

An Airborne Onboard Parallel Processing Testbed

Dan Mandl

NASA/GSFC Software Engineering Division
2014 ESTO Science and Technology Forum

Objectives for Intelligent Payload Module Testbed

- Low power/high performance benchmarking
 - Test various typical onboard science processing requirements with parallel processing via multicore processors and field programmable gate array circuits
 - Target processors that can be radiation tolerant or radiation hardened
- Airborne Intelligent Payload Module(IPM) box used as proxy for satellite version of IPM
- Research being conducted under AIST-11 effort, “A High Performance Onboard Multicore Intelligent Payload Module for Orbital and Suborbital Decadal Missions”

Potential Users of IPM

- HyspIRI Smallsat mission
 - Visible ShortWave InfraRed (VSWIR) Imaging Spectrometer
 - Multispectral Thermal InfraRed (TIR) Scanner
- HyspIRI Space Station mission
 - Visible ShortWave InfraRed (VSWIR) Imaging Spectrometer
 - Multispectral Thermal InfraRed (TIR) Scanner
- Geocape

Sample Operational Scenario: Detection of Harmful Algal Blooms with Rapid Map Downlinked to Validation Team on Ground

Processors Used in Conjunction With The Testbed

Tilera Tile64 as Proxy for Maesto

Specifications

- Launched on August 20, 2007
- **8 x 8 tile array (64 cores)**
- Each tile on chip is an independent processor capable of running an entire operating system
- 700MHz - 866MHz (No FPU)
- 15 - 22W @ 700MHz all 64 cores running
- Idle tiles can be put into low-power sleep mode
- ANSI standard C / C++ compiler
- Supports SMP Linux with 2.6 kernel

Issues

- Special data homing considerations required when programming/compiling for the TILE64
 - Uses a crude coherence strategy; each shared memory location may only be cached in one tile – its “home” tile. A location’s home tile is fixed at runtime
 - Accessing remotely-cached data is correct, but performance is low
 - Prevents TILE64 from efficiently running existing generic multithreaded code
 - Careful “homing” of data is crucial to good scalability
- TILE64’s compiler does not use the now-standard C++ ABI popularized by GCC 3.2+
 - This compiler is closed-source, based on SGI’s “MIPSPro”
 - Prevents linkage with and preprocessing by other C++ compilers, such as AESOP

Maestro as Proxy for Maestro-lite

- Origin - DARPA Polymorphic Computer Architecture (PCA Program)
- DARPA/DTRA Radiation Hardened By Design (RHBD) 90 nm IBM CMOS process
- Government purchased Tilera Corp's (commercial 64 core processor) software intellectual property (IP) for government space-based applications
- Program managed by National Reconnaissance Office (NRO)
- Maestro Chip developed by Boeing Solid-State Electronics Development (SSED)
- Government customers: NASA, NRO, Air Force Research Laboratory
- Maestro basic specifications
 - 7 x 7 tile array (49 cores)
 - 300 MHz, 45 GOPs, 22 GFLOPS (FPU on each tile)
 - 18 Watts typical
 - RHBD Total Ionizing Dose (TID) >500krad

Tilera TilePro64 as Proxy for Maestro

Specifications

- Launched on September 22, 2008
- **8 x 8 tile array (64 cores)**
- Each tile on chip is an independent processor capable of running an entire operating system
- 700MHz - 866MHz (No FPU)
- 19 - 23W @ 700MHz all 64 cores running
- Idle tiles can be put into low-power sleep mode
- ANSI standard C / C++ compiler
- Supports SMP Linux with 2.6 kernel

Addressed issues exhibit in TILE64

- Uses a better cache coherence protocol allowing many tiles to cache the same data
- The native compiler is now an open-source port of GCC 4.4, using standard C++ ABI
 - Compiler and toolchain is actively supported
 - October 14 2011 - Tilera contributed its port back to the GCC project
- First-class Linux kernel architecture
- **Presently in IPM used during recent flights**

Tilera Tile-Gx8036 / Tile-Gx8009 as Proxy for Maestro

Specifications

- Launched on January 30, 2012
- **6 x 6 tile array (36 cores) / 3 x 3 tile array (9 cores)**
- Each tile on chip is an independent processor
 - capable of running an entire operating system
- 1GHz – 1.5GHz (FPU)
- 27 - 30W @ 1.2GHz all 36 cores running
- 9 – 10W @ 1.0GHz all 9 cores running
- Idle tiles can be put into low-power sleep mode
- ANSI standard C / C++ compiler
- Supports SMP Linux with 2.6 kernel

SpaceCube 1.5

Unit	Mission	Notes	Specs	Stats	Status
SpaceCube 1.0a	Hubble SM 4	RNS Experiment STS-125 May 2009	4"x4" card (2) Virtex4	Size: 5"x5"x7" Wt: 7.5 lbs Pwr: 16W x 2	2009 Flight
SpaceCube 1.0b	MISSE-7/8	added RS-485, RHBS, STS-129 Nov 2009	4"x4" card (2) Virtex4	Size: 5"x5"x7" Wt: 7.5 lbs Pwr: 16W x 2	Operating on ISS Since Nov 2009
SpaceCube 1.5	SMART	added GigE & SATA SubTec-5 Jun 2011	4"x4" card (1) Virtex5	Size: 5"x5"x4" Wt: 4 lbs Pwr: 10W	2011 Flight
SpaceCube 1.0c	Argon Demo	added 1553 & Ethernet	4"x4" card (2) Virtex4	Size: 5"x5"x7" Wt: 7.5 lbs Pwr: 18W x 2	Demonstration Testbed
SpaceCube 1.0 d, e, f	STP-H4, future STP-H5 & RRM3	added 1553 & Ethernet	4"x4" card (2) Virtex4	Size: 5"x5"x7" Wt: 7.5 lbs Pwr: 15W	On ISS Since Aug 2013
SpaceCube 2.0	Earth/Space Science, SSCO, GPS Nav	Std 3U form factor, GigE, SATA, Spacewire, cPCI	4"x7" card (2) Virtex 5 + (1) Aeroflex	Size: 5"x5"x7" Wt: < 10 lbs Pwr: 15-20W	EM On ISS Since Aug 2013 (Flight Unit In Development)
SpaceCube 2.0 Mini	CubeSats, Sounding Rocket, UAV	"Mini" version of SpaceCube 2.0	3.5"x3.5" card (1) Virtex 5 + (1) Aeroflex	Size: 4"x4"x4" Wt: < 3 lbs Pwr: 8W	Flight Unit in Development (2016 launch)

SpaceCube Family Overview

v1.0

2009 STS-125
2009 MISSE-7
2013 STP-H4
2016 STP-H5

v1.5

2012 SMART

v2.0-EM

2013 STP-H4
2016 STP-H5

v2.0-FLT

2015 GPS Demo
- Robotic Servicing
- Numerous proposals
for Earth/Space/Helio

11

Processor Comparison

Processor	MIPS	Power	MIPS/W
MIL-STD-1750A	3	15W	0.2
RAD6000	35	15W	2.33
RAD750	300	15W	20
LEON 3FT	75	5W	15
LEON3FT Dual-Core	250	10W	25
BRE440 (PPC)	230	5W	46
Maxwell SCS750	1200	25W	48
SpaceCube 1.0	3000	7.5W	400
SpaceCube 2.0	6000	10W	600
SpaceCube Mini	3000	5W	600

ZC702 – Zynq (ARM/FPGA Processor) Proxy for COTS+RH+FTC CHREC Space Processor (CSP)

COTS

- Zynq-7020 hybrid SoC
 - Dual ARM A9/NEON cores
 - Artix-7 FPGA fabric + hard IP
- DDR3 memory

RadHard

- NAND flash
- Power circuit
- Reset circuit
- Watchdog unit

FTC = Fault-Tolerant Computing

- Variety of mechanisms
 - External watchdog unit to monitor Zynq health and reset as needed
 - RSA-authenticated bootstrap (primary, secondary) on NAND flash
 - ECC memory controller for DDR3 within Zynq
 - ADDAM middleware with message, health, and job services
 - FPGA configuration scrubber with multiple modes
 - Internal watchdogs within Zynq to monitor behavior
 - Optional hardware, information, network, software, and time redundancy

IPM Hardware

- 14 x 14 x 6 inches
- Wide-Input-Range DC voltage (6V-30V)
- Made of strong durable aluminum alloy
- Dual mounting brackets
- Flush design
- Removable side panels
- Mounting racks are electrically isolated from the box
- Appropriate space allocation for interchangeable Tilera
 and SpaceCube boards
- Electronic components
 - Tilera development board
 - SpaceCube development board
 - Single board computer
 - 600GB SSD
 - Gigabit Ethernet switch
 - Transceiver radio
 - Power board

IPM Hardware

Compact Hyperspectral Advanced Imager (CHAI V640)

SPECIFICATIONS

MECHANICALS	ESTIMATE
Size (with lens)	125 x 101 x 75 mm
Size (with telescope)	200 x 101 x 75 mm
Weight	.48 kg [.99 lbs]
Power	20 watts
Temperature Range	-20 to +50 C
Size does not include NS/GPS	

OPTICS	SPECIFICATION
Spectrometer Type	Dyson
Telescope	All-reflective telescope
Field of View	40 degrees
Cross Track Pixels	640
F-Number	f/2
Spectral Range	350-1080 nm (Reflective) 400-1000 nm (Refractive)
Smile Distortion	< 0.1 pixels
Keystone Distortion	< 0.1 pixels
Stray Light	< 1e-4 Point Source Transmission
Spectral Bands	256
Spectral Sampling	2.5, 5, 10 nm
Peak Grating Efficiency	88%
Slit Size	9.6 x .015 mm

IMAGE SENSOR	
Image Sensor	640 x 512, with 15 μ m pixels
Full Well Capacity	Gain 0: 500,000 Gain 1: 60,000 Gain 2: 10,000
Read Noise	Gain 0: < 63 electrons Gain 1: < 42 electrons Gain 2: < 10 electrons
Maximum Frame Rate	1000 frames/second
Quantum Efficiency	> 50% @ 380 nm 80% @ 400-900 nm > 30% @ 1000 nm
Camera Interface	USB-3
Data Acquisition	500 MB Solid State Recorder Serial Interface for GPS/INS

CHAI SOFTWARE	
Trigger Modes	Pilot, GUI, electronic, and Lat/Long triggered acquisition
Visualization	3-band RGB waterfall display of real-time and recorded data
Metadata	Temperature, pressure, and humidity
Data Format	RAW, ENVI BIL, or Processed
Processing	EXPRESSO™

from Brandywine Electronics
Contact: John Fisher

ChaiV640 Box and IPM (Tilera Multicore Proxy for Maestro)

ChaiV640 Box

SDN500
IMU

ChaiV640 Box Mounted on Helo

IPM

Freewave
Transceiver
Tilera TIlePro

ChaiV640/IPM on Bussmann Helo Takeoff

Software with Addition of Publisher Node Onboard IPM

Data Processing Chain for Benchmarking

Main Data Source

Alternative Data Sources

Radiometric Correction

Atmospheric Correction

Geometric Correction

Classifiers & Other Algorithms

Downlink high level data products to ground at 200 kbps

Publisher/Consumer/GeoSocial API Architecture

Initial Hyperspectral Image Processing Benchmark

	Radiometric Correction	*Atmospheric Correction (FLAASH)	Geometric Correction (GCAP)	*WCPS (vis_composite)
864 MHz TILEPro64 (1 core)	121.95	2477.74	183.42	72.39
864 MHz TILEPro64 (49 cores)	23.83	TBD	4.59	21.63
1.2 GHz TILE-Gx36 (1 core)	57.22	897.71	28.51	19.93
1.2GHz TILE-Gx36 (36 cores)	9.21	TBD	1.41	8.72
2.2GHz Intel Core I7	2.09	58.29	0.169	2.26
Virtex 5 FPGA	TBD	TBD	TBD	TBD

Image data: GLiHT 1004 x 1028 x 402 (829,818,048 bytes)
 Hyperion 256 x 6702 x 242 (830,404,608 bytes)
 Chai640 696 x 2103 x 283 (828,447,408 bytes)

Notes: Unit is in seconds
 TILEPro64 – No floating point support
 TILE-GX36 – Partial floating point support
 * Indicates time includes file I/O

Detail on Benchmarking of Atmospheric Correction

- Worked with Spectral Sciences to modify FLAASH GLUT version to support airborne atmospheric correction.
- Optimized FLAASH to run on the multicore Tilera processor.
- Processed CHAI v640 data with FLAASH to create reflectance values

Using this subroutine which takes about 20% of processing time and is a Fast Fourier Transform to benchmark FPGA acceleration.

FLAASH Parallelization Effort						
	wall	system	user	notes Parallelized?	Original Walltime	Parallel Speedup
Surfreflectance	32.7952	5.1398	27.6554	Reflect:: RadioRef	YES	197.317
Cube smoothing	145.741	18.1373	127.6037	>Smooth; FFT mini_cube-		
Cube reduction	112.363	13.9834	98.3796	>Condense		
Cube load & distrib	89.0128	11.0775	77.9353			
Cube gather & write	83.2988	10.3664	72.9324			
Aerosol Retrieval	52.6236	6.54892	46.07468			
Water col retrieval	34.7984	4.3306	30.4678			
Spectral Polishing	33.5795	4.17891	29.40059			
Sensor calibration	28.5097	3.54799	24.96171			
Images and Masks	17.1781	2.13779	15.04031			
Spectral Resampling	8.72743	1.08611	7.64132	Smile_Resampl er::Cube_Copy	YES	241.669
Cloud Masking	5.93287	0.738336	5.194534			
Sensor slitfunction	0.764612	0.0951547	0.6694573			
Modtran Tables	0.416416	0.0518223	0.3645937			
un-categorized	0.0397966	0.00495262	0.03484398			
Flaash setup	0.000163794	2.04E-05	1.43E-04			
total time	645.7813884	81.425006	564.3563824			1.641422344
total time (h:m:s)	0:10:46	0:01:21	0:09:24			
Original Wall time:	1060					36
	0:17:40					

FFT Benchmark Tests with Various CPU Processors and FPGA

Processor	Cores	FFTW 1 band 128 x 256 time (Msec)	Clock rate (Mhz)	Power Consumption (watts)
TileGX	1	21.3		
TileGX	4	10.0		
Maestro	1	187	200	14 watts
Maestro	8	55	200	14 watts
ZynqARM	1	8.7	667	3 watts
ZynqARM	2	6.9	667	3 watts
XeonPhi	1	9.0		
XeonPhi	171	0.221		225 watts
FPGA	NA	1.5	100	<3 watts

Goal

- Experimenting with putting almost all of the data processing chain in FPGA using the Zynq based ZC702 (proxy for CSP) to do the benchmark
- Install ZC702 in IPM and fly on helicopter as part of our flight tests
- Issues
 - Moving data between programmable logic, processor system and memory
 - Design of data processing chain buffering scheme
- Based on DMA access, throughput speed of as much as 10 Gbps might be possible
- Would like to demonstrate producing high level data products while keeping up with an input instrument data rate of between 500 – 1000 Mbps

CHREC Space Processor (CSP) Missions

- CSP Tech Demo ISIM (Space Station)
 - 2 CSP's
 - Targeted to be on Space Station Summer 2015
 - Gary Crum/587
- Compact Radiation BElt Explorer (CeREs) is part of NASA's Low-Cost Access to Space program
 - 3U Cubesat
 - 1 CSP
 - Launch May 2015

Conclusion

- Working towards IPM and GeoSocial API integrated architecture
- Working towards radiation tolerant IPM
- Prototype how much of the flight software and data processing software can be hosted
- Measure relative throughput performance of representative data processing chain
- Present AIST-11 effort is working mostly in multicore processor environment and only begins to explore FPGA performance