Trigonometry

- > Trigonometric Ratios
- ➤ Exact Values & Triangles
- > Trigonometric Identities
- ➤ ASTC Rule
- > Trigonometric Graphs
- ➤ Sine & Cosine Rules
- > Area of a Triangle
- > Trigonometric Equations
- > Sums and Differences of angles
- ➤ Double Angles
- > Triple Angles
- ➤ Half Angles
- ➤ T formula
- > Subsidiary Angle formula
- > General Solutions of Trigonometric Equations
- > Radians
- > Arcs, Sectors, Segments
- > Trigonometric Limits
- Differentiation of Trigonometric Functions
- > Integration of Trigonometric Functions
- \rightarrow Integration of $\sin^2 x$ and $\cos^2 x$
- ➤ INVERSE TRIGNOMETRY
 - ➤ Inverse Sin Graph, Domain, Range, Properties
 - ➤ Inverse Cos Graph, Domain, Range, Properties
 - ➤ Inverse Tan Graph, Domain, Range, Properties
 - ➤ Differentiation of Inverse Trigonometric Functions
 - ➤ Integration of Inverse Trigonometric Functions

Trigonometric Ratios

Sine	$\sin \theta$		$= \frac{opposite}{hypotenuse}$
Cosine	$\cos \theta$		$= \frac{adjacent}{hypotenuse}$
Tangent	$\tan heta$		$= \frac{opposite}{adjacent}$
Cosecant	$\csc \theta$	$=\frac{1}{\sin\theta}$	$=\frac{hypotenuse}{opposite}$
Secant	$\sec \theta$	$=\frac{1}{\cos\theta}$	$= \frac{hypotenuse}{adjacent}$
Cotangent	$\cot \theta$	$=\frac{1}{\tan\theta}$	$= \frac{adjacent}{opposite}$

$$sin \theta = cos(90^{\circ} - \theta)$$

$$cos \theta = sin(90^{\circ} - \theta)$$

$$tan \theta = cot(90^{\circ} - \theta)$$

$$cosec \theta = sec(90^{\circ} - \theta)$$

$$sec \theta = cos ec(90^{\circ} - \theta)$$

$$cot \theta = tan(90^{\circ} - \theta)$$

$$60 \text{ seconds} = 1 \text{ minute}$$
 $60 \text{ '} = 1 \text{ }$ $60 \text{ minutes} = 1 \text{ degree}$ $60 \text{ '} = 1 \text{ }$

$$\tan \theta = \frac{\sin \theta}{\cos \theta} \qquad \cot \theta = \frac{\cos \theta}{\sin \theta}$$

Exact Values & Triangles

	0°	30°	60°	45°	90°	180°
sin	0	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	1	0
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	0	-1
tan	0	$\frac{1}{\sqrt{3}}$	$\sqrt{3}$	1		0
cos ec		2	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	1	_
sec	1	$\frac{2}{\sqrt{3}}$	2	$\sqrt{2}$		-1
cot		$\sqrt{3}$	$\frac{1}{\sqrt{3}}$	1	0	

Trigonometric Identities

$$\sin^2 \theta + \cos^2 \theta = 1$$

$$\cos^2 \theta = 1 - \sin^2 \theta$$

$$\sin^2 \theta = 1 - \cos^2 \theta$$

$$1 + \cot^2 \theta = \csc^2 \theta$$

$$\cot^2 \theta = \csc^2 \theta - 1$$

$$1 = \csc^2 \theta - \cot^2 \theta$$

$$\tan^2 \theta + 1 = \sec^2 \theta$$

$$\tan^2 \theta = \sec^2 \theta - 1$$

$$1 = \sec^2 \theta - \tan^2 \theta$$

ASTC Rule

First Quadrant: All positive				
$\sin \theta$	$\sin \theta$	+		
$\cos \theta$	$\cos \theta$	+		
$\tan \theta$	an heta	+		
Second Quadrant: Sine po	sitive			
$\sin(180^{\circ}-\theta)$	$\sin \theta$	+		
$\cos(180^{\circ}-\theta)$	$-\cos\theta$	_		
$\tan(180^{\circ} - \theta)$	$-\tan\theta$	_		
Third Quadrant: Tangent	positive			
$\sin(180^{\circ} + \theta)$	$-\sin\theta$	_		
$\cos(180^{\circ} + \theta)$	$-\cos\theta$	_		
$\tan(180^{\circ} + \theta)$	an heta	+		
Fourth Quadrant: Cosine	positive			
$\sin(360^{\circ}-\theta)$	$-\sin\theta$	_		
$\cos(360^{\circ}-\theta)$	$\cos \theta$	+		
$\tan(360^{\circ}-\theta)$	$-\tan \theta$	_		

Trigonometric Graphs

Sine & Cosine Rules

Sine Rule:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \qquad \text{OR} \qquad \frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

Cosine Rule:

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Area of a Triangle

Trigonometric Equations

- \triangleright Check the domain eg. $0^{\circ} \le \theta \le 360^{\circ}$
- \triangleright Check degrees ($0^{\circ} \le \theta \le 360^{\circ}$) or radians ($0 \le \theta \le 2\pi$)
- ➤ If double angle, go 2 revolutions
- ➤ If triple angle, go 3 revolutions, etc...
- ➤ If half angles, go half or one revolution (safe side)

Example 1

Solve
$$\sin \theta = \frac{1}{2}$$
 for $0^{\circ} \le \theta \le 360^{\circ}$
 $\sin \theta = \frac{1}{2}$
 $\theta = 30^{\circ}, 150^{\circ}$

Example 2

Solve
$$\cos 2\theta = \frac{1}{2}$$
 for $0^{\circ} \le \theta \le 360^{\circ}$
 $\cos 2\theta = \frac{1}{2}$
 $2\theta = 60^{\circ}, 300^{\circ}, 420^{\circ}, 660^{\circ}$
 $\theta = 30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ}$

Example 3

Solve
$$\tan \frac{\theta}{2} = 1$$
 for $0^{\circ} \le \theta \le 360^{\circ}$
 $\tan \frac{\theta}{2} = 1$
 $\frac{\theta}{2} = 45^{\circ}, 225^{\circ}$
 $\theta = 90^{\circ}$

Example 4

$$\sin 2\theta + \cos \theta = 0$$

$$2\sin \theta \cos \theta + \cos \theta = 0$$

$$\cos \theta (2\sin \theta + 1) = 0$$

$$\cos \theta = 0 \qquad \sin \theta = -\frac{1}{2}$$

$$\theta = 90^{\circ}, 270^{\circ} \qquad \theta = 210^{\circ}, 330^{\circ}$$

 $\theta = 90^{\circ}, 270^{\circ}$

Example 5

$$3\sin\theta - \cos 2\theta = -2$$

$$3\sin\theta - \left(1 - 2\sin^2\theta\right) = -2$$

$$2\sin^2\theta + 3\sin\theta + 1 = 0$$

$$(2\sin\theta + 1)(\sin\theta + 1) = 0$$

$$\sin\theta = -\frac{1}{2} \qquad \sin\theta = -1$$

$$\theta = 210^\circ, 330^\circ \qquad \theta = 270^\circ$$

Sums and Differences of angles

$$\frac{\sin(\alpha + \beta)}{\sin(\alpha - \beta)} = \frac{\sin \alpha \cos \beta + \cos \alpha \sin \beta}{\sin(\alpha - \beta)}
\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta
\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta
\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta
\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}
\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$$

Double Angles

$\sin 2\theta$	$=2\sin\theta\cos\theta$
$\cos 2\theta$	$= \cos^2 \theta - \sin^2 \theta$ $= 1 - 2\sin^2 \theta$ $= 2\cos^2 \theta - 1$
$\tan 2\theta$	$=\frac{2\tan\theta}{1-2\tan^2\theta}$
$\sin^2\theta$	$= \frac{1}{2} (1 - \cos 2\theta)$
$\cos^2 \theta$	$= \frac{1}{2} (1 + \cos 2\theta)$

Triple Angles

$\sin 3\theta$	$= 3\sin\theta - 4\sin^3\theta$	
$\cos 3\theta$	$=4\cos^3\theta-3\cos\theta$	
$\tan 3\theta$	$=\frac{3\tan\theta-\tan^3\theta}{1-3\tan^2\theta}$	

Half Angles

Trair ringics	
$\sin \theta$	$=2\sin\frac{\theta}{2}\cos\frac{\theta}{2}$
$\cos \theta$	$=\cos^2\frac{\theta}{2}-\sin^2\frac{\theta}{2}$
	$=1-2\sin^2\frac{\theta}{2}$
	$=2\cos^2\frac{\theta}{2}-1$
$\tan \theta$	$=\frac{2\tan\frac{\theta}{2}}{1-2\tan^2\frac{\theta}{2}}$

Deriving the Triple Angles

Deriving	the Triple Angles	
$\sin 3\theta$	$=\sin(2\theta+\theta)$	
	$= \sin 2\theta \cos \theta + \cos 2\theta \sin \theta$	Normal double angle
	$= 2\sin\theta\cos\theta\cos\theta + (1 - 2\sin^2\theta)\sin\theta$	Expand double angle
	$= 2\sin\theta\cos^2\theta + \sin\theta - 2\sin^3\theta$	Multiply
	$= 2\sin\theta(1-\sin^2\theta)+\sin\theta-2\sin^3\theta$	Change $\sin^2 \theta + \cos^2 \theta = 1$
	$= 2\sin\theta - 2\sin^3\theta + \sin\theta - 2\sin^3\theta$	Simplify
	$=3\sin\theta-4\sin^3\theta$	
$\cos 3\theta$	$=\cos(2\theta+\theta)$	
	$=\cos 2\theta\cos\theta-\sin 2\theta\sin\theta$	
	$= (2\cos^2\theta - 1)\cos\theta - 2\sin\theta\cos\theta\sin\theta$	
	$=2\cos^3\theta-\cos\theta-2\sin^2\theta\cos\theta$	
	$= 2\cos^3\theta - \cos\theta - 2(1-\cos^2\theta)\cos\theta$	
	$=2\cos^2\theta-\cos\theta-2\cos\theta+2\cos^3\theta$	
	$=4\cos^3\theta-3\cos\theta$	
$\tan 3\theta$	$= \tan(2\theta + \theta)$	
	$= \frac{\tan 2\theta + \tan \theta}{}$	
	$=\frac{1-\tan 2\theta \tan \theta}{1-\tan 2\theta \tan \theta}$	
	$= \frac{\frac{2 \tan \theta}{1 - \tan^2 \theta} + \tan \theta}{1 - \tan^2 \theta}$	
	$1 - \frac{2 \tan \theta \tan \theta}{1 - \tan^2 \theta}$	
	$\frac{2 \tan \theta + \tan \theta - \tan^3 \theta}{1 + \cos^2 \theta}$	
	$= \frac{1-\tan^2 \theta}{1-\tan^2 \theta - 2\tan^2 \theta}$ $1-\tan^2 \theta$	
	$= 3 \tan \theta - \tan^3 \theta$	
	$-\frac{1-3\tan^2\theta}{}$	

$\underline{T - Formulae}$

Let $t = \tan \frac{\theta}{2}$

$$\sin \theta = \frac{2t}{1+t^2}$$

$$\cos \theta = \frac{1-t^2}{1+t^2}$$

$$\tan \theta = \frac{2t}{1-t^2}$$

$$\sin \theta = 2\sin \frac{\theta}{2} \cos \frac{\theta}{2}$$

$$= \frac{2\sin \frac{\theta}{2} \cos \frac{\theta}{2}}{\cos^2 \frac{\theta}{2} + \sin^2 \frac{\theta}{2}}$$
Divide by "1"
$$\sin^2 \theta + \cos^2 \theta = 1$$

$$= \frac{\frac{2\sin \frac{\theta}{2} \cos \frac{\theta}{2}}{\cos^2 \frac{\theta}{2}}}{\frac{\cos^2 \frac{\theta}{2} + \sin^2 \frac{\theta}{2}}{\cos^2 \frac{\theta}{2}}}$$
Divide top and bottom by $\cos^2 \theta$

$$= \frac{2\tan \frac{\theta}{2}}{1 + \tan^2 \frac{\theta}{2}}$$

$$= \frac{2t}{1 + t^2}$$

$$\cos^2 \frac{\cos^2 \theta}{2}$$

$$\cos^2 \frac{\theta}{2}$$

$$\sin^2$$

$$\cos\theta = \cos^{2}\frac{\theta}{2} - \sin^{2}\frac{\theta}{2} \\
= \frac{\cos^{2}\frac{\theta}{2} - \sin^{2}\frac{\theta}{2}}{\cos^{2}\frac{\theta}{2} + \sin^{2}\frac{\theta}{2}} \\
= \frac{\cos^{2}\frac{\theta}{2} - \sin^{2}\frac{\theta}{2}}{\cos^{2}\frac{\theta}{2} - \sin^{2}\frac{\theta}{2}} \\
= \frac{\cos^{2}\frac{\theta}{2} - \sin^{2}\frac{\theta}{2}}{\cos^{2}\frac{\theta}{2} + \sin^{2}\frac{\theta}{2}} \\
= \frac{\cos^{2}\frac{\theta}{2} - \sin^{2}\frac{\theta}{2}}{\cos^{2}\frac{\theta}{2} + \sin^{2}\frac{\theta}{2}} \\
= \frac{1 - \tan^{2}\frac{\theta}{2}}{1 + \tan^{2}\frac{\theta}{2}} \\
= \frac{1 - t^{2}}{1 + t^{2}}$$

Subsidiary Angle Formula

$$= R \sin x \cos x + R \cos x \sin x$$

$$a = R \cos x$$

$$b = R \sin x$$

$$\therefore a^2 = R^2 \cos^2 x$$

$$\therefore b^2 = R^2 \sin^2 x$$

$$\sin^2 x + \cos^2 x = 1$$

$$= \frac{a^2 + b^2}{R^2}$$

 $a\sin x + b\cos x = R(\sin x\cos x + \cos x\sin x)$

R =	$= \sqrt{a^2 + b^2}$		$\tan \alpha = \frac{b}{a}$
$a\sin x + b\cos x$	= C	$R\sin(x+\alpha)$	
$a\sin x - b\cos x$	= C	$R\sin(x-\alpha)$	
$a\cos x + b\sin x$	= C	$R\cos(x+\alpha)$	
$a\cos x - b\sin x$	= C	$R\cos(x-\alpha)$	

Example 1

Find x. $\sqrt{3} \sin x - \cos x = 1$

$$R = \sqrt{\sqrt{3}^2 + 1^2} \qquad \tan \alpha = \frac{1}{\sqrt{3}}$$

$$= \sqrt{4}$$

$$= 2$$

$$\alpha = 30^{\circ}$$

$$2\sin(x-30) = 1
\sin(x-30) = \frac{1}{2}
x-30 = 30^{\circ}, 150^{\circ}
x = 60^{\circ}, 180^{\circ}$$

General Solutions of Trigonometric Equations

$\sin\theta = \sin\alpha$	Then $\theta = n\pi + (-1)^n \alpha$
$\cos\theta = \cos\alpha$	Then $\theta = 2n\pi \pm \alpha$
$\tan \theta = \tan \alpha$	Then $\theta = n\pi + \alpha$

Radians

π^{c}	= 180°
1°	$=\frac{\pi^c}{180}$

Arcs, Sectors, Segments

Arc	Length
1 11 0	

$$l = r\theta$$

Area of Sector
$$A = \frac{1}{2}r^2\theta$$

Area of Segment
$$A = \frac{1}{2}r^2(\theta - \sin \theta)$$

Trigonometric Limits

$\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\tan x}{x}$	$= \lim_{x \to 0} \cos x$	= 1
---	---------------------------	-----

Differentiation of Trigonometric Functions

$$\frac{d}{dx}(\sin x) = \cos x$$

$$\frac{d}{dx}[\sin f(x)] = f'(x)\cos f(x)$$

$$\frac{d}{dx}(\sin(ax+b)) = a\cos(ax+b)$$

$$\frac{d}{dx}(\cos x) = -\sin x$$

$$\frac{d}{dx}[\cos f(x)] = -f'(x)\sin f(x)$$

$$\frac{d}{dx}(\cos(ax+b)) = -a\sin(ax+b)$$

$$\frac{d}{dx}(\tan x) = \sec^2 x$$

$$\frac{d}{dx}[\tan f(x)] = f'(x)\sec^2 f(x)$$

$$\frac{d}{dx}(\tan(ax+b)) = a\sec^2(ax+b)$$

$$\frac{d}{dx}\sec x = \sec x \tan x$$

$$\frac{d}{dx}\csc x = -\cot x \csc x$$

$$\frac{d}{dx}\cot x = -\cot x \csc x$$

Integration of Trigonometric Functions

$$\int \cos ax \, dx = \frac{1}{a} \sin ax + c$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax + c$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax + c$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} \, dx = \sin^{-1} \left(\frac{x}{a}\right) + c$$

$$\int -\frac{1}{\sqrt{a^2 - x^2}} dx = \cos^{-1} \left(\frac{x}{a}\right) + c \quad OR \quad -\sin^{-1} \left(\frac{x}{a}\right) + c$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + c$$

$$\int \cos ec^2 ax \, dx = -\frac{1}{a} \cot ax + c$$

$$\int \sec ax \cdot \tan ax \, dx = \frac{1}{a} \sec ax + c$$

$$\int \cos e c a x \cdot \cot a x \, dx = -\frac{1}{a} \cos e c a x + c$$

Integration of sin²x and cos²x

```
\cos 2x = 2\cos^{2} x - 1 

\cos 2x + 1 = 2\cos^{2} x 

\frac{1}{2}(\cos 2x + 1) = \cos^{2} x 

\int \cos^{2} x \, dx = \frac{1}{2} \int (\cos 2x + 1) \, dx 

= \frac{1}{2} (\frac{1}{2} \sin 2x + x) + C 

= \frac{1}{4} \sin 2x + \frac{1}{2} x + C

\int \cos^{2} x \, dx = \frac{1}{4} \sin 2x + \frac{1}{2} x + C
```

$$\cos 2x = 1 - \sin^2 x
2 \sin^2 x = 1 - \cos 2x
\sin^2 x = \frac{1}{2} (1 - \cos 2x)
\int \sin^2 x \, dx = \frac{1}{2} \int (1 - \cos 2x) \, dx
= \frac{1}{2} (x - \frac{1}{2} \sin 2x) + C
= \frac{1}{2} x - \frac{1}{4} \sin 2x + C$$

$$\int \sin^2 x \, dx = \frac{1}{2} x - \frac{1}{4} \sin 2x + C$$

INVERSE TRIGNOMETRY

Inverse Sin – Graph, Domain, Range, Properties

$$-1 \le x \le 1$$

$$-\frac{\pi}{2} \le y \le \frac{\pi}{2}$$

$$\sin^{-1}(-x) = -\sin^{-1}x$$

Inverse Cos – Graph, Domain, Range, Properties

$$-1 \le x \le 1$$

$$0 \le y \le \pi$$

$$\cos^{-1}(-x) = \pi - \cos^{-1}x$$

Inverse Tan – Graph, Domain, Range, Properties

All real x

$$-\frac{\pi}{2} \le y \le \frac{\pi}{2}$$

$$\tan^{-1}(-x) = -\tan^{-1}x$$

Differentiation of Inverse Trigonometric Functions	
$\frac{d}{dx}(\sin^{-1}x)$	$=\frac{1}{\sqrt{1-x^2}}$
$\frac{d}{dx}\left(\sin^{-1}\frac{x}{a}\right)$	$=\frac{1}{\sqrt{a^2-x^2}}$
$\frac{d}{dx} \Big(\sin^{-1} f(x) \Big)$	$=\frac{f'(x)}{\sqrt{1-[f(x)]^2}}$
$\frac{d}{dx}(\cos^{-1}x)$	$=-\frac{1}{\sqrt{1-x^2}}$
$\frac{d}{dx}\left(\cos^{-1}\frac{x}{a}\right)$	$=-\frac{1}{\sqrt{a^2-x^2}}$
$\frac{d}{dx} \Big(\cos^{-1} f(x) \Big)$	$= -\frac{f'(x)}{\sqrt{1 - [f(x)]^2}}$
$\frac{d}{dx}(\tan^{-1}x)$	$=\frac{1}{1+x^2}$
$\frac{d}{dx}\left(\tan^{-1}\frac{x}{a}\right)$	$=\frac{a}{a^2+x^2}$
$\frac{d}{dx} \left(\tan^{-1} f(x) \right)$	$=\frac{f'(x)}{a+[f(x)]^2}$

Integration of Inverse Trigonometric Functions

$$\int \frac{1}{\sqrt{a^2 - x^2}} \, dx = \sin^{-1} \left(\frac{x}{a}\right) + c$$

$$\int -\frac{1}{\sqrt{a^2 - x^2}} dx = \cos^{-1} \left(\frac{x}{a}\right) + c \quad OR \quad -\sin^{-1} \left(\frac{x}{a}\right) + c$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + c$$