SECTIONS: <u>Top | Compile Stocks | The Data | Add Change Column | Feature Engineering | Splitting & Scaling | Creating Sequences | PyTorch Datasets | LSTM | Trainer | Results |</u>


```
import pandas as pd
import numpy as np
import seaborn as sns
import math
import torch
import torch.nn as nn
import torch.optim as optim
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping
from torch.utils.data import Dataset, DataLoader
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
%matplotlib inline
from helpers import *
import tqdm as tq
```

```
pl.seed_everything(123)
import yfinance as yf
tq.tqdm.pandas()
```

INFO:lightning_fabric.utilities.seed:Global seed set to 123

SECTIONS: Top | Compile Stocks | The Data | Add Change Column | Feature Engineering | Splitting & Scaling |
Creating Sequences | PyTorch Datasets | LSTM | Trainer | Results |

compile_stocks()

- · Yahoo Finance only allows 7 days worth of data at 1 minute intervals
- This function will compile dataframes in 7 day increments for an entire range of dates

- They also only allow 1 min data for up to 30 days prior
- This can be used for other intervals that allow for longer time periods

```
def compile_stocks(symbol, end, start, day_window, interval):
    import datetime
    import yfinance as yf
    end_date = end
    start_date = (pd.to_datetime(end) - datetime.timedelta(days = day_window))
    dfs = []
    stop_me = False
    while pd.to_datetime(start_date) >= pd.to_datetime(start):
        df = yf.download(symbol,
                         start = start_date,
                         end = end_date,
                         interval = interval)
        dfs.append(df)
        end_date = start_date
        start_date = start_date - datetime.timedelta(days = day_window)
        if start_date < pd.to_datetime(start):</pre>
            start_date = pd.to_datetime(start)
        else:
            start_date = start_date
        if start_date == end_date:
            break
    master_df = pd.concat(dfs).sort_values(by="Datetime")
    return master_df
data = compile_stocks('ETH-USD',
                      '2023-01-24',
```

The Data

```
df = data[['Close', 'Volume']].copy()
df.columns = [x.lower() for x in df.columns]
head_tail_horz(df, 3, 'Raw Ethereum Data', intraday=True)
```

Raw Ethereum Data

head(3)			tail(3)			
	close	volume		close	volume	
Datetime			Datetime			
2022-12-27 00:00:00+00:00	1,226.99	0	2023-01-23 23:56:00+00:00	1,629.03	323,584	
2022-12-27 00:01:00+00:00	1,227.44	0	2023-01-23 23:57:00+00:00	1,628.99	716,288	
2022-12-27 00:02:00+00:00	1,228.57	14,410,752	2023-01-23 23:58:00+00:00	1,628.44	0	

SECTIONS: <u>Top | Compile Stocks | The Data | Add Change Column | Feature Engineering | Splitting & Scaling | Creating Sequences | PyTorch Datasets | LSTM | Trainer | Results | </u>

add_change_column()

Shift Method

- using shift() to add the previous timestamp value
- · then creating a difference column to show change since last
- add_change_column() is the function that will do all this

```
def add_change_column(df, column_changing, new_col_name):
    df['previous'] = df[column_changing].shift()
    df = df.drop(df.index[0])
    df[new_col_name] = df[column_changing] - df.previous
    df = df.drop(columns = ['previous'])
    return df
```

```
df = add_change_column(df, 'close', 'change')
```

```
head_tail_vert(df, 3, "Change column added", intraday=True)
```

Change column added: head(3)

	close	volume	change
Datetime			
2022-12-27 00:01:00+00:00	1,227.44	0	0.45
2022-12-27 00:02:00+00:00	1,228.57	14410752	1.13
2022-12-27 00:03:00+00:00	1,228.84	6625536	0.27

Change column added: tail(3)

	ciose	volume	cnange
Datetime			
2023-01-23 23:56:00+00:00	1,629.03	323584	0.14
2023-01-23 23:57:00+00:00	1,628.99	716288	-0.03
2023-01-23 23:58:00+00:00	1,628.44	0	-0.55

SECTIONS: <u>Top | Compile Stocks | The Data | Add Change Column | Feature Engineering | Splitting & Scaling | Creating Sequences | PyTorch Datasets | LSTM | Trainer | Results | </u>

featurize_stocks() - Feature Engineering

```
def featurize_stocks(df):
    df['weekday'] = df.index.dayofweek
    df['month_day'] = df.index.day
    df['year_week'] = df.index.isocalendar().week
    df['month'] = df.index.month
    return df
```

```
df = featurize_stocks(df)
```

head_tail_vert(df, 3, 'df with added features')

df with added features: head(3)

	close	volume	change	weekday	month_day	year_week	month
Datetime							
2022-12-27	1,227.44	0	0.45	1	27	52	12
2022-12-27	1,228.57	14410752	1.13	1	27	52	12
2022-12-27	1,228.84	6625536	0.27	1	27	52	12

df with added features: tail(3)

	close	volume	change	weekday	month_day	year_week	month
Datetime							
2023-01-23	1,629.03	323584	0.14	0	23	4	1
2023-01-23	1,628.99	716288	-0.03	0	23	4	1
2023-01-23	1,628.44	0	-0.55	0	23	4	1

describe_em(df, ['close', 'volume', 'change'])

df.close			df.volume	df.	df.change		
	close		volume		change		
count	40,099.00	count	40,099.00	count	40,099.00		
mean	1,375.36	mean	2,073,010.21	mean	0.01		
std	164.02	std	8,437,534.17	std	0.51		
min	1,185.70	min	0.00	min	-22.17		
25%	1,217.39	25%	0.00	25%	-0.12		
50%	1,324.79	50%	167,424.00	50%	0.00		
75%	1,548.57	75%	1,481,728.00	75%	0.13		
max	1,674.18	max	618,774,528.00	max	29.07		

df.shape

(40099, 7)

SECTIONS: <u>Top | Compile Stocks | The Data | Add Change Column | Feature Engineering | Splitting & Scaling | Creating Sequences | PyTorch Datasets | LSTM | Trainer | Results |</u>

Splitting & Scaling the Data

```
train_size = int(len(df) * .8)
pretty(f'number of training inputs: {train_size:,}.')
test_size = int(len(df) * .2)
pretty(f'number of testing inputs: {test_size:,}.')
```

number of training inputs: 32,079.

number of testing inputs: 8,019.

```
train_df, test_df = df[:train_size], df[train_size + 1:]
```

```
pretty(f'train_df.shape: {train_df.shape} | test_df.shape: {test_df.shape}')
```

train_df.shape: (32079, 7) | test_df.shape: (8019, 7)

Scaling the data

```
scaler = MinMaxScaler(feature_range = (-1, 1))
scaler = scaler.fit(train_df)
```

Viewing the scaled data

train_df.head(5)

close volume change weekday month_day year_week month

_			
ח	at	eti	me
-	u	\sim c	

2022-12-27 00:01:00+00:00	-0.80	-1.00	-0.50	-0.67	0.73	1.00	1.00
2022-12-27 00:02:00+00:00	-0.79	-0.94	-0.46	-0.67	0.73	1.00	1.00
2022-12-27 00:03:00+00:00	-0.79	-0.97	-0.50	-0.67	0.73	1.00	1.00
2022-12-27 00:04:00+00:00	-0.78	-0.88	-0.44	-0.67	0.73	1.00	1.00
2022-12-27 00:05:00+00:00	-0.78	-0.99	-0.52	-0.67	0.73	1.00	1.00

	train_df.tail(5)						
	close	volume	change	weekday	month_day	year_week	month
Datetime							
2023-01-18 09:16:00+00:00	0.92	-0.97	-0.50	-0.33	0.13	-0.92	-1.00
2023-01-18 09:17:00+00:00	0.92	-1.00	-0.52	-0.33	0.13	-0.92	-1.00
2023-01-18 09:18:00+00:00	0.92	-1.00	-0.53	-0.33	0.13	-0.92	-1.00
2023-01-18 09:19:00+00:00	0.92	-0.99	-0.50	-0.33	0.13	-0.92	-1.00
2023-01-18 09:20:00+00:00	0.93	-0.99	-0.49	-0.33	0.13	-0.92	-1.00
		toot	df bood(E)			
	close		_df.head(•	month_day	vear week	month
-	ciose	volume	change	weekuay	montin_uay	year_week	monun
Datetime							
2023-01-18 09:22:00+00:00	0.93	-0.98	-0.47	-0.33	0.13	-0.92	-1.00
2023-01-18 09:23:00+00:00	0.93	-1.00	-0.50	-0.33	0.13	-0.92	-1.00
2023-01-18 09:24:00+00:00	0.93	-1.00	-0.51	-0.33	0.13	-0.92	-1.00
2023-01-18 09:25:00+00:00	0.93	-0.99	-0.51	-0.33	0.13	-0.92	-1.00
2023-01-18 09:26:00+00:00	0.93	-1.00	-0.52	-0.33	0.13	-0.92	-1.00
		tes	st_df.tail(5)			
	close		•	•	month_day	year_week	month
Datetime							
2023-01-23 23:54:00+00:00	1.17	-1.00	-0.52	-1.00	0.47	-0.88	-1.00
2023-01-23 23:55:00+00:00	1.17	-0.99	-0.51	-1.00	0.47	-0.88	-1.00
2023-01-23 23:56:00+00:00	1.17	-1.00	-0.51	-1.00	0.47	-0.88	-1.00
2023-01-23 23:57:00+00:00	1.17	-1.00	-0.52	-1.00	0.47	-0.88	-1.00
2023-01-23 23:58:00+00:00	1.17	-1.00	-0.55	-1.00	0.47	-0.88	-1.00

SECTIONS: Top | Compile Stocks | The Data | Add Change Column | Feature Engineering | Splitting & Scaling | Creating Sequences | PyTorch Datasets | LSTM | Trainer | Results |

Creating sequences for training the model

compile_sequences()

- will take input data as dataframe, a target column and the length we want the sequences to be
 - This will iterate over all the data from the beginning up to the last possible full sequence length in the data.
 - It is also possible to write this code in a more elegant way, such as with sliding windows

compile_sequences()

```
def compile_sequences(input_data, target_column, sequence_length):
    sequences = []
    data_size = len(input_data)

for item in tq.tqdm(range(data_size - sequence_length)):

    # end not included, therefor it will be the label
    sequence = input_data[item : item + sequence_length]
    label_position = item + sequence_length

# defining the label with the value in the label index position
    label = input_data.iloc[label_position][target_column]
    sequences.append((sequence, label))
return sequences
```

How creating sequences works

```
sample_data.head(5)
```

	feature1	label
0	1	6
1	2	7
2	3	8
3	4	9
4	5	10

```
sample_sequences = compile_sequences(sample_data, 'label', 3)
```

100%| 5/5 [00:00<00:00, 1095.58it/s]

see_sequence_samples()

```
see_sequence_samples(sample_sequences, ['feature1'], num_samples = 3)
```

There are 5 total squences in this data.

sequence no.1 | target / label -> 9

	feature1
0	1
1	2
2	3

sequence no.2 | target / label -> 10

	feature1
1	2
2	3
3	4

sequence no.3 | target / label -> 11

	feature1
2	3
3	4
4	5

Creating sequences from the data

```
100%| 32019/32019 [00:12<00:00, 2618.53it/s]
100%| 7959/7959 [00:03<00:00, 2364.64it/s]
```

There are 32,019 total squences in this data.

sequence no.1 | target / label -> -0.8090204723204248

	close	volume	change
Datetime			
2022-12-27	-0.80	-1.00	-0.50
2022-12-27	-0.79	-0.94	-0.46
2022-12-27	-0.79	-0.97	-0.50

sequence no.2 | target / label -> -0.8085050919224583

	close	volume	change
Datetime			
2022-12-27	-0.79	-0.94	-0.46
2022-12-27	-0.79	-0.97	-0.50
2022-12-27	-0.78	-0.88	-0.44

There are 7,959 total squences in this data.

sequence no.1 | target / label -> 0.9247891394642078

close volume change

Datetime			
2023-01-18	0.93	-0.98	-0.47
2023-01-18	0.93	-1.00	-0.50
2023-01-18	0.93	-1.00	-0.51

sequence no.2 | target / label -> 0.9241763031441197

	close	volume	change
Datetime			
2023-01-18	0.93	-1.00	-0.50
2023-01-18	0.93	-1.00	-0.51
2023-01-18	0.93	-0.99	-0.51

SECTIONS: <u>Top | Compile Stocks | The Data | Add Change Column | Feature Engineering | Splitting & Scaling | Creating Sequences | PyTorch Datasets | LSTM | Trainer | Results | </u>

Sequences to PyTorch Datasets

- __init__() takes the sequences it will work with
- __len__() returns the number of sequences in any given example
- __getitem__() takes the index of the item we are interested in
 - within each sequence item is a tuple with the input data as the first tuple value and the target data or label as the second
 - sequences are converted from pandas to numpy to Tensor
 - labels are converted into floats, since we are doing regression and wanting to predict floating point numbers

Wrapping data with PyTorch Lightning

- setup() converts sequences into the dataset class defined above
- train_dataloader(), validation_dataloader(), test_dataloader()
 - create the three different kinds of dataloaders for the data
 - train_dataloader() -> shuffle = False do not want to shuffle the data because it is timeseries data, so the order is important
 - num_workers = 2-speeds up training depending on GPU vs CPU
 - validation_dataloader() and test_dataloader() batch_size = 1 for testing and making predictions, we would usually do one record at a time

```
batch_size = 8):
    super().__init__()
    self.train_sequences = train_sequences
    self.test_sequences = test_sequences
    self.batch_size = batch_size
def setup(self, stage = None):
    self.train_dataset = TickerDataset(self.train_sequences)
    self.test_dataset = TickerDataset(self.test_sequences)
def train_dataloader(self):
    return DataLoader(self.train_dataset,
                     batch_size = self.batch_size,
                     shuffle = False,
                     num_workers = 2)
def validation_dataloader(self):
    return DataLoader(self.test_dataset,
             batch_size = 1,
             shuffle = False,
             num_workers = 1)
def test_dataloader(self):
    return DataLoader(self.test_dataset,
             batch_size = 1,
             shuffle = False,
             num_workers = 1)
```

Defining the data module

calling the module with the sequences, with setup(), which will create the PyTorch Datasets

Investigating a single item from TickerDataset

```
train_dataset = TickerDataset(train_sequences)
```

```
for item in train_dataset:
    print(item['sequence'].shape)
    print(item['label'].shape)
    print(item['label'])
    break
```

```
torch.Size([60, 7])
torch.Size([])
tensor(-0.8090)
```

SECTIONS: <u>Top | Compile Stocks | The Data | Add Change Column | Feature Engineering | Splitting & Scaling | Creating Sequences | PyTorch Datasets | LSTM | Trainer | Results |</u>

Creating the LSTM model

- LSTM = Long short term memory neural network
 - Allows sequences with single outputs or multiple datapoints
 - Transformers can also be used for time series (as used in text and images)
 - batch_size = True inputting batch size as first parameter, which is useful for using the dataloader that passes batches of sequences with 120 data points in each sequence and 9 features for each data point
 - num_layers number of LSTMs stacked on one another
 - regressor is the final linear layer that outputs our single prediction
- forward()
 - flatten_parameters() used for quicker distributed training with GPUs, which PyTorch lightning allows for
 - takes the features of the output of final layer of the LSTM, the hidden state and the cell state of the LSTM

```
class PricePredictionModel(nn.Module):
    def __init__(self,
                 num_features,
                 num_hidden = 128,
                 num_layers = 2):
        super().__init__()
        self.num_hidden = num_hidden
        self.lstm = nn.LSTM(
                        input_size = num_features,
                        hidden_size = num_hidden,
                        batch_first = True,
                        num_layers = num_layers,
                        dropout = 0.2)
        self.regressor = nn.Linear(num_hidden, 1)
    def forward(self, inputs):
        self.lstm.flatten_parameters()
        # getting states from the LSTM, retrieving the last layer of hidden
        # passing the last layer to the regressor
```

```
_, (hidden, _) = self.lstm(inputs)
out = hidden[-1]
return self.regressor(out)
```

Creating the lightning module for the model

• labels.unsqueeze() - aligns the dimensions of the output with the output of predictions from the model

```
class TickerPricePredictor(pl.LightningModule):
   def __init__(self, num_features):
        super().__init__()
        self.model = PricePredictionModel(num_features)
        self.loss_function = nn.MSELoss()
   def forward(self, inputs, labels = None):
        output = self.model(inputs)
        loss = 0
        if labels is not None:
            loss = self.loss_function(output, labels.unsqueeze(dim=1))
        return loss, output
   def training_step(self, batch, batch_idx):
        sequences = batch['sequence']
        labels = batch['label']
        loss, outputs = self(sequences, labels)
        self.log('training loss', loss, prog_bar = True, logger = True)
        return loss
   def validation_step(self, batch, batch_idx):
        sequences = batch['sequence']
        labels = batch['label']
        loss, outputs = self(sequences, labels)
        self.log('validation loss', loss, prog_bar = True, logger = True)
        return loss
   def test_step(self, batch, batch_idx):
        sequences = batch['sequence']
        loss, outputs = self(sequences, labels)
        self.log('test loss', loss, prog_bar = True, logger = True)
        return loss
   def configure_optimizers(self):
        return optim.AdamW(self.parameters(), lr = 0.0001)
```

```
model = TickerPricePredictor(num_features = train_df.shape[1])
```

Inspecting the values within a single item in the training dataloader

NOTICE: If the following does not work, FYI it works in Google Colab. There is a PyTorch Lightning issue, even though the version is identical.

```
for item in data_module.train_dataloader():
    sequence_shape = item['sequence'].shape
    label_shape = item['label'].shape
    break

pretty(sequence_shape, "batches of sequences: 64 -> each sequence length: 60 -> num
    pretty(label_shape, "one label for each batch of sequences: 64")
    pretty(len(data_module.train_dataloader()), "total number of batches: 501 (len(dataload))

batches of sequences: 64 -> each sequence length: 60 -> num_features for each sequence: 7

torch.Size([64, 60, 7])
one label for each batch of sequences: 64

torch.Size([64])

total number of batches: 501 (len(dataloader))
501
```

Checkpoint Callback

- dirpath = 'checkpoints' the folder where the checkpoints will be saved
- filename = 'best_checkpoint' name that the best model saved during training will be saved as
- save_top_k = 1 how many top models to save
- verbose = True how much we want to know about what is going on during training
- monitor = 'training loss'-the metrics we want to monitor while training
- mode = 'min' what aspect of the metric to monitor

- logger = TensorBoardLogger('lightning_logs', name = 'bitcoin_price') establishing the logger through TensorBoard and naming the project
- early_stopping_callback = EarlyStopping(monitor = 'val loss') a second callback that
 watches the validation loss and if there is no improvement for 2 epochs (patience = 2), the training will
 stop

```
early_stopping = EarlyStopping(monitor = 'training loss', patience = 3)
```

SECTIONS: <u>Top | Compile Stocks | The Data | Add Change Column | Feature Engineering | Splitting & Scaling | Creating Sequences | PyTorch Datasets | LSTM | Trainer | Results | </u>

Training the Model

· setting up the trainer to train the model

```
num_epochs = 10
trainer = pl.Trainer(callbacks = [checkpoints, early_stopping],
                     max_epochs = num_epochs,
                      auto_lr_find=True,
                      gpus = 1)
/usr/local/lib/python3.8/dist-
packages/pytorch_lightning/trainer/connectors/accelerator_connector.py:467:
LightningDeprecationWarning: Setting `Trainer(gpus=1)` is deprecated in v1.7 and will
be removed in v2.0. Please use `Trainer(accelerator='gpu', devices=1)` instead.
  rank_zero_deprecation(
INFO:pytorch_lightning.utilities.rank_zero:GPU available: True (cuda), used: True
INFO:pytorch_lightning.utilities.rank_zero:TPU available: False, using: 0 TPU cores
INFO:pytorch_lightning.utilities.rank_zero:IPU available: False, using: 0 IPUs
INFO:pytorch_lightning.utilities.rank_zero:HPU available: False, using: 0 HPUs
trainer.fit(model, data_module)
/usr/local/lib/python3.8/dist-
packages/pytorch_lightning/trainer/configuration_validator.py:108: PossibleUserWarning:
You defined a `validation_step` but have no `val_dataloader`. Skipping val loop.
  rank_zero_warn(
/usr/local/lib/python3.8/dist-
packages/pytorch_lightning/callbacks/model_checkpoint.py:612: UserWarning: Checkpoint
directory /content/checkpoints exists and is not empty.
  rank_zero_warn(f"Checkpoint directory {dirpath} exists and is not empty.")
INFO:pytorch_lightning.accelerators.cuda:LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
INFO:pytorch_lightning.callbacks.model_summary:
  | Name
                  | Type
                                         | Params
                  | PricePredictionModel | 202 K
1 | loss_function | MSELoss
202 K
          Trainable params
          Non-trainable params
```

```
202 K
          Total params
0.809
          Total estimated model params size (MB)
Training: 0it [00:00, ?it/s]
INFO:pytorch_lightning.utilities.rank_zero:Epoch 0, global step 501: 'training loss'
reached 0.00245 (best 0.00245), saving model to '/content/checkpoints/best_checkpoint-
v5.ckpt' as top 1
INFO:pytorch_lightning.utilities.rank_zero:Epoch 1, global step 1002: 'training loss'
reached 0.00207 (best 0.00207), saving model to '/content/checkpoints/best_checkpoint-
v5.ckpt' as top 1
INFO:pytorch_lightning.utilities.rank_zero:Epoch 2, global step 1503: 'training loss'
reached 0.00100 (best 0.00100), saving model to '/content/checkpoints/best_checkpoint-
v5.ckpt' as top 1
INFO:pytorch_lightning.utilities.rank_zero:Epoch 3, global step 2004: 'training loss'
was not in top 1
INFO:pytorch_lightning.utilities.rank_zero:Epoch 4, global step 2505: 'training loss'
was not in top 1
INFO:pytorch_lightning.utilities.rank_zero:Epoch 5, global step 3006: 'training loss'
was not in top 1
```

SECTIONS: <u>Top | Compile Stocks | The Data | Add Change Column | Feature Engineering | Splitting & Scaling | Creating Sequences | PyTorch Datasets | LSTM | Trainer | Results |</u>

Loading a Pre-Trained Model & Getting Predictions

```
trained_model = TickerPricePredictor.load_from_checkpoint('/content/checkpoints/best_checkpoint('/content/checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/best_checkpoints/be
```

```
test_dataset = TickerDataset(test_sequences)
```

get_predictions()

```
label = item['label']
    _, output = model(sequence.unsqueeze(dim=0))
    predictions.append(output.item())
    labels.append(label.item())
test_data = df[train_size + 1 : ]
test_sequences_data = test_data.iloc[sequence_length:]
dates = test_sequences_data.index.tolist()
results = pd.concat([pd.Series(dates), pd.Series(predictions),
                     pd.Series(labels)], axis = 1)
results.columns = ['dates', 'predictions', 'actuals']
results = results.set_index('dates')
def reverse_scale(scaler, data):
    reverse_scaler = MinMaxScaler()
    reverse_scaler.min_ = scaler.min_[-1]
    reverse_scaler.scale_ = scaler.scale_[-1]
    data_array = np.array(data)[:, np.newaxis]
    results = reverse_scaler.inverse_transform(data_array).flatten()
    return results
results.predictions = reverse_scale(scaler, results.predictions)
results.actuals = reverse_scale(scaler, results.actuals)
results['accuracy'] = (1 - abs(results.actuals - results.predictions) /
                   results.actuals) * 100
overall_test_accuracy = results.accuracy.mean()
sp(); sp();
pretty(f'{overall_test_accuracy:.3f}%',
       'The overall testing accuracy of the model is:'); sp()
if plot == True:
    fig = plt.subplots(facecolor='#2222222', figsize=(13, 7))
    ax = plt.axes();
    plt.style.use("ggplot");
    ax.set_facecolor('#333333')
    ax.grid(color=fontcolor, linestyle=':', linewidth=0.75, alpha=0.75)
    plt.tick_params(labelrotation=40);
    plt.title('Predictions vs. Actual Labels', fontsize=23, pad=20, color=fontcolor
    plt.ylabel('Stock Prices', fontsize=18, color=fontcolor);
    plt.xlabel('Test Sequences', fontsize=18, color=fontcolor);
    plt.xticks(fontsize=10, color='white')
    plt.yticks(fontsize=10, color='white')
    results.predictions.plot(ax = ax, color = 'cyan');
    results.actuals.plot(ax = ax, color = 'deeppink');
```

```
plt.legend(facecolor = 'DarkGray', loc = 2, fontsize=15);
return results
```

```
results = get_predictions(model, test_dataset)
```

100%| 7959/7959 [01:29<00:00, 88.59it/s]

The overall testing accuracy of the model is:

96.367%

