# AutoML CI/CD/CT: Continuous Training and Deployment Pipeline

Organization: Bayes Studio Inc.

Mentor: Hedayat Zarkoob

Team Members: Sepehr Heydarian, Tien Nguyen,

Elshaday Yoseph, Archer Liu



#### **Our Team**



Sepehr Heydarian



Archer Liu



Elshaday Yoseph



Tien Nguyen

### **Summary**

| 01 | Introduction      Wildfires!      Who are Bayes Studio      The problem      Our solution      Why is it important | 6<br>7<br>8 |
|----|--------------------------------------------------------------------------------------------------------------------|-------------|
| 02 | <ul> <li>Our Product</li> <li>Product High Level Overview</li> <li>Pipeline breakdown &amp; challenges</li> </ul>  |             |
| 03 | Timeline  • Weekly plan of pipeline development and delivery                                                       | 22          |

# 01

### Introduction





#### **Our Partner**

- A start-up based in Vancouver focusing on advanced AI solutions to tackle environmental disasters
- Develop wildfire detection AI tools and monitoring tools
- Harness the power of artificial intelligence for proactive disaster management.



#### The Problem

- Over 5 million images, growing rapidly
- Manual labelling and retraining is slow and inefficient
- Delays in updating the model result in delays on insights during emergencies
- Require an automated, scalable pipeline



#### **Our Solution**

- Create automated pipeline
  - Pre-labeling
  - Human-in-the-loop review
  - continuous training and deployment
- Utilize pre-trained models
- Utilize open source tools



#### Why is it important

- Faster and more accurate wildfire detection
- Saves time, cost, and human effort
- Scalability results in better services for the government and other agencies
- Strengthens Bayes Studio's missions and market position



# 

## **Our Product**



#### **Product High Level Overview**



#### The Input to our Pipeline ~ The Data

- Image data from Roboflow.com + manual collection
- 3M+ labeled images (6M+ annotations), 2M+ unlabeled
- 5 object detection classes: Fire, Smoke, Lightning, Human, Vehicle
- ~ 500 new unlabelled images monthly

#### Labelling example









3 0.5024765625 0.5107361111111112 0.9950468750000001 0.5445416666666667

#### Pipeline Breakdown

#### Labelling

- Input: Unlabelled images
- Process:
  - $\circ$  YOLO  $\rightarrow$  boxes + labels
  - SAM → segmentation
  - Matching
- Output:
  - Labelled or flagged images



#### **Challenge: Matching YOLO and SAM Outputs**

- YOLO gives bounding boxes
- SAM gives detailed masks
- But... what counts as a match?

Yolo



SAM



#### **Human-in-the-loop**

• Input: Flagged predictions

Process: Reviewed in Label Studio

Output: HQ labelled data



#### **Challenge: Integrating Human Review Interface**

- **Open-source interfaces** (Label Studio)
  - **Display:** Disputed image + pre-labels
  - **Task:** Human reviewer validates labels

**How to integrate Label Studio into our product** without disrupting the pipeline?

#### Please verify the unmatched label(s)



N. (2020-2025). Label Studio: Data labeling software. GitHub

#### **Augmentation**

- **Input**: Labelled images
- **Process**: Apply flips, brightness, noise, etc.
- Output: Augmented dataset



#### **Training, Distillation, Quantization**

- Input: Final dataset + Distillation subset
- Process:
  - Train base model
  - Distill & quantize for deployment
- Output: Lightweight, deployable model



**Challenge: Pipeline Complexity** 

- **System:** End-to-end pipeline
  - Flow: Pre-labeling → Human-in-the-loop → Augmentation
    - $\rightarrow$  Training  $\rightarrow$  Distillation  $\rightarrow$  Quantization  $\rightarrow$  Registry  $\rightarrow$  ...

How to connect modular pipeline stages while ensuring robustness?





# **Timeline**

Weekly plan of pipeline development and delivery

#### **Timeline**

| Task   | Description                                                                                       | Date              |
|--------|---------------------------------------------------------------------------------------------------|-------------------|
| Task 1 | Project setup, create the overall pipeline. Submit final proposal report.                         | May 5 - May 9     |
| Task 2 | Integrate pre-labeling + SAM check into the pipeline.  Design & implement human review interface. | May 12 - May 15   |
| Task 3 | Augmentation. Integrate training into the pipeline for model updates.                             | May 19 - May 23   |
| Task 4 | Integrate distillation and quantization into the pipeline for deployment.                         | May 26 - May 30   |
| Task 5 | Run full pipeline test to ensure the pipeline runs successfully.                                  | June 2 - June 6   |
| Task 6 | Submit runnable data product. Prepare and deliver presentation.                                   | June 9 - June 11  |
| Task 7 | Finalize data product and written report based on feedback.                                       | June 14 - June 25 |

# Thanks!

CREDITS: This presentation template was created by **Slidesgo**, and includes icons by **Flaticon**, and infographics & images by **Freepik**