Lecture 3 remark: Compactness and Connectedness

zhaofeng-shu33

April 25, 2018

1 Compactness: definitions and examples

Theorem 1.6 Proof.

 \Rightarrow : Since a metric space is C_1 .

2 Compactness: properties

Theorem 2.10 (Continued) We show that a compact Hausdorff space X is T_4 .

Proof. Let A, B be two closed set of X, $\forall x \in A$, since X is T_3 , we can find $V_x \ni x, V_y \supseteq B$ and $V_x \cap V_y = \varnothing$. $\bigcup_{x \in A} V_x$ is an open cover of A, since X is compact, we can find a finite subscript $\prod_{x \in A} V_x$ according A, which is disjoint

compact, we can find a finite subcover $\bigcup_{i=1}^n V_{x_i}$ covering A, which is disjoint with open set $\bigcap_{i=1}^n V_{y_i}$ covering B. Therefore X is T_4 .

3 Connectness

Lemma 3.19 If B is a connected subset of X, then \bar{B} is also connected.

Proof. Assume $\bar{B} = B_1 \dot{\bigcup} B_2$, B_1 and B_2 are open. $B = (B \cap B_1) \dot{\bigcup} (B \cap B_2)$, since B is connected, either $B \cap B_1$ or $B \cap B_2$ is empty. Suppose $B \cap B_1$ is empty, since $B \subseteq B_1 \cup B_2$, $B \subseteq B_2$. $\exists x \in B_1 \subseteq \bar{B}$. x is an accumulated point of B. But B_1 is an open set containing x and is disjoint with B, a contradiction.

Lemma 3.22 Connected component of X is closed.

Proof. Since A is a connected component of X, by **Lemma 3.19** \bar{A} is connected. $\bar{A} \subseteq A$, and by the definition of connected component, $\bar{A} = A$. Therefore A is closed.

Example 3.23 (Continued) If X has only finitely many connecte components, then each component A is both closed and open.

Proof. Let
$$X = \bigcup_{i=1}^n A_i$$
, then $A_i = (X \backslash A_i)^c = \bigcap_{\substack{j=1 \ j \neq i}}^n A_j^c$

Lemma 3.25 If $f: X \to Y$ is continuous and X is path-connected, then f(X) is also path-connected.

Proof. For any two points $x,y\in f(X),\ f^{-1}(x),f^{-1}(y)\in X$ (choose one if having multiple preimage). Then there exists a continuous curve $g:[0,1]\to X, g(0)=f^{-1}(x), g(1)=f^{-1}(y).$ $f\circ g$ is a continuous mapping from [0,1] to Y, with $(f\circ g)(0)=x, (f\circ g)(1)=y.$ Therefore f(X) is path-connected.

Lemma 3.26 (Another Proof) **Proof.** Assume $X = U_1 \dot{\bigcup} U_2, U_1$ and U_2 are open. Since U_1, U_2 are not empty, we can find $x \in U_1, y \in U_2$. Since X is path-connected, we can find a continuous mapping from [0,1] to X such that f(0) = x, f(1) = y. Then $[0,1] = f^{-1}(U_1 \cap f([0,1])) \dot{\bigcup} f^{-1}(U_2 \cap f([0,1]))$, a contradiction.