3-3 Linearity Properties

The title of our book includes "Inear" circuits What is a linear circuit?

One that contains only linear elements and independent sources.

For a linear circuit output is a linear function of the input.

homogeneity, output α input (also called proportionality) $f(kx) = k f(x) \qquad \text{Only applies when input is}$ voltage or current. increase in put output increases k times k times

* additivity *

$$f(x_1+x_2) = f(x_1) + f(x_2)$$

This is called superposition.

Example

If the input current is is x If the output current is is y

This is a current divider so

$$i_0 = \frac{R_1}{R_1 + R_2} i_S$$

can be written as $y = \frac{R_1}{R_1 + R_2} \times$

this is k the construct of proportionality Also called gain Example 3-10

Given the bridge circuit below

- (a) Find the proportionality constant K in the input-output relationship $v_0 = kv_5$.
- (b) Find the sign of K when R2R3> R1R4, R2R3 = R1 R4, and R2R3 < R1 R4.
- (a) This circuit is two side by side voltage dividers. Using the voltage division rule

$$V_A = \frac{R_3}{R_1 + R_3} V_5 \qquad V_B = \frac{R_4}{R_2 + R_4} V_5$$

$$v_0 = v_A - v_B = \left(\frac{R_3}{R_1 + R_3} - \frac{R_4}{R_2 + R_4}\right)v_S = \frac{R_2R_3 + R_3R_4 - R_1R_4 - R_3R_4}{(R_1 + R_3)(R_2 + R_4)}v_S$$

$$v_0 = \frac{R_2 R_3 - R_1 R_4}{(R_1 + R_3)(R_2 + R_4)} v_5$$

proportionality constant K

(b)
$$K>0$$
 if $R_2R_3>R_1R_4$
 $K=0$ if $R_2R_3=R_1R_4$ — this is called a balanced bridge
 $K<0$ if $R_2R_3< R_1R_4$

Unit output method

use proportionality property to find k.

Let output = 1 (amp or volt) and determine corresponding input.

Additivity

output of a circuit with multiple inputs can be written as a linear combination of the inputs.

use KCL@A
$$\sum i = 0$$
 $+\frac{v_s - v_A}{R_1} + i_s - \frac{v_A}{R_2} = 0$

Rearranging $\left[\frac{1}{R_1} + \frac{1}{R_2}\right]v_A = \frac{v_s}{R_1} + i_s$
 $v_0 = v_A = \left[\frac{R_2}{R_1 + R_2}\right]v_s + \left[\frac{R_1R_2}{R_1 + R_2}\right]i_s$
 $i_1 \quad y = k_1 \times i_1 + k_2 \times i_2$

Use the unit output method to find vo.

By inspection to is the voltage across the 2012 resistor so $i_0 = \frac{v}{R} = \frac{1}{20} = .05 \text{ A}$

$$KCL@B$$
 $\sum_{i=0}^{\infty} i=0$ $i_1-i_0=0 \Rightarrow i_1=i_0=.05A$

use ohm's Law to find vi

KYL anound
$$L_2$$
 $\sum_{i=0}^{\infty} v_i = 0$ $v_2 + v_1 + v_0 = 0$ $v_2 + 0.5 + 1 = 0$ $v_2 = 1.5 \text{ V}$

Ohm's Law
$$i_2 = \frac{v_2}{R_2} = \frac{1.5}{15} = 0.1 \text{ A}$$

$$kcl@A \ge i=0$$
 $+i_3-i_2-i=0$
 $i_3-0.1-.05=0$
 $i_3=0.15A$

KVL around L1
$$-v_5 + v_3 + v_2 = 0$$

 $v_5 = v_3 + v_2 = 1.5 + 1.5 = 3V$.
 $V_5 = v_3 + v_2 = 1.5 + 1.5 = 3V$.
 $V_6 = v_6 = \frac{1}{3}$ and output for $v_5 = 5$ is $v_6 = K = \frac{1}{3} = \frac{5}{3}$

$$K = \frac{\sqrt{6}}{\sqrt{5}} = \frac{1}{3} \text{ and output for } \sqrt{5} = 5 \text{ is } \sqrt{6} = K \sqrt{5} = \frac{1}{3} = \frac{1}{3}$$