1(a) Proof. First note that for any fixed a > 0 and $x \neq 0$.

$$\frac{a^{x} - 1}{x} = \frac{e^{x \log a} - e^{x \log 1}}{x} = \left[\frac{e^{xt}}{x}\right]_{t = \log 1}^{t = \log a} = \int_{\log 1}^{\log a} e^{xt} dt.$$

Now consider any real sequence $(x_n) \subseteq \mathbb{R} \setminus \{0\}$ s.t. $x_n \to 0$. Define $f: I \to \mathbb{R}$, where I is the closed interval between $\log a$ and $\log 1 (= 0)$, as

$$f_n(t) = e^{x_n t}.$$

We claim that $f_n(t)$ converges uniformly to f(t) = 1 on I. To see this, first note that for each n, f_n is monotone on I. Therefore,

$$M_n = \sup_{t \in I} |f_n(t) - f(t)|$$
 (by the def. of M_n)
$$= \sup_{t \in I} |f_n(t) - f_n(0)|$$
 (since $f_n(0) = f(t), \forall n, t$)
$$= \sup_{t \in I} |f_n(\log a) - f_n(0)|$$
 (since f_n monotone on I)
$$= \sup_{t \in I} |f_n(\log a) - 1|.$$
 (since $f_n(0) = 1$)

Therefore, $M_n \to 0$ since $f_n(\log a) \to 1$ as $n \to \infty$. This concludes the proof that $f_n(t)$ converges uniformly to 1. Hence by Rudin Theorem 7.16,

$$\lim_{n\to\infty}\int_{\log 1}^{\log a}f_n(t)\,\mathrm{d}t=\int_{\log 1}^{\log a}f(t)\,\mathrm{d}t,\ \text{i.e.,}\\ \lim_{n\to\infty}\int_{\log 1}^{\log a}e^{x_nt}\,\mathrm{d}t=\int_{\log 1}^{\log a}1\,\mathrm{d}t=\log a.$$

Since (x_n) is an arbitrary sequence in $\mathbb{R} \setminus \{0\}$ that converges to 0, by Rudin Theorem 4.2,

$$\lim_{x \to 0} \int_{\log 1}^{\log a} e^{xt} dt = \log a.$$

Combining with the previous results, we can thus conclude that,

$$\lim_{x \to 0} \frac{a^x - 1}{x} = \log a$$

1(b) Proof. First note that by HW7(a), if $x \neq 0$ is small enough, say |x| < 1,

$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$$

This means that for a fixed $x \neq 0$ small enough,

$$\frac{1}{x^2} \left[\log(1+x) - x \right] = \frac{1}{x^2} \left[-\frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \cdots \right]
= -\frac{1}{2} + \frac{x}{3} - \frac{x^2}{4} + \frac{x^3}{5} - \frac{x^4}{6} + \cdots \quad \text{(since } \sum_{k=2}^{\infty} (-1)^{k-1} \frac{x^k}{k} \text{ converges)}
= -\frac{1}{2} + \sum_{k=1}^{\infty} (-1)^{k-1} \frac{x^k}{k+2}.$$

Note that since

$$\limsup_{k \to \infty} \sqrt[k]{\frac{1}{k+2}} = 1,$$

the series $\sum_{k=1}^{\infty} (-1)^{k-1} \frac{x^k}{k+2}$ has raidus of convergence of 1. This means that on (-1,1), the function $f(x) = \sum_{k=1}^{\infty} (-1)^{k-1} \frac{x^k}{k+2}$ is continuous by Rudin Theorem 8.1. Therefore,

$$\lim_{x \to 0} \frac{\log(1+x) - x}{x^2} = \lim_{x \to 0} -\frac{1}{2} + \sum_{k=1}^{\infty} (-1)^{k-1} \frac{x^k}{k+2}$$
 (since they agree on $|x| < 1$)
$$= -\frac{1}{2} + \lim_{x \to 0} \sum_{k=1}^{\infty} (-1)^{k-1} \frac{x^k}{k+2}$$
 (since the series converges)
$$= -\frac{1}{2} + f(0)$$
 (since f is continous at 0)
$$= -\frac{1}{2}.$$

1(c) Proof. First note that with the results in Rudin Theorem 3.31, it's clear that for any sequence $(a_n) \subseteq \mathbb{R}$ where $a_n \to \infty$,

$$\lim_{n \to \infty} \left(1 + \frac{1}{a_n} \right)^{a_n} = e.$$

We thus fix $x \in \mathbb{R}$. If x = 0, then

$$\lim_{n \to \infty} \left(1 + \frac{0}{n} \right)^n = \lim_{n \to \infty} 1 = 1 = e^0.$$

If $x \neq 0$, then

$$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = \left[\left(1 + \frac{1}{n/x} \right)^{n/x} \right]^x = e^x,$$

since as $n \to \infty$, $n/x \to \infty$.

2(a) Proof. Sorry I don't know this one...

2(b) Proof. Let g(y) = 1/y. Since $f(0) \neq 0$, we can thus express g(y) as a power series around f(0). Note that

$$\frac{1}{y} = \frac{1}{f(0) + (y - f(0))} = \frac{1}{f(0)} \cdot \frac{1}{1 + \frac{y - f(0)}{f(0)}}.$$

And note that when $\left|\frac{y-f(0)}{f(0)}\right| < 1$,

$$\frac{1}{y} = \frac{1}{f(0)} \sum_{n=0}^{\infty} (-1)^n \left(\frac{y - f(0)}{f(0)} \right)^n = \sum_{n=0}^{\infty} \frac{(-1)^n}{f(0)^{n+1}} (y - f(0))^n.$$

Therefore,

$$\frac{1}{f(x)} = \sum_{n=0}^{\infty} \frac{(-1)^n}{f(0)^{n+1}} (f(x) - f(0))^n.$$

And RHS converges when $\left|\frac{f(x)-f(0)}{f(0)}\right| < 1$, or |f(x)-f(0)| < |f(0)|. Since f is continous at 0, there eixsts $\rho > 0$, such that the above inequality is true when $x \in (-\rho, \rho)$. And the RHS is clearly a power series centered as 0, by the continuity of f as well.

3(a) Proof. Let's first compute each c_m . By Rudin (62),

$$c_m = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-imx} dx.$$

If m = 0, then with the periodicity of the f,

$$c_m = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \, \mathrm{d}x = 0.$$

If $m \neq 0$, then with integration by parts,

$$c_m = \frac{1}{2\pi} \int_{-\pi}^{0} \frac{-\pi - x}{2} e^{-imx} dx + \frac{1}{2\pi} \int_{-\pi}^{0} \frac{\pi - x}{2} e^{-imx} dx$$
$$= \frac{-i\pi m + e^{i\pi m} - 1}{4\pi m^2} + \frac{-i\pi m - e^{-i\pi m} + 1}{4\pi m^2}.$$

Therefore, when m is even,

$$c_m = \frac{-i\pi m + 1 - 1}{4\pi m^2} + \frac{-i\pi m - 1 + 1}{4\pi m^2} = \frac{-i}{2m},$$

and similarly, when m is odd,

$$c_m = \frac{-i\pi m + (-1) - 1}{4\pi m^2} + \frac{-i\pi m - (-1) + 1}{4\pi m^2} = \frac{-i}{2m}.$$

Now note that for $m \neq 0$,

$$c_m e^{imx} = -\frac{1}{2m} e^{i(mx+\pi/2)}$$

$$= -\frac{1}{2m} (\cos(mx+\pi/2) + i\sin(mx+\pi/2))$$

$$= \frac{1}{2m} (\sin(mx) - i\sin(mx+\pi/2))$$

$$= \frac{1}{2m} (\sin(mx) - i\cos(mx)).$$

And similarly,

$$c_{-m}e^{-imx} = \frac{1}{2(-m)} \left(\sin(-mx) - i\sin(-mx + \pi/2) \right)$$

$$= \frac{1}{2m} \left(\sin(mx) + i\sin(-mx + \pi/2) \right)$$

$$= \frac{1}{2m} \left(\sin(mx) + i\sin(-(mx - \pi/2)) \right)$$

$$= \frac{1}{2m} \left(\sin(mx) - i\sin(mx - \pi/2) \right)$$

$$= \frac{1}{2m} \left(\sin(mx) + i\cos(mx) \right).$$

This means that,

$$c_m e^{imx} + c_{-m} e^{-imx} = \frac{1}{m} \sin(mx).$$

Therefore,

$$\sum_{m=-\infty}^{\infty} c_m e^{imx} = \sum_{n=0}^{\infty} \frac{1}{n} \sin(nx).$$

Also since f(x) is differentiable on $[-\pi, 0)$ and $(0, \pi]$, f(x) is thus Lipschitz continuous on there as well. Therefore, by Rudin Theorem 8.14, on those intervals, f(x)'s Fourier series converge to f(x), which means that on those intervals,

$$f(x) = \sum_{n=0}^{\infty} \frac{1}{n} \sin(nx).$$

3(b) Proof. We plug in $x = \pi/2$ into above equation as $\pi/2$ is within in the said intervals. Notice that on one side that

$$f\left(\frac{\pi}{2}\right) = \frac{\pi - \pi/2}{2} = \frac{\pi}{4}.$$

On another

$$f\left(\frac{\pi}{2}\right) = \sum_{n=0}^{\infty} \frac{1}{n} \sin\left(\frac{n\pi}{2}\right).$$

And when n is even, $\sin(n\pi/2) = 0$, when $n \equiv 1 \pmod{4}$, $\sin(n\pi/2) = 1$, and when $n \equiv 3 \pmod{4}$, $\sin(n\pi/2) = -1$. This concludes the proof that

$$\frac{\pi}{4} = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}$$

3(c) Proof. We appeal to Parseval's Theorem (Rudin (85)), where it said that since $f \in \mathcal{R}$ with periods 2π ,

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx = \sum_{-\infty}^{\infty} |c_n|^2.$$

We first note that since $c_n = i/2n$ ($c_0 = 0$),

$$\sum_{-\infty}^{\infty} |c_n|^2 = \sum_{-\infty}^{\infty} \frac{1}{4n^2} = \sum_{n=1}^{\infty} \frac{2}{4n^2} = \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n^2}.$$

Note that we can pull the 1/2 in front because of $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges by the *p*-test. On the other hand,

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx$$

$$= \frac{1}{2\pi} \int_{-\pi}^{0} \left(\frac{-\pi - x}{2}\right)^2 dx + \frac{1}{2\pi} \int_{0}^{\pi} \left(\frac{\pi - x}{2}\right)^2 dx$$

$$= \frac{\pi^2}{24} + \frac{\pi^2}{24}$$
(with *u*-subs)
$$= \frac{\pi^2}{12}.$$

Therefore, we get

$$\frac{1}{2}\sum_{n=1}^{\infty}\frac{1}{n^2} = \frac{\pi^2}{12} \text{ i.e., } \sum_{n=1}^{\infty}\frac{1}{n^2} = \frac{\pi^2}{6}.$$

MATH 321 HW 08 36123040 Shawn Wu

4(a) Proof. First notice that for any $x \in (0, \pi/2), (\pi - x, \pi + x) \subseteq (\pi/2, 3\pi/2)$. This means that $\pi/2 < s < 3\pi/2$, so $\pi/4 < s/2 < 3\pi/4$. Therefore, $\sin(s/2) \neq 0$ on any $(\pi - x, \pi + x)$. This means that the integral of $D_N(s)$ over $(\pi - x, \pi + x)$ is well-defined.

Now we fix $x \in (0, \pi/2)$. Note that

$$\int_{\pi-x}^{\pi+x} D_N(s) = \int_{\pi-x}^{\pi+x} \frac{\sin(Ns + s/2)}{s/2} ds$$

$$= \int_{\pi-x}^{\pi+x} \frac{\sin(Ns)\cos(s/2) + \cos(Ns)\sin(s/2)}{\sin(s/2)} ds$$

$$= \int_{\pi-x}^{\pi+x} \sin(Ns)\cot(s/2) ds + \int_{\pi-x}^{\pi+x} \cos(Ns) ds.$$

Now, define $g: [-\pi, \pi] \to \mathbb{R}$ as

$$g(s) = \begin{cases} \cot(s/2) & \text{if } s \in (\pi - x, \pi + x), \\ 0 & \text{otherwise.} \end{cases}$$

Note that $g(s) \in \mathcal{R}[-\pi, \pi]$, since $\cot(s/2)$ is continous on $\pi - x, \pi + x$, which means that g(s) has finitely many discontinuities on $[-\pi, \pi]$. And since the sequence of Fourier cofficients c_N goes to zero as $N \to \infty$,

$$\lim_{N \to \infty} \int_{-\pi}^{\pi} \sin(Ns) g(s) \, \mathrm{d}s = 0.$$

Noice also that for each N,

$$\int_{-\pi}^{\pi} \sin(Ns)g(s) ds = \int_{\pi-x}^{\pi} \sin(Ns) \cot(s/2) ds.$$

Thus,

$$\lim_{N \to \infty} \int_{\pi - x}^{\pi} \sin(Ns) \cot(s/2) \, \mathrm{d}s = 0.$$

And with a similar reasoning along with the peridocity of sin and cot, we also get that

$$\lim_{N \to \infty} \int_{\pi}^{\pi + x} \sin(Ns) \cot(s/2) \, \mathrm{d}s = 0.$$

Therefore,

$$\lim_{N \to \infty} \int_{\pi-x}^{\pi+x} \sin(Ns) \cot(s/2) \, \mathrm{d}s$$

$$= \lim_{N \to \infty} \left(\int_{\pi-x}^{\pi} \sin(Ns) \cot(s/2) \, \mathrm{d}s + \int_{\pi}^{\pi+x} \sin(Ns) \cot(s/2) \, \mathrm{d}s \right)$$

$$= \lim_{N \to \infty} \int_{\pi-x}^{\pi} \sin(Ns) \cot(s/2) \, \mathrm{d}s + \lim_{n \to \infty} \int_{\pi}^{\pi+x} \sin(Ns) \cot(s/2)$$

$$= 0 + 0$$

$$= 0.$$

And with a similar reasoning as above, we can get that

$$\lim_{N \to \infty} \int_{\pi - r}^{\pi + x} \cos(Ns) \, \mathrm{d}s = 0.$$

Therefore,

$$\lim_{N\to\infty} \int_{\pi-x}^{\pi+x} D_n(s) \, \mathrm{d}s, \text{ which gives that } \lim_{N\to\infty} r_N(x) = 0.$$

4(b) Proof. It's suffice to show that

$$\frac{\pi}{2}s_N(x_N) \to \int_0^x \frac{\sin(t)}{t} \, \mathrm{d}t.$$

Note that

$$\frac{\pi}{2}s_N(x_N) = \int_0^{x_N} \frac{\sin(N+1/2)t}{2\sin(t/2)} dt + \frac{\pi}{2}r_N(x_N).$$

Let u = (N + 1/2)t. Therefore,

$$\int_0^{x_N} \frac{\sin(N+1/2)t}{2\sin(t/2)} dt = \frac{1}{2N+1} \int_0^{\pi} \frac{\sin u}{\sin(\frac{u}{2N+1})} du.$$

Note that as $N \to \infty$, $\sin\left(\frac{u}{2N+1}\right) \to \frac{u}{2N+1}$. Therefore, above RHS approaches $\int_0^{\pi} \frac{\sin t}{t} dt$ as $N \to \infty$.

It remains to show that $r_N(x_N) \to 0$ as $N \to \infty$. First note that there exists $\delta > 0$ such that $\sin(s/2) > 1/2$, for all $s/2 \in (\pi/2 - \delta/2, \pi/2 + \delta/2)$, or for all $s \in (\pi - \delta, \pi + \delta)$. This means that $1/|\sin(s/2)| < 2$ for all $s \in (\pi - \delta, \pi + \delta)$. And note that on $(\pi - \delta, \pi + \delta)$, for all N,

$$|D_N(s)| = \left| \frac{\sin(N+1/2)s}{\sin(s/2)} \right| \le \frac{1}{|\sin(s/2)|} < 2.$$

Given $\varepsilon > 0$. Since $x_N \to 0$, then there exists M such that for all N > M, $|x_N| < \varepsilon$. This also means that there exists L such that for all N > L, $(\pi - x_N, \pi + x_N) \subseteq (\pi - \delta, \pi + \delta)$. Therefore, for all $N > \max\{M, L\}$,

$$|r_N(x_N)| \le \frac{1}{2\pi} \int_{\pi-x_N}^{\pi+x_N} |D_N(s)| \, \mathrm{d}s \le \frac{1}{2\pi} \int_{\pi-x_N}^{\pi+x_N} 2 \, \mathrm{d}s \le \frac{1}{2\pi} \int_{\pi-\varepsilon}^{\pi+\varepsilon} 2 \, \mathrm{d}s = \frac{2\varepsilon}{\pi}.$$

This concludes the proof that $r_N(x_N) \to 0$.