Supplementary material

Using wrist worn accelerometers to identify the sedentary impact of medicines with anticholinergic or sedative properties: a 12-month prospective analysis

Ty Stanford and Dot Dumuid

Table of contents

1	R setup				
	1.1	Pacakges	2		
	1.2	Session functions and constants	2		
2	Dat	a processing	4		
	2.1	Read analysis data	4		
	2.2	Create ilr coordinates from time-use categories	4		
3	Ехр	loratory analysis	5		
	3.1	Correlation between predictor variables at trial stages	5		
	3.2	Change in predictor variables over trial stage	6		
	3.3	Change in untransformed outcome variables over trial stage (by predictors)	7		
	3.4	Change in ilr transformed outcome variables over trial stage (by predictors)	9		
4	Stat	cistical modelling	11		
	4.1	Tansform data to long format	11		
	4.2	Stacked linear mixed effect model of ilr value on sedentary load scores	12		
	4.3	Stacked linear mixed effect model of ilr value on anticholinergic load scores	16		
	4.4	Model predictions	20		
		4.4.1 Medication load constant over time	20		
		4.4.2 An increase in medication load	25		
5	Sess	sion info	27		

1 R setup

1.1 Pacakges

```
suppressPackageStartupMessages({
   require("compositions")

   require("dplyr")
   require("tidyr")
   require("readr")
   require("forcats")
   library("ggplot2")

library("knitr")

require("lme4")
   require("lmerTest")
   library("optimx")
   library("performance")
})
```

1.2 Session functions and constants

```
add_alpha <- function(col, alpha = 1) {
   apply(
      sapply(col, col2rgb) / 255, 2,
      function(x) rgb(x[1], x[2], x[3], alpha = alpha)
   )
}

stage_ins_col <- add_alpha(c("cyan", "magenta"), 0.25)
stage_out_col <- add_alpha(c("cyan", "magenta"), 0.75)
names(stage_ins_col) <- names(stage_out_col) <- NULL

med_ins_col <- add_alpha(c("orange", "purple"), 0.25)
med_out_col <- add_alpha(c("orange", "purple"), 0.75)
names(med_ins_col) <- names(med_out_col) <- NULL

pal_use <- "Plasma" # "Temps", "Zissou 1"</pre>
```

```
plas_pal <- hcl.colors(n = 10, palette = pal_use, rev = FALSE)
sed_ins_col <- add_alpha(plas_pal, 0.25)
sed_out_col <- add_alpha(plas_pal, 0.75)
names(sed_ins_col) <- names(sed_out_col) <- NULL

pal_use <- "Viridis"
vir_pal <- hcl.colors(n = 11, palette = pal_use, rev = FALSE)
ach_ins_col <- add_alpha(vir_pal, 0.25)
ach_out_col <- add_alpha(vir_pal, 0.75)
names(ach_ins_col) <- names(ach_out_col) <- NULL

pal_use <- "Classic Tableau"
ct_pal <- palette.colors(n = 4, palette = pal_use)
timeuse_col <- add_alpha(ct_pal, 0.75)
names(timeuse_col) <- NULL</pre>
```

2 Data processing

2.1 Read analysis data

```
sedach_dat <-
   read_rds("dat/sedach_dat.rds") %>%
   as_tibble(.)

sedach_dat$TrialStage <- fct_infreq(sedach_dat$TrialStage)</pre>
```

2.2 Create ilr coordinates from time-use categories

```
# these are the time-use compositions
  time_use_cols <- paste0("tu_", c("sl", "sed", "lp", "mv"))</pre>
  tu_dat <- sedach_dat[, time_use_cols]</pre>
  # make isometric log ratios for compositional analysis of time-use composition
  tu_comp <- acomp(tu_dat)</pre>
  tu_ilrs <- as.data.frame(ilr(tu_comp))</pre>
  D <- ncol(tu_ilrs)</pre>
  colnames(tu_ilrs) <- paste0("ilr", 1:D)</pre>
  # add ilrs to analysis dataset
  sedach_dat <- bind_cols(sedach_dat, tu_ilrs)</pre>
  colnames(sedach_dat)
                   "TrialStage" "sed_score" "ach_score" "tu_sl"
 [1] "StudyID"
 [6] "tu_sed"
                   "tu_lp"
                                 "tu_mv"
                                               "ilr1"
                                                              "ilr2"
[11] "ilr3"
```

3 Exploratory analysis

3.1 Correlation between predictor variables at trial stages

Figure 1: Scatterplot of sedentary and anticholinergic load scores at baseline and 12 months for each participant (complete data). Values are slightly jittered to avoid overlap.

3.2 Change in predictor variables over trial stage

Figure 2: Scatterplot (jittered points) of baseline and 12 month sedentary and anticholinergic load scores for each participant (complete data). Values are slightly jittered to avoid overlap.

Table 1: Classification of sedentary and anticholinergic load scores from baseline to 12 months for each participant (complete data)

	(a) ach decrease	(b) ach constant	(c) ach increase
(a) sed decrease	8	0	0
(b) sed constant	12	20	1
(c) sed increase	7	11	11

3.3 Change in untransformed outcome variables over trial stage (by predictors)

Figure 3: Minutes in each time-use category at baseline and 12 months for each participant (points coloured by sedentary load scores at trial stage). Values are slightly jittered to avoid overlap.

Figure 4: Minutes in each time-use category at baseline and 12 months for each participant (points coloured by anticholinergic load scores at trial stage). Values are slightly jittered to avoid overlap.

3.4 Change in ilr transformed outcome variables over trial stage (by predictors)

Figure 5: ilr values (transformed time-use category compositions) at baseline and 12 months for each participant (points coloured by sedentary load scores at trial stage)

Figure 6: ilr values (transformed time-use category compositions) at baseline and 12 months for each participant (points coloured by anticholinergic load scores at trial stage)

4 Statistical modelling

4.1 Tansform data to long format

Creating "stacked" dataset.

4.2 Stacked linear mixed effect model of ilr value on sedentary load scores

```
# sedative load
  set.seed(123)
  mod_sed <-
    lmer(
      val ~ -1 +
        ilr.no +
        ilr.no:TrialStage + ilr.no:sed_score +
        ilr.no:TrialStage:sed_score +
        (0 + ilr.no | StudyID),
      data = dat_lng,
      control = lmerControl(
        optimizer = "Nelder_Mead",
        check.conv.singular =
          .makeCC(action = "ignore", tol = formals(isSingular)$tol)
      )
    )
  summary(mod_sed)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula:
val ~ -1 + ilr.no + ilr.no:TrialStage + ilr.no:sed_score + ilr.no:TrialStage:sed_score +
    (0 + ilr.no | StudyID)
   Data: dat_lng
Control:
lmerControl(optimizer = "Nelder_Mead", check.conv.singular = .makeCC(action = "ignore",
    tol = formals(isSingular)$tol))
REML criterion at convergence: 1227.8
Scaled residuals:
           1Q Median
    Min
                           3Q
                                   Max
-6.3074 -0.3876 0.0168 0.3902 4.6197
Random effects:
 Groups
        Name
                   Variance Std.Dev. Corr
```

```
StudyID ilr.noilr1 0.0009236 0.03039
          ilr.noilr2 0.4114020 0.64141 -0.85
          ilr.noilr3 1.4006466 1.18349 -0.98 0.94
                    0.1077476 0.32825
 Residual
Number of obs: 804, groups: StudyID, 198
Fixed effects:
                                          Estimate Std. Error
ilr.noilr1
                                                     0.040334 425.565897
                                          0.199874
ilr.noilr2
                                         -1.639237
                                                     0.076227 341.319951
ilr.noilr3
                                          -2.220218
                                                     0.124375 339.328326
ilr.noilr1:TrialStage12 Months
                                         -0.034907
                                                     0.072617 426.894903
ilr.noilr2:TrialStage12 Months
                                          0.010617
                                                     0.080827 575.618614
ilr.noilr3:TrialStage12 Months
                                          0.183208
                                                     0.089304 485.472133
ilr.noilr1:sed_score
                                          0.010558
                                                     0.013743 426.072722
ilr.noilr2:sed_score
                                         -0.025484
                                                     0.023587 462.334778
ilr.noilr3:sed_score
                                         -0.013386
                                                     0.036974 533.790689
ilr.noilr1:TrialStage12 Months:sed_score
                                                     0.022371 426.945020
                                          0.008858
ilr.noilr2:TrialStage12 Months:sed_score -0.031929
                                                     0.025733 596.149168
ilr.noilr3:TrialStage12 Months:sed_score -0.137570
                                                     0.029644 518.882373
                                        t value Pr(>|t|)
ilr.noilr1
                                          4.955 1.04e-06 ***
ilr.noilr2
                                        -21.505 < 2e-16 ***
                                        -17.851 < 2e-16 ***
ilr.noilr3
ilr.noilr1:TrialStage12 Months
                                         -0.481 0.6310
ilr.noilr2:TrialStage12 Months
                                          0.131 0.8955
ilr.noilr3:TrialStage12 Months
                                          2.052
                                                 0.0408 *
ilr.noilr1:sed_score
                                          0.768 0.4428
ilr.noilr2:sed_score
                                         -1.080
                                                  0.2805
ilr.noilr3:sed_score
                                         -0.362
                                                  0.7175
ilr.noilr1:TrialStage12 Months:sed_score
                                          0.396
                                                  0.6923
ilr.noilr2:TrialStage12 Months:sed_score -1.241
                                                  0.2152
ilr.noilr3:TrialStage12 Months:sed score -4.641 4.40e-06 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Correlation of Fixed Effects:
            ilr.n1 ilr.n2 ilr.n3 il.1:TS12M il.2:TS12M il.3:TS12M il.1:_ il.2:_
ilr.noilr2 -0.051
ilr.noilr3 -0.070 0.736
ilr.1:TS12M -0.552 0.001 0.002
ilr.2:TS12M 0.002 -0.305 -0.031 -0.001
```

0.145

ilr.3:TS12M 0.005 -0.046 -0.208 -0.012

```
ilr.nlr1:s_ -0.797  0.029  0.042  0.441
                                         -0.002
                                                   -0.006
ilr.nlr2:s_ 0.032 -0.733 -0.478 -0.001
                                        0.285
                                                   0.061
                                                             -0.039
ilr.nlr3:s_ 0.048 -0.497 -0.708 -0.003
                                         0.043
                                                   0.219
                                                             -0.059 0.672
i.1:TS12M:_ 0.488 -0.004 -0.006 -0.802
                                                   0.011
                                                             -0.612 0.005
                                        0.001
i.2:TS12M: -0.006 0.334 0.098 0.001
                                         -0.799
                                                 -0.138
                                                             0.008 - 0.472
i.3:TS12M:_ -0.014  0.139  0.296  0.011
                                         -0.132
                                                   -0.793
                                                             0.019 -0.200
          il.3:_ i.1:TS12M: i.2:TS12M:
ilr.noilr2
ilr.noilr3
ilr.1:TS12M
ilr.2:TS12M
ilr.3:TS12M
ilr.nlr1:s_
ilr.nlr2:s_
ilr.nlr3:s_
i.1:TS12M:_ 0.009
i.2:TS12M:_ -0.147 -0.003
car::Anova(mod sed, test.statistic = "F", type = "III")
Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
Response: val
                                F Df Df.res Pr(>F)
                          160.1101 3 327.02 < 2.2e-16 ***
ilr.no
                            1.4743 3 341.83 0.2213077
ilr.no:TrialStage
ilr.no:sed_score
                            0.6487 3 361.66 0.5842196
ilr.no:TrialStage:sed_score 7.2106 3 364.88 0.0001031 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
  check model(
   mod_sed,
   check = c("reqq", "qq", "linearity", "homogeneity", "outliers", "pp_check")
```


4.3 Stacked linear mixed effect model of ilr value on anticholinergic load scores

```
# Anti-cholinergic load
  mod_ach <-
    lmer(
      val ~
        -1 + ilr.no +
        ilr.no:TrialStage + ilr.no:ach_score +
        TrialStage:ach_score:ilr.no +
        (0 + ilr.no | StudyID),
      data = dat_lng,
      control = lmerControl(
        optimizer = "bobyqa",
        check.conv.singular =
          .makeCC(action = "ignore", tol = formals(isSingular)$tol)
      )
    )
  summary(mod_ach)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula:
val ~ -1 + ilr.no + ilr.no:TrialStage + ilr.no:ach_score + TrialStage:ach_score:ilr.no +
    (0 + ilr.no | StudyID)
   Data: dat_lng
Control:
lmerControl(optimizer = "bobyqa", check.conv.singular = .makeCC(action = "ignore",
    tol = formals(isSingular)$tol))
REML criterion at convergence: 1247
Scaled residuals:
    Min 1Q Median 3Q
                                   Max
-6.2564 -0.3747 0.0189 0.3782 4.7557
Random effects:
                    Variance Std.Dev. Corr
 Groups
 StudyID ilr.noilr1 0.001013 0.03183
```

```
ilr.noilr2 0.409168 0.63966 -0.86
          ilr.noilr3 1.400289 1.18334 -0.98 0.94
                    0.112326 0.33515
 Residual
Number of obs: 804, groups: StudyID, 198
Fixed effects:
                                          Estimate Std. Error
                                                                      df
ilr.noilr1
                                          0.215239
                                                     0.033217 426.518327
ilr.noilr2
                                         -1.667481
                                                     0.063167 304.362549
ilr.noilr3
                                         -2.220319 0.103818 286.192051
                                         -0.018859
                                                     0.060162 428.007291
ilr.noilr1:TrialStage12 Months
ilr.noilr2:TrialStage12 Months
                                         -0.038640
                                                     0.067045 580.546065
ilr.noilr3:TrialStage12 Months
                                                     0.074608 489.261934
                                         -0.040534
ilr.noilr1:ach_score
                                          0.004733
                                                     0.010885 427.364569
ilr.noilr2:ach_score
                                         -0.017527
                                                     0.017653 497.079369
                                         -0.019626
                                                     0.027057 584.019510
ilr.noilr3:ach_score
ilr.noilr1:TrialStage12 Months:ach_score
                                          0.011631
                                                     0.027822 428.038825
ilr.noilr2:TrialStage12 Months:ach_score -0.038667
                                                     0.032571 601.765078
ilr.noilr3:TrialStage12 Months:ach_score -0.115156
                                                     0.038095 524.429410
                                        t value Pr(>|t|)
ilr.noilr1
                                          6.480 2.54e-10 ***
ilr.noilr2
                                        -26.398 < 2e-16 ***
ilr.noilr3
                                        -21.387 < 2e-16 ***
ilr.noilr1:TrialStage12 Months
                                         -0.313 0.75408
ilr.noilr2:TrialStage12 Months
                                         -0.576 0.56462
ilr.noilr3:TrialStage12 Months
                                         -0.543 0.58718
                                          0.435 0.66392
ilr.noilr1:ach_score
ilr.noilr2:ach_score
                                         -0.993 0.32125
                                         -0.725 0.46852
ilr.noilr3:ach_score
ilr.noilr1:TrialStage12 Months:ach_score
                                          0.418 0.67610
ilr.noilr2:TrialStage12 Months:ach_score -1.187 0.23564
ilr.noilr3:TrialStage12 Months:ach_score -3.023 0.00263 **
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Correlation of Fixed Effects:
           ilr.n1 ilr.n2 ilr.n3 il.1:TS12M il.2:TS12M il.3:TS12M il.1:_ il.2:_
ilr.noilr2 -0.056
ilr.noilr3 -0.074 0.747
ilr.1:TS12M -0.549 0.001 0.002
```

0.155

-0.002

-0.005

ilr.2:TS12M 0.001 -0.297 -0.027 -0.001 ilr.3:TS12M 0.005 -0.040 -0.196 -0.013

ilr.nlr1:c_ -0.663 0.020 0.030 0.365

```
ilr.nlr2:c_ 0.024 -0.568 -0.338 -0.001
                                         0.250
                                                  0.053
                                                           -0.035
ilr.nlr3:c_ 0.037 -0.363 -0.532 -0.003
                                         0.039
                                                  0.195
                                                           -0.056 0.635
i.1:TS12M:_ 0.258 0.003 0.003 -0.673
                                        0.001
                                                  0.011
                                                           -0.389 -0.004
i.2:TS12M:_ 0.004 0.070 -0.052 0.001
                                        -0.668
                                                  -0.121
                                                            -0.006 -0.135
i.3:TS12M: 0.007 -0.074 -0.026 0.010
                                                  -0.657
                                                           -0.009 0.118
                                        -0.116
          il.3:_ i.1:TS12M: i.2:TS12M:
ilr.noilr2
ilr.noilr3
ilr.1:TS12M
ilr.2:TS12M
ilr.3:TS12M
ilr.nlr1:c_
ilr.nlr2:c_
ilr.nlr3:c_
i.1:TS12M:_ -0.005
i.2:TS12M:_ 0.090 -0.003
i.3:TS12M:_ 0.032 -0.019
                            0.227
  car::Anova(mod_ach, test.statistic = "F", type = "III")
Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
Response: val
                                F Df Df.res Pr(>F)
ilr.no
                         240.2913 3 314.59 <2e-16 ***
                           0.2142 3 346.41 0.8866
ilr.no:TrialStage
                           0.3806 3 369.90 0.7670
ilr.no:ach score
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
  check_model(
   mod ach,
   check = c("reqq", "qq", "linearity", "homogeneity", "outliers", "pp_check")
  )
```

Variable `Component` is not in your data frame :/

4.4 Model predictions

4.4.1 Medication load constant over time

```
get mod pred <- function(mod, dat) {</pre>
  pred_val <- predict(mod, newdata = dat, re.form = NA)</pre>
  pred newd <- cbind.data.frame(pred val, dat)</pre>
  pred newd w <-
    pivot_wider(pred_newd, names_from = "ilr.no", values_from = "pred_val")
  ilr_cols <- grepl("ilr", colnames(pred_newd_w))</pre>
  time_use <- 1440 * unclass(ilrInv(pred_newd_w[, ilr_cols]))</pre>
  colnames(time_use) <- c("sl", "sed", "lp", "mv")</pre>
  return(bind_cols(pred_newd_w, time_use))
}
new_sed <- expand.grid(</pre>
 ilr.no = c("ilr1", "ilr2", "ilr3"),
 TrialStage = c("Baseline", "12 Months"),
  sed_score = seq(0, 9, 1)
)
new_ach <- expand_grid(</pre>
 ilr.no = c("ilr1", "ilr2", "ilr3"),
 TrialStage = c("Baseline", "12 Months"),
 ach\_score = seq(0, 11, 1)
preds <- predict(mod_sed, newdata = new_sed, re.form = NA)</pre>
pred_df <- cbind.data.frame(preds, new_sed)</pre>
sed_preds <-
  get_mod_pred(mod_sed, new_sed) %>%
  rename(medload = sed_score) %>%
  mutate(med = "Sedative load")
sed preds %>%
  arrange(desc(TrialStage), medload) %>%
  select(TrialStage, med, medload, everything(), -starts_with("ilr")) %>%
  kable(., digits = 0)
```

TrialStage	med	medload	sl	sed	lp	mv
		mearoaa	51		-гр	
12 Months	Sedative load	0	583	736	89	32
12 Months	Sedative load	1	579	751	84	26
12 Months	Sedative load	2	574	766	78	22
12 Months	Sedative load	3	569	780	73	18
12 Months	Sedative load	4	563	793	69	15
12 Months	Sedative load	5	557	807	64	12
12 Months	Sedative load	6	550	820	60	10
12 Months	Sedative load	7	544	832	56	8
12 Months	Sedative load	8	537	844	52	7
12 Months	Sedative load	9	530	856	49	6
Baseline	Sedative load	0	570	756	88	26
Baseline	Sedative load	1	566	763	86	25
Baseline	Sedative load	2	563	769	83	25
Baseline	Sedative load	3	559	776	81	24
Baseline	Sedative load	4	556	783	78	23
Baseline	Sedative load	5	552	789	76	23
Baseline	Sedative load	6	548	796	74	22
Baseline	Sedative load	7	545	802	71	22
Baseline	Sedative load	8	541	809	69	21
Baseline	Sedative load	9	537	815	67	21

```
(sed_preds %>%
    dplyr::filter(TrialStage == "12 Months", medload == 4) %>%
    select(6:9)) -
  (sed_preds %>%
    dplyr::filter(TrialStage == "Baseline", medload == 2) %>%
    select(6:9))
         sl
                 sed
                            lp
                                       mv
1 0.1227406 24.08395 -14.39087 -9.815821
  preds <- predict(mod_ach, newdata = new_ach, re.form = NA)</pre>
  pred_df <- cbind.data.frame(preds, new_ach)</pre>
  ach_preds <-
    get_mod_pred(mod_ach, new_ach) %>%
    rename(medload = ach_score) %>%
```

```
mutate(med = "Anticholinergic load")

ach_preds %>%
    arrange(desc(TrialStage), medload) %>%
    select(TrialStage, med, medload, everything(), -starts_with("ilr")) %>%
    kable(., digits = 0)
```

TrialStage	med	medload	sl	sed	lp	mv
Baseline Anticholinergic load		0	564	765	85	26
Baseline	Anticholinergic load	1	563	769	84	25
Baseline	Anticholinergic load	2	562	772	82	24
Baseline	Anticholinergic load	3	561	776	80	24
Baseline	Anticholinergic load	4	559	779	79	23
Baseline	Anticholinergic load	5	558	783	77	22
Baseline	Anticholinergic load	6	557	786	75	22
Baseline	Anticholinergic load	7	556	789	74	21
Baseline	Anticholinergic load	8	554	793	72	20
Baseline	Anticholinergic load	9	553	796	71	20
Baseline	Anticholinergic load	10	552	800	70	19
Baseline	Anticholinergic load	11	550	803	68	19
12 Months	Anticholinergic load	0	575	759	82	24
12 Months	Anticholinergic load	1	571	772	77	20
12 Months	Anticholinergic load	2	567	784	72	17
12 Months	Anticholinergic load	3	562	796	67	14
12 Months	Anticholinergic load	4	558	807	63	12
12 Months	Anticholinergic load	5	552	819	59	10
12 Months	Anticholinergic load	6	547	830	55	8
12 Months	Anticholinergic load	7	541	840	52	7
12 Months	Anticholinergic load	8	535	851	48	6
12 Months	Anticholinergic load	9	529	861	45	5
12 Months	12 Months Anticholinergic load		523	871	42	4
12 Months	Anticholinergic load	11	517	880	39	3

```
all_pred <-
bind_rows(sed_preds, ach_preds) %>%
select(-starts_with("ilr"))

all_pred <-
inner_join(</pre>
```

```
all_pred %>% filter(TrialStage == "12 Months"),
   all_pred %>% filter(TrialStage == "Baseline"),
   c("med", "medload")
 )
all_pred <-
 all pred %>%
 mutate(
    change_Sleep = sl.x - sl.y,
    change_Sedentary = sed.x - sed.y,
   change_LightPA = lp.x - lp.y,
   change_MVPA = mv.x - mv.y
 )
all_pred <-
 all_pred %>%
 select(-matches("\\.(x|y)", perl = TRUE))
all_pred_lng <-
 all_pred %>%
 pivot_longer(
   ., cols = starts_with("change"), names_to = "timeuse", values_to = "time"
 ) %>%
 mutate(
   timeuse = gsub("change_", "", timeuse),
   med = fct inorder(med),
   timeuse = fct_inorder(timeuse)
 )
all_pred_lng %>%
 ggplot(., aes(x = medload, y = time, group = timeuse)) +
 geom_hline(yintercept = 0, lty = 2) +
 geom_line(aes(colour = timeuse)) +
 geom_point(aes(colour = timeuse)) +
 facet_wrap( ~ med) +
 scale_colour_manual(values = timeuse_col) +
 scale_x_continuous(breaks = c(0, 2, 4, 6, 8, 10)) +
 theme_bw() +
 labs(
   x = "Medication Load at 12-months",
   y = "Change in Activity (min/d)",
```

```
colour = "Activity"
) +
theme(text = element_text(family = "serif"))
```


Figure 7: Model-estimated changes in activity across a 12-month period when sedative (left) and anticholinergic (right) loads are changed. Changes in activity are considered relative to no change in medication load (i.e., medication load = 2 at both time points). PA = physical activity; MVPA = moderate-to-vigorous physical activity.

4.4.2 An increase in medication load

```
get_pred_diff <- function(mod, dat) {</pre>
 time_use <- get_mod_pred(mod, dat)</pre>
 time_use <- time_use[, c("sl", "sed", "lp", "mv")]</pre>
 return(time_use[2, ] - time_use[1, ])
newd1 <-
  expand.grid(
    ilr.no = c("ilr1", "ilr2", "ilr3"),
    TrialStage = c("Baseline", "12 Months"),
    score = 4
rownames(newd1) <- apply(newd1, 1, paste, collapse = "_")</pre>
newd2 <-
 expand.grid(
    ilr.no = c("ilr1", "ilr2", "ilr3"),
    TrialStage = c("12 Months", "Baseline"),
    score = 2
rownames(newd2) <- apply(newd2, 1, paste, collapse = "_")</pre>
newd <- rbind(newd1, newd2)</pre>
newd <-
 newd %>%
  dplyr::filter(
    (TrialStage == "Baseline" & score == 2) |
      (TrialStage == "12 Months" & score == 4)
  )
newd_sed <-
  newd %>%
  rename(sed_score = score)
newd_ach <-
  newd %>%
  rename(ach_score = score)
cat(
```

```
"This is expected change in minutes to the time-use composition\n",

"when going from sed load = 2 to sed load = 4 from baseline to 12 months.\n"
)

get_pred_diff(mod_sed, newd_sed) %>%

kable(., digits = 1)

cat(

"This is expected change in minutes to the time-use composition\n",

"when going from anticholinergic load = 2 to sed load = 4\n",

"from baseline to 12 months.\n"
)

# somewhat of an extrapolation

get_pred_diff(mod_ach, newd_ach) %>%

kable(., digits = 1)
```

This is expected change in minutes to the time-use composition when going from sed load = 2 to sed load = 4 from baseline to 12 months.

sl	sed	lp	mv
-0.1	-24.1	14.4	9.8

This is expected change in minutes to the time-use composition when going from anticholinergic load = 2 to sed load = 4 from baseline to 12 months.

sl	sed	lp	mv	
4.3	-35.3	18.8	12.2	

5 Session info

```
format(Sys.time(), '%d-%b-%Y')
[1] "02-Mar-2023"
  sessionInfo()
R version 4.2.2 (2022-10-31 ucrt)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19044)
Matrix products: default
locale:
[1] LC_COLLATE=English_Australia.utf8 LC_CTYPE=English_Australia.utf8
[3] LC_MONETARY=English_Australia.utf8 LC_NUMERIC=C
[5] LC_TIME=English_Australia.utf8
attached base packages:
[1] stats
              graphics grDevices utils
                                             datasets methods
                                                                 base
other attached packages:
 [1] performance_0.10.2 optimx_2022-4.30
                                            lmerTest_3.1-3
                                                               lme4_1.1-31
 [5] Matrix_1.5-3
                        knitr_1.42
                                            ggplot2_3.4.1
                                                               forcats_1.0.0
 [9] readr_2.1.4
                                            dplyr_1.1.0
                                                               compositions_2.0-5
                        tidyr_1.3.0
loaded via a namespace (and not attached):
 [1] ggrepel_0.9.3
                         Rcpp_1.0.10
                                              lattice_0.20-45
 [4] digest_0.6.31
                         utf8_1.2.3
                                              R6_2.5.1
 [7] backports_1.4.1
                         evaluate_0.20
                                              pillar_1.8.1
[10] rlang_1.0.6
                         rstudioapi_0.14
                                              minqa_1.2.5
[13] see_0.7.4
                         car_3.1-1
                                              nloptr_2.0.3
[16] rmarkdown_2.20
                         labeling_0.4.2
                                              splines_4.2.2
[19] munsell_0.5.0
                         broom_1.0.3
                                              compiler_4.2.2
[22] numDeriv_2016.8-1.1 xfun_0.37
                                              pkgconfig_2.0.3
[25] mgcv_1.8-41
                         htmltools_0.5.4
                                              insight_0.19.0
[28] tidyselect_1.2.0
                         tibble_3.1.8
                                              tensorA_0.36.2
[31] fansi_1.0.4
                         tzdb_0.3.0
                                              withr_2.5.0
```

[34]	MASS_7.3-58.1	grid_4.2.2	nlme_3.1-160
[37]	bayesm_3.1-5	jsonlite_1.8.4	gtable_0.3.1
[40]	lifecycle_1.0.3	magrittr_2.0.3	bayestestR_0.13.0
[43]	scales_1.2.1	datawizard_0.6.5	cli_3.6.0
[46]	carData_3.0-5	farver_2.1.1	robustbase_0.95-0
[49]	ellipsis_0.3.2	<pre>generics_0.1.3</pre>	vctrs_0.5.2
[52]	boot_1.3-28	tools_4.2.2	glue_1.6.2
[55]	DEoptimR_1.0-11	purrr_1.0.1	hms_1.1.2
[58]	abind_1.4-5	pbkrtest_0.5.2	parallel_4.2.2
[61]	fastmap_1.1.0	yaml_2.3.7	colorspace_2.1-0
[64]	patchwork_1.1.2		