A Novel Image Formation Model for Descattering

汇报人: 谭飞

时间: 2025.04.20

现有模型

• 辐射传输方程 (RTE)

$$\frac{1}{\beta(\lambda)} \cdot \frac{\mathrm{d}I_{\lambda}}{\mathrm{d}r} = -I_{\lambda} + Js_{\lambda}$$

• 大气散射模型 (ASM)

$$I(x) = J(x)t^{c}(x) + A^{c}(1 - t^{c}(x)),$$
$$t^{c}(x) = e^{-\beta^{c}r}, c \in \{R, G, B\}$$

• Jaffe-McGlamery 模型

$$I = I_d + I_{fs} + I_b.$$

• Narasimhan模型

$$I^{c} = I_{0}^{c} \left[e^{-\beta^{c} (d_{s} + d_{v})} R + \mathcal{P} e^{-\beta^{c} d_{s}} \left(1 - e^{-\beta^{c} d_{v}} \right) \right]$$

现有模型存在的问题

通过水箱实验(含不同光源位置和均匀介质),证明即使深度固定,散射分布仍因光源位置和像素位置变化而呈现非均匀性。

在雾环境中也可以观察到散射的不均匀外观。

本文提出的模型

• 提出的新成像模型

$$I^c(\mathbf{x}) = I_d^c(\mathbf{x}) + I_b^c(\mathbf{x}), \quad c \subset \{R, G, B\},$$

光传播导致散射不均匀。

散射的不均匀外观也是由每个像素不同的散射角造成的。

直接辐射项推导

• 1. 光路衰减路径

$$I_d^c(\mathbf{x}) = E^c e^{-\beta_D^c \gamma ||\mathbf{D}(\mathbf{X})||} \rho^c(\mathbf{X}) e^{-\beta_D^c ||\mathbf{X}||},$$

• 2. 几何关系建模

$$\gamma \|\mathbf{D}(\mathbf{X})\| = \left(Y_u - \frac{yw_y}{f}Z\right) \sec(\theta_Z).$$

$$||\mathbf{X}|| = \sqrt{\left(\frac{xw_x}{f} \cdot Z\right)^2 + \left(\frac{yw_y}{f} \cdot Z\right)^2 + Z^2}$$

$$= \frac{Z}{f} \sqrt{(xw_x)^2 + (yw_y)^2 + f^2}.$$

• 3. 最终直接辐射公式

$$I_d^c(\mathbf{x}) = J^c(\mathbf{x}) e^{-\beta_D^c(\gamma||\mathbf{D}(\mathbf{X})||+||\mathbf{X}||)}$$

后向散射项推导

• 1. 光源单位方向向量

$$\mathbf{u} = [\sin(\theta_Z)\sin(\theta_A), \cos(\theta_Z), \sin(\theta_Z)\cos(\theta_A)]$$

• 2.散射角

$$\begin{split} \cos(\psi) &= \frac{\sin\left(\theta_Z\right)\sin\left(\theta_A\right)X + \cos\left(\theta_Z\right)Y - \sin\left(\theta_Z\right)\cos\left(\theta_A\right)Z}{\sqrt{X^2 + Y^2 + Z^2}} \\ &= \frac{\sin\left(\theta_Z\right)\sin\left(\theta_A\right)xw_x + \cos\left(\theta_Z\right)yw_y - \sin\left(\theta_Z\right)\cos\left(\theta_A\right)f}{\sqrt{\left(xw_x\right)^2 + \left(yw_y\right)^2 + f^2}}. \end{split}$$

3.路径变化

$$dr = \sqrt{(dX)^2 + (dY)^2 + (dZ)^2} = rac{1}{f} \sqrt{(xw_x)^2 + (yw_y)^2 + f^2} \cdot dZ$$

4.辐射度变化

$$dI_{c_b}(x,y) = eta_c^s E_c e^{-eta_c^B \gamma ||D(X)||} P(\psi) e^{-eta_c^B dr}$$

• 5. 反向散射积分

$$I_b^c(x,y) = \int_0^{Z_s} E^c e^{-\beta_B^c \gamma ||\mathbf{D}(\mathbf{X})||} \beta_s^c P(\psi) e^{-\beta_B^c r} dr,$$

$$I_{c_b}(\cdot,y) = \int_0^{Z_s} E_c e^{-\beta_c^B (Yu - \frac{y\omega_y}{f}Z) \sec(\theta_Z)} \beta_c^s P(\psi) e^{-\beta_c^B \eta Z} \eta dZ$$

• 6. 反向散射项

$$I_{c_b}(x,y) = E_c e^{-eta_c^B Y u \sec(heta_Z)} rac{eta_c^s P(\psi) \eta}{eta_c^B} igg[1 - e^{-eta_c^B \left(rac{f \eta - y \omega_y \sec(heta_Z)}{Z_S}
ight) Z_S} igg]$$

与传统模型的对比

特征	传统ASM	新模型
散射分布假设	均匀	非均匀(依赖θ_Z, θ_A, 像素坐标)
光路建模	忽略光源到物体的路径	完整路径 + 几何关系
散射角处理	假设为常数	相位函数 + 空间变化ψ
参数数量	4 (如β, z, J, A)	9+ (包含光源位置、焦距等)

实验验证

- 水缸是用特别设计的光学玻璃构建的,具有高透射率和低反射率特性。
- 遮光布覆盖了水缸的所有内外表面,除了相机镜头所在的一侧,以防止阳光在玻璃表面之间反射造成的干扰。
- 使用指南针对缸的方向进行校准,确保缸的南北方向与地球轴线平行。缸放置在屋顶上,屋顶平面与地面平面之间的夹角为零。
- · 禁用了相机的智能功能,如自动填充光、自动对焦和周边光校正。我们使用原始的RAW数据格式而不是JPG进行处理。
- 相机固定在水缸的中心,水平放置,以避免参数计算中的不准确。
- 牛奶和水在缸中均匀搅拌, 当水面静止时拍摄照片。
- · 使用积分球进行均匀照明、以校准我们的相机、消除由相机镜头引起的暗角效应。每次实验前都进行此校准,以避免引入相机本身的不均匀性。

参数估计与优化

• 1.Fournier-Forand (FF)相函数

$$P(\psi) = \frac{1}{4\pi (1 - \delta)^2 \delta^v} \left[v(1 - \delta) - (1 - \delta^v) + \left[\delta (1 - \delta^v) - v(1 - \delta) \right] \sin^{-2} \left(\frac{\psi}{2} \right) \right] + \frac{1 - \delta (180)^v}{16\pi (\delta (180) - 1) \delta (180)^v} \left(3\cos^2 \psi - 1 \right)$$

• 2.非线性优化

$$\arg\min_{M^c,\beta_B^c,\theta_Z,\theta_A,f,\mu^c,n^c,Z_s,Y_u} \left\{ \sum_i \left\| I_{bi}^c - \tilde{I_{bi}^c} \right\| \right\}$$

• 粗到细优化策略

步骤1:遍历参数物理范围(如θ_Z∈[0°,90°]),以十分之一间隔初筛。

步骤2: 固定其他参数,逐参数优化。

步骤3: 使用MATLAB的'fit'函数进行最终非线性拟合。

TABLE II
THE RANGE OF SOME PARAMETERS

Parameters	M	Y_u	$\beta(mm^{-1})$	f(mm)
Range in Water Range in Haze	$ \begin{array}{l} [0, (max(L_b^c))/min(f)] \\ [0, (max(L_b^c))/min(f)] \end{array} $	++	$\begin{array}{c} [10^{-5}, 10^{-2}] \\ [10^{-9}, 10^{-7}] \end{array}$	[24, 105] [24, 105]

Parameters	θ_A	θ_Z	Z_s	x	y	z
Range	[0, 360]	[0, 90]	+	$[0, X_s]$	$[0, Y_s]$	$[\min(L_b^c), \max(L_b^c)]$

Fig. 8. Pure scattering image and the restored background. Left: Photo of pure scattering. Right: Our restoration result.

Fig. 10. Visual Comparisons of the restored pure scattering images.

TABLE IV
THE CALCULATED PARAMETERS OF FIG. 8

Parameters	f(mm)	$\theta_A(^\circ)$	$\theta_Z(^\circ)$	$Z_s(mm)$	$Y_u(mm)$	μ	n
Ground Truth	105	10	31	1000	150	(3,5)	(1.33, 1.47)
Our Calculation	98.68	7.324	30.14	999.99	160.9	4.597	1.356

Input DCP [22] IBLA [32] MLLE [62] GDCP [23] TACL [63] (b) (c) (d) (e) (f) (g) (a)

TABLE V
NIQE Scores of Fig. 11, Where Lower Scores Indicate Better Image Quality

	(a)	(b)	(c)	(d)	(e)	(f)	(g)
DCP [22]	5.16	5.51	5.52	5.69	8.25	8.14	6.76
Fusion [44]	6.28	6.12	5.18	6.08	6.65	7.44	7.01
IBLA [32]	5.20	4.99	4.97	6.08	8.43	5.93	7.53
MLLE [62]	6.40	5.67	5.07	6.12	6.97	6.95	4.60
GDCP [23]	5.95	5.95	6.80	5.73	8.59	8.47	6.57
Ucolor [49]	3.77	3.54	3.96	3.74	5.20	4.81	4.05
TACL [63]	4.44	4.52	4.33	4.57	5.35	4.93	4.44
Ours	2.88	2.88	3.67	2.82	2.33	2.27	3.00

TABLE VI UIQM Scores of Fig. 11, Where Higher Scores Indicate Better Image Quality

	(a)	(b)	(c)	(d)	(e)	(f)	(g)
DCP [22]	2.53	2.52	1.76	1.63	1.15	1.07	1.76
Fusion [44]	2.90	2.35	1.90	1.44	2.48	2.51	1.75
IBLA [32]	2.86	4.35	0.34	0.29	1.84	2.01	1.34
MLLE [62]	3.32	2.72	2.27	1.91	2.27	2.31	1.72
GDCP [23]	2.39	2.16	0.78	1.73	1.83	1.80	1.60
Ucolor [49]	3.71	3.47	2.94	3.46	3.79	4.19	3.65
TACL [63]	3.79	2.84	3.13	2.97	3.31	3.41	3.02
Ours	5.34	3.50	3.54	3.71	3.91	4.49	6.14

Fig. 13. The set S and its fitted results in 3 d plane of image 'LFT3374'. (a) the original image. (b) the selected set S. (c) the fitted results of set S. (d) the restored result.

消融实验

TABLE IX THE ABLATION STUDY BASED ON FIG. 8

	Ours	①	2	3	4	ASM
RMSE ↓	57.2656	68.0589	58.8960	69.8294	132.1235	814.32

• 1. 无n

$$\eta = \frac{1}{f} \sqrt{(xw_x)^2 + (yw_y)^2 + f^2}$$

1.无n
$$\eta = \frac{1}{f} \sqrt{(xw_x)^2 + (yw_y)^2 + f^2}.$$
 • 3.无相函数
$$I_b^c(x, y) = \int_0^{Z_s} E^c e^{-\beta_B^c (Y_u - \frac{yw_y}{f} Z) \sec(\theta_Z)} \beta_s^c e^{-\beta_B^c \eta Z} \eta dZ.$$

• 2. $\pm (Y_u - \frac{yw_y}{f}Z)\sec(\theta_Z)$

- 4. Narasimhan模型
- 5.ASM模型

$$I_b^c(x,y) = \int_0^{Z_s} E^c e^{-\beta_B^c Y_u \sec(\theta_Z)} \beta_s^c P(\psi) e^{-\beta_B^c \eta Z} \eta dZ.$$

未来展望

• 深度学习增强的去散射(雾天、水下)

• 大规模数据集的生成(雾天、水下)

• 医学、遥感图像等其它领域

谢谢!