L'usage da la calculatrice et du mobile est interdit.

N.B.

- 1- Il sera tenu compte de la présentation de la copie.
- 2- Les réponses doivent être justifiées.
- 3- Le barème est approximatif.

Exercice 1: (9 pts)

Soit \mathbb{K} un corps commutatif, E un \mathbb{K} -espace vectoriel de dimension $n \in \mathbb{N}^*$ et $f \in End(E)$. Soit B une base de E et $A = M_B(f)$ la matrice associée à f relativement à la base B

Les questions 1, 2, 3, 4 et 5 sont indépendantes.

- 1- Supposons que $\lambda = 0$ est une valeur propre de f. Est ce que f est un automorphisme?
- **2-** Supposons que $P_f(X) = (\alpha X)^n$ où $\alpha \in \mathbb{K}$ et que f est diagonalisable. Déterminer f (Ind: on peut utiliser la matrice A).
 - **3-** Supposons que : $A = (a_{ij})$ tel que $a_{ij} = 1$ pour tout $(i, j) \in [[1, n]] \times [[1, n]]$.
 - a/- Déterminer les valeurs propres de A.
 - $\mathbf{b}/\mathbf{-}$ En déduire le déterminant de A.
 - **c/-** Montrer que A est diagonalisable.
- 4- On dit que f est trigonalisable s'il existe une base C de E telle que la matrice associée à f relativement à la base C soit triangulaire supérieure.

Montrer que si f est trigonalisable alors $P_f(X)$ se décompose dans $\mathbb{K}[X]$ en produit de polynômes de degrés 1.

5- Supposons que $\mathbb{K} = \mathbb{C}$ et que $P_f(X) = 1 - X^n$. Montrer que A est diagonalisable sur \mathbb{C} et donner une matrice diagonale associée.

Qu'en est-il dans le cas où $\mathbb{K} = \mathbb{R}$?

Exercice 2: (6 pts)

Soit $f \in End(\mathbb{R}^4)$ dont la matrice associée à la base canonique B de \mathbb{R}^4 est donnée par:

$$A = M_B(f) = \left(egin{array}{cccc} 2 & -1 & 0 & 1 \ 1 & 0 & 0 & 1 \ 1 & -1 & 2 & 0 \ 1 & -1 & 0 & 2 \end{array}
ight).$$

- **1-** Soit le polynôme $T(X) \in \mathbb{R}[X]$ défini par : $T(X) = X^2 3X + 2$. Calculer T(A).
- **2-** En déduire que toute valeur propre de A est une racine de T.
- **3-** Utiliser la trace de A pour déterminer le spectre de A.
- **4-** Montrer que A est diagonalisable.

5- Déterminer une matrice inversible P et une matrice diagonale A' telles que : $A' = P^{-1}AP$.

Exercice 3: (5 pts)

Soit (S) le système linéaire défini sur $\mathbb R$ par :

$$\begin{cases} \alpha x + \beta y + 2z = 1\\ \alpha x + (2\beta - 1)y + 3z = 1\\ \alpha x + \beta y + (\beta + 3)z = 1 \end{cases}$$
 où α et β sont dans \mathbb{R} .

- 1- Calculer le déterminant de la matrice du système (S) (on note la matrice du système par A).
- **2-** Pour quelles valeurs de α et β le système (S) est-il de Cramer ? Dans ce cas Résoudre (S) dans \mathbb{R}^3 .
- **3-** Résoudre dans \mathbb{R}^3 le système (S), suivant les valeurs de α et β dans le cas où (S) n'est pas de Cramer.

Bon courage