MLL 100

Introduction to Materials Science and Engineering

Lecture-6

Dr. Sangeeta Santra (<u>ssantra@mse.iitd.ac.in</u>)

What we learnt in Lecture-5?

Miller indices in cubic system

Atomic packing factor (APF): Simple Cubic

Atomic packing factor (APF): Body-centred cubic

Similarly, APF =
$$2 \times \frac{4}{3} \pi \left(\frac{\sqrt{3}}{4}a\right)^3$$
 = a^3

Atomic packing factor (APF): Face-centred cubic

In FCC, the atoms will be closely packed along the face diagonals. $491 = \sqrt{2}a \cdot 91 = \sqrt{\sqrt{2}a}$

$$491 = J2\alpha \cdot .91 = \frac{J2\alpha}{4}$$
 $4 \times 4 \times (J2\alpha)^{3}$

Planar density (No. of atoms in the plane per unit area of the plane)

$$(4) \times \frac{1}{4} = 1$$

$$[(4) \times \frac{1}{4}] + [(1)x \ 1] = 2$$

$$[(4) \times \frac{1}{4}] + [(2) \times \frac{1}{2}] = 2$$

Area of (110) plane = a x ($\sqrt{2}$. a) = $\sqrt{2}$. a²

Which of the cubic Bravais lattice has the highest packing density for the (1 1 1) plane?

$$(3) \times \frac{1}{6} = \frac{1}{2}$$

$$(3) \times \frac{1}{6} = \frac{1}{2}$$

$$[(3) \times \frac{1}{6}] + [(3) \times \frac{1}{2}] = 2$$

Area of (111) plane = $(\sqrt{3}/4. a^2) = (\sqrt{3}/4. (\sqrt{2}a)2) = 0.866 a^2$

Weiss Zone law

If a (h k l) plane lies in a zone [u v w] -----> if the [u v w] direction is || to the (h k l) plane, then:

$$(hu + kv + lw) = 0$$

- ☐ Zone: a set of planes in a crystal whose intersections are all parallel.
- ☐ Zone axis: Common direction of the intersections.
- ☐ Can the directions in a crystal be called zone axes? 'Zone axes' and 'directions' are synonymous.

☐ Direction of a Pencil lead: Zone axis for all the faces enclosing it.

Zone axis at the intersection of the lattice planes

 If (h₁ k₁ l₁) & (h₂ k₂ l₂) are two planes having a common direction [u v w], according to Weiss zone law:

$$u.h_1 + v.k_1 + w.l_1 = 0 & u.h_2 + v.k_2 + w.l_2 = 0$$

Lattice plane parallel to the two directions

Miller-Bravais indices for hexagonal system

i = -(h+k)

- a₁, a₂ and a₃ are three close-packed directions and are coplanar, lying on the basal plane of the crystal. These axes are at 120° w.r.t each other.
- Fourth axis, c-axis, is perpendicular to the basal plane.
- a₃-axis is the redundant axis.

Prismatic planes : Planes || to the c-axis

- The equivalent planes, $(1\ 0\ 0)$, $(0\ 1\ 0)$, $(1\ \bar{1}\ 0)$ defined by Miller indices, got transformed to $(1\ 0\ \bar{1}\ 0)$, $(0\ 1\ \bar{1}\ 0)$ and $(1\ \bar{1}\ 0\ 0)$ defined by Miller-Bravais indices.
- These have the same set of indices, and belong to the same family of planes: $\{1 \ \overline{1} \ 0 \ 0\}$

Prismatic planes : Planes || to the c-axis

Pyramidal planes: Planes which have finite intercepts with the c-axis $(11\overline{2}2)$ (1171) \mathbf{a}_2 \mathbf{a}_2 \mathbf{a}_1 $(10\overline{1}1)$ \mathbf{a}_1 -a₂ \mathbf{a}_2 \mathbf{a}_1

Miller-Bravais directions: Axis directions

$$a_1 \rightarrow (+2)$$
 unit

$$x_2 \rightarrow (-1)$$
 will

$$\widehat{I}\widehat{I}$$

$$\alpha_3 \rightarrow (-1)$$
 und

- The 3rd index is redundant and is included to bring out the equality between equivalent directions (like in the case of planes).

Miller-Bravais directions : Diagonal directions

 $10\bar{1}0$

 $0\ 1\ \overline{1}\ 0$

 $\bar{1} 1 0 0$

 $\bar{1} 0 1 0$

 $0\,\overline{1}\,1\,0$

 $1\,\overline{1}\,0\,0$

	Iron (Fe)	CsCl
Motif	1	2
Lattice type	Non-primitive	Primitive
Crystal system	Cubic	Cubic
Bravais lattice	Body centered cubic	Simple cubic

Line of symmetry:

4-fold: 3

2-fold: 6

3-fold: 4

Plane of symmetry: Mirror plane: 9

Total symmetry in a cube: 1 + 13 + 9 = 23

☐ Do non-crystalline materials exhibit the allotropy/polymorphic phenomenon?	What is the difference between crystal structure and crystal system?