Exercícios

Daniel Nogueira

dnogueira@ipca.pt

1. Nos grafos a seguir, identifique todos os vértices e conexões possíveis (representação em lista) e os pesos das conexões (representação em matriz).

NÓ	CONEXÃO
Α	B, D
В	Α
С	D, F
D	A, C, E
E	D, F
F	C, E
C D E	D, F A, C, E D, F

	Α	В	С	D	Е	F
Α	0	20	0	100	0	0
В	20	0	0	0	0	0
С	0	0	0	50	48	10
D	100	0	50	0	48	0
E	0	0	0	48	0	5
F	0	0	10	0	5	0

1. Nos grafos a seguir, identifique todos os vértices e conexões possíveis (representação em lista) e os pesos das conexões (representação em matriz).

b)

CONEXÃO
B, D, F
A, C
В
A, E
D, F
A, E

	Α	В	С	D	Е	F
Α	0	20	0	100	0	10
В	20	0	50	0	0	0
С	0	50	0	0	0	0
D	100	0	0	0	48	0
Е	0	0	0	48	0	5
F	10	0	0	0	5	0

1. Nos grafos a seguir, identifique todos os vértices e conexões possíveis (representação em lista) e os pesos das conexões (representação em matriz).

De A a $F \Rightarrow A - C - F$ (Custo total = C2+C5)

- 1. Initialize the graph with d(s) = 0, d(v) = INF, for all $v \neq s$,
- 2. Make open(v) = True for every v in the graph
- 3. As long as there is an open vertex:
- * Choose <u>u</u> whose estimate is the smallest among the
 - * For every open node \underline{v} adjacent to \underline{u} : relax edge ($\underline{u},\underline{v}$)

$$A \Rightarrow F \qquad F - E - B - A \qquad Custo: 27$$

- 3. Com relação a Árvore de Decisão a seguir, responda as seguintes questões
 - a) Identifique os nós em Raiz, Folha e Intermediários
 - o) Apresente o valor do Grau para cada nó
 - c) Defina Entropia e Ganho de Informação em algoritmos de Árvore de Decisão •

ENTROPIA:

- É uma métrica da teoria da informação que mede a impureza ou incerteza em um grupo de observações.
- Ajuda a decidir o melhor atributo para a divisão dos nós em uma árvore de decisões.
- Ajuda a identificar o atributo com maior ganho de informação.
- É a presença de impureza (grau de aleatoriedade).

GANHO DE INFORMAÇÃO:

- Mede quanta informação um recurso fornece sobre uma classe.
- É a redução da entropia depois que um conjunto de dados é dividido com base em um atributo, de modo que ajuda a decidir qual atributo deve ser selecionado como nó de decisão.
- Ajuda a determinar a ordem dos atributos nos nós de uma árvore de decisão.
- Construir uma árvore de decisão envolve encontrar o atributo que retorna o maior ganho de informação.

4. Utilize o grafo a seguir para explicar o funcionamento do Algoritmo de Busca em Profundidade (DFS) e do Algoritmo de Busca em Largura (BFS). Destaque todos os passos da execução dos algoritmos e apresente o caminho final escolhido para ambos.

- 1. Define an initial node, marking it as explored
- 2. Put it on the list
- 3. As long as the queue is not empty:
 - Remove the 1st node from the list, u
 - For each neighbour v of u:
 - * If v is not explored:
 - ** Mark v as explored
 - ** Put v at the end of the list
- 4. Repeat from another starting node, if there is one

4. Utilize o grafo a seguir para explicar o funcionamento do Algoritmo de Busca em Profundidade (DFS) e do Algoritmo de Busca em Largura (BFS). Destaque todos os passos da execução dos algoritmos e apresente o caminho final escolhido para ambos.

- 1. Define an initial node, marking it as explored
- 2. Put it on the list
- 3. As long as the queue is not empty:
 - Remove the 1st node from the list, u
 - For each neighbour v of u:
 - * If v is not explored:
 - ** Mark v as explored
 - ** Put v at the end of the list
- 4. Repeat from another starting node, if there is one

4. Utilize o grafo a seguir para explicar o funcionamento do Algoritmo de Busca em Profundidade (DFS) e do Algoritmo de Busca em Largura (BFS). Destaque todos os passos da execução dos algoritmos e apresente o caminho final escolhido para ambos.

- 1. Define an initial node, marking it as explored
- 2. Put it on the list
- 3. As long as the queue is not empty:
 - Remove the 1st node from the list, u
 - For each neighbour v of u:
 - * If v is not explored:

Α

- ** Mark v as explored
- ** Put v at the end of the list
- 4. Repeat from another starting node, if there is one

- 1. Define an initial node, marking it as explored
- 2. Put it on the list
- 3. As long as the queue is not empty:
 - Remove the 1st node from the list, u
 - For each neighbour v of u:
 - * If v is not explored:
 - ** Mark v as explored
 - ** Put v at the end of the list
- 4. Repeat from another starting node, if there is one

- 1. Define an initial node, marking it as explored
- 2. Put it on the list
- 3. As long as the queue is not empty:
 - Remove the 1st node from the list, u
 - For each neighbour v of u:
 - * If v is not explored:

В

- ** Mark v as explored
- ** Put v at the end of the list
- 4. Repeat from another starting node, if there is one

- 1. Define an initial node, marking it as explored
- 2. Put it on the list
- 3. As long as the queue is not empty:
 - Remove the 1st node from the list, u
 - For each neighbour v of u:
 - * If v is not explored:
 - ** Mark v as explored
 - ** Put v at the end of the list
- 4. Repeat from another starting node, if there is one

- 1. Define an initial node, marking it as explored
- 2. Put it on the list
- 3. As long as the queue is not empty:
 - Remove the 1st node from the list, u
 - For each neighbour v of u:
 - * If v is not explored:
 - ** Mark v as explored
 - ** Put v at the end of the list
- 4. Repeat from another starting node, if there is one

- 1. Define an initial node, marking it as explored
- 2. Put it on the list
- 3. As long as the queue is not empty:
 - Remove the 1st node from the list, u
 - For each neighbour v of u:
 - * If v is not explored:
 - ** Mark v as explored
 - ** Put v at the end of the list
- 4. Repeat from another starting node, if there is one

- 1. Define an initial node, marking it as explored
- 2. Put it on the list
- 3. As long as the queue is not empty:
 - Remove the 1st node from the list, u
 - For each neighbour v of u:
 - * If v is not explored:
 - ** Mark v as explored
 - ** Put v at the end of the list
- 4. Repeat from another starting node, if there is one

- 1. Define an initial node, marking it as explored
- 2. Put it on the list
- 3. As long as the queue is not empty:
 - Remove the 1st node from the list, u
 - For each neighbour v of u:
 - * If v is not explored:
 - ** Mark v as explored
 - ** Put v at the end of the list
- 4. Repeat from another starting node, if there is one

- 1. Define an initial node, marking it as explored
- 2. Put it on the list
- 3. As long as the queue is not empty:
 - Remove the 1st node from the list, u
 - For each neighbour v of u:
 - * If v is not explored:
 - ** Mark v as explored
 - ** Put v at the end of the list
- 4. Repeat from another starting node, if there is one

- 1. Define an initial node, marking it as explored
- 2. Put it on the list
- 3. As long as the queue is not empty:
 - Remove the 1st node from the list, u
 - For each neighbour v of u:
 - * If v is not explored:
 - ** Mark v as explored
 - ** Put v at the end of the list
- 4. Repeat from another starting node, if there is one

Е

- 1. Define an initial node, marking it as explored
- 2. Put it on the list
- 3. As long as the queue is not empty:
 - Remove the 1st node from the list, u
 - For each neighbour v of u:
 - * If v is not explored:
 - ** Mark v as explored
 - ** Put v at the end of the list
- 4. Repeat from another starting node, if there is one

- 1. Set a start node
- 2. While this is not an objective or final node (node whose adjacency has already been visited):
 - Choose an adjacent node not yet visited
 - Visit it
- 3. If it is a non-objective end node:
 - Return to this father
- If there is a father, repeat. If there is no parent, choose another start node

- 1. Set a start node
- 2. While this is not an objective or final node (node whose adjacency has already been visited):
 - Choose an adjacent node not yet visited
 - Visit it
- 3. If it is a non-objective end node:
 - Return to this father
- If there is a father, repeat. If there is no parent, choose another start node

- 1. Set a start node
- 2. While this is not an objective or final node (node whose adjacency has already been visited):
 - Choose an adjacent node not yet visited
 - Visit it
- 3. If it is a non-objective end node:
 - Return to this father
- If there is a father, repeat. If there is no parent, choose another start node

- 1. Set a start node
- 2. While this is not an objective or final node (node whose adjacency has already been visited):
 - Choose an adjacent node not yet visited
 - Visit it
- 3. If it is a non-objective end node:
 - Return to this father
- If there is a father, repeat. If there is no parent, choose another start node

- 1. Set a start node
- 2. While this is not an objective or final node (node whose adjacency has already been visited):
 - Choose an adjacent node not yet visited
 - Visit it
- 3. If it is a non-objective end node:
 - Return to this father
- If there is a father, repeat. If there is no parent, choose another start node

- 1. Set a start node
- 2. While this is not an objective or final node (node whose adjacency has already been visited):
 - Choose an adjacent node not yet visited
 - Visit it
- 3. If it is a non-objective end node:
 - Return to this father
- If there is a father, repeat. If there is no parent, choose another start node

- 1. Set a start node
- 2. While this is not an objective or final node (node whose adjacency has already been visited):
 - Choose an adjacent node not yet visited
 - Visit it
- 3. If it is a non-objective end node:
 - Return to this father
- If there is a father, repeat. If there is no parent, choose another start node

- 1. Set a start node
- 2. While this is not an objective or final node (node whose adjacency has already been visited):
 - Choose an adjacent node not yet visited
 - Visit it
- 3. If it is a non-objective end node:
 - Return to this father
- If there is a father, repeat. If there is no parent, choose another start node

- 1. Set a start node
- 2. While this is not an objective or final node (node whose adjacency has already been visited):
 - Choose an adjacent node not yet visited
 - Visit it
- 3. If it is a non-objective end node:
 - Return to this father
- If there is a father, repeat. If there is no parent, choose another start node

- 1. Set a start node
- 2. While this is not an objective or final node (node whose adjacency has already been visited):
 - Choose an adjacent node not yet visited
 - Visit it
- 3. If it is a non-objective end node:
 - Return to this father
- If there is a father, repeat. If there is no parent, choose another start node

- 1. Set a start node
- 2. While this is not an objective or final node (node whose adjacency has already been visited):
 - Choose an adjacent node not yet visited
 - Visit it
- 3. If it is a non-objective end node:
 - Return to this father
- If there is a father, repeat. If there is no parent, choose another start node

- 1. Set a start node
- 2. While this is not an objective or final node (node whose adjacency has already been visited):
 - Choose an adjacent node not yet visited
 - Visit it
- 3. If it is a non-objective end node:
 - Return to this father
- If there is a father, repeat. If there is no parent, choose another start node

- 1. Set a start node
- 2. While this is not an objective or final node (node whose adjacency has already been visited):
 - Choose an adjacent node not yet visited
 - Visit it
- 3. If it is a non-objective end node:
 - Return to this father
- If there is a father, repeat. If there is no parent, choose another start node

5. Defina Máquina de Estados e Árvore de Comportamentos aplicados no desenvolvimento de jogos digitais. Apresente um exemplo de aplicação para cada uma das definições.

Máquina de Estados:

- É um modelo matemático utilizado para representar os diversos comportamentos e as respetivas transições entre estes em um programa.
- É composta por estados e transições.
- É um conjunto de estados finitos que funcionam como intermediários entre uma relação de entrada e saídas. Desta forma, a saída dependerá do estado das entradas naquele momento

5. Defina Máquina de Estados e Árvore de Comportamentos aplicados no desenvolvimento de jogos digitais. Apresente um exemplo de aplicação para cada uma das definições.

Árvore de Comportamentos:

- É uma árvore de nós hierárquicos que controlam o fluxo de tomada de decisão de uma entidade de Inteligência Artificial (IA)
- É uma arquitetura de IA que fornece aos **Non Player Characters (NPC)** do jogo a capacidade de selecionar comportamentos e executá-los, por meio de uma arquitetura semelhante a uma árvore que define operações lógicas simples.

- 6. Explique o que é Algoritmo Genético, destaque suas características e em quais aplicações eles são mais bem utilizados. Adicionalmente, apresente e explique o diagrama de funcionamento de um Algoritmo Genético.
 - Algoritmos Genéticos são algoritmos baseados em analogias biológicas e na evolução das espécies
 - Tem procedimentos, com passos distintos e bem definidos.

São melhores aplicados em Pesquisa e Otimização e são amplamente utilizado em problemas de difícil resolução com técnicas tradicionais

6. Explique o que é Algoritmo Genético, destaque suas características e em quais aplicações eles são mais bem utilizados. Adicionalmente, apresente e explique o diagrama de funcionamento de um Algoritmo Genético.

			Figura	a 1				1	2	3	4	5	6
	1	2	3	4	5	6	. г						
Α	1	1	1	1	1	1	А						
В			1		1)-	<u> </u>				\vdash	$\vdash\vdash\vdash$	
С	1	1	1		1	1	В						
D	1	1	1	1	1	1	, F		\vdash	\vdash	\vdash	$\vdash \vdash$	$\vdash\vdash$
Е	1	1	1				С						
F	1	1	1	1	1	1	Ì				\equiv	\vdash	H
			Figura	a 2			D						
	1	2	3	4	5	6	ř		=	=	=	=	
Α	5	4	3	2	1	0	Е						
В	6	5	4	3	2	1	-		\vdash	\vdash	\vdash	$\vdash\vdash$:
С	7	6	5	4	3	2	F						
D	×	7	6	5	4	3	L						
Е	9	8	7	6	5	4			// a = 5\				
F	10	9	8	7	6	5	man	hattan	((x1, y1)	, (x2, y2))) = x1 -	– x2 +	y1 — y2

			Figura	a 1				1	2	3	4	5	6
	1	2	3	4	5	6	,						
Α	1	1	1	1	1	1	А						
В			1		1								
С	1	1	1		1	1	В						
D	1	1	1	1	1	1							$\vdash\vdash\vdash$
Е	1	1	1				С						
F	1	1	1	1	1	1							
			Figura	a 2			D						
	1	2	3	4	5	6		0.4	\equiv		\equiv	\equiv	
Α	5	4	3	2	1	0	E	9+1 10					
В	6	5	4	3	2	1		10					$\vdash\vdash\vdash$
С	7	6	5	4	3	2	F	0	9+1 10				
D	8	7	6	5	4	3							
Е	9	8	7	6	5	4			// a s			- 1	
F	10	9	8	7	6	5	mar mar	nhattan	((x1, y1)	, (x2, y2))) = x1 -	– x2 +	y1 — y2

			Figura	a 1				1	2	3	4	5	6		
	1	2	3	4	5	6									
Α	1	1	1	1	1	1	А								
В			1		1				$\vdash \vdash$	H	H	H	\vdash		
С	1	1	1		1	1	В								
D	1	1	1	1	1	1					$\vdash \vdash$		$\vdash\vdash$		
Е	1	1	1				С								
F	1	1	1	1	1	1		8+1				\vdash	\equiv		
			Figura	a 2			D	9							
	1	2	3	4	5	6	,	0.1	0.1						
Α	5	4	3	2	1	0	E	9+1 10	8+1 9						
В	6	5	4	3	2	1				=	=	=			
С	7	6	5	4	3	2	F	0	9+1 10						
D	8	7	6	5	4	3					ш	ш			
Е	9	8	7	6	5	4									
F	10	9	8	7	6	5	mai	manhattan((x1, y1), (x2, y2)) = $ x1 - x2 + y1 - y2 $							

			Figura	a 1				1	2	3	4	5	6	
	1	2	3	4	5	6								
Α	1	1	1	1	1	1	А							
В			1		1	—			$\vdash \vdash$			$\vdash \vdash$		
С	1	1	1		1	1	В							
D	1	1	1	1	1	1				=		$\vdash\vdash\vdash$		
E	1	1	1				С	7+1 8						
F	1	1	1	1	1	1		0.4	7.4			\equiv		
			Figura				D	8+1 9	7+1 8					
	1	2	3	4	5	6	,	0.4	0.4	$\overline{}$				
Α	5	4	3	2	1	0	E	9+1 10	8+1 9					
В	6	5	4	3	2	1				\vdash	$\vdash\vdash\vdash$	=	$\vdash\vdash$	
С	7	6	5	4	3	2	F	0	9+1 10					
D	8	7	6	5	4	3					ш			
Е	9	8	7	6	5	4		_				- •		
F	10	9	8	7	6	5	manhattan($(x1, y1), (x2, y2)$) = $ x1 - x2 + y1 - y2 $							

			Figura	a 1				1	2	3	4	5	6		
	1	2	3	4	5	6									
Α	1	1	1	1	1	1	А								
В			1		1	—			H	H	H	H	\vdash		
С	1	1	1		1	1	В								
D	1	1	1	1	1	1					=				
E	1	1	1				С	7+1 8	6+1 7						
F	1	1	1	1	1	1				=	=		=		
			Figura				D	8+1 9	7+1 8						
	1	2	3	4	5	6	,	0.1	0.1						
Α	5	4	3	2	1	0	E	9+1 10	8+1 9						
В	6	5	4	3	2	1					=				
С	7	6	5	4	3	2	F	0	9+1 10						
D	8	7	6	5	4	3									
Е	9	8	7	6	5	4		•					• -		
F	10	9	8	7	6	5	manhattan((x1, y1), (x2, y2)) = $ x1 - x2 + y1 - y2 $								

			Figura	a 1				1	2	3	4	5	6		
	1	2	3	4	5	6	_								
Α	1	1	1	1	1	1	А								
В			1		1				$\vdash \vdash$		$\vdash \vdash$	$\vdash\vdash$			
С	1	1	1		1	1	В	X							
D	1	1	1	1	1	1				=					
Е	1	1	1				С	7+1 8	6+1 7						
F	1	1	1	1	1	1		0.4	7.4				=		
	Figura 2							8+1 9	7+1 8						
	1	2	3	4	5	6	1	0.4	0.4						
Α	5	4	3	2	1	0	E	9+1 10	8+1 9						
В	6	5	4	3	2	1					$\vdash\vdash\vdash$	=	$\vdash\vdash$		
С	7	6	5	4	3	2	F	0	9+1 10						
D	8	7	6	5	4	3					ш				
Е	9	8	7	6	5	4		_				- •			
F	10	9	8	7	6	5	manhattan((x1, y1), (x2, y2)) = $ x1 - x2 + y1 - y2 $								

			Figura	a 1				1	2	3	4	5	6
	1	2	3	4	5	6	_						
Α	1	1	1	1	1	1	А						
В			1		1	—				\vdash			
С	1	1	1		1	1	В	X	X				
D	1	1	1	1	1	1						=	
E	1	1	1				С	7+1 8	6+1 7	5+1 6			
F	1	1	1	1	1	1		0.1	7.1	$\overline{}$		\equiv	
	Figura 2							8+1 9	7+1 8				
	1	2	3	4	5	6	1	0.1	0.1			$\overline{}$	
Α	5	4	3	2	1	0	E	9+1 10	8+1				
В	6	5	4	3	2	1				$\vdash \vdash$		=	$\vdash\vdash\vdash$
С	7	6	5	4	3	2	F	0	9+1 10				
D	8	7	6	5	4	3						ш	
Е	9	8	7	6	5	4		•				- 1	
F	10	9	8	7	6	5	ma:	nhattan	((x1, y1)	, (x2, y2))) = x1 -	– x2 +	y1 — y2

			Figura					1	2	3	4	5	6
	1	2	3	4	5	6				3+1			
Α	1	1	1	1	1	1	Α			4			
В			1		1					4.4		$\vdash \vdash$	=
С	1	1	1		1	1	В	X	X	4+1 5	X		
D	1	1	1	1	1	1		7.1	6+1	5+1		$\vdash \vdash$	
Е	1	1	1				С	7+1 8	7	6	X		
F	1	1	1	1	1	1		8+1	7+1				
	Figura 2						D	9	8				
	1	2	3	4	5	6 		9+1	8+1				
Α	5	4	3	2	1	0	Е	10	9				
В	6	5	4	3	2	1					$\vdash \vdash$	$\vdash\vdash$	=
С	7	6	5	4	3	2	F	0	9+1 10				
D	8	7	6	5	4	3							
Е	9	8	7	6	5	4		. 1	// a a\	1 2 2	.		y1 — y2

			Figura	a 1				1	2	3	4	5	6		
	1	2	3	4	5	6	1		4+1	3+1	2+1				
Α	1	1	1	1	1	1	А		5	4	3				
В			1		1	1				4.4		=			
С	1	1	1		1	1	В	X	X	4+1 5	X				
D	1	1	1	1	1	1		7+1	6+1	5+1					
E	1	1	1				С	8	7	6	X				
F	1	1	1	1	1	1		8+1	7+1	6+1		$\overline{}$			
			Figura				D	9	8	7			Ш		
	1	2	3	4	5	6	1	9+1	8+1						
Α	5	4	3	2	1	0	E	10	9						
В	6	5	4	3	2	1		10				$\vdash \vdash \vdash$			
С	7	6	5	4	3	2	F	0	9+1 10						
D	8	7	6	5	4	3									
Е	9	8	7	6	5	4			<i></i>		· · · · ·				
F	10	9	8	7	6	5	manhattan((x1, y1), (x2, y2)) = $ x1 - x2 + y1 - y2 $								

			Figura	a 1				1	2	3	4	5	6
	1	2	3	4	5	6	1		4+1	3+1	2+1	1+1	
Α	1	1	1	1	1	1	А		5	4	3	2	
В			1		1	1				4.1			
С	1	1	1		1	1	В	X	X	4+1 5	X		
D	1	1	1	1	1	1		7+1	6+1	5+1			
Е	1	1	1				С	8	7	6	X		
F	1	1	1	1	1	1		8+1	7+1	6+1			
Figura 2						D	9	8	7				
	1	2	3	4	5	6	1	9+1	8+1				
Α	5	4	3	2	1	0	E	10	9				
В	6	5	4	3	2	1							\vdash
С	7	6	5	4	3	2	F	0	9+1 10				
D	8	7	6	5	4	3							
Е	9	8	7	6	5	4			// /			• •	
F	10	9	8	7	6	5	mai	nnattan	((x1, y1)	, (x2, y2)) = x1 -	– x2 +	y1 — y2

			Figura					1	2	3	4	5	6
Α	1	1	1	1	5 1	1	А		4+1 5	3+1 4	2+1	1+1	1+0 1
В			1		1					1.1		2.4	
С	1	1	1		1	1	В	X	X	4+1 5	X	2+1 3	
D	1	1	1	1	1	1		7+1	6+1	5+1			
Е	1	1	1				С	8	7	6	X		
F	1	1	1	1	1	1		8+1	7+1	6+1			
			Figura		_		D	9	8	7			
Α	1 5	2	3	4	5	6		0.4					
	5	4	3	2	1	0	Е	9+1 10	8+1 9				
В	6	5	4	3	2	1	Е	10	9		Щ		
В							E F		9 9+1				
	6	5	4	3	2	1		10	9				
С	6	5	4 5	3	2	1 2	F	0	9 9+1 10	(y1 — y2

- a) Execute o Algoritmo MINIMAX sem Poda alfa-beta
- b) Execute o Algoritmo MINIMAX com Poda alfa-beta
- c) Identifique qual a principal diferença entre o resultado dos algoritmos MINIMAX com e sem Poda alfa-beta.

- a) Execute o Algoritmo MINIMAX sem Poda alfa-beta
- b) Execute o Algoritmo MINIMAX com Poda alfa-beta
- c) Identifique qual a principal diferença entre o resultado dos algoritmos MINIMAX com e sem Poda alfa-beta.

- a) Execute o Algoritmo MINIMAX sem Poda alfa-beta
- b) Execute o Algoritmo MINIMAX com Poda alfa-beta
- c) Identifique qual a principal diferença entre o resultado dos algoritmos MINIMAX com e sem Poda alfa-beta.

- a) Execute o Algoritmo MINIMAX sem Poda alfa-beta
- b) Execute o Algoritmo MINIMAX com Poda alfa-beta
- c) Identifique qual a principal diferença entre o resultado dos algoritmos MINIMAX com e sem Poda alfa-beta.

- a) Execute o Algoritmo MINIMAX sem Poda alfa-beta
- b) Execute o Algoritmo MINIMAX com Poda alfa-beta
- c) Identifique qual a principal diferença entre o resultado dos algoritmos MINIMAX com e sem Poda alfa-beta.

- a) Execute o Algoritmo MINIMAX sem Poda alfa-beta
- b) Execute o Algoritmo MINIMAX com Poda alfa-beta
- c) Identifique qual a principal diferença entre o resultado dos algoritmos MINIMAX com e sem Poda alfa-beta.

- a) Execute o Algoritmo MINIMAX sem Poda alfa-beta
- b) Execute o Algoritmo MINIMAX com Poda alfa-beta
- c) Identifique qual a principal diferença entre o resultado dos algoritmos MINIMAX com e sem Poda alfa-beta.

- a) Execute o Algoritmo MINIMAX sem Poda alfa-beta
- b) Execute o Algoritmo MINIMAX com Poda alfa-beta
- c) Identifique qual a principal diferença entre o resultado dos algoritmos MINIMAX com e sem Poda alfa-beta.

- a) Execute o Algoritmo MINIMAX sem Poda alfa-beta
- b) Execute o Algoritmo MINIMAX com Poda alfa-beta
- c) Identifique qual a principal diferença entre o resultado dos algoritmos MINIMAX com e sem Poda alfa-beta.

- a) Execute o Algoritmo MINIMAX sem Poda alfa-beta
- b) Execute o Algoritmo MINIMAX com Poda alfa-beta
- c) Identifique qual a principal diferença entre o resultado dos algoritmos MINIMAX com e sem Poda alfa-beta.

- a) Execute o Algoritmo MINIMAX sem Poda alfa-beta
- b) Execute o Algoritmo MINIMAX com Poda alfa-beta
- c) Identifique qual a principal diferença entre o resultado dos algoritmos MINIMAX com e sem Poda alfa-beta.

- a) Execute o Algoritmo MINIMAX sem Poda alfa-beta
- b) Execute o Algoritmo MINIMAX com Poda alfa-beta
- c) Identifique qual a principal diferença entre o resultado dos algoritmos MINIMAX com e sem Poda alfa-beta.

- a) Execute o Algoritmo MINIMAX sem Poda alfa-beta
- b) Execute o Algoritmo MINIMAX com Poda alfa-beta
- c) Identifique qual a principal diferença entre o resultado dos algoritmos MINIMAX com e sem Poda alfa-beta.

- 9. Com relação a Matriz de Confusão a seguir, responda as perguntas:
 - a) Quantas e quais são as classes?
 - b) Quantos são os dados de teste?
 - c) Para cada classe, apresente a quantidade real de dados de teste e a quantidade de predição.

- a) 3 classes (Cão, Gato e Coelho)
- b) 88+14+4+12+85+11+5+15+91 = 325

- 9. Com relação a Matriz de Confusão a seguir, responda as perguntas:
- a) Quantas e quais são as classes?
- b) Quantos são os dados de teste?
- c) Para cada classe, apresente a quantidade real de dados de teste e a quantidade de predição (correta e classes que a predição foram incorretas).

 CÃO:

Realmente era COELHO = 15

Real = 88+14+4 = 106

- 9. Com relação a Matriz de Confusão a seguir, responda as perguntas:
- a) Quantas e quais são as classes?
- b) Quantos são os dados de teste?
- c) Para cada classe, apresente a quantidade real de dados de teste e a quantidade de predição (correta e classes que a predição foram incorretas).

 COELHO:

- 10. Construa a Matriz de Confusão para o teste de um modelo de classificação de objetos, sabendo que:
 - Existem quatro classes (Classe A, Classe B, Classe C e Classe D)
 - Foram utilizados 100 dados de teste (25 de cada classe)
 - Para a Classe A: foram preditos 25 objetos (dos quais 25 são mesmo da Classe A)
 - Para a Classe B: foram preditos 26 objetos (dos quais 25 são mesmo da Classe B e 1 da Classe D)
 - Para a Classe C: foram preditos 23 objetos (dos quais 23 são mesmo da Classe C)
 - Para a Classe D: foram preditos 26 objetos (dos quais 24 são mesmo da Classe D e 2 da Classe C)

- 10. Construa a Matriz de Confusão para o teste de um modelo de classificação de objetos, sabendo que:
 - Existem quatro classes (Classe A, Classe B, Classe C e Classe D)
 - Foram utilizados 100 dados de teste (25 de cada classe)
 - Para a Classe A: foram preditos 25 objetos (dos quais 25 são mesmo da Classe A)
 - Para a Classe B: foram preditos 26 objetos (dos quais 25 são mesmo da Classe B e 1 da Classe D)
 - Para a Classe C: foram preditos 23 objetos (dos quais 23 são mesmo da Classe C)
 - Para a Classe D: foram preditos 26 objetos (dos quais 24 são mesmo da Classe D e 2 da Classe C)

Predição

	Classe A	Classe B	Classe C	Classe D	
Classe A	25	0	0	0	25
Classe B	0	25	0	0	25
Classe C	0	0	23	2	25
Classe D	0	1	0	24	25

Real

Daniel Nogueira

dnogueira@ipca.pt