Prime specification

Shigeo Hattori

November 9, 2019

First version: November, 2019

bayship.org@gmail.com

https://github.com/bayship-org/mathematics

1 Notations

Definition 1.1.

"And" is also written as " $_{and} \wedge$ ". "Or" is also written as " $_{or} \vee$ ".

 $(x \ _{and} \land y)$ is not commutative because y possibly depends on x. $(x \ _{or} \lor y)$ is not commutative because y possibly depends on $\neg x$.

2 Introduction

All definition D of variables is said a **variable context**. More precisely, D must be a sequence of sub definitions of which each defines exactly one variable. And all terms of D must be pairwise in order of dependencies, i.e., the dependent appears later. All variable context V is said **independent** if all term is only dependent of terms in V.

All independent variable context V is also said an **antecedent context**. All variable context V is said a **consequent context** of an antecedent context A if ((A followed by C) is independent as a new variable context).

In the rest of this section, take $\forall (A,C)$ as an antecedent context A and a 11 consequent context C of A.

13

6

7

8

Take $\forall x$ as a variable of A. Then x is said specified if x represents exactly one	14 15	
entity.		
For example, $x := 1$ then x is said specified; $\forall x :\in \mathbb{N}$ then x is not specified; let x be a point then x is not specified.		
a be a point then a is not specified.	17 18	
Take $\forall x$ as a variable of C . Then x is said specified relatively to A if (19	
x represents exactly one entity if you assume that all variables of A are specified	20	
).	21	
For example, let A define $\forall n:\in\mathbb{N}$ and C define $x:=n+1$. Then x is specified	22	
relatively to A because if n had been specified in A then x represented exactly	23	
one natural number.	24	
	25	
Take $\forall (p, x)$ as (a propositional function p which takes exactly one argument)	26	
and (a variable x of C such that x is specified relatively to A).	27	
Then x is said p -prime if (28	
there exists $\exists C_x$ as a consequent context of A such that	29	
$(*1_{and} \land *2_{and} \land *3)$	30	
).	31	
1. x is a variable of C_x .	32	
2. Take $\forall y$ such that (*s1 $_{and} \land$ *s2 $_{and} \land$ *s3).	33	
s1. y is a variable of C_x .	34	
s2. y is specified relatively to A	35	
s3. $p(y) = \text{true.}$	36	
3. Then $x = y$.	37	
	38	
For example, let A define that $\forall n :\in \mathbb{N}$ and let p state that x is a range on R.	39	
Then $(C \text{ can define } x \text{ as } p\text{-prime})$	40	
as $x := [n, n+1] :\subset R$.	41	
Notice that $n+1$ is specified before x in C . Though $p(n+1)$ =false.	42	
3 Prerequisite definitions	43	
GitHub:Minor_of_memBer.pdf	44	

In the article above, in its first two pages, all prerequisite definitions for this	45		
article are given. Especially, the second page of the above article defines that			
two memBers (x, y) are said $(x \text{ is a } \mathbf{minor} \text{ of } y)$.			
4 Conjecture	48		
	40		
Conjecture 4.1 (Conjecture).	49		
Take $\forall (n,X,T,M)$ as the Euclidean space (X,T,M) of n -dimension where X	50		
is the space, T is the topology and M is the metric table.	51		
As a remark, for the set of all orthogonal coordinate systems for the space, no	52		
special member is defined.	53		
Let $A := (n, X, T, M)$.	54		
Take all finitely countable set of consequent contexts of A .	55		
Denote it as $C_{i\in N\subset\mathbb{N}}^A$ where the index set N is a subset of N and the indexing			
is meant to be bijective.	57		
	58		
If $C_{i \in N}^A$ satisfies (*1 $_{and} \land \dots _{and} \land *3$)	59		
then $(\bigcap_{i\in N} x_i)$ is a minor of T .	60		
1. Let $p(x)$ be a propositional function as (61		
$\operatorname{space}(x) \subset X and \land x \text{ is a set}$	62		
).	63		
2. Take $\forall i :\in N$.	64		
3. There exists x_i such that (65		
C_i^A defines x_i as p-prime	66		
).	67		
5 Evennles			
5 Examples	68		
This section just gives examples of substituting actual values into variables of	69		
the main conjecture.	70		
	71		
	72		
Definition 5.1 (Unknot).			
For the main conjecture, this example substitutes values			
into (n, N, C_1) as $n := 3$; $N := \{1\}$; $C_1 := (*1 _{and} \land{and} \land *6)$.	74		
1. Let $k1$ be an unknot.	75		

2. Let $K := \{k \mid ((T, k), (T, k1)) \text{ are isomorphic } \}.$	76
3. Take $\forall k :\in C$.	77
4. $f1(k) := \{d \mid d \text{ is a proper knot diagram of } k\}.$	78
5. $f2(k) := \{r \mid$	79
$\exists d :\in f1(k) and \land$	80
r is the number of crossings on d	81
}.	82
6. $f(k) :=$ "the maximum number of $f2(k)$.	83
	8 4