第三讲:矩阵零空间,线性方程组的完整解

3.1 *A* 的零空间: 求解 Ax = 0 与 Rx = 0

本节介绍包含 $A\mathbf{x} = \mathbf{0}$ 的所有解的子空间。矩阵 $A \in \mathbb{R}$ 乘 n,可以是正方形或矩形。

零空间 N(A) 由 Ax=0 的所有解构成. 这些向量 x 落在 R^n .

检查解向量是否形成子空间。假设 x 和 y 在零空间中(这是表示 $A\mathbf{x}=\mathbf{0}$ 和 $A\mathbf{y}=\mathbf{0}$)。矩阵乘法规则给出 $A(\mathbf{x}+\mathbf{y})=\mathbf{0}+\mathbf{0}$ 。同时还给出 $A(c\mathbf{x})=c\mathbf{0}$ 。右侧仍然为零。因 $\mathbf{x}+\mathbf{y}$ 和 $c\mathbf{x}$ 也是在零空间 $\mathbf{N}(A)$ 中。因此,是一个子空间。

强调: 零空间 $\mathbf{N}(A)$ 是 \mathbf{R}^n 的一个子空间,列空间 $\mathbf{C}(A)$ 是 \mathbf{R}^m 的一个子空间。

$$oldsymbol{eta}$$
 $oldsymbol{1}$ 描述 $A=egin{bmatrix}1&2\3&6\end{bmatrix}$ 的零空间. 该矩阵是奇异的!

m 对线性方程组 Ax = 0 使用高斯消去法:

$$x_1 + 2x_2 = 0 \longrightarrow x_1 + 2x_2 = 0$$

 $3x_1 + 6x_2 = 0$ **0=0**

实际上只有一个方程。第二个方程式是第一个方程式乘以 3. 在行视角中,线 $x_1+2x_2=0$ 与线 $3x_1+6x_2=0$ 相同。这条线就是零空间 $\mathbf{N}(A)$ 。它包含所有 的解 (x_1,x_2) .

Ying Zhang 人工智能代数学基础 46 / 297

例 2 x+2y+3z=0 来自于 1 乘 3 矩阵 $A=\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$. 则 Ax=0 表示一个平面。所有在这个平面上的向量都垂直于 (1,2,3). 这个平面就是 A 的零空间. 此处,有两个自由变量 y 和 z 分别设为 0 和 1.

$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = 0 有解 s_1 = \begin{bmatrix} -2 \\ \mathbf{1} \\ \mathbf{0} \end{bmatrix} s_2 = \begin{bmatrix} -3 \\ \mathbf{0} \\ \mathbf{1} \end{bmatrix}$$

向量 s_1 和 s_2 落在平面 x + 2y + 3z = 0中。平面上的所有项目可表示为 s_1 和 s_2 的组合.

注意 s_1 和 s_2 的特殊之处。最后两个分量是"自由的",我们特别选择它们作为 1,0 和 0,1。然后,第一个分量 -2 和 -3 由方程 Ax=0 确定。

两个关键步骤: (1) 将 A 化为 简化行阶梯型 R; (2) 寻找上述 Ax = 0 的 一般解。

Ying Zhang 人工智能代数学基础 47 / 297

3.2 主列与自由列

例 3 寻找矩阵 A, B, C 的零空间, 以及 Cx = 0 的一般解:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 8 \end{bmatrix} \mathbf{B} = \begin{bmatrix} A \\ 2A \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 8 \\ 2 & 4 \\ 6 & 16 \end{bmatrix} \mathbf{C} = \begin{bmatrix} A & 2A \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 & 4 \\ 3 & 8 & 6 & 16 \end{bmatrix}$$

解 方程 Ax = 0 有唯一零解 x = 0. 它的零空间 **Z**. 仅包含 **R**² 中的零向量 x = 0. 事实上,

$$A\boldsymbol{x} = \left[\begin{array}{cc} 1 & 2 \\ 3 & 8 \end{array} \right] \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] = \left[\begin{array}{c} 0 \\ 0 \end{array} \right]$$
可得
$$\left[\begin{array}{c} 1 & 2 \\ 0 & 2 \end{array} \right] \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] = \left[\begin{array}{c} 0 \\ 0 \end{array} \right]$$
即
$$\left[\begin{array}{c} \boldsymbol{x}_1 = \boldsymbol{0} \\ \boldsymbol{x}_2 = \boldsymbol{0} \end{array} \right]$$

A 可逆. 所有列都是主的.

矩形矩阵 B 具有相同的零空间 \mathbf{Z} 。 $B\mathbf{x} = \mathbf{0}$ 中的前两个方程同样要求 $\mathbf{x} = \mathbf{0}$; 后两个方程也将强制 $\mathbf{x} = \mathbf{0}$ 。当我们添加额外的方程(给出额外的行)时,零空间肯定不会变大。额外的行对零空间中的向量 \mathbf{x} 施加了更多条件。

矩形矩阵 C 不同。它有额外的列,而不是额外的行。解向量 x 有 4 个组件。 消除将在 C 的前两列中生成枢轴(pivot),但 C 的最后两列是"自由"的, 它们没有枢轴。

行 2 减去
$$C = \begin{bmatrix} 1 & 2 & 2 & 4 \\ 3 & 8 & 6 & 16 \end{bmatrix}$$
 化为 $U = \begin{bmatrix} 1 & 2 & 2 & 4 \\ 0 & 2 & 0 & 4 \end{bmatrix}$ \uparrow \uparrow \uparrow \uparrow

3.3 简化行阶梯型 R

由 U 进一步获得 R:

- 1. 主元上方化为零. 使用主元所在行进行高斯消去法.
- 2. 主元的元素化为一. 将整个主元所在行行除以其主元。

零空间保持不变: N(A) = N(U) = N(R). 当我们到达简化行阶梯形式 $\mathbf{R} = \operatorname{rref}(\mathbf{A})$, 最容易看到他的零空间。 \mathbf{R} 的主元所在列包含 \mathbf{I} 。

获得
R

$$U = \begin{bmatrix} 1 & 2 & 2 & 4 \\ 0 & 2 & 0 & 4 \end{bmatrix}$$
 变成
 $R = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 2 \end{bmatrix}$

 一般解
As = 0
 $S_1 = \begin{bmatrix} -2 \\ 0 \\ 1 \\ 0 \end{bmatrix}$
 and $S_2 = \begin{bmatrix} 0 \\ -2 \\ 0 \\ 1 \end{bmatrix}$
 $C_2 = \begin{bmatrix} 0 \\ -2 \\ 0 \\ 0 \end{bmatrix}$
 $C_2 = \begin{bmatrix} 0 \\ -2 \\ 0 \\ 0 \end{bmatrix}$

 As = 0
 $C_2 = \begin{bmatrix} 0 \\ -2 \\ 0 \\ 0 \end{bmatrix}$
 $C_2 = \begin{bmatrix} 0 \\ -2 \\ 0 \\ 0 \end{bmatrix}$
 $C_2 = \begin{bmatrix} 0 \\ -2 \\ 0 \\ 0 \end{bmatrix}$

 As = 0
 $C_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
 $C_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
 $C_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

 As = 0
 $C_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
 $C_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
 $C_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

 As = 0
 $C_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
 $C_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
 $C_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

 As = 0
 $C_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
 $C_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
 $C_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

 As = 0
 $C_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
 $C_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
 $C_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

 As = 0
 $C_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 $C_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 $C_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

 As = 0
 $C_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 $C_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 $C_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

 As = 0
 $C_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 $C_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 $C_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

 As = 0
 $C_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 $C_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 $C_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

 As = 0
 $C_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 $C_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 $C_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

 As = 0
 $C_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 $C_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 $C_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

 As = 0
 $C_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Pivot Variables and Free Variables in the Echelon Matrix R.

$$\boldsymbol{A}\!=\!\left[\left[\begin{array}{ccccc} p & p & f & p & f \\ & & & & & \\ & & & & & \\ \end{array} \right]$$

$$\boldsymbol{R} = \begin{bmatrix} \mathbf{1} & 0 & a & 0 & c \\ 0 & \mathbf{1} & b & 0 & d \\ 0 & 0 & 0 & \mathbf{1} & e \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} p & p & f & p & f \\ & & & & & \\ & & & & & \\ \end{bmatrix} \quad R = \begin{bmatrix} \mathbf{1} & 0 & a & 0 & c \\ 0 & \mathbf{1} & b & 0 & d \\ 0 & 0 & 0 & \mathbf{1} & e \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \quad s_1 = \begin{bmatrix} -a \\ -b \\ \mathbf{1} \\ 0 \\ 0 \end{bmatrix} \quad s_2 = \begin{bmatrix} -c \\ -d \\ 0 \\ -e \\ \mathbf{1} \end{bmatrix}$$

3 pivot columns p to be revealed by R

I in pivot columns 3 pivots: rank r = 3 Rs = 0 means As = 0

special $Rs_1 = 0$ and $Rs_2 = 0$ 2 free columns f F in free columns take -a to -e from R

R shows clearly: column 3 = a(column 1) + b(column 2). The same must be true for A. The special solution s_1 repeats that combination so (-a, -b, 1, 0, 0) has $Rs_1 = 0$. Nullspace of $A = \text{Nullspace of } R = \text{all combinations of } s_1 \text{ and } s_2.$

注意: 列空间 $\mathbf{C}(R)$ 包含所有形如 $(b_1, b_2, b_3, 0)$ 的向量。也就是通常, $\mathbf{C}(R) \neq \mathbf{C}(A)$.

注意: 零空间的 "维数" 等于自由变量的个数.

3.4 矩阵的秩

数字 m 和 n 给出了矩阵的大小,但不一定是线性方程组的真正大小。A 的真实大小由它的秩给出。

定义 A 的秩等于主元的个数, 这个数值是 r.

选取以下 3 乘 4 矩阵, 秩为 r=2:

四列
$$A = \begin{bmatrix} 1 & 1 & 2 & 4 \\ 1 & 2 & 2 & 5 \\ 1 & 3 & 2 & 6 \end{bmatrix} \quad R = \begin{bmatrix} \mathbf{1} & \mathbf{0} & 2 & 3 \\ \mathbf{0} & \mathbf{1} & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

A 的前两列是 (1,1,1) 和 (1,2,3),方向不同。这些将是枢轴列(由 R 显示)。第三列 (2,2,2) 是第一列的倍数。我们在第三栏中看不到主元。第四列 (4,5,6) 是前三列的总和。第四列也没有主元。A 和 R 的秩均为 2。

每一个"自由列"是其之前主列的线性组合,由一般解 $oldsymbol{s}_1$, $oldsymbol{s}_2$ 的选取可知:

列
$$3 = 2($$
 列 $1) + 0($ 列 $2)$ $s_1 = (-2, -0, 1, 0)$ 列 $4 = 3($ 列 $1) + 1($ 列 $2)$ $s_2 = (-3, -1, 0, 1)$

秩的第二种定义,更高级:它处理整行和整列向量,而不仅仅是数字。所有三个矩阵 $A \times U$ 和 R 都有 r 个线性无关行。 $A \times U$ 和 R 还有 r 线性无关列。

秩的第三种定义,最高级:它处理向量的空间。秩r等于列空间的"维度"。同时也是"行空间"的维度。最棒的是n-r是零空间的维度。

小结-1

- 1 零空间 N(A) 属于 R^n , 它包含 Ax = 0 的所有解 x, 其中包含 x = 0.
- 2 初等行变换 (from A to U to R) 不会改变零空间: $\mathbf{N}(A) = \mathbf{N}(U) = \mathbf{N}(R)$.
- 3 简化行阶梯型R = rref(A) 所有的主元都= 1, 其上下元素都为零.
- 4 若 R 的列 j 是自由的(不含主元),则可令其 $x_j=1$ 获得 $A\mathbf{x}=\mathbf{0}$ 的一个一般解 .
- 5 主元的个数 = R 的非零行的个数 = **秩** \mathbf{r} . 自由列个数是n-r.
- 6 Ax = 0 的完整解可表示为 n r 个一般解的线性组合.

Ying Zhang 人工智能代数学基础 54 / 297

3.5 Ax = b 的完整解:存在条件

现在 b 不是零。左侧的行操作也必须作用于右侧。使用相同的解决方案,将 Ax=b 简化为一个更简单的系统 Rx=d。一种方法是将 b 作为矩阵的额外列,生成**增广矩阵** $\begin{bmatrix} A & b \end{bmatrix}$:

$$\begin{bmatrix} 1 & 3 & 0 & 2 \\ 0 & 0 & 1 & 4 \\ 1 & 3 & 1 & 6 \end{bmatrix} \begin{vmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{vmatrix} = \begin{bmatrix} 1 \\ 6 \\ 7 \end{bmatrix}$$
 具有
$$\begin{bmatrix} 1 & 3 & 0 & 2 & 1 \\ 0 & 0 & 1 & 4 & 6 \\ 1 & 3 & 1 & 6 & 7 \end{bmatrix} = \begin{bmatrix} A & b \end{bmatrix}.$$

当对 A 施加消去法获得 R 时,我们同时可将 b 变到 d:

$$\begin{bmatrix} 1 & 3 & 0 & 2 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x \end{bmatrix} = \begin{bmatrix} \mathbf{1} \\ \mathbf{6} \\ \mathbf{0} \end{bmatrix} \quad \underbrace{\mathbf{9}}_{\mathbf{7}} \begin{bmatrix} 1 & 3 & 0 & 2 & \mathbf{1} \\ 0 & 0 & 1 & 4 & \mathbf{6} \\ 0 & 0 & 0 & 0 & \mathbf{0} \end{bmatrix} = \begin{bmatrix} R & \mathbf{d} \end{bmatrix}$$

第三个方便变为 0=0. 所以该方程可解.

对一般的 $b = (b_1, b_2, b_3)$:

$$\begin{bmatrix} A & b \end{bmatrix} = \begin{bmatrix} 1 & 3 & 0 & 2 & b_1 \\ 0 & 0 & 1 & 4 & b_2 \\ 1 & 3 & 1 & 6 & b_3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & 0 & 2 & b_1 \\ 0 & 0 & 1 & 4 & b_2 \\ 0 & 0 & 0 & 0 & b_3 - b_1 - b_2 \end{bmatrix} = \begin{bmatrix} R & d \end{bmatrix}$$

要获得第三个方程 0=0 当且仅当 $b_3-b_1-b_2=0$. 即 $b_1+b_2=b_3$.

Ying Zhang 人工智能代数学基础 56 / 297

3.6 非齐次特解

我们已知 Ax = b(或者 Rx = d)的特殊解是 $x_p = (1,0,6,0)$ 。这个特殊解是 我们最喜欢的:自由变量取零,主元变量可以直接从 d 中读出。该方案总是可行:

要使解决方案存在,R 中的零行对应 d 中分量也必须为零。因为 I 位于 R 中, $x_{\text{particular}}$ 中的主元变量来自 d。

$$Rx_p = \begin{bmatrix} \mathbf{1} & 3 & \mathbf{0} & 2 \\ \mathbf{0} & 0 & \mathbf{1} & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{1} \\ 0 \\ \mathbf{6} \\ 0 \end{bmatrix} = \begin{bmatrix} \mathbf{1} \\ \mathbf{6} \\ 0 \end{bmatrix}$$
 主元变量 $\mathbf{1}, \mathbf{6}$ **自由变量** $\mathbf{0}, \mathbf{0}$ **解** $x_p = (\mathbf{1}, \mathbf{0}, \mathbf{6}, \mathbf{0})$

注意我们如何选择自由变量(作为零)并求解主元变量。行缩减到 R 后,这些步骤很快。当自由变量为零时, x_p 的主元变量已在右侧向量 d 中显示。

$$x_{
m particular}$$
 非齐次的特解 $Ax_p = b$ $x_{
m nullspace}$ $n-r$ 个一般解 $Ax_n = 0$

这个特定的解是 (1,0,6,0)。两个一般解满足 Rx = 0 来自 R 的两个自由列,通过颠倒 $3 \cdot 2$ 和 4 的符号。Ax = b 的完整解是 $x_p + x_n$:

完整解
$$x = x_p + x_n = \begin{bmatrix} 1 \\ 0 \\ 6 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} -3 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -2 \\ 0 \\ -4 \\ 1 \end{bmatrix}$$

58 / 297

问题 设 A 是可逆方阵, m=n=r. 那么 x_p 和 x_n 是什么?

解答 特解也是唯一解 $x_p = A^{-1}b$ 。那里没有特解或自由变量。R = I 没有零行。零空间中唯一向量是 $x_n = 0$ 。完整的解是 $x = x_n + x_n = A^{-1}b + 0$.

例 1 当 (b_1, b_2, b_3) 满足什么条件时, Ax = b 可解:

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ -2 & -3 \end{bmatrix} \text{ and } \quad \boldsymbol{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

寻找完整解 $x = x_p + x_n$.

解 使用增广矩阵及其额外的列b。从第2行减去 A b 的第1行。然后将第1行的2倍加到第3行,得到 R d:

$$\begin{bmatrix} 1 & 1 & b_1 \\ 1 & 2 & b_2 \\ -2 & -3 & b_3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & b_1 \\ 0 & 1 & b_2 - b_1 \\ 0 & -1 & b_3 + 2b_1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2b_1 - b_2 \\ 0 & 1 & b_2 - b_1 \\ 0 & 0 & \mathbf{b_3} + \mathbf{b_1} + \mathbf{b_2} \end{bmatrix}$$

最后一行是 0 = 0,如果 $b_3 + b_1 + b_2 = 0$ 。该条件使得 **b** 落在列空间中。从而 Ax = b 可解。A 的行添加到零行。为了保持一致性 b 的元素也必须加到零.

此例中没有自由变量,因为 n-r=2-2。因此,没有一般解。零空间解是 $x_n=0$ 。Ax=b 和 Rx=d 的特解即为 d 最后一列的顶部部分:

$$A oldsymbol{x} = oldsymbol{b}$$
有唯一解 $oldsymbol{x} = oldsymbol{x}_p + oldsymbol{x}_n = egin{bmatrix} 2b_1 - b_2 \ b_2 - b_1 \end{bmatrix} + egin{bmatrix} 0 \ 0 \end{bmatrix}.$

显然, 当 $b_3 + b_1 + b_2$ 不等于零时, Ax = b 的解不存在(x_p 和 x 都不存在)。

这个例子是一个非常重要的例子: A 具有列满秩。每一列都有一个主元。秩等于 r=n。矩阵又高又瘦。行缩减将 I 放在顶部,当 A 降为 R,秩为n:

列满秩
$$R = \begin{bmatrix} I \\ 0 \end{bmatrix} = \begin{bmatrix} n & \pi & n & \text{单位矩阵} \\ m - n & \text{零行} \end{bmatrix}$$
 (1)

没有自由列和自由变量。零空间是 $\mathbf{Z} = \{0\}$.

每个列满秩的矩阵 A(r=n) 具有以下性质:

- A 的所有列都是主元列.
- ② 没有自由变量与一般解.
- ③ 零空间 N(A) 仅包含零向量 x = 0.
- ④ 若方程 Ax = b 有解(方程可能无解),则仅有唯一解.

在下一节的基本语言中,A 有线性无关列仅当 x=0 时才会出现 Ax=0。第四章中,我们将在列表中再添加一个事实:当 A 秩为 n 时,方阵 $A^{\mathrm{T}}A$ 可逆。

在这种情况下,A(和 R)的零空间缩小为零向量。Ax = b 的解是唯一的(如果存在)。R 中将有 m-n 个零行。因此,在 b 上有 m-n 个条件,以便在这些行中有 0=0,从而使得b 在列空间中。对列满秩矩阵,Ax = b 要么仅有唯一解,要么无解(m>n 过定的)。

3.7 完整解: 一般情况

另一种极端情况是行满秩(r=m)"行是线性无关的。"每一行都有一个主元,如下例:。

例 2 方程 Ax = b 有 n = 3 个未知量,但只有 m = 2 个方程:

行满秩
$$x + y + z = 3 x + 2y + z = 4$$
 $(r = m = 2)$

特解将是线上的一个点。添加零空间向量 x_n ,将沿着图3.3中的线移动。

Figure 3.3: Complete solution = one particular solution + all nullspace solutions.

Ying Zhang 人工智能代数学基础 63 / 297

通过对 $\begin{bmatrix} A & b \end{bmatrix}$ 消去法,寻找 x_p 和 x_n 。从第 2 行减去第 1 行,然后从第 1 行减去第 2 行:

$$\left[\begin{array}{ccccc} 1 & 1 & 1 & \mathbf{3} \\ 1 & 2 & -1 & \mathbf{4} \end{array}\right] \rightarrow \left[\begin{array}{ccccc} 1 & 1 & 1 & \mathbf{3} \\ 0 & 1 & -2 & \mathbf{1} \end{array}\right] \rightarrow \left[\begin{array}{ccccc} 1 & 0 & 3 & \mathbf{2} \\ 0 & 1 & -2 & \mathbf{1} \end{array}\right] = \left[\begin{array}{ccccc} R & d \end{array}\right].$$

 $x_{particular}$ 来自右端项 d: $x_p = (2,1,0)$

 x_{special} 来自 R 的第三列(自由列): s = (-3, 2, 1)

完整解
$$x = x_p + x_n =$$
$$\begin{vmatrix} 2 \\ 1 \\ 0 \end{vmatrix} + x_3 \begin{vmatrix} -3 \\ 2 \\ 1 \end{vmatrix}$$

每个行满秩的矩阵 A(r=m) 具有以下性质:

- 1. 所有的行都有主元, R 没有零行.
- 2. 对任意的右端项 b, Ax = b 总有解.
- 3. 列空间是整个空间 \mathbb{R}^m .
- 4. 有 n-r=n-m 个一般解, 在 A 的零空间.

在这种情况下,有 m 个主元,行是线性无关的。因此 A^{T} 的列是线性无关的。 A^{T} 的零空间是零向量。

依据矩阵的秩r, 会发生如下四种可能情况:

$$egin{array}{llll} oldsymbol{r} = oldsymbol{m} & ext{and} & oldsymbol{r} = oldsymbol{n} & ext{方且可逆} & Ax = oldsymbol{b} & ext{有 1 } oldsymbol{m} \ oldsymbol{r} = oldsymbol{m} & ext{ Max} = oldsymbol{b} & ext{有 0 或 1 } oldsymbol{m} \ oldsymbol{r} < oldsymbol{m} & ext{and} & oldsymbol{r} < oldsymbol{n} & ext{ and } oldsymbol{r} < oldsymbol{n} < oldsymbol{r} < oldsymbol{n} & ext{ and } oldsymbol{r} < oldsym$$

对应四类简化行阶梯矩阵 R 的样式(列置换意义下)

$$\left[\begin{array}{ccc}I\end{array}\right] \quad \left[\begin{array}{ccc}I&F\end{array}\right] \qquad \left[\begin{array}{ccc}I&F\\0&0\end{array}\right]$$

它们的秩 r = m = n r = m < n r = n < m r < m, r < n

小结-2

- $\mathbf{1} Ax = \mathbf{b} : x$ 的完整解= (一个特解 x_p) + (零空间中的任意向量 x_n).
- 2 消去 $\begin{bmatrix} A & b \end{bmatrix}$ 以获得 $\begin{bmatrix} R & d \end{bmatrix}$. 则 Ax = b 等价于 Rx = d.
- **3** Ax = b 与 Rx = d 可解仅当R的所有零行对应d中的分量也是零.
- 4 当 Rx = d 可解, 特解 x_p 使得其所有自由变量等于零.
- 5 A 列满秩 r = n 当它的零空间只有零向量,即无自由变量.
- **6** A 行满秩 r = m 当它的列空间 C(A) 是整个 \mathbb{R}^m , 即Ax = b 总是有界.
- 7 四种解的情况: r=m=n(A 可逆); r=m < n (任意Ax=b均可解) r=n < m(Ax=b有 1 或 0 个解); r < m, r < n(0 或 ∞ 个解).

Ying Zhang 人工智能代数学基础 67 / 297

1. 自学 worked examples 3.2C, 3.3B;

2. Problem Set 3.2: 15, 22, 24, 30, 32, 36, 38, 48, 58

2. Problem Set 3.3: 22, 24, 25, 34

Ying Zhang 人工智能代数学基础 68 / 297