Chapter 1 Limits

Contents

1.	Limits	1
1.1.	Motivation: Tangent and velocity	1
1.2.	Limit of a function	2
1.3.	The precise definition of a limit	5
1.4.	Calculating limits with limit laws	7
1.5.	Continuity	9

1. Limits

The entire calculus is built on the concept of limit. In this chapter, we will discuss

- What is limit?
- How to calculate limit?
- Continuity of a function.

1.1. Motivation: Tangent and velocity. Text Sec1.4: 3, 9

In this section, we see how limits arise through two examples.

A tangent to a curve is a line that just touches the curve. In other words, a tangent line should have the same direction as the curve at the point of contact.

Q: In general, one can not say that a tangent is a line that touch the curve once and only once. Why?

Example 1.1. Find an equation of the tangent line to the parabola $y = x^2$ at the point P(1,1).

Proof. [Solution] It's enough to find the slope of the tangent line, denoted by m. Let's take a point $Q(x, x^2)$ on the curve. We note that, if Q is very close to P, then

$$m_{PQ} \approx m$$

where

$$m_{PQ} = \frac{x^2 - 1}{x - 1}$$

is the slope of PQ.

Moreover, as $Q \to P$, we have $m_{PQ} \to m$, and we write it as

$$\lim_{Q \to P} m_{PQ} = m$$

or

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = m.$$

Using calculator, we can guess m by taking a series of $x \to 1$ (x is approaching 1). The answer turns out to be?

Next, we see how to find velocity from given distance function.

Ex. Suppose a car is moving on a straight line from starting from O to the right. The distance of the car from O after time t seconds is given by

$$s(t) = 4.9t^2 meter.$$

Find the **instantaneous velocity** of the car at t = 5 seconds.

Solution. The velocity is a function of t, we denote it by v(t). We want to find v(5). Approximation of v(5) by **average velocity** in time periods [5, t]:

$$v(5) \approx \frac{s(t) - s(5)}{t - 5}$$
, if t is close enough to 5

Limit as $t \to 5$:

$$v(5) = \lim_{t \to 5} \frac{s(t) - s(5)}{t - 5}.$$

Guess what is v(5) by taking a sequence of $t \to 5$?

1.2. Limit of a function. Text Sec1.5: 5, 6, 7, 9, 15, 17, 31, 46

First, we give *not a precise* definition of limit and vertical asymptotes, and try to understand the limit better through several examples.

Definition 1.1. Limit and one-sided limits are

(1) If we can make the values of f(x) arbitrarily close to L by taking $x \neq a$ to be sufficiently close to a (on either side of a), then we write

$$\lim_{x \to a} f(x) = L.$$

(2) If we can make the values of f(x) arbitrarily close to L by taking x < a to be sufficiently close to a (on left-hand side of a), then we write

$$\lim_{x \to a^{-}} f(x) = L.$$

(3) If we can make the values of f(x) arbitrarily close to L by taking x > a to be sufficiently close to a (on right-hand side of a), then we write

$$\lim_{x \to a^+} f(x) = L.$$

From the above definition, we conclude

$$\lim_{x \to a} f(x) = L$$

if and only if

$$\lim_{x \to a^{-}} f(x) = L \text{ and } \lim_{x \to a^{+}} f(x) = L.$$

Note. If you observe $f(x) \to L$ by taking a sequence of $x \to a$, then we guess $\lim_{x \to a} f(x) = L$. But, this is only guess. In fact, to prove $\lim_{x \to a} f(x) = L$, you **must** show for any sequence of $x \to a$, $f(x) \to L$ is true. For this purpose, we will later give a mathematically precise definition.

Ex. Continued from tangent problem Example 1.1, we need to find

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$

for the slope m.

(1) By taking $x \to 1^+$, we find

$$\frac{x^2 - 1}{x - 1} \to 2,$$

So

$$\lim_{x \to 1^+} \frac{x^2 - 1}{x - 1} = 2.$$

(2) By taking $x \to 1^-$, we also find

$$\frac{x^2 - 1}{x - 1} \to 2,$$

So

$$\lim_{x \to 1^{-}} \frac{x^2 - 1}{x - 1} = 2.$$

(3) From both sides of $x \to 1$,

$$\frac{x^2 - 1}{x - 1} \to 2,$$

So

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 2.$$

 \mathbf{Q} Graph

$$g(x) = \frac{x^2 - 1}{x - 1}.$$

Ex. Guess

$$\lim_{x \to 0} \sin \frac{\pi}{x}.$$

Ex. Graph f(x) = [x], and find $\lim_{x \to 1} f(x)$.

Ex. The signum (sign) function is defined by

$$sgn(x) = \begin{cases} -1 & \text{if } x < 0; \\ 0 & \text{if } x = 0; \\ 1 & \text{if } x > 0; \end{cases}$$

Graph this function, and find $\lim_{x\to 0} sgn(x)$.

Ex. Let A be a set of real numbers. Indicator function $I_A(x)$ is piecewisely defined as

$$I_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{otherwise} \end{cases}.$$

Graph functions $I_{[0,1)}(x)$, find

$$\lim_{x\to 0} I_{[0,1)}(x), \text{ and } \lim_{x\to 1} I_{[0,1)}(x).$$

Ex. Show that

$$\lim_{x\to 0}\frac{1}{x^2}=DNE \text{ (Does not exist.)}$$

Definition 1.2. Infinite limits are defined as follows: As taking $x \to a^-$,

(1) if f(x) can be arbitrarily large, then we write

$$\lim_{x \to a^{-}} f(x) = \infty.$$

(2) if f(x) can be arbitrarily small, then we write

$$\lim_{x \to a^{-}} f(x) = -\infty.$$

Similarly we can define

$$\lim_{x \to a^+} f(x) = \infty \text{ and } \lim_{x \to a^+} f(x) = -\infty.$$

Moreover, we say

$$\lim_{x \to a} f(x) = \infty \text{ iff } \lim_{x \to a^{\pm}} f(x) = \infty$$

and

$$\lim_{x \to a} f(x) = -\infty \text{ iff } \lim_{x \to a^{\pm}} f(x) = -\infty$$

Note.

 $\lim_{x\to a} f(x) = \infty$ is a special case of $\lim_{x\to a} f(x) = DNE$.

Definition 1.3. The line x = a is called a vertical asymptote of y = f(x) if one of the followings is true:

$$\lim_{\substack{x \to a^+ \\ \lim_{x \to a^+}}} f(x) = \infty, \quad \lim_{\substack{x \to a^- \\ x \to a^-}} f(x) = \infty,$$

Ex. Find vertical asymptotes of

$$f(x) = \tan(x).$$

1.3. **The precise definition of a limit.** Text Section 1.7: Exercise 3, **13**, 17, 25, 31, 37, **39**, **41**, **42**, 43, 44

Ex. Let f(x) = 2x. We know $\lim_{x\to 1} f(x) = 2$. Given $\varepsilon = 0.2$, find a number $\delta > 0$ such that

if
$$0 < |x - 1| < \delta$$
 then $|f(x) - 2| < \varepsilon$.

Definition 1.4. A limit is defined as

- (1) $\lim_{x\to a} f(x) = L$, if for every $\varepsilon > 0$, there is a number $\delta > 0$, such that if $0 < |x-a| < \delta$ then $|f(x) L| < \varepsilon$.
- (2) $\lim_{x \to a^{-}} f(x) = L$, if for every $\varepsilon > 0$, there is a number $\delta > 0$, such that if $a \delta < x < a$ then $|f(x) L| < \varepsilon$.
- (3) $\lim_{x \to a^+} f(x) = L$, if for every $\varepsilon > 0$, there is a number $\delta > 0$, such that if $a < x < a + \delta$ then $|f(x) L| < \varepsilon$.
- (4) $\lim_{x\to a} f(x) = \infty$, if for every M > 0, there is a number $\delta > 0$, such that if $0 < |x-a| < \delta$ then f(x) > M.

Ex. Prove by definition $\lim_{x\to 1} 2x = 2$.

Ex. Prove by definition

$$\lim_{x\to 0^\pm}\frac{1}{x}=\pm\infty.$$

Ex. Prove by definition $\lim_{x\to 0^+} \sin(\pi/x) = DNE$.

1.4. Calculating limits with limit laws. Text Sec1.6: 6, 15, 18, 19, 26, 29, 36, 37, 38, 39, 40, 41, 42, 46, 47, 51, 54, 59, 62, 63

Limit Laws. Suppose c is a constant, and $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ exists. Then

- (1) $\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$. (2) $\lim_{x \to a} [f(x) g(x)] = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$ (3) $\lim_{x \to a} [cf(x)] = c \lim_{x \to a} f(x)$ (4) $\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$ (5) $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$, if $\lim_{x \to a} g(x) \neq 0$. (6) $\lim_{x \to a} [f(x)]^n = [\lim_{x \to a} f(x)]^n$ for positive integer n(11) $\lim_{x \to a} [f(x)]^{1/n} = [\lim_{x \to a} f(x)]^{1/n}$ for positive integer n, if both sides are well defined.

Proposition 1.5 (Substitution property). Suppose f is a combination of the following functions: algebraic, exp, log, trig. Then

$$\lim_{x\to a} f(x) = f(a)$$
, if $f(a)$ is well defined.

Note. Sub property leads to mistakes, typically when f(a) is one of the followings:

$$\frac{0}{0}$$
; $\infty - \infty$; 1^{∞} ; $0 \cdot \infty$, ...

Proposition 1.6. If f(x) = g(x) for every $x \neq a$ in some neighborhood of a, then

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$$

provided that both limits exist.

Ex. Find
$$\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x}$$
.

Followings are some examples of type $\frac{0}{0}$.

Ex. Find
$$\lim_{x\to 1} \frac{x^2-1}{x-1}$$
, arisen from Example 1.1.

8

Ex. Find

$$\lim_{t \to 0} \frac{t^2}{\sqrt{t^2 + 9} - 3}.$$

Ex. Find

$$\lim_{x \to 0} \frac{|x|}{x}.$$

Next example is of type $\infty - \infty$.

 $\mathbf{Ex.}$ Find

$$\lim_{t \to 0} \left(\frac{1}{t} - \frac{1}{t^2 + t} \right).$$

Next example shows the type of 1^∞

Ex. Natural number is defined as $e = \lim_{x\to 0} (1+x)^{1/x}$. Estimate e by your calculator.

Ex. Can you find two functions f and g, such that $\lim_{x\to 0} f(x)g(x) \neq 0$ while $\lim_{x\to 0} f(x) = 0$ and $\lim_{x\to 0} g(x) = \infty$.

Proposition 1.7 (Comparison result). If $f(x) \leq g(x)$ in some nbd of a $(x \neq a)$, then

$$\lim_{x \to a} f(x) \le \lim_{x \to a} g(x)$$

provided that both limits exist.

Q. Justify following statement: Let f(x) < g(x), then

$$\lim_{x \to a} f(x) < \lim_{x \to a} g(x)$$

provided that both limits exist.

A straightforward application of comparison result gives

Proposition 1.8 (Squeeze theorem). If $f(x) \leq g(x) \leq h(x)$ in some nbd of a $(x \neq a)$, and

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$$

then

$$\lim_{x \to a} g(x) = L.$$

Ex. $\lim_{x\to 0} x^2 \sin(1/x) = ?$

1.5. Continuity. Text Section 1.8, Exercise 3, 9, 12, 14, 15, 19, 20, 36, 38, 39, 41, 43, 44, 45, 46, 49, 50, 51, 53, 59, 60, 63, 65, 66

Definition 1.9 (Continuity at a point). Given a function f,

- (1) f is continuous at a, if $\lim_{x\to a} f(x) = f(a)$. Otherwise, f is said to be discontinuous
- (2) f is left continuous at a, if $\lim_{x \to a^{-}} f(x) = f(a)$. (3) f is right continuous at a, if $\lim_{x \to a^{+}} f(x) = f(a)$.

Ex. Find all discontinuities of following functions, also identify right/left continuities at discontinuities.

- (1) (Jump discontinuity) f(x) = [x]
- (2) (Removable discontinuity) $f(x) = \frac{x^2 1}{x 1}$
- (3) (Infinite discontinuity) $f(x) = \frac{1}{x^2}$

Ex. (Funny) Can you find a function,

- which is nowhere continuous? (Hint: $f = I_Q$, see Exercise 63 of Section 1.8 of Text.)
- which is continuous only at x = 0? (Hint: $f(x) = xI_Q(x)$)

Definition 1.10 (Continuity on an interval). A function f is continuous on an interval, if it is continuous at every number inside the interval, and either right/left continuous at the endpoints.

Ex. Let
$$f(x) = \frac{x^2 - 1}{x - 1}$$
. In which interval is f continuous? $(-\infty, \infty), [0, 2], [0, 1], (0, 1)$.

By definition, if f is continuous at a, then $\lim_{x\to a} f(x) = f(a)$. In other words, at all continuity points, we can use substitution property to obtain limit at a. (Compare with Proposition 1.5).

Now the question is: what functions are continuous in general?

Proposition 1.11. If two functions f and g are both continuous at a, then their combinations are also continuous at a, i.e.

$$f+g$$
, $f-g$, cf , fg , f/g if $g(a) \neq 0$

are all continuous at a. (In the above, c is constant.)

Proposition 1.12. All algebraic, exp, log, and trig. functions are continuous in their own domain.

Note. The substitution property Proposition 1.5 is now a direct result from the above two propositions.

Ex. Find
$$\lim_{x\to\pi} \frac{\sin x}{2+\cos x}$$
.

Proposition 1.13. If $\lim_{x\to a} g(x) = b$ and $\lim_{x\to b} f(x) = f(b)$, then $\lim_{x\to a} f(g(x)) = \lim_{x\to b} f(x) = f(b).$

Ex. find
$$\lim_{x \to 1} \sin \frac{(x^2 - 1)\pi}{x - 1}$$
.

Next proposition follows directly from Proposition 1.13.

Proposition 1.14 (Text Theorem 2.5.9). If g is continuous at a and f is continuous at g(a), then the composition $f \circ g$ is continuous at a.

Proof. skip
$$\Box$$

Next theorem is called **Intermediate Value Theorem**.

Theorem 1.15 (IVT). Suppose f is continuous on [a,b], and let N be any number between f(a) and f(b), where $f(a) \neq f(b)$. Then, there exists a number c in (a,b) s.t. f(c) = N.

Ex. Show that there is a root of the equation

$$4x^3 - 6x^2 = -3x + 2$$

between 1 and 2.

Ex. Bob is leaving from A at 7:00am to B. The next morning, he returns from B at 7:00am, taking the same route to A. Show that there is a point on the path that Bob will cross at exactly the same time of day on both days.

More exercises for Chapter 1: Text p.95-p.96, 5-8, 13, 16, 19, **26**, **28**, **32**, **34**, **37**, **40**, **45**, **46**