Отчёт по работе 5.1.3

Изучение рассеяния медленных электронов на атомах (эффект Рамзауэера)

Бичина Марина, Карташов Констанин Б04-005

I Анотация

Цель работы: Исследовать энергетическую зависимость вероятности рассеяния электронов атомам ксенона, определение энергии электроном, при которых наблюдается «просветление» ксенона, и оценить размер его внешней электронной оболочки.

Оборудование:

- ⊳ Тиратрон
- > Источник переменного и постоянного напряжения
- ⊳ Электронный осциллограф
- ⊳ Вольтметры

II Теоретическая часть

Из условия первого интерференционного максимума ($\Delta = 2l = \lambda'$) можно рассчитать размер потенциальной ямы l, как:

$$l = \frac{1}{2} \frac{h}{\sqrt{2m(E_{\text{max}} + U_0)}},\tag{1}$$

из условия первого интерференционного минимума ($\Delta = 2l = 3/2\lambda'$) можно рассчитать l как:

$$l = \frac{3}{4} \frac{h}{\sqrt{2m(E_{\min} + U_0)}}. (2)$$

Совмещая (1) и (2) можно рассчитать l и U_0 по формулам:

$$l = \frac{h\sqrt{5}}{\sqrt{32m(E_{\min} - E_{\max})}},\tag{3}$$

$$U_0 = \frac{4}{5}E_{\min} - \frac{9}{5}E_{\max}.$$
 (4)

По измеренной вольт-амперной характеристике можно определить зависимость вероятности рассеяние электрона от его энергии из соотношения:

$$w(V) = -\frac{1}{C} \ln \frac{I_{\text{анод}}(V)}{I_{\text{катол}}} \tag{5}$$

измерение	$V_{\rm\scriptscriptstyle Hak},{ m B}$	$V_{\rm max},{ m B}$	$\sigma_{V_{\mathrm{max}}},\mathrm{B}$	V_{\min} , B	$\sigma_{V_{\min}}$, B
1	3.05	2.7	0.1	6.3	0.7
2	2.75	2.7	0.1	5.5	0.7

Таблица 1: Значения измеренные динамическим методом

III Экспериментальная часть

Вольт-амперная характеристика тиратрона в динамическом режиме

Включим установку в динамическом режиме, выставим установим напряжение накала $V_1=3.05~\mathrm{B}$ и получим на экране осциллографа изображение кривой вольтамперной характеристики (рис. 1 (a)). Зная, что одно деление по оси X осциллографа соответствует 2 B, найдём напряжения первого максимума и минимума, и напряжение пробоя:

 $U_{\rm max}=1.35$ дел = 2.7 B, оценим погрешность $\sigma_{U_{\rm max}}\approx 0.05$ дел = 0.1 B, $U_{\rm min}=3.15$ дел = 6.3 B, оценим погрешность $\sigma_{U_{\rm min}}\approx 0.35$ дел = 0.7 B, $U_{\rm npo6}=6$ дел = 12 B.

Изменим напряжение на накала до $V_2 = 2.75$ В. Изображение на экране осциллографа изменилось (рис. 1 (б)). Также найдём напряжения первого максимума и минимума, и напряжение пробоя:

 $U_{\rm max}=1.35$ дел = 2.7 B, оценим погрешность $\sigma_{U_{\rm max}}\approx 0.05$ дел = 0.1 B, $U_{\rm min}=2.75$ дел = 5.5 B, оценим погрешность $\sigma_{U_{\rm min}}\approx 0.35$ дел = 0.7 B, $U_{\rm проб}=6$ дел = 12 B. Измеренные данные занесём в таблицу 1.

По измеренным данным оценим размер электронной оболочки атома инертного газа, заполняющего лампу, приняв $U_0=2.5$ В по формулам (1) и (2), получим: $l_1=2.7\pm0.1$ Å, $l_2=3.1\pm0.3$ Å, $l_3=2.7\pm0.1$ Å, $l_4=3.3\pm0.4$ Å для $V_{\rm max}$ и $V_{\rm min}$ при V_1 и V_2 соответственно. Среднее и среднеквадратичное отклонение: $\bar{l}=2.95$ Å, $\sigma_l=0.26$ Å.

Найдём l по формуле (3), получим: $l_1=3.6\pm0.4$ Å, $l_2=4.1\pm0.5$ Å для V_1 и V_2 соответственно. Среднее и среднеквадратичное отклонение: $\bar{l}=3.85$ Å, $\sigma_l=0.25$ Å.

Найдём соответствующие значения размера потенциальной ямы U_0 по формуле (4): $U_{0,1} = 0.2 \pm 0.6$ В, $U_{0,1} = -0.5 \pm 0.6$ – эти значения явно не соответствуют действительности, так как их модуль меньше погрешности, и отрицательное значение не должно быть возможным. Такие ошибки могли возникнуть из-за некачественного изображения полученного на осциллографе. Занесём вычислинные значения в таблицу 2.

Оценим потенциал ионизации инертного газа. Напряжение пробоя получилось $V_{\rm npo6}\approx 12~{\rm B},$ что соответствует ионизационному потенциалу ксенона – 12.1 эВ. Из этого можно заключить, что тиратрон заполнен ксеноном.

формула, V_i	(1), 1	(2), 1	(1), 2	(2), 2	сред.	(3), 1	(3), 2	сред.
l, Å	2.7	3.1	2.7	3.3	2.95	3.6	4.1	3.85
σ_l , Å	0.1	0.3	0.1	0.4	0.26	0.4	0.5	0.25

Таблица 2: Значения найденные динамическим методом

Рис. 1: Кривые на экране осциллографа при а) $V_{\rm накал}=V_1$ б) $V_{\rm накал}=V_2$

ii Вольт-амперная характеристика тиратрона в статическом режиме

Переведём установку в статический режим. При мощи двух вольтметров показывающих напряжение и ток (в относительных единицах) построим вольт-амперную характеристику при напряжениях накала близких к V_1 и V_2 из п.п. і (рис. 2).

Полученные напряжения $V_{\rm max,1}=2.36$ В, $V_{\rm max,2}=2.39$ В, $V_{\rm min,1}=7.00$ В, $V_{\rm min,1}=7.04$ В. Оценим погрешность как $\sigma_V=0.05$ В. Найдём l, U_0 , подобно п.п. і, полученные значения занесём в таблицу 3

Найдём зависимость вероятности рассеяния электронов от энергии по формуле (5) и построим соответствующий график (рис. 3).

IV Выводы

1. Получили качественное изображение вольт-амперной характеристики тиратрона динамическим способом - при помощи источника переменного напряжения и электронного осциллографа. Эта характеристика неточной из-за значительного искажения изображения.

Φ ., V_i	(1), 1	(2), 1	(1), 2	(2), 2	сред.	(3), 1	(3), 2	сред	-	(4), 1	(4), 2	сред
$l, \mathrm{\AA}$	2.78	2.98	2.77	2.98	2.88	3.18	3.18	3.18	U_0 , B	1.69	1.66	1.68
σ_l , Å	0.06	0.02	0.06	0.02	0.1	0.07	0.07	_	σ_{U_0} , B	0.1	0.1	0.02

Таблица 3: Значения найденные статическим методом

Рис. 2: Графики вольт-амперной характеристики снятые в статическом режиме

Рис. 3: График вероятности рассеяния электрона

- 2. Основывая на полученной динамическим способом вольт-амперной характеристики напряжение максимума и минимума пропускания, а также напряжение пробоя.
- 3. По напряжению максимума и минимума оценили размер внешней оболочки ксенона, получили значения в районе $2.7 \div 4.1 \text{ Å}$. По данным справочника ковалентный радиус ксенона $r = 130 \div 140 \text{ Å}$, что при умножении на два даёт близкое значение к полученным.
- 4. Попытались оценить глубину потенциальной ямы атома, что не удалось из-за высокой погрешности.
- 5. Статическим способом сняли более точную вольт-амперную характеристику.
- 6. По новой ВАХ нашли размер внешней оболочки ксенона $l=3.18\pm0.07~{\rm \AA}$ и глубину потенциальной ямы атома $U_0=1.7\pm0.1~{\rm B}$.
- 7. Построили график зависимости вероятности рассеяния электрона от напряжения.