Corrigé 13 du jeudi 15 décembre 2016

Exercice 1.

1.) Pour $\alpha < \beta$, $\gamma < \delta$, montrer que

$$\int_{\alpha}^{\beta} \left(\int_{\gamma}^{\delta} e^{2i\pi(x+y)} dy \right) dx = \int_{\gamma}^{\delta} \left(\int_{\alpha}^{\beta} e^{2i\pi(x+y)} dx \right) dy$$

en les calculant.

On rappelle que $e^{ix} = \cos x + i \sin x$.

On a

$$\int_{\alpha}^{\beta} \left(\int_{\gamma}^{\delta} e^{2i\pi(x+y)} \, dy \right) dx = \int_{\alpha}^{\beta} \left(\int_{\gamma}^{\delta} e^{2i\pi x} e^{2i\pi y} \, dy \right) dx = \int_{\alpha}^{\beta} e^{2i\pi x} \, dx \quad \int_{\gamma}^{\delta} e^{2i\pi y} \, dy.$$

Faisant de même avec l'autre ordre d'intégration, on montre le résultat.

2.) Montrer que $\int_a^b e^{2i\pi t} dt = 0 \Leftrightarrow b - a \in \mathbb{Z}$.

On a

$$\begin{split} \int_{a}^{b} e^{2i\pi t} \, dt &= \int_{a}^{b} \cos(2\pi t) \, dt + i \int_{a}^{b} \sin(2\pi t) \, dt \\ &= \frac{1}{2\pi} \Big(\sin(2\pi b) - \sin(2\pi a) \Big) - i \frac{1}{2\pi} \Big(\cos(2\pi b) - \cos(2\pi a) \Big) \\ &= \frac{1}{2\pi} 2 \Big(\sin(2\pi \frac{b-a}{2}) \cos(2\pi \frac{b+a}{2}) \Big) - i \frac{1}{2\pi} 2 \Big(\sin(2\pi \frac{b-a}{2}) \sin(2\pi \frac{b+a}{2}) \Big) \\ &= \frac{1}{\pi} \Big(\sin(\pi (b-a)) \cos(\pi (b+a)) \Big) - i \frac{1}{\pi} \Big(\sin(\pi (b-a)) \sin(\pi (b+a)) \Big). \end{split}$$

Puisque $\sin(\pi(b+a))$ et $\cos(\pi(b+a))$ ne peuvent pas s'annuler en même temps, il reste

$$\int_{-b}^{b} e^{2i\pi t} dt = 0 \quad \Leftrightarrow \quad \sin(\pi(b-a)) = 0 \quad \Leftrightarrow \quad (b-a) \in \mathbb{Z}.$$

3.) Soit $R = [\alpha, \beta] \times [\gamma, \delta]$ un rectangle que l'on peut écrire comme l'union de plus petits rectangles $R_1, \ldots, \mathbb{R}_n$ d'intérieurs disjoints, avec la propriété que chaque R_i a au moins un côté de longueur entière.

Montrer que R a un côté de longueur entière.

Indication: Calculer

$$\int_{\alpha}^{\beta} \left(\int_{\gamma}^{\delta} e^{2i\pi(x+y)} dy \right) dx = \sum_{i=1}^{n} \int_{\alpha_{i}}^{\beta_{i}} \left(\int_{\gamma_{i}}^{\delta_{i}} e^{2i\pi(x+y)} dy \right) dx.$$

On peut partitionner (aux bords près) l'intervalle $[\alpha, \beta]$ en N sous-intervalles $\alpha = a_0 < a_1 < a_2 < \ldots < a_N = \beta$ ainsi que $[\gamma, \delta]$ en M sous-intervalles $\gamma = b_0 < b_1 < b_2 < \ldots < b_M = \delta$ de sorte que chacun des $N \times M$ petits rectangles crées soit inclus dans l'un des rectangles $[\alpha_i, \beta_i] \times [\gamma_i, \delta_i]$. Ainsi, en regroupant les petits rectangles, on obtient:

$$\int_{\alpha}^{\beta} \left(\int_{\gamma}^{\delta} e^{2i\pi(x+y)} \, dy \right) dx = \sum_{p,q=1}^{N,M} \int_{a_{p-1}}^{a_p} \left(\int_{b_{q-1}}^{b_q} e^{2i\pi(x+y)} \, dy \right) dx = \sum_{i=1}^n \int_{\alpha_i}^{\beta_i} \left(\int_{\gamma_i}^{\delta_i} e^{2i\pi(x+y)} \, dy \right) dx.$$

D'une part,

$$\int_{\alpha}^{\beta} \left(\int_{\gamma}^{\delta} e^{2i\pi(x+y)} \, dy \right) dx = \int_{\alpha}^{\beta} e^{2i\pi x} \, dx \quad \int_{\gamma}^{\delta} e^{2i\pi y} \, dy.$$

$$\int_{\alpha}^{\beta} \left(\int_{\gamma}^{\delta} e^{2i\pi(x+y)} \, dy \right) dx = \sum_{i=1}^{n} \int_{\alpha_{i}}^{\beta_{i}} \left(\int_{\gamma_{i}}^{\delta_{i}} e^{2i\pi(x+y)} \, dy \right) dx = \sum_{i=1}^{n} \int_{\alpha_{i}}^{\beta_{i}} e^{2i\pi x} \, dx \int_{\gamma_{i}}^{\delta_{i}} e^{2i\pi y} \, dy.$$

Or, pour chaque i, soit $\beta_i - \alpha_i$, soit $\delta_i - \gamma_i$ est entier et ainsi

$$\int_{\alpha}^{\beta} \left(\int_{\gamma}^{\delta} e^{2i\pi(x+y)} \, dy \right) dx = 0.$$

On conclut que soit $\beta - \alpha$, soit $\delta - \gamma$ est entier.

Exercice 2.

Calculer $\int_0^1 e^{-2x} \cos(2\pi x) dx$. On a, avec 2 intégrations par parties successives:

$$\int_0^1 e^{-2x} \cos(2\pi x) dx = \frac{1}{2\pi} e^{-2x} \sin(2\pi x) \Big|_0^1 + \frac{1}{\pi} \int_0^1 e^{-2x} \sin(2\pi x) dx$$
$$= \frac{1}{\pi} \Big(-\frac{1}{2\pi} e^{-2x} \cos(2\pi x) \Big|_0^1 - \frac{1}{\pi} \int_0^1 e^{-2x} \cos(2\pi x) dx \Big)$$

d'où

$$\int_0^1 e^{-2x} \cos(2\pi x) dx = \frac{1 - e^{-2}}{2(1 + \pi^2)}.$$

Exercice 3.

Calculer $\int_{0}^{\pi/3} \cos^{5}(x) \sin(x) dx$.

Remarquant que la dérivée de $\cos^6(x)$ est $-6\cos^5(x)\sin(x)$, on a:

$$\int_0^{\pi/3} \cos^5(x) \sin(x) dx = -\frac{1}{6} \cos^6(x) \Big|_0^{\pi/3} = \frac{1}{6} \left(1 - \frac{1}{2^6} \right) = \frac{21}{128}.$$

Exercice 4.

Calculer $\int_{0}^{\pi/4} \frac{x}{\cos^2(x)} dx$.

Sachant que la dérivée de tg x est $\frac{1}{\cos^2 x}$, on procède par intégration par parties:

$$\int_0^{\pi/4} \frac{x}{\cos^2(x)} dx = x \operatorname{tg} \left. x \right|_0^{\pi/4} - \int_0^{\pi/4} \operatorname{tg} \left. x \, dx = \frac{\pi}{4} + \ln \cos x \right|_0^{\pi/4} = \frac{\pi}{4} - \frac{1}{2} \ln 2.$$