Hong Kong Mathematics Olympiad 2012-2013 Heat Event (Individual)

除非特別聲明,答案須用數字表達,並化至最簡。

時限:40分鐘

Unless otherwise stated, all answers should be expressed in numerals in their simplest form.

每題正確答案得一分。Each correct answer will be awarded 1 mark. Time allowed: 40 minutes

- 1. 化簡 $\sqrt{94-2\sqrt{2013}}$ 。 Simplify $\sqrt{94-2\sqrt{2013}}$.
- 2. 一個平行四邊形可被分成 178 個邊長為 1 單位的等邊三角形,若該平行四邊形的周界 為 P 單位,求 P 的最大值。

A parallelogram is cut into 178 pieces of equilateral triangles with sides 1 unit. If the perimeter of the parallelogram is P units, find the maximum value of P.

Figure 1 shows a right-angled triangle ACD where B is a point on AC and BC = 2AB.

Given that AB = a and $\angle ACD = 30^{\circ}$, find the value of θ .

圖一 Figure 1

- 4. 已知 $x^2 + 399 = 2^y$,其中 $x \cdot y$ 為正整數。求 x 的值。 Given that $x^2 + 399 = 2^y$, where x, y are positive integers. Find the value of x.
- 5. 已知 y = (x+1)(x+2)(x+3)(x+4) + 2013,求 y 的最小值。 Given that y = (x+1)(x+2)(x+3)(x+4) + 2013, find the minimum value of y.
- 6. 從一個有 n 條邊的凸多邊形中,選取其中一隻內角。若餘下的 n-1 隻內角之和是 2013° ,求 n 的值。

In a convex polygon with n sides, one interior angle is selected. If the sum of the remaining n-1 interior angle is 2013° , find the value of n.

7. 圖二所示為一通過 B 點及 C 點的圓,而 A 點則在圓之外。已知 BC 是圓的直徑,AB 及 AC 分別與圓相交於 D 點及 E 點,且 $\angle BAC = 45^\circ$,求 $\frac{\Delta ADE}{BCED}$ 的面積。

Figure 2 shows a circle passes through two points B A and C, and a point A is lying outside the circle. Given that BC is a diameter of the circle, AB and AC intersect the circle at D and E respectively and $\angle BAC$

= 45°, find
$$\frac{\text{area of } \triangle ADE}{\text{area of } BCED}$$
.

$$8. \qquad \text{if} \quad \sqrt{31 - \sqrt{31 + x}} = x \circ$$

Solve $\sqrt{31-\sqrt{31+x}} = x$.

9. 圖三所示為五邊形 $ABCDE \circ AB = BC = DE = AE + CD = 3$,且 $\angle A = \angle C = 90^\circ$,求該五邊形的面積。
Figure 3 shows a pentagon ABCDE. AB = BC = DE = AE + CD = 3 and $\angle A = \angle C = 90^\circ$, find the area of the pentagon.

圖三 Figure 3

10. $\stackrel{.}{a}$ 及 b 為實數,且 $a^2+b^2=a+b$ 。求 a+b 的最大值。 If a and b are real numbers, and $a^2+b^2=a+b$. Find the maximum value of a+b.

Hong Kong Mathematics Olympiad 2012-2013 Heat Event (Group)

除非特別聲明,答案須用數字表達,並化至最簡。

時限:20 分鐘

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 每題正確答案得一分。Each correct answer will be awarded 1 mark. Time allowed: 20 minutes

已知一個直角三角形三邊的長度皆為整數,且其中兩邊的長度為方程 1. $x^{2} - (m+2)x + 4m = 0$ 的根。求第三邊長度的最大值。

Given that the length of the sides of a right-angled triangle are integers, and two of them are the roots of the equation $x^2 - (m+2)x + 4m = 0$.

Find the maximum length of the third side of the triangle.

圖一所示為一梯形 ABCD, 其中 $AB = 3 \cdot CD = 5$ 2. 及 $AC \cdot BD$ 相交於點 $O \circ 若 \Delta AOB$ 的面積是 27, 求梯形 ABCD 的面積。

Figure 1 shows a trapezium ABCD, where AB = 3, CD= 5 and the diagonals AC and BD meet at O.

If the area of $\triangle AOB$ is 27,

find the area of the trapezium ABCD.

圖一 Figure 1

- 設 x 及 y 為實數使得 $x^2 + xy + y^2 = 2013 \circ x x^2 xy + y^2$ 的最大值。 3. Let x and y be real numbers such that $x^2 + xy + y^2 = 2013$. Find the maximum value of $x^2 - xy + y^2$.
- 若 α、β 是方程 $x^2 + 2013x + 5 = 0$ 的根, 求 $(\alpha^2 + 2011\alpha + 3)(\beta^2 + 2015\beta + 7)$ 的值。 4. If α , β are roots of $x^2 + 2013x + 5 = 0$, find the value of $(\alpha^2 + 2011\alpha + 3)(\beta^2 + 2015\beta + 7)$.
- 如圖二所示, ABCD 為一個邊長為 10 單位的正方形, E 5. 及 F 分別為 CD 及 AD 的中點,BE 及 FC 相交於 G。D求 AG 的長度。

As shown in Figure 2, ABCD is a square of side 10 units, E and F are the mid-points of CD and AD respectively, BE and F FC intersect at G. Find the length of AG.

圖二 Figure 2

若 a 及 b 為正實數,且方程 $x^2 + ax + 2b = 0$ 及 $x^2 + 2bx + a = 0$ 都有實數根。 6. 求 a+b 的最小值。

Let a and b are positive real numbers, and the equations $x^2 + ax + 2b = 0$ and $x^2 + 2bx + a = 0$ have real roots. Find the minimum value of a + b.

已知 $\triangle ABC$ 的三邊的長度組成一個等差數列,且為方程 $x^3-12x^2+47x-60=0$ 的根, 7. 求 ΔABC 的面積。

Given that the length of the three sides of $\triangle ABC$ form an arithmetic sequence, and are the roots of the equation $x^3 - 12x^2 + 47x - 60 = 0$, find the area of $\triangle ABC$.

圖三中, $\triangle ABC$ 為一等腰三角形,其中 AB8. =AC,BC=240。已知 ΔABC 的內接圓 的半徑是24,求 AB 的長度。

> In Figure 3, $\triangle ABC$ is an isosceles triangle with AB = AC, BC = 240. The radius of the inscribed circle of $\triangle ABC$ is 24.

Find the length of *AB*.

圖三 Figure 3

9. 從1、2、3、…、2012、2013 中最多可取出多少個數,使得在取出的數中任意兩數之和 都不是這兩個數之差的倍數?

At most how many numbers can be taken from the set of integers: 1, 2, 3, ..., 2012, 2013 such that the sum of any two numbers taken out from the set is not a multiple of the difference between the two numbers?

- 對所有正整數 n,定義函數 f 為 10.
 - f(1) = 2012,

(ii)
$$f(1) + f(2) + \cdots + f(n-1) + f(n) = n^2 f(n)$$
, $n > 1$

求 f(2012) 的值。

For all positive integers n, define a function f as

- f(1) = 2012,
- (ii) $f(1) + f(2) + \cdots + f(n-1) + f(n) = n^2 f(n)$, n > 1.

Find the value of f(2012).

Hong Kong Mathematics Olympiad 2012 – 2013 Heat Event (Geometric Construction) 香港數學競賽 2012 - 2013

初賽(幾何作圖)

每隊必須列出詳細所有步驟(包括作圖步驟)。	時限:20 分鐘
All working (including geometric drawing) must be clearly shown.	
此部份滿分為十分。The full marks of this part is 10 marks.	Time allowed: 20 minutes
School Code:	
School Name:	

第一題 Question No. 1

下圖所示為綫段 PQ 及角 θ 。試構作一個等腰三角形 PQR,其中 PQ=PR 及 $\angle QPR=\theta$ 。 Line segment PQ and an angle of size θ are given below. Construct the isosceles triangle PQR with PQ = PR and $\angle QPR = \theta$.

Hong Kong Mathematics Olympiad 2012 – 2013 Heat Event (Geometric Construction) 香港數學競賽 2012 - 2013

初賽(幾何作圖)

每隊必須列出詳細所有步驟(包括作圖步驟)。	時限:20 分鐘
All working (including geometric drawing) must be clearly shown.	
此部份滿分為十分。The full marks of this part is 10 marks.	Time allowed: 20 minutes
School Code:	
School Name:	

第二題 Question No. 2

試構作一個面積與下圖所示的 ΔABC 面積相等的長方形,長方形其中一邊為 AB。 Construct a rectangle with AB as one of its sides and with area equal to that of $\triangle ABC$ below.

Hong Kong Mathematics Olympiad 2012 – 2013 Heat Event (Geometric Construction) 香港數學競賽 2012 - 2013

初賽(幾何作圖)

每隊必須列出詳細所有步驟(包括作圖步驟)。	時限:20 分鐘
All working (including geometric drawing) must be clearly shown.	
此部份滿分為十分。The full marks of this part is 10 marks.	Time allowed: 20 minutes
School Code:	
School Name:	

第三題 Question No. 3

下圖所示為兩相交於 A 點的綫段 AB 及 AC。試構作一半徑等於綫段 MN 的圓使得 AB 及 AC 均為該圓的切綫。

The figure below shows two straight lines AB and AC intersecting at the point A. Construct a circle with radius equal to the line segment MN so that AB and AC are tangents to the circle.

