(1) Publication number:

0 231 552 A1

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 86202349.6

(51) Int. Cl.3: G 06 F 7/24

(22) Date of filing: 22.12.86

(30) Priority: 09.01.86 NL 8600028

- (43) Date of publication of application: 12.08.87 Bulletin 87/33
- Designated Contracting States:
 DE FR GB

- (1) Applicant: N.V. Philips' Gloeilampenfabrieken Groenewoudseweg 1 NL-5621 BA Eindhoven(NL)
- (72) Inventor: van Trigt, Cornelius Henricus Petrus c/o INT. OCTROOIBUREAU B.V. Prof. Holstiaan 6 NL-5656 AA Eindhoven(NL)
- (74) Representative: Strijland, Wilfred et al, INTERNATIONAAL OCTROOIBUREAU B.V. Prof. Holstlaan 6
 NL-5656 AA Eindhoven(NL)

64 A method and device for sorting objects provided with a parameter, according to the value of this parameter.

fi) In sorting an input file on the basis of parameter values of the objects, monotonously varying chains of the objects are formed first. In an inspection phase these chains are selected from which the selection objects will be found as k firsts of the selection objects in the output file, as well as the following selection object. Next, all the objects which on the basis of the parameter value need not function later than the (k+1)th selection object are incorporated in a sub-file, transported to a direct sorting machine and, if necessary, the chain formation is then repeated.

PHN 11.605

A method and device for sorting objects provided with a parameter, according to the value of this parameter.

Ý-*

DESCRIPTION: BACKGROUND TO THE INVENTION AND THE KNOWN FACTS

The invention relates to a method for sorting objects, each of which is provided with a parameter, according to the value of this parameter. A device for performing such a method is known from the article by P.N. Armstrong and M. Rem, A serial sorting machine, Comp. and Electr. Eng., Vol. 9, 1982, 53-58. After sorting, the objects constitute an output file, while the value of the parameter in the output file varies monotonously decreasing, monotonously rising, monotonously non-rising or monotonously non-decreasing. Only the last 10 case is considered below, but that is not a factual limitation. It is clear that sorting according to a decreasing value of the parameter amounts to the same as sorting according to an increasing value on the complement of the parameter. In the latter case, the parameter is therefore implicitly given. In particular, the invention relates to a 15 method for sorting objects, each of which is provided with a parameter, according to the value of this parameter, the said objects being successively presented in an input file and the said sorting taking place by presenting the objects to a direct sorting machine which offers space for a sub-file of at least a pre-determined number of ob-20 jects. The known method can be used if the number of objects in the input file does not exceed a pre-determined upper limit determined by the equipment. If a larger number of objects is presented no sorting can take place. In the case of a larger input file it is possible to divide this into sub-files, to sort each sub-file separately, and to 25 combine (merge) the sorted sub-files. If during this combination an object that forms part of a particular sub-file must, however, be placed between two objects which form part of another sub-file (more complicated cases are equally conceivable) then this requires either a large, rapid memory with random access, or it leads to slow-working 30 solutions with serially accessible memories such as magnetic discs. If, on the other hand, a complex merging of the sub-files as referred

9.12.1986

PHN 11.605

to above need not take place, the sub-files can be combined in a simple manner. In the case of an increasing value of the parameter an object of a following sub-file must then never have a smaller parameter value than any object of a preceding sub-file.

.2.

OBJECT AND SUMMARY OF THE INVENTION:

5

It is an object of the invention to enable an input file of an a priori random size to be sorted with a direct sorting machine which need operate simultaneously only on a relatively small number of objects, while the need to combine sub-files remains confined to placing these sub-files one behind the other as a whole, so that no object of any sub-file need be placed between objects of any other sub-file. The object is achieved because the invention is characterised by the fact that the method contains the following steps:

- a) in a chain-formation phase, the comparison of the parameter value of an object with the parameter value of the preceding object in order to form a chain of objects with monotonously varying parameter values and, in the case of such a monotonously varying chain, to remember in each case the number of objects in the chain and the parameter value of the selection object of the chain, that is that object in it that within an output file to be formed will function as the first object of the objects of the relevant chain, and thus to divide the input file into a number of chains;
- b) in an inspection phase, the selection of a number (k) of parameter values of selection objects which in an output file can function as k first objects of the current selection objects, in such a way that the capacity of the direct sorting machine is sufficiently great for the objects of the chains belonging to these k selection objects, as well as the selection of the following (k+1)th selection object;
- o) the formation of a sub-file consisting of the objects which, on the basis of their parameter value, should function in the output file not later than the said (k+1)th selection object;
 - d) the sorting of the above-mentioned sub-file in the direct sorting machine;
- 35 e) the formation and sorting of subsequent sub-files in a corresponding manner;
 - f) the concatenation of the sub-files formed in this way.

25

The invention also relates to a device for the performance of the method. Further advantageous aspects are cited in the sub-claims. Basically, other direct sorting machines than the one cited are also applicable.

BRIEF DESCRIPTION OF THE FIGURES:

The invention is further explained on the basis of some figures, first showing the sorting of a specimen file, then an exact formulation of a specimen procedure, and finally a device for per-10 forming the sorting.

Figure 1 shows an example of an input file.

Figure 2 shows the sub-files formed from this.

Figure 3 shows the remaining input file after the formation of the first sub-file.

Figure 4 shows the remaining input file from the formation of the second sub-file.

Figure 5 shows the output file formed.

Figures 6a and 6b show flow diagrams for the performance of the sorting operation according to the invention and figure 6c presents 20 a formula for this.

Figure 7 gives a schematic representation of a device for performing the sorting operation.

PHENOMENOLOGICAL DESCRIPTION OF THE METHOD FOLLOWED:

Figure 1 is a picture of 31 objects which must be sorted. The rank number (0...30) is plotted horizontally. The value of the parameter according to which sorting must take place is plotted vertically. The sorting operates on a one-dimensional parameter, but basically the objects may have several different parameters. An object 30 may be an item of administrative data, for example, a change in a bank account (which, for example, must be sorted according to the number of the bank account). It may, for example, be an item of measuring data, while the measuring data must be sorted according to one or another parameter. In figure 1 each object is represented by a small circle. 35 The objects are divided into notional chains. The chains can be established according to different criteria. In the figure there are "increasing" chains and "decreasing" chains. The parameter values

chain (= length).

25

of an "increasing" chain constitute a "monotonously non-decreasing row". The parameter values of a "decreasing" chain constitue a "monotonously non-increasing row". Basically there are other conceivable algorithms for dividing the objects into chains. For 5 example, a different division occurs if the chains are formed from right to left. It is also possible for a chain to break off after the last of a number of objects with the same parameter value. (If no objects occur with the same parameter value this latter case does not occur.) The formation of the above-mentioned chains takes place in a 10 first sub-procedure, the chain formation phase. At the end of the chain formation phase it is known for each chain what object constitutes the end of the respective chain at the side of the lowest parameter. This is what is termed the selection object which, after the ultimate sorting, will act as the first object of the objects of 15 the chain in question in the output file. In this case the selection objects are a(0), a(7), a(8), a(13), a(15), a(16), a(23), a(24), a(26) and a(29). The length of the chains is determined by the properties of the objects. If the value of the parameter satisifies a random probability distribution with respect to the parameter value of the 20 previous object, the average length is approximately 3. In many cases this will be slightly larger and in some cases considerably larger. After the chain formation phase the following is therefore known for all chains: 1) the selection object, 2) the number of objects in the

Next, during the inspection procedure a number k of the smallest selection objects is determined. This number is determined by the aggregated lengths of the related chains to be taken into account in a direct sorting process, because this aggregated length must not exceed the capacity of the direct sorting machine L. In the case of 30 chains which are longer on average this number will therefore be smaller. Basically, the determination of this k smallest selection objects can be done with a machine as described in the article by Armstrong et al. already referred to, because the number of selection objects is often considerably smaller than the total number of 35 objects. On the other hand, this determination can be done with other mechanisms.

In the example of an embodiment, the direct sorting machine

9.12.1986

has a sorting capacity of L=15 objects. This variable has been chosen on the basis of the application. Then, for a first sub-file to be formed only the objects in the chains with the lowest selection objects are considered, the aggregated length of which chains does not exceed the variable L. A second criterion which applies is that of these chains only the objects are considered which are at least "not higher" than the lowest selection object not considered. In this example, therefore, these are the chains with the selection objects a(23), a(7), a(15) and a(0). The aggregated length of these four chains is 10 5+5+2+3=15. The above-mentioned criterion of "not higher" can, in turn, be replaced by the criterion "lower". The next higher selection object is a(26). For the first sub-file, therefore, all the objects in the relevant chains on, or below, the dashed line are considered: in sequence a(0), a(1), a(4), a(5), a(6), a(7), a(15), a(21), a(22) and 15 a(23), a total of ten. This first sub-file is shown on the left in figure 2 and can always be sorted by the direct sorting machine with a capacity L.

Figure 3 shows the remaining input file after the formation of the first sub-file, in which the chain formation phase is gone

20 through again. In this respect, the figure is still cut off at ordinate=6. The second chain formation phase can, in fact, be performed in the same way as the first chain formation phase, provided that all the objects with a parameter value of 6 or less are transferred as a sub-file to the direct sorting machine. They are then not further considered for this chain formation phase.

Next, the inspection procedure is repeated and in this respect the selection objects a(3), a(8), a(16) a(17), a(24) and a(26) prove to be the lowest at which the aggregated length would fit into the direct sorting machine. The next higher selection object is 30 a(29). For the second sub-file, therefore, we have the objects with a parameter value which is at least equal to that of object a(26), but is not higher than that of object a(29). These are therefore, consecutively, the objects a(2), a(3), a(8), a(9), a(16), a(17), a(19), a(20), a(24), a(25) and a(26), a total of eleven. This sub-file is shown in figure 1 inside the second rectangle (within each sub-file the sequence is that of the numbering of figure 1). In figure 3 the cut-off threshold is again indicated by a broken line. On this broken line

PHN 11.605 .6. 9.12.1986

there now lie both an object that belongs to the second sub-file and one that belongs to the third sub-file.

Figure 4 shows the remaining input file after the formation of the second sub-file and the related chain formation phase; in this respect the figure is cut off at a parameter value of 12: a(29). The total number of remaining objects is ten. As a result, the remaining chains can all be presented to the direct sorting machine with selection objects a(13), a(14) and a(29). Figure 2 shows the three subfiles. Figure 5 shows the three sub-files, concatenated after separate sorting, with the known sorting device or in some other way. As the result of the cases in which objects with the same parameter values occur, this sorting is not unambiguous and the ultimate sequence depends on the algorithm chosen. This sequence, however, always produces a monotonous variation in the parameter values.

The algorithm described can be adapted to respective possibilities. Picking out the lowest selection objects is in itself a sorting process. This can therefore be done with the sorting machine with limited capacity which is described in the article quoted. If the total number of selection objects is too great, these selection objects can be regarded as objects. Then chains are formed with these selection objects and from these chains one single sub-collection is selected in the same way as described above for the original objects.

EXACT FORMULATION OF A SPECIMEN PROCEDURE:

15

20

25

30

35

Figures 6a and 6b present flow diagrams for performing the sorting operation according to the invention.

Figure 6a relates to the determination of the necessary auxiliary variables for filling the sorting machine. The initiation of the system, resetting of counters and registers, and the allocation of the necessary memory space take place in block 50. In addition, some variables are declared. The selection objects or minima of the consecutive chains are numbered: min(i) is the selection object of chain (i); the length of this chain (in the number of objects) is -s(i)-; in the ith step of the algorithm the variables of the (i+1)th chain are considered as new data. In considering chain (o), L(o) is made equal to -s(o)-, and L(i) is the aggregated length (sum of the lengths in numbers of objects) of the chains already incorporated in

30

35

the relevant sub-file to be formed. This incorporation is provisional and can be revoked. The variable Min(o) is infinite. This is the parameter value of the smallestrejected selection element of which it is therefore known at that moment that the related chain will certainly not be able to supply any object for the relevant sub-file. The variable Max(o) is equal to min(o). Max(i) is the parameter value of the largest accepted selection element, hence the largest selection element which according to the data then available may have any object in its chain which may form part of the sub-file. The variable m(o) is taken equal to 1. This is the multiplicity of Min(o); hence the number of selection objects with the same parameter value Min(o).

The procedure now contains the following parts:

- 1. The chains are formed; this is discussed on the basis of figure 6b.
- 2. In this respect, the selection object for each chain is retained, as well as the number of objects of which the chain consists. If necessary, over-long chains can be broken by defining additional selection objects, for example, if the length of a chain exceeds a fixed value during formation. The point is that over-long chains have frequently proved to be disadvantageous because the objects in them are distributed over many different sub-files and, in fact, the capacity of the sorting machine is only very very partially used.
 - 3. Next, the highest parameter value of the permissible selection objects for the sub-file currently to be formed and also the minimal parameter value of the non-permissible selection objects are determined as follows. Initially, the latter value is set to infinity. In block 52 it is detected whether another following selection object in a chain exists. If so, the relevant selection object is called up (block 54) and the variable min(i+1) is given the parameter value of this; the variable s(i+1) becomes the length of the relevant chain. In block 56 it is detected whether the relevant parameter value is small enough. If that is not the case (N), Min(i+1) is assigned in block 58: the smallest rejected object remains the same. If min(i+1) = Min(i), then the multiplicity of the lowest rejected selection object is incremented by 1. system then goes back to block 52. If the result in block 52 is negative (N), the procedure of figure 4a stops and the system changes over (block 60) to filling the aforementioned direct sorting

PHN 11.605

35

machine using the prevailing values of the variables Min, Max, L and m.

.8.

If the result in block 56 is affirmative (Y), the system goes to block 62: the incoming selection object has a parameter value smaller than that of the lowest rejected selection object. It is now detected whether the sum of the lengths of the chains which belong to the accepted selection objects, plus the chain length belonging to the newly considered selection object, fits into the sorting machine, i.e. is not greater than L (in fact L is frequently one greater than the internal storage capacity of the sorting machine, but that is not an essential point). If the result is affirmative (Y) the system goes to block 64. The newly considered selection object is accepted into this and is sorted with (any) earlier accepted selection objects (SOR). definition of this sorting is as follows: produce a list consisting of 15 the elements in the existing list and sort these with the newly accepted selection object min(i+1) in such a way that the largest selection object comes first and each subsequent selection object is no greater than the preceding selection object. The first selection object in this list Max(i+1) now becomes max(Max(i), min(i+1)), and if 20 $min(i+1) \le Max(i)$ the first selection object on this list remains The minimum of the rejected selection objects remains the same. The aggregated length of the chains is updated. The system then goes back to block 52.

If the result in block 62 is negative (N) then the 25 unquestioning acceptance of the new chain would lead to an overflow condition for the sorting machine. For this reason it is detected in block 66 whether the newly considered selection object is at least equal to the maximum of the accepted selection objects. If the result is affirmative (Y) the system goes to block 68. The minimum of the 30 rejected selection objects then becomes equal to the newly considered selection object, with the multiplicity of 1. The maximum of the accepted selection object remains unchanged. The aggregated chain length belonging to the accepted selection object remains unchanged. The system then goes back to block 52.

If the result in block 66 is negative (N) then the system goes to block 70. There the operation "sort" already discussed in block 64 is performed first.

Next, the operation "eliminate" (ELIM) is performed which is necessary because the aggregated length of the chains then certainly does not fit into the direct sorting machine. The definition of this operation "eliminate" is as follows: produce from the existing list 6 (formed in the operation "sort") a new list by continually omitting the maximum selection object from the list until the aggregated length of the remaining chains fits into the direct sorting machine. If this elimination is successful, the maximum of the accepted selection objects will be equal to the remaining maximum selection object in the 10 list after the elimination. The selection object eliminated from the list now becomes the minimal selection object of the rejected selection objects. The multiplicity of the rejected selection object now becomes equal to the multiplicity of the minimal eliminated selection object (this is at most equal to the total number of eliminated selection ob-15 jects, but less is also possible). The aggregated length now becomes equal to that of the non-eliminated chains. The system then goes back to block 52.

The general procedure for filling the direct sorting machine is now as follows: detect whether the aggregated lengths of the chains 20 belonging to the accepted selection objects, plus the multiplicity of the smallest rejected selection object, is not higher than the capacity of the sorting machine, and then all the selection objects which are not greater than the smallest rejected selection object are transported to the sorting machine which has sufficient capacity for the purpose. 25 It has been found that this cut-off criterion is more advantageous than another, equally applicable, one, which makes the maximum of the accepted selection objects a criterion. This advantage can be evaluated from computer simulations. If, using the strategy now employed, the calculated sum is greater than the capacity, then the cut-off 30 criterion (=limit) becomes: all the selection objects smaller than the smallest rejected selection object are transported to the sorting machine. This overshoot can occur relatively seldom; in fact, only when the aggregated length of the chains belonging to the accepted selection objects is equal to L and the multiplicity of the smallest 35 rejected selection object is equal to 2 or more, if the aggregated length is equal to L-1 and the multiplicity is at least 3, and so on. And even if this latter condition applies, the capacity of the sorting

9.12.1986

PHN 11.605 .10.

machine need not always prove inadequate. It is pointed out that there is no selection object between the largest accepted selection object and the smallest rejected selection object. There may, however, be other objects between the largest accepted minimum and the smallest rejected minimum. Auxiliary variables for filling the direct sorting machine are determined with the above.

DETERMINING THE SELECTION OBJECTS AND RELATED CHAIN LENGTHS:

A flow diagram for determining the selection objects and re-10 lated chain lengths is given in figure 6b. In fact, this procedure precedes that in figure 6a. In figure 6b, block 80 is the starting In it, the first element a(0) is called up. In this, the length of the current chain is set to 1: s(0)=1. In addition, a variable f(o) is assigned which indicates the increasing or decreasing 15 direction of the current chain. After the first element in the current chain, this is, in any event, still unknown. It is only known when two objects with differing parameter values of the chain are found. The chain length s(j) is always allocated to the selection object last found, namely in blocks 82 and 92. In the event of an increasing chain 20 the selection object is therefore the first object and in the event of a decreasing chain it is the last object. The flag f(j) has the value f=0 in the case of a decreasing chain and f=1 in the case of an increasing chain. When a whole chain has been found, f(j+1) for the next chain is again set to the position "undetermined". When con-25 sidering a new object, the value of j is incremented. Here, the variables s(j) and f(j) are disregarded after processing and are replaced by new variables s(j+1) and f(j+1), respectively.

In block 82 of figure 6b it is detected whether the collection has a next object (NXT?). If the result is negative (N) the chain length size is fixed at its current value in block 104. If the chain is decreasing or horizontal, the current object also becomes the selection object. If this is not the case, the first object also remains the selection object. When this has been done, the system goes to block 50 in figure 6a. It is pointed out that the length of a chain is always only known at the end if this terminates either in a natural way (the next object has a parameter value which conflicts with the increasing/decreasing direction of the current chain) or breaks off

9.12.1986

because the chain length has become too great.

If the result in block 82 is affirmative the next object is called up from the collection in block 86 and it is detected in block 88 whether the value of the flag f(j) is "undetermined". If the result is affirmative (Y) it is detected in block 96 whether the length of the current chain s(j) is at least equal to a particular fraction /3 of the capacity of the direct sorting machine. The value of /3 is permanently set in advance, for example, $\beta = 1/2$. As a result, over-long chains are broken; if s(j) > L, even the relevant single chain would not fit 10 into the direct sorting machine. If the result in block 96 is affirmative, the selection object of the current chain is made equal to a(j) in block 98 and the chain length is fixed at the current value s(j). The chain length of the next chain is given the value 1 (just as in block 80); finally, the flag f(j+1) is set to the position "undeter-15 mined" for the next chain. The system then goes back to block 82. If the result in block 96 is negative (N) the system goes to block 100, in which the chain length is incremented. The system then goes to block 102, in which the relation between the new object a(j+1) and the previous object a(j) is examined. If the new object is equal to the old 20 one, the value of the flag f(j+1) is equal to the value of the flag f(j): undetermined (block 108). If the new object is smaller than the old one, the flag f(j+1) becomes equal to 0 in block 106: the chain is then decreasing. If the new object is greater than the old one, the flag f(j+1) becomes equal to 1 in block 110. The chain is then in-25 creasing. In addition, in block 110 the selection object of the current chain becomes min=a(j). After going through one of the blocks 104, 106, 108, the system goes back to block 82 in order to call up a new object (if possible).

If the flag f(j) was already determined at 0 or 1 in block 88

(output N) the system then goes back to block 90. There the conditions indicated in figure 6c are tested. These conditions are alternatives to each other. If condition (1) is valid, the system goes to block 92. The first line of condition (1) means that an increasing chain is followed by a lower object. The second line means that a decreasing chain is followed by a higher object. The third line means that the chain length exceeds the permissible limit. In all these three cases the chain must be broken and a new chain must be made.

PHN 11.605 .12. 9.12.1986

This means that the same operations are carried out as in block 98. If f(j)=1 (increasing chain), however, the selection object remains unchanged as the first object of the current chain.

If the condition (2) is valid in block 90 (i.e. the condition (1) is non-valid), the system goes to block 94. The first line of condition (2) means that a decreasing chain is continued with an object, the parameter value of which is at most equal to that of its predecessor. The second line of condition (2) means that an increasing chain is continued with an object, the parameter value of which is at least equal to that of its predecessor. One of these two lines must then still be combined with the condition that the chain length does not exceed the permissible limit. If this condition (2) is satisfied, the chain need not be broken and the system goes to block 94. In this, the chain length is incremented s(j+1)=s(j)+1, and the value of the flag f(j) is maintained. The system then goes back to block 82 and figures 6a, 6b and 6c have been described.

DESCRIPTION OF A DEVICE ACCORDING TO THE INVENTION:

Figure 7 shows a block diagram of a device according to the invention. The input file is stored in a serial memory 20, for example, a magnetic disc memory. This communicates via line 22 with processor 24. Processor 24 communicates with memory 32 (RAM) via address line 30 and data line 28 by means of (among other things) data register 26. The processor, serial memory 20, and memory 32 may be of the normal construction and therefore require only a brief explanation. In the chain formation procedure successive objects are read out non-destructively. After this, the necessary variables are known for all chains. In the inspection procedure, a second serial scanning of the objects takes place. After this, the minimal rejected selection object is known and, in addition, it is certainly true that the number of objects with a parameter value smaller than or equal to that of the smallest rejected selection object fits into the capacity of the direct sorting machine 36. This latter number of objects is transported to the direct sorting machine 36, which can be combined with the next chain formation phase. The output result of the direct sorting operation in device 36 can, in turn, be stored in memory 20. The concatenation of the sub-files is a serial operation and no further

9.12.1986

processing capacity is therefore required. Needless to say, in the serial read-out, serial regrouping of the information can also take place in the serial memory. Reading and writing back can take place in the known manner.

. 14.

PHN 11.605

20

25

9.12.1986

- 1. A method . for sorting objects, each of which is provided with a parameter, according to the value of this parameter, the said objects being successively presented in an input file and the said sorting taking place by presenting the objects to a direct sorting machine which offers space for a sub-file of at least a pre-determined number of objects, characterised in that the method contains the following steps:
- a) in a chain-formation phase, the comparison of the parameter value of an object with the parameter value of the preceding object in order to form a chain of objects with monotonously varying parameter values and, in the case of such a monotonously varying chain, to remember in each case the number of objects in the chain and the parameter value of the selection object of the chain, that is that object in it that within an output file to be formed will function as the first object of the objects of the relevant chain, and thus to divide the input file into a number of chains;
 - b) in an inspection phase, the selection of a number (k) of parameter values of selection objects which in an output file can function as k first objects of the current selection objects, in such a way that the capacity of the direct sorting machine is sufficiently great for the objects of the chains belonging to these k selection objects, as well as the selection of the following (k+1)th selection object;
 - c) the formation of a sub-file consisting of the objects which, on the basis of their parameter value, should function in the output file not later than the said (k+1)th selection object;
 - d) the sorting of the above-mentioned sub-file;
 - e) the formation and sorting of subsequent sub-files in a corresponding manner;
 - f) the concatenation of the sub-files formed in this way.
- 30 2. Method according to claim 1, characterised in that after a first inspection phase a following chain formation phase is performed simultaneously each time with the formation of a sub-file on the basis

PHN 11.605 .15. 9.12.1986

of a directly preceding inspection phase.

- 3. Method according to claim 1, characterised in that the formation of a chain is terminated on reaching a chain length which is a fixed fraction of the capacity of the direct sorting machine.
- Device for the performance of the method according to claim 3, containing a serial memory (20) for storing the objects, a processor (24) with appertaining memory (32) for the temporary storage of intermediate data, and a direct sorting machine with capacity for L objects, characterised in that the processor has a first position for controlling a chain formation phase, a second position for controlling an inspection phase, a third position for controlling a further chain formation plus sub-file formation phase and a fourth position for controlling a concatenation phase on the basis of the output results of the direct sorting machine.

15

20

25

30

F1G. 2

FIG. 6a

FIG.6b

(1):
$$\{a(j+1) < a(j) \land f(j) = 1\}$$

$$V \{a(j) < a(j+1) \land f(j) = 0\}$$

$$V s(j) \geqslant \beta L$$
(2) $[\{a(j+1) \le a(j) \land f(j) = 0\}$

$$V \{a(j) \le a(j+1) \land f(j) = 1\}$$

$$\Lambda s(j) < \beta L$$

FIG.6c

EUROPEAN SEARCH REPORT

0231552 Application number

EP 86 20 2349

DOCUMENTS CONSIDERED TO BE RELEVANT							
Category		indication, where appropriate, ant passages		evant clarm	CLASSIFICATIO APPLICATION		
A,D	COMPUTERS & ELECTION ENGINEERING, vol. 1982, pages 53-5 Press Ltd, GB; Fal.: "A serial s	l. 9, no. 1, 58, Pergamon P.N. ARMSTRONG e			G 06 F	7/24	
А	PROCEEDINGS OF TO SELECTRICAL EN 103B, suppl. 1, 87-93, London, 0 "Sorting of data electronic computations and selectronic computati	NGINEERS, vol. 1956, pages GB; D.W. DAVIES: a on an					
		•			TECHNICAL SEARCHED (I		
					G 06 F		
	·						
The present search report has been drawn up for all claims							
		Date of completion of the 27-04-1987	search	Examiner GYSEN L.A.D.			
X: particularly relevant if taken alone X: particularly relevant if combined with another document of the same category A: technological background O: non-written disclosure E: earlier after the same category L: document of the same category A: technological background A: members after the same category A: members after the same category A: technological background A: members after the same category A: technological background			tier patent do er the filing di cument cited cument cited	nt cited in the application nt cited for other reasons of the same patent family, corresponding			

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:	
D BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LÎNES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	
□ OTHER.	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.