Supplementary Material

April 13, 2023

1 Improved MitM Attack on Ascon-XOF

For practical attacks on Ascon, we also apply our tools on Ascon-XOF with 64-bit hash in two tweaked settings given by the designers of Ascon [1]. In the setting of equivalent IV=0 and and one 64-bit word, we reduce time of the 2-round preimage attack from 2^{39} [1] to $2^{33.16}$, and also achieve the first 3-round preimage attack with $2^{54.33}$ in Sect. 1.1. When increasing to 3-word rate as [1], we reduce the 3-round preimage attack from 2^{48} [1] to 2^{33} , and also achieve the first 4-round preimage attack with $2^{53.59}$ in Sect. 1.2. We also give an experiment of 2-round MitM collision attack on Ascon-XOF with 64-bit hash in Sect. 1.3, following the setting given by the designers in [1], i.e., equivalent IV=0 and one 64-bit word rate.

For ease of reading, we recall the round function of Ascon, which consists of three operations: constant addition p_C , non-linear Sbox p_S and linear layer p_L . Denote the internal states of round r as $A^{(r)} \xrightarrow{p_S \circ p_C} S^{(r)} \xrightarrow{p_L} A^{(r+1)}$. The Sbox for Ascon maps $(a_0, a_1, a_2, a_3, a_4) \in \mathbb{F}_2^5$ to $(b_0, b_1, b_2, b_3, b_4) \in \mathbb{F}_2^5$, and the algebraic normal form (ANF) of the Sbox is listed as follows:

$$b_0 = a_4 a_1 + a_3 + a_2 a_1 + a_2 + a_1 a_0 + a_1 + a_0,$$

$$b_1 = a_4 + a_3 a_2 + a_3 a_1 + a_3 + a_2 a_1 + a_2 + a_1 + a_0,$$

$$b_2 = a_4 a_3 + a_4 + a_2 + a_1 + 1,$$

$$b_3 = a_4 a_0 + a_4 + a_3 a_0 + a_3 + a_2 + a_1 + a_0,$$

$$b_4 = a_4 a_1 + a_4 + a_3 + a_1 a_0 + a_1.$$
(1)

1.1 Improved MitM preimage attack on Ascon-XOF

In the setting with an all-zero equivalent IV and for a rate of 64, we consider the practical MitM preimage attacks on Ascon-XOF with a 64-bit hash value and a 64-bit security claim against preimage attack. The paddings and round constants are also omitted for simplicity as [1]. Applying our automatic tools, we find an improved 2-round preimage attack and the first 3-round preimage attack on Ascon-XOF in this setting.

 $S^{(0)}$

 $A^{(0)}$

1.1.1 Improved MitM preimage attack on 2-round Ascon-XOF

The 2-round MitM preimage attack on Ascon-XOF is given in Figure 1. In the starting state $A^{(0)}$, the 256-bit outer part $\{A^{(0)}_{\{*,1\}},A^{(0)}_{\{*,2\}},A^{(0)}_{\{*,3\}},A^{(0)}_{\{*,4\}}\}$ are all zeros, which are marked by \blacksquare . The 64 bits inner part $A^{(0)}_{\{*,0\}}$ have 32 bits \blacksquare and 32 bits \blacksquare . Then after the first substitution layer p_S , we have

$$\begin{cases} S_{\{z,0\}}^{(0)} = S_{\{z,1\}}^{(0)} = S_{\{z,3\}}^{(0)} = A_{\{z,0\}}^{(0)}, \\ S_{\{z,2\}}^{(0)} = 1, \\ S_{\{z,4\}}^{(0)} = 0, \end{cases}$$
 (2)

where $0 \le z \le 63$. Then after the linear layer p_L , we can get $A^{(1)}$ for matching, where m = 34. In the computation from $A^{(0)}$ to $A^{(1)}$, there is no DoF of \blacksquare bits and \blacksquare bits consumed. Therefore, $\text{DoF}_{\mathcal{R}} = 32$, $\text{DoF}_{\mathcal{B}} = 32$. We use one message block to conduct the MitM attack. The 2-round MitM preimage attack is given in Algorithm 1. A space of 2^{32+32} is traversed to find a 64-bit preimage.

Algorithm 1: Improved Preimage Attack on 2-round Ascon-XOF

- 1 Inversely precompute $S^{(1)}_{\{*,0\}}$ with the first 64-bit hashing value
- **2** Compute forward to determine the 34-bit matching point with fixing both \blacksquare and \blacksquare in $A^{(0)}$ as 0, *i.e.*, compute 34 $f'''_{M} = f_{G}$.
- both \blacksquare and \blacksquare in $A^{(0)}$ as 0, *i.e.*, compute 34 $f''''_{\mathcal{M}} = f_{\mathcal{G}}$.

 3 Traversing the $2^{\lambda_{\mathcal{R}}} = 2^{32}$ values for \blacksquare in $A^{(0)}$ while fixing \blacksquare as 0, compute forward to determine the 34-bit matching point, *i.e.*, compute 34 $f'_{\mathcal{M}} = f_{\mathcal{R}} \oplus f_{\mathcal{G}}$. Build the table L_1 and store the 32 bits \blacksquare of $A^{(0)}$, which is indexed by the 34-bit matching point.
- 4 Traversing the $2^{\lambda_{\mathcal{B}}} = 2^{32}$ values for \blacksquare in $A^{(0)}$ while fixing \blacksquare as 0, compute forward to determine the 34-bit matching point, *i.e.*, compute $34 f''_{\mathcal{M}} = f_{\mathcal{B}} \oplus f_{\mathcal{G}}$. Build the table L_2 and store the 32 bits \blacksquare of $A^{(0)}$, which is indexed by the 34-bit matching point.
- 5 for values matched between L_1 and L_2 do
- 6 | if it leads to the given hash value then
- 7 | Output the preimage
- end
- 9 end

The time complexity of steps in Alg. 1 are analyzed below:

- In Line 3, the time complexity is 2^{32} 2-round Ascon.
- In Line 4, the time complexity is 2^{32} 2-round Ascon.
- In Line 5, the time is $2^{32+32-34} = 2^{30}$ 2-round Ascon.

The total time complexity is $2^{32}+2^{32}+2^{30}\approx 2^{33.16}$ 2-round Ascon. The memory is 2^{33} to store L_1 and L_2 .

1.1.2 Improved MitM preimage attack on 3-round Ascon-XOF

In the same setting, we also find the first 3-round preimage attack on Ascon-XOF, as shown in Figure 2. The starting state $A^{(0)}$ have 41 bits \blacksquare and 11 bits \blacksquare . In the computation from $A^{(0)}$ to $A^{(2)}$, the consumed DoFs of \blacksquare are 29 and there is no DoF of \blacksquare consumed. Therefore, DoF_R = 41 - 29 = 12, DoF_B = 11. We have 11-bit matching point in $A^{(2)}$ (m = 11).

The attack procedure is given in Alg. 2, and the time complexities of steps are analyzed below:

- In Line 4, the time is $2^{12+41} = 2^{53}$ 3-round Ascon.
- In Line 8, since U stores 41 bits and 11-bit matching point, building L_1 is just to retrieve the values in $U[c_{\mathcal{R}}]$. Assume one table access is about one Sbox application, the time of Line 8 is $2^{12+29+12} \times \frac{1}{192} = 2^{53} \times 2^{-7.58} = 2^{45.42}$ 3-round Ascon.
- In Line 11, the time is $2^{12+29+11} = 2^{52}$ 3-round Ascon.
- In Line 14, the time is $2^{12+29+12+11-11} = 2^{53}$ 3-round Ascon.

The total time complexity is $2^{53}+2^{45.42}+2^{52}+2^{53}\approx 2^{54.33}$ 3-round Ascon. The memory is 2^{41} to store U.

1.2 Improved MitM preimage attack on Ascon-XOF with increased rate

We also consider the attacks on Ascon-XOF, where the rate is increased to the first 3 words as [1]. We target on 3-/4-round Ascon-XOF with a 64-bit hash value and a 64-bit security claim against preimage attack. The equivalent IV is set to 0. For simplicity, the attacks don't consider the constant addition and the paddings.

1.2.1 Improved MitM preimage attack on 3-round Ascon-XOF with 3-word rate

The 3-round MitM preimage attack on Ascon-XOF with 3-block rate is given in Figure 3. In the starting state $A^{(0)}$, we have $A^{(0)}_{\{z,3\}} = A^{(0)}_{\{z,4\}} = 0 (0 \le z \le 63)$, due to the IV = 0 which are marked by \blacksquare . Furthermore, we choose an initial structure, where $A^{(0)}_{\{z,0\}} = A^{(0)}_{\{z,2\}} + c_z = x_z + c_z$ marked by \blacksquare / \blacksquare and $A^{(0)}_{\{z,1\}} = 0$ marked by \blacksquare . The x_z is binary variable and c_z is constant for $0 \le z \le 63$. Thus, after the first round, we get the following structure as Equ. (3):

Figure 2: The MitM preimage attack on 3-round Ascon-XOF

Algorithm 2: MitM Preimage Attack on 3-round Ascon-XOF

```
1 Inversely precompute S^{(2)}_{\{*,0\}} with the first 64-bit hashing value
 2 for 2^{12} values of the \blacksquare bits in A^{(0)}
 з do
          Traversing the 2^{\lambda_{\mathcal{R}}} = 2^{41} values for \blacksquare in A^{(0)} while fixing \blacksquare as 0,
 4
            compute forward to determine the 29-bit ■/■ (denoted as
            c_{\mathcal{R}} \in \mathbb{F}_2^{29}), and the 11-bit matching point, i.e., compute 11
            f'_{\mathcal{M}} = f_{\mathcal{R}} \oplus f_{\mathcal{G}}. Build the table U and store the 41-bit \blacksquare of A^{(0)} as
            well as the 11-bit matching point in U[c_{\mathcal{R}}].
          for c_{\mathcal{R}} \in \mathbb{F}_2^{29} do
 5
                Randomly pick a 41-bit \blacksquare e \in U[c_{\mathcal{R}}], and set \blacksquare in A^{(0)} as 0, compute to the matching point to get 11 f'''_{\mathcal{M}} = f_{\mathcal{G}} + Const(e)
 6
                for 2^{12} values in U[c_{\mathcal{R}}] do
 7
                     Restore the values of \blacksquare of A^{(0)} and the corresponding 11-bit
  8
                       matching point (i.e., 11 f_{\mathcal{R}} \oplus f_{\mathcal{G}} = f'_{\mathcal{M}}) in a list L_1 indexed
                        by the matching point
                end
 9
                for 2^{11} values of \blacksquare do
10
                     Set the 41-bit \blacksquare in A^{(0)} as e. Compute to the matching point
11
                       to get 11 \ f''_{\mathcal{M}} = f_{\mathcal{B}} + f_{\mathcal{G}} + Const(e). Together with f'''_{\mathcal{M}}, compute f_{\mathcal{B}} = f''_{\mathcal{M}} + f'''_{\mathcal{M}} and store \blacksquare in L_2 indexed by the
                        11-bit matching point
12
                end
                for values matched between L_1 and L_2 do
13
                     if it leads to the given hash value then
14
                           Output the preimage
15
                     end
16
                \mathbf{end}
17
          end
18
19 end
```

$$\begin{cases}
A_{\{z,0\}}^{(1)} = c_z + c_{z-19} + c_{z-28}, \\
A_{\{z,1\}}^{(1)} = c_z + c_{z-61} + c_{z-39}, \\
A_{\{z,2\}}^{(1)} = x_z + x_{z-1} + x_{z-6} + 1, \\
A_{\{z,3\}}^{(1)} = c_z + c_{z-10} + c_{z-17}, \\
A_{\{z,4\}}^{(1)} = 0,
\end{cases}$$
(3)

where $0 \le z \le 63$ and the computation of z is modular 64. Additional, in the second round, we can add the constraint $A_{\{z,1\}}^{(1)} + A_{\{z,3\}}^{(1)} + 1 = 0$ to make $S_{\{z,1\}}^{(1)}$ to be a constant, since $b_1 = (a_3 + a_1 + 1)a_2 + a_4 + a_3a_1 + a_3 + a_1 + a_0$. Therefore, all $A_{\{z,1\}}^{(2)}$ will be constants and get corresponding matching points.

Since we set $A_{\{z,2\}}^{(0)} = A_{\{z,0\}}^{(0)} + c_z = x_z + c_z$, the starting state $A^{(0)}$ only contains 32 free bits and 32 free bits. Without consuming DoF in the following computation, we have $DoF_{\mathcal{B}} = 32$, $DoF_{\mathcal{R}} = 32$. Totally, we get a 64-bit matching point. The attack procedure is given in Alg. 3, and the time complexities of steps are analyzed below:

- In Line 2, the time of solving the linear system is $64^3 = 2^{18}$ bit operations.
- In Line 3, the time complexity of computing $f_{\mathcal{M}}^{""}$ is 1 3-round Ascon.
- In Line 5, the time complexity of computing $f'_{\mathcal{M}}$ is 2^{32} 3-round Ascon.
- In Line 8, the time complexity of computing $f''_{\mathcal{M}}$ is 2^{32} 3-round Ascon.
- In Line 11, the time is $2^{32+32-64} = 1$ 3-round Ascon.

The total time complexity is $2^{18}+2^{32}+2^{32}+2\approx 2^{33}$ 3-round Ascon. The memory is 2^{33} to store L_1 and L_2 .

1.2.2 MitM preimage attack on 4-round Ascon-XOF with 3-word rate

We also find an MitM preimage attack on 4-round Ascon-XOF with 3-word rate as shown in Figure 4. The starting state $A^{(0)}$ contains 12 free \blacksquare bits and 49 free \blacksquare bits due to the initial structure. In the computation from $S^{(0)}$ to $A^{(3)}$, the accumulated consumed DoF of \blacksquare is 37 and the accumulated consumed DoF of \blacksquare is 0. Therefore, $\text{DoF}_{\mathcal{B}} = 12$, $\text{DoF}_{\mathcal{R}} = 12$. There is a 12-bit matching in $A^{(3)}$, i.e., m = 12. The details of the attack are given in Alg. 4.

The time complexities of steps in Alg. 4 are analyzed below:

- In Line 2, the time of solving the linear system is $64^3 = 2^{18}$ bit operations.
- In Line 5, the time is $2^{3+49} = 2^{52}$ 4-round Ascon.

gure 3: The MitM preimage attack on 3-round Ascon-X0F with 3-word rat

Algorithm 3: Improved Preimage Attack on 3-round Ascon-XOF for a rate of 192

```
1 Inversely precompute S^{(2)}_{\{*,0\}} with the first 64-bit hashing value
 2 Compute the constants satisfying A_{\{z,1\}}^{(1)} + A_{\{z,3\}}^{(1)} + 1 = 0, \ 0 \le z \le 63
       according Equ. (3).
 3 Compute forward to determine the 64-bit matching point with fixing
      both \blacksquare and \blacksquare in A_{\{z,2\}}^{(0)}, i.e. as 0, compute 64 f_{\mathcal{M}}^{""} = f_{\mathcal{G}}.
 4 for 2^{32} values of \blacksquare do
          With fixing \blacksquare in A_{\{z,2\}}^{(0)} as 0, compute forward to determine the 64-bit matching point, i.e., compute 64 f'_{\mathcal{M}} = f_{\mathcal{R}} \oplus f_{\mathcal{G}}. Build the table L_1 and store the 32-bit \blacksquare of A^{(0)} indexed by the 64-bit
            matching point f'_{\mathcal{M}}.
 6 end
 7 for 2^{32} values of \blacksquare do
          Set the 32-bit \blacksquare in A_{\{z,2\}}^{(0)} as 0. Compute to the matching point to
            get 64 f''_{\mathcal{M}} = f_{\mathcal{B}} + f'_{\mathcal{G}} and store \blacksquare in L_2 indexed by the 64-bit
            matching point
10 for values matched between L_1 and L_2 (f_{\mathcal{M}} = f'_{\mathcal{M}} \oplus f''_{\mathcal{M}} \oplus f'''_{\mathcal{M}}) do
          if it leads to the given hash value then
            Output the preimage
12
          end
13
14 end
```


Figure 4: The MitMpreimage attack on4-round Ascon-XOF with

Algorithm 4: MitM Preimage Attack on 4-round Ascon-XOF for a rate of 192

```
1 Inversely precompute S^{(3)}_{\{*,0\}} with the 64-bit hashing value
 {\bf 2} Compute the constants satisfying A^{(1)}_{\{z,1\}}+A^{(1)}_{\{z,3\}}+1=0,\ 0\leq z\leq 63
      according Equ. (3).
 3 for 2^3 values of the \blacksquare bits in A_{\{*,2\}}^{(0)}
          Traversing the 2^{\lambda_{\mathcal{R}}} = 2^{49} values for \blacksquare in A^{(0)} while fixing \blacksquare as 0,
 5
           compute forward to determine the 37-bit ■/■ (denoted as
           c_{\mathcal{R}} \in \mathbb{F}_2^{37}), and the 12-bit matching point, i.e., compute 12
           f'_{\mathcal{M}} = f_{\mathcal{R}} \oplus f_{\mathcal{G}}. Build the table U and store the 49-bit \blacksquare of A^{(0)} as
           well as the 12-bit matching point in U[c_{\mathcal{R}}].
          for c_{\mathcal{R}} \in \mathbb{F}_2^{37} do
 6
               Randomly pick a 49-bit \blacksquare e \in U[c_{\mathcal{R}}], and set \blacksquare in A^{(0)} as 0,
 7
                compute to the matching point to get 12 f_{\mathcal{M}}^{""} = f_{\mathcal{G}} + Const(e)
               for 2^{12} values in U[c_{\mathcal{R}}] do
 8
                    Restore the values of \blacksquare of A^{(0)} and the corresponding 12-bit
  9
                      matching point (i.e., 12 f_{\mathcal{R}} \oplus f_{\mathcal{G}} = f'_{\mathcal{M}}) in a list L_1 indexed
                      by the matching point
               end
10
               for 2^{12} values of \blacksquare do
11
                    Set the 49-bit \blacksquare in A^{(0)} as e. Compute to the matching point
12
                      to get 12 f''_{\mathcal{M}} = f_{\mathcal{B}} + f_{\mathcal{G}} + Const(e). Together with f'''_{\mathcal{M}}, compute f_{\mathcal{B}} = f''_{\mathcal{M}} + f'''_{\mathcal{M}} and store \blacksquare in L_2 indexed by the
                      12-bit matching point
13
               end
               for values matched between L_1 and L_2 do
14
                    if it leads to the given hash value then
15
                         Output the preimage
16
                    end
17
               end
         end
19
20 end
```

- In Line 9, since U stores 49 bits and 12-bit matching point, building L_1 is just to retrieve the values in $U[c_{\mathcal{R}}]$. Assume one table access is about one Sbox application, the time of Line 9 is $2^{3+37+12} \times \frac{1}{256} = 2^{52} \times 2^{-8} = 2^{44}$ 4-round Ascon.
- In Line 12, the time is $2^{3+37+12} = 2^{52}$ 4-round Ascon.
- In Line 15, the time is $2^{3+37+12+12-12} = 2^{52}$ 4-round Ascon.

The total time complexity is $2^{18}+2^{52}+2^{44}+2^{52}+2^{52}\approx 2^{53.59}$ 3-round Ascon. The memory is 2^{49} to store U.

1.3 An experiment on 2-round collision attack on Ascon-XOF

To verify the correctness, we give a collision attack on 2-round Ascon-XOF with 64-bit hash, following the setting given by the designers, i.e., equivalent IV=0 and one 64-bit word rate. The round constants and paddings are also omitted. The attack is shown in Figure 5. $A^{(0)}$ contains $17 \blacksquare$ and $17 \blacksquare$, and there are 16 matching points, where $DoF_{\mathcal{B}} = 17$, $DoF_{\mathcal{R}} = 17$ and m = 16. In the practical attack, we omit the linear layer p_L in the last round for simplicity. That is, we regard $S^{(1)}_{\{*,0\}}$ as the hash value.

Without loss of generality, we set the 16-bit partial target to all-zero. Then we need 2^{24} different M with the same fixed 16-bit partial target. Since each MitM episode can produce 2^{18} partial target preimages, we need repeat 2^6 MitM episodes. The theoretical time is $2^6 \cdot (2^{17} + 2^{17} + 2^{18}) = 2^{25}$, while the time of exhaustive search is 2^{32} . The memory complexity is 2^{24} .

In each episodes, we traverse the 2^{17} and 2^{17} and set the other 30 bits of $A_{\{*,0\}}^{(0)}$ to be random value. In our practical experiment, when we set the number of MitM episodes to 2^5 , we get 2^{26} partial target preimages. Among them we find one collision. The experiment is very close to our expectation (one collision among the 2^{24} partial target preimages). Testing for several times, we get some collision examples, which are listed in Table 1.

References

[1] Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Preliminary analysis of Ascon-Xof and Ascon-Hash (2019), https://ascon.iaik.tugraz.at,

 $S^{(0)}$

 $A^{(0)}$

The MitM preimage attack on 4-round Ascon-XOF with 3-word

Table 1: Collision examples of 2-round Ascon-XOF for a rate of 64.

Round	Message	Hash
2	63dc48f8a38448f3	d60459 ea403147 dc
	63d2c3eca38448f3	
	7e311ec288cef6e5	67e1582200f036c4
	583a0ae208cef6e5	
	83cdd944c8cef6e5	7fec154b80a07f40
	4a9bf94588cef6e5	
	1 edc 991 f659 8e891	b92c4d688121434c
	25e74993dee08bd1	
	84b259191785824b	64294d0b81b0161c
	e02b4a331785824b	
	6d422bfd7d7a4e09	35e45468002115b8
	4b006fdc372f9836	
	ed422bfd7d7a4e09	b5c40468002115b8
	cb006fdc372f9836	
	5ef61d6b9a91f2e4	60e858480161322c
	49edf09c41819d60	