Student: Arfaz Hossain	Instructor: Muhammad Awais	Assignment: HW-7 [Sections 10.7 &
Date: 03/14/22	Course: Math 101 A04 Spring 2022	10.81

Use a geometric series to represent each of the following functions as a power series about x = 0. Find the interval of convergence.

a.
$$f(x) = \frac{5}{9-x}$$
 b. $g(x) = \frac{2}{x-7}$

a. Since the problem statement specifies that a geometric series should be used, recall the formula for the sum of a geometric series.

$$\sum_{n=0}^{\infty} ar^{n} = a + ar + ar^{2} + \dots = \frac{a}{1-r}$$

The sum of the geometric series, $\frac{a}{1-r}$, is very similar in form to the given function with r replaced by x. However, the denominator of f(x) is 9-x rather than 1-x.

Let $r = \frac{x}{9}$. Then multiply the numerator and denominator by 9 to get a denominator of 9 - x.

$$\sum_{n=0}^{\infty} a \left(\frac{x}{9}\right)^n = \frac{a}{1 - \frac{x}{9}}$$
$$= \frac{9a}{9 - x}$$

Let $a = \frac{5}{9}$ so that the right side becomes f(x).

$$\frac{9a}{9-x}$$
 becomes $\frac{5}{9-x}$

Thus, letting $a = \frac{5}{9}$ and $r = \frac{x}{9}$ in the formula for the geometric series $\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}$ gives the following geometric series.

$$\frac{5}{9-x} = \sum_{n=0}^{\infty} \frac{5}{9} \left(\frac{x}{9}\right)^n$$

A power series about x = 0 is a series in the form $\sum_{n=0}^{\infty} c_n x^n$. Write the series in this form.

$$\sum_{n=0}^{\infty} \frac{5}{9} \left(\frac{x}{9} \right)^n = \sum_{n=0}^{\infty} \frac{5}{9^{n+1}} x^n.$$

Thus, the power series representation for $\frac{5}{9-x}$ about x=0 is $\sum_{n=0}^{\infty} \frac{5}{9^{n+1}}x^n$.

The radius of convergence for the geometric series $\sum_{n=0}^{\infty} ar^n$ is |r| < 1.

Express the inequality |r| < 1 as a double inequality without using the absolute value symbol.

Let $r = \frac{x}{9}$ to get $-1 < \frac{x}{9} < 1$. Express this as inequalities for x by multiplying by 9.

$$-9 < x < 9$$

Thus, the interval of convergence of the power series $\sum_{n=0}^{\infty} \frac{5}{9^{n+1}} x^n$ is (-9,9).

b. Using the same procedure as in part (a), the right side of $\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}$ can be expressed as a fraction equivalent to

$$\frac{2}{x-7}$$
 by letting $r = \frac{x}{7}$ and $a = -\frac{2}{7}$.

Specifically, when $r = \frac{x}{7}$ and $a = -\frac{2}{7}$, the formula for the sum of the geometric series becomes the following.

$$\sum_{n=0}^{\infty} \left(-\frac{2}{7} \right) \left(\frac{x}{7} \right)^n = \frac{-\frac{2}{7}}{1 - \frac{x}{7}} = \frac{2}{x - 7}$$

Write this as a power series.

$$\sum_{n=0}^{\infty} \left(-\frac{2}{7}\right) \left(\frac{x}{7}\right)^n = \sum_{n=0}^{\infty} \frac{-2}{7^{n+1}} x^n$$

The radius of convergence for the geometric series $\sum_{n=0}^{\infty} ar^n$ is |r| < 1, or -1 < r < 1. When $r = \frac{x}{7}$, the corresponding inequalities for x are shown below.

$$-7 < x < 7$$

Thus, the interval of convergence of the power series $\sum_{n=0}^{\infty} \frac{-2}{7^{n+1}} x^n$ is (-7,7).