Министерство образования и науки Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра систем управления и информатики

Отчет по лабораторной работе №1 «ПОСТРОЕНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ ДВИГАТЕЛЯ EV3» по дисциплине «Введение в профессиональную деятельность»

Выполнил: студент гр. R3242

Яшник Артем

Преподаватель: Перегудин А.А.,

ассистент каф. СУиР

Санкт-Петербург 2021

1. Цель работы

Познакомиться с программным обеспечением, которое пригодится при изучении материала данного курса. Построить математическую модель, описывающую процесс разгона ненагруженного двигателя постоянного тока, график зависимости угла поворота ротора от времени при разном значении напряжения.

2. Материалы работы

2.1. Результаты необходимых расчетов и построений

Результаты нахождения величин ω nls и Tm, полученных экспериментальным путем, а также результаты расчета величины Mst по формуле $\mathbf{Mst} = \mathbf{J}^* \omega \mathbf{nls}/\mathbf{Tm}$ приведены в таблице 1.

Voltage, %	ω _{nls} , рад/с	<i>T_m</i> , c	M_{st} , H·M
100	14,468382	0,062930	0,689737
80	11,561031	0,059258	0,585290
60	8,298274	0,054253	0,458865
40	6,046894	0,057560	0,315161
20	2,577325	0,048659	0,158901

Таблица 1. Результаты расчетов величин T_m , ω_{nls} и M_{st} .

Схема моделирования

Рис. 2. Схема моделирования процесса разгона ненагруженного двигателя постоянного тока

3. Выводы

Выполнив данную работу, я получил практическую модель разгона двигателя постоянного тока, графики зависимости угла поворота ротора от времени при разном значении напряжения в программе MATLAB, навыки моделирования физических процессов.

Опираясь на полученные графики, можно судить об их истинности, так как они практически совпадают с теоретической моделью.