Kacper Kula

Zadanie numeryczne nr 2

Omówienie

Problem polega na rozwiązaniu układów macierzowych A_i y=b dla i = 1, 2 oraz analogicznym rozwiązaniu układów macierzowych z zaburzonym wektorem wyrazów wolnych A_i $y=b+\Delta b$ dla i = 1, 2.

Macierze są zdefiniowane następująco:

$$A_1 = \begin{bmatrix} 2.554219275 & 0.871733993 & 0.052575899 & 0.240740262 & 0.316022841 \\ 0.871733993 & 0.553460938 & -0.070921727 & 0.255463951 & 0.707334556 \\ 0.052575899 & -0.070921727 & 3.409888776 & 0.293510439 & 0.847758171 \\ 0.240740262 & 0.255463951 & 0.293510439 & 1.108336850 & -0.206925123 \\ 0.3160228410 & 0.707334556 & 0.847758171 & -0.206925123 & 2.374094162 \end{bmatrix}$$

$$A_2 = \begin{bmatrix} 2.645152285 & 0.544589368 & 0.009976745 & 0.327869824 & 0.424193304 \\ 0.544589368 & 1.730410927 & 0.082334875 & -0.057997220 & 0.318175706 \\ 0.009976745 & 0.082334875 & 3.429845092 & 0.252693077 & 0.797083832 \\ 0.327869824 & 0.057997220 & 0.252693077 & 1.191822050 & -0.103279098 \\ 0.4241933040 & 0.318175706 & 0.797083832 & -0.103279098 & 2.502769647 \end{bmatrix}$$

Wektor b zdefiniowany jest następująco:

```
b = (-0.642912346, -1.408195475, 4.595622394, -5.073473196, 2.178020609)^T
```

Zaburzenie Δb jest zdefiniowane jako losowy wektor o bardzo małej normie euklidesowej $\|\Delta b\|_2 \!pprox\! 10^{-5}$

Narzędziem do napisania programu rozwiązującego zadanie jest język Python oraz biblioteka z zakresu algebry liniowej - numpy.

Porównanie wyników dla macierzy A_1 i wektora b z wynikiem macierzy A_1 z wektorem zaburzony b + Δb

Wnioski

Małe zaburzenie wektora b spowodowało ogromne zmiany wyniku rozwiązania. Macierz A_1 jest najprawdopodobniej źle uwarunkowana i niestabilna numerycznie, co może oznaczać, że jest bardzo blisko macierzy osobliwej.

Porównanie wyników dla macierzy A_2 i wektora b z wynikiem macierzy A_2 z wektorem zaburzony b + Δb

Wynik
$$A_2 y = b$$
 wynosi:
$$\begin{bmatrix} 0.57747172 \\ -1.27378458 \\ 1.67675008 \\ -4.8157949 \\ 0.20156347 \end{bmatrix}$$

Wnioski

Małe zaburzenie wektora b spowodowało niewielkie zmiany w wyniku rozwiązania. Macierz A_2 jest najprawdopodobniej dobrze uwarunkowana i stabilna numerycznie.

Podsumowanie

Błąd w macierzy ${\cal A}_1$ wyniósł:	2964.62148954 10665.65354738 1388.82861924 2840.62047848 3526.60138187	, z kolei w macierzy ${\cal A}_2$ wyniósł:	1.52955371e-06 6.26330180e-06 1.84216367e-06 1.02385908e-05 3.74273020e-06	
---------------------------------------	--	--	--	--

Przyczyna rozbieżności w rozwigzaniach

Aby zrozumieć, dlaczego rozwiązania z wektorem b i zaburzonym wektorem $b+\Delta b$ były tak rozbieżne w macierzy A_1 , natomiast w macierzy A_2 były prawie identyczne, należy zapoznać się z pojęciem **wskaźnika uwarunkowania macierzy**.

Wskaźnik uwarunkowania κ macierzy A w równaniu Ax = b jest charakterystyczną własnością macierzy informującą o tym, jakie wzmocnienie będzie miała zmiana normy macierzy A na normę rozwiązania x.

Wskaźnik uwarunkowania macierzy A definiuje się następująco:

$$\kappa(A) = \|A^{-1}\| * \|A\|$$
, gdzie $\|A\|$ jest normą macierzy zdefiniowaną jako: $\|A\| = \max_{x \neq 0} \frac{\|Ax\|}{\|x\|}$

Macierz, której wskaźnik uwarunkowania jest niski nazywamy dobrze uwarunkowanymi, zaś macierze o wysokim wskaźniku – źle uwarunkowanymi.

Wartości wskaźników uwarunkowania zadanych macierzy

Przy pomocy biblioteki numpy i funckji cond() z modułu lingalg obliczmy teraz wskaźniki uwarunkowania zadanych macierzy.

- $\kappa(A_1) = 20545907733.24792$
- $\kappa(A_2) = 4.000000044219375$

Wnioski

Macierz A_2 jest lepiej uwarunkowana numerycznie i ma większą stabilność niż macierz A_1 , która jest gorzej uwarunkowana i ma złą stabilność numeryczną.

Niski współczynnik uwarunkowania macierzy A_2 jest przyczyną niewielkiej różnicy rozwiązań równań $A_2 y = b$ i $A_2 y = b + \Delta b$, która jest rzędu 10^{-6} .

Konsekwencją wysokiego współczynnika uwarunkowania macierzy A_1 jest rozbieżność wyników o kilka rzędów.

Dokładność rozwiązań jest zagwarantowana bardziej dla macierzy A_1 , algorytmy numeryczne mogą pewniej i precyzyjniej podawać dla niej wyniki, w przeciwieństwie do macierzy A_2 .