# Kernel methods II The kernel trick

Sanjoy Dasgupta

University of California, San Diego

## Topics we'll cover

- 1 The kernel trick for quadratic boundaries
- 2 The kernel Perceptron

## **Adding new features**



Actual boundary is something like  $x_1 = x_2^2 + 5$ .

- This is quadratic in  $x = (x_1, x_2)$
- But it is linear in  $\Phi(x) = (x_1, x_2, x_1^2, x_2^2, x_1x_2)$

**Basis expansion**: embed data in a higher-dimensional feature space. Then we can use a linear classifier!

#### Perceptron with basis expansion

Learning in the higher-dimensional feature space:

- w = 0 and b = 0
- while some  $y(w \cdot \Phi(x) + b) \le 0$ :
  - $w = w + y \Phi(x)$
  - b = b + y

**Problem**: number of features has now increased dramatically. For MNIST, with quadratic boundary: from 784 to 308504.

The kernel trick: implement this without ever writing down a vector in the higher-dimensional space!

#### The kernel trick

**1** w is always a linear combination of the  $\Phi(x^{(i)})$ .

$$w = \sum_{j=1}^{n} \alpha_j y^{(j)} \Phi(x^{(j)})$$

Represent w in **dual** form:  $\alpha = (\alpha_1, \dots, \alpha_n)$ .

**2** Compute  $w \cdot \Phi(x)$  using the dual representation.

$$w \cdot \Phi(x) = \sum_{j=1}^{n} \alpha_j y^{(j)} (\Phi(x^{(j)}) \cdot \Phi(x))$$

3 Compute  $\Phi(x) \cdot \Phi(z)$  without ever writing out  $\Phi(x)$  or  $\Phi(z)$ .

• 
$$w = 0$$
 and  $b = 0$ 

• while some 
$$y^{(i)}(w \cdot \Phi(x^{(i)}) + b) \le 0$$
:  
•  $w = w + y^{(i)} \Phi(x^{(i)})$   
•  $b = b + y^{(i)}$ 

• 
$$b = b + y^{(i)}$$

## **Computing dot products**

First, in 2-d.

Suppose 
$$x = (x_1, x_2)$$
 and  $\Phi(x) = (x_1, x_2, x_1^2, x_2^2, x_1x_2)$ .

Actually, tweak a little:  $\Phi(x) = (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2)$ 

What is  $\Phi(x) \cdot \Phi(z)$ ?

### **Computing dot products**

Suppose 
$$x=(x_1,x_2,\ldots,x_d)$$
 and 
$$\Phi(x)=(1,\sqrt{2}x_1,\ldots,\sqrt{2}x_d,x_1^2,\ldots,x_d^2,\sqrt{2}x_1x_2,\ldots,\sqrt{2}x_{d-1}x_d)$$

$$\Phi(x) \cdot \Phi(z) = (1, \sqrt{2}x_1, \dots, \sqrt{2}x_d, x_1^2, \dots, x_d^2, \sqrt{2}x_1x_2, \dots, \sqrt{2}x_{d-1}x_d) \cdot (1, \sqrt{2}z_1, \dots, \sqrt{2}z_d, z_1^2, \dots, z_d^2, \sqrt{2}z_1z_2, \dots, \sqrt{2}z_{d-1}z_d)$$

$$= 1 + 2\sum_i x_i z_i + \sum_i x_i^2 z_i^2 + 2\sum_{i \neq j} x_i x_j z_i z_j$$

$$= (1 + x_1 z_1 + \dots + x_d z_d)^2 = (1 + x \cdot z)^2$$

#### For MNIST:

We are computing dot products in 308504-dimensional space. But it takes time proportional to 784, the original dimension!

#### **Kernel Perceptron**

Learning from data  $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)}) \in \mathcal{X} \times \{-1, 1\}$ 

#### **Primal form:**

- w = 0 and b = 0
- while there is some i with  $y^{(i)}(w \cdot \Phi(x^{(i)}) + b) \leq 0$ :
  - $w = w + y^{(i)} \Phi(x^{(i)})$
  - $b = b + y^{(i)}$

**Dual form:**  $w = \sum_{i} \alpha_{i} y^{(j)} \Phi(x^{(j)})$ , where  $\alpha \in \mathbb{R}^{n}$ 

- $\alpha = 0$  and b = 0
- while some i has  $y^{(i)}\left(\sum_j \alpha_j y^{(j)} \Phi(x^{(j)}) \cdot \Phi(x^{(i)}) + b\right) \leq 0$ :
  - $\alpha_i = \alpha_i + 1$
  - $b = b + y^{(i)}$

To classify a new point x: sign  $\left(\sum_{j} \alpha_{j} y^{(j)} \Phi(x^{(j)}) \cdot \Phi(x) + b\right)$ .

# Kernel Perceptron: examples



# Kernel Perceptron: examples

