Day 1: Overview of Core Concepts

ME414: Introduction to Data Science and Big Data Analytics

LSE Methods Summer Programme

14 August 2017

Outline

Overview of Core Concepts
Supervised Learning
Unsupervised Learning

Machine Learning

Philosophy

- It is important to understand the ideas behind the various techniques, in order to know how and when to use them.
- ▶ One has to understand the simpler methods first, in order to grasp the more sophisticated ones.
- ▶ It is important to accurately assess the performance of a method, to know how well or how badly it is working (simpler methods often perform as well as fancier ones!).
- ▶ This is an exciting research area, having important applications in science, industry and policy.
- Machine learning is a fundamental ingredient in the training of a modern data scientist.

Two main approaches to machine learning

- Supervised Learning
- Unsupervised Learning

The Supervised Learning Problem

Starting point:

- Outcome measurement Y (also called dependent variable, response, target).
- ▶ Vector of *p* predictor measurements *X* (also called inputs, regressors, covariates, features, independent variables).
- ▶ In the regression problem, *Y* is quantitative (e.g price, blood pressure).
- ▶ In the classification problem, Y takes values in a finite, unordered set (survived/died, digit 0-9, cancer class of tissue sample).
- ▶ We have training data $(x_1, y_1), \dots, (x_N, y_N)$. These are observations (examples, instances) of these measurements.

Objectives

On the basis of the training data we would like to:

- Accurately predict unseen test cases.
- Understand which inputs affect the outcome, and how.
- ► Assess the quality of our predictions and inferences.

Unsupervised Learning

- ▶ No outcome variable, just a set of predictors (features) measured on a set of samples.
- ➤ Objective is more fuzzy find groups of samples that behave similarly, find features that behave similarly, find linear combinations of features with the most variation.
- Difficult to know how well you are doing.
- Different from supervised learning, but can be useful as a pre-processing step for supervised learning.

Machine learning

- ▶ Machine learning refers to a vast set of tools for *understanding data*.
- ▶ For a quantitative response *Y* and a set of predictors *X*:

$$Y = f(X) + \epsilon$$

- ▶ Here, *f* represents the *systematic* information that *X* provides about *Y*.
- \triangleright Statistical learning refers to a set of approaches for estimating f.
- ▶ Most of the course we'll spend talking about different ways to estimate *f* and how to evaluate whether we've done a good job with it.

Where does this course fit in?

- Supervised versus unsupervised learning.
- ▶ Regression versus classification.
- No single best method. We'll spend a lot of time choosing the most appropriate tool for a given dataset using different measures of the quality of fit. E.g. MSE

$$MSE_{training} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2$$

$$MSE_{test} = Ave(\hat{f}(x_0) - y_0)^2$$

Why should we bother with f?

- 1. Prediction: $\widehat{Y} = \widehat{f}(X)$, where \widehat{f} is a black box.
- 2. Inference: How Y is changing as a function of X.
- ▶ Depending on whether the ultimate goal is prediction, inference or a mix of both, we may deploy different methods for estimating *f*.
- ▶ Also depending on the ultimate goal you may or may not care about evaluating the causal relationship between *Y* and *X*.

What is Machine Learning?

- ► Shown are Sales vs TV, Radio and Newspaper, with a blue linear-regression line fit separately to each.
- ▶ We can predict Sales using a model

 $Sales \approx f(TV, Radio, Newspaper)$

Notation

- ▶ Here Sales is a *response* or *target* that we wish to predict. We generically refer to the response as *Y*.
- ▶ TV is a feature, or input, or predictor, we name it X_1 .
- Likewise name Radio as X_2 , and so on.
- We can refer to the input vector collectively as

$$X=(X_1,X_2,X_3)$$

Now we write our model as

$$Y = f(X) + \epsilon$$

where ϵ captures measurement errors and other discrepancies.

What is f(X) good for?

- ▶ With a good f we can make predictions of Y at new points X = x.
- We can understand which components of $X = (X_1, X_2, ..., X_p)$ are important in explaining Y, and which are irrelevant. For example, Seniority and Years of Education have a big impact on Income, but Marital Status typically does not.
- ▶ Depending on the complexity of f, we may be able to understand how each component X_i of X affects Y.

- ▶ Is there an ideal f(X)? In particular, what is a good value for f(X) at any selected value of X, say X = 4?
- There can be many Y values at X = 4. A good value is

There can be many
$$r$$
 values at $\lambda = 4$. A good value is

- f(4) = E(Y|X = 4) E(Y|X = 4) means expected value (everyon) of Y given Y = 4
- ► E(Y|X = 4) means expected value (average) of Y given X = 4.
 ► This ideal f(x) = E(Y|X = x) is called the regression function.

The regression function f(x)

- ▶ Is also defined for vector X; e.g. $f(x) = f(x_1, x_2, x_3) = E(Y|X_1 = x_1, X_2 = x_2, X_3 = x_3)$
- ▶ Is the ideal or optimal predictor of Y with regard to mean-squared prediction error: f(x) = E(Y|X=x) is the function that minimizes $E[(Y-g(X))^2|X=x]$ over all functions g at all points X=x.
- $\epsilon = Y f(x)$ is the irreducible error i.e. even if we knew f(x), we would still make errors in prediction, since at each X = x there is typically a distribution of possible Y values.
- For any estimate $\hat{f}(x)$ of f(x), we have

$$E[(Y - \hat{f}(X))^{2} | X = x] = \underbrace{[f(x) - \hat{f}(x)]^{2}}_{Reducible} + \underbrace{Var(\epsilon)}_{Irreducible}$$

How to estimate *f*

- ▶ Typically we have few if any data points with X = 4 exactly.
- ▶ So we cannot compute E(Y|X=x)!
- Relax the definition and let

$$\hat{f}(x) = Ave(Y|X \in N(x))$$

where N(x) is some neighborhood of x.

- Nearest neighbor averaging can be pretty good for small p − i.e. p < 4 and large-ish N.</p>
- We will discuss smoother versions, such as kernel and spline smoothing later in the course.
- Nearest neighbor methods can be lousy when p is large. Reason: the curse of dimensionality. Nearest neighbors tend to be far away in
- high dimensions.
 ▶ We need to get a reasonable fraction of the N values of y_i to average to bring the variance down e.g. 10%.
 - A 10% neighborhood in high dimensions need no longer be local, so we lose the spirit of estimating E(Y|X=x) by local averaging.

Parametric and structured models

The linear model is an important example of a parametric model:

$$f_L(X) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_p X_p.$$

- ▶ A linear model is specified in terms of p + 1 parameters $\beta_0, \beta_1, \beta_2, \dots, \beta_p$.
- ▶ We estimate the parameters by fitting the model to training data.
- ▶ Although it is almost never correct, a linear model often serves as a good and interpretable approximation to the unknown true function f(X).

Simulated example

Red points are simulated values for income from the model

$$income = f(education, seniority) + \epsilon$$

Linear regression model fit to the simulated data.

$$\hat{f}_L(ext{education}, ext{seniority}) = \hat{eta}_0 + \hat{eta}_1 imes ext{education} + \hat{eta}_2 imes ext{seniority}$$

- ▶ More flexible regression model $\hat{f}_S(education, seniority)$ fit to the simulated data.
- ► Here we use a technique called a thin-plate spline to fit a flexible surface.
- ▶ We control the roughness of the fit.

- ▶ Even more flexible spline regression model $\hat{f}_S(education, seniority)$ fit to the simulated data.
- ▶ Here the fitted model makes no errors on the training data!
- ► Also known as overfitting.

Some trade-offs

- Prediction accuracy versus interpretability.
 - Linear models are easy to interpret; thin-plate splines are not.
- ▶ Good fit versus over-fit or under-fit.
 - How do we know when the fit is just right?
- Parsimony versus black-box.
 - We often prefer a simpler model involving fewer variables over a black-box predictor involving them all.

Assessing Model Accuracy

- Suppose we fit a model $\hat{f}(x)$ to some training data $Tr = \{x_i, y_i\}_1^N$, and we wish to see how well it performs.
- ▶ We could compute the average squared prediction error over *Tr*:

$$MSE_{Tr} = Ave_{i \in Tr}[y_i - \hat{f}(x_i)]^2$$

This may be biased toward more overfit models.

▶ Instead we should, if possible, compute it using fresh test data $Te = \{x_i, y_i\}_1^M$:

$$MSE_{Te} = Ave_{i \in Te}[y_i - \hat{f}(x_i)]^2$$

Data simulated from f, shown in black. Three estimates of f are shown: the linear regression line (orange curve), and two smoothing splines.

- Black curve is truth.
- ▶ Red curve on right is MSE_{Te} , grey curve is MSE_{Tr} .
- Orange, blue and green curves/squares correspond to fits of different flexibility.

- ▶ The setup as before, using a different true *f* that is much closer to linear. In this setting, linear regression provides a very good fit to the data.
- ► Here the truth is smoother, so the smoother fit and linear model do really well.

- ▶ Setup as above, using a different *f* that is far from linear.
- ▶ In this setting, linear regression provides a very poor fit to the data.
- Here the truth is wiggly and the noise is low, so the more flexible fits do the best.

Bias-Variance Trade-off

- Suppose we have fit a model f(x) to some training data Tr, and let (x_0, y_0) be a test observation drawn from the population.
- ▶ If the true model is $Y = f(X) + \epsilon$ (with f(x) = E(Y|X = x)), then

$$E(y_0 - \hat{f}(x_0)) = Var(\hat{f}(x_0)) + [Bias(\hat{f}(x_0))]^2 + Var(\epsilon).$$

- ▶ The expectation averages over the variability of y_0 as well as the variability in Tr. Note that $\operatorname{Bias}(\hat{f}(x_0)) = E[\hat{f}(x_0)] f(x_0)$.
- ▶ Typically as the flexibility of \hat{f} increases, its variance increases, and its bias decreases.
- So choosing the flexibility based on average test error amounts to a bias-variance trade-off.

Bias-variance trade-off for the three examples

Classification Problems

Here the response variable Y is qualitative – e.g. email is one of $\mathcal{C}=(spam,ham)$ (ham=godemail), digitclass is one of $\mathcal{C}=\{0,1,\ldots,9\}$. Our goals are to:

- ▶ Build a classifier C(X) that assigns a class label from C to a future unlabeled observation X.
- Assess the uncertainty in each classification.
- ▶ Understand the roles of the different predictors among $X = (X_1, X_2, ..., X_p)$.

▶ Is there an ideal C(X)? Suppose the K elements in C are numbered 1, 2, ..., K. Let

$$p_k(x) = Pr(Y = k | X = x), k = 1, 2, ..., K.$$

► These are the conditional class probabilities at x. Then the Bayes optimal classifier at x is

$$C(x) = j \text{ if } p_i(x) = \max\{p_1(x), p_2(x), \dots, p_K(x)\}\$$

- ▶ Nearest-neighbor averaging can be used as before.
- ► Also breaks down as dimension grows.
- ▶ However, the impact on $\hat{C}(x)$ is less than on $\hat{p}_k(x)$, k = 1, ..., K.

Classification: some details

▶ Typically we measure the performance of $\hat{C}(x)$ using the misclassification error rate:

$$Err_{Te} = Ave_{i \in Te} \mathcal{I}[y_i \neq \hat{\mathcal{C}}(x_i)]$$

- ▶ The Bayes classifier (using the true $p_k(x)$) has smallest error (in the population).
- ▶ Support-vector machines build structured models for C(x).
- We will also build structured models for representing the $p_k(x)$. For example, logistic regression, generalized additive models.

Example: K-nearest neighbors in two dimensions

 X_1

×

KNN: K=1 KNN: K=100

