CONTOH TERAPAN GRAF

1. Rangkaian listrik.

2. Isomer senyawa kimia karbon

3. Transaksi konkuren pada basis data terpusat Transaksi T_0 menunggu transaksi T_1 dan T_2 Transaksi T_2 menunggu transaksi T_1 Transaksi T_1 menunggu transaksi T_3 Transaksi T_3 menunggu transaksi T_2

deadlock!

4. Pengujian program

```
read(x);
while x <> 9999 do
begin
   if x < 0 then
        writeln('Masukan tidak boleh negatif')
   else
        x:=x+10;
   read(x);
end;
writeln(x);</pre>
```



```
Keterangan: 1 : read(x) 5 : x := x + 10
2 : x <> 9999 6 : read(x)
3 : x < 0 7 : writeln(x)
4 : writeln('Masukan tidak boleh negatif');
```

5. Terapan graf pada teori otomata [LIU85].

Mesin jaja (vending machine)

Keterangan:

a: 0 sen dimasukkan

b: 5 sen dimasukkan

c:10 sen dimasukkan

d: 15 sen atau lebih dimasukkan

Terminologi graf

1. Bertetangga (Adjacent)

Dua buah simpul dikatakan *bertetangga* bila keduanya terhubung langsung dengan sebuah sisi.

Tinjau graf G_1 : simpul 1 bertetangga dengan simpul 2 dan 3, simpul 1 tidak bertetangga dengan simpul 4.

2. Bersisian (*Incidency*)

Untuk sembarang sisi $e = (v_j, v_k)$ dikatakan

- e bersisian dengan simpul v_i , atau
- e bersisian dengan simpul v_k

Tinjau graf G_1 : sisi (2, 3) bersisian dengan simpul 2 dan simpul 3, sisi (2, 4) bersisian dengan simpul 2 dan simpul 4, tetapi sisi (1, 2) tidak bersisian dengan simpul 4.

3. Simpul Terpencil (Isolated Vertex)

Simpul terpencil ialah simpul yang tidak mempunyai sisi yang bersisian dengannya.

Tinjau graf G_3 : simpul 5 adalah simpul terpencil.

4. Graf Kosong (null graph atau empty graph)

Graf yang himpunan sisinya merupakan himpunan kosong (N_n) . Graf N_5 :

5. Derajat (Degree)

Derajat suatu simpul adalah jumlah sisi yang bersisian dengan simpul tersebut.

Notasi: d(v) menytkn derj simpl v

Tinjau graf
$$G_1$$
: $d(1) = d(4) = 2$
 $d(2) = d(3) = 3$

Tinjau graf
$$G_3$$
: $d(5) = 0$ \rightarrow simpul terpencil $d(4) = 1$ \rightarrow simpul anting-anting (pendant vertex)

Tinjau graf
$$G_2$$
: $d(1) = 3$ \rightarrow bersisian dengan sisi ganda \rightarrow bersisian dengan sisi gelang (loop)

Pada graf berarah,

$$d_{in}(v)$$
 = derajat-masuk (*in-degree*)
= jumlah busur yang masuk ke simpul v

$$d_{\text{out}}(v) = \text{derajat-keluar } (out\text{-}degree)$$

= jumlah busur yang keluar dari simpul v

$$d(v) = d_{\rm in}(v) + d_{\rm out}(v)$$

Tinjau graf G_4 :

$$d_{in}(1) = 2$$
; $d_{out}(1) = 1$
 $d_{in}(2) = 2$; $d_{out}(2) = 3$
 $d_{in}(3) = 2$; $d_{out}(3) = 1$
 $d_{in}(4) = 1$; $d_{out}(3) = 2$