Cours de Mathématiques — Classe de 4^e

Année scolaire 2025–2026

Abdoullatuf Maoulida

22 août 2025

Table des matières

1	Les 1	Les nombres relatifs				
	1.1	Rappel	: Les nombres relatifs	5		
			Représentation et comparaison	5		
		1.1.2	Rappel: Addition et soustraction	6		
	1.2		ication et division de nombres relatifs	6		
		1.2.1	La règle des signes	6		
	1.3	Général	isation de la règle des signes	7		
		1.3.1	Produit de plusieurs facteurs	7		
		1.3.2	Nombres inverses	7		
	1.4	Express	ions numériques et enchaînements d'opérations	8		
	1.5	Exercic	es d'application	9		
2	Théo	orème de	e Pythagore et sa réciproque	11		
	2.1	Introduc	ction	11		
	2.2			11		
	2.3	Définiti	ons et vocabulaire	11		
	2.4	Le théo	rème de Pythagore	12		
		2.4.1	Énoncé du théorème	12		
		2.4.2	Démonstration par la méthode des aires	12		
	2.5	Applica	tions du théorème de Pythagore	13		
		2.5.1	Calculer la longueur de l'hypoténuse	13		
		2.5.2	Calculer la longueur d'un côté de l'angle droit	13		
	2.6	La récip	proque du théorème de Pythagore	14		
		2.6.1	Énoncé de la réciproque	14		
				14		
	2.7	Applica	tions et résolution de problèmes	15		
		2.7.1	Problèmes de la vie courante	15		
		2.7.2	Utilisation de la calculatrice	16		
		2.7.3	Calculs exacts et valeurs approchées	16		
	2.8	Théorèr	ne de Pythagore dans l'espace	16		
		2.8.1	Distance dans un pavé droit	16		
	2.9	Compét		16		
		2.9.1	Compétences du socle commun	16		
		2.9.2	Automatismes à acquérir	17		
	2.10	Exercic	es d'entraînement	17		
		2.10.1	Exercices de base	17		
		2.10.2	Exercices d'approfondissement	17		
	2.11	Activité	TICE	18		
				18		
	2.12			18		
				18		
				19		
	2.13			19		

Mathématiques 4 ^e – 2025–2026	Seq. (Seq. 0 –	
2.13.1 Histoire des mathématiques		19	
2.13.2 Généralisation			
2.13.3 Applications modernes		20	
2.14 Synthèse du chapitre		20	
A Progression annuelle (récapitulatif)		21	

1. Les nombres relatifs

Objectifs

À l'issue de la séquence, l'élève sera capable de :

- Multiplier et diviser des nombres relatifs en appliquant la règle des signes
- Généraliser la règle des signes pour plusieurs facteurs
- Identifier et utiliser les nombres inverses
- Calculer des expressions numériques avec enchaînements d'opérations
- Résoudre des problèmes utilisant les nombres relatifs

1.1 Rappel: Les nombres relatifs

Remarque 1.1 : Rappel de 5e

Les nombres relatifs sont des nombres qui peuvent être positifs, négatifs ou nuls. Ils permettent de décrire des quantités au-dessus ou en dessous de zéro.

1.1.1 Représentation et comparaison

Propriété 1.1

Sur une droite graduée :

- Les nombres positifs sont à droite de 0
- Les nombres négatifs sont à gauche de 0
- Plus un nombre est à droite, plus il est grand

Exemple

Comparer les nombres : -4 < -1 < 0 < 2 < 5

1.1.2 Rappel: Addition et soustraction

Propriété 1.2: Addition et soustraction

- Même signe : On additionne les distances à zéro et on garde le signe commun
- **Signes différents :** On soustrait les distances à zéro et on garde le signe du nombre qui a la plus grande distance à zéro
- Soustraction : Soustraire un nombre, c'est ajouter son opposé

Exemple

Exemples de calculs :

1.2 Multiplication et division de nombres relatifs

1.2.1 La règle des signes

Propriété 1.3

Règle des signes Règle des signes pour la multiplication et la division :

- $(+) \times (+) = (+)$ et $(+) \div (+) = (+)$
- $(-) \times (-) = (+)$ et $(-) \div (-) = (+)$
- $(+) \times (-) = (-)$ et $(+) \div (-) = (-)$
- $(-) \times (+) = (-)$ et $(-) \div (+) = (-)$

Méthode : On détermine d'abord le signe du résultat, puis on calcule avec les distances à zéro.

Calculer les produits et quotients suivants :

Multiplication:

Division:

$$(+4) \times (+3) = \dots$$

$$(+15) \div (+3) = \dots$$

$$(-5)\times(-2)=\ldots\ldots$$

$$(-20) \div (-4) = \dots \dots$$

$$(+6) \times (-3) = \dots$$

$$(+24) \div (-6) = \dots \dots$$

$$(-7) \times (+4) = \dots$$

$$(-35) \div (+7) = \dots \dots$$

1.3 Généralisation de la règle des signes

1.3.1 Produit de plusieurs facteurs

Propriété 1.4

Produit de plusieurs facteurs Pour un produit de plusieurs facteurs :

- Si le nombre de facteurs négatifs est pair, le résultat est positif
- Si le nombre de facteurs négatifs est impair, le résultat est négatif

Exemple

Déterminer le signe des produits suivants :

- $A = (-2) \times (+3) \times (-4) \times (-1)$: facteurs négatifs, donc A est
- $B = (+5) \times (-2) \times (-3) \times (+1) \times (-4)$: facteurs négatifs, donc B est
- $C = (-1) \times (-2) \times (-3) \times (-4)$: facteurs négatifs, donc C est

1.3.2 Nombres inverses

Définition 1.1

Nombres inverses Deux nombres relatifs sont des **nombres inverses** si leur produit est égal à 1. Soit a et b deux nombres relatifs. a et b sont dits « inverses » si et seulement si $a \times b = 1$.

- L'inverse de 5 est car $5 \times \ldots = 1$
- L'inverse de $-\frac{2}{3}$ est car $-\frac{2}{3} \times$ = 1
- L'inverse de -4 est car $-4 \times$ = 1

1.4 Expressions numériques et enchaînements d'opérations

Méthode 1.1

Calcul d'expression numérique Pour calculer une expression numérique :

- 1) On effectue en premier les calculs dans les **parenthèses les plus intérieures**
- 2) On calcule les **puissances** éventuelles
- 3) On effectue ensuite les **multiplications et divisions** avant les additions et soustractions
- 4) Si plusieurs multiplications/divisions se suivent, on calcule dans le **sens de la lecture**
- 5) Si plusieurs additions/soustractions se suivent, on calcule dans le **sens de** la lecture

Exemple

Calculer les expressions suivantes :

$$A = 5 + 3 \times (-2)$$
 $B = (-8) \div 2 + 3 \times (-1)$
= =

1.5 Exercices d'application

Exercices

Exercice 1: Calculs avec les nombres relatifs

Calculer les expressions suivantes :

a)
$$(-3) \times (+4) \times (-2)$$

b)
$$(+15) \div (-3) \times (-2)$$

c)
$$[(-5) + (+3)] \times (-4)$$

d)
$$(+8) \div (-2) + (-3) \times (+2)$$

Exercice 2 : Déterminer le signe

Sans faire le calcul, déterminer le signe des produits suivants :

a)
$$(-2) \times (+3) \times (-4) \times (-1) \times (+5)$$

b)
$$(+1) \times (-2) \times (-3) \times (+4) \times (-5)$$

c)
$$(-1) \times (-2) \times (-3) \times (-4) \times (-5)$$

Exercice 3: Nombres inverses

Trouver l'inverse de chacun des nombres suivants :

c)
$$\frac{1}{4}$$

d)
$$-\frac{2}{5}$$

Exercice 4: Expressions complexes

Calculer les expressions suivantes en respectant les priorités :

a)
$$(-6) \times (+2) + (-8) \div (-4)$$

b)
$$[(-3) + (+5)] \times (-2) - (+4)$$

c)
$$(+12) \div (-3) \times (+2) + (-5)$$

d)
$$(-10) \div (+2) - (-3) \times (-4)$$

2. Théorème de Pythagore et sa réciproque

2.1 Introduction

Le théorème de Pythagore est l'un des théorèmes les plus célèbres et les plus utiles de la géométrie. Il porte le nom de Pythagore, mathématicien et philosophe grec du VI^e siècle avant J.-C., bien que cette relation ait été découverte par plusieurs civilisations antérieures (Babyloniens, Égyptiens, Chinois).

Ce théorème établit une relation fondamentale entre les côtés d'un triangle rectangle et trouve de nombreuses applications dans la vie courante : architecture, navigation, cartographie, sport, etc.

Problématique du chapitre : Comment calculer des longueurs dans un triangle rectangle ? Comment déterminer si un triangle est rectangle ?

2.2 Activité d'approche : découverte par manipulation

Objectif : Découvrir la relation entre les aires des carrés construits sur les côtés d'un triangle rectangle.

Matériel: Papier quadrillé, ciseaux, règle graduée

Consigne:

- 1. Construire plusieurs triangles rectangles sur papier quadrillé
- 2. Construire un carré sur chacun des trois côtés
- 3. Compter le nombre de carreaux de chaque carré
- 4. Chercher une relation entre ces trois nombres

Constat : Pour tout triangle rectangle, l'aire du carré construit sur l'hypoténuse est égale à la somme des aires des carrés construits sur les deux autres côtés.

2.3 Définitions et vocabulaire

Définition 2.1 : Triangle rectangle

Triangle ayant un angle droit (90°).

Définition 2.2 : Hypoténuse

Côté opposé à l'angle droit dans un triangle rectangle. C'est le plus long côté du triangle.

Définition 2.3

Côtés de l'angle droit Les deux côtés qui forment l'angle droit.

2.4 Le théorème de Pythagore

2.4.1 Énoncé du théorème

Propriété 2.1 : Théorème de Pythagore

Dans un triangle rectangle, le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés.

Formulation mathématique :

Si ABC est un triangle rectangle en A, alors : $BC^2 = AB^2 + AC^2$

2.4.2 Démonstration par la méthode des aires

Considérons un carré de côté (a + b) contenant quatre triangles rectangles identiques de côtés a, b et d'hypoténuse c.

Figure 2.1 – Configuration 1

FIGURE 2.2 – Configuration 2

Configuration 1 : Aire $1 = (a + b)^2 = 4 \times \frac{ab}{2} + c^2 = 2ab + c^2$ **Configuration 2 :** Aire $2 = (a + b)^2 = 4 \times \frac{ab}{2} + a^2 + b^2 = 2ab + a^2 + b^2$

Comme l'aire est la même dans les deux configurations (Aire 1 = Aire 2):

$$2ab + c^2 = 2ab + a^2 + b^2 \Leftrightarrow c^2 = a^2 + b^2$$

Ce qui démontre le théorème de Pythagore.

2.5 Applications du théorème de Pythagore

2.5.1 Calculer la longueur de l'hypoténuse

Méthode 2.1 : Calculer la longueur de l'hypoténuse

Pour calculer la longueur de l'hypoténuse d'un triangle rectangle :

- 1. Identifier le triangle rectangle et ses côtés
- 2. Repérer l'hypoténuse (côté opposé à l'angle droit)
- 3. Appliquer la formule : hypoténuse² = $côté_1^2 + côté_2^2$
- 4. Calculer la racine carrée du résultat

Exemple

Un triangle ABC est rectangle en A. AB = 6 cm et AC = 8 cm. Calculer BC.

Solution:

- Le triangle est rectangle en A, donc BC est l'hypoténuse
- D'après le théorème de Pythagore : $BC^2 = AB^2 + AC^2$
- $BC^2 = 6^2 + 8^2 = 36 + 64 = 100$
- $-BC = \sqrt{100} = 10 \text{ cm}$

2.5.2 Calculer la longueur d'un côté de l'angle droit

Méthode 2.2 : Calculer la longueur d'un côté de l'angle droit

Pour calculer la longueur d'un côté de l'angle droit :

- 1. Identifier la longueur de l'hypoténuse et celle de l'autre côté de l'angle droit
- 2. Appliquer la formule : hypoténuse² = $côté_1^2 + côté_2^2$
- 3. Isoler le côté inconnu : $côté^2$ = hypoténuse² autre $côté^2$
- 4. Calculer la racine carrée du résultat

Un triangle DEF est rectangle en D. DE = 5 cm et EF = 13 cm. Calculer DF.

Solution:

- Le triangle est rectangle en D, donc EF est l'hypoténuse
- D'après le théorème de Pythagore : $EF^2 = DE^2 + DF^2$
- $-13^2 = 5^2 + DF^2$
- $-169 = 25 + DF^2$
- $-DF^2 = 169 25 = 144$
- $-DF = \sqrt{144} = 12 \text{ cm}$

2.6 La réciproque du théorème de Pythagore

2.6.1 Énoncé de la réciproque

Propriété 2.2

Réciproque du théorème de Pythagore Si, dans un triangle, le carré de la longueur du plus grand côté est égal à la somme des carrés des longueurs des deux autres côtés, alors ce triangle est rectangle.

2.6.2 Utilisation de la réciproque

Objectif : Déterminer si un triangle est rectangle en connaissant les longueurs de ses trois côtés.

Méthode 2.3

Démontrer qu'un triangle est rectangle Pour démontrer qu'un triangle est rectangle :

- 1. Identifier le plus grand côté du triangle
- 2. Calculer le carré de sa longueur
- 3. Calculer la somme des carrés des deux autres côtés
- 4. Comparer les résultats :
 - Si égalité : le triangle est rectangle
 - Si inégalité : le triangle n'est pas rectangle

Un triangle a pour côtés 9 cm, 12 cm et 15 cm. Est-il rectangle?

Solution:

- Le plus grand côté mesure 15 cm
- $-15^2 = 225$
- $-9^2 + 12^2 = 81 + 144 = 225$
- Puisque $15^2 = 9^2 + 12^2$, le triangle est rectangle
- L'angle droit est opposé au côté de 15 cm

Exemple

Un triangle a pour côtés 7 cm, 8 cm et 10 cm. Est-il rectangle? **Solution :**

- Le plus grand côté mesure 10 cm
- $-10^2 = 100$
- $-7^2 + 8^2 = 49 + 64 = 113$
- Puisque $100 \neq 113$, le triangle n'est pas rectangle

2.7 Applications et résolution de problèmes

2.7.1 Problèmes de la vie courante

Exercices

1 - L'échelle Une échelle de 4 m est appuyée contre un mur. Son pied est à 1,5 m du mur. À quelle hauteur le sommet de l'échelle touche-t-il le mur?

Solution:

- Triangle rectangle : mur, sol, échelle
- Hypoténuse : échelle = 4 m
- Un côté : distance au mur = 1,5 m
- Autre côté : hauteur =?

$$h^2 + 1.5^2 = 4^2$$

$$h^2 + 2,25 = 16$$

$$h^2 = 13,75$$

$$h = \sqrt{13,75} \approx 3,7 \text{ m}$$

Exercices

2 - Vérification d'équerrage Un maçon vérifie qu'un angle est droit en mesurant les côtés d'un triangle formé par deux murs et une diagonale. Il mesure : 3 m, 4 m et 5 m. L'angle est-il droit ?

Solution:

- Plus grand côté: 5 m
- $-5^2 = 25$
- $-3^2 + 4^2 = 9 + 16 = 25$
- Égalité vérifiée ⇒ l'angle est droit

2.7.2 Utilisation de la calculatrice

Compétence : Utiliser la touche $\sqrt{\text{(racine carrée)}}$ de la calculatrice.

Exemple : Calculer $\sqrt{75}$

$$--\sqrt{75} = \sqrt{25 \times 3} = \sqrt{25} \times \sqrt{3} = 5\sqrt{3} \approx 8,66$$

2.7.3 Calculs exacts et valeurs approchées

Calcul exact : $\sqrt{50} = \sqrt{25 \times 2} = 5\sqrt{2}$ cm

Valeur approchée : $\sqrt{50} \approx 7,07$ cm (arrondi au centième)

2.8 Théorème de Pythagore dans l'espace

2.8.1 Distance dans un pavé droit

Problème : Calculer la longueur de la diagonale d'un pavé droit. Pour un pavé droit de dimensions a, b et c, la diagonale d vérifie :

$$d^2 = a^2 + b^2 + c^2$$

Exemple

Pavé droit de dimensions 6 cm × 8 cm × 5 cm

$$d^2 = 6^2 + 8^2 + 5^2 = 36 + 64 + 25 = 125$$

$$d = \sqrt{125} = 5\sqrt{5} \approx 11, 18 \text{ cm}$$

2.9 Compétences travaillées et automatismes

2.9.1 Compétences du socle commun

- **Chercher**: Identifier un triangle rectangle, choisir la bonne méthode
- Modéliser : Traduire un problème concret en calcul mathématique
- Représenter : Faire un schéma, coder une figure
- **Raisonner**: Justifier qu'un triangle est ou n'est pas rectangle

- Calculer: Effectuer des calculs avec des radicaux
- Communiquer : Rédiger une solution complète

2.9.2 Automatismes à acquérir

- Reconnaître un triangle rectangle
- Identifier l'hypoténuse
- Appliquer le théorème direct ou sa réciproque
- Utiliser la calculatrice pour les racines carrées
- Connaître les "triplets pythagoriciens" usuels : (3;4;5), (5;12;13), (8;15;17)

2.10 Exercices d'entraînement

2.10.1 Exercices de base

Exercices

Calculs directs:

- a) Triangle rectangle : côtés 3 cm et 4 cm. Calculer l'hypoténuse.
- b) Triangle rectangle : hypoténuse 10 cm, un côté 6 cm. Calculer l'autre côté.

Exercices

[4] Réciproque : Les triangles suivants sont-ils rectangles ?

a) Côtés: 7 cm, 24 cm, 25 cmb) Côtés: 6 cm, 7 cm, 8 cm

2.10.2 Exercices d'approfondissement

Exercices

[5] Problème du terrain

Un terrain rectangulaire mesure 40 m sur 30 m. Calculer la longueur de sa diagonale.

Exercices

[6] Navigation

Un bateau part d'un port et navigue 12 km vers l'est puis 5 km vers le nord. À quelle distance se trouve-t-il du port?

Exercices

[7] Architecture

Pour vérifier qu'un mur est perpendiculaire au sol, un architecte place un point A sur le mur à 3 m du sol, un point B au pied du mur, et un point C sur le sol à 4 m de B. Si AC = 5 m, le mur est-il perpendiculaire au sol?

2.11 Activité TICE

2.11.1 Utilisation d'un logiciel de géométrie dynamique

Objectif : Vérifier le théorème de Pythagore avec GeoGebra ou similaire

Consignes:

- 1. Construire un triangle rectangle ABC
- 2. Construire les carrés sur chaque côté
- 3. Afficher les aires des trois carrés
- 4. Modifier la forme du triangle et observer
- 5. Conjecture sur la relation entre ces aires

2.12 Liens avec d'autres notions mathématiques

2.12.1 Distance entre deux points dans un repère

Le théorème de Pythagore permet de calculer la distance entre deux points dans un repère orthonormé.

Si $A(x_A, y_A)$ et $B(x_B, y_B)$ sont deux points dans un repère orthonormé, alors la distance AB est donnée par :

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

Calculons la distance entre les points A(2,3) et B(6,7) dans un repère orthonormé.

En appliquant le théorème de Pythagore :

$$AB^{2} = (6-2)^{2} + (7-3)^{2} = 4^{2} + 4^{2} = 16 + 16 = 32$$
$$AB = \sqrt{32} = \sqrt{16 \times 2} = 4\sqrt{2}$$

La distance entre A et B est $4\sqrt{2}$ unités.

2.12.2 Équations et théorème de Pythagore

Le théorème de Pythagore conduit souvent à des équations qu'il faut résoudre pour trouver des longueurs.

Exemple

Dans un triangle rectangle ABC rectangle en A, on sait que AB = x cm, AC = (x + 3) cm et BC = 17 cm. Déterminons la valeur de x.

D'après le théorème de Pythagore :

$$BC^{2} = AB^{2} + AC^{2}$$

$$17^{2} = x^{2} + (x+3)^{2}$$

$$289 = x^{2} + x^{2} + 6x + 9$$

$$289 = 2x^{2} + 6x + 9$$

$$2x^{2} + 6x - 280 = 0$$

$$x^{2} + 3x - 140 = 0$$

En factorisant : (x - 10)(x + 14) = 0

Les solutions sont x = 10 et x = -14.

Comme une longueur ne peut pas être négative, nous avons x = 10 cm.

Donc AB = 10 cm et AC = 13 cm.

2.13 Pour aller plus loin

2.13.1 Histoire des mathématiques

- Les tablettes babyloniennes (Plimpton 322)
- La démonstration par le président Garfield
- Les différentes démonstrations du théorème (plus de 300 connues)

2.13.2 Généralisation

— Théorème de Pythagore généralisé (loi des cosinus)

— Théorème de Pythagore dans l'espace à n dimensions

2.13.3 Applications modernes

- GPS et géolocalisation
- Graphisme 3D et jeux vidéo
- Architecture et ingénierie

2.14 Synthèse du chapitre

Ce qu'il faut retenir :

- 1. **Théorème de Pythagore :** Dans un triangle rectangle, hypoténuse² = $côte_1^2 + côte_2^2$
- 2. **Réciproque :** Si dans un triangle, le carré du plus grand côté égale la somme des carrés des deux autres, alors le triangle est rectangle
- 3. **Applications :** Calcul de longueurs, vérification d'angles droits, résolution de problèmes concrets
- 4. **Méthodes :** Identification du triangle rectangle, application des formules, utilisation de la calculatrice

Liens avec d'autres chapitres :

- Racines carrées (chapitre précédent)
- Trigonométrie (chapitre à venir)
- Géométrie dans l'espace
- Fonctions (distance entre deux points dans un repère)

A. Progression annuelle (récapitulatif)

Cette progression correspond à la répartition établie pour l'année 2025–2026.

Période	Séquences
Période 1 (6 semaines)	S01 – Les nombres relatifs, S02 – Calcul littéral, S03 – Équations
Période 2 (7 semaines)	S04 – Proportionnalité, S05 – Statistiques, S06 – Géométrie dans l'espace
Période 3 (6 semaines)	S07 – Théorème de Pythagore, S08 – Théorème de Thalès, S09 – Trigonométrie
Période 4 (7 semaines)	S10 – Aires et volumes, S11 – Transformations géométriques, S12 – Probabilités
Période 5 (6 semaines)	S13 – Fonctions, S14 – Notion de puissance, S15 – Racine carrée