Optimization Model for Scrum-based Software Development

Generated by ChatGPT

1. Sets and Entities

Let the following sets represent the core entities:

- P: Set of Projects
- T: Set of Teams
- E: Set of Employees
- S: Set of Skills
- R: Set of Roles
- PB: Set of Product Backlogs
- F: Set of Features
- EP: Set of Epics
- \bullet US: Set of User Stories
- \bullet TS: Set of Tasks / Sub-Tasks
- SP: Set of Sprints
- SG: Set of Sprint Goals
- \bullet SM: Set of Scrum Masters
- PO: Set of Product Owners
- BL: Set of Blockers
- \bullet SH: Set of Stakeholders
- V: Set of Velocity records

2. Decision Variables

$x_{ts} \in [1, 16]$	Effort assigned to task $ts \in TS$
$d_{sp} \in [7, 30]$	Sprint duration in days for $sp \in SP$
$a_e \in [0, 40]$	Availability of employee $e \in E$
$b_{bl} \in [1, 10]$	Max blocker resolution time for $bl \in BL$
$c_e \in [0, 1]$	Certified skill ratio for employee $e \in E$
$v_t \in [10, 100]$	Velocity threshold for team $t \in T$
$sp_{sp} \in [20, 100]$	Story points completed in sprint $sp \in SP$
$fs_{sh} \in [0, 10]$	Stakeholder feedback score from $sh \in SH$
$tsps_{sp} \in [5, 50]$	Number of tasks per sprint $sp \in SP$

3. Objective Function

Maximize sprint performance and delivery:

$$\max\left(\sum_{t\in T} v_t + \sum_{sh\in SH} fs_{sh} + \sum_{e\in E} c_e - \sum_{ts\in TS} x_{ts} - \sum_{bl\in BL} b_{bl}\right)$$

4. Constraints

(C1) Each team has exactly one Scrum Master:	$\sum_{sm \in SM} \operatorname{assigned}(sm, t) = 1 \forall t \in T$
(C2) Each employee must have at least one role:	$\sum_{r \in R} \text{has_role}(e, r) \ge 1 \forall e \in E$
(C3) Blocker resolution within max time:	$b_{bl} \le 10 \forall bl \in BL$
(C4) Task effort limit:	$x_{ts} \le 16 \forall ts \in TS$
(C5) Sprint has a goal:	$has_goal(sp) = 1 \forall sp \in SP$
(C6) Task assignment matches employee availability:	$\sum_{ts \in TS} x_{ts,e} \le a_e \forall e \in E$
(C7) Daily scrums are held:	$daily_scrum(sp) = 1 \forall sp \in SP$
(C8) Velocity is based on at least 3 sprints:	$\operatorname{sprint_count}(v_t) \ge 3 \forall t \in T$

5. Goals and Optimization Criteria

- Minimize task effort: $\min \sum x_{ts}$
- Maximize team velocity: $\max \sum v_t$

- Minimize blockers: $\min \sum b_{bl}$
- Maximize certified skills: $\max \sum c_e$
- Maximize sprint goal achievement and stakeholder feedback