WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C12N 15/12, 5/10, 1/21, C07K 14/47, 16/18, C12N 1/21, C07K 14/47, 16/18, C12Q 1/68, G01N 33/50, 33/53, 33/68, A61K 38/17

(11) International Publication Number:

WO 98/39448

(43) International Publication Date: 11 September 1998 (11.09.98)

(21) International Application Number:

PCT/US98/04493

A₂

(22) International Filing Date:

6 March 1998 (06.03.98)

(30) Priority Data:

norny D aus:		
60/040,162	7 March 1997 (07.03.97)	US
60/040,333	7 March 1997 (07.03.97)	US
60/038,621	7 March 1997 (07.03.97)	US
60/040,161	7 March 1997 (07.03.97)	US
60/040,626	7 March 1997 (07.03.97)	US
60/040,334	7 March 1997 (07.03.97)	US
60/040,336	7 March 1997 (07.03.97)	US
60/040,163	7 March 1997 (07.03.97)	US
60/043,580	11 April 1997 (11.04.97)	US
60/043,568	11 April 1997 (11.04.97)	US

(Continued on the following page)

(71) Applicant (for all designated States except US): HUMAN GENOME SCIENCES, INC. [US/US]; 9410 Key West Avenue, Rockville, MD 20850 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): RUBEN, Steven, M. [US/US]; 18528 Heritage Hills Drive, Olney, MD 20832 (US). ROSEN, Craig, A. [US/US]; 22400 Rolling Hills Road, Laytonsville, MD 20882 (US). FISCHER, Carrie, L. [US/US]; 5810 Hall Street, Burke, VA 22015 (US). SOP-PET, Daniel, R. [US/US]; 15050 Stillfield, Place, Centreville, VA 22020 (US). CARTER, Kenneth, C. [US/US]; 11601 Brandy Hall Lane, North Potomac, MD 20878 (US). BEDNARIK, Daniel, P. [US/US]; 8822 Blue Sea Drive, Columbia, MD 21046 (US). ENDRESS, Gregory, A. [US/US]; 9729 Clagett Farm Drive, Potomac, MD 20854 (US). YU, Guo-Liang [CN/US]; 13524 Straw Bale Lane, Darnestown, MD 20878 (US). NI, Jian [CN/US]; 5502 Manorfield Road, Rockville, MD 20853 (US). FENG, Ping [CN/US]; 4 Relda Court, Gaithersburg, MD 20878 (US). YOUNG, Paul, E. [US/US]; 122 Beckwith Street, Gaithersburg, MD 20878 (US). GREENE, John, M. [US/US]; 872 Diamond Drive, Gaithersburg, MD 20878 (US). FERRIE, Ann, M. [US/US]; 13203 L Astoria Hill Court, Germantown, MD 20874 (US). DUAN, Roxanne [US/US]; 4541 Fairfield Drive, Bethesda, MD 20814 (US). HU, Jing-Shan [CN/US]; 1247 Lakeside Drive #3034, Sunnyvale, CA 94086 (US). FLORENCE, Kimberly, A. [US/US]; 12805 Atlantic Avenue, Rockville, MD 20851 (US). OLSEN, Henrik, S. [DK/US]; 182 Kendrick Place #24, Gaithersburg, MD 20878 (US). EBNER, Reinhard [DE/US]; 9906 Shelbume Terrace #316, Gaithersburg, MD 20878 (US). BREWER, Laurie, A. [US/US]; 14920 Mount Nebo Road, Poolesville, MD 20837 (US). MOORE, Paul, A. [GB/US]; Apartment #104, 1908 Holly Ridge Drive, McLean, VA 22102 (US). SHI, Yanggu [CN/US]; 437 West Side Drive, Gaithersburg, MD 20878 (US). LAFLEUR, David, W. [US/US]; 1615 Q Street, N.W. #807, Washington, DC 20009 (US). LI, Yi [CN/US]; 1247 Lakeside Drive #3034, Sunnyvale, CA 94086 (US), ZENG. Zhizhen [CN/US]; 13950 Saddleview Drive, Gaithersburg, MD 20878 (US). KYAW, Hla [BU/US]; 520 Sugarbush Circle, Frederick, MD 21703 (US).

- (74) Agents: BROOKES, Anders, A. et al.; Human Genome Sciences, Inc., 9410 Key West Avenue, Rockville, MD 10850 (US).
- (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

With an indications in relation to deposited biological material furnished under Rule 13bis separately from the description.

BEST AVAILABLE COPY

(54) Title: 186 HUMAN SECRETED PROTEINS

(57) Abstract

The present invention relates to 186 novel human secreted proteins and isolated nucleic acids containing the coding regions of the genes encoding such proteins. Also provided are vectors, host cells, antibodies, and recombinant methods for producing human secreted proteins. The invention further relates to diagnostic and therapeutic methods useful for diagnosing and treating disorders related to these novel human secreted proteins.

	60/043,314	11 april 1997 (11.04.97)	US	60/047,596	23 May 1997 (23.05.97)	US	60/056,637	22 August 1997 (22.08.97)	US
	60/043,569	11 april 1997 (11.04.97)	US	60/047,612	23 May 1997 (23.05.97)	US	60/056,903	22 August 1997 (22.08.97)	US
	60/043,311	11 april 1997 (11.04.97)	US	60/047,632	23 May 1997 (23.05.97)	US	60/056,888	22 August 1997 (22.08.97)	US
	60/043,671	11 april 1997 (11.04.97)	US	60/047,601	23 May 1997 (23.05.97)	US	60/056,879	22 August 1997 (22.08.97)	US
	60/043,674	11 april 1997 (11.04.97)	US	60/047,595	23 May 1997 (23.05.97)	US	60/056,880	22 August 1997 (22.08.97)	US
	60/043,669	11 april 1997 (11.04.97)	US	60/047,599	23 May 1997 (23.05.97)	US	60/056,894	22 August 1997 (22.08.97)	US
	60/043,312	11 april 1997 (11.04.97)	US	60/047,588	23 May 1997 (23.05.97)	US	60/056,911	22 August 1997 (22.08.97)	US
	60/043,313	11 april 1997 (11.04.97)	US	60/047,585	23 May 1997 (23.05.97)	US	60/056,636	22 August 1997 (22.08.97)	US
	60/043,672	11 april 1997 (11.04.97)	US	60/047,586	23 May 1997 (23.05.97)	US	60/056,874	22 August 1997 (22.08.97)	US
	60/043,578	11 april 1997 (11.04.97)	US	60/047,590	23 May 1997 (23.05.97)	US	60/056,910	22 August 1997 (22.08.97)	US
	60/043,576	11 april 1997 (11.04.97)	US	60/047,594	23 May 1997 (23.05.97)	US	60/056,864	22 August 1997 (22.08.97)	US
	60/043,670	11 april 1997 (11.04.97)	US	60/047,589	23 May 1997 (23.05.97)	US	60/056,631	22 August 1997 (22.08.97)	US
	60/047,600	23 May 1997 (23.05.97)	US	60/047,593	23 May 1997 (23.05.97)	US	60/056,845	22 August 1997 (22.08.97)	US
	60/047,615	23 May 1997 (23.05.97)	US	60/047,614	23 May 1997 (23.05.97)	US	60/056,892	22 August 1997 (22.08.97)	US
	60/047,597	23 May 1997 (23.05.97)	US	60/047,501	23 May 1997 (23.05.97)	US	60/056,632	22 August 1997 (22.08.97)	US
	60/047,502	23 May 1997 (23.05.97)	US	60/048,974	06 June 1997 (06.06.97)	US	60/056,664	22 August 1997 (22.08.97)	US
	60/047,633	23 May 1997 (23.05.97)	US	60/048,964	06 June 1997 (06.06.97)	US	60/056,876	22 August 1997 (22.08.97)	US
	60/047,583	23 May 1997 (23.05.97)	US	60/049,610	13 June 1997 (13.06.97)	US	60/056,881	22 August 1997 (22.08.97)	US
	60/047,617	23 May 1997 (23.05.97)	US	60/051,926	08 July 1997 (08.07.97)	US	60/056,909	22 August 1997 (22.08.97)	US
	60/047,618	23 May 1997 (23.05.97)	US	60/052,874	16 July 1997 (16.07.97)	US	60/056,875	22 August 1997 (22.08.97)	US
	60/047,503	23 May 1997 (23.05.97)	US	60/055,724	18 August 1997 (18.08.97)	US	60/056,862	22 August 1997 (22.08.97)	US
	60/047,592	23 May 1997 (23.05.97)	US	60/056,886	22 August 1997 (22.08.97)	US	60/056,887	22 August 1997 (22.08.97)	US
	60/047,581	23 May 1997 (23.05.97)	US	60/056,877	22 August 1997 (22.08.97)	US	60/056,908	22 August 1997 (22.08.97)	US
	60/047,584	23 May 1997 (23.05.97)	US	60/056,889	22 August 1997 (22.08.97)	US	60/056,884	22 August 1997 (22.08.97)	US
	60/047,500	23 May 1997 (23.05.97)	US	60/056,893	22 August 1997 (22.08.97)	US	60/057,761	05 September 1997 (05 09.97	7).US
	60/047,587	23 May 1997 (23.05.97)	US	60/056,630	22 August 1997 (22.08.97)	US	60/057,650	05 September 1997 (05 09.93	7).US
	60/047,492	23 May 1997 (23.05.97)	US	60/056,878	22 August 1997 (22.08.97)	US	60/057,669	05 September 1997 (05 09.93	7).US
٠	60/047,598	23 May 1997 (23.05.97)	US	60/056,662	22 August 1997 (22.08.97)	US	60/058,785	12 September 1997 (12.09.93	7) US
	60/047,613	23 May 1997 (23.05.97)	US	60/056,872	22 August 1997 (22.08.97)	US	60/061,060	02 October 1997 (02.10.97)	US
	60/047,582	23 May 1997 (23.05.97)	US	60/056,882	22 August 1997 (22.08.97)	US			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	Fl	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugostav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	1L	Israe!	MR	Mauritania	UG	Uganda
BY	Belarus	18	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Мехісо	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KР	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

WO 98/39448 PCT/US98/04493

186 Human Secreted Proteins

Field of the Invention

This invention relates to newly identified polynucleotides and the polypeptides encoded by these polynucleotides, uses of such polynucleotides and polypeptides, and their production.

5

10

15

20

25

30

35

Background of the Invention

Unlike bacterium, which exist as a single compartment surrounded by a membrane, human cells and other eucaryotes are subdivided by membranes into many functionally distinct compartments. Each membrane-bounded compartment, or organelle, contains different proteins essential for the function of the organelle. The cell uses "sorting signals," which are amino acid motifs located within the protein, to target proteins to particular cellular organelles.

One type of sorting signal, called a signal sequence, a signal peptide, or a leader sequence, directs a class of proteins to an organelle called the endoplasmic reticulum (ER). The ER separates the membrane-bounded proteins from all other types of proteins. Once localized to the ER, both groups of proteins can be further directed to another organelle called the Golgi apparatus. Here, the Golgi distributes the proteins to vesicles, including secretory vesicles, the cell membrane, lysosomes, and the other organelles.

Proteins targeted to the ER by a signal sequence can be released into the extracellular space as a secreted protein. For example, vesicles containing secreted proteins can fuse with the cell membrane and release their contents into the extracellular space - a process called exocytosis. Exocytosis can occur constitutively or after receipt of a triggering signal. In the latter case, the proteins are stored in secretory vesicles (or secretory granules) until exocytosis is triggered. Similarly, proteins residing on the cell membrane can also be secreted into the extracellular space by proteolytic cleavage of a "linker" holding the protein to the membrane.

Despite the great progress made in recent years, only a small number of genes encoding human secreted proteins have been identified. These secreted proteins include the commercially valuable human insulin, interferon, Factor VIII, human growth hormone, tissue plasminogen activator, and erythropoeitin. Thus, in light of the pervasive role of secreted proteins in human physiology, a need exists for identifying and characterizing novel human secreted proteins and the genes that encode them. This knowledge will allow one to detect, to treat, and to prevent medical disorders by using secreted proteins or the genes that encode them.

10

15

20

25

30

35

Summary of the Invention

The present invention relates to novel polynucleotides and the encoded polypeptides. Moreover, the present invention relates to vectors, host cells, antibodies, and recombinant methods for producing the polypeptides and polynucleotides. Also provided are diagnostic methods for detecting disorders related to the polypeptides, and therapeutic methods for treating such disorders. The invention further relates to screening methods for identifying binding partners of the polypeptides.

Detailed Description

Definitions

The following definitions are provided to facilitate understanding of certain terms used throughout this specification.

In the present invention, "isolated" refers to material removed from its original environment (e.g., the natural environment if it is naturally occurring), and thus is altered "by the hand of man" from its natural state. For example, an isolated polynucleotide could be part of a vector or a composition of matter, or could be contained within a cell, and still be "isolated" because that vector, composition of matter, or particular cell is not the original environment of the polynucleotide.

In the present invention, a "secreted" protein refers to those proteins capable of being directed to the ER, secretory vesicles, or the extracellular space as a result of a signal sequence, as well as those proteins released into the extracellular space without necessarily containing a signal sequence. If the secreted protein is released into the extracellular space, the secreted protein can undergo extracellular processing to produce a "mature" protein. Release into the extracellular space can occur by many mechanisms, including exocytosis and proteolytic cleavage.

As used herein, a "polynucleotide" refers to a molecule having a nucleic acid sequence contained in SEQ ID NO:X or the cDNA contained within the clone deposited with the ATCC. For example, the polynucleotide can contain the nucleotide sequence of the full length cDNA sequence, including the 5' and 3' untranslated sequences, the coding region, with or without the signal sequence, the secreted protein coding region, as well as fragments, epitopes, domains, and variants of the nucleic acid sequence. Moreover, as used herein, a "polypeptide" refers to a molecule having the translated amino acid sequence generated from the polynucleotide as broadly defined.

In the present invention, the full length sequence identified as SEQ ID NO:X was often generated by overlapping sequences contained in multiple clones (contig

analysis). A representative clone containing all or most of the sequence for SEQ ID NO:X was deposited with the American Type Culture Collection ("ATCC"). As shown in Table 1, each clone is identified by a cDNA Clone ID (Identifier) and the ATCC Deposit Number. The ATCC is located at 12301 Park Lawn Drive, Rockville, Maryland 20852, USA. The ATCC deposit was made pursuant to the terms of the Budapest Treaty on the international recognition of the deposit of microorganisms for purposes of patent procedure.

5

10

15

20

25

30

35

A "polynucleotide" of the present invention also includes those polynucleotides capable of hybridizing, under stringent hybridization conditions, to sequences contained in SEQ ID NO:X, the complement thereof, or the cDNA contained within the clone deposited with the ATCC. "Stringent hybridization conditions" refers to an overnight incubation at 42° C in a solution comprising 50% formamide, 5x SSC (750 mM NaCl, 75 mM sodium citrate), 50 mM sodium phosphate (pH 7.6), 5x Denhardt's solution, 10% dextran sulfate, and 20 μg/ml denatured, sheared salmon sperm DNA, followed by washing the filters in 0.1x SSC at about 65°C.

Also contemplated are nucleic acid molecules that hybridize to the polynucleotides of the present invention at lower stringency hybridization conditions. Changes in the stringency of hybridization and signal detection are primarily accomplished through the manipulation of formamide concentration (lower percentages of formamide result in lowered stringency); salt conditions, or temperature. For example, lower stringency conditions include an overnight incubation at 37°C in a solution comprising 6X SSPE (20X SSPE = 3M NaCl; 0.2M NaH₂PO₄; 0.02M EDTA, pH 7.4), 0.5% SDS, 30% formamide, 100 ug/ml salmon sperm blocking DNA; followed by washes at 50°C with 1XSSPE, 0.1% SDS. In addition, to achieve even lower stringency, washes performed following stringent hybridization can be done at higher salt concentrations (e.g. 5X SSC).

Note that variations in the above conditions may be accomplished through the inclusion and/or substitution of alternate blocking reagents used to suppress background in hybridization experiments. Typical blocking reagents include Denhardt's reagent, BLOTTO, heparin, denatured salmon sperm DNA, and commercially available proprietary formulations. The inclusion of specific blocking reagents may require modification of the hybridization conditions described above, due to problems with compatibility.

Of course, a polynucleotide which hybridizes only to polyA+ sequences (such as any 3' terminal polyA+ tract of a cDNA shown in the sequence listing), or to a

WO 98/39448 PCT/US98/04493

complementary stretch of T (or U) residues, would not be included in the definition of "polynucleotide," since such a polynucleotide would hybridize to any nucleic acid molecule containing a poly (A) stretch or the complement thereof (e.g., practically any double-stranded cDNA clone).

5

10

15

20

25

30

35

4

The polynucleotide of the present invention can be composed of any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA. For example, polynucleotides can be composed of single-and double-stranded DNA, DNA that is a mixture of single- and double-stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or a mixture of single- and double-stranded regions. In addition, the polynucleotide can be composed of triple-stranded regions comprising RNA or DNA or both RNA and DNA. A polynucleotide may also contain one or more modified bases or DNA or RNA backbones modified for stability or for other reasons. "Modified" bases include, for example, tritylated bases and unusual bases such as inosine. A variety of modifications can be made to DNA and RNA; thus, "polynucleotide" embraces chemically, enzymatically, or metabolically modified forms.

The polypeptide of the present invention can be composed of amino acids joined to each other by peptide bonds or modified peptide bonds, i.e., peptide isosteres, and may contain amino acids other than the 20 gene-encoded amino acids. The polypeptides may be modified by either natural processes, such as posttranslational processing, or by chemical modification techniques which are well known in the art. Such modifications are well described in basic texts and in more detailed monographs, as well as in a voluminous research literature. Modifications can occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini. It will be appreciated that the same type of modification may be present in the same or varying degrees at several sites in a given polypeptide. Also, a given polypeptide may contain many types of modifications. Polypeptides may be branched, for example, as a result of ubiquitination, and they may be cyclic, with or without branching. Cyclic, branched, and branched cyclic polypeptides may result from posttranslation natural processes or may be made by synthetic methods. Modifications include acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cysteine,

10

15

20

30

35

formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, pegylation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination. (See, for instance, PROTEINS - STRUCTURE AND MOLECULAR PROPERTIES, 2nd Ed., T. E. Creighton, W. H. Freeman and Company, New York (1993); POSTTRANSLATIONAL COVALENT MODIFICATION OF PROTEINS, B. C. Johnson, Ed., Academic Press, New York, pgs. 1-12 (1983); Seifter et al., Meth Enzymol 182:626-646 (1990); Rattan et al., Ann NY Acad Sci 663:48-62 (1992).)

"SEQ ID NO:X" refers to a polynucleotide sequence while "SEQ ID NO:Y" refers to a polypeptide sequence, both sequences identified by an integer specified in Table 1.

"A polypeptide having biological activity" refers to polypeptides exhibiting activity similar, but not necessarily identical to, an activity of a polypeptide of the present invention, including mature forms, as measured in a particular biological assay, with or without dose dependency. In the case where dose dependency does exist, it need not be identical to that of the polypeptide, but rather substantially similar to the dose-dependence in a given activity as compared to the polypeptide of the present invention (i.e., the candidate polypeptide will exhibit greater activity or not more than about 25-fold less and, preferably, not more than about tenfold less activity, and most preferably, not more than about three-fold less activity relative to the polypeptide of the present invention.)

25 Polynucleotides and Polypeptides of the Invention

FEATURES OF PROTEIN ENCODED BY GENE NO: 1

This gene is expressed primarily in testes tumor and to a lesser extent in fetal brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer particularly of the testes, and defects of the central nervous system such as seizure and neurodegenerative disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly cancer of the testes and central nervous system,

expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., testes and other reproductive tissue, brain and other tissue of the nervous system, and blood cells, and spleen, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/diagnosis of testicular cancer and treatment of central nervous system disorders since this gene is primarily expressed in the testes tumor and developing brain.

FEATURES OF PROTEIN ENCODED BY GENE NO: 2

5

10

15

20

25

30

35

This gene is expressed primarily in cancer tissues, such as breast cancer and Wilm's tumor, and to a lesser extent in fetal tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, and/or tumors, particularly, those found in the breast, and developmental abnormalities or disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the glandular tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., mammary tissue, and fetal tissue and, cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 314 as residues: Pro-11 to Thr-18, Leu-43 to Pro-50, Gly-64 to Leu-72, and Leu-81 to Lys-86.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/diagnosis of cancers and/or tumors, particularly, those found in the breast since expression is mainly in cancer/tumor tissues. May serve as therapeutic proteins for proliferation/differentiation of fetal tissues.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 3

This gene is expressed primarily in CD34 depleted buffy coat and to a lesser extent in spleen, chronic lymphocytic leukemia.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: blood disorders or leukemias, diseases of the immune system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and spleen, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/diagnosis of blood disorders or leukemias, diseases of the immune system since expression is in tissues related to immune function.

FEATURES OF PROTEIN ENCODED BY GENE NO: 4

This gene is expressed primarily in CD34 depleted buffy coat.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: blood disorders or lymphocytic diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

10

15

20

30

35

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/diagnosis of blood disorders since expression is in tissues related to immune function.

FEATURES OF PROTEIN ENCODED BY GENE NO: 5

This gene is expressed primarily in CD34 depleted buffy coat.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: blood or immune diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 317 as residues: Pro-13 to Lys-21.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/diagnosis of blood disorders since expression is in tissues related to immune function.

25 FEATURES OF PROTEIN ENCODED BY GENE NO: 6

This gene is expressed primarily in CD34 depleted buffy coat.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: blood or immune diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level

10

15

20

25

30

35

PCT/US98/04493

in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 318 as residues: Lys-31 to Lys-39.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/diagnosis of blood diseases since it is expressed in tissues related to immune function.

FEATURES OF PROTEIN ENCODED BY GENE NO: 7

This gene is expressed primarily in CD34 depleted buffy coat and to a lesser extent in pineal gland.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: diseases of the immune system and brain associated diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and pineal gland, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/diagnosis of blood disorders, immune diseases or brain associated diseases (specifically of the pineal gland) since expression is in tissues related to immune function.

FEATURES OF PROTEIN ENCODED BY GENE NO: 8

The translation product of this gene shares sequence homology with an organic cation transporter which is thought to be important in organic cation uptake in the kidney and liver. (See Accession No. 2343059.) Preferred polypeptide fragments comprise the amino acid sequence ITIAIQMICLVNXELYPTFVRNXGVMVCSSLCDIGGIITP FIVFRLREVWQALPLILFAVLGLLAAGVTLLLPETKGVALPETMKDAENLGRKAKPKENTIYLK VQTSEPSGT (SEQ ID NO: 615) or TMKDAENLGRKAKPKENT (SEQ ID NO: 616) as well as N-terminal and C-terminal deletions of these fragments. Also preferred are polynucleotide fragments encoding these polypeptide fragments.

10

15

20

25

30

35

This gene is expressed primarily in liver.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: hepatic and renal diseases where drug elimination/cation exchange (organic cation uptake) in the liver and kidney are problematic. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hepatic or renal system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., kidney and liver, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 320 as residues: Asn-64 to Asn-74, and Gln-81 to Gly-87.

10

The tissue distribution and homology to organic cation transporter indicate that polynucleotides and polypeptides corresponding to this gene are useful as a polyspecific transporter that is important for drug elimination in the liver (and possibly kidney) since expression is found in the liver.

FEATURES OF PROTEIN ENCODED BY GENE NO: 9

This gene is expressed primarily in eosinophil induced with IL-5 and to a lesser extent in fetal liver and spleen. This gene also maps to chromosome 15, and therefore can be used in linkage analysis as a marker for chromosome 15.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: diseases of the immune system, particularly allergies or asthma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, liver, and spleen, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the

standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating/diagnosis of diseases involving esosinphil reactions since expression seems to be concentrated in eosinophils and other tissues involved in immunity such as the liver and spleen.

FEATURES OF PROTEIN ENCODED BY GENE NO: 10

5

10

15

20

25

35

This gene is expressed primarily in tissues of hematopoietic lineage and to a lesser extent in Hodgkins lymphoma. Any frame shifts in this sequence can easily be clarified using known molecular biology techniques.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, and immune deficiency or dysfunction. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., hematopoietic cells, lymphoid and reticuloendothelial tissues, and cancerous tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/ diagnosis for lymphomas or immune dysfuction or as a therapeutic protein useful in immune modulation based on expression in anergic T-cells and lymphomas.

30 FEATURES OF PROTEIN ENCODED BY GENE NO: 11

This gene is expressed primarily in neutrophils and to a lesser extent in activated lymphoid cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the cell type present in a biological sample and for diagnosis of diseases and conditions: inflamation. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders

10

15

20

25

30

35

12

of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells and lymphoid tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 323 as residues: Glu-40 to Lys-46.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for modulation of an immune reaction or as a growth factor for the differentiation or proliferation of neutrophils for the treatment of neutropenia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 12

This gene is expressed primarily in brain and to a lesser extent in activated T-cells. It is likely that the open reading frame containing the predicted signal peptide continues in the 5' direction. Preferred polypeptide fragments comprise the amino acid sequence PRVRNSPEDLGLSLTGDSCKL (SEQ ID NO:617).

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neurodegenerative disorders including ischemic shock, alzheimers and cognitive disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and brain, and other tissue of the nervous system and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 324 as residues: Ser-5 to Glu-14, Ile-21 to Pro-35, Ser-65 to Asp-81, Cys-89 to Val-96, Lys-136 to Ser-145, Ile-152 to Met-169, and Arg-189 to Lys-196.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnostic/treatment for cancers of the given tissue or in the treatment of neurological disorders of the CNS.

WO 98/39448 PCT/US98/04493

13

FEATURES OF PROTEIN ENCODED BY GENE NO: 13

This gene was also recently cloned by other groups, naming this calcium-activated potassium channel gene, hKCa4. (See Accession No. AF033021, see also, Accession No. 2584866.) This gene is mapped to human chromosome 19q13.2. A second signal sequence likely exists upstream from the predicted signal sequence as described in Table 1. Preferred polypeptide fragments comprise: QADDLQATVAALCVLRGGGPWAG SWLSPKTPGAMGGDLVLGLGALRRRKRLL (SEQ NO: 618); or EQEKSLAGWALVLAXXGIGL MVLHAEMLWFGGCSAVNATGHLSDTLWLIPITFLTIGYGDVVPGTMWGKIVCLCTGVMGVCC TALLVAVVARKLEFNKAEKHVHNFMMDIQYTKEMKESAARVLQEAWMFYKHTRRKESHAAR XHQRXLLAAINAFRQVRLKHRKLREQVNSMVDISKMHMILYDLQQNLSSSHRALEKQIDTLAG KLDALTELLSTALGPRQLPEPSQQSK (SEQ ID NO: 619), as well as N-terminal and C-terminal deletions. Also preferred are polynulcleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in breast lymph node and T-cells, and to a lesser extent in placenta.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: hematologic and immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., lymphoid tissue, blood cells and placenta, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 325 as residues: Arg-13 to Lys-23.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment/diagnosis of hematologic and diseases involving immune modulation based or distribution in the lymph node and T-cells.

15

20

25

30

10

15

20

25

FEATURES OF PROTEIN ENCODED BY GENE NO: 14

This gene was recently cloned by another group, calling it PAPS synethase. (See Accession No. e1204135.) Preferred polypeptide fragments comprise the amino acid sequence YQAHHVSRNKRGQVVGTRGGFRGCTVWLTGLSGAGK (SEQ ID NO: 620). Also preferred are the polynucleotide fragments encoding this polypeptide fragment.

It has been discovered that this gene is expressed primarily in benign prostate hyperplasia, Human Umbilical Vein Endothelial Cells and to a lesser extent in smooth muscle and Human endometrial stromal cells-treated with estradiol.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: inflamation, ischemia, and restenosis, based on endothelial cell and smooth muscle cell expression, and prostate diseases such as benign prostate hyperplasia or prostate cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the prostate or vessels of the circulatory system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., prostate, endothelial cells, smooth muscle, and endometrium, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEO ID NO. 326 as residues: Arg-21 to Asp-26, Lys-35 to Lys-44, Glu-49 to Asn-58.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating/diagnosing diseases or conditions where the endothelial cell lining of the veins and arteries of underlying smooth muscle are involved.

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 15

This gene is expressed primarily in human 6 week embryo and to a lesser extent in placenta.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: developmental anomalies or fetal deficiencies. Similarly, polypeptides and antibodies directed to these

WO 98/39448 PCT/US98/04493

polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly developmental in nature, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., embryonic tissue, and placenta, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 327 as residues Lys-50 to Glu-57.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection of developmental abnormalities.

FEATURES OF PROTEIN ENCODED BY GENE NO: 16

10

15

20

25

30

This gene is expressed primarily in kidney and amygdala and to a lesser extent in fetal tissues. This gene is mapped to chromosome 14, and therefore is useful in linkage analysis as a marker for chromosome 14.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) present in a biological sample and for diagnosis of diseases and conditions: kidney diseases, neurological disorders and developmental abnormalities. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s). For a number of disorders of the above tissues, particularly of the renal system or developing fetal tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., kidney, amygdala, and fetal tissues, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment or diagnosis of conditions affecting the brain, kidneys and fetal development.

35 FEATURES OF PROTEIN ENCODED BY GENE NO: 17

This gene is expressed primarily in ovarian cancer.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: solid tumors similar to ovarian cancer Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive system. expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., ovarian and other reproductive tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 329 as residues Ser-51 to Val-56.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment of solid tumors of the reproductive system such as ovarian cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO: 18

5

10

15

20

25

30

This gene is expressed primarily in brain medulloblastoma. Preferred polypeptide fragments comprise the amino acid sequence: IRHEQHPNFSLEMHSKGSSLLLFLPQL ILILPVCAHLHEELNC (SEQ ID NO: 643) and SFFISEEKGHLLLQAERHPWVAGALVGVSG GLTLTTCSGPTEKPATKNYFLKRLLQEMHIRAN (SEQ ID NO: 644), as well as N-terminal and C-terminal deletions. Also preferred are polynucleotide fragments encoding these polypeptide fragments.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: tumors particularly of the CNS or Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the Central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene

expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating medulloblastoma or similar tumors.

5

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 19

This gene is expressed primarily in adipocytes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: obesity. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the adipose tissues expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., adipocytes and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating obesity by regulating the function and number of adipocytes

FEATURES OF PROTEIN ENCODED BY GENE NO: 20

This gene is expressed primarily in B cell lymphoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, of the immune system with an emphasis on B cell lymphoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the tumors of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and lymphoid tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e.,

10

15

20

25

30

35

the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of B cell derived tumors based on its expression in b cell lymphomas

FEATURES OF PROTEIN ENCODED BY GENE NO: 21

This gene is expressed primarily in immune cells and to a lesser extent in fetal tissues

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: inflammatory diseases Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., cells of the immune system, and fetal tissues, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:333 as residues Asp-10 to Pro-19, Ser-74 to Tyr-79, Glu-95 to Lys-110.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment of diseases involving alterations in T cell activity.

FEATURES OF PROTEIN ENCODED BY GENE NO: 22

It has been discovered that this gene is expressed primarily in ovarian tumor.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: tumors particularly of the ovary. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of tumors of the reproductive organs. expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., ovarian

and other reproductive tissue and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 334 as residues: Leu-22 to Gln-27.

19

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of ovarian tumors as it has only been identified in ovarian tumors.

10

15

20

25

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 23

It has been discovered that this gene is expressed primarily in fetal tissues and to a lesser extent in osteoclastoma cell line

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: osteoporosis or arthritis Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the skeletal expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., bone cells, and fetal tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment of conditions of abnormal bone remodeling due to enhanced activity of osteoclasts. This may be useful as a specific marker for malignancies derived from osteoclasts or their precursors.

30

FEATURES OF PROTEIN ENCODED BY GENE NO: 24

The translation product of this gene shares sequence homology with a periplasmic ribonuclease which is thought to be important in degrading extracellular polynucleotides

35 It has been discovered that this gene is expressed primarily in serum treated smooth muscle cells

10

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: vascular disease such as restenosis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the vasculature expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., smooth muscle, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 336 as residues: Gln-30 to Lys-36, and Pro-41 to Arg-48.

The tissue distribution and homology to ribonucleases indicate that polynucleotides and polypeptides corresponding to this gene are useful for treatment of pathological conditions of smooth muscle associated with bacterial or viral infiltration

FEATURES OF PROTEIN ENCODED BY GENE NO: 25

This gene is expressed primarily in Early Stage Human Brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: human brain development and related diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the human brain development and related diseases, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to this gene indicate that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of diseases affecting human brain development and related diseases.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 26

It has been discovered that this gene is expressed primarily in human brain tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: human brain diseases and other diseases related to brain diseases, which may be caused by brain diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the human brain diseases, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to the gene indicate that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of human brain diseases and other diseases related.

FEATURES OF PROTEIN ENCODED BY GENE NO: 27

It has been discovered that this gene is expressed primarily in Anergic T-cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: immune diseases, inflammatory diseases and diseases related to T lymph cells. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune diseases, inflammatory diseases and diseases related to T lymph cells, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene

10

15

20

25

30

35

expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to the gene indicate that polynucleotides and polypeptides corresponding to this gene are useful for immune diseases, inflammatory diseases and diseases related to T lymph cells.

FEATURES OF PROTEIN ENCODED BY GENE NO: 28

The translation product of this gene shares sequence homology with *Shigella flexneri* positive transcriptional regulator CriR (criR) gene which is thought to be important in regulation of gene expression.

This gene is expressed primarily in human synovial sarcoma and normal human brain tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: human brain diseases particularly sarcomas of the synovium. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the human brain and synovium and other related human brain diseases, expression of this gene at significantly higher or lower levels may be routinely detected in certain (e.g., synovial tissue, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of human synovial sarcoma and other related human brain diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 29

This gene is expressed in bone marrow, infant brain, fetal liver and spleen, prostate and to a lesser extent in pineal gland, adipose tissue, kidney, adrenal gland, umbilical vein endothelial cells, and T cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: diseases related to bone marrow or

hematoplastic tissues, prostate, kidney, adrenal gland, and cardiovascular tissue or organs. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the diseases related to hematoplastic tissues, immune system, prostate, kidney, adrenal gland, and cardiovascular tissue or organs, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., bone marrow, hematopoietic cells, pineal gland, adipose tissue, kidney, adrenal gland, endothelial cells, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to the gene indicate that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of diseases related to hematoplastic tissues, immune system, prostate, kidney, adrenal gland, and cardiovascular tissue or organs.

FEATURES OF PROTEIN ENCODED BY GENE NO: 30

10

15

20

25

30

35

This gene is expressed primarily in meningea and to a lesser extent in breast and adult brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: Diseases of the meningea and related brain diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the meningea and related brain diseases, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., miningea, mammary tissue, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

15

20

25

30

35

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of diseases of the meningea and related brain diseases.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 31

This gene is expressed in meningea, fetal spleen, osteoblast and to a lesser extent in activated T-cells, endometrial stromal cells, fetal lung, HL-60, thymus, testis and endothelial cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: meningeal disease, osteoporosis, immune diseases, and hematoplastic diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the meningeal diseases, osteoporosis, immune diseases, and hematoplastic diseases, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, endometrium, lung, thymus, testis, and endothelial cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to gene indicate that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of meningeal, osteoporosis, immune diseases, hematoplastic diseases, testis diseases and lung diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 32

This gene is expressed primarily in human thymus and to a much lesser extent in infant brain, T-cells, smooth muscle, endothelial cells, bone marrow, human ovarian tumor and keratinocytes testes, osteoclastoma, breast, and tonsils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: Diseases involving the thymus, particularly thymic cancer and diseases involving T-cell maturation. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a

WO 98/39448 PCT/US98/04493

25

number of disorders of the above tissues or cells, particularly of the thymus, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., thymus, brain, and other tissue of the nervous system, blood cells, bone marrow, ovaries, and testes, and other reproductive tissue, mammary tissue, tonsils, melanocytes and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to gene indicate that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of diseases of the thymus particularly thymic cancer and diseases involving T-cell maturation.

FEATURES OF PROTEIN ENCODED BY GENE NO: 33

This gene is expressed primarily in human tonsils, and placenta, and to a lesser extent in adipocytes, melanocyte, and infant brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: inflammatory diseases, immune diseases, and obesity. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the inflammatory diseases, immune diseases, and obesity, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., tonsils, placenta, adipocytes, melanocytes, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to this gene indicate that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of diseases such as inflammation, immune diseases, and obesity.

5

10

15

20

25

30

10

15

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 34

This gene is expressed in activated T cells, and to a lesser extent in pituitary, testis, and breast lymph node.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: diseases relating to T cells. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the disorders of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., pituitary, testes and other reproductive tissue, mammary tissue, and lymphoid tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment of immune disorders.

20 FEATURES OF PROTEIN ENCODED BY GENE NO: 35

This gene is expressed primarily in infant brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neurological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the diseases relating to neurological disorders, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain, and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of neurological disorders.

10

15

FEATURES OF PROTEIN ENCODED BY GENE NO: 36

This gene is expressed primarily in infant brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neurological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the diseases relating to neurological disorders, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of neurological disorders.

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 37

This gene is expressed primarily in human ovary.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: ovarian cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the ovarian disorders such as those involving germ cells, ovarian follicles, stromal cells, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., ovary and other reproductive tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of ovariopathy.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 38

This gene is expressed primarily in lymph node breast cancer.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: breast cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the breast cancer, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., mammary tissue and lymphoid tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for used as a diagnostic marker for breast cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO: 39

This gene is expressed primarily in brain and to a lesser extent in other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neuronal disorders such as trauma, brain degeneration, and brain tumor. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and therapeutic treatment of neuronal disorders.

10

15

20

FEATURES OF PROTEIN ENCODED BY GENE NO: 40

This gene is expressed in early stage human embryo, adrenal gland tumor, and immune tissues such as fetal liver, fetal spleen, T-cell, and myoloid progenitor cell line and to a lesser extent in ovary, colon cancer, and a few orther tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: tumorigenesis including adrenal gland tumor, colon cancer and various other tumors, developmental and immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the cancer tissues, early stage human tissues, and immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, spleen, blood cells, bone marrow, ovary and other reproductive tissue, and colon, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and therapeutic treatment of immune and developmental disorders, and tumorigenesis.

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 41

This gene is expressed primarily in fetal lung, endothelial cells, liver, thymus and a few other immune tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: immune disorders such as immune deficiency and autoimmune diseases, pulmonary diseases, liver diseases, and tumor matasis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the fetal lung, liver, endothelial cells, and immune tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain

10

15

20

25

30

tissues and cell types (e.g., lung, endothelial cells, liver, thymus, and other tissue of the immune system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis of immune disorders and pulmonary and hepatic diseases. Its promoter may also be used for immune system and lung-specific gene therapies. The expression of this gene in endothelial cells indicates that it may also involve in angiogenesis which therefore may play role in tumor matasis.

FEATURES OF PROTEIN ENCODED BY GENE NO: 42

This gene is expressed primarily in liver, thyroid, parathyroid and to a lesser extent in fetal lung, stomach and early embryos.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: metabolic regulation, obesity, heptic failure, heptacellular tumors or thyroiditis and thyroid tumors. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the digestive/endocrine system expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, thyroid, parathyroid, lung, stomach, and embryonic tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and the extracellular locations indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection and treatment of digestive/endocrine disorders, including metabolic regulation, heptic failure, malabsortion, gastritis and neoplasms.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 43

This gene is expressed primarily in Schizophrenic adult brain, pituitary, front cortex, hypothalmus and to a lesser extent in retina, adipose and stomach cancer and placenta.

31

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: schizophrenia and other neurological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nerve system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., retinal tissue, adipose, stomach, and placenta, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful in treatment/detection of disorders in the nerve system, including schizophrenia, neurodegeneration, and neoplasia. Additionally, a secreted protein in brain may serve as an endocrine.

FEATURES OF PROTEIN ENCODED BY GENE NO: 44

The translation product of this gene shares sequence homology with GTP binding proteins which are thought to be important in signal transduction and protein transport.

This gene is expressed primarily in umbilical vein and microvascular endothelial cells, GM-CSF treated macrophage, anergic T cells, osteoblast, osteoclast, CD34+ cells and to a lesser extent in gall bladder.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: bone formation and growth, osteonecrosis, osteoporosis, angiogenesis and/or hematopoeisis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the skeletal and hematopoeisis systems, expression of this gene at significantly higher or lower levels

10

15

20

25

30

may be routinely detected in certain tissues and cell types (e.g., endothelial cells, blood cells, bone, and gall bladder, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to GTP binding proteins indicate that polynucleotides and polypeptides corresponding to this gene are useful for treatment/detection of bone formation and growth, osteonecrosis, osteoporosis, and/or hematopoeisis because its involvement in the growth signaling or angiogenesis.

FEATURES OF PROTEIN ENCODED BY GENE NO: 45

The translation product of this gene shares sequence homology with signal sequence receptor gamma subunit which is thought to be important in protein translocation on endoplasmic reticulum.

This gene is expressed primarily in adrenal gland, salivary gland, prostate, and to a lesser extent in endothelial cells and smooth muscle.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: protein secretion. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the secretory organs, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., adrenal gland, salivary gland, prostate, endothelial cells, and smooth muscle, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to SSR gamma subunit indicate that polynucleotides and polypeptides corresponding to this gene are useful for endocrine disorders, prostate cancer, xerostomia or sialorrhea.

35 FEATURES OF PROTEIN ENCODED BY GENE NO: 46

This gene is expressed primarily in osteoclastoma cells and to a lesser extent in melanocyte, amygdala, brain, and stomach.

10

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as

PCT/US98/04493

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: ossification, osteoporosis, fracture, osteonecrosis, osteosarcoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the skeletal systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., melanocytes, amygdala, brain and other tissue of the nervous system, and stomach, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful in intervention of ossification, osteoporosis, fracture, osteonecrosis and osteosarcoma.

FEATURES OF PROTEIN ENCODED BY GENE NO: 48

The translation product of this gene shares sequence homology with proline rich proteins which is thought to be important in protein-protein interaction.

This gene is expressed primarily in brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neurological and psychological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nerve system and endocrine system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to proline-rich proteins indicate that polynucleotides and polypeptides corresponding to this gene are useful in intervention

15

20

25

30

35

and detection of neurological diseases, including trauma, neoplasia, degenerative or metabolic conditions in the central nerve system. Additionally, the gene product may be a secreted by the brain as an endocrine.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 49

The translation product of this gene shares sequence homology with the AOCB gene from Aspergillus nidulans which is important in asexual development.

This gene is expressed primarily in infant brain and to a lesser extent in the developing embryo, trachea tumors, B-cell lymphoma and synovial sarcoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neurodegenerative diseases, leukemia and sarcoma's. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain and immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., embryonic tissue, blood cells, trachea, and synovial tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in infant brain and sarcoma's and homology to a gene involved in a key step of eukaryotive development (fungal spore formation) indicates that the protein product of this clone could play a role in neurological diseases such as schizophrenia, particularly in infants. The existence of the gene in a B-cell lymphoma indicates the gene may be used in the treatment and detection of leukemia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 50

This gene is expressed primarily in fetal lung.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: pulmonary disorders including lung cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the pulmonary system, expression of this gene at significantly higher or

10

15

20

25

30

lower levels may be routinely detected in certain tissues and cell types (e.g., lung, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution of this gene only in fetal lung indicates that it plays a key role in development of the pulmonary system. This would suggest that misregulation of the expression of this protein product in the adult could lead to lymphoma or sarcoma formation, particularly in the lung. It may also be involved in predisposition to certain pulmonary defects such as pulmonary edema and embolism, bronchitis and cystic fibrosis.

FEATURES OF PROTEIN ENCODED BY GENE NO: 51

This gene is expressed primarily in hematopoietic cell types and fetal cells and to a lesser extent in all tissue types.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: defects in the immune system and hematopoeisis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and hematopoietic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., hematopoietic cells, and fetal tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution of this gene predominantly in hematopoeitic cells and in the developing embryo indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection and treatment of lymphomas and disease states affecting the immune system or hematopoeisis disorders such as leukemia, AIDS, arthritis and asthma...

35 FEATURES OF PROTEIN ENCODED BY GENE NO: 52

This gene is expressed primarily in prostate and to a lesser extent in fetal spleen, fetal liver, infant brain and T cell leukemias.

WO 98/39448 PCT/US98/04493

36

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: prostate disorders, prostate cancer, leukemia. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, and/or prostate gland expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., thymus, spleen, liver, brain and other tissue of the nervous system, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution of this gene in prostate indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection or treatment of prostate disorders or prostate cancer. Its distribution in fetal liver and fetal spleen indicates it may play a role in the immune system and its misregulation could lead to immune disorders such as leukemia, arthritis and asthma.

20

25

30

35

5

10

15

FEATURES OF PROTEIN ENCODED BY GENE NO: 53

The translation product of this gene shares sequence homology with dynein. This gene is expressed primarily in brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neuro-degenerative diseases of the brain. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly neuro-degenerative diseases expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

10

15

20

25

30

35

The predominant tissue distribution in the brain and homology to dynein, a microtubule motor protein involved in the positioning of cellular organelles and molecules indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection/treatment of neurodegenerative diseases, such as Alzheimers, Huntigtons, Parkinsons diseases and shizophrenia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 54

The translation product of this gene shares sequence homology with ubiquitinconjugation protein, an enzyme which is thought to be important in the processing of the Huntingtons Disease causing gene.

This gene is expressed primarily in brain and to a lesser extent in activated macrophages.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neurodegenerative disease states including Huntington's disease. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of brain tissues. For a number of disorders of the above tissues or cells, particularly of the neurological systems expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The predominant tissue distribution of this gene in the brain and its homology to a Huntington interacting protein indicates that polynucleotides and polypeptides corresponding to this gene are useful for the regulation of the expression of the Huntington disease gene and other neurodegenerative diseases including spinocerebullar ataxia types I and III, dentatorubropallidoluysian and spinal bulbar muscular atrophy. In addition, the existence of elevated levels of free ubiquitin pools in Alzheimer's disease, Parkinson's disease and amylotrophic lateral sclerosis indicates that the ubiquitin pathway of protein degradation plays a role in these disease states. Thus, considering the gene described here is homologous to a ubiquitin-conjugation protein it may play a general role in neurodegenarative conditions.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 56

This gene is expressed primarily in T-cells (anergic T-cells, resting T-Cells, apoptotic T-cells) and lymph node (breast), as well as brain (hypothalamus, hippocampus, pituitary, infant brain, early-stage brain).

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: immune (e.g. immunodeficiencies, autoimmunities, inflammation, leukemias & lymphomas) and neurological (e.g. Alzheimer's disease, dementia, schizophrenia) disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous, hematopoietic and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, lymphoid tissue, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful in the intervention or detection of pathologies associated with the hematopoietic and immune systems, such as anemias (leukemias). In addition, the expression in brain (including fetal) might suggest a role in developmental brain defects, neuro-degenerative diseases or behavioral abnomalities (e.g. schizophrenia, Alzheimer's, dementia, depression, etc.).

FEATURES OF PROTEIN ENCODED BY GENE NO: 57

This gene is expressed primarily in lung, and to a lesser extent in a variety of other hematological cell types (e.g. Raji cells, bone marrow cell line, activated monocytes).

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: pulmonary and/or hematological disfunction. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the vasculo-pulmonary and hematopoietic systems, expression of this

10

15

20

25

30

35

gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., lung and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful in the intervention and detection of pathologies associated with the vasculo-pulmonary system. In addition the expression of this gene in a variety of leukocytic cell types and a bone marrow cell line might suggest a role in hematopoietic and immune system disorders, such as leukemias & lymphomas, inflammation, immunodeficiencies and autoimmunities.

FEATURES OF PROTEIN ENCODED BY GENE NO: 58

The translation product of this gene shares sequence homology with adenylate kinase isozyme 3 (gil163528 GTP:AMP phosphotransferase (EC 2.7.4.10) [Bos taurus]), which is thought to be important in catalyzing the phosphorylation of AMP to ADP in the presence of ATP or inorganic triphosphate.

This gene is expressed primarily in fetal liver, heart and placenta, and to a lesser extent in many other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: hepatic, cardiovascular or reproductive disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hepatic, cardiovascular and reproductive systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, heart, and placenta, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of conditions related to hepatic function and pathogenesis, in particular, those dealing with liver development and the differentiation of hepatocyte progenitor cells.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 59

This gene is expressed primarily in CD34 positive cells (Cord Blood).

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: hematopoietic differentiation and immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of hematopoietic and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., hematopoietic cells, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful in the detection and treatment of conditions associated with CD34-positive cells, and therefore as a marker for cell differentiation in hematapoiesis, as well as immunological disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 60

The translation product of the predicted open reading frame of this contig has sequence identity to the murine gene designated Insulin-Like Growth Factor-Binding Protein (IGFBP)-1 as described by Lee and colleagues (Hepatology 19 (3), 656-665 (1994)).

This gene is expressed exclusively in hemangiopericytoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of hemangiopericytoma and other pericyte or endothelial cell proliferative disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the circulatory and immune systems, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues and cell types (e.g., pericyte or endothelial cells, and liver, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or

another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Polynucleotides and polypeptides corresponding to this gene are useful as cell growth regulators since IGFBP-1-like molecules function as modulators of insulin-like growth factor activity. In addition, since IGFBP-1 is expressed at high levels following hepatectomy and during fetal liver development, polynucleotides of the present invention may also be used for the diagnosis of developmental disorders. Further, polypeptides of the present invention may be used therapeutically to treat developmental liver disorders as well as to regulate hepatocyte and supporting cell growth following hepatectomy or to treat liver disorders.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of hemangiopericytoma and liver disorders.

15

20

25

30

10

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 61

This gene is expressed primarily in schizophrenic frontal cortex.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: nervous system and cognitive disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the frontal cortex and CNS expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for study, treatment and diagnosis of frontal cortex, neuro-degenerative and CNS disorders

35 FEATURES OF PROTEIN ENCODED BY GENE NO: 62

This gene is expressed primarily in human adrenal gland tumor, and to a lesser extent in human kidney, medulla and adult pulmonary tissue.

10

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: metabolic, endocrine disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the endocrine and nervous system disorders and neoplasia, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., adrenal gland, kidney, brain and other tissue of the nervous system, pulmonary tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for study, treatment and diagnosis of neurological and endocrine disorders including neoplasia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 63

This gene is expressed primarily in human adipocytes, and to a lesser extent in spleen, 12-week old human, and testes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: immune, metabolic and growth disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., adipocytes, spleen, and testes and other reproductive tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for study, diagnosis and treatment of immune, developmental and metabolic disorders.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 64

One translated product of this clone is homologous to the mouse zinc finger protein PZF. (See Accession No. 453376; see also Gene 152 (2), 233-238 (1995).) Preferred polypeptide fragments correspond to the highly conserved domains shared between mouse and man. For example, preferred polypeptide fragments comprise the amino acid sequence: LQCEICGFTCRQKASLNWHMKKHDADSFYQFSCNICGKKFEKKDSVVAHKAKSH PEV (SEQ ID NO: 621); ITSTDILGTNPESLTQPSD (SEQ ID NO: 622); NSTSGECLLLEAEGM SKSY (SEQ ID NO: 623); CSGTERVSLMADGKIFVGSGSSGGTEGLVMNSDILGATTEVLIEDSD SAGP (SEQ ID NO: 624); IQYVRCEMEGCGTVLAHPRYLQHHIKYQHLLKKKYVCPHPSCGRLF RLQKQLLRHAKHHT (SEQ ID NO: 625); DQRDYICEYCARAFKSSHNLAVHRMIHTGEK (SEQ ID NO: 626); RSSRTSVSRHRDTENTRSSRSKTGSLQLICKSEPNTDQLDY (SEQ ID NO: 627); PFKDDPRDETYKPHLERETPKPRRKSG (SEQ ID NO: 630); QYVRCEMEGCGTVLAHPRYLQ HHIKYQHLLKKKYVCPHPSCGRLFRLQKQLLRHAKHHTD (SEQ ID NO: 629); or residues 151-182 of QRDYICEYCARAFKSSHNLAVHRMIHTGEKHY (SEQ ID NO: 628). Also preferred are polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in Rhabdomyosarcoma, melanocyte and colon cancer tissue and to a lesser extent in smooth muscle, pancreatic tumor, and apoptotic T-cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to,. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and hemopoetic, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., striated muscle, melanocytes, colon, smooth muscle, pancreas, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for study, diagnosis and treatment of cancer and hemopoetic disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 65

This gene is expressed primarily in human adipose and salivary gland tissue and to a lesser extent in human bone marrow and fetal kidney.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: metabolic and immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the metabolic and hemopoetic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., adipose, salivary gland, bone marrow, and kidney, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for study, diagnosis of metabolic and immune disorders.

20

25

30

35

15

5

10

FEATURES OF PROTEIN ENCODED BY GENE NO: 66

This translated product of this gene was recently identified as oxytocinase splice variant 1. (See Accession Nos. 2209276 and d1010078.) Preferred polypeptide fragments comprise the amino acid sequence: EMFDSLSYFKGSSLLLMLKTYLSEDVFQHAVVLYLHN HSYASIQSDDLWDSFNEVTNQTLDVKRMMKTWTLQKGFPLVTVQKKGKELFIQQERFFLNMK PEIQPSDTRYM (SEQ ID NO: 631). Also preferred are polynucleotide fragments encoding this polypeptide fragment.

FEATURES OF PROTEIN ENCODED BY GENE NO: 67

This gene is expressed primarily in hemopoetic cells, particularly apoptotic T-cells, and to lesser extent in primary dendritic cells and adipose tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of apoptotic T-cells, primary denritic cells, and adipose tissue present in a biological sample and for diagnosis of diseases and conditions: hemopoetic diseases including cancer and general immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell

type(s). For a number of disorders of the above tissues or cells, particularly of the oral and intestinal mucosa as well as hemopoetic and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., hematopoietic cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment of diseases of the immune system, including cancer, hemopoetic and infectious diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 68

5

10

15

20

25

30

35

This gene is expressed primarily in kidney cortex and to a lesser extent in infant brain, heart, uterus, and blood.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of kidney tissue present in a biological sample and for diagnosis of diseases and conditions: soft tissue cancer, inflammation, kidney fibrosis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous and endocrines systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., kidney, brain, and other nervous tissue, heart, uterus, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for study and treatment of cancer and fibroses.

FEATURES OF PROTEIN ENCODED BY GENE NO: 69

The translation product of this gene shares strong sequence homology with vertebrate and invertebrate protein tyrosine phosphatases.

This gene is expressed primarily in endometrial tumors, melanocytes, myeloid progenitors and to a lesser extent in infant brain, adipocytes, and several hematopoietic stem cells.

10

15

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of transformed hematopoietic and epithelial cells present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, of skin and endometrium, leukemia. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous and hemopoietic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., endometrium, melanocytes, bone marrow, adipocytes, hematopoietic cells, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

PCT/US98/04493

The tissue distribution and sequence similarity with tyrosine phosphatases indicate that polynucleotides and polypeptides corresponding to this gene are useful for study and treatment of cancer and hematopoietic disorders.

20 FEATURES OF PROTEIN ENCODED BY GENE NO: 70

This gene is expressed primarily in osteoclastoma, breast, and infant brain and to a lesser extent in various fetal and transformed bone, ovarian, and neuronal cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: degenerative conditions of the brain and skeleton. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous and skeletal system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., bone, mammary tissue, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

15

20

25

30

35

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for study and treatment of degenerative, neurological and skeletal disorders.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 71

This gene was originally cloned from tumor cell lines. Recently another group has also cloned this gene, calling it the human malignant melanoma metastasis-suppressor (KiSS-1) gene. (See Accession No. U43527.) Preferred polypeptide fragments comprise the amino acid sequence: LEKVASVGNSRPTGQQLESLGLLA (SEQ ID NO: 632); VHREEASCYCQAEPSGDL (SEQ ID NO: 633); RPALRQAGGGTREPRQKRWAGL (SEQ ID NO: 634); and AVNFRPQRSQSM (SEQ ID NO: 635). Any frame shifts can easily be resolved using known molecular biology techniques.

This gene is expressed primarily in many types of carcinomas and to a lesser extent in many normal organs.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissues(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer particularly melanomas, and other hyperproliferative disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of transformed organ tissue, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. As a tumor suppressor gene, increase amounts of the polypeptide can be used to treat patients having a particular cancer.

The tissue distribution indicates that this gene and the translated product is useful for diagnosing and study of cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO: 72

This gene is expressed primarily in striatum and to a lesser extent in adipocytes and hemangioperiocytoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of striatal cells present in a biological sample and for diagnosis of diseases and conditions: neurological, fat and lysosomal storage

WO 98/39448 PCT/US98/04493

48

diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., striatal tissue, adipocytes, and vascular tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis, study and treatment of neurodegenerative and growth disorders.

15 FEATURES OF PROTEIN ENCODED BY GENE NO: 73

This gene is expressed primarily in bone marrow stromal cells and to a lesser extent in smooth muscle, testes, endothelium, and brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of bone marrow present in a biological sample and for diagnosis of diseases and conditions: connective tissue and hematopoietic diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the skeletal and hematopoietic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., bone marrow, stromal cells, smooth muscle, testes and other reproductive tissue, endothelium, brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for study, diagnosis, and treatment of connective tissue and blood diseases.

30

5

10

20

25

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 74

This gene is expressed primarily in brain, fetal liver and lung and to a lesser extent in retina, spinal chord, activated T-cells and endothelial cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of brain and regenerating liver present in a biological sample and for diagnosis of diseases and conditions: CNS and spinal chord injuries, immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous and immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, liver, pulmonary tissue, blood cells, and endothelial cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for study and treatment of hematopoietic and neurological conditions.

FEATURES OF PROTEIN ENCODED BY GENE NO: 75

The translation product of this gene shares sequence homology with GTP binding proteins (intracellular).

This gene is expressed primarily in bone marrow, brain, and melanocytes and to a lesser extent in various endocrine and hematopoietic tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: hematopietic and nervous system conditions. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous and immune, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., bone marrow, melanocytes, brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder,

10

15

20

25

30

35

relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to nucleotide binding factors indicate that polynucleotides and polypeptides corresponding to this gene are useful for study, diagnosis, and treatment of brain degenerative, skin and blood diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 76

This gene is expressed primarily in activated T-cells and to a lesser extent in retina, brain, and fetal bone.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of activated T-cells and developing brain present in a biological sample and for diagnosis of diseases and conditions: immune deficiencies and skeletal and neuronal growth disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous, immune, and skeletomuscular sustems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, brain and other tissue of the nervous system, retinal tissue, and bone, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis, study and treatment of cancer, urogenital, and brain degenerative diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 77

This gene is expressed primarily in fetal liver, activated monocytes, osteoblasts and to a lesser extent in synovial, brain, and lymphoid tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of myeloid and lymphoid present in a biological sample and for diagnosis of diseases and conditions: inflammation, immune deficiencies, cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system and skeleton, expression of this gene at significantly

10

15

20

25

30

51

higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, blood cells, bone, synovial tissue, brain and other tissue of the nervous system, and lymphoid tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for study, diagnosis, and treatment of lymphoid and mesenchymal cancers and nervous system diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 78

The translation product of this gene shares sequence homology with polymerase polyprotein precursor which is thought to be important in DNA repair and replication

This gene is expressed primarily in infant brain and to a lesser extent in tumors and tumor cell lines

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, especially of the neural system and developing organs. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the neural system expression of this gene at significantly higher or lower levels may be routinely detected in certain (e.g., brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to polymerase polyprotein precursor indicate that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of cancers especially of the neural system and developing organs

35 FEATURES OF PROTEIN ENCODED BY GENE NO: 79

This gene is expressed primarily in muscle and endothelial cells and to a lesser extent in brain.

10

15

20

25

30

35

52

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: vascular diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the vascular system, expression of this gene at significantly higher or lower levels may be routinely detected in certain (e.g., muscle, endothelial cells, brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of disorders of the vascular and neural system including cardiovascular and endothelial.

FEATURES OF PROTEIN ENCODED BY GENE NO: 80

This gene is expressed primarily in placenta and to a lesser extent in fetal liver. Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: developmental disorders and disorder of the haemopoietic system, fetal liver and placenta. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of developmental disorders and disorder of the haemopoietic system, fetal liver and placenta, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., placenta and liver, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of developmental disorders and disorders of the haemopoietic system, fetal liver and placenta.

10

15

20

25

30

35

WO 98/39448 PCT/US98/04493

53

FEATURES OF PROTEIN ENCODED BY GENE NO: 81

This gene is expressed primarily in bone marrow, placenta and tissues and organs of the hematopoietic system.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: disorders of the bone and haemopoietic system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune, bone and hematopoietic system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., bone marrow, placenta, and hematopoietic cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of disorders of the immune, bone and hematopoietic system

FEATURES OF PROTEIN ENCODED BY GENE NO: 82

The translation product of this gene shares sequence homology with secretory carrier membrane protein which is thought to be important in protein transport and export. Any frame shifts in coding sequence can be easily resolved using standard molecular biology techniques. Another group recently cloned this gene, calling it SCAMP. (See Accession No. 2232243.)

This gene is expressed primarily in prostate, breast and spleen, and to a lesser extent in several other tissues and organs.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: disorders of the breast prostate and spleen. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly disorders of the breast prostate and spleen, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell

15

20

25

30

35

types (e.g., prostate, mammary tissue, and spleen, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to secretory carrier membrane protein indicate that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of disorders of the breast, prostate and spleen.

10 FEATURES OF PROTEIN ENCODED BY GENE NO: 83

This gene is expressed primarily in developing organs and tissue like placenta and infant brain and to a lesser extent in developed organs and tissue like cerebellum and heart.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neurological diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the neural system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., placenta, heart, brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of diseases of the neural system including neurological disorders and cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO: 84

The translation product of this gene shares sequence homology with ATPase 6 in Trypanosoma brucei which is thought to be important in metabolism.

This gene is expressed primarily in tumor and fetal tissues and to a lesser extent in melanocytes, kidney cortex, monocytes and ovary.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a

WO 98/39448 PCT/US98/04493

55

biological sample and for diagnosis of diseases and conditions: metabolism disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the fetal systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., fetal tissues, melanocytes, kidney, blood cells, ovary and other tissue of the reproductive system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to ATPase indicate that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of metabolism disorders, especially in fetal and tumor tissue growth.

15

20

25

30

35

10

FEATURES OF PROTEIN ENCODED BY GENE NO: 85

The translation product of this gene shares sequence homology with the immunoglobulin superfamily of proteins which are known to be important in immune response and immunity.

This gene is expressed primarily in stromal cells, colon cancer, lung, amygdala, melanocyte and to a lesser extent in a variety of other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: defects of stromal cell development and cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the stromal cells, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., stromal cells, colon, lung, amygdala, and melanocytes, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to immunoglobulin indicate that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of immune system disorders.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 86

The translation product of this gene shares sequence homology with transcription iniation factor eIF-4 gamma which is thought to be important in gene transcription.

This gene is expressed primarily in tumor tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: tumorigenesis.

Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly in tumor tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., endometrium and lung, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to transcription iniation factor eIF-4 gamma indicate that polynucleotides and polypeptides corresponding to this gene are useful for gene regulation in tumorigenesis.

FEATURES OF PROTEIN ENCODED BY GENE NO: 87

The translation product of this gene shares sequence homology at low level in prolines with secreted basic proline-rich peptide II-2 which is thought to be important in protein structure or inhibiting hydroxyapatite formation in vitro.

This gene is expressed primarily in endometrial tumor and fetal lung.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: endometrial tumors. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the muscular/skeletal and reproductive systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., endometrium, and lung, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample

10

15

20

25

30

35

WO 98/39448 PCT/US98/04493

57

taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to secreted basic proline-rich peptide II-2 indicate that polynucleotides and polypeptides corresponding to this gene are useful for inhibiting hydroxyapatite formation or establishing cell/tissue structure.

FEATURES OF PROTEIN ENCODED BY GENE NO: 88

This gene is expressed primarily in: amniotic cells inducted with TNF in culture; and to a lesser extent in colon tissue from a patient with Crohn's Disease; parathyroid tumor; activated T-cells; cells of the human Caco-2 cell line; adenocarcinoma; colon; corpus colosum; fetal kidney; pancreas tumor; fetal brain; early stage brain, and anergic T-cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: tumors. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system; e.g., tumors, expression of this gene at significantly higher or lower levels may be routinely detected in certain (e.g., amniotic cells, colon, kidney, pancreas, parathyroid, brain and other tissue of the nervous system, blood cells, hematopoietic cells, liver, spleen, bone, testes and other reproductive tissue, brain and other tissue of the nervous system, and epithelial cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product of this clone is useful for modulating tumorigenesis and other immune system conditions such as disorders in immune response.

FEATURES OF PROTEIN ENCODED BY GENE NO: 89

This gene is expressed primarily in fetal liver/spleen and hematopoietic cells and to a lesser extent in brain, osteosarcoma, and testis tumor.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a

15

20

25

30

35

PCT/US98/04493

biological sample and for diagnosis of diseases and conditions: leukemia and hematopoietic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hematopoietic and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., hematopoietic cells, liver, spleen, bone, testes, and other reproductive tissue, brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of hematopoietic and immune disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 90

The translation product of this gene shares weak sequence homology with mouse Gcap1 protein which is developmentally regulated in brain.

This gene is expressed primarily in infant and adult brain and fetal liver/spleen and to a lesser extent in smooth muscle, T cells, and a variety of other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neurological or hematopoietic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous, hematopoietic, immune, and endocrine systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, blood cells, liver, spleen ,and smooth muscle, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

10

15

The tissue distribution and its homology to Gcap1 protein indicate that polynucleotides and polypeptides corresponding to this gene are useful for treatubg and diagnosis of disorders in neuronal, hematopoietic, immune, and endocrine systems.

FEATURES OF PROTEIN ENCODED BY GENE NO: 91

This gene is expressed primarily in brain and hematopoietic cells and to a lesser extent in tumor tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: disorder in nervous, hematopoietic, immune systems and tumorigenesis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the in nervous, hematopoietic, immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product of this clone is useful for diagnosis and treatment of disorders in the nervous, hematopoietic, and immune systems.

25

30

35

20

FEATURES OF PROTEIN ENCODED BY GENE NO: 92

The translation product of this gene shares sequence homology with neuroendocrine-specific protein A which is thought to be important in neurologic systems.

This gene is expressed primarily in brain tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neural disorders and degeneration disease. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central or peripheral nervous systems, expression of this gene at

significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., hematopoietic cells, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to neuroendocrine-specific protein A indicate that polynucleotides and polypeptides corresponding to this gene are useful for treatment or diagnosis of neural disorders and degeneration disease.

10

15

20

25

30

FEATURES OF PROTEIN ENCODED BY GENE NO: 93

The translation product of this gene shares sequence homology with collagenlike protein and prolin-rich protein which are thought to be important in connective tissue function and tissue structure.

This gene is expressed primarily in fetal liver/spleen and brain tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neuronal or hematopoietic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous and hematopoietic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, spleen, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to collagen-like protein and proline-rich proteins indicate that polynucleotides and polypeptides corresponding to this gene are useful for supporting brain and hematopoietic tissue function and diagnosis and treatment of disorders in these functions.

FEATURES OF PROTEIN ENCODED BY GENE NO: 94

35

This gene is expressed primarily in embryonic tissues and tumor tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a

biological sample and for diagnosis of diseases and conditions which include, but are not limited to,. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system (e.g., tumors), expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., embryonic tissue and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of cancer.

15 FEATURES OF PROTEIN ENCODED BY GENE NO: 95

5

10

20

25

30

35

This gene is expressed primarily in brain tumor, placenta, and melanoma. Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: brain tumor or melanoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain or melanocytes, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, placenta, and melanocytes, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the translation product of this gene is useful in the diagnosis and treatment of brain tumors and melanoma.

FEATURES OF PROTEIN ENCODED BY GENE NO: 96

The translation product of this gene shares sequence homology with a yeast membrane protein, SUR4, which encodes for APA1 that acts on a glucose-signaling pathway that controls the expression of several genes that are transcriptionally regulated by glucose.

10

15

This gene is expressed primarily in fetal liver, and to a lesser extent in placenta and breast tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: defects of fetal liver or defects of glucose-regulated ATPase activities in tissues. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the fetal immune/hematopoietic system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, placenta, and mammary tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to yeast SUR4 membrane protein indicate that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of defects of fetal liver or defects of glucose-regulated ATPase activities.

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 97

This gene is expressed primarily in fetal liver, brain, and amniotic fluid.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: defects of the fetal immune system and adult brain. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the fetal immune system and adult brain, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., amniotic fluid, serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product of this clone is useful for detecting defects of the fetal immune and hematopoietic systems since fetal liver is

15

20

25

30

35

the predominant organ responsible for hematopoiesis in the fetus. In addition, the gene product of this gene is thought to be useful for detecting certain neurological defects of the brain.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 98

The translation product of this gene shares sequence homology with an yolk protein precursor, Vitellogenin which is thought to be important in binding lipids such as phosvitin.

This gene is expressed primarily in amniotic cells and fetal liver.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: defects in amniotic cells, fetal liver development and the fetal immune system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the [insert system where a related disease state is likely, e.g., immune], expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., amniotic cells, and liver, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to vitellogenin indicate that the protein product of this clone is useful for treatment and diagnosis of defects in amniotic cells, fetal liver development and the fetal immune system.

FEATURES OF PROTEIN ENCODED BY GENE NO: 99

This gene is expressed primarily in placenta, endometrial tumor, osteosarcoma and stromal cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: tumor of the endometrium or bone, and osteosarcoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the obstetric system (e.g. placenta,

10

15

20

25

endometrium) and the bones, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., placenta, endometrium, bone, and stromal cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of tumors and abnormalities of the endometrium, and the bones because of its abundance in the aforementioned tissues.

FEATURES OF PROTEIN ENCODED BY GENE NO: 100

This gene is expressed primarily in hepatocellular tumor.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: hepatocellular tumor. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the liver, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product of this clone is useful for diagnosis and treatment of hepatocellular cancer because of its abundant expression in this tissue.

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 101

This gene is expressed primarily in Corpus Colosum, fetal lung and infant brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: defects of the Corpus Colosum or defects of the fetal lung. Similarly, polypeptides and antibodies directed to

10

20

25

30

these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the Corpus Colosum and brain in general, and fetal lung, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., lung, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product of this clone is useful for diagnosis and treatment of defects of the Corpus Colosum and brain in general, and defects of fetal lung.

15 FEATURES OF PROTEIN ENCODED BY GENE NO: 102

This gene is expressed primarily in T cells and stromal cells, and to a lesser extent in adrenal gland.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: defects of T cell immunity and stromal cell development. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, stromal cells, and adrenal gland, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product of this clone is useful for diagnosis and treatment of defects of T cell immunity and stromal cell development because of its abundant expression in these tissues.

35 FEATURES OF PROTEIN ENCODED BY GENE NO: 103

This gene is expressed primarily in infant brain and placenta.

10

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: defects of the brain and nervous system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous system, especially brain, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and placenta, cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product of this clone is useful for detecting defects of the brain, especially in young children.

FEATURES OF PROTEIN ENCODED BY GENE NO: 105

This gene is expressed primarily in human osteoclastoma and to a lesser extent in human pancreas tumor.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer particularly osteoclastoma and pancreatic tumor. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly in transformed tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., bone and pancreas, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product of this clone is useful for diagnosis and treatment of some types of tumors, particularly pancreatic cancer and osteoclastoma.

10

15

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 106

This gene is expressed primarily in fetal liver/spleen, and to a lesser extent in activated T-Cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, spleen, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis or treatment of immune disorders.

20 FEATURES OF PROTEIN ENCODED BY GENE NO: 107

This gene is expressed primarily in human embryo and to a lesser extent in spleen and chronic lymphocytic leukemia.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: leukemia. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune or hemopoietic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., embryonic tissue, spleen, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product of this clone is useful for the diagnosis and treatment of leukemia.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 108

This gene is expressed primarily in placenta, and to a lesser extent in early stage human brain and in lung.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: fetal developmental abnormalities. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly in fetal and amniotic tissue, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., placenta, brain and other tissue of the nervous system, and lung, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product of this is useful for production of growth factor(s) associated with fetal development. Preferred polypeptides comprise the full-length polypeptide shown in the sequence listing, truncated however, at the amino terminus and beginning with QTIE.

FEATURES OF PROTEIN ENCODED BY GENE NO: 109

This gene is expressed primarily in fetal spleen, and to a lesser extent in B-Cell lymphoma and T-Cell lymphoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: lymphoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., spleen and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

10

15

20

25

30

35

The tissue distribution indicates that the protein product of this clone is useful for the treatment and diagnosis of human lymphomas.

FEATURES OF PROTEIN ENCODED BY GENE NO: 110

The translation product of this gene shares sequence homology with sarcoma amplified sequence (SAS), a tetraspan receptor which is thought to be important in malignant fibrous histiocytoma and liposarcoma.

This gene is expressed primarily in human osteoclastoma, and to a lesser extent in pineal gland and infant brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: malignant fibrous histiocytoma and liposarcoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., bone, pineal gland, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to sarcoma amplified sequence (SAS) indicate that the protein product of this clone is useful for treatment of, osteosarcoma, malignant fibrous histiocytoma and liposarcoma and related cancers, particularly sarcomas.

FEATURES OF PROTEIN ENCODED BY GENE NO: 111

The translation product of this gene shares sequence homology with 6.8K proteolipid protein, mitochondrial - bovine.

This gene is expressed primarily in Wilm's tumor and to a lesser extent in cerebellum and placenta.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: Wilm's tumor. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell

10

15

20

25

30

35

70

type(s). For a number of disorders of the above tissues or cells, particularly of the immune or renal systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and placenta, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to 6.8K proteolipid protein indicate that the protein product of this clone is useful for diagnostic and therapeutics associated with tumors, particularly Wilm's tumor disease.

FEATURES OF PROTEIN ENCODED BY GENE NO: 112

This gene is expressed primarily in embryonic tissue and to a lesser extent in osteoblasts, endothelial cells, macrophages (GM-CSF treated), and bone marrow.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., embryonic tissue, bone, endothelial cells, blood cells and bone marrow, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment or diagnosis of immune disorders. Preferred polypeptides encoded by this gene comprise the following amino acid sequence: MITDVQLAIFANMLGVSLFLLVVLYHYVAVNNPKKQE (SEQ ID NO: 636).

FEATURES OF PROTEIN ENCODED BY GENE NO: 113

This gene is expressed primarily in hepatocellular tumor, and to a lesser extent in fetal liver/spleen.

10

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: tumors, particularly hepatocellular tumors. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hepatic system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, and spleen, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product of this clone is useful for diagnosis and treatment of tumors, particularly hepatocellular tumors.

FEATURES OF PROTEIN ENCODED BY GENE NO: 114

The translation product of this gene exhibits a very high degree of sequence identity with the human Pig8 gene which is thought to be important in p53 mediated apoptosis. The sequence of this gene has since been published by Polyak and colleagues (Nature 389, 300-306 (1997)). In addition, the predicted translation product of this contig exhibits very high sequence homology with a murine gene denoted as EI24 which is also thought to be important in p53 mediated apoptosis.

This gene is expressed primarily in infant brain and activated T-cells and to a lesser extent in bone marrow, fetal liver, and prostate.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, and tissue damage by radiation and anti-cancer drugs. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, blood cells, bone marrow, liver, and prostate, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder,

10

15

25

30

35

relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to human Pig8 and murine EI24 genes indicate that polynucleotides and polypeptides corresponding to this gene are useful for preventing apoptosis in patients being treated with anti-oncogenic drugs such as etoposide, hydroperoxycyclophosphamide, and X-irradiation, since this protein product is upregulated in cells undergoing such treatment where p53 was overexpressed. It may also be useful in the treatment of hematopoietic disorders and in boosting numbers of hematopoietic stem cells by interfering with the apoptosis of progenitor cells. The mature polypeptide is predicted to comprise the following amino acid sequence: EEMADSVKTFLQDLARGIKDSIWGICTISKLDARIQQKREEQRRRRASSVLAQRRAQSIERKQES **EPRIVSRIFQCCAWNGGVFWFSLLLFYRVFIPVLQSVTARIIGDPSLHGDVWSWLEFFLTSIFSA** LWVLPLFVLSKVVNAIWFQDIADLAFEVSGRKPHPFPSVSKIIADMLFNLLLQALFLIQGMFVSL FPIHLVGQLVSLLHMSLLYSLYCFEYRWFNKGIEMHQRLSNIERNWPYYFGFGLPLAFLTAMQ SSYIISGCLFSILFPLFIISANEAKTPGKAYLFOLRLFSLVVFLSNRLFHKTVYLOSALSSSTSAEK FPSPHPSPAKLKATAGH (SEQ ID NO: 637). Accordingly, polypeptides comprising the foregoing amino acid sequence are provided as are polynucleotides encoded such polypeptides.

20 FEATURES OF PROTEIN ENCODED BY GENE NO: 115

This gene is expressed primarily in stromal cells and to a lesser extent in multiple sclerosis.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: affecting the nervous system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., stromal cells and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of multiple sclerosis and other autoimmune diseases.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 116

This gene is expressed primarily in the gall bladder

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: gall stones or infection of the digestive system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the digestive system or renal system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., gall bladder and tissue of the digestive system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for possible prevention of digestive disorders where there may be a lack of digestive enzymes produced or in the detection and possible prevention of gall stones.

FEATURES OF PROTEIN ENCODED BY GENE NO: 117

The translation product of this gene shares sequence homology with dystrophin gene which is thought to be important in building and maintenance of muscles.

This gene is expressed primarily in placenta and to a lesser extent in fetal brain and fetal liver, and spleen.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: muscular dystropy, Duchenne and Becker's muscular dystropies. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the skeletal muscle system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., placenta, brain and other tissue of the nervous system, muscle, liver, and spleen, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from

15

20

25

35

an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to the dystrophin gene indicate that polynucleotides and polypeptides corresponding to this gene are useful for diseases related the degenerative myopathies that are characterized by the weakness and atrophy of muscles without neural degradation; such as Duchenne and Becker's muscular dystropies.

10 FEATURES OF PROTEIN ENCODED BY GENE NO: 118

This gene is expressed primarily in olfactory tissue and to a lesser extent in cartilage.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: connective tissue diseases; chondrosarcoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the connective tissue, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., olfactory tissue and cartilage, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for tumors of connective tissues, osteoarthritis and the treatment and diagnosis of chondrosarcoma.

30 FEATURES OF PROTEIN ENCODED BY GENE NO: 119

This gene is expressed primarily in Activated Neutrophils and to a lesser extent in fetal spleen, and CD34 positive cells from cord blood.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: allergies, defects in hematopoiesis and inflammation. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential

identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system and hematopoiesis system the, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and spleen, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for reducing the allergic effects felt by allergy suffers by neutralizing the activity of the immune system, especially since neutrophils are abundant in persons suffering from allergies and other inflammatory conditions.

FEATURES OF PROTEIN ENCODED BY GENE NO: 120

5

10

15

20

25

30

35

The translation product of this gene shares sequence homology with poly A binding protein II which is thought to be important in RNA binding for transcription of RNA to DNA

This gene is expressed primarily in colon and to a lesser extent in brain and immune system.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: colon cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and digestive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., colon, tissue and cells of the immune system, and brain or other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to poly A binding protein II indicate that polynucleotides and polypeptides corresponding to this gene are useful for detection and treatment of colon cancer and other disorders of the digestive system..

10

15

20

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 121

The translation product of this gene shares sequence homology with thymidine diphosphoglucose 4.6 dehydrase which is thought to be important in the metabolism of sugar.

This gene is expressed primarily in fetal liver and spleen and to a lesser extent in infant brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: diabetes. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the endocrine system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, spleen, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to thymidine diphospoglucose 4.6 dehydrase indicate that polynucleotides and polypeptides corresponding to this gene are useful for treatment of persons with diabetes since it appears that this protein is needed in the metabolism of sugar in to its more basic components.

25 FEATURES OF PROTEIN ENCODED BY GENE NO: 122

The translation product of this gene shares sequence homology with ceruloplasmin which is thought to be important in the metabolism and transport of iron and copper. Ceruloplasmin also contains domains with homology to clotting factors V and VIII. Defects in the circulating levels of ceruloplasmin (aceruloplasminemia) have been associated with certain disease conditions such as Wilson disease, and the accompanying hepatolenticular degeneration.

This gene is expressed primarily in brain and retina and to a lesser extent in endothelial cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: diseases marked by defects in iron metabolism; aceruloplasminemia not characterized by defects in the

10

15

20

25

30

35

known ceruloplasmin gene locus; nonclassical Wilson disease; movement disorders; and tumors derived from a brain tissue origin. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain, retina, and nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, retinal tissue, and endothelial cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to ceruloplasmin indicate that polynucleotides and polypeptides corresponding to this gene are useful for treatment of patients with aceruloplasminemia, or other defects in iron and/or copper metabolism. Mutations in this locus could also be diagnostic for patients currently experiencing or predicted to experience aceruloplasminemia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 123

This gene is expressed primarily in brain and B cell lymphoma and to a lesser extent in fetal liver and spleen.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: B cell lymphoma; tumors and diseases of the brain and/or spleen; hematopoietic defects. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain and hematopoietic system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, blood cells, liver, and spleen, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment of disorders in neuronal,

hematopoietic, and immune systems. It could potentially be useful for neurodegenerative disorders and neuronal and/or hematopoietic cell survival or proliferation.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 124

This gene is expressed primarily in osteoclastoma, dermatofibrosarcoma, and B cell lymphoma and to a lesser extent in endothelial cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer in particular osteoclastoma, dermatofibrosarcoma, and B cell lymphoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the bone, immune, and circulatory system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., bone, epidermis, blood cells, and endothelial cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of cancers and lymphoma; osteoporosis; and the control of cell proliferation and/or differentiation.

25

20

10

15

FEATURES OF PROTEIN ENCODED BY GENE NO: 125

This gene is expressed primarily in immune tissues and hematopoietic cells, particularly in activated T cells and neutrophils, spleen, and fetal liver, and to a lesser extent in infant adrenal gland.

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: defects in T cell activation; hematopoietic disorders; tumors of a hematopoietic and/or adrenal gland origin. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hematopoietic and/or endocrine systems, expression of this gene at significantly higher

10

15

20

25

30

or lower levels may be routinely detected in certain tissues and cell types (e.g., cells and tissues of the immune system, hematopoietic cells, blood cells, liver, and adrenal gland, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for immune and/or hematopoietic disorders; diseases related to proliferation and/or differentiation of hematopoietic cells; defects in T cell and neutrophil activation and responsiveness; and endocrine and/or metabolic disorders, particularly of early childhood.

FEATURES OF PROTEIN ENCODED BY GENE NO: 126

This gene is expressed primarily in placenta and endothelial cells and to a lesser extent in melanocytes and embryonic tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: tumors of an endothelial cell origin; angiogenesis associated with tumor development and metastasis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the vascular system and developing embryo, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., placenta, endothelial cells, melanocytes, and embryonic tissues, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment of developmental disorders; inhibition of angiogenesis; and vascular patterning.

35 FEATURES OF PROTEIN ENCODED BY GENE NO: 127

This gene is expressed primarily in endothelial cells and hematopoietic tissues, including spleen, tonsils, leukocytes, and both B- and T-cell lymphomas.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: tumors of an endothelial cell and/or hematopoietic origin; leukemias and lymphomas. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and vascular systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., endothelial cells, hematopoietic cells, spleen, tonsils, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the manipulation of angiogenesis; the differentiation and morphogenesis of endothelial cells; the proliferation and/or differentiation of hematopoietic cells; and the commitment of hematopoietic cells to distinct cell lineages.

20

25

30

35

5

10

15

FEATURES OF PROTEIN ENCODED BY GENE NO: 128

This gene is expressed primarily in kidney medulla and to a lesser extent in spleen from chronic myelogenous leukemia patients, prostate cancer, and some other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: tumors of a kidney origin; chromic myelogenous leukemia; prostate cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the kidney and spleen, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., kidney, spleen, and prostate, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

10

15

20

25

30

35

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of kidney disorders and cancer, particularly chromic myelogenous leukemia and prostate cancer. It may also be useful for the enhancement of kidney tubule regeneration in the treatment of acute renal failure.

81

FEATURES OF PROTEIN ENCODED BY GENE NO: 129

This gene is expressed primarily in adult and infant brain and to a lesser extent in mesenchymal or fibroblast cells, as well as tissues with a mesenchymal origin.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: tumors of a brain and/or mesenchymal origin; neurodegenerative disorders; cancer; fibrosis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain and of mesenchymal cells and tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis of tumors of a brain and/or mesenchymal origin; neurodegenerative disorders; cancer; and fibrosis, based upon the expression of this gene within those tissues. Fibrosis is considered as mesenchymal cells and fibroblasts are the primary cellular targets involved in this pathological condition.

FEATURES OF PROTEIN ENCODED BY GENE NO: 130

This gene is expressed primarily in hepatocellular cancer and to a lesser extent in fetal tissues as well as testes tumor.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: liver cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing

10

15

20

25

30

35

immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the digestive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, fetal tissue, and testes and other reproductive tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of liver cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO: 131

This gene is expressed only in infant early brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: development and diseases of the nervous system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain and nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating diseases of the brain in children and in treating nervous system disorders such as Alzheimer's disease, schizophrenia, dementia, depression, etc.

FEATURES OF PROTEIN ENCODED BY GENE NO: 132

This gene is expressed primarily in brain and to a lesser extent in glioblastoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: Alzheimer's disease,

10

20

25

30

35

schizophrenia, depression, mania, and dementia. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain and nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating brain disorders such as Alzheimer's disease, schizophrenia, depression, mania, and dementia.

15 FEATURES OF PROTEIN ENCODED BY GENE NO: 133

The translation product of this gene shares sequence homology with ribitol dehydrogenase of bacteria which is thought to be important in metabolism of sugars.

This gene is expressed primarily in macrophage and to a lesser extent in T-cell lymphoma and lung.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: tissue destruction in inflammation. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells and lung, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to ribitol dehydrogenase indicate that polynucleotides and polypeptides corresponding to this gene are useful for altering macrophage metabolism in diseases such as inflammation where macrophages are causing excess tissue destruction.

10

15

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 134

This gene is expressed primarily in pancreatic tumor and to a lesser extent in synovial sarcoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to,. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the endocrine and connective tissue systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., pancreas, and synovial tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating and diagnosing various cancers.

20 FEATURES OF PROTEIN ENCODED BY GENE NO: 135

This gene is expressed primarily in T cell lines such as Raji and to a lesser extent in infant brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: immune system disorders and inflammation. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating and diagnosing inflammatory diseases

10

15

20

25

30

35

such as rheumatoid arthritis, sepsis, inflammatory bowel disease, and psoriasis, as well as neutropenia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 136

The translation product of this gene shares high sequence homology with SAR1 subfamily of GTP-binding proteins which is thought to be important in vesicular transport in mammalian cells.

This gene is expressed primarily in serum-stimulated smooth muscle cells and to a lesser extent in a T-cell lymphoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: diseases affecting vesicular transport. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the muscular system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and smooth muscle, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to GTP-binding proteins indicate that polynucleotides and polypeptides corresponding to this gene are useful for gene therapy in treating the large number of diseases involved in defective vesicular transport within cells...

FEATURES OF PROTEIN ENCODED BY GENE NO: 137

The translation product of this gene shares sequence homology with a protein found in *C. elegans* cosmid F25B5.

This gene is expressed primarily in a fetal tissues and to a lesser extent in melanocytes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: abnormal fetal development, especially of the pulmonary system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes

10

15

20

25

30

35

for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the fetal pulmonary system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., fetal tissue, pulmonary tissue, and melanocytes, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of diseases affecting the pulmonary system, such as emphysema.

FEATURES OF PROTEIN ENCODED BY GENE NO: 138

This gene is expressed primarily in gall bladder and to a lesser extent in smooth muscle.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: digestive system disease and gall bladder problems. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the digestive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., gall bladder and tissue of the digestive system, and smooth muscle, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating diseases of the digestive system.

FEATURES OF PROTEIN ENCODED BY GENE NO: 139

This gene is expressed primarily in placenta and to a lesser extent in brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: abnormal fetal development. Similarly, polypeptides and antibodies directed to these polypeptides are

15

20

25

30

35

useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of developing tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., placenta, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating and diagnosing abnormal fetal development.

FEATURES OF PROTEIN ENCODED BY GENE NO: 140

This gene is expressed primarily in smooth muscle and to a lesser extent in ovary, prostate cancer, and activated monocytes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: hypertension and atherosclerosis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the circulatory system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., smooth muscle, ovary and other reproductive tissue, prostate, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating diseases of the circulatory system, such as hypertension, atherosclerosis, etc.

FEATURES OF PROTEIN ENCODED BY GENE NO: 141

This gene is expressed primarily in fetal spleen and to a lesser extent in placenta and bone marrow.

10

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: anemia and other diseases affecting blood cells. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the circulatory and pulmonary systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., spleen, placenta, bone marrow, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue

PCT/US98/04493

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the generation of red and white blood cells and for the diagnosis of disease of these cells.

FEATURES OF PROTEIN ENCODED BY GENE NO: 142

or bodily fluid from an individual not having the disorder.

The predicted translation product of this contig is a human homolog of the murine tetracycline/sugar transporter molecule recently reported by Matsuo and colleagues (Biochem. Biophys. Res. Commun. 238 (1), 126-129 (1997)).

This gene is expressed primarily in synovium and to a lesser extent in endothelial cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: rheumatoid arthritis and inflammation. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and lymphatic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., synovial tissue, and endothelial cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of inflammatory diseases, such as rheumatoid arthritis, leukemia, neutropenia, inflammatory bowel disease, psoriasis, sepsis, and the like.

5

10

15

20

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 143

This gene is expressed primarily in placenta and to a lesser extent in melanocyte, fetal liver and spleen, and bone marrow.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: abnormal early development. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, lower levels may be routinely detected in certain tissues and cell types (e.g., placenta, melanocytes, liver, spleen, and bone marrow, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of abnormal early development phenomena and diseases.

25 FEATURES OF PROTEIN ENCODED BY GENE NO: 144

This gene is expressed primarily in fetal liver and spleen.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: anemia and neutropenia. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and blood systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver and spleen, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the

10

15

20

25

30

35

expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful in hematopoeisis and bone marrow regeneration as it is most abundant in fetal tissues responsible for the generation of hematopoeitic cells.

FEATURES OF PROTEIN ENCODED BY GENE NO: 145

The translation product of this gene shares sequence homology with protein tyrosine phosphatase which is thought to be important in transducing signal to activate cells such as T cell, B cell and other cell types.

This gene is expressed primarily in T cells and tissues in early stages of development and to a lesser extent in cancers.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: immuno-related diseases and cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., embryonic and fetal tissue, undifferentiated cells, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to the protein tyrosine phosphatase family indicate that polynucleotides and polypeptides corresponding to this gene are useful for modulating the immune system.

FEATURES OF PROTEIN ENCODED BY GENE NO: 146

This gene is expressed primarily in T cell and to a lesser extent in B cell, macrophages and tumor tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: immuno-disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in

10

15

20

25

30

35

providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for regulating the immune system therefore can be used in treating diseases such as autoimmune diseases and cancers.

FEATURES OF PROTEIN ENCODED BY GENE NO: 147

This gene is expressed primarily in placenta and to a lesser extent in endothelial cells, testis tumor, ovarian cancer, uterine cancer.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., placenta, endothelial cells, testis and ovary and other reproductive tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of cancers.

FEATURES OF PROTEIN ENCODED BY GENE NO: 148

This sequence has significant homology to mouse torsin A. Recently, another group cloned the human Torsin A gene. (See, Accession No. 2358279; see also Nature Genet. 17, 40-48 (1997).)

This gene is expressed primarily in osteoclastoma, T-cell, and placenta and to a lesser extent in fetal lung, fetal liver, fetal brain, adult brain and tumor tissues

10

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: disease conditions in hematopoiesis and cancers. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hematopoiesis system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, bone, placenta, lung, liver, and brain and other tissues of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating blood related diseases such as deficiencies in red blood cell, white blood cell, platelet and other hematopoiesis cells.

FEATURES OF PROTEIN ENCODED BY GENE NO: 149

This gene is expressed primarily in T cell, prostate and prostate cancer, endothelial cells and to a lesser extent in monocyte, dendritic cell, bone marrow, salivary gland, colon cancer, stomach cancer, pancreatic tumor, uterine cancer, fetal spleen and osteoclastoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: immuno-related diseases and cancers. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, prostate, endothelial cells, dendritic cells, bone marrow, salivary gland, colon, stomach, pancreas, uterus, spleen and bone, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

WO 98/39448 PCT/US98/04493

93

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment of cancers.

FEATURES OF PROTEIN ENCODED BY GENE NO: 150

This gene was recently cloned by another group, calling it eIF3-p66. (See Accession No. 2351378.) This gene plays a role in RNA binding and macromolecular assembly, and therefore, any mutations in this gene would likely result in a diseased phenotype. Preferred polypeptide fragments comprise the amino acid sequence:

MAKFMTPVIQDNPSGWGPCAVPEQFRDMPYQPFSKGDRLGKVADWTGATYQDKRYTNKYSS QFGGGSQYAYFHEEDESSFQLVDTARTQKTAYQRNRMRFAQRNLRRDKDRRNMLQFNLQILP KSAKQKERERIRLQKKFQKQFGVRQKWDQKSQKPRDSSVEVRSDWEVKEEMDFPQLMKMRY LEVSEPQDIECCGALEYYDKAFDRITTRSEKPLRXXKRIFHTVTTTDDPVIRKLAKTQGNVFATD AILATLMSCTRSVYSWDIVVQRVGSKLFFDKRDNSDFDLLTVSETANEPPQDEGNSFNSPRNL AMEATYINHNFSQQCLRMGKERYNFPNPNPFVEDDMDKNEIASVAYRYRSGKLGDDIDLIVRC EHDGVMTGANGEVSFINIKTLNEWDSRHCNGVDWRQKLDSQRGAVIATELKNNSYKLARWTC CALLAGSEYLKLGYVSRYHVKDSSRHVILGTQQFKPNEFASQINLSVENAWGILRCVIDICMKL EEGKYLILKDPNKQVIRVYSLPDGTFSS (SEQ ID NO: 638), as well as N-terminal and C-terminal deletions of this polypeptide fragment.

This gene is expressed primarily in T cell, bone marrow, embryo and endothelial cells and to a lesser extent in testis tumor and endometrial tumor.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: immune diseases and tumors. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system and reproductive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for immune disorders and cancers.

5

10

15

20

25

30

10

15

FEATURES OF PROTEIN ENCODED BY GENE NO: 151

This gene is expressed primarily in testis and to a lesser extent in T cell, spinal cord, placenta, neutrophil and monocyte.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: male reproductive and endocrine disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive, immune and endocrine systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., testis and other reproductive tissue, blood cells, tissue of the nervous system, and placenta, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for regulating immune and reproductive functions.

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 152

The translation product of this gene shares sequence homology with tyrosyltRNA synthetase which is thought to be important in cell growth.

This gene is expressed primarily in brain, liver, keratinocytes, tonsils, and heart.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer autoimmune diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain, liver, keratinocytes, tonsils, heart expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissues of the nervous system, liver, keratinocytes, tonsils and heart, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard

10

15

20

25

30

35

gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to tyrosyl-tRNA synthetase indicate that polynucleotides and polypeptides corresponding to this gene are useful for modulating cell growth.

FEATURES OF PROTEIN ENCODED BY GENE NO: 153

This gene is homologous to the Drosophila transcriptional regulator dre4. (See Accession No. 2511745.) Dre4 is a gene required for steroidogenesis in Drosophila melanogaster and encodes a developmentally expressed homologue of the yeast transcriptional regulator CDC68. Preferred polypeptide fragments comprise the amino acid sequence: KKRHTDVQFYTEVGEITTDLGKHQHMHDRDDLYAEQMEREMRHKLKTAFKN FIEKVEALTKEELEFEVPFRDLGFNGAPYRSTCLLQPTSSALVNATEWPPFVVTLDEVELIHFXR VQFHLKNFDMVIVYKDYSKKVTMINAIPVASLDPIKEWLNSCDLKYTEGVQSLNWTKIMKTIVD DPEGFFEQGGWSFL (SEQ ID NO: 639), as well as N-terminal and C-terminal deletions of this fragments. Also preferred are polynucleotide fragments encoding this polypeptide fragment.

This gene is expressed primarily in fetal liver, spleen, placenta, lung, T cell, thyroid, testes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: brain tumor, heart and liver diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the fetal liver, spleen, placenta, lung, T cell, thyroid, testes expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, spleen, placenta, lung, blood cells, thyroid, and testes and other reproductive tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

FEATURES OF PROTEIN ENCODED BY GENE NO: 154

This gene is expressed primarily in brain and to a lesser extent in fetal heart, testis, spleen, lung.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: heart, liver and spleen diseases, immunological diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain, fetal heart, testis, spleen, lung expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, heart, testes and other reproductive tissue, spleen, and lung, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

15

20

25

30

35

5

10

FEATURES OF PROTEIN ENCODED BY GENE NO: 155

Activation of T cells through the T cell antigen receptor (TCR) results in the rapid tyrosine phosphorylation of a number of cellular proteins, one of the earliest being a 100 kDa protein. This gene is the human equivalent of murine valosin containing protein (VCP). VCP is a member of a family of ATP binding, homo-oligomeric proteins, and the mammalian homolog of Saccharomyces cerevisiae cdc48p, a protein essential to the completion of mitosis in yeast. Both endogenous and expressed murine VCP are tyrosine phosphorylated in response to T cell activation. Thus we have identified a novel component of the TCR mediated tyrosine kinase activation pathway that may provide a link between TCR activation and cell cycle control.

This gene is expressed primarily in brain, liver, spleen, placenta.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer immunological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain, liver, spleen, placenta expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, liver, spleen, and placenta, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from

WO 98/39448 PCT/US98/04493

an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to VCR indicate that polynucleotides and polypeptides corresponding to this gene are useful for treating cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO: 156

The translation product of this gene shares sequence homology with rat growth response protein which is thought to be important in cell growth. A group recently cloned the human homolog of this gene, calling it insulin induced protein 1. (See Accession No. 2358269, see also, Genomics 43 (3), 278-284 (1997).) Preferred polypeptide fragments comprise the amino acid sequence: RSGLGLGITIAFLATLITQF LVYNGVYQYTSPDFLYIRSWLPCIFFSGGVTVGNIGRQLAMGVPEKPHSD (SEQ ID NO: 640), as well as N-terminal and C-terminal deletions of this polypeptide fragment. Also preferred are polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in brain, liver, placenta, heart, spleen, lymphoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer immunological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain, liver, placenta, heart, spleen. expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, liver, placenta, heart, spleen, and lymphoid tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to growth-response protein indicate that polynucleotides and polypeptides corresponding to this gene are useful for modulating cell growth.

30

5

10

15

20

25

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 157

This gene is expressed primarily in Glioblastoma, endometrial tumor, lymphoma and pancreas tumor.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: Glioblastoma, Endometrial tumor, lymphoma and pancreas tumor. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., endometrium, lymphoid tissue, pancreas, and tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

FEATURES OF PROTEIN ENCODED BY GENE NO: 158

The translation product of this gene shares sequence homology with IGE receptor which is thought to be important in allergy and asthma.

This gene is expressed primarily in T cell, and fetal liver.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: allergy and asthma and other immunological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and liver, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

20

25

30

35

The tissue distribution and homology to IgE receptor indicate that polynucleotides and polypeptides corresponding to this gene are useful for allergy and asthma.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 159

The translation product of this gene shares sequence homology with immunoglobin heavy chain which is thought to be important in immune response to the antigen.

This gene is expressed primarily in activated neutrophil and to a lesser extent in activated T cell, monocyte and heart.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: infection, inflammation and cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and heart, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to immunoglobin heavy chain variable region indicate that polynucleotides and polypeptides corresponding to this gene are useful for making the ligand to block specific antigen which cause certain disease.

FEATURES OF PROTEIN ENCODED BY GENE NO: 160

The translation product of this gene shares sequence homology with mouse X inactive specific transcript protein which is thought to be important in X chromosome inactivation.

This gene is expressed primarily in HSA172 cell and to a lesser extent in normal ovary tissue, ovarian cancer, frontal cortex and brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: ovarian tumor, schizophrenia and other neurological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for

10

20

25

30

35

differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and neural system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., ovary and other reproductive tissue, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

PCT/US98/04493

The tissue distribution and homology to X inactive specific transcript protein indicate that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of reproductive system tumors and CNS tumors.

FEATURES OF PROTEIN ENCODED BY GENE NO: 161

This gene is expressed primarily in adipose cell and to a lesser extent in liver and prostate.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: obesity and liver disorder. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the adipose cell, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., adipose cells, liver, and prostate, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment of obesity and liver disorder.

FEATURES OF PROTEIN ENCODED BY GENE NO: 162

The translation product of this gene shares sequence homology with yeast ubiquitin activating enzyme homolog which is thought to be important in protein posttraslation processing.

This gene is expressed primarily in stromal cell and to a lesser extent in retina, H. Atrophic Endometrium, colon carcinoma and myeloid progenitor cell.

101

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: defects of stromal cell development, neuronal growth disorders and tumors. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and neural system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., retinal cells, endometrium, colon, and bone marrow, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to ubiquitin-activating enzyme homolog indicate that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis or treatment of some type of tumors, fucosidosis and neuronal growth disorders.

20

25

30

35

5

10

15

FEATURES OF PROTEIN ENCODED BY GENE NO: 163

This gene is expressed primarily in primary breast cancer and hemangiopericytoma and to a lesser extent in adult brain and cerebellum.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: breast cancer, leukemia and cerebellum disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system and neural system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., mammary tissue, brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

15

20

25

30

35

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis or treatment of various tumors and disease involved in neural system.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 164

The translation product of this gene shares sequence homology with proline rich proteins. Recently, another group has also cloned this gene, calling it CD84 leukocyte antigen, a new member of the Ig superfamily. (See Accession No. U82988, see also, Blood 90 (6), 2398-2405 (1997).)

This gene is expressed primarily in Weizmann olfactory tissue and osteoclastoma and to a lesser extent in anergic T-cell.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: ostsis and immune disease. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., olfactory tissue, bone, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to the Ig superfamily indicate that the protein product of this clone is useful for treatment of osteoporosis, autoimmune disease, and other immune disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 165

This gene is expressed primarily in atrophic endometrium and colon cancer and to a lesser extent in some fetal tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: tumors. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system,

expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., endometrium, colon, and fetal tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

103

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of tumors, specifically endometrium and colon tumors.

10

15

20

25

30

35

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 166

This gene is expressed primarily in human primary breast cancer and to a lesser extent in activated monocyte. Although the predicted signal sequence is identified in Table 1, other upstream sequences are also relevant. Preferred polypeptide fragments comprise the amino acid sequence: VTQPKHLSASMGGSVEIPFSFYYPWELAXXPXVRISWRRGHFHG QSFYSTRPPSIHKDYVNRLFLNWTEGQESGFLRISNLRKEDQSVYFCRVELDTRRSG (SEQ ID NO: 641), as well as N-terminal and C-terminal deletions. Also preferred are polynucleotide fragments encoding these polypeptide fragments.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: breast cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., mammary tissue, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis of breast cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO: 167

This gene is expressed primarily in fetal tissues and to a lesser extent in adult lung. This gene has also been mapped to chromosomal location 9q34, and thus, can be used as a marker for linkage analysis for chromosome 9.

10

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the embryo tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., fetal tissues, and lung, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

FEATURES OF PROTEIN ENCODED BY GENE NO: 168

The translation product of this gene shares sequence homology with Ig Heavy Chain which is thought to be important in immune response.

This gene is expressed primarily in prostate cancer tissue specifically

Therefore, polynucleotides and polypeptides of the invention are useful as
reagents for differential identification of the tissue(s) or cell type(s) present in a
biological sample and for diagnosis of diseases and conditions: prostate cancer.

Similarly, polypeptides and antibodies directed to these polypeptides are useful in
providing immunological probes for differential identification of the tissue(s) or cell
type(s). For a number of disorders of the above tissues or cells, particularly of the
prostate, expression of this gene at significantly higher or lower levels may be routinely
detected in certain tissues and cell types (e.g., prostate, tissue and cells of the immune
system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma,
urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an
individual having such a disorder, relative to the standard gene expression level, i.e.,
the expression level in healthy tissue or bodily fluid from an individual not having the
disorder.

FEATURES OF PROTEIN ENCODED BY GENE NO: 169

The translation product of this gene shares sequence homology with cytosolic acyl coenzyme-A hydrolase, which is thought to be important in neuron-specific fatty acid metabolism. The gene represented by this contig has since been published by Hajra and colleagues (GenBank Accession No. U91316).

This gene is expressed primarily in human pituitary gland and to a lesser extent in colorectal cancer tissue. This gene has also been observed in the LNCAP cell line.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: hyperlipidemias of familial and/or idiopathic origins. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly blood, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., pituitary and colon, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to rat cytosolic acyl coenzyme-A hydrolase indicate that polynucleotides and polypeptides corresponding to this gene are useful for the detection or treatment of hyperlipidemia disease states by virtue of the ability of specific drugs to activate the enzyme.

20

25

30

35

5

10

15

FEATURES OF PROTEIN ENCODED BY GENE NO: 170

The translation product of this gene shares sequence homology with a *Caenorhabditis elegans* gene which is thought to be important in organism development.

This gene is expressed primarily in human synovial sarcoma tissue, bone marrow, and to a lesser extent in human brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, of bone, specifically synovial sarcoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the bone, connective tissues and possibly immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., synovial tissue, bone marrow, brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another

tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to Caenorhabditis elegans indicate that polynucleotides and polypeptides corresponding to this gene are useful as a diagnostic and/or therapeutic modality directed at the detection and/or treatment of connective tissue sarcomas or other related bone diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 171

5

10

15

20

25

30

35

The translation product of this gene shares sequence homology with beta1-6GlcNAc transferase which is thought to be important in the transfer and metabolism of beta1-6, N-acetylglucosamine. This gene product has previously been shown to suppress melanoma lung metastasis in both syngeneic and nude mice, decreased invasiveness into the matrigel, and inhibition of cell attachment to collagen and laminin without affecting cell growth.

This gene is expressed primarily in human testes and prostate tissues, and to a lesser extent in kidney, medulla, and pancreas.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer particularly melanoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., testes and other reproductive tissue, prostate, kidney, pancreas, brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to beta1-6GlcNAc transferase indicate that the protein product of this clone is useful for the development of diagnostic and/or therapeutic modalities directed at the detection and/or treatment of cancer, the metastasis of malignant tissue or cells. Defects in this potentially secreted enzyme may play a role in metastasis.

FEATURES OF PROTEIN ENCODED BY GENE NO: 172

This gene is expressed primarily in fetal spleen and liver.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: immune disorders, Wilm's tumor disease, hepatic disorders, and hematopoietic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hematopoiesis and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., spleen and liver, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and identification of fetal defects along with correcting diseases that affect hematopoiesis and the immune system.

20

25

30

35

5

10

15

FEATURES OF PROTEIN ENCODED BY GENE NO: 173

The translation product of this gene shares sequence homology with ret II oncogene which is thought to be important in Hirschsprung disease and many types of cancers.

This gene is expressed in multiple tissues including the lymphatic system, brain, and thyroid.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: Hirschsprung disease and multiple cancers. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., lymphoid tissue, thyroid, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to

15

20

25

30

35

the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

PCT/US98/04493

The tissue distribution and homology to ret II oncogene indicate that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of various cancers. It would also be useful for the diagnosis and treatment of Hirschsprung disease. Preferred polypeptides of the invention comprise the amino acid sequence: MEAQQVNEAESAREQLQXLHDQIAGQKASKQELETELERLKQEFHYIEEDLY RTKNTLQSRIKDRDEEIQKLRNQLTNKTLSNSSQSELENRLHQLTETLIQKQTMLESLSTEKNSL VFQLERLEQQMNSASGSSSNGSSINMSGIDNGEGTRLRNVPVLFNDTETNLAGMYGKVRKAAS SIDQFSIRLGIFLRRYPIARVFVIIYMALLHLWVMIVLLTYTPEM HHDQPYGK (SEQ ID NO: 642).

FEATURES OF PROTEIN ENCODED BY GENE NO: 174

The translation product of this gene shares sequence homology with testis enhanced gene transcript which is thought to be important in regulation of human development.

This gene is expressed primarily in infant brain and to a lesser extent in a variety of other tissues and cell types, including the prostate, testes, monocytes, macrophages, dendritic cells, keratinocytes, and adipocytes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neurological, developmental, immune and inflammation disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, prostate, testes and other reproductive tissue, blood cells, keratinocytes, and adipocytes, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to testis enhanced gene transcript indicate that the protein product of this clone is useful for diagnosis and treatment of disorders involving the developing brain and the immune system.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 175

This gene is expressed primarily in prostate and to a lesser extent in various other tissues, including placenta.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancers, especially of the prostate. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the prostate, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., prostate and placenta, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product of this clone is useful for diagnosis and treatment of prostate disorders and cancer. It may also be useful for the diagnosis and treatment of endocrine disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 176

The translation product of this gene shares sequence homology with *Sacchromyces cerevisiae* YNT20 gene which is thought to be important in mitochondrial function.

This gene is expressed at a particularly high level in muscle tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases related to such tissues and cell types including: muscle wasting diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the neuromuscular system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., muscle and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e.,

the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to the YNT20 gene indicate that this protein is useful for treatment and detection of neuromuscular diseases caused by loss of mitochondrial function. For example this gene or its protein product could be used in replacement therapy for such diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 177

5

10

15

20

25

30

35

This gene is expressed primarily in the brain and to a lesser extent in kidney, placenta, smooth muscle, heart and lung.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neuromuscular diseases, degenerative diseases of the central nervous system, and heart disease. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the neuromuscular system, central nervous system, and heart, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, kidney, placenta, muscle, heart and lung, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

This gene or its protein product could also be used for replacement therapy for the above mentioned diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 178

The translation product of this gene shares sequence homology with caldesmon which is thought to be important in the cellular response to changes in glucose levels.

This gene is expressed primarily in multiple tissues including brain and retina.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: central nervous system disorders and retinopathy. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for identification of the tissue(s) or cell

10

15

20

25

30

type(s). For a number of disorders of the above tissues or cells, particularly of the CNS disorders and retinopathy, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and retinal tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to caldesmon indicate that polynucleotides and polypeptides corresponding to this gene are useful for treatment of retinopathies.

FEATURES OF PROTEIN ENCODED BY GENE NO: 179

The translation product of this gene shares sequence homology with mouse fibrosin protein which is thought to be important in regulation of fibrinogenesis in certain chronic inflammatory diseases.

This gene is expressed primarily in amniotic cells and breast tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of breast cancer and abnormal embryo development. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., amniotic cells, and mammary tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to fibrosin indicate that the protein product of this clone is useful for treatment of breast cancer. This gene or its protein product could be used in replacement therapy for breast cancer. In addition the protein product of this gene is useful in the treatment of chronic inflammatory diseases.

35 FEATURES OF PROTEIN ENCODED BY GENE NO: 180

This gene is expressed several infant tissues including brain and liver and various adult tissues including brain, lung, liver, testes, and prostate.

10

15

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, brain cancer, lung cancer, liver cancer and cancers of the reproductive system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, hepatic system, and reproductive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, lung, liver, testes and other reproductive tissue, and prostate, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution of this gene product indicates that the protein product of this clone is involved in growth regulation and could be used as a growth factor or growth blocker in a variety of settings including treatment of cancers.

20 FEATURES OF PROTEIN ENCODED BY GENE NO: 181

This gene is expressed primarily in activated monocytes and to a lesser extent in melanocytes and dendritic cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of immune system diseases and cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, melanocytes, and dendritic cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product of this clone could be involved in growth regulation and could be used as a growth factor or growth blocker in a variety of settings including treatment of cancers.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 182

This gene is expressed primarily in placenta and several tumors of various tissue origin and to a lesser extent in normal tissues including liver, lung, brain, and skin,

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of cancers of all kinds. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, respiratory system and skin, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, lung, brain and other tissues of the nervous system, and skin, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The high expression of this gene in multiple tumors indicates that the protein product of the clone may be involved in cell growth control and therefore would be useful for treatment of certain cancers. Likewise molecules developed to block the activity of the protein product of this clone could be used to block its potential role in tumor growth promotion.

FEATURES OF PROTEIN ENCODED BY GENE NO: 183

The translation product of this gene shares sequence homology with the mouse Ndr1 gene which is thought to be important in cancer progression.

This gene is expressed multiple cell types and tissues including brain, lung, kidney, bone marrow, liver, and spleen.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of all types of cancers. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous, immune, and endocrine systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, lung, kidney, bone marrow, liver and spleen, and cancerous and wounded

WO 98/39448

fluid from an individual not having the disorder.

tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily

114

PCT/US98/04493

The tissue distribution and homology to Ndr1 gene, which is thought to be involved in cancer progression, indicate that polynucleotides and polypeptides corresponding to this gene are useful for treatment of certain cancers. Likewise molecules developed to block the activity of the protein product of this clone could be used to block its potential role in tumor growth promotion.

10

15

20

25

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 184

This gene is expressed primarily in early stage human brain and liver and to a lesser extent in several other fetal tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: brain and liver cancers. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system and immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, liver, and fetal tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The expression of this gene in embryonic tissues indicates that the protein could be involved in growth regulation and could be used as a growth factor or growth blocker in a variety of settings including treatment of cancers.

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 185

This gene is expressed primarily in infant and embryonic brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of degenerative nervous system disorders and brain cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell

10

15

20

25

30

type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., embryonic tissue, brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The expression of this gene in embryonic tissues indicates that the protein could be involved in growth regulation and could be used as a growth factor or growth blocker in a variety of settings including treatment of cancers.

FEATURES OF PROTEIN ENCODED BY GENE NO: 186

This gene is expressed primarily in multiple tissues including placenta, fetal lung, fetal liver, and brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of all types of cancers including liver, brain and lung. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, pulmonary system, and hepatic system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., placenta, lung, liver, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The expression of this gene in embryonic tissues indicates that the protein could be involved in growth regulation and could be used as a growth factor or growth blocker in a variety of settings including treatment of cancers.

CONA No: Z Nortor X Seq. Seq. Seq. Seq. Seq. Seq. Seq. Seq.	Uni-ZAP XR 11 582 1	Uni-ZAP XR 197 1020 296	HBGBW52 97897 Uni-ZAP XR 12 465 1 02/26/97 209043 05/15/97	Uni-ZAP XR 198 524 229	ZAP Express 13 474 1	ZAP Express 199 332 1
of 5' NT lone of Seq. Start Codon	582 177	830 442	465 81	343	474 1	319 35
S' NT of AA F First SEQ AA of ID Signal NO:	177 313	442 499	81 314	196 500	1 315	35 501
A First Q AA O of Sig Pep	3	9 1	4	- 1		1
First Last Predicted AA AA First AA 1 of of of of Sig Secreted Pep Pep Portion (18 19	61 81	30 31	20 21	24 25	24 25
ted Last AA of ORF	22	22	128	33	78	78

Last AA of ORF	2	21	39	33	∞ ∞	23
First Last Predicted AA AA First AA I of of of of Sig Sig Secreted Pep Pep Portion C	35	61	23	27	45	22
Last AA of Sig Pep	34	18	22	26	4	21
First AA of Sig Pep	1	-	I	-		-
AA SEQ ID NO: Y	316	317	318	319	320	321
S' NT of AA F First SEQ AA of D AA of D Signal NO: S	122	30	239	278	77	129
of of Start Codon	122	30	239	278	77	129
3' NT of Clone Seq.	298	613	356	414	469	550
S' NT3' NT of of Clone Clone Seq.	1	-		185	-	_
Total NT Seq.	314	613	356	414	469	550
SEQ NO:	14	15	16	17	18	19
Vector	ZAP Express	ZAP Express	ZAP Express	ZAP Express	pCMVSport 3.0	Uni-ZAP XR
ATCC Deposit No: Z and Date	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97
cDNA Clone ID	нсиго22	1	HCUGA50	i	HLDOU93	HEIAX07
Gene No.	4	5	9	7	∞	6

# 4 1		<u> </u>	<u> </u>	ı	ko	1
Last AA of ORF	15	27	4	61	196	29
of AA First Last Predicted Of AA of Dof Of	6		31		31	
Last AA of Sig Pep	∞		30		30	
First AA of Sig Pep		-	-	_	-	
¥SEQ ¥ÿ₽Ş¥	502	322	323	503	324	504
5' NT of First AA of Signal Pep	Ţ	190	62	409	64	109
of of Start		061	62		49	109
3' NT of Clone Seq.	376	741	166	1137	653	513
5' NT 3' NT of of Clone Clone Seq. Seq.	6	55	_	253	1	
Total NT Seq.	376	741	991	1192	653	589
SEQ NO:	200	20	21	201	22	202
Vector	Uni-ZAP XR	_	Uni-ZAP XR	Uni-ZAP XR	pSport1	pSport1
ATCC Deposit No: Z and Date	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97
cDNA Clone ID	HEIAX07	HSAXR76	I		HCFAW04	HCFAW04
Gene No.	6	10	=	-	12	12

Last AA of ORF	252	75	01	207	89	36	84
S' NT A First Last Predicted of AA First AA First AA Color of		31		34 2	22 (26	31
Last AA of Sig Pep	54	30		33	21	25	30
First AA of Sig Pep	1	-	-	1	_		_
AA SEQ ID NO: Y	325	505	506	507	326	208	327
5' NT of First AA of Signal Pep	102	87	069	100	1242	303	304
S' NT of Start Codor	102	87		100	1242	303	304
3' NT of Clone Seq.	1418	839	850	1354	2059	1226	683
S' NT 3' NT of of Clone Clone Seq. Seq.	596	_	75	54	1017	113	4
Total NT Seq.	1486	847	852	1354	2323		683
X S B S S X	23	203	204	205	24	206	25
Vector	_	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	209235 09/04/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97
cDNA Clone ID	HLMAV65	HLMAV65	HLMAV65	HTXEF04	HPMFD84	HPMFD84	HE6DB26
Gene No.	13	13	13	13	4	14	15

	· · · · · · · · · · · · · · · · · · ·	T	,		y	
Last AA ORF	19	36	63	32	35	23
S' NT 3' NT of AA First Last Predicted of S' NT First SEQ AA AA First AA Clone Clone of AA of ID of of of Seq. Seq. Start Signal NO: Sig Sig Secreted Codon Pep Y Pep Pep Portion	19	21	31	32	25	20
Last AA of Sig Pep	18	20	30	31	24	19
First AA of Sig Pep	-	v f			-	-
ASEQ YÖ.	605	328	329	510	330	331
5' NT of First AA of Signal Pep	267	214	70	33	39	116
5' NT of Start Codon	567	214	70	33	39	116
3' NT of Clone Seq.	884	1959	717	<i>1</i> 69	495	556
5' NT of Clone Seq.	281	14	-	2	1	Ī
Total NT Seq.	1166	2036	717	697	495	556
SEQ NÖ: NÖ:	207	26	27	208	28	29
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	i i	Uni-ZAP XR
ATCC Deposit No: Z and Date	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97
cDNA Clone ID	HE6DB26	HHFFL33	i		HMDAE90	HOUAW01
Gene No.	15	16	17	17	18	19

Last AA of ORF	40	111	28	901	20	26
Last Predicted AA First AA I of of Sig Secreted Pep Portion	36	31	28	22	31	26
Last AA of Sig Pep	35	30	27	21	30	25
AAA of Sig			-		1	-
AA SEQ NÖ:	332	333	511	334	335	512
S' NT Of AA Friest SEQ AA of DO Signal NO: Pep Y I	78	87	387	137	436	18
of of Start Sodon	78	87	387	137	436	81
3' NT of Clone Seq.	434	715	932	486	725	647
S' NT 3' NT of of Clone Clone Seq.	1		274	-	1	•
Total NT Seq.	434	715	932	486	725	661
X S B S S X	30	31	209	32	33	210
Vector	Uni-ZAP XR	pSport1	pSport1		Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97
cDNA Clone ID	HBJAE44	HCFME41	HCFME41	H0GC071	HOSEX08	HOSEX08
Gene No.	20	21	21	22	23	23

			,	Υ		
Last AA of ORF	48	4	33	76	47	31
T of AA First Last Predicted S' NT First SEQ AA AA First AA L. of of of of AA of D. Sig Sig Secreted Codon Pep Y Pep Pep Portion Ol	31	31	25	21	31	21
Last AA of Sig Pep	30	30	24	20	30	20
First AA of Sig Pep	-		_			-
\$80 \$90 \$90 \$90 \$90 \$90 \$90 \$90 \$90 \$90 \$9	336	337	513	338	514	339
5' NT of First AA of Signal Pep	85	196	72	375	17	201
5' NT of Start Codon	85	196	72	375		
3' NT of Clone Seq.	437	943	534	604	509	349
5' NT 3' NT of of Clone Clone Seq. Seq.			-			
Total NT Seq.	437	943	592	604	938	349
NO SEQ	34	35	211	36	212	37
Vector	pBluescript	Uni-ZAP XR	Uni-ZAP XR		_	Uni-ZAP XR
ATCC Deposit No: Z and Date	97897 02/26/97 209043 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97
cDNA Clone ID	HSKNJ72			1		HSAUZ47
Gene No.	24	25	25	26	26	27

Last AA of ORF	42	26	26	157	43	520
First SEQ AA First Last Predicted Of AA of ID of	39	21	25	31	24	12
Last AA of Sig Pep	38	20	24	30	23	=
First AA of Sig Pep		_	_			
¥ NÖ BÖ	340	341	342	343	515	344
5' NT of First AA of Signal Pep	22	309	147	427	739	27
of of odo	22	309	147	427		27
3' NT of Clone Seq.	672	8061	458	1153	968	1983
Seq. Seq. Constant Seq. Seq. Seq. Seq. Seq. Seq. Seq. Seq.	Ī	135	93	200	505	1092
Total NT Seq.	672	8061	458	1153	1079	1983
NT SEQ BD NO:	38	39	40	41	213	42
Vector	Uni-ZAP XR	Uni-ZAP XR	pSport1	pSport1	pSport1	Uni-ZAP XR
ATCC Deposit No: Z and Date	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97
cDNA Clone ID	HSSDM73	HBMVK68			HMKCU94	HRDEW41
Gene No.	28	29	30	31	31	32

Last AA of ORF	m	39	234	174	169	43
First Last Predicted AA First AA I of of of of Sig Secreted Pep Pep Portion C		20	31	19	20	33
Last AA of Sig Pep		61	30	<u>8</u>	19	32
First AA of Sig Pep		-	-	-	-	y4
ASEQ YÖBÖ	516	345	346	517	347	518
S' NT of First SEQ AA of ID Signal NO: Pep Y	2030	19	74	638	14	844
of of Start Sodon			74		14	844
3' NT of Clone Seq.	3357	\$69	1153	1036	1569	1404
S' NT 3' NT of of Clone Clone Seq.	2757		851	822	892	770
Tota NT Seq	3791	1406	1391	1334	1569	1511
NO SEQ	214	43	4	215	45	216
Vector	Uni-ZAP XR					
ATCC Deposit No: Z and Date	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97
cDNA Clone ID	HRDEW41	HTOJN06	HBGDA21			HFGAK75
Gene No.	32	33	34	34	35	35

		ATCC		SEQ	E	S' NT of	S' NT 3' NT of of	LN .s	S' NT of First	SEQ FEQ	First	Last AA	Predicted First AA	Last
Gene No.	cDNA Clone ID	Deposit No: Z and Date	Vector	∃ä×	NT NT Seq.	Clone Seq.	Clone Seq.	or Start Sodon	Signal NO:	∃Ä≻	Sig Pep	or Sig Pep	Sig Sig Secreted Pep Pep Portion (of ORF
36	HHPBD40	97898 02/26/97 209044 05/15/97	Uni-ZAP XR	46	1924	-1	1891	62	62	348	_	19	20	43
37	l	97898 02/26/97 209044 05/15/97	pSport1	47	475	252	396	141	141	349	_	37	38	8/
38	1	97898 02/26/97 209044 05/15/97	Uni-ZAP XR	48	346		346	61		350		61	70	24
39	l I	97898 02/26/97 209044 05/15/97	Uni-ZAP XR	49	1366	882	1300	177	177	351	-	30	31	274
39	i .	97898 02/26/97 209044 05/15/97	Uni-ZAP XR	217	642	192	581		448	519				13
40	HLTCL35	97898 02/26/97 209044 05/15/97	Uni-ZAP XR	50	1405	110	1404	61	61	352	-	30	31	47

	.			,		
Last AA of ORF	30	<i>r</i> 0	52	132	47	204
First Last Predicted AA AA First AA Of Of Of Sig Secreted Pep Portion (22		25	09	27	31
Last AA of Sig Pep	21		24	59	26	30
First AA of Sig Pep	-	_	_	Ī	prod	I
AA SEQ ID NO: Y	520	353	354	355	521	356
Start Signal NO: Start Sep NO: Start Signal NO: Start Sig	172	222	113	41	399	166
5' NT of Start Codon	172	222	113	41	399	166
3' NT of Clone Seq.	1241	485	214	419	686	1749
S' NT 3' NT of of Clone Clone Seq.	I	207		_	186	222
Total NT Seq.	1241	504	777	602	1080	1749
SEQ NO:	218	51	52	53	219	54
Vector	Uni-ZAP XR	Uni-ZAP XR	ZAP Express	P	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97
cDNA Clone ID	HLTCL35	HLHCK50	HRSAN45	HSNBB14	HSNBB14	HMABL38
Gene No.	40	41	42	43	43	44

Last AA of ORF	26	47	73	58	102	61
First Last Predicted AA AA First AA L of of of of A Sig Sig Secreted Pep Pep Portion O	61	34	61	56	31	
St Pre					<u> </u>	
P.S. o. A. E.		33	- T	25	30	
Firs AA of Sig Pep					_	-
\$8 BBBS F	522	357	358	523	359	524
S' NT of AA F First SEQ AA of ID Signal NO: Pep Y	254	650	414	526	128	1097
of of Start odon	254	650	414		128	
Seq. Seq. Seq. Seq. Seq.	1190	1614	1753	1693	1024	1163
5' NT of Clone Seq.	149	596	555	554	069	712
Total NT Seq.	1258	1896	1753	1693	1220	1196
× Š B Š Š	220	55	56	221	57	222
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	pCMVSport 2.0	pCMVSport 2.0
ATCC Deposit No: Z and Date	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97
cDNA Clone ID	HMABL38	1	HOSFH03		HOGAV75	HOGAV75
Gene No.	44	45	46	46	47	47

. (Y.	7	T	1	·	T	7
Last ORF	84	179	40	25	224	57
First Last Predicted AA AA First AA of of of Sig Sig Secreted Pep Portion (34	31	61	22	31	19
Last AA of Sig Pep	33	30	18	21	30	18
First AA of Sig Pep	_					_
¥SEQ XEQ	360	361	525	362	363	526
of AA F of First SEQ AA of ID Signal NO: Signal NO: SPep Y	335	189	4911	164	06	1953
L. Eb	335	189	1164	<u>1</u> 8	06	1953
3' NT of Clone Seq.	1049	1737	1791	443	2888	
NT SEQ of S' NT 3' NT Of D Total Clone Clone of Stal Seq. Seq. Seq. Cod	362	854	979	_	1909	1597 2517
Total NT Seq.	1049	1776	1791	443	2888	2517
SEQ NO: NO:	58	59	223	09	61	224
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR		Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97
cDNA Clone ID	HFCAI74	HAGBI17	HAGBI17	HLFBC91	HPRCA31	HPRCA31
Gene No.	48	49	49	50	51	51

Last AA of ORF	349	21	467	152	39	373
First SEQ AA First Last Predicted of AA of ID of of of of of signal NO: Sig Sig Secreted N Pep Pep Portion O	31	18	26	31	25	31
Last AA of Sig Pep	30	<i>L</i> 1	25	30	24	30
First AA of Sig Pep	1	Ī	I	1	1	1
AS BOOK	364	527	365	399	528	367
5' NT of First AA of Signal Pep	139	230	964	526	436	236
of Starr	139		964	229	436	236
S' NT 3' NT of of Clone Clone Seq. Seq.	1736	2309	3492	883	1033	1541
	1568	565	883	237	242	_
Total NT Seq.	1851	2424	3542	883	1080	1541
X SEQUENCE NO SEQU	62	225	63	64	226	65
Vector	Uni-ZAP XR	Uni-ZAP XR	ZAP Express			Uni-ZAP XR
ATCC Deposit No: Z and Date	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97
cDNA Clone ID	HPRCE95	HPRCE95	ННТСС66	HMADJ02	ł .	HPRCU93
Gene No.	52	52	53	54	54	55

Last AA of ORF	128	83	82	21	70	227	79
Predicted First AA of Secreted Portion	26	61	21		·	20	31
Last AA of Sig Pep	25	18	20			61	30
First AA of Sig Pep	1	-	_	1	_		_
SEQ NÖ: Y	529	368	530	369	531	370	371
5' NT of AA IFirst SEQ AA of ID Signal NO:	946	163	1262	264	227	95	22
S' NT of Start Codon	946	163	1262	264	227	95	22
3' NT of Clone Seq.	1336	869	1756	629	536	1751	508
5' NT 3' NT of of Clone Clone Seq. Seq.	4	41	1133	I	25	375	
Total NT Seq.	1336	732	2043	629	540	1751	508
X SEQ	227	99	228	29	229	89	69
Vector	_	Uni-ZAP XR	Uni-ZAP XR	_	Lambda ZAP II	Uni-ZAP XR	ZAP Express
ATCC Deposit No: Z and Date	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	209011 04/28/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97
cDNA Clone ID		HSAXS65		HKTAG35	HMEFX42	HHFHN61	HCWEF90
Gene No.	55	56	56	57	57	58	59

NT SEQ of S' NT First SEQ AA First AA Last Dotal Clone Clone Of AA of D of Of Of Start Signal NO: NT Seq. Seq. Seq. Start Signal NO: NT Seq. Seq. Start Signal NO: NT Seq. Seq. Seq. Seq. Seq. Seq. Seq. Seq.	230 448 9 448 1 532 1 22 23	70 245 1 245 93 93 372 1 1 2	71 361 1 361 1 1 373 1 30 31	231 407 1 407 210 210 533 1 17 18	72 713 8 713 169 169 374 1 30 31	232 830 190 580 329 329 534 1 28 29
Vector		Lambda ZAP II	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046
cDNA Clone ID	HCWEF90	HHGCM20	HFRAU10	HFRAU10	HATDT67	HATDT67
Gene No.	59	09	19	. 19	62	62

Last AA of ORF	4	7	203	36	29	136
of AA First Last Predicted Of AA of ID of	31		3.1	23	29	31
Last AA of Sig Pep	30		30	22	28	30
First AA of Sig Pep	1	_	_		-	
¥ö. B€Q	375	535	376		377	378
5' NT of First AA of Signal Pep	<i>L</i> 9	287	730	2577	112	13
of Of Start	29	287	730	2577	112	13
3. NT of Clone Seq.	862	506	4525		1195	475
S' NT 3' NT of of Clone Clone Seq. Seq.	1	138	4162	2406 2739	-1	_
Total NT Seq.	862	932	4602	2786	1255	475
× Š B Š Š	73	233	74	234	75	9/
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-Zap XR			Uni-ZAP XR
ATCC Deposit No: Z and Date	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97
cDNA Clone ID	HOUBG93			HMWEX24	HSGBA84	HTOCD52
Gene No.	63	63	64	6	65	99

Last AA of ORF	4	41	468	<u>∞</u>	29	29
First Last Predicted AA AA First AA I of Of Of Sig Secreted Pep Portion (34	3.		21	28
Last AA of Sig Pep		33	30		20	27
First AA of Sig Pep		-				_
AA SEQ D NO: Y	537	379	380	538	381	382
S' NT of AA F First SEQ AA of ID Signal NO: Pep Y	26	74	26	251	267	292
of of Start Codon	26	74	26	251	267	292
3' NT of Clone Seq.	458	299	1730	444	1168	1285
S' NT 3' NT of of Clone Clone Seq.	1	25	1627	_	136	132
Tota NT Seq	458	465	1907	591	1168	1285
SEQ NÖ:	235	77	78	236	79	08
Vector	-	Uni-ZAP XR	pBluescript	pBluescript		Uni-ZAP XR
ATCC Deposit No: Z and Date	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97
cDNA Clone ID	HTOCD52	HTGCP16	HKIXR69	HKIXR69	HETGJ09	HOBNC61
Gene No.	99	67	89	89	69	70

Last AA of ORF	138	74	521	=	137	186
First Last Predicted of of of Sig Sig Secreted Pep Portion (22	31	31	10	26	31
Last AA of Sig Pep	21	30	30	6	25	30
First AA of Sig Pep		_	_	_		_
ASEQ YÖ.	383	384	385	539	386	387
S' NT of AA IF First SEQ AA of ID Signal NO: Pep Y 1	701	119	200	1204	85	99
F	701	119	200		85	99
3' NT of Clone Seq.	1054	684	1953	959	537	802
NT SEQ of 5' NT 3' NT Of DEQ OF SEQ OF SEQ OF SEQ. Seq. Seq. Code	768		1609	391	4	59
Total NT Seq.	1290	684	2024	1286	931	825
NT SEQ ID NO:	81	82		237	84	85
Vector	Lambda ZAP II	Uni-ZAP XR				
ATCC Deposit No: Z and Date	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97
cDNA Clone ID	₹+			HSQEL25		HBIAB39
Gene No.	7.1	72	73	73	74	75

Last AA of ORF	108	106		299	136	424
S' NT of AA First Last Predicted of AA of ID of of of of AA of ID of Sign Secreted NO: Sig Sig Secreted NP Pep Pep Portion O	38	9]		54	44	36
Last AA of Sig Pep	37	15		53	43	35
First AA of Sig Pep		-	-	-		
AA SEQ YOO:	540	541	388	389	542	543
5' NT of First AA of Signal Pep	1	294	17	166	507	390
Soft Seq. Seq. Codon	-		17	166	507	390
3' NT of Clone Seq.	734	794	918	1458	2080	1520
5' NT of Clone Seq.		08	36	6	841	311
Total NT Seq.	734	808	1238	1460	2201	1661
SEQ NÖ: NÖ:	238	239	98	87	240	241
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	ľ	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97
cDNA Clone ID	HBIAB39	HBIAB39	HTXDU73	HOEAS24	HOEAS24	HOEAS24
Gene No.	75	75	76	77	77	77

	<u> </u>					
1	49	61	39	62	36	180
Pre Fir Se Po	37	50	22	31	33	31
Last AA of Sig Pep	36	49	21	30	32	30
First AA of Sig Pep		1	•	_	-	_
AA SEQ NÖ:	390	391	544	392	393	394
S' NT	639	540	564	1503	329	86
S' N of of Star	639	540	564	1503	329	86
3' NT of Clone Seq.	1395	1186	1146	1614	862	969
S' NT of Clone Seq.	567	352	329	1203	253	349
Total NT Seq.	1395	9811	1146	1821	862	969
X Š B Š K	88	68	242	96	91	92
Vector	Uni-ZAP XR	pBluescript	pBluescript	Uni-ZAP XR	Uni-Zap XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97
cDNA Clone ID	HTEIY30	HSKNE46	HSKNE46	HPMFL27	HMWDN32	HPRAX55
Gene No.	78	79	79	08	81	82

Last AA of ORF	58	21	09	152	33	480	367
First Last Predicted AA First AA I of of of Sig Secreted Pep Portion C	33		22	33	21	31	22
Last AA of Sig Pep	32		21	32	20	30	21
First AA of Sig Pep	1	1	1	1	1	1	_
AA SEQ ID NO: Y	545	395	396	397	546	398	547
S' NT AA F First SEQ AA of ID Signal NO: Pep Y I	348	161	785	206	161	234	125
S' NT of Start Codon	348	197	785	206	191	234	125
3' NT of Clone Seq.	1230	1759	1772	1648	911	2801	1537
5' NT 3' NT of of Clone Clone Seq. Seq.	265		742	-	72	418	-
Total NT Seq.	1350	1886	1774	2503	1529	2801	1537
× Še Še Š	243	93	94	95	244	96	245
Vector	_	_	_	Uni-ZAP XR	Lambda ZAP II		Uni-ZAP XR
ATCC Deposit No: Z and Date	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97901 02/26/97 209047 05/15/97	209076 05/22/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97
cDNA Clone ID	HPRAX55	ннғғw36	HE2PL77	HSDFV29	HCQAV53	HTPEG42	HTPEG42
Gene No.	82	83	84	85	85	98	98

Last AA of ORF	423	82	77	74	47	20
First SEQ AA First Last Predicted AA of ID of of of of AS Signal NO: Sign Secreted APPED Y Pep Pep Portion O	2	24	33	61	22	
Last AA of Sig Pep	1	23	32	81	21	
First AA of Sig Pep	1	Ţ	Ī			_
AA SEQ ID NÖ: Y	399	400	548	401	549	402
S' NT of First AA of Signal Pep	I	<i>1</i> 61	183	456	363	7
of of N	1	197	183	456	363	
3' NT of Clone Seq.	1631	504	499	1416	1348	2847
Seq. Seq. Composition of Seq. Seq. Seq. Composition of Seq. Seq. Seq. Composition of Composition of Seq. Seq. Seq. Composition of Seq. Seq. Composition of Seq. Seq. Seq. Seq. Composition of Seq. Seq. Seq. Seq. Seq. Seq. Seq. Seq.	916	56	·—•	145	84	_
Total NT Seq.	1631	504	506	1416	1348	2847
K Š B Š X	76	86	246	66	247	001
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	r	Uni-ZAP XR
ATCC Deposit No: Z and Date	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97
cDNA Clone ID	HLHDR57	HAUAV32	HAUAV32	HNEBI60	HNEBI60	HSHCJ16
Gene No.	87	88	& &	68	68	06

Last AA of ORF	87	92	168	124	21	174
5' NT of AA First Last Predicted AA of ID of of of of of Signal NO: Sig Signal NO: Sig Secreted Pep Portion O	24	31	31	6]		35
Last AA of Sig Pep	23	30	30	18		34
First AA of Sig Pep	-	Ī	I			-
AA SEQ ID NO: Y	403	404	250	551	405	406
5' NT of First AA of Signal Pep	602	518	356	147	516	248
S' NJ of Start Codol	602	518	356		5/6	248
3' NT of Clone Seq.	1346	794	1766	1708	1531	871
5' NT 3' NT of of Clone Clone Seq. Seq.	809	·	42	<i>L</i> 4	868	901
Total NT Seq.	1394	794	1766	2664	1544	871
X SEQ	101	102	248	249	103	104
Vector	pBluescript	Uni-ZAP XR		Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97
cDNA Clone ID	HTSEL31	HAUBL57	HAUBL57		HODAS59	HE6CT48
Gene No.	91	92	92	92	93	94

Last AA of ORF	177	Z	72	280	45	251	284
First Last Predicted AA AA First AA of of of of Sig Sig Secreted Pep Pep Portion	20	22	23	52	16	41	31
Last AA of Sig Pep	19	21	22	51	15	40	30
First AA of Sig Pep	·	7	Ţ	-		ı	_
AS SEQ Y	552	407	553	408	554	555	409
5' NT of First SEQ AA of ID Signal NO: Pep	258	16	829	122	633	82	465
5' NT of Start Codon	258	16	829	122		82	465
3' NT of Clone Seq.	865	404	2074	1542	1482	834	2327
S' NT 3' NT of of Clone Clone Seq.	26	-	852	506	508		1528
Total NT Seq.	865	404	2082	1542	1482	834	2327
SEQ NÖ: NÖ:	250	501	251	106	252	253	107
Vector		Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	ZAP Express	Uni-ZAP XR
ATCC Deposit No: Z and Date	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	209215 08/21/97	97901 02/26/97 209047 05/15/97
cDNA Clone ID	HE6CT48	HMDAA61	HMDAA61	HAQBK61	HAQBK61	нспнвоі	HAQBF73
Gene No.	94	95	95	96	96	96	97

Last AA of ORF	19	187	237	217	82	192
First Last Predicted AA AA First AA of of of of Sig Sig Secreted Pep Pep Portion (29	31	31	13	47
Last AA of Sig Pep		28	30	30	12	46
First AA of Sig Pep	1	-		I		
AA SEQ ID NO: Y	556	410	411	557	258	412
S' NT of AA F First SEQ AA of ID Signal NO: Pep Y	886	172	£06	176	1151	4
S' NT of Start Codon		172	903	176		4
3' NT of Clone Seq.	1508	1062	2501	2431	2288	1751
S' NT 3' NT of of Clone Clone Seq.	885	157	275	592	465	696
Total NT Seq.	1508	1062	2539	2514	256 2357	1751
XÖBÖX XÖDÖX	254	108	109	255	256	110
Vector	Uni-ZAP XR	Lambda ZAP II				
ATCC Deposit No: Z and Date	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97
cDNA Clone ID	5	HAQBT94	нетнео7	нетнео7	нетнео7	HLQAB52
Gene No.	97	86	66	66	66	100

Last AA of ORF	95	4	21	108	51	50	32
Predicted First AA of Secreted Portion		29	50	25	31	36	
Last AA of Sig Pep	<u>∞</u>	28	61	24	30	35	
First AA of Sig Pep	4	-		1	-		
SEQ Y.S.	559	260	413	561	414	562	415
5' NT of First AA of Signal Pep	314	25	-	242	271	35	709
of of Start	314	25		242	271	35	402
3' NT of Clone Seq.	655	2377	1117	1135	1313	1262	1654
S' NT 3' NT of Of Clone Clone Seq. Seq.	80	5		69	128	26	553
Total NT Seq.	689	2377	1117	1193	1313	1262	1654
SEQ NÖ:	257	258		259	112	260	113
Vector	ambda ZAP II	pSport1	Uni-ZAP XR	Other	Uni-ZAP XR	Uni-ZAP XR 260	Uni-ZAP XR
ATCC Deposit No: Z and Date	97901 02/26/97 209047 05/15/97	209119	97901 02/26/97 209047 05/15/97	209627	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97
cDNA Clone ID	HLQAB52	HEONN58	HCRAM28	HIBEK16	HE2BG03	HE2BG03	HEBDJ82
Gene No.	100	100	101	101	102	102	103

Last AA of ORF	163	253	<u>∞</u>	174		73
Predicted First AA of Secreted Portion	31	31		99		34
Last AA of Sig Pep	30	30		92		33
First AA of Sig Pep	1	I	_	-		1
AA SEQ ID NO: Y	416	563	564	417	595	995
S' NT Of AA Fi of AA Fi First SEQ AAA of ID OF Signal NO: S	337	335	942	100		413
of of Start Sodor	337	335	942	001		
3' NT of Clone Seq.	11711	1161	1131	800	735	783
S' NT 3' NT of of Clone Clone Seq. Seq.	540	979	629	373	290	416
Total NT Seq.	1171	1179	1162	842	735	783
SE SE X	114	261	262	115	263	264
Vector	ZAP Express	ZAP Express	ZAP Express	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97
cDNA Clone ID	HCUBC79	HCUBC79	HCUBC79	HSVAF07	HSVAF07	HSVAF07
Gene No.	104	104	104	105	105	105

Last AA of ORF	50	263	70	120	159	34
AA First Last Predicted SEQ AA AA First AA ID of of of of NO: Sig Sig Secreted Y Pep Perion (31	31	25	59	31	24
Last AA of Sig Pep	30	30	24	28	30	23
First AA of Sig Pep		—		-		_
₹ SGS SGBS≻	418	267	568	419	420	569
5' NT of First AA of Signal Pep	581	611	438	499	301	22 <i>7</i>
of of Start Codon	581	119	438	499	301	227
3' NT of Clone Seq.	1470	1405	1188	906	1079	1050
S' NT 3' NT of of Clone Clone Seq.	187	301	148	418	21	25
Total NT Seq.	1640	1638	1455	952	1256	1086
X Š B Š S X	116	265	266	117	118	267
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	ľ	Uni-ZAP XR
ATCC Deposit No: Z and Date	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97
cDNA Clone ID	HT3AM65	HT3AM65	HT3AM65	HE6DK18	НЕВЕК93	HEBEK93
Gene No.	106	106	106	107	108	108

Last of ORF	154	104	132	204	67	32
First Last Predicted of of of Sig Sig Secreted Pep Portion (51	35	78	33	31	28
Last AA of Sig Pep	50	34	27	32	30	27
First AA of Sig Pep			_	_	_	_
¥SEQ ∀SEQ	421	570	571	422	423	572
S' NT of AA F First SEQ AA of ID Signal NO: 9	175	115	232	138	50	337
S' NT of Start Codon	175	115	232	138	50	337
3' NT of Clone Seq.	1051	1003	1015	1720	609	566
5' NT 3' NT of of Clone Clone Seq. Seq.	171	21	174		81	-
Total NT Seq.	1143	1003	1234	1782	019	574
NT SEQ ID NO:	119	268	269	120	121	270
Vector	Uni-ZAP XR					
ATCC Deposit No: Z and Date	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97
cDNA Clone ID	HJPCM10	HJPCM10	HJPCM10		HOEAW81	HOEAW81
Gene No.	109	109	109	110		111

Last AA of ORF	25	299	78	13	861	40
First Last Predicted AA AA First AA of of of of Sig Sig Secreted Pep Pep Portion 0	22	31	61		16	23
Last AA of Sig Pep	21	30	18		51	22
First AA of Sig Pep	.	1	1	1	_	1
ASEQ YÖÜ YÜ	424	425	573	426	427	574
5' NT of AA F First SEQ AA of ID Signal NO: Pep Y	143	48	988	92	145	280
S' NT 3' NT of of S' NT of Clone Clone of Start Seq. Seq. Codon	143	48	988	9 <i>L</i>	145	280
3' NT of Clone Seq.	375	1976	1626	1640	804	637
5' NT of Clone Seq.	185	6211	688	764		77
Total NT Seq.	526	2081	1731	1717	804	1320
K Š O Š X	122	123	271	124	125	272
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	pSport1	pSport1
ATCC Deposit No: Z and Date	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97
cDNA Clone ID	HOEAP41	HEAAR60	HEAAR60		HOVBA03	HOVBA03
Gene No.	112	113	113	114	115	115

Last AA of ORF	47	30	370	29	30	24
First SEQ AA First Last Predicted AA of ID of of of of of Signal NO: Sig Sig Secreted Pep Pep Portion C	39	21	31	19		
Last AA of Sig Pep	38	20	30	81		
First AA of Sig Pep	1		-	-	_	-
AA SEQ NÖ: Y	428	275	429	576	430	431
5' NT of First AA of Signal Pep	73	43	748	2777	968	1265
of of Start	73	43	748	2777	968	1265
3' NT of Clone Seq.	431	515	3752	2995	1144	1830
S' NT 3' NT of of Clone Clone Seq.			3465	2738	699	1234
Total NT Seq.	431	515	3752	2995	1144	1830
× Še Še	126	273	127	274	128	129
Vector	Uni-ZAP XR					
ATCC Deposit No: Z and Date	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97
cDNA Clone ID	HGBGK76	HGBGK76	HBMUW78	HBMUW78	HASAS24	HSIDN55
Gene No.	116	116	117	117	118	611

Last AA of ORF	53	176	92	77	32	30
AA First Last Predicted SEQ AA AA First AA L D of of of of AO NO: Sig Sig Secreted Y Pep Pep Portion O		36 1		23	26	26
AA AA of of Sig Pep	37	35	16	22	25	25
First AA of Sig Pep		1	sand	-	-	
ASEQ NÖ:	432	433	577	434	435	436
S' NT of AA First I First SEQ AA AA of ID of Signal NO: Sig Pep Y Pep	1578	46	71	1127	962	274
5' NT of Start Codon	1578	46	71	1127	962	274
3. NT of Clone Seq.	1741	1214	1128	1986	1632	1565
S' NT 3' NT of of Clone Clone Seq.	1505	1	∞		0/9	281
Total NT Seq.	1864	2041	0661	2012	1669	1565
× Šešk	130	131	275	132	133	134
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	pBluescript SK-	Uni-ZAP XR
ATCC Deposit No: Z and Date	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97
cDNA Clone ID	HGBGZ64	H6EBJ64	H6EBJ64	HOECP43	H2CBV31	HPCAD23
Gene No.	120	121	121	122	123	124

Last AA of ORF	69	19	43	42	33	53
First Last Predicted AA AA First AA of of of of Sig Sig Secreted Pep Pep Portion	40		31	31	61	26
Last AA of Sig Pep	39		30	30	81	25
First AA of Sig Pep	-		1		I	1
AA SEQ ID NO: Y	437	438	439	578	440	441
5' NT of AA IF First SEQ AA of ID Signal NO: Pep Y	1124	107	184	726	1183	585
S' NT of Start Codon	1124	107	184	726	1183	585
3' NT of Clone Seq.	2007	1180	9061	2436	1794	1347
S' NT 3' NT of of Clone Clone Seq.	1101	-		572	1044	572
Total NT Seq.	2007	1291	9061	2436	1935	1446
× Š B Š K	135	136	137	276	138	139
Vector	pSport1	Uni-ZAP XR	Lambda ZAP II	Lambda ZAP II	pSport1	Uni-ZAP XR
ATCC Deposit No: Z and Date	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97
cDNA Clone ID	HSPAG15	HELGH31	HUSHH48		HLYAU95	HHSCV65
Gene No.	125	126	127	127	128	129

Last AA of ORF	4	4	0	0	Q	6
, — —	49	34	68	70	350	49
Seq. Seq. Start Signal NO: Sig Sig Secreted Codon Pep Y Pep Pep Per Per Per Signal NO: Sig Sig Secreted Pep Pep Portion	25		31	32	26	17
Last AA of Sig Pep	24		30	31	25	91
First AA of Sig Pep	-	1			T	
AA SEQ DO: Y	442	443	444	579	445	446
5' NT of First AA of Signal Pep	9/9	95	_	571	22	306
5' NT of Start Codon	9/9	95			22	306
3' NT of Clone Seq.	1109	497	269	781	1262	1281
5' NT of Clone Seq.	639	6		408	55	26
Total NT Seq.	1109	497	269	782	1269	1944
× Š B Š K	140	141	142	277	143	144
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	<u> </u>	•	Uni-ZAP XR
ATCC Deposit No: Z and Date	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97
cDNA Clone ID	HTTAD57	HEBGA37	HEBFU93	HEBFU93	1	HPMGD24
Gene No.	130	131	132	132	133	134

Last AA of ORF	278	110	199	30	258	71
Predicted First AA of Secreted Portion	31	24	31	27	31	24
Last AA of Sig Pep	30	23	30	26	30	23
First AA of Sig Pep	-	-		-	_	
AA SEQ ID NO: Y	447	280	448	581	449	582
S' NT Of AA F First SEQ AA of ID Signal NO: S	74	545	116	324	165	160
of of Start Codor	74	545	116	324	165	160
3' NT of Clone Seq.	1021	1961	1285	1228	1272	1208
S' NT 3' NT of of Clone Clone Seq. Seq.	526	524	5	6	169	169
Tota NT Seq	1021	961	1285	1228	1386	1327
X SEQUENCE OF SEQU	145	278	146	279	147	280
Vector	pBluescript	pBluescript	pBluescript		Uni-Zap XR	Uni-Zap XR
ATCC Deposit No: Z and Date	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97
cDNA Clone ID	HPTVC60	HPTVC60	HSKNE18	1	HMWIF35	HMWIF35
Gene No.	135	135	136	136	137	137

Gene No. 138	cDNA Clone ID HMWGI25 HSKGF03	ATCC Deposit No: Z and Date 97902 02/26/97 209048 05/15/97 209048 05/15/97	Vector Uni-Zap XR pBluescript	NSEQ NO: NO: NO: 149	Total NT Seq. 2098	S' NT of Clone Seq. 721	of Clone Seq. 2044	S' NT of of Start Codon 784	5' NT of AA I First SEQ AA of ID Signal NO: Pep Y 1784 450	AA SEQA NO: Y 450	First of Sig Pep	Last of 18 33 33	2 4 50 0	First Last Predicted of of of Sig Sig Secreted Pep Portion (P. 18 19 19 19 19 19 19 19 19 19 19 19 19 19
139	HSKGF03	97902 02/26/97 209048 05/15/97	pBluescript	281	799		662		243	583		12	• • • • • • • • • • • • • • • • • • • •	13
140	HMSKE75	97902 02/26/97 209048 05/15/97	Uni-ZAP XR	150	1569		1517	417	417	452	~ ``	21		22
141	HCMSH30	97902 02/26/97 209048 05/15/97	Uni-ZAP XR	151	1540	1	1540	84	48	453	_	30	į	31
141	HCMSH30	97902 02/26/97 209048 05/15/97	Uni-ZAP XR	282	2196	270	2196	294	294	584		32	l .	33

Last AA of ORF	186	163	6	46	105	23
First Last Predicted AA AA First AA Of Of Of Sig Sig Secreted Pep Pep Portion C	53	27		22	24	21
Last AA of Sig Pep	52	26		21	23	20
First AA of Sig Pep	-			_	_	
¥ SEQ Y.Ö. B.Ö.	454	455	585	456	457	586
of AA For SEQ AA of ID Signal NO:	9	195	621	40	411	878
NT of start	9	195	621	40	411	878
3' NT of Clone Seq.	1575	863	1166	512	2031	1485
Seq. Seq. Co	069	_	277	·	699	615
Total NT Seq.	1719	863	1185	1101	2031	1634
SEQ NÖ: NÖ:	152	153	283	154	155	284
Vector	pSport1	pBluescript	pBluescript	Uni-ZAP XR	Lambda ZAP II	Lambda ZAP II
ATCC Deposit No: Z and Date	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97
cDNA Clone ID	HTWCB92	HBMDM46	HBMDM46	,	HEXHL79	HFXHL79
Gene No.	142	143	143	144	145	145

Last AA of ORF	70	69	155	72	155	332	ς,
Predicted First AA of Secreted Portion	24	34	23	31	23	24	
Last AA of Sig Pep	23	33	22	30	22	23	
First AA of Sig Pep	_	I		-	I	1	_
SEQ YÖ: PÖ	458	282	459	588	685	460	461
S' NT of AA I Sirst SEQ AA of ID Signal NO: Pep Y	1592	1562	22	224	22	32	1440
5' NT of Start Codon	1592	1562	22	224	22	32	1440
S' NT 3' NT of of Clone Clone Seq.	1809	1749	912	858	915	1422	2382
5' NT 3' NT of of Clone Clone Seq. Seq.	1458	1458	45	46		51	1509
Total NT Seq.	1981	1795	915	858	915	2117	2395
NT SEQ NÖ:		285	157	286	287	158	159
Vector	Uni-ZAP XR	Uni-ZAP XR	pSport1		- 1		Lambda ZAP II
ATCC Deposit No: Z and Date	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	209139 07/03/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97
cDNA Clone ID	HSNAK17	HSNAK17	HCFBC03	HCFBC03	HSJAP03	HSKG026	HCQAV96
Gene No.	146	146	147	147	147	148	149

Last AA of ORF	41	285	24	08	38	47
First Last Predicted of of of Sig Sig Secreted Pep Portion C		31		31	17	31
Last AA of Sig Pep		30		30	16	30
First AA of Sig Pep			4	_		1
¥ŠÐŠ¥	462	463	590	464	591	465
of AA F of First SEQ AA of ID Signal NO: S	1416	46	1062	288	281	1611
of of Start odor	1416	46	1062	288	281	1611
S' NT 3' NT of of Clone Clone Seq. Seq.	2108	006	1517	1003	1195	2180
S' NT'3' NT of of Side Clone Clone Seq. Seq.	1223	482	783		217	1607 2180
Tota NT Seq	2120	006	1517	1003	3865	2196
SEQ NÖ: NÖ:	160	161	288	162	289	163
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR		Uni-ZAP XR	pBluescript
ATCC Deposit No: Z and Date	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97
cDNA Clone ID	HSHCC16	HTLEF62	HTLEF62	HTLAD94	HTLAD94	HTSFQ12
Gene No.	150	151	151	152	152	153

Last AA of ORF	96	69	399	308		273
Predicted First AA of Secreted Portion	64	40	31	46		32
Last AA of Sig Pep	63	39	30	45		31
First AA of Sig Pep	_	_			_	-
AA SEQ ID NO: Y	466	592	467	593	468	469
S' NT of AA IF First SEQ AA of ID Signal NO: Pep Y	299	355	258	525	341	284
F. 48	299	355	258			284
3' NT of Clone Seq.	1840	1818	2871	2838	2221	1816
SEQ of of 5' N DD Total Clone Clone of Stay N Seq. Seq. Cod	271	279	489	486	343	1130
Total NT Seq.	1945	1910	2933	3276	2243	1816
SEQ NÖ BÖX	164	290	165	291	166	167
Vector	Uni-ZAP XR					
ATCC Deposit No: Z and Date	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97
cDNA Clone ID	HE6FL83	i	HTXFJ55	HTXFJ55	HJPCJ76	HLTED27
Gene No.	154	154	155	155	156	157

Last AA of ORF	22	192	234	105	24	32
Predicted First AA of Secreted Portion		61	27	46		24
Last AA of Sig Pep		81	56	45		23
First AA of Sig Pep	1	-		I		-
AA SEQ ID NO: Y	594	470	471	472	595	473
S' NT of AA First of AA of ID of AA of ID of AA of ID	1306	208	61	1001	510	1722
		208	19	1001	510	1722
3' NT of Clone Seq.	1548	787	816	1869	1501	2100
C of of S' NT S' NT S' NT Orbal Clone Clone Seq. Seq. Seq. CC	8601		46	862	438	2100 1642
Total NT Seq.	1695	945	902	1883	1501	2100
SEQ 1	292	168	169	170	293	171
Vector	Uni-ZAP XR	pSport1		Uni-ZAP XR	Uni-ZAP XR	pBluescript SK-
ATCC Deposit No: Z and Date	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97
cDNA Clone ID	HLTED27	HMKBA64	HNFIP24	HCELB21	HCELB21	HAWBA28
Gene No.	157	158	159	160	160	161

Last AA of ORF	571	24	312	_	329	∞
5' NTAAFirstLastPredicted0fAAFirstLastAA ofIDofofoftSignalNO:SigSigSecretedofonPepPepPortionORF	31		31		22	
Last AA of Sig Pep	30		30		21	
First AA of Sig Pep	-				y	
AA SEQ ID NO: Y	474	596	475	597	476	598
5' NT of First AA of Signal Pep	59	431	122	976	51	305
Seq. Seq. Seq. Codon	59	431	122	976	51	305
3' NT of Clone Seq.	1930	2683	1451	1420	2972	828
5' NT of Clone Seq.	187	183	796	961	2197 2972	52
Total NT Seq.	1930	2683	1509	1454	3173	828
X SEQ	172	294	173	295	174	296
Vector	pBluescript SK-	pBluescript SK-	pBluescript SK-		Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97
cDNA Clone ID	HSAAS44	HSAAS44	HAFAL73			HSAWF26
Gene No.	162	162	163	163	164	164

Last AA of ORF	178	25	52	62	27	27
First Last Predicted of of of Sig Sig Secreted Pep Pep Portion (25	19	26	23	22	22
Last AA of Sig Pep	24	<u></u>	25	22	21	21
First AA of Sig Pep		_	_		-	
AA SEQ NÖ: Y	477	299	478	479	480	009
S' NT of AA F of First SEQ AA of D Signal NO: 8Pp Y F	09	1473	889	173	Ξ	17
NT of tart odon	09	1473		173	11	4 1
3' NT of Clone Seq.	970	2413	1290	2290	549	545
Control Clone Clone Seq. Seq. Seq. Cc	374	1387	499		-	-
Total NT Seq.	991	2416	1290	2290	549	545
× Segar	175	297	176	177	8/1	298
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR		Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97
cDNA Clone ID	HEAAL31	HEAAL31	HFKFX55	H2LA011	HPFDZ95	HPFDZ95
Gene No.	165	165	166	167	168	168

Last AA of ORF	339	61	32	48	29	38
First Last Predicted AA AA First AA I of of of of Sig Sig Secreted Pep Pep Portion C	31	24	27	31	24	30
Last AA of Sig Pep	30	23	26	30	23	29
First AA of Sig Pep	_		_	_	-	-
SEQ SEQ Y.	481	601	482	483	602	484
5' NT of AA F First SEQ AA of ID Signal NO: 9 Pep Y 1	92	262	566	51	300	14
of Start odon	92	562	995	51	300	14
3' NT of Clone Seq.	1352	1530	1250	777	766	791
Seq. Seq. Seq. Seq. Seq. Seq. Seq. Seq.	294	385	985		244	_
Total NT Seq.	1509	1530	1316	777	766	791
×8 e Se X	179	299	180	181	300	182
Vector	Uni-ZAP XR	Uni-ZAP XR	pSport1		Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97
cDNA Clone ID	HPTTUII	HPTTUII	HCFAE79	HTEDJ34	HTEDJ34	HODCW06
Gene No.	169	169	170	171	171	172

Last AA of ORF	61	346	69	237	24	200
5' NT of AA First Last Predicted of AA of ID of of of of AA Signal NO: Sig Sig Secreted of Pep Pep Portion O	21	25	57	31	01	31
Last AA of Sig Pep	20	24	56	30	6	30
First AA of Sig Pep		-		_	_	_
¥SEQ ₩SEQ	485	486	603	487	604	488
5' NT of First AA of Signal Pep	575	131	233	<i>L</i> 9	09	257
Seq. Seq. Seq. Codon	575	131	233	29		257
3' NT of Clone Seq.	1405	1596	2345	2288	1946	1180
5' NT of Clone Seq.	346	75	75	355	2	462
Total NT Seq.	1405	9651	2345	2293	2369	1212
NT SEQ ID NO:	183	184	301	185	302	186
Vector	Uni-ZAP XR	pBluescript SK-	pBluescript SK-	Uni-ZAP XR		Uni-ZAP XR
ATCC Deposit No: Z and Date	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97
cDNA Clone ID	HFTAR26	H2MBF44	H2MBF44	HE8B192	1	HFTBR48
Gene No.	173	174	174	175	175	176

Last AA of ORF	35	351	130	265	23	25
Predicted First AA of Secreted Portion	24	31	4	<u> </u>	61	
Last AA of Sig Pep	23	30	43	30	<u>∞</u>	
First AA of Sig Pep	1		_			
AA SEQ ID NO: Y	909	489	909	490	209	491
S' NT of AA Fin of AA of ID o of AA of ID o ot Signal NO: Signal N	663	166	787	8	54	401
of of odo	663	991		∞	54	
3' NT of Clone Seq.	1149	1554	1515	1516	1261	681
Total Clone Clone Seq. Seq. Seq. Co.	424	<i>11</i> 0	719	096		287
Total NT Seq.	1181	1605	1537	1516	1493	681
X SEQ	303	187	304	188	305	189
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	I—	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97
cDNA Clone ID	HFTBR48	HE9CM64	HE9CM64	HATAV51	HATAV51	HAQAF27
Gene No.	176	177	177	178	178	179

Of AA First Last Predicted NT First SEQ AA AA First AA L AA of ID of of of of of of of of AA	30 31		30 31	30 31	32 33	33 34
First AA of Sig Pep		-	-	-	_	_
AA SEQ ID NO: Y	492	809	493	609	610	494
5' NT of First AA of Signal Pep	360	175	1153	21	302	45
of of Sta Sta	360		1153	21	302	45
5' NT 3' NT of of of Clone Clone NT Seq. Seq.	1014	577	2630		876	1923
5' NT of Clone Seq.	703	-	2207		275	30
Total NT Seq.	1014	577	2779		876	1923
NT SEQ ID NO:	061	306	191	307	308	192
Vector	Uni-ZAP XR	Uni-ZAP XR	pBluescript SK-	pBluescript SK-	pBluescript SK-	Uni-ZAP XR
ATCC Deposit No: Z and Date	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97
cDNA Clone ID	НСЕЕК08	HCEEK08	HAFAU18	HAFAU18	HAFAU18	HETBY74
Gene No.	180	180	181	181		182

Last AA of ORF	205	21	147	6	49	29
First Last Predicted AA AA First AA I of of of Sig Secreted Pep Portion C	31	19	12		31	61
Last AA of Sig Pep	30	81	=		30	<u>8</u>
First AA of Sig Pep		-	_		-	
¥ŠĐŠ;≻	495	611	496	612	497	613
S' NT of First SEQ AA of D Signal NO:	178	971	434	2131	297	107
NT of start odon	178	971	434		297	107
3' NT of Clone Seq.	2286	2025	3054	3026	907	712
S NT 3' NT 5' NT 5' NT Of Of Of S' Of Of Of Of S' Of	1160	840	2004	9961	152	<i>L</i> 9
Total NT Seq.	2346	2025	3054			712
× ŠB ŠŠ	193	309	194	310	195	311
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	_	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97
cDNA Clone ID	HTOAF35	HTOAF35	1	HCRBX32	HEBGB80	HEBGB80
Gene No.	183	183	184	184	185	185

									5' NT					
				ĽZ		5' NT	3. NT		Jo	₩	First	Last	Predicted	
		ATCC		SEQ		Jo	of	5' NT	First	SEQ	₹	₹	First AA	Last
		Deposit		Ω	Total	Clone	Clone	Jo	AA of	Ω	Jo	oę	jo	Ş
Gene		No: Z		öz	Z	Sed.	Seq.	Start	Signal	Ö	Sig	Sig	Secreted	oį
No.	Clone ID	and Date	Vector	×	Seq.			Seq. Codon	Pep	Y	Pep	Pep	on Pep Y Pep Pep Portion ORF	ORF
186	186 HFAMH74	97904	97904 Uni-ZAP XR 196 1290	961	1290	84	608	225	225 498	498	1 30	30	31	94
		02/26/97												
		209050									•			
		05/15/97												
186	186 HFAMH74	97904	97904 Uni-ZAP XR 312 1289 785 1289 927	312	1289	785	1289	927	927 614	614	1	28	29	30
		02/26/97												
		209050												
		05/15/97												

10

15

20

25

30

35

Table 1 summarizes the information corresponding to each "Gene No." described above. The nucleotide sequence identified as "NT SEQ ID NO:X" was assembled from partially homologous ("overlapping") sequences obtained from the "cDNA clone ID" identified in Table 1 and, in some cases, from additional related DNA clones. The overlapping sequences were assembled into a single contiguous sequence of high redundancy (usually three to five overlapping sequences at each nucleotide position), resulting in a final sequence identified as SEQ ID NO:X.

The cDNA Clone ID was deposited on the date and given the corresponding deposit number listed in "ATCC Deposit No:Z and Date." Some of the deposits contain multiple different clones corresponding to the same gene. "Vector" refers to the type of vector contained in the cDNA Clone ID.

"Total NT Seq." refers to the total number of nucleotides in the contig identified by "Gene No." The deposited clone may contain all or most of these sequences, reflected by the nucleotide position indicated as "5' NT of Clone Seq." and the "3' NT of Clone Seq." of SEQ ID NO:X. The nucleotide position of SEQ ID NO:X of the putative start codon (methionine) is identified as "5' NT of Start Codon." Similarly, the nucleotide position of SEQ ID NO:X of the predicted signal sequence is identified as "5' NT of First AA of Signal Pep."

The translated amino acid sequence, beginning with the methionine, is identified as "AA SEQ ID NO:Y," although other reading frames can also be easily translated using known molecular biology techniques. The polypeptides produced by these alternative open reading frames are specifically contemplated by the present invention.

The first and last amino acid position of SEQ ID NO:Y of the predicted signal peptide is identified as "First AA of Sig Pep" and "Last AA of Sig Pep." The predicted first amino acid position of SEQ ID NO:Y of the secreted portion is identified as "Predicted First AA of Secreted Portion." Finally, the amino acid position of SEQ ID NO:Y of the last amino acid in the open reading frame is identified as "Last AA of ORF."

SEQ ID NO:X and the translated SEQ ID NO:Y are sufficiently accurate and otherwise suitable for a variety of uses well known in the art and described further below. For instance, SEQ ID NO:X is useful for designing nucleic acid hybridization probes that will detect nucleic acid sequences contained in SEQ ID NO:X or the cDNA contained in the deposited clone. These probes will also hybridize to nucleic acid molecules in biological samples, thereby enabling a variety of forensic and diagnostic methods of the invention. Similarly, polypeptides identified from SEQ ID NO:Y may be used to generate antibodies which bind specifically to the secreted proteins encoded by the cDNA clones identified in Table 1.

10

15

20

25

30

35

PCT/US98/04493

Nevertheless, DNA sequences generated by sequencing reactions can contain sequencing errors. The errors exist as misidentified nucleotides, or as insertions or deletions of nucleotides in the generated DNA sequence. The erroneously inserted or deleted nucleotides cause frame shifts in the reading frames of the predicted amino acid sequence. In these cases, the predicted amino acid sequence diverges from the actual amino acid sequence, even though the generated DNA sequence may be greater than 99.9% identical to the actual DNA sequence (for example, one base insertion or deletion in an open reading frame of over 1000 bases).

Accordingly, for those applications requiring precision in the nucleotide sequence or the amino acid sequence, the present invention provides not only the generated nucleotide sequence identified as SEQ ID NO:X and the predicted translated amino acid sequence identified as SEQ ID NO:Y, but also a sample of plasmid DNA containing a human cDNA of the invention deposited with the ATCC, as set forth in Table 1. The nucleotide sequence of each deposited clone can readily be determined by sequencing the deposited clone in accordance with known methods. The predicted amino acid sequence can then be verified from such deposits. Moreover, the amino acid sequence of the protein encoded by a particular clone can also be directly determined by peptide sequencing or by expressing the protein in a suitable host cell containing the deposited human cDNA, collecting the protein, and determining its sequence.

The present invention also relates to the genes corresponding to SEQ ID NO:X, SEQ ID NO:Y, or the deposited clone. The corresponding gene can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include preparing probes or primers from the disclosed sequence and identifying or amplifying the corresponding gene from appropriate sources of genomic material.

Also provided in the present invention are species homologs. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source for the desired homologue.

The polypeptides of the invention can be prepared in any suitable manner. Such polypeptides include isolated naturally occurring polypeptides, recombinantly produced polypeptides, synthetically produced polypeptides, or polypeptides produced by a combination of these methods. Means for preparing such polypeptides are well understood in the art.

The polypeptides may be in the form of the secreted protein, including the mature form, or may be a part of a larger protein, such as a fusion protein (see below).

10

15

20

25

30

35

It is often advantageous to include an additional amino acid sequence which contains secretory or leader sequences, pro-sequences, sequences which aid in purification, such as multiple histidine residues, or an additional sequence for stability during recombinant production.

The polypeptides of the present invention are preferably provided in an isolated form, and preferably are substantially purified. A recombinantly produced version of a polypeptide, including the secreted polypeptide, can be substantially purified by the one-step method described in Smith and Johnson, Gene 67:31-40 (1988). Polypeptides of the invention also can be purified from natural or recombinant sources using antibodies of the invention raised against the secreted protein in methods which are well known in the art.

Signal Sequences

Methods for predicting whether a protein has a signal sequence, as well as the cleavage point for that sequence, are available. For instance, the method of McGeoch, Virus Res. 3:271-286 (1985), uses the information from a short N-terminal charged region and a subsequent uncharged region of the complete (uncleaved) protein. The method of von Heinje, Nucleic Acids Res. 14:4683-4690 (1986) uses the information from the residues surrounding the cleavage site, typically residues -13 to +2, where +1 indicates the amino terminus of the secreted protein. The accuracy of predicting the cleavage points of known mammalian secretory proteins for each of these methods is in the range of 75-80%. (von Heinje, supra.) However, the two methods do not always produce the same predicted cleavage point(s) for a given protein.

In the present case, the deduced amino acid sequence of the secreted polypeptide was analyzed by a computer program called SignalP (Henrik Nielsen et al., Protein Engineering 10:1-6 (1997)), which predicts the cellular location of a protein based on the amino acid sequence. As part of this computational prediction of localization, the methods of McGeoch and von Heinje are incorporated. The analysis of the amino acid sequences of the secreted proteins described herein by this program provided the results shown in Table 1.

As one of ordinary skill would appreciate, however, cleavage sites sometimes vary from organism to organism and cannot be predicted with absolute certainty. Accordingly, the present invention provides secreted polypeptides having a sequence shown in SEQ ID NO:Y which have an N-terminus beginning within 5 residues (i.e., + or - 5 residues) of the predicted cleavage point. Similarly, it is also recognized that in some cases, cleavage of the signal sequence from a secreted protein is not entirely

35

uniform, resulting in more than one secreted species. These polypeptides, and the polynucleotides encoding such polypeptides, are contemplated by the present invention.

Moreover, the signal sequence identified by the above analysis may not necessarily predict the naturally occurring signal sequence. For example, the naturally occurring signal sequence may be further upstream from the predicted signal sequence. However, it is likely that the predicted signal sequence will be capable of directing the secreted protein to the ER. These polypeptides, and the polynucleotides encoding such polypeptides, are contemplated by the present invention.

10 Polynucleotide and Polypeptide Variants

"Variant" refers to a polynucleotide or polypeptide differing from the polynucleotide or polypeptide of the present invention, but retaining essential properties thereof. Generally, variants are overall closely similar, and, in many regions, identical to the polynucleotide or polypeptide of the present invention.

"Identity" per se has an art-recognized meaning and can be calculated using 15 published techniques. (See, e.g.: (COMPUTATIONAL MOLECULAR BIOLOGY, Lesk, A.M., ed., Oxford University Press, New York, (1988); BIOCOMPUTING: INFORMATICS AND GENOME PROJECTS, Smith, D.W., ed., Academic Press, New York, (1993); COMPUTER ANALYSIS OF SEQUENCE DATA, PART I, 20 Griffin, A.M., and Griffin, H.G., eds., Humana Press, New Jersey, (1994); SEQUENCE ANALYSIS IN MOLECULAR BIOLOGY, von Heinje, G., Academic Press, (1987); and SEQUENCE ANALYSIS PRIMER, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, (1991).) While there exists a number of methods to measure identity between two polynucleotide or polypeptide sequences, the term "identity" is well known to skilled artisans. (Carillo, H., and Lipton, D., SIAM J 25 Applied Math 48:1073 (1988).) Methods commonly employed to determine identity or similarity between two sequences include, but are not limited to, those disclosed in "Guide to Huge Computers," Martin J. Bishop, ed., Academic Press, San Diego, (1994), and Carillo, H., and Lipton, D., SIAM J Applied Math 48:1073 (1988). Methods for aligning polynucleotides or polypeptides are codified in computer 30 programs, including the GCG program package (Devereux, J., et al., Nucleic Acids Research (1984) 12(1):387 (1984)), BLASTP, BLASTN, FASTA (Atschul, S.F. et al., J. Molec. Biol. 215:403 (1990), Bestfit program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park,

575 Science Drive, Madison, WI 53711 (using the local homology algorithm of Smith

and Waterman, Advances in Applied Mathematics 2:482-489 (1981).)

When using any of the sequence alignment programs to determine whether a particular sequence is, for instance, 95% identical to a reference sequence, the parameters are set so that the percentage of identity is calculated over the full length of the reference polynucleotide and that gaps in identity of up to 5% of the total number of nucleotides in the reference polynucleotide are allowed.

5

10

15

20

25

30

35

A preferred method for determing the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. (Comp. App. Biosci. 6:237-245 (1990).) The term "sequence" includes nucleotide and amino acid sequences. In a sequence alignment the query and subject sequences are either both nucleotide sequences or both amino acid sequences. The result of said global sequence alignment is in percent identity. Preferred parameters used in a FASTDB search of a DNA sequence to calculate percent identity are: Matrix=Unitary, k-tuple=4, Mismatch Penalty=1, Joining Penalty=30, Randomization Group Length=0, and Cutoff Score=1, Gap Penalty=5, Gap Size Penalty 0.05, and Window Size=500 or query sequence length in nucleotide bases, whichever is shorter. Preferred parameters employed to calculate percent identity and similarity of an amino acid alignment are: Matrix=PAM 150, k-tuple=2, Mismatch Penalty=1, Joining Penalty=20, Randomization Group Length=0, Cutoff Score=1, Gap Penalty=5, Gap Size Penalty=0.05, and Window Size=500 or query sequence length in amino acid residues, whichever is shorter.

As an illustration, a polynucleotide having a nucleotide sequence of at least 95% "identity" to a sequence contained in SEQ ID NO:X or the cDNA contained in the deposited clone, means that the polynucleotide is identical to a sequence contained in SEQ ID NO:X or the cDNA except that the polynucleotide sequence may include up to five point mutations per each 100 nucleotides of the total length (not just within a given 100 nucleotide stretch). In other words, to obtain a polynucleotide having a nucleotide sequence at least 95% identical to SEQ ID NO:X or the deposited clone, up to 5% of the nucleotides in the sequence contained in SEQ ID NO:X or the cDNA can be deleted, inserted, or substituted with other nucleotides. These changes may occur anywhere throughout the polynucleotide.

Further embodiments of the present invention include polynucleotides having at least 85% identity, more preferably at least 90% identity, and most preferably at least 95%, 96%, 97%, 98% or 99% identity to a sequence contained in SEQ ID NO:X or the cDNA contained in the deposited clone. Of course, due to the degeneracy of the genetic code, one of ordinary skill in the art will immediately recognize that a large number of the polynucleotides having at least 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity

10

15

20

25

30

35

will encode a polypeptide identical to an amino acid sequence contained in SEQ ID NO:Y or the expressed protein produced by the deposited clone.

171

Similarly, by a polypeptide having an amino acid sequence having at least, for example, 95% "identity" to a reference polypeptide, is intended that the amino acid sequence of the polypeptide is identical to the reference polypeptide except that the polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the total length of the reference polypeptide. In other words, to obtain a polypeptide having an amino acid sequence at least 95% identical to a reference amino acid sequence, up to 5% of the amino acid residues in the reference sequence may be deleted or substituted with another amino acid, or a number of amino acids up to 5% of the total amino acid residues in the reference sequence may be inserted into the reference sequence. These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence.

Further embodiments of the present invention include polypeptides having at least 80% identity, more preferably at least 85% identity, more preferably at least 90% identity, and most preferably at least 95%, 96%, 97%, 98% or 99% identity to an amino acid sequence contained in SEQ ID NO:Y or the expressed protein produced by the deposited clone. Preferably, the above polypeptides should exhibit at least one biological activity of the protein.

In a preferred embodiment, polypeptides of the present invention include polypeptides having at least 90% similarity, more preferably at least 95% similarity, and still more preferably at least 96%, 97%, 98%, or 99% similarity to an amino acid sequence contained in SEQ ID NO:Y or the expressed protein produced by the deposited clone.

The variants may contain alterations in the coding regions, non-coding regions, or both. Especially preferred are polynucleotide variants containing alterations which produce silent substitutions, additions, or deletions, but do not alter the properties or activities of the encoded polypeptide. Nucleotide variants produced by silent substitutions due to the degeneracy of the genetic code are preferred. Moreover, variants in which 5-10, 1-5, or 1-2 amino acids are substituted, deleted, or added in any combination are also preferred. Polynucleotide variants can be produced for a variety of reasons, e.g., to optimize codon expression for a particular host (change codons in the human mRNA to those preferred by a bacterial host such as E. coli).

Naturally occurring variants are called "allelic variants," and refer to one of several alternate forms of a gene occupying a given locus on a chromosome of an

10

15

20

25

30

35

organism. (Genes II, Lewin, B., ed., John Wiley & Sons, New York (1985).) These allelic variants can vary at either the polynucleotide and/or polypeptide level. Alternatively, non-naturally occurring variants may be produced by mutagenesis techniques or by direct synthesis.

Using known methods of protein engineering and recombinant DNA technology, variants may be generated to improve or alter the characteristics of the polypeptides of the present invention. For instance, one or more amino acids can be deleted from the N-terminus or C-terminus of the secreted protein without substantial loss of biological function. The authors of Ron et al., J. Biol. Chem. 268: 2984-2988 (1993), reported variant KGF proteins having heparin binding activity even after deleting 3, 8, or 27 amino-terminal amino acid residues. Similarly, Interferon gamma exhibited up to ten times higher activity after deleting 8-10 amino acid residues from the carboxy terminus of this protein. (Dobeli et al., J. Biotechnology 7:199-216 (1988).)

Moreover, ample evidence demonstrates that variants often retain a biological activity similar to that of the naturally occurring protein. For example, Gayle and coworkers (J. Biol. Chem 268:22105-22111 (1993)) conducted extensive mutational analysis of human cytokine IL-1a. They used random mutagenesis to generate over 3,500 individual IL-1a mutants that averaged 2.5 amino acid changes per variant over the entire length of the molecule. Multiple mutations were examined at every possible amino acid position. The investigators found that "[m]ost of the molecule could be altered with little effect on either [binding or biological activity]." (See, Abstract.) In fact, only 23 unique amino acid sequences, out of more than 3,500 nucleotide sequences examined, produced a protein that significantly differed in activity from wild-type.

Furthermore, even if deleting one or more amino acids from the N-terminus or C-terminus of a polypeptide results in modification or loss of one or more biological functions, other biological activities may still be retained. For example, the ability of a deletion variant to induce and/or to bind antibodies which recognize the secreted form will likely be retained when less than the majority of the residues of the secreted form are removed from the N-terminus or C-terminus. Whether a particular polypeptide lacking N- or C-terminal residues of a protein retains such immunogenic activities can readily be determined by routine methods described herein and otherwise known in the art.

Thus, the invention further includes polypeptide variants which show substantial biological activity. Such variants include deletions, insertions, inversions, repeats, and substitutions selected according to general rules known in the art so as have little effect on activity. For example, guidance concerning how to make

10

15

20

25

30

35

phenotypically silent amino acid substitutions is provided in Bowie, J. U. et al., Science 247:1306-1310 (1990), wherein the authors indicate that there are two main strategies for studying the tolerance of an amino acid sequence to change.

173

The first strategy exploits the tolerance of amino acid substitutions by natural selection during the process of evolution. By comparing amino acid sequences in different species, conserved amino acids can be identified. These conserved amino acids are likely important for protein function. In contrast, the amino acid positions where substitutions have been tolerated by natural selection indicates that these positions are not critical for protein function. Thus, positions tolerating amino acid substitution could be modified while still maintaining biological activity of the protein.

The second strategy uses genetic engineering to introduce amino acid changes at specific positions of a cloned gene to identify regions critical for protein function. For example, site directed mutagenesis or alanine-scanning mutagenesis (introduction of single alanine mutations at every residue in the molecule) can be used. (Cunningham and Wells, Science 244:1081-1085 (1989).) The resulting mutant molecules can then be tested for biological activity.

As the authors state, these two strategies have revealed that proteins are surprisingly tolerant of amino acid substitutions. The authors further indicate which amino acid changes are likely to be permissive at certain amino acid positions in the protein. For example, most buried (within the tertiary structure of the protein) amino acid residues require nonpolar side chains, whereas few features of surface side chains are generally conserved. Moreover, tolerated conservative amino acid substitutions involve replacement of the aliphatic or hydrophobic amino acids Ala, Val, Leu and Ile; replacement of the hydroxyl residues Ser and Thr; replacement of the acidic residues Asp and Glu; replacement of the amide residues Asn and Gln, replacement of the basic residues Lys, Arg, and His; replacement of the aromatic residues Phe, Tyr, and Trp, and replacement of the small-sized amino acids Ala, Ser, Thr, Met, and Gly.

Besides conservative amino acid substitution, variants of the present invention include (i) substitutions with one or more of the non-conserved amino acid residues, where the substituted amino acid residues may or may not be one encoded by the genetic code, or (ii) substitution with one or more of amino acid residues having a substituent group, or (iii) fusion of the mature polypeptide with another compound, such as a compound to increase the stability and/or solubility of the polypeptide (for example, polyethylene glycol), or (iv) fusion of the polypeptide with additional amino acids, such as an IgG Fc fusion region peptide, or leader or secretory sequence, or a sequence facilitating purification. Such variant polypeptides are deemed to be within the scope of those skilled in the art from the teachings herein.

10

15

20

25

30

35

For example, polypeptide variants containing amino acid substitutions of charged amino acids with other charged or neutral amino acids may produce proteins with improved characteristics, such as less aggregation. Aggregation of pharmaceutical formulations both reduces activity and increases clearance due to the aggregate's immunogenic activity. (Pinckard et al., Clin. Exp. Immunol. 2:331-340 (1967); Robbins et al., Diabetes 36: 838-845 (1987); Cleland et al., Crit. Rev. Therapeutic Drug Carrier Systems 10:307-377 (1993).)

Polynucleotide and Polypeptide Fragments

In the present invention, a "polynucleotide fragment" refers to a short polynucleotide having a nucleic acid sequence contained in the deposited clone or shown in SEQ ID NO:X. The short nucleotide fragments are preferably at least about 15 nt, and more preferably at least about 20 nt, still more preferably at least about 30 nt, and even more preferably, at least about 40 nt in length. A fragment "at least 20 nt in length," for example, is intended to include 20 or more contiguous bases from the cDNA sequence contained in the deposited clone or the nucleotide sequence shown in SEQ ID NO:X. These nucleotide fragments are useful as diagnostic probes and primers as discussed herein. Of course, larger fragments (e.g., 50, 150, 500, 600, 2000 nucleotides) are preferred.

Moreover, representative examples of polynucleotide fragments of the invention, include, for example, fragments having a sequence from about nucleotide number 1-50, 51-100, 101-150, 151-200, 201-250, 251-300, 301-350, 351-400, 401-450, 451-500, 501-550, 551-600, 651-700, and 701 to the end of SEQ ID NO:X or the cDNA contained in the deposited clone. In this context "about" includes the particularly recited ranges, larger or smaller by several (5, 4, 3, 2, or 1) nucleotides, at either terminus or at both termini. Preferably, these fragments encode a polypeptide which has biological activity.

In the present invention, a "polypeptide fragment" refers to a short amino acid sequence contained in SEQ ID NO:Y or encoded by the cDNA contained in the deposited clone. Protein fragments may be "free-standing," or comprised within a larger polypeptide of which the fragment forms a part or region, most preferably as a single continuous region. Representative examples of polypeptide fragments of the invention, include, for example, fragments from about amino acid number 1-20, 21-40, 41-60, 61-80, 81-100, 102-120, 121-140, 141-160, and 161 to the end of the coding region. Moreover, polypeptide fragments can be about 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, or 150 amino acids in length. In this context "about"

10

15

20

25

30

35

includes the particularly recited ranges, larger or smaller by several (5, 4, 3, 2, or 1) amino acids, at either extreme or at both extremes.

Preferred polypeptide fragments include the secreted protein as well as the mature form. Further preferred polypeptide fragments include the secreted protein or the mature form having a continuous series of deleted residues from the amino or the carboxy terminus, or both. For example, any number of amino acids, ranging from 1-60, can be deleted from the amino terminus of either the secreted polypeptide or the mature form. Similarly, any number of amino acids, ranging from 1-30, can be deleted from the carboxy terminus of the secreted protein or mature form. Furthermore, any combination of the above amino and carboxy terminus deletions are preferred. Similarly, polynucleotide fragments encoding these polypeptide fragments are also preferred.

Also preferred are polypeptide and polynucleotide fragments characterized by structural or functional domains, such as fragments that comprise alpha-helix and alpha-helix forming regions, beta-sheet and beta-sheet-forming regions, turn and turn-forming regions, coil and coil-forming regions, hydrophilic regions, hydrophobic regions, alpha amphipathic regions, beta amphipathic regions, flexible regions, surface-forming regions, substrate binding region, and high antigenic index regions. Polypeptide fragments of SEQ ID NO:Y falling within conserved domains are specifically contemplated by the present invention. Moreover, polynucleotide fragments encoding these domains are also contemplated.

Other preferred fragments are biologically active fragments. Biologically active fragments are those exhibiting activity similar, but not necessarily identical, to an activity of the polypeptide of the present invention. The biological activity of the fragments may include an improved desired activity, or a decreased undesirable activity.

Epitopes & Antibodies

In the present invention, "epitopes" refer to polypeptide fragments having antigenic or immunogenic activity in an animal, especially in a human. A preferred embodiment of the present invention relates to a polypeptide fragment comprising an epitope, as well as the polynucleotide encoding this fragment. A region of a protein molecule to which an antibody can bind is defined as an "antigenic epitope." In contrast, an "immunogenic epitope" is defined as a part of a protein that elicits an antibody response. (See, for instance, Geysen et al., Proc. Natl. Acad. Sci. USA 81:3998-4002 (1983).)

Fragments which function as epitopes may be produced by any conventional means. (See, e.g., Houghten, R. A., Proc. Natl. Acad. Sci. USA 82:5131-5135 (1985) further described in U.S. Patent No. 4,631,211.)

In the present invention, antigenic epitopes preferably contain a sequence of at least seven, more preferably at least nine, and most preferably between about 15 to about 30 amino acids. Antigenic epitopes are useful to raise antibodies, including monoclonal antibodies, that specifically bind the epitope. (See, for instance, Wilson et al., Cell 37:767-778 (1984); Sutcliffe, J. G. et al., Science 219:660-666 (1983).)

Similarly, immunogenic epitopes can be used to induce antibodies according to methods well known in the art. (See, for instance, Sutcliffe et al., supra; Wilson et al., supra; Chow, M. et al., Proc. Natl. Acad. Sci. USA 82:910-914; and Bittle, F. J. et al., J. Gen. Virol. 66:2347-2354 (1985).) A preferred immunogenic epitope includes the secreted protein. The immunogenic epitopes may be presented together with a carrier protein, such as an albumin, to an animal system (such as rabbit or mouse) or, if it is long enough (at least about 25 amino acids), without a carrier. However, immunogenic epitopes comprising as few as 8 to 10 amino acids have been shown to be sufficient to raise antibodies capable of binding to, at the very least, linear epitopes in a denatured polypeptide (e.g., in Western blotting.)

As used herein, the term "antibody" (Ab) or "monoclonal antibody" (Mab) is meant to include intact molecules as well as antibody fragments (such as, for example, Fab and F(ab')2 fragments) which are capable of specifically binding to protein. Fab and F(ab')2 fragments lack the Fc fragment of intact antibody, clear more rapidly from the circulation, and may have less non-specific tissue binding than an intact antibody. (Wahl et al., J. Nucl. Med. 24:316-325 (1983).) Thus, these fragments are preferred, as well as the products of a FAB or other immunoglobulin expression library. Moreover, antibodies of the present invention include chimeric, single chain, and humanized antibodies.

Fusion Proteins

5

10

15

20

25

30

35

Any polypeptide of the present invention can be used to generate fusion proteins. For example, the polypeptide of the present invention, when fused to a second protein, can be used as an antigenic tag. Antibodies raised against the polypeptide of the present invention can be used to indirectly detect the second protein by binding to the polypeptide. Moreover, because secreted proteins target cellular locations based on trafficking signals, the polypeptides of the present invention can be used as targeting molecules once fused to other proteins.

10

15

20

25

30

35

Examples of domains that can be fused to polypeptides of the present invention include not only heterologous signal sequences, but also other heterologous functional regions. The fusion does not necessarily need to be direct, but may occur through linker sequences.

Moreover, fusion proteins may also be engineered to improve characteristics of the polypeptide of the present invention. For instance, a region of additional amino acids, particularly charged amino acids, may be added to the N-terminus of the polypeptide to improve stability and persistence during purification from the host cell or subsequent handling and storage. Also, peptide moieties may be added to the polypeptide to facilitate purification. Such regions may be removed prior to final preparation of the polypeptide. The addition of peptide moieties to facilitate handling of polypeptides are familiar and routine techniques in the art.

Moreover, polypeptides of the present invention, including fragments, and specifically epitopes, can be combined with parts of the constant domain of immunoglobulins (IgG), resulting in chimeric polypeptides. These fusion proteins facilitate purification and show an increased half-life in vivo. One reported example describes chimeric proteins consisting of the first two domains of the human CD4-polypeptide and various domains of the constant regions of the heavy or light chains of mammalian immunoglobulins. (EP A 394,827; Traunecker et al., Nature 331:84-86 (1988).) Fusion proteins having disulfide-linked dimeric structures (due to the IgG) can also be more efficient in binding and neutralizing other molecules, than the monomeric secreted protein or protein fragment alone. (Fountoulakis et al., J. Biochem. 270:3958-3964 (1995).)

Similarly, EP-A-O 464 533 (Canadian counterpart 2045869) discloses fusion proteins comprising various portions of constant region of immunoglobulin molecules together with another human protein or part thereof. In many cases, the Fc part in a fusion protein is beneficial in therapy and diagnosis, and thus can result in, for example, improved pharmacokinetic properties. (EP-A 0232 262.) Alternatively, deleting the Fc part after the fusion protein has been expressed, detected, and purified, would be desired. For example, the Fc portion may hinder therapy and diagnosis if the fusion protein is used as an antigen for immunizations. In drug discovery, for example, human proteins, such as hIL-5, have been fused with Fc portions for the purpose of high-throughput screening assays to identify antagonists of hIL-5. (See, D. Bennett et al., J. Molecular Recognition 8:52-58 (1995); K. Johanson et al., J. Biol. Chem. 270:9459-9471 (1995).)

Moreover, the polypeptides of the present invention can be fused to marker sequences, such as a peptide which facilitates purification of the fused polypeptide. In

preferred embodiments, the marker amino acid sequence is a hexa-histidine peptide, such as the tag provided in a pQE vector (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, CA, 91311), among others, many of which are commercially available. As described in Gentz et al., Proc. Natl. Acad. Sci. USA 86:821-824 (1989), for instance, hexa-histidine provides for convenient purification of the fusion protein. Another peptide tag useful for purification, the "HA" tag, corresponds to an epitope derived from the influenza hemagglutinin protein. (Wilson et al., Cell 37:767 (1984).)

Thus, any of these above fusions can be engineered using the polynucleotides or the polypeptides of the claimed invention.

10

15

20

25

30

35

5

Vectors, Host Cells, and Protein Production

The present invention also relates to vectors containing the polynucleotide of the present invention, host cells, and the production of polypeptides by recombinant techniques. The vector may be, for example, a phage, plasmid, viral, or retroviral vector. Retroviral vectors may be replication competent or replication defective. In the latter case, viral propagation generally will occur only in complementing host cells.

The polynucleotides may be joined to a vector containing a selectable marker for propagation in a host. Generally, a plasmid vector is introduced in a precipitate, such as a calcium phosphate precipitate, or in a complex with a charged lipid. If the vector is a virus, it may be packaged in vitro using an appropriate packaging cell line and then transduced into host cells.

The polynucleotide insert should be operatively linked to an appropriate promoter, such as the phage lambda PL promoter, the E. coli lac, trp, phoA and tac promoters, the SV40 early and late promoters and promoters of retroviral LTRs, to name a few. Other suitable promoters will be known to the skilled artisan. The expression constructs will further contain sites for transcription initiation, termination, and, in the transcribed region, a ribosome binding site for translation. The coding portion of the transcripts expressed by the constructs will preferably include a translation initiating codon at the beginning and a termination codon (UAA, UGA or UAG) appropriately positioned at the end of the polypeptide to be translated.

As indicated, the expression vectors will preferably include at least one selectable marker. Such markers include dihydrofolate reductase, G418 or neomycin resistance for eukaryotic cell culture and tetracycline, kanamycin or ampicillin resistance genes for culturing in E. coli and other bacteria. Representative examples of appropriate hosts include, but are not limited to, bacterial cells, such as E. coli, Streptomyces and Salmonella typhimurium cells; fungal cells, such as yeast cells; insect cells such as Drosophila S2 and Spodoptera Sf9 cells; animal cells such as CHO, COS,

10

15

20

. 25

30

35

293, and Bowes melanoma cells; and plant cells. Appropriate culture mediums and conditions for the above-described host cells are known in the art.

Among vectors preferred for use in bacteria include pQE70, pQE60 and pQE-9, available from QIAGEN, Inc.; pBluescript vectors, Phagescript vectors, pNH8A, pNH16a, pNH18A, pNH46A, available from Stratagene Cloning Systems, Inc.; and ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 available from Pharmacia Biotech, Inc. Among preferred eukaryotic vectors are pWLNEO, pSV2CAT, pOG44, pXT1 and pSG available from Stratagene; and pSVK3, pBPV, pMSG and pSVL available from Pharmacia. Other suitable vectors will be readily apparent to the skilled artisan.

Introduction of the construct into the host cell can be effected by calcium phosphate transfection, DEAE-dextran mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection, or other methods. Such methods are described in many standard laboratory manuals, such as Davis et al., Basic Methods In Molecular Biology (1986). It is specifically contemplated that the polypeptides of the present invention may in fact be expressed by a host cell lacking a recombinant vector.

A polypeptide of this invention can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Most preferably, high performance liquid chromatography ("HPLC") is employed for purification.

Polypeptides of the present invention, and preferably the secreted form, can also be recovered from: products purified from natural sources, including bodily fluids, tissues and cells, whether directly isolated or cultured; products of chemical synthetic procedures; and products produced by recombinant techniques from a prokaryotic or eukaryotic host, including, for example, bacterial, yeast, higher plant, insect, and mammalian cells. Depending upon the host employed in a recombinant production procedure, the polypeptides of the present invention may be glycosylated or may be non-glycosylated. In addition, polypeptides of the invention may also include an initial modified methionine residue, in some cases as a result of host-mediated processes. Thus, it is well known in the art that the N-terminal methionine encoded by the translation initiation codon generally is removed with high efficiency from any protein after translation in all eukaryotic cells. While the N-terminal methionine on most proteins also is efficiently removed in most prokaryotes, for some proteins, this prokaryotic removal process is inefficient, depending on the nature of the amino acid to which the N-terminal methionine is covalently linked.

10

15

20

25

30

35

Uses of the Polynucleotides

Each of the polynucleotides identified herein can be used in numerous ways as reagents. The following description should be considered exemplary and utilizes known techniques.

The polynucleotides of the present invention are useful for chromosome identification. There exists an ongoing need to identify new chromosome markers, since few chromosome marking reagents, based on actual sequence data (repeat polymorphisms), are presently available. Each polynucleotide of the present invention can be used as a chromosome marker.

Briefly, sequences can be mapped to chromosomes by preparing PCR primers (preferably 15-25 bp) from the sequences shown in SEQ ID NO:X. Primers can be selected using computer analysis so that primers do not span more than one predicted exon in the genomic DNA. These primers are then used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene corresponding to the SEQ ID NO:X will yield an amplified fragment.

Similarly, somatic hybrids provide a rapid method of PCR mapping the polynucleotides to particular chromosomes. Three or more clones can be assigned per day using a single thermal cycler. Moreover, sublocalization of the polynucleotides can be achieved with panels of specific chromosome fragments. Other gene mapping strategies that can be used include in situ hybridization, prescreening with labeled flow-sorted chromosomes, and preselection by hybridization to construct chromosome specific-cDNA libraries.

Precise chromosomal location of the polynucleotides can also be achieved using fluorescence in situ hybridization (FISH) of a metaphase chromosomal spread. This technique uses polynucleotides as short as 500 or 600 bases; however, polynucleotides 2,000-4,000 bp are preferred. For a review of this technique, see Verma et al., "Human Chromosomes: a Manual of Basic Techniques," Pergamon Press, New York (1988).

For chromosome mapping, the polynucleotides can be used individually (to mark a single chromosome or a single site on that chromosome) or in panels (for marking multiple sites and/or multiple chromosomes). Preferred polynucleotides correspond to the noncoding regions of the cDNAs because the coding sequences are more likely conserved within gene families, thus increasing the chance of cross hybridization during chromosomal mapping.

Once a polynucleotide has been mapped to a precise chromosomal location, the physical position of the polynucleotide can be used in linkage analysis. Linkage

10

15

20

25

30

35

analysis establishes coinheritance between a chromosomal location and presentation of a particular disease. (Disease mapping data are found, for example, in V. McKusick, Mendelian Inheritance in Man (available on line through Johns Hopkins University Welch Medical Library).) Assuming 1 megabase mapping resolution and one gene per 20 kb, a cDNA precisely localized to a chromosomal region associated with the disease could be one of 50-500 potential causative genes.

Thus, once coinheritance is established, differences in the polynucleotide and the corresponding gene between affected and unaffected individuals can be examined. First, visible structural alterations in the chromosomes, such as deletions or translocations, are examined in chromosome spreads or by PCR. If no structural alterations exist, the presence of point mutations are ascertained. Mutations observed in some or all affected individuals, but not in normal individuals, indicates that the mutation may cause the disease. However, complete sequencing of the polypeptide and the corresponding gene from several normal individuals is required to distinguish the mutation from a polymorphism. If a new polymorphism is identified, this polymorphic polypeptide can be used for further linkage analysis.

Furthermore, increased or decreased expression of the gene in affected individuals as compared to unaffected individuals can be assessed using polynucleotides of the present invention. Any of these alterations (altered expression, chromosomal rearrangement, or mutation) can be used as a diagnostic or prognostic marker.

In addition to the foregoing, a polynucleotide can be used to control gene expression through triple helix formation or antisense DNA or RNA. Both methods rely on binding of the polynucleotide to DNA or RNA. For these techniques, preferred polynucleotides are usually 20 to 40 bases in length and complementary to either the region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense - Okano, J. Neurochem. 56:560 (1991); Oligodeoxy-nucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988).) Triple helix formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques are effective in model systems, and the information disclosed herein can be used to design antisense or triple helix polynucleotides in an effort to treat disease.

Polynucleotides of the present invention are also useful in gene therapy. One goal of gene therapy is to insert a normal gene into an organism having a defective gene, in an effort to correct the genetic defect. The polynucleotides disclosed in the

10

15

20

25

30

35

PCT/US98/04493

present invention offer a means of targeting such genetic defects in a highly accurate manner. Another goal is to insert a new gene that was not present in the host genome, thereby producing a new trait in the host cell.

The polynucleotides are also useful for identifying individuals from minute biological samples. The United States military, for example, is considering the use of restriction fragment length polymorphism (RFLP) for identification of its personnel. In this technique, an individual's genomic DNA is digested with one or more restriction enzymes, and probed on a Southern blot to yield unique bands for identifying personnel. This method does not suffer from the current limitations of "Dog Tags" which can be lost, switched, or stolen, making positive identification difficult. The polynucleotides of the present invention can be used as additional DNA markers for RFLP.

The polynucleotides of the present invention can also be used as an alternative to RFLP, by determining the actual base-by-base DNA sequence of selected portions of an individual's genome. These sequences can be used to prepare PCR primers for amplifying and isolating such selected DNA, which can then be sequenced. Using this technique, individuals can be identified because each individual will have a unique set of DNA sequences. Once an unique ID database is established for an individual, positive identification of that individual, living or dead, can be made from extremely small tissue samples.

Forensic biology also benefits from using DNA-based identification techniques as disclosed herein. DNA sequences taken from very small biological samples such as tissues, e.g., hair or skin, or body fluids, e.g., blood, saliva, semen, etc., can be amplified using PCR. In one prior art technique, gene sequences amplified from polymorphic loci, such as DQa class II HLA gene, are used in forensic biology to identify individuals. (Erlich, H., PCR Technology, Freeman and Co. (1992).) Once these specific polymorphic loci are amplified, they are digested with one or more restriction enzymes, yielding an identifying set of bands on a Southern blot probed with DNA corresponding to the DQa class II HLA gene. Similarly, polynucleotides of the present invention can be used as polymorphic markers for forensic purposes.

There is also a need for reagents capable of identifying the source of a particular tissue. Such need arises, for example, in forensics when presented with tissue of unknown origin. Appropriate reagents can comprise, for example, DNA probes or primers specific to particular tissue prepared from the sequences of the present invention. Panels of such reagents can identify tissue by species and/or by organ type. In a similar fashion, these reagents can be used to screen tissue cultures for contamination.

10

15

20

25

30

35

In the very least, the polynucleotides of the present invention can be used as molecular weight markers on Southern gels, as diagnostic probes for the presence of a specific mRNA in a particular cell type, as a probe to "subtract-out" known sequences in the process of discovering novel polynucleotides, for selecting and making oligomers for attachment to a "gene chip" or other support, to raise anti-DNA antibodies using DNA immunization techniques, and as an antigen to elicit an immune response.

Uses of the Polypeptides

Each of the polypeptides identified herein can be used in numerous ways. The following description should be considered exemplary and utilizes known techniques.

A polypeptide of the present invention can be used to assay protein levels in a biological sample using antibody-based techniques. For example, protein expression in tissues can be studied with classical immunohistological methods. (Jalkanen, M., et al., J. Cell. Biol. 101:976-985 (1985); Jalkanen, M., et al., J. Cell. Biol. 105:3087-3096 (1987).) Other antibody-based methods useful for detecting protein gene expression include immunoassays, such as the enzyme linked immunosorbent assay (ELISA) and the radioimmunoassay (RIA). Suitable antibody assay labels are known in the art and include enzyme labels, such as, glucose oxidase, and radioisotopes, such as iodine (125I, 121I), carbon (14C), sulfur (35S), tritium (3H), indium (112In), and technetium (99mTc), and fluorescent labels, such as fluorescein and rhodamine, and biotin.

In addition to assaying secreted protein levels in a biological sample, proteins can also be detected in vivo by imaging. Antibody labels or markers for in vivo imaging of protein include those detectable by X-radiography, NMR or ESR. For X-radiography, suitable labels include radioisotopes such as barium or cesium, which emit detectable radiation but are not overtly harmful to the subject. Suitable markers for NMR and ESR include those with a detectable characteristic spin, such as deuterium, which may be incorporated into the antibody by labeling of nutrients for the relevant hybridoma.

A protein-specific antibody or antibody fragment which has been labeled with an appropriate detectable imaging moiety, such as a radioisotope (for example, 131I, 112In, 99mTc), a radio-opaque substance, or a material detectable by nuclear magnetic resonance, is introduced (for example, parenterally, subcutaneously, or intraperitoneally) into the mammal. It will be understood in the art that the size of the subject and the imaging system used will determine the quantity of imaging moiety needed to produce diagnostic images. In the case of a radioisotope moiety, for a human subject, the quantity of radioactivity injected will normally range from about 5 to 20

10

15

20

25

30

35

millicuries of 99mTc. The labeled antibody or antibody fragment will then preferentially accumulate at the location of cells which contain the specific protein. In vivo tumor imaging is described in S.W. Burchiel et al., "Immunopharmacokinetics of Radiolabeled Antibodies and Their Fragments." (Chapter 13 in Tumor Imaging: The Radiochemical Detection of Cancer, S.W. Burchiel and B. A. Rhodes, eds., Masson Publishing Inc. (1982).)

Thus, the invention provides a diagnostic method of a disorder, which involves (a) assaying the expression of a polypeptide of the present invention in cells or body fluid of an individual; (b) comparing the level of gene expression with a standard gene expression level, whereby an increase or decrease in the assayed polypeptide gene expression level compared to the standard expression level is indicative of a disorder.

Moreover, polypeptides of the present invention can be used to treat disease. For example, patients can be administered a polypeptide of the present invention in an effort to replace absent or decreased levels of the polypeptide (e.g., insulin), to supplement absent or decreased levels of a different polypeptide (e.g., hemoglobin S for hemoglobin B), to inhibit the activity of a polypeptide (e.g., an oncogene), to activate the activity of a polypeptide (e.g., by binding to a receptor), to reduce the activity of a membrane bound receptor by competing with it for free ligand (e.g., soluble TNF receptors used in reducing inflammation), or to bring about a desired response (e.g., blood vessel growth).

Similarly, antibodies directed to a polypeptide of the present invention can also be used to treat disease. For example, administration of an antibody directed to a polypeptide of the present invention can bind and reduce overproduction of the polypeptide. Similarly, administration of an antibody can activate the polypeptide, such as by binding to a polypeptide bound to a membrane (receptor).

At the very least, the polypeptides of the present invention could be used as molecular weight markers on SDS-PAGE gels or on molecular sieve gel filtration columns using methods well known to those of skill in the art. Polypeptides can also be used to raise antibodies, which in turn are used to measure protein expression from a recombinant cell, as a way of assessing transformation of the host cell. Moreover, the polypeptides of the present invention can be used to test the following biological activities.

Biological Activities

The polynucleotides and polypeptides of the present invention can be used in assays to test for one or more biological activities. If these polynucleotides and polypeptides do exhibit activity in a particular assay, it is likely that these molecules

may be involved in the diseases associated with the biological activity. Thus, the polynucleotides and polypeptides could be used to treat the associated disease.

Immune Activity

5

10

15

20

25

30

35

A polypeptide or polynucleotide of the present invention may be useful in treating deficiencies or disorders of the immune system, by activating or inhibiting the proliferation, differentiation, or mobilization (chemotaxis) of immune cells. Immune cells develop through a process called hematopoiesis, producing myeloid (platelets, red blood cells, neutrophils, and macrophages) and lymphoid (B and T lymphocytes) cells from pluripotent stem cells. The etiology of these immune deficiencies or disorders may be genetic, somatic, such as cancer or some autoimmune disorders, acquired (e.g., by chemotherapy or toxins), or infectious. Moreover, a polynucleotide or polypeptide of the present invention can be used as a marker or detector of a particular immune system disease or disorder.

A polynucleotide or polypeptide of the present invention may be useful in treating or detecting deficiencies or disorders of hematopoietic cells. A polypeptide or polynucleotide of the present invention could be used to increase differentiation and proliferation of hematopoietic cells, including the pluripotent stem cells, in an effort to treat those disorders associated with a decrease in certain (or many) types hematopoietic cells. Examples of immunologic deficiency syndromes include, but are not limited to: blood protein disorders (e.g. agammaglobulinemia, dysgammaglobulinemia), ataxia telangiectasia, common variable immunodeficiency, Digeorge Syndrome, HIV infection, HTLV-BLV infection, leukocyte adhesion deficiency syndrome, lymphopenia, phagocyte bactericidal dysfunction, severe combined immunodeficiency (SCIDs), Wiskott-Aldrich Disorder, anemia, thrombocytopenia, or hemoglobinuria.

Moreover, a polypeptide or polynucleotide of the present invention could also be used to modulate hemostatic (the stopping of bleeding) or thrombolytic activity (clot formation). For example, by increasing hemostatic or thrombolytic activity, a polynucleotide or polypeptide of the present invention could be used to treat blood coagulation disorders (e.g., afibrinogenemia, factor deficiencies), blood platelet disorders (e.g. thrombocytopenia), or wounds resulting from trauma, surgery, or other causes. Alternatively, a polynucleotide or polypeptide of the present invention that can decrease hemostatic or thrombolytic activity could be used to inhibit or dissolve clotting. These molecules could be important in the treatment of heart attacks (infarction), strokes, or scarring.

A polynucleotide or polypeptide of the present invention may also be useful in treating or detecting autoimmune disorders. Many autoimmune disorders result from

10

15

20

25

30

35

inappropriate recognition of self as foreign material by immune cells. This inappropriate recognition results in an immune response leading to the destruction of the host tissue. Therefore, the administration of a polypeptide or polynucleotide of the present invention that inhibits an immune response, particularly the proliferation, differentiation, or chemotaxis of T-cells, may be an effective therapy in preventing autoimmune disorders.

Examples of autoimmune disorders that can be treated or detected by the present invention include, but are not limited to: Addison's Disease, hemolytic anemia, antiphospholipid syndrome, rheumatoid arthritis, dermatitis, allergic encephalomyelitis, glomerulonephritis, Goodpasture's Syndrome, Graves' Disease, Multiple Sclerosis, Myasthenia Gravis, Neuritis, Ophthalmia, Bullous Pemphigoid, Pemphigus, Polyendocrinopathies, Purpura, Reiter's Disease, Stiff-Man Syndrome, Autoimmune Thyroiditis, Systemic Lupus Erythematosus, Autoimmune Pulmonary Inflammation, Guillain-Barre Syndrome, insulin dependent diabetes mellitis, and autoimmune inflammatory eye disease.

Similarly, allergic reactions and conditions, such as asthma (particularly allergic asthma) or other respiratory problems, may also be treated by a polypeptide or polynucleotide of the present invention. Moreover, these molecules can be used to treat anaphylaxis, hypersensitivity to an antigenic molecule, or blood group incompatibility.

A polynucleotide or polypeptide of the present invention may also be used to treat and/or prevent organ rejection or graft-versus-host disease (GVHD). Organ rejection occurs by host immune cell destruction of the transplanted tissue through an immune response. Similarly, an immune response is also involved in GVHD, but, in this case, the foreign transplanted immune cells destroy the host tissues. The administration of a polypeptide or polynucleotide of the present invention that inhibits an immune response, particularly the proliferation, differentiation, or chemotaxis of T-cells, may be an effective therapy in preventing organ rejection or GVHD.

Similarly, a polypeptide or polynucleotide of the present invention may also be used to modulate inflammation. For example, the polypeptide or polynucleotide may inhibit the proliferation and differentiation of cells involved in an inflammatory response. These molecules can be used to treat inflammatory conditions, both chronic and acute conditions, including inflammation associated with infection (e.g., septic shock, sepsis, or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine induced lung injury, inflammatory bowel disease, Crohn's disease, or resulting from over production of cytokines (e.g., TNF or IL-1.)

10

15

20

25

30

35

Hyperproliferative Disorders

A polypeptide or polynucleotide can be used to treat or detect hyperproliferative disorders, including neoplasms. A polypeptide or polynucleotide of the present invention may inhibit the proliferation of the disorder through direct or indirect interactions. Alternatively, a polypeptide or polynucleotide of the present invention may proliferate other cells which can inhibit the hyperproliferative disorder.

For example, by increasing an immune response, particularly increasing antigenic qualities of the hyperproliferative disorder or by proliferating, differentiating, or mobilizing T-cells, hyperproliferative disorders can be treated. This immune response may be increased by either enhancing an existing immune response, or by initiating a new immune response. Alternatively, decreasing an immune response may also be a method of treating hyperproliferative disorders, such as a chemotherapeutic agent.

Examples of hyperproliferative disorders that can be treated or detected by a polynucleotide or polypeptide of the present invention include, but are not limited to neoplasms located in the: abdomen, bone, breast, digestive system, liver, pancreas, peritoneum, endocrine glands (adrenal, parathyroid, pituitary, testicles, ovary, thymus, thyroid), eye, head and neck, nervous (central and peripheral), lymphatic system, pelvic, skin, soft tissue, spleen, thoracic, and urogenital.

Similarly, other hyperproliferative disorders can also be treated or detected by a polynucleotide or polypeptide of the present invention. Examples of such hyperproliferative disorders include, but are not limited to: hypergammaglobulinemia, lymphoproliferative disorders, paraproteinemias, purpura, sarcoidosis, Sezary Syndrome, Waldenstron's Macroglobulinemia, Gaucher's Disease, histiocytosis, and any other hyperproliferative disease, besides neoplasia, located in an organ system listed above.

Infectious Disease

A polypeptide or polynucleotide of the present invention can be used to treat or detect infectious agents. For example, by increasing the immune response, particularly increasing the proliferation and differentiation of B and/or T cells, infectious diseases may be treated. The immune response may be increased by either enhancing an existing immune response, or by initiating a new immune response. Alternatively, the polypeptide or polynucleotide of the present invention may also directly inhibit the infectious agent, without necessarily eliciting an immune response.

Viruses are one example of an infectious agent that can cause disease or symptoms that can be treated or detected by a polynucleotide or polypeptide of the present invention. Examples of viruses, include, but are not limited to the following DNA and RNA viral families: Arbovirus, Adenoviridae, Arenaviridae, Arterivirus, Birnaviridae, Bunyaviridae, Caliciviridae, Circoviridae, Coronaviridae, Flaviviridae, 5 Hepadnaviridae (Hepatitis), Herpesviridae (such as, Cytomegalovirus, Herpes Simplex, Herpes Zoster), Mononegavirus (e.g., Paramyxoviridae, Morbillivirus, Rhabdoviridae), Orthomyxoviridae (e.g., Influenza), Papovaviridae, Parvoviridae, Picornaviridae, Poxviridae (such as Smallpox or Vaccinia), Reoviridae (e.g., Rotavirus), Retroviridae (HTLV-I, HTLV-II, Lentivirus), and Togaviridae (e.g., 10 Rubivirus). Viruses falling within these families can cause a variety of diseases or symptoms, including, but not limited to: arthritis, bronchiollitis, encephalitis, eye infections (e.g., conjunctivitis, keratitis), chronic fatigue syndrome, hepatitis (A, B, C, E, Chronic Active, Delta), meningitis, opportunistic infections (e.g., AIDS), pneumonia, Burkitt's Lymphoma, chickenpox, hemorrhagic fever, Measles, Mumps, 15 Parainfluenza, Rabies, the common cold, Polio, leukemia, Rubella, sexually transmitted diseases, skin diseases (e.g., Kaposi's, warts), and viremia. A polypeptide or polynucleotide of the present invention can be used to treat or detect any of these symptoms or diseases.

20 Similarly, bacterial or fungal agents that can cause disease or symptoms and that can be treated or detected by a polynucleotide or polypeptide of the present invention include, but not limited to, the following Gram-Negative and Gram-positive bacterial families and fungi: Actinomycetales (e.g., Corynebacterium, Mycobacterium, Norcardia), Aspergillosis, Bacillaceae (e.g., Anthrax, Clostridium), Bacteroidaceae, Blastomycosis, Bordetella, Borrelia, Brucellosis, Candidiasis, Campylobacter, 25 Coccidioidomycosis, Cryptococcosis, Dermatocycoses, Enterobacteriaceae (Klebsiella, Salmonella, Serratia, Yersinia), Erysipelothrix, Helicobacter, Legionellosis, Leptospirosis, Listeria, Mycoplasmatales, Neisseriaceae (e.g., Acinetobacter, Gonorrhea, Menigococcal), Pasteurellacea Infections (e.g., Actinobacillus, 30 Heamophilus, Pasteurella), Pseudomonas, Rickettsiaceae, Chlamydiaceae, Syphilis, and Staphylococcal. These bacterial or fungal families can cause the following diseases or symptoms, including, but not limited to: bacteremia, endocarditis, eye infections (conjunctivitis, tuberculosis, uveitis), gingivitis, opportunistic infections (e.g., AIDS related infections), paronychia, prosthesis-related infections, Reiter's Disease, 35 respiratory tract infections, such as Whooping Cough or Empyema, sepsis, Lyme Disease, Cat-Scratch Disease, Dysentery, Paratyphoid Fever, food poisoning,

Typhoid, pneumonia, Gonorrhea, meningitis, Chlamydia, Syphilis, Diphtheria,

20

25

30

35

Leprosy, Paratuberculosis, Tuberculosis, Lupus, Botulism, gangrene, tetanus, impetigo, Rheumatic Fever, Scarlet Fever, sexually transmitted diseases, skin diseases (e.g., cellulitis, dermatocycoses), toxemia, urinary tract infections, wound infections. A polypeptide or polynucleotide of the present invention can be used to treat or detect any of these symptoms or diseases.

Moreover, parasitic agents causing disease or symptoms that can be treated or detected by a polynucleotide or polypeptide of the present invention include, but not limited to, the following families: Amebiasis, Babesiosis, Coccidiosis, Cryptosporidiosis, Dientamoebiasis, Dourine, Ectoparasitic, Giardiasis, Helminthiasis, Leishmaniasis, Theileriasis, Toxoplasmosis, Trypanosomiasis, and Trichomonas. These parasites can cause a variety of diseases or symptoms, including, but not limited to: Scabies, Trombiculiasis, eye infections, intestinal disease (e.g., dysentery, giardiasis), liver disease, lung disease, opportunistic infections (e.g., AIDS related), Malaria, pregnancy complications, and toxoplasmosis. A polypeptide or polynucleotide of the present invention can be used to treat or detect any of these symptoms or diseases.

Preferably, treatment using a polypeptide or polynucleotide of the present invention could either be by administering an effective amount of a polypeptide to the patient, or by removing cells from the patient, supplying the cells with a polynucleotide of the present invention, and returning the engineered cells to the patient (ex vivo therapy). Moreover, the polypeptide or polynucleotide of the present invention can be used as an antigen in a vaccine to raise an immune response against infectious disease.

Regeneration

A polynucleotide or polypeptide of the present invention can be used to differentiate, proliferate, and attract cells, leading to the regeneration of tissues. (See, Science 276:59-87 (1997).) The regeneration of tissues could be used to repair, replace, or protect tissue damaged by congenital defects, trauma (wounds, burns, incisions, or ulcers), age, disease (e.g. osteoporosis, osteocarthritis, periodontal disease, liver failure), surgery, including cosmetic plastic surgery, fibrosis, reperfusion injury, or systemic cytokine damage.

Tissues that could be regenerated using the present invention include organs (e.g., pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac), vascular (including vascular endothelium), nervous, hematopoietic, and skeletal (bone, cartilage, tendon, and ligament) tissue. Preferably, regeneration occurs without or decreased scarring. Regeneration also may include angiogenesis.

Moreover, a polynucleotide or polypeptide of the present invention may increase regeneration of tissues difficult to heal. For example, increased tendon/ligament regeneration would quicken recovery time after damage. A polynucleotide or polypeptide of the present invention could also be used prophylactically in an effort to avoid damage. Specific diseases that could be treated include of tendinitis, carpal tunnel syndrome, and other tendon or ligament defects. A further example of tissue regeneration of non-healing wounds includes pressure ulcers, ulcers associated with vascular insufficiency, surgical, and traumatic wounds.

Similarly, nerve and brain tissue could also be regenerated by using a polynucleotide or polypeptide of the present invention to proliferate and differentiate nerve cells. Diseases that could be treated using this method include central and peripheral nervous system diseases, neuropathies, or mechanical and traumatic disorders (e.g., spinal cord disorders, head trauma, cerebrovascular disease, and stoke). Specifically, diseases associated with peripheral nerve injuries, peripheral neuropathy (e.g., resulting from chemotherapy or other medical therapies), localized neuropathies, and central nervous system diseases (e.g., Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome), could all be treated using the polynucleotide or polypeptide of the present invention.

20

25

5

10

15

Chemotaxis

A polynucleotide or polypeptide of the present invention may have chemotaxis activity. A chemotaxic molecule attracts or mobilizes cells (e.g., monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells) to a particular site in the body, such as inflammation, infection, or site of hyperproliferation. The mobilized cells can then fight off and/or heal the particular trauma or abnormality.

A polynucleotide or polypeptide of the present invention may increase chemotaxic activity of particular cells. These chemotactic molecules can then be used to treat inflammation, infection, hyperproliferative disorders, or any immune system disorder by increasing the number of cells targeted to a particular location in the body. For example, chemotaxic molecules can be used to treat wounds and other trauma to tissues by attracting immune cells to the injured location. Chemotactic molecules of the present invention can also attract fibroblasts, which can be used to treat wounds.

35

30

It is also contemplated that a polynucleotide or polypeptide of the present invention may inhibit chemotactic activity. These molecules could also be used to treat

disorders. Thus, a polynucleotide or polypeptide of the present invention could be used as an inhibitor of chemotaxis.

Binding Activity

5

10

15

20

25

30

35

A polypeptide of the present invention may be used to screen for molecules that bind to the polypeptide or for molecules to which the polypeptide binds. The binding of the polypeptide and the molecule may activate (agonist), increase, inhibit (antagonist), or decrease activity of the polypeptide or the molecule bound. Examples of such molecules include antibodies, oligonucleotides, proteins (e.g., receptors), or small molecules.

Preferably, the molecule is closely related to the natural ligand of the polypeptide, e.g., a fragment of the ligand, or a natural substrate, a ligand, a structural or functional mimetic. (See, Coligan et al., Current Protocols in Immunology 1(2):Chapter 5 (1991).) Similarly, the molecule can be closely related to the natural receptor to which the polypeptide binds, or at least, a fragment of the receptor capable of being bound by the polypeptide (e.g., active site). In either case, the molecule can be rationally designed using known techniques.

Preferably, the screening for these molecules involves producing appropriate cells which express the polypeptide, either as a secreted protein or on the cell membrane. Preferred cells include cells from mammals, yeast, Drosophila, or *E. coli*. Cells expressing the polypeptide (or cell membrane containing the expressed polypeptide) are then preferably contacted with a test compound potentially containing the molecule to observe binding, stimulation, or inhibition of activity of either the polypeptide or the molecule.

The assay may simply test binding of a candidate compound to the polypeptide, wherein binding is detected by a label, or in an assay involving competition with a labeled competitor. Further, the assay may test whether the candidate compound results in a signal generated by binding to the polypeptide.

Alternatively, the assay can be carried out using cell-free preparations, polypeptide/molecule affixed to a solid support, chemical libraries, or natural product mixtures. The assay may also simply comprise the steps of mixing a candidate compound with a solution containing a polypeptide, measuring polypeptide/molecule activity or binding, and comparing the polypeptide/molecule activity or binding to a standard.

Preferably, an ELISA assay can measure polypeptide level or activity in a sample (e.g., biological sample) using a monoclonal or polyclonal antibody. The

antibody can measure polypeptide level or activity by either binding, directly or

indirectly, to the polypeptide or by competing with the polypeptide for a substrate.

All of these above assays can be used as diagnostic or prognostic markers. The molecules discovered using these assays can be used to treat disease or to bring about a particular result in a patient (e.g., blood vessel growth) by activating or inhibiting the polypeptide/molecule. Moreover, the assays can discover agents which may inhibit or enhance the production of the polypeptide from suitably manipulated cells or tissues.

192

Therefore, the invention includes a method of identifying compounds which bind to a polypeptide of the invention comprising the steps of: (a) incubating a candidate binding compound with a polypeptide of the invention; and (b) determining if binding has occurred. Moreover, the invention includes a method of identifying agonists/antagonists comprising the steps of: (a) incubating a candidate compound with a polypeptide of the invention, (b) assaying a biological activity, and (b) determining if a biological activity of the polypeptide has been altered.

15

10

5

Other Activities

A polypeptide or polynucleotide of the present invention may also increase or decrease the differentiation or proliferation of embryonic stem cells, besides, as discussed above, hematopoietic lineage.

20

A polypeptide or polynucleotide of the present invention may also be used to modulate mammalian characteristics, such as body height, weight, hair color, eye color, skin, percentage of adipose tissue, pigmentation, size, and shape (e.g., cosmetic surgery). Similarly, a polypeptide or polynucleotide of the present invention may be used to modulate mammalian metabolism affecting catabolism, anabolism, processing, utilization, and storage of energy.

25

A polypeptide or polynucleotide of the present invention may be used to change a mammal's mental state or physical state by influencing biorhythms, caricadic rhythms, depression (including depressive disorders), tendency for violence, tolerance for pain, reproductive capabilities (preferably by Activin or Inhibin-like activity), hormonal or endocrine levels, appetite, libido, memory, stress, or other cognitive qualities.

30

35

A polypeptide or polynucleotide of the present invention may also be used as a food additive or preservative, such as to increase or decrease storage capabilities, fat content, lipid, protein, carbohydrate, vitamins, minerals, cofactors or other nutritional components.

10

15

20

25

30

35

Other Preferred Embodiments

Other preferred embodiments of the claimed invention include an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 50 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1.

Also preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of SEQ ID NO:X in the range of positions beginning with the nucleotide at about the position of the 5' Nucleotide of the Clone Sequence and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

Also preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of SEQ ID NO:X in the range of positions beginning with the nucleotide at about the position of the 5' Nucleotide of the Start Codon and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

Similarly preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of SEQ ID NO:X in the range of positions beginning with the nucleotide at about the position of the 5' Nucleotide of the First Amino Acid of the Signal Peptide and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 150 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X.

Further preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 500 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X.

A further preferred embodiment is a nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the nucleotide sequence of SEQ ID NO:X beginning with the nucleotide at about the position of the 5' Nucleotide of the First Amino Acid of the Signal Peptide and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the complete nucleotide sequence of SEQ ID NO:X.

10

15

20

25

30

35

Also preferred is an isolated nucleic acid molecule which hybridizes under stringent hybridization conditions to a nucleic acid molecule, wherein said nucleic acid molecule which hybridizes does not hybridize under stringent hybridization conditions to a nucleic acid molecule having a nucleotide sequence consisting of only A residues or of only T residues.

Also preferred is a composition of matter comprising a DNA molecule which comprises a human cDNA clone identified by a cDNA Clone Identifier in Table 1, which DNA molecule is contained in the material deposited with the American Type Culture Collection and given the ATCC Deposit Number shown in Table 1 for said cDNA Clone Identifier.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least 50 contiguous nucleotides in the nucleotide sequence of a human cDNA clone identified by a cDNA Clone Identifier in Table 1, which DNA molecule is contained in the deposit given the ATCC Deposit Number shown in Table 1.

Also preferred is an isolated nucleic acid molecule, wherein said sequence of at least 50 contiguous nucleotides is included in the nucleotide sequence of the complete open reading frame sequence encoded by said human cDNA clone.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to sequence of at least 150 contiguous nucleotides in the nucleotide sequence encoded by said human cDNA clone.

A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to sequence of at least 500 contiguous nucleotides in the nucleotide sequence encoded by said human cDNA clone.

A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the complete nucleotide sequence encoded by said human cDNA clone.

A further preferred embodiment is a method for detecting in a biological sample a nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1; which method comprises a step of comparing a nucleotide sequence of at least one nucleic acid molecule in said sample with a sequence selected from said group and determining

WO 98/39448

5

10

15

20

25

30

35

whether the sequence of said nucleic acid molecule in said sample is at least 95% identical to said selected sequence.

PCT/US98/04493

Also preferred is the above method wherein said step of comparing sequences comprises determining the extent of nucleic acid hybridization between nucleic acid molecules in said sample and a nucleic acid molecule comprising said sequence selected from said group. Similarly, also preferred is the above method wherein said step of comparing sequences is performed by comparing the nucleotide sequence determined from a nucleic acid molecule in said sample with said sequence selected from said group. The nucleic acid molecules can comprise DNA molecules or RNA molecules.

A further preferred embodiment is a method for identifying the species, tissue or cell type of a biological sample which method comprises a step of detecting nucleic acid molecules in said sample, if any, comprising a nucleotide sequence that is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

The method for identifying the species, tissue or cell type of a biological sample can comprise a step of detecting nucleic acid molecules comprising a nucleotide sequence in a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from said group.

Also preferred is a method for diagnosing in a subject a pathological condition associated with abnormal structure or expression of a gene encoding a secreted protein identified in Table 1, which method comprises a step of detecting in a biological sample obtained from said subject nucleic acid molecules, if any, comprising a nucleotide sequence that is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

The method for diagnosing a pathological condition can comprise a step of detecting nucleic acid molecules comprising a nucleotide sequence in a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from said group.

10

15

20

25

30

35

Also preferred is a composition of matter comprising isolated nucleic acid molecules wherein the nucleotide sequences of said nucleic acid molecules comprise a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1. The nucleic acid molecules can comprise DNA molecules or RNA molecules.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 90% identical to a sequence of at least about 10 contiguous amino acids in the amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1.

Also preferred is a polypeptide, wherein said sequence of contiguous amino acids is included in the amino acid sequence of SEQ ID NO:Y in the range of positions beginning with the residue at about the position of the First Amino Acid of the Secreted Portion and ending with the residue at about the Last Amino Acid of the Open Reading Frame as set forth for SEQ ID NO:Y in Table 1.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 30 contiguous amino acids in the amino acid sequence of SEQ ID NO:Y.

Further preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 100 contiguous amino acids in the amino acid sequence of SEQ ID NO:Y.

Further preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to the complete amino acid sequence of SEQ ID NO:Y.

Further preferred is an isolated polypeptide comprising an amino acid sequence at least 90% identical to a sequence of at least about 10 contiguous amino acids in the complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is a polypeptide wherein said sequence of contiguous amino acids is included in the amino acid sequence of a secreted portion of the secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 30 contiguous amino acids in the

WO 98/39448 PCT/US98/04493

amino acid sequence of the secreted portion of the protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

197

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 100 contiguous amino acids in the amino acid sequence of the secreted portion of the protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to the amino acid sequence of the secreted portion of the protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

10

15

20

25

30

35

Further preferred is an isolated antibody which binds specifically to a polypeptide comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Further preferred is a method for detecting in a biological sample a polypeptide comprising an amino acid sequence which is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1; which method comprises a step of comparing an amino acid sequence of at least one polypeptide molecule in said sample with a sequence selected from said group and determining whether the sequence of said polypeptide molecule in said sample is at least 90% identical to said sequence of at least 10 contiguous amino acids.

Also preferred is the above method wherein said step of comparing an amino acid sequence of at least one polypeptide molecule in said sample with a sequence selected from said group comprises determining the extent of specific binding of polypeptides in said sample to an antibody which binds specifically to a polypeptide comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an

10

15

20

25

30

35

amino acid sequence of SEQ ID NO: Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is the above method wherein said step of comparing sequences is performed by comparing the amino acid sequence determined from a polypeptide molecule in said sample with said sequence selected from said group.

Also preferred is a method for identifying the species, tissue or cell type of a biological sample which method comprises a step of detecting polypeptide molecules in said sample, if any, comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is the above method for identifying the species, tissue or cell type of a biological sample, which method comprises a step of detecting polypeptide molecules comprising an amino acid sequence in a panel of at least two amino acid sequences, wherein at least one sequence in said panel is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the above group.

Also preferred is a method for diagnosing in a subject a pathological condition associated with abnormal structure or expression of a gene encoding a secreted protein identified in Table 1, which method comprises a step of detecting in a biological sample obtained from said subject polypeptide molecules comprising an amino acid sequence in a panel of at least two amino acid sequences, wherein at least one sequence in said panel is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

In any of these methods, the step of detecting said polypeptide molecules includes using an antibody.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a nucleotide sequence encoding a polypeptide wherein said polypeptide comprises an amino acid sequence that is at least

10

15

20

25

30

35

90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is an isolated nucleic acid molecule, wherein said nucleotide sequence encoding a polypeptide has been optimized for expression of said polypeptide in a prokaryotic host.

Also preferred is an isolated nucleic acid molecule, wherein said polypeptide comprises an amino acid sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Further preferred is a method of making a recombinant vector comprising inserting any of the above isolated nucleic acid molecule into a vector. Also preferred is the recombinant vector produced by this method. Also preferred is a method of making a recombinant host cell comprising introducing the vector into a host cell, as well as the recombinant host cell produced by this method.

Also preferred is a method of making an isolated polypeptide comprising culturing this recombinant host cell under conditions such that said polypeptide is expressed and recovering said polypeptide. Also preferred is this method of making an isolated polypeptide, wherein said recombinant host cell is a eukaryotic cell and said polypeptide is a secreted portion of a human secreted protein comprising an amino acid sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y beginning with the residue at the position of the First Amino Acid of the Secreted Portion of SEQ ID NO:Y wherein Y is an integer set forth in Table 1 and said position of the First Amino Acid of the Secreted Portion of SEQ ID NO:Y is defined in Table 1; and an amino acid sequence of a secreted portion of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1. The isolated polypeptide produced by this method is also preferred.

Also preferred is a method of treatment of an individual in need of an increased level of a secreted protein activity, which method comprises administering to such an individual a pharmaceutical composition comprising an amount of an isolated

10

15

30

35

polypeptide, polynucleotide, or antibody of the claimed invention effective to increase the level of said protein activity in said individual.

Having generally described the invention, the same will be more readily understood by reference to the following examples, which are provided by way of illustration and are not intended as limiting.

Examples

Example 1: Isolation of a Selected cDNA Clone From the Deposited Sample

Each cDNA clone in a cited ATCC deposit is contained in a plasmid vector. Table 1 identifies the vectors used to construct the cDNA library from which each clone was isolated. In many cases, the vector used to construct the library is a phage vector from which a plasmid has been excised. The table immediately below correlates the related plasmid for each phage vector used in constructing the cDNA library. For example, where a particular clone is identified in Table 1 as being isolated in the vector "Lambda Zap," the corresponding deposited clone is in "pBluescript."

	Vector Used to Construct Library	Corresponding Deposited Plasmid
	Lambda Zap	pBluescript (pBS)
20	Uni-Zap XR	pBluescript (pBS)
	Zap Express	pBK
	lafmid BA	plafmid BA
	pSport1	pSport1
	pCMVSport 2.0	pCMVSport 2.0
	pCMVSport 3.0	pCMVSport 3.0
25	pCR [®] 2.1	pCR [®] 2.1

Vectors Lambda Zap (U.S. Patent Nos. 5,128,256 and 5,286,636), Uni-Zap XR (U.S. Patent Nos. 5,128, 256 and 5,286,636), Zap Express (U.S. Patent Nos. 5,128,256 and 5,286,636), pBluescript (pBS) (Short, J. M. et al., Nucleic Acids Res. 16:7583-7600 (1988); Alting-Mees, M. A. and Short, J. M., Nucleic Acids Res. 17:9494 (1989)) and pBK (Alting-Mees, M. A. et al., Strategies 5:58-61 (1992)) are commercially available from Stratagene Cloning Systems, Inc., 11011 N. Torrey Pines Road, La Jolla, CA, 92037. pBS contains an ampicillin resistance gene and pBK contains a neomycin resistance gene. Both can be transformed into E. coli strain XL-1 Blue, also available from Stratagene. pBS comes in 4 forms SK+, SK-, KS+ and KS. The S and K refers to the orientation of the polylinker to the T7 and T3 primer sequences which flank the polylinker region ("S" is for SacI and "K" is for KpnI which

are the first sites on each respective end of the linker). "+" or "-" refer to the orientation

10

15

20

25

30

35

of the f1 origin of replication ("ori"), such that in one orientation, single stranded rescue initiated from the f1 ori generates sense strand DNA and in the other, antisense.

Vectors pSport1, pCMVSport 2.0 and pCMVSport 3.0, were obtained from Life Technologies, Inc., P. O. Box 6009, Gaithersburg, MD 20897. All Sport vectors contain an ampicillin resistance gene and may be transformed into E. coli strain DH10B, also available from Life Technologies. (See, for instance, Gruber, C. E., et al., Focus 15:59 (1993).) Vector lafmid BA (Bento Soares, Columbia University, NY) contains an ampicillin resistance gene and can be transformed into E. coli strain XL-1 Blue. Vector pCR®2.1, which is available from Invitrogen, 1600 Faraday Avenue, Carlsbad, CA 92008, contains an ampicillin resistance gene and may be transformed into E. coli strain DH10B, available from Life Technologies. (See, for instance, Clark, J. M., Nuc. Acids Res. 16:9677-9686 (1988) and Mead, D. et al., Bio/Technology 9: (1991).) Preferably, a polynucleotide of the present invention does not comprise the phage vector sequences identified for the particular clone in Table 1, as well as the corresponding plasmid vector sequences designated above.

The deposited material in the sample assigned the ATCC Deposit Number cited in Table 1 for any given cDNA clone also may contain one or more additional plasmids, each comprising a cDNA clone different from that given clone. Thus, deposits sharing the same ATCC Deposit Number contain at least a plasmid for each cDNA clone identified in Table 1. Typically, each ATCC deposit sample cited in Table 1 comprises a mixture of approximately equal amounts (by weight) of about 50 plasmid DNAs, each containing a different cDNA clone; but such a deposit sample may include plasmids for more or less than 50 cDNA clones, up to about 500 cDNA clones.

Two approaches can be used to isolate a particular clone from the deposited sample of plasmid DNAs cited for that clone in Table 1. First, a plasmid is directly isolated by screening the clones using a polynucleotide probe corresponding to SEQ ID NO:X.

Particularly, a specific polynucleotide with 30-40 nucleotides is synthesized using an Applied Biosystems DNA synthesizer according to the sequence reported. The oligonucleotide is labeled, for instance, with ³²P-γ-ATP using T4 polynucleotide kinase and purified according to routine methods. (E.g., Maniatis et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, Cold Spring, NY (1982).) The plasmid mixture is transformed into a suitable host, as indicated above (such as XL-1 Blue (Stratagene)) using techniques known to those of skill in the art, such as those provided by the vector supplier or in related publications or patents cited above. The transformants are plated on 1.5% agar plates (containing the appropriate selection

10

15

20

25

30

35

agent, e.g., ampicillin) to a density of about 150 transformants (colonies) per plate. These plates are screened using Nylon membranes according to routine methods for bacterial colony screening (e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Edit., (1989), Cold Spring Harbor Laboratory Press, pages 1.93 to 1.104), or other techniques known to those of skill in the art.

Alternatively, two primers of 17-20 nucleotides derived from both ends of the SEQ ID NO:X (i.e., within the region of SEQ ID NO:X bounded by the 5' NT and the 3' NT of the clone defined in Table 1) are synthesized and used to amplify the desired cDNA using the deposited cDNA plasmid as a template. The polymerase chain reaction is carried out under routine conditions, for instance, in 25 µl of reaction mixture with 0.5 ug of the above cDNA template. A convenient reaction mixture is 1.5-5 mM MgCl₂, 0.01% (w/v) gelatin, 20 µM each of dATP, dCTP, dGTP, dTTP, 25 pmol of each primer and 0.25 Unit of Taq polymerase. Thirty five cycles of PCR (denaturation at 94°C for 1 min; annealing at 55°C for 1 min; elongation at 72°C for 1 min) are performed with a Perkin-Elmer Cetus automated thermal cycler. The amplified product is analyzed by agarose gel electrophoresis and the DNA band with expected molecular weight is excised and purified. The PCR product is verified to be the selected sequence by subcloning and sequencing the DNA product.

Several methods are available for the identification of the 5' or 3' non-coding portions of a gene which may not be present in the deposited clone. These methods include but are not limited to, filter probing, clone enrichment using specific probes, and protocols similar or identical to 5' and 3' "RACE" protocols which are well known in the art. For instance, a method similar to 5' RACE is available for generating the missing 5' end of a desired full-length transcript. (Fromont-Racine et al., Nucleic Acids Res. 21(7):1683-1684 (1993).)

Briefly, a specific RNA oligonucleotide is ligated to the 5' ends of a population of RNA presumably containing full-length gene RNA transcripts. A primer set containing a primer specific to the ligated RNA oligonucleotide and a primer specific to a known sequence of the gene of interest is used to PCR amplify the 5' portion of the desired full-length gene. This amplified product may then be sequenced and used to generate the full length gene.

This above method starts with total RNA isolated from the desired source, although poly-A+ RNA can be used. The RNA preparation can then be treated with phosphatase if necessary to eliminate 5' phosphate groups on degraded or damaged RNA which may interfere with the later RNA ligase step. The phosphatase should then be inactivated and the RNA treated with tobacco acid pyrophosphatase in order to

remove the cap structure present at the 5' ends of messenger RNAs. This reaction leaves a 5' phosphate group at the 5' end of the cap cleaved RNA which can then be ligated to an RNA oligonucleotide using T4 RNA ligase.

This modified RNA preparation is used as a template for first strand cDNA synthesis using a gene specific oligonucleotide. The first strand synthesis reaction is used as a template for PCR amplification of the desired 5' end using a primer specific to the ligated RNA oligonucleotide and a primer specific to the known sequence of the gene of interest. The resultant product is then sequenced and analyzed to confirm that the 5' end sequence belongs to the desired gene.

10

15

20

25

30

35

5

Example 2: Isolation of Genomic Clones Corresponding to a Polynucleotide

A human genomic P1 library (Genomic Systems, Inc.) is screened by PCR using primers selected for the cDNA sequence corresponding to SEQ ID NO:X., according to the method described in Example 1. (See also, Sambrook.)

Example 3: Tissue Distribution of Polypeptide

Tissue distribution of mRNA expression of polynucleotides of the present invention is determined using protocols for Northern blot analysis, described by, among others, Sambrook et al. For example, a cDNA probe produced by the method described in Example 1 is labeled with P³² using the rediprimeTM DNA labeling system (Amersham Life Science), according to manufacturer's instructions. After labeling, the probe is purified using CHROMA SPIN-100TM column (Clontech Laboratories, Inc.), according to manufacturer's protocol number PT1200-1. The purified labeled probe is then used to examine various human tissues for mRNA expression.

Multiple Tissue Northern (MTN) blots containing various human tissues (H) or human immune system tissues (IM) (Clontech) are examined with the labeled probe using ExpressHybTM hybridization solution (Clontech) according to manufacturer's protocol number PT1190-1. Following hybridization and washing, the blots are mounted and exposed to film at -70°C overnight, and the films developed according to standard procedures.

Example 4: Chromosomal Mapping of the Polynucleotides

An oligonucleotide primer set is designed according to the sequence at the 5' end of SEQ ID NO:X. This primer preferably spans about 100 nucleotides. This primer set is then used in a polymerase chain reaction under the following set of

10

15

20

25

30

35

conditions: 30 seconds, 95°C; 1 minute, 56°C; 1 minute, 70°C. This cycle is repeated 32 times followed by one 5 minute cycle at 70°C. Human, mouse, and hamster DNA is used as template in addition to a somatic cell hybrid panel containing individual chromosomes or chromosome fragments (Bios, Inc). The reactions is analyzed on either 8% polyacrylamide gels or 3.5 % agarose gels. Chromosome mapping is determined by the presence of an approximately 100 bp PCR fragment in the particular somatic cell hybrid.

Example 5: Bacterial Expression of a Polypeptide

A polynucleotide encoding a polypeptide of the present invention is amplified using PCR oligonucleotide primers corresponding to the 5' and 3' ends of the DNA sequence, as outlined in Example 1, to synthesize insertion fragments. The primers used to amplify the cDNA insert should preferably contain restriction sites, such as BamHI and XbaI, at the 5' end of the primers in order to clone the amplified product into the expression vector. For example, BamHI and XbaI correspond to the restriction enzyme sites on the bacterial expression vector pQE-9. (Qiagen, Inc., Chatsworth, CA). This plasmid vector encodes antibiotic resistance (Amp^r), a bacterial origin of replication (ori), an IPTG-regulatable promoter/operator (P/O), a ribosome binding site (RBS), a 6-histidine tag (6-His), and restriction enzyme cloning sites.

The pQE-9 vector is digested with BamHI and XbaI and the amplified fragment is ligated into the pQE-9 vector maintaining the reading frame initiated at the bacterial RBS. The ligation mixture is then used to transform the E. coli strain M15/rep4 (Qiagen, Inc.) which contains multiple copies of the plasmid pREP4, which expresses the lacI repressor and also confers kanamycin resistance (Kan^r). Transformants are identified by their ability to grow on LB plates and ampicillin/kanamycin resistant colonies are selected. Plasmid DNA is isolated and confirmed by restriction analysis.

Clones containing the desired constructs are grown overnight (O/N) in liquid culture in LB media supplemented with both Amp (100 ug/ml) and Kan (25 ug/ml). The O/N culture is used to inoculate a large culture at a ratio of 1:100 to 1:250. The cells are grown to an optical density 600 (O.D.⁶⁰⁰) of between 0.4 and 0.6. IPTG (Isopropyl-B-D-thiogalacto pyranoside) is then added to a final concentration of 1 mM. IPTG induces by inactivating the lacI repressor, clearing the P/O leading to increased gene expression.

Cells are grown for an extra 3 to 4 hours. Cells are then harvested by centrifugation (20 mins at 6000Xg). The cell pellet is solubilized in the chaotropic

10

15

20

25

30

35

agent 6 Molar Guanidine HCl by stirring for 3-4 hours at 4°C. The cell debris is removed by centrifugation, and the supernatant containing the polypeptide is loaded onto a nickel-nitrilo-tri-acetic acid ("Ni-NTA") affinity resin column (available from QIAGEN, Inc., supra). Proteins with a 6 x His tag bind to the Ni-NTA resin with high affinity and can be purified in a simple one-step procedure (for details see: The QIAexpressionist (1995) QIAGEN, Inc., supra).

Briefly, the supernatant is loaded onto the column in 6 M guanidine-HCl, pH 8, the column is first washed with 10 volumes of 6 M guanidine-HCl, pH 8, then washed with 10 volumes of 6 M guanidine-HCl pH 6, and finally the polypeptide is eluted with 6 M guanidine-HCl, pH 5.

The purified protein is then renatured by dialyzing it against phosphate-buffered saline (PBS) or 50 mM Na-acetate, pH 6 buffer plus 200 mM NaCl. Alternatively, the protein can be successfully refolded while immobilized on the Ni-NTA column. The recommended conditions are as follows: renature using a linear 6M-1M urea gradient in 500 mM NaCl, 20% glycerol, 20 mM Tris/HCl pH 7.4, containing protease inhibitors. The renaturation should be performed over a period of 1.5 hours or more. After renaturation the proteins are eluted by the addition of 250 mM immidazole. Immidazole is removed by a final dialyzing step against PBS or 50 mM sodium acetate pH 6 buffer plus 200 mM NaCl. The purified protein is stored at 4°C or frozen at -80°C.

In addition to the above expression vector, the present invention further includes an expression vector comprising phage operator and promoter elements operatively linked to a polynucleotide of the present invention, called pHE4a. (ATCC Accession Number XXXXXX) This vector contains: 1) a neomycinphosphotransferase gene as a selection marker, 2) an E. coli origin of replication, 3) a T5 phage promoter sequence, 4) two lac operator sequences, 5) a Shine-Delgamo sequence, and 6) the lactose operon repressor gene (lacIq). The origin of replication (oriC) is derived from pUC19 (LTI, Gaithersburg, MD). The promoter sequence and operator sequences are made synthetically.

DNA can be inserted into the pHEa by restricting the vector with NdeI and XbaI, BamHI, XhoI, or Asp718, running the restricted product on a gel, and isolating the larger fragment (the stuffer fragment should be about 310 base pairs). The DNA insert is generated according to the PCR protocol described in Example 1, using PCR primers having restriction sites for NdeI (5' primer) and XbaI, BamHI, XhoI, or Asp718 (3' primer). The PCR insert is gel purified and restricted with compatible enzymes. The insert and vector are ligated according to standard protocols.

10

15

20

25

30

The engineered vector could easily be substituted in the above protocol to express protein in a bacterial system.

Example 6: Purification of a Polypeptide from an Inclusion Body

The following alternative method can be used to purify a polypeptide expressed in *E coli* when it is present in the form of inclusion bodies. Unless otherwise specified, all of the following steps are conducted at 4-10°C.

Upon completion of the production phase of the *E. coli* fermentation, the cell culture is cooled to 4-10°C and the cells harvested by continuous centrifugation at 15,000 rpm (Heraeus Sepatech). On the basis of the expected yield of protein per unit weight of cell paste and the amount of purified protein required, an appropriate amount of cell paste, by weight, is suspended in a buffer solution containing 100 mM Tris, 50 mM EDTA, pH 7.4. The cells are dispersed to a homogeneous suspension using a high shear mixer.

The cells are then lysed by passing the solution through a microfluidizer (Microfuidics, Corp. or APV Gaulin, Inc.) twice at 4000-6000 psi. The homogenate is then mixed with NaCl solution to a final concentration of 0.5 M NaCl, followed by centrifugation at 7000 xg for 15 min. The resultant pellet is washed again using 0.5M NaCl, 100 mM Tris, 50 mM EDTA, pH 7.4.

The resulting washed inclusion bodies are solubilized with 1.5 M guanidine hydrochloride (GuHCl) for 2-4 hours. After 7000 xg centrifugation for 15 min., the pellet is discarded and the polypeptide containing supernatant is incubated at 4°C overnight to allow further GuHCl extraction.

Following high speed centrifugation (30,000 xg) to remove insoluble particles, the GuHCl solubilized protein is refolded by quickly mixing the GuHCl extract with 20 volumes of buffer containing 50 mM sodium, pH 4.5, 150 mM NaCl, 2 mM EDTA by vigorous stirring. The refolded diluted protein solution is kept at 4°C without mixing for 12 hours prior to further purification steps.

To clarify the refolded polypeptide solution, a previously prepared tangential filtration unit equipped with 0.16 µm membrane filter with appropriate surface area (e.g., Filtron), equilibrated with 40 mM sodium acetate, pH 6.0 is employed. The filtered sample is loaded onto a cation exchange resin (e.g., Poros HS-50, Perseptive Biosystems). The column is washed with 40 mM sodium acetate, pH 6.0 and eluted with 250 mM, 500 mM, 1000 mM, and 1500 mM NaCl in the same buffer, in a

10

20

stepwise manner. The absorbance at 280 nm of the effluent is continuously monitored. Fractions are collected and further analyzed by SDS-PAGE.

Fractions containing the polypeptide are then pooled and mixed with 4 volumes of water. The diluted sample is then loaded onto a previously prepared set of tandem columns of strong anion (Poros HQ-50, Perseptive Biosystems) and weak anion (Poros CM-20, Perseptive Biosystems) exchange resins. The columns are equilibrated with 40 mM sodium acetate, pH 6.0. Both columns are washed with 40 mM sodium acetate, pH 6.0, 200 mM NaCl. The CM-20 column is then eluted using a 10 column volume linear gradient ranging from 0.2 M NaCl, 50 mM sodium acetate, pH 6.0 to 1.0 M NaCl, 50 mM sodium acetate, pH 6.5. Fractions are collected under constant A₂₈₀ monitoring of the effluent. Fractions containing the polypeptide (determined, for instance, by 16% SDS-PAGE) are then pooled.

The resultant polypeptide should exhibit greater than 95% purity after the above refolding and purification steps. No major contaminant bands should be observed from Commassie blue stained 16% SDS-PAGE gel when 5 µg of purified protein is loaded. The purified protein can also be tested for endotoxin/LPS contamination, and typically the LPS content is less than 0.1 ng/ml according to LAL assays.

Example 7: Cloning and Expression of a Polypeptide in a Baculovirus Expression System

In this example, the plasmid shuttle vector pA2 is used to insert a polynucleotide into a baculovirus to express a polypeptide. This expression vector contains the strong polyhedrin promoter of the *Autographa californica* nuclear polyhedrosis virus (AcMNPV) followed by convenient restriction sites such as BamHI, Xba I and Asp718. The polyadenylation site of the simian virus 40 ("SV40") is used for efficient polyadenylation. For easy selection of recombinant virus, the plasmid contains the beta-galactosidase gene from *E. coli* under control of a weak Drosophila promoter in the same orientation, followed by the polyadenylation signal of the polyhedrin gene. The inserted genes are flanked on both sides by viral sequences for cell-mediated homologous recombination with wild-type viral DNA to generate a viable virus that express the cloned polynucleotide.

Many other baculovirus vectors can be used in place of the vector above, such as pAc373, pVL941, and pAcIM1, as one skilled in the art would readily appreciate, as long as the construct provides appropriately located signals for transcription,

translation, secretion and the like, including a signal peptide and an in-frame AUG as

10

15

20

25

30

35

required. Such vectors are described, for instance, in Luckow et al., Virology 170:31-39 (1989).

Specifically, the cDNA sequence contained in the deposited clone, including the AUG initiation codon and the naturally associated leader sequence identified in Table 1, is amplified using the PCR protocol described in Example 1. If the naturally occurring signal sequence is used to produce the secreted protein, the pA2 vector does not need a second signal peptide. Alternatively, the vector can be modified (pA2 GP) to include a baculovirus leader sequence, using the standard methods described in Summers et al., "A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures," Texas Agricultural Experimental Station Bulletin No. 1555 (1987).

The amplified fragment is isolated from a 1% agarose gel using a commercially available kit ("Geneclean," BIO 101 Inc., La Jolla, Ca.). The fragment then is digested with appropriate restriction enzymes and again purified on a 1% agarose gel.

The plasmid is digested with the corresponding restriction enzymes and optionally, can be dephosphorylated using calf intestinal phosphatase, using routine procedures known in the art. The DNA is then isolated from a 1% agarose gel using a commercially available kit ("Geneclean" BIO 101 Inc., La Jolla, Ca.).

The fragment and the dephosphorylated plasmid are ligated together with T4 DNA ligase. E. coli HB101 or other suitable E. coli hosts such as XL-1 Blue (Stratagene Cloning Systems, La Jolla, CA) cells are transformed with the ligation mixture and spread on culture plates. Bacteria containing the plasmid are identified by digesting DNA from individual colonies and analyzing the digestion product by gel electrophoresis. The sequence of the cloned fragment is confirmed by DNA sequencing.

Five μg of a plasmid containing the polynucleotide is co-transfected with 1.0 μg of a commercially available linearized baculovirus DNA ("BaculoGold™ baculovirus DNA", Pharmingen, San Diego, CA), using the lipofection method described by Felgner et al., Proc. Natl. Acad. Sci. USA 84:7413-7417 (1987). One μg of BaculoGold™ virus DNA and 5 μg of the plasmid are mixed in a sterile well of a microtiter plate containing 50 μl of serum-free Grace's medium (Life Technologies Inc., Gaithersburg, MD). Afterwards, 10 μl Lipofectin plus 90 μl Grace's medium are added, mixed and incubated for 15 minutes at room temperature. Then the transfection mixture is added drop-wise to Sf9 insect cells (ATCC CRL 1711) seeded in a 35 mm tissue culture plate with 1 ml Grace's medium without serum. The plate is then incubated for 5 hours at 27° C. The transfection solution is then removed from the plate and 1 ml of Grace's insect medium supplemented with 10% fetal calf serum is added. Cultivation is then continued at 27° C for four days.

10

15

20

30

35

After four days the supernatant is collected and a plaque assay is performed, as described by Summers and Smith, *supra*. An agarose gel with "Blue Gal" (Life Technologies Inc., Gaithersburg) is used to allow easy identification and isolation of gal-expressing clones, which produce blue-stained plaques. (A detailed description of a "plaque assay" of this type can also be found in the user's guide for insect cell culture and baculovirology distributed by Life Technologies Inc., Gaithersburg, page 9-10.) After appropriate incubation, blue stained plaques are picked with the tip of a micropipettor (e.g., Eppendorf). The agar containing the recombinant viruses is then resuspended in a microcentrifuge tube containing 200 µl of Grace's medium and the suspension containing the recombinant baculovirus is used to infect Sf9 cells seeded in 35 mm dishes. Four days later the supernatants of these culture dishes are harvested and then they are stored at 4° C.

To verify the expression of the polypeptide, Sf9 cells are grown in Grace's medium supplemented with 10% heat-inactivated FBS. The cells are infected with the recombinant baculovirus containing the polynucleotide at a multiplicity of infection ("MOI") of about 2. If radiolabeled proteins are desired, 6 hours later the medium is removed and is replaced with SF900 II medium minus methionine and cysteine (available from Life Technologies Inc., Rockville, MD). After 42 hours, 5 μ Ci of ³⁵S-methionine and 5 μ Ci ³⁵S-cysteine (available from Amersham) are added. The cells are further incubated for 16 hours and then are harvested by centrifugation. The proteins in the supernatant as well as the intracellular proteins are analyzed by SDS-PAGE followed by autoradiography (if radiolabeled).

Microsequencing of the amino acid sequence of the amino terminus of purified protein may be used to determine the amino terminal sequence of the produced protein.

25 Example 8: Expression of a Polypeptide in Mammalian Cells

The polypeptide of the present invention can be expressed in a mammalian cell. A typical mammalian expression vector contains a promoter element, which mediates the initiation of transcription of mRNA, a protein coding sequence, and signals required for the termination of transcription and polyadenylation of the transcript. Additional elements include enhancers, Kozak sequences and intervening sequences flanked by donor and acceptor sites for RNA splicing. Highly efficient transcription is achieved with the early and late promoters from SV40, the long terminal repeats (LTRs) from Retroviruses, e.g., RSV, HTLVI, HIVI and the early promoter of the cytomegalovirus (CMV). However, cellular elements can also be used (e.g., the human actin promoter).

Suitable expression vectors for use in practicing the present invention include, for example, vectors such as pSVL and pMSG (Pharmacia, Uppsala, Sweden),

25

30

35

pRSVcat (ATCC 37152), pSV2dhfr (ATCC 37146), pBC12MI (ATCC 67109), pCMVSport 2.0, and pCMVSport 3.0. Mammalian host cells that could be used include, human Hela, 293, H9 and Jurkat cells, mouse NIH3T3 and C127 cells, Cos 1, Cos 7 and CV1, quail QC1-3 cells, mouse L cells and Chinese hamster ovary (CHO) cells.

Alternatively, the polypeptide can be expressed in stable cell lines containing the polynucleotide integrated into a chromosome. The co-transfection with a selectable marker such as dhfr, gpt, neomycin, hygromycin allows the identification and isolation of the transfected cells.

The transfected gene can also be amplified to express large amounts of the encoded protein. The DHFR (dihydrofolate reductase) marker is useful in developing cell lines that carry several hundred or even several thousand copies of the gene of interest. (See, e.g., Alt, F. W., et al., J. Biol. Chem. 253:1357-1370 (1978); Hamlin, J. L. and Ma, C., Biochem. et Biophys. Acta, 1097:107-143 (1990); Page, M. J. and Sydenham, M. A., Biotechnology 9:64-68 (1991).) Another useful selection marker is the enzyme glutamine synthase (GS) (Murphy et al., Biochem J. 227:277-279 (1991); Bebbington et al., Bio/Technology 10:169-175 (1992). Using these markers, the mammalian cells are grown in selective medium and the cells with the highest resistance are selected. These cell lines contain the amplified gene(s) integrated into a chromosome. Chinese hamster ovary (CHO) and NSO cells are often used for the production of proteins.

Derivatives of the plasmid pSV2-dhfr (ATCC Accession No. 37146), the expression vectors pC4 (ATCC Accession No. 209646) and pC6 (ATCC Accession No. 209647) contain the strong promoter (LTR) of the Rous Sarcoma Virus (Cullen et al., Molecular and Cellular Biology, 438-447 (March, 1985)) plus a fragment of the CMV-enhancer (Boshart et al., Cell 41:521-530 (1985).) Multiple cloning sites, e.g., with the restriction enzyme cleavage sites BamHI, XbaI and Asp718, facilitate the cloning of the gene of interest. The vectors also contain the 3' intron, the polyadenylation and termination signal of the rat preproinsulin gene, and the mouse DHFR gene under control of the SV40 early promoter.

Specifically, the plasmid pC6, for example, is digested with appropriate restriction enzymes and then dephosphorylated using calf intestinal phosphates by procedures known in the art. The vector is then isolated from a 1% agarose gel.

A polynucleotide of the present invention is amplified according to the protocol outlined in Example 1. If the naturally occurring signal sequence is used to produce the secreted protein, the vector does not need a second signal peptide. Alternatively, if the

10

15

20

25

30

35

naturally occurring signal sequence is not used, the vector can be modified to include a heterologous signal sequence. (See, e.g., WO 96/34891.)

The amplified fragment is isolated from a 1% agarose gel using a commercially available kit ("Geneclean," BIO 101 Inc., La Jolla, Ca.). The fragment then is digested with appropriate restriction enzymes and again purified on a 1% agarose gel.

The amplified fragment is then digested with the same restriction enzyme and purified on a 1% agarose gel. The isolated fragment and the dephosphorylated vector are then ligated with T4 DNA ligase. *E. coli* HB101 or XL-1 Blue cells are then transformed and bacteria are identified that contain the fragment inserted into plasmid pC6 using, for instance, restriction enzyme analysis.

Chinese hamster ovary cells lacking an active DHFR gene is used for transfection. Five µg of the expression plasmid pC6 is cotransfected with 0.5 µg of the plasmid pSVneo using lipofectin (Felgner et al., supra). The plasmid pSV2-neo contains a dominant selectable marker, the neo gene from Tn5 encoding an enzyme that confers resistance to a group of antibiotics including G418. The cells are seeded in alpha minus MEM supplemented with 1 mg/ml G418. After 2 days, the cells are trypsinized and seeded in hybridoma cloning plates (Greiner, Germany) in alpha minus MEM supplemented with 10, 25, or 50 ng/ml of metothrexate plus 1 mg/ml G418. After about 10-14 days single clones are trypsinized and then seeded in 6-well petri dishes or 10 ml flasks using different concentrations of methotrexate (50 nM, 100 nM, 200 nM, 400 nM, 800 nM). Clones growing at the highest concentrations of methotrexate are then transferred to new 6-well plates containing even higher concentrations of methotrexate (1 µM, 2 µM, 5 µM, 10 mM, 20 mM). The same procedure is repeated until clones are obtained which grow at a concentration of 100 -200 µM. Expression of the desired gene product is analyzed, for instance, by SDS-PAGE and Western blot or by reversed phase HPLC analysis.

Example 9: Protein Fusions

The polypeptides of the present invention are preferably fused to other proteins. These fusion proteins can be used for a variety of applications. For example, fusion of the present polypeptides to His-tag, HA-tag, protein A, IgG domains, and maltose binding protein facilitates purification. (See Example 5; see also EP A 394,827; Traunecker, et al., Nature 331:84-86 (1988).) Similarly, fusion to IgG-1, IgG-3, and albumin increases the halflife time in vivo. Nuclear localization signals fused to the polypeptides of the present invention can target the protein to a specific subcellular localization, while covalent heterodimer or homodimers can increase or decrease the activity of a fusion protein. Fusion proteins can also create chimeric molecules having

10

15

20

more than one function. Finally, fusion proteins can increase solubility and/or stability of the fused protein compared to the non-fused protein. All of the types of fusion proteins described above can be made by modifying the following protocol, which outlines the fusion of a polypeptide to an IgG molecule, or the protocol described in Example 5.

Briefly, the human Fc portion of the IgG molecule can be PCR amplified, using primers that span the 5' and 3' ends of the sequence described below. These primers also should have convenient restriction enzyme sites that will facilitate cloning into an expression vector, preferably a mammalian expression vector.

For example, if pC4 (Accession No.209646) is used, the human Fc portion can be ligated into the BamHI cloning site. Note that the 3' BamHI site should be destroyed. Next, the vector containing the human Fc portion is re-restricted with BamHI, linearizing the vector, and a polynucleotide of the present invention, isolated by the PCR protocol described in Example 1, is ligated into this BamHI site. Note that the polynucleotide is cloned without a stop codon, otherwise a fusion protein will not be produced.

If the naturally occurring signal sequence is used to produce the secreted protein, pC4 does not need a second signal peptide. Alternatively, if the naturally occurring signal sequence is not used, the vector can be modified to include a heterologous signal sequence. (See, e.g., WO 96/34891.)

Human IgG Fc region:

GGGATCCGGAGCCCAAATCTTCTGACAAAACTCACACATGCCCACCGTGCC CAGCACCTGAATTCGAGGGTGCACCGTCAGTCTTCCTCTTCCCCCCAAAACC 25 CAAGGACACCTCATGATCTCCCGGACTCCTGAGGTCACATGCGTGGTGGT GGACGTAAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACG GCGTGGAGGTGCATAATGCCAAGACAAGCCGCGGGAGGAGCAGTACAAC AGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTG AATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAACCCCC 30 ATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGT GTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCT GACCTGCCTGGTCAAAGGCTTCTATCCAAGCGACATCGCCGTGGAGTGGGA GAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGG ACTCCGACGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCA 35 GGTGGCAGCAGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGC ACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGAGTGC GACGGCCGCGACTCTAGAGGAT (SEQ ID NO:1)

10

15

20

25

30

35

Example 10: Production of an Antibody from a Polypeptide

The antibodies of the present invention can be prepared by a variety of methods. (See, Current Protocols, Chapter 2.) For example, cells expressing a polypeptide of the present invention is administered to an animal to induce the production of sera containing polyclonal antibodies. In a preferred method, a preparation of the secreted protein is prepared and purified to render it substantially free of natural contaminants. Such a preparation is then introduced into an animal in order to produce polyclonal antisera of greater specific activity.

In the most preferred method, the antibodies of the present invention are monoclonal antibodies (or protein binding fragments thereof). Such monoclonal antibodies can be prepared using hybridoma technology. (Köhler et al., Nature 256:495 (1975); Köhler et al., Eur. J. Immunol. 6:511 (1976); Köhler et al., Eur. J. Immunol. 6:292 (1976); Hammerling et al., in: Monoclonal Antibodies and T-Cell Hybridomas, Elsevier, N.Y., pp. 563-681 (1981).) In general, such procedures involve immunizing an animal (preferably a mouse) with polypeptide or, more preferably, with a secreted polypeptide-expressing cell. Such cells may be cultured in any suitable tissue culture medium; however, it is preferable to culture cells in Earle's modified Eagle's medium supplemented with 10% fetal bovine serum (inactivated at about 56°C), and supplemented with about 10 g/l of nonessential amino acids, about 1,000 U/ml of penicillin, and about 100 µg/ml of streptomycin.

The splenocytes of such mice are extracted and fused with a suitable myeloma cell line. Any suitable myeloma cell line may be employed in accordance with the present invention; however, it is preferable to employ the parent myeloma cell line (SP2O), available from the ATCC. After fusion, the resulting hybridoma cells are selectively maintained in HAT medium, and then cloned by limiting dilution as described by Wands et al. (Gastroenterology 80:225-232 (1981).) The hybridoma cells obtained through such a selection are then assayed to identify clones which secrete antibodies capable of binding the polypeptide.

Alternatively, additional antibodies capable of binding to the polypeptide can be produced in a two-step procedure using anti-idiotypic antibodies. Such a method makes use of the fact that antibodies are themselves antigens, and therefore, it is possible to obtain an antibody which binds to a second antibody. In accordance with this method, protein specific antibodies are used to immunize an animal, preferably a mouse. The splenocytes of such an animal are then used to produce hybridoma cells, and the hybridoma cells are screened to identify clones which produce an antibody

10

whose ability to bind to the protein-specific antibody can be blocked by the polypeptide. Such antibodies comprise anti-idiotypic antibodies to the protein-specific antibody and can be used to immunize an animal to induce formation of further protein-specific antibodies.

It will be appreciated that Fab and F(ab')2 and other fragments of the antibodies of the present invention may be used according to the methods disclosed herein. Such fragments are typically produced by proteolytic cleavage, using enzymes such as papain (to produce Fab fragments) or pepsin (to produce F(ab')2 fragments). Alternatively, secreted protein-binding fragments can be produced through the application of recombinant DNA technology or through synthetic chemistry.

For in vivo use of antibodies in humans, it may be preferable to use "humanized" chimeric monoclonal antibodies. Such antibodies can be produced using genetic constructs derived from hybridoma cells producing the monoclonal antibodies described above. Methods for producing chimeric antibodies are known in the art. (See, for review, Morrison, Science 229:1202 (1985); Oi et al., BioTechniques 4:214 (1986); Cabilly et al., U.S. Patent No. 4,816,567; Taniguchi et al., EP 171496; Morrison et al., EP 173494; Neuberger et al., WO 8601533; Robinson et al., WO 8702671; Boulianne et al., Nature 312:643 (1984); Neuberger et al., Nature 314:268 (1985).)

20

25

30

35

15

Example 11: Production Of Secreted Protein For High-Throughput Screening Assays

The following protocol produces a supernatant containing a polypeptide to be tested. This supernatant can then be used in the Screening Assays described in Examples 13-20.

First, dilute Poly-D-Lysine (644 587 Boehringer-Mannheim) stock solution (1mg/ml in PBS) 1:20 in PBS (w/o calcium or magnesium 17-516F Biowhittaker) for a working solution of 50ug/ml. Add 200 ul of this solution to each well (24 well plates) and incubate at RT for 20 minutes. Be sure to distribute the solution over each well (note: a 12-channel pipetter may be used with tips on every other channel). Aspirate off the Poly-D-Lysine solution and rinse with 1ml PBS (Phosphate Buffered Saline). The PBS should remain in the well until just prior to plating the cells and plates may be poly-lysine coated in advance for up to two weeks.

Plate 293T cells (do not carry cells past P+20) at 2 x 10⁵ cells/well in .5ml DMEM(Dulbecco's Modified Eagle Medium)(with 4.5 G/L glucose and L-glutamine (12-604F Biowhittaker))/10% heat inactivated FBS(14-503F Biowhittaker)/1x Penstrep(17-602E Biowhittaker). Let the cells grow overnight.

20

25

30

35

The next day, mix together in a sterile solution basin: 300 ul Lipofectamine (18324-012 Gibco/BRL) and 5ml Optimem I (31985070 Gibco/BRL)/96-well plate. With a small volume multi-channel pipetter, aliquot approximately 2ug of an expression vector containing a polynucleotide insert, produced by the methods described in Examples 8 or 9, into an appropriately labeled 96-well round bottom plate. With a multi-channel pipetter, add 50ul of the Lipofectamine/Optimem I mixture to each well. Pipette up and down gently to mix. Incubate at RT 15-45 minutes. After about 20 minutes, use a multi-channel pipetter to add 150ul Optimem I to each well. As a control, one plate of vector DNA lacking an insert should be transfected with each set of transfections.

Preferably, the transfection should be performed by tag-teaming the following tasks. By tag-teaming, hands on time is cut in half, and the cells do not spend too much time on PBS. First, person A aspirates off the media from four 24-well plates of cells, and then person B rinses each well with .5-1ml PBS. Person A then aspirates off PBS rinse, and person B, using a 12-channel pipetter with tips on every other channel, adds the 200ul of DNA/Lipofectamine/Optimem I complex to the odd wells first, then to the even wells, to each row on the 24-well plates. Incubate at 37°C for 6 hours.

While cells are incubating, prepare appropriate media, either 1%BSA in DMEM with 1x penstrep, or CHO-5 media (see below) with 2mm glutamine and 1x penstrep. (BSA (81-068-3 Bayer) 100gm dissolved in 1L DMEM for a 10% BSA stock solution). Filter the media and collect 50 ul for endotoxin assay in 15ml polystyrene conical.

The transfection reaction is terminated, preferably by tag-teaming, at the end of the incubation period. Person A aspirates off the transfection media, while person B adds 1.5ml appropriate media to each well. Incubate at 37°C for 45 or 72 hours depending on the media used: 1%BSA for 45 hours or CHO-5 for 72 hours.

On day four, using a 300ul multichannel pipetter, aliquot 600ul in one 1ml deep well plate and the remaining supernatant into a 2ml deep well. The supernatants from each well can then be used in the assays described in Examples 13-20.

It is specifically understood that when activity is obtained in any of the assays described below using a supernatant, the activity originates from either the polypeptide directly (e.g., as a secreted protein) or by the polypeptide inducing expression of other proteins, which are then secreted into the supernatant. Thus, the invention further provides a method of identifying the protein in the supernatant characterized by an activity in a particular assay.

HGS-CHO-5 medium formulation:

Inorganic Salts

CaCl2 (anhyd)	116.6 mg/L
CuSO ₄ -5H ₂ O	0.00130
$Fe(NO_3)_3-9H_2O$	0.050
FeSO ₄ -7H ₂ O	0.417
KCI	311.80
MgCl ₂	28.64
MgSO ₄	48.84
NaCl	6995.50
NaHCO ₃	2400.0
NaH ₂ PO ₄ -H ₂ O	62.50
Na ₂ HPO4	71.02
ZnSO ₄ -7H ₂ O	.4320

5 Lipids

Arachidonic Acid	.002 mg/L
Cholesterol	1.022
DL-alpha-	.070
Tocopherol-Acetate	
Linoleic Acid	0.0520
Linolenic Acid	0.010
Myristic Acid	0.010
Oleic Acid	0.010
Palmitric Acid	0.010
Palmitic Acid	0.010
Pluronic F-68	100
Stearic Acid	0.010
Tween 80	2.20

Carbon Source

D-Glucose	1551 ma/
1 D_Oincose	l 4551 mg/L

Amino Acids

L- Alanine	130.85 mg/ml
L-Arginine-HCL	147.50
L-Asparagine-H ₂ 0	7.50
L-Aspartic Acid	6.65
L-Cystine-2HCL- H ₂ 0	29.56
L-Cystine-2HCL	31.29
L-Glutamic Acid	7.35
L-Glutamine	365.0
Glycine	18.75
L-Histidine-HCL-	52.48

H ₂ 0	
L-Isoleucine	106.97
L-Leucine	111.45
L-Lysine HCL	163.75
L-Methionine	32.34
L-Phenylalainine	68.48
L-Proline	40.0
L-Serine	26.25
L-Threonine	101.05
L-Tryptophan	19.22
L-Tryrosine-2Na-	91.79
2H ₂ 0	
L-Valine	99.65

Vitamins

Biotin	0.0035 mg/L
D-Ca Pantothenate	3.24
Choline Chloride	11.78
Folic Acid	4.65
i-Inositol	15.60
Niacinamide	3.02
Pyridoxal HCL	3.00
Pyridoxine HCL	0.031
Riboflavin	0.319
Thiamine HCL	3.17
Thymidine	0.365
Vitamin B ₁₂	0.680

Other Components

HEPES Buffer	25 mM
Na Hypoxanthine	2.39 mg/L
Lipoic Acid	0.105
Sodium Putrescine-2HCL	0.081
Sodium Pyruvate	55.0
Sodium Selenite	0.0067
Ethanolamine	20uM
Ferric Citrate	0.122
Methyl-B-Cyclodextrin complexed with Linoleic Acid	41.70
Methyl-B-Cyclodextrin complexed with Oleic Acid	33.33
Methyl-B-Cyclodextrin complexed with Retinal Acetate	10

10

15

20

25

30

35

Example 12: Construction of GAS Reporter Construct

One signal transduction pathway involved in the differentiation and proliferation of cells is called the Jaks-STATs pathway. Activated proteins in the Jaks-STATs pathway bind to gamma activation site "GAS" elements or interferon-sensitive responsive element ("ISRE"), located in the promoter of many genes. The binding of a protein to these elements alter the expression of the associated gene.

GAS and ISRE elements are recognized by a class of transcription factors called Signal Transducers and Activators of Transcription, or "STATs." There are six members of the STATs family. Stat1 and Stat3 are present in many cell types, as is Stat2 (as response to IFN-alpha is widespread). Stat4 is more restricted and is not in many cell types though it has been found in T helper class I, cells after treatment with IL-12. Stat5 was originally called mammary growth factor, but has been found at higher concentrations in other cells including myeloid cells. It can be activated in tissue culture cells by many cytokines.

The STATs are activated to translocate from the cytoplasm to the nucleus upon tyrosine phosphorylation by a set of kinases known as the Janus Kinase ("Jaks") family. Jaks represent a distinct family of soluble tyrosine kinases and include Tyk2, Jak1, Jak2, and Jak3. These kinases display significant sequence similarity and are generally catalytically inactive in resting cells.

The Jaks are activated by a wide range of receptors summarized in the Table below. (Adapted from review by Schidler and Darnell, Ann. Rev. Biochem. 64:621-51 (1995).) A cytokine receptor family, capable of activating Jaks, is divided into two groups: (a) Class 1 includes receptors for IL-2, IL-3, IL-4, IL-6, IL-7, IL-9, IL-11, IL-12, IL-15, Epo, PRL, GH, G-CSF, GM-CSF, LIF, CNTF, and thrombopoietin; and (b) Class 2 includes IFN-a, IFN-g, and IL-10. The Class 1 receptors share a conserved cysteine motif (a set of four conserved cysteines and one tryptophan) and a WSXWS motif (a membrane proxial region encoding Trp-Ser-Xxx-Trp-Ser (SEQ ID NO:2)).

Thus, on binding of a ligand to a receptor, Jaks are activated, which in turn activate STATs, which then translocate and bind to GAS elements. This entire process is encompassed in the Jaks-STATs signal transduction pathway.

Therefore, activation of the Jaks-STATs pathway, reflected by the binding of the GAS or the ISRE element, can be used to indicate proteins involved in the proliferation and differentiation of cells. For example, growth factors and cytokines are known to activate the Jaks-STATs pathway. (See Table below.) Thus, by using GAS elements linked to reporter molecules, activators of the Jaks-STATs pathway can be identified.

	ICDE	<u>JAKs</u>				<u>STATS</u>	GAS(elements) or	
	<u>ISRE</u> <u>Ligand</u>	tyk2	<u>Jak i</u>	Jak2	Jak3			
5	IFN family IFN-a/B IFN-g	+	++	- +	- -	1,2,3	ISRE GAS	
10	(IRF1>Lys6>IFP) II-10	+	?	?	-	1,3		
10	gp130 family							
	IL-6 (Pleiotrohic) (IRF1>Lys6>IFP)	+	+	+	?	1,3	GAS	
	Il-11(Pleiotrohic)	?	+	?	?	1,3		
15	OnM(Pleiotrohic)	?	+	+	?	1,3		
	LIF(Pleiotrohic)	?	+	+	?	1,3		
	CNTF(Pleiotrohic)	-/+	+	+	?	1,3		
	G-CSF(Pleiotrohic)	?	+	?		1,3		
20	IL-12(Pleiotrohic)	+	-	+	+	1,3		
20	g-C family							
	IL-2 (lymphocytes)	_	+	_	+	1,3,5	GAS	
	IL-4 (lymph/myeloid)	_	+	_	+	6	GAS (IRF1 = IFP	
	>>Ly6)(IgH)		•		•	Ü	0.10 (Hd 1 - H1	
25	IL-7 (lymphocytes)	-	+	_	+	5	GAS	
	IL-9 (lymphocytes)	_	+	_	+	5	GAS	
	IL-13 (lymphocyte)	-	+	?	?	6	GAS	
	IL-15	?	+	?	+	5	GAS	
•	1.40 0							
30	gp140 family					"	0.4.0	
	IL-3 (myeloid)	-	-	+	-	5	GAS	
	(IRF1>IFP>>Ly6) IL-5 (myeloid)					~	CAS	
	GM-CSF (myeloid)	-	-	+	-	5 5	GAS GAS	
35	Givi-CSI (Inyelola)	-	-	T	-	3	UAS	
33	Growth hormone fami	ilv						
	GH	?	_	+	-	5		
	PRL	?	+/-	+	_	1,3,5		
	EPO	?	-	+	_	5	GAS(B-	
40	CAS>IRF1=IFP>>Ly6)						
	Receptor Tyrosine Kinases							
	EGF	?	+	+	-	1,3	GAS (IRF1)	
45	PDGF	?	+	+	_	1,3		
	CSF-1	?	+	+	-	1,3	GAS (not IRF1)	

10

15

20

To construct a synthetic GAS containing promoter element, which is used in the Biological Assays described in Examples 13-14, a PCR based strategy is employed to generate a GAS-SV40 promoter sequence. The 5' primer contains four tandem copies of the GAS binding site found in the IRF1 promoter and previously demonstrated to bind STATs upon induction with a range of cytokines (Rothman et al., Immunity 1:457-468 (1994).), although other GAS or ISRE elements can be used instead. The 5' primer also contains 18bp of sequence complementary to the SV40 early promoter sequence and is flanked with an XhoI site. The sequence of the 5' primer is: 5':GCGCCTCGAGATTTCCCCGAAATCTAGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGA

The downstream primer is complementary to the SV40 promoter and is flanked with a Hind III site: 5':GCGGCAAGCTTTTTGCAAAGCCTAGGC:3' (SEQ ID NO:4)

PCR amplification is performed using the SV40 promoter template present in the B-gal:promoter plasmid obtained from Clontech. The resulting PCR fragment is digested with XhoI/Hind III and subcloned into BLSK2-. (Stratagene.) Sequencing with forward and reverse primers confirms that the insert contains the following sequence:

5':CTCGAGATTTCCCCGAAATCTAGATTTCCCCGAAATGATTTCCCCGAAATG
ATTTCCCCGAAATATCTGCCATCTCAATTAGTCAGCAACCATAGTCCCGCCC
CTAACTCCGCCCATCCCGCCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGC
CCCATGGCTGACTAATTTTTTTTATTTATTTATGCAGAGGCCGAGGCCGCCTCGGC
CTCTGAGCTATTCCAGAAGTAGTGAGGAGGCTTTTTTTGGAGGCCTAGGCTTT
TGCAAAAAGCTT:3' (SEQ ID NO:5)

25

30

35

With this GAS promoter element linked to the SV40 promoter, a GAS:SEAP2 reporter construct is next engineered. Here, the reporter molecule is a secreted alkaline phosphatase, or "SEAP." Clearly, however, any reporter molecule can be instead of SEAP, in this or in any of the other Examples. Well known reporter molecules that can be used instead of SEAP include chloramphenicol acetyltransferase (CAT), luciferase, alkaline phosphatase, B-galactosidase, green fluorescent protein (GFP), or any protein detectable by an antibody.

The above sequence confirmed synthetic GAS-SV40 promoter element is subcloned into the pSEAP-Promoter vector obtained from Clontech using HindIII and XhoI, effectively replacing the SV40 promoter with the amplified GAS:SV40 promoter element, to create the GAS-SEAP vector. However, this vector does not contain a

10

15

25

30

35

neomycin resistance gene, and therefore, is not preferred for mammalian expression systems.

Thus, in order to generate mammalian stable cell lines expressing the GAS-SEAP reporter, the GAS-SEAP cassette is removed from the GAS-SEAP vector using SalI and NotI, and inserted into a backbone vector containing the neomycin resistance gene, such as pGFP-1 (Clontech), using these restriction sites in the multiple cloning site, to create the GAS-SEAP/Neo vector. Once this vector is transfected into mammalian cells, this vector can then be used as a reporter molecule for GAS binding as described in Examples 13-14.

Other constructs can be made using the above description and replacing GAS with a different promoter sequence. For example, construction of reporter molecules containing NFK-B and EGR promoter sequences are described in Examples 15 and 16. However, many other promoters can be substituted using the protocols described in these Examples. For instance, SRE, IL-2, NFAT, or Osteocalcin promoters can be substituted, alone or in combination (e.g., GAS/NF-KB/EGR, GAS/NF-KB, Il-2/NFAT, or NF-KB/GAS). Similarly, other cell lines can be used to test reporter construct activity, such as HELA (epithelial), HUVEC (endothelial), Reh (B-cell), Saos-2 (osteoblast), HUVAC (aortic), or Cardiomyocyte.

20 Example 13: High-Throughput Screening Assay for T-cell Activity.

The following protocol is used to assess T-cell activity by identifying factors, such as growth factors and cytokines, that may proliferate or differentiate T-cells. T-cell activity is assessed using the GAS/SEAP/Neo construct produced in Example 12. Thus, factors that increase SEAP activity indicate the ability to activate the Jaks-STATS signal transduction pathway. The T-cell used in this assay is Jurkat T-cells (ATCC Accession No. TIB-152), although Molt-3 cells (ATCC Accession No. CRL-1552) and Molt-4 cells (ATCC Accession No. CRL-1582) cells can also be used.

Jurkat T-cells are lymphoblastic CD4+ Th1 helper cells. In order to generate stable cell lines, approximately 2 million Jurkat cells are transfected with the GAS-SEAP/neo vector using DMRIE-C (Life Technologies)(transfection procedure described below). The transfected cells are seeded to a density of approximately 20,000 cells per well and transfectants resistant to 1 mg/ml genticin selected. Resistant colonies are expanded and then tested for their response to increasing concentrations of interferon gamma. The dose response of a selected clone is demonstrated.

Specifically, the following protocol will yield sufficient cells for 75 wells containing 200 ul of cells. Thus, it is either scaled up, or performed in multiple to generate sufficient cells for multiple 96 well plates. Jurkat cells are maintained in RPMI

10

15

20

25

30

+ 10% serum with 1%Pen-Strep. Combine 2.5 mls of OPTI-MEM (Life Technologies) with 10 ug of plasmid DNA in a T25 flask. Add 2.5 ml OPTI-MEM containing 50 ul of DMRIE-C and incubate at room temperature for 15-45 mins.

During the incubation period, count cell concentration, spin down the required number of cells (10^7 per transfection), and resuspend in OPTI-MEM to a final concentration of 10^7 cells/ml. Then add 1ml of 1 x 10^7 cells in OPTI-MEM to T25 flask and incubate at 37°C for 6 hrs. After the incubation, add 10 ml of RPMI + 15% serum.

The Jurkat: GAS-SEAP stable reporter lines are maintained in RPMI + 10% serum, 1 mg/ml Genticin, and 1% Pen-Strep. These cells are treated with supernatants containing a polypeptide as produced by the protocol described in Example 11.

On the day of treatment with the supernatant, the cells should be washed and resuspended in fresh RPMI + 10% serum to a density of 500,000 cells per ml. The exact number of cells required will depend on the number of supernatants being screened. For one 96 well plate, approximately 10 million cells (for 10 plates, 100 million cells) are required.

Transfer the cells to a triangular reservoir boat, in order to dispense the cells into a 96 well dish, using a 12 channel pipette. Using a 12 channel pipette, transfer 200 ul of cells into each well (therefore adding 100, 000 cells per well).

After all the plates have been seeded, 50 ul of the supernatants are transferred directly from the 96 well plate containing the supernatants into each well using a 12 channel pipette. In addition, a dose of exogenous interferon gamma (0.1, 1.0, 10 ng) is added to wells H9, H10, and H11 to serve as additional positive controls for the assay.

The 96 well dishes containing Jurkat cells treated with supernatants are placed in an incubator for 48 hrs (note: this time is variable between 48-72 hrs). 35 ul samples from each well are then transferred to an opaque 96 well plate using a 12 channel pipette. The opaque plates should be covered (using sellophene covers) and stored at -20°C until SEAP assays are performed according to Example 17. The plates containing the remaining treated cells are placed at 4°C and serve as a source of material for repeating the assay on a specific well if desired.

As a positive control, 100 Unit/ml interferon gamma can be used which is known to activate Jurkat T cells. Over 30 fold induction is typically observed in the positive control wells.

10

15

20

25

30

Example 14: High-Throughput Screening Assay Identifying Myeloid Activity

The following protocol is used to assess myeloid activity by identifying factors, such as growth factors and cytokines, that may proliferate or differentiate myeloid cells. Myeloid cell activity is assessed using the GAS/SEAP/Neo construct produced in Example 12. Thus, factors that increase SEAP activity indicate the ability to activate the Jaks-STATS signal transduction pathway. The myeloid cell used in this assay is U937, a pre-monocyte cell line, although TF-1, HL60, or KG1 can be used.

To transiently transfect U937 cells with the GAS/SEAP/Neo construct produced in Example 12, a DEAE-Dextran method (Kharbanda et. al., 1994, Cell Growth & Differentiation, 5:259-265) is used. First, harvest 2x10e⁷ U937 cells and wash with PBS. The U937 cells are usually grown in RPMI 1640 medium containing 10% heat-inactivated fetal bovine serum (FBS) supplemented with 100 units/ml penicillin and 100 mg/ml streptomycin.

Next, suspend the cells in 1 ml of 20 mM Tris-HCl (pH 7.4) buffer containing 0.5 mg/ml DEAE-Dextran, 8 ug GAS-SEAP2 plasmid DNA, 140 mM NaCl, 5 mM KCl, 375 uM Na₂HPO₄.7H₂O, 1 mM MgCl₂, and 675 uM CaCl₂. Incubate at 37°C for 45 min.

Wash the cells with RPMI 1640 medium containing 10% FBS and then resuspend in 10 ml complete medium and incubate at 37°C for 36 hr.

The GAS-SEAP/U937 stable cells are obtained by growing the cells in 400 ug/ml G418. The G418-free medium is used for routine growth but every one to two months, the cells should be re-grown in 400 ug/ml G418 for couple of passages.

These cells are tested by harvesting 1×10^8 cells (this is enough for ten 96-well plates assay) and wash with PBS. Suspend the cells in 200 ml above described growth medium, with a final density of 5×10^5 cells/ml. Plate 200 ul cells per well in the 96-well plate (or 1×10^5 cells/well).

Add 50 ul of the supernatant prepared by the protocol described in Example 11. Incubate at 37°C for 48 to 72 hr. As a positive control, 100 Unit/ml interferon gamma can be used which is known to activate U937 cells. Over 30 fold induction is typically observed in the positive control wells. SEAP assay the supernatant according to the protocol described in Example 17.

10

15

20

25

30

35

Example 15: High-Throughput Screening Assay Identifying Neuronal Activity.

When cells undergo differentiation and proliferation, a group of genes are activated through many different signal transduction pathways. One of these genes, EGR1 (early growth response gene 1), is induced in various tissues and cell types upon activation. The promoter of EGR1 is responsible for such induction. Using the EGR1 promoter linked to reporter molecules, activation of cells can be assessed.

Particularly, the following protocol is used to assess neuronal activity in PC12 cell lines. PC12 cells (rat phenochromocytoma cells) are known to proliferate and/or differentiate by activation with a number of mitogens, such as TPA (tetradecanoyl phorbol acetate), NGF (nerve growth factor), and EGF (epidermal growth factor). The EGR1 gene expression is activated during this treatment. Thus, by stably transfecting PC12 cells with a construct containing an EGR promoter linked to SEAP reporter, activation of PC12 cells can be assessed.

The EGR/SEAP reporter construct can be assembled by the following protocol. The EGR-1 promoter sequence (-633 to +1)(Sakamoto K et al., Oncogene 6:867-871 (1991)) can be PCR amplified from human genomic DNA using the following primers:

- 5' GCGCTCGAGGGATGACAGCGATAGAACCCCGG -3' (SEQ ID NO:6)
- 5' GCGAAGCTTCGCGACTCCCCGGATCCGCCTC-3' (SEQ ID NO:7)

Using the GAS:SEAP/Neo vector produced in Example 12, EGR1 amplified product can then be inserted into this vector. Linearize the GAS:SEAP/Neo vector using restriction enzymes XhoI/HindIII, removing the GAS/SV40 stuffer. Restrict the EGR1 amplified product with these same enzymes. Ligate the vector and the EGR1 promoter.

To prepare 96 well-plates for cell culture, two mls of a coating solution (1:30 dilution of collagen type I (Upstate Biotech Inc. Cat#08-115) in 30% ethanol (filter sterilized)) is added per one 10 cm plate or 50 ml per well of the 96-well plate, and allowed to air dry for 2 hr.

PC12 cells are routinely grown in RPMI-1640 medium (Bio Whittaker) containing 10% horse serum (JRH BIOSCIENCES, Cat. # 12449-78P), 5% heat-inactivated fetal bovine serum (FBS) supplemented with 100 units/ml penicillin and 100 ug/ml streptomycin on a precoated 10 cm tissue culture dish. One to four split is done every three to four days. Cells are removed from the plates by scraping and resuspended with pipetting up and down for more than 15 times.

10

Transfect the EGR/SEAP/Neo construct into PC12 using the Lipofectamine protocol described in Example 11. EGR-SEAP/PC12 stable cells are obtained by growing the cells in 300 ug/ml G418. The G418-free medium is used for routine growth but every one to two months, the cells should be re-grown in 300 ug/ml G418 for couple of passages.

To assay for neuronal activity, a 10 cm plate with cells around 70 to 80% confluent is screened by removing the old medium. Wash the cells once with PBS (Phosphate buffered saline). Then starve the cells in low serum medium (RPMI-1640 containing 1% horse serum and 0.5% FBS with antibiotics) overnight.

The next morning, remove the medium and wash the cells with PBS. Scrape off the cells from the plate, suspend the cells well in 2 ml low serum medium. Count the cell number and add more low serum medium to reach final cell density as 5×10^5 cells/ml.

Add 200 ul of the cell suspension to each well of 96-well plate (equivalent to 1×10^5 cells/well). Add 50 ul supernatant produced by Example 11, 37°C for 48 to 72 hr. As a positive control, a growth factor known to activate PC12 cells through EGR can be used, such as 50 ng/ul of Neuronal Growth Factor (NGF). Over fifty-fold induction of SEAP is typically seen in the positive control wells. SEAP assay the supernatant according to Example 17.

20

25

30

15

Example 16: High-Throughput Screening Assay for T-cell Activity

NF-κB (Nuclear Factor κB) is a transcription factor activated by a wide variety of agents including the inflammatory cytokines IL-1 and TNF, CD30 and CD40, lymphotoxin-alpha and lymphotoxin-beta, by exposure to LPS or thrombin, and by expression of certain viral gene products. As a transcription factor, NF-κB regulates the expression of genes involved in immune cell activation, control of apoptosis (NF-κB appears to shield cells from apoptosis), B and T-cell development, anti-viral and antimicrobial responses, and multiple stress responses.

In non-stimulated conditions, NF- κB is retained in the cytoplasm with I-κB (Inhibitor κB). However, upon stimulation, I- κB is phosphorylated and degraded, causing NF- κB to shuttle to the nucleus, thereby activating transcription of target genes. Target genes activated by NF- κB include IL-2, IL-6, GM-CSF, ICAM-1 and class 1 MHC.

10

15

30

Due to its central role and ability to respond to a range of stimuli, reporter constructs utilizing the NF-kB promoter element are used to screen the supernatants produced in Example 11. Activators or inhibitors of NF-kB would be useful in treating diseases. For example, inhibitors of NF-kB could be used to treat those diseases related to the acute or chronic activation of NF-kB, such as rheumatoid arthritis.

The downstream primer is complementary to the 3' end of the SV40 promoter and is flanked with a Hind III site:

5':GCGGCAAGCTTTTTGCAAAGCCTAGGC:3' (SEQ ID NO:4)

PCR amplification is performed using the SV40 promoter template present in the pB-gal:promoter plasmid obtained from Clontech. The resulting PCR fragment is digested with XhoI and Hind III and subcloned into BLSK2-. (Stratagene) Sequencing with the T7 and T3 primers confirms the insert contains the following sequence:

5':CTCGAGGGGACTTTCCCGGGGACTTTCCGGGGACTTTCC
 ATCTGCCATCTCAATTAGTCAGCAACCATAGTCCCGCCCCTAACTCCGCCCA
 TCCCGCCCCTAACTCCGCCCAGTTCCCGCCCATTCTCCGCCCCATGGCTGACT
 AATTTTTTTATTTATGCAGAGGCCGAGGCCGCCTCGGCCTCTGAGCTATTC
 CAGAAGTAGTGAGGAGGCTTTTTTTGGAGGCCTAGGCTTTTTGCAAAAAGCTT:
 3' (SEQ ID NO:10)

Next, replace the SV40 minimal promoter element present in the pSEAP2-promoter plasmid (Clontech) with this NF-κB/SV40 fragment using XhoI and HindIII. However, this vector does not contain a neomycin resistance gene, and therefore, is not preferred for mammalian expression systems.

In order to generate stable mammalian cell lines, the NF-kB/SV40/SEAP cassette is removed from the above NF-kB/SEAP vector using restriction enzymes Sall and NotI, and inserted into a vector containing neomycin resistance. Particularly, the

15

20

25

NF-kB/SV40/SEAP cassette was inserted into pGFP-1 (Clontech), replacing the GFP gene, after restricting pGFP-1 with SalI and NotI.

Once NF-kB/SV40/SEAP/Neo vector is created, stable Jurkat T-cells are created and maintained according to the protocol described in Example 13. Similarly, the method for assaying supernatants with these stable Jurkat T-cells is also described in Example 13. As a positive control, exogenous TNF alpha (0.1,1, 10 ng) is added to wells H9, H10, and H11, with a 5-10 fold activation typically observed.

Example 17: Assay for SEAP Activity

As a reporter molecule for the assays described in Examples 13-16, SEAP activity is assayed using the Tropix Phospho-light Kit (Cat. BP-400) according to the following general procedure. The Tropix Phospho-light Kit supplies the Dilution, Assay, and Reaction Buffers used below.

Prime a dispenser with the 2.5x Dilution Buffer and dispense $15 \mu l$ of 2.5x dilution buffer into Optiplates containing $35 \mu l$ of a supernatant. Seal the plates with a plastic sealer and incubate at 65° C for 30 min. Separate the Optiplates to avoid uneven heating.

Cool the samples to room temperature for 15 minutes. Empty the dispenser and prime with the Assay Buffer. Add 50 µl Assay Buffer and incubate at room temperature 5 min. Empty the dispenser and prime with the Reaction Buffer (see the table below). Add 50 µl Reaction Buffer and incubate at room temperature for 20 minutes. Since the intensity of the chemiluminescent signal is time dependent, and it takes about 10 minutes to read 5 plates on luminometer, one should treat 5 plates at each time and start the second set 10 minutes later.

Read the relative light unit in the luminometer. Set H12 as blank, and print the results. An increase in chemiluminescence indicates reporter activity.

Reaction Buffer Formulation:

# of plates	Rxn buffer diluent (ml)	CSPD (ml)
10	60	3
11	65	3.25
12	70	3.5
13	75	3.75
14	80	4

15	85	4.25
16	90	4.5
17	95	4.75
18	100	5
19	105	5.25
20	110	5.5
21	115	5.75
22	120	6
23	125	6.25
24	130	6.5
25	135	6.75
26	140	7
27	145	7.25
28	150	7.5
29	155	7.75
30	160	8
31	165	8.25
32	170	8.5
33	175	8.75
34	180	9
35	185	9.25
36	190	9.5
37	195	9.75
38	200	10
39	205	10.25
40	210	10.5
41	215	10.75
42	220	11
43	225	11.25
44	230	11.5
45	235	11.75
46	240	12
47	245	12.25
48	250	12.5
49	255	12.75
50	260	13

10

15

20

25

30

35

Example 18: High-Throughput Screening Assay Identifying Changes in Small Molecule Concentration and Membrane Permeability

Binding of a ligand to a receptor is known to alter intracellular levels of small molecules, such as calcium, potassium, sodium, and pH, as well as alter membrane potential. These alterations can be measured in an assay to identify supernatants which bind to receptors of a particular cell. Although the following protocol describes an assay for calcium, this protocol can easily be modified to detect changes in potassium, sodium, pH, membrane potential, or any other small molecule which is detectable by a fluorescent probe.

The following assay uses Fluorometric Imaging Plate Reader ("FLIPR") to measure changes in fluorescent molecules (Molecular Probes) that bind small molecules. Clearly, any fluorescent molecule detecting a small molecule can be used instead of the calcium fluorescent molecule, fluo-3, used here.

For adherent cells, seed the cells at 10,000 -20,000 cells/well in a Co-star black 96-well plate with clear bottom. The plate is incubated in a CO₂ incubator for 20 hours. The adherent cells are washed two times in Biotek washer with 200 ul of HBSS (Hank's Balanced Salt Solution) leaving 100 ul of buffer after the final wash.

A stock solution of 1 mg/ml fluo-3 is made in 10% pluronic acid DMSO. To load the cells with fluo-3, 50 ul of 12 ug/ml fluo-3 is added to each well. The plate is incubated at 37° C in a CO_2 incubator for 60 min. The plate is washed four times in the Biotek washer with HBSS leaving 100 ul of buffer.

For non-adherent cells, the cells are spun down from culture media. Cells are re-suspended to 2-5x10⁶ cells/ml with HBSS in a 50-ml conical tube. 4 ul of 1 mg/ml fluo-3 solution in 10% pluronic acid DMSO is added to each ml of cell suspension. The tube is then placed in a 37°C water bath for 30-60 min. The cells are washed twice with HBSS, resuspended to 1x10⁶ cells/ml, and dispensed into a microplate, 100 ul/well. The plate is centrifuged at 1000 rpm for 5 min. The plate is then washed once in Denley CellWash with 200 ul, followed by an aspiration step to 100 ul final volume.

For a non-cell based assay, each well contains a fluorescent molecule, such as fluo-3. The supernatant is added to the well, and a change in fluorescence is detected.

To measure the fluorescence of intracellular calcium, the FLIPR is set for the following parameters: (1) System gain is 300-800 mW; (2) Exposure time is 0.4 second; (3) Camera F/stop is F/2; (4) Excitation is 488 nm; (5) Emission is 530 nm; and (6) Sample addition is 50 ul. Increased emission at 530 nm indicates an extracellular

10

15

20

25

30

signaling even which has resulted in an increase in the intracellular Ca++ concentration.

Example 19: High-Throughput Screening Assay Identifying Tyrosine Kinase Activity

The Protein Tyrosine Kinases (PTK) represent a diverse group of transmembrane and cytoplasmic kinases. Within the Receptor Protein Tyrosine Kinase RPTK) group are receptors for a range of mitogenic and metabolic growth factors including the PDGF, FGF, EGF, NGF, HGF and Insulin receptor subfamilies. In addition there are a large family of RPTKs for which the corresponding ligand is unknown. Ligands for RPTKs include mainly secreted small proteins, but also membrane-bound and extracellular matrix proteins.

Activation of RPTK by ligands involves ligand-mediated receptor dimerization, resulting in transphosphorylation of the receptor subunits and activation of the cytoplasmic tyrosine kinases. The cytoplasmic tyrosine kinases include receptor associated tyrosine kinases of the src-family (e.g., src, yes, lck, lyn, fyn) and nonreceptor linked and cytosolic protein tyrosine kinases, such as the Jak family, members of which mediate signal transduction triggered by the cytokine superfamily of receptors (e.g., the Interleukins, Interferons, GM-CSF, and Leptin).

Because of the wide range of known factors capable of stimulating tyrosine kinase activity, the identification of novel human secreted proteins capable of activating tyrosine kinase signal transduction pathways are of interest. Therefore, the following protocol is designed to identify those novel human secreted proteins capable of activating the tyrosine kinase signal transduction pathways.

Seed target cells (e.g., primary keratinocytes) at a density of approximately 25,000 cells per well in a 96 well Loprodyne Silent Screen Plates purchased from Nalge Nunc (Naperville, IL). The plates are sterilized with two 30 minute rinses with 100% ethanol, rinsed with water and dried overnight. Some plates are coated for 2 hr with 100 ml of cell culture grade type I collagen (50 mg/ml), gelatin (2%) or polylysine (50 mg/ml), all of which can be purchased from Sigma Chemicals (St. Louis, MO) or 10% Matrigel purchased from Becton Dickinson (Bedford, MA), or calf serum, rinsed with PBS and stored at 4°C. Cell growth on these plates is assayed by seeding 5,000 cells/well in growth medium and indirect quantitation of cell number through use of alamarBlue as described by the manufacturer Alamar Biosciences, Inc. (Sacramento,

35 CA) after 48 hr. Falcon plate covers #3071 from Becton Dickinson (Bedford, MA) are

10

15

20

25

30

35

used to cover the Loprodyne Silent Screen Plates. Falcon Microtest III cell culture plates can also be used in some proliferation experiments.

To prepare extracts, A431 cells are seeded onto the nylon membranes of Loprodyne plates (20,000/200ml/well) and cultured overnight in complete medium. Cells are quiesced by incubation in serum-free basal medium for 24 hr. After 5-20 minutes treatment with EGF (60ng/ml) or 50 ul of the supernatant produced in Example 11, the medium was removed and 100 ml of extraction buffer ((20 mM HEPES pH 7.5, 0.15 M NaCl, 1% Triton X-100, 0.1% SDS, 2 mM Na3VO4, 2 mM Na4P2O7 and a cocktail of protease inhibitors (# 1836170) obtained from Boeheringer Mannheim (Indianapolis, IN) is added to each well and the plate is shaken on a rotating shaker for 5 minutes at 4°C. The plate is then placed in a vacuum transfer manifold and the extract filtered through the 0.45 mm membrane bottoms of each well using house vacuum. Extracts are collected in a 96-well catch/assay plate in the bottom of the vacuum manifold and immediately placed on ice. To obtain extracts clarified by centrifugation, the content of each well, after detergent solubilization for 5 minutes, is removed and centrifuged for 15 minutes at 4°C at 16,000 x g.

Test the filtered extracts for levels of tyrosine kinase activity. Although many methods of detecting tyrosine kinase activity are known, one method is described here.

Generally, the tyrosine kinase activity of a supernatant is evaluated by determining its ability to phosphorylate a tyrosine residue on a specific substrate (a biotinylated peptide). Biotinylated peptides that can be used for this purpose include PSK1 (corresponding to amino acids 6-20 of the cell division kinase cdc2-p34) and PSK2 (corresponding to amino acids 1-17 of gastrin). Both peptides are substrates for a range of tyrosine kinases and are available from Boehringer Mannheim.

The tyrosine kinase reaction is set up by adding the following components in order. First, add 10ul of 5uM Biotinylated Peptide, then 10ul ATP/Mg₂₊ (5mM ATP/50mM MgCl₂), then 10ul of 5x Assay Buffer (40mM imidazole hydrochloride, pH7.3, 40 mM beta-glycerophosphate, 1mM EGTA, 100mM MgCl₂, 5 mM MnCl₂, 0.5 mg/ml BSA), then 5ul of Sodium Vanadate(1mM), and then 5ul of water. Mix the components gently and preincubate the reaction mix at 30°C for 2 min. Initial the reaction by adding 10ul of the control enzyme or the filtered supernatant.

The tyrosine kinase assay reaction is then terminated by adding 10 ul of 120mm EDTA and place the reactions on ice.

Tyrosine kinase activity is determined by transferring 50 ul aliquot of reaction mixture to a microtiter plate (MTP) module and incubating at 37°C for 20 min. This

10

15

20

25

30

35

allows the streptavadin coated 96 well plate to associate with the biotinylated peptide. Wash the MTP module with 300ul/well of PBS four times. Next add 75 ul of anti-phospotyrosine antibody conjugated to horse radish peroxidase(anti-P-Tyr-POD(0.5)/(rall)) to each well and insulate at 270C for one hour. Week the well are

POD(0.5u/ml)) to each well and incubate at 37°C for one hour. Wash the well as above.

Next add 100ul of peroxidase substrate solution (Boehringer Mannheim) and incubate at room temperature for at least 5 mins (up to 30 min). Measure the absorbance of the sample at 405 nm by using ELISA reader. The level of bound peroxidase activity is quantitated using an ELISA reader and reflects the level of tyrosine kinase activity.

Example 20: High-Throughput Screening Assay Identifying Phosphorylation Activity

As a potential alternative and/or compliment to the assay of protein tyrosine kinase activity described in Example 19, an assay which detects activation (phosphorylation) of major intracellular signal transduction intermediates can also be used. For example, as described below one particular assay can detect tyrosine phosphorylation of the Erk-1 and Erk-2 kinases. However, phosphorylation of other molecules, such as Raf, JNK, p38 MAP, Map kinase kinase (MEK), MEK kinase, Src, Muscle specific kinase (MuSK), IRAK, Tec, and Janus, as well as any other phosphoserine, phosphotyrosine, or phosphothreonine molecule, can be detected by substituting these molecules for Erk-1 or Erk-2 in the following assay.

Specifically, assay plates are made by coating the wells of a 96-well ELISA plate with 0.1ml of protein G (1ug/ml) for 2 hr at room temp, (RT). The plates are then rinsed with PBS and blocked with 3% BSA/PBS for 1 hr at RT. The protein G plates are then treated with 2 commercial monoclonal antibodies (100ng/well) against Erk-1 and Erk-2 (1 hr at RT) (Santa Cruz Biotechnology). (To detect other molecules, this step can easily be modified by substituting a monoclonal antibody detecting any of the above described molecules.) After 3-5 rinses with PBS, the plates are stored at 4°C until use.

A431 cells are seeded at 20,000/well in a 96-well Loprodyne filterplate and cultured overnight in growth medium. The cells are then starved for 48 hr in basal medium (DMEM) and then treated with EGF (6ng/well) or 50 ul of the supernatants obtained in Example 11 for 5-20 minutes. The cells are then solubilized and extracts filtered directly into the assay plate.

After incubation with the extract for 1 hr at RT, the wells are again rinsed. As a positive control, a commercial preparation of MAP kinase (10ng/well) is used in place of A431 extract. Plates are then treated with a commercial polyclonal (rabbit) antibody (1ug/ml) which specifically recognizes the phosphorylated epitope of the Erk-1 and Erk-2 kinases (1 hr at RT). This antibody is biotinylated by standard procedures. The bound polyclonal antibody is then quantitated by successive incubations with Europium-streptavidin and Europium fluorescence enhancing reagent in the Wallac DELFIA instrument (time-resolved fluorescence). An increased fluorescent signal over background indicates a phosphorylation.

10

15

5

Example 21: Method of Determining Alterations in a Gene Corresponding to a Polynucleotide

RNA isolated from entire families or individual patients presenting with a phenotype of interest (such as a disease) is be isolated. cDNA is then generated from these RNA samples using protocols known in the art. (See, Sambrook.) The cDNA is then used as a template for PCR, employing primers surrounding regions of interest in SEQ ID NO:X. Suggested PCR conditions consist of 35 cycles at 95°C for 30 seconds; 60-120 seconds at 52-58°C; and 60-120 seconds at 70°C, using buffer solutions described in Sidransky, D., et al., Science 252:706 (1991).

20

PCR products is then sequenced using primers labeled at their 5' end with T4 polynucleotide kinase, employing SequiTherm Polymerase. (Epicentre Technologies). The intron-exon borders of selected exons is also determined and genomic PCR products analyzed to confirm the results. PCR products harboring suspected mutations is then cloned and sequenced to validate the results of the direct sequencing.

25

PCR products is cloned into T-tailed vectors as described in Holton, T.A. and Graham, M.W., Nucleic Acids Research, 19:1156 (1991) and sequenced with T7 polymerase (United States Biochemical). Affected individuals is identified by mutations not present in unaffected individuals.

30

35

Genomic rearrangements are also observed as a method of determining alterations in a gene corresponding to a polynucleotide. Genomic clones isolated according to Example 2 are nick-translated with digoxigenindeoxy-uridine 5'-triphosphate (Boehringer Manheim), and FISH performed as described in Johnson, Cg. et al., Methods Cell Biol. 35:73-99 (1991). Hybridization with the labeled probe is carried out using a vast excess of human cot-1 DNA for specific hybridization to the corresponding genomic locus.

15

20

25

30

35

Chromosomes are counterstained with 4,6-diamino-2-phenylidole and propidium iodide, producing a combination of C- and R-bands. Aligned images for precise mapping are obtained using a triple-band filter set (Chroma Technology, Brattleboro, VT) in combination with a cooled charge-coupled device camera 5 (Photometrics, Tucson, AZ) and variable excitation wavelength filters. (Johnson, Cv. et al., Genet. Anal. Tech. Appl., 8:75 (1991).) Image collection, analysis and chromosomal fractional length measurements are performed using the ISee Graphical Program System. (Inovision Corporation, Durham, NC.) Chromosome alterations of the genomic region hybridized by the probe are identified as insertions, deletions, and translocations. These alterations are used as a diagnostic marker for an associated disease.

Example 22: Method of Detecting Abnormal Levels of a Polypeptide in a **Biological Sample**

A polypeptide of the present invention can be detected in a biological sample, and if an increased or decreased level of the polypeptide is detected, this polypeptide is a marker for a particular phenotype. Methods of detection are numerous, and thus, it is understood that one skilled in the art can modify the following assay to fit their particular needs.

For example, antibody-sandwich ELISAs are used to detect soluble polypeptides in a sample, preferably a biological sample. Wells of a microtiter plate are coated with specific antibodies, at a final concentration of 0.2 to 10 ug/ml. The antibodies are either monoclonal or polyclonal and are produced by the method described in Example 10. The wells are blocked so that non-specific binding of the polypeptide to the well is reduced.

The coated wells are then incubated for > 2 hours at RT with a sample containing the polypeptide. Preferably, serial dilutions of the sample should be used to validate results. The plates are then washed three times with deionized or distilled water to remove unbounded polypeptide.

Next, 50 ul of specific antibody-alkaline phosphatase conjugate, at a concentration of 25-400 ng, is added and incubated for 2 hours at room temperature. The plates are again washed three times with deionized or distilled water to remove unbounded conjugate.

Add 75 ul of 4-methylumbelliferyl phosphate (MUP) or p-nitrophenyl phosphate (NPP) substrate solution to each well and incubate 1 hour at room temperature. Measure the reaction by a microtiter plate reader. Prepare a standard curve, using serial dilutions of a control sample, and plot polypeptide concentration on the X-axis (log scale) and fluorescence or absorbance of the Y-axis (linear scale). Interpolate the concentration of the polypeptide in the sample using the standard curve.

Example 23: Formulating a Polypeptide

5

10

15

20

25

30

35

The secreted polypeptide composition will be formulated and dosed in a fashion consistent with good medical practice, taking into account the clinical condition of the individual patient (especially the side effects of treatment with the secreted polypeptide alone), the site of delivery, the method of administration, the scheduling of administration, and other factors known to practitioners. The "effective amount" for purposes herein is thus determined by such considerations.

As a general proposition, the total pharmaceutically effective amount of secreted polypeptide administered parenterally per dose will be in the range of about 1 μ g/kg/day to 10 mg/kg/day of patient body weight, although, as noted above, this will be subject to therapeutic discretion. More preferably, this dose is at least 0.01 mg/kg/day, and most preferably for humans between about 0.01 and 1 mg/kg/day for the hormone. If given continuously, the secreted polypeptide is typically administered at a dose rate of about 1 μ g/kg/hour to about 50 μ g/kg/hour, either by 1-4 injections per day or by continuous subcutaneous infusions, for example, using a mini-pump. An intravenous bag solution may also be employed. The length of treatment needed to observe changes and the interval following treatment for responses to occur appears to vary depending on the desired effect.

Pharmaceutical compositions containing the secreted protein of the invention are administered orally, rectally, parenterally, intracistemally, intravaginally, intraperitoneally, topically (as by powders, ointments, gels, drops or transdermal patch), bucally, or as an oral or nasal spray. "Pharmaceutically acceptable carrier" refers to a non-toxic solid, semisolid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type. The term "parenteral" as used herein refers to modes of administration which include intravenous, intramuscular, intraperitoneal, intrasternal, subcutaneous and intraarticular injection and infusion.

The secreted polypeptide is also suitably administered by sustained-release systems. Suitable examples of sustained-release compositions include semi-permeable polymer matrices in the form of shaped articles, e.g., films, or mirocapsules. Sustained-release matrices include polylactides (U.S. Pat. No. 3,773,919, EP 58,481), copolymers of L-glutamic acid and gamma-ethyl-L-glutamate (Sidman, U. et al., Biopolymers 22:547-556 (1983)), poly (2- hydroxyethyl methacrylate) (R. Langer et al., J. Biomed. Mater. Res. 15:167-277 (1981), and R. Langer, Chem. Tech. 12:98-105 (1982)), ethylene vinyl acetate (R. Langer et al.) or poly-D- (-)-3-hydroxybutyric

15

20

25

30

35

acid (EP 133,988). Sustained-release compositions also include liposomally entrapped polypeptides. Liposomes containing the secreted polypeptide are prepared by methods known per se: DE 3,218,121; Epstein et al., Proc. Natl. Acad. Sci. USA 82:3688-3692 (1985); Hwang et al., Proc. Natl. Acad. Sci. USA 77:4030-4034 (1980); EP 52,322; EP 36,676; EP 88,046; EP 143,949; EP 142,641; Japanese Pat. Appl. 83-118008; U.S. Pat. Nos. 4,485,045 and 4,544,545; and EP 102,324. Ordinarily, the liposomes are of the small (about 200-800 Angstroms) unilamellar type in which the lipid content is greater than about 30 mol. percent cholesterol, the selected proportion being adjusted for the optimal secreted polypeptide therapy.

For parenteral administration, in one embodiment, the secreted polypeptide is formulated generally by mixing it at the desired degree of purity, in a unit dosage injectable form (solution, suspension, or emulsion), with a pharmaceutically acceptable carrier, i.e., one that is non-toxic to recipients at the dosages and concentrations employed and is compatible with other ingredients of the formulation. For example, the formulation preferably does not include oxidizing agents and other compounds that are known to be deleterious to polypeptides.

Generally, the formulations are prepared by contacting the polypeptide uniformly and intimately with liquid carriers or finely divided solid carriers or both. Then, if necessary, the product is shaped into the desired formulation. Preferably the carrier is a parenteral carrier, more preferably a solution that is isotonic with the blood of the recipient. Examples of such carrier vehicles include water, saline, Ringer's solution, and dextrose solution. Non-aqueous vehicles such as fixed oils and ethyl oleate are also useful herein, as well as liposomes.

The carrier suitably contains minor amounts of additives such as substances that enhance isotonicity and chemical stability. Such materials are non-toxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, succinate, acetic acid, and other organic acids or their salts; antioxidants such as ascorbic acid; low molecular weight (less than about ten residues) polypeptides, e.g., polyarginine or tripeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids, such as glycine, glutamic acid, aspartic acid, or arginine; monosaccharides, disaccharides, and other carbohydrates including cellulose or its derivatives, glucose, manose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; counterions such as sodium; and/or nonionic surfactants such as polysorbates, poloxamers, or PEG.

The secreted polypeptide is typically formulated in such vehicles at a concentration of about 0.1 mg/ml to 100 mg/ml, preferably 1-10 mg/ml, at a pH of

10

15

20

25

30

about 3 to 8. It will be understood that the use of certain of the foregoing excipients, carriers, or stabilizers will result in the formation of polypeptide salts.

Any polypeptide to be used for therapeutic administration can be sterile. Sterility is readily accomplished by filtration through sterile filtration membranes (e.g., 0.2 micron membranes). Therapeutic polypeptide compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.

Polypeptides ordinarily will be stored in unit or multi-dose containers, for example, sealed ampoules or vials, as an aqueous solution or as a lyophilized formulation for reconstitution. As an example of a lyophilized formulation, 10-ml vials are filled with 5 ml of sterile-filtered 1% (w/v) aqueous polypeptide solution, and the resulting mixture is lyophilized. The infusion solution is prepared by reconstituting the lyophilized polypeptide using bacteriostatic Water-for-Injection.

The invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration. In addition, the polypeptides of the present invention may be employed in conjunction with other therapeutic compounds.

Example 24: Method of Treating Decreased Levels of the Polypeptide

It will be appreciated that conditions caused by a decrease in the standard or normal expression level of a secreted protein in an individual can be treated by administering the polypeptide of the present invention, preferably in the secreted form. Thus, the invention also provides a method of treatment of an individual in need of an increased level of the polypeptide comprising administering to such an individual a pharmaceutical composition comprising an amount of the polypeptide to increase the activity level of the polypeptide in such an individual.

For example, a patient with decreased levels of a polypeptide receives a daily dose 0.1-100 ug/kg of the polypeptide for six consecutive days. Preferably, the polypeptide is in the secreted form. The exact details of the dosing scheme, based on administration and formulation, are provided in Example 23.

Example 25: Method of Treating Increased Levels of the Polypeptide

Antisense technology is used to inhibit production of a polypeptide of the present invention. This technology is one example of a method of decreasing levels of a polypeptide, preferably a secreted form, due to a variety of etiologies, such as cancer.

For example, a patient diagnosed with abnormally increased levels of a polypeptide is administered intravenously antisense polynucleotides at 0.5, 1.0, 1.5, 2.0 and 3.0 mg/kg day for 21 days. This treatment is repeated after a 7-day rest period if the treatment was well tolerated. The formulation of the antisense polynucleotide is provided in Example 23.

10

15

20

5

Example 26: Method of Treatment Using Gene Therapy

One method of gene therapy transplants fibroblasts, which are capable of expressing a polypeptide, onto a patient. Generally, fibroblasts are obtained from a subject by skin biopsy. The resulting tissue is placed in tissue-culture medium and separated into small pieces. Small chunks of the tissue are placed on a wet surface of a tissue culture flask, approximately ten pieces are placed in each flask. The flask is turned upside down, closed tight and left at room temperature over night. After 24 hours at room temperature, the flask is inverted and the chunks of tissue remain fixed to the bottom of the flask and fresh media (e.g., Ham's F12 media, with 10% FBS, penicillin and streptomycin, is added. The flasks are then incubated at 37°C for approximately one week.

At this time, fresh media is added and subsequently changed every several days. After an additional two weeks in culture, a monolayer of fibroblasts emerge. The monolayer is trypsinized and scaled into larger flasks.

25

30

35

pMV-7 (Kirschmeier, P.T. et al., DNA, 7:219-25 (1988)), flanked by the long terminal repeats of the Moloney murine sarcoma virus, is digested with EcoRI and HindIII and subsequently treated with calf intestinal phosphatase. The linear vector is fractionated on agarose gel and purified, using glass beads.

The cDNA encoding a polypeptide of the present invention can be amplified using PCR primers which correspond to the 5' and 3' end sequences respectively as set forth in Example 1. Preferably, the 5' primer contains an EcoRI site and the 3' primer includes a HindIII site. Equal quantities of the Moloney murine sarcoma virus linear backbone and the amplified EcoRI and HindIII fragment are added together, in the presence of T4 DNA ligase. The resulting mixture is maintained under conditions

appropriate for ligation of the two fragments. The ligation mixture is then used to

WO 98/39448

5

10

15

20

25

transform bacteria HB101, which are then plated onto agar containing kanamycin for the purpose of confirming that the vector has the gene of interest properly inserted.

The amphotropic pA317 or GP+am12 packaging cells are grown in tissue culture to confluent density in Dulbecco's Modified Eagles Medium (DMEM) with 10% calf serum (CS), penicillin and streptomycin. The MSV vector containing the gene is then added to the media and the packaging cells transduced with the vector. The packaging cells now produce infectious viral particles containing the gene (the packaging cells are now referred to as producer cells).

Fresh media is added to the transduced producer cells, and subsequently, the media is harvested from a 10 cm plate of confluent producer cells. The spent media, containing the infectious viral particles, is filtered through a millipore filter to remove detached producer cells and this media is then used to infect fibroblast cells. Media is removed from a sub-confluent plate of fibroblasts and quickly replaced with the media from the producer cells. This media is removed and replaced with fresh media. If the titer of virus is high, then virtually all fibroblasts will be infected and no selection is required. If the titer is very low, then it is necessary to use a retroviral vector that has a selectable marker, such as neo or his. Once the fibroblasts have been efficiently infected, the fibroblasts are analyzed to determine whether protein is being produced.

The engineered fibroblasts are then transplanted onto the host, either alone or after having been grown to confluence on cytodex 3 microcarrier beads.

It will be clear that the invention may be practiced otherwise than as particularly described in the foregoing description and examples. Numerous modifications and variations of the present invention are possible in light of the above teachings and, therefore, are within the scope of the appended claims.

The entire disclosure of each document cited (including patents, patent applications, journal articles, abstracts, laboratory manuals, books, or other disclosures) in the Background of the Invention, Detailed Description, and Examples is hereby incorporated herein by reference.

(1) GENERAL INFORMATION:

5	(i) APPLICANT: Human Genome Sciences, Inc. et al.
	(ii) TITLE OF INVENTION: 186 Human Secreted Proteins
10	(iii) NUMBER OF SEQUENCES: 644
10	(iv) CORRESPONDENCE ADDRESS:
	(A) ADDRESSEE: Human Genome Sciences, Inc.
15	(B) STREET: 9410 Key West Avenue
	(C) CITY: Rockville
20	(D) STATE: Maryland
	(E) COUNTRY: USA
	(F) ZIP: 20850
25	
	(v) COMPUTER READABLE FORM:
30	(A) MEDIUM TYPE: Diskette, 3.50 inch, 1.4Mb storage
	(B) COMPUTER: HP Vectra 486/33
	(C) OPERATING SYSTEM: MSDOS version 6.2
35	(D) SOFTWARE: ASCII Text
40	(vi) CURRENT APPLICATION DATA:
	(A) APPLICATION NUMBER:
	(B) FILING DATE: March 6, 1998
45	(C) CLASSIFICATION:
50	(vii) PRIOR APPLICATION DATA:
	(A) APPLICATION NUMBER:
	(B) FILING DATE:

	(viii) ATTORNEY/AGENT INFORMATION:	
5	(A) NAME: A. Anders Brookes, Esq.	
J	(B) REGISTRATION NUMBER: 36,373	
	(C) REFERENCE/DOCKET NUMBER: PS002.PCT	
10		
	(vi) TELECOMMUNICATION INFORMATION:	
	(A) TELEPHONE: (301) 309-8504	
15	(B) TELEFAX: (301) 309-8439	•
20		
	(2) INFORMATION FOR SEQ ID NO: 1:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 733 base pairs	
25	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:	
	GGGATCCGGA GCCCAAATCT TCTGACAAAA CTCACACATG CCCACCGTGC CCAGCACCTG	60
	AATTCGAGGG TGCACCGTCA GTCTTCCTCT TCCCCCCAAA ACCCAAGGAC ACCCTCATGA	120
35	TCTCCCGGAC TCCTGAGGTC ACATGCGTGG TGGTGGACGT AAGCCACGAA GACCCTGAGG	180
	TCAAGTTCAA CTGGTACGTG GACGGCGTGG AGGTGCATAA TGCCAAGACA AAGCCGCGGG	240
40	AGGAGCAGTA CAACAGCACG TACCGTGTGG TCAGCGTCCT CACCGTCCTG CACCAGGACT	300
	GGCTGAATGG CAAGGAGTAC AAGTGCAAGG TCTCCAACAA AGCCCTCCCA ACCCCCATCG	360
	AGAAAACCAT CTCCAAAGCC AAAGGGCAGC CCCGAGAACC ACAGGTGTAC ACCCTGCCCC	420
45	CATCCCGGGA TGAGCTGACC AAGAACCAGG TCAGCCTGAC CTGCCTGGTC AAAGGCTTCT	480
	ATCCAAGCGA CATCGCCGTG GAGTGGGAGA GCAATGGGCA GCCGGAGAAC AACTACAAGA	540
50	CCACGCCTCC CGTGCTGGAC TCCGACGGCT CCTTCTTCCT CTACAGCAAG CTCACCGTGG	600
	ACAAGAGCAG GTGGCAGCAG GGGAACGTCT TCTCATGCTC CGTGATGCAT GAGGCTCTGC	660

ACAACCACTA CACGCAGAAG AGCCTCTCCC TGTCTCCGGG TAAATGAGTG CGACGGCCGC

55 GACTCTAGAG GAT

	(2) INFORMATION FOR SEQ ID NO: 2:	
. 5	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 5 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:	
	Trp Ser Xaa Trp Ser 1 5	٠.
15		
	(2) INFORMATION FOR SEQ ID NO: 3:	
20	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 86 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:	
	GCGCCTCGAG ATTTCCCCGA AATCTAGATT TCCCCGAAAT GATTTCCCCG AAATGATTTC	60
30	CCCGAAATAT CTGCCATCTC AATTAG	86
35	(2) INFORMATION FOR SEQ ID NO: 4:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 27 base pairs(B) TYPE: nucleic acid	
40	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:	
45	GCGCCAAGCT TTTTGCAAAG CCTAGGC	27
50	(2) INFORMATION FOR SEQ ID NO: 5:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 271 base pairs (B) TYPE: nucleic acid	
55	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:	
60	CTCGAGATTT CCCCGAAATC TAGATTTCCC CGAAATGATT TCCCCGAAAT GATTTCCCCG	60

	AAATATCTGC CATCTCAATT AGTCAGCAAC CATAGTCCCG CCCCTAACTC CGCCCATCCC	120
	GCCCCTAACT CCGCCCAGTT CCGCCCCATTC TCCGCCCCAT GGCTGACTAA TTTTTTTTTAT	180
5	TTATGCAGAG GCCGAGGCCG CCTCGGCCTC TGAGCTATTC CAGAAGTAGT GAGGAGGCTT	240
	TTTTGGAGGC CTAGGCTTTT GCAAAAAGCT T	271
10		
	(2) INFORMATION FOR SEQ ID NO: 6:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:	
	GCGCTCGAGG GATGACAGCG ATAGAACCCC GG	32
25		
	(2) INFORMATION FOR SEQ ID NO: 7:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:	
	GCGAAGCTTC GCGACTCCCC GGATCCGCCT C	31
40		
	(2) INFORMATION FOR SEQ ID NO: 8:	
15	<u>-</u>	
45	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 12 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double	
50	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:	
	GGGGACTITC CC	12
55		
	(2) INFORMATION FOR SEQ ID NO: 9:	
60	(i) SEQUENCE CHARACTERISTICS:	

	(A) LENGTH: 73 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
5	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:	
	GCGGCCTCGA GGGGACTTTC CCGGGGACTT TCCGGGGACT TTCCATCCTG	60
10	CCATCTCAAT TAG	73
15	(2) INFORMATION FOR SEQ ID NO: 10:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 256 base pairs	
20	(B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(b) Torologi: Tillear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:	
25	CTCGAGGGGA CTTTCCCGG GACTTTCCGG GGACTTTCCA TCTGCCATCT	60
	CAATTAGTCA GCAACCATAG TCCCGCCCCT AACTCCGCCCC ATCCCGCCCC TAACTCCGCC	120
30	CAGTTCCGCC CATTCTCCGC CCCATGGCTG ACTAATTTTT TTTATTTATG CAGAGGCCGA	180
	GGCCGCCTCG GCCTCTGAGC TATTCCAGAA GTAGTGAGGA GGCTTTTTTG GAGGCCTAGG	240
	CTTTTGCAAA AAGCTT	256
35		
55		
	(2) INFORMATION FOR SEQ ID NO: 11:	
40	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 582 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
45	(b) Islandi. Illicat	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:	
	GGCACGAGGT AATTTCTACC AGAAATTTCC AGAGCATTAT GTAGGTAGAA AAAAATGCAA	60
		00
50	GCAAGCTGTT AAAGATCTTG GATCCCATTA TATAGTATGT ATAGCTGAAA TCTGTAATTC	120
	AATCACTTTT TCTCTTTAT CCTCTAACCA AAAAATTGTT TAATTTTGCA TCCCAAATGT	180
	The state of the s	100
55	TTTTAATCTT TGTATATTTT TTAAAAATCC TTTTCTCCTC ATCATTGCCT TTTTTGTGGT	240
55	TGTAAATAGA CTTACTIGCA CTTTGAAGAT GAGTTACTCC TTGTCATCTT ACAAATATGT	300
		300
	GATATGGTAA TTTTCATAAC AGATGTCAGT TTTGAACCAA GAATTGGTGA TTTGTTTATA	360
60	AGAAAAAAC TGGCTTCATT TCTGTGAAAT TGCTCTTTGA AAATTTCTTT TTACACGTGT	420

	AAGCCAACTG AGATACCGTG ATGGTGTTGA TTTCTTTCAA TGATGCTTAC CATCTATTTT	480
5	AGCCACTGAG CCTTTTATTA TTTGTCTATT TGTAAAGTTT ATTTGTCTTA ACTCATTTAA	540
J	TAAATATACT GITTATCTGT TTCTGAAAAA AAAAAAAAAA AA	582
10	(2) INFORMATION FOR SEQ ID NO: 12:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 465 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:	
20	GTTTGGGGGT GAGGCCGAGC TGCTGCGGGG CTTCGTCGCC GGCCAGGACA CAGCTACTCG	60
	CACGGCGGCG GCGCCTGGCT ATGATGTTCC TCACCCAGGG CGGGCCTCTG CCCTCTACTC	120
25	GTGCCAGGCC CACTTGCCAG GCAGGAGCCC TCCCCAAGCC TTCAGGGCTG CTCGGAGTCA	180
	CCTGTTGGAA TGGACTAAAA GGACCCTTGT GTGGGAACAG GTGCTCCCCA AACACCCTGC	240
30	TGCTGGCTGC CAGGCAGGCC CTCTGGAAGG GAAGGGGCAG GACTCATCAG GACCTCCCTG	300
<i>J</i> 0	GACCCCTGCA GGGCAGGCAG CTTGGGCCCG AGCCCAAGCA TTTGGCTCTG CTGCCCCCAA	360
	GGGACAGGA AGCCTCTTGG GCCTCTTCCC TTCCTGGACA AGGCCCCCTG CCTTTGCCTC	420
35	ACATAAACTG TACAGTATTT TCATTAAAAG CCTCTTTCAT AAAAA	465
40	(2) INFORMATION FOR SEQ ID NO: 13:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 474 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:	
50	ATGCAATTCC TGCTCACAGC CTTTCTGTTG GTGCCACTTC TGGCTCTTTG TGATGTCCCC	60
	ATATCCCTAG GCTTCTCCCC CTCCTAGAAG GGCTTCTTGA TAGATTAGAA AATAAGAATG	120
55	AGTGACATTT CCTATGTGCA TATAAGAAGG AGCCACAAGA CATGTCTTTT AAATAAAAGG	180
<i></i>	ACAGTGTCCA TCCTTTTAGC TGCCGAATAG AACCTTGGTC TCATCCTCCT GGAGCTAGGC	240
	CTTTAAAACA GCTTCTGTGT TTCTCATTTG TCTCAGTGTT TTGCCAGGGT TTTATCGGAA	300
60	AGATAATGTT CCGTTTAAAA TATTTCCTAA TGAGGCCGGG CGTGGTGGCT CACGCCTGTA	360

	ACCCTAGCAM TTGGGGGCTG AGCGGGTGGA TCACGAGGTC AGGAGATCGA GACCATCCTG	420
5	GSTAACATGG TGAAACCCCG TCTCTACTAA AAATACAAAA AAAAAAAAAA	474
10	(2) INFORMATION FOR SEQ ID NO: 14:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 314 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:	
20	TTATGTTGGG GAGCAAGACC TGATAGCCAG CCTTTACATG GGAGTATAAT TCTGTCCTCC	60
20	ATCTCATAAG CCCCAGTACC TGAGCCAGAA TGATTATAAC CAACCACACT GTCTCTTTAT	120
	CATGGATGGC TTTAGCAGTA GGTTATTTTC ATCATTGCCA TTTGTAGCTC TACAGTGGTT	180
25	TATAGTAATT TCTCATCTTT TAAGTCTCTC CCTCAGTGCC TGTTGTTATC AAACTCATTG	240
	CTCTCTCANG CAGTTGAGCT CTGCATTCTC CCYTATGGGG GAGAGCTGTG TTGGAGAGAG	300
30	AGAATATNAC TTCC	314
35	(2) INFORMATION FOR SEQ ID NO: 15: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 613 base pairs	
40	(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:	
45	CTCATATTGC CGTCTGGCTA AAAGTGAACA TGCCATTGAT CAATCTGCTT TTATTATATT	60
	ATGTTCCTAA TGGTGGCAAG CAAGACAAGA AGTAGAAAGA AAGATGGTGT AAGCTCAAGA	120
50	ACCCACTAAA TCTATCCTAT GGCCTGGGTT CACCCAGCCT GCTTTGTGGA TTTTGTCTCA	180
50	CTATAACAGA GCTCCCAAGG AGACTGCAGA GTCAGCTCCC TTAAGCACTG TAACTAAAGC	240
	CTAACTCTTC CGTTCCACCC AACAATGTYC CCAGCTCATC CTCTTTCCCR AAGTCCCCTT	300
55	TCTGCCCCAG ATGCGAATTG CATTTAACTA ATCCTCAAGT GAAATGTCCA CACAGRATTC	360
	CATTITAATT AGCATACCAT AGTITITIGTG CAAATTTGCT TTCAGARGAC TCCCATTGCA	420
60	GCTGCTCAGA GACGCTAAWG GCAGGGCCTC TTGAWGCTTT CCCGATAGCT TTCAGCTGCA	480
JU	ATAGCTCTTA GGCAGAATGC CATGAGCGTC CTGCCCAACT GTATTACTGG GGAACACCTG	540

	ATTOGCTAGA AGTTGATCCT CCTGTAACTT TTCTGAGTTC TTTACATTTA C	TCGTGAAAC	600
5	CCAAATATGC CAC		613
10	(2) INFORMATION FOR SEQ ID NO: 16: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 356 base pairs (B) TYPE: nucleic acid		
15	(C) STRANDEDNESS: double (D) TOPOLOGY: linear		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:		
20	CCCCCCCAT TGAACCCTGG GCTGTGAAAG TTTTTGCCTG TGTGGGTCGT TG	CTCTCTCCC	60
20	SCCTGGTGTG TOGKTCCCAA CTCCTGTTGC AAAGTGGCAG CAGCCAATCA TO	GAAGCGCCC :	120
	TTATTTTTAG TTGCAGATGA CCAGGTCTCC CCCCACAGC CTCTGTCTCG TY	CCCTCATTG :	180
25	GTGAGTGGTC TGCCTGCCCA AGGAGCCTGA TTGGTGGGAA ATGGCATCAT C	TAATATGAT 2	240
	GGGAAGGCAT TTGGTCCTGG TTATGTTTAT TACAACATCA TTGCACTCTG G	GACTCCAGT :	300
30	CCCTGAAAAC GTAATTTGTG GTGTTACCAA AGGACCACAG GGGAAAAAAA AA	AAAAA 3	356
35	(2) INFORMATION FOR SEQ ID NO: 17: (i) SEQUENCE CHARACTERISTICS:		
40	(A) LENGTH: 414 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:	•	
45	GAAACTANAT CCCGGGGCTT TTAACNGGTA CTTGGGAAAT AAGTATTGGG TA		60
	GNGGACATTG ACTGCACCAA ACCAAAGCTA TAGAAAGAAA TGATTGACTT TI	TTAAAATAT]	120
	ATTCACATTA ACTGTCCTAG GATACTTCTC TTGAGGCTTT GGAAAACTTC TT	TCCTTGAAA 1	80
50	TITGCATATC CACTCCAGTT CTGTCACCAA AGATTTTAAT CTTCAGATCG CA	AATTICCIC 2	240
	TCTCCCAGAA AAAAGTACTA CAACAGGCTC AAGGGATATG CTTTGGTGGT CA	AAGGATTA 3	300
55	CACTATEGIT TICCTICIGI TCACAATEGI ATTIACAGGA GACCITETCA TO	CAGAGGACG	360
	TACTGAACTA TCTTTATGAC TTTGGATTTG ATCAGAGGTT TAAAAAAAAA AA	AAA 4	114

(2) INFORMATION	FOR	SEQ	ID	NO:	18:
-----------------	-----	-----	----	-----	-----

(i)	SECUENCE	CHARACTERISTICS:
-----	----------	------------------

(A) LENGTH: 469 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:

10 AATCACCATT GCAATACAAA TGATCTGCCT GGTGAATGYT GAGCTGTACC CCACATTCGT 60 CAGGAACYTC GGAGTGATGG TGTGTTCCTC CCTGTGTGAC ATAGGTGGGA TAATCACCCC 120 15 CTTCATAGTC TTCAGGCTGA GGGAGGTCTG GCAAGCCTTG CCCCTCATTT TGTTTGCGGT 180 CTTGGGCCTG CTTGCCGCGG GAGTGACGCT ACTTCTTCCA GAGACCAAGG GGGTCGCTTT 240 GCCAGAGACC ATGAAGGACG CCGAGAACCT TGGGAGAAAA GCAAAGCCCA AAGAAAACAC 300 20 GATTTACCTT AAGGTCCAAA CCTCAGAACC CTCGGGCACC TGAGAGAGAT GTTTTGCGGC 360 GATGTCGTGT TGGAGGGATG AAGATGGAGT TATCCTCTGC AGAAATTCCT AGACGCCTTC 420 25 ACTICICIGI ATTICITCCIC ATACTIGCCI ACCCCCAAAT TAATATCAG 469

30 (2) INFORMATION FOR SEQ ID NO: 19:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 550 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

40 CCCCCCCCC CCCCACACT TTCAGGAGTC ACCCCCCAGC ATTTGGGGTT GGGTTGGCCC 60 TACTCCAGCC TGGAGCTCCC TGAGGGAGCC TGCACTCCCT GCTCCCAATC CCCGCTACTG 120 GTGCAGGGAT GCAGCCTGGA GCTGGCGTCC TTGTTCTGGG CCTGCTGCTG CCGCCACCCC 180 45 AGAGCCCCAG CCTGTCCTGA ATTGACATCA GTGCTTCCCT GAACTGCCTC CCCCACCCCT 240 GGGCATTATC CCAGGAAACT TTATGTTTTC TAGAAGCTAA GCAGCTGCTG GGACTCAGGG 300 50 ACTGGTGCAG GTAGGCTGAG TGGCAGCTCA GTCCTAGAAG GTCTCTGAAG ATCTGGACTG 360 AGGACCTTGC TACTCCCCAA GCCAGAGCCC ATCAGCCAGG CCTGCTGTGA GCCACCTGCC 420 TGTGGAGTGC TGAGCTCAAC CAAAGGCTGG CAAGCTCTGG GCCTCATTTA AGGGATTCTG 480 55 ATGAGCCGAT GGGCCCTGGA GGCAGCCCAT TAAAGCATCT GGCTCGTTTT TGGAAAAAAA 540 **ААААААА** 550

35

(2) INFORMATION FOR SEQ ID NO: 20:

(i) SEQUENCE CHARACTERISTICS:

	(A) LENGTH: 741 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
10	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:	
15	TCTTGAAGAG TGTACAGTAC AGGATTATTA TAATGAAAGT TTATATCAAC AGGGTTTCGT	60
13	TGGCTCTGCA TATATTATAA GCAAAAGAGA TTGGTAAAGT GCCACAGTAT TCCAGATAAC	120
	TTTTCAGTTG CGGCCTTTCT TCTCGTTCTT TAATTTGAAA CCTAGATACA TGCAGTAAAA	180
20	ACTAGGAGAA TGACTTTTAC CCTTGGGGAC AGCCAAGTTT TGTTGATAAA CCTATTTCCT	240
	AGCATGCCTT CAGGAAGTTG TGCCAGACCC TAGATTGTGA AGGACCCACT GTTCTTCTGT	300
. -	TGTACGAGCT CCCTGAACCA TTGTTCAGAG GACCAATGTC ACATCGCTTC ATGGGCATGG	360
25	NCCATGGGAG CATCTGGGTG ATAYCTGTCT ACAGTATTGG CTCTTCTGCG AGGCTGATAC	420
	ACAAGGCCTC TCTTCCACAT GATCATTTGC AAACCTCCCC CAGCCCCTAC CATCCAATGT	480
30	GGAAGGAAAA CAAGAACTGC CTGAAGAAGA GTCCAAGCTA CAGATACACA GCGTGTGCAT	540
	TOCGOCTOTC ACCTTCCTCC TCCCACTTCT GTATCCTCAG AGATGCTGCG TGGATGTTTC	600
	CTTAACCTCA GCTGACTTCC CTGTGAATGT CTAATGCTAG TTCAGGGCCT CCAGGCATTG	660
35	ATTTGTACAG TGGTAACTCC CAATGAGGCT TCTGTTATCA TTTGGTGTGC TTTYTCTGTC	720
	ATTAAAAGAA ATGATTTTCC C	741
10	,	
	(2) INFORMATION FOR SEQ ID NO: 21:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 991 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:	
	GGCACGAGTC TCCCCTGGGG AAGTITTTCT TTTTCAGGAG GGAGGAGGGC TTTCCCAGGT	60
55	AATGTGTCTA GAGTGTTGGG CAGAAAATCT GGGACCACAC CACACCAGTT CTCTCCTTAA	120
•	TCCACGTCAT TTGCCTTCTA TCCCAGCTAT GTTTCCAGTG TCCTCTGGGT GTTTCCAAGA	180
	GCAACAAGAA ATGAATAAAT CTCTGGTGAG TTGTTTATTT GTTCTTCACT TTGTTTTACA	240
60	CTGTATTTC TGAGTTATG GGTGTCTGTG AATTAAAAAG GAAAAGTAGA AATAAGTAAA	300

WO 98/39448 PCT/US98/04493

	ACTCAGGTTG AAGGAAATAT ACATAAATAA GATAAAGCTG ACCTGTAGAT ATAGCAGGTT	360
5	ATAAAGCTTA GAGTTGTCTA AGTTGAGTGC AAATTTTCCT CTGATCTTTC TGATGCCGAA	420
3	CAAAAAAGCA GTCATGTTTG TTATGTGATT GGAATGGAAC CCGAGAAGAG AGCATGCTGT	480
	GTTCTTGTGG GACAGGAAAG CTTGCGTGCA CCAAGTCTGA ACCACCACCT TCATGGTGAC	540
10	ATAGATTATG TGCTGGAACA TATTTCACAC CGGCCTGGCA GTAAACACTT GTAGTGTTGT	600
	GCAGTGGAAA CGGTCATCTT CCGCTAAAGC ACGGCGTGTT GTGCAGCGGA AATGGTCATC	660
15	TECTECTAAA ACACAGCTTC CATCETAATE TATECTCCTT ACTCAAAGAG TETEGTCCCA	720
13	AACAGCCTTT GGGAGGTCCT CCTTGATTCA TGGATGAAAC CTGGAACATC TTGAGGACTG	780
	AGTTAACCAT AGGTCCTTAA ATAACTCTCC ACACGTTTTT CTTAGTTTAT CTCTACATGC	840
20	AGGGTGTGCA GCAGCCTGTT CAAAGTCATA TTTTCTGGGA AATATTTCCA GTGTTTATTT	900
	GCACTTTAGC CCACTCTGTG TAGCCTTATT TCTTCTAAAC TCACCATTAA TCTGAATAAT	960
25	AGTCAAATTT AGGGGGACTG TATTTGCCTT A	991
23		
	(2) INFORMATION FOR SEQ ID NO: 22:	
30	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 653 base pairs (B) TYPE: nucleic acid	
35	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEO ID NO: 22:	
	CCACGCGTCC GGAATTCCCC TGAGGATCTT GGGCTATCTT TGACAGGGGA TTCTTGCAAG	60
10	TTGATGCTTT CTACAAGTGA ATATAGTCAG TCCCCAAAGA TGGAGAGCTT GAGTTCTCAC	120
	AGAATTGATG AAGATGGAGA AAACACACAG ATTGAGGATA CGGAACCCAT GTCTCCAGTT	180
1 5	CTCAATTCTA AATTIGTTCC TGCTGAAAAT GATAGTATCC TGATGAATCC AGCACAGGAT	240
	GGTGAAGTAC AACTGAGTCA GAATGATGAC AAAACAAAGG GAGATGATAC AGACACCAGG	300
	GATGACATTA GTATTTTAGC CACTGGTTGC AAGGGCAGAG AAGAAACGGT AGCAGAAGAA	360
50	GTTTGTATTG ATCTCACTTG TGATTCGGGG AGTCAGGCAG TTCCGTCACC AGCTACTCGA	420
	TCTGAGGCAC TTTCTAGTGT GTTAGATCAG GAGGAAGCTA TGGAAATTAA AGAACACCAT	480
55	CCAGAGGAGG GGTCTTCAGG GTCTGAGGTG GAAGAAATCC CTGAGACACC TTGTGAAAGT	540
- -	CAAGGAGAG AACTCAAAGA AGAAAATATG GAGAGTGTTC CGTTGCACCT TTCTCTGACT	600
		200

(2) INFORMATION FOR SEQ ID NO: 23:

5

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1486 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: double

10 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

GGCAGGCTGA CGACCTGCAA GCCACAGTGG CTGCCCTGTG CGTGCTGCGA GGTGGGGGAC 60 15 CCTGGGCAGG AAGCTGGCTG AGCCCCAAGA CCCCGGGGGC CATGGGCGGG GATCTGGTGC 120 TTGGCCTGGG GGCCTTGAGA CGCCGAAAGC GCTTGCTGGA GCAGGAGAAG TCTCTRGCCG 180 20 GCTGGGCACT GGTGCTGGCA SGARCTGGCA TTGGACTCAT GGTGCTGCAT GCAGAGATGC 240 TGTGGTTCGG GGGGTGCTCG GCTGTCAATG CCACTGGGCA CCTTTCAGAC ACACTTTGGC 300 TGATCCCCAT CACATTCCTG ACCATCGGCT ATGGTGACGT GGTGCCGGGC ACCATGTGGG 360 25 GCAAGATCGT YTGCCTGTGC ACTGGAGTCA TGGGTGTCTG CTGCACAGCC CTGCTGGTGG 420 CCGTGGTGGC CCGGAAGCTG GAGTTTAACA AGGCAGAGAA GCACGTGCAC AACTTCATGA 480 30 TGGATATCCA GTATACCAAA GAGATGAAGG AGTCCGCTGC CCGAGTGCTA CAAGAAGCCT 540 GGATGTTCTA CAAACATACT CGCAGGAAGG AGTCTCATGC TGCCCGCANG CATCAGCGCA 600 ANCTGCTGGC CGCCATCAAC GCGTTCCGCC AGGTGCGGCT GAAACACCGG AAGCTCCGGG 660 35 AACAAGTGAA CTCCATGGTG GACATCTCCA AGATGCACAT GATCCTGTAT GACCTGCAGC 720 AGAATCTGAG CAGCTCACAC CGGGCCCTGG AGAAACAGAT TGACACGCTG GCGGGAAGC 780 40 TGGATGCCCT GACTGAGCTG CTTAGCACTG CCCTGGGGCC GAGGCAGCTT CCAGAACCCA 840 GCCAGCAGTC CAAGTAGCTG GACCCACGAG GAGGAACCAG GCTACTTTCC CCAGTACTGA 900 GGTGGTGGAC ATCGTCTCTG CCACTCCTGA CCCAGCCCTG AACAAAGCAC CTCAAGTGCA 960 45 AGGACCAAAG GGGCCCTGG CTTGGAGTGG GTTGGCTTGC TGATGGCTGC TGGAGGGGAC 1020 GCTGGCTAAA GTGGGKAGGC CTTGGCCCAC CTGAGGCCCC AGGTGGGAAC ATGGTCACCC 1080 50 CCACTCTGCA TACCCTCATC AAAAACACTC TCACTATGCT GCTATGGACG ACCTCCAGCT 1140 CTCAGTTACA AGTGCAGGCG ACTGGAGGCA GGACTCCTGG GTCCCTGGGA AAGAGGGTAC 1200 TAGGGGCCCG GATCCAGGAT TCTGGGAGGC TTCAGTTACC GCTGGCCGAG CTGAAGAACT 1260 55 GGGTATGAGG CTGGGGGGG GCTGGAGGTG GCGCCCCCTG GTGGGACAAC AAAGAGGACA 1320 CCATTITITCC AGAGCTGCAG AGAGCACCTG GTGGGGAGGA AGAAGTGTAA CTCACCAGCC 1380 60 1440

AACTCGAGGG GGGCCCRKAC CCAATCWCCC TATAGTAKAC GTANNN 1486 5 (2) INFORMATION FOR SEQ ID NO: 24: (i) SEQUENCE CHARACTERISTICS: 10 (A) LENGTH: 2323 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24: CTTCGCCGTT TCTCCTGCCA GGGGAGGTCC CGGCTTCCCG TGGAGGCTCC GGACCAAGCC 60 CCTTCAGCTT CTCCCTCCGG ATCGATGTGC TGCCGCCGCC GCCGCCGCCG TCCCGCGTCC 120 20 TTCGGTCTCT GCTCCCGGGA CCCGGCTCCG CGCAGCCAGC CAGCATGTCG GGGATCAAGA 180 AGCAAAAGAC GGAGAACCAG CAGAAATCCA CCAATGTAGT CTATCAGGCC CACCATGTGA 240 25 GCAGGAATAA GAGAGGCCAA GTGGTTGGAA CAAGGGGTGG GTTCCGAGGA TGTACCGTGT 300 GGCTAACAGG TCTCTCTGGT GCTGGGAAAA ACAACGATAA GTTTTGCCCT GGAGGAGTAC 360 TTGTCTCCCA TGCCATCCCT GTTAATTCCT GGATGGGGAC AATGTCCGTC ATGGCCTTAA 420 30 CAGAATCCCC CAGATGGCTT CATGGCCCCC AAAGCATGGA AGGTCCTGAC AGATTATTAC 480 AGGTCCTGC AGAAGAACTA AGCCTTTGGT CCAGAGTTTC TTTCTGAAGT GCTCTTTGAT 540 35 TACCITITCT ATTITIATGA TIAGATGCTT TGTATTAAAT TGCTTCTCAA TGATGCATTT 600 TAATCTTTTA TAATGAAGTA AAAGTTGTGT CTATAATTAA AAAAATATAT ATATATATAC 660 ACACACAT ATACATACAA AGTCAAACTG AAGACCAAAT CTTAGCAGGT AAAAGCAATA 720 40 TTCTTATACA TTTCATAATA AAATTAGCTC TATGTATTTT CTACTGCACC TGAGCAGGCA 780 GGTCCCAGAT TTCTTAAGGC TTTGTTTGAC CATGTGTCTA GTTACTTGCT GAAAAGTGAA 840 45 TATATTITCC AGCATGTCTT GACAACCTGT ACTCTTCCAA TGTCATTTAT CAGTTGTAAA 900 ATATATCAGA TGTGTCCTCT TCTGTACAAT TGACAAAAA AAAAATTTTT TTTTCTCACT 960 CTAAAAGAGG TGTGGCTCAC ATCAAGATTC TTCCTGATAT TTTACCTCAT GCTGTACAAA 1020 50 GCCTTAATGT TGTAATCATA TCTTACGTGT TGAAGACCTG ACTGGAGAAA CAAAATGTGC 1080 AATAACGTGA ATTTTATCTT AGAGATCTGT GCAGCCTATT TCTGTCACAA AAGTTATATT 1140 55 GTCTAATAAG AGAAGTCTTA ATGGCCTCTG TGAATAATGT AACTCCAGTT ACACGGTGAC 1200 TTTTAATAGC ATACAGTGAT TTGATGAAAG GACGTCAAAC AATGTGGCGA TGTCGTGGAA 1260

AGTTATCTTT CCCGCTCTTT GCTGTGGTCA TTGTGTCTTG CAGAAAGGAT GGCCCTGATG

60

	CAGCAGCAGC	GCCAGCTGTA	АТАААААТА	ATTCACACTA	TCAGACTAGC	AAGGCACTAG	1380
	AACTGGAAAA	GACCACAGAA	AACAAAGAAT	CCAACCCTTT	CATCTTACAG	GTGAACAAAC	1440
5	TGTGATGATG	CACATGTATG	TGTTTTGTAA	GCTGTGAGCA	CCGTAACAAA	ATGTAAATTT	1500
	GCCATTATTA	GGAAGTGCTG	GTGGCAGTGA	AGAAGCACCC	AGGCCACTTG	ACTCCCAGTC	1560
10	TGGTGCCCTG	TCTACACCAG	ACAACACAGG	AGCTGGGTCA	GATTCCCCTC	AGCTGCTTAA	1620
10	CAAAGTTCCT	CGAACAGAAA	GTGCTTACAA	AGCTGCCTTC	TCGGATACTG	AAAGGTCGAG	1680
	TTTTCTGAAC	TGCACTGATT	TTATTGCAGT	TGAAAAAAA	AAAAAGCTAT	TCCAAAGATT	1740
15	TCAAGCTGTT	CTGAGACATC	TTCTGATGGC	TTTACTTCCT	GAGAGGCAAT	GITTTTACTT	1800
	TATGCATAAT	TCATTGTTGC	CAAGGAATAA	agtgaagaaa	CAGCACCTTT	TAATATATAG	1860
20	GICTCTCTGG	AAGAGACCTA	AATTAGAAAG	AGAAAACTGT	GACAATTTTC	ATATTCTCAT	1920
20	TCTTAAAAAA	CACTAATCTT	AACTAACAAA	AGTTCTTTTG	AGAATAAGTT	ACACACAATG	1980
	GCCACAGCAG	TTTGTCTTTA	ATAGTATAGT	GCCTATACTC	ATGTAATCGG	ТТАСТСАСТА	2040
25	CTGCCTTTAA	АААААААА	CAGCATATTT	ATTGAAAACA	TGAGACAGGA	TTATAGTGCC	2100
	TTAACCGATA	TATTTTGTGA	СТТААААААТ	ACATTTAAAA	CTGCTCTTCT	GCTCTAGTAC	2160
30	CATGCTTAGT	GCAAATGATT	ATTTCTATGT	ACAACTGATG	CTTGTTCTTA	TTTTAATAAA	2220
50	TTTATCAGAG	TGAAAAAAA	ааааааааа	аааааааа	ааааааааа	АААААААА	2280
	АААААААА	АААААААА	АААААААА	ААААААААА	AAA		2323
35							
	(2) INFORMA	TION FOR SE	O ID NO. 25				
40		SEQUENCE CH					
70	(1)	(A) LEN	GTH: 683 bas E: nucleic	se pairs			
		(C) STRA	ANDEDNESS: O DLOGY: line	double			
45	(vi	SEQUENCE I			. 25.		
		TGTGTGGTCA		~		CONCONCO	60
50							60
50		AACAGCATTC					120
		CCGCCTTTTG					180
55		AATTTCCAAC					240
		GCGGTGCTTA					300
60		AGGGAAAGAA					360
60	GAAGGTGTCC	ACAGTGAGCC	TGTGTGCAGG	ACTGTCCACA	CGCTTCACAC	TIGTCACCAT	420

	CAGGCCTTTC TGGTCCTGAT AGGGTGGAGC AAAAGTGGAA AGGAAAGGAA	480
5	CTCACAGCCA TTATATTAAA TAGTAGGTCG ATTCACATCT CGTGCTCCTG GCCACCTTCC	540
)	CCTGTGCCTC AGTGACATGT AGATGACTGA CTGCCAATAC TTGTCACCAT TCCCTGGAAG	600
	CAGCTACCTA GOGGAAACAA GATGTAGTGC TATTGCCGAT AACAAGTAAG ATTTTCCACA	660
10	СТААЙАААА ААААААААА ААА	683
15	(2) INFORMATION FOR SEQ ID NO: 26:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2036 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:	
25	CTGAGAAAGG AAAGCATTCG GATCTGCTGC AAAAACACAT ATATCCATAA AGACTCATGT	60
	TATTCAGAAA ACAGATTGTG AACACAATCA CATTCGCATG AATCCTTTAA AAGGAAGAAG	120
30	ACCTTAAAGT ATCTGCAAAT CTGAATTTCT ATTTATTCCT TCACTGAATA TAGAAACAAT	180
	GGTTATCTGA TTATTAGAGA TATTATTTTG GATATGTTAC TTATTAACTT GCTATGGCTG	240
	GTAACCATGA TAAAGTCTGT TATTAATAAC AACATAATTC TTTTTTTAAA GAAGAAAAGC	300
35	TTATTTTCA TTGACAGTGT ATAGATTTAT CTACTTAGTT GTGTTTTGCT ATTAGTGTTT	360
	TAATTITITT TITAAGTIGA GIGITIGATA AATTITAAGA CCCIGICCCC ACCTIGITIT	420
40	GAGTCCTGTG TTGACTACAG GTATATAGCY CAWIFITAAAA ATCCTAAAGC AAAAGAATTT	480
	TATTTATAAA AGAATCMAMC MGTTGCATGC ATGAGGCTGT GAAGTCAGAT ATTTAGTAAT	540
	AAAAGCAGCA GTGCCTTTTT TTGTATTTAC CCATTGACCC CCACCAAATG CAACTGTTTT	600
45	ATATTAAGAA AATAGTAACA ATTTTAAAAT CTCAGAGTAA AATCTATTTC ACTACATGCT	660
	TTTCCCCCCT TGTTCTGATT TAAGCAGTGT GTACTTGGCA TCTCTACATT GTCCTAGGGA	720
50	CAGTGGTGTT CTACAATATT ATCATGTATG ATGTTTTATT GGTGCTTTTT ATTCATAGTG	780
	GCTTCTTACC AGAAACAGTA GGAAGAAACA CATGAACTGT GTACAAGACA TGAAACATTG	840
	CTGCTGATAT GTTGTTTTT CACATGCTTT TGAGTTTTCA CTTTTTAAAC GAGAGCCAGC	900
55	AAGCAAAATA GATGTGGCTG GGTCTGCCTG TCCGGGCGGC TYTTTGCACC GAGCTCTCAA	960
	ATCCTGTGTA TTGAGGGTTC CTTTTTGGTA CTCAGGATTG GAGCTACAGC TGGGCCCCCC	1020
	TCTCTCCCAT TCGTTTGAAG AGACACTGAG GGAAACAAGG GTTTCTTTTG AGGTGTCCTT	1080

	GGCTGCCTTT	TACGGGATGG	GAGCCTTCTC	CGGATCTTTT	GITCTTCTGC	ACCTCTTGTA	1140
	GCTACTGCCG	GTGCAAGGTT	GTAGATGTTA	TTCCCCAGGA	GCCTGGGCTK	GGGGGCTGAG	1200
5	CTGGGCTGAA	TGCAAAAGCA	TGCAACCAGA	AGGCGGGCAA	GGGGAGGAAA	AGCAGGCCTG	1260
	GCCTCATTGG	TCCCCTGGAG	ATGTCTGTAG	CAGTCAGCTC	CAGCTTGGGC	CTGGGGAAGC	1320
10	AGCCTGACCA	AGGCGCTCAG	GTGTGCCTGT	TACAAGAAGA	ACCTGCAGAA	GGATAATTIG	1380
10	CACATGGAGC	TGTGATAACA	CTAATGTTGA	THITITIT	TTTTACAAGT	CATCAGRGAT	1440
	GTTTGCAAAG	TGAGTTTTAT	TTTTTTGTAA	TICCTTTATC	тттасттааа	GGTGAATGTG	1500
15	TATTCCTCTG	GGAGGAATAG	GAAGAAAACA	GGAATGTTAA	TAATGTCGAA	CAGAAAACTT	1560
	CCTCCCTTAT	ТААТАТАТАА	TCYTCATGTA	TTTATGCCNT	AATGTAAGCT	GACTTTTAAA	1620
20	AAGCTTTCTT	TTGTTGCATG	CCCTGTGCAG	GCATCTGTAT	TGTACATGCA	TGCCTTTCGT	1680
20	CCTGTTTTCC	TGTATAAAGT	TAGTGAACAA	AGAAATATTT	TTGCCCTAGT	TCATGTTGCC	1740
	AAGCAATGCA	AATTTTTAT	ATTTGTCATA	TATGGAAAGA	CCATCTTTCT	TACATGTAAA	1800
25	AGCTTTACTG	ATATACAGAT	ATACTAATGT	TTGAAGATGC	TGTTCTTTGC	AAGTGTACAG	1860
	TTTTCAAATG	TTGTTACCAG	TGAAACACCC	TTGTGGTTTA	AACTIGCTAC	AATGTATTTA	1920
30	TTATTCATTT	CCTCCCATGT	AACTAAGAAT	CATGGCTATA	TTTCATATCA	ACGTTATATT	1980
	GAAAGTGAAG	GGAAATGATT	AATACAAGGT	TTTGTAACAA	AAAAAAAAA	ANNAAA	2036
35	(2) INFORMA	TION FOR SE	O ID NO: 27	<i>'</i> :			
		SEQUENCE CI					
40			GTH: 717 ba E: nucleic	-			
		• •	ANDEDNESS: OLOGY: line				
	(xi)) SEQUENCE I	DESCRIPTION	: SEQ ID NO	: 27:		
45	GGCACGAGAT	AACATAGGCA	СААТААТАСТ	GTATGTCTAC	TTCTAGGATT	ATAAGGAATT	60
	AACATTGAGA	TGACATTTCC	ATTTGAGAAG	AAAATAGTTG	CTTTCAGTGC	CTTTTATTIG	120
50	ATTCCTGGAG	AGAGCAGACT	CGCACCAACA	TTCAACCCCA	GCGCTGATAT	GACAGTAATC	180
	CTCAGAGGCA	GAGCCCAGCA	CAAAACAGCA	ATGCTAGAAA	GTTACAATTG	GAAAGTTTCC	240
				CATTCCCACAA		ma a mmomorom	300
	TGCCAGCTTC	GGGAATGACA	CIGCAAAGCT	GWI OC CWGWW	ACTGCCAGAG	TAATTCTCCT	200
55						TTGACTAATC	360
55	CATTACTGCT	CTACCCACCC	ACTITICAGCT	CCCCAAATTA	ACTAGTGCAG		

	AAATGCAGAT TCTTCATCTT CTCCCCAGAC CTCCTGAGTT AGAAATTCAC AAGTTCTCCA	540
5	GGTGATCTCA TACATGCTAA AGTTTGAGAA CCATTGAGTA AAGTTAATGC ATTAAGAAGA	600
,	GATTAGATAG GGATGGTGGC GTATCTTCCT ACAGTTTCCC TGTTAACAAG AAAGTCAGAG	.660
	GTCAGTTGAT CAGACATTAG ATTATTTATT GCTAAAACTA AAAAAAATTA AAAAAAA	717
10	·	
	(2) INFORMATION FOR SEQ ID NO: 28:	
15 20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 495 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:	
	GAATTCGGCA CGAGCAGCAT CCTAATTITA GTITGGAGAT GCATTCTAAA GGATCTTCTC	60
25	TATTGCTTTT TCTCCCACAA TTAATCTTGA TTCTGCCTGT CTGTGCACAT TTGCATGAGG	120
	AACTGAACTG TTGTTTTCAT AGGTAAATGA GAGACTGAGT TTTTTCATTT CTGAAGAGAA	180
30	AGGGCATTTG CTCCTACAAG CTGAAAGGCA CCCCTGGGTG GCTGGGGCCC TCGTGGGAGT	240
50	TTCTGGGGGA TTGACCCTTA CAACATGCAG TGGCCCTACA GAAAAACCTG CAACTAAAAA	300
	TTATTTTTA AAAAGGCTCC TCCAGGAAAT GCATATAAGG GCTAATCACC CAGTATTTTG	360
35	ARGCTTCGAA GARGTAATAR AMCCCTGGAG AGAGAAACTG AGACATGTAA GAGGGTGGGA	420
	ATGACTCAGT GGTGGCACAC TATGGAGTCC TGCCCACAAG TAGCACACAT CAACCCACTA	480
40	CACAGAAATC CTAGG	495
45	(2) INFORMATION FOR SEQ ID NO: 29:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 556 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
50	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:	
55	AGCTTAACGT CATGATTCAT TAGGGGAATG CAAGGCAAAA CCATGATGAG AATGCCCCTA	60
	GACACCTCTT AGAAGAGCTG CTAGAAAGGC AGACAGCACC AAGCGCTTAA ATGAGATGGG	120
	GGCACTGGTG CTTCTTCTGT GCCTACTGGT AGGGGTGCAG CAGAGTGGTT CAGTCTGGGA	180
60	CAGTTAGCTG GACATCACGT GGACCCAACA CACGCATTTC CTGGGTTACT TACCAAGGAG	240

	AATAGAAAGC AGGCAGATCT TTACAGCAGC TCTTACCTGW TTGCAAAACA ATGGAAATGC	300
5	CCACATGTCC ACAAACAAGT KTGTGGTCTG CCTGTGCCAT GAAGCACAGT GTGGCTGAGC	360
J	GTCAAGAGTC CCCACACTCA AAGGAGGCAG CAGATACAGG GCTGCACACT GTGTGATTCC	420
	ACACATGTGA CATTCTGGAC ACGGACATGC TGGATGGCAA AACGAGCATC GGGCTGAGAG	480
10	GACTGCTGAG AAGGGGAACG GGGCTGCTGG GATGTGGGTT GATTGTAGCA GTAGCTCATG	540
	GAGATGTGAC CTCAAA	556
15		
	(2) INFORMATION FOR SEQ ID NO: 30:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 434 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:	
	CTAAATGGTG ACTGTGGCTT TGTCGAGACA GGCCCCAAAT GGTAGGTGTG AACACAACAT	60
30	GCACAGAATG AGGAGACATG CAGAGTGCTG AAATACTGTC CTGGACAGAT GTGTTACATG	120
	ACTITCTITI CAGCITATIT CTGTGGCCTG CCTTTGAAGA TAGAGCTTTG TTGATATITA	180
	CATTAAACCA AATTGTATAA YTATGTTCCA TTCTGACATG TTATTTAGCA AARGAAAAAR	240
35	GAGTAATTCT ACATCAGCAT CTTTAGTGCA TGCTAAAAGA TTAAAAATGT CTTTTGGGGA	300
	ACATGTTTTG TATACATAAA TGTTTAGATA GAAATATTTA TAGAATNCTC TATGTGAGTA	360
40	TINATCICCC TATGIATATI TATATCIAGA IGIGICAATC TIIGIATIGA TATGAAAIGC	420
	TATGAATAGT GAGA	434
45	(2) INFORMATION FOR SEQ ID NO: 31:	
50	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 715 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:	
	CCACGCGTCC GATCTCACAG CTCCGACACT ATTGCGAGCC ATACACAACC TGGTGTCAGG	60
	AAACGTACTC CCAAACTAAG CCCAAGATGC AAAGTTTGGT TCAATGGGGG TTAGACAGCT	120
60	ATGACTATCT CCAAAATGCA CCTCCTGGAT TTTTTCCGAG ACTTGGTGTT ATTGGTTTTG	180

	CIGGCCITAT TGGACTCCIT TIGGCTAGAG GTTCAAAAAT AAAGAAGCTA GTGTATCCGC	240
5	CTGGTTTCAT GGGATTAGCT GCCTCCCTCT ATTATCCACA ACAAGCCATC GTGTTTGCCC	300
5	AGGTCAGTGG GGAGAGATTA TATGACTGGG GTTTACGAGG ATATATAGTC ATAGAAGATT	360
	TGTGGAAGGA GAACTYTCAA AAGCCAGGAA ATGTGAAGAA TTCACCTGGA ACTAAGTAGA	420
10	AAACTCCATG CTCTGCCATC TTAATCAGTT ATAGGTAAAC ATTGGAACTC CATAGAATAA	480
	ATCAGTATTT CTACAGAAAA ATGGCATAGA AGTCAGTATT GAATGTATTA AATTGGCTTT	540
15	CTTCTTCAGG AAAAACTAGA CCAGACCTCT GTTATCTTCT GTGAAATCAT CCTACAAGCA	600
13	AACTAACCTG GAATCCCTTC ACCTAGAGAT AATGTACAAG CCTTAGAACT CCTCATTCTC	660
	ATGTTGCTAT TTATGTACCT AATTAAAACC CAAGTTAAAA AAAAAAAAAA	715
20		
	(2) INFORMATION FOR SEQ ID NO: 32:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 486 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:	
	GAGCCAGTGC CGGCGAAAGG GGACCTTCCT CTACTTCCTG CCACAGACCC TGTCCCCACA	60
35	CACTTCCTGC CCCTGCTCTG CTGGGAGGCC ACTTCCTCCC CCAGTGCTGG ATTCCACCCC	120
	CAGCTCACCC TCAAACATGG CCCCCTCTCT CCTCCTGCTT GCCCCTCTCT GCTCCCTGGA	180
	GGCTGTTCTG TCCTCCCCTC TTGAAAAGCA ATGCCAGCTT CCTGGGATCT TCTGCCAACT	240
40	CCAGCTACCA TGCCCTTTGC TCCTGTCAGC TCAGCTCCTC AAGGGAATTG TCTAMCCTCG	300
	GTGTCCTGCT TCCCTCCCTC AACCTCCTCA CCCTGCTCCA AGCTGGCATC TGCCCCTCCA	360
45	CTGCACAGAA CGGNTCCCCC ACCACCTGCC TTTACAGGGA GGAAGCAGCA ACATGGAAGA	420
	ANCGAACTAT AGGGGCTACA ANGATGCTCA GCTCTGATCC CGAAGGCAAA AAGNATCTTT	480
	GGGCAC	486
50		
55	(2) INFORMATION FOR SEQ ID NO: 33:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 725 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(C) SIMMUEDNESS: COUDIE	

(D) TOPOLOGY: linear

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:	
5	GTTCCTCTGG TAATAATTAG GTTATTCCCA GAAGCACAGT GTCATTCTTT AAATAAAAGC	60
J	TITICCTGTTT AAAGCTTTTIC AAAGGAGCAG ACCACCTTGA AGATTCCCCC TAGGGTTGAT	120
	ATGTGTCTAA TTCATTTAT AAAAATTATT CTTGTCTTCA TTTTAAAGCT TTCGCTATAT	180
10	AGTCAGAAAT GTCCTAAATA ACAAACTATT TTGTATTTAA TTTAGGGAAG ACTAAAGGGA	240
	AGAAAAATGA AAACTCAGTC TTTATGTAAG CTCCAAGGAT ATTAGGGCTT AAAGGGCTTT	300
15	TCTAGTTTTA TGAGAATTTG TACTACTGAT TTTTATATAT TCCTGTTTTT GATGAACAGA	360
13	TCTCTGGGGA AATTGTTGAG TTACAATGGC ATTTCACTGT GATCCCTCTC AAGCTCAGAT	420
	CAGTTCTATA ACCCAATGAC AACCTGTCTC TTTGGTTTAC TGTCCTGTGA AATGTCAGCT	480
20	CAAGTTTCCC AGAAGTCGTG TGTTTATGAT GAGTCAGAGT GCTTTTCCTC GGTGGGACAG	540
	TTGCTGGCCC TCTTAATTTT GGTGTATGTG CTTCCAAGTA TCTAAACCTC CAGTCTGATC	600
25	TGTATATGCT ATCCTAACTG TTAATTGTAT TATTGATTAT GTTGATTATC TTGCTTGAAG	660
23	GTTCATACTT TTCAATTTGA TAGAAATAAA GTTTTTTTCT GCTTATAAAA AAAAAAAAAA	720
	AAAAA	725
30		
	(2) TITODIO TITO	
25	(2) INFORMATION FOR SEQ ID NO: 34:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 437 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
40	(D) TOPOLOGY: linear	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:	
	CACACAGCAT GCTGCCCTCA GACGTGTCCA TCCTGTACCA CATGAAAACG CTGCTGCTCC	60
45	TGCAAGATAC TGAGAGATTG AAGCATGCTC TGGAAATGTT CCCAGAACAT TGCACGATGC	120
	CTCCTGCTTT TATTGGCTCT TGTCGAAATC AAATTGGAAG ATCTTCAGTC CCAGCTGCAC	180
50	CCAACGTGGA AAAGTATTCC AGGTCCATCC CCAAGGAACC AACACCGATG ACATGGACTC	240
50	AGGAATCTTA TAACCTACGT GGACTCTTTC CATCCGTACA TIGTCGTGCA CATGCCACTC	300
	ATCACCTGGC GTGCCCAGAT CCTCGCARGG CAACACCCTG TGATAATTCC AGGTGATTCT	360
55	CTACATCTGC AGCTTGAGGT TAGCCTCATA TCACATTACA TTCTCACTAN AAACNAAAAA	420

AAAAAAAAA AACTCNA

	(2) INFORMATION FOR SEQ ID NO: 35:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 943 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:	
	GGCACGAGCT GGAACAGAGA CTAAATCCCA CGAAACTGAC ATTGTTAAAC ACACTAAAAC	60
15	AGAAGTACTT ACCTCTTGAA GATTTAATAT ATAATGGTTG ACATGATACA TGTACATGAT	120
••	GAATGACCAG ATGCTTATGG TCTACATTTT CCTTTATCCT GTTAGTATTA CCTTCCTTAA	180
	TCTTTGTTCA TTAACATGCT AATTCCTCTT CAGTGTTTAT TTTCTAGTGA CAGAATGCTA	240
20	ACATTICTTA CACCCIGGCA GAAGGGAGAG AAATGIGITT IGGGGIGGGI AACTAAATII	300
	TTGAGTGAAA TATCATAAGA TGANAATGGA AANAAGGAGA CACAAANAGT TATNACAAAA	360
25	AAACAATGGT TTTTTTAGCC ATTTGACTGG CTCTTTAAAT AGTCTACAAG ACATTCACGT	420
	TTAACATCAC TTTTAGTGAA ATAAAATGTG CCATACTAGT ATGTGCTTCA AAAGGGCAAA	480
	TOTGCTTTAG TGCCCTAAGG CTAAATTTTG GTCATTTGAC ATCAGAGATG TTGTAAGTAT	540
30	TGCACTTAAT ACGCACCTAT TINICAATAG TGTTATTTTT TGGNTAGCAT TTTTTTTACC	600
	ACTATIVITIGIT TIGATAGCTTT TTGTTCTIVIN AGGTTGNAAN ATGACAGTGC TNATNTCAAA	660
35	CAGATTACCC ATNTGCAGAA CTAAGGGAAG CNATTTATGT ATGAAAGNAA TTNTTGAATT	720
	NGTCATTNIC AACCNITGNA TTAAAGCTTA GACTAAATAG TAATATATNG TGGGNAGGAT	780
	TITGGTITIG TGATATITNI GIGNATTAAG GNATAGATGI TAACCNITAT TITGTAGNAA	840
40	AGTGANTTGT ATGTGGTTAA TTATAAATAA AACTGGTACC AGGNAAAAAA AAAAAAAAAN	900
	ΑΑΑ ΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑΑΑΑ	943
45		
	(2) INFORMATION FOR SEQ ID NO: 36:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 604 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:	
	GCCACGAGAA ATCTTCATGC TGTAGTCACT CCAGACCATG GAGTGGCTTT CCAGCTGAAT	60

GAATCCTATG TCTCGCGTGC AGGTGGTTGG TTTTCAATGT TCTTGCTAAT TTTTTTTCTA 120

	TIGGATCTIG GGAGTITICT TIGITIGCTC CIGIGITIGC CCAGCTITAA TAAAACCAGG	180
	CGCAAACAAA AACCATAGCA TTCTGAACAA TAGGGGGGCCC ACATTGGACC CAGTATGTCA	240
5	CTTTAATGGA CTTCAAGAAA AAATCTGAAT GGGAAAAATG ACACTAGGAA TGTATACTCC	300
	ACACATTITA TGCCATATAA TGGTGTGTTT TCTTAATTTT GTTTCTTGTG GCGAAATGTG	360
10	GCTTTCAAAT TAAAATGACC TTTTCTTCTT TGAAACTTTT TGTTTTGACT TGTATAATTA	420
10	AGGGTTTGGA AAGATTCATA ATTCTGAGAG AGGTTTGCAA CCAGGAGATA CAAAGAAGTC	480
	TCAGTAGTAA TCTTGTTCAT GTGCTTTTAC AGCCAGCTAC ATTTAAGGAT GTATTAGTTA	540
15	CAGAAATTAT ATGTCTGTGT ATGTGTCTCT ACTCAATAAA GTACATGCCT CCACAAAAAA	600
	AAAA	604
20		
20	(2) INFORMATION FOR SEQ ID NO: 37:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 349 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:	
	GTGAGTGCCC GGGAGCCCCG AGGCCCTGCC CCTAAGAAGG ATATCTYTRA CCGCTCCCTT	60
35	GTCCACACCC TAACCCCCCA GCTGCTCAGG CAGTGGGCAC ATGGCAGGGG CCTCACTGGG	120
55	GGCACATAGA GCATTTGGGG GACTGCGAGT GCTCACCTTT GACTTCCTGC AGGTCGGGGG	180
	AAAACCAGAT CATGATGACC AAAGTYTACA TATTCTTGAT CTTCATGGTG CTGATCCTGC	240
40	CCTCCCTGGG TCTCACCAGG TATATGCCAC CACYTTCTGY TCTAAATTCA GAATAAGAGT	300
	CACATCAGGA GAGCACTGTC CCCAGGANAA TGCAAACGGG TTGGCAGCA	349
45		
	(2) INFORMATION FOR SEQ ID NO: 38:	
	-	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 672 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:	
	GTAGTCGTTG CGGTTGCCGG GATGGCGAAG ATCTCGCCGT TTGAAGTCGT AAAACGCACC	60
4 0	TCGGTACCGG TGCTTGTTGG TTTGGTGATT GTWATCGTTG CTACAGAGCT GATGGTGCCA	120
60		

	GGAACGCCAG CAGCGGTCAC AGGCAAGTAA ATAGTAATGC CGGAGCAAGT TTCCTCCGGC	180
	TTTATCATGT CACCCACTGT GGTATATGCG TTGTGGTCTG CCAACTTTGC CGTGAACAAT	240
5	TTCAGCAATA ATCAGATGGC GGCTGGCGCA ATATTCAAGA TAACGCCTGG CAGTGGTGCG	300
	GCTGATGGTT CAGTGCCTGC GSCACCGTTT YTGCCGTATG TTGCACACCA GGNTCTTTAA	360
10	ACAGTTTTCG SACCGCGTTT AGCGTCAAGG GTTCAATGCC GGTCGGTAGC TCGTCCTTAG	420
10	GTTCACCGCG AGCATAAGCA TTAAACATCT CATCAATTTG CTTCTGCCTG GCGCTATCAA	480
	TACTITICCAG CATATOTITA COCTOGOGGA AACGGGTTAG CGTTTGCCCC ARCMGWTCAT	540
15	AGGCAATGGG CTTAATGAGA TAATCAAATA CACCACAACG TACGGCTTCA GACACCGTTT	600
	CCATATCGCT GGCTGCAGTG GTAAACACCA CGTCGCCGGG ATAATGCGCC TGCACCAGTT	660
00	CATGCAGTAA AT	672
20		
25	(2) INFORMATION FOR SEQ ID NO: 39:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1908 base pairs	
20	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
30	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39:	
35	AGAGTTGATA TTTTTAGAAA CAGTAATTTT ACTTTTAAGG AAATTGGCTA GCTCTTTGAC	60
	TNNAGAGCTG TAGGAAGCTC AACATTICTT TGTAGAGAAC GTTGCTITTT TTGGATTGTA	120
	CAGGTATAAA AACATTGCTT TTGTTGAATT GTATAGGTGT AAAAAGGGAA TAACTGTATG	180
40	CAGGTTTGAA AAGGAAATGT GCTTTAGGCA TGAGTCATAA GATGCCATTG TACTTGTAGG	240
	CATTTTATTT TCCTTTAGAA ATGGACATCA GCTCTTCTCT TCTGACTGGT AACACATAGC	300
45	CCCAAAGCAT GAGATTATTT TTCATTGGT TTTTATTGTT GTTTAGTTTT GGTTTGTTAC	360
	GCCAGCCCAG TCTGTCTGCG GAACACTGAC TCTGCTCTCT AATGAGAACA AAGTTAGAAA	420
	TCTGCCGATA ACCTAAAATA ATTTAGAAAT GAATTAAAAA TGTGAAATCG GGTTAAAGTG	480
50	ATGATGATAA AATAGCATGC AAGAAACAAG CTCCTTCCAT CAGACTTGGC TACTGTTTTC	540
	TTCTCGTACG ATTTGGTTTG GAAGAGCCTC TTGTTTCCTT CTCTTTGGGG TATGTCTTCG	600
55	TTTCTTAATA TGTTTGTAAC ATTATTGAGA TATAATTCAC ATACCTTACA ATTCACTTAT	660
	TTTAAGGGTA CAATTTAGTG GTTTTTAGTG TATTCACAAA GTTGTGTAAC CGTGACCACA	720

GTCAATTTTA GAACATTTCG TTACCCCAAA AAGAAACCCT GTACCCTTGA GCAGTCACCT

CTCATTTTCT CCCAGTGCCC ACCCCATCCC CGAGCCCCKG GAACCACTAA TCTATTTCTC

840

	GGCTTCCCAA	1 (1) 1 (1)				
TGAGAACTCT		ATATGATTT	CTATATGGAG	TGAGAAAATT	CTTCTCATCT	960
	TATTGCTGTG	AAAGGGAGTG	GTTGGTAAAA	TCAATAGATT	TCAGGCAAGA	1020
GGCCAGATA	CCTAACAGGT	TTTTCTCCGT	GAATCTTATG	CTGAGTAGTT	TTTCCTCATA	1080
ACCAAGCATT	TATGATATAT	TACTACTTAT	AATACTGTGG	CTAGTCTCTA	GAATGGATGT	1140
TGAAATCTTT	GCCTCCTCAG	TCGGGAAGAG	TCCTGCTAAA.	AATCAGGCTA	AAAATCAGGC	1200
CAAAAATCAG	GCCAAATGAC	TTGGCAAATA	ATTGACAAAG	TGGTTTTCAC	GTGTGTCTAT	1260
CTTTGCTAGC	AGCTIGTATA	CCTCAGGCCA	GGTGAGCTCC	CCAAATTTCT	TTTTTCATTT	1320
ACTCCAGTGA	GTTTCTGCTG	TCTTTTTCAA	GTATGTACCA	TAGGACTTAA	AGGTGATTTG	1380
GATGCGTTGT	AACACTGCTA	AATATGCTAA	GTACAGAATT	TTATCTACAG	TACTGTGAGA	1440
CAGTCAATTA	TTGCCTAGGG	TAGTTCAAAA	ATATGATGTG	AGCTAGTTAA	GCCTTTGCTT	1500
GACTGATTTC	AGTGATATTC	AGAAGTGTGT	ACCAATCAAG	GCTCTTTAAA	ATACGGAACG	1560
ACTCACTTAA	TAACCAGGGA	ACCAGCCAAA	TACTGTGCAG	CCGCAGAATA	TGCATATCAA	1620
TGAGTTGGAG	GTGATTATTC	TCTGTAACTC	CCTAATGATT	GTTTTCTAAG	CATTGTGGCT	1680
ICICAGTGGC	TTGACAGCAT	CTTCCTGGTT	GTATGTGGCC	TGTTTACATG	ATGTATTGAA	1740
TAATGTTGTT	TGTTGTGAGC	ATCAATGCCT	GTAACACCAA	ACTAAACACG	TGTTTTTGGG	1800
atatgtticc	AATCTTTAAA	TGACCTTGCC	CTGTCCAATA	TADTAAATAA	TGTCTCACCC	1860
TOTTAAAAAA	AAAAAAAATT	AAAAAACTG	GGNGGGGGGC	CCGGTACN		1908
(2) INFORM	ATION FOR S	EQ ID NO: 40):			
(i)	(A) LEN (B) TYP (C) STR	GTH: 458 ba E: nucleic ANDEDNESS:	se pairs acid double			
(xi) SEQUENCE	DESCRIPTION	: SEQ ID NO	: 40:		
CCTCAAAAAA	AAAAANGAAA	GGAAAGAGGT	CTCTACACAA	GCCCGTGATT	CTTCATGGCA	60
AGGGATAACA	TCAGAAATGT	TTCATTTYCK	GCTATTAGTT	TCCATTCCTT	TCCCCATCCA	120
GGCATAAAGA	GAAACAAAAG	ACAATGATGG	TATTCTCTGT	GTCCTCAGCT	TTGGCACTTT	180
TGTTGATGTT	GCTAAGGAGC	AGTGACCTTG	CTAAAAAGAC	TGAATAATCC	ACCCACTGAA	240
TAGCTAACCT	' GGGGAGGAAA	TGAAAATTTC	CTTTGTGGAT	CTCCCCAAAT	CCATTGTTGT	300
	CACTTCGAG CTCAGTCGC CATCTGTT CTATGTTTCC CTTAAAAAA (i) (xi CCTCAAAAAA AGGGATAACA CGCATAAAGA	CAGTTGGAG GTGATTATTC CTCAGTGGC TTGACAGCAT CAATGTTGTT TGTTGTGAGC CTATGTTTCC AATCTTTAAA CTTAAAAAA AAAAAAAATT (i) SEQUENCE C	CAGTICGAG GIGATTATIC TCIGIAACTC CICAGTGGC TIGACAGCAT CITCCTGGTT CAATGITGIT TGTTGTGAGC ATCAATGCCT CITAGTTTCC AATCTTTAAA TGACCTTGCC CITAAAAAA AAAAAAAATT AAAAAAACTG (i) SEQUENCE CHARACTERIST: (A) LENGTH: 458 ba (B) TYPE: nucleic (C) STRANDEDNESS: (D) TOPOLOGY: line (xi) SEQUENCE DESCRIPTION CCTCAAAAAA AAAAAAGAAG GGAAAGAGGT AGGGATAACA TCAGAAATGT TTCATTTYCK CGCATAAAGA GAAACAAAAG ACAATGATGG	CAGTTGGAG GTGATTATTC TCTGTAACTC CCTAATGATT CTCAGTGGC TTGACAGCAT CTTCCTGGTT GTATGTGGCC CAATGTTGTT TGTTGTGAGC ATCAATGCCT GTAACACCAA CTATGTTTCC AATCTTTAAA TGACCTTGCC CTGTCCAATA CGTTAAAAAA AAAAAAAATT AAAAAAACTG GGNGGGGGC 2) INFORMATION FOR SEQ ID NO: 40: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 458 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO CCTCAAAAAAA AAAAANGAAA GGAAAGAGGT CTCTACACAA AGGGATAACA TCAGAAATGT TTCATTTYCK GCTATTAGTT CGCATAAAGA GAAACAAAAG ACAATGATGG TATTCTCTGT CGTTGATGTT GCTAAGGAGC AGTGACCTTG CTAAAAAGAC	CAGTTGAG GTGATTATTC TCTGTAACTC CCTAATGATT GTTTCTAAG CCTCAGTGGC TTGACAGCAT CTTCCTGGTT GTATGTGGCC TGTTTACATG CAATGTTGTT TGTTGTGAGC ATCAATGCCT GTAACACCAA ACTAAACACG CTATGTTTCC AATCTTTAAA TGACCTTGCC CTGTCCAATA AATAAATGAT CGTTAAAAAA AAAAAAAATT AAAAAAACTG GGNGGGGGGC CCGGTACN (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 458 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40: CCTCAAAAAA AAAAANGAAA GGAAAGAGGT CTCTACACAA GCCCGTGATT AGGGATAACA TCAGAAATGT TTCATTTYCK GCTATTAGTT TCCATTCCTT CCCATAAAGA GAAACAAAAG ACAATGATGG TATTCTCTGT GTCCTCAGCT AGTTGATGTT GCTAAGGAGC AGTGACCTTG CTAAAAAGAC TGAATAATCC	2) INFORMATION FOR SEQ ID NO: 40: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 458 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

264

	CACCAGGCCC	TCCCAGAACC	TCCTCAGTTC	CTTCACAGTG	CAACCCTGTG	TACTTGGCCC	360
	GCAACCCAAT	AGTATTGTGC	CTCACTTCAC	CTTCCATGGG	CAACTGCCCT	CCCTTCTGGA	420
-5	CATAAAACCT	CATATTTTAA	atnaagtiga	AATTTGAA			458

10 (2) INFORMATION FOR SEQ ID NO: 41:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1153 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41:

GGCACAGAGC	CTCCGACCCA	GGTGGTCTGG	AGCCTGCCGG	GAGAGTGGTG	GCATCTGAGA	60
GGCTGGTCGT	GGACTGTGGT	TGGGGGAGGT	GGGAGCTGTT	TTAACCGTGT	GCCCCCTCTC	120
CTGTGCCGGC	GTGGGCATCC	CCCGGGGCAG	TGGAACCCGG	GCGCTCCTCC	AGCTTCCGAG	180
TCCAGCCAGC	CTGGGGGGGG	eccececcc	GAGACACCCG	AGGAGTCCGT	TCCTCCCTGG	240
TTACGTGGAC	TGTGGAGCTG	GTCTCTTGTG	CCTCAGCGCC	GTGCGGAGGT	TGAAGCGTAC	300
CTGCGGAGGT	CGCACCAGGG	CCTGACGAGG	AGGAGGAAGG	GCATGAGCCG	AGCTTGAGGA	360
ATCCGTGCTC	CAAACTCTAC	ACTCAAGGAT	GCACTGCGCA	ACTCTGGTGG	CGATGGGCTG	420
GGGCAGATGT	CCTTGGAGTT	CTACCAGAAG	AAGAAGTCTC	GCTGGCCATT	CTCAGACGAG	480
TGCATCCCAT	GGGAAGTGTG	GACGGTCAAG	GTGCATGTGG	TAGCCCTGGC	CACGGAGCAG	540
GAGCGGCAGA	TCTGCCGGGA	GAAGGTGGGT	GAGAAACTCT	GCGAGAAGAT	CATCAACATC	600
GTGGAGGTGA	TGAATCGGCA	TGAGTACTTG	CCCAAGATGC	CCACACAGTC	GGAGGTGGAT	660
AACGTGTTTG	ACACAGGCTT	GCGGGACGTG	CAGCCCTACC	TGTACAAGAT	CTCCTTCCAG	720
ATCACTGATG	CCCTGGGCAC	CTCAGTCACC	ACCACCATGC	GCAGGCTCAT	CAAAGACACC	780
CTGCCCTCTG	AGCGTCGCTG	GATCTCTGGG	AGCTCCTTGA	TGGCTCCCAG	ACCTTGGCTT	840
TTGGGAATTG	CACTTTTGGG	CCTTTGGGCT	CTGGAACCTG	CTCTGGGTCA	TTGGTGAGAC	900
TTGGAAGGGG	CAGCCCCCGC	TGGCTTCTTG	GTTTTGTGGT	TGCCAGCCTC	AGGTCATCCT	960
TTTAATCTTT	GCTGACGGTT	CAGTCCTGCC	TCTACTGTCT	CTCCATAGCC	CTGGTGGGGT	1020
CCCCCTTCTT	TCTCCACTGT	ACAGAAGAGC	CACCACTGGG	ATGGGGAATA	AAGTTGAGAA	1080
CATGAGTTTG	GGCTGAAAAA	ааааааааа	ааааааааа	АААААААА	АААААААА	1140
АААААААА	AAA					1153
	GGCTGGTCGT CTGTGCCGGC TCCAGCCAGC TTACGTGGAC TTACGTGGAC CTGCGGAGGTG ATCCGTGCTC GAGCGGCAGA GTGGAGGTGA AACGTGTTTG ATCACTGATG TTGGGAATTG TTGGAAGGGG TTTAATCTTT CCCCCCTTCTT	GGCTGGTCGT GGACTGTGGT CTGTGCCGGC GTGGGCATCC TCCAGCCAGC CTGGGCGCGG TTACGTGGAC TGTGGAGCTG CTGCGGAGGT CCAAACTCTAC GGGCAGATGT CCTTGGAGTT TGCATCCCAT GGGAAGTGTG GAGCGGCAGA TCTGCCGGGA AACGTGTTG ACACAGGCTT ATCACTGATG CCCTGGGCAC TTGGAAGGG CAGCCCCCGC TTTAATCTTT GCTGACGGTT CCCCCTTCTT TCTCCACTGT	GGCTGGTCGT GGACTGTGGT TGGGGGAGGT CTGTGCCGGC GTGGGCATCC CCCGGGGCAG TCCAGCCAGC CTGGGCGCGG GGCGCCCCC TTACGTGGAC TGTGGAGCTG GTCTCTTGTG CTGCGGAGGT CGCACCAGGG CGTGAGGAGG ATCCGTGCTC CAAACTCTAC ACTCAAGGAT GGGCAGATGT CCTTGGAGTT CTACCAGAAG GAGCGGCAGA TCTGCCGGGA GAAGGTGGGT AACGTGTTTG ACACAGGCTT GCGGGACGTG ATCACTGATG CCCTGGGCAC CTCAGTCACC CTGCCCTCTG AGCGTCGCTG GATCTCTGGG TTGGAAGGG CAGCCCCCGC TGGCTTCTTG TTTAATCTTT GCTGACGGTT CAGTCCTGCC CCCCCTTCTT TCTCCACTGT ACAGAAGAGC CATGAGTTTG GGCTGAAAAAA AAAAAAAAA	GGCTGGTCGT GGACTGTGGT TGGGGGAGGT GGGAGCTGTT CTGTGCCGGC GTGGGCATCC CCCGGGGCAG TGGAACCCGG TCCAGCCAGC CTGGGCGCGG GGCGCCCC GAGACACCCG TTACGTGGAC TGTGGAGCTG GTCTCTTGTG GCTCAGCGCC CTGCGGAGGT CGCACCAGGG CGTGAGGAGG AGGAGAAGG ATCCGTGCTC CAAACTCTAC ACTCAAGGAT GCACTGCGCA GGGCAGATGT CCTTGGAGTT CTACCAGAAG AAGAAGTCTC TGCATCCCAT GGGAAGTGTG GACGGTCAAG GTGCATGTGG GAGCGGCAGA TCTGCCGGGA GAAGGTGGGT GAGAAACTCT GTGGAGGTGA TGAATCGGCA TGAGTACTTG CCCAAGATGC AACGTGTTTG ACACAGGCTT GCGGGACGTG CACCCCTACC ATCACTGATG CCCTGGGCAC CTCAGTCACC ACCACCATGC CTGCCCTCTG AGCGTCGCTG GATCTCTGGG AGCTCCTTGA TTGGGAATTG CACTTTTGGG CCTTTGGGCT CTGGAACCTG TTGGAAGGGG CACCCCCCC TGGCTTCTTG GTTTTGTGGT TTTAATCTTT GCTGACGGTT CAGTCCTGCC TCTACTGTCT CCCCCTTCTT TCTCCACTGT ACAGAAGAGC CACCACTGGG CATGAGTTTG GGCTGAAAAAAAAAAAAAAAAAAAAAAAA	GGCTGGTCGT GGACTGTGGT TGGGGGAGGT GGGAGCTGTT TTAACCGTGT CTGTGCCGCC GTGGGCATCC CCCGGGGCAG TGGAACCCGG GCGCTCCTCC TCCAGCCAGC CTGGGCGCGG GGCGCCCCC GAGACACCCG AGGAGTCCGT TTACGTGGAC TGTGGAGCTG GTCTCTTGTG CCTCAGCGCC GTGCGGAGGT CTGCGGAGGT CGCACCAGGG CGTGAGGAGG AGGAGGAAGG GCATGAGCCG ATCCGTGCTC CAAACTCTAC ACTCAAGGAT GCACTGCGCA ACTCTGGTGG GGCAGATGT CCTTGGAGTT CTACCAGAAG AAGAAGTCTC GCTGGCCATT TGCATCCCAT GGGAAGTGTG GACGGTCAAG GTGCATGTGG TAGCCCTGCC GAGCGCAGA TCTGCCGGGA GAAGGTGCGT GAGAAACTCT GCGAGAAGAT GTGGAGGTGA TGAATCGGCA TGAGTACTTG CCCAAGATGC CCACACAGTC AACGTGTTTG ACACAGGCTT GCGGGACGTG CAGCCCTACC TGTACAAGAT ATCACTGATG CCCTGGGCAC CTCAGTCACC ACCACTGC GCAGGCTCAT CTGCCCCTCTG AGCGTCGCTG GATCTCTGGG AGCTCCTTGA TGGCTCCCAG TTGGGAAGTTG CACTTTTGGG CCTTTGGGCT CTGGAACCTG CTCTGGGTCA TTGGAAGGGG CAGCCCCCCC TGGCTTCTTG GTTTTGTGGT TGCCAGCCTC TTTAATCTTT GCTGACGGTT CAGTCCTGCC TCTACTGTCT CTCCATAGCC CCCCCTTCTT TCTCCACTGT ACAGAAGAGC CACCACTGGG ATGGGGAATA CATGAGTTTG GGCTGAAAAA AAAAAAAAAA AAAAAAAAAA	Gecacagase checagaeta egeretaes agentaces gagastictic genteragas gectostes gagastics genteragas togogogos togogoctos thacceros genteragas technological transceros genteragas genteragas technological transceros genteragas genteragas technological transceros genteragas technological transceros genteragas technological transceros transceros genteragaeta genteragaeta transceros transceros genteragaeta gentera

265

(2) INFORMATION FOR SEQ ID NO: 42:

-5 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1983 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42: GGCACGAGAG GGGCCGAGCC GACAAGATGT TCTTGCTGCC TCTTCCGGCT GCGGGGGAG 60 15 TAGTCGTCCG ACGTCTGGCC GTGAGACGTT TCGGGAGCCG GAGTCTCTCC ACCGCAGACA 120 TGACGAAGGG CCTTGTTTTA GGAATCTATT CCAAAGAAAA AGAAGATGAT GTGCCACAGT 180 TCACAAGTGC AGGAGAGAT TTTGATAAAT TGTTAGCTGG AAAGCTGAGA GAGACTTTGA 240 20 ACATATCTGG ACCACCTCTG AAGGCAGGGA AGACTCGAAC CTTTTTATGGT CTGCATCAGG 300 ACTTCCCCAG CGTGGTGCTA GTTGGCCTCG GCAAAAAGGC AGCTGGAATC GACGAACAGG 360 25 AAAACTGGCA TGAAGGCAAA GAAAACATCA GAGCTGCTGT TGCAGCGGGG TGCAGGCAGA 420 TTCAAGACCT GGAGCTCTCG TCTGTGGARG TGGATCCCTG TGGAGACGCT CAGGCTGCTG 480 CGGAGGGAGC GGTGCTTGGT CTCTATGAAT ACGATGACCT AAAGCAAAAA AAGAAGATGG 540 30 CTGTGTCGGC AAAGCTCTAT GGAAGTGGGG ATCAGGAGGC CTGGCAGAAA GGAGTCCTGT 600 TTGCTTCTGG GCAGAACTTG GCACGCCAAT TGATGGAGAC GCCAGCCAAT GAGATGACGC 660 35 CAACCAGATT TGCCGAAATT ATTGAGAAGA ATCTCAAAAG TGCTAGTAGT AAAACCGAGG 720 TCCATATCAG ACCCAAGTCT TGGATTGAGG AACAGGCAAT GGGATCATTC CTCAGTGTGG 780 CCAAAGGATC TGACGAGCCC CCAGTCTTCT TGGAAATTCA CTACAAAGGC AGCCCCAATG 840 40 CAAACGAACC ACCCTGGTG TTTGTTGGGA AAGGAATTAC CTTTGACAGT GGTGGTATCT 900 CCATCAAGGC TTCTGCAAAT ATGGACCTCA TGAGGGCTGA CATGGGAGGA GCTGCAACTA 960 45 TATGCTCAGC CATCGTGTCT GCTGCAAAGC TTAATTTGCC CATTAATATT ATAGGTCTGG 1020 CCCCTCTTTG TGAAAATATG CCCAGCGGCA AGGCCAACAA GCCGGGGAT GTTGTTAGAG 1080 CCAAAAACGG GAAGACCATC CAGGTTGATA ACACTGATGC TGAGGGGAGG CTCATACTGG 1140 50 CTGATGCGCT CTGTTACGCA CACACGTTTA ACCCGAAGNT CATCCTCAAT GCCGCCACCT 1200 TAACAGGTGC CATGGATGTA GCTTTGGGAT CAGGTGCCAC TGGGGTCTTT ACCAATTCAT 1260 55 CCTGGCTCTG GAACAAACTC TTCGAGGCCA GCATTGAAAC AGGGGACCGT GTCTGGAGGA 1320 TGCCTCTCTT CGAACATTAT ACAAGACAGG TTGTAGATTG CCAGCTTGCT GATGTTAACA 1380 ACATTGGAAA ATACAGATCT GCAGGAGCAT GTACAGCTGC AGCATTCCTG AAAGAATTCG 1440 60

266

	TAACTCATCC TAAGTGGGCA CATTTAGACA TAGCAGGCGT GATGACCAAC AAAGATGAAG	1500
	TTCCCTATCT ACGGAAAGGC ATGACTGGGA GGCCCACAAG GACTCTCATT GAGTTCTTAC	1560
-5	TTCGTTTCAG TCAAGACAAT GCTTAGTTCA GATACTCAAA AATGTCTTCA CTCTGTCTTA	1620
	AATTOGACAG TTGAACTTAA AAGGITTTTG AATAAATGGA TGAAAATCTT TTAACGGAGA	1680
10	CAAAGGATGG TATTTAAAAA TGTAGAACAC AATGAAATTT GTATGCCTTG ATTTTTTTTT	1740
10	CATTICACAC AAAGATTTAT AAAGGTAAAG TTAATATCTT ACTTGATAAG GATTITTAAG	1800
	ATACTOTATA AATGATTAAA ATTITTAGAA CTTCCTAATC ACTTTICAGA GTATATGITT	1860
15	TTCATTGAGA AGCAAAATTG TAACTCAGAT TTGTGATGCT AGGAACATGA GCAAACTGAA	1920
	AATTACTATG CACTTGTCAG AAACAATAAA TGCAACTTGT TGTGCAAAAA AAAAAAAAAA	1980
20	AAA	1983
20		
	(2) INFORMATION FOR GEO ID NO. 42	
25	(2) INFORMATION FOR SEQ ID NO: 43:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1406 base pairs	
20	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
30	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
30	(C) STRANDEDNESS: double	
30 35	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	60
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43:	60 120
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43: ATGATGATGA CTTTGAAGAC GATTTTATTC CTCTTCCTCC AGCTAAGCGC CTTGAGGTTA	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43: ATGATGATGA CTTTGAAGAC GATTTTATTC CTCTTCCTCC AGCTAAGCGC CTTGAGGTTA ATAGTTGGAA AAGACTCTAT AGATATTGAC ATTTCTTCAA GGAGAAGAGA AGATCAGTCT	120
35	(C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43: ATGATGATGA CTTTGAAGAC GATTTTATTC CTCTTCCTCC AGCTAAGCGC CTTGAGGTTA ATAGTTGGAA AAGACTCTAT AGATATTGAC ATTTCTTCAA GGAGAAGAGA AGATCAGTCT TTAAGGCTTA ATGCCTAAGC NCTTGGTCTT AACTTGACCT GGGATAACTA CTTTAAAGAA	120 180
35	(C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43: ATGATGATGA CTTTGAAGAC GATTTTATTC CTCTTCCTCC AGCTAAGCGC CTTGAGGTTA ATAGTTGGAA AAGACTCTAT AGATATTGAC ATTTCTTCAA GGAGAAGAGA AGATCAGTCT TTAAGGCTTA ATGCCTAAGC NCTTGGTCTT AACTTGACCT GGGATAACTA CTTTAAAGAA ATAAAAAAATT CCAGTCAATT ATTCCTCAAC TGAAAGTTTA GTGGCAGCAC TTCTATTGTC	120 180 240
35 40	(C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43: ATGATGATGA CTTTGAAGAC GATTTTATTC CTCTTCCTCC AGCTAAGCGC CTTGAGGTTA ATAGTTGGAA AAGACTCTAT AGATATTGAC ATTTCTTCAA GGAGAAGAGA AGATCAGTCT TTAAGGCTTA ATGCCTAAGC NCTTGGTCTT AACTTGACCT GGGATAACTA CTTTAAAGAA ATAAAAAATT CCAGTCAATT ATTCCTCAAC TGAAAGTTTA GTGGCAGCAC TTCTATTGTC CCTTCACTTA TCAGCATACT ATTGTAGAAA GTGTACAGCA TACTGACTCA ATTCTTAAGT	120 180 240 300
35 40	(C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43: ATGATGATGA CTTTGAAGAC GATTTTATTC CTCTTCCTCC AGCTAAGCGC CTTGAGGTTA ATAGTTGGAA AAGACTCTAT AGATATTGAC ATTTCTTCAA GGAGAAGAGA AGATCAGTCT TTAAGGCTTA ATGCCTAAGC NCTTGGTCTT AACTTGACCT GGGATAACTA CTTTAAAGAA ATAAAAAATT CCAGTCAATT ATTCCTCAAC TGAAAGTTTA GTGGCAGCAC TTCTATTGTC CCTTCACTTA TCAGCATACT ATTGTAGAAA GTGTACAGCA TACTGACTCA ATTCTTAAGT CTGATTTGTG CAAATTTTTA TCGTACTTTT TAAATAGCCT TCTTACGTGC AATTCTGAGT	120 180 240 300 360
35 40	(C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43: ATGATGATGA CTTTGAAGAC GATTTTATTC CTCTTCCTCC AGCTAAGCGC CTTGAGGTTA ATAGTTGGAA AAGACTCTAT AGATATTGAC ATTTCTTCAA GGAGAAGAGA AGATCAGTCT TTAAGGCTTA ATGCCTAAGC NCTTGGTCTT AACTTGACCT GGGATAACTA CTPTAAAGAA ATAAAAAATT CCAGTCAATT ATTCCTCAAC TGAAAGTTTA GTGGCAGCAC TTCTATTGTC CCTTCACTTA TCAGCATACT ATTGTAGAAA GTGTACAGCA TACTGACTCA ATTCTTAAGT CTGATTTGTG CAAATTTTTA TCGTACTTTT TAAATAGCCT TCTTACGTGC AATTCTGAGT TAGAGGTAAA GCCCTGTTGT AAAATAAAGG CTCAAGCAAA ATTGTACAGT GATAGCAACT	120 180 240 300 360 420
35 40 45	(C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43: ATGATGATGA CTTTGAAGAC GATTTTATTC CTCTTCCTCC AGCTAAGCGC CTTGAGGTTA ATAGTTGGAA AAGACTCTAT AGATATTGAC ATTTCTTCAA GGAGAAGAGA AGATCAGTCT TTAAGGCTTA ATGCCTAAGC NCTTGGTCTT AACTTGACCT GGGATAACTA CTTTAAAGAA ATAAAAAATT CCAGTCAATT ATTCCTCAAC TGAAAGTTTA GTGGCAGCAC TTCTATTGTC CCTTCACTTA TCAGCATACT ATTGTAGAAA GTGTACAGCA TACTGACTCA ATTCTTAAGT CTGATTTGTG CAAATTTTTA TCGTACTTTT TAAATAGCCT TCTTACGTGC AATTCTGAGT TAGAAGGTAAA GCCCTGTTGT AAAATAAAGG CTCAAGCAAA ATTGTACAGT GATAGCAACT TTCCACCACAG GACGTTGAAA ACAGTAATGT GGCTACACAG TTTTTTTAAC TGTAAGAGCA	120 180 240 300 360 420 480
35 40 45	(C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43: ATGATGATGA CTTTGAAGAC GATTTTATTC CTCTTCCTCC AGCTAAGCGC CTTGAGGTTA ATAGTTGGAA AAGACTCTAT AGATATTGAC ATTTCTTCAA GGAGAAGAGA AGATCAGTCT TTAAGGCTTA ATGCCTAAGC NCTTGGTCTT AACTTGACCT GGGATAACTA CTTTAAAGAA ATAAAAAATT CCAGTCAATT ATTCCTCAAC TGAAAGTTTA GTGGCAGCAC TTCTATTGTC CCTTCACTTA TCAGCATACT ATTGTAGAAA GTGTACAGCA TACTGACTCA ATTCTTAAGT CTGATTTGTG CAAATTTTTA TCGTACTTTT TAAATAGCCT TCTTACGTGC AATTCTGAGT TAGAGGTAAA GCCCTGTTGT AAAATAAAGG CTCAAGCAAA ATTGTACAGT GATAGCAACT TTCCACACAG GACGTTGAAA ACAGTAATGT GGCTACACAG TTTTTTTAAC TGTAAGAGCA TCAGCTGGCT CTTTAATATA TGACTAAACA ATAATTTAAA ACAAATCATA GTAGCAGCAT	120 180 240 300 360 420 480 540

AAAAAAAAA AAAACGACAT ACGTGACAGC TCACTTTTCA GTTCATTATA TGTACCGAGG

GTAGCAGTGT GTGGGATGAG GTTCGATACA GNCGTATTTA TTGCTTGTCA TGTAAATTAA

60

780

267

	AAACCTTGTA	TTTAACTCTT	TTCAATCCTT	TTAGATAAAA	TIGITCTTIG	CAAGAATGAT	900
₋₅	TGGTGCTTAT	TTTTTCAAAA	ATTTGCTGTG	AACAACGIGA	TGACAACAAG	CAACATTTAT	960
	CTAATGAACT	ACAGCTATCT	TAATTIGGIT	CTTCAAGTTT	TCTGKTGCAC	TTGTAAAATG	1020
	CTACAAGGAA	TATTAAAAAA	ATCTATTCAC	TTTAACTTAT	AATAGTTTAT	GAAATAAAAA	1080
10	CATGAGTCAC	AGCTTTTGTT	CTGTGGTAAC	СТАТААААА	AGTTTGTCTT	TGAGATTCAA	1140
	TGTAAAGAAC	TGAAAACAAT	GTATATGTTG	TAAATATTTG	TGTGTTGTGA	GAAATTTTTG	1200
15	TCATAAGAAA	TTAAAAGAAC	TTACCAGGAA	CGTTTTTAAG	TTAGAAATAT	TCCATGCCAA	1260
	TAAAATAGGA	AATTATAAAT	ATATAGTTTT	AAGCCTGCAT	CAGTGGGAGT	CTTGGCTATG	1320
	TAGTTATGTA	GTTATTATGN	AACCACCAAG	ATTTTTTTGG	CTATTTACCG	TAACCAAAGG	1380
20	GGCCGATTAA	NIGGITIGAA	GNCTTG				1406

25 (2) INFORMATION FOR SEQ ID NO: 44:

30

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1391 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44:

35	GGGCCTGAAG	GCGGCRCGCC	AGTCCCGAGC	AGTGCTCGCT	CCTGCTCGGG	GCGCTGCGGC	60
	CCCGGCGTC	GCCATGACCA	GTGAGCTGGA	CATCTTCGTG	GGGAACACGA	CCCTTATCGA	120
40	CGAGGACGTG	TATCGCCTCT	GGCTCGATGG	TTACTCGGTG	ACCGACGCGG	TGGCCCTGCG	180
10	GGTGCGCTCG	GGAATCCTGG	AGCAGACTGG	CGCCACGGCA	GCGGTGCTGC	AGAGCGACAC	240
	CATGGACCAT	TACCGCACCT	TCCACATGCT	CGAGCGGCTG	CTGCATGCGC	CGCCCAAGCT	300
45	ACTGCACCAG	CTCATCTTCC	AGATTCCGCC	CTCCCGCAG	GCACTACTCA	TCGAGAGGTA	360
	CTATGCCTTT	GATGAGGCCT	TTGTTCGGGA	CGTCCTCCCC	AAGAAGCTGT	CCAAAGGCAC	420
50	CAAGAAAGAC	CTGGATGACA	TCAGCACCAA	AACAGGCATC	ACCCTCAAGA	GCTGCCGGAG	480
50	ACAGTTTGAC	AACTTTAAAC	GGGTCTTCAA	GGTGGTAGAG	GAAATGCGGG	GCTCCCTGGT	540
	GGACAATATT	CAGCAACACT	TCCTCTCTC	TGACCGGTTG	GCCAGGGACT	ATGCAGCCAT	600
55	CGICTTCTTT	GCTAACAACC	GCTTTGAGAC	AGGGAAGAAA	AAACTGCAGT	ATCTGAGCTT	660
	CGGTGACTTT	GCCTTCTGCG	CTGAGCTCAT	GATCCAAAAC	TGGACCCTTG	GACCCGTCGA	720
60	CTCACAGATG	GATGACATGG	ACATGGACTT	AGACAGGAAT	TTCTCCAGGA	CTTGAAGGAG	780

268

	CTCAAGGTGC	TAGTGGCTGA	CAAGGACCTT	CTGGACCTGC	ACAAGAGCCT	GGTGTGCACT	840
	GCTCTCCGGG	AAAGCTGGGC	GICTICICIG	AGATGGAAGC	CAACTTCAAG	AACCTGTCCC	900
_5	GGGGGCTGGT	GAACGTGCCG	CCAAGCTGAC	CCACAATAAA	GATGTCAGAG	ACCTGTTTGT	960
	GGACCTCGTG	GAGAAGTTTG	TGGAACCCTG	CCGCTCCGAC	CACTGGCCAC	TCAGCGACGT	1020
10	GCGGTTCTTC	CTGAATCAGT	ATTCAGCGTC	TGTCCAATCC	CTCGATGGCT	TCCGACACCA	1080
	GCCCTCTGG	GACCGCTACA	TGGGCACCCT	CCGCGGCIGC	CICCIGCGCC	TGTATCATGA	1140
	CTGAGGTGCC	TCCCAACGTC	CGCCCACGCT	GACAATAAAG	TIGCICIGAG	TTTGGAGACT	1200
15	GCTCCTCGCT	CCGGGGAGCA	AGTGGGGGGC	GTGCAGATGT	GCCTGTGTCT	GTCTCTGAGC	1260
	ACCTGGTGTC	CGTGTACAAG	GATGGATGTG	TNCNGTGGCT	CCTTGGGAAC	TGAGACATAT	1320
20	CTCAGGGAAT	GGTGTCTGTG	CTCAGCCCAT	CCACCAGAAG	AGTCTGCTCA	САААААААА	1380
	АААААААА	A					1391

25

30

(2) INFORMATION FOR SEQ ID NO: 45:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1569 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 45:

35 GGCACGAGTG GAGATGCTG CGGCCGTGGC GGGGATGCTG CGAGGGGGTC TCCTGCCCCA 60 GGCGGCCGG CTGCCTACCC TCCAGACTGT CCGCTATGGC TCCAAGGCTG TTACCCGCCA 120 40 CCGTCGTGTG ATGCACTTTC AGCGGCAGAA GCTGATGGCT GTGACTGAAT ATATCCCCCC 180 GAAACCAGCC ATCCACCCAT CATGCCTGCC ATCTCCTCCC AGCCCCCCAC AGGAGGAGAT 240 AGGCCTCATC AGGCTTCTCC GCCGGGAGAT AGCAGCAGTT TTCCAGGACA ACCGAATGAT 300 45 AGCCGTCTGC CAGAATGTGG CTCTGAGTGC AGAGGACAAG CTTCTTATTG CGACACCAGC 360 TGCGGAAACA CAAGATCCTG ATGAAGGTCT TCCCCAACCA GGTCCTGAAA GCCCTTCCTG 420 50 GAGGATTCCA AGTACCAAAA TCTGCTGCCC CTTTTTGTGG GGCACAACAT GCTGCTGGTC 480 ACTGAAGACC CCAAGGTCAA GGAGATGGTA CGGATCTTAA GGGACTGTGC CATTCCTGCC 540 GCTGCTAGGT GGCTGCATTG ATGACACCAT CCTCAGCAGG CAGGGCTTTA TCAACTACTC 55 CAAGCTCCCC AGCCTGCCCC TGGTGCAGGG GGAGCTTGTA GGAGGCCTCA CCTGCCTCAC 660 AGCCCAGACC CACTCCCTGC TCCAGCACCA GCCCCTCCAG CTGACCACCC TGTTGGACCA 60 GTACATCAGA GAGCAACGCG AGRAAGGATT CTGTCATGTC GGCCAATGGG AAGCCAGATC

269

	CTGACACTGT TCCGGACTCG TAGCCAGCCT GTTTAGCCAG CCCTGCGCAT AAATAC	ACTC 840
5	TECETTATTE ECTETECTET CETCAATEGE ACATETOGAA GAACTTEGEG TEGEGE	AGTG 900
ر۔	TGTTTGTCAC TTGGTTTTCA CTAGTAATGA TATTGTCAGG TATAGGGCCA CTTGGA	GATG 960
	CAGAGGATTC CATTICAGAT GTCAGTCACC GGCTTCGTCC TTAGTTTTCC CAACTT	GGGA 1020
10	CGTGATAGGA GCAAAGTCTC TCCATTCTCC AGGTCCAAGG CAGAGATCCT GAAAAG	ATAG 1080
	OGCTATTGTC CCCTGCCTCC TTGGTCACTG CCTCTTGCTG CACGGGCTCC TGAGCC	CACC 1140
15	CCCTTGGGGC ACAACCTGCC ACTGCCACAG TAGCTCAACC AAGCAGTTGT GCTGAG	AATG 1200
13	GCACCTGGTG AGAGCCTGCT GTGTGCCAGG CTTTGTGCTG AGTGCTGTTA CATGTA	TTAG 1260
	TTCCTTTACT GCTGACCACA TTGTACCCAT TTCACAGAGA AGGAGCAGAG AAATTA	AGTG 1320
20	GCTTGCTCAA GGTCATGCAG TTAGTAAGTG GCAGAACAGG GACTTGAACC AAGCCC	rctg 1380
	CTCTGAAGAC CGCGTCCTGA ATTTCTTCAC TAGAGCTTCC TCATCAGGTT ACCCAG	AAGT 1440
25	GOGTCCCATC CACCATCCAG GTGTGCTTGG ATGTTAGTTC TCCACCCTCG AGGTGTA	ACGC 1500
23	TGTGAAAAGT TTGGGAGCAC TGCTTTATAA TAAAATGAAA TATATTCTAA AAAAAAA	AAAA 1560
	ААААААА	1569
30		
	(2) INFORMATION FOR SEQ ID NO: 46:	
35	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1924 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double	
40	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46:	
	GGGCCCCCC WCGWKTTTTT TTTTTTTTT TTTAATTAGG ATAATGCCTT TATTAAC	CGAG 60
45	A A MARCA A A COME INCA A MINISTER CONTROL OF THE C	120

45 AATGAAACGT TCATTCCTCC TTCCACTCCT TCTCGTTGGT TTTCTGGACA CAGCTCACCT 120
GATCCTGCTA GAAACGTTGT CAGTCTGCTT GTGGCTTCCC TCCTTGATTG ACTCACGCTG 180
TGTGATGTCT TGAGAAGTAT CTATCCACTT CATGTGAATG AGCACTCCAA TATCAGCCAA 240
CATCAATCAT TCTTACCTAA AGAATAATAA GAAAAAGTTA ATATAAAAGA CAAGGGTATA 360
AAATAAAGGT TTGAAAAATGC TAGTCAACTT CAAAATTTAA AGAGTAAAAA TCCAGAGATA 360
55 AAGATTGGGG GTAAGTTACA GCATAAAAAA ATAGGAAGAA ACTTCATGGT GGGGGGGAAA 420
TCTAAAAATTA TTCTTACATA AAATAAGTAG ACACCTGAAT TAGAATGAAA ACTGTATTTT 480

CTTTAAAATG TAAAAGCCTG ACTCTCAGTT TCACCAGTCT GAGCACAAGT TTGACTGCAA

60

	CCCAAAATAT	ACTATCCCTT	ATGTGAAGGT	ATGTGACAAC	GTTGACCTCA	CCAAATGAGT	600
	TTTAACATCA	GCTCTTTTTT.	CATATGAAAG	CACATACCCT	GCTCCCCATT	CAAGTATGTC	660
.5	TTCCATTGTC	AGGCAGGCTG	ACCACCTTCA	GCAGGAGTCC	TCCAAGAGTG	CCCAACTCCC	720
	CTTCCCACAG	TACACAACGC	TGTAGTTGTT	GTCCTGCAAT	CCTTTGTATT	TACCTCATTC	780
10	TTTCCCATCT	AAGTCCTCAC	TGAGTTTTAA	AGTTAGGGCT	GGAAAAGCTA	TGCCTTACTG	840
	GGACAGCAAG	GAACCAATTT	TTTTCTGAGG	GAGAAGACAT	TCACCTTCAC	TATATGCCTG	900
	GCAGGGCCAC	AGTGCACAAA	ACAAAGATCA	GCCTTCATTC	AAGTTCCAGG	TTTTTCTTCC	960
15	TCCCTGAATG	ATTACTGCAA	AGGGTATATG	AAGTAAGAGT	TCCCTGTTGC	ACATGTACCA	1020
	TCCATAAGGG	ATACTATATC	GTTTTGCATT	CTTCCCCCCA	TTCTCCACAT	TGTCCTATCT	1080
20	TAAGTCCAAG	CCCTTTTCAC	TCTCAAAAAA	аалаааааа	TATTTTTTC	AGCACTGGTG	1140
	TTCAAAAGCA	ACGITTITAT	GGTTAATGGT	TTACCAGCAA	CTGTTGAGAT	TTCCAGTTGA	1200
	GTCTTAAAAA	TTGCCAATCA	TTATCTAGCA	GCAATGACAG	ATGATTAGGA	GCAGTCAAAT	1260
25	CCTCTGAATT	CTTTCCCTAA	TAGGCAGCCA	TTTGAGAACT	GCACTAGCTG	ACATCACTAA	1320
	AACATTATCA	GCTAAAGCCA	AAACCAAATA	AAGGCCCAGA	CCAACATCCT	GGCTCTCTAA	1380
30	AACCTGTCCA	AAATCATTAA	GTGAAAGGCA	GTAAATGCAG	GACTGTGGAT	CATGTCACTG	1440
	CAGCTGACAA	TGATTAACAA	TAGGAGACAT	GCAACCCCCA	TTAAGGTTAA	AAGTCCAAAA	1500
	CTAGTCACAC	GCATCTCTTT	ATTGGGGAAA	AGTGAGACTA	TTATGCATTC	TTGGTAGGTT	1560
35	TGCAACCTTG	CATGAAGAGC	ACCCATTGCA	TTTCTTTCAT	CTTTCAGAAA	GCACCGGTAT	1620
	CTGTTCCAAG	GGCCTAACAG	TACGAAAATA	CATTCTGGCA	TCACACCTCT	GAACCCAAGA	1680
40	CTGTTCTCAT	TAAAAATAAT	TTTGGTTTGT	AACAAAATTA	TGAAATACAA	TGCAAGCACC	1740
	TCGGTATAGC	ATTATTACTG	AAACCACTTA	ATTCCCAGCT	TTTTGAGTTT	AAAAAATTT	1800
	CCCACTGCAC	TAAGATTCAC	AATTCATTGC	TACATACAAA	TTAAAGCTAG	TAAGAACACA	1860
45	CTAACGTCAC	AAGTTTCTCA	TTCTAAAGTG	CAAAAGCCTA	ATCATCTGAA	AGTGAACAGG	1920
	GTAA						1924

55

(2) INFORMATION FOR SEQ ID NO: 47:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 475 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

60 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47:

	TOGTGTGGGG CCCAGAAAMC AAGGGACCAG TGAAAACAMC CCCAGAGACT TGTATCCGCC	60
_ 5	AGGAAAGCCA TIGCCAMIYC TGAGCCCTTG AAGGGCAAGG AGGGAAACAG TGTTACCAGA	120
-	GCCCAGTAAG AACTGCTGTC ATGAAGGAGG GGCCACCTTG TAAGAGACAT CATTACTACC	180
	AGAACTGTGG TGCCAAATTG CTGGTGTCTC TCTTTGGAGA AACCAACCAG ATACATCTGC	240
10	TOGAGACCCA GCTGGGCACA GAGAAGGCTG GAGAGAGAAT CTGGGAAGAG AAATGGAGAA	300
	TAAGCAGCAC AGTGTTATTC ATTTCTGTAA ATTCCTATGT AGAAGGCTCA GTGTTAGAAA	360
15	TAAAGITATT CTACTAGTIG CAAGITAAGT GTTICTGTTT GTTCTGCTTT CCTGTTAGCA	420
	TAAGTAAACT CCCTTTGGAA CTACACAGGT ATGTCTCTCC TTCAACATGT GTGAA	475
20	(2) INFORMATION FOR SEQ ID NO: 48:	
25	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 346 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48:	
30	AAGGGACAGA GACCTGGATT CAGATCTCAT TTTACAATGA AGACCCCAAT GCAGAAAGTC	60
	ATGTCTGAAA TTCTGAGCTT ACTCTTCTGC CTGCTCGGAC CTGCTCTGGA TGAGAGAAGG	120
35	GAGGAAAAGG ACTAATCAGA GGAGCCAATG AAGTCACTCC ATGAGTTTCC TGAACCCTGC	180
	CCAGCTAGAG ATTAACGTYT GACCWTCAAC GTAGGACACT GTGCAGATGG CTACTTGCTG	240
40	GCGCACATGA AGACCAAAGC CAGGACCAAG CCCCMASCCT GCTWAACACG GCAGARTCTT	300
	GCCCAGCCMA CYTCTGTGAR AATCTGCTTC CCTCCACAGC TGACCC	346
45	(2) INFORMATION FOR SEQ ID NO: 49:	
	(i) SEQUENCE CHARACTERISTICS:	
50	(A) LENGTH: 1366 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
e e	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:	
55	TAGGTGTCAG CCGCCACCCC CCCCCCATAT GCAGATTTAC TSGGCATGGT AGTGGCCAGC	60
	TTCTAACACA GCTGGTATTT CAAGTCTCCT GGGACCTCAC TCAGGAATGA TACCCCCTCA	120
60	GTAGAAGCAG CAGGTGATCT TAACTCCTTT CAAAGAGCAG GCCTGTCTGG GAAGCCATGT	180

	CCTCAGCAGG C	ACAGCAACC	CCICIGGAAA	TGGATCACAA	ACICACTICT	CAGCCAGGCA	240
5	GGCCAAGCTT C	TATTGTAAC	AGTAGGCACA	GTATAGTCGG	ATCATCACAT	CAGCTGGGTT	300
	TTTGGTTTAG T	CATCTAGAG	TCGTCTGGAC	TAAAGGTCTT	TCAGGTCTCC	TTGCCCTGTG	360
	AGTGCGTGAA C	CTCCCCACC	CGAATTGCCT	CAGTTGTCCT	GAGCCTCATG	TCTCTCCTGG	420
10	TGGTGGGCCA G	GCCCCTGCA	TGGGAAGGGA	GCCTGCTGCG	GGGCAGGCCA	GCTGGGGGTG	480
	CTCACCTATG C	GCAATGANA	GTTATTGAAG	GACTGGTTGT	TGATGTTGGT	GAGCGTATCC	540
15	TTCATGGCCA G	CCCGAAGTC	GGCCAGGTCA	GCCAGGTGCT	GCCAGCGCTC	TCTCTCGGAC	600
• •	TIGICTICCT G	TGCCAGGGG	ACCGTGGAGA	AAGTGTCAGG	GGCCGCTCAC	TGCAGCAGCC	660
	TECTCTECTE C	CTTCCCTGG	CAGTGTTCTG	GGGTGGATT	CCCTACAMCT	AGATGTTCAA	720
20	GGCCTTACTT T	TCCTCCCAC	AAAGGAGTCG	CAGCCACGCT	AGCTCTGACT	TGCCACTGTG	780
	ACAAAGTTCA C	GTAGCAGGT	CTAGGCAAAG	ACTGGGCAAT	TGAGCAGAGG	AGACGGACCT	840
25	GTGAGTCTGA C	CRYGAGSCG	GRCCCCTTCA	CCTTGGCTGG	GCTGGTCCTG	GTCCTTAGGT	900
	TTTGTCAGGT T	GICCTTGTT	TGGATCCCTC	AACTAGGTGA	TAAGCACTGG	AGGGGGATGA	960
	CCCGCCTTGG A	CGTGTTTCT	TTAACCTCAT	CCATATAATA	GCCCGTGGG	ATGGTTGTAG	1020
30 .	AGGTAAAGCA G	TOOTAOTAO	GTTTTAAGAC	CAGAGCTTGG	GACCAGGGCT	CCTACACCTA	1080
	ATTTTCTCTC C	TGGTAGCTG	AACAAAGGTC	TAAATTAGCT	TAACAAAAGA	ACAGGCTGCC	1140
35	GTCAGCCAGA G	POAADTOTT	CCATGCTTTC	AGTTTCCCTT	GTTGACAATT	GCTCTCCAGT	1200
,,	TCCTATGAAA G	CACAGAGCC	TTAGGGGGCC	TGGCCACAGA	ACACAACCAT	CTTAGGCCTG	1260
	AGCTGTGAAC A	GCAGGGGT	TGTGTGTCTG	TICTGITICT	CTGCTTGCCG	AACTTTCTCA	1320
10	ATAAACCCTA T	TICTTATIT	AAAAAAATA	АААААААА	AAAAA		1366
4 5	(2) INFORMAT	ION FOR SE	Q ID NO: 50	:			
	(i) S	SEQUENCE CH	IARACTERISTI	CS:			
			FTH: 1405 ba E: nucleic a	-			
50			ANDEDNESS: O DLOGY: linea				
	(xi)			SEQ ID NO:	: 50:		
55	GCAGTAATTC C					CCTCAAATTC	60
	ATGATTTTTA C						120
	CATTTTATGC T						180
SN.							

TTTAACCCTT GGCATGTATA ATAGAATTTT GGTGAATGAA AGAACCCAAA TAGGCCAGAT

	AGTCCCCCCA	GGCCCTGATA	TCCATAAAAG	GCTTGGGAAT	GCATTATGTA	ATTGTCCTTA	300
. 5	GTCTTTTGT	TGTTTTAGAA	аааааааса	AGATGGGCTC	AGATGGATGC	CTACGTAAAA	360
	ATGGTTCCTA	GCTGTGTACT	CATAACTTT	CTTTGAATTG	AGTAGTGAAA	GGAAGGAGGA	420
10	GGAAAGGAAA	TTAAATGTCC	TTCTAGTATT	CTCTGGACTC	AAGTCTGACA	TATGAGATAA	480
10	TAACCTATAT	TGAAATGCCA	AGAATTGTAT	CTGAAACAAG	AGAACAGTTT	GACACATTTA	540
	TCATGCCTTC	ATATTACATA	ттаастдааа	CCAATTAATA	AACATATGAA	ATATCCATTG	600
15	CACAAGGCAA	AGGCACCTAA	ACCTTTTGTT	TCTTTTTCTA	CATAGCAGAA	ATTGATTTT	660
	TTTTTATTTT	TTTAGGGGAA	CCTATATAAT	TATGACCCAG	TGATGTCTTT	TGGTGACTTA	720
20	AGCTTATGAA	TTCAGGTTAC	AATTGAGTTG	ATTCTAGATG	GTTACTACCT	TGAAAAGGAT	780
20	GTTGGTGCCT	TATGTGACAC	GAGCCAGAGC	CTGCTGGGGA	ATAAACAAAG	CAGGTTTCAT	840
	GCCAACACCA	ACTCGTAGCT	TTAGTGGGCA	GATGGGGAGT	GGTTCACAGA	CTTCCCAAAA	900
25	TGTGGGGGCT	TTGGGATTTT	CCACACCATC	CCACGTGTGT	TGTTCATTCT	TCCTCTTTTC	960
	ACACTCTTGG	ATGGATWATT	TGRAAATGGT	GRAAWYMMCY	YYKRAATTTG	CCCAATAGCC	1020
30	WTGRGCCACC	ATTCTTWATG	ACACCATAAC	CAAATAGTTC	CWTAATGTTG	AAATATTAGA	1080
50	AACCTGTTAC	CAGCCYKSMA	KTWACCCWWA	WITTICCCAT	CTTTCTCGAA	TTGATATTGA	1140
	AATAGCAGGG	CTAAGGAATT .	ACTGGCAAGT	TTTAGCCTGT	GGGTAATACC	TTAGGGTTAT	1200
35	TTAAATTT	GTAATTTTAT '	TTAAATGTTC	ATGAATGTTT	GAAAGGAACA	AAATTATCAG	1260
	GGATGGCTCT	TTGCCATGGG	TCTTATTTTC	ACCCTCTTTT	CTGTAAGAAA	AAAGAACAAT	1320
40	GTCTTAATGT	ATTTTTAAAG '	TTTTGGTAT	AGTTTCTAAT	TCCAATTTTA	ATAAAAGTTT	1380
10	TWIRTAAAAA	. AAAAAAAAA	AAAA				1405
45	(2) INFORMA	TION FOR SE	Q ID NO: 51	:			
50	(i)	(B) TYPE (C) STRA	ARACTERISTI TH: 504 bas E: nucleic a ANDEDNESS: C DLOGY: line	se pairs acid double			
55	(xi)	SEQUENCE D	ESCRIPTION:	SEQ ID NO:	51:		
<i>JJ</i>	CGGATTTTCT	AGGACCCCAA .	АААААААА	AGGGNAAAAA	AAACCCNCAA	AACCANCCAA	60
	AACCCCAAAA	AAAAAAAAA	TCCACAAAAA	CAAAAAAACT	ATAAAAAAGA	AAGAATTAAA	120
60	AACTTTCAGA	GAATTACTAT	TTACTTTATT	AACTTACGGA	TTTATTATAT	АААТАТАТА	180

	TCACCTAGCA ACATATCTCT GCCGTCTCTC CTGCTCTCAT AATGAAGACA TAGCCGATTC	240
.5	TCTGCCCGGG CCCCTTGCTG ATGCTCCTCC GGGTCTGCGT CGGGCGTGGG TCTCTGGGGA	300
.0	CCCTCCAGAG GTGGAGGTGG GCTGATGGCC TGGCTGCCTG GTGGTTGATG GTTTTGCTCC	360
	CCCTACCTPT TTTTTTGAG TTTATTCTGA TTGATTTTTT TTCTTGGTTT CTGGATAAAC	420
10	CACCCTCTGG GGACAGGATA ATAAAACATG TAATATTITIT AAGAAGGAAA AAAAAAAAAA	480
	AAAAAACTNG GGGGGGCCC CGAA	504
15		
13	(2) XVVONATANI TOO TOO TOO TO	
	(2) INFORMATION FOR SEQ ID NO: 52:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 777 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
25	(D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 52:	
	NAAGTATCTT GGCCAGTTTA TTACAGAGGA CGATAAATGA TTCCATGTGG ATAGGGCATA	60
30	ACATACAGAG AATGAGACTA TOCCAGAAAT GGGAGGAGGC ATTTGAAACA ACATGAGTAT	120
	CTCAGGGACA GATGGATTGA TTCTGCTATT GGTAGGCCTG GAAGCAANGG TCAGAAGTAG	180
	CAAAAAATGG ATACCAAAAG CACTATTWGT CACCCAAGCT AAGTGGAATA GCTGGCCCAG	240
35	TAGGAGAAAT GCAGGTTTTG CTCTACACTA AGTTCTCCAA CTCTTGATAA GCCTCCAAAA	300
	ACAAATGTTA GGGGAAAAAA ACGCAGCTGG TTATGAAAAG ATATATCTCA TTTCATTAAA	360
40	AAATCAATGT CAATGCTGTT AATAGAATCC TTTTATCTTC AGGACAGAGG CAATGCCCTA	420
	AACAAACACC AGCTCAAGAG CCTCTGATGC CAACCTAGAG GGTACCCAAA CACAAACTTA	480
	GCATAGAGGT AAGAATCTCT ATGTCTTTTG GTGGAGGCAA AGCCATTTGG TTGGTACTTC	540
45	ACAGGAACAT CTTTCTACCA AGTCTTCATC ATATGGTATG TGCCACGAGT CTCCAGTTGT	600
	TTGCACCACT GTGTCATAGC TGAGAATACG CTGAAAGGTT AGTTTTGATC CTGGAAACCT	660
50	ATTTACAATT GCCAGCTGAT GTCCCTGCTG CCACTTAAAA AAGGCTTGGG TCTGGCATAG	720
50	GCAGAMAGGC CTGTGGTCCC CTCGTGCCGA TTCTNGGCTC GAGGCCAATT NCCTTAT	777
55		

(2) INFORMATION FOR SEQ ID NO: 53:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 602 base pairs

60 (B) TYPE: nucleic acid

275

(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 53: _ 5 ATGACTACAG TGTTATACCC TCCAATCTTT GCAGGTGGGC ATGGAACACT GCTTGTATCA 60 120 10 CATGGTTTGG GATGAGCAGG TCAATAGTTT TGAGAGGGAG TTTGTTCCTT TTTTTTTTCT 180 CATTATACTC TTAAATTGTT GTCAGTTATC AAACAAACAA ACAGAAAAAT TGTTTGGAAA 240 AACCTTGCAT ACGCCTTTTC TATCAAGTGC TTTAAAATAT AGACTAAATA CACACATCCT 300 15 GCCAGTTTTT TCTTACAGTG ACAGTATCCT TACCTGCCAT TTAATATTAG CCTCGTATTT 360 TICTCACGTA TATTITACCTG TGACTIGIAT TIGTTATITA AACAGGAAAA AAAACATICA 420 20 AAAAAAGAAA AATTAACTGT AGCGCTTCAT TATACTATTA TATTATTATT ATTATTGTGA 480 CATTITIGGAA TACTIGTGGAA GITTITATCTC TIGCATATAC TITATACGGA AGTATTACGC 540 CTTAAAAATA CGAAAATAAA TTTTACAAGG TTCCGGTTTT GGTGGTGGAA AGAGTAAATT 600 25 GΑ 602 30 (2) INFORMATION FOR SEQ ID NO: 54: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1749 base pairs 35 (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54: 40 AGTCACTGAC TTGGAGCCGC TCGGGGGAAG TCCCGCCCAG ACAGGCGGTG GGTCGGAATG 60 CCTCACTTCA GTTTGAAGAG GGTCCGGATC CAAAGGGGTT AAAACGAGCG AACCCCGATC 120 45 CCCGACCACA CTTCCCGCCT CCCTAAAACG CACACCCCGC TAGCCATGGG CAGCCGCGAC 180 CACCTGTTCA AAGTGCTGGT GGTGGGGGAC GCCGCAGTGG GCAAGACGTC GCTGGTGCAG 240 GATTATTCCC AGGACAGCTT CAGCAAACAC TACAAGTCCA CGGTGGGAGT GGATTTTGCT 300 50 CTGAAGGTTC TCCAGTGGTC TGACTACGAG ATAGTGCGGC TTCAGCTGTG GGATATTGCA 360 GGGCAGGAGC GCTTCACCTC TATGACACGA TTGTATTATC GGGATGCCTC TGCCTGTGTT 420 55 ATTATGTTTG ACGTTACCAA TGCCACTACC TTCAGCAACA GCCAGAGGTG GAAACAGGAC 480 CTAGACAGCA AGCTCACACT ACCCAATGGA GAGCCGGTGC CCTGCCTGCT CTTGGCCAAC 540 AAGTGTGATC TGTCCCCTTG GGCAGTGAGC CGGGACCAGA TTGACCGGTT CAGTAAAGAG 600

	AACGGTTTCA CAGGTTGGAC AGAAACATCA GTCAAGGAGA ACAAAAATAT TAATGAGGCT	660
	ATGAGAGTCC TCATTGAAAA GATGATGAGA AATTCCACAG AAGATATCAT GTCTTTGTCC	720
_5	ACCCAAGGGG ACTACATCAA TCTACAAACC AAGTCCTCCA GCTGGTCCTG CTGCTAGTAG	780
	TGITTGGCTT ATTITCCATC CCAGTTCTGG GAGGTCTTTT AAGTCTCTTC CCTTTGGTTG	840
10	CCCACCTGAC CATTITATTA AGTACATTIG AATTGTCTCC TGACTACTGT CCAGTAAGGA	900
••	GGGCCCATTG TCACTTAGAA AAGACACCTG GAACCCATGT GCATTTCTGC ATCTCCTGGA	960
	TTAGCCTTTC ACATGTTGCT GRCTCACATT AGTGCCAGTT AGTGCCTTCG GTGTAAGATC	1020
15	TTCTCATCAG CCCTCAATTT GTGATCCGGA ATTTTGTGAG AAGGATTAGA AATCAGCACC	1080
	TOCGTTTTAG AGATCATAAT TCTCACCTAC TTCTGAGCTT ATTTTTCCAT TTGATATTCA	1140
20	TIGATATCAT GACTICCAAT TGAGAGGAAA ATGAGATCAA ATGTCATTTC CCAAATTTCT	1200
	TGTAGGCCGT TGTTTCAGAT TCTTTCTGTC TTGGAATGTA AACATCTGAT TCTGGAATGC	1260
	AGAAGGAGGG GTCTGGGCAT CTGTGGATTT TTGGCTACTA GAAGTGTCCC AGAAGTCACT	1320
25	GTATTTTGA AACTTCTAAC GTCATAATTA AGTTTCTCTT GTCTTGGCAT CAAGAATAGT	1380
	CAAGTTTTT GGCCGGGCAT GGTGGCTCAT GCCKGTAATC CCAGCACTTG GGGAGGCCAA	1440
30	GGCAGGCGGA TCACATGAGG CCAGGAATTC GAGACCAACC TGGTCAGCAT GGCAAAACCC	1500
	CGTCTCTACT AAAAGTACAA AAATTAGCCA GGCGTGATGG CACGTGTCTG TAATCCCAGC	1560
	TACTCTGGAG ACTGAGGTGG GAGAATCGCT TGAGACTGGG AGGCAGAGGT TGCAGTGAAC	1620
35	CGAGATCATG CCACCGCACT TCAGCCTGGG TGACAGAGAA GGACTCCGTC TCAAAAAAAA	1680
	AAAAAAAAA AAAACTCGAG GGGGGCCCG GTACCCAAAT CGCCSTGATA GTGATCGTAW	1740
40	ACAATCNAA	1749
	(2) INFORMATION FOR SEQ ID NO: 55:	
45	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1896 base pairs (B) TYPE: nucleic acid	
50	(C) STRANDEDNESS: double	
30	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 55:	
55	AAAGAGATGG GCTCTTTATT TTCTCGAAAA ACCAATTTGG AGTTACTCAT TTTTCCATAA	60
	CATTAAATTT CTTACAGTGA ACTACATATT GTCCATAAGT GCTTCATCAG GACTCATCGC	120
	CCTCCTGTCT ACTGGCTCCA AATAGACCAT GTCAGCTTCA CCCCCTGGCT TTGTGTCTAT	180
60	GGGTGGCCTG TGGTATATGG AAAAGTAGCA GGGTGGTCAG GGTGGGAGAC ACAAGATGTT	240

	TITATAGICT	AGAGCCTTTA	AAAAACCCAG	CAGAATGTAA	TICAGTATIT	GTTTATTGGC	300
5	TGTTTTTTGA	CAGATTGTTG	AAATTAAATG	AATTGAAAGG	GAAACTCAGA	GTACTAGGAC	360
	GTTTATTAAA	AGGAAAAAA	TGTCTTGCAA	TGTGCTGTAA	TCACAAGAGG	AGAAAATAAC	420
	TTGTTTCCTT	GATCTGTCAG	AGGTCACAGT	AACCTGGGCC	GAGCTGTTAT	TATTTATTAT	480
10	ATAATAGTAG	TAGGAAGTTA	ATAACTGGTT	CTCTGTGTTC	CAAGCACAAT	ATTACAACTT	540
	CTTTTGAACC	GTAAATATCA	GAATGAATCC	TCTTCCCAGG	GGATTGAACA	GAACCTTAAT	600
15	GTTTACAAGT	GTTTGAATTT	GTGATCTGAA	ATAACACAAA	ATTAAAAACA	TGATTTCTCT	660
13	AATTITCCAA	CTAGAGGAAG	AGAAACTTGT	GGAAAAGTTC	TTTTTTTTC	TTTTTTTTT	720
	CTTAAAGAAG	GGCAGCCAAG	GTAGTAACCT	AAAAATAGTG	CCCAGGCATA	TGAGAGTTGT	780
20	CCTACGAGGT	TAAAGAACAC	ACTGTTCCAC	TGTATGGCTT	TGGCCCTGAG	TGGCCAGGGA	840
	GGTCAACTTG	ACCCTGCCAT	GTTGGTTTGA	CTTACTAAGA	CACAGGAATC	ATTGTTTTCC	900
25	TTGACCAGGG	TCTCACACCC	TGGAGGAATG	TTAAGTAAGA	GAAAGAACCT	CTTTCCTGAA	960
20	TATTGACATG	TAAAAGACCA	AAGTAATTTT	TCTGAACTTC	TGCAATTCTG	AGAACTCTCC	1020
	AAGGAATTTA	CAGTGATTTT	AGTGCTTGTC	AGCATTITIC	CATGAGGACT	TTCATACATT	1080
30	TGACTCTTTA	GTTCACAGGT	TCCCATTGAT	TGTGAGCAAG	ATATTTATCT	CTTTAGCCCT	1140
	TGGGGATCCA	GCTGAGAGCA	ATCTCTTGCA	TTTTTTTACC	CGTGTATGTA	CAGATATCAT	1200
35	TTCTTGTGTA	TGCCATGACT	TGAAAAAGTT	TGGGAAGCTC	TTTAGCAATA	TCAGCTAAAA	1260
33	GGATATGAAA	TCACAGGTGA	TAGCAGTTGT	CATTCACTAA	TTTCCTACAA	GCAGCACCCC	1320
	AAAGGAAATA	TAGTCCTAAT	CTTTACTATC	CACTTCTAAA	TTTAATGTGA	ATTICATACA	1380
40	TGTTATTAGT	TGTTTTCTTT	TATTTTAT	ТТАТТААААА	CATCGGGAGT	TTAACTTCCA	1440
	CTTCCATGCT	ATCGGATGTG	TTGGGCTCCA	TGCAAGAACT	TGGAAGAAAA	ACAGGCAGGA	1500
45	ATGCATTTGC	ATAATGACCC	AGATCATCAT	TTTCTGCAAC	TGAGAATTAT	ATTTCATCAT	1560
-1.5	TGCTTCTAGA	AGTCTGCAAT	TCTTTACTTT	TCTTTGGTGC	ATTATTATCT	AGGTGCCATC	1620
	ACTGGATAAT	GTGGAGTGAC	TAGAGAAGTC	AYATATCACT	GTAAGGTACA	GTTAGGGGTA	1680
50	ACACTTTAGA	GGTTTATTAT	TTTTAAAAAA	CTTTTCTTGA	ACTCCTGGGC	CAACATGGGT	1740
	GAAACCCCGT	CTTCTTACTT	AAAAATACCC	AAAATTAGGC	CAGGGGCGTG	GATGGGTGGG	1800
55	GTGCCTGTTA	ATCTTCAGCT	ACTTNGGGGA	GGGCTTGAAG	CCAGGGAGGA	ACTGCCCTGG	1860
JJ	ANCCCCGGGG	NGGGCCAGNA	GGTTTGCCAG	TTGAGT			1896

278

(2) INFORMATION FOR SEQ ID NO: 56:

- 5

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1753 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 56:

10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 56:							
10	TCTTTTTAAA ATAGACATTT GTGGGGCTCA CACAATATAT GAAATAGTAC CCTCTAAAAA	60						
	AGAGAAAAA AAAATCAGGC GGTCAAACTT AGAGCAACAT TGTCTTATTA AAGCATAGTT	120						
15	TATTICACTA GAAAAATIT AATATCAAGG ACTATIACAT ACTICATTAC TAGGAAGIIC	180						
	TITITAAAAT GACACTTAAA ACAATCACTG AAAACTTGAT CCACATCACA CCCTGTTTAT	240						
20	TTTCCTTAAA CATCTTGGAA GCCTAAGCTT CTGAGAATCA TGTGGCAAGT GTGATGGGCA	300						
20	GTAAAATACC AGAGAAGATG TTTAGTAGCA ATTAAAGGCT GTTTGCACCT TTAAGGACCA	360						
	GCTGGGCTGT AGTGATTCCT GGGGCCAGAG TGGCATTATG TTTTTTACAAA ATAATGACAT	420						
25	ATGTCACATG TTTGCATGTT TGTTTGCTTG TTGAATTTTT GAACAGCCAG TTGACCAATC	480						
	ATAGAAAGTA TTACTFTCTT TCATATGGTT TTTGGTTCAC TGGCTTAAGA GGTTTCTCAG	540						
30	AATATCTATG GCCACAGCAG CATACCAGTT TCCATCCTAA TAGGAATGAA ATTAATTTTG	600						
30	TATCTACTGA TAACAGAATC TOGGTCACAT GAAAAAAAAT CATTITATCC GTCTTTTAAG	660						
	TATATGTTTA AAATAATAAT TTATGTGTCT GCATATTGCA GAACAGCTCT GAGAGCAACA	720						
35	GTTTCCCATT AACTCTTTCT GACCAATAGT GCTGGCACCG TTGCTTCCTC TTTGGGAAGA	780						
	GGAAAGGGTG TGTGAACATG GCTAACAATC TTCAAATACC CAAATTGTGA TAGCATAAAT	840						
40	AAAGTATITA TITTATGCCT CAGTATATTA TTATTTAATT TITTAGGTAA TGCCTATCTC	900						
40	TIGGTCTATT AAGGAAAGAA GCAATCAGTA GAGAATICAG GATAGTITIG TITAAATICT	960						
	TGCAGATTAC ATGTTTTTAC AGTGGCCTGC TATTGAGGAA AGGTATTCTT CYATACAACT	1020						
45	TGTTTTAACC TTTGAGAACA TTGACAGAAA TTATGCAATG GTTTGTTGAG ATACGGACTT	1080						
	GATGGTGCTG TTTAATCAGT TTGCTTCCAA AGTGGCCTAC TCAAGAGGCC CTAAGACTGG	1140						
50	TAGAAATTAA AAGGATTTCA AAAACTTTCT ATTCCTTTCT TAAACCTACC AGCAAACTAG	1200						
50	GATTGTGATA GCAATGAATG GTATGATGAA GAAAGTTTGA CCAAATTTGT TTTTTTGTTG	1260						
	TIGTIGTIGT TITGAATIIG AAATCATICT TATICCCTIT AAGAATGIIT AIGTATGAGI	1320						
55	GTGAAGATGC TAGCGAACCT ATGCTCAGAT ATTCATCGTA AGTCTCCCTT CACCTGTTAC	1380						
	AGAGTTTCAG ATCCGTCACT GATAGTATGT ATTTCTTTAG TAAGAATGTG TTAAAATTAC	1440						
60	AATGATCTTT TAAAAAGATG ATGCAGTTCT GTATTTATTG TGCTGTGTCT GGTCCTAAGT	1500						

279

(2) INFORMATION FOR SEQ ID NO: 57:

15

20

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1220 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 57:

CCGGAAGTTA CTCCAGCCGC GGTGTTGTGC TGTGGGGAAG GGAGAAGGAT TTGTAAACCC 60 25 CGGAGCGAGG TTCTGCTTAC CCGAGGCCGC TGCTGTGCGG AGACCCCCGG GTGAAGCCAC 120 CGTCATCATG TCTGACCAGG AGGCAAAACC TTCAACTGAG GACTTGGGGG ATAAGAAGGA 180 30 AGGTGAATAT ATTAAACTCA AAGTCATTGG ACAGGATAGC AGTGAGATTC ACTTCAAAGT 240 GAAAATGACA ACACATCTCA AGAAACTCAA AGAATCATAC TGTCAAAGAC AGGGTGTTCC 300 AATGAATTCA CTCAGGTTTC TCTTTGAGGG TCAGAGAATT GCTGATAATC ATACTCCAAA 360 35 AGAACTOGGA ATGGAGGAAG AAGATGTGAT TGAAGTTTAT CAGGAACAAA CGGGGGGTCA 420 TICAACAGTT TAGATATICT TITTATITIT TITCITITCC CTCAATCCTT TITTATITIT 480 40 AAAAATAGTT CTTTTGTAAT GTGGTGTTCA AAACGGAATT GAAAACTGGC ACCCCATCTC 540 TTTGAAACAT CTGGTAATTT GAATTCTAGT GCTCATTATT CATTATTGTT TGTTTTCATT 600 GTGCTGATTT TTGGTGATCA AGCCTCAGTC CCCTTCATAT TACCCTCTCC TTTTTAAAAA 660 45 TTACGTGTGC ACAGAGAGGT CACCITTTTC AGGACATTGC ATTTTCAGGC TTGTGGTGAT 720 AAATAAGATC GACCAATGCA AGTGTTCATA ATGACTTTCC AATTGGCCCT GATGTTCTAG 780 50 CATGTGATTA CTTCACTCCT GGACTGTGAC TTTCAGTGGG AGATGGAAGT TTTTCAGAGA 840 ACTGAACTGT GGAAAAATGA CCTTTCCTTA ACTTGAAGCT ACTTTTAAAA TTTGAGGGTC 900 TOGACCAAAA GAAGAGGAAT ATCAGGTTGA AGTCAAGATG ACAGATAAGG TGAGAGTAAT 960 55 GACTAACTCC AAAGATGGCT TCACTGAAGA AAAGGCATTT TAAGATTTTT TAAAAAATCTT 1020 GTCAGAAGAT CCCAGAAAAG TTCTAATTTT CATTAGCAAT TAATAAAGCT ATACATGCAG 1080 60 AAATGAATAC AACAGAACAC TGCTCTTTTT GATTTTATTT GTACTTTTTG GCCTGGGATA 1140

	TOGGTTTTAA ATGGACATTG TCTGTACCAG CTTCATTAAA ATAAACAATA TTTGTAAAAA	1200
_ 5	TCAWAAAAA AAAAAAAAA	1220
10	(2) INFORMATION FOR SEQ ID NO: 58: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1049 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
15	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 58:	
20	TCGCCCCTCC AGACACAGCA TCTACTCAGC GTGGGTCACC TCTGTGAACA TCACTGACTG	60
	CAAGCCTCCC TCAATTTCTG GTGCAGCCCA TCAGGGACCC ACAGCGCCTG GGAGGATGGT	120
	GCGGATCTTG GCCAATGGGG AAATCGTGCA GGACGACGAC CCCCGAGTGA GGACCACTAC	180
25	CCAGCCACCA AGAGGTAGCA TTCCTCGACA GAGCTTCTTC AATAGGGGCC ATGGTGCTCC	240
	CCCAGGGGGT CCTGGCCCCC GCCAGCAGCA GGCAGGTGCC AGGCTGGGTG CTGCTCAGTC	300
30	CCCCTTCAAT GACCTCAACC GGCAGCTGGT GAACATGGGC TTTCCGCAGT GGCATCTCGG	360
30	CAACCATGCT GTGGAGCCGG TGACCTCCAT CCTGCTCCTC TTCCTGCTCA TGATGCTTGG	420
	TGTTCGTGGC CTCCTCCTGG TTGGCCTTGT CTACCTGGTG TCCCACCTGA GTCAGCGGTG	480
35	ACCTCTGAGG GCTGATAGGG GTGGGTTTGT TGAGAGGGAC TTGCTGGGCC TTGGTGTGAG	540
	AGCAGGCATA TTTGGAGGGG ATCTGGTGGT GCCTTGAAGG TATGATCAGA GAGGGGACCA	600
40	CAGGIGIGIG TITCCCCTIT GIGITAAGCG TGAGGCAGAG GGAGACGITA GTCCCAGCAT	660
40	TTCCCAAAGT GTGGGTGGGT CCGTTGGTTC CCGAGATACT TTTAGGTGGT ATGGGGCCTG	720
	CATTAAGTGG CACAAAATCA GAGCAAGAAA GCGATGCCCT TCCCAATTCT CTCAATCCTT	780
45	TTATGCCGAG AAGATCTCAG CTGGATGCCA ACATGTTCCG ATGCCTGTGG AAGACATGCC	840
	GACGTCTCCT CTGCCTAGGG AGCAGGACTT GGGCTTAGGG CAGGTGGAAA AAATTCCAGA	900
50	CTITITIAGC ACIGITITIG TITTAATGGT ATATTITIAT TGGCTACTIT ATTGTTTAGG	960
50	ACAAGTGGTA GTGGCATTCT ATTTATTGTG ACCTTTTCAA TAAATAGATT TAAGTAAAAA	1020
	AAAAAAAAA AAAACTCGAG GCGCGCCC	1049
55		

(2) INFORMATION FOR SEQ ID NO: 59:

60 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1776 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

- 5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 59:

	AAAGAGGATG	TGMAGCTAGA	GGTCCCCGAT	GGCTGGTCGG	ATGGGAAGCA	CAAGGCTGAG	60
10	GGACTGGATT	GTAAAGGCAC	TAAGTCGTTC	TGCGGTGAGA	ATCAGACATG	GGGGACCTCT	120
	AGCTTCACAT	CCTCTTTCCT	TGCAGSTCTG	GACATCCTGA	GCCCAAGTCC	CCCACACTCA	180
15	GTGCAGTGAT	GAGTGCGGAA	GTGAAGGTGA	CAGGGCAGAA	CCAGGAGCAA	TTTCTGCTCC	240
13	TAGCCAAGTC	GGCCAAGGGG	GCAGCGCTGG	CCACACTCAT	CCATCAGGTG	CTGGAGGCCC	300
	CTGGTGTCTA	CGTGTTTGGA	GAACTGCTGG	ACATGCCCAA	TGTTAGAGAG	CTGGCTGAGA	360
20	GTGACTTTGC	CTCTACCTTC	CGGCTGCTCA	CAGTGTTTGC	TTATGGGACA	TACGCTGACT	420
	ACTTAGCTGA	AGCCCGGAAT	CTTCCTCCAC	TAACAGAGGC	TCAGAAGAAT	AAGCTTCGAC	480
25	ACCTCTCAGT	TGTCACCCTG	GCTGCTAAAG	TAAAGTGTAT	CCCATATGCA	GIGTIGCIGG	540
23	AGGCTCTTGC	CCTGCGTAAT	GTGCGGCAGC	TGGAAGACCT	TGTGATTGAG	GCTGTGTATG	600
	CTGACGTGCT	TCGTGGCTCC	CTGGACCAGC	GCAACCAGCG	GCTCGAGGTT	GACTACAGCA	660
30	TCGGGCGGGA	CATCCAGCGC	CAGGACCTCA	GTGCCATTGC	CCGAACCCTK	AANAAAAACC	720
	ATTAAAGTTA	CGACGCCAGC	AGCAGCCGCA	GCCACATCTC	AGGACCCTGA	GCAACACCTG	780
35	ACTGAGCTGA	GGGAACCAGC	TCCTGGCACC	AACCAGCGCC	ASCCAGCAAG	AAAGCCTCAA	840
<i>33</i>	AGGGCAAGGG	GCTCCGAGGG	ANCGCCAAGA	TTTGGTCCAA	GTCGAATTGA	AAGRACTGTC	900
	GTTTCCTCCC	TGGGGATGTG	GGGTCCCAGC	TECCTECCTE	CCTCTTAGGA	GTCCTCAGAG	960
40	AGCCTTCTGT	CCCCTCCCC	AGCTGATAAT	CCTAGGTTCA	TGACCCTTCA	CCTCCCCTAA	1020
	CCCCAAACAT	AGATCACACC	TTCTCTAGGG	AGGAGKCAAA	TGTAGGTCAT	GITTITIGITG	1080
45	GTACTTTCTG	TTTTTTGTGA	CTTCATGTGT	TCCATTGCTC	CCCGCTGCCA	TGCTCTCTCC	1140
43	CTTGTTTCCT	TAAGAGCTCA	GCATCTGTCC	CTGTTCATTA	CATGTCATTG	AGTAGGTGGG	1200
	TAGCCCTGAT	GGGGGTCGCT	CTGTCTGGAG	CATAACCCAC	AGGCGTTTTT	TCTGCCACCC	1260
50	CATCCCTGCA	TGCCTGATCC	CCAGTTCCTA	TACCCTACCC	CTGACCTATT	GAGCAGCCTC	1320
	TGAAGAGCCA	TAGGGCCCCC	ACCTTTACTC	ACACCCTGAG	AATTCTGGGA	GCCAGTCTGC	1380
<i>55</i>	CATGCCAGGA	GTCACTGGAC	ATGTTCATCC	TAGAATCCTG	TCACACTACA	GTCATTTCTT	1440
55	TICCTCTCTC	TGGCCCTTGG	GTCCTGGGAA	TGCTGCTGCT	TCAACCCCAG	AGCCTAAGAA	1500
	TGGCAGCCGT	TTCTTAACAT	GTTGAGAGAT	GATTCTTTCT	TGGCCCTGGC	CATCTCGGGA	1560
60	AGCTTGATGG	CAATCCTGGA	AGGGTTTAAT	CICCITITGT	GAGTTTGGTG	GGGAAGGGAA	1620

	GCCTATATAG ATTGTATTAA AAAAAAAAG GTATATATGC ATATATCTAT ATATAATATG	1680
.5	ACGCAGAAAT AAATCTATGA GAAATCTATC TACAAAMWAA AAAAAAAAA AAAAAAAAA	1740
- 5	AGGAATTCGA TNTCAAGCTT ATCGATACCG TCNACC	1776
10	(2) INFORMATION FOR SEQ ID NO: 60:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 443 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 60:	
20	ACAGATAAAT AAATAAATAA TAAATTAAAT TAAATAAAAA ATCTGAGCTA ATCTGAATAA	60
	ATTGAGAGAT TTCACATGAA AGCCAGGATT TCTGGCTTCC CAGGAACAGT CAGAAGAGCT	120
25	AGCTAGCAAC ACTGGTCTGC TTGGCTACCT TCTTTGGAAC AACATGAAAT CTAGCTCCCT	180
	TTTTTTTTT TTTTTGGCCC ACTTCATCCA TTCACATGAC CTGCCTGGCC TCTGCAGGTA	240
30	AGTGAGTATG CAACAAAAAT GTAGCACAGG TTTTGTCGCT GAACTACGTG GTTTCAGGTC	300
	CAGCTCTGCC ACTTGCTAGC ATGACCTCGT GCCGAATTCC NGCACGAAGT TTTTTTTTTT	360
	TITITCAGTG CTCCAGTCCC CCTATTGGAG AATCCTGCCC CCCCCTGGGA CAGAATGTTC	420
35	ACCCTGGCCC CGCGANTCCC TGA	443
40	(2) INFORMATION FOR SEQ ID NO: 61:	
	(i) SEQUENCE CHARACTERISTICS:	
45	(A) LENGTH: 2888 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 61:	
50	TTAATGTTGT CAATAACCAC CAGGCCAAAC AGAATTTATA TGACCTGGAT GAAGATGATG	60
	ATGGTATAGC TTCCGTTCCT ACTAAACAGA TGAAGTTTGC AGCCTCAGGC GNCTTTCTCC	120
55	ACCACATGGC TGGGCTAAGC AGTTCCAAGC TTTCCATGTC CAAGGCCCTC CCTCTCACCA	180
- -	AAGTGGTTCA GAATGATGCA TACACAGCTC CTGCTCTCCC TTCCTCTATT CGAACAAAAG	240
	CCTTGACCAA CATGTCCCGG ACACTGGTGA ACAAGGAAGA ACCCCCCAAA GAGCTGCCAG	300
60	OMEGNES COOR MCMMCMOS CO COLUMNOS IS COLUMNOS CO CONTROL DE LA COLUMNOS COL	360

	CTCGAGTCAC	TGAGGAGGAC	ATTGTTGAGC	TTTTCTGTGT	GTGTGGGGCC	CTCAAGCGAG	420
- 5	CTCGACTGGT	CCATCCTGGG	GTAGCGGAGG	TGGTGTTTGT	GAAAAAGGAC	GATGCCATCA	480
- 3	CCGCATATAA	GAAGTACAAC	AACCGGTGTC	TGGACGGCA	GCCGATGAAG	TGCAACCTTC	540
	ACATGAATGG	GAATGTTATC	ACCTCAGACC	AGCCCATCCT	GCTGCGGCTG	AGTGACAGCC	600
10	CATCAATGAA	AAAGGAGAGC	GAGCTGCCTC	GCAGGGTGAA	CTCTCCCTCC	TCCTCCAACC	660
	CCCCTGCYGA	AGTGGACCCT	GACACCATCC	TGAAGGCACT	CTTCAAGTCC	TCAGGGCCT	720
15	CTKTGACCAC	GCAGCCCACA	GAATTCAAAA	TCAAGCTTTG	AGCAGGGGAG	TGAGGCAGCC	780
13	AGAAGTGGGG	GCAGAGGAGG	GTGGCTCTGT	TTCCCCAAGG	CAAAGCTTAT	GACCAATGGG	840
	CCATCGGACT	GGAGACCCCT	GATTGTGGGA	AGGGTTGCCA	GGGATAAAGA	GCTTCCTCAC	900
20	TGGATGGGAC	CCGCCTTTCT	GTGTTGTGTT	CTCCCTCTG	CTCTTCTCTC	TACGTTAACG	960
	TTTCCTGTAG	TATGITICTT	CATCTCATCG	CCAAGGTAGG	CTTGTGTTTT	TCAGTGTGTG	1020
25	CCTCCCCGAG	CCTCAGCCCC	AAGCTGATTT	CTTATCTGGA	AATGGTACAC	TGAATTCTCT	1080
4.5	GOGTGGCTTT	CTTGTGGCCC	CATGGGATGC	AGCGTGGGGG	CTGTCTGAAG	GACCCTGCTT	1140
	TTTCCAGGGG	CCGAGGGGCT	GCCTTTCCTT	TGTGTGTATT	AAGCTTTTCA	AACAATGGAG	1200
30	GGGATGGAGA	GCCCTGGTGT	CCTGACGGGA	GCCAGGTCGG	CCTGAGAGCT	GIGCCGCICC	1260
	TCTGTCTTGT	CAGTGGAGGT	GCCTGGGTGG	GGAGCAGGTC	TCAGGCCTCT	TGTCCTCTCC	1320
35	CCAGTGGCTC	CAGGCCTCAC	TAGTGGCAAG	GGCAGGATGA	GGCTGCACCG	CTGGGAAGAG	1380
55	TCTATCTAAG	YTCTTGGCTT	GGAGTCCCGT	GTCGTCTCCR	CCCAGAGGAA	GTTCTCCAGA	1440
	GTTCACCTTT	CCCTTTTCCT	TGAGTTGTGC	TGAATGCCCC	ACCCCAGCTC	TCTTTCCCTT	1500
40	CTGGGTGTCT	TTGCTGGGAG	GGGGCTGTGT	TGTGAGCCCT	CCCGGTTCTC	ACCTCGCCTG	1560
	GCACTTAACC	ACACCCTGGT	TTTGTGTAGC	CGCCAGCTCT	CTTCTGGTTG	GGCCTTTGAA	1620
45	AGGCTCAGCC	TCCCATTGTG	CAGTGCTTGG	GTTTGGAGCT	TATTTGAATG	GAAGAGGTCA	1680
73	GTTTGTTCCT	GGCTCTCCAT	TTCTGGCCTC	AGTTGTCTAC	AGGACAGTGG	TCAGGGATGC	1740
	CTGGAGGCAT	ATATCCAGCT	GCCACCAAGG	GCACTGTTT	GTTCCCACTT	ATGTGAGTGA	1800
50	CCCCATCCAT	CCATGACCAG	AGGATTATTT	TCCTGCCTTG	GCAGAGGAGG	AGGAGTCAAG	1860
	GGAGCAGGGC	AGCTCTACCA	GGCAAGGTGT	TTCCCCAGCA	TAGGCGCAGA	CAGTTGGGAC	1920
55	GAAACTTCAG	AGCCCAGGCA	GTCCCTGAAT	GACCAGGCCA	GTGTTGTCAC	TGAGTGGTCC	1980
<i></i>	CCTGCTGGTT	GGGAGTGAAG	AGAATCCAGG	CTGGCAGAGC	TGGAGCCAGT	TGGGGAGCAC	2040
	GGTTCTGGGA	GCTCTGCAAA	ATCAGTAGCA	AGTGCTGGAA	AAGGCACATG	CCGAAGATAC	2100
60	TCAAGAGCTC	CCAAGATTTG	CTTGAGGCTA	GCCCAGTGAA	RAAAACCAGA	GACTCATGTT	2160

284

	TCCAGGGGTC	AGTCTGTCAG	GCAGGAAGGA	CCCAGGATTT	GAACCCAGCT	TCAGTGTGCA	2220
5	GGCTCTGAGG	CTGCCCAGGA	CGGGAAAGTC	CAAGGAAGGG	CCTCCTCCT	GCTCCACTTG	2280
	CAGTTCTTTA	AAGAATGCTG	CTTTTTATTC	TCCTAACCCT	TTCAAGTGGG	TGCAGACTTC	2340
	TCGTTAGCAG	CTGGAAGACA	TTCCTCCCAC	ACTITICCCT	TCCTGGCCCA	AGAGAGCATC	2400
10	CAGAAGGCAG	TAGGACCTGG	TTTTTCAGGT	ACTGGGAGCC	GGGGGCTCAC	TGCTTGCACT	2460
	GTGCTTAGGG	TAGGGATGGT	AAATATCCTC	CCTGCATGGC	TITATCCTCC	CTCTCATCCC	2520
15	AAAGCAGGTA	TCTTCTGGTT	GTCACAGAGT	TTCATTGAGT	CCAGCTGCAG	CCACGTGGCC	2580
	ATCTGGAGCT	GGTGCTATAG	GTGACCATCT	GGTACATTGA	GGGGACCTGT	TIGCCTCCTC	2640
	CACTCTATAA	GCAGTCATCT	TGGGAGACCG	GGAGGAGAAG	GTGGTGGGCT	AGTCCTGTGT	2700
20	CCTCCTCCAC	TTCCCATGCC	TCTATGTTAC	CCATCTGTGT	CTCCTGTGCA	GAAGGAGAGG	2760
	AAGGGGCATT	AAGAGATGAA	GGGTGATTAT	GTATTACTTA	TCCATTTCTG	AATAAACATT	2820
25	TGTTATTCCT	АААААААА	ААААААААСТ	CGAGGGGGGG	CCCGGWACCC	AWATCGCCSK	2880
	AAAGTGAG						2888
				•			

30

35

(2) INFORMATION FOR SEQ ID NO: 62:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1851 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 62:

40	(***	,		. DEQ ID NO	. 02.		
	CACTAGTATA	ATTTATAATT	ATAACCTATT	CIGATITCTT	TTCAAATATT	AGGTGTCCTA	60
	GTTGCCTATG	AAGGTTTGCC	ACTTCATCTT	GCACTGTTCC	CCAAACTTTG	GACTGAGCTA	120
45	TGCCAGACTC	AGTCTGCTAT	GTCAAAAAAC	TGCATCAAGC	TTTTGTGTGA	AGATCCTGTT	180
	TTCGCAGAAT	ATATTAAATG	TATCCTAATG	GATGAAAGAA	СТТТТТААА	CAACAACATT	240
50	GTCTACACGT	TCATGACACA	TTTCCTTCTA	AAGGTTCAAA	GTCAAGTGTT	TTCTGAAGCA	300
	AACTGTGCCA	ATTTGATCAG	CACTCTTATT	ACAAACTTGA	TAAGCCAGTA	TCAGAACCTA	360
	CAGTCTGATT	TCTCCAACCG	AGTTGAAATT	TCCAAAGCAA	GTGCTTCTTT	AAATGGGGAC	420
55	CTGAGGGCAC	TCGCTTTGCT	CCTGTCAGTA	CACACTCCCA	AACAGTTAAA	CCCAGCTCTA	480
	ATTCCAACTC	TGCAAGAGCT	TTTAAGCAAA	TGCAGGACTT	GTCTGCAACA	GAGAAACTCA	540
60	CTCCAAGAGC	AAGAAGCCAA	AGAAAGAAAA	ACTAAAGATG	ATGAAGGAGC	AACTCCCATT	600

	AAAACAGAAA CCAGGGAGGT CCTGACCCCA ACGAGCACTT CTGACAATGA GACCAGAGAC	720
5	TCCTCAATTA TTGATCCAGG AACTGAGCAA GATCTTCCTT CCCCTGAAAA TAGTTCTGTT	780
	AAAGAATACC GAATGGAAGT TCCATCTTCG TTTTCAGAAG ACATGTCAAA TATCAGGTCA	840
0	CAGCATGCAG AAGAACAGTC CAACAATGGT AGATATGACG ATTGTAAAGA ATTTAAAGAC	900
	CTCCACTGTT CCAAGGATTC TACCCTAGCC GAGGAAGAAT CTGAGTTCCC TTCTACTTCT	960
	ATCTCTGCAG TTCTGTCTGA CTTAGCTGAC TTGAGAAGCT GTGATGGCCA AGCTTTGCCC	1020
15	TCCCAGGACC CTGAGGTTGC TTTATCTCTC AGTTGTGGCC ATTCCAGAGG ACTCTTTAGT	1080
	CATATGCAGC AACATGACAT TTTAGATACC CTGTGTAGGA CCATTGAATC TACAATCCAT	1140
20	GTCGTCACAA GGATATCTGG CAAAGGAAAC CAAGCTGCTT CTTGACATTA GGTGTAGCAT	1200
-0	GTCTACTTTT AAGTCCCTCA CCCCCAACCC CCATGCTGTT TGTATAAGTT TTGCTTATTT	1260
	GTTTTTGTGC TTCAGTTTGT CCAGTGCTCT CTGCTTGAAT GGCAAGATAG ATTTATAGGC	1320
25	TTAATTCTTG GTCAGGCAGA ACTCCAGATG AAAAAAACTT GCATCTTCAG TATACTTCCT	1380
	AAAGGCCAAT CAGATAATGG ATATGTTTTA TGTAATTAAG AGTTCACTTT AGTGGCTTTC	1440
30	ATTTAATATG GCTGTCTGGG AAGAACAGGG TTGCCTAGCC CTGTACAATG TAATTTAAAC	1500
_	TTACAGCATT TTTACTGTGT ATGATATGGT GTCCTCTGTG CCAGTTTTGT ACCTTATAGA	1560
	GGCAGATTGC CTCCGATCGC TGTGGTTCTT ATTATCAAAA TTAAGTTTAC TTGTATACGG	1620
35	AACAACCACA AGAAATTIGA TICTGTAAAG AATCCTCTTT AGCTGTGGCC TGGCAGTATA	1680
	TAAATGGTGC TTTATTTAAC AGAATACCTG TGGAGGAAAT AAAGCACACT TGATGTAAAA	1740
10	ATAATTGTTT TATTTTTATT GACATGACTG ATTGATTGCT ATTCTGTGCA CTTAATTAAA	1800
	CTGATTGTGA TGACTTWWAA AAAAAAAAA AAAAAAAAAA A	1851
15	(2) INFORMATION FOR SEQ ID NO: 63:	
	(i) SEQUENCE CHARACTERISTICS:	
50	(A) LENGTH: 3542 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 63:	
55	TCCAATGCTG ATGAGCGTCT TCGCTGGCAG GCCAGCTCCT TGCCTGGTGA TGACCTTTGC	60
	ACAGAAAATG CCATCATGCT GAAACGATTC AATAGGTATC CGCTGATCAT TGACCCCTCT	120
50	GGACAGGCCA CAGAATTCAT TATGAATGAA TATAAGGWTC GTAAGATCAC ACGGACCAGC	180

	TTCCTGGATG	ACGCCTTCAG	AAAGAACTTA	GAGAGTGCAC	TGAGATTCGG	TAACCCCCTT	240
_5	CTGGTCCAGG	ATGTGGAAAG	CTACGATCCA	GTTTTGAACC	CGGTGCTGAA	CCGTGAAGTG	300
	CCCCGAACAG	GGGGGAGAGT	GCTGATCACT	CTCGGGGACC	AGGACATAGA	CCTGTCGCCA	360
	TCGTTTGTCA	TCTTCCTGTC	CACCCGGGAT	CCAACTGTCG	AGTTCCCACC	AGATCTCTGT	420
10	TCCCGGGTTA	CTTTTGTAAA	CTTCACAGTT	ACCCGTAGCA	GTTTACAAAG	CCAGTGTCTA	480
	AATGAAGTAC	TTAAAGCAGA	AAGACCTGAT	GTGGACGAGA	AACGATCTGA	TCTTCTTAAA	540
15	CTTCAAGGGG	AATTTCAGCT	CCGTTTGCGT	CAGCTGGAAA	AATCICTACT	ACAAGCTCTG	600
	AACGAGGTGA	AAGGCCCAT	TTTGGATGAC	GACACGATCA	TAACCACTCT	GGAGAACCTG	660
	AAGAGAGAGG	CTGCAGAGGT	CACCAGGAAA	GTTGAGGAGA	CGGACATTGT	CATGCAGGAG	720
20	GTGGAGACCG	TGTCCCAGCA	GTACCTCCCG	CTCTCCACCG	CCTGCAGCAG	CATCTACTTC	780
	ACCATGGAGT	CCCTCAAGCA	GATACACTTC	TTGTACCAGT	ACTCCCTCCA	GTTTTTCCTG	840
25	GACATTTATC	ACAACGTCCT	ATACGAGAAC	CCGAACCTGA	AGGGTGTCAC	CGACCACACA	900
	CAGCGCCTGT	CCATTATAAC	AAAGGACCTC	TTCCAGGTGG	CGTTTAACCG	AGTGGCTCGA	960
	GCCATGCTGC	ATCAGGACCA	CATTACCTTT	GCCATGCTGC	TGGCAAGAAT	CAAACTGAAG	1020
30	GGCACCGTGG	GGGAGCCCAC	CTACGATGCA	GAATTCCAGC	ACTICTIGAG	AGGAAATGAG	1080
	ATTGTCCTGA	GTGCTGGCTC	CACCCCCAGG	ATCCAGGGCC	TGACTGTGGA	GCAGGCGGAG	1140
35	GCGCTGGTGA	GGCTGAGCTG	CCTTCCCGCG	TTTAAGGACT	TGATTGCAAA	GGTTCAGGCA	1200
	GACGAGCAAT	TTGGCATCTG	GCTGGACAGC	AGCTCCCCGG	AGCAGACTGT	GCCCTACCTC	1260
	TGGAGTGAAG	AAACACCTGC	AACACCCATT	GGCCAGGCCA	TCCACCGCCT	GCTCCTGATC	1320
40	CAGGCTTTCC	GGCCCGATCG	CCTGTTGGCC	ATGGCCCACA	TGTTTGTTTC	AACAAACCTT	1380
	GGGGAGTCTT	TCATGTCCAT	CATGGAGCAG	CCGCTCGACC	TGACCCACAT	TGTGGSCACA	1440
45	GAGGTGAAGC	CCAACACTCC	TGTCTTAATG	TGCTCTGTGC	CTGGTTATGA	TGCCAGTGGA	1500
	CATGTCGAGG	ACCTTGCAGC	CGAGCAGAAC	ACGCAGATCA	CTTCAATTGC	AATCGGCTCT	1560
	GCAGAAGGCT	TTAACCAAGC	AGATAAGGCA	ATAAACACCG	CTGTAAAGTC	GGGCAGGTGG	1620
50	GTGATGCTGA	AGAATGTGCA	TCTGGCCCCA	GGGTGGCTGA	TGCAGCTGGA	GAAGAAGTTG	1680
	CATTCCCTGC	AGCCGCATGC	CTGCTTCCGA	CTCTTCCTCA	CCATGGAGAT	CAACCCCAAG	1740
55	GTGCCTGTGA	ATCTGCTCCG	TGCGGGCCGC	ATCITTGTGT	TCGAGCCACC	GCCAGGGKTG	1800
<i>J J</i>	AAGGCCAACA	TGCTGAGGAC	GTTCAGCAGC	ATTCCCGTCT	CACGGATATG	CAAGTCTCCC	1860
	AACGAGCGTG	CCCGCTTGTA	СТТССТССТС	GCCTGGTTTC	ATGCGATCAT	CCAAGAACGC	1920
60	TTACGATACG	CACCACTGGG	GTGGTCAAAG	AAGTATGAAT	TTGGAGAGTC	TGACCTGCGG	1980

	TCANYTIGCG	ATACGGIGGA	CACGIGGCIG	GATGACACGG	CCAAGGGCAG	GCAGAACATC	2040
5	TCACCGGATA	AGATCCCGTG	GTCTGCACTA	AAGACCTTAA	TGGCCCAGTC	CATTTATGGC	2100
. •	GGCCCCTCG	ACAACGAGTT	TGACCAGCGT	CTGCTCAACA	CCTTCCTGGA	GCGCCIGITC	2160
	ACAACCAGGA	GTTTCGACAG	TGAGTTTAAG	CTGGCATGCA	AGGTCGACGG	ACATAAAGAC	2220
10	ATTCAAATGC	CAGATGCCAT	GCAGGCGAGA	GGAGTTTGTG	CAGTGGGTGG	AGTTGCTCCC	2280
	CGACACCCAG	ACGCCCTCCT	GCTGGCCT	GCCCAACAAC	GCCGAGAGAG	TCCTCCTTAC	2340
15	CACACAGGGT	GTGGACATGA	TCAGTAAAAT	GCTGAAGATG	CAGATGTTGG	AGGATGAGGA	2400
	CGACCTGGCC	TACGCAGAGA	CTGAGAAGAA	GACGAGGACA	GACTCCACGT	CCGACGGGCG	2460
	CCCTGCCTGG	ATGCGGACAC	TGCACACCAC	CGCGTCCAAC	TGGCTGCACC	TCATCCCCCA	2520
20	GACGCTGAGC	CACCTCAAGC	GCACCGTGGA	GAATATCAAG	GATCCTTTGT	TCAGGTTCTT	2580
	TGAGAGAGAA	GTGAAGATGG	GCGCAAAGCT	GCTTCAGGAC	GTTCGCCAGG	ACCTTGCAGA	2640
25	TGTCGTCCAG	GTGTGCGAAG	GAAAGAAGAA	GCAGACCAAC	TACTTGCGCA	CGCTGATCAA	2700
	CGAGCTAGTG	AAAGGGATCT	TCCCTCCGAG	CTGGTCCCAC	TACACGGTGC	CTGCCGGCAT	2760
	GACCGTCATC	CAGTGGGTGT	CCGACTTCAG	CGAGAGGATC	AAACAGCTGC	AGAACATCTC	2820
30	ACTGGCAGCT	GCATCTGGTG	GCGCCAAGGA	GCTAAAGAAC	ATCCACGTGT	CCTCCTCC	2880
	CCTGTTCGTG	CCTGAGGCGT	ACATCACTGC	CACCAGGCAG	TATGTGGCCC	AGGCCAACAG	2940
35	CTGGTCCCTG	GAGGAGCTCT	GCCTGGAAGT	CAACGTCACC	ACCTCACAGG	GCGCCACCCT	3000
	TGACGCTTGC	AGCTTCGGAG	TCACGGGTTT	GAAACTTCAA	GGGCCACGT	GCAACAACAA	3060
	CAAGCTGTCA	CTGTCCAATG	CCATCTCAAC	CCCCTTCCC	CTGACGCAGC	TGCGCTGGGT	3120
Ю	CAAGCAGACA	AACACCGAGA	AGAAGGCCAG	TGTGGTAACC	TTACCTGTCT	ACCTGAACTT	3180
	CACCCGTGCA	GACCTCATCT	TCACCGTGGA	CTTCGAAATT	GCTACAAAGG	AGGATCCTCG	3240
15	CAGCTTCTAC	GAGCGGGGTG	TCGCAGTCTT	GTGCACAGAG	TAAACTTTTC	TAGCTGCCCC	3300
	TTTCTGTAAT	AGTGAAAGTT	GGTATTTAAC	ATTTATTCAT	ATAAAATTT	TTTGGAAGGT	3360
	CTGAGCTTGT	GAAAAGAAAG	TCCTTCCTCT	GAGGTTGGAG	GAAGCTGAAT	GGAATCTGAC	3420
50	GGTTGGGAGT	GGTGGAAATT	GGAAGGATAC	CAGGAGGTAT	TTGGGAAGGC	CAATGGCGTG	3480
	GCTCCTTTGA	GGAAATAAAA	CACTAAGCAT	GAAAAAAAA	AAAAAACTTA	CAANCCNCAA	3540
55	GG						3542

⁽²⁾ INFORMATION FOR SEQ ID NO: 64:

_5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 883 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 64:	
10	AGGTGATTIT AATGATAGGT GTCATATATA GGACGGATAA TCTGTTTACA TTCTGTTCTT	60
10	CTCGATGCAC TCACAAGCGG GTAACTAGGT GACAAGAAAA CAAAGATCTT ATTCAAAAGA	120
	GGTCTTACAG CAACCCAACG TCTCATCTTC CCATAGTAAA GATGACGGCG CCTTGAGGTA	180
15	AGCTACAGGC AACACCACTT CCGCGTTTCT CTTGCGCCCT GGTCCAAGAT GGCGGATGAA	240
	GCCACGCGAC GTGTTGTGTC TGAGATCCCG GTGCTGAAGA CTAACGCCGG ACCCCGAGAT	300
20	CGTGAGTTGT GGGTGCAGCG ACTGAAGGAG GAATATCAGT CCCTTATCCG GTATGTGGAG	360
20	AACAACAAGA ATGCTGACAA CGATTGGTTC CGACTGGAGT CCAACAAGGA AGGAACTCGG	420
	TGGTTTGGAA AATGCTGGTA TATCCATGAC CTCCTGAAAT ATGAGTTTGA CATCGAGTTT	480
25	GACATTCCTA TCACATATCC TACTACTGCC CCAGAAATTG CAGTTCCTGA GCTGGATGGA	540
	AAGACAGCAA AGATGTACAG GGGTGGCAAA ATATGCCTGA CGGATCATTT CAAACCTTTG	600
30	TGGGGCCAGG AATGTGCCCA AATTTGGACT AGCTCATCTC ATGGCTCTGG GGCTGGGTCC	660
30	ATGGSTGGCA GTGGAAATCC CTGATCTGAT TCAGAAGGGC GTCATCCAAC ACAAAGAGAA	720
	ATGCAACCAA TGAAGAATCA AGCCACTGAG GCAGGGCAGA GGGACCTTTG ATAGGCTACG	780
35	ATACTAWITT CCTGTGCATC ACACTTAACT CATCTAACTG TTCCCCGGAC ANCCTCCACT	840
	CTAGTTGTTA CTAAGTANTG CAGTAGCATT NTGGGGAAGA ACA	883
40		
	(2) INFORMATION FOR SEQ ID NO: 65:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1541 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 65:	
	GGCACGAGGT GGCCTCTACC CTGGGCTCAT CTGGCTACAC AGGGACTCTA AACGCTTCCA	60
55	GATTCCCTGG AAACATGCCA CCCGGCATAG CCCTCAACAA GAAGAGGAAA ATACCATTTT	120
55	TAAGGCCTGG GCTGTAGAGA CAGGGAAGTA CCAGGAAGGG GTGGATGACC CTGACCCAGC	180
	TAAATGGAAG GCCCAGCTGC GCTGTGCTCT CAATAAGAGC AGAGAATTCA ACCTGATGTA	240
60	TGATGGCACC AAGGAGGTGC CCATGAACCC AGTGAAGATA TATCAAGTGT GTGACATCCC	300

	TCAGCCCCAG GGCTCGATCA TTAACCCAGG ATCCACAGGG TCTGCTCCCT GGGATGAGAA	360
_5	GGATAATGAT GTGGATGAAG AAGATGAGGA AGATGAGCTG GATCAGTCGC AGCACCATGT	420
_0	TCCCATCCAG GACACCTTCC CCTTCCTGAA CATCAATGGT TCTCCCATGG CGCCAGCCAG	480
	TGTGGGCAAT TGCAGTGTGG GCAACTGCAG CCCGGAGGCA GTGTGGCCCA AAACTGAACC	540
10	CCTGGAGATG GAAGTACCCC AGGCACCTAT ACAGCCCTTC TATAGCTCTC CAGAACTGTG	600
	GATCAGCTCT CTCCCAATGA CTGACCTGGA CATCAAGTTT CAGTACCGTG GGAAGGAGTA	660
15	COGGCAGACC ATGACCOTGA GCAACCCTCA GGGCTGCCGA CTCTTCTATG GGGACCTGGG	720
••	TCCCATGCCT GACCAGGAGG AGCTCTTTGG TCCCGTCAGN CTGGAGCAGG TCAAATTCCC	780
	AGGICCTGAG CATATTACCA ATGAGAAGCA GAAGCTGTTC ACTAGCAAGC TGCTGGACGT	840
20	CATGGACAGA GGACTGATCC TGGAGGTCAG CGGTCATGCC ATTTATGCCA TCAGGCTGTG	900
	CCAGTGCAAG GTGTACTGGT CTGGGCCATG TGCCCCATCA CTTGTTGCTC CCAACCTGAT	960
25	TGAGAGACAA AAGAAGGTCA AGCTATTITG TCTGGAAACA TTCCTTAGCG ATCTCATTGC	1020
	CCACCAGAAA GGACAGATAG AGAAGCAGCC ACCGTTTGAG ATCTACTTAT GCTTTGGGGA	1080
	AGAATGGCCA GATGGGAAAC CATTGGAAAG GAAACTCATC TTGGTTCAGG TCATTCCAGT	1140
30	AGIGGCTCGG ATGATCTACG AGATGTTTTC TGGTGATTTC ACACGATCCT TTGATAGTGG	1200
	CAGTGTCCGC CTGCAGATCT CAACCCCAGA CATCAAGGAT AACATCGTTG CTCAGCTGAA	1260
35	GCAGCTGTAC CGCATCCTTC AAACCCAGGA GAGCTGGCAG CCCATGCAGC CCACCCCCAG	1320
	CATGCAACTG CCCCCTGCCC TGCCTCCCCA GTAATTGTGA ATGCCATCTT CTTCCTTCTC	1380
	TTTTTTATAA TATTGTACAT ATGGATTTTT TTATTGTTTA GATTTAACCA GCTTTTAAAT	1440
10	CTCTGTTTTC TGTGACAGTG TTAGAAGTTT GTGATTCTCC AAATATGCCT AGATTTAAAG	1500
	СТСАТТТААТ ТТАТССАААА ААААААААА АААААААА	1541
15		
	(2) INFORMATION FOR SEQ ID NO: 66:	
	(i) SEQUENCE CHARACTERISTICS:	
50	(A) LENGTH: 732 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 66:	
. •	AGAAAATGAA TGTTAGAAGG TGCCTGCCGA GGCGGGACAG AGTGTTTGCT CGCGCTGGAG	60
	AAGGCTCTGC TCAGCCCTGA GAGTCCCTTC CTGCCCCACC GATACTGGCA CTTTAAAAAG	
50	**************************************	120

	GAAGCTGACC GCACAGTGTC CAGACGAATT GGCCCCCAGA AGATGGGGAG TTCTGTCCTG	180
	CCCTTCTGTG TCTGCGTGAC CTCACCCAGC CTAGGAGGGA GGTGCATTCA GGGTAGATTT	240
_5	GCCTCTCATT CAAAGTTCTG GGGCTTTGGG CGGAAAACAG CCAGCTTTGG CGCTGTTGGG	300
	GAGACTCCTC CAGACCAGGA ACCCCAGAAG GAGACAGAGC CTGCCACATC CTCCCACGCC	360
10	AGGCCCTGGG CCAGGGTGAT TGGACTGAGA ATTTGGCCAC AACCAAATTG ATGCTGGCTG	420
10	GAACCAGAGG CCAGAAAGCC TGGCCTTGTC CCCATGTGGG AGCCCTGTCC TCAGCCCTCT	480
	TGTCCCCTTG AGCTCAGTGA ATTCCCACCA GGTGCCCACA GCTCCTGGAC TTCAAATTCT	540
15	ATATATTGAG AGAGTTGGAG AGTATATCAG AGATATTTTT GGAAAGGAGT TGGTCTATGC	600
	AATGTCAGTT TGGAATCTTC TTGAAAGTTT AATGTTTTTA TTAGGAGATT TAAAGAAAAT	660
20	AAAGGTCTAC AATATCAAAA AAAAAAAAA AAAAAAAAA AAAAAAAA	720
20	AAAAAAAA AA	732
25	(2) INFORMATION FOR SEO ID NO: 67:	
	(i) SEQUENCE CHARACTERISTICS:	
30	(A) LENGTH: 629 base pairs	
30	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 67:	
	TTAAGGAATT CGGCMCGATC CCGGCAAGTA ACATGACTAA AAAGAAGCGG GAGAATCTGG	60
	GCGTCGCTCT AGAGATCGAT GGGCTAGAGG AGAAGCTGTC CCAGTGTCGG AGAGACCTGC	120
40	AGGCCGTGAA CTCCAGACTC CACAGCCGGG AGCTGAGCCC AGAGGCCCAGG AGGTCCCTGG	180
	AGAAGGAGAA AAACAGCCTA ATGAACAAAG CCTCCAACTA CGAGAAGGAA CTGAAGTTTC	240
45	TTCGGCAAGA GAACCGGAAG AACATGCTGC TCTCTGTGGC CATCTTTATC CTCCTGACGC	300
	TCGTCTATGC CTACTGGACC ATGTGAGCCT GGCACTTCCC CACAACCAGC ACAGGCTTCC	360
	ACTTGGCCCC TTGGTCAGGA TCAAGCAGGC ACTTCAAGCC TCAATAGGAC CAAGGTGCTG	420
50	GGGTGTTCCC CTCCCAACCT AGTGTTCAAG CATGGCTTCC TGGCGGCCCA GGCCTTGCCT	480
	CCCTGGCCTG CTGGGGGGTT CCGGGTCTCC AGAAGGACAT GGTGCTGGTC CCTCCCTTAG	540
55	CCCAAGGGAG AGGCAATAAA GAACACAAAG CTGAAAAAAA AAAAAAAAAA	600

GGGGCCCGT ACCCAATCGC CCTNTCGTG

291

(2) INFORMATION FOR SEQ ID NO: 68:

-5

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1751 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 68:

10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 68:	
10	CTGCTAGCCG GCCGGCGCAG GCTGCCGAGC GGGTGAGCGC GCAGGCCAGG CCAAAGCCCT	60
	GGTACCCGCG CGGTGCGGGC CTCAGTCTGC GGCCATGGGG GCGTCCGCGC GGCTGCTGCG	120
15	AGCGGTGATC ATGGGGGCCC CGGGCTCGGG CAAGGGCACC GTGTCGTCGC GCATCACTAC	180
	ACACTTCGAG CTGAAGCACC TCTCCAGCGG GGACCTGCTC CGGGACAACA TGCTGCGGGG	240
20	CACAGAAATT GGCGTGTTAG CCAAGGCTTT CATTGACCAA GGGAAACTCA TCCCAGATGA	300
20	TGTCATGACT COGCTGGCCC TTCATGAGCT GAAAAATCTC ACCCAGTATA GCTGGCTGTT	360
	GGATGGTTTT CCAAGGACAC TTCCACAGGC AGAAGCCCTA GATAGAGCTT ATCAGATCGA	420
25	CACAGTGATT AACCTGAATG TGCCCTTTGA GGTCATTAAA CAACGCCTTA CTGCTCGCTG	480
	GATTCATCCC GCCAGTGGCC GAGTCTATAA CATTGAATTC AACCCTCCCA AAACTGTGGG	540
30	CATTGATGAC CTGACTGGGG AGCCTCTCAT TCAGCGTGAG GATGATAAAC CAGAGACGGT	600
30	TATCAAGAGA CTAAAGGCTT ATGAAGACCA AACAAAGCCA GTCCTGGAAT ATTACCAGAA	660
	AAAAGGGGTG CTGGAAACAT TCTCCGGAAC AGAAACCAAC AAGATTTGGC CCTATGTATA	720
35	TGCTTTCCTA CAAACTAAAG TTCCACAAAG AAGCCAGAAA GCTTCAGTTA CTCCATGAGG	780
	AGAAATGTGT GTAACTATTA ATAGTAAGAT GGGCAAACCT CCTAGTCCTT GCATTTAGAA	840
40	GCTGCTTTTC CTAAGACTTC TAGTATGTAT GAATTCTTTG AAAATTATAT TACTTTTATT	900
40	TCTACTGATT TTATTTTGGA TACTAAGGAT GTGCCAAATG ATTCGGATAC TAAGATGCAT	960
	CGTTTGAAAT CATCTAGTGT GTTGTATGCA GTTATCCTCA AAAACATCAG CGATGTCTGA	1020
45	ACCTITAAAA CATCTGTTAG AGCAAAATTA AAAGAGCATT TGGTAGTAAT CTAACTTTTT	1080
	GTTCAGTTAA TAAGTGGTTG ATAAAGTTTC CATATTTTTC TGGAAAAGTT AAAAAAAGTT	1140
50	ACATGTCATT TGGAGAAAAT ACGTAATCAG AAATTTGTGC ATAGATTGAT GCCAAAAAAG	1200
30	ACATTTCCAG CATTGTGGAA CATGGTGAGA CACTATATAA AATTCCAGAA AGAAAGCAAC	1260
	TGGATTTACA GATTTATTGT GAGACACAAA TTCACTGCTG CCTTTACACT AAGAAATGTA	1320
55	TATGTTAACC ATATATGCTG TATTTATTTT GTCGTTAAGC ATACTTTCAG TTTACTCAGA	1380
	ATTITICAATT TGCTATAAAG ATGTATCAAT TAGCATATAG AAAAATATTA CTTTAAGATG	1440
60	ACTIGITICC TITGAAAATA CCTGTGTACT GAGGGTTATG ATTTGTGTCA AAAATTGACA	1500

	TARGIGCTTT TACARGCACC MARGITGAAT GAATTTCAA CAMARIGIAA TTAARGICTA	1360
	TGTTTTCAGT TATGACTCAG GTTAAGAAAT GTGTTTTAGG ATCTACTTGC TGGTTTTTCT	1620
-5	TTTTGATCCA AATGTGTGAT CTGCCCTGAT AAATAACAAG TTATNGTACC ATCTCCCCCG	1680
	CCAATAAAAA AAAAAAAAAA AAAAAAAAAC TCGAGGGGG GCCCGGTACC CAATTCTCCG	1740
10	NAATAGGNAG T	1751
15	(2) INFORMATION FOR SEQ ID NO: 69:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 508 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 69:	
25	GGCACGAGAT TATGTATTAA AATGTTTTTG AATTGTGAAA TATTAGAATA TTGTTACTAT	60
25	TTGACCCAAC TCAAAATCTC CATGGGAAAA TACCTGTCGA TACCCACAGT ATTGTTGAAA	120
	ATAATCAGAT GCAGTATCAC AGCTGTGTCA GACTCTAGTA CCAGTTGGGC AATCAAGGCA	180
30	CAGCTAAAAA TTGAAAACAA AGATCTGGAC AACAAAACAG CCAAAGGTGG GGGTCAAGAA	240
	GCTCTGACGI GTACCTAGCT GTAGAATGCT ATGCACACGT GCCAGGTGTA GTGTGCATAT	300
35	CCAGGAAAAA CTGCAGAGAG CCCCAGTCTT CACCTCTGGT TGACCATGAG CTCTGTGTAA	360
33	GCAGGAAGTG AAGGCTAAGG CAGATTTAAG CTCTGAAAGC ATTCCACAAC ATACACACAA	420
	ATCGTGCAAA GCATTAAGGA AATCTTGTTA CTGCTAAGTG TTGCTGACCC AGGAACAACT	480
40	CCTACTCAGC TGGACTTAAA AATAAAAA	508
45	(2) INFORMATION FOR SEQ ID NO: 70:	
50	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 245 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 70:	
55	TACATAGAGC AAAGAGAAAT TTCCAGAATT TCTARAATTC TGGAAAGAGA ATTTTCCTGA	60
	GATTGCAGAT TTGCTTGTGT CCTCAGGTGA TGATGAGGGC TGTTTTCCCC TGTTGTCCTT	120
60	TCCTCACACT CATGCTTCCT CTCCTAGAGT GTCTGGTTGG CATGATCATG TGCTACCTAG	180

	GCATTTCTTT CACTGATACA AGGAAAACTG CAGGGTTAAA AAAAAAAAA AAAAAAAAA	240
	NCNCG	245
. 5		
	(2) INFORMATION FOR SEQ ID NO: 71:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 361 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
15	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 71:	
	ATGTTCCTCA TGAGGATGCA CTTGTGCTTC TGCAAGTATT GCTGCAGCTT CATAGTGACT	60
20	CCCACCAGCA CCAGCAATAC AGCTAGCTAC CTGTGGCCTT GGATCTCAGC CAGCATGGCT	120
	GGGAGAGGGA GCAGCTGGGC ATGTACCCTA AATGCTGTTA CCAGGGAAGG ACTCCCAGAG	180
25	TGAAGACAAG TAGGGACTTC CTGCAGAGGT GGTACATGTG CTCTCTGTAT CCATACTTTT	240
	TTTTTTTTT TTTTGAGATA GAGTTTCACC CTTGTTGCCC TGGCTGGAGT GCAATGGTGC	300
	GATCTCAGCT CACTGCAACC TCTCTGCCTC CCGGGTTCAA GTGATTCTCC TGCCTCAGCC	360
30	т	361
35	(2) ANTONYATION FOR CREATE AS TO	
))	(2) INFORMATION FOR SEQ ID NO: 72:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 713 base pairs	
40	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 72:	
45	AGGATCACAC AATAGAGAAC ACTGTAGTAA CATTTCGGTC TGCTCACAAG ACCCAGAACA	60
	TIGATCAGIT TITGITGTIG GITTATTATT TITCIGITAA AAAATIGIGA AAAGIITGIT	120
- 0	TTAGCTAGAT GATATTTTAA TAGCTGCGAG TGCTTTGGAA CTATAAAGAT GTCACTACTT	180
50	AACACACATA CCTTATGTTT TGTTTTGTTT TGTTTTACAC TCAGTATAAA TCAGGAGAAG	240
	TTAGCCAACC ATCTAGCATT TAGAATCCTC TTTTTTATTG TCTTCTAAGG ATATGGATGT	300
55	TCCCATAACA GCAACAAAAC AGCAACAAAA ACATTTCATA AATATCACTT GATAGACTGT	360
		420
	ASSOCIOS TIMASTITOT STOCKAMIN TITAGIGIGI ATATATATA ATATATATA	
	AAGCACCTGC TTAACTTIGT GTCCCAAATA TTTAGTGTGT ATATATATAT ATATATATAC ACACACACA ACATATATAT TCAACAAATA AAGCAAAATA TAACATGCAT TTCACATTTT	480

	GTCTTTCCCT GTTACGATTT TAATAGCAGA ACTGTATGAC AAGTTTAGGT GATCCTAGCA	540
	TATGTTAAAT TCAAATTAAT GTAAAACAGA TTAACAACAA CAAAGAAACT GTCTATTTGA	600
-5	GTGAAGTCAT GCTTTCTATT ATAATAACTT GGCTTCGGTT ATCCATCAAA TGCACACTTA	660
	TACTGTTATC TGATTGTTTA TAATAAAGAA TACTGTACTT ATAAAAAAAA AAA	713
10		
10		
	(2) INFORMATION FOR SEQ ID NO: 73:	
15	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 862 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 73:	
	GAAAGTCAGA GCTGTCCAAT CCCTCAGCAC CTTTTAGATT TGCTCCAAAT TAGAAACGTG	60
25	GGGACTATGT GTTCTGGGCA ATCACAGGTC TGGAAAATGG CTCTGCAGGC TCTTGATAGT	120
	GAGACAGTGG TCATCTTACC AGACATGCAT CTGATTTTAA GCCTCAGGCT AATCCACAAT	180
	GCTCGGCCAT GCCTATGATT AACAAACAAA AGCAAAATCT GCTTTTATAG TITAGGAAAC	240
30	CTGGATAGAA CAGTATTTTT CAGCATTCTT GGATAAAGCA GTTCTGCATT TTTAAATTGG	300
	GACTGCAGAA GTGACTGTCT ATAGITGTGA AATACAAAAA ATGGTATGTT TGATCAGAAA	360
35	AGGAAGCCCG TGCCTGGCAC TTGGAAAGAT ACTGAGCATC ATAACCCTAA TGAGAAAATG	420
55	TAGGCTCTGT GAATGTTAAC TACAAATCAG GTTAGGAAAG CATATGACAC CCTTTGTCAA	480
	ACTAGCCTC ACTAGGAGGA CCTGTGCTCA TAGAAGAATA TGCTTTAAAA GTATCAATTT	540
40	TCCACAGTCG ATGATGGAGA AAAGTTCATT TGCACCAGAA TGCTGATAGT CACAATACAC	600
	AGCCTGACAT ATATAACAAT ACAGTTTTCT GTAAACAGAA GTTCTTCCTC TICCAATTCA	660
45	GGAGTCAGTC AGAGCATAAA TATTGCATGT TTCACTTTAG AAACTGATTC ATTTTAGAAA	720
73	GCAGATCTGG ATTATTTTGC AGGGTAGAAA TGAAGGCTAT TTCTGGCATT CTTGCTCAAA	780
	AAGTCAATAT ATGTACATTA AGTATAAAAA AGGGTCTCTT TCACCTCTTT TGTTTCGTAG	840
50	CATTGGCTAC ATAACTCGTG CC	862

55 (2) INFORMATION FOR SEQ ID NO: 74:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 4602 base pairs

(B) TYPE: nucleic acid

60 (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 74:

- 5	GCGAGGGGGC	GKGGGGAGCA	GCGCCGARGC	CCCCCCTCC	GCCTCCGCCG	CCTAGGACTA	60
	GGGGTGGGG	GACGGACAAG	CCCCGATGCC	GGGGGAKACG	GAAGAGCCGA	GACCCCCGGA	120
10	GCAGCAGGAC	CAGGAAGGGG	GAGAGGCGGC	CAAGGCGGCT	CCGGAGGACC	CGCAACAACG	180
10	GCCCCTGAG	GCGGTCGCGG	CCCCCCCCCC	AGGGACCACT	AGCAGCCGCG	TGCTGAGGGG	240
	AGGTCGGGAC	CGAGGCCGGG	CCGCTGCGRC	CGCCGCGCMG	CAGCTGTGTC	CCGCCGGAGA	300
15	AGGCCGAGTA	TCCCCGCCGG	CGAGGAGCAG	CCCCAGCGCC	AGGCCTCCCG	ACCTCCCCGG	360
	GCAGCAGCCC	AGGCCGCGAA	GICCCCGICT	CCAGTTCAGG	GCAAGAAGAG	TCCGCGACTC	420
20	CTATGCATAG	AAAAAGTAAC	AACTGATAAA	GATCCCAAGG	AAGAAAAAGA	GGAAGAAGAC	480
20	GATTCTGCCC	TCCCTCAGGA	AGTTTCCATT	GCTGCATCTA	GACCTAGCCG	GGGCTGGCGT	540
	AGTAGTAGGA	CATCTGTTTC	TCGCCATCGT	GATACAGAGA	ACACCCGAAG	CTCTCGGTCC	600
25	AAGACCGGTT	CATTGCAGCT	CATTTGCAAG	TCAGAACCAA	ATACAGACCA	ACTTGATTAT	660
	GATGTTGGAG	AAGAGCATCA	GTCTCCAGGT	GGCATTAGTA	GTGAAGAGGA	AGAGGAGGAG	720
30	GAAGAAGAGA	TGTTAATCAG	TGAAGAGGAG	ATACCATTCA	AAGATGATCC	AAGAGATGAG	780
30	ACCTACAAAC	CCCACTTAGA	AAGGGAAACC	CCAAAGCCAC	GGAGAAAATC	AGGGAAGGTA	840
	AAAGAAGAGA	AGGAGAAGAA	GGAAATTAAA	GTGGAAGTAG	AGGTGGAGGT	GAAAGAAGAG	900
35	GAGAATGAAA	TTAGAGAGGA	TGAGGAACCT	CCAAGGAAGA	GAGGAAGAAG	ACGAAAAGAT	960
	GACAAAAGTC	CACGTTTACC	CAAAAGGAGA	AAAAAGCCTC	CAATCCAGTA	TGTCCGTTGT	1020
40	GAGATGGAAG	GATGTGGAAC	TGTCCTTGCC	CATCCTCGCT	ATTTGCAGCA	CCACATTAAA	1080
40	TACCAGCATT	TGCTGAAGAA	GAAATATGTA	TGTCCCCATC	CCTCCTGTGG	ACGACTCTTC	1140
	AGGCTTCAGA	AGCAACTTCT	GCGACATGCC	АААСАТСАТА	CAGATCAAAG	GGATTATATC	1200
45	TGTGAATATT	GTGCTCGGGC	CTTCAAGAGT	TCCCACAATC	TGGCAGTGCA	CCGGATGATT	1260
	CACACTGGCG	AGAAGCATTA	CAATGTGAGA	TCTGTGGATT	TACTTGTCGA	CAAAAGGCAT	1320
50	CTCTTAATTG	GCACATGAAG	AAACATGATG	CAGACTCCTT	CTACCAGTTT	TCTTGCAATA	1380
50	TCTGTGGCAA	AAAATTTGAG	AAGAAGGACA	GCGTAGTGGC	ACACAAGGCA	AAAAGCCACC	1440
	CTGAGGTGCT	GATTGCAGAA	GCTCTGGCTG	CCAATGCAGG	CGCCCTCATC	ACCAGCACAG	1500
55	ATATCTTGGG	CACTAACCCA	GAGTCCCTGA	CGCAGCCTTC	AGATGGTCAG	GGTCTTCCTC	1560
	TTCTTCCTGA	GCCCTTGGGA	AACTCAACCT	CTGGAGAGTG	CCTACTGTTA	GAAGCTGAAG	1620
60	GGATGTCAAA	GTCATACTGC	AGTGGGACGG	AACGGGTGAG	CCTGATGGCT	GATGGGAAGA	1680
55							

	TCTTTGTGGG	AAGCGGCAGC	AGTGGAGGCA	CTGAAGGGCT	GGTTATGAAC	TCAGATATAC	1740
	TCGGTGCTAC	CACAGAGGTT	CTGATTGAAG	ATTCAGACTC	TGCCGGACCT	TAGTGGACAG	1800
- 5	GAAGACTTGG	GGCATGGGAC	AGCTCAGACT	TIGTATITAA	AAGTTAAAAA	GGACAAAAAA	1860
	AAAATCTAAA	GCATTTAAAA	TCTAGTGAAA	TAACTGAAGG	GCCTGCTCTT	TCCATTGTGG	1920
10	ATCACAGCAC	ACACATACAT	ACACCCTCCA	CCTCCCCATC	CCCTGTTCTC	CCTCTCTTGC	1980
10	TCCCCTTATA	AAATTGATGT	TGTCTTTACC	AGAAAGGTAG	ACAAAAAAGA	AGCAGCAGCA	2040
	GCTCTTAAAG	TGAGGGTTAT	TCTCATACTC	GGTTCCAGCC	ATCAGCAGAC	TTCCTGCTCA	2100
15	TCGGCAGATC	CCCCTTTCCA	ACCTGTAACT	CTGATGTGCT	CTGGATCAGC	TTTTAACTTT	2160
	TAATCATATA	TTACTGTCTT	CTAAATCCCT	тетестесте	TACTGCTGCC	CTATGGTTCT	2220
20	GCTCCTACC	CCCTGCGGCA	CACTTATCTT	CAAATACCAT	AGAATTCTAA	TCTCTGAAAT	2280
20	CATAGCTCTC	CAGTGGCTTT	TAAAGAAAGC	TGGTCCTCAG	CACTAACAAA	ATCACTACAA	2340
	TAGCCTAGTG	CTTTTTTCGA	AGCCTTTTTA	GGGAAGAATG	TTAGGTTCAT	GGTAACTAGT	2400
25	ATGCTCTTTG	AGATTTTTAC	AGTGTTGAAA	CTTAAGAATT	TTGAGAGGGT	GAGGAGGGTT	2460
	GTTCAGAATC	TAAATTACAG	ATAGATGATT	GTTTCTTGTG	AATTTGTTTC	TTTTCCTTTT	2520
30	TTTTTGTCCC	TACCATTTCC	TTACATTTCC	CTTGGGGCCC	ATCTCTGGCT	CCTTGCTTTT	2580
50	TGTTTCTTGC	TITGCTTTAT	CAGTTCATTC	CAGCTCCCTG	TTAGTGAAGG	ACACTGCTGT	2640
	TAGTGAAGGA	ACAAAGTCTA	TGAGTCCTAA	AATTTTAAGT	CAAAGAAAAC	TGCTCTGTTT	2700
35	CCCCTTTAGT	AACACTTCTG	AAGAGGAAAA	ACTTCAATAG	CCAAAGTTAA	TAATCCTATA	2760
	TAATAATTGC	TTTGGCTTTC	ACCTAAAATT	CIGGGCATCA	CAATTTCCTT	GGGATAGAGG	2820
40	TTGTGTTGGG	GAATAGATTG	CTTATTGCTG	TTCACTGGAG	AGAAAAGGTA	GTGTTTTTGT	2880
	ACAAGGTCAT	ACCGCCAGAA	GCCCCAAATC	CTATTTTGGC	TCATCTTCAG	GTAAAGAGTA	2940
	ATTCCTATCC	TGTGTGCCTC	AGAAGCTAGA	ATCGAAGGCT	TACCCTATTC	ATTGTTTATT	3000
45	GTCAGAAATG	CATGATGGCT	CTTGGAAAGA	ATGACGTTTT	GCTGGAAAAA	AAAAAAARAA	3060
	CMGTTTGTGT	TTCACAAACA	TGGCTTATCA	ATTTTTCAA	AGAATTCTTT	TTTCCCAAAA	3120
50	AGAGGAGTAA	CAAAATGTCA	TTTCTGAAAG	AGGCTTACTT	TATACCAACT	AGTGTCAGCA	3180
30	TTTGGGATGC	CAGGGAACAG	AGAGTGAGAC	ACCTACAATC	ACCAGTCTCA	AATGCGCTAT	3240
	TGTTTCTTTT	CAGAGTGTTG	CAGATTTGCC	ATTTCTCCAT	AATATGGGGA	TAGAAAATGG	3300
55	AATAAAGATA	GAAGGGATGT	AGAATATGCT	TTCCTGCCAA	CATGGTTTGG	AGTCGACTTT	3360
	GGTATATTGA	CTAGATTTGA	AAATACAAGA	TTGATTAGAT	GAATCTACAA	AAAAGTTGTC	3420
60	CTCCTCTCAG	GTCCCTTTTA	CACTITITGA	CTAACTAGCA	TCTATATTCC	ACACTTAGCT	3480

	THITIGICAC ACITATCCIT IGICICCGTA AATTICATIT GCAGTGGITA GTCATCAGAT	3540
	ATTTTAGCCA CCTACACAAA AGCAAACTGC ATTTTTAAAA ATCTTTCTGA GATGGGAGAA	3600
-5	AATGTATTCT CCTTTCCTAT ACCGCTCTCC CAACAAAAA ACAACTAGTT AGTTCTACTA	3660
	ATTAGAAACT TGCTGTACTT TTTCTTTTCT TTTAGGGGTC AAGGACCCTC TTTATAGCTA	3720
10	CCATTIGCCT ACAATAAATT ATIGCAGCAG TIIGCAATAC TAAAATATIT TIITATAGACT	3780
10	TTATATTTTT CCTTTTGATA AAGGGATGCT GCATAGTAGA GTTGGTGTAA TTAAACTATC	3840
	TCAGCCGTTT CCCTGCTTTC CCTTCTGCTC CATATGCCTC ATTGTCCTTC CAGGGAGCTC	3900
15	TTTTAATCTT AAAGTTCTAC ATTTCATGCT CTTAGTCAAA TTCTGTTACC TTTTTAATAA	3960
	CTCTTCCCAC TGCATATTTC CATCTTGAAT TGGTGGTTCT AAATTCTGAA ACTGTAGTTG	4020
20	AGATACAGCT ATTTAATATT TCTGGGAGAT GTGCATCCCT CTTCTTTGTG GTTGCCCAAG	4080
20	GTTGTTTTGC GTAACTGAGA CTCCTTGATA TGCTTCAGAG AATTTAGGCA AACACTGGCC	4140
	ATGCCCGTGG GAGTACTGGG AGTAAAATAA AAATATCGAG GTATAGACTA GCATCCACAT	4200
25	AGAGCACTTG AACCTCCTTT GTACCTGTTT GGGGAAAAAG TATAATGAGT GTACTACCAA	4260
	TCTAACTAAG ATTATTATAG TCTGGTTGTT TGAAATACCA TTTTTTTCTC CTTTTGTGTT	4320
30	TTTCCCACTT TCCAATGTAC TCAAGAAAAT TGAACAAATG TAATGGATCA ATTTAAAATA	4380
50	TTTTATTTCT TAAAAGCCTT TTTTGCCTGT TGTAATGTGC AGGACCCTTC TCCTTTCATG	4440
	GGAGAGACAG GTAGTTACCT GAATATAGGT TGAAAAGGTT ATGTAAAAAG AAATTATAAT	4500
35	AAAAGGGATA CTTTGCTTTT CAAATCTTTG TTTTCTCTTA TTCTAGGTAA GGCATATTAA	4560
	AAATAAATAT GTAAAGAAGA AAAATAAAAG TTGTCTTCAT GG	4602
40		
40	(2) INFORMATION FOR SEQ ID NO: 75:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1255 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 75:	
	CGCGCCCCGG GCCGGCGGT TTCTCTAACA AATAAACAGA ACCCGCACTG CCCAGGCGAG	60
55	CGTTGCCACT TTCAAAGTGG TCCCCTGGGG GAGCTCAGCC TCATCCTGAT GATGCTGCCA	120
JJ	AGGCGCACIT TITATTITA TITTATTITT ATTITTITIT TAGCATCCIT TICGGGCTIC	180
	ACTOTOAGAG COAGTTTTTA AGGGACACOA GAGOOGGAGC CTGCTCTGAT TOTATGGCTT	240
60	CETTETTACT ATAGGACTIA THEORY TO A TO	300

	GCCAAAAGAT ATTTGACCGT TTCCAAAATT CAGATTCTGC CTCTGCGGAT AAATATTTGC	360
.5	CACGAATGAG TAACTCCTGT CACCACTCTG AAGGTCCAGA CAGAAGGTTT TGACACATTC	420
	TTAGCACTGA ACTCCTCTGT GATCTAGGAT GATCTGTTCC CCCTCTGGAT GAACATCCTC	480
	TGATGATCAA GGCTCCCAGC AGGCTACTTT GAAGGGAACA ATCAGATGCA AAAGCTCTTG	540
10	GGTGTTTATT TAAAATACTA GTGTCACTTT CTGAGTACCC GCCGCTTCAC AGGCTGAGTC	600
	CAGGCCTGTG TGCTTTGTAG AGCCAGCTGC TTGCTCACAG CCACATTTCC ATTTGCATCA	660
15	TTACTGCCTT CACCTGCATA GTCACTCTTT TGATGCTGGG GAACCAAAAT GGTGATGATA	720
13	TATAGACTTT ATGTATAGCC ACAGTTCATC CCCAACCCTA GTCTTCGAAA TGTTAATATT	780
	TGATAAATCT AGAAAATGCA TTCATACAAT TACAGAATTC AAATATTGCA AAAGGATGTG	840
20	TGTCTTTCTC CCCGAGCTCC CCTGTTCCCC TTCATTGAAA ACCACCACGG TGCCATCTCT	900
	TGTGTATGCA GGGCTATGCA CCTGCAGGCA CGTGTGTATG CACTCCCCGC TTGTGTTTAC	960
25	ACAAGCTGTG GGGTGTTACG CATGCCTGCT TTTTTCACTT AATAATACAG CTTGGAGAGA	1020
23	TITITGTATC ACATTATAAA TCCCACTCGC TCTTTTTGAT GGCCACATAA TAACTACTGC	1080
	ATAATATGGA TACGCCTTAT TIGATTTAAC TAGTICCCTA ATGATGGACT TITAAGTIGT	1140
30	TTCCTTTTTT TTTCTTTTTT GCTACTGCAA ACGATGCTAT AATAAATGTC CTTATCAAAA	1200
	AAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAA	1255
35		
33	(2) INFORMATION FOR SEC. IN NO. 36	
	(2) INFORMATION FOR SEQ ID NO: 76:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 475 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
15	(D) TOPOLOGY: linear	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 76:	
	GGCACGAGAG AAATGTTTGA TTCTCTTTCC TATTTTAAGG GATCTTCTCT CTTGTTGATG	60
50	TIGAAAACTT ACCTTAGIGA AGATGIGITT CAACATGCIG TIGICCTITA CCTGCATAAT	120
	CACAGCTATG CATCTATTCA AAGTGATGAT CTGTGGGATA GTTTTAATGA GGTCACAAAC	180
	CAAACACTAG ATGTAAAGAG AATGATGAAA ACCTGGACCC TGCAGAAAGG ATTTCCTTTA	240
55	GTGACTGTTC AAAAGAAAGG AAAGGAACTT TTTATACAAC AAGAGAGATT CTTTTTAAAT	300
	ATGAAGCCTG AAATTCAGCC TTCAGATACA AGGTACATGC CCTCTTTCTT TTCATGCCAT	360
60	CTCTTTTGCA CTCTCAGGTG GAAATATTTT GAAGTGTTTT ATAATCATAA GTTCTTGTGA	420

	AACCTAACAA GATTATCCCT TCCTAAGAAT ACTTAACCTT CCTACCAAAT TAAAA	475
_5	(2) INFORMATION FOR SEQ ID NO: 77:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 465 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	·
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 77:	
••	TTCTCTCTGC TCTTCGACTG CACCGCACTC GCGCGTGACC CTGACTCCCC CTAGTCAGCT	60
	CAGCGGTGCT GCCATGGCGT GGCGGCGGCG CGAACCRGCG TCGGGGCTCG CGGCGTGTTG	120
20	GCTCTGGCGT TGCTCGCCCT GGCCCTGTGC GTGCCCGGGG CCCGGGGGCCG GGCTCTCGAG	180
	TGGTTCTCGG CCGTGGTAAA CATCGAGTAC GTGGACCCGC AGACCAACCT GACGGTGTGG	240
25	AGCGTCTCGG AGAGTGGCCG CTTCGGCGAC AGCTCGCCCA AGGAGGGCGC GCATGGCCTG	300
23	GTGGGCGTCC CGTGGGCGCC CGGCGGAGAM CTCGARGGCT KCGCGCCCGA CACGCGCTTC	360
	TTCGTGCCCG AGCCCGGCGG CCGAGGGGCCC GCGCCCTGGG TCGCCCTGGT GGTCGTGGGG	420
30	GCTGCACCTT TCAAGGACAA AGTGCTGGTG GCGGCGCNGA ANGAA	465
25		
35	(2) INFORMATION FOR SEQ ID NO: 78:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1907 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 78:	
45		
73	ACATGCAGCC CAACTACAGA TTCTTATGGA ATTCCTCAAG GTTGCAAGAA GAAATAAGAG	60
	AGAGCAACTG GAACAGATCC AGAAGGAGCT AAGTGTTTTG GAAGAGGATA TTAAGAGAGT	120
50	GGAAGAAATG AGTGGCTTAT ACTCTCCTGT CAGTGAGGAT AGCACAGTGC CTCAATTTGA	180
	AGCTCCTTCT CCATCACACA GTAGTATTAT TGATTCCACA GAATACAGCC AACCTCCAGG	240
	TTTCAGTGGC AGTTCTCAGA CAAAGAAACA GCCTTGGTAT AATAGCACGT TAGCATCAAG	300
55	ACGAAAACGA CTTACTGCTC ATTTTGAAGA CTTGGAGCAG TGTTACTTTT CTACAAGGAT	360
	GTCTCGTATC TCAGATGACA GTCGAACTGC AAGCCAGTTG GATGAATTTC AGGAATGCTT	420
60	GTCCAAGTIT ACTCGATATA ATTCAGTACG ACCTTTAGCC ACATTGTCAT ATGCTAGTGA	480

	TCTCTATAAT	GGTTCCAGTA	TAGTCTCTAG	TATTGAATTT	GACCGGGATT	GTGACTATTT	540
	TGCGATTGCT	GGAGTTACAA	AGAAGATTAA	AGTCTATGAA	TATGACACTG	TCATCCAGGA	600
_5	TGCAGTGGAT	ATTCATTACC	CTGAGAATGA	AATGACCTGC	AATTCGAAAA	TCAGCTGTAT	660
	CAGTTGGAGT	AGTTACCATA	AGAACCTGTT	AGCTAGCAGT	GATTATGAAG	GCACTGTTAT	720
10	TTTATGGGAT	GGATTCACAG	GACAGAGGTC	AAAGGTCTAT	CAGGAGCATG	AGAAGAGGTG	780
••	TTGGAGTGTT	GACTTTAATT	TGATGGATCC	TAAACTCTTG	GCTTCAGGTT	CTGATGATGC	840
	AAAAGTGAAG	CTGTGGTCTA	CCAATCTAGA	CAACTCAGTG	GCAAGCATTG	AGGCAAAGGC	900
15	TAATGTGTGC	TGTGTTAAAT	TCAGCCCCTC	TTCCAGATAC	CATTTGGCTT	TCGGCTGTGC	960
	AGATCACTGT	GTCCACTACT	ATGATCTTCG	TAACACTAAA	CAGCCAATCA	TGGTATTCAA	1020
20	AGGACACCGT	AAAGCAGTCT	CTTATGCAAA	GTTTGTGAGT	GGTGAGGAAA	TTGTCTCTGC	1080
	CTCAACAGAC	AGTCAGCTAA	AACTGTGGAA	TGTAGGGAAA	CCATACTGCC	TACGTTCCTT	1140
	CAAGGGTCAT	ATCAATGAAA	AAAACTTTGT	AGGCCTGGCT	TCCAATGGAG	ATTATATAGC	1200
25	TTGTGGAAGT	GAAAATAACT	CTCTCTACCT	СТАСТАТААА	GGACTITCTA	AGACTTTGCT	1260
	AACTTTTAAG	TTTGATACAG	TCAAAAGTGT	TCTCGACAAA	GACCGAAAAG	AAGATGATAC	1320
30	AAATGAATTT	GTTAGTGCTG	TGTGCTGGAG	GGCACTACCA	GATGGGGAGT	CCAATGTGCT	1380
	GATTGCTGCT	AACAGTCAGG	GTACAATTAA	GGTGCTAGAA	TIGGTATGAA	GGGTTAACTC	1440
	AAGTCAAATT	GTACTTGATC	CTGCTGAAAT	ACATCTGCAG	CTGACAATGA	GAGAAGAAAC	1500
35	AGAAAATGTC	ATGTGATGTC	TCTCCCCAAA	GTCATCATGG	GTTTTGGATT	TGTTTTGAAT	1560
	ATTTTTTCT	TTTTTCTTT	TCCCTCCTTT	ATGACCTTTG	GGACATTGGG	AATACCCAGC	1620
40	CAACTCTCCA	CCATCAATGT	AACTCCATGG	ACATTGCTGC	TCTTGGTGGT	GTTATCTAAT	1680
	TTTTGTGATA	GGGAAACAAA	TTCTTTTGAA	TAAAAATAAA	TAACAAAACA	ATAAAAGTTT	1740
	ATTGAGCCAC	AGTTGAGCTT	GGAAAGTTTT	TGTCAAATGC	NGCAAGAGAT	AACTCTTTTT	1800
45	ANGAAGTAGC	ATATGTGAAC	TATAATGTAA	CAGTGAATAA	TTTGTAAAGT	TCGTATTTCC	1860
	CAACCTCTTT	GOGAATTACA	САТАТСААТА	ТАААСААААТ	ATAAAGT		1907

55

(2) INFORMATION FOR SEQ ID NO: 79:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1168 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

60 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 79:

	GCTGGGGTGT CCCCKCSGCC ACCATCGTCA TCGCTTACTT GATGAAGCAC ACTCGGATGA	60
5	CCCATGACTG ATGCTTATAA ATTTGTCAAA GGCAAACGAC CAATTATCTC CCCAAACCTT	120
2	AACTTCATGG GGCAGTTGCT AGAGTTCGAG GAAGACCTAA ACAACGGTGT GACACCGAGA	180
	ATCCTTACAC CAAAGCTGAT GGGCGTGGAG ACGGTTGTGT GACAATGGTC TGGATGGAAA	240
10	GGATTGCTGC TCTCCATTAG GAGACAATGA GGAAGGAGGA TGGATTCTGG TTTTTTTTCT	300
	TICTITITIT TITTGTAGTT GGGAGTAAGT TIGTGAATGG AAACAAACTT GTTTAAACAC	360
15	TTTATTTTTA ACAAGTGTAA GAAGACTATA ACTTTTGATG CCATTGAGAT TCACCTCCCA	420
13	CAAACTGACA AATTAAGGAG GTTAAAGAAG TAATTTTTTT AAGCCAACAA TAAAAATATA	480
	ATACAACTIG TITCTCCCCC TITTCCTITT AAGCTATTIG TAGAGTTTAT GACTAAATAG	540
20	TCTGTGCAGG TTCATAGACC GAAGATACTA CACACTTTAA ACCAATTAAA AAGAACCAAA	600
	AGTAAATAGA AAAGACATTG AATCACCAAG GCCTGGGATC AACCTGGGCT GTCCACACAG	660
25	AAAACAAAAA CCCAACCAAA CCAAGCCCTG TTGTGCTCAC TGGTGCAAAG AGAAGATCAG	720
23	GGCAGCTTAA GTGGTCTAAG RATCCTTCAG GCATTCTTTA AGGAGAAAAA GGATACCTTT	780
	GATTTIGTGT GTTTCATGCT CTGGATTTTT TTTTTTTTTC CTTCTCTGGG TTTAAGAGAT	840
30	TTTTTTTGAA ATAGTGAGGA ACTGACCATT ATATGCCTTC ACTGGCTTCT TGTGCAATAA	900
	TATGATGTTT TAAGTGTGCA AACAAGTTAG AGCTGGCAGC TGAATGATAG ACAAATAGTG	960
35	CAAATTTGCC AGCTTGGAGA TAGAAAGGAA TTCAACAATA TATCAAATAC TTTCCTTCCC	1020
55	ACCIPITICC TITITITIT TITITICTGA TITIGATICTG GITACAGTGC CATAAACCIT	1080
	GTTACATATG TATATCAGAA TGTAAGAAAA AAAAATITAT TTAAAAAATAT TTTTCGCAAA	1140
40	AAAAAANNA AAAAACTCGA GGGGGCC	1168
45	(0) TIPONOMETON DOS GEO NO NO	
43	(2) INFORMATION FOR SEQ ID NO: 80:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1285 base pairs	
50	(B) TYPE: nucleic acid	
30	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 80:	
55	AGAAAATCAC ATCCTAACAA AGAAGTCTGT CTAAGACAGT ACATCTCCTG TTGAACTTGC	60
	ATCTTTCCAC AGGACTTTCT GTTTTTAGGG ATGAGACTAT TCTCTGCTTC ATCAAGGAAA	120
	GAGAAATGTT CAGGGTTGTA GGGATGGCAC ACTTATTAGT TCTGCCTGTC TGAAAGGTTC	180

	CTGCAGGACA GUUGGTCAG AGCTGCAATT CUTAGTCCAT GGTCTAATGC TIGAGTATCT	240
	CTTCTTTCCC TTTCCTGTCT CAGGAATCAG CTGAGAATTC ATTCGATTGT CATGCCTCTA	300
-5	GCCCCTTACT GTGATTTGTT GGTTGCACTT TCATTTGCTT TAGTTCTAGA ATCACCTGTT	360
	GACTCCTCAG ACTTCACCTA ACTTTGGAAA CTCTCTTTTG GAGGCTTCTC ATTTCCCCCT	420
10	AATTCTGTGC TGCCTGAGCC CTAGAATTTT CCCACCAACG AATTATTCCA GGTAGATCCT	480
10	AAGTTGCTGG ATCTAGTTGA TATTTAAACA ATATCTAGTT GATATTTCTC ATTCAGTTGG	540
	ATCCAGAAAC CAGTATCTCT NAAAAACAAC CTCTCATACC TTGTGGACCT AATTTTGTGT	600
15	GCGTGTGTGT GTGCGCGCAT ATGTATATAG ACAGGCACAT CTTTTTTACT TTTGTAAAAG	660
	CTTATGCCTC TITIGGTATCT ATATCTGTGA AAGTITTAAT GATCTGCCAT AATGTCTTGG	720
20	GGACCTTTGT CTTCTGTGTA AATGGTACTA GAGAAAACAC CTATATTATG AGTCAATCTA	780
20	GTTGGTTTTA TTCGACATGA AGGAAATTTC CAGATAACAA CACTAACAAA CTCTCCCTTG	840
	ACTAGGGGGA CAAAGAAAAG CAAAACTGAC CATAAAAAAC AATTACCTGG TGAGAAGTTG	900
25	CATAAACAGA ATTAGGTAGT ATATTGAAGA CAGCATCATT AAACAGTTAT GTTGTTCTCC	960
	TTGCAAAAAA CATGTACTGA CTTCCCGTTG AGTAATGCCA AGTTGTTTTT TTTATTATAA	1020
30	AACTIGCCCT TCATTACATG TTTCAAAGTG GTGTGGTGGG CCAAAATATT GAAATGATGG	1080
50	AACTGACTGA TAAAGCTGTA CAAATAAGCA GTGTGCCTAA CAAGCAACAC AGTAATGTTG	1140
	ACATGCTTAA TICACAAATG CTAATTTCAT TATAAATTGT TITGCTAAAA TACACTITGA	1200
35	AACTATTTTT CTGTATTCCA AGAGCTGAGA TCTTAGATTT TATGTAGTAT TAAGTGAAAA	1260
	AATACGAAAA TAATAAACAT TGAAG	1285
40		
40	(2) THEODYNETION FOR CEO TO NO. 01	
	(2) INFORMATION FOR SEQ ID NO: 81:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1290 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 81:	
	TCTCCAGCCC CAATTTCTAC GCGCACCGGA AGACGGAGGT CCTCTTTCCT TGCCTAACGC	60
55	AGCCATGGCT CGTGGTCCCA AGAAGCATCT GAAGCGGGTG GCAGCTCCAA AGCATTGGAT	120
<i>J J</i>	GCTGGATAAA TTGACCGGTG TGTTTGCTCC TCGTCCATCC ACCGGTCCCC ACAAGTTGAG	180
	AGAGTGTCTC CCCCTCATCA TTTTCCTGAG GAACAGACTT AAGTATGCCC TGACAGGAGA	240
60	TGAAGTAAAG AAGATTTGCA TGCAGCGGTT CATTAAAATC GATGGCAAGG TCCGAACTGA	300

300

360

	TATAACCTAC	CCTCCTCGAT	TCATGGATGT	CATCAGCATT	GACAAGACGG	GAGAGAATTT	360
.5	CCGTCTGATC	TATGACACCA	AGGGTCGCTT	TGCTGTACAT	CGTATTACAC	CTGAGGAGGC	420
-5	CAAGTACAAG	TTGTGCAAAG	TGAGAAAGAT	CTTTGTGGGC	ACAAAAGGAA	TCCCTCATCT	480
	GGTGACTCAT	GATGCCCGCA	CCATCCGCTA	CCCCGATCCC	CTCATCAAGG	TGAATGATAC	540
10	CATTCAGATT	GATTTAGAGA	CTGGCAAGAT	TACTGATTTC	ATCAAGTTCC	ATTCACCCAG	600
	CCAGGTGGTC	TCGTCACCTC	AGAGGCTCCG	CAGACTCCTG	CCCAGGCCAG	GACTGAGGCA	660
15	AGCCTCAAGG	CACTTCTAGG	ACCIGCCTCT	TCTCACCAAG	ATGAACTCAC	TEGTTTCTTG	720
15	GCAGCTACTG	CTTTTCCTCT	GTGCCACCCA	CTTTGGGGAG	CCATTAGAAA	AGGTGGCCTC	780
	TGTGGGGAAT	TCTAGACCCA	CAGGCCAGCA	GCTAGAATCC	CTGGGCCTCC	TGGCCCCSGG	840
20	GGAGCAGAGC	CTGCCGTGCA	CCGAGAGGAA	GCCAGCTGCT	ACTGCCAGGC	TGAGCCGTCG	900
	GGGACCTCG	CTGTCCCCGC	CCCCCGAGAG	CTCCGGGAGC	CCCCAGCAGC	CGGGCCTGTC	960
25	CGCCCCCAC	AGCCGCCAGA	TCCCCGCACC	CCAGGGGGGG	CTCCTCGTCC	AGCGGGAGAA	1020
	GGACCTGCCG	AACTACAACT	GGAACTCCTT	CGGCCTGCGC	TTCGGCAAGC	GGGAGGCGGC	1080
	ACCAGGGAAC	CACGGCAGAA	CCCCTCCCCC	GGGCTGAGGG	CGCAGGTGCG	GGGCAGTGAA	1140
30	CTTCAGACCC	CAAAGGAGTC	AGAGCATGCG	GGGCGGGGGC	GGGGGGGGG	GACGTAGGC	1200
	TAAGGGAGGG	GCCCTGGAG	CTTCCAACCC	GAGGCAATAA	AAGAAATGTT	GCGTAACTCA	1260
35	ААААААААА	AAAAAAAANC	TCGGGGGGG				1290
40	(2) INFORM	ATION FOR SE	EQ ID NO: 82	2:			
•	(i)		GTH: 684 ba	se pairs			
45		(C) STR	E: nucleic ANDEDNESS: OLOGY: line	double			
	(xi) SEQUENCE	DESCRIPTION	: SEQ ID NO	: 82:		
50	TITATTGTAT	TCTGTAACTA	TAGAACTTCT	ATTIWATTCT	TTTTTGGACT	TGCTAAGTTG	60
	TCTTTWATGG	TTTTWAGTTC	CATGCTGAAG	TTTTCAGTAT	TGACTTATCC	CCTTGAACAT	120
	GAGTTGTTTT	ATAGACTCTR	ATGATTCAAA	AATCTTACAT	CTTTTGGTAG	TCTCTTTCAT	180
55	TTGTYCACTG	TTTCTGTTGA	TTCTWACTCA	TGGTATTITA	ATTCTTCGTT	WITTITITC	240

TGTTWAGAWA CATTCTTTGA AAAATAATTT GGAGGAATAT TTGATTCTTA TGAACAAGGC

ATTACTCACC AGAGAAGATT TTTTTGTTYT ACCARGTGCC TARGAATGCT AACAGTCTGG

304

	GAMCACATAG AMCACCAGGT GATGAGACAA TCCTGGGART CCTGTTTTAC TTTGGSCCAT	420
	CTPTTCTCCC AACCCTGTGG GAATARTCAT YCATATCCTA RCTGCAGGCT ARAAGGTGGT	480
.5	TTATCAGAGC CCAACTTCGA GGGCTCTGGG CTTTAGCTAC TGTCACCCCA TCATAACTGA	540
	GCTTCATGGA TTGATTCTCT TTTTATCTTT CAGATTTTCT TTTAAAAATC TTTGTTTTTT	600
10	THITTCTTCC GAAAGATTCC CCCAACATTA CCATTCCCCA CCTTCCGTTG AATTTTTTTG	660
10	GCTCTCATTT TGAATTTTTC AAGA	684
15		
	(2) INFORMATION FOR SEQ ID NO: 83:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2024 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 83:	
23	CTGCAGGAAT TCGGCACAGC TGCGCTGGAG GCTTCATCTT TGCCGCCGCT GCCGTCGCCT	60
	TCCTGGGATT GGAGTCTCGA GCTTTCTTCG TTCGTTCGYC GGCGGGTTCG CGCCCTTCTC	120
30	GCGCCTCGGG GCTGCGAGGC TGGGGAAGGG GTTGGAGGGG GCTGTTGATC GCCCCGTTTA	180
	AGTTGCGCTC GGGGCGGCCA TGTCGGCCGG CGAGGTCGAG CGCCTAGTGT CGGAGCTGAG	240
35	CGGCGGGACC GGAGGGGATG AGGAGGAAGA GTGGCTCTAT GGCGATGAAA ATGAAGTTGA	300
,,,	AAGGCCAGAA GAAGAAAATG CCAGTGCTAA TCCTCCATCT GGAATTGAAG ATGAAACTGC	360
	TGAAAATGGT GTACCAAAAC CGAAAGTGAC TGAGACCGAA GATGATAGTG ATAGTGACAG	420
10	CGATGATGAT GAAGATGATG TTCATGTCAC TATAGGAGAC ATTAAAACGG GAGCACCACA	480
	GTATGGGAGT TATGGTACAG CACCTGTAAA TCTTAACATC AAGACAGGGG GAAGAGTTTA	540
4 5	TGGAACTACA GGGACAAAAG TCAAAGGAGT AGACCTTGAT GCACCTGGAA GCATTAATGG	600
••	AGTTCCACTC TTAGAGGTAG ATTTGGATTC TTTTGAAGAT AAACCATGGC GTAAACCTGG	660
	TGCTGATCTT TCTGATTATT TTAATTATGG GTTTAATGAA GATACCTGGA AAGCTTACTG	720
50	TGAAAAACAA AAGAGGATAC GAATGGGACT TGAAGTTATA CCAGTAACCT CTACTACAAA	780
	TAAAATTACG GTACAGCAGG GAAGAACTGG AAACTCAGAG AAAGAAACTG CCCTTCCATC	840
55	TACAAAAGCT GAGTTTACTT CTCCTCCTTC TTTGTTCAAG ACTGGGCTTC CACCGAGCAG	900
,,	GAGATTACCT GGGGCAATTG ATGTTATCGG TCAGACTATA ACTATCAGCC GAGTAGAAGG	960
	CAGGCGACGG GCAAATGAGA ACAGCAACAT ACAGGTCCTT TCTGAAAGAT CTGCTACTGA	1020

60 AGTAGACAAC AATTITAGCA AACCACCTCC GTTTTTCCCT CCAGGAGCTC CTCCCACTCA

	CCTTCCACCT CCTCCATTTC TTCCACCTCC TCCGACTGTC AGCACTGCTC CACCTC	TGAT 1140
- 5	TCCACCACCG GGTTTTCCTC CTCCACCAGG CGCTCCACCT CCATCTCTTA TACCAA	ACAAT 1200
- 3	AGAAAGTGGA CATTCCTCTG GTTATGATAG TCGTTCTGCA CGTGCATTTC CATATC	GCAA 1260
	TGTTGCCTTT CCCCATCTTC CTGGTTCTGC TCCTTCGTGG CCTAGTCTTG TGGACA	ACCAG 1320
10	CAAGCAGTGG GACTATTATG CCAGAAGAGA GAAAGACCGA GATAGAGAGA GAGACA	AGAGA 1380
	CAGAGAGCGA GACCGTGATC GGGACAGAGA AAGAGAACGC ACCAGAGAGA GAGAGA	AGGGA 1440
15	GCGTGATCAC AGTCCTACAC CAAGTGTTTT CAACAGCGAT GAAGAACGAT ACAGAT	PACAG 1500
	GGAATATGCA GAAAGAGGTT ATGAGCGTCA CAGAGCAAGT CGAGAAAAAG AAGAAG	CGACA 1560
	TAGAGAAAGA CGACACAGGG AGAAAGAGGA AACCAGACAT AAGTCTTCTC GAAGTA	AATAG 1620
20	TAGACGTCGC CATGAAAGTG AAGAAGGAGA TAGTCACAGG AGACACAAAC ACAAAA	AAATC 1680
	TAAAAGAAGC AAAGAAGGAA AAGAAGCGGG CAGTGAGCCT GCCCCTGAAC AGGAGA	AGCAC 1740
25	CGAAGCTACA CCTGCAGAAT AGGCATGGTT TTGGCCTTTT GTGTATATTA GTACCA	AGAAG 1800
	TAGATACTAT AAATCTTGTT ATTTTTCTGG ATAATGTTTA AGAAATTTAC CTTAAA	ATCTT 1860
	GTTCTGTTTG TTAGTATGAA AAGTTAACTT TTTTTCCAAA ATAAAAGAGT GAATTT	TTTCA 1920
30	TGTTAAGITA AAAATCTTTG TCTTGTACTA TTTCAAAAAT AAAAAGACAG CAATGA	ACTIT 1980
	ATATCCAAAA AAAAAAAAA AAAAAAAAA AAAAAAAGGGC GGCC	2024
35		
	(2) INFORMATION FOR SEQ ID NO: 84:	
	(-,	
40	(i) SEQUENCE CHARACTERISTICS:	
	- · ·	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 931 base pairs	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 931 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 931 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	AÇAGC 60
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 931 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 84:	
45 50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 931 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 84: CCCCCCCMATA GCCCGACCGC GATCTGAGCT GCCAGGATGA ATGTGGGGGT GCCACA	ICATC 120
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 931 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 84: COCGCCMATA GCCGGACGGG GATCTGAGCT GGCAGGATGA ATGTGGGGGT GGCACAGGAGGAAGA ATGTGGGGGT GGCACAGGAGGAAGA ATGTGGGGGT GGCACAGGAGGAAGAAACC CCAACACCCG AGTGATGAAT AGCCGAGGCA TCTGGCTGGC CTACAGGAGGAAGAAACC CCAACACCCG AGTGATGAAT AGCCGAGGCA TCTGGCTGGC CTACAGGAGGAAGAACC CCAACACCCG AGTGATGAAT AGCCGAGGCA TCTGGCTGGC CTACAGAGAGGAAGAACC CCAACACCCG AGTGATGAAT AGCCGAGGCA TCTGGCTGGC CTACAGAGAGAACC CCAACACCCG AGTGATGAAT AGCCGAGGCA TCTGGCTGGC CTACAGAGAGAACC CCAACACCCG AGTGATGAAT AGCCGAGGCA TCTGGCTGGC CTACAGAGAGAACC CCAACACCCG AGTGATGAAT AGCCGAGGCA TCTGGCTGGC CTACAGAGAGAACCACCCG AGTGATGAAT AGCCGAGGCA TCTGGCTGGC CTACAGAGAGAACCACCCG AGTGATGAAT AGCCGAGGCA TCTGGCTGGC CTACAGAGAGAACCACACCCG AGTGATGAAT AGCCGAGGCA TCTGGCTGGC CTACAGAGAGAACCACACCCG AGTGATGAAT AGCCGAGGCA TCTGGCTGGC CTACAGAGAGAACCACACCCG AGTGATGAAT AGCCGAGGCA TCTGGCTGGC CTACAGAGAGAACCACACCCG AGTGATGAAT AGCCGAGGCA TCTGGCTGGC CTACAGAGAGAACACCCGAGGATGAAACCACCCG AGTGATGAAT AGCCGAGGCA TCTGGCTGGC CTACAGAGAGAACACCACACC	rcatc 120
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 931 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 84: CCCGCCMATA GCCGGACGG GATCTGAGCT GGCAGGATGA ATGTGGGGGT GGCACAGGAGGATAAACC CCAACACCCG AGTGATGAAT AGCCGAGGCA TCTGGCTGGC CTACAGTGGGGAT TGCTGGAGAT TCCTGGTAGGAT TGCTGGAGAT TCCTGGTAGGAT TCCTGGTAGAT TCCTGGTAGGAT TCCTGGTAGAT TCCTGGTAGAT TCCTGGTAGGAT TCCTGGTAGAT TCCTGATAGAT TCCTGATAGAT TCCTGGTAGAT TCCTGATAGAT TCCTGATAGAT TCCTGATAGAT TCCTGATAGAT TCCTGATAGAT TCCTGATAGAT TCCTGATAGAT TCCTGATAGAT TCCTGATAGAT TCCTGATAGATAGAT TCCTGATAGAT TCCTGATAGATAGAT TCCTGATAGATAGAT TCCTGATAGAT TCCTGATAGATAGATAGATAGATAGATAGATAGATAGATA	PCATC 120 PTGTC 180 PTGAAA 240
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 931 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 84: CGCGCCMATA GCCGGACGGG GATCTGAGCT GGCAGGATGA ATGTGGGGGT GGCACAGGAGGATAAACC CCAACACCCG AGTGATGAAT AGCCGAGGCA TCTGGCTGGC CTACAGTGAGGAT TGCTGCATAT GGTTCTACTC AGCATCCCCT TCTTCAGCAT TCCTGCTGGACCCTGACCTGA	TCATC 120 TTGTC 180 TGAAA 240 AGCAA 300
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 931 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 84: CGCGCCMATA GCCGGACGGG GATCTGAGCT GGCAGGATGA ATGTGGGGGT GGCACAGGAGGATAAACC CCAACACCCG AGTGATGAAT AGCCGAGGCA TCTGGCTGGC CTACAGGAGGATTAAGCAT TCCTGGTAGGAT TGCTGCATAT GGTTCTACTC AGCATCCCCT TCTTCAGCAT TCCTGGTGGACCCTGA CCAACGTCAT CCATAACCTG GCTACGTATG TCTTCCTTCA TACGGGGGACACCCT TTGAGGACTCC TGACCAAGGA AAGGCTCGGC TACTGACACA CTGGGGGGACACCCT TTGAGGACTCC TGACCAAGGA AAGGCTCGGC TACTGACACA CTGGGGGGACACCCT TTGAGGACTCC TGACCAAGGA AAGGCTCGGC TACTGACACA CTGGGGGGACACCCT TTGAGGACTCC TGACCAAGGA AAGGCTCGGC TACTGACACA CTGGGG	ICATC 120 ITGTC 180 IGAAA 240 AGCAA 300 ITGTG 360

	GCCTCATTGC TAAGTGTACT GCTGCCGAAG TTGCCCCAGT TCCATGGGGT TCGTGTCTTT	480
	GGCATCAACA AATACTGAGG GATGGGTTTT GGGACAGCTC CATGGGCATG GGGAAGGCAC	540
. 5	TGAAACAGAG GACTATAAAA CATCCTTCTC TTATTCTCCA TACTGTCTTC TACACCTTTA	600
	AAGCCTGAGA ACTATACAAC CTTTCCCAGA CTCCCAAGAA GAGAAGAGAT TGGCAAATGG	660
10	GGCTCCTGGG CCCAGTCCTG CTAGTGGCAA GTTTCTTTGA ATCAGGAAGG CAGGTGAGGT	720
	AAGGGCCAAA TCACTCTCCT CCATAGCAGG AAGCCATTTG GGCAGCTCCT TTGGTGATTA	780
	CATCTTTCCA TATCTTTTAC ACTTACCACC TTCCAGCTCT GTTTTGCTGT GTATTTTTCT	840
15	TACAATAATT TTTTTCAGCT ATAGCTGCAG TTTAATCAGG ATGGGTAGAG AGCTGTCCTC	900
	ATAAGGCTGG GGGTGGGAAG ATGGAATACT G	931
20		
	(2) INFORMATION FOR SEO ID NO: 85:	
	(i) SEQUENCE CHARACTERISTICS:	
25	(A) LENGTH: 825 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 85:	
	CGGGGCCGGC GGGGTCTTCA GGGTACCGGG CTGGTTACAG CAGCTCTACC CCTCACGACG	60
	CAAACATGGC AGCGCAGAAG GACCAGCAGA AAGATGCCGA GGCGGAAGGG CTGAGCGGCA	120
35	CGACCCTGCT GCCGAAGCTG ATTCCCTCCG GTGCAGGCCG GGAGTGGCTG GAGCGGCGCC	180
	GCGCGACCAT CCGGCCCTGG AGCACCTTCG TGGACCAGCA GCGCTTCTCA CGGCCCCGCA	240
10	ACCTGGGAGA GCTGTGCCAG CGCCTCGTAC GCAACGTGGA GTACTACCAG AGCAACTATG	300
	TGTTCGTGTT CCTGGGCCTC ATCCTGTACT GTGTGGTGAC GTCCCCTATG TTGCTGGTGG	360
15	CTCTGGCTGT CTTTTTCGGC GCCTGTTACA TTCTCTATCT GCGCACCTTG GAGTCCAAGC	420
+3	TTGTGCTCTT TGGCCGAGAG GTGAGCCCAG CGCATCAGTA TGCTCTGGCT GGAGGCATCT	480
	CCTTCCCCTT CTTCTGGCTG GCTGGTGCGG GCTCGGCCGT CTTCTGGGTG CTGGGAGCCA	540
50	CCCTGGTGGT CATCGGCTCC CACGCTGCCT TCCACCAGAT TGAGGCTGTG GACGGGGAGG	600
	AGCTGCAGAT GGAACCCGTG TGAGGTGTCT TCTGGGACCT GCCGGCCTCC CGGGCCAGCT	660
55	GCCCCACCCC TGCCCATGCC TGTCCTGCAC GGCTCTGCTG CTCGGGCCCA CAGCGCCGTC	720
J	CCATCACAAG CCCGGGGAGG GATCCCGCCT TTGAAAATAA AGCTGTTATG GGTGTCATTC	780
	AGGAAAAAA AAAAAAAGG GGGCCCCTC TAGGGGTCAA AGTTA	825

(2) INFORMATION FOR SEQ ID NO: 86:

.5 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1238 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 86:

	CATGTAAAAG	GATGAAATGT	GACTTCTGGT	GTTTTTTTAT	TTCTATGGAG	GGACTTTCTG	60
15	GGGACGGTTT	CTGGCTCTCA	GCCTCTGAGA	AGCTGCAGTT	TATGAGTGGC	TCTGTGTGTG	120
	CTGCCACCTA	CTGGAGAAGC	CATAAGCTGC	AGCTTTAGGA	AAAGGGAACC	CGGGGCAGAG	180
20	TGTGGGGAAG	TGGGATGGCA	GCATGGCAGG	GCTTTGGAAA	ATGAGAGGTG	AGAGTKTKTC	240
20	CAGGAAGGGT	GTAAGGAGAG	GATGGATCCT	GATACATGGA	TTCAGGATCA	TTAGGGTCCT	300
	GTCTGGGACA	CTGGCCTTCC	TGCTTACCTG	CTCTTTCCTT	CCTCCTTGGT	CGGAGGAGGG	360
25	GCTGGCTCAC	TGCTCTGGCT	TCATTTTCCA	GAGCTGCCTG	CTGCAGTCAC	ACTTAGGTCA	420
	TCTTCTCTCA	CTTTTCTCCT	TTTGCCGATT	AGTGGACGTG	ACAGAGATGT	GAATGGGGCA	480
30	GGGATGTCCT	TTGATGGCAT	CAAGACTTTA	CCTTCTCCTG	CCCTCTCTCC	CAGCTCTGAT	540
	TTCAGTTGCA	GCCGTGATGG	AMAGTTNGCA	TGGAAGCTGA	GACTCTCACT	GACAGTGAAA	600
	CCCTCAAATG	AACACAATCC	CTGCTTTCCT	GCCAAGGATC	CTTGTAGGGT	NCCCCCAGCT	660
35	TCCCCACTTT	TTTTCTGTGT	CCTGACAAAG	AAACACAGAG	TAACTTGATT	GCCCTGTGAC	720
	CTGGCCAGTT	GCATTTCCCC	TGCAGGCTTG	AGCCCAAGCC	AGAGCCTTGA	AAAGGTATTC	780
40	AGGTTGTTGC	CCAAAACACT	GAAAAAAACT	CCCTGGCCC	TGAACCAAAT	ACCTTGAACC	840
••	CTCGTAAACT	CCATACCCTG	ACCCCCTTGT	TTTGGATATA	CCCAGGTAGA	ACAACTCTCT	900
	CTCACTGTCT	GTTGTGAGGA	TACGCTGTAG	CCCACTCATT	AAGTACATTC	ТССТААТААА	960
45	TGCTTTGGAC	TGATCACCCT	GCCAGTCTTT	TGTCTTGGGC	AATCTATACT	TTTNCTCAGA	1020
	GGTTCCCAAG	GCCTACTGAA	GGGACTTAAC	ATACTCTTAA	TGGCTTTCCT	CTCTCTTGTT	1080
50	TTACCTTATG	CCCTCACTTC	CTGAGTTAAC	CTCCCAAATA	CAGGATTCAC	CTGTACCCAA	1140
	GCCCTTAGCT	TCAAGAATAC	AGGATCACCT	GTACCCAAGC	CCTTAGCTCA	AGCTCTGCTT	1200
	TGGAAGAACC	CAAACTAAGA	CAGTGCTCCT	GGTGCCCT			1238

55

60

(i) SEQUENCE CHARACTERISTICS:

⁽²⁾ INFORMATION FOR SEQ ID NO: 87:

(A) LENGTH: 1460 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 87:

	ATTGCCTTCT	GCTCCCTGGT	GACACTGGGG	TCATCCTTCA	TCCCCGGAGA	GCATTTCTGG	60
10	CTGCTCCTCC	TGACCCGGGG	CCTGGTGGGG	GTCGGGGAGG	CCAGTTATTC	CACCATCGCG	120
	CCCACTCTCA	TTGCCGACCT	CTTTGTGGCC	GACCAGCGCG	ACCGGATGCT	CAGCATCTTC	180
15	TACTTTGCCA	TTCCGGTGGG	CAGTGGTCTG	GGCTACATTG	CAGGCTCCAA	AGTGAAGGAT	240
13	ATGGCTGGAG	ACTGGCACTG	GGCTCTGAGG	GTGACACCGG	GTCTAGGAGT	GGTGGCCGTT	300
	CTGCTGCTGT	TCCTGGTAGT	GCGGGAGCCG	CCAAGGGGAG	CCGTGGAGCG	CCACTCAGAT	360
20	TTGCCACCCC	TGAACCCCAC	CTCGTGGTGG	GCAGATCTGA	GGGCTCTGGC	AAGAAATCCT	420
	AGITICGICC	TGTCTTCCCT	GGGCTTCACT	CCTCTCCCCT	TTGTCACGGG	CTCCCTGGCT	480
25	CTGTGGGCTC	CGCCATTCCT	GCTGCGTTCC	CGCGTGGTCC	TTGGGGAGAC	CCCACCCTGC	540
25	CTTCCCGGAG	ACTCCTGCTC	TTCCTCTGAC	AGTCTCATCT	TTGGACTCAT	CACCIGCCIG	600
	ACCGGAGTCC	TGGGTGTGGG	CCTGGGTGTG	GAGATCAGCC	GCCGGCTCCG	CCACTCCAAC	660
30	CCCCGGGCTG	ATCCCCTGGT	CTGTGCCACT	GCCTCCTGG	GCTCTGCACC	сттестстте	720
	CTGTCCCTTG	CCTGCGCCCG	TGGTAGCATC	GTGGCCACTT	ATATTTTCAT	CTTCATTGGA	780
~-	GAGACCCTCC	TGTCCATGAA	CTGGGCCATC	GTGGCCGACA	TTCTGCTGTA	CGTGGTGATC	840
35	CCTACCCGAC	GCTCCACCGC	CGAGGCCTTC	CAGATCGTGC	TGTCCCACCT	GCTGGGTGAT	900
	GCTGGGAGCC	CCTACCTCAT	TGGCCTGATC	TCTGACCGCC	TGCGCCGGAA	CTGGCCCCCC	960
40	TCCTTCTTGT	CCGAGTTCCG	GGCTCTGCAG	TTCTCGCTCA	TGCTCTGCGC	GTTTGTTGGG	1020
	GCACTGGGCG	GCGCACTTCC	TGGGCACCGC	CATCTTCATT	GAGGCCGACC	GCCGGCGGGC	1080
	ACAGCTGCAC	GTGCAGGGCC	TGCTGCACGA	AGCAGGGTCC	ACAGACGACC	GGATTGTGGT	1140
45	GCCCCAGCGG	GGCCGCTCCA	CCCGCGTGCC	CGTGGCCAGT	GTGCTCATCT	GGAGAGGCTG	1200
	CCGCTCACCT	ACCTGCACAT	CTGCCACAGC	TGGCCCTGGG	CCCACCCCAC	GAAGGCCCTG	1260
50	GGCCTAAACC	CCTTGGCCTG	GCCCAGCTTC	CAGAGGGACC	CTGGGCCGTG	TGCCAGCTCC	1320
					•	ATCCCTCTCC	
						TGTAGCCAGA	
55		AAAAAAAAA		TIGIANCOG	GNIINMMII	TATUCCUCK	1460
	**************************************	MANAMANA					1400

_5

(2) INFORMATION FOR SEQ ID NO: 88:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1395 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 88:

10	(xi) SEQUENCE	DESCRIPTION	: SEQ ID NO	: 88:		
	CAGGTGCAAA	GTGGGAAGTG	TGAGTCCTCA	GTCTTGGGCT	ATTCGGCCAC	GTGCCTGCCG	60
	GACATGGGAC	GCTGGAGGGT	CAGCAGCGTG	GAGTCCTGGC	CTTTTGCGTC	CACGGGTGGG	120
15	AAATTGGCCA	TTGCCACGGC	GGGAACTGGG	ACTCAGGCTG	ccccccccc	GTTTCTCATC	180
	CGTCCACCGG	AYTCGTGGGC	GCTCGCACTG	GCGCTGATGT	AGTITCCTGA	CCTCTGACCC	240
20	GTATTGTCTC	CAGATTAAAG	GTACGACATT	TGGAGGCCCC	AGCGAGAAAC	GTCACCGGGA	300
20	GAAACGTCAC	CGGGCGAGAG	CGGKCCCGCT	GTGTGCTCCC	CCGGAAGGAC	AGCCAGCTTG	360
	TAGGGGGGAG	TGCCACCTGA	AAAAAAATT	TCCAGGTCCC	CAAAGGGTGA	CCGTCTTCCG	420
25	GAGACAGCGG	ATCGACTACC	ATGTGGGTGC	CCACAAAAAT	TYCACCTYTG	AGTCCTCAAC	480
	TGCTGACCCC	GGGGTCAGTT	CCAGAGAGAA	GGACTCCCTC	CTGCTTGGAA	GAGACCTCAC	540
30	ACCGTCATCA	CGATGCCAAC	GGCTCTGAAG	GTGGATGGCA	TTCCTGCGTG	GATTCATCAC	600
30	TCCCGCATCA	AAAAGGCCAA	CRGAGCCCAA	CTAGAAACAT	GGGTCCCCAG	GGCTGGGTCA	660
	GGCCCCTTAA	AACTGCACCT	AAGTTGGGTG	AAGCCATTAG	ATTAATTCTT	TTTCTTAATT	720
35	TTGTAAAACA	ATGCATAGCT	TCTGTCAACT	TATGTATCTT	AAGACTCAAT	ATAACCCCCT	780
	TGTTATAACT	GAGGGAATCA	ATGATTTGAT	TCCCCAAAAA	CACAAGTGGG	GAATGTAGTG	840
40	TCCAACCTGG	ттттастаа	CCCTGTTTTT	AGACTYTCCC	TTTCCTTTAA	TCACTCAGCC	900
10	TTGTTTCCAC	CTGAATTGAC	TCTCCCTTAG	CTAAGAGCGC	CAGATGGACT	CCATCTTGGC	960
	TCTTTCNACT	GGCAGCCGCT	TCCTYCAAGG	ACTTAACTTG	TGCAAGCTGA	CTCCCAGCAC	1020
45	ATCCAAGAAT	GCAATTAACT	GATAAGATAC	TGTGGCAAGC	TATATCCGCA	GTTCCCAGGA	1080
	ATTCGTCCAA	TTGATTACAC	CCMAAAGCCC	CGCGTCTATC	ACCTTGTAAT	AATCTTAAAG	1140
50	CCCCTGCACC	TGGAACTATT	AACGTTCCTG	TAACCATTTA	TCCTTTTAAC	TTTTTTGCCT	1200
50	ACTITATITC	TGTAAAATTG	TTTTAACTAG	ACCCCCCTC	TCCTTTCTAA	ACCAAAGTAT	1260
	AAAAGCAAAT	CTAGCCCCTT	CTTCAGGCCG	AGAGAATTIC	GAGCGTTAGC	CGTCTCTTGG	1320
55	CCACCAGCTA	AATAAACGGA	TTCTTCATGT	GTAAAAAAA	АААААААА	CTCGGAGGGG	1380
	GGCCCGGTA	CCCAA					1395

₋ 5

	(2)	INFORMATION	FOR	SEO	ID	NO:	89
--	-----	-------------	-----	-----	----	-----	----

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1186 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 89:

	GCACGAGCC	GGCAAGCCGA	GCTAGGGTGA	AAACTGGGGG	CGCACCAGGA	TGTNINGACAG	60
15	AAAAGCAGAA	GATGAGACTC	TGTTCATTCA	CTTTTCCTAG	GCCCATCCTG	TGGTCATCTT	120
	TCCCCCTCCC	ATCATACCTC	CTCCTTCCTG	GAGCCTCTGC	CGCCTTGCCT	GTAATGGTGG	180
	CACTTACCTG	GATATTICAG	TGGGAGGATG	AAAGGCGAGA	CTCACCCTAC	GCGGTGGGAC	240
20	AGATGGGGAG	AGGAAAAAGG	CAGAGATGGC	CAGGAGAGGG	GTGCAGGACA	AACCAGAGAG	300
	GTTGGGTCAG	GGGAAAAGGG	TGGGGAGAAA	GAGGGGTGCA	GCCCTGCAG	GCCGGTTAGC	360
2.5	CAGCAGCTGC	GCCTCCCCG	GCCCTTGGC	ATCCAACTTC	GCAGACAGGG	TACCAGCCTC	420
	CTGGTGTGTA	TCATAGGATT	TGTTCACATA	GTGTTATGCA	TGATCTTCGT	AAGGTTAAGA	480
	AGCCGTGGTG	GTGCACCATG	ACATCCAACC	CGTATATATA	AAGATAAATA	ТАТАТАТАТА	540
30	TGTATGTAAA	TTATGGCACG	AGAAATTATA	GCACTGAGGG	CCCTGCTGCC	CTGCTGGACC	600
	AAGCAAAACT	AAGCCTTTTG	GTTTGGGTAT	TATGTTTCGT	TTTGTTATTT	CTTTCTTTTT	6 60
35	GTGGCTTGTC	TTATGTCGTG	ATAGCACAAG	TGCCAGTCGG	ATTGCTCTGT	ATTACAGAAT	720
,,,	AGTGTTTTTA	ATTCATCAAT	GTTCTAGTTA	ATGTCTACCT	CAGCACCTCC	TCTTAGCCTA	780
	ATTTTAGGAG	GTTGCCCAAT	TITGTITCTT	CAATTTTACT	GGTTACTTTT	TTGTACAAAT	840
40	CAATCTCTTT	CTCTCTTTCT	CTCCTCCCCA	CCTCTCACCC	TTGCCCTCTC	CATCTCCCTC	900
	TCCCGCCCTC	CCCTCCTCCC	TCTGGCTCCC	CGTCTCATTT	CTGTCCACTC	CATTCTCTCT	960
45	CCCTCTCTCC	TGCCTCCTGC	TGCCCCCTCC	CCAGCCCACT	TCCCCGAGTT	GTGCTTGCCG	1020
7.0	CTCCTTATCT	GTTCTAGTTC	CGAAGCAGTT	TCACTCGAAG	TTGTGCAGTC	CTGGTTGCAG	1080
	CTTTCCGCAT	CTGCCTTCGT	TTCGTGTAGA	TTGACGCGTT	TCTTTGTAAT	TTCAGTGTTT	1140
50	CTGACAAGAT	AAAAAATT	AAAAAGGAAA	ААААААААА	ААААА		1186

55 (2) INFORMATION FOR SEQ ID NO: 90:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1821 base pairs

(B) TYPE: nucleic acid

60 (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 90:

	,,,,	,					
- 5	AAAACATGCT	TTCAGGGCGT	CCCCTATGTA	TTCGGGGGGC	CCACGGACAC	TCAGGCTGGA	60
	KATCCGTCCT	CACTGCGCTC	AAGATGCCCT	CAGCAGACAC	CAGTTACCCA	GCTGAAAGTC	120
10	ACAATCCCTC	CCAGAAGTCT	CCCAACACTA	GTGCTGACCA	GAGGTGGGGC	TCTCAGGCTA	180
10	GGAGTTTCAC	ACACAATGAC	AGGCTGCTGG	GGGACATTGC	AGGACCCCTT	TTCCTYTCCT	240
	CTCCATGCTA	GAAGCCAGCC	CTAGGMAGCT	GCAGTTACTC	CCTGTGACTC	AGCAGCAGGC	300
15	TGATTCAACA	CAGCTGCCCA	CACAAAGCCA	GTGGTAATAC	ATCTGTTTAC	CTTTCCCTAT	360
	CACCCAGACA	CAAGCCCCTT	TCCCAGGTCA	AACCACAGGC	CGATGCATCT	CCAGTTTGAC	420
20	AGTCAAATCA	CTACTTCCAT	TGCTACTTTA	GATCAGCCAA	AGTGGTGACT	GCTGCAGTGT	480
20	GTGGCTATCC	CTACAAGGCC	CACCCAAGGG	ATGCCCAAAG	CCCAACCTTC	TCCAGGGCTG	540
	CAGCAGNAGC	AACCCCACCA	GCCTAAGTCC	AGCAGAGGAC	CTCCCACCCA	ATGTCTTGTT	600
25	CTAATTAGAA	GGGGAAGTTA	GCCACAGAAA	ATCAACTTAT	СТАТААТТАС	AAAATTCTCT	660
	TGACTCACCT	TAAAGTTCCT	ATTGACATCT	ACTGCTTTTA	AACCTATTIG	AAAACTCTGA	720
30	TACTAAAACA	AATGACACTC	TAAGAAAGTT	TGGGAGCCCC	ATGCTGAGAA	CCATTTCTGT	780
30	GCAGTGAGGA	TGTTTCCAGA	AGCTACTTAC	CTACATGTGA	ATGTGCCATT	TTCTTTCCTT	840
	TTGTAGAGAA	AATCCCCTTT	ACTITITIGGA	ACAGTAATGG	CAGCTTCTAG	TACAGCCATT	900
35	ACAGTTTCAT	ATGAGAAAAA	TTAAGAATAA	СТАТААААТТ	GTTAAAATAT	CCAATAATGG	960
	ATAATGATGG	CCAGAAGATT	TAACATACAA	AGTAATTCTC	AATGTAAAGC	TATTCAGCTC	1020
40	TTCCAGGITG	AATGCCCTGT	AACCCACCCT	GACCTTCCAC	ATCATCTTCA	AAAAGCAGTT	1080
40	TCTCTGTTCC	CCATGATTCT	CCTATAAGGT	AACTCTTTAG	TCCTCCATTT	AGCACATTTT	1140
	AAATCCTCCA	AAGAATAAGT	ATCATGTGAT	TATTTTAGCT	ТТАСААААА	AAAGTTGAAT	1200
45	GGCGTTTTAT	TTTCATGGCC	TATAAGCAGG	TACCTTAGTA	GGGCAGATAT	AGGAAAAACA	1260
	AATTAGAGCA	AAACAAATCC	TCTACAAATC	CAAGGCAGGA	AAAGTGGTGG	CAGAGTGACT	1320
50	CATTCTCCTG	TCCCTCCCAT	CAGGTCAAAT	CAGGAGGCTG	CAGTGAATGC	CTGTTCTTTG	1380
30	AATGTGTAGC	AGTTGTTCCT	GTAACTCTTT	AAAACTTGGC	TATAGGCTGT	TTAGCACAGT	1440
	ACAGATTAAA	GATACAGTTA	CGTAAACAGC	AAAGTAATTT	TATAGTGCTT	CATCCATTTA	1500
55	TCATGCTTTG	GTTTGCTAAT	TTTTTCACAT	ACCTTTTTCT	ATCACAGTCT	GTTGCTTTTG	1560
	TACACATTTC	TCATATTGGG	GTTCGACAGG	ТАААСАСААА	CTGCTATTTC	AGTAGAAAAA	1620
60	GTTATTGTTA	. ТОСААТАТТА	AACCCAATAA	ATTGTATAAA	GGGTAAAAAA	АААААААА	1680
60							

	AAAAAAAAA AAAAAAAAA AAAAAAATTC CTGCGGGCCG CANGCTTTTT CCCTTTGGGT	1740
	GAGGGGTTAT TTTNGGCTTG GGCACTGGGC CCTTCGTTTT TACAACGTCG TGANGGGGG	1800
.5	AACCCGGGGG GGGTTTCCCC C	1821
10	(2) INFORMATION FOR SEQ ID NO: 91:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 862 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 91:	
20	TGCCCTTTTT CCCACCGATT CGGGGCNTGG TGAAGGTGGG AGATGTGAAC TCCAATTAAG	60
	GGACTGGAGA GAGGTGAAGA ATTITGCAGG TGGGAGATTT GGATTTGAAT GTGGACTTGT	120
25	AAATGACTTG ACCTTGCCAT CTGTGTTCAA GGTCACGGTT TGCTGTGGGG TTCCTGGGAG	180
	ACCITACICA CCCCGGAGIC TITTCTTICT CITGCTCCAA GAAGAGCCCT GITGGTGCTT	240
	TACCACCGCT TGGAGTCTCC CGAGGACACA AACAGGCAGA GAGGGACGTG TAGGGAGAGT	300
30	TCTTTCCTGT TTTCTGTGCT TTCCTTTTTA CAGGACTCCC GGAAGGCCAC TCATGGCCAT	360
	GCCAGGAGCT TTCTCAGAAA CAGTCATAAA CGATCTCTTG AGTCTCTTTC TTGTCCTCCC	420
35	AGCTGAGCTT TCTTATTCCA CCCTTTCTGG TGTCTATAGG AATGCATGAG AAGACCCTGG	480
	GACGITITIC TGCTCTTIC TGGCCCTCCA TGGAGCCATG GGCCTCGGCC TCGGCGGCTC	540
	CTCACCCTCA CAATTTATTT CCTCCTCCCG TGCCAGCCCT TCTTTTGTGT CTGAAACCGG	600
40	TTTTAAAATG TGACTCTCCC AGAGAAGAAG CCGCTGGCTG TATGAAACTT GACGGCGCTT	660
	TTGTAAGGTG CCACCCCAA ACTTTAAGGT AGCTAAACCA ATTTTTAAAA GATTCAATGG	720
45	CTTGTTCATC CTCCAGATGT AGCTATTGAT GTACACTTCG CAACGGAGTG TCTGAAATTG	780
	TGGTGGTCCT GATTTATAGG ATTTCATAAT TAAAATGTCT GCTGAATAAA AAAAAAAAA	840
	AAAAACTCGA GGGGGGCCCG GT	862
50		
	(2) INFORMATION FOR SEQ ID NO: 92:	
55 60	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 696 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	

600

660

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 92:	
	CTGAGGCGAG TGAAGTGGAC TCTGAGGGCT ACCGCTACCG CCACTGCTGC GGCAGGGGCG	60
- 5	TOGAGGCAG AGGCCGCGG AGGCCGCAGT TGCAAACATG GCTCAGAGCA GAGACGGCGG	120
	AAACCCGTTC GCCGAGCCCA GCGAGCTTGA CAACCCCTTT CAGGACCCAG CTGTGATCCA	180
10	GCACCGACCC AGCCGGCAGT ATGCCACGCT TGACGTCTAC AACCCTTTTG AGACCCGGGA	240
10	GCCACCACCA GCCTATGAGC CTCCAGCCCC TGCCCCATTG CCTCCACCCT CAGCTCCCTC	300
	CTTGCAGCCC TCGAGAAAGC TCAGCCCCAC AGAACCTAAG AACTATGGCT CATACAGCAC	360
15	TCAGGCCTCA GCTGCAGCAG CCACAGCTGA GCTGCTGAAG AAACAGGAGG AGCTCAACCG	420
	GAAGGCAGAG GAGTTGGACC GAAGGAGCGA GAGCTGCAGC ATGCTGCCCT GGGRGGCACA	480
20	GCTACTCGAC AGAACAATTG GCCCCCTCTA CCTTCTTTTT GTCCAGTTCA GCCCTGCTTT	540
20	TTCCAGGACA TCTCCATGGA GATCCCCCAA GAATTTCAGA AGACTGTATC CACCATGTAC	600
	TACCTCTGGA TGTGCAGCAC GSTGGNTCTT CTCCTGAAYT TCMTCGSCTG CCTGGCCAGT	660
25	TCTGTGTGGA AACCAACAAT GGCGAGGCTT TGGGTT	696
30	(2) INFORMATION FOR SEQ ID NO: 93:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1886 base pairs (B) TYPE: nucleic acid	
35	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 93:	
40	CAGGCCACTG ACGCTTCTTT GCGAGGGATG CAGGAGGTCC TACAGAGAAA GGCGCTTCTT	60
	GCATKTCAGA GGGCCCACAG CCTGTCACCC ACAGATCACC AAGCAGCTTT CTACCTGGCT	120
45	CTGCAGCTTG CCATCTCCAG ACAGATCCCA GAGGCTCTGG GGTATGTCCG CCAAGCTCTT	180
	CASCITICAAG GIGACGATGC CAACTCCCTG CACCITCCTTG CCCTCCTGCT GTCAGCACAG	240
	AAGCATTACC ATGACGCTCT GAACATCATC GACATGGCCC TGAGTGAATA CCCAGAAAAT	300
50	TTCATACTAC TGTTTTCCAA AGTGAAGTTG CAGTCACTCT GCCGAGGCCC GGACGARGCA	360
	CTGCTGACTT GTAAGCACAT GCTGCAGATA TGGAAATCCT GCTACAACCT CACCAACCCC	420
55	AGTGATTCTG GACGTGGGAG CAGCCTCTTA GATAGAACCA TTGCTGACAG ACGACAGCTT	480
- -	AATACAATTA CTTTGCCAGA CTTCAGCGAT CCCGAGACAG GCTCCGTCCA TGCCACATCG	540

GTAGCAGCCT CAAGAGTGGA GCAGGCACTG TCGGAAGTGG CTTCGTCTCT GCAGAGCATG

CCCCTAAGCA GGGCCCGCTG CACCCCTGGA TGACGCTGGC ACAGATCTGG CTCCATGCAG

CTGAAGTCTA TATCGGCATC GGGAAGCCTG CAGAAGCCAC AGCCTGTACC CAAGAAGCTG

. 5	CCAACCTCTT	CCCAATGTCC	CACAATGTCC	TCTACATGCG	CGGCCAGATT	GCTGAGCTCC	780
	GGGGAAGCAT	GGACGAGGCG	CGCCGCTGGT	ATGAAGAGGC	CTTAGCCANT	CAGCCCCACC	840
	CACGTGAAGA	GCATGCAGCG	ACTTGGCCCT	GATCCTTCAC	CAGYTAGGCC	GYTACAGTYT	900
10	GGCGGAGAAG	ATCCTCCGGG	ACGCGGTGCA	GGTGAACTCG	ACAGCCCACG	AGGTCTGGAA	960
	CGGGCTGGGC	GAGGTCCTCC	AAGCTCAGGG	CAACGATGCG	GCGGCTACGG	AGTGCTTCCT	1020
15	GACAGCCTTG	GAGCTGGAGG	CCAGCAGCCC	CCCCTCCCC	TTCACCATCA	TCCCCCGCGT	1080
••	GCTCTGAGCA	GGCGCCTGCC	AGCCTCACCT	GCCGCTCAGC	CTNCAGAGGC	CCTGCCGGGC	1140
	ACCAGGGCTT	GTGCCATCGC	CCCAAGGGGA	TGAATCTGCC	GCACTGAGGC	CAGGGACGAG	1200
20	TGTTCAGTGG	GCCACAGTGA	ACCAACCAAA	CCAACCCCGA	ATCATCGCTC	TCGCCATGTG	1260
	CGTTTCTCTT	CTTTTTTTTG	CCAGCCCAAT	GGTAGTTTCT	GAACCTATTG	ACATTGTTCA	1320
25	AAATGGATCA	TGTGCCATAT	TTTGTTAGTT	GACATCTGAG	TTTTCAGTAA	STATTADTAA	1380
	GAATTAATCA	GCAAATGTAG	AAGAATATAT	TCAAAGTTAA	AATTCAGTGG	CAGCACAGAT	1440
	TATTTTTATC	AGAGCTGTAA	AGAAAACAAC	TGTCCTTTTC	TCCCCACCAC	CCCTCCTGCC	1500
30	CCACTTTGGC	CCAGAAACCA	AATGTGAACT	TCCTGTCTCC	CACCTCAGCA	CTAGTCCATG	1560
	CCAGGACACC	AGCTGACAAT	TTCTTGGTTT	TACTGTCAAT	AATTGTACCA	TGTGATCAAT	1620
35	TACTGTCCTC	ACTTAGAACA	AAGCCTGAGT	CCGAGAATAT	ATTTTATATT	CCAATATATG	1680
	CCTGTTACAA	GAGAAGGAAA	TATGAGTTAT	TTAAGTTTAA	CTTTTTTATG	TGAATTCAGA	1740
	GTTTATTTAT	CGAGGGAAAT .	ATGTACAAAG	AAGCTTCAAA	TGGAATATTT	ACCGACATTC	1800
10	CTTATACATG	ACAGACACTT	GGCTACATGG	GAAGATGATG	AATAATT	AATGATTTT	1860
	AAATGGAAAA	AAAAAAAAA	AAAAAN				1886
1 5							
	(2) INFORMA	TION FOR SE	Q ID NO: 94	:			
50	(i)	(B) TYPE (C) STRA	WARACTERISTI STH: 1774 ba E: nucleic a ANDEDNESS: (OLOGY: linea	ase pairs acid double			
55	(vi	SEQUENCE D		•••	. 94.		
				_		mes commerc	60
		GTATACAGTA					60
50	CICCICICCC	CCCACATTGA	AGATGPTCTT	TTTCATAAC	TATATACTAT	TCCATTGCAT	120

	GAATATICIG	TAATTTATTT	AATCCCCTAT	GGATTGATAA	TTAGGITCAT	TATAGATAGA	180
	ACTGTAATTA	ACATTCCTGT	ACATGTATTT	TGCTACTTGT	GTGGGTATTT	CTGTAGGATG	240
-5	AATAACTAGA	AATTTATTGG	ATCAGGTTTC	ACATTTOCAG	TTTTGAAAAC	TACTACCAAA	300
	AAGATTTCAC	CAATTTACAA	CTCCATCATT	AGTAAGAATG	CCTGTTTGCC	TATAGTCTGC	360
10	CAACCCTGAA	TCCTTAAAAA	TTTTTGCCAA	TCTGGTAGGC	AAAATITCTT	TCTTTCTT	420
	GAATATTAAT	GAGGAGGAAC	ATCTTTTCAT	GTTTCTTGGC	CATTTGCATT	TCCTATTATG	480
	AATTGCTTTT	GCCCATTTTC	CTTTTTTTAA	TTATGAAAGT	CTAATGACTA	CCTTCTCATT	540
15	GTATAAAAA	CACAGTTCTT	TGAATAGAGA	GACCCTTTTC	TCCAATGCTA	CCAATCACAT	600
	TCCACTTACC	ACAGTTTAAC	ATACATCCTC	TAGTCACCTT	TCCGTACGAA	TATACATACA	660
20	CATAAAAACA	CTTTTTACAT	AAATAGGATC	TCATATTCTG	TAGCTTTTTA	AAATTTTGGT	720
20	CTCAAAAAAA	GATAACAGGT	CTTTAAATTT	CTTTAATGGT	TGAATATGAT	TAAATACTAT	780
	GAAAATGCCA	TTATTTATTC	CCTTAATTTT	TTTCCTCTCG	CTATTACATT	GCCAAAGTAA	840
25	ACATCCTATT	CAGATGTCTT	TGTGCATGTG	TGTGAATATT	TCTTTAGTCT	GGAGTCCAGT	900
	AAGGTGGATT	TTTGGATCAA	AGGGTTTGTT	CTCTGTCCAC	CTTCAGTCTT	CCCAAAGGCC	960
30	TTCATAACTG	TATTITCACC	AAGTGTATGG	AGAATGTTCA	TTTCCCCATA	TAACCATACC	1020
	TACACTTGAT	AGTTTTTATC	TGTTGGGCGA	AAAAGAACCT	TTTCTTATTT	TGCATTTCCC	1080
	TGATTATAAA	AAAAAATGGT	GAGATTGGGG	TTATTTTCAT	GTTTATTGGC	CATTTATAGT	1140
35	TTACTGTGGA	TIGITIGIAT	CCCTTACCTG	CTTTCTATTG	GGTTATGTGT	GGATATATIG	1200
	TTTTTATTTG	TTCAGCATCT	CCTTCCCCAT	CTTCTGGTAA	CACAACCTTT	ATTTATTTGT	1260
40	GGGGAACCTA	TTCCCTGTGG	CTTAGGTGAG	CATGTGACCA	GCCTGCCCT	CCTGAGTCCC	1320
,,	ACAGCTTCCT	AGCCACAGTG	ATAAAAGAAT	GGGTATATAA	CTTAAGCCAG	GCTAAGGAAA	1380
	GCCCTTAACA	GAACTTCTGC	TGGAACTACT	GGAAAGAAGG	CTTTATGGAG	ATCCCAGGAA	1440
45	CCAAGGACCA	TGTAAGCCTG	AATTTGTGCC	ATGTGGAGAG	AGTCTGTCTG	AGGAGAAACT	1500
	CGGATGCTAG	CAGAAATGGA	AAGAGAACTA	AGTTCTGATG	TCATTTTTCT	GGAGGCCCTA	1560
50	GATCCAGCTG	TGCCTAAAGC	CTGCCCTACT	CCGGACTITA	AAGTTTTGTG	AGCCAATAAA	1620
50	GICCCTTTCT	TGTTTAAGAT	AATTGAATTG	AGTTTCTGTT	CTGATTAATA	TAGGTTATTT	1680
	GTATTTTCTT	ATTGATTTGT	AGAAAACCTT	TGTAATTTTA	AATTCTAGAC	TTTATGCACT	1740
55	ATATAAGTTA	ATAAAATTAG	CATGGCCTTC	CATG			1774

^{60 (2)} INFORMATION FOR SEQ ID NO: 95:

20.02 110

- 5

WO 98/39448 PCT/US98/04493

316

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2503 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 95:

10	GGCACGAGCG	AAGGCAAGGG	GGCACCAGCT	CAGGACTGCA	TCTGCCTGCC	ATTTCCCTTC	60
	CACTCCTCCT	TICTGGAGTC	TGACATTAGA	AAGCCAGCGA	GAAGGAAGAT	TCAAACAACC	120
15	AACCCTGATT	TCCTGCTTCT	CCTTTTCATG	AGTGTTCCTG	TGGTCTCTGC	ACCTCCTTTC	180
15	TGTCCCCCGG	CAGAGGGCAG	TAGAGATGGC	CGGCCCAAGG	CCTCRGTGGC	GCGACCAGCT	240
	GCTGTTCATG	AGCATCATAG	TCCTCGTGAT	TGTGGTCATC	TGCCTGATGT	TATACGCTCT	300
20	TCTCTGGGAG	GCTGGCAACC	TCACTGACCT	GCCCAACCTG	AGAATCGGCT	TCTATAACTT	360
	CTGCCTGTGG	AATGAGGACA	CCAGCACCCT	ACAGTGTCAC	CAGTTCCCTG	AGCTGGAAGC	420
25	CCTGGGGGTG	CCTCGGGTTG	GCCTGGGCCT	GCCAGCCTT	GCCTGTACG	GCTCCCTGGT	480
23	CCTCACCCTC	TTTGCCCCCC	AGCCTCTCCT	CCTAGCCCAG	TGCAACAKTG	ATGAGAGAGC	540
	GTGGCGSCTG	GCAGTGGGCT	TCCTGGCTGT	KTCCTCTGTG	CTGCTGGCAG	GCGCCTGGG	600
30	CCTCTTCCTC	TCCTATGTGT	GGAATGGGTC	ARGCTCTCCC	TCCCGGGGCC	TGGGTTTCTA	660
	GCTCTGGGCA	GCGCCCAGSC	CTTACTCATC	CTCTTGCTTA	TAGCCATGGC	TGTGTTCCCT	720
35	CTGAGGGCTG	AGAGGGCTGA	GAGCAAGCTT	GAGAGCTGCT	AAAGGCTTAC	GTGATTGCAA	780
J.J	GGGTTCAGTT	CCAACCATGG	TCAGAGGTGG	CACATCTGCT	CAGCCATCTC	ATTTTACAGC	840
	TAACGCTGAT	CTCCAGCTCC	AGCGATGGAA	CCCACTACAG	AGGAGGTGGG	GCCCCTGTGT	900
40	CAAAGAGGCC	GAGGGGCAGC	AAGGGCAGMC	AGGGCACCTG	TGACTTCTTA	GTACAAGATT	960
	GTCTGTCCTT	CAGGACTTCC	AAGGCTCCCA	AAGACTCCCT	AAACCATGCA	GCTCATTGTC	1020
45	ACACCAATTC	CTGCTTTAAT	TAATGGATCT	GAGCAAATCT	TCCTCTAGCT	TCAGGAGGGT	1080
40	GGGGAGGGAG	TGATTGCTGT	CATGGGGCCA	GACTTCCAGG	CTGATTTGCC	AAATGCCAAA	1140
	ATGAAACCTA	GCAAAGAACT	TACGGCAACA	AACGAGGACA	TTAAAAGAGC	GAGCACCTCA	1200
50	GTGTCTCTGG	GGACATGGTT	AAGGAGCTTC	CACTCAGCCC	ACCATAGTGA	CTCCCCCCC	1260
	ATAAGCCATC	ACTGGAACTC	CAACCCCAGA	GGTCCAGGAG	TGATCTCTGA	GTGACTCAAC	1320
55	AAAGACAGGA	CACATGGGGT	ACAAAGACAA	GGCTTGACTG	CTTCAAAGCT	TCCCTGGACC	1380
55	TGAAGCCAGA	CAGGGCAGAG	GCGTCCGCTG	ACAAATCACT	CCCATGATGA	GACCCTGGAG	1440
	GACTCCAAAT	CCTCGCTGTG	AACAGGACTG	GACGGTTGCG	CACAAACAAA	CGCTGCCACC	1500
60	CTCCACTTCC	CAACCCAGAA	CTTGGAAAGA	CATTAGCACA	ACTTACGCAT	TGGGGAATTG	1560

	TGTGTATTIT CTAGCACTIG TGTATTGGAA AACCTGTATG GCAGTGATTT ATTCATATAT	1620
- 5	TCCTGTCCAA AGCCACACTG AAAACAGAGG CAGAGACATG TACTCTGGTG TGATCTCTTG	1680
- 5	TCCTCAGTGT CTCTTCTGGG CTCCTGTCCC TCTTGCTTTA TAGCTAGCTG CCCGGGGACC	1740
	AAGGTACAGG TGAAAGCAAG GTAGCAGCTT GCGGGAGGAG GCCTGTCTGG CTTACCAGTC	1800
10	TATACACTGT GGCCTCAACC TCCCAGACAG GGCAGAGAAC TGTGGGCAGC TCGTTTGCTT	1860
	TCTAGGCTGG CTGGAGAGGT GGGAGCTCAT TGATAGACTC ATGATGGAAA CTATTTTTGA	1 9 20
15	AACAGGCTTC CTCCTTCAGG AGAGATCATG CGGACTAAAC TGTAGCAATT CCAGTGCACC	1980
15	TGGCAGTGAT CCTTTTCTTT GCAAAGTACT GTCTCTTTGG TTCCAGTAAG TTGGACCACC	2040
	ACATGACATY ATTITCCCTG GAACCTGGTC ACTGACTAAC ACAGACAATT GGGACTCCAG	2100
20	AGCCTCAAGA GCCAGGAGAG GGCACAGTAC ATACAGAGGG AGTCAAATGG GATCTCATTT	2160
	TGAGTCCTGC CTTCCGCACA CTCAGAACGG CANCCCCAAG GCCCGGAGTG TCCAGGGCTT	2220
25	CTGGCCTGAG GTGAATCTGC CAGGCCCAAG AAGGCACAAA GGTAGGAGCA CAGAGAGCCC	2280
23	CATTCCCACA GGCGGKCGGC CCAGCAGCAC CAGTGGAAGC TCAGCTGTCC TCCAGCTGCT	2340
	CTCGGCAGAC AGTTCAGTGC ACAGTTTATG CCCTAGCTGA AAAAGATCTC CCGGACGTAT	2400
30	TTCAGCACAT CCTCTTCCTC CTCCTCCTCA GGGCTCCTGC TACAGGCAGA GCTGGAACCC	2460
	CCCGGCCTCT GGGAAGGGCT GAGGCCTGGA GYCAGTGCCT GTC	2503
35		
	(2) INFORMATION FOR SEQ ID NO: 96:	
	(i) SEQUENCE CHARACTERISTICS:	
40	(A) LENGTH: 2801 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 96:	
	CTGGAAAGCC GAGGGTAGCC GAGCGGGGCG GGCGCTCTGG AGCGGCGGGT GCTCGGGCTG	60
	CCGTCCGCTC CGCCAGAAGC ACCGAGCAGC CGAGCCGGGG CCCGCCGCCC TCCTCCTCCA	120
50	TGAGGCCCGA GTGAGGCGCG GCGCTATAG CCGACCCGCG GCGCCTTCCC CCCGCGTCCT	180
	ATCGCGAGCG CACGACMAGC GGCCCCTGGA GGAGGAGGCG GAGGAGGAGG AGCATGTCGG	240
55	ACGGTTTCGA TCGGGCCCCA GGTGCTGGTC GGGGCCGGAR CCGGGGCCTG GGCCGCGGAG	300
	GGGGCGGCC TRAGGGCGGC GGTTTYCCGA AMGGARCGGR GCCTGCTGAG CGGRCGCGGC	360
	ACCAGCCGCC GCAACCCAAA GCCCCGGGCT TYCTGCARCC AMCGCCGCTG CGCCARCCCA	420

CTCGAAAACG ATTTCATGCA TTTGTACTCT TTCTGGGAGA ACTTTATCTT AACCTGAGA TCAAGGGAAC AAATGGACAG GTTACAAGAG CAGATATTCT TCAGGTTGGT CTTCGAGAAT 25 TGCTGAATGC CCTGTTTTCT AATCCTATGG ATGACAATTT AATTTGTGCA GTAAAATTGT TAAAGTTGAC AGGATCAGTT TTGGAAGATG CTTGGAAGGA AAAAGGAAAG ATGGATATGG AAGAAATTAT TCAGAGAATT GAAAACGTTG TCCTAGATGC AAACTGCAGT AGAGATGTAA AACAGATGCT CTTGAAGCTT GTAGAACTCC GGTCAAGTAA CTGGGGCAGA GTCCATGCAA CTTCAACATA TAGAGAAGCA ACACCAGAAA ATGATCCTAA CTACTTTATG AATGAACCAA 35 CATTTTATAC ATCTGATGGT GTTCCTTTCA CTGCAGCTGA TCCAGATTAC CAAGAGAAAT ACCAAGAATT ACTTGAAAGA GAGGACTTTT TTCCAGATTA TGAAGAAAAT GGAACAGATT TATCCGGGCC TGGTGATCCA TACTTGGATG ATTATGATGA GCGAAAACAG TAAAGTTAAA TTTCAGCATTA TGAAAAGTTT TGTTTGGAAT CAGAGGGTAA GCGAAAACAG TAAAGTTAAA TTTCAGCATTA TCAGTTTTAT AAAGCAGTTT AGGTATCGTG ATTTTAGCAGA ACACAAGAGA 45 GCAAGAAAAT GTGTCACATC TATACCAAAT TRAGGATGTT GAGTTATGTT ACTAATGTAT GCAACTTTAA TTTTGTTTAA CACTATCTGC CAAAATAAAC TTTATTCCCT ATAACTTAAA ATGTGTATAT ATATATAATA GTTTATTATG TACAGTTAAT TCTACTGTTT TGGCTGCAAT TGAAATGGAT TGGAGAGAAA AGGCTTAAT TCTACTGTTT TGGCTGCAAT CTTTAAATTC TACTTTTCTT GAGGGGAAAA AGTCTTCGTC TGGAAATACA TATTACTGCA 55 AAAATGTAGC ATCCTTTTTT AGGTAGGAGT ATTATAGCTT YCATTTTAGT TKGACATTTAA GTGTCCCAAT GAATTGAATT TCAAATATGA ATCATAATCT TGAAAATCTT TAGCACTAAA GTGTCCCAAT GAATTGAATT TCAAATATGA ATCATAATCT TGAAAATCTT TAGCACTAAA		GGACGACCCC	GCCGCCAGGG	GCCCAGTGCG	AGGTCCCCGC	CAGCCCCCAG	CGGCCTTCCC	480
TATTAATOTIC TAAOCTOTCT GTGAATGCCC CTGAATTTTA CCCTTCAGGT TATTCTTCCA GTTACACAGA ATCCTATGAG GATGGTTGTG AGGATTATCC TACTCTATCA GAATATGTTC AGGATTTTTT GAATCATCTT ACAGAGCAGC CTGGCAGTTT TGAAACTGAA ATTGAACAGT TTGCAGAGAC CCTGAATGGT TGTGTTACAA CAGATGATGC TTTGCAAGAA CTTGTGGAAC TCATCTATCA ACAGGCCACA TCTATCCCAA ATTTCTCTTA TATGGGAGCT CGCCTGTGTA ATTACCTGTC CCATCATCTG ACAATTAGCC CACAGAGTGG CAACTTCCCC CAATTGCTAC TTCAAAGATG TCGGACTGAA TATGAAGTTA AAGATCAAGC TGCAAAACGC GATGAAGTTA CCTCGAAAACG ATTTCATGCA TTTGTACTCT TTCTGGGAGA ACTTTATCTT AACCTGGAGA TCAAGGGAAC AAATGGACAG GTTACAAGAG CAGATATTCT TCAGGTTGGT CTTCGAGAAT TAAAGTTGAC ACGATCAGTT TTGGAAGATG CTTGGAAGAG AAAACGAAGA ATGGATATGG TAAAAGTTGAC ACGATCAGTT TTGGAAGATG CTTGGAAGAG AAAACGAAGA ATGGATATGG AAGAAATTAT TCAGAGAATT GAAAACGTTG TCCTAGATGA ACACGAGAG ATGGATATGG AACAGATGC CTTGTAAGCTT GTAGAACTCC GGTCAAGTAA CTGGGGCAGA GTCCATGCAA CTTCAACATA TAGAGGAAGCA ACACCAGAAA ATGATCCTAA CTGCGGCAGA GTCCATGCAA 35 CATTTTATAC ATCTGATGGT GTTCCTTTCA CTGCAGCTGA TCCAGATTAC CAGAGAAATT ACCAAGAATT ACTGGATGGT GTTCCTTTCA CTGCAGCTGA TCCAGATTAC CAGAGGAAAT ACCAAGAATT ACTGGATGGT GTTCCTTTCA CTGCAGCTGA TCCAGATTAC CAGAGGAAAT TATCCGGGGC TGGTGATCCA TACTTGGATG ATATTGATGA TGAGAAAACAG TAAACGTTAAA TTTCAGCATA TCAGTTTTAT AAAGCAGTTT TCCAGACTGA TGAGATAACA CCAGAGAAAA 40 AAGAACCTTA TGAAAAGTTT TGTTTTGAAT TAGGGATGTT GAGTTATGTT ACTAATGTATA TTTCAGCATA TCAGTTTTAT AAAGCAGTTT TGCAGACTGT ATTTAGCAGA ACACAAGAGA 45 GCAAGAAAAT GTGTCACATC TATTACCAAAT TRAGGATGTT TGCTTTGTT ACTAATGTAT GCAACTTTAA TTATTTTTAAA AGCTTTTCTTC CAAATTTAAT TCTACTGTTT TGCCTCCAAT AAAATCGATT TTGAAATAAA TGAAATGTTG AAAATTTTC TAGCTGTTA CTAAATGTAT CTTTAAATTC TACTTTTTTT AAGCAGAAAA AGTCTTCATC TGGAAAAACA TTTATCTCCAATTAC CTTTAAATTC TACTTTTTTT TGGGGGGAAAAA AGTCTTTATT TCTACTTTTTT TGGCCGCAAT AAAATCGATT TTGAAATAAA TGAAATGTTG AAAATTTTC TGGAAATACA TATTACCCAA GCCTTTGAAATTC TACTTTTTTT TAGAATTATA TCTACTTTTTT TCACCAATTA TTTATACTCT TAGAATTATAC TTTATACTCCAA GTCTTGAGAA TATTTACAACA ACTGATTTTAC ATATTATACTT TCAAATTTTAA TCTACTATAAC GTCTTGGGAA TATTATCAACA ACTGATTTTAC ATATTATACT TTTATTTCTAAATTTTAAACTTT		GCCCCGGGC	GCTCCCAGAG	CAAACGAGGC	CCCTGAGAGC	TCCACCTAGT	TCAÇAGGATA	540
GITIACACAGA ATCCTATGAG GATGGTTGTG AGGATTATCC TACTCTATCA GAATATGTTC AGGATTTTTT GAATCATCTT ACAGAGCAGC CTGGCAGTTT TGAAACTGAA ATTGAACAGT TTGCAGAGAC CCTGAATGGT TGTGTTACAA CAGATGATGC TTTGCAAGAA CTTGTGGAAC TTGCAGAGAC CCTGAATGGT TGTGTTACAA CAGATGATGC TTTGCAAGAA CTTGTGGAAC TCAACTATCA ACAGGCCACA TCTATCCCAA ATTTCTCTTA TATGGGACCT CGCCTGTGTA ATTACCTGTC CCATCATCTG ACAATTAGCC CACAGAGTGG CAACTTCCCC CAATTGCTAC TTCAAAGATG TCGGACTGAA TATGAAGTTA AAGATCAAGC TGCAAAACCG GATGAAGTTA CTCGAAAACG ATTTCATGCA TTTGTACTCT TTCTGGGAGA ACTTTATCTT AACCTGGAGA TCAAGGGAAC AAATGGACAG GTTACAAGAG CAGATATTCT TCAGGTTGGT CTTCCAGAAT TAAAGTTGAC CCTGTTTTCT AATCCTATGG ATGACAATTT AATTTGTGCA GTAAAATTGT TAAAGTTGAC AGGATCAGTT TTGGAAGATG CTTGGAAGGA AAAAGGAAAG ATGGATATCG AACAGATGCT CTTGAAGCTT GTAGAACTCT GTCTAGATCC AAACTGCAGT AGGATTATAC AACAGATGCT CTTGAAGCTT GTAGAACTCC GGTCAAGTAA CTCGGGCAGA GTCCATGCAA 35 CATTTTATAC ATCTGAAGAG ACACCAGAAA ATGATCCTAA CTCGCGCAGA GTCCATGCAA 36 CATTTTATAC ATCTGAAGAG ACACCAGAAA ATGATCCTAA CTCACTTTATG AATGAACCAA 37 ACCAAGAATT ACTTGAAAGA GAGGACTTTT TTCCAGATTA TGAAGAAAAT GGAACAGATT ACCAAGAATT ACTTGAAAGA GAGGACTTTT TTCCAGATTA TGAAGAAAAT GGAACAGATT 40 AAGAACTTA TGAAAAGTTT TGTTTGGATG ATTATGATGA TGAGATGGAC CCAGAGATAG 41 TATCCGGGGC TGGTGATCCA TACTTGGATG ATATTGATGA TGAGATGGAC CCAGAGATAG 42 AAGAACTTA TCAGATACAA TAAACCAAAT TRAGGATGTT GAGATACAGA ACACAAGAGA 43 GCAAGAAAAT GTGTCACATC TATACCAAAT TRAGGATGTT GAGATTATGTT ACTAATGTATA 44 AAAATCGATT TTGAAAATAAA TGAAATGTTG CAAAATAAAC TTTTATCCCT ATAACTTAAA 45 AAAATCGATT TTGAAAATAAA TGAAATGTTG AAAAATTTTCC TAGGAATACA TATTACCGCA 55 AAAATTGATT ATATTAAATA GTTTTATTATG TACAGTTAAT TCTACTGTTT TGCCTCCAAT AAAATCGATT TTGAAAATAAA TGAAATGTTG AAAAATTTTCC TGGAAATACA TATTACCGCA 56 AAAAATCGAT TATACCAAAT TAAAATTGTG ATCATTATCT TGGAAATACA TATTACCGCA 57 AAAATTGAC ATCCTTTTTT AGAGGAGGAT ATTATACCTT TGGAAATACA TATTACCTGCA 57 AAAATTGACT GATTTTTTTT AGAGGAGGAT ATTATACCTT TGGAAATACA TATTACCTGCA 57 AAAATTGACA ACTGATTTTT TAAAATTGA ATCATAATCT TGAAAATCTT TAGCACTAAA 57 CTTGGGGAA TAATTCAACA ACTGATTTTCC TATTATCTCT TGAAAATCT	-5	AAATCCCACA	GCAGAACTCG	GAGTCAGCAA	TGGCTAAGCC	CCAGGTGGTT	GTAGCTCCTG	600
AGGATTITIT GAATCATCTT ACAGAGCAGC CTGGCAGTIT TGAAACTGAA ATTGAACAGT TTGCAGAGAC CCTGAATGGT TGTGTTACAA CAGATGATGC TTTTGCAAGAA CTTGTGGAAC TTGCAGAGAC CCTGAATGGT TGTGTTACAA CAGATGATGC TTTTGCAAGAA CTTGTGGAAC TCAACTATCA ACAGGCCACA TCTATCCCAA ATTTCTCTTA TATGGGAGCT CGCCTGTGTA ATTACCTGTC CCATCATCTG ACAATTAGCC CACAGAGTGG CAACTTCCGC CAATTGCTAC TTCAAAGATG TCGGACTGAA TATGAAGTTA AAGATCAAGC TGCAAAACCG GATGAAGTTA CTCGGAAAACG ATTTCATGCA TTTGTACTCT TTCTGGGAGA ACTTTATCTT AACCTGGACA TCAAGGGAAC AAATGGACAG GTTACAAGAG CAGATATTCT TCAGGTTGGT CTTCGAGAAT TAAAGTTGAC AGGATCAGTT TTGGAAGATG CTTGGAAGGA AAAAGGAAAG ATGGATATGG AAGAAATTAT TCAGAGAATT GAAAACGTTG TCCTAGATGC AAACTGCACT AGAGATGTAA AACAGATGCT CTTGAAGCTT GTAGAACCTC GGTCAAGTAA CTGGGGCAGA GTCCATGCAA CTTCAACATA TAGAGAAGCA ACACCAGAAA ATGATCCTAA CTACTTTATG AATGAACCAA 35 CATTTTATAC ATCTGAAGAG GAGGACTTTT TTCCAGATTA TGAAGAAAAT GGAACAGATT ACCAAGAATT ACTTGAAAGA GAGGACTTTT TTCCAGATTA TGAAGAAAAT GGAACAGATT TATCCGGGGC TGGTGATCCA TACTTGGATG ATATTGATGA TGAGATGAC CCAGAGAAAT ACCAAGAATT ACTTGAAAGA GAGGACTTTT TTCCAGATTA TGAAGAACAG CCAGAGAATA 40 AAGAACCTTA TGAAAAGTTT TGTTTGGATG ATATTGATGA TGAGATGGAC CCAGAGATAG 45 GCAAGAAAAT GTGTCACATC TATTCCAAAT TAAGGATGTT GAGTTATGTT ACTAATGTAT GCAACTTTAA TCAGTTTTAT AAAGCAGTTT AGGTATGGTG ATTTTAGCAGA ACACAAGAGA 45 GCAAGAAAAT TCTGTTTTATA CACTATCTCC CAAAATAAAC TTTTATCCCT ATAACTTAAA ATGTGTATAT ATATTATAATA GTTTTATTATG TACAGTTAAT TCTACTGTTT TCGCTGCAAT AAAATCGATT TTGAAAATAAA TGAATTGTG AAAATTTTCC TGGAAATACA TATTACCGAT AAAATCGATT TTGAAAATAAA TGAATTGTG AAAATTTTCC TGGAAATACA TATTACCGAT AAAATCGATT TTGAAATAAA TGAATTGTG AAAATTTTCC TGGAAATACA TATTACCGAT AAAATCGATT TTGAAATAAA TGAATTGTG AAAATTTTCC TGGAAATACA TATTACCGAT AAAATGTATAC AACCTTTTTTT AGAGTAGGAGT ATTATACCTT TCGAAATACA TATTACCTGAAA GTCTTGGGAA TATATCAACA ACTGATTTTCC ATATATATCT TGAAAATCTT TAGCACTAAAA GTCTTGGGAA TATATCAACA ACTGATTTTCC ATATATCTGAT TGCAATGAGC		TATTAATGTC	TAAGCTGTCT	GTGAATGCCC	CTGAATTTTA	CCCTTCAGGT	TATTCTTCCA	660
AGGATTITIT GAATCATCTT ACAGAGCAGC CTOGCAGTIT TGAAACTGAA ATTGAACAGT TIGCAGAGAC CCTGAATGGT TGTGTTACAA CAGATGATGC TITGCAAGAA CTTGTGGAAC TCAACTATCA ACAGGCCACA TCTATCCCAA ATTTCTCTTA TATGGGAGCT CGCCTGTGTA ATTACCTGTC CCATCATCTG ACAATTAGCC CACAGAGTGG CAACTTCCGC CAATTGCTAC TTCAAAGATG TCGGACTGAA TATGAAGTTA AAGATCAAGC TGCAAAAGCG GATGAAGTTA CTCGAAAAACG ATTTCATGCA TTTGTACTCT TTCTGGGAGA ACTTTATCTT AACCTGGAGA TCAAGGGAAC AAATGGACAG GTTACAAGAG CAGATATTCT TCAGGTTGGT CTTCGAGAAT TGAAGGTGAC CCTGTTTTCT AATCCTATGG ATGACAATTT AATTTGTGCA GTAAAATTGT TAAAGTTGAC AGGATCAGTT TTGGAAGATG CTTGGAAGGA AAAACGAAAG ATGAATATGT AACAGAATGT TCAGAGCATT GAAAACGTTG TCCTAGATGA AAAACGCAGA AGGAATATGA AACAGATGCT CTTGAAGCTT GTAGAACTCC GGTCAAGTAA CTGCGCGCAG GTCCATGCAA CTTCAACATA TAGAGAAGCA ACACCAGAAA ATGATCCTAA CTACTTTATG AATGAACCAA 35 CATTTTATAC ATCTGATGGT GTCCTTTCA CTGCAGCTGA TCCAGATTAC CAAGAGAAAT ACCAAGAATT ACTIGAAAGA GAGGACTTTT TTCCAGATTA TGAAGAAAAT GGAACAGATT TATCCGGGGC TGGTGATCCA TACTTGGATG ATATTGATGA CCAAGAAAAT 40 AAGAACCTTA TGAAAAGTTT TGTTTTGAAT CAGAGCGTAA GCGAAAACAG TAAAGTTAAA TTTCCAGGATA TCAGTTTTAT AAAGCAGTTT AGGTATGGT ATTTAGCAGA ACACCAGAGA 45 GCAAGAAAAT GTGTCACATC TATTTGGATT AGGATGGT GAGTTATGTT ACTAATGTAT GCAACTTTAA TTTTGTTTAA CACCTATCTCC CAAAATAAAC TTTATTCCCT ATAACTTAAA ATGTGTATAT ATTATATAATA GTTTATTTTTT TTAGGATTAAT TCTACTGTTT TGGCTGCAAT AAAATCGATT TTGAAATAAA TGAAATGTTG AAAATTTTCC TAGGATTAC TACTTGTATC CTTTAAATTC TACTTTTTTT AAGGAGGAT ATTATTCCTT TGGAAATACA TATTTCCCAATTAC AAAATCGATT TTGAAATAAA TGAAATGTTG AAAATTTTCC TAGGATTAC TACTTTATC CTTTAAAATTC TACTTTTTTT AAGGAGGAT ATTATTACCTT TCACTGTTT TGGCTGCAAT AAAATCGATT TTGAAATAAA TGAAATGTTG AAAATTTTCC TAGGATTAC TATTTCCCT AAAATGTACA ATCCTTTTTT AAGGAGGAT ATTATTACCTT TCACTGTTT TTGGCTCCAAT AAAATGGAT TTGAAATAAA TGAAATGTTG AAAATTTTCC TAGAAATACA TATTTACTCCA AAAATGTACA ATCCTTTTTT AAGGAGGAT ATTATTACCTT TCACTGTTT TAGCACTAAA GTCTTGGGAA TATATCAACA ACTGATTTAC ATCTTATCT TGAAAATCTT TAGCACTAAA GTCTTGGGAA TATATCAACA ACTGATTTAC ATCTTATCT TTTTTTTTTT	10	GTTACACAGA	ATCCTATGAG	GATGGTTGTG	AGGATTATCC	TACTCTATCA	GAATATGTTC	720
TCATCTATCA ACAGGCCACA TCTATCCCAA ATTTCTCTTA TATGGGACCT COCCTGTGTA ATTACCTGTC CCATCATCTG ACAATTAGCC CACAGAGTGG CAACTTCCGC CAATTGCTAC TTCAAAGGATG TCGGACTGAA TATGAAGTTA AAGATCAAGC TGCAAAAACGG GATGAAGTTA CTCGAAAACG ATTTCATGCA TTTGTACTCT TTCTGGGAGA ACTTTATCTT AACCTGGAGA TCAAGGGAAC AAATGGACAG GTTACAAGAG CAGATATTCT TCAGGTTGGT CTTCGAGAAT TCAAGGGAAC AAATGGACAG GTTACAAGAG CAGATATTCT TCAGGTTGGT CTTCGAGAAT TCAAGGGAAC AAATGGACAG GTTACAAGAG CAGATATTCT TCAGGTTGGT CTTCGAGAAT TAAAGTTGAC AGGATCAGTT TTGGAAGATG CTTGGAAGGA AAAAGGAAAG ATGGATATGG AAGAAATTAT TCAGAGAATT GAAAACGTTG TCCTAGATCC AAACTGCAGT AGAGATGTAA ACAGATGCT CTTGAAGCTT GTAGAACCTC GGTCAAGTAA CTGCGCGCAGA GTCCATGCAA CTTCAACATA TAGAGAAGCA ACACCAGAAA ATGATCCTAA CTACTTTATG AATGAACCAA 35 CATTTTATAC ATCTGATGGT GTTCCTTTCA CTGCAGCTGA TCCAGATTAC CAAGAGAAAT ACCAAGAATT ACTTGAAAGA GAGGACTTTT TTCCAGATTA TGAAGAAAAT GGAACAGATT TATCCGGGGC TGGTGATCCA TACTTGGATG ATATTGATGA TGAAGAACAG TAAAGTTAAA TTTCAGCATA TCAGTTTTAT AAAGCAGTTT AGGTATGGTG ATTTAGCAGA ACACAAGGAA 45 GCAAGAAAAT GTGTACACT TATACCAAAT TRAGGATGAT GAGATTAGTT ACTAATGTAT GCAACTTTAA TTTTGTTTAA CACTATCTGC CAAAATAAAC TTTATTCCCT ATAACTTAAA ATGTGTATAT ATATATAAA GTTTATTTATG TACAGTTAAT TCACTGTTT TGCCTGCAAT 50 AAAATCGATT TGAAAATAAA TGAAATGTTG AAAATTTCC TAGTTTAGT TAGATCTTATC CTTTAAATTC TACTTTTTTT GAGGGGAAAAA AGTCTTCGTC TGGAAATACA TATTACTGCA 51 AAAATCGATT TGAAAATAAA TGAAATGTTG AAAATTTTCC TAGTTTAGT TAGCACTTAAC TTTTAGATTC TACTTTTTTT GAGGGGAAAA AGTCTTCGTC TGGAAATACA TATTACTGCA 52 AAAATCGATT TGAAAATAAA TGAAATGTTG AAAATTTTCC TAGTTTTAGT TAGCACTTAAA GTCTTGGGAA TATATCAACA ACTGATTTAC ATATTCAACT TTAACCTTAAA GTCTTTGGGAA TATATCAACA ACTGATTTAC ATATTCAACA ACCAAGAGG GTCTTTGGAAATACA TATTTCCACA ACTGATTTAC ATATTCAACA ACCAAGAGGA TTCATTTGGAAA TTATACACAA ACTGATTTAC ATATTCAACTT TAGCACTAAA GTCTTTGGGAA TATATCAACA ACTGATTTAC ATATTCACAGAGGCC	10	AGGATTTTTT	GAATCATCTT	ACAGAGCAGC	CTGGCAGTTT	TGAAACTGAA	ATTGAACAGT	780
ATTACCTOTC CCATCATCTG ACAATTAGCC CACAGAGTGG CAACTTCCGC CAATTGCTAC TTCAAAGATG TCGGACTGAA TATGAAGTTA AAGATCAAGC TGCAAAACG GATGAAGTTA CTCGAAAACG ATTTCATGCA TTTGTACTCT TTCTGGGAGA ACTTTATCTT AACCTGGAGA TCAAGGGAAC AAATGGACAG GTTACAAGAG CAGATATTCT TCAGGTTGGT CTTCGAGAAT 25 TGCTGAATGC CCTGTTTTCT AATCCTATGG ATGACAATTT AATTTGTGCA GTAAAATTGT TAAAGTTGAC AGGATCAGTT TTGGAAGATG CTTCGAAGGA AAAAGGAAGA ATGGATATCG AAGAAATTAT TCAGAGAATT GAAAACGTTG TCCTAGATGC AAACTGCAGT AGAGATGTAA AACAGATGCT CTTGAAGCTT GTAGAACTCC GGTCAAGTAA CTACGTTTATG AATGAACCAA 35 CATTTTATAC ATCTGAAGACA ACACCAGAAA ATGATCCTAA CTACGTTTATG AATGAACCAA ACCAAGAATT ACTTGAAAGA GAGGACTTTT TTCCAGATTA TGAAGAAAAAT GGAACAGATT ACCAAGAATT ACTTGAAAGA GAGGACTTTT TTCCAGATTA TGAAGAAAAAT GGAACAGATT TATCCGGGGC TGGTGATCCA TACTTGGATG ATATTGATGA TGAAGAAACAG TAAAGTTAAA TTTCAGCATA TCAGATTTTAT AAAGCAGTTT AGGTATGGT ATTTTAGCAGA ACACAAGAGA 45 GCAAGAAAAT GTGTCACATC TATACCAAAT TRAGGATGTT GAGTTATGTT ACTAATGTAT GCAACTTTAA TTTTGTTTTAA CACTATCTGC CAAAATAAAC TTTATTCCCT ATAACTTAAA ATGTGTATAT ATATATAATA GTTTATTTAT TACAGATTAT TCTACTGTTT TGGCTGCAAT 50 AAAATCGATT TTGAAATAAA TGAAATGTTG AAAATTTTCC TAGTTGTTT TGGCTGCAAT CTTTAAATTC TACTTTTCTT GAGGGGAAAAA AGTCTTCGTC TGGAAATACA TATTACTGCA 55 AAAATGTAGC ATCCTTTTTT AGGTAGGAGT ATTATACCTT TGGAAATACA TATTACTGCA GTGTCCCAAT GAATTGAATT TCAAATTATGA ATCTTAAGCT TAGCACTTAAA GTGTTCCGGAA TATATCAACA ACTGATTTAC ATTATACCTT TAGCACTAAA GTCTTGGGAA TATATCAACA ACTGATTTAC ATTATACCAGGGC		TTGCAGAGAC	CCTGAATGGT	TGTGTTACAA	CAGATGATGC	TTTGCAAGAA	CTTGTGGAAC	840
TTCAAAGATG TCGGACTGAA TATGAAGTTA AAGATCAACC TGCAAAACCG GATGAAGTTA CTCGAAAACG ATTTCATGCA TTTGTACTCT TTCTGGGAGA ACTTTATCTT AACCTGGAGA TCAAGGGAAC AAATGGACAG GTTACAAGAG CAGATATTCT TCAGGTTGGT CTTCGAGAAT TCAAGGGAAC AAATGGACAG GTTACAAGAG CAGATATTCT TCAGGTTGGT CTTCGAGAAT TCAAGGGAAC ACGATCAGTT TTGGAAGAGT CTTGGAAGGA AAAAGGAAAG ATGGATATGG AAGAAATTAT TCAGAGAATT GAAAACGTTG TCCTAGATGC AAACTGCAGT AGAGATGTAA AACAGATGCT CTTGAAGCTT GTAGAACTCC GGTCAAGTAA CTGGGGCAGA GTCCATGCAA CTTCAACATA TAGAGGAAGCA ACACCAGAAA ATGATCCTAA CTACTTTATG AATGAACCAA 35 CATTTTATCA ATCTGATGGT GTTCCTTTCA CTGCAGCTGA TCCAGATTAC CAAGAGAAAT ACCAAGAATT ACTTGAAAGA GAGGACTTTT TTCCAGATTA TGAAGAAAAT GGAACAGATT TATCCGGGGC TGGTGATCCA TACTTGGATG ATATTGATGA TGAGATGGAC CCAGAGATAG 40 AAGAACCTTA TGAAAAGTTT TGTTTGGAAT CAGAGCGTAA GCGAAAACAG TAAAGTTAAA TTTCCAGCATA TCAGTTTTAT AAAGCAGTTT AGGTATGGT ATTTAGCAGA ACACAAGAGA 45 GCAAGAAAAT GTGTCACATC TATACCAAAT TRAGGATGTT GAGTTATGTT ACTAATGTAT GCAACTTTAA TTTTGTTTAA CACTATCTGC CAAAATAAAC TTTATTCCCT ATAACTTAAA ATGTGTATAT ATATATAATA GTTTATTATG TACAGTTAAT TCTACTGTTT TGGCTGCAAT 50 AAAATGGAC ATCCTTTTTT AGGTAGGAGT ATTATACCTT TGGAAATACA TATTTCTGCA 51 AAAATGTAGC ATCCTTTTTT AGGTAGGAGT ATTATACCTT TGGAAATACA TATTTCTGCA 52 AAAATGTAGC ATCCTTTTTT AGGTAGGAGT ATTATACCTT TGGAAATACA TATTTCTGCA 53 AAAATGTAGC ATCCTTTTTT AGGTAGGAGT ATTATACCTT TGAAAATCTT TAGCACTAAA 54 GTGTCCCAAT GAATTGAACA ACTGATTTAC ATTATACCAGGGC GCTATTTGAT TAGCACTAAA 55 AAAATGTAGC ATCCTTTTTT AGGTAGGAGT ATTATACCTT TGAAAATCTT TAGCACTAAA 55 GTGTCCCAAT GAATTGAACA ACTGATTTAC ATTATACCAGGGC	15	TCATCTATCA	ACAGGCCACA	TCTATCCCAA	ATTICICITA	TATGGGAGCT	CGCCTGTGTA	900
CTCGAAAACG ATTTCATGCA TTTGTACTCT TTCTGGGAGA ACTTTATCTT AACCTGAGA TCAAGGGAAC AAATGGACAG GTTACAAGAG CAGATATTCT TCAGGTTGGT CTTCGAGAAT 25 TGCTGAATGC CCTGTTTTCT AATCCTATGG ATGACAATTT AATTTGTGCA GTAAAATTGT TAAAGTTGAC AGGATCAGTT TTGGAAGATG CTTGGAAGGA AAAAGGAAAG ATGGATATGG AAGAAATTAT TCAGAGAATT GAAAACGTTG TCCTAGATGC AAACTGCAGT AGAGATGTAA 30 AACAGATGCT CTTGAAGCTT GTAGAACTCC GGTCAAGTAA CTGGGGCAGA GTCCATGCAA CTTCAACATA TAGAGAAGCA ACACCAGAAA ATGATCCTAA CTACTTTATG AATGAACCAA 35 CATTTTATAC ATCTGATGGT GTTCCTTTCA CTGCAGCTGA TCCAGATTAC CAAGAGAAAT ACCAAGAATT ACTTGAAAGA GAGGACTTTT TTCCAGATTA TGAAGAAAAT GGAACAGATT 40 AAGAACCTTA TGAAAAGTTT TGTTTGGAAT CAGACCGTAA GCGAAAACAG TAAAGTTAAA TTTCAGCATA TCAGTTTTAT AAAGCAGTTT AGGTATGGT GAGTTATGTT ACTAATGTAT GCAACTTTAA TCTTTTTTAA CACTATCTGC CAAAATAAAC TTTATTCCCT ATAACTTAAA ATGTGTATAT ATAATAATAA GTTTATTATG TACAGATTAAT TCTACTGTTT TGGCTGCAAT 50 AAAATCGATT TTGAAATAAA TGAAATGTG AAAATTTTCC TAGATTAACA TATTACTCCA 51 AAAATGAAC ATCCTTTTTT AGGTAGGAGT ATTATACCTT TCGAAAATACA TATTACTCCA 52 AAAATGTAGC ATCCTTTTTT AGGTAGGAGT ATTATACCTT TCGAAAATACA TATTACTCCA 53 AAAATGTAGC ATCCTTTTTT AGGTAGGAGT ATTATACCTT TCGAAAATACA TATTACTCCA 54 AAAATGTAGC ATCCTTTTTT AGGTAGGAGT ATTATACCTT TCGAAAATACA TATTACTCCA 55 AAAATGTAGC ATCCTTTTTT AGGTAGGAGT ATTATACCTT TCGAAAATACA TATTACTCCA 56 AAAATGTAGC ATCCTTTTTT AGGTAGGAGT ATTATACCTT TCGAAAATACA TATTACTCCA 57 AAAATGTAGC ATCCTTTTTT AGGTAGGAGT ATTATACCTT TCGAAAATACA TATTACCTCAAA GTCTTGGGAA TATATCAACA ACTGATTTAC ATTATCACAGT GCTATTTGNA TACCAAGGGC		ATTACCTGTC	CCATCATCTG	ACAATTAGCC	CACAGAGTGG	CAACTTCCGC	CAATTGCTAC	960
CTCGAAAACG ATTTCATCCA TITGTACTCT TICTGGAGA ACTTTATCTT AACCTGAGA TCAAGGGAAC AAATGGACAG GITACAAGAG CAGATATTCT TCAGGTTGGT CTTCGAGAAT 25 TGCTGAATGC CCTGTTTTCT AATCCTATGG ATGACAATTT AATTTGTGCA GTAAAATTGT TAAAGTTGAC AGGATCAGTT TTGGAAGATG CTTGGAAGGA AAAAGGAAAG ATGGATATGG AAGAAATTAT TCAGAGAATT GAAAACGTTG TCCTAGATGC AAACTGCAGT AGAGATGTAA 30 AACAGATGCT CTTGAAGCTT GTAGAACTCC GGTCAAGTAA CTGGGGCAGA GTCCATGCAA CTTCAACATA TAGAGAAGCA ACACCAGAAA ATGATCCTAA CTACTTTATG AATGAACCAA 35 CATTTTATAC ATCTGATGGT GTTCCTTTCA CTGCAGCTGA TCCAGATTAC CAAGAGAAAT ACCAAGAATT ACTTGAAGGA GAGGACTTTT TTCCAGATTA TGAAGAAAAT GGAACAGATT 40 AAGAAGCTTA TGAAAAGTTT TGTTTGGATG ATATTGATGA GCGAAAACAG TAAAGTTAAA TTTCCGGGGC TGGTGATCCA TACTTGGATG ATATTGATGA GCGAAAACAG TAAAGTTAAA TTTCAGCATA TCAGTTTTAT AAAGCAGTTT AGGTATGGTG ATTTTAGCAGA ACACAAGAGA 45 GCAAGAAAAT GTGTCACATC TATACCAAAT TRAGGATGTT GAGTTATGTT ACTAATGTAT GCAACTTAA TTTTGTTTAA CACTATCTGC CAAAATAAAC TTTATTCCCT ATAACTTAAA ATGTGTATAT ATATATAATA GTTTATTATG TACAGTTAAT TCTACTGTTT TGGCTGCAAT AAAATCGATT TTGAAATAAA TGAAATGTTG AAAATTTTCC TAGGTTGTTA GATCCTTATC CTTTAAAATTC TACTTTTCTT GAGGGGAAAA AGTCTTCGTC TGGAAATACA TATTACTGCA 55 AAAATGTAGC ATCCTTTTTT AGGTAGGAGT ATTATACCTT TCAATATCTT TAGCACTAAA GTCTTGGGAA TATATCAACA ACTGATTTAC ATTATGCAGT GCTATTTGNA TACCAAGGGC	20	TTCAAAGATG	TCGGACTGAA	TATGAAGTTA	AAGATCAAGC	TGCAAAAGGG	GATGAAGTTA	1020
TANAGTIGAC AGGATCAGTT TIGGAAGATIC CITIGGAAGGA AAAAGGAAAG ATGGATATGG AAGAAATTAT TCAGAGAATT GAAAACGTIG TCCTAGATGC AAACTGCAGT AGAGATGTAA AACAGATGCT CITIGAAGCTT GTAGAACTCC GGTCAAGTAA CTAGCGCAGA GTCCATGCAA CITICAACATA TAGAGAAGCA ACACCAGAAA ATGATCCTAA CTACTITTATG AATGAACCAA CCATTITATAC ATCTGAAGG GTCCTTTCA CTGCAGCTGA TCCAGATTAC CAAGAGAAAT ACCAAGAATT ACTIGAAAGA GAGGACTTTT TTCCAGATTA TGAAGAAAAT GGAACAGATT TATCCGGGGC TGGTGATCCA TACTTGGATG ATATTGATGA TGAGATGAC CCAGAGATAG AAGAAGCTTA TCAGTTTTAT AAAGCAGTTT AGGTATGGTG ATTTAGCAGA ACACAAGAGA 45 GCAAGAAAAT GTGTCACATC TATACCAAAT TRAGGATGTT GAGTTATGTT ACTAATGTAT GCAACTTTAA TTTTGTTTAA CACTATCTGC CAAAATAAAC TITTATTCCCT ATAACTTAAA ATGTGTATAT ATATATAATA GTTTATTATG TACAGTTAAT TCTACTGTTT TGGCTGCAAT AAAATCGATT TTGAAATAAA TGAAATGTTG AAAATTTTGC TAGGTTGGTTA GATCCTTATC CTTTAAAATTC TACTTTTCTT GAGGGGGAAAA AGTCTTCGTC TGGAAAATCA TATTACTGCA 55 AAAATGTAGC ATCCTTTTTT AGGTAGGAGT ATTATACCTT YCATTTTAGT TKGACATTTAA GTGTCCCAAT GAATTGAATT TCAAATATGA ATCATAATCT TGAAAATCTT TAGCACTAAA GTCTTGGGAA TATATCAACA ACTGATTTAC ATATGCAGGC CTATTTTGAA TCACCAAGGGC	20	CTCGAAAACG	ATTTCATGCA	TTTGTACTCT	TTCTGGGAGA	ACTTTATCTT	AACCTGGAGA	1080
AAGAAATTAT TCAGAGAATT GAAAACGTTG TCCTAGAAGGA AAAAGGAAAG ATGGATATGG AAGAAATTAT TCAGAGAATT GAAAACGTTG TCCTAGATCC AAACTGCAGT AGAGATGTAA AACAGATGCT CTTGAAGCTT GTAGAACTCC GGTCAAGTAA CTGGGGCAGA GTCCATGCAA CTTCAACATA TAGAGAAGCA ACACCAGAAA ATGATCCTAA CTACTTTATG AATGAACCAA 35 CATTTTATAC ATCTGATGGT GTTCCTTTCA CTGCAGCTGA TCCAGATTAC CAAGAGAAAT ACCAAGAATT ACTTGAAAGA GAGGACTTTT TTCCAGATTA TGAAGAAAAT GGAACAGATT TATCCGGGGC TGGTGATCCA TACTTGGATG ATATTGATGA TGAGATAGAC CCAGAGATAG AAGAAGCTTA TGAAAAGTTT TGTTTGGAAT CAGAGCGTAA GCGAAAACAG TAAAGTTAAA TTTCAGCATA TCAGTTTTAT AAAGCAGTTT AGGTATGGTG ATTTAGCAGA ACACAAGAGA 45 GCAAGAAAAT GTGTCACATC TATACCAAAT TRAGGATGTT GAGTTATGTT ACTAATGTAT GCAACTTTAA TTTTGTTTAA CACTATCTGC CAAAATAAAC TTTATTCCCT ATAACTTAAA ATGTGTATAT ATATATAATA GTTTATTATG TACAGTTAAT TCTACTGTTT TGGCTGCAAT CTTTAAATTC TACTTTTCTT GAGGGGAAAA AGTCTTCGTC TGGAAATACA TATTACTGCA 55 AAAATGTAGC ATCCTTTTTT AGGTAGGAGT ATTATAGCTT YCATTTTAGT TKGACATTTA GTGTCCCAAT GAATTGAATT TCAAATATGA ATCATAATCT TGAAAAATCTT TAGCACTAAA GTCTTGGGAA TATATCAACA ACTGATTTAC ATATGCAGAT GCTATTTGNA TACCAAGGGC		TCAAGGGAAC	AAATGGACAG	GTTACAAGAG	CAGATATTCT	TCAGGTTGGT	CTTCGAGAAT	1140
AAGAAATTAT TCAGAGAATT GAAAACGTTG TCCTAGATGC AAACTGCAGT AGAGATGTAA AACAGATGCT CTTGAAGCTT GTAGAACTCC GGTCAAGTAA CTGGGGCAGA GTCCATGCAA CTTCAACATA TAGAGAAGCA ACACCAGAAA ATGATCCTAA CTACTTTATG AATGAACCAA 35 CATTTTATAC ATCTGATGGT GTTCCTTTCA CTGCAGCTGA TCCAGATTAC CAAGAGAATT ACCAAGAATT ACTTGAAGA GAGGACTTTT TTCCAGATTA TGAAGAAAAT GGAACAGATT TATCCGGGC TGGTGATCCA TACTTGGATG ATATTGATGA TGAGATGGAC CCAGAGATAG AAGAAGCTTA TGAAAAGTTT TGTTTGGAAT CAGAGCGTAA GCGAAAACAG TAAAGTTAAA TTTCAGCATA TCAGTTTTAT AAAGCAGTTT AGGTATGGTG ATTTAGCAGA ACACAAGAGA 45 GCAAGAAAAT GTGTCACATC TATACCAAAT TRAGGATGTT GAGTTATGTT ACTAATGTAT GCAACTTTAA TTTTGTTTAA CACTATCTGC CAAAATAAAC TTTATTCCCT ATAACTTAAA ATGTGTATAT ATATATAATA GTTTATTATG TACAGTTAAT TCTACTGTTT TGGCTGCAAT AAAATCGATT TTGAAATAAA TGAAATGTTG AAAATTTTGC TAGGTTGGTTA GATGCTTATC CTTTAAATTC TACTTTTCTT GAGGGGAAAA AGTCTTCGTC TGGAAATACA TATTACTGCA 55 AAAATGTAGC ATCCTTTTTT AGGTAGGAGT ATTATACCTT YCATTTTAGT TKGACACTAAA GTGTCCCAAT GAATTGAATT TCAAATATGA ATCATAATCT TGAAAATCTT TAGCACTAAA GTCTTGGGAA TATATCAACA ACTGATTTAC ATATGCAGAT GCTATTTGNA TACCAAGGGC	25	TGCTGAATGC	CCTGTTTTCT	AATCCTATGG	ATGACAATTT	AATTTGTGCA	GTAAAATTGT	1200
AACAGATGCT CTTGAAGCTT GTAGAACTCC GGTCAAGTAA CTGGGGCAGA GTCCATGCAA CTTCAACATA TAGAGAAGCA ACACCAGAAA ATGATCCTAA CTACTTTATG AATGAACCAA 35 CATTTTATAC ATCTGATGGT GTTCCTTTCA CTGCAGCTGA TCCAGATTAC CAAGAGAAAT ACCAAGAATT ACTTGAAAGA GAGGACTTTT TTCCAGATTA TGAAGAAAAT GGAACAGATT TATCCGGGGC TGGTGATCCA TACTTGGATG ATATTGATGA TGAGGAGAACAG CCAGAGATAG AAGAAGCTTA TGAAAAGTTT TGTTTGGAAT CAGAGCGTAA GCGAAAACAG TAAAGTTAAA TTTCAGCATA TCAGTTTTAT AAAGCAGTTT AGGTATGGTG ATTTAGCAGA ACACAAGAGA 45 GCAAGAAAAT GTGTCACATC TATACCAAAT TRAGGATGTT GAGTTATGTT ACTAATGTAT GCAACTTTAA TTTTGTTTAA CACTATCTGC CAAAATAAAC TTTATTCCCT ATAACTTAAA ATGTGTATAT ATATATAATA GTTTATTATG TACAGTTAAT TCTACTGTTT TGGCTGCAAT 50 AAAATCGATT TTGAAATAAA TGAAATGTTG AAAATTTTGC TAGATGATTA GATGCTTATC CTTTAAATTC TACTTTTCTT GAGGGGAAAA AGTCTTCGTC TGGAAATACA TATTACTGCA 55 AAAATGTAGC ATCCTTTTTT AGGTAGGAGT ATTATACCTT YCATTTTAGT TKGACATTTA GTGTCCCAAT GAATTGAATT TCAAATATGA ATCATAATCT TGAAAATCTT TAGCACTAAA GTCTTGGGAA TATATCAACA ACTGATTTAC ATATGCAGAT GCTATTTGNA TACCAAGGGC		TAAAGTTGAC	AGGATCAGTT	TTGGAAGATG	CTTGGAAGGA	AAAAGGAAAG	ATGGATATGG	1260
AACAGATECT CTTGAAGCTT GTAGAACTCC GGTCAAGTAA CTGGGGCAGA GTCCATGCAA CTTCAACATA TAGAGAAGCA ACACCAGAAA ATGATCCTAA CTACTTTATG AATGAACCAA 35 CATTTTATAC ATCTGATGGT GTTCCTTTCA CTGCAGCTGA TCCAGATTAC CAAGAGAAAT ACCAAGAATT ACTTGAAAGA GAGGACTTTT TTCCAGATTA TGAAGAAAAT GGAACAGATT TATCCGGGGC TGGTGATCCA TACTTGGATG ATATTGATGA TGAAGAAAAT GGAACAGATTG AAGAAGCTTA TGAAAAGTTT TGTTTGGAAT CAGAGCGTAA GCGAAAACAG TAAAGTTAAA TTTCAGCATA TCAGTTTTAT AAAGCAGTTT AGGTATGGTG ATTTAGCAGA ACACAAGAGA 45 GCAAGAAAAT GTGTCACATC TATACCAAAT TRAGGATGTT GAGTTATGTT ACTAATGTAT GCAACTTTAA TTTTGTTTAA CACTATCTGC CAAAATAAAC TTTATTCCCT ATAACTTAAA ATGTGTATAT ATATATAATA GTTTATTATG TACAGTTAAT TCTACTGTTT TGGCTGCAAT 50 AAAATCGATT TTGAAATAAA TGAAATGTTG AAAATTTTGC TAGTTGGTTA GATGCTTATC CTTTAAAATTC TACTTTTCTT GAGGGGAAAA AGTCTTCGTC TGGAAATACA TATTACTGCA 55 AAAATGTAGC ATCCTTTTTT AGGTAGGAGT ATTATACCTT YCATTTTAGT TKGACATTTA GTGTCCCAAT GAATTGAATT TCAAATATGA ATCATAATCT TGAAAATCTT TAGCACTAAA GTCTTGGGAA TATATCAACA ACTGATTTAC ATATGCAGAT GCTATTTGNA TACCAAGGGC	30	AAGAAATTAT	TCAGAGAATT	GAAAACGTTG	TCCTAGATGC	AAACTGCAGT	AGAGATGTAA	1320
ACCAMGAATT ACTIGAAAGA GAGGACTITI TICCAGATTA TGAAGAAAAT GGAACAGATT TATCCGGGGC TGGTGATCCA TACTTGGATG ATATTGATGA TGAGGACAGAT GAAGAGCTTA TGAAGAAAAT GGAACAGATT AAGAAGCTTA TGAAAAGTTT TGTTTGGAAT CAGAGCGTAA GCGAAAACAG TAAAGTTAAA TITCAGCATA TCAGTTTTAT AAAGCAGTTT AGGTATGGTG ATTTAGCAGA ACACAAGAGA 45 GCAAGAAAAT GTGTCACATC TATACCAAAT TRAGGATGTT GAGTTATGTT ACTAATGTAT GCAACTITAA TTTTGTTTAA CACTATCTGC CAAAATAAAC TTTATTCCCT ATAACTTAAA ATGTGTATAT ATATATAATA GTTTATTATG TACAGTTAAT TCTACTGTTT TGGCTGCAAT AAAATCGATT TTGAAATAAA TGAAATGTTG AAAATTTTGC TAGGTAGATACA TATTACTGCA 55 AAAATGTAGC ATCCTTTTTT AGGTAGGAGT ATTATAGCTT YCATTTTAGT TKGACATTTA GTGTCCCAAT GAATTGAATT TCAAATATGA ATCATAATCT TGAAAATCTT TAGCACTAAA GTCTTGGGAA TATATCAACA ACTGATTTAC ATATGCAGT GCTATTTGNA TACCAAGGGC		AACAGATGCT	CTTGAAGCTT	GTAGAACTCC	GGTCAAGTAA	CTGGGGCAGA	GTCCATGCAA	1380
ACCAAGAATT ACTIGAAAGA GAGGACTITT TICCAGATTA TGAAGAAAAT GGAACAGATT TATCCGGGC TGGTGATCCA TACTIGGATG ATATTGATGA TGAGATGGAC CCAGAGATAG AAGAAGCTTA TGAAAAGTIT TGTTTGGAAT CAGAGCGTAA GCGAAAACAG TAAAGTTAAA TTTCAGCATA TCAGTTTTAT AAAGCAGTIT AGGTATGGTG ATTTAGCAGA ACACAAGAGA 45 GCAAGAAAAT GTGTCACATC TATACCAAAT TRAGGATGTT GAGTTATGTT ACTAATGTAT GCAACTTTAA TTTTGTTTAA CACTATCTGC CAAAATAAAC TTTATTCCCT ATAACTTAAA ATGTGTATAT ATATATAATA GTTTATTATG TACAGTTAAT TCTACTGTTT TGGCTGCAAT AAAATCGATT TTGAAATAAA TGAAATGTTG AAAATTTTGC TAGTTGGTTA GATGCTTATC CTTTAAATTC TACTTTTCTT GAGGGGAAAA AGTCTTCGTC TGGAAATACA TATTACTGCA 55 AAAATGTAGC ATCCTTTTTT AGGTAGGAGT ATTATAGCTT YCATTTTAGT TKGACATTTA GTGTCCCAAT GAATTGAATT TCAAATATGA ATCATAATCT TGAAAATCTT TAGCACTAAA GTCTTGGGAA TATATCAACA ACTGATTTAC ATATGCAGAT GCTATTTGNA TACCAAGGGC		CTTCAACATA	TAGAGAAGCA	ACACCAGAAA	ATGATCCTAA	CTACTTTATG	AATGAACCAA	1440
TATCCGGGC TGGTGATCCA TACTTGGATG ATATTGATGA TGAGATGGAC CCAGAGATAG AAGAAGCTTA TGAAAAGTTT TGTTTGGAAT CAGAGCGTAA GCGAAAACAG TAAAGTTAAA TTTCAGCATA TCAGTTTTAT AAAGCAGTTT AGGTATGGTG ATTTAGCAGA ACACAAGAGA 45 GCAAGAAAAT GTGTCACATC TATACCAAAT TRAGGATGTT GAGTTATGTT ACTAATGTAT GCAACTTTAA TTTTGTTTAA CACTATCTGC CAAAATAAAC TTTATTCCCT ATAACTTAAA ATGTGTATAT ATATATAATA GTTTATTATG TACAGTTAAT TCTACTGTTT TGGCTGCAAT AAAATCGATT TTGAAATAAA TGAAATGTTG AAAATTTTGC TAGTTGGTTA GATGCTTATC CTTTAAATTC TACTTTTCTT GAGGGGAAAA AGTCTTCGTC TGGAAATACA TATTACTGCA 55 AAAATGTAGC ATCCTTTTTT AGGTAGGAGT ATTATAGCTT YCATTTTAGT TKGACATTAA GTGTCCCAAT GAATTGAATT TCAAATATGA ATCATAATCT TGAAAATCTT TAGCACTAAA GTCTTGGGAA TATATCAACA ACTGATTTAC ATATGCAGAT GCTATTTGNA TACCAAGGGC	35	CATTTTATAC	ATCTGATGGT	GTTCCTTTCA	CTGCAGCTGA	TCCAGATTAC	CAAGAGAAAT	1500
AAGAAGCTTA TGAAAAGTTT TGTTTGGAAT CAGAGCGTAA GCGAAAACAG TAAAGTTAAA TTTCAGCATA TCAGTTTTAT AAAGCAGTTT AGGTATGGTG ATTTAGCAGA ACACAAGAGA 45 GCAAGAAAAT GTGTCACATC TATACCAAAT TRAGGATGTT GAGTTATGTT ACTAATGTAT GCAACTTTAA TTTTGTTTAA CACTATCTGC CAAAATAAAC TTTATTCCCT ATAACTTAAA ATGTGTATAT ATATATAATA GTTTATTATG TACAGTTAAT TCTACTGTTT TGGCTGCAAT AAAATCGATT TTGAAATAAA TGAAATGTTG AAAATTTTGC TAGTTGGTTA GATGCTTATC CTTTAAATTC TACTTTTCTT GAGGGGAAAA AGTCTTCGTC TGGAAATACA TATTACTGCA 55 AAAATGTAGC ATCCTTTTTT AGGTAGGAGT ATTATAGCTT YCATTTTAGT TKGACATTTA GTGTCCCAAT GAATTGAATT TCAAATATGA ATCATAATCT TGAAAATCTT TAGCACTAAA GTCTTGGGAA TATATCAACA ACTGATTTAC ATATGCAGAT GCTATTTGNA TACCAAGGGC		ACCAAGAATT	ACTTGAAAGA	GAGGACTTTT	TTCCAGATTA	TGAAGAAAAT	GGAACAGATT	1560
TITCAGCATA TCAGTITTAT AAAGCAGTIT AGGTATGGTG ATTTAGCAGA ACACAAGAGA 45 GCAAGAAAAT GTGTCACATC TATACCAAAT TRAGGATGTT GAGTTATGTT ACTAATGTAT GCAACTITAA TITTGTTTAA CACTATCTGC CAAAATAAAC TITATTCCCT ATAACTTAAA ATGTGTATAT ATATATAATA GTTTATTATG TACAGTTAAT TCTACTGTTT TGGCTGCAAT AAAATCGATT TTGAAATAAA TGAAATGTTG AAAATTTTGC TAGTTGGTTA GATGCTTATC CTTTAAATTC TACTTTTCTT GAGGGGAAAA AGTCTTCGTC TGGAAATACA TATTACTGCA 55 AAAATGTAGC ATCCTTTTTT AGGTAGGAGT ATTATAGCTT YCATTTTAGT TKGACATTTA GTGTCCCAAT GAATTGAATT TCAAATATGA ATCATAATCT TGAAAATCTT TAGCACTAAA GTCTTGGGAA TATATCAACA ACTGATTTAC ATATGCAGAT GCTATTTGNA TACCAAGGGC	40	TATCCGGGGC	TGGTGATCCA	TACTTGGATG	ATATTGATGA	TGAGATGGAC	CCAGAGATAG	1620
GCAACTTTAA TTTTGTTTAA CACTATCTGC CAAAATAAAC TTTATTCCCT ATAACTTAAA ATGTGTATAT ATATATAATA GTTTATTATG TACAGTTAAT TCTACTGTTT TGGCTGCAAT AAAATCGATT TTGAAATAAA TGAAATGTTG AAAATTTTGC TAGTTGGTTA GATGCTTATC CTTTAAATTC TACTTTTCTT GAGGGGAAAA AGTCTTCGTC TGGAAATACA TATTACTGCA 55 AAAATGTAGC ATCCTTTTTT AGGTAGGAGT ATTATAGCTT YCATTTTAGT TKGACATTTA GTGTCCCAAT GAATTGAATT TCAAATATGA ATCATAATCT TGAAAATCTT TAGCACTAAA GTCTTGGGAA TATATCAACA ACTGATTTAC ATATGCAGAT GCTATTTGNA TACCAAGGGC		AAGAAGCTTA	TGAAAAGTTT	TGTTTGGAAT	CAGAGCGTAA	GCGAAAACAG	TAAAGTTAAA	1680
GCAACTITAA TITTGITITAA CACTATCIGC CAAAATAAAC TITATICCCT ATAACTIAAA ATGIGTATAT ATATATAATA GITTATTATG TACAGTTAAT TCTACTGITT TGGCTGCAAT 50 AAAATCGATT TIGAAATAAA TGAAATGITG AAAATTITGC TAGITGGTTA GATGCTTATC CTITAAATTC TACTTITCTT GAGGGGAAAA AGTCTTCGTC TGGAAATACA TATTACTGCA 55 AAAATGTAGC ATCCTITITT AGGTAGGAGT ATTATAGCTT YCATTITAGT TKGACATTTA GTGTCCCAAT GAATTGAATT TCAAATATGA ATCATAATCT TGAAAATCTT TAGCACTAAA GTCTTGGGAA TATATCAACA ACTGATTTAC ATATGCAGAT GCTATTTGNA TACCAAGGGC		TTTCAGCATA	TCAGTTTTAT	AAAGCAGTTT	AGGTATGGTG	ATTTAGCAGA	ACACAAGAGA	1740
ATGTGTATAT ATATATAATA GTTTATTATG TACAGTTAAT TCTACTGTTT TGGCTGCAAT AAAATCGATT TTGAAATAAA TGAAATGTTG AAAATTTTGC TAGTTGGTTA GATGCTTATC CTTTAAATTC TACTTTTCTT GAGGGGAAAA AGTCTTCGTC TGGAAATACA TATTACTGCA 55 AAAATGTAGC ATCCTTTTTT AGGTAGGAGT ATTATAGCTT YCATTTTAGT TKGACATTTA GTGTCCCAAT GAATTGAATT TCAAATATGA ATCATAATCT TGAAAATCTT TAGCACTAAA GTCTTGGGAA TATATCAACA ACTGATTTAC ATATGCAGAT GCTATTTGNA TACCAAGGGC	45	GCAAGAAAAT	GTGTCACATC	TATACCAAAT	TRAGGATGTT	GAGTTATGTT	ACTAATGTAT	1800
AAAATCGATT TTGAAATAAA TGAAATGITG AAAATTITGC TAGTTGGTTA GATGCTTATC CTITAAATTC TACTITICTT GAGGGGAAAA AGTCTTCGTC TGGAAATACA TATTACTGCA 55 AAAATGTAGC ATCCTTTTTT AGGTAGGAGT ATTATAGCTT YCATTTTAGT TKGACATTTA GTGTCCCAAT GAATTGAATT TCAAATATGA ATCATAATCT TGAAAATCTT TAGCACTAAA GTCTTGGGAA TATATCAACA ACTGATTTAC ATATGCAGAT GCTATTTGNA TACCAAGGGC		GCAACTTTAA	TTTTGTTTAA	CACTATCTGC	CAAAATAAAC	TTTATTCCCT	ATAACTTAAA	1860
AAAATCGATT TTGAAATAAA TGAAATGITG AAAATTITGC TAGTTGGTTA GATGCTTATC CTITAAATTC TACTITICTT GAGGGGAAAA AGTCTTCGTC TGGAAATACA TATTACTGCA 55 AAAATGTAGC ATCCTTTTTT AGGTAGGAGT ATTATAGCTT YCATTTTAGT TKGACATTTA GTGTCCCAAT GAATTGAATT TCAAATATGA ATCATAATCT TGAAAATCTT TAGCACTAAA GTCTTGGGAA TATATCAACA ACTGATTTAC ATATGCAGAT GCTATTTGNA TACCAAGGGC	50	ATGTGTATAT	АТАТАТААТА	GTTTATTATG	TACAGTTAAT	TCTACTGTTT	TGGCTGCAAT	1920
AAAATGTAGC ATCCTTTTTT AGGTAGGAGT ATTATAGCTT YCATTTTAGT TKGACATTTA GTGTCCCAAT GAATTGAATT TCAAATATGA ATCATAATCT TGAAAATCTT TAGCACTAAA GTCTTGGGAA TATATCAACA ACTGATTTAC ATATGCAGAT GCTATTTGNA TACCAAGGGC		AAAATCGATT	TTGAAATAAA	TGAAATGTTG	AAAATTTTGC	TAGTTGGTTA	GATGCTTATC	1980
GTGTCCCAAT GAATTGAATT TCAAATATGA ATCATAATCT TGAAAATCTT TAGCACTAAA GTCTTGGGAA TATATCAACA ACTGATTTAC ATATGCAGAT GCTATTTGNA TACCAAGGGC		CTTTAAATTC	TACTTTTCTT	GAGGGGAAAA	AGTCTTCGTC	TGGAAATACA	TATTACTGCA	2040
GTCTTGGGAA TATATCAACA ACTGATTTAC ATATGCAGAT GCTATTTGNA TACCAAGGGC	55	AAAATGTAGC	ATCCTTTTTT	AGGTAGGAGT	ATTATAGCTT	YCATTTTAGT	TKGACATTTA	2100
		GTGTCCCAAT	GAATTGAATT	TCAAATATGA	ATCATAATCT	TGAAAATCTT	TAGCACTAAA	2160
	60	GTCTTGGGAA	TATATCAACA	ACTGATTTAC	ATATGCAGAT	GCTATTTGNA	TACCAAGGGC	2220

319

	TTTTTAAATG TCATGGGGG GAAAAACCCA ACTTGGTGGA ACTCCCAGCT AAACAACCAA	2280
	GACTICACTG GAAGATITAT TCCAATICTA GGAATIGITC TITITITATIT TTATITITITC	2340
-5	AACTGRCTAA CTTCATTACC TTAAAGCCTA GAACATTATT CTGCTTTATT TATATGGCTT	2400
	TCTCACTTTT ATTTTGTAGC AKGGGTTGCA TCGACTTTTT TACTAGAGAA TTTTACTAGA	2460
10	TATTTGTCAT TCAAGTTTTC ATCTGCTTTA TAATTGATAC ACCTTGAGGG TCACTTTTCT	2520
10	AATACTTTTA CTATAATGTG GTACCACCTC AGCCCTAATA AATAATATTT TTACCTAATG	2580
	TCAAATCTTT TICCAGCTAA CTAAAAACTG TGTACAAAAG GATTGCTTGT AAATATGCAT	2640
15	GTAAATAGTT CTGTTAATAA CCCACTGTTT TACATTTGGT ACATCTGTGT CTGCTAATAC	2700
	AGTTAGCTTT CTCACTTTTC TGCTTGTTTG TTCAGTCTGA ATTAAAATTA GACTTTGAAA	2760
20	АТАААССТТА ААААААААА ААААААААА АААААСТССБА С	2801
20		
	(2) INFORMATION FOR SEO ID NO: 97:	
25	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1631 base pairs (B) TYPE: nucleic acid	
30	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97:	
	ATGGAGCCAA AGACAATCAC TGATGCTTTG GCTTCTAGTA TAATTAAGAG TGTGCTGCCT	60
35	AATTITCITC CATACAATGT CATGCTCTAC AGTGATGCTC CAGTGAGTGA ACTGTCCCTC	120
	GAGCTGCTTC TGCTTCAGGT TGTCTTGCCA GCATTACTCG AACAGGGACA CACGAGGCAG	180
40	TGCTGAAGG GGCTGGTGCG AGCGTGGACT GTGACCGCCG GATACTTGCT GGATCTTCAT	240
	TCTTATTTAT TGGGAGACCA GGAAGAAAAT GAAAACAGTG CAAATCAACA AGTTAACAAT	300
	AATCAGCATG CTCGAAATAA CAACGCTATT CCTGTGGTGG GAGAAGGCCT TCATGCAGCC	360
45		
	CACCAAGCCA TACTCCAGCA GGGAGGGCCT GTTGGYTTTC AGCYTTACCG CCGACCTTTA	420
	CACCAAGCCA TACTCCAGCA GGGAGGCCT GTTGGYTTTC AGCYTTACCG CCGACCTTTA AATTTTCCAC TCAGGATATT TCTGTTGATT GTCTTCATGT GTATAACATT ACTGATTGCC	420 480
50	CACCAAGCCA TACTCCAGCA GGGAGGCCT GTTGGYTTC AGCYTTACCG CCGACCTTTA AATTTTCCAC TCAGGATATT TCTGTTGATT GTCTTCATGT GTATAACATT ACTGATTGCC AGCCTCATCT GCCTTACTTT ACCAGTATTT GCTGGCCGTT GGTTAATGTC GTTTTGGACG	
50	AATTTICCAC TCAGGATATT TCTGTTGATT GTCTTCATGT GTATAACATT ACTGATTGCC	480
	AATTITCCAC TCAGGATATT TCTGTTGATT GTCTTCATGT GTATAACATT ACTGATTGCC AGCCTCATCT GCCTTACTTT ACCAGTATTT GCTGGCCGTT GGTTAATGTC GTTTTGGACG	480 540
50 55	AATTITCCAC TCAGGATATT TCTGTTGATT GTCTTCATGT GTATAACATT ACTGATTGCC AGCCTCATCT GCCTTACTTT ACCAGTATTT GCTGGCCGTT GGTTAATGTC GTTTTGGACG GGGACTGCCA AAATCCATGA GCTCTACACA GCTGCTTGTG GTCTCTATGT TTGCTGGCTA	480 540 600

AGGGTTCCCT TGGATCAGAC TCCTCTTTTT TATCCATGGC AGGACTGGGC ACTTGGAGTC

840

	CTGCATGCCA AAATCATTGC AGCTATAACA TTGATGGGTC CTCAGTGGTG GTTGAAAACT	900
- 5	GTAATTGAAC AGGTTTACGC AAATGGCATC CGGAACATTG ACCTTCACTA TATTGTTCGT	960
•	AAACTGGCAG CTCCCGTGAT CTCTGTGCTG TTGCTTTCCC TGTGTGTACC TTATGTCATA	1020
	GCTTCTGGTG TTGTTCCTTT ACTAGGTGTT ACTGCGGAAA TGCAAAACTT AGTCCATCGG	1080
10	COGATTTATC CATTTTTACT GATGGTCGTG GTATTGATCG CAATTTTGTC CTTCCAAGTC	1140
	CGCCAGTTTA AGCGCCTTTA TGAACATATT AAAAATGACA AGTACCTTGT GGGTCAACGA	1200
15	CTCGTGAACT ACGAACGGAA ATCTGGCAAA CAAGGCTCAT CTCCACCACC TCCACAGTCA	1260
	TCCCAAGAAT AAAGTAGTTG TCTCAACAAC TTGACCTTCC CCTTTACATG TCCTTTTTTG	1320
	TGGACTICTC TCTTTGGAGA TTTTTCCCAG TGATCTCTCA GCGTTGTTTT TAAGTTAAAT	1380
20	GTATTTGACT TGTGTTCTCA GCATTCAGAG AGCAGCGGTG TAAGATTCTG CTGTTCTCCC	1440
	TGGATCTTCT GACATTACTG CTGTCTGAGA TTTGTATATG TGTAAATACA AGTTCCTTGA	1500
25	TACCCTAAAA CCTTGGATTA AACAGAATGT GCATTGTACA TCTTTAAACA AAATGTATAT	1560
	TAATTTATTA AATCTAGTTG TCACTTTAAA AAAAAAAAA AAAAAACTCG AGGGGGCCC	1620
	GGTACCCAAA T	1631
30		
	(2) INFORMATION FOR SEQ ID NO: 98:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 504 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
40	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 98:	
	CCGAGCTGGG CGAGAAGTAG GGGAGGGCAC GAGCCGCCGC GGTGGCGGTT GCTATCGCTT	60
45	CGCAGAACCT ACTCAGGCAG CCAGCTGAGA AGAGTTGAGG GAAAGTGCTG CTGCTGGGTC	120
	TGCAGACGCG ATGGATAACG TGCAGCCGAA AATAAAACAT CGCCCCTTCT GCTTCAGTGT	180
50	GAAAGGCCAC GTGAAGATGC TGCGGCTGGA TATTATCAAC TCACTGGTAA CAACAGTATT	240
	CATGCTCATC GTATCTGTGT TGGCACTGAT ACCAGAAACC ACAACATTGA CAGTTGGTGG	300
	CATGCTCATC GTATCTGTGT TGGCACTGAT ACCAGAAACC ACAACATTGA CAGTTGGTGG AGGGGTGTTT GCACTTGTGA CAGCAGTATG CTGTCTTGCC GACGGGGCCC TTATTTACCG	300 360
5 5		
5 5	AGGGGTGTTT GCACTTGTGA CAGCAGTATG CTGTCTTGCC GACGGGGCCC TTATTTACCG	360

(2) INFORMATION FOR SEQ ID NO: 99:

-5

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1416 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

10

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 99:

15	GGCACGAGGG	AGGGAGCCCT	CTCCGTTGGG	TGACTCTTGT	GTGCCCTTTA	GACAGGCTGG	60
13	CCTGCCGGTT	CCACAGGGTA	CAGTTAGGAC	TTGAGTCTTT	CTTTTTCTGT	TTTGAGTTGG	120
	TGAGTGAGTG	ATAGGGTAAC	ATGGGCCTTC	AGGATGACCC	CTTGGAACTG	TGCCGAGTTC	180
20	CTTAAATCTC	AGCTGGGATC	CTGGACCTGG	GAGGCCCCTG	TGAGGGCCAG	CTCTGGAAAA	240
	ACCTGGGAGT	TGATGCCGGA	GCTGTGGAAG	AACTCTGCTC	GAGGGCAGGG	TGCCCTGGAA	300
25	CACTGGTAGT	TCTGGGGCTG	GGAGGGAGAG	GGGCTCCGGC	TTTCTCTGAA	ATGAACACTG	360
20	CTCTTCAGCA	GTTCAAGTAC	TIGTICTCAA	AACATTTTCT	AATTGATTGG	TAGGTTTTCA	420
	TAAGCATTGT	TTCTTTAAGG	CATGGAAAGG	GAAGAATGCT	CAAGCAAGTC	ATGTTTGTTT	480
30	TCAGTGGGAT	GGGCCCGCGT	TCTCACTGCT	GGGGCTTCC	CCTTCATGTG	GCACCTTTGT	540
	GCAGGGGCCA	CCAGGCAGAC	TCTTCCCACC	TTCTCCCACT	GAAGCACCAA	GGGGCTTGGA	600
35	ACCGTAATTT	GGCTAATCAG	AGGCATTTTT	TTTGTCCTAG	TATCTTTCAC	ACTTGTCCAA	660
55	CCGTCTTATT	TTTTTAAAAG	TICTGTTGCT	TGTATTAACA	CGAAACTAGA	GAGAAATAGT	720
	TTCTGAAGCC	AGTTTATTGT	GAAGATCCCC	AAGGGGAGGT	TCGGTAGAGA	AAAATAGTAA	780
40	GCTGGTTTAG	AAACTGACGA	GGGCAAACAG	CCAGGACGCA	TTGGAGAGGA	ATTTGCCAAA	840
	GATCTACCCT	GAGATAACGC	CTGTCCAGTG	TCTTCACCAC	GTGAATAACC	AGCGCTCCAA	900
45	AGIGTTTTC	TGCTTTGAAA	AAAAAAATTC	CACAAGCTTT	TAAAGGTGCA	TTTAAGAATC	960
45	CATGTGACTT	TAGAATGGAA	CTCCCGCCC	TGGCAACTGT	CACGTGTGCT	AGAAGGTTCG	1020
	ATGCCTCTGG	AATGCATGTG	ATACTCATCT	CCATTITGTT	TCCTTGATTG	CATTITIGTT	1080
50	CTTTTAGCAG	ATCTGTCCCT	GTGGGTGGTG	TCTAAGAAGT	CGGACACCTT	GGTTTTTGTG	1140
	TTAGATTGAG	CTGGGCAGCT	GCAATCAGCT	TCTTTATATG	CAAATTAGGC	ACGACCCATC	1200
55	TGTGGTTCCT	GGTTGGTGGC	TAATGAAGTG	AGGGGAGGGA	GGGATGTCAC	CCCAAAAGTA	1260
<i>J</i> J	GGCCCTCCCA	TIGGCTTTGG	CCAGGCCAGA	CACTTCACAT	CGTTTACATG	GTTCTGTGTA	1320
	ATTTTAAAGT	TTATGTGTAT	AAAGCGAAGC	TGTTTCTGTG	AAACTGTATA	TTTTGTAAAT	1380
60	AAATATATTG	CTACTTGAAA	ААААААААА	ААААА			1416

322

5 (2) INFORMATION FOR SEQ ID NO: 100:

10

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2847 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 100:

(XI) SEQUENCE DESCRIPTION: SEQ ID NO: 100:							
15	GGCTAGGACA	ATTITIGGTGC	TTTACCTATC	TCTGCAAAGA	CTGGAGAATT	TGGCATACCA	60
	TTAATTACAA	CCACCAATCA	TATCCAACAA	AAGTACCCTA	AAAGAAGGAC	CAGTGGCCAC	120
20	TCTCGAAAAA	ATTTAAGTAT	CAGAAGATTA	AAAAGATTTT	AGGATTTGGA	AGCTTGTATT	180
	GTCTTTCCCC	AATAATCATT	GTTTGATCTC	CAAATAGTAG	CCTTATATTA	GCAATRGACA	240
	GATCATICGT	TCTCCATATC	TGATCATATG	TTACTACTTT	CGAATCAGTA	TTTGGGCAAA	300
25	TTCAAGCATT	TATGCAGTGG	ATATAAATGG	АААТАТААА	ATATTTGCCA	ACCTGTCTCA	360
	GTAACTTATC	ATATCTCTGT	GNATCCTCAA	GGAAAGCACT	TTTGCTTTTA	CTTAGAAAGC	420
30	GTTTCAGATT	TGCTTTATAG	ACTCCTGCTG	TCTTCAGTAC	CTGATAAAAC	TTTAACCAGG	480
	GAAGCATTAA	ACACAGTGCA	GCAGCTTTTG	CCCAGGCTTC	TAAGTTCCTG	CCGCCAGCAT	540
	TTATCAATGT	AAGAACTAGG	ATGCTTCCTG	CAGTGGCACT	ACCTTCCCCT	AGAGCTGGAG	600
35	CATGCTGCTT	GGCCTTAAGC	CCCAGCATGA	TGAGGCTTCC	CTCCTGCCAG	GTCAGTAAAA	660
40	GTTAGAGAGC	TCAGAATTGG	GTCTTGCCTG	GGTGCAGGTG	GCAGGGTTTG	CTGAAACCCC	720
	TAAAGAGAAG	TCACCAAGGG	AGGCAGGTAA	TGAATGTTTC	CAGAATCAGT	CKGATACTCA	780
	TAGCAATTTC	TGGCTATCTT	TCAAATGTTG	AATTTCTGGA	TGCTGAGAGG	GACTTTGATT	840
	TGATATCATT	AAATCCAGGA	CAGTCCCAAG	AAGTGCTTGG	AGTCTCGGCT	CTGACAGCCC	900
45	AAGAAGGGAA	ATAACTTGTA	TTAAGGAACA	ACTATGAGCC	AGGCCCTGAG	CTGTCTCTTA	960
	GATAATAAAA	CAGATGGGGA	GTGGAAGAGT	CATTTGCTTC	AAGTTATACA	GCTAGGAAAT	1020
50	ACTCAAGCCA	AATCTTGAAC	GCAGCTCCCC	CTAATTCTGT	GGACAGGCAC	TTTGTACCAC	1080
	ACACCATGGT	CCACCTAAAA	ACAGAAGGAT	AAAAAGACTT	CAGGITTTCC	CACTGTGTGC	1140
	TGACCATCCC	AATITATGAA	TCTTCTTCAA	AATGACATTT	CACAGTTATA	GTTAGGGCTC	1200
55	AGAAATGGCA	TTGAGGTAGC	CTTATTTCTC	CCCTTTAGCA	GATGCTTTAA	GTACACATTG	1260
	CTGACTTGAG	CCCACCCCCA	GGAGTTAGGA	GAACATTTCC	TTTTTCATGC	CATCTTCCAT	1320
60	AAATAAGGTG	TTTCTTGGCC	TTCAAAGATA	TAGAACTTTG	CAGCAGTAGT	AAAAGTGAAG	1380

	GCTGTTCTGC	TCTCTACTCA	ACTITATITG	AAAATGTCTG	CAGCTTCACT	CCTGTAGAAA	1440
	AGGAAATCTT	CATATTTTAG	TAAACTTAGC	CGCCAGTGTA	CTCTGTGAGG	ATGTGGCAAT	1500
- 5	TCAAAGTCCA	GTGAATCTGG	CTCTCTTACT	GATTCCTGGT	TTTAGTGTGT	CTCTCGGGGG	1560
	AGTGTGTACC	ТАТАТАТАА	GGACAAGTGT	GATATGTGTG	TATATGTATA	TACATACATA	1620
10	CATGTCCACA	CACACACACA	CAATATTTGA	GAGCTAAGGA	AAACTCAAAG	CAGCCCCTTC	1680
10	ATTATCTTGC	GTACTACTTC	AAAGATTICT	GTCAGCCCTA	ATTACAAGTG	TCACCATATA	1740
	GTTGGGGCTT	AGGTACTTGC	TTACAGGAAG	AGCAATTCCC	TAGCAAAGGT	CATTAGCTCC	1800
15	TAAGGCACTG	AGTCAAAGTG	ACAGCCCTGA	AGGAAATTGC	ACTCCAGCCC	TCCTCCAGGA	1860
	TGTCTAATAA	GATGGGAAAC	TTGGATGCCC	AGCCATTTTG	GTGACCTGAG	AGTCTAACTA	1920
20	CTCCAGTTAG	ACCTAAGGGC	ACAAATGCAG	AATTCATGAC	CTTGTAGTTG	TGGCAGGGTC	1980
20	TAGGAAGTCC	TCTCTCCCCA	AGTAGAAAAT	ATTCTCTTGC	CATTCCTGAA	ATTCCACATT	2040
	CATATAATGG	CTGTGCAATA	CATGCTTCTC	AATAAGAAAA	TTAACTGCAT	GTTTACTGTG	2100
25	TGCTGATCAC	ATCAGATTTT	TATCTTTAAA	AAAATCTCAT	TATGGNTTGA	GTCCAGCCCA	2160
	GCTCTAAGAG	AAAAAGAAGG	CCCATATGGG	AGACTICAGT	CTCATTATTA	TTGCCTTTAT	2220
30	CCAGCAGTGC	TTATRAAGCC	CCCTACCCTG	TCCCATTCCA	GAAACCATAA	GACTCAGGCA	2280
	GTTCTTGATT	CTGGAGGCCT	GCCTGGTAAG	ATAAGATAGT	ATAATTIGGA	ACTGAGAACA	2340
	TACCAGAAAC	AGCAGAACGA	GGGCCAGAGC	AGAAAAATGA	AAATAAGTGG	AGACACTTAT	2400
35	GGATACATTG	GTGCAAAAAA	AGCCACGGGS	CCCATACTGG	CCTTGATATG	ACTTTGAGGG	2460
	GACAGCAGAT	ТААТАСТТАА	TGAGGGTTAA	ACCTGACCAG	TCTTTCTACA	GTGACAGGCC	2520
40	ACACTGCATG	AATGGGGAGA	ACCAATGAAT	CCATTGTCCT	CTGCCTATTT	TCCTGTGCAC	2580
, ,	AGTCACATTC	CCTCCTTAGG	AATCTTCCCC	TTCCACCCTT	TACATTAAAC	AAGGGAACAC	2640
	TGAATCTTTC	AAGGGAATTA	CACGTTTGGG	TTAATGTTTC	AGTATATCAT	TTTCATACTG	2700
45	TAAATTATTT	TGTAAGAGAG	ATTTACTGCT	ATCCCAGGAT	GTTCGGACTT	GCTGCCCCTG	2760
	TGCATTTGGA	AATCAATAAA	CTATTACTGG	AAATGCCAAA	ААААААААА	AAAAAAAAN	2820
50	NAAAAAACTC	GAGGGGGCC	CGTACCC				2847

(2) INFORMATION FOR SEQ ID NO: 101:

55
(i) SEQUENCE CHARACTERISTICS:

60

(A) LENGTH: 1394 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 101:

5	GAGATTGGTG	GAGGAGAGTA	AATAATCTAG	AGGCAAGAGT	TCAGTGAGGG	CCAAGGGGGA	60
Ü	CCCCAGAAA	AAGGTATGGA	GCTAACTCAT	CTCTTTTACA	AGGGGTGGCC	ATGACTTACT	120
	GTTGCAAAGT	ACTCAGTGTA	TATTTAATGT	TGATTGTTGA	ATTITAGITA	CGAGAGGGAA	180
10	GAACAATTIT	ACTICIGICC	TTATTTCACT	TGCTGAAAAG	CTGTGGGACA	AAATGTATGG	240
	AATAGACAAG	GCCACTTTCT	TIGIGATITC	TGCTTTTCAT	GCATATTATT	TTATTTACCC	300
15	ATAATTTCCA	AGAGGTTTGG	CGTTCCGCTC	TCCTGCTTTT	TTCTTTCATC	CACCCCTTTC	360
13	CTTTTTTTGG	AAGGGGGTTA	TATATGAGAG	TTCATTGAAG	AAGTCCAGTG	AGGCTGAAGT	420
	AAAGGGGCAA	GATAGGGCAG	TTAACTAAAG	AGCACTTTAT	TTCTTTGAAG	CCTTTCTAAG	480
20	AAAGAAATGG	GGGTGCGAGT	GGCTTGAATC	TCCCATGATG	TTGGAGGGCA	CTTAGTGGGG	540
	TTGAAGTATG	ACATAATATT	TCCCATTGGG	GAAAGGAGAA	TTTCTCTTAG	AGGGTGGCAA	600
25	AATGCCTTTG	CCCAGTGTCC	CTATTTTAGG	CATCITITCC	TTCCTTATTC	CTTCCAGTCA	6 60
23	GGTGTGTCC	TATACAAAAC	TTCCCATCAG	TTCTCCTCAA	TATTCCCCAT	TTGTAAATGA	720
	TCACTTCTCT	TITCTAAACC	CTTTTCCTGT	TCAGATCCAT	ACAGGATTTG	CAAGGGTAGG	780
30	ATCATACATG	CAAATGCCCC	TTGTTCATCT	GIGICTICIG	CAAACTAGTC	TCATGAAGAA	840
	TTCTGGCGTG	CAGCAGGGTA	GCTGAAGTTT	GGGTCTGGGA	CTGGAGATTG	GCCATTAGGC	900
35	NTCNCTGAGA	TICCAGCTCC	CTTCCACCAA	GCCCAGTCTT	GCTACGTGGC	ACAGGGCAAA	960
	CCTGACTCCC	TTTGGGCCTC	AGTTTCCCCT	CCCCTTCATG	AAATGAAAAG	AATACTACTT	1020
	TTTCTTGTTG	GTCTAGCATT	GCTGGACACA	AAGTGTAGTC	ATTATTGTTG	TATTGGGTGA	1080
40	TGTGTGCAAA	ACTGCAGAAG	CTCACTGCCT	ATAAGAGGAA	ATAAGAGAGA	AAGTGGAGGA	1140
	GAGGGACAAA	AGGAGTAATT	ATTTGGTATA	GATCCACCCA	TCCCAACCTT	TCTCTCCTCA	1200
45	GTCCCTGCTC	CTCATGTTTC	TGGTTTGGTG	AGTCCTTTGT	GCCACCACCC	ATAATGCTTT	1260
•••	GCATTGCTGC	ATCCTGGGAA	GGGGGTATAT	GGTCTCACAA	GTTGTTGTCA	TTGTTTTTTT	1320
	GCATGCTTTC	TTAATAAAA	АААААААА	ATGTTTANAG	TTTTATCTTA	АААААААА	1380
50	ааааааааа	ACCC					1394

55 (2) INFORMATION FOR SEQ ID NO: 102:

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 794 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

WO 98/39448 PCT/US98/04493

325

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 102:

5	GGMRCGAGGC	GGAGTAAAGG	GACTTGAGCG	AGCCAGTTGC	CGGATTATTC	TATTTCCCCT	60
	CCCTCTCTCC	CGCCCCGTAT	CTCTTTTCAC	CCTTCTCCCA	CCCTCGCTCG	CGTACCATGG	120
10	CGGAGCGTCG	GCGGCCACTC	AGTCCCATTC	CATCTCCTCG	TCGTCCTTCG	GAGCCGAGCC	180
. •	GTCCGCGCCC	GCCGCCGCCG	GGAGCCCAGG	AGCCTGCCCC	GCCCTGGGGA	CGAAGACCTG	240
	CAGCTCCTCC	TGTGCGGTGC	ACGATCTGAT	TTTCTCGAGA	GATGTGAAGA	AGACTGGGTT	300
15	TGTCTTTGGA	CACGCTGATC	ATGCTGCTTT	CCCTGGCAGC	TTTCAGTGTC	ATCARTGTGG	360
	GTTTCTTAMC	TCATCCTGGC	TCTTCTCTCT	GTCACCATCA	RCTTCAGGAT	CTACAAGTCC	420
20	GTCATCCAAG	CTGTWCAGAA	RTCAGAARAA	GGCCATCCAW	TCCAAAGCCT	ACCTGGACGT	480
	AGACATTACT	CTGTCCTCAG	AAGCTTTCCA	TAATTACATG	AATGCTGCCA	TGGTGCACAT	540
	CAACAGGGCC	CTGAAACTCA	TTATTCGTCT	CTTTCTCGTA	GAAGATCTGG	TTGACTCCTT	600
25	GAAGCTGGCT	GTCTTCATGT	GGCTGATGAC	CTATGTTGGT	GCTGTTTTTA	ACGGAATCAC	660
	CCTTCTAATT	CTTGCTGAAC	TGCTCATTTT	CAGTGTCCCG	ATTGTCTATG	AGAAGTACAA	720
30	GACCCAGATT	GATCACTATG	TTGGCATCGC	CCGAGATCAG	ACCAAGTCAA	TTGTTGAAAA	780
. =	GATCCCAAGC	AAAA					794

35

40

(2) INFORMATION FOR SEQ ID NO: 103:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1544 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 103:

45 TTTGCTTGCT AGTCTGAACC AAAGAGTTGT TTGGGCATTT GCTGTGTTGG CCATTTCTGG 60 AGCAAGAGGG TCTTCTTCCT CCTTCCCCCA GCCAGCCAGC TGTCCTGGGG CCAGGCTTTC 120 50 CTGGGTGGAA AGAAGTATAC CTTTCCCTGG GGCCCTAGGA TAGCAAAGTG AGCCATAGTG 180 GGCCAGGCTG CCCTCCATGC TGGGCCCCAG CCCAGGTCTG CACTCGCCTG GATCACCTTC 240 TTTGAGCCTT AGCCATCTCC TGTCAGGTAG GAATGAACTT GCCAGCCTTC AGGYTCGTTC 300 55 360 AGCTATGACC ATCTGTGCGG TCAGGGTACA CTCAGCTCTC CTCCCCAACT CCAGCAGCCT TTAAGAAGTG TCCCTTTGGC GCCCCCTGGA GGCAGAGCAC TGAGCTGGAC CCTGGGTAGA 420 60 480 CTCCCACAGG GAGGACGGAG CTGGCCTCAG GAGTGGGACA CCCAGACTTG GCAGGGCCTT

	CAAGAGGCCT	GTGTGGGGGC	CCCAGGAATC	CTTAGCTGAA	GCGGGGAGAC	TCACTCTCCA	540
-5	TCTCAGGAAA	TTCTAGCCCT	TGCCCTCAGG	GAGCCACGGT	TGAGGGTGAG	GCCCAACACC	600
3	TGCCTTAGGG	CCCTGGGTGG	GCAAGTCTGG	GCCCTGGGGT	AGGGAGGGAG	ACTCAGGCCC	660
	ACACTTGGGT	ATTTTCTAAT	TTCAGACAAA	CACACACTCA	GCGCGCACTC	ACTGATTCCT	720
10	ACACATTGCC	AAGATTTCAC	ACATGTGACC	AGGGCCACC	AAAGTCCCTG	TGACCTTTGT	780
	GACTAGGATC	CTAATTTCTC	TATTTTCTCC	TECCTECCTE	GGTCTGTGTC	ACCTGGGGCA	840
15	GTGTGGATAA	TGTTTAGTTC	TGTGACACTG	TTTTTTGGGG	GTGGCACCTG	GTTCTCCGAT	900
13	GCCTGGGCTG	GTGTCAGGCC	CAGGACTGTA	GTGCTGGGAG	CAGTAAAGCT	CAGCTCTGTG	960
	TAATGAGTGA	TGCTATGGCT	TECTCETETC	TTATGATCCA	ATCCTTTTCT	ACATCAGCCC	1020
20	TIGTTTTGTT	TTATGGCTAG	TCTTATCTGG	CCTGGTTATT	TCCTTGCGGG	GAGGAGAGGG	1080
	TTTGCTAATC	TGCTCCCAGC	CCAACCTATT	ACCACCCCAC	CTCGCTGGGA	CCTACTCCTC	1140
25	GGGAGGCAGC	AGACAGGGAG	CCACCAGCAG	TGGCTTCCTG	GCCCTGTGCT	GGGGTTGGGG	1200
23	GGAAGCTGGG	GGCACATGTG	GCCCTTGCCT	TCTGAGCAGC	TCCCAGTGCC	AGGGCTTTGA	1260
	GACTITCCCA	CATGATAAAA	GAAAAGGGAG	GTACAGAAGT	TCCAATTCCC	TTTTTATTTT	1320
30	GCTGGTTGGT	ATCTGTAAAT	GTTTAATAAA	TATCTGAGCA	TGTATCTATC	AACGCCAAGA	1380
	ATTTCAAAGT	CTCCTTCAAC	AATATGAGGC	TTTTAGGATG	TTTATATTCC	TTCATCCCTC	1440
35	TTGTTTCCCA	GGTTTTGCAG	GGAAAAAAG	TCTGGAATTA	TAGATACAGC	ттаттаттаа	1500
33	ATTTGTTCTT	GCATAAAAA	ааааааааа	AACNCNINGGG	CCCC		1544
40	(2) INFORM	ATION FOR SE	EQ ID NO: 10	04:			
45	(i)	(B) TYP (C) STR	HARACTERIST GTH: 871 ba E: nucleic ANDEDNESS: OLOGY: line	se pairs acid double			
50	(xi) SEQUENCE	DESCRIPTION	: SEQ ID NO	: 104:		
30	ACCCACGCGT	CCGNCTTGTC	CACCCGGGG	CGTGGGAGTG	AGGTACCAGA	TTCAGCCCAT	60
	TTGGCCCCGA	CGCCTCTGTT	CTCGGAATCC	GGGTGCTGCG	GATTGAGGTC	CCGGTTCCTA	120
55	AGGTGGGTCG	CTGTCCACCC	GGGGCGTGG	GAGTGAGGTA	CCAGATTCAG	CCCATTIGGC	180
	CCCGACGCCT	CTGTTCTCGG	AATCCGGGTG	CTGCGGATTG	AGGTCCCGGT	TCCTAACGGA	240
60	CTGCAAGATG	GAGGAAGGCG	GGAACCTAGG	AGGCCTGATT	AAGATGGTCC	ATCTACTGGT	300
v							

	CTTGTCAGGT GCCTGGGGCA TGCAAATGTG GGTGACCTTC GTCTCAGGCT TTCCTGCTTT	360
	TCCGAAGCCT TCCCCGACAT ACCTTCGGAC TAGTGCAGAG CAAACTCTTC CCCTTCTACT	420
-5	TCCACATCTC CATGGGCTGT GCCTTCATCA ACCTCTGCAT CTTGGCTTCA CAGCATGCTT	480
	GGGCTCAGCT CACATTCTGG GAGGCCAGCC AGCTTTACCT GCTGTTCCTG AGCCTTACGC	540
10	TGGCCACTGT CAACGCCCGC TGGCTGGAAC CCCGCACCAC AGCTGCCATG TGGGCCCTGC	600
	AAACCGTGGG AGAAGGAGCG AGGCCTGGGT GGGGAGGTAC CAGGCAGCCA ACAGGTTCCC	660
	GATCCTTAAC GCCAGNTGCG AGAGAAGGAC CCCAAGTACA GTGCTCTCCG CCAGAATTTC	720
15	TICCGCTACC ATGGGCTGTC CTCTCTTTGC AATCTGGGCT GCGTCCTGAG CAATGGGCTC	780
	TGTCTCGCTG GCCTTGCCCT GGAAATAAGG AGCCTCTAGC ATGGGCCCTG CATGCTAATA	840
20	AATSCTTCTT CAGAAAAAAA AAAAAAAAAA A	871
	(2) INFORMATION FOR SEQ ID NO: 105:	
25	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 404 base pairs (B) TYPE: nucleic acid	
	• • •	
30	(C) STRANDEDNESS: double	
30	(D) TOPOLOGY: linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 105:	
30 35	(D) TOPOLOGY: linear	60
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 105:	60 120
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 105: GGCACGAGTT ATAGCATGGC ATTCATACTT TTGTTTTATT GCCTCATGAC TTTTTTGAGT	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 105: GGCACGAGTT ATAGCATGGC ATTCATACTT TTGTTTTATT GCCTCATGAC TTTTTTGAGT TTAGAACAAA ACAGTGCAAC CGTAGAGCCT TCTTCCCATG AAATTTTGCA TCTGCTCCAA	120
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 105: GGCACGAGTT ATAGCATGGC ATTCATACTT TTGTTTTATT GCCTCATGAC TTTTTTGAGT TTAGAACAAA ACAGIGCAAC CGTAGAGCCT TCTTCCCATG AAATTTTGCA TCTGCTCCAA AACTGCTTTG AGTTACTCAG AACTTCAACC TCCCAATGCA CTGAAGGCAT TCCTTGTCAA	120 180
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 105: GGCACGAGTT ATAGCATGGC ATTCATACTT TTGTTTTATT GCCTCATGAC TTTTTTGAGT TTAGAACAAA ACAGTGCAAC CGTAGAGCCT TCTTCCCATG AAATTTTGCA TCTCCTCCAA AACTCCTTTG AGTTACTCAG AACTTCAACC TCCCAATGCA CTGAAGGCAT TCCTTGTCAA AGATACCAGA ATGGGTTACA CATTTAACCT GGCAAACATT GAAGAACTCT TAATGTTTTC	120 180 240
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 105: GGCACGAGTT ATAGCATGGC ATTCATACTT TTGTTTTATT GCCTCATGAC TTTTTTGAGT TTAGAACAAA ACAGTGCAAC CGTAGAGCCT TCTTCCCATG AAATTTTGCA TCTCCTCCAA AACTCCTTTG AGTTACTCAG AACTTCAACC TCCCAATGCA CTGAAGGCAT TCCTTGTCAA AGATACCAGA ATGGGTTACA CATTTAACCT GGCAAACATT GAAGAACTCT TAATGTTTTC TTTTTAATAA GAATGACGCC CCACTTTGGG GACTAAAATT GTGCTATTGC CGAGAAGCAG	120 180 240 300
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 105: GGCACGAGTT ATAGCATGGC ATTCATACTT TTGTTTTATT GCCTCATGAC TTTTTTGAGT TTAGAACAAA ACAGTGCAAC CGTAGAGCCT TCTTCCCATG AAATTTTGCA TCTGCTCCAA AACTGCTTTG AGTTACTCAG AACTTCAACC TCCCAATGCA CTGAAGGCAT TCCTTGTCAA AGATACCAGA ATGGGTTACA CATTTAACCT GGCAAACATT GAAGAACTCT TAATGTTTTC TTTTTAATAA GAATGACGCC CCACTTTGGG GACTAAAATT GTGCTATTGC CGAGAAGCAG TCTAAAAATTT ATTTTTTTAA AAAGAGAAAC TGCCCCATTA TTTTCGTCGG GTTGGTTTTT	120 180 240 300 360
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 105: GGCACGAGTT ATAGCATGGC ATTCATACTT TTGTTTTATT GCCTCATGAC TTTTTTGAGT TTAGAACAAA ACAGTGCAAC CGTAGAGCCT TCTTCCCATG AAATTTTGCA TCTGCTCCAA AACTGCTTTG AGTTACTCAG AACTTCAACC TCCCAATGCA CTGAAGGCAT TCCTTGTCAA AGATACCAGA ATGGGTTACA CATTTAACCT GGCAAACATT GAAGAACTCT TAATGTTTTC TTTTTAATAA GAATGACGCC CCACTTTGGG GACTAAAATT GTGCTATTGC CGAGAAGCAG TCTAAAAATTT ATTTTTTTAA AAAGAGAAAC TGCCCCATTA TTTTGGTGGG GTTGGTTTTT AATTTNTAAT NTGAAAAATT TTTTTGGGGT TTTTTGGGGCCC ATGG	120 180 240 300 360
35 40 45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 105: GGCACGAGTT ATAGCATGGC ATTCATACTT TTGTTTTATT GCCTCATGAC TTTTTTGAGT TTAGAACAAA ACAGTGCAAC CGTAGAGCCT TCTTCCCATG AAATTTTGCA TCTGCTCCAA AACTGCTTTG AGTTACTCAG AACTTCAACC TCCCAATGCA CTGAAGGCAT TCCTTGTCAA AGATACCAGA ATGGGTTACA CATTTAACCT GGCAAACATT GAAGAACTCT TAATGTTTTC TTTTTAATAA GAATGACGCC CCACTTTGGG GACTAAAATT GTGCTATTGC CGAGAAGCAG TCTAAAAATTT ATTTTTTTAA AAAGAGAAAC TGCCCCATTA TTTTGGTGGG GTTGGTTTTT AATTTNTAAT NTGAAAAAATT TTTTTGGGGT TTTTGGGGCCC ATGG	120 180 240 300 360
35 40 45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 105: GGCACGACTT ATAGCATGGC ATTCATACTT TTGTTTTATT GCCTCATGAC TTTTTTGAGT TTAGAACAAA ACAGTGCAAC CGTAGAGCCT TCTTCCCATG AAATTTTGCA TCTGCTCCAA AACTGCTTTG AGTTACTCAG AACTTCAACC TCCCAATGCA CTGAAGGCAT TCCTTGTCAA AGATACCAGA ATGGGTTACA CATTTAACCT GGCAAACATT GAAGAACTCT TAATGTTTTC TTTTTAATAA GAATGACGCC CCACTTTGGG GACTAAAATT GTGCTATTGC CGAGAAGCAG TCTAAAAATTT ATTTTTTTAA AAAGAGAAAC TGCCCCATTA TTTTGGTGGG GTTGGTTTTT AATTTNTAAT NTGAAAAATT TTTTTGGGGT TTTTGGGGCC ATGG (2) INFORMATION FOR SEQ ID NO: 106: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1542 base pairs	120 180 240 300 360
35 40 45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 105: GGCACGAGIT ATAGCATGC ATTCATACTT TTGTTTTATT GCCTCATGAC TTTTTTGAGT TTAGAACAAA ACAGTGCAAC CGTAGAGCCT TCTTCCCATG AAATTTTGCA TCTGCTCCAA AACTGCTTTG AGTTACTCAG AACTTCAACC TCCCAATGCA CTGAAGGCAT TCCTTGTCAA AGATACCAGA ATGGGTTACA CATTTAACCT GGCAAACATT GAAGAACTCT TAATGTTTTC TTTTTAATAA GAATGACGCC CCACTTTGGG GACTAAAATT GTGCTATTGC CGAGAAGCAG TCTAAAAATTT ATTTTTTTAA AAAGAGAAAC TGCCCCATTA TTTTGGTGGG GTTGGTTTTT AATTTNTAAT NTGAAAAATT TTTTTGGGGT TTTTGGGGCC ATGG (2) INFORMATION FOR SEQ ID NO: 106: (i) SEQUENCE CHARACTERISTICS:	120 180 240 300 360

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 106:

60

	GICAGACAGG	TGGAGCCGCC	GGGCAGGAG	TCTCAAAGAG	CCAGGCTCCA	GGAGAGGAAG	60
	GGCTCTRCGA	GAGGAGAGAG	GAGAGCGCTG	GAGAGGAGAG	GCTGGAGAGT	CCTTAGCCAG	120
5	GATGGAGGCT	GTTGTGAACT	TGTACCAAGA	GGTGATGAAG	CACGCAGATC	CCCGGATCCA	180
	GGGCTACCCT	CTGATGGGGT	CCCCCTTGCT	AATGACCTCC	ATTCTCCTGA	CCTACGTGTA	240
10	CTTCGTTCTC	TCACTTGGGC	CTCGCATCAT	GGCTAATCGG	AAGCCCTTCC	AGCTCCGTGG	300
. •	CTTCATGATT	GTCTACAACT	TCTCACTGGT	GGCACTCTCC	CTCTACATTG	TCTATGAGTT	360
	CCTGATGTCG	GGCTGGCTGA	GCACCTATAC	CTGGCGCTGT	GACCCTGTGG	ACTATTCCAA	420
15	CAGCCCTGAG	GCACTTAGGA	TGGTTCGGGT	GGCCTGGCTC	TICCTCTICT	CCAAGTTCAT	480
	TGAGCTGATG	GACACAGTGA	TCTTTATTCT	CCGAAAGAAA	GACGGCAGG	TGACCTTCCT	540
20	ACATGTCTTC	CATCACTCTG	TGCTTCCCTG	GAGCTGGTGG	TGGGGGTAA	AGATTGCCCC	600
20	GGGAGGAATG	GGCTCTTTCC	ATGCCATGAT	AAACTCTTCC	GTGCATGTCA	TAATGTACCT	660
	GTACTACGGA	TTATCTGCCT	TTGGCCCTGT	GGCACAACCC	TACCTTTGGT	GGAAAAAGCA	720
25	CATGACAGCC	ATTCAGCTGA	TCCAGTTTGT	CCTGGTCTCA	CTGCACATCT	CCCAGTACTA	780
	CTTTATGTCC	AGCTGTAACT	ACCAGTACCC	AGTCATTATT	CACCTCATCT	GGATGTATCG	840
30	CACCATCTTC	TTCATGCTGT	TCTCCAACTT	CTGGTATCAC	TCTTATACCA	AGGGCAAGCG	900
-	GCTGCCCCGT	GCACTTCAGC	AAAATGGAGC	TCCAGGTATT	GCCAAGGTCA	AGGCCAACTG	960
	AGAAGCATGG	CCTAGATAGG	CGCCCACCTA	AGTGCCTCAG	GACTGCACCT	TAGGGCAGTG	1020
35	TCCGTCAGTG	CCCTCTCCAC	CTACACCTGT	GACCAAGGCT	TATGTGGTCA	GGACTGAGCA	1080
	GGGGACTGGC	CCTCCCCTCC	CCACAGCTGC	TCTACAGGGA	CCACGGCTTT	GGTTCCTCAC	1140
4 0	CCACTTCCCC	CGGGCAGCTC	CAGGGATGTG	GCCTCATTGC	TGTCTGCCAC	TCCAGAGCTG	1200
	GGGGCTAAAA	GGCTGTACA	GTTATTTCCC	CCTCCCTGCC	TTAAAACTTG	GGAGAGGAGC	1260
	ACTCAGGGCT	GGCCCCACAA	AGGCTCTCGT	GCCTTTTTC	CTCACACAGA	AGAGGTCAGC	1320
45	AATAATGTCA	CTGTGGACCC	AGTCTCACTC	CTCCACCCCA	CACACTGAAG	CAGTAGCTTC	1380
	TGGGCCAAAG	GTCAGGGTGG	GCGGGGGCCT	GGGAATACAG	CCTGTGGAGG	CTGCTTACTC	1440
50	AACTTGTGTC	TTAATTAAAA	GTGACAGAGG	AAACCANAAA	АААААААА	AAAAACTCGA	1500
	GGGGGGCCCG	TACCCAAATC	GCCGGTATGA	TCGTAAACAA	TC		1542

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2327 base pairs

(B) TYPE: nucleic acid

⁽²⁾ INFORMATION FOR SEQ ID NO: 107:

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 107: - 5 GGTAGCTCAN TGCAGTGAAA TAGTCTTACT GGAAACAAAG CCCTTTATCA AGAATAATTA 60 ACTOTTCCCT TTTCTTTTTG GAGAGGTGCT TTGTTTCTGA TCGGACCATT TCACTGCAGC 120 10 AAGCAACAC GTATTCTRAG CAGAAGATCG GGACTTGAGG CCATGTTGCG GAGGGCCAGT 180 RACATTATCT GGACTCTGGA GTGTGAGGAA TATGGACTCC ACTCTTCACT ATATTCACAR 240 CGATTCAGAC TTGAGCAACA ATAGCAGTTT TAGCCCTGAT GAGGAAAGGA GAACTAAAGT 300 15 ACAGATGTT GTACCTCAGG CGTTGTTAGA TCAGTATTTA TCTATGACTG ACCCTTCTCG 360 TGCACAGACG GTTGACACTG AAATTGCTAA GCACTGTGCA TATAGCCTCC CTGGTGTGGC 420 20 CTTGACACTC GGAAGACAGA ATTGGCACTG CCTGAGAGAG ACGTATGRGA CTYTGGCCTC 480 AGACATGCAG TGGAAAGTTC GACGGAACTC TAGCATTCTC CATCCACGRG CTTGCAGTTA 540 TYCTYGGAGA TCAATTGACA GCTGCAGATC TGGTTCCAAT TTTTAATGGA TTTTTAAAAG 600 25 ACCTCGATGA AGTCAGGATA GGTGTTCTTA AACACTTGCA TGATTTTCTG AAGCTTCTTC 660 ATATTGACAA AAGAAGAGAA TATCTTTATC AACTTCAGGA GTTTTTGGTG ACAGATAATA 720 30 GTAGAAATTG GCGGTTTCGA GCTGAACTGG CTGAACAGCT GATTTTACTT CTAGAGTTAT 780 ATAGTCCCAG AGATGTTTAT GACTATTTAC GTCCCATTGC TCTGAATCTG TGTGCAGACA 840 AAGTITCTIC TOTICGTIGG ATTICCTACA ACTIGGICAG CGAGATGGIG AAGAAGCIGC 900 35 ACGCGGCAAC ACCACCAACG TICGGAGTGG ACCTCATCAA TGAGCTTGTG GAGAACTTTG 960 GCAGATGTCC CAAGTGGTCT GGTCGGCAAG CCTTTGTCTT TGTCTGCCAG ACTGTCATTG 1020 40 AGGATGACTG CCTTCCCATG GACCAGTTTG CTGTGCATCT CATGCCGCAT CTGCTAACCT 1080 TAGCAAATGA CAGGGTTCCT AACGTGCGAG TGCTGCTTGC AAAGACATTA AGACAAACTC 1140 TACTAGAAAA AGACTATTTC TTGGCCTCTG CCAGCTGCCA CCAGGAGGCT GTGGAGCAGA 1200 45 CCATCATGGC TCTTCAGATG GACCGTGACA GCGATGTCAA GTATTTTGCA AGCATCCACC 1260 CTGCCAGTAC CAAAATCTCC GAAGATGCCA TGAGCACAGC GTCCTCAACC TACTAGAAGG 1320 50 CTTGAATCTC GGTGTCTTTC CTGCTTCCAT GAGAGCCGAG GTTCAGTGGG CATTCGCCAC 1380 GCATGTGACC TGGGATAGCT TTCGGGGGAG GAGAGACCTT CCTCTCCTGC GGACTTCATT 1440 GCAGGTGCAA GTTGCCTACA CCCAATACCA GGGATTTCAA GAGTCAAGAG AAAGTACAGT 1500 55 AAACACTATT ATCTTATCTT GACTTTAAKG KKWAWKMMWW KCTCAGMSRA TTATAMTTSW 1560 CWMMRARGSM WYMAAWSCTK SWGCTCYWCC KSRSTGRMKG MMRCTCTAGA AYTRGYRGAK 1620 60 1680 CMYYYKSGCT KMWGGAAKKS GGCASGAGCC AGAGACCTGC ATTGCTTTCT CCTGGTTTTA

720

	TTTAACAATC GACAAATGAA ATTCTTACAG CCTGAAGGCA GACGTGTGCC CAGATGTGAA	1740
-5	AGAGACCTTC AGTATCAGCC CTAACTCTTC TCTCCCAGGA AGGACTTGCT GGGCTCTGTG	1800
J	GCCAGCTGTC CAGCCCAGCC CTGTGTGTGA ATCGTTTGTG ACGTGTGCAA ATGGGAAAGG	1860
	AGGGGTTTTT ACATCTCCTA AAGGACCTGA TGCCAACACA AGTAGGATTG ACTTAAACTC	1920
10	TTAAGCGCAG CATATTGCTG TACACATTTA CAGAATGGTT GCTGAGTGTC TGTGTCTGAT	1980
	TTTTTCATGC TGGTCATGAC CTGAAGGAAA TTTATTAGAC GTATAATGTA TGTCTGGTGT	2040
15	TITTAACTIG ATCATGATCA GCICTGAGGT GCAACTICTT CACATACTGT ACATACCTGT	2100
13	GACCACTCTT GGGAGTGCTG CAGTCTTTAA TCATGCTGTT TAAACTGTTG TGGCACAAGT	2160
	TCTCTTGTCC AAATAAAATT TATTAATAAG ATCTATAGAG AGAGATATAT ACACTTTTGA	2220
20	TIGITITCTA GATGICTACC AATAAATGCA ATTIGTGACC TGTAAAAAAA AAAWAAAAAA	2280
	ACTCGAGGGG GGCCCGGTAC CCAAATCGCC GATATGATCT AANCATC	2327
25		
23	(2) INFORMATION FOR GEO. ID NO. 149.	
	(2) INFORMATION FOR SEQ ID NO: 108:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1062 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
25	(D) TOPOLOGY: linear	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 108:	
	GGCCGCCGAG GCGCAACAGC CGTTCTGTCA GCTCTGGGTC CAACCGGACT AGCGAANATC	
40		60
40	TTCCTCATCC TCATCATCGT CTTCCTCATC CCGATCTCGG TCCAGGTCCC TCTCCCCCCC	60 120
40		
4 U	TTCCTCATCC TCATCATCGT CTTCCTCATC CCGATCTCGG TCCAGGTCCC TCTCCCCCCC	120
40 45	TTCCTCATCC TCATCATCGT CTTCCTCATC CCGATCTCGG TCCAGGTCCC TCTCCCCCCC ACACAAGAGG TGGCGAAGGT CCAGCTGTAG TTCCTCTGGA CGTTCTCGAA GATGCTCTTC	120 180
	TTCCTCATCC TCATCATCGT CTTCCTCATC CCGATCTCGG TCCAGGTCCC TCTCCCCCCC ACACAAGAGG TGGCGAAGGT CCAGCTGTAG TTCCTCTGGA CGTTCTCGAA GATGCTCTTC CTCTTCTTCG TCATCATCTT CCTCTTCGTC TTCCTCATCC TCATCATCCA GTTCTCGAAG	120 180 240
45	TTCCTCATCC TCATCATCGT CTTCCTCATC CCGATCTCGG TCCAGGTCCC TCTCCCCCCC ACACAAGAGG TGGCGAAGGT CCAGCTGTAG TTCCTCTGGA CGTTCTCGAA GATGCTCTTC CTCTTCTTCG TCATCATCTT CCTCTTCGTC TTCCTCATCC TCATCATCCA GTTCTCGAAG CCGCTCACGA ATCCCCATCC CCCCGCCGGA GRAAGTGACA GGAGGCGGCG GTACAGCTCT	120 180 240 300
	TTCCTCATCC TCATCATCGT CTTCCTCATC CCGATCTCGG TCCAGGTCCC TCTCCCCCCC ACACAAGAGG TGGCGAAGGT CCAGCTGTAG TTCCTCTGGA CGTTCTCGAA GATGCTCTTC CTCTTCTTCG TCATCATCTT CCTCTTCGTC TTCCTCATCC TCATCATCCA GTTCTCGAAG CCGCTCACGA ATCCCCATCC CCCCGCCGGA GRAAGTGACA GGAGGCGGCG GTACAGCTCT TATCGTTCAC ATGACCATTA CCAAAGGCAA AGAGTGCTAC AAAAGGAGCG TGCAATAGAA	120 180 240 300 360
45	TTCCTCATCC TCATCATCGT CTTCCTCATC CCGATCTCGG TCCAGGTCCC TCTCCCCCCC ACACAAGAGG TGGCGAAGGT CCAGCTGTAG TTCCTCTGGA CGTTCTCGAA GATGCTCTTC CTCTTCTTCG TCATCATCTT CCTCTTCGTC TTCCTCATCC TCATCATCCA GTTCTCGAAG CCGCTCACGA ATCCCCATCC CCCCGCCGGA GRAAGTGACA GGAGGCGGCG GTACAGCTCT TATCGTTCAC ATGACCATTA CCAAAGGCAA AGAGTGCTAC AAAAGGAGCG TGCAATAGAA GAAAGAAGGG TGGTCTTCAT TGGAAAGATA CCTGGCCGCA TGACTCGATC AGAGCTGAAA	120 180 240 300 360 420
45	TTCCTCATCC TCATCATCGT CTTCCTCATC CCGATCTCGG TCCAGGTCCC TCTCCCCCCC ACACAAGAGG TGGCGAAGGT CCAGCTGTAG TTCCTCTGGA CGTTCTCGAA GATGCTCTTC CTCTTCTTCG TCATCATCTT CCTCTTCGTC TTCCTCATCC TCATCATCCA GTTCTCGAAG CCGCTCACGA ATCCCCATCC CCCCGCCGGA GRAAGTGACA GGAGGCGGCG GTACAGCTCT TATCGTTCAC ATGACCATTA CCAAAGGCAA AGAGTGCTAC AAAAGGAGCG TGCAATAGAA GAAAGAAGGG TGGTCTTCAT TGGAAAGATA CCTGGCCGCA TGACTCGATC AGAGCTGAAA CAGAGGTTCT CCGTTTTTGG AGAGATTGAG GAGTGCACCA TCCACTTCCG TGTCCAAGGG	120 180 240 300 360 420 480

CCTGTAAAGA GCAAATTTGA TTCTCTTGAC TTTGACACAT TGTTGAAACA GGCCCAGAAG

	AACCICABBA GOIAACCIIG GOCCCIICCC IOCIAICCII IIICICCIII GOAGGIGCCC	700
	AACCTCCTCC ACCCCCTTCC CCTACTCTAG GGGAGAGAGC TGCTAGTGAG ATGACTGTTT	840
- 5	TATAAAGAAA TOGAAAAAAG TOAAATAAAA AATATOTTOA ATCAGATTTT TTAAAAGGOG	900
	TATTTGTTTT TTTATAACAG GTATTGAAAC AAGTTAACTT GCATTCCTAT GTAAGATAGG	960
10	AGGGGCTGAG GGGATCCCCA GTGTTTGGAA CATAAGTCAC TATGCAGACT AATAAACATC	1020
10	AACTAGAGAG NAAAAAAAA AAAAAAAAAA ATTTAAAAAA CT	1062
15	(2) INFORMATION FOR SEQ ID NO: 109:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2539 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 109:	
23	GAGAGACTCA CACTTCTTTT CCATTATCAC TGACGATGTA GTGGACATAG CAGGGGAAGA	60
	GCACCTACCT GTGTTGGTGA GGTTTGTTGA TGAATCTCAT AACCTAAGAG AGGAATTTAT	120
30	AGGCTTCCTG CCTTATGAAG CCGATGCAGA AATTTTCGCT GTGAAATTTC ACACTATGAT	180
	AACTGAGAAG TGGGGATTAA ATATGGAGTA TTGTCGTGGC CAGGCTTACA TTGWCTCTAG	240
35	TGGATTTTCT TCCAAAATGA AAGTTGTTGC TTCTAGACTT TYAAGMKMRA TWKCCCCMAK	300
<i></i>	YWAWCKGAAC AMAMKCTGSW CYTCCWSYGC SKTRRMKRYC GYKSTATRRC WARWKSAKYM	360
	CCYGKKMTGS RRGTAWYTSK TGCAYKAGGG AACAATTGAG GAAGTTTGTT CTTTTTTCCA	420
40	TCGATCACCA CAACTGCTTT TAGAACTTGA CAACGTAATT TCTGTTCTTT TTCAGAACAG	480
	TAAAGAAAGG GGTAAAGAAC TGAAGGAAAT CTGCCATTCT CAGTGGACAG GCAGGCATGA	540
45	TGCTTTTGAA ATTTTAGTGG AACTCCTGCA AGCACTTGTT TTATGTTTAG ATGGTATAAA	600
	TAGTGACACA AATATTAGAT GGAATAACTA TATAGCTGGC CGAGCATTTG TACTCTGAGT	660
	GCAGTGTCAG ATTITGATTT CATTGTTACT ATTGTTGTTC TTAAAAATGT CCTATCTTTT	720
50	ACAAGAGCCT TTGGGAAAAA CYYCMAGGGG CAAACCTCTG ATGTCTTCTT TGCKKMMSRT	780
	ARMITITGAY ATRMARYACT RMMIKSAYTY AAYGRWGIGA CWSGAWAATA TTRAASTYTA	840
55	TACAATKAAT YWTRRYTTSM KRMAGMYAAT CCGAAAYTGT GGMAAMYAAA CTTGATATTC	900
-	AAATGAAACT CCCTGGGAAA TTCCGCAGAG CTCACCAGGG TAACTTGGAA TCTCAGCTAA	960
	CCTCTGAGAG TTACTATAAA GAAACCCTAA GTGTCCCAAC AGTGGAGCAC ATTATTCAGG	1020
6 0	AACTTAAAGA TATATTCTCA GAACAGCACC TCAAAGCTCT TAAATGCTTA TCTCTGGTAC	1080

	CCTCAGTCAT	GGGACAACTC	AAATTCAATA	CGTCGGAGGA	ACACCATGCT	GACATGTATA	1140
-5	GAAGTGACTT	ACCCAATCCT	GACACGCTGT	CAGCTGAGCT	TCATTGTTGG	AGAATCAAAT	1200
J	GGAAACACAG	GGGGAAAGAT	ATAGAGCTTC	CGTCCACCAT	CTATGAAGCC	CTCCACCTGC	1260
	CTGACATCAA	GTTTTTCCT	AATGTGTATG	CATTGCTGAA	CCTCTCTCT	ATTCTTCCTG	1320
10	TGATGAAGGT	TGAGAATGAG	CGGTATGAAA	ATGGACGAAA	GCGTCTTAAA	GCATATTTGA	1380
	GGAACACTTT	GACAGACCAA	AGGTCAAGTA	ACTTGGCTTT	GCTTAACATA	AATTTTGATA	1440
15	TAAAACACGA	CCTGGATTTA	ATGGTGGACA	CATATATTAA	ACTCTATACR	AKTAMGTCAG	1500
	MGCTYYCTAC	AKAYRAYTCM	SWAWMTGTGG	AAARYWSSTA	MGMSWGCWKK	TAMMRRTMCG	1560
	GWWWTYYYMK	RKTYGAYMYW	YGCGWMCGAG	AAAAAGCCGT	AAGGTGTATG	TAGACCACTT	1620
20	AATCACTAAA	TATCTTTGCC	TATAGGACTC	CATTGAATAC	ATTAGCCATT	GATAATCTAC	1680
	CTGTTTAAAT	GGCCCCTGTT	TGAACTCTCA	AGCTTTGAAG	ACCTACCTGT	TCTTCCAGAA	1740
25	GAGAACGITG	AAAGTGCCAT	GTTTCCTTTT	GCGTGATCTC	TGTTGATGGC	ACTCTGGAAT	1800
	TGTTTCCAGT	TTAAKTCATT	TTAGACATAG	CATTTATTAT	CACTGTGGAT	CTCTACTTGT	1860
	TGGGTGTTAT	GAATTCTTTG	AAGAATATAT	TTTGAAGAGG	TGTGGGAGGA	AGGAATACAT	1920
30	TAAAAT	GTTGTAGTGA	AGCCCACAAT	TGACCTTKGA	CTAATAGGAG	TTTTAAGTAT	1980
	GTTAAAAATC	TATACTGGAC	AGTTACAAGA	AATTACCGGA	GAAAAGCTTG	TGAGCTCACC	2040
35	AAACAAGGAT	TTCAGTGTAG	ATTTTGTCTT	TCTTGAACTT	AAAGAAACAA	ATGACAAAGT	2100
	TTGAATGGAA	AAGCCTGCTG	TIGTTCCACA	TCTCGTTGCT	GTTTACATTC	CTTTGTGGAG	2160
	CCTACATCTT	CCTAAGCTTT	TTAGCAGGTA	TATGTTGAAC	ACTICTGTTT	CATGGTTGAG	2220
40	ACAGAATCAG	AGGCCATGGA	TACTGACAAC	TGATTTGTCT	GITTITITIC	TCTGTCTTTT	2280
	TCCATGACTC	TTATATACTG	CCTCATCTTG	ATTTATAAGC	AAAACCTGGA	AAACCTACAA	2340
45	AATAAGTGTT	GTGGTTTATC	TAGAAAAATA	TGGAAAATAT	TGCTGTTATT	TTTGGTGAAG	2400
	AAAATCAATT	TTGTATAGTT	TATTTCAATC	TAAATAAAT	GTGAATTTTG	AAATTAWIT	2460
	AATTWGGSAC	AAABTBGHGG	GGGDTCCAAA	CHTWVTCGHG	KAAMITCTCT	WAARMATYTK	2520
50	ATAAACMSCT	TCACAATTC					2539

55 (2) INFORMATION FOR SEQ ID NO: 110:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1751 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

WO 98/39448 PCT/US98/04493

333

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 110:

- 5	AGCATGAAGC	CGATGGCCGT	GGTGGCCAGT	ACCGTCCTGG	GCCTGGTGCA	AAACATGCGT	60
	GCGTTTGGCG	GGATCCTGGT	GGTGGTCTAC	TACGTATITG	CCATCATTGG	GATCAACTTG	120
10	TTTAGAGGCG	TCATTGTGGC	TCTTCCTGGA	AACAGCAGCC	TGGCCCCTGC	CAATGGCTCG	180
10	GCGCCCTGTG	GGAGCTTCGA	GCAGCTGGAG	TACTGGGCCA	ACAACTTCGA	TGACTTTGCG	240
	GCTGCCCTGG	TCACTCTGTG	GAACTTGATG	GTGGTGAACA	ACTGGCAGGT	GTTTCTGGAT	300
15	GCATATCGGC	GCTACTCAGG	CCCCTCGTCC	AAGATCTATT	TTGTATTGTG	GTGGCTGGTG	360
	TCGTCTGTCA	TCTGGGTCAA	CCTGTTTCTG	GCCCTGATTC	TGGAGAACTT	CCTTCACAAG	420
20	TGGGACCCCC	GCAGCCACCT	GCAGCCCCTT	GCTGGGACCC	CAGAGGCCAC	CTACCAGATG	480
20	ACTGTGGAGC	TCCTGTTCAG	GGATATTCTG	GAGGAGCCCG	GCGACGATGA	GCTCACAGAG	540
	AGGCTGAGCC	AGCACCCGCA	CCTGTGGCTG	TGCAGGTGAC	GTCCGGGCTG	CCATCCCAGC	600
25	AGGGCGGCA	GGAGAGAGAG	GCTGGCCTAA	CACAGGTGCC	CATCATGGAA	GAGGCGGCCA	660
	TGCTGTGGCC	AGCCAGGCAG	GAAGAGACCT	TTCCTCTGAC	GGACCACTAA	GCTGGGGACA	720
30	GGAACCAAGT	CCTTTGCGTG	TGGCCCAACA	ACCATCTACA	GAACAGCTGC	TGGTGCTTCA	780
	GGGAGGCGCC	GTGCCCTCCG	СТТТСТТТТА	TAGCTGCTTC	AGTGAGAATT	CCCTCGTCGA	840
	CTCCACAGGG	ACCTTTCAGA	CAAAAATGCA	AGAAGCAGCG	GCCTCCCCTG	TCCCCTGCAG	900
35	CTTCGGTGGT	GCCTTTGCTG	CCGGCAGCCC	TTGGGGACCA	CAGGCCTGAC	CAGGGCCTGC	960
	ACAGGTTAAC	CGTGAGTCTG	TCTCATCTAT	TCACAGCTGG	GAATGATACT	AATACCTCCG	1020
40	ATTTTAGCCC	AGCACCACAG	GGTACGTTCC	AGTTTTTCTC	TCTTTCCATA	GCTGTAAGGC	1080
	CCTTTCTGGG	AATGGTTCTC	ATTCTCCTTA	ATCTATTATT	GGGTCAGTTT	TCCTGCATGT	1140
	CCCCAGCCTC	CCATCACTGC	CACCCACTCC	CCACAGAGAT	GCCCTGCTCA	TCCGACTGGG	1200
45	GCTTTGACTC	CCACACTGTG	TACCCCTCTT	GTGTGGACGC	CCTGCTGCCA	AAACCTTCAG	1260
	CAAACAGCTT	TCCAAATGGA	AGTTGTCACT	GTCAGGCCTT	TACAATCAGC	AACAGCAAAA	1320
50	TCTACATGCT	GCTGAGGGTC	CTGCCTCATT	AAGATGCAAT	AAATATGTAA	GTACATAAAA	1380
	ACAGCAATAG	AAGAAACGTA	ATGCTTTATT	CTCAAATATG	ATGTCTACAT	AGAAAAGCCA	1440
	AATTATTAA	GAATAGTAAG	AATTCACCCA	GCACTTTGGG	AGGCCGAGGC	GGGTGGATCA	1500
55	TGAGGTCAGG	AGATCGAGAC	CATCCTGGCT	AACAGGGTGA	AACCCCGTCT	СТАСТАААА	1560
	TACAAAAAAT	TGGCCGGGCG	CAGTGGCGGG	CGCCTGTGGT	CCCAGCTACT	GGGGAGGCTG	1620
60	AGGCAGGAGA	ATGGCGTGAA	CCCGGGAAGC	GGAGCTTGCA	GTGAGCCGAG	ATTGCGCCAC	1680

WO 98/39448 PCT/US98/04493

334

	TGCAGTCCGC	AGTCCAGCCT	GGGCGACAGA	GCGAGACTCC	GTCTCAAAAA	АААААААА	1740
	АААААААА	A					1751
5							

-5

(2) INFORMATION FOR SEQ ID NO: 111:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1117 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

15

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 111:

AATGTTGTGG TGGTAGCATT TGGGTTAATT CTRATTATAG AGTCTCTTGG AGAGCAATGT 60 20 CCATAAACTA ATCCCAAACA ACATTGTCTT TTTRATGTTG TAGTGAACAG CAGAGAATTT 120 CAAAGGACCT TGCTAATATC TGTAAGACGG CAGCTACAGC AGGCATCATT CGCTGGGTGT 180 ATGGGGGAAT ACCAGCTTTT ATTCATGCTA AACAACAATA CATTGAGCAG AGCCAGGCAG 240 25 AAATTTATCA TAACCGGTTT GATGCTGTGC AATCTGCACA TCGTGCTGCC ACACGAGGCT 300 TCATTCGTTA TGGCTGGCGC TGGGGTTGGA GAACTGCAGT GTTTGTGACT ATATTCAACA 360 30 CAGTGAACAC TAGTCTGAAT GTATACCGAA ATAAAGATGC CTTAAGCCAT TTTGTAATTG 420 CAGGAGCTGT CACGGGAAGT CTTTTTAGGA TAAACGTAGG CCTGCGTGGC CTGGTGGCTG 480 GTGGCATAAT TGGAGCCTTG CTGGGCACTC CTGTAGGAGG CCTGCTGATG GCATTTCAGA 540 35 AGTACTCTGG TGAGACTGTT CAGGAAAGAA AACAGAAGGA TCGAAAGGCA CTCCATGAGC 600 TAAAACTGGA AGAGTGGAAA GGCAGACTAC AAGTTACTGA GCACCTCCCT GAGAAAATTG 660 40 AAAGTAGTTT ACAGGAAGAT GAACCTGAGA ATGATGCTAA GAAAATTGAA GCACTGCTAA 720 ACCITCCTAG AAACCCTTCA GTAATAGATA AACAAGACAA GGACTGAAAG TGCTCTGAAC 780 TTGAAACTCA CTGGAGAGCT GAAGGGAGCT GCCATGTCCG ATGAATGCCA ACAGACAGGC 840 45 CACTOTTIGG TCAGCCTGCT GACAAATTTA AGTGCTGGTA CCTGTGGTGG CAGTGGCTTG 900 CTCTTGTCTT TTTCTTTTCT TTTTAACTAA GAATGGGGCT GTTGTACTCT CACTTTACTT 960 50 ATCCTTAAAT TTAAATACAT ACTTATGTTT GTATTAATCT ATCAATATAT GCATACATGA 1020 ATATATCCAC CCACCTAGAT TTTAAGCAGT AAATAAAACA TTTCGCAAAA GATTAAAGTT 1080 GAATTITACA GTTAAAAAAA AAAAAAAAA AAAAAAA 1117 55

⁽²⁾ INFORMATION FOR SEQ ID NO: 112:

(i) SEQUENCE CHAF	RACTERISTICS:
-------------------------------------	---------------

(A) LENGTH: 1313 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

-5 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 112:

GGCAGAGGTT TICTTATATT TTAAGTAAAT TTAAAGTGGC TATCAGAATA TITATTCTTG 60 10 TTTGAGACTA CCAACATAAC TACGTGTTGA AGGTGCTTCA CAGAGAATAT ATTGCCTTTA 120 ATGTGAAATA ATTTTCACCA ATGTTGCTAA CTTTAATAAA GTATAAAATT TGTAGAATAT 180 15 TCAGTTAAGT AGTTGGTAAC CCTTTTCTAT TTTAGTAAAA CTTAATGCAT GTTTACTTTT 240 TTTTGAAAGA TGCAGACAAT CTCTTTGAAC ATGAATTGGG GGCTCTCAAT ATGGCTGCAT 300 TACTACGAAA AGAAGAAAGA GCAAGTCTTC TTAGTAATCT TGGCCCATGT TGTAAGGCGT 360 20 TGTGCTTCAG ACGGGATTCT GCAATTCGAA AGCAGCTTGT TAAAAATGAG AAGGGCACCA 420 TAAAACAAGC TTACACGAGT GCTCCAATGG TAGACAATGA ATTACTTCGA TTGAGTCTTC 480 25 GGTTATTTAA GCGGAAGACT ACTTGCCATG CTCCAGGACA TGAAAAGACT GAAGATAATA 540 AACTITCACA GTCCAGTATC CAACAGGAAC TGTGTGTGTC TTAAGACCGA AGTTACAATA 600 TGGTATTTTT GGTACTGTCT TCCTTCAGCA GTGCATATTC TTTTGCAAAG TTCTTTGGTT 660 30 TGACAAGCAT TAGTGACAAA GGCAGAAAAG ATTTATCAGC CATGCTAAAA GAGTGAAGAA 720 TTTTGATCTT TAGAGACACT AGTTTTGGCC AACTTAAGAT TTTACGTTAA TTTTTACATA 780 35 GTATTTGACA CTCATGCAAA ATAATGTGAA AACATCTAGA TTTAGTAGTT TATTCTGCGC 840 CTTTTGTTAA AACTGAAGAT TTTGGAAAAT GGTTGTCACT GCTCTTCCAG CCTATGAATA 900 TTTTTGTGAA ATGGAACCAT GGATTTATGT CTGGATCATC CATACAGAAC CAACAATTTT 960 40 ATTCAAAAAC AATGTGTTCA TCAAAGTAAT TGCTCACATT GTGCAGTACT ATGTTGTACA 1020 GACCACGTGA AAGGGAATGC TGGTCTAGCT GGCGTGGTAT GTTTATAGGC GAATTTCAGC 1080 45 AGAAGGAAGC CAAAATAGTT TTTTCCTTTT GAAAGTTTTT TAAAAATTAT TTCATGGGTC 1140 TTTTTTTAA TTAATATGTG TGCATTGTTA CAATGTATGT TGGGATGTCT TTTGACCCTA 1200 AATGCTTTTT TIGTTATCAG AGAITGTGTA CTATITITTAT TITTAATAAA TGTATCTTCC 1260 50 1313

55

(2) INFORMATION FOR SEQ ID NO: 113:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1654 base pairs

(B) TYPE: nucleic acid

60

CAAAAAAAA AAAAAATAAA NTTCGAGGG GGGC

1654

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 113: -5 ACAGGGACAG AATACTITCT TICCTICCTT CAAGTACAAG AAGGCTITCT CIACCATTIG 60 CGTCTACACT TTATTTTAAA AGCTATCCTT TTCTAGTAGT ATTTTATCAT GGCAATGGCA 120 10 TGATGACAAC AACAGTCTTT CATTACAGAC TGAAGGGAAG CATGTCCTTA CTTAAAATAG 180 TTCTGCTACT TTCCCTCCTA TTATAAGGAA ATTTTACAGA TTCTAAAAAT ACCTTAATTT 240 TTCTTTGATT TITATTTTAC CAAGTCACAA ATGTCTTTTT GATGTTTTGA GAATTGTTCT 300 15 CATAGAATCA CAAATACTGA CATTTCATTA GATGATTATT TTCCTAGAAT CCCCAAAGAG 360 CAGTGGCAGT CCATGGCTTG GTTGAAGCTA GAAATTTTCC TGCCCCTGGT GACCTGGTAA 420 20 GCCTCCTGCT CGGAACCGTG TGAGTGGGTG AGGAAGATGA GAGATGGTCA GATGGAAGAG 480 540 GCAGCGGANA TNGACTGACT TCACATGCTC AGCTTTCTCA GCCTTTTGTT TATTTTTGTTG 600 25 TCCTTAGATT TCCCTGTTGT AAAAGGGGCA AGAAAAGTAA CTCATCATCT CTAACACACC 660 ATGGCAGCTT AGCCAGGTAG TCTTAGTGGT GGTGTTTAGG CATAAGATAT GCTGATCATC 720 30 AGTCTCAGGC CACAGTTTCC TTCACTAATC GTCCAGCTTG AGTGTTCTGT TCTCTTCCTG 780 CCCATTTCCT TGAACCTCCT GCTCTAGCCT TGGCGGAGGG AGAGTGCTAT TTGCTTTTGT 840 TCTCCCTCTG TCTTAGGAAA AGCCATCTTT AATATAGTTC TTCACCACTG TTGGGGTTGT 900 35 TTTGTGATTT TTTTTTCTT CCGAAGAACT CCTGGTTGTT ATTGGATTTT GTATTTTAAT 960 ACAAATTATT GAATTTTATA AGCTTGTACA CAATATTTAA TTAGTGTGAA AGGAAACAAA 1020 40 GAATGCAGGA AAAATAATTT AATATCAACC TCAGTTGACA AGGTGCTCAG ATTATTCAAT 1080 TCGGGATCCT CCTTTGTTA GGTTTTTGAG ACAACCCTAG ACCTAAACTG TGTCACAGAC 1140 TTCTGAATGT TTAGGCAGTG CTAGTAATTT CCTCGTAATG ATTCTGTTAT TACTTTCCTA 1200 45 TTCTTTATTC CTCTTTCTTC TGAAGATTAA TGAAGTTGAA AATTGAGGTG GATAAATACA 1260 AAAAGGTAGT GTGATAGTAT AAGTATCTAA GTGCAGATGA AAGTGTGTTA TATACATCCA 1320 50 TTCAAAATTA TGCAAGTTAG TAATTACTCA GGGTTAACTA AATTACTTTA ATATGCTGTT 1380 1440 GAAYCTACTC TGTTCCTTGG CTAGAAAAA TTATAAACAG GACTTTGTAG TTTGGGAAGC CARATTGATA ATATTCTATG TTCTAAAAGT TGGGCTATAC ATAAATTATT AAGAAATATG 1500 55 GATTITTATT CCCAGGATAT GGTGTTCATT TTATGATATT ACGCAGGATG ATGTATTGAG 1560 TAAAATCAGT TITGTAAATA TGTAAATATG TCATAAATAA ACAATGCTTT GACTTATTTC 1620

~							
- 5	121	INFORMATION	EUD	CEO	TD	NO.	111.
	141	THE OWNER TON	I ON		111	140.	774.

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1171 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 114:

15	GGCAAACTTT	CCCCCAANGC	TICGAAACTT	GCAAGCCGAA	ACCTTGAATC	GTTAAAAGTT	60
	GGGTTGCGNC	GCCCCCTCG	CCCGAAGAAG	CGCAATTGGC	GTTCCGCGAA	CGTTCGCCCT	120
20	CAACGGCTCG	GCAGCCAGCC	ATGTCCTGCA	CCCAGGACAG	CCCCCTCCC	CTACAAGGAC	180
20	CTGGMCCTCA	TCTTCCTGCG	CCGACCTGCG	CGGGGTAAGG	GGWAGTTTCA	GACTGTGAAG	240
	GACGTCGTGC	TGGACTGCCT	GTTGGACTTC	TTACCCGAGG	GGGTGAACAA	AGAGAAGATC	300
25	ACACCACTCA	CGCTCAAGGA	AGCTTATGTG	CAGAAAATGG	TTAAAGTGTG	CAATGACTCT	360
	GACCGATGGA	GTCTTATATC	CCTGTCAAAC	AACAGTGGCA	AAAATGTGGA	ACTGAAATTT	420
30	GTGGATTCCC	TCCGGAGGCA	GTTTGAATTC	AGTGTAGATT	CTTTTCAAAT	CAAATTAGAC	480
,	TCTCTTCTGC	TCTTTTATGA	ATGTTCAGAG	AACCCAATGA	CTGAGACATT	TCACCCCACA	540
	ATAATCGGGG	AGAGCGTCTA	TGGCGATTTC	CAGGAAGCCT	TTGATCACCT	TTGTAACAAG	600
35	ATCATTGCCA	CCAGGAACCC	AGAGGAAATC	CGAGGGGGAG	GCCTGCTTAA	GTACTGCAAC	660
	CTCTTGGTGA	GGGGCTTTAG	GCCCGCCTCT	GATGAAATCA	AGACCCTTCA	AAGGTATATG	720
40	TGTTCCAGGT	TTTTCATCGA	CTTCTCAGAC	ATTGGAGAGC	AGCAGAGAAA	ACTGGAGTCC	780
+0	TATTTGCAGA	ACCACTTTGT	GGGAATTGGA	AGACCGCAAG	TATGAGTATC	TCATGACCCT	840
	TCATGGAGTG	GTAAATGAGA	GCACAGTGTG	CCTGATGGGA	CATGAAAGAA	GACAGACTTT	900
45	AAACCTTATC	ACCATGCTGG	CTATCCGGGT	GTTAGCTGAC	CAAAATGTCA	TTCCTAATGT	960
	GGCTAATGTC	ACTTGCTATT	ACCAGCCAGC	CCCCTATGTA	GCAGATGCCA	ACTTTAGCAA	1020
50	TTACTACATT	GCACAGGTTC	AGCCAGTATT	CACGTGCCAG	CAACAGACCT	ACTCCACTTG	1080
50	GCTACCCTGC	AATTAAGAAT	САТТТААААА	TGTCCTGTGG	GGAAGCCATT	TCAGACAAGA	1140
	CAGGAGAGAA	ААААААААА	АААААААА	А			1171

55

60 (i) SEQUENCE CHARACTERISTICS:

⁽²⁾ INFORMATION FOR SEQ ID NO: 115:

	(A) LENGTH: 842 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
- 5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 115:	
	GGTCTGCGCC GGAAGTGCAT GAGCTGCCGA TGTGGTGCTT AGTGATTGCG GTTTCGGTCG	60
10	CTCTCCCGTG TTTCCCGGGC TGGGTATTTG CCTCGCACCA TGGCGCCCAA GGGCAAAGTG	120
•	GGCACGAGAG GGAAGAAGCA GATATTTGAA GAGAACAGAG AGACTCTGAA GTTCTACCTG	180
15	CGGATCATAC TGGGGGCCAA TGCCATTTAC TGCCTTGTGA CGTTGGTCTT CTTTTACTCA	240
13	TCTGCCTCAT TTTGGGCCTG GTTGGCCCTG GGCTTTAGTC TGGCAGTGTA TGGGGCCAGC	300
	TACCACTCTA TGAGCTCGAT GGCACGAGCA GCGTTCTCTG AGGATGGGGC CCTGATGGAT	360
20	GGTGGCATGG ACCTCAACAT GGAGCAGGGC ATGGCAGAGC ACCTTAAGGA TGTGATCCTA	420
	CTGACAGCCA TCGTGCAGGT GCTCAGCTGC TTCTCTCTCT ATGTCTGGTC CTTCTGGCTT	480
25	CTGGCTCCAG GCCGGCCCT TTACCTCCTG TGGGTGAATG TGCTGGGCCC CTGGTTCACT	540
23	GCAGACAGTG GCACCCCAGC ACCAGAGCAC AATGAGAAAC GGCAGCGCCG ACAGGAGCGG	600
	CGGCAGATGA AGCGGTTATA GCCATTGACA TIGTGGCCAC AGGCCACTGG CCCTGGGTGG	660
30	CTCTGTCAGG GTGCACAGCC CCTCATGCCT GGAGCAATGA GGGTCTAGTC CAGGGGCCAA	720
	AAGCAGTCTG AGGTATTGGG TATACTTATA CTCTATAGGG TCGTTGAATA AATGGCTTAG	780
35	AATGTGAAAA AAAAAAAAA AAAAAACTCG AGGGGGCCC GGTACCCAAT TTCNCCTANA	840
33	AT	842
40	(2) INFORMATION FOR SEQ ID NO: 116:	
	(i) SEQUENCE CHARACTERISTICS:	
15	(A) LENGTH: 1640 base pairs	
45	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 116:	
	GGCACGAGGC GGCGCAGCG GTGGCGGCGC CGCCCCCCGG CGGGAGCCGT TCCCTTTCCC	60
	GTCGGGGAGC GCGGGGYCGG GGCCCAGGGG ACCCCGGGCC ACGGAGAGGCG GGAAGAGGAT	120
55	GGATTGCCCG GCCCTCCCCC CCGGATGGAA GAAGGAGGAA GTGATCCGAA AATCTGGGCT	180
	AAGTGCTGGC AAGAGCGATG TCTACTACTT CAGTCCAAGT GGTAAGAAGT TCAGAAGCAA	240
60	GCCTCAGTTG GCAAGGTACC TGGGAAATAC TGTTGATCTC AGCAGTTTTG ACTTCAGAAC	300

	TGGAAAGATG	ATGCCTAGTA	AATTACAGAA	GAACAAACAG	AGACTGCGAA	ACGATCCTCT	360
	CAATCAAAAT	AAGGGTAAAC	CAGACTTGAA	ATACAACATT	GCCAATTAGA	CAAACAGCAT	420
- 5	CAATTTTCAA	ACAACCGGTA	ACCCAAAGTC	ACAAATCATC	CTAGTAATAA	AGTGAAATCA	480
	GACCCACAAC	GAATGAATGA	ACAGCCACGT	CAGCTTTTCT	GGGAGAAGAG	GCTACAAGGA	540
10	CTTTAGTGCA	TCAGATGTAA	CAGAACAAAT	TATAAAAACC	ATGGAACTAC	CCAAAGGTCT	600
10	TCAAGGAGTT	GGTCCAGTAG	CAATGATGAG	ACCCTTTTAT	CIGCIGITGC	CAGTGCTTTG	660
	CACACAAGCT	CTGCGCCAAT	CACAGGGCAA	GTCTCCGCTG	CTGTGGAAAA	GAACCTGCTG	720
15	TTTGGCTTAA	CACATCTCAA	CCCCTCTGCA	AAGCTTTTAT	TGTCACAGAT	GAAGACTCAG	780
	GAAACAGAAG	AGCGAGTACA	GCAAGTACGC	AAGAAATTGG	AAGAAGCACT	GATGGCAGAC	840
20	ATCTTGTCGC	GAGCTGCTGA	TACAGAAGAG	ATGGATATTG	AAATGGACAG	TGGAGATGAA	900
20	GCCTAAGAAT	ATGATCAGGT	AACTTTCGAC	CGACTTTCCC	CAAGAGAAAA	TTCCTAGGAA	960
	ATTGAACAAA	AATGTTTCCA	CIGCTITIG	CCTGTAAGAA	AAAAAATGTA	CCCGAGCACA	1020
25	TAGAGCTTTT	TAATAGCACT	AACCAATGCC	TTTTTAGATG	TATTITIGAT	GTATATATCT	1080
	ATTATTCAAA	AAATCATGTT	TATTTTGAGT	CCTAGGACTT	AAAATTAGTC	TTTTGTAATA	1140
30	TCAAGCAGGA	CCCTAAGATG	AAGCTGAGCT	TTTGATGCCA	GGTGCAATCT	ACTGGAAATG	1200
30	TAGCACTTAC	GTAAAACATT	TGTTTCCCCC	ACAGTTTTAA	TAAGAACAGA	TCAGGAATTC	1260
	TAAATAAATT	TCCCAGTTAA	AGATTATTGT	GACTTCACTG	тататаааса	татттттата	1320
35	CTTTATTGAA	AGGGGACACC	TGTACATTCT	TCCATCGTCA	CTGTAAAGAC	AAATAAATGA	1380
	TTATATTCCA	CAGAAAAAA	WAAAAAAAA	MWSTYGARRR	GSRGCMCRSW	AYMMARWWCC	1440
40	CCWMRTWRGS	MKTCSTMTKA	YTTACATTCA	ACTCTGATCC	CGGGGCCTTA	GGTTTGACAT	1500
10	GGGAGGTGGG	AGGAAGATAG	CGCATATATT	TGCAGTATGA	ACTATTGCCT	CTGGGACGTT	1560
	GTGAGGAATT	GTGCTTTCAC	CAGAATTTCT	AAGGATTTCT	GGCTTAAATA	TCACCTAGCC	1620
45	TGTGGTAATT	TTTTTTCCCT					1640

50 (2) INFORMATION FOR SEQ ID NO: 117:

55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 952 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 117:

60 TGAATTTAGN AAACACTTTG GAAAACTCAT AACCTCATCA GAAACTGCCT TTAGCCACAC

	TCCTGACCTT	CTAGATGAGT	AACAAAAAAA	TGAAATAAGT	TCTTGGAAAT	TAAGCCATTT	120
-5	ATTTAATTT	GCTATTTTT	TCAATGTTCT	AGGTATCTTT	AAATTTGTTA	TTGTGGAATC	180
-5	ATTTTCCTGC	CAGATACCTT	TATCAAAATT	ATTGGCCTCA	TGAGAGCTGA	AGTAAGTCAG	240
	CTTTTTGGTG	AACTTTAGTG	GACTTCTGTG	AGATTGTAGT	TGTACTTTGT	ATCTCTAAAT	300
10	CTAAAGATAG	TTTTTTAAAA	CTCCCAAAGA	AAATCTGCTC	TCCTTTCTGA	TCTAAAAACT	360
	CATCTTTGGG	GTAAAGAGTT	AAGTGTCCAA	AGGTTGTCAC	AGTTCATGAG	GTCAGAGGGA	420
15	GCTAGCCTGG	CACCTGGACT	CTGCCCATCC	ACAGCTGACA	GATTCCAACA	GAAGTGTATT	480
13	TAAATTCTCC	AGTAGACAAT	GCTGGGTAAG	GGAGGGGGTA	CCCCTCCCTT	ATTAAGATAC	540
	AGGCTGCTGT	ATTTTACATT	GCTTCTCCGG	GAAGGGGAGC	CTGGAGAAAA	CAAAGTCACT	600
20	ATTCCCTTTT	TTGAAACAGG	AAAAAAATT	ATTTTTGTT	CAGTAAAAAT	GGTAGAGAAT	660
	TCCAATGTCC	CTAGCCACAA	GGGACCAGTT	CCACTGAGAA	GTGAACAGTG	GGAACTCAAA	720
25	ATTTCAGAAA	CATTGGGGGA	AGGGAAAATT	GCTTTCTCT	TAATTGGCAG	ATGTTCCAGT	780
23	GGGGGGGG	GCTCTGTTT	TTGTTGGGAT	GTGTTATGTT	GTATGTACGC	ATATATGGAC	840
	CGGAGTCTGC	TGAGTTTATA	AGGTTCCAAA	AATATGGTAA	AATCTTGGTT	TTTGTTAATT	900
30	татстсаата	AAAGCCCACT	GGRACTCCAA	АААААААА	AAAAAAAAGA	NN	952

35 (2) INFORMATION FOR SEQ ID NO: 118:

40

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1256 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 118:

45	GACGTCATAG GT	TAAACAGGC	TCTGTATCCG	TGGCAGCGGC	CGTGGCAGGC	TGGCTGGGTA	60
	ccccrrcrcc cr	TGACCCAGG	AGAAGCTGCC	TGTCTACATC	AGCCTGGGCT	GCAGCGCGCT	120
50	ecceccece ec	GCCGGCAGC	TGAACTATGT	GCTCTTCAGG	GCGGGCACCG	TGTTGCATTC	180
50	ATCTTTGTAC CO	CCCAGCATC	TAGCAGTGTT	GGCATGTAGT	AGGCACTCAA	GAAATGTGTG	240
	TTGAATGAAC GA	ATGCCTGTG	ACAAGCAAGC	GGACTTTATT	CTTTCCTGAC	CCTTCCTCCT	300
55	ATGACACACC TY	CCTCCTGAC	TGCCACTGTC	ACTCCTTCAG	AGCAGAACTC	CTCTAGGGAA	360
	CCTGGATGGG A	AACAGCCAT	GGCCAAGGAC	ATCCTGGGTG	AAGCAGGGCT	ACACTTTGAT	420
60	GAACTGAACA A	GCTGAGGGT	GTTGGACCCA	GAGGTTACCC	AGCAGACCAT	AGAGCTGAAG	480

WO 98/39448 PCT/US98/04493

341

	GAAGAGTGCA	AAGACTYTGT	GGACAAAATT	GGCCAGTTTC	AGAAAATAGT	TGGTGGTTTA	540
	ATTGAGCTTG	TIGATCAACT	TGCAAAAGAA	GCAGAAAATG	AAAAGATGAA	GGCCATCGGT	600
5	GCTCGGAACT	TGCTCAAATC	TATAGCAAAG	CAGAGAGAAG	CTCAACAGCA	GCAACTTCAA	660
	GCCCTAATAG	CAGAAAAGAA	AATGCAGCTA	GAAAGGTATC	GGGTTGAATA	TGAAGCTTTG	720
10	TGTAAAGTAG	AAGCAGAACA	AAATGAATTT	ATTGACCAAT	TTATTTTTCA	GAAATGAACT'	780
ı	GAAAATTTCG	CTTTTATAGT	AGGAAGGCAA	ААСАААААА	AGCCTCTCAA	AACCAAAAA	840
	ACCTCTGTAG	CATTCCAGCG	GCTTGACCAA	TGACCTATGT	CACAAGAGGT	GGCGTGTAAG	900
15	GAATGCAGCC	CCCTGAAGAC	AGCACTACAA	GTCTGGGGGA	GCCAGTTTTA	ACATCAGTGC	960
	ACAGCTGCTG	CTGGTGGCCC	TGCAGTGTAC	GTTCTCACCT	CTTATGCTTA	GTTGGAACTA	1020
20	AGCAGTTTGT	AAACTTTCAT	CCTTTTTTTT	GTAAATTCAC	AAAGCTTTGG	AAGGAGAAGC	1080
20	AATAAATTT	TGTTTTCAAA	TGGCTTGATG	TACCTTTTTT	CCTGTTGCTC	TTGAAATATG	1140
	TTTAACTCCT	CATGAGAGAA	CCCTGGATTC	TCTATCCCCT	AGTCCACAAA	ACAAACCAGG	1200
25	CAGTGGTCAG	CAGCTACCTT	TNATTTGGAT	CACACACGTG	AGTCAGACAG	TACCAC	1256

30 (2) INFORMATION FOR SEQ ID NO: 119:

35

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1143 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 119:

60 GCCCGTAGCA GCCGGGCTGG TCCTGCTGCG AGCCGGCGGC CCGGAGTGGG GCGGCGGCAT 40 GTACCTICCA CATTGAGTAT TCAGAAAGAA GTGATCTGAA CTCTGACCAT TCTTTATGGA 120 TACATTAAGT CAAATATAAG AGTCTGACTA CTTGACACAC TGGCTCGAGC AAACATGAAC 180 45 GTTGGAGTTG CCCACAGTGA AGTGAATCCA AATACCCGTG TCATGAACAG CCGGGGTATG 240 TGGCTGACAT ATGCATTGGG AGTTGGCTTG CTTCATATTG TCTTACTCAG CATTCCCTTC 300 TTCAGTGTTC CTGTTGCTTG GACTTTAACA AATATTATAC ATAATCTGGG GATGTACGTA 50 360 TTTTTGCATG CAGTGAAAGG AACACCTTTC GAAACTCCTG ACCAGGGTAA AGCAAGGCTC 420 CTAACTCATT GGGAACAACT GGACTATGGA GTACAGTTTA CATCTTCACG GAAGTTTTTC 480 55 540 ACAATTTCTC CAATAATTCT ATATTTTCTG GCAAGTTTCT ATACGAAGTA TGATCCAACT CACTTCATCC TAAACACAGC TTCTCTCCTG AGTGTACTAA TTCCCAAAAT GCCACAACTA 600 60 CATGGTGTTC GGATCTTTGG AATTAATAAG TATTGAAATG TTTTGAAACT GAAAAAAAAT 660

	TTTACAGCTA CTGAATTICT TATAAGGAAG GAGTGGTTAG TAAACTGCAC TGTTTCTSTG	720
- 5	ATAATGTGAA ATGAGAAGTA TTTACATTGG AGGGCCAATG GCTGGTCCTT CAAGTGCTGT	780
-)	TTTGAAGTGC AGATTTCCAT TAAATGATGC CTCTGTTTAA TACACCTGGT ACATTTCTGA	840
	AGAGGGCTT TATAAGCAGG CTGGGCAGGC CCAGCTTATA AGTTAAAGGG CATCACAGTG	900
10	AGGGTGTAGT AGATAAATTC AAGGAAATAA GAGATTTGTA AGAAACTAGG ACCAGCTTAA	960
	CTTATAATGA ATGGGCATTG TGTTAAGAAA AGAACATTTC CAGTCATTCA GCTGTGGTTA	1020
15	TITTAAAGCAG ACTTACATGT AAACCGGAAT CCTCTCTATA CAAGTITATT AAAGATTATT	1080
13	TTTATTACCG TAAAAAAAAA AAAAAAAAA AAAAAAAAA AAAAAAAA	1140
	GAN	1143
20		
25	(2) INFORMATION FOR SEQ ID NO: 120:	
23	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1782 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
30	(D) TOPOLOGY: linear	
•	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 120:	
25	CAGGCCCCGG CCCCCACCC ACGTCTGCGT TGCTGCCCCG CCTGGGCCRG GCCCCAAAGG	60
35	CAAGGACAAA GCAGCTGTCA GGGAACCTCC GCCGGAGTCG AATTTACGTG CAGCTGCCGG	120
	CAACCACAGG TTCCAAGATG GTTTGCGGGG GCTTCGCGTG TTCCAAGAAC TGCCTGTGCG	180
40	CCCTCAACCT GCTTTACACC TTGGTTAGTC TGCTGCTAAT TGGAATTGCT GCGTGGGGCA	240
	TIGGCTTCGG GCTGATTTCC AGTCTCCGAG TGGTCGGCGT GGTCATTGCA GTGGGCATCT	300
	TCTTGTTCCT GATTGCTTTA GTGGGTCTGA TTGGAGCTGT AAAACATCAT CAGGTGTTGC	360
45	TATTYTTTTA TATGATTATT CTGTTACTTG TATTTATTGT TCAGTTTTCT GTATCTTGCG	420
	CTTGTTTAGC CCTGAACCAG GAGCAACAGG GTCAGCTTCT GGAGGTTGGT TGGAACAATA	480
50	CGGCAAGTGC TCGAAATGAC ATCCAGAGAA ATCTAAACTG CTGTGGGTTC CGAAGTGTTA	540
	ACCCAAATGA CACCTGTCTG GCTAGCTGTG TTAAAAGTGA CCACTCGTGC TCGCCATGTG	600
	CTCCAATCAT AGGAGAATAT GCTGGAGAGG TTTTGAGATT TGTTGGTGGC ATTGGCCTGT	660
55	TCTTCAGTTT TACAGAGATC CTGGGTGTTT GGCTGACCTA CAGATACAGG AACCAGAAAG	720
	ACCCCCGCGC RAATCCTAGT GCATTCCTTT GATGAGAAAA CAAGGAAGAT TTCCTTTCGT	780
60	ATTATGATCT TGTTCACTTT CTGTAATTTT CTGTTAAGCT CCATTTGCCA GTTTAAGGAA	840

WO 98/39448

	GGAAACACTA	TCTGGAAAAG	TACCTTATTG	ATAGTGGAAT	TATATATTTT	TACTCTATGT	900
	TTCTCTACAT	GTTTTTTCT	TTCCGTTGCT	GAAAAATATT	TGAAACTTGT	GGTCTCTGAA	960
-5	GCTCGGTGGC	ACCTGGGAAT	TTACTGTATT	CATTGTCGGG	CACTGTCCAC	TGTGGCCTTT	1020
	CTTAGCATTT	TTACCTGCAG	AAAAACTTTG	TATGGTACCA	CIGIGITGGI	TATATGGTGA	1080
10	ATCTGAACGT	ACATCTCACT	GGTATAATTA	TATGTAGCAC	TGTGCTGTGT	AGATAGTTCC	1140
10	TACTGGAAAA	AGAGTGGRAA	AAAATTATTT	TCAGAAAGTA	TGAGATCCTG	TTATGTTAAG	1200
	GGAAATCCAA	ATTCCCAATT	TTTTTTGGTC	TTTTTAGGAA	AGATGTGTTG	TGGTAAAAAG	1260
15	TGTTAGTATA	AAAATGATAA	TTWACTKGTA	GTCTTTTATG	ATWACACCAA	TGTATTCTAG	1320
	AAATAGTTAT	GYCYTAGGAA	ATTGTGGTTT	AATTTTTGAC	TTTTACAGGT	AAGTGCAAAG	1380
20	GAGAAGTGGT	TTCATGAAAT	GTTCTAATGT	ATAATAACAT	TTACCTTCAG	CCTCCATCAG	1440
	AATGGAACGA	GTTTTGAGTA	ATCAGGAAGT	ATATCTATAT	GATCTTGATA	TTGTTTTATA	1500
	ATAATTTGAA	GTCTAAAAGA	CTGCATTTTT	AAACAAGTTA	GTATTAATGC	GTTGGCCCAC	1560
25	GTAGCAAAAA	GATATTIGAT	TATCTTAAAA	ATTGTTAAAT	ACCGTTTTCA	TGAAAGTTCT	1620
	CAGTATTGTA	ACAGCAACTT	GTYAAACCTA	AGCATATTTG	AATATGATCT	CCCATAATTT	1680
30	GAAATTGAAA	TCGTATTGTG	TGGCTCTGTA	TATICTGTTA	AAAATTAAA	GGACAGAAAC	1740
	CTTTCTTTGT	GTATGCATGT	TTGAATTAAA	AGAAAGTAAT	GG		1782

35

40

(2) INFORMATION FOR SEQ ID NO: 121:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 610 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 121:

45 GTTGGCTGCA GATTTGTGGT GCGTTCTGAG CCGTCTGTCC TGCGCCAAGA TGCTTCAAAG 60 120 TATTATTAAA AACATATGGA TCCCCATGAA GCCCTACTAC ACCAAAGTTT ACCAGGAGAT 50 TTGGATAGGA ATGGGGCTGA TGGGCTTCAT CGTTTATAAA ATCCGGGCTG CTGATAAAAG 180 AAGTAAGGCT TTGAAAGCTT CAGCGCCTGC TCCTGGTCAT CACAACCAGA TTTACTTGGA 240 GTACATGTGA AAGAAAACGT CAGTCTGCCT GTAAATTTCA GCAAGCCGTG TTAGATGGGG 300 55 360 AGCGTGGAAC GTCACTGTAC ACTTGTATAA GTACCGTTTA CTTCATGGCA TGAATAAATG GATCTGTGAG ATGCACTGCT ACCTGGTACT GCTTTCAGTG TGTTCCCCCT CAGCCCTCCG 420 60 480 GCGTGTCAGG CATACTCTGA GTAGATAATT TGTCATGCAG CGCATGCAAT CAGAATCTCA

	CTGAGCCACC CATCATTGTG AAATAATTAC CTCAGTTGTA CAGGACTTGG TGATCAGGAT	540
5	CCAGGCACTC ACTIGITATIC TACTGCTCAA TAAACGTTTA TTAAACTIGA AAAAAAAAAA	600
_5	АААААААА	610
10		
	(2) INFORMATION FOR SEQ ID NO: 122:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 526 base pairs	
15	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 122:	
20	GGTACGCCTG CAGGTACCGG TCCGGAATTC CGGGTCGCCC ACGCGTCNGG CCACGCGTCC	60
	ACCCACGCGT CCGSCCACGC GTCGGAGCCG AGCCGGACTG GTCAGGATGA TCACGGACGT	120
25	GCAGCTCGCC ATCTTCGCCA ACATGCTGGG CGTGTCGCTC TTCTTGCTTG TCGTTCTCTA	180
	TCACTACGTG GCCGTCAACA ATCCCAAGAA GCAGGAATGA AAGTGGCGCT TTCTCCGCCC	240
30	CAGGGTTCCA GGACATAGTC TGAGGCAAGA TGGAGGGTAT GAGGGGCCTT CACACTTCAC	300
50	TTCATCCCTT CTACCCATCA CAACATACAA AGCAACTACA CCTGGATTTT TCCAAACAAC	360
	TTTTATTTCC TCAGAGTCTT CCTTAATCCT ATGGAACAAG AAGCTGCCAC TGAATAGGGC	420
35	CCAGTATAGG GGCTTGCTTT TCTACTCCCT CCCCCCAATA TAAAAATATA GACTTTTTAA	480
	AAAAAAAAA AAAAANTTCG NGGGGGGSCC GGTACCCATC CCCCTA	526
40		
40		
	(2) INFORMATION FOR SEQ ID NO: 123:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2081 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 123:	
	TGTACCGGTC CGGAAATTCC CGGGTCGACC CACGTCGTCS GGGGAACATG GCGGCTKCGG	60
	AGCCGGCGGT CCTTGCGCTC CCCAACAGCG GCGCCGGGGG CGCGGGGGCG CCGTCGGGCA	120
55	CAGTCCCGGT GCTCTTCTGT TTCTCAGTCT TCGCGCGACC CTCGTCGGTG CCACACGGGG	180
	CGGGCTACGA GCTGCTCATC CAGAAGTTCC TCAGCCTGTA CGGCGACCAG ATCGACATGC	240
60	ACCGCAAATT CGTGGTGCAG CTGTTCGCCG ACGAGTGGGG CCAGTACGTG GACTTGCCCA	300

	AGGGCTTCGC	GGTRAGCGAG	CGCTGCAAGG	TGCGCCTCGT	GCCGYTGCAG	ATCCAGCTCA	360
-5	CTACCCTGGG	AAATCTTACA	CCTTCAAGCA	CIGIGITITI	CTGCTGTGAT	ATGCAGGAAA	420
5	GGTTCAGACC	AGCCATCAAG	TATTTTGGGG	ATATTATTAG	CGTGGGACAG	AGATTGTTGC	480
	AAGGGGCCCG	GATTTTAGGA	ATTCCTGTTA	TTGTAACAGA	ACAATACCCT	AAAGGTCTTG	540
10	GGAGCACGGT	TCAAGAAATT	GATTTAACAG	GTGTAAAACT	GGTACTTCCA	AAGACCAAGT	600
	TTTCAATGGT	ATTACCAGAA	GTAGAAGCGG	CATTAGCAGA	GATTCCCGGA	GTCAGGAGTG	660
15	TTGTATTATT	TGGAGTAGAA	ACTCATGTGT	GCATCCAACA	AACTGCCCTG	GAGCTAGTTG	720
13	GCCGAGGAGT	CGAGGTTCAC	ATTGTTGCTG	ATGCCACCTC	ATCAAGAAGC	ATGATGGACA	780
	GGATGTTTGC	CCTCGAGCGT	CTCGCTCRAR	CCGGGATCAT	AGTGACCACG	AGTGAGGCTG	840
20	TTCTGCTTCA	GCTGGTAGCT	GATAAGGACC	ATCCAAAATT	CAAGGAAATT	CAGAATCTAA	900
	TTAAGGCGAG	TGCTCCAGAG	TCGGGTCTGC	TTTCCAAAGT	ATAGGACATT	TGAAGAACTG	960
25	GTATGCTACT	CACTGGTGAA	GGACAGTCAG	GTGAAGGACT	GTAAGCCCAC	ACAAGCTCTT	1020
23	CTTATCTCTA	CTAGAATTAA	AATGTTAAGT	CAAAAACGGC	TCCTTTTTTG	CGCCTCCTAG	1080
	TGAAACTTAA	CCAGCTAGAC	CATTTGAGTA	CCAGCATTTA	GTTACAAACG	TCAAAGGCTT	1140
30	CCGGTGCTGC	TTACCTTCCT	TTTTTGTTAA	TGTGCTTTTA	AAAATTATTT	AAAATTACAA	1200
	TGAAGATGCC	TGTTTTGTCT	CTACTGTGTA	CTCTGATCGT	ATCTTTCCAA	AGTGCAGACT	1260
35	CTTGTGAAGT	TTTCTTAAAT	TGTTCACTTT	AAAGAAAATG	ACGTACCAAC	AATGATTTGG	1320
33	CTTTTATATT	ACTGTAAGAT	GTTATAATGT	TAATGTGGAT	GTAGTGCTTT	TACTTTACAG	1380
	ATTGATTGGA	ATAAGATTAT	TGCATATGAA	TTTACCCACA	GGACTCTGAA	TCATGTTACC	1440
40	CACTCCCCTC	ACAATGTTGT	CCACTTAGTG	AGTTGCATTG	ATCTATCCGT	ACCAAATGAT	1500
	GTTGAATAAT	TACATATCTT	TCTTGACTAT	ACTGATTTCT	TATTTTGGTC	ACTATTACTA	1560
45	AATCTCTGTT	AATATTCTCT	CTTTTAACTG	AAAAGGGATG	GGATAGAAGG	GTTTGCAATG	1620
43	CCATATTATT	GGTGGAGGGC	TGTTTTAACA	TCTTTGAAGT	ATGGCTTGCT	GAATATCTTT	1680
	ACCAACATCT	TGAATATATA	TTCTAGTGTC	CACAAGATTT	AGCAAAAAGA	TAAAGCTTGG	1740
50	GTGGAATATC	ATTTTAAAAT	GTTCATGTTC	TGTTCTATAT	TITCTTCACC	TACTCTCCAA	1800
	ATATTGTAAT	GCAAAAAGTC	TCAGTAATGA	TTTGGTAGTA	TTAATTITGT	GGTCATTGTT	1860
55	TCTCTTCGAT	AAATTTATTT	тсатталата	CTTRTTAGAG	GGTTTTGAAA	TGTTTTTCAA	1920
JJ	ATATGTGAAA	TGTGAAACTG	CTGTCTTTTA	TATTAAAGTA	ATTAAAGAAA	ATGTATTGTG	1980
	ATTGAAATTA	TTTTGNCCTC	CACAAGATGG	CTCTATGAGT	ATTCTTCCAG	GGATTCTAAT	2040
60	ATTTATTTAA	GGTNATAAAA	TCTTGACATT	TATAATCTTT	С		2081

-5 (2) INFORMATION FOR SEQ ID NO: 124:

10

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1717 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 124:

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 124:	
15	CCCCGGCGGA GCTGGACCCG CGGTGGGCTA GGGGCAGGGC CGGAGCCGCG GCGGCGGAGC	60
	TGTGGATCCT TCATGATGAG AGATTTGGGG ACACTTCTCT CTCCTGTGTG TAGTTGATAG	120
20	TITIGGTGGTG AAGAGATGGC TGACAGTGTC AAAACCTTTC TCCAGGACCT TGCCAGAGGA	180
20	ATCAAAGACT CCATCTGGGG TATTTGTACC ATCTCAAAGC TAGATGCTCG AATCCAGCAA	240
	AAGAGAGAG AGCAGCGTCG AAGAAGGGCA AGTAGTGTCT TGGCACAGAG AAGAGCCCAG	300
25	AGTATAGAGC GGAAGCAAGA GAGTGAGCCA CGTATTGTTA GTAGAATTTT CCAGTGTTGT	360
	GCTTGGAATG GTGGAGTGTT CTGGTTCAGT CTCCTCTTGT TTTATCGAGT ATTTATTCCT	420
30	GTGCTTCAGT CGGTAACAGC CCGAATTATC GGTGACCCAT CACTACATGG AGATGTTTGG	480
,	TCGTGGCTGG AATTCTTCCT CACGTCAATT TTCAGTGCTC TTTGGGTGCT CCCCTTGTTT	540
	GTGCTTAGCA AAGTGGTGAA TGCCATTTGG TTTCAGGATA TAGCTGACCT GGCATTTGAG	600
35	GTATCAGGGA GGAAGCCTCA CCCATTCCCT AGTGTCAGCA AAATAATTGC TGACATGCTC	660
	TICAACCTIT TGCTGCAGGC TCTTTTCCTC ATTCAGGGAA TGTTTGTGAG TCTCTTTCCC	720
40	ATCCATCTTG TCGGTCAGCT GGTTAGTCTC CTGCATATGT CCCTTCTCTA CTCACTGTAC	780
40	TGCTTTGAAT ATCGTTGGTT CAATAAAGGA ATTGAAATGC ACCAGCGGTT GTCTAACATA	840
	GAAAGGAATT GCCCTTACTA CTFTGGGTTT GGTTTGCCCT TGGCTTTTCT CACAGCAATG	900
45	CAGTOCTCAT ATATTATCAG TOGCTGCCTT TTCTCTATCC TCTTTCCTTT ATTCATTATC	960
	AGCGCCAATG AAGCAAAGAC CCCTGGCAAA GCRTATCTCT TCCAGTTGCG CCTCTTCTCC	1020
50	TTGGTGGTCT TCTTAAGCAA CAGACTCTTC CACAAGACAG TCTACCTGCA GTCGGCCCTG	1080
50	AGCAGCTCTA CTTCTGCAGA GAAGTTCCCT TCACCGCATC CGTCGCCTGC CAAACTGAAG	1140
	GCTACTGCAG GTCACTGAGT TGCCTGCCAT CCAAAGGGGA TGGGCGGGAT TGGAAGAAGC	1200
55	TGTGGCAGCT CTTTTCCCTG TTCACCTCCC GCCTGCCAGG GAAGGCAGGA CCCGCTCTGC	1260
	CAAGGGCCCT CTGCGTATTC CCTTCTCTCT GAGGAATTGA AATTTTTGTC TCTGGTGCAC	1320
60	GTAAGGCAGA ATGTTCCCTG ACACCAGTGT GTGGATTTTT AACATCACCG TGAGTCTGAA	1380

WO 98/39448 PCT/US98/04493

347

	AGGACCACAG GITTITCTGC AGCTATTITC TAGCATTTGC CAGTCCCTGT GCCTGGACTG	1440
	ATTGGAACAC TITGTTTTC TCCCTGTGCC ATTTACCCTT CCACCTTTCC ATCCTGCCTT	1500
-5	CTACCACCCT TOGATGAATG GATTTTGTAA TTCTAGCTGT TGTATTTTGT GAATTTGTTA	1560
	ATTITICTICT TITTCTGTGA AACACATACA TTGGATATGG GAGGTAAAGG AGTGTCCCAG	1620
10	TTGCTCCTGG TCACTCCCTT TATAGCCATT ACTGTCTTGT TTCTTGTAAC TCAGGTTAGG	1680
10	TTTTGGTCTC TCTTGCTCCA CTGCAAAAAA AAAAAAA	1717
15	(2) INFORMATION FOR SEQ ID NO: 125:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 804 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 125:	
دی	CCACGCGTCC GGTCACTATG TAGTGGAGGG GCAGACACCC TCCCGCAAAT TCTGGAAGGT	60
	TCTTAGTCTC GACTAGGGCA GTAGCCCCAG GACTCCTAGT CGCCGGCTTC AGGTCACTGC	120
30	COGCTGAACG GAGCTGCCGT CGCCATGTTT GGCTGCTTCG TGGCGGGGAG GCTGGTGCAA	180
	ACAGCTGCAC AGCAAGTGGC AGAGGATAAA TTTGTTTTTG ACTTACCTGA TTATGAAAGT	240
35	ATCAACCATG TTGTGGTTTT TATGCTGGGA ACAATCCCAT TTCCTGAGGG AATGGGAGGA	300
55	TCTGTCTACT TFTCTTATCC TGATTCAAAT GGAATGCCAG TATGGCAACT CCTAGGATTT	360
	GTCACGAATG GGAAGCCAAG TGCCATCTTC AAAATTTCAG GTCTTAAATC TGGAGAAGGA	420
40	AGCCAACATC CTTTTGGAGC CATGAATATT GTCCGAACTC CATCTGTTGC TCAGATTGGA	480
	ATTTCAGTGG AATTATTAGA CAGTATGGCT CAGCAGACTC CTGTAGGTAA TGCTGCTGTA	540
45	TCCTCAGTTG ACTCATTCAC TCAGTTCACA CAAAAGATGT TGGACAATTT CTACAATTTT	600
73	GCTTCATCAT TTGCTGTCTC TCAGGCCCAG ATGACACCAA GCCCATCTGA AATGTTCATT	660
	CCGGCAAATG TGGTTCTGAA ATGGTATGAA AACTTTCAAA GACGACTAGC ACAGAACCCT	720
50	NINITITIGN AAACATAATT TGAATAAAAT AATTITTAAT GGATTNIGNA AAAAAAAAAAA	780
	2222 2222222222222222222222222222222222	804

55

(2) INFORMATION FOR SEQ ID NO: 126:

ΑΑΑΑ ΑΑΑΑΑΑΑΑ

(i) SEQUENCE CHARACTERISTICS:

60

(A) LENGTH: 431 base pairs

780

	(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
-5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 126:	
	GGCACAGCCC AGGGCCTTGA AGCCAGCTGG CCCTGGAGAG GGGCTGCTGT GCCAGCTTGG	60
10	GGAGGGTCTG GGATGGGGCT GCCCCTGATG GCCCTGATGT GGAGTACCTT GCCAGCATCT	120
10	GCTGGGGTGA ACTITATITI AGCCCTTCCC TTGTTGCTCT TATGGAAGAA CAGAGGAGGG	180
	GTGGGCAGGT CAGTGATGTC AGCAGTGGAG TGATTCCCAG CACAGCGGCT TCTGGGAAGA	240
15	GGGCATGGAG GCATTTCTTT CAGGGAAATG GTCCATNATT TCAGCCAGAA GGCATTGCAT	300
	TAAGTTAAGT CCNGGACTTT TGTGGCCCAG CTCTGTGTTA TTAAGGGCCC TTGGCGAAGA	360
20	CTTCAAGGAG GGGCCAAAAN GACCTTTAAG TTTTTAGGTT TAACACAGGG AACCCNCAAA	420
20	GGGTTATTTT G	431
25	(2) INFORMATION FOR SEQ ID NO: 127:	
	(i) SEQUENCE CHARACTERISTICS:	
30	(A) LENGTH: 3752 base pairs	
30	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 127:	
	NGGCACGAGG AGAGTCACCT GGACTCAGAA CTAGAGATAT CCAATGACCC AGACAAAATT	60
	AAACTICAGC TITCTAAGCA TAAGGAGTIT CAGAAGACTC TIGGTGGCAA GCAGCCTGTG	120
40	TATGATACCA CAATTAGAAC TOGCAGAGCA CTGAAAGAAA AGACTTTGCT TCCCGAAGAT	180
	ASTCAGAAAC TTGACAATTT CCTAGGAGAA GTCAGAGACA AATGGGATAC TGTTTGTGGC	240
45	AAGTCTGTGG AGCGGCAGCA CAAGTTGGAG GAAGCCCTGC TCTTTTCGGG TCAGTTCATG	300
	GATGCTTTGC AGGCATTGGT TGACTGGTTA TACAAGGTGG AGCCACAGCT GGCTGAGGAC	360
	CAGCCCGTGC ACGGGGGACC TTGACCTCGT CATGAACCTC ATGGATGCAC ACAAGGTTTT	420
50	CCAGAAGGAA CTGGNGAAAG CGAACAGGAA CCGTTCAGGT CCTGAAGCGG TCAGGCCGAG	480
	AGCTGATTGA GAATAGTCGA GATGACACCA CTTGGGTAAA AGGACAGCTC CAGGAACTGA	540
55	GCACTCGCTG GGACACTGTC TGTAAACTCT CTGTTTCCAA ACAAAGCCGG CTTGAGCAGG	600
<i>J</i> .,	CCTTAAAACA AGCGGAAGTG TTTCGAGACA CAGTCCACAT GCTGTTGGAG TGGCTTTCTG	660

TCTCTCATTG ACACCCATAA GGAATTCATG AAGAAAGTAG AAGAAAAGCG AGTGGACGTT

AACTCAGCAG TAGCCATGGG AGAAGTCATC CTGGCTGTCT GCCACCCCGA TTGCATCACA 840 ACCATCAAAC ACTGGATCAC CATCATCCGA GCTCGCTTCG AGGAGGTCCT GACATGGGCT 900 5 AAGCAGCACC AGCAGCGTCT TGAAACGGCC TTGTCAGAAC TGGTGGCTAA TGCTGAGCTC 960 CTGGAAGAAC TTCTGGCATG GATCCAGTGG GCTGAGACCA CCCTCATTCA GCGGGATCAG 1020 10 GAGCCAATCC CGCAGAACAT TGACCGAGTT AAAGCCCTTA TCGCTGAGCA TCAGACATTT 1080 ATGGAGGAGA TGACTCGCAA ACAGCCTGAC GTGGACCGGG TCACCAAGAC ATACAAAAGG 1140 AAAAACATAG AGCCTACTCA CGCGCCTTTC ATAGAGAAAT CCCGCAGCGG AGGCAGGAAA 1200 15 TCCCTAAGTC AGCCAACCCC TCCTCCCATG CCAATCCTTT CACAGTCTGA AGCAAAAAAC 1260 CCACGGATCA ACCAGCTTTC TGCCCGCTGG CAGCAGGTGT GGCTGTTAGC ACTGGAGCGG 1320 20 CAAAGGAAAC TGAATGATGC CTTGGATCGG CTGGAGGAGT TGAAAGAATT TGCCAACTTT 1380 GACTITGATG TCTGGAGGAA AAAGTATATG CGTTGGATGA ATCACAAAAA GTCTCGAGTG 1440 ATGGATTTCT TCCGGCGCAT TGATAAGGAC CAGGATGGGA AGATAACACG TCAGGAGTTT 1500 25 ATCGATGGCA TTTTAGCATC CAAGTTCCCC ACCACCAAGT TAGAGATGAC TGCTGTGGCT 1560 GACATTITCG ACCGAGATGG GGATGGTTAC ATTGATTATT ATGAATTIGT GGCTGCTCTT 1620 30 CATCCCAACA AGGATGCGTA TCGACCAACA ACCGATGCAG ATAAAATCGA AGATGAGGTT 1680 ACAAGACAAG TGGCTCAGTG CAAATGTGCA AAAAGGTTTC AGGTGGAGCA GATCGGAGAG 1740 AATAAATACC GGTTCTTCCT CGGCAATCAG TTTGGGGATT CTCAGCAGTT GCGGCTGGTC 1800 35 CGTATTCTCC GCAACCGTGA TGGTTCGCGT TGGTGGAGGA TGGATGGCCT TGGATGAATT 1860 TTTAGTGAAA AATGATCCCT GCCGAGCACG AGGTAGAACT AACATTGAAC TTAGAGAGAA 1920 40 ATTCATCCTA CCAGAGGGAG CATCCCAGGG AATGACCCCC TTCCGCTCAC GGGGTCGAAG 1980 GTCCAAACCA TCTTCCCGGG CAGCTTCCCC TACTCGTTCC AGCTCCAGTG CTAGTCAGAG 2040 TAACCACAGC TGTACATCCA TGCCATCTTC TCCAGCCACC CCAGCCAGTG GAACCAAGGT 2100 45 TATCCCATCA TCAGGTAGCA AGTTGAAACG ACCAACACCA ACTTTTCATT CTAGTCGGAC 2160 ATCCCTTGCT GGTGATACCA GCAATNAGTT CTTCCCCGGC CTCCACAGGT GCCAAAACTA 2220 50 ATCGGCAGA CCCTAAAAAG TCTGCCAGTC GCCCTGGGAG TCGGGCTGGG AGTCGAGCCG 2280 GGAGTCGAGC CAGCAGCCGG CGAGGAAGTG ACGCTTCTGA CTTTGACCTC TTAGAGACGC 2340 ATTGCTTGTT CCGACACTTC AGAAAGCAGC GCTGCAGGGG GCCAAGGCAA CTCCAGGAGA 2400 55 GGGCTAAACA AACCTTCCAA AATCCCAACC ATGTCTAAGA AGACCACCAC TGCCTCCCCC 2460 AGGACTCCAG GTCCCAAGCG ATAACACTGT CTAAGCACCC CCAAGCCACT ATCCACTTTG 2520 60 AATCCTGCTC CATACATTGG GTGTATATTT ATTCTGAACG GGAGAAGTTA TATTGTTAAA 2580

180

	AGIGIAAAAG AAIAAITGIG ITAIGAAGCT GCCTTATTTT TITTICTTTT GTAAGTTACT	2640
- 5	ATTITICATOT GAATATITAT GTAGATAAAA TITGCCTCCT GGTAACCCTG TAATGGATGG	2700
J	GGCCCAGAAA TGAAATATTT GAGAAAAACA AGTGAAAAGG TCAAGATACA AATGTGTATT	2760
	AAAAAAAAA AAGCCTATTA ATAGGGTTTC TGCGCGGTGC AGGGTTGTAA ACCTGCTTTA	2820
10	TCTTTTAGGA TTATTCCTAA ATGCATCTTC TTTATAAACT TGACTTGCTA TCTCAGCAAG	2880
	ATAAATTATA TTAAAAAAAT AAGAATCCTG CAGTGTTTAA GGAACTCTTT TTTTGTAAAT	2940
15	CACGGACACC TCAATTAGCA AGAACTGAGG GGAGGGCTTT TTCCATTGTT TAATGTTTTG	3000
	TGATTTTTAG CTAAAGAGAG GGAACCTCAT CTAAGTAACA TTTGCACATG ATACAGCAAA	3060
	AGGAGTICAT TGCAATACTG TCTTTGGATA TTGTTTCAGT ACTGGGTGTT TAAAGGACAA	3120
20	ATAGCTGCTA GAATTCAGGG GTAAATGTAA GTGTTCAGAA AACGTCAGAA CATTTGGGGT	3180
	TITIAAACTGA TITIGITIGCTC CCTATCCAGC CTAGACACCA GTAACTCTTG TGTTCACCAG	3240
25	GACCCAGACC CTTGGCAAGG GATAGGCTCG TTGGTGACAT TGTGAATTTC AGATTTGTTT	3300
	TATCCACTIT TTTTGCTATT TATTTAAATG GTCGATCAAC TTCCCACAAA CTGAGGAATG	3360
	AATTCCACGA GCCTGTTCTG AAAATGTGGA CGTAAGACAA ACACGTGCTC GTCCTTTAAT	3420
30	GGAGTTCACC AGCACACTTG TTAACCAGTC CTGTTTGCTT TCGTCTTTTT TTGTGCGTAA	3480
	TAAAGTCAAC TGACCAAGTG ACCATGAAAA GGGGCTGTCT GGGGCTCCTG TTTTTTTAGCT	3540
35	GCTGTTCTTC AGCTCCGACC ATGTTGCTGT GTGATTATCT CAATTGGTTT TAATTGAGGC	3600
,,	AGAAACTGAA GCTCTACCAA TGAACTGTTT AGAAACAAGA CACACTTTTG TATTAAAATT	3660
	GCTTGCAGTA ACAAAAAAA AAAAAAAAA AAAAAAAAA AAACTCGAGG GGGGCCCGGT	3720
10	ACCCAATTCG CCGTATATGA TCGTAAACAA TC	3752
4 5	(2) INFORMATION FOR SEQ ID NO: 128:	
	(i) SEQUENCE CHARACTERISTICS:	
50	(A) LENGTH: 1144 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 128:	
55	TGACCCTCTG CCTGCCGGGC TCAGTGCTGG ACGCTTTCTG TTTTGTCGCA GTCGGTCCTC	60
	GGTAACACCA GCGGCCTGTG GTCCACCACT CCATTCAGCA GCTCCATTTG GTCCAGCAAC	120

CTTAGCAGCG CCTTCCCTTC ACCACTCCAG CAAACACGCT GGCAAGCATC GGCCTCATGG

	GCACAGAAAA CTCCCCTGCT CCTCACGCTC CCTCCACCTC CAGTCCAGCT GACGACTTGG	240
	GACAGACCTA CAACCCGTGG CGGATATGGA GCCCCACGAT TGGAAGAAGA AGCTCGGACC	300
-5	CTTGGTCTAA TTCGCACTTT CCTCACGAGA ATTAAATTAA	360
	GTGGGCCCTC GTCTAGATCA TGATGTGCCA GTTTCTGAGA CATCTTTTTA AGGCTCTTAC	420
10	TGCAGCTCCC CTCCCCACCC TCCTCTTCTT TGCAAAACAG ACCCAAGCAG GGCAGGCTCA	480
10	GACCACTCGC TTCTTTCAGA TCTTTCTTGC AATTATGATA ACATGAGATT TGCTGTTGTG	540
	CTTTTAGAGA AAAGTCTGGA CTCAGCCACA AACTCTAATA AGACCTGTAC ATCTGAGAAC	600
15	CTTTCCCGTT ACTGCGTTTT CACCACCTGT CTTCCCCCATG CTTTATTTAT CTGTATGAAC	660
	ACAGATTIGA CATTACAGCT AAGGAAATAA TITGAGTIGA TICAGAAATC CIGGCATGTG	720
20	ACAATTTIGT TAAATTACCA AGTITIGGTTT TTAATAATTT CTCAATATTA TGCGCCAAGA	780
20	TCTAATTTTA AAACTGTATG AGGACTTTGT GCTGAAAATA GAGTATTTTT TTAAAGTAAG	840
	GCTGTCTTGG TTTAAAAGCA GATTACAGAA ATGTAAGTCA ACTTAAGAAC RGTGAATGAA	900
25	TOTAAAAACA TICAGTYGAG ACCATATGCA TITTCTGTGC TGTTTGTACT TGAGGTATGT	960
	AACATTTGTA TACCTGAACT TATTTTAAAG ATGAACTGAA ATGCACATAG CCAAGTCTTG	1020
30	AGATACAAGA TIGAATGTGT ATTITCTTAAA AATACAACTT TGTGTTGTAC TTTGAAATAA	1080
30	ATGATGCTTT TTTCAAAAAA AAAAAAAAA AAAAAAAAAC TCGAGGGGG GCCCGGTACC	1140
	CAAT	1144
35		
	(0)	
40	(2) INFORMATION FOR SEQ ID NO: 129:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1830 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
45	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 129:	
50	GCATGCAGAG GAGCACCCTG AGCGTGTYCC TGGAGCAGGC GGCCATSTTG GCACGGAGCC	60
50	ACGGGTTGCT GCCCAAGTGC ATCATGCAGG CCACGGACAT CATGCGGAAC AGGGCCCAAG	120
	GGTGGAGATT CTGGCCAAAA ACCTGCGAGT CAAGGACCAG ATGCCCCAGG GTGCTCCGCG	180
55	CCTCTACCGC CTCTGCCAGC CGCCGGTGGA TGGGGGACCTC TGAACACCCA AATGCCCCAC	240
	GCTGGGCCGC GGCCTCTGGA GCTGGGATTT GGGAGGACAC AGCAGGCAGC GCTGGCCTTC	300
60	TCCAGGGATG GCCCAANGCT TCCGCARCCG CCCGTTCCGG GACCTGCCCA GCGTCCTCCC	360
60	TGCCTCCTTC CGGGACAAGC CTGGCCACCC TCGCTGTGAT GACGAGCTGG CTGATTGGCC	420

	CIGGGCCGGC	CCATTCTTCA	CACGCCTGCC	AGAAGCTGGA	GGGGTGCTGG	AGACCCATAG	480
- 5	AGCTGATGGG	AGCAGCTGGT	GCCTGGCCTT	CGGCTCCTGC	GTCCCCAGAA	CCCAAGGGAA	540
	CGTCATGGAG	GCCACATGGG	GCCACCCGGC	TCCCTCGGGA	TEGETECECT	GCACTTTTGA	600
	AACCCCGGTT	TCCTTCAACG	TCCACATTCC	AGGTGACCAC	ACGTGTCTCC	TCCTCCTCAT	660
10	CTTAGCTTCC	AGGTTCACCC	TAACCCTGTA	CTAACCTGCT	TGGTGGACTT	GGAAAAGACT	720
	TGGCTCTGTC	GGGAAAGGAG	AGACGGGGCC	TCCATCACGC	CTGTTACCAG	AGGATCCCCG	780
15	AGAGCCACAC	CAGCTCTGGA	CATCACCGCC	CCTGGAACTG	GGGCCACCAG	CCCTGGGCAC	840
	GAGATTTGCT	CTGACTTTAT	TTATATGGCA	TGAAATCTCT	CCTTTATTTT	GGGATTTTTT	900
	GTICTICGIG	TTGTCAAAGT	TIGITITIC	TAAAGTTGTG	TGATTATATA	TTTGACATTT	960
20	TACATTTCAA	AGAAAGGTAT	GTTGTCTAAC	AGGGACCAA	CAGAAGGTAG	TATTGACAAC	1020
	TGTTCCTGCT	TCTACTAAAA	AAAAAAGAGC	ACAAAAGAAA	AACTAAATTA	TTGAAAAATT	1080
25	AAAAAATGTC	ATTGTTTCCT	GTTTGTTAAT	ATTAGGGTTG	TAAGGTGTCG	TTTTGACGTA	1140
	TCGACTGTGA	TTCCTTCCCC	CACCCTCCAT	TCTCCAGCGG	TTGGCCGGTG	TTAGAACTCG	1200
	CTCTCTTTGA	GTGACTGGCT	ACAAGGCCT	GAGAGGTGGC	CAGCCAGGGT	TGGAGCTGGA	1260
30	GGGGATGGAG	CCCCACCTGA	GGTGCCGTGT	CACACGGGTT	AGAGGGTCAC	TGGGAAACAC	1320
	CCGCCCCTCG	CŤŦĊŤĠŦĠĀŤ	TTATTTTCTT	GATGGTAACT	TCTCAGAGCA	GGGCRATTGG	1380
35	GACATCACCA	GCCAGAGCAC	AGGAAGCCAC	CCTGCCTGCT	GGGAGGAGG	GACCCACACA	1440
	ACCCCCTCG	GCAGTTTGTC	CCCCAGCTT	CGGTATGCCT	TCAGGGAAAG	GTCACAGCTG	1500
	GGGAGGAAGC	GGGGGACGC	CTGTCACCCC	TEGCAGETEG	TGAGTTCAGG	TGGGGGCTCC	1560
40	CTGCTKCCCC	CAGGCCTGGG	AGCTTGAAGC	CCTCCCGGCA	TCTGGCATCC	GAGCCTCCCG	1620
	CCCTCCAGGG	TGCGCTTCCC	TCTCTTGCCG	CAGCATACAC	GAGGGCAGGC	AGTGGCCTTG	1680
45	TCACTGTATC	TTGCATCAGA	GACAAAGGAG	GACCCGCTTT	AGCCCTGCTG	CGGGAAATGG	1740
	GGGATGGCCC	AGGGCCAGCG	CATTGTGCAC	TGGTTTACTT	TAAAATGTAC	AGATTCTTCT	1800
	CGTTAAATTC	TTGATAGATT	TTTTATTATT				1830
50							

(2) INFORMATION FOR SEQ ID NO: 130:

55 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1864 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 130:

	GCCCCCCCG	ATGGCGACCC	CAGCCTCGGC	CCCAGACACA	CGGCTCTGG	TGGCAGACTT	60
-5	TGTAGGTTAT	AAGCTGAGGC	AGAAGGGTTA	TGTCTGTGGA	GCTGGCCCCG	GGGAGGCCC	120
	AGCAGCTGAC	CCGCTGCACC	AAGCCATGCG	GGCAGCKGGA	GATGAGTTCG	AGACCCGCTT	180
10	CCGGCGCACC	TTCTCTGATC	TGGCGGCTCA	GCTGCATGTG	ACCCCAGGCT	CAGCCCAACA	240
10	ACGCTTCACC	CAGGTCTCCG	ATGAACTITT	TCAAGGGGGC	CCCAACTGGG	GCCGCCTTGT	300
	AGCCTTCTTT	GTCTTTGGGG	CTGCACTGTG	TCCTGAGAGT	GTCAACAAGG	AGATGGAACC	360
15	ACTGGTGGGA	CAAGTGCAGG	AGTGGATGGT	GCCTACCTG	GAGACGCGGC	TGGCTGACTG	420
	GATCCACAGC	AGTGGGGGCT	GGTTATCCCA	GATCACTGAA	GCTGAGATGG	CTGATGAAGT	480
20	AATTTGCAGT	GAAATTITAA	GCGACTGTGA	CTCTGCTGCA	AGTTCCCCAG	ATCTTGAGGA	540
20	GCTGGAAGCT	ATCAAAGCTC	GAGTCAGGGA	GATGGAGGAA	GAAGCTGAGA	AGCTAAAGGA	600
	GCTACAGAAC	GAGGTAGAGA	AGCAGATGAA	TATGAGTCCA	CCTCCAGGCA	ATGCTGGCCC	660
25	GGTGATCATG	TCCATTGAGG	AGAAGATGGA	GGCTGATGCC	CGTTCCATCT	ATGTTGGCAA	720
	TGTGGACTAT	GGTGCAACAG	CAGAAGAGCT	GGAAGCTCAC	TITICATGGCT	GTGGTTCAGT	780
30	CAACCGTGTT	ACCATACTGT	GTGACAAATT	TAGTGGCCAT	CCCAAAGGGT	TTGCGTATAT	840
	AGAGTTCTCA	GACAAAGAGT	CAGTGAGGAC	TTCCTTGGCC	TTAGATGAGT	CCCTATTTAG	900
	AGGAAGGCAA	ATCAAGGTGA	TCCCAAAACG	AACCAACAGA	CCAGGCATCA	GCACAACAGA	9 60
35	CCGGGGTTTT	CCACGAGCCC	GCTACCGCGC	CCGGACCACC	AACTACAACA	CCTCCCCCTC	1020
	TCGATTCTAC	AGTGGTTTTA	ACAGCAGGCC	CCGCGGTCGC	GTCTACAGGG	GCCGGGCTAG	1080
40	AGCGACATCA	TGGTATTCCC	CŢTACTAAAA	AAAGTGTGTA	TTAGGAGGAG	AGAGAGGAAA	1140
	AAAAGAGGAA	AGAAGGAAAA	AAAAAAGAAT	ТАААААААА	АААААААА	ACAGAAGWTG	1200
	MCCTTGATGG	АЛАААААТА	TTTTTTTAAAA	AAAAGATATA	CTGTGGAAGG	GGGGAGAATC	1260
45	CCATAACTAA	CTGCTGAGGA	GGGACCTGCT	TTGGGGAGTA	GGGGAAGGCC	CAGGGARTGG	1320
	GGCAGGGGGC	TGCTTATTCA	CTCTGGGGAT	TCGCCATGGA	CACGTCTCAA	CTGCGCAACT	1380
50	GCTTGCCCAT	GTTTCCCTGC	CCCACCCCAC	CCCTCTTCTC	CCCCTCCCTG	CCCCTCCAGA	1440
	TIGCCIGGIG	ATCTATTITG	TTTCCTTTTG	TGTTTCTTTT	TCTGTTTTGA	GTGTCTTTCT	1500
	TTGCAGGTTT	' CTGTAGCCGG	AAGATCTCCG	TTCCGCTCCC	AGCGGCTCCA	GTGTAAATTC	1560
55	CCCTTCCCCC	TGGGGAAATG	CACTACCTTC	TTTTGGGGGG	TTTAGGGGTG	TTTTTGTTTT	1620
	TCAGTTGTTI	TGTTTTTTG	TTTTTTTTT	TTTCCTTTGC	CTTTTTCCC	TTTTATTIGG	1680
60	AGGGAATGGG	G AGGAAGTGGG	AACAGGGAGG	TGGGAGGTGG	ATTITGTTTA	TTTTTTAGC	1740

WO 98/39448 PCT/US98/04493

354

	TCATTTCCAG	GGGTGGGAAT	TTTTTTTAA	TATGTGTCAT	GAATAAAGTT	GTTTTTGAAA	1800
	АКААААААА	ааааааааа	АААААААА	аааааааа	ааааааааа	АААААААА	1860
5	AAAA						1864

10 (2) INFORMATION FOR SEQ ID NO: 131:

15

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2041 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 131:

20	GGCACGAGCG	CGCGGCAGGG	CCCTGGACCC	GCGCGGCTCC	CGGGGATGGT	GAGCAAGGCG	60
	CTGCTGCGCC	TCGTGTCTGC	CGTCAACCGC	AGGAGGATGA	AGCTGCTGCT	GGGCATCGCC	120
25	TTGCTGGCCT	ACGTCGCCTC	TGTTTGGGGC	AACTTCGTTA	ATATGAGGTC	TATCCAGGAA	180
23	AATGGTGAAC	TAAAAATTGA	AAGCAAGATT	GAAGAGATGG	TTGAACCACT	AAGAGAGAAA	240
	ATCAGAGATT	TAGAAAAAAG	CTTTACCCAG	AAATACCCAC	CAGTAAAGTT	TTTATCAGAA	300
30	AAGGATCGGA	AAAGAATITT	GATAACAGGA	GGCGCAGGGT	TCGTGGGCTC	CCATCTAACT	360
	GACAAACTCA	TGATGGACGG	CCACGAGGTG	ACCGTGGTGG	ACAATTTCTT	CACGGGCAGG	420
35	AAGAGAAACG	TGGAGCACTG	GATCGGACAT	GAGAACTTCG	AGTTGATTAA	CCACGACGTG	480
<i>JJ</i>	TOGAGCCCCT	CTACATCGAG	GTTGACCAGA	TATACCATCT	GGCATCTCCA	GCCTCCCCTC	540
	CAAACTACAT	GTATAATCCT	ATCAAGACAT	TAAAGACCAA	TACGATTGGG	ACATTAAACA	600
40	TGTTGGGGCT	GGCAAAACGA	GTCGGTGCCC	GTCTGCTCCT	GGCCTCCACA	TCGGAGGTGT	660
	ATGGAGATCC	TGAAGTCCAC	CCTCAAAGTG	AGGATTACTG	GGCCACGTG	AATCCAATAG	720
45	GACCTCGGGC	CTGCTACGAT	GAAGGCAAAC	GTGTTGCAGA	GACCATGTGC	TATGCCTACA	780
75	TGAAGCAGGA	AGGCGTGGAA	GTGCGAGTGG	CCAGAATCTT	CAACACCTTT	GGGCCACGCA	840
	TGCACATGAA	CGATGGGCGA	GTAGTCAGCA	ACTICATCCT	GCAGGCGCTC	CAGGGGGAGC	900
50	CACTCACGGT	ATACGGATCC	GGGTCTCAGA	CAAGGGCGTT	CCAGTACGTC	AGCGATCTAG	960
	TGAATGGCCT	CGTGGCTCTC	ATGAACAGCA	ACGTCAGCAG	CCCGGTCAAC	CTGGGGAACC	1020
55	CAGAAGAACA	CACAATCCTA	GAATTTGCTC	AGTTAATTAA	AAACCTTGTT	GGTAGCGGAA	1080
33	GTGAAATTCA	GTTTCTCTCC	GAAGCCCAGG	ATGACCCACA	GAAAAGAAAA	CCAGACATCA	1140
	AAAAAGCAAA	GCTGATGCTG	GGGTGGGAGC	CCGTGGTCCC	GCTGGAGGAA	GGTTTAAACA	1200
60	AAGCAATTCA	CTACTTCCGT	AAAGAACTCG	AGTACCAGGC	AAATAATCAG	TACATCCCCA	1260

	AACCAAAGCC TGCCAGAATA AAGAAAGGAC GGACTCGCCA CAGCTGAACT CCTCACTTTT	1320
_	AGGACACAAG ACTACCATTG TACACTTGAT GGGATGTATT TTTGGCTTTT TTTTGTTGTC	1380
5	GTTTAAAGAA AGACTTTAAC AGGTGTCATG AAGAACAAAC TGGAATTTCA TTCTGAAGCT	1440
	TGCTTTAATG AAATGGATGT GCCTAAAAGC TCCCCTCAAA AAACTGCAGA TTTTGCCTTG	1500
10	CACTITITGA ATCICICITI TIATGIAAAA TAGCGTAGAT GCATCICIGC GTATITICAA	1560
	GTTTTTTAT CTTGCTGTGA GAGCATATGT TGTGACTGTC GTTGACAGTT TTATTTACTG	1620
15	GTTTCTTTGT GAAGCTGAAA AGGAACATTA AGCGGGACAA AAAATGCCGA TTTTATTTAT	1680
13	AAAAGTGGGT ACTTAATAAA TGAGTCGTTA TACTATGCAT AAAGAAAAAT CCTAGCAGTA	1740
	TTGTCAGGTG GTGGTGCGCC GGCATTGATT TTAGGGCAGA TAAAAGAATT CTGTGTGAGA	1800
20	GCTTTATGIT TCTCTTTTAA TICAGAGTTT TTCCAAGGTC TACTTTTGAG TTGCAAACTT	1860
	GACTITGAAA TATTCCTGTT GGTCATGATC AAGGATATIT GAAATCACTA CIGIGITTITG	1920
25	CTGCGTATCT GGGGCGGGG CAGGTTGGGG GGCACAAAGT TAACATATTC TTGGTTAACC	1980
20	ATGGTTAAAT ATGCTATTTT AATAAAATAT TGAAACTCAC CAAAAAAAAAA	2040
	A	2041
30		
	(2) INFORMATION FOR SEO ID NO: 132:	
35	(2) INFORMATION FOR SEQ ID NO: 132: (i) SEQUENCE CHARACTERISTICS:	
35	- -	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2012 base pairs	
35 40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2012 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2012 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	60
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2012 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 132:	60 120
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2012 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 132: TACCAAGCTG CAAGAATCTA CTATATCATG GCAGAAGAAG TAGAGTGGGA CTATTGCCCT	
40 45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2012 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 132: TACCAAGCTG CAAGAATCTA CTATATCATG GCAGAAGAAG TAGAGTGGGA CTATTGCCCT GACCGGAGCT GGGAACGGGA ATGGCACAAC CAGTCTGAGA AGGACAGTTA TGGTTACATT	120
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2012 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 132: TACCAAGCTG CAAGAATCTA CTATATCATG GCAGAAGAAG TAGAGTGGGA CTATTGCCCT GACCGGAGCT GGGAACGGGA ATGCCACAAC CAGTCTGAGA AGGACAGTTA TGGTTACATT TTCCTGAGCA ACAAGGATGG GCTCCTGGGT TCCAGATACA AGAAAGCTGT ATTCAGGGAA	120 180
40 45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2012 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 132: TACCAAGCTG CAAGAATCTA CTATATCATG GCAGAAGAAG TAGAGTGGGA CTATTGCCCT GACCGGAGCT GGGAACGGGA ATGCCACAAC CAGTCTGAGA AGGACAGTTA TGGTTACATT TTCCTGAGCA ACAAGGATGG GCTCCTGGGT TCCAGATACA AGAAAGCTGT ATTCAGGGAA TACACTGATG GTACATTCAG GNTCCCTCGG CCAAGGACTG GACCAGAAGA ACACTTGGGA	120 180 240
40 45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2012 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 132: TACCAAGCTG CAAGAATCTA CTATATCATG GCAGAAGAAG TAGAGTGGGA CTATTGCCCT GACCGGAGCT GGGAACGGGA ATGCCACAAC CAGTCTGAGA AGGACAGTTA TGGTTACATT TTCCTGAGCA ACAAGGATGG GCTCCTGGGT TCCAGATACA AGAAAGCTGT ATTCAGGGAA TACACTGATG GTACATTCAG GNTCCCTCGG CCAAGGACTG GACCAGAAGA ACACTTGGGA ATCTTGGGTC CACTTATCAA AGGTGAAGTT GGTGATATCC TGACTGTGGT ATTCAAGAAT	120 180 240 300
40 45 50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2012 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 132: TACCAAGCTG CAAGAATCTA CTATATCATG GCAGAAGAAG TAGAGTGGGA CTATTGCCCT GACCGGAGCT GGGAACGGGA ATGCCACAAC CAGTCTGAGA AGGACAGTTA TGGTTACATT TTCCTGAGCA ACAAGGATGG GCTCCTGGGT TCCAGATACA AGAAAGCTGT ATTCAGGGAA TACACTGATG GTACATTCAG GNTCCCTCGG CCAAGGACTG GACCAGAAGA ACACTTGGGA ATCTTGGGTC CACTTATCAA AGGTGAAGTT GGTGATATCC TGACTGTGGT ATTCAAGAAT AATGCCAGCC GCCCCTACTC TGTGCATGCT CATGGAGTGC TAGAATCTAC TACTGTCTGG	120 180 240 300 360
40 45 50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2012 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 132: TACCAAGCTG CAAGAATCTA CTATATCATG GCAGAAGAAG TAGAGTGGGA CTATTGCCCT GACCGGAGCT GGGAACGGGA ATGGCACAAC CAGTCTGAGA AGGACAGTTA TGGTTACATT TTCCTGAGCA ACAAGGATGG GCTCCTGGGT TCCAGATACA AGAAAGCTGT ATTCAGGGAA TACACTGATG GTACATTCAG GNTCCCTCGG CCAAGGACTG GACCAGAAGA ACACTTGGGA ATCTTGGGTC CACTTATCAA AGGTGAAGTT GGTGATATCC TGACTGTGGT ATTCAAGAAT AATGCCAGCC GCCCCTACTC TGTGCATGCT CATGGAGTGC TAGAATCTAC TACTGTCTGG CCACTGGCTG CTGAGCCTGG TGAGGTGGTC ACTTATCAGT GGAACATCCC AGAGAGGTCT	120 180 240 300 360 420

	NAGCCCCATG	GAGGACGGAN	TGACATGGAT	CGGGAATITIG	CATIGTIGTT	CITGATITIT	600
	GATGAAAATA	AGTCTTCGTA	TTTGGAGGAA	AATGTGGCAA	CCCATGGGTC	CCAGGATCCA	660
-5	GGCAGTATTA	ACCTACAGGA	TGAAACTTTC	TTGGAGAGCA	ATAAAATGCA	TGCAATCAAT	720
	GGGAAACTCT	ATGCCAACCT	TAGGGGTCTT	ACCATGTACC	AAGGAGAACG	AGTGGCCTGG	780
10	TACATGCTGG	CCATGGGCCA	AGATGTGGAT	CTACACACCA	TCCACTTTCA	TGCAGAGAGC	840
	TTCCTCTATC	GGAATGGCGA	GAACTACCGG	GCAGATGTGG	TGGATCTGTT	CCCAGGGACT	900
	TTTGAGGTTG	TGGAGATGGT	GGCCAGCAAC	CCTGGGACAT	GGCTGATGCA	CTGCCATGTG	960
15	ACTGACCATG	TCCATGCTGG	CATGGAGACC	CTCTTCACTG	TTTTTTCTCG	AACAGAACAC	1020
	TTAAGCCCTC	TCACCGTCAT	CACCAAAGAG	ACTGAAAAAG	CAGTGCCCCC	CAGAGACATT	1080
20	GAAGAAGGCA	ATGTGAAGAT	GCTGGGCATG	CAGATCCCCA	TAAAGAATGT	TGAGATGCTG	1140
20	GCCTCTGTTT	TGGTTGCCAT	TAGTGTCACC	CTTCTGCTCG	TIGTICIGGC	TCTTGGTGGA	1200
	GTGGTTTGGT	ACCAACATCG	ACAGAGAAAG	CTACGACGCA	ATAGGAGGTC	CATCCTGGAT	1260
25	GACAGCTTCA	AGCTTCTGTC	TTTCAAACAG	TAACATCTGG	AGCCTGGAGA	TATCCTCAGG	1320
	AAGCACATCT	GTAGTGCACT	CCCAGCAGGC	CATGGACTAG	TCACTAACCC	CACACTCAAA	1380
30	GGGGCATGGG	TGGTGGAGAA	GCAGAAGGAG	CAATCAAGCT	TATCTGGATA	TTTCTTTCTT	1440
	TATTTATTTT	ACATGGAAAT	AATATGATTT	CACTTTTTCT	TTAGTTTCTT	TGCTCTACGT	1500
	GGGCACCTGG	CACTAAGGGA	GTACCTTATT	ATCCTACATC	GCAAATTICA	ACAGCTACAT	1560
35	TATATTTCCT	TCTGACACTT	GGAAGGTATT	GAAATTTCTA	GAAATGTATC	CTTCTCACAA	1620
	AGTAGAGACC	AAGAGAAAAA	CTCATTGATT	GGGTTTCTAC	TTCTTTCAAG	GACTCAGGAA	1680
40	ATTTCACTTT	GAACTGAGGC	CAAGTGAGCT	GTTAAGATAA	CCCACACTTA	AACTAAAGGC	1740
	TAAGAATATA	GGCTTGATGG	GAAATTGAAG	GTAGGCTGAG	TATTGGGAAT	CCAAATTGAA	1800
	TTTTGATTCT	CCTTGGCAGT	GAACTACTTT	GAAGAAGTGG	TCAATGGGTT	GTTGCTGCCA	1860
45	TGAGCATGTA	CAACCTCTGG	AGCTAGAAGC	TCCTCAGGAA	AGCCAGTTCT	CCAAGTTCTT	1920
	AACCTGTGGC	ACTGAAAGGA	ATGITGAGIT	ACCTCTTCAT	GTTTTAGACA	GCAAACCCTA	1980
50	TCCATTAAAG	TACTTGTTAG	AACACTGAAA	AA			2012

(2) INFORMATION FOR SEQ ID NO: 133:

(i) SEQUENCE CHARACTERISTICS:

55

60

(A) LENGTH: 1669 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 133:

-5	GAGCAGTATT	TTAACCAACT	TGTATTACAG	ATGTTACAGT	TCATGTTAGG	AAGTCAGAAA	60
-5	AGACTTTGTT	TGTCTTTGTT	CTGCTGATGT	GAGTCATGTT	TTGTGGGGTC	TTCCATGGCA	120
	CATTTACCTG	TIGCTCCGTC	CAGATGTTGA	GGGCCAGTCT	AGGCTGACAC	ATCCTACCCG	180
10	AGGACAAGCC	TGTTCTCCAT	TTCTTCACTC	TCCCCTCCCC	ATATAGCAAC	TCTCCCAGGT	240
	TTAGATTACC	GTTTTCGACG	ACAGATTAAC	CAAAAATGCC	CCACACAGGT	TTTATTACTG	300
15	TTATATACTA	TACTTTTAAC	AGTACAGACC	CTAAATITTA	TTATTTGTTG	CTCCCCCAAT	360
.5	CTGATACCAA	ATGTTTAAAG	TTGTTTGAAA	TCCAAACATG	GTAGTGTTCA	TGGGTAAATA	420
	TTTTCTAGGC	TATGTAAGAG	TTAGCAGCCC	ATAGCATAGA	AGTAATCAAG	TAGCATCTGA	480
20	GACTGTTGGA	GGCACTAGGG	CCTCTCTGGG	CCTAACAGCC	TCACTTCCCC	AGCCTCACCT	540
	TGCTGTCCTC	TGACACTGCC	ATCAGGGCTG	TTAGTGGCAC	CTGTATGAGG	CCAAGTGTGC	600
25	GTCCAGGGGA	ACAGCACAGG	TTAATGCGTC	TCCCTAGAAC	TCATGAAGTC	AGTTTAATTC	660
	ATGCATGAAC	ATGAGTTCAT	TTTATGTTTT	ATATAGCTTT	CITAGACATA	CCAAACCATC	720
	ATTCATAAAT	CAGATAAATT	ATTCAGTTTT	TGTGTTTAGA	AAGCTAAGTA	TGTGTAGCTG	780
30	GAAACAAAAA	TGAGCGTGTT	TTCTCTCCTG	TTAATCTAGA	GTGTGCAGTT	ACACATGTGT	840
	GGATAATTTC	ATGTTCCAGG	GGCGCTTGGC	ATCTCCCATG	GACTGATTCC	CAGGAAGAAA	900
35	AGCCCAAAGG	GAAACCCACG	ATTCCTTTCG	AGTAGATGTG	GGAAAGAGCC	CATTGGAGGA	960
	TATGAGGTCC	TGTGAAATTC	AGTTGTGTGT	GIGGCICCIT	GTTAGCAGTC	ATGTTGACAT	1020
	GGTGTTAGGA	GGCTCCCCAT	CCACCCTTTA	CATGATGTAG	GGACCAGTGT	CTTGTGAGAT	1080
40	TAACCTTGGG	ACACAGTGGG	TTAGCCTGGA	GAAAATGAGA	GCCCTGCCT	GGACCCAGGG	1140
	AGAGGAGCCA	GTGACACAGG	CAGAGCGGTG	CAGCCCTCCT	TCCCTTCCAT	TTGGAGGAGG	1200
45	TGGTGCCAGG	AGCCTGCCCG	CTTACCTCTG	CTGAAGCATA	AGTGGACTTT	GCTTTTGGGG	1260
7.5	CTTATCTCTG	ATACATGCTG	GAGCCCTGCC	TCTCCACTGC	TAGATGGAAC	CTGGAATCTC	1320
	TCATCTACCT	CTTAGTCTGT	CAGTTTCTAC	GTGTGAGAAG	CAAGCTTGTG	GCCAGTGTC	1380
50	CTTGTACATG	CTGTAGCACT	ТАААААТАА	TTCCAGGGTT	CCCTGGAAAA	CCAGTCCCAG	1440
	GGTTCCTATG	ATCTGTAGTT	TCTACCTGGA	TTATAACTGG	TTTTGGGTAC	CTGAATTTTG	1500
55	ATTGGTTAGC	СТТААТТАТА	GTCTGGCGTG	ATCATGTAGA	ATCTTTTCTG	GTGAACAGAT	1560
55	CATAAAGTTC	TATCAAGGAG	TTCTATCAAG	GCATCCATGT	CAGTGGTGCT	ATGCTGGTTA	1620
	CAACTTGAGA	TTTTTGAAAT	AAAAAATTTG	тсатаааааа	АААААААА		1669

(2) INFORMATION FOR SEQ ID NO: 134:

-5 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1565 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 134:

	CACTTTTGCT	АТАТААССТА	AGTGATAACC	CTCTTTTAGT	TACCTGCCAA	ACTCTGGNCT	60
15	TGGTTTATAT	TGCAGTTAAC	ACAGTTACAA	AGCTGTAATG	GIGICTITIT	TICCTTIGIA	120
	ACGGAATGTG	TAAATCAAAG	TATATACATT	CTCTCCTCTT	CCTGTTTCTG	GAGTTTCATG	180
20	AGGATTTACA	CATGGCATTC	AGTGTTCTGT	ATAGATCTGC	CTACCTTTGT	GAATTCATCT	240
÷0	GTTAACCCCT	CTTCCTTTGA	GAGAGCACCG	GCGATGGTGG	TTAACTCCTT	GIGITITICIC	300
	TCTCTCCTAC	TOGTTATTCT	TGAATTAAGC	ACAGACTCGT	CAGCTCGGTT	GCTTTATCAT	360
25	GAATAATGTG	TGTGACCTTG	CACTTCTTCC	ACAGTTCAGC	AAACAAGTGC	TAGCTTCACT	420
	GACCAAAAAT	TAAGGAAGGA	AAACACAGTT	TTTAAAACGA	TCCATCTTTT	AACAGCCGAA	480
30	ACCGATGTGT	CTATGGTGCT	GCACCTTGCT	GTTGTACTTC	TGAAATCAGA	CGTGTGTGAA	540
	CGATCATTTC	TGACTTAACC	GTGAGATGCT	CACGAGTACC	CITCCIGITG	TTTTGTTAGC	600
	ATTGAAATCG	AGACTATTTA	TTTGGAATAT	ATACAACAGT	GTTTTTCCAC	TGTATTTCAT	660
35	TTGCAAAAGT	TGAGAACTGC	TTTCTCTACC	TTTTGCAAAA	TAATTGATAT	TCCATATTGG	720
	ATTCTCAAAG	ACTTCGATAT	GGTGAACCTA	TTAAACCTAG	AAATTGTATT	CATCCTTTCA	780
40	TGACTGTGGC	CTGAGTTCCC	CAGCCCCTCT	CCTCCTTTTT	TTTAGATGAG	ATTTAGCACA	840
	CTCTCAGTTA	TTTAAACATG	CAACATTTCT	TGAGTATGTA	TGTTGAGGCC	ATCTGAGCTC	900
	ATAGCTGATT	CAGTAACCAG	TTTCATGCTG	TGTCATTCAC	ACTCACTACT	TAATACTGCC	960
45	ATGGTGAAAA	TGTGGAGGAA	AAATGTATCC	ATGTGTGTCT	GGGAAGCATA	TACACTTGTA	1020
	CATTTTTTAA	TACTCTGATT	CTGTAACATT	TCTGAGTTTT	GITTIGITIT	ACAGNAAAAA	1080
50	AAAAAAAGT	GATAAAGCAA	TCAGAAGACC	AAGAGGTTTA	CTATTGATGC	TTAGGGTCGT	1140
•	CTGACCTTGG	CTGGCCAATA	GACCTACACG	GCCAAATTAA	TTTACGAGAG	TAATAATTT	1200
	TCAAAAGCCA	ATTTTTTTC	TGTATTTTCT	GTATGAAACT	GCCAATATCA	TGAATAGAAA	1260
55	GGGAGAACCA	TAAAGGAGAA	AGAACGTGAT	GTTCTGTTAT	GTTCATGTAA	ACCTAAAGAA	1320
	ACAGTGTGGA	GGCAGGCGCG	ATCAGCCGAA	CTCTAGGGAC	TTGGTGTTGC	TTGGAAGGCA	1380
60	TCCATACCTG	CATTTTGCAT	TCTTCGTATG	TAATCATATT	GCCAAAGACA	AACTATTTCA	1440

	TCATTTATTG	TAAATAACAC	TTTTCCCCAG	ACCTACCATA	AAGTTTCTGT	GATGTATTGT	1500
	CTTCCAGTTG	СААТАААААТ	TACTGAGTTG	CATCAATTGA	AGAAAAAAA	ААААААА	1560
-5	CTCGA						1565

10 (2) INFORMATION FOR SEQ ID NO: 135:

15

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2007 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 135:

20 TCTAAAAGCC CCCTTATACC CCACTTTGTG CAGCAAAGAT CCCCGTGCAG GTCACAGCCT 60 GATTTGTGGC CAGGCTGGAC AAATTCCTGA GGCACAACTT GGCTTCAGTT CAGATTTCAA 120 GCTGTGTTGG TGTTGGGACC AGCAGAAGGC AAACGTCCAG CCAACACACA GGACTGTAAG 180 25 AGGACTCTGA GCTACGTGCC CTGTGAAGAC CCCCAGGCTT TGTCATAGGA GGTCGTTCAG 240 CTTCCCCAAA GTCAGAGGTG ATTIGATTTG GGGAAGACTG AATATTCACA CCTAAGTCGT 300 30 GAGCATATCC TGAGTTTTAC TTCCTTATGG CTTGCCCTCC AAGTTCTCTC TCTCATACAC 360 ACACACACCC TTGCTCCAGA ATCACCAGAC ACCTCCATGG CTCCAGCTAT GGGAACAGCT GCATTGGGGC TGCCTTTCTG TTTGGCTTAG GAACTTCTGT GCTTCTTGTG GCTCCACTCG 35 CGAGGCAGCT CGGAGGTGTG GACTCCGATT GGGCTGCAGG CAGCTCTGGG ACGGCACAGG GCGGGCGCTC TGATCAGCTC GTGTAAAACA CACCGTCTTC TTGGCCTCCT GGCAGTTCTT 600 40 TCTGCGAATA GTCCTCTCCC TGGCCAGTTG AATGGGGGAA GCTGCTGGCA CAGGAAGGAG 660 AGGCGATCCC GGCTGAGGCT TAGGAAATTG CTGGAGCCGG CTCCAAGCAG ATAATTCACT 720 GGGGAGGTTT TCAGAGTCAA ACATCATTCT GCCTGTKTTG GGGGCCAGGT GTGTCACACA 780 45 AGCATCTCAA AGTCAAAAGC CATCTGGGGC TGCTGCTTCT CTTTCTCAGG CTCTGGGGAA AGGAATCTCC CTCTCCTCTC ACTTGATTCC AAGTGTGGTT GAATTGTCTG GAGCACTGGG 900 50 ACTITITIC TCTTTICCTT GATGGACCAA CAGTGCAAAT GCAATCTCGC CATTTAACTT 960 TCAGGTCGAT TTCCTTTCCT GATCAGACAT CTTTGTGCCC CCTTTAGGAA GGAAAAGAAT 1020 ACACCTACGA TGTGCCAGGC ACTGTGTTAG GCGCTTTTAT ATAGATCCTC GTTAGGATGA 1080 55 GACTAAGGGA TGAGGACATC TCTTTATAAA AGGCCCCTAA GTAATGGATA AACAGAAACA 1140 CTTAGAGGTG AGAAGGTCTG TCTTCAAGAT CCAAGGTAAG ATTGCCTTCA GTCTGATGTT 1200 60 TGTTCTCAAG GACTTATCCC CTACAATATT CTCCCACTCC ATACTTCTCC TTCTACCCCA 1260

360

420

480

540

600

	CCATGTGCTC CCGTGCACTC CTCAGATGGT CAGAGGGGTA ACCCAAGTCC TTAGAGAATT	1320
. 5	TGGGGACCAA TAGAATATGT GATGTGTGAA TTTTCTTTAA AAAACTTAAG GAGTCTTTGC	1380
. 5	TACCTTCTGC TTGTTGAGTT GTTTTGGCAT TCATATTAAA AGCCAGCATC TCACTATTTA	1440
	TYGACAGGTT GGGCTGTGTG TGTGCGCATG TGTGTATACA TTTCCAGGCG TGCCTGTGTC	1500
10	CTGTAGCTTT TTAAAAGGAA ACCCAGTCAT CCCACTATGA ATCTGGCATC TTCTTATGCT	1560
	TCTAGTGTTT TGGCCATACA TCAACCAAGG GGTTTAATTT ATCCAATGCT TGACGACATG	1620
15	TTCAGGAGGG GCTGGATCAA ATTTTGAGAG GCTTATGGGA AAGGGAGGGG GAGAAGAAAT	1680
	TGACATTTAT TTTATTATTT ATTTTAAATG TTTACATCTT CTTTATGTTG TATCAAGCCT	1740
	GAATAGAAAC TGATAGCATT AAAATACTCC GTTCCTCTCT CTCTTCTCGC TTCCTTTTTT	1800
20	TITTTTTTA AATTGAGAT AACACATTT TGTTTCTAAA GTGATTTGTG ATTTGTGCTG	1860
	TATAAACTGT ATAAAAGGTT CTGTTTTTAA AGGTGGATTT TCATTCCTCT GGGGACAGTG	1920
25	GTCGCCAAGA CATCTACATT GTAAGAGAAC ACAGTGGAAG ATCCTGTCCT GATTCTCAAA	1980
23	AATTATTTC TCTGTATGAT TAAAAGT	2007
30	(2) INFORMATION FOR SEO ID NO: 136:	
	(i) SEQUENCE CHARACTERISTICS:	
35	(A) LENGTH: 1291 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 136:	
40	-	
	CTTTTAACCC TCCCCCTTCA CACACATACA TATCAGGTTG TTTTCTAGTT AAAAACCCAA	60
	GTAGCTCAGA TTCTACTTTA ATGTCAGTGC AGATTTGCAT TGAATCATGC CATTATGTTT	120
45	TTTCTCATTT TTATGCTGTT GGGTCTTAGT TTTTAAATTG ATATAAAGAA CTCAGCAATG	180
	GTTTTATTTT CTACTCATAC TTAGGGTTTA GGAAACACTA CCACTAGTTA TCATTTAATC	240

AACTICAATG GTCTACTGAA ACAAAAATGG TAACTTTICA TTAGTGGATT ATTTAGAGTT

ATAGTAGTTG TTTCCAGAAA ACACTTCCTC ACAATTGTAC TTCCCAATCA AATCATGTGA

TCATACAGTT ATTCCCATGA AAGGCAGAAT GTTTGTTTCA AAATTAATCT AGTTTTCTGT

ACATTTAAAT TTGAGAAGGT GACAACTGGC TCTTTTCCAG TCTTCCTTCA TGTCAGTTTT

CTGATAGACC ACTATTGGCA AACAGTATCT GTCAACTACC AAATGTGTAA AATTTTCTGT

ATTICACTIT GICTIATITG TAAATAGIGA ACTAAAACTI TIGGCAGAIC AGCAACATTI

60

50

WO 98/39448 PCT/US98/04493

	GCTGAGCCTG TTTTTTAAGC TAATGTGTAT TCTTACTAAT GTTCCTATCA AGAATGGATT	660
	TGTAATATAT GCTGTCTATT TCTAATGTTC ACATTCATAT TTTGAGGTTC TATCTTATTT	720
_5	TAATAGAGAA CAGACTTCTC AAAAAATCTT CAGAAGCAGC TTATTATTGA AATATCGAAA	780
	TATTGAAATA AACCCGGTGG GTTAGATTAC TCATCTGTCC ACCAAGTGGG ACATTTGCAT	840
10	GGACTGGGGG CTTAAAGGAC TTAGAAGAGA CCTGTAAGTA AATCCTGAAA ATGAGCCAAT	900
10	CCCCACTIGA ATGGTTACTG GAGTAAACCC ACCTTTACCA CCCCAATTAC AGCACCCGAG	960
	GCCGATAAAC CAACTTGGCT CIGGITCATT TTTCTTTTCT TCATTTGTGA TGCTCAGATT	1020
15	CAAAATGTGT GTTCTACACT GTTACAGGCT TCTCTTTTGT TTGATTAAAG ATTTTAGTCC	1080
	TACTTTTGTA TGGACACATT AGAATATTCA GAGACCAAAA TAGAAGAATT TGCTGTTAGA	1140
20	TATTTTTCAG AAGTCAGCAG ATTTGTGGCA AATCATTTAT TTGCCTTTTT AAAAATTCAT	1200
20	TTAAGCAGTT CAGAGAGTAG ACTACTCAGA AAATTATTTC ACGTAATTGT CTAAGAGGTC	1260
	AATATTTTT AATGCATATT GAATCAAATA A	1291
25		
	(2) INFORMATION FOR SEQ ID NO: 137:	
30	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1906 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
35	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 137:	
40	GGCACGAGGA CCTACTTTTG TAACAGACCA TGGTTGTGTC CAAGGTAAAA CCACAGTGAT	60
40	ATTITIGGAT GCTPTGTCTG CAATCTTGAC TIGTTTTTGC AGTATCATTA TTCAGACTTC	120
	AAATTGTGAA TCTTTTAAAC ATCTTGATAA TTTGTTGTTG AGAGCTGTTC ATTCTAAAAT	180
45	GTAATGAAAT TCAGTCTAGT TCTGCTGATA AAGATCATCA GTTTTGAAAG GTTACTGATT	240
	TTCCTCTTCC CTCTTAGTTT TTTACCCAAT ATATGGAGAA GAGTAATGGT CAATCTTAAC	300
	ATTTTGTTTT AATTGTTTAA TAAAGCTGCT GGGCAGTGGT GCAGCATTCC TACCTAGTGT	360
50	CATAAAAGCA AAATACTTAC ATAGCTTTCT TAAAATATAG GAATGACATT ACATTTTTAG	420
	GAGAAAGTAA GTTGCTTTGC ACCGCCTACT TAATTCCTTT CCATATATTG TGATACAAAC	480
55	TTTTGAATAT GGAATCTTAC TATTTGAATA GAAATGTGTA TGTATAATAT ACATACATAC	540
	ATAAGCATAT ATGTGTGTGT GTGTGTGTAT ATATATATAT ATGCATGCTG TGAAACTTGA	600
	CTACACAACA TAAATCACTT TTTAAATTCC AGGAACGGGT AGTCTGACAC GGTGATTATC	660
60	CTTTTGAGGC TGAATCCGTT ATTAACTTGT TATTTAGGTT TTACTCCCAG TAGCAAGGGA	720

180

	TTCTAAGTTA	GTTGCACTTA	CATGATTATT	GTGATTTAAA	ACTAAGAATA	AAGGCTGCAT	780
_5	TTTCAAAGAT	AAATTGGAAT	TGCTGTTGGT	GAAATAACAA	CCAAAATACT	GAATCTGATG	840
_ 5	TACATACAGG	TTTCTACAGG	AAGAGATGGT	ATAATTTACA	ATTTGGAGAT	TTAATAACCA	900
	GGGCTACCCA	GAAAAAGTGA	CTTGATAACA	TOGTACCAAT	AAGTAAGGGA	TGCTCTCTCG	960
10	GITTGCTTTT	GCCACTTTCA	AGATITTAAC	TTCTCAGGTT	ATTAATCAAA	ATTATTGTAT	1020
	AAGTTAGCCA	ATAGAATTT	TAGGTTAAAA	CAACAGATGG	CCCCTTTCTC	GAGTGTTTAA	1080
15	TGTCATGGGC	ATTTTTAGTA	GCATAGACCC	TTTGTTCTGC	ATTIGAATGT	TTCGTATATT	1140
13	TTTGTTTCAC	AGTTAATCTT	CCCTCCCCAA	GTTTGCTATT	CAAATCAACT	GCCTGAATGA	1200
	CATTTCTAGT	AGTCTGATGT	ATTTTTCTGA	GGAATAGTTT	GIGATICCAA	TGCAGGTGTC	1260
20	TTCATTACCA	TTACCTCTAC	ACTGCAGAAG	AAGCAAAACT	CCTTTATTAG	AATTACTGCA	1320
	CATGTGTATG	GGGAAAATAG	TTCTGAAAGG	CTAGAATGAT	ACAAGTGAGC	AAAAGTTGGT	1380
25	CAGCTTGGCT	ATGGAGTGGT	GGCAATAATC	TCTAAACATT	CCAAAAGACC	ATGAGCTGAA	1440
	CCTAAACTCC	CTTGGGAATC	TGGAACAAAG	GAATATGAAA	ATTGCCATTT	GAAAACTGAC	1500
	CAGCTAATCT	GGACCTCAGA	GATAGATCAG	CCAGTGGCCC	AAAGCCATTT	CAAGTACAGA	1560
30	AATTATAGAG	ACTACAGCTA	AATAAATTTG	AACATTAAAT	ATAATTTTAC	CACTITITIGT	1620
	CTTTATAAGC	ATATTTGTAA	ACTCAGAACT	GAGCAGAAGT	GACTITACTT	TCTCAAGTTT	1680
35	GATACTGAGT	TGACTGTTCC	CTTATCCCTC	ACCCTTCCCC	TTCCCTTTCC	TAAGGCAATA	1740
	GTGCACAACT	TAGGTTATTT	TTGCTTCCGA	ATTTGAATGA	AAAACTTAAT	GCCATGGATT	1800
	TTTTTTTTT	GCAAGACACC	TGTTTATCAT	CTTGTTTAAA	TGTAAATGTC	CCCTTATGCT	1860
40	TTTGAAATAA	ATTTCCTTTT	GTAAAAAAA	АААААААА	AAAAA		1906
4 5	(2) INFORM	ATION FOR SE	EQ ID NO: 13	38:			
	(i)	SEQUENCE CH					
50		(B) TYP	GTH: 1935 b E: nucleic	acid			
50			ANDEDNESS: OLOGY: line				
	(xi) SEQUENCE I	DESCRIPTION	: SEQ ID NO	: 138:		
55	TCTGAACTAA	TGCTAACAGA	TCCCCCTGAG	GGATTCTTGA	TGGGCTGAGC	AGCTGGCTGG	60
	AGCTAGTACT	GACTGACATT	CATTGTGATG	AGGGCAGCTT	TCTGGTACAG	GATTCTAAGC	120

TCTATGTTTT ATATACATTT TCATCTGTAC TTGCACCTCA CTTTACACAA GAGGAAACTA

	TGCAAAGTTA	GCTGGATCGC	TCAAGGTCAC	TTAGGTAAGT	TGGCAAGTCC	ATGCTTCCCA	240
	CTCAGCTCCT	CAGGTCAGCA	AGTCTACTTC	TCTGCCTATT	TTGTATACTC	TCTTTAATAT	300
.5	GTGCCTAGCT	TTGGAAAGTC	TAGAATGCGT	CCCTGGTGCY	TTTTTACTTT	GAAGAAATCA	360
	GTTTCTGCCT	CTTTTTGGAA	AAGAAAACAA	AGTGCAATTG	TTTTTTACTG	GAAAGTTACC	420
10	CAATAGCATG	AGGTGAACAG	GACGTAGTTN	AGGCCTTCCT	GTAAACAGAA	AATCATATCA	480
10	AAACACTATC	TICCCATCIG	TTTCTCAATG	CCTGCTACTT	CTTGTAGATA	TTTCATTTCA	540
	GGAGAGCAGC	AGTTAAACCC	GTGGATTTTG	TAGTTAGGAA	CCTGGGKTCA	AACCCTCTTC	600
15	CACTAATTGG	CTATGTCTCT	GGACAAGTTT	TTTTTTTTT	TTTTTTTAA	ACCCTTTCTG	660
	AACTTTCACT	TTCTATGTCT	ACCTCAAAGA	ATTGTTGTGA	GGCTTGAGAT	AATGCATTIG	720
20	TAAAGGGTCT	GCCAGATAGG	AAGATGCTAG	TTATGGATTT	ACAAGGTTGT	TAAGGCTGTA	780
20	AGAGTCTAAA	ACCTACAGTG	AATCACAATG	CATTTACCCC	CACTGACTTG	GACATAAGTG	840
	AAAACTAGCC	AGAAGTCTCT	TTTTCAAATT	ACTTACAGGT	TATTCAATAT	AAAATTTTTG	900
25	TAATGGATAA	TCTTATTTAT	СТАААСТААА	GCTTCCTGTT	TATACACACT	CCTGTTATTC	960
	TGGGATAAGA	TAAATGACCA	CAGTACCTTA	ATTTCTAGGT	GGTGCCTGT	GATGGTTCAT	1020
30	TGTAGGTAAG	GACATTITCT	YTTTTTCAGC	AGCTGTGTAG	GTCCAGAGCC	TCTGGGAGAG	1080
50	GAGGGGGTA	GCATGCACCC	AGCAGGGGAC	TGAACTGGGA	AACTCAAGGT	TCTTTTTACT	1140
	GTGGGGTAGT	GAGCTGCCTT	TCTGTGATCG	GTTTCCCTAG	GGATGTTGCT	GTTCCCCTCC	1200
35	TTGCTATTCG	CAGCTACATA	CAACGTGGCC	AACCCCAGTA	GGCTGATCCT	ATATATGATC	1260
	AGTGCTGGTG	CTGACTCTCA	ATAGCCCCAC	CCAAGCTGGC	TATAGGTTTA	CAGATACATT	1320
40	AATTAGGCAA	CCTAAAATAT	TGATGCTGGT	GTTGGTGTGA	CATAATGCTA	TGGCCAGAAC	1380
	TGAAACTTAG	AGTTATAATT	CATGTATTAG	GGTTCTCCAG	AGGGACAGAA	TTAGTAGGAT	1440
	ATATGTATAT	ATGAAAGGA	GGTTATTAGG	GAGAACTGGC	TCCCACAGTT	AGAAGGCGAA	1500
45	GTCGCACAAT	AGGCCGTCTG	CAAGCTGGGT	TAGAGAGAAG	CCAGTAGTGG	CTCAGCCTGA	1560
	GTTCAAAAAC	CTCAAAACTG	GGGAAGCTGA	CAGTGCAGCC	AGCCTTCAGT	CTGTGGCCAA	1620
50	AGGCCAAGAG	CCCCTGGCAA	CCAACCCACT	GGTGCAAGTC	CTAGATTCCA	AAGGCTGAAG	1680
50	AACCTGGAGT	CTGATGTCCA	AGAGCAGGAA	GAGTGGAAGA	AAGCCAGAAG	ACTCAGCAAA	1740
	CAAGGTAGAC	AGTGTCTACC	ACCAYAGTGG	CCATACCAAA	GAGGCTACCG	ATTCCTTCCT	1800
55	GCTACCTGGA	TCCCTGAAGT	TGCCCTGGTC	TCTGCACCTT	CTAAACCTAG	TTCTTAAGAG	1860
	CTTTCCATTA	CATGAGCTGT	CTCAAAGCCC	TCCAATWAAT	TCTCAGTGTA	AGYTTCAAAA	1920
60	АААААААА	AAAAA					1935

(2) INFORMATION FOR SEQ ID NO: 139:

_5

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1446 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

10 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 139:

NGCCCCCTTG GCACAAGTCA GATGAAGCAC GTTCTGCCGG GGAGGCCCTC AMCTTCCAGA 60 15 GAGGACAGAC ACAGATTTCC TGCTGGGGGA GGGAGGAGTC CACGCATCCT GATGCTGCCT 120 GGAAGCTTAT TTTCCCGTGG CCAGGATGCA TTTCTCTGAG TGGAAACAGG TTCTTGCATG 180 20 TGGATGTGT TTTCCCCAGG CAGACGGCCC CTCTYTTCCC AGCACTTCCC TGCCTCCCCC 240 AGGCCTCAGG CCAGCACCCA GTTCCTCCTC ACATGGCAGG TGAGCACAGA CTTCTAGTTG 300 GCAGGAGCTG AGGAGGGTGA ACAAACCCCG AGGGAGGCCC GGCCCTTGCT CCCGAGTTGG 360 25 GGGGAGGGG TGTGGCAACG TGCCCCCCGC AGAGGCCACG CATGTTTGAC CAAAGCCCTC 420 ATTGTGGTCC GAGGACAGCC TTTTCCCCAG GCCTCARAGC ATTGCTCATC CGTGCCAAAC 480 30 TOGGTAGGTG GATTTGAGCG GAAAGACTCC CAAAATGTGC CAAGAATTTC CCRGTCCCAG 540 GCAGGCCAGG GGAAACTAAG GCCAAGCAGG ATACAGGCCG AGGGATGTGG CAGGTGAGGG 600 GGCTCCCGCC TGTGCCCCTT CTCCTCACCA TGTCTCCCCC ACCCTGCCTC AGTTCTCCGT 660 35 TCCCCTTCAT CTCCGTCCCC CTCTTTGAAG CTGTCCCCAT CTCAGTGTCA GACCAGCCTT 720 CTCCTCAKCT GACCACCCTC CTCTGACCSA CGCCCCCTCC TTGTCTGAAA AAAGGAGCCT 780 40 TGAATGGTGG AGGGAGGCAG TGGGGAGAAA GGTCTCACCG GACAGGTTGG GAGAATGAGG 840 TCAGCGGTGC TGGGGAACAG ATGGAGGGGG CAGTGGGGAC AGGGCTTGGG CAGACACCAG 900 CAGGAATAAT TTGAAATGTG TGAGGTGACT CCCCGGAGGC CTTGGGCTTG GGCATTTGGG 960 45 AAAAGAATGA TGTCTGGAAG GGCTTAAGGG ACACAGTGGA CGAGGGGAGA GTCCTCATCT 1020 1080 GCTGCCATTT TGTGGGGTGT TAGTGCCAAA CTTGAATAGG GGCTGGGGTG CTGTCTTCCA 50 CTGACACCCA AATCCAGAAT CCCTGGTCTT GAGTCCCCAG AACTTTGCCT CTTGACTGTC 1140 CCTTCTCTC CTACCTCCAT CCATGGAAAA TTAGTTATTT TCTGATCCTT TCCCCTGCCT 1200 GGTCTAGCTC CTCTCCAAAC AGCCATGCCC TCCAAATGCT AGAGACCTGG GCCCTGAACC 1260 55 CTGTAGACAG ATGCCCTCAG AATTGGGGCA TGGGAGGGGG GSTGGGGGAC CCCATGATTC 1320 AGCCACGGAC TCCAATGCCC AGCTCCTCTC CCCAAAACAA TCCCGACAAT CCCTTATCCC 1380 60 TACCCCAACC CTTTGCGGCT CTGTACACAT TTTTAAACCT GGCAAAAGAT GAAGAGAATA 1440

TTGTAA 1446 - 5 (2) INFORMATION FOR SEQ ID NO: 140: (i) SEQUENCE CHARACTERISTICS: 10 (A) LENGTH: 1109 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 140: TTTTTTTTT TTTGATATGA AATTGTCTTT CTCCATTGCA GAAATAAGCT AGGGAAACAC 60 TAACCCAAAA ACTITICTGTA GAGCTGTTCC TTTGGAGGCA GCATCACTTA TTGGCAGTAA 120 20 AGACTCAGTA TAAAAGCACC AGCATCCCTA CTTGGGTGAT GGGGATTAAT TTTATAGCAT 180 TCCATTTTCC TAGTGCCACA TGTGAAATTG GATTTTGATG ATCTTAATCT ATATTCTACC 240 25 CTTATAATAA AAGATCAAAA GATATATCTC CTATGAACAG ATTGGAGATA GGAGATGAAA 300 AGTTGGGAGG ATGTCTTTAT TCTAATGTGA GGGTAGGGAA AATGTGGATA ACATTACTGG 360 GGTGARGGAG GCATTGTTCT TTAGTTGGAG TTCTCATTTT TATTCTCCAG TACTGACTTG 420 30 TOGGGAAAGC ATACTTTTTC ACTGCCAGGT ACTGAATGCA GAGGCTCAGT GAAGTATATA 480 TGTGGGAAGT GCATGCATTT CGTTTATTAG CAAACATAGC TGGATTAAGA CAAAGTTGTT 35 GGTTTGGAAA GGGGTTAAAG CCTTAAGTGA ACAAATCTAG CTAACAGTGA ATGAACTAGG 600 TAATATAACT TGCATATTIT TAATTICCTT TGGTTAAAGG TCCCCCATAC TTCTCTGTTC 660 GGAGACATGA GAAGTATGAT TACTTCAGTG TTAGTTTTCT TAATTTTTTT TTTCCCCTAT 720 40 TTGTCCCTTG TCACTTTGTT GCAAGCTAGA AATCTGTGGG TTATACATAG GGCAGCTCTT 780 TGTGAAAGTG GTTTATTCCA CTGGAGAAAG GGGATTGAAA ATCAGTTAGA ACCAATGTAT 840 45 TTCTTGCCCC ACGGAACACT ATTCCTATAA GATAGCTGAA AGAAGCTGCT GTGAGGAGCT 900 CAGCTCCAAA CACAGGATCA GCACCTTGTA TAGGAATTCC CATGAATTAT GACTTCTCAT 960 TCTGTTTTAT CAGAGTGCAT ATATGTCCTA CTTCAGGAAA AGTAAAACAG TCATTTACGA 1020 50 AAGAAAGTCA ATCTGTATCC TAAGCATTTT AATAAAAAGT TAAAACAAAA AATTAAAAGG 1080 GACACTCGAG GGGGGGCCCG AAACCCAAT 1109

55

(2) INFORMATION FOR SEQ ID NO: 141:

(i) SEQUENCE CHARACTERISTICS:

.5	(A) LENGTH: 497 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
-5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 141:	
	TAGGACTAAC TTAAATTCTT TTATTCATCT TTTATTTATT AAAAAATTTT ATTTCTTTGA	60
10	ATTITCCTGT AATTITCCTTA RGCTCTTCTA TAAAATGTTA TATTCATGTG AACCATACCT	120
٠.	CATTATCCTT AACATTTACT CTCAAAAAGC TTTTTATTTT TATTTTTTTG AAGGTAGTIT	180
15	TTCTGTGTGT ACTCTGTAAC ATGATTTTGC TTTCAAATCA TTGTTGTGCC CCCATACAAA	240
13	ATGCCTTTTA TTTTTGAGGA TCGTGGACTT TTTAGTATGG CATGAGTGTG CTAAAAAGCCA	300
	GATATCTTTC CACATTCACT GGTGGCTTTG ACACCTAGTT TTTAATCTCC CATCCTTACT	360
20	TTAAACCCTG ACAGTGCAGT CCTCAGTCAG GGCCAGGACC GGGCTGAGGC CCTTTGTGGA	420
	GATGCTGCAC CACCAGCAGA AGGCTGAGAC CTGGTTACCT GTACCTGTTC ACTTGTAATA	480
25	AAAAGAATTA TCTAAAA	497
25		
30	(2) INFORMATION FOR SEQ ID NO: 142: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 269 base pairs (B) TYPE: nucleic acid	
35	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 142:	
	ATGAGGCAGA GGCAAGCTGC CTGCCAACCC CCTCCCTCAA GGAATGGCCT TGCCCAGGAA	60
40	TOCCCACCAC ACATACCCTC TICTTTTTT CTAGTCAAAC TCTTGTTTAT TCCTTGGCTT	120
	GCCTCCCTCC TTTCCTCCCC TCTCAACCTT TTACTICTGG TTTCTATTTC ATGGGATTTG	180
45	GGGTTGAAGT TAAACTTACA ACAGTGCCGC CAACACCAAG TCTTGCAGGA AAAAAATACA	240
	AAGAAATTTA ACAAAAAAAA AAAAAAAAA	269
50		
	(2) INFORMATION FOR SEQ ID NO: 143:	
55	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1269 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
60	(vi) SECUENCE DESCRIPTION, SEC ID NO. 142.	

	TIGATIGACT	ATGGTCTCTC	CGGCTACCAG	GAAGAGTCTG	CCGAAGTGAA	GGCCATGGAC	60
5	TTCATCACCT	CCACAGCCAT	CCTGCCCCTG	CTGTTCGGCT	GCCTGGGCGT	CTTCGGCCTC	120
رد	TTCCGGCTGC	TGCAGTGGGT	GCGCGGGAAG	GCCTACCTGC	GGAATGCTGT	CGTCGTGATC	180
	ACAGGCGCCA	CCTCAGGGCT	GGGCAAAGAA	TGTGCAAAAG	TCTTCTATGC	TGCGGGTGCT	240
10	AAACTGGTGC	TCTGTGGCCG	GAATGGTGGG	GCCCTAGAAG	AGCTCATCAG	AGAACTCACC	300
	GCTTCTCATG	CCACCAAGGT	GCAGACACAC	AAGCCTTACT	TGGTGACCTT	CGACCTCACA	360
15	GACTCTGGGG	CCATAGTTGC	AGCAGCAGCT	GAGATCCTGC	AGTGCTTTGG	CTATGTCGAC	420
	ATACTTGTCA	ACAATGCTGG	GATCAGCTAC	CGTCGTACCA	TCATGGACAC	CACAGTGGAT	480
	GTGGACAAGA	GGGTCATGGA	GACAAACTAC	TTTGGCCCAG	TTGCTCTAAC	GAAAGCACTC	540
20	CTGCCCTCCA	TGATCAAGAG	GAGGCAAGGC	CACATTGTCG	CCATCAGCAG	CATCCAGGGC	600
	AAGATGAGCA	TTCCTTTTCG	ATCAGCATAT	GCAGCCTCCA	AGCACGCAAC	CCAGGCTTTC	660
25	TTTGACTGTC	TGCGTGCCGA	GATGGAACAG	TATGAAATTG	AGGTGACCGT	CATCAGCCCC	720
	GGCTACATCC	ACACCAACCT	CTCTGTAAAT	GCCATCACCG	CGGATGGATC	TAGGTATGGA	780
	GTTATGGACA	CCACCACAGC	CCAGGGCCGA	AGCCCTGTGG	AGGTGGCCCA	GGATGTTCTT	840
30	GCTGCTGTGG	GGAAGAAGAA	GAAAGATGTG	ATCCTGGCTG	ACTTACTGCC	TTCCTTGGCT	900
	GTTTATCTTC	GAACTCTGGC	TCCTGGGCTC	TTCTTCAGCC	TCATGCCTCC	AGGGCCAGAA	960
35	AAGAGCGGAA	ATCCAAGAAC	TCCTAGTACT	CTGACCAGCC	AGGGCCAGGG	CAGAGAAGCA	1020
	GCACTCTTAG	GCTTGCTTAC	TCTACAAGGG	ACAGTTGCAT	TTGTTGAGAC	TTTAATGGAG	1080
	ATTTGTCTCA	CAAGTGGGAA	AGACTGAAGA	AACACATCTC	GTGCAGATCT	GCTGGCAGAG	1140
40	GACAATCAAA	AACGACAACA	AGCTTCTTCC	CAGGGTGAGG	GGAAACACTT	AAGGAATAAA	1200
	TATGGAGCTG	GGGTTTAACA	CTAAAAACTA	GAAATAAACA	TCTCAAACAG	ТАААААААА	1260
45	AAAAAAAC						1269

(2) INFORMATION FOR SEQ ID NO: 144:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1944 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

55 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 144:

AAAAGGCAAA CTATAGGATA ACACAGAGCC CTTTTTGAAA ATAAATTGGC ATTGGAGTGT 60

	TTTACCCTCT	AGCTGTTTTA	CTTAGAATGT	AACATATGCT	GCCTACCCAC	CTCAAAATGT	120
	CTGTACTGCA	AGAGGGCCCT	GGGCCTCTGC	TTTCCATATT	CACGTTTGGC	CAGAGTTGTA	180
- 5	GTCCCAAAGA	AGAGCATGGG	TGGCAGATGG	TAGGGAATTG	AACTGGCCTG	TGCAATGGGC	240
	ATGGAGCACA	AGGGGTCACA	GCATGCCTCC	TGCCTTACCG	TGGCAGTACG	GAGACAGTCC	300
10	AGAACATGGT	CTTCTTGCCA	CCCCCTCTTC	TTGTCTCTGG	TGGTGCTGCA	TGTCTGTGGC	360
10	TCACCTTTAT	TCTTGAAACT	GAGGTTTACC	TGGATCTGGC	TACTGAGGCT	AGAGCCCACA	420
	GCAGAATGGG	GTTGGGCCTG	TGGCCCCCAA	ACTAGGGGGT	GTGGGTTCAT	CACAGTGTTG	480
15	CCTTTTGTCT	CCTAAAGATA	GGGATCTACT	TTTGAAGGGA	ATTGTTCCTC	CCAAATAAAT	540
	TTGCTTTACC	TIGGICCITT	CTTTTGTGCC	AGTATTCAAG	TOGTATAGCT	CTGAGCAGGG	600
20	TCACATTTGG	CCAAACCTGA	CACTGTCTTG	CTGCATTCTC	CTTTGGCAAA	CATCAGGGTC	660
20	AGAATTCAGG	ATAGCCCTTC	CTAGGGCACT	GGACTTTCTG	GCATGGGGGC	TGTGTTTGCA	720
	CAAGTTATTT	TCATGTTACC	TGGAGAGTGT	CCAGAGGCTG	CTCTGAGGCT	GAGGTGTGTT	780
25	CCCCCTTGCC	TGGTTCCAGC	TGTCAGAGGG	ATACCATCCT	AGGGTCTGGG	AATCCAAGGC	840
	CACGAGACTC	CTTGGTTTGT	GGTCCGAGAT	CCTGTACTAA	GGAGGGTCTG	GCCAGAGGAA	900
30	CAGACCAGCT	TTTGCACAAT	GAAGCGCAAG	GGAACAAGTG	GTTTGCCTGG	TGTCCTACCT	960
50	GTCCTGAACC	TEGICCICIG	GGCCATTGAA	AAGTTAGATC	TGTGATCTCT	GGGTTTTTG	1020
	TGGCTTTGTT	CAATGCTTCC	ACTCTAGGGC	AGGCAGAGCA	GTCTATACTC	TCCCAAGCCT	1080
35	GCTTGACCTC	CAAGTAGAGC	TGATACAGAG	ATCTGTGAAT	ATTGTGATAG	AAATTCTTTG	1140
	GTATTCATAC	ATTTCAGCTG	CAAGTCAGCA	ATTTCCCAGG	TACCATGTAA	GCTATAAAAC	1200
40	AGTCATTCTT	AAAGACAGAG	GATAGCTGTG	ACTCATGGGA	TCATGAGGTC	CATGGCTGGT	1260
,,,	TGCAGGTTCC	CTTTTTCCTT	CCTCAGGTTT	TGTCTCTTCC	TGTGTTGTCC	CCAGCAAGGG	1320
	AGAGACTGTG	GGGTGGATTG	GGAGAACAGA	TTAGGAGTAT	AGCAAATGAA	CCCAGAATGG	1380
45	AACAGTGGGG	AGCTAACTGT	GAATGAGGAG	AGTACCTGCT	GCAGGACCTG	GAGGTCAGGT	1440
	GTGAATGCTG	TATTGGCACA	GGGAATAAAT	ATCCTGGCGT	CTGGAGCCTT	CACCTCTCCG	1500
50	TCAAGTCCTT	CCTGTGATAC	TGCCATGGCA	CAGGATCTGA	GTTGCAGCTC	TGCACCCTAA	1560
	ATCACACCCT	GGGCATTGTC	TGGGCTGCAG	GGCTGCCAGG	TICIGTACTI	GTGTCCAGCT	1620
	GTGGCCCTGG	ATGCTGGAGC	TGGAGGGTTT	TCTGTGCTCA	GACTGTAGCC	TGTAGCTCTT	1680
55	GGCCTGTGTA	GAGCCCCCTC	CTGTGCCCTC	AGTGGCTGTC	GTTTGTTAAC	ATCATCAGGA	1740
	AGATGGGAAA	GGTCAGGCAG	AATTTTTCTG	CCCTACAAAG	GGTGGAAGAG	AAAGGACACA	1800
60	GTATTTTCAT	GAATTTACCA	TATATCTTTG	TTTTTCTTCA	ACGAAAAAGT	TAATTGAGGC	1860

	AATGTCATCT GCTCAAAGTT GAGTGGTTTA TTCACAATAA ACTGTAAGTT TCTGATTATA	1920
	AAAAAAAAA AAAAAAAAA AAAG	1944
-5		
	(2) INFORMATION FOR SEQ ID NO: 145:	
10 15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1021 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 145:	
	TCGACCCACG CGTCCGGGGT GCGCAACGGG GAGTTCCGGC TGGAGACCCG TGCTCTGGGC	60
20	CGGCGCCTTC ACCATGGCCT CGGCAGAGCT GGACTACACC ATCGAGATCC CGGATCAGCC	120
	CTGCTGGAGC CAGAAGAACA GCCCCAGCCC AGGTGGGAAG GAGGCAGAAA CTCGGCAGCC	180
25	TGTGGTGATT CTYTTGGGCT GGGGTGGCTG CAAGGACAAG AACCTTGCCA AGTACAGTGC	240
43	CATCTACCAC AAAAGGGGCT GCATCGTAAT CCGATACACA GCCCCGTGGC ACATGGTCTT	300
	CTTCTCCGAG TCACTGGGTA TCCCTTCACT TCGTGTTTTG GCCCAGAAGC TGCTCGAGCT	360
30	GCTCTTTGAT TATGAGATTG AGAAGGAGCC CCTGCTCTTC CATGTCTTCA GCAACGGTGG	420
	CGTCATGCTG TACCGCTACG TGCTGGAGCT CCTGCAGACC CGTCGCTTCT GCCGCCTGCG	480
35	TGTGGTGGC ACCATCTTTG ACAGCGCTCC TGGTGACAGC AACCTGGTAG GGGCTCTGCG	540
))	GGCCCTGGCA GCCATCCTGG AGCGCCGGGC CGCCATGCTG CGCCTGTTGC TGCTGGTGGC	600
	CTTTGCCCTG GTGGTCGTCC TGTTCCACGT CCTGCTTGCT CCCATCACAG CCNTCTTCCA	660
40	CACCCACTTC TATGACAGGC TACAGGACGC GGGCTCTCGC TGGCCCGAGC TCTACCTCTA	720
	CTCGAGGGCT GACGAAGTAG TCCTGGCCAG AGACATAGAA CGCATGGTGG AGGCACGCCT	780
45	GGCACGCCGG GTCCTGGCGC GTTCTGTGGA TTTCGTGTCA TCTGCACACG TCAGCCACCT	840
+ J	CCGTGACTAC CCTACTTACT ACACAAGCCT CTGTGTCGAC TTCATGCGCA ACTGCGTCCG	900
	CTGCTGAGGC CATTGCTCCA TCTCACCTCT GCTCCAGAAA TAAATGCCTG ACACCTCCCC	960
50	ACAAAAAAAA AAAAAAAAA ACTCGAGGG GGGCCCGGTA CCCAATTCGC CCTATAAAGG	1020
	T	1021
ے ہے		
55		

(2) INFORMATION FOR SEQ ID NO: 146:

(i) SEQUENCE CHARACTERISTICS:

60 (A) LENGTH: 1285 base pairs (B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

-5	(X1)	SEQUENCE I	DESCRIPTION	: SEQ ID NO	: 146:		
	GGCACGAGGA	GGGCCACGGC	AGCCATCGCG	CTTTGCAGTT	CCCTCTCCTC	GTGTACGGCC	60
10	AACGCCAAGT	AGGGGATTGC	GTTCCCTCCA	GTCGCAGACC	CTATCAGATT	TGGATATGTC	120
10	CTTCATATTT	GATTGGATTT	ACAGTGGTTT	CAGCAGTGTG	CTACAGTTTT	TAGGATTATA	180
	TAAGAAAACT	GGTAAACTGG	TATTTCTTGG	ATTGGATAAT	GCAGGAAAAA	CAACATTGCT	240
15	ACACATGCTA	AAAGATGACA	GACTTGGACA	ACATGTCCCA	ACATTACATC	CCACTTCCGA	300
	AGAACTGACC	ATTGCTGGCA	TGACGTTTAC	AACTTTTGAT	CTGGGTGGAC	ATGTTCAAGC	360
20	TCGAAGAGTG	TGGAAAAACT	ACCTICCIGC	TATCAATGGC	ATTGTATTTC	TGGTGGATTG	420
20	TGCAGACCAC	GAAAGGCTGT	TAGAGTCAAA	AGAAGAACTT	GATTCACTAA	TGACAGATGA	480
	AACCATTGCT	AATGTGCCTA	TACTGATTCT	TGGGAATAAG	ATCGACAGAC	CTGAAGCCAT	540
25	CAGTGAAGAG	AGGTTGCGAG	AGATGTTTGG	TTTATATGGT	CAGACAACAG	GAAAGGGGAG	600
	TATATCTCTG	AAAGAACTGA	ATGCCCGACC	CTTAGAAGTT	TTCATGTGTA	GTGTGCTCAA	660
30	AAGACAAGGT	TACGGAGAAG	GCTTCCGCTG	GATGGCACAG	TACATTGATT	AACACAAACT	720
	CACATTGGTT	CCAGGTCTCA	ACGTTCAGGC	TTACTCAGAG	ATTTGATTGC	TCAACATGCA	780
	TAACTTGAAT	TCAATAGACT	TTTGCTGGTT	ATAAAACAGA	TGTTTTTAG	ATTATTAATA	840
35	TTAAATCAAC	TTAATTTGAA	TGAGAATTGA	AAACTGATTC	AAGTAAGTTT	GAGTATCACA	900
	ATGTTAGCTT	TCTAATTCCA	TAAAAGTACT	TGGTTTTTAC	AGTTTATAAT	CTGACATCAC	960
40	CCCAGCGCCA	TTTGTAAAGA	GCAACTTTCC	AGCAGTACAT	TTGAAGCACT	TTTTAACAAC	1020
	ATGAAACTAT	AAACCATATT	TAAAAGCTCA	TCATGTTAAA	TTTTTTATGT	ACTITICIOG	1080
	AACTAGTTTT	TAAATTTTAG	ATTATATGTC	CACCTATCKT	AAGTGTACAG	ТТААТААТТА	1140
45	GCTTATTCAA	TGATTGCATG	ATGCCTTACA	GTTTTCAATA	ACTITITIC	TTATGCAAAC	1200
	GTCATGCAAT	AAAACAAACT	CTAATGTTTG	GCAAAAAAA	АААААААА	NTCGAGGGG	1260
50	GGCCCGTACC	CAATTCGCCC	TAAAG				1285
50							

(2) INFORMATION FOR SEQ ID NO: 147:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1386 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

60

(xi)	SEQUENCE	DESCRIPTION:	SEQ	ID NO:	147:
------	----------	--------------	-----	--------	------

-5	GGCACGAGGT	GGCGCAGGGG	TCAGTGGTTC	TCTCGGGTCT	CGGGACAGGT	GAGCACCCTG	60
J	ATGAAGGCCA	CGGTCCTGAT	GCGGCACCTG	GGCGGGTGCA	GGAGATCGTG	GCCCCCTCC	120
	GCAAGGCGS	CGGAGACCGG	TTACAGGTGA	TTTCTGATTT	TRACATGACC	TTGAGCAGGT	180
10	TTGCATATAA	TGGAAAGCGA	TGCCCTTCTT	CTTACAATAT	TCTGGATAAT	AGCAAGATCA	240
	TCAGTGAGGA	GTGTCGGAAA	GAGCTCACAG	CGCTCCTTCA	CCACTATTAC	CCAATTGAGA	300
15	TCGACCCACA	CCGGACCGTC	AAGGAGAAGC	TACCTCATAT	GGTGGAATGG	TGGACCAAAG	360
13	CGCACAATCT	CCTATGTCAG	CAGAAGATTC	AGAAGTTTCA	GATAGCCCAG	GTGGTTAGAG	420
	AGTCCAATGC	AATGCTCAGG	GAGGGATATA	AGACCTTCTT	CAACACACTC	TACCATAACA	480
20	ACATTCCCCT	TTTCATCTTT	TCTGCGGGCA	TTGGTGATAT	CCTGGAAGAA	ATTATCCGAC	540
	AGATGAAAGT	CTTCCACCCC	AACATCCACA	TCGTGTCTAA	CTACATGGAT	TTTAATGAAG	600
25	ATGGTTTTCT	CCAGGGATTT	AAGGCCAGC	TGATACACAC	ATACAACAAG	AACAGCTCTG	660
23	TGTGTGAGAA	CTSTGGTTAC	TTCCAGCAAC	TTGAGGGCAA	AACCAATGTC	ATCCTGCTGG	720
	GAGACTCTAT	CGGGGACCTC	ACCATGGCCG	ATGGGGTTCC	TGGTGTGCAG	AACATTCTCA	780
30	AAATTGGCTT	CCTGAATGAC	AAGGTGGAGG	AGCGGCGGGA	NCGCTACATG	GACTCCTATG	840
	ACATCGTGCT	GGAGAAGGAC	GAGACTCTGG	ATGTGGTCAA	CGGGCTACTG	CAGCACATCC	900
35	TGTGCCAGGG	GGTCCAGCTG	GAGATGCAAG	GCCCCTGAAG	GCGCAGGCTN	CCAGNCCGCC	960
33	TGCAGGCCGT	GGTGAGGAGG	GCCCCTCCC	CAGAGTCTGC	TCCCCCGTGA	ACACAGAGCA	1020
	GANGCCAGGG	TGGCCAGCAG	TGGCTGGGTC	CTTCCGCGCC	CCTCCGTCCT	CCTTTCCCTG	1080
40	AGCACCTTCA	TCACCAGAGG	CTTGAAGGAA	CCCCGCCATG	TGGCAGGGCA	CAGGCACTGT	1140
	TCCTGGTGAA	CCTTGGACCA	CAGCATGTCA	GTGCTCTAGG	GATTGTCTAC	TCCAGGGATT	1200
45	TTCTTCAAAA	TTTTTAAACA	TGGGAAGTTC	AAACAAATAT	AATGTGTGAA	ACAGATCAAA	1260
•5	ATTTTTAAAA	TGAAAAAAA	GCTGCTCTGA	TTCAGGGGAT	CTCCCTCCCC	GTAGAACCTG	1320
	GACCTCTTGG	CCTGGGGGCA	CATGGGATGC	TTCTAGGAAC	ACAGTTTGAG	AACCACCAAA	1380
50	аааааа						1386

55 (2) INFORMATION FOR SEQ ID NO: 148:

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2098 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 148:

				-			
_ 5	AGCCCTTCTC	CCCGCGCTTG	GGACTCTGAC	ATCTTAAGGC	TGCACGGTCG	TGTCCTTGTC	60
	TGGGTGAGGC	CATGTCTGTG	ATCCAAGGTT	CCTGGAACTG	ACACAGGAAG	GGCTGTGAA	120
10	CCCTAAGTGG	GTGTMATCTC	CTCCRACCGA	GGCTTCTMAC	CCTGGAGATG	GCAGTTACTC	180
10	CTGGCCATGG	TTGCTGAGCA	TGGGCAGACC	AGTGGAGGCC	ACCCTACTGT	GTTATCTGCG	240
	CCTTCRATGA	AGTGAGACCC	TTGGGGAGAA	CGGCTGTGG	ATGAAGGAGT	GGACTGCAGC	300
15	CTTGGCCTAG	CCACTGGGCT	GGGATCTTCT	GGGTCATGTG	ACTGTGTATC	CAGGAGCAGA	360
	AACTTGTATT	CTCAGGATTC	AGGATCTACC	CAGCACCAAA	GATGTATTTT	CAGGAGAACA	420
20	GACCTAGAAA	TGGGCCTGTC	TGGCATTTCA	GAGTCAGGCA	AAGCAGGCAG	GGCCAGGGAG	480
20	CTTCTGTGGG	TCTACACAAG	AAGGTTCCTG	TGAGGGCTAT	CAGTTGTTGC	CTTCTAGCTT	540
	GCTGGTAACT	TTGGCGCCTC	CGCCAAGCCC	TGCCAGACTC	CCCTGGCTGT	GATGGCATTC	600
25	TGTGCCATCC	TGCCTTGTCC	CCAGCCTCTG	CAGGATGCCC	TCCCTACCCA	MCTYTYCCTG	660
	GGCCTTCCCT	GTCCACTGGG	CTGGATTCAT	GTTCAAACCA	CTGGACTGGC	AGGGCAACGA	720
30	CTTCTTCCCA	CCTCAAGATG	AGGTCCTCGC	CCCCTTGTCT	TGGCATAAAA	ACACCTTTAA	780
30	AGCATGAGCC	ATGTGCTTCT	TIGCCCTICT	CTGTCCTGTT	CCAATCTTCT	GCCTCCCAGT	840
	CACTCCCTGG	GGACTATGGG	ATCACTGTCC	CCCCACCTGT	GTGGCCACAC	CATGTGTCCT	900
35	GTCAATCCAG	AACTGCCTCT	GAGCTCCAGG	CTGACCACAG	ATCAGCCACA	GCCTGATGCC	960
	TGCAGCCCCA	CTTTGCTCAC	CCTTCCCCTC	ссстсстсст	TCCTTCCACA	CAGCAAGCCT	1020
40	ACCTTTYTCC	ATCCATGCTC	ACCATAGCCC	CCTTCCTTGT	GACCTGGACC	CTCCATTGTA	1080
40	CCTGGCTGAG	ACTGTCAGCC	TCCTGGAGGA	GTGGGGTCCA	CCTTCTTCTT	GCCCTATGCA	1140
	GTGCAAGCTT	CACTTCTCAC	CCAGCAAGGT	TGACTCATCT	GCCTCCATGT	CTCTGGGGCT	1200
45	TTGCTGTTGC	CCTGAAACCT	AGCTGGGCTG	GTCTTGCTCC	CAGCTTGCTT	ccccrccrc	1260
	GGATGTCCCT	TTGCAGGCCC	CTGTCGTTCC	TCCGGCACCA	GTGTCCTTGG	CTGCCATGGC	1320
50	AAGCTCATCA	GGGCTTGTA	CCCTGGTCAC	CAAGCATGGT	AGCAGCTGCC	TGCATTGTAT	1380
30	CTCCATCTGG	TCACTGCAGG	TGCCAACCCT	TCATCCCCA	TGTTTTCCTG	GGCCATGGAG	1440
	GGCTGACCTC	CGTTTCTGGG	GAATGTGGCT	GAGCTGTGGT	AACCAGCTAC	ACCCCAGGTG	1500
55	CTCTTTCCAT	GGTGGTGCCT	GCTCATCTTG	CTGATGCAAA	CTAGGAAGTT	AGGCTGCATC	1560
	TCGGAGTGGC	TTTCGCTGGA	GAGGTGCTTT	GCTGTCTCTC	AGACTCAGTC	ACTGTGTTCC	1620
60	CTCCCCGCCT	CTCTTATCTC	CATGGCTGTT	TGCAGCTCTC	CCAGGTACTT	TGGGGTCTGA	1680
υυ							

1020

GCTGGAATTC CTTTGTGGTT TGCTCTTCTG CTTCTCACTC TTGTATTAAG AAGGATTCCA 1740 CAAAGGGAGA GTGGCATCCC TGCTGCTGCT GTGCCAGACC AGAGTTTCCT GAGGGGCCCT 1800 -5 GACCCTAACC CTCCAGCTCA GCCCTGTACA CCTGACCCTG TAAATGAGTG GGGTTTGCTG 1860 ACTGTAATCC CTGACACCAG TAAAACCAAA AGGACTCTTG GGGGCTCAGT GTGAGAGCCA 1920 GGGTTACCTA CTCTGCCAAG TGAGGACAAA CTGCTAGGCT GTATCCCATA ATTTCAGGAT 1980 10 GAGAAACATT AACAATAAAA ATTTGTAGTA AACATAACCT CATGANGACT AAAAAAAAAA 2040 AAAAACTYGG GGGGGGCCC GTAACCCATT GGGCCCTTNG GGGGGGNGTT TTAAAATT 2098 15 (2) INFORMATION FOR SEQ ID NO: 149: 20 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1847 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 149: TCGACCCACG CGTCCGAACT GAGGCGGCGG CGGGAGCCGG TTGGKGTCTG GTCTTCGCGT 60 30 CGGCCCCGCG GACCAGACGC TGCCCCCGGC GCGGGGAGAA GATGGTGCCK AGCGGCCTCG 120 GGCCGCCAC GCGCCGCCAC GAGTGAGCCC AGCGCGACCG CGGGCGTCCG CCGAGCAGCT 180 GGCCGGCTG GGCCCGGGC GCCANTGCC CGCCGGGCG GGCTGGAGCT GATCAGAATA 240 35 300 ATGTTCAGCA TCAACCCCCT GGAGAACCTG AAGGTGTACA TCAGCAGTCG GCCTCCCCTG GTGGTCTTCA TGATCAGCGT AANGCCCATG GCCATAGCTT TCCTGACCCT GGGCTACTTC 360 40 TTCAAAATCA AGGAGATTAA ATCCCCAGAA ATGGCAGAGG ATTGGAATAC TTTTCTGCTA 420 CGGTTCAATG ATTTGGACTT GTGTGTATCA GAGAATGAAA CCCTCAAGCA TCTCACAAAC 480 GACACCACAA CTCCGGAAAG TACAATGACC AGCGGGCAGG CCCGAGCTTC CACCCAGTCC 540 45 CCCCAGGCCC TGGAGGACTC GGGCCCGGTG AATATCTCAG TCTCAATCAC CCTAACCCTG 600 GACCCACTGA AACCCTTCGG AGGGTATTCC CGCAACGTCA CCCATCTGTA CTCAACCATC 660 50 TTAGGGCATC AGATTGGACT TTCAGGCAGG GAAGCCCACG AGGAGATAAA CATCACCTTC 720 ACCCTGCCTA CAGCGTGGAG CTCAGATGAC TGCGCCCTCC ACGGTCACTG TGAGCAGGTG 780 GTATICACAG CCTGCATGAC CCTCACGGCC AGCCCTGGGG TGTTCCCCGT CACTGTACAG 840 55 CCACCGCACT GTGTTCCTGA CACGTACAGC AACGCCACGC TCTGGTACAA GATCTTCACA 900 ACTGCCAGAG ATGCCAACAC AAAATACGCC CAAGATTACA ATCCTTTCTG GTGTTATAAG 960

GGGCCATTG GAAAAGTCTA TCATGCTTTA AATCCCAAGC TTACAGTGAT TGTTCCAGAT

	GATGACCGTT CATTAATAAA TTTGCATCTC ATGCACACCA GTTACTTCCT CTTTGTGATG	1080
_5	GTGATAACAA TGTTTTGCTA TGCTGTTATC AAGGGCAGAC CTAGCAAATT GCGTCAGAGC	1140
_5	AATCCTGAAT TTTGTCCCGA GAAGGTGGCT TTGGCTGAAG CCTAATTCCA CAGCTCCTTG	1200
	TTTTTTGAGA GAGACTGAGA GAACCATAAT CCTTGCCTGC TGAACCCAGC CTGGGCCTGG	1260
10	ATGCTCTGTG AATACATTAT CTTGCGATGT TGGGTTATTC CAGCCAAAGA CATTTCAAGT	1320
	GCCTGTAACT GATTTGTACA TATTTATAAA AATCTATTCA GAAATTGGTC CAATAATGCA	1380
15	COTOCTTTGC CCTGGGTACA GCCAGAGCCC TTCAACCCCA CCTTGGACTT GAGGACCTAC	1440
••	CTGATGGGAC GTTTCCACGT GTCTCTAGAG AAGGATTCCT GGATCTAGCT GGTCACGACG	1500
	ATGTTTTCAC CAAGGTCACA GGAGCATTGC GTCGCTGATG GGGTTGAAGT TTGGTTTGGT	1560
20	TCTTGTTTCA GCCCAATATG TAGAGAACAT TTGAAACAGT CTGCACCTTT GATACGGTAT	1620
	TGCATTTCCA AAGCCACCAA TCCATTTTGT GGATTTTATG TGTCTGTGGC TTAATAATCA	1680
25	TAGTAACAAC AATAATACCT TTTTCTCCAT TTTGCTTGCA GGAAACATAC CTTAAGTTTT	1740
	TTTTGTTTTG TTTTTGTTTTT TTTGTTTTTT GTTTTCCTTT ATGAAGAAAA AATAAAATAG	1800
	TCACATTITA ATACTACCAA AAAATGGACA AAAAAAGTCG AGGGGGG	1847
30		
	(2) INFORMATION FOR SEQ ID NO: 150:	
35	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1569 base pairs(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 150:	
	GACCCTGACG AGAGAAGGCC TCTTCCTTGA GGGTTGGTGC TGTGTTGCAG TGACCGTGGC	60
45	GGATTACGCC AACTCGGATC CGGCGGTCGT GAGGTCTGGA CGAGTCAAGA AAGCCGTAGC	120
	CAACGCTGTT CAGCAGGAAG TAAAATCTCT TTGTGGCTTG GAAGCCTCTC AGGTTCCTGC	180
	AGAGGAAGCT CTTTCTGGGG CTGGTGAGCC CTGTGACATC ATCGACAGCA GTGATGAGAT	240
50	GGATGCCCAG GAGGAAAGCA TCCATGAGAG AACTGTCTCC AGAAAAAAGA AAAGCAAGAG	300
	ACACAAAGAA GAACTGGACG GGGCTGGAGG AGAAGAGTAT CCCATGGATA TTTGGCTATT	360
55	SCTGSCCTCC TATATCCGTC CTGAGGACAT TGTGAATTTT TCCCTGATTT GTAAGAATGC	420
	CTGGACTGTC ACTTGCACTG CTGCCTTTTG GACCAGGTTG TACCGAAGCA CTACACGCTG	480
	CAMPORTHOGO MOGOTHITHOOG MOREOGRADON CARDONAMOS AGRACOTICOS CHICHICOCC	540
60	GATGCTTCCC TGCCTTTGCG TCTGCGACCA GAGTCAATGG AGAAGCTGCG CTGTCTCCGG	240

	GCTTGTGTGA	TCCGATCTCT	GTACCATATG	TATGAGCCAT	TIGCTGCTCG	AATCTCCAAG	600
	AATCCAGCCA	TTCCAGAAAG	CACCCCCAGC	ACATTAAAGA	ATTCCAAATG	CTTACTTTTC	660
.5	TGGTGCAGAA	AGATTGTTGG	GAACAGACAG	GAACCAATGT	GGGAATTCAA	CTTCAAGTTC	720
	AAAAACAGT	CCCCTAGGTT	AAAGAGCAAG	TGTACAGGAG	GATTGCAGCC	TCCCGTTCAG	780
10	TACGAAGATG	TTCATACCAA	TCCAGACCAG	GACTGCTGCC	TACTGCAGGT	CACCACCCTC	840
	AATTTCATCT	TTATTCCGAT	TGTCATGGGA	ATGATATTTA	CTCTGTTTAC	TATCAATGIG	900
	AGCACGGACA	TGCGGCATCA	TCGAGTGAGA	CTGGTGTTCC	AAGATTCCCC	TGTCCATGGT	960
15	GGTCGGAAAC	TGCGCAGTGA	ACAGGGTGTG	CAAGTCATCC	TGGACCCAGT	GCACAGCGTT	1020
	CGCTCTTTG	ACTOGTGGCA	TCCTCAGTAC	CCATTCTCCC	TGAGAGCGTA	GTTACTGCTT	1080
20	CCCATCCCTT	GGGGGCAGCC	TCGAGTGTAG	TCCATTAGTA	ATCAGATTCC	AGTTTGGACA	1140
	GGGTGGCTGG	ATTGTATATC	TCGTTAGTAA	TGTACATGCT	CTTCAGGTTC	TAGGGCTCCT	1200
	GTTAGGGGAG	GGAGAAATGT	TGAATCAAGA	GGGAAAACAA	CTACTATGAT	TTATAAACAT	1260
25	ATTITAATGT	AAAAATTTGC	ATTTAAAAGG	AGTGGCCCTG	TTTTCTGTGT	TAAAACCCCA	1320
	TTTGGTGCTA	TIGAGTITGT	TCTTTATTCT	TTTATCCCAG	TGAAAATTGT	TGATCTTGCT	1380
30	GTAGGGAAAA	ATTAAACTCT	TTGAATCTCC	AAACAAGGAA	GTTTCAGCAT	TCCCTTATGG	1440
	ATCAGAGGAA	CCTTAGAGGC	CTGAAATTGT	TGCTTCCAGT	TTAGCTGCCC	CICAAATICA	1500
	AGTGAATATT	TTCCCTTCTC	CCTTTACCCT	TCTCCAGAAA	TAAAGCAGGT	GACAGGGTTT	1560
35	CAGAATCTT						1569

40 (2) INFORMATION FOR SEQ ID NO: 151:

45

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1540 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 151:

50	CCCACGCGTC	CGGAAGGATT	GACCAGTTAA	CCAACATCTT	AGCCCCCATG	GCTGTTGGCC	60
	AGATTATGAC	ATTTGGCTCC	CCAGTCATCG	GCTGTGGCTT	TATTTCGGGA	TGGAACTTGG	120
55	TATCCATGTG	CGTGGAGTAC	GTCCTGCTCT	GGAAGGTTTA	CCAGAAAACC	CCAGCTCTAG	180
<i>33</i>	CTGTGAAAGC	TGGTCTTAAA	GAAGAGGAAA	CTGAATTGAA	ACAGCTGAAT	TTACACAAAG	240
	ATACTGAGCC	AAAACCCCTG	GAGGGAACTC	ATCTAATGGG	TGTGAAAGAC	TCTAACATCC	300
60	ATGAGCTTGA	ACATGAGCAA	GAGCCTACTT	GTGCCTCCCA	GATGGCTGAG	CCCTTCCGTA	360

	CCTTCCGAGA	TGGATGGGTC	TCCTACTACA	ACCAGCCTGT	GTTTCTGGCT	GCCATGGGTC	420
5	TTGCTTTCCT	TTATATGACT	GTCCTGGGCT	TTGACTGCAT	CACCACAGGG	TACGCCTACA	480
J	CTCAGGGACT	GAGTGGGTTC	CATCCTCAGT	ATTTTGATCG	GAGCATCAGC	TATAACTGGA	540
	ATAATGGGAA	CTGTAGCTTT	TACTTGGCTA	CGTCGAAAAT	GIGGTIIGGT	TCGGCAGGTC	600
10	TGATCTCAGG	ATTGGCACAG	CTTTCCTGTT	TGATCTTGTG	TGTGATCTCT	GTATTCATGC	660
	CTGGAAGCCC	CCTGGACTTG	TCCGTTTCTC	CTTTTGAAGA	TATCCGATCA	AGGTTCATTC	720
15	AAGGAGAGTC	AATTACACCT	ACCAAGATAC	CTGAAATTAC	AACTGAAATA	TACATGTCTA	780
	ATGGGTCTAA	TTCTGCTAAT	ATTGTCCCGG	AGACAAGTCC	TGAATCTGTG	CCCATAATCT	840
	CTGTCAGTCT	GCTGTTTGCA	GGCGTCATTG	CTGCTAGAAT	CCCTCTTTCC	TCCTTTGATT	900
20	TAACTGTGAC	ACAGTTGCTG	CAAGAAAATG	TAATTGAATC	TGAAAGAGGC	ATTATAAATG	960
	GTGTACAGAA	CTCCATGAAC	TATCTTCTTG	ATCTTCTGCA	TTTCATCATG	GTCATCCTGG	1020
25	CTCCAAATCC	TGAAGCTTTT	GGCTTGCTCG	TATTGATTTC	AGTCTCCTTT	GTGGCAATGG	1080
23	GCCACATTAT	GTATTTCCGA	TTTGCCCAAA	ATACTCTGGG	AAACAAGCTC	TTTGCTTGCG	1140
	GTCCTGATGC	AAAAGAAGTT	AGGAAGGAAA	ATCAAGCAAA	TACATCTGTT	GTTTGAGACA	1200
30	GTTTAACTGT	TGCTATCCTG	TTACTAGATT	ATATAGAGCA	CATGTGCTTA	TTTTGTACTG	1260
	CAGAATTCCA	ATAAATGGCT	GGGTGTTTTG	CICIGITITT	ACCACAGCTG	TGCCTTGAGA	1320
35	ACTAAAAGCT	GTTTAGGAAA	CCTAAGTCAG	CAGAAATTAA	CTGGATTAAT	TTCCCTTATG	1380
55	TTGAGGGCCA	TGGRAAAAA	ATTGGGAAAA	GGAAAAACTC	AGTTTTAAAT	ACGGGAGACT	1440
	ATAATGGATA	ACACTGRATT	CCCCTATTTC	TCATGAGTAG	ATACAATCTT	ACGTAAAAGA	1500
40	GTGGTTAGTC	ACGTGAATTC	AGTTATCATT	TGACAGATTC			1540
45	(2) INFORM	ATION FOR S	EQ ID NO: 1	52 :			
50	(i)	(B) TYF	GTH: 1719 b E: nucleic KANDEDNESS:	ase pairs acid double			
	,		OLOGY: line		. 159		
55		.) SEQUENCE		-		mannar y y y y y y	60
ננ		GTCAATTGGA					
		ATGGTATGGC					120
60	TAGCAGCCAT	GTCTAGCATC	ACCTTTCCTG	CTGTCAGTGC	ACTTGTTTCA	CGAACTGCTG	180

	ATGCTGATCA	ACAGGGIGIC	GTICAAGGAA	TGATAACAGG	AATICGAGGA	TTATGCAATG	240
	GTCTGGGACC	GCCCTCTAT	GGATTCATTT	TCTACATATT	CCATGTGGAA	CTTAAAGAAC	300
_5	TGCCAATAAC	AGGAACAGAC	TTGGGAACAA	ACACAAGCCC	TCAGCACCAC	TTTGAACAGA	360
	ATTCCATCAT	CCCTGGCCCT	CCCTTCCTAT	TTGGAGCCTG	TTCAGTACTG	CTGGCTCTGC	420
10	TIGTIGCCTT	GTTTATTCCG	GAACATACCA	ATTTAAGCTT	AAGGTCCAGC	AGTTGGAGAA	480
10	AGCACTGTGG	CAGTCACAGC	CATCCTCATA	ATACACAAGC	GCCAGGAGAG	GCCAAAGAAC	540
	CTTTACTCCA	GGACACAAAT	GTGTGACGAC	TGAAATCAGG	AAGATTTTTC	TATCAGCACC	600
15	CAGGTCTTAG	TTTTCACCTC	TAGTTCTGGA	TGTACATTCC	ATTTCCATCC	ACAGTGTACT	660
	TTAAGATTGT	CTTAAGAAAT	GTATCTGCAT	GAACTCCGTG	GGAACTAAAG	GAAGTGGGAA	720
20	CTTAGAACCA	GACAGTTTTC	CAAAGATGTT	ACAATTTCTT	TTGAAAAACC	TTTTGTTTAT	780
20	TAGCACCAAT	TTCTYGCCAC	TAAGCTATTT	GITTTATTAT	ACATCCTTTA	ATTAAAAACT	840
	ATATATGTAA	CTTCTTAGAT	ATTAGCAAAT	GTCTCTGCTA	CCATTTCCTT	AAGGTGTTGA	900
25	GCTTTAACTC	TATGCTGACT	CAGTGAGACA	CAGTAGGTAG	TATGGTTGTG	GACCTATTIG	960
	TTTTAACATT	GTAAAATTTT	GAGTCAGATT	TTAATATTGT	AAAATCTTGG	GTCAAATAAT	1020
30	TCAAAGCCTT	AATGCAGATG	CACTAAAACA	AAGAAATGGT	AAATGAATTG	TTTGCATTTA	1080
30	АААААААА	CTCTTAAGAA	AACTGTACTA	AATCTGAATC	ATCTTTTGAG	CTTGTTTGCA	1140
	GTACTTTTAA	ACATTATICA	CTACTGTTTT	TGAAGTGAGA	AAGTATCAGC	CATTTAGCAT	1200
35	TTAAGTTGGG	GTATTTAGAG	CCTGTAATCT	AAATGCTGGC	TCAAATTTAT	TCCCCAGCTA	1260
	CTTCTTATAC	CACTATTCTT	TTAATGTTTG	CATAATCATA	AGCACCTCAA	CACTTGAATA	1320
40	CATAATCTAA	AAATTATATA	GTAAAGCTGG	TAGCCTTGAA	AATGTCAGTG	TGATATCTAT	1380
.0	TATGTAGATA	АТАТАТАТА	GTGGCCTTTC	AGGACTGTCA	CAGTAACACT	TTATTTACAG	1440
	AGCTAATGTT	TGTCCTAAAT	TTTCAGGACC	CTAGAGGAGA	GCTTTATACA	ATTACCGATG	1500
45	TGAATTTCTC	TAAAGTGTAT	ATTTTTGTGT	CCAGTTATAT	TATTTAAAAA	AGTGTTACTT	1560
	TGTAAAAATT	GTATATAAAG	AACTGTATAG	TTTACACTGT	TTTCATCTTG	TGTGTGGTTA	1620
50	TTGCTTAATG	CTTTTTAAAC	TTGGAACACT	CACTATGGTT	AAATAAGGTC	TTAAAAGAAA	1680
50	TGTAAATATT	YTGTTAATAA	AGTTAAATAT	TTTAATGAT			1719

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 863 base pairs

60 (B) TYPE: nucleic acid

⁽²⁾ INFORMATION FOR SEQ ID NO: 153:

WO 98/39448 PCT/US98/04493

378

(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

_ 5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 153:	
_ J	GGCACGAGGG AAGCCGGGAC GATGTCCGCA TGACAACCGA CGTTGGAGTT TGGAGGTGCT	60
	TGCCTTAGAG CAAGGGAAAC AGCTCTCATT CAAAGGAACT AGAAGCCTCT CCCTCAGTGG	120
10	TAGGGAGACA GCCAGGACCG GTTTTCTGGG AACTGTGGGA TGTGCCCTTG GGGGCCCGAG	180
٠.	AAAACAGAAG GAAGATGCTC CAGACCAGTA ACTACAGCCT GGTGCTCTCT CTGCAGTTCC	240
1.5	TGCTGCTGTC CTATGACCTC TTTGTCAATT CCTTCTCAGA ACTGCTCCAA AAGACTCCTG	300
15	TCATCCAGCT TGTGCTCTTC ATCATCCAGG ATATTGCAGT CCTCTTCAAC ATCATCATCA	360
	TTTTCCTCAT GTTCTTCAAC ACCTTCGTCT TCCAGGCTGG CCTGGTCAAC CTCCTATTCC	420
20	ATAAGTTCAA AGGGACCATC ATCCTGACAG CTGTGTACTT TGCCCTCAGC ATCTCCCTTC	480
	ATGTCTGGGT CATGAACTTA CGCTGGAAAA ACTCCAACAG CTTCATATGG ACAGATGGAC	540
25	TTCAAATGCT GTTTGTATTC CAGAGACTAG CAGCAGTGTT GTACTGCTAC TTCTATAAAC	600
25	GGACAGCCGT AAGACTAGGC GATCCTCACT TCTACCAGGA CTCTTTGTGG CTGCGCAAGG	660
	AGTICATGCA AGTICGAAGG TGACCTCTTG TCACACTGAT GGATACTTTT CCTTCCTGGA	720
30	TAGRAGGCCA CATTTGCTGC TTTGCAGGGG AGAGTTGGGC CCTATGCATG GGGCAAAACA	780
	GGTGGGATTT TCCAAGGGAA GGGTTCAGAA TTAGGCNTGT TGTTTCAGCC ATTTCCAAGG	840
35	AAGGGGAAGG GITTCCCTNC CCT	863
33		
	(2) THEOREM TO THE U.S. 154	
40	(2) INFORMATION FOR SEQ ID NO: 154:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1101 base pairs	
46	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
45	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 154:	
50	AACAGCAAAA AAGAATGATT TCTTCTGAAA TIGTGGAACA TGAGGATTCA AGTTTTTATT	60
	TIGITACTAG GTGCTGGAGG AACATCCCAG TTCACAAAGC CCCCATCTCT TCCTCTGGAG	120
	CCAGAGCCTG CGGTGGAATC AAGTCCAACT GAAACATCAG AACAAATAAG AGAGAAATAA	180
55	GAATAGAATG AATGACCCCA AAATARGGTT TTCTTGGGCG AGGATGTGCT GGATTAGGAA	240
	AGGTGACATG ACACAGGCAG AGCAGAGTGG CACCCACCAC AGAATACAGT GTGTGTTATT	300

ACGAGGAGCC AGCAGTTGAG CCTAAGGTCC TTCTACCTAC CTGGTATTGG CATTTGAGGT

60

	CGGAAACCCT	CTACTGCCCC	ATAAGCCAGG	AAAAGTGAAA	AGAGAACACA	GTTCCTTTAA	420
	GAACTGGCAG	CAAGGCTTGA	GGCCTTATGT	ATGTAGCTGA	GTCAGCAAGG	TACATGATGC	480
-5	TGTCTGCTTT	CAAAAGGACT	TTTCTCTCCT	AGCTGACTGA	CTCCTTCCTT	AGTTCAAGGA	540
	ACAGCTGAGA	CAGACCTCTG	CTGAGTAGCT	CTGTGATGAC	AAAGCCTTGG	TTTAACTGAG	600
10	GIGATCCTCA	GGTTGTGAGG	TTTATTAGTC	CCCAAGGCAA	ACACAAATAT	TAGATTAATA	660
.0	ATCCAACTTT	AATAGTATAC	ATTTAAAAGA	АААААААСАА	AAGCCCTGGA	AGNTTGAGGC	720
	CAAGCCTGCT	GAGTATTGCA	GCTGCATTTG	CCCAAAGGGA	ATCCAGAACA	AGTCCCTCCC	780
15	TGTATTTTGT	TCTTGAGAGG	GGTCAGTCTA	GAAGCTAGAT	CCTATCAGGA	TGAGGAGCAG	840
	CAGCCCAGGG	CTTGTCTGGA	TCAGCACCAA	CGATTTTAAA	GAAAAAAGGA	AGAGTTTCTT	900
20	AGATGAGTAA	TTGTTATTGA	AGATAGTCAG	TGATAACCAC	TGACCAGATG	CTATCAATAC	960
20	ACTATGTGTC	CTTTTTAGAA	TAAAGATTAC	ATATCATCAT	TCCTTTGGGG	AAAATTGTTA	1020
	TTCAGGTATA	AAAACAAGAG	ATTATAATAA	AAAATMAAAA	GAACCCTAAA	АААААААААС	1080
25	CTCGTGCCGA	ATTCCCTGCA	G				1101

30 (2) INFORMATION FOR SEQ ID NO: 155:

35

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2031 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 155:

40 CAATTAACCC GTTTGAGGCC TAGGTTGTTT GGCAAGCCCC NGGCCTAAAG TTTTAATTCG 60 GCAGAGCCAA GGGCCTGAAA GGAAGGGAAA GGGGAGGGTA GCGGGAGGGT AGCAGGTGAG 120 TTCCTAGGGC TGGAAGGTTT AGCAGCAGCC TGGTGCAGTG CCCTGTCATC AAGACAAACC 180 45 CACGGTCCIC CTGGGTGCCT ACCAAGCTTG GTTTGTACAA AAGCAAGGTG GGAGTCTATT 240 TTTGTACATG AGATACATCA CACTTACCTG TGGGCCAGTA TTGTGAAGTG AGTCTGAGTT 300 50 GTTTACACTG ATGCCTTCCC TGCCCACCAC AAATTGTGTA CATAGTCTTC AGAATGATAC 360 CACCCCTTTC CCCAGCTCCC AACCAAGAGC TGGTTCTAGG CCTGTGTTAT ATGTCATATT 420 TAGCGTTTTT ATATATGACC TTTGATTTCT GTTGTTTGTA TTTTAGCACA GTGTATGCAC 480 55 CTTCATTTAA ATACATCTGT GTGCATACAG ATACGCATAT ATGTGTGTGC GTATGCATAT ATCTCTCATC TGTAGTTTCC AAGAGTTCAG CTGAAGCAGA TGGAGTCCTG CAGCCCAGGA 60 GACACCCTGC ATCCCTGCTA ATAGTGTTTG CCACAAGTAT TAGTGAGTCT TCCTTATTAA

	TATTTTCATT	TCAGAAGACT	GAAGCAAAGC	TGATAGTGTT	TGCTGTTTCT	TIGGCAGCTA	720
-5	AGTGAGGGTC	TTGGGATGAC	TIGCIGIGIT	CCTCAAGCTG	CACTTTGGGG	CCATCTCTCC	780
-5	AGTATTAAGC	CCCCTTTTTG	CTTGGTGGTA	CTCTGTCTGT	GCCTGTGTGT	GIGTGTGATA	840
	GICACICITG	CATGGCTTCC	ATGTCTGGTT	TGTGGCATTT	GGGGATAAGT	GCTGAACCAG	900
10	AGCATTTGCA	GTTTGTTTGA	GCCTCGTTG	CCAATGATAG	ATCACTCCTG	TTGACCTGGT	960
	ATGTCTGCTT	GCTTGCTGCT	TTTCCTTGCT	TTCTCTTGGA	AGAGGAAAGG	ACTCTGGTCA	1020
15	GGCCCAGGCT	GAGTGAGATG	AGCTGCAGCT	GGCTCATGGC	CTTCTTAGAG	CAGAGAGAGG	1080
13	AGTATGTCAT	TTTACTAAGT	TCCTAAACAA	ACATTTATGC	AGGCAACACT	CCTTGCAGAT	1140
	CCAGAAACTG	AGGCACAATA	GGGTTATGAC	TTGCTCAAGA	ATATGTAGCT	GCTAGGGGGT	1200
20	AAATCAAGGC	ATCACAATTT	CTGTTCAGCG	GGCAGGAATA	GGCTGTGAAT	TGCTAGCACT	1260
	AATTTTTTTT	GCAATTACTT	TTTGACTTGT	TCCTCTGAAA	GTGCAAGAGG	CGTACACCTT	1320
25	TCCCAAATGT	AGACTAGAAT	CTGCAGGATG	CCACCCACTG	TATACTTCTG	CTTTCCCAGA	1380
23	GAGGAAGAAC	TTTTAGAAAC	CAAATGATCT	TAATTGTTAT	TGCCCACCCC	TGGCTTTTCC	1440
	GGGTAGAAAA	TTCACAGTAG	GAATGATTGT	TAAGAGAGAG	TGCTTGGAAC	CATGGGTTAA	1500
30	CAGGAAAGGC	TACCTAACTT	CACATATCTG	CAACCAGAGC	AGCCACCAAG	CATTACTTAG	1560
	CAGCAGGAAA	ATGATTGTAT	TTGAGTTCCT	GTGTGTCCAA	AACTGAGGCA	CCATGTTCTT	1620
35	TGAAAACATG	CCACCTCAAG	CCTCGCCGCG	GTGGCTCACA	CCTGTTAATC	CCAGCACTTT	1680
33	GGGAGGCCGA	GGCGGGCGGA	TCACCGGAGT	CGGGGAGTTT	GAGACCAGCC	TGGACCAACA	1740
	TGGGAGAAAC	CCCATCTCTA	CCTAAAAATA	CAAAATTAGC	CGGCCGTGGT	GGCATGCGCC	1800
40	TATAATCTCA	GCTACTTGGG	AGGGYTGAGG	CAGGRGAATT	GCTTGAACCC	RGGANGGCGG	1860
	AGGTTTGCGG	TTGAGTTGAG	GATCGTGCCA	TTGCACTTCC	GGCCTTGGG	GCAACAACAG	1920
45	CAAAAAYTCC	GTCTTCAAMW	MRTGCCGAAT	TCGATATCAA	GCTTATCGAT	ACCGTCGACC	1980
-13	TCGAGGGGG	GCCCGGTACC	CAATTCGCCC	TATAGNGATC	GTATTACAAT	С	2031

55

- (2) INFORMATION FOR SEQ ID NO: 156:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1981 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 156:

	CCTGCACCCT	GAGCCCTTCA	CCCCTCCGAG	TTCCCCCCAG	GTTGGCTTCC	TTCGATTCCT	60
	TTTCTTGGTA	TCAACGTTTG	ATTGGAAGAA	CAACCCCCTC	TTTGTCAACC	TCAATAATGA	120
-5	GCTCACTGTG	GAGGAGCAGC	TCGGGCACAG	CTCMCCGTYA	TGGTCATTGT	TACCCCCCAA	180
	GACCGCAAAA	ACTCTGTGTG	GACACAGGAT	GGACCCTCAG	CCCAGATCCT	GCAGCAGCTT	240
10	GIGGICCIGG	CAGCTGAAGC	CCTGCCCATG	TTAGAGAAGC	AGCTCATGGA	TCCCCGGGGA	300
10	CCTGGGGACA	TCAGGACAGT	GTTCCGGCCG	CCCTTGGACA	TTTACGACGT	GCTGATTCGC	360
	CTGTYTCCTC	GCCATATCCC	GCGGCACCGC	AGGCTTGTGG	ACTCGCCAGY	TECCTCCTTC	420
15	TGCCGGGGCC	TGCTCAGCCA	cccccccc	TCATCCCTGA	TGCCCGTGCT	GCCTNATGAT	480
	CCTNCTCAGC	TCTATCTGAC	GCAGCTCAGG	GAGGCCTTTG	GGGATCTGGC	CCTTTTCTTC	540
20	TATGACCAGC	ATGGTGGAGA	GCTGATTCGT	GTCCTCTGGA	AGCCCACCAG	CTTCCAGCCG	600
20	CAGCCCTTCA	AGGCCTCCAG	CACAAAGGGG	CCCATCCTCA	TGTCTCGAGG	TGGGGAGCTA	660
	GTAATGGTGC	CCAATGTTGA	AGCAATCCTG	GAGGACTTTG	CTGTGCTGGG	TGAAGGCCTG	720
25	GTGCAGACTG	TGGAGGCCCG	AAGTGAGAGG	TGGACTGTGT	GATCCCAGCT	CTGGAGCAAG	780
	CTGTAGACGG	ACAGCAGGAC	ATTGGACCTC	TAGAGCAAGA	TGTCAGTAGG	ATGACCTCCA	840
30	CCCTCCTTCG	ACATGAATCC	TCCATGGAGG	GCCTGCTGGC	TGAACATGCT	GAATCATCTC	900
50	CAACAAAACC	CAGCCCCAAC	TTTCTCTCTG	ATGCTCCAGC	ATTGGGGCAG	GGGCATGGTG	960
	GCCCATGTAG	TCTCCTGGGC	CTCACCATCC	CAGAAGAGGA	GTGGGAGCCA	GCTCAGAGAA	1020
35	GGAACTGAAC	CCAGGAGATC	CATCCACCTA	TTAGCCCTGG	GCCTGGACCT	CCCTGCGATT	1080
	TCCCACTCCT	TTCTTAGTCT	TCTTCCAGAA	ACAGAGAAGG	GGATGTGTGC	CTGGGAGAGG	1140
40	CTCTGTCTCC	TTCCTGCTGC	CAGGACCTGT	GCCTAGACTT	AGCATGCCCT	TCACTGCAGT	1200
40	GTCAGGCCTT	TAGATGGGAC	CCAGCGAAAA	TGTGGCCCTT	CTGAGTCACA	TCACCGACAC	1260
	TGAGCAGTGG	AAAGGGGCTA	TATGTGTATG	AATAGACCAC	ATTGAAGGAG	CACAATGCCC	1320
45	TCCTGTGTTG	ATGCCACTTC	CCAGGGTGGA	GACAGTGGAA	AAGAACCGAG	GACAGGAAAG	1380
	GATTGGGTAG	GTGAAGGGGT	CAGGGGACTG	GTAGTCACCC	AATCTTGGAG	AGGTGCAAAA	1440
50	AGCACTGGGG	GCTACCCGTT	AGCTGCATCT	GCCCTGGCTG	TTTGCCCGTT	CATGTCACAA	1500
50	ACTGCCACTA	CTATGTACCT	GCAGTGGGGT	TGCAGAGATG	GGGGAGACTC	AAGTCTTACT	1560
	CCCCAGGAGC	TCCCAGGGCC	CAAGGAGGAG	AATGCTGCCT	CCTTTCAGTC	TGGTCTACAC	1620
55	CCACTITCIG	GTAGCCTCTC	TGCTTCCTGT	AATTCTGGCT	GITTTTCCAG	ACTCAGCTCA	1680
	AATAGTGCCC	CTCCTTAAGC	CCATCCCTCG	CCCCCAGCCT	GAGGTGATCT	ттесетесте	1740
60	ТСААСТАТТА	GAGCAGTTAC	TGTCTGTTCA	GTTCGTTTGG	CAGGCACACA	CAGTGGCATA	1800
60							

	AATTCTATTG TTTTGAACTC TGATTTAAAA TTAAATTGCA GCTGGGCGTG GTGGCTCATG	1860
	CTTGTAATCC CAACACTTAG GGAGTMAGGR GAATCACTTG ASCYCAGGAG TYCTAGACCA	1920
-5	ATCTGGGCAA MAGAGAGACC CCATCTCTTT TAAATAAAAA GTTAAATTGC TTAAAAAAAA	1980
	A	1981
10		
.0	(2) INFORMATION FOR SEQ ID NO: 157:	
	(2) INFORMATION FOR SEQ ID NO: 157:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 915 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 157:	
	GAATTCGGCA CGAGCGCGCC CATGGCGCTC CTGCTTTCGG TGCTGCGTGT ACTGCTGGGC	60
25	GGCTTCTTCG CGCTCGTGGG GTTGGCCAAG CTCTCGGAGG AGATCTCGGC TCCAGTTTCG	120
23	GAGCGGATGA ATGCCCTGTT CGTGCAGTTT GCTGAGGTGT TCCCGCTGAA GGTATTTGGC	180
	TACCAGCCAG ATCCCCTGAA CTACCAAATA GCTGTGGGCT TTCTGGAACT GCTGGCTGGG	240
30	TIGCTGCTGG TCATGGGCCC ACCGATGCTG CAAGAGATCA GTAACTTGTT CTTGATTCTG	300
	CTCATGATGG GGGCTATCTT CACCTTGGCA GCTCTGAAAG AGTCACTAAG CACCTGTATC	360
35	CCAGCCATTG TCTGCCTGGG GTTCCTGCTG CTGCTGAATG TCGGCCAGCT CTTAGCCCAG	420
<i>J</i> J	ACTAAGAAGG TGGTCAGACC CACTAGGAAG AAGACTCTAA GTACATTCAA GGAATCCTGG	480
	AAGTAGAGCA TCTCTGTCTC TTTATGCCAT GCAGCTGTCA CAGCAGGAAC ATGGTAGAAC	540
40	ACAGAGTCTA TCATCTTGTT ACCAGTATAA TATCCAGGGT CAGCCAGTGT TGAAAGAGAC	600
	ATTITICTCTA CCTGGCACTG CTTTCTCTTT TTAGCTTTAC TACTCTTTTG TGAGGAGTAC	660
45	ATGTTATGCA TATTAACATT CCTCATGTCA TATGAAAATA CAAAATAAGC AGAAAAGAAA	720
43	TTTAAATCAA CCAAAATTCT GATGCCCCAA ATAACCACTT TTAATGCCTT GGTGTAAGTA	780
	TACCTCTGAA CTTTTTCTG TGCCTTTAAA CAGATATATA TTTTTTTTWA ATGAAAATAA	840
50	AACCATATAT CCTATTTTAT TTCCTCCTTT TAAAACCTTA TAAACTATAA MAAAAAAAA	900
	AAAAAAAAA CTCGA	915

(i) SEQUENCE CHARACTERISTICS:

60 (A) LENGTH: 2117 base pairs

⁽²⁾ INFORMATION FOR SEQ ID NO: 158:

(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

- 5 (xi) SEQUENCE DESCRIPTION: SEO ID NO: 158: 60 GCTGCTGCTG GCGCCGTCCG TGGTGCAGGC GGTGGAGCCC ATCAGCCTGG GACTGGCCCT 120 10 GGCCGGCGTC CTCACCGGCT ACATCTACCC GCGTCTCTAC TGCCTCTTCG CCGAGTGCTG 180 COGGCAGAAG COGAGCCTTA GCCGGGAGGC ACTGCAGAAG GATCTGGACG ACAACCTCTT 240 15 TGGACAGCAT CTTGCAAAGA AAATCATCTT AAATGCCGTG TTTGGTTTCA TAAACAACCC 300 AAAGCCCAAG AAACCTCTCA CGCTCTCCCT GCACGGGTGG ACAGGCACCG GCAAAAATTT 360 CGTCAGCAAG ATCATCGCAG AGAATATITA CGAGGGTGGT CTGAACAGTG ACTATGTCCA 420 20 CCTGTTTGTG GCCACATTGC ACTTTCCACA TGCTTCAAAC ATCACCTTGT ACAAGGATCA 480 GTTACAGTTG TGGATTCGAG GCAACGTGAG TGCCTGTGCG AGGTCCATCT TCATATTTGA 540 25 TGAAATGGAT AAGATGCATG CAGGCCTCAT AGATGCCATC AAGCCTTTCC TCGACTATTA 600 TGACCTGGTG GATGGGGTCT CCTACCAGAA AGCCATGTTC ATATTTCTCA GCAATGCTGG 660 AGCAGAAAGG ATCACAGATG TGGCTTTGGA TTTCTGGAGG AGTGGAAAGC AGAGGGAAGA 720 30 CATCAAGCTC AAAGACATTG AACACGCGTT GTCTGTCTCG GTTTTCAATA ACAAGAACAG 780 TGGCTTCTGG CACAGCAGCT TAATTGACCG GAACCTCATT GATTATTTTG TTCCCTTCCT 840 35 900 CCCCTGGAA TACAAACACC TAAAAATGTG TATCCGAGTG GAAATGCAGT CCCGAGGCTA TGAAATTGAT GAAGACATTG TAAGCAGAGT GGCTGAGGAG ATGACATTTT TCCCCAAAGA 960 GGAGAGAGTT TTCTCAGATA AAGGCTGCAA AACGGTGTTC ACCAAGTTAG ATTATTACTA 1020 40 CGATGATTGA CAGTCATGAT TGGCAGCCGG AGTCACTGCC TGGAGTTGGA AAAGAAACAA 1080 CACTCAGTCC TTCCACACTT CCACCCCAG CTCCTTTCCC TGGAAGAGGA ATCCAGTGAA 1140 45 TGTTCCTGTT TGATGTGACA GGAATTCTCC CTGGCATTGT TTCCACCCCC TGGTGCCTGC 1200 AGGCCACCCA GGGACCACGG GCGAGGACGT GAAGCCTCCC GAACACGCAC AGAAGGAAGG 1260 AGCCAGCTCC CAGCCCACTC ATCGCAGGGC TCATGATTTT TTACAAATTA TGTTTTAATT 1320 50 CCAAGTGTTT CTGTTTCAAG GAAGGATGAA TAAGTTTTAT TGAAAATGTG GTAACTTTAT 1380 TTAAAATGAT TTTTAACATT ATGAGAGACT GCTCAGATTC TAAGTTGTTG GCCTTGTGTG 1440 55 TGTGTTTTT TTTAAGTTCT CATCATTATT ACATAGACTG TGATGTATCT TTACTGGAAA 1500 TGAGCCCAAG CACACATGCA TGGCATTTGT TCCACAGGAG GGCATCCCTG GGGATGTGGC 1560 TGGAGCATGA GCCAGCTCTG TCCCAGGATG GTCCCAGCGG ATGCTGCCAG GGGCAKTGAA 1620 60

WO 98/39448 PCT/US98/04493

384

	GTGTTTAGGT GAAGGACAAG TAGGTAAGAG GACGCCTTCA GGCACCACAG ATAAGCCTGA	1680
	AACAGCCTCT CCAAGGGTTT TCACCTTAGC AACAATGGGA GCTGTGGGAG TGATTTTGGC	1740
-5	CACACTGTCA ACATTTGTTA GAACCAGTCT TTTGAAAGAA AAGTATTTCC AACTTGTCAC	1800
	TTGCCAGTCA CTCCGTTTTG CAAAAGGTGG CCCTTCACTG TCCATTCCAA ATAGCCCACA	1860
10	CGTGCTCTCT GCTGGATTCT AAATTATGTG AATTTTGCCA TATTAAATCT TCCTCATTTA	1920
10	TACTATTATT TGTTACGTTC AATCAGAATC CCCGAAACCT CCTATAAAGC TTAGCTGCCC	1980
	CTTCTGAGGA TGCTGAGAAC GGTGTCTTTC TTTATAAATG CAAATGGCTA CCGTTTTACA	2040
15	ATAAAATTTT GCATGTGCAA AAAAAAAAA ANAAAAAAA AAAATCCCGG GGGGGGCCG	2100
	GTAACCAATT TGNCCCC	2117
20		
20	(2) INFORMATION FOR SEO ID NO: 159:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2395 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 159:	
	TGTTCCTTAA TCCCTTTTCT AAAAAGGGGG GAAAATCCGG ATGGATTTTA GGGATTGGTC	60
35	TGGTGTCAGC TGTGTTTTAT TGCACACCTA AATCCTGATT ATAGGCTTTT CATTTCTCCG	120
	CAAAGCCTTT ATTITGGCAG TTAAGCCAAA TGTGTTTTCC AGAAAGTTAG TTATTTTCTC	180
	CTCTTTCTTT CCTTTCTTTC CTCCCTTTTT CCCGTCTGAC CCCAAACGTT ATTGTCCAAA	240
40	CATGACTGGA CAGCAGCTTT TGTTTCTTGA CCCTGTAATA TGACAGTCTG CTAATATTGA	300
	CAGAAGGTGC AGTITITIGGG TTATAGTCGT GATITITCGCT AATCAATCAT ATTAGCAGGA	360
45	AAAAAAAKGA CTIGTTICIG TIGTACTIGA GTCTTAAGAA AAAGTGGCCC ATAGTTTAGT	420
73	GGACAATTTC CAAAGGCTTT AGTACCACCT GTATTTCAAA ATGGGGGACC CAAACTCCCG	480
	GAAGAAACAA GCTCTGAACA GACTACGTGC TCAGCTTAGA AAGAAAAAAG AATCTCTAGC	540
50	TGACCAGTTT GACTTCAAGA TGTATATTGC CTTTGTATTC AAGGAGAAGA AGAAAAAGTC	600
	AGCACTTTTT GAAGTGTCTG AGGTTATACC AGTCATGACA AATAATTATG AAGAAAATAT	660
55	CCTGAAAGGT GTGCGAGATT CCAGCTATTC CTTGGAAAGT TCCCTAGAGC TTTTACAGAA	720
55		
	GGATGTGGTA CAGCTCCATG CTCCTCGATA TCAGTCTATG AGAAGGGATG TAATTGGCTG	780

60 CCTGTTTCT AGGTGGAAAG AATCTGATGA GCCTTTTAGG CCTGTTCAGG CAAATTTGAG

	TTTCATCATG	GTGACTATGA	AAAACAGTTT	CTGCATGTAC	TGAGCCGCAA	GGACAAGACT	960
5۔	GGAATCGTTG	TCAACAATCC	TAACCAGTCA	GTGTTTCTCT	TCATTGACAG	ACAGCACTTG	1020
	CAGACTCCAA	AAAACAAAGC	TACAATCTTC	AAGTTATGCA	GCATCTGCCT	CTACCTGCCA	1080
	CAGGAACAGC	TCACCCACTG	GGGCAGTTGG	CACCATAGAG	GRTCACCTCC	GTCCTTATAT	1140
10	GCCAGAGTAG	AGTACTGACC	AGCAAAATGG	AGAAGATCAG	AGAATGCAGC	AGCAGTTTTT	1200
	TTTCTTGTTT	TCTTACCACT	TTATTCTTTC	AGAGTTTAAA	GAAAATGGAC	TCATGCACAG	1260
15	AACACTATGC	ATTITGAAAC	TIGTICATCC	TGGATTTTTT	TAAATCATTT	TTATCTCAGA	1320
	ACTTAAACAA	AAATTAGATG	TCGTGCACGG	ACTGTGTGAA	AGAAGATGCT	TTGCATATTT	1380
	GCTGCACTGC	ATCAGTATCT	TACTAAAAAT	GTGAAATGAA	AGGACTATTG	TACACTGAAA	1440
20	TGCTTAAATG	TATCTGAAAG	CACAAGGTGA	TACTCATTTT	TATOGTCTTC	CCATTIGIGC	1500
	TGGTTTTTGC	CTCTTTGACA	TCTGTCATCA	GTATTTAGAG	GGTGAGAAGT	GAATGTAACA	1560
25	GGTATAAATA	ACATTTTAA	AAACAATAAC	TTTGCTATAA	TCACAGTTGT	TCCAGAGCAC	1620
	TGTCAGATAC	ATTCTAATGA	CCAGAACTGG	TTTAAAAAAA	GAAAATACAA	CCATGGGAAA	1680
	GAAATCTTAA	ATGAAAAACG	CATCTCATTG	TAGGCATTTT	TGCCTCATAT	TTTACTGGGC	1740
30	CATGTTTGTT	TCCTGGTACT	CATGTATTTT	TTTTTTCCAG	ATCTCTTTCC	CCAAGTTGCT	1800
	ATTGTAAGAG	TATTCTGCTG	CGTGTGGATG	CAGTTATACA	CATTAAAGCA	GATCTGGAGT	1860
35	CTGAAGTAGC	TATAAAGCAG	СТАТААААСА	GAAATACATG	CATAGCTGCA	GAAACCATGA	1920
	TAGGTAGAGG	ACTITICITY	TGGTTTTGTT	TTGTTTTGTT	TIGTTITGTT	TTTGGTTTTA	1980
	CAGAGAAGAG	ATTTTTTA	CAAAGAAAAA	AATTCCAGTG	AATTGTGCAG	AAATGCTGGT	2040
40	TTTTACACCA	TCCTAAAGAA	AAACTTTACA	AGGGTGTTTT	GGAGTAGAAA	AAAGGTTATA	2100
	AAGTTGGAAT	CTTAAATTGT	AAAATTAACC	ATTGAGTGTC	AAAGTTCTAA	AAGCAGAACT	2160
45	CATTITIGTGC	AATGAACATA	AGGAAAGACT	ACTGTATAGG	TTTTTTTT	TICTCCTTTT	2220
	AAATGAAGAA	AAGCTTTGCT	TAAGGGTTGC	ATACTTTTAT	TGGAGTAAAT	CTGAATGATC	2280
	CTACTCCTTT	GGAGTAAAAC	TAGTGCTTAC	CAGTTTCCAA	TTGTATTTAG	CTTCTGGTTG	2340
50	GAATTTGAAA	AAAAAAGAAA	AAAAGAAAAA	GAAAACCTAA	ATAAAATAGG	TGAAA	2395

55 (2) INFORMATION FOR SEQ ID NO: 160:

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2120 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 160:

		_	•			•	
-5	CCCCGGATAC	CGCCTGACGT	AGTGCCAATC	ACACCTCTCG	CGICICGGCG	CCTCGGAGGC	60
	TAATGAGGAC	GCCTGGCGAA	ACGCAGTAAC	GGATTTCCGG	GTGGACCTTC	GCTTTACGGC	120
10	TCGTGAGTTC	TTCCGCCCAA	CCCAGAGGAA	GCGGGAGAGC	AGTTTACGAC	AGCGCCGGTC	180
10	GTGTTTACGG	ceccecccc	TGCGCGCGCA	TGTTTCCTCT	TTTCCTGGTT	TCTCAAGAGT	240
	GCTGCTGCTA	ACGCGGTCCC	CGGCACGCAC	CATCTGTTGC	CATCCCGGCC	GGCCGAGGCA	300
15	TTGCAGATTT	TGGAAGATGG	CAAAGTTCAT	GACACCCGTG	ATCCAGGACA	ACCCCTCAGG	360
	CTGGGGTCCC	TGTGCGGTTC	CCGAGCAGTT	TCGGGATATG	CCCTACCAGC	CGTTCAGCAA	420
20	AGGAGATCGG	CTAGGAAAGG	TTGCAGACTG	GACAGGAGCC	ACATACCAAG	ATAAGAGGTA	480
20	CACAAATAAG	TACTCCTCTC	AGTTTGGTGG	TGGAAGTCAA	TATGCTTATT	TCCATGAGGA	540
	GGATGAAAGT	AGCTTCCAGC	TGGTGGATAC	AGCGCGCACA	CAGAAGACGG	CCTACCAGCG	600
25	GAATCGAATG	AGATTTGCCC	AGAGGAACCT	CCGCAGAGAC	AAAGATCGTC	GGAACATGTT	660
	GCAGTTCAAC	CTGCAGATCC	TGCCTAAGAG	TGCCAAACAG	AAAGAGAGAG	AACGCATTCG	720
30	ACTGCAGAAA	AAGTTCCAGA	AACAATTTGG	GGTTAGGCAG	AAATGGGATC	AGAAATCACA	780
30	GAAACCCCGA	GACTCTTCAG	TTGAAGTTCG	TAGTGATTGG	GAAGTGAAAG	AGGAAATGGA	840
-	TTTTCCTCAG	TTGATGAAGA	TGCGCTACTT	GGAAGTATCA	GAGCCACAGG	ACATTGAGTG	900
35	TTGTGGGGCC	CTAGAATACT	ACGACAAAGC	CTTTGACCGC	ATCACCACGA	GGAGTGAGAA	960
	GCCACTGCGG	ASATNCAAGC	GCATCTTCCA	CACTGTCACC	ACCACAGACG	ACCCTGTCAT	1020
40	CCGCAAGCTG	GCAAAAACTC	AGGGGAATGT	GTTTGCCACT	GATGCCATCC	TGGCCACGCT	1080
40	GATGAGCTGT	ACCCGCTCAG	TGTATTCCTG	CGATATTCTC	GTCCAGAGAG	TTGGGTCCAA	1140
	ACTCTTCTTT	GACAAGAGAG	ACAACTCTGA	CTTTGACCTC	CTGACAGTGA	GTGAGACTGC	1200
45	CAATGAGCCC	CCTCAAGATG	AAGGTAATTC	CTTCAATTCA	CCCCGCAACC	TGGCCATGGA	1260
	GCCAACCTAC	ATCAACCACA	ATTTCTCCCA	GCAGTGCTTG	AGAATGGGGA	AGGAAAGATA	1320
50	CAACTTCCCC	AACCCAAACC	CGTTTGTGGA	GGACGACATG	GATAAGAATG	AAATCGCCTC	1380
50	TGTTGCGTAC	CGTTACCGCA	GTGGNAAGCT	TGGAGATGAT	ATTGACCTTA	TTGTCCGTTG	1440
	TGAGCACGAT	GGCGTCATGA	CTGGAGCCAA	CGGGGAAGTG	TCCTTCATCA	ACATCAAGAC	1500
55	ACTCAATGAG	TGGGATTCCA	GGCACTGTAA	TGGCGTTGAC	TGGCGTCAGA	AGCTGGACTC	1560
	TCAGCGAGGG	GCTGTCATTG	CCACGGAGCT	GAAGAACAAC	AGCTACAAGT	TGGCCCGGTG	1620
60	GACCTGCTGT	GCTTTGCTGG	CTGGATCTGA	GTACCTCAAG	CTTGGTTATG	TGTCTCGGTA	1680
UU							

WO 98/39448 PCT/US98/04493

387

	CCACGIGAAA	GACTCCTCAC	GCCACGTCAT	CCTAGGCACC	CAGCAGTTCA	AGCCTAATGA	1740
	GTTTGCCAGC	CAGATCAACC	TGAGCGTGGA	GAATGCCTGG	GGCATTTTAC	GCTGCGTCAT	1800
.5	TGACATCTGC	ATGAAGCTGG	AGGAGGGCAA	ATACCTCATC	CTCAAGGACC	CCAACAAGCA	1860
	GGTCATCCGT	GTCTACAGCC	TCCCTGATGG	CACCTTCAGC	TCTGATGAAG	ATGAGGAGGA	1920
10	AGAGGAGGAG	GAAGAAGAGG	AAGAAGAAGA	GGAAGAAACT	TAAACCAGTG	ATGTGGAGCT	1980
	GGAGTTTGTC	CTTCCACCGA	GACTACGAGG	GCCTTTGATG	CTTAGTGGAA	TGTGTGTCTA	2040
	ACTTGCTCTC	TGACATTTAG	CAGATGAAAT	ААААТАТАТА	TCTGTTTAGT	СТТАААААА	2100
15	ааааааааа	AAAAAAAAN					2120

20 (2) INFORMATION FOR SEQ ID NO: 161:

25

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 900 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 161:

30 GGAAGCTGAA GTCCTTCCAG ACCAGGGACA ACCAGGGCAT TCTCTATGAA GCTGCACCCA 60 CCTCCACCCT CACCTGTRAC TCAGGACCAC AGAAGCAAAA GTTCTCACTC AAACTGGATG 120 CCAAGGATGG GCGCTTGTTC AATGAGCAGA ACTTCTTCCA GCGGGCCGCC AAGCCTCTGC 180 35 AAGTCAACAA GTGGAAGAAG CTGTACTCGA CCCCACTGCT GGCCATCCCT ACCTGCATGG 240 GTTTCGGTGT TCACCAGGAC AAATACAGGT TCTTGGTGTT ACCCAGCCTG GGGAGGAGCC 40 TTCAGTCGGC CCTGGATGTC AGCCCAAAGC ATGTGCTGTG CAGAGAGGTC TGTGCTGCAG GTGGCCTGCC GGCTGCTGGA TGCCCTGGAG TTCCTCCATG AGAATGAGTA TGTTCATGGA 420 AATGTGACAG CTGAAAATAT CTTTGTGGAT CCAGAGGACC AGAGTCAGGT GACTTTGGCA 45 GGCTATGGCT TCGCNTTCCG CTATTGCCCA AGTGGCAAAC ACGTGGCCTA CGTGGAAGGC 540 AGCAGGAGCC CTCACGAGGG GGACCTTGAG TTCATTAGCA TGGACCTGCA CAAGGGATGC 600 50 GGGCCCTCCC GCCGCRGCGA CCTCCAGAGC CTGGGCTACT GCATGCTGAA GTGGCTCTAC 660 GGGTTTCTGC CATGGACAAA TTGCCTTCCC AAMAMTGAGG ACATCATGAA GCAAAAACAG 720 AAGTTTGTTG ATAAGCCGGG GCCCTTCGTG GGACCCTGCG GTCACTGGAT CAGGCCCTCA 780 55 GAGACCCTGC AGAAGTACCT GAAGGTGGTG ATGGCCCTCA CGTATGAGGA GAAGCCGCCC 840 TACGCCATGC TGAGGAACAA CCTAGAAGCT TTGCTGCAGG ATCTGCGTGT GTCTCCATAT 900

	(2)	INFORMATION	FOR	SEO	ID	NO:	162
--	-----	-------------	-----	-----	----	-----	-----

-5 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1003 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 162: GGCACGAGAT GAGGGGCACC CAGTGCTTCT AGGGCAGGCT GGGTGGTGGT CCCCTAGGTA 60 15 TCAGCCTCTC TTACTGTACT CTCCGGGAAT GITAACCTTT CTATTTTCAG CCTGTGCCAC 120 CTGTCTAGGC AAGCTGGCTT CCCCATTGGC CCCTGTGGGT CCACAGCAGC GTGGCTGCCC 180 CCCAGGCCA CCGCTTCTTT CTTGATCCTC TITCCTTAAC AGTGACTTGG GCTTGAGTCT . 240 20 GGCAAGGAAC CTTGCTTTTA GCTTCACCAC CAAGGAGAGA GGTTGACATG ACCTCCCCGC 300 CCCCTCACCA AGGCTGGGAA CAGAGGGGAT GTGGTGAGAG CCAGGTTCCT CTGGCCCTCT 360 25 CCAGGGTGTT TTCCACTAGT CACTACTGTC TTCTCCTTGT AGCTAATCAA TCAATATTCT 420 480 TCCCTTGCCT GTGGGCAGTG GAGAGGCTGC TGGGTGTACG CTGCACCTGC CCACTGAGTT 540 30 CTAGGATCCA GGACTGGGTC AAAGCTGCAT GAAACCAGGC CCTGGCAGCA AACCTGGGAA 600 TGGCTGGAGG TGGGAGAGAA CCTGAACTTC TCTTTCCCTC TCCCTCCTCC AACATTACTG 660 35 GAACTCTATC CTGTTAGGAT CTTCTGAGCT TGTTTCCCTG CTGGGTGGGA CAGAGGACAA 720 780 AGGAGAAGGG AGGGTCTAGA AGAGGCAGCC CTTCTTTGTC CTCTGGGGTA AATGAGCTTG ACCTAGAGTA AATGGAGAGA CCAAAAGCCT CTGATTTTTA ATTTCCATAA AATGTTAGAA 840 40 900 GTATATATAT ACATATATAT ATTICTITAA ATTITTGAGT CTTIGATATG TCTAAAAATC CATTCCCTCT GCCCTGAAGC CTGAGTGAGA CACATGAAGA AAACTGTGTT TCATTTAAAG 960 45 1003

50 (2) INFORMATION FOR SEQ ID NO: 163:

55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2196 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 163:

60 AAGAAGCGGC ACACGGATGT GCAGTTCTAC ACAGAAGTGG GAGAGATAAC CACGGACTTG

	GGGAAACATC	AGCATATGCA	TGACCGAGAT	GACCTCTATG	CTGAGCAGAT	GGAACGAGAA	120
-5	ATGAGGCACA	AACTGAAAAC	AGCCTTTAAA	AATTTCATTG	AGAAAGTAGA	GCTCTAACT	180
,	AAGGAGGAAC	TGGAATTTGA	AGTGCCTTTT	AGGGACTTGG	GATTTAACGG	AGCTCCCTAT	240
	AGGAGTACCT	GCCTCCTTCA	GCCCACTAGT	AGTGCGCTGG	TAAATGCTAC	GGAATGGCCA	300
10	CCTTTTGTGG	TGACATTGGA	TGAGGTAGAG	CTGATCCACT	TTRAGCGGGT	CCAGTTTCAC	360
	CTGAAGAACT	TTGATATGGT	AATCGTCTAC	AAGGACTACA	GCAAGAAAGT	GACCATGATC	420
15	AACGCCATTC	CTGTAGCCTC	TCTTGACCCC	ATCAAGGAAT	GGTTGAATTC	CTGCGACCTG	480
13	AAATACACAG	AAGGAGTACA	GTCCCTCAAC	TGGACTAAAA	TCATGAAGAC	CATTGTTGAT	540
	GACCCTGAGG	GCTTCTTCGA	ACAAGGTGGC	TGGTCTTTCC	TGGAGCCTGA	GGGTGAGGG	600
20	AGTGATGCTG	AAGAAGGGGA	TTCAGAGTCT	GAAATTGAAG	ATGAGACTTT	TAATCCTTCA	660
	GAAGATGACT	ATGAAGAGGA	AGAGGAGGAC	AGTGATGAAG	ATTATTCATC	AGAAGCAGAA	720
25	GAGTCAGACT	ATTCTAAGGA	GTCATTGGGT	AGTGAAGAAG	AGAGTGGAAA	GGATTGGGAT	780
2.5	GAACTGGAGG	AAGAAGCCCG	AAAAGCGGAC	CGAGAAAGTC	GTTACGAGGA	AGAAGAAGAA	840
	CAAAGTCGAA	GTATGAGCCG	GAAGAGGAAG	GCATCTGTGC	ACAGTTCGGG	CCGTGGCTCT	900
30	AACCGTGGTT	CCAGACACAG	CTCTGCACCC	CCCAAGAAAA	AGAGGAAGTA	ACTICTGAAC	960
	TTTGGCCCTG	AGCTCCATTC	TTCCTCCAGC	CAACCCCTGA	AAATTTTACA	TGACATAGAA	1020
35	ACTGTATTTT	TCCTTTCGTT	TTCATTTGAA	GTTTTGCCAT	TTGTGTTTAT	GGGTTTAGGG	1080
33	GGCCATTTGT	GTGGACCAAT	CTACTCGGG	AATTCCAGGC	CCACCAGGAC	ACGTGCCAAT	1140
	GGCCCCATTC	AGATGGCAAG	GGAGGAGGTG	TTCTTGAAGA	CAGGAGGAGG	CTCCCGCTGT	1200
40	ТААТААТАТ	TGTTTCATTC	TTCTCTCTTC	CTGTCACCTT	CTGCCAAGAC	ATTGATGGCT	1260
	TCTGACATCT	TATTTGGTGT	CTCAAAGCTG	TATTTCCAAG	ACAGTGGTAC	AAGGTGACCC	1320
45	TTAATTACCC	GTATCATGGT	TCTTGACCAG	CACATTCAAT	CCTCCAACCT	ACCCTACTGC	1380
73	CATGACCTTC	CGCACATCTC	TAAGTTTTAT	CTTTGCAATA	CTCAAGGTTC	TCGGAAATTT	1440
	GCTAATGGTT	GTGATAAACC	ATACAGCTTG	AGCCAGTGAG	GCAGATTGGG	CTGGTGCCTT	1500
50	CGTCTGAGTT	TTCCTGCTTT	CCTGCCTCGT	GCAGATTCTG	AGGTATATCT	CCTCCCTTCG	1560
	AAGACATAAG	AAGCAGTGAT	ACTCCCTGGC	TCGGTTATTT	TCTCCATACA	ATGCACACAT	1620
55	GGTACAATGA	TAGAAGGCAA	AATTGCCACT	GTCTTCTTTT	TTTTCTCATA	TATCTAAGGA	1680
JJ	AGATATATCA	GGTTGTGCCT	CATGTACCGC	TTCTAGTGAA	ATGTAGAGGA	AGGCTCAAAG	1740
	GAGTCAACAT	TTAGATCTGG	AAGGGACAAG	TCATGCCTTG	GGCCTAGAAT	ACCCTGATGA	1800
60	GAAAAGAGAA	GAGGAAGGGA	GGCCATATCT	ACAACANCAN	CCTCTCGGCA	CTGCTGCTCC	1860

	TTATTITAAC TTIGTCTIGC ATTGTCCTGT ATTTATCACA GTTTCTGTTG AACAGCTTTT	1920
-5	CAAGTATTTG GGGAGTTTAT CITGCCATCC TCCCCTTCTG GTTCTCTGCA CCCACCTGTC	1980
-5	CCACTGCAGT TCCTTCCGTG CTCTGTGACT TTAAGAGAAG AAGGGGGGAG GGGTCCCGGA	2040
	TTTTATGTTT GTTTGTTTTT TCTCCTTAGC AGTAGGACTT GATATTTTCA ATTTTGGAAG	2100
10	AACTAAAAGA TGAATAAACT GGGTTTTTT TGTTGTTTGT TTTTGTAAAA AAAAAAAA	2160
	AAAAAA AAAAAAAA AAAAAAAA AAAAAAA	2196
1.5		
15		
	(2) INFORMATION FOR SEQ ID NO: 164:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1945 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 164:	
	GCACAGAGTC GGGCGGACGG ACAGGGAGAG GAGGAGAGGG GGTCTGCGCG CGGCCGCTAC	60
30	CCAGAAGCCA GCGGACGGCA GCACGGAGTG GGCTGTCCCC GAGCCCAGCC CCGAGCGAGC	120
50	CCCCCCCCG CCCCGMAGG ACGCGCCTYC CAGCCAGCCC GACTYCTAGG AGGAGGGGAG	180
	GCGGGAAAGC AGCTCAAGCC TCACCCACCG CCCTGCCCCC AGCCCCGCCA CTCCCAGGCT	240
35	CCTCGGGACT CGGCGGGTCC TCCTGGGAGT CTCGGAGGGG ACCGGCTGTG CAGACGCCAT	300
	GGAGTTGGTG CTGGTCTTCC TCTGCAGCCT GCTGGCCCCC ATGGTCCTGG CCAGTGCAGC	360
40	TGAAAAGGAG AAGGAAATGG ACCCTTTTCA TTATGATTAC CAGACCCTGA GGATTGGGGG	420
40	ACTGGTGTTC GCTGTGGTCC TCTTCTCGGT TGGGATCCTC CTTATCCTAA GTCGCAGGTG	480
	CAAGTGCAGT TTCAATCAGA AGCCCCGGGC CCCAGGAGAT GAGGAAGCCC AGGTGGAGAA	540
45	CCTCATCACC GCCAATGCAA CAGAGCCCCA GAAAGCAGAG AACTGAAGTG CAGCCATCAG	600
	GTGGAAGCCT CTGGAACCTG AGGCGGCTGC TTGAACCTTT GGATGCAAAT GTCGATGCTT	660
50	AAGAAAACCG GCCACTTCAG CAACAGCCCT TTCCCCAGGA GAAGCCAAGA ACTTGTGTGT	720
50	CCCCCACCCT ATCCCCTCTA ACACCATTCC TCCACCTGAT GATGCAACTA ACACTTGCCT	780
	CCCCACTGCA GCCTGCGGTC CTGCCCACCT CCCGTGATGT GTGTGTGTGT GTGTGTGTGT	840
55	GTGACTGTGT GTGTTTGCTA ACTGTGGTCT TTGTGGCTAC TTGTTTGTGG ATGGTATTGT	900
	GTTTGTTAGT GAACTGTGGA CTCGCTTTCC CAGGCAGGGG CTGAGCCACA TGGCCATCTG	960
	CTCCTCCCTG CCCCGTGGC CCTCCATCAC CTTCTGCTCC TAGGAGGCTG CTTGTTGCCC	1020

	GAGACCAGCC	CCCTCCCCTG	ATTTAGGGAT	GCGTAGGGTA	AGAGCACGGG	CAGTGGTCTT	1080
	CAGTCGTCTT	GGGACCTGGG	AAGGTTTGCA	GCACTTTGTC	ATCATTCTTC	ATGGACTCCT	1140
-5	TTCACTCCTT	TAACAAAAAC	CTTGCTTCCT	TATCCCACCT	GATCCCAGTC	TGAAGGTCTC	1200
	TTAGCAACTG	GAGATACAAA	GCAAGGAGCT	GGTGAGCCCA	GCGTTGACGT	CAGGCAGGCT	1260
10	ATGCCCTTCC	GTGGTTAATT	TCTTCCCAGG	GGCTTCCACG	AGGAGTCCCC	ATCTGCCCCG	1320
10	CCCCTTCACA	GAGCGCCCGG	GGATTCCAGG.	CCCAGGGCTT	CTACTCTGCC	CCTGGGGAAT	1380
	GTGTCCCCTG	CATATCTTCT	CAGCAATAAC	TCCATGGGCT	CTGGGACCCT	ACCCCTTCCA	1440
15	ACCTTCCCTG	CTTCTGAGAC	TTCAATCTAC	AGCCCAGCTC	ATCCAGATGC	AGACTACAGT	1500
	CCCTGCAATT	GGGTCTCTGG	CAGGCAATAG	TTGAAGGACT	CCTGTTCCGT	TGGGGCCAGC	1560
20	ACACCGGGAT	GGATGGAGGG	AGAGCAGAGG	CCTTTGCTTC	TCTGCCTACG	TCCCCTTAGA	1620
20	TGGGCAGCAG	AGGCAACTCC	CGCATCCTTT	GCTCTGCCTG	TCRGTGGTCA	GAGCGGTGAG	1680
	CGAGGTGGGT	TGGAGACTCA	GCAGGCTCCG	TGCAGCCCTT	GGGAACAGTG	AGAGGTTGAA	1740
25	GGTCATAACG	AGAGTGGGAA	CTCAACCCAG	ATCCCGCCCC	TCCTGTCCTC	TGTGTTCCCG	1800
	CGGAAACCAA	CCAAACCGTG	CGCTGTGACC	CATTGCTGTT	CTCTGTATCG	TGATCTATCC	1860
30	TCAACAACAA	CAGAAAAAAG	GAATAAAATA	TCCTTTGTTT	CCTAGTGAAA	АААААААА	1920
	АААААААА	АААААААА	CTCGA				1945

40

(2) INFORMATION FOR SEQ ID NO: 165:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2933 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 165:

45	(XI)	SEQUENCE I	DESCRIPTION	SEQ ID NO	105:		
43	GGGTCGACCC	ACGCGTCCGG	CAGCCGTCGT	TTGAGTCGTT	GCTGCCGCTG	CCCCCTCCCG	60
	GATCAGGAGC	CAGTGTATAC	CGCCCGCCCA	CCGCCTTGGT	GCCGCTAGAG	GAAACGAGAA	120
50	GGAGGCCGCC	TGCGGTTTGT	CGCCGCAGCT	CGCCCMCYGY	CYGGRAGAGC	CGAGCCCCGG	180
	CCCAGTCGGT	CGCYTGCCAC	CSCTCGTAGC	CGTTACCCGC	GGGCCGCCAC	AGCCGCCGGC	240
55	CGGGAGAGGC	GCGCGCCATG	GCYTCTGGAG	CCGATTCAAA	AGGTGATGAC	CTATCAACAG	300
33	CCATTCTCAA	ACAGAAGAAC	CGTCCCAATC	GGTTAATTGT	TGATGAAGCC	ATCAATGAGG	360
	ACAACAGTGT	GGTGTCCTTG	TCCCAGCCCA	AGATGGATGA	ATTGCAGTTG	TTCCGAGGTG	420
60	ACACAGTGTT	GCTGAAAGGA	AAGAAGAGAC	GAGAAGCTGT	TIGCATCGIC	CTTTCTGATG	480

	ATACTTGTTC	TGATGAGAAG	ATTCGGATGA	ATAGAGTTGT	TCGGAATAAC	CTTCGTGTAC	540
-5	GCCTAGGGGA	TGTCATCAGC	ATCCAGCCAT	GCCCTGATGT	GAAGTACGGC	AAACGTATCC	600
5	ATGTGCTGCC	CATTGATGAC	ACAGTGGAAG	GCATTACTGG	TAATCTCTTC	GAGGTATACC	660
	TTAAGCCGTA	CTTCCTGGAA	GCGTATCGAC	CCATCCGGAA	AGGAGACATT	TTTCTTGTCC	720
10	GTGGTGGGAT	GCGTGCTGTG	GAGTTCAAAG	TGGTGGAAAC	AGATCCTAGC	CCTTATTGCA	780
	TIGTIGCICC	AGACACAGTG	ATCCACTGCG	AAGGGGAGCC	TATCAAACGA	GAGGATGAGG	840
15	AAGAGTCCTT	GAATGAAGTA	GGGTATGATG	ACATTGGTGG	CTGCAGGAAG	CAGCTAGCTC	900
13	AGATAAAGGA	GATGGTGGAA	CTGCCCCTGA	GACATCCTGC	CCTCTTTAAG	GCAATTGGTG	960
	TGAAGCCTCC	TAGAGGAATC	CTGCTTTACG	GACCTCCTGG	AACAGGAAAG	ACCCTGATTG	1020
20	CTCGAGCTGT	AGCAAATGAG	ACTGGAGCCT	TCTTCTTCTT	GATCAATGGT	CCTGAGATCA	1080
	TGAGCAAATT	GGCTGGTGAG	TCTGAGAGCA	ACCTTCGTAA	AGCCTTTGAG	GAGGCTGAGA	1140
25	AGAATGCTCC	TGCCATCATC	TTCATTGATG	AGCTAGATGC	CATCGCTCCC	AAAAGAGAGA	1200
20	AAACTCATGG	CGAGGTGGAG	CGGCGCATTG	TATCACAGTT	GTTGACCCTC	ATGGATGGCC	1260
	TAAAGCAGAG	GGCACATGTG	ATTGTTATGG	CAGCAACCAA	CAGACCCAAC	AGCATTGACC	1320
30	CAGCTCTACG	GCGATTTGGT	CGCTTTGACA	GGGAGGTAGA	TATTGGAATT	CCTGATGCTA	1380
	CAGGACGCTT	AGAGATTCTT	CAGATCCATA	CCAAGAACAT	GAAGCTGGCA	GATGATGTGG	1440
35	ACCTGGAACA	GTAGCCAATG	AGACTCACGG	GCATGTGGGT	GCTGACTTAG	CAGCCCTGTG	1500
	CTCAGAGGCT	GCTCTGCAAG	CCATCCGCAA	GAAGATGGAT	CTCATTGACC	TAGAGGATGA	1560
	GACCATTGAT	GCCGAGGTCA	TGAACTCTCT	AGCAGTTACT	ATGGATGACT	TCCGGTGGGC	1620
40	CTTGAGCCAG	AGTAACCCAT	CAGCACTGCG	GGAAACCGTG	GTAGAGGTGC	CACAGGTAAC	1680
	CTGGGAAGAC	ATCGGGGGCC	TAGAGGATGT	CAAACGTGAG	CTACAGGAGC	TGGTCCAGTA	1740
45	TCCTGTGGAG	CACCCAGACA	AATTCCTGAA	GTTTGGCATG	ACACCTTCCA	AGGGAGTTCT	1800
,,,	GTTCTATCGA	CCTCCTGGCT	GTGGGAAAAC	TTTGTTGGCC	AAAGCCATTG	CTAATGAATG	1860
	CCAGGCCAAC	TTCATCTCCA	TCAAGGGTCC	TGAGCTGCTC	ACCATGTGGT	TTGGGGAGTC	1920
50	TGAGGCCAAT	GTCAGAGAAA	TCTTTGACAA	GGCCCGCCAA	GCTGCCCCCT	GTGTGCTATT	1980
	CTTTGATGAG	CTGGATTCGA	TTGCCAAGGC	TCGTGGAGGT	AACATTGGAG	ATGGTGGTGG	2040
55	GGCTGCTGAC	CGAGTCATCA	ACCAGATCCT	GACAGAAATG	GATGGCATGT	CCACAAAAAA	2100
<i>JJ</i>	AAATGTGTTC	: ATCATTGGCG	CTACCAACCG	GCCTGACATC	ATTGATCCTG	CCATCCTCAG	2160
	ACCTGGCCGT	CTTGATCAGC	TCATCTACAT	CCCACTTCCT	GATGAGAAGT	CCCGTGTTGC	2220
60	CATCCTCAAG	GCTAACCTGC	GCAAGTCCCC	AGTTGCCAAG	GATGTGGACT	TGGAGTTCCT	2280

WO 98/39448 PCT/US98/04493

393

	GGCTAAAATG ACTAATGGCT TCTCTGGAGC TGACCTGACA GAGATTTGCC AGCGTGCTTG	2340
5	CAAGCTGGCC ATCCGTGAAT CCATCGAGAG TGAGATTAGG CGAGAACGAG AGAGGCAGAC	2400
Ð	AAACCCATCA GCCATGGAGG TAGAAGAGGA TGATCCAGTG CCTGAGATCC GTCGAGATCA	2460
	CTTTGAAGAA GCCATGCGCT TTGCGCGCCG TTCTGTCAGT GACAATGACA TTCGGAAGTA	2520
10	TGAGATGTTT GCCCAGACCC TTCAGCAGAG TCGGGGCTTT GGCAGCTTCA GATTCCCTTC	2580
	AGGGAACCAG GGTGGAGCTG GCCCCAGTCA GGGCAGTGGA GGCGGCACAG GTGGCAGTGT	2640
15	ATACACAGAA GACAATGATG ATGACCTGTA TGGCTAAGTG GTGGTGGCCA GCGTGCAGTG	2700
13	AGCTGGCCTG CCTGGACCTT GTTCCCTGGG GGTGGGGGCG CTTGCCCAGG AGAGGGACCA	2760
	GGGGTGCGCC CACAGCCTGC TCCATTCTCC AGTCTGAACA GTTCAGCTAC AGTCTGACTC	2820
20	TOGACAGGGG GTTTCTGTTG CAAAAATACA AAACAAAAGC GATAAAATAA AAGCGATTTT	2880
	CATTTGGTAA AAAAAAAAA AAAAAAAAT CCGGGGGGG GCCCGAACCA TTT	2933
25		
	(2) INFORMATION FOR SEQ ID NO: 166:	
	(i) SEQUENCE CHARACTERISTICS:	
30	(A) LENGTH: 2243 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
a =	(D) TOPOLOGY: linear	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 166:	
	TOGGAGAGCC GGCGGGGGG CGCCTCTCGG CCAGGAAGCG CCTCTTGGAC GCGTGTNACC	60
40	GATGCCCAGA AGTGGCCTTG GGCTGGGGAT CACCATAGCT TTTCTAGCTA CGCTGATCAC	120
	GCAGTITCTC GTGTATAATG GTGTCTATCA GTATACATCC CCAGATITCC TCTATATTCG	180
	TTCTTGGCTC CCTTGTATAT TTTTCTCAGG AGGCGTCACG GTGGGGAACA TAGGACGACA	240
45	GTTAGCTATG GGTGTTCCTG AAAAGCCCCA TAGTGATTGA GTCTTCAAAA CCACCGATTC	300
	TGAGAGCAAG GAAGATTTTG GAAGAAAATC TGACTGTGGA TTATGACAAA GATTATCTTT	360
50	TITCTTAAGT AATCTATTTA GATCGGGCTG ACTGTACAAA TGACTCCTGG AAAAAACTCT	420
<i>5</i> 0	TCACCTAGTC TAGAATAGGG AGGTGGAGAA TGATGACTTA CCCTGAAGTC TTCCCTTGAC	480
	TGCCCGCACT GGCGCCTGTC TGTGCCCTGG AGCATTCTGC CCAGGCTACG TGGGTTCAGG	540
55	CAGGTGGCAG CTTCCCAAGT ATTCGATTTC ATTCATGTGA TTAAAACAAG TTGCCATATT	600

TCAAAGCCTT GAACTAAGAC TCAATTACCA ACCCGCAGTT TTGTGTCAGT GCCCAAAGGA

GGTAGGTTGA TGGTGCTTAA CAAACATGAA GTATGGTGTA ATAGGAATAA TATTTATCCA

60

660

	AAAGATTITT	AAAAATAGGG	CIGIGITIAA	AAAAAAAAAC	AAAACARGAA	AAGCAGCAGT	780
	GATTATAGAG	AGGTCACACT	CTAAGTGGGG	TCGCGGCGTG	GCCACGCTTC	ACGGTCACGC	840
-5	TCGTCCGTCC	TGCAGTGGCG	TGTTTACATG	GTCACACGTG	TGTGTATCAC	CAGTGGGTCA	900
	ACTGCTTGTC	ATTCCTCCCG	TGGCAGTTTG	TGTAGACAAT	CTTACTGAGC	AAAAGGCAAT	960
10	GAAAAGTCTT	GGTTCCCACA	CTGCGATATA	TTGGAATTTT	CACCTCAGTT	TATGAAGTTT	1020
10	ATTTCGAAAT	CCATAGTCAT	CTAAGAATGA	ATACCTGTCT	GCCATGTATT	TCAATCTTAG	1080
	TGAGCCAAAA	TIGITIGITT	GTTACTACAG	AATAGAGATG	ACTGTTTTT	GCCACAGCCC	1140
15	TATGGRATTT	GCAATCTGTG	ATTGCCTTGT	AAAAAGGAGA	GTGCATATGG	CACTGCATTA	1200
	AACGTGTGGT	GTTTCTAGTC	AATGATATTG	GTGAGCACAA	TGTATTCATT	TAATGGCATA	1260
20	GACCATACCA	GACCTAATTT	GCAAGTATTG	GGTCTTAAAC	TTCAAGTGCA	ATGTATATGA	1320
20	AAACCAATCT	GAGCCTTGTA	TCTCTTAAAT	ATTTATTTT	TTTAACGTGT	GAGATGTTCG	1380
	AGAGAAGGTT	CTCCATTCAT	TTCAGTGCTG	CCTGGAGGAA	ACTCGGCAAT	GATTTCTTTC	1440
25	AGTTGTGAAG	TTCCTTTCGT	GTTACACCCT	CCACTGAACC	CTCAACCTTC	GAAATACTCC	1500
	AGTTTTGTGG	GTTTGGTCAT	TTTTACTTAT	AAATTTACCT	TTTTGTATTT	TGCAATTTAC	1560
30	ATGTGTTTGG	TTTGTTTTAA	ATTCTGTGAA	AGTGGCTTGA	TTAAAAGACT	CCTTTTAAAT	1620
	GGAAGCCACC	AGTCAGCAGA	ATGGAAGCTT	AGAGGAACTT	GCCTGTGAGC	GCTGGTCTTT	1680
	GTGTTTGGTT	TTGTGATGTA	ACGATCTTTG	CTGGGGTTTT	TIGCITIGIT	TTGAGGGAAA	1740
35	TGTCTTGGAG	TAAATTTTAA	GTTCCTGGAG	TTAATTTGTT	TTACAGGAAT	TTTGTTTTTT	1800
	AAAAAATAG	GATCATTCTG	AACTTTGGAA	TGACCCCCTT	ATATATTTC	TGAAAATGAA	1860
40	AACAGTTACA	TGAAAAAAT	TTCCAATGAA	GATGTCAGCA	TTTTATGAAA	AACCAGAAGT	1920
,,,	TATTAGATGA	AAGCAGCGAG	TGAATCTITA	AAACAGACTT	GATCACGCAC	ACACAATAAG	1980
	TCTTTCTCTC	CGAAACCGGA	AGTAAATCTA	TATCTGTTAG	aaataatgta	GCCAAAAGAA	2040
45	TGTAAATTTG	AGGATTTTTT	TGCCAATAGT	TTATAGAAAA	TATATGAACC	AAAGTGATTT	2100
	GAGTTTGTAA	AAATGTAAAA	TAGTATGAAC	AAAATTTGCA	CTCTACCAGA	TTTGAACATC	2160
50	TAGTGAGGTT	CACATTCATA	CTAAGTTTTC	AACATTGTGT	TCTTTTTGCA	TTCATTTTTT	2220
50	ACTITITATTA	AAGGTTCAAA	ACC				2243

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1816 base pairs
(B) TYPE: nucleic acid

⁽²⁾ INFORMATION FOR SEQ ID NO: 167:

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

-5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 167:	
ر-	GGTGGGNAGC TTTNAATTTC CCCTTACWGG GGCGCTNTAA GGGGAAACCT TCCCGGAATT	60
	TTCGGGTCGA CCCACGCGTC CGGCCAGCCT AGGAGAAGAA GTTCGTAGTC CCAGAGGTCA	120
10	GGCAGGAGGC GGCAGTTTCT GGCGGGTGAG GGCGGAGCTG AAGTGACAGC GGAGGCGGAA	180
	GCAACGGTCG GTGGGGCGGA GAAGGGGCCT GGCCCCAGGA GGAGGAGGAA ACCCTTCCGA	240
15	GAAAACAGCA ACAAGCTGAG CTGCTGTGAC AGAGGGGAAC AAGATGGCGG CGCCGAAGGG	300
15	GAGCCTCTGG GTGAGGACCC AACTGGGGCT CCCGCCGCTG CTGCTGCTGA CCATGGCCTT	360
	GGCCGGAGGT TCGGGGACCG CTTCGGCTGA AGCATTTGAC TCGGTCTTGG GTGATACGGC	420
20	GTCTTGCCAC CGGGCCTGTC AGTTGACCTA CCCCTTGCAC ACCTACCCTA AGGAAGAAGA	480
	GTTGTACGCA TGTCAGAGAG GTTGCAGGCT GTTTTCAATT TGTCAGTTTG TGGATGATGG	540
25	AATTGACTTA AATCGAACTA AATTGGAATG TGAATCTGCA TGTACAGAAG CATATTCCCA	600
23	ATCTGATGAG CAATATGCTT GCCATCTTGG KTGCCAGAAT CAGCTGCCAT TCGCTGAACT	660
	GAGACAAGAA CAACTTATGT CCCTGATGCC AAAAATGCAC CTACTCTTTC CTCTAACTCT	720
30	GGTGAGGTCA TTCTGGAGTG ACATGATGGA CTCCGCACAG AGCTTCATAA CCTCTTCATG	780
	GACTITITAT CTTCAAGCCG ATGACGGAAA AATAGTTATA TICCRGTCTA AGCCCAGRAA	840
35	TCCCAGGTAC GCACCACATT TGGAGCCAGG AGCCCTACCA AATTTGRGRG RAWCMTCTCT	900
33	AAGCAAAATG TCCNTCAKMT CGSMAATGAG AAATTCACAA GCGCACAGGA ATTTTCTTGA	960
	AGATGGAGAA AGTGATGGCT TITTAAGATG CCTCTCTCTT AACTCTGGGT GGATTTTAAC	1020
40	TACAACTCTT GTCCTCTCGG TGATGGTATT GCTTTGGATT TGTTGTGCAA CTTGTTGCTA	1080
	CACGCTGTTG GACGCAGTAT AGTTTCCCTC TGAGAAGCTG AGTATCTATG GTGACTTGGA	1140
45	GTTTATGAAT GAACAAAAGC TAAACAGATA TCCAGCTTCT TCTCTTGTGG TTGTTAGATC	1200
43	TAAAACTGAA GATCATGAAG AAGCAGGGCC TCTACCTACA AAAGTGAATC TTGCTCATTC	1260
	TGAAATTTAA GCATTTTCT TTTAAAAGAC AAGTGTAATA GACATCTAAA ATTCCACTCC	1320
50	TCATAGAGCT TTTAAAATGG TTTCATTGGA TATAGGCCTT AAGAAATCAC TATAAAATGC	1380
	AAATAAAGTT ACTCAAATCT GTGAAAAAAA AAAAAAAAAA	1440
55	GCCCGTTACC AAKTCGCCCT ATWGTGADTB GTATTMITAT TITACTAATA TCTGTAGCTA	1500
33	TTTTGTTTT KGCTTKGGTT ATKGTTTTTY TCCCTTYTCT WAGCTATRAG CTGATCATKG	1560
	CYSCTTCTCA CCTCCTGCCA TGATACTGTC AGTTACCTTA GTTAACAAGC TGAATATTTA	1620
60	GTAGAAATGA TGCTTCTGCT CAGGAATGGC CCACAAATCT GTAATTTGAA ATTTAGCAGG	1680

	AAATGACCTT	TAATGACACT	ACATTTTCAG	GAACTGAAAT	CATTAAAATT	TTATTTGAAT	1740
-5	AATTATGTGC	TGAAAAAAA	ааааааааа	AMWMRARASK	RRWWACTCGA	cccccccc	1800
J	GGTACCCNAT	TCGCCG					1816
10							
	(2) INFORMA	ATION FOR SE	EQ ID NO: 16	58 :			
15	(i)	(B) TYP	HARACTERIST GTH: 945 ba E: nucleic ANDEDNESS: DLOGY: line	se pairs acid double			
20	(xi) SEQUENCE I	DESCRIPTION	: SEQ ID NO	: 168:		
20	AGAAACCGTT	GATGGGACTG	AGAAACCAGA	GTTAAAACCT	CTTTGGAGCT	TCTGAGGACT	60
	CAGCTGGAAC	CAACGGGCAC	AGTTGGCAAC	ACCATCAACT	TCTCCCAAGC	AGAGAAACCC	120
25	GAACCCACCA	ACCAGGGGCA	GGATAGCCTG	AAGAAACATC	TACACGCAGA	AATCAAAGTT	180
	ATTGGGACTA	TCCAGATCTT	GTGTGGCATG	ATGGTATTGA	GCTTGGGGAT	CATTITICGCA	240
30	TCTGCTTCCT	TCTCTCCAAA	TTTTACCCAA	GTGACTTCTA	CACTGTTGAA	CTCTGCTTAC	300
	CCATTCATAG	GACCCTTTTT	TTTTATCATC	TCTGGCTCTC	TATCAATCGC	CACAGAGAAA	360
	AGGITRACCA	AGCTTTTGGT	GCATAGCAGC	CTGGTTGGAA	GCATTCTGAG	TGCTCTGTCT	420
35	GCCCTGGTGG	GTTTCATTAT	CCTGTCTGTC	AAACAGGCCA	CCTTAAATCC	TGCCTCACTG	480
	CAGTGTGAGT	TGGACAAAAA	ТААТАТАССА	ACAAGAAGTT	ATGTTTCTTA	СТТТТАТСАТ	540
40	GATTCACTTT	ATACCACGGA	CTGCTATACA	GCCAAAGCCA	GTCTGGCTGG	AWCTCTCTCT	600
	CTGATGCTGA	TTTGCACTCT	GCTGGAATTC	TGCCTAGCTG	TGCTCACTGC	TGTGCTGCGG	660
	TGGAAACAGG	CTTACTCTGA	CTTCCCTGGG	AGTGTACTTT	TCCTGCCTCA	CAGTTACATT	720
45	GGTAATTCTG	GCATGTCCTC	AAAAATGACT	CATGACTGTG	GATATGAAGA	ACTATTGACT	780
	TCTTAAGAAA	AAAGGGAGAA	ATATTAATCA	GAAAGTTGAT	TCTTATGATA	ATATGGAAAA	840
50	GTTAACCATT	ATAGAAAAGC	AAAGCTTGAG	TTTCCTAAAT	GTAAGCTTTT	AAAGTAATGA	900
55	ACATTAAAAA	AAACCATTAT	TTCACTGTCA	TTTAAAGATA	ATGTG		945

- (2) INFORMATION FOR SEQ ID NO: 169:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 902 base pairs

60 (B) TYPE: nucleic acid

(C) STRANDEDNESS: double(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 169:

- 5 GGCAGAGCCA CAGGAAGGAT GAGGAAGACC AGGCTCTGGG GGCTGCTGTG GATGCTCTTT 60 GTCTCAGAAC TCCGAGCTGC AACTAAATTA ACTGAGGAAA AGTATGAACT GAAAGAGGGG . 120 10 CAGACCCTGG ATGTGAAATG TGACTACACG CTAGAGAAGT TTGCCAGCAG CCAGAAAGCT 180 TGGCAGATAA TAAGGGACGG AGAGATGCCC AAGACCCTGG CATGCACAGA GAGGCCTTCA 240 AAGAATTCCC ATCCAGTCCA AGTGGGGAGG ATCATACTAG AAGACTACCA TGATCATGGT 300 15 TTACTGCGCG TCCGAATGGT CAACCTTCAA GTGGAAGATT CTGGACTGTA TCAGTGTGTG 360 ATCTACCAGC CTCCCAAGGA GCCTCACATG CTGTTCGATC GCATCCGCTT GGTGGTGACC 420 20 AAGGGTTTTT CAGGGACCCC TGGCTCCAAT GAGAATTCTA CCCAGAATGT GTATAAGATT 480 CCTCCTACCA CCACTAAGGC CTTGTGCCCA CTCTATACCA GCCCCAGAAC TGTGACCCAA 540 GCTCCACCCA AGTCAACTGC CGATGTCTCC ACTCCTGACT CTGAAATCAA CCTTACAAAT 600 25 GTGACAGATA TCATCAGGGT TCCGGTGTTC AACATTGTCA TTCTCCTGGC TGGTGGATTC 660 CTGAGTAAGA GCCTGGTCTT CTCTGTCCTG TTTGCTGTCA CGCTGAGGTC ATTTGTACCC 720 30 TAGGCCCACG AACCCACGAG AATGTCCTCT GACTTCCAGC CACATCCATC TGGCAGTTGT 780 CCCAAGGAG GAGGGAGGAG GTAAAAGGCA GGGAGTTAAT AACATGAATT AAATCTGTAA 840 TCACCRGCTA AAAAAAAAA AAAAAAACN CGANCCTNGG TTTTCAGCTC CATCAGCTCC 900 35 902 TT

40

45

(2) INFORMATION FOR SEQ ID NO: 170:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1883 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 170:

AGAAAACAAC TGAAAAACCA CATTTTCTA CATACAGCTG GGGAGGTAGC TGAGAACTTG 60
GCACTGCGCA CACATACTAG GTTGAAAAGAG AGTTGAGGAA ACCAGAAGGC CAAGTGGATC 120
55 TGCTGGCAAA CCCTGAACCT GTCTCCTGCG CTTGCTCTAC AGTTCTGAAG TTGAAAAATCC 180
TTTTCATGCC TAGCATCTGC TTGAGTTATA AACCCCAAGG CAGCCATGTC ATAGACTAGT 240
GTTTACTCTT GTTTTGACTT TGTTTTAATG CTTCCTAAGA CCCAAGTGCC TCCTGCTGTT 300

	iccicciiii	TGGTAGCCTC	TOGCCATCTG	GGACCTCAAT	CCCCAGCTTT	CCCACTTICA	360
	GCAGTCCTTT	GCTCTCTTTG	CTTCTACCTC	AAATAGCCCC	AGGAGTGGGC	TTTAGTCTCC	420
-5	AATATGGAGC	ATYTCAAGCT	TCTCCTGGGG	GATGGGGATT	GGGATGGGCA	GAATCTGTTT	480
	TOGWTCTCCG	GGTTATTTCC	AGTGGGTGTA	AAAGCAGAGC	TGGGCCTTTC	CCTCTCTTAT	540
10	CCCTGAGGGT	GGGTAAGAAG	GACTGTATCT	ACACCTGTTC	TTCCCTACCT	TCTCTTTTGT	600
10	TAGGGAGGCC	TCATTCTAAG	TTCCTCAAGA	GAGTCCTTGG	CTTAAAGCTG	TAGCAAGGGT	660
	GTGCTAGGTG	GGGGATTTGG	AGCAAAACCG	TCGAGTAGGC	ATGATACTGG	TATGGAGTGG	720
15	GCCTGCAAAA	TCAGACAGAA	ATGGCTTGAG	AAGCCGCAGG	GGAGCATGCC	TGTCTCTCAG	780
	TGATAGAGTA	TGGGAGGGAC	CTCCCTAGCT	TGGAAAATGA	GAATTGAAGG	GGTTATGAAC	840
20	AAATAGGATG	CCTAGTTGAG	GATGTTCCCA	AAGTTTTGTC	CAATCTTATC	ATTAGTAGAT	900
20	TTTATAAGCC	ACAGAGACAA	ACCAGAAACG	GAATAATGTT	ACTITIGGATG	CTTTATTTTT	960
	TTGTTCTAGG	TGTGGCTTTG	TACATGCAGA	AGAATGCTAT	ATGCTGCACA	TTTTGCCTTT	1020
25	AAAGTCTTAC	GACTTTCCCC	ATTTTAGTCT	AATGGGAAGA	TACAGATGTG	CAAGTCTGCT	1080
	TTTTTGTTTT	TIGTTATTAT	TTTTTTTTT	TIGCTCIGIG	TTATGGACAT	TTTCAGACAT	1140
30	GCACAGAAGT	GGAGAGGATG	GTCCTTGGAC	CCCATGTGTC	CATCACCTAG	CTGCATCACT	1200
	TATCAGCTAT	GGTCAACCTG	GTTTCATCTG	TATCTCTCTC	TTTTCACCTG	TATTGTTTAT	1260
	TGAAAATCCA	AGACACTATG	CCAATGCAAC	CGTGACTACT	TTGGGAGATT	GGTAGTCTCT	1320
35	TTTGATGGTG	ATAGTGATGG	GGTGCACTAT	CATAATCACA	TCAGGTCTGC	TTTTTGCTTT	1380
	TAATGTTAAC	TAATGAAGTT	CCAGAGATGG	GCCTTAGAAA	TGTGTTTTAA	GAATTAACAA	1440
40	GGAGTCTCAA	AAAGAAATGA	GAGGGATGCT	TCCTTTCCCC	TTGCATCTAC	AAAACAAGAG	1500
10	AGAGACTGTT	CTGTTGTAAA	ACTCTTTCAA	AAATTCTGAT	ATGGTAAGGT	ACTTGAGACC	1560
	CTTCACCAGA	ATGTCAATCT	TTTTTTCTGT	GTAACATGGA	AACTTGTGTG	ACCATTAGCA	1620
45	TTGTTATCAG	CTTGTACTGG	TCTCATAACT	CTGGTTTTGG	AAGAATAATT	TGGAAATIGT	1680
	TGCTGTGTTC	TGTGAAAATA	ACCTCCCCAA	AATAATTAGT	AACTGGTTGT	TCTACTTGGT	1740
50	AATTTGACAC	CCTGTTAATA	ACGCAATTAT	TTCTGTGTTC	TTAAACAGTA	TAAATAGTTG	1800
5 0	TAAGTTTGCA	TGCATGATGG	ААААТАААА	ACCIGIATCI	CTGTTAAAAA	АААААААА	1860
	АААААААА	ааааааааа	AAA				1883

60

(i) SEQUENCE CHARACTERISTICS:

⁽²⁾ INFORMATION FOR SEQ ID NO: 171:

(A) LENGTH: 2100 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

-5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 171:

	TACTTTTAGA	TITACTGCCT	TCAAAAAGTG	CCTATTCTGA	GCAACATAAA	CGTTATTCCT	60
10	TACATATGTA	TGTACACACG	GTACCCAGAG	TCGTACTGTG	GCAGCCTTCA	AAAACATACC	120
	ATCAGAAAGA	GTAGGTGCTG	AGATAAGGNA	ACTTTGCCAA	ATGNAAGAAA	GTCACTCACT	180
15	TCCAATATCC	CCTCTTCAAG	CGGCTACCGT	GRAASGGGCT	GCAAACACAT	TCCCTGAGCA	240
13	TCCCTTGCTG	ATACAGCTTC	TTTATATITA	TATCCTACTG	GATGGTAGCA	TATTGCTAAG	300
	GTTTCCTGTA	CTCTGCTTCA	AGGGAATGTA	AGYTTTATGG	CATTGAAACA	TTTAGGAAAA	360
20	AAAAAGATGT	TTAAGAGAAT	TAATAGAGCC	GTAGTCTGTA	TTAGGATGTG	TGTCATATGT	420
	GTGTTCTATA	AACTAAGCAT	CCCTCCCTTT	AGAGTGTTAA	AGTGTCAGCA	CATTCCTTCT	480
25	CCTTTTGTCT	CTCAGGCTAA	CATGAGAGAA	AATAGAAAAG	TCTTGGCTGT	GGGGATTGGA	540
23	AGCTCAGGGG	GCCAAATGTC	CTTGCCAGAT	CCTTAGAGCA	TTACTTTGAC	TCCTAAAAAT	600
	AGTAGTGTAT	GTTATTTGAT	GCTTTTGTT	TCCATAGITC	CATCACTGAC	AAAACTGTCA	660
30	ATACTGTTGA	TGGAGCAGCA	GCATAGCCTA	GAGTGATGCA	TTCTTACCCA	GAGGTGGCAA	720
	TAGGAGAGGG	TCCATGTAAA	TAGGACGAGG	TAGACAGTGC	ATGATTGTAG	GAGAAGGGTT	780
35	GAAGGGAGGA	CATGATTCCA	AAAAAGATCG	TTCTCAATGT	GTCGTCTGAC	TCAACCAGCT	840
33	GGCAGATTAC	ACTTGCCAAG	TCGTTCCCTT	TCCTTCTAAG	TCAGTTGGCT	CCATATTCAC	900
	TTGAATATGC	CTCTGTTTGG	GCAAAGCAAG	ATACCTCCAC	TTAACCTTTA	TCCAAGGAAG	960
40	CICITOGIGI	CCTCTTGGTC	ATAAAGTTGT	CTCCTACCTA	ACCCAGTTTT	ACCAAATGGA	1020
	AGTAAAAGGG	GACAAACTAT	GGAAGATGGA	CTCCATGCCA	TTGCAGTCAG	CCACCATTCT	1080
45	CTTTTCCATA	TAAGGAGCCC	CATTACATAA	GCTACGGGTG	AGGTTGGAAC	AGCTATGTTT	1140
43	CATAATTTCA	AGAGTGTGAC	CACCCTGCTC	TAGTCATCAT	CATTGGATGA	ATCCAGTTGA	1200
	CTCTTTGGCA	AAAGGGTGAT	ACTTTTCACT	AAAAATGCCT	ACTCTTCCTG	TTGATGTTCC	1260
50	TTTTCTGTTT	TTACCTTGTC	CAATTTCCAC	ACTAGTCATT	TTTTTTTTT	TTTAGAGGAT	1320
	CAGATTTTAG	CGCTGGAAAA	TGACTTCAAA	AATTTCAGTG	TAATGTCATA	AGGATGTTGG	1380
55	GATACAGAGA	TTTTTTTTT	CCTTGGAAAC	AAATGGACTG	GGAAGAAACA	CAGCATGGCT	1440
دد	TTGCTCTGAG	TTTCAATCTG	ATGATTATGA	CCATGGAAGA	TAGTCTTATG	TAAAGGTTAA	1500
	ATGGTGTTTA	CAAGTGGATA	GATAAGGCGG	AGATGGTGAG	AAGCCGGGTT	TTCTCTATGC	1560
60	TAAATGTGTC	TACTAAGAGC	AGCACTTCCT	ACTAGCTAAG	CACAATCATA	GCCCCACCGT	1620

GATGAGCTGC TAGTCTGAAT AACATTCCCT GACTTAGGGA AAGGCACACA AAAACATATA 1680 AAGAATATGT CTATTTTCAT ATGTGTGATA CTGACAGAGC CATGGTATTC CTAAAATATA 1740 GGITTCTCTT TTTTCTTGTA TTCTTAGCAA ATTGCATTTA TTCACTACAT TACAAACCAT 1800 CACTGATGTA TCCAAAATAG CACACATAGT TCAGTATGAA AATAAGAGAA TAAAATCTGT 1860 TATAAGCAAG TGATTTAGGT ATTTTCTTTT GTGTTTATGC ATTATCTGAC TATATTAAAA 1920 CCTGTTTTC TATTTACCTT CTATCAGTTT TCTCTACCAA TTATGTTTTT TCAATGCTCT 1980 ATAAGAATGA ATATGGAAAT TATATTTCTT TTTTCTGTAA AAGAGTTGCA ACTACTTTAT 2040 TATATTTAGA AATCCAATAA ACTICTTATT ACATITAAAA AAAAAAAAA AAAACICGAA 2100

20

25

-5

10

15

(2) INFORMATION FOR SEQ ID NO: 172:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1930 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 172:

30 60 CCTTTGANTG TGGTCCCGGG TGCNGATTGG CAGCGCCTCC GCCGCGGCTC GTGGTTGTCC CCCCATGGCA CTGTCGCGGG GGCTGCCCCG GGAGCTGGCT GAGGCGGTGG CCGGGGGCCG 120 35 GGTGCTGGTG GTGGGGGGGG GCGGCATCGG CTGCGAGCTC CTCAAGAATC TCGTGCTCAC 180 CGGTTTCTCC CACATCGACC TGATTGATCT GGATACTATT GATGTAAGCA ACCTCAACAG 240 ACACTTTTTG TITCAAAAGA AACATGTTGG AAGATCAAAG GCACAGGTTG CCAAGGAAAG 300 40 TGTACTGCAG TTTTACCCGA AAGCTAATAT CGTTGCCTAC CATGACAGCA TCATGAACCC 360 TGACTATAAT GTGGAATTTT TCCGACAGTT TATACTGGTT ATGAATGCTT TAGATAACAG 420 45 AGCTGCCCGA AACCATGTTA ATAGAATGTG CCTGGCAGCT GATGTTCCTC TTATTGAAAG TGGAACAGCT GGGTATCTTG GACAAGTAAC TACTATCAAA AAGGGTGTGA CCGAGTGTTA TGAGTGTCAT CCTAAGCCGA CCCAGAGAAC CTTTCCTGGC TGTACAATTC GTAACACACC 50 TTCAGAACCT ATACATTGCA TCGTTTGGGC AAAGTACTTG TTCAACCAGT TGTTTGGGGA 660 AGAAGATGCT GATCAAGAAG TATCTCCTGA CAGAGCTGAC CCTGAAGCTG CCTGGGAACC 720 55 AACGGAAGCC GAAGCCAGAG CTAGAGCATC TAATGAAGAT GGTGACATTA AACGTATTTC 780 TACTAAGGAA TGGGCTAAAT CAACTGGATA TGATCCAGTT AAACTTTTTA CCAAGCTTTT 840 TAAAGATGAC ATCAGGTATC TGTTGACAAT GGACAAACTA TGGCGGAAAA GGAAACCTCC 900 60

	ACTICCCITG	GACTGGGCTG	AAGTACAAAG	TCAAGGAGAA	GAAACGAATG	CATCAGATCA	960
	ACAGAATGAA	CCCCAGTTAG	GCCTGAAAGA	CCAGCAGGTT	CTAGATGTAA	AGAGCTATGC	1020
-5	ACGTCTTTTT	TCAAAGAGCA	TCGAGACTTT	GAGAGTTCAT	TTAGCAGAAA	AGGGGGATGG	1080
	AGCTGAGCTC	ATATGGGATA	AGGATGACCC	ATCTGCAATG	GATTTTGTCA	CCTCTGCTGC	1140
10	AAACCTCAGG	ATGCATATTT	TCAGTATGAA	TATGAAGAGT	AGATTTGATA	TCAAATCAAT	1200
	GGCAGGGAAC	ATTATTCCTG	CTATTGCTAC	TACTAATGCA	GTAATTGCTG	GGTTGATAGT	1260
	ATTGGAAGGA	TTGAAGATTT	TATCAGGAAA	AATAGACCAG	TGCAGAACAA	TTTTTTGAA	1320
15	TAAACAACCA	AACCCAAGAA	AGAAGCTTCT	TGTGCCTTGT	GCACTGGATC	CTCCCAACCC	1380
	CAATIGTTAT	GTATGTGCCA	GCAAGCCAGA	GGTGACTGTG	CGGCTGAATG	TCCATAAAGT	1440
20	GACTGTTCTC	ACCTTACAAG	ACAAGATAGT	GAAAGAAAAA	TTTGCTATGG	TAGCACCAGA	1500
	TGTCCAAATT	GAAGATGGGA	AAGGAACAAT	CCTAATATCT	TCCGAAGAGG	GAGAGACGGA	1560
	AGCTAATAAT	CACAAGAAGT	TGTCAGAATT	TGGAATTAGA	AATGCCAGCC	GGCTTCAAGC	1620
25	AGATGACTTC	CTCCAGGACT	ATACTTTATT	GATCAACATC	CTTCATAGTG	AAGACCTAGG	1680
	AAAGGACGTT	GAATTIGAAG	TTGTTGGTGA	TGCCCCGGAA	AAAGTGGGGS	CCAAACAAGC	1740
30	TGAAGATGCT	GCCAAAAGCA	TAACCAATGG	GCAGTGATGA	TGGGAGCTTC	AGCCCTCCAC	1800
	CTYCACAGCT	TCAAGGAGGC	AAGATGGACG	TYTCYCATAG	TTGATYCGGR	TGAAGAAGRT	1860
	TCTCCAATAA	TTGCCCGACG	TTCATTGAAG	GAAGGAGGAG	GAGGCCCGCC	AAGAGGGGAA	1920
35	TTTAGGNTTG						1930

40 (2) INFORMATION FOR SEQ ID NO: 173:

45

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1509 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 173:

50	GCCCTGGCC	TCTGGGCTGA	GCCTTGCTAG	GGACTCGGGG	TGGCTCTAAG	GGGCAGGGAT	60
55	AGGGCTGGGG	AGCGCCGGCC	TGTGGCCCTG	ACCAGCCCCT	TCTCGTGCRG	GTTCCACCCC	120
	GATGCAGGTG	GTCACGTGCT	TGACGCGGGA	CAGCTACCTG	ACGCACTGCT	TCCTCCAGCA	180
	CCTCATGGTC	GIGCIGICCT	CTCTGGAACG	CACGCCCTCG	CCGGAGCCTG	TTGACAAGGA	240
	CTTCTACTCC	GAGTTTGGGA	ACAAGACCAC	AGGGAAGATG	GAGAACTACG	AGCTGATCCA	300
60	CTCTAGTCGC	GTCAAGTTTA	CCTACCCCAG	TGAGGAGGAG	ATTGGGGACC	TGACGTTCAC	360

402

	TGTGGCCCAA	AAGATGGCTG	AGCCAGAGAA	GCCCCAGCC	CTCAGCATCC	TGCTGTACGT	420
. 5	GCAGGCCTTC	CAGGTGGGCA	TGCCACCCCC	TGGGTGCTGC	AGGGCCCCC	TGCGCCCCAA	480
	GACACTCCTG	CTCACCAGCT	CCGAGATCTT	CCTCCTGGAT	GAGGACTGTG	TCCACTACCC	540
	ACTGCCCGAG	TTTGCCAAAG	AGCCGCCGCA	GAGAGACAGG	TACCGGCTGG	ACGATGCCCG	600
10	CCCCGICCGG	GACCTGGACC	GAGTGCTCAT	GGGCTACCAG	ACCTACCCGC	AGCCCTCACC	660
	CTCGTCTTCG	ATGACGTGCA	AGGTCATGAC	CTCATGGGCA	GTGTCACCCT	GGACCACTTT	720
15	GGGGAGGTGC	CAGGTGGCCC	GGCTAGAGCC	AGCCAGGGCC	GTGAAGTCCA	GTGGCAGGTG	780
	TTTGTCCCCA	GTGCTGAGAG	CAGAGAGAAG	CTCATCTCGC	TGTTGGCTCG	CCAGTGGGAG	840
	GCCCTGTGTG	GCCGTGAGCT	GCCTGTCGAG	CTCACCGGCT	AGCCCAGGCC	ACAGCCAGCC	900
20	TGTCGTGTCC	AGCCTGACGC	CTACTGGGGC	AGGGCAGCAG	GCTTTTGTGT	TCTCTAAAAA	960
	TGTTTTATCC	TCCCTTTGGT	ACCTTAATTT	GACTGTCCTC	GCAGAGAATG	TGAACATGTG	1020
25	TGTGTGTTGT	GTTAATTCTT	TCTCATGTTG	GGAGTGAGAA	TGCCGGGCCC	CTCAGGGCTG	1080
	TCGGTGTGCT	GTCAGCCTCC	CACAGGTGGT	ACAGCCGTGC	ACACCAGTGT	CGTGTCTCCT	1140
	GTTGTGGGAC	CGTTGTTAAC	ACGTGACACT	GTGGGTCTGA	сттететте	TACACGTCCT	1200
30	TTCCTGAAGT	GTCGAGTCCA	GICCTITGIT	GCTGTTGCTG	TTGCTGTTGC	TGTTGCTGTT	1260
	GGCATCTTGC	TGCTAATCCT	GAGGCTGGTA	GCAGAATGCA	CATTGGAAGC	TCCCACCCCA	1320
35	TATTGTTCTT	CAAAGTGGAG	GTCTCCCCTG	ATCCAGACAA	GTGGGAGAGC	CCGTGGGGGC	1380
	AGGGGACCTG	GAGCTGCCAG	CACCAAGCGT	GATTCCTGCT	GCCTGTATTC	TCTATTCCAA	1440
	TAAAGCAGAG	TTTGACACCG	тсаааааааа	ааааааааа	ааааааааа	ATTNCTGCGG	1500
40	CCTCAAGGG						1509

45 (2) INFORMATION FOR SEQ ID NO: 174:

50

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3173 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 174:

55 TCGACCCCAS GCGTCCGTGC TTTTCCACAG AAGGTTAGAC CCTGAAAGAG ATGGCTCAGC 60
ACCACCTATG GATCTTGCTC CTTTGCCTGC AAACCTGGCC GGAAGCAGCT GGAAAAGACT 120
CAGAAATCTT CACAGTGAAT GGGATTCTGG GAGAGTCAGT CACTTTCCCT GTAAATATCC 180

	AAGAACCACG	GCAAGTTAAA	ATCATTGCTT	GGACTTCTAA	AACATCTGTT	GCTTATGTAA	240
	CACCAGGAGA	CTCAGAAACA	GCACCCGTAG	TTACTGTGAC	CCACAGAAAT	TATTATGAAC	300
- 5	GGATACATGC	CTTAGGTCCG	AACTACAATC	TGGTCATTAG	CGATCTGAGG	ATGGAAGACG	360
	CAGGAGACTA	CAAAGCAGAC	ATAAATACAC	AGGCTGATCC	CTACACCACC	ACCAAGCGCT	420
10	ACAACCTGCA	AATCTATCGT	CGCCTTCGGA	AACCAAAAAT	TACACAGAGT	TTAATGGCAT	48.0
10	CTGTGAACAG	CACCTGTAAT	GTCACACTGA	CATGCTCTGT	AGAGAAAGAA	GAAAAGAATG	540
	TGACATACAA	TTGGAGTCCC	CTGGGAGAAG	AGGGTAATGT	CCTTCAAATC	TICCAGACTC	600
15	CTGAGGACCA	AGAGCTGACT	TACACGTGTA	CAGCCCAGAA	CCCTGTCAGC	AACAATTCTG	660
	ACTCCATCTC	TGCCCGGCAG	CTCTGTGCAG	ACATCGCAAT	GCCTTCCCT	ACTCACCACA	720
20	CCGGGTTGCT	GAGCGTGCTG	GCTATGTTCT	TTCTGCTTGT	TCTCATTCTG	TCTTCAGTGT	780
	TTTTGTTCCG	TTTGTTCAAG	AGAAGACAAG	ATGCTGCCTC	AAAGAAAACC	ATATACACAT	840
	ATATCATGGC	TTCAAGGAAC	ACCCAGCCAG	CAGAGTCCAG	AATCTATGAT	GAAATCCTGC	900
25	AGTCCAAGGT	GCTTCCCTCC	AAGGAAGAGC	CAGTGAACAC	AGTTTATTCC	GAAGTGCAGT	960
	TTGCTGATAA	GATGGGGAAA	GCCAGCACAC	AGGACAGTAA	ACCTCCTGGG	ACTTCAAGCT	1020
30	ATGAAATTGT	GATCTAGGCT	GCTGGGCTGA	ATTCTCCCTC	TGGAAACTGA	GTTACAACCA	1080
	CCAATACTGG	CAGGTTCCCT	GGATCCAGAT	CITCICTGCC	CAACTCTTAC	TGGGAGATTG	1140
	CAAACTGCCA	CATCTCAGCC	TGTAAGCAAA	GCAGGAAACC	TTCTGCTGGG	CATAGCTTGT	1200
35	GCCTAAATGG	ACAAATGGAT	GCATACCCTT	CCTGAAATGA	CTCCCTTCTG	AATGAATGAC	1260
	AAAGCAGGTT	ACCTAGTATA	GTTTTCCCAA	ACTTCTTCCC	ATCATAGCAC	ATGTAGAAAA	1320
10	TAATATTTT	ATGGCACACT	GGGATAAACA	AGCAAGATTG	CTCACTTCTG	GAAGCTGCAT	1380
	ATGACTAGAG	GCCTCTTGTG	ACTGGAGGTA	ACAACCCTGC	CCAGTAACTG	TGGGAGAAGG	1440
	GGATCAATAT	TTTGCACACC	TGTAATAGGC	CATGGCACAC	CAGCCAAGAT	GCTCTGCTCA	1500
1 5	CAGTCAGTAT	GTGTGAAGAT	CCCTGGTGCG	TGGCCTTCAC	CACGCATCTT	GAGCAAATTA	1560
	GGAAAATGTA	CCCTTCGCTT	GAGGCAGATG	CAGCCCTTCC	CCCGAGTGCA	TGGCTTGGAG	1620
50	AGCAGAATGT	GGGCTGCATA	TAAGCACACT	CATCCCTTTG	TCTGGGAATC	TTTGTGCAGG	1680
,,	GCATAACAGG	CTTAGTAAGT	CCAAACACAG	ATGACAGTGC	TGTGTGGGTC	TCTGTCAGAG	1740
	TTGTGGCTCT	CAGCCATGTA	GACACACTCT	CCAAATGGAG	TGTTGGAAAA	TGTTCTTTCT	1800
55	GCAGGGTCTA	GAGACTGCTG	GGACACTTTT	CTTGGAGTGC	TACTTCAGAA	GCCTTATAGG	1860
	ATTTTCTTTC	TGGCCAAGAT	TTCCTTCTGT	ATCACTCCAA	GCAGCCTCAG	CAGAAGAAGC	1920
۲۸	AGCCATGCCC	AGTATTCCCA	CTCTCCAAAA	GGAACTGACC	AGCTTATATT	TCTCACACTT	1980

	CTGGGGAACT GGGTATAATC CAACCATCAA AATAGAAGAC CTTGCAAGAA GCAGAGTCAT	2040
	TCTCCAGAAG GAACTTGGGA GATGATGGTG CAGATGATGA AACTGGGTTC ATCCCAGTTC	2100
-5	CAAAGACTCA GAGAACTAGA GTTTAAGCTG AGGCAGAGTG CCGCCACCCT GGCATGCCCC	2160
	ACAAACAGAT CACCAGCCAG CTTACACAGG CATTAACTCT CCTCAATGAG GAAGAATCAT	2220
10	TCACAACTGA GCAAGACATT CATATGATCA TTTAAGGAAG TGTTTCCCTT ATGTGTTAGC	2280
10	AAGTATAATC GGCTAACTCC TAAATCCCAA TGAATAGTCC TAGGCTGGAC AGCAATGGGC	2340
	TGCAATTAGG CAGATAAAGA CATCAGTCCC AGTAAATGAA TCCATAGACT CATCTAGCAC	2400
15	CAACTACCAT TAGCACTATG TTAGGAGCTG CAAGGCCCCA AAGTAGAAGA TGTGCATAAT	2460
	GTCTGCTCTT GTGTAGCTCA GGAGACAATT CCAGCACAGA CACTACAGTT AACGCTGAAC	2520
20	TGCAGCTGCA AGTAATAGCA TGAACAGTCA GAAAAATACC TTATGAGGGG GCAGGGCTGA	2580
20	AGCTGGGCCT TGAAGGATGG ATGAAATTTG GATAGAGAAT GAGGAAGACA GAGGGCCTCC	2640
	AAGTGAGAGA AGCATGAAAA ATGAGCAGGG GCCTGGATCA GTGGGGTGTA TTCAGAGCAC	2700
25	CTCTCCAGAT GCACCATGCA TGCTCACAGT CCCTTGCCTA TGTGTGGCAG AGTGTCCCAG	2760
	CCAGATGTGT GCCCCCACCC CATGTCCATT TACATGTCCT TCAATGCCCA CCTCAAAAGG	2820
30	TACCTCTTCT GTAAAGCTTT CCCTGGTATC AGGAATCAAA ATTAATCAGG GATCTTTTCA	2880
50	CACTGCTGTT TTTTCCTCTT TGGTCCTTCT ATCACTAAAA CTCATCTCAT	2940
	AGCATAACTA ATTATTTGTT TTCCTCACTA CATTGTACAT GTGGGAATTA CAGATAAACG	3000
35	GAAGCCKGCT GGGGTGGTGG CTCACGCCTG TAATCCCAAC ACTTTGGGAG GCCAAGGCAG	3060
	GCGGATCACC TGAGGTCAGG ARTTCGAGAT TARTCTGGCC AACATGGTGA AACCCCATNT	3120
40	NTACTAAAAA TACGAAATTA GCCAGGTGTG GTGGCACACA TCTGTAGTCC CAG	3173
	(2) INFORMATION FOR SEQ ID NO: 175:	
45	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 991 base pairs (B) TYPE: nucleic acid	
50	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 175:	
		60
55	AAATTCGGCA CAGCTGAGAG GAGACACAAG GAGCAGCCCG CAAGCACCAA GTGAGAGGGCA TCAACTTACA CTCTCTTTTCC CTTTTCCCTCC TCCCCTACAAT ACTCAMATTCC TCCTCACTAC	
	TGAAGTTACA GTGTGTTTCC CTTTGGCTCC TGGGTACAAT ACTGATATTG TGCTCAGTAG	120
60	ACAACCACGG TCTCAGGAGA TGTCTGATTT CCACAGACAT GCACCATATA GAAGAGAGTT	180
UU	TCCAAGAAAT CAAAAGAGCC ATCCAAGCTA AGGACACCTT CCCAAATGTC ACTATCCTGT	240

	CCACATTGGA GACTCTGCAG ATCATTAAGC CCTTAGATGT GTGCTGCGTG ACCAAGAACC	300					
- 5	TCCTGGCGTT CTACGTGGAC AGGGTGTTCA AGGATCATCA GGAGCCAAAC CCCAAAATCT	360					
	TGAGAAAAAT CAGCAGCATT GCCAACTCTT TCCTCTACAT GCAGAAAACT CTGCGGCAAT	420					
	GTCAGGAACA GAGGCAGTGT CACTGCAGGC AGGAAGCCAC CAATGCCACC AGAGTCATCC	480					
10	ATGACAACTA TGATCAGCTG GAGGTCCACG CTGCTGCCAT TAAATCCCTG GGAGAGCTCG	540					
	ACGTCTTTCT AGCCTGGATT AATAAGAATC ATGAAGTAAT GTCCTCAGCT TGATGACAAG	600					
15	GAACCTGTAT AGTGATCCAG GGATGAACAC CCCCTGTGCG GTTTACTGTG GGAGACAGCC	660					
	CACCTTGAAG GGGAAGGAGA TGGGGAAGGC CCCTTGCAGC TGAAAGTCCC ACTGGCTGGC	720					
	CTCAGGCTGT CTTATTCCGC TTGAAAATAG CCAAAAAGTC TACTGTGGTA TTTGTAATAA	780					
20	ACTCTATCTG CTGAAAGGGC CTGCAGGCCA TCCTGGGAGT AAAGGGCTGC CTTCCCATCT	840					
	AATTTATTGT GAAGTCATAT AGTCCATGTC TGTGATGTGA	900					
25	ACACATTGTA CTGAGTGGTT TTTCTGAATA AATTCCATAT TTTACCTAAA AAAAAAAAA	960					
	AAAAACTCGA GGGGGGCCC GTACCCAATT T	991					
30	(2) INFORMATION FOR SEQ ID NO: 176:						
35	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1290 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear						
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 176:						
	ACAGCCCTCT TCGGAGCCTG AGCCCGGCTC TCCTCACTCA CCTCAACCCC CAGGCGGCCC	60					
	CTCCACAGGG CCCCTCTCCT GCCTGGACGG CTCTGCTGGT CTCCCCGTCC CCTGGAGAAG	120					
45	AACAAGGCCA TGGGTCGGCC CCTGCTGCTG CCCCTRCTGC YCCTGCTGCW GCCGCCAGCA	180					
	TTTCTGCAGC CTRGTGGCTC CACAGGATCT GGTCCAAGCT ACCTTTATGG GGTCACTCAA	240					
50	CCAAAACACC TCTCAGCCTC CATGGGTGGC TCTGTGGAAA TCCCCTTCTC CTTCTATTAC	300					
50	CCCTGGGAGT TAGCCAYAGY TCCCRACGTG AGAATATCCT GGAGACGGGG CCACTTCCAC	360					
	GGGCAGTCCT TCTACAGCAC AAGGCCGCCT TCCATTCACA AGGATTATGT GAACCGGCTC	420					
55	TTTCTGAACT GGACAGAGGG TCAGGAGAGC GGCTTCCTCA GGATCTCAAA CCTGCGGAAG	480					
	GAGGACCAGT CTGTGTATTT CTGCCGAGTC GAGCTGGACA CCCGGAGATC AGGGAGGCAG	540					
60	CAGTTGCAGT CCATCAAGGG GACCAAACTC ACCATCACCC AGGCTGTCAC AACCACCACC	600					

	ACCTGGAGGC	CCAGCAGCAC	AACCACCATA	GCCGGCCTCA	GGGTCACAGA	AAGCAAAGGG	660
	CACTCAGAAT	CATGGCACCT	AAGTCTGGAC	ACTGCCATCA	GGGTTGCATT	cecterecer	720
-5	GTGCTCAAAA	CTGTCATTTT	GGGACTGCTG	TGCCTCCTCC	TCTGTGGTGG	AGGAGAAGGA	780
	AAGGTAGCAG	GGCGCCAAGC	AGTGACTTCT	GACCAACAGA	GTGTGGGGAG	AAGGGATGTG	840
10	TATTAGCCCC	GGAGGACGTG	ATGTGAGACC	CCCTTCTGAG	TCCTCCACAC	TCGTTCCCCA	900
10	TTGGCAAGAT	ACATGGAGAG	CACCCTGAGG	ACCTTTAAAA	GGCAAAGCCG	CAAGGCAGAA	960
	GGAGGCTGGG	TCCCTGAATC	ACCGACTGGA	GGAGAGTTAC	CTACAAGAGC	CTTCATCCAG	1020
15	GAGCATCCAC	ACTGCAATGA	TATAGGAATG	AGGTCTGAAC	TCCACTGAAT	TAAACCACTG	1080
	GCATTTGGGG	GCTGTTYATT	ATAGCAGTGC	AAAGAGTTCC	TTTATCCTCC	CCAAGGATGG	1140
20	AAAATACAAT	TTATTTTGCT	TACCATACAC	CCCTTTCTC	CTCGTCCACA	TTTTCCAATC	1200
20	TGTATGGTGG	CIGICITCTA	TGGCAGAAGG	TTTTGGGGAA	TAAATAGCGT	GANATGNTNC	1260
	TGACTNAAAA	АААААААА	AAAAACTCGA				1290
25							
	(2) INFORMA	TION FOR SE	O ID NO. 17	ı7 ·			
30			-				
30	. (1)		GTH: 2290 b	ase pairs			
			E: nucleic a ANDEDNESS: (
35		(D) TOPO	OLOGY: line	ar			
	(xi)	SEQUENCE I	DESCRIPTION:	SEQ ID NO:	: 177:		
	TGGGGCCCCT	TTTGGATGCT	CTGGGTGTTT	TTGCCAAGAG	TTACAGGATG	TCAAGTGTGG	60
40	GGAGCTCAGC	ACCCTTGCTG	TGGACCAGTG	AAGGCTGTTC	CAGACCAGGT	GCTTCCAGAC	120
	ATTTCCAGGC	TCCAGGAGAG	AGGCTGGGAG	CCCCACAGA	AAGCACAGGA	AAATGCAAAA	180
45	AAAAAACAGT	CTTTTTTTT	TTTTTGCTTT	TTATTATGAA	AACAAAACAA	ATGCCCCAGG	240
	AGAAGGGTCC	ATGATTACCA	GAAACATCAA	AGAGTACTTT	CTACCATTTT	TATTCTGTTG	300
	TGTTGAGGCC	AGCATTGCAA	TAAACAAGCT	AAACTACTTA	CATTGGACTC	ATTTTCAGTA	360
50	ACTGACATTT	ACAGGAATAT	ACTAGAAACG	GCACTAAAAA	GTTTAAGAAA	AGTTACGGTA	420
	AACTTGCATG	CACATCATAC	AGAAAAGTAA	CATTTTAAAT	ATAAAAAAGA	AAAACTTCCT	480
55	GGAAGCATTA	TGCCAGTATT	AAGGAACAGT	GCTACTCTGG	ATGTGACAAA	TTCTGTATGT	540
,,,	GGGTGTTACT	CTTTCCCAAA	AGACTGTCAG	AGGCGTGAGT	GCTGCAAAAG	AACAACAACA	600
	AAAACAAACA	САСАААААА	TGTGTCTTAC	AGTTTGTAAG	CAAGATGACA	CTGCCCAACA	660
60	CAAAGAGGGG	TCTGGAGTTC	AGTTCACGCC	CGAAGCCTGC	CCCCTCGGCC	TCCAGGGGTC	720

	ATTCAGAGTG	TTCTCAAATC	CAATTCCGAC	ACACGACTTG	TCACTACTCC	TCTCCCCTTG	780
. 5	AAAAAACCAT	GTTAGAAGCT	GCCCTACAGG	TCTCAGCAGT	GGGACAATCT	AATTGAATCA	840
•	CCGCAGCCTT	CTAATACAGA	AGAAACGGAC	GTGACTGTCA	CCCTCAGCCC	GCCAGCAAGG	900
	GCGCTGAGGA	AGTCATTAAT	CCTTCGAAAC	TCTGAAAAGA	AACCAGTGTT	GAAGTCTGGA	960
10	CAGAAAGCCT	TAAAAAAGTG	ACAGCACCAA	TGCAGCTGCT	CAGTGTACCC	NCCGTGGGCT	1020
	GTCAGGGTCA	GTGGCTTCTT	TCTAGATGAA	AGGAGCAGAG	GCGAGCCGAC	GCCACCGTCA	1080
15	CAGAGAACCA	GCCGAGAAGG	AAAGGCCCCA	CGATGCTCCC	TGTGCGCTGC	CCCCACAGCC	1140
••	GCCCCTCCC	CCGACGCCTC	ACACAGGCAG	CACCTCACTG	CCCTGTGGCT	GGAGGGGCAT	1200
	TGCAAGGAGC	GCCCCCAGC	CCCAGGCACC	CCCGGCTTAG	GGTGTACGTA	TCACCCAGCC	1260
20	CTGTGCTGGC	AGCACGTTAC	CAACCAGCCT	GCGTGAAGAC	CTGTCAACTG	TCGTGTGTGA	1320
	ATTCCTTAAA	TTCGGTTTAA	ATAGTCCATT	AAAGATCTGT	TTAGAAAATA	CCTTTGAAAA	1380
25	CGAGGGTAAC	TTTAAAAAAT	GGAAACTTTC	AAATCCATTT	ATATTTTTAT	TATAAACAAA	1440
	ACTTAATTAA	AAGTTTAACA	AACTGGCTGA	AAACTCACCA	AGTGTCAGAC	TCACCAGCAA	1500
	TTTAAAAAAT	GATAATTTAC	CAGCATCTCC	TCATCAGAGT	TCCCTCTCCA	GTAAGGGTAT	1560
30	ACCTACATCT	GTAAGGGTCA	GTGGACTCTG	AATCAATTTT	ATGGTTGTTT	TAAAATCACC	1620
	GTGTATTAGG	ATACTAATGA	TAGTCCCTAT	ATCCATCCAG	AAATGCTGGC	AGAAAGCACT	1680
35	GGCCACCATA	CAGGACAGAC	CACACCACAG	CTCCATACCC	AGCGTCTGCC	TGGAGGCTCC	1740
	CCCACGCTGA	GGTCCGGGAG	AATGCCTGGT	TTCAGTCATT	TCCGGACTAA	CTGTGACAAC	1800
	GCGTGAGCAG	GGAGCACCGT	GCGAGTCTCC	GGGAGGGAAT	CCTCCTGGGG	CCCAGAGACT	1860
40	CCTCCACCCC	TGGGGAGGGC	AGACAGGCTC	GGGARGGCCT	GCCAGGCCA	CTGGAGGCTG	1920
	GCAGGGAGCA	GGCATGTCCA	CCCGCAAGCC	TGGGAGGCTA	ACTCTGGCAT	TCCTGGCCGG	1980
45	AGCCGCCATG	CTCATTGGTG	GGCCAGTTTG	GGACATCCCC	GTACTCAAAG	ACCATATGGC	2040
	AGCCTCTGGG	AAAACAAAAC	CAAAACATCA	CCTTCTATTA	AACTCTGTAT	TTTATTATTA	2100
	TTTACAATAG	AAAGTTAAAA	ATCAAGACTT	AGATTTACTA	TACATTTTT	CTCTCAGATT	2160
50	ACAAAGTTTA	ТАТТАТАТАА	CTGGGGTTCC	CTAAATTGAT	TTCTTTTAAA	ACAGTCTTAA	2220
	AGAGACCAGA	AGTGAATACA	AAAGAACTAA	ACAAAATAAA	AAATTAGAAT	GTGCTGTAGC	2280
55	TGAAAGCTGT						2290

⁽²⁾ INFORMATION FOR SEQ ID NO: 178:

0 20/02410

WO 98/39448 PCT/US98/04493

	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 549 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
-5	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 178:	
10	GGCACGAGCC ATGCCTGGCC TCTCCTTGAT TCTTACAGTC ACTTTGTTGG CTGTTTCTGA	60
	CTCAGCAGCT ACCTGCATTG TGGCCAAAGG ATGACCTATT CCTTCTCAGG AGGGCAAAAA	120
	TGTGGAATAG TGTCTGTCCA TGCCTCTCCT CATGGGCTAC CACCTCTGCC ACCGTGGTTA	180
15	ATCAGTAACA ACCAGGAGAG AAGCTGCTGG AACTGACCTC TGGGAACTCC CTGGGATGGT	240
	TTGGTGCAGG AATGTAGTAG GCATACACGT GGTTGCGTGG ATCTGGGCCC TCCTGATGTG	300
20	AGTAGAGAGG TAAAAAGGCCA CCATCTCCTT GACCTCTGGG GAACTCATCC ACAAAGAAGA	360
	TGTTTCCAAG ATGCTTCTGA AGATTGCCTA AAAATAGCCG GTTTCCACCC CCGTGAATGC	420
	ATCCATTCTA GAATGCTCCT TCACCAGGAC CAGAGAACTG ATTTACAGAA GTGACATGAA	480
25	AACATTCCAT CCCAGAATTT GCAGTAGCTC AAATTAAGTT TCTAGCTATT AAAAAGAAAA	540
	AAAAAAAA	549
30		
	(2) INFORMATION FOR SEQ ID NO: 179:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1509 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 179:	
	GGCACGAGGG CTCATTCATT CCGCGCCGGG CCTGCCAGAC ACCTGCGCCC TTCTGCAGCC	60
45	GCCCGCCGCA TCCGCCGCG CAGCCCCCAG CATGTCGGGC CCAGACGTCG AGACGCCGTC	120
43	CGCCATCCAG ATCTGCCGGA TCATGCGGCC AGATGATGCC AACGTGGCCG GCAATGTCCA	180
	CGGGGGGACC ATCCTGAAGA TGATCGAGGA GGCAGGCGCC ATCATCAGCA CCCGGCATTG	240
50	CAACAGCCAG AACGGGGAGC GCTGTGTGGC CGCCCTGGCT CGTGTCGAGC GCACCGACTT	300
	CCTGTCTCCC ATGTGCATCG GTGAGGTGGC GCATGTCAGC GCGGAGATCA CCTACACCTC	360
<i></i>	CAAGCACTCT GTGGAGGTGC AGGTCAACGT GATGTCCGAA AACATCCTCA CAGGTGCCAA	420
55	AAAGCTGACC AATAAGGCCA CCCTGTGGTA TGTGCCCCTG TCGCTGAAGA ATGTGGACAA	480
	GGTCCTCGAG GTGCCTCCTG TTGTGTATTC CCGGCANGAG CAGGAGGAGG AGGGCCGGAA	540
60	GCGGTATGAA GCCCAGAAGC TGGAGCGCAT GGAGACCAAG TGGAGGAACG GGGACATCGT	600

409

	CCAGCCAGTC CTCAACCCAG AGCCGAACAC TGTCAGCTAC AGCCAGT	CCA GCTTGATCCA	660
-5	CCTGGTGGGG CCTTCAGACT GCACCCTGCA CGGCTTTGTG CACGGAG	GTG TGACCATGAA	720
-3	GCTCATGGAT GAGGTCGCCG GGATCGTGGC TGCACGCCAC TGCAAGA	CCA ACATCGTCAC	780
	AGCTTCCGTG GACGCCATTA ATTTTCATGA CAAGATCAGA AAAGGCT	GCG TCATCACCAT	840
10	CTCGGGACGC ATGACCTTCA CGAGCAATAA GTCCATGGAG ATCGAGG	IGT TGGTGGACGC	900
	CGACCCTGTT GTGGACAGCT CTCAGAAGCG CTACCGGGCC GCCAGTG	CCT TCTTCACCTA	960
15	COTOTOGCTG AGCCAGGAAG GCAGGTCGCT GCCTGTGCCC CAGCTGG	IGC CCGAGACCGA	1020
13	GGACGAGAAG AAGCGCTTTG AGGAAGGCAA AGGGCGGTAC CTGCAGA	IGA AGGCGAAGCR	1080
	ACAGGGCCAC GCGGASCYTC AGCCCTAGAC TCCCTCCTCC TGCCACT	GGT GCCTCGAGTA	1140
20	GCCATGGCAA CGGGCCCAGT GTCCAGTCAC TTAGAAGTTC CCCCCTT	GGC CAAAAACCCA	1200
	ATTCACATTG AGAGCTGGTG TTGTCTGAAG TTTTCGTATC ACAGIGT	TAA CCTGTACTCT	1260
25	CTCCTGCAAA CCTACACACC AAAGCTTTAT TTATATCATT CCAGTAT	CAA TGCTACACAG	1320
23	TOTTOTOCOG AGCGCOGGGA GGCGTTGGGC AGAAACCCTC GGGAATG	CTT CCGAGCACGC	1380
	TGTAGGGTAT GGGAAGAACC CAGCACCACT AATAAAGCTG CTGCTTG	GCT GGAAAAAAAA	1440
30	AAAAAAA AAAAAAAAA AAAAAAAA AAAAAAAA AAAA	AAAAAAAAA	1500
	AGAAAAAN		1509
35			
	(2) INFORMATION FOR SEQ ID NO: 180:		
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1316 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear		
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 180:		
	AGCTGTATCA TAGGAAAGAT GGCCACACCG GCGGTACCAG TAAGTGC	TCC TCCGGCCACG	60
50	CCAACCCCAG TCCCGGCGGC GGCCCCAGCC TCAGTTCCAG CGCCAAC	GCC AGCACCGGCT	120
	GCGGCTCCGG TTCCCGCTGC GGCTCCAGCC TGCATCCTCA GACCCTG	CGG CAGCAGCGGC	180
	TGCAACTGCG GCTCCTGGCC AGACCCCGGC CTCAGCGCAA NTCCAGC	GCA GACCCCAGCG	240
55	CCCGCTCTGC CTGGTCCTGC TCTTCCAGGG CCCTTCCCCG GCGGCCG	CGT GGTCAGGCTG	300
	CACCCAGTCA TTTTGGCCTC CATTGTGGAC AGCTACGAGA GACGCAA	CGA GGGTGCTGCC	360

CGAGTTATCG GGACCCTGTT GGGAACTGTC GACAAACACT CAGTGGAGGT CACCAATTGC 420

	TITICAGIGE COCACATION GICHGAMGNI GANGIGGETG TIGACATGGA ATTIGCTANG	48
	AATATGTATG AACTGCATAA AAAAGTTTCT CCAAATGAGC TCATCCTGGG CTGGTACGCT	54
_5	ACGGGCCATG ACATCACAGA GCACTCTGTG CTGNATCCAT GAGTACTACA GCCGAGAGGC	60
	CCCCAACCCC ATCCACCTCA CTGTGGACAC AAGTCTCCAG AACGGCCGCA TGAGCATCAA	66
10	AGCCTACGTC AGCACTTTAA TGGGAGTCCC TGGGAGGACC ATGGGAGTGA TGTTCACGCC	72
10	TCTGACAGTG AAATACGCGT ACTACGACAC TGAACGCATC GGAGTTGACC TGATCATGAA	78
	GACCTGCTTT AGCCCCAACA GAGTGATTGG ACTCTCAAGT GACTTGCAGC AAGTAGGAGG	84
15	GGCATCAGCT CGCATCCAGG ATGCCCTGAG TACAGTGTTG CAATATGCAG AGGATGTACT	90
	GTCTGGAAAG GTGTCAGCTG ACAATACTGT GGGCCGCTTC CTGATGAGCC TGGTTAACCA	96
20	AGTACCGAAA ATAGTTCCCG ATGACTTTGA GACCATGCTC AACAGCAACA TCAATGACCT	102
20	TTTGATGGTG ACCTACCTGG CCAACCTCAC ACAGTCACAG ATTGCACTCA ATGAAAAACT	108
	TGTAAACCTG TGAATGGACC CCAAGCAGTA CACTTGCTGG TCTAGGTATT AACCCCAGGA	1140
25	CTCAGAAGTG AAGGAGAAAT GGGTTTTTTG TGGTCTTGAG TCACACTGAG ATAGTCAGTT	1200
	GTGTGTGACT CTAATAAACG GAGCCTACCT TTTGTAAATT AAAAAAAAAA	1260
30	SGRGGGGGG CCCGGTCCCA TTSSCCCTTT NGTAATTCGT NITACAATCC CCNGGC	1316
35	(2) INFORMATION FOR SEQ ID NO: 181: (i) SEQUENCE CHARACTERISTICS:	
40	(A) LENGTH: 777 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 181:	
45	GGCATGWKCA GACATGACTT CTATTGCCAG GCTGGTCAAG TGGCAGGGTC ATGAGGGAGA	60
	CATCGATAAG GGTGCTCCTT ATGCTCCCTG CTCTGGAATC CACCAGCGGG CTATCTGCGT	120
	TTATGGGGCT GGGGACTAGA ATTGGATGCT TCAAAACCAT CACCTGTTGG CCAACAAGTT	180
50	TGACCCAAAG GTAGATGATA ATGCTCTTCA GTGCTTAGAA GAATACCTAC GTTATAAGGG	240
	CCATTCTATT GGGACCTGAA CTTTGAAGAC CACAMTATTG AAGAGGCGTT GCTTACCYGT	300
55	TGGGGGCCAA GAGGCATGTT ACCAAACATG GYYCARGAAM YTTGGYKGGG AMCARKKKKG	360
	GKKGGGARRM CMRGGGYTTG SCAAWITCSK KGGCMWCCYT TTAGGGTAAR RRGGGCKGTW	420
	ATTAGATTGT GGGTAAAGTA GGATCTTTTG CCCTTGCAAA TTTGCTGCCT GGGTGAATGY	480
60		

	AGAATGAGAA CTGCTGTGAT AGGGAGGGTG AAGGAGGGAT ATGTGGTAGA GCACTTGATT	600
_ 5	TCAGTTGAAT GCCTGCTGGT AGCTTTTCCA TTCTGTGGAG CTGCCGTTCC TAATAATTCC	660
- J	AGGTTTGGTA GCGTGGAGGA GAACTTTGAT GGAAAGAGAA CCTTCCCTTC	720
	ACTTAAAAAT AAATAGCTCC TGATTCAAAG TAAAAAAAAA AAAAAAAAA AAAAAAAA	777
10		
	(2) INTORNATION FOR STO YOU 102	
15	(2) INFORMATION FOR SEQ ID NO: 182:	
13	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 791 base pairs (B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 182:	
	GGCACAGATA ACTATGTACA TGTATTCCTT AAATGTTTTT TTAAGTTTTA TATTCTTGGC	60
25	ACTGGTCTTC AAATGTGTAC ATGTGTGCCA GGGAGCAAAT GCCTTCTTGT TTCTGAAATT	120
	GGTCTTTTAG ACTGTTCTTT TTTCCCATCT TCTCACCTCC TGCCCCTCCT TCAGGGTACT	180
30	TCCGTGGCCA GAACCCCTCC AGGTCAGAGG CAGAAGAGAA GCCTCATGGG TCACAGCAGC	240
J 1,	AGATGTGGC TGGAGATCTA TTCATTTGGT TTTGGCTTGA ATTTTCTGRA TGGTTTACTT	300
	GATCYTGGGA AAGANATATC TTGCCAGGAA AAATGATAGN CCTTGACAAT GTTGAATGAT	360
35	CCTGCACCAC CTTGAAAGAC ATTTCTAATA TGGTTTGTCA GGCAAAGTGG TTAGTAGTCA	420
	TTTGTGGCCT GAGGTAGAAG TCCTCAGAAA TCAGCAGACT TCACTGATAA AATGCTGACT	480
40	TGCCCCTGGA CTGGGCTCTG TGAGAGTGGC CTTCTGCACT GTGCACAGTA GGTGTGAACA	540
	CACCACACCT ACAGGGACCA CGTGGTGGGC TGTGGACTAG CGGCCAAGCT CCCTGCAGGC	600
	CCACTAATAG AATTCAGCTT TTAGCATGGG CTGTTTCATA CTGTTCTGAT GAAACTGATT	660
45	TGGTTTCTTT CCTCCATACC CCTTCTGCAT TTCAGTGTTT TTGTTTAGTT TTCCTGGTTT	720
	TTAATTATAA CTACAAAATA AAATCTTTAG GCTATTCACC TTAGCTTAGT AAAAAAAAA	780
50	AAAAAAACT C	791
	(2) INFORMATION FOR SEQ ID NO: 183:	
55	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1405 base pairs (B) TYPE: nucleic acid	
60	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 183:

_5	AAATTGATTA	ACAGCTTGAA	AGAAGGCTCT	GGTTTTGAAG	GCCTAGATAG	CAGCACTGCC	60
	AGTAGCATGG	AGCTGGAAGA	ACTTCGGCAT	GAGAAAGAGA	TGCAGAGGGA	GGAAATACAG	120
	AAGCTGATGG	GCCAGATACA	TCAGCTCAGA	TCCGAATTAC	AGGATATGGA	GGCACAGCAA	180
10	GTTAATGAAG	CAGAATCAGC	AAGAGAACAG	TTACAGGWIC	TGCATGACCA	AATAGCTGGG	240
	CAGAAAGCAT	CCAAACAAGA	ACTAGAGACA	GAACTGGAGC	GACTGAAGCA	GGAGTTCCAC	300
15	TATATAGAAG	AAGATCTTTA	TCGAACAAAG	AACACATTGC	AAAGCAGAAT	TAAAGATCGA	360
	GACGAAGAAA	TTCAAAAACT	CAGGAATCAG	CTTACCAATA	AAACTTTAAG	CAATAGCAGT	420
	CAGTCTGAGT	TAGAAAATCG	ACTCCATCAG	CTAACAGAGA	CTCTCATCCA	GAAACAGACC	480
20	ATGCTGGAGA	GTCTCAGCAC	AGAAAAGAAC	TCCCTGGTCT	TTCAACTGGA	GCGCCTCGAA	540
	CAGCAGATGA	ACTCCGCCTC	TGGAAGTAGT	AGTAATGGGT	CTTCGATTAA	TATGTCTGGA	600
25	ATTGACAATG	GTGAAGGCAC	TCGTCTGCGA	AATGTTCCTG	TTCTTTTTAA	TGACACAGAA	660
	ACTAATCTGG	CAGGAATGTA	CGGAAAAGTT	CGCAAAGCTG	CTAGTTCAAT	TGATCAGITT	720
	AGTATTCGCC	TGGGAATITT	TCTCCGAAGA	TACCCCATAG	CGCGAGTTTT	TGTAATTATA	780
30	TATATGGCTT	TGCTTCACCT	CTGGGTCATG	ATTGTTCTGT	TGACTTACAC	ACCAGAAATG	840
	CACCACGACC	AACCATATGG	CAAATGAACC	AAGCCCAGTT	GTTGCAGTGA	TIGGITGICT	900
35	TTTTCTAGAC	TTGGGATCTG	CAAGAAGGCC	AATTGCCTAA	AATTTCTGAG	AACAGTGCAC	960
	AAGATTATTT	TATCACTACA	AGCTTTTAAC	TTTTTAAGTT	ATTGTACAAG	TATTCTACCT	1020
	AAATCTTCCA	ATTTCCTTTA	AATGGTAAGA	GTTTCTAAAA	CAGACAATAA	TTTAACAAGC	1080
40	TCAGCTCTGC	TTTATCTGAG	TTTAGTGGTC	СТААТАТАТА	TGTAGAGAAA	GATGGTGGGG	1140
	TTGTTCACCT	CTGTACAGAC	CATCTGTATG	TTAGGTGACA	TTGATTATGG	GTTATAATCA	1200
45	GGGAAACTAA	TTGTATTTAG	TGACAAAAAT	AAAAAGTTTT	AATATTTTTT	TTCAGTCTGC	1260
	TTTTGGATTT	TCATATATTT	AACTTTGCAA	AAAGATTTAC	TTTGTACATG	TTACAGGCTT	1320
	GATTGGTGTA	AATCTTTTTA	ТАААТАСАТА	AATAAAAGNA	AAATATGCAT	TTTTCTTTTC	1380
50	ТАААААААА	АААААААА	CTCGA				1405

^{55 (2)} INFORMATION FOR SEQ ID NO: 184:

(A) LENGTH: 1596 base pairs

(B) TYPE: nucleic acid

60 (C) STRANDEDNESS: double

⁽i) SEQUENCE CHARACTERISTICS:

413

•

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 184:

5	GTCATGCAGT	GCGCCGGAGA	ACTGTGCTCT	TTGAGGCCGA	CGCTAGGGGC	CCGGAAGGGA	60
	AACTGCGAGG	CGAAGGTGAC	CGGGGACCGA	GCATTTCAGA	TCTGCTCGGT	AGACCTGGTG	120
10	CACCACCACC	ATGTTGGCTG	CAAGGCTGGT	GTGTCTCCGG	ACACTACCTT	CTAGGGTTTT	180
10	CCACCCAGCT	TTCACCAAGG	CCTCCCCTGT	TGTGAAGAAT	TCCATCACGA	AGAATCAATG	240
	GCTGTTAACA	CCTAGCAGGG	AATATGCCAC	CAAAACAAGA	ATTGGGATCC	GGCGTGGGAG	300
15	AACTGGCCAA	GAACTCAAAG	AGGCAGCATT	GGAACCATCG	ATGGAAAAAA	TAAAATTTAA	360
	TGATCAGATG	GGAAGATGGT	TTGTTGCTGG	AGGGGCTGCT	GTTGGTCTTG	GAGCATTGTG	420
20	CTACTATGGC	TTGGGACTGT	CTAATGAGAT	TGGAGCTATT	GAAAAGGCTG	TAATTTGGCC	480
20	TCAGTATGTC	AAGGATAGAA	TTCATTCCAC	CTATATGTAC	TTAGCAGGGA	GTATTGGTTT	540
	AACAGCTTTG	TCTGCCATAG	CAATCAGCAG	AACGCCTGTT	CTCATGAACT	TCATGATGAG	600
25	AGGCTCTTGG	GTGACAATTG	GTGTGACCTT	TGCAGCCATG	GTTGGAGCTG	GAATGCTGGT	660
	ACGATCAATA	CCATATGACC	AGAGCCCAGG	CCCAAAGCAT	CTICCTICCT	TGCTACATTC	720
30	TGGTGTGATG	GGTGCAGTGG	TGGCTCCTCT	GACAATATTA	GGGGTCCTC	TTCTCATCAG	780
50	AGCTGCATGG	TACACAGCTG	GCATTGTGGG	AGGCCTCTCC	ACTGTGGCCA	TGTGTGCGCC	840
	CAGTGAAAAG	TTTCTGAACA	TGGGTGCACC	CCTGGGAGTG	GCCTGGGTC	TCGTCTTTGT	900
35	GTCCTCATTG	GGATCTATGT	TTCTTCCACC	TACCACCGTG	GCTGGTGCCA	CTCTTTACTC	960
	AGTGGCAATG	TACGGTGGAT	TAGTTCTTTT	CAGCATGITC	CTTCTGTATG	ATACCCAGAA	1020
40	AGTAATCAAG	CGTGCAGAAG	TATCACCAAT	GTATGGAGTT	CAAAAATATG	ATCCCATTAA	1080
40	CTCGATGCTG	AGTATCTACA	TGGATACATT	AAATATATTT	ATGCGAGTTG	CAACTATGCT	1140
	GGCAACTGGA	GGCAACAGAA	AGAAATGAAG	TGACTCAGCT	TCTGGCTTCT	CTGCTACATC	1200
45	AAATATCTTG	TTTAATGGGG	CAGATATGCA	TTAAATAGTT	TGTACAAGCA	GCTTTCGTTG	1260
	AAGTTTAGAA	GATAAGAAAC	ATGTCATCAT	ATTTAAATGT	TCCGGTAATG	TGATGCCTCA	1320
50	GGICTGCCTT	TTTTTCTGGA	GAATAAATGC	AGTAATCCTC	TCCCAAATAA	GCACACACAT	1380
30	TTTCAATTCT	CATGTTTGAG	TGATTTTAAA	ATGTTTTGGT	GAATGTGAAA	ACTAAAGTTT	1440
	GTGTCATGAG	AATGTAAGTC	TTTTTTTTAC	TTTAAAATTT	AGTAGGTTCA	CTGAGTAACT	1500
5 5	AAAATTTAGC	AAACCTGTGT	TTGCATATTT	TTTKGGAGTG	CAGMMTAWTG	TAATTARAGC	1560
	ATTCCAGTAA	NACTOTNTTT	AAAGTTGNTC	TATATN			1596

-5

(2) INFORMATION FOR SEQ ID NO: 185:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2293 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

10 (xi) SEQUENCE DESCRIPTION: SEO ID NO: 185: GCGCAGAGCC CGYACGAGCA GGACGACGAC GACAAGGGC ACTCCAAGGA AACGCGGCTG 60 ACCCTGATGG AGGAAGTGCT CCTGCTGGGC CTCAAGGACC GCGARGGTTA CACATCATTT 120 15 TOGAATGACT GTATATCATC TOGATTACGT GGCTGTATGT TAATTGAATT AGCATTGAGA 180 GGAAGGTTAC AACTAGAGGC TTGTGGAATG AGACGTAAAA GTCTATTAAC AAGAAAGGTA 240 20 ATCTGTAAGT CAGATGCTCC AACAGGGGAT GTTCTTCTTG ATGAAGCTCT GAAGCATGTT 300 AAGGAAACTC AGCCTCCAGA AACGGTCCAG AACTGGATTG AATTACTTAG TGGTGAGACA 360 TGGAATCCAT TAAAATTGCA TTATCAGTTA AGAAATGTAC GGGAACGATT AGCTAAAAAC 420 25 480 ACACATCCCC TCACCAATAA CAACATTAAG CAGCGCCTCA TCAAGAAAGT ACAGGAAGCC 540 30 GTTCTTGACA AATGGGTGAA TGACCCTCAC CGCATGGACA GGCGCTTGCT GGCCCTCATT 600 TACCTGGCTC ATGCCTCGGA CGTCCTGGAG AATGCTTTTTG CTCCTCTTCT GGACGAGCAG 660 TATGATTTGG CTACCAAGAG AGTGCGGCAG CTTCTCGACT TAGACCCTGA AGTGGAATGT 720 35 CTGAAGGCCA ACACCAATGA GGTTCTGTGG GCGGTGGTGG CGGCGTTCAC CAAGTAACTC 780 TGCTCGGGGT GAACCATTCT CCTTTCTCTC AAGTAAACCA GTAGTTTTTC TTCTGTTGAC 840 40 TTCTGGTTTT CTGTAATTTG TACTTTCCCA CACTATAATT GGCTTCTGTT TTACAAAATG 900 GTGGGTGGCT TTTTCTTTTT TGTACGTGTA CAGGATTCTG CTGGTACGAG AGGCCTTCCT 960 CTITCIGITT TTAAAAAAAG TITTACTGCC ATAITGGCAT TCCATTCCCT GTTGCCATCC 1020 45 TCACTGTTAC CTGTTTTGGG TTTCTGGTCT ACTTTGACTT TCAAAGTACC TCCAGCCTCC 1080 TCATACGCAC AGCTTTTGGA TGACCTCAGC TTGAGTTTCT CCATATGTGC ATGTACATCT 1140 50 AGCATTCTGC CTACAGTTCA GACAGAAGTC ACAAAAAGGC CTTCAACTCA CCAAAGGTAA 1200 ATATCTGTAT CTATTAGGAC ATTITTTACA TAGACTTCAG TTGAGATGTA TACTTAGCAA 1260 AATTATTTT AAATTGAAAC AGCACAGTAA ATACTTAATA TAAAATGTCC CTTGGATTTT 1320 55 GCTTCCCATG TAAATCTATT GTATTATTAC ACTTGTTATA ATTTTAACTA TAAAGGTCCA 1380 ATTGTTTCAC AGAGCCAGTT TGGGATGGGC TGCATTCCAT TTATGCTGTA TATAGTTTGA 1440 60 ATTATATA AATTACCCCT TCTTCTGGCC ACCCCTGCTC CCATCTTAGT ATTTTGCAAG 1500

	ATCTAATCAG	TTGTACACCT	GGTGCCCCTC	GCTTGCTTCA	ATCATGGTTA	TTTGATGGCA	1560
_ 5	AAATCGACCT	CTTGTCGCTG	AAGGAGAGAG	AAAAGATGTG	TGTCTGATTG	GTCCTGGGAT	1620
_ •	TTTTTGAGCT	GTGCCATTTA	TGGTACTCTT	TGCCTATGCA	TCCCCTTTTT	AGATTTTTTT	1680
	TAAATTTTAT	CTTACTGTTT	TTATAATTTC	TATTGGGAAG	AGGCTTGTGA	CCAGTACCAA	1740
10	TCTTGAGTTT	CTITTTCTGT	CCACAAGTAA	ATTAATATCT	GCTCTGAAAT	GICATTTATC	1800
	TACTCACACA	TTCTTGGGGA	AAAAAATCAA	ATGTCAGTCC	TAGCAGATGT	TGCATGTAAA	1860
15	TTGGTAGCAA	GTAATGATTA	CAACCCAGAG	GATTAAGAAT	TTTGTAACAG	AAAGCTCTAT	1920
	GTTTTAATTT	TTTATATACA	ATTAGGATAA	TTAGCATTGT	CAGACTATAA	ACCTTTGCTT	1980
	TTTAAAGTTT	ATTTTTACTA	TTTCTTTATC	ACTITATIGT	ATCATCACCA	TTGGTTTCAT	2040
20	AATGTAAATA	CTATATGTTG	AACAAATTAA	ATGTCAAAAT	TTTTTATTAC	CATAGTCCAT	2100
	GTTAATAGTG	GGGCTTTCAG	GTGTTTAGAG	ATTTTTTTG	TTGTTGTTAA	CATTCATTGC	2160
25	AAAAGTACTA	GATGGTGTAT .	AACTCTAGAG	TTGAATTTTA	AGGGATTCCC	таататстат	2220
23	ACTATCTTTT	TATCTGAAGT	AATAAATAAA	CAATGATCTT	GAAAGTGCCY	RAAAMAAAA	2280
	ААААААА	AAA					2293
30							
	(2) INFORMA	TION FOR SE	O ID NO. 19	· C .			
35		SEQUENCE CH	-				
	(1)	(A) LENG	TH: 1212 be	se pairs			
		(C) STRA	NDEDNESS: (LOGY: linea	double			
40	(vi)	SEQUENCE D			106.		
						omooooomoo	60
45		GAGCCGGCGC A					60
73		GCGACGTTTA (120
		CTGGTCCCGG (180
50		GAGTCACGGA (240
		GAGAGCATGG (CTCAGCGGAT	GGTCTGGGTG	GACCTGGAGA	TGACAGGATT	300
							3.00
66		AAGGACCAGA '					360
55		AAGGACCAGA					420
55	CATTITGGCT		ACCTGATTAT	AAAACAACCA	GATGAGTTGC	TGGACAGCAT	

	TCCAGGGCTC TGTCCACTTG CAGGAAATTC AGTTCATGAA GATAAGAAGT TTCTTGACAA	600
	ATACATOCCC CAGTTCATGA AACATCTTCA TTATAGAATA ATTGATGTGA GCACTGTTAA	660
_5	AGAACTGTGC AGACGCTGGT ATCCAGAAGA ATATGAATTT GCACCAAAGA AGGCTGCTTC	720
	TCATAGGGCA CTTGATGACA TTAGTGAAAG CATCAAAGAG CTTCAGTTTT ACCGAAATAA	780
10	CATCTTCAAG AAAAAATAG ATGAAAAGAA GAGGAAAATT ATAGAAAATG GGGAAAATGA	840
10	GAAGACCGTG AGTTGATGCC AGTTATCATG CTGCCACTAC ATCGTTATCT GGAGGCAACT	900
	TCTGGTGGTT TTTTTTTCTC ACGCTGATGG CTTGGCAGAG CACCTTCGGT TAACTTGCAT	960
15	CTCCAGATTG ATTACTCAAG CAGACAGCAC ACGAAATACT ATTTTTCTCC TAATATGCTG	1020
	TTTCCATTAT GACACAGCAG CTCCTTTGTA AGTACCAGGT CATGTCCATC CCTTGGTACA	1080
20	TATATGCATT TGCTTTTAAA CCATTTCTTT TGTTTAAATA AATAAATAAG TAAATAAAGC	1140
20	ТАСТТСТАТТ САЛАТССАЛА АЛЛАЛАЛАЛ ЛАЛАЛАЛАЛ ЛАЛАЛАЛАЛ ЛАЛАЛАЛАЛА	1200
	AAAAAAAAA AN	1212
25		
	(2) INFORMATION FOR SEQ ID NO: 187:	
30		
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1605 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
35	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 187:	
	GCTTCCGGAA GTTGCTTTTG TCCAAACATC CGGGCTTCTC CTTTTTGTGT TCCGGCCGAT	60
40	CCCACCTCTC CTCGACCCTG GACGTCTACC TTCCGGAGGC CCACATCTTG CCCACTCCGC	120
	GCGCGGGCT AGCGCGGCTT TCAGCGACGG GAGCCCTCAA GGGACATGGC AACTACAGCG	180
45	GCGCCGGCGG GCGCGCCCG AAATGGAGCT GGCCCGGAAT GGGGAGGGTT CGAAGAAAAC	240
,-	ATCCAGGCG GAGGCTCAGC TGTGATTGAC ATGGAGAACA TGGATGATAC CTCAGGCTCT	300
	AGCTTCGAGG ATATGGGTGA GCTGCATCAG CGCCTGCGCG AGGAAGAAGT AGACGCTGAT	360
50	GCAGCTGATG CAGCTGCTGC TGAAGAGGAG GATGGAGAGT TCCTGGGCAT GAAGGGCTTT	420
	AAGGGACAGC TGAGCCGGCA GGTGGCAGAT CAGATGTGGC AGGCTGGGAA AAGACAAGCC	480
55	TCCAGGGCCT TCAGCTTGTA CGCCAACATC GACATCCTCA GACCCTACTT TGATGTGGAG	540
JJ	CCTGCTCAGG TGCGAACAGG GCTCCTGGAG TCCATGATCC CTATCAAGAT GGTCAACTTC	600
	CCCCAGAAAA TTGCAGGTGA ACTCTATGGA CCTCTCATGC TGGTCTTCAC TCTGGTTGCT	660
60	ATCCTACTCC ATGGGATGAA GACGTCTGAC ACTATTATCC GGGAGGGCAC CCTGATGGGC	720

	ACAGCCATTG	GCACCTGCTT	CGGCTACTGG	CTGGGAGTCT	CATCCTTCAT	TTACTTCCTT	780
. 5	GCCTACCTGT	GCAACGCCCA	GATCACCATG	CTGCAGATGT	TGGCACTGCT	GGGCTATGGC	840
	CTCTTTGGGC	ATTGCATTGT	CCTGTTCATC	ACCTATAATA	TCCACCTCCA	CCCCTCTTC	900
	TACCTCTTCT	GCCTCTTGGT	GGGTGGACTG	TCCACACTGC	GCATGGTAGC	ACTCTTCCTC	960
10	TCTCGGACCG	TGGGCCCCAC	ACAGCGGCTG	CTCCTCTGTG	GCACCCTGGC	TGCCCTACAC	1020
	ATGCTCTTCC	TGCTCTATCT	GCATTTTGCC	TACCACAAAG	TGGTAGAGGG	GATCCTGGAC	1080
15	ACACTGGAGG	GCCCCAACAT	CCCGCCCATC	CAGAGGGTCC	CCAGAGACAT	CCCTGCCATG	1140
	CTCCCTGCTG	CTCGGCTTCC	CACCACCGTC	CTCAACGCCA	CAGCCAAAGC	TGTTGCGGTG	1200
	ACCCTGCAGT	CACACTGACC	CCACCTGAAA	TTCTTGGCCA	GICCICITIC	CCGCAGCTGC	1260
20	AGAGAGGAGG	AAGACTATTA	AAGGACAGTC	CTGATGACAT	GTTTCGTAGA	TGGGGTTTGC	1320
	AGCTGCCACT	GAGCTGTAGC	TCCGTAAGTA	CCTCCTTGAT	GCNTGTCGGC	ACTTCTGAAA	1380
25	GGCACAAGGC	CAAGAACTCC	TGCCAGGAC	TGCAAGGCTC	TGCAGCCAAT	GCAGAAAATG	1440
	GGTCAGCTCC	TTTGAGAACC	CCTCCCCACC	TACCCCTTCC	TTCCTCTTTA	TCTCTCCCAC	1500
	ATTGTCTTGC	TAAATATAGA	CTTGGTAATT	AAAATGTTGA	TTGAAGTCTG	GAAAAAAAA	1560
30	АААААААА	АААААААА	АААААААА	AAAAAAAAAC	TCGAG		1605

35 (2) INFORMATION FOR SEQ ID NO: 188:

40

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1516 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 188:

				-			
45	ATTCGGCATG	AGGGGGTCAC	CTCCTCCCTC	GGCCGGGGAA	ATGGCGGCTT	CAGGAGAGAG	60
	CGGGACTTCA	GGCGGCGGAG	GCAGCACCGA	GGAAGCATTT	ATGACCTTCT	ACAGTGAGGT	120
50	GAAACAAATA	GAGAAGAGAG	ACTCGGTTCT	AACTTCGAAA	AATCAGATTG	AAAGACTGAC	180
	CCGTCCTGGT	TCCTCTTACT	TCAATTIGAA	CCCATTIGAG	GTTCTTCAGA	TAGATCCTGA	240
	AGTTACAGAT	GAAGAAATAA	AAAAGAGGTT	TCGGCAGTTA	TCCATCTTGG	TGCATCCTGA	300
55	САААААТСАА	GATGATGCTG	ACAGAGCACA	AAAGGCTTTT	GAAGCTGTGG	ACAAAGCTTA	360
	CAAGTTGCTA	CTGGATCAGG	AGCAAAAGAA	GAGGGCCCTG	GATGTAATIC	AGGCAGGAAA	420
60	AGAATACGTG	GAACACACTG	TGAAAGAGCG	AAAAAAACAA	TTAAAGAAGG	AAGGAAAACC	480

418

	TACAATTGTA	GAGGAGGATG	ATCCTGAGCT	GTTCAAACAA	GCTGTATATA	AACAGACAAT	540
	GAAACTCTTT	GCAGAGCTGG	AAATTAAAAG	GAAAGAGAGA	GAAGCCAAAG	AGATGCATGA	600
- 5	AAGGAAACGA	CAAAGGGAAG	AAGAGATTGA	AGCTCAAGAA	AAAGCCAAAC	GGGAAAGAGA	660
	GTGGCAGAAA	AACTTTGAGG	AAAGTCGAGA	TGGTCGTGTG	GACAGCTGGC	GAAACTTCCA	720
10	AGCCAATACG	AAGGGGAAGA	AAGAGAAGAA	AAATCGGACC	TTCCTGAGAC	CACCGAAAGT	780
10	AAAAATGGAG	CAACGTGAGT	GACCGCCCAA	GGTCACAGGC	ACAGAACCTT	TCCCCTGCTA	840
	TCTCCCTTCC	TGCTTCGAAG	GACTCATTCT	TTCCTCCCAC	TTCCACCCCA	ACATAGAGTA	900
15	GTATTTGCTT	TTTAGTCCAT	TTTGTTTTCA	ATACGATTTA	ATATCGATCA	GAGTAATTCT	960
	TTTGTACATT	GAAATGAGGG	GCTTGGTTTA	AAAAAAGACC	TTTCCCTCTC	CCTGCCCCTA	1020
20	GAACAACCAG	TATTAGAAGG	TGCCACCATT	GGTGCTGCCT	TCTCTTCCCA	CAGCCTGTAA	1080
20	CTCAGTGTTT	TGTACTTCAC	TGAATTGTGA	TGGTTAGAAA	CTTCGTGGAT	AGTTTGTGGA	1140
	AATCATCCAA	TTAAACATAC	TGCTTAAAAC	AGTGTTGCTG	TGACTTCAGA	GACAAGCCTG	1200
25	GAAGGGGCAC	CTTAGGAAGC	CCCTTCGCTT	CAGTTGCTCG	CTTCTGGGTG	TGCTCCCTTC	1260
	GAAGGCCCAG	ATAAGACAGG	GAACACTTGT	GAGCACACAG	AGCAGCATCT	GATGCCCTGT	1320
30	CGTGTTTGGC	ATGTGCCCCC	TGTCTACTGA	CCAATCAGTG	TGGCATGAGG	CCCACGCCAC	1380
50	CCAAACCTTT	CACTITCCAA	AGAGCTAGCC	GTCCTCCACC	CAGTACCATG	TCCTAGCCTG	1440
	TCTGCATTTG	TTAGTGGTAA	TATTCTTTAT	GTATAATAAA	TTTTTATACC	СААААААА	1500
35	ааааааааа	ACTCGA					1516

40 (2) INFORMATION FOR SEQ ID NO: 189:

45

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 681 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 189:

50	GCTCCCATGT	TGCTGGCTGT	CCGTACATCA	CCCTGTCCCC	TGCAGGAGGG	GGCTACAGGC	60
	CATCTCCCTC	CTGTAGGCCT	CTGACTCCCC	TCCACTITIG	GCCCTCAGC	TTATCTCGGG	120
55	CAGGGGACCA	TTGCAGCATC	CTCCCCTCCT	CNGGACTCAA	GGTGCTGAGG	TATAAGCCCT	180
<i>33</i>	GGGCCCCAGA	TCCCTGRTKA	CACCITCCTG	GAGAAGACTC	TCAAAAGTGA	CTGTATATTT	240
	GAGTTCACCA	GCAATAACTC	CCCACACTCG	AAGCAGGTCC	AAACCCMAGG	ATCCCAGGGT	300
60	CCTTGGGCTC	TGTGGCACTG	TCTTCCCAAG	ATCCTTCCTG	TTGCACAATG	GGAAACCTAA	360

419

	GAGGAAAAAG	ACAGGGGCCT	GCTTGCCCAG	CCATGCGAGG	GATTCCATGC	CCACCTGCCC	420
5	TCTGYCTGCC	TCGCTGGAAT	CTCCCCCCT	GCTCCCCGTC	AGGTTGTGCT	GTCTCTGACC	480
J	TATGTTTACA	TCCCCGAGGG	GTTTCTGCCT	CCTCCCCACC	CAGGTCAGGG	TGTGGTCCAG	540
	CAGCTTGCTG	TGGGGTGCTG	ACATGTGTCA	CCACTGCCCC	CCTTGCCCCC	GGGGGGTCA	600
10	TGGTCTCCTC	CTGGATGCTG	CTCCTTGAAT	YTTTTTYTT	GAWAAACCYT	TTAMAATTAA	660
	ааааааааа	AAAAAACTCG	A				681
15							

20

(2) INFORMATION FOR SEQ ID NO: 190:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1014 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 190:

GCCTCAAGCC ACGCATATGA TAATTTTCTG GAACATTCAA ATTCAGTGTT TCTACAGCCA 60 GTTAGTCTAC AAACCATTGC AGCAGCACCA TCAAACCAGA GTCTGCCACT TTTTGTCATC 120 30 GCTGGATGAT TGCTGGGCAA AGGTGGCCTT TTAGAGGCTCT TAAAAGCCCA CAAAAAGGCT 180 ATTCGTAGAG CCACAGTCAA CACATTTGGT TATATTGCAA AGGCCATTGG CCTCATGATG 240 35 TATTGGCTAC ACTTCTGAAC AACCTCAAAG TTCAAGAAAG GCAGAACAGA GTTTGTACCA 300 CTGTAGCAAT AGCTATTGTT GCAGAAACAT GTTCACCCTT TACAGTACTC CCTGCCTTAA 360 TGAATGAATA CAGAGTTCCT GAACTGAATG TTCAAAATGG AGTGTTAAAA TCGCTTTCCT 420 40 TCTTGTTTGA ATATATTGGT GAAATGGGAA AAGACTACAT TTATGCCGTA ACACCGTTAC 480 TTGAAGATGC TTTAATCGAT AGAGACCTTG TACACAGACA GACGCTAGT GCAGTGGTAC 540 45 AGCACATGTC ACTTGGGGTT TATGGATTTG GTTGTGAAGA TTCGCTGAAT CACTTGTTGA 600 ACTATGTATG GCCCAATGTR TTTGAGACAT CTCCTCATGT AATTCAGGCA GTTATGGGAG 660 CCCTAGAGGG CCTGAGAGTT GCTATTGGAC CATGTAGAAT GTTGCAATAT TGTTTACAGG 720 50 GTCTGTTTCA CCCAGCCCGG AAAGTCAGAG ATGTATATTG GAAAATTTAC AACTCCATCT 780 ACATTGGTTC CCAGGACGCT CTCATAGCAC ATTACCCAAG AATCTACCAA CGATGATAAG 840 55 RACACCTATA TTCGTTATGA ACTTGACTAT ATCTTATAAT TTTATTGTTW ATTTKGTGKT 900 TAATGCACAS TACTTCACAC CTTAAACTTG CTTTGATTTG GTGATGTAAA CTTTTAAACA 960 TTGCAGATCA GTGTAGGACT GGTCCATAGG GGAAGAGCTA GGAANTCCAT AGGC 1014 60

(2) INFORMATION FOR SEQ ID NO: 191:

- 5

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2779 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: double

10 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 191:

	(X1) SEQUENCE	DESCRIPTION	: SEQ ID NO	: 191:		
15	TCGCAGCAGG	GTGTGTCCAG	ATGGTCAGTC	TCTGGTGGCT	AGCCTGTCCT	GACAGGGGAG	60
	AGTTAAGCTC	CCGYTCTCCA	CCGTGCCGGC	TGGCCAGGTG	GGCTGAGGGT	GACCGAGAGA	120
	CCAGAACCTG	CTTGCTGGAG	CTTAGTGCTC	AGAGCTGGGG	AGGGAGGTTC	CGCCGCTCCT	180
20	CTGCTGTCAG	CGCCGGCAGC	CCCTCCCGGC	TTCACTTCCT	CCCGCAGCCC	CTGCTACTGA	240
	GAAGCTCCGG	GATCCCAGCA	GCCGCCACGC	CCTGGCCTCA	GCCTGCGGG	CTCCAGTCAG	300
25	GCCAACACCG	ACGCGCANTG	GGAGGAAGAC	AGGACCCTTG	ACATCTCCAT	CTGCACAGAG	360
	GTCCTGGCTG	GACCGAGCAG	CCTCCTCCTC	CTAGGATGAC	CTCACCCTCC	AGCTCTCCAG	420
	TTTTCAGGTT	GGAGACATTA	GATGGAGGCC	AAGAAGATGG	CTCTGAGGCG	GACAGAGGAA	480
30	AGCTGGATTT	TGGGAGCGGG	CTGCCTCCCA	TGGAGTCACA	GTTCCAGGGC	GAGGACCGGA	540
	AATTCGCCCC	TCAGATAAGA	GTCAACCTCA	ACTACCGAAA	GGGAACAGGT	GCCAGTCAGC	600
35	CGGATCCAAA	CCGATTIGAC	CGAGATCGGC	TCTTCAATGC	GGTCTCCCGG	GGTGTCCCCG	660
	AGGATCTGGC	TGGACTTCCA	GAGTACCIGA	GCAAGACCAG	CAAGTACCTC	ACCGACTCGG	720
	AATACACAGA	GGGCTCCACA	GGTAAGACGT	GCCTGATGAA	GGCTGTGCTG	AACCTTAAGG	780
40	ACGGGGTCAA	TGCCTGCATT	CTGCCACTGC	TGCAGATCGA	CCGGGACTCT	GGCAATCCTC	840
	AGCCCCTGGT	AAATGCCCAG	TGCACAGATG	ACTATTACCG	AGGCCACAGC	GCTCTGCACA	900
45	TCGCCATTGA	GAAGAGGAGW	CTGCAGTGTG	TGAAGCTCCT	GGTGGAGAAT	GGGGCCAATG	960
	TGCATGCCCG	GGTCTGCGGC	GCTTCTTCCA	GAAGGGCCAA	GGGACTTGCT	TTTATTTCGG	1020
	TGAGCTACCC	CTCTYTTTGG	CCGCTTGCAC	CAAGCAGTGG	GATGTGGTAA	GCTACCTCCT	1080
50	GGAGAACCCA	CACCAGCCCG	CCAGCCTGCA	GCACTGACT	CCCAGGGCAA	CACAGTCCTG	1140
	CATGCCCTAG	TGATGATCTC	GGACAACTCA	GCTGAGAACA	TTGCACTGGT	GACCAGCATG	1200
55	TATGATGGGC	TCCTCCAAGC	TGGGGCCCGC	CTCTGCCCTA	CCGTGCAGCT	TGAGGACATC	1260
	CGCAACCTGC	AGGATCTCAC	GCCTCTGAAG	CTGGCCGCCA	AGGAGGCAA	GATCGAGATT	1320
	TTCAGGCACA	TCCTGCAGCG	GGAGTTTTCA	GGACTGAGCC	ACCTTTCCCG	AAAGTTCACC	1380
60	GAGTGGTGCT	ATGGGCCTGT	CCGGGTGTCG	CTGTATGACC	TGGCTTCTGT	GGACAGCTGT	1440

	GAGGAGAACT	CAGTGCTGGA	GATCATTGCC	TTTCATTGCA	AGAGCCCGCA	CCGACACCGA	1500
- 5	ATGGTCGTTT	TGGAGCCCCT	GAACAAACTG	CTGCAGGCGA	AATGGGATCT	GCTCATCCCC	1560
•	AAGTTCTTCT	TAAACTTCCT	GTGTAATCTG	ATCTACATGT	TCATCTTCAC	CGCTGTTGCC	1620
	TACCATCAGC	CTACCCTGAA	GAAGCAGGCC	GCCCCTCACC	TGAAAGCGGA	GGTTGGAAAC	1680
10	TCCATGCTGC	TGACGGGCCA	CATCCTTATC	CTGCTAGGGG	GGATCTACCT	CCTCGTGGGC	1740
	CAGCTGTGGT	ACTICIGGCG	GCGCCACGTG	TTCATCTGGA	TCTCGTTCAT	AGACAGCTAC	1800
15	TTTGAAATCC	TCTTCCTGTT	CCARGCCCTG	CTCACAGTGG	TGTCCCARGT	GCTGTGTTTC	1860
••	CTGGSCATCG	AGTGGTACCT	GCCCTGCTT	GIGICIGCGC	TGGTGCTGGG	CTGGCTGAAC	1920
	CTGCTTTACT	ATACACGTGG	CTTCCAGCAC	ACAGGCATCT	ACAGTGTCAT	GATCCAGAAG	1980
20	CCCTGGTGAG	CCTGAGCCAG	GANNTTGGCG	CCCCGAAGCT	CCTACAGGCC	CCAATGCCAC	2040
	AGAGTCAGTG	CAGCCCATGG	AGGGACAGGA	KGACGAKGGC	AACGGGGCCC	AGTACAGGG	2100
25	TATCCTGGAA	GCCTCCTTGG	AGCTCTTCAA	ATTCACCATC	GCCATGGGCG	AGCTGGCCTT	2160
	CCAGGARCAG	CTGCACTTCC	GCGGCATGGT	GCTGCTGCTG	CTGCTGGSCT	ACGTGCTGCT	2220
	CACCTACATC	CTGCTGCTCA	ACATGCTCAT	CGCCCTCATG	AGCGAGACCG	TCAACAGTGT	2280
30	CGCCACTGAC	AGCTGGAGCA	TCTGGAAGCT	GCAGAAAGCC	ATCTCTGTCC	TGGAGATGGA	2340
	GAATGCCTAT	TGGTGGTGCA	GGAAGAAGCA	GCGGCAGGT	GTGATGCTGA	CCGTTGGCAC	2400
35	TAAGCCAGAT	GGCAGCCCSG	ATGAGCGCTG	GTGCTTCAGG	GTGGAGGAGG	TGAACTGGGC	2460
	TTCATGGGAG	CAGACGCTGC	CTACGCTGTG	TGAGGACCCG	TCAGGGGCAG	GTGTCCCTCG	2520
	AACTCTCGAG	AACCCTGTCC	TOGCTTCCCC	TCCCAAGGAG	GATGAGGATG	GTGCCTCTGA	2580
40	GGAAAACTAT	GTGCCCGTCC	AGCTCCTCCA	GTCCAACTGA	TGGCCCAGAT	GCAGCAGGAG	2640
	GCCAGAGGAC	AGAGCAGAGG	ATCTTTCCAA	CCACATCTGC	TEGETETEGE	GTCCCAGTGA	2700
45	ATTCTGGTGG	CAAATATATA	TTTTCACTAA	СТСААААААА	АААААААА	АААААААА	2760
	ААААААААА	AAAAAAGGC					2779

- (2) INFORMATION FOR SEQ ID NO: 192:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1923 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 192:

	ACCCGCTCCG	CTCCGCTCCG	CICCCCCCC	CCCCCCCCT	CAACATGATC	CGCTGCGGCC	60
	TGGCCTGCGA	GCGCTGCCGC	TGGATCCTGC	CCCTGCTCCT	ACTCAGCGCC	ATCCCCTTCG	120
5	ACATCATCGC	GCTGGCCGGC	CGCGGCTGGT	TGCAGTCTAG	CGACCACGGC	CAGACGTCCT	180
	CCCTCTCGTG	GAAATGCTCC	CAAGAGGGCG	GCGGCAGCGG	GTCCTACGAG	GAGGGCTGTC	240
10	AGAGCCTCAT	GGAGTACGCG	TGGGGTAGAG	CAGCGGCTGC	CATGCTCTTC	TGTGGCTTCA	300
	TCATCCTGGT	GATCTGTTTC	ATCCTCTCCT	TCTTCGCCCT	CTGTGGACCC	CAGATGCTTG	360
	TCTTCCTGAG	AGTGATTGGA	GGTCTCCTTG	CCTTGGCTGC	TGTGTTCCAG	ATCATCTCCC	420
15	TGGTAATTTA	CCCCGTGAAG	TACACCCAGA	CCTTCACCCT	TCATGCCAAC	CSTGCTGTCA	480
	CTTACATCTA	TAACTGGGCC	TACGGCTTTG	GGTGGGCAGC	CACGATTATC	CTGATYGGCT	540
20	GTGCCTTCTT	CTTCTGCTGC	CTCCCCAACT	ACGAAGATGA	CCTTCTGGGC	AATGCCAAGC	600
20	CCAGGTACTT	CTACACATCT	GCCTAACTTG	GGAATGAATG	TGGGAGAAAA	TCGCTGCTGC	660
	TGAGATGGAC	TCCAGAAGAA	GAAACTGTTT	CTCCAGGCGA	CTTTGAACCC	ATTITITIGGC	720
25	AGTGTTCATA	TTATTAAACT	AGTCAAAAAT	GCTAAAATAA	TTTGGGAGAA	AATATTTTTT	780
	AAGTAGTGTT	ATAGTTTCAT	GTTTATCTTT	TATTATGTTT	TCTCAACTTC	TGTCTTTTCA	840
30	CTAATTACCT	ATACTATGCC	AATATTICCT	TATATCTATC	CATAACATTT	ATACTACATT	900
	TGTAAGAGAA	TATGCACGTG	AAACTTAACA	CTTTATAAGG	TAAAAATGAG	GTTTCCAAGA	960
	TTTAATAATC	TGATCAAGTT	CTTGTTATTT	CCAAATAGAA	TGGACTCGGT	CTGTTAAGGG	1020
35	CTAAGGAGAA	GAGGAAGATA	AGGTTAAAAG	TTGTTAATGA	CCAAACATTC	TAAAAGAAAT	1080
	GCAAAAAAA	AGTTTATTTT	CAAGCCTTCG	AACTATTTAA	GGAAAGCAAA	ATCATTTCCT	1140
40 -	AAATGCATAT	CATTTGTGAG	AATTTCTCAT	TAATATCCTG	AATCATTCAT	TTCAGCTAAG	1200
	GCTTCATGTT	GACTCGATAT	GTCATCTAGG	AAAGTACTAT	TTCATGGTCC	AAACCTGTTG	1260
	CCATAGTTGG	TAAGGCTTTC	CTTTAAGTGT	GAAATATTTA	GATGAAATIT	TCTCTTTTAA	1320
45	AGTTCTTTAT	AGGGTTAGGG	TGTGGGAAAA	TGCTATATTA	ATAAATCTGT	AGTGTTTTGT	1380
	GTTTATATGT	TCAGAACCAG	AGTAGACTGG	ATTGAAAGAT	GGACTGGGTC	TAATTTATCA	1440
50	TGACTGATAG	ATCTGGTTAA	GTTGTGTAGT	AAAGCATTAG	GAGGGTCATT	CTTGTCACAA	1500
	AAGTGCCACT	AAAACAGCCT	CAGGAGAATA	AATGACTTGC	TTTTCTAAAT	CTCAGGTTTA	1560
	TCTGGGCTCT	ATCATATAGA	CAGGCTTCTG	ATAGTTTGCA	ACTGTAAGCA	GAAACCTACA	1620
55	TATAGTTAAA	ATCCTGGTCT	TTCTTGGTAA	ACAGATTITA	AATGTCTGAT	ATAAAACATG	1680
	CCACAGGAGA	ATTCGGGGAT	TTGAGTTTCT	CTGAATAGCA	TATATATGAT	GCATCGGATA	1740
60	GGTCATTATG	ATTTTTTACC	ATTTCGACTT	ACATAATGAA	AACCAATTCA	TTTTAAATAT	1800

	CAGATTATTA TITTGTAAGT TGTGGAAAAA GCTAATTGTA GTTTTCATTA TGAAGTTTTC	1860
	CCAATAAACC AGGTATTCTA AAAAAAAAAA AAAAAAACTN GAGGGGGGC CCGGTACCCA	1920
₋ 5	ATT	1923
10	(2) THEODINAMETON FOR OTHER TO NO. 102	
10	(2) INFORMATION FOR SEQ ID NO: 193:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2346 base pairs	
	(B) TYPE: nucleic acid	
15	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(b) TOPOLOGY: Timear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 193:	
20	AGGCTCAGGG GGACACTCTC AAAATTACAC AGCTTTTAAC AGGTGGCAGA ATTGGGGTTC	60
	AGACCCAGAT CTGGGTTCAA GTCACTCATG GTGTGATTGC GGCATTCCTT CCCGCATCTG	120
25	GGCCTTGCCA TCTCTCTCTC CGAGTGGACA TGGAGAGGAC GGGGGCCCAG CAGCTGGATG	180
23	GCTGCAGGGG ATCAAGTCTT CTCTGGGGCT GGGCACGTAN AAGAGCATGT GGCTGGTGGA	240
	CGGCATGCCT GGCTCCTCAC CTGGCAGTCT GCCTGCCCTG CTAACCGGCT GTCTCTTGTT	300
30	CCCCTAGTGC CCTCGGCTAG CATGACCCGC CTGATGCGWT SCCGCACAGC CTCTGGTTCC	360
	AGCGTCATTC TCTGGATGGC ACCCGCAGCC GCTCCCACAC CAGCGAGGGC ACCCGAAGCC	420
35	GCTCCCACAC CAGCGAGGGC ACCCGCAGCC GCTCGCACAC CAGCGAGGGG GCCCACCTGG	480
<i></i>	ACATCACCCC CAACTCGGGT GCTGCTGGGA ACAGNGCCGG GCCCAAGTCC ATGGAGGTCT	540
	CCTGCTAGGC GGCCTGCCCA GCTGCCGCCC CCGGACTCTG ATCTCTGTAG TGGCCCCCTC	600
40	CTCCCCGGCC CCTTTCGCC CCCTGCCTGC CATACTGCGC CTAACTCGGT ATTAATCCAA	660
	AGCTTATTTT GTAAGAGTGA GCTCTGGTGG AGACAAATGA GGTCTATTAC GTGGGTGCCC	720
45	TCTCCAAAGG CGGGGTGGCG GTGGACCAAA GGAAGGAAGC AAGCATCTCC GCATCGCATC	780
	CTCTTCCATT AACCAGTGGC CGGTTGCCAC TCTCCTCCCC TCCCTCAGAG ACACCAAACT	840
	GCCAAAAACA AGACGCGTAC AGCACACACT TCACAAAGCC AAGCCTAGGC CGCCCTGAGC	900
50	ATCCTGGTTC AAACGGGTGC CTGGTCAGAA GGCCAGCCGC CCACTTCCCG TTTCCTCTTT	960

AACTGAGGAG AAGCTGATCC AGTTTCCGGA AACAAAATCC TTTTCTCATT TGGGGAGGGG

GGTAATAGTG ACATGCAGGC ACCTCTTTTA AACAGGCAAA ACAGGAAGGG GGAAAAGGTG

GGATTCATGT CGAGGCTAGA GGCATTTGGA ACAACAAATC TACGTAGTTA ACTTGAAGAA

ACCGATTTT AAAGTTGGTG CATCTAGAAA GCTTTGAATG CAGAAGCAAA CAAGCTTGAT

TTTTCTAGCA TCCTCTTAAT GTGCAGCAAA AGCAGGCRAC AAAATCTCCT GGCTTTACAG

55

60

1020

1080

1140

1200

	ACAAAAATAT TTCAGCAAAC GTTGGGCATC ATGGTTTTTG AAGGCTTTAG TTCTGCTTTC	1320
_	TGCCTCTCCT CCACAGCCCC AACCTCCCAC CCCTGATACA TGAGCCAGTG ATTATTCTTG	1380
.5	TTCAGGGAGA AGATCATTTA GATTTGTTTT GCATTCCTTA GAATGGAGGG CAACATTCCA	1440
	CAGCTGCCCT GCCTGTGATG AGTGTCCTTG CAGGGGCCGG AGTAGGAGCA CTGGGGTGGG	1500
10	GGCGGAATTG GGGTTACTCG ATGTAAGGGA TTCCTTGTTG TTGTGTTGAG ATCCAGTGCA	1560
	GTTGTGATTT CTGTGGATCC CAGCTTGGTT CCAGGAATTT TGTGTGATTG GCTTAAATCC	1620
15	AGTTTTCAAT CTTCGACAGC TGGGCTGGAA CGTGAACTCA GTAGCTGAAC CTGTCTGACC	1680
13	CGGTCACGTT CTTGGATCCT CAGAACTCTT TGCTCTTGTC GGGGTGGGGG TGGGAACTCA	1740
	CGTGGGGAGC GGTGGCTGAG AAAATGTAAG GATTCTGGAA TACATATTCC ATGGGACTTT	1800
20	CCTTCCCTCT CCTGCTTCCT CTTTTCCTGC TCCCTAACCT TTCGCCGAAT GGGGCAGCAC	1860
	CACTGACGTT TCTGGGCGGC CAGTGCGGCT GCCAGGTTCC TGTACTACTG CCTTGTACTT	1920
25	TTCATTTTGG CTCACCGTGG ATTTTCTCAT AGGAAGTTTG GTCAGAGTGA ATTGAATATT	1980
	GTAAGTCAGC CACTGGGACC CGAGGATTTC TGGGACCCCG CAGTTGGGAG GAGGAAGTAG	2040
	TCCAGCCTTC CAGGTGGCGT GAGAGGCAAT GACTCGTTAC CTGCCGCCCA TCACCTTGGA	2100
30	GCCCTTCCCT GCCCTTGAGT AGAAAAGTCG GGGATCGGGG CAAGAGAGGC TGAGTACGGA	2160
	TGGGAAACTA TTGTGCACAA GTCTTTCCAG AGGAGTITCT TAATGAGATA TTTGTATTTA	2220
35	ТТТССАGACC ААТАААТТТС ТААСТТТССА ААААААААА АААААААА	2280
	AAAAAAAAA AAAAAAAACT CGAGGGGGC CCGTACCCAA TTCGCCGTAT ATGATCGTAA	2340
	ACAATC	2346
40		
	(2) INFORMATION FOR SEQ ID NO: 194:	
45	-	
43	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3054 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 194:	
	TATCTGAACC ACCCTTTATT CTACATATGA TAGGCAGCAC TGAAATATCC TAACCCCCTA	60
55	AGCTCMAGGT GCCCTGTGGN ACGAGCAACT GGACTATAGC AGGGCTGGGC TCTGTCTTCC	120
	TOGTCATAGG CTCACTCTTT CCCCCAAATC TTCCTCTGGA GCTTTGCAGC CAAGGTGCTA	180
60	AAAGGAATAG GTAGGAGACC TCTTCTATCT AATCCTTAAA AGCATAATGT TGAACATTCA	240
UU		

	TTCAACAGCT	GATGCCCTAT	AACCCCTGCC	TGGATTTCTT	CCTATTAGGC	TATAAGAAGT	300
	AGCAAGATCT	TTACATAATT	CAGAGTGGTT	TCATTGCCTT	CCTACCCTCT	CTAATGGCCC	360
- 5	CTCCATTTAT	TTGACTAAAG	CATCACACAG	TGGCACTAGC	ATTATACCAA	GAGTATGAGA	420
	AATACAGTGC	TTTATGGCTC	TAACATTACT	GCCTTCAGTA	TCAAGGCTGC	CTGGAGAAAG	480
10	GATGGCAGCC	TCAGGGCTTC	CTTATGTCCT	CCACCACAAG	AGCTCCTTGA	TGAAGGTCAT	540
10	CTTTTTCCCC	TATCCTGTTC	TICCCCTCCC	CCCTCCTAAT	GGTACGTGGG	TACCCAGGCT	600
	GGTTCTTGGG	CTAGGTAGTG	GGGACCAAGT	TCATTACCTC	CCTATCAGTT	CTAGCATAGT	660
15	AAACTACGGT	ACCAGIGITA	GTGGGAAGAG	CTGGGTTTTC	CTAGTATACC	CACTGCATCC	720
	TACTCCTACC	TGGTCAACCC	GCTGCTTCCA	GGTATGGGAC	CTCCTAAGTG	TGGAATTACC	780
20	TGATAAGGGA	GAGGGAAATA	CAAGGAGGC	CTCTGGTGTT	CCTGGCCTCA	GCCAGCTGCC	840
	CACAAGCCAT	AAACCAATAA	AACAAGAATA	CTGAGTCAGT	TTTTTATCTG	GGTTCTCTTC	900
	ATTCCCACTG	CACTTGGTGC	TGCTTTGGCT	GACTGGGAAC	ACCCCATAAC	TACAGAGTCT	960
25	GACAGGAAGA	CTGGAGACTG*	TCCACTTCTA	GCTCGGAACT	TACTGTGTAA	ATAAACTTTC	1020
	AGAACTGCTA	CCATGAAGTG	AAAATGCCAC	ATTTTGCTTT	ATAATTTCTA	CCCATGTTGG	1080
30	GAAAAACTGG	CTTTTTCCCA	GCCCTTTCCA	GGGCATAAAA	CTCAACCCCT	TCGATAGCAA	1140
	GTCCCATCAG	CCTATTATTT	TTTTAAAGAA	AACTTGCACT	TGTTTTTCTT	TTTACAGITA	1200
	CTTCCTTCCT	GCCCCAAAAT	TATAAACTCT	AAGTGTAAAA	AAAAGTCTTA	ACAACAGCTT	1260
35	CTTGCTTGTA	AAAATATGTA	TTATACATCT	GTATTTTTAA	ATTCTGCTCC	TGAAAAATGA	1320
	CTGTCCCATT	CTCCACTCAC	TGCATTTGGG	GCCTTTCCCA	TTGGTCTGCA	TGTCTTTTAT	1380
40	CATTGCAGGC	CAGTGGACAG	AGGGAGAAGG	GAGAACAGGG	GTCGCCAACA	CTTGTGTTGC	1440
	TTTCTGACTG	ATCCTGAACA	AGAAAGAGTA	ACACTGAGGC	GCTCGCTCCC	ATGCACAACT	1500
	CTCCAAAACA	CTTATCCTCC	TGCAAGAGTG	GGCTTTCCAG	GGTCTTTACT	GGGAAGCAGT	1560
45	TAAGCCCCCT	CCTCACCCCT	TCCTTTTTTC	TTTCTTTACT	CCTTTGGCTT	CAAAGGATTT	1620
	TGGAAAAGAA	ACAATATGCT	TTACACTCAT	TTTCAATTTC	TAAATTTGCA	GGGGATACTG	1680
50	AAAAATACGG	CAGGTGGCCT	AAGGCTGCTG	TAAAGTTGAG	GGGAGAGGAA	ATCTTAAGAT	1740
	TACAAGATAA	AAAACGAATC	CCCTAAACAA	AAAGAACAAT	AGAACTGGTC	TTCCATTITG	1800
	CCACCITICC	TGTTCATGAC	AGCTACTAAC	CTGGAGACAG	TAACATTTCA	TTAACCAAAG	1860
55	AAAGTGGGTC	ACCTGACCTC	TGAAGAGCTG	AGTACTCAGG	CCACTCCAAT	CACCCTACAA	1920
	GATGCCAAGG	AGGTCCCAGG	AAGTCCAGCT	CCTTAAACTG	ACGCTAGNCA	ATAAACCTGG	1980
60	GCAAGTGAGG	CAAGAGAAAT	GAGGAAGAAT	CCATCTGTGA	GGTGACAGGC	AAGGATGAAA	2040

PCT/US98/04493 WO 98/39448

426

	GACAAAGAAG	GAAAAGAGTA	TCAAAGGCAG	AAAGGAGATC	ATTTAGTTGG	GTCTGAAAGG	2100
	AAAAGTCTTT	GCTATCCGAC	ATGTACTGCT	AGTACCTGTA	AGCATTTTAG	GICCCAGAAT	2160
-5	GGAAAAAAA	ATCAGCTATT	GGTAATATAA	TAATGTCCTT	TCCCTGGAGT	CAGTTTTTT	2220
	AAAAAGTTAA	CTCTTAGTTT	TTACTTGTTT	AATTCTAAAA	GAGAAGGGAG	CTGAGGCCAT	2280
10	TCCCTGTAGG	agtaaagata	AAAGGATAGG	AAAAGATTCA	AAGCTCTAAT	AGAGTCACAG	2340
10	CTTTCCCAGG	TATAAAACCT	AAAATTAAGA	AGTACAATAA	GCAGAGGTGG	AAAATGATCT	2400
	AGTTCCTGAT	AGCTACCCAC	AGAGCAAGTG	ATTTATAAAT	TTGAAATCCA	AACTACTTTC	2460
15	TTAATATCAC	TTTGGTCTCC	ATTITICCCA	GGACAGGAAA	TATGTCCCCC	CCTAACTTTC	2520
	TIGCTICAAA	AATTAAAATC	CAGCATCCCA	AGATCATTCT	ACAAGTAATT	TTGCACAGAC	2580
20	ATCTCCTCAC	CCCAGTGCCT	GTCTGGAGCT	CACCCAAGGT	CACCAAACAA	CITCCITCIC	2640
20	AACCNAACTG	CCTTAACCTT	CTGGGGGAGG	GGGATTAGCT	AGACTAGGAG	ACCAGAAGTG	2700
	AATGGGAAAG	GGTGAGGACT	TCACAATGTT	GCCTGTCAG	AGCTTGATTA	GAAGCCAAGA	2760
25	CAGTGGCAGC	AAAGGAAGAC	TTGGCCCAGG	AAAAACCTGT	GGGTTGTGCT	AATTTCTGTC	2820
	CAGAAAATAG	GGTGGACAGA	AGCTTGTGGG	GTGCATGGAG	GAATTGGGAC	CTGGTTATGT	2880
30	TGTTATTCTC	GGACTGTGAA	TTTTGGTGAT	GTAAAACAGA	ATATTCTGTA	AACCTAATGT	2940
	CTGTATAAAT	AATGAGCGTT	AACACAGTAA	AATATTCAAT	AAGAAGTCAA	АААААААА	3000
	AAAAAACTCG	AGGGGGGCC	CGGTACCCAA	TTTNCCAAAT	AGAGATNGTA	TTAC	3054
35							
	(2) INFORM	ATION FOR S	EQ ID NO: 1	95:			
40	(i)		HARACTERIST GTH: 907 ba E: nucleic	se pairs			

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

45

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 195:

	GGCAGAGCTC	GTGGCCGNAA	CTTTTTCTGC	TCCTGGCTGC	CACCTACTGG	CTGGCCGCGG	60
50	CCCTGGCCTG	GGCCTGCACC	AGCCTGCGNG	CGGGCTCCCA	CAGCAGCCCC	CTTCCAAGCA	120
	GCGTCCCCAC	ACCGCGCACC	TTCTGCGGGA	ACGTGCTCGC	CGTGCCGGGG	ACCATATGGA	180
55	CGGAAGGCTT	TGTGCTCACC	TACAAGCTGG	GTGAGCAGGG	TGCCAGCAGC	CTGTTGATCC	240
33	TCTTGGCTCC	TGCTGGAGCA	CGAGCGCGT	TTCTGCTCCC	GAGTTGGGAC	TGTGGAATGG	300
	TGTGGGTGCT	GTGGTCTGCT	CCATCGCTGG	CTCCTCCCTG	GGTGGGACCT	TGCTGGCCAA	360
60	GCACTGGAAA	CTGCTGCCTC	TGTGAGGTCG	GTGCTGCGCT	TCCGCCTCGG	GGGCCTAGCC	420

	TOTAL TOTAL CONTEST CONCESTION CARCETOON OCCARCATOR ACCUTOCAC	400
. 5	AATCTTGAGA GGGTCAGCCT TGCTGAGCCT ATGTCTGCAG CACTTCTTGG GARGCCTGGT	540
. 3	CACCACAGTC ACCTTCACTG GGAATGATGC GCTGCAGCCA GCTGGCCCCC AGGGCCTTGC	600
	AGGCCACACA CTACAGCCTT CTGGCCACGC TGGAGCTGCT GGGGAAGCTG CTGCTGGGCA	660
10	CTYTGGSCGG AGGGCCTGGC TGATGGGTTG GGGCCACATC CCTGCTTCTT GCTCCTGCTC	720
	ATCCTCTCTG CCTTTCCCGT TCTGTACCTG GACCTAGCAC CCAGCACCTT TCTCTGAGCT	780
15	GAGTGGCTGG AGTGGTCAAT AAAGCCACAT GTGCCTGTGG CCCAAAAAAA AAAAAAAAAA	840
13	AAAAAAAAA AAAAAAACTG GAGGGGGGC CCGGTACCCA AATCGCCGGA TATGATCGTA	900
	AACAATC	907
20		
25	(2) INFORMATION FOR SEQ ID NO: 196: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1290 base pairs (B) TYPE: nucleic acid	
30	(C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 196:	
	GGCACGAGGA GGGACAGGGA GTGGGCAAGG GGAAGAAGCA GCTTATTTGA CTAACCAGCC	60
35	CCTCTGTGGT CCACCAGCGT CTTGGCTTGG TGGGAGGGCT CTCAATCAGC AGGGCCCCAG	120
	KAGGGCAAGA AGAAGTGGGG CAAAGCCTGG CGCTCGGCCG CGGTCGCGGC AGCTTTGCMA	180
	TCTGGAGCCA CGCCTCCTCC AGGCCATGCT CCTTGAACTT GGAAATGTCA ACCGGAGCCC	240
40	TTAACACCAG CCCTCCAGCA TCTAATAGAC TTGAATCTAC TCTAAACGAA TATTTAATCC	300
	AACCTCAACT ACATTGTAGC TCAGTCCAAC GACTAACCCT GAAATGGGGG TGTTCCAGCC	360
45	TTCAGCGAGA TGGCCAAGCG GTCCCCTGGG GGCTGTGGCA GCGGGCTTAT CCTTCTCTGT	420
	TGCCAACCTT GCCGTCCGAC CTCCTCCGCC CCCATGCGGT GACCCCGTCC GTGTCTGTGT	480
50	CTGTCCATAC GTGTGAGTCC AGCTAAAAAG ACAAAACAGA ACCCGTGGGC CCAGCTCGGA	540
50	AGGTGCGTGG AGAAGGCTCC GACGTCTCCG AAGTGCAGCC CTTGGGATGG CATTCCGTTG	600
	TGTGCCTTAT TCCTGGAGAA TCTGTATACG GCTCGCCTAT AAGAAATATA GCCTCTTCAT	660
55	GCTGTATTAA AAGGACTTTT AAAAGCAAAA AAAAAAAAAA	720
	GGTACCCAAT TCGCCCAATA GTGAGTCGTA TTACAATTCA CTGGGCCGTC STTTTAACAA	780
60	CGTCGTGAAC TGGGAAAACC CTGGCGTTTA CCCAACTTAA TCGCCTTGCA GCACATCCCC	840
J		

960

	CTITICGCCAG CTGGCGTTAA TAGCGAAAAA NGCCCGCACC CGAATCGCCC TTCCCAACAG	900
	TTTGCGCAGC CCTGAATGGC GAAATGGCAA ATTGTAAGCG TTTAATATTT TKKTTAAAAT	960
- 5	TCCNCGTTWA AWTITTTGTT TAAATCARCT CAATTTTTTT AACCCAATAA GSCCGAAATC	1020
	CGGCAAATCC CCYTTATTAA TTCCAAAAAA ATAAACCSAA AAWGGGTTTG AATTTTTTKT	1080
10	TICCCCAYIT TIGGAAACAA AWIYCCCCCT TITTAAAAAA GITGGAACCC CCAMCCYICC	1140
10	AAAGGGGAAA AAACSYTTTT YTGGGGGGNA ANGGGGCCCC CNTACTTTNA ACAYCCCCCC	1200
	CCAAWCAATT TTTTTGGGGG GTCCCNAAAG GTCCCCCTAA AANCTTTTTT CGGAACCCNA	1260
15	AGGGGANCCC CCCATTTAAA ATTITINGGTN	1290
20		
20	(2) INFORMATION FOR SEQ ID NO: 197:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1020 base pairs	
25	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 197:	
30	GGTGTGCCTG GATGGTCGTG TAGGTGAGTT TTACCAAGGA TTATGGTAAC AAATGAGTGA	60
	GACCTCTATG GAGAAAATAT TGAAGNNCAT TAAAGAAGAC CTCATANTAG GAGAGAATGT	120
35	SCTTTGGAGG ATTTGTATTG AGCTTTTACA GTATTCATTT TTCAACTCAA GGCAATGGCT	180
	TTCTACACCA ACTCTAATCC ATAAACGGGT CTTATGACAT CTATGAAGTA GTAGCAAGAC	240
	ATGCTTAGTG TGTATTTCTC TCTTTGAGAC ACTGTAATTT CTACCAGAAA TTTCCAGAGC	300
40	ATTATGTAGG TAGAAAAAA TGCAAGCAAG CTGTTAAAGA TCTTGGATCC CATTATATAG	360
	TATGTATAGC TGAAATCTGT AATTCAATCA CTTTTTCTCT TTTATCCTCT AACCAAAAAA	420
45	TIGITTAATT TIGCATCCCA AATGITITTA ATCTTTGTAT ATTITITAAA AAYCCTTTTC	480
15	TCCTCATCAT TGCCTTTTTT GTGGTTGTAA ATAGACTTAC TTGCACTTTG AAGATGAGTT	540
	ACTCCTTGTC ATCTTACAAA TATGTGATAT GGTAATTTTC ATAACAGATG TCAGTTTTGA	600
50	ACCAAGAATT GGTGATTTGT TTATAAGAAA AAAACTGGCT TCATTTCTGT GAAATTGCTC	660
	TTTGAAAATT TCTTTTTACA CGTGTAAGCC AACTGAGATA CCGTGATGGT GTTGATTTCT	720
55	TTCAATGATG CTTACCATCT ATTTTAGCCA CTGAGCCTTT TATTATTTGT CTATTTGTAA	780
دو	AGTTTATTTG TCTTAACTCA TTTAATAAAT ATACTGTTTA TCTGTTTCTG AATGGGGACT	840
	GAACTITITG GATATIGATA TIGATITGAA AATATITITGG AATITITITCT ACTIGAAATT	900

TTAGAAATCT AATKGAAAAT TCTATAATGT ACTGAAAGTA WGGTTGTGTA CAGTGAKCAC

PCT/US98/04493

	TCTCTAATAA TATGATGNCT TGCCCTAAAN GAGGNGGGAC ATGTCCCACT TTCCACCACG	1020
-5		
	(2) INFORMATION FOR SEQ ID NO: 198:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 524 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 198:	
	AATTCCCGAA GCTGAGGGTT GTGTGCCNTC GGGCGAGCCA AGTCTTTTGA CCGGACCCTT	60
20	CCCGGCGCAG AAGANCTGAA GTTGATTTGA GAGCCTGTKT TTGGGGTTRA GCCGAGCTGC	120
20	TGCGGGCTTY GTCGCCGGCC AGGACACAAG YTACTTGCAA CGGGGCGGCG CCTGGCTTAT	180
	GATGTTCCTC AACCCAGGGG CGGCCTCTGC CCTCTACTCG TGCCAGGCCC ACTTGCCAGG	240
25	CAGGAGCCCT CCCCAAGCCT TCAGGGCTGC TCGGAGTCAC CTGTTGGAAT GGACTAAAAG	300
	GACCCTTGTG TGGGAACAGG TGCTCCAAAC ACCCTGCTGC TGGCTGCCAG GCAGGCCCTC	360
30	TOGAAGGGAA GGGGCAGGAC TCATCAGGAC CTCCCTGGAC CCTGCAGGGC AGGCAGTTGG	420
50	CCCGAGCCCA AGCATTTGGC TCTGCTTGCC CCAAGGGGAC AGGAAGCCTC TTGGGCCTCT	480
	TCCCTTCCTG GACAAGGCCC CCTGCCTTTG CCTCACATAA ACTG	524
35		
	(2) INFORMATION FOR SEQ ID NO: 199:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 332 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 199:	
	GTGATACAAG GAAGGGTGAT CATCATCTGT CACCATGCAA TTCCTGCTCA CAGCCTTTCT	60
50	GTTGGTGCCA CTTCTGGCTC TTTGTGATGT CCCCATATCC CTAGGCTTCT CCCCCTCCTA	120
	GAAGGGCTTC TTGATAGATT AGAAAATAAG AATGAGTGAC ATTTCCTATG TGCATATAAG	180
55	AAGGAGCCAC AAGACATGTC TTTTAAATAA AAGGACAGTG TCCATCCTTT TAGCTGCCGA	240
رر	ATAGAACCTT GGTCTCATCC TCCTGGAGCT AGGSCTTAAA ACAGCTTCTG TGTTTCTSAT	300
	TKGTCTCART GTTTTGCCAA GGTTTTATTC GG	332
60		

	(2) INFORMATION FOR SEQ ID NO: 200:	
. 5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 376 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 200:	
	CCAGGGAAGC CCCARGCCTG TCCTGAATTG ACATCAGTGC TTCCCTGAAC TGCCTCCCCC	60
15	ACCCCTGGGC ATTATCCCAG GAAACTTATG TITTCTAGAA GCTAAGCAGC TGCTGGGACT	120
	CAGGGACTGG TGCAGGTAGG CTGAGTGGCA GCTCAGTCCT AGAAGGTCTC TGAAGATCTG	180
20	GACTGAGGAC CYTGCTACTC CCCAAGCCAG AGCCCATCAG CCAGGCCTGC TGTGAGCCAC	240
	CTGCCTGTGG AGTGCTGAGC TCAACCAAAG GCTGGCAAGC TCTGGGCCTC ATTTAAGGGA	300
	TTCTGATGAG CCGATGGGCC CTGGAGGCAG CCCATTAAAG CATCTGGCTC GTTTTTGGAA	360
25	AAAAAAAA AAAAAG	376
30 35	(2) INFORMATION FOR SEQ ID NO: 201: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1192 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 201:	
40	CCCAGTATAT TTCTATAACA TITATTTTAG TGAACTTATA ATGTTTCTTT GTATTAAATT	60
	ATTAGATTAT ATCTTTAGAT AATATTGTTA CTNAATTAGT AGGTAATATA TATTTTATTC	120
45	AAAAATAAAT TGTGCATCTA ATGTCTACCA ATTAATGTAC TTGTAGATGT ATCTTATCTT	180
	AACTIGAGIC TITGCIGCCC CTAATGAGGI GIGAAGGACT CTICICCCCT GGGGAAGITI	240
	TTCTTTTTCA GGAGGGAGGA GGGCTTTCCC AGGTAATGTG TCTAGAGTGT TGGGCAGAAR	300
50	AATCTGGGAC CACACCACAC CAGITCTCTC CTTAATCCAC GTCATTTGCC TTCTATCCCA	360
	GCTATGTTTC CAGTGTCCTC TGGGTGTTTC CAAGAGCAAC AAGAAAYGAA TAAATCTCTG	420
55	KTGAGTTGTT TATTTGTTCT TCACTTTGTT TTACACTGTA WITTCTGAGT TTATGGGTGT	480
	CTGTGAATTA AAAAGGAAAA GTRGAAATAA GTAAAACTCA GGTTGAAGGA AATATACATA	540
60	AATAAGATAA AGCTGACCTG TAGATATARR CAGGTTATAA RAGCTTAGAG TTGTCTAAGT	600
	ANTHORNOOD A REPORT OF THE PROPERTY OF THE PRO	240

PCT/US98/04493 WO 98/39448

431

	WATGTGATTG GAATGGAACC CGARAAGAGA GCAYGCTGTG TTCTTGGGGA CAGGAAAGCT	720
. 5	TGYGTGCACC AAGTCTKAAC CACCACCTTC ATGGGACATA GRTTATGTGC TGGAACATAT	780
	TTCACACCGG CCTGGCAGTA AACACTTGTA GTGTTGTGCA GTGGAAACGG TCATCTTCCG	840
	CTAAAGCACG GCGTGTTGTG CAGCGGAAAT GGTCATCTGC TGCTAAAACA CAGCTTCCAT	900
10	CGTAATGTAT GCTCCTTACT CAAAGAGTGT GGTCCCAAAC AGCCTTTGGG AGGTCCTCCT	960
	TGATTCATGG ATGAAACCTG GAACATCTTG AGGACTGAGT TAACCATAGG TCCTTAAATA	1020
15	ACTOTOCACA COTTTTTCTT AGTITATOTO TACATGCAGG GTGTGCAGCA GCCTGTTCAA	1080
	AGTCATATTT TCTGGGAAAT ATTTCCAGTG TTTATTTGCA CTTTAGCCCA CTCTGTGTAG	1140
	CCTTATTTCT TCTAAACTCA CCATTAATCT GAATAATAGT CAAATTTAGG GG	1192
20		
	(2) INFORMATION FOR SEQ ID NO: 202:	
25	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 589 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
30	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 202:	
	ATCTTGGGCT ATCTTTGACA GGGGATTCTT GCAAGTTGAT GCTTTCTACA AGTGAATATA	60
35	GTCAGTCCCC AAAGATGGAG AGCTTGAGTT CTCACAGAAT TGATGAAGAT GGAGAAAACA	120
	CACAGATTGA GGATACGGAA CCCATGTCTC CAGTTCTCAA TTCTAAATTT GTTCCTGCTG	180
10	AAAATGATAG TATCCTGATG AATCCAGCAC AGGATGGTGA AGTACAACTG AGTCAGAATG	240
••	ATGACAAAAC AAAGGGAGAT GATACAGACA CCMGGGATGA CATTAGTATT TTAGCCACTG	300
	GTTGCAAGGG CAGAGAAGAA ACGGTAGCAG AAGATGTTTG TATTGATCTC ACTTGTGATT	360
4 5	CGGGGAGTCA GGCAGTTCCG TCACCAGCTA CTCGATCTGA GGCACTTTCT AGTGTGTTAG	420
	ATCAGGAGGA AGCTATGGAA ATTAAAGAAC ACCATCCAGA GGAGGGGTCT TCAGGGTCTG	480
50	AGGTGGAAGA AATCCCTGAG ACACCTTGTG AAAGTCAAGG AGAGGAACTC AAAGAAGAAA	540
J U	ATATGGAGAG TGTTCCGTTG CACCTTTCTC TGACTGAAAC TCAGTCCCA	589
55		

(2) INFORMATION FOR SEQ ID NO: 203:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 847 base pairs

60 (B) TYPE: nucleic acid WO 98/39448

PCT/US98/04493

432

(C) STRANDEDNESS: double(D) TOPOLOGY: linear

₋ 5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 203:	
-5	GGCACGAGCG CAAGCTGCTG GCCGCCATCA ACGCGTTCCG CCAGGTGCGG CTGAAACACC	60
	GGAAGCTCCG GGAACAAGTG AACTCCATGG TGGACATCTC CAAGATGCAC ATGATCCTGT	120
10	ATGACCTGCA GCAGAATCTG AGCAGCTCAC ACCGGGCCCT GGAGAAACAG ATTGACACGC	180
	TGGCGGGGAA GCTGGATGCC CTGACTGAGC TGCTTAGCAC TGCCCTGGGG CCGAGCAGCT	240
15	TCCAGAACCC AGCCAGCAGT CCAAGTAGCT GGACCCACGA GGAGGAACCA GGCTACTTTC	300
13	CCCAGTACTG AGTGGTGGAC ATCGTCTCTG CCACTCCTGA CCAGCCTGAA CAAAGCACCT	360
	CAAGTGCAAG GACCAAAGGG GGCCTGGCTT GGATGGGTTG GCTTGCTGAT GGCTGCTGGA	420
20	GGGGACGCTG GCTAAAGTGG GGAGGCCTTG GCCCACCTGA GGCCCCAGGT GGGAACATGG	480
	TCACCCCCAC TCTGCATACC CTCATCAAAA ACACTCTCAC TATGCTGCTA TGGACGACCT	540
25	CCAGCTCTCA GTTACAAGTG CAGGCGACTG GAGGCAGGAC TCTTGGGTCC CTGGGAAAGA	600
23	GGGTACTAGG GGCCCGGATC CAGGATTCTG GGAGGCTTCA GTTACCGCTG GCCGAGCTGA	660
	AGAACTGGGT ATGAGGCTGG GGCGGGGCTG GAGGTGGCGC CCCCTGGTGG GACAACAAAG	720
30	AGGACACCAT TTTTCCAGAG CTGCAGAGAG CACCTGGTGG GGAGGAAGAA GTGTAACTCA	780
	CCAGCCTCTG CTCTTATCTT TGTAATAAAT GTTAAAGCCA GAAAAAAAAA AAAAAAAAAA	840
35	AAAAAA	847
55		
	(2) Theopyanton pop cpo to no. 204	
40	(2) INFORMATION FOR SEQ ID NO: 204:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 852 base pairs	
45	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
73	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 204:	
50	ACAAACATAC TCGCAGGAAG GAGTCTCATG CTGCCCGCAG CATCAGCGCA ACNCNTGGCC	60
	GCCATCAACG CGTTCCGCCA GGTGCGGCTG AAACACCGGA AGCTCCGGGA ACAAGTGAAC	120
55	TCCATGGTGG ACATCTCCAA GATGCACATG ATCCTGTATG ACCTGCAGCA GAATCTGAGC	180
<i>JJ</i>	AGCTCACACC GGGCCCTGGA GAAACAGATT GACACGCTGG CGGGGAAGCT GGATGCCCTG	240
	ACTGAGCTGC TTAGCACTGC CCTGGGGCCG AGGCAGCTTC CAGAACCCAG CCAGCAGTCC	300
60	AAGTAGCTGG ACCCACGNAG GAGGAACCAG GCTACTTTCC CCAGTACTGA GGTGGTGGAC	360

433

	ATNOCTOTOT TGCCACTOON TGNACCCAGO COTGAACAAA GCACCTCAAG TGCAAGGACO	420
	AAAGGGGCC CTGGCTTGGA GTGGGTTGGC TTGCTGATGG CTGCTGGAGG GGACGCTGGC	480
-5	TAAAGTGGGK AGGCCTTGGC CCACCTGAGG CCCCAGGTGG GAACATGGTC ACCCCCACTC	540
	TGCATACCCT CATCAAAAAC ACTCTCACTA TGCTGCTATG GACGACCTCC AGCTCTCAGT	600
10	TACAAGTGCA GGCGACTGGA GGCAGGACTC CTGGGTCCCT GGGAAAGAGG GTACTAGGGG	660
10	CCCGGATCCA GGATTCTGGG AGGCTTCAGT TACCGCTGGC CGAGCTGAAG AACTGGGTAT	720
	GAGGCTGGGG CGGGGCYGGA GGTGGCGCCC CCTGGTGGGA CAACAAAGAG GACACCATTT	780
15	TTCCAGAGCT GCAGAGAGCA CCTGGTGGGG AGGAAGAAGT GTAACTCACC AGCCTCTGCT	840
	CTTATCTITG TA	852
20		
20	(2)	
	(2) INFORMATION FOR SEQ ID NO: 205:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1354 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 205:	
	GATTCGGCAC GAGGCTTGCT GGAGCAGGAG AAGTCTCTRG CCGGCTGGGC ACTGGTGCTG	60
35	GCASGARCTG GCATTGGACT CATGGTGCTG CATGCAGAGA TGCTGTGGTT CGGGGGGTGC	120
	TCGGCTGTCA ATGCCACTGG GCACCTTTCA GACACACTTT GGCTGATCCC CATCACATTC	180
	CTGACCATCG GCTATGGTGA CGTGGTGCCG GGCACCATGT GGGGCAAGAT CGTYTGCCTG	240
40	TECACTEGAG TCATGGGTGT CTGCTGCACA GCCCTGCTGG TGGCCGTGGT GGCCCGGAAG	300
	CTGGAGTTTA ACAAGGCAGA GAAGCACGTG CACAACTTCA TGATGGATAT CCAGTATACC	360
45	AAAGAGATGA AGGAGTCCGC TGCCCGAGTG CTACAAGAAG CCTGGATGTT CTACAAACAT	420
15	ACTCGCAGGA AGGAGTCTCA TGCTGCCCGC AGGCATCAGC GCAANCTGCT GGCCGCCATC	480
	AACGCGTTCC GCCAGGTGCG GCTGAAACAC CGGAAGCTCC GGGAACAAGT GAACTCCATG	540
50	GTGGACATCT CCAAGATGCA CATGATCCTG TATGACCTGC AGCAGAATCT GAGCAGCTCA	600
	CACCGGGCCC TGGAGAAACA GATTGACACG CTGGCGGGGA AGCTGGATGC CCTGACTGAG	660
55	CTGCTTAGCA CTGCCCTGGG GCCGAGGCAG CTTCCAGAAC CCAGCCAGCA GTCCAAGTAG	720
55	CTGGACCCAC GAGGAGGAAC CAGGCTACTT TCCCCAGTAC TGAGGTGGTG GACATCGTCT	780
	CTGCCACTCC TGANCCCAGC CCTGAACAAA GCACCTCAAG TGCAAGGACC AAAGGGGGCC	840
60	CTGGCTTGGA GTGGGTTGGC TTGCTGATGG CTGCTGGAGG GGACGCTGGC TAAAGTGGGK	900

434

	AGGCCTTGGC CCACCTGAGG CCCCAGGTGG GAACATGGTC ACCCCCACTC TGCATACCCT	960
. 5	CATCAAAAAC ACTCTCACTA TGCTGCTATG GACGACCTCC AGCTCTCAGT TACAAGTGCA	1020
J	GGCGACTGGA GGCAGGACTC YTGGGTCCCT GGGAAAGAGG GYACTAGGGG CCCGGATCCA	1080
	GGATTCTGGG AGGCTTCAGT TACCGCTGGC CGAGCTGAAG AACTGGGTAT GAGGCTGGGG	1140
0	CGGGCCTGGA GGTGGCGCCC CCTGGTGGGA CAACAAAGAG GACACCATTT TTCCAGAGCT	1200
	GCAGAGAGCA CCTGGTGGGG AGGAAGAAGT GTAACTCACC AGCCTCTGCT CTTATCTTTG	1260
15	TAATAAATGT TAAAGCCAGA AAAAAATAAA AAAAAAAAA AAAAAACTCG AGGGGGCCC	1320
	AGACCCAATC TCCCTATAGT AAGNCGCCNN ANAN	1354
20	(2) INFORMATION FOR SEQ ID NO: 206:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1378 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 206:	
	TCCCCAGGTG CACAGCCAGG GCCCTCCTGT CTGCAGGAGA ATTCACAGCT GGTGTGGGAC	60
	TCAGCCCCTA GNCCATTCAA AGCCTTAATG TTGTAATCAT ATCTTACGTG TTGAAGACCT	120
35	GACTGGAGAA ACAAAATGTG CAATAACGYG AATTTTATCT TAGAGATCTG TGCAGCCTAT	180
	TTCTGTCACA AAAGTTATAT TGTCTAATAA GAGAAGTCTT AATGGCCTCT GTGAATAATG	240
Ю	TAACTCCAGT TACACGGTGA CTTTTAATAG CATACAGTGA TTTGATGAAA GGACGTCAAA	300
	CAATGTGGCG ATGTCGTGGA AAGTTATCTT TCCCGCTCTT TGCTGTGGTC ATTGTGTCTT	360
	GCAGAAAGGA TGGCCCTGAT GCAGCAGCAG CGCCAGCTGT ANATAAAAAA TAATTCACAC	420
15	TATCAGACTA GCAAGGCACT AGAACTGGAA AAGACCACAG AAAACAAAGA ATCCAACCCT	480
	TTCATCTTAC AGGTGAACAA ACTGTGATGA TGCACATGTA TGTGTTTTGT AAGCTGTGAG	540
50	CACCGTAACA AAATGTAAAT TIGCCATTAT TAGGAAGTGC TGGTGGCAGT GAAGAAGCAC	600
	CCAGGCCACT TGACTCCCAG TCTGGTGCCC TGTCTACACC AGACAACACA GGAGCTGGGT	660
	CAGATTCCCC TCAGCTGCTT AACAAAGTTC CTCGAACAGA AAGTGCTTAC AAAGCTGCCT	720
55	TCTCGGATAC TGAAAGGICG AGITTTCTGA ACTGCACTGA TTTTATTGCA GTTGAAAAAA	780
	AAAAAAAGCT ATTCCAAAGA TITCAAGCTG TTCTGAGACA TCTTCTGATG GCTTTACTTC	840

CTGAGAGGCA ATGTTTTTAC TTTATGCATA ATTCATTGTT GCCAAGGAAT AAAGTGAAGA

60

435

	AACAGCACCT	TTTAATATAT	AGGTCTCTCT	GGAAGAGACC	TAAATTAGAA	AGAGAAAACT	960
	GTGACAATTT	TCATATTCTC	ATTCTTAAAA	AACACTAATC	TTAACTAACA	AAAGTTCTTT	1020
5	TGAGAATAAG	TTACACACAA	TGGCCACAGC	AGTTTGTCTT	TAATAGTATA	GTGCCTATAC	1080
	TCATGTAATC	GGTTACTCAC	TACTGCCTTT	ааааааааа	ACCAGCATAT	TTATTGAAAA	1140
10	CATGAGACAG	GATTATAGTG	CCTTAACCGA	TATATTTTGT	GACTTAAAAA	ATACATITAA	1200
10	AACTGCTCTT	CTGCTCTAGT	ACCATGCTTA	GTGCAAATGA	TTATTTCTAT	GTACAACTGA	1260
	TCCTTCTTCT	TATTTTAATA	AATTTATCAG	AGTGAAAAAA	АААААААА	АААААААА	1320
15	ААААААААА	АААААААА	ааааааааа	ааааааааа	AAAAAAAGAA	NAAAANAA	1378

20 (2) INFORMATION FOR SEQ ID NO: 207:

25

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1166 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 207:

30 AANCCACTGC ANTITAAACC CCCTCCCCTC CAAGAAAGTT CACAACCGGC CATGGATGAC 60 CCTCATTTTA GATGGCCCNC AATATTTAAG ATGGACTGRG GMCCCCARAG ACTGACCCTT 120 GAAAGGGGA CTCAGAAGAA AGATCCTTGA CATTGCCMAA CATGCTGGGC TTGTCCAACA 180 35 CAGTGATGCG GCTCATCGAG AARCGGGCTT TCCMAGGACA AGTACTTTAT GATAGGTGGG 240 ATGCTGCTGA CCTGTGTGGT CATGTTCCTC GTGGTGCAGT ACCTGACATG AGCCAGCCAC 300 40 GCTCAGTGGC TGAACAGCAT TCCCACAGCC TGCAAGTGTG TGTGTGTGTG AAAGAGAGAG 360 GGGGCCCAGA GGCCGCCTTT TGAAATGTTT GCCTGTCTGA ACTGTGAAGA CACTTGGGAG 420 TGATTGTGGT CTAATTTCCA ACCTGCTCTG TTTTCTGTGA CATCTTGGAG GGGGAGCTAG 480 45 TOCCAMCACC ATGCGCGGTG CTTAGGAAAT GAAAGAAGTC CCGGGTCTGT CTCTCTCACT 540 CTCGCTCTCA MTGGGGGAGG GAAAGAATGG CTTTGGTGGC TTTGTTCACA CAGCTGATGC 600 50 GTGSCCTGGG AAGGTGTCCA CAGTGAGCCC TGTGTGCAGG ACTGTCCACN ACGGTTCACA 660 720 GAAAGAGGCY TTTTCTCACA GCCATTATAT TAAATAGTAG GTCGATTCAC ATCYTCGTGC 780 55 TCCTGGCCAC CCTCCCCTGT GCCTCAGTGA CATGTAGATG ACTGACTGCC AATACTTGTC 840 ACCATTCCCT GGAAGCAGCT ACCTAGGGGA AACAAGATGT AGTGCTATTG CCGATAACAA 900 60 GTAAGATTIT CCACACTACA GCTGGGTGTT TCTCTTTTCT AAAGTGAGGC CAGTGTTATT 960

	TCCCGGGAGT GTTCAGTCTT GACCCTAGTC ACTGATTTTT TCTAGTTGTT AATAGAGTGG	1020
_	TIGGGCTTTT AAGGTTCAGA GACTGTGGGC TTGGGCACCT GCGCCCAGGG STTTTGTGGG	1080
-5	GGCCTTTGCC CCTTAGRAAA GTAGCTTTTA GGGGCAAAGA TTTGTTGATT TTCCCCATTA	1140
	CAGTCTTCAG CTCNAGGGTT TTAAAA	1166
10		
	(2) INFORMATION FOR SEQ ID NO: 208:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 697 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
20	(D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 208:	
	TACTTCTAGG ATTATAAGGA ATTAACATTG AGATGACATT TCCATTTGAG AAGGAAAATA	60
25	GTTGCTTTCA GTGCCTTTTA TTTGATTCCT GGAGAGAGCA GACTCGCACS AACATTCAAC	120
	CCCAGCGCTG ATATGACAGT AATCCTCAGA GGCAGAGCCC AGCACAAAAC AGCAATGCTA	180
30	GAAAGTTACA ATTGGAAAGT TTCCTGCCAG CTTCGGGAAT GACACTGCAA AGCTGATGCC	240
50	AGAAACTGCC AGRGTAATTC TCCTCATTAC TGCTCTACCC ACCCACTTTC AGCTCCCCAA	300
	ATTAACTAGT GCAGTTGACT AATTCTCTTT ACCTTTATCA TITARGGTGA RGCATTGCAC	360
35	AAAAACTCTC GACTTTGCCA TATAAGGGCT GTGGTTCTCT GTGGTCCCCT GGATAAGAGG	420
	CATCACCATT ATCTGGAAAC ATGCAGTAAA TGCAGATTNT TCATCTTCTC CCCAGACCTC	480
40	CTGAGTTAGA AATTCACAAG TTCTCCAGGT GATCTCATAC ATGCTAAAGT TTGAGAACCA	540
40	TTGAGTAAAG TTAATGCATT AAGAAGAGAT TAGATAGGGA TGGTGGCGTA TCTTCCTACA	600
	GTTTCCCTGT TAACAAGAAA GTCAGAGGTC AGTTGATCAG ACATTAGATT ATTTATTGCT	660
45	AAAACTAAAA AAAATTAAAA AAAACTOGAG GGGGGCC	697
50		
50	(2) INFORMATION FOR SEQ ID NO: 209:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 932 base pairs	
55	(B) TYPE: nucleic acid	
در	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 209:	
60	CGTGAGTCAC CTCTCTATAG TGGGCGTGGC CGAGGCCGGG GTGACCCTGC CGAAGCCTCC	60

437

	GCTGCCAGAA ACCATGTTCA AGGTAATTAA AAGGTCCGTG GGGCCAGCCA GCCTGAGCTT	120
. 5	GCTCACCTTC AAAGTCTATG CAGCACCAAA AAAGGACTCA CCTCCCAAAA ATTCCGTGAA	180
ر .	GGTTGATGAG CTTTCACTCT ACTCAGTTCC TGAGGGTCAA TCGAAGTATG TGGAGGAGGC	240
	AAGGAGCCAG CTTGAAGAAA GCATCTCACA GCTCCGACAC TATTGCGAGC CATACACAAC	300
10	CTGGTGTCAG GAAACGTACT CCCAAACTAA GCCCAAGATG CAAAGTTTGG TTCAATGGGG	360
	GTTAGACAGC TATGACTATC TCCAAAATGC ACCTCCTGGA TTTTTTCCGA GACTTGGTGT	420
15	TATTOGTTTT GCTGGCCTTA TTGGACTCCT TTTGGCTAGA GGTTCAAAAA TAAAGAAGCT	480
IJ	AGTGTATCCG CCTGGTTTCA TGGGATTAGC TGCCTCCCTC TATTATCCAC AACAAGCCAT	540
	CGTGTTTGCC CAGGTCAGTG GGGAGAGATT ATATGACTGG GGTTTACGAG GATATATAGT	600
20	CATAGAAGAT TTGTGGAAGG AGAACTTTCA AAAGCCAGGA AATGTGAAGA ATTCACCTGG	660
	AACTAAGTAG AAAACTYCAT GYTCTGCCAT CTTAATCAGT TATRGGTAAA CATTGGAAAC	720
2.5	TCCATAGAAT AAATCAGTAT TTCTACAGAA AAATGGCATA GAAGTCAGTA TTGAATGTAT	780
	TAAATTGCCT TTCTTCTTCA GGAAAAACTA GACCAGACCT CTGTTATCTT CTGTGAAATC	840
	ATCCTACAAG CAAACTAACC TGGAATCCCT TCACCTAGAG ATAATGTACA AGCCTTAGAA	900
30	CTCCTCATTC TCATGTTGCT ATTTATGTAC CT	932
35	(2) INFORMATION FOR SEQ ID NO: 210:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 661 base pairs (B) TYPE: nucleic acid	
40	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEO ID NO: 210:	
45	GTCATTCTTT AAATAAAAGC TTTCCTGTTT AAAGCTTTTC AAAGGAGCAG ACCACCTTGA	60
	AGATTCCCCC TAGGGTTGAT ATGTGTCTAA TICATTTTAT AAAAATTATT CTTGTCTTCA	120
	TTTTAAAGCT TTGGCTATAT AGTCAGAAAT GTCCTAAATA ACAAACTATT TTGTATTTAA	180
50	TTTAGGGAAG ACTAAAGGGA AGAAAAATGA AAACTCAGTC TTTATGTAAG CTCCAAGGAT	240
	ATTAGGGCTT AAACGCCTTT TCTAGTTTTA TGAGAATTTG TACTACTGAT TTTTATATAT	300
55	TCCTCTTTTT GAGATGAACA GATCTCTGGG GAAATTGTTG AGTTACAATG GCATTTCACT	360
		420
	GTGATCCCTC TCAAGCTCAG ATCAGTTCTA TAACCCAATG ACAACCTGTC TCTTTGGTTT	420

ACTGTCCTGT GAAATGTCAG CTCAAGTTTC CCAGAAGTCG TGTGTTTATG ATGAGTCAGA 480

	GTGCTTTTCC TCGGTGGGAC AGTTGCTGGC CCTCTTAATT TTGGTGTATG TGCTTCCAAG	540
	TATCTAAACC TCCAGTCTGA TCTGTATATG CTATCCTAAC TGTTAATTGT ATTATTGATT	600
-5	ATGITGATTA TCTTGCTTGA AGGITCATAC TTTTCAATTT GATAGAAATA AAGTITTTTT	660
	С	661
10		
10		
	(2) INFORMATION FOR SEQ ID NO: 211:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 592 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 211:	
	GAAACTGACA TTGTTAAACA CACTAAAACA GAAGTACTTA CCTCTTGAAG ATTTAATATA	60
25	TAATGGTTGA CATGATACAT GTACATGAAT GGAATGACCA GATGCTTATG GTCTACATTT	120
2,5	TCCTTTATCC TGTTAGTATT ACCTTCCTTA ATCTTTGTTC CTTAACATGC TAAATTCCTC	180
	TYCAGTGTT ATTITCTAGT GACAGAATGC TAACATTTCT TACACCCTGG CAGAAGGGAG	240
30	AGAAATGTGT TTTGGGGTGG GTAACTAAAT TTTTGAGTGA AATATCATAA GATGAGAATG	300
	GAAAGAGGGA GACACAAAGA GTTATAACAA AAAAACAATG GTTTTTTTAG CCATTTGACT	360
35	GCCTCTTTAA ATAGTCTACA AGACATTCAC GTTNAACATC ACTTTTAGTG AAATAAAATG	420
33	TGCCATACTA GTATGTGCTT CAAAAGGGCA AATGTGCTTT AGTGCCCTAA GGCTAAATTT	480
	TGGTCATTTG ACATCAGAGA TGTTGTAAGT ATTGCACTTA ATACGCACCT ATTTCTCAAT	540
40	AGTGNTATTT TTTTGGCTAG CATTTNCTTT ACCACTAACC TTGTTGGATA GC	592
45	(3) THEORYPETON FOR SEC. IN 19. 010	
43	(2) INFORMATION FOR SEQ ID NO: 212:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 938 base pairs	
50	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 212:	
55	TGGAGTGGCT TTCCAGCTGA ATGAATCCTA TGTCTCGCGT GCAGGTGGTT GGTTTTCAAT	60
	GTTCTTSCTA ATTITTTTCC TATTGGCTCT TGGGAGTTTN CTTTGTTTGC TCCTGTGTTT	120
60	GCCCAGCTIT AATAAAACCA GGCGCAAACA AAAACCATAG CATTCTGAAA CAATAGGGGG	180

	CCCACATTGG	ACCCAGTATG	TCACTTTAAT	GGACTTCAAG	AAAAAATCTG	AATGGGAAAA	240
	TGACACTAGG	AATGTATACT	CCACACATTT	TATGCCATAT	AATGGTGTGT	TTTCTTAATT	300
₋ 5	TIGTITCTIG	TGGCGAAATG	TGGCTTTCAA	ATTAAAATTM	CCTTTTCTTC	TTKGAAACTT	360
	TTTGTTTKGA	CTKGTATAAT	TAAGGGTTTG	GAAAGATTCA	TAATTMTGAG	AGAGGTTTGC	420
10	AACCAGGAGA	TACAAAGAAG	TCTCAGTAGT	AATCTTGTTC	ATGTGCTTTT	ACAGCCAGCT'	480
	ACATTTAAGR	ATGTATTAGT	TACAGAAATT	ATATGTCTGT	GTATGTGTCT	CTACTCAATA	540
	AAGTACATGC	CTCCACATAA	TGCGGTGCTG	TCCATCTCGG	CAAATACTGG	CCAAGTCCCT	600
15	TTATGACAGG	CACACAGAAA	CCATAGCATG	GTCTGGCTTT	CAGAAAATGC	CTCTCATCTT	660
	TCCTGGAACC	TTATTTTGCT	AAATGTCTGT	TTTCTTGTGA	TTTGTTGTAC	CTCACAGCAC	720
20	CATTGTGACC	ATGGTGATGC	CTCATTTGCA	TGATATGTAC	CTTGTGTTTA	ATGTGAAATA	780
	CATTTTCATT	GAAGAGTCTG	ATGACTTGCT	AGCGTTTTAT	TTTTTCTGTA	AGCTCAATGT	840
	GCTGAAACCA	AACCAGGCTT	ттааааасст	GTGTAGAAGA	АААССААААА	ATCCTGTGTG	900
25	GGTGTCCTTT	CCCTGTCAAA	CTCATTAAAA	ATTCCTTT			938

30 (2) INFORMATION FOR SEQ ID NO: 213:

35

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1079 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 213:

40 AGCCTGCCGG GAGAGTGGTG GCATCTRARA GCCTGGTCGT GGACTGTGGT TGGGGGAGGT 60 GGGAGCTGTT TTAACCGTGT GCCCCCTCTC CTGTGCCKGC GTGGGCATCC CCCGGGGCAG 120 TGGAACGCGG GCGCTCCTCC AGCTTCCGAG TCCAGCCAGC CTGGGCGCGG GGCGCCCCC 180 45 CGAGACACCC GAGGAGTCCG TTCCTCCCTG GTTACGTGGA CTGTGGAGCT GGTCTCTTGT 240 GGCTCAGCGC CGTGCGGAGG TTGAAGCGTA CCTGCGGAGG TCGCACCACG GGCGTGAGGA 300 50 GGAGGAGGAA GGGCATGAGC CGAGCTTGAG GAATCCGTGY TCCAAACTCT ACACTCAAGG 360 RTGCMCTGCG CAACTCTGGT GGCGATGGGC TGGGGCAGAT GTCCTTGGAG TTCTACCAGA 420 AGAAGAAGTC TCGCTGGCCA TTCTCAGACG AGTGCATCCC ATGGGAAGTG TGGACGGTCA 480 55 AGGTGCATGT GGTAGCCCTG GCCACGGGGC AGGAGCGGCA GATCTGCCGG GAGAAGGTGG 540 GTGAGAAACT CTGCGAGAAG ATCATCAACA TCGTGGAGGT GATGAATCGG CATGAGTACT 600 60 TGCCCAAGAT GCCCACACAG TCGGAGGTGG ATAACGTGTT TGACACAGGC TTGCGGGACG 660

	TGCAGCCCTA CCTGTACAAG ATCTCCTTCC AGATCACTGA TGCCCTGGGC ACCTCAGTCA	720
. 5	CCACCACCAT GCGCAGGCTC ATCAAAGACA CCCTTGCCCT CTGAGCGTCG CTGGATCTCT	780
- 0	GGGAGCTCCT TGATGGCTCC CAGACCTTGG CTTTTGGGAA TTGCACTTTT GGGCCTTTGG	840
	GCTCTGGAAC CTGCTCTGGG TCATTGGTGA GACTTGGAAG GGGCAGCCCC CGCTGGCTTC	900
10	TTGGTTTTGT GGTTGCCAGC CTCAGGTCAT CCTTTTAATC TTTGCTGACG GTTCAGTCCT	960
	GCCTCTACTG TCTCTCCATA GCCCTGGTGG GGTCCCCCTT CTTTCTCCAC TGTACAGAAG	1020
15	AGCCACCACT GGGATGGGGA ATAAAGTTGA GAACATGAGT TTGGGCTGAA AAAAAAAAA	1079
13		
20	(2) INFORMATION FOR SEQ ID NO: 214: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3791 base pairs	
25	(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 214:	
30	TGAAGCAGGC GCTCTTGGCT CGGCGCGCCC CGCTGCAATC CGTGGAGGAA CGCGCCGCCG	60
	AGCCACCATC ATGCCTGGGC ACTTACAGGA AGGCTTCGGC TGCGTGGTCA CCAACCGATT	120
	CGACCAGTTA TTTGACGACG AATCGGACCC CTTCGAGGTG CTGAAGGCAG CAGAGAACAA	180
35	GAAAAAAGAA GCCGGCGGGG GCGCCTTGGG GCCAAGAGCG CATCAGGGCC	240
	GCGGCCCAGA CCAACTCCAA CGCGGCAGGC AAACAGCTGC GCAAGGAGTC CCAGAAAGAC	300
40	CGCAAGAACC CGCTGCCCCC CAGCGTTGGC GTGGTTGACA AGAAAGAGGA GACGCAGCCG	360
	CCCGTGGCGC TTTAAGAAAG AAGGAATAAG ACGAGTTGGA AGAAGACCTG ATCAACAACT	420
	TCAGGGTGAA GGGAAAATAA TTGATAGAAG ACCAGAAAGG CGACCACCTC GTGAACGAAG	480
45	ATTCGAAAAG CCACTTGAAG AAAAGGGTGA AGGAGGCGAA TTTTCAGTTG ATAGACCGAT	540
	TATTGACCGA CCTATTCGAG GTCGTGGTGG TCTTGGAAGA GGTCGAGGGG GCCGTGGACG	600
50	TGGAATGGC CGAGGAGATG GATTTGATTC TCGTGGCAAA CGTGAATTTG ATAGGCATAG	660
	TGGAAGTGAT AGATCTTCTT TTTCACATTA CAGTGGCCTG AAGCACGAGG ACAAACGTGG	720
	AGGTAGCGGA TCTCACAACT GGGGAACTGT CAAAGACGAA TTAACTGACT TGGATCAATC	780
55	AAATGTGACT GAGGAAACAC CTGAAGGTGA AGAACATCAT CCAGTGGCAG ACACTGAAAA	840
	TAAGGAGAAT GAAGTTGAAG AGGTAAAAGA GGAGGGTCCA AAAGAGATGA CTTTGGATGA	900
60	GTGGAAGGCT ATTCAAAATA AGGACCGGGC AAAAGTAGAA TTTAATATCC GAAAACCAAA	960

	TGAAGGTGCT	GATGGGCAGT	GGAAGAAGGG	ATTIGTTCTT	САТАААТСАА	AGAGTGAAGA	1020
	GGCTCATGCT	GAAGATTCGG	TTATGGACCA	TCATTTCCGG	AAGCCAGCAA	ATGATATAAC	1080
-5	GTCTCAGCTG	GAGATCAATT	TTGGAGACCT	TGGCCGCCCA	GGACGTGGCG	GCAGGGGAGG	1140
	ACGAGGTGGA	CCTCCCCCTC	CTCCCCCCC	AAACCGTGGC	AGCAGGACCG	ACAAGTCAAG	1200
10	TGCTTCTGCT	CCTGATGTGG	ATGACCCAGA	GGCATTCCCA	GCTCTGGCTT	AACTGGATGC	1260
10	CATAAGACAA	CCCTGGTTCC	TTTGTGAACC	CTTCTGTTCA	AAGCTTTTGC	ATGCTTAAGG	1320
	ATTCCAAACG	ACTAAGAAAT	таааааааа	AAGACTGTCA	TTCATACCAT	TCACACCTAA	1380
15	AGACTGAATT	TTATCTGTTT	TAAAAATGAA	CTTCTCCCGC	TACACAGAAG	TAACAAATAT	1440
	GGTAGTCAGT	TTTGTATTTA	GAAATGTATT	GGTAGCAGGG	ATGTTTTCAT	AATTTTCAGA	1500
20	GATTATGCAT	TCTTCATGAA	TACTTTTGTA	TTGCTGCTTG	CAAATATGCA	TTTCCAAACT	1560
20	TGAAATATAG	GTGTGAACAG	TGTGTACCAG	TTTAAAGCTT	TCACTTCATT	TGTGTTTTT	1620
	AATTAAGGAT	TTAGAAGTTC	CCCCAATTAC	AAACTGGTTT	TAAATATTGG	ACATACTGGT	1680
25	TTTAATACCT	GCTTTGCATA	TTCACACATG	GTCAACTGGG	ACATGTTAAA	CTTTGATTTG	1740
	TCAAATTTTA	TECTETETE	AATACTAACT	ATATGTATTT	TAACTTAGTT	TTAATATTT	1800
30	CATTTTTGGG	GAAAAATCTT	TTTTCACTTC	TCATGATAGC	TGTTATATAT	ATATGCTAAA	1860
	TCTTTATATA	CAGAAATATC	AGTACTTGAA	CAAATTCAAA	GCACATTTGG	TTTATTAACC	1920
	CTTGCTCCTT	GCATGGCTCA	TTAGGTTCAA	ATTATAACTG	ATTTACATTT	TCAGCTATAT	1980
35	TTACTTTTTA	AATGCTTGAG	TTTCCCATTT	таааатстаа	ACTAGACATC	TTAATTGGTG	2040
	AAAGTTGTTT	AAACTACTTA	TTGTTGGTAG	GCACATCGTG	TCAAGTGAAG	TAGTTTTATA	2100
40	GGTATGGGTT	TTTTCTCCCC	CTTCACCAGG	GTGGGTGGAA	TAAGTTGATT	TGGCCAATGT	2160
	GTAATATTTA	AACTGTTCTG	TAAAATAAGT	GTCTGGCCAT	TTGGTATGAT	TTCTGTGTGT	2220
	GAAAGGTCCC	AAAATCAAAA	TGGTACATCC	ATAATCAGCC	ACCATTTAAC	CCTTCCTTGT	2280
45	TCTAAAACAA	AAACCAAAGG	GCGCTGGTTG	GTAGGGTGAG	GTGGGGGAGT	TTTAATTT	2340
	TTGGAATTTG	GGAAGCAGAC	AGCTTTACTT	TGTAAGGTTG	GAACAGCAGC	ACTATACATG	2400
50	AAATATAAAC	CAAAAACCTT	TACTGTTTCT	AAATTTCCTA	GATTGCTATT	ATTTGGTTGT	2460
	AAGTTGAGTA	TTCCACAGAA	AGTGGTAATT	ATCTCTTCTC	TCTTCCTCCA	TTAGAAAATT	2520
	AGGTAAATAA	TGGATTCCTA	TAATGGGAGC	ATCACCACTT	ATTAAAACAC	ACATAGAATG	2580
55	ATGAATTAAA	AAAGTTTTCT	AGGATTGTCT	TTTATTCTGC	CACATTTATT	GATAAACAGT	2640
	GAAGGAATTT	TTAAAAAATT	TTTAAGAATT	GTTTGTCACG	TCATTTTTAG	AAATGTTCTA	2700
60	CCTGTATATG	GTAATGTCCA	GTTTTAAAAA	TATTGGACAT	CTTCAATCTT	AAACATTTCT	2760

442

	ATTTAGCTGA	TTGGTTCTCA	CATATACTTC	TAAAAGAAAC	TTTTATGTTA	TAAGAGTTAC	2820
	TTTTTGGATA	AGATTTATTA	ATCTCAGTTA	CCTACTATTC	TGACATTTTA	GGAAGGAGGT	2880
- 5	AATTGTTTT	AATGATGGAT	AAACTTGTGC	TGGTGTTTTG	GATCTTATGA	TGCTGAGCAT	2940
	GTTCTGCACT	GGTGCTAATG	TCTAATATAA	TTTTATATTT	ACACACATAC	GTGCTACCCA	3000
10	GAGATTAATT	TAGTCCATAT	GAACTATTGA	CCCATTGTTC	ATTGAGACAG	CAACATACGC	3060
10	ACTCCTAAAT	CAGTGTGTTT	AGACTTTTCA	AGTATCTAAC	TCATTICCAA	ACATGTACCA	3120
	TGTTTTATAA	ACCTCTTGAT	TTCCAGCAAC	ATACTATAGA	AAACACCTGC	TACTCAAAAC	3180
15	ACAACTTCTC	AGTGTCATCC	ATTGCTGTCG	TGAGAGACAA	CATAGCAATA	TCTGGTATGT	3240
	TGCAAGCTTT	CAAGATAGCC	TGAACTTAAA	AAGTTGGTGC	ATTAGTTGTA	TCTGATGGAT	3300
20	ATAAATTTGC	CTCCTAGTTC	ACTITIGIGIC	AAGAGCTAAA	ACTGTGAACC	TAACTTTCTC	3360
20	TTATTGGTGG	GTAATAACTG	AAAATAAAGA	TTTATTTTCA	TGCTCACTTC	TTAAAAGTCA	3420
	TAAAAACAAT	CAAATAGGRT	CATGTTTATT	GTCATGTGTT	TCCTCGKTTC	TGACCTGTGT	3480
25	GCACACCCCT	GTGTGTTTAT	AAATTTTTAAA	TTGAATTTTA	TATGGGGTTT	TTATTTGCTA	3540
	AAAACCAGGC	TGTTGAATCA	CATTTGGGAA	GGGTACTTAT	CTTAATGACT	AATGACTTAA	3600
30	TTGGGAAAGT	TGAATTCTTG	TAAAATACAA	AATCCAAGGA	CTTCTTGGGA	TTTAATCTAA	3660
50	TTGTCACTTC	NTTAGGCAGA	TNCACTTTTT	TGGATAATGG	AAAGTTAAGC	ATACCGAATG	3720
	CTACTTTTGG	TTGACAAACG	GGCCTAATAG	TCCGGGGGGA	AATCCCTAAC	NGGTAAGGNT	3780
35	CCCAAGTATG	G					3791

40 (2) INFORMATION FOR SEQ ID NO: 215:

45

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1334 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 215:

50 CAGTECTOCC TOCTGCTOGG GGCGCTGCGG CCCCGGGCGT CGCCATGACC AGTGAGCTGG 60

ACATCTTCGT GGGGAACAGA CCCTTATCGA CGAGGACGTG TATCGCCTCT GGCTCGATGG 120

TTACTCGGTG ACCGACGCG TGGCCCTGCG GGTGCGCTCG GGAATCCTGG AGCAGACTGG 180

CGCCACGGCA GCGGTGCTNC AGAGCGACAC CATGGACCAT TACCGCACCT TCCACATGCT 240

CGAGCGGCTG CTGCATGCGC CGCCCAAGCT ACTGCACCAG YTCATCTTCC AGATTCCGCC 300

60 CTCCCGGCAG GCACTACTCA TCGAGAGGTA CTATGCCTTT RATGAGGCCT TTGTTCGGGA 360

	GGTGCTGGGC AAGAAGCTGT CCAAAGGCAC CAAGAAAGAC CTGGATGACA TCAGCACCAA	420
-5	AACAGGCATC ACCCTCAAGA GCTGCCGGAG ACAGTTTGAC AACTTTAAAC GGGTCTTCAA	480
3	GGTGGTAGAG GAAATGCGGG GCTCCCTGGT GGACAATATT CAGCAACACT TCCTCCTCTC	540
	TGACCGGTTG GCCAGGGACT ATGCAGCCAT CGTCTTCTTT GCTAACAACC GCTTTGAGAC	600
10	AGGGAAGAAA AAACTGCAGT ATCTGAGCTT CGGTGACTTT GCCTTCTGCG CTGAGCTCAT	6 60
	GATCCAAAAC TGGACCCTTG GAGCCGTCGA CTCACAGATG GATGACATCG ACATGGACTT	720
15	AGACAAGGAA TTTCTCCAGG ACTTGAAGGA GCTCAAGGTG CTAGTGGCTG ACAAGGACCT	780
	TCTGGACCTG CACAAGAGCC TGGTGTGCAC TGCTCTCCGG GGAAAGCTGG GCGTCTTCTC	840
	TGAGATGGAA GCCAACTTCA AGAACCTGTC CCGGGGGCTG GTGAACGTGG CCGCCAAGCT	900
20	GACCCACAAT AAAGATGTCA GAGACCTGTT TGTGGACCTC GTGGAGAAGT TTGTGGAACC	960
	CTGCCGCTCC GACCACTGGC CACTCAGCGA CGTGCGGTTC TTCCTGAATC AGTATTCAGC	1020
25	GTCTGTCCAC TCCCTCGATG GCTTCCGACA CCAGGCCTCT GGGACCGCTA CATGGGCACC	1080
	CTCCGCGGCT GCCTCCTGCG CCTGTATCAT GACTGAGGTG CCTCCCAACG CTCCGCCCAC	1140
	GCTGACAATA AAGTTGCTCT GAGTTTGGAG ACTGGTCCTC GCTCCGGGGA GCAAGTGGGG	1200
30	GGCGTGCAGA TGTGCCTGTG TCTGTCTCTG AGCACCTGGT GTCCGTGTAC AAGGATGGAT	1260
	GTGTNCNGTG GCTCCTTGGG AACTGAGACA TATCTCAGGG AATGGTGTCT GTGCTCAGCC	1320
35	CATCCACCAG AAGA	1334
	(2) INFORMATION FOR SEQ ID NO: 216:	
40	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1511 base pairs (B) TYPE: nucleic acid	٠
45	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 216:	
	GTGGCGGGGA TGCTGCGAGG GGGTCTCCTG CCCCAGGCGG GCCGGCTGCC TACCCTCCAG	60
50	ACTGTCCGCT ATGGCTCCAA GGCTGTTACC CGCCACCGTC GTGTGATGCA CTTTCAGCGG	120
	CAGAAGCTGA TGGCTGTGAC TGAATATATC CCCCCGAAAC CAGCCATCCA CCCATCATGC	180
55	CTGCCATCTC CTCCCAGCCC CCCACAGGAG GAGATAGGCC TCATCAGGCT TCTCCGCCGG	240
	GAGATAGCAG CAGTTTTCCA GGACAACCGA ATGATAGCCG TCTGCCAGAA TGTGGCTCTG	300
	AGTGCAGAGG ACAAGCTTCT TATGCGACAC CAGCTGCGGA AACACAAGAT CCTGATGAAG	360
60		

	RTCTTCCCCA	ACCAGGTCCT	GAAGCCCTTC	CTGGAGGATT	CCAAGTACCA	AAATCTGCTG	420
	CCCCTTTTTG	TGGGGCACAA	CATGCTGCTG	GTCAGTGAAG	AGCCCAAGGT	CAAGGAGATG	480
-5	GTACGGATCT	TAAGGACTGT	GCCATTCCTG	CCGCTGCTAG	GTGGCTGCAT	TGATGACACC	540
	ATCCTCAGCA	GGCAGGGCTT	TATCAACTAC	TCCAAGCTCC	CCAGCCTGCC	CCTGGTGCAG	600
10	GGGGAGCTTG	TAGGAGGCCT	CACCTGCCTC	ACAGCCCAGA	CCCACTCCCT	GCTCCAGCAC	660
	CAGCCCCTCC	AGCTGACCAC	CCTGTTGGAC	CAGTACATCA	GAGAGCAACG	CGAGAAGGAT	720
	TCTGTCATGT	CCCCCAATCC	GAAGCCAGAT	CCTGACACTG	TTCCGGACTC	GTAGCCAGCC	780
15	TGTTTAGCCA	GCCCTGCGCA	TAAATACACT	CTGCGTTATT	GCTGTGCTC	TCCTCAATGG	840
	GACATGTGGA	AGAACTTGGG	GTCGGGGAGT	GTGTTTGTCA	CTTGGTTTTC	ACTAGTAATG	900
20	ATATTGTCAG	GTATAGGGCC	ACTTGGAGAT	GCAGAGGATT	CCATTTCAGA	TGTCAGTCAC	960
	CGGCTTCGTC	CTTAGTTTTC	CCAACTTGGG	ACGTGATAGG	AGCAAAGTCT	CTCCATTCTC	1020
	CAGGTCCAAG	GCAGAGATCC	TGAAAAGATA	GGGCTATTGT	CCCCTGCCTC	CTTGGTCACT	1080
25	GCCTCTTGCT	GCACGGGCTC	CTGAGCCACC	CCCTTGGGGC	ACAACCTGCC	ACTGCCACAG	1140
	TAGCTCAACC	AAGCAGTTGT	GCTGAGAATG	GCACCTGGTG	AGAGCCTGCT	GTGTGCCAGG	1200
30	CTTTGTGCTG	AGTGCTGTAC	ATGTATTAGT	TCCTTTACTG	CTGACCACAT	TGTACCCATT	1260
	TCACAGAGAA	GGAGCAGAGA	AATTAAGTGG	CTTGCTCAAG	GTCATGCAGT	TAGTAAGTGG	1320
	CAGAACAGGG	ACTIGAACCA	AGCCCTCTGC	TCTGAAGACC	GCGTCCTGAA	TTTCTTCACT	1380
35	AGAGCTTCCT	CATCAGGTTA	CCCAGAAGTG	GGTCCCATCC	ACCATCCAGG	TGTGCTTGGA	1440
	TGTTAGTTCT	CCACCCTCGA	GGTGTACGCT	GTGAAAAGTT	TGGGAGCACT	GCTTTATAAT	1500
40	AAAATGAAAT	A					1511
45		SEQUENCE C	EQ ID NO: 2:	ICS:			
50		(B) TYP (C) STF	NGTH: 642 ba PE: nucleic NANDEDNESS: POLOGY: line	acid double			
	(xi) SEQUENCE	DESCRIPTION	: SEQ ID NO	: 217:		
55	AGGCCTTACT	TTTCCTCCCA	CAAAGGAGTC	GCAGCCACGC	TAGCTCTGAC	TTGCCACTGT	60
	GACAAAGTTC	ACGTAGCAGG	TCTAGGCAAA	GACTGGGCAA	TTGAGCAGAG	GAGACGGACC	120

TGTGAGTCTG ACCRYGAGSC GGRCCCCTTC ACCTTGGCTG GGCTGGTCCT GGTCCTTAGG

TTTTGTCAGG TTGTCCTTGT TTGGATCCCT CAACTAGGTG ATAAGCACTG GAGGGGGATG

60

180

445

	ACCCGCCITG GACGIGITIC TITAACCICA TCCATATAAT AGGGCCGTGG GATGGTTGTA	300
.5	GAGGTAAAGC AGGATGATGG TGTTTTAAGA CCAGAGCTTG GGACCAGGGC TCCTACACCT	360
,	AATTITCTCT CCTGGTAGCT GAACAAAGGT CTAAATTAGC TTAACAAAAG AACAGGCTGC	420
	CGTCAGCCAG AGTTCTGAAG GCCATGCTTT CAGTTTCCCT TGTTGACAAT TGCTCTCCAG	480
10	TYCCTATGAA AGCACAGAGC CTTAGGGGGC CTGGCCACAG AACACAACCA TCTTAGGCCT	540
	GAGCTGTGAA CAGCAGGGG TTGTGTGTCT GTTCTGTTTC TCTGCTTGCC GAACTTTCTC	600
15	AATAAACCCT ATTTCTTATT TTATATTTAC GTNGGTGCTG GG	642
20	(2) INFORMATION FOR SEQ ID NO: 218: (i) SEQUENCE CHARACTERISTICS:	
25	(A) LENGTH: 1241 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 218:	
30	GGTCCCACTG TICCATTITA TGCTAATAGA TICCATTCTA GGGCCCAGCC GTCTCTTGAC	60
	TGATGGTGTT CCCTTTAACC CTTGGCATGT ATAATAGAAT TTTGGTGAAT GAAAGAACCC	120
	AAATAGGCCA GATAGTCCCC CCAGGCCCTG ATATCCATAA AAGGCTTGGG AATGCATTAT	180
35	GTAATTGTCC TTAGTCTTTT TGTTGTTTTA GAAAAAAAA ACAAGATGGG CTCAGATGGA	240
	TGCCTACGTA AAAATGGTTC CTAGCTGTGT ACTCATAACT TTTCTTTGAA TTGAGTAGTG	300
40	AAAGGAAGGA GGAGGAAAGG AAATTAAATG TCCTTCTAGT ATTCTCTGGA CTCAAGTCTG	360
	ACATATGRGA TAATAACCTA TATTGAAATG CCAAGAATTG TATCTGAAAC AAGRGAACAG	420
	TTTGACACAT TTATCATGCC TTCATATTAC ATATTAACTG AAACCAATTA ATAAACATAT	480
45	GAAATATCCA TTGCACAAGG CAAAGGCACC TAAACCTTTT GTTTCTTTTT CTACATAGCA	540
	GAAATIGATT TTTTTTTAT TTTTTTAGGG GAACCTATAT AATTATGACC CAGTGATGTC	600
50	TTTTGGTGAC TTAAGCTTAT GAATTCAGGT TACAATTGAG TTGATTCTAG ATGGTTACTA	660
	CCTTGAAAAG GATGTTGGTG CCTTATGTGA CACGAGCCAG AGCCTGCTGG GAATAAACAA	720
	AGCAGATTCA TGCCAACACC AACTCGTAGC TTTAGTGGCA GATGGGAGTG GTCACAGACT	780
55	CCCAAAATGT GGGGCTTTGG ATTTCCACAC CATCCCACGT GTGTGTCATC TTCCTCTTTC	840

ACACTCTTGA TGATAATTTG AAAATGRTGA AATCACCTCT GAATTTGCCT ATAGCATGAG

CACATTCTTA TGACAACATA ACAAATAGTT CATAATGTGA ATATTAGAAA CTGTTACAGC

60

900

	CTGCAGTTAC CATAATTTC CATGTTTGTG GAATTGATAT TGAAATAGCA GGGCTAAGGA	1020
	ATTACTGGCA AGTTTTAGCC TGTGGGTAAT ACCTTAGGGT TATTTAAATA TTTGTAATTT	1080
- 5	TATTTAAATG TICATGAATG TITGAAAGGA ACAAAATTAT CAGGGATGGC TCTTTGCCAT	1140
	GGGTCTTATT TTCACCCTCT TTTCTGTAAG AAAAAAGAAC AATGTCTTAA TGTATTTTTA	1200
10	AAGTITITGG TATAGTITCT AATTCCAATT TTAATAAAAG T	1241
10		
	(2) INFORMATION FOR SEQ ID NO: 219:	
15	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1080 base pairs (B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 219:	
	TGTTTATGTG ACCTAAAACA TACACACATG CACACACACA TACATATCCA TTCATTCATT	60
25	CATTCAAGTG GTGTTTCCAG TGTCTGTGTG TCACTGTTTA TGCAGTTTCC ATTTCCCAGT	120
	GAATTATGAG TGGAGGGCAA CTTTTCTAAC CAGATTGTCT TTTCAGAACA AAGACCKGGG	180
30	RATTGAGGAA GAGTTTGGAA AGAGGGAGAG GCAAGGAAAG AGAGCTTTAA ATTGAAAGGT	240
	TAATTICCTA AGAGGAACCT GGGCTGAATG ACTACAGTGT TATACCCTCC AATCTTTGCA	300
25	GGTGGGCATG GAACACTGCT TGTATCACTC TGTGCACGGT ATAAATCCAT ATATCCACAA	360
35	AAACACACAT CCATCCATCA ACATATACAT GGTTTGGGAT GAGCAGGTCA ATAGTTTTGA	420
	GAGGGAGITT GTTCCTTTTT TTTTCTCATT ATACTCTTAA ATTGTTGTCA GTTATCAAAC	480
40	AAACAAACAG AAAAATTGTT TOGGAAAAAC CTTGCATACG CCTTTTCTAT CMAGTGCTTT	540
	AAAATATAGA CTAAATACAC ACATCCTGCC AGTTTTTTCT TACAGTGACA GTATCCTTAC	600
15	CTGCCATTTA ATATTAGCCT CGTATTTTC TCACGTATAT TTACCTGTGA CTTGTATTTG	660
45	TTATTTAAAC AGGAAAAAA ACATTCAAAA AAAGAAAAAT TAACTGTAGC GCTTCATTAT	720
	ACTATTATAT TATTATTATT ATTGTGACAT TTTGGAATAC TGTGAAGTTT TATCTCTTGC	780
50	ATATACTTTA TACGGAAGTA TTACGCCTTA AAAATACGAA AATAAATTTT ACAAGGTTTC	840
	TOTTTTGTGT GGAAGAGTAA TTGATGTTGC TAAGAATGAT GTTTGTTTTT TTGGGGTTTT	900
	TGTTGTTTT TTTTTAAATG TTACCAGCAC TTTTTTTGTA AGTTTCACTT TCCGAGGTAT	960

AAACCNCGGG GGGGCCCGG TCCCATTGGN CCCAAGGGGG CGGTTACGGG GTCACGGCCG

(2) INFORMATION FOR SEQ ID NO: 220:

- 5

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1258 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 220:

	•••-						
	TGAATTGAGG	GCTTAAAGAT	AAACATATGG	GRTTGGAGTT	GTGTGTCCAT	AGGGTTTCAC	60
15	TGCCTATTTG	ATTTGAGTTT	ATCCCTATTA	ATTTTTACA	GTGAAATTT	ATTAAAGTAT	120
	AATGTACATA	TATTTTCAGT	GGATTTTGCT	CTGAAGGTTC	TCCAGTGGTC	TGACTACGAG	180
20	ATAGTGCGGC	TTCAGCTGTG	GGATATTGCA	GGGCAGGAGC	GCTTCACCTC	TATGACACGA	240
20	TTGTATTATC	GGGATGCCTC	TGCCTGTGTT	ATTATGTTIG	ACGTTACCAA	TGCCACTACC	300
	TTCAGCAACA	GCCAGAGGTG	GAAACAGGAC	CTAGACAGCA	AGCTCACACT	ACCCAATGGA	360
25	GAGCCGGTGC	CCTGCCTGCT	CTTGGCCAAC	AAGTGTGATC	TGTCCCCTTG	GGCAGTGAGC	420
	CGGGASCAGA	TTGACCGGTT	CAGTAAAGAG	AACGGTTTCA	CAGGTTGGAC	AGAAACATCA	480
30	GTCAAGGAGA	ACAAAAATAT	TAATGAGGCT	ATGAGAGTCC	TCATTGAAAA	GATGATGAGA	540
50	AATTCCACAG	AAGATATCAT	GTCTTTGTCC	ACCCAAGGGG	ACTACATCAA	TCTACAAACC	600
	AAGTCCTCCA	GCTGGTCCTG	CTGCTAGTAG	TGTTTGGYTT	ATTTTCCATC	CCAGTTCTGG	660
35	GAGGTCTTTT	AAGTCTCTTC	CCTTTGGTTG	CCCACCTGAC	MATTITTATTA	AGTACATTIG	720
	AATTGTCTCC	TGACTACTGT	CCAGTAAGGA	GCCCATTGT	CACTTAGAAA	AGACACCTGG	780
40	AACCCAKGTG	CATTTCTGCA	TCTCCTGGAT	TAGCCTTTSA	CATGTTGCTG	RCTCACATTA	840
.0	GTGCCAGTTA	CTCCCTTCGG	TGTAAGATCT	TCTCATCAGC	CCTCAATITG	TGATCCGGAA	900
	TTTTGTGAGA	AGGATKAGAA	ATCAGCACCT	GCGTTTTAGA	GATCATAATT	CTCACCTACT	960
45	TCTGAGCTTA	TTTTTCCATT	TGATATTCAT	TGATATCATG	ACTTCCAATT	GAGAGGAAAA	1020
	TGAGATCAAA	TGTCATTTCC	CAAATTTCTT	GTAGGCCGTT	GTTTCAGATT	CTTTCTGTCT	1080
50	TGGAATGTAA	ACATCTGATT	CTGGAATGCA	GAAGGAGGG	TCTGGGCATC	TGTGGATTTT	1140
<i>5</i> 0	TGGCTACTAG	AAGTGTCCCA	GAAGTCACTG	TATTTTTGAA	ACTICTAACG	TCATAATTAA	1200
	GTTTCTCTTG	TCTTGGGCAT	CAAGANTAGT	TCCAATTTT	TGGGCCGGGG	CAGGGTGG	1258

55

60

(i) SEQUENCE CHARACTERISTICS:

⁽²⁾ INFORMATION FOR SEQ ID NO: 221:

448

(A) LENGTH: 1693 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

- 5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 221:

	САСААТАТАТ	GAAATAGTAC	CCTCTAAAAA	AGAGAAAAA	AAAATCAGGC	GGTCAAACTT	60
10	AGAGCAACAT	TGTCTTATTA	AAGCATAGTT	TATTTCACTA	GAAAAATTT	AATATCAAGG	120
	ACTATTACAT	ACTTCATTAC	TAGGAAGTTC	ттттаааат	GACACTTAAA	ACAATCACTG	180
15	AAAACTTGAT	CCACATCACA	CCCTGTTTAT	TITCCTTAAA	CATCTTGGAA	GCCTAAGCTT	240
15	CTGAGAATCA	TGTGGCAAGT	GTGATGGGCA	GTAAAATACC	AGAGAAGATG	TTTAGTAGCA	300
	ATTAAAGGCT	GTTTGCACCT	TTAAGGACCA	GCTGGGCTGT	AGTGATTCCT	GGGGCCAGAG	360
20	TGGCATTATG	TTTTTACAAA	ATAATGACAT	ATGTCACATG	TTTGCATGTT	TGTTTGCTTG	420
	TTGAATTTTT	GAACAGCCAG	TTGACCAATC	ATAGAAAGTA	TTACTTTCTT	TCATATGGTT	480
25	TITGGTICAC	TGGCTTAAGA	GGTTTCTCAG	AATATCTATG	GCCACAGCAG	CATACCAGTT	540
23	TCCATCCTAA	TAGGAATGAA	ATTAATTTTG	TATCTACTGA	TAACAGAATC	TGGGTCACAT	600
	GAAAAAAAT	CATTTTATCC	GTCTTTTAAG	TATATGTTTA	AAATAATAAT	TTATGTGTCT	660
30	GCATATTGCA	GAACAGCTCT	GAGAGCAACA	GTTTCCCATT	AACTCTTTCT	GACCAATAGT	720
	GCTGGCACCG	TIGCTICCTC	TTTGGGAAGA	GGAAAGGGTG	TGTGAACATG	GCTAACAATC	780
35	TTCAAATACC	CAAATTGTGA	TAGCATAAAT	AAAGTATTTA	TTTTATGCCT	CAGTATATTA	840
<i>33</i>	TTATTTATT	TTTTAGGTAA	TGCCTATCTC	TIGGICTATT	AAGGAAAGAA	GCAATCAGTA	900
	GAGAATTCAG	GATAGTTTTG	TTTAAATTCT	TGCAGATTAC	ATGTTTTTAC	AGTGGCCTGC	960
40	TATTGAGGAA	AGGTATTCTT	CYATACAACT	TGTTTTAACC	TTTGAGAACA	TTGACAGAAA	1020
	TTATGCAATG	GTTTGTTGAG	ATACGGACTT	GATGGTGCTG	TTTAATCAGT	TTGCTTCCAA	1080
45	AGTGGCCTAC	TCAAGAGGCC	CTAAGACTGG	TAGAAATTAA	AAGGATTTCA	AAAACTTTCT	1140
43	ATTCCTTTCT	TAAACCTACC	AGCAAACTAG	GATTGTGATA	GCAATGAATG	GTATGATGAA	1200
	GAAAGTTTGA	CCAAATTTGT	TTTTTTGTTG	TIGTIGTIGT	TTTGAATTTG	AAATCATTCT	1260
50	TATTCCCTTT	AAGAATGTTT	ATGTATGAGT	GTGAAGATGC	TAGCGAACCT	ATGCTCAGAT	1320
	ATTCATCGTA	AGTCTCCCTT	CACCTGTTAC	AGAGTTTCAG	ATCGGTCACT	GATAGTATGT	1380
55	ATTICTITAG	TAAGAATGTG	TTAAAATTAC	AATGATCTTT	TAAAAAGATG	ATGCAGTTCT	1440
JJ	GTATTTATTG	TCCTCTCTCT	GGTCCTAAGT	GGAGCCAATT	AAACAAGTTT	CATATGTATT	1500
	TTTCCAGTGT	TGAATCTCAC	ACACTGTACT	TTGAAAATTT	CCTTCCATCC	TGAATAACGA	1560
60	ATAGAAGAGG	ССАТАТАТАТ	TGCCTCCTTA	TCCTTGAGAT	TTCACTACCT	TTATGTTAAA	1620

449

60

	AGTTGTGTAT	AATIGITAAA	ATCTGTGAAA	GAATAAAAAG	TGGATTTAAA.	ТТААААААА	1680
5 -	АААААААА	AAA					1693

(2) INFORMATION FOR SEQ ID NO: 222:

10

20

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1196 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

15 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 222:

ACCCGTGGGT CGACCCACGC GTCCGCGACN TGGCGTGGTG GGGAAGGGAG AAGGATTTGT

AAACCCCGGA GCGAGGTTCT GCTTACCCGA GGCCGCTGCT GTGCGGAGAC CCCCGGGTGA 120 AGCCACCGTC ATCATGTCTG ACCAGGAGGC AAAACCTTCA ACTGAGGACT TGGGGGATAA 180 25 GAAGGAAGGT GAATATATTA AACTCAAAGT CATTGGACAG GATAGCAGTG AGATTCACTT 240 CAAAGTGAAA ATGACAACAC ATCTCAAGAA ACTCAAAGAA TCATACTGTC AAAGACAGGG 300 TGTTCCAATG AATTCACTCA GGTTTCTCTT TGAGGGTCAG AGAATTGCTG ATAATCATAC 30 TCCAAAAGAA CTGGGAATGG AGGAAGAAGA TGTGATTGAA GTTTATCAGG AACAAACGG 420 GGGTCATTCA ACAGITTAGA TATTCTTTTT ATTTTTTTTC TITTCCCTCA ATCCTTTTTT 480 35 ATTTTTAAAA ATAGTTCTTT TGTAATGTGG TGTTCAAAAC GGAATTGAAA ACTGGCACCC 540 CATCTCTTTG AAACATCTGG TAATTTGAAT TCTAGTGCTC ATTATTCATT ATTGTTTGTT 600 TTCATTGTGC TGATTTTTGG TGATCAAGCC TCAGTCCCCT TCATATTACC CTCTCCTTTT 660 40 TAAAAATTAC GTGTGCACAG AGAGGTCACC TITTTCAGGA CATTGCATTI TCAGGCTTGT 720 GGTGATAAAT AAGATCGACC AATGCAAGTG TYCATAATGA CTTTCCAATT GGCCCTGATG 780 45 TTCTAGCATG TGATTACTTC ACTCCTGGAC TGTGACTTTC AGTGGGAGAT GGAAGTTTTT 840 900 CAGAGAACTG AACTGTGGAA AAATGACCTT TCCTTAACTT GAAGCTACTT TTAAAATTTG AGGGTCTGGA CCAAAAGAAG AGGAATATCA GGTTGAAGTC AAGATGACAG ATAAGGTGAG 960 50 AGTAATGACT AACTCCAAAG ATGGCTTCAC TGAAGAAAAG GCATTTTAAG ATTTTTTAAA 1020 AATCTTGTCA GAAGATCCCA GAAAAGTTCT AATTTTCATT AGCAATTAAT AAAGCTATAC 1080 55 ATGCAGAAAT GAATACAACA GAACACTGCT CTTTTTGATT TTATTTGTAC TTTTTGGCCT 1140 1196 GGGATATGGG TTTTAAATGG ACATTGTCTG TACCAGCTTC ATTAAAATAA ACAATA

PCT/US98/04493 WO 98/39448 450

(2) INFORMATION FOR SEQ ID NO: 223:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1791 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

5 -

10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 223:	
	TCAGGGAGGT GGCAGGAAAG GCTTGGAACA GCTGCCGGAG TGACGGAGCG GCGGCCCCGC	60
15	CCGGTTGCGC TGGAGGTCGA ACCTTCCAGG TAGCGGCCCG CAGAGCCTGA CCCAGGCTCT	120
13	GGACATCCTG AGCCCAAGTC CCCCACACTC AGTGCAGTGA TGAGTGCGGA AGTGAAGGTG	180
	ACAGGGCAGA ACCAGGAGCA ATTTCTGCTC CTAGCCAAGT CGGCCAAGGG GGCAGCGCTG	240
20	GCCACACTCA TCCATCAGGT GCTGGAGGCC CCTGGTGTCT ACGTGTTTGG AGAACTGCTG	300
	GACATGCCCA ATGTTAGAGA GCTGGCTGAG AGTGACTTTG CCTCTACCTT CCGGCTGCTC	360
25	ACAGTGTTTG CTTATGGGAC ATACGCTGAC TACTTAGCTG AAGCCCGGAA TCTTCCTCCA	420
20	CTAACAGAGG CTCAGAAGAA TAAGCTTCGA CACCTCTCAG TTGTCACCCT GGCTGCTAAA	480
	GTAAAGTGTA TCCCATATGC AGTGTTGCTG GAGGTCTTGC CCTGCGTAAT GTGCGGCAGC	540
30	TOGAAGACCT TOTGATTGAG GCTGTGTATG CTGACGTGCT TCGTGGCTCC CTGGACCAGC	600
	GCAACCAGCG GCTCGAGGTT GACTACAGCA TCGGGCGGGA CATCCAGCGC CAGGACCTCA	660
35	GTGCCATTGC CCGAACCCTG CAGGAATGGT GTGTGGGCTG TRAGGTCGTG CTGTCAGGCA	720
-	TTGAGGAGCA GGTGAGCCGT GCCAACCAAC ACAAGGAGCA GCAGCTGGGC CTGAAGCAGC	780
	AGATTGAGAG TGAGGTTGCC AACCTTAAAA AAACCATTAA AGTTACGACG GCAGCAGCAG	840
40	CCGCAGCCAC ATCTCAGGAC CCTGAGCAAC ACCTGACTGA GCTGAGGGAA CCAGCTCCTG	900
	GCACCAACCA GCGCCASCCA GCAAGAAAGC CTCAAAGGGC AAGGGGCTCC GAGGGAGCGC	960
45	CAAGATITIGG TCCAAGTCGA ATTGAAAGRA CIGTCGTTTC CTCCCTGGGG ATGTGGGGTC	1020
,,,	CCAGCTGCCT GCCTGCCTCT TAGGAGTCCT CAGAGAGCCT TCTGTGCCCC TGGCCAGCTG	1080
	ATAATCCTAG GTTCATGACC CTTCACCTCC CCTAACCCCA AACATAGATC ACACCTTCTC	1140
50	TAGGGAGGAG KCAAATGTAG GTCATGTTTT TGTTGGTACT TTCTGTTTTT TGTGACTTCA	1200
	TGTGTTCCAT TGCTCCCCGC TGCCATGCTC TCTCCCTTGT TTCCTTAAGA GCTCAGCATC	1260
55	TGTCCCTGTT CATTACATGT CATTGAGTAG GTGGGTAGCC CTGATGGGGG TCGCTCTGTC	1320
33	TGGAGCATAA CCCACAGGCG TTTTTTCTGC CACCCCATCC CTGCATGCCT GATCCCCAGT	1380
	TCCTATACCC TACCCCTGAC CTATTGAGCA GCCTCTGAAG AGCCATAGGG CCCCCACCTT	1440
60	TACTCACACC CTGAGAATTC TGGGAGCCAG TCTGCCATGC CAGGAGTCAC TGGACATGTT	1500

451

	CATCCTAGAA	TCCTGTCACA	CTACAGTCAT	TTCTTTTCCT	CTCTCTGGCC	CTTCGGTCCT	1560
5	GGGAATGCTG	CTGCTTCAAC	CCCAGAGCCT	AAGAATGGCA	GCCGTTTCTT	AACATGTTGA	1620
J	GAGATGATTC	TTTCTTGGCC	CTGGCCATCT	CGGGAAGCTT	GATGGCAATC	CTGGAAGGGT	1680
	TTAATCTCCT	TTTGTGAGTT	TGGTGGGGAA	GGGAAGGGTA	TATAGATTGT	AAAAAAA	1740
10	AAAAGGTATA	TATGCATATA	тстататата	ATATGACGCA	GAAATAAATC	T	1791

15 (2) INFORMATION FOR SEQ ID NO: 224:

20

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2517 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 224:

25 ACACTAGTGG ATCCAAAGAA TTCGGCACAG CGGCACAGCA TTGTTGAGCT TTTCTGTGTG 60 TGTGGGGCCC TCAAGCGAGC TCGACTGGTC CATCCTGGGG TAGCGASGTG GTGTTTGTGA 120 AAAAGGACGA TGCCATCACC GCATAYAAGA AGTACAACAA CCGGTGTCTG GACGGCAGC 180 30 240 CGATGAAGTG CAACCTTCAC ATGAATGGGA ATGTTATCAC CTCAGACCAG CCCATCCTGC TGCGGCTGAG TGACAGCCCA TCAATGAAAA AGGAGAGCGA GCTGCCTCGC AGGGTGAACT 300 35 CTGCCTCCTC CTCCAACCC CCTGCCGAAG TGGACCCTGA CACCATCCTG AAGGCACTCT 360 TCAAGTCCTC AGGGGCCTCT KTGACCACGC AGCCCACAGA WTTCAAAATC AAGCTTTGAG 420 CAGGGGAGTR AGGCAGCCAG AACTGGGGGC AGAGGAGGGT GGCTCTGTTT CCCCAAGGCA 480 40 AAGCTTATGA CCAATGGGCC ATCGGACTGG AGACCCCTGA TTGTGGGAAG GGTTGCCAGG 540 GATAAAGAGC TTCCTCACTG GATGGGACCC GCCTTTCTGT GTTGTGTTCT GCCCTGTGCT 600 45 CTTCTCTCTA CGTTAACGTT TCCTGTAGTA TGTTTCTTCA TCTCATCGCC AAGGTAGGCT 660 TGTGTTTTTM AGTGTGTGCC TCCCCGAGCC TCAGCCCCAA GCTGATTTCT TATCTGGAAA 780 TGGTACACTG AATTCTCTGG GTGGCTTTCT TGTGGCCCCA TGGGATGCAG CGTGGGGGCT 50 GTCTGAAGGA CCCTGCTTTT TCCAGGGGCC GAGGGGCTGC CTTTCCTTTG TGTGTATTAA 840 GCTTTTCAAA CAATGGAGGG GATGGAGAGC CCTGGTGTCC TGACGGAGC CAGGTCGGCC 900 55 TGAGAGCTCT GCCGCTCCTC TGTCTTGTCA GTGGAGGTGC CTGGGTGGGG AGCAGGTCTC 960 1020 AGGCCTCTTG TCCTCTCCCC AGTGGCTCCA GGCCTCACTA GTGGCAAGGG CAGGATGAGG 1080 60

	CAGAGGAAGT	TCTCCAGAGT	TCACCITICC	CTTTTCCTTG	AGTIGIGCIG	AATGCCCCAC	1140
	CCCAGCTCTC	TTTCCCTTCT	GGGTGTCTTT	GCTGGGAGGG	OCCIGIGITIC	TGAGCCCTCC	1200
5	CGGTTCTCAC	CTCGCCTGGC	ACTTAACCAC	ACCCTGGTTT	TGTGTAGCCG	CCAGCTCTCT	1260
	TCTGGTTGGG	CCTTTGAAAG	GCTCAGCCTC	CCATTGTGCA	GTGCTTGGGT	TTGGAGCTTA	1320
10	TTTGAATGGA	AGAGGTCAGT	TIGTTCCTGG	CTCTCCATTT	CTGGCCTCAG	TTGTCTACAG	1380
. 0	GACAGTGGTC	AGGGATGCCT	GGAGGCATAT	ATCCAGCTGC	CACCAAGGG	CACTGTTTGT	1440
	TCCCACTTAT	GTGAGTGACC	CCATCCATCC	ATGACCAGAG	GATTATTTTC	CTGCCTTGGC	1500
15	AGAGGAGGAG	GAGTCAAGGG	AGCAGGGCAG	CTCTACCAGG	CAAGGTGTTT	CCCCAGCATA	1560
	GGCGCAGACA	GTTGGGACGA	AACTTCAGAG	CCCAGGCAGT	CCCTGAATGA	CCAGGCCAGT	1620
20	GTTGTCACTG	AGTGGTCCCC	TCCTCGTTCG	GAGTGAAGAG	AATCCAGGCT	GGCAGAGCTG	1680
	GAGCCAGTTG	GGGAGCACGG	TTCTGGGAGC	TCTGCAAAAT	CAGTAGCAAG	TGCTGGAAAA	1740
	GGCACATGCC	GAAGATACTC	AAGAGCTCCC	AAGATTTGCT	TGAGGCTAGC	CCAGTGAAAA	1800
25	AAACCAGAGA	CTCATGTTTC	CAGGGTCAG	TCTGTCAGGC	AGGAAGGACC	CAGGATTTGA	1860
	ACCCAGCTTC	AGTGTGCAGG	CTCTGAGGCT	GCCCAGGACG	GGAAAGTCCA	AGGAAGGGC	1920
30	CTGGTGGTGC	TCCACTTGCA	GTTCTTTAAA	GAATGCTGCT	TTTTATTCTC	CTAACCCTTT	1980
	CAAGTGGGTG	CAGACTICIC	GTTAGCAGCT	GGAAGACATT	CCTCCCACAC	TTTTCCCTTC	2040
	CTGGCCCAAG	AGAGCATCCA	GAAGGCAGTA	GGACCTGGTT	TTTCAGGTAC	TGGGAGCCGG	2100
35	GGGCTCACTG	CTTGCACTGT	GCTTAGGGTA	GGGATGGTAA	ATATCCTCCC	TGCATGGCTT	2160
	TATCCTCCCT	CTCATCCCAA	AGCAGGTATC	TTCTGGTTGT	CACAGAGTTT	CATTGAGTCC	2220
4 0	AGCTGCAGCC	ACGTGGCCAT	CTGGAGCTGG	TGCTATAGGT	GACCATCTGG	TACATTGAGG	2280
	GGACCTGTTT	GCCTCCTCCA	CTCTATAAGC	AGTCATCTTG	GGAGACCGGG	AGGAGAAGGT	2340
	GGTGGGCTAG	TCCTGTGTCC	TCCTCCACTT	CCCATGCCTC	TATGTTACCC	ATCTGTGTCT	2400
45	CCTGTGCAGA	AGGAGAGGAA	GGGGCATTAA	GAGATGAAGG	GTGATTATGT	ATTACTTATC	2460
	CATTTCTGAA	TAAACATTIG	TTATTCCTAA	АААААААА	AAAAAACTCG	AGGGGGG	2517

50

55

(2) INFORMATION FOR SEQ ID NO: 225:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2424 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

60 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 225:

TTGTANCTAA TCGAGGATTG ATTCTAATGA CAGAGTCTTT CAACACTTTG CACATGATGT 60 ATCACGAAGC TACAGCTTGC CATGTGACTG GAGATTTAGT AGAACTTCTG TCAATATTTC 120 5 TTTCGGTTTT GAAGTCTACA CGCCCTTATC TTCAGAGAAA AGATGTGAAA CAAGCATTAA 180 TCCAGTGGCA GGAGCGAATT GAATTTGCCC ATAAACTGTT AACTCTTCTT AACTCCTATA 240 10 GTCCTCCAGA ACTTAGAAAT GCCTGTATAG ATGTCCTCAA GGAACTTGTA CTTTTGAGTC 300 CCCATGATTT TYTTCATACT CTGGTTCCCT TICTACAACA CAACCATTGT ACTTACCATC 360 ACAGTAATAT ACCAATGTCT CTTGGACCTT ATTTCCCTTG TCRAGAAAAT ATCAAGCTAA 420 15 TAGGAGGGAA AAGCAATATT CGGCCTCCGC GCCCTGAACT CAATATGTGC CTCTTGCCCA 480 CAATGGTGGA AACCAGTAAG GGCAAAGATG ACGTTTATGA TCGTATGCTG CTAGACTACT 540 20 TCTTTTCTTA TCATCAGTTC ATCCATCTAT TATGCCGAGT TGCAATCAAC TGTGAAAAAT 600 TTACTGAAAC ATTAGTTAAG CTGAGTGTCC TAGTTGCCTA TGAAGGTTTG CCACTTCATC 660 TIGCACTGTT CCCCAAACTT TGGACTGAGC TATGCCAGAC TCAGTCTGCT ATGTCAAAAA 720 25 ACTGCATCAA GCTTTTGTGT GAAGATCCTG TTTTCGCAGA ATATATTAAA TGTATCCTAA 780 TOGATGAAAG AACTITITTA AACAACAACA TIGICTACAC GITCATGACA CATTICCTTC 840 30 TAAAGGTTCA AAGTCAAGTG TTTTCTGAAG CAAACTGTGC CAATTTGATC AGCACTCTTA 900 TTACAAACTT GATAAGCCAG TATCAGAACC TACAGTCTGA TTTCTCCAAC CGAGTTGAAA 960 TTTCCAAAGC AAGTGCTTCT TTAAATGGGG ACCTGAGGGC ACTCGCTTTG CTCCTGTCAG 1020 35 TACACACTCC CAAACAGTTA AACCCAGCTC TAATTCCAAC TCTGCAAGAG CTTTTAAGCA 1080 AATGCAGGAC TTGTCTGCAA CAGAGAAACT CACTCCAAGA GCAAGAAGCC AAAGAAAGAA 1140 40 AAACTAAAGA TGATGAAGGA GCAACTCCCA TTAAAAGGCG GCGTGTTAGC AGTGATGAGG 1200 AGCACACTGT AGACAGCTGC ATCAGTGACA TGAAAACAGA AACCAGGGAG GTCCTGACCC 1260 CAACGAGCAC TTCTGACAAT GAGACCAGAG ACTCCTCAAT TATTGATCCA GGAACTGAGC 1320 45 AAGATCTTCC TTCCCCTGAA AATAGTTCTG TTAAAGAATA CCGAATGGAA GTTCCATCTT 1380 CGTTTTCAGA AGACATGTCA AATATCAGGT CACAGCATGC AGAAGAACAG TCCAACAATG 1440 50 GTAGATATGA CGATTGTAAA GAATTTAAAG ACCTCCACTG TTCCAAGGAT TCTACCCTAG 1500 CCGAGGAAGA ATCTGAGTTC CCTTCTACTT CTATCTCTGC AGTTCTGTCT GACTTAGCTG 1560 ACTTGAGAAG CTGTGATGGC CAAGCTTTGC CCTCCCAGGA CCCTGAGGTT GCTTTATCTC 1620 55 TCAGTTGTGG CCATTCCAGA GGACTCTTTA GTCATATGCA GCAACATGAC ATTTTAGATA 1680 CCCTGTGTAG GACCATTGAA TCTACAATCC ATGTCGTCAC AAGGGATATC TGGCAAAGGA 1740 60 AACCAAGCTG CTTCTTGACA TTAGGTGTAG CATGTCTACT TTTAAGTCCC TCACCCCCAA 1800

454

	CCCCCATGCT	GTTTGTATAA	GITTIGCTTA	TITGITITIG	TGCTTCAGTT	TGTCCAGTGC	1860
5	TCTCTGCTTG	AATGGCAAGA	TAGATTTATA	GGCTTAATTC	TTGGTCAGGC	AGAACTCCAG	1920
J	ATGAAAAAA	CTTGCATCTT	CAGTATACTT	CCTAAAGGGC	AATCAGATAA	TGGATATGTT	1980
	TTATGTAATT	AAGAGTTCAC	TTTAGTGGCT	TTCATTTAAT	ATGGCTGTCT	GGGAAGAACA	2040
10	GGGTTGCCTA	GCCCTGTACA	ATGTAATTTA	AACTTACAGC	ATTITTACTG	TGTATGATAT	2100
	GGTGTCCTCT	GTGCCAGTTT	TGTACCTTAT	AGAGGCAGAT	TGCCTCCGAT	CGCTGTGGTT	2160
15	CTTATTATCA	AAATTAAGTT	TACTTGTATA	CGGAACAACC	ACAAGAAATT	TGATTCTGTA	2220
	AAGAATCCTC	TTTAGCTGTG	GCCTGGCAGT	ATATAAATGG	TGCTTTATTT	AACAGAATAC	2280
	CTGTGGAGGA	AATAAAGCAC	ACTIGATGTA	AAAATAATTG	TTTTATTTTT	ATTGACATGA	2340
20	CTGATTGATT	GCTATTCTGT	GCACTNAATT	AAACTGATTG	TGATGACTTA	АААААААА	2400
	ааааааааа	АААААААА	АААА				2424

25

30

35

40

45

50

55

60

(2) INFORMATION FOR SEQ ID NO: 226:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1080 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 226: ATATAGGACG GATAATCTGT TTACATTCTG TTCTTCTCGA TGCACTCACA AGCGGGTAAC 60 TAGGTGACAA GAAAACAAAG ATCTTATTCA AAAGAGGTCT TACAGCAACC CAACGTCTCA TCTTCCCATA GTAAAGATGA CGGCGCCTTG AGGTAAGCTA CAGGCAACAC CACTTCCGCG TITCTCTTGC GCCCTGGTCC AAGATGGCGG ATGAAGCCAC GCGACGTGTT GTGTCTGAGA TCCCGGTGCT GAAGACTAAC GCCGGACCCC GAGATCGTGA GTTGTGGGTG CAGCGACTGA 300 AGGAGGAATA TCAGTCCCTT ATCCGGTATG TGGAGAACAA CAAGAATGCT GACAACGATT 360 GGTTCCGACT GGAGTCCAAC AAGGAAGGAA CTCGGTGGTT TGGAAAATGC TGGTATATCC 420 ATGACCTCCT GAAATATGAG TITGACATCG AGTITGACAT TCCTATCACA TATCCTACTA 480 CTGCCCCAGA AATTGCAGTT CCTGAGCTGG ATGGAAAGAC AGCAAAGATG TACAGGGGTG 540 GCAAAATATG CCTGACGGAT CATTTCAAAC CTTTGTGGGC CAGGAATGTG CCCAAATTTG 600 GACTAGCTCA TCTCATGGCT CTGGGGCTGG GTCCATGGCT GGCAGTGGAA ATCCCTGATC 660 720 TGATTCAGAA GGGCGTCATC CAACACAAAG AGAAATGCAA CCAATGAAGA ATCAAGCCAC

	TGAGGCAGGG	CAGAGGGACC	TTTGATAGGC	TACGATACTA	TTTTCCTGTG	CATCACACTT	780
	AACTCATCTA	ACTGCTTCCC	CGGACACCCT	CCACCTCTAG	TTGTTACTAA	GTAGCTGCAG	840
5	TAGGCATTGC	TGGGGAAGAA	ACAAACACAC	ACCAAACAGT	ACTGCTACTT	AGTTTCTAAG	900
	GCTGCACAGG	GAAGGGAAAG	ACTGGGCTTT	GGACAATCTA	GAGGTAATTT	ATATCCGCCC	960
10	CCAGGTGGAG	CAACATGCGA	TICTGGAGGC	ACGGGGGTAA	CTGAAAGTGA	GTACATATAG	1020
10	TCTTTCTGGT	TTCTGGAGAT	AACCCATCAA	TAAAAGCTGC	TTCCTCTGGG	талалалала	1080

15

20

25

30

35

40

45

50

55

60

(2) INFORMATION FOR SEQ ID NO: 227:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1336 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 227:

TTGCATTCAC AATTACTGGG AGGCAGGCAG GGGCAGTTGC ATGCTGGGGG TGGCTGCATG 60 GSCTGCCASC TCTCCTGGGT TTGAAGGATG CGGTACASCT GCTTCAGCTG AGCAACGATG 120 TTATCCTTGA TGTCTGGGGT TGAGATCTGC AGGCGGACAC TGCCACTATC AAAGGATCGT 180 GTGAAATCAC CAGAAAACAT CTCGTAGATC ATCCGAGCCA CTACTGGAAT GACCTGAACC 240 AAGATGAGTT TCCTTTCCAA TGGTTTCCCA TCTGGCCATT CTTCCCCAAA GCATAAGTAG ATCTCAAACG GTGGCTGCTT CTCTATCTGT CCTTTCTGGT GGGCAATGAG ATCGCTAAGG AATGITICCA GACAAAATAG CTTGACCTTC TTTTGTCTCT CAATCAGGTT GGGAGCAACA 420 AGTGATGGGG CACATGGCCC AGACCAGTAC ACCTTGCACT GGCACAGYCT GATGGCATAA 480 ATGGCATGAC CGCTGACCTC CAGGATCAGT CCTCTGTCCA TGACGTCCAG CAGCTTGCTA 540 GTGAACAGCT TCTGCTTCTC ATTGGTAATA TGCTCAGGAC CTGGGAATTT GACCTGCTCC 600 AGNOTGACGG GACCAAAGAG CTCCTCCTGG TCAGGCATGG GACCCAGGTC CCCATAGAAG 660 AGTCGGCAGC CCTGAGGGTT GCTCACGGTC ATGGTCCTGC CCGTACTCCT TCCCACGGTA 720 CTGAAACTTG ATGTCCAGGT CAGTCATTGG GAGAGAGCTG ATCCACAGTT CTGGAGAGCT 780 ATAGAAGGRC TGTATAGGTG CCTGGGGWAC TTCCATCTCC AGGGGTTCAG TTTTGGGCCA 840 CACTGCCTCC GGSCTGCAGT TGCCCACACT GCAATTGCCC ACACTGGCTG GCGCCATGGG 900 AGAACCATTG ATGTTCAGGA AGGGGAAGGT GTCCTGGATG GGAACATGGT GCTGCGACTG 960 ATCCAGCTCA TCTTCCTCAT CTTCTTCATC CACATCATTA TCCTTCTCAT CCCAGGGAGC 1020 AGACCCTGTG GATCCTGGGT TAATGATCGA SCCCTGGGGC TGAGGGATGT CACACACTTG 1080

456

ATATATCTTC ACTGGTTCA TGGGCACCTC CCTTGGTGCC ATCCATACAT CCAGGTTGAA 1140

TTCTCTGCTC TTATTGAGAG CACAGCGCAG CTGGGCCTTC CATTTAGCTG GGTCAGGGTC 1200

ATCCACCCCT TCCTGGTACT TCCCTGTCTC TACAGCCCAG GCCTTAAAAA TGGTATTTTC 1260

CTCTTCTTGT TGAGGGCTAT GCCGGGTGGC ATCTTTCCAG GGAATCTGGA AGCGTTTAGA 1320

10 GTCCCTGTGT AGCCAG 1336

15 (2) INFORMATION FOR SEO ID NO: 228:

20

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2043 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 228:

25 TCAGCTGGTC CCTTCCTTGT GTCCTGGGGG ACCTGCTGGC GGCCTCTTCC TGGGAGCCAT 60 GACCTCAGAC CCCACCCACA CTCCAGATCG AGACCCCTGC CTCCCCCCGG CAAATGTCCT 120 CCCGCTGCCT TGCAGCCTGC ACTTTGCACA TGCTCACCCC CAGCACAGTC CCACTGGCCC 30 CTCAMCTCCC CTTCCCTGAG CTCCTTCCCA AGGACTCCTG GTCACTGCCT GCTGTGCAKT 240 CAGAGGCCCA GGGTCCAGCA GCCCGGSGGG AACGGGTGCT GCCTSTTCCT CCAGTTAGCT 300 35 CCAGYTCAGG TCTGAGACCC GTGYTGAGTA AAGGTCTGAG CAMCGACCGT GCCCTCTGCC 360 CAGGGCTGGG TCCTGAGCAG CTGGTTTTCC TGCAGGAAGG TTGGAGCAAG CAAAGTCCTT 420 CTCTGCCCTC AGGGTCAGCT GCCCAGACTG GGGCGGATGC AGAGAGGCAG GTGGGCTGTG 480 40 GCTGGACTGG TCCGGAGCTG GCTTCCTTAC CAGAAAAGCC TCAGCCTTCC TCTGGAAGCA 540 TCCCCCGTTC TGGGCAAGGG GGAAGGGCTC CTTTAAGGGG TGTGCTTTCC CAGTGGGGAG 600 45 CAGTCTGGCC CTGCCCCCTA CTAAAGCCTC TGCTCTCAGC ACTTTCCCCC AAGTCCTTGT 660 AACTIGCTIG AAGGIGGTI CIGGCIGCCA GCCAGTCCCI GGACAAACTC TCCTGCCCCT 720 TTTAAATTTC ACTCATTTTG TATAAACCCA GCAGGCTGGT GTTTACTTAG CCCTGTAGCT 50 TTTTCATTT TTTCTTTCCG TCTTTCTTCT TGAGTTCACG GTTCAATATT GCCTCCTCGC 840 CCTGGTGAGG GGAGGTGCTG CTTTTCTGCC CCACCTGCCG GCTGGTTCCA GCAGCGCTGG 900 55 NGCCCAGCTG GGGGGCCGGG ATGGGGGCTT CTCTCTCTGG GAGGGGTGCA GGTGCCCTCC 960 CCAGGCTGGG AGGGTTCCTT CCCTAGCTCC CCATCTGCCC CCGCTGGTGA GAGTTGGGCT 1020 TCTTGGTCTT GGAACTCCCT GGCATTGGGA ACAGAGCATT TCCAGCATTT GTTGTTGTTG 1080 60

	TTTTACTCAC	CTAACCCTTA	GAAAATGAAT	GTTAGAAGGT	GCCTGCCGAG	GCGGGACAGA	1140
	GTGTTTGCTC	GCGCTGGAGA	AGGCTCTGCT	CAGCCCTGAG	AGTCCCTTCC	TGCCCCACCG	1200
5	ATACTGGCAC	TTTAAAAAGG	AAGCTGACCG	CACAGTGTCC	AGACGAATTG	GCCCCCAGAA	1260
	GATGGGGAGT	TCTGTCCTGC	CCTTCTGTGT	CTGCGTGACC	TCACCCAGCC	TAGGAGGGAG	1320
10	GTGCATTCAG	GGTAGATITG	CCTCTCATTC	AAAGTTCTGG	GGCTTTGGGY	GGAAAACAGC	1380
	CAGCTTTGGC	GCTGTTGGGG	AGACTCCTCC	AGACCAGGAA	CCCCAGAAGG	AGACAGAGCC	1440
	TGCCACATCC	TCCCACGCCA	GCCCTGGGC	CAGGGTGATT	GGACTGAGAA	TTTGGCCACA	1500
15	ACCAAATTGA	TGCTGGCTGG	AACCAGAGGC	CAGAAAGCCT	OCCUTOTCC	CCATGTGGGA	1560
	GCCCTGTCCT	CAGCCCTCTT	GTCCCCTTGA	GCTCAGTGAA	TTCCCACCAG	GTGCCCACAG	1620
20	CTCCTGGACT	TCAAATTCTA	TATATTGAGA	GAGTTGGAGA	GTATATCAGA	GATATTTTTG	1680
20	GAAAGGAGTT	GGTCTATGCA	ATGTCAGTTT	GGAATCTTCT	TGAAAGTTTA	ATGTTTTAT	1740
	TAGGAGATTT	AAAGAAAATA	AAGGTCTACA	ATATCTTTAG	CITITITIT	TTTCCTGTTT	1800
25	ACCGCACAAA	CTGACCACAT	GGCATGTCTA	TCAGGATGGA	GGGTGTCCAT	GTTCTCCTCT	1860
	GTCTTTAGGG	AGGTGATAAG	GAGATGGSCG	RAGGGGTGTT	TTTTTCTTTG	ACTCCCCTCC	1920
30	TTTCTAACAG	AATGTTGCCA	CCACTGCTTG	AGTGGGCTGT	GTTTGTTCCT	CTGTCCCAGC	1980
30	TTCTGTTGTA	GAAAATAACA	TTGTTAGGGG	AACTCAGGCT	AGTGTCAGCG	TCTTGGTTTG	2040
	GGG						2043

35

(2) INFORMATION FOR SEQ ID NO: 229:

40 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 540 base pairs(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

45

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 229:

TAAAAAGAAG CGGGAGAATC TGGGCGTCGC TCTAGAGATC GATGGGCTAG AGGAGAAGCT 60 50 GTCCCAGTGT CGGAGAGACC TGGAGGCCGT GAACTCCAGA CTCCACAGCC GGGAGCTGAG 120 CCCAGAGGCC AGGAGGTCCC TGGAGAAGGA GAAAAACAGC CTAATGAACA AAGCCTCCAA 180 CTACGAGAAG GAACTGAAGT TTCTTCGGCA AGAGAACCGG AAGAACATGC TGCTCTCTGT 240 55 GGCCATCTTT ATCCTCCTGA CGCTCGTCTA TGCCTACTGG ACCATGTGAG CCTGGCACTT 300 CCCCACAACC AGCACAGGCT TCCACTTGGC CCCTTGGTCA GGATCAAGCA GGCACTTCAA 360 60 GCCTCAATAG GACCAAGGTG CTGGGGTGTT CCCCTCCCAA CCTAGTGTTC AAGCATGGCT 420

	TCCTGGCGGC CCAGGCCTTG CCTCCCTGGC CTGCTGGGGG GTTCCGGGTC TCCAGAAGGA	480
5	CATGGTGCTG GTCCCTCCCT TAGCCCAAGG GAGAGGCAWT AAAGACACAA AGCTGGAAAT	540
10	(2) INFORMATION FOR SEQ ID NO: 230:	
15	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 448 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 230:	
20	AATTGTGAAA TATTAGAATA TIGTTACTAT TIGACCCAAC TCAAAATCTC CATGGGAAAA	60
20	TACCTGTCGA TACCCACAGT ATTGTTGAAA ATAATCAGAT GCAGTATCAC AGCTGTGTCA	120
	GACTCTAGTA CCAGTTGGGC AATCAAGGCA CAGCTAAAAA TTGAAAACAA AGATCTGGAC	180
25	AACAAAACAG CCAAAGGTGG GGGTCAAGAA GCTCTGACGT GTACCTAGCT GTAGAATGCT	240
	ATGCACACGT GCCAGGTGTA GTGTGCATAT CCAGGAAAAA CTGCAGAGAG CCCCAGTCTT	300
30	CAMCTCTGGT TGACCATGAG CTCTGTGTAA GCAGGAAGTG AAGGCTAAGG CAGATTTAAG	360
30	CTCTGAAAGC ATTCCACAAC ATACACACAA ATCGTGCAAA GCATTAAGGA AATCTTGTTA	420
	CTGCTAAGTG TTGCTGACCC AGGAACAA	448
35		
	(2) TIPONIA TO TO THE TO THE TOTAL TOTAL TO THE TOTAL TO T	
40	(2) INFORMATION FOR SEQ ID NO: 231:	
40	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 407 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double	
45	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 231:	
	GTATGCTGCC CCAAACCAAT ATGTGTGGCT GCCTTTWACC TGACTTCTCC AACATGTAGC	60
50	CCCAAGAGGA GGCCTCTAGA CTRAGGGAGG GGCTGGTGAC CCAGGTGTGG TGGGGCTGCA	120
	TGARACTACC AGAGAGACAG ACATTCTGGA ACTCACCCTG GGGGATCCAG TGGATCTGCC	180
55	TATGGTCTGG TCCACCCCAG ACCTGTGAGA TGTTCCTCAT GAGGATGCAC TTGTGCTTCT	240
	GCAAGTATTG CTGCAGCTTC ATAGTGACTC CCACCAGCAC CAGCAATACA GYTAGCTACC	300
	TGTGGCCTTG GATCTCAGCC AGCATGGCTG GGAGAGGGAG CARCTGGGCA TGTACCCTAA	360
60	ATGCTGTTAC CAGGGAAGGA CTCCCAGACT GAAGACAAGT ACCGACT	407

. 5	(2) INFORMATION FOR SEQ ID NO: 232:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 830 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 232:	
15	GTATTIGATT TCAGGCTGCT AAATGGGCTC ATTTAGCATT CATTCCTTGA TGTAGACATT	60
	AAAAAAAAA CTGAATAGCA TTCTTTCCAG GNTAACTAAT AAAGCAGACA TGCTAAGCCT	120
20	ATAAATACAT CAGCACTGCA GCACACGTTT AAGGTTGCCA CGGACAAGGA TCACACAATA	180
20	GAGAACACTG TAGTTCGGTC TGCTCACAAG ACCCAGAACA TTGATCAGTT TTTGTTGTTG	240
	GTTTATTATT TITCTGTTAA AAAATTGTGA AAAGTTTGTT TTAGCTAGAT GATATTTTAA	300
25	TAGCTGCGAG TGCTTTGGAA CTATAAAGAT GTCACTACTT AACACACATA CCTTATGTTT	360
	TGTTTTGTTT TGTTTTACAC TCAGTATAAA TCAGGAGAAG TTAGCCAACC ATCTAGCATT	420
30	TAGAATCCTC TYTTTATTG TCTTCTAAGG ATATGGATGT TCCCATAACA GCAACAAAAC	480
50	AGCAACAAAA ACATTTCATA AATATCACTT GATAGACTGT AAGCACCTGC TTAACTTTGT	540
	GTNCCAAATA TITAGTGTGT ATATATATAT ATATATACAC ACACACAC ATATATAT	600
35	AACAAATAAA GCAAAATATA ACATGCATTT CACATTTTGT CTTTCCCTGT TACGATTTTA	660
	ATAGCAGAAC TGTATGACAA GTTTAGGTGA TCCTAGCATA TGTTAAATTC AAATTAATGT	720
40	AAAACAGATT AACAACAACA AAGAAACTGT CTATTTGAGT GAAGTCATGC TTTCTATTAT	780
40	AATAACTTGG CTTCGGTTAT CCATCAAATG CACACTTATA CTGTTATCTG	830
45	(2) INFORMATION FOR SEQ ID NO: 233:	
50	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 932 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 233:	
55	CCAGAAGAAA GACCAATCTA GAATATGGAA CTCTAATCAC TTCTAGTATT TCAACTTCCT	60
	AGCAGAAATG AACTIGGCCC TAGACCTAGG GGATAAGCAA TGTTCTTTAT GTAGCCAATG	120
60	CTACGGAAAC AAAAGAGGTG AAAGAGACCC TTTTTTTATA CTTAATGTAC ATATATTGAC	180

.

	TTTTTGAGCA	AGAATGCCAG	AAATAGCCTT	CATTTCTACC	CTGCAAAATA	ATCCAGATCT	240
5	GCTTTCTAAA	ATGRANTCAG	TTTCTAAAGT	GAAACATGCA	ATATTTATGC	TCTGACTGAC	3 0 0
J	TCCTGAATTG	GARGAGGAAG	RACTICIGIT	TACAGAAAAC	YGTATTGTTA	TATATGTCAG	360
	GCTGTGTATT	GTGACTATCA	GCATTCTGGT	GCAAATGAAC	TTTTCTCCAT	CATCGACTGT	420
10	GGAAAATTGA	TACTTTTAAA	GCATATTCTT	CTATGAGCAC	AGGTCCTCCT	AGTGAAACTT	480
	AATTTGACAA	AGGGTGTCAT	ATGCTTTCCT	AACCTGAWIT	GTATTAACAT	TCACAGAGCC	540
15	TACATTTTCT	CATTAGGGTT	RTGATGCTCA	GTATCTTTCC	AAGTGCCAGG	CAGRGCTTNC	600
13	CTTTTCTGAT	CAAACATACC	ATTTTTTGTA	TTTCACAACT	ATAGACAGTC	ACTICTGCAG	660
	TCCCAATITA	AAAATGCAGA	ACTGCTTTAT	CCAAGAATGC	TGAAAAATAC	TGTTCTATCC	720
20	AGGTTTCCTA	AACTATAAAA	GCAGATTTTG	CTTTTGTTTG	TTAATCATAG	GCATGGCCGA	780
	GCATTGTGGA	TTAGCCTGAG	GCTTAAAATC	AGATGCATGT	CTGGTAAGAT	GACCACTGTC	840
25	TCACTATCAA	GAGCCTGCAG	AGCCATTTTC	CAGACCTGTG	ATTGCCCAGA	ACACATAGTC	900
4 .5	CCCACGTTTC	TAATTTGGAG	CAAATCTAAA	AG			932

30

35

(2) INFORMATION FOR SEQ ID NO: 234:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2786 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 234:

40 TTAGCAGGGT GAGCTGTTAA AACAGCACAC ATCTCTCATC CCCTCTTCCT TTATTCCCCC 60 CTCGGTTTCA GAAAGGAAGG ATATATGGGG ACCACCTCCC CCTTCTTTGA TCCCAGCATC 120 45 TCAGTCCCCC TCCCAACCCT CCATATGGCT CTCAATGGTG CTCACTTGCT TGGAAGCAGG 180 240 CTCCCAATAG GGAGGGGCT GCCCTCTACA GTCTCTTTGA CTGTAAGACA GGGCTCTGTA TCAGTGAGAC GATGAGAAAA GTCCCAGGCT AATGGCAGAA ATTTGCACTT TGAACATGTG 300 50 TGTTTTGTG TTGTGGAACC TGAGATTCCT TATTTATTAA CAGGAAGTCT GATTTTTTTT 360 TTTTGGAGTC TTTGTTGCTA TATTTTGTGG GGCTGGGAGA GAGAGATTAG ATTATTTTGA 420 55 480 CATGGGATCC CTTCCATAAC AGGTACTTTG AAGGCAAGAC ATAGGGTTGA AGAAGCACAA CCAGCCTCTG AAATCATAGC TCTCCAGTGG CTTTTAAAGA AAGCTGGTCC TCAGCACTAA 540 600 CAAAATCACT ACAATAGCCT AGTGCTTTTT TGGAAGCCTT TTTAGGGAAG AATGTTAGGT 60

	TCATGGTAAC	TAGTATGCTC	TTTGAGATTT	TTACAGTGTT	GAAACTTAAG	AATTITGAGA	660
	GCCTGACGAG	GGTTGTTCAG	AATCTAAATT	ACAGATAGAT	GATTGTTTCT	TGTGAATTTG	720
_ 5	TTTCTTTTCC	TTTTTTTTTG	TCCCTACCAT	TTCCTTACAT	TTCCCTTGGG	GCCCATCTCT	780
	GCTCCTTGC	TTTTTGTTTC	TTGCTTTGCT	TTATCAGTTC	ATTCCAGCTC	CCTGTTAGTG	840
10	AAGGACACTG	CTGTTAGTGA	AGGAACAAAG	TCTATGAGTC	CTAAAATTTT	AAGTCAAAGA	900
10	AAACTGCTCT	GTTTCCCCTT	TAGTAACACT	TCTGAAGAGG	AAAAACTTCA	ATAGCCAAAG	960
	TTAATAATCC	тататаатаа	TIGCTTIGGC	TTTCACCTAA	AATTCTGGGC	ATCACAATTT	1020
15	CCTTGGGATA	GAGGTTGTGT	TGGGGAATAG	ATTGCTTATT	GCTGTTCACT	GGAGAGAAAA	1080
	GGTAGTGTTT	TTGTACAAGG	TCATACCGCC	AGAAGCCCCA	AATCCTATTT	TGGCTCATCT	1140
20	TCAGGTAAAG	AGTAATTCCT	ATCCTGTGTG	CCTCAGAAGC	TAGAATCGAA	GGCTTACCCT	1200
20	ATTCATTGTT	TATTGTCAGA	AATGCATGAT	GGCTCTTGGA	AAGAATGACG	TTTTGCTGGA	1260
	АААААААА	AGAACAGTTT	GTGTTTCACA	AACATGGCTT	ATCAATTTT	TCAAAGAATT	1320
25	CTTTTTCCC	AAAAAGAGGA	GTAACAAAAT	GTCATTTCTG	AAAGAGGCTT	ACTTTATACC	1380
	AACTAGTGTC	AGCATTTGGG	ATGCCAGGGA	ACAGAGAGTG	AGACACCTAC	AATCACCAGT	1440
30	CTCAAATGCG	CTATTGTTTC	TTTTCAGAGT	GTTGCAGATT	TGCCATTTCT	CCATAATATG	1500
50	GGGATAGAAA	ATGGAATAAA	GATAGAAGGG	ATGTAGAATA	TECTTTCCTG	CCAACATGGT	1560
	TTGGAGTCGA	CTTTGGTATA	TTGACTAGAT	TTGAAAATAC	AAGATTGATT	AGATGAATCT	1620
35	ACAAAAAGT	TGTCCTCCTC	TCAGGTCCCT	TITACACTTT	TTGACTAACT	AGCATCTATA	1680
	TTCCACACTT	AGCTTTTTTG	TCACACTTAT	CCTTTGTCTC	CGTAAATTTC	ATTTGCAGTG	1740
40	GTTAGTCATC	AGATATTTTA	GCCACCTACA	CAAAAGCAAA	CTGCATTTTT	AAAAATCTTT	1800
10	CTGAGATGGG	AGAAAATGTA	TTCTCCTTTC	CTATACCGCT	CTCCCAACAA	AAAAACAACT	1860
	AGTTAGTTCT	ACTAATTAGA	AACTTGCTGT	ACTITITCTT	TTCTTTTAGG	GGTCAAGGAC	1920
45	CCTCTTTATA	GCTACCATTT	GCCTACAATA	AATTATTGCA	GCAGTTTGCA	ATACTAAAAT	1980
	ATTTTTTA	GACTITATAT	TTTTCCTTTT	GATAAAGGGA	TGCTGCATAG	TAGAGTTGGT	2040
50	GTAATTAAAC	TATCTCAGCC	GTTTCCCTGC	TITCCCTTCT	GCTCCATATG	CCTCATTGTC	2100
30	CTTCCAGGGA	GCTCTTTTAA	TCTTAAAGTT	CTACATITCA	TGCTCTTAGT	CAAATTCTGT	2160
	TACCTTTTTA	ATAACTCTTC	CCACTGCATA	TTTCCATCTT	GAATTGGTGG	TTCTAAATTC	2220
55	TGAAACTGTA	GTTGAGATAC	AGCTATTTAA	TATTTCTGGG	AGATGTGCAT	CCCTCTTCTT	2280
	KGTGGTTGCC	CAAGGTTGTT	TTGCGTAACT	GAGACTCCTT	GATATGCTTC	AGAGAATITA	2340
60	GGCAAACACT	GGCCATGGCC	GTGGGAGTAC	TGGGAGTAAA	TATAAAATA	CGAGGTATAG	2400
J							

	ACTAGCATCC ACATAGAGCA CTTGAACCTC CTTTGTACCT GTTTGGGGAA AAAGTATAAT	2460
	GAGTGTACTA CCAATCTAAC TAAGATTATT ATAGTCTGGT TGTTTGAAAT ACCATTTTTT	2520
_ 5	TCTCCTTTTG TGTTTTTCCC ACTTTCCAAT GTACTCAAGA AAATTGAACA AATGTAATGG	2580
	ATCAATTTAA AATATTITAT TTCTTAAAAG CCTTTTTTGC CTGTTGTAAT GTGCAGGACC	2640
10	CTTCTCCTTT CATGGGAGAG ACAGGTAGTT ACCTGAATAT AGGTTGAAAA GGTTATGTAA	2700
	AAAGAAATTA TAATAAAAGG GATACTTTGC TTTTCAAATC TTTGTTTTCT CTTATTCTAG	2760
	GTAAGGCATA TTAAAAATAA ATATGT	2786
15		
	(2) INFORMATION FOR SEQ ID NO: 235:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 458 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 235:	
	GGGTGCAGGA ATTCGGCACG AGAGAATGTT TGATTTTCTT TCCTATTTTA AGGATCTTCT	60
30	CTCTTGTTGA TGTTGAAAAC TTACCTTAGT GAAGATGTGT TTCAACATGC TGTTGTCCTT	120
	TACCTGCATA ATCACAGCTA TGCATCTATT CAAAGTGATG ATCTGTGGGA TAGTTTTAAT	180
35	GAGGTCACAA ACCAAACACT AGATGTAAAG AGAATGATGA AAACCTGGAC CCTGCAGAAA	240
	GGATTTCCTT TAGTGACTGT TCAAAAGAAA GGAAAGGAAC TTTTTATACA ACAAGAGAGA	300
	TTCTTTTTAA ATATGAAGCC TGAAATTCAG CCTTCAGATA CAAGGTACAT GCCCTCTTTC	360
40	TTTTCATGCC ATCTCTTTTG CACTCTCAGG TGGAAATATT TTTAAGTGTT TTATAATCAT	420
	AAGTTCTTGT GAAACCTAAC AAGATTATCC CTTCCTAA	458
45		
	(2) INFORMATION FOR SEQ ID NO: 236:	
50	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 591 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 236:	
	AGGATGAAGA GGAAATTATC TCTTGGATTG CTCTCCAGGA AATCCTTCTC TATACTTTAA	60
60	AAGCTCTTGT TCTTTTCTAG GARTCCAATG TGCTGATTGC TGCTAACAGT CAGGGTACAA	120

	TTAAGGTGCT	AGAATTGGTA	TGAAGGGTTA	ACTCAACTCA	AATTGTACTT	GATCCTGCTG	180
	AAATACATCT	GCAGCTGACA	ATGAGAGARG	AAACAGAAAA	TGTCATGTGA	TGTCTCTCCC	240
5	CAAAGTCATC	ATGGGTTTTG	GATTTGTTTT	GAATATTTTT	TCTTTTTTC	TIKTCCCTCC	300
	TTTATGAGCC	TTTGGGACAT	TGGGAATACC	CAGCCAACTC	TCCACCATCA	ATGTAACTCC	360
10	ATGGACATTG	CTGCTCTTGG	TGGTGTTATC	TAATTTTTGT	GATAGGGAAA	CAAATTCTTT	420
	TGAATAAAA	TAAATAACWA	ААСААТАААА	GTTTATTGAG	CCACAGTTGA	GCTTGGAAAG	480
	TTTTTGTCAA	ATGCNGCAAG	AGATAACTCT	TTTTANGAAG	TAGCATATGT	GAACTATAAT	540
15	GTAACAGTGA	ATAATTIGTA	AAGTICGTAT	TTCCCAACCT	CTTTGGGAAT	Т	591

20 (2) INFORMATION FOR SEQ ID NO: 237:

25

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1286 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 237:

30 60 TCTTTTTAAG GTACAGCAGG GAAGAACTGG AAACTCAGAG AAAGAAACTG CCCTTCCATC 120 TACAAAAGCT GAGTTTACTT CTCCTCCTTC TTTGTTCAAG ACTGGGCTTC CACCGAGCAG GAGATTACCT GGGGCAATTG ATGTTATCGG TCAGACTATA ACTATCAGCC GAGTAGAAGG 180 35 CAGGCGACGG GCAAATGAGA ACAGCAACAT ACAGGTCCTT TCTGAAAGAT CTGCTACTGA 240 AGTAGACAAC AATTTTAGCA AACCACCTCC GTTTTTCCCT CCAGGAGCTC CTCCCACTCA 300 40 CCTTCCACCT CCTCCATTTC TTCCACCTCC TCCGACTGTC AGCACTGCTC CACCTCTGAT 360 TCCACCACCG GGTTTTCCTC CTCCACCAGG CGCTCCACCT CCATCTCTTA TACCAACAAT 420 AGAAAGTGGA CATTCCTCTG GTTATGATAG TSGTTCTGCA CGTGCATTTC CATATGGCAA 480 45 540 TGCGATGAAG AACGATACAG ATACAGGGAA TATGCAGAAA GAGGTTATGA GCGTCACAGA GCAAGTCGAG AAAANGAAGA ACGACATAGA GAAAGACGAC ACAGGGAGAA AGAGGAAACC 600 50 AGACATAAGT CTTCTCGAAG TAATAGTAGA CGTCGCCATG AAAGTGAAGA AGGAGATAGT 660 CACAGGAGAC ACAAACACAA AAAATCTAAA AGAAGCAAAG AAGGAAAAGA AGCGGGCAGT 720 GAGCCTGCCC CTGAACAGGA GAGCACCGAA GCTACACCTG CAGAATAGGC ATGGTTTTCG 780 55 CCTTTTGTGT ATATTAGTAC CAGAAGTAGA TACTATAAAT CTTGTTATTT TTCTGGATAA 840 TGTTTAAGAA ATTTACCTTA AATCTTGTTC TGTTTGTTAG TATGAAAAGT TAACTTTTTT 900 60 TCCAAAATAA AAGAGTGAAT TITTCATGTT AAGTTAAAAA TCTTTGTCTT GTACTATTTC 960

	AAAAATAAAA AGACAGCAAT GACTTTATAT CCAAGAAAGG AATGTGAATG AGTCACTTAA	102
5	CAGGGAATCT AAAGAGCTGT GTTAGCTGTG TACATACACA GATTATCTGA GAAAAGGTCA	1086
	AGGGTTCCAC TTGGGCCACA GTTTTTTTGT TAATCAAACA CCACTCTCTT AAGRGGCTGC	1140
	ATCACAAARG GCAACCAARG GGCCCCTCTT ARGGCTTTGA GGATTAAAAC TAGTCTTTAT	1200
10	CCATTACTGC TGTGGACACT CTTGGCTTRG TATWITTAGG GGGGNTCCTT ACCTTTTTTT	1260
	GCTTTTCCNC ACCTTTTTGG TTGGGC	1286
15		
	(2) INFORMATION FOR SEQ ID NO: 238:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 734 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 238:	
	ATGGCAGCGC AGAAGGACCA GCAGAAAGAT GCCGAGGCGG AAGGGCTTGAG CGGCACGACC	60
30	CTGCTGCCGA AGCTGATTCC CTCCGGTGCA GGCCGGGAGT GGCTGGAGCG GCGCCGCGCG	120
50	ACCATCCGGC CCTGGAGCAC CTTCGTGGAC CAGCAGCGCT TCTCACGGCC CCGCAACCTG	180
	GGAGAGCTGT GCCAGCGCCT CGTACGCAAC GTGGAGTACT ACCAGAGCAA CTATGTGTTC	240
35	GTGTTCCTGG GCCTCATCCT GTACTGTGG GTGACGTCCC CTATGTTGCT GGTGGCTCTG	300
	GCTGTCTTTT TCGGCGCCTG TTAACATTCT CTATCTGCGC ACCTTGGAGT CCAAGCTTGT	360
40	CCTCTTTGGC CGAAAGGTGA GCCCAGCGCA TCATATGCTC TGGCTGGAGG CATCTCCTTC	420
	CCCTTCTTCT GGCTGGCTGG TGCGGGCTCG GCCGTCTTCT GGGTGCTGGG AGCCACCCTG	480
	GTGGTCATCG GCTCCCACGC TGCCTTCCAC CAGATTGAGG CTGTGGACGG GGAGGAGCTG	540
45 _.	CAGATGGAAC CCGTGTGAGG TGTCTTCTGG GACCTGCCGG CCTCCCGGGC CAGCTGCCCC	600
	ACCCCTGCCC ATGCCTGTCC TGCACGGTCT GCTGCTCGGG CCCACAGCGC CGTCCCATCA	660
50	CAAGCCCGGG GAGGGATCCC GCCTTTGAAA ATAAAGCTGT TATGGGTGTC ATTCAAAAAA	720
	AAAA AAAA AAAA	734

(2) INFORMATION FOR SEQ ID NO: 239:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 809 base pairs

60 (B) TYPE: nucleic acid

465

(C) STRANDEDNESS: double(D) TOPOLOGY: linear

_	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 239:	
_ 5	CGGGGTCTTC AGGGTACCGG GCTGGTTACA GCAGCTCTAC CCCTCACGAC GCARACATGG	60
	CAGCGCAGAA GGACCAGCAG AAAGATGCCG AGGCGGAAGG GCTGAGCGGC ACGACCCTGC	120
10	TGCCGAAGCT GATTCCCTCC GGTGCAGGCC GGGAGTGGCT GGAGCGGCGC CGCGCGACCA	180
	TCCGGCCCTG GAGCACCTTC GTGGACCAGC AGCGCTTCTC ACGGCCCCGC AACCTGGGAG	240
15	AGCTGTGCCA GCGCCTCGTA CGCAACGTGG AGTACTACCA GAGCAACTAT GTGTTCGTGT	300
13	TCCTGGGCCT CATCCTGTAC TGTGTGGTGA CGTCCCCTAT GTTGCTGGTG GCTCTGGCTG	360
	TCTTTTTCGG CGCCTGTTAC ATTCTCTATC TGCGCACCTT GGAGTCCAAG CTTGTGCTCT	420
20	TTGGCCGAGA GGTGAGCCCA GCGCATCAGT ATGCTCTGGC TGGAGGCATC TCCTTCCCCT	480
	TCTTCTGGCT GGCTGGTGCG GGCTCGGCCG TCTTCTGGGT GCTGGGAGCC ACCCTGGTGG	540
25	TCATCGGCTC CCACGCTGCC TTCCACCAGA TTGAGGCTGT GGACGGGGAG GAGCTGCAGA	600
20	TGGAACCCGT GTGAGGTGTC TTCTGGGACC TGCCGGCCTC CCGGGCCAGC TGCCCCACCC	660
	CTGCCCATGC CTGTCCTGCA CGGCTCTGCT GCTCGGGCCC ACAGCGCCGT CCCATCACAA	720
30	GCCCGGGGAG GGATCCCGCC TTTGAAAATA AAGCTGTTAT GGGTGTCATT CAGGAAAAAA	780
	ΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑΑΑΑ	809
35		
	(2) INFORMATION FOR SEQ ID NO: 240:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2201 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 240:	
	TCGACCCACG CGTCCGGCAA CATGGCGGCT GCCGTGGTGC AGCGCCCGGG CTGAGCGACA	60
50	GCAAGTGCAG CGGGCTCCTA CCCCGGGTGA GGGGTGGCCT CCGCGTGGGA TCGTGCCCTC	120
30	TTCAGCCCGC TCCTGTCCCC GACATCACGT GTATTCCGCA CGTCCCCTCC GCGCTGTGTG	180
	TCTACTGAGA CGGGGAGGCG TGACAGGGCC CGGGTCCCTT CTCAGTGGTG CTCTGTGCTT	240
55	CAGGGCAAGC TCCCCGTCTC CGGGCGCACT TCCCTCGCCT GTGTTCGGTC CATCCTCCTT	300
	TCTCCAGCCT CCTCCCCTCG CAGGCGGATG AMCCGGACGA CGGGCCAGTG CCTGGCACCC	360

CGGGGTTGCC ARGGTCCAMG GGGAACCCGA AGTCCGAGGA GCCCGARGTC CCGAACCAGG

60

	ARGGGCTGCA	GCGCATCAMC	GCCTCTCTC	CCGCCCCTTC	GGCTCTCATA	GTGGCGGTGC	480
	TGTGCTACAT	CAATCTCCTG	AACTACATGG	ACCGCTTCAC	CCTCCCTCCC	GTCCTTCCCG	540
5	ACATCGAGCA	GTTCTTCAAC	ATCCGGGACA	GTAGCTCTGG	GCTCATCCAG	ACCGTGTTCA	600
	TCTCCAGTTA	CATGGTGTTG	GCACCTGTGT	TTGGCTACCT	GGTGACAGG	TACAATCGGA	660
10	AGTATCTCAT	GTGCGGGGGC	ATTGCCTTCT	GCTCCCTGGT	GACACTGGGG	TCATCCTTCA	720
10	TCCCCGGAGA	GCATTTCTGG	CTGCTCCTCC	TGACCCGGG	CCTGGTGGGG	GTCGGGGAGG	780
	CCAGTTATTC	CACCATCGCG	CCCACTCTCA	TTGCCGACCT	CTTTGTGGCC	GACCAGCGGA	840
15	CCGGATGCTC	AGCATCTTCT	ACTTTGCCAT	TCCGGTGGGC	AGTGGTCTGG	GCTACATTGC	900
	AGGCTCCAAA	GTGAAGGATA	TGGCTGGAGA	CTGGCACTGG	GCTCTGAGGG	TGACACCGGG	960
20	TCTAGGAGTG	GTGGCCGTTC	TGCTGCTGTT	CCTCGTAGTG	CGGGAGCCGC	CAAGGGGAGC	1020
20	CGTGGAGCGC	CACTCAGATT	TGCCACCCCT	GAACCCCACC	TCGTGGTGGG	CAGATCTGAG	1080
	GGCTCTGGCA	AGAAATCCTA	GTTTCGTCCT	GTCTTCCCTG	GCCTTCACTG	CTGTGGCCTT	.1140
25	TGTCACGGGC	TCCCTGGCTC	TGTGGGCTCC	GGCATTCCTG	CIGCGIICCC	GCGTGGTCCT	1200
	TGGGGAGACC	CCACCCTGCC	TTCCCGGAGA	CTCCTGCTCT	TCCTCTGACA	GTCTCATCTT	1260
30	TGGACTCATC	ACCTGCCTGA	CCGGAGTCCT	GGGTGTGGGC	CTGGGTGTGG	AGATCAGCCG	1320
50	CCCCCTCCCC	CACTCCAACC	CCCGGGCTGA	TCCCCTGGTC	TGTGCCACTG	GCCTCCTGGG	1380
	CTCTGCACCC	TTCCTCTTCC	TGTCCCTTGC	CTGCGCCCGT	GGTAGCATCG	TGGCCACTTA	1440
35	TATTTTMATC	TTCATTGGAG	AGACCCTCCT	GTCCATGAAC	TGGGCCATCG	TGGCCGACAT	1500
	TCTGCTGTAC	GTGGTGATCC	CTACCCGACG	CTCCACCGCC	GAGGCCTTCC	AGATCGTGCT	1560
40	GTCCCACCTG	CTGGGTGATG	CTGGGAGCCC	CTACCTCATT	GCCTGATCT	CTGACCGCCT	1620
	GCGCCGGAAC	TGGCCCCCCT	CCTTCTTGTC	CGAGTTCCGG	GCTCTGCAGT	TCTCGCTCAT	1680
	GCTCTGCGCG	TTTGTTGGGG	CACTGGGCGG	CGCACTTTCC	TGGGCACCGC	CATCTTCATT	1740
45	GAGGCCGACC	GCCGGCGGGC	ACAGCTGCAC	GTGCAGGGCC	TGCTGCACGA	AGCAGGGTCC	1800
	ACAGACGACC	GGATTGTGGT	GCCCCAGCGG	GGCCGCTCCA	CCCGCGTGCC	CGTGGCCAGT	1860
50	GTGCTCATCT	GAGARGCTGC	CGCTCACCTA	CCTGCACATC	TGCCACAGCT	GGCCCTGGGC	1920
50	CCACCCCACG	AAGGCCTGG	GCCTAACCCC	TTGGCCTGGC	CCAGCTTCCA	GAGGGACCCT	1980
	GGGCCGTGTG	CCAGCTCCCA	GACACTACMT	GGGTAGCTCA	GGGGAGGAGG	TGGGGTCCA	2040
5 5	GGAGGGGGAT	CCCTCTCCAC	AGGGGCAGCC	CCAAGGGCTC	GGTGCTATTT	GTAACGGAAT	2100
	AAAATTTGTA	GCCAGACCCC	AGGTGCCTGC	TCTCGTCTTT	CTCTGGGTGG	CCTCTGATCT	2160
60	TGCACCCCGT	CTTCACCCCA	GGGCTCCTGA	AGACTGTGGG	Т		2201

(2) INFORMATION FOR SEQ ID NO: 241:

5

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1661 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

10 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 241:

	,	, bugodice	DDDG ((11111)	. 520 15 110	. 241.		
15	GTCCTTCCCG	ACATCGAGCA	GTTCTTCAAC	ATCGGGGACA	GTAGCTCTGG	GCTCATCCAG	60
	ACCGTGTTCA	TCTCCAGTTA	CATGGTGTTG	GCACCTGTGT	TTGGCTACCT	GGGTGACAGG	120
	TACAATCGGA	AGTATCTCAT	GTGCGGGGGC	ATTGCCTTCT	GGTCCCTGGT	GACACTGGGG	180
20	TCATSCTTCA	TCCCCGGAGA	GCATTTCTGG	CIGCICCICC	TGACCCGGGG	CCTGGTGGG	240
	GTCGGGGAGG	CCAGTTATTC	CACCATCGCG	CCCACTCTCA	TTGCCGACCT	CTTTGTGGCC	300
25	GACCAGCGGA	SCGGATGCTC	AGCATCTTCT	ACTTTGCCAT	TCCGGTGGGC	ÁGTGGTCTGG	360
	GCTACATTGC	AGGCTCCAAA	GTGAAGGATA	TGGCTGGAGA	CTGGCACTGG	GCTCTGAGGG	420
	TGACACCGGG	TCTAGGAGTG	GTGGCCGTTC	TGCTGCTGTT	CCTCGTAGTG	CGGGAGCCGC	480
30	CAAGGGGAGC	CGTGGAGCGC	CACTCAGATT	TGCCACCCCT	GAACCCCACC	TCGTGGTGGG	540
	CAGATYTGAG	GGCTCTGGCA	AGAAATCCTA	GTTTCGTCCT	GICTICCCTG	GCCTTCACTG	600
35	CTGTGGCCTT	TGTCACGGGC	TCCCTGGCTC	TGTGGGCTCC	GGCATTCCTG	CTGCGTTCCC	660
	GCGTGGTCCT	TGGGGAGACC	CCACCCTGCC	TTCCCGGAGA	CTCCTGCTCT	TCCTCTGACA	720
	GTCTCATCTT	TOGACTCATC	ACCTGCCTGA	CCGGAGTCCT	GGGTGTGGGC	CIGGGIGIGG	780
40	AGATCAGCCG	CCGGYTCCGC	CACTCCAACC	CCCGGGCTGA	TCCCCTGGTC	TGTGCCACTG	840
	GCCTCCTGGG	CTCTGCACCC	TTCCTCTTCC	TGTCCCTTGC	CTGCGCCCGT	GGTAGCATCG	900
45	TGGCCACTTA	TATTTTCATC	TTCATTGGAG	AGACCCTCCT	GTCCATGAAC	TGGGCCATCG	960
,,,	TGGCCGACAT	TCTGCTGTAC	GTGGTGATCC	CTACCCGACG	CTCCACCGCC	GAGGCCTTCC	1020
	AGATCGTGCT	GTCCCACCTG	CTGGGTGATG	CTGGGAGCCC	CTACCTCATT	GCCTGATCT	1080
50	CTGACCGCCT	GCGCCGGAAC	TGGCCCCCCT	CCTTCTTGTC	CGAGTTCCGG	GCTCTGCAGT	1140
	TCTCGCTCAT	GCTCTGCGCG	TTTCTTCGGG	CACTGGGCGG	CGCACTTTCC	TGGGCACCGN	1200
55	CATCTTCATT	GAGGCCGACC	ecceccesc	ACAGCTGCAC	GTGCAGGGCC	TGCTGCACGA	1260
55	AGCAGGGTCC	ACAGACGACC	GGATTGTGGT	GCCCCAGCGG	GGCCGCTCCA	CCCGCGTGCC	1320
	CGTGGCCAGT	GTGCTCATCT	GAGAGGCTGC	CGCTCACCTA	CCTGCACATC	TGCCACAGCT	1380
60	KGCCCTGGGC	CCACCCCACG	AAGGGCCTGG	GCCTAACCCC	TTGGCCTGGC	CCAGCTTCCA	1440

	GAGGGACCCT GGGCCGTGTG CCAGCTCCCA GACACTACMT GGGTAGCTCA GGGGAGGAGG	1500
5	TGGGGGTCCA GGAGGGGAT CCCTCTCCAC AGGGGNCACC CCAAGGGCTC GGTGCTATTT	1560
	GTAACGGAAT AAAATTTGTA GCCAGACCCC AGGTGCCTGC TCTCGTCTTT CTCTGGGTGG	1620
	CCTCTGATCT TGCACCCCGT CTTCACCCCA GGGCTCCTGA A	1661
10		
1.5	(2) INFORMATION FOR SEQ ID NO: 242:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1146 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
20	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 242:	
	NGACAGAAAA GCAGAAGATG AGACTCTGTT CATTCACTTT TCCTAGGCCC ATCCTGTGGT	60
25	CATCTITCCC CCTCCCATCA TACCTCCTCC TTCCTGGAGC CTCTGCCGGC TTGGCTGTAA	120
	TGGTGGCACT TACCTGGATA TTTCAGTGGG AGGATGAAAG GCGAGACTCA CCCTACGCCG	180
30	TGGGACAGAT GGGGAGAGGA AAAAGGCAGA GATNGCCAGG AGAGGGGTGC AGGACAAACC	240
	AGAGAGGTTG GGTCAGGGGA AAAGTGTNGG GAGAAAGTGG GGTGCAGGCC CTGCAGGCCG	300
	GTTTAGCCAG CAGCTGCGGC CTCCCCGGGC CCTTGGCATC CAACTTCGCA GACAGGGTAC	360
35	CAGCCTCCTG GTGTGTATCA TAGGATTTGT TCACATAGTG TTATGCATGA TCTTCGTAAG	420
	GTTAAGAAGC CGTGGTGGTG CACCATGACA TCCAACCCGT ATATATAAAG ATAAATATAT	480
40	ATATATAT ATGTAAATTA TAGCACTGAG GGCCCTGCTG CCCTGCTGGA CCAAGCAAAA	540
40	CTAAGCCTTT TOGTTTGGGT ATTATGTTTC GTTTTGTTAT TTGTTGTTTT TTGTGGCTTG	600
	TCTTATGTCG TGATAGCACA AGTGCCAGTC GGATTGCTCT GTATTACAGA ATAGTGTTTT	660
45	TAATTCATCA ATGTTCTAGT TAATGTCTAC CTCAGCACCT CCTCTTAGCC TAATTTTAGG	720
	AGGTTGCCCA ATTTTGTTTC TTCAATTTTA CTGGTTACTT TTTTGTACAA ATCAATCTCT	780
	TICTCTCTT CTCTCCTCCC CACCTCTCAC CCTTGCCCTC TCCATCTCCC TCTCCCGCCC	840
50	TCCCCTCCTC CCTCTGGCTC CCCGTCTCAT TTCTGTCCAC TCCATTCTCT CTCCCTCTCT	900
	CCTGCCTCCT GCTGCCCCCT CCCCAGCCCA CTTSCCCGAG TTGTGCTTGC CGCTCCTTAT	960
55	CTGTTCTAGT TCCGAAGCAG TTTCACTCGA AGTTGTGCAG TCCTGGTTGC AGCTTTCCGC	
	ATCTGCCTTC GTTTCGTGTA GATTGACGCG TTTCTTTGTA ATTTCAGTGT TTCTGACAAG	1080

CAATTG 1146

469

PCT/US98/04493

2) INFORMATION FOR SEQ ID NO: 243:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1350 base pairs

10 (B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 243:

15 AACCCACGC TGCTGCGGCA GGGCGTGGAG GGCAGAGGGC CGCGGAGGCG CAGTTGCAAA 60 CATGCTCAG AGCAGAGACG GCGGAAACCC GTTCGCCGAG CCCAGCGAGC TTGACAACCC 120 20 CTTTCAGCCA CCACCAGCCT ATGAGCCTCC AGCCCCTGCC CCATTGCCTC CACCCTCAGC 180 TCCCTCCTTG CAGCCCTCGA GAAAGCTCAG CCCCACAGAA CCTAAGAACT ATGCCTCATA 240 300 25 CAACCGGAAG GCAGAGGAGT TGGACCGAAG GAGNCGAGAG CTGCAGCATG CTGCCCTGGG 360 RGGCACAGCT ACTCGACAGA ACAATTGGCC CCCTCTACCT TCTTTTTGTC CAGTTCAGCC 420 30 CTGCTTTTTC CAGGACATCT CCATGGAGAT CCCCCAAGAA TTTCAGAAGA CTGTATCCAC 480 CATGTACTAC CTCTGGATGT GCAGCACGST GCCTCTTCTC CTGAACTTCC TCGCCTGCCT 540 600 GGCCAGCTTC TGTGTGGAAA CCAACAATGG CGCAGGCTTT GGGCTTTCTA TCCTCTGGGT 35 CCTCCTTTTC ACTCCCTGCT CCTTTGTCTG CTGGTACCGC CCCATGTATA AGGCTTTCCG 660 GAGTGACAGT TCATTCAATT TCTTCGTTTT CTTCTTCATT TTCTTCGTCC AGGATGTGCT 720 40 780 CTTTGTCCTC CAGGCCATTG GTATCCCAGG TTGGGGATTC AGTGGCTGGA TCTCTGCTCT GGTGGTGCCG AAGGCAACAC AGCAGTATCC GTGCTCATGC TGCTGGTCGC CCTGCTCTTC 840 900 ACTGGCATTG CTGTGCTAGG AATTGTCATG CTGAAACGGA TCCACTCCTT ATACCGCCGC 45 960 ACAGGTGCCA GCTTTCAGAA GGCCCAGCAA GAATTTGCTG CTGGTGTCTT CTCCAACCCT 1020 GCGGTGCGAA CCGCARCTTG CCAATGCAGC CGCTGGGGCT GCTGAAAATG CCTTCCGGGC 50 CCCGTGACCC CTGACTGGGA TGCCCTGGCC CTGCTACTTG AGGGAGCTGA CTTAGCTCCC 1080 1140 GTCCCTAAGG TCTCTGGGAC TTGGAGAGAC ATCACTAACT GATGGCTCCT CCGTAGTGCT CCCAATCCTA TGGCCATGAC TGCTGAACCT GACAGGCGTG TGGGGAGTTC ACTGTGACCT 1200 55 AGTCCCCCA TCAGGCCACA CTGCTGCCAC CTCTCACACG CCCCAACCCA GCTTCCCTCT 1260 GCTGTGCCAC GGCTGTTGCT TCGGTTATTT AAATAAAAG AAAGTGGAAC TGGAAAAAAA 1320 60 1350 AAAAAAAAA AAAAAAAAAG GGGGGNCCNC

5 (2) INFORMATION FOR SEQ II) NO:	244:
------------------------------	-------	------

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1529 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 244:

	(X1) SEQUENCE	DESCRIPTION	: SEQ ID NO	: 244:		
15	TCCCAGAGGC	CGGGGGTTC	CAGCTCTGCC	TGTAGCAGAG	CCCTGAGGAG	GAGGAGGAAG	60
	AGGATGTGCT	GAAATACGTC	CGGGAGATCT	TTTTCAGCTA	GGGCATAAAC	TGTGCACTGA	120
20	ACTGTCTGCC	GAGAGCAGCT	GGAGGACAGC	TGAGCTTCCA	CTGGTGCTGC	TGGGCCGMCC	180
20	GCCTGTGGGA	ATGGGGCTCT	CTGTGCTCCT	ACCTTTGTGC	CTTCTTGGGC	CTGGCAGATT	240
	CACCTCAGGC	CAGAAGCCCC	TGGACACTCC	CCCCTTCCC	GIGCCGITCT	GAGTGTGCGG	300
25	AAGGCAGGAC	TCAAAATGAG	ATCCCATTTG	ACTCCCTCTG	TATGTACTGT	GCCCTCTCCT	360
	GGCTCTTGAG	GCTCTGGAGT	CCCAATTGTC	TGTGTTAGTC	AGTGACCAGG	TTCCAGGGAA	420
30	AATRATGTCA	TGTGGTGGTC	CAACTTACTG	GAACCAAAGA	GACAGTACTT	TGCAAAGAAA	480
50	AGGATCACTG	CCAGGTGCAC	TGGAATTGCT	ACAGTTTAGT	CCGCATGATC	TCTCCTGAAG	540
	GAGGAÁGCCT	GTTTCAAAAA	TAGITTCCAT	CATGAGTCTA	TCAATGAGCT	CCCACCTCTC	600
35	CAGCCAGCCT	AGAAAGCAAA	CGAGCTGCCC	ACAGTTCTCT	GCCCTGTCTG	GGAGGTTGAG	660
	GCCACAGTGT	ATAGACTGGT	AAGCCAGACA	GCCTCCTCC	CGCAAGCTGC	TACCTIGCTT	720
40	TCACCTGTAC	CTTGGTCCCC	GGGCAGCTAG	CTATAAAGCA	AGAGGGACAG	GAGCCCAGAA	780
10	GAGACACTGA	GGACAAGAGA	TCACACCAGA	GTACATGTCT	CIGCCICIGI	TTTCAGTGTG	840
	GCTTTGGACA	GGAATATATG	AATAAATCAC	TGCCATACAG	GTTTTCCAAT	ACACAAGTGC	900
45	TAGAAAATAC	ACACAATTCC	CCAATGCGTA	AGTIGTGCTA	ATGTCTTTCC	AAGTTCTGGG	960
	TTGGGAAGTG	GAGGGTGGCA	GCGTTTGTTT	GTGCGCAACC	GTCCAGTCCT	GTTCACAGCG	1020
50	AGGATTTGGA	GTCCTCCAGG	GTCTCATCAT	GGGAGTGATT	TGTCAGCGGA	CCCCTCTCCC	1080
30	CTGTCTGGCT	TCAGGTCCAG	GGAAGCTTTG	AAGCAGTCAA	GCCTTGTCTT	TGTACCCCAT	1140
	GTGTCCTGTC	TTTGTTGAGT	CACTCAGAGA	TCACTCCTGG	ACCTCTGGGG	TTGGAGTTCC	1200
55	AGTGATGGCT	TATGGCGGCC	CACTCACTAT	GGTGGGCTGA	GTGGAAGCTC	CTTAACCATG	1260
	TCCCCAGAGA	CACTGAGGTG	CTCGCTCTTT	TAATGTCCTC	GTTTGTTGCC	GTAAGTTCTT	1320
60	TGCTAGGTTT	CATTTTGGCA	TTTGGCAAAT	CAGCCTGGAA	GTCTGGCCCC	ATGACAGCAA	1380

	TCACTCCCTC	CCCACCCTCC	TGAAGCTAGA	GGAAGATTTG	CTCAGATCCA	TTAATTAAAG	1440
	CAGGAATTGG	TGTGACAATG	AGCTGCATGG	TTTAGGGAGT	CTTTGGGAGC	CTTGGAAGTC	1500
5	CTGAAGGACA	AACAATCTTG	TACTAAGAA				1529

10 (2) INFORMATION FOR SEQ ID NO: 245:

15

20

25

30

35

40

45

50

55

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1537 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 245:

GTGCGAGGTC	CCCGCCAGCC	CCCAGCGGCC	TTCCCGGCCC	GGGGGGGTCC	CAGAGCAAAC	60
GAGGCCCCTG	AGAGCTCCAC	CTAGTTCACA	GGATAAAATC	CCACAGCAGA	ACTCGGAGTC	120
AGCAATGGCT	AAGCCCCAGG	TGGTTGTAGC	TCCTGTATTA	ATGTCTAAGC	TGTCTGTGAA	180
TGCCCCTGAA	TTTTACCCTT	CAGGTTATTC	TTCCAGTTAC	ACAGAATCCT	ATGAGGATGG	240
TTGTGAGGAT	TATCCTACTC	TATCAGAATA	TGTTCAGGAT	TTTTTGAATC	ATCTTACAGA	300
GCAGCCTGGC	AGTTTTGAAA	CTGAAATTGA	ACAGTTTGCA	GAGACCCTGA	ATGGTTGTGT	360
TACAACAGAT	GATGCTTTGC	AAGAACTTGT	GGAACTCATC	TATCAACAGG	CCACATCTAT	420
CCCAAATTTC	TCTTATATGG	GAGCTCGCCT	GTGTAATTAC	CTGTCCCATC	ATCTGACAAT	480
TAGCCCACAG	AGTGGCAACT	TCCGCCAATT	GCTACTTCAA	AGATGTCGGA	CTGAATATGA	540
AGTTAAAGAT	CAAGCTGCAA	AAGGGGATGA	AGTTACTCGA	AAACGATTTC	ATGCATTTGT	600
ACTCTTTCTG	GGAGAACTTT	ATCTTAACCT	GGAGATCAAG	GGAACAAATG	GACAGGTTAC	660
AAGAGCAGAT	ATTCTTCAGG	TIGGICTICG	AGAATTGCTG	AATGCCCTGT	TTTCTAATCC	720
TATGGATGAC	TTTAATTTAA	GTGCAGTAAA	ATTGTTAAAG	TTGACAGGAT	CAGTTTTGGA	780
AGATGCTTGG	AAGGAAAAAG	GAAAGATGGA	TATGGAAGAA	ATTATTCAGA	GAATTGAAAA	840
CGTTGTCCTA	GATGCAAACT	GCAGTAGAGA	TGTAAAACAG	ATGCTCTTGA	AGCTTGTAGA	900
ACTCCGGTCA	AGTAACTGGG	GCAGAGTCCA	TGCAACTTCA	ACATATAGAG	AAGCAACACC	960
AGAAAATGAT	CCTAACTACT	TTATGAATGA	ACCAACATTT	TATACATCTG	ATGGTGTTCC	1020
TTTCACTGCA	GCTGATCCAG	ATTACCAAGA	GAAATACCAA	GAATTACTTG	AAAGAGAGGA	1080
CTTTTTTCCA	GATTATGAAG	AAAATGGAAC	AGATTTATCC	GGGCTGGTG	ATCCATACTT	1140
GGATGATATT	GATGATGAGA	TGGACCCAGA	GATAGAAGAA	GCTTATGAAA	AGTTTTGTTT	1200
GGAATCAGAG	CGTAAGCGAA	AACAGTAAAG	TTAAATTTCA	GCATATCAGT	TTTATAAAGC	1260

	AGTITAGGTA TOGTGATITA GCAGAACACA AGAGAGCAAG AAAATGTGTC ACATCTATAC	1320
5	CAAATTRAGG ATGTTGAGTT ATGTTACTAA TGTATGCAAC TTTAATTTTG TTTAACACTA	1380
	TCTGCCAAAA TAAACTTTAT TCCCTATAAC TTAAAATGTG TATATATATA TAATAGTTTA	1440
	TTATGTACAG TTAATTCTAC TGTTTTGGCT GCAATAAAAT CGATTTTGAA ATAAAWRAAA	1500
10	AAAAAAAAA AAGGGNGGCC GCTCTAGAGG ANCCAAG	1537
15	(2) INFORMATION FOR SEQ ID NO: 246:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 506 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 246:	
25	TGCAGGATTT GGCCAGGACC CSCCGCGGTG GCGGTTGCTA TCGCTTCGCA GAACCTACTC	60
	AGGCAGCCAG CTGAGAAGAG TTGAGGGAAA GTGCTGCTGC TGGGTCTGCA GACGCGATGG	120
30	ATAACGTGCA GCCGAAAATA AAACATCGCC CCTTCTGCTT CAGTGTGAAA GGCCACGTGA	180
50	AGATGCTGCG GCTGGATATT ATCAACTCAC TGGTAACAAC AGTATTCATG CTCATCGTAT	240
	CTGTGTTGGC ACTGATACCA GAAACCACAA CATTGACAGT TGGTGGAGGG GTGTTTGCAC	300
35	TTGTGACAGC AGTATGCTGT CTTGCCGACG GGGCCCTTAT TTACCGGAAG CTTCTGTTCA	360
	ATCCCAGCGG TCCTTACCAG AAAAAGCCTG TGCATGAAAA AAAAGAAGTT TTGTAATTTT	420
40	ATATTACTTT TTAGTTTGAT ACTAAGTATT AAACATATTT CTGKATTATT CCAAAAAAAA	480
	AAAAAAAA AAAAAAAATT TGGTGG	506
45	(2) INFORMATION FOR SEQ ID NO: 247:	
50	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1348 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 247:	
JJ	GTCTTTCTTT TNCTGTTTTG AGTTGGTGAG TGAGTGAATA GGGTAACATG GGCCTTCAGG	60
	ATGACCCCTT GGAACTGTGC CGAGTTCCTT AAATCTCAGC TGGGATCCTG GACCTGGGAG	120
60	GCCCCTYTYGA GGGCCAGCTC TYGGAAAAACC TYGGAGTTYGA TYCYYGAGGY TYGGGAAGAAC	180

	TCTGCTCGAG	GGCAGGGTGC	CCTGGAACAC	TGGTAGTTCT	GGGGCTGGGA	GGGAGAGGGG	240
5	CTCCGGCTTT	CTCTGAAATG	AACACTGCTC	TTCAGCAGTT	CAAGTACTTG	TTCTCAAAAC	300
J	ATTTTCTAAT	TGATTGGTAG	GTTTTCATAA	GCATTGTTTC	TTTAAGGCAT	GGAAAGGGAA	360
	GAATGCTCAA	GCAAGTCATG	TTIGTTTTCA	GTGGGATGGG	CCCGCGTTCT	CACTGCTGGG	420
10	GGCTTCCCCT	TGCATGTGGC	ACCTITIGIGC	AGGGCCACCA	GCAGACTCT	TCCCACCTTC	480
-	TCCCACTGAA	GCACCAAGGG	GCTTGAACCG	TAATTTGGCT	AATCAGAGGC	ATTTTTTTG	540
15	TCCTAGTATC	TTTCACACTT	GTCCAACCGT	CTTATTTTT	TAAAAGTTCT	GTTGCTTGTA	600
	TTAACACGAA	ACTAGAGAGA	AATAGTTTCT	GAAGCCAGTT	TATTGTGAAG	ATCCCCAAGG	660
	GGAGGTTCGG	TAGAGAAAAA	TAGTAAGCTG	GTITAGAAAC	TGACGAGGGC	AAACAGCCAG	720
20	GACGCATTGG	AGAGGAATTT	GCCAAAGATC	TACCCTGAGA	TAACGCCTGT	CCAGTGTCTT	780
	CACCACGTGA	ATAACCAGCG	CTCCAAAGTG	TTTTTCTGCT	AAAAAAPTT	AAATTCCACA	840
25	AGCTTTTAAA	GGTGCATTTA	AGAATCCATG	TGACTTTAGA	ATGGAACTGC	CGCCCTGGC	900
	AACTGTCACG	TGTGCTAGAA	GGTTCGATGC	CTCTGGAATG	CATGTGATAC	TCATCTCCAT	960
	TUIGTUICCT	TGATTGCATT	TTTGTTCTTT	TAGCAGATCT	GTCCCTGTGG	GTGGTGTCTA	1020
30	AGAAGTCGGA	CACCTTGGTT	TTTGTGTTAG	ATTGAGCTGG	GCAGCTGCAA	TCAGCTTCTT	1080
	TATATGCAAA	TTAGGCACGA	CCCATCTGTG	GTTCCCTGGT	TGGTGGCTAA	TGAAGTGAGG	1140
35	GGAGGGAGGG	ATGTCACCCC	AAAAGTAGGC	CCTCCCATTG	GCTTTGGCCA	GGCCAGACAC	1200
	TICACATCGT	TTACATGGTT	CTGTGTAATT	TTAAAGTTTA	TGTGTATAAA	GCGAAGCTGT	1260
	TTCTGTGAAA	CTGTATATTT	TGTAAATAAA	TATATTGCTA	CTTTGAGAWR	AAAAAAAA	1320
1 0	AAAAACTCGA	GGGGGCCCG	GTACCCAA				1348

45 (2) INFORMATION FOR SEQ ID NO: 248:

50

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1766 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 248:

55 GTGCCGAATC GGCAGAGCGG CACGAGCGGC CACGAGAGCA GGCGGAGTAA AGGGACTTGA 60
GCGAGCCAGT TGCCGGATTA TTCTATTTCC CCTCCCTCTC TCCCGCCCCG TATCTCTTTT 120
CACCCTTCTC CCACCCTCGC TCGCGTASCA TGGCGGAGCG TCGGCGGCCA CTCAGTCCCA 180

	TTCCATCTCC	TCGTCGTCCT	TCGGAGCCGA	GCCGTCCGCG	CCCGGCGGCG	GCGGGAGCCC	240
	AGGAGCCTGC	CCCCCCCICC	GGACGAAGAG	CTGCAGCTCC	TCCTGTGCGG	TGCACGATCT	300
5	GATTTTCTCG	AGAGATGTGA	AGAAGACTGG	GTTTGTCTTT	GGCACCACGC	TGATCATGCT	360
	GCTTTCCCTG	GCAGCTTTCA	GTGTCATCAG	TGTGGTTTCT	TACCTCATCC	TGGCTCTTCT	420
10	CTCTGTCACC	ATCAGCTTCA	GGATCTACAA	GTCCGTCATC	CAAGCTGTAC	AGAAGTCAGA	480
	AGAAGGCCAT	CCATTCAAAG	CCTACCTGGA	CGTAGACATT	ACTCTGTCCT	CAGAAGCTTT	540
	CCATAATTAC	ATGAATGCTG	CCATGGTGCA	CATCAACAGG	GCCCTGAAAC	TCATTATTCG	600
15	TCTCTTTCTG	GTAGAAGATC	TGGTTGACTC	CTTGAAGCTG	GCTGTCTTCA	TGTGGCTGAT	660
	GACCTATGTT	GGTGCTGTTT	TTAACGGAAT	CACCCTTCTA	ATTCTTGCTG	AACTGCTCAT	720
20	TTTCAGTGTC	CCGATTGTCT	ATGAGAAGTA	CAAGACCCAG	ATTGATCACT	ATGTTGGCAT	780
20	CGCCCGAGAT	CAGACCAAGT	CAATTGTTGA	AAAGATCCAA	GCAAAACTCC	CTGGAATCGC	840
	CAAAAAAAAG	GCAGAATAAG	TACATGGAAA	CCAGAAATGC	AACAGTTACT	AAAACACCAT	900
25	TTAATAGTTA	TAACGTCGTT	ACTTGTACTA	TGAAGGAAAA	TACTCAGTGT	CAGCTTGAGC	960
	CTGCATTCCA	AGCTTTTTTT	TTAATTIGGT	GTTTTCTCCC	ATCCTTTCCC	TTTAACCCTC	1020
30	AGTATCAAGC	ACAAAAATTG	ATGGACTGAT	AAAAGAACTA	TCTTAGAACT	CAGAAGAAGA	1080
	AAGAATCAAA	TTCATAGGAT	AAGTCAATAC	CTTAATGGTG	GTAGAGCCTT	TACCTGTAGC	1140
	TTGAAAGGGG	AAAGATTGGA	GGTAAGAGAG	AAAATGAAAG	AACACCTCTG	GGTCCTTCTG	1200
35	TCCAGTTTTC	AGCACTAGTC	TTACTCAGCT	ATCCATTATA	GTTTTGCCCT	TAAGAAGTCA	1260
	TGATTAACTT	ATGAAAAAAT	TATTTGGGGA	CAGGAGTGTG	ATACCTTCCT	TGGTTTTTT	1320
40	TTGCAGCCCT	CAAATCCTAT	CTTCCTGCCC	CACAATGTGA	GCAGCTACCC	CTGATACTCC	1380
	TITITCTTTAA	TGATTTAACT	ATCAACTTGA	TAAATAACTT	ATAGGTGATA	GTGATAATTC	1440
	CTGATTCCAA	GAATGCCATC	TGATAAAAAA	GAATAGAAAT	GGAAAGTGCG	ACTGAGAGGG	1500
45	AGTCAGCAGG	CATGCTGCGG	TGGCGGTCAC	TCCCTCTGCC	ACTATCCCCA	GGGAAGGAAA	1560
	RGCTCCGCCA	TTTGGGAAAG	TGGTTTCTAC	GTCACTGGAC	ACCGGTTCTG	AGCATTAGTT	1620
50	TGAGAACTCG	TTCCCGAATG	TGCTTTCCTC	CCTCTCCCCT	GCCCACCTCA	AGTTTAATAA	1680
	ATAAGGTTGT	ACTTTTCTTA	СТАТААААТА	AAAAAAAA	AACTCGAGGG	GGGCCCGGTA	1740
	CCCAAATCGC	CGGATATGAT	CGTAAA				1766

⁽²⁾ INFORMATION FOR SEQ ID NO: 249:

⁽i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2664 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

_ 5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 249:

10		GAGCAGGCGG	AGTAAAGGGA	CTTGAGCGAG	CCAGTTGCCG	GATTATTCTA	60
10							•
10	TTTCCCCTCC	CTCTCTCCCG	CCCCGTATCT	CTTTTCACCC	TTCTCCCACC	CTCGCTCGCG	120
	TASCATGGCG	GAGCGTCGGC	GGCCACTCAG	TCCCATTCCA	TCTCCTCGTC	GTCCTTCGGA	180
15	GCCGAGCCGT	cccccccc	ceeceecee	AGCCCAGGAG	CCTGCCCCGC	CCTGGGGACG	240
15	AAGAGCTGCA	GCTCCTCCTG	TGCGGTGCAC	GATCTGATTT	TCTGGAGAGA	TGTGAAGAAG	300
	ACTGGGTTTG	TCTTTGGCAC	CACGCTGATC	ATGCTGCTTT	CCCTGGCAGC	TTTCAGTGTC	360
20	ATCAGTGTGG	TTTCTTACCT	CATCCTGGCT	CTTCTCTCTG	TCACCATCAG	CTTCAGGATC	420
	TACAAGTCCG	TCATCCAAGC	TGTACAGAAG	TCAGAAGAAG	GCCATCCATT	CAAAGCCTAC	480
25	CTGGACGTAG	ACATTACTCT	GTCCTCAGAA	GCTTTCCATA	ATTACATGAA	TGCTGCCATG	540
23	GTGCACATCA	ACAGGGCCCT	GAAACTCATT	ATTCGTCTCT	TTCTGGTAGA	AGATCTGGTT	600
	GACTCCTTGA	AGCTGGCTGT	CTTCATGTGG	CTGATGACCT	ATGTTGGTGC	TGTTTTTAAC	660
30	GGAATCACCC	TTCTAATTCT	TGCTGAACTG	CTCATTTICA	GTGTCCCGAT	TGTCTATGAG	720
	AAGTACAAGA	CCCAGATTGA	TCACTATGTT	GGCATCGCCC	GAGATCAGAC	CAAGTCAATT	780
25	GTTGAAAAGA	TCCAAGCAAA	ACTCCCTGGA	ATCGCCAAAA	AAAAGGCAGA	ATAAGTACAT	840
35	GGAAACCAGA	AATGCAACAG	ттастаааас	ACCATTTAAT	AGTTATAACG	TCGTTACTTG	900
	TACTATGAAG	GAAAATACTC	AGTGTCAGCT	TGAGCCTGCA	TTCCAAGCTT	TAATTTTTTT	960
40	TIGGIGITIT	CTCCCATCCT	TTCCCTTTAA	CCCTCAGTAT	CAAGCACAAA	AATTGATGGA	1020
	CTGATAAAAG	AACTATCTTA	GAACTCAGAA	GAAGAAAGAA	TCAAATTCAT	AGGATAAGTC	1080
45	AATACCTTAA	TOGTGGTAGA	GCCTTTACCT	GTAGCTTGAA	AGGGGAAAGA	TTGGAGGTAA	1140
45	GAGAGAAAAT	GAAAGAACAC	CTCTGGGTCC	TTCTGTCCAG	TTTTCAGCAC	TAGTCTTACT	1200
	CAGCTATCCA	TTATAGTTT	GCCCTTAAGA	AGTCATGATT	AACTTATGAA	ААААТТАТТТ	1260
50	GGGGACAGGA	GTGTGATACC	TICCTIGGTT	TITTTTTGCA	GCCCTCAAAT	CCTATCTTCC	1320
	TGCCCCACAA	TGTGAGCAGC	TACCCCTGAT	ACTCCTTTTC	TTTAATGATT	TAACTATCAA	1380
	CTTGATAAAT	AACTTATAGG	TGATAGTGAT	AATTCCTGAT	TCCAAGAATG	CCATCTGATA	1440
55	AAAAAGAATA	GAAATGGAAA	GTGGGACTGA	GAGGGAGTCA	GCAGGCATGC	TGCGGTGGCG	1500
	GTCACTCCCT	CTGCCACTAT	CCCCAGGGAA	GGAAARGCTC	CGCCATTTGG	GAAAGTGGTT	1560
60	TCTACGTCAC	TGGACACCGG	TTCTGAGCAT	TAGTTTGAGA	ACTOGTTCCC	GAATGTGCTT	1620

	TCCTCCCTCT CCCCTGCCCA CCTCAAGTTT AATAAATAAG GTTGTACTTT TCTTACTATA	1680
5	AAATAAATGT CTGTAACTGC TGTGCACTGC TGTAAACTTG TTAGAGAAAA AAATAACCTG	1740
3	CATGTGGGCT CCTCAGTTAT TGAGTTTTTG TGATCCTATC TCAGTCTGGG GGGGAACATT	1800
	CTCAAGAGGT GAAATACAGA AAGCCTTTTT TTCTTGATCT TTTCCCGAGA TTCAAATCTC	1860
10	CGATTCCCAT TTGGGGGCAA GTTTTTTCT TCACCTTCAA TATGAGAATT CAGCGAACTT	1920
	GAAAGAAAAA TCATCTGTGA GTTCCTTCAG GTTCTCACTC ATAGTCATGA TCCTTCAGAG	1980
15	GGAATATGCA CTGGCGAGTT TAAAGTAAGG GCTATGATAT TTGATGGTCC CAAAGTACGG	2040
15	CAGCTGCAAA AAGTAGTGGA AGGAAATTGT CTACGTGTCT TGGAAAAATT AGTTAGGAAT	2100
	TTGGATGGGT AAAAGGTACC CTTGCCTTAC TCCATCTTAT TTTCTTAGCC CCCTTTGAGT	2160
20	GTTTTAACTG GTTTCATGTC CTAGTAGGAA GTGCATTCTC CATCCTCATC CTCTGCCCTC	2220
	CCAGGAAGTC AGTGATTGTC TITTTGGGCT TCCCCTCCAA AGGACCTTCT GCAGTGGAAG	2280
25	TGCCACATCC AGTICTITIC TITIGTTGCT GCTGTGTTTA GATAATTGAA GAGATCTTTG	2340
23	TGCCACACAG GATTTTTTT TTTTTTAAGA AAAACCTATA GATGAAAAAT TACTAATGAA	2400
	ACTGTGTGTA CGTGTCTGTG CGTGCAACAT AAAAATACAG TAGCACCTAA GGAGCTTGAA	2460
30	TCTTGGTTCC TGTAAAATTT CAAATTGATG TGGTATTAAT AAAAAAAAA AAAACAMAAA	2520
	AAAAAAAAA AAAAGGGCGG CCGCTCTAGA GGATCCAAGC TTACGTACGC GTGCATGCGA	2580
35	CGTCCATAGC TCTTTCTATA GGGGTCCCCC AAATTCCATT CANCGGGCCG TCGGTTTTAN	2640
33	AAAGGTCGTG ANTGGGGGAA ANCC	2664
40	(2) INFORMATION FOR SEQ ID NO: 250:	
	(i) SEQUENCE CHARACTERISTICS:	
45	(A) LENGTH: 865 base pairs (B) TYPE: nucleic acid	
•	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 250:	
50	CGTGGGAGTG AGGTACCAGA TTCAGCCCAT TTGGCCCCGA CGCCTCTKTT CTCGGAATCC	60
	GGGTGCTGCG GATTGAGGTC CCGGTTCCTA ACGGTGGGAT CGGTGTCCTC GGGATGAGAT	120
55	TTGGCGTTTC CTCGGGGCTT TGGTGGGATC GGTGTCCTCA GGATGAGATT TAGGGTTTCC	180
	TCGGGGCTTT CGGGATCTTC ACCTAATATC CGGACTGCAA GATGGAGGAA GGCGGGAACC	240
6 0	TAGGAGGCCT GATTAARATG GTCCATCTAC TGGTCTTGTC AGGTGCCTGG GGCATGCAAA	300
60		

	TOTOGGTGAC CTTCGTCTCA GGCTTCCTGC TTTTCCGAAG CCTTCCCCGA CATACCTTCG	360
	GACTAGTGCA GAGCAAACTC TTCCCCTTCT ACTTCCACAT CTCCATGGGC TGTGCCTTCA	420
5	TCAACCTCTG CATCTTGGCT TCACAGCATG CTTGGGCTCA GCTCACATTC TGGGAGGCCA	480
	GCCAGCTTTA CCTGCTGTTC CTGAGCCTTA CGCTGGCCAC TGTCAACGCC CGCTGGCTGG	540
10	AACCCCGCAC CACAGCTGCC ATGTGGGCCC TGCAAACCGT GGAGAAGGAG CGAGGCCTGG	600
	GTGGGGAGGT ACCAGGCAGC CACCAGGGTC CCGATCCCTA CCGCCAGCTG CGAGAGAAGG	660
	ACCCCAAGTA CAGTGCTCTC CGCCAGAATT TCTTCCGCTA CCATGGGCTG TCCTCTCTTT	720
15	GCAATCTGGG CTGCGTCCTG AGCAATGGCC TCTGTCTCGC TGGCCTTGCC CTGGAAATAA	780
	GGAGCCTCTA GCATGGCCC TGCATGCTAA TAAATGCTTC TTCAGAAAAA AAAAAAAAA	840
20	AAACTCGAGG GGGCCCCGGT ACCCA	865
	(2) INFORMATION FOR SEQ ID NO: 251:	
25	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 2082 base pairs (B) TYPE: nucleic acid	
30	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 251:	
	TGGGGGGGN AATGGGTGTC TGGCTCANGG ATTGCCNAAT CTGGAAATTC TCCATAACTT	60
35	GCTAGCTTGT TTTTTTTTT TTTTTTACA CCCCCCGCC CCACCCCCGG ACTTGCACAA	120
	TGTTCAATGA TCTCAGCAGA GTTCTTCATG TGAAACGTTG ATCACCTTTG AAGCCTGCAT	180
40	CATTCACATA TITTITCTTC TICTICCCCT TCAGTTCATG AACTGGTGTT CATTTTCTGT	240
	GTGTGTGTG GTTTTATTTT GTTTGGATTT TTTTTTTT	300
4-	GTGTTGCCCA CCTTTTTTCC AACCTCCACC CTCACTCCTT CTCAACCCAT CTCTTCCGAG	360
45	ATGAAAGAAA AAAAAAAGCA AAGTTTTTTT TTCTTCTCCT GAGTTCTTCA TGTGAGATTG	420
	AGCTTGCAAA GGAAAAAAAA ATGTGAAATG TTATAGACTT GCAGCGTGCC GAGTTCCATC	480
50	GGGTTTTTTT TTTAGCATTG TTATGCTAAA ATAGAGAAAA AAATGCTCAT GAACCTTCCA	540
	CAATCAAGCC TGCATCAACC TTCTGGGTGT GACTTGTGAG TTTTGGCCTT GTGATGCCAA	600
	ATCTGAGAGT TTAGTCTGCC ATTAAAAAAA CTCATTCTCA TCTCATGCAT TATTATGCTT	660
55	GCTACTTTGT CTTAGCAACA ATGAACTATA ACTGTTTCAA AGACTTTATG GAAAAGAGAC	720
	ATTATATTAA TAAAAAAAA AAGCCTGCAT GCTGGACATG TATGGTATAA TTATTTTTTC	780
60	CTTTTTTTT CCTTTGGCT TGGAAATGGA CGTTCGAAGA CTTATAGCAT GGCATTCATA	840

	CTTTTGTTTT ATTGCCTCAT GACTTTTTTG AGTTTAGAAC AAAACAGTGC AACCGTAGAG	900
5	CCTTCTTCCC ATGAAATTTT GCATCTGCTC CAAAACTGCT TIGAGTTACT CAGAACTTCA	960
Ū	ACCTCCCAAT GCACTGAAGG CATTCCTTGT GCAAAGATAC CAGAATGGGT TACACATTTA	1020
	ACCTGGCAAA CATTGAAGAA CTCTTRATGT TTTCTTTTTA ATAAGAATGA CGCCCCACTT	1080
10	TGGGGACTAA AATTGTGCTA TTGCCGAGAA GCAGTCTAAA ATTTATTTTT TAAAAAAGAGA	1140
• •	AACTGCCCCA TTATTTTTGG TTTGTTTTAT TTTTATTTTA	1200
15	TIGTCAAATG TGGAATGCTC TGGGTTTCTA GTATATAATT TAATTCTAGT TTTTATAATC	1260
	TGTTAGCCCA GTTAAAATGT ATGCTACAGA TAAAGGAATG TTATAGATAA ATTTGAAAGA	1320
	GTTAGGTCTG TTTAGCTGTA GATTTTTTAA ACGATTGATG CACTAAATTG TTTACTATTG	1380
20	TGATGTTAAG GGGGGTAGAG TTTGCAAGGG GACTGTTTAA AAAAAGTAGC TTATACAGCA	1440
	TGTGCTTGCA ACTTAAATAT AAGTTGGGTA TGTGTAGTCT TTGCTATACC ACTGACTGTA	1500
25	TTGAAAACCA AAGTATTAAG AGGGGAAACG CCCCTGTTTA TATCTGTAGG GGTATTTTAC	1560
	ATTCAAAAAT GTATGTTTT TTTTCTTTTC AAAATTAAAG TATTTGGGAC TGAATTGCAC	1620
	TAAGATATAA CCTGCAAGCA TATAATACAA AAAAAAATTG CAAAACTGTT TAGAACGCTA	1680
30	ATAAAATTTA TGCAGTTATA AAAATGGCAT TACTGCACAG TTTTAAGATG ATGCAGATTT	1740
	TTTTACAGTT GTATTGTGT GCAGAACTGG ATTTTCTGTA ACTTAAAAAA AAATCCACAG	1800
35	TTITAAAGGC AATAATCAGT AAATGTTATT TTCAGGGACT GACATCCTGT CTTTAAAAAG	1860
	AAATGAAAAG TAAATCTTAC CACAATAAAT ATAAAAAAAT CTTGTCAGTT ACTTTTCTTT	1920
	TACATATTTT GCTGTGCAAA ATTGTTTTAT ATCTTGAGTT ACTAACTAAC CACGCGTGTT	1980
40	GITCCIATGI GCTTTICITI CATTTICAAT TCIGGITATA TCAAGAAAAG AATAATCIAC	2040
	AATAATAAAC GGCATTTITT TTTGAAAAAA AAAAAAAAAA AA	2082
45		
	(2) INFORMATION FOR SEQ ID NO: 252:	
	(i) SEQUENCE CHARACTERISTICS:	
50	(A) LENGTH: 1482 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 252:	
	CAGGCAGGCT GGCCCCGGGG ACTICTCTCT GGCCCTGCTC CCTCCGAGCG CTCCGCCGTT	60
	GCCCGCCTGG CCCCTACGGA GTCCTTAGCC AGGATGGAGG CTGTTGTGAA CTTGTACCAA	120
60		

479

	GAGGTGATGA	AGCACGCAGA	TCCCCGGATC	CAGGGCTACC	CTCTGATGGG	GICCCCCTTG	180
	CTAATGACCT	CCATTCTCCT	GACCTACGTG	TACTTCGTTC	TCTCACTTGG	GCCTCGCATC	240
5	ATGGCTAATC	GGAAGCCCTT	CCAGCTCCGT	GGCTTCATGA	TTGTCTACAA	CTTCTCACTG	300
	CTGCCACTCT	CCCTCTACAT	TGTCTATGAG	TTCCTGATGT	CGGCCTGGCT	GAGCACCTAT	360
10	ACCTGGCGCT	GTGACCCTGT	GGACTATTCC	AACAGCCCTG	AGGCACTTAG	GATGGTTCGG	420
10	GTGGCCTGGC	TCTTCCTCTT	CTCCAAGTTC	ATTGAGCTGA	TGGACACAGT	GATCTTTATT	480
	CTCCGAAAGA	AAGACGGGCA	GGTGACCTTC	CTACATGTCT	TCCATCACTC	TGTGCTTCCC	540
15	TGGAGCTGGT	GGTGGGGGGT	AAAGATTGCC	CCGGGAGGAA	TGGGCTCTTT	CCATGCCATG	600
	ATAAACTCTT	CCGTGCATGT	CATAATGTAC	CIGTACTACG	GATTATCTGC	CTTTGGCCCT	660
20	GTGGCACAAC	CCTACCTTTG	GTGGAAAAAG	CACATGACAG	CCATTCAGCT	GATCCAGTTT	720
20	GTCCTGGTCT	CACTGCACAT	CTCCCAGTAC	TACTTTATGT	CCAGCTGTAA	CTACCAGTAC	780
	CCAGTCATTA	TTCACCTCAT	CTGGATGTAT	GGCACCATCT	TCTTCATGCT	GTTCTCCAAC	840
25	TTCTGGTATC	ACTCTTATAC	CAAGGCCAAG	CGGCTGCCCC	GTGCACTTCA	GCAAAATGGA	900
	GCTCCAGGTA	TTGCCAAGGT	CAAGGCCAAC	TGAGAAGCAT	GGCCTAGATA	GCCCCACC	960
30	TAAGTGCCTC	AGGACTGCAC	CTTAGGGCAG	TGTCCGTCAG	TGCCCTCTCC	ACCTACACCT	1020
50	GTGACCAAGG	CTTATGTGGT	CAGGACTGAG	CAGGGGACTG	GCCCTCCCCT	CCCCACAGCT	1080
	GCTCTACAGG	GACCACGCT	TTGGTTCCTC	ACCCACTTCC	CCCGGGCAGC	TCCAGGGATG	1140
35	TGGCCTCATT	GCTGTCTGCC	ACTCCAGAGC	TGGGGGCTAA	AAGGCTGTA	CAGTTATTTC	1200
	CCCCTCCCTG	CCTTAAAACT	TGGGAGAGGA	GCACTCAGGG	CTGGCCCCAC	AAAGGGTCTC	1260
40	GTGGCCTTTT	TCCTCACACA	GAAGAGGTCA	GCAATAATGT	CACTGTGGAC	CCAGTCTCAC	1320
40	TCCTCCACCC	CACACACTGA	AGCAGTAGCT	TCTGGGCCAA	AGGTCAGGGT	GGGCGGGGC	1380
	CTGGGAATAC	AGCCTGTGGA	GGCTGCTTAC	TCAACTTGTG	TCTTAATTAA	AAGTGACAGA	1440
45	GGAAACCAAA	АААААААА	AAAAACTCGA	GGGGGGCCCG	TA		1482

50 (2) INFORMATION FOR SEQ ID NO: 253:

55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 834 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 253:

60 GGCACGAGGG CCGTTGCCCG CCTGGCCCCT ACGGAGTCCT TAGCCAGGAT GGAGGCTGTT 60

PCT/US98/04493

600

	GTGAACTTGT ACCAAGAGGT GATGAAGCAC GCAGATCCCC GGATCCAGGG CTACCCTCTG	120
5	ATGGGGTCCC CCTTGCTAAT GACCTCCATT CTCCTGACCT ACGTGTACTT CGTTCTCTCA	180
	CTTGGGCCTC GCATCATGGC TAATCGGAAG CCCTTCCAGC TCCGTGGCTT CATGATTGTC	240
	TACAACTTCT CACTGGTGGC ACTCTCCCTC TACATTGTCT ATGAGTTCCT GATGTCGGGC	300
10	TGGCTGAGCA CCTATACCTG GCGCTGTGAC CCTCAGGACT GCACCTTAGG GCAGTGTCCG	360
	TCAGTGCCCT CTCCAMCTAC ACCTGTGACC AAGGCTTATG TGGTCAGGAC TGAGCAGGGG	420
15	ACTGGCCCTC CCCTCCCCAC AGCTGCTCTA CAGGGACCAC GGCTTTGGTT CCTCACCCAC	480
	TTCCCCCGGG CAGCTCCAGG GATGTGGCCT CATTGCTGTC TGCCACTCCA GAGCTGGGGG	540
	CTAAAAGGGC TGTACAGTTA TTTCCCCCTC CCTGCCTTAA AACTTGGGAG AGGAGCACTC	600
20	AGGGCTGGCC CCACAAAGGG TCTCGTGGCC TTTTTCCTCA CACAGAAGAG GTCAGCAATA	660
	ATGTCACTGT GGACCCAGTC TCACTCCTCC ACCCCACACA CTGAAGCAGT AGCTTCTGGG	720
25	CCAAAGGTCA GGGTGGGGG GGGCCTGGGA ATACAGCCTG TGGAGGCTGC TTACTCAACT	780
	TGTGTCTTAA TTAAAAGTGA CAGAGGAAAC CACGAAAAAA AAAAAAAAAA	834
30	(2) INFORMATION FOR SEQ ID NO: 254:	
	(2) INFORMATION FOR SEQ ID NO: 254: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1508 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1508 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
30 35 10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1508 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	60
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1508 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 254:	60 120
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1508 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 254: TTGAACTTT AAAATTTTAG ATCAGCAAAC TCTAAGATCC TAGAATGGAA GCTGTTCCTC	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1508 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 254: TTGAACTTTT AAAATTTTAG ATCAGCAAAC TCTAAGATCC TAGAATGGAA GCTGTTCCTC ATTTCTCCAT GCTCACCCTC CCAGGTCAGC GAGATGGTGA AGAAGCTGCA CGCGGCAACA	120
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1508 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 254: TTGAACTTTT AAAATTTTAG ATCAGCAAAC TCTAAGATCC TAGAATGGAA GCTGTTCCTC ATTTCTCCAT GCTCACCCTC CCAGGTCAGC GAGATGGTGA AGAAGCTGCA CGCGGCAACA CCACCAACGT TCGGAGTGGA CCTCATCAAT GAGCTTGTGG AGAACTTTGG CAGATGTCCC	120 180
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1508 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 254: TTGAACTTTT AAAATTTTAG ATCAGCAAAC TCTAAGATCC TAGAATGGAA GCTGTTCCTC ATTTCTCCAT GCTCACCCTC CCAGGTCAGC GAGATGGTGA AGAAGCTGCA CGCGGCAACA CCACCAACGT TCGGAGTGGA CCTCATCAAT GAGCTTGTGG AGAACTTTGG CAGATGTCCC AAGTGGTCTG GTCGGCAAGC CTTTGTCTTT GTCTGCCAGA CTGTCATTGA GGATGACTGC	120 180 240
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1508 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 254: TIGAACTITT AAAATITTAG ATCAGCAAAC TCTAAGATCC TAGAATGGAA GCTGTTCCTC ATTICCCAT GCTCACCCTC CCAGGTCAGC GAGATGGTGA AGAAGCTGCA CGCGGCAACA CCACCAACGT TCGGAGTGGA CCTCATCAAT GAGCTTGTCG AGAACTTTGG CAGATGTCCC AAGTGGTCTG GTCGGCAAGC CTTTGTCTTT GTCTGCCAGA CTGTCATTGA GGATGACTGC CTTCCCATGG ACCAGTTTGC TGTGCATCTC ATGCCGCATC TGCTAACCTT AGCAAATGAC	120 180 240 300
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1508 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 254: TTGAACTTTT AAAATTTTAG ATCAGCAAAC TCTAAGATCC TAGAATGGAA GCTGTTCCTC ATTTCTCCAT GCTCACCCTC CCAGGTCAGC GAGATGGTGA AGAAGCTGCA CGCGGCAACA CCACCAACGT TCGGAGTGGA CCTCATCAAT GAGCTTGTGG AGAACTTTGG CAGATGTCCC AAGTGGTCTG GTCGGCAAGC CTTTGTCTTT GTCTGCCAGA CTGTCATTGA GGATGACTGC CTTCCCATGG ACCAGTTTGC TGTGCATCTC ATGCCGCATC TGCTAACCTT AGCAAATGAC AGGGTTCCTA ACGTGCGAGT GCTGCTTGCA AAGACATTAA GACAAACTCT ACTAGAAAAA	120 180 240 300 360

GTGTCTTTCC TGCTTCCATG AGAGCCGAGG TTCAGTGGCC ATTCGCCACG CATGTGACCT

CCAGCCCTGT GTGTGAATCG TTTGTGACGT GTGCAAATGG GAAAGGAGGG GTTTTTACAT CTCCTAAAGG ACCTGATGCC AACACAAGTA GGATTGACTT AAACTCTTAA GCGCAGCATA TTGCTGTACA CATTTACAGA ATGGTTGCTG AGTGTCTGTG TCTGATTTTT TCATGCTGGT CATGACCTGA AGGAAATTTA TTAGACGTAT AATGTATGTC TGGTGTTTTT AACTTGATCA TGATCAGCTC TGAGGTGCAA CTTCTTCACA TACTGTACAT ACCTGTGACC ACTCTTGGGA GTGCTGCAGT CTTTAATCAT GCTGTTTAAA CTGTTGTGGC ACAAGTTCTC TTGTCCAAAT AAAATTTATT AATAAGATCT ATAGAGAGAG ATATATACAC TTTTGATTGT TTTCTAGATG TCTACCAATA AATGCAATTT GTGACCTGTA TTAAAAAAAA NTAAAAAAAC TCGAGGGGGG 100000000000000000000000000000		GGGATAGCTT	TCGGGGGAGG	AGAGACCTTC	CTCTCCTGCG	GACTTCATTG	CAGGTGCAAG	660
TAAATCCTTC TGTCTTCCTG ACTGAATGAA ACTTGAATTG GCAGAGCATT TTCCTTATGG AAGGGATGAG ATTCCCAGAG ACCTGCATTG CTTTCTCCTG GTTTTATTTA ACAATCGACA AATGAAATTC TTACAGCCTG AAGGCAGACG TGTGCCCAGA TGTGAAAGAG ACCTTCAGTA TCAGCCCTAA CTCTTCTCTC CCAGGAAGGA CTTGCTGGGC TCTGTGGCCA GCTGTCCAGC 15 CCAGCCCTGT GTGTGAATCG TTTGTGACGT GTGCAAATGG GAAAGGAGGG GTTTTTACAT CTCCTAAAGG ACCTGATGCC AACACAAGTA GGATTGACTT AAACTCTTAA GCGCAGCATA 1 TTGCTGTACA CATTTACAGA ATGGTTGCTG AGTGTCTGTC TCTGATTTTT TCATGCTGGT CATGACCTGA AGGAAATTTA TTAGACGTAT AATGTATGTC TGGTGTTTTT AACTTGATCA TGATCAGCTC TGAGGTGCAA CTTCTTCACA TACTGTACAT ACCTGTGACC ACTCTTGGGA 25 GTGCTGCAGT CTTTAATCAT GCTGTTTAAA CTGTTGTGGC ACAAGTTCTC TTGTCCAAAT AAAATTTATT AATAAGATCT ATAGAGAGAG ATATATACAC TTTTGATTGT TTTCTAGATG TCTACCAATA AATGCAATTT GTGACCTGTA TTAAAAAAAAA NTAAAAAAAC TCGAGGGGGG 1 CCCGGTAC 10 CCCGGTAC		TTGCCTACAC	CCAATACCAG	GGATTTCAAG	AGTCAAGAGA	AAGTACAGTA	AACACTATTA	720
AAGGGATGAG ATTCCCAGAG ACCTGCATTG CTTTCTCCTG GTTTTATTTA ACAATCGACA AATGAAATTC TTACAGCCTG AAGGCAGACG TGTGCCCAGA TGTGAAAGAG ACCTTCAGTA TCAGCCCTAA CTCTTCTCTC CCAGGAAGGA CTTGCTGGGC TCTGTGGCCA GCTGTCCAGC 15 CCAGCCCTGT GTGTGAATCG TTTGTGACGT GTGCAAATGG GAAAGGAGGG GTTTTTACAT CTCCTAAAGG ACCTGATGCC AACACAAGTA GGATTGACTT AAACTCTTAA GCGCAGCATA 10 CATGACCTGA AGGAAATTTA TTAGACGTAT AATGTATGTC TCTGATTTTT TCATGCTGGT TGATCAGCTC TGAGGTGCAA CTTCTTCACA TACTGTACAT ACCTGTGACC ACTCTTGGGA 25 GTGCTGCAGT CTTTAATCAT GCTGTTTAAA CTGTTGTGC ACAAGTTCTC TTGTCCAAAT AAAATTTATT AATAAGATCT ATAGAGAGAG ATATATACAC TTTTGATTGT TTTCTAGATG CCCCGGTAC 10 CCCCGGTAC	5	TCTTATCTTG	ACTITAAGGG	GAAATAATTT	CTCAGAGGAT	TATAATTGTC	ACCGAAGCCT	780
AATGAAATTC TTACAGCCTG AAGGCAGACG TGTGCCCAGA TGTGAAAGAG ACCTTCAGTA TCAGCCCTAA CTCTTCTCTC CCAGGAAGGA CTTGCTGGGC TCTGTGGCCA GCTGTCCAGC 15 CCAGCCCTGT GTGTGAATCG TTTGTGACGT GTGCAAATGG GAAAGGAGGG GTTTTTACAT CTCCTAAAGG ACCTGATGCC AACACAAGTA GGATTGACTT AAACTCTTAA GCGCAGCATA 10 TTGCTGTACA CATTTACAGA ATGGTTGCTG AGTGTCTGTG TCTGATTTTT TCATGCTGGT 11 CATGACCTGA AGGAAATTTA TTAGACGTAT AATGTATGTC TGGTGTTTTT AACTTGATCA 12 TGATCAGCTC TGAGGTGCAA CTTCTTCACA TACTGTACAT ACCTGTGACC ACTCTTGGGA 12 CTGCTGCAGT CTTTAATCAT GCTGTTTAAA CTGTTGTGGC ACAAGTTCTC TTGTCCAAAT 13 AAAATTTATT AATAAGATCT ATAGAGAGAG ATATATACAC TTTTGATTGT TTTCTAGATG 13 CCCGGTAC 13 14 15 16 17 17 18 18 18 19 10 10 10 10 10 10 10 10 10		TAAATCCTTC	TETETTCETG	ACTGAATGAA	ACTTGAATTG	GCAGAGCATT	TICCTTATGG	840
TCAGCCCTAA CTCTTCTCC CCAGGAAGGA CTTGCTGGCC TCTGTGGCCA GCTGTCCAGC 15 CCAGCCCTGT GTGTGAATCG TTTGTGACGT GTGCAAATGG GAAAGGAGGG GTTTTTACAT CTCCTAAAGG ACCTGATGCC AACACAAGTA GGATTGACTT AAACTCTTAA GCGCAGCATA 10 TTGCTGTACA CATTTACAGA ATGCTTGCTG AGTGTCTGTG TCTGATTTTT TCATGCTGGT 11 CATGACCTGA AGGAAATTTA TTAGACGTAT AATGTATGTC TGGTGTTTTT AACTTGATCA 12 GTGCTGCAGT CTGAGGTGCAA CTTCTTCACA TACTGTACAT ACCTGTGACC ACTCTTGGGA 13 AAAATTTATT AATAAGATCT ATAGAGAGAG ATATATACAC TTTTGATTGT TTTCTAGATG 13 CCCGGTAC 13 14 15 16 17 17 18 18 19 19 10 10 10 10 10 10 10 10	10	AAGGGATGAG	ATTCCCAGAG	ACCTGCATTG	CTTTCTCCTG	GITTTATTTA	ACAATCGACA	900
CCAGCCCTGT GTGTGAATCG TTTGTGACGT GTGCAAATGG GAAAGGACGG GTTTTTACAT CTCCTAAAGG ACCTGATGCC AACACAAGTA GGATTGACTT AAACTCTTAA GCGCAGCATA TTGCTGTACA CATTTACAGA ATGGTTGCTG AGTGTCTGTG TCTGATTTTT TCATGCTGGT CATGACCTGA AGGAAATTTA TTAGACGTAT AATGTATGTC TGGTGTTTTT AACTTGATCA TGATCAGCTC TGAGGTGCAA CTTCTTCACA TACTGTACAT ACCTGTGACC ACTCTTGGGA GTGCTGCAGT CTTTAATCAT GCTGTTTAAA CTGTTGTGGC ACAAGTTCTC TTGTCCAAAT AAAATTTATT AATAAGATCT ATAGAGAGAG ATATATACAC TTTTGATTGT TTTCTAGATG TCTACCAATA AATGCAATTT GTGACCTGTA TTAAAAAAAAA NTAAAAAAAC TCGAGGGGGG CCCGGTAC 35		AATGAAATTC	TTACAGCCTG	AAGGCAGACG	TGTGCCCAGA	TGTGAAAGAG	ACCTTCAGTA	960
CTCCTAAAGG ACCTGATGCC AACACAAGTA GGATTGACTT AAACTCTTAA GCGCAGCATA TTGCTGTACA CATTTACAGA ATGGTTGCTG AGTGTCTGTG TCTGATTTTT TCATGCTGGT CATGACCTGA AGGAAATTTA TTAGACGTAT AATGTATGTC TGGTGTTTTT AACTTGATCA TGATCAGCTC TGAGGTGCAA CTTCTTCACA TACTGTACAT ACCTGTGACC ACTCTTGGGA CTGCTGCAGT CTTTAATCAT GCTGTTTAAA CTGTTGTGGC ACAAGTTCTC TTGTCCAAAT AAAATTTATT AATAAGATCT ATAGAGAGAG ATATATACAC TTTTGATTGT TTTCTAGATG TCTACCAATA AATGCAATTT GTGACCTGTA TTAAAAAAAAA NTAAAAAAAC TCGAGGGGGG CCCGGTAC 35		TCAGCCCTAA	CTCTTCTCTC	CCAGGAAGGA	CTTGCTGGGC	TCTGTGGCCA	GCTGTCCAGC	1020
TIGCTGTACA CATTTACAGA ATGGTTGCTG AGTGTCTGTG TCTGATTTTT TCATGCTGGT CATGACCTGA AGGAAATTTA TTAGACGTAT AATGTATGTC TGGTGTTTTT AACTTGATCA TGATCAGCTC TGAGGTGCAA CTTCTTCACA TACTGTACAT ACCTGTGACC ACTCTTGGGA GTGCTGCAGT CTTTAATCAT GCTGTTTAAA CTGTTGTGGC ACAAGTTCTC TTGTCCAAAT AAAATTTATT AATAAGATCT ATAGAGAGAG ATATATACAC TTTTGATTGT TTTCTAGATG TCTACCAATA AATGCAATTT GTGACCTGTA TTAAAAAAAA NTAAAAAAAC TCGAGGGGGG CCCCGGTAC	15	CCAGCCCTGT	GTGTGAATCG	TTTGTGACGT	GTGCAAATGG	GAAAGGAGGG	GTTTTTACAT	1080
CATGACCIGA AGGAAATITA TTAGACGTAT AATGTATGTC TGGTGTITT AACTIGATCA TGATCAGCTC TGAGGTGCAA CTICTICACA TACTGTACAT ACCTGTGACC ACTCTTGGGA 25 GTGCTGCAGT CTTTAATCAT GCTGITTAAA CTGTTGTGGC ACAAGTTCTC TTGTCCAAAT AAAATTTATT AATAAGATCT ATAGAGAGAG ATATATACAC TTTTGATTGT TTTCTAGATG TCTACCAATA AATGCAATIT GTGACCTGTA TTAAAAAAAA NTAAAAAAAC TCGAGGGGGG CCCCGGTAC 36		CTCCTAAAGG	ACCTGATGCC	AACACAAGTA	GGATTGACTT	AAACTCTTAA	GCGCAGCATA	1140
TGATCAGCTC TGAGGTGCAA CTTCTTCACA TACTGTACAT ACCTGTGACC ACTCTTGGGA 25 GTGCTGCAGT CTTTAATCAT GCTGTTTAAA CTGTTGTGGC ACAAGTTCTC TTGTCCAAAT AAAATTTATT AATAAGATCT ATAGAGAGAG ATATATACAC TTTTGATTGT TTTCTAGATG TCTACCAATA AATGCAATTT GTGACCTGTA TTAAAAAAAA NTAAAAAAAC TCGAGGGGGG 10 CCCCGGTAC 11	20	TTGCTGTACA	CATTTACAGA	ATGGTTGCTG	AGTGTCTGTG	TCTGATTTTT	TCATGCTGGT	1200
GTGCTGCAGT CTTTAATCAT GCTGTTTAAA CTGTTGTGGC ACAAGTTCTC TTGTCCAAAT AAAATTTATT AATAAGATCT ATAGAGAGAG ATATATACAC TTTTGATTGT TTTCTAGATG TCTACCAATA AATGCAATTT GTGACCTGTA TTAAAAAAAA NTAAAAAAAC TCGAGGGGGG CCCGGTAC 1		CATGACCTGA	AGGAAATTTA	TTAGACGTAT	AATGTATGTC	TCGTCTTTTT	AACTTGATCA	1260
AAAATTTATT AATAAGATCT ATAGAGAGAG ATATATACAC TTTTGATTGT TTTCTAGATG TCTACCAATA AATGCAATTT GTGACCTGTA TTAAAAAAAA NTAAAAAAAC TCGAGGGGGG CCCGGTAC 1		TGATCAGCTC	TGAGGTGCAA	CTTCTTCACA	TACTGTACAT	ACCTGTGACC	ACTCTTGGGA	1320
TCTACCAATA AATGCAATTT GTGACCTGTA TTAAAAAAAA NTAAAAAAAC TCGAGGGGGG 1 CCCCGGTAC 1	25	GTGCTGCAGT	CTTTAATCAT	GCTGTTTAAA	CTGTTGTGGC	ACAAGTTCTC	TTGTCCAAAT	1380
CCCGGTAC 1:		TTATTTAAAA	AATAAGATCT	ATAGAGAGAG	ATATATACAC	TTTTGATTGT	TTTCTAGATG	1440
35	30	TCTACCAATA	AATGCAATTT	GTGACCTGTA	ТТААААААА	итааааааас	TCGAGGGGG	1500
		CCCGGTAC						1508
·	35	(2) INFORMA	TION FOR SE	Q ID NO: 25	5:			
(i) SEQUENCE CHARACTERISTICS:		(i)	SEQUENCE CH	IARACTERISTI	CCS:			

(A) LENGTH: 2514 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 255:

45 GAGAGACTCA CACTTCTTTT CCATTATCAC TGACGATGTA GTGGACATAG CAGGGGAAGA 60 GCACCTACCT GTGTTGGTGA GGTTTGTTGA TGAATCTCAT AACCTAAGAG AGGAATTTAT 120 50 AGGCTTCCTG CCTTATGAAG CCGATGCAGA AATTTTGGCT GTGAAATTTC ACACTATGAT 180 AACTGAGAAG TGGGGATTAA ATATGGAGTA TTGTCGTGGC CAGGCTTACA TTGWCTCTAG 240 TGGATTTTCT TCCAAAATGA AAGTTGTTGC TTCTAGACTT TTAGAGAAAT ATCCCCAAGC 300 55 TATCTACACA CTCTGCTCTT CCTGTGCCTT AAATATGTGG TTGGCAAAAT CAGTACCTGT 360 TATGGGAGTA TCTGTTGCAT TAGGAACAAT TGAGGAAGTT TGTTCTTTTT TCCATCGATC 420 60 ACCACAACTG CTTTTAGAAC TTGACAACGT AATTTCTGTT CTTTTTCAGA ACAGTAAAGA 480

	AAGGGGTAAA	GAACTGAAGG	AAATCTGCCA	TTCTCAGTGG	ACAGGCAGGC	ATGATGCTTT	540
5	TGAAATTTTA	GTGGAACTCC	TGCAAGCACT	TGTTTTATGT	TTAGATOGTA	TAAATAGTGA	600
-	CACAAATATT	AGATGGAATA	ACTATATAGC	TGGCCGAGCA	TTTGTACTCT	GCAGTGCAGT	660
	GTCAGATTTT	GATTTCATTG	TTACTATIGT	TGTTCTTAAA	AATGTCCTAT	CTTTTACAAG	720
10	AGCCTTTGGG	AAAAACCTCC	AGGGGCAAAC	CTCTGATGTC	TICTITGCGG	CCGGTAGCTT	780
	GACTGCAGTA	CTGCATTCAC	TCAACGAAGT	GATTGGAAAA	TATTGAAGTT	TATCATGAAT	840
15	TTTGGTTTGA	GGAAGCCACA	AATTTGGCAA	CCAAACTTGA	TATTCAAATG	AAACTCCCTG	900
.5	GGAAATTCCG	CAGAGCTCAC	CAGGGTAACT	TGGAATCTCA	GCTAACCTCT	GAGAGTTACT	960
	ATAAAGAAAC	CCTAAGTGTC	CCAACAGTGG	AGCACATTAT	TCAGGAACTT	AAAGATATAT	1020
20	TCTCAGAACA	GCACCTCAAA	GCTCTTAAAT	GCTTATCTCT	GGTACCCTCA	GTCATGGGAC	1080
	AACTCAAATT	CAATACGTCG	GAGGAACACC	ATGCTGACAT	GTATAGAAGT	GACTTACCCA	1140
25	ATCCTGACAC	GCTGTCAGCT	GAGCTTCATT	GTTGGAGAAT	CAAATGGAAA	CACAGGGGGA	1200
	AAGATATAGA	GCTTCCGTCC	ACCATCTATG	AAGCCCTCCA	CCTGCCTGAC	ATCAAGTTTT	1260
	TTCCTAATGT	GTATGCATTG	CTGAAGGTCC	TGTGTATTCT	TCCTGTGATG	AAGGTTGAGA	1320
30	ATGAGCGGTA	TGAAAATGGA	CGAAAGCGTC	TTAAAGCATA	TTTGAGGAAC	ACTTTGACAG	1380
	ACCAAAGGTC	AAGTAACTTG	GCTTTGCTTA	ACATAAATTT	TGATATAAAA	CACGACCTCG	1440
35	ATTTAATGGT	GGACACATAT	ATTAAACTCT	ATACAAGTAA	GTCAGAGCTT	CCTACAGATA	1500
	ATTCCGAAAC	TGTGGAAAAT	ACCTAAGAGA	СТТТТААААА	TAGGCTTTCT	TATATTTGAT	1560
	ATTTGGAAGA	AAAAGCCGTA	AGTGTATGTA	GACCACTTAA	TCACTAAATA	TCTTTGCCTA	1620
40	TAGGACTCCA	TTGAATACAT	TAGCCATTGA	TAATCTACCT	GTTTAAATGG	CCCCTGTTTG	1680
	AACTCTCAAG	CTTTGAAGAC	CTACCTGTTC	TTCCAGAAGA	GAACGTTGAA	AGTGCCATGT	1740
45	TTCCTTTTGC	GTGATCTCTG	TTGATGGCAC	TCTGGAATTG	TTTCAGTTAA	GTCATTTTAG	1800
10	ACATAGCATT	TATTATCACT	GTGGATCTCT	ACTTGTTGGG	TGTTATGAAT	TCTTTGAAGA	1860
	AATATATTTT	GAAGAGGTGT	GGGAGGAAGG	AATACATTTT	ATAAAATGTT	GTAGTGAAGC	1920
50	CCACAATTGA	CCTTTGACTA	ATAGGAGTTT	TAAGTATGTT	АААААТСТАТ	ACTGGACAGT	1980
	TACAAGAAAT	TACCGGAGAA	AAGCTTGTGA	GCTCACCAAA	CAAGGATTTC	AGTGTAGATT	2040
55	TIGICTTICT	TGAACTTAAA	GAAACAAATG	ACAAAGTTTG	AATGGAAAAG	CCTGCTGTTG	2100
<i>JJ</i>	TTCCACATCT	CCTTCCTGTT	TACATTCCTT	TGTGGAGCCT	ACATCTTCCT	AAGCTTTTTA	2160
	GCAGGTATAT	GTTGAACACT	TCTGTTTCAT	GGTTGAGACA	GAATCAGAGG	CCATGGATAC	2220
60	TGACAACTGA	TTTGTCTGTT	TTTTTTCTCT	GTCTTTTTCC	ATGACTCTTA	TATACTGCCT	2280

	CATCTIGATT TATAAGCAAA ACCTGGAAAA CCTACAAAAT AAGTGTIGTG GTTTATCTAG	2340
5	AAAAATATGG AAAATATTGC TGTTATTTTT GGTGAAGAAA ATCAATTTTG TATAGTTTAT	. 2400
5	TICAATCTAA ATAAAATGTG AATTTTGTTT AAAGCTTAGG CACATTATTT TTTGTGGGGT	2460
	CAAAACATTC TTGTGTAAAT TCTCTTAAAC ATTTGATAAA CAGCTTCACA ATTC	2514
10		
	(0) ************************************	
	(2) INFORMATION FOR SEQ ID NO: 256:	
15	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 2357 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
20	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 256:	
	CTGCCTTATG AAGCCGATGC AGAAATTTTG GCTGTGAAAT TTCACACTAT GATAACTGAG	60
25	AAGTGGGGAT TAAATATGGA GTATTGTCGT GGCCAGGCTT ACATTGTCTC TAGTGGATTT	120
	TCTTCCAAAA TGAAAGTTGT TGCTTCTAGA CTTTTAGAGA AATATCCCCA AGCTATCTAC	180
30	ACACTCTGCT CTTCCTGTGC CTTAAATATG TGGTTGGCAA AATCAGTACC TGTTATGGGA	240
	GTATCTGTTG CATTAGGAAC AATTGAGGAA GTTTGTTCTT TTTTCCATCG ATCACCACAA	300
	CTGCTTTTAG AACTTGACAA CGTAATTYCT GTTCTTTTTC AGAACAGTAA AGAAAGGGGT	360
35	AAAGAACTGA AGGAAATCTG CCATTCTCAG TGGACAGGCA GGCATGATGC TTTTGAAATT	420
	TTAGTGGAAC TCCTGCAAGC ACTTGTTTTA TGTTTAGATG GTATAAATAG TGACACAAAT	480
40	ATTAGATGGA ATAACTATAT AGCTGGCCGA GCATTTGTAC TCTGCAGTGC AGTGTCAGAT	540
	TTIGATTICA TIGITACTAT IGTIGITCIT AAAAATGICC TATCITITAC AAGAGCCTIT	600
	GGGAAAAACC TCCAGGGGCA AACCTCTGAT GTCTTCTTTG CGGCCGGTAG CTTGACTGCA	660
45	GTACTGCATT CACTCAACGA AGTGANTGGA AAATATTGAA GTTTATCATG AATTTTGGTT	720
	TGAGGAAGCC ACAAATTTGG CAACCAAACT TGATATTCAA ATGAAACTCC CTGGGAAATT	780
50	CCGCAGAGCT CACCAGGGTA ACTTGGAATC TCAGCTAACC TCTGAGAGTT ACTATAAAGA	840
	AACCCTAAGT GTCCCAACAG TGGAGCACAT TATTCAGGAA CTTAAAGATA TATTCTCAGA	900
	ACAGCACCTC AAAGCTCTTA AATGCTTATC TCTGGTACCC TCAGTCATGG GACAACTCAA	960
55	ATTCAATACG TCGGAGGAAC ACCATGCTGA CATGTATAGA AGTGACTTAC CCAATCCTGA	1020
	CACGCTGTCA GCTGAGCTTC ATTGTTGGAG AATCAAATGG AAACACAGGG GGAAAGATAT	1080
60	AGAGCTTCCG TCCACCATCT ATGAAGCCCT CCACCTGCCT GACATCAAGT TTTTTCCTAA	1140

PCT/US98/04493

180

	TGTGTATGCA TTGCTGAAGG TCCTGTGTAT TCTTCCTGTG ATGAAGGTTG A	GAATGAGCG	1200
	GTATGAAAAT GGACGAAAGC GTCTTAAAGC ATATTTGAGG AACACTTTGA C	AGACCAAAG	1260
5	GTCAAGTAAC TIGGCTITGC TTAACATAAA TITTGATATA AAACACGACC T	GGATTTAAT	1320
	GGTGGACACA TATATTAAAC TCTATACAAG TAAGTCAGAG CTTCCTACAG A	TAATTCCGA	1380
10	AACTGTGGAA AATACCTAAG AGACTTTTAA AAATAGGCTT TCTTATATTT GA	ATATTTGGA	1440
10	AGAAAAAGCC GTAAGTGTAT GTAGACCACT TAATCACTAA ATATCTTTGC C	TATAGGACT	1500
	CCATTGAATA CATTAGCCAT TGATAATCTA CCTGTTTAAA TGGCCCCTGT T	TGAACTCTC :	1560
15	AAGCTTTGAA GACCTACCTG TTCTTCCAGA AGAGAACGTT GAAAGTGCCA TO	GTTTCCTTT :	1620
	TGCGTGATCT CTGTTGATGG CACTCTGGAA TTGTTTCAGT TAAGTCATTT TA	AGACATAGC :	1680
20	ATTTATTATC ACTIGIOGATC TCTACTTGTT GGGTGTTATG AATTCTTTGA AC	GAAATATAT	1740
20	TTTGAAGAGG TGTGGGAGGA AGGAATACAT TTTATAAAAT GTTGTAGTGA AG	GCCCACAAT :	1800
	TGACCITIGA CTAATAGGAG TTTTAAGTAT GTTAAAAATC TATACTGGAC AC	GTTACAAGA 1	1860
25	AATTACCGGA GAAAAGCTTG TGAGCTCACC AAACAAGGAT TTCAGTGTAG AT	ITTIGTCTT 1	1920
	TCTTGAACTT AAAGAAACAA ATGACAAAGT TTGAATGGAA AAGCCTGCTG TT	IGTICCACA 1	1980
30	TCTCGTTGCT GTTTACATTC CTTTGTGGAG CCTACATCTT CCTAAGCTTT TT	ragcaggta 2	2040
,,	TATGTTGAAC ACTTCTGTTT CATGGTTGAG ACAGAATCAG AGGCCATGGA TA	ACTGACAAC 2	2100
•	TGATTTGTCT GTTTTTTTC TCTGTCTTTT TCCATGACTC TTATATACTG CC	CTCATCTTG 2	2160
35	ATTTATAAGC AAAACCTGGA AAACCTACAA AATAAGTGTT GTGGTTTATC TA	AGAAAAATA 2	2220
	TGGAAAATAT TGCTGTTATT TTTGGTGAAG AAAATCAATT TTGTATAGTT TA	ATTTCAATC 2	2280
10	TAAATAAAAT GTGAATTTTG TTTAAAGCTT AGGCACATTA TTTTTTTGTGG GC	GTCAAAACA 2	2340
••	TTCTTGTGTA AATTCTC	2	2357
15	(2) INFORMATION FOR SEQ ID NO: 257:		
50	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 689 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double		
	(D) TOPOLOGY: linear		
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 257:		
	ACTITICIGGI GCAAAAAGAI GITCAAGCCI TATTITATAC ITGCCIGCCC C	TTTCTCTTT	60
	CATTTATTGG AGTGAGCTGC AGCTCTAAGA AGACCTGTTC TTTTGAATGG AG	GAGTAGCAT	120

60 CAGGAACCAG GATGTGGGTG CGAGGCGTGC TCCTGGCTGT TGCAGATTGC TGCACCCGGG

	AGCTCTTAGT	GGACAGAGCT	AGAGGATATG	TGCACGTACT	TCCATCTCTC	TCTCTGTCTC	240
5	CGATTTTAGC	CCAGCACCAC	AGGGTACGTT	CCAGTTTTTC	TCTCTTTCCA	TAGCTGTAAG	300
•	GCCCTTTCTG	GGAATGGTTC	TCATTCTCCT	TAATCTATTA	TTGGGTCAGT	TTTCCTGCAT	360
	GTCCCCAGCC	TCCCATCACT	GCCACCCACT	CCCCACAGAG	ATGCCCTGCT	CATCCGACTG	420
10	GGCTTTGAC	TCCCACACTG	TGTACCCCTC	TTGTGTGGAC	GCCCTGCTGC	CAAAACCTTC	480
	AGCAAACAGC	TTTCCAAATG	GAAGTTGTCA	CTGTCARGGS	CTTTACAATC	AGCAACAGCA	540
15	AAATCTACAT	GCTGCTGAGG	GTCCTGCCTC	ATTAAGATGC	AATAAATATG	TAAGTACATA	600
13	AAAACAGCAA	TAGAAGAAAC	GTAATGCTTT	ATTCTCAAAT	ATGNATGTCT	ACATAGAAAA	660
	GCCAAAATTA	TTAAGAATAG	TAAGGAATT				689
20							
	(2) INTECORM	ATION FOR SE	O TO NO. 25	· ·			
25			_				
23	(1)		GTH: 2377 b	ase pairs			
			E: nucleic a ANDEDNESS: 0				
30		(D) TOP	OLOGY: line	ar			
	(xi) SEQUENCE I	DESCRIPTION	SEQ ID NO	: 258:		
	TCGACCCACG	CGTCCGCCGA	TGTGATGATT	CCTGCGTATT	CCAAGAACCG	GGCCTATGCC	60
35	ATCTTCTTCA	TAGTCTTCAC	TGTGATAGGG	GACGCCCCCG	GCGCTGTGCT	ATCCTGTGCC	120
	GGCCACCCTT	GCGTTGGTTT	TGCTGCTGTA	CTGGTGGCGC	CCCTGACCGT	GGCTGTCTCC	180
40	TCTTGAAGGA	AGCCTGTTTC	TGATGAACCT	GCTGACAGCC	ATCATCTACA	GTCAGTTCCG	240
	GGGCTACCTG	ATGAAATCTC	TCCAGACCTC	GCTGTTTCGG	AGGCGGGTGG	GAACCCGGCT	300
	GCCTTTGAAG	TCCTATCCTC	CATGGTGGG	GAGGGAGGAG	CCTTCCCTCA	GGCAGTTGGG	360
45	GTGAAGCCCC	AGAACTTGCT	GCAGGTGCTT	CAGAAGGTCC	AGCTGGACAG	CTCCCACAGA	420
	CAGGCCATGA	TGGAGAAGGT	GCGTTCCTAT	GCAGTGTTC	TGCTCTCAGC	TGAGGAGTTT	480
50	CAGAAGCTCT	TCAACGAGCT	TGACAGAAGT	GTGGTTAAAG	AGCACCCGCC	GAGGCCCGAG	540
50	TACCAGTCTC	CGTTTCTGCA	GAGCGNCCCA	GITCCTCTTC	GGCCACTNAC	TACTTTGACT	600
	ACCTGGGGAA	CCTCATCGCC	CTGGCAAACC	TGGTGTCCAT	TIGCGIGITC	CTGGTGCTGG	660
55	ATGCAGATGT	TGCTGCCTGC	TGAGCGTGAT	GACTTCATCC	TGGGGGGTCT	CAACTGCGTC	720
	TTCATTGTGT	ACTACCTGTT	GGAGATGCTG	GCTCAAGGTC	TTTTGCCCTG	GGGCCTGCGA	780
60	RGGTACYKKT	CCTAACCCCA	RCAAMGTGTT	TTGAACGGCC	TCCTCAMCGT	TTGTCCTGGC	840
00							

	TGGWWKKGSM	GATCTCAACT	CTGGCTGTGT	ACCGATTGCC	ACACCCAGGC	TGGAGGCCGG	900
	ANATGGTGGG	CCTGCTGTCG	CTGTGGGACA	TGACCCGCAT	ACTGAACATG	CTCATCCTCT	960
5	TCCGCTTCCT	GCGTATCATC	CCCAGCATGA	AGCCGATGGC	CCTCGTCGCC	AGTACCGTCC	1020
	TGGGCCTGGT	GCAAAACATG	CGTGCGTTTG	CCGGGATCCT	GGTGGTGGTC	TACTACGTAT	1080
10	TTGCCATCAT	TGGGATCAAC	TTGTTTAGAG	GCGTCATTGT	GCTCTTCCT	GGAAACAGCA	1140
••	GCCTGGCCCC	TGCCAATAGG	TCGGCGCCCT	GTGGGAGCTT	CGAGCAGCTG	GAGTACTGGG	1200
	CCAACAACTT	CGATGACTTT	GCGGCTGCCC	TGGTCACTCT	GTGGAACTTG	ATGGTGGTGA	1260
15	ACAACTGGCA	GGTGTTTCTG	GATGCATATC	GGCGCTACTA	AGGCCCGTGG	TCCAAGATCT	1320
	ATTTTGTATT	GTGGTGGCTG	GTGTCGTCTG	TCATCTGGGT	CAACCTGTTT	CTGGCCCTGA	1380
20	TTCTGGAGAA	CTTCCTTCAC	AAGTGGGACC	CCCGCAGCCA	CCTCCAGCCC	CTTGCTGGGA	1440
20	CCCCAGAGGC	CACCTACCAG	ATGACTGTGG	AGCTCCTGTT	CAGGGATATT	CTGGAGGAGC	1500
	CCGGGGAGGA	TGAGCTCACA	GAGAGGCTGA	GCCAGCACCC	GCACCTGTGG	CTGTGCAGGT	1560
25	GACGTCCGGG	TCTGCCATCC	CAGCAGGGGC	OGCAGGAGAG	AGAGGCTGGC	ATAACACAGG	1620
	TGCCCATCAT	GGAAGAGGCG	GCCATGCTGT	GCCCAGCCAG	GCAGGAAGAG	ACCTTTCCTC	1680
30	TGACGGACCA	CTAACCTGGG	GACAGGAACC	AAGTCCTTTG	CCTCTCCCCC	AACAACCATT	1740
	TACAGAACAG	CTGCTGGTGC	TTCAGGGAGG	CCCCTCCCC	TCCGCTTTCT	TTTATAGCTG	1800
	CTTCAGTGAG	AATTCCCTTG	TCGACTCCAC	AGGGACCTTT	CAGACAAAAA	TGCAAGAAGC	1860
35	AGCGGCCTCC	CCTGTCCCCT	GCAGCTTCCG	TGGTGCCTTT	GCTGCCGGCA	GCCCTTGGGG	1920
	ACCACAGGCC	TGACCAGGGC	CTGCACAGGT	TAACCGTCAG	ACTTCCGGGG	CATTCAGCTG	1980
40	GGAATGATAC	TAATACCTCC	GATTTTAGCC	CAGCACCACA	GGGTACGTTC	CAGTTTTTAT	2040
	TTCTTTCCAT	AGCTGTAAGG	CCCTTTCTGG	GAATGGTTAT	CATTCTCCTT	AATCTATTAT	2100
	TGGGTCAGTT	TTCCTGCATG	TCCCCAGCCT	CCCATCACTG	CCACCCACTC	CCCACAGAGA	2160
45	TGCCCTGCTC	ATCCGACTGG	GGCTTTGACT	CCCACACTGT	GTACCCCTCT	TGTGTGGACG	2220
	CCCTGCTGCC	AAAACCTTCA	GCAAACAGCT	TTCCAAATGG	AAGTTGTCAC	TGTCAGGGCC	2280
50	TTTACAATCA	GCAACAGCAA	AATCTACATG	CTGCTGAGGG	TCCTGCCTCA	TTAAGATGCA	2340
50	ATAAATATGT	AAGTACATAA	ааааааааа	АААААА			2377

60

(2) INFORMATION FOR SEQ ID NO: 259:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1193 base pairs

(B) TYPE: nucleic acid

487

60

420

720

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 259: . 5 TCTGNTCGCC GTCGCCCCGC CCCTGGCCTT TGCCCGGTCG GGCGGGACTT CCTGTGTCGT ATTTCCAAGG ACTCCAAAGC GAGGCCGGGG ACTGAAGGTG TGGGTGTCGA GCCCTCTGGC 120

AGAGGGTTAA CCTGGGTCAA ATGCACGGAT TCTCACCTCG TACAGTTACG CTCTCCCGCG 180 GCACGTCCGC GAGGMYTTGA AGTCCTGAGC GCTCAAGTTT GTCCGTAGTC GAGAGAAGGC 240

CATGGAGGTG CCGCCACCGG CACCGCGGAG CTTTCTCTGT AGAGCATTGT GCCTATTTCC 300 15

GCGCCTTCCC TACGTCCCAG AGCCCTATTA CCCGGAATCT GGATGGGACC GCCTCCGGGA

CCGAGTCTTT GCTGCCGAAG CTGTGACTGC CGATTCGGAA GTCCTTGAGG AGCGTCAGAA 360

GCTGTTTGGC AAAGACACAG TGAACACTAG TCTGAATGTA TACCGAAATA AAGATGCCTT 480

AAGCCATTTT GTAATTGCAG GAGCTGTCAC GGGAAGTCTT TTTAGGATAA ACGTAGGCCT

GCGTGGCTGG TGGCTGGTGG CATAATTGGA GCCTTGCTGG GCACTCCTGT AGGAGGCCTG 600 25

CTGATGGCAT TTCAGAAGTA CTCTGGTGAG ACTGTTCAGG AAAGAAAACA GAAGGATCGA

AAGGCACTCC ATGAGCTAAA ACTGGAAGAG TGGAAAGGCA GACTACAAGT TACTGAGCAC 30 CTCCCTGAGA AAATTGAAAG TAGTTTACAG GAAGATGAAC CTGAGAATGA TGCTAAGAAA 780

ATTGAAGCAC TGCTAAACCT TCCTAGAAAC CCTTCAGTAA TAGATAAACA AGACAAGGAC 840

TGAAAGTGCT CTGAACTTGA AACTCACTGG AGAGCTGAAG GGAGCTGCCA TGTCCGATGA 900 35

ATGCCAACAG ACAGGCCACT CTTTGGTCAG CCTGCTGACA AATTTAAGTG CTGGTACCTG 960

TGGTGGCAGT GGCTTGCTCT TGTCTTTTTC TTTTCTTTTT AACTAAGAAT GGGGCTGTTG 1020

40 1080

ATATATGCAT ACATGAATAT ATCCACCCAC CTAGATTTTA AGCAGTAAAT AAAACATTTC 1140

1193 45

(2) INFORMATION FOR SEQ ID NO: 260:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1262 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

55 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEO ID NO: 260:

GAAAAACCCA AAGATGCAGA CAATCTCTTT GAACATGAAT TGGGGGCTCT CAATATGGCT 60

50

10

180

	GCATTACTAC GAAAAGAAG	A AAGAGCAAGT	CTTCTTAGTA	ATCTTGGCCC	ATGTTGTAAG	120
	GCGTTGTGCT TCAGACGGG	TTCTGCAATT	CGAAAGCAGC	TTGTTAAAAA	TGAGAAGGC	180
5	ACCATAAAAC AAGCTTACAG	GAGTSCTCCA	ATGGTAGACA	ATGAATTACT	TCGATTGAGT	240
	CTTCGGTTAT TTAAGCGGA	GACTACTTGC	CATGCTCCAG	GACATGAAAA	GACTGAAGAT	300
10	AATAAACTTT CACAGTCCAC	TATCCAACAG	GAACTGTGTG	TGTCTTAAGA	CCGAAGTTCA	360
10	ATATOGTATT TTTGGTACTO	TCTTCCTTCA	GCAGTGCATA	TTCTTTTGCA	AAGTTCTTTG	420
	GTTTGACAAG CATTAGTGAG	AAAGGCAGAA	AAGATTTATC	AGCCATGCTA	AAAGAGTGAA	480
15	GAATTITGAT CTTTAGAGAG	ACTAGITITG	GCCAACTTAA	GATTTTACGT	TAATTTTTAC	540
	ATAGTATITG ACACTCATGO	AAAATAATGT	GAAAACATCT	AGATTTAGTA	GTTTATTCTG	600
20	CGCCTTTTGT TAAAACTGAA	GATTTTGGAA	AATGGTTGTC	ACTGCTCTTC	CAGCCTATGA	660
20	ATATTTTTGT GAAATGGAAG	CATGGATTTA	TGTCTGGATC	ATCCATACAG	AACCAACAAT	720
	TTTATICAAA AACAATGIG	TCATCAAAGT	AATTGCTCAC	ATTGTGCAGT	ACTATGITGT	780
25	ACAGACCACG TGAAAGGGAA	TGCTGGTCTA	GCTGGCGTGG	TATCTTTATA	GGCGAATTTC	840
	AGCAGAAGGA AGCCAAAATA	GITTITICCT	TTTGAAAGTT	TAAAATTTT	TATTTCATGG	900
30	GTCTTTTTTT TAATTAATAT	GTGTGCATTG	TTACAATGTA	TGTTGGATGT	CTTTTGACCC	960
50	TAAATGCTTT TTTTGTTATO	AGAGATTGTG	TACTATTTT	ATTTTTAATA	AATGTATCTT	1020
	CCCTTTCCTT GTTTTAGATT	TACTITICETC	TTCGTTAATC	TTATTCCTGA	TGATCTAGAA	1080
35	CATTAGTCAT CAACATTACA	TGTTTCATGC	TTCAGATATT	TTACTGCTTG	TGTCCTTATT	1140
	GTTGGACAGC TTTAAACAGA	GTTGATGGTA	CTTCAAATAT	AGCTCATTGA	TACTTAAGGG	1200
40	CANCTICCTI GGGATGTGG	CTTTTTGGAA	GGAAAAAAAT	TNCCCCAAAG	GCAAATCCCA	1260
10	GT					1262
45	(2) INFORMATION FOR S	SEQ ID NO: 20	51:			
50	(B) TY (C) ST	CHARACTERIST NGTH: 1179 b PE: nucleic RANDEDNESS: POLOGY: line	ase pairs acid double			
55	(xi) SEQUENCE	DESCRIPTION	: SEQ ID NO	: 261:		
<i>33</i>	GGCAAACTTT CCCCCAANG	TTCGAAACTT	GCAAGCCGAA	ACCTTGAATC	GTTAAAAGTT	60
	GGGTTGCGNC GGCGCCCTG	G CCCGAAGAAG	CGCAATTGGC	GTTCCGCGAA	CGTTGGCCCT	120

CAACGCTCG GCAGCCAGCC ATGTCCTGCA CCCAGGACAG CGGCCCTGGG CTACAAGGAC

489

	CTGGACCTCA	TCTTCCTGCG	CCGACCTGCG	CGGGGAAGGG	GAGTTTCAGA	CTGTGAAGGA	240
5	CGTCGTGCTG	GACTGCCTGT	TGGACTTCTT	ACCCGAGGGG	GTGAACAAAG	AGAAGATCAC	300
,	ACCACTCACG	CTCAAGGAAG	CTTATGTGCA	GAAAATGGTT	AAAGTGTGCA	ATGACTCTGA	360
	CCGATGGAGT	CTTATATCCC	TGTCAAACAA	CAGTGGCAAA	AATGTGGAAC	TGAAATITGT	420
10	GGATTCCCTC	CGGAGGCAGT	TTGAATTCAG	TGTAGATTCT	TTTCAAATCA	AATTAGACTC	480
• .	TCTTCTGCTC	TTTTATGAAT	GTTCAGAGAA	CCCAATGACT	GAGACATTTC	ACCCCACAAT	540
15	AATCGGGGAG	AGCGTCTATG	GCGATTTCCA	GGAAGCCTTT	GATCACCTTT	GTAACAAGAT	600
•0	CATTGCCACC	AGGAACCCAG	AGGAAATCCG	AGGGGGAGGC	CTGCTTAAGT	ACTGCAACCT	660
	CTTGGTGAGG	GGCTTTAGGC	CCGCCTCTGA	TGAAATCAAG	ACCCTTCAAA	GGTATATGTG	720
20	TTCCAGGTTT	TTCATCGACT	TCTCAGACAT	TGGAGAGCAG	CAGAGAAAAC	TGGAGTCCTA	780
	TTTGCAGAAC	CACTITIGTGG	GATTGGAAGA	CCGCAAGTAT	GAGTATCTCA	TGACCCTTCA	840
25	TGGAGTGGTA	AATGAGAGCA	CAGTGTGCCT	GATGGGACAT	GAAAGAAGAC	AGACTTTAAA	900
	CCTTATCACC	ATGCTGGCTA	TCCGGGTGTT	AGCTGACCAA	AATGTCATTC	CTAATGTGGC	960
	TAATGTCACT	TGCTATTACC	AGCCAGCCCC	CTATGTAGCA	GATGCCAACT	TTAGCAATTA	1020
30	CTACATTGCA	CAGGTTCAGC	CAGTATTCAC	GTGCCAGCAA	CAGACCTACT	CCACTTGGCT	1080
	ACCCTGCAAT	TAAGAATCAT	TTAAAAATGT	CCTGTGGGGA	AGCCATTTÇA	GACAAGACAG	1140
35	GAGAGAAAA	АААААААА	АААААААА	AAAAAGAGC			1179
40	(2) INFORM	ATION FOR SE	EQ ID NO: 26	52:			
	(i)	(B) TYP	HARACTERIST: GTH: 1162 b E: nucleic ANDEDNESS:	ase pairs acid			
45			OLOGY: line				
	(xi)) SEQUENCE I	DESCRIPTION	: SEQ ID NO	: 262:		
50	GGCAAACTTT	CCCCCAANGC	TTCGAAACTT	GCAAGCCGAA	ACCTTGAATC	GTTAAAAGTT	60
-	GGGTTGCGNC	GCCCCTCC	CCCGAAGAAG	CGCAATTGGC	GTTCCGCGAA	CGTTGGCCCT	120
	CAACGGCTCG	GCAGCCAGCC	ATGTCCTGCA	CCCAGGACAG	CGCCCTGGG	CTACAAGGAC	180
55	CTGGACCTCA	TCTTCCTGCG	CCGACCTGCG	CGGGGAAGGG	GAGTTTCAGA	CTGTGAAGGA	240
	CGTCGTGCTG	GACTGCCTGT	TGGACTTCTT	ACCCGAGGGG	GTGAACAAAG	AGAAGATCAC	300

ACCACTCACG CTCAAGGAAG CTTATGTGCA GAAAATGGTT AAAGTGTGCA ATGACTCTGA

60

WO 98/39448 PCT/US98/04493

	CCGATGGAGT	CTTATATCCC	TGTCAAACAA	CAGTGGCAAA	AATGTGGAAC	TGAAATTTGT	420
	GGATTCCCTC	CGGAGGCAGT	TTGAATTCAG	TGTAGATTCT	TTTCAAATCA	AATTAGACTC	480
5	TCTTCTGCTC	TTTTATGAAT	GTTCAGAGAA	CCCAATGACT	GAGACATTIC	ACCCCACAAT	540
	AATCGGGGAG	AGCGTCTATG	GCGATTTCCA	GGAAGCCTTT	GATCACCTTT	GTAACAAGAT	600
10	CATTGCCACC	AGGAACCCAG	AGGAAATCCG	AGGGGGAGGC	CTGCTTAAGT	ACTGCAACCT	6 60
10	CTTGGTGAGG	GGCTTTAGGC	CCGCCTCTGA	TGAAATCAAG	ACCCTTCAAA	GGTATATGTG	720
	TTCCAGGTTT	TTCATCGACT	TCTCAGACAT	TGGAGAGCAG	CAGAGAAAAC	TGGAGTCCTA	780
15	TTTGCAGAAC	CACTITIGTGG	GATTGGAAGA	CCGCAAGTAT	GAGTATCTCA	TGACCCTTCA	840
	TGGAGTGGTA	AATGAGAGCA	CAGTGTGCCT	GATGGGACAT	GAAAGAAGAC	AGACTTTAAA	900
20	CCTTATCACC	ATGCTGGCTA	TCCGGGTGTT	AGCTGACCAA	AATGTCATTC	CTAATGTGGC	960
	TAATGTCACT	TGCTATTACC	AGCCAGCCCC	CTATGTAGCA	GATGCCAACT	TTAGCAATTA	1020
	CTACATTGCA	CAGGTTCAGC	CAGTATTCAC	GTGCCAGCAA	CAGACCTACT	CCACTTGGCT	1080
25	ACCCTGCAAT	TAAGAATCAT	TTAAAAATGT	CCTGTGGGGA	AGCCATTTCA	GACAAGACAG	1140
	GAGAGAAAAA	NAANGAAAAG	AG				1162

30

35

45

50

55

60

(2) INFORMATION FOR SEQ ID NO: 263:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 735 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 263:

CGGGCTGGGT ATTTGCCTCG CACCATGGCG CCCAAGGGCA AAGTGGGCAC GAGAGGGAAG 60 AAGCAGATAT TTGAAGAGAA CAGAGAGACT CTGAAGTTCT ACCTGCGGAT CATACTGGGG 120 GCCAATGCCA TITACTGCCT TGTGACGTTG GTCTTCTTTT ACTCATCTGC CTCATTTTGG 180 GCCTGGTTGG CCTTGGGCTT TAGTCTGGCA GTGTATGGGG CCAGCTACCA CTCTATGAGC 240 300 TCGATGGCAC GAGCAGCGTT CTTCTGAGGA TGGGGCCCTG ATGGATGGTG GCACGAGCTC AACATGGAGC AGGGCATGGC AGAGCACCTT AAGGATGTGA TCCTACTGAC AGCCATCGTG 360 CAGGIGCTCA GCIGCITCTC TCTCTATGTC TGGTCCTTCT GGCTTCTGGC TCCAGGCCGG 420 GCCCTTTACC TCCTGTGGGT GAATGTGCTG GGCCCCTGGT TCACTGCAGA CAGTGGCACC 480 CCAGCACCAG AGCACAATGA GAAACGGCAG CGCCGACAGG AGCGGCGGCA GATGAAGCGG 540 600 TTATAGCCAT TGACATTGTG GCCACAGGCC ACTGGCCCTG GGTGGCTCTG TCAGGGTGCA

	CAGCCCCTCA TGCCTGGAGC AATGAGGGTC TAGTCCAGGG GCCAAAAGCA GTCTGAGGTA	660
5	TIGGGTATAC TTATACTCTA TAGGGTCGTT GAATAAATGG CTTAGAATGT GAAAAAAAAA	720
5	AAAAAAAA ATTTT	735
10	(2) INFORMATION FOR SEQ ID NO: 264:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 783 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 264:	
20	AAGTGCATGA GCTGCCGATG TGGTGCTTAG TGATTGCGGT TTCGGTCGCT CTCCCGTGTT	60
	TCCCGGCTG GGTATTTGCC TCGCACCATG GCGCCCAAGG GCAAAGTGGG CACGAGAGGG	120
25	AAGAAGCAGA TATTTGAAGA GAACAGAGAG ACTCTGAAGT TCTACCTGCG GATCATACTG	180
	GGGCCAATG CCATTTACTG CCTTGTGACG TIGGTCTTCT TTTACTCATC TGCCTCATTT	240
30	TGGGCCTGGT TGGCCTGGGC TTTAGTCTGG CAGTGTATGG GGCCAGCTAC CACTCTATGA	300
	GCTCGATGGC ACGAGCAGCG TTCTCTGAGG ATGGGGCCCT GATGGATGGT GGCATGGACC	360
	TCAACATGGA GCAGGCATG GCAGAGTGAG TGTCCCCCAC CGCCAGCCCA GGCACCTTAA	420
35	GGATGTGATC CTACTGACAG CCATCGTGCA GGTGCTCAGC TGCTTCTCTC TCTATGTCTG	480
	GTCCTTCTGG CTTCTGGCTC CAGGCCGGGC CCTTTACCTC CTGTGGGTGA ATGTGCTGGG	540
40	CCCCTGGTTC ACTGCAGACA GTGGCACCCC AGCACCAGAG CACAATGAGA AACGGCAGCG	600
	CCGACAGGAG CGGCGGCAGA TGAAGCGGTT ATAGCCATTG ACGATTTKGC SACNRGCCAC	660
	TGGCCCTGGG TGGCTCTGTC AGGGTGCACA GCCCCTCATG CCTGGAGCAA TGAGGGTCTA	720
45	GTCCAGGGGC CAAAAGCAGT CTGAGGTATT GGGTATACTT ATACTCTATA GGGTCGTTGA	780
	ATA	783
50		
	(2) INFORMATION FOR SEQ ID NO: 265:	
55	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1638 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
60	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 265:	

	GGCACGAGGC	GGCGGCAGCG	GTGGCGGCGG	cccccccc	CGGGAGCCGT	NCCCTTTCCC	60
5	GTCGGGGAGC	GCGGGGYCGG	GGYCCAGGGG	ANCCCGGGMC	ACGGAGAGCG	GGAAGAGGAT	120
5	GGATTGCCCG	GCCCTCCCCC	CCGGATGGAA	GAAGGAGGAA	GTGATCCGAA	AATCTGGGCT	180
	AAGTGCTGGC	AAGAGCGATG	TCTACTACTT	CAGTCCAAGT	GGTAAGAAGT	TCAGAAGCAA	240
10	GCCTCAGTTG	GCAAGGTACC	TGGGAAATAC	TGTTGATCTC	AGCAGTTTTG	ACTTCAGAAC	300
	TGGAAAGATG	ATGCCTAGTA	AATTACAGAA	GAACAAACAG	AGACTGCGAA	ACGATCCTCT	360
15	CAATCAAAAT	AAGGGTAAAC	CAGACTTGAA	TACAACATTG	CCAATTAGAC	AAACAGCATC	420
••	AATTTTCAAA	CAACCGGTAA	CCAAAGTCAC	AAATCATCCT	AGTAATAAAG	TGAAATCAGA	480
	CCCACAACGA	ATGAATGAAC	AGCCACGTCA	GCTTTTCTGG	GAGAAGAGGC	TACAAGGACT	540
20	TAGTGCATCA	GATGTAACAG	AACAAATTAT	AAAAACCATG	GAACTACCCA	AAGGTCTTCA	600
	AGGAGTTGGT	CCAGGTAGCA	ATGATGAGAC	CCTTTTATCT	GCTGTTGCCA	GTGCTTTGCA	660
25	CACAAGCTCT	GCGCCAATCA	CAGGGCAAGT	CTCCGCTGCT	GTGGAAAAGA	ACCCTGCTGT	720
	TTGGCTTAAC	ACATCTCAAC	CCCTCTGCAA	AGCTTTTATT	GTCACAGATG	AAGACATCAG	780
	GAAACAGGAA	GAGCGAGTAC	AGCAAGTACG	CAAGAAATTG	GAAGAAGCAC	TGATGGCAGA	840
30	CATCTTGTCG	CGAGCTGCTG	ATACAGAAGA	GATGGATATT	GAAATGGACA	GTGGAGATGA	900
	AGCCTAAGAA	TATGATCAGG	TAACTITCGA	CCGACTTTCC	CCAAGAGAAA	ATTCCTAGAA	960
35	ATTGAACAAA	AATGTTTCCA	CTGGCTTTTG	CCTGTAAGAA	AAAAAATGTA	CCCGAGCACA	1020
	TAGAGCTTTT	TAATAGCACT	AACCAATGCC	TTTTTAGATG	TATTTTTGAT	GTATATATCT	1080
	ATTATTCAAA	AAATCATGTT	TATTTTGAGT	CCTAGGACTT	AAAATTAGTC	TTTTGTAATA	1140
40	TCAAGCAGGA	CCCTAAGATG	AAGCTGAGCT	TTTGATGCCA	GGTGCAATCT	ACTGGAAATG	1200
	TAGCACTTAC	GTAAAACATT	TGTTTCCCCC	ACAGTTTTAA	TAAGAACAGA	TCAGGAATTC	1260
45	TAAATAAATT	TCCCAGTTAA	AGATTATTGT	GACTTCACTG	TATATAAACA	TATTTTTATA	1320
10	CTTTATTGAA	AGGGGACACC	TGTACATTCT	TCCATCRTCA	CTGTAAAGAC	AAATAAATGA	1380
	TTATATTCAC	AGACTGATTG	GAATTCTTTC	TGTTGAAAAG	CACACACAAT	AAAGAACCCC	1440
50	TCGTTAGCCT	TCCTCTGATT	TACATTCAAC	TCTGATCCCG	GGGCCTTAGG	TTTGACATGG	1500
	GAGGTGGGAG	GAAGATAGCG	CATATATTTG	CAGTATGAAC	TATTGCCTCT	GGGACGTTGT	1560
55	GAGGAATTGT	GCTTTCACCA	GAATTTCTAA	GGATTTCTGG	СТТАААТАТС	ACCTAGCCTG	1620
<i></i>	TGGTAATTTT	TTTTCCCT					1638

493

(2) INFORMATION FOR SEQ ID NO: 266:

5

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1455 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 266:

10 COTGCGTACT GCCATGCAGG TACCGGGTCC GGAATTCCCA GGGTCGACCC ACGCGTCCGC. 60 TCAGTTGGCA AGGTACCTGG GAAATACTGT TGATCTCAGC AGTTTTGACT TCAGAACTGG 120 15 AAAGATGATG CCTAGTAAAT TACAGAAGAA CAAACAGAGA CTGCGAAACG ATCCTCTCAA 180 TCAAAATAAG GGTAAACCAG ACTTGAATAC AACATTGCCA ATTAGACAAA CAGCATCAAT 240 TTTCAAACAA CCGGTAACCA AAGTCACAAA TCATCCTAGT AATAAAGTGA AATCAGACCC 300 20 ACAACGAATG AATGAACAGC CACGTCAGCT TITCTGGGAG AAGAGGCTAC AAGGACTTAG 360 420 TGCATCAGAT GTAACAGAAC AAATTATAAA AACCATGGAA CTACCCAAAG GTCTTCAAGG 25 AGTTGGTCCA GGTAGCAATG ATGAGACCCT TTTATCTGCT GTTGCCAGTG CTTTGCACAC 480 540 AAGCTCTGCG CCAATCACAG GGCAAGTCTC CGCTGCTGTG GAAAAGAACC CTGCTGTTTG GCTTAACACA TCTCAACCCC TCTGCAAAGC TTTTATTGTC ACAGATGAAG ACATCAGGAA 600 30 ACAGGAAGAG CGAGTACAGC AAGTACGCAA GAAATTGGAA GAAGCACTGA TGGCAGACAT 660 CTTGTCGCGA GCTGCTGATA CAGAAGAGAT GGATATTGAA ATGGACAGTG GAGATGAAGC 720 35 CTAAGAATAT GATCAGGTAA CTTTCGACCG ACTTTCCCCA AGAGAAAATT CCTAGAAATT 780 840 GAACAAAAT GTTTCCACTG GCTTTTGCCT GTAAGAAAA AAATGTACCC GAGCACATAG 900 AGCTTTTTAA TAGCACTAAC CAATGCCTTT TTAGATGTAT TTTTGATGTA TATATCTATT 40 ATTCAAAAAA TCATGTFTAT TTTGAGTCCT AGGACTTAAA ATTAGTCTTT TGTAATATCA 960 AGCAGGACCC TAAGATGAAG CTGAGCTTTT GATGCCAGGT GCAATCTACT GGAAATGTAG 1020 45 CACTTACGTA AAACATTTGT TTCCCCCACA GTTTTAATAA GAACAGATCA GGAATTCTAA 1080 ATAAATTICC CAGITAAAGA TIATIGIGAC TICACIGTAT ATAAACATAT TITITATACIT 1140 TATTGAAAGG GGACACCTGT ACATTCTTCC ATCRTCACTG TAAAGACAAA TAAATGATTA 1200 50 TATTCACAGA CTGATTGGAA TTCTTTCTGT TGAAAAGCAC ACACAATAAA GAACCCCTCG 1260 TTAGCCTTCC TCTGATTTAC ATTCAACTCT GATCCCGGGG CCTTAGGTTT GACATGGGAG 1320 55 GTGGGAGGAA GATAGCGCAT ATATTTGCAG TATGAACTAT TGCCTCTGGG ACGTTGTGAG 1380 GAATTGTGCT TTCACCAGAA TTTCTAAGGA TTTCTGGCTT AAATATCACC TAGCCTGTGG 1440 1455 TAATTTTTTT TCCCT

(2) INFORMATION FOR SEQ ID NO: 267:

- 5

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1086 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

10

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 267:

15	CGCCTGCAGT	ACCOGTCCGG	AATTCCCGGG	TCGACCCACG	CGTCGCTGAC	CCAGGAGAAG	60
	CTGCCTGTCT	ACATCAGCCT	GGGCTGCAGC	GCGCTGCCGC	ceceeecce	GCAGCTGAAC	120
	TATGTGCTCT	TCAGGGGGGG	CACCGTGTTG	CATTCATCTT	TGTACCCCCA	GCATCTAGCA	180
20	GTGTTGGCAT	GTAGTAGGCA	CTCAAGAAAT	GTGTGTTGAA	TGAACGATGC	CTGTGACAAG	240
	CAAGCGGACT	TTATTCTTTC	CTGACCCTTG	CTCCTATGAC	ACACCTCCTC	CTGACTGCCA	300
25	CTGTCACTCC	TTCAGAGCAG	AACTCCTCTA	GGGAACCTGG	ATGGGAAACA	GCCATGGCCA	360
23	AGGACATCCT	GGGTGAAGCA	GGGCTACACT	TTGATGAACT	GAACAAGCTG	AGGGTGTTGG	420
	ACCCAGAGGT	TACCCAGCAG	ACCATAGAGC	TGAAGGAAGA	GTGCAAAGAC	TTTGTGGACA	480
30	AAATTGGCCA	GTTTCAGAAA	ATACTTCCTG	GTTTAATTGA	GCTTGTTGAT	CAACTTGCAA	540
	AAGAAGCAGA	AAATGAAAAG	ATGAAGGCCA	TCGGTGCTCG	GAACTTGCTC	AAATCTATAG	600
35	CAAAGCAGAG	AGAAGCTCAA	CAGCAGCAAC	TTCAAGCCCT	AATAGCAGAA	AAGAAAATGC	660
J.J	AGCTAGAAAG	GTATCGGGTT	GAATATGAAG	CTTTGTGTAA	AGTAGAAGCA	GAACAAAATG	720
	AATTTATTGA	CCAATTTATT	TTTCAGAAAT	GAACTGAAAA	TTTCGCTTTT	ATAGTAGGAA	780
40	GGCAAAACAA	AAAAAAGCCT	CTCAAAACCA	AAAAAACCTC	TGTAGCATTC	CAGCGGCTTG	840
	ACCAATGACC	TATGTCACAA	GAGGTGGCGT	GTAAGGAATG	CAGCCCCCTG	AAGACAGCAC	900
45	TACAAGTCTG	GGGGAGCCAG	TTTTAACATC	AGTGCACAGC	TGCTGCTGGT	GCCCTGCAG	960
43	TGTACGTTCT	CACCTCTTAT	GCTTAGTTGG	AACTAAGCAG	TTTGTAAACT	TTCATCCTTT	1020
	TTTTTTAAA	TTCACAAAGC	TTTGGAAGGA	GARGCAATAA	ATTTTTGKTT	TCNAAATGGC	1080
50	TTGATG						1086

55 (2) INFORMATION FOR SEQ ID NO: 268:

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1003 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 268:

5	GGCACGGGAG	CAGCCGGGCT	GCTCCTGCTG	CGAGCCGGCG	GCCCGGAGTG	GGGCGGCGGA	60
	GCAAACATGA	ACGTTGGAGT	TGCCCACAGT	GAAGTGAATC	CAAATACCCG	TGTCATGAAC	120
10	AGCCGGGGTA	TGTGGCTGAC	ATATGCATTG	GGAGTTGGCT	TGCTTCATAT	TGTCTTACTC	180
	AGCATTCCCT	TCTTCAGTGT	TCCTGTTGCT	TGGACTTTAA	CAAATATTAT	ACATAATCTG	240
	GGGATGTACG	TATTTTTGCA	TGCAGTGAAA	GGAACACCTT	TCGAAACTCC	TGACCAGGGT	300
15	AAAAGCAAGG	CTCCTAACTC	ATTGGGAACA	ACTGGACTAT	GGAGTACAGT	TTACATCTTC	360
	ACGGAAGTTT	TTCACAATTT	CTCCAATAAT	TCTATATTTT	CTGGCAAGTT	TCTATACGAA	420
20	GTATGATCCA	ACTCACTTCA	TCCTAAACAC	AGCTTCTCTC	CTGAGTGTAC	TAATTCCCAA	480
	AATGCCACAA	CTACATGGTG	TTCGGATCTT	TGGAATTAAT	AAGTATTGAA	ATGTTTTGAA	540
	ACTGAAAAAA	AATTTTACAG	CTACTGAATT	TCTTATAAGG	AAGGAGTGGT	TAGTAAACTG	600
25	CACTGTTTCT	CTGATAATGT	GAAATGAGAA	GTATTTACAT	TGGAGGGCCA	ATGGCTGGTC	6 60
	CTTCAAGTGC	TGTTTTGAAG	TGCAGATTTC	CATTAAATGA	TGCCTCTGTT	TAATACACCT	720
30	GGTACATTTC	TGAAGAGGGG	CTTTATAAGC	AGGCTGGGCA	GCCCAGCTT	ATAAGTTAAA	780
	GGGCATCACA	GTGAGGGTGT	AGTAGATAAA	TTCAAGGAAA	TAAGAGATTT	GTAAGAAACT	840
	AGGACCAGCT	ТААСТТАТАА	TGAATGGGCA	TTGTGTTAAG	AAAAGAACAT	TTCCAGTCAT	900
35	TCAGCTGTGG	TTATTTAAAG	CAGACTTACA	TGTAAACCGG	AATCCTCTCT	ATACAAGTTT	960
	ATTAAAGATT	ATTTTTATTA	CCGTAAAAAA	АААААААА	AAA		1003

40

45

(2) INFORMATION FOR SEQ ID NO: 269:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1234 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 269:

	ATCAGCATCT	ACAAGTAGCA	TATTTTGGAT	GCTCTTTGTG	TGCTACTTCA	AAGTAACTAG	60
55	GAAAAAATAA	TCCTCGCAAC	ACAGGTACCT	TGTCATGTCA	GAATTGGGGG	TGTTAGGTTG	120
<i>J</i> J	CCAGTTGTAT	CAGTGTTGAT	TCATTTCATT	ACTTCCTACA	GAGCAAACAT	GAACGTTGGA	180
	GTTGCCCACA	GTGAAGTGAA	TCCAAATACC	CGTGTCATGA	ACAGCCGGGG	TATGTGGCTG	240
60	ACATATGCAT	TGGGAGTTGG	CTTGCTTCAT	ATTGTCTTAC	TCAGCATTCC	CTTCTTCAGT	300

496

	GITCCIGITG	CTTGGACTTT	AACAAATATT	ATACATAATC	TGGGGATGTA	CGTATTTTTG	360
5	CATGCAGTGA	AAGGAACACC	TTTCGAAACT	CCTGACCAGG	GTAAAGCAAG	GCTCCTAACT	420
,	CATTGGGAAC	AACTGGACTA	TGGAGTACAG	TTTACATCTT	CACGGAAGTT	TTTCACAATT	480
	TCTCCAATAA	TTCTATATTT	TCTGGCAAGT	TTCTATACGA	AGTATGATCC	AACTCACTTC	540
10	ATCCTAAACA	CAGCTTCTCT	CCTGAGTGTA	CTAATTCCCA	AAATGCCACA	ACTACATGGT	600
	GTTCGGATCT	TTGGAATTAA	TAAGTATTGA	AATGTTTTGA	AACTGAAAAA	AAATTTTACA	660
15	GCTACTGAAT	TICITATAAG	GAAGGAGTGG	TTAGTAAACT	GCACTGTTTC	TSTGATAATG	720
13	TGAAATGAGA	AGTATTTACA	TTGGAGGGCC	AATGCCTGGT	CCTTCAAGTG	CIGITITGAA	780
	GTGCAGATTT	CCATTAAATG	ATGCCTCTGT	TTAATACACC	TGGTACATTT	CTGAAGAGGG	840
20	GCTTTATAAG	CARGCTGGGC	AGGCCCAGCT	TATAAGTTAA	AGGGCATCAC	AGTGAGGGTG	900
	TAGTAGATAA	ATTCAAGGAA	ATAAGAGATT	TGTAAGAAAC	TAGGACCAGC	TTAACTTATA	960
25	ATGAATGGGC	ATTGTGTTAA	GAAAAGAACA	TTTCCAGTCA	TTCAGCTGTG	GTTATTTAAA	1020
2 3	GCAGACTTAC	ATGTAAACCG	GAATCCTCTC	TATACAAGTT	TATTAAAGAT	TATTTTTATT	1080
	ACCRTACATA	TITCKCITGT	TTTATGTAAG	YGGATGTATA	TCCTCTTGTT	TTATACAAGC	1140
30	CAGTTCCCAC	TTATGAGGGT	ACTITITIGG	TTTTGCTGGG	CTTAATATTG	TGTATTGGTC	1200
	AATGAGGCCA	TTTTTACANT	TATTAACGTT	ACAG			1234
35							
	(2) INFORM	ATION FOR SE	EO ID NO: 25	70 :			
40		SEQUENCE CI (A) LEN (B) TYP (C) STR		ICS: se pairs acid double			
45	(xi) SEQUENCE	DESCRIPTION	: SEQ ID NO	: 270:		
	NGAGGTGCGT	TCTGAGCCGT	CTGTCCTGCG	CCAAGATGCT	TCAAAGTATT	ATTAAAAACA	60
50	TATGGATCCC	CATGAAGCCC	TACTACACCA	AAGTTTACCA	GGAGATTTGG	ATAGGAATGG	120
50	GGCTGATGGG	CTTCATCGTT	TATAAAATCC	GGGCTGCTGA	TAAAAGAAGT	AAGGCTTTGA	180
	AAGCTTCAGC	GCCTGCTCCT	GGTCATCACT	AACCAGATTT	ACTTGGAGTA	CATGTGAAAG	240
55	AAAACGTCAG	TCTGCCTGTA	AATTTCAGCA	AGCCGTGTTA	GATGGGGAGC	GTGGAACGTC	300
	ACTGTACACT	TGTATAAGTA	CCGTTTACTT	CATGGCATGA	ATAAATGGAT	CTGTGAGATG	360

CACTGCTACC TGGTACTGCT TTCAGTGTGT TCCCCCTCAG CCCTCCGGCG TGTCAGGCAT

60

	ACTCTGAGTA	GATAATTTGT	CATGCAGCGC	ATGCAATCAG	AATCTCACTG	AGCCACCCAT	480
	CATTGTGAAA	TAATTACCTC	AGTTGTACAG	GACTTGGTGA	TCAGGATCCA	GCACTCACT	540
5	TGTATTCTAC	TGCTCAATAA	ACGITTATTA	AACT			574
10	(2)			_			
10		ATION FOR SI	_				
	(i)	SEQUENCE CI	HARACTERIST: GTH: 1731 b				
15			E: nucleic a ANDEDNESS: a				
		(D) TOP	OLOGY: line	ar			
	(xi) SEQUENCE I	DESCRIPTION	SEQ ID NO	: 271:		
20	GCTGCAAGGT	CCCCCTCCTC	CCGCTGCAGA	TCCAGCTCAC	TACCCTGGGA	AATCTTACAC	60
	CTTCAAGCAC	TGTGTTTTTC	TGCTGTGATA	TGCAGGAAAG	GTTCAGACCA	GCCATCAAGT	120
25	ATTTTGGGGA	TATTATTAGC	GTGGGACAGA	GATTGTTGCA	AGGGCCCGG	ATTTTAGGAA	180
	TTCCTGTTAT	TGTAACAGAA	CAATACCCTA	AAGGTCTTGG	GAGCACGGTT	CAAGAAATTG	240
	ATTTAACAGG	TGTAAAACTG	GTACTTCCAA	AGACCAAGTT	TTCAATGGTA	TTACCAGAAG	300
30	TAGAAGCGGC	ATTAGCAGAG	ATTCCCGGAG	TCAGGAGTGT	TGTATTATTT	GGAGTAGAAA	360
	CTCATGTGTG	CATCCAACAA	ACTGCCCTGG	AGCTAGTTGG	CCGAGGAGTC	GAGGTTCACA	420
35	TTGTTGCTGA	TGCCACCTCA	TCAAGAAGCA	TGATGGACAG	GATGTTTGCC	CTCGAGCGTC	480
33	TOGCTCRARC	CNGGGATCAT	AGTGACCACG	AGTGNAGGCT	GTTCTGCTTC	AGCTGGTAGC	540
	TGATAAGGAC	CATCCAAAAT	TCAAGGAAAT	TCAGAATCTA	ATTAAGGCGA	GTGCTCCAGA	600
40	GTCGGGTCTG	CTTTCCAAAG	TATAGGACAT	TTGAAGAACT	GGTATGCTAC	TCACTGGTGA	660
	AGGACAGTCA	GGTGAAGGAC	TGTAAGCCCA	CACAAGCTCT	TCTTATCTCT	ACTAGAATTA	720
45	AAATGTTAAG	TCAAAAACGG	CTCCTTTTTT	GCGCCTCCTA	GTGAACTTAA	CCAGCTAGAC	780
43	CATTIGAGTA	CCAGCATTTA	GTTACAAACG	TCAAAGGCTT	CCGGTGCTGC	TTACCTTCCT	840
	TTTTTTTAA	TGTGCTTTTA	AAAATTATTT	AAAATTACAA	TGAAGATGCC	TGTTTTGTCT	900
50	CTACTGTGTA	CTCTGATCGT	ATCTTTCCAA	AGTGCAGACT	CTTGTGAAGT	TTTCTTAAAT	960
	TGTTCACTTT	AAAGAAAATG	ACGTACCAAC	AATGATTTCG	СТТТТАТАТТ	ACTGTAAGAT	1020
	GTTATAATGT	TAATGTGGAT	GTAGTGCTTT	TACTTTACAG	ATTGATTGGA	ATAAGATTAT	1080
55	TGCATATGAA	TTTACCCACA	GGACTCTGAA	TCATGTTACC	CACTCCCCTC	ACAATGTTGT	1140
	CCACTTAGTG	AGTTGCATTG	ATCTATCCGT	ACCAAATGAT	GTTGAATAAT	TACATATCTT	1200
60	TCTKGACTAT	ACTGATTTCT	TATTTTGGTC	ACTATTACTA	AATCTCTGTT	AATATTCTCT	1260

498

	CTTTTAACTG	AAAAGGGATG	GGATAGAAGG	GTTTGCAATG	CCATATTATT	GGTGGAGGGC	1320
5	TGTTTTAACA	TCTTTGAAGT	ATGGCTTGCT	GAATATCTTT	ACCAACATCT	TGAATATATA	1380
J	TTCTAGTGTC	CACAAGATTT	AGCAAAAAGA	TAAAGCTTGG	GTGGAATATC	ATTTTAAAAT	1440
	GITCATGITC	TGTTCTATAT	TTTCTTCACC	TACTCTCCAA	ATATTGTAAT	GCAAAAAGTC	1500
10	TCAGTAATGA	TTTGGTAGTA	TTAATTITGT	GGTCATTGTT	TCTCTTCGAT	TTTATTTAAA	1560
	TCATTAAATA	CTTRTTAGAG	GGTTTTGAAA	TGTTTTTCAA	ATATOTGAAA	TGTGAAACTG	1620
15	CIGICITITA	TATTAAAGTA	ATTAAAGAAA	ATGTATTGTG	ATTGAAATTA	TTTTGNCCTC	1680
1.5	CACAAGATGG	CTCTATGAGT	ATTCTTCCAG	GGATTCTAAT	AATTTATTTA	G	1731

20

25

30

(2) INFORMATION FOR SEQ ID NO: 272:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1320 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 272:

CTGCTTAGGA AGAGAAGGTC AGAGTTCGCG GGGGCAGAGG CATTCTTGCC CCTGGCCCAG 60 TCACTATGTA GTGGAGGGC AGACACCCTC CCGCAAATTC TGGAAGGTTC TTAGTCTCGA 120 35 CTAGGGCAGT AGCCCAGGAC TCCTAGTCGC CGGCTTCAGG TCACTGCCGG CTGAACGGAG 180 CTGCCGTCGC CATGTTTGGC TGCTTCGTCG CGGGGAGGCT GGTGCAAACA GCTGCACAGC 240 AAGTGGCAGA GGATAAATTT GTTTTTGACT TACCTGATTA TGAAAGTATC AACCATGTTG 300 40 TCGTTTTTAT GCTGGGAACA ATCCCATTTC CTGAGGGAAT GGGAGGATCT GTCTACTTTT 360 CTTATCCTGA TTCAAATGGA ATGCCAGTAT GGMAACTCCT AGGATTTGTC ACGAATGGGA 420 45 AGCCAAGTGC CATCTTCAAA ATTTCAGGTC TTAAATCTGG AGAAGGAAGC CAACATCCTT 480 TTGGAGCCAT GAATATTGTC CGAACTCCAT CTGTTGCTCA GATTGGAATT TCAGTGGAAT 540 TATTAGACAG TATGGCTCAG CAGACTCCTG TAGGTAATGC TGCTGTATCC TCAGTTGACT 600 50 CATTCACTCA GITCACACAA AAGATGITGG ACAATTTCTA CAATTTTGCT TCATCATTTIG 660 CTGTCTCTCA GGCCCAGATG ACACCAAGCC CATCTGAAAT GTTCATTCCG GCAAATGTGG 720 55 780 TTCTGCAAAT GGTATGAGGC ATMTTCTGTC TCCAATATTA AGGCTTTTTA TAACTGAATA TCTATTTTGT CTATGAATAT ATTCCTTTTT TGACATTTAA ACATATTCTT TTATTGTGAA 840 CATCAGCACT GCATGCCATT AAAGTATGTA CTATAGAGAT CTGATGAGAA ACAGTTCTTA 900 60

	CCCTAAATAT TTTGTTATAT TGTCGCCATT ATGAATTTAT AAAGACAGGA AAATATAGTT	960
	GCCTATGTTT TAGGGACCAC TATTAAAGCT TATAAATATT TGTGTATTTT CATTTAGAAG	1020
5	TACCATCTAT GAGAGTAGTT TATACTGCAC TGTGTACATG AATGGCTAAT GAATCTATTT	1080
	TCCAACTTTC CCGTGTTTTA TAGATATTTC TTTTCACTTT GAGTATCCTA GAGATGGGAG	1140
10	GATGCCTAGG AAGAGTTTGT TGAGAAGTGG TACCATGGTG TAGCATGGGA GAGCATTGGG	1200
10	AATGCACTAG GTTTGAATTT GGCATAATGG TAGCTATGTG ACCCTGAGCA AATTTCTCTC	1260
	ATCTGCTCAT CTGANGAATG AGGAAATAGG AGTGAATTTG ATNITTCCTA GGTCCNTCTA	1320
15		
20	(2) INFORMATION FOR SEQ ID NO: 273: (i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 515 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 273:	
	CCCTGGAGAG GGGCTGCTGT GCCAGCTTGG GGAGGGTCTG GGATGGGGCT GCCCCTGATG	60
30	GCCCTGATGT GGAGTACCTT GCCAGCATCT GCTGGGGTGA ACTTTATTTT AGCCCTTCCC	120
	TTGTTGYTCT TATGAAGAAC AGAGGAGGGG TGGGCAGGTC AGTGATGTCA GCAGTGAGTA	180
	TTCCCAGCAC AGCGGCTCTG GAAGAGGCAT GAGGCATTTC TTTCAGGAAA TGRTCATTAT	240
35	TCAGCCAGAA GGCATTCATT AAGTAAGICC TGACTTTGTG CCCAGCTCTG TGTTATAGGC	300
	CCTTGGCGAG ACTCAGGAGG GGCARAGGAC GCTAGKTTKT AGWTAACACG GAACCTCARA	360
40	GGWTATATGG TCCAAGAAGA CCCGGGGGCG GTGAAAACCC TGTGGACTAA TGCTCACGGG	420
	AGCCCGAGGT CACACTTTGA CTTTGCTACC ATGGGCTGTG TCTANGNACG TATATATGCT	480
45	GCGTAATTAT TACAGAGGCA GTCCATGTGC ATTGT	515
50	(2) INFORMATION FOR SEQ ID NO: 274:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2995 base pairs	
e e	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
55	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 274:	

	AGTAGCCATG	GGAGAAGTCA	TCCTGGCTGT	CTGCCACCCC	GATTGCATCA	CAACCATCAA	120
	ACACTGGATC	ACCATCATCC	GAGCTCGCTT	CGAGGAGGTC	CTGACATGGG	CTAAGCAGCA	180
_ 5	CCAGCAGCGT	CTTGAAACGG	CCTTGTCAGA	ACTOGTGGCT	AATGCTGAGC	TCCTGGAAGA	240
	ACTICIGGCA	TGGATCCAGT	GGGCTGAGAC	CACCCTCATT	CAGCGGGATC	AGGAGCCAAT	300
10	CCCGCAGAAC	ATTGACCGAG	TTAAAGCCCT	TATCCCTGAG	CATCAGACAT	TTATGGAGGA	360
	GATGACTCGC	AAACAGCCTG	ACGTGGACCG	GGTCACCAAG	ACATACAAAA	GGAAAAACAT	420
	AGAGCCTACT	CACGCGCCTT	TCATAGAGAA	ATCCCGCAGC	GGAGGCAGGA	AATCCCTAAG	480
15	TCAGCCAACC	CCTCCTCCCA	TGCCAATCCT	TTCACAGTCT	GAAGCAAAAA	ACCCACGGAT	540
	CAACCAGCTT	TCTGCCCGCT	GGCAGCAGGT	GTGGCTGTTA	GCACTGGAGC	GGCAAAGGAA	600
20	ACTGAATGAT	GCCTTGGATC	GGCTGGAGGA	GTTGAAAGAA	TTTGCCAACT	TTGACTTTGA	660
	TGTCTGGAGG	AAAAAGTATA	TGCGTTGGAT	GAATCACAAA	AAGTCTCGAG	TGATGGATTT	720
	CTTCCGGCGC	ATTGATAAGG	ACCAGGATGG	GAAGATAACA	CGTCAGGAGT	TTATCGATGG	780
25	CATTTTAGCA	TCCAAGTTCC	CCACCACCAA	GTTAGAGATG	ACTGCTGTGG	CTGACATTTT	840
	CGACCGAGAT	GGGGATGGTT	ACATTGATTA	TTATGAATTT	GTGGCTGCTC	TTCATCCCAA	900
30	CAAGGATGCG	TATCGACCAA	CAACCGATGC	AGATAAAATC	GAAGATGAGG	TTACAAGACA	960
	AGTGGCTCAG	TGCAAATGTG	CAAAAAGGTT	TCAGGTGGAG	CAGATCGGAG	AGAATAAATA	1020
	CCGGTTCTTC	CTCGGCAATC	AGTTTGGGGA	TTCTCAGCAG	TTGCGGCTGG	TCCGTATTCT	1080
35	GCGCAACCGT	GATGGTTCGC	GTTGGTGGAG	GATGGATGGC	CTTGGATGAA	TITTTAGTGA	1140
	AAAATGATCC	CTGCCGAGCA	CGAGGTAGAA	CTAACATTGA	ACTTAGAGAG	AAATTCATCC	1200
40	TACCAGAGGG	AGCATCCCAG	GGAATGACCC	CCTTCCGCTC	ACGGGGTCGA	AGGTCCAAAC	1260
	CATCTTCCCG	GGCAGCTTCC	CCTACTCGTT	CCAGCTCCAG	TGCTAGTCAG	AGTAACCACA	1320
	GCTGTACATC	CATGCCATCT	TCTCCAGCCA	CCCCAGCCAG	TGGAACCAAG	GTTATCCCAT	1380
45	CATCAGGTAG	CAAGTTGAAA	CGACCAACAC	CAACTTTTCA	TTCTAGTCGG	ACATCCCTTG	1440
	CTGGTGATAC	CAGCAATTAG	TTCTTCCCCG	GCCTCCACAG	GTGCCAAAAC	TAATCGGGCA	1500
50	GACCCTAAAA	AGTCTGCCAG	TCGCCCTGGG	AGTCGGGCTG	GGAGTCGAGC	CGGGAGTCGA	1560
••	GCCAGCAGCC	GGCGAGGAAG	TGACGCTTCT	GACTTTGACC	TCTTAGAGAC	GCATTGCTTG	1620
	TTCCGACACT	TCAGAAAGCA	GCGCTGCAGG	GGGCCAAGGC	AACTCCAGGA	GAGGGCTAAA	1680
55	CAAACCTTCC	AAAATCCCAA	CCATGTCTAA	GAAGACCACC	ACTGCCTCCC	CCAGGACTCC	1740
	AGGTCCCAAG	CGATAACACT	GTCTAAGCAC	CCCCAAGCCA	CTATCCACTT	TGAATCCTGC	1800
60	TCCATACATT	GGGTGTATAT	TTATTCTGAA	CGGGAGAAGT	TATATTGTTA	AAAGTGTAAA	1860

	AGAATAATTG	TGTTATGAAG	CTGCCTTATT	TTTTTTCTTT	TTGTAAGTTA	CTATTTCAT	1920
	GTGAATATYT	ATGTAGATAA	AATTTGCCTC	CTGGTAACCC	TGTAATGGAT	GGGCCCAGA	1980
5	TATGAADTAA	TTGAGAAAAA	CAAGTGAAAA	GGTCAAGATA	CAAATGTGTA	TTAAAAAAA	2040
	AAAAGCCTAT	TAATAGGGTT	TCTGCGCGGT	GCAGGGTTGT	AAACCTGCTT	TATCTTTTAG	2100
10	GATTATTCCT	AAATGCATCT	тстттатааа	CITGACTTGC	TATCTCAGCA	AGATAAATTA	2160
10	TATTAAAAAA	ATAAGAATCC	TGCAGTGTTT	AAGGAACTCT	TTTTTTGTAA	ATCACGGACA	2220
	CCTCAATTAG	CAAGAACTGA	GGGGAGGGCT	TTTTCCATTG	TTTAATGTTT	TGTGATTTTT	2280
15	AGCTAAAGAG	AGGGAACCTC	ATCTAAGTAA	CATTTGCACA	TGGATACAGC	AAAAGGAGTT	2340
	CATTGCAATA	CIGICITIGG	ATATTGTTTC	AGTACTGGGT	GTTTAAAGGA	CAAATAGCTG	2400
20	CTAGAATTCA	GGGGTAAATG	TAAGTGTTCA	GAAAACGTCA	GAACATTTGG	GGTTTTAAAC	2460
	TGATTTGTTG	CTCCCTATCC	AGCCTAGACA	CCAGTAACTC	TTGTGTTCAC	CAGGACCCAG	2520
	ACCCTTGGCA	AGGGATAGGC	TCGTTGGTGA	CATTGTGAAT	TICAGATTIG	TTTTATCCAC	2580
25	TTTTTTTGCT	AATTTATTTA	ATGGTCGATC	AACTTCCCAC	AAACTGAGGA	ATGAATTCCA	2640
	CGAGCCTGTT	CTGAAAATGT	GGACGTAAGA	CAAACACGTG	CTCGTCCTTT	AATGGAGTTC	2700
30	ACCAGCACAC	TTGTTAACCA	GTCCTGTTTG	CTTTCGTCTT	TTTTTGTGCG	TAATAAAGTC	2760
	AACTGACCAA	GTGACCATGA	AAAGGGGCTG	TCTGGGGCTC	CTGTTTTTTA	GCTGCTGTTC	2820
	TTCAGCTCCG	ACCATGTTGC	TGTGTGATTA	TCTCAATTGG	TTTTAATTGA	GGCAGAAACT	2880
35	GAAGCTCTAC	CAATGAACTG	TTTAGAAACA	AGACACACTT	TTGTATTAAA	ATTGCTTGCA	2940
	GTAACAAAAA	АААААААА	АААААААА	AAAAAACTCG	AGGGGGGCCC	GGTAC	2995

40

45

(2) INFORMATION FOR SEQ ID NO: 275:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1990 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 275:

GGGACCCGCG CGSCTCCCGG GGATGGTGAG CAAGGCGCTG CTGCNWCGTG TCTGCCGTCA 60

ACCGCAGAGG ATGAAGCTGC TGCTGGGCAT CGCCTTGCTG GCCTACGTCG CCTCTGTTTG 120

GGGCAACTTC GTTAATATGA GGTCTATCCA GGAAAATGGT GAACTAAAAA TTGAAAGCAA 180

GATTGAAGAG ATGGTTGAAC CACTAAGAGA GAAAATCAGA GATTTAGAAA AAAGCTTTAC 240

CCAGAAATAC CCACCAGTAA AGTTTTTATC AGAAAAGGAT CGGAAAAGAA TTTTGAWTAA 300

	CAGGAGGCGC	AGKGTTCGTG	GGCTCCCATC	TKAACTGACA	AACTCATGAT	GGACGGCCAC	360
5	GAGGTGACCG	TGGTGGACAA	TTTCTTCACG	GGCAGGAAGA	GAAACGTGGA	GCACTGGATC	420
J	GGACATGAGA	ACTICGAGTT	GATTAACCAC	GACGTGTGGG	AGCCCCTCTA	CATCGAGGTT	480
	GACCAGATAT	ACCATCTGGC	ATCTCCAGCC	TCCCCTCCAA	ACTACATGTA	TAATCCTATC	540
10	AAGACATTAA	AGACCAATAC	GATTGGGACA	TTAAACATGT	TGGGGCTGGC	AAAACGAGTC	600
	GGTGCCCGTC	TGCTCCTGGC	CTCCACATCG	GAGGTGTATG	GAGATCCTGA	AGTCCACCCT	660
15	CAAAGTGAGG	ATTACTGGGG	CCACGTGAAT	CCAATAGGAC	CTCGGGCCTG	CTACGATGAA	720
13	GGCAAACGTG	TTGCAGAGAC	CATGTGCTAT	GCCTACATGA	AGCAGGAAGG	CCTGGAAGTG	780
	CGAGTGGCCA	GAATCTTCAA	CACCTTTGGG	CCACGCATGC	ACATGAACGA	TGGGCGAGTA	840
20	GTCAGCAACT	TCATCCTGCA	GCCCTCCAG	GGGGAGCCAC	TCACGGTATA	CGGATCCGGG	900
	TCTCAGACAA	GGCGTTCCA	GTACGTCAGC	GATCTAGTGA	ATGCCTCGT	GCTCTCATG	960
25	AACAGCAACG	TCAGCAGCCC	GGTCAACCTG	OGGAACCCAG	AAGAACACAC	AATCCTAGAA	1020
23	TTTGCTCAGT	ТААТТАААА	CCTTGTTGGT	AGCGGAAGTG	AAATTCAGTT	TCTCTCCGAA	1080
	GCCCAGGATG	ACCCACAGAA	AAGAAAACCA	GACATCAAAA	AAGCAAAGCT	GATGCTGGGG	1140
30	TOGGAGCCCG	TGGTCCCGCT	GGAGGAAGGT	TTAAACAAAG	CAATTCACTA	CTTCCGTAAA	1200
	GAACTCGAGT	ACCAGGCAAA	TAATCAGTAC	ATCCCCAAAC	CAAAGCCTGC	CAGAATAAAG	1260
35	AAAGGACGGA	CTCGCCACAG	CTGAACTCCT	CACTTTTAGG	ACACAAGACT	ACCATTGTAC	1320
<i>J J</i>	ACTTGATGGG	ATGTATTTT	GGCTTTTTTT	TGTTGTCGTT	TAAAGAAAGA	CTTTAACAGG	1380
	TGTCATGAAG	AACAAACTGG	AATTTCATTC	TGAAGCTTGC	TTTAATGAAA	TGGATGTGCC	1440
40	TAAAAGCTCC	CCTCAAAAAA	CTGCAGATTT	TGCCTTGCAC	TTTTTGAATC	TCTCTTTTTA	1500
	TGTAAAATAG	CGTAGATGCA	TCTCTGCGTA	TTTTCAAGTT	TTTTTATCTT	GCTGTGAGAG	1560
45	CATATGTTGT	GACTGTCGTT	GACAGTTTTA	TTTACTGGTT	TCTTTGTGAA	GCTGAAAAGG	1620
13	AACATTAAGC	GGGACAAAAA	ATGCCGATTT	TATTTATAAA	AGTGGGTACT	TAATAAATGA	1680
	GTCGTTATAC	TATGCATAAA	GAAAAAYCCT	AGCAGTATTG	TCAGGTGGTG	GTGCGCCGGC	1740
50	ATTGATTTA	GGCAGATAA	AAGAATTCTG	TGTGAGAGCT	TTATGTTTCT	CTTTTAATTC	1800
	AGAGTTTTTC	CAAGGTCTAC	TTTTGAGTTG	CAAACTTGAC	TTTGAAATAT	TCCTGTTGGT	1860
55	CATGATCAAG	GATATTIGAA	ATCACTACTG	TGTTTTGCTG	CGTATCTGGG	GCGGGGGCAG	1920
55	CTTCCCCCCC	ACAAAGTTAA	CATATTCTTG	GTTAACCATG	GTTAAATATG	CTATTTTAAT	1980
	AAAATATTGA	L					1990

PCT/US98/04493 503

(2) INFORMATION FOR SEQ ID NO: 276:

(i) SEQUENCE CHARACTERISTICS: - 5 (A) LENGTH: 2436 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

60

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 276:

60 AACTTCCCTT AGCTCTCCAG GGTNAAACGG GTGAGNCCTT AAAAACAGAA GAGAACAAGA 15 120 TTTAAAGTCC GTTGCATTGA AAATAACAAA CAATATCAAT GTTTTAATCA AGGATCTCTT CCACATTCCT CCTTCTTATA AGAGCACAGT AACACTATCC TGGAAACCTG TACAAAAGGT 180 240 TGAGATTGGG CAAAAGAGAG CCAGTGAAGA TACAACTTCA GGTTCACCAC CCAAGAAATC 20 TTCAGCAGGA CCAAAAAGAG ATGCCAGGCA GATTTATAAC CCTCCCAGTG GGAAATATAG 300 CAGCAATTIG GGCAACTITA ATTATGAGCA GAGAGGAGCC TTCAGGGGAA GTAGAGGTGG 360 CCGAGGTTGG GGCACACGAG GAAATCGTAG TCGGGGAAGA CTCTACTGAA TAAGACATCA 25 420 480 GCATTCTICA GCATTGTCAT GAGCITAATA TACTTAAATT CTACTACTCA TTGGATTGCC 540 GGGGATGTCC CTTTAAACAG ACTGCTGCCT TCAGCTAAAA ACTTAATGTT CTTTATACCT 30 TTGTATGTAT GACCTACTTT TGTAACAGAC CATGGTTGTG TCCAAGGTAA AACCACAGTG 600 ATATTTTTGG ATGCTTTGTC TGCAATCTTG ACTTGTTTTT GCAGTATCAT TATTCAGACT 660 35 TCAAATTGTG AATCTTTTAA ACATCTTGAT AATTTGTTGT TGAGAGCTGT TCATTCTAAA 720 780 ATGTAATGAA ATTCAGTCTA GIFCTGCTGA TAAAGATCAT CAGTTTTGAA AGGTTACTGA TTTTCCTCTT CCCTCTTAGT TTTTTACCCA ATATATGGAG AAGAGTAATG GTCAATCTTA 840 40 ACATTITGTT TTAATTGTTT AATAAAGCTG CTGGGCAGTG GTGCAGCATT CCTACCTAGT 900 GTCATAAAAG CAAAATACTT ACATAGCTTT CTTAAAATAT AGGAATGACA TTACATTTTT 960 45 1020 AGGAGAAAGT AAGTTGCTTT GCACCGCCTA CTTAATTCTT TTCCATATAT TGTGATACAA ACTITIGAAT ATGGAATCIT ACTATITGAA TAGAAATGIG TATGTATAAT ATACATACAT 1080 ACATAAGCAT ATATGTGTGT GTGTGTGTT ATATATATAT ATATGCATGC TGTGAAACTT 1140 50 GACTACACAA CATAAATCAC TTTTTAAATT CCAGGAACGG GTAGTCTGAC ACGGTGATTA 1200 TCCTTTTGAG GCTGAATCCG TTATTAACTT GTTATTTAGG TTTTTACTCC CAGTAGCAAG 1260 GGATTCTAAG TTAGTTGCAC TTACATGATT ATTGTTATTT AAAACTAAGA ATAAAGGCTG 55 1320 CATTITCAAA GATAAATIGG AATIGCIGIT GGIGAAATAA CAACCAAAAT ACIGAATCIG 1380 ATGTACATAC AGGTTTCTAC AGGAAGAGAT GGTATAATTT ACAATTTGGA GATTTAATAA 1440

	CCAGGGCTAC CCAGAAAAAG TGACTTGATA ACATGGTACC AATAAGTAAG GGATGCTCTC	1500
	TCGGTTTGCT TTTGCCACTT TCAAGATTTT AACTTCTCAG GTTATTAATC AAAATTATTG	1560
- 5	TATAAGITAG CCAATAGAAT TITTAGGITA AAACAACAGA TGGGGGGTTT GTGGAGTGTT	1620
	TAATGTCATG GGCATTTTTA GTAGCATAGA CCCTTTGTTC TGCATTTGAA TGTTTCGTAT	1680
	ATTITITGTTT CACAGTTAAT CTTCCCTCCC CAAGTTTGCT ATTCAAATCA ACTGCCTGAA	1740
10	TGACATTTCT AGTAGTCTGA TGTATTTTTC TGAGGAATAG TTTGTGATTC CAATGCAGGT	1800
	GTCTTCATTA CCATTACCTC TACACTGCAG AAGAAGCAAA ACTCCTTTAT TAGAATTACT	1860
15	GCACATGTGT ATGGGGAAAA TAGTTCTGAA AGGCTAGAAT GATACAAGTG AGCAAAAGTT	1920
	GGTCAGCTTG GCTATGGAGT GGTGGCAATA ATCTCTAAAC ATTCCAAAAG ACCATGAGCT	1980
20	GAACCTAAAC TCCCTTGGAA TCTGAACAAA GGAATATAAA ATTGCCATTT GAAAACTGAC	2040
20	CAGCTAATCT GGACCTCAGA GATAGATCAG CCAGTGGCCC AAAGCCATTT CAAGTACAGA	2100
	AATTATAGAG ACTACAGCTA AATAAATTTG AACATTAAAT ATAATTTTAC CACTTTTTGT	2160
25	CTTTATAAGC ATATTTGTAA ACTCAGAACT GAGCAGAAGT GACTTTACTT TCTCAAGTTT	2220
	GATACTGAGT TGACTGTTCC CTTATCCCTC ACCCTTCCCC TTCCCTTTCC TAAGGCAATA	2280
30	GTGCACAACT TAGGTTATTT TTGCTTCCGA ATTTGAATGA AAAACTTAAT GCCATGGATT	2340
30	TTTTTCTTTT GCAAGACACC TGTTTATCAT CTTGTTTAAA TGTAAATGTC CCCTTATGCT	2400
	TTTGAAATAA ATTTCCTTTT GTAATTTTAA AAAAAA	2436
35		
	(2) INFORMATION FOR SEO ID NO: 277:	
40	(i) SEQUENCE CHARACTERISTICS:	
-10	(A) LENGTH: 782 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
45	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 277:	60
50	GCCACTGACT TCTCCCACCC TTCTGTCTCC CCCATAATAG TTTATTTGGT TGGTCTGGAC	
50	TCACTTGTGG CCTTTRATTA AATTCCTAAG GGGCCTGAAG AAGACATTTC TACTGCAGAG	120
	GGTTAGAGGC ACTTGAGCAA GGCCCCCACA TCCCAACTCT GGGAGTTGTG GTGGGAGGAG	180
55	GCACTTCTGG GGGATAGGAC CAGACAAGAT AACAGGAGCT CACATGGNAA GCAGAAGCTG	240
	TGACAAGTIT AGTAGTCCCA AAATGGGTTA TATCCCTTCC CCCTTTACAT CAGAATCTTG	300
	TGAAATGGGA AAACAACAGA AGGAGGGGAT CAAAGATAGC TGATCTCACA TGCTTCCCAG	360
6 0	GCAGGGCARA GGTGGGAGTC AAACCCGGGT GACAGGTGGG TGGAGAGCCC TGTTTGAGGT	420

	TGTGGCTGAT CCCTCTCTGG TATTAGTTTT TCCCCTGGGA GCAGGAAGCC CTAGGAAGAG	480
5	GGGACTGCAG GGTCCCCRGG GGATCTTTCC TCCCTCCCCT GCATGAGGCA GAGGCAAGCT	540
3	GCCTGCCAAC CCCCTCCCTC AAGGAATGGC CTTGCCCAGG AATGCCCACC ACACATACCC	600
	TCTTCTTTTT TTCTAGTCAA ACTCTTGTTT ATTCCTTGGC TIGCCTCCCT CCTTCCTCCC	660
10	CTCTCAACCT TTACTTCTGA TTTCTATFTC ATGGAATTTG GGATTGAAGT TAAACTACAA	720
	CAGTGCCGCC AACACCAAGT CTTGCAGGAA AAAAATACAA AGAAATTTAA CAAAAAAAAA	780
	AA	782
15		
20	(2) INFORMATION FOR SEQ ID NO: 278: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 961 base pairs (B) TYPE: nucleic acid	
25	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
23		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 278: GAGTTCCGGC TGGAGACCCG TGCTCTGGGC CGGCGCCTTC ACCATGGCCT CGGCAGAGCT	60
30	GGACTACACC ATCGAGATCC CGGATCAGCC CTGCTGGAGC CAGAAGAACA GCCCCAGCCC	120
	AGGTGGGAAG GAGGCAGAAA CTCGGCAGCC TGTGGTGATT CTYTTGGGCT GGGGTGGCTG	180
25	CAACGACAAG AACCTTCCCA AGTACAGTCC CATCTACCAC AAAAGGGGCT GCATCGTAAT	240
35	CCGATACACA GCCCCGTGGC ACATGGTCTT CTTCTCCGAG TCACTGGGTA TCCCTTCACT	300
		360
40	TCGTGTTTTG GCCCAGAAGC TGCTCGAGCT GCTCTTTGAT TATGAGATTG AGAAGGAGCC	420
	CCTGCTCTTC CATGTCTTCA GCAACGGTGG CGTCATGCTG TACCGCTACG TGCTGGAGCT	480
A 5"	CCTGCAGACC CGTCGCTTCT GCCGCCTGCG TGTGGTGGGC ACCATCTTTG ACAGCGCTCC	540
45	TGGTGACAGC AACCTGGTAG GGGCTCTGCG GGCCCTGGCA GCCATCCTGG AGCGCCGGGC	600
	CGCCATGCTG CGCCTGTTGC TGCTGGTGGC CTTTGCCCTG GTGGTCGTCC TGTTCCACGT	
50	CCTGCTTGCT CCCATCACAG CCCTCTTCCA CACCCACTTC TATGACAGGC TACAGGACGC	660
	GGGCTCTCGC TGGCCCGAGC TCTACCTCTA YTCGAGGGCT GACGAAGTAG TCCTGGCCAG	720
	AGACATAGAA CGCATGGTGG AGGCACGCCT GGCACGCCGG GTCCTGGCGC GTTCTGTGGA	780
55	TITCGIGTCA TCTGCACACG TCAGCCACCT CCGTGACTAC CCTACTTACT ACACAAGCCT	840
	CTGTGTCGAC TTCATGCGCA ACTGCGTCCG CTGCTGAGGC CATTGCTCCA TCTCAMCTCT	900
	GCTCCAGAAA TAAATGCCTG ACAMCTCCCC ACAAAAAAAA AAAAAAAAAA ACTCGAGGGG	960

506

G 961

- 5

10

(2) INFORMATION FOR SEQ ID NO: 279:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1228 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 279:

15 COCGCTTTGC AGTTCGGTCT CCTGGTGTAC GGCCAACGCC AAGTAGGGGA TTGCGTTCCC 60 TCCAGTCGCA GCCCTATCAG ATTTGGATAT GTCCTTCATA TTTGATTGGA TTTACAGTGG 120 20 TTTCAGCAGT GTGCTACAGT TTTTAGGATT ATATAAGAAA ACTGGTAAAC TGGTATTTCT 180 TOGATTOGAT AATGCAGGAA AAACAACATT GCTACACATG CTAAAAGATG ACAGACTTGG 240 ACAACATGTC CCAACATTAC ATCCCACTTC CGAAGAACTG ACCATTGCTG GCATGACGTT 300 25 360 TACAACTITT GATCTGGGTG GACATGTTCA AGCTCGAAGA GTGTGGAAAA ACTACCTTCC TGCTATCAAT GGCATTGTAT TTCTGGTGGA TTGTGCAGAC CACGAAAGGC TGTTAGAGTC 420 30 AAAAGAAGAA CTTGATTCAC TAATGACAGA TGAAACCATT GCTAATGTGC CTATACTGAT 480 TCTTGGGAAT AAGATCGACA GACCTGAAGC CATCAGTGAA GAGAGGTTGC GAGAGATGTT 540 600 TOGTTTATAT GGTCAGACAA CAGGAAAGGG GAGTATATCT CTGAAAGAAC TGAATGCCCG 35 ACCCTTAGAA GTTTTCATGT GTAGTGTGCT CAAAAGACAA GGTTACGGAG AAGGCTTCCG 660 CTGGATGGCA CAGTACATTG ATTAACACAA ACTCACATTG GTTCCAGGTC TCAACGTTCA 720 40 780 GGCTTACTCA GAGATTTGAT TGCTCAACAT GCATAACTTG AATTCAATAG ACTTTTGCTG GTTATAAAAC AGATGTTTTT TAGATTATTA ATATTAAATC AACTTAATTT GAATGAGAAT 840 900 TGAAAACTGA TTCAAGTAAG TTTGAGTATC ACAATGTTAG CTTTCTAATT CCATAAAAGT 45 ACTTGGTTTT TACAGTTTAT AATCTGACAT CACCCCAGCG CCATTTGTAA AGAGCAACTT 960 TCCAGCAGTA CATTIGAAGC ACTITITAAC AACATGAAAC TATAAACCAT ATTTAAAAGC 1020 50 TCATCATGTT AAATTTTTTA TGTACTTTTC TGGAACTAGT TTTTAAATTT TAGATTATAT 1080 GTCCACCTAT CKTAAGTGTA CAGTTAATAA TTAGCTTATT CAATGATTGC ATGATGCCTT 1140 1200 ACAGTTTTCA ATAACTTTTT TTCTTATGCA AACGTCATGC AATAAAACAA ACTCTAATGT 55 1228 TTGGCAAAAA AAAAAAAAAA AAANTCGA

PCT/US98/04493

507

(2) INFORMATION FOR SEQ ID NO: 280:

- 5

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1327 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 280:	
10	TCTCGGGTCT CGGGACAGGT GAGCACCCTG ATGAAGGCCA CGGTCCTGAT GCGGCACCTG	60
	GGCGGGTGCA GGAGATCGTG GGCGCCCTCC GCAAGGGCGS CGGAGACCGG TTACAGGTGA	120
15	TTTCTGATTT TRACATGACC TTGAGCAGGT TTGCATATAA TGGAAAGCGA TGCCCTTCTT	180
	CTTACAATAT TCTGGATAAT AGCAAGATCA TCAGTGAGGA GTGTCGGAAA GAGCTCACAG	240
20	CGCTCCTTCA CCACTATTAC CCAATTGAGA TCGACCCACA CCGGACCGTC AAGGAGAAGC	300
20	TACCTCATAT GGTGGAATGG TGGACCAAAG CGCACAATCT CCTATGTCAG CAGAAGATTC	360
	AGAAGTTTCA GATAGCCCAG GTGGTTAGAG AGTCCAATGC AATGCTCAGG GAGGGATATA	420
25	AGACCTTCTT CAACACACTC TACCATAACA ACATTCCCCT TTTCATCTTT TCTGCGGGCA	480
	TTGGTGATAT CCTGGAAGAA ATTATCCGAC AGATGAAAGT GTTCCACCCC AACATCCACA	540
30	TCGTGTCTAA CTACATGGAT TTTAATGAAG ATGGTTTTCT CCAGGGATTT AAGGGCCAGC	600
30	TGATACACAC ATACAACAAG AACAGCTCTG TGTGTGAGAA CTGTGGTTAC TTCCAGCAAC	660
	TTGAGGGCAA AACCAATGTC ATCCTGCTGG GAGACTCTAT CGGGGACCTC ACCATGGCCG	720
35	ATGGGGTTCC TGGTGTGCAG AACATTCTCA AAATTGGCTT CCTGAATGAC AAGGTGGAGG	780
	AGCGGCGGGA NCGCTAACAT GGACTCCTAT GACATCGTGC TGGAGAAGGA CGAGACTCTG	840
40	GATGTGGTCA ACGGGCTACT GCAGCACATC CTGTGCCNAG GGGGTCCAGC TGGAGATGCA	900
40	AGGCCCCTGA AGGCGCAGGC TCCNAAGKCC SCTGCAGGCC GTGGTGAGGA GGGGCGCCTC	960
	CCCAGAGTCT GCTCCCCCGT GAACACAGAG CAGAGCCAGG GTGGCCAGCA GTGGCTGGGT	1020
45	CCTTCCGCGC CCCTCCGTCC TCCTTTCCCT GAGCACCTTC ATCACCAGAG GCTTGAAGGA	1080
	ACCCCGCCAT GTGGCAGGGC ACAGGCACTG TTCCTGGTGA ACCTTGGACC ACAGCATGTC	1140
50	AGTGCTCTAG GGATTGTCTA CTCCAGGGAT TTTCTTCAAA ATTTTTAAAC ATGGGAAGTT	1200
50	CAAACAAATA TAATGTGTGA AACAGATCAA AATTTTTAAA ATGAAAAAAA AGCTGCTCTG	1260
	ATTCAGGGGA TGTGGGTCGG GGTAGAACCT GGACCTCTTG GCCTGGGGGC ACATGGGATG	1320
55	CTTCTAG	1327

WO 98/39448

(i) SEQUENCE CHARACTERISTICS:

5	(A) LENGTH: 799 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 281:	
10	TCACCCTGCC TACAGCGTGG AGCTCAGATG ACTGCGCCCT CCACGGTCAC TGTGAGCAGG	60
	TGGTATTCAC AGCCTGCATG ACCCTCACGG CCAGCCCTGG GGTGTTCCCC GTCACTGTGT	120
15	GCCTTTGCCT GAAGCCTAAT TCCACAGCTC CTTGTTTTTT GAGAGAGACT GAGAGAACCA	180
13	TAATCCTTGC CTGCTGAACC CAGCCTGGGC CTGGATGCTC TGTGAATACA TTATCTTGCG	240
	ATGITGGGTT ATTCCAGCCA AAGACATTTC AAGTGCCTGT AACTGATTTG TACATATTTA	300
20	TAAAAATCTA TICAGAAATT GGTCCAATAA TGCACGTGCT TTGCCCTGGG TACAGCCAGA	360
	GCCCTTCAAC CCCACCTTGG ACTTGAGGAC CTACCTGATG GGACGTTTCC ACGTGTCTCT	420
25	AGAGAAGGAT TCCTGGATCT AGCTGGTCAC GACGATGTTT TCACCAAGGT CACAGGAGCA	480
23	TTGCGTCGCT GATGGGGTTG AAGTTTGGTT TGGTTCTTGT TTCAGCCCAA TATGTAGAGA	540
	ACATTIGAAA CAGTCTGCAC CTTTGATACG GTATTGCATT TCCAAAGCCA CCAATCCATT	600
30	TTGTGGATTT TATGTGTCTG TGGCTTAATA ATCATAGTAA CAACAATAAT ACCTTTTTCT	660
	CCATTTIGCT TGCAGGAAAC ATACCTTAAG TITTITITIGT TTTGTTTIIGTT	720
35	TTTTGTTTTC CTTTATGAAG AAAAAATAAA ATAGTCACAT TTTTAATACY AAAAAATGGA	780
55	CAAAAAAAGT CGAGGGGGG	799
40	(2) INFORMATION FOR SEQ ID NO: 282:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2196 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 282:	
50	AAAGACTCTA ACATCCATGA GCTTGAACAT GAGCAAGAGC CTACTTGTGC CKSCCAGATG	60
	GCTGAGCCCT TCCGTACCTT CCGAGATGGA TGGGTCTCCT ACTACAACCA GCCTGTGTTT	120
55	CTGGCTGGCA TGGGTCTTGC TTTCCTTTAT ATGACTGTCC TGGGCTTTGA CTGCATCACC	180
	ACAGGGTACG CCTACACTCA GGGACTGAGT GGTTCCATCC TCAGTATTTT GATGGGAGCA	240
60	TCAGCTATAA CTGGAATAAT GGGAACTGTA GCTTTTACTT GGCTACGTCG AAAATGTGGT	300

	TTGGTTCGGA	CAGGTCTGAT	CTCAGGATTG	GCACAGCTTT	CCTGTTTGAT	CTTGTGTGTG	360
	ATCTCTGTAT	TCATGCCTGG	AAGCCCCCTG	GACTTGTCCG	TTTCTCCTTT	TGAAGATATC	420
5	CGATCAAGGT	TCATTCAAGG	AGAGTCAATT	ACACCTACCA	AGATACCIGA	AATTACAACT	480
	GAAATATACA	TGTCTAATGG	GTCTAATTCT	GCTAATATTG	TCCCGGAGAC	AAGTCCTGAA	540
10	TCTGTGCCCA	TAATCTCTGT	CAGTCTGCTG	TTTGCAGGCG	TCATTGCTGC	TAGAATCGGT	600
10	CTTTGGTCCT	TTGATTTAAC	TGTGACACAG	TTGCTGCAAG	AAAATGTAAT	TGAATCTGAA	660
	AGAGGCATTA	TAAATGGTGT	ACAGAACTCC	ATGAACTATC	TTCTTGATCT	TCTGCATTTC	720
15	ATCATGGTCA	TCCTGGCTCC	AAATCCTGAA	GCTTTTGGCT	TGCTCGTATT	GATTICAGTC	780
	TCCTTTGTGG	CAATGGGCCA	CATTATGTAT	TTCCGATTTG	CCCAAAATAC	TCTGGGAAAC	840
20	AAGCTCTTTG	CTTGCGGTCC	TGATGCAAAA	GAAGTTAGGA	AGGAAAATCA	AGCAAATACA	900
20	TCTGTTGTTT	GAGACAGTTT	AACTGTTGCT	ATCCTGTTAC	TAGATTATAT	AGAGCACATG	960
	TGCTTATTTT	GTACTGCAGA	ATTCCAATAA	ATGGCTGGGT	GTTTTGCTCT	GTTTTTACCA	1020
25	CAGCTGTGCC	TTGAGAACTA	AAAGCTGTTT	AGGAAACCTA	AGTCAGCAGA	AATTAACTGA	1080
	TTAATTTCCC	TTATGTTGAG	GCATGGAAAA	AAAATTGGAA	AAGAAAAACT	CAGTTTAAAT	1140
30	ACGGAGACTA	TAATGATAAC	ACTGAATTCC	CCTATTTCTC	ATGAGTAGAT	ACAATCTTAC	1200
30	GTAAAAGAGT	GGTTAGTCAC	GTGAATTCAG	TTATCATTIG	ACAGATTCTT	ATCTGTACTA	1260
	GAATTCAGAT	ATGTCAGTTT	TCTGCAAAAC	TCACTCTTGT	TCAAGACTAG	СТААТТТАТТ	1320
35	TTTTTGCATC	TTAGTTATTT	ТТАААААСАА	ATTCTTCAAG	TATGAAGACT	AAATTTTGAT	1380
	AACTAATATT	ATCCTTATTG	ATCCTATTGA	TCTTAAGGTA	TTTACATGTA	TGTGGAAAAA	1440
40	CAAAACACTT	AACTAGAATT	CTCTAATAAG	GTTTATGGTT	TAGCTTAAAG	AGCACCTTTG	1500
40	TATTTTTATT	ATCAGATGGG	GCAACATATT	GTATGAAGCA	TATGTAGCAC	TTCACAGCAT	1560
	GGTTATCATG	TAAGCTGCAG	GTAGAAGCAA	AGCTGTAAAG	TAGATTTATC	ACACAATGAC	1620
45	TGCATACAGA	CTTCAAATAT	GTCAATAGTT	TGGTCATAGA	ACCTAGAAGC	CAAAAGCCAC	1680
	ACAGAAGGGC	AAGAATCCCA	ATTTAACTCA	TGTTATCATC	ATTAGTGATC	TGTGTTGTAG	1740
50	AACATGAGGG	TGTAAGCCTT	CAGCCTGGCA	AGTTACATGT	AGAAAGCCCA	CACTTGTGAA	1800
50	GGTTTTGTTT	TACAAATCAC	TTGATTTAAC	ACACTCAGGT	AGAATATTTT	TATTTTTACT	1860
	GTTTTATACC	CAGAAGTTAT	TTCTACATTG	TTCTACAGCA	AGAATATTCA	TAAAAGTATC	1920
55	CCTTTCAAAT	GCCTTTGAGA	AGAATAGAAG	AAAAAAAGTT	TGTATATATT	TTAAAAATT	1980
	GTTTTAAAAG	TCAGTTTGCA	ACATGTCTGT	ACCAAGATGG	TACTITGCCT	TAACCGTTTA	2040
60	TATGCACTTT	CATGGAGACT	GCAATACGTT	GCTATGAGCA	CTTTCTTTAT	CCTTGGAGTT	2100

510

TAATCCTTTG	CTTCATCTTT	CTACAGTATG	ACATAATGAT	TTGCTATGTT	GTAAAATCTT	2160
TGTAAAAAAT	TTCTATATAA	AATATTTGAA	ACTTAA			2196

(2) INFORMATION FOR SEQ ID NO: 283:

- 5

20

25

30

35

40

45

50

55

10

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1185 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

15

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 283:

(AL) DEGULACE EDUCATION. DEG ES NO. 203.

GCAGTTAAGG CTTCTGATAA GGAAAGAGAG TCTGAACAGA GCACACACAT CTGGAGCTCC 60 AGGAGTGGGG GATGCAGCAT CAGATTCCAT CTTGAATTTC TGCTAAAATA CTTTGTACTC 120 ATAATGGATC TCAACAAGA TCTGTATITC ATCTGTGGCT CCATCTTCCC TCTGGGTCAA 180 GTAGATGTTA AGCTGGACCT TGGCACGCCT CTTAACATGA AGAGATCTAG CTAGACAGAC 240 AGACTCCCCC ATTTATGGGA ACAAGAATTC AATTTATTCT CTATTTATAA AACATTTTTT 300 360 TAAAGTGCCT TGGGTATAAA AATCTAAATG TCTGCGGTGT GATCAGTCAG GAGCACGTAA 420 CTATCACTCT TCGCATCCTT TCGCTCACTCG GAGATCCTTT GGGGGCTGGG AGGTCCTTCT GTCCCAGGCT AAAGGAAAAG CTTCACAAGG GTAAGAGCCA CAGAACCCTC GGCAAGAAAG 480 540 GCCGGTCAGG GAGAATGAAT GGTACAGAGA GGAAAGGAAG GAAAGGGGGT GGAACAGAGG TAGAAGGCAA GGAAGGGATG CCGCACTGGA GACCGATGGG GACACTCTAA TTGTGCAAGA 600 660 GGGAGGATCT TCCTTCTTGA ATGCTGAACA CAGCTAGTCT GAACCTTCCT TGGAAAGTCC 720 AGCTGTTTGC CCATGCATAG GGCCAACTCT CCCTGCAAAG CAGCAAATGT GGCTTCTATC 780 AGGAAGGAAA AGTATCCATC AGTGTGACAA GAGGTCACCT TCGAACTTGC ATGAACTCCT 840 TGCGCAGCCA CAAAGAGTCC TGGTAGAAGT GAGGATCGCC TAGTCTTACG GCTGTCCGTT 900 TATAGAAGTA GCAGTACAAC ACTGCTGCTA GTCTCTGGAA TACAAACAGC ATTTGAAGTC CATCTGTCCA TATGAAGCTG TTGGAGTTTT TCCAGCGTAA GTTCATGACC CAGACATGAA 960 1020 GGGAGATGCT GAGGGCAAAG TACACAGCTG TCAGGATGAT GGTCCCTTTG AACTTATGGA 1080 ATAGGAGGTT GACCAGGCCA GCCTGGAAGA CGAAGGTGTT GAAGAACATG AGGAAAATGA TGATGATGTT GAAGAGGACT GCAATATCCT GGATGCACTG AGGGAGAGGY TTCTAGTTCC 1140 TTTGAATGAG AGCTGTTTCC CTTGCTCTAA GGCAAGCACC TCCAA 1185

511

(2) INFORMATION FOR SEQ ID NO: 284:

_ 5

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1634 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 284:

10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 284:	
10	AGGGAAAGGG GAGGGTAGC GGAGGGTAGC AGGTGAGTTC CTAGGGCTGG AAGGTTTAGC	60
	AGCAGCCTGG TGCAGTGCCC TGTCATCAAG ACAAACCCAC GGTCCTMCTG GGTGCCTACC	120
15	AAGCTTGGTT TGTACAAAAG CAAGGTGGGA GTCTATTTTT GTACATGAGA TACATCACAC	180
	TTACCTGTGG GCCAGTATTG TGAAGTGAGT CTGAGTTGTT TACACTGATG CCTTCCCTGC	240
20	CCACCACAAA TIGIGIACAT AGICTICAGA IGATACCACC CCTITCCCCA GCTCCCAACC	300
20	AAGAGCTGGT TCTAGGCCTG TGTTATATGT CATATTTAGC STTTTTATAT ATGACCTTTG	360
	ATTTCTGTTG TTTGTATTTT AGCACAGTGT ATGCACCTTC ATTTAAATAC ATCTGTGTGC	420
25	ATACAGATAC GCATATATGT GTGTGCGTAT GCATATATCT CTCATCTGTA GTTTCCAAGA	480
	GTTCAGCTGA AGCAGATGGA GTCCTGCAGC CCAGGAGACA CCCTGCATCC CTGCTAATAG	540
30	TGTTTGCCAC AAGTATTAGT GAGTCTTCCT TATTAATATT TTCATTTCAG AAGACTGAAG	600
30	CAAAGCTGAT AGTGTTTGCT GTTTCTTTGG CAGCTAAGTG AGGGTCTTGG GATGACTTGC	660
	TGTGTTCCTC AAGCTGCACT TTGGGGCCAT CTCTGCAGTA TTAGCCCCCT TTTTGCTTGG	720
35	TGGTACTCTG TCTGTGCCTG TGTGTGTGTG TGATAGTCAC TCTTGCATGG CTTCCATGTC	780
	TGGTTTGTGG CATTTGGGGA TAAGGTGCTG AAGCCAGAGC ATTTGCAGTT TGTTTGAGGC	840
40	CTCGTTGCCA ATGATAGATC ACTCCTGTTG ACCTGGTATG TCTGCTTGCT TGCTGCTTTT	900
40	CCTTCCTTTC TCTTCGAAGA GGAAAGGACT CTCGTCAGGC CCAGGCTGAG TGAGATGAGC	960
	TGCAGCTGGC TCATGGCCTT CTTAGAGCAG AGAGAGGAGT ATGTCATTTT ACTAAGTTCC	1020
45	TAAACAAACA TTTATGCAGG CAACACTCCT TGCAGATCCA GAAACTGAGG CACAATAGGG	1080
	TTATGACTTG CTCAAGAATA TGTAGCTGCT AGGGGGTAAA TCAAGGCATC ACAATTTCTG	1140
50	TTCAGCGGGC AGGAATAGGC TGTGAATTGC TAGCACTTTT TTTTTTTAAG CAATTACTTT	1200
50	TTGACTTGTT CCTCTGAAAG TGCAAGAGGC GTACACCTTT CCCAAATGTA GACTAGAATC	1260
	TGCAGGATGC CACCCACTGT ATAGTTCTGC TTTCCCAGAG AGGAAGAACT TTTAGAAACC	1320
55	AAATGATCTT AATTGTTATT GCCCACCCCT GGCTTTTCCG GGTAGAAAAT TCACAGTAGG	1380
	AATGATTGTT AAGAGAGAGT GCTTGGAACC ATGGGTTAAC AGGAAAGGCT ACCTAACTTC	1440
60	ACATATCTGC AACCAGAGCA GCCACCAAGC ATTACTTAGC AGCAGGAAAA TGATTGTATT	1500

-	5	KTTCACCGGG	GGTC					1634
		CTGGGCGCGG	TGGCTCACAC	CTGTAATCCC	AGCAYTTTGG	GGAGGCCSAG	ccccccccc	1620
		TGAGTTCCTG	TGTGTCCAAA	ACTGAGGCAC	CATGITCITT	GAAAACATGC	CACCTCAAGG	1560

10 (2) INFORMATION FOR SEQ ID NO: 285:

15

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1795 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 285:

20	TTCCCCCCAG	GTTGGCTTCC	TTCGATTCCT	TTTCTTGGTA	TCAACGTTTG	ATTGGAAGAA	60
	CAACCCCCTC	TTTGTCAACC	TCAATAATGA	GCTCACTGTG	GAGGAGCAGC	TCGGGCACAG	120
25	CTCMCCGTYA	TGGTCATTGT	TACCCCCAA	GACCGCAAAA	ACTCTGTGTG	GACACAGGAT	180
23	GGACCCTCAG	CCCAGATCCT	GCAGCAGCTT	GTGGTCCTGG	CAGCTGAAGC	CCTGCCCATG	240
	TTAGAGAAGC	AGCTCATGGA	TCCCCGGGGA	CCTGGGGACA	TCAGGACAGT	GTTCCGGCCG	300
30	CCCTTGGACA	TTTACGACGT	GCTGATTCGC	CTGTYTCCTC	GCCATATCCC	GCGGCACCGC	360
	AGGCTTGTGG	ACTCGCCAGY	TGCCTCCTTC	TGCCGGGGCC	TGCTCAGCCA	GCCGGGGCCC	420
35	TCATCCCTGA	TGCCCGTGCT	GGGTNATGAT	CCTNCTCAGC	TCTATCTGAC	GCAGCTCAGG	480
55	GAGGCCTTTG	GGGATCTGGC	CCTTTTCTTC	TATGACCAGC	ATGGTGGAGA	GGTGATTGGT	540
	GTCCTCTGGA	AGCCCACCAG	CTTCCAGCCG	CAGCCCTTCA	AGGCCTCCAG	CACAAAGGGG	600
40	CGCATGGTGA	TGTCTCGAGG	TGGGGAGCTA	GTAATGGTGC	CCAATGTTGA	AGCAATCCTG	660
	GAGGACTTTG	CTGTGCTGGG	TGAAGGCCTG	GTGCAGACTG	TGGAGGCCCG	AAGTGAGAGG	720
45	TGGACTGTGT	GATCCCAGCT	CTGGAGCAAG	CTGTAGACGG	ACAGCAGGAC	ATTGGACCTC	780
43	TAGAGCAAGA	TGTCAGTAGG	ATGACCTCCA	CCCTCCTTGG	ACATGAATCC	TCCATGGAGG	840
	GCCTGCTGGC	TGAACATGCT	GAATCATCTC	CAACAAAACC	CAGCCCCAAC	TTTCTCTCTG	900
50	ATGCTCCAGC	ATTGGGGCAG	GGCATGGTG	GCCCATGTAG	TCTCCTGGGC	CTCACCATCC	960
	CAGAAGAGGA	GTGGGAGCCA	GCTCAGAGAA	GGAACTGAAC	CCAGGAGATC	CATCCACCTA	1020
55	TTAGCCCTGG	GCCTGGACCT	CCCTGCGATT	TCCCACTCCT	TTCTTAGTCT	TCTTCCAGAA	1080
33	ACAGAGAAGG	GGATGTGTGC	CTGGGAGAGG	CTCTGTCTCC	TTCCTGCTGC	CAGGACCTGT	1140
	GCCTAGACTT	AGCATGCCCT	TCACTGCAGT	GTCAGGCCTT	TAGATGGGAC	CCAGCGAAAA	1200
60	TGTGGCCCTT	CTGAGTCACA	TCACCGACAC	TGAGCAGTGG	AAAGGGGCTA	TATGTGTATG	1260

	AATAGACCAC ATTGAAGGAG CACAATGCCC TCCTGTGTTG ATGCCACTTC CCAGGGTGGA	1320
5	GACAGTGGAA AAGAACCGAG GACAGGAAAG GATTGGGTAG GTGAAGGGGT CAGGGGACTG	1380
3	GTAGTCACCC AATCTTGGAG AGGTGCAAAA AGCACTGGGG GCTACCCGTT AGCTGCATCT	1440
	GCCCTGGCTG TTTGCCCCGTT CATGTCACAA ACTGCCACTA CTATGTACCT GCAGTGGGGT	1500
10	TGCAGAGATG GGGGAGACTC AAGTCTTACT CCCCAGGAGC TCCCAGGGCC CAAGGAGGAG	1560
	AATGCTGCCT CCTTTCAGTC TGGTCTACAC CCACTTTCTG GTAGCCTCTC TGCTTCCTGT	1620
15	AATTCTGGCT GTTTTTCCAG ACTCAGCTCA AATAGTGCCC CTCCTTAAGC CCATCCCTCG	1680
	CCCCCAGCCT GAGGTGATCT TTCCCTCCTC TGAACTATTA GAGCAGTTAC TGTCTGTTCA	1740
	GTTCGTTTGG CAGGCACACA CAGTGGCATA AATTCTATTG TTTTGAACTC TGATT	1795
20		
	(2) INFORMATION FOR SEQ ID NO: 286:	
2.5	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 858 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
30	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 286:	
	TCTGCTTTCG GTGCTGCGTG TACTGCTGGG CGGCTTCTTC GCGCTCGTGG GGTTGGCCAA	60
35	GCTCTCGGAG GAGATCTCGG CTCCAGTTTC GGAGCGGATG AATGCCCTGT TCGTGCAGTT	120
35	GCTCTCGGAG GAGATCTCGG CTCCAGTTTC GGAGCGGATG AATGCCCTGT TCGTGCAGTT TGCTGAGGTG TTCCCGCTGA AGGTATTTGG CTACCAGCCA GATCCCCTGA ACTACCAAAT	120 180
	TGCTGAGGTG TTCCCGCTGA AGGTATTTGG CTACCAGCCA GATCCCCTGA ACTACCAAAT	180
	TGCTGAGGTG TTCCCGCTGA AGGTATTTGG CTACCAGCCA GATCCCCTGA ACTACCAAAT AGCTGTGGGC TTTCTGGAAC TGCTGGCTGG GTTGCTGCTG GTCATGGGCC CACCGATGCT	180 240
40	TGCTGAGGTG TTCCCGCTGA AGGTATTTGG CTACCAGCCA GATCCCCTGA ACTACCAAAT AGCTGTGGGC TTTCTGGAAC TGCTGGCTGG GTTGCTGCTG GTCATGGGCC CACCGATGCT GCAAGAGATC AGTAACTTGT TCTTGATTCT GCTCATGATG GGGGCTATCT TCACCTTGGC	180 240 300
40	TGCTGAGGTG TTCCCGCTGA AGGTATTTGG CTACCAGCCA GATCCCCTGA ACTACCAAAT AGCTGTGGGC TTTCTGGAAC TGCTGGCTGG GTTGCTGCTG GTCATGGGCC CACCGATGCT GCAAGAGATC AGTAACTTGT TCTTGATTCT GCTCATGATG GGGGCTATCT TCACCTTGGC AGCTCTGAAA GAGTCACTAA GCACCTGTAT CCCAGCCATT GTCTGCCTGG GGTTCCTGCT	180 240 300 360
40 45	TGCTGAGGTG TTCCCGCTGA AGGTATTTGG CTACCAGCCA GATCCCCTGA ACTACCAAAT AGCTGTGGGC TTTCTGGAAC TGCTGGCTGG GTTGCTGCTG GTCATGGGCC CACCGATGCT GCAAGAGATC AGTAACTTGT TCTTGATTCT GCTCATGATG GGGGCTATCT TCACCTTGGC AGCTCTGAAA GAGTCACTAA GCACCTGTAT CCCAGCCATT GTCTGCCTGG GGTTCCTGCT GCTGCTGAAT GTCGGCCAGC TCTTAGCCCA GACTAAGAAG GTGGTCAGAC CCACTAGGAA	180 240 300 360 420
40 45	TGCTGAGGTG TTCCCGCTGA AGGTATTTGG CTACCAGCCA GATCCCCTGA ACTACCAAAT AGCTGTGGGC TTTCTGGAAC TGCTGGCTGG GTTGCTGCTG GTCATGGGCC CACCGATGCT GCAAGAGATC AGTAACTTGT TCTTGATTCT GCTCATGATG GGGGCTATCT TCACCTTGGC AGCTCTGAAA GAGTCACTAA GCACCTGTAT CCCAGCCATT GTCTGCCTGG GGTTCCTGCT GCTGCTGAAT GTCGGCCAGC TCTTAGCCCA GACTAAGAAG GTGGTCAGAC CCACTAGGAA GAAGACTCTA AGTACATTCA AGGAATCCTG GAAGTAGAGC ATCTCTGTCT CTTTATGCCA	180 240 300 360 420 480
40 45	TGCTGAGGTG TTCCCGCTGA AGGTATTTGG CTACCAGCCA GATCCCCTGA ACTACCAAAT AGCTGTGGGC TTTCTGGAAC TGCTGGCTGG GTTGCTGCTG GTCATGGGCC CACCGATGCT GCAAGAGATC AGTAACTTGT TCTTGATTCT GCTCATGATG GGGGCTATCT TCACCTTGGC AGCTCTGAAA GAGTCACTAA GCACCTGTAT CCCAGCCATT GTCTGCCTGG GGTTCCTGCT GCTGCTGAAT GTCGGCCAGC TCTTAGCCCA GACTAAGAAG GTGGTCAGAC CCACTAGGAA GAAGACTCTA AGTACATTCA AGGAATCCTG GAAGTAGAGC ATCTCTGTCT CTTTATGCCA TGCAGCTGTC ACAGCAGGAA CATGGTAGAA CACAGAGTCT ATCATCTTGT TACCAGTATA	180 240 300 360 420 480 540
40 45	TGCTGAGGTG TTCCCGCTGA AGGTATTTGG CTACCAGCCA GATCCCCTGA ACTACCAAAT AGCTGTGGGC TTTCTGGAAC TGCTGGCTGG GTTGCTGCTG GTCATGGGCC CACCGATGCT GCAAGAGATC AGTAACTTGT TCTTGATTCT GCTCATGATG GGGGCTATCT TCACCTTGGC AGCTCTGAAA GAGTCACTAA GCACCTGTAT CCCAGCCATT GTCTGCCTGG GGTTCCTGCT GCTGCTGAAT GTCGGCCAGC TCTTAGCCCA GACTAAGAAG GTGGTCAGAC CCACTAGGAA GAAGACTCTA AGTACATTCA AGGAATCCTG GAAGTAGAGC ATCTCTGTCT CTTTATGCCA TGCAGCTGTC ACAGCAGGAA CATGGTAGAA CACAGAGTCT ATCATCTTGT TACCAGTATA ATATCCAGGG TCAGCCAGTG TTGAAAGAGA CATTTTGTCT ACCTGGCACT GCTTTCTCTT	180 240 300 360 420 480 540
40 45 50	TGCTGAGGTG TTCCCGCTGA AGGTATTTGG CTACCAGCCA GATCCCCTGA ACTACCAAAT AGCTGTGGGC TTTCTGGAAC TGCTGGCTGG GTTGCTGCTG GTCATGGGCC CACCGATGCT GCAAGAGATC AGTAACTTGT TCTTGATTCT GCTCATGATG GGGGCTATCT TCACCTTGGC AGCTCTGAAA GAGTCACTAA GCACCTGTAT CCCAGCCATT GTCTGCCTGG GGTTCCTGCT GCTGCTGAAT GTCGGCCAGC TCTTAGCCCA GACTAAGAAG GTGGTCAGAC CCACTAGGAA GAAGACTCTA AGTACATTCA AGGAATCCTG GAAGTAGAGC ATCTCTGTCT CTTTATGCCA TGCAGCTGTC ACAGCAGGAA CATGGTAGAA CACAGAGTCT ATCATCTTGT TACCAGTATA ATATCCAGGG TCAGCCAGTG TTGAAAGAGA CATGTTATGC ACTGGCACT GCTTTCTCTT TTTAGCTTTA CTACTCTTTT GTGAGGGAGTA CATGTTATGC ATATTAACAT TCCTCATGTC	180 240 300 360 420 480 540 600

	TTAAAACCTT ATAAACTA	858
5	(2) INFORMATION FOR SEQ ID NO: 287:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 915 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 287:	
13	GAATTCGGCA CGAGCGCGGC CATGGCGCTC CTGCTTTCGG TGCTGCGTGT ACTGCTGGGC	60
	GGCTTCTTCG CGCTCGTGGG GTTGGCCAAG CTCTCGGAGG AGATCTCGGC TCCAGTTTCG	120
20	GAGCGGATGA ATGCCCTGTT CGTGCAGTTT GCTGAGGTGT TCCCGCTGAA GGTATTTGGC	180
	TACCAGCCAG ATCCCCTGAA CTACCAAATA GCTGTGGGCT TTCTGGAACT GCTGGCTGGG	240
25	TIGCTGCTGG TCATGGGCCC ACCGATGCTG CAAGAGATCA GTAACTTGTT CTTGATTCTG	300
23	CTCATGATGG GGGCTATCTT CACCTTGGCA GCTCTGAAAG AGTCACTAAG CACCTGTATC	360
	CCAGCCATTG TCTGCCTGGG GTTCCTGCTG CTGCTGAATG TCGGCCAGCT CTTAGCCCAG	420
30	ACTAAGAAGG TGGTCAGACC CACTAGGAAG AAGACTCTAA GTACATTCAA GGAATCCTGG	480
	AAGTAGAGCA TCTCTGTCTC TTTATGCCAT GCAGCTGTCA CAGCAGGAAC ATGGTAGAAC	540
35	ACAGAGTCTA TCATCTTGTT ACCAGTATAA TATCCAGGGT CAGCCAGTGT TGAAAGAGAC	600
33	ATTTTGTCTA CCTGGCACTG CTTTCTCTTT TTAGCTTTAC TACTCTTTTG TGAGGAGTAC	660
	ATGTTATGCA TATTAACATT CCTCATGTCA TATGAAAATA CAAAATAAGC AGAAAAGAAA	720
40	TTTAAATCAA CCAAAATTCT GATGCCCCAA ATAACCACTT TTAATGCCTT GGTGTAAGTA	780
	TACCTCTGAA CTTTTTTCTG TGCCTTTAAA CAGATATATA TTTTTTTTWA ATGAAAATAA	840
15	AACCATATAT CCTATTTTAT TTCCTCCTTT TAAAACCTTA TAAACTATAA MAAAAAAAA	900
45	AAAAAAAAA CTCGA	915
50	(2) INFORMATION FOR SEQ ID NO: 288:	

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1517 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 288:

60

	CCTTGTGGCA	ACTAGTGGGT	CCCCGGGCT	GCAGNAATTC	GGGCAGTGGT	TCTGNGTCTG	60
	AAGATACTCT	GAGTTCCTCT	GAGAGATCCA	AAGGCTCCGG	GAGCAGACCC	CCAACCCCCA	120
5	AAAGCAGCCC	TCAGAAGACC	AGGAAGAGCC	CTCAGGTGAC	CAGGGGTAGC	CCTCAGAAGA	180
	CCAGCTGTAG	CCCTCAGAAG	ACCAGGCAGA	GCCCTCAGAC	GCTGAAGCGG	AGCCGAGTGA	240
10	CCACCTCACT	TGAAGCTTTG	CCCACAGGAC	AGTGCTGACA	GACAAGAGTG	GGCGACAGTG	300
10	GAAGCTGAAG	TCCTTCCAGA	CCAGGGACAA	CCAGGGCATT	CTCTATGAAG	CTGCACCCAC	360
	CTCCACCCTC	ACCTGTGACT	CAGGACCACA	GAAGCAAAAG	TTCTCACTCA	AACTGGATGC	420
15	CAAGGATGGG	CGCTTGTTCA	ATGAGCAGAA	CTTCTTCCAG	CGGCCGCCA	AGCCTCTGCA	480
	AGTCAACAAG	TGGAAGAAGC	TGTACTCGAC	CCCACTGCTG	GCCATCCCTA	CCTGCATGGG	540
20	TTTCGGTGTT	CACCAGGACA	AATACAGGTT	CTTGGTGTTA	CCCAGCCTGG	GGAGGAGCCT	600
20	TCAGTCGGCC	CTGGATGTCA	GCCCAAAGCA	TGTGCTGTGC	AGAGAGGTCT	GTGCTGCAGG	660
	TGGCCTGCCG	GCTGCTGGAT	GCCCTGGAGT	TCCTCCATGA	GAATGAGTAT	GTTCATGGAA	720
25	ATGTGACAGC	TGAAAATATC	TTTGTGGATC	CAGAGGACCA	GAGTCAGGTG	ACTITGGCAG	780
	GCTATGGCTT	CGCNTTCCGC	TATTGCCCAA	GTGGCAAACA	CGTGGCCTAC	GTGGAAGGCA	840
30	GCAGGAGCCY	TCACGAGGGG	GACCTTGAGT	TTCATTAGCA	TGGACCTGCA	CAAGGGATGC	900
30	GGGCCCTCCC	GCCGCRGYGA	CCTCCAGAGC	CTGGGYTAMT	GCATGCTGAA	GTGGYTCTAM	960
	GGGTTTCTGC	CATGGACAAA	TTGCCTTCCA	AMAMTGAGGA	CATCĂTGAĂG	CAAAAACAGA	1020
35	AGTTGCCTTG	GGATTCATTT	TAATGTAAGC	TKGACTTTGT	CATGCCAGAA	ACAAGGCTCG	1080
	GTCACCGTCA	GCAGTTTGCA	GTTTTCCACC	TCCWCCCAGT	TCCTCCGTGT	GGTTGACCCA	1140
40	GATATCTCCG	TTATGCAGCC	CCTCCCGCC	GACCACCTCC	CTCCCTTTGA	GTCAGCCACA	1200
,,	GACAGCCTAC	TTGACGGCCC	CGCTGGCCCC	CACATTCCAC	TGAACTGTGC	GGATGCCACA	1260
	GTGACCCCCT	CTCAGGCACA	GCATGACCTC	CTGAAGTCGA	GCCTGCTTGC	TTTGAACCTA	1320
45	CCAGTTAAAA	TCTCCTCAAA	ATGTTTGGAT	ACCGCCCATT	GGCCCCTCAC	AGCCACGAGC	1380
	TCCCTGACCA	GTGTGCGTGT	GTGTGTGTGT	GTGTGTCTGT	GIGIGIGCTI	GGGACGGGTG	1440
50	GGGAGGTCAC	CTTTGGGTGT	GCGGTGTGCC	CCCAGGACCT	GTAAGTAATA	AAATCTTTAT	1500
20	TTCCAAAAAA	AAAAAA					1517

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3865 base pairs

(B) TYPE: nucleic acid

⁽²⁾ INFORMATION FOR SEQ ID NO: 289:

516

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 289:

_	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 289:	
- 5	TOGAGGGGG GAGCTTCCTT GAGCAGTGGG CCCAGGCCTG GCCCTCCACA CTTCATTCTC	60
	TGACCITTCT CTCTCCTCAT TTCGGTGCAT GTCCTTTCTG CAGCTGCCTT TCAGCACAGG	120
10	TGGTTCCACT GGGGCAGCT AACGCTGAGT GACAAGGATG GGAAGCCACA GGTGCATTTT	180
	ACTCAAGTCT TCTCTAGTCA ATGAGGGGCA CCCAGTGCTT CTAGGGCAGG CTGGGTGGTG	240
15	GTCCCCTAGG TATCAGCCTC TCTTACTGTA CTCTCCGGGA ATGTTAACCT TTCTATTTTC	300
13	AGCCTGTGCC ACCTGTCTAG GCAAGCTGGC TTCCCCATTG GCCCCTGTGG GTCCACAGCA	360
	GCGTGGCTSC CCCCCAGGGC CACCGCTTCT TTCTTGATCC TCTTTCCTTA ACAGTGACTT	420
20	GGGCTTGAGT CTGGCAAGGA ACCTTGCTTT TAGCTTCACC ACCAAGGAGA GAGGTTGACA	480
	TGACCTCCCC GCCCCTCAC CAAGGCTGGG AACAGAGGGG ATGTGGTGAG AGCCAGGTTC	540
25	CTCTGGCCCT CTCCAGGGTG TTTTCCACTA GTCACTACTG TCTTCTCCTT GTAGCTAATC	600
23	AATCAATATT CTTCCCTTGC CTGTGGGCAG TNGGAGAGTG CTGCTGGGTG TACGCTGCAC	660
	CTGCCCACTG AGTTGGGGAA AGAGGATAAT CAGTGAGCAC TGTTCTGCTC AGAGCTCCTG	720
30	ATCTACCCCA CCCCCTAGGA TCCAGGACTG GGTCAAAGCT GCATGAAACC AGGCCCTGGC	780
	AGCAACCCTG GGAATGGCTG GAGGTGGGAG AGAACCTGAC TTCTCTTTCC CTCTCCCTCC	840
35	TCCAACATTA CTGGAACTCT ATCCTGTTAG GATCTTCTGA GCTTGTTTCC CTGCTGGGTG	900
55	GGACAGAGGA CAAAGGAGAA GGGAGGGTCT AGAAGAGGCA GCCCTTCTTT GTCCTCTGGG	960
	GTAAATGAGC TTGACCTAGA GTAAATGGAG AGACCAAAAG CCTCTGATTT TTAATTTCCA	1020
40	TAAAATGITA GAAGTATATA TATACATATA TATATTTCTT TAAATTTTTG AGTCTTTGAT	1080
	ATGTCTAAAA ATCCATTCCC TCTGCCCTGA AGCCTGAGTG AGACACATGA AGAAAACTGT	1140
45	GTTTCATTTA AAGATGTTAA TTAAATGATT GAAACTTGGC TGTGGCTACT GCTTCTTAAT	1200
15	GTTGGGGGGA CAGGGCAGTG GTCTGGGCCC ACATTTAGAA GGGAAAATGT TTTGCCTGCT	1260
	GCACACATTG GACCCAAGTA TGGGCCTCTT CTGCCTAGTA CTGCCAAAGG GACTGTTAAG	1320
50	GTGTCTTGTC CATCTTCTAC CCCCCACCCC CCATTACGGG TAAAGGRAAC CCCAGACTAG	1380
	GTGAGGGGCC AGCAGCTGCC TCACATTGTG TTCTCTCCTG AGATGGTCCA GCTCACATCC	1440
55	AGACACCTTG TTCAGACATT TTATTTGAAT TTATGACAGT GATGGGGATT TGACTGAGAT	1500
55	GCCTTATGGA GAAGTACCCC ACCCTCTATG AAGACAGAAT CACTCTCTGC CATTCATTCT	1560
	GCCTGATGCT AACAACACGC AGCTGATTTA GGGAGTGTCC CAGCCTAGCT GGATCAAGGG	1620
60	AAATTCCAGG AGCCCTGGGG CAGGCCCTGG NCCCCAGTGC CAAGCCTCAG AGTAAGCAGA	1680

CATTGGGAAA GTTGCCAACC ACTTGGTAGA CCACTAGGTT CTCTGTTTTC CCTTCCCTTT 1740 CCTTTTCAAA TCCCACAGTT TCCTGTTGGG GAGAAGCTGT AATTAGCCTA GTCCAGGTAC 1800 _ 5 · CAGATCCCAG CTAGGGGCGC AGCTGNCTTG GATAACTCCA AGAAAACCTG GGCACCAGTA 1860 TTTTTCCAAT TATAAGGACT GTGGCATAAA TTTTTAAATG AGTTATATTG AAACCAGATT 1920 10 TCTCCAGCTG CCAAGGGAAG AAGGTAGGGC TGGACTCCCT GCTGTGGCCC AGCCCTTGTT 1980 AGGGGTTGGT CTCTCACTGC AGCCAGACAG GATGATCCTG GGTTCTGGGG AGGGTAAGCT 2040 GCCCCTTGCC GAGTTCTGCA CCGAATAAAG AGTCCAAACC CGCTGCTTCC GTGTCCTGAG 2100 15 AGATGGGTAA ATGGGTGATG GATGGAGCAG ACTGAAGAGA CAGCAGATGA CTCAGTGGTG 2160 GAAGAAGGG GGAAGATGCT GGGCTGGCTA GCTAATGTTC CCCCCTTTCA GCGATTTACA 2220 20 GGAAATGGAG CCCAGCTTGG TCATGAAGTT GGTTTGCTTC CACTGTGCGA TGCACTCCTC 2280 AGAAATTITG AAGTCAGCCT GCAACTTCTC GAAGACTTTC TTCTTGGGCT TGAGCTCCTC 2340 ATCTGGTTGG CCCTTTTCAT AGCCCTTCAC AAACACGTGC TCACCAGGAG CAGAGCCTGC 2400 25 CGGAGGGTCC AGAGGTTCAA CTGGCGGTTT ATCCCTTCTA TAGAAGCACA CAGAAGCATG 2460 CCTTGGGACT CGACTCCTCT CATCTTCTGG GGTTTCAGGT TGCACAGCAC CACTACCAGC 2520 30 CTGTCCTGCA GTTCCTCCTT GGGCACGAAC TGTACCAGGC CGCTCACCAC AGTCCGTGGT 2580 TCAGCTTCCC CCACGTCAAT CTTCTCTACA TACAGGCTGT CTGCATCTGG GTGCTTCTCC 2640 ACAGTGATGA TITTICCCCAC ACGGATATCC AGCCGGGATG GGATGACCTC CTCTGGTTCT 2700 35 2760 GAATTCTTGG CAGGCCTTTG GCCATTGGCT TCTGCTTTGA GGGATCTGGG TAGGCAGCGC TGGCCAGTTT TTTCAGGGCA GGGGTATTAA ACTTTTCCCG GATTGGATCC AGCAACTTGT 2820 40 TCAGTGCGAC TTCAACAGAA TTCTTCAGGT CTCCAGGATG TACAACCTCA GCAGCAAAGT 2880 CCTTTCCAG GTCCACGTAA GCTGTGTAGG TTTTGTTTCC ACCCCATTTC TCATCTCGTA 2940 GGATCACAAA CTCGGACTTA AGGGGAAAAA GGACATGCTT GATGAAGGAC AGAACCCCAT 3000 45 TGTTCTCCAC ATTTCCTGGC TCACAGAAGG CCTTCTTCAG TTTTTTCTTC ACATCCTCCT 3060 TCCGATCAAG GAGATCAATC TTGGACTCCT CTTCTGAAGA GCTCATTTTG CTGCCTGTTA 3120 50 ATCCTGGAAC CATAGGATTC ATCAGATGGA CCCGTTTTGA ATAGCCAAGT CCAGGGAGGT 3180 ACTITCTCTGC AAAGGTGAAA ATCTTTCTCT GATCAATGCC TCCAAATTGG GCATCTACTT 3240 TTAAATACTC TTCATCCAAA GCCTGCAGTC CGGGGTATAA GAGGCCACTC AGCAAAGGGT 3300 55 GCTCCACCTG CTTTACCACC TCAGCTCCAG CCTTCTTGGA ATCGTGCTGT GTGACCACGG 3360 AGGAGAGTCT GTACACATCT AGTGTGTACT CTTTGCTGAG CTGGTAATCA GTGCCTTTGA 3420 60 TGAACTTGAG CTTCTCCAAG GGCACACCAA TGCTCTCCAG CATTGCTTTG ATCACATTCT 3480

	CATAGTAACT GACTCGGAGT TCTAGAAGTT CCCATGGGGC TTTCATGTTA TCCAGGTATG	3540
- 5	CGTGGAGGTC CGCAAACAGA ATTGTTACCT CACACCCTGC CTTTAAGAAG TCTGCAATCT	3600
. ,	TTGACATGGG CACAAAGTAA GCCACATGTG GTTTGCCCGT GGTTGCCGTT CCCCAGTAAA	3660
	TITTAAGTTC CCGCTCCTTC AGTATCTCCT TCAGCTTCTC TTCCCCCAGA ACCTCCTGCA	3720
10	GGTTCCGGGT GATAAGGTGC AGTTTCTCTT CAGGGCTGGG AGCGTCCCCC ATGGTCCGCT	3780
	ACCCCTGCTT CCCCCGCTCA GCCCGGCACC AGAGCCCCTT CCTGGGTCAC CGTCGCCGCC	3840
15	GCGTGCCGGG AACTGTCACG CGAGT	3865
20	(2) INFORMATION FOR SEQ ID NO: 290:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1910 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
25	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 290:	
30	AGGGAGAGGA GGAGAGGGGG TCTGCGCGCG GCCGCTACCC AGAAGCCAGC GGACGGCAGC	60
	ACGGAGTGGG CTGTCCCCGA GCCCAGCCCC GAGCGAGCCC CCCCCCCCC CCCGMAGGAC	120
	GCGCCTYCCA GCCAGCCCGA CTCCTAGGAG GAGGGGAGGC GGGAAAGCAG CTCAAGCCTC	180
35	ACCCACCGCC CTGCCCCCAG CCCCGCCACT CCCAGGCTCC TCGGGACTCG GCGGGTCCTC	240
	CTGGGAGTCT CGGAGGGGAC CGNCTGTGCA GACGCCATGG AGTTGGTGCT GGTCTTCCTC	300
40	TGCAGCCTGC TGGCCCCCAT GGTCCTGGCC AGTGCAGCTG AAAAGGAGAA GGAAATGGAC	360
	CCTTTTCATT ATGATTACCA GACCCTGAGG ATTGGGGGGAC TGGTGTTCGC TGTGGTCCTC	420
	TTCTCGGTTG GGATCCTCCT TATCCTAAGT CGCAGGTGCA AGTGCAGTTT CAATCAGAAG	480
45	CCCCGGGCCC CAGGAGATGA GGAAGCCCAG GTGGAGAACC TCATCACCGC CAATGCAACA	540
	GAGCCCCAGA AAGCAGAGAA CTGAAGTGCA GCCATCAGGT GGAAGCCTCT GGAACCTGAG	600
50	GCGGCTGCTT GAACCTTTGG ATGCAAATGT CGATGCTTAA GAAAACCGGC CACTTCAGCA	660
	ACAGCCCTTT CCCCAGGAGA AGCCAAGAAC TIGTGTGTCC CCCACCCTAT CCCCTCTAAC	720
	ACCATTCCTC CACCTGATGA TGCAACTAAC ACTTGCCTCC CCACTGCAGC CTGCGGTCCT	780
55	GCCCACCTCC CGIGATGTGT GTGTGTGTGT GTGTGTGTGT GTTTGCTAAC	840
	TGTGGTCTTT GTGGCTACTT GTTTGTGGAT GGTATTGTGT TTGTTAGTGA ACTGTGGACT	900
60	CGCTTTCCCA GGCAGGGGCT GAGCCACATG GCCATCTGCT CCTCCCTGCC CCCGTGGCCC	960

	TCCATCACCT	TCTGCTCCTA	GGAGGCTGCT	TGTTGCCCGA	GACCAGCCCC	CTCCCCTGAT	1020
	TTAGGGATGC	GTAGGGTAAG	AGCACGGGCA	GTGGTCTTCA	GTCGTCTTGG	GACCTGGGAA	1080
5	GGTTTGCAGC	ACTITIGICAT	CATTCTTCAT	GGACTCCTTT	CACTCCTTTA	ACAAAAACCT	1140
	TGCTTCCTTA	TCCCACCTGA	TCCCAGTCTG	AAGGTCTCTT	AGCAACTGGA	GATACAAAGC	1200
10	AAGGAGCTGG	TGAGCCCAGC	GTTGACGTCA	GGCAGGCTAT	CCCTTCCGT	GGTTAATTIC	1260
10	TTCCCAGGG	CTTCCACGAG	GAGTCCCCAT	CTGCCCCGCC	CCTTCACAGA	ccccccccc	1320
	ATTCCAGGCC	CAGGGCTTCT	ACTCTGCCCC	TGGGGAATGT	GTCCCCTGCA	TATCTTCTCA	1380
15	GCAATAACTC	CATGGGCTCT	GGGACCCTAC	CCCTTCCAAC	CTTCCCTGCT	TCTGAGACTT	1440
	CAATCTACAG	CCCAGCTCAT	CCAGATGCAG	ACTACAGTCC	CTGCAATTGG	GTCTCTGGCA	1500
20	GGCAATAGTT	GAAGGACTCC	TGTTCCGTTG	GGCCAGCAC	ACCGGGATGG	ATGGAGGGAG	1560
20	AGCAGAGGCC	TTTGCTTCTC	TGCCTACGTC	CCCTTAGATG	GGCAGCAGAG	GCAACTCCCG	1620
	CATCCTTTGC	TCTGCCTGTC	GGTGGTCAGA	GCGCTGAGCG	AGGTGGGTTG	GAGACTCAGC	1680
25	AGGCTCCGTG	CAGCCCTTGG	GAACAGTGAG	AGGTTGAAGG	TCATAACGAG	AGTGGGAACT	1740
	CAACCCAGAT	CCCCCCCTC	CIGICCICIG	TGTTCCCGCG	GAAACCAACC	AAACCGTGCG	1800
30	CTGTGACCCA	TIGCIGITCT	CTGTATCGTG	ATCTATCCTC	AACAACAACA	GAAAAAAGGA	1860
<i>5</i> 0	ATAAAATATC	CTTTGTTTCM	таааааааа	АААААААА	AGGGGGGGG		1910

35

40

(2) INFORMATION FOR SEQ ID NO: 291:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3276 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 291:

45 GCGACCGTCG TTTGAGTCGT CGCTGCCGCT GCCGCTGCCA CTGCCACTGC CACCTCGCGG 60 ATCAGGAGCC AGCGTTGTTC GCCCGACGCC TCGCTGCCGG TGGGAGGAAG CGAGAGGGAA 120 50 180 GCCGCTTGCG GGTTTGTCGC CGCTGCTCGC CCACCGCCTG GAAGAGCCGA GCCCCGGCCC 240 AGTCGGTCGC TTGCCACCGC TCGTAGCCGT TACCCGCGGG CCGCCACAGC CGCCGGCCGG GAGAGGCGCG CGCCATGCCT TCTGGAGCCG ATTCAAAAGG TGATGACCTA TCAACAGCCA 300 55 TTCTCAAACA GAAGAACCGT CCCAATCGGT TAATTGTTGA TGAAGCCATC AATGAGGACA 360 ACAGTGTGGT GTCCTTGTCC CAGCCCAAGA TGGATGAATT GCAGTTGTTC CGAGGTGACA CAGTGTTGCT GAAAGGAAAG AAGAGACGAG AAGCTGTTTG CATCGTCCTT TCTGATGATA 60

CTTGTTCTGA TGAGAAGATT CGGATGAATA GAGTTGTTCG GAATAACCTT CGTGTACGCC 540 TAGGGGATGT CATCAGCATC CAGCCATGCC CTGATGTGAA GTACGGCAAA CGTATCCATG 600 - 5 TGCTGCCCAT TGATGACACA GTGGAAGGCA TTACTGGTAA TCTCTTCGAG GTATACCTTA 660 AGCCGTACTT CCTGGAAGCG TATCGACCCA TCCGGAAAGG AGACATTTTT CTTGTCCGTG 720 10 GTGGGATGCG TGCTGTGGAG TTCAAAGTGG TGGAAACAGA TCCTAGCCCT TATTGCATTG 780 TTGCTCCAGA CACAGTGATC CACTGCGAAG GGGAGCCTAT CAAACGAGAG GATGAGGAAG 840 AGTCCTTGAA TGAAGTAGGG TATGATGACA TTGGTGGCTG CAGGAAGCAG CTAGCTCAGA 900 15 TAAAGGAGAT GGTGGAACTG CCCCTGAGAC ATCCTGCCCT CTTTAAGGCA ATTGGTGTGA 960 1020 AGCCTCCTAG AGGAATCCTG CTTTACGGAC CTCCTGGAAC AGGAAAGACC CTGATTGCTC 20 1080 GASCTGTASC AAATGAGACT GGAGCCTTCT TCTTCTTGAT CAATGGTCCT GAGATCATGA GCAAATTGGC TGGTGAGTCT GAGAGCAACC TTCGTAAAGC CTTTGAGGAG GCTGAGAAGA 1140 ATGCTCCTGC CATCATCTTC ATTGATGAGC TAGATGCCAT CGCTCCCAAA AGAGAAAAA 1200 25 CTCATGGCGA GGTGGAGCGG CGCATTGTAT CACAGTTGTT GACCCTCATG GATGGCCTAA 1260 1320 AGCAGAGGG ACATGTGATT GTTATGGCAG CAACCAACAG ACCCAACAGC ATTGACCCAG 30 CTCTACGGCG ATTTGGTCGC TTTGACAGGG AGGTAGATAT TGGAATTCCT GATGCTACAG 1380 GACCCTTAGA GATTCTTCAG ATCCATACCA AGAACATGAA GCTGGCAGAT GATGTGGACC 1440 TGGAACAGTA GCCAATGAGA CTCACGGCCA TGTGGGTGCT GACTTAGCAG CCCTGTGCTC 1500 35 AGAGGCTGCT CTGCAAGCCA TCCGCAAGAA GATGGATCTC ATTGACCTAG AGGATGAGAC 1560 CATTGATGCC GAGGTCATGA ACTCTCTAGC AGTTACTATG GATGACTTCC GGTGGGCCTT 1620 40 GAGCCAGAGT AACCCATCAG CACTGCGGGA AACCGTGGTA GAGGTGCCAC AGGTAACCTG 1680 GGAAGACATC GGGGGCCTAG AGGATGTCAA ACGTGAGCTA CAGGAGCTGG TCCAGTATCC 1740 TGTGGAGCAC CCAGACAAAT TCCTGAAGTT TGGCATGACA CCTTCCAAGG GAGTTCTGTT 1800 45 CTATGGACCT CCTGGCTGTG GGAAAACTTT GTTGGCCAAA GCCATTGCTA ATGAATGCCA 1860 GGCCAACTIC ATCTCCATCA AGGGTCCTGA GCTGCTCACC ATGTGGTTTG GGGAGTCTGA 1920 50 GGCCAATGTC AGAGAAATCT TTGACAAGGC CCGCCAAGCT GCCCCCTGTG TGCTATTCTT 1980 TGATGAGCTG GATTCGATTG CCAAGGCTCG TGGAGGTAAC ATTGGAGATG GTGGTGGGCC 2040 2100 TGCTGACCGA GTCATCAACC AGATCCTGAC AGAAATGGAT GGCATGTCCA CAAAAAAAAA 55 2160 TGTGTTCATC ATTGGCGCTA CCAACCGGCC TGACATCATT GATCCTGCCA TCCTCAGACC TOGCCGTCTT GATCAGCTCA TCTACATCCC ACTTCCTGAT GAGAAGTCCC GTGTTGCCAT 2220 60 2280 CCTCAAGGCT AACCTGCGCA AGTCCCCAGT TGCCAAGGAT GTGGACTTGG AGTTCCTGGC

	TAAAATGACT AATGGCTTCT CTGGAGCTGA CCTGACAGAG ATTTGCCAGC GTGCTTGCAA	2340
5	GCTGGCCATC CGTGAATCCA TCGAGAGTGA GATTAGGCGA GAACGAGAGA GGCAGACAAA	2400
5	CCCATCAGCC ATGGAGGTAG AAGAGGATGA TCCAGTGCCT GAGATCCGTC GAGATCACTT	2460
	TGAAGAAGCC ATGCGCTTTG CGCGCCGTTC TGTCAGTGAC AATGACATTC GGAAGTATGA	2520
10	GATGTTTGCC CAGACCCTTC AGCAGAGTCG GGGCTTTGGC AGCTTCAGAT TCCCTTCAGG	2580
	GAACCAGGGT GGAGCTGGCC CCAGTCAGGG CAGTGGAGGC GGCACAGGTG GCAGTGTATA	2640
15	CACAGAAGAC AATGATGATG ACCTGTATGG CTAAGTGGTG GTGGCCAGCG TGCAGTGAGC	2700
13	TGGCCTGCCT GGACCTTGTT CCCTGGGGGT GGGGGCGCTT GCCCAGGAGA GGGACCAGGG	2760
	GTGCGCCCAC AGCCTGCTCC ATTCTCCAGT CTGAACAGTT CAGCTACAGT CTGACTCTGG	2820
20	ACAGGGGGTT TCTGTTGCAA AAATACAAAA CAAAAGCGAT AAAATAAAAG CGATTTTCAT	2880
	TTGGTAGGCG GAGAGTGAAT TACCAACAGG GAATTGGGCC TTGGGCTATG CCATTTCTGT	2940
25	TGTAGTTTGG GGCAGTGCAG GGGACCTGTG TGGGGTGTGA ACCAAGGCAC TACTGCCACC	3000
	TGCCACAGTA AAGCATCTGC ACTTGACTCA ATGCTGCCCG AGCCCTCCCT TCCCCCTATC	3060
	CAACCTGGGT AGGTGGGTAG GGGCCACAGT TGCTGGATGT TTATATAGAG AGTAGGTTGA	3120
30	TTTATTTTAC ATGCTTTTGA GTTAATGTTG GAAAACTAAT CACAAGCAGT TTCTAAACCA	3180
	AAAAATGACA TGTTGTAAAA GGACAATAAA CGTTGGGTCN AAATGGGWRA AAAAAAAAAA	3240
35	AAAAAAGGGG GGCCCCTCTA AAGNINCCANN CTTCGT	3276
40	(2) INFORMATION FOR SEQ ID NO: 292: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1695 base pairs	
45	(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 292:	
50	TTGCAATGGT TGAATTCCCC TCCTCACGCC AGCCTAGGAG AAGAAGTTCG TAGTCCCAGA	60
	GGTGAGGCAG GAGGCGGCAG TTTCTGGCGG GTGAGGGCGG AGCTGAAGTG ACAGCGGAGG	120
	CGGAAGCAAC GGTCGGTGGG GCGGAGAAGG GGGCTGGCCC CAGGAGGAGG AGGAAACCCT	180
55	TCCGAGAAAA CAGCAACAAG CTGAGCTGCT GTGACAGAGG GGAACAAGAT GGCGGCGCCG	240
	AAGGGAGCCT CTGGGTGAGG ACCCAACTGG GGCTCCCGCC GCTGCTGCTG CTGACCATGG	300

CCTTGGCCGG AGGTTCGGG ACCGCTTCGG CTGAAGCATT TGACTCGGTC TTGGGTGATA

	CGGCGTCTTG	CCACCGGGCC	TGTCAGTTGA	CCTACCCCTT	GCACACCTAC	CCTAAGGAAG	420
	AGGAGTTGTA	CGCATGTCAG	AGAGGTTGCA	GGCTGTTTTC	AATTTGTCAG	TTTGTGGATG	480
5	ATGGAATTGA	CTTAAATCGA	ACTAAATTGG	AATGTGAATC	TGCATGTACA	GAAGCATATT	540
	CCCAATCTGA	TGAGCAATAT	GCTTGCCATC	TIGGTIGCCA	GAATCAGCTG	CCATTCGCTG	600
10	AACTGAGACA	AGAACAACTT	ATGTCCCTGA	TGCCAAAAAT	GCACCTACTC	ТТТССТСТАА	660
	CTCTGGTGAG	GTCATTCTGG	AGTGACATGA	TGGACTCCGC	ACAGAGCTTC	ATAACCTCTT	720
	CATGGACTTT	TTATCTTCAA	GCCGATGACG	GAAAAATAGT	TATATTCCAG	TCTAAGCCAG	780
15	AAATCCAGTA	CGCACCACAT	TTGGAGCAGG	AGCCTACAAA	TTTGAGAGAA	TCATCTCTAA	840
	GCAAAATGTC	CTATCTGCAA	ATGAGAAATT	CACAAGCGCA	CAGGAATTTT	CTTGAAGATG	900
20	GAGAAAGTGA	TGGCTTTTTA	AGATGCCTCT	CTCTTAACTC	TGGGTGGATT	TTAACTACAA	960
	CTCTTGTCCT	CTCGGTGATG	GTATTGCTTT	GGATTTGTTG	TGCAACTGTT	GCTACAGCTG	1020
	TGGAGCAGTA	TGITCCCTCT	GAGAAGCTGA	GTATCTATGG	TGACTTGGAG	TTTATGAATG	1080
25	AACAAAAGCT	AAACAGATAT	CCAGCTTCTT	CTCTTGTGGT	TGTTAGATCT	AAAACTGAAG	1140
	ATCATGAAGA	AGCAGGGCCT	CTACCTACAA	AAGTGAATCT	TGCTCATTCT	GAAATTTAAG	1200
30	CATTTTTCTT	TTAAAAGACA	agtgtaatag	ACATCTAAAA	TTCCACTCCT	CATAGAGCTT	1260
	TTAAAATGGT	TTCATTGGAT	ATAGGCCTTA	AGAAATCACT	ATAAAATGCA	AATAAAGTTA	1320
	CTCAAATCTG	TGAAGACTGT	ATTTGCTATA	ACTITATIGG	TATTGTTTTT	GTAGTAATTT	1380
35	AAGAGGTGGA	TGTTTGGGAT	TGTATTATTA	TTTTACTAAT	ATCTGTAGCT	ATTITGTTT	1440
	TTGCTTTGGT	TATTGTTTT	TICCCTTITC	TTAGCTATGA	GCTGATCATT	GCTCCTTCTC	1500
40	ACCTCCTGCC	ATGATACTGT	CAGTTACCTT	AGTTAACAAG	CTGAATATTT	DTAAAAATG	1560
-	ATGCTTCTGC	TCAGGAATGG	CCCACAAATC	TGTAATTIGA	AATTTAGCAG	GAAATGACCT	1620
	TTAATGACAC	TACATTITCA	GGAACTGAAA	TCATTAAAAT	TTTATTTGAA	AAAAATTAAT	1680
45	ААААААААА	AANCT					1695

50 (2) INFORMATION FOR SEQ ID NO: 293:

55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1501 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 293:

60 CACTITCAGC AGTCCTTTGC TCTCTTTGCT TCTACCTCAA ATAGCCCCAG GAGTGGGCTT 60

	TAGICICCAA	TATGGAGCAT	CICAAGCIIC	TCCTGGGGGA	TGGGGATTGG	GATGGGCAGA	120
5	ATCTGTTTTG	GWTCTCCGGG	TTATTTCCAG	TGGGTGTAAA	AGCAGAGCTG	GCCTTTCCC	180
,	TCTCTTATCC	CTGAGGGTGG	GTAAGAAGGA	CTGTATCTAC	ACCTGTTCTT	CCCTACCTTC	240
	TCTTTTGTTA	GGGAGGCCTC	ATTCTAAGTT	CCTCAAGAGA	GTCCTTGGCT	TAAAGCTGTA	300
10	GCAAGGGTGT	GCTAGGTGGG	GGATTTGGAG	CAAAACCGTC	GAGTAGGCAT	GATACTGGTA	360
	TGGAGTGGGC	CTGCAAAATC	AGACAGAAAT	GGCTTGAGAA	GCCGCAGGGG	AGCATGCCTG	420
15	TCTCTCAGTG	ATAGAGTATG	GGAGGGACCT	CCCTAGCTTG	GAAAATGAGA	ATTGAAGGGG	480
••	TTATGAACAA	ATAGGATGCC	TAGTTGAGGA	TGTTCCCAAA	GTTTTGTCCA	ATCTTATCAT	540
	TAGTAGATTT	TATAAGCCAC	AGAGACAAAC	CAGAAACGGA	ATAATGTTAC	TTTGGATGCT	600
20	TTATTTTTTT	GTTCTAGGTG	TGGCTTTGTA	CATGCAGAAG	AATGCTATAT	GCTGCACATT	660
	TTGCCTTTAA	AGTCTTACGA	CTTTCCCCAT	TTTAGTCTAA	TGGGAAGATA	CAGATGTGCA	720
25	AGTCTGCTTT	THEFILIT	GTTATTATTT	TTTTTTTTTT	GCTCTGTGTT	ATGGACATTT	780
	TCAGACATGC	ACAGAAGTGG	AGAGGATGGT	CCTTGGACCC	MATGTGTCCA	TCACCTAGCT	840
	GCATCACTTA	TCAGCTATGG	TCAACCTGGT	TTCATCTGTA	TCTCTCTCTT	TTCACCTGTA	900
30	TIGITTATIG	AAAATCCAAG	ACACTATGCC	AATGCAACCG	TGACTACTTT	GGGAGATTGG	960
	TAGTCTCTTT	TGATGGTGAT	AGTGATGGGG	TGCACTATCA	TAATCACATC	AGGTCTGCTT	1020
35	TTTGCTTTTA	ATGTTAACTA	ATGAAGTTCC	AGAGATGGGC	CTTAGAAATG	TGTTTTAAGA	1080
	ATTAACAAGG	AGTCTCAAAA	AGAAATGAGA	GGGATGCTTC	CTTTNCCCTT	GCATCTACAA	1140
	AACMAGAGAG	AGACTGTTCT	GTTGTAAAAC	TCTTTCAAAA	ATTCTGATAT	GGTAAGGTAC	1200
40	TTGAGACCCT	TCACCAGAAT	GTCAATCTTT	TTTTCTGTGT	AACATGGAAA	CTTGTGTGAC	1260
	CATTAGCATT	GTTATCAGCT	TGTACTGGTC	TCATAACTCT	GGTTTTGGAA	GAATAATTTG	1320
45	GAAATTGTTG	CTGTGTTCTG	TGAAAATAAC	CTCCCCAAAA	TAATTAGTAA	CTGGTTGTTC	1380
•	TACTTGGTAA	TTTGACACCC	TGTTAATAAC	GCAATTATTT	CTGTGTTCTT	AAACAGTATA	1440
	AATAGTTGTA	AGTTTGCATG	CATGATGGAA	АААТАААААС	CTGTATCTCT	GTTAAAAAAA	1500
50	Α						1501

55 (2) INFORMATION FOR SEQ ID NO: 294:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2683 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 294:

_ 5	TGANTGTCGT	CCCGGGTGCN	GATTGGCAGN	GCCTCCGCCG	CCCCTCCTCC	TTGTCCCGCC	60
	ATGGCACTGT	CGCGGGGGCT	GCCCCGGGAG	CTGGCTGAGG	CCCTCCCCCC	GGGCCGGGTR	120
10	CTCCTCCTCG	GGGGGGGG	CATCGGCTGC	GAGCTCCTCA	AGAATCTCGT	GCTCACCGGT	180
10	TTCTCCCACA	TCGACCTGAT	TGATCTGGAT	ACTATTGATG	TAAGCAACCT	CAACAGACAG	240
	TTTTTGTTTC	AAAAGAAACA	TGTTGGAAGA	TCAAAGGCAC	AGGTTGCCAA	GGAAAGTGTA	300
15	CTGCAGTTTT	ACCCGAAAGC	TAATATCGTT	GCCTACCATG	ACAGCATCAT	GAACCCTGAC	360
	TATAATGTGG	AATTTTTCCG	ACAGTTTATA	CTGGTTATGA	ATGCTTTAGA	TAACAGAGCT	420
20	GCCCGAAACC	ATGTTAATAG	AATGTGCCTG	GCAGCTGATG	TICCTCTTAT	TGAAAGTGGA	480
20	ACAGCTGGGT	ATCTTGGACA	AGTAACTACT	ATCAAAAAGG	GTGTGACCGA	GTGTTATGAG	540
	TGTCATCCTA	AGCCGACCCA	GAGAACCTTT	CCTGGCTGTA	CAATTCGTAA	CACACCTTCA	600
25	GAACCTATAC	ATTGCATCGT	TTGGGCAAAG	TACTTGTTCA	ACCAGTTGTT	TGGGGAAGAA	660
	GATGCTGATC	AAGAAGTATC	TCCTGACAGA	GCTGACCCTG	AAGCTGCCTG	GGAACCAACG	720
30	GAAGCCGAAG	CCAGAGCTAG	AGCATCTAAT	GAAGATGGTG	ACATTAAACG	TATTTCTACT	780
50	AAGGAATGGG	CTAAATCAAC	TGGATATGAT	CCAGTTNAAA	CTTTTTACCA	AGCTTTTTAA	840
	AGATGACATC	AGGTATCTGT	TGACAATGGA	CAAACTATGG	CGGAAAAGGA	AACCTCCAKT	900
35	TCCGTTGGAC	TGGGCTGAAG	TACAAAGTCA	AGGAGAAGAA	ACGAATGCAT	CAGATCAACA	960
	GAATGAACCC	CAGTTAGGCC	TGAAAGACCA	GCAGGTTCTA	GATGTAAAGA	GCTATGCACG	1020
40	TCTTTTTTCA	AAGAGCATCG	AGACTTTGAG	AGTTCATTTA	GCAGAAAAGG	GGGATGGAGC	1080
10	TGAGCTCATA	TGGGATAAGG	ATGACCCATC	TGCAATGGAT	TTTGTCACCT	CTGCTGCAAA	1140
	CCTCAGGATG	CATATTTTCA	GTATGAATAT	GAAGAGTAGA	TTTGATATCA	AATCAATGGC	1200
45	AGGGAACATT	ATTCCTGCTA	TIGCTACTAC	TAATGCAGTA	ATTGCTGGGT	TGATAGTATT	1260
	GGAAGGATTG	AAGATTTTAT	CAGGAAAAAT	AGACCAGTGC	AGAACAATTT	TTTTGAATAA	1320
50	ACAACCAAAC	CCAAGAAAGA	AGCTTCTTGT	GCCTTGTGCA	CTGGATCCTC	CCAACCCCAA	1380
50	TTGTTATGTA	TGTGCCAGCA	AGCCAGAGGT	GACTGTGCGG	CTGAATGTCC	ATAAAGTGAC	1440
	TGTTCTCACC	TTACAAGACA	AGATAGTGAA	AGAAAATTT	GCTATGGTAG	CACCAGATGT	1500
55	CCAAATTGAA	GATGGGAAAG	GAACAATCCT	AATATCTTCC	GAAGAGGGAG	AGACGGAAGC	1560
	TAATAATCAC	AAGAAGTTGT	CAGAATTTGG	AATTAGAAAT	GCAGCCGGC	TTCAAGCAGA	1620
60	TGACTTCCTC	CAGGACTATA	CTTTATTGAT	CAACATCCTT	CATAGTGAAG	ACCTAGGAAA	1680
~							

	GGACGTTGAA	TTTGAAGTTG	TTGGTGATGC	CCCGGAAAAA	GTGGGGSCCA	AACAAGCTGA	1740
	AGATGCTGCC	AAAAGCATAA	CCAATGGGCA	GTGATGATGG	AGCTCAGCCC	TCCACCTCCA	1800
5	CAGCTCAAGA	GCAAGATGAC	GTTCTCATAG	TTGATTCGGA	TGAAGAAGAT	TCTTCAAATA	1860
	ATGCCGACGT	CATGAAGAAG	AGAGAAGCCG	CAAGAGGAAA	TTAGATGAGA	AAGAGAATCT	1920
10	CAGTGCAAAG	AGGTCACGTA	TAGAACAGAA	GGAAGAGCTT	GATGATGTCA	TAGCATTAGA	1980
10	TTGAACAGAA	ATGCCTCTAA	ACAGAACCCT	CITACTATTT	AGTTTATCTG	GGCAGAACCA	2040
	GATTGTTATG	TCCTTTGTTC	CAAAGGGAAA	AAATTGACAG	CAGTGACTTG	AAAATGATTC	2100
15	TGCTCCCTTT	GAAAGCATTC	ATTTTGCTAG	AACTGTTAGA	CACATTGCAG	TATGCTGTAT	2160
	TGAAAGTAGG	AATATAGTTT	TAAAAACCCT	TTGAACAAAG	TGTGTGCATA	ACCAGTCATG	2220
20	AGATAAAACA	ACACAATGCA	TGTTGCCTTT	TTAATGTAAA	TACCCTTAGG	TATCATTAAT	2280
20	AGTTTCAAAA	TATTGTGGTT	TAGTAAAGTT	GATACCTGGT	TATAAATAT	ATGCCTTTAT	2340
	TTTTGGCTAG	AAGAAGAATT	ATTTTTAGCC	TAGATCTAAC	CATTTTCATA	CTCTTAACTG	2400
25	ATTGAAACAG	ATTCAAAGAA	GTATCGAGTG	CTATGCATTG	AAACTTGTTT	TTAAATGTTA	2460
	GATGGCACTA	TGTATATTAA	TGTAAAACAA	TGTTAATTTA	CICAAGITIT	CAGITIGTAC	2520
30	CGCCTGGTAT	GTCTGTGTAA	GAAGCCAATT	TTTGTGTATT	GTTACAGTTT	CAGGTTATTT	2580
50	ATATTCGATG	AAAATƏTTTT	CTCAAATAAC	GACTATACTT	ATGGACCAAA	TAAATGGCAY	2640
	TGCATTCTKG	TKAAAAAAAN	NACAGAAAAA	AAAAAAAACA	AGA		268 3

35

(2) INFORMATION FOR SEQ ID NO: 295:

40 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1454 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

45

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 295:

GGACTCGGGG TGGCTCTAAG GGGCAGGGAT AGGGCTGGGG AGCGCCGGCC TGTGGCCCTG 60 50 ACCAGCCCCT TCTCGTGCAG GTTCCACCCC GATGCAGGTG GTCACGTGCT TGACGCGGGA 120 180 CAGCTACCTG ACGCACTGCT TCCTCCAGCA CCTCATGGTC GTGCTGTCCT CTCTGGAACG CACGCCCTCG CCGGAGCCTG TTGACAAGGA CTTCTACTCC GAGTTTGGGA ACAAGACCAC 240 55 AGGGAAGATG GAGAACTACG AGCTGATCCA CTCTAGTCGC GTCAAGTTTA CCTACCCCAG 300 TGAGGAGGAG ATTGGGGACC TGACGTTCAC TGTGGCCCAA AAGATGGCTG AGCCAGAGAA 360 60 GGCCCCAGCC CTCAGCATCC TGCTGTACGT GCAGGCCTTC CAGGTGGGCA TGCCACCCCC 420

526

	TGGGTGCTGC	AGGGCCCCC	TGCGCCCCAA	GACACTCCTG	CTCACCAGCT	CCGAGATCTT	480
- 5	CCTCCTGGAT	GAGGACTGTG	TCCACTACCC	ACTGCCCGAG	TTTGCCAAAG	AGCCGCCGCA	540
. ,	GAGAGACAGG	TACCGGCTGG	ACGATGCCCG	CCGCCTCCGG	GACCTGGACC	GAGTGCTCAT	600
	GGGCTACCAG	ACCTACCCGC	AGCCCTCACC	CTCGTYTTCG	ATGACGTGCA	AGGTCATGAC	660
10	CTCATGGGCA	GTGTCACCCT	GGACCACTTT	GGGGAGGTGC	CAGGTGGCCC	GGCTAGAGCC	720
	AGCCAGGGCC	GTGAAGTCCA	GTGGCAGGTG	TTTGTCCCCA	GTGCTGAGAG	CAGAGAGAAG	780
15	CTCATCTCGC	TGTTGGCTCG	CCAGTGGGAG	GCCCTGTGTG	GCCTGAGCTG	CCTGTCGAGC	840
15	TCACCGGCTA	GCCCAGGCCA	CAGCCAGCCT	GTCGTGTCCA	GCCTGACGCC	TACTGGGGCA	900
	GGGCAGCAGG	CTTTTGTGTT	СТСТАААААТ	GTTTTATCCT	CCCTTTGGTA	CCTTAATTTG	960
20	ACTGTCCTCG	CAGAAATGTG	AACATGTGTG	TCTCTTCTCT	TAATTCTTTC	TCATGTTGGG	1020
	AGTGAGAATG	CCGGGCCCCT	CAGGGCTGTT	CCCTCTCCTC	TCAGCCTCCC	ACAGGTGGTA	1080
0.5	CAGCCGTGCA	CACCAGTGTC	GTGTCTGCTG	TTGTGGGACC	GTTGTTAACA	CGTGACACTG	1140
25	TGGGTCTGAC	TTTYTCTTCT	ACACGTCCTT	TCCTGAAGTG	TCGAGTCCAG	TCCTTTGTTG	1200
	CTGTTGCTGT	TGCTGTTGCT	GTTGCTGTTG	GCATCTTGCT	GCTAATCCTG	AGGCTGGTAG	1260
30	CAGAATGCAC	ATTGGAAGCT	CCCACCCCAT	ATTGTTCTTC	AAAGTGGAGG	TCTCCCCTGA	1320
	TCCAGACAAG	TGGGAGAGCC	CGTGGGGGCA	GGGGACCTGG	AGCTGCCAGC	ACCAAGCGTG	1380
	ATTCCTGCTG	CCTGTATTCT	СТАТТССААТ	AAAGCAGAGT	TTGACACCGW	малалалаа	1440
35	АААААААА	AACN					1454
40							
	(2) INFORM	ATION FOR SE	EQ ID NO: 29	96:			
	(i)	SEQUENCE CI	HARACTERIST GTH: 828 ba				
45		(B) TYP	E: nucleic	acid			
			ANDEDNESS: OLOGY: line				

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 296:

ACCCTGGCAT GCCCCACAAA CAGATCACCA GCCAGCTTAC ACAGGCATTA ACTCTCCTCA 60
ATGAGGAAGA ATCATTCACA ACTGAGCAAG ACATTCATAT GATCATTTAA GGAAGTGTTT 120

55 CCCTTATGTG TTAGCAAGTA TAATCGGCTA ACTCCTAAAT CCCAATGAAT AGTCCTAGGC 180
TGGACAGCAA TGGGCTGCAA TTAGGCAGAT AAAGACATCA GTCCCAGTAA ATGAATCCAT 240
AGACTCATCT AGCACCAACT ACCATTAGCA CTATGTTAGG AGCTGCAAGG CCCCAAAGTA 300

527

	GAAGATGTGC	ATAATGTCTG	CTCTTGTGTA	GCTCAGGAGA	CAATTCCAGC	ACAGACACTA	360
	CAGTTAACGC	TGAACTGCAG	CTGCAAGTAA	TAGCAWGAAC	AGTCAGAAAA	ATACCTTATG	420
5	AGGGGGCAGG	GCTGAAGCTG	GCCTTGAAG	GATGGATGAA	ATTTGGATAG	AGAATGAGGA	480
	AGACAGAGGG	NCTCCAAGTG	AGAGAAGCAT	GAAAAATGAG	CARGGGCCTG	GATCAGTGGG	540
10	GTGTATTCAG	AGCACCTYTC	CAGATGCACC	ATGCATGCTC	ACAGTCCCTT	GCCTATGTGT	600
10	GGCAGAGTGT	CCCAGCCAGA	TGTGTGCCCC	CACCCCATGT	CCATTTACAT	GTCCTTCAAT	660
	GCCCACCTCA	AAAGGYACYT	CTTCTGTAAA	GCTTTCCCTK	GGTATCAGGA	ATCAAAATTA	720
15	ATCAGGGATC	TTTTCACACT	GCTGTTTTT	CCTCTTTGGT	CCTTCTATCA	СТААААСТСА	780
	TCTCATTCAG	CCTTACAGCA	TAACTAATTA	TITGITTICC	TCACTACA		828
20							

(2) INFORMATION FOR SEQ ID NO: 297:

(i) SEQUENCE CHARACTERISTICS:

25 (A) LENGTH: 2416 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 297:

TCAATTTCCA TTAACTCAGA TCAGCCATTG TGATTCACCA TTTGTCAGGC TCTCAGGTTT 60 120 AACAAAACCT ACTATCACCA TCATCCTTCA ACAGCCACAG TCTGAATTGA GCCAACATTT 35 180 TTTTTTCTTT GAGAAAGAAG TGGACTGGGG CACAACTTTT AGTCTGAGGG GAGCTAGTGG AAATCTAGAC AATAGAAGTC ATCGATAGCA GCTTTTCCTC AAATGTGTGA CTCCTCAGGG 240 40 300 GCTAAACTGC TCTTAGCTTA GAATTATGCT TTACTAGAGA TCTAGCAGAT AAGTGGGTTA 360 ATCACTACCA TCCTGTAACT AGTTATATAG CTTCCAGACA TGAGGGAGAC ATCAAACAGG GATGGAAGCA ACCCCAAGGA TATGCAAGAA GGGCATGATG AACCCCCTTC CCTCTGGCAG 420 45 GAGAACAAGG CCAACCAAGG GACAGACTGG AAAGCACTTA GATGTTTAAG GAGGAGAAAG 480 GGGAAGCTTT GACCAGTCCT TGCCTTTTGC CAAGTTCAGC CAGTTCTCCG CTGCTTGCAA 540 50 CCTCTAGCGC AGTAACATTT GCAGAATTGC AGATTTTCCC CCAGATACTA GGAGGAAAGG 600 GACTTTGGGG GGTGGGGAAG GGGTCGTGGT GTTTTAAAAG CATAAGTTAC CTGTTTGCAC 660 TGTTTTAAGA TAGGAAAAAA AAATAGTGGG CAAGGTGAAC ATCAGACGTA AATTTGTGTG 720 55 TTTTTATTTT GTCATGCTCT TGAAAATGTT TGACCATTTG TAGTATACAC AGTGAAACTT 780 GATTCTCTGT TGCATAAAAC ACTATATTTT TTTGGAAATG TTACTGTCCA AAAGCCTCTT 840 60 CCCTCCCTTT CCTTTTCCTA TGTACTTCCT TCATACTTGC TTTACTGATC AGCCAGGCAA 900

	TAGCCATCCA	AGAGCTAGAG	CATGAAACAG	GGCCCTTTCC	AAGTAGGCTC	TGGGTGTCCT	960
5	AAGCCAGCGT	GTGCCCTCTG	GTTTAGTGAG	TGTAATAGAG	TCCCTGGCAC	CTTTCTTTGC	1020
J	AAATGAGGCT	AACAGACCAG	ACTGCAGCAA	GTTATCAGAT	TCCTCAATCA	GATGCACTAG	1080
	GAGTGAGGAG	CCCAGGGATG	GAGGGGTTC	CTGAAGTATT	GCAGTTGGCT	GTAGTAGCTG	1140
10	AGTTCTTTTC	CATGTTACCG	AAACTGTAGC	CAGTTACAGT	TTACTCAGGA	AAACGGTAGA	1200
	TCAATTCAGC	CATGGTAGTG	CTGGTTGGCA	GGGATTGGTA	ACGGAGAGAA	CTGCTCATCA	1260
15	GCCAAAACTC	AAGCCTTGCC	TTTTAGGAGG	CCACCAGCAG	AGGGACTTGG	TCCTCCTTGT	1320
	CTGGTACTTG	TGTACATGCC	GGTGACCTGA	GGACTCCACT	CACACTGGCG	AGCAAAAAGG	1380
	GAGCAGTGAT	TCTCTTTTCT	CTCCCCACCC	CCTGCCCTTT	GTTACCAACA	CCAGTTTCCC	1440
20	AGGGGGTACA	TGAGTTTCTG	AATTTTTAAA	AAATGTTTTT	GGTTTGGTTT	TTCTGGGGAC	1500
	TGATAAGTGC	TTTAAGCAAT	GTCCATACCC	CGTCAAGACT	CCCAGCTTAG	TCATTTCTT	1560
25	GTATTTTTCT	GTTCACAGTA	TTTGTGTGTG	TGCTTGTTTT	GGCAGCTCAT	TTTGGCTGTA	1620
	TTATATATTG	AGTGATGAAT	TGATCCTCTT	TTTTCCCTAA	GGGATATGAA	TTGTTTTTCT	1680
	TGTGTTATAT	TCTGCTTGTG	AATAGCTGGA	GCAAACCTGG	GGCTGACACG	CGTAAGSTAG	1740
30	GGCTGCAAAR	CGAGAAGAGA	GCCGGTGGAG	TGTACTTGTC	CCTGACAGGC	TGACCTACCT	1800
	GAGTCTCTGA	GCTTTTCAGT	CCAAATCTTT	GCAAGGCTCA	AAATGCCACA	GAACCTCTCC	1860
35	TCTTCTCCCC	ACTCCCCATG	GCAGGGACCG	GACCATCCCT	ACATGCAACA	TGCTGTTCCT	1920
	CCAGCCCCTC	CCATTGCCAT	GGCAAAACAG	GTACCTTTGG	GGCATGGGGG	CATTACATGG	1980
	GATGCTTGTG	TAATCGACCA	CCTAGCCTTC	TCTCTCCCCT	CCCGTCCTCC	CCCAGAATCA	2040
40	CTTCCTAGGA	CACCCGAGCT	GCTTGCCCAG	CGTCCTGTTT	CCCTGCTAAC	TCCAGAGAAG	2100
	CATCCCAGGG	CTTTGTGACA	GTCTCTAATT	CCCTTCCCTT	CTCGTTAAGA	ATCATATTGT	2160
45	ATAGTAGCTT	TCAGACCATA	CAGTATTCAT	TGGGTTACTC	CTATTATTAT	CAAGTAGCTG	2220
	GAATTGTGAA	GGTCGGAGTA	GTTAGATCTT	TAGCTTTTAT	TCCTTATTTT	TTTGTATTAC	2280
	TCTCCATGTG	TATAAATTAT	TGATCATGTT	GCTGGCTTTT	ATAAACTCTA	AGCGAAGGAG	2340
50	GAGCACTGCC	TCAGCCTTTG	CACATGGTAA	TGAAGCACTG	тичтааата	AAAGRGRGAA	2400
	MCMCCAAAAA	ААААА					2416

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 545 base pairs

⁽²⁾ INFORMATION FOR SEQ ID NO: 298:

529

	(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
- 5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 298:	
	GAATTCGGCA CGAGCCATGC YTGGCCTCTC CTTGATTCTT ACAGTCACTT TGTTGGCTGT	60
10	TTCTGACTCA GCAGCTACCT GCATTGTGGC CAAAGGATGA CCTATTCCTT CTCAGGAGGG	120
10	CAAAAATGTG GAATAGTGTC TGTCCATGCC TCTCCTCATG GGCTACCACC TCTGCCACCG	180
	TGGTTAATCA GTAACAACCA GGAGAGAGC TGCTGGAACT GACCTCTGGG AACTCCCTGG	240
15	ATGGTTTGGT GCAGGAATGT AGTAGGCATA CACGTGGTTG CGTGGATCTG GGCCCTCCTG	300
	ATGTGAGTAG AGAGGTAAAA GGSCACCATC TCCTTGACCT YTGGGGAACT CATCCACAAA	360
20	GAAGATGTTT CCAAGATGCT TCTGAAGATT GSCTAAAAAT AGCCGGTTTC CACCCCCGTG	420
20	AATGCATCCA TTCTAGAATG CTCCTTCACC AGGACCAGAG AACTGATTTA CAGAAGTGAC	480
	ATGAAAACAT TCCATCCCAG AATTTGCANT ACCTCAAATT NAATTTCTAC CTATTAAAAA	540
25	NAAAA	545
30	(2) INFORMATION FOR SEQ ID NO: 299: (i) SEQUENCE CHARACTERISTICS:	
30 35	-	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1530 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1530 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	60
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1530 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 299:	60 120
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1530 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 299: GCCTCTGCTG GGCATCATAC TIGTCACTGG GTAAACAGTT TGCCCACTTA CCGCAGATGA	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1530 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 299: GCCTCTCCTG GGCATCATAC TIGTCACTGG GTAAACAGTT TGCCCACTTA CCGCAGATGA AGCTGCTTGC CAGGGCTCTC CGGCTCTGTG AGTTTGGGAG GCAGGCATCT TCCAGGAGGC	120
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1530 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 299: GCCTCTGCTG GGCATCATAC TIGTCACTGG GTAAACAGTT TGCCCACTTA CCGCAGATGA ACCTGCTTGC CAGGGCTCTC CGGCTCTGTG AGTTTGGGAG GCAGGCATCT TCCAGGAGGC TGGTGGCTGG CCAGGGATGT GTGGGGCCCC GGCGAGGGTG CTGCGCTCCC GTCCAGGTGG	120 180
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1530 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 299: GECTCTGCTG GGCATCATAC TIGTCACTGG GTAAACAGTT TGCCCACTTA CCGCAGATGA AGCTGCTTGC CAGGGCTCTC CGGCTCTGTG AGTTTGGGAG GCAGGCATCT TCCAGGAGGC TGGTGGCTGG CCAGGGATGT GTGGGGCCCC GGCGAGGGTG CTGCGCTCCC GTCCAGGTGG TTGGGCCCAG GGCTGATCTC CCACCCTGTG GAGCCTGCAT TACTGGAAGG ATCATGCGGC	120 180 240
35 40 45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1530 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 299: GGCTCTGCTG GGCATCATAC TIGTCACTGG GTAAACAGTT TGCCCACTTA CCGCAGATGA AGCTGCTTGC CAGGGCTCTC CGGCTCTGTG AGTTTGGGAG GCAGGCATCT TCCAGGAGGC TGGTGGCTGG CCAGGGATGT GTGGGGCCCC GGCGAGGGTG CTGCGCTCCC GTCCAGGTGG TTGGGCCCAG GGCTGATCTC CCACCCTGTG GAGCCTGCAT TACTGGAAGG ATCATGCGGC CAGATGATGC CAACGTGGCC GGCAATGTCC ACGGGGGGAC CATCCTGAAG ATGATCGAGG	120 180 240 300

TGATGTCCGA AAACATCCTC ACAGGTGCCA AAAAGCTGAC CAATAAGGCC ACCCTGTGGT

ATGTGCCCCT GTCGCTGAAG AATGTGGACA AGGTCCTCGA GGTGCCTCCT GTTGTGTATT

CCCGCCANGA GCAGGAGGAG GAGGGCCGGA AGCGGTATGA AGCCCAGAAG CTGGAGCGCA

60

600

530

	TGGAGACCAA	GTGGAGGAAC	GGGGACATCG	TCCAGCCAGT	CCTCAACCCA	GAGCCGAACA	720
5	CTGTCAGCTA	CAGCCAGTCC	AGCTTGATCC	ACCTGGTGGG	GCCTTCAGAC	TGCACCCTGC	780
3	ACGGCTTTGT	GCACGGAGGT	GTGACCATGA	AGCTCATGGA	TGAGGTCGCC	GGGATCGTGG	840
	CTGCACGCCA	CTGCAAGACC	AACATCGTCA	CAGCTTCCGT	GGACGCCATT	AATTITCATG	900
10	ACAAGATCAG	AAAAGGCTGC	GTCATCACCA	TCTCGGGACG	CATGACCTTC	ACGAGCAATA	960
	AGTCCATGGA	GATCGAGGTG	TTGGTGGACG	CCGACCCTGT	TGTGGACAGC	TCTCAGAAGC	1020
15	GCTACCGGGC	CGCCAGTGCC	TTCTTCACCT	ACGIGICGCT	GAGCCAGGAA	GGCAGGTCGC	1080
	TGCCTGTGCC	CCAGCTGGTG	CCCGAGACCG	AGGACGAGAA	GAAGCGCTTT	GAGGAAGGCA	1140
	AAGGGCGGTA	CCTGCAGATG	AAGGCGAAGC	GACAGGGCCA	CGCGGAGCCT	CAGCCCTAGA	1200
20	CTCCCTCCTC	CTGCCACTGG	TGCCTCGAGT	AGCCATGGCA	ACGGGCCCAG	TGTCCAGTCA	1260
	CTTAGAAGTT	CCCCCTTGG	CCAAAAACCC	AATTCACATT	GAGAGCTGGT	GTTGTCTGAA	1320
25	GTTTTCGTAT	CACAGTGTTA	ACCTGTACTC	TCTCCTGCAA	ACCTACACAC	CAAAGCTTTA	1380
	TITATATCAT	TCCAGTATCA	ATGCTACACA	GTGTTGTCCC	GAGCGCCGGG	AGGCGTTGGG	1440
	CAGAAACCCT	COGGAATGCT	TCCGAGCACG	CTGTAGGGTA	TGGGAAGAAC	CCAGCACCAC	1500
30	TMATAAAGCT	GNIGCTIGGC	TGGGGAAGNA				1530

35 (2) INFORMATION FOR SEQ ID NO: 300:

40

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 997 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 300:

45	AGGTAGTGAG	AGACACATTA	CACCTAACCA	ACAAGAAGAA	GGATCCTCCC	CCTTATAATT	60
	TAACTATGTT	TACAGGGAAT	GCGTACATTG	TGGCTTCCCG	AGNATITEGT	CCAACATGIT	120
50	TTGAAGAACC	CTAAATCCCA	ACAACTGATT	GAATGGGTAA	AAGACACTTA	TAGCCCAGAT	180
50	GAACACCTCT	GGGCCACCCT	TCAGCGTGCA	CGGTGGATGC	CIGGCICIGT	TCCCAACCAC	240
	CCCAAGTACG	ACATCTTCAG	ACATGACTTC	TATTGCCAGG	CTGGTCAAGT	GGCAGGGTCA	300
55	TGAGGGAGAC	ATCGATAAGG	GTGCTCCTTA	TGCTCCCTGC	TCTGGAATCC	ACCAGCGGGC	360
	TATCTGCGTT	TATGGGGCTG	GGGACTTGAA	TTGGATGCTT	CAAAACCATC	ACCTGTTGGC	420
60	CAACAAGTTT	GACCCAAAGG	TAGATGATAA	TGCTCTTCAG	TGCTTAGAAG	AATACCTACG	480

531

	TTATAAGGCC ATCTATGGGA CTGAACTITG AGACACACTA TGAGAGCGTT GCTACCTGTG	540
	GGGCAAGAGC ATGTACAAAC ATGCTCAGAA CTTGCTGGGA CAGTGTGGGT GGGAGACCAG	600
5	GGCTTTGCAA TTCGTGGCAT CCTTTAGGAT AAGAGGGCTG MTATTAGATT GTGGGTAAGT	660
	AGATOTTTTG CCTTGCAAAT TGCTGCCTGG GTGRATGCTG CTTGTTCTCT CACCCCTAAC	720
10	CCTAGTAGTT CCTCCACTAA CTTTCTCACT AAGTGAGAAT GAGAACTGCT GTGATAGGGA	780
10	GAGTGAAGGA GGGATATGTG GTAGAGCACT TGATTTCAGT TGAATGCCTG CTGGTAGCTT	840
	TTCCATTCTG TGGAGCTGCC GTTCCTAATA ATTCCAGGTT TGGTAGCGTG GAGGAGAACT	900
15	TIGATGGAAA GAGAACCTIC CCTTCTGTAC TGTTAACTTA AAAATAAATA GCTCCTGATT	960
	CAAAGTAAGG AAAAARAAAA AAAGAAAAAA AACTCGA	997
20		
20	(2) INFORMATION FOR SEO ID NO: 301:	
	(i) SEQUENCE CHARACTERISTICS:	
25	(A) LENGTH: 2345 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(b) Toronosi. Illieat	
30	(vi) SECUENCE DESCRIPTION, SEC ID NO. 301.	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 301:	60
30	TTGAGGCCGA CGCTAGGGGC CCGGAAGRAA ACTGCGAGGC GAAGGTGACC GGGGACCGAG	60
30 35	TTGAGGCCGA CGCTAGGGGC CCGGAAGRAA ACTGCGAGGC GAAGGTGACC GGGGACCGAG CATTTCAGAT CTGCTCGGTA GACCTGGTGC ACCACCACCA TGTTGGCTGC AAGGCTGGTG	120
	TTGAGGCCGA CGCTAGGGGC CCGGAAGRAA ACTGCGAGGC GAAGGTGACC GGGGACCGAG CATTTCAGAT CTGCTCGGTA GACCTGGTGC ACCACCACCA TGTTGGCTGC AAGGCTGGTG TGTCTCCGGA CACTACCTTC TAGGGTTTTC CACCCAGCTT TCACCAAGGC CTCCCCTGTT	120 180
35	TTGAGGCCGA CGCTAGGGGC CCGGAAGRAA ACTGCGAGGC GAAGGTGACC GGGGACCGAG CATTTCAGAT CTGCTCGGTA GACCTGGTGC ACCACCACCA TGTTGGCTGC AAGGCTGGTG TGTCTCCGGA CACTACCTTC TAGGGTTTTC CACCCAGCTT TCACCAAGGC CTCCCCTGTT GTGAAGAATT CCATCACGAA GAATCAATGG CTGTTAACAC CTAGCAGGGA ATATGCCACC	120 180 240
	TTGAGGCCGA CGCTAGGGGC CCGGAAGRAA ACTGCGAGGC GAAGGTGACC GGGGACCGAG CATTTCAGAT CTGCTCGGTA GACCTGGTGC ACCACCACCA TGTTGGCTGC AAGGCTGGTG TGTCTCCGGA CACTACCTTC TAGGGTTTTC CACCCAGCTT TCACCAAGGC CTCCCCTGTT GTGAAGAATT CCATCACGAA GAATCAATGG CTGTTAACAC CTAGCAGGGA ATATGCCACC AAAACAAGAA TTGGGATCCG GCGTGGGAGA ACTGGCCAAG AACTCAAAGA GGCAGCATTG	120 180 240 300
35	TTGAGGCCGA CGCTAGGGGC CCGGAAGRAA ACTGCGAGGC GAAGGTGACC GGGGACCGAG CATTTCAGAT CTGCTCGGTA GACCTGGTGC ACCACCACCA TGTTGGCTGC AAGGCTGGTG TGTCTCCGGA CACTACCTTC TAGGGTTTTC CACCCAGCTT TCACCAAGGC CTCCCCTGTT GTGAAGAATT CCATCACGAA GAATCAATGG CTGTTAACAC CTAGCAGGGA ATATGCCACC AAAACAAGAA TTGGGATCCG GCGTGGGAGA ACTGGCCAAG AACTCAAAGA GGCAGCATTG GAACCATCGA TGGAAAAAAT ATTTAAAATT GATCAGATGG GAAGATGGTT TGTTGCTGGA	120 180 240 300 360
35	TTGAGGCCGA CGCTAGGGGC CCGGAAGRAA ACTGCGAGGC GAAGGTGACC GGGGACCGAG CATTTCAGAT CTGCTCGGTA GACCTGGTGC ACCACCACCA TGTTGGCTGC AAGGCTGGTG TGTCTCCGGA CACTACCTTC TAGGGTTTTC CACCCAGCTT TCACCAAGGC CTCCCCTGTT GTGAAGAATT CCATCACGAA GAATCAATGG CTGTTAACAC CTAGCAGGGA ATATGCCACC AAAACAAGAA TTGGGATCCG GCGTGGGAGA ACTGGCCAAG AACTCAAAGA GGCAGCATTG GAACCATCGA TGGAAAAAAT ATTTAAAATT GATCAGATGG GAAGATGGTT TGTTGCTGGA GGGGCTGCTG TTGGTCTTGG AGCATTGTGC TACTATGCCT TGGGACTGTC TAATGAGATT	120 180 240 300 360 420
35 40	TTGAGGCCGA CGCTAGGGGC CCGGAAGRAA ACTGCGAGGC GAAGGTGACC GGGGACCGAG CATTICAGAT CTGCTCGGTA GACCTGGTGC ACCACCACCA TGTTGGCTGC AAGGCTGGTG TGTCTCCGGA CACTACCTTC TAGGGTTTTC CACCCAGCTT TCACCAAGGC CTCCCCTGTT GTGAAGAATT CCATCACGAA GAATCAATGG CTGTTAACAC CTAGCAGGGA ATATGCCACC AAAACAAGAA TTGGGATCCG GCGTGGGAGA ACTGGCCAAG AACTCAAAGA GGCAGCATTG GAACCATCGA TGGAAAAAAT ATTTAAAATT GATCAGATGG GAAGATGGTT TGTTGCTGGA GGGGCTGCTG TTGGTCTTGG AGCATTGTGC TACTATGCCT TGGGACTGTC TAATGAGATT GGAGCTATTG AAAAGGCTGT AATTTGGCCT CAGTATGTCA AGGATAGAAT TCATTCCACC	120 180 240 300 360 420 480
35 40 45	TTGAGGCCGA CGCTAGGGGC CCGGAAGRAA ACTGCGAGGC GAAGGTGACC GGGGACCGAG CATTICAGAT CTGCTCGGTA GACCTGGTGC ACCACCACCA TGTTGGCTGC AAGGCTGGTG TGTCTCCGGA CACTACCTTC TAGGGTTTTC CACCCAGCTT TCACCAAGGC CTCCCCTGTT GTGAAGAATT CCATCACGAA GAATCAATGG CTGTTAACAC CTAGCAGGGA ATATGCCACC AAAACAAGAA TTGGGATCCG GCGTGGGAGA ACTGGCCAAG AACTCAAAGA GGCAGCATTG GAACCATCGA TGGAAAAAAT ATTTAAAATT GATCAGATGG GAAGATGGTT TGTTGCTGGA GGGGCTGCTG TTGGTCTTGG AGCATTGTGC TACTATGCCT TGGGACTGTC TAATGAGATT GGAGCTATTG AAAAGGCTGT AATTTGGCCT CAGTATGTCA AGGATAGAAT TCATTCCACC TATATGTACT TAGCAGGGAG TATTGGTTTA ACAGCTTTGT CTGCCATAGC AATCAGCAGA	120 180 240 300 360 420 480 540
35 40	TTGAGGCCGA CGCTAGGGGC CCGGAAGRAA ACTGCGAGGC GAAGGTGACC GGGGACCGAG CATTTCAGAT CTGCTCGGTA GACCTGGTGC ACCACCACCA TGTTGGCTGC AAGGCTGGTG TGTCTCCGGA CACTACCTTC TAGGGTTTTC CACCCAGCTT TCACCAAGGC CTCCCCTGTT GTGAAGAATT CCATCACGAA GAATCAATGG CTGTTAACAC CTAGCAGGGA ATATGCCACC AAAACAAGAA TTGGGATCCG GCGTGGGAGA ACTGGCCAAG AACTCAAAGA GGCAGCATTG GAACCATCGA TGGAAAAAAT ATTTAAAATT GATCAGATGG GAAGATGGTT TGTTGCTGGA GGGGCTGCTG TTGGTCTTGG AGCATTGTCC TACTATGGCT TGGGACTGTC TAATGAGATT GGAGCTATTG AAAAGGCTGT AATTTGGCCT CAGTATGTCA AGGATAGAAT TCATTCCACC TATTATGTACT TAGCAGGGAG TATTGGTTTA ACAGCTTTGT CTGCCATAGC AATCAGCAGA ACGCCTGTTC TCATGAACTT CATGATGAGA GGCTCTTGG TGACAATTGG TGTGACCTTT	120 180 240 300 360 420 480 540
35 40 45	TTGAGGCCGA CGCTAGGGGC CCGGAAGRAA ACTGCGAGGC GAAGGTGACC GGGGACCGAG CATTTCAGAT CTGCTCGGTA GACCTGGTGC ACCACCAC TGTTGGCTGC AAGGCTGGTG TGTCTCCGGA CACTACCTTC TAGGGTTTTC CACCCAGCTT TCACCAAGGC CTCCCCTGTT GTGAAGAATT CCATCACGAA GAATCAATGG CTGTTAACAC CTAGCAGGGA ATATGCCACC AAAACAAGAA TTGGGATCCG GCGTGGGAGA ACTGGCCAAG AACTCAAAGA GGCAGCATTG GAACCATCGA TGGAAAAAAT ATTTAAAATT GATCAGATGG GAAGATGGTT TGTTGCTGGA GGGGCTGCTG TTGGTCTTGG AGCATTGTGC TACTATGGCT TGGGACTGTC TAATGAGATT GGAAGCTATTG AAAAGGCTGT AATTTGGCCT CAGTATGTCA AGGATAGAAT TCATTCCACC TATATGTACT TAGCAGGGAG TATTGGTTTA ACAGCTTTGT CTGCCATAGC AATCAGCAGA ACGCCTGTTC TCATGAACTT CATGATGAGA GGCTCTTGGG TGACAATTGG TGTGACCTTT GCAGCCATGG TTGGAGCTGG AATGCTGGTA CGATCAATAC CATATGACCA GAGCCCAGGC	120 180 240 300 360 420 480 540 600
35 40 45	TYGAGGCCGA CGCTAGGGGC CCGGAAGRAA ACTGCGAGGC GAAGGTGACC GGGGACCGAG CATTYCAGAT CTGCTCGGTA GACCTGGTGC ACCACCACCA TGTTGGCTGC AAGGCTGGTG TGTCTCCGGA CACTACCTTC TAGGGTTTTC CACCCAGCTT TCACCAAGGC CTCCCCTGTT GTGAAGAATT CCATCACGAA GAATCAATGG CTGTTAACAC CTAGCAGGGA ATATGCCACC AAAACAAGAA TTGGGATCCG GCGTGGGAGA ACTGGCCAAG AACTCAAAGA GGCAGCATTG GAACCATCGA TGGAAAAAAT ATTTAAAATT GATCAGATGG GAAGATGGTT TGTTGCTGGA GGGGCTGCTG TTGGTCTTGG AGCATTGTGC TACTATGGCT TGGGACTGTC TAATGAGATT GGAGCTATTG AAAAGGCTGT AATTTGGCCT CAGTATGTCA AGGATAGAAT TCATTCCACC TATATGTACT TAGCAGGGAG TATTGGTTTA ACAGCTTTGT CTGCCATAGC AATCAGCAGA ACGCCTGTTC TCATGAACTT CATGATGAGA GGCTCTTGGG TGACAATTGG TGTGACCTTT GCAGCCCATGG TTGGAGCTGG AATGCTGGTA CGATCAATAC CATATGACCA GAGCCCAGGC CCAAAGCATC TTGCTTGGTT GCTACATTCT GGTGTGATGG GTGCAGTGGT GGCTCCTCTG	120 180 240 300 360 420 480 540 600 660 720
35 40 45	TTGAGGCCGA CGCTAGGGGC CCGGAAGRAA ACTGCGAGGC GAAGGTGACC GGGGACCGAG CATTTCAGAT CTGCTCGGTA GACCTGGTGC ACCACCAC TGTTGGCTGC AAGGCTGGTG TGTCTCCGGA CACTACCTTC TAGGGTTTTC CACCCAGCTT TCACCAAGGC CTCCCCTGTT GTGAAGAATT CCATCACGAA GAATCAATGG CTGTTAACAC CTAGCAGGGA ATATGCCACC AAAACAAGAA TTGGGATCCG GCGTGGGAGA ACTGGCCAAG AACTCAAAGA GGCAGCATTG GAACCATCGA TGGAAAAAAT ATTTAAAATT GATCAGATGG GAAGATGGTT TGTTGCTGGA GGGGCTGCTG TTGGTCTTGG AGCATTGTGC TACTATGGCT TGGGACTGTC TAATGAGATT GGAAGCTATTG AAAAGGCTGT AATTTGGCCT CAGTATGTCA AGGATAGAAT TCATTCCACC TATATGTACT TAGCAGGGAG TATTGGTTTA ACAGCTTTGT CTGCCATAGC AATCAGCAGA ACGCCTGTTC TCATGAACTT CATGATGAGA GGCTCTTGGG TGACAATTGG TGTGACCTTT GCAGCCATGG TTGGAGCTGG AATGCTGGTA CGATCAATAC CATATGACCA GAGCCCAGGC	120 180 240 300 360 420 480 540 600 660

60 CTGGGAGTGG GCCTGGGTCT CGTCTTTGTG TCCTCATTGG GATCTATGTT TCTTCCACCT

	ACCACCGTGG	CTGGTGCCAC	TCTTTACTCA	GTGGCAATGT	ACGGTGGATT	AGTTCTTTTC	960
5	AGCATGTTCC	TTCTGTATGA	TACCCAGAAA	GTAATCAAGC	GTGCAGAAGT	ATCACCAATG	1020
	TATGGAGTTC	AAAAATATGA	TCCCATTAAC	TCGATGCTGA	GTATCTACAT	GGATACATTA	1080
	AATATATTTA	TGCGAGTTGC	AACTATGCTG	GCAACTGGAG	GCAACAGAAA	GAAATGAAGT	1140
0	GACTCAGCTT	CTGGCTTCTC	TGCTACATCA	AATATCTTGT	TTAATGGGGC	AGATATGCAT	1200
	TAAATAGTTT	GTACAAGCAG	CTTTCGTTGA	AGTTTAGAAG	ATAAGAAACA	TGTCATCATA	1260
15	TTTAAATGTT	CCGGTAATGT	GATGCCTCAG	GICIGCCTIT	TTTTCTGGAG	AATAAATGCA	1320
IJ	GTAATCCTCT	CCCAAATAAG	CACACACATT	TTCAATTCTC	ATGTTTGAGT	GATTTTAAAA	1380
	TGTTTTGGTG	AATGTGAAAA	CTAAAGTTTG	TGTCATGAGA	ATGTAAGTCT	TTTTTCTACT	1440
20	TTAAAATTTA	GTAGGTTCAC	TGAGTAACTA	AAATTTAGCA	AACCTGTGTT	TGCATATTTT	1500
	TTTGGAGTGC	AGAATATTGT	AATTAATGTC	ATAAGTGATT	TGGAGCTTTG	GTAAAGGGAC	1560
25	CAGAGAGAAG	GAGTCACCTG	CAGTCTTTTG	AAATTTTTTT	TACTTAGAAC	TTAGCACTTG	1620
	TGTTATTGAT	TAGTGAGGAG	CCAGTAAGAA	ACATCTGGGT	ATTTGGAAAC	AAGTGGTCAT	1680
	TGTTACATTC	ATCTGCTGAA	CTTAACAAAA	CTGTTCATCC	TGAAACAGGC	ACAGGTGATG	1740
30	CATTCTCCTG	CTGTTGCTTC	TCAGTGCTCT	CTTTCCAATA	TAGATGTGGT	CATGTTTGAC	1800
	TTGTACAGAA	TGTTAATCAT	ACAGAGAATC	CTTGATGGAA	TTATATATGT	GTGTTTTACT	1860
35	TTIGAATGTI	' ACAAAAGGAA	ATAACTTTAA	AACTATTCTC	AAGAGAAAAT	ATTCAAAGCA	1920
	TGAAATATGT	TGCTTTTTCC	AGAATACAAA	CAGTATACTC	ATGATTGCTA	AGTGTTTTT	1980
	TATTTTTGCA	A TATTTATTGA	ACTGTCTAAT	TGAATACAGC	TIGCTCTTCI	CACCTCTTCA	2040
40	AGCTTTCAAG	CCTTTATAGA	AAAGCTTCTT	TGTGGCTTAC	ACTGGAAATT	ATGAAAGCAG	2100
	TTTTTCTCCT	r AAGACTTTIG	GTTTCTCGC	A TTGCCTCTCA	GACTAAGCAC	TAAAAAGCAA	2160
45	AGCAAAACAG	AACTAGTNCT	GTCTTAATG/	AATATATCAA	CCCAAAAGTC	TAATGAGGAA	2220
,,,	AATGCTTCA'	r TAGTTTCCCC	TAGCAGACT	TTACTTCTCT	TACACTGCT	CACCATTACT	2280
	TTCTTGAGA	C ATTTGTAAG1	CCTTTGATA	C AGAAGAGTT/	A TATTTAGGAC	G GNCTTTAATG	2340
50	AAGGG						2349

55 (2) INFORMATION FOR SEQ ID NO: 302:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2369 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 302:

5	THIPTITTT THITTIPT THITTNCAAG ATCATTGITT ATTTATTACT TCAGATAAAA	60
	AGATAGTATA CATATTAGGG AATCCCTTAA AATTCAACTC TAGAGTTATA CACCATCTAG	120
10	TACTTTTGCA ATGAATGTTA ACAACAACAA AAAAAATCTC TAAACACCTG AAAGCCCCAC	180
10	TATTAACATG GACTATGGTA ATAAAAAATT TIGACATTTA ATTIGTTCAA CATATAGTAT	240
	TTACATTATG AAACCAATGG TGATGATACA ATAAAGTGAT AAAGAAATAG TAAAAATAAA	300
15	CTTTAAAAAG CAAAGGTTTA TAGTCTGACA ATGCTAATTA TCCTAATTGT ATATAAAAAA	360
	TTAAAACATA GAGCTTICTG TTACAAAATT CTTAATCCTC TGGGTTGTAA TCATTACITG	420
20	CTACCAATTT ACATGCAACA TCTGCTAGGA CTGACATTTG ATTTTTTTCC CCAAGAATGT	480
20	GTGAGTAGAT AAATGACATT TCAGAGCAGA TATTAATTTA CTTGTGGACA GAAAAAGAAA	540
	CTCAAGATTG GTACTGGTCA CAAGCCTCTT CCCAATAGAA ATTATAAAAA CAGTAAGATA	600
25	AAATTTAAAA AAAATCTAAA AAGGGGATGC ATAGGCAAAG AGTACCATAA ATGGCACAGC	660
	TCAAAAAATC CCAGGACCAA TCAGACACAC ATCTTTTCTC TCTCCTTCAG CGACAAGAGG	720
30	TCGATTTTGC CATCAAATAA CCATGATTGA AGCAAGCGAG GGGCACCAGG TGTACAACTG	780
30	ATTAGATCTT GCAAAATACT AAGATGGGAG CAGGGGTGGC CAGAAGAAGG GGTAATTTAT	840
	ATATAATTCA AACTATATAC AGCATAAATG GAATGCAGCC CATCCCAAAC TGGCTCTGTG	900
35	AAACAATTGG ACCTTTATAG TTAAAATTAT AACAAGTGTA ATAATACAAT AGATTTACAT	960
	GGGAAGCAAA ATCCAAGGGA CATTTTATAT TAAGTATTTA CTGTGCTGTT TCAATTTAAA	1020
40	AATAATTITG CTAAGTATAC ATCTCAACTG AAGTCTATGT AAAAAATGTC CTAATAGATA	1080
40	CAGATATITA CCTTTGGTGA GTTGAAGGCC TTTTTGTGAC TTCTGTCTGA ACTGTAGGCA	1140
	GAATGCTAGA TGTACATGCA CATATGGAGA AACTCAAGCT GAGGTCATCC AAAAGCTGTG	1200
45	CGTATGAGGA GGCTGGAGGT ACTTTGAAAG TCAAAGTAGA CCAGAAACCC AAAACAGGTA	1260
	ACAGTGAGGA TGGCAACAGG GAATGGAATG CCAATATGGC AGTAAAACTT TTTTTAAAAA	1320
50	CAGAAAGAGG AAGGCCTCTC GTACCAGCAG AATCCTGTAC ACGTACAAAA AAGAAAAAGC	1380
50	CACCCACCAT TTTGTAAAAC AGAAGCCAAT TATAGTGTGG GAAAGTACAA ATTACAGAAA	1440
	ACCAGAAGTC AACAGAAGAA AAACTACTGG TTTACTTGAG AGAAAGGAGA ATGGTTCACC	1500
55	CCGAGCAGAG TTACTTGGTG AACGCCGCCCA CCACCGCCCA CAGAACCTCA TTGGTGTTGG	1560
	CCTTCAGACA TTCCACTTCA GGGTCTAAGT CGAGAARNTG CCGCACTCTC TTGGTAGCCA	1620
	AATCATACTG CTCGTCCAGA AGAGGAGCAA AAGCATTCTC CAGGACGTCC GAGGCATGAG	1680

534

	CCAGGTAAAT GAGGGCCAGC AAGCGCCTGT CCATGCGGTG AGGGTCATTC ACCCATTTGT	1740
	CAAGAACGGC TTCCTGTACT TTCTTGATGA GGCGCTGCTT AATGTTGTTA TTGGTGAGGG	1800
5	GATGTGTTGT CATGTCAAAA AGTAGGAAGT TCTGTTTCTC TGTTGTCAAT ACACCCTTTT	1860
	CCACCAGGTT TTTAGCTAAT CGTTCCCGTA CATTTCTTAA CTGATAATGC AATTTTAATG	1920
10	GATTCCATGT CTCACCACTA AGTAATTCAA TCCAGTTCTG GACCGTTTCT GGAGGCTGAG	1980
10	TTTCCTTAAC ATGCTTCAGA GCTTCATCAA GAAGAACATC CCCTGTTGGA GCATCTGACT	2040
	TACAGATTAC CTTTCTTGTT AATAGACTTT TACGTCTCAT TCCACAAGCC TCTAGTTGTA	2100
15	ACCITICATOR CANTIGOTANT TOANTTANCA TACAGCCACG TANTICCAGAT GATATACAGT	2160
	CATTCCAAAA TGATGTGTAA ACCTTCGCGG TCCTTGAGGC CCAGCAGGAG CACTTCCTCC	2220
20	ATCAGGGTCA GCCGCGTTTC CTTGGAGTCG CCCTTGTCGT CGTCGTCCTG CTCGTCGCGG	2280
20	COGCTCTGCG COTCGTCCTC GCTGCTAGCC GCGCCGCCGC CCGCCGCCCG CTCCTTGTCG	2340
	GCGGCGTTGC GGGAGGCCTC GGTGCGCCG	2369
25		
30	(2) INFORMATION FOR SEQ ID NO: 303: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1181 base pairs	
35	(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 303:	
	GGGACGTGTG GTTTCAGCTC GTGCGCCTCC CCGTGGGTTT GCGACGTTTA GCGACTATTG	60
40	COCCTGCGCC ACGCCGGCTG CGAGACTGGG GCCGTGGYTG CTGGTCCCGG GTGATGCTAG	120
	GCGGCTCCCT GGGCTCCAGG CTGTTGCGGG GTGTAGGTGG GAGTCACGGA CGGTTCGGGG	180
45	CCCGAGGTGT CCGCGAAGGT GGCGCACATG GGCGCCAGGG GAGAGCATGG CTCAGCGGAT	240
15	GGTCTGGGTG GACCTGGAGA TGACAGGATT GGACATTGAG AAGGACCAGA TTATTGAGAT	300
	GGCCTGTCTG ATAACTGACT CTGATCTCAA CATTTTGGCT GAAGGTCCTA ACCTGATTAT	360
50	AAAACAACCA GATGAGTTGC TGGACAGCAT GTCAGATTGG TGTAAGGAGC ATCACGGGAA	420
	GTCTGGCCTT ACCAAGGCAG TGAAGGAGAG TACAATTACA TTGCAGCAGG CAGAGTATGA	480
55	ATTTCTGTCC TTTGTACGAC AGCAGACTCC TCCAGGGCTC TGTCCACTTG CAGGAAATTC	540
رر	AGTTCATGAA GATAAGAAGT TTCTTGACAA ATACATGCCC CAGTTCATGA AACATCTTCA	600
	TTATAGAATA ATTGATGTGA GCACTGTTAA AGAACTGTGC AGACGCTGGT ATCCAGAAGA	660

60 ATATGAATTT GCACCAAAGA AGGCTGCTTC TCATAGGGCA CTTGATGACA TTAGTGAAAG

	CATCAAAGAG CTTCAGTTTT ACCGAAATAA CATCTTCAAG AAAAAAATAG ATGAAAAGAA	780
5	GAGGAAAATT ATAGAAAATG GGGAAAATGA GAAGACCGTG AGTTGATGCC AGTTATCATG	840
,	CTGCCACTAC ATCGTTATCT GGAGGCAACT TCTGGTGGTT TTTTTTTCTC ACGCTGATGG	900
	CTTGGCAGAG CMCTTCGGTT AACTTGCATC TCCAGATTGA TTACTCAAGC AGACAGCACA	960
10	CGAAATACTA TTTTTCTCCT AATATGCTGT TTCCATTATG ACACAGCAGC TCCTTTGTAA	1020
	GTACCAGGTC ATGTCCATCC CTTGGTACAT ATATGCATTT GCTTTTAAAC CATTTCTTTT	1080
15	GTTTAAATAA ATAAATAAGT AAATAAAGCT AGTTCTATTG AAATGCAAAA AAAAAAAAAA	1140
13	и алалалал алалалал алалалал и	1181
20	(2) INFORMATION FOR SEQ ID NO: 304: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1537 base pairs	
25	(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 304:	
50	CTITITIGIGT TCCGGCCGAT CCCACCTCTC CTCGACCCTG GACGTCTACC TTCCGGAGGC	60
	CCACATCTTG CCCACTCCGC GCGCGGGCT AGCGCGGGTT TCAGCGACGG GAGCCCTCAA	120
35	GGGACATGGC AACTACAGCG GCGCCGGCGG GCGGCGCCCG AANATGGAGC TGGCCCGGAA	180
	TGGGGAGGGT TCGAAGAAAA CATCCAGGGC GGAGGCTCAG CTGTGATTGA CATGGAGAAC	240
40	ATGGATGATA CCTCAGGCTC TAGCTTCGAG GATATGGGTG AGCTGCATCA GCGCCTGCGC	300
	GAGGAAGAAG TAGACGCTGA TGCAGCTGAT GCAGCTGCTG CTGAAGAGGA GGATGGAGAG	360
	TTCCTGGGCA TGAAGGGCTT TAAGGGACAG CTGAGCCGGC AGGTGGCAGA TCAGATGTGG	420
45	CAGGCTGGGA AAAGACAAGC CTCCAGGGCC TTCAGCTTGT ACGCCAACAT CGACATCCTC	480
	AGACCCTACT TTGATGTGGA GCCTGCTCAG GTGCGAACAG GGCTCCTGGA GTCCATGATC	540
50	CCTATCAAGA TGGTCAACTT CCCCCAGAAA ATTGCAGGTG AACTCTATGG ACCTCTCATG	600
	CTGGTCTTCA CTCTGGTTGC TATCCTACTC CATGGGATGA AGACGTCTGA CACTATTATC	660
	CGGGAGGCA CCCTGATGGG CACAGCCATT GGCACCTGCT TCGGCTACTG GCTGGGAGTC	720
55	TCATCCTTCA TITACTTCCT TGCCTACCTG TGCAACGCCC AGATCACCAT GCTGCAGATG	780
	TTGGCACTGC TGGGCTATGG CCTCTTTGGG CATTGCATTG	840
	AMOS COURSE A CORPORATION OF COMPANY MODERNING	900

536

	CCCATCCTAC	CAGTGTTGGT	GTCTCGGACC	GTGGGCCCCA	CACAGCGGCT	GCTCCTCTGT	960
	GGCACCCTGG	CTGCCCTACA	CATGCTCTTC	CTGCTCTATC	TGCATTTTGC	CTACCACAAA	1020
5	GTGNTAGAGG	GGATCCTGGA	CACACTGGAG	GCCCCAACA	TCCCGCCCAT	CCAGAGGGTC	1080
	CCCAGAGACA	TCCCTGCCAT	CCTCCCTGCT	GCTCGCCTTC	CCACCACCGT	CCTCAACGCC	1140
10	ACAGCCAAAG	CTGTTGCGGT	GACCCTGCAG	TCACACTGAC	CCCACCTGAA	ATTCTTGGCC	1200
10	AGTCCTCTTT	CCCGCAGCTG	CAGAGAGGAG	GAAGACTATT	AAAGGACAGT	CCTGATGACA	1260
	TGTTTCGTAG	ATGGGGTTTG	CAGCTGCCAC	TGAGCTGTAG	CTGCGTAAGT	ACCTCCTTGN	1320
15	AGCTGTCGGC	ACTTCTGAAA	GCACAAGGCC	AAGAACTCCT	GCCAGGACT	GCAAGGCTCT	1380
	GCAGCCAATG	CAGAAAATGG	GTCAGCTCCT	TTGAGAACCC	CTCCCCACCT	ACCCCTTCCT	1440
20	TCCTCTTTAT	CTCTCCCACA	TIGICTICCT	AAATATAGAC	TTGGTAATTA	AAAAAAAAA	1500
20	ааааааааа	ааааааааа	AAAAAAGGGG	GGNCCCC			1537

25

30

(2) INFORMATION FOR SEQ ID NO: 305:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1493 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 305:

35 TGCATGCCAA AACCAATGCC TGCCAAACAA AATCTTAGAC ATCCCAATAT AATATGTTAG TTATATTTCT ATTCACATCA TTATTGAAAA TACCCAGCTC AGTGCCTGGC TTAATAAATG 120 40 TITAATTCCC TTACCTACTC TTGCTCTATT TTTTTATTTG AAATGGAGAT GAGCAAAATA 180 ACACATTCAT GGCTGAAGCA ATTTTTTGGA CATTTCTTGT TACCAAAAGA TCTATAATCA 240 GGATGATCCT GAGCTGTTCA AACAAGCTGT ATATAAACAG ACAATGAAAC TCTTTGCAGA 300 45 GCTGGAAATT AAAAGGAAAG AGAGAGAAGC CAAAGAGATG CATGAAAGGA AACGACAAAG 360 420 GGAAGAAGAG ATTGAAGCTC AAGAAAAAGC CAAACGGGAA AGAGAGTGGC AGAAAAACTT 50 TGAGGAAAGT CGAGATGGTC GTGTGGACAG CTGGCGAAAC TTCCAAGCCA ATACGAAGGG 480 GAAGAAAGAG AAGAAAAATC GGACCTTCCT GAGACCACCG AAAGTAAAAA TGGAGCAACG 540 TGAGTGACCG CCCAAGGTCA CAGGCACAGA ACCTTTCCCC TGCTATCTCC CTTCCTGCTT 600 55 CGAAGGACTC ATTCTTTCCT CCCACTTCCA CCCCAACATA GAGTAGTATT TGCTTTTTAG 660 TCCATTTGT TITCAATACG ATTTAATATC GATCAGAGTA ATTCTTTTGT ACATTGAAAT 720 GAGGGGCTTG GTTTAAAAAA AGACCTTTCC CTCTCCCTGC CCCTAGAACA ACCAGTATTA 60 780

	GAAGGTGCCA CCATTGGTGC TGCCTTCTCT TCCCACAGCC TGTAACTCAG TGTTTTGTAC	840				
5	TTCACTGAAT TGTGATGGTT AGAAACTTCG TGGATAGTTT GTGGAAATCA TCCAATTAAA	900				
J	CATACTCCTT AAAACAGTGT TCCTGTGACT TCAGAGACAA GCCTGGAAGG GGCACCTTAG	960				
	GAAGCCCCTT CGCTTCAGTT GCTCGCTTCT GGGTGTGCTC CCTTCGAAGG CCCAGATAAG	1020				
10	ACAGGGAACA CTTGTGAGCA CACAGAGCAG CATCTGATGC CCTGTGGTGT TTGGCATGTG	1080				
	CCCCCTGTCT ACTGACCAAT CAGTGTGGCA TGAGGCCCAC GCCACCCAAA CCTTTCACTT	1140				
15	TCCAAAGAGC TAGCCGTCCT CCACCCAGTA CCATGTCCTA GCCTGTCTGC ATTTGTTAGT	1200				
1.7	GGTAATATTC TYTATGTATA ATAAATTTTT ATACCCAAGC CATTGATGTA CTTTTCCTTG	1260				
	TACTCTCCCT TGTGGGTCCC TTGTCTGGCT TGGCTGAACC CCAAAATGCT TTGGGGTTGG	1320				
20	ACAGACCTGG CTGAACCTTA GTTTCTTCAT CTATGAAATG GGAATATGAA TTACTGCAGC	1380				
	AGCTTTTAGG GCAGATTTGC CATGGCATAT ACAAGGTAAC TACCATAGTG CTCCTTGGGT	1440				
25	ATTGCCAATA TCCTATTATT TCTGTGTAAA ATGAAGATAC TGATTGTTTT GAG	1493				
23						
	(2) INFORMATION FOR SEQ ID NO: 306:					
30	(i) SEQUENCE CHARACTERISTICS:					
	(A) LENGTH: 577 base pairs (B) TYPE: nucleic acid					
35	(C) STRANDEDNESS: double (D) TOPOLOGY: linear					
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 306:					
	AATTCGGCAG AGGNATTATA TACACTATAC TGGCATTTAC TGTTTCACCC AGCCCGAAA	60				
40	GTCAGAGATG TATATTGGAA AATTTACAAC TCCATCTACA TTGGTTCCCA GGACGCTCTC	120				
	ATAGCACATT ACCCAAGAAT CTACAACGAT GATAAGAACA CCTATATTCG TTATGAACTT	180				
45	GACTATATCT TATAATTTTA TIGTITTATTT TGTGTTTAAT GCACAGCTAC TTCACACCTT	240				
	AAACTTGCTT TGATTTGGTG ATGTAAACTT TTAAACATTG CAGATCAGTG TAGAACTGGT	300				
	CATAGAGGAA GAGCTAGAAA TCCAGTAGCA TGATTTTTAA ATAACCTGTC TTTGTTTTTG	360				
50	ATGTTAAACA GTAAATGCCA GTAGTGACCA AGAACACAGT GATTATATAC ACTATACTGG	420				
	AGGGATTTCA TTTTTAATTC ATCTTTATGA AGATTTAGAA CTCATTCCTT GTGTTTAAAG	480				
55		540				
JJ	GGAATGTTTA ATTGAGAAAT AAACATTTGT GWACAAAATG YTAAAAAAAA AAAAAAAAA	577				
	АААААААА ААААААААА ААААААААА ААСТСGA	311				

(2) INFORMATION FOR SEQ ID NO: 307:

- 5

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2860 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 307:

	GTGTINGACCG CTCTCNCAAT ATGGCTCCCC CGGGCTGGCA GRWRKTCRGT CWCKRGTGGC	60
15	TAGCCTGTCC TGACAGGGGA GAGTTAAGCT CCCGTTCTCC ACCGTGCCGG CTGGCCAGGT	120
	GGGCTGAGGG TGACCGAGAG ACCAGAACCT GCTTGCTGGA GCTTAGTGCT CAGAGCTGGG	180
	GAGGGAGGTT CCGCCGCTCC TCTGCTGTCA GCGCCGGCAG CCCCTCCCGG CTTCACTTCC	240
20	TCCCGCAGCC CCTGCTACTG AGAAGCTCCG GGATCCCAGC AGCCGCCACG CCCTGGCCTC	300
	ACCCTGCGGG GCTTCCAGTC AGGCCAACAC CGACGCGCAC TGGGGAGGAA GACAGGACCC	360
25	TTGACATCTC CATCTGCACA GAGGTCCTGG CTGGAACCGA GCAGCCTCCT CCTCCTAGGA	420
23	TGACCTCACC CTCCAGCTCT CCAGTTTTCA GGTTGGAGAC ATTAGATGGA GGCCAAGAAG	480
	ATGCCTCTGA GGCGGACAGA GGAAAGCTGG ATTTTGGGAG CGGGCTGCCT CCCATGGAGT	540
30	CACAGTTCCA GGGCGAGGAC CGGAAATTCG CCCCTTCAGA TAAGAGTCAA CCTCCAACTA	600
	CCGAAAGGGA ACAGGTGCCA GTCAGCCGGA TCCAAACCGA TTTGACCGAG ATCGGCTCTT	660
35	CAATGCGGTC TCCCGGGGTG TCCCCGAGGA TCTGGCTGGA CTTCCAGAGT ACCTGAGCAA	720
33	GACCAGCAAG TACCTCACCG ACTTCGGAAA TACACAGAGG GCTCCACAGG TAAGACGGCC	780
	TGATGAAGGC TGTGCTGAAA CCTTAAGGAC GGGGTCAATG CCTGCATTCT GCCACTGCTG	840
40	CAGATCGACC GGGACTCTGG CAATCCTCAG CCCCTGGTAA ATGCCCAGTG CACAGATGAC	900
	TATTACCGAG GCCACAGCGC TCTGCACATC GCCATTGAGA AAGAGGAGTC TGCAGTGTGT	960
45	GAAGCTCCTG GTGGAGAATG GGGCCAATGT GCATGCCCGG GTCTGCGGCG ACTTCTTCCA	1020
43	GAAGGCCAA GGGACTTGCT TITATTTCGG TGAGCTACCC CTCTCTTTGG CCGCTTGCAC	1080
	CAAGCAGTGG GATGTGGTAA GCTACCTCCT GGAGAACCCA CACCAGCCCG CCAGCCTGCA	1140
50	GGCCACTGAC TCCCAGGGCA ACACAGTCCT GCATGCCCTA GTGGATGATC TCGGACAACT	1200
	CAGCTGAGAA CATTGCACTG GTGACCAGCA TGTATGATGG GCTCCTCCAA GCTKGGGSCC	1260
<i></i>	SCCYTCTGCC CTACCGTGCA GCTTGAGGAC ATCCGCAACC TGCAGGATCT CACGCCTCTG	1320
55	AAGCTGGCCG CCAAGGAGGG CAAGATCGAG ATTTTCAGGC ACATCCTGCA GCGGGAGTTT	1380
	TCAGGACTGA GCCACCTTTC CCGAAAGTTC ACCGAGTGGT GCTATGGGCC TGTCCGGGTG	1440
60	TOGOTOTATO ACCTOGOTTO TOTOGACAGO TOTOGAGGAGA ACTCAGTOCT GGAGATCATT	1500

PCT/US98/04493

	GCCTTTCATT	GCAAGAGCCC	GCACCGACAC	CGAATGGTCG	TTTTGGAGCC	CCTGAACAAA	1560
5	CTGCTGCAGG	CGAAATGGGA	TCTGCTCATC	CCCAAGTTCT	TCTTAAACTT	CCTGTGTAAT	1620
J	CTGATCTACA	TGTTCATCTT	CACCGCTGTT	GCCTACCATC	AGCCTACCCT	GAAGAAGCAG	1680
	GCCGCCCCTC	ACCTGAAAGC	GGAGGTTGGA	AACTCCATGC	TGCTGACGGG	CCACATCCTT	1740
10	ATCCTGCTAG	GGGGGATCTA	CCTCCTCGTG	GGGCCAGCTG	TGGTACTTCT	GGCGGCGCCA	1800
	CGTGTTCATC	TGGATCTCGT	TCATAGACAG	CTACTTTGGA	AATCCTCTTC	CTGTTCCAGG	1860
15	CCCTGCTTCA	CAGTGGTGTC	CCAGGTGCTG	TGTTTCCTGG	GCCATCGAGT	GGTACCTGCC	1920
	CCTGCTTGTG	TCTGCGCTGG	TGGCTGGGCT	GGCTGAACCT	GCTTTACTAA	TACACGTGGC	1980
	GTTCCAGCAC	ACAGGCAGTC	TACAGTITCA	TGWTCCCTGA	AGCCCTGGTG	AGCCTGAGCC	2040
20	AGGAGGCTTG	GCGCCCCGAA	GCTCCTACAG	GCCCCAATGC	CACAGAGTCA	GTGCAGCCCA	2100
	TGGAGGGACA	GGAGGACGAG	GGCAACGGGG	CCCAGTACAG	CCCTATCCTC	GAAGCCTCCT	2160
25	TGGAGCTCTT	CAAATTCACC	ATCGGCATGG	CCGACCTCCC	CTTCCAGGAG	CAGCTGCACT	2220
	TCCGCGGCAT	GGTGCTGCTG	CTGCTGCTGG	CCTACGTGCT	GCTCACCTAC	ATCCTGCTGC	2280
	TCAACATGCT	CATCGCCCTC	ATGAAGCGAA	CGTCACAGTG	TCGCCACTGA	CAGCTGGAGC	2340
30	ATCTGGAAGC	TGCAGAAAGC	CATCTCTGTC	CTGGAGATGG	AGAATGGCTA	TTGGTGGTGC	2400
	AGGAAAAAGC	AGCGGGCAGG	TGTGATGCTG	ACCGTTGGCA	CTAAGCCCAG	ATGGCAGCCC	2460
35	CGATGAGCGC	TGGTGCTTCA	GGGTGGAGGA	GGTGAACTGG	GCTTCATGGG	GAGCAGACGC	2520
	TGCCTACGCT	GTGTGAGGAC	CCGTCAGGGG	CAGGTGTCCC	TCGAACTCTC	GAGAACCCTG	2580
	TCCTGGCTTC	CCCTCCCAAG	GAGGATGAGG	ATGGTGCCTC	TGAGGAAAAC	TATGTGCCCG	2640
40	TCCAGCTCCT	CCAGTCCAAC	TGATGGCCCA	GATGCAGCAG	GAGGCCAGAG	GACAGAGCAG	2700
	AGGATCTTTC	CAACCACATC	TGCTGGCTCT	GGGTCCCAG	TGAATTCTGG	TGGCAAATAT	2760
45	ATATTTTCAC	ТААСТСАААА	AAAAAAAA	ААААААААА	AAAAVGAGGG	GGGCCCGKT	2820
	ASCCAAWITC	GCCCTATAAG	TGAGTGCCWA	TTACGATAAA			2860

50

(2) INFORMATION FOR SEQ ID NO: 308:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 876 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 308:

PCT/US98/04493

540

	CTGCTTGTGT CTGCGCTGGT GCTGGGCTGG CTGAACCTGC TTTACTATAC ACGTGGCTTC	60
	CAGCACACAG GCATCTACAG TGTCATGATC CAGAAGCCCT GGTGAGCCTG AGCCAGGANN	120
5	TTGGCGCCCC GAAGCTCCTA CAGGCCCCAA TGCCACAGAG TCAGTGCAGC CCATGGAGGG	180
	ACAGGAGGAC GAGGGCAACG GGGCCCAGTA CAGGGGTATC CTGGAAGCCT CCTTGGAGCT	240
	CTTCAAATTC ACCATCGGCA TGGGCGAGCT GGCCTTCCAG GAGCAGCTGC ACTTCCGCGG	300
10	CATGGTGCTG CTGCTGCTGC TGGCCTACGT GCTGCTCACC TACATCCTGC TGCTCAACAT	360
	GCTCATCGCC CTCATGNAGC GAGACCGWCA ACAGTGTCGC CACTGACAGC TGGAGCATCT	420
15	GGAAGCTGCA GAAAGCCATC TCTGTCCTGG AGATGGAGAA TGGCTATTGG TGGTGCAGGA	480
	AGAAGCAGCG GGCAGGTGTG ATGCTGACCG TTGGCACTAA GCCAGATGGC AGCCCCGATG	540
20	AGCGCTGGTG CTTCAGGCTG GAGGAGGTGA ACTGGGCTTC ATGGGAGCAG ACGCTGCCTA	600
20	CGCTGTGTGA GGACCCGTCA GGGGCAGGTG TCCCTCGAAC TCTCGAGAAC CCTGTCCTGG	660
	CTTCCCCTCC CAAGGAGGAT GAGGATGGTG CCTCTGAGGA AAACTATGTG CCCGTCCAGC	720
25	TCCTCCAGTC CAACTGATGG CCCAGATGCA GCAGGAGGCC AGAGGACAGA GCAGAGGATC	780
	TITICCAACCA CATCTGCTGG CTCTGGGGTC CCAGTGAATT CTGGTGGCAA ATATATATTT	840
30	TCACTAAMWM AAAAAAAAAA AAAAAAAAAA ACTCGA	876
30		
	(2) INFORMATION FOR SEQ ID NO: 309:	
35	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 2025 base pairs (B) TYPE: nucleic acid	
40	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
70	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 309:	
	CATGACCCGC CTGATGCGAT CCCGCACAGC CTCTGGTTCC AGCGTCACTT CTCTGGATGG	60
45	CACCOGCAGC CGCTCCCACA CCAGCGAGGG CACCCGAAGC CGCTCCCACA CCAGCGAGGG	120
		180
50	CACCCGCAGC CGCTCGCACA CCAGCGAGGG GGCCCACCTG GACATCACCC CCAACTCGGG	240
50	TGCTGCTGGG AACASGCCGG GCCCAAGTCC ATGGAGGTCT CCTGCTAGGC GGCCTGCCCA	300
	GCTGCCGCCC CCGGACTCTG ATCTCTGTAG TGGCCCCCTC CTCCCCGGCC CCTTTTCGCC	
55	CCCTGCCTGC CATACTGCGC CTAACTCGGT ATTAATCCAA AGCTTATTTT GTAAGAGTGA	360
	GCTCTGGTGG AGACAAATGA GGTCTATTAC GTGGGTGCCC TCTCCAAAGG CGGGGTGGCG GTXCACCAAA CCAACCAACC AACCATCTCC CCATCGCATC CTCTTCCATT AACCAGTGGC	420
	THE TANK LAMA GERMAGE ANG ANG ANT TELL OF ANTER AND THE TRAIN AND ANGLES	400

60 CGGTTGCCAC TCTCCTCCCC TCCCTCAGAG ACACCAAACT GCCAAAAACA AGACGCGTAC

	AGCACACACT	TCACAAAGCC	AAGCCTAGGC	CGCCCTGAGC	ATCCTGGTTC	AAACGGGTGC	600
5	CTGGTCAGAA	GGCCAGCCGC	CCACTTCCCG	TTTCCTCTTT	AACTGAGGAG	AAGCTGATCC	660
,	AGTTTCCGGA	AACAAAATCC	TTTTCTCATT	TGGGGAGGG	GGTAATAGTG	ACATGCAGGC	720
	ACCTCTTTTA	AACAGGCAAA	ACAGGAAGGG	GGAAAAGGTG	GGATTCATGT	CGAGGCTAGA	780
10	GGCATTTGGA	ACAACAAATC	TACGTAGTTA	ACTTGAAGAA	ACCGATTTTT	AAAGTTGGTG	840
	CATCTAGAAA	GCTTTGAATG	CAGAAGCAAA	CAAGCTTGAT	TTTTCTAGCA	TCCTCTTAAT	900
15	GTGCAGCAAA	AGCAGGCRAC	AAAATCTCCT	GGCTTTACAG	ACAAAAATAT	TTCAGCAAAC	960
	GTTGGGCATC	ATGGTTTTTG	AAGGCTTTAG	TICTGCTTIC	TGCCTCTCCT	CCACAGCCCC	1020
	AACCTCCCAC	CCCTGATACA	TGAGCCAGTG	ATTATICITG	TTCAGGGAGA	AGATCATTTA	1080
20	GATTIGITIT	GCATTCCTTA	GAATGGAGGG	CAACATTCCA	CAGCTGCCCT	GGCTGTGATG	1140
	AGTGTCCTTG	CAGGGGCCGG	AGTAGGAGCA	CTGGGGTGGG	GGCGGAATTG	GGGTTACTCG	1200
25	ATGTAAGGGA	TICCITGIIG	TTGTGTTGAG	ATCCAGTGCA	GTTGTGATTT	CTGTGGATCC	1260
	CAGCTTGGTT	CCAGGAATTT	TGTGTGATTG	GCTTAAATCC	AGTTTTCAAT	CTTCGACAGC	1320
	TGGGCTGGAA	CGTGAACTCA	GTAGCTGAAC	CTGTCTGACC	CGGTCACGTT	CTTGGATCCT	1380
30	CAGAACTCTT	TGCTCTTGTC	GGGGTGGGGG	TGGGAACTCA	CGTGGGGAGC	GCTGGCTGAG	1440
	AAAATGTAAG	GATTCTGGAA	TACATATTCC	ATGGGACTTT	CCTTCCCTCT	CCTGCTTCCT	1500
35	CTTTTCCTGC	TCCCTAACCT	TTCGCCGAAT	GGGGCAGCAC	CACTGACGTT	TCTGGGCGGC	1560
	CAGTGCGGCT	GCCAGGTTCC	TGTACTACTG	CCTTGTACTT	TTCATTTTGG	CTCACCGTGG	1620
	ATTTTCTCAT	AGGAAGTTIG	GTCAGAGTGA	ATTGAATATT	GTAAGTCAGC	CACTGGGACC	1680
40	CGAGGATTTC	TGGGACCCCG	CACTTGGGAG	GAGGAAGTAG	TCCAGCCTTC	CAGGTGGCGT	1740
	GAGAGGCAAT	GACTCGTTAC	CTGCCGCCCA	TCACCTTGGA	GGCCTTCCCT	GGCCTTGAGT	1800
45	AGAAAAGTCG	GGGATCGGGG	CAAGAGAGGC	TGAGTACGGA	TGGGAAACTA	TTGTGCACAA	1860
. =	GTCTTTCCAG	AGGAGTTTCT	TAATGAGATA	TTTGTATTTA	TTTCCAGACC	AATAAATTTG	1920
	TAACTTTGCA	AAAAAAAA	ААААААА	AAAAAAAA	AAAAAAAAA	AAAAAACTC	1980
50	GAGGGGGGCC	CGTACCCAAT	TCGCCGTATA	TGATCGTAAA	CAATC		2029

55 (2) INFORMATION FOR SEQ ID NO: 310:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3026 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

WO 98/39448

60

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 310:

- 5	TAGGCAGCAC	TGAAATATCC	TAACCCCCTA	AGCTCCAGGT	GCCCTGTGGN	ACGAGCAACT	60
	GGACTATAGC	AGGGCTGGGC	TCTGTCTTCC	TGGTCATAGG	CTCACTCTTT	CCCCCAAATC	120
10	TTCCTCTGGA	GCTTTGCAGC	CAAGGTGCTA	AAAGGAATAG	GTAGGAGACC	TCTTCTATCT	180
10	AATCCTTAAA	AGCATAATGT	TGAACATICA	TTCAACAGCT	GATGCCCTAT	AACCCCTGCC	240
	TGGATTTCTT	CCTATTAGGC	TATAAGAAGT	AGCAAGATCT	TTACATAATT	CAGAGTGGTT	300
15	TCATTGCCTT	CCTACCCTCT	CTAATGGCCC	CTCCATTTAT	TTGACTAAAG	CATCACAÇAG	360
	TGGCACTAGC	ATTATACCAA	GAGTATGAGA	AATACAGTGC	TTTATGGCTC	TAACATTACT	420
20	GCCTTCAGTA	TCAAGGCTGC	CTGGAGAAAG	GATGGCAGCC	TCAGGGCTTC	CITATGICCT	480
20	CCACCACAAG	AGCTCCTTGA	TGAAGGTCAT	CITTITICCCC	TATCCTGTTC	TTCCCCTCCC	540
	CGCTCCTAAT	GGTACGTGGG	TACCCAGGCT	GGTTCTTGGG	CTAGGTAGTG	GGGACCAAGT	600
25	TCATTACCTC	CCTATCAGTT	CTAGCATAGT	AAACTACGGT	ACCAGTGTTA	GTGGGAAGAG	660
	CTGGGTTTTC	CTAGTATACC	CACTGCATCC	TACTCCTACC	TGGTCAACCC	GCTGCTTCCA	720
30	GGTATGGGAC	CTCCTAAGTG	TGGAATTACC	TGATAAGGGA	GAGGGAAATA	CAAGGAGGC	780
30	CTCTCGTGTT	CCTGGCCTCA	GCCAGCTGCC	CACAAGCCAT	AAACCAATAA	AACAAGAATA	840
	CTGAGTCAGT	TTTTTATCTG	GGTTCTCTTC	ATTCCCACTG	CACTTGGTGC	TGCTTTGGCT	900
35	GACTGGGAAC	ACCCCATAAC	TACAGAGTCT	GACAGGAAGA	CTGGAGACTG	TCCACTTCTA	960
	GCTCGGAACT	TACTGTGTAA	ATAAACTTTC	AGAACTGCTA	CCATGAAGTG	AAAATGCCAC	1020
40	ATTTTGCTTT	АТААТТТСТА	CCCATGTTGG	GAAAAACTGG	CTTTTTCCCA	GCCCTTTCCA	1080
40	GGGCATAAAA	CTCAACCCCT	TCGATAGCAA	GICCCATCAG	CCTATTATTT	TTTTAAAGAA	1140
	AACTTGCACT	TGTTTTCTT	TTTACAGTTA	CTTCCTTCCT	GCCCCAAAAT	TATAAACTCT	1200
45	AAGTGTAAAA	AAAAGTCTTA	ACAACAGCTT	CITGCTIGTA	AAAATATGTA	TTATACATCT	1260
	GTATTTTTAA	ATTCTGCTCC	TGAAAAATGA	CTGTCCCATT	CTCCACTCAC	TGCATTTGGG	1320
50	GCCTTTCCCA	TTGGTCTGCA	TGTCTTTTAT	CATTGCAGGC	CAGTGGACAG	AGGGAGAAGG	1380
50	GAGAACAGGG	GTCGCCAACA	CTTGTGTTGC	TTTCTGACTG	ATCCTGAACA	AGAAAGAGTA	1440
	ACACTGAGGC	GCTCGCTCCC	ATGCACAACT	CTCCAAAACA	CTTATCCTCC	TGCAAGAGTG	1500
55	GGCTTTCCAG	GGTCTTTACT	GGGAAGCAGT	TAAGCCCCCT	CCTCACCCCT	тсстттттс	1560
	тттсттаст	CCTTTGGCTT	CAAAGGATTT	TGGAAAAGAA	ACAATATGCT	TTACACTCAT	1620
60	TTTCAATTTC	TAAATTTGCA	GGGGATACTG	AAAAATACGG	CAGGTGGCCT	AAGGCTGCTG	1680

			TACAAGATAA	AAAACGAATC	CCCTAAACAA	1740
AAAGAACAAT	AGAACTGGTC	dala. V. Jahahahal.				
		1100011110	CCACCTTTCC	TGTTCATGAC	AGCTACTAAC	1800
CTGGAGACAG	TAACATTICA	TTAACCAAAG	AAAGTGGGTC	ACCTGACCTC	TGAAGAGCTG	1860
AGTACTCAGG	CCACTCCAAT	CACCCTACAA	GATGCCAAGG	AGGTCCCAGG	AAGTCCAGCT	1920
CCTTAAACTG	ACGCTAGNMA	ATAAACCTGG	GCAAGTGAGG	CAAGAGAAAT	GAGGAAGAAT	1980
CCATCTGTGA	GGTGAYAGGC	AAGGATGAAA	GACAAAGAAG	GAAAAGAGTA	TCAAAGGCAG	2040
AAAGGAGATC	ATTTAGTTGG	GTCTGAAAGG	AAAAGTCTTT	GCTATCCGAC	ATGTACTCCT	2100
AGTACCTGTA	AGCATTTTAG	GTCCCAGAAT	GGAAAAAAA	ATCAGCTATT	GGTAATATAA	2160
TAATGTCCTT	TCCCTGGAGT	CAGTTTTTTT	AAAAAGTTAA	CTCTTAGTTT	TTACTTGTTT	2220
AATTCTAAAA	GAGAAGGGAG	CTGAGGCCAT	TCCCTGTAGG	AGTAAAGATA	AAAGGATAGG	2280
AAAAGATTCA	AAGCTCTAAT	AGAGTCACAG	CTTTCCCAGG	TATAAAACCT	AAAATTAAGA	2340
AGTACAATAA	GCAGAGGTGG	AAAATGATCT	AGTTCCTGAT	AGCTACCCAC	AGAGCAAGTG	2400
АТТТАТАААТ	TTGAAATCCA	AACTACTITC	TTAATATCAC	TTTGGTCTCC	ATTTTTCCCA	2460
GGACAGGAAA	TATGTCCCCC	CCTAACTTTC	TTGCTTCAAA	AATTAAAATC	CAGCATCCCA	2520
AGATCATTCT	ACAAGTAATT	TTGCACAGAC	ATCTCCTCAC	CCCAGTGCCT	GTCTGGAGCT	2580
CACCCAAGGT	CANCCAAACA	ACTIGGTIGT	GAACCCAACT	GCCTTAACCT	TCTGGGGGAG	2640
GGGGATTAGC	TAGACTAGGA	GACCCAGAAG	TGAATGGGAA	AGGGTGAGGA	CTTCACAATG	2700
TTGGCCTGTC	AGAGCTTGAT	TAGAAGCCAA	GACAGTGGCA	GCAAAGGAAG	ACTTGGCCCA	2760
GGAAAAACCT	GTGGGTTGTG	CTAATTTCTG	TCCAGAAAAT	AGGGTGGACA	GAAGCTTGTG	2820
GGGTGCATGG	AGGAATTGGG	ACCTGGTTAT	GTTGTTATTC	TCGGACTGTG	AATTTTGGTG	2880
ATGTAAAACA	GAATATTCTG	TAAACCTAAT	GTCTGTATAA	ATAATGAGCG	TTAACACAGT	2940
ААААТАТТСА	ATAAGAAGTC	АААААААА	AAAAAAAACT	CGAGGGGGG	CCCGGTACCC	3000
AATTTNCCAA	ATAGAGATNG	TATTAC				3026
	AGTACCTGTA TAATGTCCTT AATTCTAAAA AAAAGATTCA AGTACAATAA ATTTATAAAT GGACAGGAAA AGATCATTCT CACCCAAGGT GGGGATTAGC TTGGCCTGTC GGAAAAACCT GGGTGCATGG ATGTAAAAACA AAAATATTCA	AGTACCTGTA AGCATTTAG TAATGTCCTT TCCCTGGAGT AATTCTAAAA GAGAAGGGAG AAAAGATTCA AAGCTCTAAT AGTACAATAA GCAGAGGTGG ATTTATAAAT TTGAAATCCA GGACAGGAAA TATGTCCCCC AGATCATTCT ACAAGTAATT CACCCAAGGT CANCCAAACA GGGGATTAGC TAGACTAGGA TTGGCCTGTC AGAGCTTGAT GGAAAAACCT GTGGGTTGTG GGGTGCATCG AGGAATTCCG ATGTAAAACA GAATATTCTG AAAATATTCA ATAAGAAGTC	AGTACCTGTA AGCATTTTAG GTCCCAGAAT TAATGTCCTT TCCCTGGAGT CAGTTTTTTT AATTCTAAAA GAGAAGGGAG CTGAGGCCAT AAAAGATTCA AAGCTCTAAT AGAGTCACAG AGTACAATAA GCAGAGGTGG AAAATGATCT ATTTATAAAT TTGAAATCCA AACTACTTTC GGACAGGAAA TATGTCCCCC CCTAACTTTC CACCCAAGGT CANCCAAACA ACTTGGTTGT GGGGATTAGC TAGACTAGGA GACCCAGAAG TTGGCCTGTC AGAGCTTGAT TAGAAGCCAA GGAAAAACCT GTGGGTTGTG CTAATTTCTG GGGTGCATGG AGGAATTGGG ACCTGGTTAT ATGTAAAACA GAATATTCTG TAAACCTAAT	AGTACCTGTA AGCATTTAG GTCCCAGAAT GGAAAAAAAA TAATGTCCTT TCCCTGGAGT CAGTTTTTTT AAAAAAGTTAA AATTCTAAAA GAGAAGGGAG CTGAGGCCAT TCCCTGTAGG AAAAGATTCA AAGCTCTAAT AGAGTCACAG CTTTCCCAGG AGTACAATAA GCAGAGGTGG AAAATGATCT AGTTCCTGAT ATTTATAAAT TIGAAATCCA AACTACTTTC TTAATATCAC GGACAGGAAA TATGTCCCCC CCTAACTTTC TTGCTTCAAA AGATCATTCT ACAAGTAATT TTGCACAGAC ATCTCCTCAC CACCCAAGGT CANCCAAACA ACTTGGTTGT GAACCCAACT GCGGATTAGC TAGACTAGGA GACCCAGAAG TGAATGGGAA TTGGCCTGTC AGAGCTTGAT TAGAAGCCAA GACAGTGGCA GGAAAAACCT GTGGGTTGTG CTAATTTCTG TCCAGAAAAT GGGTGCATCG AGGAATTCGG ACCTGGTTAT GTTGTTATTC ATGTAAAACA GAATATTCTG TAAAACCTAAT GTCTGTATAA AAAATATTCA ATAAGAAGTC AAAAAAAAAAA AAAAAAAACT	AGTACCTGTA AGCATTTAG GTCCCAGAAT GGAAAAAAAA ATCAGCTATT TAATGTCCTT TCCCTGGAGT CAGTTTTTT AAAAAGTTAA CTCTTAGTTT AATTCTAAAA GAGAAGGGAG CTGAGGCCAT TCCCTGTAGG AGTAAAGATA AAAAGATTCA AAGCTCTAAT AGAGTCACAG CTTTCCCAGG TATAAAACCT AGTACAATAA GCAGAGGTGG AAAATGATCT AGTTCCTGAT AGCTACCCAC ATTTATAAAT TIGAAATCCA AACTACTTTC TTAATATCAC TTTGGTCTCC GGACAGGAAA TATGTCCCCC CCTAACTTTC TTGCTTCAAA AATTAAAATC AGATCATTCT ACAAGTAATT TTGCACAGAC ATCTCCTCAC CCCAGTGCCT CACCCAAGGT CANCCAAACA ACTTGGTTGT GAACCCAACT GCCTTAACCT GGGGATTAGC TAGACTAGGA GACCCAGAAG TGAATGGGAA AGGGTGAGGA TTGGCCTGTC AGAGCTTGAT TAGAAGCCAA GACAGTGGCA GCAAAGGAAG GGAAAAACCT GTGGGTTGTG CTAATTTCTG TCCAGAAAAT AGGGTGGACA GGGTGCATCG AGGAATTCGG ACCTGGTTAT GTTGTTATTC TCGGACTGTG ATGTAAAACA GAATATTCTG TAAAACCTAAT GTCTGTATAA ATAATGAGCC AAAATATTCA ATAAGAAGTC AAAAAAAAAA AAAAAAAACC CGAGGGGGGG	AAAGGAGATC ATTTAGTTGG GTCTGAAAGG AAAAGTCTTT GCTATCCGAC ATGTACTGCT AGTACCTGTA AGCATTTTAG GTCCCAGAAT GGAAAAAAAA ATCAGCTATT GGTAATATAA TAATGTCCTT TCCCTGGAGT CAGTTTTTTT AAAAAGTTAA CTCTTAGTTT TTACTTGTTT AATTCTAAAA GAGAAGGGAG CTGAGGCCAT TCCCTGTAGG AGTAAAGATA AAAGGATAGG AAAAGATTCA AAGCTCTAAT AGAGTCACAG CTTTCCCAGG TATAAAAACCT AAAATTAAGA AGTACAATAA GCAGAGGTGG AAAATGATCT AGTTCCTGAT AGCTACCCAC AGAGCAAGTG ATTTATAAAT TTGAAATCCA AACTACTTTC TTAATATCAC TTTGGTCTCC ATTTTTCCCA AGATCATTCT ACAAGTAATT TTGCACAGAC ATCTCCTCAC CCCAGTGCCT GTCTGGAGCT CACCCAAGGT CANCCAAACA ACTTGGTTGT GAACCCAACT GCCTTAACCT TCTGGGGGAG GGGGATTAGC TAGACTAGGA GACCCAGAAG TGAATGGGAA AGGGTGAGGA CTTCACAATG TTGGCCTGTC AGAGCTTGAT TAGAAGCCAA GACAGTGCCA GCAAAGGAAG ACTTGGCCCA GGAAAAACCT GTCGGTTGTG CTAATTTCTG TCCAGAAAAT AGGGTGGACA GAAGCTTGTG GGGTGCATGG AGGATTGCG ACCTGGTTAT GTTGTTATTC TCGGACTGT AATTTTTGCTG ATGTAAAACA GAATATTCT TAAACCTAAT GTCTGTTATA ATAATGAGCG TTAACACAGT AAAATATTCA ATAAGAAGTC AAAAAAAAAA AAAAAAAACCT CGAGGGGGG CCCCGGTACCC AATTTTCCAA ATAAGAAGTC AAAAAAAAAA AAAAAAAACCT CGAGGGGGG CCCCGGTACCC AATTTTCCAA ATAAGAAGTC AAAAAAAAAAA AAAAAAAACCT CGAGGGGGG CCCCGGTACCC AATTTTCCAA ATAAGAAGTC AAAAAAAAAAA AAAAAAAACCT CGAGGGGGGG CCCCGGTACCC

50 (2) INFORMATION FOR SEQ ID NO: 311:

55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 712 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 311:

60 GCAGGCTTTG TGCTCACCTA CAAGCTGGGT GAGCAGGGTG CCAGCAGCCT GTTTCCTCTT

WO 98/39448 PCT/US98/04493 544

	CTCCTGCTGG	ACCACGCCGT	TTCTGCTCCC	GAGTTGGGAC	TGTGGAATGG	TGTGGGTGCT	120
5	GTGGTCTGCT	CCATCGCTGG	CTCCTCCCTG	GGTGGGACCT	TGCTGGCCAA	GCACTGGAAA	180
3	CTGCTGCCTC	TGTTGARGTC	GCTGCTGCGC	TTCCGCCTCG	GGGCCTAGC	CTGTCAGACT	240
	GCCTTGGTCT	TCCACCTGGA	CACCCTGGGG	GCCAGCATGG	ACGCTGGCAC	AATCTTGAGA	300
10	GGGTCAGCCT	TGCTGAGCCT	ATGTCTGCAG	CACTTCTTGG	GAGGCCTGGT	CACCACAGTC	360
	ACCTTCACTG	GGATGATGCG	CTGCAGCCAG	CTGGCCCCCA	GGGCCTGCAG	GCCACACACT	420
15	ACAGCCTTCT	GGCCACGCTG	GAGCTGCTGG	GGAAGCTGCT	GCTGGGCACT	CTGCGGAGGC	480
IJ	CTGGCTGATG	GCTTGGGGCC	ACATCCCTGC	TTCTTGCTCC	TGCTCATCCT	CTCTGCCTTT	540
	CCCGTTCTGT	ACCTGGACCT	AGCACCCAGC	ACCTPTCTCT	GAGCTGAGTG	GCTGGAGTGG	600
20	TCAATAAAGC	CACATGTGCC	TGTGGCCCAA	ааааааааа	ааааааааа	АААААААА	660
	AACTGGAGGG	GGGCCCGGT	ACCCAAATCG	CCGGATATGA	TCGTAAACAA	TC	712

25

30

40

45

50

55

60

(2) INFORMATION FOR SEQ ID NO: 312:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1289 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 312:

CAAAATTTCA GAACTTTCAG GAGGGCAAGA GAATATCAAA CAAAGATTTC TGGAAGTATT 60 TTGCCAACCT TCTGGTTGAG CTGCAAGAAA ATATTTATGG TGAGAACTTT TCTGTTTCCC 120 GTTATTGGGT TTTTGGTTGG TTTTTGTTTG TTTTTTACTA TGCTTTGGTC TGTAAAAATA 180 TOCAACTGAA CTACATTCAG AAGGAAATAT TGTCTACATA GAATATTATA TGAAGTTGGT 240 ACATAATTCT GATGAGGAAA AAAAATCTTT GCAATTCTTT AAGCCATATT GTTGTTTTTC 300 TGTGTTGTTT TCCCTGGATG AAAATATCAG TATTAAGTAG ACAGCATATT ATTCAAGTGT 360 TTAGACTTAT TAATATGTTC TTGTCCTGTA TTTATACATA TGTGTATTTT GGAAAGTATT 420 GCCTTTTTTA AGGGAAGCTA TAATTCGATA CATAGTGAAA AAGGGAATGG TGACCCCTTT 480 GTGCCTCTTC CACTGAGGAT AACAAACAGC ATTGTAATCC ATTCTCTTGC ACCTTCTTCT 540 TCTTATCTTG TTATTACGGT TTTATTAATT TTGTAGAGGG ACAGGGAGTG GGCAAGGGGA 600 AGAAGCAGCT TATTTGACTA ACCAGCCCCT CTGTGGTCCA CCAGCGTCTT GGCTTGGTGG 660 GAGGCCTCTC AATCAGCAGG GCCCCAGGAG GGAAGAAGAA GTGGGGCAAA GCCTGGCCTC 720

	GCCGCTCGGG AGCTTTGCCA TCTGAGCCAC GCCTCCTCCA GGCCATGCTC CTTGAACTTG	780
	GAAATGTCAA CCGGAGCCCT TACACCAGCC CTCCAGCATC TAATAGACTT GAATCTACTC	840
5	TAAACGAATA TTTAATCCAA CCTCACTACA TTGTAGCTCA GTCCAACGAC TAACCCTGAA	900
	ATGGGGGTGT TCCAGCCTTC AGCGAGATGG CCAAGCGGTC CCCTGGGGGC TGTGGCAGCG	960
10	GGCTTATCCT TCTCTGTTGC CAACCTTGCC GTCCGACCTC CTCCGCCCCC ATGCGGTGAC	1020
10	CCCGTCCGTG TCTGTGTCTG TCCATACGTG TGAGTCCAGC TAAAAAGACA AAACAGAACC	1080
	CGTGGGCCCA GCTCGGAAGG TGCGTGGAGA AGGCTCCGAC GTCTCCGAAG TGCAGCCCTT	1140
15	GGGATGGCAT TCCGTTGTGT GCCTTATTCC TGGAGAATCT GTATACGGCT CGCCTATAGA	1200
	AATATAGCCT CTTCATGCTG TATTAAAAGG ACTTTTAAAA GCAAAAAAAA AAAAAAAAAA	1260
20	CTTGAGGGGG GGNCCGGTAC CCAATTNTC	1289
20		
	(2) INFORMATION FOR SEQ ID NO: 313:	
25	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 22 amino acids (B) TYPE: amino acid	
30	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 313:	
	Met Phe Leu Ile Phe Val Tyr Phe Leu Lys Ile Leu Phe Ser Ser	
	1 5 10 15	
35	Leu Pro Phe Leu Trp Leu 20	
40	(2) INFORMATION FOR SEQ ID NO: 314:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 128 amino acids (B) TYPE: amino acid	
45	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 314:	
	Met Met Phe Leu Thr Gln Gly Gly Pro Leu Pro Ser Thr Arg Ala Arg	
50	1 5 10 15	
	Pro Thr Cys Gln Ala Gly Ala Leu Pro Lys Pro Ser Gly Leu Leu Gly 20 25 30	
	Val Thr Cys Trp Asn Gly Leu Lys Gly Pro Leu Cys Gly Asn Arg Cys	
55	35 40 45	
	Ser Pro Asn Thr Leu Leu Leu Ala Ala Arg Gln Ala Leu Trp Lys Gly 50 60	

Arg Gly Arg Thr His Gln Asp Leu Pro Gly Pro Leu Gln Gly Arg Gln

	65					70					75					80
	Leu	Gly	Pro	Glu	Pro 85	Lys	His	Leu	Ala	Leu 90	Leu	Pro	Pro	Arg	Gly 95	Gln
- 5	Glu	Ala	Ser	Trp 100	Ala	Ser	Ser	Leu	Pro 105	Gly	Gln	Gly	Pro	Leu 110	Pro	Leu
10	Pro	His	Ile 115	Asn	Cys	Thr	Val	Phe 120	Ser	Leu	Lys	Ala	Ser 125	Phe	Ile	Lys
15																
20	(2)	INF		SEQU))	ENCE A) L B) T D) T	CHA ENGI YPE :	RACT H: 2 ami OGY:	ERIS 8 am no a lin	TICS ino cid ear	acid	ls DINO	: 31	5:			
25	Met 1		Phe	Leu	Leu 5	Thr	Ala	Phe	Leu	Leu 10	Val	Pro	Leu	Leu	Ala 15	Leu
30	Cys	Asp	Val	Pro 20		Ser	Leu	Gly	Phe 25	Ser	Pro	Ser		-		
35	(2)	INF		SEQU	ENCE (A) I (B) 1	E CHA LENG LYPE L'OPOI	ARACT TH: (: am: LOGY	TERIS 54 ar ino a : lir	TICS mino acid near	acio		. 71	٤.			
40	Met					: Ser					D NO Ser			Phe	Val 15	Ala
45	Leu	ı Glr	ı Trp	Phe 20		e Val	l Ile	e Sei	His 29		ı Leu	Ser	: Leu	Ser 30		Ser
	Ala	a Cys	s Cys		c Glr	n Thi	r His	5 Cys 40	_	r Lei	ı Xaa	Glr	Leu 49		Ser	Ala
50	Phe	e Se:		a Me	t Gly	y Gl	u Sei 5!		s Va	l Gl	y Glu	ı Arg		1 Туг	Хаа	. Phe
55																
	(2) IN	FORM	OITA	n fo	R SE	Q ID	NO:	317	:						
60			(i)	SEC	UENC	E CH	iarac	TERI	STIC	:S:						

```
(A) LENGTH: 21 amino acids
                      (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 317:
- 5
      Met Pro Leu Ile Asn Leu Leu Leu Leu Tyr Tyr Val Pro Asn Gly Gly
                                           10
       Lys Gln Asp Lys Lys
 10
                   20
       (2) INFORMATION FOR SEQ ID NO: 318:
 15
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 39 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
20
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 318:
      Met Gly Arg His Leu Val Leu Val Met Phe Ile Thr Thr Ser Leu His
 25
       Ser Gly Thr Pro Val Pro Glu Asn Val Ile Cys Gly Val Thr Lys Gly
       Pro Gln Gly Lys Lys Lys
                35
 30
       (2) INFORMATION FOR SEQ ID NO: 319:
 35
              (i) SEQUENCE CHARACTERISTICS:
                      (A) LENGTH: 33 amino acids
                      (B) TYPE: amino acid
                      (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 319:
 40
       Met Leu Trp Trp Ser Arg Asp Tyr Thr Met Val Phe Leu Leu Phe Thr
                        5
       Met Val Phe Thr Gly Asp Leu Val Ile Arg Gly Arg Thr Glu Leu Ser
 45
                                        25
       Leu
 50
       (2) INFORMATION FOR SEQ ID NO: 320:
              (i) SEQUENCE CHARACTERISTICS:
 55
                      (A) LENGTH: 88 amino acids
                      (B) TYPE: amino acid
                      (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 320:
 60
       Met Val Cys Ser Ser Leu Cys Asp Ile Gly Gly Ile Ile Thr Pro Phe
```

PCT/US98/04493

	1				5					10					15	
_	Ile	Val	Phe	Arg 20	Leu	Arg	Glu	Val	Trp 25	Gln	Ala	Leu	Pro	Leu 30	Ile	Leu
5	Phe	Ala	Val 35	Leu	Gly	Leu	Leu	Ala 40	Ala	Gly	Val	Thr	Leu 45	Leu	Leu	Pro
10	Glu	Thr 50	Lys	Gly	Val	Ala	Leu 55	Pro	Glu	Thr	Met	Lys 60	Asp	Ala	Glu	Asn
	Leu 65	Gly	Arg	Lys	Ala	Lys 70	Pro	Lys	Glu	Asn	Thr 75	Ile	Tyr	Leu	Lys	Val 80
15	Gln	Thr	Ser	Glu	Pro 85	Ser	Gly	Thr				-				
20	(2)	INF	ORMA'	rion	FOR	SEQ	ID 1	NO: 3	321:							
				SEQU	ENCE	СНА	RACT	ERIS	rics							
25			(xi)	(A) L B) T D) T UENC	YPE: OPOL	ami OGY:	no a lin	cid ear			: 32	1:			
20	Met 1	Gln	Pro	Gly	Ala 5	Gly	Val	Leu	Val	Leu 10	Gly	Leu	Leu	Leu	Pro 15	Pro
30	Pro	Gln	Ser	Pro 20	Ser	Leu	Ser									
35	(2)	INF	ORMA'	TION	FOR	SEQ	ID I	NO: (322:							
40				(ENCE A) L B) T D) T UENC	ENGT YPE : OPOL	H: 2 ami OGY:	7 am no a lin	ino cid ear	acid		: 32	2 :			
45	Met 1	Thr	Phe	Thr	Leu 5	Gly	Asp	Ser	Gln	Val 10		Leu	Ile	Asn	Leu 15	Phe
	Pro	Ser	Met	Pro 20	Ser	Gly	Ser	Cys	Ala 25		Pro					
50																
	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	323:							
55					ENCE (A) I (B) I (D) I	ENGT TYPE: TOPOI	TH: 6 ami LOGY:	54 an ino a : lir	mino acid near	acio): 32	:3:			
60	Met	. Cys	: Leu	ı Glu	Cys	Trp	Ala	Glu	. Asn	Leu	ı Gly	Pro	His	His	Thr	Ser

	1				5					10					15	
5	Ser	Leu	Leu	Asn 20	Pro	Arg	His	Leu	Pro 25	Ser	Ile	Pro	Ala	Met 30	Phe	Pro
J	Val	Ser	Ser 35	Gly	Cys	Phe	Gln	Glu 40	Gln	Gln	Glu	Met	Asn 45	Lys	Ser	Leu
10	Val	Ser 50	Cys	Leu	Phe	Val	Leu 55	His	Phe	Val	Leu	His 60	Cys	Ile	Phe	Xaa
15																
13	(2)	INFO	ORMAT	rion	FOR	SEQ	ID 1	10: 3	324:							
20			(i) :	- (. (:	A) L: B) T D) T	ENGT YPE : OPOL	H: 1 ami OGY:	96 a no a lin	mino cid ear	aci		: 32	4:			
25	Met 1	Leu		_										Glu	Ser 15	Leu
30	Ser	Ser	His	Arg 20	Ile	Asp	Glu	Asp	Gly 25	Glu	Asn	Thr	Gln	Ile 30	Glu	Asp
J U	Thr	Glu	Pro 35	Met	Ser	Pro	Val	Leu 40	Asn	Ser	Lys	Phe	Val 45	Pro	Ala	Glu
35	Asn	Asp 50	Ser	Ile	Leu	Met	Asn 55	Pro	Ala	Gln	Asp	Gly 60	Glu	Val	Gln	Leu
	Ser 65	Gln	Asn	Asp	Asp	Lys 70	Thr	Lys	Gly	Asp	A sp 75	Thr	Asp	Thr	Arg	Asp 80
40	Asp	Ile	Ser	Ile	Leu 85	Ala	Thr	Gly	Cys	Lys 90	Gly	Arg	Glu	Glu	Thr 95	Val
45	Ala	Glu	Glu	Val 100		Ile	Asp	Leu	Thr 105		Asp	Ser	Gly	Ser 110	Gln	Ala
	Val	Pro	Ser 115		Ala	Thr	Arg	Ser 120		Ala	Leu	Ser	Ser 125	Val	Leu	Asp
50	Gln	Glu 130		Ala	Met	Glu	Ile 135		Glu	His	His	Pro 140		Glu	Gly	Ser
	Ser 145		Ser	Glu	Val	Glu 150		Ile	Pro	Glu	155		Cys	Glu	Ser	Gln 160
55	Gly	Glu	Glu	Leu	Lys 165		Glu	Asn	Met	Glu 170		Val	. Pro	Leu	His 175	
60	Ser	Leu	ı Thr	Glu 180		Gln	Ser	Gln	Gly 185		Cys	. Leu	Arg	190		Pro

Lys Lys Lys 195

5	(2)	INFO	ORMAT	rion	FOR	SEQ	ID N	1 0: 3	25:							
10			(i) : (xi)	(; ()	A) L B) T D) T	ENGT YPE : OPOLA	H: 2 ami: OGY:	52 a no a lin	mino cid ear	aci		: 32!	5:			
15	Met 1	Gly	Gly	Asp	Leu 5	Val	Leu	Gly	Leu	Gly 10	Ala	Leu	Arg	Arg	Arg 15	Lys
	Arg	Leu	Leu	Glu 20	Gln	Glu	Lys	Ser	Leu 25	Ala	Gly	Trp	Ala	Leu 30	Val	Leu
20	Ala	Xaa	Xaa 35	Gly	Ile	Gly	Leu	Met 40	Val	Leu	His	Ala	Glu 45	Met	Leu	Trp
25	Phe	Gly 50	Gly	Cys	Ser	Ala	Val 55	Asn	Ala	Thr	Gly	His 60	Leu	Ser	A sp	Thr
	Leu 65	Trp	Leu	Ile	Pro	Ile 70	Thr	Phe	Leu	Thr	Ile 75	Gly	Tyr	Gly	Asp	Val 80
30	Val	Pro	Gly	Thr	Met 85	Trp	Gly	Lys	Ile	Val 90	Cys	Leu	Cys	Thr	Gly 95	Val
	Met	Gly	Val	Cys 100	Cys	Thr	Ala	Leu	Leu 105	Val	Ala	Val	Val	Ala 110	Arg	Lys
35	Leu	Glu	Phe 115	Asn	Lys	Ala	Glu	Lys 120	His	Val	His	Asn	Phe 125	Met	Met	Asp
40	Ile	Gln 130	Tyr	Thr	Lys	Glu	Met 135	Lys	Glu	Ser	Ala	Ala 140	Arg	Val	Leu	Gln
	Glu 145		Trp	Met	Phe	Туг 150	Lys	His	Thr	Arg	Arg 155	Lys	Glu	Ser	His	Ala 160
45	Ala	Arg	Xaa	His	Gln 165	Arg	Xaa	Leu	Leu	Ala 170	Ala	Ile	Asn	Ala	Phe 175	Arg
	Gln	Val	Arg	Leu 180		His	Arg	Lys	Leu 185		Glu	Gln	Val	Asn 190	Ser	Met
50	Val	Asp	Ile 195		Lys	Met	His	Met 200	Ile	Leu	Tyr	Asp	Leu 205	Gln	Gln	Asn
55	Leu	Ser 210	Ser	Ser	His	Arg	Ala 215		Glu	Lys	Gln	11e 220		Thr	Leu	Ala
	Gly 225		Leu	Asp	Ala	Leu 230		Glu	Leu	Leu	Ser 235		Ala	Leu	Gly	Pro 240
60	Arg	Gln	Leu	Pro	Glu 245		Ser	Gln	Gln	Ser 250		Xaa				

5	(2)	INF	ORMA!	rion	FOR	SEQ	ID I	VO : 3	326:						•	
J			(i)	(A) L B) T	CHA ENGT YPE: OPOL	H: 6 ami	8 am no a	ino cid		s					
10		•	(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 32	6 :			
	Met 1	Trp	Arg	Cys	Arg 5	Gly	Lys	Leu	Ser	Phe 10	Pro	Leu	Phe	Ala	Val 15	Va]
15	Ile	Val	Ser	Cys 20	Arg	Lys	Asp	Gly	Pro 25	Asp	Ala	Ala	Ala	Ala 30	Pro	Ala
20	Val	Ile	Lys 35	Asn	Asn	Ser	His	Tyr 40	Gln	Thr	Ser	Lys	Ala 45	Leu	Glu	Leu
	Glu	Lys 50	Thr	Thr	Glu	Asn	Lys 55	Glu	Ser	Asn	Pro	Phe 60	Ile	Leu	Gln	Val
25	Asn 65	Lys	Leu	Xaa												
30	(2)			rion SEQUI	ENCE		RACT	ERIS	rics		c					
35			(xi)	(B) T D) T	YPE : OPOL	ami OGY :	no a lin	cid ear			: 32	7 :			
	Met 1	Gly	Glu	Gly	Lys 5	Asn	Gly	Phe	Gly	Gly 10	Phe	Val	His	Thr	Ala 15	Asp
40	Ala	Cys	Trp	Glu 20	Gly	Val	His	Ser	Glu 25	Pro	Val	Суз	Arg	Thr 30	Val	His
45	Thr	Val	His 35	Thr	Cys	His	His	Gln 40	Ala	Phe	Leu	Val	Leu 45	Ile	Gly	Trp
	Ser	Lys 50		Gly	Lys	Glu	Arg 55	Lys	Glu	Ala	Phe	Leu 60	Thr	Ala	Ile	Ile
50	Leu 65	Asn	Ser	Arg	Ser	Ile 70		Ile	Ser	Cys	Ser 75	Trp	Pro	Pro	Ser	Pro 80
~ ~	Val	Pro	Gln	Xaa												
55	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	328:							
60			(i)	SEQU		CHA LENGT					ls					

				(D) T	OPOL	OGY :	no a lin	ear							
_			(X1)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 32	8:			
5	Met 1	Leu	Leu	Ile	Asn 5	Leu	Leu	Trp	Leu	Val 10	Thr	Met	Ile	Lys	Ser 15	Val
10				Asn 20	Ile	Ile	Leu	Phe	Leu 25	Lys	Lys	Lys	Ser	Leu 30	Phe	Phe
	Ile	Asp	Ser 35	Val												
15	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO: 3	329:							
20				(A) L B) T D) T	ENGT YPE : OPOL	H: 6 ami OGY:	3 am no a lin	ino cid ear	acid		. 37				
25	Met 1	Thr	Phe	Pro	Phe 5	Glu	Lys	Lys	Ile	Val 10	Ala	Phe	Ser	Ala	Phe 15	Tyr
	Leu	Ile	Pro	Gly 20	Glu	Ser	Arg	Leu	Ala 25	Pro	Thr	Phe	Asn	Pro 30	Ser	Ala
30	Asp	Met	Thr 35	Val	Ile	Leu	Arg	Gly 40	Arg	Ala	Gln	His	Lys 45	Thr	Ala	Met
35	Leu	Glu 50	Ser	Tyr	Asn	Trp	Lys 55	Val	Ser	Cys	Gln	Leu 60	Arg	Glu	Xaa	
	(2)	INF	ORMAT	rion	FOR	SEQ	ID 1	v O: 3	30:							
40			(i) :		A) L	ENGT	H: 3	ERIST 5 am no a	ino		s					
			(xi)	SEQ!				line PTIO		EO II	D NO	: 33	O :			
45	Met 1	His		Lys	Gly					Leu				Gln		Ile
50		Ile	Leu	Pro	5 Val	Суѕ	Ala	His		10 His	Glu	Glu	Leu		15 Cys	Cys
50	Phe	His	Arg	20					25					30		
55			35													
	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO: 3	331:							
60			(i)	SEQU:				ERIS 3 am			s					

```
(B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 331:
     Met Gly Ala Leu Val Leu Leu Cys Leu Leu Val Gly Val Gln Gln
     Ser Gly Ser Val Trp Asp Ser
                  20
10
      (2) INFORMATION FOR SEQ ID NO: 332:
15
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 40 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 332:
20
     Met Gln Ser Ala Glu Ile Leu Ser Trp Thr Asp Val Leu His Asp Phe
                  5
     Leu Phe Ser Leu Phe Leu Trp Pro Ala Phe Glu Asp Arg Ala Leu Leu
25
                                  25
     Ile Phe Thr Leu Asn Gln Ile Val
             35
30
      (2) INFORMATION FOR SEQ ID NO: 333:
             (i) SEQUENCE CHARACTERISTICS:
35
                    (A) LENGTH: 111 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 333:
40
     Met Gln Ser Leu Val Gln Trp Gly Leu Asp Ser Tyr Asp Tyr Leu Gln
      Asn Ala Pro Pro Gly Phe Phe Pro Arg Leu Gly Val Ile Gly Phe Ala
45
      Gly Leu Ile Gly Leu Leu Ala Arg Gly Ser Lys Ile Lys Lys Leu
      Val Tyr Pro Pro Gly Phe Met Gly Leu Ala Ala Ser Leu Tyr Tyr Pro
50
          50
      Gln Gln Ala Ile Val Phe Ala Gln Val Ser Gly Glu Arg Leu Tyr Asp
55
      Trp Gly Leu Arg Gly Tyr Ile Val Ile Glu Asp Leu Trp Lys Glu Asn
      Phe Gln Lys Pro Gly Asn Val Lys Asn Ser Pro Gly Thr Lys Xaa
                  100
                                     105
60
```

	(4)	TIAL	Oldin	1 1014	POR	SUV	10		J J 4 .							
5			(i)	(A) L B) T	ENGT YPE:	H: 1 ami	ERIS 06 a no a lin	mino cid		ds					
10			(xi)	SEQ						EQ I	D NO	: 33	4 :			
10	Met 1	Ala	Pro	Ser	Leu 5	Leu	Leu	Leu	Ala	Pro 10	Leu	Cys	Ser	Leu	Glu 15	Ala
15	Val	Leu	Ser	Ser 20	Pro	Leu	Glu	Lys	Gln 25	Cys	Gln	Leu	Pro	Gly 30	Ile	Phe
	Cys	Gln	Leu 35	Gln	Leu	Pro	Cys	Pro 40	Leu	Leu	Leu	Ser	Ala 45	Gln	Leu	Leu
20	Lys	Gly 50	Ile	Val	Xaa	Pro	Arg 55	Cys	Pro	Ala	Ser	Leu 60	Pro	Gln	Pro	Pro
25	His 65	Pro	Ala	Pro	Ser	Trp 70	His	Leu	Pro	Leu	His 75	Cys	Thr	Glu	Arg	Хаа 80
20	Pro	His	His	Leu	Pro 85	Leu	Gln	Gly	Gly	Ser 90	Ser	Asn	Met	Glu	Glu 95	Xaa
30	Asn	Tyr	Arg	Gly 100	Tyr	Xaa	Asp	Ala	Gln 105	Leu						
35	(2)	INF	ORMA	SEQU:	ENCE A) L	CHA ENGT	RACT H: 5		TICS ino		s					
40			(xi)	SEQ				lin PTIO		EQ I	D NO	: 33	5 :			
	Met 1	Thr	Thr	Суз	Leu 5	Phe	Gly	Leu	Leu	Ser 10	Суз	Glu	Met	Ser	Ala 15	Gln
45	Val	Ser	Gln	Lys 20	Ser	Cys	Val	Tyr	Asp 25	Glu	Ser	Glu	Cys	Phe 30	Ser	Ser
50	Val	Gly	Gln 35	Leu	Leu	Ala	Leu	Leu 40		Leu	Val	Tyr	Val 45		Pro	Ser
	Ile	Xa a 50														
55	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	336:							
			(i)	SEQU							le.					
60								18 an ino a		auit						

```
(D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 336:
       Met Leu Trp Lys Cys Ser Gln Asn Ile Ala Arg Cys Leu Leu Leu
- 5
       Leu Ala Leu Val Glu Ile Lys Leu Glu Asp Leu Gln Ser Gln Leu His
                                      25
 10
       Pro Thr Trp Lys Ser Ile Pro Gly Pro Ser Pro Arg Asn Gln His Arg
               35 40
 15
       (2) INFORMATION FOR SEQ ID NO: 337:
 20
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 41 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 337:
 25
       Met Leu Ile Pro Leu Gln Cys Leu Phe Ser Ser Asp Arg Met Leu Thr
                                         10
       Phe Leu Thr Pro Trp Gln Lys Gly Glu Lys Cys Val Leu Gly Trp Val
 30
       Thr Lys Phe Leu Ser Glu Ile Ser Xaa
 35
       (2) INFORMATION FOR SEQ ID NO: 338:
              (i) SEQUENCE CHARACTERISTICS:
 40
                     (A) LENGTH: 76 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 338:
 45
      Met Thr Phe Ser Ser Leu Lys Leu Phe Val Leu Thr Cys Ile Ile Lys
       Gly Leu Glu Arg Phe Ile Ile Leu Arg Glu Val Cys Asn Gln Glu Ile
 50
       Gln Arg Ser Leu Ser Ser Asn Leu Val His Val Leu Leu Gln Pro Ala
                               40
       Thr Phe Lys Asp Val Leu Val Thr Glu Ile Ile Cys Leu Cys Met Cys
 55
                              55
       Leu Tyr Ser Ile Lys Tyr Met Pro Pro Gln Lys Lys
                       70
```

	(2) INFORMATION FOR SEQ ID NO: 339:
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 339:
10	Lys Val Tyr Ile Phe Leu Ile Phe Met Val Leu Ile Leu Pro Ser Leu 1 5 10 15
15	Gly Leu Thr Arg Tyr Met Pro Pro Xaa Ser Xaa Leu Asn Ser Glu 20 25 30
	(2) INFORMATION FOR SEQ ID NO: 340:
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 42 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 340:
25	Met Ala Lys Ile Ser Pro Phe Glu Val Val Lys Arg Thr Ser Val Pro 1 5 10 15
30	Val Leu Val Gly Leu Val Ile Val Ile Val Ala Thr Glu Leu Met Val 20 25 30
2.5	Pro Gly Thr Ala Ala Ala Val Thr Gly Lys 35 40
35	(2) INFORMATION FOR SEQ ID NO: 341:
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 341:
45	Met Arg Leu Phe Phe Ile Gly Phe Leu Leu Phe Ser Phe Gly Leu 1 5 10 15
50	Leu Arg Gln Pro Ser Leu Ser Ala Glu His 20 25
	(2) INFORMATION FOR SEQ ID NO: 342:
55	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
60	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 342:

	Met 1	Val	Pne	Ser	Val 5	Ser	Ser	Ala	Leu	A1a 10	Leu	Leu	Leu	Met	Leu 15	Leu
5	Arg	Ser	Ser	Asp 20	Leu	Ala	Lys	Lys	Thr 25	Glu						
10	(2)	INF		(ENCE A) L	CHAI	RACT H: 1	ERIS 57 a	TICS mino		đs					
15			(xi)			OPOL E DE:			ear N: SI	EQ I	OM O	: 34	3:			
	Met 1	Ser	Leu	Glu	Phe 5	Tyr	Gln	Lys	Lys	Lys 10	Ser	Arg	Trp	Pro	Phe 15	Ser
20	Asp	Glu	Cys	Ile 20	Pro	Trp	Glu	Val	Trp 25	Thr	Val	Lys	Val	His 30	Val	Val
25	Ala	Leu	Ala 35	Thr	Glu	Gln	Glu	Arg 40	Gln	Ile	Cys	Arg	Glu 45	Lys	Val	Gly
_	Glu	Lys 50	Leu	Cys	Glu	Lys	Ile 55	Ile	Asn	Ile	Val	Glu 60	Val	Met	Asn	Arg
30	His 65	Glu	Tyr	Leu	Pro	Lys 70	Met	Pro	Thr	Gln	Ser 75	Glu	Val	Asp	Asn	Val 80
	Phe	Asp	Thr	Gly	Leu 85	Arg	Asp	Val	Gln	Pro 90	Tyr	Leu	Туг	Lys	Ile 95	Ser
35	Phe	Gln	Ile	Thr 100	Asp	Ala	Leu	Gly	Thr 105	Ser	Val	Thr	Thr	Thr 110	Met	Arg
40	Arg	Leu	Ile 115	Lys	Asp	Thr	Leu	Pro 120	Ser	Glu	Arg	Arg	Trp 125	Ile	Ser	Gly
10	Ser	Ser 130	Leu	Met	Ala	Pro	Arg 135	Pro	Trp	Leu	Leu	Gly 140	Ile	Ala	Leu	Leu
45	Gly 145	Leu	Trp	Ala	Leu	Glu 150	Pro	Ala	Leu	Gly	His 155	Trp	Xaa			
50	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO: 3	344:							
			(i)	(A) L		H: 5	20 a	TICS mino cid		ds					
55			(xi)			OPOL			ear N: S	EQ I	D NO	: 34	4:			
	Met 1	Phe	Leu	Leu	Pro 5	Leu	Pro	Ala	Ala	Gly 10	Arg	Val	Val	Val	Arg 15	Arg
60	Leu	Ala	Val	Arg	Arg	Phe	Gly	Ser	Arg	Ser	Leu	Ser	Thr	Ala	Asp	Met

WO 98/39448

				20					25					30		
5	Thr	Lys	Gly 35	Leu	Val	Leu	Gly	Ile 40	Tyr	Ser	Lys	Glu	Lys 45	Glu	Ąsp	Asp
J	Val	Pro 50	Gln	Phe	Thr	Ser	Ala 55	Gly	Glu	Asn	Phe	Asp 60	Lys	Leu	Leu	Ala
10	Gly 65	Lys	Leu	Arg	Glu	Thr 70	Leu	Asn	Ile	Ser	Gly 75	Pro	Pro	Leu	Lys	Ala 80
	Gly	Lys	Thr	Arg	Thr 85	Phe	Туг	Gly	Leu	His 90	Gln	Asp	Phe	Pro	Ser 95	Val
15	Val	Leu	Val	Gly 100	Leu	Gly	Lys	Lys	Ala 105	Ala	Gly	Ile	Asp	Glu 110	Gln	Glu
20	Asn	Trp	His 115	Glu	Gly	Lys	Glu	Asn 120	Ile	Arg	Ala	Ala	Val 125	Ala	Ala	Gly
-	Cys	Arg 130	Gln	Ile	Gln	Asp	Leu 135	Glu	Leu	Ser	Ser	Val 140	Glu	Val	Asp	Pro
25	Cys 145	Gly	Ąsp	Ala	Gln	Ala 150	Ala	Ala	Glu	Gly	Ala 155	Val	Leu	Gly	Leu	Туг 160
	Glu	Tyr	Asp	Asp	Leu 165	Lys	Gln	Lys	Lys	Lys 170	Met	Ala	Val	Ser	Ala 175	Lys
30	Leu	Tyr	Gly	Ser 180	Gly	Asp	Gln	Glu	Ala 185	Trp	Gln	Lys	Gly	Val 190	Leu	Phe
35	Ala	Ser	Gly 195	Gln	Asn	Leu	Ala	Arg 200	Gln	Leu	Met	Glu	Thr 205	Pro	Ala	Asn
	Glu	Met 210	Thr	Pro	Thr	Arg	Phe 215	Ala	Glu	Ile	Ile	Glu 220	Lys	Asn	Leu	Lys
10	Ser 225	Ala	Ser	Ser	Lys	Thr 230	Glu	Val	His	Ile	Arg 235	Pro	Lys	Ser	Trp	11e 240
	Glu	Glu	Gln	Ala	Met 245	Gly	Ser	Phe	Leu	Ser 250	Val	Ala	Lys	Gly	Ser 255	Asp
15	Glu	Pro	Pro	Val 260	Phe	Leu	Glu	Ile	His 265	Tyr	Lys	Gly	Ser	Pro 270	Asn	Ala
50	Asn	Glu	Pro 275	Pro	Leu	Val	Phe	Val 280	Gly	Lys	Gly	Ile	Thr 285	Phe	Asp	Ser
	Gly	Gly 290	Ile	Ser	Ile	Lys	Ala 295	Ser	Ala	Asn	Met	Asp 300	Leu	Met	Arg	Ala
55	Asp 305	Met	Gly	Gly	Ala	Ala 310	Thr	Ile	Cys	Ser	Ala 315	Ile	Val	Ser	Ala	Ala 320
	Lys	Leu	Asn	Leu	Pro 325	Ile	Asn	Ile	Ile	Gly 330	Leu	Ala	Pro	Leu	Суs 335	Glu
50) cn	Mot	Dwa	C	C114	1	۸la	λen	Lve	Dro	Gly	Aen	Va l	Va l	7~~	בו ג

				340					345					350		
5	Lys	Asn	Gly 355	Lys	Thr	Ile	Gln	Val 360	Asp	Asn	Thr	Asp	Ala 365	Glu	Gly	Arg
J	Leu	Ile 370	Leu	Ala	Asp	Ala	Leu 375	Cys	туг	Ala	His	Thr 380	Phe	Asn	Pro	Lys
10	Xaa 385	Ile	Leu	Asn	Ala	Ala 390	Thr	Leu	Thr	Gly	Ala 395	Met	Asp	Val	Ala	Leu 400
	Gly	Ser	Gly	Ala	Thr 405	Gly	Val	Phe	Thr	Asn 410	Ser	Ser	Trp	Leu	Trp 415	Asn
15	Lys	Leu	Phe	Glu 420	Ala	Ser	Ile	Glu	Thr 425	Gly	Asp	Arg	Val	Trp 430	Arg	Met
20	Pro	Leu	Phe 435	Glu	His	Tyr	Thr	Arg 440	Gln	Val	Val	Asp	Cys 445	Gln	Leu	Ala
20	Asp	Val 450	Asn	Asn	Ile	Gly	Lys 455	Tyr	Arg	Ser	Ala	Gly 460	Ala	Cys	Thr	Ala
25	Ala 465	Ala	Phe	Leu	Lys	Glu 470	Phe	Val	Thr	His	Pro 475	Lys	Trp	Ala	His	Leu 480
	Asp	Ile	Ala	Gly	Val 485	Met	Thr	Asn	Lys	Asp 490	Glu	Val	Pro	Tyr	Leu 495	Arg
30	Lys	Gly	Met	Thr 500	Gly	Arg	Pro	Thr	Arg 505	Thr	Leu	Ile	Glu	Phe 510	Leu	Leu
35	Arg	Phe	Ser 515	Gln	Asp	Asn	Ala	Xaa 520								
40	(2)		ORMA:	SEQU (ENCE	CHA ENGT YPE:	RACT H: 3	ERIS 9 am no a	TICS ino cid	: acid	s					
45	mb ~	Tla	•	SEQ	UENC	E DE	SCRI	PTIO	N: S					Leu	τlο	Va l
	1				5					10					15	
50	GIÀ	Lys	Asp	Ser 20	He	Asp	lle	Asp	25	Ser	ser	Arg	Arg	Arg 30	GIU	Asp
	Gln	Ser	Leu 35	Arg	Leu	Asn	Ala									
55	(2)	INF	ORMA	TION	FOR	SEQ	ID :	NO:	346:							
6 0			(i)	SEQU	ENCE	СНА	RACT	ERIS	TICS	: :						
CALL.						TT 100	77 1 -	17 A -	2		-1-					

					B) T D) T											
			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 34	6 :			
5	Met 1	Thr	Ser	Glu	Leu 5	Asp	Ile	Phe	Val	Gly 10	Asn	Thr	Thr	Leu	Ile 15	Asp
10	Glu	Asp	Val	Тут 20	Arg	Leu	Trp	Leu	Asp 25	Gly	Туг	Ser	Val	Thr 30	Asp	Ala
	Val	Ala	Leu 35	Arg	Val	Arg	Ser	Gly 40	Ile	Leu	Glu	Gln	Thr 45	Gly	Ala	Thr
15	Ala	Ala 50	Val	Leu	Gln	Ser	Asp 55	Thr	Met	Asp	His	Tyr 60	Arg	Thr	Phe	His
	Met 65	Leu	Glu	Arg	Leu	Leu 70	His	Ala	Pro	Pro	Lys 75	Leu	Leu	His	Gln	Leu 80
20	Ile	Phe	Gln	Ile	Pro 85	Pro	Ser	Arg	Gln	Ala 90	Leu	Leu	Ile	Glu	Arg 95	Tyr
25	Tyr	Ala	Phe	Asp 100	Glu	Ala	Phe	Val	A rg 105	Glu	Val	Leu	Gly	Lys 110	Lys	Leu
23	Ser	Lys	Gly 115	Thr	Lys	Lys	Asp	Leu 120	Asp	Asp	Ile	Ser	Thr 125	Lys	Thr	Gly
30	Ile	Thr 130	Leu	Lys	Ser	Cys	Arg 135	Arg	Gln	Phe	Asp	Asn 140	Phe	Lys	Arg	Val
	Phe 145	Lys	Val	Val	Glu	Glu 150	Met	Arg	Gly	Ser	Leu 155	Val	Asp	Asn	Ile	Gln 160
35	Gln	His	Phe	Leu	Leu 165	Ser	Asp	Arg	Leu	Ala 170	Arg	Asp	Tyr	Ala	Ala 175	Ile
40	Val	Phe	Phe	Ala 180	Asn	Asn	Arg	Phe	Glu 185	Thr	Gly	Lys	Lys	Lys 190	Leu	Gln
40	Тут	Leu	Ser 195	Phe	Gly	Asp	Phe	Ala 200	Phe	Cys	Ala	Glu	Leu 205	Met	Ile	Gln
45	Asn	Trp 210	Thr	Leu	Gly	Pro	Val 215	Asp	Ser	Gln	Met	Asp 220	Asp	Met	Asp	Met
	Asp 225	Leu	Asp	Arg	Asn	Phe 230	Ser	Arg	Thr	Xaa						
50																
	(2)	INF	ORMA!	rion	FOR	SEQ	ID I	NO:	347:							
55				(ENCE A) L B) T	ENGT YPE : OPOL	H: 1 ami OGY:	.69 a .no a lin	mino cid ear	aci		2.4	7			
60	Wa+	3 1.			UENC									T .=	Deser	C1-
50	rie C	wrg	Ala	wrg	vai	wra	GTA	mec	∟eu	AIG	GIY	GIA	⊥eu	Leu	PLO	GTIJ

Met Ala Ala Ala Val Ala Gly Met Leu Arg Gly Gly Leu Leu Pro Gln

	1				5					10					15	
5	Ala	Gly	Arg	Leu 20	Pro	Thr	Leu	Gln	Thr 25	Val	Arg	Тут	Gly	Ser 30	ŗys	Ala
J	Val	Thr	Arg 35	His	Arg	Arg	Val	Met 40	His	Phe	Gln	Arg	Gln 45	Lys	Leu	Met
10	Ala	Val 50	Thr	Glu	Tyr	Ile	Pro 55	Pro	Lys	Pro	Ala	Ile 60	His	Pro	Ser	Суѕ
	Leu 65	Pro	Ser	Pro	Pro	Ser 70	Pro	Pro	Gln	Glu	Glu 75	Ile	Gly	Leu	Ile	Arg 80
15	Leu	Leu	Arg	Arg	Glu 85	Ile	Ala	Ala °	Val	Phe 90	Gln	Asp	Asn	Arg	Met 95	Ile
20	Ala	Val	Суѕ	Gln 100	Asn	Val	Ala	Leu	Ser 105	Ala	Glu	Asp	Lys	Leu 110	Leu	Ile
	Ala	Thr	Pro 115	Ala	Ala	Glu	Thr	Gln 120	Asp	Pro	Asp	Glu	Gly 125	Leu	Pro	Gln
25	Pro	Gly 130	Pro	Glu	Ser	Pro	Ser 135	Trp	Arg	Ile	Pro	Ser 140	Thr	Lys	Ile	Cys
	Cys 145	Pro	Phe	Leu	Trp	Gly 150	Thr	Thr	Cys	Cys	Trp 155	Ser	Val	Lys	Ser	Pro 160
30	Arg	Ser	Arg	Arg	Trp 165	Tyr	Gly	Ser	Xaa							
35	(2)	INF	ORMA'.	NOIT	FOR	SEQ	ID I	NO: :	348:	-						
40			(i) (xi)	(A) L B) T D) T	ENGT YPE: OPOL	H: 4 ami OGY:	3 am no a lin	ino cid ear	acid		: 34	8:			
45	Met 1	Lys	Arg	Ser	Phe 5	Leu	Leu	Pro	Leu	Leu 10	Leu	Val	Gly	Phe	Leu 15	Asp
73	Thr	Ala	His	Leu 20	Ile	Leu	Leu	Glu	Thr 25	Leu	Ser	Val	Cys	Leu 30	Trp	Leu
50	Pro	Ser	Leu 35	Ile	Asp	Ser	Arg	Cys 40	Val	Met	Ser					
55	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	349:							
			(i)	(A) I B) 1	ENGI YPE:	H: 7	8 an Ino a	nino ncid		ls					
60			(xi)	SEC	(D) I					EQ I	D NO	: 34	9:			

	Met 1	Lys	Glu	Gly	Pro 5	Pro	Cys	Lys	Arg	His 10	His	Tyr	Tyr	Gln	Asn 15	Cys
5	Gly	Ala	Lys	Leu 20	Leu	Val	Ser	Leu	Phe 25	Gly	Glu	Thr	Asn	Gln 30	Ile	His
10	Leu	Leu	Glu 35	Thr	Gln	Val	Gly	Thr 40	Glu	Lys	Gly	Gly	Glu 45	Arg	Ile	Trp
••	Glu	Glu 50	Lys	Trp	Arg	Ile	Ser 55	Ser	Thr	Val	Leu	Phe 60	Ile	Ser	Val	Asn
15	Ser 65	Tyr	Val	Glu	Gly	Ser 70	Val	Leu	Glu	Ile	Lys 75	Leu	Phe	Tyr		
20	(2)		ORMAT	SEQUI		CHAI	RACTI	ERIS	rics		s					
25			(xi)	(B) T	YPE: OPOL	ami OGY:	no a	cid ear			: 350	0:			
	Met 1	Ser	Glu	Ile	Leu 5	Ser	Leu	Leu	Phe	Cys 10	Leu	Leu	Gly	Pro	Ala 15	Leu
30	Asp	Glu	Arg	Arg 20	Glu	Glu	Lys	Asp								
35	(2)	INF	ORMAT	rion	FOR	SEQ	ID N	10: 3	351:							
40			(i) :	() ()	A) L B) T D) T	ENGT YPE : OPOL	H: 2 ami: OGY:	74 a no a lin	mino cid ear	aci		: 35:	1:			
45	Met 1	Ser	Ser	Ala	Gly 5	Thr				Leu 10		Met	Asp	His	Lys 15	Leu
43	Thr	Ser	Gln	Pro 20	Gly	Arg	Pro	Ser	Phe 25	Tyr	Cys	Asn	Ser	Arg 30	His	Ser
50	Ile	Val	Gly 35	Ser	Ser	His	Gln	Leu 40	Gly	Phe	Trp	Phe	Ser 45	His	Leu	Glu
	Ser	Ser 50	Gly	Leu	Lys	Val	Phe 55	Gln	Val	Ser	Leu	Pro 60	Cys	Glu	Cys	Val
55	Asn 65	Leu	Pro	Thr	Arg	Ile 70	Ala	Ser	Val	Val	Leu 75	Ser	Leu	Met	Ser	Leu 80
60	Leu	Val	Val	Gly	Gln 85	Ala	Pro	Ala	Ттр	Glu 90	Gly	Ser	Leu	Leu	Arg 95	Gly

	Arg	Pro	Ala	Gly 100	Gly	Ala	His	Leu	Cys 105	Ala	Met	Xaa	Val	11e 110	Glu	G17
. 5	Leu	Val	Val 115	Asp	Val	Gly	Glu	Arg 120	Ile	Leu	His	Gly	Gln 125	Arg	Glu	Va]
	Gly	Gln 130	Val	Ser	Gln	Val	Leu 135	Pro	Ala	Leu	Ser	Leu 140	Gly	Leu	Val	Ph∈
10	Leu 145	Cys	Gln	Gly	Thr	Val 150	Glu	Lys	Val	Ser	Gly 155	Ala	Ala	His	Cys	Ser 160
15	Ser	Leu	Leu	Cys	Cys 165	Leu	Pro	Trp	Gln	Cys 170	Ser	Gly	Gly	Gly	Phe 175	Pro
13	Thr	Xaa	Arg	Cys 180	Ser	Arg	Pro	Tyr	Phe 185	Ser	Ser	His	Lys	Gly 190	Val	Ala
20	Ala	Thr	Leu 195	Ala	Leu	Thr	Cys	His 200	Cys	Asp	Lys	Val	His 205	Val	Ala	Gly
	Leu	Gly 210	Lys	Asp	Trp	Ala	Ile 215	Glu	Gln	Arg	Arg	Arg 220	Thr	Cys	Glu	Ser
25	Asp 225	Xaa	Glu	Xaa	Xaa	Pro 230	Phe	Thr	Leu	Ala	Gly 235	Leu	Val	Leu	Val	Leu 240
30	Arg	Phe	Суѕ	Gln	Val 245	Val	Leu	Val	Trp	Ile 250	Pro	Gln	Leu	Gly	Asp 255	Lys
30	His	Trp	Arg	Gly 260	Met	Thr	Arg	Leu	Gly 265	Arg	Val	Ser	Leu	Thr 270	Ser	Ser
35	Ile	Xaa														
40	(2)	INF	ORMA:	SEQU)		CHA ENGT	RACT H: 4	ERIS 7 am	TICS ino		ls.					
45			(xi)	SEQ	D) T UENC					EQ I	D NO	: 35	2:			
	Met 1		Phe	Thr	Ser 5	Val	Thr	Lys	Gly	Ile 10		Leu	Ile	Ala	Leu 15	Tr
50	Val	Pro	Leu	Phe 20	His	Phe	Met	Leu	Ile 25	Asp	Ser	Ile	Leu	Gly 30	Pro	Sei
55	Arg	Leu	Leu 35		Ąsp	Gly	Val	Pro 40		Asn	Pro	Trp	His 45	Val	Xaa	
	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	353:							
60			(i)	SEQU	ENCE	СНА	RACI	ERIS	TICS	:						

```
(A) LENGTH: 3 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 353:
- 5
       Met Lys Thr
       1
 10
       (2) INFORMATION FOR SEQ ID NO: 354:
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 52 amino acids
 15
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 354:
       Met Ser Ile Ser Gly Thr Asp Gly Leu Ile Leu Leu Leu Val Gly Leu
 20
       Glu Ala Xaa Val Arg Ser Ser Lys Lys Trp Ile Pro Lys Ala Leu Xaa
 25
       Val Thr Gln Ala Lys Trp Asn Ser Trp Pro Ser Arg Arg Asn Ala Gly
                                  40
       Phe Ala Leu His
           50
 30
       (2) INFORMATION FOR SEQ ID NO: 355:
 35
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 132 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 355:
 40
       Met Glu His Cys Leu Tyr His Ser Val His Gly Ile Asn Pro Tyr Ile
                   5
       His Lys Asn Thr His Pro Ser Ile Asn Ile Tyr Met Val Trp Asp Glu
 45
                                     25
       Gln Val Asn Ser Phe Glu Arg Glu Phe Val Pro Phe Phe Leu Ile
                                  40
 50
       Ile Leu Leu Asn Cys Cys Gln Leu Ser Asn Lys Gln Thr Glu Lys Leu
       Phe Gly Lys Thr Leu His Thr Pro Phe Leu Ser Ser Ala Leu Lys Tyr
 55
       Arg Leu Asn Thr His Ile Leu Pro Val Phe Ser Tyr Ser Asp Ser Ile
                                           90
       Leu Thr Cys His Leu Ile Leu Ala Ser Tyr Phe Ser His Val Tyr Leu
 60
                  100
                          105 110
```

Ala Ser Ala Cys Val Ile Met Phe Asp Val Thr Asn Ala Thr Thr Ph 85 90 95 Ser Asn Ser Gln Arg Trp Lys Gln Asp Leu Asp Ser Lys Leu Thr Le 100 105 110 Pro Asn Gly Glu Pro Val Pro Cys Leu Leu Leu Ala Asn Lys Cys As 115 120 125 Leu Ser Pro Trp Ala Val Ser Arg Asp Gln Ile Asp Arg Phe Ser Ly 130 135 140 45 Glu Asn Gly Phe Thr Gly Trp Thr Glu Thr Ser Val Lys Glu Asn Ly		Pro	Val	Thr 115	Cys	Ile	Cys	Tyr	Leu 120	Asn	Arg	Lys	Lys	Asn 125	Ile	Gln	Lys
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 204 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 356: Met Gly Ser Arg Asp His Leu Phe Lys Val Leu Val Val Gly Asp Al. 1 5 10 15 20 Ala Val Gly Lys Thr Ser Leu Val Gln Asp Tyr Ser Gln Asp Ser Ph. 20 25 30 Ser Lys His Tyr Lys Ser Thr Val Gly Val Asp Phe Ala Leu Lys Va. 45 Leu Gln Trp Ser Asp Tyr Glu Ile Val Arg Leu Gln Leu Trp Asp Il. 50 55 60 30 Ala Gly Gln Glu Arg Phe Thr Ser Met Thr Arg Leu Tyr Tyr Arg As; 65 70 75 8 Ala Ser Ala Cys Val Ile Met Phe Asp Val Thr Asn Ala Thr Thr Ph. 85 90 95 Ser Asn Ser Gln Arg Trp Lys Gln Asp Leu Asp Ser Lys Leu Thr Le. 100 105 115 Leu Ser Pro Trp Ala Val Ser Arg Asp Gln Ile Asp Arg Phe Ser Ly. 130 45 Glu Asn Gly Phe Thr Gly Trp Thr Glu Thr Ser Val Lys Glu Asn Ly. 145 Asn Ile Asn Glu Ala Met Arg Val Leu Ile Glu Lys Met Met Arg As. 165 170 Ser Thr Glu Asp Ile Met Ser Leu Ser Thr Gln Gly Asp Tyr Ile As. 180 Leu Gln Thr Lys Ser Ser Ser Trp Ser Cys Cys Xaa	5	Lys	-	Asn	Xaa												
(A) LENGTH: 204 amino acids (B) TYPE: amino acids (C) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 356: Met Gly Ser Arg Asp His Leu Phe Lys Val Leu Val Val Gly Asp Al. 1 5 10 15 Ala Val Gly Lys Thr Ser Leu Val Gln Asp Tyr Ser Gln Asp Ser Ph. 20 25 35 Ser Lys His Tyr Lys Ser Thr Val Gly Val Asp Phe Ala Leu Lys Val 45 Leu Gln Trp Ser Asp Tyr Glu Ile Val Arg Leu Gln Leu Trp Asp Il. 50 55 60 Ala Gly Gln Glu Arg Phe Thr Ser Met Thr Arg Leu Tyr Tyr Arg As; 65 70 75 8 Ala Ser Ala Cys Val Ile Met Phe Asp Val Thr Asn Ala Thr Thr Ph 85 90 95 Ser Asn Ser Gln Arg Trp Lys Gln Asp Leu Asp Ser Lys Leu Thr Le 100 105 110 Pro Asn Gly Glu Pro Val Pro Cys Leu Leu Lala Asn Lys Cys As 115 120 125 Leu Ser Pro Trp Ala Val Ser Arg Asp Gln Ile Asp Arg Phe Ser Ly 130 Asn Ile Asn Gly Ala Met Arg Val Leu Ile Glu Lys Met Met Arg As 165 170 175 Ser Thr Glu Asp Ile Met Ser Leu Ser Thr Gln Gly Asp Tyr Ile As 180 185 185 190 Leu Gln Thr Lys Ser Ser Ser Trp Ser Cys Cys Xaa	10	(2)															
20 Ala Val Gly Lys Thr Ser Leu Val Gln Asp Tyr Ser Gln Asp Ser Pho 20 Ser Lys His Tyr Lys Ser Thr Val Gly Val Asp Phe Ala Leu Lys Va 35 Leu Gln Trp Ser Asp Tyr Glu Ile Val Arg Leu Gln Leu Trp Asp Ill 50 30 Ala Gly Gln Glu Arg Phe Thr Ser Met Thr Arg Leu Tyr Tyr Arg As 65 70 Ala Ser Ala Cys Val Ile Met Phe Asp Val Thr Asn Ala Thr Thr Ph 85 90 95 Ser Asn Ser Gln Arg Trp Lys Gln Asp Leu Asp Ser Lys Leu Thr Le 100 Pro Asn Gly Glu Pro Val Pro Cys Leu Leu Leu Ala Asn Lys Cys As 115 Leu Ser Pro Trp Ala Val Ser Arg Asp Gln Ile Asp Arg Phe Ser Ly 130 Asn Ile Asn Glu Ala Met Arg Val Leu Ile Glu Lys Met Met Arg As 165 Ser Thr Glu Asp Ile Met Ser Leu Ser Thr Gln Gly Asp Tyr Ile As 180 Leu Gln Thr Lys Ser Ser Ser Trp Ser Cys Cys Xaa	15				() ()	A) Li B) T D) T	ENGT YPE: OPOL	H: 2 ami OGY:	04 a no a lin	mino cid ear	aci		: 35	6 :			
Ala Val Gly Lys Thr Ser Leu Val Gln Asp Tyr Ser Gln Asp Ser Pho 20 25 30 30 Ser Pho 20 25 30 Ser Lys His Tyr Lys Ser Thr Val Gly Val Asp Phe Ala Leu Lys Va 35 40 45 Leu Gln Trp Ser Asp Tyr Glu Ile Val Arg Leu Gln Leu Trp Asp Ill 50 55 60 Ser Asp Tyr Glu Ile Val Arg Leu Gln Leu Trp Asp Ill 60 Ser Ala Cys Val Ile Met Phe Asp Val Thr Asn Ala Thr Thr Pho 90 95 Ser Asn Ser Gln Arg Trp Lys Gln Asp Leu Asp Ser Lys Leu Thr Leu 100 105 125 Leu Ser Pro Trp Ala Val Ser Arg Asp Gln Ile Asp Arg Phe Ser Ly 130 135 Asn Ile Asn Gly Ala Met Arg Val Leu Ile Glu Lys Met Met Arg Asp 165 170 Ser Thr Glu Asp Ile Met Ser Leu Ser Thr Gln Gly Asp Tyr Ile Asp 185 190 Leu Gln Thr Lys Ser Ser Ser Trp Ser Cys Cys Xaa	20		Gly	Ser	Arg	_	His	Leu	Phe	Lys		Leu	Val	Val	Gly		Ala
Leu Gln Trp Ser Asp Tyr Glu Ile Val Arg Leu Gln Leu Trp Asp Ill 50	20	Ala	Val	Gly		Thr	Ser	Leu	Val		Asp	Tyr	Ser	Gln		Ser	Phe
30 Ala Gly Gln Glu Arg Phe Thr Ser Met Thr Arg Leu Tyr Tyr Arg As; 65 70 75 8 Ala Ser Ala Cys Val Ile Met Phe Asp Val Thr Asn Ala Thr Thr Ph 85 90 95 Ser Asn Ser Gln Arg Trp Lys Gln Asp Leu Asp Ser Lys Leu Thr Le 100 105 125 Pro Asn Gly Glu Pro Val Pro Cys Leu Leu Leu Ala Asn Lys Cys As 115 120 125 Leu Ser Pro Trp Ala Val Ser Arg Asp Gln Ile Asp Arg Phe Ser Ly 130 135 45 Glu Asn Gly Phe Thr Gly Trp Thr Glu Thr Ser Val Lys Glu Asn Ly 145 150 165 Asn Ile Asn Glu Ala Met Arg Val Leu Ile Glu Lys Met Met Arg As 165 170 Ser Thr Glu Asp Ile Met Ser Leu Ser Thr Gln Gly Asp Tyr Ile As 180 185 190 Leu Gln Thr Lys Ser Ser Ser Trp Ser Cys Cys Xaa	25	Ser	Lys		Tyr	Lys	Ser	Thr		Gly	Val	Asp	Phe		Leu	Lys	Val
Ala Ser Ala Cys Val Ile Met Phe Asp Val Thr Asn Ala Thr Thr Ph 85 90 95 Ser Asn Ser Gln Arg Trp Lys Gln Asp Leu Asp Ser Lys Leu Thr Le 100 105 110 Pro Asn Gly Glu Pro Val Pro Cys Leu Leu Leu Ala Asn Lys Cys As 115 120 125 Leu Ser Pro Trp Ala Val Ser Arg Asp Gln Ile Asp Arg Phe Ser Ly 130 135 140 45 Glu Asn Gly Phe Thr Gly Trp Thr Glu Thr Ser Val Lys Glu Asn Ly 145 150 155 Asn Ile Asn Glu Ala Met Arg Val Leu Ile Glu Lys Met Met Arg As 165 170 175 Ser Thr Glu Asp Ile Met Ser Leu Ser Thr Gln Gly Asp Tyr Ile As 180 185 190 Leu Gln Thr Lys Ser Ser Ser Trp Ser Cys Cys Xaa		Leu		Trp	Ser	Asp	Tyr		Ile	Val	Arg	Leu		Leu	Trp	Asp	Ile
Ser Asn Ser Gln Arg Trp Lys Gln Asp Leu Asp Ser Lys Leu Thr Le 100 105 110 110 110 110 110 110 110 110	30		Gly	Gln	Glu	Arg		Thr	Ser	Met	Thr		Leu	Tyr	туг	Arg	Asp 80
Ser Asn Ser Gln Arg Trp Lys Gln Asp Leu Asp Ser Lys Leu Thr Le	25	Ala	Ser	Ala	Cys		Ile	Met	Phe	Asp		Thr	Asn	Ala	Thr		Phe
40 115 120 125 Leu Ser Pro Trp Ala Val Ser Arg Asp Gln Ile Asp Arg Phe Ser Ly 130 135 140 45 Glu Asn Gly Phe Thr Gly Trp Thr Glu Thr Ser Val Lys Glu Asn Ly 145 150 155 16 Asn Ile Asn Glu Ala Met Arg Val Leu Ile Glu Lys Met Met Arg As 165 170 175 Ser Thr Glu Asp Ile Met Ser Leu Ser Thr Gln Gly Asp Tyr Ile As 180 185 190 Leu Gln Thr Lys Ser Ser Ser Trp Ser Cys Cys Xaa	33	Ser	Asn	Ser		Arg	Trp	Lys	Gln		Leu	Asp	Ser	Lys		Thr	Leu
45 Glu Asn Gly Phe Thr Gly Trp Thr Glu Thr Ser Val Lys Glu Asn Ly 145 150 155 16 Asn Ile Asn Glu Ala Met Arg Val Leu Ile Glu Lys Met Met Arg As 165 170 175 Ser Thr Glu Asp Ile Met Ser Leu Ser Thr Gln Gly Asp Tyr Ile As 180 185 190 Leu Gln Thr Lys Ser Ser Ser Trp Ser Cys Cys Xaa	40	Pro	Asn		Glu	Pro	Val	Pro		Leu	Leu	Leu	Ala		Lys	Cys	Asp
Asn Ile Asn Glu Ala Met Arg Val Leu Ile Glu Lys Met Met Arg As 165 170 175 Ser Thr Glu Asp Ile Met Ser Leu Ser Thr Gln Gly Asp Tyr Ile As 180 185 190 Leu Gln Thr Lys Ser Ser Ser Trp Ser Cys Cys Xaa		Leu			Trp	Ala	Val		Arg	Asp	Gln	Ile		Arg	Phe	Ser	Lys
50 Ser Thr Glu Asp Ile Met Ser Leu Ser Thr Gln Gly Asp Tyr Ile As 180 Leu Gln Thr Lys Ser Ser Ser Trp Ser Cys Cys Xaa	45		Asn	Gly	Phe	Thr			Thr	Glu	Thr		Val	Lys	Glu	Asn	Lys 160
Ser Thr Glu Asp Ile Met Ser Leu Ser Thr Gln Gly Asp Tyr Ile As 180 185 190 Leu Gln Thr Lys Ser Ser Ser Trp Ser Cys Cys Xaa	50	Asn	Ile	. Asn	Glu			Arg	Val	Leu			Lys	Met	Met		Asn
	50	Ser	Thr	: Glu			Met	Ser	Leu			Gln	Gly	Asp			Asn
	55	Leu	Glr		-	Ser	Ser	Ser	_		Cys	Cys	Xaa				

(2) INFORMATION FOR SEQ ID NO: 357:

			(i)	(A) L B) T	ENGT YPE :	H: 4 ami	7 am no a	ino cid		s					
5			(xi)	SEQ		OPOL E DE:				EQ I	D NO	: 35	7:			
	Met 1	Ile	Ser	Leu	Ile 5	Phe	Gln	Leu	Glu	Glu 10	Glu	Lys	Leu	Val	Glu 15	Lys
10	Phe	Phe	Phe	Phe 20	Leu	Phe	Phe	Phe	Leu 25	Lys	Lys	Gly	Ser	Gln 30	Gly	Ser
15	Asn	Leu	Lys 35	Ile	Val	Pro	Arg	His 40	Met	Arg	Val	Val	Leu 45	Arg	Gly	
20	(2)	INF		(ENCE A) L B) T		RACTI H: 7.	ERIS 3 am no a	rICS ino a		S					
25	Met 1	Thr		SEQI Val						-				Glu	Phe 15	Leu
30	Asn	Ser	Gln	Leu 20	Thr	Asn	His	Arg	Lys 25	Tyr	Tyr	Phe	Leu	Ser 30	Tyr	Gly
	Phe	Trp	Phe 35	Thr	Gly	Leu	Arg	Gly 40	Phe	Ser	Glu	Tyr	Leu 45	Trp	Pro	Gln
35	Gln	His 50	Thr	Ser	Phe	His	Pro 55	Asn	Arg	Asn	Glu	Ile 60	Asn	Phe	Val	Ser
40	Thr 65	Asp	Asn	Arg	Ile	Trp 70	Val	Thr	Xaa							
	(2)	INF	ORMA!	rion	FOR	SEQ	ID 1	10: 3	359:							
45			(i)	(A) L B) T	CHAI ENGT YPE: OPOL	H: 1 ami	02 a no a	mino cid		ds					
50				SEQ	UENC	E DE	SCRI	PTIO	N: S							
	Met 1	Ser	Asp	Gln	Glu 5	Ala	Lys	Pro	Ser	Thr 10	Glu	Asp	Leu	Gly	Asp 15	Lys
55	Lys	Glu	Gly	Glu 20	Tyr	Ile	Lys	Leu	Lys 25	Val	Ile	Gly	Gln	Asp 30	Ser	Ser
	Glu	Ile	His 35	Phe	Lys	Val	Lys	Met 40	Thr	Thr	His	Leu	Lys 45	Lys	Leu	Lys
60	Glu	Ser	Tyr	Cys	Gln	Arq	Gln	Glv	Val	Pro	Met	Asn	Ser	Leu	Arq	Phe

		50					55					60				
5	Leu 65	Phe	Glu	Gly	Gln	Arg 70	Ile	Ala	Asp	Asn	His 75	Thr	Pro	Lys	Ģlu	Leu 80
J	Gly	Met	Glu	Glu	Glu 85	Asp	Val	Ile	Glu	Val 90	Туг	Gln	Glu	Gln	Thr 95	Gly
10	Gly	His	Ser	Thr 100	Val	Xaa										
15	(2)			rion Sequi	ENCE	CHA	RACTI	ERIS	rics							
20			(xi)	(B) T D) T	YPE: OPOL	ami: OGY:	8 am no a lin Prior	cid ear			: 360	D :			
	Met 1	Gly	Phe	Pro	Gln 5	Trp	His	Leu	Gly	Asn 10	His	Ala	Val	Glu	Pro 15	Val
25	Thr	Ser	Ile	Leu 20	Leu	Leu	Phe	Leu	Leu 25	Met	Met	Leu	Gly	Val 30	Arg	Gly
30	Leu	Leu	Leu 35	Val	Gly	Leu	Val	Тут 40	Leu	Val	Ser	His	Leu 45	Ser	Gln	Arg
35	(2)	INFO	ORMA	rion	FOR	SEQ	ID N	10: 3	361:							
40				(A) L B) T D) T	ENGT YPE : OPOL	H: 1 ami: OGY:	79 a no a lin	mino cid ear	aci		: 36	1:			
45	Met 1	Ser	Ala	Glu	Val 5	Lys	Val	Thr	Gly	Gln 10	Asn	Gln	Glu	Gln	Phe 15	Leu
	Leu	Leu	Ala	Lys 20	Ser	Ala	Lys	Gly	Ala 25	Ala	Leu	Ala	Thr	Leu 30	Ile	His
50	Gln	Val	Leu 35	Glu	Ala	Pro	Gly	Val 40	Тут	Val	Phe	Gly	Glu 45	Leu	Leu	Asp
55	Met	Pro 50	Asn	Val	Arg	Glu	Leu 55	Ala	Glu	Ser	Asp	Phe 60	Ala	Ser	Thr	Phe
55	Arg 65	Leu	Leu	Thr	Val	Phe 70	Ala	Tyr	Gly	Thr	Туг 75	Ala	Asp	Tyr	Leu	Ala 80
60	Glu	Ala	Arg	Asn	Leu 85	Pro	Pro	Leu	Thr	Glu 90	Ala	Gln	Lys	Asn	Lys 95	Leu

	Arg	His	Leu	Ser 100	Val	Val	Thr	Leu	Ala 105	Ala	Lys	Val	Lys	Cys 110	Ile	Pro
5	Tyr	Ala	Val 115	Leu	Leu	Glu	Ala	Leu 120	Ala	Leu	Arg	Asn	Val 125	Arg	Gln	Leu
10	Glu	Asp 130	Leu	Val	Ile	Glu	Ala 135	Val	Tyr	Ala	Asp	Val 140	Leu	Arg	Gly	Ser
	Leu 145	Asp	Gln	Arg	Asn	Gln 150	Arg	Leu	Glu	Val	Asp 155	Tyr	Ser	Ile	Gly	Arg 160
15	Asp	Ile	Gln	Arg	Gln 165	Asp	Leu	Ser	Ala	Ile 170	Ala	Arg	Thr	Leu	Xaa 175	Lys
	Asn	His	Xaa													
20																
	(2)			TION												
25				(1	A) Li B) T D) T	ENGT YPE: OPOLA	H: 2 amin OGY:	5 am no a line	ino a cid ear	acid		365).			
30	Met			Ser										Phe	Ile	His
	1 Sor	Vic	λαn	Lou	5	Clu	Lou	Co ro	2 ~~	10					15	
35	261	1115	Asp	Leu 20	FIU	GIY	Leu	Cys	25							
	(2)	INFO	RMAT	NOI	FOR	SEQ	ID N	ю: 3	63:							
40			(i) S	()	A) LI 3) T	ENGTI (PE:	H: 27 amir	24 ar	mino cid		ds					
45			(xi)	SEQU			OGY: SCRII			Q II	NO:	363	3:			
	Met 1	Lys	Phe	Ala	Ala 5	Ser	Gly	Xaa	Phe	Leu 10	His	His	Met	Ala	G1y 15	Leu
50	Ser	Ser	Ser	Lys 20	Leu	Ser	Met	Ser	Lys 25	Ala	Leu	Pro	Leu	Thr 30	Lys	Val
	Val	Gln	Asn 35	Asp	Ala	Tyr	Thr	Ala 40	Pro	Ala	Leu	Pro	Ser 45	Ser	Ile	Arg
55	Thr	Lys 50	Ala	Leu	Thr	Asn	Met 55	Ser	Arg	Thr	Leu	Val 60	Asn	Lys	Glu	Glu
60	Pro 65	Pro	Lys	Glu	Leu	Pro 70	Ala	Ala	Glu	Pro	Val 75	Leu	Ser	Pro	Leu	Glu 80

	Gly	Thr	Lys	Met	Thr 85	Val	Asn	Asn	Leu	His 90	Pro	Arg	Val	Thr	Glu 95	Glu
5	Asp	Ile	Val	Glu 100	Leu	Phe	Cys	Val	Суs 105	Gly	Ala	Leu	Lys	Arg 110	Ala	Arg
	Leu	Val	His 115	Pro	Gly	Val	Ala	Glu 120	Val	Val	Phe	Val	Lys 125	Lys	Asp	Asp
10	Ala	11e 130	Thr	Ala	Tyr	Lys	Lys 135	Tyr	Asn	Asn	Arg	Cys 140	Leu	Asp	Gly	Gln
15	Pro 145	Met	Lys	Cys	Asn	Leu 150	His	Met	Asn	Gly	Asn 155	Val	Ile	Thr	Ser	Asp 160
	Gln	Pro	Ile	Leu	Leu 165	Arg	Leu	Ser	Asp	Ser 170	Pro	Ser	Met	Lys	Lys 175	Glu
20	Ser	Glu	Leu	Pro 180	Arg	Arg	Val	Asn	Ser 185	Ala	Ser	Ser	Ser	Asn 190	Pro	Pro
	Ala	Glu	Val 195	Asp	Pro	Asp	Thr	11e 200	Leu	Lys	Ala	Leu	Phe 205	Lys	Ser	Ser
25	Gly	Ala 210	Ser	Xaa	Thr	Thr	Gln 215	Pro	Thr	Glu	Phe	Lys 220	Ile	Lys	Leu	Xaa
30																
35	(2)		(i) :	0	ENCE A) L B) T D) T	CHAI ENGT: YPE: OPOLA	RACTI H: 3 ami: OGY:	ERIS 49 au no a lin	rics mino cid ear	aci						
40				SEQ												
	Met 1	Ser	Lys	Asn	Cys 5	He	Lys	Leu	Leu	Cys 10	Glu	Asp	Pro	Val	Phe 15	Ala
45	Glu	Tyr	Ile	Lys 20	Cys	Ile	Leu	Met	Asp 25	Glu	Arg	Thr	Phe	Leu 30	Asn	Asn
	Asn	Ile	Val 35	Tyr	Thr	Phe	Met	Thr 40	His	Phe	Leu	Leu	Lys 45	Val	Gln	Ser
50	Gln	Val 50	Phe	Ser	Glu	Ala	Asn 55	Cys	Ala	Asn	Leu	Ile 60	Ser	Thr	Leu	Ile
55	Thr 65	Asn	Leu	Ile	Ser	Gln 70	Tyr	Gln	Asn	Leu	Gln 75	Ser	Asp	Phe	Ser	Asn 80
	Arg	Val	Glu	Ile	Ser 85	Lys	Ala	Ser	Ala	Ser 90	Leu	Asn	Gly	Asp	Leu 95	Arg
60	Ala	Leu	Ala	Leu 100	Leu	Leu	Ser	Val	His 105	Thr	Pro	Lys	Gln	Leu 110	Asn	Pro

	Ala	Leu	11e 115	Pro	Thr	Leu	Gln	Glu 120	Leu	Leu	Ser	Lys	Cys 125	Arg	Thr	Cys
5	Leu	Gln 130	Gln	Arg	Asn	Ser	Leu 135	Gln	Glu	Gln	Glu	Ala 140	Lys	Glu	Arg	Lys
10	Thr 145	Lys	Asp	Asp	Glu	Gly 150	Ala	Thr	Pro	Ile	Lys 155	Arg	Arg	Arg	Val	Ser 160
	Ser	Asp	Glu	Glu	His 165	Thr	Val	Asp	Ser	Cys 170	Ile	Ser	Asp	Met	Lys 175	Thr
15	Glu	Thr	Arg	Glu 180	Val	Leu	Thr	Pro	Thr 185	Ser	Thr	Ser	Asp	Asn 190	Glu	Thr
	Arg	Asp	Ser 195	Ser	Ile	Ile	Asp	Pro 200	Gly	Thr	Glu	Gln	A sp 205	Leu	Pro	Ser
20	Pro	Glu 210	Asn	Ser	Ser	Val	Lys 215	Glu	Tyr	Arg	Met	Glu 220	Val	Pro	Ser	Ser
25	Phe 225	Ser	Glu	Asp	Met	Ser 230	Asn	Ile	Arg	Ser	Gln 235	His	Ala	Glu	Glu	Gln 240
	Ser	Asn	Asn	Gly	Arg 245	Tyr	Asp	Asp	Cys	Lys 250	Glu	Phe	Lys	Asp	Leu 255	His
30	Cys	Ser	Lys	Asp 260	Ser	Thr	Leu	Ala	Glu 265	Glu	Glu	Ser	Glu	Phe 270	Pro	Ser
	Thr	Ser	Ile 275	Ser	Ala	Val	Leu	Ser 280	Asp	Leu	Ala	Asp	Leu 285	Arg	Ser	Cys
35	Asp	Gly 290	Gln	Ala	Leu	Pro	Ser 295	Gln	Asp	Pro	Glu	Val 300	Ala	Leu	Ser	Leu
40	Ser 305	Cys	Gly	His	Ser	Arg 310	Gly	Leu	Phe	Ser	His 315	Met	Gln	Gln	His	As p 320
	Ile	Leu	Asp	Thr	Leu 325	Cys	Arg	Thr	Ile	Glu 330	Ser	Thr	Ile	His	Val 335	Val
45	Thr	Arg	Ile	Ser 340	Gly	Lys	Gly	Asn	Gln 345	Ala	Ala	Ser	Xaa			
	(2)	TNIFY	ORMA	rion	FOR	SEO	י מד	NO.	365.							
50	,_,			SEQU	ENCE	СНА	RACT	ERIS	TICS	: aci	de					
55			1223	(B) 1 D) 1	YPE :	ami OGY:	no a lin	cid ear			. 36	ε.			
JJ				SEQ	Asp					Ala				Ala	Arg	Ile
60	1 Lys		Lys	Gly	5 Thr	Val	Gly	Glu	Pro	10 Thr	туг	Asp	Ala	Glu	15 Phe	Gln

				20					25					30		
5	His	Phe	Leu 35	Arg	Gly	Asn	Glu	Ile 40	Val	Leu	Ser	Ala	Gly 45	Ser	Thr	Pro
•	Arg	Ile 50	Gln	Gly	Leu	Thr	Val 55	Glu	Gln	Ala	Glu	Ala 60	Val	Val	Arg	Leu
10	Ser 65	Суѕ	Leu	Pro	Ala	Phe 70	Lys	Asp	Leu	Ile	Ala 75	Lys	Val	Gln	Ala	Asp 80
	Glu	Gln	Phe	Gly	Ile 85	Trp	Leu	Asp	Ser	Ser 90	Ser	Pro	Glu	Gln	Thr 95	Val
15	Pro	Тут	Leu	Trp 100	Ser	Glu	Glu	Thr	Pro 105	Ala	Thr	Pro	Ile	Gly 110	Gln	Ala
20	Ile	His	Arg 115	Leu	Leu	Leu	Ile	Gln 120	Ala	Phe	Arg	Pro	Asp 125	Arg	Leu	Leu
		130					135			Asn		140				
25	Ser 145	Ile	Met	Glu	Gln	Pro 150	Leu	Asp	Leu	Thr	His 155	Ile	Val	Xaa	Thr	Glu 160
•		-			165					Cys 170					175	
30				180					185	Ala				190		
35			195					200		Gly			205			
		210					215			Arg		220				
40	225					230				Gln	235					240
					245					Leu 250					255	
45	Asn	Pro	Lys	Val 260	Pro	Val	Asn	Leu	Leu 265	Arg	Ala	Gly	Arg	11e 270	Phe	Val
50	Phe	Glu	Pro 275		Pro	Gly	Xaa	Lys 280	Ala	Asn	Met	Leu	Arg 285	Thr	Phe	Ser
	Ser	11e 290		Val	Ser	Arg	Ile 295		Lys	Ser	Pro	Asn 300	Glu	Arg	Ala	Arg
55	Leu 305		Phe	Leu	Leu	Ala 310		Phe	His	Ala	Ile 315	Ile	Gln	Glu	Arg	120 320
	Arg	Tyr	Ala	Pro	Leu 325	-	Trp	Ser	Lys	Lys 330		Glu	Phe	Gly	Glu 335	Ser
6 0		T				~	X ~	mb	17-1	Non	mhv	m	T and	A am	3.00	Wh.

				340					345					350		
5	Ala	Lys	Gly 355	Arg	Gln	Asn	Ile	Ser 360	Pro	Asp	Lys	Ile	Pro 365	Trp	Ser	Ala
	Leu	Lys 370	Thr	Leu	Met	Ala	Gln 375	Ser	Ile	Tyr	Gly	Gly 380	Arg	Val	Asp	Asn
10	Glu 385	Phe	Asp	Gln	Arg	Leu 390	Leu	Asn	Thr	Phe	Leu 395	Glu	Arg	Leu	Phe	Thr 400
	Thr	Arg	Ser	Phe	Asp 405	Ser	Glu	Phe	Lys	Leu 410	Ala	Cys	Lys	Val	Asp 415	
15	His	Lys	Asp	Ile 420	Gln	Met	Pro	Asp	Gly 425	Met	Gln	Ala	Arg	Gly 430	Val	Суз
20	Ala	Val	Gly 435	Gly	Val	Ala	Pro	Arg 440	His	Pro	Asp	Ala	Leu 445	Leu	Ala	Gly
	Pro	Ala 450	Gln	Gln	Arg	Arg	Glu 455	Ser	Pro	Pro	Tyr	His 460	Thr	Gly	Cys	Gly
25	His 465	qzA	Gln													
	(2)	TNF	ORMA	rton.	FOR	SEO	TD N	an ∙ 3	866.							
30	(2)		(i) :	SEQUI		CHAI	RACTI	ERIS	rics		de					
				(B) T D) T	YPE:	ami	no a	cid	acr	<u>u</u> 5					
35			(xi)													
	Met 1	Ala	Asp	Glu	Ala 5	Thr	Arg	Arg	Val	Val 10	Ser	Glu	Ile	Pro	Val 15	Leu
40	Lys	Thr	Asn	Ala 20	Gly	Pro	Arg	Asp	Arg 25	Glu	Leu	Trp	Val	Gln 30	Arg	Leu
45	Lys	Glu	Glu 35	Tyr	Gln	Ser	Leu	Ile 40	Arg	Tyr	Val	Glu	Asn 45	Asn	Lys	Asn
15	Ala	Asp 50	Asn	Asp	Trp	Phe	Arg 55	Leu	Glu	Ser	Asn	Lys 60	Glu	Gly	Thr	Arg
50	Trp 65	Phe	Gly	Lys	Cys	Trp 70	Туг	Ile	His	Asp	Leu 75	Leu	Lys	Tyr	Glu	Phe 80
	Asp	Ile	Glu	Phe	Asp 85	Ile	Pro	Ile	Thr	Туr 90	Pro	Thr	Thr	Ala	Pro 95	Glu
55	Ile	Ala	Val	Pro 100	Glu	Leu	Asp	Gly	Lys 105	Thr	Ala	Lys	Met	Туг 110	Arg	Gly
60	Gly	Lys	Ile 115	Cys	Leu	Thr	Asp	His 120	Phe	Lys	Pro	Leu	Trp 125	Gly	Gln	Glu

Cys Ala Gln Ile Trp Thr Ser Ser Ser His Gly Ser Gly Ala Gly Ser

573

135 Met Xaa Gly Ser Gly Asn Pro Xaa 5 150 (2) INFORMATION FOR SEQ ID NO: 367: 10 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 373 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 367: Met Tyr Asp Gly Thr Lys Glu Val Pro Met Asn Pro Val Lys Ile Tyr 20 Gln Val Cys Asp Ile Pro Gln Pro Gln Gly Ser Ile Ile Asn Pro Gly Ser Thr Gly Ser Ala Pro Trp Asp Glu Lys Asp Asn Asp Val Asp Glu 25 Glu Asp Glu Glu Asp Glu Leu Asp Gln Ser Gln His His Val Pro Ile Gln Asp Thr Phe Pro Phe Leu Asn Ile Asn Gly Ser Pro Met Ala Pro 30 70 Ala Ser Val Gly Asn Cys Ser Val Gly Asn Cys Ser Pro Glu Ala Val 90 35 Trp Pro Lys Thr Glu Pro Leu Glu Met Glu Val Pro Gln Ala Pro Ile 105 Gln Pro Phe Tyr Ser Ser Pro Glu Leu Trp Ile Ser Ser Leu Pro Met 120 125 40 Thr Asp Leu Asp Ile Lys Phe Gln Tyr Arg Gly Lys Glu Tyr Gly Gln 135 Thr Met Thr Val Ser Asn Pro Gln Gly Cys Arg Leu Phe Tyr Gly Asp 45 155 Leu Gly Pro Met Pro Asp Gln Glu Glu Leu Phe Gly Pro Val Xaa Leu 170 50 Glu Gln Val Lys Phe Pro Gly Pro Glu His Ile Thr Asn Glu Lys Gln 185 Lys Leu Phe Thr Ser Lys Leu Leu Asp Val Met Asp Arg Gly Leu Ile 55 Leu Glu Val Ser Gly His Ala Ile Tyr Ala Ile Arg Leu Cys Gln Cys Lys Val Tyr Trp Ser Gly Pro Cys Ala Pro Ser Leu Val Ala Pro Asn 60

574

	Leu	Ile	Glu	Arg	Gln 245	Lys	Lys	Val	Lys	Leu 250	Phe	Cys	Leu	Glu	Thr 255	Phe
5	Leu	Ser	Asp	Leu 260	Ile	Ala	His	Gln	Lys 265	Gly	Gln	Ile	Glu	Lys 270	Gln	Pro
10	Pro	Phe	Glu 275	Ile	Тут	Leu	Cys	Phe 280	Gly	Glu	Glu	Trp	Pro 285	Asp	Gly	Lys
10	Pro	Leu 290	Glu	Arg	Lys	Leu	Ile 295	Leu	Val	Gln	Val	Ile 300	Pro	Val	Val	Ala
15	Arg 305	Met	Ile	Туг	Glu	Met 310	Phe	Ser	Gly	Asp	Phe 315	Thr	Arg	Ser	Phe	Asp 320
	Ser	Gly	Ser	Val	Arg 325	Leu	Gln	Ile	Ser	Thr 330	Pro	Asp	Ile	Lys	Asp 335	Asn
20	Ile	Val	Ala	Gln 340	Leu	Lys	Gln	Leu	Tyr 345	Arg	Ile	Leu	Gln	Thr 350	Gln	Glu
25	Ser	Trp	Gln 355	Pro	Met	Gln	Pro	Thr 360	Pro	Ser	Met	Gln	Leu 365	Pro	Pro	Ala
23	Leu	Pro 370	Pro	Gln	Xaa											
30	(2)	TNTE	ORMAT	TON	EOD	SEO	TD N		.60.							
	121		(i) :	SEQUI	ENCE	CHAI	RACTI	ERIS	rics							
35			/: \	()	B) T D) T	YPE: OPOL	ami: OGY:	no a lin	cid ear	acid		. 261	o .			
			(xi)	SEQ	JENC!	E DE.	SCRI	F110	W. 151	cQ II) INO	. 500	J.			
40	Met 1	Gly	Ser	Ser	Val 5	Leu	Pro	Phe	Cys	Val 10	Cys	Val	Thr	Ser	Pro 15	Ser
	Leu	Gly	Gly	Arg 20	Cys	Ile	Gln	Gly	Arg 25	Phe	Ala	Ser	His	Ser 30	Lys	Phe
45	Trp	Gly	Phe 35	Gly	Arg	Lys	Thr	Ala 40	Ser	Phe	Gly	Ala	Val 45	Gly	Glu	Thr
50	Pro	Pro 50	Asp	Gln	Glu	Pro	Gln 55	Lys	Glu	Thr	Glu	Pro 60	Ala	Thr	Ser	Ser
50	His 65	Ala	Arg	Pro	Trp	Ala 70	Arg	Val	Ile	Gly	Leu 75	Arg	Ile	Trp	Pro	Gln 80

(2) INFORMATION FOR SEQ ID NO: 369:

5				(A) L B) T D) T	ENGI YPE : OPOL	H: 2 ami OGY:	l am no a lin	ino cid ear	acid		: 36	9:			
	Met 1	Leu	Leu	Ser	Val 5	Ala	Ile	Phe	Ile	Leu 10	Leu	Thr	Leu	Val	Туг 15	
10	Tyr	Trp	Thr	Met 20	Xaa											
15	(2)		ORMA!													
20			(i) :	(A) L B) T D) T	ENGT YPE: OPOL	H: 2 ami OGY:	27 a no a lin	mino cid ear	aci		: 37	0 :			
25	Met 1	Gly	Ala	Ser	Ala 5	Arg	Leu	Leu	Arg	Ala 10	Val	Ile	Met	Gly	Ala 15	Pro
20	Gly	Ser	Gly	Lys 20	Gly	Thr	Val	Ser	Ser 25	Arg	Ile	Thr	Thr	His 30	Phe	Glu
30	Leu	Lys	His 35	Leu	Ser	Ser	Gly	Asp 40	Leu	Leu	Arg	Asp	Asn 45	Met	Leu	Arg
	Gly	Thr 50	Glu	Ile	Gly	Val	Leu 55	Ala	Lys	Ala	Phe	Ile 60	Asp	Gln	Gly	Lys
35	Leu 65	Ile	Pro	Asp	Asp	Val 70	Met	Thr	Arg	Leu	Ala 75	Leu	His	Glu	Leu	Lys 80
40	Asn	Leu	Thr	Gln	Tyr 85	Ser	Trp	Leu	Leu	Asp 90	Gly	Phe	Pro	Arg	Thr 95	Leu
40	Pro	Gln	Ala	Glu 100	Ala	Leu	Asp	Arg	Ala 105	Туг	Gln	Ile	Asp	Thr 110	Val	Ile
45	Asn	Leu	Asn 115	Val	Pro	Phe	Glu	Val 120	Ile	Lys	Gln	Arg	Leu 125	Thr	Ala	Arg
	Trp	Ile 130	His	Pro	Ala	Ser	Gly 135	Arg	Val	Тут	Asn	Ile 140	Glu	Phe	Asn	Pro
50	Pro 145	Lys	Thr	Val	Gly	Ile 150	Asp	Asp	Leu	Thr	Gly 155	Glu	Pro	Leu	Ile	Glr 160
55	Arg	Glu	Asp	Asp	Lys 165	Pro	Glu	Thr	Val	Ile 170	Lys	Arg	Leu	Lys	Ala 175	Тут
JJ	Glu	Asp	Gln	Thr 180	Lys	Pro	Val	Leu	Glu 185	Tyr	Tyr	Gln	Lys	Lys 190	Gly	Va]

Leu Glu Thr Phe Ser Gly Thr Glu Thr Asn Lys Ile Trp Pro Tyr Val 195 200 205

```
Tyr Ala Phe Leu Gln Thr Lys Val Pro Gln Arg Ser Gln Lys Ala Ser
                               215
<sup>-</sup> 5
      Val Thr Pro
      225
10
      (2) INFORMATION FOR SEQ ID NO: 371:
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 79 amino acids
                     (B) TYPE: amino acid
15
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 371:
      Met Phe Leu Asn Cys Glu Ile Leu Glu Tyr Cys Tyr Tyr Leu Thr Gln
20
      Leu Lys Ile Ser Met Gly Lys Tyr Leu Ser Ile Pro Thr Val Leu Leu
                                        25
      Lys Ile Ile Arg Cys Ser Ile Thr Ala Val Ser Asp Ser Ser Thr Ser
25
      Trp Ala Ile Lys Ala Gln Leu Lys Ile Glu Asn Lys Asp Leu Asp Asn
                                55
                                                    60
30
      Lys Thr Ala Lys Gly Gly Gly Gln Glu Ala Leu Thr Cys Thr Xaa
        65
                            70
                                                75
35
       (2) INFORMATION FOR SEQ ID NO: 372:
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 51 amino acids
                     (B) TYPE: amino acid
40
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 372:
       Met Arg Ala Val Phe Pro Cys Cys Pro Phe Leu Thr Leu Met Leu Pro
                        5
                                            10
45
       Leu Leu Glu Cys Leu Val Gly Met Ile Met Cys Tyr Leu Gly Ile Ser
       Phe Thr Asp Thr Arg Lys Thr Ala Gly Leu Lys Lys Lys Lys Lys
 50
                                    40
       Lys Xaa Xaa
            50
 55
       (2) INFORMATION FOR SEQ ID NO: 373:
               (i) SEQUENCE CHARACTERISTICS:
 60
                      (A) LENGTH: 61 amino acids
```

PCT/US98/04493

577

WO 98/39448

						YPE: OPOL										
			(xi)	SEQ	•					EQ I	D NO	: 37	3 :		•	
5	Met 1	Phe	Leu	Met	Arg 5	Met	His	Leu	Cys	Phe 10	Cys	Lys	туг	Cys	Cys 15	Ser
10	Phe	Ile	Val	Thr 20	Pro	Thr	Ser	Thr	Ser 25	Asn	Thr	Ala	Ser	Туг 30	Leu	Trp
10	Pro	Trp	Ile 35	Ser	Äla	Ser	Met	Ala 40	Gly	Arg	Gly	Ser	Ser 45	Trp	Ala	Cys
15	Thr	Leu 50	Asn	Ala	Val	Thr	Arg 55	Glu	Gly	Leu	Pro	Glu 60	Xaa			
20	(2)	INF		rion SEQU	ENCE		RACT	ERI <i>S</i>	rics		s					
25			(xi)		D) I	YPE: OPOL E DE	OGY:	lin	ear	EQ I	D NO	: 37	4:			
	Met 1	Ser	Leu	Leu	Asn 5	Thr	His	Thr	Leu	Cys 10	Phe	Val	Leu	Phe	Cys 15	Phe
30	Thr	Leu	Ser	Ile 20	Asn	Gln	Glu	Lys	Leu 25	Ala	Asn	His	Leu	Ala 30	Phe	Arg
35	Ile	Leu	Phe 35	Phe	Ile	Val	Phe	Xaa 40								
40	(2)	INF			ENCE	CHA ENGT	RACT H: 4	ERIS	TICS ino		ls					
45			(xi)		(D) 1	YPE: OPOL E DE	OGY:	lin	ear	EQ I	D NO	: 37	5:			
45	Met 1		Ser	Gly	Gln 5		Gln	Val	Trp	Lys 10		Ala	Leu	Gln	Ala 15	Leu
50	Asp	Ser	Glu	Thr 20		Val	Ile	Leu	Pro 25		Met	His	Leu	Ile 30		Ser
	Leu	Arg	Leu 35	Ile	His	Asn	Ala	Arg 40		Cys	Leu	Xaa				
55																
	(2)	INF	ORMA	TION	FOR	SEQ	D	NO:	376:					٠		
60			(i)	SEQU	JENCI				TICS		i de					

					B) T											
			(xi)	SEQI	D) T UEINC					EQ II	O NO	: 37	6 :			
5	Met 1	Leu	Ile	Ser	Glu 5	Glu	Glu	Ile	Pro	Phe 10	Lys	Asp	Asp	Pro	Arg 15	Asp
10	Glu	Thr	Tyr	Lys 20	Pro	His	Leu	Glu	Arg 25	Glu	Thr	Pro	Lys	Pro 30	Arg	Arg
10	Lys	Ser	Gly 35	Lys	Val	Lys	Glu	Glu 40	Lys	Glu	Lys	Lys	Glu 45	Ile	Lys	Val
15	Glu	Val 50	Glu	Val	Glu	Val	Lys 55	Glu	Glu	Glu	Asn	Glu 60	Ile	Arg	Glu	Asp
	Glu 65	Glu	Pro	Pro	Arg	Lys 70	Arg	Gly	Arg	Arg	Arg 75	Lys	Asp	Asp	Lys	Ser 80
20	Pro	Arg	Leu	Pro	Lys 85	Arg	Arg	Lys	Lys	Pro 90	Pro	Ile	Gln	Tyr	Val 95	Arg
25	Cys	Glu	Met	Glu 100	Gly	Cys	Gly	Thr	Val 105	Leu	Ala	His	Pro	Arg 110	Tyr	Leu
20	Gln	His	His 115	Ile	Lys	Tyr	Gln	His 120	Leu	Leu	Lys	Lys	Lys 125	Tyr	Val	Cys
30	Pro	His 130	Pro	Ser	Cys	Gly	Arg 135	Leu	Phe	Arg	Leu	Gln 140	Lys	Gln	Leu	Leu
	Arg 145		Ala	Lys	His	His 150	Thr	Asp	Gln	Arg	Asp 155	Tyr	Ile	Cys	Glu	Туг 160
35	Cys	Ala	Arg	Ala	Phe 165	Lys	Ser	Ser	His	Asn 170	Leu	Ala	Val	His	Arg 175	Met
40	Ile	His	Thr	Gly 180	Glu	Lys	His	туг	Asn 185	Val	Arg	Ser	Val	Asp 190	Leu	Leu
.0	Val	Asp	Lys 195		His	Leu	Leu	11e 200	Gly	Thr	Xaa					
45	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	377 :							
50			(i)		(A) I	ENGI	M: 2	9 an	nino		ls					
JU			(xi)		(B) T (D) T QUEINC	OPOI	LOGY :	lir	iear	EQ I	D NC): 37	7 :			
55	Met		Pro	Arg	Arg 5		Phe	Туг	Phe	туr 10		: Ile	Phe	Ile	Phe 15	
	Leu	ı Ala	a Ser	Phe 20		Gly	Phe	Thr	Leu 25		Ala	Ser	Phe	:		

	(2)	INF	ORMA:	rion	FOR	SEQ	ID I	NO:	378:							
5			(i)	(A) L B) T	ENGT YPE:		36 а по а			ds				•	
			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 37	8:			
10	Met 1	Phe	Asp	Ser	Leu 5	Ser	Tyr	Phe	Lys	Gly 10	Ser	Ser	Leu	Leu	Leu 15	Met
15	Leu	Lys	Thr	Туг 20	Leu	Ser	Glu	Asp	Val 25	Phe	Gln	His	Ala	Val 30	Val	Leu
13	Tyr	Leu	His 35	Asn	His	Ser	Туг	Ala 40	Ser	Ile	Gln	Ser	Asp 45	Asp	Leu	Trp
20	Asp	Ser 50	Phe	Asn	Glu	Val	Thr 55	Asn	Gln	Thr	Leu	Asp 60	Val	Lys	Arg	Met
	Met 65	Lys	Thr	Trp	Thr	Leu 70	Gln	Lys	Gly	Phe	Pro 75	Leu	Val	Thr	Val	Gln 80
25	Lys	Lys	Gly	Lys	Glu 85	Leu	Phe	Ile	Gln	Gln 90	Glu	Arg	Phe	Phe	Leu 95	Asn
20	Met	Lys	Pro	Glu 100	Ile	Gln	Pro	Ser	Asp 105	Thr	Arg	Tyr	Met	Pro 110	Ser	Phe
30	Phe	Ser	Cys 115	His	Leu	Phe	Cys	Thr 120	Leu	Arg	Trp	Lys	Туг 125	Phe	Glu	Val
35	Phe	Туг 130	Asn	His	Lys ·	Phe	Leu 135	Xaa								
40	(2)	INF	ORMAT	SEQU	ENCE	CHA	RACT	ERIS	379: TICS ino		c					
45			(xi)	(B) T D) T	YPE: OPOL	ami OGY:	no a lin	cid			: 37	9:			
	Met 1		Trp	Arg	Arg 5	Arg	Glu	Pro	Ala	Ser 10	Gly	Leu	Ala	Ala	Cys 15	Trp
50	Leu	Trp	Arg	Cys 20	Ser	Pro	Trp	Pro	Cys 25	Ala	Cys	Pro	Gly	Pro	Gly	Ala
55	Gly	Leu	Ser 35	Ser	Gly	Ser	Arg	Pro 40	Trp							
	(2)	INF	ORMA	TION	FOR	SEQ	ID :	NO:	380:							
60			(i)	SEQU	ENCE	CHA	RACT	ERIS	TICS	:						

		,	: \	(E	3) TY 3) TC	PE:	amir XGY:	no ac line	ear		ds ONO:	380	١.			
- 5	Met (Gln	Leu 15	Glu
10	Gln	Ile	Gln	Lys 20	Glu	Leu	Ser	Val	Leu 25	Glu	Glu	Asp	Ile	Lys 30	Arg	Val
	Glu	Glu :	Met 35	Ser	Gly	Leu	Tyr	Ser 40	Pro	Val	Ser	Glu	Asp 45	Ser	Thr	Val
15	Pro	Gln 50	Phe	Glu	Ala	Pro	Ser 55	Pro	Ser	His	Ser	Ser 60	Ile	Ile	Asp	Ser
20	Thr	Glu	Tyr	Ser	Gln	Pro 70	Pro	Gly	Phe	Ser	Gly 75	Ser	Ser	Gln	Thr	Lys 80
20	Lys	Gln	Pro	Trp	Туr 85	Asn	Ser	Thr	Leu	Ala 90	Ser	Arg	Arg	Lys	Arg 95	Leu
25	Thr	Ala	His	Phe 100	Glu	Asp	Leu	Glu	Gln 105	Cys	Tyr	Phe	Ser	Thr 110	Arg	Met
	Ser	Arg	Ile 115	Ser	Asp	Asp	Ser	Arg 120	Thr	Ala	Ser	Gln	Leu 125	Asp	Glu	Phe
30		Glu 130	Cys	Leu	Ser	Lys	Phe 135	Thr	Arg	Туг	Asn	Ser 140	Val	Arg	Pro	Leu
35	Ala 145	Thr	Leu	Ser	Tyr	Ala 150	Ser	Asp	Leu	Туr	Asn 155	Gly	Ser	Ser	Ile	Val 160
33	Ser	Ser	Ile	Glu	Phe 165	Asp	Arg	Asp	Cys	Asp 170	Tyr	Phe	Ala	Ile	Ala 175	Gly
40	Val	Thr	Lys	Lys 180	Ile	Lys	Val	Tyr	Glu 185	Tyr	Asp	Thr	Val	Ile 190	Gln	Asp
	Ala	Val	Asp 195	Ile	His	Tyr	Pro	Glu 200	Asn	Glu	Met	Thr	Cys 205	Asn	Ser	Lys
45	Ile	Ser 210	Cys	Ile	Ser	Trp	Ser 215	Ser	Tyr	His	Lys	Asn 220	Leu	Leu	Ala	Ser
50	Ser 225	Asp	Tyr	Glu	Gly	Thr 230	Val	Ile	Leu	Trp	Asp 235	Gly	Phe	Thr	Gly	Gln 240
30	Arg	Ser	Lys	Val	Туг 245	Gln	Glu	His	Glu	Lys 250		Cys	Trp	Ser	Val 255	Asp
55	Phe	Asn	Leu	Met 260		Pro	Lys	Leu	Leu 265		Ser	Gly	Ser	270		Ala
	Lys	Val	Lys 275		Trp	Ser	Thr	280		Asp	Asn	Ser	Val 285		Ser	lle
60	Glu	Ala	Lys	Ala	Asn	Val	. Cys	Cys	Va]	Lys	Phe	Ser	Pro	Ser	Ser	Arg

		290					295					300				
5	Tyr 305	His	Leu	Ala	Phe	Gly 310	Cys	Ala	Asp	His	Cys 315	Val	His	Tyr	Tyr	Asp 320
J	Leu	Arg	Asn	Thr	Lys 325	Gln	Pro	Ile	Met	Val 330	Phe	Lys	Gly	His	Arg 335	Lys
10	Ala	Val	Ser	Туг 340	Ala	Lys	Phe	Val	Ser 345	Gly	Glu	Glu	Ile	Val 350	Ser	Ala
	Ser	Thr	Asp 355	Ser	Gln	Leu	Lys	Leu 360	Trp	Asn	Val	Gly	Lys 365	Pro	Tyr	Суѕ
15	Leu	Arg 370	Ser	Phe	Lys	Gly	His 375	Ile	Asn	Glu	Lys	Asn 380	Phe	Val	Gly	Leu
20	Ala 385	Ser	Asn	Gly	Asp	Tyr 390	Ile	Ala	Суѕ	Gly	Ser 395	Glu	Asn	Asn	Ser	Leu 400
20	Tyr	Leu	Tyr	Tyr	Lys 405	Gly	Leu	Ser	Lys	Thr 410	Leu	Leu	Thr	Phe	Lys 415	Phe
25	Asp	Thr	Val	Lys 420	Ser	Val	Leu	Asp	Lys 425	Asp	Arg	Lys	Glu	Asp 430	Asp	Thr
	Asn	Glu	Phe 435	Val	Ser	Ala	Val	Cys 440	Trp	Arg	Ala	Leu	Pro 445	Asp	Gly	Glu
30	Ser	Asn 450	Val	Leu	Ile	Ala	Ala 455	Asn	Ser	Gln	Gly	Thr 460	Ile	Lys	Val	Leu
35	Glu 465	Leu	Val	Xaa												
	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO: 3	381:							
40			(i)	(A) L	ENGT	RACT H: 2 ami	9 am	ino		s					
45				SEQ	UENC	E DE	OGY: SCRI	PTIO	N: S							
	Met 1	_	Lys	Glu	Asp 5	Gly	Phe	Trp	Phe	Phe 10	Phe	Phe	Leu	Phe	Phe 15	Phe
50	Val	Val	Gly	Ser 20	-	Phe	Val	Asn	Gly 25	Asn	Lys	Leu	Val			
	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	382:							
55			(i)		(A) I	ENGI	RACT TH: 2	9 an	nino		is					
60			(xi)	4	(D) I	OPOI	OGY :	lir	near	EQ I	D NC): 38	2:			

	Met 1	Pro	Leu	Ala	Pro 5	Туг	Cys	Asp	Leu	Leu 10	Val	Ala	Leu	Ser	Phe .15	Ala
5	Leu	Val	Leu	Glu 20	Ser	Pro	Val	Asp	Ser 25	Ser	Asp	Phe	Thr			
10	(2)			пои												
15				(A) L B) T D) T	ENGT YPE: OPOL	H: 1 ami OGY:	38 a no a lin	mino cid ear	aci		: 38	3:			
20	Met 1	Asn	Ser	Leu	Val 5	Ser	Trp	Gln	Leu	Leu 10	Leu	Phe	Leu	Cys	Ala 15	Thr
20	His	Phe	Gly	Glu 20	Pro	Leu	Glu	Lys	Val 25	Ala	Ser	Val	Gly	Asn 30	Ser	Arg
25	Pro	Thr	Gly 35	Gln	Gln	Leu	Glu	Ser 40	Leu	Gly	Leu	Leu	Ala 45	Pro	Gly	Glu
	Gln	Ser 50	Leu	Pro	Cys	Thr	Glu 55	Arg	Lys	Pro	Ala	Ala 60	Thr	Ala	Arg	Leu
30	Ser 65	Arg	Arg	Gly	Thr	Ser 70	Leu	Ser	Pro	Pro	Pro 75	Glu	Ser	Ser	Gly	Ser 80
25	Pro	Gln	Gln	Pro	Gly 85	Leu	Ser	Ala	Pro	His 90	Ser	Arg	Gln	Ile	Pro 95	Ala
35	Pro	Gln	Gly	Ala 100	Val	Leu	Val	Gln	Arg 105	Glu	Lys	Asp	Leu	Pro 110	Asn	Tyr
40	Asn	Trp	Asn 115	Ser	Phe	Gly	Leu	Arg 120	Phe	Gly	Lys	Arg	Glu 125	Ala	Ala	Pro
	Gly	Asn 130	His	Gly	Arg	Ser	Ala 135	Gly	Arg	Gly						
45																
	(2)	INFO	ORMAT	rion	FOR	SEQ	ID I	NO : 3	384:							
50				(A) L B) T D) T	ENGT YPE: OPOL	H: 7 ami OGY:	4 am no a lin	ino cid ear	acid		: 38	4:			
55	Met 1	Ser	Cys	Phe	Ile 5	Asp	Ser	Xaa	Asp	Ser 10	Lys	Ile	Leu	His	Leu 15	Leu
60	Val	Val	Ser	Phe 20	Ile	Cys	Xaa	Leu	Phe 25	Leu	Leu	Ile	Leu	Thr 30	His	Gly

	Ile	Leu	Ile 35	Leu	Arg	Хаа	Phe	Phe 40	Ser	Val	Xaa	Xaa	His 45	Ser	Leu	Lys
5	Asn	Asn 50	Leu	Glu	Glu	Туг	Leu 55	Ile	Leu	Met	Asn	Lys 60	Ala	Leu	Leu	Thr
	Arg 65		Asp	Phe	Phe	Val 70	Leu	Pro	Xaa	Ala						
10																
	(2)	INFO	ORMAT	NOI	FOR	SEQ	ID 1	10 : 3	885 :							
15				(A) L B) T D) T	ENGT YPE: OPOL	H: 5 ami OGY:	21 a no a lin	mino cid ear	aci		: 38!	ō:			
20	Met 1	Ser	Ala	Gly	Glu 5	Val	Glu	Arg	Leu	Val 10	Ser	Glu	Leu	Ser	Gly 15	Gly
25	Thr	Gly	Gly	Asp 20	Glu	Glu	Glu	Glu	Trp 25	Leu	Tyr	Gly	Asp	Glu 30	Asn	Glu
	Val	Glu	Arg 35	Pro	Glu	Glu	Glu	Asn 40	Ala	Ser	Ala	Asn	Pro 45	Pro	Ser	Gly
30	Ile	Glu 50	Asp	Glu	Thr	Ala	Glu 55	Asn	Gly	Val	Pro	Lys 60	Pro	Lys	Val	Thr
	Glu 65	Thr	Glu	Asp	Asp	Ser 70	Asp	Ser	Asp	Ser	Asp 75	Asp	Asp	Glu	Asp	Asp 80
35	Val	His	Val	Thr	Ile 85	Gly	Asp	Ile	Lys	Thr 90	Gly	Ala	Pro	Gln	Туг 95	Gly
40	Ser	Tyr	Gly	Thr 100	Ala	Pro	Val	Asn	Leu 105	Asn	Ile	Lys	Thr	Gly 110	Gly	Arg
	Val	Тут	Gly 115	Thr	Thr	Gly	Thr	Lys 120	Val	Lys	Gly	Val	Asp 125	Leu	Asp	Ala
4 5	Pro	Gly 130	Ser	Ile	Asn	Gly	Val 135	Pro	Leu	Leu	Glu	Val 140	Asp	Leu	Ąsp	Ser
	Phe 145	Glu	Asp	Lys	Pro	Trp 150	Arg	Lys	Pro	Gly	Ala 155	Asp	Leu	Ser	Asp	Туг 160
50	Phe	Asn	Tyr	Gly	Phe 165	Asn	Glu	Asp	Thr	Trp 170	Lys	Ala	Туг	Cys	Glu 175	Lys
55	Gln	Lys	Arg	Ile 180	Arg	Met	Gly	Leu	Glu 185	Val	Ile	Pro	Val	Thr 190	Ser	Thr
	Thr	Asn	Lys 195	Ile	Thr	Val	Gln	Gln 200	Gly	Arg	Thr	Gly	Asn 205	Ser	Glu	Lys
60	Glu	Thr 210	Ala	Leu	Pro	Ser	Thr 215	Lys	Ala	Glu	Phe	Thr 220	Ser	Pro	Pro	Ser

	Leu 225	Phe	Lys	Thr	Gly	Leu 230	Pro	Pro	Ser	Arg	Ar g 235	Leu	Pro	Gly	Ala	11e 240
5	Asp	Val	Ile	Gly	Gln 245	Thr	Ile	Thr	Ile	Ser 250	Arg	Val	Glu	Gly	Arg 255	Arg
10	Arg	Ala	Asn	Glu 260	Asn	Ser	Asn	Ile	Gln 265	Val	Leu	Ser	Glu	Arg 270	Ser	Ala
10	Thr	Glu	Val 275	Asp	Asn	Asn	Phe	Ser 280	Lys	Pro	Pro	Pro	Phe 285	Phe	Pro	Pro
15	Gly	Ala 290	Pro	Pro	Thr	His	Leu 295	Pro	Pro	Pro	Pro	Phe 300	Leu	Pro	Pro	Pro
	Pro 305	Thr	Val	Ser	Thr	Ala 310	Pro	Pro	Leu	Ile	Pro 315	Pro	Pro	Gly	Phe	Pro 320
20	Pro	Pro	Pro	Gly	Ala 325	Pro	Pro	Pro	Ser	Leu 330	Ile	Pro	Thr	Ile	Glu 335	Ser
25	Gly	His	Ser	Ser 340	Gly	Туг	Asp	Ser	Arg 345	Ser	Ala	Arg	Ala	Phe 350	Pro	Tyr
23	Gly	Asn	Val 355	Ala	Phe	Pro	His	Leu 360	Pro	Gly	Ser	Ala	Pro 365	Ser	Trp	Pro
30	Ser	Leu 370	Val	Asp	Thr	Ser	Lys 375	Gln	Trp	Asp	Tyr	туг 380	Ala	Arg	Arg	Glu
	Lys 385	Asp	Arg	Asp	Arg	Glu 390	Arg	Asp	Arg	Asp	Arg 395	Glu	Arg	Asp	Arg	Asp 400
35	Arg	Asp	Arg	Glu	Arg 405	Glu	Arg	Thr	Arg	Glu 410	Arg	Glu	Arg	Glu	Arg 415	Asp
40	His	Ser	Pro	Thr 420	Pro	Ser	Val	Phe	Asn 425	Ser	Asp	Glu	Glu	Arg 430	Tyr	Arg
10	Tyr	Arg	Glu 435	Tyr	Ala	Glu	Arg	Gly 440	Tyr	Glu	Arg	His	Arg 445	Ala	Ser	Arg
45	Glu	Lys 450	Glu	Glu	Arg	His	Arg 455	Glu	Arg	Arg	His	Arg 460	Glu	Lys	Glu	Glu
	Thr 465	Arg	His	Lys	Ser	Ser 470	Arg	Ser	Asn	Ser	Arg 475	Arg	Arg	His	Glu	Ser 480
50	Glu	Glu	Gly	Asp	Ser 485	His	Arg	Arg	His	Lys 490	His	Lys	Lys	Ser	Lys 495	Arg
55	Ser	Lys	Glu	Gly 500	-	Glu	Ala	Gly	Ser 505	Glu	Pro	Ala	Pro	Glu 510	Gln	Glu
	Ser	Thr	Glu 515		Thr	Pro	Ala	Glu 520	Xaa							

	(2)	TIME	Jrum.	1 1014	FOR	SEQ	י טי	vo								
5				(A) L B) T D) T	ENGT YPE: OPOL	H: 1 ami OGY:	37 a no a lin	mino cid ear	aci		: 38	6 :			
10	Met 1	Asn	Ser	Arg	Gly 5	Ile	Trp	Leu	Ala	Tyr 10	Ile	Ile	Leu	Val	Gly 15	Leu
	Leu	His	Met	Val 20	Leu	Leu	Ser	Ile	Pro 25	Phe	Phe	Ser	Ile	Pro 30	Val	Val
15	Trp	Thr	Leu 35	Thr	Asn	Val	Ile	His 40	Asn	Leu	Ala	Thr	Туг 45	Val	Phe	Leu
20	His	Thr 50	Val	Lys	Gly	Thr	Pro 55	Phe	Glu	Thr	Pro	Asp 60	Gln	Gly	Lys	Ala
20	Arg 65	Leu	Leu	Thr	His	Trp 70	Glu	Gln	Met	Asp	Tyr 75	Gly	Leu	Gln	Phe	Thr 80
25	Ser	Ser	Arg	Lys	Phe 85	Leu	Ser	Ile	Ser	Pro 90	Ile	Val	Leu	Tyr	Leu 95	Leu
	Ala	Ser	Phe	Туг 100	Thr	Lys	Tyr	Asp	Ala 105	Ala	His	Phe	Leu	11e 110	Asn	Thr
30	Ala	Ser	Leu 115	Leu	Ser	Val	Leu	Leu 120	Pro	Lys	Leu	Pro	Gln 125	Phe	His	Gly
35	Val	Arg 130	Val	Phe	Gly	Ile	Asn 135	Lys	Tyr							
40	(2)	INF		TION												
40			(1)	(A) L B) T	ENGT YPE: OPOL	H: 1 ami	.86 a	mino cid		d s					
45			(xi)	SEQ						EQ I	ON O	: 38	7:			
	Met 1		Ala	Gln	Lys 5		Gln	Gln	Lys	Asp 10	Ala	Glu	Ala	Glu	Gly 15	Leu
50	Ser	Gly	Thr	Thr 20	Leu	Leu	Pro	Lys	Leu 25		Pro	Ser	Gly	Ala 30	Gly	Arg
	Glu	Trp	Leu 35	Glu	Arg	Arg	Arg	Ala 40		Ile	Arg	Pro	Trp 45		Thr	Phe
55	Val	Asp 50		Gln	Arg	Phe	Ser 55		Pro	Arg	Asn	Leu 60		Glu	Leu	Cys
60	Gln 65		Leu	Val	Arg	70		. Glu	Тут	Tyr	Gln 75		Asn	Tyr	Val	Phe 80

	Val	Phe	Leu	Gly	Leu 85	Ile	Leu	Tyr	Cys	Val 90	Val	Thr	Ser	Pro	Met 95	Leu
5	Leu	Val	Ala	Leu 100	Ala	Val	Phe	Phe	Gly 105	Ala	Суѕ	Тут		Leu 110	Tyr	Leu
	Arg	Thr	Leu 115	Glu	Ser	Lys	Leu	Val 120	Leu	Phe	Gly	Arg	Glu 125	Val	Ser	Pro
10	Ala	His 130	Gln	Tyr	Ala	Leu	Ala 135	Gly	Gly	Ile	Ser	Phe 140	Pro	Phe	Phe	Trp
15	Leu 145	Ala	Gly	Ala	Gly	Ser 150	Ala	Val	Phe	Trp	Val 155	Leu	Gly	Ala	Thr	Leu 160
	Val	Val	Ile	Gly	Ser 165	His	Ala	Ala	Phe	His 170	Gln	Ile	Glu	Ala	Val 175	As p
20	Gly	Glu	Glu	Leu 180	Gln	Met	Glu	Pro	Val 185	Xaa						
	(2)	INFO	ORMAT	rion	FOR	SEO	ID N	JO: I	888:							
25	(2)			SEQUI	ENCE	CHAI	RACTI	eris								
30			(xi)	C	B) T	YPE: OPOL	ami: OGY:	no a lin	cid ear		D NO	: 388	3:			
	Met			_						_						
35	1															
	(2)	INF	ORMA!	rion	FOR	SEQ	ID i	v O: 3	389:							
40			, /	(A) L B) T D) T	ENGT YPE: OPOL	H: 2 ami OGY:	99 a no a lin	mino cid ear	aci		20	•			
4.5				SEQ										_,		-1
45	Met 1	Leu	Ser	Ile	Phe 5	Tyr	Phe	Ala	Ile	Pro 10	Val	Gly	Ser	GIÀ	Leu 15	GIY
50	Tyr	Ile	Ala	Gly 20	Ser	Lys	Val	Lys	Asp 25	Met	Ala	Gly	Asp	Trp 30	His	Trp
50	Ala	Leu	Arg 35	Val	Thr	Pro	Gly	Leu 40	Gly	Val	Val	Ala	Val 45	Leu	Leu	Leu
55	Phe	Leu 50		Val	Arg	Glu	Pro 55		Arg	Gly	Ala	Val 60	Glu	Arg	His	Ser
	Asp 65		Pro	Pro	Leu	Asn 70		Thr	Ser	Trp	Trp 75	Ala	Asp	Leu	Arg	Al a 80
60	Leu	Ala	Arg	Asn	Pro	Ser	Phe	Val	Leu	Ser	Ser	Leu	Gly	Phe	Thr	Ala

					85					90					95	
5	Val	Ala	Phe	Val 100	Thr	Gly	Ser	Leu	Ala 105	Leu	Trp	Ala	Pro	Ala 110	Phe	Leu
J	Leu	Arg	Ser 115	Arg	Val	Val	Leu	Gly 120	Glu	Thr	Pro	Pro	Cys 125	Leu	Pro	Gly
10	Asp	Ser 130	Cys	Ser	Ser	Ser	Asp 135	Ser	Leu	Ile	Phe	Gly 140	Leu	Ile	Thr	Суз
	Leu 145	Thr	Gly	Val	Leu	Gly 150	Val	Gly	Leu	Gly	Val 155	Glu	Ile	Ser	Arg	Ar g 160
15	Leu	Arg	His	Ser	Asn 165	Pro	Arg	Ala	Asp	Pro 170	Leu	Val	Cys	Ala	Thr 175	Gly
20	Leu	Leu	Gly	Ser 180	Ala	Pro	Phe	Leu	Phe 185	Leu	Ser	Leu	Ala	Cys 190	Ala	Arg
20	Gly	Ser	Ile 195	Val	Ala	Thr	Tyr	Ile 200	Phe	Ile	Phe	Ile	Gly 205	Glu	Thr	Leu
25	Leu	Ser 210	Met	Asn	Trp	Ala	Ile 215	Val	Ala	Asp	Ile	Leu 220	Leu	тут	Val	Val
	Ile 225	Pro	Thr	Arg	Arg	Ser 230	Thr	Ala	Glu	Ala	Phe 235	Gln	Ile	Val	Leu	Ser 240
30	His	Leu	Leu	Gly	Asp 245	Ala	Gly	Ser	Pro	Туг 250	Leu	Ile	Gly	Leu	11e 255	Ser
25	Asp	Arg	Leu	Arg 260	Arg	Asn	Trp	Pro	Pro 265	Ser	Phe	Leu	Ser	Glu 270	Phe	Arg
35	Ala	Leu	Gln 275	Phe	Ser	Leu	Met	Leu 280	Cys	Ala	Phe	Val	Gly 285	Ala	Leu	Gly
40	Gly	Ala 290	Leu	Pro	Gly	His	Arg 295	His	Leu	His	Xaa					
45	(2)	INF	ORMA'													
			(1)	(A) L B) T	ENGT	H: 4	9 am	ino cid	: acid	ls					
50	*		(xi)		(D) I					EQ I	D NO	: 39	0:			
	Met 1		Pro	Gln	Gly 5		Val	Arg	Pro	Leu 10	Lys	Thr	Ala	Pro	Lys 15	Let
55	Gly	Glu	Ala	Ile 20		Leu	Ile	Leu	Phe 25		Asn	Phe	Val	Lys 30	Gln	Cy:
60	Ile	Ala	Ser 35		Asn	. Leu	Cys	Ile 40		Arg	Leu	Asn	11e 45	Thr	Pro	Lei

588

Leu

- 5 (2) INFORMATION FOR SEQ ID NO: 391: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 61 amino acids 10 (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 391: Met Tyr Val Asn Tyr Gly Thr Arg Asn Tyr Ser Thr Glu Gly Pro Ala 15 10 Ala Leu Leu Asp Gln Ala Lys Leu Ser Leu Leu Val Trp Val Leu Cys 25 20 20 Phe Val Leu Leu Phe Val Cys Phe Cys Gly Leu Ser Tyr Val Val Ile Ala Gln Val Pro Val Gly Leu Leu Cys Ile Thr Glu Xaa 55 25 (2) INFORMATION FOR SEQ ID NO: 392: 30 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 79 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 392: 35 Met Leu Trp Phe Ala Asn Phe Phe Thr Tyr Leu Phe Leu Ser Gln Ser Val Ala Phe Val His Ile Ser His Ile Gly Val Arg Gln Val Asn Thr 40 20 Asn Cys Tyr Phe Ser Arg Lys Ser Tyr Cys Tyr Gly Ile Leu Asn Pro 40 45 Ile Asn Cys Ile Lys Gly Lys Lys Lys Lys Lys Lys Lys Lys Lys 55 50 Lys Lys Lys Ile Pro Ala Gly Arg Xaa Leu Phe Pro Phe Gly 70 65 50 (2) INFORMATION FOR SEQ ID NO: 393: 55 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 393: 60

	Met 1	Pro	Gly	Ala	Phe 5	Ser	Glu	Thr	Val	Ile 10	Asn	Asp	Leu	Leu	Ser 15	Leu
- 5	Phe	Leu	Val	Leu 20	Pro	Ala	Glu	Leu	Ser 25	Tyr	Ser	Thr	Leu	Ser 30	Gly	Val
	Tyr	Arg	Asn 35	Ala												
10																
	(2)	INFO	RMAT	NOI	FOR	SEQ	ID N	10 : 3	394:							
15			(i) s	() ()	A) L B) T D) T	ENGT YPE : OPOL	H: 1 ami: OGY:	80 a no a lin	mino cid ear	aci						
			(xi)	SEQ	JENC!	E DE	SCRI	PTIO	N: S	EQ II	ОИО	: 39	4:			
20	Met 1	Ala	Gln	Ser	Arg 5	Asp	Gly	Gly	Asn	Pro 10	Phe	Ala	Glu	Pro	Ser 15	Glu
25	Leu	Asp	Asn	Pro 20	Phe	Gln	Asp	Pro	Ala 25	Val	Ile	Gln	His	Arg 30	Pro	Ser
25	Arg	Gln	Tyr 35	Ala	Thr	Leu	Asp	Val 40	Tyr	Asn	Pro	Phe	Glu 45	Thr	Arg	Glu
30	Pro	Pro 50	Pro	Ala	Туг	Glu	Pro 55	Pro	Ala	Pro	Ala	Pro 60	Leu	Pro	Pro	Pro
	Ser 65	Ala	Pro	Ser	Leu	Gln 70	Pro	Ser	Arg	Lys	Leu 75	Ser	Pro	Thr	Glu	Pro 80
35	Lys	Asn	Tyr	Gly	Ser 85	Tyr	Ser	Thr	Gln	Ala 90	Ser	Ala	Ala	Ala	Ala 95	Thr
40	Ala	Glu	Leu	Leu 100	Lys	Lys	Gln	Glu	Glu 105	Leu	Asn	Arg	Lys	Ala 110	Glu	Glu
40	Leu	Asp	Arg 115	Arg	Ser	Glu	Ser	Cys 120	Ser	Met	Leu	Pro	Trp 125	Xaa	Ala	Gln
45	Leu	Leu 130	Asp	Arg	Thr	Ile	Gly 135	Pro	Leu	Tyr	Leu	Leu 140		Val	Gln	Phe
	Ser 145		Ala	Phe	Ser	Arg 150		Ser	Pro	Trp	Arg 155		Pro	Lys	Asn	Phe 160
50	Arg	Arg	Leu	Tyr	Pro		Cys	Thr	Thr	Ser 170		Cys	Ala	Ala	Arg 175	
55	Хаа	. Phe	: Ser	Xaa 180												
	(2)	INF	ORMA	TION	rof	SEÇ) ID	NO:	395:							

(i) SEQUENCE CHARACTERISTICS:

```
(A) LENGTH: 21 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 395:
- 5
      Met Pro Thr Pro Cys Thr Ser Leu Pro Ser Cys Cys Gln His Arg Ser
                                         10
      Ile Thr Met Thr Leu
10
                   20
       (2) INFORMATION FOR SEQ ID NO: 396:
15
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 60 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
20
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 396:
      Met Pro Leu Phe Ile Pro Leu Ile Phe Phe Leu Ser Leu Leu His Cys
25
      Gln Ser Lys His Pro Ile Gln Met Ser Leu Cys Met Cys Val Asn Ile
      Ser Leu Val Trp Ser Pro Val Arg Trp Ile Phe Gly Ser Lys Gly Leu
                                  40
30
      Phe Ser Val His Leu Gln Ser Ser Gln Arg Pro Ser
           50
                             55
35
       (2) INFORMATION FOR SEQ ID NO: 397:
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 152 amino acids
40
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 397:
      Met Ala Gly Pro Arg Pro Xaa Trp Arg Asp Gln Leu Leu Phe Met Ser
45
       Ile Ile Val Leu Val Ile Val Val Ile Cys Leu Met Leu Tyr Ala Leu
                   20
                                       25
 50
       Leu Trp Glu Ala Gly Asn Leu Thr Asp Leu Pro Asn Leu Arg Ile Gly
                                   40
       Phe Tyr Asn Phe Cys Leu Trp Asn Glu Asp Thr Ser Thr Leu Gln Cys
               55
 55
       His Gln Phe Pro Glu Leu Glu Ala Leu Gly Val Pro Arg Val Gly Leu
       Gly Leu Ala Arg Leu Gly Val Tyr Gly Ser Leu Val Leu Thr Leu Phe
 60
                                           90
```

	Ala	Pro	Gln	Pro 100	Leu	Leu	Leu	Ala	Gln 105	Cys	Asn	Xaa	Asp	Glu 110	Arg	Ala
5	Trp	Arg	Leu 115	Ala	Val	Gly	Phe	Leu 120	Ala	Val	Ser	Ser	Val 125	Leu	Leu	Ala
10	Gly	Gly 130	Leu	Gly	Leu	Phe	Leu 135	Ser	Tyr	Val	Trp	Asn 140	Gly	Ser	Xaa	Ser
. •	Pro 145	Ser	Arg	Gly	Leu	Gly 150	Phe	Xaa								
15	(2)	INFO	ORMAT	MOI	FOR	SEQ	ID N	ю: 3	98:							
20			(i) S	- (. (:	A) LI B) T	ENGT YPE :	H: 4		mino cid	: acid	ds					
			(xi)							EQ II	O NO:	: 398	3:			
25	Met 1	Ser	Asp	Gly	Phe 5	Asp	Arg	Ala	Pro	Gly 10	Ala	Gly	Arg	Gly	Arg 15	Xaa
	Arg	Gly	Leu	Gly 20	Arg	Gly	Gly	Gly	Gly 25	Pro	Xaa	Gly	Gly	Gly 30	Phe	Pro
30	Xaa	Gly	Xaa 35	Xaa	Pro	Ala	Glu	Arg 40	Xaa	Arg	His	Gln	Pro 45	Pro	Gln	Pro
35	Lys	Ala 50	Pro	Gly	Phe	Leu	Gln 55	Pro	Xaa	Pro	Leu	Arg 60	Gln	Pro	Arg	Thr
	Thr 65	Pro	Pro	Pro	Gly	Ala 70	Gln	Cys	Glu	Val	Pro 75	Ala	Ser	Pro	Gln	Arg 80
40	Pro	Ser	Arg	Pro	Gly 85	Ala	Leu	Pro	Glu	Gln 90	Thr	Arg	Pro	Leu	Arg 95	Ala
			Ser	100					105					110		
45	Met	Ala	Lys 115	Pro	Gln	Val	Val	Val 120	Ala	Pro	Val	Leu	Met 125	Ser	Lys	Leu
50		130					135					140				
	145		Ser			150					155					160
55			Gln		165					170					175	
			Glu	180					185					190		
60	Thr	Asp	Asp	Ala	Leu	Gln	Glu	Leu	Val	Glu	Leu	Ile	Tyr	Gln	Gln	Ala

			195					200					205			
- 5	Thr	Ser 210	Ile	Pro	Asn	Phe	Ser 215	Tyr	Met	Gly	Ala	Arg 220	Leu	Cys	Asn	Tyr
3	Leu 225	Ser	His	His	Leu	Thr 230	Ile	Ser	Pro	Gln	Ser 235	Gly	Asn	Phe	Arg	Gln 240
10	Leu	Leu	Leu	Gln	Arg 245	Cys	Arg	Thr	Glu	Тут 250	Glu	Val	Lys	Asp	Gln 255	Ala
	Ala	Lys	Gly	Asp 260	Glu	Val	Thr	Arg	Lys 265	Arg	Phe	His	Ala	Phe 270	Val	Leu
15	Phe	Leu	Gly 275	Glu	Leu	Туг	Leu	Asn 280	Leu	Glu	Ile	Lys	Gly 285	Thr	Asn	Gly
20	Gln	Val 290	Thr	Arg	Ala	Asp	Ile 295	Leu	Gln	Val	Gly	Leu 300	Arg	Glu	Leu	Leu
20	Asn 305	Ala	Leu	Phe	Ser	Asn 310	Pro	Met	Ąsp	Asp	Asn 315	Leu	Ile	Cys	Ala	Val 320
25	Lys	Leu	Leu	Lys	Leu 325	Thr	Gly	Ser	Val	Leu 330	Glu	qzA	Ala	Trp	Lys 335	Glu
	Lys	Gly	Lys	Met 340	Asp	Met	Glu	Glu	Ile 345	Ile	Gln	Arg	Ile	Glu 350	Asn	Val
30	Val	Leu	Asp 355	Ala	Asn	Cys	Ser	Arg 360	Asp	Val	Lys	Gln	Met 365	Leu	Leu	Lys
35	Leu	Val 370	Glu	Leu	Arg	Ser	Ser 375	Asn	Trp	Gly	Arg	Val 380	His	Ala	Thr	Ser
33	Thr 385	Tyr	Arg	Glu	Ala	Thr 390	Pro	Glu	Asn	Asp	Pro 395	Asn	Tyr	Phe	Met	Asn 400
40	Glu	Pro	Thr	Phe	Тут 405	Thr	Ser	Asp	Gly	Val 410	Pro	Phe	Thr	Ala	Ala 415	Asp
	Pro	Asp	тут	Gln 420	Glu	Lys	Tyr	Gln	Glu 425	Leu	Leu	Glu	Arg	Glu 430	Asp	Phe
45	Phe	Pro	Asp 435	Тут	Glu	Glu	Asn	Gly 440	Thr	Asp	Leu	Ser	Gly 445	Ala	Gly	Asp
50	Pro	Tyr 450	Leu	Asp	Asp	Ile	Asp 455	Asp	Glu	Met	Asp	Pro 460	Glu	Ile	Glu	Glu
50	Ala 465		Glu	Lys	Phe	Cys 470	Leu	Glu	Ser	Glu	Arg 475	Lys	Arg	Lys	Gln	Xaa 480
55																

			(i)	(A) L B) T	ENGT YPE:	H: 4 ami	23 a no a	mino cid		ds					
5			(xi)		D) T UENC					EQ I	D NO	: 39	9 :			
	Met 1	Glu	Pro	Lys	Thr 5	Ile	Thr	Asp	Ala	Leu 10	Ala	Ser	Ser	Ile	Ile 15	Lys
10	Ser	Val	Leu	Pro 20	Asn	Phe	Leu	Pro	Tyr 25	Asn	Val	Met	Leu	Tyr 30	Ser	Asp
15	Ala	Pro	Val 35	Ser	Glu	Leu	Ser	Leu 40	Glu	Leu	Leu	Leu	Leu 45	Gln	Val	Val
	Leu	Pro 50	Ala	Leu	Leu	Glu	Gln 55	Gly	His	Thr	Arg	Gln 60	Trp	Leu	Lys	Gly
20	Leu 65	Val	Arg	Ala	Trp	Thr 70	Val	Thr	Ala	Gly	Туг 75	Leu	Leu	Asp	Leu	His 80
	Ser	Тут	Leu	Leu	Gly 85	Asp	Gln	Glu	Glu	Asn 90	Glu	Asn	Ser	Ala	Asn 95	Gln
25	Gln	Val	Asn	Asn 100	Asn	Gln	His	Ala	Arg 105	Asn	Asn	Asn	Ala	Ile 110	Pro	Val
30	Val	Gly	Glu 115	Gly	Leu	His	Ala	Ala 120	His	Gln	Ala	Ile	Leu 125	Gln	Gln	Gly
50	Gly	Pro 130	Val	Gly	Phe	Gln	Xaa 135	Tyr	Arg	Arg	Pro	Leu 140	Asn	Phe	Pro	Leu
35	Arg 145	Ile	Phe	Leu	Leu	Ile 150	Val	Phe	Met	Cys	Ile 155	Thr	Leu	Leu	Ile	Ala 160
	Ser	Leu	Ile	Cys	Leu 165	Thr	Leu	Pro	Val	Phe 170	Ala	Gly	Arg	Trp	Leu 175	Met
40	Ser	Phe	Trp	Thr 180	Gly	Thr	Ala	Lys	Ile 185	His	Glu	Leu	туг	Thr 190	Ala	Ala
45	Cys	Gly	Leu 195	Tyr	Val	Суs	Trp	Leu 200	Thr	Ile	Arg	Ala	Val 205	Thr	Val	Met
43	Val	Ala 210	Trp	Met	Pro	Gln	Gly 215	Arg	Arg	Val	Ile	Phe 220	Gln	Lys	Val	Lys
50	Glu 225	Trp	Ser	Leu	Met	Ile 230	Met	Lys	Thr	Leu	Ile 235	Val	Ala	Val	Leu	Leu 240
	Ala	Gly	Val	Val	Pro 245	Leu	Leu	Leu	Gly	Leu 250	Leu	Phe	Glu	Leu	Val 255	Ile
55	Val	Ala	Pro	Leu 260	Arg	Val	Pro	Leu	Asp 265		Thr	Pro	Leu	Phe 270	Тут	Pro
60	Trp	Gln	Asp 275	Trp	Ala	Leu	Gly	Val 280	Leu	His	Ala	Lys	Ile 285	Ile	Ala	Ala

	Ile	Thr 290	Leu	Met	Gly	Pro	Gln 295	Trp	Trp	Leu	Lys	Thr 300	Val	Ile	Glu	Gln
5	Val 305	Tyr	Ala	Asn	Gly	Ile 310	Arg	Asn	Ile	Asp	Leu 315	His	Tyr	Ile	Val	Arg 320
	Lys	Leu	Ala	Ala	Pro 325	Val	Ile	Ser	Val	Leu 330	Leu	Leu	Ser	Leu	Cys 335	Val
10	Pro	Tyr	Val	Ile 340	Ala	Ser	Gly	Val	Val 345	Pro	Leu	Leu	Gly	Va1 350	Thr	Ala
15	Glu	Met	Gln 355	Asn	Leu	Val	His	Arg 360	Arg	Ile	Tyr	Pro	Phe 365	Leu	Leu	Met
	Val	Val 370	Val	Leu	Met	Ala	Ile 375	Leu	Ser	Phe	Gln	Val 380	Arg	Gln	Phe	Lys
20	Arg 385	Leu	Tyr	Glu	His	11e 390	Lys	Asn	Asp	Lys	Tyr 395	Leu	Val	Gly	Gln	Arg 400
	Leu	Val	Asn	Tyr	Glu 405	Arg	Lys	Ser	Gly	Lys 410	Gln	Gly	Ser	Ser	Pro 415	Pro
25	Pro	Pro	Gln	Ser 420	Ser	Gln	Glu									
30	(2)		ORMA'			_										
35			(i) (xi)	(A) L B) T D) T	ENGT YPE : OPOL	H: 7 ami OGY:	8 am no a lin	ino cid ear	acid		: 40	0 :			
40	Met 1	Leu	Arg	Leu	Asp 5	Ile	Ile	Asn	Ser	Leu 10	Val	Thr	Thr	Val	Phe 15	Met
40	Leu	Ile	Val	Ser 20	Val	Leu	Ala	Leu	Ile 25	Pro	Glu	Thr	Thr	Thr 30	Leu	Thr
45	Val	Gly	Gly 35		Val	Phe	Ala	Leu 40	Val	Thr	Ala	Val	Cys 45	Cys	Leu	Ala
	Asp	Gly 50	Ala	Leu	Ile	Tyr	Arg 55		Leu	Leu	Phe	Asn 60		Ser	Gly	Pro
50	Туг 65		Lys	Lys	Pro	Val 70		Glu	Lys	Lys	Glu 75		Leu	Xaa		
55	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	401:							
			(i)		(A) I	ENGT	TH: 7	74 ar	nino		ls					
60							.OGY									

PCT/US98/04493

			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ II	ои с	: 40	1:			
5	Met 1	Leu	Lys	Gln	Val 5	Met	Phe	Val	Phe	Ser 10	Gly	Met	Gly	Pro	Arg 15	Ser
J	His	Cys	Trp	Gly 20	Leu	Pro	Leu	His	Val 25	Ala	Pro	Leu	Cys	Arg 30	Gly	His
10	Gln	Ala	Asp 35	Ser	Ser	His	Leu	Leu 40	Pro	Leu	Lys	His	Gln 45	Gly	Ala	Tr
	Asn	Arg 50	Asn	Leu	Ala	Asn	Gln 55	Arg	His	Phe	Phe	Cys 60	Pro	Ser	Ile	Phe
15	His 65	Thr	Cys	Pro	Thr	Val 70	Leu	Phe	Phe	Xaa						
20	(2)	INFO	ORMA'	rion	FOR	SEQ	ID 1	v O: 4	102 :							
25			(i) (xi)	(A) L B) T D) T	ENGT YPE : OPOL	H: 2 ami: OGY:	0 am no a lin	ino cid ear	: acid EQ II		: 40	2:			
30	Ala 1	Arg	Thr	Ile	Leu 5	Val	Leu	Tyr	Leu	Ser 10	Leu	Gln	Arg	Leu	Glu 15	Asn
	Leu	Ala	Tyr	His 20												
35	(2)	INF	ORMA'	TION	FOR	SEQ	ID I	NO: 4	103:							
40				- (A) L B) T D) T	ENGT YPE : OPOL	H: 8 ami OGY:	no a lin	ino cid ear	: acid EQ I		: 40	3:			
45	Met 1	Pro	Leu	Pro	Ser 5	Val	Pro	Ile	Leu	Gly 10	Ile	Phe	Ser	Phe	Leu 15	Ile
	Pro	Ser	Ser	Gln 20	_	Val	Ser	Tyr	Thr 25	Lys	Leu	Pro	Ile	Ser 30	Ser	Pro
50	Gln	Tyr	Ser 35		Phe	Val	Asn	Asp 40	His	Phe	Ser	Phe	Leu 45	Asn	Pro	Phe
55	Pro	Va1 50		Ile	His	Thr	Gly 55		Ala	Arg	Val	Gly 60	Ser	Tyr	Met	Gli
-	Met 65		Leu	Val	His	Leu 70		Leu	Leu	Gln	Thr 75	Ser	Leu	Met	Lys	Ası 8
60	Ser	Gly	Val	Gln	Gln 85	_	Ser									

5	(2)	INFO	ORMA!	rion	FOR	SEQ	ID 1	10: 4	104 :							
J			(i)	SEQU	ENCE	СНА	RACT	ERIS.	rics	:						
					-		H: 9 ami			acid	S					
				(D) T	OPOL	OGY:	lin	ear							
10			(xi)	SEQ	JENC	E DE	SCRI	PTIO	N: SI	EQ I	D NO	: 404	4 :			
	Met 1	Asn	Ala	Ala	Met 5	Val	His	Ile	Asn	Arg 10	Ala	Leu	Lys	Leu	Ile 15	Ile
15	Arg	Leu	Phe	Leu 20	Val	Glu	Asp	Leu	Val 25	Asp	Ser	Leu	Lys	Leu 30	Ala	Val
20	Phe	Met	Trp 35	Leu	Met	Thr	Tyr	Val 40	Gly	Ala	Val	Phe	Asn 45	Gly	Ile	Thr
20	Leu	Leu 50	Ile	Leu	Ala	Glu	Leu 55	Leu	Ile	Phe	Ser	Val 60	Pro	Ile	Val	Tyr
25	Glu 65	Lys	Tyr	Ĺys	Thr	Gln 70	Ile	Asp	His	Tyr	Val 75	Gly	Ile	Ala	Arg	Asp 80
	Gln	Thr	Lys	Ser	Ile 85	Val	Glu	Lys	Ile	Pro 90	Ser	Lys				
30																
-	(2)	INF	ORMA	TION	FOR	SEQ	ID I	NO: 4	405:							
35				(A) L B) T D) T	ENGT YPE: OPOL	H: 2 ami OGY:	l am no a lin	ino cid ear	acid						
			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 40	5:			
40	Met 1		Cys	Ser	Cys 5	Leu	Met	Ile	Gln	Ser 10	Phe	Ser	Thr	Ser	Ala 15	Leu
45	Val	Leu	Phe	Tyr 20	Gly											
	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	406:							
50				,	(A) I (B) T (D) T	ENGI TYPE : TOPOI	M: 1 ami OGY:	.74 a ino a : lir	mino acid near	aci): 4 0	16:			
55	Met		ı Glu	ı Gly	Gly 5		Leu	Gly	Gly	Leu 10		. Lys	Met	. Val	His 15	Leu
60	Leu	ı Val	Leu	Ser 20		Ala	Ттр	Gly	Met 25		Met	Trp	Val	Thr 30		Val

	Ser	Gly	Phe 35	Pro	Ala	Phe	Pro	L уз 40	Pro	Ser	Pro	Thr	Tyr 45	Leu	Arg	Thr
5	Ser	Ala 50	Glu	Gln	Thr	Leu	Pro 55	Leu	Leu	Leu	Pro	His 60	Leu	His	Gly	Leu
10	Cys 65	Leu	His	Gln	Pro	Leu 70	His	Leu	Gly	Phe	Thr 75	Ala	Cys	Leu	Gly	Ser 80
	Ala	His	Ile	Leu	Gly 85	Gly	Gln	Pro	Ala	Leu 90	Pro	Ala	Val	Pro	Glu 95	Pro
15	Tyr	Ala	Gly	His 100	Cys	Gln	Arg	Pro	Leu 105	Ala	Gly	Thr	Pro	His 110	His	Ser
	Cys	His	Val 115	Gly	Pro	Ala	Asn	Arg 120	Gly	Arg	Arg	Ser	Glu 125	Ala	Trp	Val
20	Gly	Arg 130	Туr	Gln	Ala	Ala	Asn 135	Arg	Phe	Pro	Ile	Leu 140	Asn	Ala	Xaa	Cys
25	Glu 145	Arg	Arg	Thr	Pro	Ser 150	Thr	Val	Leu	Ser	Ala 155	Arg	Ile	Ser	Ser	Ala 160
20	Thr	Met	Gly	Cys	Pro 165	Leu	Phe	Ala	Ile	Trp 170	Ala	Ala	Ser	Xaa		
30	(2)	INFO	ORMAT	rion	FOR	SEQ	ID 1	√O: 4	107:							
	-		(i) :	SEQU	ENCE	CHAI	RACTI	ERIS	rics	:						
35				(A) L B) T D) T	YPE:	ami	no a	cid	acid	s					
			(xi)	SEQ	UENCI	E DE	SCRI	PTIO	N: S	EQ II	ОИС	: 40	7 :			
40	Met 1	Ala	Phe	Ile	Leu 5	Leu	Phe	Tyr	Cys	Leu 10	Met	Thr	Phe	Leu	Ser 15	Leu
	Glu	Gln	Asn	Ser 20	Ala	Thr	Val	Glu	Pro 25	Ser	Ser	His	Glu	Ile 30	Leu	His
45	Leu	Leu	Gln 35	Asn	Cys	Phe	Glu	Leu 40	Leu	Arg	Thr	Ser	Thr 45	Ser	Gln	Cys
50	Thr	Glu 50	Gly	Ile	Pro	Суз	Gln 55	Arg	Tyr	Gln	Asn	Gly 60	Leu	His	Ile	Xaa
50																
55																
	(2)	INF	ORMA'	TION	FOR	SEQ	ID I	NO:	408:							
			(i)		ENCE A) L						ds					

(B) TYPE: amino acid

(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 408:

5	Met Glu 1	Ala	Val	Val 5	Asn	Leu	Tyr	Gln	Glu 10	Val	Met	Lys	His	Ala 15	Asp
	Pro Arg	Ile	Gln 20	Gly	Tyr	Pro	Leu	Met 25	Gly	Ser	Pro	Leu	Leu 30	Met	Thr
10	Ser Ile	Leu 35	Leu	Thr	Tyr	Val	Tyr 40	Phe	Val	Leu	Ser	Leu 45	Gly	Pro	Arg
15	Ile Met 50	Ala	Asn	Arg	Lys	Pro 55	Phe	Gln	Leu		Gly 60	Phe	Met	Ile	Val
15	Tyr Asn 65	Phe	Ser	Leu	Val 70	Ala	Leu	Ser	Leu	Тут 75	Ile	Val	ፐሃፐ	Glu	Phe 80
20	Leu Met	Ser	Gly	Trp 85	Leu	Ser	Thr	Tyr	Thr 90	Trp	Arg	Cys	Asp	Pro 95	Val
	Asp Tyr	Ser	Asn 100	Ser	Pro	Glu	Ala	Leu 105	Arg	Met	Val	Arg	Val 110	Ala	Trp
25	Leu Phe	Leu 115	Phe	Ser	Lys	Phe	Ile 120	Glu	Leu	Met	Asp	Thr 125	Val	Ile	Phe
20	Ile Leu 130	Arg	Lys	Lys	Asp	Gly 135	Gln	Val	Thr	Phe	Leu 140	His	Val	Phe	His
30	His Ser 145	Val	Leu	Pro	Trp 150	Ser	Trp	Trp	Trp	Gly 155	Val	Lys	Ile	Ala	Pro 160
35	Gly Gly	Met	Gly	Ser 165	Phe	His	Ala	Met	Ile 170	Asn	Ser	Ser	Val	His 175	Val
	Ile Met	Tyr	Leu 180	Tyr	Tyr	Gly	Leu	Ser 185	Ala	Phe	Gly	Pro	Val 190	Ala	Gln
40	Pro Tyr	Leu 195	Trp	Trp	Lys	Lys	His 200	Met	Thr	Ala	Ile	Gln 205	Leu	Ile	Gln
15	Phe Val 210		Val	Ser	Leu	His 215	Ile	Ser	Gln	Туг	Туг 220	Phe	Met	Ser	Ser
45	Cys Asn 225	Tyr	Gln	Tyr	Pro 230	Val	Ile	Ile	His	Leu 235		Trp	Met	Tyr	Gly 240
50	Thr Ile	Phe	Phe	Met 245		Phe	Ser	Asn	Phe 250		Tyr	His	Ser	Tyr 255	
	Lys Gly	Lys	Arg 260		Pro	Arg	Ala	Leu 265		Gln	Asn	Gly	Ala 270		Gly
55	Ile Ala	Lys 275		Lys	Ala	Asn	Хаа 280								

-5			(i) : (xi)	(A) L B) T D) T	ENGT YPE: OPOL	H: 2 ami OGY:	84 a no a lin	mino cid ear	aci		: 40:	9:			
10	Met 1		Leu											Gly	Thr 15	Leu
10	Ala	Phe	Ser	Ile 20	His	Xaa	Leu	Ala	Val 25	Ile	Leu	Gly	Asp	Gln 30	Leu	Thr
15	Ala	Ala	Asp 35	Leu	Val	Pro	Ile	Phe 40	Asn	Gly	Phe	Leu	Lys 45	Asp	Leu	Ąsp
	Glu	Va1 50	Arg	Ile	Gly	Val	Leu 55	Lys	His	Leu	His	Asp 60	Phe	Leu	Lys	Leu
20	Leu 65	His	Ile	Asp	Lys	Arg 70	Arg	Glu	Tyr	Leu	Tyr 75	Gln	Leu	Gln	Glu	Phe 80
25	Leu	Val	Thr	Asp	Asn 85	Ser	Arg	Asn	Trp	Arg 90	Phe	Arg	Ala	Glu	Leu 95	Ala
23	Glu	Gln	Leu	Ile 100	Leu	Leu	Leu	Glu	Leu 105	Tyr	Ser	Pro	Arg	Asp 110	Val	Tyr
30	Asp	Туг	Leu 115	Arg	Pro	Ile	Ala	Leu 120	Asn	Leu	Суз	Ala	Asp 125	Lys	Val	Ser
	Ser	Val 130	Arg	Trp	Ile	Ser	Tyr 135	Lys	Leu	Val	Ser	Glu 140	Met	Val	Lys	Lys
35	Leu 145	His	Ala	Ala	Thr	Pro 150	Pro	Thr	Phe	Gly	Val 155	Asp	Leu	Ile	Asn	G1u 160
40	Leu	Val	Glu	Asn	Phe 165	Gly	Arg	Cys	Pro	Lys 170	Trp	Ser	Gly	Arg	Gln 175	Ala
	Phe	Val	Phe	Val 180	Cys	Gln	Thr	Val	Ile 185	Glu	Asp	Asp	Cys	Leu 190	Pro	Met
45	Asp	Gln	Phe 195	Ala	Val	His	Leu	Met 200	Pro	His	Leu	Leu	Thr 205	Leu	Ala	Asn
	Asp	Arg 210	Val	Pro	Asn	Val	Arg 215	Val	Leu	Leu	Ala	Lys 220	Thr	Leu	Arg	Gln
50	Thr 225		Leu	Glu	Lys	Asp 230		Phe	Leu	Ala	Ser 235	Ala	Ser	Cys	His	Gln 240
55	Glu	Ala	Val	Glu	Gln 245		Ile	Met	Ala	Leu 250		Met	Asp	Arg	Asp 255	Ser
	Asp	Val	. Lys	Тут 260		Ala	Ser	Ile	His 265		Ala	Ser	Thr	Lys 270		Ser
60	Glu	Asp	Ala 275		Ser	Thr	Ala	Ser 280		Thr	Туг	Xaa	•			

_	(2)	INF	ORMA	TION	FOR	SEQ	ID I	NO: 4	410:							
- 5			(i)	(A) L B) T	ENGT YPE :	H: 1 ami	ERIS 87 a no a	mino cid		ds					
10			(xi)					lin PTIO		EQ I	D NO	: 41	0:			
	Met 1	Leu	Phe	Leu	Phe 5	Phe	Val	Ile	Ile	Phe 10	Leu	Phe	Val	Phe	Leu 15	Ile
15	Leu	Ile	Ile	Gln 20	Phe	Ser	Lys	Pro	Leu 25	Thr	Asn	Pro	His	Pro 30	Pro	Ala
20	Gly	Xaa	Ser 35	Asp	Arg	Arg	Arg	Arg 40	Tyr	Ser	Ser	Tyr	Arg 45	Ser	His	Asp
	His	Tyr 50	Gln	Arg	Gln	Arg	Val 55	Leu	Gln	Lys	Glu	Arg 60	Ala	Ile	Glu	Glu
25	Arg 65	Arg	Val	Val	Phe	Ile 70	Gly	Lys	Ile	Pro	Gly 75	Arg	Met	Thr	Arg	Ser 80
					85			Val		90					95	
30				100				Asp	105					110		
35	Tyr	Ala	Glu 115	Glu	Ala	Phe	Ala	Ala 120	Ile	Glu	Ser	Gly	His 125	Lys	Leu	Arg
	Gln	Ala 130	Asp	Glu	Gln	Pro	Phe 135	Asp	Leu	Cys	Phe	Gly 140	Gly	Arg	Arg	Xaa
40	145		_			150		Asp		_	155				_	160
4.5	Asp	Pro	Ala	Pro	Val 165	Lys	Ser	Lys	Phe	Asp 170	Ser	Leu	Asp	Phe	Asp 175	Thr
45	Leu	Leu	Lys	Gln 180	Ala	Gln	Lys	Asn	Leu 185	Arg	Arg					
50	(2)	INF	ORMA	TION	FOR	SEQ	ID I	NO: 4	411:							
			(i)	_ (A) L	ENGT	H: 2	ERIS 37 a no a	mino		ds					
55			(xi)					lin PTIO		EQ I	D NO	: 41	1:			
60	Met 1	Lys	Leu	Pro	Gly 5	Lys	Phe	Arg	Arg	Ala 10	His	Gln	Gly	Asn	Leu 15	Glu

	Ser	Gln	Leu	Thr 20	Ser	Glu	Ser	Tyr	Tyr 25	Lys	Glu	Thr	Leu	Ser 30	Val	Pro
5	Thr	Val	Glu 35	His	Ile	Ile	Gln	Glu 40	Leu	Lys	Asp	Ile	Phe 45	Ser	Glu	Glr
	His	Leu 50	Lys	Ala	Leu	Lys	Cys 55	Leu	Ser	Leu	Val	Pro 60	Ser	Val	Met	Gly
10	Gln 65	Leu	Lys	Phe	Asn	Thr 70	Ser	Glu	Glu	His	His 75	Ala	Asp	Met	Tyr	Arg 80
15	Ser	Asp	Leu	Pro	Asn 85	Pro	Asp	Thr	Leu	Ser 90	Ala	Glu	Leu	His	Cys 95	Ттр
	Arg	Ile	Lys	Trp 100	Lys	His	Arg	Gly	Lys 105	Asp	Ile	Glu	Leu	Pro 110	Ser	Thr
20	Ile	Tyr	Glu 115	Ala	Leu	His	Leu	Pro 120	Asp	Ile	Lys	Phe	Phe 125	Pro	Asn	Val
	Tyr	Ala 130	Leu	Leu	Lys	Val	Leu 135	Суз	Ile	Leu	Pro	Val 140	Met	Lys	Val	Glu
25	Asn 145	Glu	Arg	Туг	Glu	Asn 150	Gly	Arg	Lys	Arg	Leu 155	Lys	Ala	Туг	Leu	Arg 160
30	Asn	Thr	Leu	Thr	Asp 165	Gln	Arg	Ser	Ser	Asn 170	Leu	Ala	Leu	Leu	Asn 175	Ile
	Asn	Phe	Asp	Ile 180	Lys	His	Asp	Leu	Asp 185		Met	Val	Asp	Thr 190	Tyr	Ile
35	Lys	Leu	Туг 195	Thr	Xaa	Xaa	Ser	Xaa 200	Leu	Xaa	Thr	Xaa	Xaa 205	Ser	Xaa	Xaa
	Val	Glu 210	Xaa	Xaa	Xaa	Xaa	Xaa 215	Xaa	Xaa	Xaa	Xaa	Gly 220	Xaa	Xaa	Xaa	Xaa
40	Asp 225	Xaa	Xaa	Xaa	Arg	Glu 230	Lys	Ala	Val	Arg	Cys 235	Met	Xaa			
45	(2)	INFO	ORMAT	CION	FOR	SEQ	ID N	10:4	112:							
50			(i) :	~ (:	A) L B) T	ENGT YPE:	H: 1	92 ai no a	mino cid		ds					
30			(xi)		D) TV UENCI					EQ II	ON C	: 412	2:			
55	Met 1	Lys	Pro	Met	Ala 5	Val	Val	Ala	Ser	Thr 10	Val	Leu	Gly	Leu	Val 15	Gln
	Asn	Met	Arg	Ala 20	Phe	Gly	Gly	Ile	Leu 25	Val	Val	Val	Tyr	Туr 30	Val	Phe
60	Ala	Ile	Ile 35	Gly	Ile	Asn	Leu	Phe 40	Arg	Gly	Val	Ile	Val 45	Ala	Leu	Pro

	Gly	Asn 50	Ser	Ser	Leu	Ala	Pro 55	Ala	Asn	Gly	Ser	Ala 60	Pro	Cys	Gly	Ser
5	Phe 65	Glu	Gln	Leu	Glu	Тут 70	Trp	Ala	Asn	Asn	Phe 75	Asp	Asp	Phe	Ala	Ala 80
10	Ala	Leu	Val	Thr	Leu 85	Trp	Asn	Leu	Met	Val 90	Val	Asn	Asn	Trp	Gln 95	Val
	Phe	Leu	Asp	Ala 100	Tyr	Arg	Arg	Туr	Ser 105	Gly	Pro	Trp	Ser	Lys 110	Ile	Tyr
15	Phe	Val	Leu 115	Trp	Trp	Leu	Val	Ser 120	Ser	Val	Ile	Trp	Val 125	Asn	Leu	Phe
	Leu	Ala 130	Leu	Ile	Leu	Glu	Asn 135	Phe	Leu	His	Lys	Trp 140	Asp	Pro	Arg	Ser
20	His 145	Leu	Gln	Pro	Leu	Ala 150	Gly	Thr	Pro	Glu	Ala 155	Thr	Tyr	Gln	Met	Thr 160
25	Val	Glu	Leu	Leu	Phe 165	Arg	Asp	Ile	Leu	Glu 170	Glu	Pro	Gly	Glu	Asp 175	Glu
23	Leu	Thr	Glu	Arg 180	Leu	Ser	Gln	His	Pro 185	His	Leu	Trp	Leu	Cys 190	Arg	Xaa
30																
	(2)	INFO	ORMAT	rion	FOR	SEO	ID N	Ю: 4	113:							
35			(i) :	SEQUI	ENCE A) L	CHAI	RACTI H: 2	ERIS 1 am	rics:		5					
40			(xi)	(D) T	OPOL	ami: OGY: SCRII	lin	ear	EQ II	ON C	: 41	3:			
	Asn 1	Val	Val	Val	Val 5	Ala	Phe	Gly	Leu	Ile 10	Leu	Ile	Ile	Glu	Ser 15	Leu
45	Gly	Glu	Gln	Cys 20	Pro											
50	(2)	INFO	ORMAT	rion	FOR	SEQ	ID 1	Ю: 4	114 :							
			(i) :	(A) L	ENGT	н: 5	1 am	ino		s					
55			(xi)	(T (a	OPOL	ami OGY: SCRI	lin	ear	EQ II	D NO	: 41	4 :			
	Met 1	Asn	Trp	Gly	Leu 5	Ser	Ile	Trp	Leu	His	Tyr	Tyr	Glu	Lys	Lys 15	Lys
60																

	Glu	Gln	Val	Phe 20	Leu	Val	Ile	Leu	Ala 25	His	Val	Val	Arg	Arg 30	Cys	Ala
5	Ser	Asp	Gly 35	Ile	Leu	Gln	Phe	Glu 40	Ser	Ser	Leu	Leu	Lys 45	Met	Arg	Arg
	Ala	Pro 50	Xaa													
10																
	(2)		ORMAI													
15			(i) :	(. (:	A) L B) T D) T	ENGT YPE: OPOL	H: 3 ami OGY:	2 am no a lin	ino cid ear	acid		: 41	5:			
20	Met 1	Leu	Ile	Ile	Ser 5	Leu	Arg	Pro	Gln	Phe 10	Pro	Ser	Leu	Ile	Val 15	Gln
25	Leu	Glu	Cys	Ser 20	Val	Leu	Phe	Leu	Pro 25	Ile	Ser	Leu	Asn	Leu 30	Leu	Leu
30	(2)	INFO	ORMAT	NOLT	FOR	SEQ	ID 1	1 0: 4	116:							
35			(i) { (xi)	() ()	A) L B) T D) T	ENGT YPE: OPOL	H: 1 ami: OGY:	63 a no a lin	mino cid ear	aci		: 410	5:			
40	Met 1	Val	Lys	Val	Cys 5	Asn	Asp	Ser	Asp	Arg 10	Trp	Ser	Leu	Ile	Ser 15	Leu
	Ser	Asn	Asn	Ser 20	Gly	Lys	Asn	Val	Glu 25	Leu	Lys	Phe	Val	Asp 30	Ser	Leu
45	Arg	Arg	Gln 35	Phe	Glu	Phe	Ser	Val 40	Asp	Ser	Phe	Gln	Ile 45	Lys	Leu	Asp
50	Ser	Leu 50	Leu	Leu	Phe	Туг	Glu 55	Cys	Ser	Glu	Asn	Pro 60	Met	Thr	Glu	Thr
50	Phe 65	His	Pro	Thr	Ile	Ile 70	Gly	Glu	Ser	Val	Туг 75	Gly	Asp	Phe	Gln	Glu 80
55	Ala	Phe	Asp	His	Leu 85	Cys	Asn	Lys	Ile	Ile 90	Ala	Thr	Arg	Asn	Pro 95	Glu
	Glu	Ile	Arg	Gly 100	Gly	Gly	Leu	Leu	Lys 105	Tyr	Cys	Asn	Leu	Leu 110	Val	Arg
60	C1	Dha	3	D	N 1 -	0		~ 1	T1-	7	mb	Y	C1-	X	m ~	Wat

604

115 120 125 Cys Ser Arg Phe Phe Ile Asp Phe Ser Asp Ile Gly Glu Gln Gln Arg 135 5 Lys Leu Glu Ser Tyr Leu Gln Asn His Phe Val Gly Ile Gly Arg Pro 150 Gln Val Xaa 10 (2) INFORMATION FOR SEQ ID NO: 417: 15 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 174 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 417: Met Ala Pro Lys Gly Lys Val Gly Thr Arg Gly Lys Lys Gln Ile Phe 25 Glu Glu Asn Arg Glu Thr Leu Lys Phe Tyr Leu Arg Ile Ile Leu Gly Ala Asn Ala Ile Tyr Cys Leu Val Thr Leu Val Phe Phe Tyr Ser Ser 40 30 Ala Ser Phe Trp Ala Trp Leu Ala Leu Gly Phe Ser Leu Ala Val Tyr 55 Gly Ala Ser Tyr His Ser Met Ser Ser Met Ala Arg Ala Ala Phe Ser 35 Glu Asp Gly Ala Leu Met Asp Gly Gly Met Asp Leu Asn Met Glu Gln 90 40 Gly Met Ala Glu His Leu Lys Asp Val Ile Leu Leu Thr Ala Ile Val 105 Gln Val Leu Ser Cys Phe Ser Leu Tyr Val Trp Ser Phe Trp Leu Leu 120 45 Ala Pro Gly Arg Ala Leu Tyr Leu Leu Trp Val Asn Val Leu Gly Pro 135 Trp Phe Thr Ala Asp Ser Gly Thr Pro Ala Pro Glu His Asn Glu Lys 50 145 155 Arg Gln Arg Arg Gln Glu Arg Arg Gln Met Lys Arg Leu Xaa 165 170 55 (2) INFORMATION FOR SEQ ID NO: 418:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 50 amino acids

```
(B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 418:
     Met Glu Leu Pro Lys Gly Leu Gln Gly Val Gly Pro Val Ala Met Met
      Arg Pro Phe Tyr Leu Leu Pro Val Leu Cys Thr Gln Ala Leu Arg
                                      25
10
     Gln Ser Gln Gly Lys Ser Pro Leu Leu Trp Lys Arg Thr Cys Cys Leu
                                 40
     Ala Xaa
15
         50
      (2) INFORMATION FOR SEQ ID NO: 419:
20
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 120 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
25
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 419:
     Met Leu Gly Lys Gly Gly Gly Arg Ala Gly Leu Leu Arg Tyr Arg Leu
30
     Leu Tyr Phe Thr Leu Val Val Gly Glu Gly Glu Pro Gly Glu Asn Lys
     Val Thr Ile Pro Phe Phe Glu Thr Gly Lys Lys Ile Ile Phe Cys Ser
                                  40
35
     Val Lys Met Val Glu Asn Ser Asn Val Pro Ser His Lys Gly Pro Val
                           55
      Pro Leu Arg Ser Glu Gln Trp Glu Leu Lys Ile Ser Glu Thr Leu Gly
40
     Glu Gly Lys Ile Gly Phe Leu Leu Ile Gly Arg Cys Ser Ser Gly Xaa
45
     Gly Gly Leu Cys Phe Cys Trp Asp Val Leu Cys Cys Met Tyr Ala Tyr
                             105
      Met Asp Arg Ser Leu Leu Ser Leu
             115
50
      (2) INFORMATION FOR SEQ ID NO: 420:
55
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 159 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 420:
60
```

	Met 1	Thr	His	Leu	Leu 5	Leu	Thr	Ala	Thr	Val 10	Thr	Pro	Ser	Glu	Gln 15	Asn
5	Ser	Ser	Arg	Glu 20	Pro	Gly	Trp	Glu	Thr 25	Ala	Met	Ala	Lys	Asp 30	Ile	Leu
	Gly	Glu	Ala 35	Gly	Leu	His	Phe	Asp 40	Glu	Leu	Asn	Lys	Leu 45	Arg	Val	Leu
10	Asp	Pro 50	Glu	Val	Thr	Gln	Gln 55	Thr	Ile	Glu	Leu	Lys 60	Glu	Glu	Суѕ	Lys
15	Asp 65	Phe	Val	Asp	Lys	Ile 70	Gly	Gln	Phe	Gln	Lys 75	Ile	Val	Gly	Gly	Leu 80
	Ile	Glu	Leu	Val	Asp 85	Gln	Leu	Ala	Lys	Glu 90	Ala	Glu	Asn	Glu	Lys 95	Met
20	Lys	Ala	Ile	Gly 100	Ala	Arg	Asn	Leu	Leu 105	Lys	Ser	Ile	Ala	Lys 110	Gln	Arg
			115					120					125	Lys	-	
25		130					135					140		Lys		Glu
30	Ala 145	Glu	Gln	Asn	Glu	Phe 150	Ile	Asp	Gln	Phe	Ile 155	Phe	Gln	Lys	Xaa	
	(2)	INFO	ORMAT	MOIT	FOR	SEQ	ID 1	10: 4	121:							
35			(i) :	(.	ENCE A) L B) T	ENGT	н: 1	54 au	mino		ds					
40			(xi)		D) T					EQ II	ом с	42	1:			
-10	Met 1	Asn	Val	Gly	Val 5	Ala	His	Ser	Glu	Val 10	Asn	Pro	Asn	Thr	Arg 15	Val
45	Met	Asn	Ser	Arg 20	Gly	Met	Trp	Leu	Thr 25	Tyr	Ala	Leu	Gly	Val 30	Gly	Leu
	Leu	His	Ile 35	Val	Leu	Leu	Ser	Ile 40	Pro	Phe	Phe	Ser	Val 45	Pro	Val	Ala
50	Trp	Thr 50	Leu	Thr	Asn	Ile	Ile 55	His	Asn	Leu	Gly	Met 60	Тут	Val	Phe	Leu
55	His 65	Ala	Val	Lys	Gly	Thr 70	Pro	Phe	Glu	Thr	Pro 75	Asp	Gln	Gly	Lys	Ala 80
	Arg	Leu	Leu	Thr	His 85	Trp	Glu	Gln	Leu	Asp 90	Tyr	Gly	Val	Gln	Phe 95	Thr
60	Ser	Ser	Arg	Lys 100		Phe	Thr	Ile	Ser 105	Pro	Ile	Ile	Leu	Tyr 110		Leu

607

Ala Ser Phe Tyr Thr Lys Tyr Asp Pro Thr His Phe Ile Leu Asn Thr 115 120 125 Ala Ser Leu Leu Ser Val Leu Ile Pro Lys Met Pro Gln Leu His Gly 135 Val Arg Ile Phe Gly Ile Asn Lys Tyr Xaa 150 10 (2) INFORMATION FOR SEQ ID NO: 422: 15 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 204 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 422: 20 Met Val Cys Gly Gly Phe Ala Cys Ser Lys Asn Cys Leu Cys Ala Leu Asn Leu Leu Tyr Thr Leu Val Ser Leu Leu Leu Ile Gly Ile Ala Ala 25 25 Trp Gly Ile Gly Phe Gly Leu Ile Ser Ser Leu Arg Val Val Gly Val 30 Val Ile Ala Val Gly Ile Phe Leu Phe Leu Ile Ala Leu Val Gly Leu Ile Gly Ala Val Lys His His Gln Val Leu Leu Phe Phe Tyr Met Ile 35 Ile Leu Leu Val Phe Ile Val Gln Phe Ser Val Ser Cys Ala Cys Leu Ala Leu Asn Gln Glu Gln Gln Gly Gln Leu Leu Glu Val Gly Trp 40 100 Asn Asn Thr Ala Ser Ala Arg Asn Asp Ile Gln Arg Asn Leu Asn Cys 45 Cys Gly Phe Arg Ser Val Asn Pro Asn Asp Thr Cys Leu Ala Ser Cys 130 Val Lys Ser Asp His Ser Cys Ser Pro Cys Ala Pro Ile Ile Gly Glu 155 50 Tyr Ala Gly Glu Val Leu Arg Phe Val Gly Gly Ile Gly Leu Phe Phe Ser Phe Thr Glu Ile Leu Gly Val Trp Leu Thr Tyr Arg Tyr Arg Asn 55 185 Gln Lys Asp Pro Arg Ala Asn Pro Ser Ala Phe Leu 195 200

	(2)	INF	ORMA!	rion	FOR	SEQ	ID I	VO : 4	123 :							
5				C	A) L B) T D) T	ENGT YPE: OPOL	H: 6 ami OGY:	7 am no a lin	ino cid ear	acid		: 42	3:	٠		
10	Met 1	Leu	Gln	Ser	Ile 5	Ile	Lys	Asn	Ile	Trp 10	Ile	Pro	Met	Lys	Pro 15	Tyr
15	Tyr	Thr	Lys	Val 20	Tyr	Gln	Glu	Ile	Trp 25	Ile	Gly	Met	Gly	Leu 30	Met	Gly
	Phe	Ile	Val 35	Tyr	Lys	Ile	Arg	Ala 40	Ala	Asp	Lys	Arg	Ser 45	Lys	Ala	Leu
20	Lys	Ala 50	Ser	Ala	Pro	Ala	Pro 55	Gly	His	His	Asn	Gln 60	Ile	Tyr	Leu	Glu
	Туг 65	Met	Xaa													
25	(2)	TATEY	DM N	PTON!	FOR	CEO.	TD N		124.							
	(2)	INF	JRMA.	NOLT	FOR	SEQ	TD	WO: 4	124:							
30				(A) L B) T D) T	ENGT YPE : OPOL	H: 2 ami OGY:	5 am no a lin	ino d cid ear	acid		: 42	4 :			
35	Met 1	Leu	Gly	Val	Ser 5	Leu	Phe	Leu	Leu	Val 10	Val	Leu	Tyr	His	Tyr 15	Val
4 0	Ala	Val	Asn	Asn 20	Pro	Lys	Lys	Gln	Glu 25							
	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	VO: 4	125 :							
45				(A) L B) T D) T	ENGT YPE: OPOL	H: 2 ami OGY:	99 a no a lin	mino cid ear	aci		: 42	5:			
50	Met 1	Ala		Xaa						-				Ser	Gly 15	Ala
55	Gly	Gly	Ala	Gly 20	Ala	Pro	Ser	Gly	Thr 25	Val	Pro	Val	Leu	Phe 30	Cys	Phe
	Ser	Val	Phe 35	Ala	Arg	Pro	Ser	Ser 40	Val	Pro	His	Gly	Ala 45	Gly	Tyr	Glu

Leu Leu Ile Gln Lys Phe Leu Ser Leu Tyr Gly Asp Gln Ile Asp Met

		50					55					60				
5	His 65		Lys	Phe	Val	Val 70	Gln	Leu	Phe	Ala	. Glu 75	Glu	Trp	Gly	Gln	Tyr 80
•	Val	Asp	Leu	Pro	Lys 85	Gly	Phe	Ala	Val	Ser 90		Arg	Cys	Lys	Val 95	Arg
10	Leu	Val	Pro	Leu 100	Gln	Ile	Gln	Leu	Thr 105		Leu	Gly	Asn	Leu 110	Thr	Pro
	Ser	Ser	Thr 115	Val	Phe	Phe	Cys	Суs 120	Asp	Met	Gln	Glu	Arg 125	Phe	Arg	Pro
15	Ala	Ile 130	Lys	Тут	Phe	Gly	Asp 135	Ile	Ile	Ser	Val	Gly 140	Gln	Arg	Leu	Leu
20	Gln 145	Gly	Ala	Arg	Ile	Leu 150	Gly	Ile	Pro	Val	Ile 155	Val	Thr	Glu	Gln	Туг 160
	Pro	Lys	Gly	Leu	Gly 165	Ser	Thr	Val	Gln	Glu 170	Ile	Asp	Leu	Thr	Gly 175	Val
25	Lys	Leu	Val	Leu 180	Pro	Lys	Thr	Lys	Phe 185	Ser	Met	Val	Leu	Pro 190	Glu	Val
	Glu	Ala	Ala 195	Leu	Ala	Glu	Ile	Pro 200	Gly	Val	Arg	Ser	Val 205	Val	Leu	Phe
30	Gly	Val 210	Glu	Thr	His	Val	Cys 215	Ile	Gln	Gln	Thr	Ala 220	Leu	Glu	Leu	Val
35	Gly 225	Arg	Gly	Val	Glu	Val 230	His	Ile	Val	Ala	Asp 235	Ala	Thr	Ser	Ser	Arg 240
	Ser	Met	Met	Asp	Arg 245	Met	Phe	Ala	Leu	Glu 250	Arg	Leu	Ala	Xaa	Xaa 255	Gly
4 0	Ile	Ile	Val	Thr 260	Thr	Ser	Glu	Ala	Val 265	Leu	Leu	Gln	Leu	Val 270	Ala	Asp
	Lys	Asp	His 275	Pro	Lys	Phe	Lys	Glu 280	Ile	Gln	Asn	Leu	Ile 285	Lys	Ala	Ser
1 5	Ala	Pro 290	Glu	Ser	Gly	Leu	Leu 295	Ser	Lys	Val	Xaa					
50	(2)	INFO	ORMAT	NOI	FOR	SEQ	ID N	io: 4	26:							
			(i) S		A) L	ENGT	H: 1	ERIST 3 ami	ino a		S					
55			(xi)) TY	OPOL	CGY:	line	ear	DQ II	ONO:	: 426	5:			
-0	Met 1	Arg	qaA	Leu	Gly 5	Thr	Leu	Leu	Ser	Pro 10	Val	Cys	Ser			

	(2)	INF	JKMA'	LTON	FOR	SEQ	ID I	WO: 4	127:							
5			(i)	(A) L B) T D) T	ENGT YPE: OPOL	H: 1 ami OGY:	98 a no a lin	mino cid ear	aci			_			
10					Leu			PTIO Gly		Leu				Ala		Gln
15	1 Gln	Val	Ala	Glu 20	5 Asp	Lys	Phe	Val	Phe 25	10 Asp	Leu	Pro	Asp	Туг 30	15 Glu	Ser
	Ile	Asn	His 35	Val	Val	Val	Phe	Met 40	Leu	Gly	Thr	Ile	Pro 45	Phe	Pro	Glu
20	Gly	Met 50	Gly	Gly	Ser	Val	Тут 55	Phe	Ser	Tyr	Pro	Asp 60	Ser	Asn	Gly	Met
25	Pro 65	Val	Trp	Gln	Leu	Leu 70	Gly	Phe	Val	Thr	Asn 75	Gly	Lys	Pro	Ser	Ala 80
23	Ile	Phe	Lys	Ile	Ser 85	Gly	Leu	Lys	Ser	Gly 90	Glu	Gly	Ser	Gln	His 95	Pro
30	Phe	Gly	Ala	Met 100	Asn	Ile	Val	Arg	Thr 105	Pro	Ser	Val	Ala	Gln 110	Ile	Gly
	Ile	Ser	Val 115	Glu	Leu	Leu	Asp	Ser 120	Met	Ala	Gln	Gln	Thr 125	Pro	Val	Gly
35	Asn	Ala 130	Ala	Val	Ser	Ser	Val 135	Asp	Ser	Phe	Thr	Gln 140	Phe	Thr	Gln	Lys
40	Met 145	Leu	Asp	Asn	Phe	Туг 150	Asn	Phe	Ala	Ser	Ser 155	Phe	Ala	Val	Ser	Gln 160
40	Ala	Gln	Met	Thr	Pro 165	Ser	Pro	Ser	Glu	Met 170	Phe	Ile	Pro	Ala	Asn 175	Val
45	Val	Leu	Lys	Trp 180	Tyr	Glu	Asn	Phe	Gln 185	Arg	Arg	Leu	Ala	Gln 190	Asn	Pro
	Xaa	Phe	Trp 195	Xaa	Thr	Xaa										
50																
	(2)	INF	ORMA					NO: ERIS		: :						
55					(A) I (B) 7 (D) 7	ENGI TYPE : TOPOI	H: 4 am: OGY	17 an ino a : lir	nino cid near	ació): 4 2	!8:			
60		-01	_	-				. .			0-	m)-		. Dw-		g.c.

	1				5					10					15	
5	Ala	Gly	Val	Asn 20	Phe	Ile	Leu	Ala	Leu 25	Pro	Leu	Leu	Leu	Leu 30	Trp	Lys
J	Asn	Arg	Gly 35	Gly	Val	Gly	Arg	Ser 40	Val	Met	Ser	Ala	Val 45	Glu	Xaa	
10	(2)	INF	ORMA!	rion	FOR	SEQ	ID 1	۱O: ، ه	129:							
15			(i) : (xi)	(A) L B) T D) T	ENGT YPE: OPOL	H: 3 ami OGY:	70 a no a lin	mino cid ear	aci		: 42:	9:			
20	Met 1	Lys	Lys	Val	Glu 5	Glu	Lys	Arg	Val	Asp 10	Val	Asn	Ser	Ala	Val 15	Ala
	Met	Gly	Glu	Val 20	Ile	Leu	Ala	Val	Cys 25	His	Pro	Asp	Суѕ	Ile 30	Thr	Thr
25	Ile	Lys	His 35	Trp	Ile	Thr	Ile	Ile 40	Arg	Ala	Arg	Phe	Glu 45	Glu	Val	Leu
30	Thr	Trp 50	Ala	Lys	Gln	His	Gln 55	Gln	Arg	Leu	Glu	Thr 60	Ala	Leu	Ser	Glu
	Leu 65	Val	Ala	Asn	Ala	G1u 70	Leu	Leu	Glu	Glu	Leu 75	Leu	Ala	Trp	Ile	Gln 80
35	Trp	Ala	Glu	Thr	Thr 85	Leu	Ile	Gln	Arg	Asp 90	Gln	Glu	Pro	Ile	Pro 95	Gln
	Asn	Ile	Asp	Arg 100	Val	Lys	Ala	Leu	Ile 105	Ala	Glu	His	Gln	Thr 110	Phe	Met
40	Glu	Glu	Met 115	Thr	Arg	Lys	Gln	Pro 120	Asp	Val	Asp	Arg	Val 125	Thr	Lys	Thr
45		130	Arg				135					140				
	Ser 145	Arg	Ser	Gly	Gly	Arg 150	Lys	Ser	Leu	Ser	Gln 155	Pro	Thr	Pro	Pro	Pro 160
50	Met	Pro	Ile	Leu	Ser 165	Gln	Ser	Glu	Ala	Lys 170	Asn	Pro	Arg	Ile	Asn 175	Gln
	Leu	Ser	Ala	Arg 180	Trp	Gln	Gln	Val	Trp 185	Leu	Leu	Ala	Leu	Glu 190	Arg	Gln
55	Arg	Lys	Leu 195	Asn	Asp	Ala	Leu	Asp 200		Leu	Glu	Glu	Leu 205	Lys	Glu	Phe
60	Ala	Asn 210	Phe	Asp	Phe	Asp	Val 215	Trp	Arg	Lys	Lys	Tyr 220	Met	Arg	Trp	Met

PCT/US98/04493

	Asn 225	His	Lys	Lys	Ser	Arg 230	Val	Met	Asp	Phe	Phe 235	Arg	Arg	Ile	Asp	Lys 240
5	Asp	Gln	Asp	Gly	Lys 245	Ile	Thr	Arg	Gln	Glu 250	Phe	Ile	Asp	Gly	11e 255	Leu
	Ala	Ser	Lys	Phe 260	Pro	Thr	Thr	Lys	Leu 265	Glu	Met	Thr	Ala	Val 270	Ala	Asp
10	Ile	Phe	Asp 275	Arg	Asp	Gly	Ąsp	Gly 280	Tyr	Ile	Asp	_	Tyr 285	Glu	Phe	Val
15	Ala	Ala 290	Leu	His	Pro	Asn	Lys 295	Asp	Ala	Tyr	Arg	Pro 300	Thr	Thr	Asp	Ala
	Asp 305	Lys	Ile	Glu	Asp	Glu 310	Val	Thr	Arg	Gln	Val 315	Ala	Gln	Cys	Lys	Суs 320
20	Ala	Lys	Arg	Phe	Gln 325	Val	Glu	Gln	Ile	Gly 330	Glu	Asn	Lys	Tyr	Arg 335	Phe
	Phe	Leu	Gly	Asn 340	Gln	Phe	Gly	Asp	Ser 345	Gln	Gln	Leu	Arg	Leu 350	Val	Arg
25	Ile	Leu	Arg 355	Asn	Arg	Asp	Gly	Ser 360	Arg	Trp	Trp	Arg	Met 365	Asp	Gly	Leu
30	Gly	Xaa 370														
35	(2)		ORMAT	SEQUI () ()	ENCE A) Li B) T D) T	CHAI ENGTI YPE: OPOLA	RACT H: 3 ami: OGY:	ERIST O am no ac line	rics: ino a cid ear	acid		. 42/				
40	Met 1		(xi) Val							<u>.</u>				Leu	Cys 15	Cys
45	Leu	Tyr	Leu	Arg 20	Tyr	Val	Thr	Phe	Val 25	Tyr	Leu	Asn	Leu	Phe 30		
50	(2)	INFO	ORMA'	rion	FOR	SEQ	ID I	NO: 4	131:							
E E			(i) :	(A) L B) T	ENGT YPE :	H: 2 ami		ino . cid	: acid	s					
55	•	~-								EQ II				• •	~	_
	Met 1	Glu	Pro	His	Leu 5	Arg	Cys	Arg	Val	Thr 10	Arg	Val	Arg	Gly	Ser 15	Leu
60	Gly	λen	Thr	Gly	Ara	Trans.	Levi	Leu								

PCT/US98/04493

5	(2)	INF	ORMA!	rion	FOR	SEQ	ID I	N O: 4	132:							
10			(i) :	(A) L B) T D) T	ENGT YPE : OPOL	H: 5 ami OGY:	3 am no a lin	ino cid ear	: acid EQ I		: 43	2:			
15	1				5		_	-		Gly 10 Ser					15	
20				20					25	Asn				30		
20	Phe	Cys 50	Leu	Phe	Phe			40					43			
25																
30	(2)		ORMAT	SEQUI () ()	ENCE A) L B) T D) T	CHAI ENGT YPE: OPOL	RACTI H: 1 ami OGY:	ERIS 76 a no a lin	FICS mino cid ear	aci		. 421	3 .			
35	Met 1									EQ II Val 10				Asn	Arg 15	Arg
40	Arg	Met	Lys	Leu 20	Leu	Leu	Gly	Ile	Ala 25	Leu	Leu	Ala	Tyr	Val 30	Ala	Ser
			35					40		Ser			45			
45	Leu	Lys 50	Ile	Glu	Ser	Lys	11e 55	Glu	Glu	Met	Val	Glu 60	Pro	Leu	Arg	Glu
	Lys 65	Ile	Arg	Asp	Leu	Glu 70	Lys	Ser	Phe	Thr	Gln 75	Lys	Tyr	Pro	Pro	Val 80
50	Lys	Phe	Leu	Ser	Glu 85	Lys	Asp	Arg	Lys	Arg 90	Ile	Leu	Ile	Thr	Gly 95	Gly
55	Ala	Gly	Phe	Val 100	Gly	Ser	His	Leu	Thr 105	Asp	Lys	Leu	Met	Met 110	Asp	Gly
	His	Glu	Val 115	Thr	Val	Val	Asp	Asn 120	Phe	Phe	Thr	Gly	Arg 125	Lys	Arg	Asn
60	Val	Glu		Trp	Ile	Gly	His		Asn	Phe	Glu	Leu	Ile	Asn	His	Asp

	Val 145		Ser	Pro	Ser	Thr 150		Arg	Leu	Thr	Arg 155	Тут	Thr	Ile	Ттр	His
5	Leu	Gln	Pro	Pro	Leu 165		Thr	Thr	Cys	Ile 170	Ile	Leu	Ser	Arg	His 175	Xaa
10																
	(2)	INF	orma'	TION	FOR	SEQ	ID :	NO:	434:							
15			(i) (xi)	(A) L B) T D) T	ENGT YPE : OPOL	H: 7 ami OGY:	7 am no a lin	ino cid	acid		: 43	4 :			
20	Met 1	Leu	Arg	Cys	Trp 5	Pro	Leu	Phe	Trp	Leu 10	Pro	Leu	Val	Ser	Pro 15	Phe
25	Cys	Ser	Leu	Phe 20	Trp	Leu	Leu	Val	Glu 25	Trp	Phe	Gly	Thr	Asn 30	Ile	Asp
	Arg	Glu	Ser 35	Tyr	Asp	Ala	Ile	Gly 40	Gly	Pro	Ser	Trp	Met 45	Thr	Ala	Ser
30	Ser	Phe 50	Cys	Leu	Ser	Asn	Ser 55	Asn	Ile	Trp	Ser	Leu 60	Glu	Ile	Ser	Ser
35	Gly 65	Ser	Thr	Ser	Val	Val 70	His	Ser	Gln	Gln	Ala 75	Met	Asp			
	(2)	INF	ORMAT	rion	FOR	SEQ	ID I	1 0: 4	135:							
40			(i) :	(engt Ype :	H: 3 ami	2 am no a	ino d		ş					
45			(xi)	SEQ	UENCI	E DE	SCRI	PTIO	N: Si	EQ II	ON C	: 435	5:			
	Met 1	Arg	Ser	Cys	Glu 5	Ile	Gln	Leu	Cys	Val 10	Trp	Leu	Leu	Val	Ser 15	Ser
50	His	Val	Asp	Met 20	Val	Leu	Gly	Gly	Ser 25	Pro	Ser	Thr	Leu	Tyr 30	Met	Met
55																
	(2)	INF	ORMA!	rion	FOR	SEQ	ID I	NO: 4	136:							
60			(i)	SEQU.					rics	: 	_					

							ami									
							OGY:			.			_			
			(X1)	SEQ	UENC	E DE	SCRI	Pric	N: S	EQ I	DNO	: 43	6:			
5	Met 1		Val	Asn	Ser 5	Leu	Cys	Phe	Leu	Ser 10	Leu	Leu	Leu	Val	Ile 15	Leu
	Glu	Leu	Ser	Thr 20	Asp	Ser	Ser	Ala	Arg 25	Leu	Leu	Tyr	His	Glu 30		
10																
	(2)	INF	ORMA	TION	FOR	SEQ	ID I	NO:	437:							
15				()	A) L B) T D) T	ENGT YPE: OPOL	H: 6 ami OGY:	9 am no a lin	ino cid ear	acid						
20			(xi)	SEQ	JENC	E DE	SCRI	PTIO	N: S	EQ II	D NO	: 43	7:			
20	Met 1		Lys	Gln	Lys 5	His	Leu	Glu	Val	Arg 10	Arg	Ser	Val	Phe	Lys 15	Ile
25	Gln	Gly	Lys	Ile 20	Ala	Phe	Ser	Leu	Met 25	Phe	Val	Leu	Lys	Asp 30	Leu	Ser
	Pro	Thr	Ile 35	Phe	Ser	His	Ser	Ile 40	Leu	Leu	Leu	Leu	Pro 45	His	His	Val
30	Leu	Pro 50		Thr	Pro	Gln	Met 55	Val	Arg	Gly	Val	Thr 60	Gln	Val	Leu	Arg
35	Glu 65	Phe	Gly	Asp	Gln											
	(2)	INF	ORMA	rion	FOR	SEQ	ID 1	NO: 4	138:				,			
40			(i)	()	A) L B) T	ENGT YPE :		9 am no a	ino cid	: acid	s					
			(xi)	SEQU						EQ II	on c	: 43	B:			
45																
	Met 1	Pro	Leu	Cys	Phe 5	Phe	Ser	Phe	Leu	Cys 10	Cys	Trp	Val	Leu	Val 15	Phe
50	Lys	Leu	Ile													
55	(2)	INF	ORMA	TION	FOR	SEQ	ID I	NO:	439:							
			(i)		A) L	ENGT		3 ал	ino	: acid	s					
60			/aci 1	SEO			OGY:			EO 71	מו ח	. 43	٥.			
vv			1 X 1 1	2007	וואניםעו	C. 13M.	-N K I	r 1 1 1 1 1		rai I	LJ INIJ	. 4 1	7 7			

	Met 1	Lys	Phe	Ser	Leu 5	Val	Leu	Leu	Ile	Lys 10	Ile	Ile	Ser	Phe	Glu 15	Arg
5	Leu	Leu	Ile	Phe 20	Leu	Phe	Pro	Leu	Ser 25	Phe	Leu	Pro	Asn	Ile 30	Trp	Arg
10	Arg	Val	Met 35	Val	Asn	Leu	Asn	Ile 40	Leu	Phe	Xaa					
	(2)	INFO	ORMA	rion	FOR	SEQ	ID R	10: 4	140:							
15 20			(i) :	(A) L B) T D) T	ENGT YPE: OPOL	H: 3 ami: OGY:	3 am no a lin	ino cid ear	acid		: 44	0:			
20	Met 1	Leu	Leu	Phe	Pro 5	Ser	Leu	Leu	Phe	Ala 10	Ala	Thr	Tyr	Asn	Val 15	Ala
25	Asn	Pro	Ser	Arg 20	Leu	Ile	Leu	Tyr	Met 25	Ile	Ser	Ala	Gly	Ala 30	Asp	Ser
	Gln															
30	(2)	TANG	ODMA	nt ON	EOD.	CEO.	TD 1	VO -	141.							
35	(2)	INF		SEQU)))	ENCE A) L B) T	CHA ENGT YPE: OPOL E DE	RACT H: 5 ami OGY;	ERIS 3 am no a lin	TICS ino cid ear	acid		: 44	1:			
40	Met 1	Trp	Gln	Val	Arg 5	Gly	Leu	Pro	Pro	Val 10	Pro	Leu	Leu	Leu	Thr 15	Met
45	Ser	Pro	Pro	Pro 20		Leu	Ser	Ser	Pro 25		Pro	Phe	Ile	Ser 30	Val	Pro
45	Leu	Phe	Glu 35		Val	Pro	Ile	Ser 40		Ser	Asp	Gln	Pro 45	Ser	Pro	Хаа
50	Leu	Thr 50	Thr	Leu	Leu											
55	(2)	INF	ORMA	SEQU	JENCE (A) I	SEQ CHA LENG!	RACI	ERIS	TICS nino		ls					
60			1411			IOPOI				SEO 1	ם אכ	. 44	12.			

PCT/US98/04493

	1 5 10	yr Lei 15
5	Ser Leu Val Thr Leu Leu Gln Ala Arg Asn Leu Trp Val Ile H 20 25 30	is Arq
10	Ala Ala Leu Cys Glu Ser Gly Leu Phe His Trp Arg Lys Gly I 35 40 45	le Glı
10	Asn Gln Leu Glu Pro Met Tyr Phe Leu Pro His Gly Thr Leu Ph 50 55 60	ne Leu
15		
20	(2) INFORMATION FOR SEQ ID NO: 443: (i) SEQUENCE CHARACTERISTICS:	
25	(A) LENGTH: 34 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 443:	
	Met Leu Tyr Ser Cys Glu Pro Tyr Leu Ile Ile Leu Asn Ile Ty 1 5 10 1	r Ser 5
30	Gln Lys Ala Phe Tyr Phe Tyr Phe Phe Glu Gly Ser Phe Ser Va 20 25 30	l Cys
35	Thr Leu	
	(2) INFORMATION FOR SEQ ID NO: 444:	
40	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 89 amino acids(B) TYPE: amino acid	
45	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 444:	
	Met Arg Gln Arg Gln Ala Ala Cys Gln Pro Pro Pro Ser Arg Ass 1 5 10 19	
50	Leu Ala Gln Glu Cys Pro Pro His Ile Pro Ser Ser Phe Phe Leu 20 25 30	u Val
	Lys Leu Leu Phe Ile Pro Trp Leu Ala Ser Leu Leu Ser Ser Pro 35 40 45	o Leu
55	Asn Leu Leu Leu Val Ser Ile Ser Trp Asp Leu Gly Leu Lys 50 55 60	s Leu
60	Asn Leu Gln Gln Cys Arg Gln His Gln Val Leu Gln Glu Lys Asn 65 70 75	n Thr 80

618

Lys Lys Phe Asn Lys Lys Lys Lys Lys 85

-5	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO:	445:							
10				(A) L B) T D) T	ENGT YPE : OPOL	H: 3 ami OGY:	50 a no a lin	mino cid ear	aci		: 44	5:			
15	Met 1	Asp	Phe	Ile	Thr 5	Ser	Thr	Ala	Ile	Leu 10	Pro	Leu	Leu	Phe	Gly 15	Cys
	Leu	Gly	Val	Phe 20	Gly	Leu	Phe	Arg	Leu 25	Leu	Gln	Trp	Val	Arg 30	Gly	Lys
20	Ala	Tyr	Leu 35	Arg	Asn	Ala	Val	Val 40	Val	Ile	Thr	Gly	Ala 45	Thr	Ser	Gly
25	Leu	Gly 50	Lys	Glu	Суѕ	Ala	Lys 55	Val	Phe	Tyr	Ala	Ala 60	Gly	Ala	Lys	Leu
5.5	Val 65	Leu	Cys	Gly	Arg	Asn 70	Gly	Gly	Ala	Leu	Glu 75	Glu	Leu	Ile	Arg	Glu 80
30	Leu	Thr	Ala	Ser	His 85	Ala	Thr	Lys	Val	Gln 90	Thr	His	Lys	Pro	Tyr 95	Leu
	Val	Thr	Phe	Asp 100	Leu	Thr	Asp	Ser	Gly 105	Ala	Ile	Val	Ala	Ala 110	Ala	Ala
35	Glu	Ile	Leu 115	Gln	Cys	Phe	Gly	Туг 120	Val	Asp	Ile	Leu	Val 125	Asn	Asn	Ala
10	Gly	Ile 130	Ser	Tyr	Arg	Gly	Thr 135	Ile	Met	Asp	Thr	Thr 140	Val	Asp	Val	Asp
Ю	Lys 145	Arg	Val	Met	Glu	Thr 150	Asn	Tyr	Phe	Gly	Pro 155	Val	Ala	Leu	Thr	Lys 160
15	Ala	Leu	Leu	Pro	Ser 165	Met	Ile	Lys	Arg	Arg 170	Gln	Gly	His	Ile	Val 175	Ala
	Ile	Ser	Ser	Ile 180	Gln	Gly	Lys	Met	Ser 185	Ile	Pro	Phe	Arg	Ser 190	Ala	Tyr
50	Ala	Ala	Ser 195	Lys	His	Ala	Thr	Gln 200	Ala	Phe	Phe	Asp	Cys 205	Leu	Arg	Ala
- p-	Glu	Met 210	Glu	Gln	Tyr	Glu	Ile 215	Glu	Val	Thr	Val	Ile 220	Ser	Pro	Gly	Tyr
55	Ile 225	His	Thr	Asn	Leu	Ser 230	Val	Asn	Ala	Ile	Thr 235	Ala	Asp	Gly	Ser	Arg 240
50	Tyr	Gly	Val	Met	Asp 245	Thr	Thr	Thr	Ala	Gln 250	Gly	Arg	Ser	Pro	Val 255	Glu

	Val	Ala	Gln	Asp 260	Val	Leu	Ala	Ala	Val 265	Gly	Lys	Lys	Lys	Lys 270	Asp	Val
-5	Ile	Leu	Ala 275	Asp	Leu	Leu	Pro	Ser 280	Leu	Ala	Val	Tyr	Leu 285	Arg	Thr	Leu
10	Ala	Pro 290	Gly	Leu	Phe	Phe	Ser 295	Leu	Met	Pro	Pro	Gly 300	Pro	Glu	Lys	Ser
10	Gly 305	Asn	Pro	Arg	Thr	Pro 310	Ser	Thr	Leu	Thr	Ser 315	Gln	Gly	Gln	Gly	Arg 320
15	Glu	Ala	Ala	Leu	Leu 325	Gly	Leu	Leu	Thr	Leu 330	Gln	Gly	Thr	Val	Ala 335	Phe
	Val	Glu	Thr	Leu 340	Met	Glu	Ile	Cys	Leu 345	Thr	Ser	Gly	Lys	Asp 350		
20																
	(2)	INFO	ORMA	rion	FOR	SEQ	ID 1	10: 4	146 :							
25			(i) : (xi)	(A) L B) T D) T	ENGT YPE: OPOLA	H: 4 ami: OGY:	9 am no a lin	ino cid ear	acid		· 11	ς.			
20			(XI)	SEQ	DEMCI	s Des	SCRI	P110	N: 51	eQ II) NO	: 441) :			
30	Met 1	Val	Phe	Leu	Pro 5	Arg	Gly	Val	Val	Val 10	Ser	Gly	Gly	Ala	Ala 15	Cys
35	Leu	Trp	Leu	Thr 20	Phe	Ile	Leu	Glu	Thr 25	Glu	Val	Tyr	Leu	Asp 30	Leu	Ala
	Thr	Glu	Ala 35	Arg	Ala	His	Ser	Arg 40	Met	Gly	Leu	Gly	Leu 45	Trp	Pro	Pro
40	Asn															
45	(2)	INFO	ORMA!	rion	FOR	SEQ	ID N	10: 4	147 :							
			(i) :	(A) L B) T	CHAI ENGT YPE: OPOL	H: 2 ami	78 a no a	mino cid		ds					
50			(xi)			E DE				EQ I	ON O	: 44	7:			
	Met 1	Ala	Ser	Ala	Glu 5	Leu	Asp	Туг	Thr	Ile 10	Glu	Ile	Pro	Asp	Gln 15	Pro
55	Cys	Trp	Ser	Gln 20	Lys	Asn	Ser	Pro	Ser 25	Pro	Gly	Gly	Lys	Glu 30	Ala	Glu
60	Thr	Arg	Gln 35	Pro	Val	Val	Ile	Leu 40	Leu	Gly	Trp	Gly	Gly 45	Cys	Lys	Asp

	Lys	Asn 50	Leu	Ala	Lys	Tyr	Ser 55	Ala	Ile	Tyr	His	Lys 60	Arg	Gly	Cys	Ile
- 5	Val 65	Ile	Arg	Tyr	Thr	Ala 70	Pro	Trp	His	Met	Val 75	Phe	Phe	Ser	Glu	Ser 80
	Leu	Gly	Ile	Pro	Ser 85	Leu	Arg	Val	Leu	Ala 90	Gln	Lys	Leu	Leu	Glu 95	Leu
10	Leu	Phe	Asp	Туг 100	Glu	Ile	Glu	Lys	Glu 105	Pro	Leu	Leu	Phe	His 110	Val	Phe
15	Ser	Asn	Gly 115	Gly	Val	Met	Leu	Туг 120	Arg	Tyr	Val	Leu	Glu 125	Leu	Leu	Gln
	Thr	Arg 130	Arg	Phe	Cys	Arg	Leu 135	Arg	Val	Val	Gly	Thr 140	Ile	Phe	Asp	Ser
20	Ala 145	Pro	Gly	Asp	Ser	Asn 150	Leu	Val	Gly	Ala	Leu 155	Arg	Ala	Leu	Ala	Ala 160
	Ile	Leu	Glu	Arg	Arg 165	Ala	Ala	Met	Leu	Arg 170	Leu	Leu	Leu	Leu	Val 175	Ala
25	Phe	Ala	Leu	Val 180	Val	Val	Leu	Phe	His 185	Val	Leu	Leu	Ala	Pro 190	Ile	Thr
30	Ala	Xaa	Phe 195	His	Thr	His	Phe	Tyr 200	Asp	Arg	Leu	Gln	Asp 205	Ala	Gly	Ser
50	Arg	Trp 210	Pro	Glu	Leu	Tyr	Leu 215	Tyr	Ser	Arg	Ala	Asp 220	Glu	Val	Val	Leu
35	Ala 225	Arg	Asp	Ile	Glu	Arg 230	Met	Val	Glu	Ala	Arg 235	Leu	Ala	Arg	Arg	Val 240
	Leu	Ala	Arg	Ser	Val 245	Asp	Phe	Val	Ser	Ser 250	Ala	His	Val	Ser	His 255	Leu
40	Arg	Asp	Tyr	Pro 260	Thr	Tyr	Tyr	Thr	Ser 265	Leu	Cys	Val.	Asp	Phe 270	Met	Arg
45	Asn	Cys	Val 275	Arg	Cys	Xaa										
	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO: 4	148:							
50			(i)	(A) L B) T	ENGT YPE:	H: 1 ami	ERIS 99 a no a lin	mino .cid		ds					
55	Met	Ser		SEQ										Ser	Val	Leu
	1				5					10					15	Leu
60	Gln	Phe	Leu	Gly 20	Leu	Тут	Lys	Lys	Thr 25		Lys	Leu	Val	Phe 30	Leu	Gly

	Leu	Asp	Asn 35	Ala	Gly	Lys	Thr	Thr 40	Leu	Leu	His	Met	Leu 45	Lys	Asp	qaA
₋ 5	Arg	Leu 50	Gly	Gln	His	Val	Pro 55	Thr	Leu	His	Pro	Thr 60	Ser	Glu	Glu	Leu
10	Thr 65	Ile	Ala	Gly	Met	Thr 70	Phe	Thr	Thr	Phe	Asp 75	Leu	Gly	Gly	His	Val 80
••	Gln	Ala	Arg	Arg	Val 85	Trp	Lys	Asn	Tyr	Leu 90	Pro	Ala	Ile	Asn	Gly 95	Ile
15	Val	Phe	Leu	Val 100	Asp	Cys	Ala	Asp	His 105	Glu	Arg	Leu	Leu	Glu 110	Ser	Lys
	Glu	Glu	Leu 115	Asp	Ser	Leu	Met	Thr 120	Asp	Glu	Thr	Ile	Ala 125	Asn	Val	Pro
20	Ile	Leu 130	Ile	Leu	Gly	Asn	Lys 135	Ile	Asp	Arg	Pro	Glu 140	Ala	Ile	Ser	Glu
25	Glu 145	Arg	Leu	Arg	Glu	Met 150	Phe	Gly	Leu	Tyr	Gly 1 55	Gln	Thr	Thr	Gly	Lys 160
	Gly	Ser	Ile	Ser	Leu 165	Lys	Glu	Leu	Asn	Ala 170	Arg	Pro	Leu	Glu	Val 175	Phe
30	Met	Cys	Ser	Val 180	Leu	Lys	Arg	Gln	Gly 185	Tyr	Gly	Glu	Gly	Phe 190	Arg	Trp
	Met	Ala	Gln 195	Tyr	Ile	Asp	Xaa									
35																
	(2)	INFO	ORMA	NOI	FOR	SEQ	ID I	VO: 4	149 :							
40			(i) :	(ENCE A) L B) T D) T	ENGT YPE :	H: 2 ami	58 a no a	mino cid		ds					
			(xi)		UENC					EQ I	D NO	: 44	9:			
45	Met 1	Thr	Leu	Ser	Arg 5	Phe	Ala	Tyr	Asn	Gly 10	Lys	Arg	Cys	Pro	Ser 15	Ser
50	Tyr	Asn	Ile	Leu 20	Asp	Asn	Ser	Lys	Ile 25	Ile	Ser	Glu	Glu	Суз 30	Arg	Lys
••	Glu	Leu	Thr 35	Ala	Leu	Leu	His	His 40	Tyr	Tyr	Pro	Ile	Glu 45	Ile	Asp	Pro
55	His	Arg 50	Thr	Val	Lys	Glu	Lys 55	Leu	Pro	His	Met	Val 60	Glu	Trp	Trp	Thr
	Lys 65		His	Asn	Leu	Leu 70	Cys	Gln	Gln	Lys	Ile 75	Gln	Lys	Phe	Gln	Ile 80
60	Ala	Gln	Val	Val	Arg	Glu	Ser	Asn	Ala	Met	Leu	Arg	Glu	Gly	Tyr	Lys

					85					90					95	
-5	Thr	Phe	Phe	Asn 100	Thr	Leu	Tyr	His	Asn 105	Asn	Ile	Pro	Leu	Phe 110	Ile	Phe
•	Ser	Ala	Gly 115	Ile	Gly	Asp	Ile	Leu 120	Glu	Glu	Ile	Ile	Arg 125	Gln	Met	Lys
10	Val	Phe 130	His	Pro	Asn	Ile	His 135	Ile	Val	Ser	Asn	Туг 140	Met	Asp	Phe	Asn
	Glu 145	Asp	Gly	Phe	Leu	Gln 150	Gly	Phe	Lys	Gly	Gln 155	Leu	Ile	His	Thr	Туг 160
15	Asn	Lys	Asn	Ser	Ser 165	Val	Cys	Glu	Asn	Xaa 170	Gly	Tyr	Phe	Gln	Gln 175	Leu
20	Glu	Gly	Lys	Thr 180	Asn	Val	Ile	Leu	Leu 185	Gly	Asp	Ser	Ile	Gly 190	Asp	Leu
	Thr	Met	Ala 195	Asp	Gly	Val	Pro	Gly 200	Val	Gln	Asn	Ile	Leu 205	Lys	Ile	Gly
25	Phe	Leu 210	Asn	Asp	Lys	Val	Glu 215	Glu	Arg	Arg	Xaa	Arg 220	Туг	Met	Asp	Ser
	Tyr 225	Asp	Ile	Val	Leu	Glu 230	Lys	Asp	Glu	Thr	Leu 235	Asp	Val	Val	Asn	Gly 240
30	Leu	Leu	Gln	His	Ile 245	Leu	Cys	Gln	Gly	Val 250	Gln	Leu	Glu	Met	Gln 255	Gly
35	Pro	Xaa														
	(2)	INFO	ORMAT	NOI	FOR	SEQ	ID N	NO: 4	150 :							
40			(i) !	()	A) L B) T	ENGT YPE:	H: 8 ami	ERIST 7 am no a 1in	ino a cid		s					
45			(xi)	SEQ	JENCI	E DES	SCRI	PTIO	N: SI	EQ II	ОИС	: 450):			
15	Met 1	Ser	His	Val	Leu 5	Leu	Суѕ	Pro	Ser	Leu 10	Ser	Cys	Ser	Asn	Leu 15	Leu
50	Pro	Pro	Ser	His 20	Ser	Leu	Gly	Thr	Met 25	Gly	Ser	Leu	Ser	Pro 30	His	Leu
	Cys	Gly	His 35	Thr	Met	Cys	Pro	Val 40	Asn	Pro	Glu	Leu	Pro 45	Leu	Ser	Ser
55	Arg	Leu 50	Thr	Thr	Asp	Gln	Pro 55	Gln	Pro	Asp	Ala	Cys 60	Ser	Pro	Thr	Leu
60	Leu 65	Thr	Leu	Pro	Leu	Pro 70	Ser	Ser	Phe	Leu	Pro 75	His	Ser	Lys	Pro	Thr 80

Phe Xaa His Pro Cys Ser Pro 85

- 5	(2)	INF	ORMA'	TION	FOR	SEQ	ID !	NO:	451:							
10				(A) L B) T D) T	ENGT YPE: OPOL	H: 3 ami OGY:	15 a no a lin	mino cid ear	aci		: 45	1:			
15	Met 1	Phe	Ser	Ile	Asn 5	Pro	Leu	Glu	Asn	Leu 10	Lys	Val	Tyr	Ile	Ser 15	Ser
	Arg	Pro	Pro	Leu 20	Val	Val	Phe	Met	Ile 25	Ser	Val	Xaa	Pro	M et 30	Ala	Ile
20	Ala	Phe	Leu 35	Thr	Leu	Gly	Tyr	Phe 40	Phe	Lys	Ile	Lys	Glu 45	Ile	Lys	Ser
25	Pro	Glu 50	Met	Ala	Glu	Asp	Trp 55	Asn	Thr	Phe	Leu	Leu 60	Arg	Phe	Asn	Asp
	Leu 65	Asp	Leu	Cys	Val	Ser 70	Glu	Asn	Glu	Thr	Leu 75	Lys	His	Leu	Thr	Asn 80
30	Asp	Thr	Thr	Thr	Pro 85	Glu	Ser	Thr	Met	Thr 90	Ser	Gly	Gln	Ala	Arg 95	Ala
	Ser	Thr	Gln	Ser 100	Pro	Gln	Ala	Leu	Glu 105	Asp	Ser	GŢĀ	Pro	Val 110	Asn	Ile
35	Ser	Val	Ser 115	Ile	Thr	Leu	Thr	Leu 120	Asp	Pro	Leu	Lys	Pro 125	Phe	Gly	Gly
40	Tyr	Ser 130	Arg	Asn	Val	Thr	His 135	Leu	Tyr	Ser	Thr	Ile 140	Leu	Gly	His	Gln
	Ile 145	Gly	Leu	Ser	Gly	Arg 150	Glu	Ala	His	Glu	Glu 155	Ile	Asn	Ile	Thr	Phe 160
45	Thr	Leu	Pro	Thr	Ala 165	Trp	Ser	Ser	Asp	Asp 170	Суѕ	Ala	Leu	His	Gly 175	His
	Cys	Glu	Gln	Val 180	Val	Phe	Thr	Ala	Суs 185	Met	Thr	Leu	Thr	Ala 190	Ser	Pro
50	Gly	Val	Phe 195	Pro	Val	Thr	Val	Gln 200	Pro	Pro	His	Cys	Val 205	Pro	Asp	Thr
55	Tyr	Ser 210	Asn	Ala	Thr	Leu	Trp 215	Tyr	Lys	Ile	Phe	Thr 220	Thr	Ala	Arg	Asp
	Ala 225	Asn	Thr	Lys	Туг	Ala 230	Gln	Asp	Tyr	Asn	Pro 235	Phe	Trp	Cys	туг	Lys 240
60	Gly	Ala	Ile	Gly	Lys 245	Val	Tyr	His	Ala	Leu 250	Asn	Pro	Lys	Leu	Thr 255	Val

	Ile	Val	Pro	Asp 260	Asp	Asp	Arg	Ser	Leu 265	Ile	Asn	Leu	His	Leu 270	Met	His
-5	Thr	Ser	Tyr 275	Phe	Leu	Phe	Val	Met 280	Val	Ile	Thr	Met	Phe 285	Cys	Туг	Ala
10	Val	Ile 290	Lys	Gly	Arg	Pro	Ser 295	Lys	Leu	Arg	Gln	Ser 300	Asn	Pro	Glu	Phe
	Cys 305	Pro	Glu	Lys	Val	Ala 310	Leu	Ala	Glu	Ala	Xaa 315					
15	(2)	INF	ORMAT	rion	FOR	SEQ	ID I	NO: 4	1 52:							
20			(i) :	(ENCE A) L B) T D) T UENCI	ENGT YPE: OPOL	H: 5 ami OGY:	2 am no a lin	ino cid ear	acid		: 45	2:	-		
25	Met 1	Pro	Gly	Leu	Ser 5	Leu	Ala	Leu	Leu	Pro 10	Phe	Gly	Pro	Gly	Cys 15	Thr
	Glu	Ala	Leu	His 20	Ala	Gly	Cys	Phe	Pro 25	Ala	Phe	Ala	Ser	Ala 30	Thr	Arg
30	Val	Asn	Gly 35	Glu	Ala	Ala	Leu	Ser 40	Pro	Gly	Leu	Cys	Asp 45	Pro	Ile	Ser
35	Val	Pro 50	Tyr	Val												
40	(2)		ORMAT			_										
••			(1) .	(.	A) Li B) T	ENGT YPE:	H: 3 ami	83 au no a	mino cid		ds					
45			(xi)													
	Met 1	Ala	Val	Gly	Gln 5	Ile	Met	Thr	Phe	Gly 10	Ser	Pro	Val	Ile	Gly 15	Cys
50	Gly	Phe	Ile	Ser 20	Gly	Trp	Asn	Leu	Val 25	Ser	Met	Суз	Val	Glu 30	Tyr	Val
	Leu	Leu	Trp 35	Lys	Val	Tyr	Gln	Lys 40	Thr	Pro	Ala	Leu	Ala 45	Val	Lys	Ala
55	Gly	Leu 50	Lys	Glu	Glu	Glu	Thr 55	Glu	Leu	Lys	Gln	Leu 60	Asn	Leu	His	Lys
60	Asp 65	Thr	Glu	Pro	Lys	Pro 70	Leu	Glu	Gly	Thr	His 75	Leu	Met	Gly	Val	Lys 80

	Asp	Ser	Asn	Ile	His 85	Glu	Leu	Glu	His	Glu 90	Gln	Glu	Pro	Thr	Cys 95	Ala
- 5	Ser	Gln	Met	Ala 100	Glu	Pro	Phe	Arg	Thr 105	Phe	Arg	Asp	Gly	Trp 110	Val	Ser
	Tyr	Туг	Asn 115	Gln	Pro	Val	Phe	Leu 120	Ala	Gly	Met	Gly	Leu 125	Ala	Phe	Leu
10	Tyr	Met 130	Thr	Val	Leu	Gly	Phe 135	Asp	Cys	Ile	Thr	Thr 140	Gly	Tyr	Ala	Тут
15	Thr 145	Gln	Gly	Leu	Ser	Gly 150	Phe	His	Pro	Gln	Туг 155	Phe	Asp	Gly	Ser	Ile 160
	Ser	туг	Asn	Trp	Asn 165	Asn	Gly	Asn	Cys	Ser 170	Phe	Tyr	Leu	Ala	Thr 175	Ser
20	Lys	Met	Trp	Phe 180	Gly	Ser	Ala	Gly	Leu 185	Ile	Ser	Gly	Leu	Ala 190	Gln	Leu
	Ser	Cys	Leu 195	Ile	Leu	Cys	Val	Ile 200	Ser	Val	Phe	Met	Pro 205	Gly	Ser	Pro
25	Leu	Asp 210	Leu	Ser	Val	Ser	Pro 215	Phe	Glu	Asp	Ile	Arg 220	Ser	Arg	Phe	Ile
30	Gln 225	Gly	Glu	Ser	Ile	Thr 230	Pro	Thr	Lys	Ile	Pro 235	Glu	Ile	Thr	Thr	Glu 240
	Ile	Tyr	Met	Ser	Asn 245	Gly	Ser	Asn	Ser	Ala 250	Asn	Ile	Val	Pro	Glu 255	Thr
35	Ser	Pro	Glu	Ser 260	Val	Pro	Ile	Ile	Ser 265	Val	Ser	Leu	Leu	Phe 270	Ala	Gly
	Val	Ile	Ala 275	Ala	Arg	Ile	Gly	Leu 280	Trp	Ser	Phe	Asp	Leu 285	Thr	Val	Thr
40	Gln	Leu 290	Leu	Gln	Glu	Asn	Val 295	Ile	Glu	Ser	Glu	Arg 300	Gly	Ile	Ile	Asn
45	Gly 305	Val	Gln	Asn	Ser	Met 310	Asn	Tyr	Leu	Leu	Asp 315	Leu	Leu	His	Phe	11e 320
	Met	Val	Ile	Leu	Ala 325	Pro	Asn	Pro	Glu	Ala 330	Phe	Gly	Leu	Leu	Val 335	Leu
50	Ile	Ser	Val	Ser 340	Phe	Val	Ala	Met	Gly 345	His	Ile	Met	Tyr	Phe 350	Arg	Phe
	Ala	Gln	Asn 355	Thr	Leu	Gly	Asn	Lys 360	Leu	Phe	Ala	Cys	Gly 365	Pro	Asp	Ala
55	Lys	Glu 370	Val	Arg	Lys	Glu	Asn 375	Gln	Ala	Asn	Thr	Ser 380	Val	Val	Xaa	

- 5			(i) (xi)	(A) L B) T D) T	ENGT YPE : OPOL	H: 1 ami OGY:	86 a no a lin	mino cid ear	aci		: 45	4 :			
10	Met 1	Arg	Ser	Ile	Gly 5	Asn	Lys	Asn	Thr	Ile 10	Leu	Leu	Gly	Leu	Gly 15	Phe
10	Gln	Ile	Leu	Gln 20	Leu	Ala	Trp	Tyr	Gly 25	Phe	Gly	Ser	Glu	Pro 30	Trp	Met
15	Met	Trp	Ala 35	Ala	Gly	Ala	Val	Ala 40	Ala	Met	Ser	Ser	Ile 45	Thr	Phe	Pro
	Ala	Val 50	Ser	Ala	Leu	Val	Ser 55	Arg	Thr	Ala	Asp	Ala 60	Asp	Gln	Gln	Gly
20	Val 65	Val	Gln	Gly	Met	Ile 70	Thr	Gly	Ile	Arg	Gly 75	Leu	Cys	Asn	Gly	Leu 80
25	Gly	Pro	Ala	Leu	Ty r 85	Gly	Phe	Ile	Phe	Т уг 90	Ile	Phe	His	Val	Glu 95	Leu
23	Lys	Glu	Leu	Pro 100	Ile	Thr	Gly	Thr	Asp 105	Leu	Gly	Thr	Asn	Thr 110	Ser	Pro
30	Gln	His	His 115	Phe	Glu	Gln	Asn	Ser 120	Ile	Ile	Pro	Gly	Pro 125	Pro	Phe	Leu
	Phe	Gly 130	Ala	Cys	Ser	Val	Leu 135	Leu	Ala	Leu	Leu	Val 140	Ala	Leu	Phe	Ile
35	Pro 145	Glu	His	Thr	Asn	Leu 150	Ser	Leu	Arg	Ser	Ser 155	Ser	Trp	Arg	Lys	His 160
40	Cys	Gly	Ser	His	Ser 165	His	Pro	His	Asn	Thr 170	Gln	Ala	Pro	Gly	Glu 175	Ala
40	Lys	Glu	Pro	Leu 180	Leu	Gln	Asp	Thr	Asn 185	Val						
45	(2)	INF	orma'	rion	FOR	SEQ	ID 1	NO: 4	155 :							
50				(A) L B) T D) T	ENGT YPE: OPOL	H: 1 ami OGY:	ERIS 63 a no a lin PTIO	mino cid ear	aci		: 45	5 :			
55	Met 1		Gln	Thr	Ser 5	Asn	Туг	Ser	Leu	Val 10	Leu	Ser	Leu	Gln	Phe 15	Leu
	Leu	Leu	Ser	Туг 20		Leu	Phe	Val	Asn 25	Ser	Phe	Ser	Glu	Leu 30	Leu	Gln
60	Lys	Thr	Pro	Val	Ile	Gln	Leu	Val	Leu	Phe	Ile	Ile	Gln	Asp	Ile	Ala

			35					40					45			
-5	Val	Leu 50	Phe	Asn	Ile	Ile	Ile 55	Ile	Phe	Leu	Met	Phe 60	Phe	Asn	Thr	Phe
-3	Val 65	Phe	Gln	Ala	Gly	Leu 70	Val	Asn	Leu	Leu	Phe 75	His	Lys	Phe	Lys	Gly 80
10	Thr	Ile	Ile	Leu	Thr 85	Ala	Val	Tyr	Phe	Ala 90	Leu	Ser	Ile	Ser	Leu 95	His
	Val	Trp	Val	Met 100	Asn	Leu	Arg	Trp	Lys 105	Asn	Ser	Asn	Ser	Phe 110	Ile	Trp
15	Thr	Asp	Gly 115	Leu	Gln	Met	Leu	Phe 120	Val	Phe	Gln	Arg	Leu 125	Ala	Ala	Val
20	Leu	Туг 130	Cys	Tyr	Phe	Tyr	Lys 135	Arg	Thr	Ala	Val	Arg 140	Leu	Gly	Asp	Pro
20	His 145	Phe	Tyr	Gln	Asp	Ser 150	Leu	Trp	Leu	Arg	Lys 155	Glu	Phe	Met	Gln	Val 160
25	Arg	Arg	Xaa													
	(2)	TNEC	ימאפר	rion	FOR	SEO	א חז	io. /	156.							
30	(2)			SEQUI	ENCE	CHAI	RACTI	ERIS	rics							
				(A) L B) T	YPE:	ami	no a	cid	acıd	S					
35			(xi)	SEQ	D) TY					EQ II	ON C	: 456	ó :			
	Met 1	Arg	Ile	Gln	Val 5	Phe	Ile	Leu	Leu	Leu 10	Gly	Ala	Gly	Gly	Thr 15	Ser
40	Gln	Phe	Thr	Lys 20	Pro	Pro	Ser	Leu	Pro 25	Leu	Glu	Pro	Glu	Pro 30	Ala	Val
45	Glu	Ser	Ser 35	Pro	Thr	Glu	Thr	Ser 40	Glu	Gln	Ile	Arg	Glu 45	Lys		
	(2)	INFO	ORMAT	rion	FOR	SEQ	ID N	NO: 4	157 :							
50			(i) :		ENCE A) L B) T	ENGT	н: 1	05 a	mino		ds					
55			(xi)		T (C	OPOL	OGY:	lin	ear	EQ I	D NO	: 4 5	7 :			
	Met 1	Ser	Туг	Leu	Ala 5	Phe	Leu	Tyr	Met	Thr 10	Phe	Asp	Phe	Cys	Сув 15	Leu
60	Тут	Phe	Ser	Thr 20	Val	Tyr	Ala	Pro	Ser 25	Phe	Lys	Tyr	Ile	Cys 30	Val	His

	Thr	Asp	Thr 35		Ile	Cys	Val	Cys 40		Cys	Ile	Тух	Leu 45	Ser	Ser	Va]
- 5	Val	Ser 50	Lys	Ser	Ser	Ala	Glu 55		Asp	Gly	Val	Leu 60		Pro	Arg	Arg
10	His 65		Ala	Ser	Leu	Leu 70		Val	Phe	Ala	Thr 75	Ser	Ile	Ser	Glu	Ser 80
	Ser	Leu	Leu	Ile	Phe 85	Ser	Phe	Gln	Lys	Thr 90	Glu	Ala	Lys	Leu	Ile 95	Val
15	Phe	Ala	Val	Ser 100	Leu	Ala	Ala	Lys	Xaa 105							
20	(2)	INF	ORMA	SEQU		СНА	RACT	ERIS	TICS		s					
25			(xi)	(B) T D) T UENC	OPOL	OGY:	lin	ear	EQ II	D NO	: 45	8:			
	Met 1	Leu	Pro	Pro	Phe 5	Ser	Leu	Val	Tyr	Thr 10	His	Phe	Leu	Val	Ala 15	Ser
30	Leu	Leu	Pro	Val 20	Ile	Leu	Ala	Val	Phe 25	Pro	Asp	Ser	Ala	Gln 30	Ile	Val
35	Pro	Leu	Leu 35	Lys	Pro	Ile	Pro	Arg 40	Pro	Gln	Pro	Glu	Val 45	Ile	Phe	Pro
	Ser	Ser 50	Glu	Leu	Leu	Glu	Gln 55	Leu	Leu	Ser	Val	Gln 60	Phe	Val	Trp	Gln
40	Ala 65	His	Thr	Val	Ala	Xaa 70										
45	(2)		ORMAI	SEQUE		CHAI ENGT	RACTE	ERIST	PICS:		ds					
50			(xi)		D) TY JENCI					EQ II	NO:	459);			
	Met 1	Ala	Leu	Leu	Leu 5	Ser	Val	Leu	Arg	Val 10	Leu	Leu	Gly	Gly	Phe 15	Phe
55	Ala	Leu	Val	Gly 20	Leu	Ala	Lys	Leu	Ser 25	Glu	Glu	Ile	Ser	Ala 30	Pro	Val
60	Ser	Glu	Arg 35	Met	Asn	Ala	Leu	Phe 40	Val	Gln	Phe	Ala	Glu 45	Val	Phe	Pro

	rea	50	Val	FILE	GIY	туг	55	PIO	АЗР	Pro	Leu	Asn 60	Tyr	Gin	Ile	Ala
.5	Val 65	Gly	Phe	Leu	Glu	Leu 70	Leu	Ala	Gly	Leu	Leu 75	Leu	Val	Met	Gly	Pro 80
	Pro	Met	Leu	Gln	Glu 85	Ile	Ser	Asn	Leu	Phe 90	Leu	Ile	Leu	Leu	Met 95	Met
10	Gly	Ala	Ile	Phe 100	Thr	Leu	Ala	Ala	Leu 105	Lys	Glu	Ser	Leu	Ser 110	Thr	Cys
15	Ile	Pro	Ala 115	Ile	Val	Cys	Leu	Gly 120	Phe	Leu	Leu	Leu	Leu 125	Asn	Val	Gly
	Gln	Leu 130	Leu	Ala	Gln	Thr	Lys 135	Lys	Val	Val	Arg	Pro 140	Thr	Arg	Lys	Lys
20	Thr 145	Leu	Ser	Thr	Phe	Lys 150	Glu	Ser	Trp	Lys	Xaa 155					
	(2)	TNE	ORMAT	יז רוא	ROR	SEO	א כוד	in. 4	160 -							
25	. (2)		(i) :	SEQUI	ENCE	CHAI	RACTI	ERIS.	rics							
30			(- :)	() ()	B) T D) T	YPE: OPOL	ami OGY:	no a	cid ear	aci		4.5.4	_			
50			(xi)							_						
	Met 1	Lys	Leu	Gly	Arg 5	Ala	Val	Leu	Gly	Leu 10	Leu	Leu	Leu	Ala	Pro 15	Ser
35	Val	Val	Gln	Ala 20	Val	Glu	Pro	Ile	Ser 25	Leu	Gly	Leu	Ala	Leu 30	Ala	Gly
40	Val	Leu	Thr 35	Gly	Туг	Ile	Тут	Pro 40	Arg	Leu	Tyr	Cys	Leu 45	Phe	Ala	Glu
	Cys		Glv	Gln	Lvc	3	C									
		50	,	GIII	Dys	Arg	55	Leu	Ser	Arg	Glu	Ala 60	Leu	Gln	Lys	Asp
45	Leu 65						55					60			Lys Ile	_
45	65	Asp	Asp	Asn	Leu	Phe 70	55 Gly	Gln	His	Leu	Ala 75	60 Lys	Lys	Ile		Leu 80
50	65 Asn	Asp Ala	Asp Val	Asn Phe	Leu Gly 85	Phe 70 Phe	55 Gly Ile	Gln Asn	His Asn	Leu Pro 90	Ala 75 Lys	60 Lys Pro	Lys Lys	Ile Lys	Ile Pro	Leu 80 Leu
	65 Asn Thr	Asp Ala Leu	Asp Val Ser	Asn Phe Leu 100	Leu Gly 85 His	Phe 70 Phe Gly	55 Gly Ile Trp	Gln Asn Thr	His Asn Gly 105	Leu Pro 90 Thr	Ala 75 Lys Gly	60 Lys Pro Lys	Lys Lys Asn	Ile Lys Phe 110	Ile Pro 95	Leu 80 Leu Ser
50	Asn Thr Lys	Asp Ala Leu Ile	Asp Val Ser Ile 115	Asn Phe Leu 100 Ala	Leu Gly 85 His	Phe 70 Phe Gly Asn	55 Gly Ile Trp	Gln Asn Thr Tyr 120	His Asn Gly 105 Glu	Pro 90 Thr	Ala 75 Lys Gly	60 Lys Pro Lys Leu	Lys Lys Asn Asn 125	Ile Lys Phe 110 Ser	Ile Pro 95 Val	Leu 80 Leu Ser

	Ala	Cys	Ala	Arg	Ser 165	Ile	Phe	Ile	Phe	Asp 170	Glu	Met	Asp	Lys	Met 175	His
5	Ala	Gly	Leu	Ile 180	Asp	Ala	Ile	Lys	Pro 185	Phe	Leu	Asp	Туг	Туг 190	Asp	Leu
10	Val	Asp	Gly 195	Val	Ser	Tyr	Gln	Lys 200	Ala	Met	Phe	Ile	Phe 205	Leu	Ser	Asn
	Ala	Gly 210	Ala	Glu	Arg	Ile	Thr 215	Asp	Val	Ala	Leu	Asp 220	Phe	Trp	Arg	Ser
15	Gly 225	Lys	Gln	Arg	Glu	Asp 230	Ile	Lys	Leu	Lys	Asp 235	Ile	Glu	His	Ala	Leu 240
	Ser	Val	Ser	Val	Phe 245	Asn	Asn	Lys	Asn	Ser 250	Gly	Phe	Trp	His	Ser 255	Ser
20	Leu	Ile	Asp	Arg 260	Asn	Leu	Ile	Asp	Туг 265	Phe	Val	Pro	Phe	Leu 270	Pro	Leu
25	Glu	Tyr	Lys 275	His	Leu	Lys	Met	Cys 280	Ile	Arg	Val	Glu	Met 285	Gln	Ser	Arg
	Gly	Туг 290	Glu	Ile	Asp	Glu	A sp 295	Ile	Val	Ser	Arg	Val 300	Ala	Glu	Glu	Met
30	Thr 305	Phe	Phe	Pro	Lys	Glu 310	Glu	Arg	Val	Phe	Ser 315	Asp	Lys	Gly	Cys	Lys 320
	Thr	Val	Phe	Thr	Lys 325	Leu	Asp	Tyr	Tyr	Туr 330	Asp	Asp				
35	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO: 4	461:							
40			(i)	- (ENCE A) L B) T D) T	ENGT YPE:	H: 5 ami	ami no a	no a		ı					
			(xi)	SEQ						EQ I	D NO	: 46	1:			
45	Met 1		Lys	Cys	Ile 5											
50	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	462:							
			(i)	+	(A) I (B) 1	ENGI TYPE :	H: I	L4 an ino a	mino acid		ls					
55			(xi)	SEC	(D) 1					EQ I	D NC	: 46	52 :			
60	Met 1		e Leu	Thr	Leu 5		Ser	Val	Val	Ser 10		Met	Ala	Ser		

	(2)	INFO	ORMAT	NOI	FOR	SEQ	ID 1	10:4	163:							
-5			(i) :	(:	A) L B) T	engt Ype :	H: 2		mino cid		ds			•		
			(xi)	-	-					EQ II	on c	: 46	3:			
10	Met 1	Lys	Leu	His	Pro 5	Pro	Pro	Pro	Ser	Pro 10	Val	Thr	Gln	Asp	His 15	Arg
15	Ser	Lys	Ser	Ser 20	His	Ser	Asn	Trp	Met 25	Pro	Arg	Met	Gly	Ala 30	Cys	Ser
	Met	Ser	Arg 35	Thr	Ser	Ser	Ser	Gly 40	Pro	Pro	Ser	Leu	Cys 45	Lys	Ser	Thr
20	Ser	Gly 50	Arg	Ser	Суз	Thr	Arg 55	Pro	His	Cys	Trp	Pro 60	Ser	Leu	Pro	Ala
25	Trp 65	Val	Ser	Val	Phe	Thr 70	Arg	Thr	Asn	Thr	Gly 75	Ser	Trp	Суз	Tyr	Pro 80
23	Ala	Trp	Gly	Gly	Ala 85	Phe	Ser	Arg	Pro	Trp 90	Met	Ser	Ala	Gln	Ser 95	Met
30	Cys	Cys	Ala	Glu 100	Arg	Ser	Val	Leu	Gln 105	Val	Ala	Cys	Arg	Leu 110	Leu	Asp
	Ala	Leu	Glu 115	Phe	Leu	His	Glu	Asñ 120	Glu	Tyr	Val	His	Gly 125	Asn	Val	Thr
35	Ala	Glu 130	Asn	Ile	Phe	Val	Asp 135	Pro	Glu	Asp	Gln	Ser 140	Gln	Val	Thr	Leu
40	Ala 145	Gly	Туг	Gly	Phe	Ala 150	Phe	Arg	Tyr	Cys	Pro 155	Ser	Gly	Lys	His	Val 160
70	Ala	Tyr	Val	Glu	Gly 165	Ser	Arg	Ser	Pro	His 170	Glu	Gly	Asp	Leu	Glu 175	Phe
45	Ile	Ser	Met	Asp 180	Leu	His	Lys	Gly	Cys 185	Gly	Pro	Ser	Arg	Arg 190	Xaa	Asp
	Leu	Gln	Ser 195	Leu	Gly	Tyr	Суз	Met 200	Leu	Lys	Trp	Leu	Tyr 205	Gly	Phe	Leu
50	Pro	Trp 210		Asn	Cys	Leu	Pro 215		Xaa	Glu	Asp	Ile 220	Met	Lys	Gln	Lys
55	Gln 225		Phe	Val	Asp	Lys 230		Gly	Pro	Phe	Val 235		Pro	Cys	Gly	His 240
<i>))</i>	Trp	Ile	Arg	Pro	Ser 245		Thr	Leu	Gln	Lys 250		Leu	Lys	Val	Val 255	Met
60	Ala	Leu	Thr	Тут 260		Glu	Lys	Pro	Pro 265		Ala	Met	Leu	Arg 270		Asn

	Leu	Glu	Ala 275	Leu	Leu	Gln	Asp	Leu 280	Arg	Val	Ser	Pro	Туг 285			
-5																
	(2)	INF	ORMA	rion	FOR	SEQ	ID I	NO: 4	164 :							
10			(i) ;	(A) L B) T D) T	ENGT YPE: OPOL	H: 8 ami OGY:	0 am no a lin	ino cid ear	acid		: 46	4:			
15	Met 1	Thr	Ser	Pro	Pro 5	Pro	His	Gln	Gly	Trp 10	Glu	Gln	Arg	Gly	Cys 15	Gly
20	Glu	Ser	Gln	Val 20	Pro	Leu	Ala	Leu	Ser 25	Arg	Val	Phe	Ser	Thr 30	Ser	His
20	Tyr	Cys	Leu 35	Leu	Leu	Val	Ala	Asn 40	Gln	Ser	Ile	Phe	Phe 45	Pro	Суѕ	Leu
25	Trp	Ala 50	Val	Glu	Arg	Leu	Leu 55	Gly	Val	Arg	Cys	Thr 60	Cys	Pro	Leu	Ser
	Trp 65	Gly	Lys	Arg	Ile	Ile 70	Ser	Glu	His	Cys	Ser 75	Ala	Gln	Ser	Ser	Xaa 80
30																
35	(2)	INF	ORMA	rion	FOR	SEQ	ID I	NO: 4	165 :							
40				(A) L B) T D) T	ENGT YPE: OPOL	H: 4 ami OGY:	7 am no a lin	ino cid ear	acid		: 46	5:			
45	Met 1		Thr	Trp	Tyr 5	Asn	Asp	Arg	Arg	Gln 10	Asn	Cys	His	Cys	Leu 15	Leu
73	Phe	Phe	Leu	Ile 20	Tyr	Leu	Arg	Lys	Ile 25	Tyr	Gln	Val	Val	Pro 30	His	Val
50	Pro	Leu	Leu 35		Lys	Cys	Arg	Gly 40	Arg	Leu	Lys	Gly	Val 45	Asn	Ile	
55	(2)	INF	ORMA	SEQU	ENCE	СНА	RACT		TICS		la.					
60			(xi)	(B) 1	YPE :	ami : YDO	no a	cid ear			: 46	6:			

	Me	t G] 1	lu L∈	eu Va	ıl Le	u Va 5	l Ph	e Le	u Cy	s Se 1		u Le	eu A	la Pi		et Val
5	Le	u Al	.a S∈	er Al 2	a Al 0	a Gl	u Ly	rs Gl	u Ly 2		u Me	t As	p Pı		ne Hi	is Tyr
10	As	р Ту	r Gl 3	n Th 5	r Le	u Ar	g Il	e Gl 4		y Le	u Va	l Ph		a Va 5	il Va	ıl Leu
	Ph	e Se 5	r Va O	1 G1	y Il	e Le	u Le	u Il 5	e Le	u Sei	r Ar	g Ar 6		s Ly	г Су	s Ser
15	Pho 6	e As 5	n Gl	n Ly	s Pro	7 Ar	g Ala O	a Pr	o Gly	/ Ası	79 79		u Al	a Gl	n Va	1 Glu 80
	Ası	n Le	u Ile	e Th	r Ala	a Ası	n Ala	a Thi	r Glu	Pro 90		ı Ly:	s Al	a Gl	u As 9	n Xaa 5
20																
25	(2)	INE	FORMA	ATION	1 FOR	SEÇ) ID	NO:	467:							
30			(i)		JENCE (A) I	YPE:	TH: 3	399 a ino a	mino acid		.ds					
50			(xi)		(D) I					EQ I	D NO	: 46	7 :			
35	Met 1	Ala	Ser	Gly	Ala 5	Asp	Ser	Lys	Gly	Asp 10	Asp	Leu	Ser	Thr	Ala 15	Ile
	Leu	Lys	Gln	Lys 20	Asn	Arg	Pro	Asn	Arg 25	Leu	Ile	Val	Asp	Glu 30		Ile
40	Asn	Glu	Asp 35	Asn	Ser	Val	Val	Ser 40	Leu	Ser	Gln	Pro	Lys 45	Met	Asp	Glu
	Leu	Gln 50	Leu	Phe	Arg	Gly	Asp 55	Thr	Val	Leu	Leu	Lys 60	Gly	Lys	Lys	Arg
45	Arg 65	Glu	Ala	Val	Cys	Ile 70	Val	Leu	Ser	Asp	Asp 75	Thr	Cys	Ser	Asp	Glu 80
50	Lys	Ile	Arg	Met	Asn 85	Arg	Val	Val	Arg	Asn 90	Asn	Leu	Arg	Val	Arg 95	Leu
	Gly	Asp	Val	Ile 100	Ser	Ile	Gln	Pro	Cys 105	Pro	Asp	Val	Lys	Туг 110	Gly	Lys
55	Arg	Ile	His 115	Val	Leu	Pro	Ile	Asp 120	Asp	Thr	Val	Glu	Gly 125	Ile	Thr	Gly
	Asn	Leu 130	Phe	Glu	Val	Tyr	Leu 135	Lys	Pro	Tyr	Phe	Leu 140	Glu	Ala	Tyr	Arg
60	Pro	Ile	Arg	Lys	Gly	Asp	Ile	Phe	Leu	Va 1	Ara	Gly	Clv	Mot	λ	N1-

	145					150					155					160
-5	Val	Glu	Phe	Lys	Val 165	Val	Glu	Thr	Asp	Pro 170	Ser	Pro	Тут	Cys	Ile 175	Val
3	Ala	Pro	Asp	Thr 180	Val	Ile	His	Cys	Glu 185	Gly	Glu	Pro	Ile	Lys 190	Arg	Glu
10	Asp	Glu	Glu 195	Glu	Ser	Leu	Asn	Glu 200	Val	Gly	Туг	Asp	Asp 205	Ile	Gly	Gly
	Cys	Arg 210	Lys	Gln	Leu	Ala	Gln 215	Ile	Lys	Glu	Met	Val 220	Glu	Leu	Pro	Leu
15	Arg 225	His	Pro	Ala	Leu	Phe 230	Lys	Ala	Ile	Gly	Val 235	Lys	Pro	Pro	Arg	Gly 240
20	Ile	Leu	Leu	Туг	Gly 245	Pro	Pro	Gly	Thr	Gly 250	Lys	Thr	Leu	Ile	Ala 255	Arg
	Ala	Val	Ala	Asn 260	Glu	Thr	Gly	Ala	Phe 265	Phe	Phe	Leu	Ile	Asn 270	Gly	Pro
25	Glu	Ile	Met 275	Ser	Lys	Leu	Ala	Gly 280	Glu	Ser	Glu	Ser	Asn 285	Leu	Arg	Lys
	Ala	Phe 290	Glu	Glu	Ala	Glu	Lys 295	Asn	Ala	Pro	Ala	Ile 300	Ile	Phe	Ile	Asp
30	Glu 305	Leu	Asp	Ala	Ile	Ala 310	Pro	Lys	Arg	Glu	Lys 315	Thr	His	Gly	Glu	Val 320
35	Glu	Arg	Arg	Ile	Val 325	Ser	Gln	Leu	Leu	Thr 330	Leu	Met	Asp	Gly	Leu 335	Lys
	Gln	Arg	Ala	His 340	Val	Ile	Val	Met	Ala 345	Ala	Thr	Asn	Arg	Pro 350	Asn	Ser
40	Ile	Asp	Pro 355	Ala	Leu	Arg	Arg	Phe 360	Gly	Arg	Phe	Asp	Arg 365	Glu	Val	Asp
	Ile	Gly 370	Ile	Pro	Asp	Ala	Thr 375	Gly	Arg	Leu	Glu	Ile 380	Leu	Gln	Ile	His
45	Thr 385	Lys	Asn	Met	Lys	Leu 390	Ala	Asp	Asp	Val	Asp 395	Leu	Glu	Gln	Xaa	
50	(2)	TNF	ORMA'	TON	FOR	SEO	TD 1	NO ·	168·							
	,.,	,		SEQU	ENCE	СНА	RACT	ERIS	TICS							
55			(xi)	(A) L B) T D) T UENC	YPE: OPOL	ami OGY:	no a lin	cid ear			: 46	8 :			
	Leu															

WO 98/39448

	(2)	INF	JKMA'.	LION	FOR	SEQ	ID I	NO: 4	109:							
-5			(i) :	(A) L B) T D) T	ENGT YPE : OPOL	H: 2 ami OGY:	73 a no a lin	mino cid ear	aci		: 46	9:			
10	Met 1		Ala							-				Leu	Gly 15	Leu
15	Pro	Pro	Leu	Leu 20	Leu	Leu	Thr	Met	Ala 25	Leu	Ala	Gly	Gly	Ser 30	Gly	Thr
	Ala	Ser	Ala 35	Glu	Ala	Phe	Asp	Ser 40	Val	Leu	Gly	Asp	Thr 45	Ala	Ser	Cys
20	His	Arg 50	Ala	Cys	Gln	Leu	Thr 55	Tyr	Pro	Leu	His	Thr 60	Tyr	Pro	Lys	Glu
25	Glu 65	Glu	Leu	Tyr	Ala	Суs 70	Gln	Arg	Gly	Cys	Arg 75	Leu	Phe	Ser	Ile	Cys 80
	Gln	Phe	Val	Asp	Asp 85	Gly	Ile	Asp	Leu	Asn 90	Arg	Thr	Lys	Leu	Glu 95	Cys
30	Glu	Ser	Ala	Cys 100	Thr	Glu	Ala	Tyr	Ser 105	Gln	Ser	Asp	Glu	Gln 110	Tyr	Ala
	Cys	His	Leu 115	Gly	Cys	Gln	Asn	Gln 120	Leu	Pro	Phe	Ala	Glu 125	Leu	Arg	Gln
35	Glu	Gln 130	Leu	Met	Ser	Leu	Met 135	Pro	Lys	Met	His	Leu 140	Leu	Phe	Pro	Leu
10	Thr 145	Leu	Val	Arg	Ser	Phe 150	Trp	Ser	Asp	Met	Met 155	Asp	Ser	Ala	Gln	Ser 160
	Phe	Ile	Thr	Ser	Ser 165	Trp	Thr	Phe	Tyr	Leu 170	Gln	Ala	Asp	Asp	Gly 175	Lys
45	Ile	Val	Ile	Phe 180	Xaa	Ser	Lys	Pro	Arg 185	Asn	Pro	Arg	Tyr	Ala 190	Pro	His
	Leu	Glu	Pro 195	Gly	Ala	Leu	Pro	Asn 200	Leu	Хаа	Xaa	Xaa	Ser 205	Leu	Ser	Lys
50	Met	Ser 210	Xaa	Xaa	Ser	Xaa	Met 215	Arg	Asn	Ser	Gln	Ala 220	His	Arg	Asn	Phe
55	Leu 225	Glu	Asp	Gly	Glu	Ser 230	Asp	Gly	Phe	Leu	Arg 235	Cys	Leu	Ser	Leu	Asn 240
	Ser	Gly	Trp	Ile	Leu 245	Thr	Thr	Thr	Leu	Val 250	Leu	Ser	Val	Met	Val 255	Leu
60	Leu	Trp	Ile	Cys 260	Cys	Ala	Thr	Cys	Cys 265		Thr	Leu	Leu	Asp 270	Ala	Val

Xaa

-5

(2)	INFORMATION	FOR	SEO	TD	NO:	470

(i) SEQUENCE CHARACTERISTICS:

10 (A) LENGTH: 192 amino acids

- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 470:
- Met Met Val Leu Ser Leu Gly Ile Ile Leu Ala Ser Ala Ser Phe Ser $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Pro Asn Phe Thr Gln Val Thr Ser Thr Leu Leu Asn Ser Ala Tyr Pro 20 25 30

20

Phe Ile Gly Pro Phe Phe Phe Ile Ile Ser Gly Ser Leu Ser Ile Ala 35 40 45

Thr Glu Lys Arg Leu Thr Lys Leu Leu Val His Ser Ser Leu Val Gly 25 50 55 60

Ser Ile Leu Ser Ala Leu Ser Ala Leu Val Gly Phe Ile Ile Leu Ser 65 70 75 80

- 30 Val Lys Gln Ala Thr Leu Asn Pro Ala Ser Leu Gln Cys Glu Leu Asp
- Lys Asn Asn Ile Pro Thr Arg Ser Tyr Val Ser Tyr Phe Tyr His Asp $100 \hspace{1cm} 105 \hspace{1cm} 110$

Ser Leu Tyr Thr Thr Asp Cys Tyr Thr Ala Lys Ala Ser Leu Ala Gly

Val Leu Thr Ala Val Leu Arg Trp Lys Gln Ala Tyr Ser Asp Phe Pro 145 150 155 160

- 45 Gly Ser Val Leu Phe Leu Pro His Ser Tyr Ile Gly Asn Ser Gly Met 165 170 175
 - Ser Ser Lys Met Thr His Asp Cys Gly Tyr Glu Glu Leu Leu Thr Ser 180 185 190

50

55
(2) INFORMATION FOR SEQ ID NO: 471:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 234 amino acids
- 60 (B) TYPE: amino acid

			(xi)	SEQ	D) T					EQ I	D NO	: 47	1:			
-5	Met 1	Arg	Lys	Thr	Arg 5	Leu	Trp	Gly	Leu	Leu 10	Trp	Met	Leu	Phe	Val 15	Ser
	Glu	Leu	Arg	Ala 20	Ala	Thr	Lys	Leu	Thr 25	Glu	Glu	Lys	Tyr	Glu 30	Leu	Lys
10	Glu	Gly	Gln 35	Thr	Leu	Asp	Val	Lys 40	Суѕ	Asp	Tyr	Thr	Leu 45	Glu	Lys	Phe
15	Ala	Ser 50	Ser	Gln	Lys	Ala	Trp 55	Gln	Ile	Ile	Arg	Asp 60	Gly	Glu	Met	Pro
15	Lys 65	Thr	Leu	Ala	Cys	Thr 70	Glu	Arg	Pro	Ser	Lys 75	Asn	Ser	His	Pro	Val 80
20	Gln	Val	Gly	Arg	Ile 85	Ile	Leu	Glu	Asp	Туг 90	His	Asp	His	Gly	Leu 95	Leu
	Arg	Val	Arg	Met 100	Val	Asn	Leu	Gln	Val 105	Glu	Asp	Ser	Gly	Leu 110	Tyr	Gln
25	Cys	Val	Ile 115	Tyr	Gln	Pro	Pro	Lys 120	Glu	Pro	His	Met	Leu 125	Phe	Asp	Arg
30	Ile	Arg 130	Leu	Val	Val	Thr	Lys 135	Gly	Phe	Ser	Gly	Thr 140	Pro	Gly	Ser	Asn
	Glu 145	Asn	Ser	Thr	Gln	Asn 150	Val	тут	Lys	Ile	Pro 155	Pro	Thr	Thr	Thr	Lys 160
35	Ala	Leu	Cys	Pro	Leu 165	Tyr	Thr	Ser	Pro	Arg 170	Thr	Val	Thr	Gln	Ala 175	Pro
	Pro	Lys	Ser	Thr 180	Ala	Asp	Val	Ser	Thr 185	Pro	Ąsp	Ser	Glu	Ile 190	Asn	Leu
40	Thr	Asn	Val 195	Thr	Asp	Ile	Ile	Arg 200	Val	Pro	Val	Phe	Asn 205	Ile	Val	Ile
45	Leu	Leu 210	Ala	Gly	Gly	Phe	Leu 215	Ser	Lys	Ser	Leu	Val 220	Phe	Ser	Val	Leu
	Phe 225	Ala	Val	Thr	Leu	Arg 230	Ser	Phe	Val	Pro						
50	(2)	INF	ORMA'	rion	FOR	SEQ	ID	NO: 4	4 72 :							
			(i)	SEQU (ENCE A) L						ds					
55			(xi)		B) T D) T UENC	OPOL	OGY :	lin	ear	EQ I	D NO	: 47	2:			
60	Met 1		His	Ile	Leu 5	Pro	Leu	Lys	Ser	Tyr 10	qaA	Phe	Pro	His	Phe 15	Ser

	Leu	Met	Gly	Arg 20	Tyr	Arg	Cys	Ala	Ser 25	Leu	Leu	Phe	Cys	Phe 30	Leu	Leu
- 5	Leu	Phe	Phe 35	Phe	Phe	Cys	Ser	Val 40	Leu	Trp	Thr	Phe	Ser 45	Asp	Met	His
10	Arg	Ser 50	Gly	Glu	Asp	Gly	Pro 55	Trp	Thr	Pro	Cys	Val 60	His	His	Leu	Ala
	Ala 65	Ser	Leu	Ile	Ser	Тут 70	Gly	Gln	Pro	Gly	Phe 75	Ile	Cys	Ile	Ser	Leu 80
15	Phe	Ser	Pro	Val	Leu 85	Phe	Ile	Glu	Asn	Pro 90	Arg	His	Tyr	Ala	Asn 95	Ala
	Thr	Val	Thr	Thr 100	Leu	Gly	Asp	Trp	X aa 105							
20																
	(2)	INFO	ORMAT	NOI	FOR	SEQ	ID 1	NO: 4	173 :							
25			(i)	()	A) L B) T D) T	ENGT YPE: OPOL	H: 3 ami: OGY:	2 am no a lin	ino d cid ear	acid		: 47:	3:			
30	Met 1	Val	Phe	Leu	Lys 5	Tyr	Arg	Phe	Leu	Phe 10	Phe	Leu	Val	Phe	Leu 15	Ala
35	Asn	Cys	Ile	Tyr 20	Ser	Leu	His	тут	Lys 25	Pro	Ser	Leu	Met	Туг 30	Pro	Lys
40	(2)	INFO	DRMAT	NOI	FOR	SEQ	ID N	Ю: 4	174:							
45			(i) S (xi)	() () ()	A) Li B) T	ENGT YPE : OPOLA	H: 5' ami OGY:	71 au no a lin	mino cid ear	acio		: 474	1:			
50	Met 1	Ala	Leu	Ser	Arg 5	Gly	Leu	Pro	Arg	Glu 10	Leu	Ala	Glu	Ala	Val 15	Ala
	Gly	Gly	Arg	Val 20	Leu	Val	Val	Gly	Ala 25	Gly	Gly	Ile	G1y	Cys 30	Glu	Leu
55	Leu	Lys	Asn 35	Leu	Val	Leu	Thr	Gly 40	Phe	Ser	His	Ile	Asp 45	Leu	Ile	Ąsp
60	Leu	Asp 50	Thr	Ile	Asp	Val	Ser 55	Asn	Leu	Asn	Arg	Gln 60	Phe	Leu	Phe	Gln

	Lys 65	Lys	His	Val	. Gly	Arg 70		Lys	Ala	Glr	Val 75		Lys	Glu	Ser	Val 80
_5	Leu	Gln	Phe	Tyr	Pro 85		Ala	Asn	Ile	Val 90		Tyr	His	Asp	Ser 95	·Ile
	Met	Asn	Pro	Asp 100		Asn	Val	Glu	Phe 105		Arg	Gln	Phe	Ile 110	Leu	Val
10	Met	Asn	Ala 115	Leu	Asp	Asn	Arg	Ala 120	Ala	Arg	Asn	His	Val 125	Asn	Arg	Met
15	Cys	Leu 130	Ala	Ala	Asp	Val	Pro 135	Leu	Ile	Glu	Ser	Gly 140	Thr	Ala	Gly	Tyr
	Leu 145	Gly	Gln	Val	Thr	Thr 150	Ile	Lys	Lys	Gly	Val 155	Thr	Glu	Суз	Tyr	Glu 160
20	Cys	His	Pro	Lys	Pro 165	Thr	Gln	Arg	Thr	Phe 170	Pro	Gly	Cys	Thr	Ile 175	Arg
	Asn	Thr	Pro	Ser 180	Glu	Pro	Ile	His	Cys 185	Ile	Val	Trp	Ala	Lys 190	Tyr	Leu
25	Phe	Asn	Gln 195	Leu	Phe	Gly	Glu	Glu 200	Asp	Ala	Asp	Gln	Glu 205	Val	Ser	Pro
30	Asp	Arg 210	Ala	Asp	Pro	Glu	Ala 215	Ala	Trp	Glu	Pro	Thr 220	Glu	Ala	Glu	Ala
	Arg 225	Ala	Arg	Ala	Ser	Asn 230	Glu	Asp	Gly	Asp	11e 235	Lys	Arg	Ile	Ser	Thr 240
35	Lys	Glu	Trp	Ala	Lys 245	Ser	Thr	Gly	Tyr	Asp 250	Pro	Val	Lys	Leu	Phe 255	Thr
	Lys	Leu	Phe	Lys 260	Asp	Asp	Ile	Arg	Tyr 265	Leu	Leu	Thr	Met	Asp 270	Lys	Leu
40	Trp	Arg	Lys 275	Arg	Lys	Pro	Pro	Val 280	Pro	Leu	Asp		Ala 285	Glu	Val	Gln
45	Ser	Gln 290	Gly	Glu	Glu	Thr	Asn 295	Ala	Ser	Asp	Gln	Gln 300	Asn	Glu	Pro	Gln
	Leu 305	Gly	Leu	Lys	Asp	Gln 310	Gln	Val	Leu	Asp	Val 315	Lys	Ser	Tyr	Ala	Arg 320
50	Leu	Phe	Ser	Lys	Ser 325	Ile	Glu	Thr	Leu	Arg 330	Val	His	Leu	Ala	Glu 335	Lys
	Gly	Asp	Gly	Ala 340	Glu	Leu	Ile		Asp 345	Lys	Asp	Asp	Pro	Ser 350	Ala	Met
55	Asp	Phe	Val 355	Thr	Ser	Ala	Ala	Asn 360	Leu	Arg	Met		Ile 365	Phe	Ser	Met
60	Asn	Met 370	Lys	Ser	Arg		Asp 375	Ile	Lys	Ser	Met	Ala 380	Gly	Asn	Ile	Ile

	Pro 385		Ile	Ala	Thr	Thr 390		Ala	Val	Ile	Ala 395		Leu	Ile	Val	Leu 400
_5	Glu	Gly	Leu	Lys	Ile 405	Leu	Ser	Gly	Lys	Ile 410		Gln	Cys	Arg	Thr 415	
	Phe	Leu	Asn	Lys 420	Gln	Pro	Asn	Pro	Arg 425	Lys	Lys	Leu	Leu	Val 430	Pro	Cys
10	Ala	Leu	Asp 435	Pro	Pro	Asn	Pro	Asn 440	Cys	Tyr	Val	Cys	Ala 445	Ser	Lys	Pro
15	Glu	Val 450	Thr	Val	Arg	Leu	Asn 455	Val	His	Lys	Val	Thr 460	Val	Leu	Thr	Leu
••	Gln 465	Asp	Lys	Ile	Val	Lys 470	Glu	Lys	Phe	Ala	Met 475	Val	Ala	Pro	Asp	Val 480
20	Gln	Ile	Glu	Asp	Gly 485	Lys	Gly	Thr	Ile	Leu 490	Ile	Ser	Ser	Glu	Glu 495	Gly
	Glu	Thr	Glu	Ala 500	Asn	Asn	His	Lys	Lys 505	Leu	Ser	Glu	Phe	Gly 510	Ile	Arg
25	Asn	Gly	Ser 515	Arg	Leu	Gln	Ala	Asp 520	Asp	Phe	Leu	Gln	Asp 525	Туг	Thr	Leu
30	Leu	11e 530	Asn	Ile	Leu	His	Ser 535	Glu	Asp	Leu	Gly	Lys 540	Asp	Val	Glu	Phe
	Glu 545	Val	Val	Gly	Asp	Ala 550	Pro	Glu	Lys	Val	Gly 555	Xaa	Lys	Gln	Ala	Glu 560
35	Asp	Ala	Ala	Lys	Ser 565	Ile	Thr	Asn	Gly	Gln 570	Xaa					
40	(2)		ORMAT	EQUI		CHAR ENGTI	ACTI	ERIST	CICS:		ds					
45			(xi)	(1	D) TY	POL	XGY:	line	ear	EQ II	NO:	475	:			
	Met 1	Gln	Val	Val	Thr 5	Cys	Leu	Thr	Arg	Asp 10	Ser	Tyr	Leu	Thr	His 15	Cys
50	Phe	Leu	Gln	His 20	Leu	Met	Val	Val	Leu 25	Ser	Ser	Leu	Glu	Arg 30	Thr	Pro
55	Ser	Pro	Glu 35	Pro	Val	Asp	Lys	Asp 40	Phe	Tyr	Ser	Glu	Phe 45	Gly	Asn	Lys
	Thr	Thr 50	Gly	Lys	Met	Glu	Asn 55	Tyr	Glu	Leu	Ile	His 60	Ser	Ser	Arg	Val
60	Lys 65	Phe	Thr	Tyr	Pro	Ser 70	Glu	Glu	Glu	Ile	Gly 75	Asp	Leu	Thr	Phe	Thr 80

	Val	Ala	Gln	Lys	Met 85	Ala	Glu	Pro	Glu	Lys 90	Ala	Pro	Ala	Leu	Ser 95	Ile
₋ 5	Leu	Leu	Tyr	Val 100	Gln	Ala	Phe	Gln	Val 105	Gly	Met	Pro	Pro	Pro 110	Gly	Cys
10	Cys	Arg	Gly 115	Pro	Leu	Arg	Pro	Lys 120	Thr	Leu	Leu	Leu	Thr 125	Ser	Ser	Glu
	Ile	Phe 130	Leu	Leu	Asp	Glu	Asp 135	Cys	Val	His	Tyr	Pro 140	Leu	Pro	Glu	Phe
15	Ala 145	Lys	Glu	Pro	Pro	Gln 150	Arg	Asp	Arg	Tyr	Arg 155	Leu	Asp	Asp	Gly	Arg 160
	Arg	Val	Arg	Asp	Leu 165	Asp	Arg	Val	Leu	M et 170	Gly	Tyr	Gln	Thr	Туг 175	Pro
20	Gln	Pro	Ser	Pro 180	Ser	Ser	Ser	Met	Thr 185	Cys	Lys	Val	Met	Thr 190	Ser	Trp
25	Ala	Val	Ser 195	Pro	Trp	Thr	Thr	Leu 200	Gly	Arg	Суѕ	Gln	Val 205	Ala	Arg	Leu
	Glu	Pro 210	Ala	Arg	Ala	Val	Lys 215	Ser	Ser	Gly	Arg	Cys 220	Leu	Ser	Pro	Val
30	Leu 225	Arg	Ala	Glu	Arg	Ser 230	Ser	Ser	Arg	Cys	Trp 235	Leu	Ala	Ser	Gly	Arg 240
	Pro	Cys	Val	Ala	Val 245	Ser	Cys	Leu	Ser	Ser 250	Ser	Pro	Ala	Ser	Pro 255	Gly
35	His	Ser	Gln	Pro 260	Val	Val	Ser	Ser	Leu 265	Thr	Pro	Thr	Gly	Ala 270	Gly	Gln
40	Gln	Ala	Phe 275	Val	Phe	Ser	Lys	Asn 280	Val	Leu	Ser	Ser	Leu 285	Trp	Tyr	Leu
	Asn	Leu 290	Thr	Val	Leu	Ala	Glu 295	Asn	Val	Asn	Met	Cys 300	Val	Cys	Cys	Val
45	Asn 305	Ser	Phe	Ser	Cys	Trp 310	Glu	Xaa								
	(2)	INFO	ORMAT	rion	FOR	SEO	TD N	IO: 4	176:							
50			(i) :			_				:						
			, ·	(ENGT YPE:	H: 3 ami	29 a no a	mino cid	aci	ds					
55			(xi)		-					EQ I	D NO	: 47	6:			
	Met 1	Ala	Gln	His	His 5	Leu	Trp	Ile	Leu	Leu 10	Leu	Cys	Leu	Gln	Thr 15	Trp
60	Pro	Glu	Ala	Ala	Gly	Lys	Asp	Ser	Glu	Ile	Phe	Thr	Val	Asn	Gly	Ile

				20					25					30		
_5	Leu	Gly	Glu 35	Ser	Val	Thr	Phe	Pro 40	Val	Asn	Ile	Gln	Glu 45	Pro	Arg	Gln
	Val	Lys 50	Ile	Ile	Ala	Trp	Thr 55	Ser	Lys	Thr	Ser	Val 60	Ala	Tyr	Val	Thr
10	Pro 65	Gly	Asp	Ser	Glu	Thr 70	Ala	Pro	Val	Val	Thr 75	Val	Thr	His	Arg	Asn 80
	Tyr	Tyr	Glu	Arg	Ile 85	His	Ala	Leu	Gly	Pro 90	Asn	Tyr	Asn	Leu	Val 95	Ile
15	Ser	Asp	Leu	Arg 100	Met	Glu	Asp	Ala	Gly 105	Asp	Тут	Lys	Ala	Asp 110	Ile	Asn
20	Thr	Gln	Ala 115	Asp	Pro	Tyr	Thr	Thr 120	Thr	Lys	Arg	Tyr	Asn 125	Leu	Gln	Ile
	Tyr	Arg 130	Arg	Leu	Gly	Lys	Pro 135	Lys	Ile	Thr	Gln	Ser 140	Leu	Met	Ala	Ser
25	Val 145	Asn	Ser	Thr	Cys	Asn 150	Val	Thr	Leu	Thr	Cys 155	Ser	Val	Glu	Lys	Glu 160
	Glu	Lys	Asn	Val	Thr 165	Tyr	Asn	Trp	Ser	Pro 170	Leu	Gly	Glu	Glu	Gly 175	Asn
30	Val	Leu	Gln	Ile 180	Phe	Gln	Thr	Pro	Glu 185	Asp	Gln	Glu	Leu	Thr 190	Tyr	Thr
35	Cys	Thr	Ala 195	Gln	Asn	Pro	Val	Ser 200	Asn	Asn	Ser	Asp	Ser 205	Ile	Ser	Ala
	Arg	Gln 210	Leu	Cys	Ala	Asp	Ile 215	Ala	Met	Gly	Phe	Arg 220	Thr	His	His	Thr
40	Gly 225	Leu	Leu	Ser	Val	Leu 230	Ala	Met	Phe	Phe	Leu 235	Leu	Val	Leu	Ile	Leu 240
	Ser	Ser	Val	Phe	Leu 245	Phe	Arg	Leu	Phe	Lys 250	Arg	Arg	Gln	Asp	Ala 255	Ala
45	Ser	Lys	Lys	Thr 260	Ile	Tyr	Thr	Tyr	Ile 265	Met	Ala	Ser	Arg	Asn 270	Thr	Gln
50	Pro	Ala	Glu 275	Ser	Arg	Ile	Tyr	Asp 280	Glu	Ile	Leu	Gln	Ser 285	Lys	Val	Leu
50	Pro	Ser 290	Lys	Glu	Glu	Pro	Val 295	Asn	Thr	Val	Тут	Ser 300	Glu	Val	Gln	Phe
55	Ala 305	Asp	Lys	Met	Gly	Lys 310	Ala	Ser	Thr	Gln	Asp 315	Ser	Lys	Pro	Pro	Gly 320

Thr Ser Ser Tyr Glu Ile Val Ile Xaa \$325\$

	(2)	INF	ORMA'	TION	FOR	SEQ	ID	NO:	477:							
-5			(i)	(ENCE A) L B) T D) T	ENGI YPE:	H: 1 ami	78 a no a	mino cid		ds					
			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 47	7:			
10	Met 1	Lys	Leu	Gln	Cys 5	Val	Ser	Leu	Trp	Leu 10	Leu	Gly	Thr	Ile	Leu 15	Ile
15	Leu	Cys	Ser	Val 20	Asp	Asn	His	Gly	Leu 25	Arg	Arg	Cys	Leu	Ile 30	Ser	Thr
	Asp	Met	His 35	His	Ile	Glu	Glu	Ser 40	Phe	Gln	Glu	Ile	Lys 45	Arg	Ala	Ile
20	Gln	Ala 50	Lys	Asp	Thr	Phe	Pro 55	Asn	Val	Thr	Ile	Leu 60	Ser	Thr	Leu	Glu
	Thr 65	Leu	Gln	Ile	Ile	Lys 70	Pro	Leu	Asp	Val	Cys 75	Cys	Val	Thr	Lys	Asn 80
25	Leu	Leu	Ala	Phe	Tyr 85	Val	Asp	Arg	Val	Phe 90	Lys	Asp	His	Gln	Glu 95	Pro
30	Asn	Pro	Lys	11e 100	Leu	Arg	Lys	Ile	Ser 105	Ser	Ile	Ala	Asn	Ser 110	Phe	Leu
	Tyr	Met	Gln 115	Lys	Thr	Leu	Arg	Gln 120	Cys	Gln	Glu	Gln	Arg 125	Gln	Cys	His
35	Cys	Arg 130	Gln	Glu	Ala	Thr	Asn 135	Ala	Thr	Arg	Val	11e 140	His	Ąsp	Asn	Tyr
	Asp 145	Gln	Leu	Glu	Val	His 150	Ala	Ala	Ala	Ile	Lys 155	Ser	Leu	Gly	Glu	Leu 160
40	Asp	Val	Phe	Leu	Ala 165	Trp	Ile	Asn	Lys	Asn 170	His	Glu	Val	Met	Ser 175	Ser
45	Ala	Xaa														
	(2)	INFO	ORMA'I	NOI	FOR	SEQ	ID 1	NO: 4	178 :							
50			(i) :	(ENCE A) L B) T D) T	ENGT YPE :	H: 5 ami	2 am no a	ino d		s					
55			(xi)	SEQ	UENC:	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 47	8 :			
<i>JJ</i>	Asp 1	Thr	Ala	Ile	Arg 5	Val	Ala	Leu	Ala	Val 10	Ala	Val	Leu	Lys	Thr 15	Val
60	Ile	Leu	Gly	Leu 20	Leu	Cys	Leu	Leu	Leu 25	Cys	Gly	Gly	Gly	Glu 30	Gly	Lys

	Val	Ala	Gly 35	Arg	Gln	Ala	Val	Thr 40	Ser	Asp	Gln	Gln	Ser 45	Val	Gly	Arg
-5	Arg	Asp 50	Val	Tyr												
10	(2)	INF	ORMA	rion	FOR	SEQ	ID 1	V O: 4	179:							
15			(i) :	(A) L B) T D) T	ENGT YPE: OPOL	H: 6 ami OGY:	2 am no a lin	ino cid ear	acid		: 4 7:	9:			
20	Met 1		Lys	Lys	Asn 5	Ser	Leu	Phe	Phe	Phe 10	Phe	Ala	Phe	Tyr	Туг 15	Glu
20	Asn	Lys	Thr	Asn 20	Ala	Pro	Gly	Glu	Gly 25	Ser	Met	Ile	Thr	Arg 30	Asn	Ile
25	Lys	Glu	Туг 35	Phe	Leu	Pro	Phe	Leu 40	Phe	Cys	Cys	Val	Glu 45	Ala	Ser	Ile
	Ala	Ile 50	Asn	Lys	Leu	Asn	Туг 55	Leu	His	Trp	Thr	His 60	Phe	Gln		
30																
	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO: 4	180 :							
35			(i) (xi)	(A) L B) T D) T	ENGT YPE : OPOL	H: 2 ami OGY:	7 am no a lin	ino cid ear	: acid EQ I		: 48	O :			
40	Met 1		Gly	Leu	Ser 5	Leu	Ile	Leu	Thr	Val 10	Thr	Leu	Leu	Ala	Val 15	Ser
45	Asp	Ser	Ala	Ala 20	Thr	Cys	Ile	Val	Ala 25	Lys	Gly					
	(2)	INF	'ORMA'	TION	FOR	SEQ	ו מו	NO: 4	481:							
50				((A) L (B) T (D) T	ENGT YPE : YPOL	H: 3 ami OGY:	39 a no a lin	mino cid ear	aci		. 40	1.			
55			(X1)	_	Asp									Ile		Arg
	1		: Arg	D	5	\	71 ~) an	1/a 1	10 Ala	Gl.) Acr	U=1	ніс	15 Glv	Gly
60	тте	met:	. Arg	PTO	ASP	ASD	WTG	พรม	Vai	utq	GIĀ	uzu	val	HIS	GTĀ	GIĀ

	Thr	Ile	Leu 35	Lys	Met	Ile	Glu	Glu 40	Ala	Gly	Ala	Ile	Ile 45	Ser	Thr	Arç
- 5	His	Cys 50	Asn	Ser	Gln	Asn	Gly 55	Glu	Arg	Суѕ	Val	Ala 60	Ala	Leu	Ala	Arg
10	Val 65	Glu	Arg	Thr	Asp	Phe 70	Leu	Ser	Pro	Met	Суs 75	Ile	Gly	Glu	Val	Ala 80
- "	His	Val	Ser	Ala	Glu 85	Ile	Thr	Tyr	Thr	Ser 90	Lys	His	Ser	Val	Glu 95	Val
15	Gln	Val	Asn	Val 100	Met	Ser	Glu	Asn	Ile 105	Leu	Thr	Gly	Ala	Lys 110	Lys	Leu
	Thr	Asn	Lys 115	Ala	Thr	Leu	Trp	Туг 120	Val	Pro	Leu	Ser	Leu 125	Lys	Asn	Val
20	Asp	Lys 130	Val	Leu	Glu	Val	Pro 135	Pro	Val	Val	Tyr	Ser 140	Arg	Xaa	Glu	Gln
25	Glu 145	Glu	Glu	Gly	Arg	Lys 150	Arg	Tyr	Glu	Ala	Gln 155	Lys	Leu	Glu	Arg	Met 160
	Glu	Thr	Lys	Trp	Arg 165	Asn	Gly	Asp	Ile	Val 170	Gln	Pro	Val	Leu	Asn 175	Pro
30	Glu	Pro	Asn	Thr 180	Val	Ser	Tyr	Ser	Gln 185	Ser	Ser	Leu	Ile	His 190	Leu	Val
	Gly	Pro	Ser 195	Asp	Cys	Thr	Leu	His 200	Gly	Phe	Val	His	Gly 205	Gly	Val	Thr
35	Met	Lys 210	Leu	Met	Asp	Glu	Val 215	Ala	Gly	Ile	Val	Ala 220	Ala	Arg	His	Cys
40	Lys 225	Thr	Asn	Ile	Val	Thr 230	Ala	Ser	Val	Asp	Ala 235	Ile	Asn	Phe	His	Asp 240
	Lys	Ile	Arg	Lys	Gly 245	Cys	Val	Ile	Thr	Ile 250	Ser	Gly	Arg	Met	Thr 255	Phe
45	Thr	Ser	Asn	Lys 260	Ser	Met	Glu	Ile	Glu 265	Val	Leu	Val	Asp	Ala 270	qaA	Pro
	Val	Val	Asp 275	Ser	Ser	Gln	Lys	Arg 280	Tyr	Arg	Ala	Ala	Ser 285	Ala	Phe	Phe
50	Thr	Tyr 290	Val	Ser	Leu	Ser	Gln 295	Glu	Gly	Arg	Ser	Leu 300	Pro	Val	Pro	Gln
55	Leu 305	Val	Pro	Glu	Thr	Glu 310	Asp	Glu	Lys	Lys	Arg 315	Phe	Glu	Glu	Gly	Lys 320
	Gly	Arg	Tyr	Leu	Gln 325	Met	Lys	Ala	Lys	Xaa 330	Gln	Gly	His	Ala	Xaa 335	Xaa
60	Gln	Pro	Xaa													

-5	(2)	INF	ORMAT	MOIT	FOR	SEQ	ID 1	10: 4	182 :						•	
-3			(i) :	- (. (:	A) L B) T	engt Ype :		2 am no a	ino cid	: acid	s					
10			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 48	2:			
	Met 1	Leu	Asn	Ser	Asn 5	Ile	Asn	Asp	Leu	Leu 10	Met	Val	Thr	Tyr	Leu 15	Ala
15	Asn	Leu	Thr	Gln 20	Ser	Gln	Ile	Ala	Leu 25	Asn	Glu	Lys	Leu	Val 30	Asn	Leu
20																
	(2)	INF	ORMAT	rion	FOR	SEQ	ID i	10: 4	183 :							
25			(i) :	(.	A) L B) T	ENGT YPE:		8 am no a	ino cid	: acid	s					
30			(xi)	SEQ	UENC:	E DE	SCRI	PTIO	N: S	EQ II	D NO	: 48	3:			
	Met 1	Arg	Glu	Thr	Ser 5	Ile	Arg	Val	Leu	Leu 10	Met	Leu	Pro	Ala	Leu 15	Glu
35	Ser	Thr	Ser	Gly 20	Leu	Ser	Ala	Phe	Met 25	Gly	Leu	Gly	Thr	Arg 30	Ile	Gly
	Суз	Phe	Lys 35	Thr	Ile	Thr	Cys	Trp 40	Pro	Thr	Ser	Leu	Thr 45	Gln	Arg	Xaa
40																
45	(2)	INF	ORMA!	rion	FOR	SEQ	ID I	NO:	484:							
50				(A) I B) T D) T	ENGT YPE : YPOL	H: 3 ami OGY:	8 am no a lir	ino cid ear	acid		: 48	4:			
<i>e e</i>	Met 1		Met	Туг	Ser 5		Asn	Val	Phe	Leu 10	Ser	Phe	Ile	Phe	Leu 15	Ala
55	Leu	Val	. Phe	Lys 20	Cys	Val	His	Val	Суз 25		Gly	Ala	Asn	Ala 30	Phe	Leu
60	Phe	Leu	Lys 35		Val	Phe										

-5	(2)	INF	ORMA'	rion	FOR	SEQ	ID	NO:	485:							
-5			(i)	(A) L B) T	ENGT YPE:	H: 6 ami	ERIS 1 am no a lin	ino cid	: acid	s					
10			(xi)							EQ I	D NO	: 48	5:			
	Met 1	Gly	Leu	Arg	Leu 5	Ile	Cys	Leu	Glu	Leu 10	Thr	Met	Val	Lys	Ala 15	Leu
15	Val	Cys	Glu	Met 20	Phe	Leu	Phe	Phe	Leu 25	Met	Thr	Gln	Lys	Leu 30	Ile	Trp
20	Gln	Glu	Cys 35	Thr	Glu	Lys	Phe	Ala 40	Lys	Leu	Leu	Val	Gln 45	Leu	Ile	Ser
	Leu	Val 50	Phe	Ala	Trp	Glu	Phe 55	Phe	Ser	Glu	Asp	Thr 60	Pro			
25	(2)	INFO	ORMA:	rion	FOR	SEQ	ID I	NO: 4	1 86 :							
30	-		(i) :	(A) L B) T D) T	ENGT YPE: OPOL	H: 3 ami OGY:	46 a no a lin	mino cid ear	aci		: 48	6:			
35	M et	Leu	Ala	Ala	Arg 5	Leu	Val	Cys	Leu	Arg 10	Thr	Leu	Pro	Ser	Arg 15	Val
	Phe	His	Pro	Ala 20	Phe	Thr	Lys	Ala	Ser 25	Pro	Val	Val	Lys	Asn 30	Ser	Ile
40	Thr	Lys	Asn 35	Gln	Trp	Leu	Leu	Thr 40	Pro	Ser	Arg	Glu	Tyr 45	Ala	Thr	Lys
45	Thr	Arg 50	Ile	Gly	Ile	Arg	Arg 55	Gly	Arg	Thr	Gly	Gln 60	Glu	Leu	Lys	Glu
	Ala 65	Ala	Leu	Glu	Pro	Ser 70	Met	Glu	Lys	Ile	Phe 75	Lys	Ile	Asp	Gln	Met 80
50	Gly	Arg	Trp	Phe	Val 85	Ala	Gly	Gly	Ala	Ala 90	Val	Gly	Leu	Gly	Ala 95	Leu
	Cys	Tyr	Tyr	Gly 100	Leu	Gly	Leu	Ser	Asn 105	Glu	Ile	Gly	Ala	Ile 110	Glu	Lys
55	Ala	Val	Ile 115	Trp	Pro	Gln	Tyr	Val 120	Lýs	Asp	Arg	Ile	His 125	Ser	Thr	Tyr
60	Met	Tyr 130	Leu	Ala	Gly	Ser	11e 135	Gly	Leu	Thr	Ala	Leu 140	Ser	Ala	Ile	Ala

	Ile 145	Ser	Arg	Thr	Pro	Val 150	Leu	Met	Asn	Phe	Met 155	Met	Arg	Gly	Ser	Trp 160
- 5	Val	Thr	Ile	Gly	Val 165	Thr	Phe	Ala	Ala	Met 170	Val	Gly	Ala	Gly	Met 175	Leu
	Val	Arg	Ser	Ile 180	Pro	Tyr	Asp	Gln	Ser 185	Pro	Gly	Pro	Lys	His 190	Leu	Ala
10	Trp	Leu	Leu 195	His	Ser	Gly	Val	Met 200	Gly	Ala	Val	Val	Ala 205	Pro	Leu	Thr
15	Ile	Leu 210	Gly	Gly	Pro	Leu	Leu 215	Ile	Arg	Ala	Ala	Trp 220	Tyr	Thr	Ala	Gly
	11e 225	Val	Gly	Gly	Leu	Ser 230	Thr	Val	Ala	Met	Cys 235	Ala	Pro	Ser	Glu	Lys 240
20	Phe	Leu	Asn	Met	Gly 245	Ala	Pro	Leu	Gly	Val 250	Gly	Leu	Gly	Leu	Val 255	Phe
	Val	Ser	Ser	Leu 260	Gly	Ser	Met	Phe	Leu 265	Pro	Pro	Thr	Thr	Val 270	Ala	Gly
25	Ala	Thr	Leu 275	Tyr	Ser	Val	Ala	Met 280	Tyr	Gly	Gly	Leu	Val 285	Leu	Phe	Ser
30	Met	Phe 290	Leu	Leu	Туг	Asp	Thr 295	Gln	Lys	Val	Ile	Lys 300	Arg	Ala	Glu	Val
-	Ser 305	Pro	Met	Tyr	Gly	Val 310	Gln	Lys	Tyr	qzA	Pro 315	Ile	Asn	Ser	Met	Leu 320
35	Ser	Ile	Tyr	Met	Asp 325	Thr	Leu	Asn	Ile	Phe 330	Met	Arg	Val	Ala	Thr 335	Met
	Leu	Ala	Thr	Gly 340	Gly	Asn	Arg	Lys	Lys 345	Xaa						
40	(2)	INFO	NAMA(rion	FOR	SEO	א מד	10· 4	187 •							
45	(2)		(i) :	SEQUI .) .)	ENCE A) L B) T D) T	CHAI ENGT YPE: OPOL	RACT H: 2 ami OGY:	ERIS 37 au no a lin	rics mino cid ear	aci		: 48	7:			
50	Met 1	Glu	Glu	Val	Leu 5	Leu	Leu	Gly	Leu	Lys 10	Asp	Arg	Glu	Gly	Туг 15	Thr
55	Ser	Phe	Trp	Asn 20	Asp	Cys	Ile	Ser	Ser 25	Gly	Leu	Arg	Gly	Суз 30	Met	Leu
	Ile	Glu	Leu 35	Ala	Leu	Arg	Gly	Arg 40	Leu	Gln	Leu	Glu	Ala 45	Суѕ	Gly	Met
60	Arg	Arg 50	Lys	Ser	Leu	Leu	Thr 55	Arg	Lys	Val	Ile	Суs 60	Lys	Ser	Asp	Ala

	Pro 65	Thr	Gly	Asp	Val	Leu 70	Leu	Asp	Glu	Ala	Leu 75	Lys	His	Val	Lys	Glu 80
- 5	Thr	Gln	Pro	Pro	Glu 85	Thr	Val	Gln	Asn	Trp 90	Ile	Glu	Leu	Leu	Ser 95	Gly
10	Glu	Thr	Trp	Asn 100	Pro	Leu	Lys	Leu	His 105	Tyr	Gln	Leu	Arg	Asn 110	Val	Arg
	Glu	Arg	Leu 115	Ala	Lys	Asn	Leu	Val 120	Glu	Lys	Gly	Val	Leu 125	Thr	Thr	Glu
15	Lys	Gln 130	Asn	Phe	Leu	Leu	Phe 135	Asp	Met	Thr	Thr	His 140	Pro	Leu	Thr	Asn
	Asn 145	Asn	Ile	Lys	Gln	Arg 150	Leu	Ile	Lys	Lys	Val 155	Gln	Glu	Ala	Val	Leu 160
20	Asp	Lys	Trp	Val	Asn 165	Asp	Pro	His	Arg	Met 170	Asp	Arg	Arg	Leu	Leu 175	Ala
25	Leu	Ile	Tyr	Leu 180	Ala	His	Ala	Ser	Asp 185	Val	Leu	Glu	Asn	Ala 190	Phe	Ala
20	Pro	Leu	Leu 195	Asp	Glu	Gln	Tyr	Asp 200	Leu	Ala	Thr	Lys	Arg 205	Val	Arg	Gln
30	Leu	Leu 210	Asp	Leu	Asp	Pro	Glu 215	Val	Glu	Cys	Leu	Lys 220	Ala	Asn	Thr	Asn
	Glu 225	Val	Leu	Trp	Ala	Val 230	Val	Ala	Ala	Phe	Thr 235	Lys	Xaa			
35																
	(2)	INFO	ORMAT	MOI	FOR	SEQ	ID N	Ю: 4	188:							
40			(i) :	~ (:	A) L B) T	ENGT YPE:	H: 2	00 ar no a	mino cid		ds					
			(xi)		D) TV UENCI					EQ II	ON 0	: 481	3:			
45	Met 1	Ala	Gln	Arg	Met 5	Val	Trp	Val	Asp	Leu 10	Glu	Met	Thr	Gly	Leu 15	Asp
50	Ile	Glu	Lys	Asp 20	Gln	Ile	Ile	Glu	Met 25	Ala	Cys	Leu	Ile	Thr 30	Asp	Ser
50	Asp	Leu	Asn 35	Ile	Leu	Ala	Glu	Gly 40	Pro	Asn	Leu	Ile	Ile 45	Lys	Gln	Pro
55	Asp	Glu 50	Leu	Leu	Asp	Ser	M et 55	Ser	qzA	Trp	Cys	Lys 60	Glu	His	His	Gly
•	Lys 65	Ser	Gly	Leu	Thr	Lys 70	Ala	Val	Lys	Glu	Ser 75	Thr	Ile	Thr	Leu	Gln 80
60	Gln	Ala	Glu	Tyr	Glu	Phe	Leu	Ser	Phe	Val	Arg	Gln	Gln	Thr	Pro	Pro

					85					90					95	
- 5	Gly	Leu	Cys	Pro 100	Leu	Ala	Gly	Asn	Ser 105	Val	His	Glu	Asp	Lys 110	Lys	Phe
J	Leu	Asp	Lys 115	Туг	Met	Pro	Gln	Phe 120	Met	Lys	His	Leu	His 125	Tyr	Arg	Ile
10	Ile	Asp 130	Val	Ser	Thr	Val	Lys 135	Glu	Leu	Cys	Arg	Arg 140	Trp	Tyr	Pro	Glu
	Glu 145	Tyr	Glu	Phe	Ala	Pro 150	Lys	Lys	Ala	Ala	Ser 155	His	Arg	Ala	Leu	Asp 160
15	Asp	Ile	Ser	Glu	Ser 165	Ile	Lys	Glu	Leu	Gln 170	Phe	Туг	Arg	Asn	Asn 175	Ile
20	Phe	Lys	Lys	Lys 180	Ile	Ąsp	Glu	Lys	Lys 185	Arg	Lys	Ile	Ile	Glu 190	Asn	Gly
	Glu	Asn	Glu 195	Lys	Thr	Val	Ser	Xaa 200								
25	(2)	INF	ORMAT	rion	FOR	SEQ	ID 1	VO: 4	189:							
30			(i) :	(A) L B) T D) T	ENGT YPE: OPOL	H: 3 ami OGY:	51 a no a lin	mino cid ear	aci						
			(xi)	SEQ	UENC	E DE	SCRI	PTIO	V: S	EQ II	ON C	: 48	9:			
35	Met 1	Ala	Thr	Thr	Ala 5	Ala	Pro	Ala	Gly	Gly 10	Ala	Arg	Asn	Gly	Ala 15	Gly
	Pro	Glu	Trp	Gly 20	Gly	Phe	Glu	Glu	Asn 25	Ile	Gln	Gly	Gly	Gly 30	Ser	Ala
40	Val	Ile	Asp 35	Met	Glu	Asn	Met	Asp 40	Asp	Thr	Ser	Gly	Ser 45	Ser	Phe	Glu
45	Asp	Met 50	Gly	Glu	Leu	His	Gln 55	Arg	Leu	Arg	Glu	Glu 60	Glu	Val	Asp	Ala
	Asp 65	Ala	Ala	Asp	Ala	Ala 70	Ala	Ala	Glu	Glu	Glu 75	Asp	Gly	Glu	Phe	Leu 80
50	Gly	Met	Lys	Gly	Phe 85	Lys	Gly	Gln	Leu	Ser 90	Arg	Gln	Val	Ala	Asp 95	Gln
	Met	Trp	Gln	Ala 100	Gly	Lys	Arg	Gln	Ala 105	Ser	Arg	Ala	Phe	Ser 110	Leu	Tyr
55	Ala	Asn	Ile 115		Ile	Leu	Arg	Pro 120	Tyr	Phe	Asp	Val	Glu 125	Pro	Ala	Gln

	Phe 145	Pro	Gln	Lys	Ile	Ala 150	Gly	Glu	Leu	Tyr	Gly 155	Pro	Leu	Met	Leu	Val 160
5	Phe	Thr	Leu	Val	Ala 165	Ile	Leu	Leu	His	Gly 170	Met	Lys	Thr	Ser	Asp 175	Thr
	Ile	Ile	Arg	Glu 180	Gly	Thr	Leu	Met	Gly 185	Thr	Ala	Ile	Gly	Thr 190	Cys	Phe
10	Gly	Тут	Trp 195	Leu	Gly	Val	Ser	Ser 200	Phe	Ile	Tyr	Phe	Leu 205	Ala	Tyr	Leu
15	Cys	Asn 210	Ala	Gln	Ile	Thr	Met 215	Leu	Gln	Met	Leu	Ala 220	Leu	Leu	Gly	Tyr
•0	Gly 225	Leu	Phe	Gly	His	Cys 230	Ile	Val	Leu	Phe	11e 235	Thr	Tyr	Asn	Ile	His 240
20	Leu	His	Ala	Leu	Phe 245	Tyr	Leu	Phe	Trp	Leu 250	Leu	Val	Gly	Gly	Leu 255	Ser
	Thr	Leu	Arg	M et 260	Val	Ala	Val	Leu	Val 265	Ser	Arg	Thr	Val	Gly 270	Pro	Thr
25	Gln	Arg	Leu 275	Leu	Leu	Cys	Gly	Thr 280	Leu	Ala	Ala	Leu	His 285	Met	Leu	Phe
30	Leu	Leu 290	Tyr	Leu	His	Phe	Ala 295	Tyr	His	Lys	Val	Val 300	Glu	Gly	Ile	Leu
	Asp 305		Leu	Glu	Gly	Pro 310	Asn	Ile	Pro	Pro	Ile 315	Gln	Arg	Val	Pro	Ar g 320
35	Asp	Ile	Pro	Ala	Met 325	Leu	Pro	Ala	Ala	Arg 330	Leu	Pro	Thr	Thr	Val 335	Leu
	Asn	Ala	Thr	Ala 340	Lys	Ala	Val	Ala	Val 345	Thr	Leu	Gln	Ser	His 350	Xaa	
40																
	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO: 4	490:							
45				(A) I B) T D) T	ENGT YPE : OPOL	H: 2 ami OGY:	65 a no a lin	mino cid ear	aci		: 49	0:			
50	Met		Gly	Ser	Arg 5	Gly	Gly	Trp	Ala	Gly 10		Met	Ala	Ala	Ser 15	Gly
55	Glu	Ser	Gly	Thr 20		Gly	Gly	Gly	Gly 25		Thr	Glu	Glu	Ala 30	Phe	Met
JJ	Thr	Phe	тут 35		Glu	Val	Lys	Gln 40		Glu	Lys	Arg	Asp 45		Val	Leu
60	Thr	Ser 50		Asn	Gln	Ile	Glu 55		Leu	Thr	Arg	Pro		Ser	Ser	Тут

	Phe 65	Asn	Leu	Asn	Pro	Phe 70	Glu	Val	Leu	Gln	Ile 75	Asp	Pro	Glu	Val	Th:
5	Asp	Glu	Glu	Ile	Lys 85	Lys	Arg	Phe	Arg	Gln 90	Leu	Ser	Ile	Leu	Val 95	His
10	Pro	Asp	Lys	Asn 100	Gln	Asp	Asp	Ala	Asp 105	Arg	Ala	Gln	Lys	Ala 110	Phe	Glu
	Ala	Val	Asp 115	Lys	Ala	Tyr	Lys	Leu 120	Leu	Leu	Asp	Gln	Glu 125	Gln	Lys	Lys
15	Arg	Ala 130	Leu	Asp	Val	Ile	Gln 135	Ala	Gly	Lys	Glu	Туг 140	Val	Glu	His	Thi
	Val 145	Lys	Glu	Arg	Lys	Lys 150	Gln	Leu	Lys	Lys	Glu 155	Gly	Lys	Pro	Thr	11e
20	Val	Glu	Glu	Asp	Asp 165	Pro	Glu	Leu	Phe	Lys 170	Gln	Ala	Val	Tyr	Lys 175	Glr
25	Thr	Met	Lys	Leu 180	Phe	Ala	Glu	Leu	Glu 185	Ile	Lys	Arg	Lys	Glu 190	Arg	Glu
	Ala	Lys	Glu 195	Met	His	Glu	Arg	Lys 200	Arg	Gln	Arg	Glu	Glu 205	Glu	Ile	Glu
80	Ala	Gln 210	Glu	Lys	Ala	Lys	Arg 215	Glu	Arg	Glu	Trp	Gln 220	Lys	Asn	Phe	Glu
	Glu 225	Ser	Arg	Asp	Gly	Arg 230	Val	Asp	Ser	Trp	Arg 235	Asn	Phe	Gln	Ala	Asr 240
35	Thr	Lys	Gly	Lys	Lys 245	Glu	Lys	Lys	Asn	Arg 250	Thr	Phe	Leu	Arg	Pro 255	Pro
Ю	Lys	Val	Lys	Met 260	Glu	Gln	Arg	Glu	Хаа 265							
	(2)	INFO	ORMA!	rion	FOR	SEQ	ID I	NO: 4	191:							
1 5				(A) L B) T D) T	ENGT YPE : OPOL	H: 2 ami OGY:	no a lin	ino cid ear	: acid		. 11Q	1.			
50		Ser			Thr				•	Ala				Cys		Pro
55	1 Leu		Pro	Val 20	5 Arg	Leu	Cys	Суз	Leu 25	10					15	
	(2)	INF	ORMA'	TION	FOR	SEQ	ID	NO:	492:							

			(i) :	_		CHAI ENGT					ds					
						YPE:										
5	-		(xi)			OPOLA E DE:				EQ II	ON C	: 49:	2:			
	Met 1	Asn	Glu	Tyr	Arg 5	Val	Pro	Glu	Leu	Asn 10	Val	Gln	Asn	Gly	Val 15	Leu
10	Lys	Ser	Leu	Ser 20	Phe	Leu	Phe	Glu	Туг 25		Gly	Glu	Met	Gly 30	Lys	Asp
15	Tyr	Ile	Тут 35	Ala	Val	Thr	Pro	Leu 40	Leu	Glu	Asp	Ala	Leu 45	Met	Asp	Arg
13	Asp	Leu 50	Val	His	Arg	Gln	Thr 55	Ala	Ser	Ala	Val	Val 60	Gln	His	Met	Ser
20	Leu 65	Gly	Val	Тут	Gly	Phe 70	Gly	Суѕ	Glu	Asp	Ser 75	Leu	Asn	His	Leu	Leu 80
	Asn	Tyr	Val	Trp	Pro 85	Asn	Val	Phe	Glu	Thr 90	Ser	Pro	His	Val	Ile 95	Gln
25	Ala	Val	Met	Gly 100	Ala	Leu	Glu	Gly	Leu 105	Arg	Val	Ala	Ile	Gly 110	Pro	Cys
30	Arg	Met	Leu 115	Gln	Tyr	Cys	Leu	Gln 120	Gly	Leu	Phe	His	Pro 125	Ala	Arg	Lys
	Val	Arg 130	Asp	Val	Tyr	Trp	Lys 135	Ile	Tyr	Asn	Ser	11e 140	Туг	Ile	Gly	Ser
35	Gln 145	Asp	Ala	Leu	Ile	Ala 150	His	Tyr	Pro	Arg	Ile 155	Тут	Gln	Arg	Xaa	
40	(2)	INF		SEQU	ENCE	SEQ CHA	RACT	ERIS	rics							
				(B) I	ENGT YPE : OPOL	ami	no a	cid	aci	ds					
45			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 49	3:			
	Met 1	Ile	Ser	Asp	Asn 5	Ser	Ala	Glu	Asn	Ile 10	Ala	Leu	Val	Thr	Ser 15	Met
50	Tyr	Asp	Gly	Leu 20	Leu	Gln	Ala	Gly	Ala 25	Arg	Leu	Cys	Pro	Thr 30	Val	Gln
55	Leu	Glu	Asp 35	Ile	Arg	Asn	Leu	Gln 40	Asp	Leu	Thr	Pro	Leu 45	Lys	Leu	Ala
	Ala	Lys 50	Glu	Gly	Lys	Ile	Glu 55	Ile	Phe	Arg	His	Ile 60	Leu	Gln	Arg	Glu
60	Phe 65	Ser	Gly	Leu	Ser	His	Leu	Ser	Arg	Lys	Phe 75	Thr	Glu	Trp	Cys	Tyr 80

PCT/US98/04493 WO 98/39448

	Gly	Pro	Val	Arg	Val 85	Ser	Leu	Тут	Asp	Leu 90	Ala	Ser	Val	Asp	Ser 95	Cys
5	Glu	Glu	Asn	Ser 100	Val	Leu	Glu	Ile	Ile 105	Ala	Phe	His	Cys	Lys 110	Ser	Pro
10	His	Arg	His 115	Arg	Met	Val	Val	Leu 120	Glu	Pro	Leu	Asn	Lys 125	Leu	Leu	Gln
10	Ala	Lys 130	Trp	Ąsp	Leu	Leu	Ile 135	Pro	Lys	Phe	Phe	Leu 140	Asn	Phe	Leu	Cys
15	Asn 145	Leu	Ile	Tyr	Met	Phe 150	Ile	Phe	Thr	Ala	Val 155	Ala	Туг	His	Gln	Pro 160
	Thr	Leu	Lys	Lys	Gln 165	Ala	Ala	Pro	His	Leu 170	Lys	Ala	Glu	Val	Gly 175	Asn
20	Ser	Met	Leu	Leu 180	Thr	Gly	His	Ile	Leu 185	Ile	Leu	Leu	Gly	Gly 190	Ile	Tyr
25	Leu	Leu	Val 195	Gly	Gln	Leu	Trp	Туг 200	Phe	Trp	Arg	Arg	His 205	Val	Phe	Ile
	Trp	lle 210	Ser	Phe	Ile	Asp	Ser 215	Tyr	Phe	Glu	Ile	Leu 220	Phe	Leu	Phe	Gln
30	Ala 225	Leu	Leu	Thr	Val	Val 230	Ser	Gln	Val	Leu	Cys 235	Phe	Leu	Xaa	Ile	Glu 240
	Trp	Tyr	Leu	Pro	Leu 245	Leu	Val	Ser	Ala	Leu 250	Val	Leu	Gly	Trp	Leu 255	Asn
35	Leu	Leu	Tyr	Туг 260	Thr	Arg	Gly	Phe	Gln 265	His	Thr	Gly	Ile	Туг 270	Ser	Val
40	Met	Ile	Gln 275	Lys	Pro	Trp	Xaa									
	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO:	494:							
45			(i)	(ENCE A) L B) T D) T	ENGI YPE :	H: 1 ami	.93 a no a	mino cid		ds					
50			(xi)		UENC					EQ I	D NO	: 49	4 :			
	Met 1	Ile	Arg	Cys	Gly 5	Leu	Ala	Cys	Glu	Arg 10	Cys	Arg	Trp	Ile	Leu 15	Pro
55	Leu	Leu	Leu	Leu 20	Ser	Ala	Ile	Ala	Phe 25	Asp	Ile	Ile	Ala	Leu 30	Ala	Gly
	Arg	Gly	Trp 35	Leu	Gln	Ser	Ser	Asp 40	His	Gly	Gln	Thr	Ser 45	Ser	Leu	Trp
60	Trp	Lys	Cys	Ser	Gln	Glu	Gly	Gly	Gly	Ser	Gly	Ser	Tyr	Glu	Glu	Gly

		50					55					60				
5	Cys 65	Gln	Ser	Leu	Met	Glu 70	Tyr	Ala	Trp	Gly	Arg 75	Ala	Ala	Ala	Ala	Met 80
,	Leu	Phe	Суѕ	Gly	Phe 85	Ile	Ile	Leu	Val	Ile 90	Cys	Phe	Ile	Leu	Ser 95	Phe
10	Phe	Ala	Leu	Cys 100	Gly	Pro	Gln	Met	Leu 105	Val	Phe	Leu	Arg	Val 110	Ile	Gly
	Gly	Leu	Leu 115	Ala	Leu	Ala	Ala	Val 120	Phe	Gln	Ile	Ile	Ser 125	Leu	Val	Ile
15	Tyr	Pro 130	Val	Lys	Tyr	Thr	Gln 135	Thr	Phe	Thr	Leu	His 140	Ala	Asn	Xaa	Ala
20	Val 145	Thr	Tyr	Ile	Tyr	Asn 150	Trp	Ala	Tyr	Gly	Phe 155	Gly	Trp	Ala	Ala	Thr 160
	Ile	Ile	Leu	Ile	Gly 165	Cys	Ala	Phe	Phe	Phe 170	Cys	Cys	Leu	Pro	Asn 175	Tyr
25	Glu	Asp	Asp	Leu 180	Leu	Gly	Asn	Ala	Lys 185	Pro	Arg	Tyr	Phe	Туг 190	Thr	Ser
	Ala															
30																
	(2)	INF			FOR ENCE					•						
35				- (A) L B) T D) T UENC	ENGT YPE : OPOL	H: 2 ami OGY:	05 a no a lin	mino cid ear	aci		: 49	5:			
40		Ala			Asp					Gly				Val		Glu
	1 His	Val	Ala	Gly	5 Gly	Arg	His	Ala	Trp	10 Leu	Leu	Thr	Trp	Gln	15 Ser	Ala
45	Cys	Pro	Ala	20 Asn	Arg	Leu	Ser	Leu	25 Val	Pro	Leu	Val	Pro	30 Ser	Ala	Ser
	Met	Thr	35 Arg	Leu	Met	Arg	Xaa	40 Arg	Thr	Ala	Ser	Gly	45 Ser	Ser	Val	Ile
50	ĭ.eu	50 Tro	Met	Δla	Pro	Ala	55 Ala	Ala	Pro	Thr	Pro	60	Ara	Ala	Pro	Glu
5.5	65	11.0	Mec	AIG	710	70	nau	ALG	110	1111	75	ALG	AL 9	ALG		80
55	Ala	Ala	Pro	Thr	Pro 85	Ala	Arg	Ala	Pro	Ala 90	Ala	Ala	Arg	Thr	Pro 95	Ala
60	Arg	Gly	Pro	Thr 100	Trp	Thr	Ser	Pro	Pro 105	Thr	Arg	Val	Leu	Leu 110	Gly	Thr

	Xaa	Pro	Gly 115	Pro	Ser	Pro	Trp	Arg 120	Ser	Pro	Ala	Arg	Arg 125	Pro	Ala	Gln
5	Leu	Pro 130	Pro	Pro	Asp	Ser	Asp 135	Leu	Cys	Ser	Gly	Pro 140	Leu	Leu	Pro	Gly
	Pro 145	Phe	Ser	Pro	Pro	Ala 150	Cys	His	Thr	Ala	Pro 155	Asn	Ser	Val	Leu	Ile 160
10	Gln	Ser	Leu	Phe	Cys 165	Lys	Ser	Glu	Leu	Trp 170	Trp	Arg	Gln	Met	Arg 175	Ser
15	Ile	Thr	Trp	Val 180	Pro	Ser	Pro	Lys	Ala 185	Gly	Trp	Arg	Trp	Thr 190	Lys	Gly
	Arg	Lys	Gln 195	Ala	Ser	Pro	His	Arg 200	Ile	Leu	Phe	His	Xaa 205			
20	(2)	INF	ORMA!	rion	FOR	SEQ	ID I	NO: 4	1 96 :							
			(5)	SEOU	ENCE	СНА	RACT	ERIS	TTCS							
25				(A) L B) T D) T UENC	ENGT YPE: OPOL	H: 1 ami OGY:	47 a no a lin	mino cid ear	aci		: 49	6:			
	Met	Ala	Leu	Thr	Leu	Leu	Pro	Ser	Val	Ser	Arg	Leu	Pro	Gly	Glu	Arg
30	1				5					10					15	
	Met	Ala	Ala	Ser 20	Gly	Leu	Pro	Tyr	Val 25	Leu	His	His	Lys	Ser 30	Ser	Leu
35	Met	Lys	Val 35	Ile	Phe	Phe	Pro	Туг 40	Pro	Val	Leu	Pro	Leu 45	Pro	Ala	Pro
40	Asn	Gly 50	Thr	Trp	Val	Pro	Arg 55	Leu	Val	Leu	Gly	Leu 60	Gly	Ser	Gly	Asp
40	Gln 65	Val	His	Tyr	Leu	Pro 70	Ile	Ser	Ser	Ser	Ile 75	Val	Asn	Tyr	Gly	Thr 80
45	Ser	Val	Ser	Gly	Lys 85	Ser	Trp	Val	Phe	Leu 90	Val	Tyr	Pro	Leu	His 95	Pro
	Thr	Pro	Thr	Trp 100	Ser	Thr	Arg	Cys	Phe 105	Gln	Val	Trp	Asp	Leu 110	Leu	Ser
50	Val	Glu	Leu 115	Pro	Asp	Lys	Gly	Glu 120	Gly	Asn	Thr	Arg	Arg 125	Ala	Ser	Gly
5 5	Val	Pro 130	Gly	Leu	Ser	Gln	Leu 135	Pro	Thr	Ser	His	Lys 140	Pro	Ile	Lys	Gln
5 5	Glu 145	Tyr	Xaa													

	(2)	INF	ORMA!	rion	FOR	SEQ	ID I	10:	497 :							
5	-			(A) L B) T D) T	ENGT YPE: OPOL	H: 6 ami OGY:	4 am no a lin	ino cid ear	: acid EQ I		: 49	7:			
10	Met 1	Val	Trp	Val	Leu 5	Trp	Ser	Ala	Pro	Ser 10	Leu	Ala	Pro	Pro	Trp 15	Val
	Gly	Pro	Суs	Trp 20	Pro	Ser	Thr	Gly	Asn 25	Cys	Cys	Leu	Cys	Glu 30	Val	Gly
15	Ala	Ala	Leu 35	Pro	Pro	Arg	Gly	Pro 40	Ser	Leu	Ser	Asp	Cys 45	Leu	Gly	Leu
20	Pro	Pro 50		Thr	Pro	Trp	Gly 55	Pro	Ala	Trp	Thr	Leu 60	Ala	Gln	Ser	Xaa
25	(2)	INF	orma [,]	rion	FOR	SEQ	ID 1	NO: 4	498:							
30				(A) L B) T D) T	ENGT YPE: OPOL	H: 9 ami OGY:	4 am no a lin	ino cid ear	: acid EQ I		: 49	8:			
35	Met 1	Ser	Thr	Gly	Ala 5	Leu	Asn	Thr	Ser	Pro 10	Pro	Ala	Ser	Asn	Arg 15	Leu
	Glu	Ser	Thr	Leu 20	Asn	Glu	Tyr	Leu	Ile 25	Gln	Pro	Gln	Leu	His 30	Суз	Ser
40	Ser	Val	Gln 35	Arg	Leu	Thr	Leu	Lys 40	Trp	Gly	Cys	Ser	Ser 45	Leu	Gln	Arg
45	Asp	Gly 50	Gln	Ala	Val	Pro	Trp 55	Gly	Leu	Trp	Gln	Arg 60	Ala	Тут	Pro	Ser
	Leu 65	Leu	Pro	Thr	Leu	Pro 70	Ser	Asp	Leu	Leu	Arg 75	Pro	His	Ala	Val	Thr 80
50	Pro	Ser	Val	Ser	Val 85	Ser	Val	His	Thr	Cys 90	Glu	Ser	Ser	Xaa		
55	(2)		ORMAT	SEQUI	ENCE	CHAI ENGTI	RACTI H: 2	ERIST 2 am	rics ino	: acid	s					
60			(xi)		D) TY JEINCI					EQ II	ON C	: 499	9:			

	Met Phe Leu Ile Phe Val Tyr Phe Leu Lys Xaa Leu Phe Ser Ser Ser 1 5 10 15
5	Leu Pro Phe Leu Trp Leu 20
10	(2) INFORMATION FOR SEQ ID NO: 500:
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 500:
20	Arg Gly Gly Leu Cys Pro Leu Leu Val Pro Gly Pro Leu Ala Arg Gln 1 5 10 15
20	Glu Pro Ser Pro Ser Leu Gln Gly Cys Ser Glu Ser Pro Val Gly Met 20 25 30
25	Asp
30	(2) INFORMATION FOR SEQ ID NO: 501: (i) SEQUENCE CHARACTERISTICS:
35	(A) LENGTH: 28 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 501:
	Met Gln Phe Leu Leu Thr Ala Phe Leu Leu Val Pro Leu Leu Ala Leu 1 5 10 15
40	Cys Asp Val Pro Ile Ser Leu Gly Phe Ser Pro Ser 20 25
45	(2) INFORMATION FOR SEQ ID NO: 502:
50	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 502:
55	Pro Gly Lys Pro Gln Ala Cys Pro Glu Leu Thr Ser Val Leu Pro 1 5 10 15
	(2) INFORMATION FOR SEQ ID NO: 503:
60	(i) SEQUENCE CHARACTERISTICS:

	(A) LENGTH: 19 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 503:
5	Asn Lys Ser Leu Xaa Ser Cys Leu Phe Val Leu His Phe Val Leu His 1 5 10 15
10	Cys Xaa Phe
15	(2) INFORMATION FOR SEQ ID NO: 504: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 amino acids (B) TYPE: amino acid
20	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 504:
	Met Glu Lys Thr His Arg Leu Arg Ile Arg Asn Pro Cys Leu Gln Phe 1 5 10 15
25	Ser Ile Leu Asn Leu Phe Leu Leu Lys Met Ile Val Ser 20 25
30	(2) INFORMATION FOR SEQ ID NO: 505:
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 75 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 505:
40	Met Val Asp Ile Ser Lys Met His Met Ile Leu Tyr Asp Leu Gln Gln 1 5 10 15
	Asn Leu Ser Ser Ser His Arg Ala Leu Glu Lys Gln Ile Asp Thr Leu 20 25 30
45	Ala Gly Lys Leu Asp Ala Leu Thr Glu Leu Leu Ser Thr Ala Leu Gly 35 40 45
	Pro Ser Ser Phe Gln Asn Pro Ala Ser Ser Pro Ser Ser Trp Thr His 50 55 60
50	Glu Glu Glu Pro Gly Tyr Phe Pro Gln Tyr Xaa 65 70 75
55	(2) INFORMATION FOR SEQ ID NO: 506:
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 amino acids
60	(B) TYPE: amino acid (D) TOPOLOGY: linear

660

			(xi)	SEQ	JENCI	E DES	SCRI	PTIO	N: S	EQ II	OM C	: 50	5: ·			
5	Leu 1	Pro	Leu	Ala	Glu 5	Leu	Lys	Asn	Trp	Val 10						
	(2)	INFO	ORMAT	rion	FOR	SEQ	ID 1	10: 5	507 :							
10			(i) :	(A) L B) T	ENGT YPE :	H: 2 ami	07 a no a	mino cid		ds					•
15			(xi)	SEQ!		OPOL				EQ I	D NO	: 50	7:			
13	Met 1	Leu	Trp	Phe	Gly 5	Gly	Cys	Ser	Ala	Val 10	Asn	Ala	Thr	Gly	His 15	Leu
20	Ser	A sp	Thr	Leu 20	Trp	Leu	Ile	Pro	Ile 25	Thr	Phe	Leu	Thr	Ile 30	Gly	Тут
	Gly	Asp	Val 35	Val	Pro	Gly	Thr	Met 40	Trp	Gly	Lys	Ile	Val 45	Cys	Leu	Cys
25	Thr	Gly 50	Val	Met	Gly	Val	Cys 55	Cys	Thr	Ala	Leu	Leu 60	Val	Ala	Val	Val
30	Ala 65	Arg	Lys	Leu	Glu	Phe 70	Asn	Lys	Ala	Glu	Lys 75	His	Val	His	Asn	Phe 80
50	Met	Met	Asp	Ile	Gln 85	Tyr	Thr	Lys	Glu	Met 90	Lys	Glu	Ser	Ala	Ala 95	Arg
35	Va1	Leu	Gln	Glu 100	Ala	Trp	Met	Phe	Tyr 105	Lys	His	Thr	Arg	Arg 110	Lys	Glu
	Ser	His	Ala 115	Ala	Arg	Arg	His	Gln 120	Arg	Xaa	Leu	Leu	Ala 125	Ala	Ile	Asr
40	Ala	Phe 130	Arg	Gln	Val	Arg	Leu 135	Lys	His	Arg	Lys	Leu 140	Arg	Glu	Gln	Val
45	Asn 145	Ser	Met	Val	Asp	Ile 150	Ser	Lys	Met	His	Met 155	Ile	Leu	Туr	Asp	Leu 160
43	Gln	Gln	Asn	Leu	Ser 165	Ser	Ser	His	Arg	Ala 170	Leu	Glu	Lys	Gln	Ile 175	Asp
50	Thr	Leu	Ala	Gly 180	Lys	Leu	Asp	Ala	Leu 185	Thr	Glu	Leu	Leu	Ser 190	Thr	Ala
	Leu	Gly	Pro 195	Arg	Gln	Leu	Pro	Glu 200	Pro	Ser	Gln	Gln	Ser 205	Lys	Xaa	
55																
	(2)	INF	ORMA	rion	FOR	SEQ	ו מו	NO: !	508:							

(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 36 amino acids

```
(B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 508:
5 Met Trp Arg Cys Arg Gly Lys Leu Ser Phe Pro Leu Phe Ala Val Val
       1
     Ile Val Ser Cys Arg Lys Asp Gly Pro Asp Ala Ala Ala Pro Ala
10
     Val Xaa Lys Lys
              35
15
      (2) INFORMATION FOR SEQ ID NO: 509:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 19 amino acids
20
                    (B) TYPE: amino acid
                   (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 509:
     Met Ala Leu Val Ala Leu Phe Thr Gln Leu Met Arg Xaa Leu Gly Arg
25
     Cys Pro Gln
30
      (2) INFORMATION FOR SEQ ID NO: 510:
             (i) SEQUENCE CHARACTERISTICS:
35
                    (A) LENGTH: 32 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 510:
40
     Met Thr Phe Pro Phe Glu Lys Glu Asn Ser Cys Phe Gln Cys Leu Leu
       1
                                          10
     Phe Asp Ser Trp Arg Glu Gln Thr Arg Thr Asn Ile Gln Pro Gln Arg
                  20
                                       25
45
50
      (2) INFORMATION FOR SEQ ID NO: 511:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 28 amino acids
55
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 511:
     Met His Leu Leu Asp Phe Phe Arg Asp Leu Val Leu Leu Val Leu Leu
60
       1
                       5
                                          10
```

662

```
Ala Leu Leu Asp Ser Phe Trp Leu Glu Val Gln Lys
                  20
 5 .
     (2) INFORMATION FOR SEQ ID NO: 512:
             (i) SEQUENCE CHARACTERISTICS:
10
                   (A) LENGTH: 26 amino acids
                    (B) TYPE: amino acid
                   (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 512:
15
     Met Cys Leu Ile His Phe Ile Lys Ile Ile Leu Val Phe Ile Leu Lys
     Leu Trp Leu Tyr Ser Gln Lys Cys Pro Lys
                  20
20
      (2) INFORMATION FOR SEQ ID NO: 513:
25
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 33 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 513:
30
     Met Ile His Val His Glu Trp Asn Asp Gln Met Leu Met Val Tyr Ile
       1
          5
                                          10
      Phe Leu Tyr Pro Val Ser Ile Thr Phe Leu Asn Leu Cys Ser Leu Thr
35
                                      25
     Cys
40
      (2) INFORMATION FOR SEQ ID NO: 514:
             (i) SEQUENCE CHARACTERISTICS:
45
                    (A) LENGTH: 47 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 514:
50
     Leu Asn Glu Ser Tyr Val Ser Arg Ala Gly Gly Trp Phe Ser Met Phe
     Xaa Leu Ile Phe Phe Leu Leu Ala Leu Gly Ser Xaa Leu Cys Leu Leu
55
     Leu Cys Leu Pro Ser Phe Asn Lys Thr Arg Arg Lys Gln Lys Pro
                                  40
```

PCT/US98/04493

	(2)	INFO	RMAT	ION	FOR	SEQ	ID N	0: 5	15:							
5	-		(i) S (xi)	() (1) (1)	A) LI 3) T O) T	ENGTI (PE : OPOLA	l: 43 amir XGY:	ami no ac line	ino a cid ear	acids		515	5 :			
10	Ser 1	Ser	Lys	Thr	Pro 5	Leu	Pro	Ser	Glu	Arg 10	Arg	Trp	Ile	Ser	Gly 15	Ser
	Ser	Leu	Met	Ala 20	Pro	Arg	Pro	Trp	Leu 25	Leu	Gly	Ile	Ala	Leu 30	Leu	Gly
15	Leu	Trp	Ala 35	Leu	Glu	Pro	Ala	Leu 40	Gly	His	Trp					
20	(2)	INFO	ORMAT	rion	FOR	SEQ	ID N	10: 5	16 :							
25			(i) :	(A) L B) T D) T	CHAI ENGT: YPE: OPOL E DE:	H: 3 ami OGY:	ami no a lin	no a cid ear	cids		: 51	6:			
30	Leu 1	Asn	Trp													
35	(2)	INF	ORMAT	SEQU))	ENCE A) L B) T	SEQ CHA ENGT YPE: OPOL	RACT H: 1	ERIS 74 a no a	rics mino cid		ds					
40	Pho	λla	(xi)	_		E DE								Leu	Glv	Ala
	1				5					10					15	
45	Val	Asp	Ser	Gln 20	Met	Asp	Asp	Met	Asp 25	Met	Asp	Leu	Asp	Lys 30	Glu	Phe
	Leu	Gln	Asp 35	Leu	Lys	Glu	Leu	Lys 40	Val	Leu	Val	Ala	Asp 45	Lys	Asp	Leu
50	Leu	Asp 50	Leu	His	Lys	Ser	Leu 55	Val	Cys	Thr	Ala	Leu 60	Arg	Gly	Lys	Leu
55	Gly 65	Val	Phe	Ser	Glu	Met 70	Glu	Ala	Asn	Phe	Lys 75	Asn	Leu	Ser	Arg	Gly 80
	Leu	Val	Asn	Val	Ala 85	Ala	Lys	Leu	Thr	His 90	Asn	Lys	Asp	Val	Arg 95	Asp
60	Leu	Phe	Val	Asp 100	Leu	Val	Glu	Lys	Phe 105	Val	Glu	Pro	Cys	Arg 110	Ser	Asp

	His	Trp	Pro 115	Leu	Ser	Asp	Val	Arg 120	Phe	Phe	Leu	Asn	Gln 125	Tyr	Ser	Ala
5	Ser	Val 130	His	Ser	Leu	Asp	Gly 135	Phe	Arg	His	Gln	Ala 140	Ser	Gly	Thr	Ala
10	Thr 145	Trp	Ala	Pro	Ser	Ala 150	Ala	Ala	Ser	Суѕ	Ala 155	Cys	Ile	Met	Thr	Glu 160
.0	Val	Pro	Pro	Asn	Ala 165	Pro	Pro	Thr	Leu	Thr 170	Ile	Lys	Leu	Leu		
15	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO:	518:							
20			(i)		A) L	ENGI	H: 4	ERIS 3 am	ino		s					
20			(xi)		D) T	OPOL	OGY:	lin	ear	EQ I	D NO	: 51	8:			
25	Met 1		Lys	Asn	Leu 5	Gly	Ser	Gly	Ser	Val 10	Phe	Val	Thr	Trp	Phe 15	Ser
	Leu	Val	Met	Ile 20	Leu	Ser	Gly	Ile	Gly 25	Pro	Leu	Gly	Asp	Ala 30	Glu	Asp
30	Ser	Ile	Ser 35	Asp	Val	Ser	His	Arg 40	Leu	Arg	Pro					
35	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	519:							
40			(i)	(A) I B) T	ENGT	H: 1 ami	ERIS 3 am no a	ino cid		ls					
	Phe	Gln		SEQ Pro						-						
45	1				5					10						
	(2)	INF	ORMA	TION	FOR	SEQ	ID :	NO:	520:							
50			(i)	((A) I (B) T	ENGT	TH: 3 ami	ERIS 30 am 30 am 31 no a 31 lin	ino cid		ls					
55			(xi)	SEQ						EQ I	D NO	: 52	: 0			
	Met 1		Tyr	Val	Ile 5	Val	Leu	Ser	Leu	Phe 10	Val	Val	Leu	Glu	Lys 15	Lys
60	Asn	Lys	Met	Gly 20		Asp	Gly	Cys	Leu 25	Arg	Lys	Asn	Gly	Ser 30		

665

```
(2) INFORMATION FOR SEQ ID NO: 521:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 47 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
10
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 521:
     Met Ser Arg Ser Ile Val Leu Arg Gly Ser Leu Phe Leu Phe Phe Ser
15
     His Tyr Thr Leu Lys Leu Leu Ser Val Ile Lys Gln Thr Asn Arg Lys
      Ile Val Trp Glu Lys Pro Cys Ile Arg Leu Phe Tyr Xaa Val Leu
20
      (2) INFORMATION FOR SEQ ID NO: 522:
25
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 26 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 522:
30
      Met Pro Leu Pro Val Leu Leu Cys Leu Thr Leu Pro Met Pro Leu Pro
            5
                                          10
      Ser Ala Thr Ala Arg Gly Gly Asn Arg Thr
35
                  20
      (2) INFORMATION FOR SEQ ID NO: 523:
40
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 58 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
45
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 523:
      Ser Ser Ile Pro Val Ser Ile Leu Ile Gly Met Lys Leu Ile Leu Tyr
       1
                       5
                                          10
50
      Leu Leu Ile Thr Glu Ser Gly Ser His Glu Lys Lys Ser Phe Tyr Pro
      Ser Phe Lys Tyr Met Phe Lys Ile Ile Ile Tyr Val Ser Ala Tyr Cys
55
      Arg Thr Ala Leu Arg Ala Thr Val Ser His
```

PCT/US98/04493

```
(2) INFORMATION FOR SEQ ID NO: 524:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 19 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 524:
     Asn Arg Thr Leu Leu Phe Leu Ile Leu Phe Val Leu Phe Gly Leu Gly
10
     Tyr Gly Phe
15
      (2) INFORMATION FOR SEQ ID NO: 525:
             (i) SEQUENCE CHARACTERISTICS:
20
                   (A) LENGTH: 40 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 525:
      Met Phe Leu Leu Val Leu Ser Val Phe Cys Asp Phe Met Cys Ser Ile
      1
      Ala Pro Arg Cys His Ala Leu Ser Leu Val Ser Leu Arg Ala Gln His
30
      Leu Ser Leu Phe Ile Thr Cys His
              35
35
      (2) INFORMATION FOR SEQ ID NO: 526:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 57 amino acids
40
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 526:
      Met Leu Leu Phe Ile Leu Leu Thr Leu Ser Ser Gly Cys Arg Leu Leu
45
      Val Ser Ser Trp Lys Thr Phe Leu Pro His Phe Ser Leu Pro Gly Pro
                  20
                                     25
50
      Arg Glu His Pro Glu Gly Ser Arg Thr Trp Phe Phe Arg Tyr Trp Glu
      Pro Gly Ala His Cys Leu His Cys Ala
55
      (2) INFORMATION FOR SEQ ID NO: 527:
60 (i) SEQUENCE CHARACTERISTICS:
```

5			(xi)	(B) T D) T	YPE :	H: 2 ami OGY: SCRI	no a lin	cid ear			: 52	7:			
J	Ala 1	Arg	Leu	Leu	Leu 5	Phe	Leu	Ser	Ser	Val 10	His	Pro	Ser	Ile	Met 15	Pro
10	Ser	Cys	Asn	Gln 20	Leu											
15	(2)	INF					ID									
20			(i)	(A) L B) T	ENGT YPE :	RACT H: 3 ami OGY:	9 an .no a	ino cid		ls					
20			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 52	8:			
	Met 1	Ser	Leu	Thr	Ser 5	Ser	Leu	Thr	Phe	Leu 10	Ser	His	Ile	Leu	Leu 15	Leu
25	Pro	Gln	Lys	Leu 20	Gln	Phe	Leu	Ser	Trp 25		Glu	Arg	Gln	Gln 30	_	Cys
	Thr	Gly	Val	Ala	Lys	Tyr	Ala									
30			35													
	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO:	529:							
35			(i)	(A) L B) T	ENGI YPE :	RACT H: 1 ami	.28 a .no a	mino cid		ds					
40			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 52	9:			
40	Met 1	Val	Leu	Arg	Leu 5	Ile	Gln	Leu	Ile	Phe 10	Leu	Ile	Phe	Phe	Ile 15	His
45	Ile	Ile	Ile	Leu 20	Leu	Ile	Pro	Gly	Ser 25	Arg	Pro	Cys	Gly	Ser 30	Trp	Val
	Asn .	Asp	Arg 35	Xaa	Leu	Gly	Leu	Arg 40	Asp	Val	Thr	His	Leu 45	Ile	Тух	Leu
50	His '	Trp 50	Val	His	Gly	His	Leu 55	Pro	Trp	Cys	His	Pro 60	Tyr	Ile	Gln	Val
55	Glu 1 65	Phe	Ser	Ala	Leu	Ile 70	Glu	Ser	Thr	Ala	Gln 75	Leu	Gly	Leu	Pro	Phe 80
<i>J</i> .J	Ser '	Trp	Val	Arg	Val 85	Ile	His	Pro	Phe	Leu 90	Val	Leu	Pro	Cys	Leu 95	Tyr
60	Ser 1	Pro	Gly	Leu 100	Lys	Asn	Gly	Ile	Phe 105	Leu	Phe	Leu	Leu	Arg 110	Ala	Met

```
Pro Gly Gly Met Phe Pro Gly Asn Leu Glu Ala Phe Arg Val Pro Val
                                 120
 5
10
      (2) INFORMATION FOR SEQ ID NO: 530:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 82 amino acids
                    (B) TYPE: amino acid
15
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 530:
      Met Gly Ser Ser Val Leu Pro Phe Cys Val Cys Val Thr Ser Pro Ser
20
      Leu Gly Gly Arg Cys Ile Gln Gly Arg Phe Ala Ser His Ser Lys Phe
      Trp Gly Phe Gly Xaa Lys Thr Ala Ser Phe Gly Ala Val Gly Glu Thr
25
      Pro Pro Asp Gln Glu Pro Gln Lys Glu Thr Glu Pro Ala Thr Ser Ser
30
      His Ala Arg Pro Trp Ala Arg Val Ile Gly Leu Arg Ile Trp Pro Gln
                           70
      Pro Asn
35
      (2) INFORMATION FOR SEQ ID NO: 531:
40
             (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 20 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 531:
45
      Met Leu Leu Ser Val Ala Ile Phe Ile Leu Leu Thr Leu Val Tyr Ala
        1
     Tyr Trp Thr Met
50
      (2) INFORMATION FOR SEQ ID NO: 532:
55
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 75 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
60
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 532:
```

PCT/US98/04493 WO 98/39448

669

Asn Cys Glu Ile Leu Glu Tyr Cys Tyr Tyr Leu Thr Gln Leu Lys Ile

5 Ser Met Gly Lys Tyr Leu Ser Ile Pro Thr Val Leu Leu Lys Ile Ile

Arg Cys Ser Ile Thr Ala Val Ser Asp Ser Ser Thr Ser Trp Ala Ile

10

Lys Ala Gln Leu Lys Ile Glu Asn Lys Asp Leu Asp Asn Lys Thr Ala 55

Lys Gly Gly Gln Glu Ala Leu Thr Cys Thr 15 70

(2) INFORMATION FOR SEQ ID NO: 533:

20

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 60 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 533:

Met Phe Leu Met Arg Met His Leu Cys Phe Cys Lys Tyr Cys Cys Ser

30 Phe Ile Val Thr Pro Thr Ser Thr Ser Asn Thr Xaa Ser Tyr Leu Trp

Pro Trp Ile Ser Ala Ser Met Ala Gly Arg Gly Ser Xaa Trp Ala Cys

35

Thr Leu Asn Ala Val Thr Arg Glu Gly Leu Pro Glu

40

45

- (2) INFORMATION FOR SEQ ID NO: 534:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 39 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 534:

Met Ser Leu Leu Asn Thr His Thr Leu Cys Phe Val Leu Phe Cys Phe 50 10

Thr Leu Ser Ile Asn Gln Glu Lys Leu Ala Asn His Leu Ala Phe Arg

55 Ile Leu Phe Phe Ile Val Phe 35

60 (2) INFORMATION FOR SEQ ID NO: 535:

```
(i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 2 amino acids
                    (B) TYPE: amino acid
 5 -
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 535:
      Met Leu
       1
10
      (2) INFORMATION FOR SEQ ID NO: 536:
15
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 36 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 536:
20
      Met Asp Gln Phe Lys Ile Phe Tyr Phe Leu Lys Ala Phe Phe Ala Cys
      Cys Asn Val Gln Asp Pro Ser Pro Phe Met Gly Glu Thr Gly Ser Tyr
25
      Leu Asn Ile Gly
               35
30
      (2) INFORMATION FOR SEQ. ID NO: 537:
             (i) SEQUENCE CHARACTERISTICS:
35
                    (A) LENGTH: 14 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 537:
40
      Met Phe Asp Phe Leu Ser Tyr Phe Lys Asp Leu Leu Ser Cys
                       5
                                          10
45
      (2) INFORMATION FOR SEQ ID NO: 538:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 18 amino acids
                    (B) TYPE: amino acid
50
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 538:
     Met Gly Phe Gly Phe Val Leu Asn Ile Phe Ser Phe Phe Leu Xaa Pro
                       5
55
      Pro Leu
```

PCT/US98/04493 WO 98/39448 671

	(2) INFORMATION FOR SEQ ID NO: 539:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 11 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 539:	
10	Leu Leu Leu Trp Thr Leu Leu Ala Xaa Tyr Xaa 1 5 10	
15	(2) INFORMATION FOR SEQ ID NO: 540: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 108 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 540:	
	Met Ala Ala Gln Lys Asp Gln Gln Lys Asp Ala Glu Ala Glu Gly Leu 1 5 10 15	
25	Ser Gly Thr Thr Leu Leu Pro Lys Leu Ile Pro Ser Gly Ala Gly Arg 20 25 30	
30	Glu Trp Leu Glu Arg Arg Ala Thr Ile Arg Pro Trp Ser Thr Phe 35 40 45	
	Val Asp Gln Gln Arg Phe Ser Arg Pro Arg Asn Leu Gly Glu Leu Cys 50 55 60	
35	Gln Arg Leu Val Arg Asn Val Glu Tyr Tyr Gln Ser Asn Tyr Val Phe 65 70 75 80	
	Val Phe Leu Gly Leu Ile Leu Tyr Cys Val Val Thr Ser Pro Met Leu 85 90 95	
40	Leu Val Ala Leu Ala Val Phe Phe Gly Ala Cys Xaa 100 105	
45	(2) INFORMATION FOR SEQ ID NO: 541:	
50	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 106 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 541:	
55	Phe Val Phe Leu Gly Leu Ile Leu Tyr Cys Val Val Thr Ser Pro Met 1 5 10 15	
	Leu Leu Val Ala Leu Ala Val Phe Phe Gly Ala Cys Tyr Ile Leu Tyr 20 25 30	
60	Leu Arg Thr Leu Glu Ser Lys Leu Val Leu Phe Gly Arg Glu Val Ser 35 40 45	

	Pro	Ala 50	His	Gln	Tyr	Ala	Leu 55	Ala	Gly	Gly	Ile	Ser 60	Phe	Pro	Phe	Phe
5	-Trp 65	Leu	Ala	Gly	Ala	Gly 70	Ser	Ala	Val	Phe	Trp 75	Val	Leu	Gly	Ala	Thr 80
10	Leu	Val	Val	Ile	Gly 85	Ser	His	Ala	Ala	Phe 90	His	Gln	Ile	Glu	Ala 95	Val
10	Asp	Gly	Glu	Glu 100	Leu	Gln	Met	Glu	Pro 105	Val						
15	(2)	INF	ORMA!	rion	FOR	SEQ	ID	No: !	542:							
20				- ((A) L B) T D) T	ENGT YPE: OPOL	H: 1 ami OGY:	ERIS 36 a no a lin PTIO	mino cid ear	aci		: 54	2:			
25	Met 1	-	Arg	Phe	Thr 5	Val	Ala	Gly	Val	Leu 10	Pro	Asp	Ile	Glu	Gln 15	Phe
	Phe	Asn	Ile	Gly 20	Asp	Ser	Ser	Ser	Gly 25	Leu	Ile	Gln	Thr	Val 30	Phe	Ile
30	Ser	Ser	Tyr 35	Met	Val	Leu	Ala	Pro 40	Val	Phe	Gly	Tyr	Leu 45	Gly	Asp	Arg
35	Туr	Asn 50		Lys	Tyr	Leu	Met 55	Cys	Gly	Gly	Ile	Ala 60	Phe	Trp	Ser	Leu
	65			_		70					75					Leu 80
40	Leu	Leu	Thr	Arg	Gly 85	Leu	Val	Gly	Val	Gly 90	Glu	Ala	Ser	Tyr	<i>S</i> er 95	Thr
	Ile	Ala	Pro	Thr 100	Leu	Ile	Ala	Asp	Leu 105	Phe	Val	Ala	Asp	Gln 110	Arg	Thr
45	Gly	Cys	Ser 115		Ser	Ser	Thr	Leu 120	Pro	Phe	Arg	Trp	Ala 125	Val	Val	Trp
50	Ala	Thr 130	Leu	Gln	Ala	Pro	Lys 135	Xaa								
	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO: !	543:							
55			(i)	(A) L B) T	ENGI YPE:	H: 4 ami	ERIS 24 a no a lin	mino cid		ds					
			(xi)					PTIO		EQ I	D NO	: 54	3 :			

	Met 1	Ala	Gly	Asp	Trp 5	His	Trp	Ala	Leu	Arg 10	Val	unr	Pro	GIA	Leu 15	GIY
5	_Val	Val	Ala	Val 20	Leu	Leu	Leu	Phe	Leu 25	Val	Val	Arg	Glu	Pro 30	Pro	Arg
	Gly	Ala	Val 35	Glu	Arg	His	Ser	Asp 40	Leu	Pro	Pro	Leu	Asn 45	Pro	Thr	Ser
10	Trp	Trp 50	Ala	Asp	Leu	Arg	Ala 55	Leu	Ala	Arg	Asn	Pro 60	Ser	Phe	Val	Leu
15	Ser 65	Ser	Leu	Gly	Phe	Thr 70	Ala	Val	Ala	Phe	Val 75	Thr	Gly	Ser	Leu	Ala 80
••	Leu	Trp	Ala	Pro	Ala 85	Phe	Leu	Leu	Arg	Ser 90	Arg	Val	Val	Leu	Gly 95	Glu
20	Thr	Pro	Pro	Cys 100	Leu	Pro	Gly	Asp	Ser 105	Cys	Ser	Ser	Ser	Asp 110	Ser	Leu
	Ile	Phe	Gly 115		Ile	Thr	Cys	Leu 120	Thr	Gly	Val	Leu	Gly 125	Val	Gly	Leu
25	Gly	Val 130		Ile	Ser	Arg	Arg 135	Xaa	Arg	His	Ser	Asn 140	Pro	Arg	Ala	Asp
30	145					150					155					Phe 160
					165					170					175	
35				180					185					190		Ala
			195	•				200					205			Glu
40		210)				215					220				Pro
45	Туг 225		ılle	e Gly	Leu	230		Asp	Arg	Leu	Arg 235		Asn	Trp	Pro	Pro 240
	Ser	Phe	e Leu	ı Ser	Glu 245		Arg	Ala	Leu	Gln 250		Ser	Leu	Met	Leu 255	Cys
50	Ala	Phe	· Val	260		Leu	Gly	Gly	Ala 265		Ser	Trp	Ala	270		Ser
	Ser	Leu	275		Thr	· Ala	Gly	Gly 280		Ser	Cys	Thr	285		Ala	Cys
55	Cys	Thr 290		Gln	Gly	Pro	295		Thr	Gly	Leu	300		Pro	Ser	Gly
60	Ala 305		Pro	Pro	Ala	310		Tr	Pro	Val	. Cys 315		Ser	Glu	Arg	Leu 320

	Pro	Leu	Thr	Tyr	Leu 325	His	Ile	Cys	His	Ser 330	Xaa	Pro	Trp	Ala	His 335	Pro
5	Thr -	Lys	G1y	Leu 340	Gly	Leu	Thr	Pro	Trp 345	Pro	Gly	Pro	Ala	Ser 350	Arg	Gly
	Thr	Leu	Gly 355	Arg	Val	Pro	Ala	Pro 360	Arg	His	Tyr	Xaa	Gly 365	Ser	Ser	Gly
10	Glu	Glu 370	Val	Gly	Val	Gln	Glu 375	Gly	Asp	Pro	Ser	Pro 380	Gln	Gly	Xaa	Pro
15	Gln 385	_	Leu	Gly	Ala	Ile 390	Суѕ	Asn	Gly	Ile	Lys 395	Phe	Val	Ala	Arg	Pro 400
	Gln	Val	Pro	Ala	Leu 405	Val	Phe	Leu	Trp	Val 410	Ala	Ser	Asp	Leu	Ala 415	Pro
20	Arg	Leu	His	Pro 420	Arg	Ala	Pro	Glu								
	(2)	INF	ORMA	TION	FOR	SEQ	ID I	NO:	544:							
25			(i)	_	ENCE						ls					
					B) I											
30			(xi)							EQ I	D NO	: 54	4:			
	Met 1		Arg	Phe	Val 5	Ile	Суз	Leu	Phe	Leu 10	Trp	Leu	Val	Leu	Cys 15	Arg
35	Asp	Ser	Thr	Ser 20		Ser	Arg	Ile	Ala 25		Tyr	Tyr	Arg	Ile 30	Val	Phe
	Leu	Ile			Cys	Ser	Ser									
40			35													
	(2)	INF	ORMA	TION	FOR	SEQ	·ID	NO:	545:							
45			(i)	(ENCE (A) I	ENGI YPE:	H: 5 ami	8 am	uno cid	-	ls					
			(xi)		(D) I					EQ I	D NO	: 54	5:			
50	Met	Leu	Pro	Tro	Хаа	Ala	Gln	Leu	Leu	Asp	Ara	Thr	Ile	Glv	Pro	Leu
	1		340	₽	5					10				1	15	
55	Tyr	Leu	Leu	Phe 20	Val	Gln	Phe	Ser	Pro 25		Phe	Ser	Arg	Thr 30	Ser	Pro
	Trp	Arg	Ser 35		Lys	Asn	Phe	Arg 40	Arg	Leu	Tyr	Pro	Pro 45	Cys	Thr	Thr
60	Ser	Glv	Cvs	Ala	Ala	Arg	Tro	Leu	Phe	Ser						

WO 98/39448 PCT/US98/04493

5	⁻ (2)	INFO	RMAT	NOI	FOR	SEQ	ID N	ю: 5	46:							
10			(i) S	() (1 (1	A) Li B) T O) T	ENGTI YPE: OPOLA	H: 3: ami: OGY:	3 am no ac line	ino a cid ear	acid		: 546	5:			
15	1		Leu		5					10					15	
	Phe	Thr	Ser	20 20	GIn	Lys	Pro	Leu	Asp 25	Thr	Pro	GIÀ	Leu	30	vai	Pro
20	Phe															
25	(2)	INF	ORMA:													
30				(A) L B) T D) T	ENGT YPE : OPOL	H: 3 ami OGY:	ERIS 67 a no a lin PTIO	mino cid ear	aci		: 54	7 :			
	Met 1	Ala	Lys	Pro	Gln 5	Val	Val	Val	Ala	Pro 10	Val	Leu	Met	Ser	Lys 15	Leu
35	Ser	Val	Asn	Ala 20	Pro	Glu	Phe	Tyr	Pro 25	Ser	Gly	Tyr	Ser	Ser 30	Ser	Tyr
40	Thr	Glu	Ser 35	Tyr	Glu	Asp	Gly	Cys 40	Glu	Asp	Tyr	Pro	Thr 45	Leu	Ser	Glu
, ,	Tyr	Val 50	Gln	Asp	Phe	Leu	Asn 55	His	Leu	Thr	Glu	Gln 60	Pro	Gly	Ser	Phe
45	Glu 65	Thr	Glu	Ile	Glu	Gln 70	Phe	Ala	Glu	Thr	Leu 75	Asn	Gly	Cys	Val	Thr 80
	Thr	Asp	Asp	Ala	Leu 85	Gln	Glu	Leu	Val	Glu 90	Leu	Ile	Tyr	Gln	Gln 95	Ala
50	Thr	Ser	Ile	Pro 100	Asn	Phe	Ser	Туг	Met 105	Gly	Ala	Arg	Leu	Cys 110	Asn	Tyr
55	Leu	Ser	His 115	His	Leu	Thr	Ile	Ser 120	Pro	Gln	Ser	Gly	Asn 125	Phe	Arg	Gln
	Leu	Leu 130		Gln	Arg	Суз	Arg 135	Thr	Glu	Tyr	Glu	Val 140	Lys	Asp	Gln	Ala
60	Ala 145	Lys	Gly	Asp	Glu	Val 150	Thr	Arg	Lys	Arg	Phe 155	His	Ala	Phe	Val	Leu 160

WO 98/39448

	Phe	Leu	Gly	Glu	Leu 165	Tyr	Leu	Asn	Leu	Glu 170	Ile	Lys	Gly	Thr	Asn 175	Gly
5	Gln	Val	Thr	Arg 180	Ala	Asp	Ile	Leu	Gln 185	Val	Gly	Leu	Arg	Glu 190	Leu	Leu
10	Asn	Ala	Leu 195	Phe	Ser	Asn	Pro	Met 200	Asp	Asp	Asn	Leu	Ile 205	Cys	Ala	Val
10	Lys	Leu 210	Leu	Lys	Leu	Thr	Gly 215	Ser	Val	Leu	Glu	Asp 220	Ala	Trp	Lys	Glu
15	Lys 225	Gly	Lys	Met	Asp	Met 230	Glu	Glu	Ile	Ile	Gln 235	Arg	Ile	Glu	Asn	Val 240
	Val	Leu	Asp	Ala	Asn 245	Cys	Ser	Arg	Asp	Val 250	Lys	Gln	Met	Leu	Leu 255	Lys
20	Leu	Val	Glu	Leu 260	Arg	Ser	Ser	Asn	Trp 265	Gly	Arg	Val	His	Ala 270	Thr	Ser
25	Thr	Tyr	Arg 275	Glu	Ala	Thr	Pro	Glu 280	Asn	Asp	Pro	Asn	Тут 285	Phe	Met	Asn
23	Glu	Pro 290	Thr	Phe	Tyr	Thr	Ser 295	Asp	Gly	Val	Pro	Phe 300	Thr	Ala	Ala	Asp
30	Pro 305	Asp	Tyr	Gln	Glu	Lys 310	Tyr	Gln	Glu	Leu	Leu 315	Glu	Arg	Glu	Asp	Phe 320
	Phe	Pro	Asp	Tyr	Glu 325	Glu	Asn	Gly	Thr	Asp 330	Leu	Ser	Gly	Ala	Gly 335	Asp
35	Pro	Tyr	Leu	Asp 340	Asp	Ile	Asp	Asp	Glu 345	Met	Asp	Pro	Glu	Ile 350	Glu	Glu
40	Ala	Tyr	Glu 355	Lys	Phe	Cys	Leu	Glu 360	Ser	Glu	Arg	Lys	Arg 365	Lys	Gln	
	(2)	Three	יגאמי	TT (M)	FOR	CEO.	TD 1	N.	540.							
45	(2)	TIME				_										
45			(i)	(ENCE A) L B) T D) T	ENGT YPE:	H: 7 ami	7 am no a	ino cid		s					
50			(xi)		UENC					EQ I	D NO	: 54	8:			
30	Met 1	Leu	Arg	Leu	Asp 5	Ile	Ile	Asn	Ser	Leu 10	Val	Thr	Thr	Val	Phe 15	Met
55	Leu	Ile	Val	Ser 20	Val	Leu	Ala	Leu	Ile 25	Pro	Glu	Thr	Thr	Thr 30	Leu	Thr
	Val	Gly	Gly 35	Gly	Val	Phe	Ala	Leu 40	Val	Thr	Ala	Val	Cys 45	Cys	Leu	Ala
60	Asp	Gly	Ala	Leu	Ile	Tyr	Arg	Lys	Leu	Leu	Phe	Asn	Pro	Ser	Gly	Pro

677

50 55 Tyr Gln Lys Lys Pro Val His Glu Lys Lys Glu Val Leu 70 65 5 (2) INFORMATION FOR SEQ ID NO: 549: 10 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 47 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 549: 15 Met Leu Lys Gln Val Met Phe Val Phe Ser Gly Met Gly Pro Arg Ser His Cys Trp Gly Leu Pro Leu Ala Cys Gly Thr Phe Val Gln Gly His 20 Gln Ala Asp Ser Ser His Leu Leu Pro Leu Lys His Gln Gly Ala 25 (2) INFORMATION FOR SEQ ID NO: 550: (i) SEQUENCE CHARACTERISTICS: 30 (A) LENGTH: 168 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 550: 35 Met Leu Leu Ser Leu Ala Ala Phe Ser Val Ile Ser Val Val Ser Tyr 5 10 1 Leu Ile Leu Ala Leu Leu Ser Val Thr Ile Ser Phe Arg Ile Tyr Lys 40 Ser Val Ile Gln Ala Val Gln Lys Ser Glu Glu Gly His Pro Phe Lys 40 Ala Tyr Leu Asp Val Asp Ile Thr Leu Ser Ser Glu Ala Phe His Asn 45 Tyr Met Asn Ala Ala Met Val His Ile Asn Arg Ala Leu Lys Leu Ile 75 50 Ile Arg Leu Phe Leu Val Glu Asp Leu Val Asp Ser Leu Lys Leu Ala Val Phe Met Trp Leu Met Thr Tyr Val Gly Ala Val Phe Asn Gly Ile 105 55 Thr Leu Leu Ile Leu Ala Glu Leu Leu Ile Phe Ser Val Pro Ile Val Tyr Glu Lys Tyr Lys Thr Gln Ile Asp His Tyr Val Gly Ile Ala Arg 60 135

PCT/US98/04493

Asp Gln Thr Lys Ser Ile Val Glu Lys Ile Gln Ala Lys Leu Pro Gly

	145					150					155					160
5	-Ile	Ala	Lys	Lys	Lys 165	Ala	Glu	Xaa								
10	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO: 5	551:							
15				(A) L B) T D) T	ENGT YPE: OPOL	H: 1 ami OGY:	24 a no a lin	mino cid ear	aci		: 55	1:			
20	Ser 1	Val	Pro	Phe	His 5	Leu	Leu	Val	Val	Leu 10	Arg	Ser	Arg	Ala	Val 15	Arg
20	Ala	Arg	Arg	Arg 20	Arg	Glu	Pro	Arg	Ser 25	Leu	Pro	Arg	Pro	Gly 30	Asp	Glu
25	Glu	Leu	Gln 35	Leu	Leu	Leu	Cys	Gly 40	Ala	Arg	Ser	Asp	Phe 45	Leu	Glu	Arg
	Cys	Glu 50	Glu	Asp	Trp	Val	Cys 55	Leu	Trp	His	His	Ala 60	Asp	His	Ala	Ala
30	Phe 65	Pro	Gly	Ser	Phe	Gln 70	Cys	His	Gln	Cys	Gly 75	Phe	Leu	Pro	His	Pro 80
	Gly	Ser	Ser	Leu	Cys 85	His	His	Gln	Leu	Gln 90	Asp	Leu	Gln	Val	Arg 95	His
35	Pro	Ser	Cys	Thr 100	Glu	Val	Arg	Arg	Arg 105	Pro	Ser	Ile	Gln	Ser 110	Leu	Pro
40	Gly	Arg	Arg 115	His	Tyr	Ser	Val	Leu 120	Arg	Ser	Phe	Pro				
45	(2)	INF		rion												
			(1)		A) L	ENGT	н: 1	77 a no a	mino		ds					
50			(xi)	SEQ				lin PTIO		EQ I	D NO	: 55	2:			
	Met 1	Val	His	Leu	Leu 5	Val	Leu	Ser	Gly	Ala 10	Trp	Gly	Met	Gln	Met 15	Trp
55	Val	Thr	Phe	Val 20	Ser	Gly	Phe	Leu	Leu 25	Phe	Arg	Ser	Leu	Pro 30	Arg	His
50	Thr	Phe	Gly 35	Leu	Val	Gln	Ser	Lys 40	Leu	Phe	Pro	Phe	туr 45	Phe	His	Ile

679

	Ser	Met 50	Gly	Cys	Ala	Phe	Ile 55	Asn	Leu	Суѕ	Ile	Leu 60	Ala	Ser	Gln	His
5	Ala 65	Trp	Ala	Gln	Leu	Thr 70	Phe	Trp	Glu	Ala	Ser 75	Gln	Leu	Tyr	Leu	Leu 80
	Phe	Leu	Ser	Leu	Thr 85	Leu	Ala	Thr	Val	Asn 90	Ala	Arg	Trp	Leu	Glu 95	Pro
10	Arg	Thr	Thr	Ala 100	Ala	Met	Trp	Ala	Leu 105	Gln	Thr	Val	Glu	Lys 110	Glu	Arg
15	Gly	Leu	Gly 115	Gly	Glu	Val	Pro	Gly 120	Ser	His	Gln	Gly	Pro 125	Asp	Pro	Тут
	Arg	Gln 130		Arg	Glu	Lys	Asp 135	Pro	Lys	Tyr	Ser	Ala 140	Leu	Arg	Gln	Asr
20	Phe 145		Arg	Tyr	His	Gly 150		Ser	Ser	Leu	Cys 155	Asn	Leu	Gly	Cys	Va)
	Leu	Ser	Asn	Gly	Leu 165		Leu	Ala	Gly	Leu 170	Ala	Leu	Glu	Ile	Arg 175	Ser
25	Leu															
30	(2)	TNIE	ODMA	MTON	FOR	SEO.	TD	NO.	557.							
50	(2) INFORMATION FOR SEQ ID NO: 553:(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 72 amino acids															
35			(xi)	((B) 1 (D) 1	YPE: YOPOL	ami OGY:	no a	cid lear	EQ I): 55	3:			
40	Met 1		Phe	Ile	Leu 5		Phe	Тут	Cys	Leu 10	Met	Thr	Phe	Leu	Ser 15	Leu
40	Glu	Gln	Asn	Ser 20		Thr	Val	Glu	Pro 25	Ser	Ser	His	Glu	Ile 30	Leu	His
45	Leu	Leu	Gln 35		Cys	Phe	Glu	Leu 40		Arg	Thr	Ser	Thr 45		Gln	Cys
	Thr	Glu 50	_	Ile	Pro	Cys	Ala 55	_	Ile	Pro	Glu	Trp		Thr	His	Leu
50	Thr 65	_	Gln	Thr	Leu	Lys 70		Ser								
55	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	554:							
			(i)		ENCE (A) I					: acid	ls					
					(B) 1											

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 554:

Val Leu Arg Ile Ile Cys Leu Trp Pro Cys Gly Thr Thr Leu Pro Leu 5 5 -Val Glu Lys Ala His Asp Ser His Ser Ala Asp Pro Val Cys Pro Gly 25 Leu Thr Ala His Leu Pro Val Leu Leu Tyr Val Gln Leu 10 (2) INFORMATION FOR SEQ ID NO: 555: 15 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 251 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 555: Met Lys His Ala Asp Pro Arg Ile Gln Gly Tyr Pro Leu Met Gly Ser 25 Pro Leu Leu Met Thr Ser Ile Leu Leu Thr Tyr Val Tyr Phe Val Leu Ser Leu Gly Pro Arg Ile Met Ala Asn Arg Lys Pro Phe Gln Leu Arg 40 30 Gly Phe Met Ile Val Tyr Asn Phe Ser Leu Val Ala Leu Ser Leu Tyr 55 Ile Val Tyr Glu Phe Leu Met Ser Gly Trp Leu Ser Thr Tyr Thr Trp 35 Arg Cys Asp Pro Gln Asp Cys Thr Leu Gly Gln Cys Pro Ser Val Pro 40 Ser Pro Xaa Thr Pro Val Thr Lys Ala Tyr Val Val Arg Thr Glu Gln 105 Gly Thr Gly Pro Pro Leu Pro Thr Ala Ala Leu Gln Gly Pro Arg Leu 45 Trp Phe Leu Thr His Phe Pro Arg Ala Ala Pro Gly Met Trp Pro His 135 Cys Cys Leu Pro Leu Gln Ser Trp Gly Leu Lys Gly Leu Tyr Ser Tyr 50 Phe Pro Leu Pro Ala Leu Lys Leu Gly Arg Gly Ala Leu Arg Ala Gly 170 55 Pro Thr Lys Gly Leu Val Ala Phe Phe Leu Thr Gln Lys Arg Ser Ala Ile Met Ser Leu Trp Thr Gln Ser His Ser Ser Thr Pro His Thr Glu 200 60

	Ala Val Ala Ser Gly Pro Lys Val Arg Val Gly Gly Leu Gly Il 210 215 220	.e												
5	Gln Pro Val Glu Ala Ala Tyr Ser Thr Cys Val Leu Ile Lys Ser As 225 230 235 24	-												
	Arg Gly Asn His Glu Lys Lys Lys Lys Lys Lys 245 250													
10														
	(2) INFORMATION FOR SEQ ID NO: 556:													
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 556: 													
20	Gly Leu Ala Gly Leu Cys Gly Gln Leu Ser Ser Pro Ala Leu Cys Va 1 5 10 15	11												
25	Asn Arg Leu													
25														
	(2) INFORMATION FOR SEQ ID NO: 557:													
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 217 amino acids (B) TYPE: amino acid													
35	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 557:													
33	Met Ile Thr Glu Lys Trp Gly Leu Asn Met Glu Tyr Cys Arg Gly Gl 1 5 10 15	.n												
40	Ala Tyr Ile Xaa Ser Ser Gly Phe Ser Ser Lys Met Lys Val Val Al 20 25 30	.a												
	Ser Arg Leu Leu Glu Lys Tyr Pro Gln Ala Ile Tyr Thr Leu Cys Se 35 40 45	r												
45	Ser Cys Ala Leu Asn Met Trp Leu Ala Lys Ser Val Pro Val Met Gl 50 55 60	. y												
50	Val Ser Val Ala Leu Gly Thr Ile Glu Glu Val Cys Ser Phe Phe Hi 65 70 75 8	.s 30												
30	Arg Ser Pro Gln Leu Leu Leu Glu Leu Asp Asn Val Ile Ser Val Le 85 90 95	:u												
55	Phe Gln Asn Ser Lys Glu Arg Gly Lys Glu Leu Lys Glu Ile Cys Hi	.s												
	Ser Gln Trp Thr Gly Arg His Asp Ala Phe Glu Ile Leu Val Glu Le 115 120 125	:u												
60	Leu Gln Ala Leu Val Leu Cys Leu Asp Gly Ile Asn Ser Asp Thr As	ın												

		130					135					140				
5	Ile 145	Arg	Trp	Asn	Asn	Туг 150	Ile	Ala	Gly	Arg	Ala 155	Phe	Val	Leu	Cys	Ser 160
3	Ala	Val	Ser	Asp	Phe 165	Ąsp	Phe	Ile	Val	Thr 170	Ile	Val	Val	Leu	Lys 175	Asn
10	Val	Leu	Ser	Phe 180	Thr	Arg	Ala	Phe	Gly 185	Lys	Asn	Leu	Gln	Gly 190	Gln	Thr
	Ser	Asp	Val 195	Phe	Phe	Ala	Ala	Gly 200	Ser	Leu	Thr	Ala	Val 205	Leu	His	Ser
15	Leu	Asn 210	Glu	Val	Ile	Gly	Lys 215	Tyr	Xaa							
20	(2)	INFO	ORMA	rion	FOR	SEQ	ID I	NO: !	558 :							
			(i)			CHA										
25			(xi)	(B) T D) T	ENGT YPE: OPOL E DE	ami OGY:	no a lin	cid ear			: 55	8 :			
30	Leu 1	Leu	Lys	Val	Leu 5	Cys	Ile	Leu	Pro	Val 10	Met	Lys	Val	Glu	Asn 15	Glu
30	Arg	Tyr	Glu	Asn 20	Gly	Arg	Lys	Arg	Leu 25	Lys	Ala	Tyr	Leu	Arg 30	Asn	Thr
35	Leu	Thr	Asp 35	Gln	Arg	Ser	Ser	Asn 40	Leu	Ala	Leu	Leu	Asn 45	Ile	Asn	Phe
	Asp	Ile 50	Lys	His	Asp	Leu	Asp 55	Leu	Met	Val	Asp	Thr 60	Tyr	Ile	Lys	Leu
40	Tyr 65	Thr	Ser	Lys	Ser	Glu 70	Leu	Pro	Thr	Asp	Asn 75	Ser	Glu	Thr	Val	Glu 80
45	Asn	Thr														
	(2)	INF	ORMA	rion	FOR	SEQ	ID 1	VO: !	559:							
50			(i)	(A) L B) T	CHA ENGT YPE:	H: 9 ami	5 am no a	ino cid		s					
55			(xi)			OPOL E DE				EQ I	D NO	: 55	9:			
33	Met 1	Val	Leu	Ile	Leu 5	Leu	Asn	Leu	Leu	Leu 10	Gly	Gln	Phe	Ser	Cys 15	Met
60	Ser	Pro	Ala	Ser 20	His	His	Cys	His	Pro 25	Leu	Pro	Thr	Glu	Met 30	Pro	Cys

	Ser	Ser	Asp 35	Trp	Gly	Phe	Asp	Ser 40	His	Thr	Val	Tyr	Pro 45	Ser	Cys	Val
5	Āsp	Ala 50	Leu	Leu	Pro	Lys	Pro 55	Ser	Ala	Asn	Ser	Phe 60	Pro	Asn	Gly	Ser
10	Cys 65	His	Cys	Gln	Gly	Leu 70	Tyr	Asn	Gln	Gln	Gln 75	Gln	Asn	Leu	His	Ala 80
	Ala	Glu	Gly	Pro	Ala 85	Ser	Leu	Arg	Cys	Asn 90	Lys	Tyr	Val	Ser	Thr 95	
15	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO: !	560:							
20			(i)	(ENCE A) L B) T	ENGT	H: 5	4 am	ino		s					
			(xi)		D) I UENC					EQ I	D NO	: 56	0 :			
25	Met 1	Ile	Pro	Ala	Tyr 5	Ser	Lys	Asn	Arg	Ala 10	Tyr	Ala	Ile	Phe	Phe 15	Ile
	Val	Phe	Thr	Val 20	Ile	Gly	Asp	Ala	Pro 25	Gly	Ala	Val	Leu	Ser 30	Cys	Ala
30	Gly	His	Pro 35	Cys	Val	Gly	Phe	Ala 40	Ala	Val	Leu	Val	Ala 45	Pro	Leu	Thr
35	Val	Ala 50	Val	Ser	Ser	Xaa										
	(2)	INF	ORMA'	TION	FOR	SEQ	ID I	NO:	561:							
40			(i)	(ENCE A) L B) T	ENGI YPE :	H: 1 ami	.08 a	mino cid		ds					
45			(xi)		D) T UENC					EQ I	D NO	: 56	1:			
	Met 1	Glu	Val	Pro	Pro 5	Pro	Ala	Pro	Arg	Ser 10	Phe	Leu	Cys	Arg	Ala 15	Leu
50	Cys	Leu	Phe	Pro 20	Arg	Val	Phe	Ala	Ala 25	Glu	Ala	Val	Thr	Ala 30	Ązp	Ser
	Glu	Val	Leu 35	Glu	Glu	Arg	Gln	Lys 40	Arg	Leu	Pro	Tyr	Val 45	Pro	Glu	Pro
55	Tyr	Tyr 50	Pro	Glu	Ser	Gly	Trp 55	Asp	Arg	Leu	Arg	Glu 60	Leu	Phe	Gly	Lys
60	Asp 65	Thr	Val	Asn	Thr	Ser 70	Leu	Asn	Val	Туг	Arg 75	Asn	Lys	Asp	Ala	Leu 80

	Ser	His	Phe	Val	Ile 85	Ala	Gly	Ala	Val	Thr 90	Gly	Ser	Leu	Phe	Arg 95	Ile
5	Asn	Val	Gly	Leu 100	Arg	Gly	Trp	Trp	Leu 105	Val	Ala	Xaa				
10	(2)	INF		SEQUI	ENCE	SEQ CHAI	RACTI	ERIS	rics						٠.	
15			(xi)	(B) T D) T	ENGT YPE: OPOL E DE	ami OGY:	no a lin	cid ear			: 56	2 :			
	Met 1	Asn	Trp	Gly	Leu 5	Ser	Ile	Trp	Leu	His 10	Туг	Tyr	Glu	Lys	Lys 15	Lys
20	Glu	Gln	Val	Phe 20	Leu	Val	Ile	Leu	Ala 25	His	Val	Val	Arg	Arg 30	Cys	Ala
25	Ser	Asp	Gly 35	Ile	Leu	Gln	Phe	Glu 40	Ser	Ser	Leu	Leu	Lys 45	Met	Arg	Arg
	Ala	Pro 50														
30	(2)	INF	ORMA	TION	FOR	SEQ	ID I	vo: !	563 :							
35				- ((A) I B) T D) T	CHA ENGT YPE: OPOL E DE	H: 2 ami OGY:	53 a no a lin	mino cid ear	aci		: 56	3:			
40	Met 1	Val	Lys	Val	Cys 5	Asn	Asp	Ser	Asp	Arg 10	Trp	Ser	Leu	Ile	Ser 15	Le
	Ser	Asn	Asn	Ser 20	Gly	Lys	Asn	Val	Glu 25	Leu	Lys	Phe	Val	Asp 30	Ser	Le
45	Arg	Arg	Gln 35	Phe	Glu	Phe	Ser	Val 40	Asp	Ser	Phe	Gln	Ile 45	Lys	Leu	Ası
50	Ser	Leu 50		Leu	Phe	Tyr	Glu 55	Суѕ	Ser	Glu	Asn	Pro 60	Met	Thr	Glu	Thu
	Phe 65	His	Pro	Thr	Ile	Ile 70	Gly	Glu	Ser	Val	Тух 75	Gly	Asp	Phe	Gln	G1:
55	Ala	Phe	Asp	His	Leu 85	Cys	Asn	Lys	Ile	Ile 90	Ala	Thr	Arg	Asn	Pro 95	Glu
	Glu	Ile	Arg	Gly 100	Gly	Gly	Leu	Leu	Lys 105	Туr	Cys	Asn	Leu	Leu 110	Val	Arg

 $60\,$ Gly Phe Arg Pro Ala Ser Asp Glu Ile Lys Thr Leu Gln Arg Tyr Met

			115					120					125			
5	Cys -	Ser 130	Arg	Phe	Phe	Ile	Asp 135	Phe	Ser	Asp	Ile	Gly 140	Glu	Gln	Gln	Arg.
J	Lys 145	Leu	Glu	Ser	Tyr	Leu 150	Gln	Asn	His	Phe	Val 155	Gly	Leu	Glu	Asp	Arg 160
10	Lys	Tyr	Glu	Туг	Leu 165	Met	Thr	Leu	His	Gly 170	Val	Val	Asn	Glu	Ser 175	Thr
	Val	Cys	Leu	Met 180	Gly	His	Glu	Arg	Arg 185	Gln	Thr	Leu	Asn	Leu 190	Ile	Thr
15	Met	Leu	Ala 195	Ile	Arg	Val	Leu	Ala 200	Asp	Gln	Asn	Val	Ile 205	Pro	Asn	Val
20	Ala	Asn 210	Val	Thr	Cys	Tyr	Туг 215	Gln	Pro	Ala	Pro	Туг 220	Val	Ala	Asp	Ala
20	Asn 225		Ser	Asn	Tyr	Туг 230	Ile	Ala	Gln	Val	Gln 235	Pro	Val	Phe	Thr	Cys 240
25	Gln	Gln	Gln	Thr	Tyr 245	Ser	Thr	Trp	Leu	Pro 250	Cys	Asn	Xaa			
30	(2)	INF	'ORMA													
			(1)	- (ENCE (A) I (B) I	ENGT	TH: 1 ami	8 an	nino cid		ls					
35			(xi)		(D) I					EQ I	D NC): 56	4:			
	Met 1		Phe	Leu	Met 5		Leu	Met	Ser	Leu 10		Ile	Thr	Ser	Gln 15	Pro
40	Pro	Met	:													
45	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	5 65 :							
50					ENCE (A) I (B) I (D) I	ENGT TYPE : TOPOI	TH: 8 : a.m.i LOGY:	30 an ino a : lir	nino acid near	acio		D: 56	i 5 :			
	Met		Pro	Lys	Gly 5		Val	Gly	Thr	Arg		, Lys	Lys	Gln	ı Ile	Phe
55	Glu	ı Glu	ı Asn	Arg 20		Thr	Leu	Lys	Phe 25		Leu	Arg	ılle	: Ile		Gly
	Ala	Asr	Ala 35		туг	Cys	Lev	Val 40		Leu	ı Val	. Phe	Phe 45		Ser	Ser

	Ala	Ser 50	Phe	Trp	Ala	Trp	Leu 55	Ala	Leu	Gly	Phe	Ser 60	Leu	Ala	Val	Tyr
5	-Gly 65	Ala	Ser	Тут	His	Ser 70	Met	Ser	Ser	Met	Ala 75	Arg	Ala	Ala	Phe	Phe 80
10																
	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO: 5	566:							
15 20				(ENCE A) L B) T D) T UENC	ENGT YPE: OPOL	H: 7 ami OGY:	3 am no a lin	ino cid ear	acid		: 56	6 :			
20	His 1	Leu	Lys	Asp	Val 5	Ile	Leu	Leu	Thr	Ala 10	Ile	Val	Gln	Val	Leu 15	Ser
25	Cys	Phe	Ser	Leu 20	Tyr	Val	Trp	Ser	Phe 25	Trp	Leu	Leu	Ala	Pro 30	Gly	Arg
	Ala	Leu	Туг 35	Leu	Leu	Trp	Val	Asn 40	Val	Leu	Gly	Pro	Trp 45	Phe	Thr	Ala
30	Asp	Ser 50	_	Thr	Pro	Ala	Pro 55	Glu	His	Asn	Glu	Lys 60	Arg	Gln	Arg	Arg
35	Gln 65	Glu	Arg	Arg	Gln	Met 70	Lys	Arg	Leu							
	(2)	INF	ORMA'	TION	FOR	SEQ	ID I	NO: !	567:							
40			(i)	(ENCE A) L B) T D) T	ENGT YPE:	H: 2 ami	63 a no a	mino cid		ds					
4 5			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 56	7:			
	Met 1	Asp	Суз	Pro	Ala 5	Leu	Pro	Pro	Gly	Trp 10	Lys	Lys	Glu	Glu	Val 15	Ile
50	Arg	Lys	Ser	Gly 20	Leu	Ser	Ala	Gly	Lys 25	Ser	Asp	Val	Туг	Туг 30	Phe	Ser
	Pro	Ser	Gly 35	Lys	Lys	Phe	Arg	Ser 40	Lys	Pro	Gln	Leu	Ala 45	Arg	Тут	Leu
55	Gly	Asn 50	Thr	Val	Asp	Leu	Ser 55	Ser	Phe	Asp	Phe	Arg 60	Thr	Gly	Lys	Met
50	Met 65	Pro	Ser	Lys	Leu	Gln 70	Lys	Asn	Lys	Gln	Arg 75	Leu	Arg	Asn	Asp	Pro 80

PCT/US98/04493

	Leu	Asn	Gln	Asn	Lys 85	Gly	Lys	Pro	Asp	Leu 90	Asn	Thr	Thr	Leu	Pro 95	Ile
5	Arg	Gln	Thr	Ala 100	Ser	Ile	Phe	Lys	Gln 105	Pro	Val	Thr	Lys	Val 110	Thr	Asn
	His	Pro	Ser 115	Asn	Lys	Val	Lys	Ser 120	Asp	Pro	Gln	Arg	Met 125	Asn	Glu	Gln
10	Pro	Arg 130	Gln	Leu	Phe	Trp	Glu 135	Lys	Arg	Leu	Gln	Gly 140	Leu	Ser	Ala	Ser
15	Asp 145	Val	Thr	Glu	Gln	Ile 150	Ile	Lys	Thr	Met	Glu 155	Leu	Pro	Lys	Gly	Leu 160
	Gln	Gly	Val	Gly	Pro 165	Gly	Ser	Asn	Asp	Glu 170	Thr	Leu	Leu	Ser	Ala 175	Val
20	Ala	Ser	Ala	Leu 180	His	Thr	Ser	Ser	Ala 185	Pro	Ile	Thr	Gly	Gln 190	Val	Ser
	Ala	Ala	Val 195		Lys	Asn	Pro	Ala 200	Val	Trp	Leu	Asn	Thr 205	Ser	Gln	Pro
25	Leu	Cys 210		Ala	Phe	Ile	Val 215	Thr	Asp	Glu	Asp	Ile 220	Arg	Lys	Gln	Glu
30	Glu 225		Val	Gln	Gln	Val 230	Arg	Lys	Lys	Leu	Glu 235	Glu	Ala	Leu	Met	Ala 240
	Asp	Ile	Leu	Ser	Arg 245	Ala	Ala	Asp	Thr	Glu 250		Met	Asp	Ile	Glu 255	Met
35	Asp	Ser	Gly	Asp 260	Glu	Ala	Xaa									
40	(2)	INF		SEQU	ENCE	SEQ CHA	RACT H: 7	ERIS	TICS uino		ls					
45			(xi)	((D)	YPE: OPOL E DE	OGY:	lin	ear	EQ I	D NO	: 56	8:			
	Met 1		Arg	Pro	Phe 5	Tyr	Leu	Leu	Leu	Pro 10		Leu	Cys	Thr	Gln 15	Ala
50	Leu	Arg	Gln	Ser 20		Gly	Lys	Ser	Pro 25	Leu	Leu	Trp	Lys	Arg 30	Thr	Leu
55	Leu	Phe	Gly 35		Thr	His	Leu	Asn 40	Pro	Ser	Ala	Lys	Leu 45	Leu	Leu	Ser
55	Gln	Met 50		Thr	Ser	Gly	Asn 55		Lys	Ser	Glu	Tyr 60		Lys	Tyr	Ala
60	Arg 65		Trp	Lys	Lys	His 70										

5	(2) INFORMATION FOR SEQ ID NO: 569:
3	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 34 amino acids(B) TYPE: amino acid
10	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 569:
	Met Pro Val Thr Ser Lys Arg Thr Leu Phe Phe Pro Asp Pro Cys Ser 1 5 10 15
15	Tyr Asp Thr Pro Pro Pro Asp Cys His Cys His Ser Phe Arg Ala Glu 20 25 30
	Leu Leu
20	
	(2) INFORMATION FOR SEQ ID NO: 570:
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 104 amino acids
	(B) TYPE: amino acid(D) TOPOLOGY: linear(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 570:
30	Met Asn Ser Arg Gly Met Trp Leu Thr Tyr Ala Leu Gly Val Gly Leu 1 5 10 15
35	Leu His Ile Val Leu Leu Ser Ile Pro Phe Phe Ser Val Pro Val Ala 20 25 30
	Trp Thr Leu Thr Asn Ile Ile His Asn Leu Gly Met Tyr Val Phe Leu 35 40 45
40	His Ala Val Lys Gly Thr Pro Phe Glu Thr Pro Asp Gln Gly Lys Ser 50 55 60
45	Lys Ala Pro Asn Ser Leu Gly Thr Thr Gly Leu Trp Ser Thr Val Tyr 65 70 75 80
15	Ile Phe Thr Glu Val Phe His Asn Phe Ser Asn Asn Ser Ile Phe Ser 85 90 95
50	Gly Lys Phe Leu Tyr Glu Val Xaa 100
55	(2) INFORMATION FOR SEQ ID NO: 571:
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 132 amino acids(B) TYPE: amino acid
60	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 571:

	Met 1	Trp	Leu	Thr	Tyr 5	Ala	Leu	Gly	Val	Gly 10	Leu	Leu	His	Ile	Val 15	Leu
5	-Leu	Ser	Ile	Pro 20	Phe	Phe	Ser	Val	Pro 25	Val	Ala	Trp	Thr	Leu 30	Thr	Asn
10	Ile	Ile	His 35	Asn	Leu	Gly	Met	Туг 40	Val	Phe	Leu	His	Ala 45	Val	Lys	Gly
	Thr	Pro 50	Phe	Glu	Thr	Pro	Asp 55	Gln	Gly	Lys	Ala	Arg 60	Leu	Leu	Thr	His
15	Trp 65	Glu	Gln	Leu	Asp	Туr 70	Gly	Val	Gln	Phe	Thr 75	Ser	Ser	Arg	Lys	Phe 80
	Phe	Thr	Ile	Ser	Pro 85	Ile	Ile	Leu	Tyr	Phe 90	Leu	Ala	Ser	Phe	Тут 95	Thr
20	Lys	Tyr	Asp	Pro 100		His	Phe	Ile	Leu 105	Asn	Thr	Ala	Ser	Leu 110	Leu	Ser
25	Val	Leu	Ile 115	Pro	Lys	Met	Pro	Gln 120	Leu	His	Gly	Val	Arg 125	Ile	Phe	Gly
23	Ile	Asn 130	Lys	Tyr												
30	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	572 :							
35				((A) I (B) T (D) T	CHA ENGI YPE: YPOI E DE	H: 3 ami OGY:	32 am ino a lir	nino ncid near	acid		: 57	2:			
40	Met 1		Lys	Trp	Ile 5		Glu	Met	His	Cys 10	Tyr	Leu	Val	Leu	Leu 15	Ser
	Val	Cys	Ser	Pro 20		Ala	Leu	Arg	Arg 25		Arg	His	Thr	Leu 30	Ser	Arg
45																
50	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	573 :							
55				((A) I (B) I (D) I	CHA ENGI YPE: YPE:	TH: 2 ami OGY:	28 am ino a : lir	uino Icid Iear	acid		: 57	3:			
	Met 1	Pro				Leu								Phe	Gln 15	Ser
60	-				,					+0						

Ala Asp Ser Cys Glu Val Phe Leu Asn Cys Ser Leu 20 5 (2) INFORMATION FOR SEQ ID NO: 574: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 amino acids 10 (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 574: Met Lys Val Ser Thr Met Leu Trp Phe Leu Cys Trp Glu Gln Ser His 15 Phe Leu Arg Glu Trp Glu Asp Leu Ser Thr Phe Leu Ile Leu Ile Gln 25 20 20 Met Glu Cys Gln Tyr Gly Asn Ser 35 25 (2) INFORMATION FOR SEQ ID NO: 575: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 amino acids (B) TYPE: amino acid 30 (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 575: Met Gly Leu Pro Leu Met Ala Leu Met Trp Ser Thr Leu Pro Ala Ser 5 10 35 Ala Gly Val Asn Phe Ile Leu Ala Leu Pro Leu Leu Xaa Leu 25 20 40 (2) INFORMATION FOR SEQ ID NO: 576: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 amino acids 45 (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 576: Met Lys Arg Gly Cys Leu Gly Leu Leu Phe Phe Ser Cys Cys Ser Ser 50 1 5 Ala Pro Thr Met Leu Leu Cys Asp Tyr Leu Asn Trp Phe 25 55 (2) INFORMATION FOR SEQ ID NO: 577: (i) SEQUENCE CHARACTERISTICS: 60 (A) LENGTH: 92 amino acids

			(xi)	(D) T	YPE: OPOLA E DES	OGY:	line	ear	5Q II	ON C	: 57	7:			•
5	Met	Lys	Leu	Leu	Leu 5	Gly	Ile	Ala	Leu	Leu 10	Ala	Tyr	Val	Ala	Ser 15	Val
10	Trp	Gly	Asn	Phe 20	Val	Asn	Met	Arg	Ser 25	Ile	Gln	Glu	Asn	Gly 30	Glu	Leu
10	Lys	Ile	G1u 35	Ser	Lys	Ile	Glu	Glu 40	Met	Val	Glu	Pro	Leu 45	Arg	Glu	Lys
15	Ile	Arg 50	Asp	Leu	Glu	Lys	Ser 55	Phe	Thr	Gln	Lys	Туг 60	Pro	Pro	Val	Lys
	Phe 65		Ser	Glu	Lys	Asp 70	Arg	Lys	Arg	Ile	Leu 75	Xaa	Asn	Arg	Arg	Arg 80
20	Xaa	Val	Arg	Gly	Leu 85	Pro	Ser	Xaa	Leu	Thr 90	Asn	Ser				
25	(2)	INF	ORMA'													
30				- (A) L B) T D) T	CHAI ENGT YPE: OPOL E DE	H: 4 ami OGY:	2 am no a lin	ino cid ear	acid		: 57	8 :			
35	Met 1		Phe	Ser	Leu 5	Val	Leu	Leu	Ile	Lys 10	Ile	Ile	Ser	Phe	Glu 15	Arg
	Leu	Leu	Ile	Phe 20	Leu	Phe	Pro	Leu	Ser 25	Phe	Leu	Pro	Asn	Ile 30	Trp	Arg
40	Arg	Val	Met 35	Val	Asn	Leu	Asn	Ile 40	Leu	Phe						
45	(2)	INF	ORMA!	rion	FOR	SEQ	I DI	NO: 5	579:							
			(i)	_		CHA ENGT					s					
50				(A) L B) T D) T		H: 7 ami OGY:	0 am no a lin	ino cid ear	acid		: 57 ⁻	9:			
50	Leu 1			(SEQ	A) L B) T D) T UENC	ENGT YPE: OPOL E DE	H: 7 ami OGY: SCRI	0 am no a lin PTIO	ino cid ear N: S	acid EQ I	D NO			Phe	Leu 15	Val
50 55	1		(xi)	() () SEQ	A) L B) T D) T UENC Cys 5	ENGT YPE: OPOL E DE Pro	H: 7 ami OGY: SCRI Pro	0 am no a lin PTIO	ino cid ear N: S	EQ II	D NO Ser	Ser	Phe		15	

692

Leu Gln Gln Cys Arg Gln His Gln Val Leu Gln Glu Lys Asn Thr Lys Lys Phe Asn Lys Lys 5 - 65 (2) INFORMATION FOR SEQ ID NO: 580: 10 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 110 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 580: Met Leu Arg Leu Leu Leu Val Ala Phe Ala Leu Val Val Val Leu 5 10 20 Phe His Val Leu Leu Ala Pro Ile Thr Ala Leu Phe His Thr His Phe 25 Tyr Asp Arg Leu Gln Asp Ala Gly Ser Arg Trp Pro Glu Leu Tyr Leu 25 Tyr Ser Arg Ala Asp Glu Val Val Leu Ala Arg Asp Ile Glu Arg Met Val Glu Ala Arg Leu Ala Arg Val Leu Ala Arg Ser Val Asp Phe 30 70 75 Val Ser Ser Ala His Val Ser His Leu Arg Asp Tyr Pro Thr Tyr Tyr 35 Thr Ser Leu Cys Val Asp Phe Met Arg Asn Cys Val Arg Cys 100 105 40 (2) INFORMATION FOR SEQ ID NO: 581: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 amino acids (B) TYPE: amino acid 45 (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 581: Met Phe Lys Leu Glu Glu Cys Gly Lys Thr Thr Phe Leu Leu Ser Met 50 Ala Leu Tyr Phe Trp Trp Ile Val Gln Thr Thr Lys Gly Cys 20 25 55 (2) INFORMATION FOR SEO ID NO: 582: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 71 amino acids

(B) TYPE: amino acid

```
(D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 582:
     Met Glu Ser Asp Ala Leu Leu Leu Thr Ile Phe Trp Ile Ile Ala Arg
 5
     Ser Ser Val Arg Ser Val Gly Lys Ser Ser Gln Arg Ser Phe Thr Thr
10
     Ile Thr Gln Leu Arg Ser Thr His Thr Gly Pro Ser Arg Arg Ser Tyr
     Leu Ile Trp Trp Asn Gly Gly Pro Lys Arg Thr Ile Ser Tyr Val Ser
                              55
15
     Arg Arg Phe Arg Ser Phe Arg
20
      (2) INFORMATION FOR SEQ ID NO: 583:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 47 amino acids
25
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 583:
     Val Gly Leu Phe Gln Pro Lys Thr Phe Gln Val Pro Val Thr Asp Leu
30
              5
     Tyr Ile Phe Ile Lys Ile Tyr Ser Glu Ile Gly Pro Ile Met His Val
                             · 25
35
     Leu Cys Pro Gly Tyr Ser Gln Ser Pro Ser Thr Pro Pro Trp Thr
              35
                                  40
40
      (2) INFORMATION FOR SEQ ID NO: 584:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 39 amino acids
                    (B) TYPE: amino acid
45
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 584:
     Met Trp Phe Gly Ser Asp Arg Ser Asp Leu Arg Ile Gly Thr Ala Phe
50
     Leu Phe Asp Leu Val Cys Asp Leu Cys Ile His Ala Trp Lys Pro Pro
                                      25
                                                         30
     Gly Leu Val Arg Phe Ser Phe
55
              35
```

(2) INFORMATION FOR SEQ ID NO: 585:

	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 19 amino acids	
	(B) TYPE: amino acid	
5	(D) TOPOLOGY: linear	
,	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 585:	
	Met Leu Asn Thr Ala Ser Leu Asn Leu Pro Trp Lys Val Gln Leu Ph	ıе
	1 5 10 15	
10		
10	Ala His Ala	
	•	
15	(2) INFORMATION FOR SEQ ID NO: 586:	
	(:) applymate all the compared to the control of th	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 amino acids	
	(B) TYPE: amino acid	
20	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 586:	
	Man Care his Char Law Law Law Dha Law his Dha Care Mara Luc Area La	
	Met Ser Ala Cys Leu Leu Leu Phe Leu Ala Phe Ser Trp Lys Arg Ly 1 5 10 15	, 3
25		
	Gly Leu Trp Ser Gly Pro Gly	
	20	
30		
	(2) INFORMATION FOR SEQ ID NO: 587:	
	(i) SEQUENCE CHARACTERISTICS:	
35	(A) LENGTH: 69 amino acids (B) TYPE: amino acid	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 587:	
40	Met Leu Pro Pro Phe Ser Leu Val Tyr Thr His Phe Leu Val Ala So 1 5 10 15	er
70	1 5 10 13	
	Leu Leu Pro Val Ile Leu Ala Val Phe Pro Asp Ser Ala Gln Ile Va	a 1
	20 25 30	
45		
45	Pro Leu Leu Lys Pro Ile Pro Arg Pro Gln Pro Glu Val Ile Phe Pro 35 40 45	c
	35 40 45	
	Ser Ser Glu Leu Leu Glu Gln Leu Leu Ser Val Gln Phe Val Trp G	ln
	50 55 60	
50		
	Ala His Thr Val Ala	
	65	
55		
	(2) INFORMATION FOR SEQ ID NO: 588:	
	(i) CEOUTAICE CHADACHEDICHICC.	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 77 amino acids	
60	(B) TYPE: amino acid	

			(xi)	I) SEQU				line PTION		EQ II	ои с	: 588	3:			
5	Met 1	Gly	Pro	Pro	Met 5	Leu	Gln	Glu	Ile	Ser 10	Asn	Leu	Phe	Leu	Ile 15	Leu
	Leu	Met	Met	Gly 20	Ala	Ile	Phe	Thr	Leu 25	Ala	Ala	Leu	Lys	Glu 30	Ser	Leu
10	Ser	Thr	Cys 35	Ile	Pro	Ala	Ile	Val 40	Cys	Leu	Gly	Phe	Leu 45	Leu	Leu	Leu
15	Asn	Val 50	Gly	Gln	Leu	Leu	Ala 55	Gln	Thr	Lys	Lys	Val 60	Val	Arg	Pro	Thr
	Arg 65	Lys	Lys	Thr	Leu	Ser 70	Thr	Phe	Lys	Glu	Ser 75	Trp	Lys			
20	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO: S	589:							
	,,			SEQU	EN CE	СНА	RACT	ERIS	TICS							
25			(xi)	(B) T	YPE:	ami OGY :	.55 a no a lin PTIO	cid ear			: 58	9:			
	Met	Ala												Gly	Phe	Phe
30	1				5					10					15	
	Ala	Leu	Val	Gly 20	Leu	Ala	Lys	Leu	Ser 25		Glu	Ile	Ser	Ala 30	Pro	Val
35	Ser	Glu	Arg 35	Met	Asn	Ala	Leu	Phe 40	Val	Gln	Phe	Ala	Glu 45	Val	Phe	Pro
40	Leu	Lys 50		Phe	Gly	Tyr	Gln 55	Pro	Asp	Pro	Leu	Asn 60	Tyr	Gln	Ile	Ala
	Val 65	Gly	Phe	Leu	Glu	Leu 70	Leu	Ala	Gly	Leu	Leu 75	Leu	Val	Met	Gly	Pro 80
45	Pro	Met	Leu	Gln	Glu 85	Ile	Ser	Asn	Leu	Phe 90	Leu	Ile	Leu	Leu	Met 95	Met
	Gly	Ala	Ile	Phe 100	Thr	Leu	Ala	Ala	Leu 105	_	Glu	Ser	Leu	Ser 110	Thr	Cys
50	Ile	Pro	Ala 115	Ile	Val	Cys	Leu	Gly 120	Phe	Leu	Leu	Leu	Leu 125	Asn	Val	Gly
55	Gln	Leu 130		Ala	Gln	Thr	Lys 135	Lys	Val	Val	Arg	Pro 140	Thr	Arg	Lys	Lys
J.J	Thr 145		Ser	Thr	Phe	Lys 150	Glu	Ser	Trp	Lys	Xaa 155					

696

```
(2) INFORMATION FOR SEQ ID NO: 590:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 24 amino acids
5
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 590:
     Met Pro Glu Thr Arg Leu Gly His Arg Gln Gln Phe Ala Val Phe His
10
     Leu Xaa Pro Val Pro Pro Cys Gly
                  20
15
      (2) INFORMATION FOR SEQ ID NO: 591:
             (i) SEQUENCE CHARACTERISTICS:
20
                    (A) LENGTH: 38 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 591:
25
     Met Leu Thr Phe Leu Phe Ser Ala Cys Ala Thr Cys Leu Gly Lys Leu
                        5
       1
      Ala Ser Pro Leu Ala Pro Val Gly Pro Gln Gln Arg Gly Xaa Pro Pro
30
      Gly Pro Pro Leu Leu Ser
              35
35
      (2) INFORMATION FOR SEQ ID NO: 592:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 69 amino acids
40
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 592:
     Met Asp Pro Phe His Tyr Asp Tyr Gln Thr Leu Arg Ile Gly Gly Leu
45
      Val Phe Ala Val Val Leu Phe Ser Val Gly Ile Leu Leu Ile Leu Ser
50
     Arg Arg Cys Lys Cys Ser Phe Asn Gln Lys Pro Arg Ala Pro Gly Asp
     Glu Glu Ala Gln Val Glu Asn Leu Ile Thr Ala Asn Ala Thr Glu Pro
                               55
55
     Gln Lys Ala Glu Asn
      65
```

PCT/US98/04493

WO 98/39448

	(2)	INFO	RMAT	NOI	FOR	SEQ	ID N	Ю: 5	93 :							
5	-			(1	A) L B) T D) T	ENGT YPE : OPOL	H: 3 ami OGY:	08 ar no ac line	mino cid ear	aci		: 59:	3:			
10	Asn 1	Leu	Arg	Val	Arg 5	Leu	Gly	Asp	Val	Ile 10	Ser	Ile	Gln	Pro	Cys 15	Pro
	Asp	Val	Lys	Туг 20	Gly	Lys	Arg	Ile	His 25	Val	Leu	Pro	Ile	Asp 30	Asp	Thr
15	Val	Glu	Gly 35	Ile	Thr	Gly	Asn	Leu 40	Phe	Glu	Val	Tyr	Leu 45	Lys	Pro	Тут
20	Phe	Leu 50	Glu	Ala	Tyr	Arg	Pro 55	Ile	Arg	Lys	Gly	Asp 60	Ile	Phe	Leu	Va]
	Arg 65	Gly	Gly	Met	Arg	Ala 70	Val	Glu	Phe	Lys	Val 75	Val	Glu	Thr	Asp	Pro 80
25	Ser	Pro	Tyr	Суѕ	Ile 85	Val	Ala	Pro	Asp	Thr 90	Val	Ile	His	Суѕ	Glu 95	Gly
	Glu	Pro	Ile	Lys 100	Arg	Glu	Asp	Glu	Glu 105	Glu	Ser	Leu	Asn	Glu 110	Val	Gly
30	Tyr	Asp	Asp 115	Ile	Gly	Gly	Cys	Arg 120	Lys	Gln	Leu	Ala	Gln 125	Ile	Lys	Glu
35	Met	Val 130	Glu	Leu	Pro	Leu	A rg 135	His	Pro	Ala	Leu	Phe 140	Lys	Ala	Ile	Gly
	Val 145	Lys	Pro	Pro	Arg	Gly 150	Ile	Leu	Leu	Tyr	Gly 155	Pro	Pro	Gly	Thr	Gl ₃ 160
40	Lys	Thr	Leu	Ile	Ala 165	Arg	Ala	Val	Ala	Asn 170	Glu	Thr	Gly	Ala	Phe 175	Phe
	Phe	Leu	Ile	Asn 180	Gly	Pro	Glu	Ile	Met 185	Ser	Lys	Leu	Ala	Gly 190	Glu	Ser
45	Glu	Ser	Asn 195	Leu	Arg	Lys	Ala	Phe 200	Glu	Glu	Ala	Glu	Lys 205	Asn	Ala	Pro
50	Ala	Ile 210	Ile	Phe	Ile	Asp	Glu 215	Leu	Asp	Ala	Ile	Ala 220	Pro	Lys	Arg	Glu
50	Lys 225	Thr	His	Gly	Glu	Val 230	Glu	Arg	Arg	Ile	Val 235	Ser	Gln	Leu	Leu	Thr 240
55	Leu	Met	Asp	Gly	Leu 245	Lys	Gln	Arg	Ala	His 250	Val	Ile	Val	Met	Ala 255	Ala
	Thr	Asn	Arg	Pro 260	Asn	Ser	Ile	Asp	Pro 265	Ala	Leu	Arg	Arg	Phe 270	Gly	Arg

Phe Asp Arg Glu Val Asp Ile Gly Ile Pro Asp Ala Thr Gly Arg Leu

698

```
275
                                280
                                                   285
     Glu Ile Leu Gln Ile His Thr Lys Asn Met Lys Leu Ala Asp Asp Val.
                          295
                                               300
 5
     Asp Leu Glu Gln
     305
10
     (2) INFORMATION FOR SEQ ID NO: 594:
            (i) SEQUENCE CHARACTERISTICS:
                   (A) LENGTH: 22 amino acids
15
                   (B) TYPE: amino acid
                   (D) TOPOLOGY: linear
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 594:
     Met Gln Ile Lys Leu Leu Lys Ser Val Lys Thr Val Phe Ala Ile Thr
20
     Leu Leu Val Leu Phe Leu
                 20
25
      (2) INFORMATION FOR SEQ ID NO: 595:
            (i) SEQUENCE CHARACTERISTICS:
30
                   (A) LENGTH: 24 amino acids
                   (B) TYPE: amino acid
                   (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 595:
35
     Met Phe Pro Lys Phe Cys Pro Ile Leu Ser Leu Val Asp Phe Ile Ser
            5
       1
     His Arg Asp Lys Pro Glu Thr Glu
                 20
40
     (2) INFORMATION FOR SEQ ID NO: 596:
45
            (i) SEQUENCE CHARACTERISTICS:
                   (A) LENGTH: 24 amino acids
                   (B) TYPE: amino acid
                   (D) TOPOLOGY: linear
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 596:
50
     Met Leu Ile Glu Cys Ala Trp Gln Leu Met Phe Leu Leu Leu Lys Val
           5 10 15
      1
     Glu Gln Leu Gly Ile Leu Asp Lys
55
                 20
     (2) INFORMATION FOR SEQ ID NO: 597:
```

PCT/US98/04493

699

WO 98/39448

```
(i) SEQUENCE CHARACTERISTICS:
                   (A) LENGTH: 1 amino acids
                   (B) TYPE: amino acid
                   (D) TOPOLOGY: linear
5 -
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 597:
     Met
10
      (2) INFORMATION FOR SEQ ID NO: 598:
             (i) SEQUENCE CHARACTERISTICS:
15
                   (A) LENGTH: 8 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 598:
20
     Met Cys Ile Met Ser Ala Leu Val
                      5
25
     (2) INFORMATION FOR SEQ ID NO: 599:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 25 amino acids
                    (B) TYPE: amino acid
30
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 599:
     Met Phe Leu Val Trp Phe Phe Trp Gly Leu Ile Ser Ala Leu Ser Asn
35
     Val His Thr Pro Ser Arg Leu Pro Ala
                  20
40
      (2) INFORMATION FOR SEQ ID NO: 600:
             (i) SEQUENCE CHARACTERISTICS:
                   (A) LENGTH: 27 amino acids
45
                    (B) TYPE: amino acid
                   (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 600:
     Met Xaa Gly Leu Ser Leu Ile Leu Thr Val Thr Leu Leu Ala Val Ser
50
      1 5
     Asp Ser Ala Ala Thr Cys Ile Val Ala Lys Gly
                  20
55
     (2) INFORMATION FOR SEQ ID NO: 601:
             (i) SEQUENCE CHARACTERISTICS:
60
            (A) LENGTH: 61 amino acids
```

(2) INFORMATION FOR SEQ ID NO: 604:

	(B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 601:
5	Met Trp Thr Arg Ser Ser Arg Cys Leu Leu Leu Cys Ile Pro Gly Xa 1 5 10 15
10	Ser Arg Arg Arg Ala Gly Ser Gly Met Lys Pro Arg Ser Trp Se 20 25 30
10	Ala Trp Arg Pro Ser Gly Gly Thr Gly Thr Ser Ser Ser Gln Ser Se 35 40 45
15	Thr Gln Ser Arg Thr Leu Ser Ala Thr Ala Ser Pro Ala 50 55 60
20	(2) INFORMATION FOR SEQ ID NO: 602: (i) SEQUENCE CHARACTERISTICS:
25	(A) LENGTH: 29 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 602:
	Met Arg Glu Thr Ser Ile Arg Val Leu Leu Met Leu Pro Ala Leu Gl 1 5 10 15
30	Ser Thr Ser Gly Leu Ser Ala Phe Met Gly Leu Gly Thr 20 25
35	(2) INFORMATION FOR SEQ ID NO: 603:
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 69 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 603:
45	Met Pro Pro Lys Gln Glu Leu Gly Ser Gly Val Gly Glu Leu Ala Ly 1 5 10 15
73	Asn Ser Lys Arg Gln His Trp Asn His Arg Trp Lys Lys Tyr Leu Ly 20 25 30
50	Leu Ile Arg Trp Glu Asp Gly Leu Leu Leu Glu Gly Leu Leu Va 35 40 45
	Leu Glu His Cys Ala Thr Met Ala Trp Asp Cys Leu Met Arg Leu Gl 50 55 60
55	Leu Leu Lys Arg Leu 65

5 -	-		(i) S (xi)	() () (I)	A) LI 3) T' 0) T(ENGTI (PE: OPOLA	d: 24 amin DGY:	1 ami no ac line	ino a cid ear	acid		: 604	1:			
10	1		Val His		5			_	Pro	Leu 10	Lys	Phe	Asn	Ser	Arg 15	Val
15	(2)	INFO	OR MA T	NOIT	FOR	SEQ	ID N	1O: 6	505 :							
20			(i) :	- (. (:	A) L B) T D) T	ENGT YPE : OPOL	H: 3 ami OGY:	5 am no a lin	ino a cid ear	acid		: 60	5:			
25	Met 1	Asn	Leu	His	Gln 5	Arg	Arg	Leu	Leu	Leu 10	Ile	Gly	His	Leu	Met 15	Thr
	Leu	Val	Lys	Ala 20	Ser	Lys	Ser	Phe	Ser 25	Phe	Thr	Glu	Ile	Thr 30	Ser	Ser
30	Arg	Lys	Lys 35													
35	(2)	INF	ORMA	rion	FOR	SEQ	ID I	NO: (606:							
40				(A) L B) T D) T	ENGT YPE : OPOL	H: 1 ami OGY:	30 a no a lin	mino cid ear	aci		: 60	6:			
15	Leu 1	Leu	Gly	Tyr	Gly 5	Leu	Phe	Gly	His	Cys 10	Ile	Val	Leu	Phe	Ile 15	
45	Тух	Asn	Ile	His 20	Leu	His	Ala	Leu	Phe 25	Tyr	Leu	Phe	Trp	Leu 30	Leu	Val
50	Gly	Gly	Leu 35	Ser	Thr	Leu	Arg	Met 40	Val	Ala	Val	Leu	Val 45	Ser	Arg	Thr
	Val	Gly 50	Pro	Thr	Gln	Arg	Leu 55	Leu	Leu	Cys	Gly	Thr 60	Leu	Ala	Ala	Leu
55	His 65	Met	Leu	Phe	Leu	Leu 70	Tyr	Leu	His	Phe	Ala 75	Tyr	His	Lys	Val	Xaa 80
60	Glu	Gly	Ile	Leu	Asp 85	Thr	Leu	Glu	Gly	Pro 90	Asn	Ile	Pro	Pro	Ile 95	Gln

```
Arg Val Pro Arg Asp Ile Pro Ala Met Leu Pro Ala Ala Arg Leu Pro
                                   105
                100
     Thr Thr Val Leu Asn Ala Thr Ala Lys Ala Val Ala Val Thr Leu Gln
                     120
     Ser His
         130
10
      (2) INFORMATION FOR SEQ ID NO: 607:
            (i) SEQUENCE CHARACTERISTICS:
15
                   (A) LENGTH: 23 amino acids
                   (B) TYPE: amino acid
                   (D) TOPOLOGY: linear
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 607:
20
     Met Leu Val Ile Phe Leu Phe Thr Ser Leu Leu Lys Ile Pro Ser Ser
                     5
                                       10
     Val Pro Gly Leu Ile Asn Val
                  20
25
      (2) INFORMATION FOR SEQ ID NO: 608:
30
            (i) SEQUENCE CHARACTERISTICS:
                   (A) LENGTH: 6 amino acids
                   (B) TYPE: amino acid
                   (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 608:
35
     Glu Leu Asp Tyr Ile Leu
              5
40
      (2) INFORMATION FOR SEQ ID NO: 609:
            (i) SEQUENCE CHARACTERISTICS:
                   (A) LENGTH: 232 amino acids
45
                   (B) TYPE: amino acid
                   (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 609:
     Met Ala Pro Pro Gly Trp Gln Xaa Xaa Xaa Xaa Trp Leu Ala Cys
50
                  5
                                         10
     Pro Asp Arg Gly Glu Leu Ser Ser Arg Ser Pro Pro Cys Arg Leu Ala
55
     Arg Trp Ala Glu Gly Asp Arg Glu Thr Arg Thr Cys Leu Leu Glu Leu
     Ser Ala Gln Ser Trp Gly Gly Arg Phe Arg Arg Ser Ser Ala Val Ser
                             55
60
```

	Ala Gly Ser Pro Ser Arg Leu His Phe Leu Pro Gln Pro Leu Leu Leu 65 70 75 80
5	Arg Ser Ser Gly Ile Pro Ala Ala Ala Thr Pro Trp Pro Gln Pro Ala 85 90 95
	Gly Leu Pro Val Arg Pro Thr Pro Thr Arg Thr Gly Glu Glu Asp Arg
10	Thr Leu Asp Ile Ser Ile Cys Thr Glu Val Leu Ala Gly Thr Glu Glr 115 120 125
15	Pro Pro Pro Pro Arg Met Thr Ser Pro Ser Ser Ser Pro Val Phe Arg 130 135 140
	Leu Glu Thr Leu Asp Gly Gly Gln Glu Asp Gly Ser Glu Ala Asp Arg 145 150 155 160
20	Gly Lys Leu Asp Phe Gly Ser Gly Leu Pro Pro Met Glu Ser Gln Phe 165 170 175
	Gln Gly Glu Asp Arg Lys Phe Ala Pro Ser Asp Lys Ser Gln Pro Pro 180 185 190
25	Thr Thr Glu Arg Glu Gln Val Pro Val Ser Arg Ile Gln Thr Asp Let 195 200 205
30	Thr Glu Ile Gly Ser Ser Met Arg Ser Pro Gly Val Ser Pro Arg Ile 210 215 220
	Trp Leu Asp Phe Gln Ser Thr Xaa 225- 230
35	(2) INFORMATION FOR SEQ ID NO: 610:
40	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 610:
45	Met Val Leu Leu Leu Leu Leu Ala Tyr Val Leu Leu Thr Tyr Ile Leu 1 5 10 15
	Leu Leu Asn Met Leu Ile Ala Leu Met Xaa Arg Asp Arg Gln Gln Cys 20 25 30
50	Arg His
55	(2) INFORMATION FOR SEQ ID NO: 611:
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 21 amino acids(B) TYPE: amino acid
60	(D) TOPOLOGY: linear

```
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 611:
     Met Val Phe Glu Gly Phe Ser Ser Ala Phe Cys Leu Ser Ser Thr Ala
                                          10
5 -
     Pro Thr Ser His Pro
                  20
10
     (2) INFORMATION FOR SEQ ID NO: 612:
            (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 9 amino acids
15
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 612:
     Gly Lys Lys Asn Gln Leu Leu Val Ile
20
      (2) INFORMATION FOR SEQ ID NO: 613:
25
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 29 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
30
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 613:
     Met Val Trp Val Leu Trp Ser Ala Pro Ser Leu Ala Pro Pro Trp Val
                  5
                                  10
35
      Gly Pro Cys Trp Pro Ser Thr Gly Asn Cys Cys Leu Cys
                  20
                                     25
40
      (2) INFORMATION FOR SEQ ID NO: 614:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 30 amino acids
                    (B) TYPE: amino acid
45
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 614:
      Met Ala Lys Arg Ser Pro Gly Gly Cys Gly Ser Gly Leu Ile Leu Leu
                      5
                                        10
50
      Cys Cys Gln Pro Cys Arg Pro Thr Ser Ser Ala Pro Met Arg
                  20
                                     25
55
      (2) INFORMATION FOR SEQ ID NO: 615:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 113 amino acids
60
                    (B) TYPE: amino acid
```

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 615:

Ile Thr Ile Ala Ile Gln Met Ile Cys Leu Val Asn Xaa Glu Leu Tyr

Pro Thr Phe Val Arg Asn Xaa Gly Val Met Val Cys Ser Ser Leu Cys

10 $\,$ Asp Ile Gly Gly Ile Ile Thr Pro Phe Ile Val Phe Arg Leu Arg Glu $\,$ 35 $\,$ 40 $\,$ 45

Val Trp Gln Ala Leu Pro Leu Ile Leu Phe Ala Val Leu Gly Leu Leu 50 55 60

Ala Ala Gly Val Thr Leu Leu Leu Pro Glu Thr Lys Gly Val Ala Leu 65 70 75 80

Pro Glu Thr Met Lys Asp Ala Glu Asn Leu Gly Arg Lys Ala Lys Pro 85 90 95

Lys Glu Asn Thr Ile Tyr Leu Lys Val Gln Thr Ser Glu Pro Ser Gly 100 105 110

25 Thr

- 30 (2) INFORMATION FOR SEQ ID NO: 616:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 amino acids
 - (B) TYPE: amino acid
- 35 (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 616:

Thr Met Lys Asp Ala Glu Asn Leu Gly Arg Lys Ala Lys Pro Lys Glu 1 5 10 15

40

Asn Thr

45

50

- (2) INFORMATION FOR SEQ ID NO: 617:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 21 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 617:

Pro Arg Val Arg Asn Ser Pro Glu Asp Leu Gly Leu Ser Leu Thr Gly 55 1 5 10 15

Asp Ser Cys Lys Leu

	(2) INFORMATION FOR SEQ ID NO: 618:
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 52 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 618:
10	Gln Ala Asp Asp Leu Gln Ala Thr Val Ala Ala Leu Cys Val Leu Arg 1 5 10 15
15	Gly Gly Gly Pro Trp Ala Gly Ser Trp Leu Ser Pro Lys Thr Pro Gly 20 25 30
13	Ala Met Gly Gly Asp Leu Val Leu Gly Leu Gly Ala Leu Arg Arg Arg 35 40 45
20	Lys Arg Leu Leu 50
25	(2) INFORMATION FOR SEQ ID NO: 619:
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 232 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 619:
	Glu Gln Glu Lys Ser Leu Ala Gly Trp Ala Leu Val Leu Ala Xaa Xaa 1 5 10 15
35	Gly Ile Gly Leu Met Val Leu His Ala Glu Met Leu Trp Phe Gly Gly 20 25 30
40	Cys Ser Ala Val Asn Ala Thr Gly His Leu Ser Asp Thr Leu Trp Leu 35 40 45
	Ile Pro Ile Thr Phe Leu Thr Ile Gly Tyr Gly Asp Val Val Pro Gly 50 55 60
45	Thr Met Trp Gly Lys Ile Val Cys Leu Cys Thr Gly Val Met Gly Val 65 70 75 80
	Cys Cys Thr Ala Leu Leu Val Ala Val Val Ala Arg Lys Leu Glu Phe 85 90 95
50	Asn Lys Ala Glu Lys His Val His Asn Phe Met Met Asp Ile Gln Tyr 100 105 110
55	Thr Lys Glu Met Lys Glu Ser Ala Ala Arg Val Leu Gln Glu Ala Trp 115 120 125
55	Met Phe Tyr Lys His Thr Arg Arg Lys Glu Ser His Ala Ala Arg Xaa 130 135 140
60	His Gln Arg Xaa Leu Leu Ala Ala Ile Asn Ala Phe Arg Gln Val Arg 145 150 155 160

		Leu	Lys	His	Arg	Lys 165	Leu	Arg	Glu	Gln	Val 170	Asn	Ser	Met	Val	Asp 175	Ile
5	-	Ser	Lys	Met	His 180	Met	Ile	Leu	Tyr	Asp 185	Leu	Gln	Gln	Asn	Leu 190	Ser	Ser
10		Ser	His	Arg 195	Ala	Leu	Glu	Lys	Gln 200	Ile	Asp	Thr	Leu	Ala 205	Gly	Lys	Leu
10		Asp	Ala 210	Leu	Thr	Glu	Leu	Leu 215	Ser	Thr	Ala	Leu	Gly 220	Pro	Arg	Gln	Leu
15		Pro 225	Glu	Pro	Ser	Gln	Gln 230	Ser	Lys								
20		(2)	INF			FOR	_										
25					(ENCE A) L B) T D) T UENC	ENGT YPE: OPOL	H: 3 ami OGY:	6 am no a lin	ino cid ear	acid		. 62	0 -			
		Tyr 1				His 5									Val	Val 15	Gly
30		Thr	Arg	Gly	Gly 20	Phe	Arg	Gly	Cys	Thr 25	Val	Trp	Leu	Thr	Gly 30	Leu	Ser
35		Gly	Ala	Gly 35	Lys												
		(2)	INF	ORMA'	rion	FOR	SEQ	ID 1	NO: (621:							
40				(i)	(ENCE A) L B) T D) T	ENGT YPE:	H: 5 ami	7 am no a	ino cid		s					
45		Leu	Gln		SEQ	UENC Ile	E DE	SCRI	PTIO	N: S					Ala	Ser	Leu
		1				5 Lys					10					15	
50					20	Gly				25					30		
55			Lys	35		Ser		Pro	40		-	-	-	45			
			50					55									
60		(2)	INF	ORMA!	rion	FOR	SEQ	ID I	NO: 6	522:							

```
(i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 19 amino acids
                    (B) TYPE: amino acid
 5 -
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 622:
      Ile Thr Ser Thr Asp Ile Leu Gly Thr Asn Pro Glu Ser Leu Thr Gln
              5
10
      Pro Ser Asp
15
      (2) INFORMATION FOR SEQ ID NO: 623:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 19 amino acids
20
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 623:
      Asn Ser Thr Ser Gly Glu Cys Leu Leu Leu Glu Ala Glu Gly Met Ser
25
      Lys Ser Tyr
30
      (2) INFORMATION FOR SEQ ID NO: 624:
             (i) SEQUENCE CHARACTERISTICS:
35
                    (A) LENGTH: 51 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 624:
40
      Cys Ser Gly Thr Glu Arg Val Ser Leu Met Ala Asp Gly Lys Ile Phe
                      5
                                         10
      Val Gly Ser Gly Ser Ser Gly Gly Thr Glu Gly Leu Val Met Asn Ser
                  20
                                      25
45
      Asp Ile Leu Gly Ala Thr Thr Glu Val Leu Ile Glu Asp Ser Asp Ser
                                  40
      Ala Gly Pro
50
        50
      (2) INFORMATION FOR SEQ ID NO: 625:
55
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 60 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
60
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 625:
```

709

Ile Gln Tyr Val Arg Cys Glu Met Glu Gly Cys Gly Thr Val Leu Ala 10 5 His Pro Arg Tyr Leu Gln His His Ile Lys Tyr Gln His Leu Leu Lys 20 Lys Lys Tyr Val Cys Pro His Pro Ser Cys Gly Arg Leu Phe Arg Leu 40 10 Gln Lys Gln Leu Leu Arg His Ala Lys His His Thr 50 55 15 (2) INFORMATION FOR SEQ ID NO: 626: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 amino acids 20 (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 626: Asp Gln Arg Asp Tyr Ile Cys Glu Tyr Cys Ala Arg Ala Phe Lys Ser 25 Ser His Asn Leu Ala Val His Arg Met Ile His Thr Gly Glu Lys 30 (2) INFORMATION FOR SEO ID NO: 627: (i) SEQUENCE CHARACTERISTICS: 35 (A) LENGTH: 25 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 627: 40 Arg Ser Ser Arg Ser Lys Thr Gly Ser Leu Gln Leu Ile Cys Lys Ser Glu Pro Asn Thr Asp Gln Leu Asp Tyr 45 (2) INFORMATION FOR SEQ ID NO: 628: 50 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 183 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 628: 55 Leu Gln Cys Glu Ile Cys Gly Phe Thr Cys Arg Gln Lys Ala Ser Leu 10 Asn Trp His Met Lys Lys His Asp Ala Asp Ser Phe Tyr Gln Phe Ser 60 25 20

	Суѕ	Asn	Ile 35	Cys	Gly	Lys	Lys	Phe 40	Glu	Lys	Lys	Asp	Ser 45	Val	Val	Ala
5	- His	Lys 50	Ala	Lys	Ser	His	Pro 55	Glu	Val	Xaa	Ile	Thr 60	Ser	Thr	Asp	Ile
10	Leu 65	Gly	Thr	Asn	Pro	Glu 70	Ser	Leu	Thr	Gln	Pro 75	Ser	Asp	Xaa	Asn	Ser 80
10	Thr	Ser	Gly	Glu	Cys 85	Leu	Leu	Leu	Glu	Ala 90	Glu	Gly	Met	Ser	Lys 95	Ser
15	Tyr	Хаа	Cys	Ser 100	Gly	Thr	Glu	Arg	Val 105	Ser	Leu	Met	Ala	Asp 110	Gly	Lys
	Ile	Phe	Val 115	Gly	Ser	Gly	Ser	Ser 120	Gly	Gly	Thr	Glu	Gly 125	Leu	Val	Met
20	Asn	Ser 130	Asp	Ile	Leu	Gly	Ala 135	Thr	Thr	Glu	Val	Leu 140	Ile	Glu	Asp	Ser
25	Asp 145		Ala	Gly	Pro	Xaa 150	Gln	Arg	Asp	Tyr	Ile 155		Glu	Tyr	Cys	Ala 160
23	Arg	Ala	Phe	Lys	Ser 165	Ser	His	Asn	Leu	Ala 170	Val	His	Arg	Met	Ile 175	His
30	Thr	Gly	Glu	Lys 180	His	Туг	Xaa									
35	(2)	INF		TION SEQU						:						
			•	(A) I B) I	ENGI YPE:	H: 6 ami	0 am	ino cid		ls					
40			(xi)	SEQ		OPOL E DE				EQ I	D NO	: 62	9:			
	Gln 1	_	Val	Arg	Cys 5	Glu	Met	Glu	Gly	Cys 10	Gly	Thr	Val	Leu	Ala 15	His
45	Pro	Arg	Tyr	Leu 20	Gln	His	His	Ile	Lys 25	Tyr	Gln	His	Leu	Leu 30	Lys	Lys
50	Lys	Tyr	Val 35	Cys	Pro	His	Pro	Ser 40	Cys	Gly	Arg	Leu	Phe 45	Arg	Leu	Gln
50	Lys	Gln 50	Leu	Leu	Arg	His	Ala 55	Lys	His	His	Thr	As p				
55																
	(2)	INF		TION												
			(1)	SEQU)		ENGT					ls					
60				(B) 1	YPE:	ami	no a	cid							

711

```
(D) TOPOLOGY: linear
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 630:
     Pro Phe Lys Asp Asp Pro Arg Asp Glu Thr Tyr Lys Pro His Leu Glu
 5 - 1 5
                                10
     Arg Glu Thr Pro Lys Pro Arg Arg Lys Ser Gly
10
     (2) INFORMATION FOR SEQ ID NO: 631:
            (i) SEQUENCE CHARACTERISTICS:
15
                   (A) LENGTH: 110 amino acids
                   (B) TYPE: amino acid
                   (D) TOPOLOGY: linear
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 631:
20
     Glu Met Phe Asp Ser Leu Ser Tyr Phe Lys Gly Ser Ser Leu Leu Leu
     Met Leu Lys Thr Tyr Leu Ser Glu Asp Val Phe Gln His Ala Val Val
                                 25
25
     Leu Tyr Leu His Asn His Ser Tyr Ala Ser Ile Gln Ser Asp Asp Leu
                      40
     Trp Asp Ser Phe Asn Glu Val Thr Asn Gln Thr Leu Asp Val Lys Arg
30
                           55
     Met Met Lys Thr Trp Thr Leu Gln Lys Gly Phe Pro Leu Val Thr Val
35
     Gln Lys Lys Gly Lys Glu Leu Phe Ile Gln Gln Glu Arg Phe Phe Leu
     Asn Met Lys Pro Glu Ile Gln Pro Ser Asp Thr Arg Tyr Met
                                   105
40
     (2) INFORMATION FOR SEQ ID NO: 632:
45
            (i) SEQUENCE CHARACTERISTICS:
                   (A) LENGTH: 24 amino acids
                   (B) TYPE: amino acid
                   (D) TOPOLOGY: linear
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 632:
50
     Leu Glu Lys Val Ala Ser Val Gly Asn Ser Arg Pro Thr Gly Gln Gln
          5
                         10
     Leu Glu Ser Leu Gly Leu Leu Ala
55
                 20
```

(2) INFORMATION FOR SEQ ID NO: 633:

```
(i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 18 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
 5 -
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 633:
      Val His Arg Glu Glu Ala Ser Cys Tyr Cys Gln Ala Glu Pro Ser Gly
                                          10
10
      Asp Leu
15
      (2) INFORMATION FOR SEQ ID NO: 634:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 22 amino acids
                    (B) TYPE: amino acid
20
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 634:
      Arg Pro Ala Leu Arg Gln Ala Gly Gly Gly Thr Arg Glu Pro Arg Gln
                                          10
25
      Lys Arg Trp Ala Gly Leu
                   20
30
      (2) INFORMATION FOR SEQ ID NO: 635:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 12 amino acids
35
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 635:
      Ala Val Asn Phe Arg Pro Gln Arg Ser Gln Ser Met
40
      (2) INFORMATION FOR SEO ID NO: 636:
45
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 37 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
50
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 636:
     Met Ile Thr Asp Val Gln Leu Ala Ile Phe Ala Asn Met Leu Gly Val
                   5
                                         10
55
     Ser Leu Phe Leu Leu Val Val Leu Tyr His Tyr Val Ala Val Asn Asn
                  20
                                     25
     Pro Lys Lys Gln Glu
              35
60
```

	(2)	INFO	ORMAT	NOI	FOR	SEQ	ID N	10: 6	37:							
5 -			(i) :	(.	ENCE A) L B) T	ENGT YPE :	H: 3	42 ai no a	mino cid	_	ds					
10			(xi)		UENCI					EQ II	ON C	: 63	7 :			
	Glu 1	Glu	Met	Ala	Asp 5	Ser	Val	Lys	Thr	Phe 10	Leu	Gln	Asp	Leu	Ala 15	Arg
15	Gly	Ile	Lys	Asp 20	Ser	Ile	Trp	Gly	Ile 25	Cys	Thr	Ile	Ser	Lys 30	Leu	Asp
	Ala	Arg	Ile 35	Gln	Gln	Lys	Arg	Glu 40	Glu	Gln	Arg	Arg	Arg 45	Arg	Ala	Ser
20	Ser	Val 50	Leu	Ala	Gln	Arg	Arg 55	Ala	Gln	Ser	Ile	Glu 60	Arg	Lys	Gln	Glu
25	Ser 65	Glu	Pro	Arg	Ile	Val 70	Ser	Arg	Ile	Phe	Gln 75	Cys	Cys	Ala	Trp	Asn 80
	Gly	Gly	Val	Phe	Trp 85	Phe	Ser	Leu	Leu	Leu 90	Phe	Tyr	Arg	Val	Phe 95	Ile
30	Pro	Val	Leu	Gln 100	Ser	Val	Thr	Ala	Arg 105	Ile	Ile	Gly	Asp	Pro 110	Ser	Leu
	His	Gly	Asp 115	Val	Trp	Ser	Trp	Leu 120	Glu	Phe	Phe	Leu	Thr 125	Ser	Ile	Phe
35	Ser	Ala 130		Trp	Val	Leu	Pro 135	Leu	Phe	Val	Leu	Ser 140	Lys	Val	Val	Asn
40	Ala 145	Ile	Trp	Phe	Gln	Asp 150	Ile	Ala	Asp	Leu	Ala 155	Phe	Glu	Val	Ser	Gly 160
	Arg	Lys	Pro	His	Pro 165	Phe	Pro	Ser	Val	Ser 170	Lys	Ile	Ile	Ala	Asp 175	Met
45	Leu	Phe	Asn	Leu 180		Leu	Gln		Leu 185		Leu	Ile	Gln	Gly 190	Met	Phe
	Val	Ser	Leu 195	Phe	Pro	Ile	His	Leu 200	Val	Gly	Gln	Leu	Val 205	Ser	Leu	Leu
50	His	Met 210	Ser	Leu	Leu	Tyr	Ser 215	Leu	Туr	Cys	Phe	Glu 220	Tyr	Arg	Trp	Phe
55	Asn 225	Lys	Gly	Ile	Glu	Met 230	His	Gln	Arg	Leu	Ser 235	Asn	Ile	Glu	Arg	Asn 240
<i></i>	Trp	Pro	Tyr	Тут	Phe 245	Gly	Phe	Gly	Leu	Pro 250	Leu	Ala	Phe	Leu	Thr 255	Ala
50	Met	Gln	Ser	Ser 260	Tyr	Ile	Ile	Ser	Gly 265	Cys	Leu	Phe	Ser	11e 270	Leu	Phe

		Pro	Leu	Phe 275	Ile	Ile	Ser	Ala	Asn 280	Glu	Ala	Lys	Thr	Pro 285	Gly	Lys	Ala
5	-	Tyr	Leu 290	Phe	Gln	Leu	Arg	Leu 295	Phe	Ser	Leu	Val	Val 300	Phe	Leu	Ser	Asn
10		Arg 305	Leu	Phe	His	Lys	Thr 310	Val	Tyr	Leu	Gln	Ser 315	Ala	Leu	Ser	Ser	Ser 320
		Thr	Ser	Ala	Glu	Lys 325	Phe	Pro	Ser	Pro	His 330	Pro	Ser	Pro	Ala	Lys 335	Leu
15		Lys	Ala	Thr	Ala 340	Gly	His										
20		(2)	INF		SEQU)	FOR ENCE A) L	CHA ENGT	RACT H: 5	ERIS	TICS mino		ds					
25				(xi)	(B) T D) T UENC	OPOL	OGY:	lin	ear	EQ I	D NO	: 63	8:			
		Met 1	Ala	Lys	Phe	Met 5	Thr	Pro	Val	Ile	Gln 10	Asp	Asn	Pro	Ser	Gly 15	Trp
30		Gly	Pro	Cys	Ala 20	Val	Pro	Glu	Gln	Phe 25	Arg	Asp	Met	Pro	Туг 30	Gln	Pro
35		Phe	Ser	Lys 35		Asp	Arg	Leu	Gly 40	Lys	Val	Ala	Asp	Trp 45	Thr	Gly	Ala
		Thr	Tyr 50	Gln	Asp	Lys	Arg	Tyr 55	Thr	Asn	Lys	Tyr	Ser 60	Ser	Gln	Phe	Gly
40		Gly 65	Gly	Ser	Gln	Tyr	Ala 70	_	Phe	His	Glu	Glu 75	Asp	Glu	Ser	Ser	Phe 80
		Gln	Leu	Val	Asp	Thr 85	Ala	Arg	Thr	Gln	Lys 90	Thr	Ala	Tyr	Gln	Arg 95	Asn
45		Arg	Met	Arg	Phe 100	Ala	Gln	Arg	Asn	Leu 105	Arg	Arg	Asp	Lys	Asp 110	Arg	Arg
50		Asn	Met	Leu 115	Gln	Phe	Asn	Leu	Gln 120	Ile	Leu	Pro	Lys	Ser 125	Ala	Lys	Gln
		Lys	Glu 130	Arg	Glu	Arg	Ile	Arg 135	Leu	Gln	Lys	Lys	Phe 140	Gln	Lys	Gln	Phe
55		Gly 145	Val	Arg	Gln	Lys	Trp 150	Asp	Gln	Lys	Ser	Gln 155	Lys	Pro	Arg	Asp	Ser 160
		Ser	Val	Glu	Val	Arg 165	Ser	Asp	Trp	Glu	Val 170	Lys	Glu	Glu	Met	Asp 175	Phe
60		Pro	Gln	Leu	Met	Lys	Met	Arg	Tyr	Leu	Glu	Val	Ser	Glu	Pro	Gln	Asp

WO 98/39448

				180					185					190		
5 -	Ile	Glu	Cys 195	Cys	Gly	Ala	Leu	Glu 200	Tyr	Tyr	Asp	Lys	Ala 205	Phe	Asp	Arg
2	Ile	Thr 210	Thr	Arg	Ser	Glu	Lys 215	Pro	Leu	Arg	Xaa	Xaa 220	Lys	Arg	Ile	Phe
10	His 225	Thr	Val	Thr	Thr	Thr 230	Asp	Asp	Pro	Val	Ile 235	Arg	Lys	Leu	Ala	Lys 240
	Thr	Gln	Gly	Asn	Val 245	Phe	Ala	Thr	Asp	Ala 250	Ile	Leu	Ala	Thr	Leu 255	Met
15	Ser	Cys	Thr	Arg 260	Ser	Val	Tyr	Ser	Trp 265	Asp	Ile	Val	Val	Gln 270	Arg	Val
20	Gly	Ser	Lys 275	Leu	Phe	Phe	Asp	Lys 280	Arg	Asp	Asn	Ser	Asp 285	Phe	Asp	Leu
	Leu	Thr 290	Val	Ser	Glu	Thr	Ala 295	Asn	Glu	Pro	Pro	Gln 300	Asp	Glu	Gly	Asr
25	Ser 305		Asn	Ser	Pro	Arg 310	Asn	Leu	Ala	Met	Glu 315	Ala	Thr	Tyr	Ile	Asr 320
	His	Asn	.Phe	Ser	Gln 325	Gln	Cys	Leu	Arg	Met 330	Gly	Lys	Glu	Arg	Туг 335	Asr
30	Phe	Pro	Asn	Pro 340	Asn	Pro	Phe	Val	Glu 345	Asp	Asp	Met	Asp	Lys 350	Asn	Glu
35	Ile	Ala	Ser 355	Val	Ala	Tyr	Arg	Туг 360	Arg	Ser	Gly	Lys	Leu 365	Gly	Asp	Asp
	Ile	Asp 370	Leu	Ile	Val	Arg	Cys 375	Glu	His	Asp	Gly	Val 380	Met	Thr	Gly	Ala
40	As n 385	Gly	Glu	Val	Ser	Phe 390	Ile	Asn	Ile	Lys	Thr 395	Leu	Asn	Glu	Trp	Asp 400
	Ser	Arg	His	Суѕ	Asn 405	Gly	Val	qzA	Trp	Arg 410	Gln	Lys	Leu	Asp	Ser 415	Glr
45	Arg	Gly	Ala	Val 420	Ile	Ala	Thr	Glu	Leu 425	Lys	Asn	Asn	Ser	Tyr 430	Lys	Leu
50	Ala	Arg	Trp 435	Thr	Cys	Cys	Ala	Leu 440	Leu	Ala	Gly	Ser	Glu 445	Tyr	Leu	Lys
	Leu	Gly 450	Tyr	Val	Ser	Arg	Tyr 455	His	Val	Lys	Asp	Ser 460	Ser	Arg	His	Val
55	11e 465	Leu	Gly	Thr	Gln	Gln 470	Phe	Lys	Pro	Asn	Glu 475	Phe	Ala	Ser	Gln	11e 480
	Asn	Leu	Ser	Val	Glu 485	Asn	Ala	Trp	Gly	Ile 490	Leu	Arg	Cys	Val	Ile 495	Asp
60	Ile	Суз	Met	Lys	Leu	Glu	Glu	Gly	Lys	Tyr	Leu	Ile	Leu	Lys	Asp	Pro

500 505 510 Asn Lys Gln Val Ile Arg Val Tyr Ser Leu Pro Asp Gly Thr Phe Ser 520 5 -Ser 10 (2) INFORMATION FOR SEQ ID NO: 639: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 194 amino acids 15 (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 639: Lys Lys Arg His Thr Asp Val Gln Phe Tyr Thr Glu Val Gly Glu Ile 20 Thr Thr Asp Leu Gly Lys His Gln His Met His Asp Arg Asp Asp Leu 25 25 Tyr Ala Glu Gln Met Glu Arg Glu Met Arg His Lys Leu Lys Thr Ala Phe Lys Asn Phe Ile Glu Lys Val Glu Ala Leu Thr Lys Glu Glu Leu 30 Glu Phe Glu Val Pro Phe Arg Asp Leu Gly Phe Asn Gly Ala Pro Tyr 70 Arg Ser Thr Cys Leu Gln Pro Thr Ser Ser Ala Leu Val Asn Ala 35 Thr Glu Trp Pro Pro Phe Val Val Thr Leu Asp Glu Val Glu Leu Ile 100 105 40 His Phe Xaa Arg Val Gln Phe His Leu Lys Asn Phe Asp Met Val Ile 120 Val Tyr Lys Asp Tyr Ser Lys Lys Val Thr Met Ile Asn Ala Ile Pro 45 Val Ala Ser Leu Asp Pro Ile Lys Glu Trp Leu Asn Ser Cys Asp Leu Lys Tyr Thr Glu Gly Val Gln Ser Leu Asn Trp Thr Lys Ile Met Lys 50

Thr Ile Val Asp Asp Pro Glu Gly Phe Phe Glu Gln Gly Gly Trp Ser 185

55 Phe Leu

60 (2) INFORMATION FOR SEQ ID NO: 640:

	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 70 amino acids															
						LENGT TYPE :				acio	ls					
5	-					OPOL										
			(xi)	SEQ						EQ I	D NC): 64	0:			
	•	_	6 3		~ 1		- 1									
	Arg		GIY	Leu	GIY 5		GIY	Ile	Thr			Phe	Leu	Ala		
10	-				J					10					15	
	Ile	Thr	Gln	Phe 20		Val	Tyr	Asn	Gly 25		Тут	Gln	Туг	Thr 30		Pro
	_	_,		_												
15	Asp	Pne	: Leu 35	Tyr	IIe	Arg	Ser			Pro	Cys	Ile			Ser	Gl۶
13			,,,					40					45			
	Gly	Val 50		Val	Gly	Asn	Ile 55		Arg	Gln	Leu	Ala 60		Gly	Val	Pro
20																
20	Glu 65	-	Pro	His	Ser	Asp 70										
	0.5					70										
25																
25	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	641:							
			(i)	SEQU	ENCE	СНА	RACT	ERIS	TICS	:						
										aci	.ds					
20						YPE:										
30		(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 641:														
			(XI)	SEQ	UENC	E DE	SCRI	PITO	N: S	FQ I	D NO	: 64	1:			
	Val	Thr	Gln	Pro	Lys	His	Leu	Ser	Ala	Ser	Met	Gly	Gly	Ser	Val	Glu
25	1				5					10					15	
35	Tla	Pro	Pho	C0~	Dho	Ma e	(Th.	Dura	—	01	v		•••		_	
	116	FIU	FIIC	Ser 20	FIIE	TYL	TAT	PIO	25	GIU	Leu	Ala	хаа	хаа 30	Pro	xaa
														30		
40	Val	Arg		Ser	Trp	Arg	Arg	Gly	His	Phe	His	Gly	Gln	Ser	Phe	Tyr
40			35					40					45			
	Ser	Thr	Ara	Pro	Pro	Sor	Tlo	ui c	Tara	A ~~~	m	17- 1	>	.	T	nh.
	DCL	50	<i>1</i> 44.9	110	110	Jei	55	nis	nys	ASD	ıyı	60 60	ASII	Arg	Leu	Pne
												•				
45		Asn	Trp	Thr	Glu		Gln	Glu	Ser	Gly	Phe	Leu	Arg	Ile	Ser	Asn
	65					70					75					80
	Leu	Ara	Lvs	Glu	Asp	Gln	Ser	Val	ጥረም	Phe	Cva	Δεα	Val	Glu	Len) en
		3	-7-	014	85		JC.	Val	171	90	Cys	ALG	VQI	Giu	95	Asp
50																
	Thr	Arg	Arg	Ser	Gly											
				100												
55																
	(2)	INFO	ORMAT	ION	FOR	SEQ	ID N	ю: 6	42:							
			/51 <i>e</i>	ייייטים	ביטואה	CILINE) N (~177		ntoc							
			(1) 2	EQUE ()	_					: acio	is					
60						YPE:				4011	-					

	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 642: Met Glu Ala Gln Gln Val Asn Glu Ala Glu Ser Ala Arg Glu Gln Leu															
5	Met - 1	Glu	Ala	Gln	Gln 5	Val	Asn	Glu	Ala	Glu 10	Ser	Ala	Arg	Glu	Gln 15	Leu
	Gln	Xaa	Leu	His 20	Asp	Gln	Ile	Ala	Gly 25	Gln	Lys	Ala	Ser	Lys 30	Gln	Glu
10	Leu	Glu	Thr 35	Glu	Leu	Glu	Arg	Leu 40	Lys	Gln	Glu	Phe	His 45	Tyr	Ile	Glu
15	Glu	Asp 50	Leu	Tyr	Arg	Thr	Lys 55	Asn	Thr	Leu	Gln	Ser 60	Arg	Ile	Lys	Asp
13	Arg 65	Asp	Glu	Glu	Ile	Gln 70	Lys	Leu	Arg	Asn	Gln 75	Leu	Thr	Asn	Lys	Thr 80
20	Leu	Ser	Asn	Ser	Ser 85	Gln	Ser	Glu	Leu	Glu 90	Asn	Arg	Leu	His	Gln 95	Leu
	Thr	Glu	Thr	Leu 100	Ile	Gln	Lys	Gln	Thr 105	Met	Leu	Glu	Ser	Leu 110	Ser	Thr
25	Glu	Lys	Asn 115	Ser	Leu	Val	Phe	Gln 120	Leu	Glu	Arg	Leu	Glu 125	Gln	Gln	Met
30	A sn	Ser 130	Ala	Ser	Gly	Ser	Ser 135	Ser	Asn	Gly	Ser	Ser 140	Ile	Asn	Met	Ser
	Gly 145		Asp	Asn	Gly	Glu 150	Gly	Thr	Arg	Leu	Arg 155	Asn	Val	Pro	Val	Leu 160
35	Phe	Asn	Asp	Thr	Glu 165	Thr	Asn	Leu	Ala	Gly 170	Met	Tyr	Gly	Lys	Val 175	Arg
	Lys	Ala	Ala	Ser 180	Ser	Ile	Asp	Gln	Phe 185	Ser	Ile	Arg	Leu	Gly 190	Ile	Phe
40	Leu	Arg	Arg 195	Tyr	Pro	Ile	Ala	Arg 200	Val	Phe	Val	Ile	Ile 205	Tyr	Met	Ala
45	Leu	Leu 210	His	Leu	Trp	Val	Met 215	Ile	Val	Leu	Leu	Thr 220	Tyr	Thr	Pro	Glu
	Met 225	His	His	Asp	Gln	Pro 230	Tyr	Gly	Lys							
50	(2)	INF	ORMA!	rion	FOR	SEO	ID I	NO: (543:							
			(i)					ERIS			s					
55			(xi)	(B) T	YPE: OPOL	ami OGY:	no a lin PTIO	cid ear			: 64	3:			
60	Ile 1	Arg						Asn		_				His	Ser 15	Lys

WO 98/39448 PCT/US98/04493

	Gly	Ser	Ser	Leu 20	Leu	Leu	Phe	Leu	Pro 25	Gln	Leu	Ile	Leu	Ile 30	Leu	Pro
5	- Val	Cys	Ala 35	His	Leu	His	Glu	Glu 40	Leu	Asn	Cys					
10	(2)					-	ID I									
15				(A) L B) T D) T	ENGT YPE: OPOL	ami OGY:	3 am no a lin	ino cid ear	: acid EQ I		: 64	4:			
20	Ser 1	Phe	Phe	Ile	Ser 5	Glu	Glu	Lys	Gly	His 10	Leu	Leu	Leu	Gln	Ala 15	Glı
20	Arg	His	Pro	Trp 20	Val	Ala	Gly	Ala	Leu 25	Val	Gly	Val	Ser	Gly 30	Gly	Le
25	Thr	Leu	Thr 35	Thr	Cys	Ser	Gly	Pro 40	Thr	Glu	Lys	Pro	Ala 45	Thr	Lys	Ası
	Tyr	Phe 50	Leu	Lys	Arg	Leu	Leu 55	Gln	Glu	Met	His	Ile 60	Arg	Ala	Asn	
30																

E-- BOTMO/174 (I.d. 1003)

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

A. The indications made below relate to the microorganism referred on page 116 , line N/A	· · · · · · · · · · · · · · · · · · ·
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture Col	lection
Address of depositary institution (including postal code and country 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	7)
Date of deposit February 26, 1997	Accession Number 97897
C. ADDITIONAL INDICATIONS (leave blank if not applicab	le) This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICATION	TO ARE IMADE (9 in minutes)
E. SEPARATE FURNISHING OF INDICATIONS (leave	blank if not applicable)
<u> </u>	Bureau later (specify the general nature of the indications, e.g., "Accession
For receiving Office use only	For International Bureau use only
This sheet was received with the international application Authorized officer	This sheet was received by the International Bureau on: Authorized officer
Susan White PCT International Division	Audionized officer

A. The indications made below relate to the micron page 116	croorganism referred to in the description, line N/A
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American T	Type Culture Collection
Address of depositary institution (including postal 12301 Parklawn Drive	al code and country)
Rockville, Maryland 20852 United States of America	
Date of deposit May 15, 1997	Accession Number 209043
C. ADDITIONAL INDICATIONS (leave b	blank if not applicable) This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICI	H INDICATIONS ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDIC	CATIONS (leave blank if not applicable)
The indications listed below will be submitted to Number of Deposit")	the International Bureau later (specify the general nature of the indications, e.g., "Accession
For receiving Office use on	Por International Bureau use only
This sheet was received with the international a	application This sheet was received by the International Bureau on:
Authorized officer Susan White PCT Internetional Divis	Authorized officer

P--- POTMONAL (L.L. 1003)

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

A. The indications made below relate to the microorganism referred to in the description on page 119 , line N/A						
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet					
Name of depositary institution American Type Culture Collection						
Address of depositary institution (including postal code and country 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	אי)					
Date of deposit September 4, 1997	Accession Number 209235					
C. ADDITIONAL INDICATIONS (leave blank if not applicable	le) This information is continued on an additional sheet					
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States)						
E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable) The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")						
For receiving Office use only	For International Bureau use only					
This sheet was received with the international application Authorized officer	This sheet was received by the International Bureau on: Authorized officer					
PCT International Division	-					

E-- DOT/DO/124 (I.d., 1002)

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

o in the description
Further deposits are identified on an additional sheet
tion
ccession Number 97898
This information is continued on an additional sheet
ARE MADE (if the indications are not for all designated States)
nk if not applicable)
reau later (specify the general nature of the indications, e.g., "Accession
For International Bureau use only
This sheet was received by the International Bureau on: Authorized officer

A. The indications made below relate to the microorganism referre on page 122 , line N/A	d to in the description				
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet				
Name of depositary institution American Type Culture Coll	ection				
Address of depositary institution (including postal code and country 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	y)				
Date of deposit May 15, 1997	Accession Number 209044				
C. ADDITIONAL INDICATIONS (leave blank if not applicable	This information is continued on an additional sheet				
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States)					
E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable)					
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")					
For receiving Office use only	For International Bureau use only				
This sheet was received with the international application	This sheet was received by the International Bureau on:				
Susan White PCT International Division	Authorized officer				

A. The indications made below relate to the microorganism referred on page 126 , line N/A	ed to in the description					
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet					
Name of depositary institution American Type Culture Coll	Name of depositary institution American Type Culture Collection					
Address of depositary institution (including postal code and country 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	7)					
Date of deposit February 26, 1997	Accession Number 97899					
C. ADDITIONAL INDICATIONS (leave blank if not applicable)	le) This information is continued on an additional sheet					
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States)						
E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable)						
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")						
For receiving Office use only	For International Bureau use only					
This sheet was received with the international application	This sheet was received by the International Bureau on:					
Authorized officer Susan White PCT International Division	Authorized officer					

A. The indications made below relate to the microorganism referre on page 126 , line N/A	d to in the description				
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet				
Name of depositary institution American Type Culture Coll	ection				
Address of depositary institution (including postal code and country 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	y)				
Date of deposit May 15, 1997	Accession Number 209045				
C. ADDITIONAL INDICATIONS (leave blank if not applicable) This information is continued on an additional sheet D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States)					
E. SEPARATE FURNISHING OF INDICATIONS (leave to the indications listed below will be submitted to the International B Number of Deposit")					
For receiving Office use only This sheet was received with the international application Authorized officer Susan White POT International Division	This sheet was received by the International Bureau on: Authorized officer				

A. The indications made below relate to the microorganism referred to in the description on page 130 , line N/A						
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet					
Name of depositary institution American Type Culture Co	Name of depositary institution American Type Culture Collection					
Address of depositary institution (including postal code and coun	try)					
12301 Parklawn Drive Rockville, Maryland 20852 United States of America						
Date of deposit April 28, 1997	Accession Number 209011					
C. ADDITIONAL INDICATIONS (leave blank if not applicate	ble) This information is continued on an additional sheet					
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States)						
E. SEPARATE FURNISHING OF INDICATIONS (leave	blank if not applicable)					
The indications listed below will be submitted to the International Number of Deposit")	Bureau later (specify the general nature of the indications, e.g., "Accession					
For receiving Office use only	For International Bureau use only					
This sheet was received with the international application	This sheet was received by the International Bureau on:					
Authorized officer Susan White PCT International Division	Authorized officer					

A. The indications made below relate to the microorganism referred to in the description on page 131 , line N/A					
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet				
Name of depositary institution American Type Culture Col	lection				
Address of depositary institution (including postal code and count	7)				
12301 Parklawn Drive Rockville, Maryland 20852 United States of America					
Date of deposit February 26, 1997	Accession Number 97900				
C. ADDITIONAL INDICATIONS (leave blank if not applicab	le) This information is continued on an additional sheet				
·					
D. DESIGNATED STATES FOR WHICH INDICATION	NS ADE MADE (if the indications are not for all designated States)				
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States)					
E. SEPARATE FURNISHING OF INDICATIONS (leave	blank if not applicable)				
The indications listed below will be submitted to the International E Number of Deposit")	Bureau later (specify the general nature of the indications, e.g., "Accession				
	·				
For receiving Office use only	For International Bureau use only				
This sheet was received with the international application	This sheet was received by the International Bureau on:				
Authorized officer	Authorized officer				
Susan White PCT international Division	~				

A. The on p		ons made below 137	relate to the microo	rganism , line	referre N/A	d to in the description
B. IDE	NTIFI	CATION OF	DEPOSIT			Further deposits are identified on an additional sheet
Name of	deposit	ary institution	American Type	e Cultur	e Coll	ection
12301 F Rockvil	arkiav le, Ma	ositary institution on Drive ryland 20852 of America	n (including postal c	ode and	countr	y)
Date of d	eposit	February 26	, 1997			Accession Number 97901
C. ADI	OITIO	NAL INDICA	TIONS (leave blank	k if not ap	plicabl	This information is continued on an additional sheet
				-		
D. DES	D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States)					
	,				***	
E CEDA	D.A.T.					
The indica	tions li	sted below will	NG OF INDICAT be submitted to the I	IONS (leave b	lank if not applicable) ireau later (specify the general nature of the indications, e.g., "Accession
		,				
		For man in it.	000			
Charles			Office use only			For International Bureau use only
M	s sneet w	as received with	the international applic	ation		This sheet was received by the International Bureau on:
Authorized	officer	Susan V PCT Int	White emational Division	on		Authorized officer
Earn DOTE	0/124	TI 1002)				

A. The indications made below relate to the microorganism referred on page 131 , line N/A	ed to in the description					
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet					
Name of depositary institution American Type Culture Coll	Name of depositary institution American Type Culture Collection					
Address of depositary institution (including postal code and countr 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	y)					
Date of deposit May 15, 1997	Accession Number 209046					
C. ADDITIONAL INDICATIONS (leave blank if not applicable	This information is continued on an additional sheet					
D. DESIGNATED STATES FOR WHICH INDICATION	IS ARE MADE (if the indications are not for all designated States)					
E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable)						
The indications listed below will be submitted to the International B Number of Deposit")	ureau later (specify the general nature of the indications, e.g., "Accession					
For receiving Office use only	For International Bureau use only					
This sheet was received with the international application Authorized officer Susan White PCT International Division	This sheet was received by the International Bureau on: Authorized officer					

WO 98/39448 PCT/US98/04493 731

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

A. The indications made below relate to the microorganism referred to in the description on page 137 , line N/A		
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet	
Name of depositary institution American Type Culture Collection		
Address of depositary institution (including postal code and country 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	· · · · · · · · · · · · · · · · · · ·	
Date of deposit May 15, 1997	Accession Number 209047	
C. ADDITIONAL INDICATIONS (leave blank if not applicable) This information is continued on an additional sheet		
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States)		
E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable) The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")		
This sheet was received with the international application Authorized officer Susan White PCT International Division	This sheet was received by the International Bureau on: Authorized officer	

A. The indications made below relate to the microorganism referred to in the description on page 137 , line N/A	
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture Collection	
Address of depositary institution (including postal code and country	יע)
12301 Parklawn Drive Rockville, Maryland 20852 United States of America	
Date of deposit May 22, 1997	Accession Number 209076
C. ADDITIONAL INDICATIONS (leave blank if not applicab	le) This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICATION	NS ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable)	
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")	
For receiving Office use only	For International Bureau use only
This sheet was received with the international application	This sheet was received by the International Bureau on:
Authorized officer Susan White PCT International Division	Authorized officer

A. The indications made below relate to the microorganism referred to in the description on page 140 , line N/A	
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture Collection	
Address of depositary institution (including postal code and countr	ע)
12301 Parklawn Drive Rockville, Maryland 20852 United States of America	
Date of deposit August 21, 1997	Accession Number 209215
C. ADDITIONAL INDICATIONS (leave blank if not applicable	le) This information is continued on an additional sheet
C. ADDITIONAL INDICATIONS (leave thank y not applicable	7 instructuation is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICATION	NS ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable)	
The indications listed below will be submitted to the International E	Bureau later (specify the general nature of the indications, e.g., "Accession
Number of Deposit")	
	·
	,
For receiving Office use only	For International Bureau use only
This sheet was received with the international application	This sheet was received by the International Bureau on:
Authorized officer	Authorized officer
Susan White PCT International Division	~
LOT Infalled Diamen.	

A. The indications made below relate to the microorganism referred to in the description on page 160 , line N/A	
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture Collection	
Address of depositary institution (including postal code and country	ツ)
12301 Parklawn Drive Rockville, Maryland 20852 United States of America	
Date of deposit February 26, 1997	Accession Number 97904
C. ADDITIONAL INDICATIONS (leave blank if not applicab	le) This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICATION E. SEPARATE FURNISHING OF INDICATIONS (leave	blank if not applicable)
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")	
For receiving Office use only	For International Bureau use only
This sheet was received with the international application	This sheet was received by the International Bureau on:
Authorized officer Susan White PCT International Division	Authorized officer

A. The indications made below relate to the microorganism referred to in the description on page 154 , line N/A	
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture Col	lection
Address of depositary institution (including postal code and count	か)
12301 Parklawn Drive Rockville, Maryland 20852 United States of America	
Date of deposit July 3, 1997	Accession Number 209139
C. ADDITIONAL INDICATIONS (leave blank if not applicab	ole) This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICATION	NS ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (leave	
The indications listed below will be submitted to the International I Number of Deposit")	Bureau later (specify the general nature of the indications, e.g., "Accession
For receiving Office use only	For International Bureau use only
This sheet was received with the international application	This sheet was received by the International Bureau on:
Authorized officer Susan White PCT International Division	Authorized officer

A. The indications made below relate to the microorganism refers on page 153 , line N/A	· · · · · · · · · · · · · · · · · · ·	
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet	
Name of depositary institution American Type Culture Collection		
Address of depositary institution (including postal code and count	(ry)	
12301 Parklawn Drive Rockville, Maryland 20852 United States of America		
Date of deposit May 15, 1997	Accession Number 209049	
C. ADDITIONAL INDICATIONS (leave blank if not applications)	ble) This information is continued on an additional sheet	
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States)		
E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable)		
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")		
For receiving Office use only	For International Bureau use only	
This sheet was received with the international application	This sheet was received by the International Bureau on:	
Authorized officer Susan White PCT International Division	Authorized officer -	

A. The indications made below relate to the microorganism referred to in the description on page 153 , line N/A	
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture Coll	lection
Address of depositary institution (including postal code and country 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	<i>γ</i>)
Date of deposit February 26, 1997	Accession Number 97903
C. ADDITIONAL INDICATIONS (leave blank if not applicab	This information is continued on an additional sheet
-	
D. DESIGNATED STATES FOR WHICH INDICATION	NS ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (leave	blank if not applicable)
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")	
For receiving Office use only	For International Bureau use only
This sheet was received with the international application Authorized officer	This sheet was received by the International Bureau on:
Susan White PCT International Division	Authorized officer

red to in the description	
Further deposits are identified on an additional sheet	
llection	
(ry)	
Accession Number 209119	
ble) This information is continued on an additional sheet	
NS ARE MADE (if the indications are not for all designated States)	
blank if not applicable)	
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")	
For International Bureau use only	
This sheet was received by the International Bureau on: Authorized officer	

A. The indications made below relate to the microorganism referred to in the description on page 146 , line N/A	
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture Co	llection
Address of depositary institution (including postal code and count 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	try)
Date of deposit February 26, 1997	Accession Number 97902
C. ADDITIONAL INDICATIONS (leave blank if not application)	able) This information is continued on an additional sheet
E. SEPARATE FURNISHING OF INDICATIONS (lear	
The indications listed below will be submitted to the Internationa Number of Deposit")	Bureau later (specify the general nature of the indications, e.g., "Accession"
For receiving Office use only	For International Bureau use only
This sheet was received with the international application	This sheet was received by the International Bureau on:
Authorized officer Susan White PCT International Division	Authorized officer

A. The indications made below relate to the microorganism referred on page $\frac{146}{1}$, line $\frac{N/A}{1}$	d to in the description
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture Collection	
Address of depositary institution (including postal code and country 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	y)
Date of deposit May 15, 1997	Accession Number 209048
C. ADDITIONAL INDICATIONS (leave blank if not applicable	le) This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICATION	IS ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable)	
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")	
For receiving Office use only	For International Bureau use only
This sheet was received with the international application Authorized officer Susan White PCT International Division	This sheet was received by the International Bureau on: Authorized officer

A. The indications made below relate to the microorganism referr on page 160 , line N/A	·
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture Collection	
Address of depositary institution (including postal code and count	(ry)
12301 Parklawn Drive Rockville, Maryland 20852 United States of America	·
Date of deposit May 15, 1997	Accession Number 209050
C. ADDITIONAL INDICATIONS (leave blank if not applicate	ble) This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICATIO	NS ARE MADE (if the indications are not for all designated States)
	·
E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable) The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications. e.g "Accession	
Number of Deposit')	
For receiving Office use only	For International Bureau use only
This sheet was received with the international application	This sheet was received by the International Bureau on:
Authorized officer Susan White PCT International Division	Authorized officer

A. The indications made below relate to the microorganism referred to in the description on page 142 , line N/A	
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet 🔀
Name of depositary institution	lection
Address of depositary institution (including postal code and count. 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	ry)
Date of deposit February 12, 1998	Accession Number 209627
C. ADDITIONAL INDICATIONS (leave blank if not applicab	ole) This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICATION	NS ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (leave	blank if not applicable)
	Bureau later (specify the general nature of the indications, e.g., "Accession
For receiving Office use only	For International Bureau use only
This sheet was received with the international application	This sheet was received by the International Bureau on:
Authorized officer Susan White PCT International Division	Authorized officer

What Is Claimed Is:

5

10

15

20

25

35

- 1. An isolated nucleic acid molecule comprising a polynucleotide having a nucleotide sequence at least 95% identical to a sequence selected from the group consisting of:
- (a) a polynucleotide fragment of SEQ ID NO:X or a polynucleotide fragment of the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X;
- (b) a polynucleotide encoding a polypeptide fragment of SEQ ID NO:Y or a polypeptide fragment encoded by the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X;
- (c) a polynucleotide encoding a polypeptide domain of SEQ ID NO:Y or a polypeptide domain encoded by the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X;
- (d) a polynucleotide encoding a polypeptide epitope of SEQ ID NO:Y or a polypeptide epitope encoded by the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X;
- (e) a polynucleotide encoding a polypeptide of SEQ ID NO:Y or the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X, having biological activity;
 - (f) a polynucleotide which is a variant of SEQ ID NO:X;
 - (g) a polynucleotide which is an allelic variant of SEQ ID NO:X;
 - (h) a polynucleotide which encodes a species homologue of the SEQ ID NO:Y;
- (i) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(h), wherein said polynucleotide does not hybridize under stringent conditions to a nucleic acid molecule having a nucleotide sequence of only A residues or of only T residues.
- The isolated nucleic acid molecule of claim 1, wherein thepolynucleotide fragment comprises a nucleotide sequence encoding a secreted protein.
 - 3. The isolated nucleic acid molecule of claim 1, wherein the polynucleotide fragment comprises a nucleotide sequence encoding the sequence identified as SEQ ID NO:Y or the polypeptide encoded by the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X.

WO 98/39448

4. The isolated nucleic acid molecule of claim 1, wherein the polynucleotide fragment comprises the entire nucleotide sequence of SEQ ID NO:X or the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X.

5

30

- 5. The isolated nucleic acid molecule of claim 2, wherein the nucleotide sequence comprises sequential nucleotide deletions from either the C-terminus or the N-terminus.
- 10 6. The isolated nucleic acid molecule of claim 3, wherein the nucleotide sequence comprises sequential nucleotide deletions from either the C-terminus or the N-terminus.
- 7. A recombinant vector comprising the isolated nucleic acid molecule of claim 1.
 - 8. A method of making a recombinant host cell comprising the isolated nucleic acid molecule of claim 1.
- 9. A recombinant host cell produced by the method of claim 8.
 - 10. The recombinant host cell of claim 9 comprising vector sequences.
- 11. An isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence selected from the group consisting of:
 - (a) a polypeptide fragment of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;
 - (b) a polypeptide fragment of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z, having biological activity;
 - (c) a polypeptide domain of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;
 - (d) a polypeptide epitope of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;
- (e) a secreted form of SEQ ID NO:Y or the encoded sequence included inATCC Deposit No:Z;
 - (f) a full length protein of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;

WO 98/39448

10

20

25

35

- (g) a variant of SEQ ID NO:Y;
- (h) an allelic variant of SEQ ID NO:Y; or
- (i) a species homologue of the SEQ ID NO:Y.
- 12. The isolated polypeptide of claim 11, wherein the secreted form or the full length protein comprises sequential amino acid deletions from either the C-terminus or the N-terminus.
 - 13. An isolated antibody that binds specifically to the isolated polypeptide of claim 11.
 - 14. A recombinant host cell that expresses the isolated polypeptide of claim 11.
 - 15. A method of making an isolated polypeptide comprising:
- 15 (a) culturing the recombinant host cell of claim 14 under conditions such that said polypeptide is expressed; and
 - (b) recovering said polypeptide.

pathological condition in a subject comprising:

16. The polypeptide produced by claim 15.

the polypeptide of claim 11 or the polynucleotide of claim 1.

- 17. A method for preventing, treating, or ameliorating a medical condition, comprising administering to a mammalian subject a therapeutically effective amount of
- 18. A method of diagnosing a pathological condition or a susceptibility to a
 - (a) determining the presence or absence of a mutation in the polynucleotide of claim 1; and
- (b) diagnosing a pathological condition or a susceptibility to a pathologicalcondition based on the presence or absence of said mutation.
 - 19. A method of diagnosing a pathological condition or a susceptibility to a pathological condition in a subject comprising:
 - (a) determining the presence or amount of expression of the polypeptide of claim 11 in a biological sample; and
 - (b) diagnosing a pathological condition or a susceptibility to a pathological condition based on the presence or amount of expression of the polypeptide.

- 20. A method for identifying a binding partner to the polypeptide of claim 11 comprising:
 - (a) contacting the polypeptide of claim 11 with a binding partner; and
- 5 (b) determining whether the binding partner effects an activity of the polypeptide.
 - 21. The gene corresponding to the cDNA sequence of SEQ ID NO:Y.
- 10 22. A method of identifying an activity in a biological assay, wherein the method comprises:
 - (a) expressing SEQ ID NO:X in a cell;
 - (b) isolating the supernatant;
 - (c) detecting an activity in a biological assay; and
- 15 (d) identifying the protein in the supernatant having the activity.
 - 23. The product produced by the method of claim 22.

US OR/NH493

INDICATIONS RELATING TO A

REC'D **03 APR 1998** DEPOSITED MICROORGANISM WIPO PCT

A. The indications made below relate to the microorganism referred to in the description on page 160 , line N/A		
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet 🏻	
Name of depositary institution American Type Culture Coll	lection	
Address of depositary institution (including postal code and country 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	(יצי	
Date of deposit February 26, 1997	Accession Number 97904	
C. ADDITIONAL INDICATIONS (leave blank if not applicable	(e) This information is continued on an additional sheet	
In respect to those designations in which a European Patent is sought a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 28 (4) EPC).		
D. DESIGNATED STATES FOR WHICH INDICATION	IS ARE MADE (if the indications are not for all designated States)	
E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable)		
The indications listed below will be submitted to the International E Number of Deposit")	Bureau later (specify the general nature of the indications, e.g., "Accession	
For receiving Office use only	For International Bureau use only	
This sheet was received with the international application	This sheet was received by the International Bureau on:	
Authorized officer Strain Vision Fine Character Charles	Authorized officer	

CANADA

The applicant requests that, until either a Canadian patent has been issued on the basis of an application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the Commissioner of Patents only authorizes the furnishing of a sample of the deposited biological material referred to in the application to an independent expert nominated by the Commissioner, the applicant must, by a written statement, inform the International Bureau accordingly before completion of technical preparations for publication of the international application.

NORWAY

The applicant hereby requests that the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Norwegian Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on the list of recognized experts drawn up by the Norwegian Patent Office or any person approved by the applicant in the individual case.

AUSTRALIA

The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing, refusal or withdrawal of the application, to a person who is a skilled addressee without an interest in the invention (Regulation 3.25(3) of the Australian Patents Regulations).

FINLAND

The applicant hereby requests that, until the application has been laid open to public inspection (by the National Board of Patents and Regulations), or has been finally decided upon by the National Board of Patents and Registration without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art.

Page 2

UNITED KINGDOM

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for the international publication of the application.

DENMARK

The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later that at the time when the applicant is made available to the public under Sections 22 and 33(3) of the Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent Office or any person by the applicant in the individual case.

SWEDEN

The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent Office or any person approved by a applicant in the individual case.

NETHERLANDS

The applicant hereby requests that until the date of a grant of a Netherlands patent or until the date on which the application is refused or withdrawn or lapsed, the microorganism shall be made available as provided in the 31F(1) of the Patent Rules only by the issue of a sample to an expert. The request to this effect must be furnished by the applicant with the Netherlands Industrial Property Office before the date on which the application is made available to the public under Section 22C or Section 25 of the Patents Act of the Kingdom of the Netherlands, whichever of the two dates occurs earlier.

REC'D 03 APR 1998

INDICATIONS RELATING TO A DEPOSITED PRICEOORGANISM

A. The indications made below relate to the microorganism referred to in the description on page 116 , line N/A		
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet 🔀	
Name of depositary institution American Type Culture Co	llection	
Address of depositary institution (including postal code and count	iry)	
12301 Parklawn Drive Rockville, Maryland 20852 United States of America		
Date of deposit May 15, 1997	Accession Number 209043	
C. ADDITIONAL INDICATIONS (leave blank if not applicable)	ble) This information is continued on an additional sheet	
In respect to those designations in which a European Patent is sought a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 28 (4) EPC).		
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States)		
	į	
E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable)		
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")		
For receiving Office use only	For International Bureau use only	
This sheet was received with the international application	This sheet was received by the International Bureau on:	
Authorized officer Susan White PCT International Division	Authorized officer	

CANADA

The applicant requests that, until either a Canadian patent has been issued on the basis of an application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the Commissioner of Patents only authorizes the furnishing of a sample of the deposited biological material referred to in the application to an independent expert nominated by the Commissioner, the applicant must, by a written statement, inform the International Bureau accordingly before completion of technical preparations for publication of the international application.

NORWAY

The applicant hereby requests that the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Norwegian Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on the list of recognized experts drawn up by the Norwegian Patent Office or any person approved by the applicant in the individual case.

AUSTRALIA

The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing, refusal or withdrawal of the application, to a person who is a skilled addressee without an interest in the invention (Regulation 3.25(3) of the Australian Patents Regulations).

FINLAND

The applicant hereby requests that, until the application has been laid open to public inspection (by the National Board of Patents and Regulations), or has been finally decided upon by the National Board of Patents and Registration without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art.

Page 2

UNITED KINGDOM

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for the international publication of the application.

DENMARK

The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later that at the time when the application is made available to the public under Sections 22 and 33(3) of the Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent Office or any person by the applicant in the individual case.

SWEDEN

The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent Office or any person approved by a applicant in the individual case.

NETHERLANDS

The applicant hereby requests that until the date of a grant of a Netherlands patent or until the date on which the application is refused or withdrawn or lapsed, the microorganism shall be made available as provided in the 31F(1) of the Patent Rules only by the issue of a sample to an expert. The request to this effect must be furnished by the applicant with the Netherlands Industrial Property Office before the date on which the application is made available to the public under Section 22C or Section 25 of the Patents Act of the Kingdom of the Netherlands, whichever of the two dates occurs earlier.

REC'D 03 APR 1998

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

A. The indications made below relate to the microorganism referred to in the description on page 116 , line N/A .		
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet 🖂	
Name of depositary institution American Type Culture Collection		
Address of depositary institution (including postal code and country) 12301 Parklawn Drive Rockville, Maryland 20852 United States of America		
Date of deposit February 26, 1997 Acc	ession Number 97897	
C. ADDITIONAL INDICATIONS (leave blank if not applicable) This information is continued on an additional sheet		
In respect to those designations in which a European Patent is sought a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 28 (4) EPC). D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States)		
E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable)		
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")		
For receiving Office use only	For International Bureau use only	
This sheet was received with the international application	This sheet was received by the International Bureau on:	
Authorized officer Susan White PCT International Division	Authorized officer	

CANADA

The applicant requests that, until either a Canadian patent has been issued on the basis of an application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the Commissioner of Patents only authorizes the furnishing of a sample of the deposited biological material referred to in the application to an independent expert nominated by the Commissioner, the applicant must, by a written statement, inform the International Bureau accordingly before completion of technical preparations for publication of the international application.

NORWAY

The applicant hereby requests that the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Norwegian Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on the list of recognized experts drawn up by the Norwegian Patent Office or any person approved by the applicant in the individual case.

AUSTRALIA

The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing, refusal or withdrawal of the application, to a person who is a skilled addressee without an interest in the invention (Regulation 3.25(3) of the Australian Patents Regulations).

FINLAND

The applicant hereby requests that, until the application has been laid open to public inspection (by the National Board of Patents and Regulations), or has been finally decided upon by the National Board of Patents and Registration without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art.

UNITED KINGDOM

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for the international publication of the application.

DENMARK

The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later that at the time when the application is made available to the public under Sections 22 and 33(3) of the Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent Office or any person by the applicant in the individual case.

SWEDEN

The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent Office or any person approved by a applicant in the individual case.

NETHERLANDS

REC'D 03 APR 1998

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

A. The indications made below relate to the microorganism referred to in the description on page 119 , line N/A				
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet 🔀			
Name of depositary institution American Type Culture Col	lection			
Address of depositary institution (including postal code and count 12301 Parklawn Drive	ry)			
Rockville, Maryland 20852 United States of America				
Date of deposit September 4, 1997	Accession Number 209235			
C. ADDITIONAL INDICATIONS (leave blank if not applicab	This information is continued on an additional sheet			
In respect to those designations in which a European Patent is sought a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 28 (4) EPC). D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (If the indications are not for all designated States)				
E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable) The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession				
For receiving Office use only	For International Bureau use only			
This sheet was received with the international application	This sheet was received by the International Bureau on:			
Authorized office Susan White	Authorized officer			
PCT International Division				

The applicant requests that, until either a Canadian patent has been issued on the basis of an application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the Commissioner of Patents only authorizes the furnishing of a sample of the deposited biological material referred to in the application to an independent expert nominated by the Commissioner, the applicant must, by a written statement, inform the International Bureau accordingly before completion of technical preparations for publication of the international application.

NORWAY

The applicant hereby requests that the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Norwegian Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on the list of recognized experts drawn up by the Norwegian Patent Office or any person approved by the applicant in the individual case.

AUSTRALIA

The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing; refusal or withdrawal of the application, to a person who is a skilled addressee without an interest in the invention (Regulation 3.25(3) of the Australian Patents Regulations).

FINLAND

UNITED KINGDOM

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for the international publication of the application.

DENMARK

The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later that at the time when the application is made available to the public under Sections 22 and 33(3) of the Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent Office or any person by the applicant in the individual case.

SWEDEN

The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent Office or any person approved by a applicant in the individual case.

NETHERLANDS

International application No. Unassigned

0 3 APR 1998
PCT

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

A. The indications made below relate to the microorganism referred to in the description on page 122 , line N/A				
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet			
Name of depositary institution American Type Culture Collection				
Address of depositary institution (including postal code and count 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	ツ)			
Date of deposit May 15, 1997	Accession Number 209044			
C. ADDITIONAL INDICATIONS (leave blank if not applicab	le) This information is continued on an additional sheet			
In respect to those designations in which a European Patent is sought a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 28 (4) EPC).				
D. DESIGNATED STATES FOR WHICH INDICATION	NS ARE MADE (if the indications are not for all designated States)			
E. SEPARATE FURNISHING OF INDICATIONS (leave	blank if not applicable)			
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit") .				
For receiving Office use only	For International Bureau use only			
This sheet was received with the international application	This sheet was received by the International Bureau on:			
Authorized officer Susan White PCT International Division	Authorized officer			

The applicant requests that, until either a Canadian patent has been issued on the basis of an application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the Commissioner of Patents only authorizes the furnishing of a sample of the deposited biological material referred to in the application to an independent expert nominated by the Commissioner, the applicant must, by a written statement, inform the International Bureau accordingly before completion of technical preparations for publication of the international application.

NORWAY

The applicant hereby requests that the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Norwegian Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on the list of recognized experts drawn up by the Norwegian Patent Office or any person approved by the applicant in the individual case.

AUSTRALIA

The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing, refusal or withdrawal of the application, to a person who is a skilled addressee without an interest in the invention (Regulation 3.25(3) of the Australian Patents Regulations).

FINLAND

UNITED KINGDOM

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for the international publication of the application.

DENMARK

The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later that at the time when the application is made available to the public under Sections 22 and 33(3) of the Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent Office or any person by the applicant in the individual case.

SWEDEN

The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent Office or any person approved by a applicant in the individual case.

NETHERLANDS

REC'D 03 APR 1998 INDICATIONS RELATING TO A DEPOSITED WIRE ROORGANISM

A. The indications made below relate to the microorganism referred to in the description on page 122 , line N/A				
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet			
Name of depositary institution				
Address of depositary institution (including postal code and count 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	<i>Ty</i>)			
Date of deposit February 26, 1997	Accession Number 97898			
C. ADDITIONAL INDICATIONS (leave blank if not applicable)	ole) This information is continued on an additional sheet			
In respect to those designations in which a European Patent is sought a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 28 (4) EPC). D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States)				
E. SEPARATE FURNISHING OF INDICATIONS (leave	Llook if and analisable)			
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")				
For receiving Office use only	For International Bureau use only			
This sheet was received with the international application	This sheet was received by the International Bureau on:			
Authorized officer Susan White PCT International Division	Authorized officer			

The applicant requests that, until either a Canadian patent has been issued on the basis of an application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the Commissioner of Patents only authorizes the furnishing of a sample of the deposited biological material referred to in the application to an independent expert nominated by the Commissioner, the applicant must, by a written statement, inform the International Bureau accordingly before completion of technical preparations for publication of the international application.

NORWAY

The applicant hereby requests that the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Norwegian Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on the list of recognized experts drawn up by the Norwegian Patent Office or any person approved by the applicant in the individual case.

AUSTRALIA

The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing, refusal or withdrawal of the application, to a person who is a skilled addressee without an interest in the invention (Regulation 3.25(3) of the Australian Patents Regulations).

FINLAND

UNITED KINGDOM

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for the international publication of the application.

DENMARK

The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later that at the time when the application is made available to the public under Sections 22 and 33(3) of the Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent Office or any person by the applicant in the individual case.

SWEDEN

The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent Office or any person approved by a applicant in the individual case.

NETHERLANDS

١	International application	No.	Una	ssigne	d			
I	Alle Han all	11 11	CII:		1	"]	l. L.B.B. C.3	

REC'D 03 APR 1998 INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

A. The indications made below relate to the microorganism referre	ed to in the description		
on page 126 , line N/A			
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet 🖂		
Name of depositary institution American Type Culture Col	lection		
Address of depositary institution (including postal code and country	(ער		
12301 Parklawn Drive			
Rockville, Maryland 20852 United States of America			
Date of deposit May 15, 1997	Accession Number 209045		
Said of deposit May 13, 1997			
C. ADDITIONAL INDICATIONS (leave blank if not applicable	le) This information is continued on an additional sheet		
In respect to those designations in which a European Patent is made available until the publication of the mention of the gra	s sought a sample of the deposited microorganism will be		
application has been refused or withdrawn or is deemed to be nominated by the person requesting the sample (Rule 28 (4))	withdrawn, only by the issue of such a sample to an expert		
nonlinuted by the person requesting the sample (care 25 (1))	3. 3).		
D. DESIGNATED STATES FOR WHICH INDICATION	NS ARE MADE (if the indications are not for all designated States)		
E. SEPARATE FURNISHING OF INDICATIONS (leave			
Number of Deposit")	Bureau later (specify the general nature of the indications, e.g., "Accession		
Commission Office was an in	College in 19 and a selection of the college in the		
For receiving Office use only	For International Bureau use only		
This sheet was received with the international application	This sheet was received by the International Bureau on:		
Authorized officer Susan White	Authorized officer		
PCT International Division			
·			

The applicant requests that, until either a Canadian patent has been issued on the basis of an application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the Commissioner of Patents only authorizes the furnishing of a sample of the deposited biological material referred to in the application to an independent expert nominated by the Commissioner, the applicant must, by a written statement, inform the International Bureau accordingly before completion of technical preparations for publication of the international application.

NORWAY

The applicant hereby requests that the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Norwegian Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on the list of recognized experts drawn up by the Norwegian Patent Office or any person approved by the applicant in the individual case.

AUSTRALIA

The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing, refusal or withdrawal of the application, to a person who is a skilled addressee without an interest in the invention (Regulation 3.25(3) of the Australian Patents Regulations).

FINLAND

UNITED KINGDOM

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for the international publication of the application.

DENMARK

The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later that at the time when the application is made available to the public under Sections 22 and 33(3) of the Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent Office or any person by the applicant in the individual case.

SWEDEN

The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent Office or any person approved by a applicant in the individual case.

NETHERLANDS

International application	No.	Unassigned
	1	

REC'E 03 APR 1938 WIPO PCT

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

A. The indications made below relate to the microorganism referred to in the description on page 126 , line N/A				
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet			
Name of depositary institution American Type Culture Co	llection			
Address of depositary institution (including postal code and count	try)			
12301 Parklawn Drive Rockville, Maryland 20852 United States of America				
Date of deposit February 26, 1997	Accession Number 97899			
C. ADDITIONAL INDICATIONS (leave blank if not applicable)	tile) This information is continued on an additional sheet			
In respect to those designations in which a European Patent is made available until the publication of the mention of the grapplication has been refused or withdrawn or is deemed to be nominated by the person requesting the sample (Rule 28 (4)) D. DESIGNATED STATES FOR WHICH INDICATION	ant of the European patent or until the date on which e withdrawn, only by the issue of such a sample to an expert EPC).			
	·			
E. SEPARATE FURNISHING OF INDICATIONS (leave				
The indications listed below will be submitted to the International E Number of Deposit")	Bureau later (specify the general nature of the indications, e.g., "Accession			
For receiving Office use only	For International Bureau use only			
This sheet was received with the international application	This sheet was received by the International Bureau on:			
Susan White PCT International Division	Authorized officer			

The applicant requests that, until either a Canadian patent has been issued on the basis of an application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the Commissioner of Patents only authorizes the furnishing of a sample of the deposited biological material referred to in the application to an independent expert nominated by the Commissioner, the applicant must, by a written statement, inform the International Bureau accordingly before completion of technical preparations for publication of the international application.

NORWAY

The applicant hereby requests that the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Norwegian Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on the list of recognized experts drawn up by the Norwegian Patent Office or any person approved by the applicant in the individual case.

AUSTRALIA

The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing, refusal or withdrawal of the application, to a person who is a skilled addressee without an interest in the invention (Regulation 3.25(3) of the Australian Patents Regulations).

FINLAND

UNITED KINGDOM

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for the international publication of the application.

DENMARK

The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later that at the time when the application is made available to the public under Sections 22 and 33(3) of the Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent Office or any person by the applicant in the individual case.

SWEDEN

The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent Office or any person approved by a applicant in the individual case.

NETHERLANDS

<u> 115 98/0449</u>

	REC'D	03/	APR 1998
į	WIPO		PCT
INDICATIONS RELATING TO A DEPOS	SITED MI	CROO	RGANISM

·

A. The indications made below relate to the microorganism referred to in the description on page 130 , line N/A					
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet 🔀				
Name of depositary institution	Name of depositary institution American Type Culture Collection				
Address of depositary institution (including postal code and counting 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	try)				
Date of deposit April 28, 1997	Accession Number 209011				
C. ADDITIONAL INDICATIONS (leave blank if not applica	ble) This information is continued on an additional sheet				
In respect to those designations in which a European Patent is sought a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 28 (4) EPC).					
D. DESIGNATED STATES FOR WHICH INDICATIO	NS ARE MADE (If the indications are not for all designated States)				
E. SEPARATE FURNISHING OF INDICATIONS (leave	e blank if not applicable)				
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")					
For receiving Office use only	For International Bureau use only				
This sheet was received with the international application	This sheet was received by the International Bureau on:				
Authorized officer Susan White PCT International Division	Authorized officer				

The applicant requests that, until either a Canadian patent has been issued on the basis of an application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the Commissioner of Patents only authorizes the furnishing of a sample of the deposited biological material referred to in the application to an independent expert nominated by the Commissioner, the applicant must, by a written statement, inform the International Bureau accordingly before completion of technical preparations for publication of the international application.

NORWAY

The applicant hereby requests that the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Norwegian Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on the list of recognized experts drawn up by the Norwegian Patent Office or any person approved by the applicant in the individual case.

AUSTRALIA

The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing, refusal or withdrawal of the application, to a person who is a skilled addressee without an interest in the invention (Regulation 3.25(3) of the Australian Patents Regulations).

FINLAND

UNITED KINGDOM

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for the international publication of the application.

DENMARK

The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later that at the time when the application is made available to the public under Sections 22 and 33(3) of the Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent Office or any person by the applicant in the individual case.

SWEDEN

The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent Office or any person approved by a applicant in the individual case.

NETHERLANDS

REC'D	0 3 APR 1998
WIPO	DOS
	PCT

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

A. The indications made below relate to the microorganism referred to in the description				
on page 131 , line N/A				
B. IDENTIFICATION OF DEPOSIT Further deposits are identified on an additi	onal sheet 🖂			
Name of depositary institution American Type Culture Collection				
Address of depositary institution (including postal code and country) 12301 Parklawn Drive Rockville, Maryland 20852 United States of America				
Date of deposit May 15, 1997 Accession Number 209046				
C. ADDITIONAL INDICATIONS (leave blank if not applicable) This information is continued on an additional	al sheet			
n respect to those designations in which a European Patent is sought a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 28 (4) EPC).				
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States)				
E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable)				
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")				
For receiving Office use only For International Bureau use or	ly ———			
This sheet was received with the international application This sheet was received by the International	il Bureau on:			
Authorized officer Susan White PCT International Division Authorized officer Authorized officer	·			

The applicant requests that, until either a Canadian patent has been issued on the basis of an application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the Commissioner of Patents only authorizes the furnishing of a sample of the deposited biological material referred to in the application to an independent expert nominated by the Commissioner, the applicant must, by a written statement, inform the International Bureau accordingly before completion of technical preparations for publication of the international application.

NORWAY

The applicant hereby requests that the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Norwegian Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on the list of recognized experts drawn up by the Norwegian Patent Office or any person approved by the applicant in the individual case.

AUSTRALIA

The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing, refusal or withdrawal of the application, to a person who is a skilled addressee without an interest in the invention (Regulation 3.25(3) of the Australian Patents Regulations).

FINLAND

UNITED KINGDOM

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for the international publication of the application.

DENMARK

The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later that at the time when the application is made available to the public under Sections 22 and 33(3) of the Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent Office or any person by the applicant in the individual case.

SWEDEN

The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent Office or any person approved by a applicant in the individual case.

NETHERLANDS

1	international application	N	0.	Una	ssign	ea				
ı	IED (I						AP	H.H. H a	f" 1"	

REC'D 03 APR 1998 WIPO INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

A. The indications made below relate to the microorganism referred to in the description on page 131 , line N/A .				
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet 🔯			
Name of depositary institution American Type Culture Col	lection			
Address of depositary institution (including postal code and country) 12301 Parklawn Drive Rockville, Maryland 20852 United States of America				
Date of deposit February 26, 1997	Accession Number 97900			
C. ADDITIONAL INDICATIONS (leave blank if not applicable	(e) This information is continued on an additional sheet			
In respect to those designations in which a European Patent is sought a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 28 (4) EPC).				
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States)				
E. SEPARATE FURNISHING OF INDICATIONS (leave				
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")				
For receiving Office use only	For International Bureau use only			
This sheet was received with the international application Authorized officer	This sheet was received by the International Bureau on:			
Authorized officer PCT International Division	Authorized officer			

The applicant requests that, until either a Canadian patent has been issued on the basis of an application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the Commissioner of Patents only authorizes the furnishing of a sample of the deposited biological material referred to in the application to an independent expert nominated by the Commissioner, the applicant must, by a written statement, inform the International Bureau accordingly before completion of technical preparations for publication of the international application.

NORWAY

The applicant hereby requests that the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Norwegian Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on the list of recognized experts drawn up by the Norwegian Patent Office or any person approved by the applicant in the individual case.

AUSTRALIA

The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing, refusal or withdrawal of the application, to a person who is a skilled addressee without an interest in the invention (Regulation 3.25(3) of the Australian Patents Regulations).

FINLAND

UNITED KINGDOM

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for the international publication of the application.

DENMARK

The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later that at the time when the application is made available to the public under Sections 22 and 33(3) of the Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent Office or any person by the applicant in the individual case.

SWEDEN

The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent Office or any person approved by a applicant in the individual case.

NETHERLANDS

International	application	No.	U	nassigned	

REC'D	0 3 APR 1998
WIPO	PCT

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

A. The indications made below relate to the microorganism referred to in the description				
on page 137 , line N/A				
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet 🖂			
Name of depositary institution American Type Culture Co	ollection			
Address of depositary institution (including postal code and cour	ntry)			
12301 Parklawn Drive Rockville, Maryland 20852				
United States of America				
Date of deposit May 22, 1997	Accession Number 209076			
C. ADDITIONAL INDICATIONS (leave blank if not application)	this information is continued on an additional sheet			
In respect to those designations in which a European Patent made available until the publication of the mention of the g	rant of the European patent or until the date on which			
application has been refused or withdrawn or is deemed to t nominated by the person requesting the sample (Rule 28 (4)	be withdrawn, only by the issue of such a sample to an expert () EPC).			
D. DESIGNATED STATES FOR WHICH INDICATION	ONS ARE MADE (if the indications are not for all designated States)			
E. SEPARATE FURNISHING OF INDICATIONS (learn The indications listed below will be submitted to the International	e blank if not applicable) Bureau later (specify the general nature of the indications, e.g., "Accession"			
Number of Deposit')	Butcau tater (specify the general nature of the indications, e.g., "Accession			
For receiving Office and the				
For receiving Office use only	For International Bureau use only			
This sheet was received with the international application	This sheet was received by the International Bureau on:			
Authorized officer				
Susen White	Authorized officer			
PCT International Division	11			

The applicant requests that, until either a Canadian patent has been issued on the basis of an application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the Commissioner of Patents only authorizes the furnishing of a sample of the deposited biological material referred to in the application to an independent expert nominated by the Commissioner, the applicant must, by a written statement, inform the International Bureau accordingly before completion of technical preparations for publication of the international application.

NORWAY

The applicant hereby requests that the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Norwegian Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on the list of recognized experts drawn up by the Norwegian Patent Office or any person approved by the applicant in the individual case.

AUSTRALIA

The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing, refusal or withdrawal of the application, to a person who is a skilled addressee without an interest in the invention (Regulation 3.25(3) of the Australian Patents Regulations).

FINLAND

UNITED KINGDOM

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for the international publication of the application.

DENMARK

The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later that at the time when the application is made available to the public under Sections 22 and 33(3) of the Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent Office or any person by the applicant in the individual case.

SWEDEN

The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent Office or any person approved by a applicant in the individual case.

NETHERLANDS

International application	n No.	U	nassigned	l		
11 p 11 11.	N . B		d=11 4.50	. T	BILLL	_

REC'D 03 APR 1998

INDICATIONS RELATING TO A DEPOSITE DWATEROORGANISM

A. The indications made below relate to the microorganism referred to in the description on page 137 , line N/A				
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet 🔀			
Name of depositary institution	llection			
Address of depositary institution (including postal code and country) 12301 Parklawn Drive Rockville, Maryland 20852 United States of America				
Date of deposit May 15, 1997	Accession Number 209047			
C. ADDITIONAL INDICATIONS (leave blank if not applicate	ble) This information is continued on an additional sheet			
In respect to those designations in which a European Patent is sought a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 28 (4) EPC).				
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States)				
E. SEPARATE FURNISHING OF INDICATIONS (leave	blank if not applicable)			
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")				
For receiving Office use only	For International Bureau use only			
This sheet was received with the international application	This sheet was received by the International Bureau on:			
Authorized officer Susan White PCT International Division	Authorized officer			

The applicant requests that, until either a Canadian patent has been issued on the basis of an application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the Commissioner of Patents only authorizes the furnishing of a sample of the deposited biological material referred to in the application to an independent expert nominated by the Commissioner, the applicant must, by a written statement, inform the International Bureau accordingly before completion of technical preparations for publication of the international application.

NORWAY

The applicant hereby requests that the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Norwegian Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on the list of recognized experts drawn up by the Norwegian Patent Office or any person approved by the applicant in the individual case.

AUSTRALIA

The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing, refusal or withdrawal of the application, to a person who is a skilled addressee without an interest in the invention (Regulation 3.25(3) of the Australian Patents Regulations).

FINLAND

UNITED KINGDOM

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for the international publication of the application.

DENMARK

The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later that at the time when the application is made available to the public under Sections 22 and 33(3) of the Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent Office or any person by the applicant in the individual case.

SWEDEN

The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent Office or any person approved by a applicant in the individual case.

NETHERLANDS

A. The indications made below relate to the microorganism referred to in the description on page 137 , line N/A			
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet 🖂		
Name of depositary institution American Type Culture Col	lection		
Address of depositary institution (including postal code and count 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	(ער		
Date of deposit February 26, 1997	Accession Number 97901		
C. ADDITIONAL INDICATIONS (leave blank if not applicable)	le) This information is continued on an additional sheet		
In respect to those designations in which a European Patent is sought a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 28 (4) EPC).			
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States)			
E. SEPARATE FURNISHING OF INDICATIONS (leave	blank if not applicable)		
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")			
For receiving Office use only	For International Bureau use only		
This sheet was received with the international application Authorized officer Susan While	This sheet was received by the International Bureau on:		
PCT International Division	Authorized officer		

The applicant requests that, until either a Canadian patent has been issued on the basis of an application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the Commissioner of Patents only authorizes the furnishing of a sample of the deposited biological material referred to in the application to an independent expert nominated by the Commissioner, the applicant must, by a written statement, inform the International Bureau accordingly before completion of technical preparations for publication of the international application.

NORWAY

The applicant hereby requests that the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Norwegian Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on the list of recognized experts drawn up by the Norwegian Patent Office or any person approved by the applicant in the individual case.

AUSTRALIA

The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing, refusal or withdrawal of the application, to a person who is a skilled addressee without an interest in the invention (Regulation 3.25(3) of the Australian Patents Regulations).

FINLAND

UNITED KINGDOM

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for the international publication of the application.

DENMARK

The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later that at the time when the application is made available to the public under Sections 22 and 33(3) of the Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent Office or any person by the applicant in the individual case.

SWEDEN

The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent Office or any person approved by a applicant in the individual case.

NETHERLANDS

International application	No. (Jnassigned
there well,	H E dame	arren Tirrita 🚜 :

REC'D	0 3 APR 1998
WIPO	PCT

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

A. The indications made below relate to the microorganism referron page 140 , line N/A	•			
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet 🖂			
Name of depositary institution	lection			
Address of depositary institution (including postal code and country) 12301 Parklawn Drive Rockville, Maryland 20852 United States of America				
Date of deposit August 21, 1997	Accession Number 209215			
C. ADDITIONAL INDICATIONS (leave blank if not applicable	le) This information is continued on an additional sheet			
In respect to those designations in which a European Patent is sought a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 28 (4) EPC).				
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States)				
E. SEPARATE FURNISHING OF INDICATIONS (leave	blank if not applicable)			
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")				
For receiving Office use only	For International Bureau use only			
This sheet was received with the international application	This sheet was received by the International Bureau on:			
Authorized officer PCT International Division	Authorized officer			

The applicant requests that, until either a Canadian patent has been issued on the basis of an application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the Commissioner of Patents only authorizes the furnishing of a sample of the deposited biological material referred to in the application to an independent expert nominated by the Commissioner, the applicant must, by a written statement, inform the International Bureau accordingly before completion of technical preparations for publication of the international application.

NORWAY

The applicant hereby requests that the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Norwegian Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on the list of recognized experts drawn up by the Norwegian Patent Office or any person approved by the applicant in the individual case.

AUSTRALIA

The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing, refusal or withdrawal of the application, to a person who is a skilled addressee without an interest in the invention (Regulation 3.25(3) of the Australian Patents Regulations).

FINLAND

UNITED KINGDOM

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for the international publication of the application.

DENMARK

The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later that at the time when the application is made available to the public under Sections 22 and 33(3) of the Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent Office or any person by the applicant in the individual case.

SWEDEN

The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent Office or any person approved by a applicant in the individual case.

NETHERLANDS

International application	N	O.	. 1	Unassigned						
Hand Hand will.	11	15	il	arm acre	٠	fifr	R.H.	LL	E.h	ď

REC'D	0 3 APR 1998
WIPO	PCT

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

A. The indications made below relate to the microorganism referred to in the description on page 142 , line N/A		
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet 🔀	
Name of depositary institution American Type Culture Col	lection	
Address of depositary institution (including postal code and count 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	<i>ry</i>)	
Date of deposit June 12, 1997	Accession Number 209119	
C. ADDITIONAL INDICATIONS (leave blank if not applicab	le) This information is continued on an additional sheet	
In respect to those designations in which a European Patent is sought a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 28 (4) EPC).		
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States)		
E. SEPARATE FURNISHING OF INDICATIONS (leave	blank if not applicable)	
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")		
For receiving Office use only	For International Bureau use only	
This sheet was received with the international application	This sheet was received by the International Bureau on:	
Authorized officer Susan White PCT International Division	Authorized officer	

The applicant requests that, until either a Canadian patent has been issued on the basis of an application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the Commissioner of Patents only authorizes the furnishing of a sample of the deposited biological material referred to in the application to an independent expert nominated by the Commissioner, the applicant must, by a written statement, inform the International Bureau accordingly before completion of technical preparations for publication of the international application.

NORWAY

The applicant hereby requests that the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Norwegian Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on the list of recognized experts drawn up by the Norwegian Patent Office or any person approved by the applicant in the individual case.

AUSTRALIA

The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing, refusal or withdrawal of the application, to a person who is a skilled addressee without an interest in the invention (Regulation 3.25(3) of the Australian Patents Regulations).

FINLAND

UNITED KINGDOM

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for the international publication of the application.

DENMARK

The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later that at the time when the application is made available to the public under Sections 22 and 33(3) of the Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent Office or any person by the applicant in the individual case.

SWEDEN

The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent Office or any person approved by a applicant in the individual case.

NETHERLANDS

REC'D 03 APR 1998
WIPO PCT

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

			
A. The indications made below relate to the microorganism refers on page 142 , line N/A			
on page 142 , line N/A			
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet 🔀		
Name of depositary institution American Type Culture Col	lection		
Address of depositary institution (including postal code and count 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	'ry)		
Date of deposit February 12, 1998	Accession Number 209627		
C. ADDITIONAL INDICATIONS (leave blank if not applicable)	ble) This information is continued on an additional sheet		
In respect to those designations in which a European Patent is sought a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 28 (4) EPC).			
D. DESIGNATED STATES FOR WHICH INDICATIO	NS ARE MADE (if the indications are not for all designated States)		
E. SEPARATE FURNISHING OF INDICATIONS (leave			
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")			
For receiving Office use only	For International Bureau use only		
This sheet was received with the international application	This sheet was received by the International Bureau on:		
Authorized officer Susan White PCT International Division	Authorized officer		

The applicant requests that, until either a Canadian patent has been issued on the basis of an application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the Commissioner of Patents only authorizes the furnishing of a sample of the deposited biological material referred to in the application to an independent expert nominated by the Commissioner, the applicant must, by a written statement, inform the International Bureau accordingly before completion of technical preparations for publication of the international application.

NORWAY

The applicant hereby requests that the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Norwegian Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on the list of recognized experts drawn up by the Norwegian Patent Office or any person approved by the applicant in the individual case.

AUSTRALIA

The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing, refusal or withdrawal of the application, to a person who is a skilled addressee without an interest in the invention (Regulation 3.25(3) of the Australian Patents Regulations).

FINLAND

UNITED KINGDOM

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for the international publication of the application.

DENMARK

The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later that at the time when the application is made available to the public under Sections 22 and 33(3) of the Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent Office or any person by the applicant in the individual case.

SWEDEN

The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent Office or any person approved by a applicant in the individual case.

NETHERLANDS

nternational application No.	Unassigned
------------------------------	------------

<u></u>		
	REC'D	0 3 APR 1998
1	WIPO	7.0-
INDICATIONS RELATING TO A DEPOSIT	ED MICR	OORGANISM

, <u></u>			
A. The indications made below relate to the microorganism referred to in the description on page 146 , line N/A			
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet 🔀		
Name of depositary institution American Type Culture Col	lection		
Address of depositary institution (including postal code and country) 12301 Parklawn Drive Rockville, Maryland 20852 United States of America			
Date of deposit May 15, 1997	Accession Number 209048		
C. ADDITIONAL INDICATIONS (leave blank if not applicable	le) This information is continued on an additional sheet		
n respect to those designations in which a European Patent is sought a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 28 (4) EPC).			
D. DESIGNATED STATES FOR WHICH INDICATION	S ARE MADE (if the indications are not for all designated States)		
E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable) The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession")			
Number of Deposit")			
For receiving Office use only	For International Bureau use only		
This sheet was received with the international application	This sheet was received by the International Bureau on:		
Authorized officer PCT International Division	Authorized officer		

The applicant requests that, until either a Canadian patent has been issued on the basis of an application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the Commissioner of Patents only authorizes the furnishing of a sample of the deposited biological material referred to in the application to an independent expert nominated by the Commissioner, the applicant must, by a written statement, inform the International Bureau accordingly before completion of technical preparations for publication of the international application.

NORWAY

The applicant hereby requests that the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Norwegian Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on the list of recognized experts drawn up by the Norwegian Patent Office or any person approved by the applicant in the individual case.

AUSTRALIA

The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing, refusal or withdrawal of the application, to a person who is a skilled addressee without an interest in the invention (Regulation 3.25(3) of the Australian Patents Regulations).

FINLAND

UNITED KINGDOM

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for the international publication of the application.

DENMARK

The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later that at the time when the application is made available to the public under Sections 22 and 33(3) of the Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent Office or any person by the applicant in the individual case.

SWEDEN

The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent Office or any person approved by a applicant in the individual case.

NETHERLANDS

73002FC 1

International application No. Unassigned

REC'D	0 3 APR 1998
WIPO	PCT

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

A. The indications made below relate to the microorganism referred on page 146 , line N/A			
on page 146 , line N/A			
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet 🔀		
Name of depositary institution American Type Culture Coll	lection		
Address of depositary institution (including postal code and counti			
Address of depositary institution (including postal code and countil 12301 Parklawn Drive	"		
Rockville, Maryland 20852			
United States of America			
Date of deposit February 26, 1997	Accession Number 97902		
Date of deposit February 26, 1997	Accession number 97702		
C. ADDITIONAL INDICATIONS (leave blank if not applicable	le) This information is continued on an additional sheet		
C. ADDITIONAL INDICATIONS (man your approximation)	7 This information is commissed on all additional actions and		
no de la companya de			
In respect to those designations in which a European Patent is made available until the publication of the mention of the gra	ant of the European patent or until the date on which		
application has been refused or withdrawn or is deemed to be	e withdrawn, only by the issue of such a sample to an expert		
nominated by the person requesting the sample (Rule 28 (4)	EPC).		
D. DESIGNATED STATES FOR WHICH INDICATION	NS ARE MADE (if the indications are not for all designated States)		
	•		
E. SEPARATE FURNISHING OF INDICATIONS (leave	tient if not applicable)		
	otank ty not applicable) Bureau later (specify the general nature of the indications, e.g., "Accession		
Number of Deposit')	Sureau fater (specify the general radius of		
Co-receiving Office use only	For International Burgon use only		
For receiving Office use only	For International Bureau use only		
This sheet was received with the international application	This sheet was received by the International Bureau on:		
Authorized officer	Authorized officer		
Susan White	Addionized office.		
PCT International Division			

The applicant requests that, until either a Canadian patent has been issued on the basis of an application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the Commissioner of Patents only authorizes the furnishing of a sample of the deposited biological material referred to in the application to an independent expert nominated by the Commissioner, the applicant must, by a written statement, inform the International Bureau accordingly before completion of technical preparations for publication of the international application.

NORWAY

The applicant hereby requests that the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Norwegian Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on the list of recognized experts drawn up by the Norwegian Patent Office or any person approved by the applicant in the individual case.

AUSTRALIA

The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing, refusal or withdrawal of the application, to a person who is a skilled addressee without an interest in the invention (Regulation 3.25(3) of the Australian Patents Regulations).

FINLAND

UNITED KINGDOM

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for the international publication of the application.

DENMARK

The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later that at the time when the applicant is made available to the public under Sections 22 and 33(3) of the Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent Office or any person by the applicant in the individual case.

SWEDEN

The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent Office or any person approved by a applicant in the individual case.

NETHERLANDS

International application No.	Unassigned
-------------------------------	------------

REC'D	0 3 APR 1998
WIPO	PCT

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

A. The indications made below relate to the microorganism referred to in the description on page 153 , line N/A		
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet 🔀	
Name of depositary institution American Type Culture Co	llection	
Address of depositary institution (including postal code and count 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	try)	
Date of deposit May 15, 1997	Accession Number 209049	
C. ADDITIONAL INDICATIONS (leave blank if not applicable)	ole) This information is continued on an additional sheet	
In respect to those designations in which a European Patent is sought a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 28 (4) EPC).		
D. DESIGNATED STATES FOR WHICH INDICATIO		
E. SEPARATE FURNISHING OF INDICATIONS (leave	blank if not applicable)	
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")		
For receiving Office use only	For International Bureau use only	
This sheet was received with the international application	This sheet was received by the International Bureau on:	
Authorized officer Susan White PCT International DMsion	Authorized officer	

The applicant requests that, until either a Canadian patent has been issued on the basis of an application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the Commissioner of Patents only authorizes the furnishing of a sample of the deposited biological material referred to in the application to an independent expert nominated by the Commissioner, the applicant must, by a written statement, inform the International Bureau accordingly before completion of technical preparations for publication of the international application.

NORWAY

The applicant hereby requests that the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Norwegian Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on the list of recognized experts drawn up by the Norwegian Patent Office or any person approved by the applicant in the individual case.

AUSTRALIA

The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing, refusal or withdrawal of the application, to a person who is a skilled addressee without an interest in the invention (Regulation 3.25(3) of the Australian Patents Regulations).

FINLAND

UNITED KINGDOM

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for the international publication of the application.

DENMARK

The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later that at the time when the applicant is made available to the public under Sections 22 and 33(3) of the Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent Office or any person by the applicant in the individual case.

SWEDEN

The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent Office or any person approved by a applicant in the individual case.

NETHERLANDS

REC'D	0 3 APR	1998
WIPO		PCT

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

A. The indications made below relate to the microorganism referred to in the description on page 153 , line N/A			
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet 🛛		
Name of depositary institution	lection		
Address of depositary institution (including postal code and count 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	ry)		
Date of deposit February 26, 1997	Accession Number 97903		
C. ADDITIONAL INDICATIONS (leave blank if not applicab	le) This information is continued on an additional sheet		
In respect to those designations in which a European Patent i made available until the publication of the mention of the gra application has been refused or withdrawn or is deemed to be nominated by the person requesting the sample (Rule 28 (4))	unt of the European patent or until the date on which withdrawn, only by the issue of such a sample to an expert		
D. DESIGNATED STATES FOR WHICH INDICATION	NS ARE MADE (if the indications are not for all designated States)		
	·		
E. SEPARATE FURNISHING OF INDICATIONS (leave	blank if not applicable)		
The indications listed below will be submitted to the International I Number of Deposit")	Bureau later (specify the general nature of the indications, e.g., "Accession		
For receiving Office use only	For International Bureau use only		
This sheet was received with the international application	This sheet was received by the International Bureau on:		
Authorized officer Susan White PCT International Division	Authorized officer		

The applicant requests that, until either a Canadian patent has been issued on the basis of an application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the Commissioner of Patents only authorizes the furnishing of a sample of the deposited biological material referred to in the application to an independent expert nominated by the Commissioner, the applicant must, by a written statement, inform the International Bureau accordingly before completion of technical preparations for publication of the international application.

NORWAY

The applicant hereby requests that the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Norwegian Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on the list of recognized experts drawn up by the Norwegian Patent Office or any person approved by the applicant in the individual case.

AUSTRALIA

The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing, refusal or withdrawal of the application, to a person who is a skilled addressee without an interest in the invention (Regulation 3.25(3) of the Australian Patents Regulations).

FINLAND

UNITED KINGDOM

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for the international publication of the application.

DENMARK

The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later that at the time when the applicant is made available to the public under Sections 22 and 33(3) of the Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent Office or any person by the applicant in the individual case.

SWEDEN

The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent Office or any person approved by a applicant in the individual case.

NETHERLANDS

		۲l	. 1

International applica	tion No. <u>Una</u>	assigned	
	1145	HEATHARD 3	_
	REC'D	0 3 APR 1998	

PCT

WIPO

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

A. The indications made below relate to the microorganism referred to in the description on page 154 , line N/A				
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet 🔀			
Name of depositary institution American Type Culture Colle	ection			
Address of depositary institution (including postal code and country)			
12301 Parklawn Drive Rockville, Maryland 20852 United States of America				
Date of deposit July 3, 1997	Accession Number 209139			
C. ADDITIONAL INDICATIONS (leave blank if not applicable)	This information is continued on an additional sheet			
In respect to those designations in which a European Patent is made available until the publication of the mention of the gran application has been refused or withdrawn or is deemed to be a nominated by the person requesting the sample (Rule 28 (4) Elementary of the person requesting the sample (Rule 28 (t of the European patent or until the date on which withdrawn, only by the issue of such a sample to an expert PC).			
E. SEPARATE FURNISHING OF INDICATIONS (leave bl.	ank if not applicable)			
The indications listed below will be submitted to the International Bu Number of Deposit")	• • • • •			
For receiving Office use only	For International Bureau use only			
This sheet was received with the international application	This sheet was received by the International Bureau on:			
Authorized officer Susan White PCT International Division	Authorized officer			

The applicant requests that, until either a Canadian patent has been issued on the basis of an application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the Commissioner of Patents only authorizes the furnishing of a sample of the deposited biological material referred to in the application to an independent expert nominated by the Commissioner, the applicant must, by a written statement, inform the International Bureau accordingly before completion of technical preparations for publication of the international application.

NORWAY

The applicant hereby requests that the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Norwegian Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on the list of recognized experts drawn up by the Norwegian Patent Office or any person approved by the applicant in the individual case.

AUSTRALIA

The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing, refusal or withdrawal of the application, to a person who is a skilled addressee without an interest in the invention (Regulation 3.25(3) of the Australian Patents Regulations).

FINLAND

UNITED KINGDOM

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for the international publication of the application.

DENMARK

The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later that at the time when the application is made available to the public under Sections 22 and 33(3) of the Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent Office or any person by the applicant in the individual case.

SWEDEN

The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent Office or any person approved by a applicant in the individual case.

NETHERLANDS

The applicant requests that, until either a Canadian patent has been issued on the basis of an application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the Commissioner of Patents only authorizes the furnishing of a sample of the deposited biological material referred to in the application to an independent expert nominated by the Commissioner, the applicant must, by a written statement, inform the International Bureau accordingly before completion of technical preparations for publication of the international application.

NORWAY

The applicant hereby requests that the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Norwegian Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on the list of recognized experts drawn up by the Norwegian Patent Office or any person approved by the applicant in the individual case.

AUSTRALIA

The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing, refusal or withdrawal of the application, to a person who is a skilled addressee without an interest in the invention (Regulation 3.25(3) of the Australian Patents Regulations).

FINLAND

UNITED KINGDOM

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for the international publication of the application.

DENMARK

The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later that at the time when the application is made available to the public under Sections 22 and 33(3) of the Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent Office or any person by the applicant in the individual case.

SWEDEN

The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent Office or any person approved by a applicant in the individual case.

NETHERLANDS

International application	No.	U	nassigned			
	8 0			1774	11.11	B.B.B.

	REC'D	0 3 APR 1998
	WIPO	РСТ
INDICATIONS RELATING TO A DEPOSIT	ED MICR	oorganiš m!

A. The indications made below relate to the microorganism referred to in the description on page 160 , line N/A				
B. IDENTIFICATION OF DEPOSIT Further deposits are identified on an additional				
Name of depositary institution				
Address of depositary institution (including postal code and country 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	y)			
Date of deposit May 15, 1997 Accession Number 209050				
C. ADDITIONAL INDICATIONS (leave blank if not applicable	(e) This information is continued on an additional sheet			
In respect to those designations in which a European Patent is made available until the publication of the mention of the gra application has been refused or withdrawn or is deemed to be nominated by the person requesting the sample (Rule 28 (4) ED. DESIGNATED STATES FOR WHICH INDICATION	nt of the European patent or until the date on which withdrawn, only by the issue of such a sample to an expert EPC).			
E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable) The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")				
For receiving Office use only This sheet was received with the international application	For International Bureau use only This sheet was received by the International Bureau on:			
Authorized officer Susan White PCT International Division	Authorized officer			

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.