Sri Chaitanya IIT Academy

20-12-15_Sr.IPLCO_JEE-ADV_(2011_P1)_RPTA-15_Key&Sol's

Sri Chaitanya IIT Academy, India

A.P, TELANGANA, KARNATAKA, TAMILNADU, MAHARASHTRA, DELHI, RANCHI A right Choice for the Real Aspirant

ICON CENTRAL OFFICE, MADHAPUR-HYD

 Sec: Sr.IPLCO
 JEE-ADVANCE
 Date: 20-12-15

 Time: 3 Hours
 2011-P1-Model
 Max Marks: 240

PAPER-I Key & Solutions

CHEMISTRY

1	В	2	A	3	D	4	A	5	A	6	В
7	D	8	ACD	9	ВС	10	BC	11	ABC	12	В
13	С	14	A	15	В	16	C	17	4	18	7
19	5	20	9	21	2	22	0	23	6		

PHYSICS

24	В	25	A	26	В	27	С	28	В	29	D
30	D	31	В	32	CD	33	С	34	AD	35	В
36	A	37	A	38	A	39	C	40	0	41	0
42	1	43	2	44	2	45	6	46	3		7/

MATHS

47	A	48	D	49	D	50	A	51	В	52	D
53	A	54	ABC	55	AC	56	ABCD	57	ABC	58	В
59	C	60	A	61	В	62	A	63	1	64	2
65	5	66	2	67	9	68	5	69	5		

CHEMISTRY

1.

$$B_{(S)} + \frac{3}{2}H_{2}(g) \rightarrow BH_{3(g)}100KJ$$

$$100 = 565 + \frac{3}{2} \times 436 - 3(B - H)$$

$$(B - H) = 373KJ / mol$$

$$\therefore 36 = 2 \times 565 + 3 \times 436 - 2x - 4 \times 473$$

$$x = 455$$

4.
$$\Delta H_2 - \Delta H_1 = \left[2T + 0.1T^2 \right]_{10}^{100}$$
$$\Delta H_2 - \left(-14.2 \times 10^3 \right) = 2(90) + 0.1(9900)$$

5.

$$\Delta S_1 = \frac{\Delta H_{vap}}{373} = \frac{40 \times 1000}{373}$$
$$\Delta S_2 = nC_{P(gas)} \ln \frac{T_2}{T_1}$$

$$=1\times35\ln\frac{383}{373}$$

$$\Delta s = \Delta s_1 + \Delta s_2$$

6.
$$(\Delta H_{ionisation})_{HA} = |(\Delta H_n)|_{SA+SR} - |(\Delta H_n)|_{SA+WR}$$

7.
$$\Delta H = \Delta E + P_{ext} \Delta V$$

Sri Chaitanya IIT Academy

20-12-15_Sr.IPLCO_JEE-ADV_(2011_P1)_RPTA-15_Key&Sol's

- 8. Conceptual
- 9. Conceptual
- 10. Conceptual
- 11. Conceptual
- 15. $\Delta U = \overline{C_V} \left(T_3 T_2 \right)$
- 16. Its a cyclic process $\Delta S = 0$

19.
$$H_3PO_3 \rightarrow 2H^+ + HPO_3$$
;

$$\Delta H_r = ?$$

$$2H^+ + 2OH^- \rightarrow 2H_2O$$

$$\Delta H_r = -55.84 \times 2 = -111.68$$

Heat of neutralization of H_3PO_3 is 10x10.668

$$-106.68 = \Delta H_{ion} - 111.68$$

$$\Delta H_{ion} - 5 \, KJ / mole$$
.

21.
$$|\Delta H - \Delta U| = P\Delta V$$

22. CONCEPTUAL

23. We have ,
$$\eta = \frac{T_2 - T_1}{T_2} = \frac{800 - 600}{800} = 0.25 \text{ or } 25\%$$

Now, again we have,

$$\eta = \frac{W}{q_2} = \frac{q_2 - q_1}{q_2}$$

Where q_2 is the heat absorbed by the system from the source and q_1 is the heat rejected to the sink.