The RSA Cryptosystems (6)

RSA Key Generation

- $ightharpoonup P \neq Q$ large prime numbers, N = PQ
- ➤ Choose random 1 < E < (P-1)(Q-1)s.t. E and (P-1)(Q-1) are relatively prime.
 - ⇒ 1 < D < (P-1)(Q-1) multiplicative inverse **ED = 1** (mod (P-1)(Q-1))
- After that, P,Q should be discarded safely.
 We will only use N,E,D in the cryptosystem.

The RSA Cryptosystems (7)

 \triangleright N(=PQ), E are public. (E is Public Key.)

RSA Encryption (E is Encryption Key.)

- ♦ The plaintext is $0 \le X \le N-1$.
- ♦ The ciphertext is $Y \equiv X^E \pmod{N}$.

RSA Decryption (D is Decryption Key.)

◆ From the ciphertext Y, calculate $Z \equiv Y^D$ (mod N). Then Z=X.