ATmega328P USART0

Narendiran S

July 26, 2020

1 Features

- Full duplex operation (independent serial receive and transmit registers).
- Asynchronous or synchronous operation
- High resolution baud rate generator
- Serial frame with 5,6,7,8,9 data bits and 1 or 2 stop bits
- Odd or even partiy generator and checker by hardware
- Double speed asynchronous communication mode

2 Block Diagram

2.1 Clock Generator Block

- Consist of sync. Logic for external clock input for usage in sync. slave operation
- Consist of Baud rate Generator.
- Uses the XCKn pin for sync. Transfer mode

2.2 Transmitte Block

- Consist of singe write buffer continuous transfer of data without delay between frames
- Consist of Serial Shift register and Parity Generator
- Also, Control logic for handling different serial frame format.

2.3 Receiver Block

- Consist of Clock and data recovery unit uses for Asynchronous reception
- Consist of Parity Checker, Control Logic, Shift Register, Two level Receiver buffer
- Can support frame error, data overrun parity error

3 Clock Genration

- Generates Base Clock for Transmitter and Receiver.
- USART supports four modes of clock operation
 - (i) Normal Asynchronous
 - (ii) Double Speed Asynchronous
 - (iii) Master synchronous
 - (iv) Slave synchronous
- \bullet Selection between Asynchronous and Synchronous is done by UMSELn bit in UCSRnC USART Control and Status Register C.
- ullet The Double Speed is selected by $\begin{subarray}{c} U2Xn \end{subarray}$ bit in $\begin{subarray}{c} UCSRnA \end{subarray}$ USART Control and Status Register A.
- In Synchronous Mode, the master or slave mode is selected by *DDR_XSCn* bit direction. [external slave mode; internal master mode]

Signals	Description
txclk	Transmitte Clock
rxclk	Receiver Base Clock
xclki	Input from XCK pin - used for synchronous slave operation.
xclko	Clock output to XCK pin - used for synchronous master operation.
fosc	XTAL pin frequency (System clock).

3.1 Internal Clock Generation - The Baud Rate Generator

- Used for Asynchronous and Synchronous Master modes of operation.
- Programmed using **UBRRn** register.

Operating Mode	UBRRn calculation
Asynchronous Normal $Mode(U2Xn == 0)$	$UBRRn = \frac{f_{OSC}}{16*BAUD} - 1$
Asynchronous Double Speed $Mode(U2Xn == 1)$	$UBRRn = \frac{f_{OSC}}{8*BAUD} - 1$
Synchronous Master Mode	$UBRRn = \frac{f_{OSC}}{2*BAUD} - 1$

3.2 External Clock

- Used by synchronous Slave mode.
- External clock input from XCKn pin is used and should

$$f_{XCK} < \frac{f_{OSC}}{4}$$

4 Frame Format

- **St** Start bit, always low.
- (n) Data bits (0 to 8).
- **P** Parity bit. Can be odd or even.
- **Sp** Stop bit, always high.
- **IDLE** No transfers on the communication line (RxDn or TxDn). An IDLE line must be high.
 - A serial frame is defined to be one character of data bits with synchronization bits (start and stop bits), and optionally a parity bit for error checking.
 - The combinations can be
 - 1 start bit
 - 5 or 6 or 7 or 8 or 9 data bits
 - no or even or odd parity bits
 - 1 or 2 stop bits
 - A frame starts with start bit followed by LSB data bits.
 - Next the data bet can be from 5 to 9 ending with MSB data bits.
 - Parity bits may be added if enabled.
 - Finally, stop bit of 1 or 2 size is added.
 - Generally, the line is idel with high Logic.

5 Register Description

UDRn – USART I/O Data Register n

7	6	5	4	3	2	1	0
RXB[7:0]							
			TXI	B[7:0]			

UCSRnA - USART Control and Status Register n A

7	6	5	$oldsymbol{4}$	3	2	1	0
RXCn	TXCn	UDREn	FEn	DORn	UPEn	U2Xn	MPCMn

- RXCn USART Receive Complete Set when there are unread data in receive buffer.
- TXCn USART Transmit Complete Set when the entire frame in the transmit shift register has been shifted out and there are no new data currently present in the transmit buffer.
- *UDREn* USART Data Register Empty indicates if the transmit buffer is ready to receive new data. A one indicates buffer is expty and ready to transmit.
- \bullet *U2Xn:* Double the USART Transmission Speed Affects only the asynchronous operation. One will increase the speed of transfer rate in asynchronous opration.