Lezioni di Ricerca Operativa

Università degli Studi di Salerno

Lezione n° 13

Teoria della dualità:

- Coppia di Problemi Primale/Duale
- Regole di Trasformazione
- Teorema debole della dualità

R. Cerulli - F. Carrabs

Ad ogni problema di PL (Primale) è associato un problema Duale

(n variabili, m vincoli)

(m variabili, n vincoli)

Problema Primale (P)

$$min c_1x_1 + \cdots + c_nx_n$$

s.t.

$$a_{11}x_1 + \dots + a_{1n}x_n \ge b_1$$

$$a_{m1}x_1 + \dots + a_{mn}x_n \ge b_m$$

$$\underline{x} \ge \underline{0}$$

Problema Duale (D)

$$max b_1w_1 + \cdots + b_mw_m$$

s.t.

$$a_{11}w_1 + \dots + a_{m1}w_m \le c_1$$

$$a_{1n}w_1 + \dots + a_{mn}w_m \le c_n$$

$$\underline{w} \ge \underline{0}$$

Il problema D ha tante variabili quanti sono i vincoli di P e tanti vincoli quante sono le variabili di P.

$$min \ c_1x_1 + c_2x_2 + c_3x_3$$

s.t.

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 \ge b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 \ge b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 \ge b_3$$

$$x_1\geq 0, x_2\geq 0, x_3\geq 0$$

		x_2		
W_1	a_{11}	$a_{12} \\ a_{22} \\ a_{32}$	a_{13}	b_{1}
W_2	a_{21}	a_{22}	a_{23}	b_2
w_3	a_{31}	a_{32}	a_{33}	b_3
		c_2		

 $max \ b_1w_1 + b_2w_2 + b_3w_3$

s.t.

$$a_{11}w_1 + a_{21}w_2 + a_{31}w_3 \le c_1$$

$$a_{12}w_1 + a_{22}w_2 + a_{32}w_3 \le c_2$$

$$a_{13}w_1 + a_{23}w_2 + a_{33}w_3 \le c_3$$

$$w_1 \ge 0, w_2 \ge 0, w_3 \ge 0$$

Problema Primale (P)

$$min c_1x_1 + \cdots + c_nx_n$$

s.t.

$$a_{11}x_1 + \dots + a_{1n}x_n \ge b_1$$

•

$$a_{m1}x_1 + \dots + a_{mn}x_n \ge b_m$$

$$\underline{x} \ge \underline{0}$$

Problema Duale (D)

$$max b_1w_1 + \cdots + b_mw_m$$

s.t.

$$a_{11}w_1 + \dots + a_{m1}w_m \le c_1$$

:

$$a_{1n}w_1 + \dots + a_{mn}w_m \le c_n$$

$$\underline{w} \ge \underline{0}$$

In forma matriciale:

$$(P) \min \underline{c}^T \underline{x} \qquad (D) \max \underline{b}^T \underline{w}$$

$$\underline{A}\underline{x} \ge \underline{b} \qquad \qquad A^T \underline{w} \le \underline{c}$$

$$\underline{x} \ge \underline{0} \qquad \qquad \underline{w} \ge \underline{0}$$

$$min \ 3x_1 + 4x_2$$

$$2x_1 + \frac{1}{2}x_2 \ge 3$$

$$4x_1 + x_2 \ge 2$$

$$\frac{1}{5}x_1 \ge 7$$

$$x_1 \ge 0, x_2 \ge 0$$

	\mathcal{X}_1	\mathcal{X}_2	
w_1	2	1/2	3
W_2	4	1	2
W_3	1/5	0	7
	3	4	

$$max \ 3w_1 + 2w_2 + 7w_3$$
$$2w_1 + 4w_2 + \frac{1}{5}w_3 \le 3$$
$$\frac{1}{2}w_1 + w_2 \le 4$$
$$w_1 \ge 0, w_2 \ge 0, w_3 \ge 0$$

Duale del problema duale

$$(P) \max \underline{b}^{T}\underline{w} \qquad -min - \underline{b}^{T}\underline{w}$$

$$A^{T}\underline{w} \leq \underline{c} \qquad -AT\underline{w} \geq -\underline{c}$$

$$\underline{w} \geq \underline{0} \qquad \underline{w} \geq \underline{0}$$

Il **duale** di questo problema è:

	<u>W</u>	
<u>X</u>	$-A^T$	<u>-c</u>
	$-\underline{b}^{\mathrm{T}}$	

$$-max - \underline{c}^T \underline{x}$$

$$-A\underline{x} \le -b$$

$$\underline{x} \ge \underline{0}$$

$$(D) \quad min \ \underline{c}^T \underline{x}$$

$$A\underline{x} \ge b$$

$$\underline{x} \ge \underline{0}$$

Il duale del problema duale è il problema primale.

Duale di un Primale con vincoli di uguaglianza

$$(P) \quad min \ \underline{c}^T \underline{x}$$
$$\underline{A}\underline{x} = \underline{b}$$
$$\underline{x} \ge \underline{0}$$

Trasformiamo i vincoli di uguaglianza in vincoli di maggiore o uguale come segue:

$$A\underline{x} = \underline{b}$$
 equivale a
$$\begin{cases} A\underline{x} \ge \underline{b} \\ A\underline{x} \le \underline{b} \implies -A\underline{x} \ge -\underline{b} \end{cases}$$

$$(P) \quad min \ \underline{c}^T \underline{x}$$

$$A\underline{x} \ge \underline{b}$$

$$-A\underline{x} \ge -\underline{b}$$

$$\underline{x} \ge \underline{0}$$

$$\begin{array}{c|cc} & \underline{x} & \\ \underline{u} & A & \underline{b} \\ \underline{v} & -A & -\underline{b} \\ \hline & \underline{c} & \end{array}$$

quindi si introducono 2m variabili duali, <u>u</u> e <u>v</u>

$$\max \quad (\underline{b}^{T}\underline{u} - \underline{b}^{T}v)$$

$$A^{T}\underline{u} - A^{T}\underline{v} \le \underline{c}$$

$$\underline{u} \ge \underline{0}, v \ge \underline{0}$$

$$\max \quad (\underline{b}^{T}\underline{u} - \underline{b}^{T}v)$$

$$A^{T}\underline{u} - A^{T}\underline{v} \le \underline{c}$$

$$\underline{u} \ge \underline{0}, v \ge \underline{0}$$

e sostituendo w= u - v si ottiene (D)

(P)
$$\min \underline{c}^T \underline{x}$$
 (D) $\max \underline{b}^T \underline{w}$

$$A\underline{x} = \underline{b}$$

$$\underline{x} \ge \underline{0}$$

$$\underline{w} \quad n. v.$$

Calcolo del problema duale

- Dato un generico problema di PL, sarebbe possibile trasformarlo in uno equivalente in forma canonica di min/max per calcolarne il duale
- In realtà, questo non è necessario, in quanto è sempre possibile calcolare direttamente il duale del problema dato

 $\max 5x_1 + 3x_2$

s.t.

$$x_1 + 4x_2 - 8x_3 \ge 2$$

$$7x_2 + 12x_3 \leq 4$$

$$9x_1 - 8x_2 + x_3 = 7$$

$$x_1, x_2, x_3 \ge 0$$

	x_1	\mathcal{X}_2	X_3	
w_1	1	4	-8	2
W_2	0	7	12	4
W_3	9	-8	1	7
	5	3	0	

min
$$2w_1 + 4w_2 + 7w_3$$

s.t.

$$w_1 + 9w_3 \ge 5$$

$$4w_1 + 7w_2 - 8w_3 \ge 3$$

$$-8w_1 + 12w_2 + w_3 \ge 0$$

$$w_1 \le 0, w_2 \ge 0, w_3 \ n.v.$$

Dualità: regole di trasformazione generali

	min	max		
Coefficienti f.o.	\underline{c}^{T}	<u>C</u> Te	rmini noti vincoli	
Termini noti vincoli	b	\underline{b}^{T} Co	Coefficienti f.o.	
Coefficienti vincoli	A	A^T co	pefficienti vincoli	
<i>i</i> -mo vincolo (<i>i</i> =1m)	>	≥ 0		
	<u><</u>	≤ 0	<i>i</i> -ma variabile	
	=	n.v.	(<i>i</i> =1m)	
<i>j</i> -ma variabile (<i>j</i> =1n)	≥ 0	<u> </u>		
	≤ 0	>	<i>j</i> -mo vincolo (<i>j</i> =1n)	
	n.v.	=	• /	

La teoria della Dualità è importante perchè:

- le soluzioni di (P) e (D) sono legate tra loro;
- la soluzione ottima del duale è un bound sulla soluzione ottima del primale.
- le soluzioni duali hanno un'interpretazione economica utile per l'analisi di sensitività (post-ottimalità);
- sulla teoria della dualità sono basati algoritmi, quali il Simplesso Duale, l'Algoritmo Primale-Duale, il Delayed Column Generation alternativi al Simplesso (Primale) utili per certe classi di problemi;
- può in certi casi essere conveniente risolvere D al posto di P (conviene risolvere il problema con il minor numero di vincoli)

Siano dati i problemi

$$(P) \quad min \ \underline{c}^T \underline{x}$$

$$\underline{A}\underline{x} \ge \underline{b}$$

$$\underline{x} \ge \underline{0}$$

$$(D) \quad \max \ \underline{b}^T \underline{w}$$
$$A^T \underline{w} \le \underline{c}$$
$$w \ge 0$$

1. Teorema (debole) della dualità

Siano \underline{x} e \underline{w} soluzioni ammissibili rispettivamente per (P) e (D), allora

$$\underline{c}^T \underline{x} \ge \underline{b}^T \underline{w}$$

$$(P) \quad \min \ \underline{c}^T \underline{x}$$

$$\underline{A}\underline{x} \ge \underline{b}$$

$$\underline{x} \ge \underline{0}$$

$$(D) \quad \max \ \underline{b}^T \underline{w}$$
$$A^T \underline{w} \le \underline{c}$$
$$w \ge 0$$

Dimostrazione:

 $\hat{\underline{x}}$ soluzione ammissibile di P $\implies A\hat{\underline{x}} \geq \underline{b}$ (1)

Poichè $\underline{\hat{w}} \ge 0$, premoltiplicando la (1) per $\underline{\hat{w}}$ si ottiene: $\underline{\hat{w}}^T A \underline{\hat{x}} \ge \underline{\hat{w}}^T \underline{b}$ (2)

Poichè $\underline{\hat{w}}$ soluzione ammissibile di D \Longrightarrow $\underline{c}^T \ge \underline{\hat{w}}^T A$ (3)

Dalle disequazioni (2) e (3), sapendo che $\hat{\underline{x}} \geq 0$ si ha: $\underline{c}^T \hat{\underline{x}} \geq \underline{\hat{w}}^T A \hat{\underline{x}} \geq \underline{\hat{w}}^T \underline{b}$

Corollario 1

Se \underline{x} è una soluzione ammissibile per (P) e \underline{w} una soluzione ammissibile per (D) tali che $\underline{c}^T\underline{x}=\underline{b}^T\underline{w}$ allora \underline{x} e \underline{w} sono soluzioni ottime dei rispettivi problemi.

Dimostrazione.

Supponiamo per assurdo che \underline{x} non sia ottimo per (P). Quindi esiste un'altra soluzione ammissibile \underline{x}^* di (P) tale che $\underline{c}^T\underline{x}^* < \underline{c}^T\underline{x}$. Ma poiché per ipotesi $\underline{c}^T\underline{x} = \underline{b}^T\underline{w}$ si ha che $\underline{c}^T\underline{x}^* < \underline{b}^T\underline{w}$. Assurdo perchè va contro la tesi del teorema debole della dualità.

Corollario 2

Se il problema primale (P) è illimitato inferiormente allora il duale (D) è inammissibile. Viceversa se il duale (D) è illimitato superiormente il primale (P) è inammissibile.

Dimostrazione.

Supponiamo che il valore ottimo del primale (P) sia $-\infty$ e che il problema duale ammetta una soluzione \underline{w} . Dal teorema della dualità debole si ha che $\underline{c}^T\underline{x} \ge \underline{b}^T\underline{w}$ per una qualsiasi soluzione ammissibile x di (P). Questo implica che $\underline{b}^T\underline{w} \le -\infty$. Assurdo.

Il corollario 2 stabilisce che l'illimitatezza di un problema implica l'inammissibilità del suo duale. Tuttavia questa non è una proprietà simmetrica ossia se un problema è inammissibile non è detto che il suo duale sia illimitato. Per esempio:

$$min - x_1 - x_2$$

$$-x_1 + x_2 \ge 1$$

$$x_1 - x_2 \ge 1$$

$$x_1 \ge 0, x_2 \ge 0$$

Calcolare il duale di (P) e risolvere entrambi i problemi graficamente