SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE FAKULTA ELEKTROTECHNIKY A INFORMATIKY

Evidenčné číslo: FEI-5384-64685

UNIVERZÁLNE, PLATFORMOVO NEZÁVISLÉ KONZOLOVÉ ROZHRANIE DIPLOMOVÁ PRÁCA

SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE FAKULTA ELEKTROTECHNIKY A INFORMATIKY

Evidenčné číslo: FEI-5384-64685

UNIVERZÁLNE, PLATFORMOVO NEZÁVISLÉ KONZOLOVÉ ROZHRANIE DIPLOMOVÁ PRÁCA

Študijný program: Aplikovaná informatika

Číslo študijného odboru: 2511

Názov študijného odboru: 9.2.9 Aplikovaná informatika

Školiace pracovisko: Ústav informatiky a matematiky

Vedúci záverečnej práce: RnDr. Igor Kossaczký, CSc.

Konzultant: Rndr. Peter Praženica, Ing. Gabriel Szabó

Bratislava 2018

Bc. Juraj Vraniak

Základné údaje

Typ práce: Diplomová práca

Názov témy: Akupunktúrne body – hľadanie, meranie a zobrazovanie

Stav prihlásenia: schválené

schválené (prof. Dr. Ing. Miloš Oravec - Garant študijného programu) Stav témy:

Vedúci práce: doc. Ing. Marek Kukučka, PhD.

Fakulta: Fakulta elektrotechniky a informatiky Garantujúce pracovisko: Ústav informatiky a matematiky - FEI

Max. počet študentov:

Abstrakt:

Akademický rok: 2016/2017

Navrhol: doc. Ing. Marek Kukučka, PhD.

Akupunktúra patrí medzi najstaršie liečebné praktiky sveta a je to jedna z kľúčových častí tradičnej čínskej medicín Keďže použitie liečebných metód odvodených od akupunktúry je stále viac rozšírené, z medicínskeho pohľadu nanajvýš aktuálne venovať sa základnému výskumu v tejto oblasti a pokúsiť sa objasniť základné fyziologicl a biofyzikálne mechanizmy stojace za preukázanými klinickými efektami. Z prehľadu publikovaných elektrickýc vlastností akupunktúrnych bodov a dráh vyplýva potreba dôsledného overenia hypotézy elektrickej rozoznateľnos akupunktúrnych štruktúr. Očakáva sa, že môžu mať nižšiu impedanciu a vyššiu kapacitu oproti okolitým kontrolný bodom na pokožke. Výstupom mapovania pokožky budú 2D a 3D napäťové/impedančné mapy z povrchu tela. S tým prístupom bude možné nielen lokalizovať prípadný akupunktúrny bod, ale aj študovať jeho ohraničenie, povrchov elektrickú štruktúru či jeho veľkosť. Súčasťou výskumu je aj realizovanie meraní závislosti impedancie od frekvenc v akustickom pásme frekvencií 100 Hz - 20 kHz a vplyvu rôznych parametrov na rozoznávanie pozície, tva

a štruktúry akupunktúrnych bodov.

Obmedzenie k téme

Na prihlásenie riešiteľa na tému je potrebné splnenie jedného z nasledujúcich obmedzení

Obmedzenie na študijný program

Tabuľka zobrazuje obmedzenie na študijný program, odbor, špecializáciu, ktorý musí mať študent zapísaný, aby sa mohol na danú tému

Program	Zameranie	Špecializácia
I-API aplikovaná informatika	I-API-MSUS Modelovanie a simulácia udalostných systémov	nezadané
I-API aplikovaná informatika	I-API-ITVR IT v riadení a rozhodovaní	nezadané

Obmedzenie na predmety

Tabuľka zobrazuje obmedzenia na predmet, ktorý musí mať študent odštudovaný, aby sa mohol na danú tému prihlásiť.

SÚHRN

SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE FAKULTA ELEKTROTECHNIKY A INFORMATIKY

Študijný program: Aplikovaná informatika

Autor: Bc. Juraj Vraniak

Diplomová práca: Univerzálne, plat-

formovo nezávislé

konzolové rozhranie

Vedúci záverečnej práce: RnDr. Igor Kossaczký, CSc.

Konzultant: Rndr. Peter Praženica, Ing. Gabriel Szabó

Miesto a rok predloženia práce: Bratislava 2018

Diplomová práca sa zameriava na analýzu existujúcich skriptovacích jazykov a návrh nového univerzálneho konzolového rozhrania, ktoré je zamerané na adminstrátorské úlohy. Práca v úvode analyzuje operačné systémy, existujúce skriptovacie jazyky, ako aj emulátory, ktoré sprístupňujú funkcionality platformovo špecifických jazykov pre ostatné platformy. Práca sa tiež venuje spôsobom prekladu zo zdojového kódu na bytcode, ktorý je následne spúšťaný na počítači. V ďalšej časti sa práca zaoberá návrhovými vzormi, ktoré budú využité pri vytváraní aplikácie, a umožnia vytvoriť lepšie čitateľný, udržiavateľný a modifikovateľný kód. V práci je zahrnutý opis implementácie navrhnutého riešenia, ako aj jeho následné testovanie. Výsledkom práce je plne funkčné administrátorské rozhranie, ktoré bude jednoducho rozšíriteľné pomocou pluginou, umožňuje pracovať v interaktívnom, ako aj skriptovacom móduse, na rôznych operačných systémoch podporovaných JVM, ako aj rozhrania pomocou, ktorých je možné jednoducho dotvoriť nové pluginy pre rozhranie.

Kľúčové slová: skriptovací jazyk, analýza prekladu, prekladač, plugin, architektúra, návrhové vzory

ABSTRACT

SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA FACULTY OF ELECTRICAL ENGINEERING AND INFORMATION TECHNOLOGY

Study Programme: Applied Informatics

Author: Bc. Juraj Vraniak

Master's thesis: Universal, platform in-

dependent console in-

terface

Supervisor: RnDr. Igor Kossaczký, CSc.

Consultant: Rndr. Peter Praženica, Ing. Gabriel Szabó

Place and year of submission: Bratislava 2018

Diploma thesis aims to analyze existing scripting languages and suggest new universal console interface, that aims focus on administrative tasks. Paper first analyze operating systems, existing scripting languages as well as emulators, which provides functionality of platform specific languages to other platforms. Paper also looks on ways how source code is translated to bytecode, which is later on run on PC. In the next part of paper look on desing patterns, which will be used during creating of application, and enable us to write more readable, maintainable and modifiable code. The output of work is fully functional administrative interface, which can be easily extended by plugins, which allow us to work in interactive as well as in scripting mode, on different operating systems which are supported by JVM as well as set of interfaces, which can be implemented to create new plugins for the administrative interface.

Keywords: scripting language, translation analysis, translator, plugin, architecture, dessign patterns

Vyhlásenie autora	
-	
Podpísaný Bc. Juraj Vraniak čestne vyhlasujem, že son zálne, platformovo nezávislé konzolové rozhranie vypracoval n ných počas štúdia a informácií z dostupnej literatúry uvedene	na základe poznatkov získa-
Vedúcim mojej diplomovej práce bol RnDr. Igor Kossacz	ký, CSc.
Bratislava, dňa 14.5.2018	
·	podpis autora

Poďakovanie

Touto cestou by som sa chcel poďakovať vedúcim práce RnDr. Igorovi Kossaczkému, CSc, Rndr. Peterovi Praženicovi, Ing. Gabrielovi Szabóovi za cenné rady, odbornú pomoc, trpezlivosť a konzultácie pri vytvorení diplomovej práce.

Obsah

Ú	Úvod				
1	Ana	alýza		2	
	1.1	Opera	čné systémy	2	
		1.1.1	Windows		
			1.1.1.1 Podiel na trhu	2	
			1.1.1.2 Predinštalovaný softvér	2	
		1.1.2	MacOs	2	
			1.1.2.1 Predinštalovaný softvér	٩	
			1.1.2.2 Podiel na trhu	Ş	
		1.1.3	Unix	Ç	
			1.1.3.1 Predinštalovaný softvér	Ç	
			1.1.3.2 Podiel na trhu	ć	
		1.1.4	Linux	į	
			1.1.4.1 Predinštalovaný softvér	ç	
			1.1.4.2 Podiel na trhu	ć	
		1.1.5	Porovnanie podielov operačných systémov	4	
	1.2	Progra	amovacie jazyky	4	
		1.2.1	Shell	6	
			1.2.1.1 Výhody	6	
			1.2.1.2 Nevýhody	6	
			1.2.1.3 Popis a zhodnotenie jazyka	7	
		1.2.2	Powershel/Classic command line	10	
			1.2.2.1 Výhody	10	
			1.2.2.2 Nevýhody	11	
			1.2.2.3 Popis a zhodnotenie jazyka	11	
		1.2.3	Python	12	
			1.2.3.1 Výhody	12	
			1.2.3.2 Nevýhody	13	
			1.2.3.3 Popis a zhodnotenie jazyka	13	
	1.3	Existu	ıjúce riešenia	14	
		1.3.1	ConEmu	14	
			1.3.1.1 Skúsenosti	14	
		1.3.2	cmder	15	

			1.3.2.1 Skúsenosti	15
		1.3.3	Babun	16
		1.3.4	MobaXterm	17
			1.3.4.1 Neplatená verzia	17
			1.3.4.2 Platená verzia	17
	1.4	Zhodn	notenie analyzovaných technológií	18
2	Pre	klad ja	azykov 1	19
	2.1	Komp	ilátor proces prekladu	19
		2.1.1	Lexikálna analýza	19
		2.1.2	Syntaktická analýza	20
		2.1.3	Limitácia syntaktickej analýzy	21
		2.1.4	Semantická analýza	21
		2.1.5	Generovanie cieľového jazyka	21
3	Náv	rh rie	šenia 2	22
	3.1	Prípac	dy použitia	22
	3.2	Popis	prípadov použitia	23
		3.2.1	Vývojár skriptov	23
			3.2.1.1 Spustiť konzolu	23
			3.2.1.2 Spustiť príkaz	23
			3.2.1.3 Spustiť skript	24
			3.2.1.4 Spustiť Shell príkaz	24
			3.2.1.5 Spustiť commander príkaz	25
			3.2.1.6 Refazenie príkazov	25
			3.2.1.7 Manažovať balíčky	26
			3.2.1.8 Stiahnuť nový balíček	26
			3.2.1.9 Zmeniť použitý balíček	27
			3.2.1.10 Zmazať vybraný balíček	27
			3.2.1.11 Získať systémové informácie	28
			3.2.1.12 Získať informácie o procesoch	28
			3.2.1.13 Vytvoriť skript	29
			3.2.1.14 Vytvoriť funkciu	29
			3.2.1.15 Override funkcie	30
			3.2.1.16 Vytvoriť cyklus	30
			3.2.1.17 Vytvoriť podmienku	31

			3.2.1.18 Vytvoriť premenné
			3.2.1.19 Vykonať základné aritmetické operácie
			3.2.1.20 Vykonať základné logické operácie
			3.2.1.21 Presmerovať chybový výstup
			3.2.1.22 Presmerovať štandardný výstup
		3.2.2	Vývojár balíčkov
			3.2.2.1 Implementovať vlastný balíček
			3.2.2.2 Upravovať existujúce balíčky
	3.3	Výber	programovacieho jazyka
	3.4	Návrh	ové vzory
		3.4.1	Factory - továreň
		3.4.2	Command - príkaz
	3.5	Apliká	cia
	3.6	Komp	onenty aplikácie
	3.7	Plugin	3
	3.8	Diagra	m tried aplikácie
		3.8.1	Stručný popis tried
			3.8.1.1 ScopeImpl
			3.8.1.2 AbstractExecutor
			3.8.1.3 RootParser
			3.8.1.4 PluginFactory
			3.8.1.5 JarLoader
4	Imp	olemen	tácia 4
	4.1	Hlavna	á trieda aplikácie
	4.2	Štart a	aplikácie
	4.3	Inicial	izácia aplikácie
		4.3.1	Nahrávanie pluginov
			4.3.1.1 Načítanie dostupých pluginov z disku 4
			4.3.1.2 Načítanie dostupých pluginov z aplikácie 4
			4.3.1.3 Finálne načítanie pluginov
	4.4	Vykon	ávač príkazov
		4.4.1	Vykonávač príkazu
		4.4.2	Vykonávač pajpy
		4 4 3	Vykonávač skriptu

5 Zhodnotenie výsledkov	50
Záver	51
Zoznam použitej literatúry	52
Prílohy	I
A CD s aplikáciou a prácou	II
B Návod na spustenie a používanie aplikácie	III
C Diagram tried rozhraní aplikácie	IV
D Diagram tried rozhraní aplikácie	V

Zoznam obrázkov a tabuliek

Obrázok 1	OS - podiel na trhu podľa statcounter[6]	4
Obrázok 2	OS - podiel na trhu podľa netmarketshare [7] $\ \ldots \ \ldots \ \ldots$	5
Obrázok 3	Serverové OS - podiel na trhu podľa w3techs[8]	5
Obrázok 4	Serverové OS - podiel na trhu a rozdelenie podľa hodnotenia strá-	
	nok podľa w 3 techs[8] $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	5
Obrázok 5	Ukážka ConEmu emulátora	15
Obrázok 6	Ukážka Cmder emulátora	16
Obrázok 7	Ukážka Babun emulátora	16
Obrázok 8	Ukážka práce lexikálneho analyzátora	20
Obrázok 9	Ukážka práce syntaktickeho analyzátora	20
Obrázok 10	Prípady použitia pre navrhovanú aplikáciu	22
Obrázok 11	Class diagram Factory návrhového vzoru	36
Obrázok 12	Class diagram Command návrhového vzoru	37
Obrázok 13	Sekvenčný diagram Command návrhového vzoru	38
Obrázok 14	Pvrvé funkčné riešenie	39
Obrázok 15	Plugin - diagram tried	40
Obrázok 16	Diagram tried aplikácie	41
Obrázok 17	Activita spustenia aplikácie	44
Obrázok 18	Activita spustenia aplikácie	46
Obrázok C.1	Diagram tried pre rozhrania aplikácie	IV
Obrázok D.1	Activita spustenia aplikácie	V
Tabuľka 1	Ukážka reťazcových prepínačov v podmienkovom výraze if [9]	10
Tabuľka 2	Ukážka numerických prepínačov v podmienkovom výraze if $[9]$	10
Tabuľka 3	Porovnanie rýchlostí rôznych jazykov[12]	14
Tabuľka 4	Use case : Spustiť konzolu	23
Tabuľka 5	Use case : Spustiť príkaz	24
Tabuľka 6	Use case : Spustiť skript	24
Tabuľka 7	Use case : Spustiť shell príkaz	25
Tabuľka 8	Use case : Spustiť powershell príkaz	25
Tabuľka 9	Use case : Refazie príkazov	26
Tabuľka 10	Use case · Manažovať balíčky	26

Tabuľka 11	Use case : Stiahnúť nový balíček	27
Tabuľka 12	Use case : Zmeniť použitý balíček	27
Tabuľka 13	Use case : Zmazať vybraný balíček	28
Tabuľka 14	Use case : Získať systémové informácie	28
Tabuľka 15	Use case : Získať informácie o procesoch	29
Tabuľka 16	Use case : Vytvoriť skript	29
Tabuľka 17	Use case : Vytvoriť funkciu	30
Tabuľka 18	Use case : Override funkcie	30
Tabuľka 19	Use case : Vytvoriť cyklus	31
Tabuľka 20	Use case : Vytvoriť podmienku	31
Tabuľka 21	Use case : Vytvoriť premenné	32
Tabuľka 22	Use case : Vytvoriť funkciu	32
Tabuľka 23	Use case : Vytvoriť funkciu	33
Tabuľka 24	Use case : Presmerovať chybový výstup	34
Tabuľka 25	Use case : Presmerovať štandardný výstup	34
Tabuľka 26	Use case : Implementovať vlastný balíček	35
Tabuľka 27	Use case : Upravovať existujúce balíčky	35

Zoznam skratiek

API Aplikačné rozhranie

jar Java Archive

JVM Java Virtual Machine

OS Operačný systém

PC Personal Computer

resp. respektíve

Zoznam algoritmov

1	Bash ukážka rôznych volaní for cyklu. [1]	8
2	Bash ukážka volania skriptu s for cylom priamo z konzoly . $[1]$	9
3	Ukážka použitia pipe v Powershell. [2]	12
4	Ukážka loadovania balíčka z disku počítača	45
5	Ukážka pseudokódu exekútora	48

Úvod

Diplomová práca sa zameriava na analýzu existujúcich skriptovacích jazykov a návrh nového univerzálneho konzolového rozhrania, ktoré je zamerané na adminstrátorské úlohy. Výsledkom a zároveň cieľom práce je vytvoriť plne funkčné administrátorské rozhranie, ktoré bude jednoducho rozšíriteľné pomocou pluginov, umožňuje pracovať v interaktívnom, ako aj skriptovacom móduse, na rôznych operačných systémoch podporovaných JVM.

V prvej časti práce sme sa zamerali na rôznorodosť operačných systémov a absencia jednotnej platformy na vytváranie skrípt vo väčšine prípadov vyžadujú ich duplikovanie alebo viacnásobnú implementáciu. Čiastočným riešením tohto problému je použitie skriptovacieho jazyka s podporou cieľových platform. Zásadným problémom skriptovacích jazykov pri riešení tohto problému je absencia syntaktických a funkčných konštrukcií, ktoré sú už overené a široko používané, ako napríklad pajpa alebo presmerovanie štandardného a chybového vstupu a výstupu. Okrem skriptovacách jazykov sme si vyskúšali emulátory, ktoré zabezpečujú preklad platformovo špecifického jazyka do jazyka spustiteľného na konkrétnej platforme. Ďalšia časť teoretickej analýzy sa venujeme prekladu jazykov, kde sú popísané, postupy ako fungujú kompilítory programovacích jazykov. Následne sa venujeme návrhu celej práce, kde sme špecifikovali prípady použitia aplikácie, vybrali programovací jazyk pre úspešné vypracovanie zadania, popísali návrhové vzory, ktoré nám umožnili sprehľadniť zdrojový kód a na záver špecifikovali návrh aplikácie spolu s prvotným návrhom tried.

Ako bolo spomenuté výsledkom práce je plne funkčné administrátorské rozhranie, ktoré je jednoducho rozšíriteľné pomocou pluginov, umožňuje pracovať v interaktívnom, ako aj skriptovacom móduse, na rôznych operačných systémoch podporovaných JVM. Taktiež poskytuje možnosti integrácie s ďalšími enterprise nástrojmi a v neposledom rade poskytuje knižnicu obsahujúcu rozhrania pomocou, ktorých sa dá funkcionalita systému jednoducho rozšíriť.

1 Analýza

1.1 Operačné systémy

Informatika a informačné technológie je pomerne mladá vedná disciplína. Jej začiatky je možné datovať od druhej polovice dvadsiateho storočia, čo momentálne predstavuje takmer sedemdesiat rokov. Za tento čas informatika zaznamenala enormný rast vo vývoji hardvéru, ako aj softvéru. Operačný systém je základná časť akéhokoľvek počítačového sytému, predstavuje softvér, ktorý umožňuje počítačom pracovať. V poslednej dobe, oblasť operačných systémov prechádza rapídnymi zmenami, pretože počítače sa stali súčasťou každodenného života, a to od malých zariadení, napríklad v automobiloch, až po najsofisitkovanejšie servery nadnárodných spoločností. Aj napriek tomu, že v dnešnej dobe poznáme mnohé operačné systémy, v práci sa zameriame na Windows, Mac OS, Unix a Linux.[3]

1.1.1 Windows

Microsoft Windows uviedol svoje prvé operačné systémy v novembri roku 1985 ako nadstavbu MS DOS. Jeho popularita rýchlo rástla až vyvrcholila dominantným postavením na trhu v osobných počítačoch. V roku 1993 začal vydávať špecializované operačné systémy, ktoré prinášali novú funkcionalitu pre počítače používané ako servery.[4] Pre účely automatizácie sa na Windows serveroch používajú hlavne powershell scripty, písané v rovnomennom jazyku Powershell[5].

1.1.1.1 Podiel na trhu Microsoft je aj vzhľadom na svoju históriu najobľúbenejším operačným systémom v segmente osobných počítačov. Podľa webovej stránky statcounter.com[6] a netmarketshare.com[7] má 81,73% resp. 88,42% podiel na trhu.

Podľa w
3techs.com[8] je serverový operačný systém Windows používaný na 32.0% počíta
čoch.

1.1.1.2 Predinštalovaný softvér Windows operačné systémy ponúkajú základný balík nástrojov a programov. Serverové aj neserverové verzie Windowsu ponúkajú Powershell, ktorý je dostupný od inštalácie. Oba systémy podporujú aj takzvaný Command prompt alebo príkazový riadok, ktorý je alternatívou k Powershellu. Akékoľvek ďalšie programy je potrebné stiahnuť a doinštalovať.

1.1.2 MacOs

Mac okrem iného ponúka serverovú verziu operačného systému pod názvom OS X Server, ktorý začal písať svoju históriu v roku 2001, avšak neteší sa takej obľube ako Windows, Unix alebo Linux server. OS X server nepoužíva špecifický skriptovací jazyk, pričom

poskytuje možnosť výberu skriptovacieho jazyka, ako napríklad: Python, JavaScript, Perl, AppleScript, Swift alebo Ruby. Každý z uvedených jazykov prináša určité plusy, ako aj mínusy.

- **1.1.2.1 Predinštalovaný softvér** Predinštalovaný softvér pre developerov na Mac OS je Python, AppleScript, Ruby, Bash, BOjective-c. Donedávna bola štandardom aj Java, avšak Apple sa rozhodol pre radikálny krok vylúčiť Javu a propagovať Objective-c.
- 1.1.2.2 Podiel na trhu Popularita počítačov s predinštalovaným operačným systémom MacOs sa mierne zvyšuje, čo je možné vidieť aj na obrázku na konci sekcie operačných systémov. Podľa webovej stránky statcounter.com[6] a netmarketshare.com[7] mu patrí 13,18% resp. 9,19% na trhu. Serverové verzie MacOs podľa stránky w3techs.com[8] sú na menej ako 0.1% zariadeniach.

1.1.3 Unix

Patrí medzi prvé operačné systémy pre servery, ktorého vývoj začal v roku 1970 a v priebehu rokov vzniklo veľa nových verzií Unixu a Linuxu. V minulosti boli Unixové servery veľmi obľúbené, avšak v súčasnosti sú na ústupe, a to najmä kvôli vyšším obstarávacím a prevádzkovým nákladom. Pre účely Unixu sa vytvoril Unix shell, dostupný v rôznych obmenách, ktorý je často vyhľadávaným jazykom medzi administrátormi a automatizačnými programátormi.

- **1.1.3.1 Predinštalovaný softvér** Na vačšine unixových systémoch je predinštalovaný Shell a Open JDK.
- **1.1.3.2** Podiel na trhu Podľa stránky w3techs.com[8] sa Unixové systémy používajú na rovných 68.0% počítačov.

1.1.4 Linux

Linux je všeobecný názov pre širokú zostavu Linux distribúcií, ktoré používajú Linux Kernel. Linux Kernel bol prvýkrát verejnosti predstavený v roku 1991 a odvtedy bol rozšírený na najviac platforiem. Momentálne je jediným používaným operačným systémom na TOP 500 superpočítačoch (mainframe). Skriptovacím jazykom pre Linux je Unix Shell resp. jeho najrozšírenejšia forma Bash.

- **1.1.4.1 Predinštalovaný softvér** Predinštalovaný softvér vo väčšine distribúciách Linuxu sú Bash, Open JDK Java, niektoré distribúcie ponúkajú Python. RedHat začína s podporou .NET frameworku.
- **1.1.4.2 Podiel na trhu** Linux je k dispozícii v mnohých formách, tak aby vyhovoval rôznym potrebám, od spotrebiteľsky orientovaných systémov pre domáce použitie až po

distribúcie použiteľné v špecifických odvetviach. Podľa webovej stránky statcounter.com[6] a netmarketshare.com[7] mu patrí 1,66% resp. 1,93%. Podľa stránky w3techs.com[8] je operačný systém Linux na 41.0% počítačoch.

1.1.5 Porovnanie podielov operačných systémov

Nasledujúce grafy zobrazujú podiel operačných systémov na trhu v segmente osobných počítačov, ako aj v segmente serverov. Zaujímavý graf je vývoj trendu využívania serverových operačných systémov, z ktorého vidíme, že unixové a linuxové servery zvyšujú svoje podiely na trhu. Naopak, Windows v posledných mesiacoch stratil pár percent. Taktiež je vidieť, že linuxové a unixové systémy pokrývajú viac ako polovicu web stránok, ktoré majú najvyššie hodnotenie. Je potrebné dodať, že percentá na posledných dvoch obrázkoch pre Unix a Linux, nemožeme sčítavať, nakoľko na w3techs berú Linux ako podmožinu Unix OS. Teda napríklad štatistika z predposledného obrázku hovorí, že podiel Unixu na trhu je 68% z toho väčšiu časť tvorí práve OS Linux s 41.1% podielom.

Obrázok 1: OS - podiel na trhu podľa statcounter[6]

1.2 Programovacie jazyky

S príchodom osobných počítačov, no najmä serverov, sa programátori zaujímali o automatizáciu procesov, ktoré na danom stroji bolo spočiatku potrebné spúšťať manuálne. Keďže tieto úlohy neboli natoľko komplexné ako samotné programy, ktoré spúšťali, bolo vhodné na úlohy využiť a vytvoriť skriptovacie jazyky. V nasledujúcej časti priblížime niekoľko programovacích jazykov, ktoré sa v dnešnej dobe bežne používajú na tvorbu

Obrázok 2: OS - podiel na trhu podľa netmarketshare
[7] $\,$

Obrázok 3: Serverové OS - podiel na trhu podľa w3techs[8]

Obrázok 4: Serverové OS - podiel na trhu a rozdelenie podľa hodnotenia stránok podľa $\operatorname{w3techs}[8]$

automatizovaných skriptov.

1.2.1 Shell

Je skriptovací jazyk pre unixové distribúcie, ktorý do súčasnosti prešiel rôznymi zmenami a rozšíreniami. Verzie Shellu predstavujú: sh, csh, ksh,tcsh, bash. Verzia Bash je momentálne najobľúbenejšou, avšak zsh je verzia Shellu, ktorá má najviac rôznych rozšírení funkcionality, ako aj veľa priaznivcov medzi developermi. V nasledujúcich častiach všeobecne zhodnotíme jednotlivé výhody a nevýhody skriptovacieho jazyka Shell.

1.2.1.1 Výhody

- automatizácia často opakujúcich sa úloh,
- možnosť zbiehať zložené príkazy, ako jednoriadkový príkaz tzv. reťazenie príkazov,
- jednoduchý jazyk na používanie,
- výborne spracované manuálové stránky,
- Unix Shell je portabilný naprieč platformami Linuxu/Unixu,
- jednoduché plánovanie automatických úloh.

1.2.1.2 Nevýhody

- najväčšou nevýhodou je skutočnosť, že prirodzene nefunguje pod Windows OS, pričom na sprostredkovanie funkcionality používa rôzne emulátory a nástroje tretích strán,
- pomalé vykonávanie príkazov pri porovnaní s inými programovacími jazykmi,
- nový proces pre skoro každý spustený príkaz,
- zložitejší na zapamätanie rôznych prepínačov, ktoré dané príkazy podporujú,
- nejednotnosť prepínačov,
- neprenosný medzi platformami,
- Shell nepridáva vlastné príkazy, používa len tie, ktoré sú dostupné na konkrétnom počítači.

1.2.1.3 Popis a zhodnotenie jazyka Unix Shell je obľúbeným scriptovacím jazykom, vhodným na automatizovanie každodenných operácií. Je jedným z najpoužívanejších skriptovacích jazykov, nakoľko všetky Linuxové, Unixové servery využívajú práve tento jazyk ako svoj primárny. V nasledujúcich častiach popíšeme Bash, ktorý je najrozšírenejšou verziou Unix Shell. Zaujímavou prednosťou jazyka je pajpa. Pajpa je klasický príklad vnútro-procesorovej komunikácie: odovzdáva štandardný výstup stdout procesu na štandardný vstup stdin iného procesu, viď príklad.

V uvedenom príklade sme vylistovali obsah adresára, v ktorom sa práve nachádzame, a výstupom z programu sme naplnili štandardný vstup aplikácie "wc", ktorá spočíta, koľko riadkov sa nachádza na vstupe, ktorý jej bol dodaný. Príkaz za znakom pajpy | zbieha v Subshell-i, čo znamená, že nebude schopný zmodifikovať hodnoty v rodičovskom procese. Zlyhanie príkazu v pajpe vedie k takzvanej "zlomenej pajpe", v tomto prípade exekúcia príkazov skončí. [1]

Taktiež niektoré často používané príkazy majú zmenený spôsob zápisu. Ako príklad si uvedieme príkaz for, pri ktorom bash používa následovnú Syntax:

Algoritmus 1 Bash ukážka rôznych volaní for cyklu. [1]

```
#!/bin/bash
// prvý spôsob zápisu podobná vylepšenej verzii z predchádzajúceho príkladu
for placeholder in list_of_items
do
action_1 \$placeholder
action_2 \$placeholder
action_n \$placeholder
done
//kolekcia vo fore môze byť reprezentovaná vymenovaním prvkov
//priamo za "in" časťou
for i in 1 2 3 4 5
do
echo "\$i"
done
// c-like prístup
for ((i=20;i > 0;i--))
{
if ((i \% 2 == 0))
then
echo "\$i is divisible by 2"fi
}
exit 0
```

Ako vidíme z príkladu, for používa podobnú Syntax ako ostatné jazyky, a ďalej ju rozširuje. Vyššie spomenuté použitia niesú jediné, kde druhý spôsob môže uľahčiť prácu napríklad pri prototypovaní skriptu, v ktorom Shell poskytuje možnosť vložiť parametre pre cyklus priamo z konzoly ako v nasledujúcom príklade.

Algoritmus 2 Bash ukážka volania skriptu s for cylom priamo z konzoly . [1]

```
//telo skriptu
#!/bin/bash
i=0
for cities
do
echo "City $((i++)) is: $cities"
done
exit 0

//následné volanie z konzoly
./for-pair-input.sh
Belfast Redwood Milan Paris
City 0 is: Belfast
City 1 is: Redwood
City 2 is: Milan
City 3 is: Paris
```

Syntax jazyka je náročnejšia na učenie, pretože používa rôzne prepínače, ktoré novému používateľovi nemusia byť sprvu jasné. V tabuľke uvádzame príklad prepínačov pre if, ktorý pre podmienkovú časť používa hranaté zátvorky namiesto okrúhlych, na ktoré sme zvyknutí z väčšiny programovacích jazykov. Je potrebné spomenúť, že napríklad Unix shell nepoužíva žiadne zátvorky v podmienkovej časti príkazu, na ukončenie podmienkovej časti sa používa bodkočiarka, čo spôsobuje problémy pri prenositeľnosti. If ponúka aj ďalšie prepínače, no zhodnotili sme, že pre ilustráciu budú postačovať aj príklady uvedené v tabuľke. Najvačsia nevýhoda je, že Shell script nie je multiplatformový jazyk, a teda ak by sme mali prostredie, v ktorom servery bežia na rôznych operačných systémoch, potrebovali by sme poznať ďalší jazyk, ktorým by sme docielili rovnaké alebo aspoň podobné výsledky.

Refazcové porovnanie	Popis
Str1 = Str2	Vráti true, ak sa porovnávané retazce rovnajú.
Str1 != Str2	Vráti true, ak porovnávané retazce nie sú rovnaké.
-n Str1	R Vráti true, ak retazec nie je null resp. o dĺžke 0.
-z Str1	Returns true, ak retazec je null resp. o dĺžke 0.

Tabuľka 1: Ukážka reťazcových prepínačov v podmienkovom výraze if [9]

Numerické porovnanie	Popis
expr1 -eq expr2	Vráti true, ak sú porovnávané výrazy rovné.
expr1 -ne expr2	Vráti true, if ak nie sú porovnávané výrazy rovné.
expr1 -gt expr2	Vráti true, ak je hodnota premmenej expr1 väčšia než hodnota premennej
	expr2.
expr1 -ge expr2	Vráti true, ak je hodnota premmenej expr1 väčšia alebo rovná hodnote
	premennej expr2.
expr1 -lt expr2	Vráti true, ak je hodnota premmenej expr1 menšia než hodnota premen-
	nej expr2.
expr1 -le expr2	Vráti true, ak je hodnota premmenej expr1 menšia alebo rovná hodnote
	premennej expr2.
! expr1	Operátor "!"zneguje hodnotu premennej expr1.

Tabuľka 2: Ukážka numerických prepínačov v podmienkovom výraze if [9]

1.2.2 Powershel/Classic command line

Command line je základným skriptovacím jazykom pre Windows distribúcie, ktorý poskytuje malé API pre svojich používateľov. Aj kvôli uvedenej skutočnosti Miscrosoft predstavil nový jazyk Powershell. Powershell je kombináciou príkazového riadku, funkcionálneho programovania a objektovo-orientovaného programovania. Je založený na .NET frameworku, ktorý mu zabezpečuje istú mieru flexibility. Výhody a nevýhody Powershell zhrnieme v nasledujúcich častiach.

1.2.2.1 Výhody

- bohaté API,
- výborne riešený run-time,
- flexibilita,

- veľmi jednoduché prepnúť z .NET frameworku,
- dokáže pridávať funkcionalitu používaním tried a funkcií z .NET knižníc.

1.2.2.2 Nevýhody

- bohaté API nejednoznačné, kedy čo použiť,
- niektoré výhody jazyka sú až nevhodne skryté pred používateľmi,
- staršie verzie serverov nie sú Powershell-om podporované tak, ako novšie,
- horšia dokumentácia v porovnaní so Shell scriptom.

1.2.2.3 Popis a zhodnotenie jazyka Powershell je obľúbený medzi programátormi a administrátormi, ktorí pracujú pod operačným systémom Windows. Donedávna, kým Powershell fungoval na .NET frameworku, ho nebolo možné používať mimo operačných systémov Windows. Avšak s príchodom frameworku .NET Core sa situácia zmenila. Spomenutý frawework je momentálne open source, jeho zdrojové kódy boli zverejnené a je možné do neho prispievať. Okrem iného, podporuje rovnaké alebo aspoň podobné štruktúry ako Shell script. V niektorých prípadoch poskytuje rovnaké príkazy, napríklad: mv, cp, rm, ls. Jedným zo zásadných rozdielov medzi Shellom a Powershellom je skutočnosť, že kým v Shelli sú pre vstup aj výstup používané textové reťazce, ktoré je potrebné rozparsovať a interpretovať, v Powershelli je všetko presúvané ako objekt. Ide o najzásadnejší rozdiel, nakoľko ostatné veci boli pravdepodobne navrhované v spolupráci s používateľmi Shell scriptu. [10]

Pre demonštráciu rozdielov pri odovzdávaní parametrov medzi príkazmi uvádzame príklad.

Algoritmus 3 Ukážka použitia pipe v Powershell. [2]

```
function changeName(\$myObject)
{
if (\$myObject.GetType() -eq [MyType])
//vypíš obsah premennej
\$myObject.Name
//zmeň reťazec pre atribút name
\$myObject.Name = "NewName"
}
return \$myObject
}
// Vytvorenie objektu s argumentom OriginalName a následné použitie funkcie
//PS> \$myObject = New-Object MyType -arg "OriginalName"
//PS> \$myObject = changeName \$myNewObject
//OriginalName
//PS> \$myObject.Name
//NewName
// Ukážka s využitím pipe
//PS> \$myObject = New-Object MyType -arg "OriginalName" | changeName
//OriginalName
//PS> \$myObject.Name
//NewName
```

1.2.3 Python

Do analýzy sme zahrnuli aj programovací jazyk Python. Výber Python-u nebol náhodný, keďže je jedným z najpopulárnejších programovacích jazykov súčasnosti. Je viacúčelový, patrí mezi vyššie programovacie jazyky, objektovo-orientovaný, interaktívny, interpretovaný a extrémne používateľsky prijateľný.[11]

1.2.3.1 Výhody

- je ľahko čitateľný, tým pádom ľahšie pochopiteľný,
- Syntax orientovaná na produktivitu,

- multiplatformový po inštalácii interpretera,
- obsahuje množstvo rôznych knižníc,
- Open source.

1.2.3.2 Nevýhody

- rýchlosť,
- slabšia dokumentácia,
- nevhodný pre úlohy pracujúce s vyšším množstvom pamäte,
- nevhodný pre viac-procesorovú prácu,
- nevhodný pre vývoj na mobilných zariadeniach,
- limitovaný prístup k databázam.

1.2.3.3 Popis a zhodnotenie jazyka Ako už bolo spomenuté, Python je jedným z najobľúbenejších jazykov súčasnosti, kde prevažnú časť komunity tvoria vedci, ktorí nemajú rozsiahle programátorské znalosti. Práve jednoduchosť, čitateľnosť a pochopiteľnosť jazyka sa značnou mierou podieľajú na tomto fakte. Rovnako Python nevyžaduje manažovať pamäť a iné netriviálne záležitosti nižších programovacích jazykov. Aj napriek tomu, že jazyk je objektovo-orientovaný, skripty sa v ňom píšu jednoducho. Poskytuje štruktúry ako pajpa, možnosť pracovať s procesmi, vytvárať triedy, inštancie, jednoducho prototypovať a simulovať rôzne problémy. Veľkou výhodou tohto jazyka je, že je open source s veľkou komunitou, ktorá rada testuje nové vydania, nahlasuje problémy, tým pádom je jazyk rýchlejšie a kvalitnejšie vyvíjaný. Na Python-e vznikli zaujímavé webové frameworky, ako napríklad Django. Každá strana má dve mince, a ani Python nie je stopercentný. Tým, že predstavuje interpretovaný jazyk, neprekypuje rýchlosťou. Veľa ľudí sa zaoberá rýchlosťou jazykov, zisťujú efektívnosť pri rôznych úkonoch, ako napríklad cykly, volania funkcií, aritmetika, prístup k pamäti, vytváranie objektov. V nasledujúcich tabuľkách je možné porovnať rozdiel v rýchlosti jednotlivých testov.

Aj keď sme spomenuli viaceré nedostatky, asi najväčším je rýchlosť. Preto má zmysel nájsť lepšie riešenie daného problému.

Jazyk	Force field	Array reverse	Rolling average
	benchmark	benchmark	benchmark
C++ (-O2)	1.892	4.367	0.005
Java 7	2.469	3.776	0.463
C# (normal)	10.712	14.071	0.621
JavaScript	16.159	13.162	1.312
Python 2	717.2	1485	71.550
Python 3	880.7	1466	81.143

Tabuľka 3: Porovnanie rýchlostí rôznych jazykov[12]

1.3 Existujúce riešenia

Existuje množstvo emulátorov a nástrojov tretích strán, ktoré sprostredkúvajú funkcionality Shell scriptu do Windowsu, niektoré z nich si predstavíme.

1.3.1 ConEmu

ConEmu je konzolový emulátor, ktorý poskytuje jednoduché GUI, do ktorého je možné vložiť viacero konzol. Dokáže spúšťať jednoduché GUI aplikácie, ako napríklad Putty, Cygwin. Obsahuje množstvo nastavení, ako nastavenie kurzora, priehľadnosti, písma a pod. Podporuje Windows 2000 a neskoršie verzie. Neposkytuje verziu pre iné operačné systémy. [13]

1.3.1.1 Skúsenosti ConEmu je vydarený emulátor, ktorý je schopný vykonávať akýkoľvek skript. Používaním sme neprišli na závažné nedostatky, ktoré by neboli popísané v
issues logu na Githube. Tak ako každý softvér, aj ConEmu je náchylný na chyby. Podľa issues logu sa do oficiálnych vydaní dostávajú rôzne problémy, ktoré neboli zahrnuté v predchadzajúcich verziách. V tomto prípade je na zvážení každého používateľa, či aj napriek
problémom, ktoré sa môžu dostávať do jednotlivých verzií emulátora, použije ConEmu,
resp. či jeho kladné stránky prekonajú tie záporné.

Obrázok 5: Ukážka ConEmu emulátora

1.3.2 cmder

Cmder je ďalším príkladom emulátora Shell terminálu. Vychádza z troch projektov ConEmu, Clink a Git pre Windows - voliteľná súčasť. ConEmu sme si predstavili v predcházajúcej časti spolu s jeho kladmi a zápormi. Clink, konkrétne Clink-completions je v projekte využívaný na zvýšenie komfortu pri písaní skriptov, nepridáva ďalšiu Shell funkcionalitu. [14]

1.3.2.1 Skúsenosti ConEmu je príjemný nástroj, dokáže zjednodušiť prácu, obzvlášť ak je používateľ zvyknutý na programovanie v Shell scripte. Keďže Cmder používa ConEmu ako emulátor Shell terminálu, a je určený pre Windows platformu, nemožno hovoriť o multiplatformovom riešení.

Obrázok 6: Ukážka Cmder emulátora

1.3.3 Babun

Babun je jedným z mnohých emulátorov pre Windows, ktorý je nadstavbou cygwinu. Vo svojom jadre používa zshell a bash, ktoré sme popísali ako populárne medzi komunitou. Prináša vlastné GUI, ktoré dokáže zafarbovať text podľa zdrojového jazyka, čo zvyšuje prehľadnosť. Obsahuje git, svn, python, perl. Tiež má integrované sťahovanie nových balíčkov, ktoré ponúka cygwin pomocou kľúčového slova pact. Prenositeľnosť skriptov z unixových strojov je zabezpečená tým, že používa bash a zsh, avšak je to emulátor výhradne pre Windows distribúcie.[15]

Obrázok 7: Ukážka Babun emulátora

1.3.4 MobaXterm

Poskytuje množstvo funkcionalít, avšak je zaťažený licenciou v hodnote 50 eur. [16]

1.3.4.1 Neplatená verzia

- Plná podpora SSH a X serveru
- Vzdialená plocha (RDP, VNC, Xdmcp)
- Vzdialený terminál (SSH, telnet, rlogin, Mosh)
- X11-Forwarding
- Automatický SFTP prehliadač
- Podpora pluginov
- Možnosť inštalovateľnej alebo prenositeľnej verzie
- Plná dokumentácia
- Maximálne 12 spojení
- Maximálne 2 SSH tunely
- Maximálne 4 makrá
- Maximálne 360 sekúnd pre Tftp, Nfs a Cron

1.3.4.2 Platená verzia

- Všetky vymoženosti z neplatenej verzie Home Edition +
- Možnosť upraviť uvítaciu správu a logo
- Modifikovať profilový skript
- Odstrániť nechcené hry, šetriče obrazovky alebo nástroje
- Nelimitovaný počet spojení
- Nelimitovaný počet tunelov a makier
- Nelimitovaný čas behu pre sieťové daemony
- Podpora centrálneho hesla

- Profesionálna technická podpora
- Doživotné právo používania

1.4 Zhodnotenie analyzovaných technológií

Analýza ukázala, že väčšinový podiel na trhu osobných počítačov, ako aj serverov, tvoria Unix/Linux a Windows operačné systémy. Preto boli objektom analýzy hlavne programovacie jazyky, ktoré sú obľúbené medzi administrátormi daných jazykov. Ďalej sme preskúmali rôzne dostupné riešenia problému univerzálnej konzoly, z čoho usudzujeme, že ani jeden z produktov neposkytoval kompatibilitu na oboch alebo viacerých systémoch, maximálne kopíroval funkcie jedného systému do druhého. Na základe týchto poznatkov, ako aj poznatkov podrobnejšie rozpísaných v predchádzajúcich častiach, sme sa rozhodli pokračovať v analýze prekladu jazykov a získané vedomosti zúročiť do vlastného univerzálneho, platformovo nezávislého konzolového rozhrania.

2 Preklad jazykov

Pri programovacích jazykoch nás zaujímajú ich vyjadrovacie schopnosti ako aj vlastnosti z hľadiska ich rozpoznania. Tieto vlasnosti sa týkajú programovania a prekladu, pričom obe je potrebné zohľadniť pri tvorbe jazyka. V dnešnej dobe sa používajú na programovanie hlavne takzvané vyššie programovacie jazyky, môžeme ich označiť ako zdrojové jazyky. Na to aby vykonávali čo používateľ naprogramoval je potrebné aby boli pretransformované do jazyka daného stroja. Spomínanú transformáciu zabezpečuje prekladač, prekladačom máme na mysli program, ktorý číta zdrojový jazyk a transformuje ho do cieľového jazyka, ktorému rozumie stroj.[17]

2.1 Kompilátor proces prekladu

Aby bol preklad možný, musí byť zdrojový kód programu napísaný podľa určitých pravidiel, ktoré vyplývajú z jazyka. Proces prekladu je možné rodeliť na 4 hlavné časti.

- lexikálna analýza
- syntakticka analýza
- spracovanie sémantiky
- generovanie cieľového jazyka

Podrobnejšie si stručne popíšeme všetky štyri časti, ktoré majú pre nás z hľadiska prekladu najväčší zmysel.

2.1.1 Lexikálna analýza

Lexikálna analýza je prvou fázou kompilátora. Dopredu napísaný zdojový kód je postupne spracovávaný preprocesorom, ktorý vytvára takzvané lexémy.

Lexémou nazývame postupnosť alfanumerických znakov. Tieto postupnosti znakov sú následne vkladané do lexikálneho analyzátora, ktorý ma za úlohu vytvoriť zo vstupných lexém tokeny slúžiace ako vstup pre syntaktický analyzátor.

Tokeny sa vytvárajú na základe preddefinovaných pravidiel, ktoré sa v programovacích jazykoch definujú ako pattern. V prípade, že lexikálny analyátor nieje schopný nájsť pattern pred danú lexému musí vyhlásiť chybu počas tokenizácie.

Výstupom z lexikálnej analýzy sú takzvané tokeny, ktoré tvoria vyššie jednotky jazyka ako kľúčové slová jazyka, konštanty, identifikátory, operátory a iné.[17]

Obrázok 8: Ukážka práce lexikálneho analyzátora

2.1.2 Syntaktická analýza

Ďalšou fázou je syntaktická analýza. Úlohou Syntaktického analyzátora je kontrola správnosti vytvorených tokenov s uchovaním niektorých získaných informácií o štruktúre skúmanej syntaktickej jednotky. Syntaktická analýza sa radí medzi bezkontextové gramatiky. Po skoncení syntaktickej analýzy prichádza na rad sémantická analýza.[17]

Obrázok 9: Ukážka práce syntaktickeho analyzátora

2.1.3 Limitácia syntaktickej analýzy

Syntaktický analyzátor ziska vstup z tokenu, ktorý vytvorí lexikálny analyzátor. Lexikálne analyzátory sú zodpovedné za validitu tokenu. Syntaktické analyzátory majú nasledovné limitácie.

- nedokážu zistiť validitu tokenu
- nedokážu zistiť či je token používaný pred tým ako je deklarovaný
- nedokážu zistiť či je token používaný pred tým ako je inicializovaný
- nedokážu zistiť validitu operácie, ktorú token vykonáva

2.1.4 Semantická analýza

Sémantická analýza má za úlohu interpretovať symboly, typy, ich vzťahy. Sémantická analýza rohoduje či má syntax programy význam alebo nie. Ako príklad zisťovania významu môžeme uviesť jednoduchú inicializáciu premennej. [17]

```
\label{eq:condition} \begin{split} & \text{int integerVariable} \, = \, 6 \\ & \text{int secondIntegerVariable} \, = \, \text{"six"} \end{split}
```

Oba príklady by mali prejsť cez lexikálnu a syntaktickú analýzu. Je až na sémantickej analýze aby rozhodla o správnosti zápisu programu a v prípade nesprávneho zápisu informovala o chybe. Hlavné úlohy sémantickej analýzy sú":

- zistovanie dosahu definovaných tokenov takzvaný scoping
- kontrola typov
- deklaracia premenných
- definícia premenných
- viacnásobná deklarácia premenných v jedno scope

2.1.5 Generovanie cieľového jazyka

Generovanie cieľového jazyka môžeme považovať za poslednú fázu kompilátora. V tejto fáze sa preklápa jazyk z vyššieho jazyka do strojového jazyka, ktorý úspešne prešiel cez analyzačné časti .[17]

3 Návrh riešenia

3.1 Prípady použitia

Obrázok 10: Prípady použitia pre navrhovanú aplikáciu

3.2 Popis prípadov použitia

V tejto časti sa venujeme popisu jednotlivých prípadov použitia. Diagram prípadov použitia spolu s popisom sú základnými prvkami, na ktorých je možné špecifikovať novovznikajúci softvér. Je dôležité najpodstatnejšie časti systému špecifikovať na začiatku, aby pri navrhovaní aplikácie mohli byť prijaté rozhodnutia zaručujúce dosiahnutie najlepšieho výsledného riešenia vyhovujúceho špecifikácii. Ako je zjavné aj z priloženého diagramu prípadov použitia, pre aplikáciu sme identifikovali dvoch hráčov : Vývojár skriptov a Vývojár balíčkov. Títo hráči majú jednu spoločnú črtu - pre obe platí, že hráč je vývojár. Avšak je rozdiel medzi vývojárom skriptu a vývojárom balíčkov(nových súčastí systému), čo môžeme vyčítať z popisu konkrétnych prípadov použitia.

3.2.1 Vývojár skriptov

Rola sa zameriava hlavne na používanie hotovej aplikácie, prácu s balíčkami, vytváranie skriptov, efektívne využívanie dostupného API.

3.2.1.1 Spustiť konzolu

Use case	Spustiť konzolu
Podmienky	Používateľ musí disponovať stiahnutou aplikáciou.
Vstup	Nie je potrebný žiadny vstup od používateľa.
Popis	Konzolové rozhranie sa spustí.
Výstup	Konzola zobrazí základné údaje o konfigurácii.
Chyba	Konzola sa nespustí, musí však poskytnúť informáciu o chybe ktorá
	pri štarte nastala.

Tabuľka 4: Use case : Spustiť konzolu

3.2.1.2 Spustiť príkaz

Use case	Spustiť príkaz
Podmienky	Shell aplikácia musí byť spustená.
Vstup	Textový retazec obsahujúci príkaz a jeho argumenty.
Popis	Používateľ zadá platný príkaz, následne získa výstup pre zadaný prí-
	kaz.

Výstup	Textový retazec, ktorý sa v závislosti od programu mení v dĺžke a
	obsahu.
Chyba	V prípade zlyhania je používateľ informovaný o probléme, ktorý na-
	stal.

Tabuľka 5: Use case : Spustiť príkaz

3.2.1.3 Spustiť skript

Use case	Spustif skript
Podmienky	Shell aplikácia musí byť spustená a skript správne napísaný.
Vstup	Vstupom je skript, definujúci v hlavičke balíčky ktoré bude používať.
	Za nimi môže nasledovať čokoľvek od definície premenných, funkcií.
	V tele skriptu musí byť zadefinovaná metóda main(String args).
Popis	Vykonajú sa všetky príkazy tak, ako sú napísané v zdrojovom súbore.
Výstup	Výstup je textový reťazec, závislý na logike skriptu.
Chyba	V prípade chyby pri stahovaní závislostí, exekúcie príkazov alebo
	iných komplikácií počas behu, program zapisuje na štandardný chy-
	bový výstup chybové hlášky spolu so základným popisom problému,
	tracom.

Tabuľka 6: Use case : Spustiť skript

3.2.1.4 Spustiť Shell príkaz

Use case	Spustiť Shell príkaz
Podmienky	Shell aplikácia musí byť spustená a skript správne napísaný. Taktiež
	musí byť v operačnom systéme ktorý podporuje Shell.
Vstup	Textový retazec obsahujúci príkaz a jeho argumenty.
Popis	Používateľ zadá platný príkaz, následne získa výstup pre zadaný prí-
	kaz.
Výstup	Textový retazec, ktorý sa v závislosti od programu mení v dĺžke a
	obsahu.

Chyba	V prípade zlyhania je používateľovi vratený chybový kód.
-------	--

Tabuľka 7: Use case : Spustiť shell príkaz

3.2.1.5 Spustiť commander príkaz

Use case	Spustit commander príkaz
Podmienky	Shell aplikácia musí byť spustená a skript správne napísaný. Systém
	musí mať nainštalovaný Windows commander.
Vstup	Textový retazec obsahujúci príkaz a jeho argumenty.
Popis	Používateľ zadá platný príkaz začinajúci win alebo ext, následne
	získa výstup pre zadaný príkaz.
Výstup	Textový reťazec, ktorý sa v závislosti od programu mení v dĺžke a
	obsahu.
Chyba	V prípade zlyhania je používateľovi vratený chybový výstup z prí-
	kazového riadku.

Tabuľka 8: Use case : Spustiť powershell príkaz

3.2.1.6 Reťazenie príkazov

Use case	Retazenie príkazov
Podmienky	Shell aplikácia musí byť spustená. Vstup musí byť zadaný v správ-
	nom formáte.
Vstup	Textový retazec obsahujúci sekvenciu príkazov, ich argumenty spo-
	jené znakom pajpy ".
Popis	Systém rozozná, že ide o zretazený príkaz a následne začne vykonávat
	príkazy v poradí v akom boli zadané. Jednotlivé príkazy odovzdajú
	výstupy nasledovníkovi po úspešnom ukončení. Príkazy sa vykoná-
	vajú dovtedy, pokým nepríde na posledný príkaz v sekvencii, alebo
	ak počas behu nastane chyba. O chybe je používateľ oboznámený a
	chyba je zapísaná na štandardný chybový výstup.

Výstup	Textový retazec, ktorý sa v závislosti od programu mení v dĺžke a
	obsahu, výstup bude vygenerovaný posledným príkazom sekvencie.
Chyba	O chybe je používateľ oboznámený a chyba je zapísaná na štan-
	dardný chybový výstup.

Tabuľka 9: Use case : Reťazie príkazov

3.2.1.7 Manažovať balíčky

Use case	Manažovať balíčky
Podmienky	Shell aplikácia musí byť spustená.
Vstup	Textový retazec obsahujúci príkaz pkg a jeho argumenty.
Popis	Používateľ bude schopný nahrat, zmazať, nahradiť vybraný balíček.
Výstup	Textový retazec, ktorý sa v závislosti od programu mení v dĺžke a
	obsahu .
Chyba	O chybe je používateľ oboznámený a chyba je zapísaná na štan-
	dardný chybový výstup.

Tabuľka 10: Use case : Manažovať balíčky

3.2.1.8 Stiahnuť nový balíček

Use case	Stiahnuť nový balíček
Podmienky	Shell aplikácia musí byť spustená. Príkaz na stiahnutie balíčka musí
	byť správne zadaný.
Vstup	Textový reťazec obsahujúci príkaz "pkg download <názov balička="" s<="" th=""></názov>
	verziou>"
Popis	Program ako prvé skontroluje adresár balíčkov, či daný balíček nebol
	stiahnutý, ak nie stiahne nový balíček. V opačnom prípade medzi
	aktívne balíčky načíta používateľom zvolený balíček.
Výstup	Textový retazec informujúci o úspešnosti stahovania. Pre jeho načí-
	tanie je potrebný reštart aplikácie.

Chyba	Vypíše chybu na štandardný chybový výstup v prípade, že daný ba-
	líček na servery neexistuje, používateľ nemá internetové pripojenie.

Tabuľka 11: Use case : Stiahnúť nový balíček

3.2.1.9 Zmeniť použitý balíček

Use case	Zmeniť použitý balíček
Podmienky	Shell aplikácia musí byť spustená. Príkaz na zmenu používaného
	balíčka musí byť správne zadaný.
Vstup	Textový retazec obsahujúci príkaz "pkg change <názov nahradzujú-<="" th=""></názov>
	ceho balíčka s verziou>
Popis	Program zmení používaný balíček z aktuálne používaného na balíček
	vybratý používateľom. Táto voľba je aplikovateľná iba pre spravova-
	nie verzií existujúcich balíčkov. V prípade, že nahradzujúci balíček
	nie je dostupný lokálne, používateľ bude vyzvaný stiahnúť daný ba-
	líček.
Výstup	Textový retazec informujúci o úspešnosti výmeny, alebo informujúci
	o potrebe stiahnutia balíčka.
Chyba	V prípade ak dôjde počas zmeny balíčkov ku chybe, bude zapísaná
	na štandardný chybový výstup.

Tabuľka 12: Use case : Zmeniť použiťý balíček

3.2.1.10 Zmazať vybraný balíček

Use case	Zmazať vybraný balíček
Vstup	Textový retazec obsahujúci príkaz "pkg delete <názov balíčka="">.</názov>
Podmienky	Shell aplikácia musí byť spustená. Príkaz na zmazanie vybraného
	balíčka musí byť správne zadaný.
Popis	Program zmaže používateľom vybraný balíček z aktívnych balíčkov
	a následne ho fyzicky zmaže z disku.

Výstup	Textový reťazec informujúci o úspešnosti zmazania zadaného balíčka
Chyba	V prípade nesprávneho odstránenia balíčka z aktívnych balíčkov
	alebo pri následnom zmazaní zo súborového systému bude informá-
	cia o chybe presmerovaná na štandardný chybový výstup.

Tabuľka 13: Use case : Zmazať vybraný balíček

3.2.1.11 Získať systémové informácie

Use case	Získať systémové informácie
Vstup	Vstupom je textový retazec "sysinfo".
Podmienky	Shell aplikácia musí byť spustená. Používateľ vloží platný príkaz na
	vyžiadanie systémových informácií.
Popis	Program vypíše na štandardný výstup informácie o využití systé-
	mových zdrojov, ako napríklad využitie procesora, využitie pamäte
	RAM, využitie oddielu swap a podobne.
Výstup	Výstupom je textový retazec, formátovaný do riadkov. Každému
	riadku prislúcha jedna informácia, napr. CPU, ďalší riadok RAM
	atď V prípade viac jadrového procesora sa vypíšu informácie o kaž-
	dom z jadier.
Chyba	V prípade, že používateľ nemá právo na získanie informácií, program
	vypíše dôvod priamo na štandardný výstup. Rovnako program vypíše
	aj akékoľvek chyby, ku ktorým môže dôjsť počas behu.

Tabuľka 14: Use case : Získať systémové informácie

3.2.1.12 Získať informácie o procesoch

Use case	Získať informácie o procesoch
Vstup	Vstupom je textový refazec "processes".
Podmienky	Shell aplikácia musí byť spustená. Používateľ vloží platný príkaz na
	vyžiadanie informácií o procesoch.

Popis	Program vypíše na štandardný výstup informácie o spustených pro-
	cesoch, používateľoch, ktorí tieto procesy spúšťajú, koľko percent
	procesoru, pamäte RAM používajú.
Výstup	Výstupom je prehľadný výpis v podobe tabuľky, kde každý riadok
	zodpovedá jednému procesu. Nad jednotlivými hodnotami je hlavný
	riadok, ktorý popisuje o akú hodnotu ide.
Chyba	V prípade, že nie je možné získať informácie o procesoch, je táto sku-
	točnosť zobrazená na stdout a popis chyby sa presmeruje na štan-
	dardný chybový výstup.

Tabuľka 15: Use case : Získať informácie o procesoch

$3.2.1.13 \quad \text{Vytvorif skript}$

Use case	Vytvoriť skript
Podmienky	Používateľ musí mať prístup k akémukoľvek textovému editoru.
Vstup	Vstupom musí byť správne napísaný skript.
Popis	Používateľ napíše skrip, ktorý bude prečítaný programom a vyko-
	naný.
Výstup	Skrip vráti výstup svojho beho buď na štandardný výstup, alebo do
	súboru, v závislosti od toho ako je naimplementovaný.
Chyba	V prípade, že dôjde k menšej chybe, informácia bude zobrazená po-
	užívateľovi, resp. presmerovaná do súboru.

Tabuľka 16: Use case : Vytvoriť skript

3.2.1.14 Vytvoriť funkciu

Use case	Vytvoriť funkciu
Podmienky	Používateľ musí mať prístup k akémukoľvek textovému editoru.

Vstup	Funkcia musí byť správne zadefinovaná. Syntax pre definovanie fun-
	kcie:
	function <návratový typ=""> <názov funkcie="">(parametre funkcie)telo</názov></návratový>
	funkcie.
Popis	Používateľ napíše funkciu, ktorá bude prečítaná programom a vyko-
	naná.
Výstup	Funkcia vracia premennú s definovanou návratovou hodnotou.
Chyba	V prípade, že nastane chyba pri exekúcii funkcie, program skončí a
	zapíše informácie o chybe na štandardný chybový výstup.

Tabuľka 17: Use case : Vytvoriť funkciu

3.2.1.15 Override funkcie

Use case	Override funkcie
Podmienky	Používateľ musí mať prístup k akémukoľvek textovému editoru.
Vstup	Nad funkciou je potrebné zapísať @Override, čo prekladaču povie,
	že má používať práve túto verziu funkcie.
Popis	Používateľ napíše funkciu, ktorá bude prečítaná programom a vyko-
	naná. Navyše bude nahrádzať funkciu s rovnakým názvom.
Výstup	Premenná, ktorá je uvedená v definícii funkcie.
Chyba	V prípade zle zadefinovanej syntaxe je problém zapísaný na štan-
	dardný chybový výstup a vykonávanie skriptu je ukončené.

Tabuľka 18: Use case : Override funkcie

3.2.1.16 Vytvoriť cyklus

Use case	Vytvorit cyklus
Podmienky	Používateľ musí mať prístup k akémukoľvek textovému editoru.

Vstup	Cyklus musí byť správne zadefinovaný. Syntax pre definovanie
	funkcie:
	for(<inicializácia premennej="">;<podmienka pre="" spuste-<="" th=""></podmienka></inicializácia>
	nie>; <inkrement>)telo cyklu obsahujúce volania funkcií, príkazy,</inkrement>
	atď
Popis	Používateľ napíše cyklus, ktorý bude prečítaný programom a vyko-
	naná sa.
Výstup	Cyklus nemá žiadny výstup.
Chyba	V prípade, že nastane chyba pri parsovaní alebo exekúcii cyklu, prog-
	ram skončí a zapíše informácie o chybe na štandardný chybový vý-
	stup.

Tabuľka 19: Use case : Vytvoriť cyklus

3.2.1.17 Vytvoriť podmienku

Use case	Vytvoriť podmienku
Podmienky	Používateľ musí mať prístup k akémukoľvek textovému editoru.
Vstup	Podmienka musí byť správne zadefinovaná. Syntax pre definovanie
	podmienky:
	if(boolean value)telo podmienky obsahujúce volania funkcií, príkazy,
	atď
Popis	Používateľ napíše podmienku, ktorá bude prečítaná programom a
	zohľadnená počas behu skriptu.
Výstup	Podmienka nemá žiadny výstup.
Chyba	V prípade, že nastane chyba pri parsovaní alebo exekúcii podmienky,
	program skončí a zapíše informácie o chybe na štandardný chybový
	výstup.

Tabuľka 20: Use case : Vytvoriť podmienku

3.2.1.18 Vytvoriť premenné

Use case	Vytvoriť premenné
Podmienky	Používateľ musí mať prístup k akémukoľvek textovému editoru.
Vstup	Premenná musí byť správne zadefinovaná.
	Syntax pre definovanie premennej:
	<typ> <názov premennej="">; alebo</názov></typ>
	<typ> <názov premennej=""> = <hodnota>;</hodnota></názov></typ>
	, kde hodnota môže byť konkrétna hodnota alebo iná premenná rov-
	nakého typu.
Popis	Používateľ napíše inicializáciu alebo definíciu premennej, ktorá bude
	prečítaná programom a vykonaná.
Výstup	Program si uloží premmenú a jej hodnotu, ak bola definovaná.
Chyba	V prípade, že nastane chyba, používateľ bude informovaný o neús-
	pechu na štandardný chybový výstup.

Tabuľka 21: Use case : Vytvoriť premenné

3.2.1.19 Vykonať základné aritmetické operácie

Use case	Vykonať základné aritmetické operácie
Podmienky	Používateľ musí mať prístup k akémukoľvek textovému editoru.
Vstup	Premenná musí byť správne zadefinovaná.
	Syntax pre definovanie /zmenu hodnoty premennej:
	<názov premennej=""> = <výraz>; alebo</výraz></názov>
	<typ> <názov premennej=""> = <výraz>;</výraz></názov></typ>
	, kde výraz môže byť operácia nad číselnými hodnotami a číselnými
	premennými.
Popis	Používateľ napíše príkaz, ktorý bude prečítaný programom a vyko-
	naný.
Výstup	Príkaz nastaví hodnotu premennej s vypočítanou návratovou hod-
	notou.
Chyba	V prípade, že nastane chyba pri exekúcii príkazu, program skončí a
	zapíše informácie o chybe na štandardný chybový výstup.

Tabuľka 22: Use case : Vytvoriť funkciu

3.2.1.20 Vykonať základné logické operácie

Use case	Vykonať základné logické operácie
Podmienky	Používateľ musí mať prístup k akémukoľvek textovému editoru.
Vstup	Premenná musí byť správne zadefinovaná.
	Syntax pre definovanie /zmenu hodnoty premennej:
	<názov premennej=""> = <výraz>; alebo</výraz></názov>
	<typ> <názov premennej=""> = <výraz>;</výraz></názov></typ>
	, kde výraz môže byť operácia nad číselnými hodnotami, číselnými
	premennými, ako aj nad pravdivostnými.
	Vzťahy medzi číselnými hodnotami musia byť definované logickými
	operátormi - $<$, $>$, $<=$, $>=$, $==$, $!=$.
	Vzťahy medzi pravdivostnými hodnotami musia byť definované lo-
	gickými operátormi : ==, !=, $ $, &&.
Popis	Používateľ napíše príkaz, ktorý bude prečítaný programom a vyko-
	naný.
Výstup	Príkaz nastaví hodnotu premennej s vypočítanou návratovou hod-
	notou.
Chyba	V prípade, že nastane chyba pri exekúcii príkazu, program skončí a
	zapíše informácie o chybe na štandardný chybový výstup.

Tabuľka 23: Use case : Vytvoriť funkciu $\,$

3.2.1.21 Presmerovať chybový výstup

Use case	Presmerovat chybový výstup
Vstup	Pre presmerovanie na chybový výstup je potrebné dodržať syntax
	command stderr> file
Podmienky	Shell aplikácia musí byť spustená. Používateľ vloží platný príkaz na
	presmerovanie chybového výstupu.
Popis	Program presmeruje chybový výstup tam, kam mu používateľ v prí-
	kaze zadefinuje.

Výstup	Výstup programu predstavuje textový reťazec s popisom chyby, ktorá
	nastala.
Chyba	Ak by došlo ku chybe, chyba sa zapíše sa do logu aplikácie.

Tabuľka 24: Use case : Presmerovať chybový výstup

3.2.1.22 Presmerovať štandardný výstup

Use case	Presmerovať štandardný výstup
Podmienky	Shell aplikácia musí byť spustená. Používateľ vloží platný príkaz na
	presmerovanie štandardného výstupu.
Vstup	Pre presmerovanie na štandardný výstup je potrebné dodržať syntax
	command stdout> file
Popis	Program presmeruje štandardný výstup tam, kam mu používateľ v
	príkaze zadefinuje.
Výstup	Výstup programu predstavuje textový reťazec s výstupom zo skriptu
	alebo príkazu.
Chyba	Ak by došlo ku chybe, chyba sa zapíše sa do logu aplikácie.

Tabuľka 25: Use case : Presmerovať štandardný výstup

3.2.2 Vývojár balíčkov

Vychádzajúc z názvu role je zjavné, že tento hráč sa bude starať o vývoj aplikácie a jej funkcionalitu v zmysle rozširovania API, ktoré môže vývojár skriptov používať pre efektívnejšiu prácu.

3.2.2.1 Implementovať vlastný balíček

Use case	Implementovať vlastný balíček
Podmienky	Používateľ musí mať nainštalovanú Java SDK vo verzii 8, mať prístup
	k textovému editoru.
Vstup	Balíček obsahujúci všetky potrebné rozhrania, ktoré musí vývojár
	balíčka implementovať.

Popis	Používateľ implementuje novú funkcionalitu v Jave, následne všetky
	zdrojové súbory skompiluje a pridá do jar súboru určeného na ukla-
	danie nových balíčkov.
Výstup	Balíček, ktorý je možné nahrať do aplikácie a používať ako jeden z
	príkazov.
Chyba	Chyba môže nastať pri vytváraní balíčka, kedy vývojára o chybe
	informuje prekladač jazyka, v ktorom je balíček implementovaný. V
	prípade neúspešného načítania je používateľ informovaný priamo v
	konzole na štandardný výstup.

Tabuľka 26: Use case : Implementovať vlastný balíček

3.2.2.2 Upravovať existujúce balíčky

Use case	Upravovať existujúce balíčky
Podmienky	Používateľ musí mať nainštalovanú Java SDK vo verzii 8, mať prístup
	k textovému editoru.
Vstup	Zdrojové súbory už existujúceho balíčka.
Popis	Používateľ upraví implementáciu alebo pridá novú funkcionalitu v
	Jave, následne všetky zdrojové súbory skompiluje a pridá do jar sú-
	boru určeného na ukladanie nových balíčkov
Výstup	Po úprave je balíček možné nahrať do aplikácie a používať ako jeden
	z príkazov.
Chyba	Chyba môže nastať pri vytváraní balíčka, kedy vývojára o chybe
	informuje prekladač jazyka, v ktorom je balíček implementovaný. V
	prípade neúspešného načítania je používateľ informovaný priamo v
	konzole na štandardný výstup.

Tabuľka 27: Use case : Upravovať existujúce balíčky

3.3 Výber programovacieho jazyka

Java je programovací jazyk a výpočtová platforma, ktorá bola vydaná spoločnosťou Sun Microsystems v roku 1995. [18] Programy v Jave sú prvotne preložené do tzv. byte-

code, ktorý je rovnaký pre všetky PC. Pomocou jednoduchého programu je byte-code preložený do jazyka, ktorému rozumie konrétny PC. Java je objektovo-orientovaný programovací jazyk, čo znamená že rovnako ako v živote, aj v Jave je všetko tvorené objektami. Obsahuje široké spektrum knižníc, ktoré slúžia nielen na vývoj webových, ale aj desktopových aplikácií. Podporuje multitrading, čo umožňuje vytvárať efektívne programy pre počítače s viacjadrovým procesorom.[19]

3.4 Návrhové vzory

Návrhové vzory sú všeobecne opakovaným riešním pre všeobecne opakujúci sa problém pri dizajnovaní softwéru. Návrhový vzor nie je nemenný dizajn, vždy je potrebné aby si ho programátori uspôsobili podľa vlstných potrieb. Návrhové vzory sa delia do troch základných skupín vytváracie vzory, štrukturálne vzory a vzory správania.

3.4.1 Factory - továreň

Factory návrhový vzor patrí do sekcie vytváracích vzorov, pomocou tohoto vzoru budeme schopný vytvárať objekty bez toho aby sme prezradili logiku ich vytvárania klientovi. Diagram návrhového vzoru je mozné vidieť na nasledujúcom obrázku.

Obrázok 11: Class diagram Factory návrhového vzoru

3.4.2 Command - príkaz

Command pattern je známy behaviorálny návrhový vzor, používa sa najmä na menežovanie algoritmov, vzťahov a zodpovednosti medzi objektami. Cieľom vzoru je zapúzdriť požiadavku(request) ako objekt tým pádom parametrizovať klienta s rôznymi požiadavkami a zabezpečiť operáciu spať.

Command vzor deklaruje rozhranie pre všetky budúce commandy a zároveň execute() metódu, ktorú s vypýta Receiver commandu aby splnil požadovanú operáciu. Receiver je

Obrázok 12: Class diagram Command návrhového vzoru

objekt, ktorý vie ako požadovanú operáciu splniť. Invoker pozná command a pomocou implementovanej execute() metódy dokáže vyvolať požadovanú operáciu. Klient potrebuje implemenotvaž ConcreteCommand a nastavit Receiver pre command. ConcreteCommand definuje spojenie medzi action a receiver. Keď Invoker zavolá execute() metódu na ConcreteCommand spustí tým jednu alebo viac akcií, ktoré budú bežať pomocou Receivera.

Pre lepšie pochopenie je proces zobrazený aj na sekvenčnom diagrame.

Obrázok 13: Sekvenčný diagram Command návrhového vzoru

3.5 Aplikácia

Pre implementáciu vlastného riešenia bolo potrebné na základe prípadov použitia identifikovať časti, z ktorých bude aplikácia pozostávať. Naším zámerom nebolo vytvorenie jednej veľkej aplikácie, ktorá by sa mohla časom stať neudržiavateľnou, ale aplikácia, ktorá umožní používateľom interaktívny aj skriptovací módus. Rozhodli sme sa, že navrhneme jednu hlavnú aplikáciu, ktorá bude mať na starosti interaktívny prístup pre používateľa rovnako aj skriptovací módus, avšak funkcionality, ktoré bude podporovať, zabezpečia menšie externé podprogrami - pluginy, ktoré sa do apikácie nahrajú pri štarte. Pre dosiahnutie požadovaných výsledkov použijeme návrhový vzor Command. Ako ďalšie sme definovali komponenty aplikácie.

3.6 Komponenty aplikácie

Po vybratí návrhového vzoru sme prešli na identifikáciu komponentov aplikácie. V prvom návrhu sme identifikovali niekoľko komponentov, ktoré považujeme za podstatné a potrebné pre správny chod programu. Z týchto komponentov sme následne vytvorili malý projekt, kde sme sa pokúsili vytvoriť niekoľko pluginov implementovaných pomocou command dizajnového návrhu na demonštrovanie funkčnosti. Nakoľko bol model funkčný,

rozhodli sme sa pokračovať s jeho vývojom. Uvádzame aj komponenty, ktoré sme identifikovali pri vytváraní tejto ukážky funkčnosti :

- Parser vstupov aj výstupov,
- Loader na nahrávanie jar súborov,
- Sťahovač závislostí jar súbory, ktoré momentálne produkt neobsahuje napr. vlastné riešenia,
- Scope je oblasť kde sa definujú premenné, funkcie a pod., tento komponent slúži na vytváranie scopov v rámci aplikácie,
- ScopeData ktoré majú slúžiť na udržovanie dát v jednotlivých scopoch,
- ShellPlugin komponent, ktorý nesie implementáciu príkazov.

Obrázok 14: Pvrvé funkčné riešenie

3.7 Plugin

Z nasledovného diagramu tried nebolo na prvý pohľad zjavné aké komponenty v programe existujú, preto bolo potrebné tieto komponenty rozumne rodeliť. Z prvotného návrhu sme vytiahli plugin, ktorý bude slúžiť na nahrávanie nových funkcionalít do programu. Diagram implementácie rozhraní a konkrétnych tried je viditeľný na nasledovnom obrázku.

Obrázok 15: Plugin - diagram tried

Ako vidieť z diagramu, Plugin pozostáva z nasledovných častí:

- ShellPlugin je rozhranie, ktoré slúži na získavanie inštancií commandu, ako aj informáciách o plugine,
- Command rozhranie, slúžiace na komunikáciu s receivermi,
- Receiver triedy, ktoré implementujú receiver špecifikujú funkcionalitu pluginu,
- CommandParser obsahuje parser vstupov,
- CommandOutput rozhranie pre výstupy z commandu,
- CommandInput rozhranie pre vstupy z commandu,
- PluginMeta nesie základné informácie o plugine.

Aj keď náš prvotý program fungoval správne čakali sme, že počas vývoja ešte môže dôjsť k obmenám tried a rozhraní, nakoľko málokedy sa podarí odhadnúť všetky kľúčové časti už počas návrhu.

3.8 Diagram tried aplikácie

Obrázok 16: Diagram tried aplikácie

3.8.1 Stručný popis tried

Obrázok 16 zobrazuje diagram tried aplikácie, ktoré v nasledujúcej časti stručne predstavíme.

3.8.1.1 ScopeImpl Táto trieda je jednou z najhlavnejších celého programu, tvorí základný pilier pre tvorbu akýchkoľvek scopov aplikácie, beh skriptov a pochopiteľne príkazov v interaktívnom móde. Obsahuje informácie o všetkých pluginoch, ktoré sa nahrali pri štarte aplikácie, názov scopu a inštanciu exekútora, pomocou ktorého sa vykonávajú všetky operácie v aplikácii. Implementuje metódy run() pre zabezpečenie interaktívneho módu, kde sa však môžu spúšťať aj skripty. Tiež implementuje metódu executeScript(String function, ScopeVariables scopeVariables), ktorá slúži na rekurzívne volanie funkcií v skriptovacom móde a spúšťanie ich príkazov.

- **3.8.1.2 AbstractExecutor** Trieda AbstractExecutor implementuje rozhranie Executor, a teda aj jeho triedu CommandIO execute(String command, Scope scope). Vstupom do tejto metódy je príkaz od používateľa a scope v ktorom ho chce vykonať. Definovanie scopu nám slúži na informovanie jednotlivých prijímačov(Reciever), kde sa má daný príkaz vykonať. Ak by scope nebol presne definovaný, aplikácia by sa nevedela rozhodnúť kde sa majú príkazy premietnuť a vyhodila by chybu.
- **3.8.1.3** RootParser RootParser je najpodstatnejšia trieda pre skriptovací mód. Jej úlohou je načítať zdrojové súbory skriptu a následne spustiť exekúciu, ak parsovanie prebehlo v poriadku.
- **3.8.1.4 PluginFactory** PluginFactory, ako z jej názvu vyplýva, je továreň, do ktorej sa pri štarte aplikácie nahrávajú všetky pluginy dostupné z disku. Na získavanie dostupných pluginov sa používa trieda JarLoader.
- **3.8.1.5 JarLoader** JarLoade je trieda, ktorá pomocou class loadera nahráva nové pluginy do aplikácie.

4 Implementácia

V tejto kapitole sa budeme venovať konkrétnemu riešeniu daného problému. Kapitola nás postupne prevedie cez jednotlivé kroky implementácie riešenia. Každý krok budeme popisovať jednou z nasledovných možností alebo kombináciou : pomocou diagramu aktivít, diagramu tried, pseudokódom prípadne útržkami zdrojového kódu z fungujúcej aplikácie. Jednotlivé sekcie práce sme rodelili na základe toho akými smermi sa môže aplikácia uberať.

4.1 Hlavná trieda aplikácie

Táto trieda je jednou z najhlavnejších celého programu, tvorí základný pilier pre tvorbu akýchkoľvek scopov aplikácie, beh skriptov a pochopiteľne príkazov v interaktívnom móde. Obsahuje informácie o všetkých pluginoch, ktoré sa nahrali pri štarte aplikácie, názov scopu a inštanciu exekútora, pomocou ktorého sa vykonávajú všetky operácie v aplikácii. Trieda má tiež informácie o vstupných parametroch, výstupných hodnotách a funkciách, ktoré sú v danom scope definované. Spomenuté hodnoty sa využívajú pri vytváraní a behu skriptov. Implementuje rozhrania Scope, Runnable. Implementuje metódy run() pre zabezpečenie interaktívneho módu, kde sa však môžu spúšťať aj skripty. Tiež implementuje metódu executeScript(String function, ScopeVariables scopeVariables), ktorá slúži na rekurzívne volanie funkcií v skriptovacom móde a spúšťanie ich príkazov.

4.2 Štart aplikácie

Na nasledovnom obrázku je zobrazená aktivita spustenia konzoly. Ako vidieť z diagramu aplikácia sa najprv nainicializuje, čo to znamená si povieme v sekcii 4.1. Po inicializácii premenných sa nám vytvorí inštancia triedy ScopeImpl, ktorú si predstavíme v nasledujúcich častiach implementácie. V ďalšom kroku zistí či má na vstupe parametre. V prípade, že áno vykoná ich, inak spustí konzolu, ktorá čaká na vstup od používateľa. V tejto časti si popíšeme čo sa deje v prvom prípade a teda, že máme zadané parametre.

Možnosť s parametrami na vstupe sme potrebovali implementovať kvôli tomu aby sa dala aplikácia integrovať s inými enterprise aplikáciami. Tie môžu buď čítať výstupy priamo z konzoly alebo si ich môžu presmerovať do súboru. Novo vytvorený súbor si následne môžu načítať a vykonať nad ním potrebné operácie.

4.3 Inicializácia aplikácie

Inicializácia pozostáva z dvoch krokov:

Obrázok 17: Activita spustenia aplikácie

- Nahranie dostupných pluginov z disku,
- Získanie inštancie exekútora ExecutorImpl.

4.3.1 Nahrávanie pluginov

Nahrávanie pluginov má na starosti trieda PluginFactory a JarLoader, proces nahratia pozostáva z troch krokov.

4.3.1.1 Načítanie dostupých pluginov z disku Trieda PluginFactory zavolá metódu registerAllPlugins(), ktorá najprv získa cesty k uloženým jar súborom, ktoré musia byť uložene na presne špecifikovanom mieste. Následne tieto cesty odovzdá triede JarLoader, ktorá sa pokúsi na daných cestách načítať jar súbory, nájsť v nich triedu implementujúcu rozhranie ShellPlugin. Ak takúto triedu nájde pokúsi sa z nej vytvoriť inštanciu pomocou reflexie a takto vytvorenú inštanciu následne vracia triede PluginFactory, ktorá si túto triedu uloží na základe informácií, ktoré každý ShellPlugin poskytuje. Plugin-Factory ukladá inštancie do mapy kde kľúč je trieda PluginMeta získaná z pluginu, a hodnotou je práve načítaný plugin.

Algoritmus 4 Ukážka loadovania balíčka z disku počítača

```
try {
URLClassLoader cl = URLClassLoader.newInstance(urls);
 JarInputStream jarFile = new JarInputStream(new FileInputStream(jarPath
 .toFile()));
   while (true) {
   jarEntry = jarFile.getNextJarEntry();
   if (jarEntry == null) {
     break:
   }
   if (jarEntry.getName().endsWith(".class")) {
     String className = jarEntry.getName()
     .substring(0, jarEntry.getName().length() - 6);
     className = className.replace('/', '.');
     Class c = cl.loadClass(className);
     Object obj = c.newInstance();
     if (obj instanceof ShellPlugin) {
       return Optional.of((ShellPlugin) obj);
   }
}
```


Obrázok 18: Activita spustenia aplikácie

- **4.3.1.2** Načítanie dostupých pluginov z aplikácie Pluginy môžu byť definované priamov a plikácii. V tomto prípade priamo do rovnakej mapy ako v predchádzajúcom prípade vkladáme inštancie pluginov a informáciách o nich.
- **4.3.1.3 Finálne načítanie pluginov** Používateľ môže počas využívania aplikácie, stiahnuť alebo naprogramovať viaceré verzie rovnakého pluginu. Z tohoto dôvodu sme naimplementovali krok, ktorý má za úlohu načítať všetky balíčky s jedinečným menom a najvyššou možnou verziou pre daný balíček. Následne načítanie končí a vráti sa inštancia tejto továrne pre pluginy.

4.4 Vykonávač príkazov

Všetky príkazy, ktoré sa majú pomocou aplikácie vykonať sa spúšťajú pomocou triedy ExecutorImpl, ktorá implementuje metódu rozhrania Executor CommandIO execute(String command, Scope scope). Rozhodovacia logika ako sa príkazy od používateľa budú vykonávať je implementovaná práve v tejto metóde. Pre zjednodušenie opisu si pomôžem pseudokódom rozhodovacieho algoritmu. Zo pseudokódu jasne vidieť, že exekútor si najskôr zistí či príkaz neobsahuje znaky pajpy, presmerovania štandardného vstupu/výstupu. Následne identifikuje čím sa príkaz začína a vyberie vhodnú metódu pre zadaný príkaz. Po vykonaní príkazu sa zistuje či sa má výstup z programu zapísať mimo štandardného vstupu alebo výstupu. Ak áno program očakáva valídnu cestu za oddeľovačmi

stdout> resp. stderr> kde sa pokúsi zapísať svoj výstup do súboru. Diagram tried je uvedený v prílohe D.

Algoritmus 5 Ukážka pseudokódu exekútora.

```
isPipe = isPipe(command);
writeStd = shouldWriteStd(command);
writeErr = shouldWriteErr(command);
if (command.startsWith("sh ")
|| command.startsWith("win ")
|| command.startsWith("ext ")){
  out = executeNativeCommand(command);
}else if (command.startsWith("./"){
  out = loadAndExecuteScript(command, scope);
}else if (command.startsWith("${")) {
  out = getVariable(command, scope);
}else if (command.startsWith("$(")){
  if(isPipe){
    executeCommandAsPipe(command, scope);
  }else{
    executeCommand(command, scope);
  }
}
!writeStd ? saveToFile(out.getStdOut()) : out;
!writeErr ? saveToFile(out.getErrOut()) : out;
```

4.4.1 Vykonávač príkazu

Vykonávač príkazu si v prvom kroku vyžiada od PluginFactory plugin, ktorý by dokázal daný príkaz vykonať. Ak factory úspešne vráti plugin, exekútor si z pluginu zobere command a zavolá na ňom metódu execute(CommandIO commandInput, Optional<Scope> scope). Command následne predspracuje vstupy v metóde parseCommand(Stream<Str var). Metóda execute následne vyberie receiver, ktorý daný príkaz dokáže vykonať. Receiver následne vykoná príkaz a vráti rozhranie CommandIO, ktoré nesie informáciu o úspešnosti behu ako aj výstupy.

4.4.2 Vykonávač pajpy

Ak aplikácia rozoná, že v príkaze ide o pajpu, príkaz putuje do triedy PipeExecutor, kde sa rozparsuje na parciálne príkazy. Po rozprarsovaní príkazov sa každému príkazu nastaví nasledujúci príkaz, ktorý sa má vykonať. Posledný príkaz neobsahuje žiadnen ďalší. Po takomto prednastavení exekútora sa spustí vykonávanie prvého príkazu, jeho výstup je pri úspešnom ukončení presmerovaný ďalšiemu príkazu. Tento kolobeh pokračuje až kým sa nedostane k poslednému príkazu. Ten následne vracia svoj výstup exekútoru z 4.1.

4.4.3 Vykonávač skriptu

5 Zhodnotenie výsledkov

Zatiaľ sa toho nespravilo hodne ale verím, že sa to tu cele zaplní.

Záver

Cieľom práce bolo zanalyzovať populárne konzolové rozhrania rovnako aj skriptovacie jazyky, ktoré sú často využívané pri administrácii počítačových systémov. Taktiež bolo treba nájsť jednotlivé výhody ako aj nedostatky jednotlivých rišení, zhodnotiť ich a nájsť medzi nimi rozumný prienik, ktorý bolo treba dostať do použiteľnej podoby. Kládli sme dôraz hlavne na to aby naše riešenie bolo čím najlepšie upraviteľné aby mohlo vyhovieť požiadavkam rôznych používateľov.

Zoznam použitej literatúry

- 1. ZARRELLI, Giorgio. *Mastering Bash.* 1. vyd. Birmingham : Packt Publishing, 2017, 2004. ISBN: 9781784396879.
- 2. CIACCIO, Robert S. *PowerShell vs. the Unix Shell.* 18-12-2010. Dostupné tiež z: https://superuser.com/questions/223300/powershell-vs-the-unix-shell.
- 3. ABRAHAM SILBERSCHATZ Peter B. Galvin, Greg Gagne. Operating System Concepts Ninth Edition. 9. vyd. Wiley, 2012, 2012. ISBN: 978-1118063330.
- 4. HAAPANEN, Tom. What is the history of Microsoft Windows? 18-01-2018. Dostupné tiež z: https://kb.iu.edu/d/abwa.
- 5. MICROSOFT. Windows and Windows Server Automation with Windows PowerShell. 2018. Dostupné tiež z: https://technet.microsoft.com/en-us/library/mt156946.aspx.
- 6. STATCOUNTER. Desktop Operating System Market Share Worldwide | StatCounter Global Stats. 13-04-2018. Dostupné tiež z: http://gs.statcounter.com/os-market-share/desktop/worldwide.
- 7. STATCOUNTER. Operating Systems market share. 13-04-2018. Dostupné tiež z: https://netmarketshare.com/operating-system-market-share.aspx?options= %78%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222017-05%22%2C%22dateEnd%22%3A%222018-04%22%2C%22segments%22%3A%22-1000%22%2C%22plotKeys%22%3A%5B%7B%22platform%22%3A%22Windows%22%7D%2C%7B%22platform%22%3A%22Mac%200S%22%7D%2C%7B%22platform%22%3A%22Linux%22%7D%2C%7B%22platform%22%3A%22Chrome%200S%22%7D%5D%7D.
- 8. W3TECHS. *Unix vs. Linux vs. Windows vs. macOS usage statistics, May 2018.* 13-04-2018. Dostupné tiež z: https://w3techs.com/technologies/comparison/oslinux,os-windows,os-macos,os-unix.
- 9. KOLUGURI, Naveen. If / Else Statements (Shell Scripting) Code Wiki. 11-11-2017. Dostupné tiež z: http://codewiki.wikidot.com/shell-script:if-else.

- BRENTON J.W. BLAWAT, Chris Dent. Mastering Windows PowerShell Scripting Second Edition. 2. vyd. Birmingham: Packt Publishing, 2017, 2004. ISBN: 9781787126305.
- 11. PAYNE, James. *Beginning Python®: Using Python 2.6 and Python 3.1.* 1. vyd. Wrox, 2010, 2010. ISBN: 9780470414637.
- 12. NICHOL, Alex. unixpickle/Benchmarks: Some language performance comparisons. 12-04-2017. Dostupné tiež z: https://github.com/unixpickle/Benchmarks.
- 13. CONEMU. ConEmu Handy Windows Terminal. 03-01-2018. Dostupné tiež z: https://conemu.github.io/.
- 14. VASKO, Samuel. *Cmder | Console Emulator*. 03-01-2018. Dostupné tiež z: http://cmder.net/.
- 15. TOMEK BUJOK, Lukasz Pielak. Babun a windows shell you will love! 2015. Dostupné tiež z: http://babun.github.io/.
- 16. MOBATEK. MobaXterm Xserver with SSH, telnet, RDP, VNC and X11 Features. 03-01-2018. Dostupné tiež z: https://mobaxterm.mobatek.net/features.html.
- 17. ĽUDOVÍT MOLNÁR Milan Češka, Bořivoj Melichar. *Gramatiky a jazyky.* 1. vyd. Bratislava : Alfa, 1987, 2004. MDT: 519.682(075.8).
- 18. ORACLE. What is Java technology and why do I need it? 01-2018. Dostupné tiež z: https://www.java.com/en/download/faq/whatis_java.xml.
- WALTER SAVITCH, Kenrick Mock. Absolute Java. 6. vyd. Pearson, 15-04-2015, 2015. ISBN: 978-0134041674.

Prílohy

A	CD s aplikáciou a prácou	I
В	Návod na spustenie a používanie aplikácie	II
С	Diagram tried rozhraní aplikácie	ΙV
D	Diagram tried rozhraní aplikácie	V

A CD s aplikáciou a prácou

B Návod na spustenie a používanie aplikácie

Ako spustit a pouzivat app.

C Diagram tried rozhraní aplikácie

Obrázok C.1: Diagram tried pre rozhrania aplikácie

D Diagram tried rozhraní aplikácie

Obrázok D.1: Activita spustenia aplikácie