1 重要公式及定义

特征向量: $A\alpha = \lambda \alpha, (\alpha$ 为非零列向量)

相似定义: $A \setminus B$ 是任意 n 阶矩阵

存在可逆矩阵 P ,使得 $P^{-1}AP = B$,则 A 相似于 B

若 $A \sim A$,且A为对角阵,则称A是A的相似标准型。

其中,P就是由特征值 λ ,构成的 Λ 对应的特征向量矩阵

二次型矩阵定义: 4 为对称矩阵 遇到字母题目要注意

$$f(x_1, x_2, ..., x_n) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j = \mathbf{x}^T A \mathbf{x}$$

合同定义: $A \setminus B$ 是任意 n 阶矩阵,

存在可逆矩阵 C , 使得 $C^T A C = B$, 则 A 合同于 B 。

二次标准型: A 为主对角矩阵 A

二次规范性: A 为元素只有-1,0,1的主对角矩阵A

2 重要性质

■ $\sum \lambda_i = \sum a_{ii}$ 特征值相加=主对角线之和

■ $\prod \lambda_i = |A|$ 特征值相乘=行列式

■ Ax = 0基础解系是 $\lambda = 0$ 对应的线性无关特征向量

 $\underline{\underline{T}}r(A) = r$ <u>则</u> $\lambda = 0$ <u>至少是</u> A <u>的</u> n - r <u>重特征值。</u>

定理 3: 矩阵 A 的特征值为 λ ,特征向量为 α \Rightarrow 矩阵 f(A) 的特征值为 $f(\lambda)$,特征向量为 α

 $f(A) \rightarrow A^k$ 、 $\sum a_i A_i^i$ 、A + kE (勿引入其他矩阵)

相似对角化判断条件

定理 1: A 有 n 个**互不相同**的特征值 ⇒

n 阶矩阵 A 可对角化 \Leftrightarrow A 有 n 个线性无关的特征向量

定理 2: A 的 r_i 重特征值 λ_i 对应**线性无关特征向量**为 r_i 个

 $\Rightarrow n$ 阶矩阵 A 可对角化

实对称矩阵性质:

定理 4: 实对称矩阵不同特征值对应的特征向量必正交

定理 5: 实对称矩阵必定可正交变换为**对角阵**,即

 $Q^T A Q = Q^{-1} A Q = \Lambda$, 其中 Q 为正交阵, (单位化)

二次型矩阵的性质: $f(x_1, x_2, ..., x_n) = \mathbf{x}^T A \mathbf{x}$

定理 6: 对于任意 n 阶实对称矩阵 A , 必存在正交阵 Q

 $\mathbf{x} = \mathbf{Q}\mathbf{y} \oplus \mathbf{x}^T A \mathbf{x} = \mathbf{y}^T \mathbf{Q}^T A \mathbf{Q} \mathbf{y} = \mathbf{y}^T \mathbf{Q}^{-1} A \mathbf{Q} \mathbf{y} = \mathbf{y}^T A \mathbf{y}$

定理 7: 可逆线性变换不唯一,标准型也不唯一,但标准

型的p、q由实对称矩阵A唯一确定。

 \mathbf{r} 上平方项的项数 \mathbf{p} 为正惯性指数,**负平方项**的项数 \mathbf{q} 为负

惯性指数; p+q=r 为秩; p-q 为符号差。

若q = n,则称A为正定矩阵

定理 8: 若 $f(x_1, x_2, ..., x_n) = \mathbf{x}^T A \mathbf{x}$ 正定,则 $a_{ii} > 0$

正定矩阵判断条件

定理 9: $\underline{A \simeq E} \Leftrightarrow A$ 正定 $\Leftrightarrow A$ 的全部特征值 $\lambda_i > 0$

 $\Leftrightarrow A = \mathbf{D}^T \mathbf{D}$, \mathbf{D} 可逆 $\Leftrightarrow A$ 的全部顺序主子式大于零

若 \boldsymbol{A} 和 \boldsymbol{B} 相似,那么 $|\lambda \boldsymbol{E} - \boldsymbol{A}| = |\lambda \boldsymbol{E} - \boldsymbol{B}|$

正交矩阵的行列式为1或-1

注意: 非零特征根的数量不能判断矩阵的秩

3 解题的进阶方法

对于A矩阵,求可逆矩阵P,使得 $P^{-1}AP$ 为对角矩阵——相似化问题

① $|\lambda E - A| = 0$ 计算所有 λ_i (求特征根)

②求特征向量

$$(\lambda_i E - A) x = \begin{pmatrix} & & \\ & & \\ & & \end{pmatrix} x = \begin{pmatrix} & * \\ & & \\ & & \end{pmatrix} x = b$$

解得 $\alpha_j = [x_1, x_2, ..., x_n]^T$

特别说明,这里不用规范化,规范化是求标准型的,不要 搞混了!

4 求特征值和特征向量过程

(1)写出 $|\lambda E - A| = 0$ 展开计算行列式

(2)带入不同的 礼

带入到矩阵 $(\lambda_i E - A)$, 求取 $(\lambda_i E - A)x = 0$ 当 $\lambda_i D$, $(\lambda_i E - A)x = 0$, 得 $\alpha_i = ?$;

直接写解得 $\boldsymbol{\alpha}_i = [x_1, x_2, ..., x_n]^T$ 按顺序列出求取的

 $a_1, a_2, ...a_s$ 化为矩阵形式。所以 $P = [a_1, a_2, ..., a_n]$

#注意:求取的特征向量不唯一,而是一个特征向量空间

<u>\$技巧:①计算三阶的</u>|λ**Ε** – Α| = 0 <u>时,代入 r 重化简后得到 n-r 阶短</u>

需求出 r 个线性无关的解;

\$技巧: ②可以直接舍去一行(仅对于二、三阶)

5 求解 A^n 或 $A^n\beta$

- 5.1 矩阵相似化
- (1)计算特征向量矩阵

 $\left| \frac{\lambda E - A}{\lambda} \right| = 0$,求出 λ_i 及 α_i ,得出特征向量矩阵 P

(2)幂级数展开,特征矩阵求逆

 $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{\Lambda} \Rightarrow \mathbf{A}^n = (\mathbf{P}\mathbf{\Lambda}\mathbf{P}^{-1})^n = \mathbf{P}\mathbf{\Lambda}^n\mathbf{P}^{-1}$;

(3)得到 A^n 或 $A^n\beta$

注意: 如特征向量矩阵不可逆,则按照之前矩阵章节计算特殊方阵的幂的方法求解

5.2 线性表出法(快速求解第二类) (1)计算特征向量矩阵(方法相同)

 $|\lambda E - A| = 0$, 求出 λ_i 及 α_i , 得出特征向量矩阵 **P**

(2) β 由 $(\alpha_1, \alpha_2, ..., \alpha_n)$ 线性表出 $\beta = Px = (\alpha_1, \alpha_2, ..., \alpha_n)x$

(3)展开幂级数

 $A^{n}\beta = A^{n}Px = A^{n-1}(AP)x = A^{n-1}(PA)x = ... = PA^{n}x$

6 正交变换二次型(特征法)

(1)表示出 $x^T A x$ 并求解A的特征值和特征向量 这里的特征向量用 a_i 来表示

注意: 求解特征值时,根据主对角线和等于特征值之和来**验算** 注意: 求解次要重根时可以预先**正交化**

(2)重根 Schmidt 正交化、所有根规范化

这里的正交化用 $\boldsymbol{\beta}_i$ 来表示,规范化用 $\boldsymbol{\beta}_i^\circ$ 来表示

利用不同特征值对应的的特征向量正交来<mark>验算**所有**重根;</mark>

注意:不要忘记规范化,解出正交阵

(3)写出对角阵(标准型)

答案规范: 令 $\mathbf{x} = \mathbf{Q}\mathbf{y}$, 则 $f(x_1, x_2, ..., x_n) = \mathbf{y}^T \mathbf{Q}^T A \mathbf{Q}\mathbf{y}$ = $\lambda_1 y_1^2 + \lambda_2 y_2^2 + ... + \lambda_n y_n^2$ 要写主。一定要验算人

7 配方法变换二次型

对于矩阵 \boldsymbol{A} ,利用 $\boldsymbol{C}_k^T...\boldsymbol{C}_2^T\boldsymbol{C}_1^T\boldsymbol{A}\boldsymbol{C}_1\boldsymbol{C}_2...\boldsymbol{C}_k = \boldsymbol{C}^T\boldsymbol{A}\boldsymbol{C}$

注意: 这个步骤是草稿纸上的,试卷上要写出配方形式

每一个 C_i 都是一次初等变换矩阵,按高斯消元法化简。

答案规范: $f(x_1, x_2, ..., x_n) = = (a_{11}x_1 + ...)^2 +$

注意,结果必须可逆,主对角元素不可为零(其实自己方法必定可逆)