Package 'orthogene'

October 23, 2021

```
Type Package
Title Interspecies gene mapping
Version 0.99.9
Description
      orthogene is an R package for easy mapping of orthologous genes across hundreds of species.
      It pulls up-to-date interspecies gene ortholog mappings across 700+ organisms.
      It also provides various utility functions to map common objects
      (e.g. data.frames, gene expression matrices, lists)
      onto 1:1 gene orthologs from any other species.
URL https://github.com/neurogenomics/orthogene
BugReports https://github.com/neurogenomics/orthogene/issues
License GPL-3
Depends R (>= 4.1)
VignetteBuilder knitr
biocViews Genetics, ComparativeGenomics, Preprocessing,
      Phylogenetics, Transcriptomics, GeneExpression
Imports dplyr,
      methods,
      stats,
      utils,
      Matrix,
     isonlite,
     homologene,
      gprofiler2,
      babelgene,
      data.table,
      parallel,
      ggplot2,
      ggpubr,
      patchwork,
      DelayedArray,
      DelayedMatrixStats,
      Matrix.utils,
      grr,
      repmis,
      GenomeInfoDbData
```

2 orthogene-package

Suggests remotes,		
knitr,		
BiocStyle,		
covr,		
markdown,		
rmarkdown,		
here,		
testthat ($>= 3.0.0$),		
piggyback,		
badger		
RoxygenNote 7.1.2		
Encoding UTF-8		
Config/testthat/edition 3		

R topics documented:

orth	ogene-package orthogene: Interspecies gene mapping	
Index		18
	report_orthologs	
	map_species	15
	map_orthologs	14
	map_genes	
	infer_species	
	gprofiler_orgs	
	exp_mouse_enst	
	exp_mouse	
	· · · · · · · · · · · · · · · · · · ·	
	create_background	
	convert_orthologs	
	all_genes	
	aggregate_mapped_genes	3
	orthogene-package	2

Description

orthogene is an R package for easy mapping of orthologous genes across hundreds of species.

Details

It pulls up-to-date interspecies gene ortholog mappings across 700+ organisms. It also provides various utility functions to map common objects (e.g. data.frames, gene expression matrices, lists) onto 1:1 gene orthologs from any other species.

Author(s)

Maintainer: Brian Schilder <bri> Schilder @alumni.brown.edu > (ORCID)

Source

- GitHub: Source code and Issues submission.
- Author Site: orthogene was created by Brian M. Schilder.

See Also

Useful links:

- https://github.com/neurogenomics/orthogene
- Report bugs at https://github.com/neurogenomics/orthogene/issues

```
aggregate_mapped_genes
```

Aggregate a gene matrix by gene symbols

Description

Map matrix rownames to standardised gene symbols, and then aggregate many-to-one rows into a new matrix.

Usage

```
aggregate_mapped_genes(
   gene_df,
   species = "human",
   FUN = "sum",
   method = c("monocle3", "stats", "delayedarray"),
   transpose = FALSE,
   gene_map = NULL,
   gene_map_col = "name",
   non121_strategy = "drop_output_species",
   as_sparse = TRUE,
   as_DelayedArray = FALSE,
   dropNA = TRUE,
   sort_rows = FALSE,
   verbose = TRUE
)
```

Arguments

gene_df Input matrix where row names are genes.

species Species to map against.

FUN Aggregation function (DEFAULT: "sum").

method Aggregation method.

transpose Transpose gene_df before mapping genes.

gene_map A user-supplied gene_map. If NULL (DEFAULT)), map_genes will be used to create a gene_map.

gene_map_col Column in gene_map to aggregate gene_df by.

4 all_genes

non121_strategy

How to handle genes that don't have 1:1 mappings between input_species:output_species. Options include:

- "drop_both_species" or "dbs" or 1:
 Drop genes that have duplicate mappings in either the input_species or output_species
 (DEFAULT).
- "drop_input_species" or "dis" or 2:
 Only drop genes that have duplicate mappings in the input_species.
- "drop_output_species" or "dos" or 3:
 Only drop genes that have duplicate mappings in the output_species.
- "keep_both_species" or "kbs" or 4:
 Keep all genes regardless of whether they have duplicate mappings in either species.
- "keep_popular" or "kp" or 5: Return only the most "popular" interspecies ortholog mappings. This procedure tends to yield a greater number of returned genes but at the cost of many of them not being true biological 1:1 orthologs.
- "sum", "mean", "median", "min" or "max":

 When gene_df is a matrix and gene_output="rownames", these options
 will aggregate many-to-one gene mappings (input_species-to-output_species)
 after dropping any duplicate genes in the output_species.

as_sparse Convert aggregated matrix to sparse matrix.

as_DelayedArray

Convert aggregated matrix to DelayedArray.

dropNA Drop genes assigned to NA in groupings.

sort_rows Sort gene_df rows alphanumerically.

verbose Print messages.

Value

Aggregated matrix

Examples

```
data("exp_mouse")
X_agg <- aggregate_mapped_genes(gene_df = exp_mouse, species = "mouse")</pre>
```

all_genes

Get all genes

Description

Return all known genes from a given species.

convert_orthologs 5

Usage

```
all_genes(
   species,
   method = c("gprofiler", "homologene", "babelgene"),
   ensure_filter_nas = FALSE,
   verbose = TRUE,
   ...
)
```

Arguments

species Species to get all genes for. Will first be standardised with map_species.

R package to to use for gene mapping: "gprofiler" (slower but more species and genes) or "homologene" (faster but fewer species and genes).

ensure_filter_nas

Perform an extra check to remove genes that are NAs of any kind.

verbose Print messages.

Additional arguments to be passed to gconvert when method="gprofiler".

Details

References homologeneData or gconvert.

Value

Table with all gene symbols from the given species.

Examples

```
genome_mouse <- all_genes(species = "mouse")
genome_human <- all_genes(species = "human")</pre>
```

convert_orthologs

Map genes from one species to another

Description

Currently supports ortholog mapping between any pair of 700+ species. Use map_species to return a full list of available organisms.

Usage

```
convert_orthologs(
  gene_df,
  gene_input = "rownames",
  gene_output = "rownames",
  standardise_genes = FALSE,
  input_species,
  output_species = "human",
  method = c("gprofiler", "homologene", "babelgene"),
```

6 convert_orthologs

```
drop_nonorths = TRUE,
non121_strategy = "drop_both_species",
mthreshold = Inf,
as_sparse = FALSE,
sort_rows = FALSE,
verbose = TRUE,
...
)
```

Arguments

gene_df

Data object containing the genes (see gene_input for options on how the genes can be stored within the object).

Can be one of the following formats:

• matrix:

A sparse or dense matrix.

• data.frame:

A data.frame, data.table. or tibble.

• codelist:

A list or character vector.

Genes, transcripts, proteins, SNPs, or genomic ranges can be provided in any format (HGNC, Ensembl, RefSeq, UniProt, etc.) and will be automatically converted to gene symbols unless specified otherwise with the . . . arguments. *Note*: If you set method="homologene", you must either supply genes in gene symbol format (e.g. "Sox2") OR set standardise_genes=TRUE.

gene_input

Which aspect of gene_df to get gene names from:

• "rownames":

From row names of data.frame/matrix.

• "colnames":

From column names of data.frame/matrix.

• <column name>:

From a column in gene_df, e.g. "gene_names".

gene_output

How to return genes. Options include:

• "rownames":

As row names of gene_df.

• "colnames":

As column names of gene_df.

• "columns"

As new columns "input_gene", "ortholog_gene" (and "input_gene_standard" if standardise_genes=TRUE) in gene_df.

• "dict":

As a dictionary (named list) where the names are input_gene and the values are ortholog_gene.

• "dict_rev":

As a reversed dictionary (named list) where the names are ortholog_gene and the values are input_gene.

7 convert_orthologs

standardise_genes

If TRUE AND gene_output="columns", a new column "input_gene_standard" will be added to gene_df containing standardised HGNC symbols identified by gorth.

input_species

Name of the input species (e.g., "mouse", "fly"). Use map_species to return a full list of available species.

output_species Name of the output species (e.g. "human", "chicken"). Use map_species to return a full list of available species.

method

R package to to use for gene mapping:

- "gprofiler": Slower but more species and genes.
- "homologene": Faster but fewer species and genes.
- "babelgene": Faster but fewer species and genes. Also gives

(slower but more species and genes) or "homologene" (faster but fewer species and genes).

drop_nonorths non121_strategy

Drop genes that don't have an ortholog in the output_species.

How to handle genes that don't have 1:1 mappings between input_species:output_species. Options include:

- "drop_both_species" or "dbs" or 1: Drop genes that have duplicate mappings in either the input_species or output_species (DEFAULT).
- "drop_input_species" or "dis" or 2: Only drop genes that have duplicate mappings in the input_species.
- "drop_output_species" or "dos" or 3: Only drop genes that have duplicate mappings in the output_species.
- "keep_both_species" or "kbs" or 4: Keep all genes regardless of whether they have duplicate mappings in either species.
- "keep_popular" or "kp" or 5: Return only the most "popular" interspecies ortholog mappings. This procedure tends to yield a greater number of returned genes but at the cost of many of them not being true biological 1:1 orthologs.
- "sum", "mean", "median", "min" or "max": When gene_df is a matrix and gene_output="rownames", these options will aggregate many-to-one gene mappings (input_species-to-output_species) after dropping any duplicate genes in the output_species.

mthreshold

Maximum number of ortholog names per gene to show. Passed to gorth. Only used when method="gprofiler" (DEFAULT: Inf).

as_sparse

Convert gene_df to a sparse matrix. Only works if gene_df is one of the following classes:

- matrix
- Matrix
- data.frame
- data.table
- tibble

8 create_background

If gene_df is a sparse matrix to begin with, it will be returned as a sparse matrix (so long as gene_output= "rownames" or "colnames").

sort_rows Sort ge

Sort gene_df rows alphanumerically.

verbose

Print messages.

Additional arguments to be passed to gorth or homologene.

NOTE: To return only the most "popular" interspecies ortholog mappings, supply mthreshold=1 here AND set method="gprofiler" above. This procedure tends to yield a greater number of returned genes but at the cost of many of them not being true biological 1:1 orthologs.

For more details, please see here.

Value

gene_df with orthologs converted to the output_species.

Instead returned as a dictionary (named list) if gene_output="dict" or "dict_rev".

Examples

```
data("exp_mouse")
gene_df <- convert_orthologs(
    gene_df = exp_mouse,
    input_species = "mouse"
)</pre>
```

create_background

Create gene background

Description

Create a gene background as the union/intersect of all orthologs between input species (species1 and species2), and the output_species. This can be useful when generating random lists of background genes to test against in analyses with data from multiple species (e.g. enrichment of mouse cell-type markers gene sets in human GWAS-derived gene sets).

Usage

```
create_background(
   species1,
   species2,
   output_species = "human",
   as_output_species = TRUE,
   use_intersect = TRUE,
   bg = NULL,
   gene_map = NULL,
   method = "homologene",
   non121_strategy = "drop_both_species",
   verbose = TRUE
)
```

create_background 9

Arguments

species1 First species. species2 Second species.

output_species Species to convert all genes from species1 and species2 to first. Default="human",

but can be to either any species supported by orthogene, including species1 or

species2.

as_output_species

Return background gene list as output_species orthologs, instead of the gene

names of the original input species.

use_intersect When species1 and species2 are both different from output_species, this

argument will determine whether to use the intersect (TRUE) or union (FALSE) of

all genes from species1 and species2.

bg User supplied background list that will be returned to the user after removing

duplicate genes.

method R package to to use for gene mapping:

• "gprofiler": Slower but more species and genes.

• "homologene": Faster but fewer species and genes.

• "babelgene": Faster but fewer species and genes. Also gives

(slower but more species and genes) or "homologene" (faster but fewer species and genes).

non121_strategy

How to handle genes that don't have 1:1 mappings between input_species:output_species. Options include:

- "drop_both_species" or "dbs" or 1:
 Drop genes that have duplicate mappings in either the input_species or output_species
 (DEFAULT).
- "drop_input_species" or "dis" or 2:
 Only drop genes that have duplicate mappings in the input_species.
- "drop_output_species" or "dos" or 3:
 Only drop genes that have duplicate mappings in the output_species.
- "keep_both_species" or "kbs" or 4:
 Keep all genes regardless of whether they have duplicate mappings in either species.
- "keep_popular" or "kp" or 5:
 Return only the most "popular" interspecies ortholog mappings. This procedure tends to yield a greater number of returned genes but at the cost of many of them not being true biological 1:1 orthologs.
- "sum", "mean", "median", "min" or "max":

 When gene_df is a matrix and gene_output="rownames", these options
 will aggregate many-to-one gene mappings (input_species-to-output_species)
 after dropping any duplicate genes in the output_species.

verbose Print messages.

Value

Background gene list.

10 exp_mouse_enst

Examples

exp_mouse

Gene expression data: mouse

Description

Mean pseudobulk single-cell RNA-seq gene expression matrix.

Data originally comes from Zeisel et al., 2018 (Cell).

Usage

```
data("exp_mouse")
```

Format

sparse matrix

Source

```
Publication ctd <-ewceData::ctd() exp_mouse <-as(ctd[[1]]$mean_exp,"sparseMatrix") usethis::use_data
= TRUE)
```

exp_mouse_enst

Transcript expression data: mouse

Description

Mean pseudobulk single-cell RNA-seq Transcript expression matrix.

Data originally comes from Zeisel et al., 2018 (Cell).

Usage

```
data("exp_mouse_enst")
```

Format

sparse matrix

Source

```
Publication data("exp_mouse") mapped_genes <-map_genes(genes = rownames(exp_mouse)[seq(1,100)], target = "ENST", species = "mouse", drop_na = FALSE) exp_mouse_enst <-exp_mouse[mapped_genes$input,] rownames(exp_mouse_enst) <-mapped_genes$target all_nas <-orthogene:::find_all_nas(rownames(exp_mouse_mouse_enst <-exp_mouse_enst) = rownames(exp_mouse_enst) = rownames(exp_mouse_enst) = rownames(exp_mouse_enst)</pre>
```

gprofiler_orgs 11

gprofiler_orgs

Reference organisms

Description

Organism for which gene references are available via gProfiler API. Used as a backup if API is not available.

Usage

```
gprofiler_orgs
```

Format

```
data.frame URL <-'https://biit.cs.ut.ee/gprofiler/api/util/organisms_list' gprofiler_orgs
<-jsonlite::fromJSON(URL) gprofiler_orgs <-dplyr::arrange(gprofiler_orgs,scientific_name)
usethis::use_data(gprofiler_orgs,overwrite = TRUE,internal=TRUE)</pre>
```

Source

gProfiler site

infer_species

Infer species from gene names

Description

Infers which species the genes within gene_df is from. Iteratively test the percentage of gene_df genes that match with the genes from each test_species.

Usage

```
infer_species(
  gene_df,
  gene_input = "rownames",
  test_species = c("human", "monkey", "rat", "mouse", "zebrafish", "fly"),
  method = c("homologene", "gprofiler", "babelgene"),
  make_plot = TRUE,
  show_plot = TRUE,
  verbose = TRUE
)
```

Arguments

gene_df

Data object containing the genes (see gene_input for options on how the genes can be stored within the object).

Can be one of the following formats:

infer_species

• matrix:

A sparse or dense matrix.

• data.frame:

A data.frame, data.table.ortibble.

• codelist:

A list or character vector.

Genes, transcripts, proteins, SNPs, or genomic ranges can be provided in any format (HGNC, Ensembl, RefSeq, UniProt, etc.) and will be automatically converted to gene symbols unless specified otherwise with the . . . arguments. *Note*: If you set method="homologene", you must either supply genes in gene symbol format (e.g. "Sox2") OR set standardise_genes=TRUE.

gene_input

Which aspect of gene_df to get gene names from:

• "rownames":

From row names of data.frame/matrix.

• "colnames":

From column names of data.frame/matrix.

• <column name>:

From a column in gene_df, e.g. "gene_names".

test_species

Which species to test for matches with. If set to NULL, will default to a list of humans and 5 common model organisms. If test_species is set to one of the following options, it will automatically pull all species from that respective package and test against each of them:

- "homologene"20+ species (default)
- "gprofiler"700+ species
- "babelgene"19 species

method

R package to to use for gene mapping:

- "gprofiler": Slower but more species and genes.
- "homologene": Faster but fewer species and genes.
- "babelgene": Faster but fewer species and genes. Also gives

(slower but more species and genes) or "homologene" (faster but fewer species and genes).

make_plot Make a plot of the results.
show_plot Print the plot of the results.

verbose Print messages.

Value

An ordered dataframe of test_species from best to worst matches.

Examples

```
data("exp_mouse")
matches <- infer_species(gene_df = exp_mouse[1:200,])</pre>
```

map_genes 13

Description

Input a list of genes, transcripts, proteins, SNPs, or genomic ranges in any format (HGNC, Ensembl, RefSeq, UniProt, etc.) and return a table with standardised gene symbols (the "names" column).

Usage

```
map_genes(
  genes,
  species = "hsapiens",
  target = "ENSG",
  mthreshold = Inf,
  drop_na = FALSE,
  numeric_ns = "",
  verbose = TRUE
)
```

Arguments

genes	Gene list.
species	Species to map against.
target	target namespace.
mthreshold	maximum number of results per initial alias to show. Shows all by default.
drop_na	Drop all genes without mappings. Sets gprofiler2::gconvert(filter_na=) as well an additional round of more comprehensive NA filtering by orthogene .
numeric_ns	namespace to use for fully numeric IDs (list of available namespaces).
verbose	Print messages.

Details

Uses gconvert. The exact contents of the output table will depend on target parameter. See ?gprofiler2::gconvert for more details.

Value

Table with standardised genes.

Examples

```
genes <- c(
    "K1f4", "Sox2", "TSPAN12", "NM_173007", "Q8BKT6",
    "ENSMUSG00000012396", "ENSMUSG00000074637"
)
mapped_genes <- map_genes(
    genes = genes,
    species = "mouse"
)</pre>
```

14 map_orthologs

map_orthologs

Map orthologs

Description

Map orthologs from one species to another.

Usage

```
map_orthologs(
  genes,
  standardise_genes = FALSE,
  input_species,
  output_species = "human",
  method = c("gprofiler", "homologene"),
  mthreshold = Inf,
  verbose = TRUE,
)
```

Arguments

genes

can be a mixture of any format (HGNC, Ensembl, RefSeq, UniProt, etc.) and will be automatically converted to standardised HGNC symbol format.

standardise_genes

If TRUE AND gene_output="columns", a new column "input_gene_standard" will be added to gene_df containing standardised HGNC symbols identified by gorth.

input_species

Name of the input species (e.g., "mouse", "fly"). Use map_species to return a full list of available species.

output_species Name of the output species (e.g. "human", "chicken"). Use map_species to return a full list of available species.

method

R package to to use for gene mapping:

- "gprofiler": Slower but more species and genes.
- "homologene": Faster but fewer species and genes.
- "babelgene": Faster but fewer species and genes. Also gives

(slower but more species and genes) or "homologene" (faster but fewer species and genes).

mthreshold

Maximum number of ortholog names per gene to show. Passed to gorth. Only used when method="gprofiler" (DEFAULT: Inf).

verbose

Print messages.

. . .

Additional arguments to be passed to gorth or homologene.

NOTE: To return only the most "popular" interspecies ortholog mappings, supply mthreshold=1 here AND set method="gprofiler" above. This procedure tends to yield a greater number of returned genes but at the cost of many of them not being true biological 1:1 orthologs.

For more details, please see here.

map_species 15

Details

map_orthologs() is a core function within convert_orthologs(), but does not have many of the extra checks, such as non121_strategy) and drop_nonorths.

Value

Ortholog map data.frame with at least the columns "input_gene" and "ortholog_gene".

Examples

```
data("exp_mouse")
gene_map <- map_orthologs(
    genes = rownames(exp_mouse),
    input_species = "mouse"
)</pre>
```

map_species

Standardise species names

Description

Search gprofiler database for species that match the input text string. Then translate to a standardised species ID.

Usage

```
map_species(
  species = NULL,
  search_cols = c("display_name", "id", "scientific_name", "taxonomy_id"),
  output_format = c("id", "display_name", "scientific_name", "taxonomy_id", "version"),
  method = "gprofiler",
  use_local = TRUE,
  verbose = TRUE
)
```

Arguments

search cols

species Species query (e.g. "human", "homo sapiens", "hapiens", or 9606). If given a

list, will iterate queries for each item. Set to $\ensuremath{\mathsf{NULL}}$ to return all species.

Which columns to search for species substring in metadata API.

output_format Which column to return.

method R package to to use for gene mapping:

• "gprofiler": Slower but more species and genes.

• "homologene": Faster but fewer species and genes.

• "babelgene": Faster but fewer species and genes. Also gives

(slower but more species and genes) or "homologene" (faster but fewer species and genes).

use_local If TRUE default, map_species uses a locally stored version of the species meta-

data table instead of pulling directly from the gprofiler API. Local version may

not be fully up to date, but should suffice for most use cases.

verbose Print messages.

16 report_orthologs

Value

Species ID of type output_format

Examples

```
ids <- map_species(species = c(
    "human", 9606, "mus musculus",
    "fly", "C elegans"
))</pre>
```

report_orthologs

Report orthologs

Description

Identify the number of orthologous genes between two species.

Usage

```
report_orthologs(
  target_species = "mouse",
  reference_species = "human",
  standardise_genes = FALSE,
  method_all_genes = c("gprofiler", "homologene"),
  method_convert_orthologs = c("gprofiler", "homologene", "babelgene"),
  drop_nonorths = TRUE,
  non121_strategy = "drop_both_species",
  round_digits = 2,
  return_report = TRUE,
  verbose = TRUE,
  ...
)
```

Arguments

```
target_species Target species.

reference_species

Reference species.

standardise_genes

If TRUE AND gene_output="columns", a new column "input_gene_standard" will be added to gene_df containing standardised HGNC symbols identified by gorth.

method_all_genes

R package to to use in all_genes step: "gprofiler" (slower but more species and genes) or "homologene" (faster but fewer species and genes).

method_convert_orthologs

R package to to use in convert_orthologs step: "gprofiler" (slower but more species and genes) or "homologene" (faster but fewer species and genes).

drop_nonorths

Drop genes that don't have an ortholog in the output_species.
```

report_orthologs 17

non121_strategy

How to handle genes that don't have 1:1 mappings between input_species:output_species. Options include:

- "drop_both_species" or "dbs" or 1:
 Drop genes that have duplicate mappings in either the input_species or output_species
 (DEFAULT).
- "drop_input_species" or "dis" or 2:
 Only drop genes that have duplicate mappings in the input_species.
- "drop_output_species" or "dos" or 3:
 Only drop genes that have duplicate mappings in the output_species.
- "keep_both_species" or "kbs" or 4:
 Keep all genes regardless of whether they have duplicate mappings in either species.
- "keep_popular" or "kp" or 5:
 Return only the most "popular" interspecies ortholog mappings. This procedure tends to yield a greater number of returned genes but at the cost of many of them not being true biological 1:1 orthologs.
- "sum", "mean", "median", "min" or "max":

 When gene_df is a matrix and gene_output="rownames", these options
 will aggregate many-to-one gene mappings (input_species-to-output_species)
 after dropping any duplicate genes in the output_species.

round_digits

Number of digits to round to when printing percentages.

return_report

Return just the ortholog mapping between two species (FALSE) or return both the ortholog mapping as well a data. frame of the report statistics (TRUE).

verbose

Print messages.

. . .

Additional arguments to be passed to gorth or homologene.

NOTE: To return only the most "popular" interspecies ortholog mappings, supply mthreshold=1 here AND set method="gprofiler" above. This procedure tends to yield a greater number of returned genes but at the cost of many of them not being true biological 1:1 orthologs.

For more details, please see here.

Value

List of ortholog report statistics

Examples

```
orth_fly <- report_orthologs(
   target_species = "fly",
   reference_species = "human"
)</pre>
```

Index

```
* datasets
     exp_mouse, 10
     exp_mouse_enst, 10
     gprofiler_orgs, 11
aggregate_mapped_genes, 3
all_genes, 4, 16
convert_orthologs, 5, 16
\verb|create_background|, 8
DelayedArray, 4
exp_mouse, 10
exp_mouse_enst, 10
gconvert, 5, 13
gorth, 7, 8, 14, 16, 17
{\tt gprofiler\_orgs}, {\tt 11}
homologene, 8, 14, 17
{\tt homologeneData}, {\tt 5}
infer\_species, \\ 11
map_genes, 3, 9, 13
map\_orthologs, 9, 14
map_species, 5, 7, 14, 15, 15
orthogene \, (orthogene-package), \, 2
orthogene-package, 2
report_orthologs, 16
```