

Big Data Storage and Database Services

Hong-Linh Truong
Department of Computer Science
<u>linh.truong@aalto.fi</u>, <u>https://rdsea.github.io</u>

Learning objectives

- Understand consistency, availability and partition tolerance issues in design and programming
- Study common data models and data management
- Understand the need of polyglot persistence and metadata management

Big data at large-scale: the big picture in this course Operation/Management/ **Business Services** Messaging/Ingest systems Stream processing Data sources Warehouse Analytics (e.g., Kafka, Pulsar, systems/Realtime ML (sensors, files, (e.g., Presto, Kylin, AMQP, MQTT, Kinesis, Nifi, (e.g. Flink, Kafka KSQL, database, queues, log BigQuery,Redshift) Google PubSub, Azure IoT Spark, Google Dataflow) services) Hub) Storage/Database/Data Lake (S3, HDFS, CockroachDB, Batch data processing Cassandra, MongoDB, Elastic systems/ML Search, InfluxDB, Milvus, Weaviate, (e.g., Hadoop, Airflow, Spark) Druid, Hudi, etc.) Today **Elastic Cloud Infrastructures** (VMs, dockers, Kubernetes, OpenStack elastic resource management tools, storage)

Consistency, Availability and Partition Tolerance

Big data is not stored in a single machine & analyzed using a single machine

Cluster of nodes (virtual/physical machines) in multicloud, hybrid cloud and supercomputer

View from analytics application

Performance problems between service serving request and data store

Slow performance

- Concurrent contention, slow read, and slow query

Principles

- Partitioning data into different partitions/shards
- Making shards in different nodes ⇒ shared nothing, horizontal scaling!

Multiple storage nodes

Sharding Strategies

Key principles

- Determine partitioning attributes associated with data
- Each shard (where the data is stored) has a shard key mapped to partition attributes

Different, common strategies

- Directory/Lookup: uses a lookup table to query partitioning attributes to find a shard
- Range: partitioning attributes are arranged into a range, each shard is responsible for a subrange
- Hash: use the hash of partitioning keys to determine the shard

Sharding patterns/strategies reading: https://msdn.microsoft.com/en-us/library/dn589797.aspx

Example of strategies in MongoDB

Figures source: https://docs.mongodb.com/manual/sharding/

Example of partitions in Apache Hive

```
CREATE TABLE taxiinfo1 ( ....)

PARTITIONED BY (year int, month int)
...;
```

Indicate partition info

Define partition names

```
LOAD DATA LOCAL INPATH ..... INTO TABLE taxiinfo1
PARTITION (year=2019, month=11);
```

```
truong@aaltosea:/opt/hadoop$ bin/hdfs dfs -ls /user/hive/warehouse/taxiinfor
Found 4 items
                                           0 2021-03-02 22:37 /user/hive/warehouse/taxiinfo1/year=2017
drwxr-xr-x
             - truong supergroup
                                           0 2021-03-02 22:37 /user/hive/warehouse/taxiinfo1/year=2018
drwxr-xr-x

    truong supergroup

                                           0 2021-03-02 22:36 /user/hive/warehouse/taxiinfo1/year=2019
             - truong supergroup
drwxr-xr-x
                                           0 2021-03-02 22:33 /user/hive/warehouse/taxiinfo1/year= HIVE DEFAULT PA
             - truong supergroup
drwxr-xr-x
truong@aaltosea:/opt/hadoop$ bin/hdfs dfs -ls /user/hive/warehouse/taxiinfo1/year=2019
Found 2 items
                                           0 2021-03-02 22:36 /user/hive/warehouse/taxiinfo1/year=2019/month=11
drwxr-xr-x

    truong supergroup

                                           0 2021-03-02 22:36 /user/hive/warehouse/taxiinfo1/year=2019/month=12
drwxr-xr-x

    truong supergroup
```


Example: partitioning and clustering benefits

Example from:

https://shopify.engineering/reducing-bigguery-costs

Distribution, Replication & Concurrency **Japan** Data Client Client Node Shard Read data Write data Data Data Node Node

Shard

Europe

Shard

US

Problems due to data replication/sharding and distributed data nodes

- Can every client see the same data when accessing any node in the platform?
- Can any request always receive a response?
- Can the platform serve clients under network failures?

Well-known ACID properties for transactional systems

- Atomicity: with a transaction
 - either all statements succeed or nothing
- Consistency:
 - transactions must ensure consistent states
- Isolation:
 - no interferences among concurrent transactions
- Durability:
 - data persisted even in the system failure

We must carefully study how such properties are supported in big data storage/databases

Issues in managing big data nodes

Tolerance to Network Partition

 if any node fails, the system is still working ⇒ a very strong constraint in our big data system design

High Consistency

- every read from a client must get the most up-to-date result
- if the network fails, the newest write might not be updated to all nodes

High Availability

every request must get a response (and with the most recent write)

CAP Theorem

CAP theorem "you can only have 2 of out of three highly C,A,P"

CAP Theorem: E. Brewer, "CAP twelve years later: How the "rules" have changed," in Computer, vol. 45, no. 2, pp. 23-29, Feb. 2012, doi: 10.1109/MC.2012.37.

Think about CAP with this simple model

Programming consistency levels

- Partition tolerance and availability are important for many big data applications
 - allow different consistency levels to be configured and programmed
- Data consistency strongly affects data accuracy and performance
 - very much depending on technologies/specific systems and designs

BASE (Basically Available, Soft state, Eventual consistency)

Focus on balance between high availability and consistency

Key ideas

- given a data item, if there is no new update on it, eventually the system will update the data item in different places ⇒ consistent
- allow read and write operations as much as possible, without guaranteeing consistency

Single-leader replication architecture

Passive (Primary backup) model:

- FE (Front-end) can interface to a Replication Manager (RM) to serve requests from clients.
- E.g., in MongoDB

For causal consistency

Replica set: easy to deploy, globalize, manage and replace using cloud resources

Example of different levels of consistency

Consistency level for WRITE operations

- One node in the replica set is the primary node
- All writes are done at the primary node
- Write consistency is guaranteed as "majority": data has been written into a majority in the replica set, before confirming the write

Consistency levels for READ operations

- READ from a single replica
- READ from a quorum and return the most updated result
- READ from ALL replicas

Key expectations for designing big data services

- Check the consistency, availability and partition tolerance when you use existing systems
 - Very hard subject!
 - Also link to partitioning, scaling, service discovery and consensus (previous lectures)
- Support the right ones when you design and implement big data systems
 - Based on your data/use cases/applications

Key expectations for designing big data services

- Designers: which one do you support?
 - ACID or BASE?
 - Support programmable consistency guarantees?
- Programmers
 - How do big data management services support ACID/BASE
 - Can I program with different consistency levels?
- Able to explain why we have data accuracy problems and other tradeoffs w.r.t. performance and consistency!

Data Models and Databases/Storage

Data sources and domains

- Social media data generated by human activities
 - o Facebook/Meta, Twitter, Instagram, etc.
- Internet of Things (IoT)/Machine-to-Machine (M2M)/Industry 4.0
 - o data generated from monitoring of equipment, infrastructures and environments
- Advanced sciences data generated by advanced instruments
 - Earth observation from Sentinel satellites
- Personal and disease information
 - E.g. COVID data
- Business-related customer data
- Asset management and lodging
 - E.g., bookings, cars, accommodations
- Software systems
 - E.g., logs and test results

Data at rest

At rest

- Distributed file systems/object storages
 - *In big data we have a lot of files with different data formats*
- Data in a set of databases
- Multiple types of big data analytics with high concurrent/parallel data writes/reads
- Dealing with different data access/analytics frequencies:
 - Organize data into hot, warm and cold data

Example from the service viewpoint

Google Storage: https://cloud.google.com/stora ge/pricing#europe

North America South America	Europe Middle	East Asia Indo	nesia Australia	
Location	Standard storage (per GB per Month)	Nearline storage (per GB per Month)	Coldline storage (per GB per Month)	Archive storage (per GB per Month)
Warsaw (europe-central2)	\$0.023	\$0.013	\$0.006	\$0.0025
Finland (europe-north1)	\$0.020	\$0.010	\$0.004	\$0.0012
Belgium (europe-west1)	\$0.020	\$0.010	\$0.004	\$0.0012

Minimum storage duration

A minimum storage duration applies to data stored using Nearline storage, Coldline storage, or Archive storage.

The following table shows the minimum storage duration for each storage class:

Standard storage	Nearline storage	Coldline storage	Archive storage
None	30 days	90 days	365 days

Understanding developer concerns

Identifying data models

- first focus on data models representing data in big data platforms
 - Before deciding technology that can help to implement the data model
- how many data models does the platform need to support?

Identifying data management technologies

- based on "multi-dimensional service properties" a technology for data management is selected
- How would you design & provide your data management solutions?
- Costs and expertises and team requirements for management

Data models vs data access technologies

- Data models explain structure and organization of the data to be analyzed
 - very important for deciding technologies and techniques used for data analytics
 - how many data models must a platform deal with?
 - Complex analytics might require use to deal with different models
- (Generic)Data connectors
 - allow analysis programs to access data from different sources
 - do heavy lifting work for data load/extract

Data models

Data models

- File with different structures
- Relational data model
- Key-Value data model
- Document-oriented model
- Column family model
- Graph model
- Vectorization

Big data: both single type of data and combined multiple types of data with very large scale

- Some are also seen in "no big data"
- Some are specifically designed to address big data

and ML

Some important aspects when designing data models

- Structured data, semi-structured data and unstructured data
 - diverse types of data
- Schema flexibility and extensibility
 - cope with requirement changes
- Normalization and denormalization
 - do we have to normalize data when dealing with big data (and storage is cheap)?
 - but data consistency maybe a problem!
- Making data available in large-scale analysis infrastructure
 - data is for analytics

Big data: blob (binary large object)/tabular, text files

• Pictures, documents, big log files, images, video, backup data

Storage

• Distributed file systems or blob/object storage

Implementations

- File systems: NFS, GPFS, Lustre (http://lustre.org/), Hadoop File systems
- Blob storage: Amazon S3, Azure Blob storage, OpenStack Swift, Minio
- Simple API for direct access (GET/PUT)

Big data: relational databases

Tables with rows and columns

- Strict schema requirements, powerful querying & strong consistency support
- E.g.: Oracle Database, MySQL Server, PostgreSQL, CockroachDB
- Relational database at very large-scale
 - Amazon Aurora, Microsoft Azure SQL Data Warehouse
- ACID (atomicity, consistency, isolation, durability) is hard with big data
 - relational big database must address replication, distribution, and scalability issues

Key-Value Model

- Tuple = (key, value)
 - Values can be base on different structures
- Scalable and performance
- Primary use case: caching (pages, sessions, frequently access data, distributed lock)
 - Simple, very efficient but limited querying capabilities
- Implementations:
 - Memcached, Riak, Redis, Apache Accumulo

Big data: document-oriented model

Big data: column-family data model

Many situations we aggregate and scan few columns of million rows of data ⇒ store big data in columns enable fast scan/retrieval/aggregation

Column Family = (Column, Column, ...): for similar type of data

Column Key = Family: qualifier

Data = (Key, Value) where Key = (Row Key, Column Key, Timestamp)

Examples: Cassandra, HBase

Figure source: Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. 2006. Bigtable: a distributed storage system for structured data. In Proceedings of the 7th symposium on Operating systems design and implementation (OSDI '06). USENIX Association. Berkeley. CA. USA. 205-218.

Graph-oriented model

Data is represented as a graph

- nodes or vertices represent objects, an edge describing a relationship between nodes
- properties associated with nodes and edge provide other information

Use cases

 when searching data is mainly based on relations (social networks, asset relationship, knowledge graph)

• Examples:

Azure CosmosDB, ArgangoDB, Titan, TypeDB, Neo4J, OrientDB

Time Series Database

- So many types of data in big data are time series
 - o IoT measurements, session data, log, etc.
- Document/relational models can be used
 - o e.g., Cassandra, ElasticSearch, BigTable
- Time Series Databases specially designed for time series data
 - examples: Riak TS (Time Series), InfluxDB, Apache Druid

Vector databases

- Emerging in the age of LLMs/MLs
- Store vector embeddings
 - vector embeddings are output of ML embedding models

- Key designs
 - Vector management
 - Distance functions
 - Similarity search

Example of a Weaviate schema

```
"classes": [
        "class": "PatternSearch",
        "description": "Example of pattern search",
        "properties": [
                "dataType":["text"],
                "description": "experiment id in which the solution is updated",
                 "name": "experiment id"
                 "dataType":["text"],
                 "description": "name of the case",
                 "name": "case_info"
                "dataType":["text"],
                 "description": "input questions/description",
                 "name": "input_query"
                 "dataType":["text"],
                 "description": "context answer",
                 "name": "output_context"
                 "dataType":["text"],
                 "description": "reference doc for the case",
                 "name": "ref doc"
        "vectorizer": "text2vec-transformers",
        "vectorIndexType": "hnsw",
        "vectorIndexConfig": {
             "distance": "cosine"
```


High-level analytics with SQL-style

Analytics with big data databases

- NoSQL or NewSQL but they are very scale
- E.g., Aurora, Cosmos, BigQuery
- Analytics with federated databases
 - Using scalable analytics engines to connect to different databases
 - Analytics using SQL-style queries or workflows
- From the analytics: the developer is familiar with the traditional way
 - SQL-on-Hadoop, SQL for data stream, etc. (covered in other lectures)

Data Analytics

Query Engine

Complex Data Processing **Direct Access**

Metadata management, Access Control, Provenance

REST API

JDBC

Tool-specific APIs

Client Libraries

Object-based storage (e.g. Amazon S3)

Relational Database (e.g. MySQL) Distributed File Systems

NoSQL Database (e.g. MongoDB) Real time data sources

Presto + other as an example

Presto (used by Facebook and many others)

- distributed query engine
- decoupled from storage
- integration with different databases
- very large-scale with many nodes
- Analytics: interactive analytics, seconds minutes
 - SQL style

Figure source: Presto: SQL on Everything https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=87315 47&tag=1

Examples

Analytics: write SQL

Analytics: data exploration and visualization, e.g. with Apache Superset

Polyglot persistence and metadata

Support multiple types of data

- Real-world applications need different types of databases!
 - it is easier to use a single type of database, but it might not work for real projects
- New use cases required different datasets and different analytics
 - E.g. machine learning/Al
- Strong set of APIs, connectors and client libraries
 - for providing data to different analytics frameworks

Examples

Case 1: monitoring/maintenance situations

- Subjects to be monitored (e.g., equipment, house, animal) are usually in relational/document databases with different updates/management
- Their monitoring data are time series, update in real time (e.g., sensor data, feedback, ...)

Case 2: financial management/fintech/e-commerce

- Relational model could be good for customer records and payment
- But document/column-family models would be good for product description, activity logs, or transactions records

Polyglot Big Data models/systems

- A platform might need to provide multiple supports for different types of data
 - single, even complex, storage/database/data service cannot support very good multiple types of data
- A single complex application/service needs multiple types of data
 - examples: logs of services, databases for customers, real-time log-based messages

Polyglot persistence is inevitable for many use cases

Design choices

Using different databases/storages

- different types of data must be linked
 - each type requires a different model
- provide a collection of APIs

Multi-model database services

- a data service can host different data models
- can be a virtual service atop other database services
- Data Lake → Data Warehouse or Lakehouse

Large-scale multi-model database services

Able to store different types of data models

• Relational tables, documents, graphs, etc.

Benefits

the same system (query, storage engine)

Example

 Microsoft Azure Cosmos, OrientDB, ArangoDB, Virtuoso

Data Lake

Principles

- Massive of datasets, in different collections, in different formats, in different types of data storages
 - Internal/external data, operational/analytical data
 - Raw/clean/training data
- For multiple types of analytics/ML
- Example of technologies: Apache Hudi, Delta Lake
- Related concepts
 - Data mesh (data, infrastructures, services and governance for domain-oriented data products)

Allows different analytics

Data Lake: example

Massive of datasets, in different collections, in different formats, in different types of data storages for multiple types of analytics/ML

Figure source: https://hudi.apache.org/

Data Lake, Data warehouse, and Data Lakehouse

https://www.databricks.com/blog/2020/01/30/what-is-a-data-lakehouse.html

Metadata about data resources

- Metadata characterizes data assets (stored in databases/storage/data lake)
 - o for management, liability, fairness, regulation compliance
- Important types of metadata
 - governance (creators, update, retention, security setting, etc.),
 quality of data (accuracy, completeness, etc.)
 - designed for common and specific cases
- Remember metadata is data!
 - o ingestion, collection and management
- Tools: Google Data Catalog, Apache Atlas, Amundsen, Linkedin DataHub, OpenLineage

Example of Metadata

Key design:

- Metadata comes from different sources
- Different access models for metadata
- Complex ingestion of metadata
- Graph view of metadata

Amundsen

Figure source:

https://www.amundsen.io/amundsen/architecture/

DataHub

Figure source:

https://datahubproject.io/docs/architecture/architecture

Key points

- Spend your time to think about data sharding strategies
 - o common concepts and concrete implementations in your choice of database technologies, also in connection to data nodes deployment
- Work on understanding the relationships in big database deployment
 - deployment (multiple nodes, data centers, geo-distributed locations), sharding, and replication
- Focus on understanding features for programming consistency
- Practice with some key database/store technologies
 - o individual, federated, multi-model, and lake

Thanks!

Hong-Linh Truong
Department of Computer Science

rdsea.github.io

