New claims

Please add the following broadening new claims 4-13:

- 4. A method of noise suppression filtering for a sequence of frames of noisy speech, comprising
- (a) estimating the noise power spectrum, $P_{\text{noise}}(\omega)$, of a frame of noisy speech where the variable ω is the discrete frequency;
- (b) computing the noisy speech power spectrum, $P_{\text{noisyspeech}}(\omega)$, for said frame of noisy speech;
- (c) smoothing $P_{\text{noisyspeech}}(\omega)$ with respect to the variable ω to yield a smoothed noisy speech power spectrum, $P_{\text{smoothednoisyspeech}}(\omega)$, for said frame of noisy speech;
- (d) defining a noise-suppression filter, $H(\omega)$, using $P_{\text{noise}}(\omega)$ and $P_{\text{smoothednoisyspeech}}(\omega)$;
- (e) filtering said frame of noisy speech with said noise-suppression filter H(w); and
- (f) repeating steps (a)-(e) for a plurality of frames of noisy speech.

5. The method of claim 4, wherein:

(a) said smoothing of step (c) of claim 4 is convolution with respect to the variable ω of $\underline{P}_{\text{noisyspeech}}(\omega)$ and a window function, $\underline{W}(\omega)$.

6. The method of claim 4, wherein:

(a) said $H(\omega)$ includes a term $(1 - cP_{noise}(\omega)/P_{smoothednoisyspeech}(\omega))$ where c is a positive constant.

7. The method of claim 6, wherein:

(a) c = 1.

8. The method of claim 6, wherein:

(a) c = 4.

9. The method of claim 6, wherein:

(a) said $H(\omega)$ includes a term max{ M^2 , $(1 - cP_{noise}(\omega)/P_{smoothednoisyspeech}(\omega))$ } where M is a positive constant.

10. The method of claim 4, wherein:

- (a) said estimating $P_{\text{noise}}(\omega)$ of step (a) of claim 4 uses $P_{\text{smoothednoisyspeech}}(\omega)$ and a noise power spectrum estimate, $P'_{\text{noise}}(\omega)$, of a second frame of noisy speech where said second frame is prior to said frame, as:
- when $P_{\text{smoothednoisyspeech}}(\omega) < c_1 P'_{\text{noise}}(\omega)$, take $P_{\text{noise}}(\omega) = c_1 P'_{\text{noise}}(\omega)$;
- when $c_1P'_{noise}(\omega) \le P_{smoothednoisyspeech}(\omega) \le c_2P'_{noise}(\omega)$, take $P_{noise}(\omega) =$

 $P_{\text{smomthednoisyspeech}}(\omega)$; and

- when $c_2P'_{noise}(\omega) < P_{smoothednoisyspeech}(\omega)$, take $P_{noise}(\omega) = c_2P'_{noise}(\omega)$; where the positive constants c_1 and c_2 satisfy the condition $c_1c_2 < 1$.

- 11. The method of claim 10, wherein:
- (a) $c_1 = 0.978$; and
- (b) $c_2 = 1.006$.
- 12. A method of noise suppression filtering for a sequence of frames of noisy speech, comprising
- (a) computing the noisy speech power spectrum, $P_{\text{noisyspeech}}(\omega)$, for a frame of noisy speech where the variable ω is the discrete frequency;
- (b) smoothing $P_{\text{noisyspeech}}(\omega)$ with respect to the variable ω to yield a smoothed noisy speech power spectrum, $P_{\text{smoothednoisyspeech}}(\omega)$, for said frame of noisy speech;
- (c) estimating the noise power spectrum, $P_{\text{noise}}(\omega)$, of said frame of noisy speech as:
- when $P_{\text{smoothednoisyspeech}}(\omega) < c_1 P'_{\text{noise}}(\omega)$ take $P_{\text{noise}}(\omega) = c_1 P'_{\text{noise}}(\omega)$;
- when $c_1P'_{\text{noise}}(\omega) \le P_{\text{smoothednoisyspeech}}(\omega) \le c_2P'_{\text{noise}}(\omega)$ take $P_{\text{noise}}(\omega) = C_1P'_{\text{noise}}(\omega)$

 $P_{\text{smomthednoisyspeech}}(\omega)$; and

- when $c_2P'_{\text{noise}}(\omega) < P_{\text{smoothednoisyspeech}}(\omega)$ take $P_{\text{noise}}(\omega) = c_2P'_{\text{noise}}(\omega)$;
- where $P'_{\text{noise}}(\omega)$ is the noise power estimate of a second frame prior to said frame and the positive constants c_1 and c_2 satisfy the condition $c_1c_2 < 1$;
- (d) defining a noise-suppression filter, $H(\omega)$, using $P_{\text{noise}}(\omega)$;
- (e) filtering said frame of noisy speech with said noise-suppression filter H(ω); and
- (f) repeating steps (a)-(e) for a plurality of frames of noisy speech;
- 13. The method of claim 12, wherein:
- (a) $c_1 = 0.978$; and
- (b) $c_2 = 1.006$.