Statistical POS Tagging

Natalie Parde UIC CS 421

Statistical POS Tagging

- Predicts POS tags based on the probabilities of those tags occurring
- Probabilities can be based on various sources of information
- Doing this requires a training corpus
 - No probabilities associated with words not in the corpus!

Simple Statistical POS Tagger

- Using a training corpus, determine the most frequent tag for each word
- Assign POS tags to new words based on those frequencies
- Assign NN to new words for which there is no information from the training corpus

I saw a wampimuk at the zoo yesterday!

Simple Statistical POS Tagger

- Using a training corpus, determine the most frequent tag for each word
- Assign POS tags to new words based on those frequencies
- Assign NN to new words for which there is no information from the training corpus

Simple Statistical POS Tagger

- Using a training corpus, determine the most frequent tag for each word
- Assign POS tags to new words based on those frequencies

PRP

Assign NN to new words for which there is no information from the training corpus

saw a wampimuk at the zoo yesterday!

Simple Statistical POS Tagger

- This approach works reasonably well
 - Approximately 90% accuracy
- However, we can do much better!
- One way to improve upon our results is to use HMMs

HMM POS Tagger

- Selects the most likely tag sequence for a sequence of observed words, maximizing the following formula:
 - P(word | tag) * P(tag | previous n tags)
- More formally, letting $T = \{t_1, t_2, ..., t_n\}$ and $W = \{w_1, w_2, ..., w_n\}$, find the most probable sequence of tags T underlying the observed words W

What do we mean by "previous *n* tags"?

• For our example here, we'll assume *n*=1 and create a bigram HMM tagger, meaning we're only looking at a word/tag given the word/tag immediately preceding it

Bigram HMM Tagger

- To determine the tag t_i for a single word w_i :
 - $t_i = \underset{t_j \in \{t_0, t_1, \dots, t_{t-1}\}}{\operatorname{argmax}} P(t_j | t_{i-1}) P(w_i | t_j)$
- This means we need to be able to compute two probabilities:
 - The probability that the tag is t_j given that the previous tag is t_{i-1}
 - $P(t_j|t_{i-1})$
 - The probability that the word is w_i given that the tag is t_i
 - $P(w_i|t_j)$
- We can compute both of these from corpora like the Penn Treebank or the Brown Corpus
- Then, we can find the most optimal sequence of tags using the Viterbi algorithm!

Secretariat	is	expected	to	race	tomorrow
NNP	VBZ	VBN	TO	VB	NR
NNP	VBZ	VBN	TO	NN	NR

- Given two possible sequences of tags for the following sentence, what is the best way to tag the word "race"?
- Brown Corpus tagset:
 - Contains a specific tag for the infinitive use of "to"
 - Labels "tomorrow" as NR (adverbial noun) rather than NN (singular common noun)

Secretariat	is	expected	to	race	tomorrow
NNP	VBZ	VBN	TO	VB	NR
NNP	VBZ	VBN	TO	NN	NR

 Since we're creating a bigram HMM tagger and focusing on the word "race," we only need to be concerned with the subsequence "to race tomorrow"

We can thus create the following Markov chain:

Secretariat	is	expected	to	race	tomorrow
NNP	VBZ	VBN	TO	VB	NR
NNP	VBZ	VBN	TO	NN	NR

Secretariat expected is tomorrow to race TO VB **NNP VBZ VBN** NR TO NN**NNP VBZ VBN** NR

The specific transition probabilities we are interested in are:

Secretariat	is	expected	to	race	tomorrow
NNP	VBZ	VBN	TO	VB	NR
NNP	VBZ	VBN	TO	NN	NR

- We can compute the transition probabilities for a₂₁, a₂₃, a₃₄, and a₁₄ using frequency counts from the Brown Corpus
- $P(t_i|t_{i-1}) = \frac{c(t_{i-1}t_i)}{c(t_{i-1})}$

Secretariat	is	expected	to	race	tomorrow
NNP	VBZ	VBN	TO	VB	NR
NNP	VBZ	VBN	TO	NN	NR

- We can compute the transition probabilities for a₂₁, a₂₃, a₃₄, and a₁₄ using frequency counts from the Brown Corpus
- $P(t_i|t_{i-1}) = \frac{c(t_{i-1}t_i)}{c(t_{i-1})}$
- So, P(NN|TO) = C(TO NN) / C(TO) = 0.00047

Secretariat	is	expected	to	race	tomorrow
NNP	VBZ	VBN	TO	VB	NR
NNP	VBZ	VBN	ТО	NN	NR

- We can compute the transition probabilities for a₂₁, a₂₃, a₃₄, and a₁₄ using frequency counts from the Brown Corpus
- $P(t_i|t_{i-1}) = \frac{c(t_{i-1}t_i)}{c(t_{i-1})}$
- So, P(NN|TO) = C(TO NN) / C(TO) = 0.00047
- Likewise, P(VB|TO) = C(TO VB) / C(TO) = 0.83

Secretariat	is	expected	to	race	tomorrow
NNP	VBZ	VBN	TO	VB	NR
NNP	VBZ	VBN	TO	NN	NR

- We can compute the transition probabilities for a₂₁, a₂₃, a₃₄, and a₁₄ using frequency counts from the Brown Corpus
- $P(t_i|t_{i-1}) = \frac{c(t_{i-1}t_i)}{c(t_{i-1})}$
- So, P(NN|TO) = C(TO NN) / C(TO) = 0.00047
- Likewise, P(VB|TO) = C(TO VB) / C(TO) = 0.83
- P(NR|VB) = C(VB NR) / C(VB) = 0.0027

Secretariat	is	expected	to	race	tomorrow
NNP	VBZ	VBN	TO	VB	NR
NNP	VBZ	VBN	ТО	NN	NR

- We can compute the transition probabilities for a₂₁, a₂₃, a₃₄, and a₁₄ using frequency counts from the Brown Corpus
- $P(t_i|t_{i-1}) = \frac{c(t_{i-1}t_i)}{c(t_{i-1})}$
- So, P(NN|TO) = C(TO NN) / C(TO) = 0.00047
- Likewise, P(VB|TO) = C(TO VB) / C(TO) = 0.83
- P(NR|VB) = C(VB NR) / C(VB) = 0.0027
- Finally, P(NR|NN) = C(NN NR) / C(NN) = 0.0012

Secretariat	is	expected	to	race	tomorrow
NNP	VBZ	VBN	TO	VB	NR
NNP	VBZ	VBN	TO	NN	NR

	race
VB	
NN	

- We have our transition probabilities ...what now?
- Observation likelihoods!
- We can also compute these using frequency counts from the Brown Corpus
- $P(w_i|t_i) = \frac{c(w_i,t_i)}{c(t_i)}$
- Since we're trying to decide the best tag for "race," we need to compute both P(race|VB) and P(race|NN)

Secretariat	is	expected
NNP	VBZ	VBN
NNP	VBZ	VBN

to	race	tomorrow
ТО	VB	NR
ТО	NN	NR

	race
VB	0.00012
NN	

- We have our transition probabilities ...what now?
- Observation likelihoods!
- We can also compute these using frequency counts from the Brown Corpus

•
$$P(w_i|t_i) = \frac{c(w_i,t_i)}{c(t_i)}$$

- Since we're trying to decide the best tag for "race," we need to compute both P(race|VB) and P(race|NN)
- P(race|VB) = C(race, VB) / C(VB) = 0.00012

Secretariat	is	expected	to	race	t
NNP	VBZ	VBN	ТО	VB	
NNP	VBZ	VBN	TO	NN	

	race
VB	0.00012
NN	0.00057

omorrow

NR

NR

- We have our transition probabilities ...what now?
- Observation likelihoods!
- We can also compute these using frequency counts from the Brown Corpus

•
$$P(w_i|t_i) = \frac{c(w_i,t_i)}{c(t_i)}$$

- Since we're trying to decide the best tag for "race," we need to compute both P(race|VB) and P(race|NN)
- P(race|VB) = C(race, VB) / C(VB) = 0.00012
- P(race|NN) = C(race, NN) / C(NN) = 0.00057

Secretariat	is	expected	to
NNP	VBZ	VBN	ТО
NNP	VBZ	VBN	ТО

to	race	tomorrow
ТО	VB	NR
ТО	NN	NR

	race
VB	0.00012
NN	0.00057

- Now, to decide how to tag "race," we can consider our two possible sequences:
 - to (TO) race (VB) tomorrow (NR)
 - to (TO) race (NN) tomorrow (NR)
- We will select the tag that maximizes the probability:
 - P(t_i|TO)P(NR|t_i)P(race|t_i)
- We determine that:
 - P(VB|TO)P(NR|VB)P(race|VB) = 0.83 * 0.0027 * 0.00012 = 0.00000027
 - P(NN|TO)P(NR|NN)P(race|NN) = 0.00047 * 0.0012 * 0.00057 = 0.0000000032

Secretariat	is	expected	to	race	tomorrow
NNP	VBZ	VBN	ТО	VB	NR
NNP	VBZ	VBN	TO	NN	NR

	race
VB	0.00012
NN	0.00057

- Now, to decide how to tag "race," we can consider our two possible sequences:
 - to (TO) race (VB) tomorrow (NR)
 - to (TO) race (NN) tomorrow (NR)
- We will select the tag that maximizes the probability:
 - P(t_i|TO)P(NR|t_i)P(race|t_i)
- We determine that:
 - P(VB|TO)P(NR|VB)P(race|VB) = 0.83 * 0.0027 * 0.00012 = 0.00000027
 - · Optimal sequence!
 - P(NN|TO)P(NR|NN)P(race|NN) = 0.00047 * 0.0012 * 0.00057 = 0.00000000032

Secretariat	is	expected	to	race	tomorrow
NNP	VBZ	VBN	ТО	VB	NR
NNP	VBZ	VBN	TO	NN	NR

	race
VB	0.00012
NN	0.00057

 Visualized in a Viterbi trellis, this would look like:

What if we used greater values of *n*?

- For example, a trigram HMM tagger instead of a bigram HMM tagger?
- Generally, more context → more accurate predictions
- However, greater values of n also require more computational work ...you need to determine whether the trade-off is worth it