一、填空题 (共 10 小题,每小题 1 分,共 10 分)

- 1、十进制数44转换成16进制数是: __2C____;
- 2、根据布尔代数的基本法则,(A+B)(A+C)+B = A+B;
- 3、利用狄摩根定理,化简下列表达式 $(A+B)(C+D) = \overline{A} \cdot B + \overline{C} \cdot D_{---}$;
- 4、采用如下图所示的比较器芯片进行级联扩展时,级联输入应当接较低位还 是较高位比较器的输出: <u>低</u>;

5、对于如下图所示的十进制-BCD编码器,当输入位 1 和 7 分别为低电平,其余为高电平时,输出位 $\overline{A_3}\overline{A_2}\overline{A_1}\overline{A_0} = \underline{1000}$;

- 6、构建一个模-37同步计数器至少需要__6__ 个JK触发器;
- 7、假设组成一个4位异步计数器的每一个触发器都存在传输延迟,且从时钟脉冲到输出Q的传输延迟时间都为12 ns,当该计数器从1111再循环计数到0000时,共产生多长时间的传输延迟: _48ns____;
- 8、对74LS47 BCD-7段译码器的 *RBI* 和 *BI / RBO* 级联以实现小数点后末位数字的尾部灭零操作,需要将低位片的_*BI / RBO*_接入高位片的__*RBI*__,同时满足_8421输入为0000_;
- 9、将8位数据10111010(开始于最右边的位)串行输入一个8位并行输出移位寄存器中,寄存器的初始状态为11100110,四个时钟脉冲后,寄存器的输出状态为: 10101110 ;
- 10、一个约翰逊(扭环)计数器共有16个计数状态,共需要<u>8</u>个D触发器去构建它。

二、选择题(共 10 小题,每小题 1 分,共 10 分)

cbddc cdabd

1、二进制数 1000,数字为 1 的位的权重是:

(a) 4; (b) 6; (c) 8; (d) 10

- 2、1000的补码是:
 - (a) 0111; (b) 1000; (c) 1001; (d) 1010
- 3、BCD 码的 1010 表示:
 - (a) 8; (b) 十进制 10; (c) 十进制 12; (d) 无效
- 4、二输入(A,B)的门电路的输出波形如图所示(X表示输出),这是一个: (a) 或门; (b) 与门; (c) 或非门; (d) 与非门

- 5、如图所示的全加器,假设输入 $A=0, B=0, C_{in}=1$,和 Sum 和进位 C_{out} 为
 - (a) Sum = 0, $C_{\text{out}} = 0$; (b) Sum = 0, $C_{\text{out}} = 1$;
 - (c) Sum = 1, $C_{out} = 0$;
- (d) Sum = 1, $C_{out} = 1$

- 6、如下图,如果要对二进制数 0011 进行低电平有效译码,图中的问号处的门 需要用:
 - (a) 与门; (b) 或门; (c) 与非门; (d) 或非门

- 7、下图中 MUX 的数据选择 $S_1S_0 = 11$, 输出为:
 - (a) 低电平; (b) 高电平; (c) 等于 D₀; (d) 等于 D₃

- 8、如下图所示的计数器是:
 - (a) 异步计数器; (b) BCD 计数器; (c) 同步计数器; (d) 以上均不是

- 9、下图, 假设输入频率 (fin)为 256 Hz, 输出频率(fout)为
 - (a) 16 Hz;

- (b) 1 Hz; (c) 65 kHz; (d) none of the above

- 10、下图的电路为:
 - (a) 串行输入/并行输出移位寄存器;
 - (b) 串行输入/串行输出移位寄存器;
 - (c) 环形计数器;
 - (d) 约翰逊计数器

三、判断题 (共 10 小题,每小题 1 分,共 10 分)

- 1、异或函数与同或函数在逻辑上互为反函数。(√)
- 2、因为逻辑表达式 A+B+AB=A+B 成立, 所以 AB=0 成立。 (X)
- 3、把一个5进制计数器与一个10进制计数器串联可得到15进制计数器。(X)
- 4、若两个逻辑具有不同的真值表,这两个逻辑函数有可能相等。(X)
- 5、储存8位二进制数需要8个触发器。(√)

- 6、组合逻辑电路中产生竞争冒险的主要原因是输入信号受到尖峰干扰。(X)
- 7、编码和译码是互逆的过程。(√)
- 8、D/A 转换器的位数越多,能够分辨的最小输出电压变化量就越小。(√)
- 9、计数器、寄存器和译码器都是时序逻辑电路。(X)
- 10、PAL可以重复编程。(X)

四、逻辑化简题 (共 1 小题,每小题 5 分,共 5 分)

$$Y = ABC + ABD + \overline{A}B\overline{C} + CD + B\overline{D}$$

Y=B+CD

五、组合电路设计题 (共 1 小题,每小题 10 分,共 10 分)

由题可设计一个 3 输入组合逻辑电路,采用相邻码(格雷码)设计改变相应输出状态,真值表如下:

A(0关1开)	В	С	X (0 表示灭 , 1 表示亮)
0	0	0	0
0	0	1	1
0	1	1	0
0	1	0	1
1	1	0	0
1	1	1	1

1	0	1	0
1	0	0	1

$$X = \overline{ABC} + \overline{ABC} + ABC + A\overline{BC}$$
 , each

六、组合集成电路应用题(共1小题,每小题10分,共10分)

(a)

The truth table for the full subtractor is as follows:

a	b	c	р	d
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

...

$$d = \overline{ab} c + \overline{a} b \overline{c} + \overline{a} b \overline{c} + \overline{a} b c$$

$$p = \overline{abc} + \overline{abc} + \overline{abc} + \overline{abc} + \overline{abc} = b c + \overline{a} c + \overline{a} b$$
(b)

七、时序电路分析题(共1小题,每小题10分,共10分)

分析如图所示时序逻辑电路的功能;要求依次写出激励方程、状态转移方程, 构建次态表/图,并说明电路功能。

答案:

第一步(3分): 依次写出每个JK 触发器的激励方程(输入条件表达式);

$$J_0 = Q_2 Q_1 + \overline{Q}_2 \overline{Q}_1$$

$$J_0 = Q_2 Q_1 + \overline{Q}_2 \overline{Q}_1 \qquad K_0 = Q_2 \overline{Q}_1 + \overline{Q}_2 Q_1$$

$$J_1 = \overline{O}_2 O_1$$

$$J_1 = \overline{Q}_2 Q_0 \qquad K_1 = Q_2 Q_0$$

$$J_2 = Q_1 Q_0$$

$$J_2 = Q_1 \overline{Q}_0 \qquad K_2 = \overline{Q}_1 \overline{Q}_0$$

第二步(3分):根据JK触发器的标准状态转移方程推导每个触发器的状态转 移方程(输出次态表达式):

$$Q_0^{n+1} = (Q_2^n Q_1^n + \overline{Q_2^n} \overline{Q_1^n}) \overline{Q_0^n} + (Q_2^n \overline{Q_1^n} + \overline{Q_2^n} Q_1^n) Q_0^n$$

$$Q_{1}^{n+1} = \overline{Q_{2}^{n}} Q_{0}^{n} \overline{Q_{1}^{n}} + \overline{Q_{2}^{n} Q_{0}^{n}} Q_{1}^{n}$$

$$Q_2^{n+1} = Q_1^n \overline{Q_0^n} \overline{Q_2^n} + \overline{Q_1^n} \overline{Q_0^n} Q_2^n$$

第三步(2分):构建次态表/状态图:

PRESENT STATE			NEXT STATE		
Q_2	Q ₁	\mathbf{Q}_0	Q ₂	Q ₁	Q
0	0	0	0	0	1
0	0	1	0	1	1
0	1	1	0	1	0
0	1	0	1	1	0
1	1	0	1	1	1
1	1	1	1	0	1
1	0	1	1	0	0
1	0	0	0	0	0

第四步(2分):说明电路功能——3位格雷码计数器。

八、时序电路设计题 (共 1 小题,每小题 15 分,共 15 分)

使用 JK 触发器设计一个从 $0 \le 6$ 顺序循环计数的同步七进制计数器,要求能够自启动。写出详细设计过程。

答案: (方法不唯一)

确定 JK 触发器数量为 3 个,设计状态图和次态表(3 分):

初态			次态			
Q2	Q1	Q0	Q2	Q1	Q0	
0	0	0	0	0	1	
0	0	1	0	1	0	
0	1	0	0	1	1	
0	1	1	1	0	0	
1	0	0	1	0	1	
1	0	1	1	1	0	
1	1	0	0	0	0	

输出次态卡诺图(3分):

化简后得到每一级触发器的输出次态表达式(3分):

$$\begin{aligned} Q_{2}^{n+1} &= Q_{2}^{n} \overline{Q_{1}^{n}} + Q_{1}^{n} Q_{0}^{n} \\ Q_{1}^{n+1} &= \overline{Q_{2}^{n}} Q_{1}^{n} \overline{Q_{0}^{n}} + \overline{Q_{1}^{n}} Q_{0}^{n} \\ Q_{0}^{n+1} &= \overline{Q_{2}^{n}} \overline{Q_{0}^{n}} + \overline{Q_{1}^{n}} \overline{Q_{0}^{n}} \end{aligned}$$

与 JK 触发器的次态输出标准形式对应,并确定激励条件(3分):

$$\begin{split} Q_{2}^{n+1} &= Q_{2}^{n} \overline{Q_{1}^{n}} + Q_{1}^{n} Q_{0}^{n} (Q_{2}^{n} + \overline{Q_{2}^{n}}) = (Q_{1}^{n} Q_{0}^{n}) \overline{Q_{2}^{n}} + (\overline{Q_{1}^{n}} + Q_{1}^{n} Q_{0}^{n}) Q_{2}^{n} \\ Q_{1}^{n+1} &= \overline{Q_{2}^{n}} Q_{1}^{n} \overline{Q_{0}^{n}} + \overline{Q_{1}^{n}} Q_{0}^{n} = (Q_{0}^{n}) \overline{Q_{1}^{n}} + (\overline{Q_{2}^{n}} \overline{Q_{0}^{n}}) Q_{1}^{n} \\ Q_{0}^{n+1} &= \overline{Q_{2}^{n}} \overline{Q_{0}^{n}} + \overline{Q_{1}^{n}} \overline{Q_{0}^{n}} = (\overline{Q_{2}^{n}} + \overline{Q_{1}^{n}}) \overline{Q_{0}^{n}} + (0) Q_{0}^{n} \\ Q_{0}^{n+1} &= \overline{Q_{2}^{n}} \overline{Q_{0}^{n}} + \overline{Q_{1}^{n}} \overline{Q_{0}^{n}} = (\overline{Q_{2}^{n}} + \overline{Q_{1}^{n}}) \overline{Q_{0}^{n}} + (0) Q_{0}^{n} \\ Q_{0}^{n+1} &= \overline{Q_{2}^{n}} \overline{Q_{0}^{n}} + \overline{Q_{1}^{n}} \overline{Q_{0}^{n}} + \overline{Q_{1}^{n}} \overline{Q_{0}^{n}} + \overline{Q_{1}^{n}} \overline{Q_{0}^{n}} + \overline{Q_{1}^{n}} \overline{Q_{0}^{n}} \\ Q_{0}^{n+1} &= \overline{Q_{2}^{n}} \overline{Q_{0}^{n}} + \overline{Q_{1}^{n}} \overline{Q_{0}^{n}} \overline{Q_{0}^{n}} + \overline{Q_{1}^{n}} \overline{$$

绘制电路图,并讨论无效状态自启动问题: 当进入 111,下一状态为 100(有效) (3分):

九、存储器系统设计题 (共 1 小题,每小题 10 分,共 10 分)

采用 16k×4 位的 DRAM 芯片扩展成 32k×8 位 DRAM, 画出逻辑图。

(勘误:图中A14应为A13,而A15应为A14)

十、模数转换/数模转换题(共 1 小题,每小题 10 分,共 10 分)

如图(a)的4位数据加到如图(b)所示的DAC的输入时,求出每一时刻DAC的输出电压,画出DAC的输出波形。注意,输入的高电平为5V,低电平为0V。

答案:

$$k = -\frac{V_{REF}R_f}{2^{n-1}R} = -\frac{5V \times 10 \, k\Omega}{8 \times 25 \, k\Omega} = -0.25 V / LSB$$

