FSM Design Patterns

Lab 6, ESDM

Objective

Using the Stateflow tool in Simulink to model to implement simple design requirements which are very often encountered in practice.

Theoretical aspects

TBD. See the Lectures.

In this lab you will implement:

- Signal debouncing
 - One-sided
 - Two-sided
- Minimum Timer

Exercises

- 1. Design a FSM in Stateflow with one input UserCommand and one output MotorCommand for the following requirements:
 - 1. The motor shall be started (MotorCommand = TRUE) as soon as the input UserCommand becomes TRUE
 - 2. The motor shall be stopped (MotorCommand = FALSE) when the input UserCommand is FALSE for a duration of at least CP_DbounceOffTime (default value = 1 second).
- 2. Test your design: put appropriate inputs and observe the output signals.
- 3. Design a FSM in Stateflow with one input Voltage and one output OvervoltageError for the following requirements:

- 1. The error flag OvervoltageError shall be set when input Voltage exceeds CP_MaxVoltage for at least CP_DebounceOnTime
- 2. The error flag OvervoltageError shall be cleared when input Voltage is below CP_MaxVoltage for at least CP_DebounceOffTime
- 4. Test your design: put appropriate inputs and observe the output signals.
- 5. How would you add **hysteresis** to the previous block?
- 6. Design a FSM in Stateflow with one input UserCommand and one output ActivateHighBeam for the following requirements:
 - 1. The High Beam shall be started (ActivateHighBeam = TRUE) as soon as the input UserCommand becomes TRUE, if they were stopped for a duration of at least CP MinimumOffDelay until the current moment.
 - 2. The High Beam shall be stopped (MotorCommand = FALSE) as soon as the input UserCommand is FALSE
 - 3. When the High Beam is stopped, no activation is allowed for at least CP_MinimumOffDelay afterwards.
- 7. Test your design: put appropriate inputs and observe the output signals.
- 8. Design a FSM in Stateflow with two inputs MotorOn and LatchReached and one output LiftgateClosed, for the following requirements:
 - 1. The liftgate shall be considered open (LiftgateClosed = FALSE) always when MotorOn = TRUE.
 - 2. The liftgate shall be considered closed (LiftgateClosed = TRUE) when MotorOn = FALSE, if the input LatchReached becomes TRUE within CP MaxLatchDelay after MotorOn has become FALSE.
 - 3. If the input LatchReached becomes TRUE, but the motor was not started anytime within CP_MaxLatchDelay prior to this moment, it shall be ignored and the liftgate shall be considered open.
- 9. Test your design: put appropriate inputs and observe the output signals.