Numbers and Sets Notes Based on Lectures and "The Higher Arithmetic"

 $\theta\omega\theta$

Not in University of Cambridge skipped some talks irrelevant to contents

 $E ext{-}mail:$ not telling you

Contents

Ι	Elementary Number Theory	1
1	Preliminaries 1.1 Q and A 1.2 Examples of Proofs and non-Proofs	1 1 1
2	The Natural Numbers	1
3	The Integers	2
4	The Rationals	2
5	Primes	2

PART

Τ

Elementary Number Theory

Pre: Introduction

- Number theory \Rightarrow The reals \Rightarrow Sets and functions \Rightarrow Countability
- Recommended books: Allenby: "Numbers and Proofs"; Hamilton: "Numbers, sets and functions"; Davenport: "The Higher Arithmetic"

1 Preliminaries

1.1 Q and A

- Q: What is a proof? A: A proof is a logical argument that establishes a conclusion.
- Q: Why do we prove things? A:
 - To be sure they are true.
 - To understand why they are true.

1.2 Examples of Proofs and non-Proofs

 $\mathbf{I} \ \forall n \in \mathbb{N}^*, 3|n^3 - n.$

II $\forall n$, if n^2 is even then n is even.

III For any $n \in \mathbb{N}^*$, if $9|n^2$ then 9|n.

Definition of if and only if, ..., skipped

This is a *wrong* claim. A counterexample is n = 3.

2 The Natural Numbers

Definition 2.1. The set of natural numbers \mathbb{N} is a set containing an element "1" and with an operation "+1" satisfying

- (1) $\forall n \in \mathbb{N}, n+1 \neq 1$.
- (2) If $m \neq n$, then $m + 1 \neq n + 1$.
- (3) (Induction Axiom) For any property P(n), $(P(1) \land P(n) \Rightarrow P(n+1)) \Rightarrow \forall n \in \mathbb{N}(P(n))$.

They are called the *Peano axioms*.

Thus we can define +k recursively by 2=1+1, and n+(k+1)=(n+k)+1. Other usual operations can be defined similarly. Usual laws of arithmetic can be derived by induction.

Proposition 2.1 (Strong induction). $(P(1) \land \forall n (\forall m \leqslant n, P(m) \Rightarrow P(n+1))) \Rightarrow \forall n (P(n)).$

These two rules ensure that all natural numbers are different.

Primes 2

Remark. Some equivalent forms of strong induction:

1. If P(n) fails for some n, then we have a minimum element n' such that P(n') is false but P(m) is true for all $m \leq n'$.

2. If P(n) for some n then there is a least n with P(n). Often referred as the well-ordering principle.

3 The Integers

Written in \mathbb{Z} , consist of all symbols $n, -n, n \in \mathbb{N}$ and 0. Usual laws hold.

Expand definition of order by a < b if and only if $\exists c \in \mathbb{N}, a + c = b$. We have

$$\forall a, b, c, a < b \land c > 0 \Longrightarrow ac < bc.$$

4 The Rationals

Written in \mathbb{Q} , consists of all expressions $a/b, a, b \in \mathbb{Z}, b \neq 0$ with a/b regarded as c/d if ad-bc

Addition is defined as

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}.$$

This holds however we write those fractions.

Remark. Unlike clear unambiguity in \mathbb{Z} , we cannot define operations like $a/b \mapsto a^2/b^3$.

All usual laws work, with order defined as a/b < c/d(b, d > 0) if and only if ad < bc.

5 Primes

Definition 5.1. m is said to be a *divisor* of n if and only if $\exists k \in \mathbb{N}, n = km$. $p \in \mathbb{N}$ is *prime* if and only if only 1 and p divide p.

Proposition 5.1. Every natural number $n \ge 2$ is expressible as a product of primes.

Proved by induction.

Lecture 4.

Theorem 5.1. There are infinitely many primes.

Definition 5.2. For $a,b \in \mathbb{N}$, a natural number c is the hcf of a,b if $c|a \wedge c|b$ and $d|a \wedge d|b \Rightarrow d|c$.

Proposition 5.2. Let n, k be natural numbers. Then $\exists q, rin \mathbb{Z}, 0 \leqslant r < k$ that n = qk + r.

Theorem 5.2 (Euclid's Algorithm). skipped