姓	名 学号	成绩
 —.	(12 分) 单项选择题	
•	1. 若集合 $A = \{a, b\}, B = \{a, b, \{a, b\}\}, $ 则	
	A. $A \in B$, 但 $A \not\subset B$	
	B. $A \subset B$, H. $A \in B$	
	C. $A \subset B$, $(A \notin B)$	
	D. $A \not\subset B$, $\exists A \notin B$	
	2. 假设集合 $A \subseteq B$, C 是任意一个集合,则以	下 不一定成立
	A. $C \times A \subseteq C \times B$	1 /0/12
	$\mathbf{B.} \ \cap A \subseteq \cap B$	
	C. $C \cap A \subseteq C \cap B$	
	D. $A - B \subseteq B - A$	
	3. 设集合 $A = \{a\}$,下式不成立的是	
	$\mathbf{A.} \ \{a\} \in PP(A)$	
	B. $\{\emptyset\} \subseteq PP(A)$	
	C. $\{\emptyset, \{a\}\} \in PP(A)$	
	$\mathbf{D.} \ \{\varnothing, \{a\}\} \subseteq PP(A)$	
	4. 设集合 $A = \{1, 2, 3, 4, 5, 6\}$ 上的二元关系 $R = \{1, 2, 3, 4, 5, 6\}$	$=\{\langle a,b\rangle\mid a,b\in A\land a+b=8\},\ 则\ R\ 具有的$
	性质为	
	A. 自反的 B. 对称的	
	C. 对称和传递的	
	D. 反自反和传递的	
	5. 如果 R_1 和 R_2 是 A 上的自反关系,则 $R_1 \cup R_2$,	$R_1 \cap R_2$ $R_1 = R_2$ 中白反关系有
	6. 知水 16.1 4H 162 足 11 上的 日及人外,於 16.1 0162,	11111112,1111121日及人亦有
	A. 0	
	B. 1	
	C. 2	
	D. 3	
	6. $f \circ g \circ h$ 是双射,那么一定有	_
	A. f 是单设, h 是满射	
	B. <i>g</i> 是满射, <i>h</i> 是单射	
	C. f 是满射, h 是单射	
	D. f 是单射, g 是单射	
<u> </u>	(12 分) 填空题	

1. 设集合 $A = \{\{1\}, \{2\}, 1, 2\}, B = \{1, 2, \{1, 2\}\}, \, \, 则 \,\, A \oplus B = \{\{1\}, \{2\}, \{1, 2\}\}$

- 3. 设集合 $A = \{a, b, c\}$, A 上的二元关系

$$R = \{ \langle a, b \rangle, \langle c, a \rangle \}, S = \{ \langle a, a \rangle, \langle a, b \rangle, \langle c, c \rangle \}$$

 $\mathbb{N}(R \circ S)^{-1} = \{\langle a, c \rangle, \langle b, a \rangle\}$

- 4. 关系 $R = \{\langle a, b \rangle, \langle b, c \rangle, \langle c, b \rangle\}$,则 st(R) 为 $\{\langle a, b \rangle, \langle b, a \rangle, \langle b, b \rangle, \langle b, c \rangle, \langle c, b \rangle, \langle c, c \rangle, \langle c, a \rangle, \langle a, c \rangle\}$ (其中 s(R) 为 R 的对称闭包, t(R) 为 R 的传递闭包)
- 5. 设集合 $A = \{1, 2\}, B = \{a, b\}, 那么集合 A 到 B 的双射函数是 <math>\{\langle 1, a \rangle, \langle 2, b \rangle\}$ **或** $\{\langle 1, b \rangle, \langle 2, a \rangle\}$
- 6. 设 f,g,h 是实数集上的函数, $f(x) = x^2 + x, g(x) = x + 4, h(x) = \frac{x}{3}$, 则 $h \circ f \circ g = \frac{1}{3}x^2 + 3x + \frac{20}{3}, \frac{x^2 + 9x + 20}{3}$
- 三. (5 分) 证明: $(A \oplus B) \times C = (A \times C) \oplus (B \times C)$

答:

对任意的
$$\langle x,y \rangle \in (A \oplus B) \times C$$

 $\Leftrightarrow x \in A \oplus B \land y \in C$
 $\Leftrightarrow ((x \in A \land x \notin B) \lor (x \notin A \land x \in B)) \land y \in C$
 $\Leftrightarrow ((x \in A \land x \notin B) \land y \in C) \lor ((x \notin A \land x \in B) \land y \in C)$
 $\Leftrightarrow (\langle x,y \rangle \in A \times C \land \langle x,y \rangle \notin B \times C) \lor (\langle x,y \rangle \notin A \times C \land \langle x,y \rangle \in B \times C)$
 $\Leftrightarrow \langle x,y \rangle \in (A \times C) \oplus (B \times C)$

另证:

$$\begin{split} (A \oplus B) \times C &= ((A - B) \cup (B - A)) \times C \\ &= ((A - B) \times C) \cup ((B - A) \times C) \\ &= ((A \times C) - (B \times C)) \cup ((B \times C) - (A \times C)) \\ &= (A \times C) \oplus (B \times C) \end{split}$$

四. (5 分) 求 1 到 250 之间能被 2、3、5 中任何一个整除的整数的个数。

答: 设 A, B, C 表示 1 到 250 之间分别能被 2、3、5 整除的整数的个数,则有

$$\begin{split} |A| &= 125, |B| = 83, |C| = 50 \\ |A \cap B| &= 41, |A \cap C| = 25, |B \cap C| = 16, |A \cap B \cap C| = 8 \\ |A \cup B \cup C| &= |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C| \\ &= 125 + 83 + 50 - 41 - 25 - 16 + 8 \\ &= 184 \end{split}$$

五. (5 分) 设 $A = \{a, b, c, d, e\}, \leq_{A} = I_{A} \cup \{\langle a, b \rangle, \langle a, c \rangle, \langle a, d \rangle, \langle a, e \rangle, \langle b, e \rangle, \langle c, e \rangle, \langle d, e \rangle\},$ 给出 $\langle A, \leq_{A} \rangle$ 的哈斯图,并指出极小元、极大元、最小元、最大元、下界、上界、下确界、上确界。

答:

1.

2. 极小元、最小元、下界、下确界为a,极大元、最大元、上界、上确界为e。

六. (5 分) 设 $A=\{1,2,\ldots,20\}, R=\{\langle x,y\rangle\mid x,y\in A\land x\equiv y (\text{mod }5)\}$ 。证明 R 是 A 上的等价关系,并求商集 A/R。

答: $\forall x \in A, x = 5k + i, 0 \le i \le 4$,所以 $x \equiv x \pmod{5}$,即 xRx。

 $\forall x, y \in A$, 若 xRy, 即 $x \equiv y \pmod{5}$, 故有 x = 5k + i 且 $y = 5m + i (0 \le i \le 4)$, 所以有 $y \equiv x \pmod{5}$, 即有 yRx。

 $\forall x, y, z \in A$,若 xRy 且 yRz,则有 $x \equiv y \pmod{5}$ 和 $y \equiv z \pmod{5}$,即有 $x = 5k + i, y = 5m + i, z = 5n + i, 0 \le i \le 4$,从而 $x \equiv z \pmod{5}$,故有 xRz。

综上 R 具有自反性、对称性、传递性, 所以 R 是等价关系。

$$A/R = \{[1]_R, [2]_R, [3]_R, [4]_R, [5]_R\}$$

= \{\{1, 6, 11, 16\}, \{2, 7, 12, 17\}, \{3, 8, 13, 18\}, \{4, 9, 14, 19\}, \{5, 10, 15, 20\}\}

七. $(6\ \mathcal{H})$ 若非空集合 A 上的二元关系 R 和 S 是偏序关系,试证明: $R\cap S$ 也是 A 上的偏序 关系。

答:

• $\forall x \in A, \langle x, x \rangle \in R, \langle x, x \rangle \in S \Rightarrow \langle x, x \rangle \in R \cap S$, 所以 $R \cap S$ 有自反性。

• $\forall x, y \in A$, 因为 R, S 是反对称的,

$$\begin{split} \langle x,y\rangle &\in R \cap S \wedge \langle y,x\rangle \in R \cap S \\ &\Leftrightarrow (\langle x,y\rangle \in R \wedge \langle x,y\rangle \in S) \wedge (\langle y,x\rangle \in R \wedge \langle y,x\rangle \in S) \\ &\Leftrightarrow (\langle x,y\rangle \in R \wedge \langle y,x\rangle \in R) \wedge (\langle x,y\rangle \in S \wedge \langle y,x\rangle \in S) \\ &\Leftrightarrow x = y \wedge y = x \\ &\Leftrightarrow x = y \end{split}$$

所以 $R \cap S$ 有反对称性。

• $\forall x, y, z \in A$, 因为 R, S 是传递的,

$$\begin{split} \langle x,y\rangle &\in R\cap S \wedge \langle y,z\rangle \in R\cap S \\ \Leftrightarrow \langle x,y\rangle &\in R \wedge \langle x,y\rangle \in S \wedge \langle y,z\rangle \in R \wedge \langle y,z\rangle \in S \\ \Leftrightarrow \langle x,y\rangle &\in R \wedge \langle y,z\rangle \in R \wedge \langle x,y\rangle \in S \wedge \langle y,z\rangle \in S \\ \Rightarrow \langle x,z\rangle \in R \wedge \langle x,z\rangle \in S \\ \Leftrightarrow \langle x,z\rangle \in R \cap S \end{split}$$

所以 $R \cap S$ 有传递性。综上 R 有偏序关系。