Shapes CS 491 – Competitive Programming

Dr. Mattox Beckman

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
DEPARTMENT OF COMPUTER SCIENCE

Fall 2023

Objectives

- Know some of the basic formulae for
 - Circles
 - Triangles
 - Squares
- ► Most code samples from Competitive Programming 3.

Testing if Inside

- For a circle, you need a center (a, b) and a radius r.
- ► All points $(x a)^2 + (y b)^2 = r^2$

```
int insideCircle(point_i p, point_i c, int r) { // all interior
int dx = p.x - c.x, dy = p.y - c.y;
int Euc = dx * dx + dy * dy, rSq = r * r;
// all integer
return Euc < rSq ? 0 : Euc == rSq ? 1 : 2;
// 0 = inside, 1 = on border, 2 = outside</pre>
```

Circles

Basic Formulae

- ▶ Value of π is acos (-1.0)
- ightharpoonup Diameter d=2r
- ightharpoonup Circumference is $2\pi r$, area is πr^2
- Given two points p1 and p2 and radius r, we can compute the circles:

```
bool circle2PtsRad(point p1, point p2, double r, point &c)
8
      double d2 = (p1.x - p2.x) * (p1.x - p2.x) +
9
                   (p1.v - p2.v) * (p1.v - p2.v);
10
      double det = r * r / d2 - 0.25;
11
      if (det < 0.0) return false;
12
      double h = sqrt(det);
13
      c.x = (p1.x + p2.x) * 0.5 + (p1.y - p2.y) * h;
14
      c.y = (p1.y + p2.y) * 0.5 + (p2.x - p1.x) * h;
15
16
      return true;
17
```

Types

► Types of triangles:

Equilateral All three sides the same, all angles are 60 degrees Isosceles Two edges the same, two degrees the same.

Scalene All edges different

Right One angle 90 degrees

Area Calculations

Given sides
$$a,b,c$$

Perimeter $p=a+b+c, s=\frac{p}{2}$
Area $\sqrt{s(s-a)(s-b)(s-c)}$

Circles in Triangles

A triangle with area A and semi-perimeter s has an inscribed circle (incircle) with radius r = A/s.

```
double rInCircle(double ab, double bc, double ca) {
    return area(ab, bc, ca) / (0.5 * perimeter(ab, bc, ca))

double rInCircle(point a, point b, point c) {
    return rInCircle(dist(a, b), dist(b, c), dist(c, a)); }
```

Center of Inscribed Circle

```
int inCircle(point p1, point p2, point p3,
23
                 point &ctr, double &r) {
24
      r = rInCircle(p1, p2, p3);
25
      if (fabs(r) < EPS) return 0; // no inCircle center
26
      line 11, 12; // compute these two angle bisectors
27
      double ratio = dist(p1, p2) / dist(p1, p3);
28
      point p = translate(p2, scale(toVec(p2, p3),
29
                                      ratio / (1 + ratio))):
30
      pointsToLine(p1, p, l1);
31
      ratio = dist(p2, p1) / dist(p2, p3);
32
      p = translate(p1, scale(toVec(p1, p3),
33
                                ratio / (1 + ratio)));
34
      pointsToLine(p2, p, 12);
35
      areIntersect(11, 12, ctr);
36
      return 1; }
37
```

Circumscribed Circles

- Triangle can be enclosed by an circumscribed cirlce:
- Radius is R = a * b * c/(4 * area(a, b, c))

```
double rCircumCircle(double ab, double bc, double ca) {
   return ab * bc * ca / (4.0 * area(ab, bc, ca)); }
double rCircumCircle(point a, point b, point c) {
   return rCircumCircle(dist(a, b), dist(b, c), dist(c, a));
```

Trigonometrics

Is a triangle possible? a + b > c, where c is largest side.

Pythagorean Theorem $a^2 + b^2 = c^2$

Law of Sines
$$\frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)} = 2R$$

Law of Cosines
$$c^2 = a^2 + b^2 - 2 \times a \times b \times \cos(\gamma)$$