Math 631 Notes

David Jin

February 17, 2020

Lectures by Bhargav Bhatt. Notes on topics which were particularly difficult for me.

1 Closed Subschemes and Ideal sheaves

Let A be a ring. The closed subschemes of Spec A are in bijection with the ideals $I \subseteq A$. For a scheme X, we have a similar correspondence.

Given a closed subscheme $i: Z \subseteq X$, we have a surjective map of sheaves $\mathcal{O}_X \to i_*\mathcal{O}_Z$. Let \mathscr{I} be the kernel of this map. I claim that \mathscr{I} is a sheaf of ideals of \mathcal{O}_X . Indeed, since on each affine open, Spec $A \subseteq X$, we have that $i_*\mathcal{O}_Z(\operatorname{Spec} A) = \mathcal{O}_Z(i^{-1}(\operatorname{Spec} A)) = \mathcal{O}_Z(\operatorname{Spec} A/I) = \operatorname{Spec} A/I$. Thus, $\mathscr{I}(\operatorname{Spec} A) = I$.

Conversely, given a sheaf of ideals $\mathscr{I} \subseteq \mathcal{O}_X$, we can define a closed subscheme as follows. Let $Z = Supp\mathcal{O}_X/\mathscr{I}$. Then, $(Z, \mathcal{O}_X/\mathscr{I})$ is a closed subscheme of X.

2 Cartier Divisors on an Integral Scheme

Let X be an integral scheme. Let \mathscr{K}_X be the sheaf of meromorphic functions on X. Since X is integral, \mathscr{K}_X is the constant sheaf on K(X), the rational functions of X, or equivalently, $\mathcal{O}_{X,\eta}$, the local ring at the generic point η .

Definition 2.1. A Cartier Divisor on X is a set of ordered pairs (U_i, f_i) with $f_i \in K(X)^*$ such that $\{U_i\}$ covers X and for each pair i, j, we have $f_i = uf_j$ for $u \in \mathcal{O}_X^*$ on the intersection $U_i \cap U_j$.

We identify the divisors $D_1 = (U_i, f_i)$ and $D_2 = (V_i, g_i)$ provided that for each pair i, j, we have that $f_i = ug_j$ for $u \in \mathcal{O}_X^*$ on the intersection $U_i \cap V_j$.

For two divisors D_1 and D_2 as above, we define $D_1 + D_2$ as the divisor $(U_i \cap V_j, f_i g_j)$. It is easy to check that this is well defined.

We write Div(X) for the abelian group of divisors under the above equivalence relation.

Remark 1. For $f \in K(X)^*$, the pair (X, f) is a divisor. The subgroup of divisors of this form are called the **principal divisors of** X.

We have an exact sequence

$$1 \longrightarrow \mathcal{O}_X^*(X) \longrightarrow K(X)^* \longrightarrow Div(X) \longrightarrow \operatorname{coker} \longrightarrow 0$$

We define Cl(X) as the cokernel in the above diagram. We say that two divisors are **linearly** equivalent if they are equivalent in Cl(X).

Remark 2. Let $\mathscr{K}_X^*/\mathcal{O}_X^*$ be the sheaf associated the presheaf $(U \mapsto \mathscr{K}_X^*(U)/\mathcal{O}_X^*(U))$. An alternative definition of $\mathrm{Div}(X)$ is $\Gamma(X, \mathscr{K}_X^*/\mathcal{O}_X^*)$.

Proposition 2.2. To a divisor $D = (U_i, f_i)$ we can associate a line bundle $\mathcal{O}_X(D)$ as follows. For $U \subseteq X$, define $\Gamma(U, \mathcal{O}_X(D)) = \{g \in K(X) : \forall i, f_i g \in \Gamma(U \cap U_i, \mathcal{O}_X)\}$. On the open set U_i , $\mathcal{O}_X(D)|_{U_i}$ is isomorphic to $\mathcal{O}_X|_{U_i}$ via the map which sends f_i to 1. Thus, we have a map $\varphi : Div(X) \to Pic(X)$. This map descends to an isomorphism $Cl(X) \to Pic(X)$.

Proof. To show that the map $Div(X) \to Pic(X)$ descends to a map $Cl(X) \to Pic(X)$, it suffices to show that principal divisors map to $\mathcal{O}_X \in Pic(X)$. For a divisor D = (X, f) with $f \in K(X)$, we have the associated sheaf $\mathcal{O}_X(D) = (U \mapsto \{g \in K(X) : fg \in \Gamma(U, \mathcal{O}_x)\})$. Thus, we have a global isomorphism $\mathcal{O}_X \to \mathcal{O}_X(D)$ given by $1 \mapsto g$.

3 Construction of the Symmetric Algebra

We begin with the construction in the case of A-modules and then globalize to the case of \mathcal{O}_X -modules over a scheme X.

Definition 3.1. Let A be a commutative ring, M an A-module. We define the **tensor** algebra of M as

$$T(M) = \bigoplus_{n \ge 0} T_n(M)$$

where $T_n(M) = M \otimes \cdots \otimes M$. We let $T_0(M) = A$.

We define the **symmetric algebra of** M, denoted Sym(M) is the tensor algebra T(M) modulo the submodule generated by the elements of the form $m \otimes m' - m' \otimes m$ where $m, m' \in M$.

Proposition 3.2. Sym is a functor from the category of A-modules to A-algebras which is left adjoint to the forgetful functor. Thus, for any A-module M and A-algebra B, we have an isomorphism

$$\operatorname{Hom}_{A-alg}(Sym(M), B) \cong \operatorname{Hom}_{A-mod}(M, B)$$

This adjunction gives rise to the following isomorphisms:

$$Sym_A(M) \otimes_A B \cong Sym_B(M \otimes_A B)$$

$$Sym(M \oplus N) \cong Sym(M) \otimes Sym(N)$$

If M is a free module of rank n with basis (m_1, \ldots, m_n) , there is a unique isomorphism $Sym(M) \cong R[x_1, \ldots, x_n]$ such that $m_i \mapsto x_i$.

Now we address the case where X is a scheme and \mathscr{F} is a quasi-coherent sheaf over X.

Definition 3.3. We define **symmetric algebra of** \mathscr{F} as the sheaf associated to the presheaf $(U \mapsto Sym(\Gamma(U,\mathscr{F}))$

Proposition 3.4. For X an affine scheme and $\mathscr{F} = \tilde{M}$, $Sym(\mathscr{F}) = Sym(M)$, since $\Gamma(D(f), Sym(\tilde{M})) = Sym(M_f) \cong Sym(M)_f$. Thus, for general X and \mathscr{F} , $Sym(\mathscr{F})$ is a quasi-coherent algebra.

Further, Sym is a functor from the category of quasi-coherent \mathcal{O}_X -modules to quasi-coherent \mathcal{O}_X -algebras which is left adjoint to the forgetful functor. Thus, for any QC \mathcal{O}_X -module \mathscr{F} and QC \mathcal{O}_X -algebra \mathscr{B} , we have an isomorphism

$$\operatorname{Hom}_{\mathcal{O}_X-alg}(Sym(\mathscr{F}),\mathscr{B})\cong \operatorname{Hom}_{\mathcal{O}_X-mod}(\mathscr{F},\mathscr{B})$$

Analogously to the affine case (extension of scalars in above prop), for a morphism of schemes $f: X \to Y$ and \mathscr{F} a quasi-coherent sheaf on Y,

$$f^*Sym(\mathscr{F}) \cong Sym(f^*\mathscr{F})$$

4 Spec of quasi-coherent \mathcal{O}_X -algebras

Let X and Spec B be schemes over Spec A. Observe that Spec B is the scheme which represents the functor $(X \mapsto \operatorname{Hom}_{A-alg}(B, \Gamma(X, \mathcal{O}_X)))$. That is, we have an isomorphism

$$\operatorname{Hom}_{\operatorname{Spec} A}(X, \operatorname{Spec} B) \cong \operatorname{Hom}_{A-alg}(B, \Gamma(X, \mathcal{O}_X))$$

This motivates the general case where \mathscr{B} is a quasi-coherent \mathcal{O}_X -algebra.

Proposition 4.1. Let X be a scheme and \mathscr{B} a quasi-coherent \mathcal{O}_X -algebra. Let $f: T \to X$ be a scheme over X. The functor $(T \mapsto \operatorname{Hom}_{\mathcal{O}_X - alg}(\mathscr{B}, f_*\mathcal{O}_T))$ is representable and we call the representing object Spec \mathscr{B} . So, we have an isomorphism

$$\operatorname{Hom}(T,\operatorname{Spec}\mathscr{B})\cong \operatorname{Hom}_{\mathcal{O}_X-alg}(\mathscr{B},f_*\mathcal{O}_T)$$

Proof. Observe that the functor above is a sheaf, since pushforward and Hom are left-exact. Then, since it is locally representable on affine schemes by above, it is representable. \Box

Proposition 4.2. Let $h: \operatorname{Spec} \mathscr{B} \to X$ be the structure morphism. For each affine open subset $U \subseteq X$, $h^{-1}(U) \cong \operatorname{Spec} \Gamma(U, \mathscr{B})$ and $h_*\mathcal{O}_{\operatorname{Spec} \mathscr{B}} \cong \mathscr{B}$ by construction. Further, given \mathscr{B}, \mathscr{C} quasi-coherent \mathcal{O}_X -algebras, we have an isomorphism

$$\operatorname{Hom}_{\mathcal{O}_X-alg}(\mathscr{B},\mathscr{C})\cong\operatorname{Hom}_X(\operatorname{Spec}\mathscr{C},\operatorname{Spec}\mathscr{B})$$

In particular, Spec is a fully faithful functor from quasi-coherent \mathcal{O}_X -algebras to schemes over X. The essential image of this functor are the schemes for which the structure morphism is affine.

5 Proj of quasi-coherent graded \mathcal{O}_X -algebras

Similarly to above, we present the globalized construction of Proj to a quasi-coherent sheaf of graded algebras.

We review the case of projective space first. Recall that \mathbb{P}^n is the scheme which represents the functor which sends a scheme T to isomorphism classes of surjections $\mathcal{O}_Y^{n+1} \to \mathcal{L}$ where \mathcal{L} is a line bundle on T.

More generally, for A a graded ring generated in degree 1, Proj A is the scheme which represents the functor which, for a scheme Y, associates a pair (ψ, \mathcal{L}) , such that \mathcal{L} is a line bundle of Y and $\psi: A \to \Gamma_*(Y, \mathcal{L})$ is a graded ring homomorphism such that \mathcal{L} is generated by the global sections $\psi(f)$ for $f \in A_1$.

Proposition 5.1. Let X be a scheme and \mathscr{A} be a quasi-coherent sheaf of graded algebras over X. There exists a unique scheme $\operatorname{Proj}_X \mathscr{A}$ over X such that for each affine open $U \subseteq X$, we have an isomorphism $\pi^{-1}(U) \cong \operatorname{Proj}\Gamma(U,\mathscr{A})$, where $\pi : \operatorname{Proj}_X \mathscr{A} \to X$ is the structure morphism.

Proj A has the following properties:

- 1. The structure morphism π is separated. (Check locally on the base)
- 2. There is a functor $(M \mapsto \tilde{M})$ which assigns to a quasi-coherent graded \mathscr{A} -module M a quasi-coherent Proj \mathscr{A} -module. This functor is exact and has the property that on each affine open $U \subseteq X$, we have that $\Gamma(U, \tilde{M}) \cong \Gamma(U, M)$ in the category of quasi-coherent modules over $\operatorname{Proj} \Gamma(U, \mathscr{A})$.
- 3. Let $\mathscr{A}(n)$ be the graded \mathscr{A} -module such that on each affine open U, we have $\Gamma(U, \mathscr{A}(n)) \cong \Gamma(U, \mathscr{A})(n)$. We define $\mathcal{O}_{\operatorname{Proj}\mathscr{A}}(n) = \widetilde{\mathscr{A}(n)}$.
- 4. Proj is compatible with base change. That is, for a morphism $f: Y \to X$ of schemes and $\mathscr A$ a quasi-coherent sheaf of algebras on X, we have

$$\operatorname{Proj}(\mathscr{A}) \times_X Y \cong \operatorname{Proj}(g^*\mathscr{A})$$

Proposition 5.2. Let X be a scheme, \mathscr{A} a quasi-coherent sheaf of algebras over X such that for each affine open $U \subseteq X$, $\Gamma(U, \mathscr{A})$ is generated in degree 1. In this case, we say that \mathscr{A} is generated by \mathscr{A}_1 . Then we have the following results:

- 1. $\mathcal{O}_{\text{Proj}\mathscr{A}}(n)$ is invertible for all n.
- 2. We have a natural map $\mathscr{A}_n \to \pi_* \mathcal{O}_{\operatorname{Proj}\mathscr{A}}(n)$ of \mathscr{A}_0 -modules which together give a map

$$\mathscr{A} \to \bigoplus \pi^* \mathcal{O}_{\operatorname{Proj}\mathscr{A}}(n)$$

of graded \mathscr{A} -modules.

3. We have a functor Γ_* which takes a quasi-coherent $\operatorname{Proj} \mathscr{A}$ -module \mathscr{F} , to a graded \mathscr{A} -module, defined by

$$\Gamma_*(\mathscr{F}) = \bigoplus \pi^*(\mathscr{F} \otimes \mathcal{O}_{\operatorname{Proj}\mathscr{A}}(n))$$

There is a functorial isomorphism

$$\Gamma_*(\mathscr{F})\tilde{\to}\mathscr{F}$$

Proof. (1) and (3) can both be checked affine-locally, which reduces the problem to the Proj of a graded ring. $\hfill\Box$