

DK1.2_RF_mmW

Comparison with DK1.1_RF_mmW model(s)

LLE - SG LOD

Please use the bookmark to navigate

General information on SG LLE LOD models

- Maximum supply voltage is V.
- Validity domain is defined as follows:
 - ✓ Drawn gate length varies from 30nm to 10um.
 - ✓ Drawn transistor width varies from 80nm to 10um.
 - ✓ Device temperature varies from -40 °C to 125 °C.

Output parameters definitions

- Model(s): lvtnfet_acc, lvtpfet_acc, nfet_acc, pfet_acc
 - ✓ Vt_lin: Threshold voltage defined as Vgs value for which drain current is ivt*M*1*W/(1*L+0+1*p_la) at Vds = 0.05V.
 - ✓ Isat : Drain current at Vgs = 1V, Vds = VddV.
 - ✓ Vt_sat: Threshold voltage defined as Vgs value for which drain current is ivt*M*1*W/(1*L+0+1*p_la) at Vds = vds_satV.
 - ✓ Ilin : Drain current at Vgs = 1V, Vds = 0.05V.
 - ✓ Logioff: log10(Ioffsat).

lvtnfet_acc Electrical characteristics scaling

LOD effect (sa=sb) - Lscaling at W=1e-6

dormieub

lvtnfet_acc, Vt_lin shift [mV] vs sa [m]

lvtnfet_acc, Ilin deviation [%] vs sa [m]

lvtnfet_acc, Vt_sat shift [mV] vs sa [m]

lvtnfet_acc, Isat deviation [%] vs sa [m]

p = 25 and $p_{a} = 0$ and $p_{a} = 0$ and $p_{a} = 0.030$

lvtnfet_acc, LogIoff deviation [dec] vs sa [m]

LOD effect (sa=sb) - Lscaling at W=0.3e-6

dormieub

lvtnfet_acc, Vt_lin shift [mV] vs sa [m]

lvtnfet_acc, Ilin deviation [%] vs sa [m]

lvtnfet_acc, Vt_sat shift [mV] vs sa [m]

lvtnfet_acc, Isat deviation [%] vs sa [m]

lvtnfet_acc, LogIoff deviation [dec] vs sa [m]

LOD effect (sa=sb) - Lscaling at W=0.1e-6

lvtnfet_acc, Vt_lin shift [mV] vs sa [m]

lvtnfet_acc, Ilin deviation [%] vs sa [m]

lvtnfet_acc, Vt_sat shift [mV] vs sa [m]

lvtnfet_acc, Isat deviation [%] vs sa [m]

lvtnfet_acc, LogIoff deviation [dec] vs sa [m]

LOD effect (sa=sb) - Wscaling at L=0.03e-6

dormieub

lvtnfet_acc, Vt_lin shift [mV] vs sa [m]

—— DK1.2_RF_mmW_w=2E-06	── DK1.2_RF_mmW_w=0.6E-06
──▼ DK1.2_RF_mmW_w=0.3E-06	─→ DK1.2_RF_mmW_w=0.1E-06
DK1.1_RF_mmW_w=2E-06	DK1.1_RF_mmW_w=0.6E-06
V DK1.1_RF_mmW_w=0.3E-06	DK1.1_RF_mmW_w=0.1E-06

lvtnfet_acc, Ilin deviation [%] vs sa [m]

temp==25 and l==0.03e-6 and $p_la==0$ and (W==0.1e-6 or W==0.3e-6 or W==0.6e-6 or W==2.0e-6)

lvtnfet_acc, Vt_sat shift [mV] vs sa [m]

—— DK1.2_RF_mmW_w=2E-06	── DK1.2_RF_mmW_w=0.6E-06
── TENTIFY TENTIFY TENTIFY DK1.2_RF_mmW_w=0.3E-06	─→ DK1.2_RF_mmW_w=0.1E-06
DK1.1_RF_mmW_w=2E-06	DK1.1_RF_mmW_w=0.6E-06
V DK1.1_RF_mmW_w=0.3E-06	DK1.1_RF_mmW_w=0.1E-06

lvtnfet_acc, Isat deviation [%] vs sa [m]

temp==25 and l==0.03e-6 and $p_la==0$ and (W==0.1e-6 or W==0.3e-6 or W==0.6e-6 or W==2.0e-6)

lvtnfet_acc, LogIoff deviation [dec] vs sa [m]

temp==25 and l==0.03e-6 and $p_la==0$ and (W==0.1e-6 or W==0.3e-6 or W==0.6e-6 or W==2.0e-6)

LOD effect (sa=sb) - Wscaling at L=1e-6

dormieub

lvtnfet_acc, Vt_lin shift [mV] vs sa [m]

lvtnfet_acc, Ilin deviation [%] vs sa [m]

lvtnfet_acc, Vt_sat shift [mV] vs sa [m]

lvtnfet_acc, Isat deviation [%] vs sa [m]

lvtnfet_acc, LogIoff deviation [dec] vs sa [m]

temp==25 and l==1.0e-6 and p_la==0 and (W==0.1e-6 or W==0.3e-6 or W==0.6e-6 or W==2.0e-6)

lvtpfet_acc Electrical characteristics scaling

LOD effect (sa=sb) - Lscaling at W=1e-6

lvtpfet_acc, Vt_lin shift [mV] vs sa [m]

p = 25 and $p_{a} = 0$ and $p_{a} = 0$ and $p_{a} = 0.030$ or $p_{a} = 0.046$ or $p_{a} = 0.12$

lvtpfet_acc, Ilin deviation [%] vs sa [m]

p = 25 and $p_{a} = 0$ and $p_{a} = 0$ and $p_{a} = 0.030$

lvtpfet_acc, Vt_sat shift [mV] vs sa [m]

p = 25 and $p_{a} = 0$ and $p_{a} = 0$ and $p_{a} = 0.030$ or $p_{a} = 0.046$ or $p_{a} = 0.12$

lvtpfet_acc, Isat deviation [%] vs sa [m]

p = 25 and $p_{a} = 0$ and $p_{a} = 0$ and $p_{a} = 0.030$

lvtpfet_acc, LogIoff deviation [dec] vs sa [m]

p = 25 and $p_{a} = 0$ and $p_{a} = 0$ and $p_{a} = 0.030$ or $p_{a} = 0.046$ or $p_{a} = 0.12$

LOD effect (sa=sb) - Lscaling at W=0.3e-6

dormieub

lvtpfet_acc, Vt_lin shift [mV] vs sa [m]

lvtpfet_acc, Ilin deviation [%] vs sa [m]

lvtpfet_acc, Vt_sat shift [mV] vs sa [m]

lvtpfet_acc, Isat deviation [%] vs sa [m]

lvtpfet_acc, LogIoff deviation [dec] vs sa [m]

LOD effect (sa=sb) - Lscaling at W=0.1e-6

lvtpfet_acc, Vt_lin shift [mV] vs sa [m]

lvtpfet_acc, Ilin deviation [%] vs sa [m]

lvtpfet_acc, Vt_sat shift [mV] vs sa [m]

lvtpfet_acc, Isat deviation [%] vs sa [m]

lvtpfet_acc, LogIoff deviation [dec] vs sa [m]

LOD effect (sa=sb) - Wscaling at L=0.03e-6

lvtpfet_acc, Vt_lin shift [mV] vs sa [m]

—— DK1.2_RF_mmW_w=2E-06	─ → DK1.2_RF_mmW_w=0.6E-06
──▼ DK1.2_RF_mmW_w=0.3E-06	─→ DK1.2_RF_mmW_w=0.1E-06
DK1.1_RF_mmW_w=2E-06	DK1.1_RF_mmW_w=0.6E-06
V DK1.1_RF_mmW_w=0.3E-06	DK1.1_RF_mmW_w=0.1E-06

lvtpfet_acc, Ilin deviation [%] vs sa [m]

—— DK1.2_RF_mmW_w=2E-06	─ → DK1.2_RF_mmW_w=0.6E-06
── TENTIFY TENTIFY TENTIFY DK1.2_RF_mmW_w=0.3E-06	─→ DK1.2_RF_mmW_w=0.1E-06
DK1.1_RF_mmW_w=2E-06	DK1.1_RF_mmW_w=0.6E-06
V DK1.1_RF_mmW_w=0.3E-06	DK1.1_RF_mmW_w=0.1E-06

lvtpfet_acc, Vt_sat shift [mV] vs sa [m]

—— DK1.2_RF_mmW_w=2E-06	─ → DK1.2_RF_mmW_w=0.6E-06
── TENTIFY TENTIFY TENTIFY DK1.2_RF_mmW_w=0.3E-06	─→ DK1.2_RF_mmW_w=0.1E-06
DK1.1_RF_mmW_w=2E-06	DK1.1_RF_mmW_w=0.6E-06
V DK1.1_RF_mmW_w=0.3E-06	DK1.1_RF_mmW_w=0.1E-06

lvtpfet_acc, Isat deviation [%] vs sa [m]

—— DK1.2_RF_mmW_w=2E-06	─ → DK1.2_RF_mmW_w=0.6E-06
── TENTIFY TENTIFY TENTIFY DK1.2_RF_mmW_w=0.3E-06	─→ DK1.2_RF_mmW_w=0.1E-06
DK1.1_RF_mmW_w=2E-06	DK1.1_RF_mmW_w=0.6E-06
V DK1.1_RF_mmW_w=0.3E-06	DK1.1_RF_mmW_w=0.1E-06

lvtpfet_acc, LogIoff deviation [dec] vs sa [m]

temp==25 and l==0.03e-6 and $p_la==0$ and (W==0.1e-6 or W==0.3e-6 or W==0.6e-6 or W==2.0e-6)

LOD effect (sa=sb) - Wscaling at L=1e-6

lvtpfet_acc, Vt_lin shift [mV] vs sa [m]

lvtpfet_acc, Ilin deviation [%] vs sa [m]

lvtpfet_acc, Vt_sat shift [mV] vs sa [m]

lvtpfet_acc, Isat deviation [%] vs sa [m]

lvtpfet_acc, LogIoff deviation [dec] vs sa [m]

nfet_acc Electrical characteristics scaling

LOD effect (sa=sb) - Lscaling at W=1e-6

dormieub

nfet_acc, Vt_lin shift [mV] vs sa [m]

p=25 and $p_l=25$ and $p_l=2$

dormieub

nfet_acc, Ilin deviation [%] vs sa [m]

p = 25 and $p_{a} = 0$ and $p_{a} = 0$ and $p_{a} = 0.030$ or $p_{a} = 0.046$ or $p_{a} = 0.12$

nfet_acc, Vt_sat shift [mV] vs sa [m]

p = 25 and $p_{a} = 0$ and $p_{a} = 0$ and $p_{a} = 0.030$

nfet_acc, Isat deviation [%] vs sa [m]

p = 25 and $p_{a} = 0$ and $p_{a} = 0$ and $p_{a} = 0.030$ or $p_{a} = 0.046$ or $p_{a} = 0.12$

nfet_acc, LogIoff deviation [dec] vs sa [m]

LOD effect (sa=sb) - Lscaling at W=0.3e-6

dormieub

nfet_acc, Vt_lin shift [mV] vs sa [m]

nfet_acc, Ilin deviation [%] vs sa [m]

nfet_acc, Vt_sat shift [mV] vs sa [m]

nfet_acc, Isat deviation [%] vs sa [m]

nfet_acc, LogIoff deviation [dec] vs sa [m]

LOD effect (sa=sb) - Lscaling at W=0.1e-6

nfet_acc, Vt_lin shift [mV] vs sa [m]

nfet_acc, Ilin deviation [%] vs sa [m]

nfet_acc, Vt_sat shift [mV] vs sa [m]

nfet_acc, Isat deviation [%] vs sa [m]

nfet_acc, LogIoff deviation [dec] vs sa [m]

LOD effect (sa=sb) - Wscaling at L=0.03e-6

dormieub

nfet_acc, Vt_lin shift [mV] vs sa [m]

temp==25 and l==0.03e-6 and $p_la==0$ and (W==0.1e-6 or W==0.3e-6 or W==0.6e-6 or W==2.0e-6)

nfet_acc, Ilin deviation [%] vs sa [m]

temp==25 and l==0.03e-6 and $p_la==0$ and (W==0.1e-6 or W==0.3e-6 or W==0.6e-6 or W==2.0e-6)

nfet_acc, Vt_sat shift [mV] vs sa [m]

temp==25 and l==0.03e-6 and $p_la==0$ and (W==0.1e-6 or W==0.3e-6 or W==0.6e-6 or W==2.0e-6)

nfet_acc, Isat deviation [%] vs sa [m]

 $temp==25 \text{ and } l==0.03e-6 \text{ and } p_la==0 \text{ and } (W==0.1e-6 \text{ or } W==0.3e-6 \text{ or } W==0.6e-6 \text{ or } W==2.0e-6)$

—— DK1.2_RF_mmW_w=2E-06	── DK1.2_RF_mmW_w=0.6E-06
──▼ DK1.2_RF_mmW_w=0.3E-06	— ▲ DK1.2_RF_mmW_w=0.1E-06
DK1.1_RF_mmW_w=2E-06	DK1.1_RF_mmW_w=0.6E-06
V DK1.1_RF_mmW_w=0.3E-06	DK1.1_RF_mmW_w=0.1E-06

nfet_acc, LogIoff deviation [dec] vs sa [m]

 $temp==25 \ and \ l==0.03e-6 \ and \ p_la==0 \ and \ (W==0.1e-6 \ or \ W==0.3e-6 \ or \ W==0.6e-6 \ or \ W==2.0e-6)$

LOD effect (sa=sb) - Wscaling at L=1e-6

nfet_acc, Vt_lin shift [mV] vs sa [m]

 $temp==25 \text{ and } l==1.0e-6 \text{ and } p_la==0 \text{ and } (W==0.1e-6 \text{ or } W==0.3e-6 \text{ or } W==0.6e-6 \text{ or } W==2.0e-6)$

nfet_acc, Ilin deviation [%] vs sa [m]

 $temp==25 \text{ and } l==1.0e-6 \text{ and } p_la==0 \text{ and } (W==0.1e-6 \text{ or } W==0.3e-6 \text{ or } W==0.6e-6 \text{ or } W==2.0e-6)$

nfet_acc, Vt_sat shift [mV] vs sa [m]

temp==25 and l==1.0e-6 and p_la==0 and (W==0.1e-6 or W==0.3e-6 or W==0.6e-6 or W==2.0e-6)

nfet_acc, Isat deviation [%] vs sa [m]

 $temp==25 \text{ and } l==1.0e-6 \text{ and } p_la==0 \text{ and } (W==0.1e-6 \text{ or } W==0.3e-6 \text{ or } W==0.6e-6 \text{ or } W==2.0e-6)$

nfet_acc, LogIoff deviation [dec] vs sa [m]

temp==25 and l==1.0e-6 and p_la==0 and (W==0.1e-6 or W==0.3e-6 or W==0.6e-6 or W==2.0e-6)

pfet_acc Electrical characteristics scaling

LOD effect (sa=sb) - Lscaling at W=1e-6

pfet_acc, Vt_lin shift [mV] vs sa [m]

pfet_acc, Ilin deviation [%] vs sa [m]

pfet_acc, Vt_sat shift [mV] vs sa [m]

pfet_acc, Isat deviation [%] vs sa [m]

pfet_acc, LogIoff deviation [dec] vs sa [m]

p=25 and $p_l=0.030e-6$ or L=0.046e-6 or L=0.12e-6 or L=0.5e-6 or L=10.5e-6 or L=10.

LOD effect (sa=sb) - Lscaling at W=0.3e-6

dormieub

pfet_acc, Vt_lin shift [mV] vs sa [m]

pfet_acc, Ilin deviation [%] vs sa [m]

pfet_acc, Vt_sat shift [mV] vs sa [m]

pfet_acc, Isat deviation [%] vs sa [m]

pfet_acc, LogIoff deviation [dec] vs sa [m]

LOD effect (sa=sb) - Lscaling at W=0.1e-6

dormieub

pfet_acc, Vt_lin shift [mV] vs sa [m]

pfet_acc, Ilin deviation [%] vs sa [m]

pfet_acc, Vt_sat shift [mV] vs sa [m]

pfet_acc, Isat deviation [%] vs sa [m]

pfet_acc, LogIoff deviation [dec] vs sa [m]

LOD effect (sa=sb) - Wscaling at L=0.03e-6

dormieub

pfet_acc, Vt_lin shift [mV] vs sa [m]

—— DK1.2_RF_mmW_w=2E-06	─ → DK1.2_RF_mmW_w=0.6E-06
── TENTIFY TENTIFY TENTIFY DK1.2_RF_mmW_w=0.3E-06	─→ DK1.2_RF_mmW_w=0.1E-06
DK1.1_RF_mmW_w=2E-06	DK1.1_RF_mmW_w=0.6E-06
V DK1.1_RF_mmW_w=0.3E-06	DK1.1_RF_mmW_w=0.1E-06

pfet_acc, Ilin deviation [%] vs sa [m]

—— DK1.2_RF_mmW_w=2E-06	─ → DK1.2_RF_mmW_w=0.6E-06
──▼ DK1.2_RF_mmW_w=0.3E-06	— ▲ DK1.2_RF_mmW_w=0.1E-06
DK1.1_RF_mmW_w=2E-06	DK1.1_RF_mmW_w=0.6E-06
V DK1.1_RF_mmW_w=0.3E-06	DK1.1_RF_mmW_w=0.1E-06

pfet_acc, Vt_sat shift [mV] vs sa [m]

—— DK1.2_RF_mmW_w=2E-06	─ → DK1.2_RF_mmW_w=0.6E-06
── TENTIFY TENTIFY TENTIFY DK1.2_RF_mmW_w=0.3E-06	─→ DK1.2_RF_mmW_w=0.1E-06
DK1.1_RF_mmW_w=2E-06	DK1.1_RF_mmW_w=0.6E-06
V DK1.1_RF_mmW_w=0.3E-06	DK1.1_RF_mmW_w=0.1E-06

pfet_acc, Isat deviation [%] vs sa [m]

—— DK1.2_RF_mmW_w=2E-06	─ → DK1.2_RF_mmW_w=0.6E-06
── TENTIFY TENTIFY TENTIFY DK1.2_RF_mmW_w=0.3E-06	─→ DK1.2_RF_mmW_w=0.1E-06
DK1.1_RF_mmW_w=2E-06	DK1.1_RF_mmW_w=0.6E-06
V DK1.1_RF_mmW_w=0.3E-06	DK1.1_RF_mmW_w=0.1E-06

pfet_acc, LogIoff deviation [dec] vs sa [m]

—— DK1.2_RF_mmW_w=2E-06	─ → DK1.2_RF_mmW_w=0.6E-06
── TENTIFY TENTIFY TENTIFY DK1.2_RF_mmW_w=0.3E-06	─→ DK1.2_RF_mmW_w=0.1E-06
DK1.1_RF_mmW_w=2E-06	DK1.1_RF_mmW_w=0.6E-06
V DK1.1_RF_mmW_w=0.3E-06	DK1.1_RF_mmW_w=0.1E-06

LOD effect (sa=sb) - Wscaling at L=1e-6

dormieub

pfet_acc, Vt_lin shift [mV] vs sa [m]

pfet_acc, Ilin deviation [%] vs sa [m]

pfet_acc, Vt_sat shift [mV] vs sa [m]

pfet_acc, Isat deviation [%] vs sa [m]

pfet_acc, LogIoff deviation [dec] vs sa [m]

Annex

Conditions of simulations

The simulations were done with SBenchLSF Alpha using Eldo simulator 2018.3.

- Model lvtnfet_acc (DK1.2_RF_mmW)
 - ✓ Input Parameters
 - **x** ivt = 300e-9 A
 - **x** mc_runs = 1000
 - \mathbf{x} vgs_stop = vdd V
 - **x** vds_off = vds_sat V
 - \mathbf{x} vgs_off = 0 V
 - \times temp = 25 °C
 - \times vgs_start = -0.5 V
 - \mathbf{x} mc_sens = 0
 - \times vds_lin = 0.05 V
 - **✗** sbenchlsf_release = Alpha
 - **✗** plashrink_ivt = 1
 - \mathbf{x} vbs = 0 V
 - \mathbf{x} ams_release = 2018.3
 - **x** model_version = 1.3.e

- **x** mc_nsigma = 3
- \star ithslwi = 10e-9 A
- \times vstep_ivt = 0.005 V
- \times vds_sat = Vdd V
- **x** shrink_ivt = 1
- \times vdd = 1 V
- **✗** dlshrink_ivt = 0
- ✓ Sweep Parameters
- ✓ Extra parameters
 - X lvt_dev = 0
 - **✗** gflag__noisedev__rvt__cmos028fdsoi = 0
 - **✗** gflag__noisedev__lvt__cmos028fdsoi = 0
 - \times rvt_dev = 0
- Model lvtpfet_acc (DK1.2_RF_mmW)
 - ✓ Input Parameters
 - **x** ivt = 70e-9 A
 - **x** mc_runs = 1000
 - \times vgs_stop = vdd V
 - **x** vds_off = vds_sat V
 - \mathbf{x} vgs_off = 0 V
 - \times temp = 25 °C
 - \times vgs_start = -0.5 V
 - \mathbf{x} mc_sens = 0
 - \times vds_lin = 0.05 V
 - **x** sbenchlsf_release = Alpha

- **✗** plashrink_ivt = 1
- \times vbs = 1 V
- \mathbf{X} ams release = 2018.3
- **x** model_version = 1.3.e
- **x** mc_nsigma = 3
- \star ithslwi = 10e-9 A
- \times vstep_ivt = 0.005 V
- \times vds_sat = Vdd V
- \times shrink ivt = 1
- \times vdd = 1 V
- **✗** dlshrink_ivt = 0
- ✓ Sweep Parameters
- ✓ Extra parameters
 - X lvt_dev = 0
 - **✗** gflag__noisedev__rvt__cmos028fdsoi = 0
 - **✗** gflag__noisedev__lvt__cmos028fdsoi = 0
 - \mathbf{x} rvt_dev = 0
- Model nfet_acc (DK1.2_RF_mmW)
 - ✓ Input Parameters
 - \times ivt = 300e-9 A
 - **x** mc_runs = 1000
 - \mathbf{x} vgs_stop = vdd V
 - **x** vds_off = vds_sat V
 - \mathbf{x} vgs_off = 0 V
 - \times temp = 25 °C

- \times vgs_start = -0.5 V
- \mathbf{x} mc sens = 0
- \times vds lin = 0.05 V
- **x** sbenchlsf_release = Alpha
- **✗** plashrink_ivt = 1
- \mathbf{x} vbs = 0 V
- **x** ams_release = 2018.3
- **x** model version = 1.2.d
- **x** mc_nsigma = 3
- \star ithslwi = 10e-9 A
- \times vstep_ivt = 0.005 V
- \times vds_sat = Vdd V
- **x** shrink_ivt = 1
- \times vdd = 1 V
- X dlshrink ivt = 0
- ✓ Sweep Parameters
- ✓ Extra parameters
 - X lvt_dev = 0
 - **✗** gflag__noisedev__rvt__cmos028fdsoi = 0
 - **✗** gflag__noisedev__lvt__cmos028fdsoi = 0
 - \mathbf{x} rvt_dev = 0
- Model pfet_acc (DK1.2_RF_mmW)
 - ✓ Input Parameters
 - **x** ivt = 70e-9 A
 - **x** mc_runs = 1000

- x vgs_stop = vdd V
- \mathbf{X} vds off = vds sat V
- \mathbf{x} vgs_off = 0 V
- \times temp = 25 °C
- \times vgs_start = -0.5 V
- \mathbf{x} mc_sens = 0
- \times vds_lin = 0.05 V
- **x** sbenchlsf_release = Alpha
- **✗** plashrink_ivt = 1
- \mathbf{x} vbs = 0 V
- \times ams_release = 2018.3
- **✗** model_version = 1.2.d
- **x** mc_nsigma = 3
- \star ithslwi = 10e-9 A
- \mathbf{X} vstep_ivt = 0.005 V
- \times vds_sat = Vdd V
- **x** shrink_ivt = 1
- \times vdd = 1 V
- X dlshrink ivt = 0
- ✓ Sweep Parameters
- ✓ Extra parameters
 - X lvt_dev = 0
 - **✗** gflag__noisedev__rvt__cmos028fdsoi = 0
 - **✗** gflag__noisedev__lvt__cmos028fdsoi = 0
 - \mathbf{x} rvt_dev = 0

ST Confidential

- Model lvtnfet_acc (DK1.1_RF_mmW)
 - ✓ Input Parameters
 - \times ivt = 300e-9 A
 - **x** mc_runs = 1000
 - \mathbf{x} vgs_stop = vdd V
 - **x** vds_off = vds_sat V
 - \mathbf{x} vgs_off = 0 V
 - \times temp = 25 °C
 - \times vgs_start = -0.5 V
 - \times mc_sens = 0
 - \times vds_lin = 0.05 V
 - **x** sbenchlsf_release = Alpha
 - **✗** plashrink_ivt = 1
 - \mathbf{x} vbs = 0 V
 - \mathbf{x} ams_release = 2018.3
 - **✗** model_version = 1.3.d
 - **x** mc_nsigma = 3
 - \star ithslwi = 10e-9 A
 - \times vstep_ivt = 0.005 V
 - \times vds_sat = Vdd V
 - **x** shrink_ivt = 1
 - \times vdd = 1 V
 - X dlshrink ivt = 0
 - ✓ Sweep Parameters
 - ✓ Extra parameters

ST Confidential

- X lvt_dev = 0
- **✗** gflag__noisedev__rvt__cmos028fdsoi = 0
- **✗** gflag__noisedev__lvt__cmos028fdsoi = 0
- \mathbf{x} rvt_dev = 0
- Model lvtpfet_acc (DK1.1_RF_mmW)
 - ✓ Input Parameters
 - **x** ivt = 70e-9 A
 - **x** mc_runs = 1000
 - \mathbf{x} vgs_stop = vdd V
 - **x** vds_off = vds_sat V
 - \mathbf{x} vgs_off = 0 V
 - \times temp = 25 °C
 - \times vgs_start = -0.5 V
 - \times mc_sens = 0
 - \times vds_lin = 0.05 V
 - **x** sbenchlsf_release = Alpha
 - **✗** plashrink_ivt = 1
 - \mathbf{x} vbs = 1 V
 - \mathbf{x} ams_release = 2018.3
 - **✗** model_version = 1.3.d
 - **x** mc_nsigma = 3
 - \star ithslwi = 10e-9 A
 - \mathbf{X} vstep_ivt = 0.005 V
 - \times vds_sat = Vdd V
 - **x** shrink_ivt = 1

- \times vdd = 1 V
- **✗** dlshrink_ivt = 0
- ✓ Sweep Parameters
- ✓ Extra parameters
 - X lvt_dev = 0
 - **✗** gflag__noisedev__rvt__cmos028fdsoi = 0
 - **✗** gflag__noisedev__lvt__cmos028fdsoi = 0
 - \mathbf{x} rvt_dev = 0
- Model nfet_acc (DK1.1_RF_mmW)
 - ✓ Input Parameters
 - \times ivt = 300e-9 A
 - **x** mc_runs = 1000
 - x vgs_stop = vdd V
 - **x** vds_off = vds_sat V
 - \mathbf{x} vgs_off = 0 V
 - \times temp = 25 °C
 - \times vgs_start = -0.5 V
 - \mathbf{x} mc_sens = 0
 - \times vds lin = 0.05 V
 - **✗** sbenchlsf_release = Alpha
 - **✗** plashrink_ivt = 1
 - \mathbf{x} vbs = 0 V
 - \mathbf{x} ams_release = 2018.3
 - **✗** model_version = 1.2.c
 - **x** mc_nsigma = 3

- \star ithslwi = 10e-9 A
- \times vstep_ivt = 0.005 V
- \times vds_sat = Vdd V
- **✗** shrink_ivt = 1
- \times vdd = 1 V
- **✗** dlshrink_ivt = 0
- ✓ Sweep Parameters
- ✓ Extra parameters
 - X lvt_dev = 0
 - **x** gflag__noisedev__rvt__cmos028fdsoi = 0
 - **✗** gflag__noisedev__lvt__cmos028fdsoi = 0
 - \mathbf{x} rvt dev = 0
- Model pfet_acc (DK1.1_RF_mmW)
 - ✓ Input Parameters
 - \times ivt = 70e-9 A
 - \times mc runs = 1000
 - \times vgs_stop = vdd V
 - **x** vds_off = vds_sat V
 - \mathbf{x} vgs_off = 0 V
 - \times temp = 25 °C
 - \times vgs_start = -0.5 V
 - \times mc_sens = 0
 - \times vds lin = 0.05 V
 - **x** sbenchlsf_release = Alpha
 - **✗** plashrink_ivt = 1

- \mathbf{x} vbs = 0 V
- \mathbf{X} ams release = 2018.3
- **x** model_version = 1.2.c
- **x** mc_nsigma = 3
- \star ithslwi = 10e-9 A
- \mathbf{X} vstep_ivt = 0.005 V
- \times vds_sat = Vdd V
- **x** shrink_ivt = 1
- \times vdd = 1 V
- **✗** dlshrink_ivt = 0
- ✓ Sweep Parameters
- ✓ Extra parameters
 - x lvt_dev = 0
 - **x** gflag_noisedev_rvt_cmos028fdsoi = 0
 - **x** gflag_noisedev_lvt_cmos028fdsoi = 0
 - \mathbf{x} rvt_dev = 0