Fano Method

Rui Wang

Thursday 6th July, 2017

Abstract

123

1 Basic framework

Throughout, we let \mathcal{P} denote a class of distributions on a sample space \mathcal{X} , and let $\theta : \mathcal{P} \to \Theta$ denote a function defined on \mathcal{P} , that is, a mapping $P \mapsto \theta(P)$. The goal is to estimate the parameter $\theta(P)$ based on observations X_i drawn from the distribution P.

To evaluate the quality of an estimator $\hat{\theta}$, we let $\rho: \Theta \times \Theta \to \mathbb{R}_+$ denote a semimetric on the space Θ , which we use to measure the error of an estimator for the parameter θ , and let $\Phi: \mathbb{R}_+ \to \mathbb{R}_+$ be a non-decreasing function with $\Phi(0) = 0$.

From estimation to testing Given an index set \mathcal{V} of finite cardinality, consider a family of distributions $\{P_v\}_{v\in\mathcal{V}}$ contained within \mathcal{P} . This family induces a collection of parameters $\{\theta(P_v)\}_{v\in\mathcal{V}}$; we call the family a 2δ -packing in the ρ -semimetric if

$$\rho(\theta(\theta(P_v), \theta(P_{v'}))) \ge 2\delta$$
 for all $v \ne v'$.

We use this family to define the canonical hypothesis testing problem:

- first, nature chooses V according to the uniform distribution over \mathcal{V} ;
- second, conditioned on the choice V = v, the random sample $X = X_1^n = (X_1, \dots, X_n)$ is drawn from the *n*-fold product distribution P_v^n .

Proposition 1. The minimax error has lower bound

$$\mathfrak{M}_n(\theta(\mathcal{P}), \Phi \circ \rho) \ge \Phi(\delta) \inf_{\Psi} \mathbb{P}(\Psi(X_1, \dots, X_n) \ne V).$$

2 Metric entropy and packing numbers

• Covering number: $N(\delta, \Theta, \rho)$

• Metric entropy: $\log N(\delta, \Theta, \rho)$

• Packing number: $M(\delta, \Theta, \rho)$

Lemma 1. $M(2\delta, \Theta, \rho) \leq N(\delta, \Theta, \rho) \leq M(\delta, \Theta, \rho)$

Lemma 2 (Gilbert-Vershamov bound). Let $d \geq 1$. There is a subset \mathcal{V} of the d-dimensional hypercube $\mathcal{H}_d = \{-1,1\}^d$ of size $|\mathcal{V}| \geq \exp(d/8)$ such that the ℓ_1 -distance

$$||v - v'||_1 = 2\sum_{j=1}^d \mathbf{1}\{v_j \neq v_j'\} \ge \frac{d}{2}$$

for all $v \neq v'$ with $v, v' \in \mathcal{V}$.

Lemma 3. Let $\|\cdot\|$ be any norm in \mathbb{R}^d . Let \mathbb{B} denote the unit $\|\cdot\|$ -ball in \mathbb{R}^d . Then

$$\left(\frac{1}{\delta}\right)^d \leq N(\delta,\mathbb{B},\|\cdot\|) \leq \left(1+\frac{2}{\delta}\right)^d.$$

3 Fano inequality

Let V be a random variable taking values in a finite set V, and assume that we observe a random variable X, and then must estimate or guess the true value of \hat{V} . That is, we have the Markov chain

$$V \to X \to \hat{V}.$$

Let the function $h_2(p) = -p \log p - (1-p) \log(1-p)$ denote the binary entropy.

Proposition 2 (Fano inequality). For any Markov chain $V \to X \to \hat{V}$, we have

$$h_2(\Pr(\hat{V} \neq V)) + \Pr(\hat{V} \neq V) \log(|\mathcal{V}| - 1) \ge H(V|\hat{V}).$$

Proof. Let E be the indicator for the event that $\hat{X} \neq X$, that is, E = 1 if $\hat{V} \neq V$ and is 0 otherwise. Then we have

$$\begin{split} &H(V|\hat{V}) = H(V, E|\hat{V}) = H(V|E, \hat{V}) + H(E|\hat{V}) \\ = &\Pr(E = 0) \underbrace{H(V|E = 0, \hat{V})}_{0} + \Pr(E = 1)H(V|E = 1, \hat{V}) + H(E|\hat{V}) \\ \leq &\Pr(E = 1) \log(|\mathcal{V}| - 1) + H(E) \end{split}$$

Remark 1. During the proof, X is not needed.

Corollary 1. Assume V is uniform on V, then

$$\Pr(\hat{V} \neq V) \ge 1 - \frac{I(V; X) + \log 2}{\log(|\mathcal{V}|)}.$$

Proof. Note that $h_2(\Pr(\hat{V} \neq V)) \leq \log 2$ and

$$H(V|\hat{V}) = H(V) - I(V;\hat{V}) \ge H(V) - I(V;X) = \log(|\mathcal{V}|) - I(V;X).$$

4 The classical (local) Fano method

Proposition 3. Let $\{\theta(P_v)\}_{v\in V}$ be a 2δ -packing in the ρ -semimetric. Assume that V is uniform on the set V, and conditional on V=v, we draw a sample $X\sim P_v$. Then the minimax risk has lower bound

$$\mathfrak{M}(\theta(\mathcal{P}); \Phi \circ \rho) \ge \Phi(\delta) \left(1 - \frac{I(V; X) + \log 2}{\log |\mathcal{V}|}\right).$$

References