5.2./
Sething 5.2.2: his $\hat{X}_{N} \rightarrow \hat{X}$, all delyptger ar \hat{X}_{N} becomen give og \hat{S}_{N} mot \hat{X}_{N} Lu \hat{Y}_{N} vare en deltptge. Du er $\hat{Y}_{N} = \hat{X}_{N}_{N}$ $\hat{X}_{N} \rightarrow \hat{X}$: for gitt \hat{E} finnes en \hat{N} s.s. $|\hat{X}_{N} - \hat{X}| \leq \hat{E}$ for \hat{N}_{N} . $|\hat{Y}_{N} - \hat{X}| = |\hat{X}_{N} - \hat{X}| \leq \hat{E}$ $(\hat{E} \gg \hat{N} \Rightarrow \hat{N}_{N} \geqslant \hat{N})$

Shal was: Finnes & ett tall; able intervallens;

1. Vive ford at det hopest finnes et tall

Anter for witigelier at det finnes to tall; a, i

Da er [a, b] også inventor alle intervallens,

Men da er [(In)] (1-a), som stiller mot In >0.

2. Sett In = [an, bn]. Siden Intervallens

an volumente, bn nedad begrenset.

an informergent, bn nedad begrenset.

an lamvergent, bn heart gent.

J Det er heart at back a og b

ingger: alle In, slike at a=6.

= a=b er det unite publiet inno i alle delinitervallens.

5.3.2 $f: (0, \Lambda \rightarrow \mathbb{R})$ $f(x) = \frac{1}{x}$ for kont: $a \in (0,1)$:

for $\varepsilon > 0$: $finn \delta = 0$. $|x-a| = \delta \Rightarrow |\frac{1}{x} - \frac{1}{4}| < \varepsilon$ $\Rightarrow f = 0$: $finn \delta = 0$. $|x-a| = \delta \Rightarrow |\frac{1}{x} - \frac{1}{4}| < \varepsilon$ $\Rightarrow f = 0$: $finn \delta = 0$: fi

$$\begin{array}{lll} 3.4.2 & \chi_{n+1} = 0.9 \ \chi_{n} + 0.01 \ y_{n} - 10 \end{array} \begin{array}{ll} \text{linearly i } (\chi, g) : \\ \chi = 0.9 \ \chi + 0.01 \ y - 10 \end{array} \\ \begin{pmatrix} \chi_{n+1} \\ y_{n+1} \end{pmatrix} = \begin{pmatrix} 0.9 \ 0.01 \\ -1.01 \ 1 \end{pmatrix} \begin{pmatrix} \chi_{n} \\ y_{n} \end{pmatrix} + \begin{pmatrix} -10 \\ 300 \end{pmatrix} \\ \text{likearly : } \chi_{n+1} = \chi_{n} \\ \chi_{n} + \chi_{n} = \chi_{n} \end{array} \begin{array}{ll} \chi_{n} + \chi_{n} = \chi_{n} \\ \chi_{n} + \chi_{n} = \chi_{n} \end{array} \begin{array}{ll} \chi_{n} + \chi_{n} = \chi_{n} \\ \chi_{n} + \chi_{n} = \chi_{n} \end{array} \begin{array}{ll} \chi_{n} + \chi_{n} = \chi_{n} \\ \chi_{n} + \chi_{n} = \chi_{n} \\ \chi_{n} + \chi_{n} = \chi_{n} \end{array} \begin{array}{ll} \chi_{n} + \chi_{n} = \chi_{n} \\ \chi_{n} + \chi_{n} = \chi_{n} \\ \chi_{n} + \chi_{n} = \chi_{n} \end{array} \begin{array}{ll} \chi_{n} + \chi_{n} = \chi_{n} \\ \chi_{n} + \chi_{n} = \chi_{n} \\ \chi_{n} + \chi_{n} = \chi_{n} \end{array} \begin{array}{ll} \chi_{n} + \chi_{n} = \chi_{n} \\ \chi_{n} + \chi_{n} = \chi_{n} \\ \chi_{n} + \chi_{n} = \chi_{n} \end{array} \begin{array}{ll} \chi_{n} + \chi_{n} = \chi_{n} \\ \chi_{n} + \chi_{n} = \chi_{n} \\ \chi_{n} + \chi_{n} = \chi_{n} \end{array} \begin{array}{ll} \chi_{n} + \chi_{n} = \chi_{n} \\ \chi_{n} + \chi_{n} = \chi_{n} \\ \chi_{n} + \chi_{n} = \chi_{n} \end{array} \begin{array}{ll} \chi_{n} + \chi_{n} = \chi_{n} \\ \chi_{n} + \chi_{n} = \chi_{n} \\ \chi_{n} + \chi_{n} = \chi_{n} \\ \chi_{n} + \chi_{n} = \chi_{n} \end{array} \begin{array}{ll} \chi_{n} + \chi_{n} = \chi_{n} \\ \chi_{n} + \chi_{n} + \chi_{n} = \chi_{n} \\ \chi_{n} + \chi_{n} + \chi_{n} \\ \chi_{n}$$

5.4.5
$$X_{n+1} = 2.2 \times_n (1 - x_n) + 0.01 \times_n y_n$$

 $y_{n+1} = 31 y_n (1 - y_n) - 0.02 \times_n y_n$
likewell (x_1y) : $X = 2.2 \times (1 - x) + 0.01 \times y$
 $y = 3.1 y(1 - y) - 0.02 \times y$
 $1 = 2.2(1 - x) + 0.01 y$ $\Rightarrow \times \approx 0.5986$
 $1 = 3.1(1 - y) - 0.02 \times y$