Total No. of Questions: 6

Total No. of Printed Pages:3

Faculty of Engineering

End Sem (Odd) Examination Dec-2019 EC3EL05 / EI3EL05 Information Theory and Coding

Programme: B.Tech. Branch/Specialisation: EC/EI

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of

Q.1	i.	i. The unit of average mutual information is			
		(a) Bits	(b) Bytes		
		(c) Bits per symbol	(d) Bytes per symbol		
	ii.	The relation between entropy	and mutual information is	1	
		(a) $I(X;Y) = H(X) - H(X/Y)$	(b) $I(X;Y) = H(X/Y) - H(Y/X)$		
		(c) $I(X;Y) = H(X) - H(Y)$	(d) $I(X;Y) = H(Y) - H(X)$		
	iii.	The capacity of Gaussian cha	annel is	1	
		(a) $C = 2B(1+S/N)$ bits/s	(b) $C = B^2(1+S/N)$ bits/s		
		(c) $C = B(1+S/N)$ bits/s	(d) $C = B(1+S/N)^2$ bits/s		
	iv.	The channel capacity is		1	
		(a) The maximum information	on transmitted by one symbol over the		
		channel			
		(b) Information contained in	a signal		
		(c) The amplitude of the mod	lulated signal		
		(d) All of these			
	v.	Huffman coding technique i	s adopted for constructing the source	1	
		code with redundance	y		
		(a) Maximum (b) Constant	(c) Minimum (d) Unpredictable		
	vi.	A code is a mapping from		1	
		(a) Binary sequence to discre	ete set of symbols		
		(b) Discrete set of symbols to	binary sequence		
		(c) All of these			
		(d) None of these			
			рт	$^{\circ}$	

	 vii. Which among the following is/are the essential condition good error control coding technique? (a) Faster coding & decoding methods (b) Better error correcting capability (c) Maximum transfer of information in bits/sec 		
	viii.	(d) All of these In a linear code, the minimum Hamming distance between any two code words isminimum weight of any non-zero code word.	1
		(a) Less than (b) Greater than	
		(c) Equal to (d) None of these	_
	ix.	For designing of $(4,1)$ cyclic repetition code, what would be the order of the generator polynomial $g(x)$?	1
		(a) 1 (b) 3 (c) 4 (d) 5	1
	х.	In Viterbi's algorithm, which metric is adopted for decision making?	1
		(a) Hamming distance (b) Galois Field	
		(c) Hamming bound (d) Parity-check	
Q.2	i. ii. iii.	Explain the concept of binary information. Describe the concept of Entropy. Consider a source having two symbols x & y. Duration of x is 0.2 s. The duration of y is 3 times the duration of x. The probability of occurrence of x is twice that of y. The time between x & y is 0.2 s. Calculate information rate of the source in bits/s.	2 3 5
OR	iv.	List out the properties of mutual information and prove any three properties.	5
Q.3	i.	Define channel capacity and explain the concept of channel capacity.	2
	ii.	Consider a BSC with $p(x1)=a$. Show that mutual information $I(X;Y)=H(Y)+p\log_2 p+(1-p)\log_2 (1-p)$. Calculate mutual information for $a=p=0.5$. Give justification on the result.	8

OR	iii.	 An anolog signal having 4 kHz bandwidth is sampled at 1.25 times the Nyquist rate, and each sample is quantized into one of 256 equally likely levels. (a) What is the source information rate? (b) Can the output of the source be transmitted without error over an AWGN channel with a bandwidth of 10 kHz and SNR of 20dB? (c) What is the SNR required for error-free transmission for part B? 	8
Q.4	i. ii.	State Source Coding Theorem and define Code Efficiency. Classify various codes of source coding.	3 7
OR	iii.	 A DMS has five symbols X1, X2, X3, x4 and x5 with probabilities p(X1)=0.4, p(X2)=0.19, p(X3)=0.16, p(X4)=0.15 and p(X5)=0.1 (a) Construct a Shannon-Fano code for X and calculate the code efficiency. (b) Repeat by Huffman code and compare the results. 	7
Q.5	i.	Why are Hamming Distance and Hamming Weight important for Linear Block Codes?	3
	ii.	What are the conditions for a code to be classified as a Hamming code and as a perfect code?	7
OR	iii.	Explain the concept of syndrome decoding in detail.	7
Q.6	i.	Cyclic codes are a subclass of linear block codes. Justify this statement.	3
OR	ii. iii.	Show that Convolution codes are linear codes by the help of an example. Also justify the name "Convolution code" given to these codes. How can one construct a systematic cycle code? Compare Maximum Likelihood decoding and Viterbi's decoding	7
OK	111.	algorithms with suitable example.	,

Marking Scheme

EC3EL05 / EI3EL05 Information Theory and Coding

Q.1	i.	The unit of average mutual information is		1
		(c) Bits per symbol		
	ii.	The relation between entropy and mutual information	on is	1
		(a) $I(X;Y) = H(X) - H(X/Y)$		
	iii.	The capacity of Gaussian channel is		1
		(c) $C = B(1+S/N)$ bits/s		
	iv.	The channel capacity is		1
		(a) The maximum information transmitted by one s	symbol over the	
		channel		
	v.	Huffman coding technique is adopted for construction	eting the source	1
		code with redundancy		
		(c) Minimum		
	vi.	A code is a mapping from		1
		(b) Discrete set of symbols to binary sequence		
	vii.	Which among the following is/are the essential co	ondition/s for a	
		good error control coding technique?		
		(d) All of these		
	viii.	In a linear code, the minimum Hamming distance	<u> </u>	1
		two code words isminimum weight of any	non-zero code	
		word.		
		(c) Equal to		
	ix.	For designing of (4,1) cyclic repetition code, wha	it would be the	1
		order of the generator polynomial $g(x)$?		
		(b) 3		
	х.	In Viterbi's algorithm, which metric is adopte	d for decision	1
		making?		
		(a) Hamming distance		
Q.2	i.	Concept of binary information		2
Q. <i>2</i>	1.	Definition & formula	1 mark	_
		Example	1 mark	
	ii.	Concept of Entropy	1 IIIai K	3
	11.	Definition & formula	1 mark	J
		Example	1 mark	
		2. mainpie	1 IIIui K	

	iii.	Calculate information rate of the source in bits/s.		5
		R=1.725 bits/sec	1 mark	
		r=1.875 symbols/sec	2 marks	
		H(X) = 0.92 bits/symbol	2 marks	
OR	iv.	List of five properties of mutual information	2 marks	5
		Proof of any three properties	3 marks	
Q.3	i.	Channel capacity		2
		Definition & formula	1 mark	
		Example	1 mark	
	ii.	Calculate mutual information for a=p=0.5.		8
		Derivation and proof	4 marks	
		Mutual information calculation	2 marks	
		Comment (No information is being transmitted)	2 marks	
OR	iii.	(a) R=80 kbps		8
		(b) No R(=80 kbps)>C(=66.66 kbps)		
		(c) SNR=255(=24.1 dB)		
		Stepwise marking		
Q.4	i.	Source Coding Theorem		3
~		Statement of theorem	2 marks	
		Definition and formula of Code Efficiency	1 mark	
	ii.	Seven different codes of source coding.	1 IIIIII	7
		1 mark for each	(1 mark *7)	
OR	iii.	A DMS has five symbols X1, X2, X3, x4 and x5 w	` ′	7
		•	p(X1)=0.4, $p(X2)=0.19$, $p(X3)=0.16$, $p(X4)=0.15$ and $p(X5)=0.1$	
		(a) Construct a Shannon-Fano code for X	2 marks	
		Calculate the code efficiency	1 mark	
		(b) Huffman coding	2 marks	
		Efficiency calculation	1 mark	
		Comparison	1 mark	
Q.5	i.	Hamming Distance and Hamming Weight impo	rtant for Linear	3
	-	Block Codes		=
	ii.	Conditions for Hamming code	3 marks	7
		Conditions for perfect code	4 marks	
		1	-	

OR	iii.	Concept of syndrome decoding	7
		Generation/coding 4 marks	
		Decoding 3 marks	
Q.6	i.	Cyclic codes are a subclass of linear block codes. Justification	3
	ii.	Showing by example 2 marks	7
		Justification of name 1 mark	
		Construction of systematic cyclic code 4 marks	
OR	iii.	Compare Maximum Likelihood decoding and Viterbi's decoding	
		algorithms	
		Stepwise marking	
