18 The diagram shows particle tracks in a detector.

A positive pion decays into an anti-muon at point X.

(a)	State two	ways	in	which	the	diagram	shows	that	an	anti-muon	must	also	have a	a
	positive c	harge.												

(2)

((b)	Explain	how	the	diagram	shows	that th	ie anti	-muon	is	travelling	in a	clockwise	e path

(3)

(c) State the direction of the magnetic field acting in the detector.

(1)

(d) The momentum of the pion is $1.2 \times 10^{-19} \mathrm{N s}$.	
Calculate the radius of the path of the pion.	
magnetic flux density = 3.5 T	(3)
Radius =	=
(e) A neutrino is also produced at X.	
(i) Write an equation for this decay process.	(1)

(ii) The initial path of the muon is at an angle of 18° to the direction of the pion, as shown. Data for the momentum of each particle at point X is listed below.

momentum of pion = $1.2 \times 10^{-19} \, N \, s$ momentum of muon = $0.75 \times 10^{-19} \, N \, s$ momentum of neutrino = $0.54 \times 10^{-19} \, N \, s$

Deduce whether this data is consistent with the law of conservation of momentum. You should include a scaled vector diagram in the space below.

(5)