

Teorias ácido-base

Resumo

Afim de explicar a acidez e basicidade dos compostos químicos algumas teorias foram propostas ao longo da história da química. Essas três teoria ficaram conhecidas, em ordem cronológica, como:

Teoria de Arrhenius

Ácido: são compostos que, em água, sofrem ionização e liberam como único cátion o H⁺.

$$HA \rightleftharpoons H^+ + A^-$$

Ex.: $HCI \rightleftharpoons H^+ + CI^-$

Bases: são compostos que, em água, sofrem dissociação iônica e liberam como único ânion o OH.

$$XOH \rightleftharpoons X^+ + OH^-$$

Ex.: NaOH \rightleftharpoons Na⁺ + OH⁻

Força ácido-base

Teoria de Bronsted-Lowry

Ácido: são compostos capazes de ceder H⁺. **Bases:** são compostos capazes de receber H⁺.

$$HCI + H_2O \rightleftharpoons H_3O^+ + CI^-$$

HCI - capaz de ceder H^+ Ácido H_2O - capaz de receber H^+ Base

H₃O⁺ - recebeu H⁺ Ácido conjugado Cl⁻ - perdeu H⁺ Base conjugada

Obs.: Ácido forte produz Base conjugada fraca Ácido fraco produz Base conjugada forte Base forte produz Ácido conjugado fraco Base fraca produz Ácido conjugado forte

Teoria de Lewis

Ácido: são compostos capazes de receber par de elétrons. **Bases:** são compostos capazes de ceder par de elétrons.

$$NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$$

$$\begin{array}{c} H & \ddot{\circ} - H \\ H - \ddot{\circ} & H \\ \downarrow & H \\ H - \ddot{\circ} - H \end{array} \rightleftharpoons \begin{bmatrix} H \\ H - \ddot{\circ} - H \\ H \end{bmatrix}_{+} + \ddot{\circ} - H_{-}$$

 NH_3 possui **N** que possui par de elétrons livre para ceder. H_2O possui H que é capaz de receber o par de elétrons livre do **N**.

Quer ver este material pelo Dex? Clique aqui

Exercícios

- 1. De acordo com as teorias de Arrhenius, Brönsted-Lowry e Lewis, diferentes substâncias podem ser reconhecidas como ácidos ou bases. Assinale a alternativa que apresenta substâncias classificadas como ácidos de acordo com as teorias de Arrhenius, Brönsted-Lowry e Lewis, respectivamente.
 - a) $HC\ell$, H_2SO_4 , NH_3
 - b) NH₃, HCℓ, HCN
 - **c)** H_2SO_4 , CN^- , NH_4^+
 - d) NaOH, CH₃COO⁻, SO₄²⁻
 - H_2SO_4 , $HC\ell$, NH_4^+
- 2. Analise a reação abaixo:

$$HC\ell + NaOH \rightarrow NaC\ell + H_2O$$

Pela Teoria de Arrhenius, HCl, NaOH e NaCl são classificados, respectivamente, como:

- a) Ácido, base e sal.
- b) Ácido, ácido e base.
- c) Base, ácido e sal.
- d) Base, sal e ácido.
- e) Base, ácido e ácido.
- Na molécula da amônia, cada átomo de hidrogênio tem seu elétron comprometido na formação de uma ligação covalente com o nitrogênio. Por outro lado, o nitrogênio possui um par de elétrons não ligantes, representado por dois pontos (:). Existem várias teorias que definem substâncias como ácido e base.
 Uma delas é a teoria de Lewis que pode classificar o : NH₃ como base por causa da:
 - a) liberação de três íons H⁺ quando é dissolvido em água.
 - b) doação do par de elétrons não ligantes a se combinar.
 - c) aceitação de íons F^- ao reagir com BF_3 .
 - d) liberação de íons $^{OH^-}$ quando na forma gasosa reagir com gás O_2 .
 - e) formação de íons ^{: NH}2 quando solubilizado e água ao aceitar um elétron não-ligante a mais.

4. A questão a seguir refere-se a uma visita de Gabi e Tomás ao supermercado, com o objetivo de cumprir uma tarefa escolar. Convidamos você a esclarecer as dúvidas de Gabi e Tomás sobre a Química no supermercado.

Tomás portava um gravador e Gabi, uma planilha com as principais equações químicas e algumas fórmulas estruturais.

Sabe-se que a reação de formação do hidróxido de amônio do detergente que contém amoníaco, como o derramado por Gabi e Tomás, é expressa pela equação

$$NH_3 + H_2O \longrightarrow NH_4^+ + OH^-$$

Gabi e Tomás fizeram, então, as afirmativas abaixo. Dentre tais alternativas, está correto:

- a) O produto dessa reação se encontra altamente dissociado.
- b) A solução tem pH neutro.
- c) De acordo com Lewis, base é a substância capaz de doar próton.
- d) A reação produz um sal.
- **e)** De acordo com a teoria de Arrhenius, bases são substâncias que se dissociam em água, produzindo íons OH⁻.
- 5. Em 1920, o cientista dinamarquês Johannes N. Brönsted e o inglês Thomas M. Lowry propuseram, independentemente, uma nova definição de ácido e base diferente do conceito até então utilizado de Arrhenius. Segundo esses cientistas, ácido é uma espécie química (molécula ou íon) capaz de doar próton (H⁺) em uma reação. Já, a base é uma espécie química (molécula ou íon) capaz de receber próton (H⁺) em uma reação. Abaixo está representada uma reação com a presença de ácidos e bases de acordo com a teoria ácido-base de Brönsted-Lowry.

$$H_3C-NH_2$$
 + $H_3CCOOH \rightleftharpoons H_3C-NH_3$ + H_3CCOO^-
base ácido ácido base

De acordo com essas informações, assinale a alternativa que possui, respectivamente, um ácido e uma base de Brönsted-Lowry.

- a) OH e NaOH
- **b)** H_3O^+ e $C\ell^-$
- c) OH e NH4+
- d) HCN e H₃O⁺
- e) $NH_3 e^{H_2SO_4}$

- **6.** Qual das substâncias abaixo pode ser uma base de Arrhenius?
 - a) CH₃COOH
 - b) HCI
 - c) KOH
 - **d)** H₂SO₄
 - e) CH₃OH
- 7. No conceito de ácido-base de Brönsted-Lowry, ácido é a espécie química que:
 - a) cede prótons
 - **b)** cede OH⁻
 - c) recebe prótons
 - d) recebe OH-
 - e) cede um par de elétrons
- **8.** Segundo Arrhenius, Brönsted Lowry e Lewis, uma base é, respectivamente:
 - a) fonte de OH⁻ em água, receptor de OH⁻, doador de 1 elétron
 - **b)** fonte de OH⁻ em água, receptor de H⁺, doador de par de elétrons
 - c) fonte de H⁺ em água, doador de H⁺, doador de par de elétrons
 - d) fonte de OH⁻ em água, doador de H⁺, receptor de par de elétrons
 - e) fonte de H⁺ em água, receptor de H⁺ , receptor de par de elétrons
- **9.** Aplicando-se o conceito ácido base de Bronsted-Lowry à reação a seguir equacionada, verifica-se que:

$$HClO_4 + H_2SO_4 \rightarrow ClO_4^- + H_3SO_4^+$$

- a) HClO₄ e H₂SO₄ são ácidos.
- **b)** H_2SO_4 e CIO_4 são bases.
- c) H₂SO₄ é ácido e HClO₄ é base.
- **d)** ClO₄ ⁻ é base conjugada do H₃SO₄ ⁺ .
- e) H₃SO₄ ⁺ e H₂SO₄ são ácidos.

10. A sibutramina, cuja estrutura está representada, é um fármaco indicado para o tratamento da obesidade e seu uso deve estar associado a uma dieta e exercícios físicos. Com base nessa estrutura, pode-se afirmar que a sibutramina:

- **a)** é uma base de Lewis, porque possui um átomo de nitrogênio que pode doar um par de elétrons para ácidos.
- **b)** é um ácido de Brönsted-Lowry, porque possui um átomo de nitrogênio terciário.
- **c)** é um ácido de Lewis, porque possui um átomo de nitrogênio capaz de receber um par de elétrons de um ácido.
- **d)** é um ácido de Arrhenius, porque possui um átomo de nitrogênio capaz de doar próton. (E) é uma base de Lewis, porque possui um átomo de nitrogênio que pode receber um par de elétrons de um ácido.
- e) é uma base de Arrhenius, pois possui uma hidroxila ionizável.

Gabarito

1. E

 $H_2SO_4 \rightarrow Libera H^+$ como único cátion em meio aquoso $HCI \rightarrow \acute{e}$ capaz de doar um próton ficando como $CI^ NH_4^+ \rightarrow$ composto capaz de receber par de elétron

2. A

Ácidos liberam em solução aquosa como único cátion o H⁺; Bases em solução aquosa liberam com único ânion o OH⁻; Sais são compostos que em meio aquoso liberam um cátion diferente de H⁺ e um ânion diferente de OH⁻.

3. B

Bases de Lewis, são compostos capazes de ceder par de elétrons.

4. E

 $NaOH \rightarrow Na^+ + OH^-$ (na presença de H_2O)

5. B

$$H_3O^+ + Cl^- \rightarrow HCl + H_2O$$

6. C

KOH em meio aquoso libera como único ânion OH-

7. A

Exemplo: $HCl + H_2O \rightarrow Cl^- + H_3O^+$

8. B

Definição de cada uma das teorias ácido-base que abordamos previamente no resumo.

9. E

O H_2SO_4 é uma base e o ClO_4 $^-$ é uma base conjugada.

10. A

É uma base de Lewis, porque possui um átomo de nitrogênio que pode doar um par de elétrons para ácidos. Espécie doadora de par de elétrons → Base de lewis