

Blue Smoke Team Hardware Project

Paul Brown İbrahim Duru Mustafa Şahin

11 December 2019

Topology Options

- 1. Three-phase thyristor rectifier (SCR)
- 2. Three-phase diode rectifier + buck converter
- 3. Single-phase thyristor rectifier (SCR)
- 4. Single-Phase Diac-Controlled Triac Rectifer

Option 1: Three-phase Thyristor Rectifier (SCR)

Option 1: Three-phase Thyristor Rectifier (SCR)

Advantages	Disadvantages
• Higher average output voltage attainable	• Requires firing circuits for six thyristors
• Less ripple compared to single- phase rectifier	 Firing control must be synchronized with input AC voltage

Option 2: Diode Rectifier + Buck Converter

Option 2: Diode Rectifier + Buck Converter

Advantages	Disadvantages
• Fast and accurate control of output is possible	Requires capacitor & inductorMany components
	wany components

Option 3: Single-phase Thyristor Rectifier (SCR)

Option 3: Single-phase Thyristor Rectifier (SCR)

Disadvantages
 Available output voltage is less compared to three-phase AC input Still requires firing circuits for four thyristors Firing control must be synchronized with input AC
voltage
1

Single-Phase Diac-Controlled Triac Rectifer

Figure 1. Circuit Diagram from Littlefuse Application Note AN1003

Single-Phase Diac-Controlled Triac Rectifer

Single-Phase Diac-Controlled Triac Rectifer

Advantages	Disadvantages
Circuit is very simple with few componentsSingle control circuit needed	• Introduction of feedback control difficult to incorporate

Simulation Results

Simulation Results

Key Component Ratings

Maximum component stress from simulation results

- Triac: $V_{max} = 311 \text{ V}$, $I_{rms} = 17.6 \text{ A}$
- Diode Bridge: V_{max} = 306 V, I_{rms} = 12.5 A (per diode)
- Resistors: All < 1/4 W. (But Littlefuse application note recommends 1/2 W for R_3)
- Capacitors: < 60 V

Project Plan

- Complete bill of material
- Procure components (Direnc.net + Konya Sokak)
- Build prototype
- Test on increasing loads (load bank ⇒ motor)
- Troubleshoot & modify prototype as needed
- Once working prototype is obtained, as time allows
 - Consider modifications for feedback in firing circuit
 - · Add remaining touches like enclosure, PCB, etc

Credit

Nuclear explosion logo made by Freepik from Flaticon.com