System Metropolitan State University ICS 311-50 Summer 2023 Database Management System HWPS1

Due Date: 6/12/2023 Total Points: 40

Question 1 (4 Points)

Given the table structure shown below, answer the following questions:

team_cd	team_lead_na me	team_lead_pho ne	team_lead_addr ess	team_incom e	team_lead_p ay	hire_dat e
21-5Z	Alley C. Smith	904-338-3416	3334 Lee Rd., Gainsville, FL 37123	16833460.0 0	75000.00	0106201 5
25-2D	Jane D. Grant	615-898-9909	218 Clark Blvd., Nashville, TN 36362	12500000.0 0	78000.00	0301201
25-5A	George F. Dorts	615-227-1245	124 River Dr., Franklin, TN 29185	32512420.0 0	77000.00	1225201 2
25-9T	Alley C. Smith	904-338-3416	3334 Lee Rd., Gainsville, FL 37123	21563234.0 0	75000.00	0106201 5
27-4Q	George F. Dorts	615-227-1245	124 River Dr., Franklin, TN 29185	10314545.0 0	77000.00	1225201 2
29-2D	Alley C. Smith	904-338-3416	3334 Lee Rd., Gainsville, FL 37123	25559999.0 0	75000.00	0106201 5
31-7P	William K. Moor	904-445-2719	216 Morton Rd., Stetson, FL 30155	56850000.0 0	79000.00	1121201 4

^{1.} How many tuples does the table contain? How many attributes are there per tuple?

^{- 7} tuples, with 7 attributes

- 2. What data redundancies can you detect in the table? Explain why data redundancy is undesired?
- the team lead name of Alley C. Smith is entered 3 times, of George Doris 2 times, with the same phone number, address, salary, and hired date, however, with different team_cde data
- Its undesired because it requires time and memory, and it makes it more confusing

Question 2 (6 points)

Describe (use good table layout format/style like those used in the lecture slides, i.e. Word table format) at least 3 tables (with some attributes) that might be used to store information in a Car Dealership system.

Buyer	Seller	Brand	
date_sold	seller_name	car_brand	
Price	seller_id	car_color	
buyer_name	cars_sold	car_date	
buyer_address	total_price	car_miles	

Question 3 (10 points)

Consider the database schema below:

Notes: We use a simplified schema where we assume customer names are unique. Just in this schema.

branch(branch_name, branch city, assets)
customer (customer_name, customer street, customer city)
loan (loan_number, branch_name, amount)
borrower (customer_name, loan_number)
account (account_number, branch_name, balance)
depositor (customer_name, account_number)

- a) What are the appropriate primary keys? (6 points)
- loan number

Given your choice of primary keys, identify appropriate foreign keys. (4 points)

- account number, customer name, branch name, balance

Question 4 (6 points)

Using the database above, give an expression in the relational algebra for each of the following queries:

- a) Find all loan numbers with a loan value greater than \$10,000.
- select loan number
- From loan
- Where amount > 10000;
 - b) Find the names of all depositors who have an account with a value greater than \$6,000.
- select customer name
- From depositor d

- Join account a
- On d.account_number = a.account_number
- Where balance > 6000;
 - c) Find the names of all depositors who have an account with a value greater than \$6,000 at the "Uptown" branch.
- select customer name
- From depositor d
- Join account a
- On d.account_number = a.account_number
- Where balance > 6000 AND branch_name like '%Uptown%';

Question 5 (10 points)

For the database schema below, write SQL DDL corresponding to the schema. Make any reasonable assumptions about data types, and be sure to declare primary and foreign keys.

```
person (<u>driver id</u>, name, address)
car (license, model, year)
accident (report number, date, location)
owns (driver id, license)
participated (report number, license, driver id, damage amount)
CREATE TABLE person(
        driver_id int not null primary key;
        name varchar(50),
        address varchar(100)
);
CREATE TABLE car(
        license varchar(50),
        model varchar(50),
        year int
);
CREATE TABLE accident(
        report_number int,
        date DATE,
        location varchar(50)
);
CREATE TABLE owns(
        driver_id int,
        license varchar(50),
        PRIMARY KEY(driver_id, license),
        FOREIGN KEY(driver_id) REFERENCES person(driver_id),
```

```
FOREIGN KEY(license) REFERENCES car(license)
);

CREATE TABLE participated(
    report_number int not null,
    license varchar(50),
    driver_id not null,
    damage_amount int,
    PRIMARY KEY(license, driver_id),
    FOREIGN KEY(report_number) REFERENCES accident(report_number)
);
```

Question 6 (4 points)

Using the university schema in our textbook, write the following queries in SQ:

```
a) Create a new course "CS-001", titled "Weekly Seminar", with 0 credits.
- insert into course(course_id, title, dept_name, credits) values ('CS-001', 'Weekly Seminar', 'Comp. Sci.', 0);
```

```
b) Create a section of this course in Autumn 2009, with section id of 1.
-insert into section(course_id, sec_id, semester, year) values ('CS-001', '1', 'Autumn', 2009);
```