ANSWER 1) [15 points]

	Operation	(As 8-bit un	Status			
		Binary	Decimal	Hexadecimal	Flags	
a)	10011110 + 10110101	1 01010011	83	53	O=1 , C=1	
b)	11100100 And 11111010	11100000	224	E0	N=1	
c)	Left shift 3 times 01110011	011 10011000	152	98	N=1 , C=1	

ANSWER 2) [45 points]

2a) [5 points]

- Because Data Bus is 16 bits, two 2K x 8 bit memory chips should be used together as a data bus group.
- 6K x 16 bit / 2K x 8 bit = 3 groups x 2 chips per group = 6 memory chips should be used.
- There should be 3 memory groups, each group has 2 memory chips.

2b) [5 points]

- Each 2K x 8 bit memory chip requires 11 address lines for location selection within chip. $(2K = 2^1 . 2^{10} = 2^{11})$
- For 3 groups of memory chip selections, we need an Adress Decoder (2-to-4 type).
- Address Decoder requires two inputs (2 address lines).
- Total minimum number of address lines in Address Bus = 11 + 2 = 13 lines.

2c) [15 points]

Smallest Adresses:

Group	Chip	Сар	A12	A11	A10	Α9	A8	A7	A6	A5	A4	А3	A2	A1	Α0	HEXADECIMAL
1	M1	2Kx8	0	0	0	0	0	0	0	0	0	0	0	0	0	0000
1	M2	2Kx8	0	0	0	0	0	0	0	0	0	0	0	0	0	0000
2	M3	2Kx8	0	1	0	0	0	0	0	0	0	0	0	0	0	0800
2	M4	2Kx8	0	1	0	0	0	0	0	0	0	0	0	0	0	0800
2	M5	2Kx8	1	0	0	0	0	0	0	0	0	0	0	0	0	1000
3	M6	2Kx8	1	0	0	0	0	0	0	0	0	0	0	0	0	1000

Biggest Adresses:

Group	Chip	Сар	A12	A11	A10	A9	A8	A7	A6	A5	A4	А3	A2	A1	A0	HEXADECIMAL
1	M1	2Kx8	0	0	1	1	1	1	1	1	1	1	1	1	1	07FF
1	M2	2Kx8	0	0	1	1	1	1	1	1	1	1	1	1	1	07FF
2	M3	2Kx8	0	1	1	1	1	1	1	1	1	1	1	1	1	OFFF
2	M4	2Kx8	0	1	1	1	1	1	1	1	1	1	1	1	1	OFFF
3	M5	2Kx8	1	0	1	1	1	1	1	1	1	1	1	1	1	17FF
3	M6	2Kx8	1	0	1	1	1	1	1	1	1	1	1	1	1	17FF

HEXADECIMAL MEMORY MAP:

Group	Chip Memory Chip Name Type		Smallest Address	Biggest Address	Explanation
1	M1	2 K x 8 bit RAM	0000	07FF	M1 & M2
1	M2	2 K x 8 bit RAM	0000	07FF	have same addresses
2	М3	2 K x 8 bit RAM	0800	OFFF	M3 & M4
	M4	2 K x 8 bit RAM	0800	OFFF	have same addresses
2	M5	2 K x 8 bit RAM	1000	17FF	M5 & M6
3	М6	2 K x 8 bit RAM	1000	17FF	have same addresses
EMI	PTY (unused	2K locations)	1800	1FFF	EMPTY

2d) [20 points]

ANSWER 3) [10 points]

430	LIC DOULTS	
	<u>INSTRUCTION</u>	ADDRESSING METHOD NAME
1	. LDA C, <\$2E00>	Direct
2	. STA 200, \$B000	Memory Immediate Write
3	. LDA C, <sk+3>-6</sk+3>	Decremented Index
4	. INC A	Register
5	. LDA A, <cd+sk+4></cd+sk+4>	Register Relative Index
6	. MOV C, A	Register
7	. LDA CD, \$4FFF	Immediate
8	. LDA A, <cd></cd>	Indirect
9	. CLR B	Register
1	O. LDA B, <sk+7></sk+7>	Indexed

ANSWER 4) [30 points]

MIN EQU 35	CMP A, MIN	;Compare data to minimum			
MAX EQU 75	BLT DEVAM	;If less than MIN, go to label			
SIZE EQU 15	CMP A, MAX	;Compare data to maximum			
ARRAY RMB SIZE	BGT DEVAM	;If greater than MAX, go to label			
ORG ARRAY					
DAT 61, 21, 41, 31, 11, 81, 71, 91, 22, 51, 62, 32, 72, 12, 52	*Data is within MIN	and MAX			
	STA A, <cd></cd>	;Store data to FLTARRAY			
FLTARRAY RMB SIZE	INC CD	;Increment indirect index			
ORG FLTARRAY					
DAT 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	DEVAM				
	CMP SK, SIZE	;Check for the loop limit			
START	BLT DONGU	;If less than SIZE, go to loop			
LDA SK, 0 ;SK is used as index on ARRAY, also as loop counter					
LDA CD, FLTARRAY ;CD is used as indirect index on FLTARRAY	INT	;Stop			
DONGU					
LDA A, <sk+array> ;Get next data from ARRAY</sk+array>					
INC SK ;Increment ARRAY index					