

UNIVERSITÀ DEGLI STUDI DI PADOVA

DIPARTIMENTO DI MATEMATICA "TULLIO LEVI-CIVITA"

Corso di Laurea Magistrale in Informatica

Titolo del Documento

Sottotitolo

Relatrice/Relatore: Prof.ssa/Prof. Nome Cognome Laureanda/o: Nome Cognome Matricola: 1234567

 $Dedica\ opzionale$

Abstract

Inserire qui l'abstract del documento.

Ringraziamenti

Inserire qui i ringraziamenti.

Indice

A l	Abstract			
\mathbf{R}^{i}	ngra	ziamenti	iii	
1	Intr	roduzione	1	
	1.1	Contesto e Motivazione	1	
		1.1.1 Stato dell'Arte	1	
		1.1.1.1 Sottosezione con Formule	1	
	1.2	Esempio di Codice	2	
	1.3	Citazioni e Riferimenti	2	
	1.4	Note e Conclusioni	3	
2	Ana	alisi dei Risultati	4	
	2.1	Metodologia	4	
		2.1.1 Analisi Statistica	4	
	2.2	Interpretazione dei Dati	5	
		2.2.1 Confronto con lo Stato dell'Arte	5	
	2.3	Limitazioni e Lavori Futuri	5	
	2.4	Conclusioni del Capitolo	6	
3	Bib	liografia	7	
$\mathbf{A}_{]}$	ppen	dices	9	
\mathbf{A}	Det	tagli Implementativi	10	
	A.1		10	
		A.1.1 Ambiente di Sviluppo	10	
		A.1.2 Algoritmi Utilizzati	10	
		A.1.2.1 Complessità Computazionale	11	
	A.2	Risultati Sperimentali Dettagliati	11	

Elenco delle figure

1.1	Esempio di figura con didascalia	1
	Risultati dell'esperimento principale	
A.1	Confronto dei risultati sperimentali su diversi dataset	11

Elenco delle tabelle

1.1	Esempio di tabella	. 2
2.1	Risultati statistici principali.	. 4
A.1	Specifiche dell'ambiente di sviluppo.	. 10

Capitolo 1

Introduzione

1.1 Contesto e Motivazione

Figura 1.1: Esempio di figura con didascalia.

In questa sezione viene introdotto il contesto generale e la motivazione del lavoro. Il riferimento a una figura può essere fatto così: Figura 1.1.

1.1.1 Stato dell'Arte

Lo stato dell'arte rappresenta una panoramica sulle conoscenze attuali e sugli sviluppi recenti nel campo oggetto di studio. È possibile evidenziare punti di interesse utilizzando colori o grassetto.

1.1.1.1 Sottosezione con Formule

È possibile inserire formule matematiche nel testo $E=mc^2$ o in display:

$$f(x) = \int_{-\infty}^{\infty} \hat{f}(\xi)e^{2\pi i\xi x}d\xi \tag{1.1}$$

La formula 1.1 mostra un esempio di trasformata di Fourier inversa.

Paragrafo con Elenco È possibile creare elenchi numerati o puntati:

- Primo elemento dell'elenco puntato
- Secondo elemento con testo in corsivo
- Terzo elemento con riferimento all'equazione 1.1

Sottoparagrafo con Tabella Le tabelle possono essere formattate in modo professionale:

Tabella 1.1: Esempio di tabella.

Intestazione 1	Intestazione 2	Intestazione 3
Valore 1	Valore 2	Valore 3
Valore 4	Valore 5	Valore 6

1.2 Esempio di Codice

È possibile includere blocchi di codice formattati:

Listing 1.1: Esempio di codice Python

```
def calcola_fibonacci(n):
    """Calcola l'n-esimo numero di Fibonacci."""
    if n <= 1:
        return n
    else:
        return calcola_fibonacci(n-1) + calcola_fibonacci(n-2)

# Test della funzione
for i in range(10):
    print(f"Fibonacci({i}) = {calcola_fibonacci(i)}")</pre>
```

1.3 Citazioni e Riferimenti

È possibile utilizzare citazioni nel testo [1] e creare una bibliografia completa a fine documento. Per citazioni più estese:

"Le citazioni estese possono essere formattate in questo modo, utilizzando l'ambiente quote. È possibile aggiungere l'autore della citazione a fine paragrafo."

— Autore della Citazione

È anche possibile utilizzare l'ambiente epigraph per inserire citazioni all'inizio di capitoli o sezioni.

— Autore dell'Epigrafe

1.4 Note e Conclusioni

Questa sezione può contenere note conclusive o riassuntive del capitolo. È possibile anche inserire note a piè di pagina 1 .

 $^{^{1}\}mathrm{Esempio}$ di nota a piè di pagina.

Capitolo 2

Analisi dei Risultati

2.1 Metodologia

In questo capitolo vengono presentati i risultati dell'analisi e le relative interpretazioni. È possibile includere riferimenti al capitolo precedente come Figura 1.1.

Figura 2.1: Risultati dell'esperimento principale.

2.1.1 Analisi Statistica

L'analisi statistica dei dati ha rivelato diverse tendenze significative. Di seguito è riportata una tabella riassuntiva:

Tabella 2.1: Risultati statistici principali.

Parametro	Min	Max	Media	Dev. Std
Parametro A	10.5	45.2	27.8	8.3
Parametro B	0.12	0.89	0.54	0.22
Parametro C	42	128	86	24

2.2 Interpretazione dei Dati

L'interpretazione dei dati raccolti suggerisce che il modello proposto è in grado di generalizzare efficacemente su dataset eterogenei. In particolare, si osserva che:

- Il parametro A mostra una correlazione positiva con l'accuratezza del modello
- Il parametro B presenta un comportamento non lineare e richiede ulteriori indagini
- Il parametro C è risultato meno influente del previsto nelle condizioni sperimentali

2.2.1 Confronto con lo Stato dell'Arte

Figura 2.2: Confronto con algoritmi esistenti.

2.3 Limitazioni e Lavori Futuri

Nonostante i risultati promettenti, il lavoro presenta alcune limitazioni che potrebbero essere affrontate in studi futuri:

- 1. Ampliamento del dataset con casi più eterogenei
- 2. Ottimizzazione dell'algoritmo per ridurre il costo computazionale
- 3. Estensione del modello per gestire problemi di maggiore complessità
- 4. Integrazione con tecniche di apprendimento profondo

La ricerca non è mai finita, ma solo temporaneamente interrotta.

— Ricercatore Anonimo

2.4 Conclusioni del Capitolo

In conclusione, l'analisi condotta in questo capitolo ha evidenziato sia i punti di forza che le limitazioni dell'approccio proposto. I risultati ottenuti suggeriscono che il metodo è promettente ma richiede ulteriori sviluppi per raggiungere il pieno potenziale.

Le direzioni future indicate nella Sezione 2.2 rappresentano il naturale proseguimento di questo lavoro e potrebbero condurre a significativi miglioramenti delle prestazioni.

Capitolo 3

Bibliografia

Bibliografia

- [1] Autore, A., & Coautore, B. (2023). *Titolo dell'articolo*. Journal of Computer Science, 45(2), 112–128. https://doi.org/10.1234/esempio
- [2] Autore, C. (2024). Titolo del libro. Editore, Città.
- [3] Sviluppatore, D. (2024). Nome del software [Software]. Versione 2.0. https://esempio.com/software
- [4] Organizzazione. (2024). *Titolo del report tecnico*. Report Tecnico n. TR-2024-01. https://esempio.org/report

Appendices

Appendice A

Dettagli Implementativi

A.1 Specifiche Tecniche

Questa appendice contiene dettagli tecnici e implementativi che non sarebbe stato opportuno inserire nel corpo principale del documento.

A.1.1 Ambiente di Sviluppo

Tabella A.1: Specifiche dell'ambiente di sviluppo.

Componente	Dettagli
Sistema Operativo	Linux Ubuntu 24.04 LTS
Linguaggio di Programmazione	Python 3.11.5
IDE	Visual Studio Code 1.90.0
Framework	TensorFlow 2.15.0

A.1.2 Algoritmi Utilizzati

Gli algoritmi implementati sono stati ottimizzati per l'efficienza e la scalabilità. Di seguito è riportato un esempio di implementazione:

Listing A.1: Implementazione dell'algoritmo principale

```
class AlgoritmoAvanzato:
       def __init__(self, parametri=None):
           self.parametri = parametri or {}
3
           self.inizializzato = False
4
5
       def inizializza(self):
           # Codice di inizializzazione
           self.dati = []
           self.risultati = {}
           self.inizializzato = True
10
11
       def esegui(self, input_data):
           if not self.inizializzato:
               self.inizializza()
14
           # Implementazione dell'algoritmo
16
           risultato = self._processa_dati(input_data)
17
           return risultato
```

```
def _processa_dati(self, dati):

# Implementazione del metodo privato
return [x * 2 for x in dati]
```

A.1.2.1 Complessità Computazionale

L'analisi della complessità computazionale è fondamentale per comprendere le prestazioni dell'algoritmo:

$$T(n) = O(n\log n) \tag{A.1}$$

dove n rappresenta la dimensione dell'input.

Ottimizzazioni Sono state implementate le seguenti ottimizzazioni:

- 1. Memorizzazione dei risultati intermedi (memoization)
- 2. Parallelizzazione del calcolo per input di grandi dimensioni
- 3. Utilizzo di strutture dati efficienti per le operazioni di ricerca

A.2 Risultati Sperimentali Dettagliati

Figura A.1: Confronto dei risultati sperimentali su diversi dataset.

I grafici in Figura A.1 mostrano un confronto dettagliato dei risultati ottenuti sui diversi dataset. Si può notare come l'algoritmo proposto (linea rossa) superi in prestazioni gli algoritmi di riferimento.

Indice analitico