Алгоритм непараметрической кластеризации на основе комбинации сеточного подхода и процедуры среднего сдвига

ИВТ СО РАН, Новосибирск

Распознавание образов

Сегментация изображений

Распознавание лиц

Медицина

Обработка спутниковых снимков

Задача кластеризации

Входные данные: набор классифицируемых объектов в пространстве признаков R^d .

$$X = \{x^{(1)}, \dots, x^{(N)}\}, x^{(i)} \in \mathbb{R}^d$$

Требуется: согласно некоторому критерию схожести разбить выборку X на подмножества C_i , i=1,...,M:

1)
$$C_i \neq \emptyset, i = 1,...,M$$
,

$$2) \ X = \bigcup_{j=1,k} C_j,$$

1)
$$C_i \neq \emptyset, i = 1,..., M$$
, 2) $X = \bigcup_{j=1,k} C_j$, 3) $C_i \cap C_j = \emptyset \ (i \neq j)$.

Особенности кластеризации спутниковых изображений

- Большой объем обрабатываемых данных (~10⁶ − 10⁸ пикселей)
- Отсутствие априорной информации о количестве и вероятностных характеристиках искомых классов
- > Наличие «шума» и выбросов в данных

Алгоритмы кластеризации

	Быстро- действие	Кластеры сложной формы	Устойчивость к шуму	Представители	
Методы разбиений	+		+/ <u>-</u>	K-means, ISODATA, FOREL, CLUSTER	
Плотностные параметрические	_	-/+	+	EM, GMDD, MCLUST	
Плотностные непараметрические	_	+	+	DBSCAN, OPTICS, Mean Shift	
Сеточные	+	+	+	CLIQUE, STING, GRIDCLUS, AMR	
Иерархические	_	+/	-/+	SLINK, CURE, OPTICS, PHA	
Нейронные сети	-/+		+	SOM, Neural Gas	
Спектральные	_	+	+	SC, AFC, SCE	

Плотностной подход Алгоритм кластеризации Mean-shift

Алгоритм кластеризации Mean-shift (процедура среднего сдвига)

Построение непараметрической оценки плотности

Плотность оценивается как суммарное влияние элементов выборки:

$$\hat{f}_h(x) = \frac{1}{Nh^d} \sum_{i=1}^{N} K\left(\frac{x - x_i}{h}\right)$$

Вклад каждого элемента описывается с помощью колоколообразной функции (ядра) K(x), зависящей от расстояния до этого элемента

Ядро Епанечникова:
$$K_{Ep}\left(\frac{x-x_i}{h}\right) = \left(1-\frac{\left\|x-x_i\right\|^2}{h^2}\right) \cdot I\left(\left\|x-x_i\right\| \le h\right)$$

Ядро Гаусса:
$$K_G\left(\frac{x-x_i}{h}\right) = \exp\left(-\frac{\|x-x_i\|}{2h^2}\right)$$

где h – параметр сглаживания.

Алгоритм кластеризации Mean-shift (процедура среднего сдвига)

Процедура «среднего сдвига» (Mean-shift)

– итеративная процедура, начиная с точки x_0 , последовательно перемещается в точку сдвига $x_{k+1}=m(x_k)$ вплоть до сходимости к локальному максимуму плотности.

$$m(x) = \frac{\sum_{i=1}^{N} x_i \cdot K(x - x_i)}{\sum_{i=1}^{N} K(x - x_i)}$$

Вектор (m(x)-x) называется вектором «среднего сдвига», его направление совпадает с направлением максимального роста плотности в точке x.

Кластеры соответствуют локальным максимумам функции оценки плотности (модам), к которым сходится процедура.

By Matt Nedrich: https://spin.atomicobject.com/2015/05/26/mean-shift-clustering/

By Matt Nedrich: https://spin.atomicobject.com/2015/05/26/mean-shift-clustering/

Высокая вычислительная сложность!

Сеточный подход Алгоритм кластеризации НСА

Сеточная модель описания данных

✓ Высокая скорость работы и выделение кластеров сложной формы

Сеточная структура – разбиение *d*-мерного пространства признаков $x^{j} = \frac{i}{m} \left(\max_{x_{l} \in X} x_{l}^{j} - \min_{x_{l} \in X} x_{l}^{j} \right) + \min_{x_{l} \in X} x_{l}^{j}$ гиперплоскостями на *клетки*: гиперплоскостями на *клетки*:

$$x^{j} = \frac{i}{m} \left(\max_{x_{l} \in X} x_{l}^{j} - \min_{x_{l} \in X} x_{l}^{j} \right) + \min_{x_{l} \in X} x_{l}$$
$$i = 0, ..., m, \quad j = 1, ..., d$$

где *m* – параметр масштаба сетки

Плотность клетки D_B определяется как число элементов, попавших в клетку B

Клетка B_i непосредственно связна с B_j : $B_i o B_j \Leftrightarrow B_j = \underset{B-\text{смежная с } B_i}{\operatorname{arg \, max}} D_B$

- → Вводится отношение связности (является отношением эквивалентности)
- → Порождает разбиение непустых клеток на компоненты связности

Клетка представитель компоненты связности $G: Y(G) = \max_k \left\{ B_k \mid D_{B_k} = \max_{B_l \in G} D_{B_l} \right\}$

Компоненты связности – локальные сгустки плотности

Основные этапы работы алгоритма $\mathsf{HCA}(m,T)$

- 1) Формирование сеточной структуры. Для каждого вектора данных $x_i \in X$ определяется содержащая его клетка и вычисляются плотности всех клеток.
- 2) Выделение компонент связности $G_1, ..., G_S$ и их клеток представителей $Y_1, ..., Y_S$.
- 3) Построение иерархии на множестве компонент связности.

$$h_{1,2} = \frac{\min(D_{B'}, D_{B''})}{\min(D_{Y_1}, D_{Y_2})}$$

^{*} Алгоритмы из программного пакета ELKI (elki.dbs.ifi.lmu.de)

RGB-композит (каналы 5, 3, 2) изображения WorldView-2 размера 2048 × 2048 пикселей

Кластеризация алгоритмом НСА по четырем каналам: 1, 2, 4, 7; время обработки – 0.3 с

Проблема сеточной структуры

 Точность разделения кластеров зависит от сеточной структуры, может приводить к ошибкам, особенно при неудачном выборе параметра масштаба сетки

$$m = 30$$

$$m = 20$$

Комбинация сеточного подхода и процедуры среднего сдвига

Комбинация сеточного подхода и процедуры среднего сдвига

Новый алгоритм кластеризации HCA-MS

- 1. Выполнение алгоритма НСА (с заданным параметром сетки m).
- 2. Индексирование элементов данных по клеткам (быстрый доступ к списку элементов произвольной клетки).
- 3. К элементам граничных клеток применяется процедура «среднего сдвига» с ограниченным ядром (*h* = ширина клетки).

Алгоритм кластеризации HCA-MS Экспериментальные исследования

Эталонное разбиение

Эталонное разбиение

Сравнение времени работы алгоритмов HCA, HCA-MS и Mean-shift

Размер изобра-	Число	HCA		HCA-MS		Mean-shift	
жения (МП)	каналов	m=25	m=32	m=25	m=32	h=20	h=25
1	3	0.05	0.05	0.7	0.3	52	58
5	3	0.1	0.11	1.2	0.7	67	90
14	3	0.2	0.2	7.3	3.7	388	563
4	4	0.2	0.3	71	27	4138	6009
12	4	0.4	0.5	458	350	62388	97121

Время указано в секундах

- ✓ Предложенный алгоритм позволяет повысить качество кластеризации сеточного алгоритма НСА
- ✓ HCA-MS обладает высокой вычислительной эффективностью, которая позволяет обрабатывать мультиспектральные спутниковые изображения большого размера

^{*} Вычисления выполнялись на ПЭВМ с четырехядерным процессором Intel Core i5, 3.5 ГГц

Литература

- 1. Пестунов И.А., Рылов С.А., Бериков В.Б. Иерархические алгоритмы кластеризации для сегментации мультиспектральных изображений // Автометрия. 2015. Т. 51. № 4. С. 12-22.
- 2. Рылов С.А. Модельные данные для кластеризации [Электронный ресурс]. URL: https://drive.google.com/open?id=0ByK9GtU5ExExRnZwdFNmRHRWdFk.
- 3. Рылов С.А., Пестунов И.А. Использование графических процессоров NVIDIA при кластеризации мультиспектральных данных сеточным алгоритмом ССА // Интерэкспо ГЕО-Сибирь. 2015. Т. 4. № 2. С. 51-56.
- Рылов С.А., Новгородцева О.Г., Дубровская О.А., Пестунов И.А. Иерархические алгоритмы кластеризации мультиспектральных изображений и их использование при создании тематических карт паводковой обстановки // Сборник трудов Всероссийской конференции «Обработка пространственных данных в задачах мониторинга природных и антропогенных процессов». Новосибирск, 2015. С. 165-171. [Электронный ресурс]. URL: http://conf.nsc.ru/files/conferences/SDM-2015/294652/SDM-2015%20Thesis.pdf.
- 5. Пестунов И.А., Синявский Ю.Н. Анализ и синтез сигналов и изображений непараметрический алгоритм кластеризации данных дистанционного зондирования на основе grid-подхода // Автометрия. 2006. Т. 42. №. 2. С. 90-99.
- Cheng Y. Mean shift, mode seeking, and clustering // IEEE Transactions on Pattern Analysis and Machine Intelligence. – 1995. – Vol. 17. – No. 8. – P. 790-799.