Indian Institute of Technology Department of Mathematics Spring Mid Semester Examination-2014 Subject Name: Discrete Mathematics

Subject No: MA20013

No. of students: 62 Time: 2 hrs F.M. 30

Instructions: Answer ALL questions. Answer all the parts of the same question TOGETHER.

(1) Answer ALL parts.

 $2 \times 6 = 12$

- (a) Prove or disprove that if a relation on a set A is transitive and irreflexive then it is asymmetric.
- (b) List all possible equivalence relations on a set with three elements.
- (c) Define relations R_1 and R_2 on the set of integers as (i) $a R_1 b$ if and only if $|a-b| \le 1$ (ii) $a R_2 b$ if and only if $|a| \le |b|$. Whether R_1 and R_2 are partial order? Justify.
- (d) Whether the posets $(D_{40}, |)$ and $(D_{42}, |)$ are isomorphic? Justify your answer.
- (e) Give an example of a finite lattice where at least one element has more than one complement and at least one element has no complement.
- (f) Is the lattice $(\mathbb{N}, | \cdot)$ distributive? Justify.
- (2) Answer ALL parts.

 $3 \times 6 = 18$

- (i) Devise an algorithm to find the smallest equivalence relation containing a given relation. Also verify your algorithm through an example.
- (ii) Let (A, R) be a poset, where $A = \{a, b, c, d, e, f, g, h\}$ and matrix of R as given below:

Then answer the following: (a) Draw the digraph as well as Hasse diagram of (A, R).

- (b) Does (A, R) has a greatest and least element? If so, identify them.
- (c) Whether (A, R) is complemented? justify.
- (iii) Consider the poset (S, R) where S is the set of all 2×2 Boolean matrices and for elements $A = (a_{ij})$ and $B = (b_{ij})$ of S, A R B if and only if $a_{ij} \leq b_{ij}$, $1 \leq i, j \leq 2$. Let B be a subset of S consisting of matrices with exactly two ones. Then find the following:
 - (a) all upper bounds of H, (b) all lower bounds of H, (c) the least upper bound and greatest lower bound of H if exist.
- (iv) Let (S_1, R_1) and (S_2, R_2) be posets and R be a relation on $S_1 \times S_2$ defined as (a_1, a_2) R (b_1, b_2) if and only if a_1 R_1 b_1 when $a_1 \neq b_1$ and a_2 R_2 b_2 when $a_1 = b_1$. Prove that $(S_1 \times S_2, R)$ is a poset.
- (v) Show that in a bounded distributive lattice, the elements which have complements form a sub-lattice.
- (vi) Simplify the following for elements x, y, z in a complemented distributive lattice:
 - (a) $(x \wedge y) \vee (x \wedge y')$ (b) $y \wedge (x \vee (x' \wedge (y \vee y')))$ (c) $(x \wedge y \wedge z) \vee (y \wedge z)$.