UM 204 HOMEWORK ASSIGNMENT 8

Posted on March 28, 2024 (NOT FOR SUBMISSION)

The next quiz is NOT based on this assignment. See the Teams page for the syllabus of the quiz.

Problem 1. Suppose $f:(0,\infty)$ is twice differentiable and

$$M_0 = \sup_{z \in (0,\infty)} |f(z)|,$$

$$M_1 = \sup_{z \in (0,\infty)} |f'(z)|,$$

$$M_2 = \sup_{z \in (0,\infty)} |f''(z)|,$$

are all finite. Show that

$$M_1^2 \le 4M_0M_2$$
.

Problem 2. Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function such that $\lim_{x\to\infty} f(x)$ exists. See Chapter 4 of Rudin's book for the definition of limits at infinity.

(1) Suppose $\lim_{x\to\infty} f'(x)$ exists. Show that

$$\lim_{x \to \infty} f'(x) = 0.$$

(2) Suppose f is twice differentiable and f'' is a bounded function. Show that $\lim_{x\to\infty} f'(x)$ exists.

Problem 3. Let $\mathbf{f}:(0,1)\to\mathbb{R}^n$ be a differentiable vector-valued function such that $\|\mathbf{f}\|$ is a constant function on (0,1). Show that $\langle \mathbf{f}(x), \mathbf{f}'(x) \rangle = 0$ for all $x \in (0,1)$.

Problem 4. Recall the following function from the previous assignment: $f:[0,1] \to [0,1]$ given by

$$f(x) = \begin{cases} \frac{1}{q}, & x = \frac{p}{q}, \text{ with } p \in \mathbb{Z} \text{ and } q \in \mathbb{N}_{>0}, \text{ gcd}(p, q) = 1, \\ 0, & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

Use the ε -characterization of Riemann integrability to show that f is Riemann integrable.

Hint. Given $\varepsilon > 0$, let $n \in \mathbb{N}$ such that $\frac{1}{n+1} < \varepsilon$. Show that $f(x) < \frac{1}{n+1}$ for all $x \in [0,1] \setminus S_n$, where $S_n = \{\frac{p}{q} : p, q \in \mathbb{N} \text{ and } 1 \leq p \leq q \leq n\}$. On the other hand, for $x \in S_n$, $f(x) \leq 1$. Now choose an appropriate partition P of [0,1] so that $U(P,f) < \varepsilon$. Why does this prove the claim?

Problem 5. Problems 11 & 12 from Chapter 6 in Rudin's book. Take $\alpha(x) = x$.

Problem 6. Let $f:[0,1] \to \mathbb{R}$ be a continuous monotone function. Show that the graph of f is a rectifiable curve with length at most 2.

Bonus question. Is there a monotone continuous function on [0,1] whose graph has length 2?