ANALISI FUNZIONALE PROF. ALESSIO MARTINI A.A. 2023-2024

ESERCITAZIONE 6

1. Siano M e N spazi metrici compatti. Sia $F:M\to N$ continua. Definiamo $\Phi_F: C(N) \to C(M)$ ponendo

$$\Phi_F f = f \circ F \qquad \forall f \in C(N).$$

Pensiamo C(M) e C(N) come spazi di Banach con la norma dell'estremo supe-

- (a) Dimostrare che $\Phi_F: C(N) \to C(M)$ è un operatore lineare limitato e 1-lipschitziano.
- (b) Dimostrare che, se $F: M \to N$ è suriettiva, allora Φ_F è un'isometria lineare.
- (c) Dimostrare che, se K è un altro spazio metrico compatto e $G: K \to M$ è una funzione continua, allora $\Phi_{F \circ G} = \Phi_G \Phi_F$.
- (d) Dimostrare che, se $F: M \to N$ è un omeomorfismo, allora $\Phi_F: C(N) \to C(N)$ C(M) è un isomorfismo isometrico.
- 2. Siano H_1 e H_2 spazi di Hilbert. Sia $T \in \mathcal{B}(H_1, H_2)$. Sia $\{e_n\}_{n \in \mathbb{N}}$ una base ortonormale di H_1 (indicizzata iniettivamente).
 - (a) Dimostrare che $T: H_1 \to H_2$ è un'isometria lineare se e solo se $\{Te_n\}_{n\in\mathbb{N}}$ è un insieme ortonormale in H_2 (indicizzato iniettivamente).
 - (b) Dimostrare che $T: H_1 \rightarrow H_2$ è un isomorfismo isometrico se e solo se $\{Te_n\}_{n\in\mathbb{N}}$ è una base ortonormale di H_2 (indicizzata iniettivamente).
- 3. Siano X, Y spazi normati. Siano $D \subseteq X$ ed $E \subseteq Y$ sottospazi vettoriali, dotati delle norme indotte da X e Y rispettivamente. Assumiamo che D sia denso in X. Siano $T \in \mathcal{B}(D,E)$ e $\widetilde{T} \in \mathcal{B}(X,Y)$ tali che $\widetilde{T}|_{D} = T$. Dimostrare che \widetilde{T} è un'isometria lineare se e solo se T lo è.
- 4. Sia H uno spazio di Hilbert. Sia $X \subseteq H$ un sottospazio vettoriale chiuso proprio non banale, e sia $Y = X^{\perp}$. Dotiamo X e Y delle norme indotte da H. Sia $X \times Y$ dotato della norma prodotto. Definiamo $T: H \to X \times Y$ ponendo

$$Tv = (P_X v, P_Y v) \quad \forall v \in H.$$

- (a) Dimostrare che $T \in \mathcal{B}(H, X \times Y)$ e determinare $||T||_{\text{op}}$. (b) Dimostrare che $T : H \to X \times Y$ è invertibile e che $T^{-1} \in \mathcal{B}(X \times Y, H)$.
- (c) Determinare se T è un'isometria lineare.
- 5. Ricordiamo che, per ogni $\underline{w}\in\ell^{\infty},$ denotiamo con $D_{\underline{w}}\in\mathcal{B}(\ell^{2})$ l'operatore di moltiplicazione per \underline{w} (vedi esercitazione 5, esercizio 3).
 - (a) Dimostrare che la mappa $\underline{w} \mapsto D_{\underline{w}}$ è un'isometria lineare da ℓ^{∞} a $\mathcal{B}(\ell^2)$.
 - (b) Dimostrare che $D_{\underline{w}\cdot\underline{z}}=D_{\underline{w}}D_{\underline{z}}$ per ogni $\underline{w},\underline{z}\in\ell^{\infty}$, dove $\underline{w}\cdot\underline{z}=(w_kz_k)_k$ denota il prodotto componente per componente.
 - Dimostrare che gli operatori di moltplicazione $D_{\underline{w}}$ commutano a due a due (rispetto al prodotto di operatori).
 - (d) Dimostrare che, se $\underline{1} = (1, 1, 1, ...)$ è la successione costante 1, allora $D_{\underline{1}} =$
 - (e) Dimostrare che la norma operatoriale $\|\cdot\|_{\text{op}}$ su $\mathcal{B}(\ell^2)$ non è indotta da un prodotto scalare.
 - [Suggerimento: utilizzare (a) e l'analoga proprietà per la norma di ℓ^{∞} .]

- 6. Consideriamo C[0,1] come spazio di Banach con la norma della convergenza uniforme. Sia $D=\{f\in C[0,1]: \sum_{k=1}^{\infty}|f(1/k)|<\infty\}.$
 - (a) Verificare che D è un sottospazio vettoriale di C[0,1].
 - (b) D è denso in C[0,1]?

Sia ora $T: D \to \mathbb{F}$ definito da $Tf = \sum_{k=1}^{\infty} f(1/k)$ per ogni $f \in D$.

- (c) Dimostrare che $T \in \mathcal{L}(D, \mathbb{F})$.
- (d) Determinare se esiste $\widetilde{T} \in \mathcal{B}(C[0,1],\mathbb{F})$ tale che $\widetilde{T}|_{D} = T$.
- 7. Sia $X=c_{00}$ pensato come spazio normato con la norma indotta da ℓ^{∞} . Per ogni $m \in \mathbb{N}$, sia $T_m: X \to \mathbb{F}$ definito da $T_m \underline{x} = mx_m$ per ogni $\underline{x} \in X$.
 - (a) Dimostrare che $T_m \in \mathcal{B}(X, \mathbb{F})$ per ogni $m \in \mathbb{N}$.
 - (b) Dimostrare che $\sup_{m \in \mathbb{N}} ||T_m||_{\text{op}} = \infty$.
 - (c) Dimostrare che, per ogni $\underline{x} \in X$, $\sup_{m \in \mathbb{N}} |T_m \underline{x}| < \infty$.
 - (d) Perché la famiglia di operatori $\mathcal{F} = \{T_m : m \in \mathbb{N}\}$ non costituisce un controesempio al teorema di Banach–Steinhaus?
- 8. Sia \mathbb{F} il campo dei numeri reali \mathbb{R} oppure il campo dei numeri complessi \mathbb{C} . Ricordiamo che un'algebra su \mathbb{F} è uno spazio vettoriale V su \mathbb{F} dotato di un'ulteriore operazione di prodotto $V \times V \ni (x,y) \mapsto xy \in V$ con le seguenti proprietà:
 - (xy)z = x(yz) per ogni $x, y, z \in V$ (il prodotto è associativo);
 - $(\alpha x + \alpha' x')y = \alpha xy + \alpha' x'y$ per ogni $x, x', y \in V$ e $\alpha, \alpha' \in \mathbb{F}$, $x(\alpha y + \alpha' y') = \alpha xy + \alpha' xy'$ per ogni $x, y, y' \in V$ e $\alpha, \alpha' \in \mathbb{F}$, (il prodotto è bilineare).

Ricordiamo inoltre che un'algebra normata è un'algebra V dotata di una norma $\|\cdot\|$ che la rende uno spazio normato e che inoltre è submoltiplicativa, cioè

$$||xy|| \le ||x|| ||y|| \qquad \forall x, y \in V.$$

Infine, ricordiamo che un'algebra normata si dice algebra di Banach se, come spazio normato, è uno spazio di Banach.

- (a) Sia X uno spazio vettoriale su \mathbb{F} . Dimostrare che lo spazio $\mathcal{L}(X)$ degli operatori lineari su X è un'algebra su \mathbb{F} con l'operazione di prodotto (composizione) di operatori.
- (b) Sia X uno spazio normato. Dimostrare che lo spazio $\mathcal{B}(X)$ degli operatori lineari limitati su X, con l'operazione di prodotto di operatori e la norma operatoriale, è un'algebra normata.
- (c) Dimostrare che, se X è uno spazio di Banach, allora $\mathcal{B}(X)$ è un'algebra di Banach.
- (d) Dimostrare che lo spazio $\ell^\infty,$ dotato dell'operazione di prodotto componente per componente

$$\underline{x} \cdot \underline{y} = (x_k y_k)_{k \in \mathbb{N}} \qquad \forall \underline{x}, \underline{y} \in \ell^{\infty},$$

è un'algebra di Banach, e che lo stesso vale per lo spazio c_0 .

(e) Sia M uno spazio metrico compatto. Dimostrare che lo spazio C(M), dotato della norma dell'estremo superiore e del prodotto puntuale di funzioni, cioè

$$(fg)(t) = f(t)g(t)$$
 $\forall f, g \in C(M), \ \forall t \in M,$

è un'algebra di Banach.