Cycles and Instability in a Rock-Paper-Scissors Population Game¹

Tim Cason, Dan Friedman, Ed Hopkins

Econ 165 UCSC February 11, 2016

¹Review of Economic Studies 81:1, pp. 112-136 (2014).□ ➤ <♂ ➤ < ≧ ➤ < ≧ ➤ ○ ≥ ○ ○ ○ ○

Motivation

- Rock-Paper-Scissors, aka RoShamBo, Shoushiling (China) or Jan-ken-pon (Japan) is played everywhere to resolve 2-player disputes. It may date back to the Han Dynasty 2000 years ago.
- Iconic for game theorists, especially evolutionary game theorists:
 - ► Simplest example of intransitive dominance: Rock ≺ Paper ≺ Sissors ≺ Rock ...
 - Hence should yield cyclic dynamics in population games.
 - ► Really? do they persist? do they converge to a limit point or limit cycles or ...?
- These issues recur in more complex theoretical settings, and in applications (e.g., lizards, voting, Edgeworth pricing games, ..).

The research questions

In simple RPS-like matrix games:

- Under what conditions does play converge to the unique interior NE? Or to some other interior profile?
- Under what conditions do we observe cycles?
- If cycles persist, does the amplitude converge to a maximal, minimal, or intermediate level?

The overarching question:

When do we need to go beyond equilibrium theory to analyze strategic interaction?

Focus: stable vs unstable payoff matrix

$$\mathbf{S} = \begin{pmatrix} 36 & 24 & 66 \\ 96 & 36 & 30 \\ 24 & 96 & 36 \end{pmatrix} \text{ has unique NE (0.25, 0.25, 0.5) w/ payoff 48.}$$

$$\mathbf{U_a} = \begin{pmatrix} 60 & 0 & 66 \\ 72 & 60 & 30 \\ 0 & 72 & 60 \end{pmatrix} \text{ NE is still (1,1,2)/4 with payoff 48}$$

Performance variable: population distribution over time.

Period averages, distance from NE, Cycle rotation index.

Figure: The Shapley triangle $A_1A_2A_3$ for game U_a with the TASP (T) and the Nash equilibrium (N). Also illustrated are orbits for the perturbed best response dynamics for precision parameter values 0.2 and 0.5.

Testable Hypotheses

• Nash Equilibrium (NE): average play will be at the NE (0.25, 0.25, 0.5) and average payoff will be 48 in all treatments.

BR Dynamics:

- In S, there will be counter-clockwise cycles that diminish in amplitude over time with ultimate convergence to NE.
- ② In U_a , there will be persistent counter-clockwise cycles that approach the Shapley triangle limit cycle.
- **9** In U_b , there will be persistent clockwise cycles that approach the Shapley triangle limit cycle.
- **1** Thus the average distance from NE will be consistently higher in U_a and U_b than in S.

Our treatments

- Two different asymmetric RPS matrices mentioned earlier, S and U_a , both with same NE which \neq centroid and (for U_a) \neq TASP.
- Action set treatments: Discrete pure, discrete mixed, continuous slow, continuous instant.
- 2x4, plus bonus treatment, reversed matrix (U_b) with CS.
- ConG1.0 for 11 sessions each w/8 Ss matched RR for 5 blocks of 5 180-sec periods. Discrete has 20 subperiods of 9 sec each.
- Balanced incomplete block design, split between Purdue and UCSC.

Thus treated nuisances are: site, action set.

Constant nuisances: length of periods, matrix entries, ...

Randomize for: sequence effects, learning, boredom, ...

Design details

	Block 1	Block 2	Block 3	Block 4	Block 5
Sess D1	U3-DM	S3-CI	U3-DP	S3-DM	U3b-CS
Sess D2	U3b-CS	U3-CS	S3-CS	U3-CI	S3-DP
Sess D3	S3-CS	U3-DM	S3-CI	U3b-CS	S3-DM
Sess D4	U3-CI	S3-DM	U3-DM	S3-CS	U3-CI
Sess D5	S3-DP	U3b-CS	U3-DP	S3-CI	U3-CS
Sess D6	U3-CS	S3-DP	U3-CI	S3-DM	U3-DP
Sess D7	S3-CI	U3-CS	U3b-CS	S3-CS	U3-DM
Sess D8	U3-DP	S3-DM	U3-DM	S3-DP	U3-CI
Sess D9	S3-CI	U3-DP	S3-DP	U3-CS	S3-CS
Sess D10	S3-DM	U3-CI	S3-CS	U3-DP	S3-CI
Sess D11	U3-CI	S3-DP	U3-CS	U3b-CS	U3-DM

Balanced Incomplete Block Design

Every treatment appears in Blocks 1 and 5, at least 8 out of 9 treatments appear in Blocks 2 through 4, and no treatment appears more than two times in any one block.

This design also achieves our goals of not repeating any

treatment within a session (so we get 6 independent observations for each), and the matrix changes every block.

ConG Software: CS treatment (10 sec transit)

Session 2, period 6: U_a matrix, Continuous-Slow.

Mean choice by period within block: S, Contin-Instant.

Time average behavior and tests

Game-Condition	Rock	Paper	Scissors	Payoff
Nash Equilibrium	0.25	0.25	0.5	48
TASP (Ua)	0.242	0.31	0.449	51.1
TASP (Ub)	0.31	0.242	0.449	51.1
S Continuous-Instant	0.226 ^N	0.269 ^N	0.504	47.59 ^N
S Continuous-Slow	0.236 ^N	0.265	0.500	48.03
S Discrete-Mixed	0.242	0.294 ^N	0.464	47.95
S Discrete-Pure	0.247	0.320 ^N	0.433 ^N	47.57 ^N
Ua Continuous-Instant	0.247	0.318 ^N	0.435 ^N	49.82 ^{NT}
Ua Continuous-Slow	0.228 ^{NT}	0.281 ^N	0.491^{T}	49.08 ^{NT}
Ua Discrete-Mixed	0.225	0.342 ^{NT}	0.433 ^N	49.70 ^{NT}
Ua Discrete-Pure	0.205 ^N	0.337^{N}	0.458 ^N	50.71 ^N
Ub Continuous-Slow	0.303 ^N	0.240	0.457 ^N	48.81 ^{NT}

Cycle rotation index

A new statistic invented this summer.

- ullet Tripwire = Poincare section = dashed line in Fig 1 from NE to edge.
- CCT = Count of left-to-right crossings, CT=# right-to-left.
- $CRI = \frac{CCT CT}{CCT + CT} \in [-1, 1].$
- Thus $CRI \approx 1 (\approx -1)$ indicates consistent c-cw (cw) cycles, and $CRI \approx 0$ indicates no consistent cycles.

Table: Mean Transits and Cycle Rotation Indexes

Game-Treatment	CCW	CW	CRI
S Continuous-Instant	24.1	5.8	0.64*
S Continuous-Slow	9.3	0.9	0.86*
S Discrete-Mixed	2.1	1.3	0.30
S Discrete-Pure	0.5	0.7	-0.04
U _a Continuous-Instant	30.3	1.9	0.89*
U _a Continuous-Slow	8.3	0.0	1.00*
U_a Discrete-Mixed	1.8	0.3	0.78*
U_a Discrete-Pure	0.9	0.2	0.68*
U_b Continuous-Slow	0.3	8.5	-0.94*

Note: * Denotes Index significantly (p-value < 5%) different from 0 according to 2-tailed Wilcoxon test.

Summary

- EVG theory predicts cycles in RPS games, but they have not previously been detected.
- Cycles are prominent in the new continuous action treatments, most spectacularly for U_a -CS and U_b -CS.
- CRI shows direction of cycles is as predicted when they occur.
- Central tendency (TimeAverage) predicted rather well by TASP, though amplitude is less than ShapleyPolygon.
- ullet S game partially vindicates prediction that cycle amplitude \to 0: amplitude is smaller than for U game, but settles in at positive value.
- U game seems to have limit cycles, as suggested by PBR, not heteroclinic cycle as predicted by replicator dynamics.

Conclusion and Speculation

- NE is not bad for predicting LR average in these games, but it is a rather poor SR predictor.
- EGT predicts far better in SR and TASP beats NE.
- Learning models and EGT more generally help us grasp "instability," an increasingly important theme for social scientists.