

REPORT DOCUMENTATION PAGE

*Form Approved
OMB No. 0704-0188*

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. **PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.**

1. REPORT DATE (DD-MM-YYYY) 10 December 2016		2. REPORT TYPE Briefing Charts		3. DATES COVERED (From - To) 23 November 2016 – 13 December 2016	
4. TITLE AND SUBTITLE Phenylethynyl silsesquioxanes: Monomer synthesis, characterization, thermolysis and thermal properties		5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER Q16J			
6. AUTHOR(S) T. Haddad, G. Yandek, J. Zavala, J. Lamb, J. Reams, K. Ghiassi, J. Mabry, A. Guenthner					
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Research Laboratory (AFMC) AFRL/RQRP 10 E. Saturn Blvd. Edwards AFB, CA 93524-7680		8. PERFORMING ORGANIZATION REPORT NO.			
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air Force Research Laboratory (AFMC) AFRL/RQR 5 Pollux Drive Edwards AFB, CA 93524-7048		10. SPONSOR/MONITOR'S ACRONYM(S) 11. SPONSOR/MONITOR'S REPORT NUMBER(S) AFRL-RQ-ED-VG-2016-387			
12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited. The U.S. Government is joint author of the work and has the right to use, modify, reproduce, release, perform, display, or disclose the work.					
13. SUPPLEMENTARY NOTES For presentation at ACS Workshop on Silicon containing Materials; San Diego, CA (10 December 2016) PA Case Number: #16586; Clearance Date: 12/13/2016 Prepared in collaboration with ERC					
14. ABSTRACT Polyhedral Oligomeric Silsesquioxanes (POSS) are inorganic/organic cages that are used as high-tech additives to enhance the thermal, mechanical and surface properties of many polymeric systems. A useful analogy is that a POSS is nano-sized particle of silica solubilized with organic modifiers ($\text{RSiO}_1.5\text{n}$); the organic periphery determines how well the POSS can interact with any host polymer, while the siliceous core adds thermoxidative stability. Beginning in 1993 and continuing today, there has been extensive research in understanding how POSS incorporation into various materials affects polymer properties. Herein is reported a synthesis strategy to produce POSS-containing, thermosetting phenylethyne to yield high temperature materials with extreme thermo-oxidative stability, low moisture uptake and good mechanical properties.					
15. SUBJECT TERMS N/A					
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT SAR	18. NUMBER OF PAGES 54	19a. NAME OF RESPONSIBLE PERSON A Guenthner
a. REPORT Unclassified	b. ABSTRACT Unclassified	c. THIS PAGE Unclassified			19b. TELEPHONE NO (include area code) N/A

Standard Form 298 (Rev.

8-98)

Prescribed by ANSI Std. Z39-18

Phenylethynyl silsesquioxanes: Monomer synthesis, characterization, thermolysis and thermal properties

Integrity ★ Service ★ Excellence

14 Dec 2016

Timothy S. Haddad¹, Gregory R. Yandek²,
Jacob J. Zavala¹, Jason T. Lamb¹,
Josiah T. Reams¹, Kamran B. Ghiasi²,
Joseph M. Mabry², Andrew J. Guenthner²

1 ERC Inc., Aerospace Systems Directorate,
Air Force Research Lab
2 Aerospace Systems Directorate,
Air Force Research Lab

Outline

- High-temperature/performance Polymers
- Synopsis of earlier work
- Strategy to make an imide-free monomer
- Thermal data comparisons

Acknowledgements:

Air Force Office of Scientific Research,
Air Force Research Laboratory

Presentation Outline

- **Introduction to Aromatic Imide Polymers**
 - Pros & cons motivating research
 - Research strategy
- **Material Synthesis and Characterization**
 - Short oligimide macromers
 - BisphenylethyneImidePOSS
 - BisphenylethyneIPOSS,
- **Oligomer Processing and Thermal Analyses**
 - DSC, TGA-MS, Rheology, Humidity Exposure, TMA
- **Moisture Uptake Results**
- **Conclusions**

Applied Materials Group

- Dr. Jeffrey Alston
 - Dr. Kamran Ghiassi
 - Mr. Kevin Greeson
 - Dr. Andrew Guenthner
 - Dr. Timothy Haddad
 - Mr. Jason Lamb
 - Mr. Christopher Lee
- Dr. Joseph Mabry
 - Dr. Joseph Mates
 - Mr. Jacob Marcischak
 - Dr. Josiah Reams
 - Mr. Neil Redeker
 - Dr. Gregory Yandek
 - Mr. Jacob Zavala

amg

Introduction to Polyimides

STRENGTHS

- Mechanical Properties
- Electrical Properties
- Temperature Capabilities
- Chemical Resistance
- Low Permeability
- Tailorability

WEAKNESSES

- Processability
- Moisture Uptake

- USES
- Electrical Insulation
 - Spacecraft Protection
 - Polymer Matrix Composites
 - Aircraft Components
 - Adhesives
 - Filtration

Moisture Uptake in Polyimides

Moisture uptake by the resin matrix in PiMCs currently prevents their application to rocket propulsion structures

Image of PiMC laminate post-exposed to RH and subsequent rapid heating
Courtesy of NAWCWD

Moisture Uptake Mechanism in OMCs

- Local segmental polymer motion is responsible for small molecule diffusion (Fick's)
- Once Fick's plateau is reached, large scale network relaxation accommodates more water
- Fiber confines relaxation in OMCs
- Stress build-up in matrix causes delamination and cracking

Bao, L.-R.; Yee, A.F. *Composites Science and Technology* 2002, 62, 2099–2110

Mitigation Strategies for PiMC Moisture Uptake

Can the moisture resistance of polyimide networks formed from thermosetting oligomers be improved without sacrificing other key properties?

POSS-Modified Polyimides

Table 4. Mechanical Properties of POSS-PIs 8a–e

POSS-PI	tensile strength (MPa)	elongation (%)	initial modulus (GPa)
8b	74.1	6.0	2.15
8b^a	65.9	3.8	1.96

PI	T_g^a (°C)	T_d5^b (°C)	T_{d10}^c (°C)	density (g/cm³)	contact angle (deg)
PMDA/ODA	362	470	530	1.44	54
8b	261	501	538	1.42	86

Table 5. Dielectric Constant of Polyimides

PI	10 kHz	100 kHz	1 MHz
PMDA/ODA	3.46	3.44	3.39
8b	2.69	2.65	2.63

Kakimoto, et al. *Macromolecules* 2007, 40, 5698 – 5705.

- Copolymerization of DDSQ and PMDA improves **moisture resistance**, dielectric properties, and thermal stability
 - Reduces Tg and mechanical properties

POSS-Modified Polyimides

Kapton
TOTAL EROSION

Kapton-Main Chain POSS
Erosion Depth:
 0.885 ± 0.0785

Kapton-Pendant POSS
Erosion Depth:
 0.793 ± 0.0669

- POSS modification of polyimides has been shown to drastically reduce erosion induced by atomic oxygen in LEO
- Formation of protective layer of silicon dioxide prevents further attack

POSS-diamine Synthesis

½ pound scale
In a 3 L flask

AIR FORCE RESEARCH LABORATORY
ROCKET LAB

Bis(aniline, methyl)siloxy-Octaphenyl Silsesquioxane

- Well defined inorganic cage
- Peripherally aromatic
- Bi-reactive functionality
- Isomer suite

Crystal System - Monoclinic
Space group – P 2(1)/c
Cell Volume = 4034.0 (3)
Cell Dimensions
a = 10.9135 (4) a = 90.00
b = 18.0703(7) b = 99.7840
(10)
c = 20.7573 (8) g = 90.00
R₁ = 0.038

Courtesy of Dr. Sean Ramirez

Oligomer Architectures

TetraSilanolPhenyl POSS
100 g/220 USD

Oligomer ID	Avg Mol Wt (g mol ⁻¹)
0 POSS	3094
1 POSS	4230
2 POSS	5366
3 POSS	6502
4 POSS	7637
5 POSS	8773

Oligomer Architectures

Compound Mol. Wt. Formula	PEPA 248.23 <chem>C16H8O3</chem>	6-FDA 444.24 <chem>C19H6F6O6</chem>	ODA 200.24 <chem>C12H12N2O</chem>	POSS 1335.98 <chem>C62H58N2O14Si10</chem>
Control	2	4	5	0
1 POSS	2	4	4	1
2 POSS	2	4	3	2
3 POSS	2	4	2	3
4 POSS	2	4	1	4
5 POSS	2	4	0	5

Oligomer	Mol. Wt. (g/mol)	Mmoles in 7.00 g	PE (g)	6-FDA (g)	ODA (g)	POSS (g)	Wt % <chem>Si10O14</chem>
<chem>C168H80F24N10O25</chem>	3094.45	2.2624	1.1228	4.0194	2.2645	0.000	0.0%
<chem>C218H126F24N10O38Si10</chem>	4230.19	1.6548	0.8218	2.9407	1.3251	2.2106	8.33%
<chem>C268H172F24N10O51Si20</chem>	5365.94	1.3048	0.6475	2.3184	0.784	3.4853	13.16%
<chem>C318H218F24N10O64Si30</chem>	6501.69	1.0766	0.5348	1.9131	0.262	4.3148	16.31%
<chem>C368H264F24N10O77Si40</chem>	7637.44	0.9163	0.4550	2.3289	0.1834	4.8979	18.48%
<chem>C418H310F24N10O90Si50</chem>	8773.18	0.798	0.3962	1.4175	0.000	5.3298	20.16%

^{29}Si NMR of 1POSS Cis&Trans, 1POSS Cis, and 1POSS Trans Oligoimides in CDCl_3

Distribution A: Approved for Public Release; Distribution Unlimited. PA Clearance Number 16586

Steady Shear Rheology

Oligomer	M_n (theor.)	M_n (obs.)
Control	3095	3700
1 cis/trans-POSS	4230	4006
1 cis-POSS	4230	4494
1 trans-POSS	4230	4934
3 cis/trans-POSS	6502	5870
3 cis-POSS	6502	6244
3 trans-POSS	6502	7100

- Experiment performed at 250 °C and 0.7 mm gap
- For this set of oligomers, POSS isomer type exerts greater effect on steady shear viscosity than MW and PDI
- Mixture of cis and trans isomers in backbone is most effective at reducing viscosity
- 3 cis-POSS exhibits highest viscosity and shortest linear response, perhaps due to oligomer chain conformation

Complex Rheology

- Peaks in tan delta occur at low frequency for cis-POSS containing oligomers (except 3 cis-POSS)
- Control and 1 trans-POSS are very similar rheologically
- PDI effects are negligible
- Copolymerization of POSS generally shifts crossover point to higher frequency
- 3 cis-POSS is unusual due to its highly elastic behavior despite high POSS

Cure Reaction Overview

- DSC performed by cycling holding material at each isotherm for 60 minutes and measuring post-hold glass transition temperature
- Phenyl ethynyl cure reaction does not commence until ~ 300 °C
- Pre- and post-cure T_g s generally reduced by POSS copolymerization
- At lower cure temperatures, POSS accelerates cure reaction but more thermal energy is required for increased PE conversion as temperature is raised

Thermal Decomposition

- Mass loss species determined through TGA-MS
- Control decomposition evolves CO₂, CO, NO, and H₂O as well understood
- POSS-containing PIs evolve benzene due to POSS periphery scission

Neat Resin Processing

- Oligomer cure schedule typical of PETI composites
- Compression mold with vacuum used to consolidate cured disks of each PI
- Low pressure required in early stages of cycle controlled with jack stands due to lack of fidelity in molding machine

Moisture Diffusion

Cured Oligomer	Density (g/cc)	Thickness, h (mm)	D ($mm^2/s \times 10^5$)
6FDA-ODA-PETI (Control)	1.360	2.057	2.30
1 Cis/Trans-POSS	1.343	2.229	4.60
1 Cis-POSS	1.401	1.334	4.40
1 Trans-POSS	1.342	2.303	5.20
3 Cis/Trans-POSS	1.314	2.183	10.00
3 Cis-POSS	1.309	2.467	10.00
3 Trans-POSS	1.310	2.407	12.00

- In general, POSS reduces density
- Moisture diffusion experiments conducted in humidity chamber at 80 °C and 80% RH
- 1-D Fick's diffusion equation solved to determine diffusivity coefficients
- POSS increases diffusivity rate but lowers overall saturated water content

Effects of Water Uptake on Viscoelastic Properties

- Dynamic TMA experiments performed at high heating rate (50 °C/min) to ascertain the effects of moisture ingress on glass transition temperature
- Glass transition temperature measured by two methods: onset of storage modulus drop (G') and peak in tan delta
- By both methods, the delta between dry and wet glass transition temperatures diminishes with increasing POSS content
- Storage modulus method more accurate since event occurs earlier giving water less of a chance to escape
- *Rapid water loss event witnessed for control, but not POSS-containing polyimides*

Conclusions

- POSS copolymerization generally improves processing viscosity
- POSS both increases and decreases phenyl ethynyl reaction rate as a function of cure temperature
- POSS improves thermal stability by TGA in both inert and oxidizing atmospheres, more so in the latter due to formation of protective SiO₂

- POSS decreases cured glass transition temperature in the dry state
- Although hybridization increases water diffusivity, it greatly reduces saturated moisture content
- POSS improves wet thermomechanical properties and could prevent shock associated with water release during rapid heating

Figure 6. Storage and loss moduli measured from variable frequency oscillatory rheometry experiments at 250°C for (a) cis/trans-, (b) cis-, and (c) trans-oligomers, in comparison with those of 0 POSS. The crossover frequencies are indicated by $\omega_{\text{crossover}}$.

Figure 5. Steady shear viscosity dependence on shear rate for the uncured oligomides at 250°C .

Table 4. Reaction Exponents and Rate Constants with Associated Coefficients of Determination (R^2) Resulting from Fitting Isothermal Conversion Data to First-Order Reaction Rate and Avrami Conversion Models (k in min^{-n})

oligomer	300 °C			320 °C			340 °C			360 °C			380 °C		
	n	k	R^2												
0 POSS	1	0.005	0.99	1	0.011	1.00	1	0.031	0.98	1	0.066	0.97			
1 cis/trans-POSS	0.22	0.060	0.56	1	0.009	0.98	1	0.031	1.00	1	0.066	0.99			
1 cis-POSS	0.49	0.026	0.80	1	0.010	1.00	1	0.031	1.00	1	0.075	0.98			
1 trans-POSS	0.25	0.101	0.70	0.28	0.151	0.95	0.60	0.088	0.98	0.77	0.092	0.98	0.73	0.200	0.99
3 cis/trans-POSS	0.26	0.106	0.92	0.23	0.148	1.00	0.45	0.091	0.99	0.68	0.091	0.99	0.42	0.340	0.94
3 cis-POSS	0.30	0.198	0.95	0.28	0.261	0.95	0.40	0.189	0.99	0.51	0.234	0.93	0.60	0.287	0.99
3 trans-POSS	0.27	0.070	0.70	0.23	0.143	0.85	0.55	0.063	0.98	0.71	0.065	0.98	0.67	0.169	0.83

Table 5. Calculated Arrhenius Parameters Pertaining to the Thermal Cure of the Oligoimides Synthesized in This Study

oligomer	$E_{a,1}$	R^2	$E_{a,2}$	R^2
0 POSS	33	1.00		
1 cis/trans-POSS	38	0.99		
1 cis-POSS	37	1.00		
1 trans-POSS	93	1.00	36	1.00
3 cis/trans-POSS	62	0.81	48	0.99
3 cis-POSS	23	1.00	41	0.99
3 trans-POSS	83	0.93	47	1.00

- 1-trans and 3-cis have significantly higher viscosities
- 1-cis has much higher crossover frequency while 3-cis has less
- Cis/Trans blends exhibit higher crossover frequencies
- Trans isomer has little effect on crossover frequency

- 3-cis shows significantly higher rate constants and lower activation energy
- 1-trans shows higher activation energy

BisPEPI-POSS Synthesis

	Para/Para	Meta/Para	Meta/Meta
Para/Para	100%	0%	0%
Mixed Isomers	25%	50%	25%
Meta/Meta	0%	0%	100%
Meta/Meta, Para/Para	50%	0	50%

BisPEPI-POSS DSC

Sample	Onset Cure Temp (°C)	Peak Cure Temp (°C)	Cure Energy (J/g)
Para/Para	340.21	369.51	162.2
Meta/Meta	338.75	373.25	160.9
Meta/Meta,Para/Para	339.51	372.28	160.9
Mixed Isomers	338.83	386.20	160.4

BisPE-POSS Synthesis

Bis-phenylethyynyl-POSS

C13 NMR Spectra of starting material, Grignard reagent, and dichlorosilane

crude dichlorosilane vs. purified dichlorosilane

Si²⁹ NMR spectral comparison

DSC

	Trans	Cis	50/50
Tg (°C)	-	77.5	85.3
Peak Tm (°C)	302.8	256.3	259.2, 284.5
Melt Enthalpy (J/g)	55.0	35.3	43.3

DSC

	Trans	Cis	50/50
T _g (°C)	-	66.4	73.1
Peak T _c (°C)	168.5	-	-
Crystallization Enthalpy (J/g)	24.8 (45.1%)	-	-

DSC

	Trans	Cis	50/50
Tg (°C)	-	71.0	81.5
Peak Tc (°C)	301.6	259.5	-
Melt Enthalpy (J/g)	50.94	16.9	-
Cure Peak Temperature (°C)	393.4	392.9	393.2
Cure Enthalpy (J/g)	124.5	137.8	123.6

DSC

	Trans	Cis	50/50
Residual Cure Enthalpy (J/g)	2.4	13.0	5.7
Total Cure Enthalpy (J/g)	126.9	150.8	129.3

DSC

TGA

(10°C/min, N2)

TGA

(10°C/min, N2)

TGA

(10°C/min, N2)

TGA

(10°C/min, AIR)

TGA

(10°C/min, AIR)

TGA

(10°C/min, AIR)

Trans BisPE-POSS TMA

Sample: Trans POSS-PEP
Size: 0.8889 x 6.3400 mm
Method: POSS-PEP Cure Kinetics
Comment: 270-30min 310-90min 325-2hr cure in furnace by Tim Haddad

TMA

File: C:\...\Trans POSS-PEP Cure Kinetics.001
Operator: Jason
Run Date: 01-Nov-2016 06:24
Instrument: TMA Q400 V22.4 Build 30

Trans BisPE POSS TMA Post-Cure

Cured in Furnace

- 270C, 30min
- 310C, 90min
- 325, 2hr

Trans BisPE-POSS

10°C/min Tg (TMA)

Sample: Trans POSS-PEP
Size: 0.8889 x 6.3400 mm
Method: POSS-PEP Cure Kinetics
Comment: 270-30min 310-90min 325-2hr cure in furnace by Tim Haddad

TMA

File: C:\...\Trans POSS-PEP Cure Kinetics.001
Operator: Jason
Run Date: 01-Nov-2016 06:24
Instrument: TMA Q400 V22.4 Build 30

Universal V4.7A TA Instruments

Trans BisPE-POSS

5°C/min Tg (TMA)

Method	Tg ($^{\circ}\text{C}$)	
	5°C/min	10°C/min
Storage Modulus	218.9	218.5
Loss Modulus	229.3	245.1
Tan Delta	240.9	254.9
Dimension Change (Low)	207.6	207.8
Dimension Change (High)	238.2	254.8

Cis BisPE-POSS TMA

Sample: Cis POSS-PEP Cure Kinetics
Size: 1.2932 x 6.3400 mm
Method: POSS-PEP Cure Kinetics
Comment: 270 30min 310 90 min 325 2hr in furnace by Tim Haddad

TMA

File: C:\...ICis POSS-PEP Cure Kinetics.001
Operator: Jason
Run Date: 02-Nov-2016 10:40
Instrument: TMA Q400 V22.4 Build 30

Cis BisPE-POSS TMA

Sample: Cis POSS-PEP Cure Kinetics
Size: 1.2932 x 6.3400 mm
Method: POSS-PEP Cure Kinetics
Comment: 270 30min 310 90 min 325 2hr in furnace by Tim Haddad

TMA

File: C:\Cis POSS-PEP Cure Kinetics.001
Operator: Jason
Run Date: 02-Nov-2016 10:40
Instrument: TMA Q400 V22.4 Build 30

50/50 Cis/Trans BisPE-POSS TMA

Sample: 50/50 Cis/Trans POSS-PEP Cure K

Size: 1.2897 x 6.3400 mm

Method: POSS-PEP Cure Kinetics

Comment: 270 30min, 310 90 min, 325 2hr in furnace by Tim Haddad

TMA

File: 50,50 Cis,Trans POSS-PEP Cure Kinetic...

Operator: Jason

Run Date: 03-Nov-2016 15:58

Instrument: TMA Q400 V22.4 Build 30

Universal V4.7A TA Instruments

50/50 Cis/Trans BisPE-POSS TMA

Sample: 50/50 Cis/Trans POSS-PEP Cure K

Size: 1.2897 x 6.3400 mm

Method: POSS-PEP Cure Kinetics

Comment: 270 30min, 310 90 min, 325 2hr in furnace by Tim Haddad

TMA

File: 50,50 Cis,Trans POSS-PEP Cure Kinetic...

Operator: Jason

Run Date: 03-Nov-2016 15:58

Instrument: TMA Q400 V22.4 Build 30

Trans BisPE-POSS TMA

400°C for 12 hrs

Sample: Trans POSS-PEP Cure Kinetics
Size: 1.0270 x 6.3400 mm
Method: POSS-PEP Cure Kinetics
Comment: 275C, 305C 30min, 335C 5hr by Tim Haddad in furnace

TMA

File: C:\...\Trans POSS-PEP Cure Kinetics.001
Operator: Jason
Run Date: 08-Nov-2016 15:40
Instrument: TMA Q400 V22.4 Build 30

Trans BisPE-POSS TMA

400°C for 12 hrs

Sample: Trans POSS-PEP Cure Kinetics

Size: 1.0270 x 6.3400 mm

Method: POSS-PEP Cure Kinetics

Comment: 275C, 305C 30min, 335C 5hr by Tim Haddad in furnace

TMA

File: C:\...\Trans POSS-PEP Cure Kinetics.001

Operator: Jason

Run Date: 08-Nov-2016 15:40

Instrument: TMA Q400 V22.4 Build 30

Sample	Density (g/cc)
Cis bisPE 3hr	1.203
50/50 bisPE 3hr	1.207
Trans bisPE 3hr	1.224
Trans bisPE 12hr	1.203
Para/Para bisPEPI	1.240
Mixed Isomers bisPEPI	1.245

Summary & Future Work

- High Performance Polyimides successfully made using silsesquioxanes
 - POSS helps with moisture uptake
 - POSS helps with thermal stability
- Long Polyimide Oligomers and very short POSS-dimides can be used
 - Tgs' a little too low in long oligomers
- Strategy to produce Imide-Free BisphenylethynylPOSS sucessful
 - Fully characterization demonstrates and excellent moist
 - Improved thermal stability
 - Excellent moisture resistance
- Next Steps:
 - Synthesize mixed isomers to reduce melting point
 - Make composites and measure mechanical and thermal properties

QUESTIONS?

