Instructions: The exam is 3 hours long and contains 6 questions. The total number of points is 100. Write your answers clearly in the notebook provided. You may quote any result/theorem seen in the lectures without proving it. Justify all your answers!

- $\mathbf{Q1}$ Let G be the graph depicted in Figure 1.
 - a) Is G planar? (4 points)
 - **b)** Find $\nu(G)$ and $\tau(G)$. (4 points)
 - c) Find $\chi(G)$. (4 points)
 - d) Find $\chi'(G)$. (4 points)
- **Q2** Let $\overrightarrow{G} = (V, E)$ be the oriented graph with the two specific vertices s and t and with the capicities $c: E \to \mathbb{Z}_+$ depicted in Figure 2.
 - a) Find a maximum flow from the vertex s to the vertex t. (8 points)
 - b) Find a minimum s, t-cut. (8 points)
- **Q3** Let G = (V, E) be the simple graph with weights $w : E \to \mathbb{Z}_+$ obtained from the oriented graph depicted in Figure 2 by replacing each oriented edge by a non-oriented one that has the same weight.
 - a) Find a minimum-cost spanning tree in G. (8 points)
 - b) Does G have a unique minimum-cost spanning tree. (8 points)
- Q4 Let $k \ge 1$ be an integer, and let G be a connected 2k-regular graph. Show that G is 2-edge-connected. (17 points)
- **Q5** Let G be a simple planar graph. Prove that if G contains no cycle of length five or less, then $\chi(G) \leq 3$.
- Q6 Let K_4^- be the 4-vertex graph obtained from K_4 by removing one edge. How many non-isomorphic simple 2-connected graphs G=(V,E) are there with |V|=1000 such that G has no K_4^- -minor? (18 points)

Figure 1: The graph in the question Q1.

Figure 2: The oriented graph in the questions Q2 and Q3.