Also, specific user environment and usage history can make it difficult to reproduce the problem. New languages are generally designed around the syntax of a prior language with new functionality added, (for example C++ adds object-orientation to C, and Java adds memory management and bytecode to C++, but as a result, loses efficiency and the ability for low-level manipulation). Various visual programming languages have also been developed with the intent to resolve readability concerns by adopting non-traditional approaches to code structure and display. It is very difficult to determine what are the most popular modern programming languages. Some languages are very popular for particular kinds of applications, while some languages are regularly used to write many different kinds of applications. A similar technique used for database design is Entity-Relationship Modeling (ER Modeling). Some of these factors include: The presentation aspects of this (such as indents, line breaks, color highlighting, and so on) are often handled by the source code editor, but the content aspects reflect the programmer's talent and skills. Ideally, the programming language best suited for the task at hand will be selected. This can be a non-trivial task, for example as with parallel processes or some unusual software bugs. Trade-offs from this ideal involve finding enough programmers who know the language to build a team, the availability of compilers for that language, and the efficiency with which programs written in a given language execute. Computer programmers are those who write computer software. Normally the first step in debugging is to attempt to reproduce the problem. However, readability is more than just programming style. Code-breaking algorithms have also existed for centuries. Languages form an approximate spectrum from "low-level" to "high-level"; "low-level" languages are typically more machine-oriented and faster to execute, whereas "high-level" languages are more abstract and easier to use but execute less quickly. It is usually easier to code in "high-level" languages than in "low-level" ones. However, because an assembly language is little more than a different notation for a machine language, two machines with different instruction sets also have different assembly languages. Various visual programming languages have also been developed with the intent to resolve readability concerns by adopting non-traditional approaches to code structure and display. The first step in most formal software development processes is requirements analysis, followed by testing to determine value modeling, implementation, and failure elimination (debugging). However, with the concept of the stored-program computer introduced in 1949, both programs and data were stored and manipulated in the same way in computer memory. Many factors, having little or nothing to do with the ability of the computer to efficiently compile and execute the code, contribute to readability. Trial-and-error/divide-and-conquer is needed: the programmer will try to remove some parts of the original test case and check if the problem still exists. Use of a static code analysis tool can help detect some possible problems. Methods of measuring programming language popularity include: counting the number of job advertisements that mention the language, the number of books sold and courses teaching the language (this overestimates the importance of newer languages), and estimates of the number of existing lines of code written in the language (this underestimates the number of users of business languages such as COBOL).