Math 526 – Statistics II, Spring 2023

Assignment 4

Due: Monday, May 8, by 8:00PM

Problem: In this assignment, you will perform time series analysis under a state-space model.

The provided dataset contains successive measurements $X_{1:N}, Y_{1:N}, Z_{1:N}$ of the position of a freely moving pollen particle. Each measurement in the dataset is contaminated with additive noise that is accurately represented by

$$X_n|x_n \sim \mathsf{Normal}\left(x_n, \sigma^2
ight)$$
 $Y_n|y_n \sim \mathsf{Normal}\left(y_n, \sigma^2
ight)$ $Z_n|z_n \sim \mathsf{Normal}\left(z_n, \sigma^2
ight)$

where x_n, y_n, z_n is the exact position of the particle. In turn, the motion of the particle is accurately represented by

$$x_n|x_{n-1} \sim \operatorname{Normal}(x_{n-1}, v)$$

 $y_n|y_{n-1} \sim \operatorname{Normal}(y_{n-1}, v)$
 $z_n|z_{n-1} \sim \operatorname{Normal}(z_{n-1}, v)$

which link the exact particle's positions $x_{1:N}, y_{1:N}, z_{1:N}$ across time. The standard deviation of the measurement noise has been calibrated separately and has the value $\sigma=0.15~\mu\mathrm{m}$. The variance of the transition noise has also been calibrated separately and has the value $v=0.0054~\mu\mathrm{m}^2$.

- 1. Set up a linear Gaussian state-space model that can estimate the particle's trajectory $x_{1:N}, y_{1:N}, z_{1:N}$.
- 2. Represent your model graphically.
- 3. Implement the Kalman filtering algorithm and estimate the particle's position.
- 4. Summarize your results graphically.
- 5. Implement the Kalman smoothing algorithm and estimate the particle's position.
- 6. Summarize your results graphically.

Associated data: The provided dataset is pollen_motion.mat. The dataset contains measurements $X_{1:N}, Y_{1:N}, Z_{1:N}$ which are reported in μ m.