my-ebook

Parmeshvar

2025-07-06

Table of contents

1	Introduction	3					
	1.1 Lecture notes	3					
	1.2 Moodle website	3					
2 week 6							
3 (Remove or comment out any previous code chunk that used input\$lambda or S specific code for barplot)							

1 Introduction

Introduction

DR.Harsh Pradhan, [Phone: +91-9930034241 , Email: harsh.231284@gmail.com], Institute of Management Studies, Banaras Hindu University, Address: 18-GF, Jaipuria Enclave, Kaushambhi, Ghaziabad, India, 2010

Interest: Goal Orientation Job Performance Consumer Behavior Behavioral Finance Bibiliometric Analysis Options as Derivatives Statistics Indian Knowledge System,

Orcid ID Google Scholar Youtube ID

Academic Profile

Courses offered:

- 1. Free online course, four weeks (MOOC), enrollments open: Introduction to Bayesian Data Analysis
- 2. Short (four-hour) tutorial on Bayesian statistics, taught at EMLAR 2022: here
- 3. Introduction to (frequentist) statistics
- 4. Introduction to Bayesian data analysis for cognitive science
- 5. BDA cover

1.1 Lecture notes

Download from here.

1.2 Moodle website

All communications with students in Potsdam will be done through this website. # Schedule

	Main				
WeekLecti	uffeopic	Subtopic	\mathbf{Video}	PDF Resource	
Week 1	Descriptive Statis- tics	Central Tendency	Video	Week 2.pdf	
2		Measure of Variability	Video	Same as above	
3	Descriptive Statis- tics	Describing Data	Video	Same as above	
4	Descriptive Statis- tics	Probability	Video	Same as above	
5	Descriptive Statis- tics	Distribution	Video	Same as above	
Week 1 3	Descriptive Statis- tics	(Normal Distribution)	Video	Week 3.pdf	
2	Descriptive Statis- tics	Measuring Divergence	Video	Same as above	
3	Inferential Statis- tics	Sample and Population	Video	Same as above	
4	Inferential Statis- tics	Model Fit	Video	Same as above	
5	Inferential Statis- tics	Hypothesis and Error	Video	Same as above	
Week 1 4	Terms of Statis- tics	Terms of Statistics	Video	Week 4.pdf	
2	Terms of Statis- tics	T-Test	Video	Same as above	
3	Terms of Statis- tics	T-Test in Detail	Video	Same as above	
4	ANOVA	ANOVA	Video	Same as above	
Week 1 5	ANOVA	Example of ANOVA	Video	Week 5.pdf	
2	ANOVA	Types of ANOVA	Video	Same as above	

	Main			
WeekLect	uffeopic	Subtopic	${f Video}$	PDF Resource
3	Correlatio	nIntroduction	Video	Same as above
		to		
		Correlation		
4	Correlation	on Regression	Video	Same as above
		(Part 1)		
5	Correlation	on Regression	Video	Same as above
	(Part 2)			
Week 1	Correlation	onR Script for	Video	Week 6.pdf
5		Regression		
2	Chi	Chi Square	Video	Same as above
	Square			
3	Chi	Chi Square	Video	Same as above
4	Square	Test	37: 1	
4	Logistic	Regression	Video	Same as above
-	Function	Function	3.7: 1	G 1
5	Logistic Function	Distribution	Video	Same as above
Week 1	Time	Intro to Time	Video	Week 7 ndf
vveek 1 7	Series	Series	Video	Week 7.pdf
2	Time	Conditional	Video	Same as above
2	Series	Probability	v ideo	Dame as above
3	Time	Additional	Video	Same as above
0	Series	Concepts	Vidoo	
4	Time	Distribution	Video	Same as above
	Series			
5	Time	Poisson	Video	Same as above
	Series	Distribution		
6	Index	Price &	Video	Same as above
	Num-	Quantity		
	bers	Index		
7	Decision	Risk/Uncertain	nt y ,ideo	Same as above
	Environ-	Bayes, Trees		
	ments			
8	Time	Components,	Video	Same as above
	Series	Trend,		
	Analysis	Seasonality		
9	Time	Least Squares	Video	Same as above
	Series	Method		
X7 1 1	Analysis	D 1 /T '1	1 7: 1	W. 1 0 16
Week 1	Effect	Package/Librar	ryv ideo	Week 8.pdf
3	Size &			
	Docu- menta-			
	tion			

WeekLect	Main uffeopic	Subtopic	Video	PDF Resource
2	Effect Size &		Video	Same as above
	Docu- menta- tion			
3	Effect Size & Docu- menta- tion	Flexplot	Video	Same as above
4	Effect Size & Docu- menta- tion	Functions	Video	Same as above
5	Effect Size & Documentation	R Shiny & R Markdown	Video	Same as above
6	Effect Size & Documenta- tion	Application with Real Datasets	Video	Same as above
7	Effect Size & Interpre- tation	Importance in Testing	Video	Same as above
8	Effect Size & Interpre- tation	Installing dplyr, ggplot2	Video	Same as above
9	Effect Size & Interpre- tation	Visual Model Interpreta- tion	Video	Same as above
10	Effect Size & Interpre- tation	Creating/Using Functions	Video	Same as above
11	Effect Size & Interpre- tation	Report, Dashboard, Interactivity	Video	Same as above

2 week 6

Table of Contents

Introduction

Chi-Square Test of Goodness of Fit

Chi-Square Test of Independence

Non-Parametric Tests

Non-Linear and Logistic Regression

Poisson & Negative Binomial Distribution

Robust and Bayesian Regression

Model Fit Diagnostics

Exercises, Simulations, & Datasets

Summary

References

1. Introduction

This Week 6 eBook focuses on advanced statistical procedures for analyzing categorical and non-normal data using RKWard, a GUI-based frontend to R.

We address: - When traditional parametric methods fail - Tools for ordinal, non-linear, or count data - How to interpret diagnostic plots, residuals, and goodness-of-fit metrics

2. Chi-Square Test of Goodness of Fit

Theory Refresher

Use this test to see if observed frequency data matches a theoretical distribution (e.g., uniform, binomial, Poisson).

Example 1: Dice Fairness

obs < c(9, 7, 6, 4, 5, 5) expected < rep(sum(obs)/6, 6) chisq.test(obs, p = rep(1/6, 6)) Example 2: Simulated Biased Die (Monte Carlo)

set.seed(42) sim_data <- sample(1:6, size = 600, replace = TRUE, prob = c(0.1, 0.1, 0.2, 0.2, 0.2)) table_sim <- table(sim_data) chisq.test(table_sim, p = rep(1/6, 6)) Example 3: Poisson-GOF for Counts

library(MASS) data_counts <- rpois(100, lambda = 3) obs_table <- table(data_counts) exp_probs <- dpois(as.numeric(names(obs_table)), lambda = 3) chisq.test(obs_table, p = exp_probs/sum(exp_probs)) Visualizing Frequencies

barplot(rbind(obs, expected), beside = TRUE, col = c("skyblue", "orange"), legend.text = c("Observed", "Expected"), main = "Dice Roll Distribution") 3. Chi-Square Test of Independence Purpose Test whether two categorical variables are independent.

Example 1: Gender vs Preference

df <- data.frame(Gender = c("Male", "Male", "Female", "Female"), Laptop = c("Gaming", "Non-Gaming", "Gaming", "Non-Gaming"), Freq = c(27, 8, 5, 7)) table_df <- xtabs(Freq \sim Gender + Laptop, data = df) chisq.test(table_df) Example 2: Titanic Survival

library(datasets) data(Titanic) chisq.test(Titanic) Example 3: Simulated Survey

set.seed(123) survey <- data.frame(Smoke = sample(c("Yes", "No"), 100, replace = TRUE), Exer = sample(c("None", "Some", "Regular"), 100, replace = TRUE)) tb <- table(surveySmoke, surveyExer) chisq.test(tb) Association Strength

library(vcd) assocstats(tb) 4. Non-Parametric Tests Why Use Them? Parametric assumptions (normality, equal variance) are not always met. Non-parametric tests allow analysis without these constraints.

Common Tests Parametric Non-Parametric Equivalent One-sample t-test Wilcoxon Signed-Rank Test Two-sample t-test Mann-Whitney U Test One-Way ANOVA Kruskal-Wallis Test Two-Way ANOVA Friedman Test Pearson Correlation Spearman Rank Correlation

Example 1: Wilcoxon Test (Single Sample)

data <- c(3.1, 3.6, 3.8, 4.0, 3.5) wilcox.test(data, mu = 3.5) Example 2: Mann-Whitney (Between Groups)

group_a <- c(10, 12, 14, 16) group_b <- c(8, 9, 10, 11) wilcox.test(group_a, group_b) Example 3: Kruskal-Wallis on Iris

kruskal.test(Sepal.Length ~ Species, data = iris) Example 4: Spearman Rank Correlation

cor.test(irisSepal.Length, irisPetal.Length, method = "spearman") Next: Part 2 — covering:

Non-Linear Regression

Logistic Regression

Poisson & Negative Binomial

Robust & Bayesian Regression

Model Fit Diagnostics

Simulations, Interactive Plots

5. Non-Linear and Logistic Regression

5.1 Non-Linear Regression

Used when data shows curvature, not a straight-line relationship.

Example 1: Quadratic Fit

"'r x <- 1:10 y <- 5 + 2 * x^2 + rnorm(10, 0, 10) model_quad <- lm(y ~ poly(x, 2, raw = TRUE)) summary(model_quad) plot(x, y) lines(x, predict(model_quad), col = "red") Example 2: Exponential Growth

 $x<-1:20\ y<-2*\exp(0.3*x)+rnorm(20,0,10)\ df<-data.frame(x,y)\ model_exp<-nls(y <math display="inline">\sim a*\exp(b*x),\ data=df,\ start=list(a=1,\,b=0.1))\ summary(model_exp)\ 5.2\ Logistic\ Regression\ Example:\ Student\ Pass/Fail$

students <- data.frame(Hours = c(1,2,3,4,5,6,7,8,9,10), Pass = c(0,0,0,1,1,1,1,1,1,1))

 $\log_{model} <- glm(Pass \sim Hours, data = students, family = binomial()) summary(log_model)$ Predict Probabilities

 ${\rm students} prob < -predict(log_model, type = "response") plot(students {\rm Hours, \ students \$prob, \ type = "b", \ col = "blue")} \quad {\rm ROC \ Curve}$

library(pROC) roc_obj <- roc(studentsPass, studentsprob) plot(roc_obj) auc(roc_obj) 6. Poisson & Negative Binomial Distribution ## 6.1 Poisson: Modeling Rare Events

```
set.seed(123)
lambda <- 3
data_pois <- rpois(100, lambda = lambda)
observed <- table(data_pois)
expected <- dpois(as.numeric(names(observed)), lambda = lambda)
chisq.test(observed, p = expected / sum(expected))</pre>
```

Warning in chisq.test(observed, p = expected/sum(expected)): Chi-squared approximation may be incorrect

Chi-squared test for given probabilities

data: observed
X-squared = 3.0235, df = 8, p-value = 0.9329

Test Fit

observed <- table(data_pois) expected <- dpois(as.numeric(names(observed)), lambda = lambda) chisq.test(observed, p = expected / sum(expected)) 6.2 Negative Binomial: Handling Overdispersion

library(MASS) nb_data <- rnbinom(100, size = 5, mu = 4) hist(nb_data, col = "darkred", main = "Negative Binomial") Compare Fit

mean(data_pois); var(data_pois) # Poisson: mean variance mean(nb_data); var(nb_data) # NB: var > mean 7. Robust and Bayesian Regression 7.1 Robust Regression

library(MASS) x <- 1:10 y <- 2*x + rnorm(10) y[10] <- 100 # Outlier

 $model_rlm <- rlm(y \sim x) summary(model_rlm) plot(x, y) abline(model_rlm, col = "red") 7.2$ Bayesian Regression (brms)

library(brms) data <- data.frame(x = rnorm(100), y = rnorm(100)) model_brm <- brm(y \sim x, data = data, family = gaussian(), chains = 2, iter = 1000) summary(model_brm) plot(model_brm) 8. Model Fit Diagnostics AIC & BIC

AIC(model_quad, log_model) BIC(model_quad, log_model) Residual Plots

par(mfrow=c(2,2)) plot(log_model) Durbin-Watson Test

library(car) durbinWatsonTest(log_model) 9. Exercises, Simulations, & Datasets Challenge 1: Titanic Chi-Square

chisq.test(Titanic) Challenge 2: Spearman on mtcars

cor.test(mtcarsmpg, mtcarshp, method = "spearman") Challenge 3: Logistic + Polynomial

 $mtcarsam < -as.factor(mtcarsam) log_mod <- glm(am ~ poly(mpg, 2), data = mtcars, family = binomial()) summary(log_mod) Challenge 4: Negative Binomial Fit$

library(MASS) data <- rnegbin(100, theta = 2) fit_nb <- glm.nb(data \sim 1) summary(fit_nb) 10. Summary This module brought together:

Chi-Square Tests for independence and fit

Non-parametric alternatives to parametric tests

Logistic Regression for classification

Poisson and NB distributions for count data

Robust and Bayesian inference for resistant modeling

Diagnostics to ensure model quality

References

Dr. Harsh Pradhan, BHU Lecture Notes R Core Team (2024). The R Project for Statistical Computing. MASS, brms, car, vcd, performance, tidyverse packages Text: Field, A. (2013). Discovering Statistics Using R

Next Steps

Coming in Part 3:

Multinomial and ordinal logistic regression

Zero-inflated Poisson (ZIP) and hurdle models

Bootstrapping and permutation tests

RMarkdown interactivity: sliders, code widgets

Custom diagnostic dashboards

Expanded regression use cases: finance, healthcare, social science

Brute-force simulations, grid search tuning, multiple datasets

Data cleaning + wrangling using dplyr, janitor, and tidymodels

12. Advanced Logistic Models

12.1 Multinomial Logistic Regression

Used when the outcome variable has more than two categories (e.g., "Low", "Medium", "High").

library(nnet) data(iris) iris $Size < -cut(irisSepal.Length, breaks=3, labels=c("Short", "Medium", "Long")) model_multi <- multinom(Size ~ Sepal.Width + Petal.Length, data=iris) summary(model_multi) 12.2 Ordinal Logistic Regression For ordered categories.$

library(MASS) housing <- data.frame(Sat = factor(sample(1:3, 100, replace = TRUE), labels = c("Low", "Med", "High")), Infl = sample(1:5, 100, replace = TRUE), Type = sample(c("Tower", "Apartment", "House"), 100, replace = TRUE)) model_ord <- polr(Sat ~ Infl + Type, data = housing, Hess=TRUE) summary(model_ord) 13. Zero-Inflated and Hurdle Models 13.1 Zero-Inflated Poisson (ZIP) Used when count data has excess zeros.

library(pscl) data("bioChemists", package = "pscl") zip_model <- zeroinfl(art ~ fem + mar + kid5 + phd + ment, data = bioChemists, dist = "poisson") summary(zip_model) 13.2 Hurdle Model

hurdle_model <- hurdle(art \sim fem + mar + kid5 + phd + ment, data = bioChemists) summary(hurdle_model) 14. Bootstrapping & Permutation Testing 14.1 Bootstrapping a Mean

library(boot) data <- rnorm(50, mean = 10, sd = 3)

mean fn <- function(data, indices) { d <- data[indices] return(mean(d)) }

boot_out <- boot(data = data, statistic = mean_fn, R = 1000) boot.ci(boot_out, type = "bca") 14.2 Permutation Test Example

set.seed(100) group1 < rnorm(20, mean = 50) group2 < rnorm(20, mean = 55)

obs diff <- mean(group1) - mean(group2)

combined <- c(group1, group2) perm_diffs <- replicate(5000, { shuffled <- sample(combined) mean(shuffled[1:20]) - mean(shuffled[21:40]) })

p_value <- mean(abs(perm_diffs) >= abs(obs_diff)) hist(perm_diffs, main = "Permutation Test", col = "lightblue") abline(v = obs_diff, col = "red") 15. Interactive Widgets with Quarto Sliders

barplot(dpois(0:10, 3), names.arg = 0:10, main = "Poisson Distribution with = 3", col = "stee

Poisson Distribution with . = 3

3 (Remove or comment out any previous code chunk that used input\$lambda or Shiny-specific code for barplot)

16. Data Wrangling Pipelines Cleaning & Summarizing

Visual tools:

Core Packages:

plotly, ggplot2, performance, brms

```
library(dplyr) library(janitor)
cleaned <- iris %>% clean_names() %>% group_by(species) %>% summarise(across(everything(),
mean, .names = "avg {.col}")) 17. Visual Diagnostics 17.1 Residual Diagnostics
library(performance) model <- lm(mpg ~ wt + hp, data = mtcars) performance::check model(model)
17.2 Leverage & Influence
influence.measures(model) plot(hatvalues(model), main = "Leverage Values") 18. Grid Search and
Cross Validation Using caret package
library(caret) data(iris)
train_control <- trainControl(method = "cv", number = 5) grid <- expand.grid(.k = seq(3, 15,
by = 2)
model knn <- train(Species ~.., data = iris, method = "knn", trControl = train control, tuneGrid
= grid) plot(model_knn) 19. Case Study: Healthcare Outcomes Predicting hospital readmission
using logistic regression.
set.seed(42) df < -data.frame(age = sample(20:90, 200, replace = TRUE), diabetes = sample(c(0,1), constant = sample(c(0,
200, replace = TRUE), readmit = sample(c(0,1), 200, replace = TRUE))
logit <- glm(readmit ~ age + diabetes, data = df, family = binomial()) summary(logit) Plot
Prediction
dfpred < -predict(logit, type = "response")plot(dfage, dfpred, col = dfdiabetes + 1, pch = 19,
xlab = "Age", ylab = "Predicted Probability") 20. Massive Simulation: Chi-Square Distribution
set.seed(123) sim data <- replicate(10000, { obs <- rpois(6, lambda = 10) exp <- rep(mean(obs),
6) sum((obs - exp)^2 / exp) \})
hist(sim_data, breaks = 50, col = "gray", main = "Chi-Square Simulated Distribution") abline(v
= qchisq(0.95, df = 5), col = "red") 21. Resources for Practice Datasets:
mtcars, iris, Titanic, bioChemists, airquality, faithful
```

caret, pscl, nnet, MASS, boot, dplyr, tidymodels, vcd

Final Thoughts

Testing relationships (Chi-Square)

Modeling categories (Logistic, Ordinal, Multinomial)

Working with counts (Poisson, ZIP, NB)

Handling noise and outliers (Robust Regression)

Going Bayesian (brms + Stan)

Validating rigorously (cross-validation, bootstrap, ROC, AIC/BIC)

This eBook can be extended to predictive modeling, real-world dashboards, and reproducible research.

23. Project Template: Real-World Case Study Framework

Objective

Develop an end-to-end statistical analysis pipeline using tools covered in this course.

Dataset: Custom or Open Data Portal

Options: - UCI Machine Learning Repository - Kaggle Datasets - Indian Government Data Portals (data.gov.in)

Steps:

Step 1: Problem Definition

Define a question like: > "Is there an association between education level and voting preference?"

Step 2: Data Cleaning

library(tidyverse) data <- read.csv("your_dataset.csv") data_clean <- data %>% janitor::clean_names() %>% drop_na() Step 3: EDA (Exploratory Data Analysis)

ggplot(data_clean, aes(x = variable1, fill = factor(variable2))) + geom_bar(position = "dodge") + theme_minimal() Step 4: Modeling Choose one or more:

Chi-square (for independence)

Logistic Regression (for binary outcomes)

Poisson/NB (for count outcomes)

Non-parametric (when assumptions fail)

Step 5: Validation

library(performance) check_model(your_model) Step 6: Reporting Use:

Tables

Model summaries

AIC/BIC

```
Residuals
R<sup>2</sup> (if applicable)
summary(your_model) 24. Visual Appendix: Model Diagnostic Gallery library(performance) li-
brary(see)
Example with linear model
model < -lm(mpg \sim hp + wt, data = mtcars)
Model diagnostics
check model(model) 25. Bonus: Live Simulation Tool with Shiny
Edit library(shiny)
ui <- fluidPage( titlePanel("Poisson Simulator"), sidebarLayout( sidebarPanel( sliderIn-
put("lambda", "Lambda (Rate)", 1, 10, value = 3) ), mainPanel( plotOutput("poisPlot") )
) )
server <- function(input, output) { # (Poisson barplot code removed for PDF compatibility) }
shinyApp(ui = ui, server = server) 26. Advanced Topics for Further Exploration Topic Package De-
scription Bayesian Multilevel brms, rstan Hierarchical regression models Structural Equation lavaan
Latent variable modeling Time Series Forecasting forecast, tsibble ARIMA, exponential smoothing
```

Mixed-Effects Models lme4, nlme Random intercept/slope models Missing Data Handling mice, missForest Imputation strategies High-Dimensional Data glmnet Lasso and Ridge regression