T.C. DOKUZ EYLÜL ÜNİVERSİTESİ FEN FAKÜLTESİ İSTATİSTİK BÖLÜMÜ

PROJE BAŞLIĞI

Bitirme Projesi Raporu

Pelin PEKER Merve AK Edanur Binnaz DURSUN Ahmet ÇALI

May 2024

Rapor Değerlendirme

"PROJE BAŞLIĞI" başlıklı bitirme projesi raporu tarafıgitmdan okunmuş, kapsamı ve niteliği açısından bir Bitirme Projesi raporu olarak kabul edilmiştir.

Dr. Engin YILDIZTEPE

Teşekkür

Tüm çalışma süresince yönlendiriciliği, katkıları ve yardımları ile yanımızda olan danışmanımız Dr. Engin YILDIZTEPE 'ye ve böyle bir çalışmayı yapmamız için bize fırsat tanıyan Dokuz Eylül Üniversitesi Fen Fakültesi İstatistik Bölümüne teşekkür ederiz.

Pelin PEKER Merve AK Edanur Binnaz DURSUN Ahmet ÇALI

Özet

Değişim noktası verilerde meydana gelen beklenmedik değişiklikler olarak tanımlanabilir. Değişim noktası tespit yöntemleri bu noktaları istatistiksel tekniklerle bulmayı amaçlar. Değişim noktası analizi finans, kalite kontrol, ağ analizi gibi çok farklı alanlarda kullanılmaktadır. Bu çalışmada değişim noktası tespit yöntemleri incelenmiştir. Çalışma kapsamında AMOC, BinSeg, Parçalı Regresyon, Pelt ve Prophet algoritmaları kullanılmıştır. Algoritmaların uygulamadaki performanslarını belirlemek amacıyla yirmi yapay ve on bir gerçek veri kullanılmıştır. Algoritmaların performansları F1 puanı ve kapsama ölçütü kullanılarak değerlendirilmiştir. Değişim noktası içeren yapay veri üretmek ve bahsedilen algoritmaları uygulayabilmek amacıyla bir RShiny web uygulaması geliştirilmiştir. Çalışmada R ve Python programlama dilleri kullanılmıştır.

Anahtar Kelimeler: Değişim noktası, AMOC, BinSeg, Pelt, Prophet, Parçalı Regresyon, R Shiny

Abstract

Keywords: keyword1, keyword2, keyword3

İçindekiler

Bölüm	1: thesisdown::thesis_gitbook: default	1
Bölüm	2: Değişim Noktası	9
2.1	Tek Değişim Noktası Tespiti	
2.2	Birden Fazla Değişim Noktası Tespiti	
	2.2.1 İkili Segmentasyon Algoritması	
	2.2.2 PROPHET	3
	2.2.3 PELT(Pruned Exact Linear Time)	:
2.3	Parçalı Regresyon	3
2.4	KAPSAMA METRİĞİ	5
2.5	F1 PUANI	9
Bölüm	3: Uygulama	5
3.1	Veri	Ę
	3.1.1 Gerçek Veri	Ę
	3.1.2 Yapay Veri	Į.
	3.1.3 F1 Default	6
	3.1.4 Cover Default	6
	3.1.5 F1 Oracle	7
3.2	Yapay Veriler	8
	3.2.1 F1 Default	8
	3.2.2 COVER Default	Ć
	3.2.3 F1 Oracle	10
	3.2.4 COVER Oracle	11
3.3	Sporcu Verileri	11
	3.3.1 Cover Oracle	11
	3.3.2 F1 Oracle	12
3.4	Sonuçlar	13
Bölüm	4: Bölüm Başlığı	15
4.1	Bu bir alt başlık	15
	4.1.1 Bu ikinci seviye bir alt başlık	15
Bölüm	5: Bölüm 4 Başlık	17
5.1	Bu bir alt başlık	17

5.1.1 Bu ikinci seviye bir alt başlık	17
Sonuç	19
Kaynaklar	21
Ek A: İlk Ek Başlığı	23
Ek B: İkinci Ek Başlığı	25

Tablo Listesi

3.1	apay Veri	Ę
	1 Default	
	over Default	
3.4	1 Oracle	7
3.5	over Oracle	8
3.6	1 Default	8
3.7	over Default	Ć
3.8	1 Oracle	10
3.9	over Oracle	11
3.10	over Oracle	12
3.11	1 Oracle	12

Şekil Listesi

 $thesisdown::thesis_gitbook: default$

Placeholder

Değişim Noktası

Placeholder

- 2.1 Tek Değişim Noktası Tespiti
- 2.2 Birden Fazla Değişim Noktası Tespiti
- 2.2.1 İkili Segmentasyon Algoritması
- **2.2.2** PROPHET
- 2.2.3 PELT(Pruned Exact Linear Time)

Optimal Bölütleme

PELT Yöntemi

- 2.3 Parçalı Regresyon
- 2.4 KAPSAMA METRİĞİ

2.5 F1 PUANI

Doğruluk (Accuracy)

Duyarlılık (Recall)

Kesinlik (Precision)

F1 Skoru (F1 Score)

Uygulama

3.1 Veri

3.1.1 Gerçek Veri

3.1.2 Yapay Veri

Tablo 3.1: Yapay Veri

Veri	Gözlem Sayısı	DN Sayısı	DN Konumu
1	1687	4	516, 578, 779, 1499
2	2092	3	564, 1003, 1347
3	1582	4	175, 553, 1186, 1347
4	2798	3	951, 985, 2315
5	2165	3	1034, 1835, 1892
6	1590	4	631, 698, 1208, 1481
7	2244	1	1578
8	2369	3	788, 958, 1768
9	2288	4	316, 493, 587, 1606
10	1847	4	153, 300, 469, 1172
11	2756	3	2119, 2168, 2377
12	2195	5	909, 1004, 1317, 1422, 1749

Veri	Gözlem Sayısı	DN Sayısı	DN Konumu
13	1689	2	479, 611
14	893	2	552, 837
15	2562	1	575
16	1978	1	293
17	1992	2	955, 1798
18	2472	3	1470, 1786, 2365
19	2411	3	393, 874, 1047
20	2297	2	79, 1622

##Gerçek Veriler

3.1.3 F1 Default

Tablo 3.2: F1 Default

Veri	AMOC	BINSEG	PELT	SEGMENTED	PROPHET
Bitcoin	0,3670	0,4897	0,2663	0,3670	0,2341
Brent-spot	$0,\!2718$	0,6431	0,4244	0,6590	0,3904
children-per women	0,6175	0,5902	0,3366	0,8440	0,5168
co2- canada	0,5441	0,8194	0,8194	0,3938	0,6315
debt -Ireland	0,7603	1,0000	0,7603	0,7603	0,6086
rail-lines	0,8462	0,8000	0,4690	1,0000	0,2666
rather-stock	$0,\!2718$	0,3392	$0,\!4710$	0,4886	0,5292
scanline-42049	0,4926	0,7400	0,5151	0,2463	0,3902
shangai-license	0,8679	0,6511	0,6666	0,6495	0,5316
usd-isk	0,7854	0,6093	NA	0,7881	0,5956
well-log	NA	0,7289	$0,\!4235$	0,6912	0,3589

Varsayılan parametre ayarlarıyla algoritmalar çalıştırıldığında, on bir verinin beşinde BinSeg, dördünde AMOC ve parçalı regresyon, ikisinde PELT 0,7 ve üzerinde F1 puanına sahipken Prophet algoritmasında F1 puanı 0,7 ve üzerinde olan veri bulunmamaktadır.

"Varsayılan ayarlarda, on bir verinin ikisinde AMOC ve Prophet ile, birinde PELT ve parçalı regresyon ile 0.3'ün altında F1 puanı elde edilmiştir."

 BinSeg algoritmasında F1 pu
anı 0,3 ve altında olan veri bulunmamaktadır.

Değişim noktası tespit edilemeyen durumlar (NA) ile gösterilmiştir.

3.1.4 Cover Default

3.1. Veri 7

Tablo 3.3: Cover Default

Veri	AMOC	BINSEG	PELT	SEGMENTED	PROPHET
Bitcoin	0,7640	0,7354	0,3022	0,5322	0,1941
Brent-spot	$0,\!4251$	0,5921	$0,\!4535$	0,4945	0,2992
children-per women	0,7838	0,7663	0,7721	0,6282	$0,\!2753$
co2- canada	$0,\!5264$	0,7291	0,7393	0,5135	0,3409
debt -Ireland	0,5844	0,6607	0,5446	0,5861	0,4000
rail-lines	0,7682	0,7732	0,4408	0,7890	0,3081
rather-stock	$0,\!3870$	0,3923	0,3970	0,5164	0,3470
scanline-42049	$0,\!4305$	0,7502	$0,\!4157$	0,3859	0,3249
shangai-license	0,9105	0,7691	0,3132	0,8272	0,2458
usd-isk	0,8577	NA	NA	0,5248	$0,\!2752$
well-log	$0,\!4527$	0,7696	$0,\!4285$	0,4146	0,3743

Varsayılan ayarlar ile, on bir verinin yedisinde BinSeg, beşinde AMOC, ikisinde PELT ve parçalı regresyon ile 0,7 ve üzerinde kapsama ölçütü değerleri elde edilmiştir. Prophet algoritmasında hiçbir veri için kapsama ölçütü değeri 0,7 nin üzerinde değildir.

Varsayılan ayarlar ile Prophet algoritmasında başarılı kapsama ölçütü değerleri elde edilemediği görülmektedir. Prophet on bir verinin beşinde 0,3 ve altında kapsama ölçütü değerine sahiptir.

Değişim noktası tespit edilemeyen durumlar (NA) ile gösterilmiştir.

3.1.5 F1 Oracle

Tablo 3.4: F1 Oracle

Veri	AMOC	BINSEG	PELT	SEGMENTED	PROPHET
Bitcoin	0,3670	0,6124	0,3940	0,4523	0,2743
Brent-spot	0,2718	0,6341	0,4481	0,6590	0,3704
children-per women	0,6175	0,5902	0,6388	0,8440	0,5168
co2- canada	0,5441	0,8776	0,3595	0,7142	0,6045
debt -Ireland	0,7603	0,9583	0,9583	0,9795	0,9795
rail-lines	0,8461	0,8316	0,7234	0,9655	0,9655
rather-stock	0,2718	$0,\!3728$	0,5316	0,4243	0,5292
scanline-42049	0,4926	0,8331	0,5704	0,8648	0,4581
shangai-license	0,8679	0,6511	0,2025	0,6495	0,5316
usd-isk	0,7854	0,6093	0,6007	0,7881	0,5956
well-log	0,2791	0,7289	0,5760	0,6912	0,3589

Ayarlanmış parametreler ile en iyi F1 puanı değerleri parçalı regresyon ile alınmıştır. On bir veri setinin altısında parçalı regresyon, beşinde BinSeg, dördünde AMOC, ikisinde PELT ve Prophet'in 0,7 ve üzerinde F1 puanına sahip olduğu görülmektedir.

Tablo xx'e göre parçalı regresyon ve BinSeg algoritmaları denenen tüm gerçek veriler için 0,3 ve üzerinde F1 puanı elde etmişlerdir.Ancak AMOC algoritması için F1 puanı onbir verinin üçünde 0,3'ün altındadır. ### Cover Oracle

Tablo 3.	.5: Cove	er Oracle
----------	----------	-----------

Veri	AMOC	BINSEG	PELT	SEGMENTED	PROPHET
Bitcoin	0,7640	0,4352	0,2182	0,3833	0,2045
Brent-spot	$0,\!4251$	$0,\!4858$	0,3257	0,5273	0,3206
children-per women	0,7938	0,7625	0,7635	0,7062	0,3485
co2- canada	$0,\!5264$	0,7001	0,7494	0,6622	$0,\!4366$
debt -Ireland	0,5844	0,8136	0,7042	0,8217	0,6919
rail-lines	0,7665	0,7731	0,5113	0,6964	0,6222
rather-stock	0,3870	0,3941	0,4840	0,4488	0,3470
scanline-42049	$0,\!4305$	0,8570	0,4157	0,7944	0,4097
shangai-license	0,9105	0,7961	0,3955	0,8058	$0,\!3625$
usd-isk	0,8577	0,7549	0,5609	0,7819	0,4211
well-log	$0,\!4527$	0,6371	$0,\!4873$	0,5511	$0,\!4615$

Ayarlanmış parametreler ile algoritmalar çalıştırıldığında, kapsama ölçütüne göre en iyi sonuçları BinSeg algoritması vermiştir. Denenen on bir verinin yedisinde BinSeg, beşinde AMOC ve parçalı regresyon, üçünde PELT 0,7 ve üzerinde kapsama metriğine sahipken Prophet algoritmasında kapsama metriği 0,7 ve üzerinde olan veri bulunmamaktadır.

Çalışmada incelenen algoritmaların ihtiyaç duyduğu parametre değerleri verilere göre en uygun hale getirildiğinde BinSeg ve parçalı regresyon algoritmalarının diğerlerine göre değişim noktalarının konumlarını belirlemede daha başarılı olduğu görülmüştür.

3.2 Yapay Veriler

3.2.1 F1 Default

Tablo 3.6: F1 Default

Veri	AMOC	BINSEG	SEGMENTED	PROPHET	PELT
1	0,5714	0,9091	0,2857	0,2857	0,4000
2	0,6667	0,4000	0,3333	0,1818	0,4444
3	$0,\!5714$	0,9091	0,1290	0,2000	0,4000
4	0,6667	0,8000	0,3333	0,2222	0,7500
5	0,6667	0,6000	0,4444	$0,\!2500$	0,6666
6	$0,\!5714$	0,5455	0,4000	$0,\!1538$	0,4000

Veri	AMOC	BINSEG	SEGMENTED	PROPHET	PELT
7	0,5000	0,2500	0,5000	0,3333	0,5000
8	0,6667	0,8000	0,5000	0,2222	0,6000
9	0,2857	0,5455	0,4000	0,1818	0,3636
10	0,5714	0,7273	0,6000	$0,\!1666$	0,4615
11	0,6667	0,6000	0,5000	0,2222	0,4444
12	0,5000	0,8333	0,1666	$0,\!1666$	0,5000
13	0,8000	0,6667	0,6666	0,2857	0,5714
14	0,8000	0,6667	0,6666	0,2857	0,5714
15	0,9998	0,5000	0,5000	0,4000	0,4000
16	0,9999	0,5000	0,5000	0,4000	0,4000
17	0,8000	0,6667	0,6666	0,2857	0,5714
18	0,6667	0,8000	0,5000	0,2222	0,4000
19	0,6667	0,8000	0,5000	0,2222	0,4444
20	0,8000	0,4444	0,3333	$0,\!2857$	0,2857

Algoritmalar varsayılan parametre ayarlarıyla çalıştırıldığında, yirmi simülasyon verisinin sekizinde BinSeg, altısında AMOC ve birinde PELT 0,7 ve üzerinde F1 puanına sahipken

parçalı regresyon ve Prophet algoritmasında F1 puanı 0,7 ve üzerinde olan veri bulunmamaktadır.

Varsayılan parametrelerle çalıştırılan algoritmalardan Prophet on yedi, parçalı regresyon üç, AMOC, BinSeg ve Pelt algoritmalarında birer tane 0,3'ün altında F1 puanına sahip veri bulunmaktadır.

3.2.2 COVER Default

Tablo 3.7: Cover Default

Veri	AMOC	BINSEG	SEGMENTED	PROPHET	PELT
1	0,5975	0,9895	0,3740	0,3607	0,6843
2	0,5388	0,8881	0,5185	0,5600	0,7686
3	0,4937	0,9943	0,2397	0,5151	0,7953
4	0,5850	0,8989	0,4876	0,5495	0,8897
5	0,7707	0,9687	0,8126	0,6164	0,7706
6	0,6079	0,8822	0,7007	0,3625	0,5339
7	0,9648	0,7995	0,7807	0,4670	0,8523
8	0,6084	0,8848	0,6725	0,6173	0,7047
9	0,6629	0,9467	0,4937	0,5129	0,6060
10	0,6269	0,9288	0,7368	0,4726	0,4510
11	0,8764	0,9464	0,8185	0,9991	0,6856
12	0,5639	0,8220	0,6032	0,6158	0,5461
13	0,8771	0,7478	0,8771	$0,\!5563$	0,4660

Veri	AMOC	BINSEG	SEGMENTED	PROPHET	PELT
14	0,8932	0,9567	0,8911	0,4304	0,7085
15	0,9992	0,9863	0,8634	0,5091	0,4972
16	0,9950	0,7715	0,8828	0,4541	0,4058
17	0,8408	0,8620	0,8403	0,5809	0,5871
18	0,7744	0,9956	0,8502	0,4184	0,4871
19	0,6932	0,9925	0,7623	0,4422	$0,\!4285$
20	0,5905	0,7208	0,4578	0,4711	0,5644

BinSeg varsayılan parametre ayarlarıyla çalıştırıldığında tüm verilerde 0,7'nin üzerinde kapsama ölçütü değerine sahiptir. Parçalı regresyon on ikisinde, AMOC dokuzunda, Pelt yedisinde ve Prophet birinde 0,7 ve üzerinde kapsama ölçütü değerine sahip olduğu görülmektedir.

Varsayılan ayarlar çalıştırılan algoritmalardan sadece parçalı regresyonda bir veri 0,3'ün altında kapsama ölçütü değerine sahiptir.

3.2.3 F1 Oracle

Tablo 3.8: F1 Oracle

Veri	AMOC	BINSEG	SEGMENTED	PROPHET	PELT
1	0,5714	0,9997	0,4444	0,2500	0,6000
2	0,6667	0,5000	0,5000	0,4000	0,5000
3	0,5714	0,9994	0,4000	$0,\!2500$	0,4000
4	0,6667	0,9996	0,4000	$0,\!2500$	0,7500
5	0,6667	0,7500	0,4000	0,2857	0,6666
6	$0,\!5714$	0,6000	0,4000	0,3333	0,2857
7	0,5000	0,5000	0,5000	0,4000	0,5000
8	0,6667	0,7500	0,5000	$0,\!2500$	0,5454
9	0,2857	0,6000	0,4000	0,2222	0,3636
10	$0,\!5714$	0,8000	0,6000	0,2000	0,6000
11	0,6667	0,7500	0,5000	$0,\!2500$	$0,\!5714$
12	0,5000	0,8333	0,1666	0,3636	0,5000
13	0,8000	0,9987	0,6666	0,3333	0,6666
14	0,8000	0,6667	0,6666	0,3333	0,6666
15	0,9998	0,9989	0,5000	0,5000	0,5000
16	0,9999	0,9967	0,5000	0,5000	0,5000
17	0,8000	0,9985	0,6666	0,3333	0,6666
18	0,6667	0,9978	0,5000	$0,\!2500$	0,5000
19	0,6667	0,9949	0,5000	$0,\!2500$	0,5000
20	0,8000	0,6667	0,3333	0,3333	0,3333

Ayarlanmış parametreler sonucunda en iyi F1 puanı değerleri BinSeg ile elde edil-

miştir. Prophet ve parçalı regresyon algoritmalarında hiç bir veri 0,7 ve üzerinde F1 puanına sahip değildir. Pelt algoritmasında bir tane verinin 0,7'nin üzerinde olduğu görülmektedir,

Prophet algoritmasının en kötü F1 puanı değerlerini verdiği görülmektedir. AMOC, parçalı regresyon ve Pelt algoritmalarında 0,3 'ün altında birer tane veri bulunmaktadır.

3.2.4 COVER Oracle

Tablo 3.9: Cover Oracle

Veri	AMOC	BINSEG	SEGMENTED	PROPHET	PELT
1	0,5975	0,9930	0,9930	0,6104	0,7081
2	0,5388	0,8914	0,8914	0,6793	0,8194
3	0,4937	0,9950	0,9950	0,6152	0,9246
4	0,5850	0,9957	0,9957	0,6830	0,8840
5	0,7707	0,9688	0,9688	0,7494	0,7706
6	0,6079	0,8853	0,8853	0,3967	0,5599
7	0,9648	0,9648	0,9648	0,6002	0,9670
8	0,6084	0,8831	0,8831	0,6700	0,7364
9	0,6629	0,9467	0,9467	0,5665	0,6067
10	0,6269	0,9092	0,9092	$0,\!4866$	0,7201
11	0,8764	0,9689	0,9689	0,9998	0,9387
12	0,5639	0,8220	0,8220	0,6338	0,5604
13	0,8771	0,9976	0,9976	0,6158	0,6509
14	0,8932	0,9567	0,9567	0,5356	0,8589
15	0,9992	0,9992	0,9992	0,5255	0,8189
16	0,9950	0,9950	0,9950	0,5825	0,7296
17	0,8408	0,9980	0,9980	0,7171	0,7905
18	0,7744	0,9976	0,9976	0,4701	0,6171
19	0,6932	0,9983	0,9983	0,4816	0,6680
20	$0,\!5905$	0,9854	0,9854	0,5511	0,7184

Ayarlanan parametreler ile hesaplanan kapsama ölçütü değerinin BinSeg ve parçalı regresyon algoritmalarının tamamında 0,8'in üzerinde olduğu görülmektedir. Pelt için on dört, AMOC için dokuz ve Prophet algortiması için üç verinin 0,7'nin üzerinde kapsama ölçütü değerine sahip olduğu görülmektedir.

Ayarlanan parametrelerle çalıştırılan beş farklı algoritmanın kullanıldığı yirmi verinin hiçbirinde 0,3'ün altından kapsama ölçütü değeri bulunmamaktadır.

3.3 Sporcu Verileri

3.3.1 Cover Oracle

Veri	BINSEG	SEGMENTED	PELT
1	0,7023	0,6688	0,7340
2	NA	0,8232	NA
3	NA	0,5097	NA
4	0,7485	0,9547	0,7308
5	0,9326	0,8972	0,7314
6	NA	0,7793	NA
7	NA	0,9493	NA
8	1,0000	0,8930	0,8425
9	0,8181	0,9545	0,8723
10	0,8039	0,6843	0,7189
11	1,0000	0,6111	0,5965
12	1,0000	0,7270	0,9353
13	0,6520	0,8486	0,9805
14	0,5434	0,7423	1,0000
15	0.7141	0.4571	0.8194

Tablo 3.10: Cover Oracle

Ayarlanan parametreler ile hesaplanan kapsama ölçütü değerinin parçalı regresyon algoritmasında yedi, Pelt ve BinSeg algoritmalarında ise altı veride 0,8'in üzerinde olduğu görülmektedir.

Ayarlanan parametrelerle çalıştırılan üç farklı algoritmanın kullanıldığı on beş verinin hiçbirinde 0,3'ün altından kapsama ölçütü değeri bulunmamaktadır.

İki değişim noktası tespit edilemeyen durumlar (NA) ile gösterilmiştir.

3.3.2 F1 Oracle

Tablo 3.11: F1 Oracle

Veri	BINSEG	SEGMENTED	PELT
1	0,6600	0,6600	0,6600
2	NA	1,0000	NA
3	NA	0,6600	NA
4	1,0000	1,0000	1,0000
5	1,0000	1,0000	1,0000
6	NA	1,0000	NA
7	NA	1,0000	NA
8	1,0000	1,0000	1,0000
9	0,8571	0,8571	1,0000
10	1,0000	1,0000	1,0000
11	0,7499	0,8571	0,8571
12	1,0000	1,0000	1,0000

3.4. Sonuçlar

Veri	BINSEG	SEGMENTED	PELT
13	0,5714	0,8571	1,0000
14	$0,\!2857$	0,8571	1,0000
15	$0,\!2857$	0,4615	0,6600

Ayarlanmış parametreler sonucunda en iyi F1 puanı değerleri parçalı regresyon ile elde edilmiştir. Parçalı regresyon algoritmasında on iki veri 0,8 ve üzerinde F1 puanına sahiptir. Pelt algoritmasında dokuz, BinSeg algoritmasında ise altı verinin 0,8'in üzerinde F1 puanına sahip olduğu görülmektedir.

Pelt ve parçalı regresyon algoritmalarının 0,3'ün altında F1 puanı yokken, BinSeg algoritmasında ise iki veride 0,3'ün altında F1 puanı elde edilmiştir.

İki değişim noktası tespit edilemeyen durumlar (NA) ile gösterilmiştir.

Çalışma Tasarımı

3.4 Sonuçlar

Bölüm Başlığı

4.1 Bu bir alt başlık

Bu bölümde şu konular yer almaktadır...

4.1.1 Bu ikinci seviye bir alt başlık

Bölüm 4 Başlık

5.1 Bu bir alt başlık

Bu bölümde şu konular yer almaktadır...

5.1.1 Bu ikinci seviye bir alt başlık

Sonuç

If we don't want Conclusion to have a chapter number next to it, we can add the {-}} attribute.

More info

And here's some other random info: the first paragraph after a chapter title or section head *shouldn't be* indented, because indents are to tell the reader that you're starting a new paragraph. Since that's obvious after a chapter or section title, proper typesetting doesn't add an indent there.

Kaynaklar

Placeholder

$\mathbf{Ek} \mathbf{A}$

İlk Ek Başlığı

This first appendix includes all of the R chunks of code that were hidden throughout the document (using the include = FALSE chunk tag) to help with readibility and/or setup.

In the main Rmd file In Chapter ??:

Ek B İkinci Ek Başlığı

İkinci Ek