#### MATH F111- Mathematics I

# Saranya G. Nair Department of Mathematics

BITS Pilani

August 2, 2024



- Course Name: Mathematics I- MATH F111
- Introducing Handout
- Chamber Consultation Hours: Thursday 5:00pm -6:00 pm
- Office- AEx 1
- Email: saranyan@goa.bits-pilani.ac.in

#### **Notations**

We recall/denote the following notations:

- $\mathbb{C} =$  the set of all complex numbers.
- $\mathbb{R}$  = the set of all real numbers.
- $\mathbb{Z} = \{0, \pm 1, \pm 2, \ldots\}$  the set of all integers.
- $\mathbb{N} = \{1, 2, \ldots\}$  the set of all natural numbers.
- $\mathbb{Q} = \{ \frac{p}{q} : p, q \in \mathbb{Z}, q \neq 0 \}$  the set of all rational numbers.
- $\mathbb{R} \setminus \mathbb{Q}$  the set of all irrational numbers.

#### Polar Coordinates

In this section we study Polar Coordinates and their relation to Cartesian coordinates. We first formally introduce polar coordinates.

#### Polar Coordinates

In this section we study Polar Coordinates and their relation to Cartesian coordinates. We first formally introduce polar coordinates.

#### Definition (Polar Coordinates)

Let us fix an origin O and an **initial ray** from O. Now every point P in the plane can be determined by a pair  $(r, \theta)$  (say) where r is the directed distance from O to P and  $\theta$  is the directed angle between the initial ray and the line segment OP. This coordinate system is known as **polar** coordinate system.



#### Note

When we say  $P = (r, \theta)$  is a point in a plane, then

- r is the distance.
- θ is the angle.

As in trigonometry, we calculate  $\theta$  in the anti-clockwise direction. Therefore  $\theta$  is negative implies that we count in the clockwise direction. In the xy-plane, we often consider the intial ray as the positive x-axis.

### Example

• The point (1,0) in the xy-plane is described as (1,0) in polar coordinates. The same point can also be described as  $(1,2\pi)$  or  $(1,-2\pi)$ . In fact the point can generally be described as  $(1,2n\pi)$ , where n is an integer.

#### Example

- The point (1,0) in the xy-plane is described as (1,0) in polar coordinates. The same point can also be described as  $(1,2\pi)$  or  $(1,-2\pi)$ . In fact the point can generally be described as  $(1,2n\pi)$ , where n is an integer.
- The point (0,1) in the xy-plane is described as  $(1,\frac{\pi}{2})$  in polar coordinates. In general, the point is described in the polar coordinate as  $(1,2n\pi+\frac{\pi}{2})$ , where n is an integer.

#### Example

- The point (1,0) in the xy-plane is described as (1,0) in polar coordinates. The same point can also be described as  $(1,2\pi)$  or  $(1,-2\pi)$ . In fact the point can generally be described as  $(1,2n\pi)$ , where n is an integer.
- The point (0,1) in the xy-plane is described as  $(1,\frac{\pi}{2})$  in polar coordinates. In general, the point is described in the polar coordinate as  $(1,2n\pi+\frac{\pi}{2})$ , where n is an integer.
- Finally the point (1,1) in the xy-plane is  $(\sqrt{2}, \frac{\pi}{4} + 2n\pi)$  in the polar coordinates.

In some cases we allow r to be negative. That is why we use directed distance in defining  $P(r, \theta)$ .

In some cases we allow r to be negative. That is why we use directed distance in defining  $P(r, \theta)$ .

#### Example

The point  $(2, \frac{7\pi}{6})$  is same as  $(-2, \frac{\pi}{6})$ .

In some cases we allow r to be negative. That is why we use directed distance in defining  $P(r, \theta)$ .

#### Example

The point  $(2, \frac{7\pi}{6})$  is same as  $(-2, \frac{\pi}{6})$ .



Find all the polar coordinates of the point  $P(2, \frac{\pi}{6})$ .

**Solution**: We have already seen that we can represent the point P as  $(2, \frac{\pi}{6})$  and  $(-2, \frac{7\pi}{6})$ .

The other representations are  $(2, 2n\pi + \frac{\pi}{6})$  and  $(-2, 2n\pi + \frac{7\pi}{6})$ , where n is any integer.

Fix  $r = a \neq 0$  and vary  $\theta$  over  $[0, 2\pi]$ . Then  $P(r, \theta)$  traces a circle of radius |a|.

Fix  $r = a \neq 0$  and vary  $\theta$  over  $[0, 2\pi]$ . Then  $P(r, \theta)$  traces a circle of radius |a|.

### Example (Example 2(a))

Both r = 1 and r = -1 are equations for the circle of radius 1 centered at O.

#### Remark

If we fix  $\theta = \theta_0$  and vary r between  $-\infty$  and  $\infty$ , then we get a line passing through origin that makes an angle of  $\theta$  with the initial ray.

### Example (Example 2(b))

A line can have more than one polar equation.

#### Remark

If we fix  $\theta=\theta_0$  and vary r between  $-\infty$  and  $\infty$ , then we get a line passing through origin that makes an angle of  $\theta$  with the initial ray.

### Example (Example 2(b))

A line can have more than one polar equation.

$$\theta=\frac{\pi}{6}, \theta=\frac{7\pi}{6}$$
 and  $\theta=-\frac{5\pi}{6}$  are equations of the same line.

Graph the sets of points whose polar coordinates satisfy the following conditions.

(i). 
$$1 \le r \le 2, 0 \le \theta \le \frac{\pi}{2}$$
.

(ii). 
$$-3 \le r \le 2, \theta = \frac{\pi}{4}$$
.

(iii). 
$$\frac{2\pi}{3} \leq \theta \leq \frac{5\pi}{6}$$
.

Graph the sets of points whose polar coordinates satisfy the following conditions.

(i). 
$$1 \le r \le 2, 0 \le \theta \le \frac{\pi}{2}$$
.

(ii). 
$$-3 \le r \le 2, \theta = \frac{\pi}{4}$$
.

(iii). 
$$\frac{2\pi}{3} \leq \theta \leq \frac{5\pi}{6}$$
.







# Relating Polar and Cartesian Coordinates

When we use both polar and Cartesian coordinates in a plane, we place the two origins together and let the initial polar ray be the positive x-axis.



The ray  $\theta = \frac{\pi}{2}$ , becomes the positive y-axis.

### Relating Polar and Cartesian Coordinates

When we use both polar and Cartesian coordinates in a plane, we place the two origins together and let the initial polar ray be the positive x-axis.



The ray  $\theta = \frac{\pi}{2}$ , becomes the positive y-axis.

•  $x = r \cos \theta, y = r \sin \theta$ .

### Relating Polar and Cartesian Coordinates

When we use both polar and Cartesian coordinates in a plane, we place the two origins together and let the initial polar ray be the positive x-axis.



The ray  $\theta = \frac{\pi}{2}$ , becomes the positive y-axis.

- $x = r \cos \theta, y = r \sin \theta$ .
- $r^2 = x^2 + y^2$ ,  $\theta = \tan^{-1}\left(\frac{y}{x}\right)$ .

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - り Q (C)

Find a polar equation for the circle  $x^2 + (y-3)^2 = 9$ .

Find a polar equation for the circle  $x^2 + (y-3)^2 = 9$ .

**Solution**: Putting  $x = r \cos \theta$  and  $y = r \sin \theta$ , we have

$$r^{2}\cos^{2}\theta + (r\sin\theta - 3)^{2} = 9$$

$$\Leftrightarrow r^{2}\cos^{2}\theta + r\sin^{2}\theta + 9 - 6r\sin\theta = 9$$

$$\Leftrightarrow r^{2} - 6r\sin\theta = 0$$

$$\Rightarrow r(r - 6\sin\theta) = 0$$

Thus  $r = 6 \sin \theta$ .

# Graphing in Polar Coordinates

We will see how symmetries and tangents help in graphing the equation in polar coordinates. Symmetry Tests for Polar Graphs in the Cartesian xy-Plane To draw a graph, we first see the followings:

• Symmetry about the x-axis: If the point  $(r, \theta)$  lies on a graph, then we check whether the point  $(r, -\theta)$  or  $(-r, \pi - \theta)$  lies on the graph or not.



- Symmetry about the y-axis: If the point  $(r, \theta)$  lies on the graph, then check for the point  $(r, \pi \theta)$  or  $(-r, -\theta)$  that lies on the graph or not.
- Symmetry about the origin: If the point  $(r, \theta)$  lies on the graph, then we check for the point  $(-r, \theta)$  or  $(r, \pi + \theta)$  lies on the graph or not.



(b) About the y-axis



# Slope of a Polar Curve

Let  $r=f(\theta)$  be a polar curve. Then  $x=r\cos\theta=f(\theta)\cos\theta$  and  $y=r\sin\theta=f(\theta)\sin\theta$ . If f is a differentiable function of  $\theta$ , then so are x and y and when  $\frac{dx}{d\theta}\neq 0$ , we have

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{\frac{d}{d\theta}(f(\theta)\sin\theta)}{\frac{d}{d\theta}(f(\theta)\cos\theta)} = \frac{f'(\theta)\sin\theta + f(\theta)\cos\theta}{f'(\theta)\cos\theta - f(\theta)\sin\theta}$$
(1)

where  $f'(\theta) = \frac{df}{d\theta}$ .

# Slope of a Polar Curve

Let  $r = f(\theta)$  be a polar curve. Then  $x = r \cos \theta = f(\theta) \cos \theta$  and  $y = r \sin \theta = f(\theta) \sin \theta$ . If f is a differentiable function of  $\theta$ , then so are x and y and when  $\frac{dx}{d\theta} \neq 0$ , we have

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{\frac{d}{d\theta}(f(\theta)\sin\theta)}{\frac{d}{d\theta}(f(\theta)\cos\theta)} = \frac{f'(\theta)\sin\theta + f(\theta)\cos\theta}{f'(\theta)\cos\theta - f(\theta)\sin\theta}$$
(1)

where  $f'(\theta) = \frac{df}{d\theta}$ .

#### Remark

$$\frac{dy}{dx} \neq \frac{dr}{d\theta}$$
.

If the curve  $r = f(\theta)$  passes through the origin at  $\theta = \theta_0$ , then  $f(\theta_0) = 0$ , and the slope equation gives

### Remark (Slope of the Curve $r = f(\theta)$ in the Cartesian xy-Plane)

$$\frac{dy}{dx}_{(0,\theta_0)} = \frac{f'(\theta_0)\sin\theta_0}{f'(\theta_0)\cos\theta_0} = \frac{\sin\theta_0}{\cos\theta_0} = \tan\theta_0.$$

That is, the slope at  $(0, \theta_0)$  is  $\tan \theta_0$ . The reason we say "slope at  $(0, \theta_0)$ " and not just "slope at the origin" is that a polar curve may pass through the origin (or any point) more than once, with different slopes at different  $\theta$  values.