

(c) We say that $f(x)$ approaches minus infinity as x approaches x_0 from the left, and write $\lim_{x \rightarrow x_0^-} f(x) = -\infty$, if for every positive number B (or negative number $-B$) there exists a corresponding number $\delta > 0$ such that for all x , $x_0 - \delta < x < x_0 \Rightarrow f(x) < -B$.

94. For $B > 0$, $\frac{1}{x} > B > 0 \Leftrightarrow x < \frac{1}{B}$. Choose $\delta = \frac{1}{B}$. Then $0 < x < \delta \Rightarrow 0 < x < \frac{1}{B} \Rightarrow \frac{1}{x} > B$ so that $\lim_{x \rightarrow 0^+} \frac{1}{x} = \infty$.

95. For $B > 0$, $\frac{1}{x} < -B < 0 \Leftrightarrow -\frac{1}{x} > B > 0 \Leftrightarrow -x < \frac{1}{B} \Leftrightarrow -\frac{1}{B} < x$. Choose $\delta = \frac{1}{B}$. Then $-\delta < x < 0 \Rightarrow -\frac{1}{B} < x \Rightarrow \frac{1}{x} < -B$ so that $\lim_{x \rightarrow 0^-} \frac{1}{x} = -\infty$.

96. For $B > 0$, $\frac{1}{x-2} < -B \Leftrightarrow -\frac{1}{x-2} > B \Leftrightarrow -(x-2) < \frac{1}{B} \Leftrightarrow x-2 > -\frac{1}{B} \Leftrightarrow x > 2 - \frac{1}{B}$. Choose $\delta = \frac{1}{B}$. Then $2 - \delta < x < 2 \Rightarrow -\delta < x-2 < 0 \Rightarrow -\frac{1}{B} < x-2 < 0 \Rightarrow \frac{1}{x-2} < -B < 0$ so that $\lim_{x \rightarrow 2^-} \frac{1}{x-2} = -\infty$.

97. For $B > 0$, $\frac{1}{x-2} > B \Leftrightarrow 0 < x-2 < \frac{1}{B}$. Choose $\delta = \frac{1}{B}$. Then $2 < x < 2 + \delta \Rightarrow 0 < x-2 < \delta \Rightarrow 0 < x-2 < \frac{1}{B}$ $\Rightarrow \frac{1}{x-2} > B > 0$ so that $\lim_{x \rightarrow 2^+} \frac{1}{x-2} = \infty$.

98. For $B > 0$ and $0 < x < 1$, $\frac{1}{1-x^2} > B \Leftrightarrow 1 - x^2 < \frac{1}{B} \Leftrightarrow (1-x)(1+x) < \frac{1}{B}$. Now $\frac{1+x}{2} < 1$ since $x < 1$. Choose $\delta < \frac{1}{2B}$. Then $1 - \delta < x < 1 \Rightarrow -\delta < x-1 < 0 \Rightarrow 1-x < \delta < \frac{1}{2B} \Rightarrow (1-x)(1+x) < \frac{1}{B} \left(\frac{1+x}{2} \right) < \frac{1}{B}$ $\Rightarrow \frac{1}{1-x^2} > B$ for $0 < x < 1$ and x near 1 $\Rightarrow \lim_{x \rightarrow 1^-} \frac{1}{1-x^2} = \infty$.

99. $y = \frac{x^2}{x-1} = x + 1 + \frac{1}{x-1}$

100. $y = \frac{x^2+1}{x-1} = x + 1 + \frac{2}{x-1}$

101. $y = \frac{x^2-4}{x-1} = x + 1 - \frac{3}{x-1}$

102. $y = \frac{x^2-1}{2x+4} = \frac{1}{2}x - 1 + \frac{3}{2x+4}$

103. $y = \frac{x^2 - 1}{x} = x - \frac{1}{x}$

104. $y = \frac{x^3 + 1}{x^2} = x + \frac{1}{x^2}$

105. $y = \frac{x}{\sqrt{4-x^2}}$

106. $y = \frac{-1}{\sqrt{4-x^2}}$

107. $y = x^{2/3} + \frac{1}{x^{1/3}}$

108. $y = \sin\left(\frac{\pi}{x^2+1}\right)$

109. (a) $y \rightarrow \infty$ (see accompanying graph)(b) $y \rightarrow \infty$ (see accompanying graph)(c) cusps at $x = \pm 1$ (see accompanying graph)110. (a) $y \rightarrow 0$ and a cusp at $x = 0$ (see the accompanying graph)(b) $y \rightarrow \frac{3}{2}$ (see accompanying graph)(c) a vertical asymptote at $x = 1$ and contains the point $(-1, \frac{3}{2\sqrt[3]{4}})$ (see accompanying graph)

CHAPTER 2 PRACTICE EXERCISES

1. At $x = -1$: $\lim_{x \rightarrow -1^-} f(x) = \lim_{x \rightarrow -1^+} f(x) = 1$

$$\Rightarrow \lim_{x \rightarrow -1} f(x) = 1 = f(-1)$$

$\Rightarrow f$ is continuous at $x = -1$.

At $x = 0$: $\lim_{x \rightarrow 0^-} f(x) = \lim_{x \rightarrow 0^+} f(x) = 0 \Rightarrow \lim_{x \rightarrow 0} f(x) = 0$.

$$\text{But } f(0) = 1 \neq \lim_{x \rightarrow 0} f(x)$$

$\Rightarrow f$ is discontinuous at $x = 0$.

If we define $f(0) = 0$, then the discontinuity at $x = 0$ is removable.

At $x = 1$: $\lim_{x \rightarrow 1^-} f(x) = -1$ and $\lim_{x \rightarrow 1^+} f(x) = 1$

$$\Rightarrow \lim_{x \rightarrow 1} f(x) \text{ does not exist}$$

$\Rightarrow f$ is discontinuous at $x = 1$.

2. At $x = -1$: $\lim_{x \rightarrow -1^-} f(x) = 0$ and $\lim_{x \rightarrow -1^+} f(x) = -1$

$$\Rightarrow \lim_{x \rightarrow -1} f(x) \text{ does not exist}$$

$\Rightarrow f$ is discontinuous at $x = -1$.

At $x = 0$: $\lim_{x \rightarrow 0^-} f(x) = -\infty$ and $\lim_{x \rightarrow 0^+} f(x) = \infty$

$$\Rightarrow \lim_{x \rightarrow 0} f(x) \text{ does not exist}$$

$\Rightarrow f$ is discontinuous at $x = 0$.

At $x = 1$: $\lim_{x \rightarrow 1^-} f(x) = \lim_{x \rightarrow 1^+} f(x) = 1 \Rightarrow \lim_{x \rightarrow 1} f(x) = 1$.

$$\text{But } f(1) = 0 \neq \lim_{x \rightarrow 1} f(x)$$

$\Rightarrow f$ is discontinuous at $x = 1$.

If we define $f(1) = 1$, then the discontinuity at $x = 1$ is removable.

3. (a) $\lim_{t \rightarrow t_0} (3f(t)) = 3 \lim_{t \rightarrow t_0} f(t) = 3(-7) = -21$

(b) $\lim_{t \rightarrow t_0} (f(t))^2 = \left(\lim_{t \rightarrow t_0} f(t) \right)^2 = (-7)^2 = 49$

(c) $\lim_{t \rightarrow t_0} (f(t) \cdot g(t)) = \lim_{t \rightarrow t_0} f(t) \cdot \lim_{t \rightarrow t_0} g(t) = (-7)(0) = 0$

(d) $\lim_{t \rightarrow t_0} \frac{f(t)}{g(t)-7} = \frac{\lim_{t \rightarrow t_0} f(t)}{\lim_{t \rightarrow t_0} (g(t)-7)} = \frac{\lim_{t \rightarrow t_0} f(t)}{\lim_{t \rightarrow t_0} g(t) - \lim_{t \rightarrow t_0} 7} = \frac{-7}{0-7} = 1$

(e) $\lim_{t \rightarrow t_0} \cos(g(t)) = \cos \left(\lim_{t \rightarrow t_0} g(t) \right) = \cos 0 = 1$

(f) $\lim_{t \rightarrow t_0} |f(t)| = \left| \lim_{t \rightarrow t_0} f(t) \right| = |-7| = 7$

(g) $\lim_{t \rightarrow t_0} (f(t) + g(t)) = \lim_{t \rightarrow t_0} f(t) + \lim_{t \rightarrow t_0} g(t) = -7 + 0 = -7$

(h) $\lim_{t \rightarrow t_0} \left(\frac{1}{f(t)} \right) = \frac{1}{\lim_{t \rightarrow t_0} f(t)} = \frac{1}{-7} = -\frac{1}{7}$

4. (a) $\lim_{x \rightarrow 0} -g(x) = -\lim_{x \rightarrow 0} g(x) = -\sqrt{2}$

(b) $\lim_{x \rightarrow 0} (g(x) \cdot f(x)) = \lim_{x \rightarrow 0} g(x) \cdot \lim_{x \rightarrow 0} f(x) = (\sqrt{2}) \left(\frac{1}{2}\right) = \frac{\sqrt{2}}{2}$

(c) $\lim_{x \rightarrow 0} (f(x) + g(x)) = \lim_{x \rightarrow 0} f(x) + \lim_{x \rightarrow 0} g(x) = \frac{1}{2} + \sqrt{2}$

(d) $\lim_{x \rightarrow 0} \frac{1}{f(x)} = \frac{1}{\lim_{x \rightarrow 0} f(x)} = \frac{1}{\frac{1}{2}} = 2$

$$(e) \lim_{x \rightarrow 0} (x + f(x)) = \lim_{x \rightarrow 0} x + \lim_{x \rightarrow 0} f(x) = 0 + \frac{1}{2} = \frac{1}{2}$$

$$(f) \lim_{x \rightarrow 0} \frac{f(x) \cdot \cos x}{x-1} = \frac{\lim_{x \rightarrow 0} f(x) \cdot \lim_{x \rightarrow 0} \cos x}{\lim_{x \rightarrow 0} x - \lim_{x \rightarrow 0} 1} = \frac{(\frac{1}{2})(1)}{0-1} = -\frac{1}{2}$$

5. Since $\lim_{x \rightarrow 0} x = 0$ we must have that $\lim_{x \rightarrow 0} (4 - g(x)) = 0$. Otherwise, if $\lim_{x \rightarrow 0} (4 - g(x))$ is a finite positive number, we would have $\lim_{x \rightarrow 0^-} \left[\frac{4-g(x)}{x} \right] = -\infty$ and $\lim_{x \rightarrow 0^+} \left[\frac{4-g(x)}{x} \right] = \infty$ so the limit could not equal 1 as $x \rightarrow 0$. Similar reasoning holds if $\lim_{x \rightarrow 0} (4 - g(x))$ is a finite negative number. We conclude that $\lim_{x \rightarrow 0} g(x) = 4$.

$$6. 2 = \lim_{x \rightarrow -4} \left[x \lim_{x \rightarrow 0} g(x) \right] = \lim_{x \rightarrow -4} x \cdot \lim_{x \rightarrow -4} \left[\lim_{x \rightarrow 0} g(x) \right] = -4 \lim_{x \rightarrow -4} \left[\lim_{x \rightarrow 0} g(x) \right] = -4 \lim_{x \rightarrow 0} g(x)$$

(since $\lim_{x \rightarrow 0} g(x)$ is a constant) $\Rightarrow \lim_{x \rightarrow 0} g(x) = \frac{2}{-4} = -\frac{1}{2}$.

7. (a) $\lim_{x \rightarrow c} f(x) = \lim_{x \rightarrow c} x^{1/3} = c^{1/3} = f(c)$ for every real number $c \Rightarrow f$ is continuous on $(-\infty, \infty)$.
 (b) $\lim_{x \rightarrow c} g(x) = \lim_{x \rightarrow c} x^{3/4} = c^{3/4} = g(c)$ for every nonnegative real number $c \Rightarrow g$ is continuous on $[0, \infty)$.
 (c) $\lim_{x \rightarrow c} h(x) = \lim_{x \rightarrow c} x^{-2/3} = \frac{1}{c^{2/3}} = h(c)$ for every nonzero real number $c \Rightarrow h$ is continuous on $(-\infty, 0)$ and $(0, \infty)$.
 (d) $\lim_{x \rightarrow c} k(x) = \lim_{x \rightarrow c} x^{-1/6} = \frac{1}{c^{1/6}} = k(c)$ for every positive real number $c \Rightarrow k$ is continuous on $(0, \infty)$

8. (a) $\bigcup_{n \in I} ((n - \frac{1}{2})\pi, (n + \frac{1}{2})\pi)$, where I = the set of all integers.
 (b) $\bigcup_{n \in I} (n\pi, (n + 1)\pi)$, where I = the set of all integers.
 (c) $(-\infty, \pi) \cup (\pi, \infty)$
 (d) $(-\infty, 0) \cup (0, \infty)$

$$9. (a) \lim_{x \rightarrow 0} \frac{x^2 - 4x + 4}{x^3 + 5x^2 - 14x} = \lim_{x \rightarrow 0} \frac{(x-2)(x-2)}{x(x+7)(x-2)} = \lim_{x \rightarrow 0} \frac{x-2}{x(x+7)}, x \neq 2; \text{ the limit does not exist because}$$

$$\lim_{x \rightarrow 0^-} \frac{x-2}{x(x+7)} = \infty \text{ and } \lim_{x \rightarrow 0^+} \frac{x-2}{x(x+7)} = -\infty$$

$$(b) \lim_{x \rightarrow 2} \frac{x^2 - 4x + 4}{x^3 + 5x^2 - 14x} = \lim_{x \rightarrow 2} \frac{(x-2)(x-2)}{x(x+7)(x-2)} = \lim_{x \rightarrow 2} \frac{x-2}{x(x+7)}, x \neq 2, \text{ and } \lim_{x \rightarrow 2} \frac{x-2}{x(x+7)} = \frac{0}{2(9)} = 0$$

$$10. (a) \lim_{x \rightarrow 0} \frac{x^2 + x}{x^5 + 2x^4 + x^3} = \lim_{x \rightarrow 0} \frac{x(x+1)}{x^3(x^2 + 2x + 1)} = \lim_{x \rightarrow 0} \frac{x+1}{x^2(x+1)(x+1)} = \lim_{x \rightarrow 0} \frac{1}{x^2(x+1)}, x \neq 0 \text{ and } x \neq -1.$$

Now $\lim_{x \rightarrow 0^-} \frac{1}{x^2(x+1)} = \infty$ and $\lim_{x \rightarrow 0^+} \frac{1}{x^2(x+1)} = \infty \Rightarrow \lim_{x \rightarrow 0} \frac{x^2 + x}{x^5 + 2x^4 + x^3} = \infty$.

$$(b) \lim_{x \rightarrow -1} \frac{x^2 + x}{x^5 + 2x^4 + x^3} = \lim_{x \rightarrow -1} \frac{x(x+1)}{x^3(x^2 + 2x + 1)} = \lim_{x \rightarrow -1} \frac{1}{x^2(x+1)}, x \neq 0 \text{ and } x \neq -1. \text{ The limit does not exist because } \lim_{x \rightarrow -1^-} \frac{1}{x^2(x+1)} = -\infty \text{ and } \lim_{x \rightarrow -1^+} \frac{1}{x^2(x+1)} = \infty.$$

$$11. \lim_{x \rightarrow 1} \frac{1 - \sqrt{x}}{1-x} = \lim_{x \rightarrow 1} \frac{1 - \sqrt{x}}{(1 - \sqrt{x})(1 + \sqrt{x})} = \lim_{x \rightarrow 1} \frac{1}{1 + \sqrt{x}} = \frac{1}{2}$$

$$12. \lim_{x \rightarrow a} \frac{x^2 - a^2}{x^4 - a^4} = \lim_{x \rightarrow a} \frac{(x^2 - a^2)}{(x^2 + a^2)(x^2 - a^2)} = \lim_{x \rightarrow a} \frac{1}{x^2 + a^2} = \frac{1}{2a^2}$$

$$13. \lim_{h \rightarrow 0} \frac{(x+h)^2 - x^2}{h} = \lim_{h \rightarrow 0} \frac{(x^2 + 2hx + h^2) - x^2}{h} = \lim_{h \rightarrow 0} (2x + h) = 2x$$

$$14. \lim_{x \rightarrow 0} \frac{(x+h)^2 - x^2}{h} = \lim_{x \rightarrow 0} \frac{(x^2 + 2hx + h^2) - x^2}{h} = \lim_{x \rightarrow 0} (2x + h) = h$$

$$15. \lim_{x \rightarrow 0} \frac{\frac{1}{2+x} - \frac{1}{2}}{x} = \lim_{x \rightarrow 0} \frac{\frac{2-(2+x)}{2x(2+x)}}{x} = \lim_{x \rightarrow 0} \frac{-1}{4+2x} = -\frac{1}{4}$$

16. $\lim_{x \rightarrow 0} \frac{(2+x)^3 - 8}{x} = \lim_{x \rightarrow 0} \frac{(x^3 + 6x^2 + 12x + 8) - 8}{x} = \lim_{x \rightarrow 0} (x^2 + 6x + 12) = 12$

17. $\lim_{x \rightarrow 1} \frac{x^{1/3} - 1}{\sqrt[3]{x-1}} = \lim_{x \rightarrow 1} \frac{(x^{1/3} - 1)}{(\sqrt[3]{x-1})} \cdot \frac{(x^{2/3} + x^{1/3} + 1)(\sqrt[3]{x+1})}{(x^{2/3} + x^{1/3} + 1)} = \lim_{x \rightarrow 1} \frac{(x-1)(\sqrt[3]{x+1})}{(x-1)(x^{2/3} + x^{1/3} + 1)} = \lim_{x \rightarrow 1} \frac{\sqrt[3]{x+1}}{x^{2/3} + x^{1/3} + 1}$
 $= \frac{1+1}{1+1+1} = \frac{2}{3}$

18. $\lim_{x \rightarrow 64} \frac{x^{2/3} - 16}{\sqrt[3]{x-8}} = \lim_{x \rightarrow 64} \frac{(x^{1/3} - 4)(x^{1/3} + 4)}{\sqrt[3]{x-8}} = \lim_{x \rightarrow 64} \frac{(x^{1/3} - 4)(x^{1/3} + 4)}{\sqrt[3]{x-8}} \cdot \frac{(x^{2/3} + 4x^{1/3} + 16)(\sqrt[3]{x+8})}{(x^{2/3} + 4x^{1/3} + 16)}$
 $= \lim_{x \rightarrow 64} \frac{(x-64)(x^{1/3} + 4)(\sqrt[3]{x+8})}{(x-64)(x^{2/3} + 4x^{1/3} + 16)} = \lim_{x \rightarrow 64} \frac{(x^{1/3} + 4)(\sqrt[3]{x+8})}{x^{2/3} + 4x^{1/3} + 16} = \frac{(4+4)(8+8)}{16+16+16} = \frac{8}{3}$

19. $\lim_{x \rightarrow 0} \frac{\tan 2x}{\tan \pi x} = \lim_{x \rightarrow 0} \frac{\sin 2x}{\cos 2x} \cdot \frac{\cos \pi x}{\sin \pi x} = \lim_{x \rightarrow 0} \left(\frac{\sin 2x}{2x} \right) \left(\frac{\cos \pi x}{\cos 2x} \right) \left(\frac{\pi x}{\sin \pi x} \right) \left(\frac{2x}{\pi x} \right) = 1 \cdot 1 \cdot 1 \cdot \frac{2}{\pi} = \frac{2}{\pi}$

20. $\lim_{x \rightarrow \pi^-} \csc x = \lim_{x \rightarrow \pi^-} \frac{1}{\sin x} = \infty$

21. $\lim_{x \rightarrow \pi} \sin \left(\frac{x}{2} + \sin x \right) = \sin \left(\frac{\pi}{2} + \sin \pi \right) = \sin \left(\frac{\pi}{2} \right) = 1$

22. $\lim_{x \rightarrow \pi} \cos^2(x - \tan x) = \cos^2(\pi - \tan \pi) = \cos^2(\pi) = (-1)^2 = 1$

23. $\lim_{x \rightarrow 0} \frac{8x}{3\sin x - x} = \lim_{x \rightarrow 0} \frac{8}{3\frac{\sin x}{x} - 1} = \frac{8}{3(1) - 1} = 4$

24. $\lim_{x \rightarrow 0} \frac{\cos 2x - 1}{\sin x} = \lim_{x \rightarrow 0} \left(\frac{\cos 2x - 1}{\sin x} \cdot \frac{\cos 2x + 1}{\cos 2x + 1} \right) = \lim_{x \rightarrow 0} \frac{\cos^2 2x - 1}{\sin x (\cos 2x + 1)} = \lim_{x \rightarrow 0} \frac{-\sin^2 2x}{\sin x (\cos 2x + 1)} = \lim_{x \rightarrow 0} \frac{-4\sin x \cos^2 x}{\cos 2x + 1} = \frac{-4(0)(1)^2}{1+1} = 0$

25. $\lim_{x \rightarrow 0^+} [4 g(x)]^{1/3} = 2 \Rightarrow \left[\lim_{x \rightarrow 0^+} 4 g(x) \right]^{1/3} = 2 \Rightarrow \lim_{x \rightarrow 0^+} 4 g(x) = 8$, since $2^3 = 8$. Then $\lim_{x \rightarrow 0^+} g(x) = 2$.

26. $\lim_{x \rightarrow \sqrt{5}} \frac{1}{x + g(x)} = 2 \Rightarrow \lim_{x \rightarrow \sqrt{5}} (x + g(x)) = \frac{1}{2} \Rightarrow \sqrt{5} + \lim_{x \rightarrow \sqrt{5}} g(x) = \frac{1}{2} \Rightarrow \lim_{x \rightarrow \sqrt{5}} g(x) = \frac{1}{2} - \sqrt{5}$

27. $\lim_{x \rightarrow 1} \frac{3x^2 + 1}{g(x)} = \infty \Rightarrow \lim_{x \rightarrow 1} g(x) = 0$ since $\lim_{x \rightarrow 1} (3x^2 + 1) = 4$

28. $\lim_{x \rightarrow -2} \frac{5 - x^2}{\sqrt{g(x)}} = 0 \Rightarrow \lim_{x \rightarrow -2} g(x) = \infty$ since $\lim_{x \rightarrow -2} (5 - x^2) = 1$

29. At $x = -1$: $\lim_{x \rightarrow -1^-} f(x) = \lim_{x \rightarrow -1^-} \frac{x(x^2 - 1)}{|x^2 - 1|}$
 $= \lim_{x \rightarrow -1^-} \frac{x(x^2 - 1)}{x^2 - 1} = \lim_{x \rightarrow -1^-} x = -1$, and
 $\lim_{x \rightarrow -1^+} f(x) = \lim_{x \rightarrow -1^+} \frac{x(x^2 - 1)}{|x^2 - 1|} = \lim_{x \rightarrow -1^+} \frac{x(x^2 - 1)}{-(x^2 - 1)}$
 $= \lim_{x \rightarrow -1} (-x) = -(-1) = 1$. Since
 $\lim_{x \rightarrow -1^-} f(x) \neq \lim_{x \rightarrow -1^+} f(x)$
 $\Rightarrow \lim_{x \rightarrow -1} f(x)$ does not exist, the function f cannot be extended to a continuous function at $x = -1$.

At $x = 1$: $\lim_{x \rightarrow 1^-} f(x) = \lim_{x \rightarrow 1^-} \frac{x(x^2 - 1)}{|x^2 - 1|} = \lim_{x \rightarrow 1^-} \frac{x(x^2 - 1)}{-(x^2 - 1)} = \lim_{x \rightarrow 1^-} (-x) = -1$, and
 $\lim_{x \rightarrow 1^+} f(x) = \lim_{x \rightarrow 1^+} \frac{x(x^2 - 1)}{|x^2 - 1|} = \lim_{x \rightarrow 1^+} \frac{x(x^2 - 1)}{x^2 - 1} = \lim_{x \rightarrow 1^+} x = 1$. Again $\lim_{x \rightarrow 1} f(x)$ does not exist so f cannot be extended to a continuous function at $x = 1$ either.

30. The discontinuity at $x = 0$ of $f(x) = \sin\left(\frac{1}{x}\right)$ is nonremovable because $\lim_{x \rightarrow 0} \sin\frac{1}{x}$ does not exist.

31. Yes, f does have a continuous extension to $a = 1$:

$$\text{define } f(1) = \lim_{x \rightarrow 1} \frac{x-1}{x-\sqrt[4]{x}} = \frac{4}{3}.$$

32. Yes, g does have a continuous extension to $a = \frac{\pi}{2}$:

$$g\left(\frac{\pi}{2}\right) = \lim_{\theta \rightarrow \frac{\pi}{2}} \frac{5 \cos \theta}{4\theta - 2\pi} = -\frac{5}{4}.$$

33. From the graph we see that $\lim_{t \rightarrow 0^-} h(t) \neq \lim_{t \rightarrow 0^+} h(t)$
so h cannot be extended to a continuous function
at $a = 0$.

34. From the graph we see that $\lim_{x \rightarrow 0^-} k(x) \neq \lim_{x \rightarrow 0^+} k(x)$
so k cannot be extended to a continuous function
at $a = 0$.

35. (a) $f(-1) = -1$ and $f(2) = 5 \Rightarrow f$ has a root between -1 and 2 by the Intermediate Value Theorem.
(b), (c) root is 1.32471795724

36. (a) $f(-2) = -2$ and $f(0) = 2 \Rightarrow f$ has a root between -2 and 0 by the Intermediate Value Theorem.
(b), (c) root is -1.76929235424

$$37. \lim_{x \rightarrow \infty} \frac{2x+3}{5x+7} = \lim_{x \rightarrow \infty} \frac{2+\frac{3}{x}}{5+\frac{7}{x}} = \frac{2+0}{5+0} = \frac{2}{5}$$

$$38. \lim_{x \rightarrow -\infty} \frac{2x^2+3}{5x^2+7} = \lim_{x \rightarrow -\infty} \frac{\frac{2}{x^2}+\frac{3}{x^2}}{5+\frac{7}{x^2}} = \frac{\frac{2}{0}+\frac{3}{0}}{5+0} = \frac{2}{5}$$

$$39. \lim_{x \rightarrow -\infty} \frac{x^2-4x+8}{3x^3} = \lim_{x \rightarrow -\infty} \left(\frac{1}{3x} - \frac{4}{3x^2} + \frac{8}{3x^3} \right) = 0 - 0 + 0 = 0$$

40. $\lim_{x \rightarrow \infty} \frac{1}{x^2 - 7x + 1} = \lim_{x \rightarrow \infty} \frac{\frac{1}{x^2}}{1 - \frac{7}{x} + \frac{1}{x^2}} = \frac{0}{1 - 0 + 0} = 0$

41. $\lim_{x \rightarrow -\infty} \frac{x^2 - 7x}{x+1} = \lim_{x \rightarrow -\infty} \frac{x-7}{1+\frac{1}{x}} = -\infty$

42. $\lim_{x \rightarrow \infty} \frac{x^4 + x^3}{12x^3 + 128} = \lim_{x \rightarrow \infty} \frac{x+1}{12 + \frac{128}{x^3}} = \infty$

43. $\lim_{x \rightarrow \infty} \frac{\sin x}{[x]} \leq \lim_{x \rightarrow \infty} \frac{1}{[x]} = 0$ since int $x \rightarrow \infty$ as $x \rightarrow \infty \Rightarrow \lim_{x \rightarrow \infty} \frac{\sin x}{[x]} = 0$.

44. $\lim_{\theta \rightarrow \infty} \frac{\cos \theta - 1}{\theta} \leq \lim_{\theta \rightarrow \infty} \frac{2}{\theta} = 0 \Rightarrow \lim_{\theta \rightarrow \infty} \frac{\cos \theta - 1}{\theta} = 0$.

45. $\lim_{x \rightarrow \infty} \frac{x + \sin x + 2\sqrt{x}}{x + \sin x} = \lim_{x \rightarrow \infty} \frac{1 + \frac{\sin x}{x} + \frac{2}{\sqrt{x}}}{1 + \frac{\sin x}{x}} = \frac{1+0+0}{1+0} = 1$

46. $\lim_{x \rightarrow \infty} \frac{x^{2/3} + x^{-1}}{x^{2/3} + \cos^2 x} = \lim_{x \rightarrow \infty} \left(\frac{1 + x^{-5/3}}{1 + \frac{\cos^2 x}{x^{2/3}}} \right) = \frac{1+0}{1+0} = 1$

47. (a) $y = \frac{x^2 + 4}{x-3}$ is undefined at $x = 3$: $\lim_{x \rightarrow 3^-} \frac{x^2 + 4}{x-3} = -\infty$ and $\lim_{x \rightarrow 3^+} \frac{x^2 + 4}{x-3} = +\infty$, thus $x = 3$ is a vertical asymptote.

(b) $y = \frac{x^2 - x - 2}{x^2 - 2x + 1}$ is undefined at $x = 1$: $\lim_{x \rightarrow 1^-} \frac{x^2 - x - 2}{x^2 - 2x + 1} = -\infty$ and $\lim_{x \rightarrow 1^+} \frac{x^2 - x - 2}{x^2 - 2x + 1} = -\infty$, thus $x = 1$ is a vertical asymptote.

(c) $y = \frac{x^2 + x - 6}{x^2 + 2x - 8}$ is undefined at $x = 2$ and -4 : $\lim_{x \rightarrow 2} \frac{x^2 + x - 6}{x^2 + 2x - 8} = \lim_{x \rightarrow 2} \frac{x+3}{x+4} = \frac{5}{6}$; $\lim_{x \rightarrow -4^-} \frac{x^2 + x - 6}{x^2 + 2x - 8} = \lim_{x \rightarrow -4^-} \frac{x+3}{x+4} = \infty$
 $\lim_{x \rightarrow -4^+} \frac{x^2 + x - 6}{x^2 + 2x - 8} = \lim_{x \rightarrow -4^+} \frac{x+3}{x+4} = -\infty$. Thus $x = -4$ is a vertical asymptote.

48. (a) $y = \frac{1-x^2}{x^2+1}$: $\lim_{x \rightarrow \infty} \frac{1-x^2}{x^2+1} = \lim_{x \rightarrow \infty} \frac{\frac{1}{x^2}-1}{1+\frac{1}{x^2}} = \frac{-1}{1} = -1$ and $\lim_{x \rightarrow -\infty} \frac{1-x^2}{x^2+1} = \lim_{x \rightarrow -\infty} \frac{\frac{1}{x^2}-1}{1+\frac{1}{x^2}} = \frac{-1}{1} = -1$, thus $y = -1$ is a horizontal asymptote.

(b) $y = \frac{\sqrt{x}+4}{\sqrt{x}+4}$: $\lim_{x \rightarrow \infty} \frac{\sqrt{x}+4}{\sqrt{x}+4} = \lim_{x \rightarrow \infty} \frac{1 + \frac{4}{\sqrt{x}}}{\sqrt{1 + \frac{4}{x}}} = \frac{1+0}{\sqrt{1+0}} = 1$, thus $y = 1$ is a horizontal asymptote.

(c) $y = \frac{\sqrt{x^2+4}}{x}$: $\lim_{x \rightarrow \infty} \frac{\sqrt{x^2+4}}{x} = \lim_{x \rightarrow \infty} \frac{\sqrt{1 + \frac{4}{x^2}}}{1} = \frac{\sqrt{1+0}}{1} = 1$ and $\lim_{x \rightarrow -\infty} \frac{\sqrt{x^2+4}}{x} = \lim_{x \rightarrow -\infty} \frac{\sqrt{1 + \frac{4}{x^2}}}{-\frac{1}{x}} = \lim_{x \rightarrow -\infty} \frac{\sqrt{1 + \frac{4}{x^2}}}{\frac{1}{-x}} = \frac{\sqrt{1+0}}{-1} = -1$, thus $y = 1$ and $y = -1$ are horizontal asymptotes.

(d) $y = \sqrt{\frac{x^2+9}{9x^2+1}}$: $\lim_{x \rightarrow \infty} \sqrt{\frac{x^2+9}{9x^2+1}} = \lim_{x \rightarrow \infty} \sqrt{\frac{1 + \frac{9}{x^2}}{9 + \frac{1}{x^2}}} = \sqrt{\frac{1+0}{9+0}} = \frac{1}{3}$ and $\lim_{x \rightarrow -\infty} \sqrt{\frac{x^2+9}{9x^2+1}} = \lim_{x \rightarrow -\infty} \sqrt{\frac{1 + \frac{9}{x^2}}{9 + \frac{1}{x^2}}} = \sqrt{\frac{1+0}{9+0}} = \frac{1}{3}$, thus $y = \frac{1}{3}$ is a horizontal asymptote.

CHAPTER 2 ADDITIONAL AND ADVANCED EXERCISES

1. (a)	$\begin{array}{ c ccccc }\hline x & & 0.1 & 0.01 & 0.001 & 0.0001 \\ \hline x^x & & 0.7943 & 0.9550 & 0.9931 & 0.9991 & 0.9999 \end{array}$
--------	---

Apparently, $\lim_{x \rightarrow 0^+} x^x = 1$

(b)

2. (a)	$\frac{x}{(\frac{1}{x})^{1/(\ln x)}}$	10	100	1000
		0.3679	0.3679	0.3679

$$\text{Apparently, } \lim_{x \rightarrow \infty} \left(\frac{1}{x}\right)^{1/(\ln x)} = 0.3678 = \frac{1}{e}$$

(b)

$$3. \lim_{v \rightarrow c^-} L = \lim_{v \rightarrow c^-} L_0 \sqrt{1 - \frac{v^2}{c^2}} = L_0 \sqrt{1 - \frac{\lim_{v \rightarrow c^-} v^2}{c^2}} = L_0 \sqrt{1 - \frac{c^2}{c^2}} = 0$$

The left-hand limit was needed because the function L is undefined if $v > c$ (the rocket cannot move faster than the speed of light).

$$4. (a) \left| \frac{\sqrt{x}}{2} - 1 \right| < 0.2 \Rightarrow -0.2 < \frac{\sqrt{x}}{2} - 1 < 0.2 \Rightarrow 0.8 < \frac{\sqrt{x}}{2} < 1.2 \Rightarrow 1.6 < \sqrt{x} < 2.4 \Rightarrow 2.56 < x < 5.76.$$

$$(b) \left| \frac{\sqrt{x}}{2} - 1 \right| < 0.1 \Rightarrow -0.1 < \frac{\sqrt{x}}{2} - 1 < 0.1 \Rightarrow 0.9 < \frac{\sqrt{x}}{2} < 1.1 \Rightarrow 1.8 < \sqrt{x} < 2.2 \Rightarrow 3.24 < x < 4.84.$$

$$5. |10 + (t - 70) \times 10^{-4} - 10| < 0.0005 \Rightarrow |(t - 70) \times 10^{-4}| < 0.0005 \Rightarrow -0.0005 < (t - 70) \times 10^{-4} < 0.0005 \\ \Rightarrow -5 < t - 70 < 5 \Rightarrow 65^\circ < t < 75^\circ \Rightarrow \text{Within } 5^\circ \text{ F.}$$

6. We want to know in what interval to hold values of h to make V satisfy the inequality

$$|V - 1000| = |36\pi h - 1000| \leq 10. \text{ To find out, we solve the inequality:}$$

$$|36\pi h - 1000| \leq 10 \Rightarrow -10 \leq 36\pi h - 1000 \leq 10 \Rightarrow 990 \leq 36\pi h \leq 1010 \Rightarrow \frac{990}{36\pi} \leq h \leq \frac{1010}{36\pi}$$

$$\Rightarrow 8.8 \leq h \leq 8.9. \text{ where 8.8 was rounded up, to be safe, and 8.9 was rounded down, to be safe.}$$

The interval in which we should hold h is about $8.9 - 8.8 = 0.1$ cm wide (1 mm). With stripes 1 mm wide, we can expect to measure a liter of water with an accuracy of 1%, which is more than enough accuracy for cooking.

$$7. \text{ Show } \lim_{x \rightarrow 1} f(x) = \lim_{x \rightarrow 1} (x^2 - 7) = -6 = f(1).$$

$$\text{Step 1: } |(x^2 - 7) + 6| < \epsilon \Rightarrow -\epsilon < x^2 - 1 < \epsilon \Rightarrow 1 - \epsilon < x^2 < 1 + \epsilon \Rightarrow \sqrt{1 - \epsilon} < x < \sqrt{1 + \epsilon}.$$

Step 2: $|x - 1| < \delta \Rightarrow -\delta < x - 1 < \delta \Rightarrow -\delta + 1 < x < \delta + 1$.

Then $-\delta + 1 = \sqrt{1 - \epsilon}$ or $\delta + 1 = \sqrt{1 + \epsilon}$. Choose $\delta = \min \left\{ 1 - \sqrt{1 - \epsilon}, \sqrt{1 + \epsilon} - 1 \right\}$, then

$0 < |x - 1| < \delta \Rightarrow |(x^2 - 7) - 6| < \epsilon$ and $\lim_{x \rightarrow 1} f(x) = -6$. By the continuity test, $f(x)$ is continuous at $x = 1$.

8. Show $\lim_{x \rightarrow \frac{1}{4}} g(x) = \lim_{x \rightarrow \frac{1}{4}} \frac{1}{2x} = 2 = g\left(\frac{1}{4}\right)$.

Step 1: $\left| \frac{1}{2x} - 2 \right| < \epsilon \Rightarrow -\epsilon < \frac{1}{2x} - 2 < \epsilon \Rightarrow 2 - \epsilon < \frac{1}{2x} < 2 + \epsilon \Rightarrow \frac{1}{4-2\epsilon} > x > \frac{1}{4+2\epsilon}$.

Step 2: $|x - \frac{1}{4}| < \delta \Rightarrow -\delta < x - \frac{1}{4} < \delta \Rightarrow -\delta + \frac{1}{4} < x < \delta + \frac{1}{4}$.

Then $-\delta + \frac{1}{4} = \frac{1}{4+2\epsilon} \Rightarrow \delta = \frac{1}{4} - \frac{1}{4+2\epsilon} = \frac{\epsilon}{4(2+\epsilon)}$, or $\delta + \frac{1}{4} = \frac{1}{4-2\epsilon} \Rightarrow \delta = \frac{1}{4-2\epsilon} - \frac{1}{4} = \frac{\epsilon}{4(2-\epsilon)}$.

Choose $\delta = \frac{\epsilon}{4(2+\epsilon)}$, the smaller of the two values. Then $0 < |x - \frac{1}{4}| < \delta \Rightarrow \left| \frac{1}{2x} - 2 \right| < \epsilon$ and $\lim_{x \rightarrow \frac{1}{4}} \frac{1}{2x} = 2$.

By the continuity test, $g(x)$ is continuous at $x = \frac{1}{4}$.

9. Show $\lim_{x \rightarrow 2} h(x) = \lim_{x \rightarrow 2} \sqrt{2x - 3} = 1 = h(2)$.

Step 1: $\left| \sqrt{2x - 3} - 1 \right| < \epsilon \Rightarrow -\epsilon < \sqrt{2x - 3} - 1 < \epsilon \Rightarrow 1 - \epsilon < \sqrt{2x - 3} < 1 + \epsilon \Rightarrow \frac{(1-\epsilon)^2+3}{2} < x < \frac{(1+\epsilon)^2+3}{2}$.

Step 2: $|x - 2| < \delta \Rightarrow -\delta < x - 2 < \delta$ or $-\delta + 2 < x < \delta + 2$.

Then $-\delta + 2 = \frac{(1-\epsilon)^2+3}{2} \Rightarrow \delta = 2 - \frac{(1-\epsilon)^2+3}{2} = \frac{1-(1-\epsilon)^2}{2} = \epsilon - \frac{\epsilon^2}{2}$, or $\delta + 2 = \frac{(1+\epsilon)^2+3}{2}$

$\Rightarrow \delta = \frac{(1+\epsilon)^2+3}{2} - 2 = \frac{(1+\epsilon)^2-1}{2} = \epsilon + \frac{\epsilon^2}{2}$. Choose $\delta = \epsilon - \frac{\epsilon^2}{2}$, the smaller of the two values. Then,

$0 < |x - 2| < \delta \Rightarrow \left| \sqrt{2x - 3} - 1 \right| < \epsilon$, so $\lim_{x \rightarrow 2} \sqrt{2x - 3} = 1$. By the continuity test, $h(x)$ is continuous at $x = 2$.

10. Show $\lim_{x \rightarrow 5} F(x) = \lim_{x \rightarrow 5} \sqrt{9-x} = 2 = F(5)$.

Step 1: $\left| \sqrt{9-x} - 2 \right| < \epsilon \Rightarrow -\epsilon < \sqrt{9-x} - 2 < \epsilon \Rightarrow 9 - (2 - \epsilon)^2 > x > 9 - (2 + \epsilon)^2$.

Step 2: $0 < |x - 5| < \delta \Rightarrow -\delta < x - 5 < \delta \Rightarrow -\delta + 5 < x < \delta + 5$.

Then $-\delta + 5 = 9 - (2 + \epsilon)^2 \Rightarrow \delta = (2 + \epsilon)^2 - 4 = \epsilon^2 + 2\epsilon$, or $\delta + 5 = 9 - (2 - \epsilon)^2 \Rightarrow \delta = 4 - (2 - \epsilon)^2 = \epsilon^2 - 2\epsilon$.

Choose $\delta = \epsilon^2 - 2\epsilon$, the smaller of the two values. Then, $0 < |x - 5| < \delta \Rightarrow \left| \sqrt{9-x} - 2 \right| < \epsilon$, so

$\lim_{x \rightarrow 5} \sqrt{9-x} = 2$. By the continuity test, $F(x)$ is continuous at $x = 5$.

11. Suppose L_1 and L_2 are two different limits. Without loss of generality assume $L_2 > L_1$. Let $\epsilon = \frac{1}{3}(L_2 - L_1)$.

Since $\lim_{x \rightarrow x_0} f(x) = L_1$ there is a $\delta_1 > 0$ such that $0 < |x - x_0| < \delta_1 \Rightarrow |f(x) - L_1| < \epsilon \Rightarrow -\epsilon < f(x) - L_1 < \epsilon$

$\Rightarrow -\frac{1}{3}(L_2 - L_1) + L_1 < f(x) < \frac{1}{3}(L_2 - L_1) + L_1 \Rightarrow 4L_1 - L_2 < 3f(x) < 2L_1 + L_2$. Likewise, $\lim_{x \rightarrow x_0} f(x) = L_2$

so there is a δ_2 such that $0 < |x - x_0| < \delta_2 \Rightarrow |f(x) - L_2| < \epsilon \Rightarrow -\epsilon < f(x) - L_2 < \epsilon$

$\Rightarrow -\frac{1}{3}(L_2 - L_1) + L_2 < f(x) < \frac{1}{3}(L_2 - L_1) + L_2 \Rightarrow 2L_2 + L_1 < 3f(x) < 4L_2 - L_1$

$\Rightarrow L_1 - 4L_2 < -3f(x) < -2L_2 - L_1$. If $\delta = \min \{\delta_1, \delta_2\}$ both inequalities must hold for $0 < |x - x_0| < \delta$:

$4L_1 - L_2 < 3f(x) < 2L_1 + L_2$ $2L_2 + L_1 < 3f(x) < 4L_2 - L_1$
 $L_1 - 4L_2 < -3f(x) < -2L_2 - L_1$ $\left. \right\} \Rightarrow 5(L_1 - L_2) < 0 < L_1 - L_2$. That is, $L_1 - L_2 < 0$ and $L_1 - L_2 > 0$,

a contradiction.

12. Suppose $\lim_{x \rightarrow c} f(x) = L$. If $k = 0$, then $\lim_{x \rightarrow c} kf(x) = \lim_{x \rightarrow c} 0 = 0 = 0 \cdot \lim_{x \rightarrow c} f(x)$ and we are done.

If $k \neq 0$, then given any $\epsilon > 0$, there is a $\delta > 0$ so that $0 < |x - c| < \delta \Rightarrow |f(x) - L| < \frac{\epsilon}{|k|} \Rightarrow |k||f(x) - L| < \epsilon$

$\Rightarrow |k(f(x) - L)| < \epsilon \Rightarrow |(kf(x)) - (kL)| < \epsilon$. Thus, $\lim_{x \rightarrow c} kf(x) = kL = k\left(\lim_{x \rightarrow c} f(x)\right)$.

13. (a) Since $x \rightarrow 0^+$, $0 < x^3 < x < 1 \Rightarrow (x^3 - x) \rightarrow 0^- \Rightarrow \lim_{x \rightarrow 0^+} f(x^3 - x) = \lim_{y \rightarrow 0^-} f(y) = B$ where $y = x^3 - x$.
 (b) Since $x \rightarrow 0^-$, $-1 < x < x^3 < 0 \Rightarrow (x^3 - x) \rightarrow 0^+ \Rightarrow \lim_{x \rightarrow 0^-} f(x^3 - x) = \lim_{y \rightarrow 0^+} f(y) = A$ where $y = x^3 - x$.
 (c) Since $x \rightarrow 0^+$, $0 < x^4 < x^2 < 1 \Rightarrow (x^2 - x^4) \rightarrow 0^+ \Rightarrow \lim_{x \rightarrow 0^+} f(x^2 - x^4) = \lim_{y \rightarrow 0^+} f(y) = A$ where $y = x^2 - x^4$.
 (d) Since $x \rightarrow 0^-$, $-1 < x < 0 \Rightarrow 0 < x^4 < x^2 < 1 \Rightarrow (x^2 - x^4) \rightarrow 0^+ \Rightarrow \lim_{x \rightarrow 0^+} f(x^2 - x^4) = A$ as in part (c).

14. (a) True, because if $\lim_{x \rightarrow a} (f(x) + g(x))$ exists then $\lim_{x \rightarrow a} (f(x) + g(x)) - \lim_{x \rightarrow a} f(x) = \lim_{x \rightarrow a} [(f(x) + g(x)) - f(x)] = \lim_{x \rightarrow a} g(x)$ exists, contrary to assumption.
 (b) False; for example take $f(x) = \frac{1}{x}$ and $g(x) = -\frac{1}{x}$. Then neither $\lim_{x \rightarrow 0} f(x)$ nor $\lim_{x \rightarrow 0} g(x)$ exists, but $\lim_{x \rightarrow 0} (f(x) + g(x)) = \lim_{x \rightarrow 0} \left(\frac{1}{x} - \frac{1}{x}\right) = \lim_{x \rightarrow 0} 0 = 0$ exists.
 (c) True, because $g(x) = |x|$ is continuous $\Rightarrow g(f(x)) = |f(x)|$ is continuous (it is the composite of continuous functions).
 (d) False; for example let $f(x) = \begin{cases} -1, & x \leq 0 \\ 1, & x > 0 \end{cases} \Rightarrow f(x)$ is discontinuous at $x = 0$. However $|f(x)| = 1$ is continuous at $x = 0$.

15. Show $\lim_{x \rightarrow -1} f(x) = \lim_{x \rightarrow -1} \frac{x^2 - 1}{x + 1} = \lim_{x \rightarrow -1} \frac{(x+1)(x-1)}{(x+1)} = -2, x \neq -1$.

Define the continuous extension of $f(x)$ as $F(x) = \begin{cases} \frac{x^2 - 1}{x + 1}, & x \neq -1 \\ -2, & x = -1 \end{cases}$. We now prove the limit of $f(x)$ as $x \rightarrow -1$

exists and has the correct value.

Step 1: $\left| \frac{x^2 - 1}{x + 1} - (-2) \right| < \epsilon \Rightarrow -\epsilon < \frac{(x+1)(x-1)}{(x+1)} + 2 < \epsilon \Rightarrow -\epsilon < (x-1) + 2 < \epsilon, x \neq -1 \Rightarrow -\epsilon - 1 < x < \epsilon - 1$.

Step 2: $|x - (-1)| < \delta \Rightarrow -\delta < x + 1 < \delta \Rightarrow -\delta - 1 < x < \delta - 1$.

Then $-\delta - 1 = -\epsilon - 1 \Rightarrow \delta = \epsilon$, or $\delta - 1 = \epsilon - 1 \Rightarrow \delta = \epsilon$. Choose $\delta = \epsilon$. Then $0 < |x - (-1)| < \delta$

$\Rightarrow \left| \frac{x^2 - 1}{x + 1} - (-2) \right| < \epsilon \Rightarrow \lim_{x \rightarrow -1} F(x) = -2$. Since the conditions of the continuity test are met by $F(x)$, then $f(x)$ has a continuous extension to $F(x)$ at $x = -1$.

16. Show $\lim_{x \rightarrow 3} g(x) = \lim_{x \rightarrow 3} \frac{x^2 - 2x - 3}{2x - 6} = \lim_{x \rightarrow 3} \frac{(x-3)(x+1)}{2(x-3)} = 2, x \neq 3$.

Define the continuous extension of $g(x)$ as $G(x) = \begin{cases} \frac{x^2 - 2x - 3}{2x - 6}, & x \neq 3 \\ 2, & x = 3 \end{cases}$. We now prove the limit of $g(x)$ as $x \rightarrow 3$ exists and has the correct value.

Step 1: $\left| \frac{x^2 - 2x - 3}{2x - 6} - 2 \right| < \epsilon \Rightarrow -\epsilon < \frac{(x-3)(x+1)}{2(x-3)} - 2 < \epsilon \Rightarrow -\epsilon < \frac{x+1}{2} - 2 < \epsilon, x \neq 3 \Rightarrow 3 - 2\epsilon < x < 3 + 2\epsilon$.

Step 2: $|x - 3| < \delta \Rightarrow -\delta < x - 3 < \delta \Rightarrow 3 - \delta < x < \delta + 3$.

Then, $3 - \delta = 3 - 2\epsilon \Rightarrow \delta = 2\epsilon$, or $\delta + 3 = 3 + 2\epsilon \Rightarrow \delta = 2\epsilon$. Choose $\delta = 2\epsilon$. Then $0 < |x - 3| < \delta$

$\Rightarrow \left| \frac{x^2 - 2x - 3}{2x - 6} - 2 \right| < \epsilon \Rightarrow \lim_{x \rightarrow 3} \frac{(x-3)(x+1)}{2(x-3)} = 2$. Since the conditions of the continuity test hold for $G(x)$, $g(x)$ can be continuously extended to $G(x)$ at $x = 3$.

17. (a) Let $\epsilon > 0$ be given. If x is rational, then $f(x) = x \Rightarrow |f(x) - 0| = |x - 0| < \epsilon \Leftrightarrow |x - 0| < \epsilon$; i.e., choose $\delta = \epsilon$. Then $|x - 0| < \delta \Rightarrow |f(x) - 0| < \epsilon$ for x rational. If x is irrational, then $f(x) = 0 \Rightarrow |f(x) - 0| < \epsilon \Leftrightarrow 0 < \epsilon$ which is true no matter how close irrational x is to 0, so again we can choose $\delta = \epsilon$. In either case, given $\epsilon > 0$ there is a $\delta = \epsilon > 0$ such that $0 < |x - 0| < \delta \Rightarrow |f(x) - 0| < \epsilon$. Therefore, f is continuous at $x = 0$.

(b) Choose $x = c > 0$. Then within any interval $(c - \delta, c + \delta)$ there are both rational and irrational numbers.

If c is rational, pick $\epsilon = \frac{c}{2}$. No matter how small we choose $\delta > 0$ there is an irrational number x in

$(c - \delta, c + \delta) \Rightarrow |f(x) - f(c)| = |0 - c| = c > \frac{c}{2} = \epsilon$. That is, f is not continuous at any rational $c > 0$. On

the other hand, suppose c is irrational $\Rightarrow f(c) = 0$. Again pick $\epsilon = \frac{c}{2}$. No matter how small we choose $\delta > 0$ there is a rational number x in $(c - \delta, c + \delta)$ with $|x - c| < \frac{\epsilon}{2} = \epsilon \Leftrightarrow \frac{c}{2} < x < \frac{3c}{2}$. Then $|f(x) - f(c)| = |x - 0| = |x| > \frac{c}{2} = \epsilon \Rightarrow f$ is not continuous at any irrational $c > 0$.

If $x = c < 0$, repeat the argument picking $\epsilon = \frac{|c|}{2} = \frac{-c}{2}$. Therefore f fails to be continuous at any nonzero value $x = c$.

18. (a) Let $c = \frac{m}{n}$ be a rational number in $[0, 1]$ reduced to lowest terms $\Rightarrow f(c) = \frac{1}{n}$. Pick $\epsilon = \frac{1}{2n}$. No matter how small $\delta > 0$ is taken, there is an irrational number x in the interval $(c - \delta, c + \delta) \Rightarrow |f(x) - f(c)| = |0 - \frac{1}{n}| = \frac{1}{n} > \frac{1}{2n} = \epsilon$. Therefore f is discontinuous at $x = c$, a rational number.

(b) Now suppose c is an irrational number $\Rightarrow f(c) = 0$. Let $\epsilon > 0$ be given. Notice that $\frac{1}{2}$ is the only rational number reduced to lowest terms with denominator 2 and belonging to $[0, 1]$; $\frac{1}{3}$ and $\frac{2}{3}$ the only rationals with denominator 3 belonging to $[0, 1]$; $\frac{1}{4}$ and $\frac{3}{4}$ with denominator 4 in $[0, 1]$; $\frac{1}{5}, \frac{2}{5}, \frac{3}{5}$ and $\frac{4}{5}$ with denominator 5 in $[0, 1]$; etc. In general, choose N so that $\frac{1}{N} < \epsilon \Rightarrow$ there exist only finitely many rationals in $[0, 1]$ having denominator $\leq N$, say r_1, r_2, \dots, r_p . Let $\delta = \min \{|c - r_i| : i = 1, \dots, p\}$. Then the interval $(c - \delta, c + \delta)$ contains no rational numbers with denominator $\leq N$. Thus, $0 < |x - c| < \delta \Rightarrow |f(x) - f(c)| = |f(x) - 0| = |f(x)| \leq \frac{1}{N} < \epsilon \Rightarrow f$ is continuous at $x = c$ irrational.

(c) The graph looks like the markings on a typical ruler when the points $(x, f(x))$ on the graph of $f(x)$ are connected to the x-axis with vertical lines.

19. Yes. Let R be the radius of the equator (earth) and suppose at a fixed instant of time we label noon as the zero point, 0, on the equator $\Rightarrow 0 + \pi R$ represents the midnight point (at the same exact time). Suppose x_1 is a point on the equator "just after" noon $\Rightarrow x_1 + \pi R$ is simultaneously "just after" midnight. It seems reasonable that the temperature T at a point just after noon is hotter than it would be at the diametrically opposite point just after midnight: That is, $T(x_1) - T(x_1 + \pi R) > 0$. At exactly the same moment in time pick x_2 to be a point just before midnight $\Rightarrow x_2 + \pi R$ is just before noon. Then $T(x_2) - T(x_2 + \pi R) < 0$. Assuming the temperature function T is continuous along the equator (which is reasonable), the Intermediate Value Theorem says there is a point c between 0 (noon) and πR (simultaneously midnight) such that $T(c) - T(c + \pi R) = 0$; i.e., there is always a pair of antipodal points on the earth's equator where the temperatures are the same.

20. $\lim_{x \rightarrow c} f(x)g(x) = \lim_{x \rightarrow c} \frac{1}{4} \left[(f(x) + g(x))^2 - (f(x) - g(x))^2 \right] = \frac{1}{4} \left[\left(\lim_{x \rightarrow c} (f(x) + g(x)) \right)^2 - \left(\lim_{x \rightarrow c} (f(x) - g(x)) \right)^2 \right] = \frac{1}{4} (3^2 - (-1)^2) = 2.$

21. (a) At $x = 0$: $\lim_{a \rightarrow 0} r_+(a) = \lim_{a \rightarrow 0} \frac{-1 + \sqrt{1+a}}{a} = \lim_{a \rightarrow 0} \left(\frac{-1 + \sqrt{1+a}}{a} \right) \left(\frac{-1 - \sqrt{1+a}}{-1 - \sqrt{1+a}} \right)$
 $= \lim_{a \rightarrow 0} \frac{1 - (1+a)}{a(-1 - \sqrt{1+a})} = \frac{-1}{-1 - \sqrt{1+0}} = \frac{1}{2}$

At $x = -1$: $\lim_{a \rightarrow -1^+} r_+(a) = \lim_{a \rightarrow -1^+} \frac{1 - (1+a)}{a(-1 - \sqrt{1+a})} = \lim_{a \rightarrow -1} \frac{-a}{a(-1 - \sqrt{1+a})} = \frac{-1}{-1 - \sqrt{0}} = 1$

(b) At $x = 0$: $\lim_{a \rightarrow 0^-} r_-(a) = \lim_{a \rightarrow 0^-} \frac{-1 - \sqrt{1+a}}{a} = \lim_{a \rightarrow 0^-} \left(\frac{-1 - \sqrt{1+a}}{a} \right) \left(\frac{-1 + \sqrt{1+a}}{-1 + \sqrt{1+a}} \right)$
 $= \lim_{a \rightarrow 0^-} \frac{1 - (1+a)}{a(-1 + \sqrt{1+a})} = \lim_{a \rightarrow 0^-} \frac{-a}{a(-1 + \sqrt{1+a})} = \lim_{a \rightarrow 0^-} \frac{-1}{-1 + \sqrt{1+a}} = \infty$ (because the denominator is always negative); $\lim_{a \rightarrow 0^+} r_-(a) = \lim_{a \rightarrow 0^+} \frac{-1}{-1 + \sqrt{1+a}} = -\infty$ (because the denominator is always positive). Therefore, $\lim_{a \rightarrow 0} r_-(a)$ does not exist.

At $x = -1$: $\lim_{a \rightarrow -1^+} r_-(a) = \lim_{a \rightarrow -1^+} \frac{-1 - \sqrt{1+a}}{a} = \lim_{a \rightarrow -1^+} \frac{-1}{-1 + \sqrt{1+a}} = 1$

(c)

(d)

22. $f(x) = x + 2 \cos x \Rightarrow f(0) = 0 + 2 \cos 0 = 2 > 0$ and $f(-\pi) = -\pi + 2 \cos(-\pi) = -\pi - 2 < 0$. Since $f(x)$ is continuous on $[-\pi, 0]$, by the Intermediate Value Theorem, $f(x)$ must take on every value between $[-\pi - 2, 2]$. Thus there is some number c in $[-\pi, 0]$ such that $f(c) = 0$; i.e., c is a solution to $x + 2 \cos x = 0$.

23. (a) The function f is bounded on D if $f(x) \geq M$ and $f(x) \leq N$ for all x in D . This means $M \leq f(x) \leq N$ for all x in D . Choose B to be $\max \{|M|, |N|\}$. Then $|f(x)| \leq B$. On the other hand, if $|f(x)| \leq B$, then $-B \leq f(x) \leq B \Rightarrow f(x) \geq -B$ and $f(x) \leq B \Rightarrow f(x)$ is bounded on D with $N = B$ an upper bound and $M = -B$ a lower bound.

(b) Assume $f(x) \leq N$ for all x and that $L > N$. Let $\epsilon = \frac{L-N}{2}$. Since $\lim_{x \rightarrow x_0} f(x) = L$ there is a $\delta > 0$ such that $0 < |x - x_0| < \delta \Rightarrow |f(x) - L| < \epsilon \Leftrightarrow L - \epsilon < f(x) < L + \epsilon \Leftrightarrow L - \frac{L-N}{2} < f(x) < L + \frac{L-N}{2} \Leftrightarrow \frac{L+N}{2} < f(x) < \frac{3L-N}{2}$. But $L > N \Rightarrow \frac{L+N}{2} > N \Rightarrow N < f(x)$ contrary to the boundedness assumption $f(x) \leq N$. This contradiction proves $L \leq N$.

92 Chapter 2 Limits and Continuity

(c) Assume $M \leq f(x)$ for all x and that $L < M$. Let $\epsilon = \frac{M-L}{2}$. As in part (b), $0 < |x - x_0| < \delta$
 $\Rightarrow L - \frac{M-L}{2} < f(x) < L + \frac{M-L}{2} \Leftrightarrow \frac{3L-M}{2} < f(x) < \frac{M+L}{2} < M$, a contradiction.

24. (a) If $a \geq b$, then $a - b \geq 0 \Rightarrow |a - b| = a - b \Rightarrow \max\{a, b\} = \frac{a+b}{2} + \frac{|a-b|}{2} = \frac{a+b}{2} + \frac{a-b}{2} = \frac{2a}{2} = a$.
If $a \leq b$, then $a - b \leq 0 \Rightarrow |a - b| = -(a - b) = b - a \Rightarrow \max\{a, b\} = \frac{a+b}{2} + \frac{|a-b|}{2} = \frac{a+b}{2} + \frac{b-a}{2} = \frac{2b}{2} = b$.

(b) Let $\min\{a, b\} = \frac{a+b}{2} - \frac{|a-b|}{2}$.

$$25. \lim_{x \rightarrow 0} \frac{\sin(1-\cos x)}{x} = \lim_{x \rightarrow 0} \frac{\sin(1-\cos x)}{1-\cos x} \cdot \frac{1-\cos x}{x} \cdot \frac{1+\cos x}{1+\cos x} = \lim_{x \rightarrow 0} \frac{\sin(1-\cos x)}{1-\cos x} \cdot \lim_{x \rightarrow 0} \frac{1-\cos^2 x}{x(1+\cos x)} = 1 \cdot \lim_{x \rightarrow 0} \frac{\sin^2 x}{x(1+\cos x)}$$

$$= \lim_{x \rightarrow 0} \frac{\sin x}{x} \cdot \frac{\sin x}{1+\cos x} = 1 \cdot \left(\frac{0}{2}\right) = 0.$$

$$26. \lim_{x \rightarrow 0^+} \frac{\sin x}{\sin \sqrt{x}} = \lim_{x \rightarrow 0^+} \frac{\sin x}{x} \cdot \frac{\sqrt{x}}{\sin \sqrt{x}} \cdot \frac{x}{\sqrt{x}} = 1 \cdot \lim_{x \rightarrow 0^+} \frac{1}{\left(\frac{\sin \sqrt{x}}{\sqrt{x}}\right)} \cdot \lim_{x \rightarrow 0^+} \sqrt{x} = 1 \cdot 0 \cdot 0 = 0.$$

$$27. \lim_{x \rightarrow 0} \frac{\sin(\sin x)}{x} = \lim_{x \rightarrow 0} \frac{\sin(\sin x)}{\sin x} \cdot \frac{\sin x}{x} = \lim_{x \rightarrow 0} \frac{\sin(\sin x)}{\sin x} \cdot \lim_{x \rightarrow 0} \frac{\sin x}{x} = 1 \cdot 1 = 1.$$

$$28. \lim_{x \rightarrow 0} \frac{\sin(x^2+x)}{x} = \lim_{x \rightarrow 0} \frac{\sin(x^2+x)}{x^2+x} \cdot (x+1) = \lim_{x \rightarrow 0} \frac{\sin(x^2+x)}{x^2+x} \cdot \lim_{x \rightarrow 0} (x+1) = 1 \cdot 1 = 1$$

$$29. \lim_{x \rightarrow 2} \frac{\sin(x^2-4)}{x-2} = \lim_{x \rightarrow 2} \frac{\sin(x^2-4)}{x^2-4} \cdot (x+2) = \lim_{x \rightarrow 2} \frac{\sin(x^2-4)}{x^2-4} \cdot \lim_{x \rightarrow 2} (x+2) = 1 \cdot 4 = 4$$

$$30. \lim_{x \rightarrow 9} \frac{\sin(\sqrt{x}-3)}{x-9} = \lim_{x \rightarrow 9} \frac{\sin(\sqrt{x}-3)}{\sqrt{x}-3} \cdot \frac{1}{\sqrt{x}+3} = \lim_{x \rightarrow 9} \frac{\sin(\sqrt{x}-3)}{\sqrt{x}-3} \cdot \lim_{x \rightarrow 9} \frac{1}{\sqrt{x}+3} = 1 \cdot \frac{1}{6} = \frac{1}{6}$$

31. Since the highest power of x in the numerator is 1 more than the highest power of x in the denominator, there is an oblique asymptote. $y = \frac{2x^{3/2}+2x-3}{\sqrt{x}+1} = 2x - \frac{3}{\sqrt{x}+1}$, thus the oblique asymptote is $y = 2x$.

32. As $x \rightarrow \pm \infty$, $\frac{1}{x} \rightarrow 0 \Rightarrow \sin\left(\frac{1}{x}\right) \rightarrow 0 \Rightarrow 1 + \sin\left(\frac{1}{x}\right) \rightarrow 1$, thus as $x \rightarrow \pm \infty$, $y = x + x \sin\left(\frac{1}{x}\right) = x\left(1 + \sin\left(\frac{1}{x}\right)\right) \rightarrow x$; thus the oblique asymptote is $y = x$.

33. As $x \rightarrow \pm \infty$, $x^2 + 1 \rightarrow x^2 \Rightarrow \sqrt{x^2+1} \rightarrow \sqrt{x^2}$; as $x \rightarrow -\infty$, $\sqrt{x^2} = -x$, and as $x \rightarrow +\infty$, $\sqrt{x^2} = x$; thus the oblique asymptotes are $y = x$ and $y = -x$.

34. As $x \rightarrow \pm \infty$, $x+2 \rightarrow x \Rightarrow \sqrt{x^2+2x} = \sqrt{x(x+2)} \rightarrow \sqrt{x^2}$; as $x \rightarrow -\infty$, $\sqrt{x^2} = -x$, and as $x \rightarrow +\infty$, $\sqrt{x^2} = x$; asymptotes are $y = x$ and $y = -x$.