Gan & Mira

#1 Simulation Practice

GOAL create 3:8 decoder

Solution implement decoder

In 5	in,	in o	out, out out, out, out out	t, outo
0	0	0	0000000	0
0	0	1	0000001	0
0	1	0	0000010	0
0	1	١	0000100	0
I	0	0	0001000	0
1	0	1	00,000	٥
1	,	0	010000	0
l)	1	1100000	0

Apply or of ANDS

For each out write a AND rule ex:

out [7] = In [2] & In [1] & In [0];

Add enable logic

> 1f ena on > normal 3 boolean truth table

The ena off > 0 3 boolean truth table

Just another AND

out [7] = In [2] & In [i] & In [a] & ena;

2 Conway's Game & Use - Cell Module

- 1 implement adder
 - number of adders
 - bit is the AND of previous location's bit (if most significant bit is on then all other bits are off)

e.g. 1000 V' (all 8 neighbors on)

(3) O O I I X I I OR, write assign AND state

(3) 0 0 | | X | | E 1 or, write assign AND statement

(2) 0 0 | 0 | | 1 or, write assign AND statement

all other cases 0

(4) and add enable logic

assign rows [(N-1)-i] = N((cells [(:+1)* N-1::*N] & x_decoded) & ena;