Regression Supervised Learning

講者:Isaac

Outline

- Linear Regression
- Polynomial Regression
- ▶ Ridge, Lasso, ElasticNet

Linear Regression

What's Linear Regression

 A linear approach for modelling the relationship between a scalar dependent variable y and one or more independent variables X

Linear Regression

Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178
			•••	

How to predict house price?

Data normalization

House price prediction

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178
***			•••	•••

Order of magnitude is quite different

Data normalization

- ▶ Try to scale all features into [0, I] or [-I, I]
- Some common normalization method

Split data

- Split total house price data into two part
 - ▶ 80% as training data
 - ▶ 20% as testing data
- Training data is used to make machine learn
- Testing data is used to validate if machine actually learn well
 Training Data
 Testing Data

80% 20%

- Assume all (x_i, y_i) pairs is as following
 - $\rightarrow x_i$ is age of house on i-th data
- y_i is house price on i-th data y(house price) $x(age\ of\ house)$

- We would like to find the best line that fit these data
 - One of famous solution is linear regression

$$\hat{y} = \theta_1 x + \theta_0$$

Build model

- Best fit' means difference between actual y values and predicted y values are a minimum
 - We usually use least squares which minimizes the sum of the squared differences

$$Cost = \sum_{i=1}^{m} (y_i - \widehat{y_i})^2$$

Define cost

We can use calculus to find that the best fit line

$$\hat{y} = \theta_1 x + \theta_0$$

$$Cost = \sum_{i=1}^{m} (y_i - \hat{y_i})^2$$
Optimization

$$\theta_{1}^{*} = \frac{\sum_{i=1}^{m} x_{i} y_{i} - \frac{(\sum_{i=1}^{m} x_{i}) (\sum_{i=1}^{m} y_{i})}{m}}{(\sum_{i=1}^{m} x_{i}^{2}) - \frac{(\sum_{i=1}^{m} x_{i})^{2}}{m}}$$

$$\theta_{0}^{*} = \bar{y} - \theta_{1}^{*} \bar{x}$$

validate trained model - regression

MSE

 average of the squares of the errors/deviations(difference between the estimator and what is estimated)

R squared(coefficient of determination)

- proportion of the variance in the dependent variable that is predictable from the independent variable
- R squared is close to I mean that the model is fitting better

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (f_i - \hat{y}_i)^2$$

$$R^2 = 1 - \frac{\sum_{i=1}^{n} (f_i - \bar{y})^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2}$$

Importance of data normalization

Multivariate Linear Regression Models

Model:
$$h_{\theta} = \theta^{T}X = \theta_{0}x_{0} + \theta_{1}x_{1} + \dots + \theta_{n}x_{n}$$

Learned Parameters: $\theta_{0}, \theta_{1}, \dots, \theta_{n}$

Cost Function: $C(\theta_{0}, \theta_{1}, \dots, \theta_{n}) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$

Multivariate Linear Regression Models

Best
$$\theta$$
:
 $\theta = (X^T X)^{-1} X^T y$

Gradient Descent

▶ An algorithm that find the minimum of a function

Randomly select θ_1 as start point

Compute
$$\frac{dC(\theta_1)}{d\theta}$$
$$\theta_2 \leftarrow \theta_1 - \eta \frac{dC(\theta_1)}{d\theta}$$
$$Compute \frac{dC(\theta_2)}{d\theta}$$
$$\theta_3 \leftarrow \theta_2 - \eta \frac{dC(\theta_2)}{d\theta}$$

Learning rate

Gradient Descent

$$\theta = \begin{bmatrix} x \\ y \end{bmatrix} \qquad \nabla C(\theta) = \begin{bmatrix} \frac{dz}{dx} \\ \frac{dz}{dy} \end{bmatrix}$$

Randomly select θ_1 as start point

Compute $\nabla C(\theta_1)$

$$\theta_2 \leftarrow \theta_1 - \eta \nabla C(\theta_1)$$

Compute $\nabla C(\theta_2)$

$$\theta_3 \leftarrow \theta_2 - \eta \nabla C(\theta_2)$$

Gradient Descent V.S. Normal Equation

Gradient Descent	Normal Equation	
 Need to choose learning rate Need many iterations Works well when n is large 	 No need to choose learning rate Need to compute matrix inverse If n is large, it is very slow 	

Overfitting

$$\theta_0 + \theta_1 x$$

$$\theta_0 + \theta_1 x + \theta_2 x^2$$

$$\theta_0 + \theta_1 x + \theta_2 x^2 + \dots + \theta_l x^l$$

Too many variable would cause Overfitting

Example and Practice

Example

- linear regression
 - example/regression

Practice

- Try to use linear regression to predict house price
 - dataset/house.csv
 - practice/regression
- More information about the dataset
 - https://www.kaggle.com/c/boston-housing

House price prediction

Size (feet²)	Price (\$1000)		
2104	460		
1416	232		
1534	315		
852	178		

Assume house price is only dependent on house size (consider single variable first)

nth-degree Polynomial Regression

house size
$$Model: h_{\theta} = \theta_{0} + \theta_{1}x_{0}^{1} + \dots + \theta_{n}x_{0}^{n}$$
Learned Parameters: $\theta_{0}, \theta_{1}, \dots, \theta_{n}$

$$Cost Function: C(\theta_{0}, \theta_{1}, \dots, \theta_{n}) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

Different models

Model:
$$h_{\theta} = \theta_0 + \theta_1 x_0^1 + \dots + \theta_n x_0^n$$

$$\vdots$$

$$Model: h_{\theta} = \theta_0 + \theta_1 x_0^1 + \theta_2 \sqrt{x_0}$$

$$\vdots$$

multiple variable in polynomial regression (take two variable for example)

cross term

we can think that

we use five different attributes $(x_0, x_1, x_0^2, x_1^2, x_0 x_1)$ to do linear regression

Model:
$$h_{\theta} = \theta_0 + \theta_1 x_0 + \theta_{11} x_0^2 + \theta_2 x_1 + \theta_{22} x_1^2 + \theta_{12} x_0 x_1$$

Example and Practice

Example

- polynomial regression
 - example/regression

Practice

- Try to use linear regression to predict wine quality
 - dataset/winequality-red.csv
 - practice/regression
- More information about the dataset
 - https://archive.ics.uci.edu/ml/datasets/wine+quality

Ridge, Lasso, ElasticNet

Lasso Regression

- Lasso (least absolute shrinkage and selection operator) is a regression analysis method
 - perform both variable selection and regularization

Model:
$$h_{\theta} = \theta^T X = \theta_0 x_0 + \theta_1 x_1 + \dots + \theta_n x_n$$

Learned Parameters: $\theta_0, \theta_1, \dots, \theta_n$

Cost Function:
$$C(\theta_0, \theta_1, ..., \theta_n) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} |\theta_j|$$

Lasso Regression

$$Cost Function: C(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^n |\theta_j|$$

some of the features are completely neglected for the evaluation of output(feature selection)

32

Different parameters under Lasso

ref: https://towardsdatascience.com/ridge-and-lasso-regression-a-complete-guide-with-python-scikit-learn-e20e34bcbf0b

Ridge regression

 Ridge is a regression analysis method which add L2 regularization to cost function

Model:
$$h_{\theta} = \theta^T X = \theta_0 x_0 + \theta_1 x_1 + \dots + \theta_n x_n$$

Learned Parameters: $\theta_0, \theta_1, ..., \theta_n$

Cost Function:
$$C(\theta_0, \theta_1, ..., \theta_n) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} (\theta_j)^2$$

Ridge regression

Cost Function:
$$C(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} (\theta_j)^2$$

Different parameters under Ridge

ref: https://towardsdatascience.com/ridge-and-lasso-regression-a-complete-guide-with-python-scikit-learn-e20e34bcbf0b

Different Norm Constraint

Generalize to L_q norm: $||w||^q$

Elastic net

Elastic net is a regularized regression method that linearly combines the L1 and L2 penalties of the lasso and ridge methods.

Model:
$$h_{\theta} = \theta^T X = \theta_0 x_0 + \theta_1 x_1 + \dots + \theta_n x_n$$

Learned Parameters: $\theta_0, \theta_1, \dots, \theta_n$

Cost Function:
$$C(\theta_0, \theta_1, ..., \theta_n)$$

= $\frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda_1 \sum_{j=1}^{n} |\theta_j| + \lambda_2 \sum_{j=1}^{n} (\theta_j)^2$

Constrain in Ridge Lasso Elastic Net

