CODES FOR CHAPTER 12

mmmie.f, mmmiea.f

Fortran 77 programs mmmie and mmmie acalculate Mie coefficients (scattering coefficients a_n and b_n , efficiencies Q_{sca} , Q_{ext} and Q_{abs} , see Section 12.2 for definitions), and relate them to particle cloud properties (extinction coefficient β , absorption coefficient κ , scattering coefficient σ_s , scattering phase function Φ for specified scattering angles. In addition, program mmmiea also calculates the asymmetry factor q, and phase function expansion coefficients A_n , as defined in Section 12.3), but at a severe penalty in cpu time.

The input for both programs is the same, and is done via a data file MIE.DAT:

```
Input:
```

```
= 1: single particle size; =2: modified gamma distribution
IDSTF
          = 1: single wavenumber; =2: wave number spectrum
IETA
IPRNT
          = 1: print only final results; =2: also intermediate integrations
          = complex index of refraction
CIR
          = minimum particle size in gamma distribution (in \mum)
RMIN
RMAX
          = maximum particle size in gamma distribution (in \mum)
AMG.
                                                distribution,
                                                                   equation
                                                                                 (12.34),
                                    gamma
             AMG*R**ALMG*DEXP(-BMG*R**GAMG); units: AMG [cm<sup>-3</sup>\mum<sup>ALMG+1</sup>], ALMG [-], BMG [\mum<sup>-1</sup>],
BMG,
             GAMG[-]
ALMG,
GAMG
NPV
          = number of particles per unit volume (in particles/cm<sup>3</sup>)
          = wavenumber if single wavenumber is considered (in cm<sup>-1</sup>)
ETA
          = minimum wavenumber to be considered
ETMIN
          = maximum wavenumber to be considered
ETMAX
NETA
          = number of wavenumbers to be considered (equally spaced between ETMIN and ETMAX)
ERRP
          = maximum error allowed for absorption/scattering coefficients (and also the asymmetry factor
             for mmmiea)(in %)
ERRA
          = maximum absolute error desired for phase function values (mmmie) or expansion coefficients
```

 A_n (mmmiea) (in $10^{-\text{digits}}$) Note: to allow running the program on machines with relatively little RAM, array sizes have been declared

fairly small, limiting calculations to (i) a maximum of 10 different wavenumbers, (ii) relatively small size parameters ($x \le 300$), and (iii) relatively coarse integration intervals (< 500 nodes). More involved problems can be calculated by carefully increasing array limits as indicated in the programs.

Example:

The input file MIE.DAT as given in this directory, contains the following data:

```
2, 1, 2
  (1.30149.-0.1620E-05)
   1.-10 1.+10,
   1.619424-4, 0.740741, 7.6, 1., 74.
10000.
```

stating that a gamma-distribution of particles is to be considered for a single wavenumber, with detailed output (including intermediate integrations) (first line).

The complex index of refraction of the particles is $m = 1.30149 - 0.1620 \times 10^{-05}i$ (second line).

Particle sizes range from $10^{-10} \mu m$ to $10^{+10} \mu m$ (third line).

Gamma-function parameters in equation (12.34) are $A = 1.61942410^{-4}$, B = 0.740741, $\gamma = 7.6$, $\delta = 1$. The number of particles is given as $N_(T) = 74/\text{cm}^3$ (this number is really not necessary for a gamma distribution, since it can be calculated from equation (12.35), and is only read and printed, but not used) (fourth line). Since only a single wavenumber is considered, the fifth line contains only one number, $\eta = 100000 \, \text{cm}^{-1}$. Finally, the last line specifies to calculate κ , σ and β to an accuracy of 1% or better, and that the values for Φ or A_n should be calculated to an absolute accuracy of 0.005.

Running mmmie produces the following self-explanatory output, placed into file MIE.RES:

```
PARAMETERS FOR PARTICLE DISTRIBUTION/SINGLE WAVENUMBER
  **************
  WAVENUMBER
                        = 0.100E + 05 CM - 1
  MINIMUM PARTICLE RADIUS= 0.100E-09 MICROM
  MAXIMUM PARTICLE RADIUS= 0.100E+11 MICROM
  REFRACTIVE INDEX
                      = 1.3015 - 0.0000i
  PARTICLE DENSITY
                        = 0.740E+02 PER CM**3
  DISTRIBUTION FUNCTION: N(R)=0.16194E-03*R**7.6*EXP(-0.74074E+00*R**1.0)
  MIE-PARAMETERS ARE CALCULATED FOR 16.00000 < X < 216.00000
  INTEGRATION WITH
                    9 NODES, AND A DX =25.000
ETA (CM-1)
              1.000E+04
KAPPA (CM-1)
              1.250E-07
SIGMA (CM-1)
            3.675E-04
BETA (CM-1)
            3.676E-04
PHASE FUNCTION
DEG.
                PHT
 0
              4.835E+03
 1
             1.943E+03
             2.093E+02
 3
              5.329E+01
176
              2.264E-01
177
              1.503E-01
178
              2.086E-01
179
              3.508E-01
180
              1.364E+00
  INTEGRATION WITH 17 NODES, AND A DX =12.500
ETA (CM-1)
              1.000E+04
KAPPA (CM-1)
              9.997E-08
SIGMA (CM-1)
            3.667E-04
BETA (CM-1) 3.668E-04
PHASE FUNCTION
DEG.
                PHI
              4.634E+03
```

```
1.851E+03
  2
               2.304E+02
  3
               4.943E+01
 177
               2.428E-01
 178
                3.551E-01
 179
               3.691E-01
 180
                9.224E-01
   INTEGRATION WITH 65 NODES, AND A DX = 3.125
ETA (CM-1)
               1.000E+04
 KAPPA (CM-1)
              1.023E-07
 SIGMA (CM-1)
              3.684E-04
 BETA (CM-1) 3.685E-04
 PHASE FUNCTION
 DEG.
                 PHI
  0
               4.617E+03
  1
               1.847E+03
  2
               2.331E+02
  3
               6.044E+01
   INTEGRATION DID NOT CONVERGE: MAXIMUM ERROR = 0.18%
   ERROR FOR SIGMA: 0.18%, ERROR FOR BETA: 0.18%
   ERROR FOR
PHASE( 1): 2.84309
PHASE( 2): 2.45336
PHASE( 3): 1.56688
PHASE( 4): 0.47940
PHASE( 5): 0.23725
PHASE(179): 0.03003
PHASE(180): 0.05414
PHASE(181): 0.10000
ETA (CM-1)
               1.000E+04
              9.785E-08
 KAPPA (CM-1)
              3.677E-04
 SIGMA (CM-1)
BETA (CM-1) 3.678E-04
 PHASE FUNCTION
 DEG.
                 PHI
  0
               4.614E+03
  1
               1.845E+03
  2
               2.347E+02
                6.092E+01
  3
```

3.153E+01

```
5
              2.034E+01
 6
             1.511E+01
 7
             1.234E+01
             1.066E+01
 8
 9
             9.560E+00
            7.660E-02
170
            1.032E-01
171
            1.213E-01
172
173
            1.069E-01
174
            9.150E-02
175
             1.214E-01
176
             1.629E-01
177
             2.179E-01
178
             2.986E-01
179
              2.761E-01
180
              7.212E-01
```

Running mmmiea, on the other hand produces the following output, placed into file MIEA.RES:

```
PARAMETERS FOR PARTICLE DISTRIBUTION/SINGLE WAVENUMBER
```

```
WAVENUMBER = 0.100E+05 CM-1

MINIMUM PARTICLE RADIUS= 0.100E-09 MICROM

MAXIMUM PARTICLE RADIUS= 0.100E+11 MICROM

REFRACTIVE INDEX = 1.30149-1.62000E-06i

PARTICLE DENSITY = 7.400E+01 PER CM**3

DISTRIBUTION FUNCTION: N(R)=1.61942E-04*R**7.6*EXP(-0.74074E+00*R**1.0)
```

MIE-PARAMETERS ARE CALCULATED FOR 16.00000 < X < 216.00000

INTEGRATION WITH 9 NODES, AND A DX =25.000

```
ETA (CM-1)
            1.000E+04
KAPPA (CM-1)
             1.250E-07
           3.675E-04
SIGMA (CM-1)
           3.676E-04
BETA (CM-1)
GCOS ( -- )
           8.691E-01
    A( 1)
           2.60744
    A( 2) 4.02359
     A( 3)
           4.85462
     A( 4)
           5.53582
     A(5)
            6.29942
     A( 6)
            6.88010
     A( 7)
            7.63828
     A(8)
           8.43823
     A(9)
            9.15186
     A(449)
             0.00000
     A(450)
           0.00000
     A(451)
             0.00000
     A(452)
             0.00000
```

INTEGRATION WITH 33 NODES, AND A DX = 6.250

ETA (CM-1)		1.000E+04
KAPPA	(CM-1)	1.015E-07
SIGMA	(CM-1)	3.681E-04
BETA	(CM-1)	3.682E-04
GCOS	()	8.716E-01
	A(1)	2.52586
	A(2)	3.88357
	A(3)	4.68158
	A(4)	5.32619
	A(5)	6.04063
	A(6)	6.59512
	A(7)	7.31633
	A(8)	8.08751
	A(9)	8.72379
	A(10)	9.58797
	A(449)	0.00000
	A(450)	0.00000
	A(451)	0.00000
	A(452)	0.00000

PHASEFUNCTION

FHASEFUNCTION	
DEG.	PHI
0	4.260E+03
5	1.758E+01
10	8.615E+00
15	5.157E+00
20	4.088E+00
25	3.059E+00
30	2.206E+00
35	1.287E+00
40	1.089E+00
45	6.978E- 0 1
50	7.122E-01
55	3.592E- 0 1
60	2.251E-01
65	1.581E-01
70	1.343E-01
75	9.73 0 E- 0 2
80	8.906E-02
85	6.900E-02
90	5.605E-02
95	4.968E-02
100	5.518E-02
105	5. 0 99E- 0 2
110	4.992E-02
115	5.291E- 0 2
120	5.204E-02
125	8.062E-02
130	5.287E- 0 2
135	2.674E- 0 1
140	2.485E-01

145	1.552E-01
150	1.190E-01
155	1.194E-01
160	1.216E-01
165	1.328E-01
170	1.030E-01
175	1.690E-01
180	9.319E-01

coalash.f90, coalash.exe

This Fortran 90 program determines absorption and extinction coefficients κ^* , β^* for the Rayleigh limit, from the Buckius and Hwang [1] model, as well as from the Mengüç and Viskanta [2] model. The user is prompted to input the complex index of refraction n and k as well as the nondimensional size parameter k of the coal/ash particles; results are then printed to the screen.

References

- 1. Buckius, R. O., and D. C. Hwang: "Radiation properties for polydispersions: Application to coal," *ASME Journal of Heat Transfer*, vol. 102, pp. 99–103, 1980.
- 2. Mengüç, M. P., and R. Viskanta: "On the radiative properties of polydispersions: A simplified approach," *Combustion Science and Technology*, vol. 44, pp. 143–159, 1985.