Differentiaalvergelijkingen Thema 1

Jan van Hulzen

Domein Techniek, Ontwerpen en Informatica Opleiding Elektrotechniek

16 september 2023

Inhoudsopgave

- Overzicht cursus
- 2 Voorkennis en onderdelen uit het voorprogramma
- 3 Differentiaalvergelijkingen
- Soorten differentiaalvergelijkingen
- 5 Lineaire differentiaalvergelijkingen
- Niet-lineaire differentiaalvergelijkingen
- Oplossingen van differentiaalvergelijkingen

Overzicht cursus

Overzicht cursus

Het vak differentiaalvergelijkingen bestaat uit

- 7 hoorcolleges + huiswerk opgaven
- Voltijd ALETVT2A (ma 12:30 op 4-9,11-9,18-9,25-9,2-10,9-10,16-10)
- Deeltijd ALETDT2 (wo 14:00 op 6-9, 13-9,20-9,27-9, 11-10,18-10)

Schriftelijk tentamen:

huiswerk opgaven zijn een goede voorbereiding op het tentamen

Voorkennis

Tijdens de cursus zal intensief gebruik gemaakt worden van de kennis die je in het voorprogramma hebt opgedaan. Hieronder een overzicht:

- Het bepalen van de afgeleiden van functies zoals x^n , $\sin x$, $\cos x$, e^x en $\ln x$.
- De basisregels voor het bepalen van de afgeleide van een samengestelde functie zoals de somregel, pruductregel, quotiëntregel en kettingregel.
- Het fundamentele theorema van Calculus,

Toepassingen

De inhoud van het vak differentiaalvergelijkingen wordt toegepast in

- Netwerktheorie
- Regeltechniek
- Elektronica (actieve filters, vermogenselektronica)
- Dynamica, rotatiemechanica

Focus

De nadruk ligt op het toepassen van de stof op de engineering vakken.

Literatuur en Lesstof

- Bij dit vak wordt gebruik gemaakt van het dictaat van Jaap Grasmeijer te vinden op de Moodle pagina van dit vak.
- We zullen de leswijzer op Moodle aanhouden waar mogelijk.
- Als aanvulling op het dictaat zullen elke week collegesheets worden toegevoegd.
- Huiswerk en huiswerk opgaven zijn ook te vinden op Moodle.
- De toepassingen die in het vak zijn opgenomen komen uit de engineeringvakken maar zijn ter illustratie en zullen geen onderdeel vormen van het tentamen.

Opbouw en organisatie cursus

De cursus 2023-2024 bestaat uit zeven hoorcolleges:

- Thema 1, Inleiding, voorkennis en begripsbepaling
- Thema 2, Nader te bepalen
- Thema 3, Nader te bepalen
- Thema 4, Nader te bepalen
- Thema 5, Nader te bepalen
- Thema 6, Nader te bepalen
- Thema 7, Tentamentraining

Voorkennis en onderdelen uit het voorprogramma

De somregel en de kettingregel

De somregel wordt toegepast om optelsom van functies te differentiëren:

• Als f(x) = g(x) + h(x) dan is df(x)/dx gelijk aan

$$\frac{df}{dt} = \frac{d}{dx} \left\{ g(x) + h(x) \right\} = \frac{dg(x)}{dx} + \frac{dh(x)}{dx}$$

De kettingregel wordt toegepast om samengestelde functies te differentiëren:

- De functies $y = e^x$ en $x = \sin t$ vormen de ketting $y = e^{\sin t}$
- De kettingregel lost dy/dt op door het vermenigvuldigen van dy/dx en dx/dt:

$$\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt} = e^{x} \cdot \cos t = y \cdot \cos t$$

• De functie $e^{\sin t}$ lost de differentiaalvergelijking $\frac{dy}{dt} = ay$ op met een variabele groeiterm $a = \cos t$.

Product en Quotiëntregel

Productregel

$$\frac{d}{dx}\left\{f(x)g(x)\right\} = f(x)g'(x) + g(x)f'(x)$$

Quotiëntregel

$$\frac{d}{dt} \left\{ \frac{f(x)}{g(x)} \right\} = \frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2}$$

• Maak bij de Quotiëntregel gebruik van het ezelsbruggetje

NAT-TAN, Noemer Aflegeide Teller- Teller Aflegeide Noemer.

Partiële integratie

Partiële integratie

$$\int f(x)g'(x)dx = f(x) \cdot g(x) - \int g(x) \cdot f'(x)dx$$

• De regel kan eenvoudig worden afgeleid uit de productregel

$$\int \frac{d(f(x)g(x))}{dx}dx = f(x)g(x) \Rightarrow \int f'(x)g(x) + f(x)g'(x)dx = f(x)g(x)$$

• De regel wordt ook wel eens als volgt weergegeven

$$\int f(x)dg(x) = f(x)g(x) - \int g(x)df(x)$$

Het gebruik van symbolen

Tijdens de cursus zal veelvuldig gebruik gemaakt worden van

De afgeleide van
$$y$$
 $\frac{dy}{dt}(t) = \lim_{\Delta t \to 0} \frac{y(t + \Delta t) - y(t)}{\Delta t}.$

Er zijn echter nog meer symbolen die in de literatuur ook voorkomen:

- Leibniz: dy/dt
- Newton: \dot{y}
- Lagrange: y'
- Euler: $D_t y$

De hoofdstelling van de integraalrekening

De afgeleide van de integraal van f(x) is f(x).

- De integraal van 0 tot x van de afgeleide df/dx is f(x) f(0).
- De bewerkingen integreren en differentiëren zijn elkaars inverse als f(0) = 0.

Een Intuïtieve interpretatie van integreren is het optellen van verschillen tussen een serie functiewaarden:

- Gegeven een functie y = f(x) met functiewaarden y_0, y_1, \dots, y_n .
- De verschillen tussen de functiewaarden $y_i y_{i-1}$ lijken op afgeleiden.
- Optellen hiervan levert $(y_1 y_0) + (y_2 y_1) + \cdots + (y_n y_{n-1}) = y_n y_0$.
- Conclusie: alleen y_n en $-y_0$ blijven over omdat $y_1, y_2, ...$ twee keer voorkomen en een tegengesteld teken hebben.
- Vermenigvuldig elke term met $\Delta x/\Delta x=1$ zodat volgt:

$$\left[\frac{y_1-y_0}{\Delta x}+\frac{y_2-y_1}{\Delta x}+\cdots+\frac{y_n-y_{n-1}}{\Delta x}\right]\Delta x=y_n-y_0.$$

- Als de punten $x_0, x_1, x_2, \dots, x_n$ gelijk zijn verdeeld over interval [a, b], dan
- is elke verhouding $\Delta y/\Delta x$ de helling tussen twee punten:

$$\frac{\Delta y}{\Delta x} = \frac{y_k - y_{k-1}}{x_k - x_{k-1}} = \frac{\text{stukje } y}{\text{stukje } x} = \text{helling}$$

- De helling is exact als de functie tussen twee punten een lijn is of als $\Delta x \rightarrow 0$.
- De voorwaarde is dat $n\Delta x = b a$.

- Als n in $n\Delta x = b a$ naar ∞ gaat dan gaat Δx naar 0.
- Bij toenemende *n* blijft gelden dat

$$\left[\frac{y_1-y_0}{\Delta x}+\cdots+\frac{y_n-y_{n-1}}{\Delta x}\right]\Delta x=y_n-y_0.$$

• Als de functie een gladde kromme is zal $\Delta y/\Delta x$ de afgeleide dy/dx benaderen en exact worden als $\Delta x \rightarrow 0$.

Als $n\Delta x = b - a$ en $x_0 = a$ to $x_n = b$ dan volgt dat met toenemende n

• $\Delta x \rightarrow 0$ zodat de vergelijking

$$\left[\frac{y_1-y_0}{\Delta x}+\frac{y_2-y_1}{\Delta x}+\cdots+\frac{y_n-y_{n-1}}{\Delta x}\right]\Delta x=y_n-y_0$$

gelijk wordt aan de vergelijking

$$\int_a^b \frac{dy}{dx} dx = y(b) - y(a) \text{ en } \frac{d}{dx} \int_a^x f(s) ds = f(x).$$

• Het gaat dus om een optelsom van verschillen of een integraal van afgeleiden.

Differentiaalvergelijkingen

Differentiaalvergelijkingen

Een differentiaalvergelijking is een vergelijking waarin een verband wordt aangegeven tussen een of meer onbekende functies en hun afgeleiden. Een voorbeeld is

$$\frac{dy(t)}{dt} = y(t)$$

- De vergelijking is een voorschrift waar de onbekende functie aan moet voldoen.
- Als een functie y(t) gevonden is die voldoet aan de voorwaarde dy/dt = y dan heet deze een *oplossing* van de differentiaalvergelijking dy/dt = y.
- Oplossingen hoeven niet uniek te zijn, vaak zijn extra voorwaarden nodig om een oplossing uniek te maken zoals een functiewaarde, bijvoorbeeld y(0) = 1.

We zullen het voorbeeld dy/dt = y wat verder uitwerken...

De functie $y(t) = e^t$

Het doel is om een functie y(t) construeren zodat

$$\frac{dy}{dt} = y$$

Dit kan worden gedaan met behulp van reeksontwikkeling

$$y = 1 + t + \frac{1}{2}t^2$$
 \Rightarrow $\frac{dy}{dt} = 0 + 1 + t$
 $y = 1 + t + \frac{1}{2}t^2 + \frac{1}{6}t^3$ \Rightarrow $\frac{dy}{dt} = 0 + 1 + t + \frac{1}{2}t^2$

Voor een exacte oplossing zijn oneindig veel termen nodig

$$\frac{dy}{dt} = 1 + t + \frac{t^2}{2} + \frac{t^3}{6} + \frac{t^4}{24} \cdots = \sum_{n=0}^{\infty} \frac{t^n}{n!}$$

De functie $y(t) = e^t$

• De reeksontwikkeling komt overeen met de functie e^t zodat

$$e^{t} = 1 + t + \frac{t^{2}}{2} + \frac{t^{3}}{6} + \frac{t^{4}}{24} \cdot \cdot \cdot = \sum_{n=0}^{\infty} \frac{t^{n}}{n!}$$

ullet Waarbij het getal e kan worden berekend door t=1 in te vullen

$$e = 1 + 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} \dots \approx 2.718$$

• Het is eenvoudig om met behulp van de reeksontwikkeling nog resultaten voor dy/dt = ay en dy/dt = -y te onderzoeken.

De functie $y(t) = e^t$

Andere interessante eigenschappen van de reeksontwikkeling zijn

• De oplossing van dy/dt = ay is ae^{at}

$$\frac{d}{dt}\left\{1 + at + \frac{a^2t^2}{2} + \frac{a^3t^3}{6} + \frac{a^4t^4}{24} \cdots\right\} = a\left(1 + at + \frac{a^2t^2}{2} + \frac{a^3t^3}{6} + \cdots\right) = ae^{at}$$

• De oplossing van dy/dt = -y is e^{-t}

$$rac{1}{e^t}=e^{-t}$$
 waarbij voor $t=1$ volgt $e^{-1}=1-1+rac{1}{2}-rac{1}{6}+rac{1}{24}-\cdotspprox 0.36$

 \bullet De functie e^t zal een centrale rol spelen in het vak Differentiaalvergelijkingen.

Voorbeelden

$$\frac{dy}{dx} = y,$$
 $\frac{dy}{dx} = -y,$ $\frac{dy}{dx} = 2ty,$ $\frac{dy}{dx} = y^2$

$$y(t) = e^t$$
, $y(t) = e^{-t}$, $y(t) = e^{t^2}$, $y(t) = \frac{1}{1-t}$

Soorten differentiaalvergelijkingen

Soorten differentiaalvergelijkingen

Een **gewone differentiaalvergelijking (ODE)** heeft één *onafhankelijke* variabele en bevat alleen gewone afgeleiden. Voorbeelden zijn

$$\frac{d^2y}{dx^2} + 2x\frac{dy}{dx} = 1$$

waarbij x de *onafhankelijke variabele* is. Een tweede voorbeeld is

$$\frac{dx}{dt} + \frac{dy}{dt} = xy$$

waarbij t de onafhankelijke variabele is.

De functies x en y zijn afhankelijk van alleen t en kan je ook schrijven als x(t) en y(t).

Soorten differentiaalvergelijkingen

Een partiële differentiaalvergelijking (PDE) heeft partiële afgeleiden zoals,

$$t\frac{\partial^2 y}{\partial x^2} = x\frac{\partial^2 y}{\partial t^2}$$

die partiële afgeleiden bevat waarbij x en t elk onafhankelijke variabelen zijn.

- De functie y is afhankelijk van zowel x als t en kan geschreven worden als y(x, t).
- Het onderscheidende kenmerk is dat de ene afgeleide genomen wordt ten opzichte van x terwijl de andere genomen wordt ten opzichte van t.
- De variabele waar niet naar gedifferentieerd wordt, wordt als constante beschouwd.
- Om aan te geven dat het om partiële afgeleiden gaat is de d vervangen door ∂ .

Voorbeeld partiële differentiaalvergelijking

Een trillende snaar voldoet aan de vergelijking

$$\frac{\partial^2 u(x,t)}{\partial t^2} = c^2 \frac{\partial^2 u(x,t)}{\partial x^2}, \qquad \begin{cases} u(0,t) = 0 & u(L,t) = 0 \\ u(x,0) = f(x) & u'(x,0) = g(x) \end{cases}$$

De snaar is gespannen tussen twee punten x = 0 en x = L heeft op t=0 een uitwijking f(x), en snelheid g(x). De oplossing heeft de vorm

$$u(x,t) = \phi(x)h(t)$$

met daarin

$$\phi''h = c^2\phi h''$$
 or $\frac{h''}{c^2h} = \frac{\phi''}{\phi} = -\lambda$

Soorten differentiaalvergelijkingen: Orde

De **orde van een differentiaalvergelijking** verwijst naar de *hoogste afgeleide* die deel uitmaakt van de differentiaalvergelijking. Bijvoorbeeld,

$$\frac{dx}{dt} = -2t$$

is van de eerste orde omdat het alleen een eerste afgeleide heeft, terwijl

$$\frac{d^2y}{dx^2} - \frac{dy}{dx} + 1 = 0$$

van de tweede orde is omdat het een tweede afgeleide heeft.

Soorten differentiaalvergelijkingen: Graad

De **graad van een differentiaalvergelijking** verwijst naar de *macht* van de hoogste afgeleide in de differentiaalvergelijking. Bijvoorbeeld,

$$\left(\frac{dx}{dt}\right)^2 = -2t$$

is een tweede graads differentiaalvergelijking van de eerste orde omdat het alleen een eerste afgeleide heeft, terwijl

$$y'' - (y')^2 + 1 = 0$$

van de tweede orde is omdat het een tweede afgeleide heeft. De graad van de vergelijking is hier dus 1.

Soorten differentiaalvergelijkingen: Begin- en randvoorwaarden

Begin- en eindvoorwaarden zijn aanvullende voorwaarden waar de differentiaalvergelijking aan moet voldoen.

• De oplossing van de vergelijking $d^2y/dt^2 + 2dy/dt + y = 0$ kan worden vastgelegd met de aanvullende voorwaarden zoals y'(0) = 0 en y(0) = 1.

$$y(t) = e^{-t}(t+1), \quad y'(t) = e^{-t} - e^{-t}(t+1), \quad y''(t) = e^{-t}(t+1) - 2e^{-t}$$

invullen levert

$$e^{-t}(t+1) - 2e^{-t} + 2e^{-t} - 2e^{-t}(t+1) + e^{-t}(t+1) = 0$$

 Randvoorwaarden worden vaak gebruikt voor oplossingen waar de onafhankelijke variabele bijvoorbeeld een afstand is zoals bij het begin en het eind van een verwarmde staaf ijzer.

Soorten differentiaalvergelijkingen: Homogeen en inhomogeen

Een **homogene** differentiaalvergelijking is een vergelijking die een afgeleide bevat en een functie met een aantal variabelen.

• De algemene vorm is

$$f(x,y)dy + g(x,y)dx = 0$$

Een lineaire differentiaalvergelijking

$$a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

is **homogeen** als g(x) = 0.

• Een voorbeeld van een inhomogene differentiaalvergelijking is

$$\frac{dy}{dx} + y = \sin x.$$

Lineaire differentiaalvergelijkingen

Soorten differentiaalvergelijkingen: Lineair

Een gewone differentiaalvergelijking is een **lineaire differentiaalvergelijking** als deze kan worden uitgedrukt in de vorm

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \cdots + a_2(x)\frac{d^2y}{dx^2} + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

en de uitdrukking voldoet aan de voorwaarden:

- \bullet De afhankelijke variabele (y) of de afgeleiden worden niet tot machten verheven,
- De coëfficiënten zijn functies van de *onafhankelijke* variabele (x) of zijn constant.
- De coëfficiënten zijn geen functies van de afhankelijke variabele (y).

Soorten differentiaalvergelijkingen: Lineair

Een lineaire gewone differentiaalvergelijking van de eerste orde kan worden uitgedrukt in de vorm

$$a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

en een lineaire gewone differentiaalvergelijking van de tweede orde kan worden uitgedrukt in de vorm

$$a_2(x)\frac{d^2y}{dx^2} + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x).$$

Soorten differentiaalvergelijkingen: Lineair

Voorbeelden van lineaire differentiaalvergelijkingen in de vorm

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \cdots + a_2(x)\frac{d^2y}{dx^2} + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

zijn

$$x^{2} \frac{d^{2}y}{dx^{2}} - x \frac{dy}{dx} - \frac{2y}{x} = 3\sqrt{x},$$

$$a_{2}(x) = x^{2}, a_{1}(x) = -x, a_{0}(x) = -\frac{2}{x}, g(x) = 3\sqrt{x}.$$

en

$$\sin t \frac{dy}{dt} - y \cos t = \tan t,$$

$$a_1(t) = \sin t, a_0(t) = -\cos t, g(t) = \tan t$$

Niet-lineaire differentiaalvergelijkingen

Voorbeelden van niet-lineaire differentiaalvergelijkingen zijn

(1):
$$\frac{dy}{dx} = y^3$$
 (2): $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = 1$ (3): $\frac{d^2y}{dx^2} + y\frac{dy}{dx} + xy = x^2$.

- Voorbeeld 1 bevat een niet-lineaire functie van de afhankelijke variabele y, hier y^3 .
- Voorbeeld 2 heeft een coëfficiënt van $\frac{dy}{dx}$ die een functie is van y (in plaats van de onafhankelijke variabele x), hier $\frac{dy}{dx}$.
- Voorbeeld 3 is net als 2 niet-lineair omdat de coëfficiënt van $\frac{dy}{dx}$ een functie is van de afhankelijke variabele y.

De dynamica van systemen zoals slingers toegepast in hijsinstallaties wordt beschreven door een stelsel niet-lineaire differentiaalvergelijkingen:

- De tweede wet van Newton is geformuleerd als F = ma
- De netto kracht op de massa is $F = -mg \sin \theta = ma$
- Waarna de versnelling van de massa volgt als $a=-g\sin\theta$
- De massa volgt een cirkelvormige beweging zodat $a = I \cdot \ddot{\theta}$
- En dus dat

$$a = I \cdot \ddot{\theta} = -g \sin \theta$$

waarmee volgt

$$\ddot{\theta} + \frac{g}{I} \cdot \sin \theta = 0$$

Passieve componenten:

$$R_0=100\Omega, R_1=10~\mathrm{k}\Omega, R_2=82~\mathrm{k}\Omega$$

$$R_3 = 1 \text{ k}\Omega, R_4 = 7.5 \text{ k}\Omega$$

$$C_1 = C_2 = 0.1 \ \mu F, C_3 = 10 \ \mu F$$

Transistor:

$$V_T = kT/q = 25 \text{ mV}, \beta = 100$$

 $I_S = 1 \times 10^{-12} \text{ A}$

Spanningsbronnen:

$$u_b = 15 \text{ V}$$

$$u_e = A \sin(2\pi f t), A = 6 \text{ V}, f = 20 \text{ Hz}$$

Stel de vergelijkingen op:

- Kies u_1 , u_2 , u_3 en u_4 als variabelen,
- Stel knooppuntsvergelijkingen in termen van stroom op,
- Gebruik het Ebers-Moll model voor de transistor,
- Elimineer alle stromen uit de vergelijkingen.

Vergelijkingen voor node 1:

$$i_{0} = \frac{u_{e}(t) - u_{1}(t)}{R_{0}}$$

$$i_{1} = C_{1} \frac{d(u_{2}(t) - u_{1}(t))}{dt}$$

$$i_{0} + i_{1} = 0$$

$$\frac{u_{e}(t) - u_{1}(t)}{R_{0}} + C_{1} \frac{d(u_{2}(t) - u_{1}(t))}{dt} = 0$$

Vergelijkingen voor node 2:

$$i_{0} = C_{1} \frac{d(u_{1}(t) - u_{2}(t))}{dt}$$

$$i_{1} = \frac{u_{2}(t)}{R_{1}}$$

$$i_{2} = \frac{u_{b} - u_{2}(t)}{R_{2}}$$

$$i_{0} - i_{1} + i_{2} - i_{b} = 0$$

$$C_{1} \frac{d(u_{1}(t) - u_{2}(t))}{dt} - \frac{u_{2}(t)}{R_{1}} + \frac{u_{b} - u_{2}(t)}{R_{2}} - I_{b}(t) = 0$$

Vergelijkingen voor node 3:

$$i_{2} = C_{3} \frac{du_{3}(t)}{dt}$$

$$i_{3} = \frac{u_{3}(t)}{R_{3}}$$

$$-i_{2} - i_{3} + i_{e} = 0$$

$$-C_{3} \frac{du_{3}(t)}{dt} - \frac{u_{3}(t)}{R_{3}} + i_{e}(t) = 0$$

Vergelijkingen voor node 4:

$$i_4 - i_c = 0$$

$$\frac{(u_b - u_4(t))}{R_4} - i_c(t) = 0$$

Vergelijkingen voor Transistor:

$$i_c(t) = i_s \left(e^{u_{BE}/u_T} - 1\right)$$
 $u_T = kT/q$
 $u_{BE} = u_2(t) - u_3(t)$
 $i_b(t) = \frac{i_c(t)}{\beta}$
 $i_e(t) = \frac{1+\beta}{\beta}i_c(t)$

 u_T , i_s en β zijn constant in een instelpunt maar afhankleijk van de temperatuur T.

Samenvattend:

$$\frac{u_{e}(t) - u_{1}(t)}{R_{0}} + C_{1}\frac{d}{dt}(u_{2}(t) - u_{1}(t)) = 0$$

$$C_{1}\frac{d(u_{1}(t) - u_{2}(t))}{dt} - \frac{u_{2}(t)}{R_{1}} + \frac{(u_{b} - u_{2}(t))}{R_{2}} - I_{b}(t) = 0 \qquad i_{c}(t) = i_{s}\left(e^{(u_{2}(t) - u_{3}(t))/u_{T}} - 1\right)$$

$$-C_{3}\frac{du_{3}(t)}{dt} - \frac{u_{3}(t)}{R_{3}} + i_{e}(t) = 0 \qquad i_{b}(t) = \frac{i_{c}(t)}{\beta}$$

$$\frac{(u_{b} - u_{4}(t))}{R_{4}} - i_{c}(t) = 0 \qquad i_{e}(t) = \frac{1 + \beta}{\beta}i_{c}(t)$$

Begincondities:

$$u_1(0) = 0$$
, $u_2(0) = \frac{R_1}{R_1 + R_2} u_b$, $u_3(0) = \frac{R_1}{R_1 + R_2} u_b$, $u_4(0) = u_b$

Oplossingen van differentiaalvergelijkingen

Soorten differentiaalvergelijkingen: Oplossingen

De differentiaalvergelijking:

$$\frac{dy}{dx} = \frac{1}{x}$$

kan worden opgelost door te integreren:

$$dy = \frac{dx}{x} \rightarrow \int dy = \int \frac{1}{x} dx \rightarrow y = \ln|x| + C$$

- De functie $y = \ln |x| + C$ is de algemene oplossing
- Met aanvullende voorwaarden kan C bepaald worden waarna de oplossing de *enige* oplossing wordt.

Richtingsveld

 Een richtingsveld geeft een breder beeld van een differentiaalvergelijking

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y)$$

- De vergelijking f(x, y) geeft de afgeleide van de functie y=f(x) weer in grafische vorm.
- in dit geval:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x}{y^2}$$

integraalkromme

- Specifieke oplossingen van een differentiaalvergelijking kunnen in het richtingsveld geplot worden
- De differentiaalvergelijking

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x}{y}, \qquad y(0) = \frac{1}{2}$$

heeft als oplossing

$$y = \sqrt{x^2 + \frac{1}{4}}$$

 De in het richtingsveld getekende oplossing heet een integraalkromme.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x}{y}$$

