Minimization of the H2 production cost Operational Optimization - Mathematical formulation

Assumptions

- (1) Cost related to H2O consumption neglected
- (2) Time step of one hour (delta_t=1h)
- (3) Total simulation over N_day days
- (4) Linearization of the current voltage (polarization curves) for j>2500A/m^2

Parameters	
Operating pressure in the stack [bar]	Р
Minimum operating temperature [°C]	T_min
Maximum operating temperature [°C]	T_max
Electrolyte KOH concentration [%wt]	Koh
Dynamic Hydrogen production degradation coefficient [€/Nm^3]	β_dyn
Nominal production capacity of the electrolyzer [Nm^3/h]	C_nom
Minimum production capacity to avoid shutdown (in [0,1])	Coeff_buff
Initial Hydrogen storage	S_t0
Nominal storage capacity [Nm^3]	S_vess_nom
Nominal battery pack capacity [kWh]	S_batt_nom
"Big M" method parameter to adjust the production efficiency [kWh]	M1
"Big M" method parameter to adjust the production capacity [Nm^3/h]	M2
"Big M" method parameter to adjust the production efficiency [kWh]	M3
Simulation parameters	
Number of hours in the simulation [] (multiple of 24)	N_t
Number of days in the simulation []	N_day
Time step duration [h]	delta_t
List of time steps	$T=[0,N_t]$
List of days of the simulation	D=[0,N_day]
Decision variables	
Hydrogen production rate [Nm^3/h]	H2_f
Hydrogen mass production rate [kg/h]	H2_mf
Hydrogen stored in at each time step t [Nm^3]	S_in
Hydrogen stored out at each time step t [Nm^3]	S_out
Electrolyzer turned On/Off [binary variable: 0->Off, 1->On]	У

Other variables

Cost due to degradation of the electrolyzer [€/h]	K_ d
Cost due to electricity purchases [€/h]	K_ e

Oxygen production rate [Nm^3/h]	O2_f
Oxygen mass production rate [kg/h]	O2_mf
Power consumption [kW]	ф
Actual Power consumption, accounting for cold/hot starts [kW]	φ_eff
Actual Power consumption, accounting for η_conso=η_conso(H2_mf) [kW]	φ_eff2
Power provided by day ahead market contract [kW]	φ_day
Power provided by spot on contract [kW]	φ_spot
Production efficiency [kWh/Nm^3]	η_conso
Hydrogen stored at time t [Nm^3]	S_t
Net amount of hydrogen coming out of the plant [kg]	H2_mf_net
Daily hydrogen contract allocation (flexible contracts) [kg/h]	H2_dc_h
Account for cold starts (binary: 0->Cold start, 1->No cold start)	y1

Inputs

Daily hydrogen delivery contract (flexible contracts) [kg/day] H2_dc Hourly hydrogen delivery contract (fixed contracts) [kg/h] H2_hc Electricity price on the day ahead market [\in /MWh] π_d a Electricity price on the spot on market [\in /MWh] π_s o

Objective function: minimization of the daily H2 production cost

$$\sum_{t \text{ in } T} (\mathbf{K}_{-}\mathbf{e}(t) + \mathbf{K}_{-}\mathbf{d}(t))$$

Constraints:

Cost of electricity purchase

For
$$t \in T$$
, $K_e(t) = (\phi_spot(t) + \phi_eff(t) - \phi(t))^*\pi_spot(t) + \phi_reg(t)^*\pi_reg(t)$

Energy balance

For
$$t \in T$$
, $\phi(t) = \phi_{day}(t) + \phi_{spot}(t)$

• Cost related to electrolyzer degradation

For t=1,
$$\mathbf{K}_{d}(t) = \beta_{stat} *H2_{f}(t)$$

For
$$t \in T$$
, $\mathbf{K}_d(t) = \beta_{stat} * H2_f(t) + \beta_{dyn} * (H2_f(t) - H2_f(t-1))$

• Limited production capacity (design optimisation)

Limited storage capacity (design optimisation)

Detection of whether the electrolyzer is on or off

For
$$t \in T$$
, H2 $f(t) = y(t)*H2$ $f(t)$

• Detection of cold start (electrolyzer off for the previous 3 time steps)

For
$$t \in T \setminus \{0,1,2,3\}$$
, $\sum_{j=i-4}^{i-1} H2_f(j) >= C_nom_min*y1(i)$

• Limited production and account for cold starts (3 min delay) and hot starts (15 sec delay)

For
$$t \in T$$
, $H2_f(t) < C_nom$

For
$$t \in T \setminus \{0,1,2,3\}$$
, $H2_f(t) \le 57/60 C_nom + M2 y1(t)$

For
$$t \in T \setminus \{0,1\}$$
, H2 $f(t) < = (1-15/3600) *C \text{ nom} + M2*y(t-1)$

Power input, accounting for the loss in efficiency when there is a cold start

For
$$t \in T$$
, $\phi(t) \le \phi_eff(t)$

For
$$t \in T \setminus \{0,1,2,3\}$$
, $2*\phi(t)-M1*y1(t) < = \phi_eff(t)$

For
$$t \in T \setminus \{0,1,2,3,4\}$$
, $5/4*\phi(t)-M1*y1(t-1) < = \phi_eff(t)$

Hydrogen net output at each time step

For
$$t \in T$$
, $H2_mf_net(t)=H2_mf(t)+S_out(t)-S_in(t)$

Flexible Hydrogen delivery contracts ensured

For
$$d \in \mathbf{D}$$
, H2_dc(d)= $\sum_{t=24*d}^{24*(d+1)}$ H2_dc_h(t)

· Hydrogen balance between net output of the plant and delivery

For
$$t \in T$$
, $H2_mf_net(t)=H2_hc(t)+H2_dc_h(t)$

• Constraints on the operating Temperature of the electrolyzer

For
$$t \in T$$
, $T(t) > T_min$
For $t \in T$, $T(t) < T_max$

Hydrogen production knowing the inlet power (accounts for initial cold start)

$$\begin{split} & \phi(0) = 2*\eta_prod(t)*H2_mf(0) \\ & \phi(1) = 5/4\eta_prod(t)*H2_mf(1) \\ & \phi(2) = 4/3*\eta_prod(t)*H2_mf(2) \\ & For \ t \ \epsilon \ \textit{T} \setminus \{0,1,2\}, \ \phi(t) = \eta_prod(t)*H2_mf(t) \\ & For \ t \ \epsilon \ \textit{T}, \ H2_f(t) = Coeff_mff*H2_mf(t) \end{split}$$

• Hydrogen storage balance

For
$$t \in T$$
, $S_t(t+1)=S_t(t)+S_i(t)-S_out(t)$

Maximum storage capacity

For
$$t \in T$$
, $S_t(t) < S_nom$

Positivity constraints

For
$$t \in T$$
, $S_t(t) \ge 0$
For $t \in T$, $S_i = 0$
For $t \in T$, $S_i = 0$

Indicators (post-simulation)

• O2 production related to H2 production (H2O->H2+½*O2)

For
$$t \in T$$
, O2_mf(t) = $\frac{1}{2}$ *M(O2)/M(H2)*H2_mf(t)

Hydrogen production efficiency

For t
$$\varepsilon$$
 T, η _conso(t)= ϕ (t)/H2_f(t)

Portion of the net Hydrogen outflow of the plant going for flexible contracts
For t ε T, α(t)=H2_dc_h(t)/(H2_dc_d(t)+H2_hc(t))

Parameters values

M(H2) = 32 g/mol M(O2) = 2.016 g/mol Coeff_mff =1/0.0899 Coeff_f=1/(2*96 485)*44.61*3600*0.0899

Schematic of the steps to evaluate the production costs of hydrogen

