Modeling and High-Performance Control of Electric Machines Chapter 5 The Physics of AC Machines

John Chiasson

Wiley-IEEE Press 2005

The Physics of AC Machines

- Rotating Magnetic Field
- The Physics of the Induction Machine
- The Physics of the Synchronous Machine
- Microscopic Viewpoint of AC Machines*
- Steady-State Analysis of a Squirrel Cage Induction Motor* (no slides)

Rotating Magnetic Field

Left
$$\vec{\mathbf{B}}_{Sa}(i_{Sa}, r, \theta) = \frac{\mu_0 \ell_2 N_S}{4gr} i_{Sa} \cos(\theta) \mathbf{\hat{r}}.$$

$$\begin{split} \mathbf{Left} \quad \vec{\mathbf{B}}_{Sa}(i_{Sa},r,\theta) &= \frac{\mu_0\ell_2N_S}{4gr}i_{Sa}\cos(\theta)\mathbf{f}. \\ \mathbf{Right} \quad \vec{\mathbf{B}}_{Sb}(i_{Sb},r,\theta) &= \frac{\mu_0\ell_2N_S}{4gr}i_{Sb}\cos(\theta-\pi/2)\mathbf{f} = \frac{\mu_0\ell_2N_S}{4gr}i_{Sb}\sin(\theta)\mathbf{f}. \end{split}$$

Rotating Magnetic Field

With $i_{Sa}(t) = I_S \cos(\omega_S t)$, $i_{Sb}(t) = I_S \sin(\omega_S t)$ we have

$$\begin{split} \vec{\mathbf{B}}_S &= \frac{\mu_0 \ell_2 N_S I_S}{4gr} \left(\cos(\omega_S t) \cos(\theta) + \sin(\omega_S t) \sin(\theta) \right) \mathbf{P} \\ &= \frac{\mu_0 \ell_2 N_S I_S}{4gr} \cos(\theta - \omega_S t) \mathbf{P} \\ &= \frac{\mu_0 \ell_2 N_S I_S}{4gr} \cos(\theta - \theta_S(t)) \mathbf{P} \end{split}$$

where $\theta_S(t) \triangleq \omega_S t$.

- ullet This is a **rotating magnetic field** rotating at the electrical frequency ω_S .
- The center line at $\theta_S(t) \triangleq \omega_S t$ is referred to as the magnetic axis.

$\mbox{Rotating Magnetic Field} \quad \vec{\mathbf{B}}_S = \frac{\mu_0 \ell_2 \textit{N}_S \textit{I}_S}{\textit{4gr}} \cos(\theta - \theta_S(t)) \mathbf{P}$

The Physics of the Induction Machine

- The stator consists of two sinusoidally wound phases 90° apart.
- A loop wound around the surface of the rotor iron is rotor phase a.
- $\theta_R(t)$ is the rotor's angular position defined as the normal to rotor loop a.

The Physics of the Induction Machine

- **Rotor loop** b is wound around the rotor iron 90° from rotor loop a.
- Rotor loop b (rotor phase b) is **electrically isolated** from rotor loop a.
- This results in a simple two phase induction machine.
- $\theta_S(t) = \omega_S t$ is the angular position of the magnetic axis of $\vec{\mathbf{B}}_S$.
- (r, θ) denotes the **polar coordinates** of an arbitrary point in the **air gap**.

- The rotating magnetic field $\vec{\mathbf{B}}_S$ produces a changing flux in the rotor loops.
- By Faraday's law, an **emf** is induced in each rotor loop.
- $d\vec{\mathbf{S}} = (\ell_2/2)d\theta dz$

The flux λ_{Ra} in rotor loop a due to $\vec{\mathbf{B}}_{S}$ is

$$\begin{split} \lambda_{Ra} &= \int_{S} \vec{\mathbf{B}}_{S} \cdot d\vec{\mathbf{S}} \\ &= \int_{z=0}^{z=\ell_{1}} \int_{\theta_{R}(t)-\pi/2}^{\theta_{R}(t)+\pi/2} \frac{\mu_{0}\ell_{2}N_{S}I_{S}}{4gr} \mid_{r=\ell_{2}/2} \cos(\theta-\theta_{S}(t)) \mathbf{\hat{r}} \cdot ((\ell_{2}/2)d\theta dz \mathbf{\hat{r}}) \\ &= \frac{\mu_{0}\ell_{1}\ell_{2}N_{S}I_{S}}{4g} \sin(\theta-\theta_{S}(t)) \left| \frac{\theta_{R}(t)+\pi/2}{\theta_{R}(t)-\pi/2} \right|_{\theta_{R}(t)-\pi/2} \\ &= \frac{\mu_{0}\ell_{1}\ell_{2}N_{S}I_{S}}{2g} \cos\left(\theta_{S}(t)-\theta_{R}(t)\right). \end{split}$$

By Faraday's law, the induced emf in rotor loop a is given by

$$\begin{split} \xi_{Ra} &= -\frac{d\lambda_{Ra}}{dt} &= -\frac{d}{dt} \frac{\mu_0 \ell_1 \ell_2 N_S I_S}{2g} \text{cos} \Big(\theta_S(t) - \theta_R(t) \Big) \\ &= \frac{\mu_0 \ell_1 \ell_2 N_S I_S}{2g} (\omega_S - \omega_R) \text{sin} \Big((\omega_S - \omega_R) t \Big) \end{split}$$

The current i_{Ra} in phase a satisfies

$$L_R \frac{di_{Ra}}{dt} = -R_R i_{Ra} + \xi_{Ra}$$

- \bullet L_R is the inductance of each rotor phase.
- \bullet R_R is the resistance of each rotor phase.

Neglecting the inductance (i.e., set $L_R = 0$), we have

$$i_{Ra}(t) = \xi_{Ra}/R_R$$
.

Similarly

$$\begin{split} \lambda_{Rb} &= \int_{S} \vec{\mathbf{B}}_{S} \cdot d\vec{\mathbf{S}} \\ &= \int_{z=0}^{z=\ell_{1}} \int_{\theta_{R}(t)}^{\theta_{R}(t)+\pi} \frac{\mu_{0}\ell_{2}N_{S}I_{S}}{4gr} \big|_{r=\ell_{2}/2} \mathrm{cos}\left(\theta-\theta_{S}(t)\right) \hat{\mathbf{P}} \cdot \left(\left(\ell_{2}/2\right)dzd\theta\hat{\mathbf{P}}\right) \\ &= \frac{\mu_{0}\ell_{1}\ell_{2}N_{S}I_{S}}{4g} \sin\left(\theta-\theta_{S}(t)\right) \Big|_{\theta_{R}(t)}^{\theta_{R}(t)+\pi} \\ &= \frac{\mu_{0}\ell_{1}\ell_{2}N_{S}I_{S}}{2g} \sin\left(\theta_{S}(t)-\theta_{R}(t)\right). \end{split}$$

Then

$$\xi_{Rb}(t) = -\frac{d\lambda_{Rb}}{dt} = -\frac{\mu_0 \ell_1 \ell_2 N_S I_S}{2g} (\omega_S - \omega_R) \cos((\omega_S - \omega_R)t)$$

$$i_{Rb}(t) = \xi_{Rb}(t) / R_R.$$

$$\begin{split} \vec{\mathbf{F}}_{side-a} &= i_{Ra} \vec{\boldsymbol{\ell}} \times \vec{\mathbf{B}}_S &= i_{Ra} \ell_1 \mathbf{2} \times \frac{\mu_0 \ell_2 N_S I_S}{4gr} \big|_{r=\ell_2/2} \mathrm{cos}(\theta - \theta_S)_{|\theta = \theta_R + \pi/2} \mathbf{P} \\ &= i_{Ra} \frac{\mu_0 \ell_1 N_S I_S}{2g} \mathrm{sin}(\theta_S - \theta_R) \hat{\boldsymbol{\theta}}. \end{split}$$

$$\begin{split} \vec{\tau}_{side-a} &= \vec{\mathbf{r}} \times \vec{\mathbf{F}}_{side-a} &= (\ell_2/2) \hat{\mathbf{r}} \times i_{Ra} \frac{\mu_0 \ell_1 N_S I_S}{2g} \sin(\theta_S - \theta_R) \hat{\boldsymbol{\theta}} \\ &= \frac{\mu_0 \ell_1 \ell_2 N_S I_S}{4g} i_{Ra} \sin(\theta_S - \theta_R) \hat{\boldsymbol{z}}. \end{split}$$

$$\begin{split} \vec{\mathbf{F}}_{side-a'} &= i_{Ra} \vec{\boldsymbol{\ell}} \times \vec{\mathbf{B}}_S &= i_{Ra} (-\ell_1 \mathbf{\hat{z}}) \times \frac{\mu_0 \ell_2 N_S I_S}{4gr} \mid_{r=\ell_2/2} \cos(\theta - \theta_S)_{|\theta = \theta_R - \pi/2} \mathbf{\hat{r}} \\ &= i_{Ra} \frac{\mu_0 \ell_1 N_S I_S}{2g} \sin(\theta_S - \theta_R) \hat{\boldsymbol{\theta}}. \end{split}$$

$$\vec{\tau}_{side-a'} = (\ell_2/2)\mathbf{f} \times \vec{\mathbf{F}}_{side-a'} = \frac{\mu_0 \ell_1 \ell_2 N_S I_S}{4\sigma} i_{Ra} \sin(\theta_S - \theta_R) \mathbf{2}.$$

Total torque

$$\vec{\tau}_{Ra} = \tau_{Ra} \mathbf{2} = (\tau_{side-a} + \tau_{side-a'}) \mathbf{2} = \frac{\mu_0 \ell_1 \ell_2 N_S I_S}{2g} i_{Ra} \sin(\theta_S - \theta_R) \mathbf{2}.$$

Recall that

$$i_{Ra}(t) = \xi_{Ra}(t)/R_R = \frac{\mu_0 \ell_1 \ell_2 N_S I_S}{2g} \frac{1}{R_R} (\omega_S - \omega_R) \sin \left((\omega_S - \omega_R) t \right).$$

so

$$\tau_{Ra} = \left(\frac{\mu_0 \ell_1 \ell_2 N_S I_S}{2g}\right)^2 \frac{1}{R_R} (\omega_S - \omega_R) \sin^2 \left((\omega_S - \omega_R)t\right).$$

Similarly, for rotor phase b

$$\begin{split} \vec{\mathbf{F}}_{side-b} &= i_{Rb} \vec{\boldsymbol{\ell}} \times \vec{\mathbf{B}}_S &= i_{Rb} \ell_1 \hat{\mathbf{z}} \times \frac{\mu_0 \ell_2 N_S I_S}{4gr} \big|_{r = \ell_2/2} \text{cos} (\theta - \theta_S) \big|_{\theta = \theta_R + \pi} \hat{\mathbf{P}} \\ &= -i_{Rb} \frac{\mu_0 \ell_1 N_S I_S}{2g} \cos(\theta_S - \theta_R) \hat{\boldsymbol{\theta}}. \end{split}$$

As in the case of loop a, $F_{side-b'} = F_{side-b}$ and $\tau_{side-b} = \tau_{side-b'}$.

$$\tau_{Rb} = \tau_{side-b} + \tau_{side-b'} = 2\tau_{side-b} = -\frac{\mu_0 \ell_1 \ell_2 N_S I_S}{2g} i_{Rb} \cos\left((\omega_S - \omega_R)t\right).$$

$$i_{Rb}(t) = \xi_{Rb}(t)/R_R = -\frac{\mu_0 \ell_1 \ell_2 N_S I_S}{2g} (\omega_S - \omega_R) \cos((\omega_S - \omega_R)t) / R_R$$

$$\tau_{Rb} = \left(\frac{\mu_0 \ell_1 \ell_2 N_S I_S}{2g}\right)^2 \frac{1}{R_R} (\omega_S - \omega_R) \cos^2((\omega_S - \omega_R)t)$$

The **total torque** τ_R is

$$\tau_R = \tau_{Ra} + \tau_{Rb} = \left(\frac{\mu_0 \ell_1 \ell_2 N_S I_S}{2g}\right)^2 \frac{1}{R_R} (\omega_S - \omega_R).$$

The torque is **constant** if ω_S and ω_R are constant.

Slip Speed

- ullet The stator currents are $i_{Sa}(t)=I_{S}\cos(\omega_{S}t)$, $i_{Sb}(t)=I_{S}\sin(\omega_{S}t)$
- Neglecting the inductance of the rotor phases we have

$$\tau_R = \left(\frac{\mu_0\ell_1\ell_2 \mathit{N}_\mathit{S}\mathit{I}_\mathit{S}}{2g}\right)^2 \frac{1}{R_R}(\omega_\mathit{S} - \omega_R).$$

• The torque is proportional to $\omega_S - \omega_R$ called the **slip speed** ω_{slip} , i.e.,

$$\omega_{slip} \triangleq \omega_{S} - \omega_{R}$$
.

- If the slip speed is zero, there is no torque. Why?
 - Then $\vec{\mathbf{B}}_{S}$ and the rotor are rotating at the same angular rate.
 - The fluxes in the rotor loops are then **constant**.
 - By Faraday's law **no** voltages or currents are induced in the rotor.
 - Thus **no** magnetic force/torque on the rotor.
- ullet The induction machine is also referred to as an **asynchronous** machine as $\omega_S
 eq \omega_R$

The Physics of the Synchronous Machine

Sinusoidally Wound Rotor

- The stator is the same as the induction machine.
- The rotor consists of a cylindrical core of iron with a single phase winding.
- The rotor phase has a sinusoidal turns density given by

$$N_{RF}(\theta - \theta_R) = \frac{N_F}{2} |\sin(\theta - \theta_R)|$$

- N_F is the **total number** of windings/turns of the rotor phase.
- The subscript "F" refers to "field" so the rotor is also called the field winding.

The Physics of the Synchronous Machine

ullet The magnetic field produced by the current i_F in the rotor phase is

$$ec{\mathbf{B}}_R = B_R \mathbf{\hat{r}} = rac{\mu_0 \ell_2 N_F i_F}{4gr} \cos(\theta - \theta_R) \mathbf{\hat{r}}$$

- Synchronous machine operation requires the rotor current to be **constant**.
- We will set i_F = I_F with I_F constant.
- The terminology field winding refers to its current being held constant.

• Stator phases not shown for clarity.

Stator phase b not shown for clarity.

$$\begin{split} \vec{\mathbf{B}}_{S}(i_{Sa},i_{Sb},r,\theta) &= \frac{\mu_{0}\ell_{2}N_{S}}{4gr}\Big(i_{Sa}\cos(\theta)+i_{Sb}\sin(\theta)\Big)\mathbf{\hat{r}} \\ \vec{\mathbf{B}}_{R}(I_{R},r,\theta) &= \frac{\mu_{0}\ell_{2}N_{F}I_{F}}{4gr}\cos(\theta-\theta_{R})\mathbf{\hat{r}}. \end{split}$$

- \bullet For the IM we computed the torque on the rotor produced by $\vec{B}_{\varsigma}.$
- We could use the same approach for the synchronous machine.
- Instead we compute the torque on the stator produced by $\vec{\mathbf{B}}_R$.

$$d\vec{\mathbf{F}}_{Sa} = \begin{cases} i_{Sa}(t) \frac{N_S}{2} |\sin(\theta)| d\theta(+\ell_1 \mathbf{\hat{z}}) \times \vec{\mathbf{B}}_R, & 0 \leq \theta \leq \pi \\ i_{Sa}(t) \frac{N_S}{2} |\sin(\theta)| d\theta(-\ell_1 \mathbf{\hat{z}}) \times \vec{\mathbf{B}}_R, & \pi \leq \theta \leq 2\pi. \end{cases}$$

As
$$|\sin(\theta)| = -\sin(\theta)$$
 in the interval $\pi \le \theta \le 2\pi$ we have $(r_S = \ell_2/2 + g)$

$$d\vec{\mathbf{F}}_{Sa} = \left(i_{Sa}(t)\frac{N_S}{2}\sin(\theta)d\theta\right)(\ell_1\mathbf{2}) \times \vec{\mathbf{B}}_R \text{ for } 0 \le \theta \le 2\pi$$

$$= \left(i_{Sa}(t)\frac{N_S}{2}\sin(\theta)d\theta\right)(\ell_1\mathbf{2}) \times \frac{\mu_0\ell_2N_FI_F}{4gr}|_{r=r_S}\cos(\theta-\theta_R)\mathbf{P}$$

$$\begin{split} d\vec{\mathbf{F}}_{Sa} &= \left(i_{Sa}(t)\frac{N_S}{2}\sin(\theta)d\theta\right)(\ell_1\mathbf{\hat{z}})\times\frac{\mu_0\ell_2N_FI_F}{4gr}\big|_{r=r_S}\cos(\theta-\theta_R)\mathbf{\hat{r}}\\ &= \frac{\mu_0\ell_1\ell_2N_SN_FI_F}{8gr_S}i_{Sa}(t)\sin(\theta)\cos(\theta-\theta_R)d\theta\mathbf{\hat{\theta}} \end{split}$$

$$\begin{split} d\vec{\tau}_{Sa} &= (r_S \mathbf{\hat{r}}) \times d\vec{\mathbf{F}}_{Sa} &= r_S \mathbf{\hat{r}} \times \left(\frac{\mu_0 \ell_1 \ell_2 N_S N_F I_F}{8 g r_S} i_{Sa}(t) \sin(\theta) \cos(\theta - \theta_R) d\theta \right) \mathbf{\hat{\theta}} \\ &= \frac{\mu_0 \ell_1 \ell_2 N_S N_F I_F}{8 g} i_{Sa}(t) \sin(\theta) \cos(\theta - \theta_R) d\theta \mathbf{\hat{z}}. \end{split}$$

Total torque on stator phase a

$$\begin{split} \vec{\tau}_{Sa}(i_{Sa},\theta_R) &= \int_0^{2\pi} \frac{\mu_0 \ell_1 \ell_2 N_S N_F I_F}{8g} i_{Sa}(t) \sin(\theta) \cos(\theta - \theta_R) d\theta \mathbf{2} \\ &= \frac{\mu_0 \ell_1 \ell_2 N_S N_F I_F}{8g} i_{Sa}(t) \int_0^{2\pi} \sin(\theta) \Big(\cos(\theta) \cos(\theta_R) \right. \\ &= \frac{\mu_0 \ell_1 \ell_2 N_S N_F I_F}{8g} i_{Sa}(t) \sin(\theta_R) \int_0^{2\pi} \sin^2(\theta) d\theta \mathbf{2} \\ &= \frac{\mu_0 \pi \ell_1 \ell_2 N_S N_F I_F}{8g} i_{Sa}(t) \sin(\theta_R) \mathbf{2}. \end{split}$$

Phase b winding distribution is $N_{Sb}(\theta) = (N_S/2)|\sin(\theta - \pi/2)|$.

$$\begin{split} d\vec{\mathbf{F}}_{Sb} &= \left(i_{Sb}(t)\frac{N_S}{2}\sin(\theta-\pi/2)d\theta\right)(\ell_1\mathbf{\hat{z}})\times\vec{\mathbf{B}}_R\\ &= \left(i_{Sb}(t)\frac{N_S}{2}\sin(\theta-\pi/2)d\theta\right)(\ell_1\mathbf{\hat{z}})\times\frac{\mu_0\ell_2N_FI_F}{4gr}|_{r=r_S}\cos(\theta-\theta_R)\mathbf{\hat{r}}\\ &= \frac{\mu_0\ell_1\ell_2N_SN_FI_F}{8gr_S}i_{Sb}(t)\sin(\theta-\pi/2)\cos(\theta-\theta_R)d\theta \ \mathbf{\hat{z}}\times\mathbf{\hat{r}}\\ &= -\frac{\mu_0\ell_1\ell_2N_SN_FI_F}{8gr_S}i_{Sb}(t)\cos(\theta)\cos(\theta-\theta_R)d\theta \mathbf{\hat{\theta}}. \end{split}$$

Incremental torque $dec{ au}_{Sb}$ on stator phase b

$$\begin{split} d\vec{\tau}_{Sb} &= (r_S \mathbf{\hat{r}}) \times d\vec{\mathbf{F}}_{Sb} \\ &= (r_S \mathbf{\hat{r}}) \times \left(-\frac{\mu_0 \ell_1 \ell_2 N_S N_F I_F}{8 g r_S} i_{Sb}(t) \cos(\theta) \cos(\theta - \theta_R) d\theta \right) \hat{\boldsymbol{\theta}} \\ &= -\frac{\mu_0 \ell_1 \ell_2 N_S N_F I_F}{8 \varepsilon} i_{Sb}(t) \cos(\theta) \cos(\theta - \theta_R) d\theta \hat{\mathbf{z}}. \end{split}$$

The **total torque** $\vec{\tau}_{Sb}$ on stator phase b is

The total torque **exerted on the stator** by the rotor is then

$$\vec{\tau}_{S} = \vec{\tau}_{Sa} + \vec{\tau}_{Sb} = \underbrace{\frac{\mu_{0}\pi\ell_{1}\ell_{2}N_{S}N_{F}}{8g}}_{M} I_{F} \left(i_{Sa}(t)\sin(\theta_{R}) - i_{Sb}(t)\cos(\theta_{R}) \right) \mathbf{2}.$$

The torque exerted on the rotor by the stator is $\vec{\tau}_R = -\vec{\tau}_S$, i.e.,

$$\vec{\tau}_R = MI_F \left(-i_{Sa}(t) \sin(\theta_R) + i_{Sb}(t) \cos(\theta_R) \right)$$
 2.

Steady-State Torque

- Let $i_{Sa}(t) = I_S \cos(\omega_S t)$, $i_{Sb}(t) = I_S \sin(\omega_S t)$
- Let $\theta_R(t) = \omega_R t \delta$

$$\begin{aligned} \tau_R &= MI_F \left(-i_{Sa}(t) \sin(\theta_R) + i_{Sb}(t) \cos(\theta_R) \right) \\ &= MI_F I_S \left(-\cos(\omega_S t) \sin(\omega_R t - \delta) + \sin(\omega_S t) \cos(\omega_R t - \delta) \right) \\ &= MI_F I_S \sin((\omega_S - \omega_R) t + \delta)) \end{aligned}$$

- Constant torque requires $\omega_S = \omega_R$.
 - I.e., $\vec{\mathbf{B}}_S$ and the rotor must be rotating synchronously. Then

$$\tau_R = MI_F I_S \sin(\delta)$$
.

Stator currents set up a rotating "stator magnet" which pulls the "rotor magnet".

Steady-State Torque

- Let $i_{Sa}(t) = I_S \cos(\omega_S t)$, $i_{Sb}(t) = I_S \sin(\omega_S t)$
- $\vec{\mathbf{B}}_S$ and $\vec{\mathbf{B}}_R$ rotate synchronously.

$$\tau_R = MI_F I_S \sin(\delta).$$

Stator currents set up a rotating "stator magnet" which pulls the "rotor magnet".

Emfs and Energy Conversion

$$\begin{split} \phi_{Sa}(\theta) &\triangleq \int\limits_{\substack{\text{A single loop} \\ \text{at the angle } \theta}} \vec{\mathbf{B}}_R \cdot d\vec{\mathbf{S}} \; = \; \int_{\theta'=\theta-\pi}^{\theta'=\theta} \int_{z=0}^{z=\ell_1} & \left(\frac{\mu_0 \, N_F \, \ell_2 \, I_F}{4 g r_S} \cos(\theta'-\theta_R(t)) \mathbf{\hat{r}} \right) \cdot \left(r_S \, d\theta' \, dz \, \mathbf{\hat{r}} \right) \\ &= \; \int_{\theta'=\theta-\pi}^{\theta'=\theta} \frac{\mu_0 \, N_F \, \ell_1 \, \ell_2 \, I_F}{4 g} \cos(\theta'-\theta_R(t)) \, d\theta' \\ &= \; \frac{\ell_1 \ell_2}{2} \frac{\mu_0 \, N_F \, I_F}{2 g} \left(\sin(\theta-\theta_R) - \sin(\theta-\pi-\theta_R) \right) \\ &= \; \ell_1 \ell_2 \frac{\mu_0 \, N_F \, I_F}{2 g} \sin(\theta-\theta_R). \end{split}$$

Emfs and Energy Conversion

$$\begin{split} \lambda_{Sa}(\theta_R) &\triangleq \int_{\theta=0}^{\theta=\pi} \phi_{Sa}(\theta) \frac{N_S}{2} \sin(\theta) d\theta &= \int_0^{\pi} \ell_1 \ell_2 \frac{\mu_0 N_F I_F}{2g} \sin(\theta - \theta_R) \frac{N_S}{2} \sin(\theta) d\theta \\ &= \ell_1 \ell_2 \frac{\mu_0 N_F I_F}{2g} \frac{N_S}{2} \int_0^{\pi} \sin(\theta) \sin(\theta - \theta_R) d\theta \\ &= \frac{\mu_0 \ell_1 \ell_2 N_S N_F}{4g} I_F \frac{\pi}{2} \cos(\theta_R) \\ &= MI_F \cos(\theta_R), \quad M = (\mu_0 \pi \ell_1 \ell_2 N_S N_R / 8g). \end{split}$$

Emfs and Energy Conversion - Stator Phase b

$$\begin{split} \phi_{Sb}(\theta) & \triangleq \int\limits_{\substack{\text{A single loop of stator phase } b \text{ at the angle } \theta}} \vec{\mathbf{B}}_R \cdot d\vec{\mathbf{S}} \\ & = \int_{\theta'=\theta-\pi}^{\theta'=\theta} \int_{z=0}^{z=\ell_1} \left(\frac{\mu_0 N_F \ell_2 I_F}{4 g r_S} \cos(\theta'-\theta_R(t)) \mathbf{\hat{r}} \right) \cdot \left(r_S d\theta' dz \mathbf{\hat{r}} \right) \\ & = \ell_1 \ell_2 \frac{\mu_0 N_F I_F}{2 g} \sin(\theta-\theta_R). \end{split}$$

Emfs and Energy Conversion - Stator Phase b

$$\begin{split} \lambda_{Sb}(\theta_R) &= \int_{\theta=\pi/2}^{\theta=3\pi/2} \phi_{Sb}(\theta) \frac{N_S}{2} \sin(\theta-\pi/2) d\theta \\ &= \int_{\pi/2}^{3\pi/2} \ell_1 \ell_2 \frac{\mu_0 N_F I_F}{2g} \sin(\theta-\theta_R) \frac{N_S}{2} \sin(\theta-\pi/2) d\theta \\ &= -\ell_1 \ell_2 \frac{\mu_0 N_F I_F}{2g} \frac{N_S}{2} \int_{\pi/2}^{3\pi/2} \cos(\theta) \sin(\theta-\theta_R) d\theta \\ &= -\ell_1 \ell_2 \ell_1 \ell_2 \frac{\mu_0 N_F I_F}{2g} \frac{N_S}{2} \left(-\frac{\pi}{2} \sin(\theta_R) \right) \\ &= MI_F \sin(\theta_R), \quad M = \underbrace{\left(\mu_0 \pi \ell_1 \ell_2 N_S N_R / 8g \right)}. \end{split}$$

coeff of mutual inductance

Stator flux linkages and Mutual Inductance

• λ_{Sa} , λ_{Sb} - flux linkages in the stator phases due to the rotor's magnetic field.

$$\lambda_{Sa}(\theta_R) \triangleq MI_F \cos(\theta_R),$$

$$\lambda_{Sb}(\theta_R) = MI_F \sin(\theta_R).$$

Induced Emfs and Energy Conversion

$$\begin{array}{lll} \xi_{Sa} & = & -d\lambda_{Sa}/dt = +MI_F\sin(\theta_R)\omega_R \\ \xi_{Sb} & = & -d\lambda_{Sb}/dt = -MI_F\cos(\theta_R)\omega_R. \end{array}$$

With
$$i_{Sa}(t) = I_S \cos(\omega_S t)$$
, $i_{Sb}(t) = I_S \sin(\omega_S t)$, $\theta_R = \omega_R t - \delta$

$$P_{\text{elec}} = i_{Sa}(t)\xi_{Sa}(t) + i_{Sb}(t)\xi_{Sb}(t)$$

$$= MI_FI_S \Big(\cos(\omega_S t)\sin(\omega_R t - \delta) - \sin(\omega_S t)\cos(\omega_R t - \delta)\Big)\omega_R$$

$$= MI_FI_S\omega_R \sin(\omega_R t - \delta - \omega_S t)$$

$$= -MI_FI_S\sin(\delta)\omega_R \text{ with } \omega_S = \omega_R.$$

Conservation of Energy (Power)

$$P_{\text{elec}} + P_{\text{mech}} = -MI_FI_S\sin(\delta)\omega_R + MI_FI_S\sin(\delta)\omega_R = 0.$$

Electrical power absorbed = mechanical power produced.

Synchronous Motor with a Salient Rotor

- Sinusoidally wound rotor is difficult (expensive) to make.
- ullet Only need a rotor whose magnetic field is **sinusoidally distributed** in $heta- heta_R$.
- Put a uniformly wound coil on the rotor.
- Shape the pole faces of the rotor so that the air gap length is

$$g(\theta - \theta_R) \triangleq \frac{g_0}{\cos(\theta - \theta_R)}.$$

Synchronous Motor with a Salient Rotor

The rotor iron is now wrapped with a standard coil with N_F turns. $g(\theta - \theta_R) \triangleq g_0/|\cos(\theta - \theta_R)|$, g_0 is the **minimum** air-gap distance.

$$\int\limits_{1}^{2}\vec{\mathbf{H}}\cdot d\vec{\boldsymbol{\ell}} + \int\limits_{3}^{4}\vec{\mathbf{H}}\cdot d\vec{\boldsymbol{\ell}} = N_{F}i_{F}, \quad d\vec{\boldsymbol{\ell}} = \left\{ \begin{array}{cc} -dr\mathbf{\hat{r}} & \text{for path} & 1{-}2\\ +dr\mathbf{\hat{r}} & \text{for path} & 3{-}4 \end{array} \right.$$

or with $\vec{\mathbf{H}} = H_r \hat{\mathbf{r}}$

$$-H_r(\theta+\pi)g(\theta+\pi-\theta_R)+H_r(\theta)g(\theta-\theta_R)=N_Fi_F.$$

Synchronous Motor with a Salient Rotor

By symmetry, $H_r(\theta)=-H_r(\theta\pm\pi)$ and $g(\theta+\pi-\theta_R)=g(\theta-\theta_R)$ so $2H_r(\theta)g(\theta-\theta_R)=N_Fi_F$ or

$$H_r(\theta) = \frac{N_F i_F}{2g(\theta - \theta_R)} = \frac{N_F i_F}{2g_0} \cos(\theta - \theta_R).$$

Multiplying by μ_0 and r_R/r (to satisfy conservation of flux in the air gap)

$$\vec{\mathbf{B}}_R(\theta - \theta_R) = \frac{\mu_0 N_F I_F}{2g_0} \frac{r_R}{r} \cos(\theta - \theta_R) \mathbf{f}.$$

Same magnetic field as a sinusoidally wound rotor.

Microscopic Viewpoint of AC Machines*

*This is an optional section

Rotating Axial Electric Field Due to the Stator Currents

$$\vec{\mathbf{B}}_{S}(r,\theta,t) = B_{Sr}(r,\theta,t)\mathbf{\hat{r}} = \frac{\mu_0\ell_2N_SI_S}{4gr}\cos(\theta-\omega_St)\mathbf{\hat{r}}.$$

The axial electric field $\vec{\mathbf{E}}_S$ in the air gap is the solution to $\nabla imes \vec{\mathbf{E}}_S = -\frac{\partial \vec{\mathbf{B}}_S}{\partial t}$ given by

$$\vec{\mathbf{E}}_{S}(\theta,t) = E_{Sz}(\theta,t)\mathbf{\hat{z}} = \frac{\mu_{0}\ell_{2}N_{S}I_{S}}{4g}\omega_{S}\cos(\theta - \omega_{S}t)\mathbf{\hat{z}}.$$

• Verify this by direct substitution!

Rotating Axial Electric Field Due to the Stator Currents

$$\vec{\mathbf{E}}_{S}(\theta,t) = E_{Sz}(\theta,t)\mathbf{\hat{z}} = \frac{\mu_0 \ell_2 N_S I_S}{4g} \omega_S \cos(\theta - \omega_S t)\mathbf{\hat{z}}.$$

- For $\theta_S \pi/2 \le \theta \le \theta_S + \pi/2$, the electric field is **out** of the page (\cdot)
- For $\theta_S + \pi/2 \le \theta \le \theta_S + 3\pi/2$, the electric field is **into** the page (×).

The total force on a charge carrier in a rotor loop is $\vec{\bf F}=q\vec{\bf E}_S+q\vec{\bf v}\times\vec{\bf B}_S$.

$$\begin{split} \vec{\mathbf{B}}_S(r,\theta,t) &= B_{Sr}(r,\theta,t) \mathbf{\hat{r}} = (\mu_0 \ell_2 N_S I_S / 4gr) \cos(\theta - \omega_S t) \mathbf{\hat{r}} \\ \vec{\mathbf{E}}_S(\theta,t) &= E_{Sz}(\theta,t) \mathbf{\hat{z}} = \frac{\mu_0 \ell_2 N_S I_S}{4g} \omega_S \cos(\theta - \omega_S t) \mathbf{\hat{z}}. \end{split}$$

- Let v_{dra} be the (drift) speed of the charge carriers along rotor loop a.
- If $v_{dra} > 0$ then the current i_{Ra} is positive.
- Let $v_t = (\ell_2/2)\omega_R$ the speed of the charge carriers in the $\hat{\theta}$ direction.
- The total velocity of the charge carriers along the axial sides of rotor loop a is

$$\vec{\mathbf{v}} = \left\{ egin{array}{ll} + v_{dra}\mathbf{\hat{2}} + v_{t}\mathbf{\hat{\theta}} & ext{for side } a \ -v_{dra}\mathbf{\hat{2}} + v_{t}\mathbf{\hat{\theta}} & ext{for side } a'. \end{array}
ight.$$

The magnetic-force/unit-charge on the charge carriers of rotor loop a is

$$\vec{\mathbf{v}}\times\vec{\mathbf{B}}_S = \left\{ \begin{array}{l} + v_{dra}B_{Sr}(\ell_2/2,\theta_R+\pi/2,t)\hat{\boldsymbol{\theta}} - v_tB_{Sr}(\ell_2/2,\theta_R+\pi/2,t)\hat{\boldsymbol{z}} & \text{for side a} \\ \\ - v_{dra}B_{Sr}(\ell_2/2,\theta_R-\pi/2,t)\hat{\boldsymbol{\theta}} - v_tB_{Sr}(\ell_2/2,\theta_R-\pi/2,t)\hat{\boldsymbol{z}} & \text{for side a}'. \end{array} \right.$$

$$\begin{split} B_{Sr}(\ell_2/2,\theta_R+\pi/2,t)\mathbf{\hat{r}} &= \frac{\mu_0 N_S I_S}{2g} \cos(\theta_R+\pi/2-\omega_S t)\mathbf{\hat{r}} = \frac{\mu_0 N_S I_S}{2g} \sin(\omega_S t-\theta_R)\mathbf{\hat{r}} \\ B_{Sr}(\ell_2/2,\theta_R-\pi/2,t)\mathbf{\hat{r}} &= \frac{\mu_0 N_S I_S}{2g} \cos(\theta_R-\pi/2-\omega_S t)\mathbf{\hat{r}} = -\frac{\mu_0 N_S I_S}{2g} \sin(\omega_S t-\theta_R)\mathbf{\hat{r}}. \end{split}$$

With
$$v_t = (\ell_2/2)\omega_R$$
 and $\theta_R = \omega_R t$

$$\vec{\mathbf{v}} \times \vec{\mathbf{B}}_S = \left\{ \begin{array}{l} v_{dra} \frac{\mu_0 N_S I_S}{2g} \sin(\omega_S t - \omega_R t) \hat{\boldsymbol{\theta}} - \omega_R \frac{\mu_0 \ell_2 N_S I_S}{4g} \sin(\omega_S t - \omega_R t) \hat{\boldsymbol{z}} & \text{for side } a \\ \\ v_{dra} \frac{\mu_0 N_S I_S}{2g} \sin(\omega_S t - \omega_R t) \hat{\boldsymbol{\theta}} + \omega_R \frac{\mu_0 \ell_2 N_S I_S}{4g} \sin(\omega_S t - \omega_R t) \hat{\boldsymbol{z}} & \text{for side } a'. \end{array} \right.$$

The electric field $\vec{\mathbf{E}}_S$ in rotor loop a is given by

$$\vec{\mathbf{E}}_{S} = \left\{ \begin{array}{ll} E_{Sz}(\theta_R + \pi/2, t) \mathbf{\hat{z}} & \text{for side a} \\ E_{Sz}(\theta_R - \pi/2, t) \mathbf{\hat{z}} & \text{for side a}'. \end{array} \right.$$

With $heta_R(t) = \omega_R t$, this becomes

$$\vec{\mathbf{E}}_S = \frac{\mu_0 \ell_2 N_S I_S}{4g} \omega_S \cos(\omega_R t + \pi/2 - \omega_S t) \mathbf{\hat{z}} = \frac{\mu_0 \ell_2 N_S I_S}{4g} \omega_S \sin(\omega_S t - \omega_R t) \mathbf{\hat{z}} \quad \text{side a}$$

$$\vec{\mathbf{E}}_S = \frac{\mu_0 \ell_2 N_S I_S}{4g} \omega_S \cos(\omega_R t - \pi/2 - \omega_S t) \mathbf{\hat{z}} = -\frac{\mu_0 \ell_2 N_S I_S}{4g} \omega_S \sin(\omega_S t - \omega_R t) \mathbf{\hat{z}} \quad \text{side a}'$$

The total force per unit charge $\vec{\mathbf{F}}/q = \vec{\mathbf{E}}_S + \vec{\mathbf{v}} \times \vec{\mathbf{B}}_S$ is then

$$\begin{split} \vec{\mathbf{F}}_{\text{side a}}/q &= \frac{\mu_0 \ell_2 N_S I_S}{4g} \omega_S \sin(\omega_S t - \omega_R t) \mathbf{\hat{z}} + v_{dra} \frac{\mu_0 N_S I_S}{2g} \sin(\omega_S t - \omega_R t) \mathbf{\hat{\theta}} \\ &- \omega_R \frac{\mu_0 \ell_2 N_S I_S}{4g} \sin(\omega_S t - \omega_R t) \mathbf{\hat{z}} \end{split}$$

$$\begin{split} \vec{\mathbf{F}}_{\text{side }a'}/q &= -\frac{\mu_0 \ell_2 N_S I_S}{4g} \omega_S \sin(\omega_S t - \omega_R t) \mathbf{\hat{z}} + v_{dra} \frac{\mu_0 N_S I_S}{2g} \sin(\omega_S t - \omega_R t) \mathbf{\hat{\theta}} \\ &+ \omega_R \frac{\mu_0 \ell_2 N_S I_S}{4g} \sin(\omega_S t - \omega_R t) \mathbf{\hat{z}}. \end{split}$$

These last two expressions simplify to

$$\vec{\mathbf{F}}_{\text{side }a'}/q = v_{dra} \frac{\mu_0 N_S I_S}{2g} \sin \left((\omega_S - \omega_R) t \right) \hat{\boldsymbol{\theta}} + \underbrace{\frac{\mu_0 \ell_2 N_S I_S}{4g} (\omega_S - \omega_R) \sin \left((\omega_S - \omega_R) t \right) \hat{\mathbf{z}}}_{\vec{\mathbf{E}}_S + (\vec{\mathbf{v}} \times \vec{\mathbf{B}}_S)_z}$$

$$\vec{\mathbf{F}}_{\text{side }a'}/q = v_{dra} \frac{\mu_0 N_S I_S}{2g} \sin \left((\omega_S - \omega_R) t \right) \hat{\boldsymbol{\theta}} - \underbrace{\frac{\mu_0 \ell_2 N_S I_S}{4g} (\omega_S - \omega_R) \sin \left((\omega_S - \omega_R) t \right) \hat{\mathbf{z}}}_{\vec{\mathbf{E}}_S + (\vec{\mathbf{v}} \times \vec{\mathbf{B}}_S)_z}$$

 $oldsymbol{\bullet}$ The component in $oldsymbol{ heta}$ direction is what produces the **torque**.

- $qNS\ell_1$ is the **total** number of charge carriers on each axial side of the loop.
- N the number of charge carriers per unit volume in rotor loop a.
- S the cross-sectional area of the rotor loop.
- $i_{Ra} = qNSv_{dra}$ is the rotor current.

The total tangential magnetic force on these charge carriers is

$$\vec{\mathbf{F}}_{\hat{\boldsymbol{\theta}} \text{ side } a'}/q = qNS\ell_1 v_{dra} \frac{\mu_0 N_S I_S}{2g} \sin \left((\omega_S - \omega_R) t \right) \hat{\boldsymbol{\theta}}$$

$$\vec{\mathbf{F}}_{\hat{\boldsymbol{\theta}} \text{ side } a'}/q = qNS\ell_1 v_{dra} \frac{\mu_0 N_S I_S}{2g} \sin \left((\omega_S - \omega_R) t \right) \hat{\boldsymbol{\theta}}.$$

$$\begin{split} \vec{\tau}_{Ra} &= \left(\frac{\ell_2}{2}\mathbf{P}\times\vec{\mathbf{F}}_{\hat{\theta}}\right)_{side-a} + \left(\frac{\ell_2}{2}\mathbf{P}\times\vec{\mathbf{F}}_{\hat{\theta}}\right)_{side-a'} \\ &= \ 2i_{Ra}\ell_1\frac{\mu_0N_SI_S}{2g}\sin((\omega_S-\omega_R)t)\frac{\ell_2}{2}\mathbf{P}\times\hat{\boldsymbol{\theta}} \\ &= \ i_{Ra}\frac{\mu_0\ell_1\ell_2N_SI_S}{2g}\sin((\omega_S-\omega_R)t)\hat{\mathbf{z}}. \end{split}$$

The current i_{Ra} in the rotor loop is produced by the **total emf** in the loop. The total **axial** or (z-component) of the force per unit charge is

$$(\vec{\mathbf{F}}_{\mathsf{side }a}/q)_z = \vec{\mathbf{E}}_S + (\vec{\mathbf{v}} \times \vec{\mathbf{B}}_S)_z = \frac{\mu_0 \ell_2 N_S I_S}{4g} (\omega_S - \omega_R) \sin((\omega_S - \omega_R)t) \mathbf{\hat{2}}$$

$$(\vec{\mathbf{F}}_{\mathsf{side }a'}/q)_z = \vec{\mathbf{E}}_S + (\vec{\mathbf{v}} \times \vec{\mathbf{B}}_S)_z = -\frac{\mu_0 \ell_2 N_S I_S}{4g} (\omega_S - \omega_R) \sin((\omega_S - \omega_R)t) \mathbf{\hat{2}}.$$

$$\vec{\xi}_{Ra} \triangleq \oint_{\mathsf{rotor loop }a} (\vec{\mathbf{F}}/q) \cdot d\vec{\ell} = \oint_{\mathsf{rotor loop }a} (\vec{\mathbf{E}}_S + \vec{\mathbf{v}} \times \vec{\mathbf{B}}_S) \cdot d\vec{\ell}$$

where $d\vec{\ell} = \begin{cases} +dz\hat{\mathbf{2}} & \text{for side } a \\ -dz\hat{\mathbf{2}} & \text{for side } a'. \end{cases}$

Evaluating the line integral we have

$$\xi_{Ra} = \frac{\mu_0 \ell_1 \ell_2 N_S I_S}{2g} (\omega_S - \omega_R) \sin((\omega_S - \omega_R) t) \,. \label{eq:xi_Ra}$$

Neglecting the rotor inductance so that $i_{Ra}=\xi_{Ra}/R_R$, the torque on rotor loop a is

$$\tau_{Ra} = \frac{1}{R_R} \left(\frac{\mu_0 \ell_1 \ell_2 N_S I_S}{2g} \right)^2 (\omega_S - \omega_R) \sin^2 \left((\omega_S - \omega_R) t \right).$$

A similar analysis shows that

$$\tau_{Rb} = \frac{1}{R_R} \left(\frac{\mu_0 \ell_1 \ell_2 N_S I_S}{2g} \right)^2 (\omega_S - \omega_R) \cos^2 \left((\omega_S - \omega_R) t \right).$$

The total torque on the rotor is

$$\tau = \tau_{Ra} + \tau_{Rb} = \left(\frac{\mu_0 \ell_1 \ell_2 N_S I_S}{2g}\right)^2 \frac{1}{R_R} (\omega_S - \omega_R)$$

which is the same expression as that computed in the macroscopic case.

Let V_{Ra} denote the voltage in rotor loop a produced by the stator electric field $\vec{\mathbf{E}}_{S}$, i.e.,

$$V_{Ra} \triangleq \oint_{\text{rotor loop } a} \vec{\mathbf{E}}_S \cdot d\vec{\ell} \ = \frac{\mu_0 \ell_1 \ell_2 N_S I_S}{2g} \omega_S \sin \Big((\omega_S - \omega_R) t \Big) \,.$$

Define the "back emf" $\zeta_{\it Ra}$ as

$$\begin{split} \zeta_{Ra} &\triangleq \oint_{\text{rotor loop } a} \vec{\mathbf{v}} \times \vec{\mathbf{B}}_S \cdot d\vec{\ell} &= \int_0^{\ell_1} \left(-\omega_R \frac{\mu_0 \ell_2 N_S I_S}{4g} \sin(\omega_S t - \omega_R t) \mathbf{2} \right) \cdot (d\ell \mathbf{2}) \\ &+ \int_0^{\ell_1} \left(\omega_R \frac{\mu_0 \ell_2 N_S I_S}{4g} \sin(\omega_S t - \omega_R t) \mathbf{2} \right) \cdot (-d\ell \mathbf{2}) \\ &= -\frac{\mu_0 \ell_1 \ell_2 N_S I_S}{2g} \omega_R \sin((\omega_S - \omega_R) t) \,. \end{split}$$

In summary, the **total emf** ξ_{Ra} in rotor loop a is

$$\boldsymbol{\xi}_{R\mathbf{a}} = \oint\limits_{\text{rotor loop }\mathbf{a}} (\vec{\mathbf{E}}_S + \vec{\mathbf{v}} \times \vec{\mathbf{B}}_S) \cdot d\vec{\ell} = V_{R\mathbf{a}} + \zeta_{R\mathbf{a}} = \frac{\mu_0 \ell_1 \ell_2 N_S I_S}{2g} (\omega_S - \omega_R) \sin((\omega_S - \omega_R)t)$$

- V_{Ra} is the voltage in rotor loop a **produced** by $\tilde{\mathbf{E}}_{S}$.
- ζ_{Ra} is the back emf in rotor loop a **produced** by $(\vec{\mathbf{v}} \times \vec{\mathbf{B}}_S)_z$.

• Recall
$$\tau_{Ra} = i_{Ra} \frac{\mu_0 \ell_1 \ell_2 N_S I_S}{2g} \sin((\omega_S - \omega_R)t)$$
.

$$\begin{split} & \text{Recall } \tau_{Ra} = i_{Ra} \frac{\mu_0 \ell_1 \ell_2 \textit{N}_S \textit{I}_S}{2g} \sin((\omega_S - \omega_R)t) \,. \\ & \text{Recall } \zeta_{Ra} = -\frac{\mu_0 \ell_1 \ell_2 \textit{N}_S \textit{I}_S}{2g} \omega_R \sin((\omega_S - \omega_R)t) \,. \end{split}$$

- By direct substitution $\tau_{Ra}\omega_R + i_{Ra}\zeta_{Ra} = 0$.
- The power $i_{Ra}\zeta_{Ra}$ absorbed by the back emf **equals** the mechanical power $\tau_{Ra}\omega_{R}$.

- $\tau_{Ra}\omega_R$ is the **mechanical power** produced on rotor loop a.
- $i_{Ra}\zeta_{Ra}$ is the **electrical power** absorbed by the back emf.
- $\xi_{Ra} = V_{Ra} + \zeta_{Ra}$ is the **total emf** in rotor loop a.
- $i_{Ra}V_{Ra}$ is the **total electrical power** into rotor loop a from the stator.

$$i_{Ra}V_{Ra}=i_{Ra}\xi_{Ra}-i_{Ra}\xi_{Ra}=i_{Ra}\xi_{Ra}+\tau_{Ra}\omega_{R}$$
.

- The **total power** $i_{Ra}V_{Ra}$ into rotor loop a is converted into:
 - (1) the **electrical power** $i_{Ra}\xi_{Ra}$ (dissipated as heat in the rotor loop resistance) and
 - (2) the mechanical power $\tau_{Ra}\omega_R$ (= $-i_{Ra}\zeta_{Ra}$).

By Faraday's law the **total emf** ξ_{Ra} in rotor loop a is

$$\xi_{Ra} = -\frac{d}{dt} \left(\int_{\mathcal{S}} \vec{\mathbf{B}}_{\mathcal{S}} \cdot d\vec{\mathbf{S}} \right).$$

Using the microscopic approach we showed the **total emf** ξ_{Ra} is given by

$$\xi_{\it Ra} = \oint_{\it C} ({f ec E}_{\it S} + {f ec v} imes {f B}_{\it S}) \cdot d{f ec \ell}.$$

In general, with S any surface enclosed by a curve C, we have

$$\xi = -\frac{d}{dt} \left(\int_{S} \vec{\mathbf{B}} \cdot d\vec{\mathbf{S}} \right) = \oint_{C} (\vec{\mathbf{E}} + \vec{\mathbf{v}} \times \vec{\mathbf{B}}) \cdot d\vec{\ell}.$$

To show this, we calculate

$$\begin{split} \oint_{C} (\vec{\mathbf{E}} + \vec{\mathbf{v}} \times \vec{\mathbf{B}}) \cdot d\vec{\ell} &= \int_{S} \left(\nabla \times \vec{\mathbf{E}} \right) \cdot d\vec{\mathbf{S}} + \oint_{C} \left(\vec{\mathbf{v}} \times \vec{\mathbf{B}} \right) \cdot d\vec{\ell} \quad \text{Stokes' theorem} \\ &= \int_{S} \left(-\frac{\partial \vec{\mathbf{B}}}{\partial t} \right) \cdot d\vec{\mathbf{S}} + \oint_{C} \left(\vec{\mathbf{v}} \times \vec{\mathbf{B}} \right) \cdot d\vec{\ell} \\ &= -\frac{\partial}{\partial t} \int_{S} \vec{\mathbf{B}} \cdot d\vec{\mathbf{S}} + \oint_{C} \left(\vec{\mathbf{v}} \times \vec{\mathbf{B}} \right) \cdot d\vec{\ell}. \end{split}$$

By the previous slide

$$\oint_{C} (\vec{\mathbf{E}} + \vec{\mathbf{v}} \times \vec{\mathbf{B}}) \cdot d\vec{\ell} = -\frac{\partial}{\partial t} \int_{S} \vec{\mathbf{B}} \cdot d\vec{\mathbf{S}} + \oint_{C} (\vec{\mathbf{v}} \times \vec{\mathbf{B}}) \cdot d\vec{\ell}.$$

Using the vector identity

$$\left(\vec{\mathbf{v}} \times \vec{\mathbf{B}} \right) \cdot d\vec{\ell} = -\vec{\mathbf{B}} \cdot \left(\vec{\mathbf{v}} \times d\vec{\ell} \right)$$

this reduces to

$$\oint_{\mathcal{C}} (\vec{\mathbf{E}} + \vec{\mathbf{v}} \times \vec{\mathbf{B}}) \cdot d\vec{\ell} = -\frac{\partial}{\partial t} \int_{\mathcal{S}} \vec{\mathbf{B}} \cdot d\vec{\mathbf{S}} - \oint_{\mathcal{C}} \vec{\mathbf{B}} \cdot \left(\vec{\mathbf{v}} \times d\vec{\ell} \right).$$

- \vec{v} is the **total velocity** of the charge carriers in the loop C.
- If the loop itself is **not** moving, then $\vec{\mathbf{v}}$ is in the same direction as $d\vec{\ell}$ so that $\vec{\mathbf{v}} \times d\vec{\ell} = 0$.
- In general, with γ the **angle between** $\vec{\mathbf{v}}$ and $d\vec{\ell}$, we have

$$|\vec{\mathbf{v}} \times d\vec{\ell}| = v \sin(\gamma) d\ell = v_{\perp} d\ell.$$

- ullet $v_{\perp}=v\sin(\gamma)$ is the velocity component **perpendicular** to $dec{\ell}$.
- The quantity $|\vec{\mathbf{v}} \times d\vec{\ell}|$ represents a **change** in the **flux surface** as explained next.

To fix ideas, let's go back to rotor loop a with the fields $\vec{\mathbf{E}}_S$ and $\vec{\mathbf{E}}_S$.

- At time t the rotor is at $\theta_R(t)$ with side a at $\theta(t) = \theta_R(t) + \pi/2$. Side a' is at $\theta(t) + d\theta \pi$.
- In the time dt, side a of the loop rotates from $\theta\left(t\right)=\theta_{R}\left(t\right)+\pi/2$ to

$$\theta(t + dt) = \theta(t) + d\theta = \theta_R(t) + d\theta_R + \pi/2.$$

Side a' goes to $\theta(t) + d\theta - \pi = \theta_R(t) + d\theta_R - \pi/2$.

• $d\theta = d\theta_R$ and $d\theta/dt = d\theta_R/dt = \omega_R$.

$$\begin{split} dt \oint_{C} \vec{\mathbf{B}}_{S} \cdot \left(\vec{\mathbf{v}} \times d\vec{\ell}\right) &= dt \int_{\text{side } a} B_{Sr}(r_{R}, \theta, t) \mathbf{\hat{r}} \cdot \left(\frac{\ell_{2}}{2} \omega_{R} \hat{\boldsymbol{\theta}} \times d\ell \mathbf{\hat{z}}\right) \\ &+ dt \int_{\text{side } a\prime} B_{Sr}(r_{R}, \theta - \pi, t) \mathbf{\hat{r}} \cdot \left(\frac{\ell_{2}}{2} \omega_{R} \hat{\boldsymbol{\theta}} \times (-d\ell) \mathbf{\hat{z}}\right) \\ &= \int_{\text{side } a} B_{Sr}(r_{R}, \theta, t) \mathbf{\hat{r}} \cdot \left(\omega_{R} dt \frac{\ell_{2}}{2} d\ell \mathbf{\hat{r}}\right) + \int_{\text{side } a\prime} B_{Sr}(r_{R}, \theta - \pi, t) \mathbf{\hat{r}} \cdot \left(-\omega_{R} dt \frac{\ell_{2}}{2} d\ell \mathbf{\hat{r}}\right) \\ &= \int_{\text{side } a} \left(B_{Sr}(r_{R}, \theta, t) \frac{\ell_{2}}{2} \omega_{R} dt\right) d\ell + \int_{\text{side } a\prime} \left(-B_{Sr}(r_{R}, \theta - \pi, t) \frac{\ell_{2}}{2} \omega_{R} dt\right) d\ell \\ &= B_{Sr}(r_{R}, \theta, t) \ell_{1} \frac{\ell_{2}}{2} d\theta - B_{Sr}(r_{R}, \theta - \pi, t) \ell_{1} \frac{\ell_{2}}{2} d\theta \end{split}$$

where $d\theta = \omega_R dt$ was used in the last line.

- $B_{Sr}(r_R, \theta, t)\ell_1(\ell_2/2)d\theta$ is the **additional** flux due to the surface area change as side a moved from θ to $\theta + d\theta$.
- $-B_{Sr}(r_R, \theta \pi, t)\ell_1(\ell_2/2)d\theta$ is the **decrease** in flux due to the surface area change as side a' moved from $\theta \pi$ to $\theta + d\theta \pi$.
- ullet I.e., the **change in flux** $d\phi$ due to the **rotation** of the loop through the angle d heta is

$$dt \oint_{\mathcal{C}} \left(\vec{\mathbf{v}} \times d\vec{\ell} \ \right) \cdot \vec{\mathbf{B}}_{S} = B_{Sr}(r_{R}, \theta, t) \ell_{1} \frac{\ell_{2}}{2} d\theta - B_{Sr}(r_{R}, \theta - \pi, t) \ell_{1} \frac{\ell_{2}}{2} d\theta.$$

In more detail.

$$\phi(\theta\left(t
ight)$$
, $t) riangleq \int_{\mathcal{S}} ec{\mathbf{B}}_{\mathcal{S}} \cdot dec{\mathbf{S}} = \int_{ heta(t) - \pi}^{ heta(t)} B_{r}(r_{\mathcal{R}}, heta', t) \ell_{1} rac{\ell_{2}}{2} d heta'$

$$\begin{split} \frac{d\phi}{dt} &= \frac{\partial \phi(\theta(t),t)}{\partial t} + \frac{\partial \phi(\theta(t),t)}{\partial \theta} \frac{d\theta}{dt} \\ &= \frac{\partial \phi(\theta,t)}{\partial t} + \frac{\partial}{\partial \theta} \left(\int_{\theta(t)-\pi}^{\theta(t)} B_r(r_R,\theta',t) \ell_1 \frac{\ell_2}{2} d\theta' \right) \frac{d\theta}{dt} \\ &= \frac{\partial}{\partial t} \int_{\mathcal{S}} \vec{\mathbf{B}}_{\mathcal{S}} \cdot d\vec{\mathbf{S}} + \left(B_r(r_R,\theta,t) \ell_1 \frac{\ell_2}{2} - B_r(r_R,\theta-\pi,t) \ell_1 \frac{\ell_2}{2} \right) \frac{d\theta}{dt}. \end{split}$$

Thus the rate of change of flux due to the motion of the loop is

$$\oint_{\mathcal{C}} \left(\vec{\mathbf{v}} \times d\vec{\ell} \right) \cdot \vec{\mathbf{B}} = \frac{\partial \phi(\theta, t)}{\partial \theta} \frac{d\theta}{dt}.$$

In summary

$$\begin{split} \boldsymbol{\xi} &= -\frac{d\phi}{dt} = -\frac{\partial\phi(\theta,t)}{\partial t} - \frac{\partial\phi(\theta,t)}{\partial\theta}\frac{d\theta}{dt} &= -\frac{\partial}{\partial t}\int_{\mathcal{S}}\vec{\mathbf{B}}\cdot d\vec{\mathbf{S}} - \oint_{\mathcal{C}}\left(\vec{\mathbf{v}}\times d\vec{\boldsymbol{\ell}}\right)\cdot\vec{\mathbf{B}} \\ &= \oint_{\mathcal{C}}(\vec{\mathbf{E}}+\vec{\mathbf{v}}\times\vec{\mathbf{B}})\cdot d\vec{\boldsymbol{\ell}}. \end{split}$$

Induction Machine in the Synchronous Coordinate System

- Go into a reference frame which **rotates** with $\vec{\mathbf{B}}_S$ at angular speed ω_S .
- Electric and magnetic fields **change** from one moving coordinate system to another.
- In any reference/coordinate system, the Lorentz force on a charge carrier is given by

$$\vec{\mathbf{F}} = q(\vec{\mathbf{E}} + \vec{\mathbf{v}} \times \vec{\mathbf{B}}).$$

- $feval{e}$ \vec{E} and \vec{B} are the electric and magnetic fields **measured** in the particular reference/coordinate system.
- ullet is the velocity of the charge carrier as **measured** in the same coordinate system.

Induction Machine in the Synchronous Coordinate System

In the coordinate system fixed to stator, we have

$$\vec{\mathbf{E}}_{S}(\theta,t) = E_{Sz}(\theta,t)\mathbf{\hat{z}} = \frac{\mu_{0}\ell_{2}N_{S}I_{S}}{4g}\omega_{S}\cos(\theta-\omega_{S}t)\mathbf{\hat{z}}$$

$$\vec{\mathbf{B}}_{S}(r,\theta,t) = B_{Sr}(r,\theta,t)\hat{\mathbf{r}} = \frac{\mu_{0}\ell_{2}N_{S}I_{S}}{4gr}\cos(\theta - \omega_{S}t)\hat{\mathbf{r}}$$

and, with $v_t = (\ell_2/2)\omega_R$,

$$\vec{\mathbf{v}}_{Ra} = \left\{ egin{array}{ll} v_{dra}\hat{\mathbf{2}} + v_t\hat{\boldsymbol{\theta}} & ext{side } a \ -v_{dra}\hat{\mathbf{2}} + v_t\hat{\boldsymbol{\theta}} & ext{side } a'. \end{array}
ight.$$

Induction Machine in the Synchronous Coordinate System

- ullet Go into a coordinate system rotating with $ec{f B}_S$ at angular speed ω_S .
- This referred to as the **synchronous** coordinate system.
- We will refer to it as the primed (') coordinate system.

Transformation of the \vec{E} and \vec{B} fields

- The primed system has velocity $\vec{\mathbf{v}}' = v'\hat{\mathbf{y}}$ with respect to the unprimed system.
- $\vec{\mathbf{E}}_{||}$ and $\vec{\mathbf{B}}_{||}$ are the electric and magnetic fields parallel to the motion, i.e., in the y direction.
- $\vec{\mathbf{E}}_{\perp}$ and $\vec{\mathbf{B}}_{\perp}$ are the electric and magnetic fields perpendicular to the motion, i.e., in an x-z plane.
- $\gamma \triangleq 1/\sqrt{1-(v'/c)^2}$ where c is the speed of light.

$$\vec{\mathbf{E}}_{||}' = \vec{\mathbf{E}}_{||} \qquad \qquad \vec{\mathbf{B}}_{||}' = \vec{\mathbf{B}}_{||}$$

$$\vec{\mathbf{E}}_{\perp}' = \gamma \left(\vec{\mathbf{E}}_{\perp} + \vec{\mathbf{v}}' \times \vec{\mathbf{B}}_{\perp} \right) \quad \vec{\mathbf{B}}_{\perp}' = \gamma \left(\vec{\mathbf{B}}_{\perp} + (\nu'/c^2) \times \vec{\mathbf{E}}_{\perp} \right)$$

Transformation of the E and B fields

- The primed system has velocity $\vec{\mathbf{v}}' = v'\hat{\mathbf{y}}$ with respect to the unprimed system.
- $\vec{\mathbf{E}}_{||}$ and $\vec{\mathbf{B}}_{||}$ are the electric and magnetic fields parallel to the motion, i.e., in the y direction.
- $\vec{\mathbf{E}}_{\perp}$ and $\vec{\mathbf{B}}_{\perp}$ are the electric and magnetic fields perpendicular to the motion, i.e., in an x-z plane.
- Here $(v'/c)^2 \ll 1$ so we take $\gamma = 1/\sqrt{1-(v'/c)^2} = 1$.

$$\vec{\textbf{E}}_{||}^{\prime} = \vec{\textbf{E}}_{||} \qquad \qquad \vec{\textbf{B}}_{||}^{\prime} = \vec{\textbf{B}}_{||}$$

$$\vec{\textbf{E}}'_{\perp} = \vec{\textbf{E}}_{\perp} + \vec{\textbf{v}}' \times \vec{\textbf{B}}_{\perp} \qquad \vec{\textbf{B}}'_{\perp} = \vec{\textbf{B}}_{\perp}.$$

• Only the component of \vec{E} perpendicular to the motion changes!

Transformation of the E and B fields

Coordinate transformation

$$\left[\begin{array}{c} x'\\ y'\\ z' \end{array}\right] = \left[\begin{array}{ccc} \cos(\omega_S t) & \sin(\omega_S t) & 0\\ -\sin(\omega_S t) & \cos(\omega_S t) & 0\\ 0 & 0 & 1 \end{array}\right] \left[\begin{array}{c} x\\ y\\ z \end{array}\right].$$

- In cylindrical coordinates, r' = r, $\theta' = \theta \omega_S t$, z' = z.
- A stationary point (r', θ') in the rotating system has velocity

$$\vec{\mathbf{v}}' = r'\omega_{S}\hat{\boldsymbol{\theta}}$$

in the (original unprimed) stator coordinate system.

• In the **rotating** system the **rotor's speed** is $\omega_R' = -(\omega_S - \omega_R) \le 0$.

Transformation of the \vec{E} and \vec{B} fields

In the air gap of the stator coordinate system

$$\begin{split} \vec{\mathbf{E}}_{S}(\theta,t) &= E_{Sz}(\theta,t)\mathbf{\hat{z}} = \frac{\mu_{0}\ell_{2}N_{S}I_{S}}{4g}\omega_{S}\cos(\theta-\omega_{S}t)\mathbf{\hat{z}} \\ \vec{\mathbf{B}}_{S}(r,\theta,t) &= B_{Sr}(r,\theta,t)\mathbf{\hat{r}} = \frac{\mu_{0}\ell_{2}N_{S}I_{S}}{4gr}\cos(\theta-\omega_{S}t)\mathbf{\hat{r}} \\ \vec{\mathbf{v}}' &= r\omega_{R}\mathbf{\hat{\theta}} \end{split}$$

and

$$\vec{\textbf{E}}_{\perp} = \vec{\textbf{E}}_{\mathcal{S}}, \quad \vec{\textbf{E}}_{||} = \textbf{0}, \quad \vec{\textbf{B}}_{\perp} = \vec{\textbf{B}}_{\mathcal{S}}, \quad \vec{\textbf{B}}_{||} = \textbf{0}.$$

Transformation of the \vec{E} and \vec{B} fields

In the air gap of the rotating coordinate system

$$\begin{split} \vec{\mathbf{E}}_S' &= \vec{\mathbf{E}}_S + \vec{\mathbf{v}}' \times \vec{\mathbf{B}}_S = E_{Sz}(\theta, t) \mathbf{2} + r\omega_S \hat{\boldsymbol{\theta}} \times B_{Sr} \mathbf{f} \\ &= \frac{\mu_0 \ell_2 N_S I_S}{4g} \omega_S \cos(\theta - \omega_S t) \mathbf{2} - r\omega_S \frac{\mu_0 \ell_2 N_S I_S}{4gr} \cos(\theta - \omega_S t) \mathbf{2} \\ &= 0 \end{split}$$

$$\vec{\mathbf{B}}_{S}' = B_{Sr}'(r',\theta')\mathbf{\hat{r}} = \vec{\mathbf{B}}_{S|_{r=r',\theta=\theta'+\omega_{S}t}} = \frac{\mu_{0}\ell_{2}N_{S}I_{S}}{4gr'}\cos(\theta')\mathbf{\hat{r}}.$$

Transformation of the \vec{E} and \vec{B} fields.

The fact $\vec{\mathbf{E}}_{S}' = 0$ could have been **anticipated**.

• To an observer in the rotating coordinate system, the magnetic field is given by

$$ec{\mathbf{B}}_S' = (\mu_0 \ell_2 N_S I_S / 4gr') \cos(\theta') \mathbf{\hat{r}}$$
.

- This is static in time.
- Faraday's law $\nabla \times \vec{\mathbf{E}}_S' = -\partial \vec{\mathbf{B}}_S' / \partial t = 0$ then gives $\vec{\mathbf{E}}_S' = \mathbf{0}$ as the solution.

In the rotating coordinate system the force on rotor loop a is

$$\vec{\mathbf{F}}' = q(\vec{\mathbf{E}}_S' + \vec{\mathbf{v}}_{Ra}' \times \vec{\mathbf{B}}_S') = q\vec{\mathbf{v}}_{Ra}' \times \vec{\mathbf{B}}_S'.$$

With $\omega_R' = -(\omega_S - \omega_R)$, total velocity of the charge carriers in the rotating system is

$$\vec{\mathbf{v}}_{Ra}' = \begin{cases} (\ell_2/2)\omega_R' \hat{\boldsymbol{\theta}} + v_{dra} \hat{\mathbf{z}} & \text{side } a \\ (\ell_2/2)\omega_R' \hat{\boldsymbol{\theta}} - v_{dra} \hat{\mathbf{z}} & \text{side } a' \end{cases}$$

- $\bullet \; \vec{\mathbf{B}}_S' = \vec{\mathbf{B}}_S = B_{Sr} \hat{\mathbf{r}}$
- $oldsymbol{ heta} heta' = heta_R + \pi/2 \omega_S t = \omega_R' t + \pi/2 \; ext{ side a}$
- $\theta' = \theta_R \pi/2 \omega_S t = \omega_R' t \pi/2$ side a'

$$\vec{\mathbf{v}}_{Ra}' \times \vec{\mathbf{B}}_{S}' = \begin{cases} + v_{dra} B_{Sr}(\ell_{2}/2, \omega_{R}' t + \pi/2) \hat{\boldsymbol{\theta}} - (\ell_{2}/2) \omega_{R}' B_{Sr}(\ell_{2}/2, \omega_{R}' t + \pi/2) \hat{\mathbf{z}} & \text{side a} \\ - v_{dra} B_{Sr}(\ell_{2}/2, \omega_{R}' t - \pi/2) \hat{\boldsymbol{\theta}} - (\ell_{2}/2) \omega_{R}' B_{Sr}(\ell_{2}/2, \omega_{R}' t - \pi/2) \hat{\mathbf{z}} & \text{side a}' \end{cases}$$

where

$$B_{Sr}(\ell_2/2, \omega_R' t + \pi/2) = \frac{\mu_0 \ell_2 N_S I_S}{4g(\ell_2/2)} \cos(\omega_R' t + \pi/2) = -\frac{\mu_0 N_S I_S}{2g} \sin(\omega_R' t)$$

$$B_{Sr}(\ell_2/2, \omega_R' t - \pi/2) \ = \ \frac{\mu_0 \ell_2 N_S I_S}{4g(\ell_2/2)} \cos(\omega_R' t - \pi/2) = + \frac{\mu_0 N_S I_S}{2g} \sin(\omega_R' t).$$

Finally

$$\vec{\mathbf{F}}_{\mathsf{side}\ a}^{\prime}/q = \vec{\mathbf{v}}_{Ra}^{\prime} \times \vec{\mathbf{B}}_{S}^{\prime} = -v_{\mathit{dra}} \frac{\mu_{0} N_{S} I_{S}}{2g} \sin(\omega_{R}^{\prime} t) \hat{\boldsymbol{\theta}} + (\ell_{2}/2) \omega_{R}^{\prime} \frac{\mu_{0} N_{S} I_{S}}{2g} \sin(\omega_{R}^{\prime} t) \hat{\boldsymbol{z}}$$

$$\vec{\mathbf{F}}_{\mathrm{side }\,\mathit{at}}^{\prime}/q \quad = \quad \vec{\mathbf{v}}_{\mathit{Ra}}^{\prime} \times \vec{\mathbf{B}}_{\mathit{S}}^{\prime} = -v_{\mathit{dra}} \frac{\mu_{0} \mathit{N}_{\mathit{S}} \mathit{I}_{\mathit{S}}}{2\mathit{g}} \sin(\omega_{\mathit{R}}^{\prime} t) \hat{\boldsymbol{\theta}} - (\ell_{2}/2) \omega_{\mathit{R}}^{\prime} \frac{\mu_{0} \mathit{N}_{\mathit{S}} \mathit{I}_{\mathit{S}}}{2\mathit{g}} \sin(\omega_{\mathit{R}}^{\prime} t) \hat{\boldsymbol{z}}.$$

• As $\omega_R' = -(\omega_S - \omega_R)$ this is the **same** as in the **stator** coordinate system.

We have shown

$$\vec{\mathbf{F}}'/q = \vec{\mathbf{v}}'_{Ra} \times \vec{\mathbf{B}}'_{S} = \vec{\mathbf{F}}/q = q(\vec{\mathbf{E}}_{S} + \vec{\mathbf{v}}_{Ra} \times \vec{\mathbf{B}}_{S}).$$

The forces in the two coordinate systems must be equal.

The total torque on rotor loop a is then $(i_{Ra} = qNSv_{dra})$

$$\vec{\boldsymbol{\tau}}_{\mathit{Ra}}' = 2(q\mathit{NS}\ell_1)(-\mathit{v}_{\mathit{dra}}) \frac{\mu_0 \mathit{N}_S \mathit{I}_S}{2g} \sin(\omega_R' t) (\ell_2/2) (\mathbf{P} \times \boldsymbol{\hat{\theta}}) = -i_{\mathit{Ra}} \frac{\mu_0 \ell_1 \ell_2 \mathit{N}_S \mathit{I}_S}{2g} \sin(\omega_R' t) \mathbf{\hat{z}}$$

or

$$au_{Ra}' = i_{Ra} rac{\mu_0 \ell_1 \ell_2 N_S I_S}{2g} \sin \left((\omega_S - \omega_R) t \right).$$

Similarly

$$\vec{\tau}_{Rb}' = -i_{Rb} \frac{\mu_0 \ell_1 \ell_2 N_S I_S}{2g} \cos(\omega_R' t) \mathbf{\hat{z}} = -i_{Rb} \frac{\mu_0 \ell_1 \ell_2 N_S I_S}{2g} \cos((\omega_S - \omega_R) t) \mathbf{\hat{z}}.$$

We showed

$$\left(\vec{\mathbf{v}}_{Ra}' \times \vec{\mathbf{B}}_S'\right)_{\mathbf{z}} = \left\{ \begin{array}{ll} +\omega_R' \frac{\mu_0 \ell_2 N_S I_S}{4g} \sin(\omega_R' t) \mathbf{\hat{z}} & \text{for side } a \\ \\ -\omega_R' \frac{\mu_0 \ell_2 N_S I_S}{4g} \sin(\omega_R' t) \mathbf{\hat{z}} & \text{for side } a'. \end{array} \right.$$

As $ec{\mathbf{E}}_S' = \mathbf{0}$, this is the **total axial force** per unit charge $(\vec{\mathbf{F}}/q)_z$. With

$$d\vec{\ell} = \begin{cases} dz\hat{\mathbf{2}} & \text{for side } a \\ -dz\hat{\mathbf{2}} & \text{for side } a' \end{cases}$$

the emf induced in rotor loop a is simply

$$\begin{split} \xi_{Ra}' &= \oint\limits_{\text{rotor loop } a} (\vec{\mathbf{F}}/q)_z \cdot d\vec{\ell} &= \ell_1 \omega_R' \frac{\mu_0 \ell_2 N_S I_S}{2g} \sin(\omega_R' t) \\ &= (\omega_S - \omega_R) \frac{\mu_0 \ell_1 \ell_2 N_S I_S}{2g} \sin((\omega_S - \omega_R) t). \end{split}$$

Similarly,

$$\xi_{Rb}' = \omega_R' \frac{\mu_0 \ell_1 \ell_2 N_S I_S}{2g} \cos(\omega_R' t) = -(\omega_S - \omega_R) \frac{\mu_0 \ell_1 \ell_2 N_S I_S}{2g} \cos((\omega_S - \omega_R) t).$$

With

$$i_{Ra} = \xi'_{Ra}/R_R$$

 $i_{Rb} = \xi'_{Rb}/R_R$

the total torque on the rotor is

$$\tau' = \tau'_{Ra} + \tau'_{Rb} = -\omega'_R \left(\frac{\mu_0 \ell_1 \ell_2 N_S I_S}{2g}\right)^2 \frac{1}{R_R} = \frac{1}{R_R} \left(\frac{\mu_0 \ell_1 \ell_2 N_S I_S}{2g}\right)^2 (\omega_S - \omega_R).$$

This is the **same** as in the **stator** coordinate system.

We just showed

$$\tau' = -\omega_R' \left(\frac{\mu_0 \ell_1 \ell_2 N_S I_S}{2g} \right)^2 \frac{1}{R_R} > 0$$

$$\omega_R' = -(\omega_S - \omega_R) < 0.$$

The mechanical power delivered to the rotor is

$$\tau'\omega_R' = -(\omega_S - \omega_R)^2 \left(\frac{\mu_0 \ell_1 \ell_2 N_S I_S}{2g}\right)^2 \frac{1}{R_R} < 0.$$

The **tangential velocity** of the rotor loop is in the $-\hat{\theta}$ direction.

But the **torque** is pushing in the $+\hat{\theta}$ direction, i.e., it **opposes** the rotor's speed! Where is this mechanical power going?

$$i_{Ra}\xi'_{Ra} + i_{Rb}\xi'_{Rb} = (\xi'_{Ra})^2 / R_R + (\xi'_{Rb})^2 / R_R = (\omega_S - \omega_R)^2 \left(\frac{\mu_0 \ell_1 \ell_2 N_S I_S}{2g}\right)^2 \frac{1}{R_R}$$

In the **rotating** system, the induction machine is a **generator** rather than a motor.

Magnetic Force and Work

In the **rotating** system $\vec{\mathbf{E}}_S' = \mathbf{0}$ so

$$\vec{\mathbf{F}}'/q = \vec{\mathbf{E}}_S' + \vec{\mathbf{v}}_{Ra}' imes \vec{\mathbf{B}}_S' = \vec{\mathbf{v}}_{Ra}' imes \vec{\mathbf{B}}_S'$$

where

$$\vec{\mathbf{v}}_{Ra}' = \left\{ \begin{array}{ll} (\ell_2/2) \omega_R' \hat{\boldsymbol{\theta}} + v_{dra} \mathbf{\hat{z}} & \text{side } a \\ (\ell_2/2) \omega_R' \hat{\boldsymbol{\theta}} - v_{dra} \mathbf{\hat{z}} & \text{side } a'. \end{array} \right.$$

Explicitly,

$$\vec{\mathbf{v}}_{Ra}' \times \vec{\mathbf{B}}_S' = \left\{ \begin{array}{ll} -v_{dra} \frac{\mu_0 N_S I_S}{2g} \sin(\omega_R' t) \hat{\boldsymbol{\theta}} + \omega_R' \frac{\mu_0 \ell_2 N_S I_S}{4g} \sin(\omega_R' t) \hat{\mathbf{z}} & \text{side } a \\ \\ -v_{dra} \frac{\mu_0 N_S I_S}{2g} \sin(\omega_R' t) \hat{\boldsymbol{\theta}} - \omega_R' \frac{\mu_0 \ell_2 N_S I_S}{4g} \sin(\omega_R' t) \hat{\mathbf{z}} & \text{side } a'. \end{array} \right.$$

The power per unit charge done by the **magnetic force** $\vec{\mathbf{F}}'=q(\vec{\mathbf{v}}_{Ra}' imes \vec{\mathbf{B}}_S')$ is

$$(\vec{\mathbf{F}}'/q)\cdot\vec{\mathbf{v}}'_{Ra}=(\vec{\mathbf{v}}'_{Ra} imes\vec{\mathbf{B}}'_S)\cdot\vec{\mathbf{v}}'_{Ra}\equiv\mathbf{0}$$

 Magnetic forces cannot change the energy of a charged particle as they are always orthogonal to the velocity.

Magnetic Force and Work

- The observer is above side a and **rotating** with $\vec{\mathbf{B}}_S$ at angular speed ω_S .
- The magnetic force **opposes** the rotor velocity to produce the current in the rotor.
- The magnetic force **converts** the mechanical (kinetic) energy into electrical energy.

$$\begin{split} 2(qNS\ell_1)\vec{\mathbf{f}}'\cdot\vec{\mathbf{v}}'_{Ra} &= 2(qNS\ell_1)(\vec{\mathbf{v}}'_{Ra}\times\vec{\mathbf{B}}'_S)\cdot\vec{\mathbf{v}}'_{Ra} \\ &= 2(qNS\ell_1)\left(-v_{dra}\frac{\mu_0N_SI_S}{2g}\sin(\omega'_Rt)\hat{\boldsymbol{\theta}} + \omega'_R\frac{\mu_0\ell_2N_SI_S}{4g}\sin(\omega'_Rt)\hat{\boldsymbol{z}}\right)\cdot\left(\frac{\ell_2}{2}\omega'_R\hat{\boldsymbol{\theta}} + v_{dra}\hat{\boldsymbol{z}}\right) \\ &= 2\left(-qNS\ell_1v_{dra}\frac{\mu_0N_SI_S}{2g}\sin(\omega'_Rt)\hat{\boldsymbol{\theta}}\right)\cdot\frac{\ell_2}{2}\omega'_R\hat{\boldsymbol{\theta}} + 2\left(\omega'_R\frac{\mu_0\ell_2N_SI_S}{4g}\sin(\omega'_Rt)\hat{\boldsymbol{z}}\right)\cdot qNS\ell_1v_{dra}\hat{\boldsymbol{z}}. \end{split}$$

Magnetic Force and Work

• By the previous slide

$$\begin{split} 2(qNS\ell_1)\vec{\mathbf{F}}'\cdot\vec{\mathbf{v}}'_{Ra} &= -\left(i_{Ra}\frac{\mu_0\ell_1\ell_2N_SI_S}{2g}\sin(\omega_R't)\right)\omega_R'\hat{\boldsymbol{\theta}}\cdot\hat{\boldsymbol{\theta}} + \left(\omega_R'\frac{\mu_0\ell_1\ell_2N_SI_S}{2g}\sin(\omega_R't)\right)i_{Ra}\mathbf{2}\cdot\mathbf{2}\\ &= 0. \end{split}$$

- The coefficient of $\hat{\theta} \cdot \hat{\theta}$ is $\tau'_{R_2} \omega'_R$ the mechanical power.
- The coefficient of $\mathbf{\hat{z}} \cdot \mathbf{\hat{z}}$ is $\xi'_{Ra}i_{Ra}$ the electrical power.
- These terms are equal in magnitude, but opposite in sign.
- The magnetic force converts the mechanical energy to electrical energy.

