Задача Next. Следующий

Имя входного файла: next.in
Имя выходного файла: next.out
Ограничение по времени: 3 секунды
Ограничение по памяти: 64 мебибайта

Реализуйте структуру данных, которая поддерживает множество S целых чисел, с котором разрешается производить следующие операции:

- add(i) добавить в множество S число i (если он там уже есть, то множество не меняется);
- next(i) вывести минимальный элемент множества, не меньший i. Если искомый элемент в структуре отсутствует, необходимо вывести -1.

Формат входного файла

Исходно множество S пусто. Первая строка входного файла содержит n — количество операций ($1 \le n \le 300\,000$). Следующие n строк содержат операции. Каждая операция имеет вид либо «+ i», либо «? i». Операция «? i» задает запрос next(i).

Если операция *+i* идет во входном файле в начале или после другой операции *+*, то она задает операцию add(i). Если же она идет после запроса *?*, и результат этого запроса был y, то выполняется операция $add((i+y) \mod 10^9)$.

Во всех запросах и операциях добавления параметры лежат в интервале от 0 до $10^9.$

Формат выходного файла

Для каждого запроса выведите одно число — ответ на запрос.

Пример

next.in	next.out
6	3
+ 1	4
+ 3	
+ 3	
? 2	
+ 1	
? 4	

Задача Sum. Сумма

Имя входного файла: sum.in
Имя выходного файла: sum.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 64 мегабайта

Дан массив из N элементов, нужно научиться находить сумму чисел на отрезке.

Формат входного файла

Первая строка входного файла содержит два целых числа N и K — число чисел в массиве и количество запросов. (1 $\leq N \leq$ 100 000), (0 $\leq K \leq$ 100 000). Следующие K строк содержат запросы

- 1. А l г х присвоить элементам массива с позициями от l до r значение x (1 \leq l \leq r \leq n, 0 \leq x \leq 10 9)
- 2. Q l r найти сумму чисел в массиве на позициях от l до r. $(1\leqslant l\leqslant r\leqslant n)$

Изначально массив заполнен нулями.

Формат выходного файла

На каждый запрос вида Q l r нужно вывести единственное число — сумму на отрезке.

Примеры

sum.in	sum.out
5 9	3
A 2 3 2	2
A 3 5 1	3
A 4 5 2	4
Q 1 3	2
Q 2 2	7
Q 3 4	
Q 4 5	
Q 5 5	
Q 1 5	

Задача Kth. K-ый минимум

 Имя входного файла:
 kth.in

 Имя выходного файла:
 kth.out

 Ограничение по времени:
 0.5 секунды

 Ограничение по памяти:
 64 мебибайта

Напишите программу, которая находит k-ое в возрастающем порядке число в массиве $A = \langle a_1, a_2, \dots, a_n \rangle$.

Массив A задается с помощью полинома $P(x) = 132x^3 + 77x^2 + 1345x + 1577$; $a_i = P(i) \mod 1743$.

Формат входного файла

Входной файл содержит два натуральных числа n и k ($1 \le k \le n \le 4\,000\,000$).

Формат выходного файла

В выходной файл выведите одно число — ответ на задачу.

Пример

kth.in	kth.out
1 1	1388
10 1	402

Задача Sum2. Суммы без модуля

Имя входного файла: sum.in
Имя выходного файла: sum.out
Ограничение по времени: 3 секунды
Ограничение по памяти: 64 мегабайта

Участники сборов приезжают на сборы группами, и их необходимо заселить в гостиницу. Недолго думая, администратор гостиницы селит i-ю группу в комнаты с номерами с l_i по r_i включительно, по одному человеку в комнату (соответственно, в i-й группе r_i-l_i+1 человек). Комнаты не резиновые, а именно вмещают лишь k-1 человек. Как только в комнату заселяется k-й человек, все обитатели этой комнаты обижаются и уезжают домой (включая только что заселившегося).

Вдохновленный новым эффективным методом заселения, администратор решил применить подобный метод для завтраков, обедов и ужинов участников сборов. А именно, на j-й прием пищи приглашаются лишь участники из комнат с номерами с s_j по t_j включительно. Вам необходимо подсчитать, сколько порций нужно готовить на каждый прием пищи.

Формат входного файла

В первой строке записаны три натуральных числа — число комнат n ($1\leqslant n\leqslant 100\,000$), характеристика вместимости комнаты k ($2\leqslant k\leqslant 5$), и количество произошедших на сборах событий m ($1\leqslant m\leqslant 100\,000$). В последующих m строках описаны сами произошедшие события в хронологическом порядке, по одному на строке.

Каждое событие описывается тремя целыми числами. Заезд очередной группы участников описывается как «1 l r», где l и r задают диапазон номеров комнат для заселения (1 \leq

Параллель В, день 06 Летняя Компьютерная Школа, Орлёнок, 8 августа 2010

 $l\leqslant r\leqslant n$). Очередной прием пищи описывается как «2 s t», где s и t (1 $\leqslant s\leqslant t\leqslant n$) задают диапазон номеров комнат, приглашенных в столовую.

Формат выходного файла

На каждый запрос второго вида выведите количество кушающих участников на отдельной строке.

Пример

ример		
sum.in	sum.out	
3 3 9	3	
1 1 3	2	
1 1 2	1	
1 1 1	1	
2 1 3		
2 1 2		
1 1 3		
1 3 3		
2 1 3		
2 1 2		