Modelos Lineares Clássicos

Análise de Variância (ANOVA) de um fator

Fabio Cop (fabiocopf@gmail.com) Instituto do Mar - UNIFESP Última atualização em 18 de março de 2022

Conteúdo da aula

- 1. O modelo da ANOVA e as hipóteses estatísticas
- 2. Partição da Soma dos Quadrados (SQ)
- 3. Quadrados médios e graus de liberdade
- 4. Estatística *F* e teste de hipóteses
- 5. Um exemplo de ANOVA
- 6. A tabela da ANOVA
- 7. Testes a *posteriori* de comparação de médias
- 8. Ajustando a ANOVA no R

1. O modelo da ANOVA e as hipóteses estatísticas

$$Y_{ij} = \mu + A_i + \epsilon_{ij}$$

$$H_0: \mu_1=\mu_2=\mu_3=\ldots=\mu_k$$
 (HIPÓTESE NULA)

 H_a : ao menos um par de médias diferen entre si (HIPÓTESE ALTERNATIVA)

1. O modelo da ANOVA e as hipóteses estatísticas

Tratamentos				
A	В	С		
16.90	23.90	19.60		
20.90	30.40	13.90		
15.80	31.70	8.90		
28.00	30.90	0.90		
21.60	26.50	17.60		
20.64	28.68	12.18		

1. O modelo da ANOVA e as hipóteses estatísticas

- k=3 grupos: A, B ou C
- $n_1=n_2=n_3=n=5$ observações por grupo. Denotamos por n_{ij} o número de
- $N = k \times n = n_1 + n_2 + n_3 = 15$
- + $\overline{Y}_A=20.64$; $\overline{Y}_B=28.68$, $\overline{Y}_D=12.18$ estimam μ_1 , μ_2 e μ_3
- \overline{Y} : a Grande Média estima μ .

$$\overline{\overline{Y}} = \sum_{j=1}^k \sum_{i=1}^n rac{Y_{ij}}{N} = rac{\overline{Y_1} + \overline{Y_2} + \overline{Y_3}}{3} = 20.5$$

2. Partição da Soma dos Quadrados (SQ)

i. Soma dos Quadrados Totais - SQ_{Total}

$$SQ_{Total} = \sum_{j=1}^k \sum_{i=1}^n (Y_{ij} - \overline{\overline{Y}})^2$$

ii. Soma dos Quadrados dos Tratamentos - SQ_{Trat} :

$$SQ_{Trat} = \sum_{j=1}^k \sum_{i=1}^{n_j} (\overline{\overline{Y}}_j - \overline{\overline{\overline{Y}}})^2 = \sum_{j=1}^k n_j (\overline{\overline{Y}}_j - \overline{\overline{\overline{Y}}})^2$$

iii. Soma dos Quadrados dos Resíduos - SQ_{Res}

$$SQ_{Res} = \sum_{j=1}^k \sum_{i=1}^{n_j} (Y_{ij} - \overline{Y}_j)^2$$

2. Partição da Soma dos Quadrados (SQ)

2. Partição da Soma dos Quadrados (SQ)

3. Quadrados médios e graus de liberdade

i. Quadrado médio total - QM_{Total}

$$QM_{Total} = rac{SQ_{Total}}{gl_{Total}}$$

ii. Quadrado médio entre tratamentos - QM_{Trat}

$$QM_{Trat} = rac{SQ_{Trat}}{gl_{Trat}}$$

iii. Quadrado médio dentro dos tratamentos - QM_{Res}

$$QM_{Res} = rac{SQ_{Res}}{gl_{Res}}$$

$$gl_{Total} = N - 1$$

$$gl_{Trat} = k - 1$$

$$gl_{Res} = N - k$$

$$gl_{Total} = gl_{Trat} + gl_{Res} = (k-1) + (N-K) = N-1$$

4. Estatística *F* e teste de hipóteses

$$F_{calculado} = rac{QM_{Trat}}{QM_{Res}}$$

 $F_{calculado}$ é comparado ao nível de significância lpha

Se p>lpha --> **ACEITAMOS** H_0 Se $p\lelpha$ --> **REJEITAMOS** H_0 (e assumimos H_a como verdadeira)

5. Um exemplo de ANOVA

$$H_0:\mu_1=\mu_2=\mu_3$$

 H_a : ao menos um μ é diferente

$$lpha=0.05$$

Tratamentos				
A	В	С		
16.90	23.90	19.60		
20.90	30.40	13.90		
15.80	31.70	8.90		
28.00	30.90	0.90		
21.60	26.50	17.60		
20.64	28.68	12.18		

5. Um exemplo de ANOVA

1. Somatórios dos quadrados

$$SQ_{Trat} = \sum_{j=1}^{k} \sum_{i=1}^{n_j} (\overline{\overline{Y}}_j - \overline{\overline{\overline{Y}}})^2 = 680.772$$

$$SQ_{Res} = \sum_{j=1}^k \sum_{i=1}^{n_j} (Y_{ij} - \overline{Y}_j)^2 = 362.568$$

2. Graus de liberdade

$$gl_{Trat} = k - 1 = 2$$

$$gl_{Res} = N - k = 12$$

3. Quadrados médios

$$QM_{Trat} = rac{SQ_{Trat}}{gl_{Trat}} = 340.386$$

$$QM_{Res}=rac{SQ_{Res}}{ql_{Res}}=30.214$$

4. Estatística F

$$F_{calculado} = rac{QM_{Trat}}{QM_{Res}} = 11.266$$

6. A tabela da ANOVA

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Χ	2	680.772	340.386	11.26584	0.0017611
Residuals	12	362.568	30.214	NA	NA

Df: graus de liberdade

Sum Sq: soma dos quadrados

Mean Sq: quadrados médios

F value: valor de $F_{calculado}$

Pr(>F): valor de p

7. Testes a *posteriori* de comparação de médias

$$DHS_{12} = q\sqrt{\left(rac{1}{n_1} + rac{1}{n_2}
ight)QM_{Res}}$$

 DHS_{12} : Diferença Honesta Significativa entre s médias 1 e 2. Computadopara cada par de médias.

q: tabela da distribuição de amplitude normalizada (studentized range q table).

 QM_{Res} : é quadrado médio do resíduo obtido na ANOVA.

7. Testes a *posteriori* de comparação de médias

$$DHS = 3.773 \sqrt{\left(rac{1}{5} + rac{1}{5}
ight) 30.214} = 13.116$$

	A	В	С
A	0.00	NA	NA
В	8.04	0.0	NA
С	8.46	16.5	0

8. Ajustando a ANOVA no R

```
ajuste = aov(Y ~ X, data = Tab)
anova(ajuste)
```

```
alfa = 0.05
TukeyHSD(ajuste, conf.level = 1-alfa)
```

```
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = Y ~ X, data = Tab)
##
## $X
## diff lwr upr p adj
## B-A 8.04 -1.234654 17.3146545 0.0923564
## C-A -8.46 -17.734654 0.8146545 0.0751622
## C-B -16.50 -25.774654 -7.2253455 0.0012751
```