Package 'PivotalP'

November 29, 2024

Type Package

Title Prediction for Future Data from Mixture Distributions Gamma, Beta, Weibull and Normal
Version 0.1.2
Author O. M. Khaled [aut], K. S. Khalil [aut, cre], M. H. Harby [aut]
Maintainer K. S. Khalil <kekox38@gmail.com></kekox38@gmail.com>
Description Functions to get prediction intervals and prediction points of future observations from mixture distributions like gamma, beta, Weibull and normal.
License GPL (>= 2)
Encoding UTF-8
Imports stats, zipfR
RoxygenNote 7.3.2
NeedsCompilation no
Repository CRAN
Date/Publication 2024-11-29 09:20:10 UTC
Contents
bmixp
Index

2 bmixp

Description

Construct a prediction point for future observations from mixture beta distribution. Generic method is print.

Usage

```
bmixp(data, s, n, a ,parameters, conf=0.95)
## S3 method for class 'bmixp'
print(x, ...)
```

Arguments

data	A numeric vector.
S	A numeric value the order of prediction point.
n	A numeric vector for the size of all data.
a	A numeric value of mixing proportion.
parameters	A numeric vector of the parameter of distributions
conf	Confidence level for the test.
х	An object of class "bmixp".
	Further argument to be passed to generic function

Details

Prediction of future observations if the data follows a mixture of two Beta distributions

Value

bmixp returns an object of class "bmixp", a list with the following components:

interval the prediction interval.

lower the lower bound of the interval.

upper the upper bound of the interval.

r the length of the data.

s the order of the next observation.

n the length of all the data. parameters the parameter estimate.

Generic function:

print The print of a "bmixp" object shows the prediction point(s) for the future observation(s).

gmixp 3

Author(s)

O. M. Khaled, K. S. Khalil and M. H. Harby.

References

H. M. Barakat, Magdy E. El-Adll, Amany E. Aly (2014), *Prediction intervals of future observations for a sample random size from any continuous distribution*. Mathematics and Computers in Simulation, volume 97, 1-13.

O. M. Khaled, K. S. Khalil and M. H. Harby (2023), *PREDICTING FUTURE DATA FROM GAMMA-MIXTURE AND BETA-MIXTURE DISTRIBUTIONS AND APPLICATION TO THE RECOVERY RATE OF COVID-19*. Advances and Applications in Statistics (AAIS), OCT, 2023.

See Also

PredictionR.

Examples

```
# prediction interval and point for the next observations based on mixture beta distribution set.seed(123) x1 <- 0.5*rbeta(7, 4, 2)+0.5*rbeta(7, 1, 3) bmixp(x1,8,10,0.5,c(4,2,1,3),conf=0.95)
```

gmixp

Prediction future points from mixture gamma distribution

Description

Construct a prediction point for future observations from mixture gamma distribution. Generic method is print.

Usage

```
gmixp(data, s, n, a ,parameters, conf=0.95)
## S3 method for class 'gmixp'
print(x, ...)
```

Arguments

data	A numeric vector.
S	A numeric value the order of prediction point.
n	A numeric vector for the size of all data.
а	A numeric value of mixing proportion.
parameters	A numeric vector of the parameter of distributions
conf	Confidence level for the test.
X	An object of class "gmixp".
	Further argument to be passed to generic function

4 gmixp

Details

Prediction of future observations if the data follows a mixture of two gamma distributions

Value

gmixp returns an object of class "gmixp", a list with the following components:

interval the prediction interval.

lower the lower bound of the interval.

upper the upper bound of the interval.

r the length of the data.

s the order of the next observation.

n the length of all the data.
parameters the parameter estimate.

Generic function:

print The print of a "gmixp" object shows the prediction point(s) for the future observation(s).

Author(s)

O. M. Khaled, K. S. Khalil and M. H. Harby.

References

- H. M. Barakat, Magdy E. El-Adll, Amany E. Aly (2014), *Prediction intervals of future observations for a sample random size from any continuous distribution*. Mathematics and Computers in Simulation, volume 97, 1-13.
- O. M. Khaled, K. S. Khalil and M. H. Harby (2023), *PREDICTING FUTURE DATA FROM GAMMA-MIXTURE AND BETA-MIXTURE DISTRIBUTIONS AND APPLICATION TO THE RECOVERY RATE OF COVID-19*. Advances and Applications in Statistics (AAIS), OCT, 2023.

See Also

PredictionR.

Examples

```
# prediction interval and point for the next observations based on mixture gamma distribution # set.seed(123) x1 <- 0.5*rgamma(7, 4, 2)+0.5*rgamma(7, 1, 3) gmixp(x1, 8, 10,0.5,c(4,2,1,3),conf=0.95)
```

nmixp 5

nmixp Prediction future points from mixture normal distribution	
---	--

Description

Construct a prediction point for future observations from mixture normal distribution. Generic method is print.

Usage

```
nmixp(data, s, n, a ,parameters, conf=0.95)
## S3 method for class 'nmixp'
print(x, ...)
```

Arguments

data	A numeric vector.
S	A numeric value the order of prediction point.
n	A numeric vector for the size of all data.
а	A numeric value of mixing proportion.
parameters	A numeric vector of the parameter of distributions
conf	Confidence level for the test.
x	An object of class "nmixp".
	Further argument to be passed to generic function

Details

Prediction of future observations if the data follows a mixture of two normal distributions

Value

nmixp returns an object of class "nmixp", a list with the following components:

interval the prediction interval.

lower the lower bound of the interval.

upper the upper bound of the interval.

r the length of the data.

s the order of the next observation.

n the length of all the data.

parameters the parameter estimate.

Generic function:

print The print of a "nmixp" object shows the prediction point(s) for the future observation(s).

6 wmixp

Author(s)

O. M. Khaled, K. S. Khalil and M. H. Harby.

References

H. M. Barakat, Magdy E. El-Adll, Amany E. Aly (2014), *Prediction intervals of future observations for a sample random size from any continuous distribution*. Mathematics and Computers in Simulation, volume 97, 1-13.

O. M. Khaled, K. S. Khalil and M. H. Harby (2023), *PREDICTING FUTURE DATA FROM GAMMA-MIXTURE AND BETA-MIXTURE DISTRIBUTIONS AND APPLICATION TO THE RECOVERY RATE OF COVID-19*. Advances and Applications in Statistics (AAIS), OCT, 2023.

See Also

PredictionR.

Examples

```
# prediction interval and point for the next observations based on mixture normal distribution # set.seed(123) \times 1 < 0.5 \times (7, 4, 2) + 0.5 \times (7, 1, 3)  nmixp(x1, 8, 10,0.5,c(4,2,1,3),conf=0.95)
```

wmixp

Prediction future points from mixture weibull distribution

Description

Construct a prediction point for future observations from mixture weibull distribution. Generic method is print.

Usage

```
wmixp(data, s, n, a ,parameters, conf=0.95)
## S3 method for class 'wmixp'
print(x, ...)
```

Arguments

data	A numeric vector.
S	A numeric value the order of prediction point.
n	A numeric vector for the size of all data.
а	A numeric value of mixing proportion.
parameters	A numeric vector of the parameter of distributions

wmixp 7

conf	Confidence level for the test.
x	An object of class "wmixp".
	Further argument to be passed to generic function

Details

Prediction of future observations if the data follows a mixture of two weibull distributions

Value

wmixp returns an object of class "wmixp", a list with the following components:

interval the prediction interval.

lower the lower bound of the interval. upper the upper bound of the interval.

r the length of the data.

s the order of the next observation.

n the length of all the data.
parameters the parameter estimate.

Generic function:

print The print of a "wmixp" object shows the prediction point(s) for the future observation(s).

Author(s)

O. M. Khaled, K. S. Khalil and M. H. Harby.

References

- H. M. Barakat, Magdy E. El-Adll, Amany E. Aly (2014), *Prediction intervals of future observations for a sample random size from any continuous distribution*. Mathematics and Computers in Simulation, volume 97, 1-13.
- O. M. Khaled, K. S. Khalil and M. H. Harby (2023), *PREDICTING FUTURE DATA FROM GAMMA-MIXTURE AND BETA-MIXTURE DISTRIBUTIONS AND APPLICATION TO THE RECOVERY RATE OF COVID-19*. Advances and Applications in Statistics (AAIS), OCT, 2023.

See Also

PredictionR.

Examples

```
# prediction interval and point for the next observations based on mixture weibull distribution # set.seed(123)  
x1 <- 0.5*rweibull(7, 4, 2)+0.5*rweibull(7, 1, 3)  
wmixp(x1, 8, 10,0.5,c(4,2,1,3),conf=0.95)
```

Index

```
bmixp, 2
gmixp, 3
nmixp, 5
print.bmixp (bmixp), 2
print.gmixp (gmixp), 3
print.nmixp (nmixp), 5
print.wmixp (wmixp), 6
wmixp, 6
```