Estadística No Paramétrica II-2023. Taller Preparatorio Parcial 2

Ramón Giraldo Departamento de Estadística. Universidad Nacional de Colombia

1	Datos	aim.i	ladoa.	Can
Ι.	Datos	sımıı	tados:	Sea

$$\left(\begin{array}{c} X \\ Y \end{array}\right) \sim NMV \left(\left(\begin{array}{cc} \mu \\ \eta \end{array}\right), \left(\begin{array}{cc} \sigma^2 & \rho\sigma\tau \\ \rho\sigma\tau & \tau^2 \end{array}\right)\right).$$

a)	Encuentre la expresión	de $\mathbb{E}(Y X=x)=$	
b)	Encuentre la expresión	de $\mathbb{V}(Y X=x) =$	

c)	Usando R escriba el código a continuación (asigne valores a μ,σ,η y
	ρ) y resuelva los literales siguientes
	<pre>rm(list=ls())</pre>
	library(sm)
	<pre>set.seed(fije la semilla)</pre>
	mu=
	eta=
	sigma=
	rho=
	tao=
	x=seq(5,15, by=0.1)

- d) Estime el modelo de regresión simple. Use ${\tt lm}$ de ${\tt R}$
- e) Halle la estimación kernel de la función de regresión en x=10. Use la función **sm.regression**. Deje la opción que por defecto se tiene para h (el ancho de banda). $\hat{E}(Y|X=10)=$
- $f) h = _{---}$
- g) Encuentre las bandas de variabilidad 95 % para $E(\hat{m}(x))$
- h) Encuentre las bandas de confianza del 95 % para la hipótesis de no efecto
- i) Encuentre las bandas de confianza del 95 % para la hipótesis de linealidad
- j) Estime los modelos LOESS y LOWESS

- k)Repita la simulación variando μ y η y haga con los dos conjuntos de datos simulados un test de igualdad de curvas de regresión usando la función ${\tt sm.ancova}$ de R
- 2. Haga un análisis de regresión no paramétrico (regresión kernel, LOEES y LOWESS) usando una base de datos real. Estime el modelo (la curva) e interprete los resultados.
- 3. Haga una regresión spline con los datos de bioluminiscencia pelágica.