COUNTED

te BIRTI Water

DOX SED A
BGI-122CP

Page 1 of 2

Customer No. 000959 Case Docket No. BGI-122CP

Assistant Commissioner for Patents BOX PATENT APPLICATION Washington, D.C. 20231

"Express Mail" Mailing Label Number	EL 373 207 242 US
Date of Deposit	June 27, 2000
I hereby certify that this transmittal letter and the pay deposited with the United States Postal Service "Exp 37 CFR 1.10 on the date indicated above and is add Box Patent Application, Washington, DC 2023.1. Larry Taylor Please Print Name of Person Sinning	ress Mail Post Office to Addressee" service under

Sir:

Transmitted herewith for filing is the patent application of:

Inventors: Markus Pompejus et al.

For: "Corynebacterium Glutamicum Genes Encoding Phosphoenolpyruvate: Sugar

Phosphotransferase System Proteins"

Enclosed are:

X

59 pages of specification, 5 pages of claims and 1 page of abstract;

______ page of Table 1;

16 pages of Table 2;

7 pages of Appendix A;

______3 pages of Appendix B;

47 pages of Sequence Listing:

Diskette Containing Sequence Listing;

Transmittal Letter for Diskette Containing Sequence Listing;

An unexecuted Declaration, Petition and Power of Attorney; and

A pre-paid acknowledgment postcard.

The filing fee has been calculated as shown below:

	(Col. 1)	(Col. 2)
FOR:	NO. FILED	NO. EXTRA
BASIC FEE	///////////////////////////////////////	111111111111111111111111111111111111111
TOTAL CLAIMS	52 - 20	= 32
INDEP. CLAIMS	15 - 3	= 12
MULTIPLE DEPENDENT CLAIMS PRESENTED		

* If the difference in Col. 2	is less than zero,
enter "0" in Col. 2.	

SMALL ENTITY

KAIL	FEE	9
/////////	\$	9
x 9=	S	9
x 39	\$	(
+130	\$	2
TOTAL	0	(

OTHER THAN SMALL ENTITY

R	RATE	FEE
R	[[]][]][\$ 690
R	x 18=	\$ 576
R	x 78	\$ 936
R	+260	\$ 260
R .	TOTAL	\$2462.00

X	FILING FEES ARE NOT BEING PAID AT THIS TIME.			
		The Commissioner is hereby authorized to charge payment of the following fees associated with this communication or credit any overpayment to Deposit Account No.		
		Any additional filing fees required under 37 C.F.R. 1.	16.	
		Any patent application processing fees under 37 C.F.I	R. 1.17.	
	The Commissioner is hereby authorized to charge payment of the following fees during the pendency of this application or credit any overpayment to Deposit Account No A duplicate copy of this sheet is enclosed.			
		Any patent application processing fees under 37 C.F.I	R. 1.17.	
		The issue fee set in 37 C.F.R. 1.18 at or before mailing of the Notice of Allowance, pursuant to 37 C.F.R 1.311(b).		
		Any filing fees under 37 C.F.R. 1.16 for presentation	of extra claims.	
	A check in the amount of \$ to cover the recording of assignment documents is also enclosed.			
X	Address all future communications (May only be completed by applicant, or attorney or agent of record) to Elizabeth A. Hanley, Esq. at Customer Number: 000959 whose address is:			
		Lahive & Cockf	ield, LLP	
		28 State St	***	
		Boston, Massachus	setts 02109	
Date:	June 2	27, 2000 LAHI	VE & COCKFIELD, LLP	
28 State Street Attorneys at Law		eys at Law		
Bostor	Boston, MA 02109			
	(617) 227-7400 (Tel.)		(701)	
(617)	742-421	• -	By: Lizabeth A. Hanley, Esq.	
		Re	egistration No. 33,505	
		A	ttorney for Applicants	

CORYNEBACTERIUM GLUTAMICUM GENES ENCODING PHOSPHOENOLPYRUVATE: SUGAR PHOSPHOTRANSFERASE SYSTEM PROTEINS

Related Applications

This application claims priority to U.S. Provisional Patent Application No.: 60/142,691, filed on July 1, 1999, and also to U.S. Provisional Patent Application No.: 60/150,310, filed on August 23, 1999, incorporated herein in their entirety by this reference. This application also claims priority to German Patent Application No.: 10 19942095.5, filed on September 3, 1999, and also to German Patent Application No.: 19942097.1, filed on September 3, 1999, incorporated herein in their entirety by this reference

Background of the Invention

15 Certain products and by-products of naturally-occurring metabolic processes in cells have utility in a wide array of industries, including the food, feed, cosmetics, and pharmaceutical industries. These molecules, collectively termed 'fine chemicals', include organic acids, both proteinogenic and non-proteinogenic amino acids, nucleotides and nucleosides, lipids and fatty acids, diols, carbohydrates, aromatic 20 compounds, vitamins and cofactors, and enzymes. Their production is most conveniently performed through large-scale culture of bacteria developed to produce and secrete large quantities of a particular desired molecule. One particularly useful organism for this purpose is Corynebacterium glutamicum, a gram positive, nonpathogenic bacterium. Through strain selection, a number of mutant strains have been developed which produce an array of desirable compounds. However, selection of strains improved for the production of a particular molecule is a time-consuming and difficult process.

Summary of the Invention

30

PRIMAL ST W. 1 1

The invention provides novel bacterial nucleic acid molecules which have a variety of uses. These uses include the identification of microorganisms which can be used to produce fine chemicals, the modulation of fine chemical production in C. glutamicum or related bacteria, the typing or identification of C. glutamicum or related bacteria, as reference points for mapping the C. glutamicum genome, and as markers for 35 transformation. These novel nucleic acid molecules encode proteins, referred to herein as phosphoenolpyruvate:sugar phosphotransferase system (PTS) proteins.

mentalized and the life of the

25

12 MM 1 4 2 5 mm 1 1 1 1 1 1

C. glutamicum is a gram positive, aerobic bacterium which is commonly used in industry for the large-scale production of a variety of fine chemicals, and also for the degradation of hydrocarbons (such as in petroleum spills) and for the oxidation of terpenoids. The PTS nucleic acid molecules of the invention, therefore, can be used to identify microorganisms which can be used to produce fine chemicals, e.g., by fermentation processes. Modulation of the expression of the PTS nucleic acids of the invention, or modification of the sequence of the PTS nucleic acid molecules of the invention, can be used to modulate the production of one or more fine chemicals from a microorganism (e.g., to improve the yield or production of one or more fine chemicals from a Corynebacterium or Brevibacterium species).

The PTS nucleic acids of the invention may also be used to identify an organism as being Corynebacterium glutamicum or a close relative thereof, or to identify the presence of C. glutamicum or a relative thereof in a mixed population of microorganisms. The invention provides the nucleic acid sequences of a number of C. glutamicum genes; by probing the extracted genomic DNA of a culture of a unique or mixed population of microorganisms under stringent conditions with a probe spanning a region of a C. glutamicum gene which is unique to this organism, one can ascertain whether this organism is present. Although Corynebacterium glutamicum itself is nonpathogenic, it is related to species pathogenic in humans, such as Corynebacterium diphtheriae (the causative agent of diphtheria); the detection of such organisms is of significant clinical relevance.

The PTS nucleic acid molecules of the invention may also serve as reference points for mapping of the *C. gluamicum* genome, or of genomes of related organisms. Similarly, these molecules, or variants or portions thereof, may serve as markers for genetically engineered Corynebacterium or Brevibacterium species.

The PTS proteins encoded by the novel nucleic acid molecules of the invention are capable of, for example, transporting high-energy carbon-containing molecules such as glucose into *C. glutamicum*, or of participating in intracellular signal transduction in this microorganism. Given the availability of cloning vectors for use in

- 30 Corynebacterium glutamicum, such as those disclosed in Sinskey et al., U.S. Patent No. 4,649,119, and techniques for genetic manipulation of C. glutamicum and the related Brevibacterium species (e.g., lactofermentum) (Yoshihama et al., J. Bacteriol. 162: 591-597 (1985); Katsumata et al., J. Bacteriol. 159: 306-311 (1984); and Santamaria et al., J. Gen. Microbiol. 130: 2237-2246 (1984)), the nucleic acid molecules of the invention
- 35 may be utilized in the genetic engineering of this organism to make it a better or more efficient producer of one or more fine chemicals.

25

30

35

DEBUT MIX IN PROPERTY

The PTS molecules of the invention may be modified such that the yield, production, and/or efficiency of production of one or more fine chemicals is improved. For example, by modifying a PTS protein involved in the uptake of glucose such that it is optimized in activity, the quantity of glucose uptake or the rate at which glucose is translocated into the cell may be increased. The breakdown of glucose and other sugars within the cell provides energy that may be used to drive energetically unfavorable biochemical reactions, such as those involved in the biosynthesis of fine chemicals. This breakdown also provides intermediate and precursor molecules necessary for the biosynthesis of certain fine chemicals, such as amino acids, vitamins and cofactors. By increasing the amount of intracellular high-energy carbon molecules through modification of the PTS molecules of the invention, one may therefore increase both the energy available to perform metabolic pathways necessary for the production of one or more fine chemicals, and also the intracellular pools of metabolites necessary for such production.

Further, the PTS molecules of the invention may be involved in one or more intracellular signal transduction pathways which may affect the yields and/or rate of production of one or more fine chemical from *C. glutamicum*. For example, proteins necessary for the import of one or more sugars from the extracellular medium (*e.g.*, HPr, Enzyme I, or a member of an Enzyme II complex) are frequently posttranslationally modified upon the presence of a sufficient quantity of the sugar in the cell, such that they are no longer able to import that sugar. While this quantity of sugar at which the transport system is shut off may be sufficient to sustain the normal functioning of the cell, it may be limiting for the overproduction of the desired fine chemical. Thus, it may be desirable to modify the PTS proteins of the invention such that they are no longer responsive to such negative regulation, thereby permitting greater intracellular concentrations of one or more sugars to be achieved, and, by extension, more efficient production or greater yields of one or more fine chemicals from organisms containing such mutant PTS proteins.

This invention provides novel nucleic acid molecules which encode proteins, referred to herein as phosphoenolpyruvate:sugar phosphotransferase system (PTS) proteins, which are capable of, for example, participating in the import of high-energy carbon molecules (e.g., glucose, fructose, or sucrose) into C. glutamicum, and/or of participating in one or more C. glutamicum intracellular signal transduction pathways. Nucleic acid molecules encoding a PTS protein are referred to herein as PTS nucleic acid molecules. In a preferred embodiment, the PTS protein participates in the import of high-energy carbon molecules (e.g., glucose, fructose, or sucrose) into C. glutamicum, and also may participate in one or more C. glutamicum intracellular signal transduction

DESIGNATION OF THE RESIDENCE OF THE RESI

10

pathways. Examples of such proteins include those encoded by the genes set forth in Table 1.

Accordingly, one aspect of the invention pertains to isolated nucleic acid molecules (e.g., cDNAs, DNAs, or RNAs) comprising a nucleotide sequence encoding a PTS protein or biologically active portions thereof, as well as nucleic acid fragments suitable as primers or hybridization probes for the detection or amplification of PTSencoding nucleic acid (e.g., DNA or mRNA). In particularly preferred embodiments, the isolated nucleic acid molecule comprises one of the nucleotide sequences set forth in Appendix A or the coding region or a complement thereof of one of these nucleotide sequences. In other particularly preferred embodiments, the isolated nucleic acid molecule of the invention comprises a nucleotide sequence which hybridizes to or is at least about 50%, preferably at least about 60%, more preferably at least about 70%, 80% or 90%, and even more preferably at least about 95%, 96%, 97%, 98%, 99% or more homologous to a nucleotide sequence set forth in Appendix A, or a portion thereof. In other preferred embodiments, the isolated nucleic acid molecule encodes one of the 15 amino acid sequences set forth in Appendix B. The preferred PTS proteins of the present invention also preferably possess at least one of the PTS activities described herein.

In another embodiment, the isolated nucleic acid molecule encodes a protein or 20 portion thereof wherein the protein or portion thereof includes an amino acid sequence which is sufficiently homologous to an amino acid sequence of Appendix B, e.g., sufficiently homologous to an amino acid sequence of Appendix B such that the protein or portion thereof maintains a PTS activity. Preferably, the protein or portion thereof encoded by the nucleic acid molecule maintains the ability to participate in the import of high-energy carbon molecules (e.g., glucose, fructose, or sucrose) into C. glutamicum, and/or to participate in one or more C. glutamicum intracellular signal transduction pathways. In one embodiment, the protein encoded by the nucleic acid molecule is at least about 50%, preferably at least about 60%, and more preferably at least about 70%, 80%, or 90% and most preferably at least about 95%, 96%, 97%, 98%, or 99% or more 30 homologous to an amino acid sequence of Appendix B (e.g., an entire amino acid sequence selected from those sequences set forth in Appendix B). In another preferred embodiment, the protein is a full length C. glutamicum protein which is substantially homologous to an entire amino acid sequence of Appendix B (encoded by an open reading frame shown in Appendix A).

35 In another preferred embodiment, the isolated nucleic acid molecule is derived from C. glutamicum and encodes a protein (e.g., a PTS fusion protein) which includes a biologically active domain which is at least about 50% or more homologous to one of

25

30

the amino acid sequences of Appendix B and is able to participate in the import of highenergy carbon molecules (e.g., glucose, fructose, or sucrose) into C. glutamicum, and/or to participate in one or more C. glutamicum intracellular signal transduction pathways, or possesses one or more of the activities set forth in Table 1, and which also includes heterologous nucleic acid sequences encoding a heterologous polypeptide or regulatory regions.

In another embodiment, the isolated nucleic acid molecule is at least 15 nucleotides in length and hybridizes under stringent conditions to a nucleic acid molecule comprising a nucleotide sequence of Appendix A. Preferably, the isolated nucleic acid molecule corresponds to a naturally-occurring nucleic acid molecule. More preferably, the isolated nucleic acid encodes a naturally-occurring C. glutamicum PTS protein, or a biologically active portion thereof.

Another aspect of the invention pertains to vectors, e.g., recombinant expression vectors, containing the nucleic acid molecules of the invention, and host cells into which 15 such vectors have been introduced. In one embodiment, such a host cell is used to produce a PTS protein by culturing the host cell in a suitable medium. The PTS protein can be then isolated from the medium or the host cell.

Yet another aspect of the invention pertains to a genetically altered microorganism in which a PTS gene has been introduced or altered. In one 20 embodiment, the genome of the microorganism has been altered by the introduction of a nucleic acid molecule of the invention encoding wild-type or mutated PTS sequence as a transgene. In another embodiment, an endogenous PTS gene within the genome of the microorganism has been altered, e.g., functionally disrupted, by homologous recombination with an altered PTS gene. In another embodiment, an endogenous or introduced PTS gene in a microorganism has been altered by one or more point mutations, deletions, or inversions, but still encodes a functional PTS protein. In still another embodiment, one or more of the regulatory regions (e.g., a promoter, repressor, or inducer) of a PTS gene in a microorganism has been altered (e.g., by deletion, truncation, inversion, or point mutation) such that the expression of the PTS gene is modulated. In a preferred embodiment, the microorganism belongs to the genus Corynebacterium or Brevibacterium, with Corynebacterium glutamicum being particularly preferred. In a preferred embodiment, the microorganism is also utilized for the production of a desired compound, such as an amino acid, with lysine being particularly preferred.

35 In another aspect, the invention provides a method of identifying the presence or activity of Cornyebacterium diphtheriae in a subject. This method includes detection of one or more of the nucleic acid or amino acid sequences of the invention (e.g., the

sequences set forth in Appendix A or Appendix B) in a subject, thereby detecting the presence or activity of *Corvnebacterium diphtheriae* in the subject.

Still another aspect of the invention pertains to an isolated PTS protein or a portion, e.g., a biologically active portion, thereof. In a preferred embodiment, the isolated PTS protein or portion thereof can participate in the import of high-energy carbon molecules (e.g., glucose, fructose, or sucrose) into C. glutamicum, and also may participate in one or more C. glutamicum intracellular signal transduction pathways. In another preferred embodiment, the isolated PTS protein or portion thereof is sufficiently homologous to an amino acid sequence of Appendix B such that the protein or portion thereof maintains the ability to participate in the import of high-energy carbon molecules (e.g., glucose, fructose, or sucrose) into C. glutamicum, and /or to participate in one or more C. glutamicum intracellular signal transduction pathways.

The invention also provides an isolated preparation of a PTS protein. In preferred embodiments, the PTS protein comprises an amino acid sequence of Appendix B. In another preferred embodiment, the invention pertains to an isolated full length protein which is substantially homologous to an entire amino acid sequence of Appendix B (encoded by an open reading frame set forth in Appendix A). In yet another embodiment, the protein is at least about 50%, preferably at least about 60%, and more preferably at least about 70%, 80%, or 90%, and most preferably at least about 95%, 96%, 97%, 98%, or 99% or more homologous to an entire amino acid sequence of Appendix B. In other embodiments, the isolated PTS protein comprises an amino acid sequence which is at least about 50% or more homologous to one of the amino acid sequences of Appendix B and is able to participate in the import of high-energy carbon molecules (e.g., glucose, fructose, or sucrose) into C. glutamicum, and/or to participate in one or more C. glutamicum intracellular signal transduction pathways, or has one or more of the activities set forth in Table 1.

Alternatively, the isolated PTS protein can comprise an amino acid sequence which is encoded by a nucleotide sequence which hybridizes, e.g., hybridizes under stringent conditions, or is at least about 50%, preferably at least about 60%, more preferably at least about 70%, 80%, or 90%, and even more preferably at least about 95%, 96%, 97%, 98,%, or 99% or more homologous, to a nucleotide sequence of Appendix B. It is also preferred that the preferred forms of PTS proteins also have one or more of the PTS bioactivities described herein.

The PTS polypeptide, or a biologically active portion thereof, can be operatively

35 linked to a non-PTS polypeptide to form a fusion protein. In preferred embodiments,
this fusion protein has an activity which differs from that of the PTS protein alone. In
other preferred embodiments, this fusion protein results in increased yields, production,

30

and/or efficiency of production of a desired fine chemical from *C. glutamicum*. In particularly preferred embodiments, integration of this fusion protein into a host cell modulates the production of a desired compound from the cell.

In another aspect, the invention provides methods for screening molecules which modulate the activity of a PTS protein, either by interacting with the protein itself or a substrate or binding partner of the PTS protein, or by modulating the transcription or translation of a PTS nucleic acid molecule of the invention.

Another aspect of the invention pertains to a method for producing a fine chemical. This method involves the culturing of a cell containing a vector directing the expression of a PTS nucleic acid molecule of the invention, such that a fine chemical is produced. In a preferred embodiment, this method further includes the step of obtaining a cell containing such a vector, in which a cell is transfected with a vector directing the expression of a PTS nucleic acid. In another preferred embodiment, this method further includes the step of recovering the fine chemical from the culture. In a particularly preferred embodiment, the cell is from the genus *Corynebacterium* or *Brevibacterium*, or is selected from those strains set forth in Table 3.

Another aspect of the invention pertains to methods for modulating production of a molecule from a microorganism. Such methods include contacting the cell with an agent which modulates PTS protein activity or PTS nucleic acid expression such that a cell associated activity is altered relative to this same activity in the absence of the agent. In a preferred embodiment, the cell is modulated for the uptake of one or more sugars, such that the yields or rate of production of a desired fine chemical by this microorganism is improved. The agent which modulates PTS protein activity can be an agent which stimulates PTS protein activity or PTS nucleic acid expression. Examples of agents which stimulate PTS proteins, and nucleic acids encoding PTS proteins that have been introduced into the cell. Examples of agents which inhibit PTS activity or expression include small molecules, and antisense PTS nucleic acid molecules.

Another aspect of the invention pertains to methods for modulating yields of a desired compound from a cell, involving the introduction of a wild-type or mutant PTS gene into a cell, either maintained on a separate plasmid or integrated into the genome of the host cell. If integrated into the genome, such integration can random, or it can take place by homologous recombination such that the native gene is replaced by the introduced copy, causing the production of the desired compound from the cell to be modulated. In a preferred embodiment, said yields are increased. In another preferred embodiment, said chemical is a fine chemical. In a particularly preferred embodiment,

10

15

20

said fine chemical is an amino acid. In especially preferred embodiments, said amino acid is L-lysine.

Detailed Description of the Invention

The present invention provides PTS nucleic acid and protein molecules which are involved in the uptake of high-energy carbon molecules (e.g., sucrose, fructose, or glucose) into C. glutamicum, and may also participate in intracellular signal transduction nathways in this microorganism. The molecules of the invention may be utilized in the modulation of production of fine chemicals from microorganisms. Such modulation may be due to increased intracellular levels of high-energy molecules needed to produce, e.g., ATP, GTP and other molecules utilized to drive energetically unfavorable biochemical reactions in the cell, such as the biosynthesis of a fine chemical. This modulation of fine chemical production may also be due to the fact that the breakdown products of many sugars serve as intermediates or precursors for other biosynthetic pathways, including those of certain fine chemicals. Further, PTS proteins are known to participate in certain intracellular signal transduction pathways which may have regulatory activity for one or more fine chemical metabolic pathways; by manipulating these PTS proteins, one may thereby activate a fine chemical biosynthetic pathways or repress a fine chemical degradation pathway. Aspects of the invention are further explicated below.

Fine Chemicals

The term 'fine chemical' is art-recognized and includes molecules produced by an organism which have applications in various industries, such as, but not limited to, the pharmaceutical, agriculture, and cosmetics industries. Such compounds include organic acids, such as tartaric acid, itaconic acid, and diaminopimelic acid, both proteinogenic and non-proteinogenic amino acids, purine and pyrimidine bases, nucleosides, and nucleotides (as described e.g. in Kuninaka, A. (1996) Nucleotides and related compounds, p. 561-612, in Biotechnology vol. 6, Rehm et al., eds. VCH:

Weinheim, and references contained therein), lipids, both saturated and unsaturated fatty acids (e.g., arachidonic acid), diols (e.g., propane diol, and butane diol), carbohydrates (e.g., hyaluronic acid and trehalose), aromatic compounds (e.g., aromatic amines, vanillin, and indigo), vitamins and cofactors (as described in Ullmann's Encyclopedia of Industrial Chemistry, vol. A27, "Vitamins", p. 443-613 (1996) VCH: Weinheim and references therein; and Ong, A.S., Niki, E. & Packer, L. (1995) "Nutrition, Lipids, Health, and Disease" Proceedings of the UNESCO/Confederation of Scientific and Technological Associations in Malaysia, and the Society for Free Radical Research –

30

Asia, held Sept. 1-3, 1994 at Penang, Malaysia, AOCS Press, (1995)), enzymes, polyketides (Cane et al. (1998) Science 282: 63-68), and all other chemicals described in Gutcho (1983) Chemicals by Fermentation, Noyes Data Corporation, ISBN: 0818805086 and references therein. The metabolism and uses of certain of these fine chemicals are further explicated below.

A. Amino Acid Metabolism and Uses

Amino acids comprise the basic structural units of all proteins, and as such are essential for normal cellular functioning in all organisms. The term "amino acid" is artrecognized. The proteinogenic amino acids, of which there are 20 species, serve as structural units for proteins, in which they are linked by peptide bonds, while the nonproteinogenic amino acids (hundreds of which are known) are not normally found in proteins (see Ulmann's Encyclopedia of Industrial Chemistry, vol. A2, p. 57-97 VCH: Weinheim (1985)). Amino acids may be in the D- or L- optical configuration, though Lamino acids are generally the only type found in naturally-occurring proteins. Biosynthetic and degradative pathways of each of the 20 proteinogenic amino acids have been well characterized in both prokarvotic and eukarvotic cells (see, for example, Stryer, L. Biochemistry, 3rd edition, pages 578-590 (1988)). The 'essential' amino acids (histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine), so named because they are generally a nutritional requirement due to the complexity of their biosyntheses, are readily converted by simple biosynthetic pathways to the remaining 11 'nonessential' amino acids (alanine, arginine, asparagine, aspartate, cysteine, glutamate, glutamine, glycine, proline, serine, and tyrosine). Higher animals do retain the ability to synthesize some of these amino acids, but the essential amino acids must be supplied from the diet in order for normal protein synthesis to occur.

Aside from their function in protein biosynthesis, these amino acids are interesting chemicals in their own right, and many have been found to have various applications in the food, feed, chemical, cosmetics, agriculture, and pharmaceutical industries. Lysine is an important amino acid in the nutrition not only of humans, but also of monogastric animals such as poultry and swine. Glutamate is most commonly used as a flavor additive (mono-sodium glutamate, MSG) and is widely used throughout the food industry, as are aspartate, phenylalanine, glycine, and cysteine. Glycine, L-methionine and tryptophan are all utilized in the pharmaceutical industry. Glutamine, valine, leucine, isoleucine, histidine, arginine, proline, serine and alanine are of use in both the pharmaceutical and cosmetics industries. Threonine, tryptophan, and D/L-methionine are common feed additives. (Leuchtenberger, W. (1996) Amino aids — technical production and use, p. 466-502 in Rehm et al. (eds.) Biotechnology vol. 6.

chapter 14a, VCH: Weinheim). Additionally, these amino acids have been found to be useful as precursors for the synthesis of synthetic amino acids and proteins, such as N-acetylcysteine, S-carboxymethyl-L-cysteine, (S)-5-hydroxytryptophan, and others described in Ulmann's Encyclopedia of Industrial Chemistry, vol. A2, p. 57-97, VCH: Weinheim. 1985.

The biosynthesis of these natural amino acids in organisms capable of producing them, such as bacteria, has been well characterized (for review of bacterial amino acid biosynthesis and regulation thereof, see Umbarger, H.E.(1978) Ann. Rev. Biochem. 47: 533-606). Glutamate is synthesized by the reductive amination of αketoglutarate, an intermediate in the citric acid cycle. Glutamine, proline, and arginine are each subsequently produced from glutamate. The biosynthesis of serine is a threestep process beginning with 3-phosphoglycerate (an intermediate in glycolysis), and resulting in this amino acid after oxidation, transamination, and hydrolysis steps. Both cysteine and glycine are produced from serine; the former by the condensation of homocysteine with serine, and the latter by the transferal of the side-chain β -carbon atom to tetrahydrofolate, in a reaction catalyzed by serine transhydroxymethylase. Phenylalanine, and tyrosine are synthesized from the glycolytic and pentose phosphate pathway precursors erythrose 4-phosphate and phosphoenolpyruvate in a 9-step biosynthetic pathway that differ only at the final two steps after synthesis of prephenate. Tryptophan is also produced from these two initial molecules, but its synthesis is an 11step pathway. Tyrosine may also be synthesized from phenylalanine, in a reaction catalyzed by phenylalanine hydroxylase. Alanine, valine, and leucine are all biosynthetic products of pyruvate, the final product of glycolysis. Aspartate is formed from oxaloacetate, an intermediate of the citric acid cycle. Asparagine, methionine, threonine, and lysine are each produced by the conversion of aspartate. Isoleucine is formed from threonine. A complex 9-step pathway results in the production of histidine from 5-phosphoribosyl-1-pyrophosphate, an activated sugar.

Amino acids in excess of the protein synthesis needs of the cell cannot be stored, and are instead degraded to provide intermediates for the major metabolic pathways of the cell (for review see Stryer, L. Biochemistry 3rd ed. Ch. 21 "Amino Acid Degradation and the Urea Cycle" p. 495-516 (1988)). Although the cell is able to convert unwanted amino acids into useful metabolic intermediates, amino acid production is costly in terms of energy, precursor molecules, and the enzymes necessary to synthesize them. Thus it is not surprising that amino acid biosynthesis is regulated by feedback inhibition, in which the presence of a particular amino acid serves to slow or entirely stop its own production (for overview of feedback mechanisms in amino acid biosynthetic pathways, see Stryer, L. Biochemistry, 3rd ed. Ch. 24: "Biosynthesis of Amino Acids and Heme" p.

575-600 (1988)). Thus, the output of any particular amino acid is limited by the amount of that amino acid present in the cell.

B. Vitamin, Cofactor, and Nutraceutical Metabolism and Uses

Vitamins, cofactors, and nutraceuticals comprise another group of molecules which the higher animals have lost the ability to synthesize and so must ingest, although they are readily synthesized by other organisms, such as bacteria. These molecules are either bioactive substances themselves, or are precursors of biologically active substances which may serve as electron carriers or intermediates in a variety of metabolic pathways. Aside from their nutritive value, these compounds also have 10 significant industrial value as coloring agents, antioxidants, and catalysts or other processing aids. (For an overview of the structure, activity, and industrial applications of these compounds, see, for example, Ullman's Encyclopedia of Industrial Chemistry, "Vitamins" vol. A27, p. 443-613, VCH: Weinheim, 1996.) The term "vitamin" is artrecognized, and includes nutrients which are required by an organism for normal 1.5 functioning, but which that organism cannot synthesize by itself. The group of vitamins may encompass cofactors and nutraceutical compounds. The language "cofactor" includes nonproteinaceous compounds required for a normal enzymatic activity to occur. Such compounds may be organic or inorganic; the cofactor molecules of the invention are preferably organic. The term "nutraceutical" includes dietary supplements having health benefits in plants and animals, particularly humans. Examples of such molecules are vitamins, antioxidants, and also certain lipids (e.g., polyunsaturated fatty acids).

The biosynthesis of these molecules in organisms capable of producing them, such as bacteria, has been largely characterized (Ullman's Encyclopedia of Industrial Chemistry, "Vitamins" vol. A27, p. 443-613, VCH: Weinheim, 1996; Michal, G. (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, John Wiley & Sons; Ong, A.S., Niki, E. & Packer, L. (1995) "Nutrition, Lipids, Health, and Disease" Proceedings of the UNESCO/Confederation of Scientific and Technological Associations in Malaysia, and the Society for Free Radical Research - Asia, held Sept. 30 1-3, 1994 at Penang, Malaysia, AOCS Press: Champaign, IL X, 374 S).

Thiamin (vitamin B₁) is produced by the chemical coupling of pyrimidine and thiazole moieties. Riboflavin (vitamin B2) is synthesized from guanosine-5'-triphosphate (GTP) and ribose-5'-phosphate. Riboflavin, in turn, is utilized for the synthesis of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). The family of 35 compounds collectively termed 'vitamin B6' (e.g., pyridoxine, pyridoxamine, pyridoxa-5'-phosphate, and the commercially used pyridoxin hydrochloride) are all derivatives of

35

the common structural unit, 5-hydroxy-6-methylpyridine. Pantothenate (pantothenic acid, (R)-(+)-N-(2,4-dihydroxy-3,3-dimethyl-1-oxobutyl)- β -alanine) can be produced either by chemical synthesis or by fermentation. The final steps in pantothenate biosynthesis consist of the ATP-driven condensation of β -alanine and pantoic acid. The enzymes responsible for the biosynthesis steps for the conversion to pantoic acid, to β -alanine and for the condensation to panthotenic acid are known. The metabolically active form of pantothenate is Coenzyme A, for which the biosynthesis proceeds in 5 enzymatic steps. Pantothenate, pyridoxal-5'-phosphate, cysteine and ATP are the precursors of Coenzyme A. These enzymes not only catalyze the formation of panthothante, but also the production of (R)-pantoic acid, (R)-pantolacton, (R)-panthenol (provitamin B₅), pantetheine (and its derivatives) and coenzyme A.

Biotin biosynthesis from the precursor molecule pimeloyl-CoA in microorganisms has been studied in detail and several of the genes involved have been identified. Many of the corresponding proteins have been found to also be involved in Fe-cluster synthesis and are members of the nifS class of proteins. Lipoic acid is derived from octanoic acid, and serves as a coenzyme in energy metabolism, where it becomes part of the pyruvate dehydrogenase complex and the α-ketoglutarate dehydrogenase complex. The folates are a group of substances which are all derivatives of folic acid, which is turn is derived from L-glutamic acid, p-amino-benzoic acid and 6-methylpterin. The biosynthesis of folic acid and its derivatives, starting from the metabolism intermediates guanosine-5'-triphosphate (GTP), L-glutamic acid and p-amino-benzoic acid has been studied in detail in certain microorganisms.

Corrinoids (such as the cobalamines and particularly vitamin B₁₂) and porphyrines belong to a group of chemicals characterized by a tetrapyrole ring system.

The biosynthesis of vitamin B₁₂ is sufficiently complex that it has not yet been completely characterized, but many of the enzymes and substrates involved are now known. Nicotinic acid (nicotinate), and nicotinamide are pyridine derivatives which are also termed 'niacin'. Niacin is the precursor of the important coenzymes NAD (nicotinamide adenine dinucleotide) and NADP (nicotinamide adenine dinucleotide) phosphate) and their reduced forms.

The large-scale production of these compounds has largely relied on cell-free chemical syntheses, though some of these chemicals have also been produced by large-scale culture of microorganisms, such as riboflavin, Vitamin B_6 , pantothenate, and biotin. Only Vitamin B_{12} is produced solely by fermentation, due to the complexity of its synthesis. *In vitro* methodologies require significant inputs of materials and time, often at great cost.

C. Purine, Pyrimidine, Nucleoside and Nucleotide Metabolism and Uses

Purine and pyrimidine metabolism genes and their corresponding proteins are important targets for the therapy of tumor diseases and viral infections. The language "purine" or "pyrimidine" includes the nitrogenous bases which are constituents of nucleic acids, co-enzymes, and nucleotides. The term "nucleotide" includes the basic structural units of nucleic acid molecules, which are comprised of a nitrogenous base, a pentose sugar (in the case of RNA, the sugar is ribose; in the case of DNA, the sugar is D-deoxyribose), and phosphoric acid. The language "nucleoside" includes molecules which serve as precursors to nucleotides, but which are lacking the phosphoric acid moiety that nucleotides possess. By inhibiting the biosynthesis of these molecules, or their mobilization to form nucleic acid molecules, it is possible to inhibit RNA and DNA synthesis; by inhibiting this activity in a fashion targeted to cancerous cells, the ability of tumor cells to divide and replicate may be inhibited. Additionally, there are nucleotides which do not form nucleic acid molecules, but rather serve as energy stores (i.e., AMP) or as coenzymes (i.e., FAD and NAD).

Several publications have described the use of these chemicals for these medical indications, by influencing purine and/or pyrimidine metabolism (e.g. Christopherson, R.I. and Lyons, S.D. (1990) "Potent inhibitors of de novo pyrimidine and purine biosynthesis as chemotherapeutic agents." Med. Res. Reviews 10: 505-548). Studies of enzymes involved in purine and pyrimidine metabolism have been focused on the development of new drugs which can be used, for example, as immunosuppressants or anti-proliferants (Smith, J.L., (1995) "Enzymes in nucleotide synthesis." Curr. Opin. Struct. Biol. 5: 752-757; (1995) Biochem Soc. Transact. 23: 877-902). However, purine and pyrimidine bases, nucleosides and nucleotides have other utilities: as intermediates in the biosynthesis of several fine chemicals (e.g., thiamine, S-adenosyl-methionine, folates, or riboflavin), as energy carriers for the cell (e.g., ATP or GTP), and for chemicals themselves, commonly used as flavor enhancers (e.g., IMP or GMP) or for several medicinal applications (see, for example, Kuninaka, A. (1996) Nucleotides and Related Compounds in Biotechnology vol. 6, Rehm et al., eds. VCH: Weinheim, p. 561-612). Also, enzymes involved in purine, pyrimidine, nucleoside, or nucleotide metabolism are increasingly serving as targets against which chemicals for crop protection, including fungicides, herbicides and insecticides, are developed.

The metabolism of these compounds in bacteria has been characterized (for reviews see, for example, Zalkin, H. and Dixon, J.E. (1992) "de novo purine nucleotide biosynthesis", in: Progress in Nucleic Acid Research and Molecular Biology, vol. 42, Academic Press:, p. 259-287; and Michal, G. (1999) "Nucleotides and Nucleosides", Chapter 8 in: Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology,

15

25

30

35

Wiley: New York). Purine metabolism has been the subject of intensive research, and is essential to the normal functioning of the cell. Impaired purine metabolism in higher animals can cause severe disease, such as gout. Purine nucleotides are synthesized from ribose-5-phosphate, in a series of steps through the intermediate compound inosine-5'phosphate (IMP), resulting in the production of guanosine-5'-monophosphate (GMP) or adenosine-5'-monophosphate (AMP), from which the triphosphate forms utilized as nucleotides are readily formed. These compounds are also utilized as energy stores, so their degradation provides energy for many different biochemical processes in the cell. Pyrimidine biosynthesis proceeds by the formation of uridine-5'-monophosphate (UMP) from ribose-5-phosphate. UMP, in turn, is converted to cytidine-5'-triphosphate (CTP). The deoxy- forms of all of these nucleotides are produced in a one step reduction reaction from the diphosphate ribose form of the nucleotide to the diphosphate deoxyribose form of the nucleotide. Upon phosphorylation, these molecules are able to participate in DNA synthesis.

D Trehalose Metabolism and Uses

Trehalose consists of two glucose molecules, bound in α , α -1,1 linkage. It is commonly used in the food industry as a sweetener, an additive for dried or frozen foods, and in beverages. However, it also has applications in the pharmaceutical, 20 cosmetics and biotechnology industries (see, for example, Nishimoto et al., (1998) U.S. Patent No. 5,759,610; Singer, M.A. and Lindquist, S. (1998) Trends Biotech. 16: 460-467; Paiva, C.L.A. and Panek, A.D. (1996) Biotech. Ann. Rev. 2: 293-314; and Shiosaka, M. (1997) J. Japan 172: 97-102). Trehalose is produced by enzymes from many microorganisms and is naturally released into the surrounding medium, from which it can be collected using methods known in the art.

The Phosphoenolpyruvate:Sugar Phosphotransferase System

The ability of cells to grow and divide rapidly in culture is to a great degree dependent on the extent to which the cells are able to take up and utilize high energy molecules, such as glucose and other sugars. Different transporter proteins exist to transport different carbon sources into the cell. There are transport proteins for sugars, such as glucose, fructose, mannose, galactose, ribose, sorbose, ribulose, lactose, maltose, sucrose, or raffinose, and also transport proteins for starch or cellulose degradation products. Other transport systems serve to import alcohols (e.g., methanol or ethanol), alkanes, fatty acids and organic acids like acetic acid or lactic acid. In bacteria, sugars may be transported into the cell across the cellular membrane by a variety of mechanisms. Aside from the symport of sugars with protons, one of the most

commonly utilized processes for sugar uptake is the bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS). This system not only catalyzes the translocation (with concomitant phosphorylation) of sugars and hexitols, but it also regulates cellular metabolism in response to the availability of carbohydrates. Such PTS systems are ubiquitous in bacteria but do not occur in archaebacteria or eukaryotes.

Functionally, the PTS system consists of two cytoplasmic proteins, Enzyme I and HPr, and a variable number of sugar-specific integral and peripheral membrane transport complexes (each termed 'Enzyme II' with a sugar-specific subscript, e.g., 'Enzyme II Glu, for the Enzyme II complex which binds glucose). Enzymes II specific for mono-, di-, or oligosaccharides, like glucose, fructose, mannose, galactose, ribose, sorbose, ribulose, lactose, maltose, sucrose, raffinose, and others are known. Enzyme I transfers phosphoryl groups from phosphoenolpyruvate (PEP) to the phosphoryl carrier protein, HPr. HPr then transfers the phosphoryl groups to the different Enzyme II transport complexes. While the amino acid sequences of Enzyme I and HPr are quite similar in all bacteria, the sequences for PTS transporters can be grouped into structurally unrelated families. Further, the number and homology between these genes vary from bacteria to bacteria. The E. coli genome encodes 38 different PTS proteins, 33 of which are subunits belonging to 22 different transporters. The M. genitalium genome contains one gene each for Enzyme I and HPr, and only two genes for PTS transporters. The genomes of T. palladium and C. trachomatis contain genes for Enzyme I- and HPr-like proteins but no PTS transporters.

All PTS transporters consist of three functional units, IIA, IIB, and IIC, which occur either as protein subunits in a complex (e.g., IIA^{Gle}IICB^{Gle}) or as domains of a single polypeptide chain (e.g., IICBA^{GleNAe}). IIA and IIB sequentially transfer phosphoryl groups from HPr to the transported sugars. IIC contains the sugar binding site, and spans the inner membrane six or eight times. Sugar translocation is coupled to the transient phosphorylation of the IIB domain. Enzyme I, HPr, and IIA are phosphorylated at histidine residues, while IIB subunits are phosphorylated at either cysteine or histidine residues, depending on the particular transporter involved. Phosphorylation of the sugar being imported has the advantage of blocking the diffusion of the sugar back through the cellular membrane to the extracellular medium, since the charged phosphate group cannot readily traverse the hydrophobic core of the membrane.

Some PTS proteins play a role in intracellular signal transduction in addition to their function in the active transport of sugars. These subunits regulate their targets either allosterically, or by phosphorylation. Their regulatory activity varies with the degree of their phosphorylation (i.e., the ratio of the non-phosphorylated to the phosphorylated form), which in turn varies with the ratio of sugar-dependent

20

dephosphorylation and phosphoenolpyruvate-dependent rephosphorylation. Examples of such intracellular regulation by PTS proteins in E. coli include the inhibition of glycerol kinase by dephosphorylated IIA Glc, and the activation of adenvlate cyclase by the phosphorylated version of this protein. Also, the HPr and the IIB domains of some transporters in these microorganisms regulate gene expression by reversible phosphorylation of transcription antiterminators. In gram-positive bacteria, the activity of HPr is modulated by HPr-specific serine kinases and phosphatases. For example, HPr phosphorylated at serine-46 functions as a co-repressor of the transcriptional repressor CcpA. Lastly, it has been found that unphosphorylated Enzyme I inhibits the sensor kinase CheA of the bacterial chemotaxis machinery, providing a direct link between the 10 sugar binding and transport systems of the bacterium and those systems governing movement of the bacterium (Sonenshein, A. L., et al., eds. Bacillus subtilis and other gram-positive bacteria. ASM: Washington, D.C.; Neidhardt, F.C., et al., eds. (1996) Escherichia coli and Salmonella. ASM Press: Washington, D.C.; Lengeler et al., (1999). Biology of Prokarvotes. Section II, pp. 68-87. Thieme Verlag: Stuttgart).

III. Elements and Methods of the Invention

The present invention is based, at least in part, on the discovery of novel molecules, referred to herein as PTS nucleic acid and protein molecules, which participate in the uptake of high-energy carbon molecules (e.g., glucose, sucrose, and fructose) into C. glutamicum, and may also participate in one or more intracellular signal transduction pathways in these microorganisms. In one embodiment, the PTS molecules function to import high-energy carbon molecules into the cell, where the energy produced by their degradation may be utilized to power less energetically favorable biochemical reactions, and their degradation products may serve as intermediates and precursors for a number of other metabolic pathways. In another embodiment, the PTS molecules may participate in one or more intracellular signal transduction pathways, wherein the presence of a modified form of a PTS molecule (e.g., a phosphorylated PTS protein) may participate in a signal transduction cascade which regulates one or more cellular processes. In a preferred embodiment, the activity of the PTS molecules of the present invention has an impact on the production of a desired fine chemical by this organism. In a particularly preferred embodiment, the PTS molecules of the invention are modulated in activity, such that the yield, production or efficiency of production of one or more fine chemicals from C. glutamicum is also modulated.

35 The language, "PTS protein" or "PTS polypeptide" includes proteins which participate in the uptake of one or more high-energy carbon compounds (e.g., mono-, di, or oligosaccharides, such as fructose, mannose, sucrose, glucose, raffinose, galactose,

30

ribose, lactose, maltose, and ribulose) from the extracellular medium to the interior of the cell. Such PTS proteins may also participate in one or more intracellular signal transduction pathways, such as, but not limited to, those governing the uptake of different sugars into the cell. Examples of PTS proteins include those encoded by the PTS genes set forth in Table 1 and Appendix A. For general references pertaining to the PTS system, see: Stryer, L. (1988) Biochemistry, Chapter 37: "Membrane Transport", W.H. Freeman: New York, p. 959-961; Darnell, J. et al. (1990) Molecular Cell Biology Scientific American Books: New York, p. 552-553, and Michal, G., ed. (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, Chapter 15 "Special Bacterial Metabolism". The terms "PTS gene" or "PTS nucleic acid sequence" include nucleic acid sequences encoding a PTS protein, which consist of a coding region and also corresponding untranslated 5' and 3' sequence regions. Examples of PTS genes include those set forth in Table 1. The terms "production" or "productivity" are artrecognized and include the concentration of the fermentation product (for example, the desired fine chemical) formed within a given time and a given fermentation volume (e.g., kg product per hour per liter). The term "efficiency of production" includes the time required for a particular level of production to be achieved (for example, how long it takes for the cell to attain a particular rate of output of a fine chemical). The term "vield" or "product/carbon yield" is art-recognized and includes the efficiency of the conversion of the carbon source into the product (i.e., fine chemical). This is generally written as, for example, kg product per kg carbon source. By increasing the yield or production of the compound, the quantity of recovered molecules, or of useful recovered molecules of that compound in a given amount of culture over a given amount of time is increased. The terms "biosynthesis" or a "biosynthetic pathway" are art-recognized and include the synthesis of a compound, preferably an organic compound, by a cell from intermediate compounds in what may be a multistep and highly regulated process. The terms "degradation" or a "degradation pathway" are art-recognized and include the breakdown of a compound, preferably an organic compound, by a cell to degradation products (generally speaking, smaller or less complex molecules) in what may be a multistep and highly regulated process. The language "metabolism" is art-recognized and includes the totality of the biochemical reactions that take place in an organism. The metabolism of a particular compound, then, (e.g., the metabolism of an amino acid such as glycine) comprises the overall biosynthetic, modification, and degradation pathways in the cell related to this compound. The language "transport" or "import" is

35 art-recognized and includes the facilitated movement of one or more molecules across a cellular membrane through which the molecule would otherwise be unable to pass.

25

In another embodiment, the PTS molecules of the invention are capable of modulating the production of a desired molecule, such as a fine chemical, in a microorganism such as *C. glutamicum*. Using recombinant genetic techniques, one or more of the PTS proteins of the invention may be manipulated such that its function is modulated. For example, a protein involved in the PTS-mediated import of glucose may be altered such that it is optimized in activity, and the PTS system for the importation of glucose may thus be able to translocate increased amounts of glucose into the cell. Since glucose molecules are utilized not only for energy to drive energetically unfavorable biochemical reactions, such as fine chemical biosyntheses, but also as precursors and intermediates in a number of fine chemical biosynthetic pathways (e.g., serine is synthesized from 3-phosphoglycerate). In each case, the overall yield or rate of production of one of these desired fine chemicals may be increased, either by increasing the energy available for such production to occur, or by increasing the availability of compounds necessary for such production to take place.

Further, many PTS proteins are known to play key roles in intracellular signal transduction pathways which regulate cellular metabolism and sugar uptake in keeping with the availability of carbon sources. For example, it is known that an increased intracellular level of fructose 1,6-bisphosphate (a compound produced during glycolysis) results in the phosphorylation of a serine residue on HPr which prevents this protein from serving as a phosphoryl donor in any PTS sugar transport process, thereby blocking further sugar uptake. By mutagenizing HPr such that this serine residue cannot be phosphorylated, one may constitutively activate HPr and thereby increase sugar transport into the cell, which in turn will ensure greater intracellular energy stores and intermediate/precursor molecules for the biosynthesis of one or more desired fine chemicals

The isolated nucleic acid sequences of the invention are contained within the genome of a *Corynebacterium glutumicum* strain available through the American Type Culture Collection, given designation ATCC 13032. The nucleotide sequence of the isolated *C. glutamicum* PTS DNAs and the predicted amino acid sequences of the *C. glutamicum* PTS proteins are shown in Appendices A and B, respectively. Computational analyses were performed which classified and/or identified these nucleotide sequences as sequences which encode metabolic pathway proteins.

The present invention also pertains to proteins which have an amino acid sequence which is substantially homologous to an amino acid sequence of Appendix B.

As used herein, a protein which has an amino acid sequence which is substantially homologous to a selected amino acid sequence is least about 50% homologous to the selected amino acid sequence, e.g., the entire selected amino acid sequence. A protein

15

which has an amino acid sequence which is substantially homologous to a selected amino acid sequence can also be least about 50-60%, preferably at least about 60-70%, and more preferably at least about 70-80%, 80-90%, or 90-95%, and most preferably at least about 96%, 97%, 98%, 99% or more homologous to the selected amino acid sequence.

The PTS protein or a biologically active portion or fragment thereof of the invention can participate in the transport of high-energy carbon-containing molecules such as glucose into C. glutamicum, or can participate in intracellular signal transduction in this microorganism, or may have one or more of the activities set forth in Table 1.

Various aspects of the invention are described in further detail in the following subsections:

A. Isolated Nucleic Acid Molecules

One aspect of the invention pertains to isolated nucleic acid molecules that encode PTS polypeptides or biologically active portions thereof, as well as nucleic acid fragments sufficient for use as hybridization probes or primers for the identification or amplification of PTS-encoding nucleic acid (e.g., PTS DNA). As used herein, the term "nucleic acid molecule" is intended to include DNA molecules (e.g., cDNA or genomic DNA) and RNA molecules (e.g., mRNA) and analogs of the DNA or RNA generated 20 using nucleotide analogs. This term also encompasses untranslated sequence located at both the 3' and 5' ends of the coding region of the gene: at least about 100 nucleotides of sequence upstream from the 5' end of the coding region and at least about 20 nucleotides of sequence downstream from the 3'end of the coding region of the gene. The nucleic acid molecule can be single-stranded or double-stranded, but preferably is 25 double-stranded DNA. An "isolated" nucleic acid molecule is one which is separated from other nucleic acid molecules which are present in the natural source of the nucleic acid. Preferably, an "isolated" nucleic acid is free of sequences which naturally flank the nucleic acid (i.e., sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated PTS nucleic acid molecule can contain less than about 5 kb, 4kb, 3kb, 2kb, 1 kb, 0.5 kb or 0.1 kb of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived (e.g, a C. glutamicum cell). Moreover, an "isolated" nucleic acid molecule, such as a DNA molecule, can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or chemical precursors or

35 other chemicals when chemically synthesized.

A nucleic acid molecule of the present invention, e.g., a nucleic acid molecule having a nucleotide sequence of Appendix A, or a portion thereof, can be isolated using standard molecular biology techniques and the sequence information provided herein. For example, a C. glutamicum PTS DNA can be isolated from a C. glutamicum library using all or portion of one of the sequences of Appendix A as a hybridization probe and standard hybridization techniques (e.g., as described in Sambrook, J., Fritsh, E. F., and Maniatis, T. Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989). Moreover, a nucleic acid molecule encompassing all or a portion of one of the sequences of Appendix A can be isolated by the polymerase chain reaction using oligonucleotide primers designed based upon this sequence (e.g., a nucleic acid molecule encompassing all or a portion of one of the sequences of Appendix A can be isolated by the polymerase chain reaction using oligonucleotide primers designed based upon this same sequence of Appendix A). For example, mRNA can be isolated from normal endothelial cells (e.g., by the guanidinium-thiocyanate extraction procedure of Chirgwin et al. (1979) Biochemistry 18: 5294-5299) and DNA can be prepared using reverse transcriptase (e.g., Moloney MLV reverse transcriptase, available from Gibco/BRL, Bethesda, MD; or AMV reverse transcriptase, available from Seikagaku America, Inc., St. Petersburg, FL). Synthetic oligonucleotide primers for polymerase chain reaction amplification can be designed based upon one of the nucleotide sequences shown in Appendix A. A nucleic acid of the invention can be amplified using cDNA or, alternatively, genomic DNA, as a template and appropriate oligonucleotide primers according to standard PCR amplification techniques. The nucleic acid so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis. Furthermore, oligonucleotides corresponding to a PTS nucleotide sequence can be prepared by

In a preferred embodiment, an isolated nucleic acid molecule of the invention comprises one of the nucleotide sequences shown in Appendix A. The sequences of Appendix A correspond to the Corynebacterium glutamicum PTS DNAs of the 0 invention. This DNA comprises sequences encoding PTS proteins (i.e., the "coding region", indicated in each sequence in Appendix A), as well as 5' untranslated sequences and 3' untranslated sequences, also indicated in Appendix A. Alternatively, the nucleic acid molecule can comprise only the coding region of any of the sequences in Appendix A.

standard synthetic techniques, e.g., using an automated DNA synthesizer.

35 For the purposes of this application, it will be understood that each of the sequences set forth in Appendix A has an identifying RXA, RXN, RXS, or RXC number having the designation "RXA", "RXN", "RXS", or "RXC" followed by 5 digits (i.e., sequence is SEO ID NO:8.

RXA01503, RXN01299, RXS00315, or RXC00953). Each of these sequences comprises up to three parts: a 5' upstream region, a coding region, and a downstream region. Each of these three regions is identified by the same RXA, RXN, RXS, or RXC designation to eliminate confusion. The recitation "one of the sequences in Appendix 5 A", then, refers to any of the sequences in Appendix A, which may be distinguished by their differing RXA, RXN, RXS, or RXC designations. The coding region of each of these sequences is translated into a corresponding amino acid sequence, which is set forth in Appendix B. The sequences of Appendix B are identified by the same RXA, RXN, RXS, or RXC designations as Appendix A, such that they can be readily 10 correlated. For example, the amino acid sequences in Appendix B designated RXA01503, RXN01299, RXS00315, and RXC00953 are translations of the coding regions of the nucleotide sequence of nucleic acid molecules RXA01503, RXN01299, RXS00315, and RXC00953, respectively, in Appendix A. Each of the RXA, RXN, RXS, and RXC nucleotide and amino acid sequences of the invention has also been assigned a SEO ID NO, as indicated in Table 1. For example, as set forth in Table 1, the nucleotide sequence of RXN01299 is SEO ID NO: 7, and the corresponding amino acid

Several of the genes of the invention are "F-designated genes". An F-designated gene includes those genes set forth in Table 1 which have an 'F' in front of the RXA, 20 RXN, RXS, or RXC designation. For example, SEQ ID NO3, designated, as indicated on Table 1, as "F RXA00315", is an F-designated gene, as are SEQ ID NOs: 9, 11, and 13 (designated on Table 1 as "F RXA01299", "F RXA01883", and "F RXA01889", respectively).

In one embodiment, the nucleic acid molecules of the present invention are not intended to include *C. glutamicum* those compiled in Table 2. In the case of the dapD gene, a sequence for this gene was published in Wehrmann, A., et al. (1998) *J. Bacteriol.* 180(12): 3159-3165. However, the sequence obtained by the inventors of the present application is significantly longer than the published version. It is believed that the published version relied on an incorrect start codon, and thus represents only a fragment of the actual coding region.

In another preferred embodiment, an isolated nucleic acid molecule of the invention comprises a nucleic acid molecule which is a complement of one of the nucleotide sequences shown in Appendix A, or a portion thereof. A nucleic acid molecule which is complementary to one of the nucleotide sequences shown in

35 Appendix A is one which is sufficiently complementary to one of the nucleotide sequences shown in Appendix A such that it can hybridize to one of the nucleotide sequences shown in Appendix A, thereby forming a stable duplex. Appendix A, or a portion thereof.

15

In still another preferred embodiment, an isolated nucleic acid molecule of the invention comprises a nucleotide sequence which is at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, or 60%, preferably at least about 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, or 70%, more preferably at least about 71%, 72%, 573%, 74%, 75%, 76%, 77%, 78%, 79%, or 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, or 90%, or 91%, 92%, 93%, 94%, and even more preferably at least about 95%, 96%, 97%, 98%, 99% or more homologous to a nucleotide sequence shown in Appendix A, or a portion thereof. Ranges and identity values intermediate to the above-recited ranges, (e.g., 70-90% identical or 80-95% identical) are also intended to 0 be encompassed by the present invention. For example, ranges of identity values using a combination of any of the above values recited as upper and/or lower limits are intended to be included. In an additional preferred embodiment, an isolated nucleic acid molecule of the invention comprises a nucleotide sequence which hybridizes, e.g., hybridizes under stringent conditions, to one of the nucleotide sequences shown in

Moreover, the nucleic acid molecule of the invention can comprise only a portion of the coding region of one of the sequences in Appendix A, for example a fragment which can be used as a probe or primer or a fragment encoding a biologically active portion of a PTS protein. The nucleotide sequences determined from the cloning 20 of the PTS genes from C. glutamicum allows for the generation of probes and primers designed for use in identifying and/or cloning PTS homologues in other cell types and organisms, as well as PTS homologues from other Corynebacteria or related species. The probe/primer typically comprises substantially purified oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, preferably about 25, more preferably about 40, 50 or 75 consecutive nucleotides of a sense strand of one of the sequences set forth in Appendix A, an anti-sense sequence of one of the sequences set forth in Appendix A, or naturally occurring mutants thereof. Primers based on a nucleotide sequence of Appendix A can be used in PCR reactions to clone PTS homologues. Probes based on the PTS nucleotide sequences can be used to detect transcripts or genomic sequences encoding the same or homologous proteins. In preferred embodiments, the probe further comprises a label group attached thereto, e.g. the label group can be a radioisotope, a fluorescent compound, an enzyme, or an enzyme cofactor. Such probes can be used as a part of a diagnostic test kit for identifying cells

35 which misexpress a PTS protein, such as by measuring a level of a PTS-encoding nucleic acid in a sample of cells e.g., detecting PTS mRNA levels or determining whether a genomic PTS gene has been mutated or deleted.

25

In one embodiment, the nucleic acid molecule of the invention encodes a protein or portion thereof which includes an amino acid sequence which is sufficiently homologous to an amino acid sequence of Appendix B such that the protein or portion thereof maintains the ability to participate in the transport of high-energy carbon molecules (such as glucose) into C. glutamicum, and may also participate in one or more intracellular signal transduction pathways. As used herein, the language "sufficiently homologous" refers to proteins or portions thereof which have amino acid sequences which include a minimum number of identical or equivalent (e.g., an amino acid residue which has a similar side chain as an amino acid residue in one of the sequences of Appendix B) amino acid residues to an amino acid sequence of Appendix B such that the protein or portion thereof is capable of transporting high-energy carbon-containing molecules such as glucose into C. glutamicum, and may also participate in intracellular signal transduction in this microorganism. Protein members of such metabolic pathways, as described herein, function to transport high-energy carbon-containing molecules such as glucose into C. glutamicum, and may also participate in intracellular signal transduction in this microorganism. Examples of such activities are also described herein. Thus, "the function of a PTS protein" contributes to the overall functioning and/or regulation of one or more phosphoenolpyruvate-based sugar transport pathway, and /or contributes, either directly or indirectly, to the yield, production, and/or 20 efficiency of production of one or more fine chemicals. Examples of PTS protein activities are set forth in Table 1.

In another embodiment, the protein is at least about 50-60%, preferably at least about 60-70%, and more preferably at least about 70-80%, 80-90%, 90-95%, and most preferably at least about 96%, 97%, 98%, 99% or more homologous to an entire amino acid sequence of Appendix B.

Portions of proteins encoded by the PTS nucleic acid molecules of the invention are preferably biologically active portions of one of the PTS proteins. As used herein, the term "biologically active portion of a PTS protein" is intended to include a portion, e.g., a domain/motif, of a PTS protein that is capable of transporting high-energy carbon-containing molecules such as glucose into C. glutamicum, or of participating in 30 intracellular signal transduction in this microorganism, or has an activity as set forth in Table 1. To determine whether a PTS protein or a biologically active portion thereof can participate in the transportation of high-energy carbon-containing molecules such as glucose into C. glutamicum, or can participate in intracellular signal transduction in this microorganism, an assay of enzymatic activity may be performed. Such assay methods are well known to those of ordinary skill in the art, as detailed in Example 8 of the Exemplification.

10

15

30

Additional nucleic acid fragments encoding biologically active portions of a PTS protein can be prepared by isolating a portion of one of the sequences in Appendix B, expressing the encoded portion of the PTS protein or peptide (e.g., by recombinant expression in vitro) and assessing the activity of the encoded portion of the PTS protein or peptide.

The invention further encompasses nucleic acid molecules that differ from one of the nucleotide sequences shown in Appendix A (and portions thereof) due to degeneracy of the genetic code and thus encode the same PTS protein as that encoded by the nucleotide sequences shown in Appendix A. In another embodiment, an isolated nucleic acid molecule of the invention has a nucleotide sequence encoding a protein having an amino acid sequence shown in Appendix B. In a still further embodiment, the nucleic acid molecule of the invention encodes a full length C. glutamicum protein which is substantially homologous to an amino acid sequence of Appendix B (encoded by an open reading frame shown in Appendix A).

It will be understood by one of ordinary skill in the art that in one embodiment the sequences of the invention are not meant to include the sequences of the prior art, such as those Genbank sequences set forth in Tables 2 or 4 which were available prior to the present invention. In one embodiment, the invention includes nucleotide and amino acid sequences having a percent identity to a nucleotide or amino acid sequence of the invention which is greater than that of a sequence of the prior art (e.g., a Genbank 20 sequence (or the protein encoded by such a sequence) set forth in Tables 2 or 4). For example, the invention includes a nucleotide sequence which is greater than and/or at least 44% identical to the nucleotide sequence designated RXA01503 (SEQ ID NO:5), a nucleotide sequence which is greater than and/or at least 41% identical to the nucleotide sequence designated RXA00951 (SEQ ID NO:15), and a nucleotide sequence which is greater than and/or at least 38% identical to the nucleotide sequence designated RXA01300 (SEQ ID NO:21). One of ordinary skill in the art would be able to calculate the lower threshold of percent identity for any given sequence of the invention by examining the GAP-calculated percent identity scores set forth in Table 4 for each of the three top hits for the given sequence, and by subtracting the highest GAP-calculated percent identity from 100 percent. One of ordinary skill in the art will also appreciate that nucleic acid and amino acid sequences having percent identities greater than the lower threshold so calculated (e.g., at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, or 60%, preferably at least about 61%, 62%, 63%, 64%, 65%, 66%, 35 67%, 68%, 69%, or 70%, more preferably at least about 71%, 72%, 73%, 74%, 75%,

76%, 77%, 78%, 79%, or 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, or

90%, or 91%, 92%, 93%, 94%, and even more preferably at least about 95%, 96%, 97%, 98%, 99% or more identical) are also encompassed by the invention.

In addition to the C. glutamicum PTS nucleotide sequences shown in Appendix A, it will be appreciated by those of ordinary skill in the art that DNA sequence 5 polymorphisms that lead to changes in the amino acid sequences of PTS proteins may exist within a population (e.g., the C. glutamicum population). Such genetic polymorphism in the PTS gene may exist among individuals within a population due to natural variation. As used herein, the terms "gene" and "recombinant gene" refer to nucleic acid molecules comprising an open reading frame encoding a PTS protein, preferably a C. glutamicum PTS protein. Such natural variations can typically result in 1-5% variance in the nucleotide sequence of the PTS gene. Any and all such nucleotide variations and resulting amino acid polymorphisms in PTS that are the result of natural variation and that do not alter the functional activity of PTS proteins are intended to be within the scope of the invention.

Nucleic acid molecules corresponding to natural variants and non-C. glutamicum homologues of the C. glutamicum PTS DNA of the invention can be isolated based on their homology to the C. glutamicum PTS nucleic acid disclosed herein using the C. glutamicum DNA, or a portion thereof, as a hybridization probe according to standard hybridization techniques under stringent hybridization conditions. Accordingly, in another embodiment, an isolated nucleic acid molecule of the invention is at least 15 nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising a nucleotide sequence of Appendix A. In other embodiments, the nucleic acid is at least 30, 50, 100, 250 or more nucleotides in length. As used herein, the term "hybridizes under stringent conditions" is intended to describe conditions for 25 hybridization and washing under which nucleotide sequences at least 60% homologous to each other typically remain hybridized to each other. Preferably, the conditions are such that sequences at least about 65%, more preferably at least about 70%, and even more preferably at least about 75% or more homologous to each other typically remain hybridized to each other. Such stringent conditions are known to those of ordinary skill in the art and can be found in Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. A preferred, non-limiting example of stringent hybridization conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by one or more washes in 0.2 X SSC, 0.1% SDS at 50-65°C. Preferably, an isolated nucleic acid molecule of the invention that hybridizes under stringent conditions to a sequence of Appendix A corresponds to a naturally-occurring nucleic acid molecule. As used herein, a "naturally-occurring"

nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence

15

30

that occurs in nature (e.g., encodes a natural protein). In one embodiment, the nucleic acid encodes a natural C. glutamicum PTS protein.

In addition to naturally-occurring variants of the PTS sequence that may exist in the population, one of ordinary skill in the art will further appreciate that changes can be introduced by mutation into a nucleotide sequence of Appendix A, thereby leading to changes in the amino acid sequence of the encoded PTS protein, without altering the functional ability of the PTS protein. For example, nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues can be made in a sequence of Appendix A. A "non-essential" amino acid residue is a residue that can be altered from the wild-type sequence of one of the PTS proteins (Appendix B) without altering the activity of said PTS protein, whereas an "essential" amino acid residue is required for PTS protein activity. Other amino acid residues, however, (e.g., those that are not conserved or only semi-conserved in the domain having PTS activity) may not be essential for activity and thus are likely to be amenable to alteration without altering PTS activity.

Accordingly, another aspect of the invention pertains to nucleic acid molecules encoding PTS proteins that contain changes in amino acid residues that are not essential for PTS activity. Such PTS proteins differ in amino acid sequence from a sequence contained in Appendix B yet retain at least one of the PTS activities described herein. In one embodiment, the isolated nucleic acid molecule comprises a nucleotide sequence encoding a protein, wherein the protein comprises an amino acid sequence at least about 50% homologous to an amino acid sequence of Appendix B and is capable of transporting high-energy carbon-containing molecules such as glucose into C. glutamicum, or of participating in intracellular signal transduction in this microorganism, or has one or more activities set forth in Table 1. Preferably, the protein encoded by the nucleic acid molecule is at least about 50-60% homologous to one of the sequences in Appendix B, more preferably at least about 60-70% homologous to one of the sequences in Appendix B, even more preferably at least about 70-80%, 80-90%, 90-95% homologous to one of the sequences in Appendix B, and most preferably at least about 96%, 97%, 98%, or 99% homologous to one of the sequences in Appendix B.

To determine the percent homology of two amino acid sequences (e.g., one of the sequences of Appendix B and a mutant form thereof) or of two nucleic acids, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of one protein or nucleic acid for optimal alignment with the other protein or nucleic acid). The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in one sequence (e.g., one of the sequences of Appendix B) is occupied by the same amino acid residue

or nucleotide as the corresponding position in the other sequence (e.g., a mutant form of the sequence selected from Appendix B), then the molecules are homologous at that position (i.e., as used herein amino acid or nucleic acid "homology" is equivalent to amino acid or nucleic acid "identity"). The percent homology between the two sequences is a function of the number of identical positions shared by the sequences (i.e., % homology = # of identical positions/total # of positions x 100).

An isolated nucleic acid molecule encoding a PTS protein homologous to a protein sequence of Appendix B can be created by introducing one or more nucleotide substitutions, additions or deletions into a nucleotide sequence of Appendix A such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein. Mutations can be introduced into one of the sequences of Appendix A by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. Preferably, conservative amino acid substitutions are made at one or more predicted non-essential amino acid residues. A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, 20 proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Thus, a predicted nonessential amino acid residue in a PTS protein is preferably replaced with another amino acid residue from the same side chain family. Alternatively, in another embodiment, mutations can be introduced randomly along all or part of a PTS coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for a PTS activity described herein to identify mutants that retain PTS activity. Following mutagenesis of one of the sequences of Appendix A, the encoded protein can be expressed recombinantly and the activity of the protein can 30 be determined using, for example, assays described herein (see Example 8 of the Exemplification).

In addition to the nucleic acid molecules encoding PTS proteins described above, another aspect of the invention pertains to isolated nucleic acid molecules which are antisense thereto. An "antisense" nucleic acid comprises a nucleotide sequence which is complementary to a "sense" nucleic acid encoding a protein, e.g., complementary to the coding strand of a double-stranded DNA molecule or complementary to an mRNA sequence. Accordingly, an antisense nucleic acid can hydrogen bond to a sense nucleic

acid. The antisense nucleic acid can be complementary to an entire PTS coding strand, or to only a portion thereof. In one embodiment, an antisense nucleic acid molecule is antisense to a "coding region" of the coding strand of a nucleotide sequence encoding a PTS protein. The term "coding region" refers to the region of the nucleotide sequence comprising codons which are translated into amino acid residues (e.g., the entire coding region of SEQ ID NO. 5 (RXA01503) comprises nucleotides 1 to 249). In another embodiment, the antisense nucleic acid molecule is antisense to a "noncoding region" of the coding strand of a nucleotide sequence encoding PTS. The term "noncoding region" refers to 5' and 3' sequences which flank the coding region that are not translated into amino acids (i.e., also referred to as 5' and 3' untranslated regions).

Given the coding strand sequences encoding PTS disclosed herein (e.g., the sequences set forth in Appendix A), antisense nucleic acids of the invention can be designed according to the rules of Watson and Crick base pairing. The antisense nucleic acid molecule can be complementary to the entire coding region of PTS mRNA, but 15 more preferably is an oligonucleotide which is antisense to only a portion of the coding or noncoding region of PTS mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the translation start site of PTS mRNA. An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides in length. An antisense nucleic acid of the invention can be constructed 20 using chemical synthesis and enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used. Examples of modified nucleotides which can be used to generate the antisense nucleic acid include 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-Dmannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-35 isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-

oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-

amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target 5 nucleic acid of interest, described further in the following subsection).

The antisense nucleic acid molecules of the invention are typically administered to a cell or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a PTS protein to thereby inhibit expression of the protein, e.g., by inhibiting transcription and/or translation. The hybridization can be by 10 conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule which binds to DNA duplexes, through specific interactions in the major groove of the double helix. The antisense molecule can be modified such that it specifically binds to a receptor or an antigen expressed on a selected cell surface, e.g., by linking the antisense nucleic acid molecule to a peptide or 15 an antibody which binds to a cell surface receptor or antigen. The antisense nucleic acid molecule can also be delivered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of the antisense molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong prokaryotic, viral, or eukaryotic promoter are preferred.

In yet another embodiment, the antisense nucleic acid molecule of the invention is an α-anomeric nucleic acid molecule. An α-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β-units, the strands run parallel to each other (Gaultier et al. (1987) Nucleic Acids. Res. 15:6625-6641). The antisense nucleic acid molecule can also comprise a 2'-o-25 methylribonucleotide (Inoue et al. (1987) Nucleic Acids Res. 15:6131-6148) or a chimeric RNA-DNA analogue (Inoue et al. (1987) FEBS Lett. 215:327-330).

In still another embodiment, an antisense nucleic acid of the invention is a ribozyme. Ribozymes are catalytic RNA molecules with ribonuclease activity which are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they 30 have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes (described in Haselhoff and Gerlach (1988) Nature 334:585-591)) can be used to catalytically cleave PTS mRNA transcripts to thereby inhibit translation of PTS mRNA. A ribozyme having specificity for a PTS-encoding nucleic acid can be designed based upon the nucleotide sequence of a PTS DNA disclosed herein (i.e., SEO ID NO:5 35 (RXA01503 in Appendix A)). For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in a PTS-encoding mRNA.

4440 1 Hills 1880 1 1 11

See, e.g., Cech et al. U.S. Patent No. 4,987,071 and Cech et al. U.S. Patent No. 5,116,742. Alternatively, PTS mRNA can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel, D. and Szostak, J.W. (1993) Science 261:1411-1418.

Alternatively, PTS gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region of a PTS nucleotide sequence (e.g., a PTS promoter and/or enhancers) to form triple helical structures that prevent transcription of a PTS gene in target cells. See generally, Helene, C. (1991) Anticancer Drug Des. 6(6):569-84; Helene, C. et al. (1992) Ann. N.Y. Acad. Sci. 660:27-36; and Maher, L.J. (1992) Bioassays 14(12):807-15.

B. Recombinant Expression Vectors and Host Cells

Another aspect of the invention pertains to vectors, preferably expression vectors, containing a nucleic acid encoding a PTS protein (or a portion thereof). As used herein, the term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a "plasmid", which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as "expression vectors". In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, "plasmid" and "vector" can be used interchangeably as the plasmid is the most commonly used form of vector. However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adenoassociated viruses), which serve equivalent functions.

The recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell, which means that the recombinant expression vectors include one or more regulatory

35 sequences, selected on the basis of the host cells to be used for expression, which is operatively linked to the nucleic acid sequence to be expressed. Within a recombinant expression vector, "operably linked" is intended to mean that the nucleotide sequence of

interest is linked to the regulatory sequence(s) in a manner which allows for expression of the nucleotide sequence (e.g., in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell). The term "regulatory sequence" is intended to include promoters, enhancers and other expression control 5 elements (e.g., polyadenylation signals). Such regulatory sequences are described, for example, in Goeddel; Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). Regulatory sequences include those which direct constitutive expression of a nucleotide sequence in many types of host cell and those which direct expression of the nucleotide sequence only in certain host cells. 10 Preferred regulatory sequences are, for example, promoters such as cos-, tac-, trp-, tet-, trp-tet-, lpp-, lac-, lpp-lac-, lacI^q-, T7-, T5-, T3-, gal-, trc-, ara-, SP6-, arny, SPO2, λ-P_Ror \(P_1 \), which are used preferably in bacteria. Additional regulatory sequences are, for example, promoters from yeasts and fungi, such as ADC1, MFa, AC, P-60, CYC1, GAPDH, TEF, rp28, ADH, promoters from plants such as CaMV/35S, SSU, OCS, lib4, 15 usp, STLS1, B33, nos or ubiquitin- or phaseolin-promoters. It is also possible to use artificial promoters. It will be appreciated by one of ordinary skill in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, etc. The expression vectors of the invention can be introduced into host cells to thereby produce proteins or 20 peptides, including fusion proteins or peptides, encoded by nucleic acids as described

herein (e.g., PTS proteins, mutant forms of PTS proteins, fusion proteins, etc.). The recombinant expression vectors of the invention can be designed for expression of PTS proteins in prokaryotic or eukaryotic cells. For example, PTS genes can be expressed in bacterial cells such as C. glutamicum, insect cells (using baculovirus 25 expression vectors), yeast and other fungal cells (see Romanos, M.A. et al. (1992) "Foreign gene expression in yeast: a review", Yeast 8: 423-488; van den Hondel, C.A.M.J.J. et al. (1991) "Heterologous gene expression in filamentous fungi" in: More Gene Manipulations in Fungi, J.W. Bennet & L.L. Lasure, eds., p. 396-428: Academic Press: San Diego; and van den Hondel, C.A.M.J.J. & Punt, P.J. (1991) "Gene transfer 30 systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, Peberdy, J.F. et al., eds., p. 1-28, Cambridge University Press: Cambridge), algae and multicellular plant cells (see Schmidt, R. and Willmitzer, L. (1988) High efficiency Agrobacterium tumefactions -mediated transformation of Arabidopsis thaliana leaf and cotyledon explants" Plant Cell Rep.: 583-586), or mammalian cells. Suitable host cells are discussed further in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). Alternatively, the recombinant expression vector can be transcribed and translated *in vitro*, for example using T7 promoter regulatory sequences and T7 polymerase.

Expression of proteins in prokaryotes is most often carried out with vectors containing constitutive or inducible promoters directing the expression of either fusion or non-fusion proteins. Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein. Such fusion vectors typically serve three purposes: 1) to increase expression of recombinant protein; 2) to increase the solubility of the recombinant protein; and 3) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification. Often, in fusion expression vectors, a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein. Such enzymes, and their cognate recognition sequences, include Factor Xa, thrombin and enterokinase.

Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith, D.B. and Johnson, K.S. (1988) Gene 67:31-40), pMAL (New England Biolabs, Beverly, MA) and pRIT5 (Pharmacia, Piscataway, NJ) which fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein. In one embodiment, the coding sequence of the PTS protein is cloned into a pGEX expression vector to create a vector encoding a fusion protein comprising, from the N-terminus to the C-terminus, GST-thrombin cleavage site-X protein. The fusion protein can be purified by affinity chromatography using glutathione-agarose resin. Recombinant PTS protein unfused to GST can be recovered by cleavage of the fusion protein with thrombin.

Examples of suitable inducible non-fusion *E. coli* expression vectors include

25 pTrc (Amann *et al.*, (1988) *Gene* 69:301-315) pLG338, pACYC184, pBR322, pUC18,
pUC19, pKC30, pRep4, pHS1, pHS2, pPLc236, pMBL24, pLG200, pUR290, pINIII113-B1. λgt11, pBdCl, and pET 11d (Studier *et al.*, *Gene Expression Technology: Methods in Enzymology* 185, Academic Press, San Diego, California (1990) 60-89; and
Pouwels *et al.*, eds. (1985) Cloning Vectors. Elsevier: New York IBSN 0 444 904018).

30 Target gene expression from the pTrc vector relies on host RNA polymerase
transcription from a hybrid trp-lac fusion promoter. Target gene expression from the
pET 11d vector relies on transcription from a T7 gn10-lac fusion promoter mediated by
a coexpressed viral RNA polymerase (T7 gn1). This viral polymerase is supplied by
host strains BL21(DE3) or HMS174(DE3) from a resident λ prophage harboring a T7

35 gn1 gene under the transcriptional control of the lacUV 5 promoter. For transformation
of other varieties of bacteria, appropriate vectors may be selected. For example, the
plasmids pIJ101, pJJ364, pJJ702 and pJJ361 are known to be useful in transforming

25

30

Streptomyces, while plasmids pUB110, pC194, or pBD214 are suited for transformation of Bacillus species. Several plasmids of use in the transfer of genetic information into Corynebacterium include pHM1519, pBL1, pSA77, or pAJ667 (Pouwels et al., eds. (1985) Cloning Vectors, Elsevier: New York IBSN 0 444 904018).

One strategy to maximize recombinant protein expression is to express the protein in a host bacteria with an impaired capacity to proteolytically cleave the recombinant protein (Gottesman, S., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 119-128). Another strategy is to alter the nucleic acid sequence of the nucleic acid to be inserted into an 10 expression vector so that the individual codons for each amino acid are those preferentially utilized in the bacterium chosen for expression, such as C. glutamicum (Wada et al. (1992) Nucleic Acids Res. 20:2111-2118). Such alteration of nucleic acid sequences of the invention can be carried out by standard DNA synthesis techniques.

In another embodiment, the PTS protein expression vector is a yeast expression 15 vector. Examples of vectors for expression in yeast S. cerivisae include pYepSec1 (Baldari, et al., (1987) Embo J. 6:229-234), 2 u. pAG-1, Yep6, Yep13, pEMBLYe23, pMFa (Kurian and Herskowitz, (1982) Cell 30:933-943), pJRY88 (Schultz et al., (1987) Gene 54:113-123), and pYES2 (Invitrogen Corporation, San Diego, CA). Vectors and methods for the construction of vectors appropriate for use in other fungi, such as the filamentous fungi, include those detailed in: van den Hondel, C.A.M.J.J. & Punt, P.J. (1991) "Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, J.F. Peberdy, et al., eds., p. 1-28, Cambridge University Press: Cambridge, and Pouwels et al., eds. (1985) Cloning Vectors. Elsevier: New York (IBSN 0 444 904018).

Alternatively, the PTS proteins of the invention can be expressed in insect cells using baculovirus expression vectors. Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., Sf 9 cells) include the pAc series (Smith et al. (1983) Mol. Cell Biol. 3:2156-2165) and the pVL series (Lucklow and Summers (1989) Virology 170:31-39).

In another embodiment, the PTS proteins of the invention may be expressed in unicellular plant cells (such as algae) or in plant cells from higher plants (e.g., the spermatophytes, such as crop plants). Examples of plant expression vectors include those detailed in: Becker, D., Kemper, E., Schell, J. and Masterson, R. (1992) "New plant binary vectors with selectable markers located proximal to the left border", Plant Mol. Biol. 20: 1195-1197; and Bevan, M.W. (1984) "Binary Agrobacterium vectors for plant transformation", Nucl. Acid. Res. 12: 8711-8721, and include pLGV23, pGHlac+,

etacut i destatación

pBIN19, pAK2004, and pDH51 (Pouwels et al., eds. (1985) Cloning Vectors. Elsevier: New York IBSN 0 444 904018).

In yet another embodiment, a nucleic acid of the invention is expressed in mammalian cells using a mammalian expression vector. Examples of mammalian 5 expression vectors include pCDM8 (Seed, B. (1987) Nature 329:840) and pMT2PC (Kaufman et al. (1987) EMBO J. 6:187-195). When used in mammalian cells, the expression vector's control functions are often provided by viral regulatory elements. For example, commonly used promoters are derived from polyoma, Adenovirus 2, cytomegalovirus and Simian Virus 40. For other suitable expression systems for both 10 prokaryotic and eukaryotic cells see chapters 16 and 17 of Sambrook, J., Fritsh, E. F., and Maniatis, T. Molecular Cloning: A Laboratory Manual, 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.

In another embodiment, the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid). Tissuespecific regulatory elements are known in the art. Non-limiting examples of suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert et al. (1987) Genes Dev. 1:268-277), lymphoid-specific promoters (Calame and Eaton (1988) 20 Adv. Immunol. 43:235-275), in particular promoters of T cell receptors (Winoto and Baltimore (1989) EMBO J. 8:729-733) and immunoglobulins (Banerii et al. (1983) Cell 33:729-740; Oueen and Baltimore (1983) Cell 33:741-748), neuron-specific promoters (e.g., the neurofilament promoter: Byrne and Ruddle (1989) PNAS 86:5473-5477). pancreas-specific promoters (Edlund et al. (1985) Science 230:912-916), and mammary 25 gland-specific promoters (e.g., milk whey promoter; U.S. Patent No. 4,873,316 and European Application Publication No. 264,166). Developmentally-regulated promoters are also encompassed, for example the murine hox promoters (Kessel and Gruss (1990) Science 249:374-379) and the α-fetoprotein promoter (Campes and Tilghman (1989) Genes Dev. 3:537-546).

The invention further provides a recombinant expression vector comprising a DNA molecule of the invention cloned into the expression vector in an antisense orientation. That is, the DNA molecule is operatively linked to a regulatory sequence in a manner which allows for expression (by transcription of the DNA molecule) of an RNA molecule which is antisense to PTS mRNA. Regulatory sequences operatively 35 linked to a nucleic acid cloned in the antisense orientation can be chosen which direct the continuous expression of the antisense RNA molecule in a variety of cell types, for instance viral promoters and/or enhancers, or regulatory sequences can be chosen which

direct constitutive, tissue specific or cell type specific expression of antisense RNA. The antisense expression vector can be in the form of a recombinant plasmid, phagemid or attenuated virus in which antisense nucleic acids are produced under the control of a high efficiency regulatory region, the activity of which can be determined by the cell type into which the vector is introduced. For a discussion of the regulation of gene expression using antisense genes see Weintraub, H. et al., Antisense RNA as a molecular tool for genetic analysis, Reviews - Trends in Genetics, Vol. 1(1) 1986.

Another aspect of the invention pertains to host cells into which a recombinant expression vector of the invention has been introduced. The terms "host cell" and "recombinant host cell" are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.

A host cell can be any prokaryotic or eukaryotic cell. For example, a PTS protein can be expressed in bacterial cells such as *C. glutamicum*, insect cells, yeast or mammalian cells (such as Chinese hamster ovary cells (CHO) or COS cells). Other suitable host cells are known to one of ordinary skill in the art. Microorganisms related to *Corynebacterium glutamicum* which may be conveniently used as host cells for the nucleic acid and protein molecules of the invention are set forth in Table 3.

Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. As used herein, the terms "transformation" and "transfection" are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid (e.g., linear DNA or RNA (e.g., a linearized vector or a gene construct alone without a vector) or nucleic acid in the form of a vector (e.g., a plasmid, phage, phasmid, phagemid, transposon or other DNA) into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, or electroporation. Suitable methods for transforming or transfecting host cells can be found in Sambrook, et al. (Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989), and other laboratory manuals.

For stable transfection of mammalian cells, it is known that, depending upon the expression vector and transfection technique used, only a small fraction of cells may integrate the foreign DNA into their genome. In order to identify and select these integrants, a gene that encodes a selectable marker (e.g., resistance to antibiotics) is generally introduced into the host cells along with the gene of interest. Preferred

30

selectable markers include those which confer resistance to drugs, such as G418, hygromycin and methotrexate. Nucleic acid encoding a selectable marker can be introduced into a host cell on the same vector as that encoding a PTS protein or can be introduced on a separate vector. Cells stably transfected with the introduced nucleic 5 acid can be identified by drug selection (e.g., cells that have incorporated the selectable marker gene will survive, while the other cells die).

To create a homologous recombinant microorganism, a vector is prepared which contains at least a portion of a PTS gene into which a deletion, addition or substitution has been introduced to thereby alter, e.g., functionally disrupt, the PTS gene.

10 Preferably, this PTS gene is a Corynebacterium glutamicum PTS gene, but it can be a homologue from a related bacterium or even from a mammalian, yeast, or insect source. In a preferred embodiment, the vector is designed such that, upon homologous recombination, the endogenous PTS gene is functionally disrupted (i.e., no longer encodes a functional protein; also referred to as a "knock out" vector). Alternatively, 15 the vector can be designed such that, upon homologous recombination, the endogenous PTS gene is mutated or otherwise altered but still encodes functional protein (e.g., the upstream regulatory region can be altered to thereby alter the expression of the endogenous PTS protein). In the homologous recombination vector, the altered portion of the PTS gene is flanked at its 5' and 3' ends by additional nucleic acid of the PTS gene to allow for homologous recombination to occur between the exogenous PTS gene carried by the vector and an endogenous PTS gene in a microorganism. The additional flanking PTS nucleic acid is of sufficient length for successful homologous recombination with the endogenous gene. Typically, several kilobases of flanking DNA (both at the 5' and 3' ends) are included in the vector (see e.g., Thomas, K.R., and 25 Capecchi, M.R. (1987) Cell 51: 503 for a description of homologous recombination vectors). The vector is introduced into a microorganism (e.g., by electroporation) and cells in which the introduced PTS gene has homologously recombined with the endogenous PTS gene are selected, using art-known techniques.

In another embodiment, recombinant microorganisms can be produced which contain selected systems which allow for regulated expression of the introduced gene. For example, inclusion of a PTS gene on a vector placing it under control of the lac operon permits expression of the PTS gene only in the presence of IPTG. Such regulatory systems are well known in the art.

In another embodiment, an endogenous PTS gene in a host cell is disrupted (e.g., by homologous recombination or other genetic means known in the art) such that 35 expression of its protein product does not occur. In another embodiment, an endogenous or introduced PTS gene in a host cell has been altered by one or more point mutations,

deletions, or inversions, but still encodes a functional PTS protein. In still another embodiment, one or more of the regulatory regions (e.g., a) promoter, repressor, or inducer) of a PTS gene in a microorganism has been altered (e.g., b) deletion, truncation, inversion, or point mutation) such that the expression of the PTS gene is modulated. One of ordinary skill in the art will appreciate that host cells containing more than one of the described PTS gene and protein modifications may be readily produced using the methods of the invention, and are meant to be included in the present invention.

A host cell of the invention, such as a prokaryotic or eukaryotic host cell in culture, can be used to produce (i.e., express) a PTS protein. Accordingly, the invention further provides methods for producing PTS proteins using the host cells of the invention. In one embodiment, the method comprises culturing the host cell of invention (into which a recombinant expression vector encoding a PTS protein has been introduced, or into which genome has been introduced a gene encoding a wild-type or altered PTS protein) in a suitable medium until PTS protein is produced. In another embodiment, the method further comprises isolating PTS proteins from the medium or the host cell.

C. Isolated PTS Proteins

Another aspect of the invention pertains to isolated PTS proteins, and 20 biologically active portions thereof. An "isolated" or "purified" protein or biologically active portion thereof is substantially free of cellular material when produced by recombinant DNA techniques, or chemical precursors or other chemicals when chemically synthesized. The language "substantially free of cellular material" includes preparations of PTS protein in which the protein is separated from cellular components of the cells in which it is naturally or recombinantly produced. In one embodiment, the language "substantially free of cellular material" includes preparations of PTS protein having less than about 30% (by dry weight) of non-PTS protein (also referred to herein as a "contaminating protein"), more preferably less than about 20% of non-PTS protein, still more preferably less than about 10% of non-PTS protein, and most preferably less than about 5% non-PTS protein. When the PTS protein or biologically active portion thereof is recombinantly produced, it is also preferably substantially free of culture medium, i.e., culture medium represents less than about 20%, more preferably less than about 10%, and most preferably less than about 5% of the volume of the protein preparation. The language "substantially free of chemical precursors or other chemicals" includes preparations of PTS protein in which the protein is separated from chemical precursors or other chemicals which are involved in the synthesis of the

protein. In one embodiment, the language "substantially free of chemical precursors or other chemicals" includes preparations of PTS protein having less than about 30% (by dry weight) of chemical precursors or non-PTS chemicals, more preferably less than about 20% chemical precursors or non-PTS chemicals, still more preferably less than about 10% chemical precursors or non-PTS chemicals, and most preferably less than about 5% chemical precursors or non-PTS chemicals. In preferred embodiments, isolated proteins or biologically active portions thereof lack contaminating proteins from the same organism from which the PTS protein is derived. Typically, such proteins are produced by recombinant expression of, for example, a *C. glutamicum* PTS protein in a microorganism such as *C. glutamicum*.

An isolated PTS protein or a portion thereof of the invention can participate in the transport of high-energy carbon-containing molecules such as glucose into C. glutamicum, and may also participate in intracellular signal transduction in this microorganism, or has one or more of the activities set forth in Table 1. In preferred embodiments, the protein or portion thereof comprises an amino acid sequence which is sufficiently homologous to an amino acid sequence of Appendix B such that the protein or portion thereof maintains the ability to transport high-energy carbon-containing molecules such as glucose into C. glutamicum, or to participate in intracellular signal transduction in this microorganism. The portion of the protein is preferably a biologically active portion as described herein. In another preferred embodiment, a PTS protein of the invention has an amino acid sequence shown in Appendix B. In yet another preferred embodiment, the PTS protein has an amino acid sequence which is encoded by a nucleotide sequence which hybridizes, e.g., hybridizes under stringent conditions, to a nucleotide sequence of Appendix A. In still another preferred 25 embodiment, the PTS protein has an amino acid sequence which is encoded by a nucleotide sequence that is at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, or 60%, preferably at least about 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, or 70%, more preferably at least about 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, or 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, or 90%, or 91%, 92%, 93%, 94%, and even more preferably at least about 95%, 96%, 97%, 98%, 99% or more homologous to one of the nucleic acid sequences of Appendix A, or a portion thereof. Ranges and identity values intermediate to the above-recited values, (e.g., 70-90% identical or 80-95% identical) are also intended to be encompassed by the present invention. For example, ranges of identity values using a combination of any of the above values recited as upper and/or lower limits are intended to be included. The preferred PTS proteins of the present invention also preferably possess at least one of

preferred PTS proteins of the present invention also preferably possess at least one of the PTS activities described herein. For example, a preferred PTS protein of the present

30

invention includes an amino acid sequence encoded by a nucleotide sequence which hybridizes, e.g., hybridizes under stringent conditions, to a nucleotide sequence of Appendix A, and which can participate in the transport of high-energy carbon-containing molecules such as glucose into C. glutamicum, and may also participate in intracellular signal transduction in this microorganism, or which has one or more of the activities set forth in Table 1.

In other embodiments, the PTS protein is substantially homologous to an amino acid sequence of Appendix B and retains the functional activity of the protein of one of the sequences of Appendix B yet differs in amino acid sequence due to natural variation or mutagenesis, as described in detail in subsection I above. Accordingly, in another 10 embodiment, the PTS protein is a protein which comprises an amino acid sequence which is at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, or 60%, preferably at least about 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, or 70%, more preferably at least about 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, or 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, or 90%, or 91%, 92%, 15 93%, 94%, and even more preferably at least about 95%, 96%, 97%, 98%, 99% or more homologous to an entire amino acid sequence of Appendix B and which has at least one of the PTS activities described herein. Ranges and identity values intermediate to the above-recited values, (e.g., 70-90% identical or 80-95% identical) are also intended to be encompassed by the present invention. For example, ranges of identity values using a combination of any of the above values recited as upper and/or lower limits are intended to be included. In another embodiment, the invention pertains to a full length C. glutamicum protein which is substantially homologous to an entire amino acid sequence of Appendix B.

Biologically active portions of a PTS protein include peptides comprising amino acid sequences derived from the amino acid sequence of a PTS protein, e.g., the an amino acid sequence shown in Appendix B or the amino acid sequence of a protein homologous to a PTS protein, which include fewer amino acids than a full length PTS protein or the full length protein which is homologous to a PTS protein, and exhibit at least one activity of a PTS protein. Typically, biologically active portions (peptides, e.g., peptides which are, for example, 5, 10, 15, 20, 30, 35, 36, 37, 38, 39, 40, 50, 100 or more amino acids in length) comprise a domain or motif with at least one activity of a PTS protein. Moreover, other biologically active portions, in which other regions of the protein are deleted, can be prepared by recombinant techniques and evaluated for one or more of the activities described herein. Preferably, the biologically active portions of a PTS protein include one or more selected domains/motifs or portions thereof having biological activity.

PTS proteins are preferably produced by recombinant DNA techniques. For example, a nucleic acid molecule encoding the protein is cloned into an expression vector (as described above), the expression vector is introduced into a host cell (as described above) and the PTS protein is expressed in the host cell. The PTS protein can then be isolated from the cells by an appropriate purification scheme using standard protein purification techniques. Alternative to recombinant expression, a PTS protein, polypeptide, or peptide can be synthesized chemically using standard peptide synthesis techniques. Moreover, native PTS protein can be isolated from cells (e.g., endothelial cells), for example using an anti-PTS antibody, which can be produced by standard techniques utilizing a PTS protein or fragment thereof of this invention.

The invention also provides PTS chimeric or fusion proteins. As used herein, a PTS "chimeric protein" or "fusion protein" comprises a PTS polypeptide operatively linked to a non-PTS polypeptide. An "PTS polypeptide" refers to a polypeptide having an amino acid sequence corresponding to PTS, whereas a "non-PTS polypeptide" refers to a polypeptide having an amino acid sequence corresponding to a protein which is not substantially homologous to the PTS protein, e.g., a protein which is different from the PTS protein and which is derived from the same or a different organism. Within the fusion protein, the term "operatively linked" is intended to indicate that the PTS polypeptide and the non-PTS polypeptide are fused in-frame to each other. The non-20 PTS polypeptide can be fused to the N-terminus or C-terminus of the PTS polypeptide. For example, in one embodiment the fusion protein is a GST-PTS fusion protein in which the PTS sequences are fused to the C-terminus of the GST sequences. Such fusion proteins can facilitate the purification of recombinant PTS proteins. In another embodiment, the fusion protein is a PTS protein containing a heterologous signal sequence at its N-terminus. In certain host cells (e.g., mammalian host cells), expression and/or secretion of a PTS protein can be increased through use of a heterologous signal sequence.

Preferably, a PTS chimeric or fusion protein of the invention is produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, for example by employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene

fragments which can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, for example, *Current Protocols in Molecular Biology*, eds. Ausubel et al. John Wiley & Sons: 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide). A PTS-encoding nucleic acid can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the PTS protein.

Homologues of the PTS protein can be generated by mutagenesis, e.g., discrete point mutation or truncation of the PTS protein. As used herein, the term "homologue" refers to a variant form of the PTS protein which acts as an agonist or antagonist of the activity of the PTS protein. An agonist of the PTS protein can retain substantially the same, or a subset, of the biological activities of the PTS protein. An antagonist of the PTS protein can inhibit one or more of the activities of the naturally occurring form of the PTS protein, by, for example, competitively binding to a downstream or upstream member of the PTS system which includes the PTS protein. Thus, the C. glutamicum PTS protein and homologues thereof of the present invention may modulate the activity of one or more sugar transport pathways or intracellular signal transduction pathways in which PTS proteins play a role in this microorganism.

In an alternative embodiment, homologues of the PTS protein can be identified by screening combinatorial libraries of mutants, e.g., truncation mutants, of the PTS protein for PTS protein agonist or antagonist activity. In one embodiment, a variegated 20 library of PTS variants is generated by combinatorial mutagenesis at the nucleic acid level and is encoded by a variegated gene library. A variegated library of PTS variants can be produced by, for example, enzymatically ligating a mixture of synthetic oligonucleotides into gene sequences such that a degenerate set of potential PTS sequences is expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (e.g., for phage display) containing the set of PTS sequences therein. There are a variety of methods which can be used to produce libraries of potential PTS homologues from a degenerate oligonucleotide sequence. Chemical synthesis of a degenerate gene sequence can be performed in an automatic DNA synthesizer, and the synthetic gene then ligated into an appropriate expression vector. Use of a degenerate set of genes allows for the provision, in one mixture, of all of the sequences encoding the desired set of potential PTS sequences. Methods for synthesizing degenerate oligonucleotides are known in the art (see, e.g., Narang, S.A. (1983) Tetrahedron 39:3; Itakura et al. (1984) Annu. Rev. Biochem. 53:323; Itakura et al. (1984) Science 198:1056; Ike et al. (1983) Nucleic Acid Res. 11:477. 35

In addition, libraries of fragments of the PTS protein coding can be used to generate a variegated population of PTS fragments for screening and subsequent

15

25

30

selection of homologues of a PTS protein. In one embodiment, a library of coding sequence fragments can be generated by treating a double stranded PCR fragment of a PTS coding sequence with a nuclease under conditions wherein nicking occurs only about once per molecule, denaturing the double stranded DNA, renaturing the DNA to form double stranded DNA which can include sense/antisense pairs from different nicked products, removing single stranded portions from reformed duplexes by treatment with S1 nuclease, and ligating the resulting fragment library into an expression vector. By this method, an expression library can be derived which encodes N-terminal, C-terminal and internal fragments of various sizes of the PTS protein.

Several techniques are known in the art for screening gene products of combinatorial libraries made by point mutations or truncation, and for screening cDNA libraries for gene products having a selected property. Such techniques are adaptable for rapid screening of the gene libraries generated by the combinatorial mutagenesis of PTS homologues. The most widely used techniques, which are amenable to high through-put analysis, for screening large gene libraries typically include cloning the gene library into replicable expression vectors, transforming appropriate cells with the resulting library of vectors, and expressing the combinatorial genes under conditions in which detection of a desired activity facilitates isolation of the vector encoding the gene whose product was detected. Recursive ensemble mutagenesis (REM), a new technique which enhances the 20 frequency of functional mutants in the libraries, can be used in combination with the screening assays to identify PTS homologues (Arkin and Yourvan (1992) PNAS 89:7811-7815; Delgrave et al. (1993) Protein Engineering 6(3):327-331).

In another embodiment, cell based assays can be exploited to analyze a variegated PTS library, using methods well known in the art.

D. Uses and Methods of the Invention

The nucleic acid molecules, proteins, protein homologues, fusion proteins, primers, vectors, and host cells described herein can be used in one or more of the following methods: identification of C. glutamicum and related organisms; mapping of genomes of organisms related to C. glutamicum; identification and localization of C. glutamicum sequences of interest; evolutionary studies; determination of PTS protein regions required for function; modulation of a PTS protein activity; modulation of the activity of a PTS pathway; and modulation of cellular production of a desired compound, such as a fine chemical.

The PTS nucleic acid molecules of the invention have a variety of uses. First, 35 they may be used to identify an organism as being Corynebacterium glutamicum or a close relative thereof. Also, they may be used to identify the presence of C. glutamicum or a relative thereof in a mixed population of microorganisms. The invention provides the nucleic acid sequences of a number of *C. glutamicum* genes; by probing the extracted genomic DNA of a culture of a unique or mixed population of microorganisms under stringent conditions with a probe spanning a region of a *C. glutamicum* gene which is unique to this organism, one can ascertain whether this organism is present.

Although Corynebacterium glutamicum itself is nonpathogenic, it is related to pathogenic species, such as Corynebacterium diphtheriae. Corynebacterium diphtheriae is the causative agent of diphtheria, a rapidly developing, acute, febrile infection which involves both local and systemic pathology. In this disease, a local lesion develops in the upper respiratory tract and involves necrotic injury to epithelial cells; the bacilli secrete toxin which is disseminated through this lesion to distal susceptible tissues of the body. Degenerative changes brought about by the inhibition of protein synthesis in these tissues, which include heart, muscle, peripheral nerves, adrenals, kidneys, liver and spleen, result in the systemic pathology of the disease.

15 Diphtheria continues to have high incidence in many parts of the world, including Africa, Asia, Eastern Europe and the independent states of the former Soviet Union. An ongoing epidemic of diphtheria in the latter two regions has resulted in at least 5,000 deaths since 1990.

In one embodiment, the invention provides a method of identifying the presence
or activity of Cornyebacterium diphtheriae in a subject. This method includes detection
of one or more of the nucleic acid or amino acid sequences of the invention (e.g., the
sequences set forth in Appendix A or Appendix B) in a subject, thereby detecting the
presence or activity of Corynebacterium diphtheriae in the subject. C. glutamicum and
C. diphtheriae are related bacteria, and many of the nucleic acid and protein molecules
in C. glutamicum are homologous to C. diphtheriae nucleic acid and protein molecules,
and can therefore be used to detect C. diphtheriae in a subject.

The nucleic acid and protein molecules of the invention may also serve as markers for specific regions of the genome. This has utility not only in the mapping of the genome, but also for functional studies of *C. glutamicum* proteins. For example, to identify the region of the genome to which a particular *C. glutamicum* DNA-binding protein binds, the *C. glutamicum* genome could be digested, and the fragments incubated with the DNA-binding protein. Those which bind the protein may be additionally probed with the nucleic acid molecules of the invention, preferably with readily detectable labels; binding of such a nucleic acid molecule to the genome fragment enables the localization of the fragment to the genome map of *C. glutamicum*, and, when performed multiple times with different enzymes, facilitates a rapid determination of the nucleic acid sequence to which the protein binds. Further, the nucleic acid molecules of the

invention may be sufficiently homologous to the sequences of related species such that these nucleic acid molecules may serve as markers for the construction of a genomic map in related bacteria, such as *Brevibacterium lactofermentum*.

The PTS nucleic acid molecules of the invention are also useful for evolutionary and protein structural studies. The sugar uptake system in which the molecules of the invention participate are utilized by a wide variety of bacteria; by comparing the sequences of the nucleic acid molecules of the present invention to those encoding similar enzymes from other organisms, the evolutionary relatedness of the organisms can be assessed. Similarly, such a comparison permits an assessment of which regions of the sequence are conserved and which are not, which may aid in determining those regions of the protein which are essential for the functioning of the enzyme. This type of determination is of value for protein engineering studies and may give an indication of what the protein can tolerate in terms of mutagenesis without losing function.

Manipulation of the PTS nucleic acid molecules of the invention may result in the production of PTS proteins having functional differences from the wild-type PTS proteins. These proteins may be improved in efficiency or activity, may be present in greater numbers in the cell than is usual, or may be decreased in efficiency or activity.

The invention provides methods for screening molecules which modulate the activity of a PTS protein, either by interacting with the protein itself or a substrate or binding partner of the PTS protein, or by modulating the transcription or translation of a PTS nucleic acid molecule of the invention. In such methods, a microorganism expressing one or more PTS proteins of the invention is contacted with one or more test compounds, and the effect of each test compound on the activity or level of expression of the PTS protein is assessed.

The PTS molecules of the invention may be modified such that the yield, production, and/or efficiency of production of one or more fine chemicals is improved. For example, by modifying a PTS protein involved in the uptake of glucose such that it is optimized in activity, the quantity of glucose uptake or the rate at which glucose is translocated into the cell may be increased. The breakdown of glucose and other sugars within the cell provides energy that may be used to drive energetically unfavorable biochemical reactions, such as those involved in the biosynthesis of fine chemicals. This breakdown also provides intermediate and precursor molecules necessary for the biosynthesis of certain fine chemicals, such as amino acids, vitamins and cofactors. By increasing the amount of intracellular high-energy carbon molecules through modification of the PTS molecules of the invention, one may therefore increase both the energy available to perform metabolic pathways necessary for the production of one or

more fine chemicals, and also the intracellular pools of metabolites necessary for such

production. Conversely, by decreasing the importation of a sugar whose breakdown products include a compound which is used solely in metabolic pathways which compete with pathways utilized for the production of a desired fine chemical for enzymes, cofactors, or intermediates, one may downregulate this pathway and thus perhaps increase production through the desired biosynthetic pathway.

Further, the PTS molecules of the invention may be involved in one or more intracellular signal transduction pathways which may affect the yields and/or rate of production of one or more fine chemical from C. glutamicum. For example, proteins necessary for the import of one or more sugars from the extracellular medium (e.g., HPr, Enzyme I, or a member of an Enzyme II complex) are frequently posttranslationally modified upon the presence of a sufficient quantity of the sugar in the cell, such that they are no longer able to import that sugar. An example of this occurs in E. coli, where high intracellular levels of fructose 1.6-bisphosphate result in the phosphorylation of HPr at serine-46, upon which this molecule is no longer able to participate in the transport of any sugar. While this intracellular level of sugar at which the transport system is shut off may be sufficient to sustain the normal functioning of the cell, it may be limiting for the overproduction of the desired fine chemical. Thus, it may be desirable to modify the PTS proteins of the invention such that they are no longer responsive to such negative regulation, thereby permitting greater intracellular concentrations of one or more sugars to be achieved, and, by extension, more efficient production or greater yields of one or more fine chemicals from organisms containing such mutant PTS proteins.

This aforementioned list of mutagenesis strategies for PTS proteins to result in increased yields of a desired compound is not meant to be limiting; variations on these mutagenesis strategies will be readily apparent to one of ordinary skill in the art. By these mechanisms, the nucleic acid and protein molecules of the invention may be utilized to generate *C. glutamicum* or related strains of bacteria expressing mutated PTS nucleic acid and protein molecules such that the yield, production, and/or efficiency of production of a desired compound is improved. This desired compound may be any natural product of *C. glutamicum*, which includes the final products of biosynthesis pathways and intermediates of naturally-occurring metabolic pathways, as well as molecules which do not naturally occur in the metabolism of *C. glutamicum*, but which are produced by a *C. glutamicum* strain of the invention.

This invention is further illustrated by the following examples which should not be construed as limiting. The contents of all references, patent applications, patents, published patent applications, Tables, Appendices, and the sequence listing cited throughout this application are hereby incorporated by reference.

Exemplification

Example 1: Preparation of total genomic DNA of Corynebacterium glutamicum ATCC 13032

A culture of Corvnebacterium glutamicum (ATCC 13032) was grown overnight at 30°C with vigorous shaking in BHI medium (Difco). The cells were harvested by centrifugation, the supernatant was discarded and the cells were resuspended in 5 ml buffer-I (5% of the original volume of the culture — all indicated volumes have been calculated for 100 ml of culture volume). Composition of buffer-I: 140.34 g/l sucrose, 2.46 g/l MgSO₄ x 7H₂O, 10 ml/l KH₂PO₄ solution (100 g/l, adjusted to pH 6.7 with KOH), 50 ml/l M12 concentrate (10 g/l (NH₄)₂SO₄, 1 g/l NaCl, 2 g/l MgSO₄ x 7H₂O, 0.2 g/l CaCl₂, 0.5 g/l yeast extract (Difco), 10 ml/l trace-elements-mix (200 mg/l FeSO₄ x H₂O₂ 10 mg/l ZnSO₄ x 7 H₂O₅ 3 mg/l MnCl₅ x 4 H₂O₅ 30 mg/l H₃BO₅ 20 mg/l CoCl₂ x 6 H₂O, 1 mg/l NiCl₂ x 6 H₂O, 3 mg/l Na₂MoO₄ x 2 H₂O, 500 mg/l complexing agent 15 (EDTA or critic acid), 100 ml/l vitamins-mix (0.2 mg/l biotin, 0.2 mg/l folic acid, 20 mg/l p-amino benzoic acid, 20 mg/l riboflavin, 40 mg/l ca-panthothenate, 140 mg/l nicotinic acid, 40 mg/l pyridoxole hydrochloride, 200 mg/l myo-inositol). Lysozyme was added to the suspension to a final concentration of 2.5 mg/ml. After an approximately 4 h incubation at 37°C, the cell wall was degraded and the resulting 20 protoplasts are harvested by centrifugation. The pellet was washed once with 5 ml buffer-I and once with 5 ml TE-buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8). The pellet was resuspended in 4 ml TE-buffer and 0.5 ml SDS solution (10%) and 0.5 ml NaCl solution (5 M) are added. After adding of proteinase K to a final concentration of 200 µg/ml, the suspension is incubated for ca.18 h at 37°C. The DNA was purified by extraction with phenol, phenol-chloroform-isoamylalcohol and chloroformisoamylalcohol using standard procedures. Then, the DNA was precipitated by adding 1/50 volume of 3 M sodium acetate and 2 volumes of ethanol, followed by a 30 min incubation at -20°C and a 30 min centrifugation at 12,000 rpm in a high speed centrifuge using a SS34 rotor (Sorvall). The DNA was dissolved in 1 ml TE-buffer containing 20 μg/ml RNaseA and dialysed at 4°C against 1000 ml TE-buffer for at least 3 hours. During this time, the buffer was exchanged 3 times. To aliquots of 0.4 ml of the dialysed DNA solution, 0.4 ml of 2 M LiCl and 0.8 ml of ethanol are added. After a 30 min incubation at -20°C, the DNA was collected by centrifugation (13,000 rpm, Biofuge Fresco, Heraeus, Hanau, Germany). The DNA pellet was dissolved in TE-buffer. DNA prepared by this procedure could be used for all purposes, including southern blotting or

prepared by this procedure could be used for all purposes, including southern blotting or construction of genomic libraries.

Example 2: Construction of genomic libraries in *Escherichia coli* of *Corynebacterium glutamicum* ATCC13032.

Using DNA prepared as described in Example 1, cosmid and plasmid libraries were constructed according to known and well established methods (see e.g., Sambrook, J. et al. (1989) "Molecular Cloning: A Laboratory Manual", Cold Spring Harbor Laboratory Press, or Ausubel, F.M. et al. (1994) "Current Protocols in Molecular Biology", John Wiley & Sons.)

Any plasmid or cosmid could be used. Of particular use were the plasmids pBR322 (Sutcliffe, J.G. (1979) *Proc. Natl. Acad. Sci. USA*, 75:3737-3741); pACYC177 (Change & Cohen (1978) *J. Bacteriol* 134:1141-1156), plasmids of the pBS series (pBSSK+, pBSSK-and others; Stratagene, LaJolla, USA), or cosmids as SuperCosl (Stratagene, LaJolla, USA) or Lorist6 (Gibson, T.J., Rosenthal A. and Waterson, R.H. (1987) *Gene* 53:283-286. Gene libraries specifically for use in *C. glutamicum* may be constructed using plasmid pSL109 (Lee, H.-S. and A. J. Sinskey (1994) *J. Microbiol. Biotechnol.* 4: 256-263).

Example 3: DNA Sequencing and Computational Functional Analysis

Genomic libraries as described in Example 2 were used for DNA sequencing according to standard methods, in particular by the chain termination method using ABI377 sequencing machines (see e.g., Fleischman, R.D. et al. (1995) "Whole-genome 20 Random Sequencing and Assembly of Haemophilus Influenzae Rd., Science, 269:496-512). Sequencing primers with the following nucleotide sequences were used: 5'-GGAAACAGTATGACCATG-3' or 5'-GTAAAACGACGGCCAGT-3'.

Example 4: In vivo Mutagenesis

25 In vivo mutagenesis of Corynebacterium glutamicum can be performed by passage of plasmid (or other vector) DNA through E. coli or other microorganisms (e.g. Bacillus spp. or yeasts such as Saccharomyces cerevisiae) which are impaired in their capabilities to maintain the integrity of their genetic information. Typical mutator strains have mutations in the genes for the DNA repair system (e.g., mutHLS, mutD, mutT, etc.; for reference, see Rupp, W.D.
30 (1996) DNA repair mechanisms, in: Escherichia coli and Salmonella, p. 2277-2294, ASM: Washington.) Such strains are well known to one of ordinary skill in the art. The use of such strains is illustrated, for example, in Greener, A, and Callahan, M. (1994) Strategies 7: 32-34.

Example 5: DNA Transfer Between Escherichia coli and Corynebacterium

35 glutamicum

Several Corynebacterium and Brevibacterium species contain endogenous plasmids (as e.g., pHM1519 or pBL1) which replicate autonomously (for review see, e.g.,

Martin, J.F. et al. (1987) Biotechnology, 5:137-146). Shuttle vectors for Escherichia coli and Corynebacterium glutamicum can be readily constructed by using standard vectors for E. coli (Sambrook, J. et al. (1989), "Molecular Cloning: A Laboratory Manual", Cold Spring Harbor Laboratory Press or Ausubel, F.M. et al. (1994) "Current Protocols in
Molecular Biology", John Wiley & Sons) to which a origin or replication for and a suitable marker from Corynebacterium glutamicum is added. Such origins of replication are preferably taken from endogenous plasmids isolated from Corynebacterium and Brevibacterium species. Of particular use as transformation markers for these species are genes for kanamycin resistance (such as those derived from the Tn5 or Tn903
10 transposons) or chloramphenicol (Winnacker, E.L. (1987) "From Genes to Clones — Introduction to Gene Technology, VCH, Weinheim). There are numerous examples in the literature of the construction of a wide variety of shuttle vectors which replicate in both E. coli and C. glutamicum, and which can be used for several purposes, including gene overexpression (for reference, see e.g., Yoshihama, M. et al. (1985) J. Bacteriol. 162:591-597,

Using standard methods, it is possible to clone a gene of interest into one of the shuttle vectors described above and to introduce such a hybrid vectors into strains of Corynebacterium glutamicum. Transformation of C. glutamicum can be achieved by protoplast transformation (Kastsumata, R. et al. (1984) J. Bacteriol. 159306-311), electroporation (Liebl, E. et al. (1989) FEMS Microbiol. Letters, 53:399-303) and in cases where special vectors are used, also by conjugation (as described e.g. in Schäfer, A et al. (1990) J. Bacteriol. 172:1663-1666). It is also possible to transfer the shuttle vectors for C. glutamicum to E. coli by preparing plasmid DNA from C. glutamicum (using standard methods well-known in the art) and transforming it into E. coli. This transformation step can be performed using standard methods, but it is advantageous to use an Mcr-deficient

15 Martin J.F. et al. (1987) Biotechnology, 5:137-146 and Eikmanns, B.J. et al. (1991) Gene,

Genes may be overexpressed in *C. glutamicum* strains using plasmids which comprise pCG1 (U.S. Patent No. 4,617,267) or fragments thereof, and optionally the gene for kanamycin resistance from TN903 (Grindley, N.D. and Joyce, C.M. (1980) *Proc. Natl. Acad. Sci. USA* 77(12): 7176-7180). In addition, genes may be overexpressed in *C. glutamicum* strains using plasmid pSL109 (Lee, H.-S. and A. J. Sinskey (1994) *J. Microbiol. Biotechnol.* 4: 256-263).

E. coli strain, such as NM522 (Gough & Murray (1983) J. Mol. Biol. 166:1-19).

Aside from the use of replicative plasmids, gene overexpression can also be
achieved by integration into the genome. Genomic integration in *C. glutamicum* or other
Corynebacterium or Brevibacterium species may be accomplished by well-known
methods, such as homologous recombination with genomic region(s), restriction

endonuclease mediated integration (REMI) (see, e.g., DE Patent 19823834), or through the use of transposons. It is also possible to modulate the activity of a gene of interest by modifying the regulatory regions (e.g., a promoter, a repressor, and/or an enhancer) by sequence modification, insertion, or deletion using site-directed methods (such as homologous recombination) or methods based on random events (such as transposon mutagenesis or REMI). Nucleic acid sequences which function as transcriptional terminators may also be inserted 3' to the coding region of one or more genes of the invention: such terminators are well-known in the art and are described, for example, in Winnacker, E.L. (1987) From Genes to Clones - Introduction to Gene Technology. VCH: Weinheim.

Example 6: Assessment of the Expression of the Mutant Protein

Observations of the activity of a mutated protein in a transformed host cell rely on the fact that the mutant protein is expressed in a similar fashion and in a similar quantity to that of the wild-type protein. A useful method to ascertain the level of transcription of the mutant gene (an indicator of the amount of mRNA available for translation to the gene product) is to perform a Northern blot (for reference see, for example, Ausubel et al. (1988) Current Protocols in Molecular Biology, Wiley: New York), in which a primer designed to bind to the gene of interest is labeled with a detectable tag (usually radioactive 20 or chemiluminescent), such that when the total RNA of a culture of the organism is extracted, run on gel, transferred to a stable matrix and incubated with this probe, the binding and quantity of binding of the probe indicates the presence and also the quantity of mRNA for this gene. This information is evidence of the degree of transcription of the mutant gene. Total cellular RNA can be prepared from Corynebacterium glutamicum by several methods, all well-known in the art, such as that described in Bormann, E.R. et al. (1992) Mol. Microbiol. 6: 317-326.

To assess the presence or relative quantity of protein translated from this mRNA, standard techniques, such as a Western blot, may be employed (see, for example, Ausubel et al. (1988) Current Protocols in Molecular Biology, Wiley: New York). In this process, total cellular proteins are extracted, separated by gel electrophoresis, transferred to a 30 matrix such as nitrocellulose, and incubated with a probe, such as an antibody, which specifically binds to the desired protein. This probe is generally tagged with a chemiluminescent or colorimetric label which may be readily detected. The presence and quantity of label observed indicates the presence and quantity of the desired mutant

protein present in the cell. 35

Example 7: Growth of Genetically Modified Corynebacterium glutamicum — Media and Culture Conditions

Genetically modified Corynebacteria are cultured in synthetic or natural growth media. A number of different growth media for Corynebacteria are both well-known and readily available (Lieb et al. (1989) Appl. Microbiol. Biotechnol., 32:205-210; von der Osten et al. (1998) Biotechnology Letters, 11:11-16; Patent DE 4,120,867; Liebl (1992) "The Genus Corvnebacterium, in: The Procarvotes, Volume II, Balows, A. et al., eds. Springer-Verlag). These media consist of one or more carbon sources, nitrogen sources, inorganic salts, vitamins and trace elements. Preferred carbon sources are sugars, such as 10 mono-, di-, or polysaccharides. For example, glucose, fructose, mannose, galactose, ribose, sorbose, ribulose, lactose, maltose, sucrose, raffinose, starch or cellulose serve as very good carbon sources. It is also possible to supply sugar to the media via complex compounds such as molasses or other by-products from sugar refinement. It can also be advantageous to supply mixtures of different carbon sources. Other possible carbon 15 sources are alcohols and organic acids, such as methanol, ethanol, acetic acid or lactic acid. Nitrogen sources are usually organic or inorganic nitrogen compounds, or materials which contain these compounds. Exemplary nitrogen sources include ammonia gas or ammonia salts, such as NH4Cl or (NH4)2SO4, NH4OH, nitrates, urea, amino acids or complex nitrogen sources like corn steep liquor, soy bean flour, soy bean protein, yeast extract, meat extract and others.

Inorganic salt compounds which may be included in the media include the chloride-, phosphorous- or sulfate- salts of calcium, magnesium, sodium, cobalt, molybdenum, potassium, manganese, zinc, copper and iron. Chelating compounds can be added to the medium to keep the metal ions in solution. Particularly useful chelating compounds include dihydroxyphenols, like catechol or protocatechuate, or organic acids, such as citric acid. It is typical for the media to also contain other growth factors, such as vitamins or growth promoters, examples of which include biotin, riboflavin, thiamin, folic acid, nicotinic acid, pantothenate and pyridoxin. Growth factors and salts frequently originate from complex media components such as yeast extract, molasses, corn steep liquor and others. The exact composition of the media compounds depends strongly on the immediate experiment and is individually decided for each specific case. Information about media optimization is available in the textbook "Applied Microbiol. Physiology, A Practical Approach (eds. P.M. Rhodes, P.F. Stanbury, IRL Press (1997) pp. 53-73, ISBN 0 35 19 963577 3). It is also possible to select growth media from commercial suppliers, like standard 1 (Merck) or BHI (grain heart infusion, DIFCO) or others.

10

15

All medium components are sterilized, either by heat (20 minutes at 1.5 bar and 121°C) or by sterile filtration. The components can either be sterilized together or, if necessary, separately. All media components can be present at the beginning of growth, or they can optionally be added continuously or batchwise.

Culture conditions are defined separately for each experiment. The temperature should be in a range between 15°C and 45°C. The temperature can be kept constant or can be altered during the experiment. The pH of the medium should be in the range of 5 to 8.5, preferably around 7.0, and can be maintained by the addition of buffers to the media. An exemplary buffer for this purpose is a potassium phosphate buffer. Synthetic buffers such as MOPS, HEPES, ACES and others can alternatively or simultaneously be used. It is also possible to maintain a constant culture pH through the addition of NaOH or NH₄OH during growth. If complex medium components such as yeast extract are utilized, the necessity for additional buffers may be reduced, due to the fact that many complex compounds have high buffer capacities. If a fermentor is utilized for culturing the microorganisms, the pH can also be controlled using gaseous ammonia.

The incubation time is usually in a range from several hours to several days. This time is selected in order to permit the maximal amount of product to accumulate in the broth. The disclosed growth experiments can be carried out in a variety of vessels, such as microtiter plates, glass tubes, glass flasks or glass or metal fermentors of different sizes. For screening a large number of clones, the microorganisms should be cultured in microtiter plates, glass tubes or shake flasks, either with or without baffles. Preferably 100 ml shake flasks are used, filled with 10% (by volume) of the required growth medium. The flasks should be shaken on a rotary shaker (amplitude 25 mm) using a speed-range of 100-300 rpm. Evaporation losses can be diminished by the maintenance of a humid atmosphere; alternatively, a mathematical correction for evaporation losses should be performed.

If genetically modified clones are tested, an unmodified control clone or a control clone containing the basic plasmid without any insert should also be tested. The medium is inoculated to an OD₆₀₀ of O.5 – 1.5 using cells grown on agar plates, such as CM plates 30 (10 g/l glucose, 2,5 g/l NaCl, 2 g/l urea, 10 g/l polypeptone, 5 g/l yeast extract, 5 g/l meat extract, 22 g/l agar, pH 6.8 with 2M NaOH) that had been incubated at 30°C. Inoculation of the media is accomplished by either introduction of a saline suspension of *C. glutamicum* cells from CM plates or addition of a liquid preculture of this bacterium.

Example 8 - In vitro Analysis of the Function of Mutant Proteins

The determination of activities and kinetic parameters of enzymes is well established in the art. Experiments to determine the activity of any given altered enzyme must be tailored to the specific activity of the wild-type enzyme, which is well within the ability of one of ordinary skill in the art. Overviews about enzymes in general, as well as specific details concerning structure, kinetics, principles, methods, applications and examples for the determination of many enzyme activities may be found, for example, in the following references: Dixon, M., and Webb, E.C., (1979) Enzymes. Longmans: London; Fersht, (1985) Enzyme Structure and Mechanism. Freeman: New York; Walsh, (1979) Enzymatic Reaction Mechanisms. Freeman: San Francisco: Price, N.C., Stevens, L. (1982) Fundamentals of Enzymology. Oxford Univ. Press; Oxford; Boyer, P.D., ed. (1983) The Enzymes, 3rd ed. Academic Press; New York; Bisswanger, H., (1994) Enzymkinetik, 2nd ed. VCH: Weinheim (ISBN 3527300325); Bergmeyer, H.U., Bergmeyer, J., Graßl, M., eds. (1983-1986) Methods of Enzymatic Analysis, 3rd ed., vol. I-XII, Verlag Chemie: Weinheim; and Ullmann's Encyclopedia of Industrial Chemistry (1987) vol. A9, "Enzymes". VCH; Weinheim, p. 352-363

The activity of proteins which bind to DNA can be measured by several well-established methods, such as DNA band-shift assays (also called gel retardation assays). The effect of such proteins on the expression of other molecules can be measured using reporter gene assays (such as that described in Kolmar, H. et al. (1995) EMBO J. 14: 3895-3904 and references cited therein). Reporter gene test systems are well known and established for applications in both pro- and eukaryotic cells, using enzymes such as beta-galactosidase, green fluorescent protein, and several others.

25 The determination of activity of membrane-transport proteins can be performed according to techniques such as those described in Gennis, R.B. (1989) "Pores, Channels and Transporters", in Biomembranes, Molecular Structure and Function, Springer: Heidelberg, p. 85-137; 199-234; and 270-322.

30 Example 9: Analysis of Impact of Mutant Protein on the Production of the Desired Product

The effect of the genetic modification in *C. glutamicum* on production of a desired compound (such as an amino acid) can be assessed by growing the modified microorganism under suitable conditions (such as those described above) and analyzing the medium and/or the cellular component for increased production of the desired product (i.e., an amino acid). Such analysis techniques are well known to one of ordinary skill in the art, and include spectroscopy, thin layer chromatography, staining

25

methods of various kinds, enzymatic and microbiological methods, and analytical chromatography such as high performance liquid chromatography (see, for example, Ullman, Encyclopedia of Industrial Chemistry, vol. A2, p. 89-90 and p. 443-613, VCH: Weinheim (1985); Fallon, A. et al., (1987) "Applications of HPLC in Biochemistry" in: Laboratory Techniques in Biochemistry and Molecular Biology, vol. 17; Rehm et al. (1993) Biotechnology, vol. 3, Chapter III: "Product recovery and purification", page 469-714, VCH: Weinheim; Belter, P.A. et al. (1988) Bioseparations: downstream processing for biotechnology, John Wiley and Sons; Kennedy, J.F. and Cabral, J.M.S. (1992) Recovery processes for biological materials, John Wiley and Sons; Shaeiwitz, 10 J.A. and Henry, J.D. (1988) Biochemical separations, in: Ulmann's Encyclopedia of Industrial Chemistry, vol. B3, Chapter 11, page 1-27, VCH: Weinheim; and Dechow. F.J. (1989) Separation and purification techniques in biotechnology, Noves Publications.)

In addition to the measurement of the final product of fermentation, it is also possible to analyze other components of the metabolic pathways utilized for the production of the desired compound, such as intermediates and side-products, to determine the overall productivity of the organism, yield, and/or efficiency of production of the compound. Analysis methods include measurements of nutrient levels in the medium (e.g., sugars, hydrocarbons, nitrogen sources, phosphate, and other ions), 20 measurements of biomass composition and growth, analysis of the production of common metabolites of biosynthetic pathways, and measurement of gasses produced during fermentation. Standard methods for these measurements are outlined in Applied Microbial Physiology, A Practical Approach, P.M. Rhodes and P.F. Stanbury, eds., IRL Press, p. 103-129; 131-163; and 165-192 (ISBN: 0199635773) and references cited therein.

Example 10: Purification of the Desired Product from C. glutamicum Culture

Recovery of the desired product from the C. glutamicum cells or supernatant of the above-described culture can be performed by various methods well known in the art. If the desired product is not secreted from the cells, the cells can be harvested from the culture by low-speed centrifugation, the cells can be lysed by standard techniques, such as mechanical force or sonication. The cellular debris is removed by centrifugation, and the supernatant fraction containing the soluble proteins is retained for further purification of the desired compound. If the product is secreted from the C. glutamicum cells, then the cells are removed from the culture by low-speed centrifugation, and the 35 supernate fraction is retained for further purification.

15

25

The supernatant fraction from either purification method is subjected to chromatography with a suitable resin, in which the desired molecule is either retained on a chromatography resin while many of the impurities in the sample are not, or where the impurities are retained by the resin while the sample is not. Such chromatography steps may be repeated as necessary, using the same or different chromatography resins. One of ordinary skill in the art would be well-versed in the selection of appropriate chromatography resins and in their most efficacious application for a particular molecule to be purified. The purified product may be concentrated by filtration or ultrafiltration, and stored at a temperature at which the stability of the product is maximized.

There are a wide array of purification methods known to the art and the preceding method of purification is not meant to be limiting. Such purification techniques are described, for example, in Bailey, J.E. & Ollis, D.F. Biochemical Engineering Fundamentals, McGraw-Hill: New York (1986).

The identity and purity of the isolated compounds may be assessed by techniques standard in the art. These include high-performance liquid chromatography (HPLC), spectroscopic methods, staining methods, thin layer chromatography, NIRS, enzymatic assay, or microbiologically. Such analysis methods are reviewed in: Patek et al. (1994) Appl. Environ. Microbiol. 60: 133-140; Malakhova et al. (1996) Biotekhnologiya 11: 27-32; and Schmidt et al. (1998) Bioprocess Engineer. 19: 67-70. Ulmann's Encyclopedia of Industrial Chemistry, (1996) vol. A27, VCH: Weinheim, p. 89-90, p. 521-540, p. 540-547, p. 559-566, 575-581 and p. 581-587; Michal, G. (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, John Wiley and Sons; Fallon, A. et al. (1987) Applications of HPLC in Biochemistry in: Laboratory Techniques in Biochemistry and Molecular Biology, vol. 17.

Example 11: Analysis of the Gene Sequences of the Invention

The comparison of sequences and determination of percent homology between two sequences are art-known techniques, and can be accomplished using a mathematical algorithm, such as the algorithm of Karlin and Altschul (1990) *Proc. Natl. Acad. Sci.*30 USA 87:2264-68, modified as in Karlin and Altschul (1993) *Proc. Natl. Acad. Sci.* USA 90:5873-77. Such an algorithm is incorporated into the NBLAST and XBLAST programs (version 2.0) of Altschul, *et al.* (1990) *J. Mol. Biol.* 215:403-10. BLAST nucleotide searches can be performed with the NBLAST program, score = 100, wordlength = 12 to obtain nucleotide sequences homologous to PTS nucleic acid molecules of the invention. BLAST protein searches can be performed with the XBLAST program, score = 50, wordlength = 3 to obtain amino acid sequences homologous to PTS protein molecules of the invention. To obtain gapped alignments

10

15

for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al., (1997) Nucleic Acids Res. 25(17):3389-3402. When utilizing BLAST and Gapped BLAST programs, one of ordinary skill in the art will know how to optimize the parameters of the program (e.g., XBLAST and NBLAST) for the specific sequence being analyzed.

Another example of a mathematical algorithm utilized for the comparison of sequences is the algorithm of Meyers and Miller ((1988) Comput. Appl. Biosci. 4: 11-17). Such an algorithm is incorporated into the ALIGN program (version 2.0) which is part of the GCG sequence alignment software package. When utilizing the ALIGN program for comparing amino acid sequences, a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4 can be used. Additional algorithms for sequence analysis are known in the art, and include ADVANCE and ADAM. described in Torelli and Robotti (1994) Comput. Appl. Biosci. 10:3-5; and FASTA, described in Pearson and Lipman (1988) P.N.A.S. 85:2444-8.

The percent homology between two amino acid sequences can also be accomplished using the GAP program in the GCG software package (available at http://www.gcg.com), using either a Blosum 62 matrix or a PAM250 matrix, and a gap weight of 12, 10, 8, 6, or 4 and a length weight of 2, 3, or 4. The percent homology between two nucleic acid sequences can be accomplished using the GAP program in the GCG software package, using standard parameters, such as a gap weight of 50 and a length weight of 3.

A comparative analysis of the gene sequences of the invention with those present in Genbank has been performed using techniques known in the art (see, e.g., Bexevanis and Ouellette, eds. (1998) Bioinformatics: A Practical Guide to the Analysis of Genes 25 and Proteins. John Wiley and Sons: New York). The gene sequences of the invention were compared to genes present in Genbank in a three-step process. In a first step, a BLASTN analysis (e.g., a local alignment analysis) was performed for each of the sequences of the invention against the nucleotide sequences present in Genbank, and the top 500 hits were retained for further analysis. A subsequent FASTA search (e.g., a combined local and global alignment analysis, in which limited regions of the sequences 30 are aligned) was performed on these 500 hits. Each gene sequence of the invention was subsequently globally aligned to each of the top three FASTA hits, using the GAP program in the GCG software package (using standard parameters). In order to obtain correct results, the length of the sequences extracted from Genbank were adjusted to the 35 length of the query sequences by methods well-known in the art. The results of this analysis are set forth in Table 4. The resulting data is identical to that which would have been obtained had a GAP (global) analysis alone been performed on each of the genes of

25

30

the invention in comparison with each of the references in Genbank, but required significantly reduced computational time as compared to such a database-wide GAP (global) analysis. Sequences of the invention for which no alignments above the cutoff values were obtained are indicated on Table 4 by the absence of alignment information. It will further be understood by one of ordinary skill in the art that the GAP alignment homology percentages set forth in Table 4 under the heading "% homology (GAP)" are listed in the European numerical format, wherein a ',' represents a decimal point. For example, a value of "40,345" in this column represents "40,345%".

10 Example 12: Construction and Operation of DNA Microarrays

The sequences of the invention may additionally be used in the construction and application of DNA microarrays (the design, methodology, and uses of DNA arrays are well known in the art, and are described, for example, in Schena, M. et al. (1995) Science 270: 467-470; Wodicka, L. et al. (1997) Nature Biotechnology 15: 1359-1367; DeSaizieu, A. et al. (1998) Nature Biotechnology 16: 45-48; and DeRisi, J.L. et al. (1997) Science 278: 680-686).

DNA microarrays are solid or flexible supports consisting of nitrocellulose, nylon, glass, silicone, or other materials. Nucleic acid molecules may be attached to the surface in an ordered manner. After appropriate labeling, other nucleic acids or nucleic acid mixtures can be hybridized to the immobilized nucleic acid molecules, and the label may be used to monitor and measure the individual signal intensities of the hybridized molecules at defined regions. This methodology allows the simultaneous quantification of the relative or absolute amount of all or selected nucleic acids in the applied nucleic acid sample or mixture. DNA microarrays, therefore, permit an analysis of the expression of multiple (as many as 6800 or more) nucleic acids in parallel (see, e.g., Schena, M. (1996) BioEssays 18(5): 427-431).

The sequences of the invention may be used to design oligonucleotide primers which are able to amplify defined regions of one or more *C. glutamicum* genes by a nucleic acid amplification reaction such as the polymerase chain reaction. The choice and design of the 5' or 3' oligonucleotide primers or of appropriate linkers allows the covalent attachment of the resulting PCR products to the surface of a support medium described above (and also described, for example, Schena, M. *et al.* (1995) *Science* 270: 467-470).

Nucleic acid microarrays may also be constructed by *in situ* oligonucleotide
synthesis as described by Wodicka, L. *et al.* (1997) *Nature Biotechnology* 15: 13591367. By photolithographic methods, precisely defined regions of the matrix are
exposed to light. Protective groups which are photolabile are thereby activated and

30

35

undergo nucleotide addition, whereas regions that are masked from light do not undergo any modification. Subsequent cycles of protection and light activation permit the synthesis of different oligonucleotides at defined positions. Small, defined regions of the genes of the invention may be synthesized on microarrays by solid phase oligonucleotide synthesis.

The nucleic acid molecules of the invention present in a sample or mixture of nucleotides may be hybridized to the microarrays. These nucleic acid molecules can be labeled according to standard methods. In brief, nucleic acid molecules (e.g., mRNA molecules or DNA molecules) are labeled by the incorporation of isotopically or fluorescently labeled nucleotides, e.g., during reverse transcription or DNA synthesis. Hybridization of labeled nucleic acids to microarrays is described (e.g., in Schena, M. et al. (1995) supra; Wodicka, L. et al. (1997), supra; and DeSaizieu A. et al. (1998), supra). The detection and quantification of the hybridized molecule are tailored to the specific incorporated label. Radioactive labels can be detected, for example, as described in Schena, M. et al. (1995) supra) and fluorescent labels may be detected, for example, by the method of Shalon et al. (1996) Genome Research 6: 639-645).

The application of the sequences of the invention to DNA microarray technology, as described above, permits comparative analyses of different strains of *C. glutamicum* or other Corynebacteria. For example, studies of inter-strain variations

20 based on individual transcript profiles and the identification of genes that are important for specific and/or desired strain properties such as pathogenicity, productivity and stress tolerance are facilitated by nucleic acid array methodologies. Also, comparisons of the profile of expression of genes of the invention during the course of a fermentation reaction are possible using nucleic acid array technology.

Example 13: Analysis of the Dynamics of Cellular Protein Populations (Proteomics)

The genes, compositions, and methods of the invention may be applied to study the interactions and dynamics of populations of proteins, termed 'proteomics'. Protein populations of interest include, but are not limited to, the total protein population of C. $glutamicum\ (e.g., in comparison with the protein populations of other organisms), those proteins which are active under specific environmental or metabolic conditions <math>(e.g., during\ fermentation, at high or low temperature, or at high or low pH), or those proteins which are active during specific phases of growth and development.$

Protein populations can be analyzed by various well-known techniques, such as gel electrophoresis. Cellular proteins may be obtained, for example, by lysis or extraction, and may be separated from one another using a variety of electrophoretic

20

techniques. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) separates proteins largely on the basis of their molecular weight. Isoelectric focusing polyacrylamide gel electrophoresis (IEF-PAGE) separates proteins by their isoelectric point (which reflects not only the amino acid sequence but also posttranslational modifications of the protein). Another, more preferred method of protein analysis is the consecutive combination of both IEF-PAGE and SDS-PAGE, known as 2-D-gel electrophoresis (described, for example, in Hermann et al. (1998) Electrophoresis 19: 3217-3221; Fountoulakis et al. (1998) Electrophoresis 19: 1193-1202; Langen et al. (1997) Electrophoresis 18: 1184-1192; Antelmann et al. (1997) Electrophoresis 18: 1451-1463). Other separation techniques may also be utilized for protein separation, such as capillary gel electrophoresis; such techniques are well known in the art.

Proteins separated by these methodologies can be visualized by standard techniques, such as by staining or labeling. Suitable stains are known in the art, and include Coomassie Brilliant Blue, silver stain, or fluorescent dyes such as Sypro Ruby (Molecular Probes). The inclusion of radioactively labeled amino acids or other protein precursors (e.g., 35S-methionine, 35S-cysteine, 14C-labelled amino acids, 15N-amino acids, 15N03 or 15NH4+ or 13C-labelled amino acids) in the medium of C. glutamicum permits the labeling of proteins from these cells prior to their separation. Similarly, fluorescent labels may be employed. These labeled proteins can be extracted, isolated and separated according to the previously described techniques.

Proteins visualized by these techniques can be further analyzed by measuring the amount of dye or label used. The amount of a given protein can be determined quantitatively using, for example, optical methods and can be compared to the amount of other proteins in the same gel or in other gels. Comparisons of proteins on gels can be made, for example, by optical comparison, by spectroscopy, by image scanning and analysis of gels, or through the use of photographic films and screens. Such techniques are well-known in the art

To determine the identity of any given protein, direct sequencing or other standard techniques may be employed. For example, N- and/or C-terminal amino acid sequencing (such as Edman degradation) may be used, as may mass spectrometry (in particular MALDI or ESI techniques (see, e.g., Langen et al. (1997) Electrophoresis 18: 1184-1192)). The protein sequences provided herein can be used for the identification of C. glutamicum proteins by these techniques.

The information obtained by these methods can be used to compare patterns of protein presence, activity, or modification between different samples from various biological conditions (e.g., different organisms, time points of fermentation, media conditions, or different biotopes, among others). Data obtained from such experiments

alone, or in combination with other techniques, can be used for various applications, such as to compare the behavior of various organisms in a given (e.g., metabolic) situation, to increase the productivity of strains which produce fine chemicals or to increase the efficiency of the production of fine chemicals.

Equivalents

5

10

Those of ordinary skill in the art will recognize, or will be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.

What is claimed:

- An isolated nucleic acid molecule from Corynebacterium glutamicum encoding a
 phosphoenolpyruvate: sugar phosphotransferase system protein, or a portion thereof,
 provided that the nucleic acid molecule does not consist of any of the F-designated
 genes set forth in Table 1.
- 2. The isolated nucleic acid molecule of claim 1, wherein said phosphoenolpyruvate: sugar phosphotransferase system protein is selected from the group consisting of proteins involved in the transport of glucose, sucrose, mannose, fructose, mannitol, raffinose, ribulose, ribose, lactose, maltose, sorbose, sorbitol, xylose, and galactose.
- 3. An isolated Corynebacterium glutamicum nucleic acid molecule selected from the group consisting of those sequences set forth in Appendix A, or a portion thereof, provided that the nucleic acid molecule does not consist of any of the F-designated genes set forth in Table 1.
- 4. An isolated nucleic acid molecule which encodes a polypeptide sequence selected from the group consisting of those sequences set forth in Appendix B, provided that the nucleic acid molecule does not consist of any of the F-designated genes set forth in Table 1
- 5. An isolated nucleic acid molecule which encodes a naturally occurring allelic variant of a polypeptide selected from the group of amino acid sequences consisting of those sequences set forth in Appendix B, provided that the nucleic acid molecule does not consist of any of the F-designated genes set forth in Table 1.
- 6. An isolated nucleic acid molecule comprising a nucleotide sequence which is at least 50% homologous to a nucleotide sequence selected from the group consisting of those sequences set forth in Appendix A, or a portion thereof, provided that the nucleic acid molecule does not consist of any of the F-designated genes set forth in Table 1.
- An isolated nucleic acid molecule comprising a fragment of at least 15 nucleotides of a nucleic acid comprising a nucleotide sequence selected from the group

20

35

consisting of those sequences set forth in Appendix A, provided that the nucleic acid molecule does not consist of any of the F-designated genes set forth in Table 1.

- An isolated nucleic acid molecule which hybridizes to the nucleic acid molecule
 of any one of claims 1-7 under stringent conditions.
 - An isolated nucleic acid molecule comprising the nucleic acid molecule of claim
 or a portion thereof and a nucleotide sequence encoding a heterologous polypeptide.
- 10 10. A vector comprising the nucleic acid molecule of claim 1.
 - 11. The vector of claim 10, which is an expression vector.
 - 12. A host cell transfected with the expression vector of claim 11.
 - 13. The host cell of claim 12, wherein said cell is a microorganism.
 - 14. The host cell of claim 13, wherein said cell belongs to the genus Corynebacterium or Brevibacterium.
 - 15. The host cell of claim 12, wherein the expression of said nucleic acid molecule results in the modulation in production of a fine chemical from said cell.
- 16. The host cell of claim 15, wherein said fine chemical is selected from the group consisting of: organic acids, proteinogenic amino acids, nonproteinogenic amino acids, purine and pyrimidine bases, nucleosides, nucleotides, lipids, saturated and unsaturated fatty acids, diols, carbohydrates, aromatic compounds, vitamins, cofactors, polyketides, and enzymes.
- 30 17. A method of producing a polypeptide comprising culturing the host cell of claim 12 in an appropriate culture medium to, thereby, produce the polypeptide.
 - 18. An isolated phosphoenolpyruvate: sugar phosphotransferase system polypeptide from *Corynebacterium glutamicum*, or a portion thereof.
 - 19.The protein of claim 18, wherein said phosphoenolpyruvate: sugar phosphotransferase system protein is selected from the group consisting of proteins

35

involved in the transport of glucose, sucrose, mannose, fructose, mannitol, raffinose, ribulose, ribuse, lactose, maltose, sorbose, and galactose.

- 20. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of those sequences set forth in Appendix B, provided that the amino acid sequence is not encoded by any of the F-designated genes set forth in Table 1.
- 21. An isolated polypeptide comprising a naturally occurring allelic variant of a polypeptide comprising an amino acid sequence selected from the group consisting of those sequences set forth in Appendix B, or a portion thereof, provided that the amino acid sequence is not encoded by any of the F-designated genes set forth in Table 1.
 - 22. The isolated polypeptide of claim 18, further comprising heterologous amino acid sequences.
 - 23. An isolated polypeptide which is encoded by a nucleic acid molecule comprising a nucleotide sequence which is at least 50% homologous to a nucleic acid selected from the group consisting of those sequences set forth in Appendix A, provided that the nucleic acid molecule does not consist of any of the F-designated nucleic acid molecules set forth in Table 1.
- 24. An isolated polypeptide comprising an amino acid sequence which is at least
 50% homologous to an amino acid sequence selected from the group consisting of those sequences set forth in Appendix B, provided that the amino acid sequence is not
 encoded by any of the F-designated genes set forth in Table 1.
 - 25. A method for producing a fine chemical, comprising culturing a cell containing a vector of claim 12 such that the fine chemical is produced.
- 30 26. The method of claim 25, wherein said method further comprises the step of recovering the fine chemical from said culture.
 - 27. The method of claim 25, wherein said method further comprises the step of transfecting said cell with the vector of claim 11 to result in a cell containing said vector.
 - 28. The method of claim 25, wherein said cell belongs to the genus Corynebacterium or Brevibacterium

the subject.

- 29. The method of claim 25, wherein said cell is selected from the group consisting of: Corynebacterium glutamicum, Corynebacterium herculis, Corynebacterium, lilium, Corynebacterium acetoacidophilum. Corynebacterium acetoacidophilum.
- 5 Corynebacterium acetophilum, Corynebacterium ammoniagenes, Corynebacterium fujiokense, Corynebacterium nitrilophilus, Brevibacterium ammoniagenes, Brevibacterium butanicum, Brevibacterium divaricatum, Brevibacterium flavum, Brevibacterium healii, Brevibacterium ketoglutamicum, Brevibacterium ketosoreductum, Brevibacterium lactofermentum, Brevibacterium linens,
- 10 Brevibacterium paraffinolyticum, and those strains set forth in Table 3.
 - 30. The method of claim 25, wherein expression of the nucleic acid molecule from said vector results in modulation of production of said fine chemical.
- 31. The method of claim 25, wherein said fine chemical is selected from the group consisting of: organic acids, proteinogenic amino acids, nonproteinogenic amino acids, purine and pyrimidine bases, nucleosides, nucleotides, lipids, saturated and unsaturated fatty acids, diols, carbohydrates, aromatic compounds, vitamins, cofactors, polyketides, and enzymes.

32. The method of claim 25, wherein said fine chemical is an amino acid.

- 33. The method of claim 32, wherein said amino acid is drawn from the group consisting of: lysine, glutamate, glutamine, alanine, aspartate, glycine, serine, threonine, methionine, cysteine, valine, leucine, isoleucine, arginine, proline, histidine, tyrosine, phenylalanine, and tryptophan.
- 34. A method for producing a fine chemical, comprising culturing a cell whose genomic DNA has been altered by the inclusion of a nucleic acid molecule of any one of 30 claims 1-9
 - 35. A method for diagnosing the presence or activity of *Corynebacterium diphtheriae* in a subject, comprising detecting the presence of one or more of the sequences set forth in Appendix A or Appendix B in the subject, provided that the sequences are not or are not encoded by any of the F-designated sequences set forth in Table 1, thereby diagnosing the presence or activity of *Corynebacterium diphtheriae* in

36. A host cell comprising a nucleic acid molecule selected from the group consisting of the nucleic acid molecules set forth in Appendix A, wherein the nucleic acid molecule is disrupted.

5

37. A host cell comprising a nucleic acid molecule selected from the group consisting of the nucleic acid molecules set forth in Appendix A, wherein the nucleic acid molecule comprises one or more nucleic acid modifications from the sequence set forth in Appendix A.

10

38. A host cell comprising a nucleic acid molecule selected from the group consisting of the nucleic acid molecules set forth in Appendix A, wherein the regulatory region of the nucleic acid molecule is modified relative to the wild-type regulatory region of the molecule.

15

CORYNEBACTERIUM GLUTAMICUM GENES ENCODING PHOSPHOENOLPYRUVATE: SUGAR PHOSPHOTRANSFERASE SYSTEM PROTEINS

Abstract of the Disclosure

Isolated nucleic acid molecules, designated PTS nucleic acid molecules, which encode novel PTS proteins from Corynebacterium glutamicum are described. The invention also provides antisense nucleic acid molecules, recombinant expression vectors containing PTS nucleic acid molecules, and host cells into which the expression vectors have been introduced. The invention still further provides isolated PTS proteins, mutated PTS proteins, fusion proteins, antigenic peptides and methods for the improvement of production of a desired compound from C. glutamicum based on genetic engineering of PTS genes in this organism.

5

Attorney's Docket No. BGI-122CP

DECLARATION, PETITION AND POWER OF ATTORNEY FOR PATENT APPLICATION

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name,

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

CORYNEBACTERIUM GLUTAMICUM GENES ENCODING PHOSPHOENOLPYRUVATE: SUGAR PHOSPHOTRANSFERASE SYSTEM PROTEINS

the specification of which:		
X is attached hereto.		
was filed on	as Application Serial No	
and was amended on	(if applicable)	

I do not know and do not believe that the subject matter of this application was known or used by others in the United States or patented or described in a printed publication in any country before my invention thereof, or patented or described in a printed publication in any country or in public use or on sale in the United States more than one year prior to the date of this application, or first patented or caused to be patented or made the subject of an inventor's certificate by me or my legal representatives or assigns in a country foreign to the United States prior to the date of this application on an application filed more than twelve months (six months if this application is for a design) before the filing of this application; and I acknowledge my duty to disclose information of which I am aware which is material to the examination of this application, that no application for patent or inventor's certificate on the subject matter of this application has been filed by me or my representatives or assigns in any country foreign to the United States, except those identified below, and that I have reviewed and understand the contents of the specification, including the claims as amended by any amendment referred to herein.

I acknowledge the duty to disclose to the Office all information known to me to be material to patentability as defined in Title 37, Code of Federal Regulations, §1.56.

CLAIM OF BENEFIT OF EARLIER FOREIGN APPLICATION(S)

I hereby claim priority benefits under Title 35, United States Code, §119 of any foreign application(s) for patent or inventor's certificate listed below, and have also identified below any foreign application(s) for patent or inventor's certificate flied by me on the same subject matter having a filing date before that of the application(s) from which priority is claimed.

Check one:

- no such applications have been filed.
- X such applications have been filed as follows

EARLIEST FOREIGN APPLICATION(S), IF ANY, FILED WITHIN 12 MONTHS (6 MONTHS FOR DESIGN) PRIOR TO THIS U.S. APPLICATION

Country	Application Number	Date of Filing (month,day,year)	Priority C Under 35	
DE	19942095.5	09/03/99	X Yes	No _
DE	19942097.1	09/03/99	X Yes	No _
			- Yes	No X
			_ Yes	No_
			_ Yes	No_

ALL FOREIGN APPLICATION(S), IF ANY FILED MORE THAN 12 MONTHS (6 MONTHS FOR DESIGN) PRIOR TO THIS U.S. APPLICATION

CLAIM FOR BENEFIT OF U.S. PROVISIONAL APPLICATION(S)

I hereby claim the benefit under 35 U.S.C. §119(e) of any United States provisional application(s) listed below.

60/142,691	July 1, 1999	
(Application Serial No.)	(Filing Date)	

60/150,310	August 23, 1999	
(Application Serial No.)	(Filing Date)	

CLAIM FOR BENEFIT OF EARLIER U.S./PCT APPLICATION(S)

I hereby claim the benefit under Title 35, United States Code, §120 of any earlier United States application(s) or PCT international application(s) designating the United States listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the earlier application(s) in the manner provided by the first paragraph of Title 35, United States Code, §112, I acknowledge the duty to disclose to the Office all information known to me to be material to patentability as defined in Title 37, Code of Federal Regulations, \$1.56 which became available between the filing date(s) of the earlier application(s) and the national or PCT international filing date of this application. As to subject matter of this application which is common to my earlier application(s), if any, described below, I do not know and do not believe that the same was known or used by others in the United States or patented or described in a printed publication in any country before my invention thereof, or patented or described in a printed publication in any country or in public use or on sale in the United States more than one year prior to the date(s) of said earlier application(s), or first patented or caused to be patented or made the subject of an inventor's certificate by me or my legal representatives or assigns in a country foreign to the United States prior to the date(s) of said earlier application(s) on an application filed more than twelve months (six months if this application is for a design) before the filing of said earlier application(s); and I acknowledge that no application for patent or inventor's certificate on said subject matter has been filed by me or my representatives or assigns in any country foreign to the United States except those identified herein.

Application Serial No.)	(Filing Date)	(Status) (patented,pending,aband.)	
(Application Serial No.)	(Filing Date)	(Status) (patented,pending,aband.)	

POWER OF ATTORNEY: As a named inventor, I hereby appoint the following attorneys and/or agents to prosecute this application and transact all business in the Patent and Trademark Office connected therewith.

James E. Cockfield	Reg. No. 19,162	Megan E. Williams	Reg. No. 43,270
Thomas V. Smurzynski	Reg. No. 24,798	Nicholas P. Triano III	Reg. No. 36,397
Ralph A. Loren	Reg. No. 29,325	Peter C. Lauro	Reg. No. 32,360
Giulio A. DeConti, Jr.	Reg. No. 31,503	Timothy J. Douros	Reg. No. 41,716
Ann Lamport Hammitte	Reg. No. 34,858	DeAnn F. Smith	Reg. No. 36,683
Elizabeth A. Hanley	Reg. No. 33,505	William D. DeVaul	Reg. No. 42,483
Amy E. Mandragouras	Reg. No. 36,207	David J. Rikkers	Reg. No. 43,882
Anthony A. Laurentano	Reg. No. 38,220	Chi Suk Kim	Reg. No. 42,728
Jane E. Remillard	Reg. No. 38,872	Maria Laccotripe Zacharakis	Limited Recognition
Jeremiah Lynch	Reg. No. 17,425		Under 37 C.F.R. § 10.9(b)
Kevin J. Canning	Reg. No. 35,470	Debra J. Milasincic	Reg. No. P46,931
David A. Lane, Jr.	Reg. No. 39,261	David R. Burns	Reg. No. P46,590
Jeanne M. DiGiorgio	Reg. No. 41,710		

Send Correspondence to $\underline{\text{Giulio A. DeConti, Jr., Esq.}}$ at **Customer Number: 000959** whose address is:

Lahive & Cockfield, LLP, 28 State Street, Boston, MA 02109

Direct Telephone Calls to: (name and telephone number)

Giulio A. DeConti, Jr., Esq., (617) 227-7400

Wherefore I petition that letters patent be granted to me for the invention or discovery described and claimed in the attached specification and claims, and hereby subscribe my name to said specification and claims and to the foregoing declaration, power of attorney, and this petition.

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true, and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Full name of sole or first inventor		
Markus Pompejus		
Inventor's signature	Date	
Residence		
Wenjenstrasse 21, 67251 Freinsheim, Germany		
Citizenship		
Germany		
Post Office Address (if different)		
· ·		

Full name of second inventor, if any		
Burkhard Kröger		
Inventor's signature	Date	
2		
Residence		
Im Waldhof 1, 67117 Limburgerhof, Germany		
Citizenship		
Germany		
Post Office Address (if different)		

Full name of third inventor, if any		
Hartwig Schröder		
Inventor's signature	Date	
Residence		
Goethestr. 5, 69226 Nussloch, Germany		
Citizenship		
Germany		
Post Office Address (if different)		

Full name of fourth inventor, if any		
Oskar Zelder		
Inventor's signature	Date	
Residence		
Rossmarktstr. 27, 67346 Speyer, Germany		
Citizenship		
Germany		
Post Office Address (if different)		

Full name of fifth inventor, if any		
Gregor Haberhauer		
Inventor's signature	Date	
Residence		
Moselstr. 42, 67117 Limburgerhof, Germany		
Citizenship		
Germany		
Post Office Address (if different)		

TABLE 1: Genes Included in the Invention

PHOSPHOENOLPYRUVATE: SUGAR PHOSPHOTRANSFERASE SYSTEM

33	29 31	25 27	23	21	17 19	15	13	1	9	7	СП	ω	_	Nucleotide SEQ ID NO
34	30 32	26 28	24	22	18 20	16	14	12	10	00	o	4	2	Amino Acid SEQ ID NO
F RXA01943	RXN01943 F RXA02191	RXC00953 RXC03001	RXN03002	RXA01300	RXN01244 F RXA01244	RXA00951	F RXA01889	F RXA01883	F RXA01299	RXN01299	RXA01503	F RXA00315	RXS00315	Identification Code
GR00557	VV0120 GR00642	VV0260	VV0236	GR00375	VV0068 GR00359	GR00261	GR00540	GR00538	GR00375	VV0068	GR00424	GR00053		Contig.
3944	4326 3395	1834	1437	637	14141 4837	564	77	2154	6	11954	10392	6537		NT Start
3540	6374 4633	1082	1844	903	15844 3329	172	631	2633	446	9891	10640	5452		NT Stop
crr gene; phosphotransferase system glucose-specific enzyme III	PTS SYSTEM, GLUCOSE-SPECIFIC IMBC COMPONENT (EC 2.7.1.89) PHOSPHOENOLPYRUVATE SUGAR PHOSPHOTRANSFERASE	COMPOURTY (EC 2 7 1.69) Membrane Spanning Protein involved in PTS system Membrane Spanning Protein involved in PTS system	PTS SYSTEM, MANNITOL (GRYPTIC) -SPECIFIC IIA COMPONENT (EIIA-(C)MTL) (MANNITOL (GRYPTIC)-PERMEASE IIA COMPONENT) (PHOSPHOTRANSFERASE ENZYME II, A	PHOSPHOCARRIER PROTEIN HPR	COMPONENT) (CC 2.7.1.89) PHOSPHOENOLPYRIUVATE-PROTEIN PHOSPHOTRANSFERASE (EC 2.7.3.9) PHOSPHOENOLPYRUVATE-PROTEIN PHOSPHOTRANSFERASE (EC 2.7.3.9)	PTS SYSTEM, MANNITOL (CRYPTIC) -SPECIFIC IIA COMPONENT (EIIA-(C)MTL) (MANNITOL (CRYPTIC) - PERMIEASE IIA COMPONENT) (PHOSPHOTRANSFERASE ENZYME II, A	PTS SYSTEM, FRUCTOSE-SPECIFIC IIBC COMPONENT (EC 2.7.1.69)	PTS SYSTEM, FRUCTOSE-SPECIFIC IIBC COMPONENT (EC 2.7.169)	PTS SYSTEM, FRUCTOSE-SPECIFIC IIBC COMPONENT (EC 2.7.1.09)	COMPONENT) (EC 2.7.1.69) PTS SYSTEM, FRUCTOSE-SPECIFIC IIBC COMPONENT (EC 2.7.1.69)	COMPONENT) (EC 2.7.1.69) COMPONENT) (EC 2.7.1.69) PTS SYSTEM, BETA-GJUCOSIDES-SPECIFIC IIABC COMPONENT (EIIABC-BGL) (BETA-GLUCOSIDES-PERMEASE INABC COMPONENT) (PHOSPHOTRANSFERASE ENZYME II, ABC	PTS SYSTEM, BETA-GLUCOSIDES-SPECIFIC IIABC COMPONENT (EIIABC-BGL) (BETA- GLUCOSIDES- PERMEASE IIABC COMPONENT) (PHOSPHOTRANSFERASE ENZYME II, ABC	PTS SYSTEM, SUCROSE-SPECIFIC IIABC COMPONENT (EIIABC-SCR) (SUCROSE- PERMEASE IIABC COMPONENT) (EC 2.7.1.69)	Punction

TABLE 2: GENES IDENTIFIED FROM GENBANK

Attorney Docket No.: BGI-122CP

ConRonbin	Cene Name	Cana Bassadian	N A
Accession No.	Conc range	Cene Function	Reference
A09073	ppg	Phosphoenol pyruvate carboxylase	Bachmann, B. et al. "DNA fragment coding for phosphoenolpyruvat corboxy lase, recombinant DNA carrying said fragment, strains carrying the recombinant DNA and method for producing L-aminimo acids using said strains," Patent: EP 0358904, A 3021/90
A45579, A45581,		Threonine dehydratase	Moeckel, B. et al. "Production of L-isoleucine by means of recombinant micro-organisms with dependent of the production and the production of the production
A45583,			9519442-A 5 07/20/95
A45585			
A45587			
AB003132	murC; ftsQ; ftsZ		Kobayashi, M. et al. "Cloning, sequencing, and characterization of the fis2 gene from coryneform bacteria," <i>Biochem. Biophys. Res. Commun.</i> , 256(2):383–388 (1997)
AB015023	murC; ftsQ		Wachi, M. et al. "A murC gene from Coryneform bacteria," Appl. Microbiol. Biotechnol., 51(2):223-228 (1999)
AB018530	dtsR		Kimura, E. et al. "Molecular cloning of a novel gene, dtsR, which rescues the detergent sensitivity of a mutant derived from Bevibacterian lartifermentum." Riovet Renochmol Riochem. 60(10):1455-150 (1005)
AB018531	dtsR1; dtsR2		(1200)
AB020624	murl	D-glutamate racemase	
AB023377	tkt	transketolase	
AB024708	gltB; gltD	Glutamine 2-oxoglutarate aminotransferase large and small subunits	
AB025424	acn	aconitase	
AB027714	rep	Replication protein	
AB027715	rep; aad	Replication protein; aminoglycoside adenyltransferase	
AF005242	argC	N-acetylglutamate-5-semialdehyde dehydrogenase	
AF005635	glnA	Glutamine synthetase	
AF030405	hisF	cyclase	
AF030520	argG	Argininosuccinate synthetase	
AF031518	argF	Ornithine carbamolytransferase	
AF036932	aroD	3-dehydroquinate dehydratase	

AF116184	AF114233	AF086704	AF060558	AF053071	AF052652			AF051846	AF050166	AF050109							AF049897	AF048764	AF045998	AF041436			AF038651	AF038548	Accession No.	GenBank™
panD	aroA	hisE	hisH	aroB	metA			hisA	hisG	inhA					argG; argH	argD; argF; argR;	argC; argJ; argB;	argH	impA	argR		4	dciAE; apt; rel	рус		Gene Name
L-aspartate-alpha-decarboxylase precursor	5-enolpyruvylshikimate 3-phosphate synthase	Phosphoribosyl-ATP- pyrophosphohydrolase	Glutamine amidotransferase	Dehydroquinate synthetase	Homoserine O-acetyltransferase	isomerase	phosphoribosyl-4-imidazolecarboxamide	Phosphoribosylformimino-5-amino-1-	ATP phosphoribosyltransferase	Enoyl-acyl carrier protein reductase	argininosuccinate lyase	argininosuccinate synthase;	carbamoyltransferase; arginine repressor;	transminase; ornithine	acety/glutamate kinase; acety/ornithine	ornithine acetyltransferase; N-	N-acetylglutamylphosphate reductase;	Argininosuccinate lyase	Inositol monophosphate phosphatase	Arginine repressor	pyrophosphokinase	phosphoribosyltransferase: GTP	Dipeptide-binding protein: adenine	Pyruvate carboxylase		Gene Function
Dusch, N. et al. "Expression of the Corynebacterium glutamicum panD gene encoding L'aspartate-alpha-decarboxylase leads to pantothenate overproduction in Escherichia coli," <i>Appl. Environ. Microbiol.</i> , 65(4)1530-1539 (1999)					Park, S. et al. "Isolation and analysis of metA, a methionine biosynthetic gene encoding homoserine acetyltransferase in Corynebacterium glutamicum," Mol. Cells, 8(3):286-294 (1998)													THE PARTY OF THE P			(P)PP op memorially microstology, 177,1000-1002 (1770)	(n)nnGnn matabolism "Mismokiofom: 144.1953 1969 (1998)	Wehmeier I at al "The role of the Coronehacterium clutamianm roll care in			Reference

D17429	AJ238703	AJ238250		AJ132968		AJ007/32			AF145898	AF145897	AF124600	AF124518	Accession No.	GenBank™
	porA	ndh	mqo	cat	ftsY, glnB, glnD; srp; amtP	ppc; secG; amt; ocd; soxA	dapD	ectP	inhA	inhA	aroC; aroK; aroB; pepQ	aroD; aroE		Gene Name
Transposable element IS31831	Porin	NADH dehydrogenase	L-malate: quinone oxidoreductase	Chloramphenicol aceteyl transferase	Involved in cell division; PH protein; uridylyltransferase (uridylyl-removing enzmye); signal recognition particle; low affinity ammonium uptake protein	Phosphoenolpyruvate-carboxylase; ?; high affinity ammonium uptake protein; putative ornithine-cyclodecarboxylase; sarcosine oxidase	Tetrahydrodipicolinate succinylase (incomplete)	Transport of ectoine, glycine betaine, proline			Chorismate synthase; shikimate kinase; 3-dehydroquinate synthase; putative cytoplasmic peptidase	3-dehydroquinase; shikimate dehydrogenase		Gene Function
Vertes, A.A. et al. "Isolation and characterization of IS31831, a transposable element from Corynebacterium glutamicum," <i>Mol. Microbiol.</i> , 11(4):739-746 (1994)	Lichtinger, T. et al. "Biochemical and biophysical characterization of the cell wall porin of Corynebacterium glutamicum: The channel is formed by a low molecular mass polypeptide," <i>Biochemistry</i> , 37(43):1504-15032 (1988)		Moleman, D. et al. "Blochemical and genetic characterization of the membrane-associated malate dehydrogenase (acceptor) from Corynebacterium glutamicum," Eur. J. Biochem., 254(2):395-403 (1998)		Jakoby, M. et al. "Nitrogen regulation in Corynebacterium glutamicum; Isolation of genes involved in biochemical characterization of corresponding proteins," FEMS Microbiol., 173(2):303-310 (1999)		Wehrmam, A., et al. "Different modes of diaminoprimelate synthesis and their role in cell wall integrity: A study with Corynebacterium glutamicum," J. Bacteriol., 180(12):3159-3165 (1998)	Peter, H. et al. "Corynebacterium glutamicum is equipped with four secondary carriers for compatible solutes: Identification, sequencing, and characterization of the proline/ectoine uptake system, ProP, and the ectoine/proline/glycine betaine carrier, EctP," J. Bacteriol., 180(22):6005-6012 (1998)						Reference

E05112	E05108	E04484	E04377	E04376	E04307	E04041	E04040	E03937	0	E01377	E01376	E01375	E01359	E01358	D84102	Access	GenBank™
															2	Accession No.	ınk™
											trpL; trpE			hdh; hk	odhA		Gene Name
Dihydro-dipichorinate synthetase	Aspartokinase	Prephenate dehydratase	Isocitric acid lyase N-terminal fragment	Isocitric acid lyase	Flavum aspartase	Desthiobiotinsynthetase	Diamino pelargonic acid aminotransferase	Biotin-synthase	tryptophan operon	Decree to and appropriate to the second	Leader peptide; anthranilate synthase	Tryptophan operon	Upstream of the start codon of homoserine kinase gene	Homoserine dehydrogenase; homoserine kinase	2-oxoglutarate dehydrogenase		Gene Function
Hatakeyama, K. et al. "Gene DNA coding dihydrodipicolinic acid synthetase and its use," Patent: JP 1993184371-A 07/27/93	Fugono, N. et al. "Gene DNA coding Aspartokinase and its use," Patent: JP 1993184366-A 1 07/27/93	Sotouchi, N. et al. "Production of L-phenylalanine by fermentation," Patent: JP 1993076352-A 2 03/30/93	Katsumata, R. et al. "Gene manifestation controlling DNA," Patent: JP 1993056782-A 3 03/09/93	Katsumata, R. et al. "Gene manifestation controlling DNA," Patent: JP 1993056782-A 3 03/09/93	Kurusu, Y. et al. "Gene DNA coding aspartase and utilization thereof," Patent: JP 1993030977-A 1 02/09/93	Kohama, K. et al. "Gene coding diaminopelargonic acid aminotransferase and desthiobiotin synthetase and its utilization," Patent: JP 1992330284-A 1 11/1892	Kohana, K. et al. "Gene coding diaminopelargonic acid aminotransferase and desthiobiotin synthetase and its utilization," Patent: JP 1992330284-A 1 1/1892	Hatakeyama, K. et al. "DNA fragment containing gene capable of coding biotin synthetase and its utilization," Patent: JP 1992278088-A 1 10/02/92	wausut, S., et al. Trypophan operon, peptide and protein coded thereby, utilization of tryptophan operon gene expression and production of tryptophan, "Patent: JP 1987244382-A 1 10/2487	uypuopnan, Patent: JF 198/244382-A 1 10/24/8/	Matsui, K. et al. "Tryptophan operon, peptide and protein coded thereby, utilization of tryptophan operon gene expression and production of		Katsumata, R. et al. "Production of L-thereonine and L-isoleucine," Patent: JP 1987232392-A 2 10/12/87	Katsumata, R. et al. "Production of L-thereonine and L-isoleucine," Patent: JP 1987232392-A 1 10/12/87	Usuda, Y, et al. "Molecular cloning of the Corynebacterium glutamicum (Bervibacterium lactofermentum Al 12036) odh A gene encoding a novel type of 2-oxoglutarate dehydrogenase," Mcraobiogy, 142:3347-3354 (1996)		Reference

E08643		E08234 secE	E08232	E08180, E08181, E08182	08178, 08179,	E08177	E07701 secY	E06827	E06826	E06825	E06146	E06111	E06110	E05779	E05776	Accession No. Gene Name	
Biotin synthetase	FT aminotransferase and desthiobiotin synthetase promoter region		Acetohydroxy-acid isomeroreductase		Feedback inhibition-released Aspartokinase	Aspartokinase		Mutated aspartokinase alpha subunit	Mutated aspartokinase alpha subunit	Aspartokinase	Acetohydroxy acid synthetase	Mutated Prephenate dehydratase	Prephenate dehydratase	Threonine synthase	Diaminopimelic acid dehydrogenase	Gene Function	
Hatakeyama, K. et al. "DNA fragment having promoter function in	Hatakeyama, K. et al. "DNA fragment having promoter function in coryneform bacterium," Patent: JP 1995031476-A 1 02/03/95	Asai, Y. et al. "Gene DNA coding for translocation machinery of protein," Patent: JP 1994277073-A 1 10/04/94	Inui, M. et al. "Gene DNA coding acetohydroxy acid isomeroreductase," Patent: JP 1994277067-A 1 10/04/94	TO THE STATE OF TH	Sato, Y. et al. "Genetic DNA capable of coding Aspartokinase released from feedback inhibition and its utilization." Patent: ID 1902/261766. A 1 00/20/04	Sato, Y. et al. "Genetic DNA capable of coding Aspartokinase released from feedback inhibition and its utilization," Patent: JP 1994261766-A 1 09/20/94	Honno, N. et al. "Gene DNA participating in integration of membraneous protein to membrane," Patent: JP 1994169780-A 1 06/21/94	Sugimoto, M. et al. "Mutant aspartokinase gene," patent: JP 1994062866-A I 03/08/94	Sugimoto, M. et al. "Mutant aspartokinase gene," patent: JP 1994062866-A I 03/08/94	Sugimoto, M. et al. "Mutant aspartokinase gene," patent: JP 1994062866-A 1 03/08/94	Inui, M. et al. "Gene capable of coding Acetohydroxy acid synthetase and its use," Patent: JP 1993344893-A 1 12/27/93	Kikuchi, T. et al. "Production of L-phenylalanine by fermentation method," Patent: JP 1993344881-A 1 12/27/93	Kikuchi, T. et al. "Production of L-phenylalanine by fermentation method," Patent: JP 1993344881-A 1 12/27/93	Kohama, K. et al. "Gene DNA coding throonine synthase and its use," Patent: JP 1993284972-A 1 11/02/93	Kobayashi, M. et al. "Gene DNA coding Diaminopimelic acid dehydrogenase and its use," Patent: JP 1993284970-A 1 11/02/93	Reference	

	10	[0	EI	E	Į.	E	E	EE	<u> </u>	E	E0.	EO	A G	
L09232	L07603	L01508	E13655	E12773	E12770	E12767	E12764	E12759, E12758	E12594	E08901	E08900	E08649	GenBank™ Accession No.	
IIvB; iIvN; iIvC	EC 4.2.1.15	IlvA											Gene Name	
Acetohydroxy acid synthase large subunit; Acetohydroxy acid synthase small subunit;	3-deoxy-D-arabinoheptulosonate-7- phosphate synthase	Threonine dehydratase	Glucose-6-phosphate dehydrogenase	Dihydrodipicolinic acid reductase	aspartokinase	Dihydrodipicolinic acid synthetase	Arginyl-tRNA synthetase; diaminopimelic acid decarboxylase	transposase	Serine hydroxymethyltransferase	Diaminopimelic acid decarboxylase	Dihydrodipicolinate reductase	Aspartase	Gene Function	
Keilhauer, C. et al. "Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon." J. Bacteriol. 175(17):5595.	Chen, C. et al. "The cloning and nucleotide sequence of Corynebacterium glutamicum 3-deoxy.D-arabinohepulosonate-7-phosphate synthase gene," FEMS Microbiol. Lett., 107:223-230 (1993)	Mocekel, B. et al. "Functional and structural analysis of the threonine dehydratase of Corynebacterium glutamicum," <i>J. Bacteriol.</i> , 174:8065-8072 (1992)	Hatakeyama, K. et al. "Glucose-6-phosphate dehydrogenase and DNA capable of coding the same," Patent: JP 1997224661-A 1 09/02/97	Moriya, M. et al. "Amplification of gene using artificial transposon," Patent: JP 1997070291-A 03/18/97	Moriya, M. et al. "Amplification of gene using artificial transposon," Patent: JP 1997070291-A 03/18/97	Moriya, M. et al. "Amplification of gene using artificial transposon," Patent: JP 1997070291-A 03/18/97	Moriya, M. et al. "Amplification of gene using artificial transposon," Patent: JP 1997070291-A 03/18/97	Mortya, M. et al. "Amplification of gene using artificial transposon," Patent: JP 1997070291-A 03/18/97	Hatakeyama, K. et al. "Production of L-trypophan," Patent: JP 1997028391-A 1 02/04/97	Madori, M. et al. "DNA fragment containing gene coding Diaminopimelic acid decarboxylase and utilization thereof," Patent: JP 1995075579-A 1 03/20/95	Madori, M. et al. "DNA fragment containing gene coding Dihydrodipicolinate acid reductase and utilization thereof," Patent: JP 1995075578-A 1 03/20/95	Kohama, K. et al "DNA fragment having promoter function in coryneform bacterium," Patent: JP 1995031478-A 1 02/03/95	Reference	

M85106	M25819	M16664	M16663	M16175	M13774	L35906	L28760	L27126	L27123	L18874	Accession No.
		trpA	ttpE	5S rRNA		dtxr	aceA		aceB	PtsM	Conc. Imme
23S rRNA gene insertion sequence	Phosphoenolpyruvate carboxylase	Tryptophan synthase, 3' end	Anthranilate synthase, 5' end		Prephenate dehydratase	Diphtheria toxin repressor	Isocitrate lyase	Pyruvate kinase	Malate synthase	Phosphoenolpyruvate sugar phosphotransferase	Conc a uncount
Roller, C. et al. "Gram-positive bacteria with a high DNA G+C content are characterized by a common insertion within their 23S rRNA genes," J. Gen. Microbiol., 138:1167-1175 (1992)	O'Regan, M. et al. "Cloning and nucleotide sequence of the Phosphoenolpynvate carboxylase-coding gene of Corynebacterium glutamicum ATCC13032," <i>Gene</i> , 77(2):237-251 (1989)	Sano, K. et al. "Structure and function of the trp operon control regions of Brevibacerium ilactofermentum, a glutamic-acid-producing bacterium," <i>Gene</i> , 52:191-200 (1987)	Sano, K. et al. "Structure and function of the trp operon control regions of Brevibacterium lactofermentum, a glutamic-acid-producing bacterium," <i>Gene</i> , 22:191-200 (1987)	Park, Y-H. et al. "Phylogenetic analysis of the coryneform bacteria by 56 rRNA sequences," <i>J. Bacteriol.</i> , 169:1801-1806 (1987)	Follettie, M.T. et al. "Molecular cloning and nucleotide sequence of the Corynebacterium glutamicum pheA gene," <i>J. Bacteriol.</i> , 167:695-702 (1986)	Oguiza, J.A. et al. "Molecular cloning, DNA sequence analysis, and characterization of the Corpoebacterium diphtheriae drax flrom Brevibacterium lacrofermentum," J. Bacteriol., 177(2):465-467 (1995)		Jetten, M. S. et al. "Structural and functional analysis of pyruvate kinase from Corynebacterium glutamicum," Appl. Environ. Microbiol., 60(7):2501-2507 (1994)	Lee, H-S, et al. "Molecular characterization of aceB, a gene encoding malate synthase in Corynebacterium glutamicum," <i>J. Microbiol. Biotechnol.</i> , 4(4):235-263 (1994)	Fouet, A et al. "Bacillus subtilis sucrose-specific enzyme II of the phosphotransferase system: expression in Eschericia coil and homology to enzymes II from enteric bacteria," PNAS USA, 84(24):8773-8777 (1987); Lee, J.K., et al. "Nucleotide sequence of the gene encoding the Corynebacterium glutanicum mamose enzyme II and analyses of the deduced protein sequence," FEMS Microbiol. Lett., 119(1-2):137-145 (1994)	ANADAUTUR

CenRonb TM	Gene Name	Cana Eunation	Defenses
Accession No.	College Assessment	Some E unication	Weletelike
M85107, M85108		23S rRNA gene insertion sequence	Roller, C. et al. "Gram-positive bacteria with a high DNA G+C content are characterized by a common insertion within their 23S rRNA genes," J. Gen. Microbiol., 138:1167-1175 (1992)
M89931	aecD; bmQ; yhbw	Beta C-S lyase; branched-chain amino acid uptake carrier; hypothetical protein yhbw	Rossel, I et al. "The Corynebacterium glutamicum aecD gene encodes a C-S lyase with alpha, beta-elimination activity that degrades aminoethyloyseine," <i>J. Bacteriol.</i> , 174(9):2968-2971 (1992); Tauch, A et al. "Isoelourie uptake in Corynebacterium glutamicum ATCC 13932 is directed by the bmQ gene erodus." ** ** ** ** ** ** ** ** ** ** ** ** **
S59299	dn	Leader gene (promoter)	Herry, D.M. et al. "Cloning of the trp gene cluster from a tryptophan- hyperproducing strain of Corynebacterium glutamicum: identification of a mutation in the trp leader sequence," Appl. Environ. Microbiol., 59(3):791-799 (1993)
U11545	ttpD	Anthranilate phosphoribosyltransferase	O'Gara, J.P. and Dunican, L.K. (1994) Complete nucleotide sequence of the Corynebacterium glutamicum ATCC 1850 tp.D gene." Thesis, Microbiology Department, University College Galway, Iteland.
U13922	cgllM; cgllR; clgllR	Putative type II 5-cytosoine methyltransferase; putative type II restriction endonuclease, putative type I or type III restriction endonuclease	Schafer, A. et al. "Choning and characterization of a DNA region encoding a stress-sensitive restriction system from Corynebacterium glutamicum ATCC 13023 and analysis of its role in intergeneric conjugation with Escherichia coli." J. Bacteriol., 176(23):7309-7319 (1994); Schafer, A. et al. "The Corynebacterium glutamicum eglIM gene encoding a 3-cytostine in an McrBC-deficient Escherichia coli strain." Genez, 2013(2):95-101 (1997)
U14965	recA		
U31224	ppx		Ankri, S. et al. "Mutations in the Corynebacterium glutamicumproline biosynthetic pathway: A natural bypass of the proA step," J. Bacteriol., 178(15):4412-4419 (1996)
U31225	proC	L-proline: NADP+ 5-oxidoreductase	Ankri, S. et al. "Mutations in the Corynebacterium glutamicumproline biosynthetic pathway: A natural bypass of the proA step," <i>J. Bacteriol.</i> , 178(15):4412-4419 (1996)
U31230	obg; proB; unkdh	?;gamma glutamyl kinase;similar to D- isomer specific 2-hydroxyacid dehydrogenases	Ankri, S. et al. "Mutations in the Corynebacterium glutamicumproline biosynthetic pathway: A natural bypass of the proA step," <i>J. Bacteriol.</i> , 178(15):4412-4419 (1996)

X53993	X17313	X14234	X07563	X04960	U89648	U53587	U43536	U43535	U35023	U31281	GenBank™ Accession No.
dapA	fda	EC 4.1.1.31	lys A	trpE; trpG; trpL; trpE; trpG; trpL		aphA-3	clpB	cmr	thtR; accBC	bioB	Gene Name
L-2, 3-dihydrodipicolinate synthetase (EC 4.2.1.52)	Fructose-bisphosphate aldolase	Phosphoenolpyruvate carboxy lase	DAP decarboxylase (meso-diaminopimelate decarboxylase, EC 4.1.1.20)	Tryptophan operon	Corynebacterium glutamicum unidentified sequence involved in histidine biosynthesis, partial sequence	3'5"-aminoglycoside phosphotransferase	Heat shock ATP-binding protein	Multidrug resistance protein	Thiosulfate sulfurtransferase; acyl CoA carboxylase	Biotin synthase	Gene Function
Bonnassie, S. et al. "Nucleic sequence of the dapA gene from Corynebacterium glutamicum," Nucleic Acids Res., 18(21):6421 (1990)	Von der Osten, C.H. et al. "Molecular cloning, nucleotide sequence and fine- structural analysis of the Corynebacterium glutamicium fida gene: structural comparison of C. glutamicium finctose-1, 6-biphosphate aldolase to class I and class II aldolases," <i>Mol. Microbiol.</i>	Eikmanns, B.J. et al. "The Phosphoenolpyruvate carboxylase gene of Corynebacterium glutamicum: Molecular cloning, nucleotide sequence, and expression." <i>Mol. Gen. Genet.</i> , 218(2):330-339 (1989); Lepiniec, L. et al. "Sorghum Phosphoenolpyruvate carboxylase gene family: structure, function and molecular evolution." <i>Plant. Mol. Biol.</i> , 21 (3):487-502 (1993)	Yeh, P. et al. "Nucleic sequence of the lysA gene of Corynebacterium glutamicum and possible mechanisms for modulation of its expression," Mol. Gen. Genet., 212(1):112-119 (1988)	Matsui, K. et al. "Complete nucleotide and deduced amino acid sequences of the Brevibacterium lactofermentum tryptophan operon," <i>Nucleic Acids Res.</i> , 14(24):10113-10114 (1986)				Juger, W. et al. "A Corynebacterium glutamicum gene conferring multidrug resistance in the heterologous host Escherichia coli," <i>J. Bacteriol.</i> , 179(7):2449-245 (1997)	lager, W. et al. "A Corynebacterium glutamicum gene encoding a two-domain protein similar to biotin carboxylases and biotin-carboxyl-carrier proteins," Arch. Microbiol., 166(2);76-82 (1996)	Serebritskii, I.G., "Two new members of the bio B superfamily: Cloning, sequencing and expression of bio B genes of Methylobacillus flagellatum and Corynebacterium glutamicum," Gene, 175:15-22 (1996)	Reference

X60312	X59404	X59403	X57226	X56075	X56037	X55994	X54740	X54223	GenBank™ Accession No.
lysI	gdh	gap;pgk; tpi	lysC-alpha; lysC-beta; asd	attB-related site	thrC	trpL; trpE	argS; lysA		Gene Name
L-lysine permease	Glutamate dehydrogenase	Glyceraldehyde-3-phosphate; phosphoglycerate kinase; triosephosphate isomerase	Aspartokinase-alpha subunit; Aspartokinase-beta subunit; aspartate beta semialdehyde dehydrogenase	Attachment site	Threonine synthase	Putative leader peptide; anthranilate synthase component 1	Arginyl-tRNA synthetase; Diaminopimelate decarboxylase	AttB-related site	Gene Function
Seep-Feldhaus, A.H. et al. "Molecular analysis of the Corynebacterium glutamicum lysl gene involved in lysine uptake," <i>Mol. Microbiol.</i> , 5(12):2995-3005 (1991)	Bormann, E.R. et al. "Molecular analysis of the Corynebacterium glutamicum gdh gene encoding glutamate dehydrogenase," <i>Mol. Microbiol.</i> , 6(3):317-326 (1992)	Ekimanns, B.J. "Identification, sequence analysis, and expression of a Corynebacterium glutamicum gene cluster encoding the three glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase, 3-phosphoglycerate kinase, and triosephosphate isomeras," <i>J. Bacteriol.</i> , 174(19):6076-6086 (1992)	Kalinowski, J. et al. "Genetic and biochemical analysis of the Aspartokinase from Coxpuebacterium glutanicum," Med. Marcokia, J. (5);1197-1204 (1991). Kalinowski, J. et al. "Aspartokinase genes lysC alpha and lysC beta overlap and are aljacent to the aspertate beta-semialdehyde debydrogenase gene asd in Corynebacterium glutanicum," Med. Gen. Genet., 224(3):317-324 (1990).	Cianciotto, N. et al. "DNA sequence homology between att B-related sites of Corynebacterium diphtheriae, Corynebacterium ulcrans, Corynebacterium glutamicum, and the attP site of lambdacorynephage," FEMS. Microbiol, Lett., 66:299-302 (1990)	Han, K.S. et al. "The molecular structure of the Corynebacterium glutamicum threonine synthase gene," Mol. Microbiol., 4(10):1693-1702 (1990)	Heery, D.M. et al. "Nucleotide sequence of the Corynebacterium glutamicum trpE gene," Nucleic Acids Res., 18(23):7138 (1990)	Marcel, T. et al. "Nucleotide sequence and organization of the upstream region of the Corynebacterium glutamicum lysA gene," Mol. Microbiol., 4(11):1819-1830 (1990)	Cianciotto, N. et al. "DNA sequence homology between att B-related sites of Corynebacterium diphtheriae, Corynebacterium utcerans, Corynebacterium glutamicum, and the attP site of lambdacorynephage," FEMS. Microbiol. Lett., 66:299-302 (1990)	Reference

X75504 aceA; thiX Par			mtrA	X72855 GDHA GIL	X71489 icd 1so	X70959 leuA Iso	X69104 IS3	csp2	X67737 dapB Dit	<u>.</u>	copl	on No.	GenBank™ Gene Name Ge
ATPase beta-subunit	Partial Isocitrate lyase; ?		5-methyltryptophan resistance	Glutamate dehydrogenase (NADP+)	Isocitrate dehydrogenase (NADP+)	Isopropylmalate synthase	IS3 related insertion element	Surface layer protein PS2	Dihydrodipicolinate reductase	Citrate synthase	Ps1 protein		Gene Function
Ludwig, W. et al. "Phylogenetic relationships of bacteria based on comparative	Reinschied, D.J. et al. "Characterization of the isocitrate lyase gene from Corynebacterium glutamicum and biochemical analysis of the enzyme," J. Bacteriol., 176(12):3474-3483 (1994)	Fitzpatrick, R. et al. "Construction and characterization of recA mutant strains of Corynebacterium glutamicum and Brevibacterium lactofermentum," Appl. Alcrobiol. Biotechnol., 42(4):575-580 (1994)	Heery, D.M. et al. "A sequence from a tryptophan-hyperproducing strain of Corynebacterium glutamicum encoding resistance to 5-methyltryptophan," Biochem. Biophys. Res. Commun., 201(3):1255-1262 (1994)	(*)	Eikmanns, B.J. et al. "Cloning sequence analysis, expression, and inactivation of the Corynebacterium glutamicum ied gene encoding isocitrate dehydrogenase and biochemical characterization of the enzyme," J. Bacteriol., 17(1):774-782 (1995)	Patek, M. et al. "Laucine synthesis in Corynebacterium glutamicum: enzyme activities, structure of leu/s, and effect of leu/s inactivation on lysine synthesis." Appl. Emriron Microbiol., 60(1):133-140 (1994)	Bonamy, C. et al. "Identification of IS1206, a Corynebacterium glutamicum IS3-related insertion sequence and phylogenetic analysis," <i>Mol. Microbiol.</i> , 14(3):571-581 (1994)	Peyret, IL. et al. "Characterization of the cspB gene encoding PS2, an ordered surface-layer protein in Corynebacterium glutamicum," <i>Mol. Microbiol.</i> , 9(1):97-109 (1993)		Eikmanns, B.J. et al. "Cloning sequence, expression and transcriptional analysis of the Corynebacterium glutamicum glxd gene encoding citrate synthase," Microbiol., 140:1817-1828 (1994)	Joliff, G. et al. "Cloning and nucleotide sequence of the csp1 gene encoding PS1, one of the two major secreted proteins of Corynebacterium glutamicum: The deduced N-terminal region of PS1 is similar to the Mycobacterium antigen 85 complex," Mol. Microbiol., 6(16):2349-2362 (1992)		Reference

X85965	X84257	X82929	X82928	X82061	X813/9	X81191	X80629	X/8491	X7/384	X77034	GenBank™ Accession No.
aroP; dapE	16S rDNA	proA	asd; lysC	16S rDNA	ары	gluA; gluB; gluC; gluD	160 rUNA	асев	recA	tuf	Gene Name
Aromatic amino acid permease; ?	16S ribosomal RNA	Gamma-glutamyl phosphate reductase	Aspartate-semialdehyde dehydrogenase;?	16S ribosomal RNA	Succinyldiam inopime late desuccinylase	Glutamate uptake system	165 ribosomal KNA	Malate synthase		Elongation factor Tu	Gene Function
Wehmmann, A. et al. "Functional analysis of sequences adjacent to dapE of Corynebacterium glutamicumproline reveals the presence of aroP, which encodes the aromatic amino acid transporter," <i>J. Bacteriol.</i> , 177(20):5991-5993 (1995)	Pascual, C. et al. "Phylogenetic analysis of the genus Corynebacterium based on 16S rRNA gene sequences," <i>Int. J. Syst. Bacteriol.</i> , 45(4):724-728 (1995)	Serebrijski, I. et al. "Multicopy suppression by asd gene and osmotic stress-dependent complementation by heterologous proA in proA mutants," <i>J. Bacteriol.</i> , 17(24):7255-7260 (1995)	Screbrijski, I. et al. "Multicopy suppression by asd gene and osmotic stress-dependent complementation by heterologous proA in proA mutants," <i>J. Bacteriol.</i> , 17(24):7255-7260 (1995)	Rulmy, R. et al. "Phylogeny of the genus Corynebacterium deduced from analyses of small-subunit ribosomal DNA sequences," Int. J. Syst. Bacteriol., 45(4):740-746 (1995)	Wohrmann, A. et al. "Analysis of different DNA fragments of Corynebacterium glutamicum complementing dapE of Escherichia coli," Microbiology, 40:3349-56 (1994)	Kronemeyer, W. et al. "Structure of the gluABCD cluster encoding the glutamate uptake system of Corynebacterium glutamicum," <i>J. Bacteriol.</i> , 177(5):1152-1138 (1995)	Rainey, F.A. et al. "Phylogenetic analysis of the genera Rhodococcus and Norcardia and evidence for the evolutionary origin of the genus Norcardia from within the radiation of Rhodococcus species," <i>Microbiol.</i> , 141:523-528 (1995)	Reinschied, D.J. et al. "Valate synthase from Corynebacterium glutamicum pta-ask operon encoding phosphotransacetylase: sequence analysis," <i>Microbiology</i> , 140:3099-3108 (1994)	Billman-Jacobe, H. "Nucleotide sequence of a recA gene from Corynebacterium glutamicum," <i>DNA Seq.</i> , 4(6):403-404 (1994)	Lulwig, W. et al. "Phylogenetic relationships of factoria based on comparative sequence analysis of elongation factor Tu and ATP-synthase beta-subunit genes," Antonie Van Leenwenhoek, 64:285-305 (1993)	Reference

X	×	×	×	×	ž	×	×	×	×	୬ ନ
X90362	X90361	X90360	X90359	X90358	X90357	X90356	X89850	X89084	X86157	GenBank™ Accession No.
							attB	pta; ackA	argB; argC; argD; argF; argJ	Gene Name
Promoter fragment F37	Promoter fragment F34	Promoter fragment F22	Promoter fragment F13	Promoter fragment F10	Promoter fragment F2	Promoter fragment F1	Attachment site	Phosphate acetyltransferase; acetate kinase	Acetylglutamate kinase; N-acetyl-gamma- glutamyl-phosphate reductase; acetylomithine aminotransferase; ornithine carbamoyltransferase; glutamate N- acetyltransferase	Gene Function
Pack, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)	Parack, M. et al. "Promoters from Corynebacterium glutamicum; cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)	Pardek, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif," Microbiology, 142:1297-1309 (1996)	Pack, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)	Pleake, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)	Pauek, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif;" <i>Microbiology</i> , 142:1297-1309 (1996)	Pardek, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)	Le Marre, C. et al. "Genetic characterization of site-specific integration functions of phi AAU2 infecting "Arthrobacter aureus C70," J. Bacterial., 178(7):1996-2004 (1996)	Reinscheid, D.J. et al. "Cloning, sequence analysis, expression and inactivation of the Corynebacterium glutamicum pta-ack operon encoding phosphotransacetylase and acetate kinase," <i>Microbiology</i> , 145:503-513 (1999)	Sakanyan, V. et al. "Genes and enzymes of the acetyl cycle of arginine biosynthesis in Corynebacterium glutamicum: enzyme evolution in the early steps of the arginine pathway," <i>Microbiology</i> , 142:99-108 (1996)	Reference

	X964/I		X95649		X93514		Y93513	X90368	V00000		X90367		X90366		X90365			X90364		X90363	Accession No.	GenBank™
	lysE; lysG		orf4		betP	allie	amt															Gene Name
	Lysine exporter protein; Lysine export regulator protein				Glycine betaine transport system	Annioman naispor system	A management and the	Promoter fragment PF109			Promoter fragment PF104		Promoter fragment PF101		Promoter fragment F75			Promoter fragment F64		Promoter fragment F45		Gene Function
Microbiol., 22(5):815-826 (1996)	Vrijic, M. et al. "A new type of transporter with a new type of cellular function: L-lysine export from Corynebacterium glutamicum," Mol.	dapA-ORF4 operon of Corynebacterium glutamicum, encoding two enzymes involved in L-lysine synthesis," <i>Biotechnol. Lett.</i> , 19:1113-1117 (1997)	Patek, M. et al. "Identification and transcriptional analysis of the dang-ORE?-	Corynebacterium glutamicum betP gene, encoding the transport system for the compatible solute glycine betaine," <i>J. Bacteriol.</i> , 178(17):5229-5234 (1996)	Peter, H. et al. "Isolation, characterization, and expression of the	stewe, k.,w. et al., "unctional and genetic characterization of the (methyl) ammonium uptake carrier of Corynebacterium glutamicum," <i>J. Biol. Chem.</i> , 271(10):5398-5403 (1996)	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Pack, M. et al. "Promoters from Corynebacterium glutamicum; cloning, molecular analysis and search for a consensus motif;" <i>Microbiology</i> , 142:1297-1309 (1996)	142:1297-1309 (1996)	molecular analysis and search for a consensus motif," Microbiology,	Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning,	molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)	Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning,	motecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)	Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning,	142:1297-1309 (1996)	molecular analysis and search for a consensus motif." Microbiology	Patek, M. et al. "Promoters from Corvnebacterium glutamicum: cloning	molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)	Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning,		Reference

GenBank TM Accession No.	Gene Name	Gene Function	Reference
X96580	panB; panC; xylB	3-methyl-2-oxobutanoate hydroxymethyltransferase; pantoate-beta- alanine ligase; xylulokinase	Sahm, H. et al. "D-pantothenate synthesis in Corynebacterium glutamicum and use of panBC and genes encoding L-valine synthesis for D-pantothenate use of panBC and genes encoding L-valine synthesis for D-pantothenate overproduction," Appl. Emiron, Microbiol., 65(5): 1973-1979 (1999)
X96962		Insertion sequence IS1207 and transposase	
X99289		Elongation factor P	Ramos, A. et al. "Cloning, sequencing and expression of the gene encoding elongation factor P in the antino-acid producer Brevblacterium lactofermental (Conynebacterium glutamicum ATCC 13869)." Gene, 1982.17-222 (1997).
Y00140	thrB	Homoserine kinase	Mateos, L.M. et al. "Nucleotide sequence of the homoserine kinase (thrB) gene of the Brevibacterium lactofermentum," <i>Nucleic Acids Res.</i> , 15(9):3922 (1987)
Y00151	ddh	Meso-diaminopimelate D-dehydrogenase (EC 1.4.1.16)	Ishino, S. et al. "Nucleotide sequence of the meso-diaminopimelate D-dehydrogenase gene from Corynebacterium glutamicum," Nucleic Acids Res., 15(9):3917 (1987).
Y00476	thrA	Homoserine dehydrogenase	Mateos, L.M. et al. "Nucleotide sequence of the homoserine dehydrogenase (thrA) gene of the Brevibacterium lactofernentum," <i>Nucleic Acids Res.</i> , 15(24), 16598 (1987)
Y00546	hom; thrB	Homoserine dehydrogenase; homoserine kinase	Peoples, O.P. et al. "Mucleotide sequence and fine structural analysis of the Corynebacterium glutamicum hom-thrB operon," <i>Mol. Microbiol.</i> , 2(1):63-72 (1988)
Y08964	murC; ftsQ/divD; ftsZ	UPD-N-acetylmuramate-alanine ligase; division initiation protein or cell division protein; cell division protein	Homrubia, M.P. et al. "identification, characterization, and chromosomal organization of the fb2 gene from Brevibacterium lactofermentum," <i>Mod. Gen. Gene.</i> , 259(1):97-104 (1998)
Y09163	putP	High affinity proline transport system	Peter, H. et al. "Isolation of the putP gene of Corynebacterium glutamicumproline and characterization of a low-affinity uptake system for compatible solutes," Arch. Microbiol., 1862);143-151 (1997)
Y09548	рус	Pyruvate carboxylase	Peters-Wendisch, P.G. et al. "Pyruvatie carboxylase from Corynebacterium glutamicum: characterization, expression and inactivation of the pyc gene," Microbiology, 144:915-927 (1998)
	leuB	3-isopropylmalate dehydrogenase	Patek, M. et al. "Analysis of the leuB gene from Corynebacterium glutamicum," <i>Appl. Microbiol. Biotechnol.</i> , 50(1):42-47 (1998)
Y12472		Attachment site bacteriophage Phi-16	Moreau, S. et al. "Site-specific integration of corynephage Phi-16: The construction of an integration vector," <i>Microbiol.</i> , 145:539-548 (1999)

Z66534	Z49824	Z49823	Z49822	Z46753	Z29563	Z21502	Z21501	Y18059	Y16642	Y13221	Y12537	Accession No.	GenBank™
	orf1; sigB	galE; dtxR	sigA	16S rDNA	thrC	dapA; dapB	argS; lysA	THE ASSESSMENT OF THE PARTY OF	lpd	glnA	proP		Gene Name
Transposase	?; SigB sigma factor	Catalytic activity UDP-galactose 4- epimerase; diphtheria toxin regulatory protein	SigA sigma factor	Gene for 16S ribosomal RNA	Threonine synthase	Dihydrodipicolinate synthase; dihydrodipicolinate reductase	Arginyl-tRNA synthetase; diaminopimelate decarboxylase (partial)	Attachment site Corynephage 304L	Dihydrolipoamide dehydrogenase	Glutamine synthetase I	Proline/ectoine uptake system protein		Gene Function
Correla, A. et al. "Cloning and characterization of an IS-like element present in the genome of Brevibacterium lactofermentum ATCC 13869," <i>Gene</i> , 170(1):01 of 100C)	Oguiza, J.A. et al "Multiple sigma factor genes in Brevibacterium lactofermentum: Characterization of sigA and sigB," J. Bacteriol., 178(2):550- 553 (1996)	Oguiza, J.A. et al "The gall gene encoding the UDP-galactose 4-epimerase of Brevibacterium lactofermenum is coupled transcriptionally to the dmdR gene," Gene, 177:103-107 (1996)	Oguitza, J.A. et al "Multiple sigma factor genes in Brevibacterium lactofermentum: Characterization of sigA and sigB," <i>J. Bacteriol.</i> , 178(2):550-553 (1996)		Malumbres, M. et al. "Analysis and expression of the thrC gene of the encoded threonine synthase," <i>Appl. Environ. Microbiol.</i> , 60(7)2209-2219 (1994)	Pisabarro, A. et al. "A cluster of three genes (dapA, orf2, and dapB) of Brevibacterium lactofermentum encodes dihydrodipicolinate reductase, and a third polypeptide of unknown function," <i>J. Bacteriol.</i> , 175(9):2743-2749 (1993)	Oguiza, I.A. et al. "A gene encoding arginyl-tRNA synthetase is located in the upstream region of the lysA gene in Brevibacterium lactofermentum: Regulation of argS-lysA cluster expression by arginine," <i>J. Bacteriol.</i> , 175(22):7356-7362 (1993)	Moreau, S. et al. "Analysis of the integration functions of φ304L: An integrase module among corynephages," <i>Virology</i> , 255(1):150-159 (1999)		Jakoby, M. et al. "Isolation of Corynebacterium glutamicum glnA gene encoding glutamine synthetase I," FEMS Microbiol. Lett., 154(1):81-88 (1997)	Peter, H. et al. "Cotynebacterium glutanicum is equipped with four secondary carriers for compatible solutes: Identification, sequencing, and characterization of the proline/ectoine uptake system, ProP, and the ecoine/proline/glycine betaine carrier, EctP," J. Bacteriol., 180(22):6005-6012 (1998)		Reference

A sequence for this gene was published in the indicated reference. However, the sequence obtained by the inventors of the present application is significantly longer than the published version. It is believed that the published version relied on an incorrect start codon, and thus represents only a fragment of the actual coding region.

TABLE 3: Corynebacterium and Brevibacterium Strains Which May be Used in the Practice of the Invention

Genus species	species	ATCC FERM NRRL CECT NCIMB CBS NCIC DSMZ	FERM	NRRL	CECT	NCIMB	CBS	NCTC	DSM
Brevibacterium	ammoniagenes	21054							
Brevibacterium	ammoniagenes	19350							
Brevibacterium	ammoniagenes	19351							
Brevibacterium	ammoniagenes	19352							
Brevibacterium	ammoniagenes	19353							
Brevibacterium	ammoniagenes	19354							
Brevibacterium	ammoniagenes	19355							
Brevibacterium	ammoniagenes	19356							
Brevibacterium	ammoniagenes	21055							
Brevibacterium	ammoniagenes	21077							
Brevibacterium	ammoniagenes	21553							
Brevibacterium	ammoniagenes	21580							
Brevibacterium	ammoniagenes	39101							
Brevibacterium	butanicum	21196							
Brevibacterium	divaricatum	21792	P928						
Brevibacterium	flavum	21474							
Brevibacterium	flavum	21129							
Brevibacterium	flavum	21518							
Brevibacterium	flavum			B11474					
Brevibacterium	flavum			B11472					
Brevibacterium	flavum	21127							
Brevibacterium	flavum	21128							
Brevibacterium	flavum	21427							
Brevibacterium	flavum	21475							
Brevibacterium	flavum	21517							
Brevibacterium	flavum	21528							
Brevibacterium	flavum	21529							

				21865	spec.	Brevibacterium
				21864	spec.	Brevibacterium
				21860	spec.	Brevibacterium
				14604	spec.	Brevibacterium
717.73					spec.	Brevibacterium
717.73					spec.	Brevibacterium
	11160				paraffinolyticum	Brevibacterium
				8377	linens	Brevibacterium
				19391	linens	Brevibacterium
				9174	linens	Brevibacterium
				31269	lactofermentum	Brevibacterium
				21086	lactofermentum	Brevibacterium
				21420	lactofermentum	Brevibacterium
				21086	lactofermentum	Brevibacterium
			B11471		lactofermentum	Brevibacterium
			B11470		lactofermentum	Brevibacterium
				21801	lactofermentum	Brevibacterium
				21800	lactofermentum	Brevibacterium
				21799	lactofermentum	Brevibacterium
				21798	lactofermentum	Brevibacterium
		77			lactofermentum	Brevibacterium
		74			lactofermentum	Brevibacterium
		70			lactofermentum	Brevibacterium
				21914	ketosoreductum	Brevibacterium
				21089	ketoglutamicum	Brevibacterium
				21004	ketoglutamicum	Brevibacterium
				15527	healii	Brevibacterium
			B11474		flavum	Brevibacterium
				21127	flavum	Brevibacterium
			B11478		flavum	Brevibacterium
			B11477		tlavum	Brevibacterium

Brevibacterium	spec.	21866			
	spec.	19240			
Corynebacterium	acetoacidophilum	21476			
Corynebacterium	acetoacidophilum	13870			
Corynebacterium	acetoglutamicum		B11473		
Corynebacterium	acetoglutamicum		B11475		
Corynebacterium	acetoglutamicum	15806			
Corynebacterium	acetoglutamicum	21491			
Corynebacterium	acetoglutamicum	31270			
Corynebacterium	acetophilum		B3671		
Corynebacterium	ammoniagenes	6872			2399
Corynebacterium	ammoniagenes	15511			
Corynebacterium	fujiokense	21496			
Corynebacterium	glutamicum	14067			
Corynebacterium	glutamicum	39137			
Corynebacterium	glutamicum	21254			
Corynebacterium	glutamicum	21255			
Corynebacterium	glutamicum	31830			
Corynebacterium	glutamicum	13032			
Corynebacterium	glutamicum	14305			
Corynebacterium	glutamicum	15455			
Corynebacterium	glutamicum	13058			
Corynebacterium	glutamicum	13059			
Corynebacterium	glutamicum	13060			
Corynebacterium	glutamicum	21492			
Corynebacterium	glutamicum	21513			
Corynebacterium	glutamicum	21526			
Corynebacterium	glutamicum	21543			
Corynebacterium	glutamicum	13287			
Corynebacterium	glutamicum	21851			
Corvnebacterium	glutamicum	21253			

Corynebacterium	glutamicum	21514				
Corynebacterium	glutamicum	21516				
Corynebacterium	glutamicum	21299				
Corynebacterium	glutamicum	21300				
Corynebacterium	glutamicum	39684				
Corynebacterium	glutamicum	21488				
Corynebacterium	glutamicum	21649				
Corynebacterium	glutamicum	21650				
Corynebacterium	glutamicum	19223				
Corynebacterium	glutamicum	13869				
Corynebacterium	glutamicum	21157				
Corynebacterium	glutamicum	21158				
Corynebacterium	glutamicum	21159				
Corynebacterium	glutamicum	21355				
Corynebacterium	glutamicum	31808				
Corynebacterium	glutamicum	21674				
Corynebacterium	glutamicum	21562				
Corynebacterium	glutamicum	21563				
Corynebacterium	glutamicum	21564				
Corynebacterium	glutamicum	21565				
Corynebacterium	glutamicum	21566				
Corynebacterium	glutamicum	21567				
Corynebacterium	glutamicum	21568				
Corynebacterium	glutamicum	21569				
Corynebacterium	glutamicum	21570				
Corynebacterium	glutamicum	21571				
Corynebacterium	glutamicum	21572				
Corynebacterium	glutamicum	21573				
Corynebacterium	glutamicum	21579				
Corynebacterium	glutamicum	19049				
Corynebacterium	glutamicum	19050				

			31090	spec.	Corynebacterium
			31090	spec.	Corynebacterium
			31089	spec.	Corynebacterium
			31088	spec.	Corynebacterium
		P4446		spec.	Corynebacterium
		P4445		spec.	Corynebacterium
11594			21419	nitrilophilus	Corynebacterium
		P973		lilium	Corynebacterium
			21608	glutamicum	Corynebacterium
	B11476			glutamicum	Corynebacterium
	B12418			glutamicum	Corynebacterium
	B12417			glutamicum	Corynebacterium
	B12416			glutamicum	Corynebacterium
	B8182			glutamicum	Corynebacterium
	B8183			glutamicum	Corynebacterium
			21492	glutamicum	Corynebacterium
			21544	glutamicum	Corynebacterium
			21527	glutamicum	Corynebacterium
			21515	glutamicum	Corynebacterium
			13286	glutamicum	Corynebacterium
			19185	glutamicum	Corynebacterium
			19060	glutamicum	Corynebacterium
			19059	glutamicum	Corynebacterium
			19058	glutamicum	Corynebacterium
			19057	glutamicum	Corynebacterium
			19056	glutamicum	Corynebacterium
			19055	glutamicum	Corynebacterium
			19054	glutamicum	Corynebacterium
			19053	glutamicum	Corynebacterium
			19052	glutamicum	Corynebacterium
			19051	glutamicum	Corynebacterium

Corynebacterium	Corynebacterium	Corynebacterium	Corynebacterium	Corynebacterium
spec.	spec.	spec.	spec.	spec.
21863	21862	21857	15954	31090
			20145	

ATCC: American Type Culture Collection, Rockville, MD, USA

FERM: Fermentation Research Institute, Chiba, Japan

NRRL: ARS Culture Collection, Northern Regional Research Laboratory, Peoria, IL, USA

CECT: Coleccion Espanola de Cultivos Tipo, Valencia, Spain

NCIMB: National Collection of Industrial and Marine Bacteria Ltd., Aberdeen, UK

CBS: Centraalbureau voor Schimmelcultures, Baarn, NL

NCTC: National Collection of Type Cultures, London, UK

DSMZ: Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany

collections world data center on microorganisms, Saimata, Japen. For reference see Sugawara, H. et al. (1993) World directory of collections of cultures of microorganisms: Bacteria, fungi and yeasts (4th edn), World federation for culture

TABLE 4: ALIGNMENT RESULTS

	rxa01943		rxa00953	rxa01300	X80 124#		rxa00951	rxa01299	rxa01503	rxa00315	0
GB_BA1 BRLPTSG GB_BA2 AF045481	2172 GB_BA1 CORPTSMA	GB_BA1:BLTRP GB_PAT E01375	789 GB_BA1 SCJ21	390 GB_PR3:HUMDODDA GB_PAT I40899 GB_PAT I40900	GB_PR3 HSJ836E13 GB_EST24.AI170227	GB_VI.MCU68299 GB_VI U93872	GB_RO:AB004056 GB_RO:AB004056 416 GB_BA1:SCJ21	GB_GSS12 AQ390040 GB_GSS5 AQ784231 2187 GB_EST38 AW047296	GB_HTG2:AC006732 372 GB_PR3 AC005019	1527 GB_BA1:AB007125	(NT) Genbank Hit
3163 2841	2656	7725 7726	31717	26764 26764 1317	78055 409	230278 133661	1581 1581 31717	680 542 614	159453	4078	Length
L18875 AF045481	L18874	X04960 E01375	AL109747	L39874 40899 40900	AL050326 AL170227	U68299 U93872	AB004056 AB004056 AL109747	AQ390040 AQ784231 AW047296	AC005019	AB007125	Accession
(ptsG) gene, complete cds Carynebacterium ammoniagenes glucose permease (ptsG) gene, complete cds	Conynebecterium glutamicum phosphoenolpyruvate sugar phosphotransferase (pisM) mRNA, complete cds Brevibadderium factofermentum phosphoenolpyruvate sugar phosphotransferase	Brevibacterrum lactofermentum tryptophan operon DNA sequence of tryptophan operon.	Streptomyces coelicolor cosmid J21	Homo septens deoxycytrdylate deaminase gene, complete cds Sequence 1 from patent US 5622851 Sequence 2 from patent US 5622851	Auraigness europrius protein ir (proz.) and potein (prot) getres, compate dos fulman DNA, sequence from done 68E13 on chronosome 20 Contains ESTs, STS and 65Ss, compete sequence. EST216152 Normalized rati ung. Bento Soartes Ratius sp. cDNA clone RLUCF56 3 end, mRNA sequence.	Mouse offormegalormus i complete genome sequence Apostos saterome assendant Impararvas Jopcoprotem M. DVA replication protein, glycoprotein, DVA replication protein, FLICE imhotory protein and vojctin genes, glycoprotein, DVA application protein gene, partial ciss.	Ratius nonvergous mRNA for Barth-class homeodomain transcription factor, complete cotas Ratius nonvergous mRNA for Barth-class homeodomain transcription factor, complete cits Streptomyces coelcolor ossind J21	ISTCB genome survey sequence. HS_3087_B1_C10_T70_C1T Approved Human Genome Sperm Library D Homo spheres serronne chore Pales-5087_Col=19 RoyarF, genome survey sequence. UHA-BH1-amh-e-030-ULI SINIE_BMAP_M_S2 Mus musculus cDNA clone UHA-BH1-amh-e-030-ULI SINIE_BMAP_M_S2 Mus musculus cDNA clone UHA-BH1-amh-e-030-ULI SINIE_BMAP_M_S2 Mus musculus cDNA clone UHA-BH1-amh-e-030-ULI SINIE_BMAP_M_S2 Musculus cDNA clone UHA-BH1-amh-e-030-ULI SINIE_BMAP_M_S2 Musculus clone UHA-BH1-amh-e-030-ULI SINIE_BMAP_MS2 Musculus clone	caerumaouse seguins cosmin C-r1/LZ Caendrinabotias eleganis colore 97239; "SEQUENCING IN PROGRESS "".9 unordered places. Hono sappiers BAC done GS250A16 from 7p21-p22, complete sequence. RPCI1-1-157/CS, TL RPCJ-11 thomo sapieris genomic done RPCI-1-1.	Serratia marcescens siaA gene for surface layer protein, complete cds, isolate 8000	Name of Genbank Hit
lactofermentum Corynebacterium ammoniagenes	Corynebacterium glutamicum Brevibacterium	glutamicum Corynebactenum glutamicum	Streptomyces coelicolor A3(2) Corynebacterium	Homo sapiens Unknown Unknown	Kalstonia eutropha Homo sapiens Rattus sp	Mouse cytomegalcvirus 1 Kaposi's sarcoma- associated herpesvirus	Rattus norvegicus Rattus norvegicus Rattus norvegicus Streptomyces coelicolor A3(2)	Homo sapiens Homo sapiens	Caenorhabdits elegans Homo sapiens	Serratia marcescens	Source of Genbank Hit
84,963 53,558	100,000	39,610 46,753	39,398	37,644 37,644 37,644	45,624 37,303 39,098	40,097 36,029	41,031 40,717 34,913	43,137 37,643	36,436 39,722	40,386	% homology (GAP)
01-OCT-1993 29-Jul-98	24-Nov-94	10-Feb-99 29-Sep-97	5-Aug-99	11-Aug-95 13-MAY-1997 13-MAY-1997	26-Apr-93 23-Nov-99 20-Jan-99	04-DEC-1998 9-Jul-97	2-Sep-98 2-Sep-98 2-Sep-98	21-MAY-1999 3-Aug-99	28-Jul-96 23-Feb-99 27-Aug-98	26-MAR-1998	Date of Deposit

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the application of: Markus Pompejus et al.

Serial No.: Not Yet Assigned

Filed: Herewith

For: "Corynebacterium Glutamicum Genes Encoding Phosphoenolpyruvate: Sugar Phosphotransferase

System Proteins"

Attorney Docket No.: BGI-122CP

Group Art Unit: Not Assigned

Examiner: Not Assigned

Assistant Commissioner for Patents BOX SEQUENCE LISTING Washington, DC 20231

TRANSMITTAL LETTER FOR DISKETTE OF SEQUENCE LISTING

Dear Sir:

Enclosed is a diskette which contains a computer readable form of the Sequence Listing for the patent application filed herewith. The Sequence Listing complies with the requirements of 37 C.F.R. §1.821. The material on this diskette is identical in substance to the paper copy of the Sequence Listing appearing on pages 1-47 which is submitted herewith, as required by 37 CFR §1.821(f). The computer readable form of the Sequence Listing contained on the enclosed diskette is understood to comply with the requirements of §1.824(d).

"Express Mail" mailing label nun	ber EL 373 207 242 US
Date of Deposit	June 27, 2000
States Postal Service "Express Ma under 37 CFR 1.10 on the date in Box Sequence Listing, Assistant O D.C. 20231	ree is being deposited with the United il Post Office to Addressee" service dicated above and is addressed to: commissioner For Patents, Washington
Larry Taylor Please Print Name of Person Signi	ng

LAHIVE & COCKFIELD, LLP

Attorneys at Law

 \sim

Bv:

Elizabeth A. Hanley Registration No. 33,505 28 State Street

Boston, MA 02109

CHROLOGO I HTT C NO FOR COURSE BARRIES OF COMMON CO

Dated: June 27, 2000

SEQUENCE LISTING <110> Pompejus, Markus Kroger, Burkhard Schroder, Hartwig Zelder, Oskar Haberhauer, Gregor <120> CORYNEBACTERIUM GLUTAMICUM GENES ENCODING PHOSPHOENOLPYRUVATE: SUGAR PHOSPHOTRANSFERASE SYSTEM PROTEINS <130> BGI-122CP <140> <141> <160> 34 <210> 1 <211> 1527 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1504) <223> RXS00315 <400> 1

ctcatggcat ctgcgccgtt cgcgttcttg ccagtgttgg ttggtttcac cgcaaccaag 60

cgtttcggcg gcaatgagtt cctgggcgcc gcgtattggt atg gcg atg gtg ttc 11: Met Ala Met Val Phe

cog age ttg gtg aac ggc tac gac gtg gcc gcc acc atg gct gcg ggc 163 Pro Ser Leu Val Asm Gly Tyr Asp Val Ala Ala Thr Met Ala Ala Gly

gaa atg cca atg tgg tcc ctg ttt ggt tta gat gtt gcc caa gcc ggt $\,$ 211 Glu Met Pro Met Trp Ser Leu Phe Gly Leu Asp Val Ala Gln Ala Gly $\,$ 25 $\,$ 35 $\,$

tac cag ggc acc gtg ctt cct gtg ctg gtg gtt tct tgg att ctg gca $\,$ 259 Tyr Gln Gly Thr Val Leu Pro Val Leu Val Val Ser Trp Ile Leu Ala $\,$ 45 $\,$ 50 $\,$

acg atc gag aag ttc ctg cac aag cga ctc aag ggc act gca gac ttc 307 Thr Ile Glu Lys Phe Leu His Lys Arg Leu Lys Gly Thr Ala Asp Phe

ctg atc act cca gtg ctg acg ttg ctg ctc acc gga ttc ctt aca ttc 355 Leu Ile Thr Pro Val Leu Thr Leu Leu Leu Thr Gly Phe Leu Thr Phe 70 80 85

atc gcc att ggc cca gca atg cgc tgg gtg ggc gat gtg ctg gca cac 403 Ile Ala Ile Gly Pro Ala Met Arg Trp Val Gly Asp Val Leu Ala His

ggt cta cag gga ctt tat gat ttc ggt ggt cca gtc ggc ggt ctg ctc 451 Gly Leu Gln gly Leu Tyr Asp Phe gly Gly Pro Val Gly Gly Leu Leu

ttc ggt ctg gtc tac tca cca atc gtc atc act ggt ctg cac cag tcc 499

BGI-1	22CP							- 2	-							
Phe	Gly	Leu 120	Val	Tyr	Ser	Pro	Ile 125	Val	Ile	Thr	Gly	Leu 130	His	Gln	Ser	
ttc Phe	ccg Pro 135	cca Pro	att Ile	gag Glu	ctg Leu	gag Glu 140	ctg Leu	ttt Phe	aac Asn	cag Gln	ggt Gly 145	gga Gly	tcc Ser	ttc Phe	atc Ile	547
ttc Phe 150	gca Ala	acg Thr	gca Ala	tct Ser	atg Met 155	gct Ala	aat Asn	atc Ile	gcc Ala	cag Gln 160	ggt Gly	gcg Ala	gca Ala	tgt Cys	ttg Leu 165	595
gca Ala	gtg Val	ttc Phe	ttc Phe	ctg Leu 170	gcg Ala	aag Lys	agt Ser	gaa Glu	aag Lys 175	ctc Leu	aag Lys	ggc Gly	ctt Leu	gca Ala 180	ggt Gly	643
gct Ala	tca Ser	ggt Gly	gtc Val 185	tcc Ser	gct Ala	gtt Val	ctt Leu	ggt Gly 190	att Ile	acg Thr	gag Glu	cct Pro	gcg Ala 195	atc Ile	ttc Phe	691
ggt Gly	gtg Val	aac Asn 200	ctt Leu	cgc Arg	ctg Leu	cgc Arg	tgg Trp 205	ccg Pro	ttc Phe	ttc Phe	atc Ile	ggt Gly 210	atc Ile	ggt Gly	acc Thr	739
gca Ala	gct Ala 215	atc Ile	ggt Gly	ggc Gly	gct Ala	ttg Leu 220	att Ile	gca Ala	ctc Leu	ttt Phe	aat Asn 225	atc Ile	aag Lys	gca Ala	gtt Val	787
gcg Ala 230	ttg Leu	ggc Gly	gct Ala	gca Ala	ggt Gly 235	ttc Phe	ttg Leu	ggt Gly	gtt Val	gtt Val 240	tct Ser	att Ile	gat Asp	gct Ala	cca Pro 245	835
gat Asp	atg Met	gtc Val	atg Met	ttc Phe 250	Leu	gtg Val	tgt Cys	gca Ala	gtt Val 255	gtt Val	acc Thr	ttc Phe	ttc Phe	atc Ile 260	gca Ala	883
ttc Phe	ggc Gly	gca Ala	gcg Ala 265	Ile	gct Ala	tat Tyr	ggc	ctt Leu 270	Tyr	ttg Leu	gtt Val	cgc Arg	cgc Arg 275	aac Asn	ggc Gly	931
agc Ser	att Ile	gat Asp 280	cca Pro	gat Asp	gca Ala	acc Thr	gct Ala 285	gct Ala	cca Pro	gtg Val	cct	gca Ala 290	gga Gly	acg Thr	acc Thr	979
aaa	gcc	gaa	gca	gaa	gca	ccc	gca	gaa	ttt	tca	aac	gat	tcc	acc	atc	
102 Lys	Ala 295		Ala	Glu	Ala	Pro 300	Ala	Glu	Phe	Ser	Asn 305	Asp	Ser	Thr	Ile	
atc 107		gca	cct	ttg	acc	ggt	gaa	gct	att	gca	cto	ago	ago	gtc	agc	
Ile 310	Gln	Ala	Pro	Leu	Thr 315		Glu	Ala	Ile	Ala 320	Leu	Ser	Ser	Val	Ser 325	
gat 112		atg	ttt	gcc	ago	gga	aag	ctt	ggc	tcg	ggc	gtt	geo	ato	gtc	
Asp	Ala	Met	Phe	Ala	Ser	Gly	Lys	Leu	Gly 335	Ser	G17	/ Val	Ala	11e	Val	

330

cca acc aag ggg cag tta gtt tct ccg gtg agt gga aag att gtg gtg Pro Thr Lys Gly Gln Leu Val Ser Pro Val Ser Gly Lys Ile Val Val

345 350 355

gca ttc cca tct ggc cat gct ttc gca gtt cgc acc aag gct gag gat 1219

Ala Phe Pro Ser Gly His Ala Phe Ala Val Arg Thr Lys Ala Glu Asp $360 \hspace{1.5cm} 365 \hspace{1.5cm} 370 \hspace{1.5cm}$

ggt too aat gtg gat ato ttg atg cac att ggt tto gac aca gta aac 1267

Gly Ser Asn Val Asp Ile Leu Met His Ile Gly Phe Asp Thr Val Asn 375 380 385

ctc aac ggc acg cac ttt aac ccg ctg aag aag cag ggc gat gaa gtc 1315 Leu Asn Gly Thr His Phe Asn Pro Leu Lys Lys Gln Gly Asp Glu Val

aaa gca ggg gag ctg ctg tgt gaa ttc gat att gat gcc att aag gct 1363

1363 Lys Ala Gly Glu Leu Leu Cys Glu Phe Asp Ile Asp Ala Ile Lys Ala \$410\$ \$415\$ \$420\$

goa ggt tat gag gta acc acg ccg att gtt gtt tcg aat tac aag aaa 1411 Ala Gly Tyr Glu Val Thr Thr Pro Ile Val Val Ser Asn Tyr Lys Lys 425

acc gga cct gta aac act tac ggt ttg ggc gaa att gaa gcg gga gcc 1459

Thr Gly Pro Val Asn Thr Tyr Gly Leu Gly Glu Ile Glu Ala Gly Ala
440
445
450

taagttgaaa cettgagtgt teg 1527

<210> 2

<211> 468

<212> PRT

<213> Corynebacterium glutamicum

<400> 2

Met Ala Met Val Phe Pro Ser Leu Val Asn Gly Tyr Asp Val Ala Ala 1 5 10 15

Thr Met Ala Ala Gly Glu Met Pro Met Trp Ser Leu Phe Gly Leu Asp $20 \\ 25 \\ 30$

Val Ala Gln Ala Gly Tyr Gln Gly Thr Val Leu Pro Val Leu Val Val 35 40 45

Ser Trp Ile Leu Ala Thr Ile Glu Lys Phe Leu His Lys Arg Leu Lys $50 \hspace{1.5cm} 55 \hspace{1.5cm} 60$

Gly Thr Ala Asp Phe Leu Ile Thr Pro Val Leu Thr Leu Leu Leu Thr 65 70 75 80

BGI-122CP - 4 -

Gly Phe Leu Thr Phe Ile Ala Ile Gly Pro Ala Met Arg Trp Val Gly Asp Val Leu Ala His Gly Leu Gln Gly Leu Tyr Asp Phe Gly Gly Pro Val Gly Gly Leu Leu Phe Gly Leu Val Tyr Ser Pro Ile Val Ile Thr Gly Leu His Gln Ser Phe Pro Pro Ile Glu Leu Glu Leu Phe Asn Gln Gly Gly Ser Phe Ile Phe Ala Thr Ala Ser Met Ala Asn Ile Ala Gln Gly Ala Ala Cys Leu Ala Val Phe Phe Leu Ala Lys Ser Glu Lys Leu Lys Gly Leu Ala Gly Ala Ser Gly Val Ser Ala Val Leu Gly Ile Thr 185 Glu Pro Ala Ile Phe Gly Val Asn Leu Arg Leu Arg Trp Pro Phe Phe Ile Gly Ile Gly Thr Ala Ala Ile Gly Gly Ala Leu Ile Ala Leu Phe Asn Ile Lys Ala Val Ala Leu Gly Ala Ala Gly Phe Leu Gly Val Val 230 235 Ser Ile Asp Ala Pro Asp Met Val Met Phe Leu Val Cys Ala Val Val Thr Phe Phe Ile Ala Phe Gly Ala Ala Ile Ala Tyr Gly Leu Tyr Leu Val Arg Arg Asn Gly Ser Ile Asp Pro Asp Ala Thr Ala Ala Pro Val Pro Ala Gly Thr Thr Lys Ala Glu Ala Glu Ala Pro Ala Glu Phe Ser Asn Asp Ser Thr Ile Ile Gln Ala Pro Leu Thr Gly Glu Ala Ile Ala Leu Ser Ser Val Ser Asp Ala Met Phe Ala Ser Gly Lys Leu Gly Ser Gly Val Ala Ile Val Pro Thr Lys Gly Gln Leu Val Ser Pro Val Ser Gly Lys Ile Val Val Ala Phe Pro Ser Gly His Ala Phe Ala Val Arg Thr Lys Ala Glu Asp Gly Ser Asn Val Asp Ile Leu Met His Ile Gly Phe Asp Thr Val Asn Leu Asn Gly Thr His Phe Asn Pro Leu Lys Lys

Gln Gly Asp Glu Val Lys Ala Gly Glu Leu Leu Cys Glu Phe Asp Ile 405 Asp Ala Ile Lys Ala Ala Gly Tyr Glu Val Thr Thr Pro Ile Val Val 425 Ser Asn Tyr Lys Lys Thr Gly Pro Val Asn Thr Tyr Gly Leu Gly Glu 440 Ile Glu Ala Gly Ala Asn Leu Leu Asn Val Ala Lys Lys Glu Ala Val 455 460 Pro Ala Thr Pro 465 <210> 3 <211> 1109 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (1)..(1086) <223> FRXA00315 <400> 3 tat gat ttc ggc ggt cca gtc ggc ggt ctg ctc ttc ggt ctg gtc tac Tyr Asp Phe Gly Gly Pro Val Gly Gly Leu Leu Phe Gly Leu Val Tyr tca cca atc gtc atc act ggt ctg cac cag tcc ttc ccg cca att gag Ser Pro Ile Val Ile Thr Gly Leu His Gln Ser Phe Pro Pro Ile Glu ctg gag ctg ttt aac cag ggt gga too tto ato tto goa acg goa tot Leu Glu Leu Phe Asn Gln Gly Gly Ser Phe Ile Phe Ala Thr Ala Ser atg get aat ate gee eag ggt geg gea tgt ttg gea gtg tte tte etg Met Ala Asn Ile Ala Gln Gly Ala Ala Cys Leu Ala Val Phe Phe Leu geg aag agt gaa aag ete aag gge ett gea ggt get tea ggt gte tee Ala Lys Ser Glu Lys Leu Lys Gly Leu Ala Gly Ala Ser Gly Val Ser get gtt ett ggt att acg gag eet geg ate tte ggt gtg aac ett ege Ala Val Leu Gly Ile Thr Glu Pro Ala Ile Phe Gly Val Asn Leu Arg ctg cgc tgg ecg tte tte ate ggt ate ggt ace gea get ate ggt gge Leu Arg Trp Pro Phe Phe Ile Gly Ile Gly Thr Ala Ala Ile Gly Gly get ttg att gea etc ttt aat ate aag gea gtt geg ttg gge get gea Ala Leu Ile Ala Leu Phe Asn Ile Lys Ala Val Ala Leu Gly Ala Ala

ggt ttc ttg ggt gtt gtt tct att gat gct cca gat atg gtc atg ttc Gly Phe Leu Gly Val Val Ser Ile Asp Ala Pro Asp Met Val Met Phe

BGI-122CP - 6 -

	130					135					140					
					gtt Val 150											480
					ttg Leu											528
					gtg Val											576
					tca Ser											624
					gca Ala											672
					tcg Ser 230											720
					agt Ser											768
					cgc Arg											816
					ggt Gly											864
					aag Lys											912
					att Ile 310											960
acc 1008		ccg	att	gtt	gtt	tcg	aat	tac	aag	aaa	acc	gga	cct	gta	aac	
		Pro	Ile	Val 325	Val	Ser	Asn	Tyr	Lys 330	Lys	Thr	Gly	Pro	Val 335	Asn	
act 1056		ggt	ttg	ggc	gaa	att	gaa	gcg	gga	gcc	aac	ctg	ctc	aac	gtc	
		Gly	Leu 340	Gly	Glu	Ile	Glu	Ala 345	Gly	Ala	Asn	Leu	Leu 350	Asn	Val	
gca 1106		aaa	gaa	gcg	gtg	сса	gca	aca	cca	taaç	gttga	aa c	ectte	gagto	jt.	
		Lys 355	Glu	Ala	Val	Pro	A1a 360	Thr	Pro							

tcg 1109

<210> 4

<211> 362 <212> PRT

<213> Corynebacterium glutamicum

<400> 4

Tyr Asp Phe Gly Gly Pro Val Gly Gly Leu Leu Phe Gly Leu Val Tyr $1 \\ 5 \\ 10 \\ 15$

Ser Pro Ile Val Ile Thr Gly Leu His Gln Ser Phe Pro Pro Ile Glu 20 25 30

Leu Glu Leu Phe Asn Gln Gly Gly Ser Phe Ile Phe Ala Thr Ala Ser 35 40 45

Met Ala Asn Ile Ala Gln Gly Ala Ala Cys Leu Ala Val Phe Phe Leu 50 60

Ala Lys Ser Glu Lys Leu Lys Gly Leu Ala Gly Ala Ser Gly Val Ser 65 70 75 80

Ala Val Leu Gly Ile Thr Glu Pro Ala Ile Phe Gly Val Asn Leu Arg 85 90 95

Ala Leu Ile Ala Leu Phe Asn Ile Lys Ala Val Ala Leu Gly Ala Ala 115 $$\rm 120$

Gly Phe Leu Gly Val Val Ser Ile Asp Ala Pro Asp Met Val Met Phe 130 135 140

Leu Val Cys Ala Val Val Thr Phe Phe Ile Ala Phe Gly Ala Ala Ile 145 150 155 160

Ala Tyr Gly Leu Tyr Leu Val Arg Arg Asn Gly Ser Ile Asp Pro Asp 165 170 175

Ala Thr Ala Ala Pro Val Pro Ala Gly Thr Thr Lys Ala Glu Ala Glu 180 180 190

Ala Pro Ala Glu Phe Ser Asn Asp Ser Thr Ile Ile Gln Ala Pro Leu 195 200 205

Thr Gly Glu Ala Ile Ala Leu Ser Ser Val Ser Asp Ala Met Phe Ala 210 215 220

Ser Gly Lys Leu Gly Ser Gly Val Ala Ile Val Pro Thr Lys Gly Gln 225 230 235 240

Leu Val Ser Pro Val Ser Gly Lys Ile Val Val Ala Phe Pro Ser Gly $245 \hspace{1cm} 250 \hspace{1cm} 255 \hspace{1cm}$

His Ala Phe Ala Val Arg Thr Lys Ala Glu Asp Gly Ser Asn Val Asp
260 265 270

BGI-122CP - 8 -

Ile Leu Met His Ile Gly Phe Asp Thr Val Asn Leu Asn Gly Thr His 280 Phe Asn Pro Leu Lys Lys Gln Gly Asp Glu Val Lys Ala Gly Glu Leu Leu Cys Glu Phe Asp Ile Asp Ala Ile Lys Ala Ala Gly Tyr Glu Val 315 Thr Thr Pro Ile Val Val Ser Asn Tyr Lys Lys Thr Gly Pro Val Asn Thr Tyr Gly Leu Gly Glu Ile Glu Ala Gly Ala Asn Leu Leu Asn Val 345 Ala Lys Lys Glu Ala Val Pro Ala Thr Pro <210> 5 <211> 372 <212> DNA <213> Corynebacterium glutamicum <221> CDS <222> (101)..(349) <223> RXA01503 <400> 5 gtatecteaa aggeetteta getgttgeag etgeagegea eteggtggat acgaeateea 60 cgacctatca aattotttat gotgoaggog atgootttto atg tto ttg goa gto Met Phe Leu Ala Val att ttg gcg att act gcg gct cgt aaa ttc ggt gcc aat gtc ttt aca Ile Leu Ala Ile Thr Ala Ala Arg Lys Phe Gly Ala Asn Val Phe Thr toa qto goa oto got got qoa ttg otg cac aca cag ott caq qoa gta Ser Val Ala Leu Ala Gly Ala Leu Leu His Thr Gln Leu Gln Ala Val 259 acc gtg ttg gtt gac ggt gaa ctc cag tcg atg act ctg gtg gct ttc Thr Val Leu Val Asp Gly Glu Leu Gln Ser Met Thr Leu Val Ala Phe 307 caa aag get ggt aat gac gte ace tte etg gge att eea gtg gtg etg Gln Lys Ala Gly Asn Asp Val Thr Phe Leu Gly Ile Pro Val Val Leu 349 cag ttg gcg ttg cat gta gcg agt ttg atg aag ttg tcg cga Gln Leu Ala Leu His Val Ala Ser Leu Met Lys Leu Ser Arg 75

372

<210> 6 <211> 83

taagaggagg ggcgtgtcgg tct

<212> PRT <213> Corvnebacterium glutamicum <400> 6 Met Phe Leu Ala Val Ile Leu Ala Ile Thr Ala Ala Arg Lys Phe Gly Ala Asn Val Phe Thr Ser Val Ala Leu Ala Gly Ala Leu Leu His Thr Gln Leu Gln Ala Val Thr Val Leu Val Asp Gly Glu Leu Gln Ser Met Thr Leu Val Ala Phe Gln Lys Ala Gly Asn Asp Val Thr Phe Leu Gly Ile Pro Val Val Leu Gln Leu Ala Leu His Val Ala Ser Leu Met Lys Leu Ser Arg <210> 7 <211> 2187 <212> DNA <213> Corvnebacterium glutamicum <220> <221> CDS <222> (101)..(2164) <223> RXN01299 <400> 7 egactgegge gtetetteet ggcactacca tteetegtee tgaccaacte gccacagetg 60 gtgcaacggt cacccaagtc aaaggattga aagaatcagc atg aat agc gta aat Met Asn Ser Val Asn aat too tog ott gto ogg otg gat gto gat too ggo gac too ace acg Asn Ser Ser Leu Val Arg Leu Asp Val Asp Phe Gly Asp Ser Thr Thr gat gtc atc aac aac ctt gcc act gtt att ttc gac gct ggc cga gct Asp Val Ile Asn Asn Leu Ala Thr Val Ile Phe Asp Ala Gly Arg Ala tee tee qee qae qee ett qee aaa qae qeq etq qat eqt qaa qea aaq Ser Ser Ala Asp Ala Leu Ala Lys Asp Ala Leu Asp Arg Glu Ala Lys 40 307 tcc ggc acc ggc gtt cct ggt caa gtt gct atc ccc cac tgc cgt tcc Ser Gly Thr Gly Val Pro Gly Gln Val Ala Ile Pro His Cys Arg Ser 355 gaa gee gta tet gte eet ace ttg gge ttt get ege etg age aag ggt Glu Ala Val Ser Val Pro Thr Leu Gly Phe Ala Arg Leu Ser Lys Gly 70

gtg gac ttc agc gga cct gat ggc gat gcc aac ttg gtg ttc ctc att

BGI-122CP - 10 -

Val	Asp	Phe	Ser	Gly 90	Pro	Asp	Gly	Asp	Ala 95	Asn	Leu	Val	Phe	Leu 100	Ile	
	gca Ala															451
	gct Ala															499
	acc Thr 135															547
	gca Ala															595
	gct Ala															643
	acc Thr															691
	ctg Leu															739
	act Thr 215															787
	gct Ala															835
cgc Arg	gag Glu	cgt Arg	ttc Phe	gct Ala 250	ggc Gly	aag Lys	cca Pro	gtc Val	att Ile 255	gaa Glu	tcc Ser	ggc Gly	gtc Val	aag Lys 260	cgc Arg	883
	atc Ile															931
	aac Asn															979
gct 1027	gaa	acc	acc	ggc	gag	aag	ctc	ggc	tgg	ggc	aag	cgc	atc	cag	cag	
	Glu 295	Thr	Thr	Gly	Glu	Lys 300	Leu	Gly	Trp	Gly	Lys 305	Arg	Ile	Gln	Gln	
gca 1075	gtc	atg	acc	ggc	gtg	tcc	tac	atg	gtt	сса	ttc	gta	gct	gcc	ggc	
Ala 310	Val	Met	Thr	Gly	Val 315	Ser	Tyr	Met	Val	Pro 320	Phe	Val	Ala	Ala	Gly 325	

BGI-122CP - 11 -

ggc etc ctg ttg get etc ggc ttc gca ttc ggt gga tac gac atg geg Gly Leu Leu Ala Leu Gly Phe Ala Phe Gly Gly Tyr Asp Met Ala 340 aac ggc tgg caa gca atc gcc acc cag ttc tct ctg acc aac ctg cca Asn Gly Trp Gln Ala Ile Ala Thr Gln Phe Ser Leu Thr Asn Leu Pro 345 350 qqc aac acc qtc qat qtt qac qqc qtq qcc atq acc ttc qaq cqt tca 1219 Gly Asn Thr Val Asp Val Asp Gly Val Ala Met Thr Phe Glu Arg Ser 360 ggc ttc ctg ttg tac ttc ggc gca gtc ctg ttc gcc acc ggc caa gca 1267 Gly Phe Leu Leu Tyr Phe Gly Ala Val Leu Phe Ala Thr Gly Gln Ala 375 380 385 gee atg gge tte ate gtg gea gee etg tet gge tae ace gea tae gea 1315 Ala Met Gly Phe Ile Val Ala Ala Leu Ser Gly Tyr Thr Ala Tyr Ala 390 400 405 395 ctt gct gga cgc cca ggc atc gcg ccg ggc ttc gtc ggt ggc gcc atc 1363 Leu Ala Gly Arg Pro Gly Ile Ala Pro Gly Phe Val Gly Gly Ala Ile 410 415 too qtc acc atc qqc qct qqc ttc att qqt qqt ctq qtt acc qqt atc 1411 Ser Val Thr Ile Gly Ala Gly Phe Ile Gly Gly Leu Val Thr Gly Ile ttg get ggt ete att gee etg tgg att gge tee tgg aag gtg eea ege

1459 Leu Ala Gly Leu Ile Ala Leu Trp Ile Gly Ser Trp Lys Val Pro Arq 440 445

gtg gtg cag tca ctg atg cct gtg gtc atc atc ccg cta ctt acc tca 1507 Val Val Gln Ser Leu Met Pro Val Val Ile Ile Pro Leu Leu Thr Ser 460

gtq gtt gtt ggt ctc gtc atg tac ctc ctg ctg ggt cgc cca ctc gca Val Val Val Gly Leu Val Met Tyr Leu Leu Gly Arg Pro Leu Ala 470 480

tcc atc atg act ggt ttg cag gac tgg cta tcg tca atg tcc gga agc 1603

Ser Ile Met Thr Gly Leu Gln Asp Trp Leu Ser Ser Met Ser Gly Ser 490 495

tee gee atc ttg etg ggt atc atc ttg gge etc atg atg tgt tte gae 1651 Ser Ala Ile Leu Gly Ile Ile Leu Gly Leu Met Met Cys Phe Asp

505

510

ctc ggc gga cca gta aac aag gca gcc tac ctc ttt ggt acc gca ggc 1699 Leu Gly Pro Val Asn Lys Ala Ala Tyr Leu Phe Gly Thr Ala Gly

ctg tct acc ggc gac caa gct tcc atg gaa atc atg gcc gcg atc atg 1747
Leu Ser Thr Gly Asp Gln Ala Ser Met Glu Ile Met Ala Ala Ile Met 535 540 545

gea get gge atg gte cea eea ate geg ttg tee att get ace etg etg 1795 Ala Ala Gly Met Val Pro Pro Ile Ala Leu Ser Ile Ala Thr Leu Leu 565

ogc aag aag ctg ttc acc cca gca gag caa gaa aac ggc aag tct tcc 1843 Arg Lys Lys Leu Phe Thr Pro Ala Glu Gin Glu Asn Gly Lys Ser Ser 570

tag ctt ctt ggc ctg gca ttc gtc tcc gaa ggt gcc atc cca ttc gcc 1891 Trp Leu Leu Gly Leu Ala Phe Val Ser Glu Gly Ala Ile Pro Phe Ala 585 - 595

gca gct gac cca ttc cgt gtg atc cca gca atg atg gct ggc ggt gca 1939 Ala Ala Asp Pro Phe Arg Val Ile Pro Ala Met Met Ala Gly Gly Ala 600 605 610

acc act ggt gca atc tcc atg gca ctg ggc gtc ggc tct cgg gct cca 1987 Thr Gly Ala Ile Ser Met Ala Leu Gly Val Gly Sex Arg Ala Pro 615 620 625

cac ggc ggt atc ttc gtg gtc tgg gca atc gaa cca tgg tgg ggc tgg 2035 His Gly Gly Ile Phe Val Val Trp Ala Ile Glu Pro Trp Trp Gly Trp 630 645

ctc atc gca ctt gca gca ggc acc atc gtg tcc acc atc gtt gtc atc 2003 Leu Ile Ala Leu Ala Ala Cly Thr Ile Val Ser Thr Ile Val Val Ile 650

goa otg aag cag tto tgg coa aac aag goo gto got goa gaa gto gog 2131 Ala Leu Lys Gln Phe Trp Pro Asn Lys Ala Val Ala Ala Glu Val Ala 665 670 675

aag caa gaa gca caa caa gca gct gta aac gca taatcggacc ttgacccgat 2184 Lys Gin Glu Ala Gin Gin Ala Ala Val Asn Ala 680 685

gtc 2187

<210> 8 <211> 688 BGI-122CP - 13 -

<212> PRT <213> Corynebacterium glutamicum

<400> 8 Met Asn Ser Val Asn Asn Ser Ser Leu Val Arg Leu Asp Val Asp Phe

Gly Asp Ser Thr Thr Asp Val Ile Asn Asn Leu Ala Thr Val Ile Phe $20 \\ 25 \\ 30$

Asp Ala Gly Arg Ala Ser Ser Ala Asp Ala Leu Ala Lys Asp Ala Leu $35 \hspace{1cm} 40 \hspace{1cm} 45$

Asp Arg Glu Ala Lys Ser Gly Thr Gly Val Pro Gly Gln Val Ala Ile 50

Arg Leu Ser Lys Gly Val Asp Phe Ser Gly Pro Asp Gly Asp Ala Asn $85 \hspace{0.25in} 90 \hspace{0.25in} 95$

Leu Val Phe Leu Ile Ala Ala Pro Ala Gly Gly Gly Lys Glu His Leu $100 \hspace{0.5cm} 105 \hspace{0.5cm} 105 \hspace{0.5cm} 110 \hspace{0.5cm}$

Lys Ile Leu Ser Lys Leu Ala Arg Ser Leu Val Lys Lys Asp Phe Ile 115 120 125

Asp Ala Val Leu Asn Pro Ala Pro Lys Thr Thr Glu Pro Ala Ala Ala 145 \$150\$

Pro Ala Ala Ala Val Ala Glu Ser Gly Ala Ala Ser Thr Ser Val

Thr Arg Ile Val Ala Ile Thr Ala Cys Pro Thr Gly Ile Ala His Thr 180 185 190

Tyr Met Ala Ala Asp Ser Leu Thr Gln Asn Ala Glu Gly Arg Asp Asp $195 \hspace{1cm} 200 \hspace{1cm} 205 \hspace{1cm}$

Val Glu Leu Val Val Glu Thr Gln Gly Ser Ser Ala Val Thr Pro Val 210 215 220

Asp Pro Lys Ile Ile Glu Ala Ala Asp Ala Val Ile Phe Ala Thr Asp 225 230 235 240

Val Gly Val Lys Asp Arg Glu Arg Phe Ala Gly Lys Pro Val Ile Glu 245 250 255

Ser Gly Val Lys Arg Ala Ile Asn Glu Pro Ala Lys Met Ile Asp Glu 260 265 270

Ala Ile Ala Ala Ser Lys Asn Pro Asn Ala Arg Lys Val Ser Gly Ser 275 280 285

Gly Val Ala Ala Ser Ala Glu Thr Thr Gly Glu Lys Leu Gly Trp Gly 290 295 300

BGI-122CP - 14 -

Lys Arg Ile Gln Gln Ala Val Met Thr Gly Val Ser Tyr Met Val Pro Phe Val Ala Ala Gly Gly Leu Leu Leu Ala Leu Gly Phe Ala Phe Gly Gly Tyr Asp Met Ala Asn Gly Trp Gln Ala Ile Ala Thr Gln Phe Ser Leu Thr Asn Leu Pro Gly Asn Thr Val Asp Val Asp Gly Val Ala Met Thr Phe Glu Arg Ser Gly Phe Leu Leu Tyr Phe Gly Ala Val Leu Phe Ala Thr Gly Gln Ala Ala Met Gly Phe Ile Val Ala Ala Leu Ser Gly Tyr Thr Ala Tyr Ala Leu Ala Gly Arg Pro Gly Ile Ala Pro Gly Phe Val Gly Gly Ala Ile Ser Val Thr Ile Gly Ala Gly Phe Ile Gly Gly Leu Val Thr Gly Ile Leu Ala Gly Leu Ile Ala Leu Trp Ile Gly Ser Trp Lys Val Pro Arg Val Val Gln Ser Leu Met Pro Val Val Ile Ile 455 Pro Leu Leu Thr Ser Val Val Val Gly Leu Val Met Tyr Leu Leu Leu 470 475 Gly Arg Pro Leu Ala Ser Ile Met Thr Gly Leu Gln Asp Trp Leu Ser Ser Met Ser Gly Ser Ser Ala Ile Leu Leu Gly Ile Ile Leu Gly Leu Met Met Cys Phe Asp Leu Gly Gly Pro Val Asn Lys Ala Ala Tyr Leu Phe Gly Thr Ala Gly Leu Ser Thr Gly Asp Gln Ala Ser Met Glu Ile Met Ala Ala Ile Met Ala Ala Gly Met Val Pro Pro Ile Ala Leu Ser Ile Ala Thr Leu Leu Arg Lys Lys Leu Phe Thr Pro Ala Glu Gln Glu Asn Gly Lys Ser Ser Trp Leu Leu Gly Leu Ala Phe Val Ser Glu Gly Ala Ile Pro Phe Ala Ala Ala Asp Pro Phe Arg Val Ile Pro Ala Met Met Ala Gly Gly Ala Thr Thr Gly Ala Ile Ser Met Ala Leu Gly Val

Gly Ser Arg Ala Pro His Gly Gly Ile Phe Val Val Trp Ala Ile Glu

625 630 635 640

Pro Trp Trp Gly Trp Leu Ile Ala Leu Ala Ala Gly Thr Ile Val Ser
645 655 655

Thr Ile Val Val Ile Ala Leu Lys Gln Phe Trp Pro Asn Lys Ala Val 660 665 670

Ala Ala Glu Val Ala Lys Gln Glu Ala Gln Gln Ala Ala Val As
n Ala 675 680 685

<210> 9 <211> 464 <212> DNA <213> Corvebacterium glutam

<213> Corynebacterium glutamicum

<221> CDS <222> (1)..(441) <223> FRXA01299

<400> 9

<220>

atg gaa atc atg gcc gcg atc atg gca gct ggc atg gtc cca cca atc 4
Met Glu Ile Met Ala Ala Ile Met Ala Ala Gly Met Val Pro Pro Ile
10 15

geg ttg tcc att gct acc ctg ctg cgc aag aag ctg ttc acc cca gca 96
Ala Leu Ser Ile Ala Thr Leu Leu Arg Lys Leu Phe Thr Pro Ala
20 25 30

gag caa gaa aac ggc aag tot toe tgg ctg gct gcg ctg gca tte gtc $\,$ 144 Glu Gln Glu Asn Gly Lys Ser Ser Trp Leu Leu Gly Leu Ala Phe Val $\,$ 35 $\,$ 40 $\,$ 45

tee gaa ggt gee ate eea tte gee gea get gae eea tte egt gtg ate 192 See Glu Gly Ala Ile Pro Phe Ala Ala Ala Asp Pro Phe Arg Val Ile 50 55

cca gca atg atg gct ggc ggt gca acc act ggt gca atc tcc atg gca $\,$ 240 Pro Ala Met Met Ala Gly Gly Ala Thr Thr Gly Ala Ile Ser Met Ala $\,$ 65 $\,$ 70 $\,$ 80 $\,$

ctg ggc gtc ggc tct cgg gct cca cac ggc ggt atc ttc gtg gtc tgg \$288\$ Leu Gly Val Gly Ser Arg Ala Pro His Gly Gly Ile Phe Val Val Trp \$95\$

gca atc gaa cca tgg tgg ggc tgg ctc atc gca ctt gca gca ggc acc 336 Ala Ile Glu Pro Trp Trp Gly Trp Leu Ile Ala Leu Ala Ala Gly Thr

atc gtg tcc acc atc gtt gtc atc gca ctg aag cag ttc tgg cca aac 384 Ile Val Ser Thr Ile Val Ile Ala Leu Lys Gln Phe Trp Pro Asn 115 120 120 125

aag gcc gtc gct gca gaa gtc gcg aag caa gaa gca caa caa gca gct 432 Lys Ala Val Ala Ala Glu Val Ala Lys Gln Glu Ala Gln Gln Ala Ala 130

464 gta aac gca taatcggacc ttgacccgat gtc Val Asn Ala 145 <210> 10 <211> 147 <212> PRT <213> Corynebacterium glutamicum <400> 10 Met Glu Ile Met Ala Ala Ile Met Ala Ala Gly Met Val Pro Pro Ile Ala Leu Ser Ile Ala Thr Leu Leu Arg Lys Lys Leu Phe Thr Pro Ala Glu Gln Glu Asn Gly Lys Ser Ser Trp Leu Leu Gly Leu Ala Phe Val Ser Glu Gly Ala Ile Pro Phe Ala Ala Ala Asp Pro Phe Arg Val Ile Pro Ala Met Met Ala Gly Gly Ala Thr Thr Gly Ala Ile Ser Met Ala Leu Gly Val Gly Ser Arg Ala Pro His Gly Gly Ile Phe Val Val Trp Ala Ile Glu Pro Trp Trp Gly Trp Leu Ile Ala Leu Ala Ala Gly Thr 105 Ile Val Ser Thr Ile Val Val Ile Ala Leu Lys Gln Phe Trp Pro Asn 115 Lys Ala Val Ala Ala Glu Val Ala Lys Gln Glu Ala Gln Gln Ala Ala Val Asn Ala 145 <210> 11 <211> 580 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(580) <223> FRXA01883 <400> 11 cgactgcggc gtotottoot ggcactacca ttootogtoo tgaccaacto gccacagetg 60 gtgcaacggt cacccaagtc aaaggattga aagaatcagc atg aat agc gta aat Met Asn Ser Val Asn aat too tog ott gto ogg otg gat gto gat tto ggo gao too acc acg 163

BGI-122CP - 17 -

Asn Ser Se	r Leu Val 10		Asp V	al Asp 15	Phe G	ly Asp	Ser	Thr 20	Thr	
gat gtc at Asp Val Il			Thr V							211
tcc tcc gc Ser Ser Al	a Asp Ala									259
tcc ggc ac Ser Gly Th 55			Gln V		Ile Pr					307
gaa gcc gt Glu Ala Va 70										355
gtg gac tt Val Asp Ph		Pro Asp					Phe			403
gca gca cc Ala Ala Pr			Lys G							451
ctt gct cg Leu Ala Ar 12	g Ser Leu									499
gee ace ac Ala Thr Th 135	c gag cag r Glu Gln	gaa atc Glu Ile 140	gtc ga Val As	ac gtt sp Val	Val As	at gcc sp Ala 45	gtg Val	ctc Leu	aac Asn	547
cca gca cc Pro Ala Pro 150										580
<210> 12 <211> 160 <212> PRT <213> Cory	nebacteri	um glutan	micum							
<400> 12 Met Asn Se: 1	r Val Asn 5	Asn Ser	Ser Le	eu Val	Arg Le	eu Asp	Val.	Asp 15	Phe	
Gly Asp Se	Thr Thr	Asp Val		sn Asn 25	Leu Al	la Thr	Val 30	Ile	Phe	
Asp Ala Gl		Ser Ser	Ala As 40	sp Ala	Leu Al	la Lys 45	Asp .	Ala	Leu	
Asp Arg Gli 50	ı Ala Lys	Ser Gly 55	Thr Gl	ly Val		Ly Gln 50	Val .	Ala	Ile	
Pro His Cys 65	Arg Ser	Glu Ala 70	Val S∈	er Val	Pro Th 75	nr Leu	Gly	Phe	Ala 80	

BGI-122CP - 18 -

Arg Leu Ser Lys Gly Val Asp Phe Ser Gly Pro Asp Gly Asp Ala Asn Leu Val Phe Leu Ile Ala Ala Pro Ala Gly Gly Gly Lys Glu His Leu Lys Ile Leu Ser Lys Leu Ala Arg Ser Leu Val Lys Lys Asp Phe Ile Lys Ala Leu Gln Glu Ala Thr Thr Glu Gln Glu Ile Val Asp Val Val Asp Ala Val Leu Asn Pro Ala Pro Lys Asn His Arg Ala Ser Cys Ser 1.50 155 <210> 13 <211> 631 <212> DNA <213> Corvnebacterium glutamicum <220> <221> CDS <222> (77)..(631) <223> FRXA01889 <400> 13 accgagecag etgeagetee ggetgeggeg geeggttgtt aagagtgggg eggegtegae 60 aagegttaet egtategtg gea ate ace gea tge eea ace ggt ate gea eac Val Ala Ile Thr Ala Cys Pro Thr Gly Ile Ala His ace tac atg get geg gat tee etg acg caa aac geg gaa gge ege gat Thr Tyr Met Ala Ala Asp Ser Leu Thr Gln Asn Ala Glu Gly Arg Asp gat gtg gaa ete gtt gtg gag act eag gge tet tee get gte ace eea Asp Val Glu Leu Val Val Glu Thr Gln Gly Ser Ser Ala Val Thr Pro gtc gat ccg aag atc atc gaa gct gcc gac gcc gtc atc ttc gcc acc 256 Val Asp Pro Lys Ile Ile Glu Ala Ala Asp Ala Val Ile Phe Ala Thr 45 50 304 gac gtg gga gtt aaa gac cgc gag cgt ttc gct ggc aag cca gtc att Asp Val Gly Val Lys Asp Arg Glu Arg Phe Ala Gly Lys Pro Val Ile gaa too ggo gto aag ogo gog ato aat gag ooa goo aag atg ato gao Glu Ser Gly Val Lys Arg Ala Ile Asn Glu Pro Ala Lys Met Ile Asp 400 gag gcc atc gca gcc tcc aag aac cca aac gcc cgc aag gtt tcc ggt

95 100 105 too ggt gto gog goa tot got gaa acc acc ggc gag aag cto ggc tgg 44

Glu Ala Ile Ala Ala Ser Lys Asn Pro Asn Ala Arg Lys Val Ser Gly

Ser Gly Val Ala Ala Ser Ala Glu Thr Thr Gly Glu Lys Leu Gly Trp 110 115 120

ggc aag cgc atc cag cag gca gtc atg acc ggc gtg tcc tac atg gtt Gly Lys Arg Ile Gln Gln Ala Val Met Thr Gly Val Ser Tyr Met Val

cca ttc gta gct gcc ggc ggc ctc ctg ttg gct ctc ggc ttc gca ttc $\,$ 54 Pro Phe Val Ala Ala Gly Gly Leu Leu Leu Ala Leu Gly Phe Ala Phe $\,$ 155 $\,$

ggt gga tac gac atg gcg aac ggc tgg caa gca atc gcc acc cag ttc $\,$ 592 Gly Gly Tyr Asp Met Ala Asn Gly Trp Gln Ala Ile Ala Thr Gln Phe $\,$ 160 $\,$ 165 $\,$ 170 $\,$

tot otg acc aac otg oca gge aac acc gte gat gtt gac
Ser Leu Thr Asn Leu Pro Gly Asn Thr Val Asp Val Asp
175
180
185

<210> 14 <211> 185 <212> PRT

<213> Corynebacterium glutamicum

<400> 14 Val Ala Tle Thr Ala Cvs

Ala Asp Ser Leu Thr Gln Asn Ala Glu Gly Arg Asp Asp Val Glu Leu 20 25 30

Val Val Glu Thr Gln Gly Ser Ser Ala Val Thr Pro Val Asp Pro Lys \$35\$

Ile Ile Glu Ala Ala Asp Ala Val Ile Phe Ala Thr Asp Val Gly Val 50 60

Lys Asp Arg Glu Arg Phe Ala Gly Lys Pro Val Ile Glu Ser Gly Val 65 70 75 80

Lys Arg Ala Ile Asn Glu Pro Ala Lys Met Ile Asp Glu Ala Ile Ala 85 90 90

Ala Ser Lys Asn Pro Asn Ala Arg Lys Val Ser Gly Ser Gly Val Ala $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110 \hspace{1.5cm}$

Ala Ser Ala Glu Thr Thr Gly Glu Lys Leu Gly Trp Gly Lys Arg Ile 115 \$120\$

Gln Gln Ala Val Met Thr Gly Val Ser Tyr Met Val Pro Phe Val Ala 130 $$135\$

Met Ala Asn Gly Trp Gln Ala Ile Ala Thr Gln Phe Ser Leu Thr Asn $165 \hspace{1cm} 170 \hspace{1cm} 175$

Leu Pro Gly Asn Thr Val Asp Val Asp 180 185

<2103 <2113 <2123 <2133	> 41 > DN	. 6 IA	ebact	eriu	ım gil	utan	nicum	n								
<220> <221> <222> <223>	> CE > (1	.)														
<400> atc of Ile of	caa	gca	atc Ile	tta Leu 5	gag Glu	aag Lys	gca Ala	gca Ala	gcg Ala 10	ccg Pro	gcg Ala	aag Lys	cag Gln	aag Lys 15	gct Ala	48
cct o	gct Ala	gtg Val	gct Ala 20	cct Pro	gct Ala	gta Val	aca Thr	ccc Pro 25	act Thr	gac Asp	gct Ala	cct Pro	gca Ala 30	gcc Ala	tca Ser	96
gtc (Val (caa Gln	tcc Ser 35	aaa Lys	acc Thr	cac His	gac Asp	aag Lys 40	atc Ile	ctc Leu	acc Thr	gtc Val	tgt Cys 45	ggc Gly	aac Asn	ggc Gly	144
ttg (ggt 31y 50	acc Thr	tcc Ser	ctc Leu	ttc Phe	ctc Leu 55	aaa Lys	aac Asn	acc Thr	ctt Leu	gag Glu 60	caa Gln	gtt Val	ttc Phe	gac Asp	192
acc t Thr 1 65	gg Erp	ggt Gly	tgg Trp	ggt Gly	cca Pro 70	tac Tyr	atg Met	acg Thr	gtg Val	gag Glu 75	gca Ala	acc Thr	gac Asp	act Thr	atc Ile 80	240
tcc (Ser <i>I</i>	gcc Ala	aag Lys	ggc Gly	aaa Lys 85	gcc Ala	aag Lys	gaa Glu	gct Ala	gat Asp 90	ctc Leu	atc Ile	atg Met	acc Thr	tct Ser 95	ggt Gly	288
gaa a Glu 1	atc Ile	gcc Ala	cgc Arg 100	acg Thr	ttg Leu	ggt Gly	gat Asp	gtt Val 105	gga Gly	atc Ile	ccg Pro	gtt Val	cac His 110	gtg Val	atc Ile	336
aat o Asn A																384
tac o			taad	etact	itt a	aaa	ggac	ga a	aa							416
<210: <211: <212: <213:	> 13 > PE	B1 RT	ebact	eri	ım gi	lutan	micu	π								
<400: Ile (Ile	Leu 5	Glu	Lys	Ala	Ala	Ala 10	Pro	Ala	Lys	Gln	Lys 15	Ala	
Pro i	Ala	Val	Ala 20	Pro	Ala	Val	Thr	Pro 25	Thr	Asp	Ala	Pro	Ala 30	Ala	Ser	

Val	Gln	Ser 35	Lys	Thr	His	Asp	Lys 40	Ile	Leu	Thr	Val	Cys 45	Gly	Asn	Gly	
Leu	Gly 50	Thr	Ser	Leu	Phe	Leu 55	Lys	Asn	Thr	Leu	Glu 60	Gln	Val	Phe	Asp	
Thr 65	Trp	Gly	Trp	Gly	Pro 70	Tyr	Met	Thr	Val	Glu 75	Ala	Thr	Asp	Thr	11e 80	
Ser	Ala	Lys	Gly	Lys 85	Ala	Lys	Glu	Ala	Asp 90	Leu	Ile	Met	Thr	Ser 95	Gly	
Glu	Ile	Ala	Arg 100	Thr	Leu	Gly	Asp	Val 105	Gly	Ile	Pro	Val	His 110	Val	Ile	
Asn	Asp	Phe 115	Thr	Ser	Thr	Asp	Glu 120	Ile	Asp	Ala	Ala	Leu 125	Arg	Glu	Arg	
Tyr	Asp 130	Ile														
<211 <212	0> 17 L> 18 2> DN 3> Co	327	ebact	eri	ım gi	Lutar	nicur	n								
<222	L> CI 2> (1	OS LO1). KNO12		304)												
)> 1? atgtç		gttt	gtca	a ta	atcca	aato	g ttt	:gaa1	agt	tge	acaa	stg 1	tggt	tttgt	60
ggt	gatet	etg a	aggaa	aatta	aa ct	caat	gatt	gtg	gagga	atgg		gct Ala				115
		aat Asn														163
gtc Val	cgt Arg	tat Tyr	gca Ala 25	agc Ser	gcg Ala	gtg Val	tgg Trp	att Ile 30	acc Thr	cca Pro	cgc Arg	ccc Pro	gaa Glu 35	cta Leu	ccc Pro	211
		ggc Gly 40														259
		gac Asp														307
		gct Ala						Ala								355

ggc atg gtc aat gac cgt ggc tgg cgt aag gct gtc atc aag ggt gtc

- 21 -

BGI-122CP - 22 -

Gly	Met	Val	Asn	Asp 90	Arg	Gly	Trp	Arg	Lys 95	Ala	Val	Ile	Lys	Gly 100	Val	
aag Lys	ggt Gly	ggt Gly	cac His 105	cct Pro	gcg Ala	gaa Glu	tac Tyr	gcc Ala 110	gtg Val	gtt Val	gca Ala	gca Ala	aca Thr 115	acc Thr	aag Lys	451
					gaa Glu											499
					atc Ile											547
					ctg Leu 155											595
gca Ala	gat Asp	gac Asp	ctc Leu	tcc Ser 170	cca Pro	gca Ala	gac Asp	acc Thr	gcg Ala 175	gca Ala	cta Leu	gac Asp	aca Thr	gat Asp 180	ctc Leu	643
					act Thr											691
					ctc Leu											739
					aag Lys											787
					cgc Arg 235											835
					gag Glu											883
					gac Asp											931
					gca Ala											979
		ctg	ttc	cgc	acc	gaa	ctg	tgc	ttc	ctt	tcc	gcc	acc	gaa	gag	
		Leu	Phe	Arg	Thr	Glu 300	Leu	Cys	Phe	Leu	Ser 305	Ala	Thr	Glu	Glu	
cca 1075		gtt	gat	gag	cag	gct	gcg	gtc	tac	tca	aag	gtg	ctt	gaa	gca	
		Val	Asp	Glu	Gln 315	Ala	Ala	Val	Tyr	Ser 320	Lys	Val	Leu	Glu	Ala 325	

BGI-122CP - 23 -

ttc cca gag tcc aag gtc gtt gtc cgc tcc ctc gac gca ggt tct gac 1123 Phe Pro Glu Ser Lys Val Val Val Arg Ser Leu Asp Ala Gly Ser Asp 330 335 340

aag oca gtt oca tto goa tog atg got gat gag atg aac oca goa otg 1171 Lys Pro Val Pro Phe Ala Ser Met Ala Asp Glu Met Asn Pro Ala Leu 345 350 355

ggt gtt cgt ggc ctg cgt atc gca cgt gga cag gtt gat ctg ctg act 1219 Gly Val Arg Gly Leu Arg Ile Ala Arg Gly Gln Val Asp Leu Leu Thr

cgc cag ctc gac gca att gcg aag gcc agc gaa gaa ctc ggc cgt ggc 1267 Arg Gln Leu Asp Ala Ile Ala Lys Ala Ser Glu Glu Leu Gly Arg Gly 375 380 385

gac gac gcc cca acc tgg gtt atg gct cca atg gtg gct acc gct tat 1315Asp Asp Ala Pro Thr Trp Val Met Ala Pro Met Val Ala Thr Ala Tyr 390 395 400

gaa gca aag tgg ttt gct gac atg tgc cgt gag cgt ggc cta atc gcc 1363 Glu Ala Lys Trp Phe Ala Asp Met Cys Arg Glu Arg Gly Leu Ile Ala 410 415 420

ggc gcc atg atc gaa gtt cca gca gca tcc ctg atg gca gac aag atc 1411 Gly Ala Met Ile Glu Val Pro Ala Ala Ser Leu Met Ala Asp Lys Ile 425 430 435

atg cct cac ctg gac ttt gtt tcc atc ggt acc aac gac ctg acc cag 1459 Met Pro His Leu Asp Phe Val Ser Ile Gly Thr Asn Asp Leu Thr Gln 440 445 450

tac acc atg gca gcg gac cgc atg tct cct gag ctt gcc tac ctg acc 1507
Tyr Thr Met Ala Ala Asp Arg Met Ser Pro Glu Leu Ala Tyr Leu Thr

gat cot tgg cag cca gca gtc ctg cgc ctg atc aag cac acc tgt gac 1555 Asp Pro Trp Gln Pro Ala Val Leu Arg Leu Ile Lys His Thr Cys Asp 470 485

gaa ggt get ege ttt aac ace eeg gte ggt gtt tgt ggt gaa gea gea 1603 Glu Gly Ala Arg Phe Asn Thr Pro Val Gly Val Cys Gly Glu Ala Ala 490 495 500

gca gac cca ctg ttg gca act gtc ctc acc ggt ctt ggc gtg aac tcc 1651 Ala Asp Pro Leu Leu Ala Thr Val Leu Thr Gly Leu Gly Val Asn Ser 505 510 515 BGI-122CP - 24 -

ctg tcc gca gca tcc act gct ctc gca gca gtc ggt gca aag ctg tca 1699 Leu Ser Ala Ala Ser Thr Ala Leu Ala Ala Val Gly Ala Lys Leu Ser $\frac{520}{520}$

gag gtc acc ctg gaa acc tgt aag aag gca gca gca gca gca ctt gac 1747 Glu Val Thr Leu Glu Thr Cys Lys Lys Ala Ala Glu Ala Ala Leu Asp 535 540 546

gct gaa ggt gca act gaa gca cgc gat gct gta cgc gca gtg atc gac 1795 Ala Glu Gly Ala Thr Glu Ala Arg Asp Ala Val Arg Ala Val Ile Asp 550 560 565

gca gca gtc taaaccactg ttgagctaaa aag 1827 Ala Ala Val

<210> 18 <211> 568

<212> PRT <213> Corynebacterium glutamicum

 $<\!400\!>18$ Val Ala Thr Val Ala Asp Val Asn Gln Asp Thr Val Leu Lys Gly Thr

Gly Val Val Gly Gly Val Arg Tyr Ala Ser Ala Val Trp Ile Thr Pro

Arg Pro Glu Leu Pro Gln Ala Gly Glu Val Val Ala Glu Glu Asn Arg $35 \hspace{1cm} 40 \hspace{1cm} 45 \hspace{1cm}$

Glu Ala Glu Gln Glu Arg Phe Asp Ala Ala Ala Ala Thr Val Ser Ser 50 60

Arg Leu Leu Glu Arg Ser Glu Ala Ala Glu Gly Pro Ala Ala Glu Val 65 70 75 80

Leu Lys Ala Thr Ala Gly Met Val Asn Asp Arg Gly Trp Arg Lys Ala $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$

Val Ile Lys Gly Val Lys Gly Gly His Pro Ala Glu Tyr Ala Val Val 100 105 110

Ala Ala Thr Thr Lys Phe Ile Ser Met Phe Glu Ala Ala Gly Gly Leu 115 120 125

Ile Ala Glu Arg Thr Thr Asp Leu Arg Asp Ile Arg Asp Arg Val Ile 130 135 140

Ala Glu Leu Arg Gly Asp Glu Glu Pro Gly Leu Pro Ala Val Ser Gly 145 150 155 160

Gln Val Ile Leu Phe Ala Asp Asp Leu Ser Pro Ala Asp Thr Ala Ala 165 \$170\$

Leu Asp Thr Asp Leu Phe Val Gly Leu Val Thr Glu Leu Gly Gly Pro

BGI-122CP - 25 -

	180			185					190		
Thr Ser Hi		a Ile :	Ile Ala 200	Arg	Gln	Leu	Asn	Val 205	Pro	Cys	Ile
Val Ala Se 210	er Gly Al		Ile Lys 215	Asp	Ile	Lys	Ser 220	Gly	Glu	Lys	Val
Leu Ile As 225	sp Gly Se	r Leu (230	Gly Thr	Ile	Asp	Arg 235	Asn	Ala	Asp	Glu	Ala 240
Glu Ala Th	nr Lys Le 24		Ser Glu	Ser	Leu 250	Glu	Arg	Ala	Ala	Arg 255	Ile
Ala Glu Tr	p Lys Gl 260	y Pro <i>P</i>	Ala Gln	Thr 265	Lys	Asp	Gly	Tyr	Arg 270	Val	Gln
Leu Leu Al 27		1 Gln <i>I</i>	Asp Gly 280	Asn	Ser	Ala	Gln	Gln 285	Ala	Ala	Gln
Thr Glu Al 290	a Glu Gl.		Gly Leu 295	Phe	Arg	Thr	Glu 300	Leu	Cys	Phe	Leu
Ser Ala Tr 305	ır Glu Gl	u Pro 8 310	Ser Val	Asp	Glu	Gln 315	Ala	Ala	Val	Tyr	Ser 320
Lys Val Le	eu Glu Al 32		Pro Glu	Ser	Lys 330	Val	Val	Val	Arg	Ser 335	Leu
Asp Ala Gl	y Ser As 340	p Lys I	Pro Val	Pro 345	Phe	Ala	Ser	Met	Ala 350	Asp	Glu
Met Asn Pr 35		u Gly V	Val Arg 360	Gly	Leu	Arg	Ile	Ala 365	Arg	Gly	Gln
Val Asp Le 370	u Leu Th		Gln Leu 375	Asp	Ala	Ile	Ala 380	Lys	Ala	Ser	Glu
Glu Leu Gl 385	y Arg Gl	y Asp <i>I</i> 390	Asp Ala	Pro	Thr	Trp 395	Val	Met	Ala	Pro	Met 400
Val Ala Th	ır Ala Ty 40		Ala Lys	Trp	Phe 410	Ala	Asp	Met	Cys	Arg 415	Glu
Arg Gly Le	u Ile Al 420	a Gly A	Ala Met	11e 425	Glu	Val	Pro	Ala	Ala 430	Ser	Leu
Met Ala As 43		e Met E	Pro His 440	Leu	Asp	Phe	Val	Ser 445	Ile	Gly	Thr
Asn Asp Le 450	u Thr Gl		Thr Met 455	Ala	Ala	Asp	Arg 460	Met	Ser	Pro	Glu
Leu Ala Ty 465	r Leu Th	r Asp E 470	Pro Trp	Gln	Pro	Ala 475	Val	Leu	Arg	Leu	Ile 480
Lys His Th	r Cys As 48		Gly Ala	Arg	Phe 490	Asn	Thr	Pro	Val	Gly 495	Val
Cys Gly Gl	u Ala Al 500	a Ala A	Asp Pro	Leu 505	Leu	Ala	Thr	Val	Leu 510	Thr	Gly

BGI-122CP - 26 -

Leu Gly	Val 515	Asn	Ser	Leu	Ser	Ala 520	Ala	Ser	Thr	Ala	Leu 525	Ala	Ala	Val	
Gly Ala 530	Lys	Leu	Ser	Glu	Val 535	Thr	Leu	Glu	Thr	Cys 540	Lys	Lys	Ala	Ala	
Glu Ala 545	Ala	Leu	Asp	Ala 550	Glu	Gly	Ala	Thr	Glu 555	Ala	Arg	Asp	Ala	Val 560	
Arg Ala	Val	Ile	Asp 565	Ala	Ala	Val									
<210> 19 <211> 16 <212> DN <213> Co	29 A	bact	eri	am gi	Lutar	nicur	π								
<220> <221> CD <222> (9 <223> FR	8))6)												
<400> 19 agatgtcg		tata	cgago	ga aç	gaagt	taad	e geo	cgaaq	gaaa	acc	gtgaa	atc a	agag	caggag	60
cgcttcga	cg c	cgct	gcaq	ge ca	cagt	ctct	t tet	ttegt		ctt Leu					115
gct gct Ala Ala															163
gtc aat Val Asn															211
ggt cac Gly His 40															259
tcc atg Ser Met 55															307
ttg cgc															355
gag cca (Glu Pro															403
gac ctc : Asp Leu :															451
gga ctt o Gly Leu															499

	120					125					130					
gca Ala 135	ege Arg	cag Gln	ctc Leu	aac Asn	gtg Val 140	cct Pro	tgc Cys	atc Ile	gtc Val	gca Ala 145	tcc Ser	ggc Gly	gcc Ala	ggc Gly	atc Ile 150	547
aag Lys																595
acc Thr																643
gag Glu																691
caa Gln																739
ggc Gly 215																787
ctg Leu																835
gtt Val	gat Asp	gag Glu	cag Gln 250	gct Ala	gcg Ala	gtc Val	tac Tyr	tca Ser 255	aag Lys	gtg Val	ctt Leu	gaa Glu	gca Ala 260	ttc Phe	cca Pro	883
gag Glu																931
gtt Val																979
cgt 1027		ctg	cgt	atc	gca	cgt	gga	cag	gtt	gat	ctg	ctg	act	cgc	cag	
Arg 295		Leu	Arg	Ile	Ala 300	Arg	Gly	Gln	Val	Asp 305	Leu	Leu	Thr	Arg	Gln 310	
ctc 1075		gca	att	gcg	aag	gcc	agc	gaa	gaa	ctc	ggc	cgt	ggc	gac	gac	
Leu		Ala	Ile	Ala 315	Lys	Ala	Ser	Glu	Glu 320	Leu	Gly	Arg	Gly	Asp 325	Asp	
gcc 1123		acc	tgg	gtt	atg	gct	cca	atg	gtg	gct	acc	gct	tat	gaa	gca	
Ala		Thr	Trp 330	Val	Met	Ala	Pro	Met 335	Val	Ala	Thr	Ala	Tyr 340	Glu	Ala	
aag 1171		ttt	gct	gac	atg	tgc	cgt	gag	cgt	ggc	cta	atc	gcc	ggc	gcc	
Lys		Phe 345	Ala	Asp	Met	Cys	Arg 350	Glu	Arg	Gly	Leu	Ile 355	Ala	Gly	Ala	

BGI-122CP - 28 -

atg atc gaa gtt cca gca gca tcc ctg atg gca gac aag atc atg cct 1219 Met Ile Glu Val Pro Ala Ala Ser Leu Met Ala Asp Lys Ile Met Pro

cac ctg gac ttt gtt tcc atc ggt acc aac gac ctg acc cag tac acc His Leu Asp Phe Val Ser Ile Gly Thr Asn Asp Leu Thr Gln Tyr Thr

atg gca gcg gac cgc atg tct cct gag ctt gcc tac ctg acc gat cct Met Ala Ala Asp Arg Met Ser Pro Glu Leu Ala Tyr Leu Thr Asp Pro 395 400

tgg cag cca gca gtc ctg cgc ctg atc aag cac acc tgt gac gaa ggt 1363

Trp Gln Pro Ala Val Leu Arg Leu Ile Lys His Thr Cys Asp Glu Gly 410 415

get ege tit aac ace eeg gie ggt git tgt ggt gaa gea gea gea gae 1411 Ala Arg Phe Asn Thr Pro Val Gly Val Cys Gly Glu Ala Ala Ala Asp 425 430

cca ctg ttg gca act gtc ctc acc ggt ctt ggc gtg aac tcc ctg tcc 1459 Pro Leu Leu Ala Thr Val Leu Thr Gly Leu Gly Val Asn Ser Leu Ser 440

gca gca tcc act gct ctc gca gca gtc ggt gca aag ctg tca gag gtc 1507 Ala Ala Ser Thr Ala Leu Ala Ala Val Gly Ala Lys Leu Ser Glu Val 465 455 470 460

acc ctg gaa acc tgt aag aag gca gca gaa gca gca ctt gac gct gaa 1555 Thr Leu Glu Thr Cys Lys Lys Ala Ala Glu Ala Ala Leu Asp Ala Glu

ggt gca act gaa gca cgc gat gct gta cgc gca gtg atc gac gca gca 1603 Gly Ala Thr Glu Ala Arg Asp Ala Val Arg Ala Val Ile Asp Ala Ala 490 495

gtc taaaccactg ttgagctaaa aag 1629 Val

<210> 20 <211> 503 <212> PRT

<213> Corynebacterium glutamicum

<400> 20

Leu Leu Glu Arg Ser Glu Ala Ala Glu Glv Pro Ala Ala Glu Val Leu

Lys Ala Thr Ala Gly Met Val Asn Asp Arg Gly Trp Arg Lys Ala Val \$20\$

Ile Lys Gly Val Lys Gly Gly His Pro Ala Glu Tyr Ala Val Val Ala 35 $$\rm 40$

Ala Glu Arg Thr Thr Asp Leu Arg Asp Ile Arg Asp Arg Val Ile Ala $65 \ \ 70 \ \ 75 \ \ 80$

Glu Leu Arg Gly Asp Glu Glu Pro Gly Leu Pro Ala Val Ser Gly Gln 85 90 95

Asp Thr Asp Leu Phe Val Gly Leu Val Thr Glu Leu Gly Gly Pro Thr $115 \,$ $120 \,$ $125 \,$

Ser His Thr Ala Ile Ile Ala Arg Gln Leu Asn Val Pro Cys Ile Val 130 $$140\$

Ala Ser Gly Ala Gly Ile Lys Asp Ile Lys Ser Gly Glu Lys Val Leu 145 150 155 160

Ile Asp Gly Ser Leu Gly Thr Ile Asp Arg Asn Ala Asp Glu Ala Glu $165 \,$ $170 \,$ $175 \,$

Ala Thr Lys Leu Val Ser Glu Ser Leu Glu Arg Ala Ala Arg Ile Ala 180 185 190

Glu Trp Lys Gly Pro Ala Gln Thr Lys Asp Gly Tyr Arg Val Gln Leu 195 200 200 205

Leu Ala As
n Val Gl
n Asp Gly As
n Ser Ala Gl
n Gl
n Ala Gl
n Thr $210 \hspace{1.5cm} 215 \hspace{1.5cm} 220 \hspace{1.5cm}$

Glu Ala Glu Gly Ile Gly Leu Phe Arg Thr Glu Leu Cys Phe Leu Ser 225 230235235

Ala Thr Glu Glu Pro Ser Val Asp Glu Gln Ala Ala Val Tyr Ser Lys

Val Leu Glu Ala Phe Pro Glu Ser Lys Val Val Val Arg Ser Leu Asp 260 265 270

Ala Gly Ser Asp Lys Pro Val Pro Phe Ala Ser Met Ala Asp Glu Met 275 280 285

Asn Pro Ala Leu Gly Val Arg Gly Leu Arg Ile Ala Arg Gly Gln Val 290 295 300

Asp Leu Leu Thr Arg Gln Leu Asp Ala Ile Ala Lys Ala Ser Glu Glu

Leu Gly Arg Gly Asp Asp Ala Pro Thr Trp Val Met Ala Pro Met Val

Ala Thr Ala Tyr Glu Ala Lys Trp Phe Ala Asp Met Cys Arg Glu Arg

			340					345					350			
Gly	Leu	Ile 355	Ala	Gly	Ala	Met	Ile 360	Glu	Val	Pro	Ala	Ala 365	Ser	Leu	Met	
Ala	Asp 370	Lys	Ile	Met	Pro	His 375	Leu	Asp	Phe	Val	Ser 380	Ile	Gly	Thr	Asn	
Asp 385	Leu	Thr	Gln	Tyr	Thr 390	Met	Ala	Ala	Asp	Arg 395	Met	Ser	Pro	Glu	Leu 400	
Ala	Tyr	Leu	Thr	Asp 405	Pro	Trp	Gln	Pro	Ala 410	Val	Leu	Arg	Leu	Ile 415	Lys	
His	Thr	Cys	Asp 420	Glu	Gly	Ala	Arg	Phe 425	Asn	Thr	Pro	Val	Gly 430	Val	Cys	
Gly	Glu	Ala 435	Ala	Ala	Asp	Pro	Leu 440	Leu	Ala	Thr	Val	Leu 445	Thr	Gly	Leu	
Gly	Val 450	Asn	Ser	Leu	Ser	Ala 455	Ala	Ser	Thr	Ala	Leu 460	Ala	Ala	Val	Gly	
Ala 465	Lys	Leu	Ser	Glu	Val 470	Thr	Leu	Glu	Thr	Cys 475	Lys	Lys	Ala	Ala	Glu 480	
Ala	Ala	Leu	Asp	Ala 485	Glu	Gly	Ala	Thr	Glu 490	Ala	Arg	Asp	Ala	Val 495	Arg	
Ala	Val	Ile	Asp 500	Ala	Ala	Val										
<213 <213	0> 23 1> 39 2> DN 3> Co	90 NA	ebact	eriu	ım gi	Lutan	nicum	п								
<222)> l> Ci 2> (1 3> R)	101).		57)												
	0> 21 cgaca		aato	eccct	:c c	ettge	gggg	g ttt	aact	aac	aaat	eget	ge ç	gecet	aatcc	60
gtto	eggat	ta a	egge	egtag	ge aa	acaco	gaaaq	g gao	eactt	tee		gct Ala				11:
	acc Thr															16
	gct Ala															21
	ggc Gly															259

BGI-122CP

atc Ile	atg Met 55	gcg Ala	ctg Leu	ggc Gly	gca Ala	gag Glu 60	cac His	ggc Gly	aac Asn	gaa Glu	gtt Val 65	acc Thr	gtc Val	acc Thr	tcc Ser	307
			gaa Glu													355
		gct Ala	gag Glu	taaa	acaa	ege t	ctg	ettgi	tt aa	aa						390
<211 <212	0> 22 L> 89 2> PI 3> Co	9 RT	ebact	eri	ım g.	lutar	nicur	n								
)> 2: Ala		Lys	Thr	Val	Thr	Val	Gly	Ser 10	Ser	Val	Gly	Leu	His 15	Ala	
Arg	Pro	Ala	Ser 20	Ile	Ile	Ala	Glu	Ala 25	Ala	Ala	Glu	Tyr	Asp 30	Asp	Glu	
Ile	Leu	Leu 35	Thr	Leu	Val	Gly	Ser 40	Asp	Asp	Asp	Glu	Glu 45	Thr	Asp	Ala	
Ser	Ser 50	Ser	Leu	Met	Ile	Met 55	Ala	Leu	Gly	Ala	Glu 60	His	Gly	Asn	Glu	
Val 65	Thr	Val	Thr	Ser	Asp 70	Asn	Ala	Glu	Ala	Val 75	Glu	Lys	Ile	Ala	Ala 80	
Leu	Ile	Ala	Gln	Asp 85	Leu	Asp	Ala	Glu								
<211 <212	0> 20 1> 50 2> Dt 3> Co	80 NA	ebact	eri	ım gi	lutar	nicu	n								
<222	L> CI 2> (:		(50 002	08)												
)> 2: actt		ggtg	tette	eg to	gggg	egta	e gga	agato	ctag	caa	gtgt	ggc t	ttat	tgtttg	60
acco	ctat	ceg a	aatc	aacat	g ca	agtga	aatta	a aca	atcta	actt		ttt Phe				115
			aag Lys													163
tgg	cgt	gaa	ggc	atc	cgc	gcc	gca	ggt	gta	ctc	cta	gaa	aag	aca	aac	211

BGI-122CP - 32 -

Trp	Arg	Glu	Gly 25	Ile	Arg	Ala	Ala	Gly 30	Val	Leu	Leu	Glu	Lys 35	Thr	Asn	
agc Ser	att Ile	gat Asp 40	tcc Ser	gcc Ala	tac Tyr	acc Thr	gat Asp 45	gcc Ala	atg Met	atc Ile	gcc Ala	agc Ser 50	gtg Val	gaa Glu	gaa Glu	259
aaa Lys	ggc Gly 55	ccc Pro	tac Tyr	att Ile	gtg Val	gtc Val 60	gct Ala	cca Pro	ggt Gly	ttc Phe	gct Ala 65	ttc Phe	gcg Ala	cac His	gcc Ala	307
	ccc Pro															355
	tcc Ser															403
atc Ile	gtt Val	gct Ala	ctc Leu 105	gct Ala	gcc Ala	aaa Lys	gat Asp	gcc Ala 110	acc Thr	gca Ala	cat His	acc Thr	caa Gln 115	gcg Ala	atg Met	451
gcg Ala	gca Ala	ttg Leu 120	gct Ala	aaa Lys	gct Ala	tta Leu	gga Gly 125	aaa Lys	tac Tyr	cga Arg	aag Lys	gat Asp 130	ctc Leu	gac Asp	gag Glu	499
	caa Gln 135															508
<21 <21	0> 24 1> 1: 2> Pi 3> Co	36 RT	ebact	teri	ım gi	Lutar	nicu	n								
<213 <213 <213 <400 Met	1> 13 2> Pi	36 RT oryne 1		Lys	-					Glu	Arg	Ile	Glu	Leu 15	Asp	
<21: <21: <21: <400 Met 1	1> 1: 2> Pi 3> Co	36 RT oryne 1 Val	Leu	Lys 5	Asp	Leu	Leu	Lys	10					15		
<21: <21: <21: <400 Met 1 Arg	1> 1: 2> Pi 3> Co 0> 2 Phe	36 RT Oryne 4 Val Val	Leu Thr 20	Lys 5 Asp	Asp Trp	Leu Arg	Leu Glu	Lys Gly 25	10	Arg	Ala	Ala	Gly 30	15 Val	Leu	
<21: <21: <21: <400 Met 1 Arg	1> 1: 2> Pi 3> Co 0> 2 Phe Thr	36 RT oryne 4 Val Val Lys 35	Leu Thr 20 Thr	Lys 5 Asp Asn	Asp Trp Ser	Leu Arg Ile	Leu Glu Asp 40	Lys Gly 25 Ser	10 Ile Ala	Arg Tyr	Ala Thr	Ala Asp 45	Gly 30 Ala	15 Val Met	Leu	
<21: <21: <21: <400 Met 1 Arg Leu	1> 1: 2> Pi 3> Co 0> 2 Phe Thr Glu	36 RT Oryne 4 Val Val Lys 35	Leu Thr 20 Thr	Lys 5 Asp Asn Glu	Asp Trp Ser Lys	Leu Arg Ile Gly 55	Leu Glu Asp 40 Pro	Lys Gly 25 Ser	10 Ile Ala Ile	Arg Tyr Val	Ala Thr Val 60	Ala Asp 45 Ala	Gly 30 Ala Pro	15 Val Met Gly	Leu Ile Phe	
<21: <21: <21: <400 Met 1 Arg Leu Ala Ala 65	1> 1: 2> Pt 3> Co 0> 2 Phe Thr Glu Ser 50	NT Oryne Val Val Lys 35 Val	Leu Thr 20 Thr Glu	Lys 5 Asp Asn Glu Ala	Asp Trp Ser Lys Arg	Leu Arg Ile Gly 55 Pro	Leu Glu Asp 40 Pro	Lys Gly 25 Ser Tyr	10 Ile Ala Ile Ala	Arg Tyr Val Val	Ala Thr Val 60 Arg	Ala Asp 45 Ala Glu	Gly 30 Ala Pro Thr	Val Met Gly Ala	Leu Ile Phe Met 80	
<211 <211 <210 <400 Met 1 1 Arg Leu Ala Ala 65 Ser	1> 1: 2> PP 3> Co 0> 20 Phe Thr Glu Ser 50 Phe	Val Lys 35 Val Ala	Leu Thr 20 Thr Glu His	Lys 5 Asp Asn Glu Ala Leu 85	Asp Trp Ser Lys Arg 70	Leu Arg Ile Gly 55 Pro	Leu Glu Asp 40 Pro Ser	Lys Gly 25 Ser Tyr Arg	10 Ile Ala Ile Ala Ser 90	Arg Tyr Val Val 75	Ala Thr Val 60 Arg	Ala Asp 45 Ala Glu	Gly 30 Ala Pro Thr	Val Met Gly Ala Lys 95	Leu Ile Phe Met 80 Asn	

BGI-122CP - 33 -

```
Lys Asp Leu Asp Glu Ala Gln Ser
<210> 25
<211> 789
<212> DNA
<213> Corynebacterium glutamicum
<220>
<221> CDS
<222> (14)..(766)
<223> RXC00953
<400> 25
cttgcattce ccaatg gcg cca cca acg gta ggc aac tac atc atg cag tcc 52
              Met Ala Pro Pro Thr Val Gly Asn Tyr Ile Met Gln Ser
ttc act caa ggt etg eag ttc ggc gtt gca gtt gcc gtg att ctc ttt
Phe Thr Gln Gly Leu Gln Phe Gly Val Ala Val Ala Val Ile Leu Phe
     15
ggt gtc cgc ace att ctt ggt gaa ctg gtc ccc gca ttc caa ggt att
                                                                   148
Gly Val Arg Thr Ile Leu Gly Glu Leu Val Pro Ala Phe Gln Gly Ile
 30
get geg aag get get eee gga get ate eee gea teg gat gea eeg ate
                                                                   196
Ala Ala Lys Val Val Pro Gly Ala Ile Pro Ala Leu Asp Ala Pro Ile
                 50
gtg ttc ccc tac gcg cag aac gcc gtt ctc att ggt ttc ttg tct tcc
                                                                   244
Val Phe Pro Tyr Ala Gln Asn Ala Val Leu Ile Gly Phe Leu Ser Ser
                                                                   292
tte gte ggt gge ttg gtt gge etg act gtt ett gea teg tgg etg aac
Phe Val Gly Gly Leu Val Gly Leu Thr Val Leu Ala Ser Trp Leu Asn
         80
                             85
eca get ttt ggt gte geg ttg att etg ect ggt ttg gte ece cac tte
                                                                   340
Pro Ala Phe Gly Val Ala Leu Ile Leu Pro Gly Leu Val Pro His Phe
     95
                        100
                                                                   388
ttc act ggt ggc gcg gcg ggc gtt tac ggt aat gcc acg ggt ggt cgt
Phe Thr Gly Gly Ala Ala Gly Val Tyr Gly Asn Ala Thr Gly Gly Arg
ega gga gea gta ttt ggc gcc ttt gcc aac ggt ctt ctg att acc ttc
                                                                   436
Arg Gly Ala Val Phe Gly Ala Phe Ala Asn Gly Leu Leu Ile Thr Phe
                130
ctc cct gct ttc ctg ctt ggt gtg ctt ggt tcc ttc ggg tca gag aac
                                                                   484
Leu Pro Ala Phe Leu Leu Gly Val Leu Gly Ser Phe Gly Ser Glu Asn
            145
ace act tte ggt gat geg gae ttt ggt tgg tte gga ate gtt ggt
Thr Thr Phe Gly Asp Ala Asp Phe Gly Trp Phe Gly Ile Val Val Gly
                                                 170
        160
                            165
```

tot goa goo aag gtg gaa ggt got ggc ggg ctc atc ttg ttg ctc atc

580

BGI-122CP - 34 -

Ser	Ala 175	Ala	Lys	Val	G1u	Gly 180	Ala	Gly	Gly	Leu	Ile 185	Leu	Leu	Leu	Ile
atc Ile 190	gca Ala	gcg Ala	gtt Val	ctt Leu	ctg Leu 195	ggt Gly	ggc Gly	gcg Ala	atg Met	gtc Val 200	ttc Phe	cag Gln	aag Lys	ege Arg	gtc Val 205
	aat Asn														
	gaa Glu														
	gct Ala														
taa	gate	ec a	aaaa	ccct	ga ga	at									
<21 <21	0> 2: 1> 2: 2> Pi 3> C	51 RT	ebact	teri	ım gi	Lutar	nicur	n							
	0> 2: Ala		Pro	Thr 5	Val	Gly	Asn	Tyr	Ile 10	Met	Gln	Ser	Phe	Thr 15	Gln
Gly	Leu	Gln	Phe 20	Gly	Val	Ala	Val	Ala 25	Val	Ile	Leu	Phe	Gly 30	Val	Arg
Thr	Ile	Leu 35	Gly	Glu	Leu	Val	Pro 40	Ala	Phe	Gln	Gly	11e 45	Ala	Ala	Lys
Val	Val 50	Pro	Gly	Ala	Ile	Pro 55	Ala	Leu	Asp	Ala	Pro 60	Ile	Val	Phe	Pro
Tyr 65	Ala	Gln	Asn	Ala	Val 70	Leu	Ile	Gly	Phe	Leu 75	Ser	Ser	Phe	Val	Gly 80
Gly	Leu	Val	Gly	Leu 85	Thr	Val	Leu	Ala	Ser 90	Trp	Leu	Asn	Pro	Ala 95	Phe
Gly	Val	Ala	Leu 100	Ile	Leu	Pro	Gly	Leu 105	Val	Pro	His	Phe	Phe 110	Thr	Gly
Gly	Ala	Ala 115	Gly	Val	Tyr	Gly	Asn 120	Ala	Thr	Gly	Gly	Arg 125	Arg	Gly	Ala
Val	Phe 130	Gly	Ala	Phe	Ala	Asn 135	Gly	Leu	Leu	Ile	Thr 140	Phe	Leu	Pro	Ala
Phe 145	Leu	Leu	Gly	Val	Leu 150	Gly	Ser	Phe	Gly	Ser 155	Glu	Asn	Thr	Thr	Phe 160
Gly	Asp	Ala	Asp	Phe 165	Gly	Trp	Phe	Gly	Ile 170	Val	Val	Gly	Ser	Ala 175	Ala

Lys Val Glu Gly Ala Gly Gly Leu Ile Leu Leu Leu Ile Ile Ala Ala 180 $$180\,$

Val Leu Gly Gly Ala Met Val Phe Gln Lys Arg Val Val Asn Gly 195 200 205

His Trp Asp Pro Ala Pro Asn Arg Glu Arg Val Glu Lys Ala Glu Ala 210 215 220

Asp Ala Thr Pro Thr Ala Gly Ala Arg Thr Tyr Pro Lys Ile Ala Pro 225 230 235 240

Pro Ala Gly Ala Pro Thr Pro Pro Ala Arg Ser 245 250

<210> 27 <211> 553

<211> 000 <212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(553) <223> RXC03001

<400> 27

cccggttcac gtgatcaatg acttcacgag caccgatgaa atcgatgctg cgcttcgtga 60

acgctacgac atctaactac tttaaaagga cgaaaatatt atg gac tgg tta acc 11: Met Asp Trp Leu Thr

att cct ctt ttc ctc gtt aat gaa atc ctt gcg gtt ccg gct ttc ctc 163 Ile Pro Leu Phe Leu Val Asn Glu Ile Leu Ala Val Pro Ala Phe Leu 163 163

atc ggt atc atc acc gcc gtg gga ttg ggt gcc atg ggg cgt tcc gtc 211 Ile Gly Ile Ile Thr Ala Val Gly Leu Gly Ala Met Gly Arg Ser Val

ggt cag gtt atc ggt gga gca atc aaa gca acg ttg ggc ttt ttg ctc $\,$ 259 Gly Gln Val Ile Gly Gly Ala Ile Lys Ala Thr Leu Gly Phe Leu Leu $\,$ 45 $\,$ 50

att ggt gcg ggt gcc acg ttg gtc act gcc tcc ctg gag cca ctg ggt 307 Ile Gly Ala Gly Ala Thr Leu Val Thr Ala Ser Leu Glu Pro Leu Gly

geg atg atc atg ggt gec aca ggc atg egt ggt gtt gtc eca acg aat 355 Ala Met Ile Met Gly Ala Thr Gly Met Arg Gly Val Val Pro Thr Asn 75

gaa goc atc goc gga atc goa cag got gaa tac ggc gog cag gtg gog Glu Ala Glu Tle Ala Glu Tyr Gly Ala Glu Val Ala 90 95 100

tgg ctg atg att ctg ggc ttc gcc atc tct ttg gtg ttg gct cgt ttc 451 Trp Leu Met Ile Leu Gly Phe Ala Ile Ser Leu Val Leu Ala Arg Phe 105 110 BGI-122CP - 36 -

acc Thr	aac Asn	ctg Leu 120	cgt Arg	tat Tyr	gtc Val	ttg Leu	ctc Leu 125	aac Asn	gga Gly	cac His	cac His	gtg Val 130	ctg Leu	ttg Leu	atg Met	499
tgc Cys	acc Thr 135	atg Met	ctc Leu	acc Thr	atg Met	gtc Val 140	ttg Leu	gcc Ala	acc Thr	gga Gly	aga Arg 145	gtt Val	gat Asp	gcg Ala	tgg Trp	547
atc Ile 150																553
<212 <212	0> 28 L> 15 2> PF 3> Co	51 RT	ebact	eri	ım gi	Lutar	nicur	n								
)> 28 Asp		Leu	Thr 5	Ile	Pro	Leu	Phe	Leu 10	Val	Asn	Glu	Ile	Leu 15	Ala	
Val	Pro	Ala	Phe 20	Leu	Ile	Gly	Ile	11e 25	Thr	Ala	Val	Gly	Leu 30	Gly	Ala	
Met	Gly	Arg 35	Ser	Val	Gly	Gln	Val 40	Ile	Gly	Gly	Ala	Ile 45	Lys	Ala	Thr	
Leu	Gly 50	Phe	Leu	Leu	Ile	Gly 55	Ala	Gly	Ala	Thr	Leu 60	Val	Thr	Ala	Ser	
Leu 65	Glu	Pro	Leu	Gly	Ala 70	Met	Ile	Met	Gly	Ala 75	Thr	Gly	Met	Arg	Gly 80	
Val	Val	Pro	Thr	Asn 85	Glu	Ala	Ile	Ala	Gly 90	Ile	Ala	Gln	Ala	Glu 95	Tyr	
Gly	Ala	Gln	Val 100	Ala	Trp	Leu	Met	Ile 105	Leu	Gly	Phe	Ala	Ile 110	Ser	Leu	
Val	Leu	Ala 115	Arg	Phe	Thr	Asn	Leu 120	Arg	Tyr	Val	Leu	Leu 125	Asn	Gly	His	
His	Val 130	Leu	Leu	Met	Cys	Thr 135	Met	Leu	Thr	Met	Val 140	Leu	Ala	Thr	Gly	
Arg 145	Val	Asp	Ala	Trp	Ile 150	Phe										
<21:		172 NA	ebac:	teri	ım gi	luta	nicu	n								
<22:	1> C	101)	(2: 943	149)												
<40	0> 2	9														

BGI-122CP - 37 -

cogattettt ttegg	geceaa ttegta	aacgg cgatcctct1	aagtggacaa gaaagtetet	60
tgcccgcggg agaca	agacce taegtt	ttaga aaggtttgad	e atg gcg tcc aaa ctg Met Ala Ser Lys Leu 1 5	115
acg acg aca tcg Thr Thr Thr Ser	caa cat att Gln His Ile 10	ctg gaa aac ct Leu Glu Asn Leu 15	ggt gga cca gac aat : Gly Gly Pro Asp Asn 20	163
att act tcg atg Ile Thr Ser Met 25	act cac tgt Thr His Cys	gcg act cgc ctt Ala Thr Arg Let 30	cgc ttc caa gtg aag Arg Phe Gln Val Lys 35	211
gat caa too att Asp Gln Ser Ile 40	gtt gat caa Val Asp Gln	caa gaa att gad Gln Glu Ile Asp 45	tcc gac cca tca gtt Ser Asp Pro Ser Val	259
ctt ggc gta gta Leu Gly Val Val 55	ccc caa gga Pro Gln Gly 60	toc acc ggt ato Ser Thr Gly Met	g cag gtg gtg atg ggt : Gln Val Val Met Gly : 65	307
			Lys Leu Asp Gly Met	355
aag cac ttc gcc Lys His Phe Ala	gac ggt gaa Asp Gly Glu 90	gct aca gag agt Ala Thr Glu Se: 95	tca tcc aag aag gaa Ser Ser Lys Lys Glu 100	403
tac ggc gga gtc Tyr Gly Gly Val 105	cgt ggc aag Arg Gly Lys	tac tcg tgg att Tyr Ser Trp Ile 110	gac tac gcc ttc gag B Asp Tyr Ala Phe Glu 115	451
ttc ttg tct gat Phe Leu Ser Asp 120	act ttc cga Thr Phe Arg	cca atc ctg tgg Pro Ile Leu Try 125	g gcc ctg ctt ggt gcc Ala Leu Leu Gly Ala 130	499
tca ctg att att Ser Leu Ile Ile 135	acc ttg ttg Thr Leu Leu 140	gtt ctt gcg ga Val Leu Ala Asp	act ttc ggt ttg caa Thr Phe Gly Leu Gln 145	547
gac ttc cgc gct Asp Phe Arg Ala 150	cca atg gat Pro Met Asp 155	gag cag cct gat Glu Gln Pro Asp 160	Thr Tyr Val Phe Leu	595
cac too atg tgg His Ser Met Trp	cgc tcg gtc Arg Ser Val 170	ttc tac ttc ctc Phe Tyr Phe Let 175	g cca att atg gtt ggt 1 Pro Ile Met Val Gly 180	643
gcc acc gca gct Ala Thr Ala Ala 185	cga aag ctc Arg Lys Leu	ggc gca aac ga Gly Ala Asn Gl 190	g tgg att ggt gca gct 1 Trp Ile Gly Ala Ala 195	691
			g gca ctg ggt tct gcc 1 Ala Leu Gly Ser Ala 210	739
ggc gat acc gtc Gly Asp Thr Val 215	aca gtc ttt Thr Val Phe 220	ggc ctg cca ato Gly Leu Pro Me	g gtt ctg aat gac tac Val Leu Asn Asp Tyr 225	787

tee gga	cag	gta	ttc	сса	ccg	ctg	att	gca	gca	att	ggt	ctg	tac	tgg	835
Ser Gly 230	Gln	Val	Phe	Pro 235	Pro	Leu	Ile	Ala	A1a 240	ile	GIY	Leu	Tyr	245	
gtg gaa Val Glu	aag Lys	gga Gly	ctg Leu 250	aag Lys	aag Lys	atc Ile	atc Ile	cct Pro 255	gaa Glu	gca Ala	gtc Val	caa Gln	atg Met 260	gtg Val	883
ttc gtc Phe Val	cca Pro	ttc Phe 265	ttc Phe	tcc Ser	ctg Leu	ctg Leu	att Ile 270	atg Met	atc Ile	cca Pro	geg Ala	acc Thr 275	gca Ala	ttc Phe	931
ctg ctt Leu Leu	gga Gly 280	cct Pro	ttc Phe	ggc Gly	atc Ile	ggt Gly 285	gtt Val	ggt Gly	aac Asn	gga Gly	att Ile 290	tcc Ser	aac Asn	ctg Leu	979
ctt gaa 1027	gcg	att	aac	aac	ttc	agc	cca	ttt	att	ctt	tcc	atc	gtt	atc	
Leu Glu 295	Ala	Ile	Asn	Asn	Phe 300	Ser	Pro	Phe	Ile	Leu 305	Ser	Ile	Val	Ile	
cca ttg 1075	ctc	tac	cca	ttc	ttg	gtt	cca	ctt	gga	ttg	cac	tgg	cca	cta	
Pro Leu 310	Leu	Tyr	Pro	Phe 315	Leu	Val	Pro	Leu	Gly 320	Leu	His	Trp	Pro	Leu 325	
aac gec 1123	atc	atg	atc	cag	aac	atc	aac	acc	ctg	ggt	tac	gac	ttc	att	
Asn Ala	Ile	Met	Ile 330	Gln	Asn	Ile	Asn	Thr 335	Leu	Gly	Tyr	Asp	Phe 340	Ile	
cag gga 1171	cca	atg	ggt	gcc	tgg	aac	ttc	gcc	tgc	ttc	ggc	ctg	gtc	acc	
Gln Gly	Pro	Met 345	Gly	Ala	Trp	Asn	Phe 350	Ala	Cys	Phe	Gly	Leu 355	Val	Thr	
ggc gtg 1219	ttc	ttg	ctc	tcc	att	aag	gaa	cga	aac	aag	gcc	atg	cgt	cag	
Gly Val	Phe 360	Leu	Leu	Ser	Ile	Lys 365	Glu	Arg	Asn	Lys	Ala 370	Met	Arg	Gln	
gtt tcc 1267	ctg	ggt	ggc	atg	ttg	gct	ggt	ttg	ctc	ggc	ggc	att	tcc	gag	
Val Ser 375	Leu	Gly	Gly	Met	Leu 380	Ala	Gly	Leu	Leu	Gly 385	Gly	Ile	Ser	Glu	
cct tcc 1315	ctc	tac	ggt	gtt	ctg	ctc	cga	ttc	aag	aag	acc	tac	ttc	cgc	
Pro Ser 390	Leu	Tyr	Gly	Val 395	Leu	Leu	Arg	Phe	Lys 400	Lys	Thr	Tyr	Phe	Arg 405	
ctc ctg 1363	ccg	ggt	tgt	ttg	gca	ggc	ggt	atc	gtg	atg	ggc	atc	ttc	gac	
Leu Leu	Pro	Gly	Cys 410	Leu	Ala	Gly	Gly	Ile 415	Val	Met	Gly	Ile	Phe 420	Asp	
atc aag 1411	gcg	tac	gct	ttc	gtg	ttc	acc	tcc	ttg	ctt	acc	atc	cca	gca	
Ile Lys	Ala	Tyr 425	Ala	Phe	Val	Phe	Thr 430	Ser	Leu	Leu	Thr	Ile 435	Pro	Ala	

atg gac cca tgg ttg ggc tac acc att ggt atc gca gtt gca ttc ttc 1459 Met Asp Pro Trp Leu Gly Tyr Thr Ile Gly Ile Ala Val Ala Phe Phe

gtt too atg tto ott gtt oto gca otg gao tac ogt too aac gaa gag

Val Ser Met Phe Leu Val Leu Ala Leu Asp Tyr Arg Ser Asn Glu Glu 455 460 465

cgc gat gag gca cgt gca aag gtt gct gct gac aag cag gca gaa gaa 1555 Arg Asp Glu Ala Arg Ala Lys Val Ala Ala Asp Lys Gln Ala Glu Glu 470 485

gat ctg aag gca gaa gct aat gca act cct gca gct cca gct gct 1603 Asp Leu Lys Ala Glu Ala Asn Ala Thr Pro Ala Ala Pro Val Ala Ala 490 495 500

gca ggt gcg gga gcc ggt gca ggt gca gga gcc gct gct gca 1651 Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Ala Ala Ala Gly Ala Ala 505 510 515

acc gcc gtg gca gct aag ccg aag ctg gcc gct ggg gaa gta gtg gac 1699
Thr Ala Val Ala Ala Lys Pro Lys Leu Ala Ala Gly Glu Val Val Asp 520
525
530

att gtt toc oca oto gaa ggo aag goa att oca ott tot gaa gta oct 1747 Ile Val Ser Pro Leu Glu Gly Lys Ala Ile Pro Leu Ser Glu Val Pro 535 540 545

gac cca atc ttt gca gca ggc aag ctt gga cca ggc att gca atc caa 1795 Asp Pro Ile Phe Ala Ala Gly Lys Leu Gly Pro Gly Ile Ala Ile Gln 550 565 560

cca act gga aac acc gtt gtt gct cca gca gac gct act gtc atc ctt 1843 Pro Thr Gly Asn Thr Val Val Ala Pro Ala Asp Ala Thr Val Ile Leu 570 575 580

gtc cag aaa tct gga cac gca gtg gca ttg cgc tta gat agc gga gtt 1891 Val Gln Lys Ser Gly His Ala Val Ala Leu Arg Leu Asp Ser Gly Val 585 595

gaa atc ctt gtc cac gtt gga ttg gac acc gtg caa ttg ggc ggc gaa 1939 Glu ILeu Val His Val Gly Leu Asp Thr Val Gln Leu Gly Gly Glu 600 605 610

ggc ttc acc gtt cac gtt gag cgc agg caa gtc aag gcg ggg gat 1987 Gly Phe Thr Val His Val Glu Arg Arg Gln Gln Val Lys Ala Gly Asp 615 620 625 BGI-122CP - 40 -

cca ctg atc act ttt gac gct gac ttc att cga tcc aag gat cta cct 2035 Pro Leu Ile Thr Phe Asp Ala Asp Phe Ile Arg Ser Lys Asp Leu Pro 630 635 640 640 645 ttg atc acc cca gtt gtg gtg tct aac gcc gcg aaa ttc ggt gaa att 2083 Leu Ile Thr Pro Val Val Val Ser Asn Ala Ala Lys Phe Gly Glu Ile

gaa ggt att oot goa gat oag goa aat tot too aog act gtg atc aag 2131 Glu Gly Ile Pro Ala Asp Gln Ala Asn Ser Ser Thr Thr Val Ile Lys

gtc aac ggc aag aac gag taacctggga tccatgttgc gca 2172 Val Asn Gly Lys Asn Glu

<210> 30 <211> 683 <212> PRT

<213> Corynebacterium glutamicum

<400> 30

Met Ala Ser Lys Leu Thr Thr Thr Ser Gln His Ile Leu Glu Asn Leu $1 \hspace{1cm} 5 \hspace{1cm} 15$

Gly Gly Pro Asp Asn Ile Thr Ser Met Thr His Cys Ala Thr Arg Leu $20 \\ 25 \\ 30$

Arg Phe Gln Val Lys Asp Gln Ser Ile Val Asp Gln Gln Glu Ile Asp 35 40 45

Ser Asp Pro Ser Val Leu Gly Val Val Pro Gln Gly Ser Thr Gly Met 50 55 60

Gln Val Val Met Gly Gly Ser Val Ala Asn Tyr Tyr Gln Glu Ile Leu 65 70 75 80

Lys Leu Asp Gly Met Lys His Phe Ala Asp Gly Glu Ala Thr Glu Ser 85 90 95

Asp Tyr Ala Phe Glu Phe Leu Ser Asp Thr Phe Arg Pro Ile Leu Trp 115 120 125

Ala Leu Leu Gly Ala Ser Leu Ile Ile Thr Leu Leu Val Leu Ala Asp 130 135 140

Thr Phe Gly Leu Gln Asp Phe Arg Ala Pro Met Asp Glu Gln Pro Asp 145 \$150\$

Thr Tyr Val Phe Leu His Ser Met Trp Arg Ser Val Phe Tyr Phe Leu 165 170 170 175

Pro Ile Met Val Gly Ala Thr Ala Ala Arg Lys Leu Gly Ala Asn Glu

BGI-122CP - 41 -

			180					185					190		
Trp	Ile	Gly 195	Ala	Ala	Ile	Pro	Ala 200	Ala	Leu	Leu	Thr	Pro 205	Glu	Phe	Leu
Ala	Leu 210	Gly	Ser	Ala	Gly	Asp 215	Thr	Val	Thr	Val	Phe 220	Gly	Leu	Pro	Met
Val 225	Leu	Asn	Asp	Tyr	Ser 230	Gly	Gln	Val	Phe	Pro 235	Pro	Leu	Ile	Ala	Ala 240
Ile	Gly	Leu	Tyr	Trp 245	Val	Glu	Lys	Gly	Leu 250	Lys	Lys	Ile	Ile	Pro 255	Glu
Ala	Val	Gln	Met 260	Val	Phe	Val	Pro	Phe 265	Phe	Ser	Leu	Leu	Ile 270	Met	Ile
Pro	Ala	Thr 275	Ala	Phe	Leu	Leu	Gly 280	Pro	Phe	Gly	Ile	Gly 285	Val	Gly	Asn
Gly	Ile 290	Ser	Asn	Leu	Leu	Glu 295	Ala	Ile	Asn	Asn	Phe 300	Ser	Pro	Phe	Ile
Leu 305	Ser	Ile	Val	Ile	Pro 310	Leu	Leu	Tyr	Pro	Phe 315	Leu	Val	Pro	Leu	Gly 320
Leu	His	Trp	Pro	Leu 325	Asn	Ala	Ile	Met	11e 330	Gln	Asn	Ile	Asn	Thr 335	Leu
Gly	Tyr	Asp	Phe 340	Ile	Gln	Gly	Pro	Met 345	Gly	Ala	Trp	Asn	Phe 350	Ala	Cys
Phe	Gly	Leu 355	Val	Thr	Gly	Val	Phe 360	Leu	Leu	Ser	Ile	Lys 365	Glu	Arg	Asn
Lys	Ala 370	Met	Arg	Gln	Val	Ser 375	Leu	Gly	Gly	Met	Leu 380	Ala	Gly	Leu	Leu
Gly 385	Gly	Ile	Ser	Glu	Pro 390	Ser	Leu	Tyr	Gly	Val 395	Leu	Leu	Arg	Phe	Lys 400
Lys	Thr	Tyr	Phe	Arg 405	Leu	Leu	Pro	Gly	Cys 410	Leu	Ala	Gly	Gly	Ile 415	Val
Met	Gly	Ile	Phe 420	Asp	Ile	Lys	Ala	Tyr 425	Ala	Phe	Val	Phe	Thr 430	Ser	Leu
Leu	Thr	Ile 435	Pro	Ala	Met	Asp	Pro 440	Trp	Leu	Gly	Tyr	Thr 445	Ile	Gly	Ile
Ala	Val 450	Ala	Phe	Phe	Val	Ser 455	Met	Phe	Leu	Val	Leu 460	Ala	Leu	Asp	Tyr
Arg 465	Ser	Asn	Glu	Glu	Arg 470	Asp	Glu	Ala	Arg	Ala 475	Lys	Val	Ala	Ala	Asp 480
Lys	Gln	Ala	Glu	Glu 485	Asp	Leu	Lys	Ala	Glu 490	Ala	Asn	Ala	Thr	Pro 495	Ala
Ala	Pro	Val	Ala 500	Ala	Ala	Gly	Ala	Gly 505	Ala	Gly	Ala	Gly	Ala 510	Gly	Ala

BGI-122CP - 42 -

Ala Ala Gly . 515	Ala Ala Tì	nr Ala Val 520	Ala Ala Lys	Pro Lys Leu 525	Ala Ala							
Gly Glu Val	Val Asp I	e Val Ser 535	Pro Leu Glu	Gly Lys Ala 540	Ile Pro							
Leu Ser Glu '	Val Pro As 55		Phe Ala Ala 555	Gly Lys Leu	Gly Pro 560							
Gly Ile Ala	Ile Gln Pr 565	o Thr Gly	Asn Thr Val	Val Ala Pro	Ala Asp 575							
Ala Thr Val	Ile Leu Va 580	l Gln Lys	Ser Gly His 585	Ala Val Ala 590	Leu Arg							
Leu Asp Ser (Gly Val G	u Ile Leu 600	Val His Val	Gly Leu Asp 605	Thr Val							
Gln Leu Gly 610	Gly Glu G	y Phe Thr 615	Val His Val	Glu Arg Arg 620	Gln Gln							
Val Lys Ala (625	Gly Asp Pa 63		Thr Phe Asp 635		Ile Arg 640							
Ser Lys Asp	Leu Pro Le 645	u Ile Thr	Pro Val Val 650	Val Ser Asn	Ala Ala 655							
Lys Phe Gly	Glu Ile GI 660	u Gly Ile	Pro Ala Asp 665	Gln Ala Asn 670	Ser Ser							
Thr Thr Val : 675	Ile Lys Va	l Asn Gly 680	Lys Asn Glu									
<210> 31 <211> 339 <212> DNA <213> Corynebacterium glutamicum												
<220> <221> CDS <222> (101)(1339) <222> FRXA02191												
<400> 31 cogattett tteggeecaa ttegtaaegg egateetett aagtggaeaa gaaagtetet												
tgcccgcggg ac	gacagaccc	tacgtttaga	aaggtttgac	atg gcg tcc Met Ala Ser 1								
acg acg aca t Thr Thr Thr S												
att act tcg a Ile Thr Ser N												

gat caa too att gtt gat caa caa gaa att gac too gac coa toa gtt 259

BGI-122CP - 43 -

Asp	Gln	Ser 40	Ile	Val	Asp	Gln	Gln 45	Glu	Ile	Asp	Ser	Asp 50	Pro	Ser	Val	
		gta Val														307
		gtt Val														355
		ttc Phe														403
		gga Gly														451
		tct Ser 120														499
		att Ile														547
		ege Arg														595
		atg Met														643
		gca Ala														691
		gcc Ala 200														739
ggc Gly	gat Asp 215	acc Thr	gtc Val	aca Thr	gtc Val	ttt Phe 220	ggc Gly	ctg Leu	cca Pro	atg Met	gtt Val 225	ctg Leu	aat Asn	gac Asp	tac Tyr	787
		cag Gln														835
		aag Lys														883
		cca Pro														931

ttc gtc coa ttc ttc tcc ctg ctg att atg atc coa gcg acc gca ttc \$93\$ Phe Val Pro Phe Phe Ser Leu Leu Ile Met Ile Pro Ala Thr Ala Phe \$265\$ \$270\$

ctg ctt gga cct ttc ggc atc ggt gtt ggt aac gga att tcc aac ctg $\,$ 979 Leu Leu Gly Pro Phe Gly Ile Gly Val Gly Asn Gly Ile Ser Asn Leu

280 285 290

ctt gaa geg att aac aac ttc age cca ttt att ett tee ate gtt ate 1027 Leu Glu Ala Ile Asn Asn Phe Ser Pro Phe Ile Leu Ser Ile Val Ile 295 300 305

cca ttg ctc tac cca ttc ttg gtt cca ctt gga ttg cac ttg cca cta 1075 Pro Leu Leu Tyr Pro Phe Leu Val Pro Leu Gly Leu His Trp Pro Leu 310 320 325

aac gcc atc atg atc cag aac atc aac acc ctg ggt tac gac ttc att 1123
Asn Ala Ile Met Ile Gln Asn Ile Asn Thr Leu Gly Tyr Asp Phe Ile 330
335
340

cag gga cca atg ggt gcc tgg aac ttc gcc tgc ttc ggc ctg gtc acc 1171 Gln Gly Pro Met Gly Ala Trp Asn Phe Ala Cys Phe Gly Leu Val Thr 345 350 355

ggc gtg ttc ttg ctc tcc att aag gaa cga aac aag gcc atg cgt cag 1219 Gly Val Phe Leu Leu Ser Ile Lys Glu Arg Asn Lys Ala Met Arg Gln 360 365 370

gtt too etg ggt ggc atg ttg gct ggt ttg ctc ggc ggc att tcc gag 1267 Val Ser Leu Gly Gly Met Leu Ala Gly Leu Leu Gly Gly Ile Ser Glu 375

cet tee ete tae ggt gtt etg ete ega tte aag aag ace tae tte ege 1315 Pro Ser Leu Tyr Gly Val Leu Leu Arg Phe Lys Lys Thr Tyr Phe Arg 390 395 400 405

ctc ctg ccg ggt tgt ttg gca gca 1339 Leu Leu Pro Gly Cys Leu Ala Ala 410

<210> 32

<211> 413

<212> PRT

<213> Corynebacterium glutamicum

<400> 32

Met Ala Ser Lys Leu Thr Thr Thr Ser Gln His Ile Leu Glu Asn Leu 1 5 10 15

Gly Gly Pro Asp Asn Ile Thr Ser Met Thr His Cys Ala Thr Arg Leu $20 \\ 25 \\ 30$

Arg Phe Gln Val Lys Asp Gln Ser Ile Val Asp Gln Gln Glu Ile Asp 35 40 45

Ser Asp Pro Ser Val Leu Gly Val Val Pro Gln Gly Ser Thr Gly Met 50

Gln Val Val Met Gly Gly Ser Val Ala Asn Tyr Tyr Gln Glu Ile Leu Lys Leu Asp Gly Met Lys His Phe Ala Asp Gly Glu Ala Thr Glu Ser Ser Ser Lys Lys Glu Tyr Gly Gly Val Arg Gly Lys Tyr Ser Trp Ile Asp Tyr Ala Phe Glu Phe Leu Ser Asp Thr Phe Arg Pro Ile Leu Trp Ala Leu Leu Gly Ala Ser Leu Ile Ile Thr Leu Leu Val Leu Ala Asp Thr Phe Gly Leu Gln Asp Phe Arg Ala Pro Met Asp Glu Gln Pro Asp 155 Thr Tyr Val Phe Leu His Ser Met Trp Arg Ser Val Phe Tyr Phe Leu 165 170 Pro Ile Met Val Gly Ala Thr Ala Ala Arg Lys Leu Gly Ala Asn Glu 185 Trp Ile Gly Ala Ala Ile Pro Ala Ala Leu Leu Thr Pro Glu Phe Leu Ala Leu Gly Ser Ala Gly Asp Thr Val Thr Val Phe Gly Leu Pro Met Val Leu Asn Asp Tyr Ser Gly Gln Val Phe Pro Pro Leu Ile Ala Ala 235 Ile Gly Leu Tyr Trp Val Glu Lys Gly Leu Lys Lys Ile Ile Pro Glu 245 Ala Val Gln Met Val Phe Val Pro Phe Phe Ser Leu Leu Ile Met Ile 265 Pro Ala Thr Ala Phe Leu Leu Gly Pro Phe Gly Ile Gly Val Gly Asn Gly Ile Ser Asn Leu Leu Glu Ala Ile Asn Asn Phe Ser Pro Phe Ile 295 300 Leu Ser Ile Val Ile Pro Leu Leu Tyr Pro Phe Leu Val Pro Leu Gly Leu His Trp Pro Leu Asn Ala Ile Met Ile Gln Asn Ile Asn Thr Leu 330 Gly Tyr Asp Phe Ile Gln Gly Pro Met Gly Ala Trp Asn Phe Ala Cys Phe Gly Leu Val Thr Gly Val Phe Leu Leu Ser Ile Lys Glu Arg Asn 360 Lys Ala Met Arg Gln Val Ser Leu Gly Gly Met Leu Ala Gly Leu Leu

Gly Gly Ile Ser Glu Pro Ser Leu Tyr Gly Val Leu Leu Arg Phe Lys

- 46 -

385 390 395 400 Lys Thr Tyr Phe Arg Leu Leu Pro Gly Cys Leu Ala Ala 405 410 <210> 33 <211> 428 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (1)..(405) <223> FRXA01943 <400> 33 cet que cea ate tit qua que age aug ett gga cea gge att gea ate 48 Pro Asp Pro Ile Phe Ala Ala Gly Lys Leu Gly Pro Gly Ile Ala Ile caa cca act gga aac acc gtt gtt gct cca gca gac gct act gtc atc Gln Pro Thr Gly Asn Thr Val Val Ala Pro Ala Asp Ala Thr Val Ile ctt gtc cag aaa tct gga cac gca gtg gca ttg cgc tta gat agc gga 144 Leu Val Gln Lys Ser Gly His Ala Val Ala Leu Arg Leu Asp Ser Gly 40 gtt gaa atc ctt gtc cac gtt gga ttg gac acc gtg caa ttg ggc ggc 192 Val Glu Ile Leu Val His Val Gly Leu Asp Thr Val Gln Leu Gly Gly 50 55 gaa ggc ttc acc gtt cac gtt gag cgc agg cag caa gtc aag gcg ggg 240 Glu Gly Phe Thr Val His Val Glu Arg Arg Gln Gln Val Lys Ala Gly 70 gat eca etg ate act tit gae get gae tie att ega tee aag gat eta 288 Asp Pro Leu Ile Thr Phe Asp Ala Asp Phe Ile Arg Ser Lys Asp Leu 85 cct ttg atc acc cca gtt gtg gtg tct aac gcc gcg aaa ttc ggt gaa 336 Pro Leu Ile Thr Pro Val Val Val Ser Asn Ala Ala Lys Phe Gly Glu att gaa ggt att cet gea gat eag gea aat tet tee aeg aet gtg ate 384 Ile Glu Gly Ile Pro Ala Asp Gln Ala Asn Ser Ser Thr Thr Val Ile 120 428 aag gtc aac ggc aag aac gag taacctggga tccatgttgc gca Lys Val Asn Gly Lys Asn Glu 130 135 <210> 34 <211> 135 <212> PRT <213> Corynebacterium glutamicum <400> 34

Pro Asp Pro Ile Phe Ala Ala Gly Lys Leu Gly Pro Gly Ile Ala Ile

1 5 10 15

Gln Pro Thr Gly Asn Thr Val Val Ala Pro Ala Asp Ala Thr Val Ile $20 \hspace{1cm} 25 \hspace{1cm} 30 \hspace{1cm}$

Leu Val Gln Lys Ser Gly His Ala Val Ala Leu Arg Leu Asp Ser Gly $35 \ \ \, 40 \ \ \, 45$

Glu Gly Phe Thr Val His Val Glu Arg Arg Gln Gln Val Lys Ala Gly $65 70 75 80 $

Asp Pro Leu Ile Thr Phe Asp Ala Asp Phe Ile Arg Ser Lys Asp Leu $85 \hspace{1cm} 90 \hspace{1cm} 95$

Pro Leu Ile Thr Pro Val Val Val Ser Asn Ala Ala Lys Phe Gly Glu $100 \hspace{0.25cm} 105 \hspace{0.25cm} 110 \hspace{0.25cm}$

Ile Glu Gly Ile Pro Ala Asp Gln Ala Asn Ser Ser Thr Thr Val Ile 115 \$120\$

Lys Val Asn Gly Lys Asn Glu 130 135

APPENDIX A: DNA SEQUENCES

>RXA00315

TATGATTTCGGCGGTCCAGTCGGCGGTCTGCTCTTCGGTCTGGTCTACTCACCAATCGTC ATCACTGGTCTGCACCAGTCCTTCCCGCCAATTGAGCTGGAGCTGTTTAACCAGGGTGGA TCCTTCATCTTCGCAACGGCATCTATGGCTAATATCGCCCAGGGTGCGGCATGTTTGGCA GTGTTCTTCCTGGCGAAGAGTGAAAAGCTCAAGGGCCTTGCAGGTGCTTCAGGTGTCTCC GCTGTTCTTGGTATTACGGAGCCTGCGATCTTCGGTGTGAACCTTCGCCTGCGCTGGCCG TTCTTCATCGGTATCGGTACCGCAGCTATCGGTGGCGCTTTGATTGCACTCTTTAATATC AAGGCAGTTGCGTTGGGCGCTGCAGGTTTCTTGGGTGTTGTTTCTATTGATGCTCCAGAT ATGGTCATGTTCTTGGTGTGTGCAGTTGTTACCTTCTTCATCGCATTCGGCGCAGCGATT GCTTATGGCCTTTACTTGGTTCGCCGCAACGGCAGCATTGATCCAGATGCAACCGCTGCT CCAGTGCCTGCAGGAACGACCAAAGCCGAAGCAGCACCCGCAGAATTTTCAAACGAT TCCACCATCATCCAGGCACCTTTGACCGGTGAAGCTATTGCACTGAGCAGCGTCAGCGAT TTAGTTTCTCCGGTGAGTGGAAAGATTGTGGTGGCATTCCCATCTGGCCATGCTTTCGCA GTTCGCACCAAGGCTGAGGATGGTTCCAATGTGGATATCTTGATGCACATTGGTTTCGAC ACAGTAAACCTCAACGGCACGCACTTTAACCCGCTGAAGAAGCAGGGCGATGAAGTCAAA GCAGGGGAGCTGCTGTGTGAATTCGATATTGATGCCATTAAGGCTGCAGGTTATGAGGTA ACCACGCCGATTGTTTCGAATTACAAGAAAACCGGACCTGTAAACACTTACGGTTTG GGCGAAATTGAAGCGGGAGCCAACCTGCTCAACGTCGCAAAGAAGAAGCGGTGCCAGCA ACACCA

>RXA00315-downstream TAAGTTGAAACCTTGAGTGTTCG

>RXA00951

>RXA00951-downstream TAACTACTTTAAAAGGACGAAAA

>RXA01244-upstream

AGATGTCGATTTCTCGAGGAAGAAGTTAACGCCGAAGAAAACCGTGAATCAGAGCAGGAG CGCTTCGACGCCGCTGCAGCCACAGTCTCTTCTTCGT

>RXA01244

TTGCTTGAGCGCTCCGAAGCTGCTGAAGGACCAGCAGCTGAGGTGCTTAAAGCTACTGCT GGCATGGTCAATGACCGTGGCTGGCGTAAGGCTGTCATCAAGGGTGTCAAGGGTGGTCAC CCTGCGGAATACGCCGTGGTTGCAGCAACAACCAAGTTCATCTCCATGTTCGAAGCCGCA GGCGGCCTGATCGCGGAGCGCACCACAGACTTGCGCGACATCCGCGACCGCGTCATCGCA GAACTTCGTGGCGATGAAGAGCCAGGTCTGCCAGCTGTTTCCGGACAGGTCATTCTCTTT GCAGATGACCTCTCCCCAGCAGACACCGCGGCACTAGACACAGATCTCTTTGTGGGACTT GTCACTGAGCTGGGTGGCCCAACGAGCCACCCGCGATCATCGCACGCCAGCTCAACGTG CCTTGCATCGTCGCATCCGGCGCCGGCATCAAGGACATCAAGTCCGGCGAAAAGGTGCTT ATCGACGCAGCCTCGCCACCATTGACCGCAACGCGGACGAAGCTGAAGCAACCAAGCTC GTCTCCGAGTCCCTCGAGCGCGCTGCTCGCATCGCCGAGTGGAAGGGTCCTGCACAAACC AAGGACGGCTACCGCGTTCAGCTGTTGGCCAACGTCCAAGACGGCAACTCTGCACAGCAG GCTGCACAGACCGAAGCAGAAGGCATCGGCCTGTTCCGCACCGAACTGTGCTTCCTTTCC GCCACCGAAGAGCCAAGCGTTGATGAGCAGGCTGCGGTCTACTCAAAGGTGCTTGAAGCA TTCCCAGAGTCCAAGGTCGTTGTCCGCTCCCTCGACGCAGGTTCTGACAAGCCAGTTCCA TTCGCATCGATGGCTGATGAGATGAACCCAGCACTGGGTGTTCGTGGCCTGCGTATCGCA CGTGGACAGGTTGATCTGCTGACTCGCCAGCTCGACGCAATTGCGAAGGCCAGCGAAGAA CTCGGCCGTGGCGACGACGCCCCAACCTGGGTTATGGCTCCAATGGTGGCTACCGCTTAT >RXA01244-downstream TAAACCACTGTTGAGCTAAAAAG

>RXA01299

ATGGAARTCATGGCCGCATCATGGCAGCTGGCATGGTCCCACCAATGGCGTTTCTCCATT GCTACCCTGCTGGCCAAGAAGCTGTTCACCCCAGCAGAGCAAGAAACGGCAAGTCTTCC TGGCTGCTTGGCCTGCCATTCGTCTCGAAGGTGCCATCCCATTCGCGCAGCTGACCA TTCCGTGTGTATCCCAGCAATGATGGCTGGCGTGCACCACTGGTGCAATCTCCATGCCA CTGGGCGTCGGGCTCCACAGGGGGTATCTTCGTGGTCGAGCAATCGAACCA TGGTGGGCTGGCTCATCGCACTTGCAGCAGGCACCATCGTGTCCACCATCGTTGTCATC GCACTGAAGCAGTTCTGCCCAACCAAGGCCGTTCGCTGCAGAAGTCGCGAAGCAAGAAGAAGCA CAACAAGCAGCTGTAAAGCAC

>RXA01299-downstream TAATCGGACCTTGACCCGATGTC

>RXA01300-upstream

>RXA01300

>RXA01300~downstream TAAACAACGCTCTGCTTGTTAAA

>RXA01503-upstream

GTATCCTCAAAGGCCTTCTAGCTGTTGCAGCTGCAGCGCACTCGGTGGATACGACATCCA CGACCTATCAAATTCTTTATGCTGCAGGCGATGCCTTTTC

>RXA01503

APOTTCTTGGCAGTCATTTTGGCAGTTACTGGGGCTCGTAAATTGGGTGCCAAAGTCTTT ACATCAGTCGCACTGGTGGTGCATTGCTGCACACACAGCTTCAGGCAGTAACGTGTTG GTTGACGGTGAACTCCAGTCGATGACTCTGGTGGCTTTCCAAAAGGCTGGTAATGACGTC ACCTTCCTGGGCATTCCAGTGGTGCTGCAGTTGCATGTAGCGAGTTTGATGAAA TTTCTGCGCA

>RXA01503-downstream TAAGAGGAGGGGCGTGTCGGTCT

>RXA01883-upstream

CGACTGCGGCGTCTCTTCCTGGCACTACCATTCCTCGTCCTGACCAACTCGCCACAGCTG GTGCAACGGTCACCCAAGTCAAAGGATTGAAAGAATCAGC

>RXA01883

ATGAATAGCGTAAATAATTCCTCGCTTGTCCGGCTGGATGTCGATTTCGGCGACTCCACC

>RXA01889-upstream

 $\label{eq:condition} \mbox{ACCGAGCTGCAGCTGCGGCGGCGGCGTTGTTAAGAGTGGGGCGGCGTCGAC} \mbox{AAGCGTTACTCGTATC}$

>RXA01889

>RXA01943

>RXA01943-downstream TAACCTGGGATCCATGTTGCGCA

>RXA02191-upstream

>RXA02191

ATGGCGTCCAAACTGACGACGACATCGCAACATATTCTGGAAAACCTTGGTGGACCAGAC AATATTACTTCGATGACTCACTGTGCGACTCGCCTTCGCTTCCAAGTGAAGGATCAATCC ATTGTTGATCAACAAGAAATTGACTCCGACCCATCAGTTCTTGGCGTAGTACCCCAAGGA TCCACCGGTATGCAGGTGGTGGTGGATCTGTTGCAAACTATTACCAAGAAATCCTC AAACTTGATGGAATGAAGCACTTCGCCGACGGTGAAGCTACAGAGAGTTCATCCAAGAAG GAATACGGCGGAGTCCGTGGCAAGTACTCGTGGATTGACTACGCCTTCGAGTTCTTGTCT GATACTTTCCGACCAATCCTGTGGGCCCTGCTTGGTGCCTCACTGATTATTACCTTGTTG GTTCTTGCGGATACTTTCGGTTTGCAAGACTTCCGCGCTCCAATGGATGAGCAGCCTGAT ACTTATGTATTCCTGCACTCCATGTGGCGCTCGGTCTTCTACTTCCTGCCAATTATGGTT GGTGCCACCGCAGCTCGAAAGCTCGCCCCAAACGAGTGGATTGGTGCAGCTATTCCAGCC GCACTTCTTACTCCAGAATTCTTGGCACTGGGTTCTGCCGGCGATACCGTCACAGTCTTT GGCCTGCCAATGGTTCTGAATGACTACTCCGGACAGGTATTCCCACCGCTGATTGCAGCA ATTGGTCTGTACTGGGTGGAAAAGGGACTGAAGAAGATCATCCCTGAAGCAGTCCAAATG GTGTTCGTCCCATTCTTCTCCCTGCTGATTATGATCCCAGCGACCGCATTCCTGCTTGGA CCTTTCGGCATCGGTGTTGGTAACGGAATTTCCAACCTGCTTGAAGCGATTAACAACTTC AGCCCATTTATTCTTTCCATCGTTATCCCATTGCTCTACCCATTCTTGGTTCCACTTGGA TTGCACTGGCCACTAAACGCCATCATGATCCAGAACATCAACACCCTGGGTTACGACTTC ATTCAGGGACCAATGGGTGCCTGGAACTTCGCCTGCTTCGGCCTGGTCACCGGCGTGTTC TTGCTCTCCATTAAGGAACGAAACAAGGCCATGCGTCAGGTTTCCCTGGGTGGCATGTTG

GCTGGTTTGCTCGGCGGCATTTCCGAGCCTTCCCTCTACGGTGTTCTGCTCCGATTCAAG

>RXN01244-upstream

GATATGTGTTTGTCTAATATCCAAATGTTTGAATAGTTGCACAACTGTTGGTTTTGT GGTGATCTTGAGGAAATTAACTCAATGATTGTGAGGATGG

>RXN01244

GTGGCTACTGTGGCTGATGTGAATCAAGACACTGTACTGAAGGGCACCGGCGTTGTCGGT GGAGTCCGTTATGCAAGCGCGGTGTGGATTACCCCACGCCCCGAACTACCCCAAGCAGGC GAAGTCGTCGCCGAAGAAACCGTGAAGCAGAGCAGAGCGTTTCGACGCCGCTGCAGCC ACAGTCTCTCTCGTTTGCTTGAGCGCTCCGAAGCTGCTGAAGGACCAGCAGCTGAGGTG GTCAAGGGTGGTCACCCTGCGGAATACGCCGTGGTTGCAGCAACAACCAAGTTCATCTCC ATGTTCGAAGCCGCAGGCGGCCTGATCGCGGAGCGCACCACAGACTTGCGCGACATCCGC GACCGCGTCATCGCAGAACTTCGTGGCGATGAAGAGCCAGGTCTGCCAGCTGTTTCCGGA CAGGTCATTCTCTTTGCAGATGACCTCTCCCCAGCAGACACCGCGGCACTAGACACAGAT CTCTTTGTGGGACTTGTCACTGAGCTGGGTGGCCCAACGAGCCACACCGCGATCATCGCA CGCCAGCTCAACGTGCCTTGCATCGTCGCATCCGGCGCCGGCATCAAGGACATCAAGTCC GGCGAAAAGGTGCTTATCGACGGCAGCCTCGGCACCATTGACCGCAACGCGGACGAAGCT GAAGCAACCAAGCTCGTCTCCGAGTCCCTCGAGCGCGCTGCTCGCATCGCCGAGTGGAAG GGTCCTGCACAAACCAAGGACGGCTACCGCGTTCAGCTGTTGGCCAACGTCCAAGACGGC AACTCTGCACAGCAGGCTGCACAGACCGAAGCAGAAGGCATCGGCCTGTTCCGCACCGAA CTGTGCTTCCTTTCCGCCACCGAAGAGCCAAGCGTTGATGAGCAGGCTGCGGTCTACTCA AAGGTGCTTGAAGCATTCCCAGAGTCCAAGGTCGTTGTCCGCTCCCTCGACGCAGGTTCT GACAAGCCAGTTCCATTCGCATCGATGGCTGATGAGATGAACCCAGCACTGGGTGTTCGT GGCCTGCGTATCGCACGTGGACAGGTTGATCTGCTGACTCGCCAGCTCGACGCAATTGCG AAGGCCAGCGAAGAACTCGGCCGTGGCGACGACGCCCCAACCTGGGTTATGGCTCCAATG GTGGCTACCGCTTATGAAGCAAAGTGGTTTGCTGACATGTGCCGTGAGCGTGGCCTAATC GCCGGCGCCATGATCGAAGTTCCAGCAGCATCCCTGATGGCAGACAAGATCATGCCTCAC CTGGACTTTGTTTCCATCGGTACCAACGACCTGACCCAGTACACCATGGCAGCGGACCGC GCAGCAGACCCACTGTTGGCAACTGTCCTCACCGGTCTTGGCGTGAACTCCCTGTCCGCA GCATCCACTGCTCTCGCAGCAGTCGGTGCAAAGCTGTCAGAGGTCACCCTGGAAACCTGT AAGAAGGCAGCAGAAGCACCTTGACGCTGAAGGTGCAACTGAAGCACGCGATGCTGTA CGCGCAGTGATCGACGCAGCAGTC

>RXN01244-downstream TAAACCACTGTTGAGCTAAAAAG

>RXN01299-upstream

 $\tt CGACTGCGGCGTCTCTTCCTGGCACTACCATTCCTCGTCCTGACCAACTCGCCACAGCTGGCGAACGGTCACCCAAGTCAAAGGATTGAAAGAATCAGC$

>RXN01299

 CTCGGCTGGGGCAAGCGCATCCAGCAGGCAGTCATGACCGGCGTGTCCTACATGGTTCCA TTCGTAGCTGCCGGCGGCCTCCTGTTGGCTCTCGGCTTCGCATTCGGTGGATACGACATG GCGAACGGCTGGCAAGCAATCGCCACCCAGTTCTCTCTGACCAACCTGCCAGGCAACACC GTCGATGTTGACGGCGTGGCCATGACCTTCGAGCGTTCAGGCTTCCTGTTGTACTTCGGC GCAGTCCTGTTCGCCACCGGCCAAGCAGCCATGGGCTTCATCGTGGCAGCCCTGTCTGGC TACACCGCATACGCACTTGCTGGACGCCCAGGCATCGCCGGGCTTCGTCGGTGGCGCC ATCTCCGTCACCATCGGCGCTGGCTTCATTGGTGGTCTGGTTACCGGTATCTTGGCTGGT CTCATTGCCCTGTGGATTGGCTCCTGGAAGGTGCCACGCGTGGTGCAGTCACTGATGCCT GTGGTCATCATCCCGCTACTTACCTCAGTGGTTGTTGGTCTCGTCATGTACCTCCTGCTG GGTCGCCCACTCGCATCCATCATGACTGGTTTGCAGGACTGGCTATCGTCAATGTCCGGA AGCTCCGCCATCTTGCTGGGTATCATCTTGGGCCTCATGATGTGTTTCGACCTCGGCGGA CCAGTAAACAAGGCAGCCTACCTCTTTGGTACCGCAGGCCTGTCTACCGGCGACCAAGCT TCCATGGAAATCATGGCCGCGATCATGGCAGCTGGCATGGTCCCACCAATCGCGTTGTCC ATTGCTACCCTGCTGCGCAAGAAGCTGTTCACCCCAGCAGAGCAAGAAAACGGCAAGTCT TCCTGGCTGCTTGGCCTGGCATTCGTCTCCGAAGGTGCCATCCCATTCGCCGCAGCTGAC CCATTCCGTGTGATCCCAGCAATGATGGCTGGCGGTGCAACCACTGGTGCAATCTCCATG GCACTGGGCGTCGGCTCTCGGGCTCCACACGGCGGTATCTTCGTGGTCTGGGCAATCGAA CCATGGTGGGGCTGGCTCATCGCACTTGCAGCAGGCACCATCGTGTCCACCATCGTTGTC ATCGCACTGAAGCAGTTCTGGCCAAACAAGGCCGTCGCTGCAGAAGTCGCGAAGCAAGAA GCACAACAAGCAGCTGTAAACGCA

>RXN01299-downstream TAATCGGACCTTGACCCGATGTC

>RXN01943-upstream

CCGATTCTTTTTCGGCCCAATTCGTAACGGCGATCCTCTTAAGTGGACAAGAAAGTCTCT TGCCCGCGGGAGACACAACCCTACGTTTAGAAAGGTTTGAC

>RXN01943

ATGGCGTCCAAACTGACGACGACATCGCAACATATTCTGGAAAACCTTGGTGGACCAGAC AATATTACTTCGATGACTCACTGTGCGACTCGCCTTCGCTTCCAAGTGAAGGATCAATCC ATTGTTGATCAACAAGAAATTGACTCCGACCCATCAGTTCTTGGCGTAGTACCCCAAGGA TCCACCGGTATGCAGGTGGTGATGGGTGGATCTGTTGCAAACTATTACCAAGAAATCCTC AAACTTGATGGAATGAAGCACTTCGCCGACGGTGAAGCTACAGAGAGTTCATCCAAGAAG GAATACGGCGGAGTCCGTGGCAAGTACTCGTGGATTGACTACGCCTTCGAGTTCTTGTCT GATACTTTCCGACCAATCCTGTGGGCCCTGCTTGGTGCCTCACTGATTATTACCTTGTTG GTTCTTGCGGATACTTTCGGTTTGCAAGACTTCCGCGCTCCAATGGATGAGCAGCCTGAT ACTTATGTATTCCTGCACTCCATGTGGCGCTCGGTCTTCTACTTCCTGCCAATTATGGTT GGTGCCACCGCAGCTCGAAAGCTCGGCGCAAACGAGTGGATTGGTGCAGCTATTCCAGCC GCACTTCTTACTCCAGAATTCTTGGCACTGGGTTCTGCCGGCGATACCGTCACAGTCTTT GGCCTGCCAATGGTTCTGAATGACTACTCCGGACAGGTATTCCCACCGCTGATTGCAGCA ATTGGTCTGTACTGGGTGGAAAAGGGACTGAAGAAGATCATCCCTGAAGCAGTCCAAATG GTGTTCGTCCCATTCTTCTCCCTGCTGATTATGATCCCAGCGACCGCATTCCTGCTTGGA CCTTTCGGCATCGGTGTTGGTAACGGAATTTCCAACCTGCTTGAAGCGATTAACAACTTC AGCCCATTTATTCTTTCCATCGTTATCCCATTGCTCTACCCATTCTTGGTTCCACTTGGA TTGCACTGGCCACTAAACGCCATCATGATCCAGAACATCAACACCCTGGGTTACGACTTC ATTCAGGGACCAATGGGTGCCTGGAACTTCGCCTGCTTCGGCCTGGTCACCGGCGTGTTC TTGCTCTCCATTAAGGAACGAAACAAGGCCATGCGTCAGGTTTCCCTGGGTGGCATGTTG GCTGGTTTGCTCGGCGGCATTTCCGAGCCTTCCCTCTACGGTGTTCTGCTCCGATTCAAG AAGACCTACTTCCGCCTCCTGCCGGGTTGTTTGGCAGGCGGTATCGTGATGGGCATCTTC GACATCAAGGCGTACGCTTTCGTGTTCACCTCCTTGCTTACCATCCCAGCAATGGACCCA TGGTTGGGCTACACCATTGGTATCGCAGTTGCATTCTTCGTTTCCATGTTCCTTGTTCTC GCACTGGACTACCGTTCCAACGAAGAGCGCGATGAGGCACGTGCAAAGGTTGCTGCTGAC AAGCAGGCAGAAGAAGATCTGAAGGCAGAAGCTAATGCAACTCCTGCAGCTCCAGTAGCT GCTGCAGGTGCGGGAGCCGGTGCAGGTGCAGGAGCCGCTGCTGGCGCTGCAACCGCCGTG GCAGCTAAGCCGAAGCTGGCCGCTGGGGAAGTAGTGGACATTGTTTCCCCACTCGAAGGC AAGGCAATTCCACTTTCTGAAGTACCTGACCCAATCTTTGCAGCAGGCAAGCTTGGACCA GGCATTGCAATCCAACCAACTGGAAACACCGTTGTTGCTCCAGCAGACGCTACTGTCATC CTTGTCCAGAAATCTGGACACGCAGTGGCATTGCGCTTAGATAGCGGAGTTGAAATCCTT GTCCACGTTGGATTGGACACCGTGCAATTGGGCGGCGAAGGCTTCACCGTTCACGTTGAG TCCAAGGATCTACCTTTGATCACCCCAGTTGTGGTGTCTAACGCCGCGAAATTCGGTGAA ATTGAAGGTATTCCTGCAGATCAGGCAAATTCTTCCACGACTGTGATCAAGGTCAACGGC AACAACGAG

>RXN01943-downstream TAACCTGGGATCCATGTTGCGCA

>RXN03002-upstream

 ${\tt GGAACTTCGAGGTGTCTTCGTGGGGCGTACGGAGTCTAGCAAGTGTGGCTTTATGTTTGACCCTATCCGAATCAACATGCAGTGAATTAACATCTACTT}$

>RXN03002

ANOTHTOTACHAAGATCTGCTAAAGGCAGAACGCATAGGACTGGACCGGCAGGTCACC
GATTGGCGTGAGGCATCCGGCCGCAGGGTGTACCCTAGAAAGACAAACAGCATTACT
TCCGCCTACACCGATGCCATGATCGCCAGCGTGGAAGAAAAAGACGCCTTACTTGTGGTC
GCTCCAGGTTTGCGCTCGCGCCCGCCCCAGCAGAGCACTCCCGAGACGCCTACCT
TCGTGGTGGCCCTGCCCCCCTGTTTCCTTCGTCACAGTAAGAATGATCCCCTCAAT
CTCATCGTTGCTCTCCCTCCCAAGATGCCACCGCCATACCCAAGCGATGCGGGCATTG
GCTAAAGCTTTAGGAAAATTACCCAAAGGATCCCACAGGCACAAGCCATACCCA

RXS00315 - upstream

RXS00315

ATGGCGATGGTGTCCCGAGCTTGGTGAACGGCTACGACGTGGCCGCCACCATGGCTGCGGGCGAAATG CCAATGTGGTCCCTGTTTGGTTTAGATGTTGCCCAAGCCGGTTACCAGGGCACCGTGCTTCCTGTGCTG GTGGTTTCTTGGATTCTGGCAACGATCGAGAAGTTCCTGCACAAGCGACTCAAGGGCACTGCAGACTTC CTGATCACTCCAGTGCTGACGTTGCTCACCGGATTCCTTACATTCATCGCCATTGGCCCAGCAATG CGCTGGGTGGGCGATGTGCTGGCACACGGTCTACAGGGACTTTATGATTTCGGTGGTCCAGTCGGCGGT CTGCTCTTCGGTCTGGTCTACTCACCAATCGTCATCACTGGTCTGCACCAGTCCTTCCCGCCAATTGAG CTGGAGCTGTTTAACCAGGGTGGATCCTTCATCTTCGCAACGGCATCTATGGCTAATATCGCCCAGGGT GCGCATGTTTGGCAGTGTTCTTCCTGGCGAAGAGTGAAAAGCTCAAGGGCCTTGCAGGTGCTTCAGGT GTCTCCGCTGTTCTTGGTATTACGGAGCCTGCGATCTTCGGTGTGAACCTTCGCCTGCGCTGCCGTTC TTCATCGGTATCGGTACCGCAGCTATCGGTGGCGCTTTGATTGCACTCTTTAATATCAAGGCAGTTGCG TTGGGCGCTGCAGGTTTCTTGGGTGTTTCTATTGATGCTCCAGATATGGTCATGTTCTTGGTGTGT GCAGTTGTTACCTTCTTCATCGCCTTCGCCCCAGCGATTGCTTATGGCCTTTACTTGGTTCGCCGCAAC GGCAGCATTGATCCAGATGCAACCGCTGCTCCAGTGCCTGCAGGAACGACCAAAGCCGAAGCAGAAGCA CCCGCAGAATTTTCAAACGATTCCACCATCATCCAGGCACCTTTGACCGGTGAAGCTATTGCACTGAGC CAGTTAGTTTCTCCGGTGAGTGGAAAGATTGTGGTGGCATTCCCATCTGGCCATGCTTTCGCAGTTCGC ACCAAGGCTGAGGATGGTTCCAATGTGGATATCTTGATGCACATTGGTTTCGACACAGTAAACCTCAAC GGCACGCACTTTAACCCGCTGAAGAAGCAGGGCGATGAAGTCAAAGCAGGGGAGCTGCTGTGTGAATTC GATATTGATGCCATTAAGGCTGCAGGTTATGAGGTAACCACGCCGATTGTTTTTCGAATTACAAGAAA ACCGGACCTGTAAACACTTACGGTTTGGGCGAAATTGAAGCGGGAGCCAACCTGCTCAACGTCGCAAAG AAAGAAGCGGTGCCAGCAACACCA

RXS00315 - downstream TAAGTTGAAACCTTGAGTGTTCG

RXC00953 - upstream CTTGCATTCCCCA

RXC00953 -

 RXC00953 - downstream TAAGATCTCCAAAACCCTGAGAT

BXC03001 -

APPENDIX B: AMINO ACID SEQUENCES

- > RXA00315 (1-1086, translated) 362 residues
 YDFGGPVGGL LFGLVYSPIV ITGLHQSFPP IELELFNQGG SFIFATASMA NIAQGAACLA
 VFFLAKSEKL KGLAGASGVS AVLGITEPAI FGVNLRLRWP FFIGIGTAAI GGALIALFNI
 KAVALGAAGF LGVVSIDAPD MVMFLVCAVV TFFIAFGAAI AYGLYLVRRN GSIDPDATAA
 FVPAGTTKAE AEAPAEFSND STIIQAPLTG EAIALSSVSD AMFASGKLGS GVAIVPTKGQ
 LVSPVSGKIV VAFPSGHAFA VRTKABDGSN VDILMHIGFD TVNLNGTHFN PLKKQGDEVK
 AGELLCEFDI DAIKAAGYEV TTPIVVSNYK KTGPVNTYGL GEIEAGANLL NVAKKEAVPA
- > RXA00951 (1-393, translated) 131 residues IOAILEKAAA PAKOKAFAVA PAYTPTDAPA ASVOSKTHOK ILTVCGNGLG TSLFLKNTLE QVFDTWGWGP YMTVEATDTI SAKGKAKEAD LIMTSGEIAR TLGDVGIPVH VINDFTSTDE IOAALRERYD I
- > RXA01244 (1-1509, translated) 503 residues

 LLERSEAREG PAAEVLKATA GMVNDRGWRK AVIKGVKGGH PAEYAVVAAT TKFISMFEAA

 GGLIAERTID LRDIRRRVIA ELRGBEEPGL PAVSGQVILF ADDLSPADTA ALDTDLFVGL

 VIELGGETSH TAIIARQLNV PGIVASGAGI KDIKSGEKVL IDGSLGTIDR NADEAEATKL

 VSESLERAR IAEWKEPAQT KOGRNVQLLA NVODGNSAQO AAOTEAGIG LFREICCFLS

 ATESPSVDEQ AAVYSKVLEA FFESKVVVRS LDAGSDKPVP FASMADEMNP ALGVRGLRIA

 RGQVDLLTRQ LDAIAKASEE LGRGDDAPTW VMAPMVATAY EAKWFADMCR ERGLIAGAMI

 EVPAASLMAD KIMPHLDFVS IGTNDLTQYT MAADRWSPEL AYLTDPWQPA VLRLIKHTCD

 GGARRNTPVG VCGEAAADPL LATVLTGLGV NSLSAASTAL AAVGAKLSEV TLETCKKAAE

 AALDAEGATE ARDAVRAVID AAV
- > RXA01299 (1-441, translated) 147 residues MEIMAAIMAA GMVPPIALSI ATLLKKLIT PAEQENCKSS WLLGLAFVSE GAIPFAAADP FRVIPAMMAG GATTGAISMA LGVGSRAPHG GIFVVWAIEP WWGWLIALAA GTIVSTIVVI ALKQFWPNKA VAAEVAKQEA QQAAVNA
 - > RXA01300 (1-267, translated) 89 residues MASKTVTVGS SVGLHARPAS IIAEAAAEYD DEILLTLVGS DDDEETDASS SLMIMALGAE HGMEVTVTSD NAEAVEKIAA LIAQDLDAE
 - > RXA01503 (1-249, translated) 83 residues MFLAVILAIT AARKEGANVE TSVALAGALL HTQLQAVTVL VDGELQSMTL VAFQKAGNDV TFLGIPVVLO LALHVASLMK LSR
 - > RXA01883 (1-480, translated) 160 residues MNSVNNSSLV RLDVDFCOBT TDVINNLATV IFDAGRASSA DALAKDALDR EAKSGTGVPG QVAIPHCRSE AVSVPTLGFA RLSKGVDFSG PDGDANLVFL IAAPAGGGKE HLKILSKLAR SLVKKDFIKA LOEATTEQEI VDVVDAVLNP APKNIRASCS
 - > RXAO1889 (1-555, translated) 185 residues
 VAITACPTGI AHTYMAADSL TQNAEGRDDV ELVVETQGSS AVTPVDPKII EAADAVIFAT
 DVGVKDRERF AGKEVIESGV KRAINEPAKM IDEAIAASKN PNARKVSGSG VAASAETTGE
 KLGNGKRIQQ AVMTGVSYMV PFVAAGGILL ALGFAFGGYD MANGWQAIAT QFSLTNLPGN
 TUNVD
 - > RXA01943 (1-405, translated) 135 residues PDPIFAAGKL GFGIAIQPTG NTVVAPADAT VILVQKSGHA VALRLDSGVE ILVHVGLDTV QLGGEGFTVH VERRQQVKAG DPLITFDADF IRSKDLPLIT PVVVSNAAKF GEIEGIPADQ ANSSTTVIKV NGKNE
 - > RXA02191 (1-1239, translated) 413 residues
 MASKLTTSQ HILENLGGPD NITSMTHCAT RLRFQVKDQS IVDQQEIDSD PSVLGVVPQG
 STGMQVVMGG SVANYYQEIL KLDGMKHFAD GEATESSSKK EYGGVRGKYS WIDYAFEFLS
 DTFRFILMAL LGASLIITLL VLADTFGLQD FRAPMDEQPD TVVFLSMMR SVFYFLPIMV
 GATAARKUGA NEWIGAAIPA ALLTPEFLAL GSAGDTVTVF GLPWLNDYS GOVPPLIAA

IGLYWYEKGL KKIIPEAVQM VFVPFFSLLI MIPATAFLLG PRGIGVGRGI SNLLEAINNF SPPILSIVIP LIYPEIVERG LHMPLNAIMI QNINTLGYDF IQGPWGAWNF ACFGLVTGVF LLSIKERNKA MRQVSLGGML AGLLGGISEP SLYGVLLRFK KYYFRLDEGC LAA

>RXN01244 TRANSLATE of: rxn01244.seq check: 8583 fcom: 1 to: 1704
VATVADVNDOTVLKGTGVVGGVRYASAVMITPRPELPQAGEVVAEDNREAGQERFDAAAA
TVSSKLLERSERAAEGPAEVLKATAGMVNDRGWRKAVIKGVKGHPAEVAVVAATTKTS
MFEAAGGLIAERTTDLRDIRDRVLAELRGDEEGCLEAVSGQVILFADDLSPADTAALDTD
LEVGLVTELGGETSHTAIIARQLNVPCIVASGAGIKDIKSGEKVLIDGSLGTIDRNADEA
EATKLVSESLERAARIAEMKGPAQTKDGYRVQLIANVQDGNSAQQAAQTEAEGIGLFRTE
LGFLSATEEBSVDEQAAVYSKVLEAPESKVVVRSLDAGSDKEVPFASMADEMMPALGVR
GIELIARGQVDLITRQLDAIAKASSELIGRGDDATTWVARAMVATYSEKMFADMCRERGLI
AGAMIEVPAASLMADKIMPHLDFVSIGTNDLTQYTMAADRMSPELAYLTDPMQPAVLRLI
KHTCDEGARTNTFVGVGCEAAADPDLATVLTGLGVNSLSAASTALAAVGAKLSEVTLETC
KKRABAALDAEGSTEARDAVRAVIDAAV

>RXN01299 TRANSLATE of: rxn01299.seq check: 4359 from: 1 to: 2064 MNSVNNSSLVRLDVDFCDSTTDVINNLATVIFDAGRASSADALAKDALDREAKSGTGVPG GVAIPHCRSEAVSVPTIGFARLSKGVDFSGPDGDANLVFLIAAPAGGKEHLKILSKLAR SLVKKDFIKALQEATTEQEIVDVVDAVLNPAPKTTEPAAPAAPAVAESGAASTSVTRIV ALTACPTGIAHTYMAADSLTQNAEGGDDVELVVETOGSSAVTPVDPHIIEADADVIFATD VGVKDRERFAGKPVIESGVKRAINEPAKMIDEAIAASKNPNARKVSGSGVAASAETTGEK LGWCKRIQQAVMTCVSYMVPFVAAGGLLLALGFAFGGYDMANGWQAIATGFSLTNLPGNT VDVDGVAWTPERSGFLLYFGAGVLFATGQAAMGFIVAALSGYTAYALAGRFGIAPGFVGGA ISVIIGAGFIGGUTGILAGLIALWIGSMKVPRVVQSIMPVVIIFLLTSVVVGLVWYLLL GRPLASIMTGLQDMLSSMSGSSAILLGILGLMMCFDLGGPVNKAAVLFGTGAGISTGDQA SMEIMAAIMAGGATTGAISMALGVGSRAPHGGIFVWAILGAFVSEGAIPFAAAD PFRVIPAMMAGGATTGAISMALGVGSRAPHGGIFVWAILEPWMGWLIALAAGTIVSTIVV IALKOFFMKAVAAEVAKAPAQAQAAVOR

>RXN01943 TRANSLATE of: rxn01943.seq check: 1650 from: 1 to: 2049
MASKLTTTSQHILENLGGPDNITSMTHCATKLRGVKDQSIJDQGEIDSDSVIJGVVPQG
STGMQVVMGGSVBNYQGLIKLDGMKHFADGEATESSSKKEYGGVRGKYSMIDYAFEFLS
DTFPPILMALLGASLITTLLVLADTFGLQDFRAFMDBOPDTVVFLHSMWRSVFYFLPIMV
GATAARKLGANEWIGAAIPAALLTPEFLALGSAGDTVTVFGLPMVLNDYSGQVPPPPLIAA
IGLYWVEKGLKKIPEAVQMVFVPFFSLLIMIPATAFLLGPFGIGVGNGISNLLEAINNF
SPFILSIVIPLLYPFLVPLGLHMPLNAIMIQNINTLGYDFIQFMGAMNFACTGLVTGVF
LLSIKERNKAMQVSLGGMLAGILGGISEPSLYGVLHFKFKTYFFLHDEGCLAGGIVMGIF
DIKAYAFVFTSLLTIPAMDPRLGYTIGIAVAFFVSMETULALDYRSNEERDEARAKVAAD
KQAEEDLKAEANATPAAPVAAAGAGAGAGAGAAAGAATAVAAKPKLAAGEVVDIVSPLEG
KAIPLSEVPDPIFAAGKLGPGIAIQPTGNTVVAPADATVILVQKSGHAVALRLDSGVEIL
VHVGLDTVQLGGGGTVHVERRQQVKAGDPLITFDADFIRSKDLPLITPVVVSNAAKFGE
IEGIPADOANSSTTVIKVNGKNE

>RXN03002 TRANSLATE of: rxn03002.seq check: 5800 from: 1 to: 408 MFVLKDLLKAERIELDRTVTDWREGIRAAGVLLEKTNSIDSAYTDAMIASVEEKOPYIVV APGFAFAHARPSRAVRETAMSWVRLASPVSFGHSKNDPLNLIVALAAKDATAHTQAMAAL AKALKKYRKDLDZAOS

>RXS00315 TRANSLATE of: RXS00315.seq check: 1474 from: 1 to: 1404 MAMVFPSLVNGYDVAATMAAGEMPMNSLFGLDVAQAGYQCTVLPVLVVSNILATIEKFHKRLKGTADF LITPUITLLIGGITFIAIGPAMRWGDVLÄHGLQGLYDFGGEVGGLLEGLYSPIVITGLIGSFPPIL ELLFNQGGSFIFATASMANIAQGAACLAVFFLAKSEKLKGLAGASGVSAVLGITEPAIFGVNLRLRWFFFIGIGTAAIGGALTALFRIKAVALGAAGFLGVVSIDAEDMYMFLVGAVVTFFIAFGAAIAYGLIVTROSIDDFATAAPVPAGTTKAEAGSRNDSTIIQAPLTGEAIALSSVSDAMFASGKLGSGVAIVPTKG QLVSEVSGKIVVAFPSGHAFAVRTTKAEDGSNVDLIMHIGFDTVNLKGTHFNPLKKQGDEVKAGELLCEFDIDAIKAGVEVTTFIVONYKKTEPVNTYGLGEIBAGANLLNVAKKEAVPATP

>RXC00953 TRANSLATE of: RXC00953.seq check: 8687 from: 1 to: 753

MAPPTVGNYIMQSPTQGLQFGVAVAVILFGVRTILGELVPAPQGIAAKVVPGAIPALDAPIVFPYAQNA VLIGFLSSFVGGLVGLTVLASMLNPAFGVALILPGLVPHFFTGGAAGVYGNATGGRRGAVFGAFANGLL ITFLPAFLLGVLGSFGSENTTFGGADFGWFGIVVGSAAKVEGAGGLILLLIIAAVLLGGAMVFQKRVVN GHWDPAPNREKVEKAEADATPTAGARTYPKIAPPAGAFTPPARS

>RXC03001 TRANSLATE of: RXC03001 .seq check: 9853 from: 1 to: 453 MDMLITPLFUNNELLAYPAFLIGIITAVGLGAMGRSVCQVIGGAIKATLGFLLIGAGATLVTASLEPLG AMIMGATGMRGVVPTNEAIAGIAQAEYGAQVAWLMILGFAISLVLARFTNLRYVLLNGHHVLLMCTMLT MVLATGRVDAWIF