Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Física Prof. Dr. Alan Barros de Oliveira

Prova 2 - FIS110-73 - 17/06/2022

1. Considere uma colisão frontal elástica entre duas partículas de massas m e m'=19m. A partícula de massa m se move inicialmente com velocidade v, enquanto a outra encontra-se em repouso. Qual é a fração de energia cinética transferida de m para m' durante a colisão?

(a)0,19 (b)0,47 (c)0,00 (d)0,26 (e)0,70 (f)0,55 (g)0,89

- 2. Duas partículas, de massas m_1 e m_2 , são empurradas uma contra a outra, comprimindo uma mola colocada entre elas. Quando são liberadas, a mola as arremessa em sentidos opostos. A relação entre as massas das partículas é $m_2/m_1=4$ e a energia armazenada na mola é de 79 J. Suponha que a mola tenha massa desprezível e que toda a energia armazenada seja transferida para as partículas. Após terminada essa transferência, qual é a energia cinética **da partícula 1** em J? (a)7,6 (b)63,2 (c)40,5 (d)19,9 (e)48,5 (f)24,9 (g)35,0
- 3. Uma pequena aranha de peso P_a está pendurada na ponta de um fio de teia, no teto de um elevador. Sabendo-se que o fio suporta uma tensão máxima de $3,2P_a$, qual seria a mínima aceleração (em m/s²) de subida do elevador para que o fio se partisse?

 $\hbox{ (a)} 68,3 \hbox{ (b)} 22,0 \hbox{ (c)} 47,7 \hbox{ (d)} 59,8 \hbox{ (e)} 13,6 \hbox{ (f)} 77,4 \hbox{ (g)} 34,0 \\$

4. Um metrô percorre uma curva plana de raio $13~\mathrm{m}$ a $13~\mathrm{km/h}$. Qual o ângulo, em graus, que as alças de mão penduradas no teto fazem com a vertical?

(a)67,4 (b)45,5 (c)60,6 (d)52,4 (e)80,5 (f)72,5 (g)35,4

5. Um rifle, que atira balas a 437 m/s, é apontado para um alvo situado a 80 m de distância. Se o centro do alvo está na mesma altura do rifle, para que altura (**em centímetros**) acima do alvo o cano do rifle deve ser apontado para que a bala atinja o seu centro?

(a)7,6 (b)56,1 (c)89,3 (d)43,8 (e)16,8 (f)29,2 (g)70,8

6. A figura abaixo mostra um corpo rígido formado por um aro fino (de massa m, raio R=0.75 m e momento de inércia em relação ao diâmetro $mR^2/2$) e uma barra fina radial (de massa m, comprimento L=2.00R e momento de inércia em relação ao seu CM $mL^2/12$). O conjunto está na vertical, mas se recebe um pequeno empurrão começa a girar em torno de um eixo horizontal no plano do aro e da barra, que passa pela extremidade inferior da barra. Supondo que a energia fornecida ao sistema pelo pequeno empurrão é desprezível, qual é a velocidade angular em rad/s do conjunto quando ele passa pela posição invertida (de cabeça para baixo)?

(a)10,07 (b)6,76 (c)4,44 (d)5,02 (e)11,18 (f)8,87 (g)7,37

- 7. Considere um corpo de massa m, sob a ação de um campo de forças F conservativo, cuja energia mecânica é E=K+U, onde K e U são as energias cinética e potencial. Considerando que o movimento do corpo é restrito a uma dimensão, pode-se afirmar que
- (a) Todas as outras alternativas são falsas.
- (b) se F = mg o sistema encontra-se em repouso ultra-móvel.
- (c) quando U=0, tem-se um ponto de equilíbrio instável.
- (d) se F = 0 o sistema é dito anti-conservativo.
- (e) F = -dU/dx.
- (f) U > E é condição de flutuação mega dissonante.
- (g) se dU/dx = 0 o sistema está em repouso.
- 8. Na figura abaixo, um pequeno bloco de 63 g desliza para baixo em uma superfície curva sem atrito a partir de uma altura h=29 cm e depois adere a uma barra uniforme de massa 123 g e comprimento 92 cm. A barra gira em torno do ponto O antes de parar momentaneamente. Determine θ em graus.

(a)1,1 (b)31,7 (c)39,7 (d)12,4 (e)25,4 (f)19,7 (g)8,9

- 9. Uma partícula de massa 3,0 kg, lançada sobre um trilho retilíneo com velocidade de 2,8 m/s, está sujeita a uma força F(x) = -bx, onde b = 0,6 N/m e x é o deslocamento, em m, a partir da origem. Sabendo-se que a partícula para em dois pontos do trilho, a saber, $+x_0$ e $-x_0$, determine x_0 em metros. (a)8,2 (b)6,3 (c)0,7 (d)3,0 (e)4,3 (f)11,9 (g)10,1
- 10. Considere um objeto que se move em uma dimensão de acordo com a equação horária $x=v_0te^{-t/t_0}$, onde t é o tempo, $v_0=16,4$ m/s e $t_0=1,2$ s. Qual é a distância, em metros, que o objeto se encontra da origem quando para momentaneamente?

(a)8,8 (b)12,5 (c)11,1 (d)7,2 (e)4,4 (f)10,2 (g)5,8

Fórmulas e Constantes

$$\begin{split} I &= \frac{P_s}{4\pi r^2}; \quad E = hf; \quad p = \frac{hf}{c} = \frac{h}{\lambda} \\ hf &= K_{\text{max}} + \Phi; \quad \Delta \lambda = \frac{h}{mc} (1 - \cos \phi) \\ \frac{d^2 \psi}{dx^2} + \frac{8\pi^2 m}{h^2} [E - U(x)] \psi = 0 \\ T &\approx e^{-2bL}, \text{ onde } b = \sqrt{\frac{8\pi^2 m (U_b - E)}{h^2}} \\ E_n &= \left(\frac{h^2}{8mL^2}\right) n^2, \text{ para } n = 1,2,3 \dots \\ \psi_n(x) &= A \sin \left(\frac{n\pi}{L}x\right), \text{ para } n = 1,2,3 \dots \\ \Delta x \Delta p &= h/2\pi \\ \epsilon_0 &= 8,854 \times 10^{12} \text{ F/m}; \quad \mu_0 = 1,257 \times 10^{-6} \text{ H/m} \\ c &= 3,0 \times 10^8 \text{ m/s}; \quad h = 6,63 \times 10^{-34} \text{ J/s} = 4,14 \times 10^{-15} \text{ eV.s} \\ hc &= 1240 \text{ eV.nm} \end{split}$$

Por exemplo, se seu número de matrícula for 12.1.3579, temos que

Eletron: $mc^2 = 511 \text{ keV}$

e a tabela deve ser preenchida assim:

XX	0	1	2	3	4	5	6	7	8	9
1°										
2°										
3°										
4°										
5°										
6°										
7°										

NAO MARCAR												
un	_	_	_	_	_	_	_	_	_			
de		_	_	_	_	_	_	_	_	_		
GABARITO												
_	1	2	3	4	5	6	7	8	9	10		
a												
b												
c												
d												
е												
f												
g												
	MATRÍCULA											
_	0	1	2	3	4	5	6	7	8	9		
1°												
2°												
3°												
4°												
5°												
6°												
7°												

MATRÍCULA:

NOME:

TURMA: