Exercise 1. Show that \mathbb{Q} is not a projective \mathbb{Z} -module.

Exercise 2. Show that every projective abelian group is free.

Exercise 3. Show that a direct product of R-modules $\prod_{i \in I} J_i$ is injective if and only if each J_i is injective.

Exercise 4. Let R be a commutative, unital ring. Show that the following are equivalent.

- (i) Every R-module is projective.
- (ii) Every R-module is injective.
- (iii) Every short exact sequence of R-modules is split exact.