

수학 계산력 강화

(3)함수의 그래프

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

1) 제작연월일 : 2019-03-12

2) 제작자 : 교육지대㈜

3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호 되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무 단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

도함수의 그래프의 해석 01 /

(1) 함수 f(x)가 어떤 열린구간에서 미분가능할 때 ① 그 구간의 모든 x에 대하여 f'(x) > 0이면 f(x)는 그 구간에서 **증가**한다.

② 그 구간의 모든 x에 대하여 f'(x) < 0이면 f(x)는 그 구간에서 **감소**한다.

(2) 미분가능한 함수 f(x)에 대하여 f'(a) = 0일 때, ① x=a의 좌우에서 f'(x)의 부호가 양에서 음으로 바뀌면 f(x)는 x=a에서 **극대**이고, 극댓값 f(a)를 갖는다.

② x=a의 좌우에서 f'(x)의 부호가 음에서 양으로 바뀌면 f(x)는 x=a에서 **극소**이고, 극솟값 f(a)를

ightharpoonup 함수 f(x)의 도함수 y = f'(x)의 그래프가 다음 그림과 같을 때, 함수 f(x)가 극댓값을 갖는 x의 값과 극솟값을 갖는 x의 값을 각각 구하여라.

 $oldsymbol{\square}$ 함수 f(x)의 그래프가 다음 그림과 같을 때, 구간 $(\alpha,\ \beta)$ 에서 다음을 구하여라.

3. 함수 f(x)가 극댓값을 갖는 x의 값

4. 함수 f(x)가 극솟값을 갖는 x의 값

 $oldsymbol{\square}$ 함수 f(x)의 도함수 $y\!=\!f'(x)$ 의 그래프가 다음 그림과 같을 때, 함수 f(x)가 극값을 가지게 되는 점의 개수를 구하여라.

ightharpoonup 함수 y = f'(x)의 그래프가 다음 그림과 같다. <보기>에서 옳은 것을 모두 골라라.

<보기>

 \neg . 구간 (-3, -2)에서 f(x)는 감소한다.

L. 구간 (-2, -1)에서 f(x)는 감소한다.

 \Box . 구간 (-1,1)에서 f(x)는 극솟값을 갖는다.

<보기>

 $\neg . f(2) = f(4)$

L. f(x)는 x = 2에서 극대이다.

 \Box . 구간 (-2,1)에서 f(x)는 증가한다.

<보기>

 \neg . f(x)는 x = -4에서 극소이다.

L. 구간 (1,3)에서 f(x)는 증가한다.

 \Box . 구간 (-4,0)에서 f(x)는 증가한다.

<보기>

 $\neg . f(x)$ 는 구간 (-5, -3)에서 감소한다.

L. f(x)는 구간 (-3, -1)에서 증가한다.

 \Box . f(x)는 구간 (-1,1)에서 극솟값을 갖는다.

 \mathbf{z} . f(x)는 구간 (1,2)에서 극댓값을 갖는다.

 \Box . f(x)는 구간 (2,4)에서 극솟값을 갖는다.

<보기>

- ㄱ. f(x)는 구간 (-2,1)에서 증가한다.
- L. f(x)는 구간 (1,3)에서 증가한다.
- \Box . f(x)는 구간 (4,5)에서 감소한다.
- = f(x)는 x = 3에서 극댓값을 갖는다.
- \Box . f(x)는 x = 4에서 극댓값을 갖는다.

<보기>

- ㄱ. f(x)는 구간 (b,c)에서 감소한다.
- L. f(x)는 구간 (f,g)에서 증가한다.
- \Box . f(x)는 x = b에서 극댓값을 갖는다.
- a. f(x)는 x = c에서 극댓값을 갖는다.
- \Box . f(x)는 x = g에서 극솟값을 갖는다.

<보기>

- $\neg . f(x)$ 는 x = 3에서 극대이다.
- L. f(x)는 x > 4에서 감소한다.
- \Box . f(x)는 3개의 극값을 가진다.
- = f(x)는 0 < x < 2에서 감소한다.
- \Box . f(x)는 x=2에서 극소이다.

<보기>

- ㄱ. f(x)는 두 개의 극값을 갖는다.
- L. f(x)는 실수 전체의 집합에서 증가한다.
- \Box . f(x)는 x=4에서 미분가능하지 않다.
- argleright = 1 < x < 3에서 f(x)는 일차함수이다.
- \Box . 3 < x < 4에서 f(x)는 일차함수이다.

17.

<보기>

- ㄱ. 구간 (-3, -2)에서 f(x)는 감소한다.
- L. 구간 (-2, -1)에서 f(x)는 감소한다.
- \Box . 구간 (-1, 1)에서 f(x)는 극솟값을 갖는다.
- a. 구간 (1, 3)에서 f(x)는 극댓값을 갖는다.
- \Box . 구간 (3, 4)에서 f(x)는 극댓값을 갖는다.

02 / 그래프의 개형

미분가능한 함수 f(x)의 그래프의 개형은 다음과 같은 순서로 그린다.

- ① f'(x) = 0인 x의 값을 구한다.
- ② ①에서 구한 x의 값의 좌우에서 f'(x)의 부호를 조사하여 증감표를 만들고, 극값을 구한다.
- ③ 함수 y=f(x)의 그래프와 x축 및 y축의 교점의 좌표를 구한다.
- ④ 함수 y=f(x)의 그래프의 개형을 그린다.

☑ 다음 함수의 그래프의 개형을 그려라.

18.
$$f(x) = x^3 + 3x^2 + 1$$

19.
$$f(x) = x^3 - 3x + 3$$

20.
$$f(x) = x^3 - 3x^2 + 4$$

21.
$$f(x) = x^3 - 6x^2 + 9x$$

22.
$$f(x) = x^3 + 6x^2 + 9x + 4$$

23.
$$f(x) = x^3 - 6x^2 + 9x + 2$$

24.
$$f(x) = -x^3 + 3x^2 + 1$$

25.
$$f(x) = -x^3 + 6x^2 - 12x$$

26.
$$f(x) = -x^3 + 6x^2 - 9x + 5$$

27.
$$f(x) = x^3 - 6x^2 + 12x - 5$$

28.
$$f(x) = x^3 + 6x^2 - 15x$$

29.
$$f(x) = 2x^3 - 9x^2 + 12x - 3$$

30.
$$f(x) = 3x^4 + 4x^3 + 1$$

31.
$$f(x) = 3x^4 - 4x^3 - 1$$

32.
$$f(x) = 3x^4 - 4x^3 + 1$$

33.
$$f(x) = \frac{1}{2}x^4 - 2x^3 + 8$$

34.
$$f(x) = \frac{1}{4}x^4 + x^3 + 3$$

35.
$$f(x) = \frac{1}{3}(x-1)^3(x+1)$$

36.
$$f(x) = -x^4 + 2x^2 + 1$$

37. $f(x) = -3x^4 + 4x^3 - 1$

· 극값을 가질 조건

- (1) 삼차함수 f(x)의 도함수 f'(x)에 대하여 이차방정식 f'(x) = 0의 판별식을 D라 하면
 - ① f(x)가 극값을 가질 조건 \Rightarrow D>0
 - ② f(x)가 극값을 갖지 않을 조건 \Rightarrow $D \leq 0$
- (2) 최고차항의 계수가 양수인 사차함수 f(x)에 대하여
 - ① f(x)가 극댓값을 가질 조건
 - \Rightarrow 삼차방정식 f'(x)=0이 서로 다른 세 실근을 갖는다.
 - ② f(x)가 극댓값을 갖지 않을 조건
 - \Rightarrow 삼차방정식 f'(x)=0이 한 실근과 두 허근 또는 한 실근과 다른 중근 또는 삼중근을 갖는다.

☑ 다음 물음에 답하여라.

- **38.** 삼차함수 $f(x) = x^3 2ax^2 + 12x + 2$ 가 극값을 갖 기 위한 실수 a의 값의 범위를 구하여라.
- **39.** 삼차함수 $f(x) = x^3 + ax^2 + 3x + 4$ 가 극값을 갖기 위한 상수 a의 값의 범위를 구하여라.
- **40.** 삼차함수 $f(x) = x^3 + ax^2 + ax + 1$ 가 극값을 갖기 위한 자연수 a의 값의 범위를 구하여라.
- **41.** 삼차함수 $f(x) = x^3 + ax^2 3ax + 5$ 가 극값을 갖기 위한 실수 a의 값의 범위를 구하여라.

- **42.** 삼차함수 $f(x) = x^3 3(a+1)x^2 3(a-5)x$ 가 극 값을 갖기 위한 실수 a의 값의 범위를 구하여라.
- **43.** 삼차함수 $f(x) = \frac{1}{3}x^3 + ax^2 + 3ax + 5$ 가 극값을 갖 기 위한 실수 a의 값의 범위를 구하여라.
- **44.** 삼차함수 $f(x) = -x^3 + ax^2 ax + 3$ 이 극값을 갖기 위한 상수 a의 값의 범위를 구하여라.
- **45.** 삼차함수 $f(x) = \frac{1}{3}x^3 + (a-1)x^2 + 4x + 1$ 이 극값 을 갖지 않도록 하는 상수 a의 값의 범위를 구하여
- **46.** 삼차함수 $f(x) = -3x^3 + ax^2 + ax$ 가 극값을 갖지 않도록 하는 상수 a의 값의 범위를 구하여라.
- **47.** 삼차함수 $f(x) = x^3 ax^2 + ax + 1$ 이 극값을 갖지 않도록 하는 실수 a의 값의 범위를 구하여라.
- **48.** 삼차함수 $f(x) = x^3 + ax^2 + ax 2$ 가 극값을 갖지 않도록 하는 상수 a의 값의 범위를 구하여라.

- **49.** 삼차함수 $f(x) = x^3 + ax^2 2ax + 3$ 이 극값을 갖지 않도록 하는 상수 a의 값의 범위를 구하여라.
- **50.** 삼차함수 $f(x) = x^3 + ax^2 3ax + 2$ 가 극값을 갖지 않도록 하는 상수 a의 값의 범위를 구하여라.
- **51.** 삼차함수 $f(x) = x^3 2ax^2 + 7ax + 3$ 이 극값을 갖 지 않도록 하는 상수 a의 값의 범위를 구하여라.
- **52.** 삼차함수 $f(x) = x^3 + (a-3)x^2 2(a-3)x + a 4$ 가 극값을 갖지 않도록 하는 상수 a의 값의 범위를 구하여라.
- **53.** 삼차함수 $f(x) = 2x^3 ax^2 + ax + 1$ 이 극값을 갖지 않도록 하는 상수 a의 값의 범위를 구하여라.
- **54.** 삼차함수 $f(x) = 2x^3 + 2ax^2 + 2ax + 1$ 이 극값을 갖 지 않도록 하는 상수 a의 값의 범위를 구하여라.
- **55.** 사차함수 $f(x) = x^4 4x^3 + 3ax^2 + 1$ 이 극댓값을 갖도록 하는 실수 a의 값의 범위를 구하여라.

- **56.** 사차함수 $f(x) = x^4 4x^3 + \frac{a}{2}x^2 5$ 가 극댓값을 갖도록 하는 실수 a의 값의 범위를 구하여라.
- **57.** 사차함수 $f(x) = x^4 + 2x^3 + ax^2$ 이 극댓값을 갖도록 하는 실수 a의 값의 범위를 구하여라.
- **58.** 사차함수 $f(x) = x^4 + 4x^3 4ax^2$ 이 극댓값을 갖도 록 하는 실수 a의 값의 범위를 구하여라.
- **59.** 사차함수 $f(x) = 2x^4 8x^3 + 4ax^2$ 이 극댓값을 갖도 록 하는 실수 a의 값의 범위를 구하여라.
- **60.** 사차함수 $f(x) = -\frac{3}{4}x^4 + 4x^3 + ax^2$ 이 극솟값을 갖 도록 하는 실수 a의 값의 범위를 구하여라.

정답 및 해설

1) x=-3, x=3에서 극대, x=1에서 극소 $\Rightarrow y=f'(x)$ 의 그래프에서 f'(x)=0인 x의 값은 -3, 1, 3이므로 함수 f(x)의 증감표는 다음과 같다.

x		-3		1	•••	3	•••
f'(x)	+	0	_	0	+	0	+
f(x)	1	극대	7	극소	1	극대	7

따라서 극댓값을 갖는 x의 값은 -3, 3이고, 극솟값을 갖는 x의 값은 1이다.

- 2) x = 0에서 극대, x = -2, x = 3에서 극소
- ⇒ y = f'(x)의 그래프에서 f'(x) = 0인 x의 값은 -2, 0, 3이므로 함수 f(x)의 증감표는 다음과 같다.

x		-2	•••	0		3	
f'(x)	_	0	+	0	_	0	+
f(x)	7	극소	1	극대	7	극소	1

따라서 극댓값을 갖는 x의 값은 0이고, 극솟값을 갖는 x의 값은 -2, 3이다.

3) a, d

 \Rightarrow $x=a, \ x=d$ 의 좌우에서 함수 f(x)가 증가하다가 감소하므로 f(x)는 $x=a, \ x=d$ 에서 극댓값을 갖는다.

4) b, e

 \Rightarrow $x=b, \ x=e$ 의 좌우에서 함수 f(x)가 감소하다가 증가하므로 f(x)는 $x=b, \ x=e$ 에서 극솟값을 갖는다.

5) 3개

- \Rightarrow x가 증가하면서 x=a를 지날 때, f'(x)=0의 부호가
- (i) 음에서 양으로 바뀌면 x=a에서 극소이므로 x=-2, x=3에서 극소이다.
- (ii) 양에서 음으로 바뀌면 x = a에서 극대이므로 x = 0에서 극대이다.
- (iii) x = 2, x = 4에서는 f'(x)의 부호가 바뀌지 않으므로 극값을 갖지 않는다.

따라서 부호의 변화가 있는 3개의 점에서 극값을 갖는다.

6) 3개

 \Rightarrow x가 증가하면서 x = a를 지날 때, f'(x)의 부호가

- (i) 음에서 양으로 바뀌면 x = a에서 극소이므로 x = -3, x = 2에서 극소이다.
- (ii) 양에서 음으로 바뀌면 x=a에서 극대이므로 x=-1에서 극대
- (iii) x=1, x=3에서는 f'(x)의 부호가 바뀌지 않으

므로 극값을 갖지 않는다.

따라서 부호의 변화가 있는 3개의 점에서 극값을 갖는다.

7) 3개

 \Rightarrow x가 증가하면서 x = a를 지날 때, f'(x)의 부호가

- (i) 음에서 양으로 바뀌면 x = a에서 극소이므로 x = -3, x = 7에서 극소이다.
- (ii) 양에서 음으로 바뀌면 x = a에서 극대이므로 x = 2에서 극대
- (iii) x = -1, x = 4에서는 f'(x)의 부호가 바뀌지 않으므로 극값을 갖지 않는다.

따라서 부호의 변화가 있는 3개의 점에서 극값을 갖는다.

8) 3개

 \Rightarrow x가 증가하면서 x=a를 지날 때, f'(x)의 부호가

- (i) 음에서 양으로 바뀌면 x = a에서 극소이므로 x = -4, x = 2에서 극소이다.
- (ii) 양에서 음으로 바뀌면 x=a에서 극대이므로 x=0에서 극대
- (iii) x = 4에서는 f'(x)의 부호가 바뀌지 않으므로 극값을 갖지 않는다.

따라서 부호의 변화가 있는 3개의 점에서 극값을 갖는다.

9) ∟. ⊏

 \Rightarrow ㄱ. 구간 (-3,-2)에서 f'(a)=0이라 하면 -3 < x < a에서 f'(x) > 0이므로 f(x)는 증가 a < x < -2에서 f'(x) < 0이므로 f(x)는 감소

- ㄴ. 구간 (-2,-1)에서 f'(x) < 0이므로 f(x)는 감소
- Γ . -1 < x < 0에서 f'(x) < 0, 0 < x < 1에서 f'(x) > 0이므로 f(x)는 구간 (-1,1)에서 극솟 값을 갖는다.

따라서 옳은 것은 ㄴ, ㄷ이다.

10) ㄴ

⇒ ㄱ. 주어진 것만으로는 알 수 없다.

- ㄴ. f'(2) = 0이고 -1 < x < 2에서 f'(x) > 0, 2 < x < 4에서 f'(x) < 0이므로 f(x)는 x = 2에서 극대이다.
- ㄷ. 구간 (-2,-1)에서 f'(x) < 0이므로 f(x)는 감소, 구간 (-1,1)에서 f'(x) > 0이므로 f(x)는 증가한다.

따라서 옳은 것은 ㄴ이다.

11) ¬. ⊏

- 다 기. f'(-4) = 0이고 x < -4에서 f'(x) < 0, -4 < x < 0에서 f'(x) > 0이므로 f(x)는 x = -4에서 극소이다.
- ㄴ. 1 < x < 2에서 f'(x) < 0이므로 f(x)는 감소, 2 < x < 3에서 f'(x) > 0이므로 f(x)는 증가한 다.

따라서 옳은 것은 ㄱ, ㄷ이다.

12) ∟. □

 $\Rightarrow y = f'(x)$ 의 그래프에서 f'(x) = 0인 x의 값은 -4,0,3이므로 함수 f(x)의 증감표는 다음과 같다.

x	•••	-4	•••	0	•••	3	
f'(x)	_	0	+	0	_	0	+
f(x)	7	극소	1	극대	7	극소	1

- ㄱ. 구간 (-5, -3)에서 f'(x)는 음수 값과 양수 값을 모두 가지므로 f(x)는 주어진 구간에서 감소하다가 증가한다.
- C. x = 0인 점의 좌우에서 f'(x)는 양수 값에서 음수값으로 바뀌므로 주어진 구간에서 극댓값을 갖는다.
- a. 구간 (1,2)에서 f'(x)는 항상 음수 값을 가지므로 f(x)는 주어진 구간에서 감소한다.

따라서 옳은 것은 ㄴ, ㅁ이다.

13) ⊏, □

	x		-1	• • • •	2		4	
	f'(x)	+	0	_	0	+	0	_
\Rightarrow	f(x)	1	극대	7	극소	1	극대	7

- ㄱ. 구간 (-2,1)에서 f(x)는 증가하다가 감소한다.
- L . 구간 (1,3)에서 f(x)는 감소하다가 증가한다.
- a. x=3인 점의 좌우에서 f'(x)의 값의 부호가 변화가 없으므로 극값을 갖지 않는다.

따라서 옳은 것은 ㄷ, ㅁ이다.

14) ㄴ, ㄹ

 $\Rightarrow y = f'(x)$ 의 그래프에서 f'(x) = 0인 x의 값은 a, c, e, g이므로 함수 f(x)의 증감표는 다음과 같다.

x	•••	a	•••	c	•••	e	•••	g	
f'(x)	_	0	+	0	_	0	+	0	+
f(x)	7	극소	7	극대	7	극소	7		1

- ㄱ. 구간 (b,c)에서 f(x)는 증가한다.
- x = b인 점의 좌우에서 f'(x)의 값의 부호가 변화가 없으므로 극값을 갖지 않는다.
- x = g인 점의 좌우에서 f'(x)의 값의 부호가 변화가 없으므로 극값을 갖지 않는다.

따라서 옳은 것은 ㄴ, ㄹ이다.

15) ㄴ, ㄷ, ㄹ, ㅁ

 $\Rightarrow y = f'(x)$ 의 그래프에서 f'(x) = 0인 x의 값은 0, 2, 4이므로 함수 f(x)의 증감표는 다음과 같다.

x	•••	0	•••	2	•••	4	•••
f'(x)	+	0	_	0	+	0	_
f(x)	1	극대	7	극소	1	극대	7

 \neg . 함수 f(x)는 x=0, x=4에서 극대이다.

16) ㄹ

- 다 기. f'(0) = 0이고 x = 0의 좌우에서 f'(x)의 부호가 음에서 양으로 바뀌므로 함수 f(x)는 x = 0에서 극소값을 갖는다. 한편, f(4) = 0이지만 x = 4의 좌우에서 f'(x)의 부호가 바뀌지 않으므로 x = 4에서 극값을 갖지 않는다. 따라서 함수 f(x)는 한 개의 극값을 갖는다. (거짓)
- ㄴ. $x \le 0$ 일 때, $f'(x) \le 0$ 이고, $x \ge 0$ 일 때 $f'(x) \ge 0$ 이므로 함수 f(x)는 $x \le 0$ 에서 감소, $x \ge 0$ 에서 증가한다. (거짓)
- C. f'(4) = 0이므로 함수 f(x)의 x = 4에서의 미분계수가 존재한다. 따라서 f(x)는 x = 4에서 미분가능하다. (거짓)
- a. 1 < x < 3에서 f'(x) = 2이므로 이 구간에서 함수 f(x)는 일차함수이다. (참)
- \Box . 3 < x < 4에서 f'(x) = -2x + 8이므로 이 구간에 서 함수 f(x)는 이차함수이다. (거짓)

따라서 옳은 것은 ㄹ이다.

17) ∟, ⊏, □

- 다 기. 구간 (-3, -2)에서 y = f'(x)의 그래프가 x축과 만나는 점의 x좌표를 α 라 하면 $-3 < x \le \alpha$ 에서 $f'(x) \ge 0, \ \alpha \le x < -2$ 에서 $f'(x) \le 0$ 이므로 f(x)는 구간 $(-3, \alpha]$ 에서 증가, 구간 $[\alpha, -2)$ 에서 감소한다. (거짓)
- ㄴ. 구간 (-2, -1)에서 f'(x) < 0이므로 이 구간에 서 f(x)는 감소한다. (참)
- C. f'(0) = 0이고 x = 0의 좌우에서 f'(x)의 부호가 음에서 양으로 바뀌므로 f(x)는 x = 0에서 극솟 값을 갖는다. (참)
- ㄹ. 구간 (1, 3)에서 f'(x) > 0이므로 이 구간에서 f(x)는 극값을 갖지 않는다. (거짓)
- ㅁ. 구간 (3, 4)에서 y=f'(x)의 그래프가 x축과 만나는 점의 x좌표를 β 라 하면 $f'(\beta)=0$ 이고 $x=\beta$ 의 좌우에서 f'(x)의 부호가 양에서 음으로바뀌므로 f(x)는 $x=\beta$ 에서 극댓값을 갖는다. (참)

따라서 옳은 것은 ㄴ, ㄷ, ㅁ이다.

 $\Rightarrow f'(x) = 3x^2 + 6x = 3x(x+2)$

f'(x) = 0에서 x = -2 또는 x = 0이므로 함수 f(x)의 증가와 감소를 표로 나타내면 다음과 같다.

x	•••	-2	• • •	0	•••
f'(x)	+	0	_	0	+
f(x)	1	5	Ž	1	1

즉, 함수 f(x)는 x=-2에서 극댓값 5, x=0에서 극

솟값 1을 가지므로 함수 y = f(x)의 그래프는 다 음과 같다.

 $\Rightarrow f'(x) = 3x^2 - 3 = 3(x+1)(x-1)$ 이므로 f'(x) = 0에서 x = -1 또는 x = 1함수 f(x)의 증가와 감소를 표로 나타내면 다음과 같 다.

x	•••	-1	•••	1	•••
f'(x)	+	0	_	0	+
f(x)	7	5	7	1	1

한편, f(0)=3이므로 함수 f(x)의 그래프는 다음 그 림과 같다.

 $\Rightarrow f'(x) = 3x^2 - 6x = 3x(x-2)$

f'(x) = 0에서 x = 0 또는 x = 2이므로 함수 f(x)의 증가와 감소를 표로 나타내면 다음과 같다.

x	•••	0	• • • •	2	•••
f'(x)	+	0	_	0	+
f(x)	1	4	7	0	7

즉, 함수 f(x)는 x=0에서 극댓값 4, x=2에서 극 솟값 0을 가지므로 함수 y=f(x)의 그래프는 다 음과 같다.

 $\Rightarrow f'(x) = 3x^2 - 12x + 9 = 3(x-1)(x-3)$ 이므로 f'(x) = 0에서 x = 1 또는 x = 3함수 f(x)의 증가와 감소를 표로 나타내면 다음과 같

x	•••	1	•••	3	•••
f'(x)	+	0	_	0	+
f(x)	7	4	7	0	1

한편, f(0) = 0이므로 함수 f(x)의 그래프는 다음 그 림과 같다.

 $\Rightarrow f'(x) = 3x^2 + 12x + 9 = 3(x+1)(x+3)$ f'(x) = 0에서 x = -3 또는 x = -1

함수 f(x)의 증가와 감소를 표로 나타내면 다음 그림 과 같다.

	x	•••	-3	•••	-1	•••
f'	'(x)	+	0	_	0	+
f	(x)	1	4	7	0	1

한편, f(0) = 4이므로 함수 f(x)의 그래프는 다음 그 림과 같다.

 $\Rightarrow f'(x) = 3x^2 - 12x + 9 = 3(x-1)(x-3)$

f'(x) = 0에서 x = 1 또는 x = 3이므로 함수 f(x)의 증가와 감소를 표로 나타내면 다음과 같다.

x	• • • •	1	•••	3	•••
f'(x)	+	0	_	0	+
f(x)	7	6	×	2	7

즉, 함수 f(x)는 x=1에서 극댓값 6, x=3에서 극 솟값 2를 갖고 f(0) = 2이므로 함수 y = f(x)의 그래프는 다음과 같다.

 $\Rightarrow f(x) = -x^3 + 3x^2 + 1$ 에서

$$f'(x) = -3x^2 + 6x = -3(x-2)$$

f'(x) = 0에서 x = 0 또는 x = 2

x	•••	0	•••	2	•••
f'(x)	_	0	+	0	_
f(x)	7	1	7	5	7

따라서 함수 y = f(x)의 그래프의 개형은 그림과 같 다.

 $\Rightarrow f(x) = -x^3 + 6x^2 - 12x$ 라 하면

 $f'(x) = -3x^2 + 12x - 12 = -3(x-2)^2$

f'(x) = 0에서 x = 2이므로 함수 f(x)의 증가와 감소 를 표로 나타내면 다음과 같다.

x	•••	2	•••
f'(x)	_	0	_
f(x)	7	-8	7

즉, 함수 f(x)의 극값이 존재하지 않으므로 함수 y = f(x)의 그래프는 다음과 같다.

 $\Rightarrow f'(x) = -3x^2 + 12x - 9 = -3(x-1)(x-3)$

f'(x) = 0에서 x = 1 또는 x = 3

함수 f(x)의 증가와 감소를 표로 나타내면 다음과 같 다.

x		1		3	
f'(x)	_	0	+	0	_
f(x)	7	1	1	5	7

한편, f(0) = 5이므로 함수 f(x)의 그래프는 다음 그 림과 같다.

 $\Rightarrow f'(x) = 3x^2 - 12x + 12 = 3(x-2)^2$

f'(x) = 0에서 x = 2

함수 f(x)의 증가와 감소를 표로 나타내면 다음과 다.

x	• • • •	2	• • •
f'(x)	+	0	+
f(x)	7	3	7

함수 f(x)의 극값이 존재하지 않는다.

따라서 함수 f(x)의 그래프는 다음 그림과 같다.

 $\Rightarrow f(x) = x^3 + 6x^2 - 15x$ 에서

$$f'(x) = 3x^2 + 12x - 15 = 3(x+5)(x-1)$$

$$f'(x) = 0$$
에서 $x = -5$ 또는 $x = 1$

x	•••	-5	•••	1	•••
f'(x)	+	0		0	+
f(x)	7	100	7	-8	1

따라서 함수 y = f(x)의 그래프의 개형은 그림과 같 다.

 $\Rightarrow f'(x) = 6x^2 - 18x + 12 = 6(x-1)(x-2)$

f'(x) = 0에서 x = 1 또는 x = 2이므로 함수 f(x)의 증가와 감소를 표로 나타내면 다음과 같다.

x	•••	1	•••	2	•••
f'(x)	+	0	_	0	+
f(x)	1	2	7	1	1

즉, 함수 f(x)는 x=1에서 극댓값 2, x=2에서 극 솟값 1을 가지므로 함수 y = f(x)의 그래프는 다 음과 같다.

 $\Rightarrow f'(x) = 12x^3 + 12x^2 = 12x^2(x+1)$

f'(x) = 0에서 x = -1 또는 x = 0

함수 f(x)의 증가와 감소를 표로 나타내면 다음과 같 다.

x		-1		0	•••
f'(x)	_	0	+	0	+
f(x)	7	0	7	1	1

함수 f(x)는 x=-1에서 극솟값 f(-1)=0을 갖고, x=0에서는 f'(x)의 부호가 바뀌지 않으므로 극값을 갖지 않는다. 따라서 함수 f(x)의 그래프는 다음 그 림과 같다.

 $\Rightarrow f'(x) = 12x^3 - 12x^2 = 12x^2(x-1)$

f'(x) = 0에서 x = 0 또는 x = 1이므로 함수 f(x)의 증가와 감소를 표로 나타내면 다음과 같다.

x	•••	0	•••	1	•••
f'(x)	_	0	-	0	+
f(x)	7	-1	A	-2	7

즉, 함수 f(x)는 x=0의 좌우에서 f'(x)의 부호가 바뀌지 않으므로 x=0에서 극값을 갖지 않고, x=1에서 극솟값 -2를 갖는다.

따라서 함수 y = f(x)의 그래프는 다음과 같다.

 $\Rightarrow f'(x) = 12x^3 - 12x^2 = 12x^2(x-1)$

f'(x) = 0에서 x = 0 또는 x = 1

따라서 함수 f(x)의 증가와 감소를 표로 나타내면 다 음과 같다.

x	•••	0	•••	1	•••
f'(x)	_	0	_	0	+
f(x)	7	1	7	0	7

함수 f(x)는 x=0에서 극값을 갖지 않고 x=1에서 극솟값 0을 갖는다.

따라서 함수 f(x)의 그래프는 다음 그림과 같다.

 $\Rightarrow f'(x) = 2x^3 - 6x^2 = 2x^2(x-3)$

f'(x) = 0에서 x = 0 또는 x = 3이므로 함수 f(x)의 증가와 감소를 표로 나타내면 다음과 같다.

x	•••	0	•••	3	•••
f'(x)	_	0	_	0	+
f(x)	×	8	7	$-\frac{11}{2}$	7

즉, 함수 f(x)는 x=0의 좌우에서 f'(x)의 부호가 바뀌지 않으므로 x=0에서 극값을 갖지 않고, x=3에서 극솟값 $-\frac{11}{2}$ 을 갖는다.

따라서 함수 y = f(x)의 그래프는 다음과 같다.

 $\Rightarrow f'(x) = x^3 + 3x^2 = x^2(x+3)$

f'(x) = 0에서 x = -3

따라서 함수 f(x)의 증가와 감소를 표로 나타내면 다 음과 같다.

x	•••	-3	•••	0	•••
f'(x)	_	0	+	0	+
f(x)	7	극소	1		1

함수 f(x)는 x=-3에서 극솟값 $-\frac{15}{4}$ 을 갖고 x=0에서 극값을 갖지 않는다.

따라서 함수 f(x)의 그래프는 다음 그림과 같다.

$$\Rightarrow f(x) = \frac{1}{3}(x-1)^3(x+1) 에서$$

$$f'(x) = (x-1)^{2}(x+1) + \frac{1}{3}(x-1)^{3}$$
$$= \frac{2}{3}(x-1)^{2}(2x+1)$$

$$f'(x) = 0$$
에서 $x = -\frac{1}{2}$ 또는 $x = 1$

x		$-\frac{1}{2}$		1	
f'(x)	_	0	+	0	+
f(x)	7	$-\frac{9}{16}$	1	0	1

따라서 함수 y = f(x)의 그래프의 개형은 그림과 같 다.

 $\Rightarrow f'(x) = -4x^3 + 4x = -4x(x-1)(x+1)$ f'(x) = 0에서 x = -1 또는 x = 0 또는 x = 1핚수 f(x)의 증가와 감소를 표로 나타내면 다음과 같 다.

x		-1	•••	0	•••	1	•••
f'(x)	+	0	_	0	+	0	_
f(x)	1	2	7	1	7	2	7

따라서 함수 f(x)의 그래프는 다음 그림과 같다.

 $\Rightarrow f'(x) = -12x^3 + 12x^2 = -12x^2(x-1)$

f'(x) = 0에서 x = 0 또는 x = 1이므로 함수 f(x)의 증가와 감소를 표로 나타내면 다음과 같다.

x	•••	0	•••	1	•••
f'(x)	+	0	+	0	_
f(x)	1	-1	1	0	7

즉, 함수 f(x)는 x=0의 좌우에서 f'(x)의 부호가 바뀌지 않으므로 x=0에서 극값을 갖지 않고, x = 1에서 극댓값 0을 갖는다.

따라서 함수 y = f(x)의 그래프는 다음과 같다.

38)
$$a < -3$$
 또는 $a > 3$

$$\Rightarrow f(x) = x^3 - 2ax^2 + 12x + 2$$

$$f'(x) = 3x^2 - 4ax + 12$$

삼차함수 f(x)가 극값을 가지려면 이차방정식 f'(x)=0이 서로 다른 두 실근을 가져야 하므로 f'(x) = 0의 판별식을 D라고 하면

$$\frac{D}{4} = 4a^2 - 36 > 0, \ (a+3)(a-3) > 0$$

$$\Rightarrow f(x) = x^3 + ax^2 + 3x + 4 \text{ old}$$

$$f'(x) = 3x^2 + 2ax + 3$$

삼차함수 f(x)가 극값을 갖기 위해서는 f'(x) = 0이 서로 다른 두 실근을 가져야 하므로 f'(x)=0,

즉 $3x^2 + 2ax + 3 = 0$ 의 판별식을 D라 하면 D > 0이어 야 한다.

$$\frac{D}{4} = a^2 - 9 > 0, \ (a+3)(a-3) > 0$$

40) a > 3

$$\Rightarrow f'(x) = 3x^2 + 2ax + a$$

삼차함수 f(x)가 극값을 가지려면 이차방정식 f'(x)=0이 서로 다른 두 실근을 가져야 하므로 f'(x) = 0의 판별식을 D라고 하면

$$\frac{D}{4} = a^2 - 3a > 0, \ a(a-3) > 0$$

그런데 a는 자연수이므로 a>3

41) a < -9 또는 a > 0

$$\Rightarrow f'(x) = 3x^2 + 2ax - 3a$$

삼차함수 f(x)가 극값을 가지려면 이차방정식 f'(x)=0이 서로 다른 두 실근을 가져야 하므로 f'(x) = 0의 판별식을 D라고 하면

$$\frac{D}{4} = a^2 + 9a > 0, \ a(a+9) > 0$$

42) a <-4 또는 a > 1

$$\Rightarrow f'(x) = 3x^2 - 6(a+1)x - 3(a-5)$$

삼차함수 f(x)가 극값을 가지려면 이차방정식 f'(x) = 0이 서로 다른 두 실근을 가져야 하므로 f'(x) = 0의 판별식을 D라고 하면

$$\frac{D}{4} = 9(a+1)^2 + 9(a-5) > 0$$

$$9(a+4)(a-1) > 0$$
 : $a < -4$ 또는 $a > 1$

43) a < 0 또는 a > 3

$$\Rightarrow f'(x) = x^2 + 2ax + 3a$$

삼차함수 f(x)가 극값을 가지려면 이차방정식 f'(x)=0이 서로 다른 두 실근을 가져야 하므로 f'(x) = 0의 판별식을 D라고 하면

$$\frac{D}{4} = a^2 - 3a > 0, \ a(a-3) > 0$$

44) a < 0 또는 a > 3

$$\Rightarrow f(x) = -x^3 + ax^2 - ax + 3$$

$$f'(x) = -3x^2 + 2ax - a$$

삼차함수 f(x)가 극값을 갖기 위해서는 f'(x) = 0이 서로 다른 두 실근을 가져야 하므로 f'(x)=0,

 $-3x^2+2ax-a=0$ 의 판별식을 D라 하면 D>0이어

$$\frac{D}{A} = a^2 - 3a > 0, \ a(a-3) > 0$$

45) $-1 \le a \le 3$

$$\Rightarrow f(x) = \frac{1}{3}x^3 + (a-1)x^2 + 4x + 1 \text{ on } x = 0$$

$$f'(x) = x^2 + 2(a-1)x + 4$$

삼차함수 f(x)가 극값을 갖지 않으려면 f'(x)=0이 중근 또는 허근을 가져야 하므로 f'(x)=0, 즉 $x^2+2(a-1)x+4=0$ 의 판별식을 D라 하면 $D \le 0$ 이어야한다.

$$\frac{D}{A} = (a-1)^2 - 4 \le 0, \ (a+1)(a-3) \le 0$$

$$\therefore -1 \le a \le 3$$

46) $-9 \le a \le 0$

$$\Rightarrow f(x) = -3x^3 + ax^2 + ax$$

$$f'(x) = -9x^2 + 2ax + a$$

삼차함수 f(x)가 극값을 갖지 않으려면 f'(x)=0이 중근 또는 허근을 가져야 하므로 f'(x)=0, 즉 $-9x^2 + 2ax + a = 0$ 의 판별식을 D라 하면 $D \le 0$ 이어야한다.

$$\frac{D}{4} = a^2 + 9a > 0, \ a(a+9) > 0$$

$$\therefore -9 \le a \le 0$$

47) $0 \le a \le 3$

$$\Rightarrow f(x) = x^3 - ax^2 + ax + 1 \text{ odd}$$

$$f'(x) = 3x^2 - 2ax + a$$

삼차함수 f(x)가 극값을 갖지 않으려면 이차방정식 f'(x) = 0이 중근 또는 허근을 가져야 하므로

$$\frac{D}{4} = a^2 - 3a \le 0, \ a(a-3) \le 0$$

$$\therefore 0 \le a \le 3$$

48) $0 \le a \le 3$

 $\Rightarrow f(x) = x^3 + ax^2 + ax - 2 \text{ on } k \text{ } f'(x) = 3x^2 + 2ax + a$ 삼차함수 f(x)가 극값을 갖지 않기 위해서는 f'(x) = 0이 중근 또는 허근을 가져야 하므로 f'(x) = 0, 즉 $3x^2 + 2ax + a = 0$ 의 판별식을 D라 하면 $D \le 0$ 이어야 한다.

$$\frac{D}{4} = a^2 - 3a \le 0, \ a(a-3) \le 0$$

$$\therefore 0 \le a \le 3$$

49) $-6 \le a \le 0$

$$\Rightarrow f'(x) = 3x^2 + 2ax - 2a$$

삼차함수 f(x)가 극값을 갖지 않기 위해서는 f'(x) = 0이 중근 또는 허근을 가져야 하므로 f'(x) = 0의 판별식을 D라고 하면

$$\frac{D}{4} = a^2 + 6a \le 0, \ a(a+6) \le 0$$

$$\therefore -6 \le a \le 0$$

50) $-9 \le a \le 0$

$$\Rightarrow f(x) = x^3 + ax^2 - 3ax + 2 \text{ on } \lambda \text{ on } x \text{ o$$

$$f'(x) = 3x^2 + 2ax - 3a$$

삼차함수 f(x)가 극값을 갖지 않기 위해서는 f'(x) = 0이 중근 또는 허근을 가져야 하므로 f'(x) = 0, 즉 $3x^2 + 2ax - 3a = 0$ 의 판별식을 D라 하면 $D \le 0$ 이어야 한다.

$$\frac{D}{4} = a^2 + 9a \le 0, \ a(a+9) \le 0$$

$$\therefore -9 \le a \le 0$$

51)
$$0 \le a \le \frac{21}{4}$$

$$\Rightarrow f(x) = x^3 - 2ax^2 + 7ax + 30$$

$$f'(x) = 3x^2 - 4ax + 7a$$

삼차함수 f(x)가 극값을 갖지 않기 위해서는 f'(x) = 0이 중근 또는 허근을 가져야 하므로 f'(x) = 0, 즉 $3x^2 - 4ax + 7a = 0$ 의 판별식을 D라 하면 $D \le 0$ 이어야 한다.

$$\frac{D}{4} = 4a^2 - 21a \le 0, \ a(4a - 21) \le 0$$

$$\therefore \ 0 \le a \le \frac{21}{4}$$

52)
$$-3 \le a \le 3$$

$$\Rightarrow f(x) = x^3 + (a-3)x^2 - 2(a-3)x + a - 4 \text{ on } \forall x \in \mathbb{R}^3$$

$$f'(x) = 3x^2 + 2(a-3)x - 2(a-3)$$

삼차함수 f(x)가 극값을 갖지 않기 위해서는 f'(x) = 0이 중근 또는 허근을 가져야 하므로 f'(x) = 0, $= 3x^2 + 2(a-3)x - 2(a-3) = 0$ 별식을 D라 하면 $D \le 0$ 이어야 한다.

$$\frac{D}{4} = (a-3)^2 + 6(a-3) \le 0$$

$$a^2 - 9 \le 0$$
, $(a+3)(a-3) \le 0$

$$\therefore -3 \leq a \leq 3$$

53)
$$0 \le a \le 6$$

$$\Rightarrow f(x) = 2x^3 - ax^2 + ax + 1 \text{ old}$$

$$f'(x) = 6x^2 - 2ax + a$$

삼차함수 f(x)가 극값을 갖지 않기 위해서는 f'(x) = 0이 중근 또는 허근을 가져야 하므로 f'(x) = 0, 즉 $6x^2 - 2ax + a = 0$ 의 판별식을 D라 하면 $D \le 0$ 이어야 한다.

$$\frac{D}{4} = a^2 - 6a \le 0, \ a(a-6) \le 0$$

$$\therefore 0 \le a \le 6$$

54)
$$0 \le a \le 3$$

$$\Rightarrow f(x) = 2x^3 + 2ax^2 + 2ax + 1 \text{ odd}$$

$$f'(x) = 6x^2 + 4ax + 2a$$

삼차함수 f(x)가 극값을 갖지 않기 위해서는 f'(x) = 0이 중근 또는 허근을 가져야 하므로 f'(x) = 0, 즉 $6x^2 + 4ax + 2a = 0$ 의 판별식을 D라 하면 $D \le 0$ 이어야 한다.

$$\frac{D}{4} = 4a^2 - 12a \le 0, \ 4a(a-3) \le 0$$

$$\therefore 0 \le a \le 3$$

55)
$$a < 0$$
 또는 $0 < a < \frac{3}{2}$

$$\Rightarrow f(x) = x^4 - 4x^3 + 3ax^2 + 1$$

$$f'(x) = 4x^3 - 12x^2 + 6ax = x(4x^2 - 12x + 6a)$$

사차함수 f(x)가 극댓값을 가지려면 삼차방정식 f'(x) = 0이 서로 다른 세 실근을 가져야 한다.

f'(x) = 0의 한 실근이 x = 0이므로 이차방정식

 $4x^2-12x+6a=0$ 이 서로 다른 두 실근을 가져야 하 므로 $4x^2 - 12x + 6a = 0$ 의 판별식을 D라고 하면

$$\frac{D}{4} = 36 - 24a > 0$$
 $\therefore a < \frac{3}{2}$

이때, x = 0이 $4x^2 - 12x + 6a = 0$ 의 근이 아니어야 하 므로

 $6a \neq 0$ $\therefore a \neq 0$

따라서 구하는 실수 a의 값의 범위는

56) a < 0 또는 0 < a < 9

$$\Rightarrow f(x) = x^4 - 4x^3 + \frac{a}{2}x^2 - 50$$

$$f'(x) = 4x^3 - 12x^2 + ax = x(4x^2 - 12x + a)$$

사차함수 f(x)가 극댓값을 가지려면 삼차방정식 f'(x) = 0이 서로 다른 세 실근을 가져야 한다.

f'(x) = 0의 한 실근이 x = 0이므로 이차방정식 $4x^2-12x+a=0$ 이 서로 다른 두 실근을 가져야 하므 로 $4x^2 - 12x + a = 0$ 의 판별식을 D라고 하면

$$\frac{D}{4} \! = \! 36 \! - \! 4a \! > \! 0 \quad \therefore a \! < \! 9$$

이때 x=0이 $4x^2-12x+a=0$ 의 근이 아니어야 하므 로 $a \neq 0$

따라서 구하는 실수 a의 값의 범위는 a < 0 + 1 = 0 < a < 9

57)
$$a < 0$$
 또는 $0 < a < \frac{9}{2}$

$$\Rightarrow f(x) = x^4 + 2x^3 + ax^2$$

$$f'(x) = 4x^3 + 6x^2 + 2ax = 2x(2x^2 + 3x + a)$$

사차함수 f(x)가 극댓값을 가지려면 삼차방정식 f'(x) = 0이 서로 다른 세 근을 가져야 한다.

즉 이차방정식 $2x^2 + 3x + a = 0$ 이 0이 아닌 서로 다 른 두 실근을 가져야 하므로 판별식을 D라 하면

$$D=9-2a>0$$
 : $a<\frac{9}{2}(a\neq 0)$

$$\therefore a < 0$$
 또는 $0 < a < \frac{9}{2}$

58)
$$-\frac{9}{2} < a < 0$$
 또는 $a > 0$

$$\Rightarrow f(x) = x^4 + 4x^3 - 4ax^2$$

$$f'(x) = 4x^3 + 12x^2 - 8ax = 4x(x^2 + 3x - 2a)$$

사차함수 f(x)가 극댓값을 가지려면 삼차방정식 f'(x) = 0이 서로 다른 세 근을 가져야 한다.

즉 이차방정식 $x^2 + 3x - 2a = 0$ 이 0이 아닌 서로 다

른 두 실근을 가져야 하므로 판별식을 D라 하면

$$D = 9 + 2a > 0$$
 $\therefore a > -\frac{9}{2}(a \neq 0)$

$$\therefore -\frac{9}{2} < a < 0$$
 또는 $a > 0$

59)
$$a < 0$$
 또는 $0 < a < \frac{9}{4}$

$$\Rightarrow f(x) = 2x^4 - 8x^3 + 4ax^2$$

$$f'(x) = 8x^3 - 24x^2 + 8ax = 8x(x^2 - 3x + a)$$

사차함수 f(x)가 극댓값을 가지려면 삼차방정식 f'(x) = 0이 서로 다른 세 근을 가져야 한다.

즉 이차방정식 $x^2 - 3x + a = 0$ 이 0이 아닌 서로 다른 두 실근을 가져야 하므로 판별식을 D라 하면

$$D = 9 - 4a > 0$$
 $\therefore a < \frac{9}{4}(a \neq 0)$

$$\therefore a < 0 \ \underline{\mathfrak{T}} \ \underline{\hspace{-0.1cm}} \ 0 < a < \frac{9}{4}$$

$$\Rightarrow f(x) = -\frac{3}{4}x^4 + 4x^3 + ax^2 \text{ on } \lambda \text{ on } x = 0 \text{ on } x =$$

$$f'(x) = -3x^3 + 12x^2 + 2ax = -x(3x^2 - 12x - 2a)$$

사차함수 f(x)가 극솟값을 가지려면 삼차방정식 f'(x) = 0이 서로 다른 세 실근을 가져야 한다.

f'(x) = 0의 한 실근이 x = 0이므로 이차방정식

 $3x^2 - 12x - 2a = 0$ 이 서로 다른 두 실근을 가져야 한

$$3x^2 - 12x - 2a = 0$$
의 판별식을 D 라고 하면

$$\frac{D}{A} = 36 + 6a > 0$$
 : $a > -6$

이때, x = 0이 $3x^2 - 12x - 2a = 0$ 의 근이 아니어야 하 므로

$$-2a \neq 0$$
 $\therefore a \neq 0$

따라서 구하는 실수 a의 값의 범위는

$$-6 < a < 0$$
 또는 $a > 0$