Statistical Analysis of SST-Pyramidal Post-synaptic Amplitude Distributions

Taisuke Yasuda

June 14, 2017

Background

Biological Context
Data Collection

Applying the Compound Binomial Distribution Model Introducing the Model Application to our Data

Background
Biological Context

Applying the Compound Binomial Distribution Model Introducing the Model Application to our Data

Biology of Post-synaptic Amplitudes

Figure: Biology of post-synaptic amplitudes

Background

Biological Context

Data Collection

Applying the Compound Binomial Distribution Model Introducing the Model Application to our Data

Experimental Measurements

Figure: Wave files of the stimulus and response

Extracting Post-synaptic Response Amplitudes

Figure: Moving the responses next to the stimuli

Extracting Post-synaptic Response Amplitudes

Figure: Zooming in on the stimuli and responses

Extracting Post-synaptic Response Amplitudes

Figure: Extracting the response amplitudes

A More Typical Wave Response

Figure: A sweep with more failures

Background

Biological Context
Data Collection

Applying the Compound Binomial Distribution Model
Introducing the Model
Application to our Data

Compound Binomial Distribution Model

Figure: Compound binomial distribution model

Mathematical Description

$$X = \sum_{j=1}^{N} X_j, Y_j \sim \mathsf{Bernoulli}(p), \begin{cases} (X_j \mid Y_j = 1) \sim \mathsf{Lognormal}(\mu, \sigma^2) \\ (X_j \mid Y_j = 0) \sim 0 \end{cases}$$

Background

Biological Context
Data Collection

Applying the Compound Binomial Distribution Model

Introducing the Model

Application to our Data

Post-synaptic Amplitude Distribution Over Trials

Figure: Example of observed distribution

Inference of Parameters Assuming the Binomial Model

- Method of Moments guesses the parameters μ, σ^2, p by matching sample properties to the theoretical values of the properties.
- In our case, we match the failure rate, mean value, and variance.
- ▶ If p_f is the failure rate, \overline{X} is the sample mean, and S^2 is the sample variance, then

$$p = 1 - \sqrt[N]{p_f}$$

$$\begin{pmatrix} \mu \\ \sigma \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} \log \left(\frac{S^2}{Np} + \left(\frac{\overline{X}}{Np} \right)^2 \right) \\ 2 \log \left(\frac{\overline{X}}{Np} \right) \end{pmatrix}.$$

Inference of Parameters on Simulated Data

Figure: Inferring μ

Inference of Parameters on Simulated Data

Figure: Inferring σ

Inference of Parameters on Simulated Data

Figure: Inferring *p*

Comparison of Simulated Model Against the Data

Figure: Simulating from the inferred model

Comparison of Simulated Model Against the Data

Figure: Monte Carlo estimate of tail probabilities