Projekt 2

Implementace:

Požadovaný HW akcelerátor je řešený v souborech *pixel_proc.cpp* a *pixel_proc.h*. Na základě poznatků z předchozí části projektu, kde bylo zjištěno, že vhodnou částí k akceleraci byl převod pixelů z BGR do YCrCb a opačně, byly právě tyto části přepsány.

Z původního souboru *video_ps.py* byly do zmiňovaných C++ souborů přepsány funkce *pixel_convert_BGR2YCrCb()* a *pixel_convert_YCrCb2BGR()*. Pro výpočet násobení matic v těchto funkcích byly převzaty matice *MATRIX_BGR2YCrCb* a *MATRIX_YCrCb2BGR*. K jejich uložení byl zvolen datový typ **ap_fixed<20,2>**. Na uložení hodnot Y, Cr, Cb byl použit datový typ **ap_fixed<28, 9, AP_RND, AP_SAT>** a pro nové hodnoty BGR **ap_ufixed<8, 8, AP_RND, AP_SAT>**. To proto, aby hodnoty byly správně zaokrouhlené a nedocházelo k přetečením.

Dále byla naimplementována úprava jasové složky dle tabulky. Tabulka byla spočítána z histogramu v SW části. To v podstatě znamenalo přepsání funkce *transform_update()* z původního *video_ps.py*. Po vysyntetizování *pixel_proc* se do souboru *video_pspl.py* přidal výpočet transformační tabulky z histogramu. Nakonec se zapnul HW bypass.

<u>Výstup</u>:

Po syntéze bylo zjištěno využití prostředků, které bylo následující:

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	-	7	-	-	-
Expression	-	-	0	1377	-
FIFO	-	-	-	-	-
Instance	2	8	1072	786	-
Memory	4	-	1024	1344	0
Multiplexer	-	-	-	357	-
Register	0	-	1362	128	-
Total	6	15	3458	3992	0
Available	280	220	106400	53200	0
Utilization (%)	2	6	3	7	0

Obrázek č. 1: výsledky syntézy

Dále bylo otestováno řešení na platformě PynQ s připojeným monitorem, na referenčním videu. Video bylo plynule a oproti testům z první části projektu mnohonásobně rychlejší. Avšak v části videa *Low contrast* se mi obraz zdál lehce světlejší než v části *No filter*.

Samotná rychlost dle výstupu spuštěného scriptu dosahovala následujících hodnot:

```
Processing time: 49.132 s
Processed frames: 566
Processing speed: 11.520 Fps
10.617 Mpps
Hardware frames: 2952
Hardware speed: 60.083 Fps
55.372 Mpps
```

Obrázek č. 2: rychlost zpracování za pomocí HW akcelerace

Je zřejmé, že byla dosažena požadovaná rychlost. Zpracování takové rychlosti je oproti první části již použitelné.