

Example: Configuring LUT

- LUT is a RAM with data width of 1bit.
- The contents are programmed at power up

Required Function

Truth Table

а	b	C	y
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Programmed LUT

FPGA Principles

- A Field-Programmable Gate Array (FPGA) is an integrated circuit that can be configured by the user to emulate any digital circuit as long as there are enough resources
- An FPGA can be seen as an array of Configurable Logic Blocks (CLBs) connected through programmable interconnect (Switch Boxes)

Comparison

Processors

Instruction Flexibility 90% Area Overhead (Cache, Predictions)

FPGA

Device-wide flexibility 99% Area Overhead (Configuration)

ASIC

No Flexibility 20% Area Overhead (Testing)

Xilinx Spartan-3E Starter Kit

Logic Arrays

- Programmable logic arrays (PLAs)
 - AND array followed by OR array
 - Perform combinational logic only
 - Fixed internal connections
- Field programmable gate arrays (FPGAs)
 - Array of configurable logic blocks (CLBs)
 - Perform combinational and sequential logic
 - Programmable internal connections

PLAs

•
$$X = \overline{A}\overline{B}C + AB\overline{C}$$

• $Y = A\overline{B}$

PLAs: Dot Notation

FPGAs: Field Programmable Gate Arrays

Composed of:

- CLBs (Configurable logic blocks): perform logic
- IOBs (Input/output buffers): interface with outside world
- Programmable interconnection: connect CLBs and IOBs
- Some FPGAs include other building blocks such as multipliers and RAMs

Xilinx Spartan 3 FPGA Schematic

CLBs: Configurable Logic Blocks

- Composed of:
 - LUTs (lookup tables): perform combinational logic
 - Flip-flops: perform sequential functions
 - Multiplexers: connect LUTs and flip-flops

Xilinx Spartan CLB

Xilinx Spartan CLB

- The Spartan CLB has:
 - 3 LUTs:
 - F-LUT (2⁴ x 1-bit LUT)
 - G-LUT (2⁴ x 1-bit LUT)
 - H-LUT (2³ x 1-bit LUT)
 - 2 registered outputs:
 - *XQ*
 - *YQ*
 - 2 combinational outputs:
 - X
 - Y

CLB Configuration Example

• Show how to configure the Spartan CLB to perform the following functions:

CLB Configuration Example

• Show how to configure the Spartan CLB to perform the following functions:

$$-X = \overline{ABC} + AB\overline{C}$$

$$-Y = A\overline{B}$$

	(A)	(B)	(C)	(X)
F4	F3	F2	F1	F
X	0	0	0	0
X	0	0	1	1
Χ	0	1	0	0
Χ	0	1	1	0
Χ	1	0	0	0
X	1	0	1	0
Χ	1	1	0	1
X	1	1	1	0

		(A)	(B)	(Y)
G4	G3	G2	G1	G
X	Χ	0	0	0
X	Χ	0	1	0
Χ	Χ	1	0	1
X	X	1	1	0

FPGA Design Flow

- A CAD tool (such as Xilinx Project Navigator) is used to design and implement a digital system. It is usually an iterative process.
- The user **enters the design** using schematic entry or an HDL(verilog).
- The user **simulates** the design.
- A synthesis tool converts the code into hardware and maps it onto the FPGA.
- The user uses the CAD tool to **download the configuration** onto the FPGA
- This configures the CLBs and the connections between them and the IOBs.

Manufacturers

- Xilinx
- Altera
- Lattice
- Actel

FPGA structure

Simplified CLB Structure

Example: 4-input AND gate

Α	В	С	D	0
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

