

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

We claim:

1. A cyclohexenonequinolinoyl derivative of the formula I

10

I

5

where:

15

R¹ is hydrogen, nitro, halogen, cyano, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkoxyiminomethyl, C₁-C₆-alkoxy, C₁-C₆-haloalkoxy, C₁-C₆-alkylthio, C₁-C₆-haloalkylthio, C₁-C₆-alkylsulfinyl, C₁-C₆-haloalkylsulfinyl, C₁-C₆-alkylsulfonyl, C₁-C₆-haloalkylsulfonyl, aminosulfonyl, N-(C₁-C₆-alkyl)aminosulfonyl, N,N-di-(C₁-C₆-alkyl)aminosulfonyl, N-(C₁-C₆-alkylsulfonyl)amino, N-(C₁-C₆-haloalkylsulfonyl)amino, N-(C₁-C₆-alkyl)-N-(C₁-C₆-alkylsulfonyl)amino, N-(C₁-C₆-alkyl)-N-(C₁-C₆-haloalkylsulfonyl)amino, phenoxy, heterocyclyloxy, phenylthio or heterocyclylthio, where the four last-mentioned radicals may be partially or fully halogenated and/or may carry one to three of the following substituents: nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;

30

35

R², R³ are hydrogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl or halogen;

40

R⁴ is a compound IIa or IIb

45

IIa

IIb

[Signature]
C, cont
5

where

R⁵ is halogen, OR⁷, SR⁷, SOR⁸, SO₂R⁸, OSO₂R⁸, POR⁸R⁹, OPR⁸R⁹, OPOR⁸R⁹, OPSR⁸R⁹, NR¹⁰R¹¹, ONR¹¹R¹², N-linked heterocyclyl or O-(N-linked heterocyclyl), where the heterocyclyl radical of the two last-mentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals:

10 nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;

R⁶ is nitro, halogen, cyano, C₁-C₆-alkyl, C₁-C₆-haloalkyl, di-(C₁-C₆-alkoxy)methyl,

15 di-(C₁-C₆-alkylthio)methyl, (C₁-C₆-alkoxy)(C₁-C₆-alkylthio)methyl, hydroxyl, C₁-C₆-alkoxy, C₁-C₆-haloalkoxy,

C₁-C₆-alkoxycarbonyloxy, C₁-C₆-alkylthio,

C₁-C₆-haloalkylthio, C₁-C₆-alkylsulfinyl,

20 C₁-C₆-haloalkylsulfinyl, C₁-C₆-alkylsulfonyl,

C₁-C₆-haloalkylsulfonyl, C₁-C₆-alkylcarbonyl,

C₁-C₆-haloalkylcarbonyl, C₁-C₆-alkoxycarbonyl or C₁-C₆-haloalkoxycarbonyl;

25 or

two radicals R⁶, which are linked to the same carbon, together form an -O-(CH₂)_m-O-, -O-(CH₂)_m-S-, -S-(CH₂)_m-S-, -O-(CH₂)_n- or -S-(CH₂)_n chain which may be substituted by one to three radicals from the following group:
halogen, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl or C₁-C₄-alkoxycarbonyl;

35 or

two radicals R⁶, which are linked to the same carbon, together form a -(CH₂)_p chain which may be interrupted by oxygen or sulfur and/or may be substituted by one to four radicals from the following group:
halogen, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl or C₁-C₄-alkoxycarbonyl;

45 or

Sub C cont

two radicals R⁶, which are linked to the same carbon, together form a methyldene group which may be substituted by one or two radicals from the following group:

5

halogen, hydroxyl, formyl, cyano, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkoxy, C₁-C₆-haloalkoxy, C₁-C₆-alkylthio, C₁-C₆-haloalkylthio, C₁-C₆-alkylsulfinyl, C₁-C₆-haloalkylsulfinyl, C₁-C₆-alkylsulfonyl or C₁-C₆-haloalkylsulfonyl;

10

or

two radicals R⁶, which are linked to the same carbon, together with this carbon form a carbonyl group;

15

or

two radicals R⁶, which are linked to different carbons, together form a -(CH₂)_n chain which may be substituted by one to three radicals from the following group:

20

halogen, C₁-C₆-alkyl, C₁-C₆-alkoxy, hydroxyl or C₁-C₆-alkoxycarbonyl;

25

R⁷ is C₁-C₆-alkyl, C₃-C₆-alkenyl, C₃-C₆-haloalkenyl, C₃-C₆-alkynyl, C₃-C₆-haloalkynyl, C₃-C₆-cycloalkyl, C₁-C₂₀-alkylcarbonyl, C₂-C₆-alkenylcarbonyl, C₂-C₆-alkynylcarbonyl, C₃-C₆-cycloalkylcarbonyl, C₁-C₆-alkoxycarbonyl, C₃-C₆-alkenyloxycarbonyl,

30

C₃-C₆-alkynyloxycarbonyl, (C₁-C₂₀-alkylthio)carbonyl, C₁-C₆-alkylaminocarbonyl, C₃-C₆-alkenylaminocarbonyl, C₃-C₆-alkynylaminocarbonyl,

35

N,N-di-(C₁-C₆-alkyl)aminocarbonyl, N-(C₃-C₆-alkenyl)-N-(C₁-C₆-alkyl)aminocarbonyl, N-(C₃-C₆-alkynyl)-N-(C₁-C₆-alkyl)aminocarbonyl, N-(C₁-C₆-alkoxy)-

40

N-(C₁-C₆-alkyl)aminocarbonyl, N-(C₃-C₆-alkenyl)-N-(C₁-C₆-alkoxy)aminocarbonyl, N-(C₃-C₆-alkynyl)-N-(C₁-C₆-alkoxy)aminocarbonyl, di-(C₁-C₆-alkyl)-aminothiocarbonyl, C₁-C₆-alkylcarbonyl-C₁-C₆-alkyl, C₁-C₆-alkoxyimino-C₁-C₆-alkyl,

45

N-(C₁-C₆-alkylamino)imino-C₁-C₆-alkyl or N,N-di-(C₁-C₆-alkylamino)imino-C₁-C₆-alkyl, where the abovementioned alkyl, cycloalkyl and alkoxy radicals may be partially or fully halogenated

94

- SCH COT
- and/or may carry one to three of the following groups:
- cyano, C_1-C_4 -alkoxy, C_1-C_4 -alkylthio, di-(C_1-C_4 -alkyl)amino, C_1-C_4 -alkylcarbonyl, C_1-C_4 -alkoxycarbonyl, C_1-C_4 -alkoxy- C_1-C_4 -alkoxycarbonyl, di-(C_1-C_4 -alkyl)amino- C_1-C_4 -alkoxycarbonyl, hydroxycarbonyl, C_1-C_4 -alkylaminocarbonyl, di-(C_1-C_4 -alkyl)aminocarbonyl, aminocarbonyl, C_1-C_4 -alkylcarbonyloxy or C_3-C_6 -cycloalkyl;
- 10** phenyl, heterocyclyl, phenyl- C_1-C_6 -alkyl, heterocyclyl- C_1-C_6 -alkyl, phenylcarbonyl- C_1-C_6 -alkyl, heterocyclylcarbonyl- C_1-C_6 -alkyl, phenylcarbonyl, heterocyclylcarbonyl, phenoxy carbonyl, heterocycloloxy carbonyl, phenoxythiocarbonyl, heterocycloloxythiocarbonyl, phenoxy- C_1-C_6 -alkylcarbonyl, heterocycloloxy- C_1-C_6 -alkylcarbonyl, phenylaminocarbonyl, N-(C_1-C_6 -alkyl)-N-(phenyl)aminocarbonyl, heterocyclylaminocarbonyl, N-(C_1-C_6 -alkyl)-N-(heterocyclyl)aminocarbonyl, phenyl- C_2-C_6 -alkenylcarbonyl or heterocyclyl- C_2-C_6 -alkenylcarbonyl, where the phenyl and the heterocyclyl radical of the 20 last-mentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals:
- 20** nitro, cyano, C_1-C_4 -alkyl, C_1-C_4 -halogenalkyl, C_1-C_4 -alkoxy or C_1-C_4 -haloalkoxy;
- 25** R^8, R^9 are C_1-C_6 -alkyl, C_3-C_6 -alkenyl, C_3-C_6 -haloalkenyl, C_3-C_6 -alkynyl, C_3-C_6 -haloalkynyl, C_3-C_6 -cycloalkyl, hydroxyl, C_1-C_6 -alkoxy, amino, C_1-C_6 -alkylamino, C_1-C_6 -haloalkylamino, di-(C_1-C_6 -alkyl)amino or di-(C_1-C_6 -haloalkyl)amino, where the abovementioned alkyl, cycloalkyl and alkoxy radicals may be partially or fully halogenated and/or may carry one to three of the following groups:
- 30** cyano, C_1-C_4 -alkoxy, C_1-C_4 -alkylthio, di-(C_1-C_4 -alkyl)amino, C_1-C_4 -alkylcarbonyl, C_1-C_4 -alkoxycarbonyl, C_1-C_4 -alkoxy- C_1-C_4 -alkoxycarbonyl, di-(C_1-C_4 -alkyl)amino- C_1-C_4 -alkoxycarbonyl,
- 35**
- 40**
- 45**

95

5

Mr C X

hydroxycarbonyl, C_1-C_4 -alkylaminocarbonyl,
 $di-(C_1-C_4\text{-alkyl})$ aminocarbonyl, aminocarbonyl,
 C_1-C_4 -alkylcarbonyloxy or C_3-C_6 -cycloalkyl;

10

phenyl, heterocyclyl, phenyl- C_1-C_6 -alkyl,
heterocyclyl- C_1-C_6 -alkyl, phenoxy, heterocyclyoxy,
where the phenyl and the heterocyclyl radical of
the last-mentioned substituents may be partially
or fully halogenated and/or may carry one to three
of the following radicals:
nitro, cyano, C_1-C_4 -alkyl, C_1-C_4 -haloalkyl,
 C_1-C_4 -alkoxy or C_1-C_4 -haloalkoxy;

15

R^{10} is C_1-C_6 -alkyl, C_3-C_6 -alkenyl, C_3-C_6 -haloalkenyl,
 C_3-C_6 -alkynyl, C_3-C_6 -haloalkynyl, C_3-C_6 -cycloalkyl,
hydroxyl, C_1-C_6 -alkoxy, C_3-C_6 -alkenyloxy,
 C_3-C_6 -alkynyoxy, amino, C_1-C_6 -alkylamino,
 $di-(C_1-C_6\text{-alkyl})$ amino or C_1-C_6 -alkylcarbonylamino,

20

where the abovementioned alkyl, cycloalkyl and
alkoxy radicals may be partially or fully
halogenated and/or may carry one to three radicals
from the following group:

25

cyano, C_1-C_4 -alkoxy, C_1-C_4 -alkylthio,
 $di-(C_1-C_4\text{-alkyl})$ amino, C_1-C_4 -alkylcarbonyl,
 C_1-C_4 -alkoxycarbonyl,
 C_1-C_4 -alkoxy- C_1-C_4 -alkoxycarbonyl,
 $di-(C_1-C_4\text{-alkyl})$ amino- C_1-C_4 -alkoxycarbonyl,
hydroxycarbonyl, C_1-C_4 -alkylaminocarbonyl,
 $di-(C_1-C_4\text{-alkyl})$ aminocarbonyl, aminocarbonyl,
 C_1-C_4 -alkylcarbonyloxy or C_3-C_6 -cycloalkyl;

30

35

phenyl, heterocyclyl, phenyl- C_1-C_6 -alkyl or
heterocyclyl- C_1-C_6 -alkyl, where the phenyl or
heterocyclyl radical of the four last-mentioned
substituents may be partially or fully halogenated
and/or may carry one to three of the following
radicals:

40

R^{11} , R^{12} are C_1-C_6 -alkyl, C_3-C_6 -alkenyl, C_3-C_6 -alkynyl or
 C_1-C_6 -alkylcarbonyl;

45

1 is 0 to 6;
m is 2 to 4;

[Signature]
n is 1 to 5;

p is 2 to 5;

5 and their agriculturally useful salts.

2. A cyclohexenonequinolinoyl derivative of the formula I as claimed in claim 1, where

10 R¹ is halogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkoxy, C₁-C₆-alkylthio, heterocyclyloxy or phenylthio, where the two last-mentioned radicals may be partially or fully halogenated and/or may carry one to three of the substituents mentioned below:

15 nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;

20 R⁵ is halogen, OR⁷, SR⁷, SOR⁸, OSO₂R⁸, OPR⁸R⁹, OPOR⁸R⁹, OPSR⁸R⁹, NR¹⁰R¹¹ or N-bonded heterocyclyl which may be partially or fully halogenated and/or may carry one to three of the following radicals:
nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy.

25 3. A cyclohexenonequinolinoyl derivative of the formula I as claimed in claim 1 or 2, where

30 R⁵ is halogen, OR⁷, NR¹⁰R¹¹ or N-bonded heterocyclyl which may be partially or fully halogenated and/or may carry one to three of the following radicals:
nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy.

35 4. A cyclohexenonequinolinoyl derivative of the formula I as claimed in claims 1 to 3, where

40 R⁷ is C₁-C₆-alkyl, C₁-C₂₀-alkylcarbonyl, C₁-C₆-alkoxycarbonyl, (C₁-C₂₀-alkylthio)carbonyl, N,N-di-(C₁-C₆-alkyl)aminocarbonyl, phenyl, phenylcarbonyl or phenoxy-C₁-C₆-alkylcarbonyl, where the phenyl radical of the three last-mentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals:
nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;

SEARCHED - INDEXED - COPIED - FILED

[Signature]

R^{10} is C_1-C_6 -alkyl or C_1-C_6 -alkoxy;

R^{11} is C_1-C_6 -alkyl.

- 5 5. A cyclohexenonequinolinoyl derivative of the formula I as claimed in claims 1 to 4, where

R^6 is nitro, halogen, cyano, C_1-C_6 -alkyl, C_1-C_6 -haloalkyl, di-(C_1-C_6 -alkoxy)methyl, di-(C_1-C_6 -alkylthio)methyl,
 10 (C_1-C_6 -alkoxy)(C_1-C_6 -alkylthio)-methyl, hydroxyl, C_1-C_6 -alkoxy, C_1-C_6 -haloalkoxy, C_1-C_6 -alkoxycarbonyloxy, C_1-C_6 -alkylthio, C_1-C_6 -haloalkylthio, C_1-C_6 -alkylsulfinyl, C_1-C_6 -haloalkylsulfinyl, C_1-C_6 -alkylsulfonyl, C_1-C_6 -haloalkylsulfonyl, C_1-C_6 -alkylcarbonyl, C_1-C_6 -haloalkylcarbonyl, C_1-C_6 -alkoxycarbonyl or C_1-C_6 -haloalkoxycarbonyl;

or

20 two radicals R^6 , which are linked to the same carbon, together form an $-O-(CH_2)_m-O-$, $-O-(CH_2)_m-S-$, $-S-(CH_2)_m-S-$, $-O-(CH_2)_n-$ or $-S-(CH_2)_n$ chain which may be substituted by one to three radicals from the following group:
 25 halogen, cyano, C_1-C_4 -alkyl, C_1-C_4 -haloalkyl or C_1-C_4 -alkoxycarbonyl;

or

30 two radicals R^6 , which are linked to the same carbon, together form a $-(CH_2)_p$ chain which may be interrupted by oxygen or sulfur and/or may be substituted by one to four radicals from the following group:

35 halogen, cyano, C_1-C_4 -alkyl, C_1-C_4 -haloalkyl or C_1-C_4 -alkoxycarbonyl;

or

40 two radicals R^6 , which are linked to the same carbon, together with this carbon form a carbonyl group.

6. A process for preparing compounds of the formula I as claimed in claims 1 to 5 where R^5 = halogen, which comprises reacting
 45 a cyclohexanedione derivative of the formula III,

Sub
A'

98

5

III

10

where the variables R¹ to R³, R⁶ and l are each as defined in claims 1 to 5, with a halogenating agent.

15

7. A process for preparing compounds of the formula I as claimed in claims 1 to 5 where R⁵ = OR⁷, OSO₂R⁸, OPR⁸R⁹, OPOR⁸R⁹ or OPSR⁸R⁹, which comprises reacting a cyclohexanedione derivative of the formula III,

20

III

25

where the variables R¹ to R³, R⁶ and l are each as defined in claims 1 to 5, with a compound of the formula IV α , IV β , IV γ , IV δ or IV ϵ ,

30

where the variables R⁷ to R⁹ are each as defined in claims 1 to 5 and L¹ is a nucleophilically replaceable leaving group.

35

8. A process for preparing compounds of the formula I as claimed in claims 1 to 5 where R⁵ = OR⁷, SR⁷, POR⁸R⁹, NR¹⁰R¹¹, ONR¹¹R¹², N-linked heterocyclyl or O-(N-linked heterocyclyl), which comprises reacting a compound of the formula Ia (= I where R⁵ = halogen, OSO₂R⁸),

40

45

and/or

10 where the variables R^1 to R^3 , R^6 and l are each as defined in claims 1 to 5, with a compound of the formula $V\alpha$, $V\beta$, $V\gamma$, $V\delta$, $V\epsilon$, $V\eta$ or $V\theta$,

Sub
A'

15

HOR^7	HSR^7	$HPOR^8R^9$	$HNR^{10}R^{11}$	$HONR^{11}R^{12}$
($V\alpha$)	($V\beta$)	($V\gamma$)	($V\delta$)	($V\epsilon$)
$H(N\text{-linked heterocyclyl})$			$H(ON\text{-linked heterocyclyl})$	
($V\eta$)			($V\theta$)	

20

where the variables R^7 to R^{12} are each as defined in claims 1 to 5, if appropriate in the presence of a base.

25 9. A process for preparing compounds of the formula I as claimed in claims 1, 2 or 5, where $R^5 = SOR^8$, SO_2R^8 , which comprises reacting a compound of the formula $I\beta$ ($= I$ where $R^5 = SR^8$),

30

and/or

35

I where $R^5 = SR^8$

40

where the variables R^1 to R^8 and l are each as defined in claims 1, 2 or 5, with an oxidizing agent.

45

10. A composition, comprising a herbicidally effective amount of at least one cyclohexenonequinolinoyl derivative of the formula I or an agriculturally useful salt of I as claimed in claims 1 to 5 and auxiliaries which are customarily used for formulating crop protection agents.

100

- 5 11. A process for preparing compositions as claimed in claim 10,
which comprises mixing a herbicidally effective amount of at
least one cyclohexenonequinolinoyl derivative of the formula
I or an agriculturally useful salt of I as claimed in claims
1 to 5 and auxiliaries which are customarily used for
formulating crop protection agents.
- 10 12. A method for controlling undesirable vegetation, which
comprises allowing a herbicidally effective amount of at
least one cyclohexenonequinolinoyl derivative of the formula
I or an agriculturally useful salt of I as claimed in claims
1 to 5 to act on plants, their habitat and/or on seeds.
- 15 13. The use of cyclohexenonequinolinoyl derivatives of the
formula I or their agriculturally useful salts as claimed in
claims 1 to 5 as herbicides.

20

Add B27

25

30

35

40

45