ESPACIOS TANGENTES Y NORMALES

DEFINICIÓN 6.

M subvaried ad n - dimensional de \mathbb{R}^{n+k} ; $\vec{v} \in \mathbb{R}^{n+k}$ es un <u>Vector Tancente</u> a M en un punto $a \in M$ si existe una wava $y: (-\varepsilon, \varepsilon) \to M$ diferenciable y y(0) = p, $y'(0) = \vec{v}$.

DEFÎNICION 7 El ESPACIO TANGENTE de una subvariedad 11 en un punto a 6 M, que se escribe Ta(M), es el conjunto de todos los vectores tangentes a M en el punto a.

TEOREMA 8.

Sea M una subvariedad n-dimonhonal de IR^{n+k} y a & M. 1. Ta (M) es un subespació vectorial n-dim. de IR^{n+k}

- 2. Si Fes como en la definición 1 Ta (M) = ter D F(a)
- 3. Si $(\dot{\phi}, U)$ es una parametrización local de M corca de a como en el teorema 2, con $(\dot{\phi}(0)=a)$, $T_a(M)=Img.D\phi(0)$

MCIR^{n+k} subvariedad y $a \in M$. El HIPERPLANO TANGENTE a M on el punto a es el españo afon $\{x \in \mathbb{R}^{n+k}: x - a \in T_a(M)\}$. El HIPERPLANO NORMAL a M on el punto a es el españo afon $\{x \in \mathbb{R}^{n+k}: x - a \in (T_a(M))^{\perp}\}$.