CPE301 - SPRING 2021

Design Assignment 4A

Student Name: Elmer Mejia Student #: 5003824808

Student Email: mejiae4@unlv.nevada.edu

Primary Github address: https://github.com/cpemejia/design_assignments.git

Directory: design_assignments

1. COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS

-Atmega328pb - Multi-function shield -KiCad

-Microchip Studio -Potentiometer - DC motor w/ TB6612

2. INITIAL/MODIFIED/DEVELOPED CODE OF TASK 1/A

```
* DA_4A.c
 * Created: 4/3/2021 7:39:15 PM
 * Author : ElmerOMejia
 * DA_2BC.c
 * Created: 2/27/2021 11:57:51 PM
 * Author : ElmerOMejia
#include <avr/io.h>
#define F_CPU 100000UL
#include <util/delay.h>
#include <avr/interrupt.h>
#include <stdio.h>
#define AIN2 5
#define AIN1 4
// PD6 PWMA
// PD5 AIN2
// PD4 AIN1
// ADC0/PC0
volatile uint8_t click = 0;
volatile unsigned int newADC;
uint16_t read_adc(uint8_t channel);
void adc_init(void);
int main(void)
       //speed PWMA
       DDRD |= (1<<6);
                                  // set PD6 output
       // direction AIN2/AIN1
       DDRD = (1 << 5);
                                  // set PD5 output
       DDRD = (1 << 4);
                                   // set PD4 output
       PORTD &= ~(1<<AIN2);
       PORTD \&= \sim (1 << AIN1);
       // set INT0
       PORTD = 1<<2; // pull up enable</pre>
       EICRA = 0x02;
       EIMSK = (1<<INT0); // enable interrupt 0</pre>
       sei(); // enable interrupts
       adc_init();
       // Set timer0
```

```
OCR0A = 25; // about 10% initial
      // Fast PWM, non inverted
      TCCR0A |= ((1<<COM0A1) | (1<<WGM01) | (1<<WGM00));
      TCCR0B = (1 << CS01); // n = 8;
   while (1)
    {
             if (click != 0){
                    //_delay_ms(20);
                    PORTD |= (1<<AIN1); // H
                    PORTD &= (~(1<<AIN2)); // L
             else {
                    //_delay_ms(20);
                    PORTD &= (~(1<<AIN1)); // L
                    PORTD &= (~(1<<AIN2)); // L
             }
             newADC = (read\_adc(0)/4);
                                                      // 10 bit ADC to 8 bit
             if (newADC < 25){
                                                      // MIN OCRA
                    OCR0A = 25;
             else if (newADC > 243){
                                                      // MAX OCRA
                    OCROA = 243;
             }
             else {
                    OCR0A = newADC;
                                                     // OCRA is equal adc val
             }
      }
}
ISR (INT0_vect) // ISR for INT0
{
      click = (~(click));
      _delay_ms(50);
}
void adc_init(void)
      /** Setup and enable ADC **/
      ADMUX = (0<<REFS1) // Reference Selection Bits
       (1<<REFS0)
                     // AVcc - external cap at AREF
                     // ADC Left Adjust Result
       (0<<ADLAR)
                     // Analog Channel Selection Bits
       (0<<MUX2)
       (0<<MUX1)
                     // ADC0 (PC0 PIN23)
       (0<<MUX0);
      ADCSRA = (1 << ADEN)
                            // ADC ENable
       (0<<ADSC)
                     // ADC Start Conversion
                     // ADC Auto Trigger Enable
       (O<<ADATE)
       (0<<ADIF)
                     // ADC Interrupt Flag
                     // ADC Interrupt Enable
       (0<<ADIE)
       (1<<ADPS2)
                     // ADC Prescaler Select Bits
       (0<<ADPS1)
```

```
(1<<ADPS0);
}
uint16_t read_adc(uint8_t channel){
           ADMUX &= 0 \times F0;
                                                                   //Clear the older channel that was read
           ADMUX |= channel;
                                                                 //Defines the new ADC channel to be read
           ADCSRA |= (1<<ADSC);
                                                                      //Starts a new conversion
           while(ADCSRA & (1<<ADSC));</pre>
                                                                          //Wait until the conversion is done
           return ADCW;
                                                                //Returns the ADC value of the chosen channel
3.
           SCHEMATICS
             ATMEGA328PB-M +
                                      (CLKO/ICPL/PTCXY)PBO
                                (CLKO//CPL/PICXY)PB0 1 (OC18/750/PICXY)PB1 1 (OC18/750/PICXY)PB3 (MOSIO/TV01/0C2A/PICXY)PB3 (MSOO/RXID/PICXY)PB3 (XCKO/SCKO/PICXY)PB4 (XTALL/TOSCL)PB6 (XTALL/TOSCL)PB7 8.
        . ZO AREF
                                                                                                                                        GND
                                                                                                10
                                                                                                                                        BO1
                                      (MISO1/ADCD/PICV)PCO (SCK1/ADCL/PICV)PC1 (ADC2/PICV)PC2 (ADC3/PICV)PC3 (SDAO/ADC4/PICV)PC4 (SCLO/ADC5/PICV)PC5 (RESET)PC6 29.
                                                                                               11 BIN2
                                                                                                                                        BO2 6
                                                                                               12
                                                                                                                                        AO2
                                                                                                           B6612FNG Dual Motor Driver Carrier
                                                                                               13
                                                                                                   STBY
                                                                                                                                        AO1
                                                                                                                                        GND
       VCC
                                                                                                                                         VM
                                                                                             256 × 201
                             GND
GND
PAD
                             23 23
```

4. SCREENSHOTS OF EACH TASK OUTPUT (ATMEL STUDIO OUTPUT)

5. SCREENSHOT OF EACH DEMO (BOARD SETUP)

6. VIDEO LINKS OF EACH DEMO

Design Assignments

7. GITHUB LINK OF THIS DA

github

Student Academic Misconduct Policy

http://studentconduct.unlv.edu/misconduct/policy.html

"This assignment submission is my own, original work".

Elmer Mejia