ЛАБОРАТОРНА РОБОТА 2

ОПТИМАЛЬНЕ КОДУВАННЯ

Мета роботи: ознайомлення з методикою оптимального кодування Шеннона-Фано та Хаффмана.

 $j_1 = 1\ \emph{mc}$ – середній час виробітку символу на виході джерела $j_2 = 10$ - варіант завдання

За результатами лабораторної роботи 1 формуємо таблицю із ймовірностей для $j_2 = 10\,$ символів, що найчастіше зустрічаються у повідомленні.

Таблиця 1 Таблиця ймовірностей символів

Повідомлення	Позначення	Кількість	p_i	$\log_2 p_i$	$p_i \log_2 p_i$
00000	x_1	1	0,0526	-4,2479	-0,2236
00001	x_2	3	0,1579	-2,6630	-0,4205
00010	x_3	3	0,1579	-2,6630	-0,4205
00011	x_4	1	0,0526	-4,2479	-0,2236
00100	x_5	1	0,0526	-4,2479	-0,2236
00101	x_6	1	0,0526	-4,2479	-0,2236
00110	x_7	3	0,1579	-2,6630	-0,4205
01000	x_8	1	0,0526	-4,2479	-0,2236
01111	x_9	2	0,1053	-3,2479	-0,3419
10110	<i>x</i> ₁₀	3	0,1579	-2,6630	-0,4205
Σ	-	19	1	-	-3,1416

Ентропія джерела

$$H = -\sum_{i} p_i \log_2 p_i = 3,1416 \ \textit{біт/символ}$$

Таблиця 2

Кодування за Шенноном-Фано

x2	0,1579	1		x2	0,1579	1	11		
x3	0,1579	1		x3	0,1579	1	11		
x7	0,1579	1		x7	0,1579	1	10		
x10	0,1579	1		x10	0,1579	1	10		
x9	0,1053	0		x9	0,1053	0	01		
x1	0,0526	0		x1	0,0526	0	01		
x4	0,0526	0		x4	0,0526	0	01		
x5	0,0526	0		x5	0,0526	0	00		
x6	0,0526	0		x6	0,0526	0	00		
x8	0,0526	0		x8	0,0526	0	00		
x2	0,1579	11	111		x2	0,1579	11	111	111
x3	0,1579	11	110		x3	0,1579	11	110	110
x7	0,1579	10	101		x7	0,1579	10	101	101
x10	0,1579	10	100		x10	0,1579	10	100	100
x9	0,1053	01	011		x9	0,1053	01	011	011
x1	0,0526	01	010		x1	0,0526	01	010	0101
x4	0,0526	01	010		x4	0,0526	01	010	0100
x5	0,0526	00	001		x5	0,0526	00	001	001
х6	0,0526	00	000		хб	0,0526	00	000	0001
x8	0,0526	00	000		x8	0,0526	00	000	0000

x1	0101
x2	111
х3	110
x4	0100
x5	001
х6	0001
x7	101
x8	0000
x9	011
x10	100

Кодування за методом Хаффмена реалізуємо за допомогою кодового дерева (рис.1).

Рис.1. Кодове дерево за методом Хаффмена

Таблиця 3 Кодування за Хаффменом

x 1	001
x2	111
х3	01
x4	1001
x5	1000
x6	11001
x7	101
x8	11000
x9	000
x10	1101

Таблиця 3

Порівняльний аналіз двох методів кодування

Параметр	Метод ко	Громина оположи	
	Шеннона-Фано	Хаффмена	Граничне значення
I_{cp}	3,2101	3,3153	3,1416
H_1	3,1416	3,1416	3,32
H_2	0,9999	0,9999	1
K_{BE1}	0,9787	0,9476	1
K_{CC1}	1,0342	1,0014	-
K_{BE2}	0,3112	0,3013	-
K_{CC2}	0,3115	0,3016	-
D	0,0537	0,0537	0
<i>p</i> (0)	0,4590	0,4286	0,5

Таким чином, отримані коди близькі до оптимальних.

Блокове кодування

$$p(a_1) = 0.85, p(a_2) = 0.15$$

Розрахунок односимвольних блоків.

Блок	p_i	$p_i \log_2 p_i$	Код
a_1	0,85	-0,1993	1
a_2	0,15	-0,4105	0

$$I_{cp} = 0.85 \cdot 1 + 0.15 \cdot 1 = 1$$

$$H_1 = -\sum_{i} p_i \log_2 p_i = 0,6098$$

$$p(1) = \frac{0.85 \cdot 1}{I_{cp}} = 0,85$$

$$p(0) = 1 - p(1) = 0,15$$

$$H_2 = H_1 = 0,6098$$

$$K_{CC} = \frac{1}{I_{Cp}} = 1$$

$$K_{BE} = \frac{H_2}{I_{cp}} = 0,6098$$

Розрахунок двосимвольних блоків

Блок	p_i	$p_i \log_2 p_i$	Код
a_1a_1	0,7225	-0,3388	1
a_1a_2	0,1275	-0,3789	01
a_2a_1	0,1275	-0,3789	001
a_2a_2	0,0225	-0,1232	000

$$I_{cp} = 1,4275$$

$$H_1 = -\sum_{i} p_i \log_2 p_i = 1,2197$$

$$p(1) = \frac{1 - 0,0225}{I_{cp}} = 0,6848, \ p(0) = 1 - p(1) = 0,3152$$

$$H_2 = 0,8991$$

$$K_{CC} = \frac{1}{I_{Cp}} = 0,7005, \ K_{BE} = \frac{H_2}{I_{cp}} = 0,6298$$

Розрахунок 3-символьних блоків

Блок	p_i	$p_i \log_2 p_i$	Код
$a_{1}a_{1}a_{1}$	0,614125	-0,4320	1
$a_1a_1a_2$	0,108375	-0,3474	011
$a_{1}a_{2}a_{1}$	0,108375	-0,3474	010
$a_{2}a_{1}a_{1}$	0,108375	-0,3474	001
$a_{1}a_{2}a_{2}$	0,019125	-0,1092	00011
$a_{2}a_{1}a_{2}$	0,019125	-0,1092	00010
$a_{2}a_{2}a_{1}$	0,019125	-0,1092	00001
$a_{2}a_{2}a_{2}$	0,003375	-0,0277	00000

$$\begin{split} I_{cp} &= 1,8933 \\ H_1 &= -\sum p_i \log_2 p_i = 1,8295 \\ p(1) &= 0,5938, \ p(0) = 1 - p(1) = 0,4062 \\ H_2 &= 0,9745 \\ K_{CC} &= \frac{1}{I_{Cp}} = 0,5282, \ K_{BE} = \frac{H_2}{I_{cp}} = 0,5147 \end{split}$$

Висновки

Отримані коди близькі до оптимальних.

Розглянуті методики кодування дають приблизно однакові результати. Отже, їх вибір диктується обраними стандартами, зручністю та іншими чинниками.