Cheatsheet InfoTheory

Nicolas Wehrli

June 2024

Foundations

Definitions

Information of an outcome x

$$h(x) = -\log(p(x))$$

Cross-Entropy between p and q

$$H(p;q) = -\sum_{x} p(x) \log q(x)$$

Shannon Entropy

$$H(p) = H(p; p)$$

Notation

We identify outcomes x with integers 1, ..., m and associate probabilities p(x) > 0.

$$H(\frac{1}{m})$$
 for $H(p)$ with $p(x) = \frac{1}{m}$ (uniform)

$$H(\frac{1}{m})$$
 for $H(p)$ with $p(x)=\frac{1}{m}$ (uniform) $H(X)=H(p)=\mathbb{E}(-\log(p(X)))$ where p is the pdf of X

Jensen's Inequality

Let f be convex and $g:[m]\to\mathbb{R}$ be an arbitrary function that assigns a value to each outcome.

$$f\left(\sum_{x} p(x)g(x)\right) \leq \sum_{x} p(x)f(g(x)), \forall p(x) \geq 0, \sum_{x} p(x) = 1$$

alternatively

$$f(\mathbb{E}(g(X))) \le \mathbb{E}(f(g(X)))$$

Applying this inequality to relate Cross-Entropy and Entropy, we get the following properties.

Defining KL divergence or Relative Entropy as

$$D(p||q) = \sum_{x} p(x) \log \frac{p(x)}{q(x)}$$

we get

$$H(p;q) = H(p) + D(p||q)$$

Further investigating KL divergence, we find

$$D(p||q) > 0 \tag{1}$$

$$D(p||q) = 0 \iff p = q \tag{2}$$

A further consequence of (1) is that the uniform distribution maximizes entropy.

$$H\left(\frac{1}{m}\right) = \max_{p} H(p)$$

Definitions - Conditional distributions

Conditional information

$$h(x|y) = -\log p(x|y)$$

Conditional Entropy

$$H(X|Y = y) = -\sum_{x} p(x|y) \log p(x|y)$$

$$H(X|Y) = \sum_{y} p(y)H(X|Y = y)$$

Monotonicity of Conditioning

$$H(X|Y) \le H(X)$$

Joint Entropy

$$H(X,Y) = -\sum_{x,y} p(x,y) \log p(x,y)$$

Chain Rule

$$H(X,Y) = H(X|Y) + H(Y)$$

Subadditivity

$$H(X,Y) \le H(X) + H(Y)$$

with equality iff $X \perp Y$.

Multiple Conditioning

Generalized to $X_1, ..., X_n$ we get

$$H(X_1, ..., X_n) = \sum_{i=1}^n H(X_i|X_1, ..., X_{i-1}) \le \sum_{i=1}^n H(X_i)$$

Mutual Information

$$I(X;Y) := H(X) - H(X|Y) = H(Y) - H(Y|X)$$

We further have

$$I(X;Y) = D(P(X,Y)||P(X)P(Y))$$

with I(X;Y) = 0 if $X \perp Y$.

I(X;Y|Z) := H(X|Z) - H(X|Y,Z)

Conditional Independence

Conditional Mutual Information

If $X \perp Y|Z$

$$I(X;Y|Z) = 0$$
 and $I(X;Y) \le I(X;Z)$

We can deduct that for any function ϕ on outcomes of X

$$I(\phi(X);Y) \le I(X;Y)$$

Compression

Definition - Code

A code C is a mapping from outcomes to codewords

$$C: \{1, ..., m\} \to \{0, 1\}^*$$

- If there is no codeword that is a prefix of another codeword, the code is a **prefix code**.
- Prefix codes retain injectivity when concatenating co-

Sets of codewords fulfilling the prefix property can be uniquely represented by the leaves of a binary tree. Since a leaf node has no children the prefix property is guaranteed.

Kraft's Inequality

If $\{c_1, ..., c_m\}$ are codewords of a prefix code, then

$$\sum_{x} 2^{-l_x} \le 1, \text{ where } l_x = |c_x| \tag{3}$$

Conversely, given $\{l_1, ..., l_m\} \subset \mathbb{N}$ satisfying (3), there exists a prefix code with those codeword lengths.

- A prefix code is **succinct**, if Kraft's inequality holds with a equality. Else it can be optimized by pruning.
- Succinct codes uniquely define a dvadic probabilistic mo-

$$q(x) = 2^{-l_x}$$

- Expected codeword length of a prefix code C

$$L(C) = \sum_{x} p(x)l_x = \sum_{x} p(x)(-\log q(x)) = H(p;q)$$

- Using H(p;q) = H(p) + D(p||q) we can deduce that the mi**nimal** L(C) for a binary prefix code C is

$$L^* = H(p) + \min_{q:\text{dyadic}} D(p||q)$$

- Thus the closer q is to p, the more optimal the prefix code is. But since p doesn't have to be dyadic there can be an inherent suboptimality based on rounding.

Weak Law of Large Numbers

Let $Y_1, ..., Y_n$ be iid. random variables with mean μ . Then

$$\overline{Y}_n := \frac{1}{n} \sum_{i=1}^n Y_i \xrightarrow{\mathbb{P}} \mu \iff \lim_{n \to \infty} \mathbb{P}(|\overline{Y}_n - \mu| < \varepsilon) = 1, \forall \varepsilon > 0$$

Typicality - Asymptotic Equipartition

Let $X_1, ..., X_n \stackrel{\text{iid}}{\sim} p$. The ε -typical outcomes are

$$\mathcal{A}_{\varepsilon}^{n} = \left\{ x \in \{1, ..., m\}^{n} : \left| H(p) + \frac{1}{n} \sum_{i=1}^{n} \log p(x_{i}) \right| < \varepsilon \right\}$$

By the law of large numbers for any $p, \varepsilon > 0$ and $\delta > 0$, there exists an n_0 , s.t. $\forall n \geq n_0$

$$\mathbb{P}(A_{\varepsilon}^n) > 1 - \delta$$

in particular for $\delta = \varepsilon$.

For all $p, \varepsilon > 0$ and $n \in \mathbb{N}$, let $x \in \mathcal{A}_{\varepsilon}^n$, then

$$\begin{split} 2^{-n(H(p)+\varepsilon)} & \leq p(x) \leq 2^{-n(H(p)-\varepsilon)} \\ & (1-\varepsilon)2^{n(H(p)-\varepsilon)} \leq |\mathcal{A}^n_{\varepsilon}| \leq 2^{n(H(p)+\varepsilon)} \\ \Longrightarrow & |\mathcal{A}^n_{\varepsilon}| \approx 2^{nH(p)} \text{ and for } x \in \mathcal{A}^n_{\varepsilon} : p(x) \approx 2^{-nH(p)} \end{split}$$

We define the AEP Code to encode whole sequences

$$AEP_{\varepsilon}^{n} = \begin{cases} 0B^{n}(x) & \text{if } x \notin \mathcal{A}_{\varepsilon}^{n} \\ 1C^{n}(x) & \text{otherwise} \end{cases}$$

where we enumerate over the typical and atypical sequences.

Then the average codeword length **amortized** over the encoding of the sequence x of n outcomes is

$$\frac{1}{n}|C_{\varepsilon}^{n}(x)| \le \frac{1}{n}(1 + \log|\mathcal{A}_{\varepsilon}^{n}|) \le H(p) + \frac{1}{n} + \varepsilon$$
$$\frac{1}{n}|B^{n}(x)| \le \frac{1}{n}(1 + \log m^{n}) \le \log m + \frac{1}{n}$$

This result is theoretically optimal but practically not very useful.

Huffman Codes

Let X have outcomes $\{1,...,m\}$ ordered (wlog) st. $p(1) \ge ... \ge p(m)$. The Huffman contraction X' of X is defined as

$$X' = \min\{m - 1, X\}$$

We define the Huffman Code C for X recursively from C' for the H. contraction X'

$$C(x) = \begin{cases} x - 1 & \text{if } m = 2\\ C'(x)0 & \text{if } x = m - 1 \land m > 2\\ C'(x - 1)1 & \text{if } x = m \land m > 2\\ C'(x) & \text{otherwise} \end{cases}$$

Let C be a length-optimal code, then

$$p(x) > p(x') \implies l_x < l_{x'}$$

 $\forall c \in \text{Img}(C) \text{ wt. } |c| \text{ maximal} : \exists c' \in \text{Img}(C). \ c' \text{ sibling of } c$

Assume p_i ordered as above. Then a length-optimal prefix code C with $l_1 \leq ... \leq l_{m-1} = l_m$ and c_{m-1}, c_m only differing in last bit, is called **canonical**.

Huffman codes are length-optimal.

3 Prediction

A betting strategy b bets a fraction b(x) on the x-th outcome. The bookmaker provides odds 1-for-q(x) for each outcome x.

$$S(X) = \frac{b(X)}{q(X)}$$

is a random variable which describes the wealth growth of a gamble.

- Maximizing $\mathbb{E}(S(X))$ over all possible b results in betting all on the highest probable outcome.
- Let $X_1,...,X_n \sim p$ iid.

$$S_n := S(X_1, ..., X_n) = \prod_{i=1}^n S(X_i)$$

- Any strategy with b(x) = 0, p(x) > 0 for some x will almost surely fail for increasing n.
- Doubling Rate

$$W(b) = \mathbb{E}(\log S(X)) = \sum_{x} p(x) \log \frac{b(x)}{q(x)}$$

- Odds 1-for-q are fair, if $\sum_{x} q(x) = 1$
- In general, for fair odds, we have

$$W(b) = D(p||q) - D(p||b)$$

which is **optimal** for b = p, since then D(p||b) = 0.

- Conservation Theorem. For q uniform, fair and b = p.

$$W(b) + H(p) = \log m$$

- With fair odds, withholding part of the budget doesn't gain anything.
- If we have $Q = \sum_x q(x) < 1$, Kelly-betting (b = p) remains optimal in expectation. But the **Dutch book**

$$b(x) := \frac{q(x)}{Q} \implies S(X) = \frac{b(X)}{q(X)} = \frac{1}{Q} > 1$$

has a **guaranteed** doubling rate $W(b) = -\log Q > 0$.

Consider an offered bet, where we can bet $b \in [0, 1]$. We receive αb on a win and pay βb on a loss. Then

$$W(b) = p \log(1 + \alpha b) + (1 - p) \log(1 - \beta b)$$

We can find an optimal strategy using analysis (taking care of border cases). Kelly Criterion.

$$b^* = \min\{1, \max\{0, b\}\}, \qquad b = \frac{p}{\beta} - \frac{1-p}{\alpha}$$

Risky bets. With $\beta = 1$ and $p \to 0$ while $\alpha p \to \infty$, one gets

$$b = p - \frac{1-p}{\alpha} = \frac{\alpha p - 1 + p}{\alpha} \to p$$

Log-sum inequality

$$\sum_{i=1}^{n} a_i \log \frac{a_i}{b_i} \ge \left(\sum_{i=1}^{n} a_i\right) \cdot \left(\log \frac{\sum_{i=1}^{n} a_i}{\sum_{i=1}^{n} b_i}\right)$$

4 Processes

A semi-infinite sequence of random variables $X_1, X_2, ...$ is a **sto-chastic process**.

- A process is **stationary** if, for any $n \in \mathbb{N}$ and any $\Delta \geq 0$

$$\mathbb{P}(X_1,...,X_n) = \mathbb{P}(X_{1+\Delta},...,X_{n+\Delta})$$

- Conditional Entropy Rate.

$$H(X) = \lim_{t \to \infty} H(X_{t+1}|X_t, ..., X_1)$$

- X stationary $\implies H(X) = H'(X)$ well-defined.
- Entropy Rate.

$$H'(X) = \lim_{\substack{t \to \infty \\ 2}} \frac{1}{t} H(X_1, ..., X_t)$$

A Markov Chain is a stochastic process for which

$$X_{t+1} \perp X_{t-1}, ..., X_1 | X_t$$

Let X be a Markov Chain and $\pi := P(X_1)$.

- then by the independence from past and future

$$\mathbb{P}(X_1, ..., X_t) = \mathbb{P}(X_1)\mathbb{P}(X_2|X_1)\mathbb{P}(X_3|X_2)\cdots\mathbb{P}(X_t|X_{t-1})$$

- X is **time-homogeneous**, if

$$\mathbb{P}(X_{t+1}|X_t) = \mathbb{P}(X_2|X_1), \quad \forall t \ge 1$$

- A time-homogeneous Markov Chain is fully characterized by its initial distribution and the **transition matrix** *P* with

$$P_{ij} := \mathbb{P}(X_2 = i | X_1 = j)$$

then

$$\mathbb{P}(X_{i+r} = b | X_i = a) = (P^r)_{ba}$$

- M.C. X stationary
- $\iff \pi$ stationary and X time-homogeneous $\iff P\pi = \pi$
- Entropy Rate of a stationary time-homogeneous M.C.

$$H'(X) = H(X) = \sum_{a} \pi_a \left(-\sum_{b} P_{ba} \log P_{ba} \right)$$

- A M.C. is **ergodic**, iff. $\exists t \geq 1$ s.t. $(P^t)_{ij} > 0, \forall i, j$.
- An M.C. **ergodic** \iff has a unique stationary distribution
- For stationary M.C. $H(X_t|X_1) \leq H(X_{t+1}|X_1)$.

Reversible Chains.

For any finite Markove Chain X

$$\mathbb{P}(X_1, ..., X_t) = \mathbb{P}(X_t)\mathbb{P}(X_{t-1}|X_t) \cdots \mathbb{P}(X_1|X_2)$$

For a t.-h. M.C. X with stationary distribution $\pi > 0$ and transition matrix P, then the backwards transitions are characterized by

$$U_{ab} = P_{ba} \frac{\pi_a}{\pi_b}$$

and X is reversible $\iff P = U \iff P_{ba}\pi_a = P_{ab}\pi_b.$

Random Walks on Graphs.

Consider an undirected graph with nodes $\{1,...,m\}$ and edge weights $w_{ab}=w_{ba}\geq 0$. We define a random walk as a Markov Chain

$$P_{ba} = \frac{w_{ab}}{W_a}, \quad W_a = \sum_b w_{ab}$$

- It has a stationary distribution $\pi_a = \frac{W_a}{W}$ with $W = \sum_a W_a$.
- Graph connected \implies this stationary distribution is unique.
- A random walk on an undirected graph is reversible.
- Every t.-r. M.C. is equivalent to a random walk on a graph.

Thermodynamics

Let (X, Y) and X', Y' be R.V. pairs over the same probability space, then

$$D(\mathbb{P}(X,Y)||\mathbb{P}(X',Y')) = D(\mathbb{P}(X)||\mathbb{P}(X')) + D(\mathbb{P}(Y|X)||\mathbb{P}(Y'|X'))$$

Let X be a t.-h. M.C. with μ, ν different PMF over states, then

$$D(P\mu||Pv) \le D(\mu||v) \quad \forall \mu, v$$

with π stationary

$$D(\mu||\pi) \ge D(P\mu||\pi)$$

if additionally X is reversible

$$D(\mu||\pi) > D(P\mu||\pi), \quad \forall \mu \neq \pi.$$

5 Universal Coding

A CDF F_X induces a partition of [0;1) into

$$\{I_x : x \in X(\Omega)\}, \qquad I_x := [F_X(x) - p_X(x); F_X(x))$$

For $I = [a,b) \subseteq [0,1]$ there exists $z \in I, (z)_2 = 0.z_1z_2...z_l$ with $l = \lceil -\log(b-a) \rceil$ (there's short representation for every Interval I).

Shannon-Fano-Elias Codes

- pick midpoint $z_x = \sum_{x' < x} p_X(x') + \frac{1}{2} p_X(x)$
- truncate to $\left[-\log p_X(x)\right] + 1$ bits

Prefix-free, but not wasteful. Idea can be translated into

Arithmetic Coding

Note that Huffman Codes require knowledge of the distribution and cannot easily be adapted to changing distributions.

Consider a stochastic process made of $X_t: \Omega \to A, A := \{0, ..., m-1\}$. We define

$$Z = (0.X_1 X_2...)_m \in [0, 1] \subset \mathbb{R}$$

For any Z. If F_Z is a **bijection**, then $U := F_Z(Z) \sim \mathcal{U}([0,1])$.

Then $F_U(u) = u$ and $U = (0.U_1U_2...) \implies U_i \stackrel{iid}{\sim} \text{Bernoulli}(\frac{1}{2}).$

- encoder $x_1, x_2, \dots \mapsto z = (0.x_1x_2...)_m \stackrel{F_Z}{\mapsto} u = (0.u_1u_2...)_2$
- decoder $u \stackrel{F_Z^{-1}}{\mapsto} z = (0.x_1 x_2...)_m \mapsto x_1 x_2$

Consider $X = (X_1, ..., X_n)$ with $X : \Omega \to A^n$ and thus m^n possible outcomes.

 F_X induces a partitioning $\{I_x : x = (x_1, ..., x_n)\}$ as defined above. The **arithmetic code** is given by the S.-F.-E. code for x.

For the arithmetic code C, we have

$$\lim_{n \to \infty} \frac{1}{n} \mathbb{E}(|C(X_1, ..., X_n)|) = H(\{X_t\})$$

Incremental refinement of I_x for $x = (x_1, ..., x_n)$ into m subinterval using

$$\mathbb{P}(X_{n+1}|X_1=x_1,...,X_n=x_n)$$

Lempel-Ziv Code

We denote a string to be compressed as

$$x = x_{-s}x_{-s+1}...x_{-1}x_0x_1...x_t$$

where $x_0, ..., x_t$ still needs to be encoded.

Matching.

$$\operatorname{match}(x) := \{(j, l) \mid x_{-j} ... x_{-j+l-1} = x_0 ... x_{l-1} \land j, l \ge 1\}$$

The Maximal Matching is $(j^*, l^*) \in \text{match}(x)$ is maximal in l and as tiebreaker minimal in j.

LZ77.
$$c(x) = \begin{cases} (0, x_0)c(x_1...x_t) & \text{if } \mathrm{match}(x) = \emptyset \\ (1, j^*, l^*)c(x_{l^*}...x_t) & \text{otherwise} \end{cases}$$

An integer x can be encoded with $\leq \log x + 2 \log \log x + 4$ bits.

$$C'(x) = 00...01(x)_2, \quad |C'(x)| = 2\lceil \log x \rceil + 1$$

and we construct

$$C(x) = C'(\lceil \log x \rceil)1(x)_2, \quad |C(x)| \le \log x + 2\log\log x + 4$$

LZ77 is optimal (i.e. reaches the shannon limit).

6 Channel Coding

A noisy channel is a conditional probability distribution $\mathbb{P}_{Y|X}$, where $X:\Omega\to\mathcal{X}$ is the input and $Y:\Omega\to\mathcal{Y}$ the output. The noise reduces the information from H(X) to I(X;Y).

Channel Capacity. Given a channel with $\mathbb{P}_{Y|X}$ its capacity is

$$R^* = \max_{\mathbb{P}_X} I(X;Y)$$

$$w \in [1:m] \overset{\text{enc.}}{\mapsto} x = f(w) \in \mathcal{X} \overset{\text{channel}}{\mapsto} y \in \mathcal{Y} \overset{\text{dec.}}{\mapsto} \hat{w} = g(y) \in [0:m]$$

Binary Symmetric Channel.

A BSC (n, η) is a channel with $\mathcal{X} = \mathcal{Y} = \{0, 1\}^n$, with

$$\mathbb{P}(Y_{1:n}|X_{1:n}) = \prod_{i=1}^{n} \mathbb{P}(Y_i|X_i), \text{ where } Y_i = X_i \oplus N_i, \ N_i \overset{iid}{\sim} \mathrm{Ber}(\eta)$$

The probability of communication error is $P_e = 1 - (1 - \eta)^n$.

A codebook $\mathcal{C} = \{x(1),...,x(m)\} \subseteq \{0,1\}^n$ maps each message $w \in [1:m]$ to a unique binary codeword x(w).

Bayes-optimal Decoder. For a codebook $\mathcal C$ the min. error probability decoder is given by

$$\hat{w} = g(y) = f^{-1}(\hat{x}), \quad \hat{x} = \underset{x \in \mathcal{C}}{\arg \max} \ \mathbb{P}(x|y)$$

For X uniform, the Bayes-optimal decoder is the **maximum likelihood** decoder, i.e. $\hat{x} = \underset{x \in \mathcal{C}}{\arg \max} \mathbb{P}(y|x)$.

Joint Typicality. Consider n pairs of R.V. $(X_i, Y_i) \stackrel{iid}{\sim} \mathbb{P}$. Then for any $\varepsilon > 0$ define the jointly typical sets via

$$\mathcal{B}_{\varepsilon}^{n} = \{(x_{1:n}, y_{1:n}) : |H(X, Y) + \frac{1}{n} \log p(x_{1:n}, y_{1:n})| < \varepsilon \land |H(X) + \frac{1}{n} \log p(x_{1:n})| < \varepsilon \land |H(Y) + \frac{1}{n} \log p(y_{1:n})| < \varepsilon \}$$

Joint AEP. In the same setting as above

- (i) $\mathbb{P}(\mathcal{B}_{\varepsilon}^n) \to 1$, as $n \to \infty$
- (ii) $\log |\mathcal{B}_{\varepsilon}^n| \leq n(H(X,Y) + \varepsilon)$, for all n large enough.

Decoding by Joint Typicality. Assume codeb. C and y received.

- 1. $C_{\varepsilon}(y) := \{x \in \mathcal{C} : (x,y) \in \mathcal{B}_{\varepsilon}^n\}$
- 2. If $C_{\varepsilon}(y) = \{x\}$, then decode $q(y) = f^{-1}(x)$.
- 3. otherwise declare an inability to decode by setting, q(y) = 0.

Random Codebooks. Generate a random codebook from $m \cdot n$ fair coin tosses

$$X_i(w) \stackrel{iid}{\sim} \operatorname{Ber}\left(\frac{1}{2}\right), \qquad w \in [1:m], i \in [1:n]$$

Define events

$$E_w = (X(w), Y(1)) \in \mathcal{B}_{\varepsilon}^n$$

Expected probability error of typicality Decoding

$$P_{\varepsilon} = \mathbb{P}(E_1^c \cup E_2 \cup \dots \cup E_m)$$

With Union Bound and typicality $(\mathbb{P}(E_1^c) \leq \varepsilon$ for all $n \geq n_0(\varepsilon)$)

$$P_{\varepsilon} \leq \mathbb{P}(E_1^c) + \sum_{i=2}^{m} \mathbb{P}(E_i) \leq \varepsilon + m\mathbb{P}(E_2)$$

To further bound the error we consider the following **Lemma:** Let $(X_i,Y_i)\stackrel{iid}{\sim} \mathbb{P}(X,Y)$ and $(\overline{X}_i,\overline{Y}_i)\stackrel{iid}{\sim} \mathbb{P}(X)\mathbb{P}(Y), i\in [1:n]$. For

$$\mathbb{P}((\overline{X}_{1:n}, \overline{Y}_{1:n}) \in \mathcal{B}_{\varepsilon}^n) \le 2^{-n(I(X;Y) - 3\varepsilon)}$$

With the lemma and noting $m=2^{nR},$ we get for any $\varepsilon>0$ and large enough n

$$P_{\varepsilon} < \varepsilon + 2^{nR} 2^{-n(I(X;Y) - 3\varepsilon)} < \varepsilon + 2^{-n\kappa}$$

with $\kappa = I(X;Y) - R - 3\varepsilon$. Thus as long as R < I(X;Y) we have $P_{\varepsilon} \to 0$ for $n \to \infty$. Note then $\kappa > 0$ since $\varepsilon > 0$ can be arbitrary. Note that P_{ε} is the **expected error** over all possible codebooks (uniformly chosen). To find a codebook with an error $\leq P_{\varepsilon}$ one could do an exhaustive search over all codebooks (**not practical**).

Channel Coding Theorem. Consider a BSC (n, η) . For any rate $R < R^* = 1 - H(\eta)$ we can communicate $m = 2^{nR}$ distinct messages with an average error $P_{\varepsilon} \to 0$ for $n \to \infty$.

The **Hamming Distance** between $x, x' \in \{0, 1\}^n$ is the number of bits they differ.

$$d_H(x, x') = \sum_{i=1}^n x_i (1 - x'_i) + (1 - x_i) x'_i = \sum_{i=1}^n (x_i + x'_i) - 2x_i x'_i$$

In BSC (n, η) with $\mathbb{P}(X)$ uniform (!) and $\eta < \frac{1}{2}$, optimal decoding wrt. to \mathcal{C} is characterized by

$$x^* = \underset{x \in \mathcal{C}}{\arg \max} \ \mathbb{P}(y|x) = \underset{x \in \mathcal{C}}{\min} d_H(x, y)$$

Detecting single-bit corruptions.

Let $\mathcal{C} = \{0,1\}^n$ be a codebook and y be received with atmost one bit corruption from input x. We construct $\mathcal{C}' \subseteq \{0,1\}^{n+1}$ with an appended parity bit for every $x \in \mathcal{C}$.

$$x \mapsto x' = \left(x_1, ..., x_n, \sum_{i=1}^n x_i \mod 2\right)$$

Then $\min_{x'\neq z'\in\mathcal{C}'} d_H(x',z') \geq 2$

Hamming Code.

Blocklength $n=2^k-1$ with k parity bits and 2^k-k-1 data bits. The i-th parity bit is at position 2^{i-1} with $i \in [1:k]$ and covers all positions where the i-th least significant bit is set (including itself). The sum of positions of the mismatched parity bits gives the position of the corrupted bit.

The rate achieved is

$$R = \frac{2^k - k - 1}{2^k - 1}$$

Symmetric Channels

Consider the transition matrix P = p(y|x) as defined in **this lecture**. The channel is **symmetric** if the rows/columns are permutations of each other. The channel is **weakly symmetric** if the columns are permutations of each other and every row sum is equal. For a **weakly symmetric** channel

$$C = \log |\mathcal{Y}| - H(column \ of \ transition \ matrix)$$

achieved by uniform distribution over \mathcal{X} . For a channel containing two **parallel channels**: $2^C = 2^{C_1} + 2^{C_2}$

Lossy Coding

Rate-Distortion Theory

Distortion measure $d: \mathcal{X} \times \mathcal{X} \to \mathbb{R}_{>0}$, s.t. $d(x, x) = 0 (\forall x)$.

Examples include Hamming Distance and MSE. We consider $\mathbb{E}(d(X,\hat{X}))$. where X is original data and \hat{X} its reconstruction.

Rate Distortion Theorem. The maximal rate R(D) at which X $(\mathbb{P}(X) \text{ given})$ can be encoded with $\mathbb{E}(d(X,\hat{X})) \leq D$ is given by

$$R(D) = \min_{\mathbb{P}(\hat{X}|X): \mathbb{E}(d(X,\hat{X})) \le D}$$

Consider the specific Case $X_t \stackrel{iid}{\sim} \operatorname{Ber}(p)$ and $d(x^n, \hat{x}^n) = \frac{1}{n} d_H(x^n, \hat{x}^n)$. Then requiring $\mathbb{P}(X_t \neq \hat{X}_t) \leq \eta$ (wlog. $\eta \leq p \leq 1/2$), and minimizing the mutual information $I(X; \hat{X})$ gives us a symmetric back-

$$\mathbb{P}(X|\hat{X}) = \begin{bmatrix} 1-\eta & \eta \\ \eta & 1-\eta \end{bmatrix}, \text{ and thus } \hat{X}_t \overset{iid}{\sim} \mathrm{Ber}(q) \text{ with } q = \frac{p-\eta}{1-2\eta}$$

which gives us a optimal forward channel (it's asymmetric).

This gives a rate of $R(\eta) = H(p) - H(\eta)$ as a specific case of the Rate-Distortion Theorem.

Distortion-Typicality. A pair (x, \hat{x}) is (ε, δ) -d-typical, if it is jointly ε -typical and $|\eta - d(x^n, \hat{x}^n)| < \delta$ (η is the expected bit error).

Uniform Quantization Let $U:\Omega\to R\subseteq\mathbb{R}$ (Scalar Quantization). We partition R into intervals R_i of length Δ , assuming

We can then approximate the pdf p(u) by a step function $\hat{p}(u)$, which is constant over R_i .

$$\hat{p}(u) = \sum_{j} \mathbb{I}\{u \in R_{j}\} \frac{\mathbb{P}(u \in R_{j})}{\Delta} = \sum_{j} \mathbb{I}\{u \in R_{j}\} \frac{\int_{R_{j}} p(u)du}{\Delta}$$

Let V be an RV characterized by \hat{p} . Then $\mathbb{E}((U-V)^2) \approx \frac{\Delta^2}{12}$. If $U \sim \mathcal{U}([a,b])$ and we want the constant x minimizing MSE. Then the optimal point is $x = \frac{a+b}{2}$ with an MSE of $\frac{(a+b)^2}{12}$

Differential Entropy. Let $U: \Omega \to R \subseteq \mathbb{R}$. The differential entropy is defined as

$$h(U) = -\int_{R} p(u) \log p(u) du$$

We have $H(V) \approx h(U) - \log \Delta$.

To be more precise we have

$$H(V) + \log \Delta \to h(U)$$
, as $\Delta \to 0$

Let $U \sim \mathcal{N}(0, \sigma^2)$. Then if we accept a MSE of at most η , U can be quantized at a rate

$$R(\eta) = \begin{cases} \frac{1}{2} (\log \sigma^2 - \log \eta) & \text{if } \eta \le \sigma^2 \\ 0 & \text{otherwise} \end{cases}$$

Shannon's Lower Bound. Let $U:\Omega\to R\subset\mathbb{R}$ with $h(U)<\infty$ and h^* the differential entropy $h^*(\sigma^2)$ of a gaussian. Then U can be encoded with MSE at most η at a rate $R > R(\eta)$, where

$$R(\eta) \ge h(U) - h * (\eta)$$

For $U:\Omega\to R\subset\mathbb{R}^d, d>1$ we speak of vector quantization. Generally if we are given $\{y_1, ..., y_m\} \subseteq R$, the optimal quantizer V is characterized by

$$u \mapsto \hat{u} = y_k, \quad k \in \underset{j}{\operatorname{arg\,min}} ||u - y_j||$$

This induces Voronoi cells around the y_j , which individually are convex regions (for d = 1 these are intervals).

Centroid Condition. Given a partition $\{R_i\}$ of $R \subset \mathbb{R}^n$, the optimal code points are

$$y_j = \mathbb{E}(U|U \in R_j)$$
, empirically w/ dataset $\mathcal{X}: \frac{\sum_{x \in \mathcal{X} \cap R_j} x}{|\mathcal{X} \cap R_j|}$

Loyld's Algorithm

- 1. Generate random code points y_i at random and the induced
- 2. For each cell, recompute the centroid. Then update the newly induced Voronoi cells.
- 3. Repeat Step 2 until convergence.

This algorithm fixes m as the number cells (encoding cost $\log m$ bits) and then optimizes (locally) for distortion.

The relevant quantity for encoding cost should not be the number of cells, but the Entropy of the discretized RV V.

$$\ell(V) = \mathbb{E}((U - V)^2) + \lambda H(V), \quad \lambda > 0$$

Blahut Arimoto Algorithm

$$\mathbb{P}(y_j|x_i) = \frac{\pi_j \exp(-\lambda||x_i - y_j||^2)}{\sum_{k=1}^m \pi_k \exp(-\lambda||x_i - y_k||^2)}, \ \pi_j = \frac{1}{n} \sum_{i=1}^s \mathbb{P}(y_j|x_i)$$

and we generalize the centroid rule with weights $y_j^* = \frac{\sum_{i=1}^{s} \mathbb{P}(y_j|x_i)x_i}{\sum_{j=1}^{s} \mathbb{P}(y_i|x_j)}$

Estimation

Laplace Distribution is characterized by the pdf

$$p(x; \mu, b) = \frac{1}{2b} \exp\left(-\frac{|x - \mu|}{b}\right)$$

with parameters $\theta = (\mu, b) \in \Theta = \mathbb{R} \times \mathbb{R}_+$.

Any function ϕ of a RV X is called a **statistic** of X.

A statistic ϕ of X is **sufficient** for Y, if $X \perp Y | \phi(X)$.

It is **minimally sufficient**, if for all other statistics ϕ' , $X \perp \phi'(X)|\phi(X)$. Halmos-Savage Factorization Theorem. Let p_{θ} be family of pdf parameterized by θ . Then ϕ is sufficient for θ , iff. there exists non-negative functions h, q_{θ} s.t. $p_{\theta} = h(x)q_{\theta}(x)$.

Exponential Family. Let ϕ be a sufficient statistic and h(x) a positive function. The exponential family induced by ϕ , h is characterized by the pdf

$$p(x;\theta) = h(x) \exp(\theta \cdot \phi(x) - A(\theta)), \ A(\theta) = \ln \int h(x) \exp(\theta \cdot \phi(x)) dx$$

Bernoulli
$$h \equiv 1, \phi(x) = x, \theta = \ln \frac{p}{1-p}, A(\theta) = \ln(1+e^{\theta}).$$

Binomial $h(x) = \binom{n}{x}, \phi(x) = x, \theta = \ln \frac{p}{1-p}, A(\theta) = n \ln(1+e^{\theta}).$

Normal
$$h(x) = \frac{1}{\sqrt{2}}, \phi(x) = (x, x^2)^{\top}, \theta = \left(\frac{\mu}{\sigma^2}, -\frac{1}{2\sigma^2}\right), A(\theta) = -\frac{\theta_1^2}{4\theta_2} + \ln\left(\frac{1}{\sqrt{-2\theta_2}}\right)$$
Let $X_1, ..., X_n$ be iid. with pdf $p(x; \theta)$ in an exponential family. Then the joint distribution is also an expendential family with sufficient

the joint distribution is also an expenonetial family with sufficient statistic $\phi(X_1, ..., X_n) = \sum_{i=1}^n \phi(X_i)$.

When estimating parameters from iid samples, there is a fixeddimensinoal sufficient statistic iff. the distributions can be represented as an exponential family.

Binomial $\hat{p} = \frac{1}{n} \sum_{i=1}^{n} x_i$ Normal $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i, \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})^2$ Laplace $\hat{\mu} = \text{median}(x_1, ..., x_n), \hat{b} = \frac{1}{n} \sum_{i=1}^{n} |x_i - \hat{\mu}|.$ For an exponential family we have

$$\nabla_{\theta} \sum_{i=1}^{n} \log p_{\theta}(x_i) = 0 \iff \mathbb{E}_{\theta}(\phi(X)) = \frac{1}{n} \sum_{i=1}^{n} \phi(x_i)$$

Maximum Entropy Inference

Statistical inference without parametric families.

Given constraint functions $\phi_i: R \subseteq \mathbb{R} \to \mathbb{R}$ and empirical values $\bar{\phi}_i$.

$$\mathcal{P} = \{ p : R \to [0, 1] \mid \mathbb{E}_p(\phi_i(X)) = \bar{\phi}_i(\forall i) \} \neq \emptyset$$

Define the exponential family

$$p_{\theta}(x) = \exp(\phi(x) \cdot \theta - A(\theta)).$$

Let $p_{\hat{\theta}}$ be the pdf obtained for the MLE $\hat{\theta}$ based on data summaries $\bar{\phi}_i$, then

$$p_{\hat{\theta}} = \underset{p \in \mathcal{P}}{\operatorname{arg \, max}} \ h(p), \text{ with } h(p) = -\int p(x) \ln p(x) d$$

Fisher Information

Let p_{θ} be a parametric family of pdfs.

For an estimator $\hat{\theta}$ and the true parameter θ^* , we define $MSE(\hat{\theta}) =$ $\mathbb{E}((\hat{\theta}(X_1,...,X_n)-\theta^*)^2).$

The **score** is an RV $S(X) = \nabla_{\theta} \log p_{\theta}(X)$.

We have $\mathbb{E}(S(X)|\theta) = 0$, and the **Fisher Information** is symmetric positive semi-definite matrix $\mathcal{I}(\theta) = \mathbb{E}(S(X)S(X)^{\top}|\theta)$.

For $X_1,...,X_n \stackrel{iid}{\sim} p_\theta$ we have $S(X_1,...,X_n) = nS(X_1)$. For $X,Y \sim p_\theta$ we have S(X,Y) = S(X|Y) + S(Y) and by that $\mathcal{I}_{X,Y}(\theta) = \mathcal{I}_{Y|X}(\theta) + \mathcal{I}_X(\theta).$

If p_{θ} twice-differentiable, then $\mathcal{I}(\theta) = -\mathbb{E}(\nabla_{\theta}^2 \log p_{\theta}(X))$.

Cramér-Rao Bound

Let $p_{\theta}(x)$ be a parameterized family of pdfs for a real-valued RV X. Let $\hat{\theta} = T(X)$ be an unbiased estimator, i.e. $\mathbb{E}_{\theta}(T(X) - \theta) = 0$. then

$$MSE(\hat{\theta}) \ge \mathcal{I}(\theta)^{-1}$$

An unbiased estimator $\hat{\theta}$ is **efficient**, if it attains the Cramér-Rao bound with equality.

Rao-Blackwell Theorem

Given an estimator $\hat{\theta}$ for the parameter of a family with sufficient statistics T define an estimator $\bar{\theta} = \mathbb{E}(\hat{\theta}|T)$, then

$$MSE(\bar{\theta}) \leq MSE(\hat{\theta})$$