Theoretische Informatik

Zusammenfassung

SoSe2024

Inhaltsverzeichnis

1	Allgemein1.1 Alphabete und Wörter	3 3				
2		4				
3	Deterministischer Endlicher Automat (DEA)					
4	Nicht-deterministischer Endlicher Automat (NEA)	6				
5	Äquivalenz von DEA und NEA 5.1 Satz von Rabin und Scott					
6	Regex 6.1 Satz von Kleene	8				
7	Pumping Lemma	9				
8	Satz von Myhill und Nerode	10				
9	Minimalautomaten 9.1 Table-Filling-Algorithmus	12				
10	Kontextfreie Sprachen (£2) 10.1 Chomsky Normalform (CNF)					

11	Kellerautomaten	14
	11.1 CFG zu Kellerautomat	15
12	CYK-Algorithmus	16
13	Turing-Maschine	17
	13.1 Linear beschränkte Turing-Maschine	18
14	Satz von Kuroda	18
15	Berechnungskomplexität	19
	15.1 Zeitkomplexität	19
	15.2 Platzkomplexität	19
16	Komplexitätstheorie	19
	16.1 Zeitkomplexität	19
	16.2 Gödelisierung	19

1 Allgemein

1.1 Alphabete und Wörter

- \bullet Ein Alphabet Σ ist eine endliche Menge unterscheidbarer Symbole
- Element $\sigma \in \Sigma$ ist ein Zeichen des Alphabets Σ
- Jedes Element $\omega \in \Sigma^*$ ist ein Wort über Σ
- ε = Leeres Wort
- Σ^* : Menge aller Wörter über Σ
- Σ^+ : Menge aller Wörter über Σ mit mind. 1 Element
- $|\omega|$: Länge eines Wortes ($|\varepsilon|=0$)

1.2 Grammatiken

Eine Grammatik G ist ein 4-Tupel (V, Σ , P, S):

- V: endliche Menge an Nicht-Terminal-Symbolen
- Σ : endliche Menge an Terminal-Symbolen ($V \cap \Sigma = \emptyset$)
- P: endliche Menge an Produktionsregeln
- S: Startsymbol ($S \in V$)

2 Chomsky-Hierarchie

2.1 Typ 0 ($\mathcal{L}0$) - Phrasenstrukturgrammatiken

• Beliebige Kombination aus T- und NT-Symbolen

2.2 Typ 1 ($\mathcal{L}1$) - Kontextsensitive Grammatiken

- $|l| \leq |r|$
- Länge des Wortes steigt
- $S \to \varepsilon$ erlaubt, wenn S auf **keiner** rechten Seite einer Regel steht!

Beispiel:

```
\begin{array}{l} S \rightarrow S' \mid \varepsilon \\ S' \rightarrow aS'Bc \mid abc \\ cB \rightarrow Bc \\ bB \rightarrow bb \end{array}
```

Das Nichtterminal S' braucht man nur, damit die Bedingung der Sonderregel erfüllt ist. Das Nichtterminal B wird mal zur Satzform Bc und mal zu bb, je nachdem ob B im **Kontext** c oder b steht.

2.3 Typ 2 ($\mathcal{L}2$) - Kontextfreie Grammatiken

Beim Ableiten in Typ-1-Grammatiken muss man immer aufpassen, dass das Nichtterminal auch im richtigen Kontext steht. Das Erzeugen von Sätzen ist viel leichter, wenn die Grammatik kontextfrei ist.

Eine Grammatik G ist vom Typ 2, wenn sie vom Typ 1 ist und zusätzlich auf der linken Seite jeder Regel genau **ein** Nichtterminal steht!

- $l \in V$
- $X \to \varepsilon$ immer erlaubt

2.4 Typ 3 ($\mathcal{L}3$) - Reguläre Grammatik

Eine Grammatik G ist vom Typ 3, wenn sie vom Typ 2 ist und zusätzlich folgende Regeln hat:

- \bullet $A \rightarrow b$
- $A \rightarrow bC$
- $A \to \varepsilon$

3 Deterministischer Endlicher Automat (DEA)

Eine DEA M ist ein 5-Tupel (Q, Σ , δ , q_0 , F):

- Q: endliche Zustandsmenge
- Σ : endliches Alphabet
- $\delta \colon Q \times \Sigma \to Q$ Übergangsfunktionen
- q_0 : Startzustand
- F: Menge der akzeptierten Endzustände

Beispiel:

- $Q = \{q_0, q_1, q_2\}$
- $\Sigma = \{0, 1\}$
- $\bullet \ q_0 = q_0$
- $F = q_2$
- δ:

$$\delta(q_0,0) = q_0$$

$$\delta(q_0, 1) = q_1$$

$$\delta(q_1,0) = q_2$$

$$\delta(q_1, 1) = q_1$$

$$\delta(q_2,0) = q_1$$

$$\delta(q_2, 1) = q_1$$

4 Nicht-deterministischer Endlicher Automat (NEA)

Eine NEA M ist ein 5-Tupel (Q, Σ , δ , q_0 , F):

- Q: endliche Zustandsmenge
- $\delta \colon Q \times \Sigma \to Q$ Übergangsfunktionen
- $\bullet \ q_0 :$ Menge der Startzustände
- F: Menge der akzeptierten Endzustände

Beispiel:

$$S \rightarrow aS \mid bS \mid cS \mid aA$$

 $A \rightarrow bB \mid cC$
 $B \rightarrow aB \mid bB \mid cB \mid \varepsilon$
 $c \rightarrow aB$

5 Äquivalenz von DEA und NEA

5.1 Satz von Rabin und Scott

Jede von einem NEA akzeptierte Sprache L ist auch von einem DEA akzeptierbar.

5.2 Potenzmengenkonstruktion (NEA → DEA)

Potezmenge ist die Menge aller Teilmengen

Beispiel:

- 1. Potenzmenge bilden, $\mathcal{P}\{1,2\} = \{\{\varnothing\},\{1\},\{2\},\{1,2\}\}$
- 2. Jede Teilmenge ist Zustand des DEA
- 3. Wohin kommt man von von jedem NEA Zustand?
 - $\delta(\{1\}, a) = 1 \land 2 \to \{1, 2\}$
 - $\delta(\{1\},b) = \{\varnothing\}$
 - $\delta(\{2\}, a) = \{\varnothing\}$
 - $\delta(\{2\}, b) = \{2\}$
 - $\delta(\{2\}, b) = \{2\}$
 - $\delta(\{1,2\},a) = \delta(\{1\},a) \cup \delta(\{2\},a) = 1 \land 2 \cup \emptyset = \{1,2\}$
 - $\delta(\{\varnothing\}, a) \wedge \delta(\{\varnothing\}, b) = \varnothing \rightarrow \{\varnothing\}$
- 4. Startzustand bleibt gleich
- 5. Jede Teilmenge, in der der ursprüngliche Endzustand vorkommt, wird wieder zum Endzustand, $F=2\to F'=\{\{2\},\{1,2\}\}$

6 Regex

- \bullet .: Beliebiges einzelnes Zeichen außer Zeilenumbruch
- * : Null oder mehr Wiederholungen
- \bullet + : Eine oder mehr Wiederholungen
- \bullet $\{n\}$: Genau n Wiederholungen
- \bullet $\{n,\}$: Mindestens n Wiederholungen
- \bullet $\{n, m\}$: Zwischen n und m Wiederholungen
- [] : Zeichenklasse (z.B. [a-z] für alle Kleinbuchstaben)
- [^] : Negierte Zeichenklasse

Email-Adressen: $[a-zA-Z0-9._%+-]+0[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$

6.1 Satz von Kleene

Die Menge der durch reguläre Ausdrücke (Regex) beschreibbaren Sprachen ist genau die Menge der regulären Sprachen.

ightarrow Alle endlichen Sprachen sind durch reguläre Ausdrücke beschreibbar

7 Pumping Lemma

- Wenn L erkennbar ist, dann existiert ein $p \in \mathbb{N}$
- sodass für alle Wörter $w \in L$ mit $|w| \ge p$ gilt:
- Es gibt eine Zerlegung w = xyz mit $y \neq \varepsilon$ und $|xy| \leq p$,
- sodass für alle $i \in \mathbb{N}$ gilt:
- $xy^iz \in L$

Beispiele:

$$L = \{w \in \{a, b\}^* \mid |w|_a > |w|_b\}$$

Also eine Sprache, die aus beliebig vielen a und b besteht, aber immer mehr a als b hat.

Sei $p \in \mathbb{N}$ gegeben

Da unser Wort $|w| \ge p$ sein muss, bietet sich $a^{p+1}b^p$ an.

Da $|xy| \le p$ gilt, besteht |xy| also nur aus a.

Mit der Zerlegung in $w = xy^iz$ und i = 0, hätte man $|xz|_a \le |xz|_b$, also weniger a als b.

$$L = \{a^{n^2} \mid n \in \mathbb{N}\}$$

Sei $p \in \mathbb{N}$ gegeben

Da unser Wort $|w| \ge p$ sein muss, bietet sich $w = a^{p^2}$ an.

Sei Zerlegung $w = \mathbf{x}y^i z$ mit $|\mathbf{x}y| \le p$ gegeben.

Erstes Wort ist $p^2 = |xyz|$

Nächst größere Wort ist $(p+1)^2 = p^2 + 2p + 1$

Setze i=2, betrachte xy^2z :

$$|xyz| < |xy^2z|$$

$$|{\bf x}y^2z|=|{\bf x}yz|+|y| \le p^2 + {\bf p}$$
 (Da y nach $|{\bf x}y|\le p$ höchsten Länge p hat)

$$p^2 + p < p^2 + 2p + 1$$

Somit $xy^2z \notin L$

8 Satz von Myhill und Nerode

Eine Sprache L ist genau dann regulär, wenn der Index R_L endlich ist, also wenn es endlich viele Äquivalenzklassen gibt!

$$xR_Ly \Leftrightarrow [\forall w \in \Sigma^* : xw \in L \Leftrightarrow yw \in L]$$

Beispiele:

 $L = \{w \in \{a, b\}^* \mid w \text{ enthält gerade Anzahl von a's}\}\$ \rightarrow Beliebige Kombination aus a's und b's, aber immer eine gerade Anzahl an a's.

- 1. Äquivalenzklassen bestimmen
 - Wörter mit gerade Anzahl an a's
 - Wörter mit ungerade Anzahl an a's
- 2. Endliche Anzahl an Äquivalenzklassen und somit regulär

 $L = \{w \in \{0,1\}^* \mid w \text{ enthält die Unterfolge 01}\}$

- 1. Äquivalenzklassen bestimmen
 - $[\varepsilon]$ Wörter, die noch keine 0 enthalten
 - [0] Wörter, die mindesten eine 0 enthalten, aber noch keine 01
 - [1*] Wörter, die mindesten eine 1 enthalten, aber keine 01
 - [01] Wörter, die mindestens ein 01 enthalten haben
 - 2. Endliche Anzahl an Äquivalenzklassen und somit regulär

$$L = \{a^n b^n \mid n \ge 0\}$$

- 1. Zeigen dass gilt: $xz \in L \Leftrightarrow yz \in L$
- 2. Betrachten wir Wörter der Forma a^i und a^j mit $i \neq j$. Sei i < j, dann:
 - Wenn $z = b^i$, dann ist $a^i b^i \in L$
 - Wenn $z = b^i$, dann ist $a^j b^i \notin L$, weil i < j
- 3. Da es immer möglich ist, ein z zu finden, das a^i und a^j unterschiedlich behandelt, sind a^i und a^j nicht äquivalent!
- 4. Für jedes $n \ge 0$ ist a^n in einer eigenen Äquivalenzklasse
- 5. Dies bedeutet, dass es unendlich viele unterschiedliche Äquivalenzklassen gibt, nämlich eine für jedes n!
- 6. Folgt: L ist nicht regulär

$$L = \{a^p \mid p \text{ ist eine Primzahl }\}$$

- 1. Zeigen dass gilt: $xz \in L \Leftrightarrow yz \in L$
- 2. Betrachten wir Wörter der Forma a^i und a^j mit $i \neq j$. Sei i eine Primzahl und j nicht, dann:
 - $a^i \in L$ (weil *i* eine Primzahl ist)
 - $a^j \notin L$ (weil j keine Primzahl ist)
- 3. Für jedes $n \geq 2$, das eine Primzahl ist, und jedes m, das keine Primzahl ist: $a^n \equiv_L a^m \Leftrightarrow n = m$
- 4. Dies bedeutet, dass es unendlich viele unterschiedliche Äquivalenzklassen gibt, nämlich eine für jede Primzahl
- 5. Folgt: L ist nicht regulär

9 Minimalautomaten

9.1 Table-Filling-Algorithmus

Nur für DEAs!

- 1. Eventuell nicht erreichbare Zustände entfernen
- 2. Tabelle aus Zuständen erstellen $\{q,\,q'\},\,q\neq q'$
- 3. Zustandspaar markieren, bei dem immer ein Zustand ein Endzustand ist
- 4. Wiederhole solange, bis keine Markierungen mehr dazu kommen
 - Für jedes unmarkierte Paar $\{q,\,q'\}$ und jeden Buchstaben $a\in\Sigma$
 - Wenn $\{\delta(q,a),\,\delta(q',a)\}$ markiert ist, dann das Paar $\{q,\,q'\}$ selbst markieren
- 5. Verschmelze unmarkierte Zustandspaare

Beispiel Tabelle $\{q,\,q'\},\,q\neq q'$:

z0	1/1	=			E
z1		1//,	=		
z2			1//	=	
z3				1//	
z4					1//
	z0	z1	z2	z3	z4

10 Kontextfreie Sprachen ($\mathcal{L}2$)

10.1 Chomsky Normalform (CNF)

Regeln müssen folgende Formen haben:

- \bullet $A \to BC$
- \bullet $A \rightarrow a$
- $\bullet \ S \to \varepsilon$

10.2 Greibach Normalform

Eine ε -freie, kontextfrei Grammatik mit folgenden Regeln:

- $A \rightarrow aB_1B_2B_3...B_k$
- $k \ge 0$

10.3 Konvertierung

!!!TODO!!!

11 Kellerautomaten

Ein Kellerautomat (PDA) M ist ein 6-Tupel (Q, Σ , Γ , δ , q_0 , #):

- Q: endliche Zustandsmenge
- Σ : endliches Bandalphabet
- Γ: endliches Kelleralphabet
- δ : Übergansfunktionen
- q_0 : Startzustand $(q_0 \in Q)$
- #: Ürsprüngliches Kellersymbol $(q_0 \in \Gamma)$

Akzeptanz:

- Kein akzeptierender Endzustand!
- Akzeptanzkriterien für Wörter $x \in |Sigma^*|$:
 - 1. Wort komplett gelesen
 - 2. Keller (Stack leer)

Nicht-Determinismus:

- Mehrere simultane Übergänge möglich
- Spontane Übergänge $(a = \varepsilon)$ möglich

Konfiguration eines PDA gegeben durch 3-Tupel (Q, Σ^*, Γ^*) :

- $q \in Q$: Momentaner Zustand
- $w' \in \Sigma^*$: Noch zu lesender Anteil der Eingabe
- $\gamma \in \Gamma^*$: Aktueller Kellerinhalt

Übergansfunktion:

- $\delta(q, a, A) \ni (q', B_1B_2...B_k)$
- Wenn Automat in Zustand q ist, das Symbol a liest und A oben auf Stack liegt, wechselt er in Zustand q' und ersetzt das A auf dem Stack durch $B_1B_2...B_k$

11.1 CFG zu Kellerautomat

Beispiel:

$$S \to ASbb \mid bT$$

$$T \rightarrow Tba \mid Sb \mid \varepsilon$$

Kellerautomat besteht aus nur einem Zustand!

 $\ddot{\mathbf{U}}\mathbf{bergansfunktionen:}$

- $\delta(q_0, \varepsilon, S) = (q_0, aSbb)$
- $\delta(q_0, \varepsilon, S) = (q_0, bT)$
- $\delta(q_0, \varepsilon, T) = (q_0, Tba)$
- $\delta(q_0, \varepsilon, T) = (q_0, Sb)$
- $\delta(q_0, \varepsilon, T) = (q_0, \varepsilon)$
- $\delta(q_0, a, a) = (q_0, \varepsilon)$
- $\delta(q_0, b, b) = (q_0, \varepsilon)$

12 CYK-Algorithmus

Beispiel:

- S \rightarrow ST | TU | US
- $T \rightarrow SS \mid a$

Wort: \mathbf{aabab}

Nur wenn S (Startsymbol) ganz oben in der Pyramide steht, wird das Wort akzeptiert!

13 Turing-Maschine

Eine Turing-Maschine M ist ein 7-Tupel (Q, Σ , Γ , δ , q_0 , \square , F):

- Q: endliche Zustandsmenge
- Σ : endliches Eingabealphabet
- Γ : endliches Arbeitsalphabet ($\Sigma \subset \Gamma$)
- δ : Übergansfunktionen
- q_0 : Startzustand $(q_0 \in Q)$
- \square : Blank-Symbol ($\square \in \Gamma \Sigma$)
- F: Menge der Endzustände

 $\ddot{\mathbf{U}}\mathbf{bergansfunktionen:}$

- Deterministisch: $\delta(q, a) = \delta(q', b, x)$
 - 1. M befindet sich in Zustand q und liest a vom Band
 - 2. M geht in Zustand q' über und ersetzt das a mit einem b
 - 3. M führt Kopfbewegung $x \in \{l, n, r\}$
- Nicht-deterministisch: $\delta(q, a) \ni \delta(q', b, x)$

Konfiguration einer TM is ein Wort $k \in \Gamma^*Q\Gamma^*$:

$$k = \alpha q \beta$$

$$k = \alpha_1 ... \alpha_m q \beta_1 ... \beta_n$$

- q: Aktueller Zustand
- α : Wort links des Schreib/Lese-Kopfes
- β : Wort rechts des Kopfes

Startkonfiguration $q_0\vec{w}$:

- $w \in \Sigma^*$ steht auf Band
- M in Zustand q_0
- \bullet S/L-Kopf steht auf erstem Buchstaben von w
- \bullet Restliches Band mit Blanks \Box befüllt

13.1 Linear beschränkte Turing-Maschine

Eine Turing Maschine M ist linear beschränkt, wenn $|\vec{w}| < \infty$, also endlich ist.

14 Satz von Kuroda

Die von linear beschränkten, nicht-deterministischen Turing-Maschinen akzeptierbaren Sprachen sind genau die kontextsensitiven Sprachen $\mathcal{L}1$

15 Berechnungskomplexität

15.1 Zeitkomplexität

 $T_M(\vec{x}) \equiv \text{Anzahl der Schritte des Automaten mit Eingabe } \vec{x} \in \Sigma^*$

15.2 Platzkomplexität

 $S_M(\vec{x}) \equiv \text{Anzahl } verschiedener \text{ Zellen, die der Automat bei Eingabe } \vec{x} \in \Sigma^* \text{ besucht}$

16 Komplexitätstheorie

16.1 Zeitkomplexität

- P: Von einer Deterministischen Turing-Maschine in polyzeit Lösbar
- NP: Von einer Nicht-deterministischen Turing-Maschine in polyzeit Lösbar

16.2 Gödelisierung

Beispiel:

Angenommen, wir haben ein formales System mit den Symbolen $\{a, b, c\}$ denen wir die Zahlen $\{1, 2, 3\}$ zugeordnet haben. Eine Sequenz der Symbole 'a, b, c' wird dann wie folgt codiert:

- $a \rightarrow 1$
- $b \rightarrow 2$
- \bullet c \rightarrow 3

Die Sequenz 'a, b, c' wird zu der Zahl $2^1 \times e^2 \times 5^3 = 2 \times 9 \times 125 = 2250$ codiert.