

Métricas de Produto

- Quantificam atributos internos do software
- Exemplos de atributos
 - Tamanho
 - Acoplamento entre componentes
 - o Coesão de um componente, etc.

Tipos de Métricas

- Métricas Dinâmicas
 - São coletadas por medições realizadas durante a execução do programa
- Métricas Estáticas
 - São coletadas por medições realizadas na documentação de projeto ou código fonte do programa

Dinâmicas x Estática

- Métricas dinâmicas ajudam a avaliar atributos de qualidade como eficiência e confiabilidade
 - São medidas após o sistema ter sido implementado
- Métricas estáticas ajudam a avaliar atributos como complexidade e facilidade de manutenção
 - o Podem ser medidas na fase de projeto

Métricas Estáticas Tradicionais

Algumas Métricas Estáticas

- Fan-in / Fan-out
- Tamanho do código
- Complexidade Ciclomática
- Tamanho do Vocabulário
- Profundidade de Aninhamento

Fan-in e Fan-out

- Fan-in
 - Conta o número de funções que chama uma determinada função
 - Valor alto significa grande impacto em mudanças (propagação)
- Fan-out
 - Conta o número de funções chamadas pela função
 - Valor algo significa grande complexidade da função

Tamanho e Complexidade

- Tamanho
 - Tamanho tem se mostrado como métricas mais confiáveis e úteis
 - Em geral, quanto maior, mais complexo e propenso a erros será o componente
- Complexidade Ciclomática
 - Mede a complexidade de controle do programa (if, while, for, etc.)
 - Está relacionada a facilidade de compreensão

Vocabulário e Aninhamento

- Tamanho do Vocabulário
 - Conta a quantidade de identificadores (exemplo, nome de classes) do programa
 - Mais identificadores podem significar que eles são mais significativos
- Profundidade de Aninhamento
 - Conta estruturas internas como if e while aninhados
 - Estruturas aninhadas são mais difíceis de se compreender

Métricas para Programas Orientados a Objetos

Métricas de Programas OO

- Métricas de Chidamber-Kemerer (CK)
 - Métodos Ponderados por Classes (WMC)
 - Profundidade da Herança (DIT)
 - o Número de Filhos (NOC)
 - Acoplamento entre Objetos (CBO)
 - o Falta de Coesão em Métodos (LCOM)
- Número de Operações Sobreescritas

Profundidade de Herança (DIT) Representam o número de níveis que uma classe herda métodos e atributos Quanto maior a profundidade Mais complexo o projeto Mais difícil de se entender um módulo

Número de Filhos (NOC)

- Conta o número de subclasses diretas
 - Mede a largura da hierarquia de uma classe
- Valor alto, pode indicar maior reuso

Acoplamento entre Objetos (CBO)

- Semelhante a Fan-out
 - Conta classes chamadas por uma classe
- Quanto mais acoplado uma classe
 - Mais difícil de entender e de manter

Falta de Coesão (LCOM)

- Mede o quanto os métodos de uma classe acessam atributos em comum
 - Mais atributos em comum, maior coesão, menor perda de coesão (LCOM)

Métricas para Métodos

- Métodos Ponderados por Classes (WMC)
 - o Atribui pesos aos métodos de uma classe
 - o Uma forma é "pesar" por linhas de código
 - o Valores altos indicam complexidade
- Número de Operações Sobrescritas
 - Conta as operações de uma classe que são sobrescritas por subclasses
 - Valores altos indicam problema na hierarquia de herança

Bibliografia da Aula

- Ian Sommerville. Engenharia de Software, 9^a Edição. Pearson Education, 2011.
 - Cap. 24 Gerenciamento de Qualidade (Seção 24.4)