Operační systémy reálného času

Kurz: Signálové procesory

Autor: Petr Sysel

Lektor: Petr Sysel

Obsah přednášky

Víceúlohové operační systémy

Operační systémy reálného času

Systém DSP/BIOS

Vlastnosti

Moduly

Správa vláken

Synchronizace vláken

Modul statistických informací

Modul časování

Modul logování běhu programu

Motto:

Chybovat je lidské, ale něco dokonale zašmodrchat, k tomu je potřeba počítač.

Víceúlohové operační systémy

- Snaha o efektivní využití procesorového času,
- program tvořený nekonečnou smyčkou je neefektivní,
- navíc nezaručuje správné časování.

Řešením jsou víceúlohové systémy:

- cooperative multitasking:
 - úloha je povinna předávat řízení jádru,
 - přepnutí je možné pouze se souhlasem úlohy,
- preemptive multitasking:
 - jádro pomocí přerušení od časovače odebírá řízení úloze,
 - přepnutí může provést jádro bez ohledu na úlohu.

Problémy víceúlohových operačních systémů

- Procesy se nesmí ovlivňovat proces má svůj kontext:
 - každý proces má svou oddělenou paměť,
 - paměť je chráněna před přístupem druhého procesu,
 - kontext uchovává i obsahy registrů a stav procesoru,
- při přepnutí procesu dojde k přepnutí kontextu,
- pro zjednodušení vznikl multithreading:
 - · vlákna sdílí paměť,
 - přepínají se pouze obsahy registrů,
 - eventuelně se přepíná zásobník,
- atomické operace některé operace musí být dokončeny bez přepnutí.

Operační systémy reálného času

- Real Time Operating System (RTOS):
 - minimální zpoždění (latence) reakce na událost,
 - minimální zpoždění při přepínání vláken,
 - minimalizace časových okamžiků, kdy je zakázáno přerušení,
 - preemptivní multitasking,
- soft RTOS dovoluje drobné odchylky časování,
- hard RTOS zpoždění je deterministické a vždy stejné:
 - preemptivní plánovač,
 - velký počet nastavitelných priorit vláken,
 - přesné hodiny reálného času.

DSP/BIOS

- Systém vyvíjený firmou Texas Instruments,
- preemptivní multitasking,
- modulární linkovaný staticky,
- abstrakce hardware,
- vstupně/výstupní operace nezávislé na zařízení,
- funkce pro přepínání vláken.

DSP/BIOS

- Moduly pro konfiguraci:
 - globální konfigurace GBL,
 - konfiguraci paměti MEM,
- moduly pro monitorování běhu programu:
 - záznam správ LOG,
 - sledování statistik STS,
 - správa trasování TRC,
- moduly pro komunikaci v reálném čase:
 - komunikace typu stream PIP,
 - komunikaci s hostitelským systémem HST,
 - přenos dat v reálném čase RTDX.

DSP/BIOS moduly

- Moduly pro správu vláken:
 - správa hardwarových přerušení HWI,
 - správa softwarových přerušení SWI,
 - správa vláken TSK,
 - správa vláken při nečinnosti IDL,
 - správa systémových hodin CLK,
 - správa periodicky volaných funkcí PRD,
- moduly pro synchronizaci vláken:
 - správa semaforů SEM,
 - správa zámků zdrojů LCK,
 - správa datových schránek MBX,
- další moduly.

Priorita vláken

	0	hardwarové přerušení s nejvyšší prioritou – RESET
HWI	:	
	15	hardwarové přerušení s nejnižší prioritou
	14	softwarové přerušení s nejvyšší prioritou
SWI		
	0	softwarové přerušení s nejnižší prioritou
	15	vlákno s nejvyšší prioritou
TSK	:	
	1	vlákno s nejnižší prioritou
IDL	0	vlákna na pozadí

Rozdíl mezi hardwarovým a softwarovým přerušením

hardwarové přerušení	softwarové přerušení
vyvoláno hardwarem	vyvoláno softwarově
okamžitá reakce	může dojít ke zpoždění

Rozdíl mezi přerušením a vláknem

přerušení (HWI/SWI)	vlákno (TSK)
nedochází k přepnutí kontextu	dojde k přepnutí kontextu
zálohují se pouze měněné registry	zálohují se všechny registry
sdílí zásobník	má samostatný zásobník
nesmí čekat na událost	může čekat na událost

Rozdíl mezi vláknem a vláknem na pozadí

- vlákno (TSK):
 - činnosti, které vyžadují čekání na vstupní parametry,
- vlákno na pozadí (IDL):
 - činnosti, které je možné provést kdykoliv,
 - nevyžadují čekání na cokoliv,
 - v podstatě klasická nekonečná smyčka.

Příklad přepínání vláken

Funkce pro práci s vlákny

```
TSK_yield(void); předání řízení vláknu se stejnou prioritou
TSK_sleep(Uint nticks); uspání vlákna na ntikcs period
TSK_exit(void); ukončení vlákna
TSK_delete( TSK_Handle); násilné ukončení vlákna
TSK_disable(void); vypnutí multitaskingu
TSK_enable(void); zapnutí multitaskingu
```

Stavy vláken

Problém výhradního přístupu

Funkce pro práci se semafory

- zajišťují atomické operace je zaručeno jejich dokončení bez přepnutí,
- SEM_pend(SEM_handle, Uns timeout);
 - pokud je hodnota semaforu nenulová provede dekrementaci a vrátí TRUE,
 - pokud je hodnota semaforu nulová, čeká timeout period na její zvýšení
 - pokud se v době zvýší, dekrementuje ji a vrátí TRUE,
 - pokud se v době nezvýší, vrátí FALSE,
 - pokud je timeout roven -1, čeká do nekonečna,
 - nesmí se používat v přerušeních,
- SEM_post(SEM_handle);
 - provede inkrementaci semaforu,
 - pokud nějaké vlákno čeká na semafor, provede jeho probuzení,
- obě funkce jsou i ve verzi SEM_pendBinary, SEM_postBinary
 - hodnota semaforu je binární 0 nebo 1.

Řešení uváznutí programu

Problém uváznutí programu

Modul statistik

- Umožňuje sledovat statistiku nějakého údaje:
 - Count počet volání,
 - Total celkový součet,
 - Maximum maximální hodnotu,
 - Average průměrnou hodnotu,
- STS_add(STS_handle, Uns); přidání hodnoty,
- STS_set(STS_handle, Uns); nastavení hodnoty,
- STS_delta(STS_handle, Uns); přidání rozdílu mezi nastavenou a aktuální hodnotou,
- STS_reset(STS_handle) vynulování hodnoty.

Modul časování

- Umožňuje nastavit periodu přepínání nebo zjistit aktuální čas:
- CLK_gettime(void); vrátí počet period od spuštění programu,
- CLK_gethtime(void); vrátí čas od spuštění programu ve velkém rozlišení.
- ve spojení s STS modulem lze použít pro zjištění časové náročnosti: STS_set(STS_Narocnost, CLK_gethtime());
 ...

```
STS_delta( STS_Narocnost, CLK_gethtime());
```

Modul logování

- Umožňuje ladicí výpisy,
- rychlejší než printf,
- uchovává pouze 4 parametry výpisu, ale formátování se provede až v hostitelském systému,
- LOG_printf("fstring", arg1, arg2, arg3); přidá do tabulky odkaz na formátovací řetězec a tři parametry,
- po obsazení tabulky se výpisy ignorují nebo se začnou přepisovat (circullar).