Math 74, Week 5

Tianshuang (Ethan) Qiu September 25, 2021

1 Mon Lec, 2a

Let the statement: "There is at most one parallel line to a given line l through a given point P." be statement A;

"If a line intersects one of two parallel lines, both of which are coplanar with the original line, then it also intersects the other." be statement B.

We first prove that $A \implies B$. Let $a \parallel b$, and c intersects a at point Q. Assume that statement B is false so c does not intersect b. Since it does not intersect and b and c are coplanar, we have $b \parallel c$. $a \parallel b$, and a, c intersect

at Q. However by A we know that there can be at most one line parallel to b at point Q. 4. Our assumption is incorrect, $A \Longrightarrow B$

Then we show that $B \implies A$. Let $a \parallel b$, and c intersects b at point P. Assume that A is incorrect, so we construct a' to also be parallel to b. We know that b must intersect a by B. We name this point P. Then since we have assumed that $a \parallel a'$, our line must also intersect a' at P. Consider $\angle SPT$, $\angle RQT$, and they must be equal because they $a \parallel b$, and corresponding angles are equal when the two lines are parallel. By the same logic we have $\angle SPT = \angle R'QT$.

Using the transitive property we can get $\angle RQT = \angle R'QT$. However this cannot be true because if the two angles are equal, a, a' overlap and they become the same line. 4

Our assumption is increased and $B \implies A$. Therefore $A \iff B$. Q.E.D.

2 Mon Lec, 3a

2.1 Bisector \implies equal distance from legs

Let OC bisect $\angle AOB$, choose A, B such that $CA \perp OA, CB \perp OB$ Consider $\triangle AOC, BOC$, since $CA \perp OA, CB \perp OB$, we can write the following using the inner sum of triangles:

$$\angle ACO + \angle COA + 90^{\circ} = 190^{\circ}$$

$$\angle BCO + \angle COB + 90^{\circ} = 190^{\circ}$$

Since OC bisect $\angle AOB$, we have $\angle COA = \angle COB$, so $\angle ACO = \angle BCO$. Finally, since $\triangle AOC$, BOC share OC, we have $\triangle AOC \cong \triangle BOC$ (ASA congruency). Therefore CA = CB. Q.E.D.

2.2 Equal distance from legs \implies angle bisection

Let OC be a ray from O, choose point C and draw $CA \perp OA, CB \perp OB$. AC = BC

Consider $\triangle AOC$, BOC, since $CA \perp OA$, $CB \perp OB$, they are both right triangles. Using AC = BC, we have $\triangle AOC \cong \triangle BOC$ (HL right triangle congruency). Therefore $\angle COA = \angle COB$. Q.E.D.

3 Mon Dis, 1b (second bullet)

$$\prod_{1}^{n} = \left(1 - \frac{1}{n^2}\right)$$

We examine $1 - 1/k^2$ and factor it into $\frac{k^2 - 1}{k^2} = \frac{(k+1)(k-1)}{k^2}$. Since k is incrementing by 1 in our series, we can cancel the majority of terms out since it is telescoping. We can expand our series into

$$\frac{1 \times 3}{2^2} \times \frac{2 \times 4}{3^2} \times \dots \times \frac{(n-1)(n+1)}{n^2}$$
$$= \frac{1}{2} \times \frac{n+1}{n} = \frac{n+1}{2n}$$

4 Mon Dis, 1d

(Assuming that)

4.1
$$4^n + 15n - 1$$

The largest common divisor for these expressions is 1.

4.2
$$n^3 - n$$

The largest common divisor for these expressions is 6.

4.3
$$2^{n+2} + 7n$$

The largest common divisor for these expressions is 5.

5 Wed Lec, 3a

Base case: $n = 1, 1 = 1^2$. Base case holds.

Inductive hypothesis: assume that for some $n \ge 1$, $1+3+5+...+(2n-1) = n^2$. Inductive proof: consider n+1, 1+3+5+...+(2n-1)+(2n+1), using our inductive hypothesis, we can susbsitute everything but the last term: $n^2 + 2n + 1 = (n+1)^2$

Thus we have proven the inductive step. Q.E.D.

6 Wed Lec, 3c

Base case: $n=1,1/(4\times 1^2-1)=1/3=1/(2\times 1+1)$. Base case holds. Inductive hypothesis: assume that for some $n\geq 1, \frac{1}{4\times 1^2-1}+\frac{1}{4\times 2^2-1}+\ldots+\frac{1}{4\times n^2-1}=\frac{n}{2n+1}$. Inductive proof: consider n+1,

$$\frac{1}{4 \times 1^2 - 1} + \frac{1}{4 \times 2^2 - 1} + \ldots + \frac{1}{4 \times n^2 - 1} + \frac{1}{4 \times (n+1)^2 - 1}$$

Using our inductive hypothesis, we can susbsitute everything but the last term:

$$\frac{n}{2n+1} + \frac{1}{4 \times (n+1)^2 - 1} = \frac{n(4(n+1)^2 - 1)}{(2n+1)(4(n+1)^2 - 1)} + \frac{2n+1}{(2n+1)(4(n+1)^2 - 1)}$$

$$= \frac{n(4n^2 + 3 + 8n) + 2n + 1}{(2n+1)(4n^2 + 3 + 8n)} = \frac{4n^3 + 3n + 8n^2 + 2n + 1}{8n^3 + 6n + 16n^2 + 4n^2 + 3 + 8n} = \frac{4n^3 + 8n^2 + 5n + 1}{8n^3 + 20n^2 + 14n + 3}$$

We apply long division by 2n+3 to the denominator.

$$\frac{8n^3 + 20n^2 + 14n + 3}{2n + 3} = 4n^2 + 4n + 1$$

Now we apply long division by n+1 to the numerator.

$$\frac{4n^3 + 8n^2 + 5n + 1}{n+1} = 4n^2 + 4n + 1$$

Therefore we can factor the expression into

$$\frac{(n+1)(4n^2+4n+1)}{(2n+3)(4n^2+4n+1)} = \frac{n+1}{2n+3}$$

Thus we have proven the inductive step. Q.E.D.

7 Wed Lec, 6b