DNA Replication: An Overview

Different models for DNA replication

Semiconservative Replication of DNA as suggested by Watson and Crick

The Meselson-Stahl Experiment (1958)

The Meselson-Stahl Experiment Supports **Semiconservative Replication**

DNA extracted and centrifuged

- Meselson and Stahl grew a culture of *E.coli* for many generations in a medium that contained ¹⁵N as the sole nitrogen source. (¹⁵NH4Cl).
- After many generations, all the *E.coli* cells had ¹⁵N incorporated into the purine and pyrimidine bases of their DNA.
- Meselson and Stahl took a sample of these bacteria and switched the rest of the bacteria to a medium that contained only ¹⁴N (washed them before transferring to remove the medium containing ¹⁵N).
- They purified the DNA sample collected from the bacteria just before transfer to the ¹⁴N containing medium.
- Meselson and Stahl collected some of the bacteria after each division and extracted DNA from the bacterial cells (Collected samples of bacteria over the next few cellular generations).
- Under the conditions they used, *E.coli* replicates its DNA every 20 minutes. They took samples at an interval of 20 minutes.

After extracting DNA from bacteria they checked for the density of DNA

Outline for Replication

- A. Initiation
- B. Priming
- C. Elongation
- D. Proofreading and Termination

Arthur Kornberg Nobel Prize in 1959

Worked with *E. coli*. Discovered the mechanisms of DNA synthesis in 1956.

Four components are required:

- dNTPs: dATP, dTTP, dGTP, dCTP
 (deoxyribonucleoside 5'-triphosphates)
 (sugar-base + 3 phosphates)
- 2. DNA template
- 3. DNA polymerase (*Kornberg enzyme*)
- 4. Mg²⁺ (optimizes DNA polymerase activity)

Polymerization of nucleotide triphosphates by DNA polymerase – needs free 3'OH

Guanosine triphosphate deoxyribonucleotide (dGTP)

Problem -1

DNA is double helical. Hence the two strands have to be separated from each other

Problem - 1: DNA unwinding

DNA is unwound by <u>helicase</u>, stabilized by <u>SSB</u> proteins; supercoiling is relaxed by <u>Topoisomerase</u>

Problem - 2

DNA polymerase needs a free 3'-OH of a pre-existing nucleotide to extend the chain

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings.

Problem – 2: Free 3' OH group required

Primase synthesizes small RNA primers, DNA Polymerase III extends them

Problem -3: RNA primers need to be removed

RNA primers are replaced with DNA by <u>DNA Polymerase I</u>, which has both <u>RNaseH</u> and DNA Polymerase activity. The gaps are sealed by <u>Ligase</u>

DNA Replication: Summary

- DNA is unwound by <u>initiator protein + helicase</u>
- Single stranded DNA is stabilized by single stranded DNA binding proteins
 (SSB)
- Supercoiling is relaxed by <u>Topoisomerase</u>
- Small RNA primers are added by <u>Primase</u> (RNA polymerase)
- <u>DNA Polymerase III</u> extends from 3' ends of primer sequences
 - DNA Polymerase can only extend from pre-existing 3'OH group
 - Hence synthesis is always from <u>5'-3' direction</u>
 - It needs <u>DNA template</u>, <u>dNTPs</u> and <u>Mg²⁺ ions</u>
- Replication is continuous in leading strand and discontinuous in lagging strands. Small newly synthesized DNA fragments in lagging strand are called <u>Okazaki fragments</u>
- RNA primers are replaced with DNA by <u>DNA Polymerase I</u>, which has both <u>RNaseH</u> and DNA Polymerase activity
- The gaps are sealed by <u>Ligase</u>

Laboratory methods for nucleic acid analysis

DNA Gel Electrophoresis

DNA Gel Electrophoresis

- Agarose gel is used to analyze a mixture of DNA.
- DNA is negatively charged and hence migrates towards the positive terminal in the applied electric field gradient.
- Different DNA molecules separate according to mass.
- Smaller molecules migrate faster.
- DNA is visualized in the gel by staining with ethidium bromide, which fluoresces under UV light.
- UV light at 302 nm or 365 nm wavelengths are used.

Polymerase Chain Reaction (PCR) and Its Applications

What is PCR?

PCR is an <u>exponentially</u> progressing synthesis of the defined target DNA sequences in vitro.

It was invented in 1983 by Dr. Kary Mullis

Nobel Prize in 1993

Polymerase Chain Reaction (PCR)

Why "Polymerase"?

It is called "polymerase" because the only enzyme used in this reaction is DNA polymerase.

Why "Chain"?

It is called "chain" because the products of the first reaction become substrates of the following one, and so on.

Polymerase Chain Reaction (PCR)

The "Reaction" Components

- 1) Target DNA contains the sequence to be amplified.
- 2) Pair of Primers oligonucleotides that define the sequence to be amplified.
- 3) dNTPs deoxynucleotidetriphosphates: DNA building blocks.

- 4) Thermostable DNA Polymerase enzyme that catalyzes the reaction
- 5) Mg⁺⁺ ions cofactor of the enzyme
- 6) Buffer solution maintains pH and ionic strength of the reaction solution suitable for the activity of the enzyme

Reaction Cycle and the Machine

 $30 \text{ cycles} = 2^{30} \text{ i.e. } 1,073,741,824 \text{ copies}$

PCR tube

Thermocycler

DNA Sequencing

Frederick Sanger Nobel Prize in 1980

Sequencing: The process by which you determine the exact order of the nucleotides in a given region of DNA

Why? To decode the genetic information embedded in DNA

How? Through complementary chain synthesis and early termination

The synthesized chains are visualized by methods using:

- Radioactive labels
- Nonradioactive labels

Dideoxynucleotides (ddNTPs)

The 3' hydroxyl has been changed to a hydrogen in ddNTP's, which terminates a DNA chain because a phosphodiester bond cannot form at this 3' location

Requirements for Sanger-Coulson Sequencing

DNA to be sequenced must be in single strand form

The region to be sequenced must be flanked by a stretch of 3' known sequence

Reagents needed are:

- A primer complementary to the known region to direct chain synthesis.
- DNA polymerase.
- 4 deoxynucleotide triphosphates (dNTPs).
- 4 dideoxynucleotide triphosphates (ddNTPs)(one for each set)

Mechanism of DNA polymerization

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings.

Since the 3'-OH is changed to a -H in ddNTPs, it is unable to form a phosphodiester bond by nucleophilic attack on the phosphate, and it will cause a termination in the DNA chain

Sequencing using denaturing gel-electrophoresis

```
Template
Primer

Differentially elongated fragments

3'-ATATCTGTACCTAGGTGAGTCAGTACC-5'
5'-TATAGACA

5'-TATAGACA

5'-TATAGACATGGA

5'-TATAGACATGGATCCA

5'-TATAGACATGGATCCACTCA

5'-TATAGACATGGATCCACTCA
```

To each reaction along with the four regular dNTPs, only one of the four dideoxynucleotides (ddATP in the above reaction) are added

The ddNTP is added to be approximately 100-fold lower in concentration than the corresponding dNTP

A series of differentially elongated DNA fragments (hence of different length) will be produced

Can be visualized by labelling the primers with radioactive phosphate (32P or 33P)

Sequencing using denaturing gel-electrophoresis

Automated sequencing

Figure 8-34
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W.H. Freeman and Company

Automated sequencing

Each dideoxynucleotide used are linked to a fluorescent molecule that gives all the fragments terminating in that nucleotide a particular color.

All four labelled ddNTPs are added to a single tube.

The resulting colored DNA fragments are then separated by capillary gel electrophoresis

The color associated with each peak is detected using a laser beam.

The DNA sequence is read by determining the sequence of colors in the peaks as they pass the detector.

This information is fed directly to a computer, which determines the sequence.

References

Extra resources

Book:

The Double Helix: A Personal Account of the Discovery of the Structure of DNA - By James D Watson

Videos:

DNA replication

https://www.youtube.com/watch?v=TNKWgcFPHqw

DNA sequencing:

https://www.youtube.com/watch?v=vK-HIMaitnE

Polymerase Chain Reaction (PCR)

http://video.mit.edu/watch/pcr-polymerase-chain-reaction-10948/ https://www.dnalc.org/view/15475-The-cycles-of-the-polymerase-chain-reaction-PCR-3D-animation.html