Показатели

Определение: *Показателем* остатка a по модулю m является наименьшее такое число t, что

$$a^t \equiv 1 \pmod{m}$$
.

Обычно обозначается $ord_m(a)$

Свойства:

- Покажите, что если (a, m) = 1, то показатель существует
- [2] Покажите, что если $(a,m) \neq 1$, то показателя не существует.
- $\boxed{3}$ Пусть t показатель a по модулю m.
 - (a) Докажите, что если $a^k \equiv 1 \pmod{m}$, то $k \in t$.
 - (b) Докажите, что если $a^{t_1} \equiv a^{t_2} \pmod{m}$, то $t_1 \equiv t_2 \pmod{t}$.
 - (c) Докажите, что числа $a^0, a^1, a^2, \dots, a^{t-1}$ попарно различны по модулю m.
- 4 Докажите, что показатели взаимно обратных чисел совпадают.
- $\boxed{5}$ Пусть $ord_m(a) = t, ord_m(b) = d.$
 - (a) Докажите, что если t : h, то $ord_m(a^h) = \frac{t}{h}$.
 - (b) Докажите, что $ord_m(a^h) = \frac{t}{(t,h)}$.
 - (c) Докажите, что если (t,d)=1, то $ord_m(a\cdot b)=t\cdot d$.

Задачи:

- $\boxed{1}$ Найдите $ord_{a^n-1}(a)$.
- $\boxed{2}$ Докажите, что $\varphi(a^n-1)$ делится на n для натуральных a и n.
- [3] Рассмотрим все числа вида $10^i 10^j$ при $0 \leqslant i < j \leqslant 99$. Сколько из них делятся на 1001?
- [4] Дано нечётное простое число p, а также простые числа q и r. Известно, что $q^r+1 \\\vdots p$. Докажите, что либо $p-1 \\\vdots 2r$, либо $q^2-1 \\\vdots p$.
- $\boxed{5}$ Сколько делителей от 1 до 200 имеет число $2^{239}-1$?
- [6] (а) Докажите, что в разложении на простые сомножители числа $2^q 1$, где q простое, любое число будет давать остаток 1 по модулю q.
 - (b) Выведите из этого, что простых чисел бесконечно много.

- Пусть a > 1, p > 2 и p простое. Докажите, что простые нечетные делители $a^p 1$ или делят a 1 или сравнимы с 1 по модулю 2p.
- 8 Докажите, что любой простой делитель числа $2^{2^k}+1$ сравним с 1 по модулю 2^{k+1} .
- [9] Даны натуральные числа a, n > 1. Докажите, что для каждого нечетного простого делителя p числа $a^{2^n} + 1$ число p 1 делится на 2^{n+1} .
- 10 Дано простое число p. Докажите, что $2^{2^p} 4$ делится на $2^p 1$.
- 11 Пусть p и q простые, q>5. Известно, что 2^p+3^p делится на q. Докажите, что q>2p.
- 12 Докажите, что при натуральном n > 1 число $2^n 1$ не делится на n.
- ПЗ Найдите все пары простых чисел p и q таких, что $(5^p 2^p)(5^q 2^q)$: pq.