Opgavesæt 4 - En introduktion til dynamiske modeller

Opgave 4.1 - Kapitalakkumulationsligningen

I GAMS udregnes udviklingen 50 perioder frem for kapitalen, *K*, ligning 3.0.1 fra kapitel 3.

$$K_t = (1 - \delta)K_{t-1} + I_t$$

Hvor der antages, at der i hver periode investeres 100 i kapital: $I_{\scriptscriptstyle t}=100$, og at initialkapitalen er $K_0=500$. Afskrivningsraten δ ukendt og skal derfor kalibreres. Antag, at modellen er i steady state og udfør et nulstød. Rammer modellen sig selv?

Investeringsstød:

Stød til I_t i periode t9 således at $I_t=120$ for alle perioder til t50. Lav en figur i Excel, der viser udviklingen i kapitalen for grundforløbet og alternativforløbet.

Opgave 4.2 - Simpel Solow model uden befolkningsvækst

Solow model uden befolkningsvækst:

Output/indkomst per person

$$y_t = f(k) = k_t^{\alpha}$$

Kapital per person:

$$k_{t} = (1 - \delta)k_{t-1} + i_{t-1}$$

Investeringer per person

$$i_t = s_t y_t$$

Privat forbrug per person

$$c_t = (1 - s_t) y_t$$

Det antages, at initialværdien for kapital per person er $K_0=1000$. Initialoutputtet per person antages at være $Y_0=500$. Og antag endelig, at Initialinvesteringerne er $I_t=400$.

Opsparingsraten s_t , afskrivningsraten δ og output elasticiteten, α er ukendte og skal derfor kalibreres. Lad modellen køre 50 perioder. Antag, at modellen er i steady state og kalibrer modellen. Udfør et nulstød. Rammer modellen sig selv?

Stød: Lad opsparingsraten stige med 5 % i periode t10 og fremefter.

Udregn det nye steady state niveau for kapitalen. Hvor langt er kapitalen fra det ny steady state niveau i periode t10, t20 og t50. Overfør resultatet til Excel og vis udviklingen i kapitalen og det private forbrug. Hvad sker dem det private forbrug i periode t9?

Opgave 4.3. Keynes-Ramsey forbruger.

Model for en Keynes-Ramsey forbruger:

Husholdningen (Keynes-Ramsey forbruger)

$$C_{t+1} = \left(\frac{1 + r_{t+1}}{1 + \eta}\right)^{\frac{1}{\rho}} C_t$$

Formueakkumulationsligning.

$$B_{t} = (1 + r_{t})B_{t-1} + Y_{t} - p_{t}C_{t}$$

Det antages, at indkomsten er eksogen givet og lig med 1000 for alle t ($Y_t=1000 \ \forall \ t \in \{t0,...,T\}$). Derudover har forbrugerne en initial formue på 700 ($B_0=700$), tilbagediskonteringsraten og risikoaversionsparameteren antages at være lig henholdsvis 0.04 og 2 ($\eta=0,04$ og $\rho=2$). Endelig antages det, at prisen er lig med 1, (p=1). Lad modellen kører i 50 perioder (T=50).

Antag, at modellen er i steady state og kalibrer r_i . Udfør et nulstød. Rammer modellen sig selv?

Hint: terminalbetingelsen skal her sættes på formuen.

Indkomst stød:

Stød til indkomsten, Y_t , med 5 procent i periode t20. Overfør resultatet til Excel og vis udviklingen i formuen og det private forbrug