

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Claim 1: (currently amended) A compound of formula (I):

wherein

Y is O or S;

Z is O or S;

n is 1 or 2;

m is 1 or 2;

n + m is 2 or 3;

R¹ is H or C₁₋₆alkyl;

R² is H, F, Cl, Br or C₁₋₆alkyl;

R³ and R⁴ are, independently, H, C₁₋₄alkyl, C₃₋₆cycloalkyl, C₁₋₄alkyl(C₃₋₆cycloalkyl), cyano, -CF₃, -(CO)NR^pR^q, -(CO)OR^r, -CH₂NR^pR^q or -CH₂OR^r; where R^p, R^q and R^r are independently selected from H, C₁₋₄alkyl, C₃₋₆cycloalkyl, phenyl, -C₁₋₂alkyl(C₃₋₆cycloalkyl), benzyl or phenethyl, or R^p and R^q taken together with the nitrogen to which they are attached, form a 4-7 membered heterocyclic ring with 0 or 1 additional heteroatoms selected from O, S, NH or NC₁₋₆alkyl, and where any phenyl or alkyl or cycloalkyl moiety of the foregoing is optionally and independently substituted with between 1 and 3 substituents selected from C₁₋₃alkyl, halo, hydroxy, amino, and C₁₋₃alkoxy;

R⁵ and R⁶ are, independently, H or C₁₋₆alkyl;

R^7 is $-R^a$, $-R^b R^a$, $-R^e -O-R^a$ or $-R^e -N(R^c)(R^d)$, where R^a is H, cyano, $-(C=O)N(R^c)(R^d)$, $-C(=NH)(NH_2)$, C_{1-10} alkyl, C_{2-8} alkenyl, C_{3-8} cycloalkyl, C_{4-7} heterocyclic radical or phenyl, where the C_{4-7} heterocyclic radical is attached at a carbon atom and contains one of O, S, NH or NC_{1-4} alkyl, and optionally an additional NH or NC_{1-6} alkyl in rings of 5 or 6 or 7 members, where R^b is C_{1-8} alkylene or C_{2-8} alkenylene, where R^e is C_{2-8} alkylene or C_{2-8} alkenylene, where R^c and R^d are each independently H, C_{1-4} alkyl, C_{2-4} alkenyl, C_{3-6} cycloalkyl or phenyl, or R^c and R^d taken together with the nitrogen to which they are attached, form a 4-7 membered heterocyclic ring with 0 or 1 additional heteroatoms selected from O, S, NH or NC_{1-6} alkyl, and where any phenyl or alkyl or cycloalkyl moiety of the foregoing is optionally and independently substituted with between 1 and 3 substituents selected from C_{1-3} alkyl, halo, hydroxy, amino, and C_{1-3} alkoxy; alternatively, R^7 may be taken together with an adjacent R^4 as well as their carbon and nitrogen of attachment to form a 5, 6 or 7 membered heterocyclic ring, with 0 or 1 additional heteroatoms selected from O, S, NH or NC_{1-6} alkyl, and optionally and independently substituted with between 1 and 3 substituents selected from C_{1-3} alkyl, halo, hydroxy, amino, and C_{1-3} alkoxy;

R^8 and R^9 are, independently, H, F, Cl, Br, I, C_{1-4} alkyl, C_{1-4} alkoxy, $-C_{3-6}$ cycloalkyl, $-OC_{3-6}$ cycloalkyl, $-OCH_2Ph$, $-CF_3$, $-OCF_3$, $-SCF_3$, $-(C=O)R^k$ (wherein R^k is H, C_{1-4} alkyl, -OH, phenyl, benzyl, phenethyl or C_{1-6} alkoxy), $-(N-R^t)(C=O)R^k$ (where R^t is H or C_{1-4} alkyl), $-(N-R^t)SO_2C_{1-4}$ alkyl, $-(S=(O)_p)-C_{1-4}$ alkyl (wherein p is 0, 1 or 2), nitro, $-SO_2NR^lR^m$ (wherein R^l and R^m are independently selected from H, C_{1-4} alkyl, phenyl, benzyl or phenethyl, or R^l and R^m taken together with the nitrogen to which they are attached, form a 4-7 membered heterocyclic ring with 0 or 1 additional heteroatoms selected from O, S, NH or NC_{1-4} alkyl), $-(C=O)NR^lR^m$, cyano or phenyl, where any phenyl or alkyl or cycloalkyl moiety of the foregoing is optionally and independently substituted with between 1 and 3 substituents selected from C_{1-3} alkyl, halo, hydroxy, amino, and C_{1-3} alkoxy;

and enantiomers, diastereomers and pharmaceutically acceptable salts and esters thereof, with the following provisos,

that R^6 adjacent to N must be H where R^4 adjacent to N is other than H,

that R^7 is not $-CH_2CH_2OH$; and

that where the core molecule is a *4H*-furo, then one of R⁴ and R⁶ adjacent to N must not be methyl when the other is hydrogen unless R⁶ and R⁴ are taken together to form a bridging moiety.

Claims 2-3: Cancelled.