데이터베이스시스템

15 강 [9-14강] 연습문제 풀이 2

컴퓨터과학과 정재화 교수



다음 중 물리적 저장장치를 데이터 접근 속도가 느린 것에서 빠른 것 순서로 나열된 것은?

- 1 캐시-메인메모리-레지스터-자기디스크
- 2 자기디스크-메인메모리-레지스터-캐시
- 3 레지스터-캐시-메인메모리-자기디스크
- 4 메인메모리-자기디스크-레지스터-캐시







다음과 같은 테이블의 스키마에 대해 각 고정 길이 레코드에 할당되는 바이트 수는? (단, INT는 4바이트 길이를 갖는다)

| 속성   | 데이터타입    |
|------|----------|
| 회원번호 | CHAR(10) |
| 회원이름 | CHAR(45) |
| 나이   | INT      |
| 전화번호 | CHAR(13) |

**1** 4

**2** 68

**3** 70

**4** 72









### 다음은 어떤 파일구조에 대한 설명인가?

모든 레코드를 파일 내 임의의 위치에 저장하며, 저장하는 순서를 고려하지 않는 파일 구조

- <mark>1</mark> 힙 파일구조
- 2 순차 파일구조
- 3 클러스터링 파일구조
- 4 해시 파일구조





# 다음 중 가변 길이 레코드 방식이 필요한 이유가 아닌 것은?

- 1 레코드가 멀티셋(multiset)을 이용하는 컬럼을 가질 때
- 2 한 블록 내에 저장되는 레코드 유형이 둘 이상일 때
- 3 길이가 고정되지 않은 컬럼이 한 개 이상일 때
- **4** 레코드의 수정이 매우 자주 발생할 때







## 가변 길이 레코드를 저장하기 위해 파일 또는 블록의 헤더에 유지하는 다음과 같은 형식의 구조를 무엇이라고 하는가?



- 1 페이지 구조화
- 2 웹 페이지 구조
- 3 슬롯 페이지 구조
- 4 페이지 테스트



다음 중 요청된 레코드에 빠르게 접근할 수 있도록 하는 구조인 인덱스의 효율성에 대한 평가기준이 아닌 것은?

- 1 새로운 데이터 삽입 시 발생하는 인덱스 구조 유지 비용
- 2 인덱스를 통해 데이터를 찾고 접근하는데 걸리는 시간
- 3 인덱스를 저장하기 위해 부가적으로 필요한, 공간 비용
- <mark>4</mark> 사용자의 인덱스를 사용하는 질의 요청 빈도

출제범위



교재 9.1절





### 다음의 설명은 어떤 인덱스에 대한 설명인가?

모든 탐색키 값에 대해 탐색키 <값, 포인터> 쌍으로 구성된 인덱스 엔트리를 갖는 인덱스로 인덱스 파일의 크기가 커서 I/O 비용이 증가하여 탐색 시간이 오래 걸릴 수 있는 단점을 지님

- 1 일집 인덱스
- 2 희소 인덱스
- 3 해시 인덱스
- 4 다단계 인덱스









다음은 B+-트리의 예시이다. 이순신을 탐색하는 과정에서 거치는 포인터를 올바른 순서로 나열한 것은?





**3** 1,4,7,8 **4** 1,5,8



\_\_\_ **강의** 10강

### 위 그림에서 검색키를 버킷 주소에 대응시키는 h를 무엇이라고 하는가?



- 1 사용자 정의 함수
- **2** 해시 함수
- 3 도메인
- 4 대칭 함수









서로 다른 두 레코드  $R_1$ 과  $R_2$ 의 검색키가 h에 의해 동일한 버킷으로 대응되었을 때,  $R_1$ 과  $R_2$ 를 무엇이라고 하는가?



- 1 충돌
- 2 해싱
- 3 오버플로
- <mark>4</mark> 동거자



데이터베이스의 크기에 따라 버킷의 개수 즉,  $B_1$ ,  $B_2$ , ...,  $B_n$ 이 조절되는 형태의 해싱을 무엇이라고 하는가?



- <mark>1</mark> 동적 해싱
- 2 공간 해싱
- 3 '복합 해싱
- 4 정적 해싱



### 다음과 같은 테이블에 대해 성별 컬럼에 비트맵 인덱스를 생성할 때, '남자'에 대한 비트 열로 올바른 것은?

| 학번       | 성별 | 학과    |
|----------|----|-------|
| 20120451 | 남자 | 컴퓨터과학 |
| 20135132 | 남자 | 국어국문학 |
| 20132549 | 남자 | 컴퓨터과학 |
| 20145942 | 여자 | 행정학   |
| 20145315 | 남자 | 경제학   |
| 20156857 | 여자 | 컴퓨터과학 |
| 20153546 | 여자 | 경제학   |

1 1010010 2 0001011

3 0000101 4 1110100









다음 중 트랜잭션의 특성이라고 할 수 없는 것은?

- <mark>1</mark> 확장성
- 2 원자성
- 3 독립성
- 4 지속성

#### 출제범위

교재 10.1.2절





### 다음 중 트랜잭션을 동시에 실행시키는 목적에 대한 설명으로 옳지 않은 것은?

- 1 데이터베이스의 일관성이 향상된다.
- 2 데이터의 가용성을 향상시킬 수 있다.
- 3 트랜잭션의 대기시간을 감소시킬 수 있다.
- **4** 트랜잭션의 처리율과 자원의 이용률이 향상된다.







### 다음 빈 칸에 알맞은 말은?

스케줄에 대한 대기 그래프가 ( )을/를 포함하면, 그 스케줄은 교착상태에 있다는 것을 의미한다.

- 1 충돌
- 2 락
- 3 동시성
- **4** 사이클



# 다음 중 아래의 스케줄과 충돌 동등한 스케줄이 아닌 것은?

| T <sub>1</sub> | $T_2$    |
|----------------|----------|
|                | Write(A) |
|                | Read(A)  |
| Read(A)        |          |
|                | Read(B)  |
| Write(A)       |          |
|                | Write(B) |
| Read(B)        |          |
| Write(B)       |          |
|                |          |

 $T_2$ Write(A) Read(A) Read(A) Read(B) Write(A) Write(B) Read(B) Write(B)



## 다음 중 아래의 스케줄과 충돌 동등한 스케줄이 아닌 것은?

| $T_1$    | $T_2$    |
|----------|----------|
|          | Write(A) |
|          | Read(A)  |
| Read(A)  |          |
|          | Read(B)  |
| Write(A) |          |
|          | Write(B) |
| Read(B)  |          |
| Write(B) |          |
|          |          |

 $T_2$ Write(A) Read(A) Read(A) Read(B) Write(B) Write(A) Read(B) Write(B)



## 다음 중 아래의 스케줄과 충돌 동등한 스케줄이 아닌 것은?

| T <sub>1</sub> | T <sub>2</sub> |
|----------------|----------------|
|                | Write(A)       |
|                | Read(A)        |
| Read(A)        |                |
|                | Read(B)        |
| Write(A)       |                |
|                | Write(B)       |
| Read(B)        |                |
| Write(B)       |                |
|                |                |

 $T_2$ Write(A) Read(A) Read(B) Write(B) Read(A) Write(A) Read(B) Write(B)



# 다음 중 아래의 스케줄과 충돌 동등한 스케줄이 아닌 것은?

| T <sub>1</sub> | T <sub>2</sub> |
|----------------|----------------|
|                | Write(A)       |
|                | Read(A)        |
| Read(A)        |                |
|                | Read(B)        |
| Write(A)       |                |
|                | Write(B)       |
| Read(B)        |                |
| Write(B)       |                |
|                |                |

4  $T_2$ Read(A) Write(A) Read(A) Read(B) Write(A) Write(B) Read(B) Write(B)

### 다음은 무엇에 대한 설명인가?

두 트랜잭션 순서쌍  $T_i$ 와  $T_j$ 에 대해,  $T_i$ 가 기록한 데이터 항목을  $T_j$ 가 읽는다면,  $T_i$ 의 커밋이  $T_j$ 의 커밋보다 먼저 나타나는 스케줄

- 1 회복 가능한 스케줄
- 2 회복 불가능한 스케줄
- 3 연쇄적인 스케줄
- 4 비연쇄적인 스케줄

#### 출제범위

교재 10.1.7절





락 기반 규약을 사용하는 시스템에서 다음의 두 트랜잭션이 병렬적으로 실행될 경우 어떤 스케쥴이 작성될 수 있는가?

| <i>T</i> <sub>9</sub> | $T_{10}$     |
|-----------------------|--------------|
| LX(B)                 | LS(A)        |
| Read(B)               | Read(A)      |
| B := B - 1000         | LS(B)        |
| Write(B)              | Read(B)      |
| LX(A)                 | Display(A+B) |
| Read(A)               | UN(A)        |
| A := A + 1000         | UN(B)        |
| Write(A)              |              |
| UN(B)                 |              |
| UN(A)                 |              |
|                       |              |

- 1 충돌 직렬적 스케줄
- 2 회복 불가능한 스케줄
- 3 교착상태 포함 스케줄
- 4 비연쇄적 스케줄





교착상태 회복을 위해 교착상태의 트랜잭션 집합이 주어지면 교착상태를 해결하기 위해 롤백시킬 트랜잭션을 결정한다. 이때 롤백 대상 트랜잭션을 무엇이라 하는가?

- <mark>1</mark> 희생자
- 2 에러
- 3 체크 포인트
- 4 로그 레코드







Write 연산을 수행할 때 마다 데이터베이스 가 변경되기 전에 로그 레코드를 우선 로그에 추가하는 방식을 무엇이라고 하는가?

- 1 Non Read After Log
- 2 Non Read Ahead Log
- **3** Write After Log
- 4 Write Ahead Log







다음 중 체크포인트 발생 시 수행되는 작업이라고 할 수 없는 것은?

- <mark>1</mark> 다음 체크포인트 발생 주기를 결정한다.
- 2 현재 메인 메모리에 존재하는 모든 로그 레코드를 안정 저장장치에 기록한다.
- 3 수정된 모든 버퍼 블록을 디스크에 반영한다.
- 4 로그 레코드 <checkpoint ListT>를 안정 저장장치에 기록한다.







## checkpoint 로그 레코드의 ListT의 값으로 올바른 것은?

```
로그의 시작
< T_0, start >
< T_0, B, 3000, 3500 >
< T_1, start >
< checkpoint ListT >
< T_1, C, 1000, 900 >
< T_1, commit >
< T_2, start >
< T_2, A, 300, 500 >
< T_0, B, 3000 >
< T_0, abort >
```

1  $\{T_0, T_1, T_2, T_3\}$  $\{T_3\}$  $\{\mathsf{T}_0,\mathsf{T}_1\}$ **교재** 11.3.1절

## 위 로그를 통해 Redo를 수행해야 하는 트랜잭션은?

```
로그의 시작
< T_0, start >
< T_0, B, 3000, 3500 >
< T_1, start >
< checkpoint ListT >
< T_1, C, 1000, 900 >
< T_1, commit >
< T_2, start >
< T_2, A, 300, 500 >
< T_0, B, 3000 >
< T_0, abort >
```



