

UNIVERSIDAD DE GRANADA

SIMULACIÓN DE SISTEMAS

Práctica 1

Alejandro Manzanares Lemus

alexmnzlms@correo.ugr.es

18 de octubre de 2020

Índice general

1.	Simulador de aparcamiento	2
	1.1. Múltiples ejecuciones	2
	1.2. Variación de un parámetro	
	1.3. Variación de varios parámetros	10
2.	Simulador de radares	12
	2.1. Variación del numero de ejecuciones	12
	2.2. Variacion de las propiedades de los respuesto	
3.	Simulador dos especies de peces	20
	3.1. Busqueda del equilibrio	20
	3.2. Campaña de pesca	20

Apartado 1: Simulador de aparcamiento

El simulador de aparcamiento consiste en un sistema que simula un conductor que debe aparcar su coche en una calle infinitamente larga lo mas cerca posible de una posición objetivo. Para todas las pruebas realizadas se ha considerado 100 como posición objetivo en la que se desea aparcar. Para simular este sistemas, podemos establecer la probabilidad de que el conductor encuentre la plaza ocupada, asi como la distancia de visión que posee y el numero de simulaciones que se realizan.

1.1: Múltiples ejecuciones

En la primera prueba, ejecutamos el simulador un total de 10 veces, para comprobar los resultados obtenidos. Podemos ver en la siguiente tabla la distancia mínima a la posición objetivo —recordemos que esta posición es la número 100— así como la posición a partir de la cual empezó a buscar aparcamiento. Para cada iteración del simulador se han realizado 100000 simulaciones.

Iteracion de la simulación	Distancia mínima al objetivo	Posicion inicial (c)
0	6.554650	96
1	6.514790	95
2	6.521850	94
3	6.497070	95
4	6.493840	95
5	6.523610	94
6	6.514420	95
7	6.499410	95
8	6.525110	95
9	6.562060	96

También podemos ver estos resultados en forma de gráfica a continuación.

Como se puede apreciar, los resultados no varían demasiado entre una simulación y otra, ya que no estamos alterando ninguna variable del sistema, simplemente estamos ejecutando la misma simulación de forma reiterada.

1.2: Variación de un parámetro

Esta prueba si que tiene algo más de interés, a continuación realizaremos una serie de ejecuciones del simulador variando un solo parámetro cada vez. Por defecto, los parámetros son 100000 simulaciones, 0.9 probabilidad de ocupación de la plaza y 2 unidades de visión para el conductor.

Primeramente realizamos la prueba variando el parámetro de la probabilidad de que el conductor encuentre ocupada la plaza en la que intentara aparcar. En la siguiente tabla podemos ver la distancia mínima encontrada para los diferentes valores de esta probabilidad así como la posición inicial a partir de la cual se obtiene esta distancia.

Probabilidad de ocupación	Distancia minima al objetivo	Posicion inicial (c)
0.1	0.101910	100
0.2	0.210680	100
0.3	0.338430	100
0.4	0.509750	100
0.5	0.744920	99
0.6	1.067510	99
0.7	1.647840	99
0.8	2.960300	98
0.9	6.478240	95

Para una probabilidad inferior al 50 %, podemos observar como la mejor distancia se obtiene empezando a busca aparcamiento justo cuando alcanzamos la posición objetivo, mientras que cuando la probabilidad aumenta, debemos ser mas precavidos y empezar a buscar plaza antes de llegar a nuestro objetivo.

En la gráfica siguiente se puede observar como para los distintos valores de probabilidad, cuando antes se empieza a buscar aparcamiento, más lejos se aparca del objetivo, mientras que cuanto mas esperamos a empezar a buscar, mejor resultado se obtiene, excepto cuando la probabilidad pasa el $50\,\%$. En este caso, podemos ver como al curva es ascendente en su ultimo tramo, lo que significa que el resultado empeora si esperamos demasiado.

En las siguientes gráficas, podemos ver de manera visual, como según aumenta la probabilidad de encontrar la plaza ocupada, aumenta la distancia minima encontrada y disminuya la posición inicial a partir de la cual empezar a buscar aparcamiento.

El siguiente parámetro que variamos, es la distancia de visión del conductor. En la siguiente tabla podemos ver los resultados obtenidos para esta prueba.

Visión del conducto	Distancia minima al objetivo	Posicion inicial (c)
1	6.567060	94
2	6.509090	94
3	6.447840	95
4	6.389330	95
5	6.251710	95
6	6.145040	95
7	5.937980	94
8	5.849080	94
9	5.752370	93
10	5.647370	93

Podemos ver en este caso, que según aumenta la distancia de visión del conductor, disminuye la distancia a la que conseguimos aparcar de la posición objetivo, pero también disminuye la posición inicial a partir de la cual debemos empezar a buscar, es decir, debemos empezar a buscar aparcamiento con más antelación.

En la siguiente gráfica, se muestra la relación entre distancia mínima al objetivo y la posición inicial a partir de la cual se empieza a buscar aparcamiento.

Se puede notar como para los diferentes valores de la visión del conductor, los resultados son bastante homogéneos, siendo que las gráficas casi parecen una sola.

A continuación se puede notar graficamente como al aumentar la visión del conductor, la distancia minima al objetivo se reduce, mientras que la posición inicial aumenta en un principio pero disminuye finalmente.

Finalmente, el último parametro que modificaremos será el numero de simulaciones de aparcamiento que se realizan por cada ejecución del simulador.

Igual que en los casos anteriores, en la siguiente tabla podemos apreciar los distintos valores que se han probado, asi como la distancia minima al objetivo encontrada y la posicion inicial a partir de la cual se obtiene plaza a dicha distancia.

Numero de simulaciones	Distancia minima al objetivo	Posicion inicial (c)
10	3.200000	93
100	5.800000	96
1000	6.350000	94
10000	6.371000	94
100000	6.470920	95

De forma gráfica, podemos observar como, cuando el numero de simulaciones es bajo, los resultados tienen un mayor numero de altibajos, mientras que según aumenta el numero de simulaciones, la grafica se vuelve más continua y con menos saltos.

Como nota de interes, al igual que en los apartados anteriores se han generado las siguientes graficas, donde podemos observar que segun aumenta el numero de simulaciones, los resultados convergen a un valor concreto.

1.3: Variación de varios parámetros

Finalmente, realizaremos un estudio del comportamiento del simulador cambiando más de un parametro al mismo tiempo. Para esta memoria, se ha decido mantener el numero de simulaciones y variar la distancia de visión del conductor asi como la probabilidad de ocupación de una plaza de aparcamiento.

En las siguientes tablas se reflejan los resultados obtenidos en distancia minima y posicion inicial para los valores que se han probado.

Probabilidad de aparcamiento

	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
1	0.099620	0.210710	0.338900	0.506900	0.748600	1.151790	1.839180	3.030380	6.517660
2	0.100520	0.209580	0.338920	0.506960	0.746740	1.064400	1.649300	2.953630	6.460450
3	0.100390	0.208980	0.331670	0.477110	0.687310	1.006920	1.602300	2.782350	6.437300
4	0.099130	0.207590	0.333320	0.480670	0.689810	0.982970	1.512140	2.697540	6.371280
5	0.099830	0.208420	0.330430	0.475570	0.670110	0.966900	1.480660	2.565040	6.277510
6	0.100240	0.206780	0.328190	0.476200	0.672600	0.954690	1.437860	2.513240	6.085530
7	0.099610	0.207000	0.326700	0.475310	0.664360	0.945820	1.427430	2.441490	6.001120
8	0.099350	0.206130	0.325790	0.475920	0.668380	0.942190	1.396800	2.416840	5.853020
9	0.098970	0.206130	0.328060	0.471570	0.664220	0.942370	1.400510	2.345610	5.729080
10	0.099440	0.204730	0.327840	0.473750	0.666350	0.933790	1.395460	2.351450	5.656510

Vision del conductor

Probabilidad de aparcamiento

	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
1	100	100	100	100	100	100	100	98	95
2	100	100	100	100	99	99	99	98	95
3	100	100	99	99	99	99	99	98	95
4	100	99	99	99	98	98	98	97	94
5	97	98	98	98	98	98	98	97	95
6	98	98	97	97	97	97	97	97	95
7	99	97	99	97	97	97	97	96	95
8	95	98	98	98	97	96	96	95	94
9	94	97	95	96	97	96	95	95	93
10	94	94	97	94	96	95	95	94	93

Vision del conductor

Estos datos son utiles pero poco ilustrativos, por ello, para comprobar el comportamiento real del simulador, he generado los siguientes mapas 3D, donde puede apreciaser de manera grafica el comportamiento de los resulados.

En el primer mapa, podemos ver que la variable que más afecta a los resultados es la probabilidad de ocupación de la plaza, siendo que segun aumenta este valor, aumenta tambien la distancia minima obtenida. Mientrad que segun varia la visión del conductor, el valos de la distancia minima aumenta, pero no de manera tan marcada.

En el segundo mapa no apreciamos tan bien el comportamiento cuando hablamos de la posición incial optima a partir de la cual empezar a buscar aparcamiento. Si podemos ver, que a menos vista del conductor, menos anticipación debemos tener a la hora de buscar plaza, puesto que vemos menos. Segun aumenta la probabilidad de ocupación de la plaza, aumenta también la anticipación que debemos tener.

Mapa 3D posicion inicial (c) donde la distancia al objetivo es minima variando visión y probabilidad de aparcamiento —

Apartado 2: Simulador de radares

El simulador de radares simula el funcionamiento de un numero determinado de radares, que poseen una vida util determinada — por defecto 20 dias — y un tiempo de reparación determinado hasta que vuelven a estar operativos — de 15 a 30 dias por defecto —. Intentaremos averiguar el numero de repuestos necesarios para que el tiempo de desprotección parcial sea inferior al $1\,\%$

2.1: Variación del numero de ejecuciones

En primer lugar, probaremos a ejecutar el simulador bajo su configuración por defecto, variando el número de simulaciones que se realizan. A continación mostramos los resultados obtenidos:

			Tabla generada para el :	simulador de radares con 1 s	imulación		
Num. repuestos	Num. simulaciones	Media fallos	Media t desproteccion	Media % desproteccion	Desv. num fallos	Desv. t desproteccion	Desv % desprotection
0	1	45	349.951	95.877	0	0	0
1	1	50	319.631	87.5701	0	0	0
2	1	53	304.679	83.4737	0	0	0
3	1	67	291.709	79.9203	0	0	0
4	1	49	201.927	55.3224	0	0	0
5	1	31	104.231	28.5563	0	0	0
6	1	25	90.1675	24.7034	0	0	0
7	1	21	42.9977	11.7802	0	0	0
8	1	16	38.4443	10.5327	0	0	0
9	1	8	10.8468	2.97171	0	0	0
10	1	1	2.82288	0.773391	0	0	0
11	1	0	0	0	0	0	0
12	1	0	0	0	0	0	0
13	1	0	0	0	0	0	0
14	1	0	0	0	0	0	0
15	1	0	0	0	0	0	0
16	1	0	0	0	0	0	0
17	1	0	0	0	0	0	0
18	1	0	0	0	0	0	0
19	1	0	0	0	0	0	0
20	1	0	0	0	0	0	0
21	1	0	0	0	0	0	0
22	1	0	0	0	0	0	0
23	1	0	0	0	0	0	0
24	1	0	0	0	0	0	0
25	1	0	0	0	0	0	0

Con una simulación podemos observar que el número de repuestos necesarios para que el tiempo de desprotección parcial no supere el 1% es 10.

	Tabla generada para el simulador de radares con 5 simulaciones										
Num. repuestos	Num. simulaciones	Media fallos	Media t desproteccion	Media % desproteccion	Desv. num fallos	Desv. t desproteccion	Desv % desproteccion				
0	5	42	352.239	96.5038	3.60555	9.11129	2.4957				
1	5	50	335.562	91.9348	6.44205	13.2647	3.63428				
2	5	53.8	287.18	78.6795	4.65832	25.3226	6.93761				
3	5	53.2	238.988	65.4762	5.54075	32.7864	8.98265				
4	5	50	197.389	54.0793	10.3199	47.2767	12.9525				
5	5	33.2	117.506	32.1935	6.22093	16.5225	4.52668				
6	5	28.6	78.5825	21.5294	6.94982	26.0007	7.12348				
7	5	20.4	57.108	15.646	5.54977	16.4936	4.5188				
8	5	17.8	44.1643	12.0998	5.84808	12.0867	3.31144				
9	5	7.4	14.9035	4.08316	3.91152	8.64149	2.36753				
10	5	4.6	10.6241	2.91071	4.50555	9.50589	2.60435				
11	5	2	4.51752	1.23768	2.12132	4.76625	1.30582				
12	5	1.2	3.48875	0.955823	1.78885	5.9696	1.63551				
13	5	0	0	0	0	0	0				
14	5	0	0	0	0	0	0				
15	5	0	0	0	0	0	0				
16	5	0	0	0	0	0	0				
17	5	0	0	0	0	0	0				
18	5	0	0	0	0	0	0				
19	5	0	0	0	0	0	0				
20	5	0	0	0	0	0	0				
21	5	0	0	0	0	0	0				
22	5	0	0	0	0	0	0				
23	5	0	0	0	0	0	0				
24	5	0	0	0	0	0	0				
25	5	0	0	0	0	0	0				

Para 5 simulaciones, podemos apreciar como el numero minimo de repuestos necesarios aumenta a 12.

	Tabla generada para el simulador de radares con 10 simulaciones											
Num. repuestos	Num. simulaciones	Media fallos	Media t desproteccion	Media % desproteccion	Desv. num fallos	Desv. t desproteccion	Desv % desproteccion					
0	10	44.7	349.833	95.8447	2.86937	11.2503	3.08207					
1	10	51.1	327.844	89.8203	3.66516	12.1404	3.32656					
2	10	57.9	300.196	82.2454	4.01246	21.3681	5.8542					
3	10	54.3	246.846	67.6289	5.12184	24.8807	6.81661					
4	10	54.9	209.583	57.4199	11.5031	31.7491	8.69833					
5	10	38.7	132.112	36.195	6.7173	30.2853	8.29734					
6	10	32.1	92.83	25.4329	11.7232	30.7326	8.41989					
7	10	21.5	50.8223	13.9239	10.2659	27.8845	7.6396					
8	10	16.6	40.2062	11.0154	8.64356	19.9703	5.47132					
9	10	8	17.2256	4.71935	3.74166	10.8646	2.97659					
10	10	5.3	13.462	3.68821	3.653	11.2033	3.06939					
11	10	3.5	7.81515	2.14114	2.71825	7.38965	2.02456					
12	10	1	2.41587	0.661883	1.24722	3.10247	0.849992					
13	10	0.4	0.572334	0.156804	0.699206	1.071	0.293425					
14	10	0.2	0.414171	0.113471	0.632456	1.30972	0.358828					
15	10	0	0	0	0	0	0					
16	10	0	0	0	0	0	0					
17	10	0	0	0	0	0	0					
18	10	0	0	0	0	0	0					
19	10	0	0	0	0	0	0					
20	10	0	0	0	0	0	0					
21	10	0	0	0	0	0	0					
22	10	0	0	0	0	0	0					
23	10	0	0	0	0	0	0					
24	10	0	0	0	0	0	0					
25	10	0	0	0	0	0	0					

Para 10 simulaciones, vemos que el numero minimo de repuestos es 12.

	Tabla generada para el simulador de radares con 50 simulaciones										
Num. repuestos	Num. simulaciones	Media fallos	Media t desproteccion	Media % desproteccion	Desv. num fallos	Desv. t desproteccion	Desv % desprotection				
0	50	43.96	353.582	96.8718	3.19413	7.18843	1.97028				
1	50	50.1	327.789	89.8053	3.94994	15.8941	4.3548				
2	50	53.82	287.653	78.809	5.75588	23.1274	6.33634				
3	50	53.52	241.971	66.2935	7.16067	26.2554	7.19317				
4	50	48.8	185.36	50.7835	10.3214	34.2243	9.37641				
5	50	40.66	136.93	37.5151	10.1088	33.439	9.16132				
6	50	32.08	92.246	25.2729	9.57854	30.3834	8.32423				
7	50	20.84	55.5177	15.2103	9.36202	24.514	6.71617				
8	50	13.56	32.382	8.87178	7.74639	18.8165	5.1552				
9	50	7.9	17.2093	4.71488	4.9208	11.604	3.17918				
10	50	4.46	8.5308	2.33721	4.3669	8.89152	2.43603				
11	50	1.94	3.31555	0.90837	3.11291	5.86852	1.60781				
12	50	0.7	1.37498	0.376707	1.40335	2.83413	0.776473				
13	50	0.32	0.411364	0.112703	0.890769	1.55438	0.425857				
14	50	0.04	0.0598782	0.016405	0.282843	0.423403	0.116001				
15	50	0	0	0	0	0	0				
16	50	0	0	0	0	0	0				
17	50	0	0	0	0	0	0				
18	50	0	0	0	0	0	0				
19	50	0	0	0	0	0	0				
20	50	0	0	0	0	0	0				
21	50	0	0	0	0	0	0				
22	50	0	0	0	0	0	0				
23	50	0	0	0	0	0	0				
24	50	0	0	0	0	0	0				
25	50	0	0	0	0	0	0				

Para 50 simulaciones el numero minimo vuelve a reducirse a 11.

			Tabla generada para el sin	nulador de radares con 100 s			
Num. repuestos	Num. simulaciones	Media fallos	Media t desproteccion	Media % desproteccion	Desv. num fallos	Desv. t desproteccion	Desv % desproteccion
0	100	44.23	352.931	96.6935	2.90197	7.8096	2.13881
1	100	50.06	327.452	89.7128	4.05473	15.6902	4.29859
2	100	53.96	289.779	79.3916	4.97249	21.7551	5.96041
3	100	53.3	240.962	66.017	6.75921	28.8235	7.89661
4	100	48.42	188.81	51.7287	7.93686	29.438	8.06512
5	100	40.32	135.199	37.0408	8.46846	29.1112	7.97563
6	100	31.17	91.8402	25.1617	9.0208	26.5919	7.28545
7	100	21.39	56.0191	15.3477	8.17349	20.9672	5.74444
8	100	13.62	31.757	8.70056	7.10496	16.7809	4.59749
9	100	7.05	15.3795	4.21357	5.29603	12.19	3.33973
10	100	3.64	7.21123	1.97568	4.06393	8.3311	2.28249
11	100	2.14	4.24927	1.16418	3.45248	6.85864	1.87908
12	100	0.85	1.55213	0.425242	1.83883	3.42524	0.938423
13	100	0.59	0.920676	0.25224	1.82073	2.9375	0.804793
14	100	0.28	0.415516	0.11384	1.07384	1.51682	0.415566
15	100	0.14	0.19732	0.0540603	0.651649	0.983849	0.269548
16	100	0.07	0.103657	0.0283992	0.408372	0.618308	0.169399
17	100	0	0	0	0	0	0
18	100	0	0	0	0	0	0
19	100	0	0	0	0	0	0
20	100	0	0	0	0	0	0
21	100	0	0	0	0	0	0
22	100	0	0	0	0	0	0
23	100	0	0	0	0	0	0
24	100	0	0	0	0	0	0
25	100	0	0	0	0	0	0

Para 100 simulaciones el numero minimo de repuestos necesarios es 12 nuevamente.

	Tabla generada para el simulador de radares con 1 simulaciones								
Num. repuestos	Num. simulaciones	Media fallos	Media t desproteccion	Media % desproteccion	Desv. num fallos	Desv. t desproteccion	Desv % desprotection		
0	500	43.614	353.264	96.7847	3.38172	8.2248	2.25325		
1	500	49.964	327.702	89.7815	3.90708	15.6817	4.29633		
2	500	52.968	286.273	78.4308	5.37818	22.7282	6.22769		
3	500	52.948	239.339	65.5724	7.19394	27.4515	7.52098		
4	500	47.96	184.182	50.461	8.74159	30.029	8.22693		
5	500	41.108	138.178	37.857	9.83594	31.5809	8.65228		
6	500	30.594	88.8157	24.3331	9.35437	27.1053	7.4261		
7	500	21.71	57.0597	15.6328	8.91251	23.4896	6.43552		
8	500	13.862	33.0256	9.04811	7.58168	18.336	5.02354		
9	500	7.706	16.5063	4.52227	5.74958	12.8776	3.5281		
10	500	4.012	8.00862	2.19414	4.01448	8.49454	2.32727		
11	500	2.344	4.30441	1.17929	3.09917	6.26651	1.71685		
12	500	1.01	1.6885	0.462602	1.89766	3.50219	0.959503		
13	500	0.476	0.732022	0.200554	1.41613	2.36788	0.648735		
14	500	0.132	0.176517	0.0483607	0.644521	0.880701	0.241288		
15	500	0.056	0.0624482	0.0171091	0.439603	0.544604	0.149207		
16	500	0.026	0.0234817	0.00643334	0.318633	0.27563	0.075515		
17	500	0.014	0.00706058	0.0019344	0.184043	0.0963399	0.0263945		
18	500	0	0	0	0	0	0		
19	500	0	0	0	0	0	0		
20	500	0	0	0	0	0	0		
21	500	0	0	0	0	0	0		
22	500	0	0	0	0	0	0		
23	500	0	0	0	0	0	0		
24	500	0	0	0	0	0	0		
25	500	0	0	0	0	0	0		

Para 500 simulaciones, el numero se establece en 12.

Tabla generada para el simulador de radares con 1 simulaciones							
Num. repuestos	Num. simulaciones	Media fallos	Media t desproteccion	Media % desproteccion	Desv. num fallos	Desv. t desproteccion	Desv % desproteccion
0	1000	43.513	353.071	96.732	3.1796	8.59499	2.35043
1	1000	49.824	327.038	89.5994	3.96923	16.1883	4.43528
2	1000	53.512	288.475	79.0343	5.43427	22.5752	6.18537
3	1000	53.045	238.865	65.4425	7.00743	27.7088	7.59086
4	1000	48.38	186.192	51.0116	8.7462	30.6683	8.40182
5	1000	40.452	135.737	37.1883	9.58142	30.7735	8.43114
6	1000	31.071	91.6605	25.1124	9.66775	27.9243	7.6505
7	1000	21.122	55.8657	15.3057	8.61658	23.3216	6.3895
8	1000	13.697	32.3572	8.86498	7.25437	17.7917	4.87444
9	1000	8.095	17.5134	4.79818	5.80031	13.0986	3.58867
10	1000	4.477	8.83343	2.42012	4.2804	8.90266	2.43908
11	1000	2.271	4.17391	1.14354	2.92919	5.75138	1.57572
12	1000	1.03	1.69007	0.463034	2.23295	3.9231	1.07482
13	1000	0.37	0.581137	0.159215	1.16123	1.97489	0.541066
14	1000	0.125	0.194782	0.0533649	0.594751	1.05566	0.289222
15	1000	0.061	0.0826214	0.022636	0.370697	0.585637	0.160449
16	1000	0.023	0.0301155	0.00825083	0.22918	0.36915	0.101137
17	1000	0.008	0.018493	0.00506657	0.126301	0.363317	0.0995388
18	1000	0.001	0.00167416	0.000458674	0.0316228	0.0529416	0.0145045
19	1000	0	0	0	0	0	0
20	1000	0	0	0	0	0	0
21	1000	0	0	0	0	0	0
22	1000	0	0	0	0	0	0
23	1000	0	0	0	0	0	0
24	1000	0	0	0	0	0	0
25	1000	0	0	0	0	0	0

Para 1000 simulaciones es finalmente 12.

Por tanto, podemos afirmar rotundamente que para repuestos con un tiempo de reparación de entre 15 y 30 días y una vida util de 20 días, el numero minimo de repuestos necesarios para que el tiempo de desprotección parcial sea inferior al $1\,\%$ es de 12 repuestos.

Finalmente se añaden dos graficas en las que se puede notar, como al aumentar el numero de simulaciones, las curvas tanto para el tiempo de desprotección como para el porcentaje de tiempo, estas se suavizan.

2.2: Variacion de las propiedades de los respuesto

Numero de repuestos	0	1	2	3	4	5
Tiempo de fallo para tr de: 0-15 dias y vu de: 20 dias	290.178.000	182.807.000	93.715.400	38.782.200	13.510.700	4.049.290
Probabilidad de fallo para tr de: 0-15 dias y vu de: 20 dias	79.500.900	50.084.000	25.675.500	10.625.300	3.701.570	1.109.400
Tiempo de fallo para tr de: 0-15 dias y vu de: 40 dias	208.320.000	81.507.000	23.034.500	5.914.470	1.078.910	158.565
Probabilidad de fallo para tr de: 0-15 dias y vu de: 40 dias	57.073.900	22.330.700	6.310.820	1.620.400	295.591	43.443
Tiempo de fallo para tr de: 0-15 dias y vu de: 60 dias	161.229.000	43.635.700	8.353.020	1.256.820	175.779	3.976
Probabilidad de fallo para tr de: 0-15 dias y vu de: 60 dias	44.172.200	11.955.000	2.288.500	344.333	48.159	1.089
Tiempo de fallo para tr de: 15-30 dias y vu de: 20 dias	352.807.000	328.292.000	290.227.000	239.578.000	187.811.000	134.982.000
Probabilidad de fallo para tr de: 15-30 dias y vu de: 20 dias	96.659.600	89.943.100	79.514.300	65.637.800	51.455.200	36.981.500
Tiempo de fallo para tr de: 15-30 dias y vu de: 40 dias	319.690.000	246.296.000	163.667.000	95.644.000	45.735.100	18.638.900
Probabilidad de fallo para tr de: 15-30 dias y vu de: 40 dias	87.586.400	67.478.300	44.840.300	26.203.800	12.530.200	5.106.560
Tiempo de fallo para tr de: 15-30 dias y vu de: 60 dias	285.777.000	179.152.000	92.001.000	39.119.900	13.525.000	3.638.090
Probabilidad de fallo para tr de: 15-30 dias y vu de: 60 dias	78.295.200	49.082.800	25.205.800	10.717.800	3.705.490	996.736
Tiempo de fallo para tr de: 30-45 dias y vu de: 20 dias	359.503.000	349.740.000	334.531.000	315.070.000	284.060.000	253.686.000
Probabilidad de fallo para tr de: 30-45 dias y vu de: 20 dias	98.494.100	95.819.300	91.652.200	86.320.500	77.824.700	69.503.100
Tiempo de fallo para tr de: 30-45 dias y vu de: 40 dias	344.213.000	307.471.000	253.475.000	197.899.000	140.146.000	89.738.500
Probabilidad de fallo para tr de: 30-45 dias y vu de: 40 dias	94.304.900	84.238.500	69.445.300	54.218.800	38.396.200	24.585.900
Tiempo de fallo para tr de: 30-45 dias y vu de: 60 dias	325.092.000	258.958.000	179.642.000	110.295.000	59.604.000	28.266.200
Probabilidad de fallo para tr de: 30-45 dias y vu de: 60 dias	89.066.200	70.947.300	49.217.000	30.217.900	16.329.900	7.744.160
Tiempo de fallo para tr de: 45-60 dias y vu de: 20 dias	360.435.000	354.797.000	345.664.000	333.814.000	318.194.000	300.118.000
Probabilidad de fallo para tr de: 45-60 dias y vu de: 20 dias	98.749.200	97.204.600	94.702.500	91.455.700	87.176.400	82.224.000
Tiempo de fallo para tr de: 45-60 dias y vu de: 40 dias	352.794.000	330.471.000	297.761.000	260.107.000	211.817.000	163.849.000
Probabilidad de fallo para tr de: 45-60 dias y vu de: 40 dias	96.655.900	90.540.100	81.578.400	71.262.000	58.032.000	44.890.200
Tiempo de fallo para tr de: 45-60 dias y vu de: 60 dias	340.635.000	297.168.000	239.028.000	178.139.000	121.407.000	75.020.700
Probabilidad de fallo para tr de: 45-60 dias y vu de: 60 dias	93.324.800	81.415.900	65.487.200	48.805.200	33.262.100	20.553.600

Numero de repuestos	6	7	8	9	10	11
Tiempo de fallo para tr de: 0-15 dias y vu de: 20 dias	1.005.120	249.555	45.871	19.888	0	0
Probabilidad de fallo para tr de: 0-15 dias y vu de: 20 dias	275.375	68.371	12.568	5.449	0	0
Tiempo de fallo para tr de: 0-15 dias y vu de: 40 dias	24.688	2.795	0	0	0	0
Probabilidad de fallo para tr de: 0-15 dias y vu de: 40 dias	6.764	766	0	0	0	0
Tiempo de fallo para tr de: 0-15 dias y vu de: 60 dias	0	0	0	0	0	0
Probabilidad de fallo para tr de: 0-15 dias y vu de: 60 dias	0	0	0	0	0	0
Tiempo de fallo para tr de: 15-30 dias y vu de: 20 dias	90.080.900	53.889.000	32.841.800	16.865.000	8.189.470	4.165.960
Probabilidad de fallo para tr de: 15-30 dias y vu de: 20 dias	24.679.700	14.764.100	8.997.740	4.620.540	2.243.690	1.141.360
Tiempo de fallo para tr de: 15-30 dias y vu de: 40 dias	7.656.350	2.453.380	639.037	163.727	26.880	22.261
Probabilidad de fallo para tr de: 15-30 dias y vu de: 40 dias	2.097.630	672.159	175.079	44.857	7.364	6.099
Tiempo de fallo para tr de: 15-30 dias y vu de: 60 dias	920.252	157.418	54.122	25.680	0	0
Probabilidad de fallo para tr de: 15-30 dias y vu de: 60 dias	252.124	43.128	14.828	7.036	0	0
Tiempo de fallo para tr de: 30-45 dias y vu de: 20 dias	217.996.000	180.724.000	142.472.000	109.242.000	83.119.500	55.209.100
Probabilidad de fallo para tr de: 30-45 dias y vu de: 20 dias	59.724.900	49.513.400	39.033.400	29.929.200	22.772.500	15.125.800
Tiempo de fallo para tr de: 30-45 dias y vu de: 40 dias	50.780.100	30.012.000	13.875.000	6.757.860	2.919.280	1.282.470
Probabilidad de fallo para tr de: 30-45 dias y vu de: 40 dias	13.912.300	8.222.460	3.801.370	1.851.470	799.804	351.362
Tiempo de fallo para tr de: 30-45 dias y vu de: 60 dias	10.675.300	4.970.000	1.488.900	454.684	199.948	55.803
Probabilidad de fallo para tr de: 30-45 dias y vu de: 60 dias	2.924.730	1.361.640	407.918	124.571	54.780	15.289
Tiempo de fallo para tr de: 45-60 dias y vu de: 20 dias	277.158.000	258.981.000	226.636.000	203.981.000	176.055.000	145.095.000
Probabilidad de fallo para tr de: 45-60 dias y vu de: 20 dias	75.933.700	70.953.800	62.092.000	55.885.200	48.234.200	39.752.100
Tiempo de fallo para tr de: 45-60 dias y vu de: 40 dias	120.366.000	84.927.100	52.957.500	31.982.900	17.919.500	8.770.750
Probabilidad de fallo para tr de: 45-60 dias y vu de: 40 dias	32.976.900	23.267.700	14.508.900	8.762.430	4.909.460	2.402.950
Tiempo de fallo para tr de: 45-60 dias y vu de: 60 dias	41.344.600	20.730.800	10.407.600	4.258.740	1.351.070	447.316
Probabilidad de fallo para tr de: 45-60 dias y vu de: 60 dias	11.327.300	5.679.680	2.851.390	1.166.780	370.157	122.552

X7						
Numero de repuestos	12	13	14	15	16	17
Tiempo de fallo para tr de: 0-15 dias y vu de: 20 dias	0	0	0	0	0	0
Probabilidad de fallo para tr de: 0-15 dias y vu de: 20 dias	0	0	0	0	0	0
Tiempo de fallo para tr de: 0-15 dias y vu de: 40 dias	0	0	0	0	0	0
Probabilidad de fallo para tr de: 0-15 dias y vu de: 40 dias	0	0	0	0	0	0
Tiempo de fallo para tr de: 0-15 dias y vu de: 60 dias	0	0	0	0	0	0
Probabilidad de fallo para tr de: 0-15 dias y vu de: 60 dias	0	0	0	0	0	0
Tiempo de fallo para tr de: 15-30 dias y vu de: 20 dias	1.455.760	549.235	216.799	95.298	369	0
Probabilidad de fallo para tr de: 15-30 dias y vu de: 20 dias	398.839	150.475	59.397	26.109	101	0
Tiempo de fallo para tr de: 15-30 dias y vu de: 40 dias	0	0	0	0	0	0
Probabilidad de fallo para tr de: 15-30 dias y vu de: 40 dias	0	0	0	0	0	0
Tiempo de fallo para tr de: 15-30 dias y vu de: 60 dias	0	0	0	0	0	0
Probabilidad de fallo para tr de: 15-30 dias y vu de: 60 dias	0	0	0	0	0	0
Tiempo de fallo para tr de: 30-45 dias y vu de: 20 dias	36.429.400	23.156.800	13.527.900	7.851.340	3.954.700	2.390.920
Probabilidad de fallo para tr de: 30-45 dias y vu de: 20 dias	9.980.670	6.344.330	3.706.270	2.151.050	1.083.480	655.048
Tiempo de fallo para tr de: 30-45 dias y vu de: 40 dias	347.766	96.723	31.339	9.353	11.523	3.702
Probabilidad de fallo para tr de: 30-45 dias y vu de: 40 dias	95.279	26.499	8.586	2.563	3.157	1.014
Tiempo de fallo para tr de: 30-45 dias y vu de: 60 dias	10.315	0	0	0	0	0
Probabilidad de fallo para tr de: 30-45 dias y vu de: 60 dias	2.826	0	0	0	0	0
Tiempo de fallo para tr de: 45-60 dias y vu de: 20 dias	120.032.000	93.612.700	73.717.200	52.880.300	35.639.100	25.849.900
Probabilidad de fallo para tr de: 45-60 dias y vu de: 20 dias	32.885.400	25.647.300	20.196.500	14.487.700	9.764.120	7.082.160
Tiempo de fallo para tr de: 45-60 dias y vu de: 40 dias	4.577.220	1.839.950	901.993	258.516	71.180	69.624
Probabilidad de fallo para tr de: 45-60 dias y vu de: 40 dias	1.254.030	504.097	247.121	70.826	19.501	19.075
Tiempo de fallo para tr de: 45-60 dias y vu de: 60 dias	109.780	75.383	3.011	0	0	0
Probabilidad de fallo para tr de: 45-60 dias y vu de: 60 dias	30.077	20.653	825	0	0	0

Numero de repuestos	18	19	20	21	22	23	24	25
Tiempo de fallo para tr de: 0-15 dias y vu de: 20 dias	0	0	0	0	0	0	0	0
Probabilidad de fallo para tr de: 0-15 dias y vu de: 20 dias	0	0	0	0	0	0	0	0
Tiempo de fallo para tr de: 0-15 dias y vu de: 40 dias	0	0	0	0	0	0	0	0
Probabilidad de fallo para tr de: 0-15 dias y vu de: 40 dias	0	0	0	0	0	0	0	0
Tiempo de fallo para tr de: 0-15 dias y vu de: 60 dias	0	0	0	0	0	0	0	0
Probabilidad de fallo para tr de: 0-15 dias y vu de: 60 dias	0	0	0	0	0	0	0	0
Tiempo de fallo para tr de: 15-30 dias y vu de: 20 dias	0	0	0	0	0	0	0	0
Probabilidad de fallo para tr de: 15-30 dias y vu de: 20 dias	0	0	0	0	0	0	0	0
Tiempo de fallo para tr de: 15-30 dias y vu de: 40 dias	0	0	0	0	0	0	0	0
Probabilidad de fallo para tr de: 15-30 dias y vu de: 40 dias	0	0	0	0	0	0	0	0
Tiempo de fallo para tr de: 15-30 dias y vu de: 60 dias	0	0	0	0	0	0	0	0
Probabilidad de fallo para tr de: 15-30 dias y vu de: 60 dias	0	0	0	0	0	0	0	0
Tiempo de fallo para tr de: 30-45 dias y vu de: 20 dias	931.753	332.306	223.525	59.286	27.318	7.663	17.718	0
Probabilidad de fallo para tr de: 30-45 dias y vu de: 20 dias	255.275	91.043	61.240	16.243	7.484	2.099	4.854	0
Tiempo de fallo para tr de: 30-45 dias y vu de: 40 dias	0	0	0	0	0	0	0	0
Probabilidad de fallo para tr de: 30-45 dias y vu de: 40 dias	0	0	0	0	0	0	0	0
Tiempo de fallo para tr de: 30-45 dias y vu de: 60 dias	0	0	0	0	0	0	0	0
Probabilidad de fallo para tr de: 30-45 dias y vu de: 60 dias	0	0	0	0	0	0	0	0
Tiempo de fallo para tr de: 45-60 dias y vu de: 20 dias	17.073.700	9.954.620	6.509.450	4.511.070	2.610.570	1.358.350	476.146	261.388
Probabilidad de fallo para tr de: 45-60 dias y vu de: 20 dias	4.677.720	2.727.290	1.783.410	1.235.910	715.225	372.151	130.451	71.613
Tiempo de fallo para tr de: 45-60 dias y vu de: 40 dias	49.402	467	0	0	0	0	0	0
Probabilidad de fallo para tr de: 45-60 dias y vu de: 40 dias	13.535	128	0	0	0	0	0	0
Tiempo de fallo para tr de: 45-60 dias y vu de: 60 dias	0	0	0	0	0	0	0	0
Probabilidad de fallo para tr de: 45-60 dias y vu de: 60 dias	0	0	0	0	0	0	0	0

Apartado 3: Simulador dos especies de peces

3.1: Busqueda del equilibrio

3.2: Campaña de pesca

Intervalo de dias en los que se pesca	Porcentaje de la población que se pesca	Tamaño de la pesca pasados 10 años
30	0.1	166300
30	0.3	253974
30	0.5	236
30	0.9	9
60	0.1	86432
60	0.3	194077
60	0.5	179173
60	0.9	11
180	0.1	29145
180	0.3	70980
180	0.5	86917
180	0.9	29235
365	0.1	12591
365	0.3	26872
365	0.5	30811
365	0.9	12348

