

(https://cognitiveclass.ai)

From Understanding to Preparation

Introduction

In this lab, we will continue learning about the data science methodology, and focus on the **Data Understanding** and the **Data Preparation** stages.

Table of Contents

- 1. Recap
- 2. Data Understanding
- 3. <u>Data Preparation</u> </div>

Recap

In Lab From Requirements to Collection, we learned that the data we need to answer the question developed in the business understanding stage, namely *can we automate the process of determining the cuisine of a given recipe?*, is readily available. A researcher named Yong-Yeol Ahn scraped tens of thousands of food recipes (cuisines and ingredients) from three different websites, namely:

www.allrecipes.com

www.epicurious.com

www.menupan.com

For more information on Yong-Yeol Ahn and his research, you can read his paper on <u>Flavor Network and the Principles of Food Pairing</u> (http://yongyeol.com/papers/ahn-flavornet-2011.pdf).

We also collected the data and placed it on an IBM server for your convenience.

Data Understanding

Important note: Please note that you are not expected to know how to program in python. The following code is meant to illustrate the stages of data understanding and data preparation, so it is totally fine if you do not understand the individual lines of code. We have a full course on programming in python, Python for Data Science (http://cocl.us/PY0101EN_DS0103EN_LAB3_PYTHON), so please feel free to complete the course if you are interested in learning how to program in python.

Using this notebook:

To run any of the following cells of code, you can type **Shift + Enter** to excute the code in a cell.

Get the version of Python installed.

```
In [1]:
```

Python 3.6.10

Download the library and dependencies that we will need to run this lab.

```
In [1]:
```

Download the data from the IBM server and read it into a *pandas* dataframe.

Data read into dataframe!

Show the first few rows.

Out[3]:

	country	almond	angelica	anise	anise_seed	а
0	Vietnamese	No	No	No	No	
1	Vietnamese	No	No	No	No	
2	Vietnamese	No	No	No	No	
3	Vietnamese	No	No	No	No	
4	Vietnamese	No	No	No	No	
4						•

Get the dimensions of the dataframe.

```
In [4]:
Out[4]:
(57691, 384)
```

So our dataset consists of 57,691 recipes. Each row represents a recipe, and for each recipe, the corresponding cuisine is documented as well as whether 384 ingredients exist in the recipe or not, beginning with almond and ending with zucchini.

We know that a basic sushi recipe includes the ingredients:

- rice
- soy sauce
- wasabi
- some fish/vegetables

Let's check that these ingredients exist in our dataframe:

```
In [6]:
['brown_rice', 'licorice', 'rice']
['wasabi']
['soy_sauce', 'soybean', 'soybean_oil']
```

Yes, they do!

- rice exists as rice.
- wasabi exists as wasabi.
- soy exists as soy_sauce.

So maybe if a recipe contains all three ingredients: rice, wasabi, and soy_sauce, then we can confidently say that the recipe is a **Japanese** cuisine! Let's keep this in mind!

Data Preparation

In this section, we will prepare data for the next stage in the data science methodology, which is modeling. This stage involves exploring the data further and making sure that it is in the right format for the machine learning algorithm that we selected in the analytic approach stage, which is decision trees.

First, look at the data to see if it needs cleaning.

In [5]:

Out[5]:

American	40150
Mexico	1754
Italian	1715
Italy	1461
Asian	1176
	• • •
Indonesia	12
Belgium	11
East-African	11
Israel	9

Name: country, Length: 69, dtype: int64

https://jupyterlab-17.labs.cognitiveclass.ai/user/ravingalaxy/lab/workspaces/auto-j

By looking at the above table, we can make the following observations:

- 1. Cuisine column is labeled as Country, which is inaccurate.
- 2. Cuisine names are not consistent as not all of them start with an uppercase first letter.
- 3. Some cuisines are duplicated as variation of the country name, such as Vietnam and Vietnamese.
- 4. Some cuisines have very few recipes.

Let's fixes these problems.

Fix the name of the column showing the cuisine.

In [6]:

Out[6]:

	cuisine	almond	angelica	anise	anise_see
0	Vietnamese	No	No	No	N
1	Vietnamese	No	No	No	Ν
2	Vietnamese	No	No	No	Ν
3	Vietnamese	No	No	No	Ν
4	Vietnamese	No	No	No	Ν
57686	Japan	No	No	No	N
57687	Japan	No	No	No	N
57688	Japan	No	No	No	N
57689	Japan	No	No	No	Ν
57690	Japan	No	No	No	N

57691 rows × 384 columns

Make all the cuisine names lowercase.

Make the cuisine names consistent.

Remove cuisines with < 50 recipes.

In [10]:

Number of rows of original dataframe is 576 91.

Number of rows of processed dataframe is 57 282.

409 rows removed!

Convert all Yes's to 1's and the No's to 0's

In [11]:

Let's analyze the data a little more in order to learn the data better and note any interesting preliminary observations.

Run the following cell to get the recipes that contain **rice** and **soy** and **wasabi** and **seaweed**.

In [12]:

Out[12]:

	cuisine	almond	angelica	anise	anise_seed	а
0	vietnamese	0	0	0	0	
1	vietnamese	0	0	0	0	
2	vietnamese	0	0	0	0	
3	vietnamese	0	0	0	0	
4	vietnamese	0	0	0	0	
4						•

In [13]:

Out[13]:

	cuisine	almond	angelica	anise	anise_seed
11306	japanese	0	0	0	(
11321	japanese	0	0	0	(
11361	japanese	0	0	0	(
12171	asian	0	0	0	(
12385	asian	0	0	0	(
13010	asian	0	0	0	(
13159	asian	0	0	0	(
13513	japanese	0	0	0	(
13586	japanese	0	0	0	(
13625	east_asian	0	0	0	(
14495	east_asian	0	0	0	(

Based on the results of the above code, can we classify all recipes that contain **rice** and **soy** and **wasabi** and **seaweed** as **Japanese** recipes? Why?

Your Answer: No

Double-click **here** for the solution.

Let's count the ingredients across all recipes.

In [14]:

In [15]:

	ingredient	count
0	almond	2306
1	angelica	1
2	anise	223
3	anise_seed	87
4	apple	2420
5	apple_brandy	37
6	apricot	619
7	armagnac	11
8	artemisia	13
9	artichoke	391
10	asparagus	459
11	avocado	660
12	bacon	2166
13	baked_potato	9
14	balm	3
15	banana	989
16	barley	266
17	bartlett_pear	23
18	basil	3833
19	bay	1457

20	bean	1971
21	beech	1
22	beef	4877
23	beef_broth	842
24	beef_liver	10
25	beer	307
26	beet	233
27	bell_pepper	5957
28	bergamot	7
29	berry	183
30	bitter_orange	85
31	black_bean	494
32	black_currant	11
33	<pre>black_mustard_seed_oil</pre>	30
34	black_pepper	9795
35	black_raspberry	8
36	black_sesame_seed	26
37	black_tea	44
38	blackberry	170
39	blackberry_brandy	4
40	blue_cheese	396

41	blueberry	466
42	bone_oil	50
43	bourbon_whiskey	156
44	brandy	395
45	brassica	114
46	bread	4567
47	broccoli	929
48	brown_rice	345
49	brussels_sprout	92
50	buckwheat	90
51	butter	20699
52	buttermilk	1634
53	cabbage	1011
54	cabernet_sauvignon_wine	17
55	cacao	35
56	camembert_cheese	12
57	cane_molasses	7735
58	caraway	233
59	cardamom	352
60	carnation	3
61	carob	7

62	carrot	3673
63	cashew	208
64	cassava	19
65	catfish	71
66	cauliflower	332
67	caviar	28
68	cayenne	8225
69	celery	3621
70	celery_oil	1002
71	cereal	204
72	chamomile	3
73	<pre>champagne_wine</pre>	100
74	chayote	27
75	cheddar_cheese	3027
76	cheese	3278
77	cherry	1082
78	cherry_brandy	32
79	chervil	52
80	chicken	5425
81	chicken_broth	3598
82	chicken_liver	52

83	chickpea	401
84	chicory	156
85	chinese_cabbage	165
86	chive	1332
87	cider	1129
88	cilantro	2454
89	cinnamon	5589
90	citrus	167
91	citrus_peel	4
92	clam	472
93	clove	10
94	cocoa	4797
95	coconut	1800
96	coconut_oil	17
97	cod	179
98	coffee	718
99	cognac	67
100	concord_grape	12
101	condiment	9
102	coriander	1646
103	corn	4824

225	corn_flake	104
163	corn_grit	105
347	cottage_cheese	106
571	crab	107
920	cranberry	108
10169	cream	109
2840	cream_cheese	110
1888	cucumber	111
3270	cumin	112
315	cured_pork	113
240	currant	114
375	date	115
1105	dill	116
0	durian	117
20	eel	118
20997	egg	119
316	egg_noodle	120
5	elderberry	121
1	emmental_cheese	122
115	endive	123
106	enokidake	124

125	fennel	912
126	fenugreek	923
127	feta_cheese	623
128	fig	139
129	fish	2087
130	flower	32
131	frankfurter	37
132	fruit	479
133	galanga	49
134	gardenia	9
135	garlic	17287
136	gelatin	1415
137	geranium	1
138	gin	68
139	ginger	4340
140	goat_cheese	260
141	grape	346
142	grape_brandy	8
143	grape_juice	824
144	grapefruit	121
145	green_bell_pepper	2579

146	green_tea	35
147	gruyere_cheese	45
148	guava	13
149	haddock	31
150	ham	1298
151	hazelnut	284
152	herring	10
1 53	holy_basil	3
154	honey	2550
1 55	hop	3
1 56	horseradish	396
1 57	huckleberry	10
158	jamaican_rum	1
159	japanese_plum	13
160	jasmine	8
161	jasmine_tea	2
162	juniper_berry	33
163	kaffir_lime	1
164	kale	96
165	katsuobushi	63
166	kelp	179

436	kidney_bean	167
109	kiwi	168
6	kohlrabi	169
33	kumquat	170
481	lamb	171
3049	lard	172
2	laurel	173
62	lavender	174
9	leaf	175
422	leek	176
3037	lemon	177
5060	lemon_juice	178
728	lemon_peel	179
211	lemongrass	180
247	lentil	181
1199	lettuce	182
21	licorice	183
1	lilac_flower_oil	184
149	lima_bean	185
1152	lime	186
1611	lime_juice	187

188	<pre>lime_peel_oil</pre>	108
189	lingonberry	9
190	litchi	12
191	liver	42
192	lobster	131
193	long_pepper	2
194	lovage	142
195	macadamia_nut	102
196	macaroni	3112
197	mace	117
198	mackerel	44
199	malt	37
200	mandarin	279
201	mandarin_peel	15
202	mango	418
203	maple_syrup	477
204	marjoram	527
205	mate	1
206	matsutake	57
207	meat	985
208	melon	163

209	milk	12855
210	milk_fat	959
211	mint	1004
212	mozzarella_cheese	1288
213	mung_bean	23
214	munster_cheese	27
215	muscat_grape	1
216	mushroom	3367
217	mussel	168
218	mustard	4118
219	mutton	3
220	nectarine	51
221	nira	67
222	nut	1254
223	nutmeg	2504
224	oat	1265
225	oatmeal	61
226	octopus	45
227	okra	102
228	olive	1798
229	olive_oil	9855

230	onion	18033
231	orange	1721
232	orange_flower	17
233	orange_juice	1725
234	orange_peel	596
235	oregano	3177
236	ouzo	9
237	oyster	404
238	palm	46
239	papaya	57
240	parmesan_cheese	3173
241	parsley	5541
242	parsnip	139
243	passion_fruit	20
244	pea	1178
245	peach	531
246	peanut	505
247	peanut_butter	1014
248	peanut_oil	304
249	pear	482
250	pear_brandy	11

251	pecan	2176
252	pelargonium	1
253	pepper	9200
254	peppermint	142
255	peppermint_oil	8
256	pimenta	0
257	pimento	270
258	pineapple	1637
259	pistachio	219
260	plum	288
261	popcorn	97
262	porcini	106
263	pork	2048
264	pork_liver	5
265	pork_sausage	1357
266	port_wine	48
267	potato	3510
268	<pre>potato_chip</pre>	65
269	prawn	24
270	prickly_pear	20
271	provolone cheese	168

80	pumpkin	272
2	quince	273
52	radish	274
188	raisin	275
	rapeseed	276
78	raspberry	277
	raw_beef	278
	red_algae	279
3	red_bean	280
5	red_kidney_bean	281
139	red_wine	282
16	rhubarb	283
382	rice	284
	roasted_almond	285
22	roasted_beef	286
	roasted_hazelnut	287
1	roasted_meat	288
	roasted_nut	289
20	roasted_peanut	290
	roasted_pecan	291
12	roasted pork	292

293	roasted_sesame_seed	593
294	romano_cheese	275
295	root	101
296	roquefort_cheese	23
297	rose	56
298	rosemary	1892
299	rum	599
300	rutabaga	34
301	rye_bread	92
302	rye_flour	131
303	saffron	234
304	sage	904
305	sake	680
306	salmon	451
307	salmon_roe	15
308	sassafras	18
309	sauerkraut	185
310	savory	127
311	scallion	4760
312	scallop	300
313	sea_algae	4

314	seaweed	212
315	seed	1340
316	sesame_oil	1671
317	sesame_seed	764
318	shallot	1301
319	sheep_cheese	2
320	shellfish	27
321	sherry	705
322	shiitake	594
323	shrimp	1672
324	smoke	460
325	smoked_fish	6
326	<pre>smoked_salmon</pre>	100
327	smoked_sausage	267
328	sour_cherry	50
329	sour_milk	46
330	soy_sauce	3765
331	soybean	1184
332	soybean_oil	2
333	spearmint	6
334	squash	571

335	squid	237
336	star_anise	129
337	starch	2723
338	strawberry	1080
339	strawberry_jam	1
340	strawberry_juice	2
341	sturgeon_caviar	1
342	sumac	11
343	sunflower_oil	8
344	sweet_potato	527
345	swiss_cheese	519
346	tabasco_pepper	971
347	tamarind	1670
348	tangerine	52
349	tarragon	478
350	tea	108
351	tequila	142
352	thai_pepper	136
353	thyme	3043
354	tomato	9902
355	tomato_juice	176

356	truffle	52
357	tuna	461
358	turkey	900
359	turmeric	1289
360	turnip	188
361	vanilla	9005
362	veal	197
363	vegetable	1700
364	vegetable_oil	11078
365	vinegar	8038
366	violet	5
367	walnut	2727
368	wasabi	135
369	watercress	149
370	watermelon	110
371	wheat	20757
372	wheat_bread	82
373	whiskey	148
374	white_bread	370
375	white_wine	2196
376	whole_grain_wheat_flour	731

377	wine	1019
378	wood	33
379	yam	85
380	yeast	3377
381	yogurt	1033
382	zucchini	1100

Now we have a dataframe of ingredients and their total counts across all recipes. Let's sort this dataframe in descending order.

In [16]:

	ingredient	count
0	egg	20997
1	wheat	20757
2	butter	20699
3	onion	18033
4	garlic	17287
• •	• • •	• • •
378	sturgeon_caviar	1
379	kaffir_lime	1
380	beech	1
381	durian	0
382	pimenta	0

[383 rows x 2 columns]

What are the 3 most popular ingredients?

Your Answer: 1. egg 2.wheat 3.butter

Double-click **here** for the solution.

However, note that there is a problem with the above table. There are ~40,000 American recipes in our dataset, which means that the data is biased towards American ingredients.

Therefore, let's compute a more objective summary of the ingredients by looking at the ingredients per cuisine.

Let's create a *profile* for each cuisine.

In other words, let's try to find out what ingredients Chinese people typically use, and what is **Canadian** food for example.

In [17]:

Out[17]:

	almond	angelica	anise	anise_seec
cuisine				
african	0.156522	0.000000	0.000000	0.000000
american	0.040598	0.000025	0.003014	0.000573
asian	0.007544	0.000000	0.000838	0.002515
cajun_creole	0.000000	0.000000	0.000000	0.000000
canada	0.036176	0.000000	0.000000	0.000000
→				•

As shown above, we have just created a dataframe where each row is a cuisine and each column (except for the first column) is an ingredient, and the row values represent the percentage of each ingredient in the corresponding cuisine.

For example:

- almond is present across 15.65% of all of the African recipes.
- butter is present across 38.11% of all of the Canadian recipes.

Let's print out the profile for each cuisine by displaying the top four ingredients in each cuisine.

In [18]:

AFRICAN

onion (53%) olive_oil (52%) garlic (49%) cu min (42%)

AMERICAN

butter (41%) egg (40%) wheat (39%) onion (2 9%)

ASIAN

soy_sauce (49%) ginger (48%) garlic (47%) r ice (41%)

CAJUN CREOLE

onion (69%) cayenne (56%) garlic (48%) butt er (36%)

CANADA

wheat (39%) butter (38%) egg (35%) onion (3 4%)

CARIBBEAN

```
onion (51%) garlic (50%) vegetable_oil (3
1%) black_pepper (31%)
```

CENTRAL_SOUTHAMERICAN garlic (56%) onion (54%) cayenne (51%) toma to (41%)

CHINA

soy_sauce (70%) garlic (45%) scallion (43%)
egg (39%)

CHTNESE

soy_sauce (67%) ginger (59%) garlic (56%) s callion (50%)

EAST_ASIAN garlic (55%) soy_sauce (50%) scallion (49%) cayenne (47%)

EASTERN-EUROPE wheat (53%) egg (52%) butter (48%) onion (4

5%)

```
EASTERNEUROPEAN RUSSIAN
butter (60%) egg (50%) wheat (49%) onion (3
8%)
ENGLISH_SCOTTISH
butter (67%) wheat (62%) egg (53%) cream (4
1%)
FRANCE
butter (54%) egg (46%) wheat (43%) onion (3
2%)
FRENCH
butter (48%) egg (43%) wheat (35%) olive oi
1 (30%)
GFRMAN
butter (55%) wheat (50%) onion (48%) egg (4
2%)
```

```
GERMANY
```

wheat (67%) egg (64%) butter (45%) onion (3 1%)

GREEK

olive_oil (76%) garlic (44%) onion (36%) le mon_juice (33%)

INDIA

cumin (62%) onion (57%) turmeric (54%) garl ic (50%)

INDIAN

cumin (58%) coriander (46%) turmeric (46%) cayenne (45%)

IRISH

butter (59%) wheat (50%) egg (46%) cream (2 6%)

```
ITALIAN
```

olive_oil (65%) garlic (45%) tomato (30%) o nion (28%)

ITALY

garlic (61%) olive_oil (55%) tomato (49%) b
asil (44%)

JAPAN

soy_sauce (55%) rice (42%) vegetable_oil (38%) vinegar (34%)

JAPANESE

soy_sauce (57%) rice (45%) vinegar (37%) ve getable_oil (33%)

JEWISH

egg (59%) wheat (48%) butter (30%) onion (3 0%)

KOREAN

garlic (58%) scallion (52%) cayenne (52%) s oy_sauce (48%)

MEDITERRANEAN

olive_oil (79%) garlic (50%) onion (38%) to mato (34%)

MEXICAN

cayenne (70%) onion (60%) garlic (56%) toma to (49%)

MFXTCO

cayenne (74%) onion (71%) garlic (63%) toma to (62%)

MIDDLEEASTERN

olive_oil (60%) garlic (46%) wheat (37%) le mon_juice (35%)

MOROCCAN

olive oil (72%) cumin (54%) onion (49%) gar

lic (45%)

NORTH-AFRICAN

onion (55%) olive_oil (50%) cumin (48%) gar lic (46%)

SCANDINAVIA

wheat (74%) butter (70%) egg (59%) cream (2 7%)

SCANDINAVIAN

butter (53%) egg (41%) vinegar (31%) cream (31%)

SOUTH-AMERICA

onion (42%) garlic (36%) egg (34%) milk (3 1%)

SOUTHERN_SOULFOOD

butter (57%) wheat (48%) egg (41%) corn (2 9%)

SOUTHWESTERN

cayenne (81%) garlic (62%) onion (61%) cila ntro (51%)

SPAIN

onion (61%) olive_oil (57%) garlic (50%) to mato (42%)

SPANISH PORTUGUESE

olive_oil (62%) garlic (57%) onion (43%) be ll pepper (34%)

THAI

garlic (56%) fish (54%) cayenne (46%) coria nder (42%)

THAILAND

garlic (64%) fish (51%) cayenne (47%) soy_s auce (44%)

```
UK-AND-IRELAND
wheat (60%) butter (59%) egg (48%) milk (3
8%)

VIETNAMESE
fish (78%) garlic (72%) rice (47%) vegetabl
e_oil (47%)

WESTERN
egg (51%) wheat (46%) butter (46%) black_pe
pper (36%)
```

At this point, we feel that we have understood the data well and the data is ready and is in the right format for modeling!

Thank you for completing this lab!

This notebook was created by <u>Alex Aklson</u> (https://www.linkedin.com/in/aklson/). We hope you found this lab session interesting. Feel free to contact us if you have any questions!

This notebook is part of the free course on **Cognitive Class** called *Data Science Methodology*. If you accessed this notebook outside the course, you can take this free self-paced course, online by clicking here (https://cocl.us/DS0103EN_LAB3_PYTHON).

Copyright © 2019 Cognitive Class (https://cognitiveclass.ai/? utm_source=bducopyrightlink&utm_medium=dswb&utm_campaign=bdu
This notebook and its source code are released under the terms of the
MIT License (https://bigdatauniversity.com/mit-license/).

