Ultraproducts and ${\cal U}$

Alex J

11/12/2020

Goals of the Talk

Are you		A logician?	
		Yes	No
Familiar with ultraproducts?	Yes	See new applications	See logician's POV
	No	Add to toolbox	Wild ride!

Preview

What is an Ultraproduct?

An ultraproduct is a quotient of a direct product that:

- Preserves the "average" structure of the factors
- 2 Fills "gaps" not realized by the factors
- 3 Is concrete enough to study specific examples

3/29

Products

Definition

Given an index set I and sets \mathcal{M}_i , $i \in I$, we define the *direct product* as

$$\prod_{i \in I} \mathcal{M}_i = \{ f \mid f \text{ is a function with domain } I \text{ and } (\forall i \in I) f(i) \in \mathcal{M}_i \}$$

To denote specific elements we will write $f = \langle a_i \rangle_i$ where $a_i = f(i)$.

Ultrafilters

Definition

A *filter* on a set I is a collection $F \subseteq \mathcal{P}(I)$ such that:

- 1 ∈ F
- ② If $A \in F$ and $A \subseteq B$, then $B \in F$
- **3** If $A, B \in F$, then $A \cap B \in F$

If in addition F satisfies

• For all $A \subseteq I$, exactly one of $A \in F$ or $(I - A) \in F$ holds

then we call F an ultrafilter.

Examples

- Fix $a_0 \in I$. Then $F = \{A \subseteq I \mid a_0 \in A\}$ is an ultrafilter.
- For any infinite I, $F = \{A \subseteq I \mid (I A) \text{ is finite}\}$ is the *cofinite filter*.

Ultrafilters Continued

Facts about Ultrafilters

- If $F = \{A \subseteq I \mid a_0 \in A\}$ for some fixed $a_0 \in I$, we say F is principal.
- Principal ultrafilters yield trivial ultraproducts (isomorphic to one of their factors) and so they are usually not considered.
- Zorn's Lemma implies that any filter can be extended to an ultrafilter.
- The existence of nonprincipal ultrafilters is not provable from ZF.
- Any nonprincipal ultrafilter will contain all cofinite sets.

Ultraproducts I

Definition

Fix an index set I and an ultrafilter $\mathcal U$ on I. Given $f,g\in\prod_I\mathcal M_i$, define $f\sim_{\mathcal U} g$ if and only if $\{i\in I\mid f(i)=g(i)\}\in\mathcal U$. We write $f_{\mathcal U}$ for the equivalence class of f, and define the ultraproduct $\prod_{\mathcal U}\mathcal M_i=\prod_I\mathcal M_i/\sim_{\mathcal U}$.

Example

Let \mathcal{U} be a nonprincipal ultrafilter on $I = \mathbb{N}$ and set $\mathcal{M}_i = \mathbb{N}$ for all $i \in I$. We can form the ultraproduct $\mathcal{M} = \prod_{\mathcal{U}} \mathbb{N}$. (We call \mathcal{M} an ultrapower.)

Cardinality of Ultraproducts

Proposition

If \mathcal{U} is a nonprincipal ultrafilter on $I = \mathbb{N}$, then $\prod_{\mathcal{U}} \mathbb{N}$ is uncountable.

Alex J Ultraproducts and ${\cal U}$

Languages and Models

Definitions

A language $\mathcal L$ consists of constant symbols, function symbols, and relation symbols. A model $\mathcal M$ for a language $\mathcal L$ is a set together with interpretations for the symbols in $\mathcal L$ (i.e. actual constants, functions, and relations in the context of $\mathcal M$).

Examples

- $\mathcal{L} = \{0, 1, +, \cdot\}$ The Language of Rings
 - $\langle \mathbb{C}, 0, 1, +, \cdot \rangle$
 - $\langle M_n(\mathbb{R}), 0_n, I_n, +, \circ \rangle$
- $\mathcal{L} = \{0, S, +, \cdot\}$ The Language of Peano Arithmetic
 - $\langle \mathbb{N}, 0, S, +, \cdot \rangle$

Ultraproducts II

Definition

Given \mathcal{L} -models \mathcal{M}_i , $i \in I$, and an ultrafilter \mathcal{U} on I, we give the set $\mathcal{M} = \prod_{\mathcal{U}} \mathcal{M}_i$ the structure of an \mathcal{L} -model as follows:

- For constants C, $C^{\mathcal{M}} = \langle C^{\mathcal{M}_i} \rangle_{\mathcal{U}}$.
- For functions F, $F^{\mathcal{M}}(f_{\mathcal{U}}^{1}\dots f_{\mathcal{U}}^{n}) = \langle F^{\mathcal{M}_{i}}(f^{1}(i)\dots f^{n}(i))\rangle_{\mathcal{U}}$.
- For relations R, $R^{\mathcal{M}}(f_{\mathcal{U}}^1 \dots f_{\mathcal{U}}^n) \Leftrightarrow \{i \mid R^{\mathcal{M}_i}(f^1(i) \dots f^n(i))\} \in \mathcal{U}$.

Example: Nonstandard Naturals

Example

Let $\mathcal{L}=\{0,+,<\}$ and $\mathcal{M}=\prod_{\mathcal{U}}\mathbb{N}$, \mathcal{U} a nonprincipal ultrafilter on $I=\mathbb{N}$.

- \bullet $0^{\mathcal{M}} = \langle 0, 0, 0, \dots \rangle_{\mathcal{U}}$
- $\langle 1, 2, 3, \ldots \rangle_{\mathcal{U}} +^{\mathcal{M}} \langle 1, 1, 1, \ldots \rangle_{\mathcal{U}} = \langle 2, 3, 4, \ldots \rangle_{\mathcal{U}}$
- The naturals embed by $n \mapsto \langle n, n, n, \dots \rangle_{\mathcal{U}}$.
- For all $n \in \mathbb{N}$, $\langle n, n, n, \dots \rangle_{\mathcal{U}} <^{\mathcal{M}} \langle 1, 2, 3, \dots \rangle_{\mathcal{U}}$

Example: Hyperreals

Example

Let $\mathcal{L} = \{0, 1, +, \cdot, <\}$, let \mathcal{U} be a nonprincipal ultrafilter on $I = \mathbb{N}$, and define $\mathbb{R}^* = \prod_{\mathcal{U}} \mathbb{R}$. We call \mathbb{R}^* the hyperreals.

- The reals embed into the hyperreals by $r \mapsto \langle r, r, r, \dots \rangle_{\mathcal{U}}$.
- $\omega = \langle 1, 2, 3, 4, \dots \rangle_{\mathcal{U}}$ is greater than all $n = \langle n, n, n, \dots \rangle_{\mathcal{U}}$
- $\varepsilon = \langle 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots \rangle_{\mathcal{U}}$ is positive but less than every $\frac{1}{n} = \langle \frac{1}{n}, \frac{1}{n}, \frac{1}{n}, \dots \rangle_{\mathcal{U}}$

The Fundamental Theorem of Ultraproducts

Łos's Theorem

Suppose \mathcal{U} is an ultrafilter on I and \mathcal{M}_i , $i \in I$, are \mathcal{L} -models, and take the ultraproduct $\mathcal{M} = \prod_{\mathcal{U}} \mathcal{M}_i$. For any first-order sentence φ ,

$$\mathcal{M} \models \varphi \Leftrightarrow \{i \mid \mathcal{M}_i \models \varphi\} \in \mathcal{U}.$$

Examples of First-Order Properties

Examples

- An ultraproduct of domains/fields is a domain/field.
- An ultraproduct of algebraically closed fields (ACF) is an ACF.
- 3 An ultraproduct of models of Peano Arithmetic (PA) is a model of PA.

Regarding Other Properties

Discussion

- \mathbb{R} has no infinitesimals, but $\mathbb{R}^* = \prod_{\mathcal{U}} \mathbb{R}$ does.
 - The Archimedean Property is not expressible as a first-order sentence.
 - Being Dedekind/Cauchy complete quantifies over sets of reals.
- $\prod_{\mathcal{U}} \mathbb{N}$ is an uncountable model of number theory
 - No sentence, or set of sentences, can say "my models are countable".
 - No first-order formula $\varphi(x)$ of PA can say " $x = S^n 0$ for some n".

Application: Ax-Grothendieck Theorem

Theorem

Every injective polynomial map $P: \mathbb{C}^n \to \mathbb{C}^n$ is surjective.

Application: Ax-Grothendieck Theorem Continued

Claim 1

Every injective polynomial map $P: (\mathbb{F}_p^{alg})^n \to (\mathbb{F}_p^{alg})^n$ is surjective.

Application: Ax-Grothendieck Theorem Continued

Claim 2

Let I be the set of primes and let \mathcal{U} be a nonprincipal ultrafilter on I. Then $\prod_{\mathcal{U}} \mathbb{F}_p^{alg}$ is an algebraically closed field of characteristic zero.

Application: Ax-Grothendieck Theorem Continued

Claim 3

 $\mathbb{C}\cong\prod_{\mathcal{U}}\mathbb{F}_p^{\mathit{alg}}$ and the theorem holds for $\mathbb{C}.$

11/12/2020

19 / 29

Types

Definition

A *type* is a collection of formulas (with a common free variable) such that every finite subcollection is satisfiable (with respect to some model).

Examples

- $\bullet \ \ \mathsf{Dedekind} \ \ \mathsf{cuts} \colon \left\{ \text{``} x > q \text{''} \mid q \in \mathbb{Q}, q < \pi \right\} \cup \left\{ \text{``} x < r \text{''} \mid r \in \mathbb{Q}, r > \pi \right\}$
- Type of an infinitesimal: $\{ (x > 0)^n \} \cup \{ (x < \frac{1}{n})^n \mid n \in \mathbb{N}^+ \}$
- Type of a nonstandard natural: $\{x \neq 0, x \neq S0, x \neq SS0, \dots\}$
- Type of a transcendental number: $\{ ``p(x) \neq 0" \mid p \in \mathbb{Q}[t] \}$

Alex J

ω_1 -Saturation

Theorem

Suppose \mathcal{M}_i , $i \in I$, are \mathcal{L} -models, \mathcal{U} is a nonprincipal ultrafilter on I, and there exist $A_n \in \mathcal{U}$, $n \in \mathbb{N}$, such that $\bigcap A_n = \emptyset$. Then the ultraproduct $\mathcal{M} = \prod_{\mathcal{U}} \mathcal{M}_i$ satisfies every countable type. (We say \mathcal{M} is ω_1 -saturated.)

ω_1 -Saturation Continued

Alex J Ultraproducts and $\mathcal U$ 11/12/2020 22 / 25

Countably Complete Ultrafilters?

Warning!

The existence of nonprincipal ultrafilters closed under countable intersections is equivalent to a large cardinal hypothesis!

Ultralimits

Definition

Suppose $\mathcal U$ is an ultrafilter on I and (X,d) is a metric space. Define the *ultralimit* of a sequence $\langle x_i \rangle_i \subseteq X$ to be $\lim_{\mathcal U} x_i = x$ if and only if $\{i \mid d(x_i,x) < \varepsilon\} \in \mathcal U$ for all $\varepsilon > 0$.

An Analyst's Ultraproduct

Definition

Let E_i , $i \in I$, be a family of Banach spaces. Define

$$\ell_{\infty}(I, E_i) = \left\{ \langle x_i \rangle \in \prod_{I} E_i \middle| \sup_{I} ||x_i|| < \infty \right\}$$

and

$$N_{\mathcal{U}} = \left\{ \langle x_i \rangle \in \ell_{\infty}(I, E_i) \middle| \lim_{\mathcal{U}} ||x_i|| = 0 \right\}.$$

It turns out $N_{\mathcal{U}}$ is a closed subspace of the Banach space $\ell_{\infty}(I, E_i)$, so we define the Banach space ultraproduct $\prod_{I} E_i = \ell_{\infty}(I, E_i)/N_{\mathcal{U}}$.

Ultraproducts and \mathcal{U}

25/29

Facts about Banach Space Ultraproducts

Facts

- The quotient norm turns out to be equivalent to $||\langle x_i \rangle_{\mathcal{U}}|| = \lim_{\mathcal{U}} ||x_i||$
- An ultrapower of Banach spaces with respect to a countably incomplete ultrafilter is either finite-dimensional or non-separable.
- \odot Suppose Y is a separable Banach space, finitely representable in X. Suppose \mathcal{U} is a countably incomplete ultrafilter. Then Y embeds isometrically into the ultrapower $\prod_{i,j} X$.

Banach Spaces as Models

"Definition"

If you ask a model theorist what a Banach space is, they will answer:

$$\langle B, \mathbb{R}, 0_B, +_B, 0_\mathbb{R}, 1_\mathbb{R}, +_\mathbb{R}, \cdot_\mathbb{R}, <_\mathbb{R}, c_r, ||\cdot||, \cdot_{\mathsf{scalar}} \rangle_{r \in \mathbb{R}}$$

a structure in sorts B, \mathbb{R} satisfying various axioms.

The Γ-Ultraproduct

Definition

Given an ultrafilter \mathcal{U} on I, \mathcal{L} -models \mathcal{M}_i , $i \in I$, and a set Γ of types that are each omitted on all \mathcal{M}_i , define

$$\prod_{i}^{\Gamma} \mathcal{M}_{i} = \left\{ f \in \prod_{i} \mathcal{M}_{i} \middle| (\forall p \in \Gamma) (\exists \varphi(x) \in p) \{ i \mid \mathcal{M}_{i} \models \neg \varphi(f(i)) \} \in \mathcal{U} \right\}$$

Now quotient by \mathcal{U} as usual to define the Γ -ultraproduct $\prod_{i=1}^{\Gamma} \mathcal{M}_i$.

11/12/2020

Thanks!

Alex J Ultraproducts and $\,\mathcal{U}$ 11/12/2020 29 / 29