Uso de Kinect para el entrenamiento de actividades físicas

TFG

Víctor Tobes Pérez Raúl Fernández Pérez

Departamento de Ingeniería del Software e Inteligencia Artificial Facultad de Informática Universidad Complutense de Madrid

Junio 2017

Documento maquetado con TeXIS v.1.0+.

Este documento está preparado para ser imprimido a doble cara.

Uso de Kinect para el entrenamiento de actividades físicas

 ${\it Informe\ t\'ecnico\ del\ departamento}$ Ingeniería del Software e Inteligencia Artificial IT/2009/3

 $Versi\'{o}n$ 1.0+

Departamento de Ingeniería del Software e Inteligencia Artificial Facultad de Informática Universidad Complutense de Madrid

Junio 2017

Copyright © Víctor Tobes Pérez y Raúl Fernández Pérez ISBN 978-84-692-7109-4

Agradecimientos

Resumen

Índice

Ag	gradecimientos	V
Re	esumen	VII
1.	Introducción	1
	1.1. Introducción	1
2.	Estado del arte	3
	2.1. Historia captura de movimiento	3
3.	Captura de movimiento	5
	3.1. Captura de movimiento	5
	3.2. Tecnología captura de movimiento	5
	Notas bibliográficas	5
4.	Sensor Kinect	7
	4.1. Versiones de Kinect	7
	4.1.1. Kinect V1	7
	4.1.2. Kinect V2	7
Ι	Apéndices	9
Α.	Así se hizo	11
	A.1. Introducción	11

Índice de figuras

Índice de Tablas

Introducción

1.1. Introducción

Estado del arte

2.1. Historia captura de movimiento

Captura de movimiento

3.1. Captura de movimiento

La captura de movimiento o motion capture, MOCAP, es el proceso de grabación del movimiento de actores o animales para transferirlo al personaje digital. La tecnología de captura de movimientos surgió en biomecánica, para el estudio de la marcha humana, pero pronto su aplicación se extendió a campos tan dispares como los videojuegos o la neurociencia.

3.2. Tecnología captura de movimiento

Captura de movimientos óptica

Captura de movimientos en vídeo o Markerless , LUZ ESTRUCTURADA de kinect

Captura de movimientos en vídeo o Markerless

Captura de movimientos inercial

Sensor Kinect

- 4.1. Versiones de Kinect
- 4.1.1. Kinect V1

Características

Video: 640x480 @30 fps

4.1.2. Kinect V2

COMENTARIO: Enlaces sobre las caracteristicas de Kinect

 $https://msdn.microsoft.com/library/jj131033.aspx \\ https://msdn.microsoft.com/library/dn782025.aspx \\ https://developer.microsoft.com/es-es/windows/kinect/hardware$

Parte I Apéndices

Apéndice A

Así se hizo...

••

RESUMEN: ...

A.1. Introducción

• • •

-¿Qué te parece desto, Sancho? - Dijo Don Quijote - Bien podrán los encantadores quitarme la ventura, pero el esfuerzo y el ánimo, será imposible.

Segunda parte del Ingenioso Caballero Don Quijote de la Mancha Miguel de Cervantes

-Buena está - dijo Sancho -; fírmela vuestra merced.
-No es menester firmarla - dijo Don Quijote-,
sino solamente poner mi rúbrica.

Primera parte del Ingenioso Caballero Don Quijote de la Mancha Miguel de Cervantes