Определения и примеры

- ullet Функция $f:\{0,1\}^n o \{0,1\} extit{n}$ -местная ($extit{n}$ -арная) булева функция
 - ullet будем писать $f(x_1,\ldots,x_n)$ или $f(ec{x})$, если n известно или несущественно
 - также принято сокращать слова «булева функция» до б.ф.
- ullet n-местная б.ф. f переводит строки из n бит в битовые значения, то есть
 - \star задает \emph{n} -местную операцию на множестве $\{0,1\}$
 - \star вычисляет n-местный предикат на множестве $\{0,1\}$
 - \star задает n-местное отношение на множестве $\{0,1\}$
 - \star распознает язык $L_f \subseteq \{0,1\}^n$
- Прямолинейный (неэкономичный) способ задания б.ф. таблица значений
 - также называемая таблицей истинности
 - * n-местную б.ф. f можно задать битовой строкой $F[0..2^n-1]$, где F[i] значение f на строке, являющейся двоичной записью числа i
- ullet Пример: рассмотрим бинарные б.ф. f(x,y), они же строки F[0..3]

	x, y	0	Λ	>	х	<	у	+	V		~	Ξ	←	x	\rightarrow	/	1
ĺ	00	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	01	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
İ	10	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
	11	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

- \bullet $x \downarrow y = \overline{x \lor y}$ стрелка Пирса, $x'y = \overline{x \land y}$ штрих Шефера
- x > y, x < y обычные бинарные отношения,

 \bullet $x \to y, x \leftarrow y$ — прямая и обратная импликации

- x + y сложение по модулю 2 (xor), $x \sim y = [x = y]$ эквиваленция
 - 4周 → 4 = → 4 = → 9

Примеры многоместных булевых функций

Есть несколько важных серий *п*-местных булевых функций для произвольного *п*

- ullet PROJ $_i(ec{x}) = x_i$ проекции
 - 🛨 проекция вытаскивает нужный бит из вектора аргументов
 - чтобы вычислить (a+b) mod 2, где числа a и b заданы двоичными представлениями, нужно взять по младшему биту из a и b и выполнить x or
- $\bullet \bigoplus \vec{x}, \bigvee \vec{x}, \bigwedge \vec{x} n$ -арные аналоги коммутативных бинарных функций
- ullet $\mathrm{MOD}_p(ec{x}) = [x_1 + \cdots + x_n]$ делится на p] модулярные функции
 - \star важный частный случай MOD_2 (или PARITY) четность числа единиц ! постройте ДКА, который вычисляет функцию MOD_p
- $T_i(\vec{x}) = [x_1 + \cdots + x_n \geqslant i]$ пороговые функции
 - $\star T_1(\vec{x}) = \bigvee \vec{x} . T_n(\vec{x}) = \bigwedge \vec{x}$
 - $\star T_{\lfloor n/2 \rfloor + 1}(\vec{x}) функции большинства (или голосования)$
 - * пороговая функция ключевой элемент персептрона (простейшей нейронной сети)
- \star Функция $f(x_1,\ldots,x_n)$ может зависеть от значений только части переменных
 - \star например, в списке бинарных функций есть x, \bar{x} , y, \bar{y} , 0, 1
 - переменная x_i функции f фиктивная, если для любых $x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n$ $f(x_1, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_n) = f(x_1, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_n)$
 - переменная, не являющаяся фиктивной, называется существенной

Суперпозиция. Булевы формулы

- \star Функции n переменных громоздко задавать таблицами; что делать?
- Сложные функции можно представлять как суперпозицию более простых
 - \star рассматриваются функции нескольких переменных \Rightarrow одни и те же функции могут образовывать много различных суперпозиций
 - $g(y_1,\ldots,y_k)$ можно подставить в $f(x_1,\ldots,x_n)$ вместо любого аргумента
 - какие-то из аргументов g можно отождествить с какими-то из аргументов f
 - пример: подстановкой $g(z,t)=z\wedge t$ в $f(x,y)=x\to y$ можно получить $(z\wedge t)\to y, (z\wedge y)\to y, x\to (z\wedge t), x\to (x\wedge t)$
- Удобный способ записи булевых функций:
 - ullet зафиксировать маленький набор функций B, смотреть на функции из B как на операции
 - записать булеву формулу формальное выражение, содержащее переменные, символы операций из В и скобки
 - вычислять значение функции для каждого вектора значений переменных, выполняя операции
 - * булева формула = слово над конечным алфавитом, которое удовлетворяет набору ограничений (синтаксис)
 - ⋆ булева формула задает булеву функцию (семантика)
- ★ Разные формулы могут задавать одну и ту же функцию
 - пример: $(x \lor y) \land z$ и $(x \land z) \lor (y \land z)$
 - формулы, задающие одну и ту же функцию, называются эквивалентными
 - тавтология это формула, задающая константу 1
 - противоречие это формула, задающая константу 0
 - формула, задающая функцию, отличную от константы 0, называется выполнимо

Дизъюнктивные нормальные формы

- Разные формулы задают одну функцию ⇒ нужны «канонические» формулы
- Такие формулы называют нормальными формами
- Нормальная форма должна
 - существовать для любой функции
 - эффективно вычисляться (например по таблице истинности)
 - быть удобной для хранения и вычислений
- ullet Литерал это формула вида x или $ar{x}$, где x переменная
- ullet Дизъюнктивная нормальная форма (ДН Φ) это формула вида $\bigvee_{i=1}^n F_i,\ n\geqslant 1$
 - ullet где $F_i = igwedge_{i=1}^{k_i} L_{ij}, \ L_{ij}$ литерал, $k_i \geqslant 1$
 - F_i называют элементарными конъюнкциями
 - * ДНФ иерархическая формула: отрицание применяется только к переменным, конъюнкция к литералам, дизъюнкция к элементарным конъюнкциям
- ДНФ от k переменных называется совершенной (k-СДНФ), если
 - ullet все элементарные конъюнкции F_i различны
 - ullet каждая F_i состоит из k литералов, соответствующих различным переменным

Теорема

Любая булева функция, не равная константе 0, задается некоторой СДНФ.

- ★ Иными словами, любая выполнимая формула эквивалентна СДНФ
- ★ Следствие: любая булева функция задается некоторой ДНФ $x \wedge \bar{x} \Box$ ДНФ, задающая 0

Дизъюнктивные нормальные формы (2)

- Функцию $x \sim y$ иногда удобно записывать как x^y койства: $x^1 = x$, $x^0 = \bar{x}$, $1^y = y$, $0^y = \bar{y}$
- Доказательство теоремы об СДНФ:
 - ullet пусть $f(x_1,\ldots,x_k)$ отлична от константы 0
 - построим СДНФ F по следующему правилу:
 - * для каждого битового вектора $\vec{b}=(b_1,\dots,b_k)$ такого, что $f(b_1,\dots,b_k)=1$, поместим в F элементарную конъюнкцию $C_{\vec{b}}=x_{\iota}^{b_1}\wedge\dots\wedge x_{\iota}^{b_k}$
 - построенная формула СДНФ по определению
 - докажем, что F задает f
 - 🗴 функция, заданная ДНФ, равна $1 \Leftrightarrow$ одна из элементарных конъюнкций равна 1
 - $\star f(b_1,\ldots,b_k)=1 \Leftrightarrow C_{\vec{b}}(b_1,\ldots,b_k)=1$

Пример построения СДНФ:

x_1, x_2, x_3	f	
000	1	•
001	0	
010	0	
011	1	$\Longrightarrow F = (\bar{x}_1 \wedge \bar{x}_2 \wedge \bar{x}_3) \vee (\bar{x}_1 \wedge x_2 \wedge x_3) \vee (x_1 \wedge \bar{x}_2 \wedge x_3)$
100	0	
101	1	
110	0	
111	0	

Оптимизация ДНФ. Карты Карно

- ⋆ СДНФ очень громоздкая формула
 - если у функции половина значений единицы, то k-СДНФ состоит из $k \cdot 2^{k-1}$ литералов
 - \star проще хранить 2^k бит таблицы значений
- ⋆ важная задача построение кратчайшей ДНФ для данной функции
 - к сожалению, эта задача не только важная, но и трудная
- ★ Для б.ф. 2-4 переменных кратчайшую ДНФ строят при помощи карт Карно
- ullet Карта Карно функции f- это специальная запись таблицы значений f
 - карта это прямоугольная таблица из 2^k клеток, где k арность f
 - строки и столбцы проиндексированы так, что каждой клетке однозначно соответствует набор значений переменных, в клетке пишется значение функции (обычно пишут только единицы)
 - кратчайшую ДНФ строят, покрывая все клетки с единицами прямоугольниками такими, что
 - число клеток в прямоугольнике степень двойки
 - ullet если клеток 2^i , то k-i переменных принимают в этих клетках одно значение (определяют элементарную конъюнкцию), а остальные i все наборы значений

пример

Карты Карно (2)

- \star Еще одна проблема с кратчайшей ДНФ она не единственна
- Вот иллюстрация из Википедии с картами Карно для 4 переменных:

$$(\bar{A} \wedge \bar{B} \wedge \bar{D}) \vee (\bar{A} \wedge B \wedge C) \vee (A \wedge B \wedge D) \vee (A \wedge \bar{B} \wedge \bar{C}) = (\bar{A} \wedge C \wedge D) \vee (B \wedge C \wedge D) \vee (A \wedge \bar{C} \wedge D) \vee (\bar{B} \wedge \bar{C} \wedge \bar{D})$$

Конъюнктивные нормальные формы

- ullet Конъюнктивная нормальная форма (КНФ) это формула вида $igwedge_{i=1}^n F_i,\ n\geqslant 1$
 - ullet где $F_i = \bigvee_{i=1}^{k_i} L_{ij}, \ L_{ij}$ литерал, $k_i \geqslant 1$
 - F_i называют элементарными дизъюнкциями или клозами (clause)
 - * КНФ тоже иерархическая формула: отрицание применяется только к переменным, дизъюнкция к литералам, конъюнкция к клозам
- КНФ от k переменных называется совершенной (k-СКНФ), если
 - \bullet все клозы F_i различны
 - ullet каждый F_i состоит из k литералов, соответствующих различным переменным

Теорема

Любая булева функция, не равная константе 1, задается некоторой СКНФ.

- ★ Иными словами, любая не-тавтология эквивалентна СКНФ
- \star Следствие: любая булева функция задается некоторой КНФ
 - \bullet $x \lor \bar{x}$ КНФ, задающая 1

Доказательство теоремы об СКНФ

- ... симметрично доказательству для СДНФ
- Доказательство:
 - пусть $f(x_1, \ldots, x_k)$ отлична от константы 1
 - построим СКНФ F по следующему правилу:
 - \star для каждого битового вектора $ec{b}=(b_1,\ldots,b_k)$ такого, что $f(b_1,\ldots,b_k)=0$, поместим в F элементарную дизъюнкцию $D_{ec{b}}=x_1^{ar{b}_1}\vee\cdots\vee x_k^{ar{b}_k}$
 - построенная формула СКНФ по определению
 - докажем, что F задает f
 - ⋆ функция, заданная КНФ, равна 0 ⇔ одна из элементарных дизъюнкций равна 0
 - $\star f(b_1,\ldots,b_k)=0 \Leftrightarrow D_{\vec{b}}(b_1,\ldots,b_k)=0$

Пример построения $CKH\Phi$ (функция — та же, что и для примера с $CДH\Phi$):

x_1, x_2, x_3	f	
000	1	•
001	0	
010	0	$F = (v_1 \lor v_2 \lor v_3) \land (v_1 \lor v_3 \lor v_4) \land (\overline{v}_1 \lor v_2) \land (\overline{v}_2 \lor v_3) \land (\overline{v}_3 \lor v_4) \lor (\overline{v}_3 \lor v$
011	1	$\Rightarrow F = (x_1 \lor x_2 \lor \bar{x}_3) \land (x_1 \lor \bar{x}_2 \lor x_3) \land (\bar{x}_1 \lor x_2 \lor x_3) \land \\ \land (\bar{x}_1 \lor \bar{x}_2 \lor x_3) \land (\bar{x}_1 \lor \bar{x}_2 \lor \bar{x}_3)$
100	0	$\land (X_1 \lor X_2 \lor X_3) \land (X_1 \lor X_2 \lor X_3)$
101	1	
110	0	
111	0	

★ Симметрия распространяется и на оптимизацию КНФ при помощи карт Карно: прямоугольники соответствуют клозам и покрывают множество нулей