Forecasting
Retail Store
Sales Using
Key Predictors

Thomas Jung

Ryerson University

Introduction

- Retail generates Big Data
- Past:
 - Simple linear regressions
 - Humans choose factors
- Present:
 - Complex machine learning algorithms
 - Machines choose most relevant factors

Objective

- Predict retail sales volumes
- Predictive factors?
 - Historical sales
 - Date, holidays
 - Weather
 - Fuel prices, unemployment rates
- Machine learning algorithms
 - Multiple regression
 - XGBoost
 - Facebook Prophet

Dataset

File Name	Description	# of Attributes	# of Records
stores.csv	types and sizes of 45 Walmart stores	3	45
train.csv	weekly sales volumes between 2010-02-05 and 2012-11-01	5	421570
test.csv	test set for predicting sales volumes between 2012-11-02 and 2013-07-26	4	115064
features.csv	additional data related to store, department, and regional activity for the given dates including temperature, fuel price, markdowns, consumer price index, unemployment rate, and whether it is a holiday	12	8190

Dataset

Multiple Regression

- Fastest to implement
- Parametric; most restrictive
- Assumptions/requirements
 - linear relationships between DV & IVs
 - Residual errors must be normally distributed & homoscedastic
 - No multicollinearity

Multiple Regression

XGBoost

- Ensemble learning algorithm
- Less restrictive:
 - Non-parametric
 - Robust to outliers & missing values
 - Built-in cross validation & regularization
- Required most time to implement

Prophet

- Developed by Facebook
- Time series predictions
 - Non-linear trends
 - Seasonality & holiday effects
- Non-parametric
- Ability to add predictive regressors

Results

		PRED(30)
	RMSE (\$)	(% of cases with less than 30% error)
Multiple Regression	12,229	30.7%
XGBoost	4,086	65.9%
Prophet	507,580	42.1%

Actual Sales & Predicted Sales: All Stores (XGBoost)

Actual Sales & Predicted Sales: All Stores (XGBoost)

Actual Sales & Predicted Sales: Store 8 (XGBoost)

Actual Sales & Predicted Sales: Store 36 (XGBoost)

Actual Sales & Predicted Sales: Store 42 (XGBoost)

Actual Sales & Predicted Sales: Store 8, Dept 42 (XGBoost)

Date [2012]

Actual Sales & Predicted Sales: Store 8, Dept 67 (XGBoost)

Actual Sales & Predicted Sales: Store 8, Dept 79 (XGBoost)

Results: Prophet

Actual Sales & Predicted Sales: All Stores (Prophet)

Actual Sales & Predicted Sales: Store 22 (Prophet)

Actual Sales & Predicted Sales: Store 7 (Prophet)

Importance Matrix (XGBoost)

Conclusion

- XGBoost was the best algorithm for predictions
- Enterprise-wide level:
 - 65.9% of predictions had less than 30% error
- Store-wide level:
 - Larger store predictions more accurate than smaller stores
- Department-wide level:
 - Small- to medium-sized departments more accurate
- Large spikes in sales
 - Captured most of the time in terms of date
 - Not fully captured in terms of magnitude

Conclusion

- Hypothesis: weather, holidays, fuel prices, and unemployment rates can be used as predictors
- Results: these factors play a minor role
- Most predictive power
 - Size of the store
 - Store number
 - Department number
 - Week number

Thank you. Questions?

