Database System

Entity-Relationship Model

DB Application Life Cycle

- วิเคราะห์ความต้องการ (Requirement Analysis)
 - วิเคราะห์ระบบปัจจุบัน (ข้อมูลและการทำงาน)
 - วิเคราะห์ความต้องการของผู้ใช้
- ออกแบบฐานข้อมูลและโปรแกรม (Design)
 - Conceptual > Logical > Physical & Functional
- ดำเนินงานสร้างฐานข้อมูลและโปรแกรม (Implement)
 - System Development and Testing
- ▶ ใช้งานฐานข้อมูลและโปรแกรม (Deployment)
 - Installation, Migration/Conversion, Training
- บำรุงรักษา (Maintenance)
 Monitoring, Tuning, Upgrading, Achieving

วิเคราะห์ความต้องการ

ทรัพยากร

- ฐานข้อมูลและโปรแกรมที่มีอยู่เดิม
- ผู้ใช้งานในทุกระดับและผู้เชี่ยวชาญในงานนั้น
- เอกสาร, รายงาน, คู่มือ, แบบฟอร์ม, กฏ, สูตร
- การประมวลผล : กำหนด
 - ผู้ใช้หรือโปรแกรมนำข้อมูลไปใช้อย่างไร
 - อะไรคือสารสนเทศที่ต้องการ
- ผลลัพธ์
 - การวิเคราะห์ข้อมูลนำไปสู่การออกแบบฐานข้อมูล
 - ▶ Business Rule/Logic เปลี่ยนเป็น Integrity Constraints
 - การวิเคราะห์การทำงานนำไปสู่การออกแบบโปรแกรม
 - ▶ Tools: Data Flow Diagram; UML Use Case

ออกแบบฐานข้อมูล

- ออกแบบฐานข้อมูลในระดับแนวคิด(Conceptual Database Design)
- การออกแบบฐานข้อมูลในระดับตรรกะ(Logical Database Design)
- การออกแบบฐานข้อมูลในระดับกายภาพ(Physical Database Design)

Conceptual Design

- เป็นขั้นตอนในการวิเคราะห์ข้อมูลที่จำเป็นทั้งหมดที่เกี่ยวข้องกับระบบ สารสนเทศ
- โดยกำหนดกลุ่มข้อมูล(Entity)และกำหนดความสัมพันธ์(Relationship)ระหว่าง ข้อมูลต่าง ๆ จากนั้นจึงระบุรายละเอียด(Attribute)ต่าง ๆ ของข้อมูลทั้งหมด และ ระบุกฏที่จะควบคุมความคงสภาพของข้อมูล(Data Integrity)
- 🕨 แสดงแนวคิดการออกแบบโดยใช้ ER Model แล้วพัฒนา ER Diagram

Conceptual Design (cont.)

- lnput: Data Requirement- จากผู้ใช้, ผู้เชี่ยวชาญระบบ, ระบบเดิม
- Output: Conceptual Schema Logical data models
- ▶ Process: ระบุความต้องการ, กำหนดโมเดลที่รองรับความต้องการ

Logical Design

- เป็นการแปลง ER Diagram ให้เป็นเค้าร่างรีเลชัน(Relational schema) ตาม ทฤษฎีฐานข้อมูลเชิงสัมพันธ์
- นำรีเลชันมาปรับบรรทัดฐาน(Normalization) ให้อยู่ในรูปแบบบรรทัดฐานที่ เหมาะสม

Logical Design (cont.)

- Input: Conceptual Schema
- Output: Logical Schema DBMS products
- Process: คันหา data model ที่เหมาะสม, convert the schema to model

Relational Schema

- ▶ จาก ER Diagram แปลงเป็นเค้าร่างฐานข้อมูลได้ดังนี้
- ▶ ประเภทหนังสือ(รหัสประเภท , ชื่อปรเภท)
- หนังสือ(<u>รหัสISBN</u>, ชื่อหนังสือ, ราคา, ปีที่พิมพ์, ครั้งที่พิมพ์, รูปภาพ, รหัสประเภท, รหัสสำนักพิมพ์)
- สำนักพิมพ์(รหัสสำนักพิมพ์ , ชื่อสำนักพิมพ์ , ที่อยู่ , โทรศัพท์ , เว็บไซต์ , อีเมลล์)
- ผู้แต่ง(รหัสผู้แต่ง , ชื่อผู้แต่ง , อีเมลล์)
- ลูกค้า(<u>รหัสลูกค้า</u> , ชื่อลูกค้า , โทรศัพท์ , อีเมลล์ , ชื่อเข้าใช้ระบบ , รหัสผ่าน , บ้านเลขที่ , ถนน , ตำบล , อำเภอ , จังหวัด , รหัสไปรษณีย์)
- การสั่งซื้อ(<u>รหัสการสั่งซื้อ</u> , วันที่สั่งซื้อ , วันที่ส่งสินค้า , รหัสลูกค้า)
- การแต่งหนังสือ(<u>รหัสISBN</u>, <u>รหัสผู้แต่ง</u>)
- รายการสั่งซื้อ(รหัสการสั่งซื้อ , รหัส ISBN , จำนวน , ราคารวม)

Relational Schema

Physical Design

- เป็นการออกแบบโครงสร้างข้อมูลที่จะนำไปจัดเก็บในฐานข้อมูล โดยกำหนด
 โครงสร้างตามคุณสมบัติข้อมูลของระบบจัดการฐานข้อมูลที่จะใช้ในการจัดการ
 ข้อมูล
- ระบุพจนานุกรมของข้อมูล(Data Dictionary)

Physical Design (cont.)

- Input: Logical Schema
- Output: Physical Schema schema ที่เฉพาะเจาะจงเพื่อเจาะจง
 DBMS
- ▶ Process: ค้นหาผลิตภัณฑ์ DBMS และดำเนินการ

พจนานุกรมข้อมูล(Data Dictionary)

Table name	Attribute name	Description	Data Type	Size	Key	Referenc es
BookTyp e	BTypeID	รหัสประเภท	Char	5	PK	
(ประเภท หนังสือ)	BTypeName	ชื่อประเภท	Varchar	30		
Book (หนังสือ)	ISBN	รหัสISBN	Char	15	PK	
	BName	ชื่อหนังสือ	Varchar	50		
	Price	ราคา	Float			
	Edition	ครั้งที่พิมพ์	Int			
	Published	ปีที่พิมพ์	Int			
	Picture	รูปภาพ	Blob			
	BTypeID	รหัสประเภท	Char	5	FK	BookTyp e

Database Design

Entity-Relationship Model (ER-Model)

- โป็นแบบจำลองที่ใช้แสดงแนวคิดการออกแบบฐานข้อมูลในระดับแนวคิด (Conceptual schema) โดยจะแสดงความสัมพันธ์ระหว่างข้อมูลที่ประกอบด้วย เอนทิตี้ , แอททริบิวต์ และความสัมพันธ์
- ▶ คิดคันโดย Peter Chen ในปี 1976
- ▶ เป็นอิสระจากระบบการจัดการฐานข้อมูล(DBMS)
- นักวิเคราะห์และออกแบบระบบจะใช้ ERM เป็นสื่อกลางในการสื่อสารระหว่าง
 ผู้ใช้และผู้พัฒนาโปรแกรม

ER Model (cont.)

- ER-Model เป็นการออกแบบฐานข้อมูลในระดับแนวคิดในลักษณะจากบนลง ล่าง (Top-Down Strategy)
- ผลจากการออกแบบฐานข้อมูลจะได้เค้าร่างในระดับแนวคิดที่ประกอบด้วย
 - เอนทิตี้ที่ควรจะมีในระบบ
 - ความสัมพันธ์ระหว่างเอนทิตี้ว่าเป็นอย่างไร
 - แอททริบิวต์ซึ่งเป็นรายละเอียดที่อธิบายเอนทิตี้ และมีความสัมพันธ์กัน อย่างไร

องค์ประกอบของ ER Model

▶ เอนทิตี้(Entity Sets)

- กลุ่มของสิ่งต่างๆ ในโลกความเป็นจริง ที่ต้องการจัดเก็บเป็นข้อมูลไว้ใน ฐานข้อมูล
- 🕨 เช่น พนักงาน , ลูกค้า , นักศึกษา , อาจารย์ , สมาชิก , สุนัข , พืช , สัตว์
- 🕨 หรืออาจเป็น การเช่า , การสั่งซื้อ , การลงทะเบียน
- Entity sets คือกลุ่มของเอนทิตี้ประเภทเดียวกันและมีคุณสมบัติหรือ คุณลักษณะร่วมกัน
- ความสัมพันธ์(Relationships)
 - ความเกี่ยวข้องกันระหว่างหลาย ๆ เอนทิตี้
 - Relationship set คือกลุ่มของความสัมพันธ์ที่เป็นประเภทเดียวกัน

Entities and Relationships

Entity Sets

- ▶ Entity คือ กลุ่มของแอตทริบิวต์ (Attribute)
- Attributes คือคุณสมบัติหรือคุณลักษณะ ที่ใช้อธิบายรายละเอียดของเอนทิตี้
- Domain คือค่าที่ attribute สามารถบรรจุได้

Entity, Attribute, Domain

- Person
- {name, age, gender}
 - ▶ (Jason, 30, male)
 - ▶ (Jane, 26, female)
- Domain
 - name: character string
 - ▶ age: 0 < age < 200</p>
 - gender: {male, female}

- Account
- {acct number, balance}
 - ▶ (1-101, 2000 B)
 - **▶** (3-105, 4000 в)
- Domain
 - Acct number: 9-999
 - balance: numeric

ประเภทของ Entity

- แบ่งออกเป็น 2 ประเภท คือ
- 1. เอนทิตี้แบบปกติ(Strong Entity หรือ Regular Entity)
- 2. เอนทิตี้แบบอ่อน (Weak Entity)

Strong Entity

- เป็นเอนทิตี้ที่เราสามารถกำหนดให้มีในระบบได้อย่างอิสระ ไม่ขึ้นกับข้อมูลจาก
 เอนทิตี้อื่น เช่น นักศึกษา , พนักงาน , รถ และ วิชาเรียน เป็นตัน
- ข้อมูลในเอนทิตี้แบบปกติมีลักษณะเป็นเอกลักษณ์(Unique) นั่นคือ สามารถ เลือกข้อมูลบางแอททริบิวต์ที่อยู่ในเอนทิตี้นั้นๆ มาเป็นกุญแจหลัก(Primary Key) ของเอนทิตี้นั้น เพื่อจำแนกข้อมูลแต่ละรายการได้

Strong Entity (cont.)

สัญลักษณ์ที่ใช้แทน เอนทิตี้แบบปกติ

Weak Entity

- เอนทิตี้แบบอ่อนเป็นเอนทิตี้ขึ้นต่อข้อมูลในเอนทิตี้อื่น ๆ บางเอนทิตี้ กล่าวคือ เอนทิตี้แบบอ่อนจะไม่มีข้อมูลในฐานข้อมูล หากไม่มีข้อมูลในอีกเอนทิตี้หนึ่ง (เรียกว่า Owner Entity) เกิดขึ้นในระบบก่อน เรียกว่า "การขึ้นต่อกันเชิงปรากฏ (Existence Dependency)"
- ▶ เอนทิตี้แบบอ่อนจะไม่สามารถกำหนดคีย์หลักโดยใช้แอททริบิวต์ในเอนทิตี้เพียง ลำพัง แต่ต้องอาศัยคีย์หลักจาก Owner Entity มาประกอบกันกับแอททริบิวต์ที่ เป็นส่วนประกอบของคีย์

Weak Entity (cont.)

สัญลักษณ์ที่ใช้แทน เอนทิตี้แบบอ่อน

Entity Name

DEPENDENT

ORDER_DETAIL

ตัวอย่างเอนทิตี้

Attribute

- แอททริบิวต์ หมายถึง คุณสมบัติ หรือ คุณลักษณะ ที่ใช้อธิบายรายละเอียดของ
 เอนทิตี้ และ ความสัมพันธ์
- ตัวอย่าง เอนที่ตี้ "นักศึกษา" ประกอบด้วยข้อมูล "รหัสนักศึกษา , ชื่อ ,นามสกุล , ที่อยู่ , วันเกิด , อายุ , เกรดเฉลี่ยสะสม"
- ตัวอย่าง เอนที่ตี้ "สินค้า" ประกอบด้วยข้อมูล "รหัสสินค้า , ชื่อสินค้า , ราคาต่อ
 หน่วย , จำนวนคงเหลือ"

ประเภท Attribute

- ▶ Simple Attribute หรือ Atomic Attribute
- Composite Attribute
- Single-value Attribute
- Multivalued Attribute
- Derived Attribute

Simple Attribute

หมายถึง แอททริบิวต์ที่ไม่มีการแยกออกเป็นแอททริบิวต์ย่อย ๆ อีก เช่น รหัส
 นักศึกษา , เงินเดือน , เกรดเป็นตัน

Composite Attribute

หมายถึง แอททริบิวต์ที่สามารถแยกออกเป็นแอททริบิวต์ย่อยออกไปอีก เช่น ที่
 อยู่ ประกอบด้วย บ้านเลขที่ , ถนน , ตำบล , อำเภอ , จังหวัด , รหัสไปรษณีย์

Single value Attribute

- หมายถึง แอททริบิวต์ที่มีค่าข้อมูลได้เพียงค่าเดียวในแต่ละ แอททริบิวต์ สำหรับ แต่ละรายการข้อมูล
- ▶ ถ้ากำหนดให้เป็นกุญแจหลัก(Primary key) ให้ขีดเส้นใต้ทึบที่ใต้ชื่อแอททริบิวต์

Multivalued Attribute

- หมายถึง แอททริบิวต์ที่สามารถกำหนดค่าข้อมูลได้มากกว่า 1 ค่า สำหรับ ข้อมูลแต่ละรายการ
- เช่น พนักงานแต่ละคนสามารถมีความสามารถพิเศษได้หลายอย่าง

Derived Attribute

หมายถึง แอททริบิวต์ที่ค่าของแอททริบิวต์ประกอบขึ้นหรือคำนวณค่าจากค่าของ
 แอททริบิวต์อื่น เช่น อายุ คำนวณจาก วันเกิด

Entity & Attribute

CREATE TABLE STUDENT

(Student ID CHAR(11) NOT NULL UNIQUE,

Student_Name VARCHAR(50),

Address VARCHAR(100),

Phone VARCHAR(10),

Major VARCHAR(20),

PRIMARY KEY(Student_ID)

);

Student_ID: 63812489101

Student_Name : วันดี ใจสะอาด

หมากแข้ง อ.เมือง จ.อุดรธานี

41000

Phone: 042211563

Major : เคมี

Student_ID: 63856245231

Student_Name : สมศักดิ์ ใจดี

Address : 50 ถ.ทหาร ต.หมากแข้ง

อ.เมือง จ.อุดรธานี 41000

Phone: 042244121

Major : คอมพิวเตอร์

Relationship Sets

ความสัมพันธ์ หมายถึง ความสัมพันธ์ที่เชื่อมโยงระหว่างแต่ละเอนทิตี้
 ตามเงื่อนไขของระบบงาน เช่นเอนทิตี้ "อาจารย์" และเอนทิตี้
 "นักศึกษา" มีความสัมพันธ์กันชื่อ "เป็นที่ปรึกษา"

Relationship

สัญลักษณ์แทน ความสัมพันธ์

แสดงความสัมพันธ์ระหว่างเอนทิตี้ที่มี ความสัมพันธ์กันแบบปกติ

แสดงความสัมพันธ์ระหว่างเอนทิตี้แบบอ่อนกับ เอนทิตี้อื่น (Owner Entity) ที่มีความสัมพันธ์กัน แบบเชิงปรากฏและเชิงระบุ เรียกความสัมพันธ์ นี้ว่า Identifying Relationship

Relationship

Degree of Relationship Set

- หมายถึง จำนวนของเอนทิตี้ในการมีส่วนร่วม (Participating) กับความสัมพันธ์
 ใด ๆ
- มีความเป็นไปได้ 4 แบบ ดังนี้
 - Unary Degree
 - Binary Degree
 - Ternary
 - Quaternary

Degree of Relationship: Unary Relationship

▶ เป็นความสัมพันธ์เกิดขึ้นกับเอนทิตี้ 1เอนทิตี้ โดยสมาชิกในเอนทิตี้มี
 ความสัมพันธ์ระหว่างกันเอง (recursive)

Degree of Relationship: Binary Relationship

เป็นความสัมพันธ์ระหว่างสองเอนทิตี้

Degree of Relationship: Binary Relationship

Degree of Relationship: Ternary Relationship

เป็นความสัมพันธ์ระหว่างเอนทิตี้ 3 เอนทิตี้

Degree of Relationship: Ternary Relationship

Degree of Relationship: Ternary Relationship

Constraints

- Mapping Cardinalities (Multiplicity)
 - One-to-one
 - One-to-many or many-to-one
 - Many-to-many
- Participation Constraints
 - Total participation
 - Partial participation

Cardinality Constraints

- หมายถึง การระบุจำนวนสมาชิกของเอนทิตี้ที่มาสัมพันธ์กันในแต่ละ ความสัมพันธ์
- ประกอบด้วย
 - ความสัมพันธ์แบบ หนึ่งต่อหนึ่ง(One-to-One Relationship)
 - ความสัมพันธ์แบบ หนึ่งต่อกลุ่ม(One-to-Many Relationship)
 - ความสัมพันธ์แบบ กลุ่มต่อกลุ่ม(Many-to-Many Relationship)

- เป็นการแสดงความสัมพันธ์ระหว่างข้อมูลของเอนทิตี้หนึ่งกับข้อมูลของอีก
 เอนทิตี้หนึ่งเพียง 1 รายการเท่านั้น
- ตัวอย่างเช่น อาจารย์ 1 คน เป็นคณบดีได้ 1 คณะ ในขณะที่ คณะวิชาแต่ละคณะ มีคณบดี ได้ 1 คน/คณะ
- พนักงาน 1 คนมีที่จอดรถเพียง 1 ที่ และที่จอดรถแต่ละที่สามารถจอดรถโดย พนักงาน 1 คนเท่านั้น
- พนักงาน 1 คนเป็นผู้จัดการแผนกได้ 1 แผนกและแต่ละแผนกก็มีผู้จัดการได้ เพียง 1 คน

สัญลักษณ์แบบ Chen

สัญลักษณ์แบบ Crow's Foot

อาจารย์ คณะวิชา

- เป็นการแสดงความสัมพันธ์ของข้อมูลเอนทิตี้หนึ่งว่ามีความสัมพันธ์กับข้อมูลของอีก
 เอนทิตี้หนึ่งมากกว่า 1 รายการ
- ตัวอย่างเช่น อาจารย์ 1 คน เป็นอาจารย์ที่ปรึกษาให้กับนักศึกษาได้หลายคน ในขณะที่ นักศึกษาแต่ละคนมีอาจารย์ที่ปรึกษาเพียง 1 คน
- แผนก 1 แผนกมีพนักงานสังกัดได้หลายคน ในขณะที่พนักงานแต่ละคนสามารถสังกัด
 แผนกได้เพียง 1 แผนก

สัญลักษณ์แบบ Chen

สัญลักษณ์แบบ Crow's Foot

- เป็นการแสดงความสัมพันธ์ของข้อมูลระหว่างเอนทิตี้แบบกลุ่มต่อกลุ่ม
- ตัวอย่างเช่น นักศึกษา 1 คนสามารถลงทะเบียนเรียนได้หลายวิชา ในขณะที่แต่ละวิชา ก็สามารถมีนักศึกษามาลงทะเบียนเรียนได้หลายคน

สัญลักษณ์แบบ Chen

สัญลักษณ์แบบ Crow's Foot

รหัส	ชื่อ	นามสกุล	โปรแกรมวิชา		5	หัส	ชื่อวิชา	หน่วยกิต
s1	วนิดา	สุขสันต์	คอมพิวเตอร์		7	Su1	ฐานข้อมูล	3
	ı	T			 /			
s2	สมชาย	รักดี	โยธา • • • • • • • • • • • • • • • • • • •		ľL	Su2	สื่อสารข้อมูล	3
				/ //	_			
s3	จริงใจ	รักชีพ	คอมพิวเตอร์ 🧲	\.\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	.	Su3	แคลคูลัส	3
					. _			
s4	สถาพร	ช่วงโชติ	สัตวบาล	1/1		Su4	บัญชี1	3
			, , , , , , , , , , , , , , , , , , , ,	/ /	·, _			
s5	จิราพร	แก้วมณี	โยธา 🗲	-/· - · -	¥	Su5	อังกฤษ1	2
			,					
S6	ลินดา	ใจอ่อน	โยธา				o d	
			/				วิชาเรียน	
S7	ชาติชาย	ปานพุ่ม	คอมพิวเตอร์					
_	•							

Participation Constraints

- หมายถึง ข้อกำหนดในการมีส่วนรวมในความสัมพันธ์ของสมาชิกในเอนทิตี้
- ประกอบด้วย 2 ข้อกำหนด คือ
 - การมีส่วนร่วมแบบทั้งหมด(Total Participation หรือ Mandatory)
 - การมีส่วนร่วมแบบบางส่วน(Partial Participation หรือ Optional)

Total Participation

หมายถึง ทุกรายการในเอนทิตี้ A ต้องมีความสัมพันธ์แบบ R1 กับสมาชิกเอนทิตี้ B เสมอ

Total Participation

นักศึกษาทุกคนต้องสังกัดคณะวิชาได้คนละ 1 คณะ และแต่ละคณะต้องมีนักศึกษามาสังกัดอย่างน้อย 1 คนหรือหลายคน

รหัส	ชื่อ	นามสกุล	โปรแกรมวิชา		4	รหัส	ชื่อคณะ
s1	วนิดา	สุขสันต์	คอมพิวเตอร์ —	· · · — · · -		F1	วิทยาศาสตร์
				\ '.			
s2	สมชาย	รักดี	โยธา -		_	F2	บริหารธุรกิจ
				• *	_		
s3	จริงใจ	รักชีพ	คอมพิวเตอร์			F3	วิศวกรรมศาสตร์
					<u> </u>		
s4	สถาพร	ช่วงโชติ	สัตวบาล 🔐	///		F4	ศิลปกรรมศาสตร์
s5	จิราพร	แก้วมณี	โยธา	,	****	F5	เกษตรศาสตร์
							<u> </u>
S6	ลินดา	ใจอ่อน	โยธา				คณะวิชา
							คเรทร 1.77 เ
S7	ชาติชาย	ปานพุ่ม	คอมพิวเตอร์				
		•					

Partial Participation

หมายถึง รายการในเอนทิตี้ A อาจจะมีความสัมพันธ์แบบ R1 กับสมาชิกเอนทิตี้ B หรือไม่ก็ได้

Partial Participation

นักศึกษา(บางคน) สามารถลงทะเบียนเรียนหรือไม่ลงทะเบียนก็ได้ และสามารถลงทะเบียนเรียนได้หลายวิชา แต่ละวิชาก็อนุญาตให้ลงทะเบียนได้มากกว่า 1

Participation

อาจารย์(บางคน) เป็นที่ปรึกษาให้แก่นักศึกษาได้หลายคน แต่ในขณะที่นักศึกษา<mark>ทุกคน</mark> ต้องมีอาจารย์ที่ปรึกษา 1 คน

Multiplicity and Participation Constraints

End of part1