Introduction
Présentation de l'algorithme
Séquentiel
Multicœurs
Multinœuds
Conclusion

Présentation MPNA Méthode des itérations simultanées

Matthias Beaupère & Pierre Granger

M2 CHPS

19 février 2019

Plan

- 1 Introduction
- 2 Présentation de l'algorithme
- 3 Séquentiel
- 4 Multicœurs
- 6 Multinœuds
- 6 Conclusion

Introduction

Position du problème

- Calcul de vp de grandes matrices creuses → matrice de Google.
- Seulement quelques vp dominantes.
- Algorithmes robustes.
- Algorithmes adaptés aux architectures massivement parallèles.

La méthode des itérations simultanées

Méthode de la puissance

- Extraction de la vp dominante d'une matrice A.
- ullet Multiplication répétée d'un vecteur initial par A.
- Convergence en $\left(\frac{\lambda_1}{\lambda_2}\right)^N$

Méthode des itérations simultanées

- Espace invariant par A de dim k > 1.
- Multiplication répétée du sous-espace par A.
- Orthonormalisation du sous-espace.

Données d'entrée

- \bullet M: taille du sous-espace de Krylov
- ullet k : nombre de vecteurs propres demandé
- ullet p: précision demandé
- A : matrice de taille $N \times N$ donnée en entrée
- \bullet N_{iter} : nombre d'itérations

Description de l'algorithme

$$Q \leftarrow rand()$$
 while $i=0..N_{iter}-1$ OU $\max(\text{precisions}) < p$ do $Z=AQ$ Gram-Schmidt Q Projection $B=Z^tAZ$ Décomposition de Schur $B=Y^tRY$ Retour dans l'espace d'origine $Q=ZY$ Calcul de la précision des vecteurs de Q Sélection des k vecteurs propres end while

Performances théoriques

Produit AQ	$O(N^2M)$
Gram-Schmidt	O(NMlog(M))
Projection	$O(N^2M)$
Décomposition de S	
Précision	$O(NM^2)$
Sélection	O(1)
	$C^{tot} = O(N_{iter}N^2M)$

Nombre d'itérations

Evolution du temps de calcul en fonction du nombre d'itérations.

Taille du sous-espace de Krylov m

Evolution du temps de calcul en fonction de la taille du sous-espace de $Krvlov \ m$.

Taille de la matrice M

Evolution du temps de calcul en fonction de la taille de la matrice M.

Influence de m

Nombre d'itérations N nécessaires pour faire converger e valeurs propres pour différentes tailles de sous-espace de Krylov m et une précision $p=10^{-6}$

Influence de p

Nombre d'itérations N nécessaires pour faire converger e=4 valeurs propres pour différentes tailles de sous-espace de Krylov m et une précision p

Principe du locking

Justifications

- Vitesses de convergence différentes des vp.
- Perte de temps.
- Instabilités numériques.

Le locking

- On verrouille les vp lorsqu'ils ont convergé.
- On ne le multiplie par A.
- On diminue m.
- On l'utilise pour l'orthonormalisation.

Introduction
Présentation de l'algorithme
Séquentiel
Multicœurs
Multinœuds

Description
Performances théoriques
Performances pratiques
Étude de convergence
Locking

Performances du locking

Précision au cours des itérations N pour e=4 valeurs propres pour une taille de sous-espace de Krylov m=8

Performances du locking

Nombre d'itérations N nécessaires pour faire converger e=4 valeurs propres pour différentes tailles de sous-espace de Krylov m et une précision p avec et sans utilisation du locking

[Multicœurs]

Parallélisation OpenMP

- On parallélise les produits matriciels dans l'espace d'origine
- Pragmas devan le boucles parallélisable
- Pas de pénalité de communication
- Performance : $C \to \frac{C}{N_{\text{cores}}}$

Multicœurs : performances pratiques

Nœud avec 8 cœurs hyperthreadés pour un calcul de 4 valeurs propres avec m=8 à $v=10^{-8}$

Accélération x7 avec 8 coeurs physiques!

Introduction Présentation de l'algorithme Séquentiel Multicœurs **Multinœuds**

Description Performances théorique: Performances pratiques

Multinœuds

MPNA: MIS

Description
Performances théoriques
Performances pratiques

Performances théoriques

Description Performances théoriques Performances pratiques

Multinœuds: performances pratiques

Conclusion

Algorithme

- Compexité pratique proche de la théorie.
- Imporance du choix de *m* en fonction des autres paramètres.
- Meilleure convergence et efficacité avec locking.

Parallélisation

- Très bonne parallélisation intra-nœud.
- Mauvaise scalabilité sur inter-nœud \rightarrow communications trop couteuses.
- Méthodes hybrides probablement mieux adaptées à l'inter-nœud.