Intelligent Systems Exercises Block 2, Chapter 1 Probabilistic Reasoning

Escuela Técnica Superior de Informática Dep. de Sistemas Informáticos y Computación Universitat Politècnica de València

6 de noviembre de 2022

Questions

A)
$$P(y | x) = 1 / P(x, y)$$

B)
$$P(y | x) = P(x,y) / \sum_{y'} P(x,y')$$

C)
$$P(y \mid x) = \sum_{x'} P(x', y) / \sum_{y'} P(x, y')$$

D)
$$P(y \mid x) = \sum_{x'} P(x', y) \cdot \sum_{y'} P(x, y')$$

2	(Exam January 15, 2014) In a binary decision problem $(D = \{0,1\})$, let y be a fact or data and $d^{\star}(y) = 0$ be the
	decision of optimal classification (minimum error classification). Indicate which of the following expressions is not
	correct to determine the minimum probability of error for y :

A)
$$P_{\star}(\text{error} \mid Y = y) = 1 - P(D = 1 \mid Y = y)$$

B)
$$P_{\star}(\text{error} \mid Y = y) = 1 - P(D = 0 \mid Y = y)$$

C)
$$P_{\star}(\text{error} \mid Y = y) = P(D = 1 \mid Y = y)$$

D)
$$P_{\star}(\text{error} \mid Y = y) = 1 - \max_{d} P(D = d \mid Y = y)$$

3	(Exam January 15, 2014) In a differential diagnosis between Flu and Cold, we know that the relative occurrence of
	Flu with respect to $Cold$ is 30 %. We know the following distribution of fever values in Celsius degrees:

- (-)		37			-
$P(T = t \mid D = \text{Flu})$	0.05	0.10	0.20	0.30	0.35
$P(T = t \mid D = \text{Cold})$	0.10	0.30	0.40	0.15	0.05

The conditional (posterior) probability that a patient has Flu given he has a fever of $38^{o}C$ is:

- A) greater than 0.8
- B) lower than 0.1
- C) between 0.3 and 0.6
- D) lower than the probability that the patient has Cold with the same fever of 38°C
- 4 (Exam January 28, 2014) In a classification experiment with 300 test samples, 15 wrong decisions were found. With a 95 % of confidence, we can affirm that the true probability of error is:
 - A) $P(\text{error}) = 5\% \pm 0.3\%$
 - B) $P(\text{error}) = 0.05 \pm 0.3$
 - C) P(error) = 0.05, exactly
 - D) $P(\text{error}) = 0.05 \pm 0.03$

5	(Exam January 28, 2014) In a differential diagnosis between Flu and Cold, we know that the relative occurrence of
	Flu with respect to Cold is 30 %. We know the following distribution of fever values in Celsius degrees:

$$\begin{array}{c|ccccc} t(^{o}C) & 36 & 37 & 38 & 39 & 40 \\ \hline P(T=t \mid D=\text{Flu}) & 0.05 & 0.10 & 0.20 & 0.30 & 0.35 \\ P(T=t \mid D=\text{Cold}) & 0.10 & 0.30 & 0.40 & 0.15 & 0.05 \\ \hline \end{array}$$

The most probable diagnosis for a patient that has a fever of $37^{\circ}C$ is:

- A) Flu
- B) Cold
- C) There is a tie between the two diagnosis.
- D) The given probabilities are not correct because they don't sum up 1; therefore, a diagnosis cannot be made.

6 | (January 13, 2015) Regarding the Bayes' rule, which of the following expressions is **not correct**?

A)
$$P(x | y) = \frac{P(y, x)}{\sum_{z} P(y | z) P(z)}$$

B)
$$P(x \mid y) = \frac{P(x,y)}{\sum_{z} P(y,z)}$$

C)
$$P(x \mid y) = \frac{\sum_{z} P(x, z)}{P(y)}$$

D)
$$P(x \mid y) = \frac{P(y \mid x) P(x)}{P(y)}$$

(January 13, 2015) The commercial assessment of the 300 movies screened in a cinema over the last year was success for 120 movies and failure for the rest of the movies. We know the distribution of the movie genres given its commercial assessment:

g	Romance	Comedy	Intrigue
$P(G = g \mid A = \text{Success})$	0.30	0.35	0.35
$P(G = g \mid A = \text{Failure})$	0.20	0.50	0.30

Which is the most probable commercial assessment for an intrigue film?

- A) Success
- B) Failure
- C) Both commercial assessments have the same probability
- D) It is impossible to determine the prediction with the available data
- (January 13, 2015) In a classification problem in three classes, $C = \{a, b, c\}$, let y be a fact or data. The decision of optimal classification for y is class a with a posterior probability of 0.40. Which of the following assertions is incorrect?

A)
$$P(C = a \mid Y = y) \leq P(C = b \mid Y = y) + P(C = c \mid Y = y)$$

- B) $P_{\star}(\text{error} \mid Y = y) = P(C = b \mid Y = y) + P(C = c \mid Y = y)$
- C) $P_{\star}(\text{error} \mid Y = y) = 1 P(C = a \mid Y = y)$
- D) $P_{\star}(\text{error } | Y = y) = 1 \max_{d \in \{b,c\}} P(C = d | Y = y)$
- (January 26, 2015) Let X, Y and Z be three random variables. X and Y are conditionally independent given Z if and only if

$$P(X = x, Y = y \mid Z = z) = P(X = x \mid Z = z) P(Y = y \mid Z = z)$$
 for all x, y y z.

If the above condition holds, $P(Z=z \mid X=x,Y=y)$ can be calculated as ...:

A)
$$P(Z = z \mid X = x, Y = y) = \frac{P(X = x, Y = y, Z = z)}{P(X = x, Y = y)}$$

B)
$$P(Z = z \mid X = x, Y = y) = \frac{P(Z = z) P(X = x, Y = y \mid Z = z)}{P(X = x, Y = y)}$$

B)
$$P(Z = z \mid X = x, Y = y) = \frac{P(Z = z) P(X = x, Y = y \mid Z = z)}{P(X = x, Y = y)}$$

C) $P(Z = z \mid X = x, Y = y) = \frac{P(Z = z) P(X = x \mid Z = z) P(Y = y \mid Z = z)}{P(X = x, Y = y)}$

D) The three above answers are all correct to calculate $P(Z=z\mid X=x,Y=y)$

10	[(January 26, 2015) Let be a classification problem in three classes, $C = \{a, b, c\}$, where the number of samples of class
	a is 100, the number of samples of class b is 100, and the number of samples of class c is 100, and let y be a fact of
	data. The decision of optimal classification for y is class a with a posterior probability of 0.50. Which of the following
	assertions is <i>correct</i> ?

A)
$$P(C = a \mid Y = y) > P(C = b \mid Y = y) + P(C = c \mid Y = y)$$

B)
$$P(Y = y \mid C = a) = \frac{0.5 P(C = a)}{P(Y = y)}$$

A)
$$P(C = a \mid Y = y) > P(C = b \mid Y = y) + P(C = c \mid Y = y)$$

B) $P(Y = y \mid C = a) = \frac{0.5 \ P(C = a)}{P(Y = y)}$
C) $P(Y = y \mid C = a) = P(Y = y \mid C = b) + P(Y = y \mid C = c)$

D) None of the above.

(January, 2016) Which of the following expressions is **CORRECT**?

A)
$$P(x | y) = \frac{1}{P(z)} \sum_{x} P(x, y, z)$$

B)
$$P(x | y) = \frac{1}{P(z)} \sum_{z} P(x, y, z)$$

C)
$$P(x | y) = \frac{1}{P(y)} \sum_{x} P(x, y, z)$$

D)
$$P(x | y) = \frac{1}{P(y)} \sum_{z} P(x, y, z)$$

(January, 2016) A physician knows that:

- \blacksquare The meningitis disease causes neck stiffness in the 70 % of the cases.
- The prior probability that a patient suffers from meningitis is 1 / 100 000.
- The prior probability that a patient has neck stiffness is 1 %.

Based on the above knowledge, the probability P that a patient who has neck stiffness suffers from meningitis is:

- A) 0.000 < P < 0.001
- B) $0.001 \le P < 0.002$
- C) $0.002 \le P < 0.003$
- D) $0.003 \le P$

13 | (January 2016) Which of the following assertions is **TRUE**?

A)
$$P(x,y) = \sum_{x} P(x) P(y) P(z)$$
.

B)
$$P(x,y) = \sum_{x} P(x) P(y \mid z)$$
.

C)
$$P(x,y) = \sum_{z} P(x \mid z) P(y \mid z) P(z)$$
.

D)
$$P(x,y) = \sum_{z}^{\infty} P(x,y \mid z) P(z).$$

14
$$\square$$
 (January 2016) An entomologist discovers a rare subspecies of beetle, due to the pattern of his back. In this rare subspecies, 98 % of the specimen have this pattern. In the common subspecies, 5 % of the specimen have this pattern. The rare subspecies represents 0.1 % of the population. The probability P that a beetle with the pattern of his back belongs to the rare subspecies is:

A)
$$0.00 \le P < 0.05$$
.

B)
$$0.05 \le P < 0.10$$
.

C)
$$0.10 \le P < 0.20$$
.

D)
$$0.20 \le P$$
.

15	(January 2017) Let x be an object (represented with a feature vector or string of symbols) that we want to classify in one among C possible classes. Indicate which of the following expressions DOES NOT classify x by minimum classification error:
	A) $c(x) = \underset{c=1,\dots,C}{\operatorname{argmax}} \log_2 p(c \mid x)$
	B) $c(x) = \underset{c=1,\dots,C}{\operatorname{arg \ max}} \log_{10} p(c \mid x)$ $c=1,\dots,C$ $c=1,\dots,C$ $c=1,\dots,C$
	B) $c(x) = \underset{c=1,,C}{\operatorname{arg max}} \log_{10} p(c \mid x)$ C) $c(x) = \underset{c=1,,C}{\operatorname{arg max}} a p(c \mid x) + b$ being a and b two real constants D) $c(x) = \underset{c=1,,C}{\operatorname{arg max}} p(c \mid x)^3$
	D) $c(x) = \underset{c=1,\dots,C}{\operatorname{arg max}} p(c \mid x)^{\circ}$
16	(January 2016) Which of the following expressions is INCORRECT ?
	A) $P(x y) = \frac{P(x,y)}{\sum_{z} P(y z) P(z)}$
	B) $P(x \mid y) = \frac{P(x,y)}{\sum_{z} P(y,z)}$
	C) $P(x \mid y) = \frac{\sum_{z} P(x, z)}{P(y)}$
	D) $P(x \mid y) = \frac{P(y \mid x) P(x)}{P(y)}$
17	(January 2017) We have two bags of apples. The first one has 3 red apples and 5 green apples. The second bag contains 2 red apples, 2 green apples and 1 yellow apple. We randomly pick one bag and, subsequently, a randomly apple from such a bag. Let's suppose that both bags are equally probable of being chosen and that, given one particular bag, its apples are also equally probable of being chosen. Assuming we pick a red apple, which is the probability P that this apple belongs to the first bag?
	A) $0.00 \le P < 0.25$
	B) $0.25 \le P < 0.50$
	C) $0.50 \le P < 0.75$
	D) $0.75 \le P$
18	(January 2017) Let x be an object (feature vector or string) we wish to classify among C possible classes. Indicate which of the following expressions IS NOT a minimum-error classifier.
	A) $c(x) = \underset{c=1,\dots,C}{\operatorname{argmax}} P(x \mid c)$
	B) $c(x) = \underset{c=1,\dots,C}{\operatorname{arg max}} P(x,c)$
	C) $c(x) = \underset{c=1,\dots,C}{\operatorname{arg max}} \log P(x,c)$
	D) $c(x) = \underset{c=1,,C}{\operatorname{arg max}} P(c \mid x)$
19	(January 2017) Let X and Y be two random variables, and let $P(X,Y)$, $P(X \mid Y)$, $P(Y \mid X)$, $P(X)$ and $P(Y)$ be joint, conditional and unconditional probabilities of X and Y . Indicate which of the following statements IS NOT CORRECT .
	A) Both, $P(X)$ and $P(Y)$, can be obtained from $P(X,Y)$.
	B) Both, $P(X \mid Y)$ and $P(Y \mid X)$, can be obtained from $P(X,Y)$.
	C) $P(Y \mid X)$ can be obtained from $P(X \mid Y)$ and $P(X)$ without knowing $P(Y)$. D) $P(Y \mid X)$ can be obtained from $P(X \mid Y)$ and $P(Y)$ without knowing $P(X)$.
20	(January 2018) Mark the INCORRECT expression.
	A) $\sum_{y} P(x \mid y) = 1$, $\forall x$ B) $\sum_{x} P(x \mid y) = 1$, $\forall y$ C) $\sum_{x} \sum_{y} P(x, y) = 1$
	C) $\sum_{x} \sum_{y} P(x, y) = 1$ D) $\sum_{x} P(x \mid u) = \sum_{y} P(y \mid w), \forall u, w$

21 (January 2018) We have two orange stores (1 and 2). Store We know that store 1 contains 1% of the unsuitable orange the unsuitable oranges for human consumption. Let's assumprobability P that such an orange comes from store 1? A) $0.00 \le P < 0.25$ B) $0.25 \le P < 0.50$ C) $0.50 \le P < 0.75$ D) $0.75 \le P$	s for	huma	an consumpt	ion, and sto	re 2 contain	s 3% of
22 (January 2018) Let $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_N)$ be an object defined by classify \mathbf{x} among one of C classes. Show which of the following probability of error. $(\mathbf{x}_2^N \text{ denotes } \mathbf{x}_2, \dots, \mathbf{x}_N)$: A) $c(\mathbf{x}) = \underset{c=1,\dots,C}{\operatorname{argmax}} p(\mathbf{x}_1 \mid c) p(\mathbf{x}_2^N \mid \mathbf{x}_1)$						
B) $c(\mathbf{x}) = \underset{c=1,\dots,C}{\operatorname{argmax}} \ p(\mathbf{x}_1, c) p(\mathbf{x}_2^N \mid \mathbf{x}_1)$						
C) $c(\mathbf{x}) = \underset{c=1,\dots,C}{\operatorname{argmax}} \ p(\mathbf{x}_1 \mid c) p(\mathbf{x}_2^N \mid \mathbf{x}_1, c)$						
D) $c(\mathbf{x}) = \underset{c=1,,C}{\operatorname{arg max}} p(\mathbf{x}_1, c) p(\mathbf{x}_2^N \mid \mathbf{x}_1, c)$						
23 (January 2018) We have a 3-class classifier for $\mathbf{x} = (x_1, x_2)^t \in [0, 1]^2$ with the probability distributions shown on the right table. Which is the probability of error (p_e) of the classifier? A) $p_e < 0.35$ B) $0.35 \le p_e < 0.45$ C) $0.45 \le p_e < 0.65$ D) $0.65 \le p_e$	$ \begin{array}{c c} x_1 \\ 0 \\ 0 \\ 1 \\ 1 \end{array} $	x_2 0 1 0 1	$p(c = 1 \mathbf{x})$ 1.0 0.01 0.25 $\frac{1}{3}$	$p(c = 2 \mathbf{x})$ 0.0 0.01 0.5 $\frac{1}{3}$	$p(c = 3 \mathbf{x})$ 0.0 0.98 0.25 $\frac{1}{3}$	$p(\mathbf{x})$ 0.1 0.2 0.3 0.4
24	at th	e pos	sterior proba		_	-
25 (December 2018) Which of the following probability distribute $P(x, y, z)$?	ions (CAN	N OT be de	educed from	the joint pro	bability
A) $P(x \mid y)$ B) $P(z \mid x, y)$ C) $P(z)$ D) Every distribution involving any combination of these va	riable	es can	ı be deduced	from $P(x, y)$,z).	
26 (December 2018) Let be a classification problem among 4 equation data. The decision of optimal classification for y is class a with statement:						

A) The probability of error of classifying y is lower than 0.50.

B) $P(C = a \mid Y = y) > P(C = b \mid Y = y) + P(C = c \mid Y = y) + P(C = d \mid Y = y).$ C) $P(Y = y \mid C = a) = \frac{0.3 P(Y = y)}{0.25}.$

D) None of the above.

- A) $0/4 \le P < 1/4$.
- B) $1/4 \le P < 2/4$.
- C) $2/4 \le P < 3/4$.
- D) $3/4 \le P \le 4/4$.
- 28 (December 2018) Let $\mathbf{x} = (x_1, \dots, x_D)^t$, D > 1, be an object represented by a D-dimensional feature vector. We want to classify \mathbf{x} in one among C classes. Which of the following expressions **IS NOT** a minimum-error classifier?
 - A) $c(\mathbf{x}) = \underset{c=1,...,C}{\operatorname{arg \, max}} p(x_1 \mid c) p(x_2,...,x_D \mid x_1,c)$
 - B) $c(\mathbf{x}) = \underset{c=1,\dots,C}{\operatorname{arg max}} p(c) p(x_1,\dots,x_D \mid c)$
 - C) $c(\mathbf{x}) = \underset{c=1}{\text{arg max}} p(c \mid x_1) p(x_2, \dots, x_D \mid x_1, c)$
 - D) $c(\mathbf{x}) = \underset{c=1,...,C}{\arg \max} \ p(x_1, c) \ p(x_2, ..., x_D \mid x_1, c)$
- 29 Let be a two-class (c=1,2) classification problem for objects represented in a space of 4 elements, $E=\{\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3,\mathbf{x}_4\}$. The table on the right shows the (true) posterior probabilities $P(c\mid\mathbf{x})$, for every c and c as well as the (true) prior probability, $P(\mathbf{x})$, for every c and c as shows the class, $c(\mathbf{x})$, assigned to each c by a particular classifier. On the grounds of this probabilistic knowledge, the probability of error of $c(\mathbf{x})$, c, is:

	P(c	x)		
\mathbf{x}	c = 1	c = 2	$P(\mathbf{x})$	$c(\mathbf{x})$
\mathbf{x}_1	1	0	1/3	1
\mathbf{x}_2	3/4	1/4	1/4	1
\mathbf{x}_3	1/4	3/4	1/4	1
\mathbf{x}_4	1/2	1/2	1/6	2

- A) $0/4 \le \varepsilon < 1/4$.
- B) $1/4 \le \varepsilon < 2/4$.
- C) $2/4 \le \varepsilon < 3/4$.
- D) $3/4 \le \varepsilon \le 4/4$.
- 30 Let's assume we want to apply the probability of error of a Bayes classifier (Bayes probability of error), which we will denote as ε^* , to the problem of question 29. The value of ε^* is:
 - A) $0/4 \le \varepsilon^* < 1/4$.
 - B) $1/4 \le \varepsilon^* < 2/4$.
 - C) $2/4 \le \varepsilon^* < 3/4$.
 - D) $3/4 \le \varepsilon^* \le 4/4$.
- 31 Let be a two-class (c = 1, 2) classifier for $x \in \{0, 1\}$, where P(c) and p(x) are uniform probability distributions, and $p(x \mid c) = \frac{1}{c} \cdot x + (1 \frac{1}{c}) \cdot (1 x)$. Which is the probability of error, p_e , of a Bayes classifier?
 - A) $p_e < 0.25$
 - B) $0.25 \le p_e < 0.50$
 - C) $0.50 \le p_e < 0.75$
 - D) $0.75 \le p_e$
- 32 Let \mathbf{x} be an object to classify in one among C classes. Indicate the expression that IS NOT a minimum-error classifier (or select the last option if the first three options denote a minimum-error classifier).
 - A) $c(\mathbf{x}) = \underset{c=1,...,C}{\operatorname{arg\,max}} p(c \mid \mathbf{x})^2$.
 - B) $c(\mathbf{x}) = \underset{c=1,\dots,C}{\operatorname{arg max}} \log p(\mathbf{x}, c).$
 - C) $c(\mathbf{x}) = \underset{c=1}{\operatorname{arg max}} \sqrt{p(\mathbf{x}, c)} / p(\mathbf{x}).$
 - D) All three above expressions denote a minimum-error classifier.

33 Let W, D, S be three random variables that take values from {CLE,CLO,RAI}, {DAY,NIG}, and {SAF,ACC}, respectively. The joint probability is given in the following table:

s	SAF	SAF	SAF	SAF	SAF	SAF	ACC	ACC	ACC	ACC	ACC	ACC
d	DAY	DAY	DAY	NIG	NIG	NIG	DAY	DAY	DAY	NIG	NIG	NIG
w	CLE	$_{\mathrm{CLO}}$	RAI									
P(s,d,w)	0.30	0.20	0.07	0.13	0.10	0.06	0.01	0.01	0.03	0.02	0.02	0.05

The conditional probability P(W = RAI | S = ACC, D = DAY) is:

- A) 0.60.
- B) 0.03.
- C) 0.05.
- D) 0.02.

Given a classification problem among three classes for objects of type
 $\mathbf{x} = (x_1, x_2)^t \in \{0, 1\}^2$ with the probability distribution given in the
table on the right, which is the Bayes error, ε^* , of this problem?

- A) $\varepsilon^* < 0.2$.
- B) $0.2 \le \varepsilon^* < 0.4$.
- C) $0.4 \le \varepsilon^* < 0.7$.
- D) $0.7 \le \varepsilon^*$.

2	X				
x_1	x_2	c=1	c=2	c=3	$P(\mathbf{x})$
0	0	0.6	0.2	0.2	0.2
0	1	0.1	0.1	0.8	0.3
1	0	0.3	0.5	0.2	0.2
1	1	1/3	1/3	1/3	0.3

We have learnt a classifier for a particular problem. With a testing set of M = 100 samples, we have estimated:

- The estimated probability of error of the classifier: $\hat{p} = 0.10 = 10 \%$.
- A 95 % confidence interval for this probability of error: $\hat{I} = [0.04, 0.16] = [4\%, 16\%]$.

We consider that the value of \hat{p} is reasonable and that it will not significantly vary even if we used many more testing samples. However, we believe that the 95 % confidence interval, $\hat{I} = 10 \% \pm 6 \%$, is a rather wide interval and we wonder whether it is possible to reduce its range by using more than M = 100 testing samples. In case it were possible, we also wonder whether the range of \hat{I} could be reduced to half the interval or even less; that is, whether it is possible to obtain $\hat{I} = 10 \% \pm \hat{R}$ with $\hat{R} < 3 \%$. Regarding this issue, show the **CORRECT** statement:

- A) In general, it is not possible to reduce the range of \hat{I} because \hat{I} does not significantly depend on M.
- B) It is not possible to get a reduction of the range of \hat{I} because we have considered that \hat{p} will not significantly vary and so the range of \hat{I} cannot vary either.
- C) It is possible to reduce the range of \hat{I} to half the interval or even less if we use at least twice as many testing samples $(M \ge 200)$.
- D) It is possible to reduce the range of \hat{I} to half the interval or even less if we use at least four times as many testing samples $(M \ge 400)$.

36 Let $\mathbf{x} = (x_1, \dots, x_D)^t$, D > 1, be a D-dimensionobject that we want to classify in one among C classes. Which expression is *not* a minimum error (error risk) classifier?

- A) $c(\mathbf{x}) = \arg\max_{c=1,...,C} p(c) p(x_1 \mid c) p(x_2,...,x_D \mid x_1,c)$
- B) $c(\mathbf{x}) = \arg \max_{c=1,...,C} \log p(x_1 \mid c) + \log p(x_2,...,x_D \mid x_1,c)$
- C) $c(\mathbf{x}) = \arg \max_{c=1,...,C} p(c \mid x_1) p(x_2,...,x_D \mid x_1,c)$
- D) $c(\mathbf{x}) = \arg \max_{c=1,...,C} \log p(x_1, c) + \log p(x_2, ..., x_D \mid x_1, c)$

For a three-class classification problem of objects of type $\mathbf{x} = (x_1, x_2)^t \in \{0, 1\}^2$, we have the probability distributions shown in the table. Show the interval of the Bayes probability of error, ε^* :

- A) $\varepsilon^* < 0.40$.
- B) $0.40 \le \varepsilon^* < 0.45$.
- C) $0.45 \le \varepsilon^* < 0.50$.
- D) $0.50 \le \varepsilon^*$.

X					
x_1	x_2	c=1	c=2	c=3	$P(\mathbf{x})$
0	0	0.6	0.3	0.1	0
0	1	0.3	0.2	0.5	0.4
1	0	0.2	0.6	0.2	0.1
1	1	0.1	0.5	0.4	0.5

38	Suppose we have two boxes each containing 60 apples The first box contains 35 Gala apples and 25 Fuji apples. The
	second box contains 30 apples of each type. Let's assume we randomly pick a box, and then we randomly take an
	apple from the selected box. If the picked apple is Gala, which is the probability P that the apple is picked out of the
	first box?

- A) $0/4 \le P < 1/4$.
- B) $1/4 \le P < 2/4$.
- C) $2/4 \le P < 3/4$.
- D) $3/4 \le P \le 4/4$.
- 39 The estimated probability of error of a classifier is 6%. Which is the minimum number of testing samples, M, so that the 95% confidence interval of this estimated probability of error is not higher than $\pm 1\%$; that is, I = [5%, 7%]:
 - A) M < 2000.
 - B) $2000 \le M < 3500$.
 - C) $3500 \le M < 5000$.
 - D) $M \ge 5000$.
- In a problem of probabilistic reasoning corresponding to road trips, with the random variables: Climatology (C): {clear (CLE), cloudy (CLO), rainy (RAI)}; Luminosity (L): {day (DAY), night(NIG)}; Security (S): {secure (SEC), accident (ACC)}. The joint probability of the three random variables is provided by the table:

		DAY			NIG	
P(s,l,c)	CLE	CLO	RAI	CLE	CLO	RAI
SEC	0.27	0.17	0.06	0.16	0.13	0.07
ACC	0.01	0.02	0.02	0.03	0.02	0.04

The conditional probability $P(S = ACC \mid L = NIG, C = CLE)$ is:

- A) 0.190
- B) 0.158
- C) 0.030
- D) 0.140
- In a problem of probabilistic reasoning corresponding to road trips, with the random variables: Climatology (C):{clear (CLE), cloudy (CLO), rainy (RAI)}; Luminosity (L):{day (DAY), night(NIG)}; Security (S):{secure (SEC), accident (ACC)}. The joint probability of the three random variables is provided by the table:

		DAY			NIG	
P(s,l,c)	CLE	CLO	RAI	CLE	CLO	RAI
SEC	0.28	0.21	0.04	0.15	0.09	0.09
ACC	0.02	0.02	0.03	0.02	0.02	0.03

The conditional probability $P(S = SEC \mid L = DAY, C = CLO)$ is:

- A) 0.230
- B) 0.210
- C) 0.860
- D) 0.913
- The estimated probability of error of a classifier is 20 %. Which is the minimum number of testing samples, M, so that the 95 % confidence interval of this estimated probability of error is not higher than ± 1 %; that is, I = [19 %, 21 %]:
 - A) M < 2000.
 - B) $2000 \le M < 3500$.
 - C) $3500 \le M < 5000$.
 - D) $M \ge 5000$.

43		three-class						
<u> </u>	$\mathbf{x} = (x_1, x_2, x_3, x_4, x_4, x_4, x_4, x_4, x_4, x_4, x_4$	$(c_2)^t \in \{0,1\}^2$	we have th	e probability	dist	tributions	shov	vn in
	the table	. Show the in	terval of the p	orobability of	error	of the cla	ssifie	$c(\mathbf{x})$
	provided	in the table,	ε :					

x	$P(c \mid \mathbf{x})$		
$x_1 x_2$	$c=1 \ c=2 \ c=3$	$P(\mathbf{x})$	$c(\mathbf{x})$
0 0	0.2 0.1 0.7	0.2	2
0 1	0.4 0.3 0.3	0	1
1 0	0.3 0.4 0.3	0.4	3
1 1	0.4 0.4 0.2	0.4	1

- A) $\varepsilon < 0.25$.
- B) $0.25 \le \varepsilon < 0.50$.
- C) $0.50 \le \varepsilon < 0.75$.
- D) $0.75 \le \varepsilon$.

44		Given the following joint frecuency	distribution for the 3 random variables
----	--	-------------------------------------	---

A	0	0	0	0	1	1	1	1
В	0	0	1	1	0	0	1	1
C	0	1	0	1	0	1	0	1
N(A,B,C)	124	28	227	175	126	222	23	75

Which is the value of $P(A = 1 \mid B = 1, C = 0)$?

- A) 0.023
- B) 0.250
- C) 0.092
- D) 0.446
- For a three-class classification problem of objects of type $\mathbf{x} = (x_1, x_2)^t \in \{0, 1\}^2$, we have the probability distributions shown in the table. Show the interval of the probability of error of the classifier $c(\mathbf{x})$ provided in the table, ε :
 - A) $\varepsilon < 0.25$.
 - B) $0.25 \le \varepsilon < 0.50$.
 - C) $0.50 \le \varepsilon < 0.75$.
 - D) $0.75 \le \varepsilon$.

\mathbf{x}	$P(c \mid \mathbf{x})$		
$x_1 x_2$	$c = 1 \ c = 2 \ c = 3$	$P(\mathbf{x})$	$c(\mathbf{x})$
0 0	0.2 0.3 0.5	0	1
0 1	0.3 0.3 0.4	0.4	1
1 0	0.2 0.5 0.3	0.5	2
1 1	0.3 0.6 0.1	0.1	1

46 Given the following joint frequency distribution for the 3 random variables

A	0	0	0	0	1	1	1	1
В	0	0	1	1	0	0	1	1
С	0	1	0	1	0	1	0	1
N(A,B,C)	211	140	245	87	39	110	5	163

Which is the value of $P(A = 1 \mid B = 1, C = 1)$?

- A) 0.317
- B) 0.163
- C) 0.652
- D) 0.250

Problems

1. (Exam November 26, 2012) In order to design a differential diagnosis between Flu and Cold, we use the histograms of body temperatures (fever) of a sample of patients who had these diseases. From the histograms, we get the following distribution of fever values in Celsius degrees:

knowing that the relative occurrence of flu compared to cold is 30 % (i.e., P(D = FLU) = 0.30), calculate:

- a) The conditional (posterior) probability that a patient has flu given he has a fever of 39°C
- b) The most probable diagnosis for this patient and the probability of error
- c) The probabilities of diagnosis FLU and COLD $\forall f \in \{36, 37, 38, 39, 40\}$, and the minimum average probability of error $(P_{\star}(error))$ for a diagnosis system designed with the above observations.

2. Exercise Irish Flowers, slide #22 of Chapter 1

3. (January 2020)

Let $\lambda \in \mathbb{R}^+$. We say that a random variable $x \in \{0, 1, 2, \ldots\}$ is $\operatorname{Poisson}(\lambda)$ if its probability mass function is:

$$p_{\lambda}(x) = \frac{\exp(-\lambda) \lambda^x}{x!}$$

The Poisson distribution is used to model the probability that one event occurs a certain number of times in a given context. The λ parameter can be interpreted as the average number of occurrences of the event. For instance, x can be the number of phone calls we receive in a day or the number of occurrences of a particular word in a document. The figure on the right shows $p_{\lambda=4}(x)$ for all $x\in\{0,1,\ldots,11\}$.

Let be a classification problem into C classes represented by means of a counter-type feature $x \in \{0, 1, 2, \ldots\}$. For every class c, we assume we know:

- The prior probability, P(c).
- The conditional probability (mass) function, $P(x \mid c)$, which is Poisson(λ_c) with λ_c being known.

Answer the following questions:

- a) (0.5 points) For the particular case: C=2, $P(c=1)=P(c=2)=\frac{1}{2}$, $\lambda_1=1$, $\lambda_2=2$ and x=2. Determine the unconditional probability of occurrence of x=2, P(x=2).
- b) (0.5 points) For the case given above, compute the posterior probability $P(c=2 \mid x=2)$, and the probability of error if x=2 is classified in class c=2.
- c) (0.5 points) More generally, for any number of classes C and any value of prior probabilities, let's consider the case in which given $\tilde{\lambda} \in \mathbb{R}^+$, it holds $\lambda_c = \tilde{\lambda}$ for every c. In this case, there exists a class which is not dependent on x, c^* , under which every x can be classified with minimum probability of error. Determine which class is c^* .
- d) (0.5 puntos) In the general case, prove that applying the Bayes classifier to this problem is equivalent to a classifier based on discriminant linear functions as follows (ln is the natural algorithm):

$$c^*(x) = \underset{c}{\arg \max} \ g_c(x) \ \ \cos \ \ g_c(x) = w_c \ x + w_{c0}, \ \ w_c = \ln \lambda_c \ \ y \ \ w_{c0} = \ln p(c) - \lambda_c$$