Обзор ArXiv/astro-ph, December 08-14, 2016

От Сильченко О.К.

Astro-ph: 1612.02319

MNRAS 000, 1-20 (2016)

Preprint 8th December 2016

Compiled using MNRAS LATEX style file v3.0

Andromeda chained to the Box – Dynamical Models for M31: Bulge & Bar

Matias Blaña Díaz¹*, Christopher Wegg¹, Ortwin Gerhard¹, Peter Erwin¹, Matthieu Portail¹ Michael Opitsch¹,2,3, Roberto Saglia¹,2, Ralf Bender¹,2

¹ Max-Planck-Institut für extraterrestrische Physik, Gießenbachstraße 1, 85748 Garching bei München, Germany

² Universitts-Sternwarte München, Scheinerstr. 1, D-81679 München, Germany

³ Exzellenzcluster Universe, Boltzmannstr. 2, D-85748 Garching bei München, Germany

Общая схема структуры М 31

Dynamical Models for M31 - Bulge & Bar

Figure 1. Schematic diagram of the orientation of the models. We project the models on the sky as M31, giving an inclination to the disk of i=77°, locating the near side of the disk pointing to the north-west, and locating also the position angle of the projected major axis of the disk at PA_{disk} =38° anticlockwise from the north axis. The bar angle θ_{bar} is measured in the plane of the disk. The straight arrow shows the major axis of the bar that is aligned with the projected disk major axis when θ_{bar} =0°. The angle θ_{bar} increases anticlockwise, as shown by the curved arrow, until for θ_{bar} =90° the bar is seen nearly end-on.

Подгонка фотометрии и кинематики

Figure 8. Line-of-sight kinematic profiles. We plot $|v_{los}|$ (dashed curves) and σ_{los} (solid curves), for Model 0 (cyan) and for Model 1 (black) (both at $600\,u_1$). We also show the ICB component of Model 1 (orange) and the disk + B/P bulge component (purple). M31's σ_{los}^{fit} (circles) and $|v_{los}^{fit}|$ (squares) for different PA. *Top panel*: M31 values measured along the photometric major axis of the bulge at PA=48° (Saglia et al. 2010). The kinematic profiles of Model 1 are calculated at the same PA. Positive velocities ($v_{los} > 0\,\mathrm{km\,s^{-1}}$) are located at the left side ($R < 0\,\mathrm{arcsec}$) and negative velocities at the right side. *Bottom panel*: M31 values measured at the minor axis of the bulge, at PA=138° (dark green), and values measured at PA=108° (light green). Here the kinematic profiles for Model 1 are calculated at PA=138°.

Все получилось в рамках модели: эвол. Бар + классический балдж

Figure 10. Top panel: Circular velocities of Model 1 (600 u_t) and M31. v_c curves of the different components of Model 1, the ICB (orange), the disk + B/P bulge (purple), the dark matter (dashed curve) and the total v_c (solid black curve). The rotation velocities estimated from HI observations (green dots) (Chemin et al. 2009). Bottom panel: The angular frequency profile (Ω) of Model 1 at 600 u_t (solid curve), and $\Omega_{ILR} = \Omega - \kappa/2$ (dashed curve). The pattern speed of the bar is $38 \, \mathrm{km \, s^{-1} \, kpc^{-1}}$ (horizontal solid

Astro-ph: 1612.02001

LETTER

A massive, quiescent, population II galaxy at a redshift of 2.1

Mariska Kriek¹, Charlie Conroy², Pieter G. van Dokkum³, Alice E. Shapley⁴, Jieun Choi², Naveen A. Reddy⁵, Brian Siana⁵, Freeke van de Voort¹, Alison L. Coil⁶, Bahram Mobasher⁵

Объект

We observed the galaxy COSMOS-11494 with the near-infrared multi-object spectrograph MOSFIRE on the *Keck I Telescope*⁸. It was also observed by two other programmes 9,10 , and so we incorporated these publicly available archival data. COSMOS-11494 was selected from the 3D-HST survey 11,12 . With a stellar mass M given by $\log_{10} M/M_{\odot} = 11.5 \pm 0.1$, COSMOS-11494 is among the most massive galaxies at its redshift, and it has a very low star-formation rate of less than $0.6 M_{\odot}/yr$ (see Methods). Similarly to the typical massive, quiescent galaxy at this redshift, it is smaller than its local counterparts of the same mass, with an effective radius of 2.1 kpc^{13} . The MOS-

Спектр очень хороший

Результаты и модель

