

Universität Regensburg

Schülerzirkel am 02.06.2018

Vom Skalarprodukt zur Bildbearbeitung

Gesina Schwalbe

Definitionen

Vektor "Wegbeschreibung"

Koordinatensystem

- $1. \ \ Nullpunkt$
- 2. Grundrichtungen mit $(Schritt)L\"{a}ngen$ in best. Reihenfolge

so, dass:

- Jeder Punkt erreichbar
- So wenige wie möglich

Vektordarstellung

<Schritte in Richtung 1>, <Schritte in Richtung 2>,...)

- Die Reihenfolge, in der ich die Schritte mache, ist egal!
- Auch Schrittbruchteile sind erlaubt.

Rechnen mit Vektoren

Addition

$$(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n)$$

Beispiel: (2,1) + (-1,1) = (1,2)

Strecken/Stauchen

$$(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(a\cdot x_1,\ldots,a\cdot x_n)$$

Beispiel: $\frac{1}{2} \cdot (2,1) = \left(1, \frac{1}{2}\right)$

Insbes.
$$(x_1, \ldots, x_n) = x_1 \cdot (1, 0, \ldots, 0) + x_2 \cdot (0, 1, 0, \ldots) + \cdots + x_n \cdot (0, \ldots, 0, 1)$$

Andere Räume mit Koordinatensystem

- RGB-Farbpixel: (Rotwert, Grünwert, Blauwert)
- Schwarz-weiß Bild: (Helligkeit Pixel 1, Helligkeit Pixel 2, ...)

Skalarprodukt

$$(x_1, \ldots, x_n) \circ (y_1, \ldots, y_n) = x_1 \cdot y_1 + x_2 \cdot y_2 + \cdots + x_n \cdot y_n$$

Das Skalarprodukt ist ein Maß dafür, wie sehr zwei $\frac{1}{\sqrt{2}}(-1,1)$ $\frac{1}{\sqrt{2}}(-1,1)$

Genauer:

$$x \circ y = L\ddot{a}nge(x) \cdot L\ddot{a}nge(y) \cdot \cos(\phi)$$

Anwendung in der Bildverarbeitung: Faltung

Eine Faltung sammelt die Ergebnisse von Skalarprodukten eines Vergleichsbildausschnitts mit Bildausschnitten unseres Anfangsbildes in einem Ergebnisbild.

Wirkung der Faltung	Vergleichsbildausschnitt
horizontale (scharfe) Linie	-2 -2 -2 4 4 4 -2 -2 -2
vertikale Kante von dunkel zu hell	0 0 0 -1 1 0 0 0 0 -1 1 0 -1 1 0 -1 1 0
Relief	-2 -1 0 -1 1 1 0 1 2
Schärfen	0 -1 0 -1 5 -1 0 -1 0

Beachte für den Umgang mit Bildern und Faltungen:

- Pixelwerte $\begin{cases} <0 & \text{keine Farbe (schwarz)} \\ >255 & \text{volle Farbe (weiß)} \end{cases}$
- Für Vergleichsbildausschnitte sollte man beachten:
 - Die Summe der Einträge sollte zwischen 0 und 1 sein.
 - Um obige Bedingungen zu erreichen: Die Tendenz (hell zu dunkel) ist entscheidend.

Gimp Bedienung

Filters \to Generic \to Convolution Matrix... Starte mit folgenden Einstellungen:

