# Office Supplies Recommendation System

Volha Puzikava October, 2022



### **Disclaimer**

The described analyses fulfill educational purposes only. The hypothetical business case, made-up data and the results of the performed analyses should not be considered as real recommendations of the seller, and have not been approved by any professional organization or trading company.



### **Overview**



### Office Supply Products





- >50% of consumers shop online
- Record amounts are spent to prepare kids for school



#### Companies:

- Company with 1-4 employees
  spends ~ \$1,844 per employee yearly
- Well-stocked office = successful office

# **Overview Cont'd**

### This project:

1. Recommends office supplies based on the reviews of previously bought



2. Gives advice, if it is valuable to offer products in the pack of two

## **Outline**

- Business Problem
  - o Data
    - Data Preparation and Exploration
      - Modeling
        - o Evaluation
          - Conclusions



### **Business Problem**

#### The **Stationary and Co. Company** asked:

- 1. For recommendation system of their office supply products
- 2. If it is worth to offer products in the pack of two





more sales



high level of personalization

### **Business Problem Cont'd**

### **Goals:**

- Find the best recommendation model
- 2. Perform experiment to test the effectiveness of the new package



### **Data**

- Taken from <u>Amazon review data</u> (2018) page
- Included 5,581,313 reviews
- Contained meta data for 315,644 office supply products



# **Data Preparation and Exploration**



# Data Preparation and Exploration Cont'd

2. The distribution of ratings plotted



# **Modeling**



# **Modeling Cont'd**

- 1. Models built in
  - a. surprise library,
  - b. Spark programming environment
- 2. *Item-item similarity* performed

Number of users: 94184

Number of items: 27405







# **Modeling Cont'd**

### **Experiment**

(A/B Testing)



#### What we know:

- 1. Increase in buying rate = 5%
- 2.  $\sim$ 6.5 million visitors per day
- $\sim 25\%$  buy products daily

#### What we do:

Revert Change

- 1. Two groups: control & experiment
- 2. Chi-square goodness of fit test

# **Modeling Cont'd**

- 1. Hypotheses:
  - a. Null: the probability of success for the new package < 0.3
  - b. *Alternative*: the probability of success for the new package >= 0.3
- 2. Min # of customers = 60,279
- 3. Period of 28 days was analyzed



### **Evaluation**

#### Best model:

SVD (n\_factors=20, regularization rate=0.02)

### Experiment Results:

- a) New package will decrease the buying rate by 6.25%
- b) Not worth implementing



### **Conclusions**

- 1. Use the SVD model for recommendations
- 2. Do not implement the new package

#### **NEXT STEPS:**

- 1. Tune the models
- 2. Come up with other ideas how to increase sales



### Thank You!

Email: <u>helga.mikel@gmail.com</u>

GitHub: <u>@VolhaP87</u>

LinkedIn: <a href="https://www.linkedin.com/in/volha-puzikava-2319294a">https://www.linkedin.com/in/volha-puzikava-2319294a</a>

