MAT157 Problem Set 11

Nicolas

January 29, 2022

1. a)

Proof.

Consider
$$g(x):=\int_0^x\sin(t^2)\,dt$$
. Then it is easy to see that $F(x)=g(x^3)$. Thus by *chain rule*, $F'(x)=3g'(x^3)x^2$. By **FTC** $g'(x)=\frac{d}{dx}\int_0^x\sin(t^2)\,dt=\sin(t^2)$. Thus $F'(x)=3\sin(x^6)x^2$.

b)

Proof.

Consider
$$g(x) := \int_0^x \cos(t^2) dt$$
. Thus, $F(x) = g(x^2) - g(x)$ and $F'(x) = g'(x^2)2x - g'(x)$. Then, $g'(x) = \cos(x^2)$ by **FTC**. Therefore, $F'(x) = \cos(x^4)2x - \cos(x^2)$.

c)

Proof.

Just by *chain rule* and **FTC**
$$F'(x) = \cos(\int_0^x \sin(\int_0^y \frac{1}{1+t^4} dt) dy) \sin(\int_0^y \frac{1}{1+t^4} dt).$$

2.

Proof.

.

3.

Proof.

Consider $f:=\frac{1}{x^3}$ and $g:=\frac{1}{x^3}-\frac{1}{\pi^2}$. Sine's output is always less than or equal to one so $f(x) \leq \frac{\sin x}{x^3}$ and $\frac{\sin x}{x^3} - g(x) = 0$ at $x = \pi$ and it is positive else where; thus, $\forall x \in [\frac{\pi}{2},\pi], \ g(x) \leq \frac{\sin x}{x^3} \leq f(x)$. Since the integral of f and g are quite easily to evaluate (simply using powerrule for integration) we get $\frac{1}{\pi^2} = \int_{\pi/2}^{\pi} g(x) \, dx \leq \frac{\sin x}{x^3} \, dx \leq \frac{3}{2\pi^2} = \int_{\pi/2}^{\pi} f(x) \, dx$, using the monotonicity of the integral to achieve the desired result.

4. a)

Proof.

It is clear that $\sup f(A) - \inf f(A)$ is an upper bound for $\sup\{|f(x)-f(y)|: x,y\in A\}$, so we will show that $\sup f(A) - \inf f(A)$ is the least upper bound. Consider $L=\sup f(A)$ and $l=\inf f(A)$. The supremum is always greater than or equal to the infimum; thus, $\sup f(A) - \inf f(A) = |L-l|$. Now consider, for the sake of contradiction, that there exists some $\varepsilon>0$ such that $|L-l|-\varepsilon$ is an upper bound for $\{|f(x)-f(y)|x,y\in A\}$. Because $\sup f(A)$ exists, then for all $\varepsilon'>0$, $\exists x\in A: |\sup f(A)-f(x)|<\varepsilon'$ and similarly we can find an f(x) ε' -close to the $\inf f(A)$. Thus, if we choose $\varepsilon'=\frac{\varepsilon}{2}$. Then we can choose $x_0,x_1\in A$ such that $|f(x_0)-L|<\varepsilon'$ and $|f(x_1)-l|<\varepsilon'$. This means that $f(x_0)>L-\varepsilon'$ and $f(x_1)>l+\varepsilon$. Thus, $|f(x_0)-f(x_1)|>|L-\varepsilon'-l-\varepsilon'|>|L-l-\varepsilon|>|L-l|-\varepsilon$ a contradiction.

b)

Proof.

Because f is integrable, then for all $\varepsilon > 0$ there exists a partition, P of [a,b] such that $U(f,P) - L(f,P) < \varepsilon$. Thus, if we give the g the same partition, for any $[t_i,t_{i+1}] \subseteq [a,b]$ sup $\{g(x)|x\in [t_i,t_{i+1}\} -\inf\{g(x)|x\in [t_i,t_{i+1}]\}$ is less than sup $\{f(x)|x\in [t_i,t_{i+1}\} -\inf\{f(x)|x\in [t_i,t_{i+1}]\}$ by assumption; however, since t_i,t_{i+1} was arbitrary, this hold for all $t\in P$. Thus it follows if the each Riemann summand for g is less than f, then $U(g,P) - L(g,P) < \varepsilon$. Thus, g is integrable as desired.

c)

Proof.

We can see that if $|f(x) - f(y)| \ge 1$ then $\left|\frac{1}{f(x)} - \frac{1}{f(y)}\right| \le |f(x) - f(y)|$. However, if $|f(x) - f(y)| = \varepsilon < 1$ then without loss of generality, $f(x) = f(y) + \varepsilon$.