Spectral Shape Analysis for 3D matching

Prof. Umberto Castellani, Simone Melzi and Riccardo Marin

UNIVERSITÀ di **VERONA**

SAPIENZA Università di Roma

DIFFERENTIAL GEOMETRY

Motivations

Study and Handle 3D object from real word that we generally denote with ${\mathcal X}$

Overview

The main goal of this part of the course is: to provide the general idea on the differential geometry necessary to study ${\mathcal X}$

All the definitions and constructions that we introduce in this course are valid on both the surfaces

metric on a space ${\mathcal X}$

a metric on a set ${\mathcal X}$ is defined as a function $d:{\mathcal X} imes{\mathcal X}\longrightarrow{\mathbb R}$ such that:

- 1) non negativity: $d(x_1,x_2) \geq 0$
- 2) indiscernability: $d(x_1,x_2)=0 \iff x_1=x_2$
- 3) symmetry: $d(x_1,x_2)=d(x_2,x_1)$
- 4) triangle inequality: $d(x_1,x_2)+d(x_2,x_3)\geq d(x_1,x_3)$

and if all these hold for all $\,x_1,x_2,x_3\in\mathcal{X}\,$

$$(\mathcal{X},d)$$
 is a metric space

distances

metric neighborhood of a point $x_0 \in \mathcal{X}$

Given a point $\,x_0\in\mathcal{X}\,$ we define a open/close neighborhood of $\,x_0$

 $B_r^{\, x_0} := \{ x \in \mathcal{X} | d(x_0, x) < r \}$ open:

 $ar{B}_r^{\,x_0}:=\{x\in\mathcal{X}|d(x_0,x)\leq r\}$ close:

In Euclidean spaces (\mathbb{R}^2) we have the norms:

$$\|x - x_0\|_2 < r \|x - x_0\|_1 < r \|x - x_0\|_\infty < r$$

$$\|x-x_0\|_{\infty} < r$$

open set

A set $A\subseteq\mathcal{X}$ is an **open set** of \mathcal{X} if: $orall x\in A$ there exists r>0 $s.\ t.\ B^x_r\subseteq A$

Properties of open sets:

- 1) the union of any number of open sets is an open set
- 2) the empty set is an open set
- 3) the intersection of a finite number of open sets is an open set

A topology for ${\mathcal X}$

A **topology** on the set \mathcal{X} is the collection of all its open subsets.

Remark:

metric

open sets

topology

A topology can be also defined independently from a metric through an axiomatic definition of the open sets.

The standard **topology** on shape is the one defined by the geodesic metric

function between sets

Given two sets $\mathcal{X} = \{x_1, \dots, x_n\}$ and $\mathcal{Y} = \{y_1, \dots, y_m\}$, a function $f : \mathcal{X} \longrightarrow \mathcal{Y}$ is a list of associations of every element from \mathcal{X} with an element of \mathcal{Y}

- lacksquare f is **injective** if $f(x_1) \neq f(x_2), \ \forall x_1, x_2 \in \mathcal{X} ext{ s. t. } x_1 \neq x_2.$
- lacksquare f is surjective if $\forall y \in \mathcal{Y} \Rightarrow \exists$ at least one $x \in \mathcal{X}$ s. t. f(x) = y.
- f is bijective if $\forall y \in \mathcal{Y} \Rightarrow \exists ! x \in \mathcal{X} \text{ s. t. } f(x) = y$. (= injective + surjective)

continuity

Definition: A function $f: \mathcal{X} \longrightarrow \mathcal{Y}$ is **continuous** if

Metric
$$orall \epsilon > 0 ext{ exists a } \delta > 0 ext{ s. t.} \ d_{\mathcal{Y}}(f(x),f(x')) < \epsilon \ \ orall x,x' \in \mathcal{X} ext{ and } d_{\mathcal{X}}(x,x') < \delta$$

the previous 2 definitions are equivalent continuity is a local property

1.Differential Geometry

10

homeomorphisms

A **bijective** function is a function for which exists *one and only one* **image** for each point in the **domain** and *one and only one* **preimage** for each point in the **codomain**

Definition: A homeomorphism is a bijective and continuous function with an inverse that is also continuous

Definition: Two domains for which exists an homeomorphism are **topologically equivalent**

isometry

Definition: A function $f: \mathcal{X} \longrightarrow \mathcal{Y}$ is an **isometric embedding** or a **distance preserving function** if it preserves the distances or equivalently if the following condition holds:

$$d_{\mathcal{X}}(x,x') = d_{\mathcal{Y}}(f(x),f(x')), \ orall \ x,x' \in \mathcal{X}$$

Definition: A **distance preserving function** that is also **bijective** is an **isometry**

Two domains for which exists an isometry are **metrically equivalent** = they have the same metric.

Euclidean isometries

Translation:
$$Tinom{x}{y} = inom{x}{y} + inom{t_x}{t_y}$$

Rotation:
$$R_{ heta}ig(m{x}{y}ig) = ig(egin{array}{ccc} \cos(heta) & \sin(heta) \ -\sin(heta) & \cos(heta) \end{pmatrix} ig(m{x}{y}ig)$$

Reflection:
$$S \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Near-isometry

A function $f:(\mathcal{X},d_{\mathcal{X}})\longrightarrow (\mathcal{Y},d_{\mathcal{Y}})$ is a **near-isometry** or an ϵ -isometry if:

f is ϵ -distance preserving:

$$d_{\mathcal{X}}(x,x') - d_{\mathcal{Y}}(f(x),f(x')) \leq \epsilon, \,\, orall x,x' \in \mathcal{X}$$

f is ϵ -surjective:

$$orall y \in \mathcal{Y} \; \exists x \in \mathcal{X} \; \mathrm{s. \, t. } \; d_{\mathcal{Y}}(y,f(x)) \leq \epsilon$$

For a fixed $oldsymbol{\epsilon}>0\in\mathbb{R}$, if $oldsymbol{\epsilon}=0\Longrightarrow f$ is an $oldsymbol{\mathrm{isometry}}.$

1.Differential Geometry

14

manifolds

A topological space in which every point has a neighborhood homeomorphic

to $B^0_r(\mathbb{R}^n)$ (topological disc in \mathbb{R}^n) is an n - dimensional manifold

$$B^0_r(\mathbb{R}^n):=\{x\in\mathbb{R}^n|d(x_0,x)\leq r\}$$

charts and atlases

Definition: Given a point $x\in\mathcal{X}$, a **chart** is a homeomorphism lpha from an open neighborhood $U_lpha\subseteq\mathcal{X}$ of x and \mathbb{R}^n .

 $\alpha:U_{\alpha}\subseteq\mathcal{X}\longrightarrow\mathbb{R}^{n} \text{ s. t. } x\in U_{\alpha} \text{ and } \alpha \text{ is an homeomorphism.}$

Definition: An atlas is a collection of charts $\{(U_{lpha_i},lpha_i)\}_{i\in I}$ such that:

$$\mathcal{X} \subseteq igcup_{i \in I} U_{lpha_i}$$

where I is the set of the indices in the collection of charts.

smooth manifold

Definition: Given two charts (U_{α}, α) and (U_{β}, β) such that $U_{\alpha} \cap U_{\beta} \neq \emptyset$ a transition function $\beta \circ \alpha^{-1}$ (a change of coordinates) is defined as:

$$eta \circ lpha^{-1}: lpha(U_lpha igcap U_eta) \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}^n$$

17

Definition: A manifold $\mathcal X$ with an atlas $\{(U_{lpha_i},lpha_i)\}_{i\in I}$ for which all the transition functions are $\mathcal C^k$ is said a **manifold** $\mathcal C^k$.

A \mathcal{C}^{∞} manifold is said a **smooth manifold**.

manifold with boundary

A **topological space** in which every point x has an open neighborhood **homeomorphic** to either:

- lacktriangle to a topological disk (i.e. \mathbb{R}^n)
- to a topological half disk (i.e. $[0,+\infty) imes \mathbb{R}^{n-1}$)

is called a manifold with boundary

 $int(\mathcal{X})$ is defined as the set of point for wich exist a disk-like open neighboood

 $\partial \mathcal{X}$ is defined as the set of point for wich exist a half disk-like open neighboood

1D manifold

2D planar manifold

2D manifold in 3D space

2D manifold in 3D space

lpha is an homeomorphism so it is a **bijective** and **continuous** function with an **inverse** that is also **continuous**, we refer to this maps as $lpha^{-1}$

parametrization: a well-known example

$$egin{aligned} x &= r \cdot cos(v) \cdot cos(u) \ y &= r \cdot sin(v) \cdot cos(u) \ z &= r \cdot sin(v) \end{aligned}$$

tangent plane

Locally around each point $x \in \mathcal{X}$ thanks to the chart we can define a **local system of coordinates** $(U_lpha,lpha)$

$$\overrightarrow{c_1} = rac{\partial lpha^{-1}}{\partial \overrightarrow{u_1}} \quad \overrightarrow{c_2} = rac{\partial lpha^{-1}}{\partial \overrightarrow{u_2}}$$

The plane $\ T_x \mathcal{X} = span(\overrightarrow{c_1}, \overrightarrow{c_2})$ is the **tangent plane** at $x \in \mathcal{X}$

is a local Euclidean approximation of ${\mathcal X}$

N is the **normal vector** and is orthogonal to $\overrightarrow{c_1}, \overrightarrow{c_2}$ and then to $T_x \mathcal{X}$

The Jacobian

we can consider an infinitesimal du displacement on the chart $lpha(U_lpha)$ and look at its image dx on $T_x\mathcal{X}$

$$egin{align} dx &= lpha^{-1}(lpha(x) + du) - lpha^{-1}(lpha(x)) \ &= du_1 \overrightarrow{c_1} + du_2 \overrightarrow{c_2} = Jdu \ \end{pmatrix}$$

 $m{J}$ is the **Jacobian matrix** whose columns correspond to the 2D vectors $m{c_1}$ and $m{c_2}$ $m{J} = [\begin{array}{ccc} \overrightarrow{c_1} & , & \overrightarrow{c_2} \end{array}]$

metric and first fundamental form

We can measure the length $\,l\,$ of the displacement $\,dx\,$ as follows:

$$\| l^2 = \| dx \|_F^2 = du^ op J^ op J du = du^ op G du^ op$$

 $G {=} \, J^ op J^ op$ is a positive definite symmetric 2 imes 2 matrix

$$g_{i,j} = <\overrightarrow{c_i}, \overrightarrow{c_j} > ext{with } i,j \in \{1,2\}$$

It defines a quadratic form: $\mathit{G} : T_x \mathcal{X} imes T_x \mathcal{X} o \mathbb{R}$ $l^2 = du^\top G du$

namely this quadratic form is the I fundamental form

curvature on a plane

Let $\gamma:[0,1]\longrightarrow\mathbb{R}^2$ be a smooth curve parameterized by arclength:

$$\int_a^b \|\gamma'\| dt = |a-b|, \ orall a,b \in [0,1]$$
 where $\gamma' = rac{\partial \gamma(t)}{\partial t}, \ t \in [0,1]$

 γ trajectory = a line on the plane

 γ' velocity = vector that indicates the rate of change of position

 γ'' accelaration = vector (curvature)

k curvature = measures of the rate of rotation of the velocity vector

curvature on a surface

Let $\, \gamma : [0,1] \longrightarrow \mathcal{X} \,$ be a smooth curve defined on $\, \mathcal{X} \,$

$$x\in\mathcal{X}, x=\gamma(t), \; t\in[0,1]$$

The curvature vector γ'' decomposes into:

- ullet geodesic curvature = $\ k_g = \gamma''|_{T_x\mathcal{X}}$
- ullet normal curvature = $\,k_n=<\gamma'',N>$

Curves passing at x in different directions have different curvatures

II fundamental form

 $lpha^{-1}: \mathbb{R}^2 \longrightarrow U_lpha
ightarrow x$ provides the neighborhood U_lpha

of ${m x}$ of a regular parametrization

We define the **second fundamental form** as the quadratic form defined on $T_x\mathcal{X}$ by the following matrix:

$$II = egin{bmatrix} rac{\partial^2 lpha^{-1}}{\partial u_1 \partial u_1} \cdot N & rac{\partial^2 lpha^{-1}}{\partial u_1 \partial u_2} \cdot N \ rac{\partial^2 lpha^{-1}}{\partial u_1 \partial u_2} \cdot N & rac{\partial^2 lpha^{-1}}{\partial u_2 \partial u_2} \cdot N \end{bmatrix}$$

It gives us an idea about the local curvature of the surface!

principal curvatures

Given a point $\,x \in \mathcal{X}\,$ and a vector $\,v \in T_x \mathcal{X}\,$

we can consider a curve $\ \gamma \ \mathrm{s.t.} \ \gamma(0) = x \ \mathrm{and} \ \gamma'(0) = v$

 $orall v \in T_x \mathcal{X}, \; \gamma \;$ may have different normal curvature

minima principal curvature

$$k_m = \min_{v \,\in\, T_x \mathcal{X}} < \gamma''(0), N >$$

maxima principal curvature

$$k_M = \max_{v \;\in\; T_x \mathcal{X}} <\gamma''(0), N>$$

the vectors v_m , v_M that realize k_m , k_M are said the **minima** and the **maxima principal directions**

These are eigenvectors and eigenvalues of II

mean and gaussian Curvatures

mean curvature

$$H=rac{1}{2}(k_m+k_M)$$

Gaussian curvature

$$K=k_m\cdot k_M$$

31

What is \boldsymbol{K} for a plane?

mean and gaussian Curvatures

What is \boldsymbol{K} for a slice of pizza?

path on a surface

Let $\, \gamma : [0,1] \longrightarrow \mathcal{X} \,$ be a smooth curve defined on $\, \mathcal{X} \,$

$$x\in\mathcal{X}, x=\gamma(t),\;t\in[0,1]$$

$$|u|^2 = \|dx\|_F^2 = du^ op J^ op Jdu = du^ op Gdu$$

$$l(t) = \sqrt{(\gamma'(t))^{\top} G \gamma'(t)}$$

$$L(\gamma) = \sum l_i$$

$$L(\gamma) = \int_a^b \sqrt{(\gamma'(t))^{ op} G \gamma'(t)} dt$$

path length

the **Riemannian metric** is strictly related with the length of the paths defined on $\mathcal X$ Let $\gamma:[0,1]\longrightarrow \mathcal X$ be a smooth curve defined on $\mathcal X$ the length of γ is:

$$L(\gamma) = \int_a^b \sqrt{(\gamma'(t))^ op G\gamma'(t)} dt$$
 or $L(\gamma) = \int_a^b \sqrt{g_{\gamma(t)}(\gamma'(t),\gamma'(t))} dt$

where for a given point $x=\gamma(t)$ we denote with $g_{\gamma(t)}$ the Riemannian metric:

$$g_{\gamma(t)} = g_x = g: T_x \mathcal{X} imes T_x \mathcal{X} \longrightarrow \mathbb{R}$$

The Riemannian metric $m{g}$ can be seen $g: \mathcal{X} \longrightarrow \mathcal{F}(T_.\mathcal{X} imes T_.\mathcal{X}, \mathbb{R})$ as the map that associates at every point $g: x \in \mathcal{X} \longmapsto g_x \ (g_x T_x \mathcal{X} imes T_x \mathcal{X} \to \mathbb{R})$ $x \in \mathcal{X}$ the bilinear form $m{g}_x$ on $m{T}_x \mathcal{X}$

Riemannian geometry

Given a surface $\mathcal X$ a **Riemannian metric** is a **bilinear symmetric positive definite form** g $g:T_x\mathcal X imes T_x\mathcal X\longrightarrow\mathbb R$ defined on the tangent space $T_x\mathcal X$

The **Riemannian metric** is completely independent from the 3D embedding in which we visualize ${\cal X}$

g can be represented as a matrix G that is related with the first fundamental form and its entries are $g_{i,j}=<\overrightarrow{c_i},\overrightarrow{c_j}> ext{with }i,j\in\{1,2\}$

path length and I fundamental form

We have seen that the length l of the displacement dx is related with G:

Let $\gamma:[0,1]\longrightarrow \mathcal{X}$ its length is:

$$L(\gamma) = \int_a^b \sqrt{(\gamma'(t))^ op G \gamma'(t)} dt$$

G induces a metric on ${\mathcal X}$ namely the intrinsic metric $d_{\mathcal X}$ defined as:

$$d_{\mathcal{X}}(x_1,x_2) = min(L(\gamma)) \ egin{array}{c} \gamma:[0,1] \longrightarrow \mathcal{X} \ \gamma(0) = x_1 \ \ \gamma(1) = x_2 \end{array}$$

area on the surface

the differential area element on \mathbb{R}^2 is the rectangle:

$$du_1\overrightarrow{u_1} imes du_2\overrightarrow{u_2}=du_1du_2$$

through α^{-1} this rectangle is mapped on the parallelogram $du_1\overrightarrow{c_1} imes du_2\overrightarrow{c_2}\subset T_x\mathcal{X}$, the area of which is given by:

$$T_x\mathcal{X}$$
 $\overrightarrow{c_2}$ $d\mu$

$$egin{aligned} d\mu &= \|du_1\overrightarrow{c_1} imes du_2\overrightarrow{c_2}\| = \|\overrightarrow{c_1} imes \overrightarrow{c_2}\|du_1du_2 \ &= \sqrt{\|\overrightarrow{c_1}\|^2\|\overrightarrow{c_2}\|^2 - <\overrightarrow{c_1},\overrightarrow{c_2}>^2}du_1du_2 \ &= \sqrt{g_{1,1}g_{2,2}-g_{1,2}^2}\ du_1du_2 \ &= \sqrt{det(G)}du_1du_2 \end{aligned}$$

area and I fundamental form

We can consider a map $ho:\Omega\subset\mathbb{R}^2\longrightarrow U\subset\mathcal{X}$, and we compute the area $Area(U)=\int_U d\mu=\int_\Omega\sqrt{det(G)}\ du_1du_2$

We can be interested in compute a relative area for $\,U$, defined as:

$$A_{rel}(U) = rac{Area(U)}{Area(\mathcal{X})}$$

 $L, A_{rel}, Area$ are measures on ${\cal X}$ and with them we can analyze and study the properties of the surface.

gradient on the surface

Given a vector v the gradient of a function f is the unique vector s.t. its product with a v gives the derivative of f in the direction of v.

The metric G induces a scalar product on $T_x\mathcal{X}$, $orall dv, dw \in \mathbb{R}^2$ defined as: $dv^ op G dw$

This scalar product induces a definition for the gradient of every $f:\mathcal{X}\longrightarrow\mathbb{R}$

$$egin{align} f(x+dh) &= f(x) + <
abla_G f, dh > +o(\|dh\|) \ &= f(x) + (
abla_G f)^ op G dh + o(\|dh\|) \ &= f(x+dh) = f(x) + (
abla(f) f(x) + o(\|dh\|) \ &= f(x+dh) = f(x) + (
abla(f) f(x) + o(\|dh\|) \ &= f(x+dh) = f(x) + (
abla(f) f(x) + o(\|dh\|) \ &= f(x+dh) = f(x) + (
abla(f) f(x) + o(\|dh\|) \ &= f(x) + o(\|d$$

From this derivation we obtain: $\nabla_G(f) = G^{-1}(\nabla(f \cdot lpha^{-1}))$

divergence on the surface

Given a vector field, its divergence at each point is the quantity of how much the vector is entering or exiting from the infinitesimal area around that point.

$$div: TX \longrightarrow \mathcal{F}(X, \mathbb{R})$$

Given a vector field $\vec{V} \in T_x \mathcal{X}$, we can define the **divergence** of \vec{V} with respect to the metric G as:

$$div(ec{V}) = rac{1}{\sqrt{det(G)}} \sum_{i=1}^2 rac{\partial \sqrt{det(G)} V_i}{\partial \overrightarrow{c_i}}$$
 where $ec{V} = V_1 \overrightarrow{c_1} + V_2 \overrightarrow{c_2} \in T_x \mathcal{X} = span(\overrightarrow{c_1}, \overrightarrow{c_2})$

intrinsic geometry

- ightarrow the first fundamental form fully represents the intrinsic geometry of ${\mathcal X}$
- ightarrow this representation is completely independent from the embedding of ${\mathcal X}$
- ightarrow this representation is independent on the embedding space of ${\mathcal X}$
- → the intrinsic geometry provides an abstract representation of

To fix the first fundamental form on \mathcal{X} we must have:

- ullet $orall x \in \mathcal{X}$ the tangent space $T_x \mathcal{X}$
- ullet the inner product $g_{i,j} = <\overrightarrow{c_i},\overrightarrow{c_j}>$

extrinsic and intrinsic geometry

- the first fundamental form completely represent the intrinsic geometry
- the first fundamental form is invariant to isometries
- the second fundamental form completely represent the extrinsic geometry
- the second fundamental form is invariant to rigid transforms

Theorem: Given two surfaces $\mathcal X$ and $\mathcal Y$ and a map $\pi:\mathcal X\longrightarrow\mathcal Y$ that preserves the first and the second fundamental form then the map π is a congruence.

Differential and discrete geometry

- Differential geometry is well studied from several centuries.
- Discrete geometry is relatively recent.
- In discrete geometry several tools and analysis are based on the differential geometry.
- Understand geometry is necessary to deal with computer graphics

questions?

