

Formal Verification of Macro-op Cache for Arm Cortex-A77, and its Successor CPU

Vaibhav Agrawal

Principal Engineer, Arm

March 4, 2020

Cortex A-77

Announced in Q2, 2019

From Wikipedia:

The Arm Cortex-A77 is a microarchitecture implementing the ARMv8.2-A 64-bit instruction set designed by ARM Holdings' Austin design centre. The Cortex-A77 is a 4-wide decode out-of-order superscalar design with a new 1.5K macro-OP (MOPs) cache. The instruction fetch is 6-wide (up from 4-wide). The backend is 12 execution ports with a pipeline depth of 13 stages and the execution latencies of 10 stages.

Agenda

- Instruction fetch unit overview
- Reducing design complexity
- End to end checker design, including macro-op cache and instr cache coherence
- Results and summary

SYSTEMS INITIATIVE

Instruction Fetch Unit Overview

Verification Goal for Formal

- Very high flop and gate count => high control complexity
- Therefore, goal was to find bugs (full proofs a bonus)
- Complement simulation for functional verification
- Primary vehicle for ensuring no hangs (forward progress)

MANAGING COMPLEXITY

Managing Complexity

- Complexity reduction
 - Reducing the sequential depth and/or time required to reach interesting design states

S. No.	Complexity management technique
1	Table mutations (designer assisted, or tool assisted)
2	RAMs: Replace number of tracked entries (sets for caches)
3	Initial Value abstractions
4	Reduce data width if implementation doesn't care
5	Black boxing

Table Mutations

UNITED STATES

Reduce Number of Tracked Sets in Caches

IVAs – Initial Value Abstractions

Reduce Instructions & Mops Size & Number

Black-boxing Unneeded Design Components

END TO END CHECKER DESIGN

The Basics of Formal Checker Design

- Minimize the number of Flops (both TB and RTL)
- Avoid complex tracking structures
- Think pseudo-constants
 - assume: ##1 \$stable (signal)
- Think coloring (tagging) techniques
- Oracles based management of conflicting constraints for assertions

Macro-op Cache Ordering Checker

- 2 Tracked VAs
- Constraint: VA1→VA2
- Constraint: color mops at tr_VA{1,2}
- Check on outputs: m[VA1]→m[VA2]

Constrain both preloading and fills

Macro-op Fusion with Nop Elimination:

UNITED BITAINS TUCKIONS are fused for performante rdering Check

- 3 Tracked VAs
- Constraint:
 - $VA1 \rightarrow VA2 \rightarrow VA3$
 - Coloring
 - Fuse m[VA2] ← m[VA3]
 - m[VA2] is eliminated-nop
- Check on outputs: m[VA1]→m[VA3]

Constrain both preloading and fills

- 2 Tracked VAs
- Constraint: VA1→VA2
- Constraint: color mops at VA{1,2}
- Constraint: bkpt always on VA2; never on VA1
- Liveness Chk: d[VA1] must eventually be seen
- Safety Chk: d[VA2] not seen

Breakpoint Check

Constrain both preloading and fills

Coherence Checking Between Instr Cache and Macro-op cache

- 1 Tracked VA: VA1
- Constraint: color mops & instrs at VA1
- Constraint: d[VA1] in macro-op cache only if also in instr cache
- Check: If d[VA1] absent from instr cache, then it must also be absent from macro-op cache

Constrain both preloading and fills

d[VA1]

All other VAs

RESULTS AND SUMMARY

Macro-op / Instr Cache Switching Bug

For Power: macro-op cache hit => instr cache lookup suppressed

Instr cache awakens if an address misses in macro-op cache

 Bug in icac wakeup functionality after <N> consecutive back to back macro-op cache hits

Mopc Fusion with Nop Elimination

Fused instructions: (A, A+4)

Predicted taken or breakpoint

- If
 - Instruction{A} predicted as taken branch, OR
 - Instruction{A+4} has a breakpoint
- Then
 - Instr{A+4} cannot be delivered from macro-op cache

Forward Progress Bugs by Formal

 10+ bugs in database for forward progress; all were found by formal before other testbenches found them

2 were corner cases

2 bugs found by bug hunting

Bugs Found by Coherence Checker

7 bugs were found by formal checker

Checker ready before sim environment could be brought up

 2 of the bugs were "corner case" (included line victimizations, followed by fills, with parity errors, and snoops from L2)

Formal Bug dissection (all bugs)

By RTL quality

Both RTL bring up and late in project

 78% of bugs found during RTL bring up

12% found in the last 3 months

Formal Bugs by Property Type (all bugs)

Summary

- Definite impact on ensuring forward progress for high performance A class CPU core
- Exposed a high risk, leading to hardware change: deadlock avoidance mode was added
- Complexity management is crucial
- IVAs necessary, and highly effective
- Bugs found both for bring up, and later in the development cycle before LAC

