

Images haven't loaded yet. Please exit printing, wait for images to load, and try to print again.

Sep 29 · 9 min read

Building A Logistic Regression in Python, Step by Step

(This article first appeared on *Datascience*+)

Introduction

Logistic Regression is a Machine Learning classification algorithm that is used to predict the probability of a categorical dependent variable. In logistic regression, the dependent variable is a binary variable that contains data coded as 1 (yes, success, etc.) or 0 (no, failure, etc.). In other words, the logistic regression model predicts P(Y=1) as a function of X.

Logistic Regression Assumptions

- Binary logistic regression requires the dependent variable to be binary.
- For a binary regression, the factor level 1 of the dependent variable should represent the desired outcome.
- Only the meaningful variables should be included.
- The independent variables should be independent of each other.

 That is, the model should have little or no multicollinearity.
- The independent variables are linearly related to the log odds.
- Logistic regression requires quite large sample sizes.

Keeping the above assumptions in mind, let's look at our dataset.

Data

The dataset comes from the <u>UCI Machine Learning repository</u>, and it is related to direct marketing campaigns (phone calls) of a Portuguese banking institution. The classification goal is to predict whether the client will subscribe (1/0) to a term deposit (variable y). The dataset can be downloaded from here.

```
import pandas as pd
import numpy as np
from sklearn import preprocessing
import matplotlib.pyplot as plt
plt.rc("font", size=14)
from sklearn.linear_model import LogisticRegression
from sklearn.cross_validation import train_test_split
import seaborn as sns
sns.set(style="white")
sns.set(style="white", color_codes=True)
```

The dataset provides the bank customers' information. It includes 41,188 records and 21 fields.

Figure 1

Input variables

- 1. age (numeric)
- job: type of job (categorical: "admin", "blue-collar", "entrepreneur", "housemaid", "management", "retired", "self-employed", "services", "student", "technician", "unemployed", "unknown")
- marital: marital status (categorical: "divorced", "married", "single", "unknown")
- 4. education (categorical: "basic.4y", "basic.6y", "basic.9y", "high.school", "illiterate", "professional.course", "university.degree", "unknown")
- 5. default: has credit in default? (categorical: "no", "yes", "unknown")
- 6. housing: has housing loan? (categorical: "no", "yes", "unknown")
- 7. loan: has personal loan? (categorical: "no", "yes", "unknown")
- 8. contact: contact communication type (categorical: "cellular", "telephone")
- 9. month: last contact month of year (categorical: "jan", "feb", "mar", ..., "nov", "dec")
- 10. day_of_week: last contact day of the week (categorical: "mon", "tue", "wed", "thu", "fri")
- 11. duration: last contact duration, in seconds (numeric). Important note: this attribute highly affects the output target (e.g., if duration=0 then y='no'). The duration is not known before a call is performed, also, after the end of the call, y is obviously known. Thus, this input should only be included for benchmark purposes

- and should be discarded if the intention is to have a realistic predictive model
- 12. campaign: number of contacts performed during this campaign and for this client (numeric, includes last contact)
- 13. pdays: number of days that passed by after the client was last contacted from a previous campaign (numeric; 999 means client was not previously contacted)
- 14. previous: number of contacts performed before this campaign and for this client (numeric)
- 15. poutcome: outcome of the previous marketing campaign (categorical: "failure", "nonexistent", "success")
- 16. emp.var.rate: employment variation rate—(numeric)
- 17. cons.price.idx: consumer price index—(numeric)
- 18. cons.conf.idx: consumer confidence index—(numeric)
- 19. euribor3m: euribor 3 month rate—(numeric)
- 20. nr.employed: number of employees—(numeric)

Predict variable (desired target):

```
y—has the client subscribed a term deposit? (binary: "1", means "Yes", "0" means "No")
```

Figure 2

Let us group "basic.4y", "basic.9y" and "basic.6y" together and call them "basic".

```
data['education']=np.where(data['education'] =='basic.9y',
    'Basic', data['education'])
data['education']=np.where(data['education'] =='basic.6y',
    'Basic', data['education'])
```

After grouping, this is the columns:

Figure 3

Data exploration

There are 36548 no's and 4640 yes's in the outcome variables.

Let's get a sense of the numbers across the two classes.

Figure 5

Observations:

- The average age of customers who bought the term deposit is higher than that of the customers who didn't.
- The pdays (days since the customer was last contacted) is understandably lower for the customers who bought it. The lower the pdays, the better the memory of the last call and hence the better chances of a sale.
- Surprisingly, campaigns (number of contacts or calls made during the current campaign) are lower for customers who bought the term deposit.

We can calculate categorical means for other categorical variables such as education and marital status to get a more detailed sense of our data.

In [10]:	data.groupby	ata.groupby('job').mean()										
Out[10]:		age	duration	campaign	pdays	previous	emp_var_rate	cons_price_idx	cons_conf_idx	euribor3m	nr_employed	у
	job											
	admin.	38.187296	254.312128	2.623489	954.319229	0.189023	0.015563	93.534054	-40.245433	3.550274	5164.125350	0.129726
	blue-collar	39.555760	264.542360	2.558461	985.160363	0.122542	0.248995	93.656656	-41.375816	3.771996	5175.615150	0.068943
	entrepreneur	41.723214	263.267857	2.535714	981.267170	0.138736	0.158723	93.605372	-41.283654	3.791120	5176.313530	0.085165
	housemaid	45.500000	250.454717	2.639623	960.579245	0.137736	0.433396	93.676576	-39.495283	4.009645	5179.529623	0.100000
	management	42.362859	257.058140	2.476060	962.647059	0.185021	-0.012688	93.522755	-40.489466	3.611316	5166.650513	0.112175
	retired	62.027326	273.712209	2.476744	897.936047	0.327326	-0.698314	93.430786	-38.573081	2.770066	5122.262151	0.252326
	self-employed	39.949331	264.142153	2.660802	976.621393	0.143561	0.094159	93.559982	-40.488107	3.689376	5170.674384	0.104856
	services	37.926430	258.398085	2.587805	979.974049	0.154951	0.175359	93.634659	-41.290048	3.699187	5171.600126	0.081381
	student	25.894857	283.683429	2.104000	840.217143	0.524571	-1.408000	93.331613	-40.187543	1.884224	5085.939086	0.314286
	technician	38.507638	250.232241	2.577339	964.408127	0.153789	0.274566	93.561471	-39.927569	3.820401	5175.648391	0.108260
	unemployed	39.733728	249.451677	2.564103	935.316568	0.199211	-0.111736	93.563781	-40.007594	3.466583	5157.156509	0.142012
	unknown	45.563636	239.675758	2.648485	938.727273	0.154545	0.357879	93.718942	-38.797879	3.949033	5172.931818	0.112121

Figure 6

1]: data.gr	oupby('mar	ital').me	tal').mean()									
1]:	age	duration	campaign	pdays	previous	emp_var_rate	cons_price_idx	cons_conf_id	x euribor3m	nr_employ	ed y	
marital												_
divorce	1 44.899393	253.790330	2.61340	968.639853	0.168690	0.163985	93.606563	-40.70706	9 3.715603	5170.8786	43 0.103209	
marrie	42.307165	257.438623	2.57281	967.247673	0.155608	0.183625	93.597367	-40.27065	9 3.745832	5171.8487	72 0.101573	
single	e 33.158714	261.524378	2.53380	949.909578	0.211359	-0.167989	93.517300	-40.91869	8 3.317447	5155.1992	65 0.140041	
unknow	1 40.275000	312.725000	3.18750	937.100000	0.275000	-0.221250	93.471250	-40.82000	0 3.313038	5157.3937	50 0.150000	
2]: data.gr	oupby(' <mark>ed</mark> ı	ıcation').	mean()									
data.gr		•		campaign	pdays	previous em	p_var_rate cons	s_price_idx co	ns_conf_idx	euribor3m	nr_employed	у
2]:	n	age				previous em	p_var_rate cons 0.191329	;_price_idx	ns_conf_idx -40.927595	euribor3m 3.729654	nr_employed 5172.014113	
educatio	n	age 42.163910	duration	2.559498		0.141053						0.087
educatio	n Basic high.school	age 42.163910	duration 263.043874 260.886810	2.559498 2.568576	974.877967	0.141053 0.185917	0.191329	93.639933	-40.927595	3.729654	5172.014113	0.087
educatio	n Basic high.school illiterate	age 42.163910 : 37.998213 : 48.500000 :	duration 263.043874 260.886810	2.559498 2.568576 2.277778	974.877967 964.358382	0.141053 0.185917 0.111111	0.191329 0.032937	93.639933 93.584857	-40.927595 -40.940641	3.729654 3.556157	5172.014113 5164.994735	0.087 0.108 0.222
education	n Basic high.school illiterate	age 42.163910 : 37.998213 : 48.500000 : 40.080107 :	duration 263.043874 260.886810 276.777778 252.533855	2.559498 2.568576 2.277778 2.586115	974.877967 964.358382 943.833333	0.141053 0.185917 0.111111 0.163075	0.191329 0.032937 -0.133333	93.639933 93.584857 93.317333	-40.927595 -40.940641 -39.950000	3.729654 3.556157 3.516556	5172.014113 5164.994735 5171.777778	0.087 0.108 0.222 0.113

Figure 7

Visualizations

```
%matplotlib inline
pd.crosstab(data.job,data.y).plot(kind='bar')
plt.title('Purchase Frequency for Job Title')
plt.xlabel('Job')
plt.ylabel('Frequency of Purchase')
plt.savefig('purchase_fre_job')
```


The frequency of purchase of the deposit depends a great deal on the job title. Thus, the job title can be a good predictor of the outcome variable.

```
table=pd.crosstab(data.marital,data.y)
table.div(table.sum(1).astype(float),
axis=0).plot(kind='bar', stacked=True)
plt.title('Stacked Bar Chart of Marital Status vs Purchase')
plt.xlabel('Marital Status')
plt.ylabel('Proportion of Customers')
plt.savefig('mariral_vs_pur_stack')
```


The marital status does not seem a strong predictor for the outcome variable.

```
table=pd.crosstab(data.education,data.y)
table.div(table.sum(1).astype(float),
axis=0).plot(kind='bar', stacked=True)
plt.title('Stacked Bar Chart of Education vs Purchase')
plt.xlabel('Education')
plt.ylabel('Proportion of Customers')
plt.savefig('edu_vs_pur_stack')
```


Education seems a good predictor of the outcome variable.

```
pd.crosstab(data.day_of_week,data.y).plot(kind='bar')
plt.title('Purchase Frequency for Day of Week')
plt.xlabel('Day of Week')
plt.ylabel('Frequency of Purchase')
plt.savefig('pur_dayofweek_bar')
```


Day of week may not be a good predictor of the outcome.

```
pd.crosstab(data.month,data.y).plot(kind='bar')
plt.title('Purchase Frequency for Month')
plt.xlabel('Month')
plt.ylabel('Frequency of Purchase')
plt.savefig('pur_fre_month_bar')
```


Month might be a good predictor of the outcome variable.

```
data.age.hist()
plt.title('Histogram of Age')
plt.xlabel('Age')
plt.ylabel('Frequency')
plt.savefig('hist_age')
```


Most of the customers of the bank in this dataset are in the age range of 30–40.

```
pd.crosstab(data.poutcome,data.y).plot(kind='bar')
plt.title('Purchase Frequency for Poutcome')
plt.xlabel('Poutcome')
plt.ylabel('Frequency of Purchase')
plt.savefig('pur_fre_pout_bar')
```


Poutcome seems to be a good predictor of the outcome variable.

Create dummy variables

That is variables with only two values, zero and one.

```
cat_vars=
['job', 'marital', 'education', 'default', 'housing', 'loan', 'con
tact', 'month', 'day_of_week', 'poutcome']
for var in cat_vars:
    cat_list='var'+'_'+var
    cat_list = pd.get_dummies(data[var], prefix=var)
    datal=data.join(cat_list)
    data=data1

cat_vars=
['job', 'marital', 'education', 'default', 'housing', 'loan', 'con
tact', 'month', 'day_of_week', 'poutcome']
data_vars=data.columns.values.tolist()
to_keep=[i for i in data_vars if i not in cat_vars]
```

Our final data columns will be:

```
data_final=data[to_keep]
data_final.columns.values
```

Figure 15

```
data_final_vars=data_final.columns.values.tolist()
y=['y']
X=[i for i in data_final_vars if i not in y]
```

Feature Selection

Recursive Feature Elimination (RFE) is based on the idea to repeatedly construct a model and choose either the best or worst performing feature, setting the feature aside and then repeating the process with the rest of the features. This process is applied until all features in the dataset are exhausted. The goal of RFE is to select features by recursively considering smaller and smaller sets of features.

```
from sklearn import datasets
from sklearn.feature_selection import RFE
from sklearn.linear_model import LogisticRegression

logreg = LogisticRegression()

rfe = RFE(logreg, 18)
rfe = rfe.fit(data_final[X], data_final[y])
print(rfe.support_)
print(rfe.ranking_)
```

Figure 16

The RFE has helped us select the following features: "previous", "euribor3m", "job_blue-collar", "job_retired", "job_services", "job_student", "default_no", "month_aug", "month_dec", "month_jul", "month_nov", "month_oct", "month_sep", "day_of_week_fri", "day_of_week_wed", "poutcome_failure", "poutcome_nonexistent", "poutcome_success".

Implementing the model

```
import statsmodels.api as sm
logit_model=sm.Logit(y,X)
result=logit_model.fit()
print(result.summary())
```

Dep. Variable:			. Observations:		41188		
Model:	L		Residuals:		41170		
Method:		MLE Df			17		
	Sat, 18 Nov						
Time:			g-Likelihood:		-11826.		
converged:	True LL-Null:			-14499.			
		LLF	R p-value:		0.000		
	coef	std err	z	P> z	[0.025	0.9751	
previous	0.2385	0.051	4.642	0.000	0.138	0.339	
euribor3m	-0.4981	0.012	-40.386	0.000	-0.522	-0.474	
job_blue-collar	-0.3222	0.049	-6.549	0.000	-0.419	-0.226	
job_retired	0.3821	0.069	5.552	0.000	0.247	0.517	
job_services	-0.2423	0.065	-3.701	0.000	-0.371	-0.114	
job_student	0.3540	0.086	4.107	0.000	0.185	0.523	
default_no	0.3312	0.056	5.943	0.000	0.222	0.440	
month_aug	0.4272	0.055	7.770	0.000	0.319	0.535	
month_dec	0.8061	0.163	4.948	0.000	0.487	1.125	
month_jul	0.7319	0.056	13.094	0.000	0.622	0.841	
month_nov	0.2706	0.064	4.249	0.000	0.146	0.395	
month_oct	0.8043	0.087	9.258	0.000	0.634	0.975	
month_sep	0.5906	0.096	6.160	0.000	0.403	0.778	
day_of_week_fri	-0.0044	0.046		0.923	-0.094	0.085	
	0.1226	0.044	2.771	0.006	0.036	0.209	
poutcome_failure	-1.8438	0.100	-18.412	0.000	-2.040	-1.647	
poutcome_nonexistent	-1.1344	0.070	-16.253	0.000	-1.271	-0.998	
poutcome_success	0.0912	0.114	0.803	0.422	-0.131	0.314	

Figure 17

The p-values for most of the variables are smaller than 0.05, therefore, most of them are significant to the model.

Logistic Regression Model Fitting

```
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.3, random_state=0)
from sklearn.linear_model import LogisticRegression
from sklearn import metrics
logreg = LogisticRegression()
logreg.fit(X_train, y_train)
```

LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1, penalty='l2', random_state=None, solver='liblinear', tol=0.0001, verbose=0, warm_start=False

Predicting the test set results and calculating the accuracy

```
y_pred = logreg.predict(X_test)
print('Accuracy of logistic regression classifier on test
set: {:.2f}'.format(logreg.score(X_test, y_test)))
```

Accuracy of logistic regression classifier on test set: 0.90

Cross Validation

Cross validation attempts to avoid overfitting while still producing a prediction for each observation dataset. We are using 10-fold Cross-Validation to train our Logistic Regression model.

```
from sklearn import model_selection
from sklearn.model_selection import cross_val_score
kfold = model_selection.KFold(n_splits=10, random_state=7)
modelCV = LogisticRegression()
scoring = 'accuracy'
results = model_selection.cross_val_score(modelCV, X_train,
y_train, cv=kfold, scoring=scoring)
print("10-fold cross validation average accuracy: %.3f" %
(results.mean()))
```

10-fold cross validation average accuracy: 0.897

The average accuracy remains very close to the Logistic Regression model accuracy; hence, we can conclude that our model generalizes well.

Confusion Matrix

```
from sklearn.metrics import confusion_matrix
confusion_matrix = confusion_matrix(y_test, y_pred)
print(confusion_matrix)
```

[[10872 109] [1122 254]] The result is telling us that we have 10872+254 correct predictions and 1122+109 incorrect predictions.

Compute precision, recall, F-measure and support

To quote from Scikit Learn:

The precision is the ratio tp / (tp + fp) where tp is the number of true positives and tp the number of false positives. The precision is intuitively the ability of the classifier to not label a sample as positive if it is negative.

The recall is the ratio tp / (tp + fn) where tp is the number of true positives and fn the number of false negatives. The recall is intuitively the ability of the classifier to find all the positive samples.

The F-beta score can be interpreted as a weighted harmonic mean of the precision and recall, where an F-beta score reaches its best value at 1 and worst score at 0.

The F-beta score weights the recall more than the precision by a factor of beta. beta = 1.0 means recall and precision are equally important.

The support is the number of occurrences of each class in y_test.

from sklearn.metrics import classification_report
print(classification_report(y_test, y_pred))

support	f1-score	recall	precision	
10981 1376	0.95 0.29	0.99 0.18	0.91 0.70	0 1
12357	0.87	0.90	0.88	avg / total

Figure 18

Interpretation: Of the entire test set, 88% of the promoted term deposit were the term deposit that the customers liked. Of the entire test set, 90% of the customer's preferred term deposits that were promoted.

ROC Curve

```
from sklearn.metrics import roc_auc_score
from sklearn.metrics import roc_curve
logit_roc_auc = roc_auc_score(y_test,
logreg.predict(X_test))
fpr, tpr, thresholds = roc_curve(y_test,
logreg.predict_proba(X_test)[:,1])
plt.figure()
plt.plot(fpr, tpr, label='Logistic Regression (area =
%0.2f)' % logit roc auc)
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic')
plt.legend(loc="lower right")
plt.savefig('Log_ROC')
plt.show()
```


The receiver operating characteristic (ROC) curve is another common tool used with binary classifiers. The dotted line represents the ROC curve of a purely random classifier; a good classifier stays as far away from that line as possible (toward the top-left corner).

The Jupyter notebook used to make this post is available <u>here</u>. I would be pleased to receive feedback or questions on any of the above.

Reference: Learning Predictive Analytics with Python book