

CLAIMS

1. A compound of formula (I),

5

the *N*-oxide forms, the addition salts and the stereo-chemically isomeric forms thereof, wherein

10 n is 0, 1 or 2;

X is N or CR⁷, wherein R⁷ is hydrogen or taken together with R¹ may form a bivalent radical of formula -CH=CH-CH=CH-;

15 R¹ is C₁₋₆alkyl or thiophenyl;

R² is hydrogen, hydroxy, C₁₋₆alkyl, C₃₋₆alkynyl or taken together with R³ may form =O;

R³ is a radical selected from

20 -(CH₂)_s- NR⁸R⁹ (a-1),
-O-H (a-2),
-O-R¹⁰ (a-3),
-S- R¹¹ (a-4), or
—C≡N (a-5),

25 wherein

s is 0, 1, 2 or 3;

R⁸, R¹⁰ and R¹¹ are each independently selected from -CHO, C₁₋₆alkyl, hydroxyC₁₋₆alkyl, C₁₋₆alkylcarbonyl, amino, C₁₋₆alkylamino, di(C₁₋₆alkyl)aminoC₁₋₆alkyl, C₁₋₆alkyloxycarbonyl, C₁₋₆alkylcarbonylaminoC₁₋₆alkyl, piperidinylC₁₋₆alkylaminocarbonyl, piperidinyl, piperidinylC₁₋₆alkyl, piperidinylC₁₋₆alkylaminocarbonyl, C₁₋₆alkyloxy, thiophenylC₁₋₆alkyl, pyrrolylC₁₋₆alkyl, arylC₁₋₆alkylpiperidinyl, arylcarbonylC₁₋₆alkyl, arylcarbonylpiperidinylC₁₋₆alkyl, haloindozolylpiperidinylC₁₋₆alkyl, arylC₁₋₆alkyl(C₁₋₆alkyl)aminoC₁₋₆alkyl, and

30 35 R⁹ is hydrogen or C₁₋₆alkyl;
or R³ is a group of formula

$-(CH_2)_t-Z$ (b-1),

wherein

t is 0, 1, 2 or 3;

-Z is a heterocyclic ring system selected from

5

10

wherein R¹² is hydrogen, halo, C₁₋₆alkyl, aminocarbonyl, amino, hydroxy, aryl,

C₁₋₆alkylaminoC₁₋₆alkyloxy, C₁₋₆alkyloxyC₁₋₆alkyl, C₁₋₆alkyloxyC₁₋₆alkylamino, 15 arylC₁₋₆alkyl, di(phenylC₂₋₆alkenyl), piperidinyl, piperidinylC₁₋₆alkyl, C₃₋₁₀cycloalkyl, C₃₋₁₀cycloalkylC₁₋₆alkyl, aryloxy(hydroxy)C₁₋₆alkyl, haloindazolyl, arylC₁₋₆alkyl, arylC₂₋₆alkenyl, arylC₁₋₆alkylamino, morpholino, C₁₋₆alkylimidazolyl, pyridinylC₁₋₆alkylamino; and

R¹³ is hydrogen, piperidinyl or aryl;

20

R⁴, R⁵ and R⁶ are each independently selected from hydrogen, halo, trihalomethyl, trihalomethoxy, C₁₋₆alkyl, C₁₋₆alkyloxy, amino, aminoC₁₋₆alkyl, di(C₁₋₆alkyl)amino, di(C₁₋₆alkyl)aminoC₁₋₆alkyloxy or C₁₋₆alkyloxycarbonyl, or C₁₋₆alkyl substituted with 1, 2 or 3 substituents independently selected from hydroxy, C₁₋₆alkyloxy, or 25 aminoC₁₋₆alkyloxy; or

when R⁵ and R⁶ are on adjacent positions they may taken together form a bivalent radical of formula

- 5 -O-CH₂-O (d-1),
 -O-(CH₂)₂-O- (d-2),
 -CH=CH-CH=CH- (d-3), or
 -NH-C(O)-NR¹⁴=CH- (d-4),
 wherein R¹⁴ is C₁₋₆alkyl;

aryl is phenyl, phenyl substituted with halo, C₁₋₆alkyl or C₁₋₆alkyloxy;

10

with the proviso that when

n is 0, X is N, R¹ is C₁₋₆alkyl, R² is hydrogen, R³ is a group of formula (b-1), t is 0, -Z is the heterocyclic ring system (c-2) wherein said heterocyclic ring system -Z is attached to the rest of the molecule with a nitrogen atom, and R¹² is hydrogen or C₁₋₆alkyl; then

at least one of the substituents R⁴, R⁵ or R⁶ is other than hydrogen, halo, C₁₋₆alkyloxy and trihalomethyl.

2. A compound as claimed in claim 1 wherein

20 R¹ is C₁₋₆alkyl; R³ is a radical selected from (a-1), (a-2), (a-3) or (a-5) or is a group of formula (b-1); s is 0, 1 or 2; R⁸ and R¹⁰ are each independently selected from -CHO, C₁₋₆alkyl, hydroxyC₁₋₆alkyl, di(C₁₋₆alkyl)aminoC₁₋₆alkyl, C₁₋₆alkylcarbonylaminoC₁₋₆alkyl, piperidinylC₁₋₆alkyl, piperidinylC₁₋₆alkylaminocarbonyl, C₁₋₆alkyloxy, thiophenylC₁₋₆alkyl, pyrrolylC₁₋₆alkyl, arylC₁₋₆alkylpiperidinyl, arylcarbonylC₁₋₆alkyl, arylcarbonylpiperidinylC₁₋₆alkyl, haloindozolylpiperidinylC₁₋₆alkyl, or arylC₁₋₆alkyl(C₁₋₆alkyl)aminoC₁₋₆alkyl; t is 0 or 2; -Z is a heterocyclic ring system selected from (c-1), (c-2), (c-4), (c-6), (c-8), (c-9), or (c-11); R¹² is hydrogen,

25

30 C₁₋₆alkyl, aminocarbonyl, di(phenylC₂₋₆alkenyl), piperidinylC₁₋₆alkyl, C₃₋₁₀cycloalkyl, C₃₋₁₀cycloalkylC₁₋₆alkyl, haloindazolyl, or arylC₂₋₆alkenyl; R⁴, R⁵ and R⁶ are each independently selected from hydrogen, halo, trihalomethyl, trihalomethoxy, C₁₋₆alkyl, C₁₋₆alkyloxy, di(C₁₋₆alkyl)amino, di(C₁₋₆alkyl)aminoC₁₋₆alkyloxy or C₁₋₆alkyloxycarbonyl; and when R⁵ and R⁶ are on adjacent positions they may taken together form a bivalent radical of formula (d-1) or (d-2).

35

3. A compound according to claim 1 and 2 wherein
 n is 0; X is CH; R¹ is C₁₋₆alkyl; R² is hydrogen; R³ is a group of formula
 (b-1); t is 2; -Z is a heterocyclic ring system selected from (c-1); R¹² is hydrogen;
 R¹³ is hydrogen; and R⁵ and R⁶ are on adjacent positions and taken together form a
 bivalent radical of formula (d-2).
- 5
4. A compound according to claim 1, 2 and 3 wherein the compound is
 compounds No 16, compound No 144, and compound No. 145.

10

compound 16

Compound 144

Compound 145

5. A compound of formula (VII-a),

15

the N-oxide forms, the addition salts and the stereo-chemically isomeric forms thereof,
 wherein

20 R¹, R⁴, R⁵, R⁶, R⁷ and aryl are as defined in claim 1;

R^e is hydrogen or taken together with R^d may form a bivalent radical of formula

- (CH₂)₂-NR¹⁵-(CH₂)₂- (e-1), or

-CH₂-NR¹⁶-(CH₂)₃- (e-2),

25 wherein R¹⁵ and R¹⁶ are each independently selected from hydrogen, C₁₋₆alkyl,

piperidinylC₁₋₆alkyl, C₃₋₁₀cycloalkylC₁₋₆alkyl, aryloxy(hydroxy)C₁₋₆alkyl, arylC₁₋₆alkyl, or arylC₂₋₆alkenyl; or

R^d is di(C₁₋₆alkyl)aminoC₁₋₆alkyl or piperidinylC₁₋₆alkyl.

5

6. A compound as claimed in any of claims 1 to 5 for use as a medicine.

7. A pharmaceutical composition comprising pharmaceutically acceptable carriers and as an active ingredient a therapeutically effective amount of a compound as claimed
10 in claim 1 to 5.

8. A process of preparing a pharmaceutical composition as claimed in claim 7 wherein the pharmaceutically acceptable carriers and a compound as claimed in claim 1 to 5 are intimately mixed.

15

9. Use of a compound for the manufacture of a medicament for the treatment of a PARP mediated disorder, wherein said compound is a compound of formula (I)

20

the N-oxide forms, the pharmaceutically acceptable addition salts and the stereo-chemically isomeric forms thereof, wherein

25 n is 0, 1 or 2;

X is N or CR⁷, wherein R⁷ is hydrogen or taken together with R¹ may form a bivalent radical of formula -CH=CH-CH=CH-;

30 R¹ is C₁₋₆alkyl or thiophenyl;

R² is hydrogen, hydroxy, C₁₋₆alkyl, C₃₋₆alkynyl or taken together with R³ may form =O;

R³ is a radical selected from

35 -(CH₂)_s-NR⁸R⁹ (a-1),
-O-H (a-2),

-O-R^{10} (a-3),
 -S- R^{11} (a-4), or
 $\text{---C}\equiv\text{N}$ (a-5),

wherein

- 5 s is 0, 1, 2 or 3;
 R^8 , R^{10} and R^{11} are each independently selected from $-\text{CHO}$, $\text{C}_{1-6}\text{alkyl}$,
hydroxy $\text{C}_{1-6}\text{alkyl}$, $\text{C}_{1-6}\text{alkylcarbonyl}$, amino, $\text{C}_{1-6}\text{alkylamino}$,
di($\text{C}_{1-6}\text{alkyl}$)amino $\text{C}_{1-6}\text{alkyl}$, $\text{C}_{1-6}\text{alkyloxycarbonyl}$, $\text{C}_{1-6}\text{alkylcarbonylaminoC}_{1-6}\text{alkyl}$,
piperidinyl $\text{C}_{1-6}\text{alkylaminocarbonyl}$, piperidinyl, piperidinyl $\text{C}_{1-6}\text{alkyl}$,
10 piperidinyl $\text{C}_{1-6}\text{alkylaminocarbonyl}$, $\text{C}_{1-6}\text{alkyloxy}$, thiophenyl $\text{C}_{1-6}\text{alkyl}$,
pyrrolyl $\text{C}_{1-6}\text{alkyl}$, aryl $\text{C}_{1-6}\text{alkylpiperidinyl}$, arylcarbonyl $\text{C}_{1-6}\text{alkyl}$,
arylcarbonylpiperidinyl $\text{C}_{1-6}\text{alkyl}$, haloindozolylpiperidinyl $\text{C}_{1-6}\text{alkyl}$,
aryl $\text{C}_{1-6}\text{alkyl}(\text{C}_{1-6}\text{alkyl})\text{aminoC}_{1-6}\text{alkyl}$, and
 R^9 is hydrogen or $\text{C}_{1-6}\text{alkyl}$;
- 15 or R^3 is a group of formula

$-(\text{CH}_2)_t\text{-Z}$ (b-1),

wherein

t is 0, 1, 2 or 3;

$-\text{Z}$ is a heterocyclic ring system selected from

20

25

wherein R¹² is hydrogen, halo, C₁₋₆alkyl, aminocarbonyl, amino, hydroxy, aryl,

C₁₋₆alkylaminoC₁₋₆alkyloxy, C₁₋₆alkyloxyC₁₋₆alkyl, C₁₋₆alkyloxyC₁₋₆alkylamino, arylC₁₋₆alkyl, di(phenylC₂₋₆alkenyl), piperidinyl, piperidinylC₁₋₆alkyl,

5 C₃₋₁₀cycloalkyl, C₃₋₁₀cycloalkylC₁₋₆alkyl, aryloxy(hydroxy)C₁₋₆alkyl, haloindazolyl, arylC₁₋₆alkyl, arylC₂₋₆alkenyl, arylC₁₋₆alkylamino, morpholino, C₁₋₆alkylimidazolyl, pyridinylC₁₋₆alkylamino; and

R¹³ is hydrogen, piperidinyl or aryl;

10 R⁴, R⁵ and R⁶ are each independently selected from hydrogen, halo, trihalomethyl, trihalomethoxy, C₁₋₆alkyl, C₁₋₆alkyloxy, amino, aminoC₁₋₆alkyl, di(C₁₋₆alkyl)amino, di(C₁₋₆alkyl)aminoC₁₋₆alkyloxy or C₁₋₆alkyloxycarbonyl, or C₁₋₆alkyl substituted with 1, 2 or 3 substituents independently selected from hydroxy, C₁₋₆alkyloxy, or aminoC₁₋₆alkyloxy; or

15 when R⁵ and R⁶ are on adjacent positions they may taken together form a bivalent radical of formula

-O-CH₂-O (d-1),

-O-(CH₂)₂-O (d-2),

-CH=CH-CH=CH- (d-3), or

20 -NH-C(O)-NR¹⁴=CH- (d-4),

wherein R¹⁴ is C₁₋₆alkyl;

aryl is phenyl, phenyl substituted with halo, C₁₋₆alkyl or C₁₋₆alkyloxy.

25 10. Use of a compound according to claim 5 for the manufacture of a medicament for the treatment of a PARP mediated disorder.

11. Use according to claim 9 and 10 wherein the treatment involves chemosensitization.

30 12. Use according to claims 9 and 10 wherein the treatment involves radiosensitization.

13. A combination of a compound with a chemotherapeutic agent wherein said compound is a compound of formula (I)

the *N*-oxide forms, the pharmaceutically acceptable addition salts and the stereochemically isomeric forms thereof, wherein

5

n is 0, 1 or 2;

X is N or CR⁷, wherein R⁷ is hydrogen or taken together with R¹ may form a bivalent radical of formula -CH=CH-CH=CH-;

10

R¹ is C₁₋₆alkyl or thiophenyl;

R² is hydrogen, hydroxy, C₁₋₆alkyl, C₃₋₆alkynyl or taken together with R³ may form =O;

15 R³ is a radical selected from

- (CH₂)_s- NR⁸R⁹ (a-1),
- O-H (a-2),
- O-R¹⁰ (a-3),
- S- R¹¹ (a-4), or
- C≡N (a-5),

wherein

s is 0, 1, 2 or 3;

R⁸, R¹⁰ and R¹¹ are each independently selected from -CHO, C₁₋₆alkyl, hydroxyC₁₋₆alkyl, C₁₋₆alkylcarbonyl, amino, C₁₋₆alkylamino,

25 di(C₁₋₆alkyl)aminoC₁₋₆alkyl, C₁₋₆alkyloxycarbonyl, C₁₋₆alkylcarbonylaminoC₁₋₆alkyl, piperidinylC₁₋₆alkylaminocarbonyl, piperidinyl, piperidinylC₁₋₆alkyl, piperidinylC₁₋₆alkylaminocarbonyl, C₁₋₆alkyloxy, thiophenylC₁₋₆alkyl, pyrrolylC₁₋₆alkyl, arylC₁₋₆alkylpiperidinyl, arylcarbonylC₁₋₆alkyl, arylcarbonylpiperidinylC₁₋₆alkyl, haloindozolylpiperidinylC₁₋₆alkyl,

30 arylC₁₋₆alkyl(C₁₋₆alkyl)aminoC₁₋₆alkyl, and

R⁹ is hydrogen or C₁₋₆alkyl;

or R³ is a group of formula

- (CH₂)_t-Z (b-1),

wherein

35 t is 0, 1, 2 or 3;

-Z is a heterocyclic ring system selected from

10 wherein R¹² is hydrogen, halo, C₁₋₆alkyl, aminocarbonyl, amino, hydroxy, aryl,

C₁₋₆alkylaminoC₁₋₆alkyloxy, C₁₋₆alkyloxyC₁₋₆alkyl, C₁₋₆alkyloxyC₁₋₆alkylamino, arylC₁₋₆alkyl, di(phenylC₂₋₆alkenyl), piperidinyl, piperidinylC₁₋₆alkyl, C₃₋₁₀cycloalkyl, C₃₋₁₀cycloalkylC₁₋₆alkyl, aryloxy(hydroxy)C₁₋₆alkyl, haloindazolyl,

15 arylC₁₋₆alkyl, arylC₂₋₆alkenyl, arylC₁₋₆alkylamino, morpholino, C₁₋₆alkylimidazolyl, pyridinylC₁₋₆alkylamino; and

R¹³ is hydrogen, piperidinyl or aryl;

R⁴, R⁵ and R⁶ are each independently selected from hydrogen, halo, trihalomethyl, 20 trihalomethoxy, C₁₋₆alkyl, C₁₋₆alkyloxy, amino, aminoC₁₋₆alkyl, di(C₁₋₆alkyl)amino, di(C₁₋₆alkyl)aminoC₁₋₆alkyloxy or C₁₋₆alkyloxycarbonyl, or C₁₋₆alkyl substituted with 1, 2 or 3 substituents independently selected from hydroxy, C₁₋₆alkyloxy, or aminoC₁₋₆alkyloxy; or

when R⁵ and R⁶ are on adjacent positions they may taken together form a bivalent

25 radical of formula

- O-CH₂-O (d-1),
 - O-(CH₂)₂-O- (d-2),
 - CH=CH-CH=CH- (d-3), or
 - NH-C(O)-NR¹⁴=CH- (d-4),
- 5 wherein R¹⁴ is C₁₋₆alkyl;

aryl is phenyl, phenyl substituted with halo, C₁₋₆alkyl or C₁₋₆alkyloxy.

10 14. A combination of a compound according to claim 5 with a chemotherapeutic agent.

15. A process for preparing a compound as claimed in claim 1 or claim 5, characterized by

- a) the hydrolysis of intermediates of formula (VIII), according to art-known methods,
 15 by submitting the intermediates of formula (VIII) to appropriate reagents, such as, tinchloride, acetic acid and hydrochloric acid, in the presence of a reaction inert solvent, e.g. tetrahydrofuran,

20

- b) the cyclization of intermediates of formula (X), according to art-known cyclizing procedures into compounds of formula (I) wherein X is CH herein referred to as compounds of formula (I-j), preferably in the presence of a suitable Lewis Acid, e.g. aluminum chloride either neat or in a suitable solvent such as, for example, an aromatic hydrocarbon, e.g. benzene, chlorobenzene, methylbenzene and the like; halogenated hydrocarbons, e.g. trichloromethane, tetrachloromethane and the like; an ether, e.g. tetrahydrofuran, 1,4-dioxane and the like or mixtures of such solvents,

30

c) the condensation of an appropriate ortho-benzenediamine of formula (XI) with an ester of formula (XII) into compounds of formula (I), wherein X is N and R² taken together with R³ forms =O, herein referred to as compounds of formula (I-a-1), in the presence of a carboxylic acid, e.g. acetic acid and the like, a mineral acid such as, for example hydrochloric acid, sulfuric acid, or a sulfonic acid such as, for example, methanesulfonic acid, benzenesulfonic acid, 4-methylbenzenesulfonic acid and the like,

d) hydrolysing intermediates of formula (VI), wherein R³ is a group of formula (b-1) or a radical of formula (a-1) wherein s is other than 0, herein referred to as R^g, according to art-known methods, such as stirring the intermediate (VI) in an aqueous acid solution in the presence of a reaction inert solvent with the formation of intermediates and compounds of formula (VII), wherein R^d and R^e are appropriate radicals or taken together with the carbon to which they are attached, form an appropriate heterocyclic ring system as defined in -Z,

e) converting intermediates of formula (VII), by a selective hydrogenation of said intermediate with an appropriate reducing agent and an appropriate reductant in a suitable solvent with the formation of compounds of formula (I) wherein R² is hydrogen and R^g is as defined above, herein referred to as compounds of formula (I-i).

16. A process for preparing a compound as claimed in claim 5, characterized by

- 5 a) reacting a compound of formula (VII-a), wherein R^e taken together with R^d forms a bivalent radical of formula (e-1) or (e-2) (e.g. a bivalent radical of formula (e-1)) and R¹⁵ or R¹⁶ (e.g. R¹⁵) are hydrogen, herein referred to as compounds of formula (VII-a-2), with an intermediate of formula (XIX) wherein W is an appropriate leaving group such as, for example, chloro, bromo, methanesulfonyloxy or benzenesulfonyloxy and R¹⁵ or R¹⁶ (e.g. R¹⁵) are other than hydrogen, with the formation of compounds of formula (VII-a-1), defined as compounds of formula (VII-a), wherein R^e taken together with R^d forms a bivalent radical of formula (e-1) or (e-2) (e.g. a bivalent radical of formula (e-1)) and R¹⁵ or R¹⁶ (e.g. R¹⁵) are other than hydrogen, in a reaction-inert solvent; or

10

- b) reacting a compound of formula (VII-a-2) with an intermediate of formula (XX) wherein R is an appropriate substituent with the formation of compounds of formula (VII-a) wherein R¹⁵ or R¹⁶ (e.g. R¹⁵) are aryloxy(hydroxy)C₁₋₆alkyl, herein referred to as compounds of formula (VII-a-3), in the presence of 2-propanol.

