

SEQUENCE LISTING

<110> Merja PENTTILA et al.

<120> PROCESS FOR PARTITIONING OF PROTEINS

<130> 0933-0170P

<140> US 09/936,823

<141> 2001-10-24

<150> PCT/FI00/00249

<151> 2000-03-24

<150> FI 19991782

<151> 1999-08-20

<150> FI 19990667

<151> 1999-03-25

<160> 46

<170> PatentIn Ver. 2.2

<210> 1

<211> 428

<212> DNA

<213> Trichoderma reesei

<220>

<221> intron

<222> (167)..(236)

<220>

<221> intron

<222> (323)..(386)

<220>

<221> misc_feature

<223> Coding sequence of hfbl

<400> 1

atgaagtct tcgccatcg cgtctcttt gcccggctg ccgttgcgc gccttcgag 60
gaccgcagca acggcaacgg caatgtttgc cctccggcc tttcagcaa cccccagtc 120
tgtgccaccc aagtccctgg cctcatcgcc ctgtactgca aagtcgtaa gttgagccat 180
aacataagaa tcctcttgac ggaaatatgc ctctcactc ctttacccct gaacagccctc 240
ccagaacgtt tacgacggca ccgacttccg caacgtctgc gccaaaaccg gcgcccagcc 300
tctctgtgc gtggcccccgt ttgtaagttg atgccccagc tcaagctcca gtcttggca 360
aaccatctt gacacccaga ctgcaggccg gccaggctct tctgtgccag accgcccgtcg 420
gtgcttga 428

<210> 2

<211> 78

<212> DNA

<213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: PCR 5' primer
 <400> 2
 tcgggacta cgtgccagta tagcaacgac tactactcg aatgccttgt tccgcgtggc 60
 tctagttctg gaaccgca 78

<210> 3
 <211> 30
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: PCR 3' primer
 <400> 3
 tcgtacggat cctcaaggcac cgacggcggt 30

<210> 4
 <211> 63
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: PCR 5' primer
 <400> 4
 actacacgga ggagctcgac gacttcgagc agccc gagct gcacgcagag caacggcaac 60
 ggc 63

<210> 5
 <211> 2211
 <212> DNA
 <213> Trichoderma reesei

<220>
 <221> promoter
 <222> (1)..(2211)
 <223> cbh1 promoter sequence

<400> 5
 gaattctcac ggtgaatgta ggcctttgtt agggtaggaa ttgtcactca agcacccccca 60
 acctccattha cgccctccccca atagagtcc caatcaatgtga gtcatggcac tggatctcaaa 120
 tagattgggg agaagttgac ttccgcccag agctgaagggt cgccacaaccg catgatatacg 180
 ggtcggcaac ggcaaaaaag cacgtggctc accgaaaagc aagatgttg cgatctaaca 240
 tccaggaacc tggatacatac catcatcactc cacgaccact ttgatctgct ggtaaactcg 300
 tattcgccctt aaaccgaagt gctgtggtaaa tctacacgtg ggccccttgc ggtataactgc 360
 gtgtgtcttc tcttaggtgca ttctttcctt cctctgtgt tgaattgtttt gtgttggggag 420
 tccgagctgt aactacacctt gaatctctgg agaatgggtgg actaacgact accgtgcacc 480
 tgcatcatgt atataatagt gatcctgaga aggggggtttt ggagcaatgtt gggactttga 540
 tggatcatcaa acaaagaacg aagacgcctc ttttgcggaa ttttggggat gctacgggtga 600
 agaactggat acttggatgtg tcttctgtgtt attttggggat caacaagagg ccagagacaa 660
 tctattcaaa caccaagctt gctcttttga gctacaagaaa cctgtggggat atatatcttag 720
 agttgtgaag tcggtaatcc cgctgtatag taatacggat cgcatctaaa tactccgaag 780

ctgctgcgaa cccggagaat cgagatgtgc tggaaagctt ctagcgagcg gctaaattag 840
 catgaaaggc tatgagaaat tctggagacg gcttgtgaa tcattttcg ccattttcg 900
 acaagcaaag cgccccgtcg cagtagcagg cactcattcc cgaaaaaaact cggagattcc 960
 taatgtacgta tggaaaccgga ataataataat aggcaataca ttgagttgcc tcgacggttg 1020
 caatgcagggt gtactgagct tggacataac tggccgtac cccacccctt ctcaacccctt 1080
 ggcgtttccc tgattcagcg taccggatc agtgcataatc actattaacc cagactgacc 1140
 ggacgtgttt tgcccttcataatgtgaaat aatgtcattt cgatgtgtaa ttgcctgtct 1200
 tgaccgactg gggctgtcg aagcccgaat gtaggattgt tatccgaact ctgctcgtag 1260
 aggcatgttg tgaatctgtg tcgggcagga cacgcctcg aagttcacgg caagggaaac 1320
 caccgatagc agtgtctagt agcaacccgt aaagccgcaa tgcagcatca ctggaaaata 1380
 caaaccaatg gctaaaagta cataagttaa tgcctaaaga agtcatatac cagcggctaa 1440
 taattgtaca atcaagtggc taaacgtacc gtaatttgc aacgcgttgc 1500
 aagcaacggc aaagcccact tccacgttt gtttcttcac tcagtcacat ctcagctgg 1560
 gatcccccaa ttgggtcgct tggttgcgtt ggtgaagtga aagaagacag aggttaagaat 1620
 gtctgactcg gagcgttttgcatacaacca agggcagtga tggaagacag taaaatgtt 1680
 acattcaagg agtattttgc cagggatgtc tgagtgtatc gtgttaaggag gtttgcgtc 1740
 cgatacgcg aatactgtat agtcaacttct gatgaagtgg tccatattga aatgttaagtc 1800
 ggcactgaac aggcaaaaga ttgagttgaa actgcctaag atctcgggccc ctcgggcttc 1860
 ggctttgggt gtacatgttt tgctccggg caaatgcataa gtgtggtagg atgcacacac 1920
 tgctgcctt accaagcagc tgagggtatg tgataggca atgttcaggg gccactgcat 1980
 ggtttcaat agaaaagagaa gcttagccaa gaacaatagc cgataaaagat agcctcatta 2040
 aacgaaatga gctagtaggc aaagtcaagcg aatgtgtata tataaagggtt cgaggtccgt 2100
 gcctccctca tgctctcccc atctactcat caactcagat cctccaggag acttgtacac 2160
 cattttga ggcacagaaaa cccaatagtc aaccgcggac tgcgcatcat g 2211

<210> 6
 <211> 1588
 <212> DNA
 <213> Trichoderma reesei

<220>
 <221> misc_feature
 <223> T. reesei eg11 cDNA

<400> 6

 ccccccatac tttagtccttc ttgttgtccc aaaatggcgc cctcaattac actgcccgttg 60
 accacggcca tcctggccat tgcccggtct gtcgcccggcc agcaaccggg taccaggcacc 120
 cccgagggtcc atcccaagtt gacaacctac aagtgtacaa agtccggggg gtgcgtggcc 180
 caggacaccc cgggtgtctt tgacttggaa taccgttggg tgcacgcacgca aactacaac 240
 tcgtgcaccc tcaacggcgg cgtcaacacc acgctctgccc ctgacggggc gacctgtggc 300
 aagaactgtc tcatcgaggg cgtcactac gcccgcctcg gctgtacgcac ctcgggca 360
 agcctcacca tgaaccagta catgcccagc agtctggcg gctacagcag cgtctctcct 420
 cggctgtatc tcctggactc tgacgggttag tacgtgtatgc tgaagctcaa cggccaggag 480
 ctgagcttcg acgtcgaccc ctctgtctg ccgtgtggag agaacggctc gctctaccc 540
 tctcagatgg acgagaacgg gggcccaac cagtataaca cggccgggtgc caactacggg 600
 agcggctact gcgatgtca gtgcgggtc cagacatggg ggaacggcac cctcaacact 660
 agccaccagg gcttctgtcg caacgagatg gatatcctgg agggcaactc gaggggcaat 720
 gccttgaccc ctcactcttgc cacggccacg gcctgcgact ctgcccgttg cggcttcaac 780
 cccttatggca gcggctacaa aagctactac ggccccggag ataccgttgc cacctccaag 840
 accttcacca tcatcacccca gttcaacacg gacaacggct cggccctcgcc caaccttgg 900
 agcatcaccc gcaagttacca gcaaaacggc gtcgacatcc ccagcggccca gcccggggc 960
 gacaccatct cgtcctggcc gtcgcctca gcctacggcg gcctcgccac catgggcaag 1020
 gcccgtggca gcccgtgggt gtcgtgttc agcatttggg acgacaacag ccagttacatg 1080
 aactggctcg acagcggcaa cggccggccccc tgcagcggca cccatccaac 1140
 atcctggcca acaaccccaa cacgcacgtc gtcttctcca acatccgctg gggagacatt 1200
 gggctacta cgaactcgac tgcggccccc ccccccgcctg cgtccagcac gacgtttcg 1260

actacacgga ggagctcgac gacttcgagc agccc gagct gcacgcagac tcactggggg 1320
cagtgcgggtgc cattggta cagcgggtgc aagacgtgca cgtcgggcac tacgtgccag 1380
tatagcaacg actactactc gcaatgcctt tagagcggtt acttgctct ggtctgtcca 1440
gacggggca cgatagaatg cgggcacgca gggagctcg agacattggg cttaatatat 1500
aagacatgct atgttgtatc tacatttagca aatgacaac aaatgaaaaaa gaacttatca 1560
aaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaa 1588

<210> 7
<211> 745
<212> DNA
<213> Trichoderma reesei

<220>
<221> terminator
<222> (1)..(745)
<223> T. reesei cbh1 terminator

<400> 7
ggacctaccc agtctacta cggccagtgc ggccgtattt gctacagcgg ccccacggc 60
tgcgccagcg gcacaacttgc ccaggctctt aacccttact actctcagtgc cctgtaaagc 120
tccgtgcgaa agcctgacgc accggtagat tcttggtagg cccgtatcat gacggcggcg 180
ggagctacat ggccccgggt gatttatttt ttttgtatct acttctgacc cttttcaaat 240
atacggtaaa ctcatcttgc actggagatg cggcctgcgtt ggtattgcga tggtgtcagc 300
ttggcaaatt gtggcttcg aaaacacaaa acgattcctt agtagccatg cattttaaaga 360
taacggaaata gaagaaagag gaaattaaaa aaaaaaaaaaa aacaaacatc ccgttcataa 420
cccgtagaat cggcgtctt cgtgtatccc agtaccacgt caaaggtatt catgatcgtt 480
caatgttgat attgttccgc cagtagggctt ccaccccat ctccgcgaat ctcctttct 540
cgaacgcggc agtggctgct gccaattggt aatgaccata gggagacaaa cagcataata 600
gcaacagtgg aaatttagtgg cggcaataatt gagaacacag tgagaccata gctggcggcc 660
tggaaagcac tggggagac caacttgtcc gttgcgaggc caacttgcat tgctgtcaag 720
acgatgacaa cgtagccgag gaccc 745

<210> 8
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: annealed primer

<400> 8
taaccgcgggt 10

<210> 9
<211> 16
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: annealed primer

<400> 9
ctagaccgcg gttaat 16

<210> 10
<211> 1232
<212> DNA
<213> Trichoderma reesei

<220>
<221> promoter
<222> (1)..(1232)
<223> T. reesei gpd1 promotor

<400> 10
gtcgacacga tatacaggcg cggtctgatga taatgtatgtat cgagcatgac ttgtatgtgt 60
atgtgacaat attgactgctg aggaaccatc aggtgtgtat ggatggaatc attctgttaac 120
caccagggtg catgcattcat aaggattctc ctcagctcac caacaacgaa cgatggccat 180
gttagtgaag gcaccgtat ggcaagatag aaccactatt gcatctgcgc ttcccacgca 240
cagtagtca agtaacgtca aagccgcctt cccgtaacct cgccccgtgt tgctcccccc 300
gattgcctca atcacatagt acctacatgcattatgggg cggcctcaac ccacccccc 360
agattgagag ctaccttaca tcaaatatggc cagcacctct tcggcgatac atactcgcca 420
ccccagccgg cgcgattgtg tgtacttaggt aggctcgatc tataccagca ggagaggtgc 480
tgcttggcaa tcgtgctcag ctgttagtt gtacttgtat ggtacttgta aggtggtcat 540
gcagttgcta aggtacctag ggagggattc aacgagccct gcttccaatg tccatctgga 600
taggatggcg gctggcgggg ccgaagctgg gaactcgcca acagtcatat gtaatagctc 660
aagttgatga taccgttttgc ccagattaga tgcgagaagc agcatgaatg tcgctcatcc 720
gatgccgcattt caccgttgc tcagaaacga ccaagctaaag caactaaggt accttaccgt 780
ccactatctc aggtAACCGAG gtactaccag ctaccctacc tgccgtgcct acctgcttta 840
gtgttaatct ttccacccctt ctcctcaatc ttcttttccc tcctctcctc tttttttttt 900
tttcctcctc ttcttctcca taaccattcc taacaacatc gacattctct cctaattcacc 960
agcctcgcaa atcctcagtt tgtatgtacg tacgtactac aatcatcacc acgatcggtcc 1020
gccccgacat gcccgttctg ttccctcctca ctcgtgcctt tgacgagcta 1080
gccccgcccgg gactctctgg cgtcaccaat tttttccctt atttaccctt ctcctcctc 1140
tccctctcgt ttcttcctaa caaacaacca ccacaaaaat ctcttggaa gtcacgact 1200
cacgcagtc aattcgcaga tacaatcta ga 1232

<210> 11
<211> 1129
<212> DNA
<213> Trichoderma reesei

<220>
<221> terminator
<222> (1)..(1129)
<223> T. reesei gpd1 terminator

<400> 11
ggatccccgag cattgtctat gaatgcaaac aaaaatagta aataaataatgt aattctggcc 60
atgacgaata gagccaatct gctccacttg actatctgt gactgtatcg tatgtcgaac 120
ccttgactgc ccattcaaac aattgtaaag gaatatacgat acaagttatg tctcacgttt 180
gcgtgcgagc ccgtttgtac gttatttga gaaagcggtt ccatcacatg ctcacagtca 240
cttggcttac gatcatgttt gcgatcttcg gtaagaataac acagagtaac gattatctcc 300
atcgcttcta tgatgtatgtt ctcagacaaac acatggggaa caagataacc atcgcatgca 360
aggtcgattt caatcatgtat ctggactggg gtattccatc taagccatag taccctcgag 420
agaaggaatg gtggacactc tcaggcgtcc accatctgtg ctgcaaatcc aagaaacccc 480
ccaaaagcac ctacctatct acctagatgta actgcacgag aaaagaaaag gagcagaaga 540
agaatgtatct caagaggccg tgaacgcaga aacacactcc tcccaacttt tcaagtttg 600
aacaaaaaaaaa gaaagatgag gactagaaga tggagtattt cttctttaga gagctctgg 660

tgagggtgacc tgcagggtt taccgcaaac cgtcgggtgg tctatccaa taatcaagtc 720
 cccgcctcg cctttctct cctgtcctt catagaatcc cgtcccttg ttgcttgatc 780
 gaagcggggt tatcgacgcc accaaagatc ttgtcttgg gacttatcaa tccttgggt 840
 atcaaacagc ccccagtgta tcagatccgt aaaagaagaa gaagagtacg atttaaccag 900
 accgaggaac aataaagcga gtaaataaca tcaaaaataag agtctcggtt aaaattactt 960
 gttcctcaat caatcccaac ccccctaaaa gcccctcccc ccatggtata tcccgccagt 1020
 aggagagaga tatttccact accgctcacc accaagttag gcttgccgag agaagaggat 1080
 gaatcagaag tgacacaacaac gggttgagca catggatat cggcgcc 1129

<210> 12
 <211> 5733
 <212> DNA
 <213> Aspergillus nidulans

<220>
 <221> misc_feature
 <223> (1-5733) Sequence of plasmid pAN52-1

<220>
 <221> promoter
 <222> (1)..(2129)
 <223> A. nidulans gpdA promoter

<220>
 <221> gene
 <222> (2130)..(2304)
 <223> A. nidulans gpdA gene

<220>
 <221> terminator
 <222> (2305)..(3071)
 <223> A. nidulans trpC terminator

<220>
 <221> misc_feature
 <222> (3072)..(5726)
 <223> pUC18 from SalI to EcoRI

<400> 12
 caattccctt gtatctctac acacaggctc aaatcaataa gaagaacggt tcgttttt 60
 cgtttatatc ttgcattgtc ccaaagctat tggcggata ttctgtttgc agttggctga 120
 cttaaagtaa tctctgcaga tctttcgaca ctgaaatacg tcgagcctgc tccgcttgg 180
 agcggcgagg agcctcggtcc tgtcacaact accaacatgg agtacgataa gggccagttc 240
 cgccagctca ttaaagagcca gttcatgggc gttggcatga tggccgtcat gcatctgtac 300
 ttcaagtaca ccaacgctct tctgatccag tcgatcatcc gctgaaggcg ctttcaatc 360
 tggtaaagat ccacgtcttc gggaaagccag cgactgggtga cctccagcgt ccctttaagg 420
 ctgccaacag ctttctcagc cagggccagc ccaagaccga caaggccctcc ctccagaacg 480
 cccgagaagaa ctggagggggt ggtgtcaagg aggagtaagc tccttattga agtcggagga 540
 cggagcgggtg tcaagaggat attcttcgac tctgttattat agataagatg atgaggaatt 600
 ggaggttagca tagtttcatt tggatttgct ttccaggctg agactcttagc ttggagcata 660
 gaggggtcctt tggcttcaa tattctcaag tatctcgagt ttgaacttat tccctgtgaa 720
 ccttttattt accaatgagc attggaatga acatgaatct gaggactgca atcgccatga 780
 ggttttcgaa atacatccgg atgtcgaagg cttggggcac ctgcgttgg tgaatttaga 840
 acgtggcact attgatcatc cgatagctt gcaaaaggcg ttgcacaatg caagtcaaac 900
 gttgcttagca gttccaggtg gaatgtttagt atgagcattt tattaaatca ggagatata 960
 catgatctt agttagctca ccacaaaagt cagacggcg aaccaaaaatg cacacaacac 1020

aagctgttaag gatttcggca cggctacgga agacggagaa gccacccctca gtggactcga 1080
gtaccattta attctatgg tgtttgcg agacctaata cagccccatc aacgaccatc 1140
aaagtcgtat agctaccagt gaggaagtgg actcaaatacg acttcagcaatcatctcctgg 1200
ataaaactta agcctaaact atacagaata agatagggtgg agagcttata ccgagctccc 1260
aaatctgtcc agatcatggt tgaccgggtgc ctggatcttc ctatagaatc atccttattc 1320
gttgacccatctgg agtgacccag agggtcatga cttgagccctaaatccgg 1380
cctccaccat tttagaaaaa atgtgacgaa ctcgtgagct ctgtacagtg accgggtact 1440
ctttctggca tgcggagaga cggacggacg cagagagaag ggctgagtaa taagccactg 1500
gccagacagc tctggccgct ctgagggtca gtggatgatt attaatccgg gaccggccgc 1560
ccctccggcc cgaagtggaa aggctgggtg gcccctcgat gaccaagaat ctattgcata 1620
atcggagaat atggagcttc atcgaatcac cggcagtaa cgaaggagaa tgtgaagcca 1680
ggggtgtata gccgtccggcg aaatagcatg ccattaaacct aggtacagaa gtccaaattgc 1740
ttccgatctg gtaaaagatt cacgagatag taccttctcc gaagtaggtta gagcggatc 1800
ccggcgcgta agctccctaa ttggcccatc cggcatctgt agggcgtcca aatatcgatc 1860
ctctccctgct ttggccgggtg tatgaaaccg gaaaggccgc tcaggagctg gccagcggcg 1920
cagaccggga acacaagctg gcagtcgacc catccgggtc tctgcactcg acctgctgag 1980
gtccctcagt ccctggtagg cagcttgc cctgtgtcc gcccgggtg tcggcggggt 2040
tgacaaggcgttgcgtcag tccaacattt gttccatattttctgtc tccccaccag 2100
ctgctctttt cttttctt tctttccca tcttcagtat attcatcttc ccatccaaga 2160
accttttattt cccctaagta agtactttgc tacatccata ctccatccctt cccatccctt 2220
attcctttaa acctttcagt tcgagcttc ccacttcatc gcagcttgac taacagctac 2280
cccgcttgag cagacatcac catggatcca cttAACgttta ctgaaatcat caaacagctt 2340
gacgaatctg gatataagat cggtgggtgc gatgtcagct ccggagttga gacaaatgg 2400
gttcaggatc tcgataagat acgttcatatt gtccaaagcag caaagagtgc cttctagtg 2460
tttaatagct ccatgtcaac aagaataaaa cgcgttttcg gtttacctc ttccagatac 2520
agctcatctg caatgcatta atgcatttgac tgcaacctag taacgcctt caggctccgg 2580
cgaagagaag aatacgcttag cagagctatt ttcattttcg ggagacgaga tcaagcagat 2640
caacggcgt caagagacact acgagactga ggaatccgc cttggctcca cgcgactata 2700
tatttgc tattttgtact ttgacatgtc cctttctt actctgatag cttgactatg 2760
aaaattccgt caccagcncc tgggttcgca aagataattt catgtttctt ctttgaactc 2820
tcaaggcttac aggacacacaca ttcatcgtag gtataaaacct cgaaatcant tcctactaag 2880
atggtataaca atagtaacca tgcattggtt cctagtgaat gctccgttaac acccaatacg 2940
ccggccgaaa cttttttaca actctccat gatcggtttt cccagaatgc acaggtacac 3000
ttgttttagag gtaatccctt tttcttagaaag tcctcggttta ctgtgttaac gcccactcca 3060
catctccact cgaccctgcg gcatgcaagc ttggcactgg ccgtcgtttt acaacgtcgt 3120
gactggggaaa accctggcgt tacccaaactt aatcgccctt cagcacatcc ccctttcgcc 3180
agctggcgtta atagcgaaga ggccgcacc gatcgccctt cccaaacagtt ggcgagctg 3240
aatggcgaat ggcgcctgat gcggtatttt ctcccttacgc atctgtgcgg tatttcacac 3300
cgcatatggt gcactctcag tacaatctgc tctgtatgccg catgttaag ccagccccga 3360
cacccgc当地 caccgcgtga cgcgccttgc cgggcttgc tgctcccgcc atccgcttac 3420
agacaagctg tgaccgttgc cgggagctgc atgtgtcaga gttttcacc gtcatcaccg 3480
aaacgcgcga gacgaaaggc cctcggtata cgccttatttt tataaggtaa tgtcatgata 3540
ataatggttt ctttagacgtc aggtggcact ttccgggaa atgtgcgcgg aacccttatt 3600
tgtttatttt tctaaataca ttcaaatatg tatccgttca tgagacaata accctgataa 3660
atgcttcaat aatattgaaa aaggaagagt atgagtattt aacatttccg tgcgtccctt 3720
atccctttt ttgcggcatt ttgccttctt gtttttgc acccagaaac gtcgtgtaaa 3780
gtaaaagatg ctgaagatca gttgggtgca cgggtgggtt acatcgaaact ggtatctcaac 3840
agcggttaaga tcotttgagag ttccggccccc gaagaacgtt ttccaaatgtat gaggactttt 3900
aaagttctgc tatgtggcgc ggtatttatcc cgtattgacg ccgggcaaga gcaactcggt 3960
cgccgcatac actattctca gaatgacttg gttgagactt caccagtcac agaaaagcat 4020
cttacggatg gcatgacagt aagagaatta tgcgtgtc ccataaccat gaggataaac 4080
actgcggcca acttacttct gacaacgatc ggaggaccga aggagctaac cgcttttttgc 4140
cacaacatgg gggatcatgt aactcgccctt gatcggtggg aaccggagct gaatgaagcc 4200
ataccaaacg acgagctgtca caccacgtat cctgttagcaa tggcaacaac gttgcgcaaa 4260
ctattaactg gcaactact tactcttagt tcccgccaaac aattaataga ctggatggag 4320
gcggataaag ttgcaggacc acttctgcgc tcggcccttc cggctggctg gtttattgt 4380
gataaatctg gagccgggtga gcgtgggtct cggcgatca ttgcagact gggccagat 4440

ggtaagccct cccgtatcgt agttatctac acgacgggga gtcaggcaac tatggatgaa 4500
cgaaaatagac agatcgctga gatagggcc tcactgatta agcatggta actgtcagac 4560
caagtttact catatatact ttagatttat taaaacttc attttaatt taaaaggatc 4620
taggtgaaga tccttttga taatctcatg accaaaatcc cttaacgtga gtttcgttc 4680
cactgagcgt cagaccccgt agaaaagatc aaaggatctt cttagatcc ttttttctg 4740
cgcgtaatct gctgcttgca aacaaaaaa ccaccgctac cagcgggtgg ttgtttgccg 4800
gatcaagagc taccacttct tttccgaag gtaactggct tcagcagagc gcagatacca 4860
aatactgtcc ttctagtgtta gccgtagttt gcccaccact tcaagaactc tgttagcaccg 4920
cctacatacc tcgctctgct aatcctgtta ccagtggctg ctgccagtgg cgataagtcg 4980
tgtcttacccg ggttggactc aagacgatag ttaccggata aggccgcagcg gtcgggctga 5040
acgggggggtt cgtgcacaca gcccagctt gaggcaacga cctacaccga actgagataac 5100
ctacagcgtg agctatgaga aagcgcacacg cttcccgaaag ggagaaaaggc ggacaggat 5160
ccggtaagcg gcagggtcgg aacaggagag cgccacgggg agcttccagg gggaaacgcc 5220
tggtatcttt atagtcctgt cgggttgcac caccctgtac ttgagcgtcg atttttgtga 5280
tgctcgtcag gggggcggag cctatggaaa aacgcccaga acgcggcctt tttacggttc 5340
ctggcctttt gctggccttt tgctcacatg ttctttcctg cgttatcccc tgattctgt 5400
gataaccgta ttaccgcctt tgagtgagct gataccgctc gccgcagccg aacgaccgag 5460
cgcagcgtact cagtgagcga ggaagcggaa gagcgcaccaa tacgcaaacc gcctctcccc 5520
gcgcgttggc cgattcatta atgcagctgg cacgacaggt ttcccgactg gaaagcgggc 5580
agtgagcgcga acgcaattaa tgtgaggtag ctcaacttattt aggacacccca ggctttacac 5640
tttatgcctt cggctcgat gttgtgtgga attgtgagcg gataacaattt tcacacaggaa 5700
aacagctatg accatgatta cgaatttgcgg ccg 5733

<210> 13
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR 5' primer

<400> 13
gtcaaccgcg gactgcgcattt catgaagttc ttgcgcattc

39

<210> 14
<211> 66
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR 5' primer

<400> 14
tctagcaagc ttggctctag ttctgaaacc gcaccaggcg gcagcaacgg caacggcaat 60
gtttgc 66

<210> 15
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR 3' primer

<400> 15	
tcgtacaagg tttcaagcac cgacggcggt	30
<210> 16	
<211> 33	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: PCR 5' primer	
<400> 16	
tctagctcta gaagcaacgg caacggcaat gtt	33
<210> 17	
<211> 37	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: PCR 3' primer	
<400> 17	
tgcttagtcga cctgctagca gcaccgacgg cggctcg	37
<210> 18	
<211> 4614	
<212> DNA	
<213> <i>Saccharomyces cerevisiae</i>	
<220>	
<223> <i>S. cerevisiae</i> FL01 coding sequence	
<400> 18	
atgacaatgc ctcatcgcta tatgttttg gcagtcttta cacttctggc actaactagt 60	
gtggcctcag gagccacaga ggcgtgctta ccagcaggcc agaggaaaag tggatgaat 120	
ataaaatttt accagtattc attgaaagat tcctccacat attcgaatgc agcatatatg 180	
gcttatggat atgcctcaaa aaccaaacta gggtctgtcg gaggacaaac tgatatctcg 240	
attgattata atattccctg tggtagttca tcaggcacat ttcccttgtcc tcaagaagat 300	
tccttatggaa actggggatg caaaggaatg ggtgcttgc ttaatagtca aggaattgca 360	
tactggagta ctgatttatt tggtttctat actaccccaa caaacgtaac cctagaaaatg 420	
acaggttatt ttttaccacc acagacgggt tcttacacat tcaagttgc tacagttgac 480	
gactctgcaa ttctatcagt aggtggtgc accgcgttca actgttgc tcaacagcaa 540	
ccgcgcgtca catcaacgaa cttaaccatt gacggtatca agccatgggg tggaaagttt 600	
ccacctaata tcgaaggaac cgtctatatg tacgctggct actattatcc aatgaagggt 660	
gtttactcga acgctgttgc ttgggttaca cttccaatta gtgtgacact tccagatgtt 720	
accactgtaa gtgatgactt cgaagggtac gtctatttc ttgacgatga cctaagtcaa 780	
tcttaactgtt ctgtccctga cccttcaaatt tatgctgtca gtaccactac aactacaacg 840	
gaaccatgga ccggtacttt cacttctaca tctactgaaa tgaccaccgt caccgggtacc 900	
aacggcggttc caactgacga aaccgtcatt gtcatcggaa ctccaaacaac tgcttagcacc 960	
atcataacta caactgagcc atgaaacagc acttttacact ctacttctac cgaattgacc 1020	
acagtcactg gcaccaatgg tgtacgaact gacgaaacca tcattgtaat cagaacacca 1080	
acaacagcca ctactgccat aactacaact gagccatgga acagcacttt tacctctact 1140	
tctaccgaat tgaccacagt caccgggtacc aatggttgc caactgatga gaccatcatt 1200	

gtcatcagaa caccaacaac agccactact gccatgacta caactcagcc atggaacgac 1260
 actttacct ctacatccac taaaatgacc accgtcaccc gtaccaacgg tttgccaact 1320
 gatgaaacca tcattgtcat cagaacacca acaacagcca ctactgctat gactacaact 1380
 cagccatgga acgacacttt taccttaca tccactgaaa tgaccaccgt caccggtaa 1440
 aacggttgc caactgatga aaccatcatt gtcatcagaa caccaacaac agccactact 1500
 gccatgacta caactcagcc atggaacgac acttttaccc ctacatccac taaaatgacc 1560
 accgtcaccc gtaccaatgg tttgccaact gatgagacca tcattgtcat cagaacacca 1620
 acaacagcca ctactgccat gactacaact cagccatgga acgacacttt taccttaca 1680
 tccactgaaa tgaccaccgt caccggtaa aacggttgc caactgatga aaccatcatt 1740
 gtcatcagaa caccaacaac agccactact gccataacta caactgagcc atggaacagc 1800
 actttacct ctacttctac cgaattgacc acagtccaccc gtaccaatgg tttgccaact 1860
 gatgagacca tcattgtcat cagaacacca acaacagcca ctactgccat gactacaact 1920
 cagccatgga acgacacttt taccttaca tccactgaaa tgaccaccgt caccggtaa 1980
 aacggttgc caactgatga aaccatcatt gtcatcagaa caccaacaac agccactact 2040
 gccatgacta caactcagcc atggaacgac acttttaccc ctacatccac taaaatgacc 2100
 accgtcaccc gtaccaacgg tttgccaact gatgagacca tcattgtcat cagaacacca 2160
 acaacagcca ctactgccat gactacaact cagccatgga acgacacttt taccttaca 2220
 tccactgaaa tgaccaccgt caccggtaa aacggcggttcc caactgacga aaccgtcatt 2280
 gtcatcagaa ctccaacttag tgaaggctta atcagcacca ccactgaacc atggactgg 2340
 actttaccc ctacatccac tgagatgacc accgtcaccc gtactaacgg tcaaccaact 2400
 gacgaaaccc tgattgttat cagaactcca accagtgaag gtttggttac aaccaccaact 2460
 gaaccatgga ctggacttt tacttctaca tctactgaaa tgaccaccat tactggaaacc 2520
 aacggcggttcc caactgacga aaccgtcatt gtcatcagaa ctccaaaccag tgaaggctta 2580
 atcagcacca ccactgaacc atggactgg acttttactt ctacatctac taaaatgacc 2640
 accattactg gaaccaatgg tcaaccaact gacgaaaccc ttattgttat cagaactcca 2700
 actagtgaag gtctaattcag caccaccact gaaccatgga ctggacttt cacttctaca 2760
 tctactgaaa tgaccaccgt caccggtaa aacggcggttcc caactgacga aaccgtcatt 2820
 gtcatcagaa ctccaaaccag tgaaggctta atcagcacca ccactgaacc atggactggc 2880
 actttaccc ctgacttccac tgaggattacc accatactg gaaccaacgg tcaaccaact 2940
 gacgaaactg tgattgttat cagaactcca accagtgaag gtctaattcag caccaccact 3000
 gaaccatgga ctggacttt cacttctaca tctgctgaaa tgaccaccgt caccggtaact 3060
 aacggtcaac caactgacga aaccgtgatt gttatcagaa ctccaaaccag tgaaggtttg 3120
 gttacaacca ccactgaacc atggactgg acttttactt cgacttccac taaaatgtct 3180
 actgtcactg gaaccaatgg ctggcaact gatgaaactg tcattgttgt caaaactcca 3240
 actactgcca tctcatccag tttgtcatca tcatcttca gacaaatcac cagctctatc 3300
 acgtcttcgc gtccatttat tacccttccatc tatccttagca atggaacttc tttgattttct 3360
 tcctcagtaa ttttttcctc agtcaatttct tctctattca tttcttctcc agtcaatttct 3420
 tcctcagtaa ttttttcctc tacaacaacc tccacttcta tattttctga atcatctaaa 3480
 tcattccgtca ttccaaaccag tagttccacc tctggttctt ctgagagcga aacgagttca 3540
 gctggttctg tcttttcttcc ctcttttatac tcttctgaat cataaaaatc tcctacatat 3600
 tcttcttcat cattaccact tgttaccagt gcgacaaacaa gccaggaaac tgcttcttca 3660
 ttaccacccgt ctaccactac aaaaacgagc gacaaacccca ctttggttac cgtgacatcc 3720
 tgcgagtttc atgtgtgcac tgaatccatc tcccctgcga ttgttccac agtactgtt 3780
 actgttagcg gcgtcacaac agagtatacc acatgggtgcc ctatttctac tacagagacaa 3840
 acaaagcaaa ccaaaggac aacagacaa accacagaaa caacaaaaca aaccacggta 3900
 gttacaattt ctctttgtga atctgacgta tgctctaaga ctgcttctcc agccattgt 3960
 tctacaagca ctgctactat taacggcggtt actacagaat acacaacatg gtgtcctatt 4020
 tccaccacccg aatcgaggca acaaacaacg ctatgtactg ttacttccctg cgaatctgg 4080
 gtgtgttcccg aaactgttcc acctgcccatt gttcgcacgg ccacggctac tgtgaatgt 4140
 gttgttacccg tctatccatc atggaggccca cagactgcga atgaagagtc tgcagctct 4200
 aaaatgaaca gtgttcccg tgagacaaca accaataactt tagctgtga aacgactacc 4260
 aatactgttag ctgctgagac gattaccaat actggagctg ctgagacgaa aacagtagtc 4320
 accttccgc tttcaagatc taatcagct gaaacacaga cggctccgc gaccgatgt 4380
 attggtcaca gcagtagtgc ttttctgtt tccgaaactg gcaacaccaa gagtctaaca 4440
 agttccgggt tgtagtactat gtcgcaacag cctcgttagca caccagcaag cagcatggta 4500
 ggatatagtt cagtttccctt agaaatttca acgtatgctg gcagtgccaa cagttactg 4560
 gcccgttgc gtttaagtgt cttcatgca tccttattgc tggcaatttat taa 4614

<210> 19
<211> 5857
<212> DNA
<213> *Saccharomyces cerevisiae* and *E. coli*

<220>
<221> promoter
<222> (1)..(452)
<223> *S. cerevisiae* GAL1 promoter

<220>
<221> misc_feature
<223> (476-495) *E. coli* T7 promoter/priming site

<220>
<221> misc_feature
<223> (502-601) *E. coli* multiple cloning site

<220>
<221> misc_feature
<223> (609-857) *S. cerevisiae* CYC1 transcription terminator

<220>
<221> misc_feature
<223> (1039-1712) *E. coli* pMB1 (pUC-derived) origin

<220>
<221> gene
<222> (1857)..(2717)
<223> *E. coli* ampicillin resistance gene

<220>
<221> gene
<222> (2735)..(3842)
<223> *S. cerevisiae* URA3 gene

<220>
<221> misc_feature
<223> (3846-5317) *S. cerevisiae* 2 micron origin

<220>
<221> misc_feature
<223> (5385-5840) *E. coli* f1 origin

<220>
<221> misc_feature
<223> (1-5857) Sequence of pYES2

<400> 19
acggattaga agccgcccag cgggtgacag ccctccgaag gaagactctc ctccgtgcgt 60
cctcgtcctc accggtcgct ttccctgaaac gcagatgtgc ctcgcgccgc actgctccga 120
acaataaaga ttctacaata ctagtttta tggttatgaa gagaaaaat tggcagtaac 180
ctggccccac aaaccttcaa atgaacgaat caaatataaca accataggat gataatgcga 240
ttagttttt agccttattt ctggggtaat taatcagcga agcgatgatt tttgatctat 300
taacagatataaaatgcaa aaactgcatt aaccacttta actaataactt tcaacatttt 360

cggtttgtat tacttcttat tcaaatgtaa taaaagtatc aacaaaaaat tgtaatata 420
cctctatact ttaacgtcaa ggagaaaaaa ccccgatcg gactactgc agctgtata 480
cgactcacta taggaaatat taagcttggt accgagctcg gatccactag taacggccgc 540
cagtgtgctg gaattctgca gatatccatc acactggcg ccgctcgagc atgcatact 600
aggccgcat catgtaatta gttatgtcac gttacattc acgcctccc cccacatccg 660
ctctaaccga aaaggaagga gtagacaac ctgaagtcta gttccctatt tattttttt 720
tagttatgtt agtattaaga acgttattt tatttcaaat ttttctttt ttctgtaca 780
gacgcgtgta cgcatgtaac attatactga aaaccttgct tgagaaggaa ttgggacgct 840
cgaaggctt aatttgcggc cctgcattaa tgaatcgccc aacgcgcggg gagaggccgt 900
ttgcgtattt ggcgcttcc cgcttcctcg ctcactgact cgctgcgtc ggtcggttcgg 960
ctgcggcgag cggatcagc tcactcaaag gcggtaatac gttatccac agaatcaggg 1020
gataacgcag gaaagaacat gtgagcaaaa ggccagcaaa agcccaggaa ccgtaaaaag 1080
gccgcgttgc tggcgttttt ccataggctc cgccccctg acgagcatca caaaaatcga 1140
cgctcaagtc agagggtggcg aaaccgcaca ggactataaa gataccaggc gttccccc 1200
ggaagctccc tcgtgcgtc tcctgttccg accctgccc ttaccggata cctgtccgccc 1260
tttctccctt cgggaagcgt ggcgcttct catagctcac gctgttaggt ttcagttcg 1320
gtgttaggtcg ttcgctccaa gctgggttgt gtgcacgaa ccccggttca gcccggcc 1380
tgcgccttat cggtaacta tcgtcttgag tccaacccgg taagacacga cttatcgcca 1440
ctggcagcag ccactggtaa caggattagc agagcgaggatgttaggcgg tgctacagag 1500
ttcttgaagt ggtggcctaa ctacggctac actagaagga cagtatttgg tatctgcgt 1560
ctgctgaagc cagttacctt cgaaaaaaga gttggtagct ttgtatccgg caaacaaacc 1620
accgctggta ggggtgggtt tttgtttgc aacgacgaga ttacgcgcag aaaaaaagga 1680
tctcaagaag atcctttgat ctttctacg gggctgtacg ctcaagtggaa cgaaaaactca 1740
cgtaaggaa tttggtcat gagattatca aaaaggatct tcacctagat cttttaaat 1800
taaaaatgaa gttttaatc aatctaaatg atatatgat aaacttggtc tgacagttac 1860
caatgctta tcagtgaggc acctatctca gcgatctgtc tatttcgttc atccatagtt 1920
gcctgactcc ccgtcgtgta gataactacg atacgggagc gcttaccatc tggccccagt 1980
gctgcaatga taccgcgaga cccacgctca cccgcgtccag atttacgcg aataaaccag 2040
ccagccggaa gggccgagcg cagaagtggt cctgcaactt tatccgcctc cattcagtct 2100
attaattgtt gccggaaagc tagagtaatg agttcgccag ttaatagtt ggcacacgtt 2160
gttggcattt ctacaggcat cgtgggtgtca ctctcgctgt ttggatggc ttcattcagc 2220
tccggttccc aacgatcaag gcgagttaca tggatccccca tggatggcaaa aaaaagcggtt 2280
agctccttcg gtcctccgat cgttgcaga agtaagttgg ccgcagtgtt atcactcatg 2340
gttatggcag cactgcataa ttctcttact gtcatgccc ccgtaaagatg ctttctgtg 2400
actggtgagt actcaaccaa gtcattctga gaatagtgtaa tggcgccgacc gagttgtct 2460
tgcccgccgt caatacgga taatagtgtaa tcacatagca gaactttaaa agtgctcatc 2520
attggaaaac gttttcggtt gcaaaaactc tcaaggatct taccgtctgtt gagatccagt 2580
tcgatgtaac ccactcggtc acccaactga tcttcagcat ctttacttt caccagcggtt 2640
tctgggtgag caaaaacagg aaggcaaaaat gccgcaaaaaa agggaaaatag ggcgacacgg 2700
aaatgttggaa tactcatact ttccctttt caatggtaa taactgatataattaaattt 2760
aagctctaattt ttgtgagttt agtatacatg cattttactt taatacagtt ttttagttt 2820
gctggccgca tcttctcaaa tatgctccc agcgtcttt tctgttaacgt tcaccctcta 2880
ccttagcatc cttccctttt gcaaatagtc ctcttccaaac aataataatg tcagatcctg 2940
tagagaccac atcatccacg gttctatact gttgacccaa tgcgtctccc ttgtcatcta 3000
aaccacaccc ggggtgcata atcaaccaat cgtaaccttc atctttcca cccatgtctc 3060
tttggcaat aaagccgata acaaaatctt tgctgtctt cgcaatgtca acagtagcc 3120
tagtatattc tccagtagat agggaggccct tgcatacatac atcaaaaaggc 3180
ctcttaggttc ctttctgttact tcttctgtccg cctgcttcaa accgataaca atacctggc 3240
ccaccacacc gtgtgcattc gtaatgtctg cccattctgc tattctgtat acacccgcag 3300
agactgcaat ttgtactgtt ttaccaatgt cagcaattt tctgtcttgc aagagtaaaa 3360
aattgtactt ggccgataat gcctttagcg gottaactgt gcccctccatg gaaaaatcag 3420
tcaagatatac cacatgtgtt ttttagtaaac aaattttggg acctaataatgt tcaactaact 3480
ccagtaattc ttgggtggta cgaacatcca atgaagcaca caagttgtt tgctttctgt 3540
gcatgatatt aaatagcttgc gcaacacag gacttaggatg agtagcagca cttcccttat 3600
atgttagctt cgacatgatt tatcttcgtt tcttgcagg tttgttctg tgctgttgg 3660
ttaagaatac tggcaattt catgtttctt caacactaca tatgcgtata tataccaatc 3720
taagtctgtc cttccctt tctgttgcga gattaccgaa tcaaaaaaat 3780

ttcaaagaaa ccgaaatcaa aaaaaaagaat aaaaaaaaaa tgatgaattg aattgaaaag 3840
 ctagcttatac gatgataagc tgtcaaagat gagaattaat tccacggact atagactata 3900
 ctagatactc cgctctactgt acgatacact tccgctcagg tccttgcct ttaacgaggc 3960
 cttaccactc tttgttact ctattgatcc agctcagcaa aggcagtgtg atctaagatt 4020
 ctatcttcgc gatgttagtaa aactagctag accgagaaaag agactagaaa tgcaaaaggc 4080
 acttctacaa tggctgccat cattattatc cgatgtgacg ctgcagcttc tcaatgatat 4140
 tcgaatacgc tttgaggaga tacagcctaa tatccgacaa actgtttac agatttacga 4200
 tcgtacttgt taccatcat tgaatttga acatccgaac ctgggagttt tccctgaaac 4260
 agatagtata tttgaacctg tataataata tatagtctag cgctttacgg aagacaatgt 4320
 atgtatttcg gttcctggag aaactattgc atctattgca taggtaatct tgcacgtcgc 4380
 atcccccggtt cattttctgc gttccatct tgcacttcaa tagcatatct ttgttaacga 4440
 agcatctgtg cttcattttg tagaacaaaa atgcaacgcg agagcgtaa ttttcaaac 4500
 aaagaatctg agctgcattt ttacagaaca gaaatgcaac gcgaaagcgc tattttacca 4560
 acgaagaatc tgcatttcattt tttgtaaaa caaaaatgca acgcgacgag agcgctaatt 4620
 tttcaacaa agaatctgag ctgcattttt acagaacaga aatgcaacgc gagagcgtaa 4680
 ttttaccaac aaagaatcta tactttttt ttgttctaca aaaatgcata ccgagagcgc 4740
 tattttctta acaaagcatc ttagattact tttttctcc tttgtgcgtct tgcacgtcgc 4800
 gtctcttgat aacttttgc actgttaggtc cgtaagggtt agaagaaggc tactttggtg 4860
 tctatttctt cttccataaaa aaaagcctga ctccacttcc cgcgtttact gattactagc 4920
 gaagctgcgg gtgcattttt tcaagataaa ggcattttttt attatattct ataccgtatgt 4980
 ggattgcgcac tactttgtga acagaaagtg atagcgttga tgatttttca ttggtcagaa 5040
 aattatgaac ggtttcttctt attttgcata tataactac gtataggaaa ttgttacatt 5100
 ttctgtattgt ttctgattca ctctatgaat agttcttact acaattttt ttgtctaaaga 5160
 gtaatactag agataaaacat aaaaaatgta gagggtcgagt ttagatgcaaa gttcaaggag 5220
 cgaaagggtgg atgggttaggt tatataggga tatagcacag agatataatag caaagagata 5280
 cttttgagca atgtttgtgg aagcgttattt cgcatttttcc cgcgttactt gattactagc 5340
 tcagaaaagc cccaaaaaca ggaagattgtt ataagcaat atttaaattt taaacgtttaa 5400
 tattttgtta aatttcgcgt taaatttttgc ttaatcagc tcatttttta acgaatagcc 5460
 cgaaatcggc aaaaatccctt ataaatcaaa agaatagacc gagatagggt tgagtgttgc 5520
 tccagtttcc aacaagagtc cactattaa gaacgtggac tccaaacgtca aagggcgaaa 5580
 aagggtctat cagggcgatg gcccactacg tgaaccatca ccctaatttca gttttttggg 5640
 gtcgagggtgc cgtaaagcag taaatcggaa ggttaaacgg atgcccccat ttagagcttgc 5700
 acggggaaaag ccggcgaacg tggcgagaaa ggaaggaaag aaagcgtaaag gagcgggggc 5760
 tagggcggtg ggaagtgttag gggtcacgct gggcgtaacc accacacccg ccgcgtttaa 5820
 tggggcgctttaa cagggcgctttaa cagggatgtatc cactagt 5857

<210> 20
 <211> 403
 <212> DNA
 <213> Trichoderma reesei

<220>
 <221> misc_feature
 <223> (1-403) T. reesei hfb2 coding sequence

<220>
 <221> intron
 <222> (131)..(200)

<220>
 <221> intron
 <222> (287)..(358)

<400> 20
 atgcgttct tcgcccgtcgc cctttcgcc accagcgccc tggctgtgtt ctggcccttacc 60
 ggcctcttctt ccaaccctctt gtgctgtgcc accaacgttcc tcgacccatc tggcggttgc 120

tgcaagaccc gtagttgaa ttccaatctc tgggcattcct gacattggac gatacagttg 180
acttacacga tgcttacag ctaccatcg cgtcgacact ggcgccatct tccaggctca 240
ctgtgccagc aagggttcca agcctttt ctgcgttgct cccgtggtaa gtagtgctcg 300
caatggcaaa gaagttaaaaa gacattttggg cctggatcg ctaactttg atatcaaggc 360
cgaccaggct ctctgtgcc agaaggccat cggcaccc 403
taa

<210> 21
<211> 59
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR 5' primer

<400> 21
cgaggagct cgacgacttc gagcagcccc agctgcacgc aggctgtctg ccctaccgg 59

<210> 22
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR 3' primer

<400> 22
tcattggatc cttagaaggt gccgatggc 29

<210> 23
<211> 679
<212> DNA
<213> Schizophyllum commune

<220>
<221> misc_feature
<223> (1-679) SC3 coding sequence

<220>
<221> misc_feature
<223> (1-92) 1st cDNA

<220>
<221> misc_feature
<223> (146-183) 2nd cDNA

<220>
<221> misc_feature
<223> (240-317) 3rd cDNA

<220>
<221> misc_feature
<223> (374-469) 4th cDNA

<220>

```

<221> misc_feature
<223> (524-586) 5th cDNA

<220>
<221> misc_feature
<223> (635-679) 6th cDNA

<400> 23
atgttcgccc gtctcccggt cgtgttcctc tacgccttcg tcgcgttcgg cgccctcg 60
gtgcgcctcc cagggtggca cccgggcacg acgtacgtcg acctctcacc gtcctcta 120
gtcttgcgtga tgaagccccg tatagcacgc cgccggttac gacgacggtg acggtgacca 180
cggtgagtag ctttctcgcc gtcgacgact cgaacgcatt ggctaatttt tgctcatagc 240
cgccctcgac gacgaccatc gcccgggtg gcacgtgtac tacgggtcg ctctttgt 300
gcaaccagg tcaatcggtt cgtacatcaa agcggcacga ccaggcatct cagctgacgg 360
ccacatcgta caggcgagca gcagccctgt taccgcctc ctcggcctgc tcggcattgt 420
cctcagcgac ctcAACGTT tcgttggcat cagctgctct cccctcaactg tgagatctt 480
ttgttcaactg tcccaattac tgcgcaactga cagactttgc caggtcatcg gtgtcgagg 540
cagcggctgt tcggcgcaga ccgtctgctg cggaaacacc caattcgat gtatactttc 600
catgcgtgtc ctttctccg ctaatcatct gtagaacggg ctgatcaaca tcgggtgcac 660
ccccatcaac atcctctga 679

<210> 24
<211> 63
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR 5' primer

<400> 24
actacacgga ggagctcgac gacttcgagc agcccgagct gcacgcaggg tggccacccg 60
ggc 63

<210> 25
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR 3' primer

<400> 25
tcgtacggat cctcagagga tggatggg 30

<210> 26
<211> 43
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR 5' primer

<400> 26
gaaattccgc ggactgcgca tcatgaagtt ctgcgcattc gcc 43

```

<210> 27
<211> 80
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR 3' primer

<400> 27
tgaattccat atgttagta ccaccggggc ccatgccggt agaagtagaa gccccgggag 60
caccgacggc ggtctggcac 80

<210> 28
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR 5' primer

<400> 28
tgaattcggt acccaggctt gctcaaggcgt c 31

<210> 29
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR 3' primer

<400> 29
tgaattccat atgtcacagg cactgagagt agta 34

<210> 30
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR 5' primer

<400> 30
gaattcggta ccctcggtccc tcgcggtccc gccgaagtga acctggtg 48

<210> 31
<211> 34
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: PCR 3' primer

<400> 31

tgaattccat atgctaaccc cgtttcatct ccag

34

<210> 32

<211> 918

<212> DNA

<213> Trichoderma reesei

<220>

<221> terminator

<222> (1)..(918)

<223> T. reesei hfb1 terminator

<400> 32

gatccccgcc cggggtaaag gtgtccccgt gagaaggccc acaaagtgtt gatgaggacc 60
atttccgta ctggaaagt tggctccacg tggttggca gggttggca agttgttag 120
atattccatt cgtaacgcatt tcttattctc caatatttca gtacactttt cttcataaat 180
caaaaagact gctattctct ttgtgacatg cccgaaggga acaattgctc ttggctctcg 240
ttatattgcaa gtaggagtgg gagattgcgc tttagagaaag tagagaagct gtgcttgacc 300
gtggtgtgac tcgacgagga tggactgaga gtgttaggat taggtcgaac gttgaagtgt 360
atacaggatc gtctggcaac ccacggatcc tatgacttga tgcaatggtg aagatgaatg 420
acagtgtaaag aggaaaagga aatgtccgcc ttcagctgat atccacgcca atgatacagc 480
gataatacctc caatatctgt gggAACGAGA catgacatat ttgtgggaac aacttcaaac 540
agcgagccaa gacctaata tgcacatcca aagccaaaca ttggcaagac gagagacagt 600
cacattgtcg tcgaaagatg gcatcgatcc caaatcatca gctctcatta tcgcctaaac 660
cacagattgt ttgccgtccc ccaactccaa aacgttacta caaaaagacat gggcgaatgc 720
aaagacctga aagcaaaccct ttttgcac tcaattccct cctttgtcct cggaatgatg 780
atccttcacc aagtaaaaga aaaagaagat ttagataata catgaaaagc acaacggaaa 840
cgaaagaacc aggaaaagaa taaatctatc acgcaccttg tccccacact aaaagcaaca 900
gggggggtaa aatgaaat 918

<210> 33

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: PCR 5' primer

<400> 33

gacctcgatg cccgccccggg gtcaag

26

<210> 34

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: PCR 3' primer

<400> 34

gtcgacattt cattttaccc ccctcg

26

```

<210> 35
<211> 1190
<212> DNA
<213> Trichoderma reesei

<220>
<221> promoter
<222> (1)..(1190)
<223> T. reesei hfb2 promoter

<400> 35
ctcgagcagc tgaagcttgc atgcctgcat cctttgttag cgactgcac cattttgcac 60
acactgcccgt cgacgtctct cttccgaccc tggccagctg gacaagcaac acaccaatga 120
cgctttgtat tattagagta tatgcaagtc tcaggactat cgactcaact ctacccaccg 180
aggacgatcg cggcacgata cggcctcggtt ctcattggcc caagcagacc aactgcccct 240
ggagcaagat tcagcccaag ggagatggac ggcaggggcac gccaggcccc caccaccaag 300
ccactccctt tggccaaatc agcttgcatt tcaagagaca tcgagctgtg ccttgaatt 360
actaacaacc agggatggaa aacgaagcct gctttggaa agacaacaat gagagagaga 420
gagagaggaa gagagacaat gagtccaca aaccctggtag tgctccgcca atgcgtctga 480
aatgtcacat ccgagtcttg gggcctctgt gagaatgtcc agagtaatac gtgtttgctg 540
aatagtccctc tttcttgagg actggatacc tacgataccct tttttagtt gatgcggtgtc 600
tttcgaagta ttatctggag gatagaagac gtcttaggtaa ctacacaaaa ggcctataact 660
ttggggagta gccaacgaa aggtaactcc tacggcctct tagagccgtc atagatcccta 720
cagcctcttg gagccgtcat agatcacatc tgttagacc gacattctat gaataatcat 780
ctcatcatgg ccacatacta ctacatacgt gtctctgcct acctgacatg tagcagtggc 840
caagacacca aggccccagc atcaaggcctc cttacctatc cttccattt tacagccgca 900
gagagattgc gatgagccct ctccctaccc acagacggct gacaatgtcc gtataccacc 960
agccaacgtg atgaaaacaa ggacatgagg aacagcctgc gagagctgga agatgaagag 1020
ggccagaaaa aaaagtataa agaagaccc tattccggcc atccaacaat cttttccatc 1080
ctcatcagca cactcatcta caaccatcac cacattcaat caactcctct ttctcaactc 1140
tccaaacaca aacattcttt gttgaatacc aaccatcacc accttcaag 1190

<210> 36
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR 5' primer

<400> 36
aagcttgcattt gcctgcattcc 20

<210> 37
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR 3' primer

<400> 37
ccatggtaaa aggtgggtat ggttgg 26

```

<210> 38
<211> 13
<212> PRT
<213> Trichoderma reesei

<220>
<221> misc_feature
<223> vild type T. reesei EGI peptide linker

<400> 38
Val Pro Arg Gly Ser Ser Ser Gly Thr Ala Pro Gly Gly
1 5 10

<210> 39
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: modified CBHII linker

<400> 39
Gly Ser Ser Ser Gly Thr Ala Pro Gly Gly
1 5 10

<210> 40
<211> 19
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Met/Thrombin
linker

<400> 40
Pro Gly Arg Pro Val Leu Thr Gly Pro Gly Met Gly Thr Ser Thr Ser
1 5 10 15

Ala Gly Pro

<210> 41
<211> 13
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Met-containing linker

<400> 41

Pro Gly Ala Ser Thr Ser Thr Gly Met Gly Pro Gly Gly
1 5 10

<210> 42
<211> 14
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: linker containing the thrombin cleavage site

<400> 42
Gly Thr Leu Val Pro Arg Gly Pro Ala Gly Val Asn Leu Val
1 5 10

<210> 43
<211> 16
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide NheI BgIII NheI of the pTNS15 plasmid

<400> 43
gcttagagatc tcttagc 16

<210> 44
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide AocIXbaIAocI of the pTNS15 plasmid

<400> 44

Ala Ser Gly Ala Ser Arg Ala Ser Gly
1 5

<210> 45
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide AocIXbaIAocI of the pTNS15 plasmid

<400> 45

gcctcaggag cctctagagc ttcagga

27

<210> 46
<211> 20
<212> PRT
<213> Trichoderma reesei

<400> 46

Ala Asn Ala Phe Cys Pro Glu Gly Leu Leu Tyr Thr Asn Pro Leu Cys
1 5 10 15

Cys Asp Leu Leu
20