Factor analysis

Introduction	2
Introduction	. 3
Factor analysis model	. 4
Factor analysis model	. 5
Variance of x_i	. 6
Covariance matrix of x	. 7
Non-uniqueness of factor loadings	. 8
Non-uniqueness of factor loadings	. 9
Estimation	. 10
Principal factor analysis	11
Procedure - initialization	. 12
Idea	. 13
Procedure	. 14
Constraint 2	. 15
Heywood cases	. 16
Example	. 17
Maximum likelihood estimation	18
MLE	. 19
Testing for number of factors	
Example	
·	
Factor rotation	22
Some general comments	
What do we look for?	
Two types of rotations	
Types of rotations	
Example	. 27
Estimating/predicting factor scores	28
Random vs. deterministic factor scores	. 29
Deterministic factor scores: Bartlett's method	. 30
Random factor scores: Thompson's method	. 31
Examples	. 32
Factor analysis vs. DCA	22

Common properties	34
Differences	35

Introduction 2 / 35

Introduction

■ In social sciences (e.g., psychology), it is often not possible to measure the variables of interest directly. Examples:

- ◆ Intelligence
- ♦ Social class

Such variables are called latent variables or common factors.

- Researchers examine such variables indirectly, by measuring variables that can be measured and that are believed to be indicators of the latent variables of interest. Examples:
 - ◆ Examination scores on various tests
 - ◆ Occupation, education, home ownership

Such variables are called manifest variables or observed variables.

■ Goal: study the relationship between the latent variables and the manifest variables

3 / 35

Factor analysis model

■ Multiple linear regression model:

$$x_1 = \lambda_{11}f_1 + \dots + \lambda_{1k}f_k + u_1$$

$$x_2 = \lambda_{21}f_1 + \dots + \lambda_{2k}f_k + u_2$$

$$\vdots = \vdots$$

$$x_p = \lambda_{p1}f_1 + \dots + \lambda_{pk}f_k + u_p$$

where

- $x = (x_1, \dots, x_p)'$ are the observed variables (random)
- lacklash $f=(f_1,\ldots,f_k)'$ are the common factors (random)
- $lacktriangledown u = (u_1, \dots, u_p)'$ are called *specific factors* (random)
- \bullet λ_{ij} are called *factor loadings* (constants)

Factor analysis model

- lacktriangleq In short: $x=\Lambda f+u$, where Λ is the p imes k matrix containing the λ_{ij} 's.
- Difference with multiple regression: common factors f_1, \ldots, f_k are unobserved.
- Assumptions:
 - \bullet E(x) = 0 (if this is not the case, simply subtract the mean vector)
 - \bullet E(f) = 0, Cov(f) = I
 - \bullet E(u) = 0, $Cov(u_i, u_j) = 0$ for $i \neq j$
 - lacktriangle $\operatorname{Cov}(f,u)=0$

5 / 35

Variance of x_i

- Notation:
 - lacktriangle $\operatorname{Cov}(u) = \Psi = \operatorname{diag}(\psi_{11}, \dots, \psi_{kk})$
 - lacktriangle $\operatorname{Cov}(x) = \Sigma$
- Then (see board):
 - lacktriangledown $\sigma_{ii} = \operatorname{Var}(x_i) = \sum_{j=1}^k \lambda_{ij}^2 + \psi_{ii}$
 - $Var(x_i)$ consists of two parts:
 - $h_i^2 = \sum_{j=1}^k \lambda_{ij}^2$, called communality of x_i , represents variance of x_i that is shared with the other variables via the common factors
 - ullet ψ_{ii} , called the specific or unique variance, represents the variance of x_i that is not shared with the other variables

6 / 35

Covariance matrix of x

- Note that (see board):
 - lacktriangledown $\sigma_{ij} = \mathsf{Cov}(x_i, x_j) = \sum_{\ell=1}^k \lambda_{i\ell} \lambda_{j\ell}$
- \blacksquare Hence, the factor models leads to: $\Sigma = \Lambda \Lambda' + \Psi$
- lacktriangle The reverse is also true: If one can decompose Σ in this form, then the k-factor model holds for x

Non-uniqueness of factor loadings

- Suppose that k-factor model holds for x: $x = \Lambda f + u$
- Let G be a $k \times k$ orthogonal matrix.
- Then $x = \Lambda GG'f + u$.
- \blacksquare Note that G'f satisfies assumptions that we made about the common factors (see board).
- Hence the k-factor model holds with factors G'f and factor loadings ΛG .
- $\blacksquare \Sigma = (\Lambda G)(G'\Lambda') + \Psi = \Lambda \Lambda' + \Psi$
- Hence, factors f with loadings Λ , or factors G'f with loadings ΛG are equivalent for explaining the covariance matrix of the observed variables.

8 / 35

Non-uniqueness of factor loadings

- Non-uniqueness can be resolved by imposing an extra condition. For example:
 - $\Lambda' \Psi^{-1} \Lambda$ is diagonal with its elements in decreasing order (constraint 1)
 - $\Lambda' D^{-1} \Lambda$ is diagonal with its elements in decreasing order, where $D = \text{diag}(\sigma_{11}, \dots, \sigma_{pp})$ (constraint 2)

9 / 35

Estimation

- lacksquare Σ is usually estimated by S (or often: correlation matrix is estimated by R).
- Given S (or R), we need to find estimates $\hat{\Lambda}$ and $\hat{\Psi}$ that satisfy constraint 1 or 2, so that S (or R) $\approx \hat{\Lambda}\hat{\Lambda}' + \hat{\Psi}$.
- Note that typically, the number of parameters in $\hat{\Lambda}$ and $\hat{\Psi}$ is smaller than the number of parameters in S. Hence, there is no exact solution in general.
- Two main methods to estimate $\hat{\Lambda}$ and $\hat{\Psi}$:
 - principal factor analysis
 - maximum likelihood estimation (requires normality assumption)
- \blacksquare In practice, we also need to determine the value of k, the number of factors.

Procedure - initialization

- \blacksquare Estimate correlation matrix by R
- Make preliminary estimates \hat{h}_i^2 of the communalities h_i^2 , using:
 - ◆ The square of the multiple correlation coefficient of the *i*th variable with all the other variables, or
 - lacktriangle The largest correlation coefficient between the ith variable and one of the other variables

12 / 35

Idea

- Given R $(p \times p)$, we want to find $\hat{\Psi}$ $(p \times p)$ and $\hat{\Lambda}$ $(p \times k)$ that satisfy constraint 2, so that $R \hat{\Psi} \approx \hat{\Lambda} \hat{\Lambda}'$
- We look at $R \hat{\Psi}$, because we are interested in explaining the (co)variances that are shared through the common factors.
- $\blacksquare R \hat{\Psi}$ is symmetric. Hence there is a spectral decomposition $R \hat{\Psi} = GAG' = \sum_{i=1}^p a_i g_{(i)} g'_{(i)}$
- If the first k eigenvalues are positive, and the remaining ones are close to zero, then $R \hat{\Psi} \approx \sum_{i=1}^k a_i g_{(i)} g'_{(i)} = \sum_{i=1}^k (a_i^{1/2} g_{(i)}) (a_i^{1/2} g_{(i)})'$.
- $lack \hat{\Lambda}\hat{\Lambda}' = \sum_{i=1}^k \hat{\lambda}_{(i)}\hat{\lambda}'_{(i)}$. Hence, a natural estimate for $\lambda_{(i)}$ is $\hat{\lambda}_{(i)} = a_i^{1/2}g_{(i)}$.
- In matrix form: $\hat{\Lambda} = G_1 A_1^{1/2}$.

13 / 35

Procedure

- Determine the spectral decomposition of the *reduced correlation matrix* $R \hat{\Psi}$, where the ones on the diagonal are replaced by $\hat{h}_i^2 = 1 \hat{\psi}_{ii}$. Thus, $R \hat{\Psi} = GAG'$, where $A = \text{diag}(a_1, \dots, a_p)$ contains the eigenvalues of $R \hat{\Psi}$, $a_1 \ge \dots \ge a_p$, and G contains the corresponding orthonormal eigenvectors.
- Estimate Λ by $\hat{\Lambda} = G_1 A_1^{1/2}$, where $G_1 = (g_{(1)}, \ldots, g_{(k)})$ and $A_1 = \mathsf{diag}(a_1, \ldots, a_k)$.
- lacksquare Estimate the specific variances ψ_{ii} by $\hat{\psi}_{ii}=1-\sum_{j=1}^k\hat{\lambda}_{ij}^2$, $i=1,\ldots,p$.
- Stop, or repeat the above steps until some convergence criterion has been reached.

Constraint 2

- $D = \text{diag}(\sigma_{11}, \dots, \sigma_{pp}) = I$ because working with the correlation matrix is equivalent to working with standardized variables.
- Hence, $\hat{\Lambda}$ satisfies constraint 2:

$$\hat{\Lambda}' D^{-1} \hat{\Lambda} = \hat{\Lambda}' \hat{\Lambda} = (A_1^{1/2} G_1') (G_1 A_1^{1/2}) = A_1$$

is diagonal with decreasing elements.

15 / 35

Heywood cases

- It can happen that $\hat{\psi}_{ii} < 0$ or $\hat{\psi}_{ii} > 1$.
- This makes no sense:
 - lacktriangledown ψ_{ii} is a variance, so must be positive.
 - ullet Working with the correlation matrix means we are working with standardized variables. So $Var(x_i)=1$, and $Var(\psi_i)$ cannot exceed 1.
- Such cases are called Heywood cases.

16 / 35

Example

■ See R-code.

17 / 35

Maximum likelihood estimation

18 / 35

MLE

- \blacksquare Assume that X has a multivariate normal distribution
- Then log likelihood function (plugging in \bar{x} for μ) is (see board):

$$l(\Sigma) = -\frac{1}{2}n\log|2\pi\Sigma| - \frac{1}{2}n \cdot tr(\Sigma^{-1}S)$$

- Regard $\Sigma = \Lambda \Lambda' + \Psi$ as a function of Λ and Ψ , and maximize the log likelihood function over Λ and Ψ .
- Optimization is done iteratively:
 - lacklosh For fixed Ψ , one can maximize analytically over Λ
 - lacktriangle For fixed Λ , one can maximize numerically over Ψ
- This method is used by the R-function factanal().
- This method can also have problems with Heywood cases.

Testing for number of factors

- Advantage of the MLE method is that it allows to test if the number of factors is sufficient:
 - ◆ Null hypothesis: *k* factors is sufficient
 - lacktriangle Alternative hypothesis: k factors is not sufficient
 - lacktriangle p-value < 0.05 means ...
- Often sequential testing procedure is used: start with 1 factor and then increase the number of factors one at a time until test doesn't reject the null hypothesis.
- It can occur that the test always rejects the null hypothesis. This is an indication that the model does not fit well (or that the sample size is very large).

20 / 35

Example

■ See R-code

21 / 35

Factor rotation 22 / 35

Some general comments

- In factor rotation, we look for an orthogonal matrix G such that the factor loadings $\Lambda^* = \Lambda G$ can be more easily interpreted than the original factor loadings Λ .
- Is it a good idea to look for such rotations?
 - ◆ Cons: One can keep rotating the factors until one finds an interpretation that one likes.
 - ◆ Pros: Factor rotation does not change the overall structure of a solution. It only changes how the solution is described, and finds the simplest description.

23 / 35

What do we look for?

- Factor loadings can often be easily interpreted if:
 - ◆ Each variable is highly loaded on at most one factor.
 - ◆ All factor loadings are either large and positive, or close to zero.

Two types of rotations

- Orthogonal rotation: the factors are restricted to be uncorrelated.
- Oblique rotation: the factors may be correlated.
- Advantage of orthogonal rotation: For orthogonal rotation (based on standardized variables), the factor loadings represent correlations between factors and observed variables (see board). This is not the case for oblique rotations.
- Advantage of oblique rotation: May be unrealistic to assume that factors are uncorrelated. One may obtain a better fit by dropping this assumption.

25 / 35

Types of rotations

- Orthogonal:
 - ◆ Varimax: default in factanal(). Aims at factors with a few large loadings, and many near-zero loadings.
 - ◆ Quartimax: not implemented in base R.
- Oblique:
 - ◆ Promax: use option rotation="promax" in factanal(). Aims at simple structure with low correlation between factors.
 - ◆ Oblimin: not implemented in base R

26 / 35

Example

■ See R-code

27 / 35

Estimating/predicting factor scores

28 / 35

Random vs. deterministic factor scores

- So far, we considered the factor scores to be random. This is appropriate when we think of different samples consisting of different individuals, and we are interested in the general structure.
- One can also consider the factor scores to be deterministic. That is appropriate when we are interested in a specific group of individuals.

Deterministic factor scores: Bartlett's method

- \blacksquare Assume normality, and suppose that Λ and Ψ are known.
- Denote the factor scores for the *i*th individual by f_i .
- Then x_i given f_i is normally distributed with mean Λf_i and covariance matrix Ψ .
- \blacksquare Hence, the log likelihood for one observation x_i is given by

$$-\frac{1}{2}\log|2\pi\Psi| - \frac{1}{2}(x_i - \Lambda f_i)'\Psi^{-1}(x_i - \Lambda f_i).$$

■ Setting the derivative with respect to f_i equal to zero gives (see board):

$$\hat{f}_i = (\Lambda' \Psi^{-1} \Lambda)^{-1} \Lambda' \Psi^{-1} x_i.$$

30 / 35

Random factor scores: Thompson's method

- \blacksquare Consider f to be random, i.e., f has a normal distribution with mean 0 and covariance matrix I.
- Then

$$\left(\begin{array}{c} f \\ x \end{array}\right) \sim N\left(\left(\begin{array}{c} 0 \\ 0 \end{array}\right), \left(\begin{array}{cc} I & \Lambda' \\ \Lambda & \Sigma \end{array}\right)\right)$$

- Then f|x has distribution $N(\Lambda'\Sigma^{-1}x, I \Lambda'\Sigma^{-1}\Lambda)$ (see board).
- \blacksquare Hence, natural estimator for f_i is $\Lambda' \Sigma^{-1} x_i.$

31 / 35

Examples

- Both methods have advantages and disadvantages, no clear favorite.
- See examples in R-code.

Common properties

- Both methods are mostly used in exploratory data analysis.
- Both methods try to obtain dimension reduction: explain a data set in a smaller number of variables.
- Both methods don't work if the observed variables are almost uncorrelated:
 - ◆ Then PCA returns components that are similar to the original variables.
 - ullet Then factor analysis has nothing to explain, i.e. ψ_{ii} close to 1 for all i.
- Both methods give similar results if the specific variances are small.
- If specific variances are assumed to be zero in principle factor analysis, then PCA and factor analysis are the same.

34 / 35

Differences

- PCA required virtually no assumptions.

 Factor analysis assumes that data come from a specific model.
- In PCA emphasis is on transforming observed variables to principle components.

 In factor analysis, emphasis is on the transformation from factors to observed variables.
- PCA is not scale invariant. Factor analysis (with MLE) is scale invariant.
- In PCA, considering k+1 instead of k components does not change the first k components. In factor analysis, considering k+1 instead of k factors may change the first k factors (when using MLE method).
- Calculation of PCA scores is straightforward. Calculation of factor scores is more complex.