My Notes

Truth Tables

The Truth of the Matter

1.4

SUGGESTED LEARNING STRATEGIES: Close Reading, Activating Prior Knowledge, Group Discussion, Interactive Word Wall, Vocabulary Organizer, Think/Pair/Share

Symbolic logic allows you to determine the validity of statements without being distracted by a lot of text. You can use symbols, such as *p* and *q*, to represent simple statements. A **compound statement** is formed when two or more simple statements are connected as a conditional (if-then) a **biconditional** (if and only if), a **conjunction** (and), or a **disjunction** (or).

1. The symbol \rightarrow represents a conditional. You read $p \rightarrow q$ as, "if p, then q," or "p implies q." Let p represent the statement "you arrive before 7 PM," and let q represent the statement "you will get a good seat." Use the information in the play poster to the right to write the statement that is represented by $p \rightarrow q$.

Truth tables are used to determine the conditions under which a statement is true or false. This truth table displays the truth values for $p \rightarrow q$, which are dependent on the truth values for p and q.

	p	q	$p \rightarrow q$
Row 1	T	T	T
Row 2	T	F	F
Row 3	F	T	Т
Row 4	F	F	Т

- **2.** Row 1 addresses the case when both p and q are true. Refer to the play announcement that you completed in Item 1. Explain why $p \rightarrow q$ would be true if both p and q are true.
- **3.** Row 2 addresses the case when p is true and q is false. In terms of the play announcement, explain why $p \rightarrow q$ would be false if p is true and q is false.
- **4.** Refer to Rows 3 and 4. In terms of the play announcement, explain why $p \rightarrow q$ is true if p is false.

SUGGESTED LEARNING STRATEGIES: Close Reading, Create Representations, Think/Pair/Share

My Notes

The symbol $\sim p$ is the **negation of** p and can be read as "not p." This truth table shows the conditions under which $\sim p$ is true or false. When p is true, $\sim p$ is false, and when p is false, $\sim p$ is true.

p	~p
Т	F
F	Т

- **5.** Let *p* represent the simple statement "Triangles are convex," which is a true statement. Write the statement denoted by ~*p* and state whether it is true or false.
- **6.** Create a simple statement p that you know to be false. Write the statement $\sim p$ and state whether is true or false.
- **7.** Let *p* represent "you are not in the band" and let *q* represent "you can go on the trip." Write the compound statement represented by $\sim p \rightarrow q$.

EXAMPLE

Make a truth table for $\sim p \rightarrow q$.

Step 1

Write down all possible T and F combinations for p and q.

p	q
Т	Т
Т	F
F	Т
F	F

Step 2
Add a column for ~p and negate p.

p	q	~p
Т	Т	F
T	F	F
F	Т	Т
F	F	Т

Step 3
Add a column
for $\sim p \rightarrow q$ and
evaluate $\sim p \rightarrow q$.

p	q	~p	$\sim p \rightarrow c$
Т	Т	F	T
Т	F	F	T
F	Т	Т	T
F	F	Т	F

My Notes

SUGGESTED LEARNING STRATEGIES: Close Reading, Think/Pair/Share, Create Representations, Identify a Subtask, Activating Prior Knowledge, Interactive Word Wall, Vocabulary Organizer

8. Follow the steps and complete the truth table for $\sim (p \rightarrow q)$.

Step 1

Find all possible T and F combinations for p and q.

Step 2

Evaluate $p \rightarrow q$.

Step 3

Negate $p \rightarrow q$.

Ste	p 1	Step 2	Step 3		
p	$p \mid q \mid p \rightarrow q$		$\sim (p \rightarrow q)$		

9. Write the steps and complete the truth table for $\sim q \rightarrow \sim p$.

Step 1		Ste	p 2	Step 3		
p	q	~ p	~q	~q ~p		

10. The symbol \leftrightarrow represents a **biconditional**. You read it as "if and only if." Let p represent "A chord in a circle contains the center," and let q represent "The chord is a diameter." Write the statement that is represented by $p \leftrightarrow q$.

continued

My Notes

SUGGESTED LEARNING STRATEGIES: Close Reading, Think/ Pair/Share, Create Representations, Identify a Subtask, Discussion Group, Group Presentation, Interactive Word Wall, Vocabulary Organizer

MATH TIP

Because biconditionals are true only when both parts have the same truth value, many definitions are written in the form of a biconditional.

The truth table for $p \leftrightarrow q$ is shown to the right. Notice that $p \leftrightarrow q$ is true only when *p* and *q* are both true or both false.

p	q	$p \leftrightarrow q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

11. Construct a truth table for $(p \rightarrow q) \leftrightarrow \sim q$.

MATH TERMS

A **rectangle** is a parallelogram with a right angle.

A **rhombus** is a parallelogram with consecutive congruent sides.

- **12.** The symbol \wedge represents a **conjunction**. You read it as "and." Let p represent "the figure is a rectangle," and let q represent "the figure is a rhombus."
 - **a.** Write the statement that is represented by $p \wedge q$.
 - **b.** Write the statement that is represented by $p \land \sim q$.

The trut the right true whe

th table for $p \land q$ is shown to	p	q	$p \wedge q$
	T	T	Т
In table for $p \land q$ is shown to a Notice that $p \land q$ is only in both p and q are true.	T	F	F
	F	Т	F
	F	F	F

My Notes

SUGGESTED LEARNING STRATEGIES: Close Reading, Create Representations, Identify a Subtask

- **13.** The symbol \vee represents a **disjunction**. You read it as "or." Let p represent "the figure is not a rectangle," and let q represent "the figure is a rhombus."
 - **a.** Write the statement that is represented by $p \vee q$.
 - **b.** Write the statement that is represented by $\sim p \vee q$.

The truth table for $p \lor q$ is shown to the right. Notice that $p \lor q$ is only false when both p and q are false.

p	q	$p \vee q$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

14. Construct a truth table for $p \lor (p \land q)$.

A **tautology** is a statement that is true for all cases of *p* and *q*. The corresponding truth table will have only T's in the last column.

15. Construct a truth table for $(p \rightarrow q) \leftrightarrow (p \land q)$. Is this a tautology?

16. Construct a truth table for $\sim (p \lor q) \leftrightarrow (\sim p \land \sim q)$. Is this a tautology?

CHECK YOUR UNDERSTANDING

Write your answers on notebook paper. Show your work.

Construct a truth table for the compound statements. Identify which statements, if any, are tautologies.

1.
$$\sim p \wedge q$$

2.
$$q \rightarrow (p \lor \sim p)$$

3.
$$p \lor (q \rightarrow p)$$

4.
$$(p \rightarrow q) \land p$$

5.
$$q \wedge (p \rightarrow \sim q)$$

6.
$$(p \rightarrow q) \leftrightarrow (\sim q \rightarrow \sim p)$$

7. MATHEMATICAL How could a truth table REFLECTION help you to analyze a campaign promise made by a person running for office? Think of a conditional statement starting, "If I am elected, ..."