The untold story of StogMA

Yupan Liu

Hebrew University of Jerusalem \rightarrow ?

Available at arXiv:2011.05733 and arXiv:2010.02835

Partially joint with Dorit Aharonov and Alex B. Grilo

YITP, Kyoto University (Virtually), Nov 2020

- What is the complexity class StoqMA?
- 2 StoqMA: a distribution testing lens
- 3 Distinguishing reversible circuits
- 4 StoqMA vs. MA: the power of error reduction
- **6** Open problems

• What is the complexity class StoqMA?
The definition of StoqMA

What is the computational power of StoqMA

StoqMA: a distribution testing lens

3 Distinguishing reversible circuits

4 StoqMA vs. MA: the power of error reduction

6 Open problems

A "quantum" definition of MA

Consider a promise problem $\mathcal{L}=(\mathcal{L}_{yes},\mathcal{L}_{no})\in \mathsf{MA}$, there is a verifier such that for any input $x\in\mathcal{L}$, a uniformly generated verification circuit V_x such that

- Yes: If $x \in \mathcal{L}_{yes}$, $\exists w$ such that $\Pr[V_x \text{ accepts } w] \geq 2/3$;
- No: If $x \in \mathcal{L}_{no}$, $\forall w$, we have $\Pr[V_x \text{ accepts } w] \leq 1/3$.

"Quantize" the definition: Viewed V_x as a quantum circuit

- Verification circuit using only classical reversible gates (i.e. Toffoli, CNOT, X).
- \diamond Measure the designed output qubit in the $\{|0\rangle, |1\rangle\}$ basis.
- \diamond Ancillary qubits $|+\rangle^{\otimes n_+}$ corresponds to randomized ancillary bits.

Acceptance probability $\Pr[V_x \text{ accepts } |w\rangle] = \||0\rangle \langle 0|_1 V_x |w\rangle |0\rangle^{\otimes n_0} |+\rangle^{\otimes n_+} \|_2^2$

Remark on equivalence. The optimal witness is classical witness (since $V_x |0\rangle \langle 0|_1 V_x^{\dagger}$ is a diagonal matrix), so it is equivalent to the standard definition.

The weird class StoqMA

Consider a promise problem $\mathcal{L}=(\mathcal{L}_{yes},\mathcal{L}_{no})\in \mathsf{StoqMA}$, there is a verifier such that for any input $x\in\mathcal{L}$, a uniformly generated verification circuit V_x that measures the output qubit in the $\{|+\rangle,|-\rangle\}$ basis such that

- Yes: If $x \in \mathcal{L}_{yes}$, $\exists |w\rangle$ such that $\Pr[V_x \text{ accepts } |w\rangle] \geq \underline{a}$;
- No: If $x \in \mathcal{L}_{no}$, $\forall |w\rangle$, we have $\Pr[V_x \text{ accepts } |w\rangle] \leq b$; where $1 \geq a > b \geq 1/2$ and $a b \geq 1/\text{poly}(n)$.

Acceptance probability $\Pr[V_x \text{ accepts } |w\rangle] = \||+\rangle \langle +|_1 V_x |w\rangle |0\rangle^{\otimes n_0} |+\rangle^{\otimes n_+} \|_2^2$

Remarks on the weirdness

- ► Threshold parameters *a*,*b* cannot be replaced by some constants since error reduction for StoqMA remains unknown since [BBT06].
- ▶ For any non-negative witness, it is evident that $Pr[V_x \text{ accepts } w] \ge 1/2$.
- Owing to Perron-Frobenius theorem, the optimal witness is non-negative state. W.L.O.G. we can think the witness as a probability distribution!

• What is the complexity class StoqMA?
The definition of StoqMA

What is the computational power of StoqMA

- StoqMA: a distribution testing lens
- 3 Distinguishing reversible circuits
- 4 StoqMA vs. MA: the power of error reduction
- **6** Open problems

The computational power of StoqMA

- Stoquastic (i.e. sign problem free) local Hamilton. problem is StoqMA-complete [BBT06].
- Complexity classification of 2-LHP [CM13,BH14]: P, NP-complete, StoqMA-complete, or QMA-complete.
- ▶ StoqMA contains MA: simulating a single-qubit $\{|0\rangle,|1\rangle\} \text{ basis measurement by a } \{|+\rangle,|-\rangle\} \text{ basis measurement with ancillary qubits, viz.}$ $\Pr\left[V_x^{(+)} \text{ accepts}|w\rangle\right] = \frac{1}{2} + \frac{1}{2}\Pr\left[V_x^{(0)} \text{ accepts}|w\rangle\right].$
- ► AM (essentially SBP) contains StoqMA: Set lower bound protocol [GS86].
- ► StoqMA₁ = MA [BBT06,BT09].
- Under derandomization assumptions [KvM02,MV05], AM collapses to NP: MA = StoqMA = SBP.

Q: Is it possible to collapse the hierarchy $MA \subseteq StoqMA \subseteq SBP$?

- What is the complexity class StoqMA?
- 2 StoqMA: a distribution testing lens
- 3 Distinguishing reversible circuits
- 4 StoqMA vs. MA: the power of error reduction
- 6 Open problems

- What is the complexity class StoqMA?
- ② StoqMA: a distribution testing lens Proving StoqMA ⊆ MA by taking samples (and failed) eStoqMA ⊆ MA: taking both samples and queries What's the difference between eStoqMA and StoqCMA
- 3 Distinguishing reversible circuits
- 4 StoqMA vs. MA: the power of error reduction
- Open problems

Measuring non-negative states in the Hadamard basis, revisited

First (failed) attempt: proving StoqMA \subseteq MA by distribution testing Given the state $|0\rangle|D_0\rangle+|1\rangle|D_1\rangle:=V_x|w\rangle|0\rangle^{\otimes n_0}|+\rangle^{\otimes n_+}$ (before the measurement), measure the output qubit in the $\{|+\rangle,|-\rangle\}$ basis:

$$\begin{split} \| \left| + \right\rangle \left\langle + \right|_1 \left(\left| 0 \right\rangle \left| D_0 \right\rangle + \left| 1 \right\rangle \left| D_1 \right\rangle \right) \|_2^2 &= \frac{1}{2} \| \left| D_0 \right\rangle + \left| D_1 \right\rangle \|_2^2 \\ &= 1 - \frac{1}{2} \| \left| D_0 \right\rangle - \left| D_1 \right\rangle \|_2^2 := 1 - d_H^2 (D_0, D_1), \end{split}$$

where
$$|D_k\rangle=\sum_i\sqrt{D_k(i)}\,|i\rangle$$
 for $k=0,1$ and $\langle D_0|D_0\rangle+\langle D_1|D_1\rangle=1.$

▶ It suffices to approximate the squared Hellinger distance $d_H^2(D_0, D_1)$ within 1/poly(n) accuracy using only poly(n) sample accesses to D_0, D_1 .

Exponentially many samples are necessary even for constant accuracy! (A corollary of Theorem 9 in [DKW18])

There is a constant $\epsilon>0$ such that any algorithm for equivalence test between D_0 and D_1 on [N], namely distinguishing $d_H^2(D_0,D_1) \leq \epsilon^2/8$ from $d_H^2(D_0,D_1) \geq \epsilon^2/2$, requires $\Omega(N/\log N)$ samples.

- What is the complexity class StoqMA?
- StoqMA: a distribution testing lens

Proving StoqMA \subseteq MA by taking samples (and failed)

 $eStoqMA \subseteq MA: \ taking \ both \ samples \ and \ queries$

What's the difference between eStoqMA and StoqCMA?

- 3 Distinguishing reversible circuits
- 4 StoqMA vs. MA: the power of error reduction
- **5** Open problems

From dual access model to easy witness

Dual (query+sample) access model

- Sample access to D: Run a copy of V_x that takes $|w\rangle$ as input, measure all qubits in the $\{|0\rangle, |1\rangle\}$ basis, then viewed the meas. outcome as a sample.
- Query access to D: Given an index i, alg. \mathbf{Q}_D evaluates D(i) efficiently. e.g. a subset state $|S\rangle = \sum_{i \in S} \frac{1}{\sqrt{|S|}} |i\rangle$ where the subset S's membership is efficiently verifiable.

Theorem [CR14]. Approximating the total variation distance $d_{TV}(D_0, D_1)$ with an error ϵ requires only $\Theta(1/\epsilon^2)$ accesses to the oracle.

StoqMA with easy witness (eStoqMA)

- ▶ Easy witness: given a witness state $|D\rangle$, there is an algorithm Q_D such that the coordinate D(i) can be evaluated efficiently for any index i.
- ▶ eStoqMA's definition modified from StoqMA: For yes instance $x \in \mathcal{L}_{yes}$ where $\mathcal{L} = (\mathcal{L}_{yes}, \mathcal{L}_{no}) \in \mathsf{eStoqMA}$, the witness must be easy witness.

Remark. Constant multiplicative error approximation of the cardinality of an efficient verifiable set is (informally) SBP-complete [Watson16,Vol20].

eStoqMA = MA: proof sketch

Theorem. eStoqMA = MA.

Proof Sketch. Consider state $|0\rangle|D_0\rangle+|1\rangle|D_1\rangle:=V_x|w\rangle|0\rangle^{\otimes n_0}|+\rangle^{\otimes n_+}$, then

$$\frac{\Pr\left[V_x \text{ accepts } |w\rangle\right]}{\|D_1\|_1} = \frac{\frac{1}{2}\|\left|D_0\rangle + \left|D_1\rangle\right|_2^2}{\|D_1\|_1} = \underset{i \sim D_1/\|D_1\|_1}{\mathbb{E}} \left(1 + \frac{D_0(i)}{D_1(i)}\right)^2.$$

By Chernoff bound, an empirical estimation indicates 1/poly(n) additive error approximation of $\Pr[V_x \text{ accepts } |w\rangle]$.

Corollary. Stoq $MA_1 \subseteq MA$.

Proof. It is evident that $StoqMA_1 \subseteq eStoqMA_1$ since the easy witness is the subset state associated with the set that consists of all nodes that mark "good" on the configuration graph of a SetCSP instance (Def. is postponed).

 \star Funny fact. The proof technique of eStoqMA \subseteq MA is also used in quantum inspired classical algorithm, such as [Tang19, CGLLTW20].

- What is the complexity class StoqMA?
- StoqMA: a distribution testing lens

Proving StoqMA ⊆ MA by taking samples (and failed)
eStogMA ⊆ MA: taking both samples and queries

What's the difference between eStoqMA and StoqCMA?

- 3 Distinguishing reversible circuits
- 4 StoqMA vs. MA: the power of error reduction
- **5** Open problems

Remarks on StoqMA with classical witness (StoqCMA)

Proposition (Alex B. Grilo)

 $\forall \ 1/2 \leq b < a \leq 1 \text{, } \mathsf{StoqCMA}(a,b) \subseteq \mathsf{MA}(2a-1,2b-1).$

Proof Intuition. Notice
$$|+\rangle\langle +|=\frac{1}{2}(I+X)$$
, then for any $|\psi\rangle$, $\langle\psi|V_x|+\rangle\langle +|_1V_x^\dagger|\psi\rangle=\frac{1}{2}+\frac{1}{2}\langle\psi|V_xX_1V_x^\dagger|\psi\rangle$.

Corollary. PreciseStoqCMA = PreciseMA = NP^{PP} .

Corollary². $NP^{PP} \subseteq PreciseStoqMA \subseteq PSPACE$.

Remarks

- ▶ Classical witness is clearly easy witness, but the opposite is not true. Since preparing $|D\rangle$ from Q_D requires the postselection.
- ▶ Classical witness is not optimal for any StoqMA verifier, e.g. $V_x = I$.

- What is the complexity class StoqMA?
- ② StoqMA: a distribution testing lens
- 3 Distinguishing reversible circuits
- 4 StoqMA vs. MA: the power of error reduction
- **6** Open problems

- What is the complexity class StoqMA?
- ② StoqMA: a distribution testing lens
- Oistinguishing reversible circuits Reversible Circuit Distinguishability is StoqMA-complete Soundness error reduction for StoqMA
- 4 StoqMA vs. MA: the power of error reduction
- **6** Open problems

From SWAP test to Reversible Circuit Distinguishability

SWAP test [BCWdW01]

- \diamond SWAP test outputs 1 with prob. $|\langle \psi | \phi \rangle|^2$.
- \diamond Thinking $|\psi\rangle\otimes|\phi\rangle$ as a witness, then SWAP test looks like a trivial StoqMA verifier with maximum accept. prob. 1 (and the optimal witness is classical).

Reversible Circuit Distinguishability, $RCD(a, b; n_+)$

Given efficient reversible circuits C_0,C_1 that utilizes ancillary states $|0\rangle^{\otimes n_0}$ and $|+\rangle^{\otimes n_+}$. Let non-negative states that generates by C_k (k=0,1) and $|w\rangle$ be $|D_k\rangle:=C_k\,|w\rangle\,|0\rangle^{\otimes n_0}\,|+\rangle^{\otimes n_+}$, decide whether $\exists\,|w\rangle$ s.t. $\frac{1}{2}\|\,|D_0\rangle-|D_1\rangle\,\|_2^2\geq a$; or $\forall\,|w\rangle,\,\frac{1}{2}\|\,|D_0\rangle-|D_1\rangle\,\|_2^2\leq b$, where $a-b\geq 1/\mathrm{poly}(n)$.

The computational complexity of distinguishing circuits

Theorem

Reversible Circuit Distinguishability, viz. $RCD(\cdot,\cdot;poly)$, is StoqMA-complete.

- ► Theorem [JWZ03]. Quantum Circuit Distinguishability is QMA-complete.
- ▶ Theorem [Jor14]. Reversible Circuit Distinguishability (without randomized ancillary bit), viz. $RCD(\cdot,\cdot;0)$, is NP-complete.
- $\star \ \mathrm{RCD}(\cdot,\cdot;\mathrm{poly})$ seems MA-complete but it is actually StoqMA-complete!

Proposition 1

Exact Reversible Circuit Dist., viz. RCD(a, 0; poly), is NP-complete.

Corollary. StoqMA with perfect soundness is contained in NP.

- ▶ Theorem [FGMSZ89] Arthur-Merlin games with perfect soundness ⊆ NP.
- Theorem [Tan10] Exact Quantum Circuit Distinguishability is NQP-complete, namely QMA with perfect soundness.

Proposition 2

RCD without randomized ancillary bit, viz. $RCD(\cdot,\cdot;0)$, is NP-complete.

Corollary (Simplified proof of [Jor14]). $RCD(\cdot,\cdot;0)$ is NP-complete.

Reversible Circuit Distinguishability is StoqMA-complete: proof sketch

For k=0,1, let $|D_k\rangle:=C_k|w\rangle\,|0\rangle^{\otimes n_0}\,|+\rangle^{\otimes n_+}$, then:

- ► RCD(a,b; poly) is contained in StoqMA $(1-\frac{a}{2},1-\frac{b}{2})$.
 - ♦ Dash line:

$$\frac{1}{\sqrt{2}}|0\rangle|D_0\rangle + \frac{1}{\sqrt{2}}|1\rangle|D_1\rangle.$$

- ► RCD(a,b; poly) is hard for StoqMA($1-\frac{a}{2},1-\frac{b}{2}$).
 - \diamond Set $C_0 := V_x^{\dagger} X_1 V_x$ and $C_1 := I$.
 - \diamond Let $M:=V_x^\dagger X_1 V_x$, then
 - $\Pr[V_x \text{ accepts } |w\rangle] = \frac{1}{2} + \frac{1}{2}\lambda_{\max}(M).$

Remark. This observation went back to (weak) error reduction for QMA [KSV02].

- What is the complexity class StoqMA?
- 2 StoqMA: a distribution testing lens
- ② Distinguishing reversible circuits Reversible Circuit Distinguishability is StoqMA-complete Soundness error reduction for StoqMA
- 4 StoqMA vs. MA: the power of error reduction
- **6** Open problems

Soundness error reduction for StogMA

Theorem (AND-type repetition procedure of StoqMA)

For any
$$l=\operatorname{poly}(n)$$
, $\operatorname{StoqMA}\left(\frac{1}{2}+\frac{a}{2},\frac{1}{2}+\frac{b}{2}\right)\subseteq\operatorname{StoqMA}\left(\frac{1}{2}+\frac{a^{l(n)}}{2},\frac{1}{2}+\frac{b^{l(n)}}{2}\right)$.

Corollary.
$$\forall 1 - a \ge \frac{1}{\text{poly}(n)}, \ l = \text{poly}(n), \ \mathsf{StoqMA}(1, a) \subseteq \mathsf{StoqMA}(1, 2^{-l(n)}).$$

Proof Sketch

Recall that $\Pr[V_x \text{ accepts } |w\rangle] = \frac{1}{2} + \frac{1}{2} \lambda_{\max}(M)$ where $M = V_x^{\dagger} X_1 V_x$.

Let us take the tensor product (i.e. "conjunction" or "AND") now:

- ♦ Yes case: √
- ♦ No case: Entangled witness will not increase the maximum acceptance probability.

- What is the complexity class StoqMA?
- 2 StoqMA: a distribution testing lens
- 3 Distinguishing reversible circuits
- 4 StoqMA vs. MA: the power of error reduction
- **6** Open problems

- What is the complexity class StoqMA?
- StoqMA: a distribution testing lens
- 3 Distinguishing reversible circuits
- 4 StoqMA vs. MA: the power of error reduction Why error reduction is important for StoqMA? SetCSP_{negl,1/poly} is StoqMA_{1-negl}-complete Proof Sketch: SetCSP_{negl,1/poly} ∈ MA_{1-negl}
- **6** Open problems

Error reduction for StoqMA implies StoqMA = MA

Theorem [AGL20]

(Completeness) error reduction for StoqMA implies StoqMA \subseteq MA. Namely, StoqMA $(1-1/p_1(n),1-1/p_2(n))\subseteq$ MA, where p_1 is a super-polynomial of n and p_2 is a polynomial of n.

Proof Intuition

Notice [BBT06, BT09] essentially proves $StoqMA_1 \subseteq MA_1$. It seems plausible to make it *robust*, namely $StoqMA_{1-\epsilon} \subseteq MA_{1-\epsilon'}$ where ϵ and ϵ' are negligible.

 $\underline{\mathsf{MA}}$ containment Given a configuration graph G = (V, E) that each node is marked either "good" or "bad", there is a R.W. that starts at node $v \in V$ such that

- Yes: $\exists v \text{ s.t. R.W. will not reach any "bad" node in } any poly(n) steps w.h.p. .$
- \bullet No: $\forall v,$ R.W. will reach "bad" node in p(n) steps where p is some poly. w.h.p. . (See Sergey Bravyi's tutorial for more details.)
- * To make this R.W. "robust", we need the probabilistic method!
 - Interestingly, the probabilistic method and completeness error reduction are also used in proof of MA ⊆ MA₁ [FGMSZ89]!

- What is the complexity class StoqMA?
- 2 StoqMA: a distribution testing lens
- 3 Distinguishing reversible circuits
- **4** StoqMA vs. MA: the power of error reduction Why error reduction is important for StoqMA? $SetCSP_{negl,1/poly} \text{ is StoqMA}_{1-negl}\text{-complete}$ Proof Sketch: $SetCSP_{negl,1/poly} \in \mathsf{MA}_{1-negl'}$
- **6** Open problems

SetCSP : a combinatorial $\operatorname{\mathsf{StoqMA}}$ -complete problem

Definition: $k\text{-SetCSP}_{\epsilon_1,\epsilon_2}$

Given k-local set constraints $C=(C_1,\cdots,C_m)$ on $\{0,1\}^n$, where n is the number of variables and $m=\operatorname{poly}(n)$. A set-constraint C_i acts on k distinct elements of [n], and it consists of a collection $Y(C_i)=\{Y_1^{(i)},\cdots,Y_{l_i}^{(i)}\}$ of disjoint subsets $Y_j^{(i)}\subseteq\{0,1\}^k$. Decide whether

- Yes: \exists a subset $S \subseteq \{0,1\}^n$ s.t. set-unsat $(C,S) \le \epsilon_1(n)$;
- No: \forall subset $S \subseteq \{0,1\}^n$, set-unsat $(C,S) \ge \epsilon_2(n)$;

where $0 \le \epsilon_1(n) < \epsilon_2(n) \le 1$ and $\epsilon_2(n) - \epsilon_1(n) \ge 1/\text{poly}(n)$.

 $\diamond \underline{ \text{Frustration}} \text{: Let } B_i(S) := \{ \text{bad strings} \} \text{ and } L_i(S) = \{ \text{longing strings} \}, \text{ then } \\ \text{set-unsat}(C,S) = \frac{1}{m} \sum^m \text{set-unsat}(C_i,S) = \frac{1}{m} \sum^m \left(\frac{|B_i(S)|}{|S|} + \frac{|L_i(S)|}{|S|} \right).$

Theorem (inspired by [BBT06, AG20])

 $k\text{-}\mathrm{SetCSP}_{\mathrm{negl},1/\mathrm{poly}}$ is $\mathsf{StoqMA}_{1-\mathrm{negl}}$ -complete.

SetCSP: a combinatorial StoqMA-complete problem (Cont.)

Definition: Configuration Graph

The configuration graph $G(C) = (V_C, E_C)$ is defined by:

$$\forall s,t \in \{0,1\}^n \text{, } \exists \text{ edge } (s,t) \in E_C \text{ iff } s|_{\operatorname{supp}(C_i)},t|_{\operatorname{supp}(C_i)} \in Y_j^{(i)}.$$

A node $s \in V_C$ is marked by "bad", i.e. $s \in B_i(S)$, if $s|_{\text{supp}(C_i)} \notin \cup_{j=1}^{l_i} Y_j^{(i)}$; Otherwise this node is marked by "good".

 \diamond Example: A 2-SetCSP instance $C=(C_1,C_2,C_3)$ defined on a 4-node line.

```
Set-constraints: Y(C_1) = \{\{00,11\}_{1,2}\}, Y(C_2) = \{\{00,11\}_{2,3},\{01,10\}_{2,3}\}, Y(C_3) = \{\{00,11\}_{3,4}\}. Consider a subset S = \{0000,1100,0110,0011,1111\}, the only bad string is B_2(S) = \{0110\},
```

longing strings are $L_2(S) = \{1010, 1001, 0101\}.$

- What is the complexity class StoqMA?
- StoqMA: a distribution testing lens
- 3 Distinguishing reversible circuits
- **4** StoqMA vs. MA: the power of error reduction Why error reduction is important for StoqMA? $SetCSP_{negl,1/poly} \text{ is StoqMA}_{1-negl}\text{-complete}$ Proof Sketch: $SetCSP_{negl,1/poly} \in MA_{1-negl'}$
- Open problems

$k\text{-}\mathrm{SetCSP}_{\mathrm{negl},1/\mathrm{poly}}$ is in MA: proof sketch (Completeness)

Well-approximated subset exists:

$$\operatorname{set-unsat}(C, S) \leq 1/f(n)$$

 $\Rightarrow \operatorname{set-unsat}(C, S') \leq m/f(n),$

S'

where S' contains only good strings.

2 Small-frustration subset implies small-size boundary:

set-unsat
$$(C, S') \le 1/h(n)$$

 $\Rightarrow |\partial S'|/|S'| \le 2^k m/h(n).$

3 Any subset with a small-size boundary has a good starting point:

$$\frac{|\partial S'|}{|S'|} \leq \frac{1}{p_1(n)} \Rightarrow \underset{v \sim \pi_S}{\mathbb{E}} \left[\Pr \left[\bigwedge_{l=0}^T X_v^{(l)} \in S' \right] \right] \geq 1 - \frac{1}{p_2(n)} \text{ where } p_2 \propto \frac{p_1}{T}.$$

Ref. [ST08, GT12] Expectation bounds on remained probability

 \star There is a starting point v (viz. classical witness) such that any T(n)-step lazy random walk remained in S' w.h.p. where T(n) is a super-polynomial.

- What is the complexity class StoqMA?
- 2 StoqMA: a distribution testing lens
- 3 Distinguishing reversible circuits
- 4 StoqMA vs. MA: the power of error reduction
- **6** Open problems

Conclusions and open problems

Take-home messages

- StoqMA with easy witness (eStoqMA) is contained in MA, which simply infers StoqMA₁ \subseteq MA.
- Reversible Circuit Distinguishability is StoqMA-complete (instead of MA-complete as expected!). The exact variant is NP-complete, which signifies that StoqMA with perfect soundness is contained in NP.
- (Completeness) error reduction (still open!) for StoqMA implies StoqMA = MA; we know how to do soundness error reduction for StoqMA.

Open problems

- 1 StoqMA vs. MA and SBP vs. MA.
- (Completeness) error reduction for StoqMA.
- 3 StoqMA with exponentially small gap (PreciseStoqMA).
- The computational power of QMA with perfect soundness (i.e. NQP).
- 6 More StogMA-complete problems, such as Stoguastic CLDM.

Thank you!

Slides are available on shorturl.at/cmHX1.