

# Python for Data Science

# kaggle Challenge - Bike count in Paris



**Adrien SENGHOR - Victor SOTO** 

"attaquants comme bappé" team

December 20<sup>th</sup>, 2024 APM\_51460\_EP (2024-2025)



### THE GOAL AND POTENTIAL CHALLENGES AT FIRST GLANCE

### 

- A prediction...
  - the log hourly traffic at each bike counter in Paris, for a given period (2020-09-01 01:00 to 2021-09-09 23:00)
- ...with accuracy
  - measured by the root-mean-square error (RMSE) between the predicted log-count and the evaluated target

### THE CHALLENGES at first glance

- Data exploration (missing values, etc.)
- External data integration
- Model selection and finetuning

-> **EASY!!** 



### **EDA - TRAINING SET**





#### **KEY INSIGHTS**

- Clean set with **redundant features** (counter location information): overfitting risk
- y data with missing values for identified counters, probably due to problems with the sensors on a certain period

### **EDA - EXTERNAL DATA**

- Large dataset
  - 59 columns
  - open dataset sourced from SYNOP

- Varying data quality across columns
  - Presence of empty and incomplete columns
  - Significant number of missing values across features

- Independent features
  - Minimal correlation between features
  - Substantial amount of data requiring preprocessing





### FEATURE ENGINEERING

- Training data
  - X["date"] column
    - New datetime features
    - Sine/cosine transformation<sup>1</sup>
  - "Plugged-in" external data
    - Public holidays and Covid dates added
- External data -> difficult to select the right features
  - Attention to the chronology of the 2 datasets
  - Attention to the missing values (most frequent modality filling)



```
Pineline

→ FeatureEngineering

→ columntransformer: ColumnTransformer ②

→ standard-scaler

→ StandardScaler ④

→ HistGradientBoostingRegressor ④
```

- Encoding -> no useful categorical features spotted
  - Only numerical features kept (no OneHot/OrdinalEncoder)
  - StandardScaler<sup>2</sup> applied



<sup>&</sup>lt;sup>1</sup><u>Three approaches to encoding time informations as features for ML models,</u> Nvidia developer blog

<sup>&</sup>lt;sup>2</sup>StandardScaler module from scikitlearn is used to normalize and scale the values from a column

### MODEL AND HYPERPARAMETERS SELECTION

Naive approach for feature selection



- Complete FeatureEngineering pipeline (previous slide)
- Default parameters
- 5-fold Cross-Validation
- RMSE comparison



- HistGradientBoostingRegressor
- difficult to select the right ranges to explore



| Model    | RMSE |
|----------|------|
| Ridge    | 0.90 |
| RF       | 0.98 |
| CatBoost | 0.71 |
| HGB      | 0.72 |



### **RESULTS**

- Hyperparameter finetuned
  - on learning\_rate, max\_iter, max\_depth and min\_samples\_leaf

BEST PREDICTION - 0.61 RMSE

( 13th position on the Kaggle on the private Leaderboard 1)



- GitHub structuration
  - FINAL\_model\_HGB\_Kaggle.py using the FINAL\_FeatureEngineering.py file

# Thank You!

**Adrien SENGHOR - Victor SOTO** 

# **Appendix**

### **OUR GITHUB**

https://github.com/victorsotofr/bike counters adrien SENGHOR victor SOTO.git



### **FEATURE ENGINEERING (1/2)**

#### **DIFFICULTIES**

- Select the right features
- Spot the useful correlations
- Not over-engineer our model (stack features and hope for the best incorporation within the model)

### IDEAS (1/2) 💡

- Add more time to explore the external data
- Do **L1-regularization**, ie Lasso regression, before applying the final model
  - It enables a preselection of the most useful features

## **FEATURE ENGINEERING (2/2)**

### IDEAS (2/2) 💡

- Datetime feature
  - Radial basis encoding not fully understood, difficult application and integration in the pipeline



<sup>&</sup>lt;sup>1</sup>Three approaches to encoding time informations as features for ML models, Nvidia developer blog

### **MODEL SELECTION**

#### **DIFFICULTIES**

- Have a first idea of what could be the best model right away
- Training without spending too much time
- Finetune the final model's hyperparameters with the right ones and right ranges for them

### IDEAS 💡

AutoML<sup>1</sup>