# **Лабораторная работа 51. Работа с пакетом стеганографии.**

Изложенный материал является составной частью пособия 1 раздел 2.1 "Основные понятия и применения стеганографии" на странице 73.

### 2.1.1 Основные понятия и применение стеганографии

В большинстве случаев в практике обмена и передачи данных и сообщений нужно не столько зашифровать данные, сколько просто скрыть сам факт обмена и передачи сообщений. Этой темой полна литература «докомпьютерной» эпохи. Практика написания текста молоком между строк, с целью дальнейшего проявления и визуализации сообщения, тоже восходит к тем временам. Методы, использующие маскировку и сокрытие самого факта наличия сообщения и его передачи, изучает стеганография.

Что изменилось в стеганографии с появлением компьютеров, и как всё это работает с использованием компьютерных программ и данных? Принципы стеганографии в компьютерную эру подверглись минимальным изменениям и остались такими же простыми. Файл с данными, факт передачи которого вы хотите скрыть, может быть любым: это может быть текст, изображение, бинарный файл, мультимедийный объект. С другой стороны, эти данные специальным образом внедряются в так называемый файл-носитель (carrier file) — рисунок 1.



Рисунок 1 — Схема внедрения данных в файл-носитель

Естественно, файл-носитель внешне должен быть совершенно безобидным и не вызывать никаких подозрений у хакеров, нацеленных

<sup>&</sup>lt;sup>1</sup> Ганжа В.А. Компьютерные сети. Информационная безопасность и сохранение информации / В.А. Ганжа [и др.]. — Минск : БГУИР, 2014. — 128 с.

вас атаковать, — рекламная картинка, текст песенки-шлягера, нейтральные фотографии цветов и домашних животных.

Второе требование к файлу-носителю — он должен быть "рыхлым", то есть содержать достаточное количество избыточных данных. Такие файлы обычно очень хорошо упаковываются архиваторами. Форматы таких файлов известны — \*.bmp, \*.txt, \*.html, \*.pdf. Именно такие файлы используются в качестве файлов-носителей. Программа, осуществляющая все эти функции, подходит для нашей задачи. Такие программы обычно небольшие и имеются в свободном доступе в Интернете. Стоит вам набрать в любой поисковой системе "program steganography" и вы получите список из сотен названий.



Рисунок 2 — Первый шаг работы с программой silentEye

Выполним некоторые практические задания, для этого используем программу silentEye c открытым исходным кодом, которая написана программистом Anselm Chorein и загружена с его web-странички http://forge.silenteye.org/.

## 2.1.2 Внедрение данных в файл-носитель программой SilentEye

Работа с программой состоит из ряда этапов.

**Первый этап**. На первом этапе запускаем программу и видим интерактивное окно (рисунок 2). При отсутствии загруженного файла кнопки выбора режима работы затенены. При выборе пункта главного меню, "? → About" программа сообщает: номер версии программы; сведения

об авторах разработчиках; некоторые сведения о себе; и GNU лицензию.



Рисунок 3 — Выбор режима работы программы SilentEye

Упражнение для самостоятельной работы 1. Выберите пункта главного меню, "? → About" и просмотрите сведения, которые хочет сообщить вам программа.



Рисунок 4 — Свойства файла носителя в окне программы silentEye

**Упражнение для самостоятельной работы 2**. Выберите пункт главного меню, "Edit  $\rightarrow$  Preferences" и просмотрите, доступ к каким настройкам

разрешает программа SilentEye. Обратите внимание, что в этом окне можно указать путь к каталогу с файлами, а также выбрать стандартные форматы по умолчанию.

Для выхода из программы, выберите пункт главного меню, "File  $\rightarrow$  Quit".

**Второй этап**. Открываем файл с которым вы будете работать: отправлять данные (внедрять — encode), либо получать данные (извлекать — decode) (рисунок 3). Обратите внимание интерфейсные кнопки Decode, Encode и Property стали активными.

Осуществим внедрение ваших конфиденциальных данных в файл носитель persona.bmp. Программа SilentEye позволяет посмотреть и проконтролировать свойства загруженного файла-носителя.

Перед началом работы полезно посмотреть свойства файла (рисунок 4): полный путь; размер; качество; формат и количественно оценить размер внедряемых данных. Для этого выбираем пункт главного меню,

"Media  $\rightarrow$  Property" (либо жмём кнопку  $\stackrel{\triangleleft}{\leqslant}$  — Property).



Рисунок 5 — Окно кодирования со стандартными настройками

**Третий этап**. Подготовка внедрения данных в файл носитель persona. bmp. Для этого выбираем пункт главного меню, "Media  $\rightarrow$  Encode" (либо жмём кнопку — Encode). Появляется окно программы с различными настройками (рисунок 5).

Необходимо сразу проверить содержимое поля Destination, где указывается место дислокации будущего файла с зашифрованными данными. Программа SilentEye к сожалению не даёт возможности переименовать этот файл в процессе шифрования, поэтому выход в том чтобы



Рисунок 6 — Сообщение о сбое записи файла

поместить ваш новый файл (с тем же самым именем) в другой каталог, путь к которому вы должны ввести в поле Destination. Если этого не сделать программа SilentEye не перезапишет старый файл, но откажется работать и выдаст следующее сообщение (рисунок 6)



Рисунок 7 — Окно кодирования с расширенными настройками

Нажав кнопку Advanced можно перейти в окно с расширенными настройками (рисунок 7). В расширенных настройках программа предоставляет несколько дополнительных возможностей — распределять внедрённые данные в выходной файл (Data distribution mode) равнораспределённо — Equidistribution или Inline — локализовано в одноместо (рисунок 8). Если вы уверены в структуре распределения данных

этого файла, отметьте Inline, но лучше положиться на программу, она разберётся, как распределить внедряемые вами данные в файленосителе.

Рисунок 8 иллюстрирует в виде красных квадратиков две возможности: **Equidistribution** и **Inline** распределения данных по файлу



Рисунок 8 — Структура распределения данных в файле носителе

Пункт User pixel color позволяет задействовать для переноса данных различные цветовые пиксели (если вы отметили соответствующий флажок): красные —  $\mathbf{R}$ , зелёные —  $\mathbf{G}$  и голубые —  $\mathbf{B}$ . Манипуляции с цветом оправданы, если в файле носителе преобладает один цветовой тон.

Следующая позиция Header position (рисунок 7) — указывает программе в каком месте картинки размещать служебные данные. На рисунке 9 они показаны зелёными символическими квадратиками.



Рисунок 9 — Место дислокации служебных данных в файле носителе

Программе необходимо указать путь к файлу, данные которого будут внедрены в файл носитель, для указания этого пути к этому "секретно-

му" файлу нажимаем большую кнопку справа (рисунок 5), после чего появляется стандартное окно ввода файловой системы.

**Четвёртый этап**. Программа SilentEye по умолчанию не шифрует данные (рисунок 5). Для возможности шифровать внедряемые данные в файл носитель, необходимо активировать флажок Enable encryption, тогда внизу окна программы появятся два поля для ввода пароля (см. рисунок 7) и поле метода шифрования с длинной ключа. Программа SilentEye использует метод шифрования AES с длиной ключа 128 бит, либо 256 бит.

На рисунке 5 этот флажок не активен и полей нет. При активации функции Enable encryption, для работы программы SilentEye необходимо будет дважды ввести пароль. Если пароль в обоих полях совпал, то они окрашиваются в зелёный цвет как на рисунках 7 и 10.



Рисунок 10 — Текст введенный с клавиатуры в окно сообщений

Программа SilentEye допускает альтернативную возможность внедрять не файл, а вводить данные прямо с клавиатуры. Внизу окна с установками кодирования (рисунок 10) имеется большое прямоугольное поле для ввода текста с клавиатуры, который будет внедрён в файл носитель. В окне ввода (рисунок 10) можно ввести неформатированный текст, который будет внедрён в файл носитель. Этот текст появится в аналогичном поле (рисунок 16) при раскодировании файла носителя.

Программа SilentEye не переименовывает файл-носитель при внедрении в него данных, поэтому предлагает указать другой каталог для обработанного файла.



Рисунок 11 — Зелёный индикатор сообщает о наличии свободного места в файле носителе

Необходимо учесть, что размеры файла-носителя и данных, которые вы хотели бы туда внедрить, коррелируют. Файл-носитель, конечно, «рыхлый», но не «резиновый» и естественное ограничение — его собственный размер. Данные, превосходящие по размеру файл-носитель, внедрить в него никак нельзя.



Рисунок 12 — Красный индикатор сигнализирует о превышении допустимого размера в файле носителе

Речь может идти только о какой-то части, о какой-то доле размера файла-носителя, обычно, не превышающей 50 %. Точных рецептов и точных аналитических формул для расчёта этого параметра нет. Общее правило такое: для сокрытия большого массива конфиденциальных данных нужен соответствующего большего размера файл-носитель.

Обсуждаемый параметр зависит от типа данных: наиболее «рыхлые» — чёрно-белые картинки формата \*.bmp, минимум избыточных данных в формате \*.pdf. Проверку обсуждаемого параметра осуществляет сама программа и вы можете увидеть сообщение, показанное на рисунке 11, который является фрагментом рисунка 5.

Если ваши данные предназначенные для сокрытия, не поместятся в файл-носитель, индикатор будет красного цвета и перед ним появится минус (см. рисунок 12).

При попытке всё-таки начать кодирование данных программа выдаст сообщение об ошибке, как на рисунке 13.



Рисунок 13 — Сообщение о превышении допустимого размера внедряемого сообщения

После описанных подготовительных операций в правом нижнем углу окна ввода нажимаем кнопку Encode. Если вы всё сделали правильно окно для ввода данных исчезнет, а в основном окне программы появится вторая закладка которая станет активной (рисунок 17). Тем самым программа информирует вас, что процесс шифрования данных и их внедрение в файл-носитель успешно завершён. К сожалению, программа SilentEye не даёт возможности присвоить новому файлу с внедрёнными данными другое имя.



Рисунок 14 — Появление второй закладки — сигнал об успешном завершении работы программы

И пустой файл-носитель и файл с зашифрованными данными теперь имеют одинаковые имена, одинаковые размеры и "на глаз" их различить невозможно (хорошо, что они теперь хоть в разных каталогах).

Будьте внимательны и осторожны, переименуйте их самостоятельно, поскольку если вы установили опцию Image quality в ввысоке качество, то отличий файлов в разных закладках вы не найдёте, более того, размеры у этих файлов окажутся одинаковыми.

#### 2.1.3 Извлечение данных из файла-носителя программой SilentEye

Для решения обратной задачи — извлечения данных из файла-носителя — последовательно выполняем несколько этапов.



Рисунок 15 — Окно декодирования со стандартными настройками

Первый этап. Запускаем программу SilentEye (см. рисунок 2) и открываем в ней файл содержащий внедрённые данные. После этого выбираем пункт главного меню, "Media → Decode" (либо жмём кнопку — Decode). Появляется окно программы с различными настройками (рисунок 15).



Рисунок 16 — Расшифрованный файл и его название

Для успешного процесса расшифровки необходимо внизу в соответствующих окнах дважды ввести пароль. Если это сделано безошибочно, то окна ввода позеленеют. Теперь нажимаем кнопку Decode в правом нижнем углу.

В случае успешной расшифровки файла-носителя появляется следующее окно (рисунок 16) с названием скрытого файла и с большущей кнопкой, нажав на которую появляется стандартное диалоговое окно ОС Windows со стандартным интерфейсом, с помощью которого вы указываете программе SilentEye куда извлечь расшифрованный секрет-файл.



Рисунок 17 — Успешное завершения процесса декодирования

Произойдёт извлечение файла и запись его на жёсткий диск в ваш каталог. Если всё прошло успешно, программе SilentEye выводит окошко (рисунок 17) с последним сообщением о расшифровке и записью секрет-файла на жёсткий диск.



Упражнение для самостоятельной работы 3. Подготовьте ваши конфиденциальные данные и обработайте их программой SilentEye. В качестве носителей вам предлагается восемь файлов в каталоге

../network/51/v\* (см. Примечание). Эти восемь файлов содержат четыре графических изображения: четыре из них формата \*.bmp и четыре — формата \*.jpg.

Подберите для каждого из восьми файлов-носителей максимальный размер секрет-файла (файла с вашими конфиденциальными данными). Используйте сведения описанные в этом методическом пособии и информацию, показанную на рисунках 11, 12. Результат вашей работы о всех восьми файлах сведите в таблицу, содержащую следующие поля.

#### 1. Порядковый номер

Файл-носитель

- 2. имя, из предложенного варианта (файлы не переименовывать)
- 3. формат
- **4.** размер

Секрет-файл

- **5.** формат (тип)
- 6. размер
- **7.** Отношение максимального размера секрет-файла к размеру файланосителя (в процентах)
- **8. Примечания** о ходе выполнения (если сочтёте необходимым). В примечании отметьте также, использовалось ли сжатие и шифрование в процессе внедрения данных в файл-носитель.

Таблица 1 — Определение предельной вместимости файла-носителя в методе стеганографии

| Nº | Файл-носитель |        |              | Секрет-файл |              | Отношение % | Примечание |
|----|---------------|--------|--------------|-------------|--------------|-------------|------------|
|    | РМИ           | формат | размер<br>Кb | формат      | размер<br>Кb | Отно        | прим       |
| 1  | persona.bmp   | bmp    | 984          | chm         | 480          | 49          |            |
| 2  | persona.jpg   | jba    | 41           | txt         | 7            | 17          |            |
|    |               |        |              |             |              |             |            |
| 8  |               |        |              |             |              |             |            |

Узнайте номер вашего варианта у преподавателя. После завершения работы сдайте заполненную таблицу преподавателю.

Примечание. На кафедральном сервере ftp://192.168.1.15 имеется дистрибутив программы SilentEye, а также файлы с изображениями .bmp и .jpeg необходимые для выполнения упражнений. Дистрибутив SilentEye расположен в каталоге ../network/51/SilentEye

варианты для выполнения упражнений:

- ../network/51/v01
- . . . . . . . . . . . . .
- ../network/51/v12

# Успехов и удачи!