Mitigating distributional biases in contrastive learning

A Preprint

Lidia Troeshestova Moscow Institute of Physics and Technology troeshestova.ls@phystech.edu

Roman Isachenko*

Abstract

Recently there has been a renewed interest in using contrastive learning for self-supervised representation learning. A popular method for learning representations without labels is to compare similar (positive) and dissimilar (negative) pairs of samples. However, negative samples are often chosen randomly, which means that they could be of the same class. This paper analyzes various ways to eliminate these biases. Based on the fully-supervised case, we develop debiased contrastive models that account for same-label datapoints without requiring knowledge of true labels, and explore their properties. The experiments are performed on MNIST and CIFAR10 datasets. This can further improve availability of accurate models for classification in tasks where extensive labeling is expensive or inaccessible.

Keywords: Contrastive learning · Representation learning · Self-supervised learning

Introduction 1

Representation learning has become increasingly popular in recent years due to its ability to learn meaningful representations from large amounts of data, without the need for manual feature engineering. A widely used solution for this problem is contrastive learning, a technique that uses the principle of contrasting samples against each other to learn attributes that are common between data classes and attributes that set apart a data class from another. It encourages the representations of similar pairs (x, x^+) to be close, and those of dissimilar pairs (x, x^{-}) to be more orthogonal.

The basic metric for supervised similarity is triplet loss, where x is called anchor, x^+ is a sample with the same label as anchor, and x^- is a sample with the different label than anchor. An improvement of triplet loss is Multi-class N-pair Loss invented by [Sohn, 2016]:

$$\mathcal{L}(x, x^+, \{x_i^-\}_{i=1}^{N-1}; f) = -\log \frac{\exp(f^T f_i^+)}{\exp(f^T f_i^+) + \sum_{i=1}^{N-1} \exp(f^T f_i^-)}$$
(1)

Contrastive learning has proven to be effective for eliciting visual representations: SimCLR [Ting Chen, 2020] is a framework that considerably outperforms previous self-supervised and semi-supervised learning methods. Its authors developed NT-Xent loss (normalized temperature-scaled cross entropy loss), that uses cosine similarity instead of scalar products.

Due to the unavailability of actual labels during training, negative instances x are often randomly selected from the training data. However, this approach can result in sampling bias, where x^- may actually be similar to x. This bias can cause a significant drop in performance.

To address this issue, [Prannay Khosla, 2021] extend the self-supervised batch contrastive approach to the fullysupervised setting, allowing to effectively leverage label information. According to the experiments, supervised

^{*}Use footnote for providing further information about author (webpage, alternative address)—not for acknowledging funding agencies.

- 1. Нужна ссылка на работу, посвященную triplet loss
- 2. Есть стандартная нотация: векторы обозначают жирным, матрицы обозначают жирными заглавными буквами
- 3. Я бы не вводил формулу во введении. По возможности лучше объяснить разницу с триплетами текстом и не пугать читателя раньше времени
- 4. (если формула остается), нужно объяснить как связаны х и f

contrastive loss outperforms the base cross entropy, but only by a small amount. It also outperforms the cross entropy on robustness benchmark (ImageNet-C, which applies common naturally occurring perturbations such as noise, blur and contrast changes to the ImageNet dataset) and is less sensitive to hyperparameter changes.

As for the case of self-supervised learning, a debiased contrastive loss was proposed to mitigate the bias of negative sampling by [Ching-Yao Chuang, 2020]. Given N negative and M positive samples, $\mathcal{L}_{\text{Debiased}}^{N,M}(f)$ is the loss function that corrects for False Negative samples. To remain unsupervised in practice, samples are acquired from the data distribution and a positive distribution mimicked by data augmentations, which can contatin False Positives.

This work aims to develop a new algorithm for debiased sampling in contrastive learning, which accounts for False Positive as well as False Negative samples. In addition, it is suggested to tackle the issue of choosing a wrong anchor in multimodal applications such as attribute detection.

2 Problem Statement

2.1 Debiased Contrastive Learning

In [Ching-Yao Chuang, 2020] the distribution over classes is denoted by $\rho(c)$, the joint distribution $p_{x,c}(x,c) = p(x|c)\rho(c)$. Let $h(:X\to C)$ be the function assigning the latent class labels. Then $p_x^+(x') = p(x'|h(x') = h(x))$ is the probability of observing x' as a positive example for x and $p_x^-(x') = p(x'|h(x') \neq h(x))$ the probability of a negative example. It is assumed that the class probabilities $\rho(x) = \tau^+$ are uniform, and $\tau^- = 1 - \tau^+$ is the probability of observing any different class. Then the 'ideal', or unbiased loss to optimize would be:

$$L_{\text{Unbiased}}^{N}(f) = \mathbb{E}_{\substack{x \sim p, x^{+} \sim p_{x}^{+}, \\ x_{i}^{-} \sim p_{x}^{-}}} \left[-\log \frac{e^{f(x)^{T} f(x^{+})}}{e^{f(x)^{T} f(x^{+})} + \sum_{i=1}^{N} e^{f(x)^{T} f(x_{i}^{-})}} \right]$$
(2)

In practice, $p_x^-(x_i^-)$ is unavailable. Thus, the standard solution is to sample negative examples x_i^- from the unlabeled p(x) instead. When drawn from p(x), the sample x_i^- will be of the same class as x with probability τ^+ .

$$L_{\text{Biased}}^{N}(f) = \mathbb{E}_{\substack{x \sim p, x^{+} \sim p_{x}^{+}, \\ x_{i}^{-} \sim p_{x}}} \left[-\log \frac{e^{f(x)^{T} f(x^{+})}}{e^{f(x)^{T} f(x^{+})} + \sum_{i=1}^{N} e^{f(x)^{T} f(x_{i}^{-})}} \right]$$
(3)

<u>Problem statement:</u> Derive a loss function that approximates the ideal L_{Unbiased}^N , only having access to M positive samples and samples from the distribution p.

The data distribution can be decomposed:

$$p(x') = \tau^+ p_x^+(x') + \tau^- p_x^-(x') \tag{4}$$

And the missing $p_x^-(x')$ can be derived as

$$p_x^-(x') = \frac{p(x') - \tau^+ p_x^+(x')}{\tau^-} \tag{5}$$

However, estimating p(x') and $p_x^+(x')$ empirically is computationally expensive, and the authors propose a cheaper way to estimate $p_x^-(x')$, using N samples $\{u_i\}_{i=1}^N$ from p and M samples $\{v_i\}_{i=1}^M$ from p_x^+ :

$$L_{\text{Debiased}}^{N,M}(f) = \mathbb{E}_{\substack{x \sim p; x_{+} \sim p_{x}^{+}, \\ \{u_{i}\}_{i=1}^{N} \sim p_{x}^{+} \\ \{v_{i}\}_{i=1}^{N} \sim p_{x}^{+} }} \left[-\log \frac{e^{f(x)^{T}} f(x^{+})}{e^{f(x)^{T}} f(x^{+}) + Ng(x, \{u_{i}\}_{i=1}^{N}, \{v_{i}\}_{i=1}^{M})} \right], \tag{6}$$

where

$$g(x, \{u_i\}_{i=1}^N, \{v_i\}_{i=1}^M) = \max\left\{\frac{1}{\tau^-} \left(\frac{1}{N} \sum_{i=1}^N e^{f(x)^T f(u_i) - \tau^+ \frac{1}{M} \sum_{i=1}^M e^{f(x)^T f(v_i)}}\right), e^{-1/t}\right\}$$
(7)

- 5. формулу лучше оформить так, чтобы не было переносов 6. Пояснить что такое X, C 7. Кавычки в латехе: ``либо так'', <<либо так>>

Using this loss on SimCLR framework allowed to achieve higher accuracy compared to the regular biased loss. With a similar theoretical inference, this work is aimed at developing a new algorithm, that would additionally focus on eliminating bias caused by False Positives.

Tasks:

- reproduce Debiased Contrastive Learning results
- develop novel debiased contrastive loss that accounts for False Positives.
- test the algorithm on CIFAR10 and MNIST datasets

2.2 False Positive Images

False Positive samples can be encountered in contrastive learning due to excessive or inappropriate augmentation. Similar to Debiased Contrastive Learning, we propose to estimate the positive sampling distribution in the loss function.

$$p_x^+(x') = \frac{p(x') - \tau^- p_x^-(x')}{\tau^+} \tag{8}$$

Contrary to Debiased Contrastive Learning, drawing samples from p(x') will also include positive labelled datapoints, since some of them could be actually negative. With $N \to \infty$:

$$\mathbb{E} \underset{\substack{x \sim p \\ x^+ \sim p_x^+ \\ \{x_i^-\}_{i=1}^N \sim p^- x}}{\sum_{x=0}^{n}} \left[-\log \frac{\exp(f^T f^+)}{\exp(f^T f^+) + \sum_{i=1}^N \exp(f^T f_i^-)} \right] \longrightarrow \mathbb{E} \underset{x^- \sim p_x^-}{\sum_{x=0}^N} \left[-\log \frac{R}{R + N \mathbb{E}_{x^- \sim p_x^-}} \exp(f^t f^-) \right], \quad (9)$$

where

$$R = \frac{1}{\tau^{+}} (\mathbb{E}_{x' \sim p} \exp(f^{T} f') - \tau^{-} \mathbb{E}_{x^{-} \sim p_{x}^{-}} \exp(f^{t} f^{-}))$$
(10)

With finite N:

$$L_{\text{Debiased}}^{N}(f) = \mathbb{E}_{\substack{x \sim p \\ \{u_i\}_{i=1}^{N} \sim p^{-N} \\ v \sim p_{+}^{+}}} \left[-\log \frac{R' - \tau^{-} R^{-}}{R' + (N\tau^{+} - \tau^{-})R^{-}} \right], \tag{11}$$

where

$$R^{-} = \frac{1}{N} \sum_{i=1}^{N} \exp(f(x)^{T} f(u_{i}));$$
(12)

$$R' = \exp(f(x)^T f(v)) + R^- \tag{13}$$

When the number of positive samples M > 1, similar to [Prannay Khosla, 2021] we will aggregate using the summation over positives located outside of the log (which yields better accuracy for supervised contrastive losses rather than summation inside of the log):

$$L_{\text{Debiased}}^{N,M}(f) = \mathbb{E}_{\substack{x \sim p \\ \{u_i\}_{i=1}^N \sim p^{-N} \\ \{v_i\}_{i=1}^M}} \frac{1}{M} \sum_{m=1}^M \left[-\log \frac{R' - \tau^- R^-}{R' + (N\tau^+ - \tau^-)R^-} \right]$$
(14)

2.3 Wrong Anchor

This issue could arise in downstream applications of contrastive learning such as image attribute detection, e.g. discrepancy between the image (image representation f) and its description (description representation t) in online shopping. To solve this problem, when calculating the losses for each picture, we propose to weigh the losses by the cosine similarity of the anchor image vector and the description text vector.

$$L_{\text{Unbiased}}(x, x^+, \{x_i^-\}_{i=1}^{N-1}; f) = -\sin(f^T, t^T) \log \frac{\exp(f^T f_i^+)}{\exp(f^T f_i^+ + \sum_{i=1}^N \exp(f^T f_i^-)}$$
(15)

- 8. Неясно что здесь делает этот план. Если это рабочий черновой вариант ок,
- 9. Перед секциями 2.2 и 2.3 нужна мотивация зачем читателю читать этот текст. Можно также написать текст перед 2.1 с объяснением, как будет выглядеть структура секции
- 10. Только images? Может быть тут не про изображения, а про объекты в целом?

../figures/log_reg_cs_exp-eps-converted-to.pdf

Рис. 1: Sample figure caption.

3 Examples of citations, figures, tables, references

3.1 Citations

Citations use natbib. The documentation may be found at

http://mirrors.ctan.org/macros/latex/contrib/natbib/natnotes.pdf

Here is an example usage of the two main commands (citet and citep): Some people thought a thing [??] but other people thought something else [?]. Many people have speculated that if we knew exactly why ? thought this...

3.2 Figures

Suspendisse vitae elit. Aliquam arcu neque, ornare in, ullamcorper quis, commodo eu, libero. Fusce sagittis erat at erat tristique mollis. Maecenas sapien libero, molestie et, lobortis in, sodales eget, dui. Morbi ultrices rutrum lorem. Nam elementum ullamcorper leo. Morbi dui. Aliquam sagittis. Nunc placerat. Pellentesque tristique sodales est. Maecenas imperdiet lacinia velit. Cras non urna. Morbi eros pede, suscipit ac, varius vel, egestas non, eros. Praesent malesuada, diam id pretium elementum, eros sem dictum tortor, vel consectetuer odio sem sed wisi. See Figure 1. Here is how you add footnotes. ² Sed feugiat. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Ut pellentesque augue sed urna. Vestibulum diam eros, fringilla et, consectetuer eu, nonummy id, sapien. Nullam at lectus. In sagittis ultrices mauris. Curabitur malesuada erat sit amet massa. Fusce blandit. Aliquam erat volutpat. Aliquam euismod. Aenean vel lectus. Nunc imperdiet justo nec dolor.

3.3 Tables

See awesome Table 1. See Section 2.

The documentation for booktabs ('Publication quality tables in LaTeX') is available from:

https://www.ctan.org/pkg/booktabs

²Sample of the first footnote.

Таблица 1: Sample table title

	Part	
Name	Description	Size (μm)
Dendrite Axon Soma	Input terminal Output terminal Cell body	~ 100 ~ 10 up to 10^6

3.4 Lists

- Lorem ipsum dolor sit amet
- consectetur adipiscing elit.
- Aliquam dignissim blandit est, in dictum tortor gravida eget. In ac rutrum magna.

Список литературы

Kihyuk Sohn. Improved deep metric learning with multi-class n-pair loss objective. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 29. Curran Associates, Inc., 2016. URL https://proceedings.neurips.cc/paper/2016/file/6b180037abbebea991d8b1232f8a8ca9-Paper.pdf.

Mohammad Norouzi Geoffrey Hinton Ting Chen, Simon Kornblith. A simple framework for contrastive learning of visual representations. arXiv:2002.05709, 2020.

Chen Wang Aaron Sarna Yonglong Tian Phillip Isola Aaron Maschinot Ce Liu Dilip Krishnan Prannay Khosla, Piotr Teterwak. Supervised contrastive learning. arXiv:2004.11362, 2021.

Lin Yen-Chen Antonio Torralba Stefanie Jegelka Ching-Yao Chuang, Joshua Robinson. Debiased contrastive learning. arXiv:2007.00224, 2020.