Deep learning-based Entity Matching (Quick Start)

Outline

Introduction

Quick start

• Appendix

Introduction

- In this software, *Smart Matcher*, we have made the flow extremely simple that everyone can build a deep learning model to match entities.
- This software is equipped with the state-of-the-art machine learning algorithm for deep learning-based entity matching.
- This file is a quick introduction to the entity matching software, *Smart Matcher*. This trial software has been simplified so that users can run it smoothly on standard Windows computers.
 - Noted that, if better facilities (larger RAM, GPUs) are available, this software can be made more complicated and robust (e.g., by incorporating pre-trained character-level embeddings and training using GPUs to process long text and match entities with many attributes).
- This software has been tested on a collection of datasets which include most publicly available datasets for entity matching.

Quick start - preparation

Download the software and unzip it into any directory

Go to folder <Smart_Matcher>, we can see the following files/folders

- ___ cache ___ model
- nesult
- sample_data
- Smart_Matcher.exe

Quick start - preparation

What are these folders/files about?

cache:

A pre-trained word-level embedding model of relatively small size has been saved in this folder.

model:

A model trained by the user will be saved in this folder.

result:

All results will be saved in this folder. More details later.

sample_data:

Sample datasets have been prepared in this folder. More details later.

Smart_Matcher.exe:

The software.

Folder <sample data> contains sample datasets for training, evaluation and prediction. (csv, utf-8 encoding)

- test.csv
- train.csv
- unlabelled.csv
- validation.csv

The sample data is about matching research articles.

Each article (entity) has attributes: id, title, authors, venue and year.

test.csv, train.csv and validation.csv have the same formats as below

Column	Example column	Example Entry
id	id	5428
label	label	0
left_A	left_title	transaction timestamping in (temporal) databases
left_B	left_authors	christian s. jensen , david b. lomet
left_C	left_venue	vldb
right_A	right_title	time-parameterized queries in spatio- temporal databases
right_B	right_authors	yufei tao , dimitris papadias
right_C	right_venue	international conference on management of data

test.csv, train.csv and validation.csv have the same formats as below

Column	Example column	Example Entry
id	id	5428
label	label	1
left_A	left_title	dynamic maintenance of data distribution for selectivity estimation
left_B	left_authors	kyu-young whang , gio wiederhold , sang-wook kim
left_C	left_venue	vldb j.
right_A	right_title	dynamic maintenance of data distribution for selectivity estimation
right_B	right_authors	kyu young whang , sang wook kim , gio wiederhold
right_C	right_venue	the vldb journal the international journal on very large data bases

unlabelled.csv has the same columns as test.csv, train.csv and validation.csv except for 'label', because this is what the trained model will predict later.

Next let's start using *Smart Matcher*.

Double click Smart_Matcher.exe to launch the software

Then we will see a command window which initializes the environment and launches *Smart Matcher*. This may take a minute.

The command window is for us to monitor preprocessing, training, evaluation and prediction (also for developers to debug).

Hence, maybe a good layout is like this

The GUI of Smart Matcher will appear

Since we have prepared sample datasets and pre-trained embeddings in relevant folders, we just click button <Load & Preprocess> to preprocess

all datasets

The progress can be viewed in the command window below

```
Reading and processing data from "sample_data\train.csv"

O% [########################### ] 100% | ETA: 00:00:00

Reading and processing data from "sample_data\validation.csv"

O% [############################# ] 100% | ETA: 00:00:00

Reading and processing data from "sample_data\validation.csv"

O% [########################### ] 100% | ETA: 00:00:00

Reading and processing data from "sample_data\test.csv"

O% [############################ ] 100% | ETA: 00:00:00

Building vocabulary

O% [#] 100% | ETA: 00:00:00

Total time elapsed: 00:00:00

Computing principal components

O% [#] 100% | ETA: 00:00:00

Total time elapsed: 00:00:00
```

After the preprocessing is done, a pop-up message window will appear

Click OK to continue

Set training parameters

Epoch: 10 or 15 (recommended)

Batch size: 16 or 32 (recommended)

Pos-neg ratio:

- Sampling ratio between positive and negative examples
- Dataset-dependent
- For example, this value should be increased if we have fewer matches than non-matches in your data
- For the provided datasets, we should put '5'

Click <Start Training>

The training progress can be monitored in the command window

```
TRAIN Epoch 1
      ] 100% | ETA: 00:00:00
Total time elapsed: 00:00:17
Finished Epoch 1 || Run Time; 19.2 | Load Time:
 F1: 51.71 | Prec: 41.41 | Rec: 68.83 | Ex/s: 16.69
===> EVAL Epoch 1
0% [ ] 100% | ETA: 00:00:00
Total time elapsed: 00:00:01
Finished Epoch 1 || Run Time: 2.5 | Load Time: 0.1
| F1: 53.66 | Prec: 64.71 | Rec: 45.83 || Ex/s: 41.53
  Best F1: tensor(53.6585)
Saving best model...
 ==> TRAIN Epoch 2
0% [ ] 100% ETA: 00:00:00
Total time elapsed: 00:00:17
Finished Epoch 2 || Run Time: 18.6 | Load Time: 0.2
| F1: 76.02 | Prec: 69.15 | Rec: 84.42 || Ex/s: 17.23
===> EVAL Epoch 2
0% [ ] 100% | ETA: 00:00:00
Total time elapsed: 00:00:01
Finished Epoch 2 || Run Time: 2.5 | Load Time: 0.1
| F1: 57.14 | Prec: 66.67 | Rec: 50.00 || Ex/s: 41.68
  Best F1: tensor (57.1429)
Saving best model...
 ==> TRAIN Epoch 3
[otal time elapsed: 00:00:19
```

Parameters to monitor

Precision (P): the fraction of match predictions that are correct

Recall (R): the fraction of correct matches being predicted as matches

F1 score (F1): 2PR/(P + R)

After the training is done, a pop-up message window will appear

Click OK to continue

All training records about training and evaluation datasets can be found in

folder <result>

result

training_records_evaluation_data.txt

training_records_train_data.txt

Epoch
Time of the first service of the

training records train data.txt - Notepad File Edit Format View Help Epoch 0 Time used: 13.99s F1 score: tensor(29.7619) Precision: tensor(18.0505) tensor(84.7458) Epoch 1 Time used: 13.01s F1 score: tensor(51.4019) Precision: tensor(35.4839) tensor(93,2203) Epoch 2 Time used: 14.49s F1 score: tensor(74.2138) Precision: tensor(59.) Recall: tensor(100.) _____

Quick start - evaluation

Click < Evaluation > to check the performance on the test dataset

Quick start - evaluation

The evaluation will load the trained model first Click OK to continue

After the evaluation is done, click OK to continue

The performance can be found in folder <result>

Click the highlighted two buttons to check predictions for validation and test datasets.

This is how we can 'feel' the performance of the model

Click OK to continue

Check the performance in folder <result>

- predictions_test.csv
- predictions_validation.csv

A new column <match_score> will be added to indicate the 'confidence'

\square	Α	В	С	D	Е
1	id	match_score	label	left_id	left_title
2	752	0.258253872	0	1103	workshop report
3	1265	0.206134483	0	1159	searching and mi
4	1477	0.221789345	0	1642	large databases f
5	1366	0.310285151	0	1369	call for book revi
6	1003	0.244622141	0	364	optimizing datab
7	1064	0.206950009	0	2144	database princip
8	2367	0.247651711	0	2583	book review colι
9	1284	0.211074471	0	1164	querying atsql da
10	1094	0.20711647	0	162	temporal databa
11	2163	0.195224449	0	1664	query optimizati
12	2077	0.215218782	0	378	cost-driven verti
12	ววกว	በ ን77ንን0በ/11	0	201	afficient materia

^{*} In general, 'confidence' above 0.5 is considered a match

The unlabelled means a dataset without column < label>

For example,

- id
- left_A
- left_B
- ...
- right_A
- right_B

•

	Α	В	С	D	E
1	id	left_id	left_title	left_authors	left_
2	398	630	fast high-dimer	kian-lee tan , cheng	vldb
3	3743	2452	temporal condi	ouri wolfson , a. pra	sigm
4	2775	1177	supervised wra	sergio flesca , robei	vldb
5	3777	2443	efficiently mini	roberto j. bayardo j	sigm
6	4980	1466	document man	rudolf bayer	vldb
7	1424	1914	reminiscences	jan van den bussch	sigm
8	223	2546	infomaster: an	arthur m. keller , m	sigm
9	6230	1557	power efficient	ibrahim korpeoglu	sigm
10	1843	1062	closing the key	nenad jukic, svetlo	sigm
11	3593	548	model-based ir	bertram lud??scher	vldb

Click < Predict Unlabelled > to select an unlabelled dataset

Double-click the file to continue

After the prediction is done, click OK to continue

Check the performance in folder <result>

predictions_unlabelled.csv

A new column <match_score> will be added to indicate the 'confidence'

\square	Α	В	С	D	E	
1	id	match_score	left_id	left_title	left_autho	lε
2	398	0.208184108	630	fast high-dimensi	kian-lee ta	v
3	3743	0.218726471	2452	temporal condition	ouri wolfs	si
4	2775	0.846783459	1177	supervised wrapp	sergio fles	v
5	3777	0.253999412	2443	efficiently mining	roberto j.	si
6	4980	0.25328365	1466	document manag	rudolf bay	v
7	1424	0.253384411	1914	reminiscences on	jan van de	si
8	223	0.221327826	2546	infomaster : an in	arthur m.	si
9	6230	0.261736184	1557	power efficient d	ibrahim ko	si
10	1843	0.19022952	1062	closing the key lo	nenad juk	si
11	3593	0.983090937	548	model-based info	bertram lı	v
12	3434	0.246651679	1118	index nesting - ar	jiawei har	V
13	5984	0.234713286	2494	exact : an extensi	arturo jair	v

^{*} In general, 'confidence' above 0.5 is considered a match

Done. Enjoy using!

Appendix

This software can be used to match different types of entities.

Here we show some example datasets that can be analyzed.

Appendix - Example datasets - DBLP-GoogleScholar

title	auther	venue	year
a performance study of workfile disk management for concurrent mergesorts in a multiprocessor database system	k wu , p yu , j chung , j teng	vldb	1995
fastmap: a fast algorithm for indexing, data-mining and visualization of traditional and multimedia datasets	c faloutsos , k lin	sigmod conference	1995
semantic integration of environmental models for application to global information systems and decision-making	d mackay	sigmod record	1999
deadlock detection in distributed database systems: a new algorithm and a comparative performance analysis	n krivokapic , a kemper , e gudes	vldb j.	1999

Accuracy (F1 core)	
Structured	94.7 - 95.1
Dirty (with missing information)	92.7 - 93.8

Appendix - Example datasets - iTunes-Amazon

Song	Artist Name	Album Name	Genre	Price	CopyRight	Time	Released
Ca n't Stop Now (feat . Jovi Rockwell and Mr. Vegas)	Major Lazer	Guns Do n't Kill People Lazers Do	Electronic, Musi c, Hip-Hop / Rap , Rap , Alternative , Reggae , Dance , Modern Dancehall , Rock	S\$ 1.29	?€? ???? 2009 Downtown Music , LLC .	4.03	2009
I 'm a Machine (feat . Crystal Nicole and Tyrese Gibson)	David Guetta	Nothin g But the Beat	Dance , Music , House , Electronic , Rock	S\$ 1.29	2011 What A Music Ltd , Licence exclusive Parlophone Music France	3.34	8/26/201 1

Accuracy (F1 core)	
Structured	88.0 - 90.9
Dirty (with missing information)	69.2 - 74.5