Supplementary Document of "Optimal Restart Strategies for Parameter-dependent Optimization Algorithms"

Lisa Schönenberger

lisa.schoenenberger@uni-ulm.de

Ulm University, Institute of Theoretical Computer Science Ulm, Germany

Vorarlberg University of Applied Sciences Research Center Business Informatics Dornbirn, Austria

This document provides the supplementary material to the paper "Optimal Restart Strategies for Parameter-dependent Optimization Algorithms". It contains all the detailed calculations and additional information regarding the experimental setup.

1 Proof of Theorem 3.2

PROOF. The number of required restarts at $\hat{\lambda} = \lambda_k + 1$ is $\hat{k}(\lambda_k + 1) = k + 1$. It holds that $\lambda_k = \lambda_0 + k\nu$ and therefore

$$\mathcal{L}^{+}(\lambda_{k}+1,\nu) = \sum_{j=0}^{k+1} \lambda_{j} - \lambda_{k} - 1 = \sum_{j=0}^{k+1} (\lambda_{0} + j\nu) - \lambda_{0} - k\nu - 1$$

$$= (k+2)\lambda_{0} + \nu \sum_{j=0}^{k+1} j - \lambda_{0} - k\nu - 1$$

$$= (k+2)\lambda_{0} + \frac{\nu}{2} (k+2)(k+1) - \lambda_{0} - k\nu - 1$$

$$= (k+1)\lambda_{0} + \frac{\nu}{2} (k^{2} + 3k + 2) - k\nu - 1$$

$$= (k+1)\lambda_{0} + \frac{\nu}{2} (k^{2} + k + 2) - 1$$

$$= (k+1)\lambda_{0} + \frac{\nu}{2} (k^{2} + k + 2) - 1. \tag{1}$$

Because

$$\lambda_k = \lambda_0 + k\nu \Leftrightarrow k = \frac{\lambda_k - \lambda_0}{\nu},\tag{2}$$

it follows that for all $k \ge 0$

$$\mathcal{L}^{+}(\lambda_{k}+1,\nu) = \left(\frac{\lambda_{k}-\lambda_{0}}{\nu}+1\right)\lambda_{0} + \frac{\nu}{2}\left(\left(\frac{\lambda_{k}-\lambda_{0}}{\nu}\right)^{2} + \frac{\lambda_{k}-\lambda_{0}}{\nu}\right) + \nu - 1$$

$$= \frac{\lambda_{0}}{\nu}\left(\lambda_{k}-\lambda_{0}\right) + \lambda_{0} + \frac{\nu}{2}\left(\lambda_{k}-\lambda_{0}\right)\left(\frac{\lambda_{k}-\lambda_{0}}{\nu^{2}} + \frac{1}{\nu}\right) + \nu - 1$$

$$= (\lambda_{k}-\lambda_{0})\left(\frac{\lambda_{0}}{\nu} + \frac{\lambda_{k}-\lambda_{0}}{2\nu} + \frac{1}{2}\right) + \lambda_{0} + \nu - 1$$

$$= (\lambda_{k}-\lambda_{0})\left(\frac{2\lambda_{0}+\lambda_{k}-\lambda_{0}}{2\nu} + \frac{1}{2}\right) + \lambda_{0} + \nu - 1$$

$$= \frac{1}{2}\left(\lambda_{k}-\lambda_{0}\right)\left(\frac{\lambda_{k}+\lambda_{0}}{\nu} + 1\right) + \lambda_{0} + \nu - 1$$

$$= \frac{1}{2}\left(\lambda_{k}-\lambda_{0}\right)\left(\frac{\lambda_{k}+\lambda_{0}}{\nu} + 1\right) + \lambda_{0} + \nu - 1$$

$$= \frac{1}{2}(\lambda_{k}+1-\lambda_{0}-1)\left(\frac{\lambda_{k}+1+\lambda_{0}-1}{\nu} + 1\right) + \lambda_{0} + \nu - 1$$

$$= \mathcal{L}_{\text{up}}^{+}(\lambda_{k}+1,\nu). \tag{3}$$

Hans-Georg Beyer
hans-georg.beyer@fhv.at
Vorarlberg University of Applied Sciences
Research Center Business Informatics
Dornbirn, Austria

For $\hat{\lambda} = \lambda_0$ it holds that

$$\mathcal{L}_{up}^{+}(\lambda_{0}, \nu) = -\frac{1}{2} \left(\frac{2\lambda_{0} - 1}{\nu} + 1 \right) + \lambda_{0} + \nu - 1$$

$$= \lambda_{0} \left(1 - \frac{1}{\nu} \right) + \nu + \frac{1}{2\nu} - \frac{3}{2}$$

$$\geq \nu + \frac{1}{2\nu} - \frac{3}{2}$$

$$\geq 0 = \mathcal{L}^{+}(\lambda_{0}, \nu) \tag{4}$$

for $v \ge 1$. In (15) from the main paper it was shown that $\mathcal{L}^+(\hat{\lambda}, v)$ decreases between $\lambda_k + 1$ and λ_{k+1} . Because $\mathcal{L}^+_{\mathrm{up}}$ is an increasing function of $\hat{\lambda}$ it holds for all $\hat{\lambda} \ge \lambda_0$ that

$$\mathcal{L}_{\rm up}^{+}(\hat{\lambda}, \nu) \ge \mathcal{L}^{+}(\hat{\lambda}, \nu). \tag{5}$$

2 Proof of Theorem 3.4

PROOF. The number of required restarts at $\hat{\lambda} = \lambda_k$ is $\hat{k}(\lambda_k) = k$. Using $\lambda_0 \rho^k + 1 > \lambda_k = \lceil \lambda_0 \rho^k \rceil \ge \lambda_0 \rho^k$, then

$$\mathcal{L}^{\times}(\lambda_k, \rho) = \sum_{j=0}^{k} \lambda_j - \lambda_k = \sum_{j=0}^{k-1} \lambda_j \ge \sum_{j=0}^{k-1} \lambda_0 \rho^j = \lambda_0 \frac{\rho^k - 1}{\rho - 1}.$$
 (6)

Additionally it holds that

$$\lambda_0 \rho^k + 1 > \lambda_k \Leftrightarrow \rho^k > \frac{\lambda_k - 1}{\lambda_0}.$$
 (7)

Inserting this into (6), then it follows that

$$\mathcal{L}^{\times}(\lambda_k, \rho) > \lambda_0 \frac{\frac{\lambda_k - 1}{\lambda_0} - 1}{\rho - 1} = \frac{\lambda_k - 1 - \lambda_0}{\rho - 1}.$$
 (8)

for all $k \geq 0$. In (15) from the main paper it was shown that $\mathcal{L}^{\times}(\hat{\lambda}, \rho)$ decreases between $\lambda_{k-1} + 1$ and λ_k . Therefore, it follows for $\lambda_{k-1} + 1 \leq \hat{\lambda} < \lambda_k$ by using (8)

$$\mathcal{L}^{\times}(\hat{\lambda}, \rho) > \mathcal{L}^{\times}(\lambda_k, \rho) > \frac{\lambda_k - 1 - \lambda_0}{\rho - 1} > \frac{\hat{\lambda} - 1 - \lambda_0}{\rho - 1} = \mathcal{L}^{\times}_{low}(\hat{\lambda}, \rho), \tag{9}$$

which holds for all $k \ge 1$. Because (8) includes the case λ_0 , it follows for all $\hat{\lambda} \ge \lambda_0$ that

$$\mathcal{L}^{\times}(\hat{\lambda}, \rho) > \mathcal{L}_{\text{low}}^{\times}(\hat{\lambda}, \rho).$$
 (10)

3 Additional steps for Proof of Lemma 3.5

Assume that the condition $\mathcal{F}_{up}(k) > \mathcal{F}(k)$ holds for k, then it follows by induction

$$\mathcal{F}_{\text{up}}(k+1) = \lambda_{0}\rho + k + 1 + (\lambda_{k+1} - \lambda_{0}) \left(\rho + \frac{1}{\rho - 1}\right)$$

$$= \lambda_{0}\rho + k + (\lambda_{k} - \lambda_{0}) \left(\rho + \frac{1}{\rho - 1}\right)$$

$$- \lambda_{k} \left(\rho + \frac{1}{\rho - 1}\right) + \lambda_{k+1} \left(\rho + \frac{1}{\rho - 1}\right) + 1$$

$$= \mathcal{F}_{\text{up}}(k) + (\lambda_{k+1} - \lambda_{k}) \left(\rho + \frac{1}{\rho - 1}\right) + 1$$

$$> \mathcal{F}(k) + (\lambda_{k+1} - \lambda_{k}) \left(\rho + \frac{1}{\rho - 1}\right) + 1$$

$$= \sum_{j=0}^{k+1} \lambda_{j} - \lambda_{k} - 1 + (\lambda_{k+1} - \lambda_{k}) \left(\rho + \frac{1}{\rho - 1}\right) + 1$$

$$= \sum_{j=0}^{k+2} \lambda_{j} - \lambda_{k+1} - 1 - \lambda_{k+2} + \lambda_{k+1} + 1 - \lambda_{k} - 1$$

$$+ (\lambda_{k+1} - \lambda_{k}) \left(\rho + \frac{1}{\rho - 1}\right) + 1$$

$$= \mathcal{F}(k+1) - \lambda_{k+2} + \lambda_{k+1} - \lambda_{k}$$

$$+ (\lambda_{k+1} - \lambda_{k}) \left(\rho + \frac{1}{\rho - 1}\right) + 1$$

$$= \mathcal{F}(k+1) - \lambda_{k+2} + \lambda_{k+1} - \lambda_{k} + \lambda_{k+1}\rho - \lambda_{k}\rho$$

$$+ \frac{\lambda_{k+1} - \lambda_{k}}{\rho - 1} + 1$$

$$> \mathcal{F}(k+1) - \lambda_{k+1}\rho - 1 + \lambda_{k+1} - \lambda_{k} + \lambda_{k+1}\rho - \lambda_{k}\rho$$

$$+ \frac{\lambda_{k+1} - \lambda_{k}}{\rho - 1} + 1$$

$$\geq \mathcal{F}(k+1) + \lambda_{k}\rho - \lambda_{k} - \lambda_{k}\rho + \frac{\lambda_{k}\rho - \lambda_{k}}{\rho - 1}$$

$$= \mathcal{F}(k+1), \qquad (11)$$

where (29) from main paper was used for the last two inequalities.

4 Additional steps for Proof of Lemma 3.7

Assume that the condition $\mathcal{F}_{low}(k) < \mathcal{F}(k)$ holds for k, then it follows by induction that

$$\begin{split} \mathcal{F}_{\text{low}}(k+1) &= \frac{1}{\rho - 1} \left(\lambda_{k+1} - \lambda_0 - k - 1 \right) \\ &= \frac{1}{\rho - 1} \left(\lambda_k - \lambda_0 - k \right) + \frac{1}{\rho - 1} \left(\lambda_{k+1} - \lambda_k - 1 \right) \\ &= \mathcal{F}_{\text{low}}(k) + \frac{1}{\rho - 1} \left(\lambda_{k+1} - \lambda_k - 1 \right) \\ &< \mathcal{F}(k) + \frac{1}{\rho - 1} \left(\lambda_{k+1} - \lambda_k - 1 \right) \\ &= \sum_{i=0}^{k} \lambda_j - \lambda_k + \frac{1}{\rho - 1} \left(\lambda_{k+1} - \lambda_k - 1 \right) \end{split}$$

$$= \sum_{j=0}^{k+1} \lambda_j - \lambda_{k+1} - \lambda_k + \frac{1}{\rho - 1} (\lambda_{k+1} - \lambda_k - 1)$$

$$= \mathcal{F}(k+1) - \lambda_k + \frac{1}{\rho - 1} (\lambda_{k+1} - \lambda_k - 1)$$

$$< \mathcal{F}(k+1) - \lambda_k + \frac{1}{\rho - 1} (\lambda_k \rho + 1 - \lambda_k - 1)$$

$$= \mathcal{F}(k+1). \tag{12}$$

where (29) from main paper was used for the last inequality.

5 Proof of Theorem 3.10

Proof. The loss function jumps at λ_k + 1 and the number of restarts is $\hat{k}(\lambda_k+1)=k+1$. It holds that

$$\lambda_0(k+1)^{\alpha} \le \lceil \lambda_0(k+1)^{\alpha} \rceil = \lambda_k < \lambda_0(k+1)^{\alpha} + 1. \tag{13}$$

For the calculations to come the following estimation comes in handy

$$\sum_{i=1}^{k} j^{\alpha} < \int_{0}^{k} (x+1)^{\alpha} dx = \frac{(k+1)^{\alpha+1}}{\alpha+1} - \frac{1}{\alpha+1}$$
 (14)

as visualized in the right plot of Fig. 4 from main paper. Therefore, it holds for all $k \ge 0$ that

$$\mathcal{L}^{\#}(\lambda_{k}+1,\alpha) = \sum_{j=0}^{k+1} \lambda_{j} - \lambda_{k} - 1 = \sum_{j=0}^{k+1} \lceil \lambda_{0}(j+1)^{\alpha} \rceil - \lambda_{k} - 1$$

$$< \sum_{j=0}^{k+1} \left(\lambda_{0}(j+1)^{\alpha} + 1 \right) - \lambda_{0}(k+1)^{\alpha} - 1$$

$$= \lambda_{0} \sum_{j=0}^{k+1} (j+1)^{\alpha} + k + 2 - \lambda_{0}(k+1)^{\alpha} - 1$$

$$= \lambda_{0} \sum_{i=1}^{k+2} i^{\alpha} + k + 1 - \lambda_{0}(k+1)^{\alpha}$$

$$< \lambda_{0} \frac{(k+3)^{\alpha+1}}{\alpha+1} - \frac{\lambda_{0}}{\alpha+1} + k + 1 - \lambda_{0}(k+1)^{\alpha}. \quad (15)$$

It follows from (13) that for $\lambda_k > \lambda_0$

$$(k+1)^{\alpha} \le \frac{\lambda_k}{\lambda_0} \Leftrightarrow k \le \sqrt[\alpha]{\frac{\lambda_k}{\lambda_0}} - 1$$
 (16)

$$(k+1)^{\alpha} > \frac{\lambda_k - 1}{\lambda_0} \Leftrightarrow k > \sqrt[\alpha]{\frac{\lambda_k - 1}{\lambda_0}} - 1. \tag{17}$$

Inserting this into (15), then it follows for $k \ge 0$ and $\lambda_k \ge 1$

$$\mathcal{L}^{\#}(\lambda_{k}+1,\alpha)
< \frac{\lambda_{0}}{\alpha+1} \left(\sqrt[\alpha]{\frac{\lambda_{k}}{\lambda_{0}}} + 2 \right)^{\alpha+1} - \frac{\lambda_{0}}{\alpha+1} + \sqrt[\alpha]{\frac{\lambda_{k}}{\lambda_{0}}} - \lambda_{0} \frac{\lambda_{k}-1}{\lambda_{0}}
= \frac{\lambda_{0}}{\alpha+1} \left(\sqrt[\alpha]{\frac{\lambda_{k}}{\lambda_{0}}} + 2 \right)^{\alpha+1} + \sqrt[\alpha]{\frac{\lambda_{k}}{\lambda_{0}}} - \frac{\lambda_{0}}{\alpha+1} - \lambda_{k} + 1
\le \frac{\lambda_{0}}{\alpha+1} \left(\sqrt[\alpha]{\frac{\lambda_{k}}{\lambda_{0}}} + 2 \right)^{\alpha+1} + \sqrt[\alpha]{\frac{\lambda_{k}}{\lambda_{0}}} - \frac{\lambda_{0}}{\alpha+1} - 0
= \mathcal{L}_{uv}^{\#}(\lambda_{k}+1,\alpha).$$
(18)

For $\hat{\lambda} = \lambda_0$ it holds that

$$\mathcal{L}_{\text{up}}^{\#}(\lambda_{0}, \alpha) = \frac{\lambda_{0}}{\alpha + 1} \left(\sqrt[\alpha]{\frac{\lambda_{0} - 1}{\lambda_{0}}} + 2 \right)^{\alpha + 1} + \sqrt[\alpha]{\frac{\lambda_{0} - 1}{\lambda_{0}}} - \frac{\lambda_{0}}{\alpha + 1}$$

$$= \frac{\lambda_{0}}{\alpha + 1} \left(\left(\sqrt[\alpha]{\frac{\lambda_{0} - 1}{\lambda_{0}}} + 2 \right)^{\alpha + 1} - 1 \right) + \sqrt[\alpha]{\frac{\lambda_{0} - 1}{\lambda_{0}}}$$

$$\geq \frac{\lambda_{0}}{\alpha + 1} \left(2^{\alpha + 1} - 1 \right) + \sqrt[\alpha]{\frac{\lambda_{0} - 1}{\lambda_{0}}}$$

$$> 0 = \mathcal{L}^{\#}(\lambda_{0}, \alpha). \tag{19}$$

In (15) from main paper it was shown that $\mathcal{L}^{\#}(\hat{\lambda}, \alpha)$ decreases between $\lambda_k + 1$ and λ_{k+1} . Because $\mathcal{L}^{\#}_{up}$ is an increasing function of $\hat{\lambda}$ it holds for all $\hat{\lambda} \geq \lambda_0$ that

$$\mathcal{L}_{\text{up}}^{\#}(\hat{\lambda}, \alpha) > \mathcal{L}^{\#}(\hat{\lambda}, \alpha). \tag{20}$$

6 Experimental Setup

The experimental results in the right plot of Fig. 8 from main paper are the results from 40 different Rastrigin and Ackley landscapes. The details are given in Tables 1 and 2.

Table 1: List of different Rastrigin landscapes (see Eq. (63) from main paper), the maximum number of generations for a single run g_{max} , and the optimal value of λ used for the experiments in the right plot of Fig. 8.

				· •	Π.				î
A	α	N	$g_{ m max}$	λ	A	α	N	$g_{ m max}$	λ
1	2π	100	500	138	10	2π	30	500	530
1	2π	200	1000	232	10	2π	50	750	610
1	2π	500	1000	452	10	2π	100	1000	1084
4	2π	30	300	168	1	2.5π	30	300	74
4	2π	50	500	264	1	2.5π	50	300	132
4	2π	100	500	466	1	2.5π	100	500	200
4	2π	200	1000	800	1	4π	30	500	166
6	2π	30	500	248	1	4π	50	500	260
6	2π	50	500	388	1	4π	100	500	460
6	2π	100	750	680	1	6π	30	500	556
8	2π	30	500	344	1	6π	50	500	1074
8	2π	50	500	504	1	6π	100	750	1006
8	2π	100	750	872					

Table 2: List of different Ackley landscapes (see Eq. (64) from main paper) with initial start distance $R_{\rm init}$, initial normalized mutation strength $\sigma_{\rm init}^*=3$, the maximum number of generations for a single run $g_{\rm max}$, and the optimal value of λ used for the experiments in the right plot of Fig. 8.

N	R _{init}	$g_{\rm max}$	λ	N	R _{init}	$g_{\rm max}$	λ
100	$10\sqrt{N}$	500	28	50	$35\sqrt{N}$	1000	144
200	$10\sqrt{N}$	1000	34	100	$35\sqrt{N}$	1000	124
300	$10\sqrt{N}$	2000	42	200	$35\sqrt{N}$	1000	136
500	$10\sqrt{N}$	5000	70	100	$40\sqrt{N}$	1000	586
30	$30\sqrt{N}$	300	48	200	$40\sqrt{N}$	2000	444
50	$30\sqrt{N}$	500	42	300	$40\sqrt{N}$	2000	486
100	$30\sqrt{N}$	750	44	100	$42\sqrt{N}$	1000	2800
30	$35\sqrt{N}$	300	296				