

- Apache Spark, an open-source cluster computing framework, is developed in 2009 at UC Berkeley AMP Lab.
- Apache Spark is a unified analytics engine for large-scale distributed data processing and machine learning.
- Spark provides an unified engine with a stack of libraries that allow for complex analytics, including batch, streaming data.
- Spark is one of the largest OSS(Open Source Software) communities in big data analytics, and its applications range from business, finance, healthcare, and other scientific computing.

## Why Apache Spark?

Here are four main reasons from the official Apache Spark™ website that should convince you to use Spark:

#### Speed

- Run programs up to 100x faster than Hadoop MapReduce in memory, or 10x faster on disk.
- Utilizes an advanced DAG (Directed Acyclic Graph) execution engine supporting acyclic data flow and in-memory computing.

#### • Ease of Use

- Write applications quickly in Java, Scala, Python, or R.
- Spark offers over 80 high-level operators that make it easy to build parallel apps.
- You can use it interactively from the Scala, Python, and R shells.

## Generality

- Combine SQL, streaming, and complex analytics.
- Spark powers a stack of libraries including SQL and DataFrames, MLlib for machine learning, GraphX, and Spark Streaming.
- Seamlessly combine these libraries in the same application.

## • Runs Everywhere

- Spark runs on Hadoop, Mesos, standalone, or in the cloud.
- It can access diverse data sources including HDFS, Cassandra, Mysql, and S3.
- Spark can run on a single machine or in a cluster of computers.



## Powerful Use Cases of Apache Spark in Action

Apache Spark is a powerful big data processing framework that excels in various scenarios. Here are some compelling examples of how industry leaders leverage Spark's capabilities:

#### • Recommendation Engines:

- **Netflix:** Spark personalizes recommendations for millions of users by analyzing vast amounts of viewing data.
- Pinterest: Spark analyzes user behavior in real-time, suggesting relevant content as users explore the platform.

#### Real-time Analytics:

- Uber: processes massive datasets from user trips, enabling efficient data transformation and analysis for informed decision-making.
- Twitter: Spark analyzes real-time data streams, allowing for sentiment analysis, trend identification, and personalized recommendations.
- eBay: Spark empowers real-time analytics for fraud detection and personalized recommendations, enhancing user experience and driving sales.

#### • Large-Scale Data Processing:

- **Alibaba:** Spark tackles petabytes of data generated across its e-commerce platforms, enabling large-scale data analysis tasks.
- **Broad Institute (MIT & Harvard):** Spark streamlines genetic data analysis, facilitating crucial scientific advancements.
- ... source, source



## The Apache Spark Ecosystem

Spark consists of several libraries that can be used together in the same application:

- **Spark Core** is a fundamental component of the platform, serving various crucial functions including:
  - Memory Management: Efficiently allocates memory across the cluster for data and computations.
  - **Fault Recovery:** Automatically recovers from failures by restarting tasks on different nodes.
  - **Task Scheduling:** Optimizes task execution across the cluster for best performance.
  - Distributed Processing: Distributes data and computations across the cluster for parallel processing.
  - **Job Monitoring:** Monitors the progress and health of running jobs.
  - Storage System Interaction: Reads and writes data from various storage systems like HDFS, S3, etc.
- Spark MLlib used to enable machine learning in a distributed manner with its algorithms and utilities.
- Spark Streaming Used to stream live data into analytics applications.
- Spark SQL Used to run SQL queries on your data, both static and streaming data. It supports multiple data sources and data types(DataFrames, Datasets).
- **Spark GraphX** Graph computation framework which includes APIs for creating and manipulating graphs.



## **Apache Spark Architecture Overview**

## Two Main Abstractions of Apache Spark: RDD & DAG

### **Resilient Distributed Datasets (RDDs):**

- Resilient: RDDs automatically recover from failures.
- **Distributed:** RDDs are fragmented and distributed across a cluster for parallel processing.
- Dataset: RDDs represent collections of elements.

#### **Key Characteristics of RDDs:**

- **Fault Tolerance:** RDDs are fault-tolerant, meaning they can recover from failures. In case of a node failure, Spark can rebuild the lost data using lineage tracking, which records the steps used to create the RDD.
- Immutability: RDDs are immutable, meaning they cannot be modified after creation. This immutability simplifies error handling and optimizations.
- **Data Partitions**: Each RDD is split into partitions, which are smaller chunks of data. Partitions can be processed independently on different nodes in the cluster, further boosting parallelism.
- **Distributed Data:** RDDs are distributed across multiple nodes in a cluster. This allows Spark to process large datasets efficiently by parallelizing operations across nodes.

#### RDDs support two primary operations:

- Transformations :
  - Operations like map, filter, join.
  - Lazy operations to build RDDs from others.
- Actions :
  - Operations like count, collect, save.
  - Return results or write to storage.



input

narrow transformation

output

input

output

wide transformation

### Types of transformations

- Narrow:
  - Operates on single partition (filter, map, withColumn)
- Wide:
  - May require shuffling data across partitions (join, groupBy, repartition)

## Directed Acyclic Graph (DAG):

- Workflow Representation:
  - Spark utilizes DAGs to represent the sequence of transformations and actions within a Spark job.
  - The Driver program translates user code into a DAG, outlining the sequence of transformations and actions to be executed.

### Nodes and Edges:

- A DAG is a directed acyclic graph, meaning data flows in a single direction with no loops.
- Nodes in the DAG represent RDD operations (transformations and actions), while edges represent the flow of data between them.



## **Spark Architecture and Execution Flow**



Apache Spark utilizes a master-slave architecture for distributed data processing. Here's a breakdown of the key components and execution flow:

### **Components:**

- **Driver Program:** The master node that coordinates the Spark application. It reads the application code, creates a SparkContext, and submits tasks to the cluster manager.
- SparkContext (or SparkSession): The entry point for Spark functionality in the driver program. It provides methods for creating RDDs, scheduling tasks, and interacting with the cluster manager.
- **Cluster Manager:** Manages the cluster resources (CPU, memory, network resources) and allocates them to Spark applications on Worker Nodes. Examples include YARN, Mesos, or standalone mode.
- Worker Nodes: Slave nodes in the cluster that execute tasks submitted by the driver program.
- Executors: Processes running on worker nodes responsible for executing Spark tasks. Each worker node can have multiple executors.

#### **Execution Flow:**

- 1. **Driver Program:** The application starts with the driver program, which defines the Spark job and creates a SparkContext (or SparkSession in newer versions).
- 2. RDD Creation: The driver program uses the SparkContext to create RDDs from various data sources (e.g., HDFS, files, databases).
- 3. **DAG Generation:** Spark translates the application logic into a DAG, where each node represents a transformation on an RDD and edges represent dependencies between them.
- 4. Task Scheduling: The DAG Scheduler breaks down the DAG into smaller, independent tasks that can be executed on worker nodes.
- 5. **Task Execution:** The Task Scheduler submits tasks to the cluster manager, which allocates resources on worker nodes and launches executors to execute the tasks.
- 6. In-Memory Computation: Workers execute the tasks on the allocated executors, leveraging in-memory computation for faster processing.
- 7. Results Collection: Task results are sent back to the driver program.
- 8. DAG Completion: Once all tasks are complete, the DAG execution is finished.

## **Distributed Deployments**

For serious use of Spark, you will want to run it on a distributed cluster. There are a few main options for distributed deployment:

- Standalone Spark's own simple standalone cluster manager. Great for testing purposes.
- YARN Run Spark on top of Hadoop NextGen (YARN) which can run distributed workloads on top of Hadoop clusters.
- Mesos General cluster manager that can also run Hadoop MapReduce and Spark applications.
- Kubernetes Open-source system for automating deployment, scaling, and management of containerized applications like Spark.



## **Spark Execution Modes:**

There are 3 types of execution modes:

- 1. Local Mode:
  - Everything runs on a single machine the Spark driver and executors all reside locally.
  - Ideal for development and testing due to its simplicity.
  - Not suitable for large-scale data processing due to resource limitations of a single machine.

#### 2. Client Mode:

- Spark driver runs on the machine submitting the application (client).
- Executors run on worker nodes in a separate cluster.
- Offers more resources than local mode but can introduce latency due to network communication between driver and executors.

#### 3. Cluster Mode:

- Both the Spark driver and executors run on nodes within the cluster managed by a resource manager (YARN, Mesos, etc.).
- Provides the best performance and scalability for large-scale data processing.
- Most common mode for production deployments.

## Motivation for this training



I'm interested in learning PySpark because:

- 1. Spark is considered one of the most powerful tools for handling Big Data.
- 2. Learning Spark has been challenging for me. I've struggled to find comprehensive examples that cover the entire process in one file.
- 3. Good sources are expensive.

## What is PySpark?

PySpark is an interface for Apache Spark in Python. With PySpark, you can write Python and SQL-like commands to manipulate and analyze data in a distributed processing environment.

## What is PySpark used for?

Most data scientists and analysts are familiar with Python and use it to implement machine learning workflows. PySpark allows them to work with a familiar language on large-scale distributed datasets.

# Why PySpark?

- PySpark is highly popular and widely used due to its simplicity and accessibility.
- It contains extensive libraries and resources for machine learning and deep learning tasks.
- To work with large-scale and real-time datasets, knowledge of Python and R frameworks alone will not suffice.

# How to Install PySpark

### 1. Run the Docker Container with PySpark:

Run the Docker container with the specified port mapping:

docker run -p 8888:8888 jupyter/all-spark-notebook:spark-3.2.1

### 2. Access Jupyter Notebook:

Once the container is running, navigate to the following link in your browser: http://localhost:8888

### 3. Retrieve Jupyter Token:

Inside the container's terminal, execute the following command to list Jupyter server information:

jupyter server list

Copy the token from the output, which will be in the format:

## http://<container\_id>:8888/?token=<token\_value> :: /home/jovyan

Extract the token value, for example:

### ead 98 a ad 738 c 241 c 31 b c f dd 762 b f e 37 f b 9 b 95 b 14 df d9 78 b a

## 4. Start Jupyter Notebook:

Paste the token value into the password field

## 5. **Test Spark:**

go to the terminal and run the following command:

spark-shell

6. Now, create a new notebook and let's start.