MEC001P1M

Numerical Methods in Engineering

(Numerical Differentiation and Integration)

Kannan Iyer kannan.iyer@iitjammu.ac.in

Department of Mechanical Engineering Indian Institute of Technology, Jammu

Numerical Differentiation

Motivation for study

- Obtaining derivative at a point from a table of functional data
 - ☐ Obtaining 'c_o' from the measurement of h-T
 - ☐ Obtaining 'f' from a tabulated 'v-y' data
 - ☐ Generating methods for solving ODE/PDE

Derivatives from Polynomials

- Numerical derivatives can be obtained from polynomials and their function values
 - ☐ First Order

$$P_{l}(x) = f(0) + s\Delta f(0) \qquad \text{where} \quad s = \frac{x - x_{0}}{h}$$

$$Therefore \quad P_{1}'(x) = \frac{df}{ds} \frac{ds}{dx} = \Delta f(0) \frac{1}{h} \qquad \therefore \frac{ds}{dx} = \frac{h}{h}$$

Derivatives from Polynomials (Cont'd

☐ Second Order

$$P_{2}(x) = f(0) + s\Delta f(0) + \frac{s(s-1)}{2!}\Delta^{2} f(0)$$

$$\therefore P_{2}'(x) = \left[\Delta f(0) + \frac{2s-1}{2!}\Delta^{2} f(0)\right] \frac{1}{h}$$

- ☐ Higher order approximations can similarly be obtained.
- ☐ Since each term is divided by h the accuracy of the derivative would be order hⁿ and not hⁿ⁺¹

Example-I

f=1/x

х	f	Δf	$\Delta^2 f$	$\Delta^3 f$
3.4	0.294118	-0.008404	0.000468	0.000040
3.5	0.285714	-0.007936	0.000428	
3.6	0.277778	-0.007508		
3.7	0.270270			

Find the derivative value of function at 3.44

Derivatives from Polynomials (Cont'd)

Example: f=1/x

s = (3.44-3.40)/0.1 = 0.4

f'(3.44) = -0.008404/0.1

-0.08404

+[{2(0.4)-1}/2] (0.000468)/0.1

-0.084508

+ [{3(0.4)²-6(0.4)+2)}/6]

(0.000040)/0.1

-0.084503

Exact Value -0.084505

Derivatives from Polynomials (Cont'd)

- ☐ Similarly we can obtain derivatives using backward interpolating polynomial.
- ■We have shown that they would be equivalent by choosing proper value of 's'.
- ☐ We shall make use of these to derive finite difference relations later used in ODEs
- We can similarly obtain higher derivatives.
- ☐ As pointed earlier, the accuracies will reduce further due to divisions by higher orders of 'h'.

Numerical Integration

- \Box The function f(x) may be a set of discrete values as in the case of properties
- ☐ It can be a complex function, in which case the function can be evaluated at some discrete values and integrated suitably
- ☐ We shall derive the procedures using Newton's forward interpolating polynomial
- □ Unlike differentiation, integration is an accurate process and the order of accuracy increases.

TRAPEZIODAL RULE (First Order)

$$P_{I}(x) = f(0) + s\Delta f(0)$$
where $s = \frac{x - x}{h}$

$$\int_{low}^{high} f(x) dx = \int_{0}^{1} f(s) h ds$$
or $dx = h ds$

$$= \int_{0}^{1} (f(0) + s\Delta f(0)) h ds = h \left[f(0) s + \frac{s^{2}}{2} \Delta f(0) \right]_{0}^{1}$$

$$= \left[f(0) + \frac{\Delta f(0)}{2} \right] h = \left[f(0) + \frac{1}{2} (f(1) - f(0)) \right] h$$

$$= \frac{h}{2} (f(0) + f(1))$$

Trapezoidal Rule (Cont'd)

- ☐ As we have used first order polynomial the error term for polynomial is O(h²)
- ☐ Since the integral involves a multiplication with h, the order increases to h³ locally.

Error Term =
$$\int_{0}^{1} \frac{s(s-1)}{2} h^{2} f''(\xi) h ds$$
$$= -\frac{h^{3}}{12} f''(\xi)$$

Trapezoidal Rule (Cont'd)

Simpson's 1/3 Rule

$$= \int_{0}^{2} \left(f(0) + s\Delta f(0) + \frac{(s^{2} - s)}{2} \Delta^{2} f(0) \right) h ds$$

$$= \left[sf(0) + \frac{s^{2} \Delta f(0)}{2} + \left(\frac{s^{3}}{6} - \frac{s^{2}}{4} \right) \Delta^{2} f(0) \right]_{0}^{2} h$$

$$= \left[2f(0) + 2(f(1) - f(0)) + \frac{1}{3} (f(2) - 2f(1) + f(0)) \right] h$$

$$= \frac{h}{3} [f(0) + 4f(1) + f(2)]$$

Simpson's 1/3 Rule

Simpson's 1/3 Rule

Error
$$Term = \int_{0}^{2} \frac{s(s-1)(s-2)}{6} h^{3} f'''(\xi) h ds = 0$$

$$= \int_{0}^{2} \frac{s(s-1)(s-2)(s-3)}{24} h^{4} f''''(\xi) h ds$$

$$= -\frac{1}{90} h^{5} f''''(\xi)$$
Global $Error = \sum_{i=0}^{\infty} -\frac{h^{5}}{90} f_{i}^{iv}(\xi) = -\frac{(x_{n} - x_{0})}{2h} \frac{h^{5}}{90} f_{i}^{iv}(\xi)$

Globally O(h⁴)

Simpson's 3/8 Rule

- ☐ Simpson's 1/3 rule can be applied if only odd number of data points are available
 - ☐ To integrate when even number of points are available, the first 4 points can be integrated by Simpson's 3/8 rule and the remaining by Simpson's 1/3 rule.

$$I = \frac{3h}{8} (f_0 + 3f_1 + 3f_2 + f_3)$$

$$Local \ Error = -\frac{3h^5}{80} f_i^{iv}(\xi)$$

Globally O(h4)

Deferred Approach to the Limit

- ☐ Richardson's Extrapolation, also called 'Deferred Approach to the Limit' is a method to improve the accuracy of lower order methods.
 - ☐ In the domain of integration this method is called Romberg Integration
 - ☐ It can be shown that in using trapezoidal integration, the truncation errors can be written as $C_1 h^2 + C_2 h^4 + C_3 h^6 + ...$

Romberg Integration-I

☐ If the integration procedure is carried out for intervals h and 2h, we can write

$$I = I(h) + C_1 h^2 + C_2 h^4 + ..., (1)$$

$$I = I(2h) + C_1 (2h)^2 + C_2 (2h)^4 + ...,$$
 (2)

Multiplying Eq. (1) by 4 and subtracting Eq.(2) and then dividing by 3, we get

$$I = [4I(h) - I(2h)]/3 + O(h)^4$$

This can be rewritten as

$$I = I(h) + [I(h) - I(2h)]/3 + O(h)^4$$

☐ Thus we have a higher order solution from lower order solutions. This is called the **Richardson extrapolation**

Romberg Integration-II

☐ The above can be generalized by assuming a power law form

$$I = I(h) + C_1 h^n + C_2 h^m ...,$$
 (1)

$$I = I(2h) + C_1 (2h)^n + C_2 (2h)^m ...,$$
 (2)

Multiplying Eq. (1) by 2^n and subtracting Eq.(2) and then dividing by 2^{n-1} we get

$$I = [2^{n}I(h) - I(2h)]/(2^{n}-1) + O(h)^{m}$$

This can be rewritten as

$$I = I(h) + [I(h) - I(2h)]/(2^{n-1}) + O(h)^{m}$$

Romberg Integration-III

- ☐ Thus, by using trapezoidal rule repeatedly, the accuracy can be further improved by computing with say h/2 and eliminating the next constant in the previous slide.
- ☐ In general, the correction formula is Improved Value = More accurate value
 - + [More accurate value Less accurate value]

2n_1

☐ Such a recursive algorithm is called **Romberg Integration** Procedure

Romberg Integration-IV

Level	Steps	Trapez	Richard	Richard	Richard
		O(h ²)	O(h ⁴)	O(h ⁶)	O(h8)
1	1 (20)	I _{1,1}			
2	2 (21)	I _{2,1}	J _{2,2}		
3	4(22)	I _{3,1}	→ I _{3,2}	I _{3,3}	
4	8(23)	I _{4,1} —	→ I _{4,2} —	J _{4,3}	→ I _{4,4}

Romberg Integration-V