Section 2.4 Paths and Curves

Definition. A function $\vec{c}:[a,b]\to\mathbb{R}^n$ is called a *path* (in the plane when n=2 and in the space when n=3). Here, $\vec{c}(a)$ and $\vec{c}(b)$ are its endpoints. C is the collection of points $\vec{c}(t)$ as t varies in [a,b]. C is called a *curve*. The path \vec{c} is said to *parametrize* the curve C.

Example. The path $\vec{c}(t) = (t, t^2)$ traces out a paraboloic arc. Here x(t) = t and $y(t) = t^2$. This curve coincides with the graph $f(x) = x^2$.

Example. The path $\vec{c}(t) = (a_1, a_2, a_3) + t(v_1, v_2, v_3)$ traces out a line.

Example. The unit circle $C: x^2 + y^2 = 1$ in the plane is the image of the path

$$\vec{c}:[0,2\pi]\to\mathbb{R}^2,\quad \vec{c}(t)=(\cos t,\sin t)$$

Note that different paths may parametrize the same curve. For example, $\vec{d}(t) = (\cos 2t, \sin 2t)$ for $0 \le t \le \pi$ also parametrizes the unit circle.

We usually think of t as time so $\vec{c}(t)$ is position at time t. Then we can talk about the velocity $\vec{v}(t)$ at time t. If \vec{c} is a path and it's differentiable, we say \vec{c} is a differentiable path.

Definition. The *velocity* of \vec{c} at time t is given by

$$\vec{c}(t)' = \lim_{h \to 0} \frac{\vec{c}(t+h) - \vec{c}(t)}{h}.$$

And the *speed* is $\|\vec{c}(t)'\|$, the length of the velocity vector.

Note that if $\vec{c}(t) = (x(t), y(t), z(t))$, then $\vec{c}(t)' = (x'(t), y'(t), z'(t)) = x'(t)\vec{i} + y'(t)\vec{j} + z'(t)\vec{k}$.

Remark. $\vec{c}(t)'$ is tangent to the path $\vec{c}(t)$ at time t.

Example. Compute the tangent vector to the path $\vec{c}(t) = (t, t + t^2, e^{2t})$ at t = 1. Solution. Since $\vec{c}(t)' = (1, 1 + 2t, 2e^{2t})$, $\vec{c}(1)' = (1, 2, 2e^2)$.

Example. (A helix) $\vec{c}(t) = (\cos t, \sin t, t)$, so $\vec{c}(t)' = (-\sin t, \cos t, 1)$.

Tangent Line to a Path

Suppose $\vec{c}(t)$ is a path and $\vec{c}(t_0)' \neq 0$ at t_0 . The equation of the tangent line at $\vec{c}(t_0)$ is

$$\vec{\ell}(t) = \vec{c}(t_0) + (t - t_0)\vec{c}(t_0)'.$$

Example. Suppose that a particle follows the path $\vec{c}(t) = (\cos t, \sin t, t)$ and flies off at a tangent at $t = \frac{\pi}{2}$. Where is it at $t = \frac{\pi}{2} + 1$?

Solution. We need to find the equation of the line tangent to the curve at $\vec{c}(\frac{\pi}{2}) = (0, 1, \frac{\pi}{2})$.

Since $\vec{c}(t)' = (-\sin t, \cos t, 1), \vec{c}(\frac{\pi}{2})' = (-1, 0, 1)$. The equation of the tangent line to the curve at $(0, 1, \frac{\pi}{2})$ is

$$\vec{\ell}(t) = (0, 1, \frac{\pi}{2}) + (t - \frac{\pi}{2})(-1, 0, 1)$$

. Hence, at $t = \frac{\pi}{2} + 1$,

$$\ell(\frac{\pi}{2}+1) = (0,1,\frac{\pi}{2}) + (1)(-1,0,1) = (-1,1,\frac{\pi}{2}+1).$$