10

Sei V ein Vektorraum über einem Körper K. Zeigen Sie, dass für $x \in V$ und $\lambda \in K$ gilt:

$$\lambda \cdot x = 0 \Leftrightarrow (\lambda = 0 \lor x = 0).$$

"⇒"

Sei $\lambda \cdot x = 0$.

zu zeigen: $\lambda = 0 \lor x = 0$

Fall 1: $\lambda = 0$

Dann gilt $\lambda = 0$.

Fall 2: $\lambda \neq 0$

Dann gibt es ein multiplikatives Inverses zu λ , das wir λ^{-1} nennen.

Dann gilt $x = (\lambda \cdot \lambda^{-1}) \odot x = \lambda^{-1} \odot (\lambda \odot x) = \lambda^{-1} \odot 0 = 0$.

Also x = 0.

Also gilt immer: $\lambda \cdot x = 0 \Rightarrow (\lambda = 0 \lor x = 0)$

"⇐"

Es gelte $\lambda = 0 \lor x = 0$.

zu zeigen: $\lambda \cdot x = 0$

Fall 1: Sei $\lambda = 0$.

Dann gilt $\lambda \cdot x = 0 \cdot x = 0$ (siehe Vorlesung: 1. Vektorraum-Eigenschaft).

Fall 2: Sei x = 0.

Dann gilt $\lambda \cdot x = \lambda \cdot 0 = 0$ (siehe Vorlesung: 3. Vektorraum-Eigenschaft).

Also gilt immer: $(\lambda = 0 \lor x = 0) \Rightarrow \lambda \cdot x = 0$