rundoc command

The <u>markdoc</u> command takes a SMCL log file to create a dynamic document or presentation slides. This procedure requires the user to create a log file and convert it to a dynamic document.

The **rundoc** command, is simply a wrapper for MarkDoc to simplifies typesettinf dynamic documents directly from a Stata do-file, without requiring the do-file to include a log file.

The syntax for writing comments remains identical to markdoc command. This command should make executing dynamic documents much simpler!

Features

executing Stata commands

The **rundoc** command preserves all of the features of markdoc, because it is simply a wrapper program. Therefore, it preserves all of the features of markdoc such as executing Stata commands and syntax highlighting of the Stata commands using <u>statax</u> package:

. display "Hello MarkDoc"

Hello MarkDoc

. sysuse auto, clear

(1978 Automobile Data)

. summarize

Variable	Obs	Mean	Std. Dev.	Min	Max
make	0				
price	74	6165.257	2949.496	3291	15906
mpg	74	21.2973	5.785503	12	41
rep78	69	3.405797	.9899323	1	5
headroom	74	2.993243	.8459948	1.5	5
trunk	+ 74	13.75676	4.277404	5	23
weight	74	3019.459	777.1936	1760	4840
length	74	187.9324	22.26634	142	233
turn	74	39.64865	4.399354	31	51
displacement	74	197.2973	91.83722	79	425
gear_ratio	+ 74	3.014865	.4562871	2.19	3.89
foreign	74	.2972973	.4601885	0	1

Writing mathematical notations

Mathematical notations are supported in PDF, HTML, Docx, ODT (OpenOffice), and LaTeX:

$$Y = \beta_0 + \beta_1 x_1 + \epsilon$$