IFOS 2017 Solve by Simplex Method the following LPP: Minimize Z = 21, -3x2 +2x3 Subject to the constraints 321-x2+2x2 57 -2x, +4x, < 12 $-4x_1 + 3x_2 + 8x_3 \le 0$ and 21, 22, 23 70, Sol. Since the given LPP is Minimization problem first converting it to Maximization problem & ruriting it in Standard form we have Maximize Z' = -21, +31, -213 +0.5, +0.5, +0.5, Subject to 321, -22 +223 +51 = 7 -27, +4x2 + S2 = 12 -4x1+3x2+8x3+83=0 21, x2, x3, 81, 82, 83 70

Initial Basic feasible solution is obtained by setting $\chi_1 = \chi_2 = \chi_3 = 0$ (non basic) & $S_1 = 7$, $S_2 = 12$, $S_3 = 0$ (basic) The Simplex table for above information is as follows. 0 0 -2 0 6 53 SI S2 23 Basis 0 SI 0 0 12 0 52 0 0 1 (3) 0 0 Zj= ECBaij 3 Ci=Ci-Zi From above table we get all Cj's \$0 so optimal Solution is It is the entering variable & Sz is the outgoing variable (3) is the Key element. Convert it to make all elements in its columns Tord Rovised Simplex table

	ci ,	-1	3	-2	0	0	0				
CB	Baris	NI	N2	713	31	S2	53	6	0		
0	31	5/3	0	1413	1	0	1/3	7	21/5		
0	S2	(10/3)	0	-32/3	0	1	-413	12	36 10 →		
3	72	-4 3	1	813	O	0	1/3	0	10 7		
	Zj= ECBaij	-4	3	8	0	-0		0			
	G= Cj-Zj	.3	0	-10	0	0	-1				
	0 0 0	^									
2	dince all Ci's 40 do obtinal election of the										
d	chince all Cj's \$0 do optimal dolution is not reached. Xis										
	the entering variable & 1 is outgoing variable. (10/3) & Key element.										
(10/3) & key element.											
		0	UTTWALL								
		0						,			
	Rovined Simp	0		-2	0	0	0				
		lea tal	lo:	-2	0	0	0		0		
1	Rovined Simp	lex tale	3		0 51	S2	53	b	0		
- 1	Rovined Simp Cj B Basis	lex tale	3 7/2	-2 7(3		S2 -0.5	S3 (1)	1	0 1 ->		
	Rovined Simp Cj B Basis	lea tale	3 N2	-2 7/3 10 -3.2	SI	S2 -0.5 0.3	53 (1)	3.6	0 -		
	Rovined Simp Cj Bais 3 S1 72	lex table -1 or 1	3 7/2 0 0	-2 7/3 10 -3.2 -1.6	S ₁ 0 0	S2 -0.5 0.3 0.4	S3 (1) -0.4 -0.2	3.6	0		
- 1	Rovined Simp Cj Bais 3 S1 72	lex table -1 or 1	10: 3 7/2 0 0 1	-2 73 10 -3.2 -1.6 -1.6	S ₁ 0 0 0	S2 -0.5 0.3 0.4 0.9	53 (1) -0.4 -0.2 -0.2	3.6	0		
- 1	Rovined Simp Cj Basis J 31 1 31	lex table -1 or 1	3 7/2 0 0	-2 7/3 10 -3.2 -1.6	S ₁ 0 0	S2 -0.5 0.3 0.4 0.9	53 (1) -0.4 -0.2 -0.2	3.6	0		

Since all Ci's 40 so optimal Solution is not reached Entering variable is 53 & outgoing variable is SI (1) is the Key element Revised Simplex table 0 3 0 0 Basis 6 S3 CB S, 2/2 X3 52 N. 53 -0.5 0 0 4 0 0.4 0.1 IK 0.8 5 0.3 0.2 0,4 0 3 **3** 0 11 0.2 Zj= 2CBaij. 0.8 0 0.4 70.8 0 -0.20 of 21 = 4 and x2 = 5,2=0 we get Max (Z1)=11 Min Z = -11

IF0S2017_
A Computer center has four expert programmers. The conter needs four application programs to develop. The head of the center after studying carefully the programs to be developed, estimates the computer time in hours needed by the experts to the application programs as follows:
Programs
A B C D
P 5 3 2 6
\$ P ₂ 6 4 5 7
P4 5 7 7 8
drign the programs to the programmers in such a way that total computer time is lout.
a b agest & then dubtracting
sol Taking minimum from each now & then subtracting it from every element of that row we get
3106
5 7 0 4
2 0 1 3 0 2 2 3
10 2 12 13 1 1 colours C
Similarily itaking least value of each what
Subtracting it from every element
Similarily taking least value of each column & Subtracting it from every elament of that column, we get

3	17	TA	10	
5	7	0	13	
2	0	1	0	
.01	2	2	0	
Minimum	line	3000	quir	ed to cover all zeros = 3 14
			V	so not an obtimal
3		Φ	3	so not an optimal
5	17	0	1	
- 2	0		0	
	-		0	
from ever	4 n	MCO	were	ancovered elements & Subtractit
ot inte	2 4 2	inco tion	0 0 2	lines. Minelement = 1
ot inte	2 4	tien O 6	o o	lines. Mineterment = 1
Now min	2 4 2	0 6 0 2 4 0 0 0 2	0 0 2 2	lines. Minelement = 1
Now min	2 4 2 0 line	0 6 0 2 4 0 0 0 2	o o 2 2 cequi	element & add to the element; lines. Minelement = 1 2 0 0 10 ud to cover all zeros = 4=4)
Now min	2 4 2 0 line	0 6 0 2 4 0 0 0 2	o o 2 2 cequi	element & add to the element; lines. Minelement = 1 2 0 0 10 ud to cover all zeros = 4=4)
Now min	2 4 2 0 line	0 6 0 2 4 0 0 0 2	o o 2 2 2 0 0 0 0	element & add to the element; lines. Minelement = 1 2 0 0 0 0 0 0 pud to cover all zeros = 4 = 4) so optimal situation 10 0 2 6 0 0
Now min	2 4 2 0 line	0 6 0 2 4 0 0 0 2	2 2 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0	element & add to the element, lines. Minelement = 1 2 0 0 0 0 pud to cover all zeros = 4 = 4) ro optimal situation

Programmer	Program	time		
Pi	2	3		
P ₂	3	2		
R3 P,	9	7		
14		Total=17		
	Agricum	10(a)=11	-	