

iGenCo: Técnicas ómicas en el diagnóstico de enfermedades raras

Parc Científic de Barcelona, 16-17 de Noviembre

ANÁLISIS DEL EPIGENOMA

Laura Balagué, Natàlia Carreras i Xavier Escribà

TABLA DE CONTENIDOS

LAS EPIMUTACIONES Qué son y por qué las estudiamos

MÉTODOS DE DETECCIÓN PREVIOS
Cuáles son y qué limitaciones tienen

PAQUETE EPIMUTACIONS
Cómo funciona

03

MANOS A LA OBRA Caso práctico 04

KAHOOT ¿Quién se ha enterado de algo?

LAS EPIMUTACIONES

Las **epimutaciones** se definen como alteraciones raras del patrón de metilación en un loci específico.

> Pueden usarse para resolver casos clínicos ambiguos que no pueden ser diagnosticados mediante técnicas convencionales.

MÉTODOS DE DETECCIÓN PREVIOS

01

MANOVA

Análisis multivariante de la varianza

Aref-Eshghi et al. 2019

02

QUANTILE

Distribución de cuantiles

Garg et al. 2020

- Métodos no implementados en R
- No hay comparación de los métodos

PAQUETE EPIMUTACIONS

CpGs

PAQUETE EPIMUTACIONS

INPUT: GenomicRatioSet

CARACTERÍSTICAS

Información sondas

)pG

FENOTIPOS

PAQUETE EPIMUTACIONS

DISTRIBUCIÓN DE LOS DATOS

Caso - Control

Panel de referencia (controles)

Casos

Mahalanobis

MÉTODOS DE DETECCIÓN

BUMPHUNTER + OUTLIER TEST

01

IDENTIFICACIÓN DE REGIONES CANDIDATAS

Regiones con al menos 3 CpGs separados por menos de 1 kb

BUMPHUNTER + OUTLIER TEST

02

IDENTIFICACIÓN DE REGIONES DIFERENCIALMENTE METILADAS

Compara la muestra de interés con el panel de referencia e identifica todas aquellas regiones que están diferencialmente metiladas en la muestra.

BUMPHUNTER + OUTLIER TEST

03

OUTLIER TEST

Usando uno de los 4 métodos posibles, se evalúa cada región por separado y se identifican aquellas que son significativas.

MANOVA

Análisis multivariante de la varianza

MLM

Modelo lineal multivariante

iForest *Isolation forest*

MAH-DIST

Distancia de Mahalanobis

MANOVA Y MODELO LINEAL MULTIVARIANTE

ANOVA:
$$cpg_i = \alpha + \beta x_i$$

$$i = 1 \dots n$$

 $x = \text{caso/control}$

MANOVA:
$$c(cpg_i, cpg_{i+1}, cpg_{i+2}, ..., cpg_{i+k}) = \alpha + \beta x$$

Asume distribución normal multivariada

ISOLATION FOREST

DISTANCIA DE MAHALANOBIS

OUTLIERS + CLUSTERING

01

IDENTIFICACIÓN DE OUTLIERS PARA CADA CPG

Para cada CpG, se analiza si la muestra tiene una metilación anormal comparado con el panel de referencia.

CpG 2

QUANTILEDistribución de cuantiles

BETADistribución de betas

DISTRIBUCIÓN DE CUANTILES

DISTRIBUCIÓN DE BETAS

OUTLIERS + CLUSTERING

02

IDENTIFICACIÓN DE EPIMUTACIONES

Cuando encontramos 3 o más CpGs *outliers* consecutivos con menos de 1kb entre ellos, se considera una epimutación.

- OUTLIER
- METILACIÓN NORMAL

Epimutación

PAQUETE EPIMUTACIONS

OUTPUT

Sample	Chr	Start	End	Size	Num. CpGs
GSM256269	chr19	12777736	12777903	167	4
CLT1236766	chr8	89554	89634	80	3

CpGs	Direction	P value	P value adjusted	GENCODE
cg20791841,cg25267526, cg03641858,cg25441478	hypermethylation	3.44·10 ⁻⁹	2.17·10 ⁻⁶	MSRA, TNKS, RP1L1, RP1L1
cg65267526,cg13641858, cg890374639	Hypomethylation	2.03·10 ⁻¹³	6.11·10 ⁻¹¹	IL2, ADAD1, IL2

CONSIDERACIONES

- El método que da mejores resultados es **Quantile**.
- Los controles deberían estar hechos con el mismo array y ser del mismo sexo que la muestra de interés.
- En la medida de lo posible, usar el método **caso-control** y no One-leave-Out.
- Para priorizar epimutaciones, es recomendable comprobar si la epimutación afecta la expresión de algún gen cercano.

imanos a la obra!

https://cursopal.isglobal.org

Github link: https://github.com/isglobal-brge/course_epimutations

KAHOOT

https://kahoot.it/

