Machine Learning Engineer - Challenge

The following document informs all the development done to overcome the challenges sent in the previous document: Machine_Learning_Engineer_Challenge. The following sections report 5 stages implementation of machine learning project development classic pipeline. These phases are: exploratory data analysis, feature engineer, model implementation, API design and model deployment process.

1. Data Exploratory Analysis

This stage analyzes the dataset_credit_risk.csv dataset. Taking into account the number of users, number of loans, different sources of income, gender, occupation, amount of loan, birth date, job start date, marital status, among others.

For more information check the notebook: **Exploratory Data Analysis.ipynb

These are some of the figures, plot or/and tables obtained when analyzing the dataset:

- This tables show the number of missing values for each column

Distribution gender vs user vs total lon amount

	Gender	# of id	Count	Total loans
0	F	24430	518851	67,178,718.752191
1	М	12027	258864	33,555,688.054158

Number of user, loans and total loan amount for each income's type

	name_income_type	Users_count	Loans_count	percentage
0	Working	18819	400164	51.619716
1	Commercial associate	8490	183385	23.287709
2	Pensioner	6152	128392	16.874674
3	State servant	2985	65437	8.187728
4	Student	11	337	0.030173

- Histogram, pie plot, bar plot for each marital status

- Plot comparison between feature with more of 2 values (name_income_type, name_education_type, etc) vs features with 2 values (gender, flag_own_car, flag_email, etc). For example: income vs gender

- Plot comparison housing type vs own car

- Histogram of number loans by user

Histograma of average of income amount by user

 Plot distribution over time of loan amount of some 15-random users who have requested 5 loans

- Plot distribution over time of loan amount of some 15-random users who have requested 35 loans

Histogram of age by user

2. Feature Engineer

This stage obtains the feature vector of the dataset_credit_risk.csv. This feature vector will use for training the model and making prediction. These features are:

- **nb_previous_loans**: number of loans granted to a given user, before the current loan.
- avg_amount_loans_previous: average amount of loans granted to a user, before the current loan.

- **age**: user age in years.
- years_on_the_job: years the user has been in employment.
- **flag_own_car**: flag that indicates if the user has his own car.

These features were obtained using **pyspark** (spark for python). For example:

- Those lines of code for converting the flag own car (string format) to [0-1] format.

- Those lines of code for converting the years on the job, among others

For more information read the MLE_challenge - Features engineering - Notebook 1-withSolution.ipynb notebook. This notebook contain code cells of exploratory analysis notebook for a better understanding of the features.

3. Model Implementation/Model Training

This stage uses the dataset with obtained features of section 2. For the y-label (prediction column) uses the status column. The status value for the most recent loan for each user.

Line codes for obtaining the y-value for each user:

```
# drop records with nb_previous_loans == 0
# because this record can't have a valid status

umberRecordsWithOPreviousLoans = dfDataSetFeatureEngineer.where(cototalUsers = dfDataSetFeatureEngineer.count()
print(f'number of records with 0 previous loans: {numberRecordsWithdfDataSetFeatureEngineer = dfDataSetFeatureEngineer.where(col('nb_p))
}
```

Histogram of y-label

Some plots for training model, accuracy, predicting model

Accuracy Score is 0.93163 Precision Score is 0.90832 Recall Score is 0.90832

0 9636 1034 1 425 10244

For more information read the MLE_challenge - Features engineering - Notebook 2-withSolution.ipynb notebook

4. API design, Implementation

This section was implemented in the **credit-risk-API** IntellIj project. This project presents 4 services:

- version-check /GET method for getting version of component (1.0.0)
- **health-check** /GET method for getting status component
- getFeaturesByUserId GET/POST for getting the feature vector by user via web explorer or postman tool
- **prediction** /POST method for predicting the status base of the five features request.
- * There are a process validation for each request type

Project structure

For running the project on local mode, this configuration is needed:

This some examples of execution of API

- Using postman tool:

- Using web explorer url

5. Deploy API

The following commands are needed for deploying the component in docker environment

```
$ cd {dir-project}
$ sudo docker build -t credit-risk .
$ sudo docker run -it -p 6924:6924 --name credit-risk --net=host credit-risk
```

```
k-API$ sudo docker run -it -p 6924:6924 --name credit-risk --net=host credit-risk
WARNING: Published ports are discarded when using host network mode
 * Serving Flask app 'server' (lazy loading)
 * Environment: production
    WARNING: This is a development server. Do not use it in a production deployment.
    Use a production WSGI server instead.
 * Debug mode: off
WARNING:werkzeug: * Running on all addresses.
    WARNING: This is a development server. Do not use it in a production deployment.
2022-02-13 02:25:33,515: WARNING * Running on all addresses.
    WARNING: This is a development server. Do not use it in a production deployment.
```

These are examples of using the component:

