Caractéristiques de $\overrightarrow{v_1}$: - Direction: (A_0A_2)

- Sens: celui du mouvement

- Valeur : $V_1 = 2.4 \text{ m.s}^{-1}$

5. Le mouvement est décéléré et curviligne.

EXERCICE 49 p 149 (niveau 3-4)

Déterminons la distance réelle entre le point Mo et M11:

	Distance pieds golfeur	Distance entre les points Mo et M11
Distance réelle	50 cm	1.9×10^2 cm = 1.9 m
Distance sur l'image	1,15 cm	4,45 cm

Calculons la durée Δ t pour obtenir 12 images

Nombre d'images	500	12
Durée	1,0 s	0,024 s = 24 ms

Calculons la vitesse moyenne de la balle entre M_0 et M_{11} :

$$V = \frac{M_0 M_{11}}{\Delta t} = \frac{1.9}{0.024} = 79 \text{ m.s}^{-1} = 285 \text{ km.h}^{-1}$$

EXERCICE 21 p 187 (niveau 1-2)

Référentiel : terrestre

Système : { centre de gravité du parachutiste }

1. a.

Un parachutiste en chute libre ne serait soumis qu'à son poids, la situation C correspond à ce cas avec $\overrightarrow{F_2} = \overrightarrow{P}$ le poids du parachutiste.

- b. et c. D'après la contraposée du principe d'inertie, ici $\Sigma \vec{F} \neq \vec{0}$ et dans le sens du vecteur vitesse \vec{v} . Le vecteur vitesse \vec{v} voit donc sa valeur augmenter. En revanche son sens et sa direction ne changent pas. Le mouvement est **rectiligne accéléré**.
- 2.Un système en chute libre verticale ne peut pas tomber à vitesse \vec{v} constante, d'après la contraposée du principe d'inertie.

EXERCICE 22 p 187 (niveau 1-2)

Référentiel: terrestre

Système : {centre de gravité du parachutiste}

- 1. a. La force $\overrightarrow{F_1} = \overrightarrow{f}$ représente la force de frottement de l'air car elle s'oppose au mouvement. b . Un mouvement rectiligne accéléré est représenté par le cas B car : $\Sigma \overrightarrow{F} \neq \overrightarrow{0}$ et dans le sens du vecteur vitesse \overrightarrow{v} . Le vecteur vitesse \overrightarrow{v} voit donc sa valeur augmenter. En revanche son sens et sa direction ne changent pas. Le mouvement est **rectiligne accéléré**.
- 2. a. Ici le vecteur vitesse \vec{v} est constant donc d'après le principe d'inertie : $\Sigma \vec{F} = \vec{0}$.
 - b. La représentation A convient donc pour la situation de l'énoncé car $\Sigma \vec{F} = \vec{0}$.