Extremely large amount of features (122 columns before dummies) and dataset
 (300,000+ rows)
 - With a large dataset, running the models and functions was time
 consuming random subsampling results in a new dataset every run
- In our dataset, the number of defaulting instances were very small compared to instances that did not default - undersampling using NearMiss
- Data was inherently bias given that it is collected from multiple banks
- Could not find correlation between most of the variables with the target variable

Correlation Heatmap

Thank you