Ejercicios 1 - Primera Parte

1. Encuentra ecuaciones implícitas del conjunto

$$(1,0,0,\lambda) + \text{Gen}\{(0,-1,1,-1),(-1,-\lambda,\lambda,-\lambda),(2,0,0,0)\}$$

2. Encuentra, justificadamente, los valores de λ para los cuales puedes extraer vectores del conjunto C_1 y completarlos hasta una base de \mathbb{R}^4 usando vectores de C_2 , donde

$$C_1 = \{(1, 0, 0, \lambda), (0, \lambda, 1, \lambda), (0, -\lambda, -1, 0)\},\$$

$$C_2 = \{(1, \lambda, 1, 2\lambda), (1, -2\lambda, -2, -\lambda), (\lambda, 0, 0, -1), (0, 1, \lambda, 0)\}.$$

Para esos valores de λ encuentra tal base.

3. Encuentra los valores de λ que hacen cierta la igualdad

$$Gen\{(1,1,-1),(4,-2,2)\} = Gen\{(0,\lambda,-1),(1,0,0)\}$$

- 4. Demuestra que si A es una matriz de orden $n \times n$ entonces $\det(\operatorname{adj}(A)) = \det(A)^{n-1}$.
- 5. Estudia los valores de λ que hacen compatible determinado el siguiente sistema

$$\begin{array}{cccc} (\lambda - 1)x + (\lambda - 2)y - (2\lambda + 2)z & = & -2 \\ (-2\lambda + 2)x + (-\lambda + 2)y & = & -3\lambda + 1 \\ (\lambda - 2)y - (2\lambda + 2)z & = & -\lambda - 1 \end{array} \right\}$$

6. Encuentra la relación de recurrencia para calcular el determinante D_n , en términos de D_{n-1} y D_{n-2} , de la matriz de orden $n \times n$

$$\begin{pmatrix} 2 & \lambda & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ -1 & 2 & \lambda & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 0 & -1 & 2 & \lambda & 0 & \cdots & 0 & 0 & 0 & 0 \\ \vdots & & \ddots & & & & & \vdots & \vdots \\ \vdots & & & \ddots & & & & \vdots & \vdots \\ \vdots & & & & \ddots & & & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & -1 & 2 & \lambda \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & -1 & 2 \end{pmatrix}$$

7. Demuestra, sin desarrollar el determinante, que

$$\begin{vmatrix} \sin \alpha & \cos \alpha & \sin(\alpha + \delta) \\ \sin \beta & \cos \beta & \sin(\beta + \delta) \\ \sin \gamma & \cos \gamma & \sin(\gamma + \delta) \end{vmatrix} = 0$$