융합 프로젝트 주차별 보고서

	팀명	빌드업 (Build-Up)	
팀	팀원	팀장	박인영 (AI)
		팀원	이재욱(AI) 강수현(XR), 고현서(XR) 박대렬(CRE), 조한나(CRE)

기간	11월 3주차 (22.11.14 ~ 22.11.20)		
프로젝트명	Sleepywood		
	● 베타 프로젝트 진행		
	(1) 기획 - APP: UI / UX 디자인 - 핵심 기능 구현 정리 (데이터 연동, 그래프 분석, 컬렉션 기능) - 핵심 기능별 & 나무 성장을 위한 데이터 규칙 제정 / 예외 사항 제정 - 회의록 작성, 문서화 및 파트별 요청 사항 전달		
71-111-1	(2) 모델링 - UserData 반영 파라미터 선별 및 세팅 - Asset 별 텍스처 제작 - UserCustomLand 제작 - 라이트 및 환경 세팅		
진행사항	(3) XR - UI 구현 - Health Data에 따른 나무 파라미터 적용 - Health Data 가시화 : Tree 성장 / 데이터분석 - UserInteraction 및 포톤 네트워크 연결 : 랜드 방문 / 초대 / 이모티콘 - User 정보 서버에서 가져오기		
	(4) NETWORK - 네트워크 서버 구축 - 데이터베이스 설계 - 웹 개발: NFT shop / DashBoard - API 문서화		

(5) AI - Unit - Mult

- Unity, Watch OS 수면 데이터 연동
- Multi-modal AI 모델 배포
- 수면,건강 데이터 판별을 위한 규칙 제정 & 나무 성장 알고리즘 설계 (Health Data Analysis to Tree Growth Mechanism)
- 수면 데이터 고려 사항 탐색: Data Fragmentation / Data Missing / Data Fragmentation: External Source / Data Format / Data Sync Time
- NFT shop 추천 시스템 설계

주제

[생활/건강] 스마트워치의 센서를 활용한 현실반영 메타버스 건강관리 앱

● Health Data에 따른 나무 파라미터 적용

- 나무가지 개수
- 나뭇잎 개수
- 상한 잎 Group
- 나뭇잎 Width
- 중력
- 나무 두께
- 나무 Scale

활동결과

프로젝트 이미지

SleepAmount (총 수면시간)	zero (수면데이터X)	- 상한 잎 요소 1개 활성화 - 중력 -0.1
	VerylnadequateBad (3시간 미만)	- 나무가지 개수 -2
	Inadquate (3~6시간)	- 나무가지 개수 -1
	Adequate Good (6~8시간)	- 나무가지 개수 +1
	Excessive (8시간 초과)	- 나무가지 개수 +2
SleepRiseTimeVariance (기상시간의 오차)	SmallGood	- 나뭇잎개수 +5
	LargeBad	- 나뭇잎개수 -5
SleepDayTimeNap (Daytime 낮잠)	YesBad	- 상한 잎 요소 1개 활성화 - 중력 -0.1
	NoGood	- 상한 잎 요소 1개 비활성화
목표 Activity 달성 %		- 나무의 Scale값 조절

● 나무 차별화 설정

- (1) Textures 차별적 비율로 결정
- Bark (10)
- Sprout (10)
- Leaf Shape Group(A, B, C, D) 4개 중 랜덤 선택해서 해당 그룹 ⇒ Sprout Generator - Sprout Seeds - Group 추가
- Leaf Shape Group(A, B, C, D) 4개 중 랜덤 선택 → Shape Group 안에서 색깔의 조합은 확률적으로 뽑히도록 설정

(2) Shape(4) - 랜덤 결정

- Basic
- Oak
- Sakura
- DR

● 기능 구현

- (1) WEB: 마켓플레이스 / DashBoard 구축
- (2) 다중사용자환경: 랜드에 친구 초대하기 / 친구 랜드 구경가기 / 채팅하기
- (3) 랜드 커스터마이징

다음주 활동 계획

- 베타 버전: 프로젝트 최종 고도화 작업 시작

2022, 11, 20