

Table of contents

- Introduction and objective
- Data collection
- Methodology
- Validation results
- Discussion
- Conclusion

Introduction and objective

Mortality prediction

Scoring systems

VS

ML models

- SAPS
- EuroSCORE

- Logistic regression
- Neural network
- Bayesian network

ICU patients

Acute kidney injury (AKI)

Subarachnoid hemorrhage (SAH)

Cardiac surgery

Data

AKI & SAH patients

- Laboratory of Computational Physiology at MIT, MIMIC
- Demographic factors, SAPS, and physiologic variables measured during the first three days (AKI) in the ICU, and for the first day (SAH)

Cardiac surgery patients

- Dunedin Hospital, University of Otago, New Zealand
- Selected pre-defined variables entered by personnel with domain expertise: discrete pre-operative, intraoperative and post-operative variables.

Methodology

Scoring systems based models

$$Predicted Death Rate = \frac{e^{Logit}}{1 + e^{Logit}}$$

Logit is a function of the scoring system used

ML models

Validation results for AKI

	Accuracy	Mean Absolute Error	Area under the ROC Curve
Logistic Regression	72.9%	0.367	0.738
Bayesian Network	73.2%	0.306	0.761
Artificial Neural Network	81.9%	0.227	0.875

Table 2. Best fitted logistic regression model for ICU patients who developed AKI.

Note: Hosmer-Lemeshow statistic = 6.472 (p = 0.594).

	Estimate	Standard Error	z value	Pr (> z)		Estimate	Standard Error	z value	Pr (> z)
Age	5.54e-03	2.30e-03	2.41	0.02	Standard deviation of the hematocrit (Day 2)	1.05e-01	5.05e-02	2.08	0.04
Maximum serum bilirubin (Day 2)	4.58e-02	1.46e-01	0.31	0.75	Minimum White Blood Cell count (Day 1)	-1.19e-03	1.98e-02	-0.06	0.95
Maximum serum bilirubin (Day 3)	1.66e-02	1.42e-01	0.12	0.91	Minimum White Blood Cell count (Day 2)	-7.07e-02	8.66e-02	-0.82	0.41
Minimum heart rate (Day 2)	3.64e-03	5.44e-03	0.67	0.50	Average White Blood Cell count (Day 2)	6.50e-02	8.59e-02	0.76	0.45
Average systolic blood pressure (Day 1)	-8.61e-03	5.71e-03	-1.51	0.13	Minimum White Blood Cell count (Day 3)	3.36e-02	2.28e-02	1.47	0.14
Minimum systolic blood pressure (Day 2)	-8.31e-04	6.25e-03	-0.13	0.89	Maximum BUN (Day 2)	-1.66e-02	8.29e-03	-2.00	0.05
Minimum systolic blood pressure (Day 3)	-2.18e-02	7.42e-03	-2.94	0.003	Maximum BUN (Day 3)	2.98e-02	8.39e-03	3.56	0.0004
Average systolic blood pressure (Day 3)	6.46e-03	7.71e-03	0.84	0.40	Glasgow coma score (Day 1)	-4.42e-02	1.71e-02	-2.59	0.01
Maximum respiratory rate (Day 3)	1.58e-02	1.14e-02	1.38	0.17	Maximum serum bicarbonate (Day 1)	6.20e-03	1.83e-02	0.34	0.73
Standard deviation of the hematocrit (Day 2)	1.05e-01	5.05e-02	2.08	0.04	Urine Output (Day 1)	-1.20e-04	8.44e-05	-1.43	0.15
					Urine Output (Day 2)	-6.60e-05	6.75e-05	-0.98	0.33
					Urine Output (Day 3)	-1.10e-04	7.44e-05	-1.48	0.14

• SAPS RESULTS:

- AUC = 0.6419
- Hosmer-Lemeshow decile = 2941.64 (p=0)

Validation results for SAH

	Accuracy	Mean Absolute Error	Area under the ROC Curve
Logistic Regression	89.0%	0.158	0.945
Bayesian Network	87.7%	0.127	0.958
Artificial Neural Network	83.6%	0.168	0.868

Table 4. Best fitted logistic regression model for ICU patients who presented with SAH.

	Estimate	Standard Error	z value	Pr (> z)		Estimate	Standard Error	z value	Pr (> z)
Age	0.05	0.02	2.64	0.008	Average Glasgow coma score	-0.60	0.33	-1.80	0.07
Average serum glucose	0.02	0.01	2.50	0.01	Minimum systolic blood pressure	-0.02	0.02	-0.94	0.34
Maximum White Blood Cell count	0.01	0.05	0.10	0.92	Minimum serum sodium	0.03	0.32	0.10	0.92
Standard deviation of the serum glucose	0.13	0.32	0.41	0.68					
Average prothrombin time INR	3.20	1.56	2.05	0.04	Average serum sodium	-0.03	0.32	-0.10	
Minimum Glasgow coma score	-0.01	0.17	-0.06	0.95	Standard deviation of the serum sodium	0.02	0.44	0.04	0.97
Maximum Glasgow coma score	0.24	0.22	1 12	0.26	Note: Hosmer-Lemeshow statistic = 7.196 ($p = 0.516$).				

• SAPS RESULTS:

- AUC = 0.84
- Hosmer-Lemeshow decile = 887.95 (p<0.001)

Validation results for open heart surgery

	Accuracy	Mean Absolute Error	Area under the ROC Curve
Logistic Regression	80.0%	0.201	0.854
Bayesian Network	96.4%	0.129	0.931
Artificial Neural Network	96.4%	0.045	0.941

Table 6. Best fitted logistic regression model for elderly patients who underwent cardiac surgery.

	Estimate	Standard Error	z value	Pr (> z)
Ejection fraction	1.11	1.01	1.10	0.27
Use of an intra-aortic balloon pump	1.61	1.67	0.97	0.33
Chest Reopening	3.14	1.38	2.28	0.02
Development of atrial fibrillation	18.68	2.46	-0.01	0.99
Development of a post-operative infection	0.77	1.19	-0.65	0.52

Note: Hosmer-Lemeshow statistic = 5.671 (p = 0.684).

SAPS RESULTS:

- AUC = 0.648
- Hosmer-Lemeshow decile = -181.8 (p=1.0)

Results discussion

	AKI	SAH	Cardiac Surgery
Scoring system used	SAPS	SAPS	EuroSCORE
Previous studies	Poor performance. Very dissimilar mortality predictions.	Few validation studies, although there exist numerous systems	Mortality in elderly patients is overestimated
Is SAPS/EuroSCORE based model calibrated?	No	No	Yes
Best ML model	ANN (calibration improved)	Logistic and Bayesian	Bayesian and ANN
Is ML model calibrated?	Yes	No	Yes

Conclusion

 Severity scoring systems perform well when dealing with ICU populations, but lack accuracy/calibration when predicting individual cases.

 Using different machine Learning algorithms for MIMIC II subsets and local databases outperformed the severity scoring systems in all cases, and even improved the calibration in the AKI subset.

