Sistemas Inteligentes Cuestiones y ejercicios del bloque 2, tema 1 Razonamiento probabilístico

Escola Tècnica Superior d'Informàtica Dep. de Sistemes Informàtics i Computació Universitat Politècnica de València

17 de noviembre de 2024

1. Cuestiones

A)
$$P(y | x) = 1 / P(x, y)$$

B)
$$P(y | x) = P(x,y) / \sum_{y'} P(x,y')$$

C)
$$P(y \mid x) = \sum_{x'} P(x', y) / \sum_{y'} P(x, y')$$

D)
$$P(y \mid x) = \sum_{x'} P(x', y) \cdot \sum_{y'} P(x, y')$$

En un problema de decisión binario $(D = \{0, 1\})$, sea y un hecho o dato y $d^*(y) = 0$ la decisión de mínimo error para ese y. Identifica cuál de las siguientes expresiones determina incorrectamente la mínima probabilidad de error para dicho y:

A)
$$P_{\star}(\text{error} \mid Y = y) = 1 - P(D = 1 \mid Y = y)$$

B)
$$P_{\star}(\text{error} \mid Y = y) = 1 - P(D = 0 \mid Y = y)$$

C)
$$P_{\star}(\text{error} \mid Y = y) = P(D = 1 \mid Y = y)$$

D)
$$P_{\star}(\text{error} \mid Y = y) = 1 - \max_{d} P(D = d \mid Y = y)$$

3 (Examen de SIN del 15 de enero de 2014; examen del bloque 2; cuestión 3)

En un problema de diagnóstico diferencial entre Gripe y Resfriado, se sabe que la incidencia relativa de la Gripe con respecto al Resfriado es del 30 % y se conocen las siguientes distribuciones de temperaturas corporales:

$t(^{o}C)$	36	37	38	39	40
$P(T = t \mid D = GRIPE)$					
$P(T = t \mid D = \text{RESFR})$	0.10	0.30	0.40	0.15	0.05

La probabilidad a posteriori de que un paciente con 38º de fiebre tenga Gripe es:

- A) mayor que 0.8
- B) menor que 0.1
- C) entre 0.3 y 0.6
- D) menor que la probabilidad de que con esa temperatura tenga Resfriado

4 (Examen de SIN del 28 de enero de 2014; examen final; cuestión 2)

En un problema de diagnóstico diferencial entre *Gripe* y *Resfriado*, se sabe que la incidencia relativa de la *Gripe* con respecto al *Resfriado* es del 30 % y se conocen las siguientes distribuciones de temperaturas corporales:

$t(^{o}C)$	36	37	38	39	40
$P(T = t \mid D = GRIPE)$					
$P(T = t \mid D = \text{RESFR})$	0.10	0.30	0.40	0.15	0.05

El diagnóstico de minimo riesgo de error para un paciente con 37º de fiebre es:

- A) Gripe
- B) Resfriado
- C) Hay un empate entre ambos diagnósticos
- D) Las probabilidades dadas son incorrectas ya que no suman 1; por tanto no es posible hacer un diagnóstico.
- Respecto a la regla de Bayes, ¿cuál de las siguientes expresiones no es correcta?

A)
$$P(x \mid y) = \frac{P(y,x)}{\sum_{z} P(y \mid z) P(z)}$$

$$\mathrm{B)}\ P(x\mid y)\ =\ \frac{P(x,y)}{\sum_{z}P(y,z)}$$

C)
$$P(x \mid y) = \frac{\sum_{z} P(x, z)}{P(y)}$$

D)
$$P(x \mid y) = \frac{P(y \mid x) P(x)}{P(y)}$$

La valoración comercial de las 300 películas proyectadas en un cine durante el pasado año fue de éxito para 120 de ellas, y de fracaso para el resto. Se conoce las siguientes distribuciones de géneros de películas dada su valoración comercial:

g	ROMANCE	Comedia	Intriga
$P(G = g \mid V = \text{\'E} \text{XITO})$	0.30	0.35	0.35
$P(G = g \mid V = \text{Fracaso})$	0.20	0.50	0.30

¿Cuál es la valoración comercial más probable para una película de intriga?

- A) Éxito
- B) Fracaso
- C) Ambas valoraciones comerciales son equiprobables
- D) No se puede determinar la valoración comercial con los datos disponibles
- En un problema de clasificación en tres clases $(C = \{a, b, c\})$, sea y un hecho o dato. La decisión óptima de clasificación para y es la clase A con una probabilidad a posteriori de 0.40. ¿Cuál de las siguientes afirmaciones es incorrecta?

A)
$$P(C = a \mid Y = y) \leq P(C = b \mid Y = y) + P(C = c \mid Y = y)$$

- B) $P_{\star}(\text{error} \mid Y = y) = P(C = b \mid Y = y) + P(C = c \mid Y = y)$
- C) $P_{\star}(\text{error} \mid Y = y) = 1 P(C = a \mid Y = y)$
- D) $P_{\star}(\text{error } | Y = y) = 1 \max_{d \in \{b,c\}} P(C = d | Y = y)$
- Sean X, Y y Z tres variables aleatorias. Se dice que X e Y son condicionalmente independientes dada Z si y solo si $P(X = x, Y = y \mid Z = z) = P(X = x \mid Z = z) P(Y = y \mid Z = z)$ para todo x, y y z.

Si se cumple esta igualdad, podemos calcular $P(Z=z \mid X=x,Y=y)$ como sigue:

A)
$$P(Z = z \mid X = x, Y = y) = \frac{P(X = x, Y = y, Z = z)}{P(X = x, Y = y)}$$

B)
$$P(Z = z \mid X = x, Y = y) = \frac{P(Z = z) P(X = x, Y = y \mid Z = z)}{P(X = x, Y = y)}$$

$$P(X = x, Y = y)$$
B) $P(Z = z \mid X = x, Y = y) = \frac{P(Z = z) P(X = x, Y = y \mid Z = z)}{P(X = x, Y = y)}$
C) $P(Z = z \mid X = x, Y = y) = \frac{P(Z = z) P(X = x \mid Z = z) P(Y = y \mid Z = z)}{P(X = x, Y = y)}$

- D) De las tres maneras anteriores.
- En un problema de clasificación en tres clases $(C = \{a, b, c\})$, en el que se dispone de 100 muestras de la clase a, 100 muestras de la clase b y 100 muestras de la clase c, sea y un hecho o dato. La decisión óptima de clasificación para y es la clase a con una probabilidad a posteriori de 0.50. ¿Cuál de las siguientes afirmaciones es correcta?

A)
$$P(C = a \mid Y = y) > P(C = b \mid Y = y) + P(C = c \mid Y = y)$$

B) $P(Y = y \mid C = a) = \frac{0.5 \ P(C = a)}{P(Y = y)}$
C) $P(Y = y \mid C = a) = P(Y = y \mid C = b) + P(Y = y \mid C = c)$

B)
$$P(Y = y \mid C = a) = \frac{0.5 P(C = a)}{P(C = a)}$$

C)
$$P(Y = u \mid C = a) = P(Y = u \mid C = b) + P(Y = u \mid C = c)$$

D) Ninguna de las anteriores.

- \blacksquare La enfermedad de la meningitis causa rigidez de nuca en un 70 % de los casos.
- La probabilidad a priori de que un paciente tenga meningitis es de 1/100000.
- La probabilidad a priori de que un paciente tenga rigidez de nuca es del 1 %.

Con base en el conocimiento anterior, la probabilidad P de que un paciente con rigidez de nuca tenga meningitis es:

- A) $0.000 \le P < 0.001$
- B) $0.001 \le P < 0.002$
- C) $0.002 \le P < 0.003$
- D) $0.003 \le P$
- 11 Considérese un problema de clasificación convencional, esto es, de C clases y objetos representados mediante vectores D-dimensionales de características reales. En términos generales, podemos decir que el problema será más difícil...
 - A) cuanto menor sean C y D.
 - B) cuanto menor sea C y mayor sea D.
 - C) cuanto mayor sea C y menor sea D.
 - D) cuanto mayor sean C y D.
- Se tiene un problema de clasificación para el cual se han aprendido dos clasificadores diferentes, c_A y c_B . La probabilidad de error de c_A se ha estimado empíricamente, a partir de un cierto conjunto de 100 muestras de test, obteniéndose un valor de $\hat{p}_A = 0.10$ (10%). La probabilidad de error de c_B se ha estimado análogamente, si bien en este caso se ha empleado un conjunto de test diferente, compuesto por 200 muestras, obteniéndose también un 10% de error ($\hat{p}_B = 0.10$). Con base en estas estimaciones, podemos afirmar que, para un nivel de confianza del 95%:
 - A) Los intervalos de confianza de \hat{p}_A y \hat{p}_B serán idénticos.
 - B) El intervalo de confianza de \hat{p}_A será mayor que el de \hat{p}_B .
 - C) El intervalo de confianza de \hat{p}_B será mayor que el de \hat{p}_A .
 - D) Los intervalos de confianza de \hat{p}_A y \hat{p}_B son en este caso irrelevantes ya que las tasas de error estimadas coinciden.
- 13 ¿Cuál de las siguientes expresiones es correcta?

A)
$$P(x,y) = \sum_{x} P(x) P(y) P(z)$$
.

B)
$$P(x, y) = \sum P(x) P(y | z)$$
.

C)
$$P(x,y) = \sum_{z=0}^{\infty} P(x \mid z) P(y \mid z) P(z)$$
.

D)
$$P(x,y) = \sum_{z}^{z} P(x,y \mid z) P(z).$$

- Un entomólogo descubre lo que podria ser una subespecie rara de escarabajo, debido al patrón de su espalda. En la subespecie rara, el 98 % de los ejemplares tiene dicho patrón. En la subespecie común, el 5 % lo tiene. La subespecie rara representa el 0.1 % de la población. La probabilidad P de que un escarabajo con el patrón sea de la subespecie rara es:
 - A) $0.00 \le P < 0.05$.
 - B) $0.05 \le P < 0.10$.
 - C) $0.10 \le P < 0.20$.
 - D) $0.20 \le P$.

15	Sea x un objeto	(vector de	características	o cadena d	le símbolos)	a clasificar	en una	clase de C	7 posibles.	Indica	cuál de
	los siguientes cl	asificadores	no es de error	mínimo:							

- A) $c(x) = \arg \max \log_2 P(c \mid x)$
- B) $c(x) = \arg \max \log_{10} P(c \mid x)$
- C) $c(x) = \underset{c=1,...,C}{\operatorname{arg max}} a P(c \mid x) + b$ siendo a y b dos constantes reales cualesquiera
- D) $c(x) = \underset{c=1,...,C}{\operatorname{arg \, max}} P(c \mid x)^3$

16 ¿Cuál de las siguientes expresiones es incorrecta?

- A) $P(x | y) = \frac{P(x,y)}{\sum_{z} P(y | z) P(z)}$
- B) $P(x \mid y) = \frac{P(x,y)}{\sum_{z} P(y,z)}$
- C) $P(x \mid y) = \frac{\sum_{z} P(x, z)}{P(y)}$
- D) $P(x \mid y) = \frac{P(y \mid x) P(x)}{P(y)}$

Se tienen dos bolsas. La primera contiene 3 manzanas de color rojo y 5 de color verde; la segunda, 2 rojas, 2 verdes y 1 amarilla. Se escoge una bolsa al azar y, seguidamente, una manzana al azar de la misma. Supóngase que las bolsas tienen la misma probabilidad de ser escogidas y que, dada una bolsa cualquiera, sus manzanas también tienen idéntica probabilidad de ser escogidas. Si la manzana escogida es roja, ¿cuál es la probabilidad
$$P$$
 de que sea de la primera bolsa?

- A) $0.00 \le P < 0.25$
- B) $0.25 \le P < 0.50$
- C) $0.50 \le P < 0.75$
- D) $0.75 \le P$

18 Sea
$$x$$
 un objeto (vector de características o cadena de símbolos) a clasificar en una clase de C posibles. Indica cuál de los siguientes clasificadores no es de error mínimo:

- A) $c(x) = \underset{c=1,\dots,C}{\operatorname{arg\,max}} P(x \mid c)$
- B) $c(x) = \arg \max P(x, c)$ c = 1, ..., C
- C) $c(x) = \arg\max \log P(x, c)$
- D) $c(x) = \underset{c=1,\dots,C}{\operatorname{arg\,max}} P(c \mid x)$

19 Sean
$$X$$
 y Y dos variables aleatorias, y sean $P(X,Y)$, $P(X \mid Y)$, $P(Y \mid X)$, $P(X)$ y $P(Y)$ las probabilidades conjunta, condicionales e incondicionales de esas variables. Indica cuál de las siguientes afirmaciones es *incorrecta*.

- A) Tanto P(X) como P(Y) se pueden derivar a partir de P(X,Y).
- B) Tanto $P(X \mid Y)$ como $P(Y \mid X)$ se pueden derivar a partir de P(X, Y).
- C) Se puede obtener $P(Y \mid X)$ a partir de $P(X \mid Y)$ y P(X), sin necesidad de conocer previamente P(Y).
- D) Se puede obtener $P(Y \mid X)$ a partir de $P(X \mid Y)$ y P(Y), sin necesidad de conocer previamente P(X).

20 ¿Cuál de las siguientes expresiones es incorrecta?

- A) $\sum_{y} P(x \mid y) = 1$, $\forall x$ B) $\sum_{x} P(x \mid y) = 1$, $\forall y$ C) $\sum_{x} \sum_{y} P(x, y) = 1$ D) $\sum_{x} P(x \mid u) = \sum_{y} P(y \mid w)$, $\forall u, w$

21	Se tienen dos almacenes de naranjas: 1 y 2. El 65 % de las naranjas se hallan en el almacén 1 y el resto en el 2. Se sabe que en el almacén 1 hay un 1 % de naranjas no aptas para el consumo; y un 3 % en el 2. Supóngase que se distribuye una naranja no apta para el consumo. ¿Cuál es la probabilidad P de que provenga del almacén 1? A) $0.00 \le P < 0.25$ B) $0.25 \le P < 0.50$ C) $0.50 \le P < 0.75$ D) $0.75 \le P$
22 🔲	Sea $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_N)$ un objeto dado mediante una secuencia de N vectores de características, el cual se quiere clasificar en una de C clases. Indica cuál de los siguientes clasificadores si es de error mínimo $(\mathbf{x}_2^N \text{ denota } \mathbf{x}_2, \dots, \mathbf{x}_N)$: A) $c(\mathbf{x}) = \underset{c=1,\dots,C}{\operatorname{arg max}} p(\mathbf{x}_1 \mid c) p(\mathbf{x}_2^N \mid \mathbf{x}_1)$ B) $c(\mathbf{x}) = \underset{c=1,\dots,C}{\operatorname{arg max}} p(\mathbf{x}_1,c) p(\mathbf{x}_2^N \mid \mathbf{x}_1)$ C) $c(\mathbf{x}) = \underset{c=1,\dots,C}{\operatorname{arg max}} p(\mathbf{x}_1 \mid c) p(\mathbf{x}_2^N \mid \mathbf{x}_1,c)$ D) $c(\mathbf{x}) = \underset{c=1,\dots,C}{\operatorname{arg max}} p(\mathbf{x}_1,c) p(\mathbf{x}_2^N \mid \mathbf{x}_1,c)$
23	Sea un problema de clasificación en cuatro clases equiprobables, $c=1,2,3,4$. Dado un objeto x , se sabe que el clasificador de Bayes lo asigna a la clase 1 y que su probabilidad a posteriori de pertenencia a dicha clase, $p(c=1\mid x)$, es igual a 1/3. Con base en el conocimiento dado, indica cuál de las siguientes afirmaciones es correcta: A) El objeto x puede clasificarse con una probabilidad de error menor que 1/3. B) $p(c=1\mid x)>p(c=2\mid x)+p(c=3\mid x)+p(c=4\mid x)$. C) $p(x)>p(x\mid c=1)$. D) Ninguna de las anteriores.
24	¿Cuál de las siguientes distribuciones de probabilidad no puede deducirse a partir de la prob. conjunta $P(x,y,z)$?: A) $P(x \mid y)$. B) $P(z \mid x,y)$. C) $P(z)$. D) Toda distribución en la que intervenga cualquier combinación de estas variables puede deducirse de $P(x,y,z)$.
25	Sea un problema de clasificación en cuatro clases, $C=\{a,b,c,d\}$, donde las cuatro clases son equiprobables, y sea y un hecho o dato. La decisión óptima de clasificación para y es la clase a con una probabilidad a posteriori de 0.30. ¿Cuál de las siguientes afirmaciones es correcta? A) La probabilidad de error es menor que 0.50. B) $P(C=a\mid Y=y) > P(C=b\mid Y=y) + P(C=c\mid Y=y) + P(C=d\mid Y=y)$. C) $P(Y=y\mid C=a) = 0.3 \cdot P(Y=y) / 0.25$. D) Ninguna de las anteriores.
26	Supóngase que tenemos dos cajas con 40 galletas cada una. La primera caja contiene 10 galletas de chocolate y 30 sin chocolate. La segunda caja contiene 20 galletas de cada tipo. Ahora supóngase que se escoge una caja al azar, y luego una galleta al azar de la caja escogida. Si la galleta escogida no es de chocolate, la probabilidad P de que proceda de la primera caja es: A) $0/4 \le P < 1/4$. B) $1/4 \le P < 2/4$. C) $2/4 \le P < 3/4$. D) $3/4 \le P \le 4/4$.
27	Sea $\mathbf{x} = (x_1, \dots, x_D)^t$, $D > 1$, un objeto representado mediante un vector de características D -dimensional a clasificar en una de C clases. Indica cuál de los siguientes clasificadores no es de error mínimo: A) $c(\mathbf{x}) = \arg\max_{c=1,\dots,C} \ P(x_1 \mid c) P(x_2,\dots,x_D \mid x_1,c)$ B) $c(\mathbf{x}) = \arg\max_{c=1,\dots,C} \ P(c) P(x_1,\dots,x_D \mid c)$ C) $c(\mathbf{x}) = \arg\max_{c=1,\dots,C} \ P(c \mid x_1) P(x_2,\dots,x_D \mid x_1,c)$ D) $c(\mathbf{x}) = \arg\max_{c=1,\dots,C} \ P(x_1,c) P(x_2,\dots,x_D \mid x_1,c)$

28	Sea un problema de clasificación en dos clases, $c=1,2$, para objetos en un espacio de representación de 4 elementos, $E=\{\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3,\mathbf{x}_4\}$. La tabla de la derecha recoge las (verdaderas) probabilidades a posteriori $P(c \mid \mathbf{x})$, para
	todo c y \mathbf{x} ; así como la (verdadera) probabilidad incondicional, $P(\mathbf{x})$, para todo \mathbf{x} . Asimismo, dicha tabla incluye la clase asignadada a cada $\mathbf{x} \in E$ por un cierto clasificador $c(\mathbf{x})$. Con base en el conocimiento probabilístico dado, la probabilidad de error de $c(\mathbf{x})$, ε , es:

	P(c	$ \mathbf{x}\rangle$		
\mathbf{x}	c = 1	c = 2	$P(\mathbf{x})$	$c(\mathbf{x})$
\mathbf{x}_1	1	0	1/3	1
\mathbf{x}_2	3/4	1/4	1/4	1
\mathbf{x}_3	1/4	3/4	1/4	1
\mathbf{x}_4	1/2	1/2	1/6	2

- A) $0/4 \le \varepsilon < 1/4$.
- B) $1/4 \le \varepsilon < 2/4$.
- C) $2/4 \le \varepsilon < 3/4$.
- D) $3/4 \le \varepsilon \le 4/4$.
- Considérese la probabilidad de error del clasificador de Bayes, o error de Bayes, para el problema de clasificación descrito en la cuestión anterior. Dicho error, que denotamos como ε^* , es:
 - A) $0/4 \le \varepsilon^* < 1/4$.

 - B) $1/4 \le \varepsilon^* < 2/4$. C) $2/4 \le \varepsilon^* < 3/4$. D) $3/4 \le \varepsilon^* \le 4/4$.
- Dada la siguiente tabla de probabilidades:

B	0	0	1	1
C	0	1	0	1
$P(A=0\mid B,C)$	0.222	0.298	0.234	0.118
P(B,C)	0.025	0.467	0.219	0.290

¿Cuál es el valor de $P(A=1,B=1 \mid C=0)$?

- A) $P(A = 1, B = 1 \mid C = 0) \le 0.25$
- B) $0.25 < P(A = 1, B = 1 \mid C = 0) \le 0.50$
- C) $0.50 < P(A = 1, B = 1 \mid C = 0) \le 0.75$
- D) $0.75 < P(A = 1, B = 1 \mid C = 0) \le 1.00$
- Sean C, L, S variables aleatorias que toman valores en {des, nub, llu}, {dia, noc}, y {seg, acc}, respectivamente. Su probabilidad conjunta viene dada en la siguiente tabla:

s	\mathbf{SEG}	SEG	SEG	SEG	SEG	SEG	ACC	$_{ m ACC}$	ACC	ACC	ACC	$_{ m ACC}$
l	DIA	DIA	DIA	NOC	NOC	NOC	DIA	DIA	DIA	NOC	NOC	NOC
c	DES	NUB	$_{ m LLU}$	DES	NUB	LLU	DES	NUB	$_{ m LLU}$	DES	NUB	LLU
P(s,l,c)	0.30	0.20	0.07	0.13	0.10	0.06	0.01	0.01	0.03	0.02	0.02	0.05

La probabilidad condicional P(C = LLU|S = ACC, L = DIA) es:

- A) 0.60.
- B) 0.03.
- C) 0.05.
- D) 0.02.
- Sea $\mathbf x$ un objeto a clasificar en una clase de C posibles. Indica cuál de los siguientes clasificadores no es de error mínimo (o escoge la última opción si los tres son de error mínimo):
 - A) $c(\mathbf{x}) = \arg\max p(c \mid \mathbf{x})^2$. c=1,...,C
 - B) $c(\mathbf{x}) = \arg\max \log p(\mathbf{x}, c)$ c=1,...,C
 - C) $c(\mathbf{x}) = \arg\max \sqrt{p(\mathbf{x}, c)/p(\mathbf{x})}$. c=1,...,C
 - D) Los tres clasificadores anteriores son de error mínimo.
- Sea un problema de clasificación en tres clases para objetos del tipo $\mathbf{x} = (x_1, x_2)^t \in \{0, 1\}^2$, con las distribuciones de probabilidad de la derecha. ¿Cuál es el error de Bayes, ε^* , en este problema?
 - A) $\varepsilon^* < 0.2$.
 - B) $0.2 \le \varepsilon^* < 0.4$.
 - C) $0.4 \le \varepsilon^* < 0.7$.
 - D) $0.7 \le \varepsilon^*$.

ſ	2	ĸ				
Ī	x_1	x_2	c=1	c=2	c=3	$P(\mathbf{x})$
Ī	0	0	0.6	0.2	0.2	0.2
	0	1	0.1	0.1	0.8	0.3
	1	0	0.3	0.5	0.2	0.2
	1	1	1/3	1/3	1/3	0.3

34	En un problema de razonamiento probabilístico correspondiente a desplazamientos por carretera, con las variables
	aleatorias de interés: Climatología (C) : {despejado (DES), nublado (NUB), lluvioso (LLU)}; Luminosidad (L) : {dia
	(DIA), noche (NOC)}; Seguridad (S):{seguro (SEG), accidente (ACC)}. La probabilidad conjunta de las tres variables
	viene dada en la tabla:

		DIA			NOC	
P(s,l,c)	DES	NUB	LLU	DES	NUB	LLU
SEG	0.29	0.20	0.04	0.14	0.10	0.09
ACC	0.03	0.01	0.03	0.01	0.03	0.03

La probabilidad condicional $P(S = ACC \mid L = NOC, C = DES)$ es:

- A) 0.010
- B) 0.067
- C) 0.140
- D) 0.150

35	En un problema de razonamiento probabilístico correspondiente a desplazamientos por carretera, con las variables
	aleatorias de interés: Climatología (C) : {despejado (DES), nublado (NUB), lluvioso (LLU)}; Luminosidad (L) : {dia
	(DIA), noche (NOC)}; Seguridad (S):{seguro (SEG), accidente (ACC)}. La probabilidad conjunta de las tres variables
	viene dada en la tabla:

		DIA			NOC	
P(s,l,c)	DES	NUB	LLU	DES	NUB	LLU
SEG	0.32	0.23	0.05	0.11	0.07	0.08
ACC	0.03	0.01	0.03	0.01	0.03	0.03

La probabilidad condicional $P(S = ACC \mid L = NOC, C = NUB)$ es:

- A) 0.140
- B) 0.300
- C) 0.030
- D) 0.100

Sea un problema de clasificación en tres clases para datos del tipo
$\mathbf{x} = (x_1, x_2)^t \in \{0, 1\}^2$, con las distribuciones de probabilidad de la tabla.
Indica en qué intervalo se halla el error del clasificador $c(\mathbf{x})$ dado en la
tabla, ε :

- A) $\varepsilon < 0.25$.
- B) $0.25 \le \varepsilon < 0.50$.
- C) $0.50 \le \varepsilon < 0.75$.
- D) $0.75 \le \varepsilon$.

X	$P(c \mid \mathbf{X})$		
$x_1 x_2$	$c = 1 \ c = 2 \ c = 3$	$P(\mathbf{x})$	$c(\mathbf{x})$
0 0	0.2 0.1 0.7	0.2	2
0 1	0.4 0.3 0.3	0	1
1 0	0.3 0.4 0.3	0.4	3
1 1	0.4 0.4 0.2	0.4	1

37		Dada la siguiente	tabla de frecuencias	conjuntas de las	3 variables de interés:
----	--	-------------------	----------------------	------------------	-------------------------

A	0	0	0	0	1	1	1	1
В	0	0	1	1	0	0	1	1
С	0	1	0	1	0	1	0	1
N(A,B,C)	124	28	227	175	126	222	23	75

¿Cuál es el valor de $P(A=1\mid B=1,C=0)$?

- A) 0.023
- B) 0.250
- C) 0.092
- D) 0.446

38	Sea un problema de clasificación en tres clases para datos del tipo
	$\mathbf{x} = (x_1, x_2)^t \in \{0, 1\}^2$, con las distribuciones de probabilidad de la tabla.
	Indica en qué intervalo se halla el error del clasificador $c(\mathbf{x})$ dado en la
	tabla, ε :

x	$P(c \mid \mathbf{x})$		
$x_1 x_2$	$c=1 \ c=2 \ c=3$	$P(\mathbf{x})$	$c(\mathbf{x})$
0 0	0.2 0.3 0.5	0	1
0 1	0.3 0.3 0.4	0.4	1
1 0	0.2 0.5 0.3	0.5	2
1 1	0.3 0.6 0.1	0.1	1

- A) $\varepsilon < 0.25$.
- B) $0.25 \le \varepsilon < 0.50$.
- C) $0.50 \le \varepsilon < 0.75$.
- D) $0.75 \le \varepsilon$.

39	Dada la siguiente tabla de	frecuencias conjuntas de	las 3	variables de interés:

A	0	0	0	0	1	1	1	1
В	0	0	1	1	0	0	1	1
C	0	1	0	1	0	1	0	1
N(A,B,C)	211	140	245	87	39	110	5	163

¿Cuál es el valor de $P(A=1 \mid B=1, C=1)$?

- A) 0.317
- B) 0.163
- C) 0.652
- D) 0.250
- 40 Supóngase que tenemos dos cajas con 40 naranjas en la primera y 80 naranjas en la segunda. La primera caja contiene 9 naranjas Navelina y 31 Caracara. La segunda caja contiene tres veces más naranjas Navelina que Caracara. Ahora supóngase que se escoge una caja al azar, y luego una naranja al azar de la caja escogida. Si la naranja escogida es Navelina, la probabilidad P de que proceda de la primera caja es:
 - A) $0/4 \le P < 1/4$.
 - B) $1/4 \le P < 2/4$.
 - C) $2/4 \le P < 3/4$.
 - D) $3/4 \le P \le 4/4$.
- Sea un problema de clasificación en cuatro clases para datos del tipo $\mathbf{x} = (x_1, x_2)^t \in \{0, 1\}^2$, con las distribuciones de probabilidad de la tabla. Indica en qué intervalo se halla el error de Bayes, ε^* :
 - A) $\varepsilon^* < 0.40$.
 - B) $0.40 < \varepsilon^* < 0.45$.
 - C) $0.45 \le \varepsilon^* < 0.50$.
 - D) $0.50 \le \varepsilon^*$.

2	K					
x_1	x_2	c=1	c=2	c=3	c=4	$P(\mathbf{x})$
0	0	0.1	0.3	0.1	0.5	0
0	1	0.2	0.5	0.3	0	0.1
1	0	0.2	0.4	0.1	0.3	0.3
1	1	0.1	0.3	0.3	0.3	0.6

- 42 Supóngase que tenemos dos cajas con 40 naranjas en la primera y 80 naranjas en la segunda. La primera caja contiene 26 naranjas Navelina y 14 Caracara. La segunda caja contiene tres veces más naranjas Navelina que Caracara. Ahora supóngase que se escoge una caja al azar, y luego una naranja al azar de la caja escogida. Si la naranja escogida es Navelina, la probabilidad P de que proceda de la primera caja es:
 - A) $0/4 \le P < 1/4$.
 - B) 1/4 < P < 2/4.
 - C) $2/4 \le P < 3/4$.
 - D) $3/4 \le P \le 4/4$.
- 43 Sea un problema de clasificación en cuatro clases para datos del tipo $\mathbf{x} = (x_1, x_2)^t \in \{0, 1\}^2$, con las distribuciones de probabilidad de la tabla. Indica en qué intervalo se halla el error de Bayes, ε^* :
 - A) $\varepsilon^* < 0.40$.
 - B) $0.40 \le \varepsilon^* < 0.45$.
 - C) $0.45 \le \varepsilon^* < 0.50$.
 - D) $0.50 \le \varepsilon^*$.

2	ĸ					
x_1	x_2	c=1	c=2	c=3	c=4	$P(\mathbf{x})$
0	0	0.2	0.3	0.4	0.1	0.1
0	1	0.3	0.4	0.2	0.1	0.3
1	0	0.3	0.3	0.1	0.3	0.1
1	1	0.3	0.4	0.1	0.2	0.5

Dada la siguiente tabla de probabilidades conjuntas de las 3 variables de interés:

A	0	0	0	0	1	1	1	1
В	0	0	1	1	0	0	1	1
C	0	1	0	1	0	1	U	1
P(A,B,C)	0.035	0.089	0.085	0.054	0.215	0.161	0.165	0.196

¿Cuál es el valor de $P(A=1,B=1 \mid C=1)$?

- A) $P(A = 1, B = 1 \mid C = 1) \le 0.25$
- B) $0.25 < P(A = 1, B = 1 \mid C = 1) \le 0.50$
- C) $0.50 < P(A = 1, B = 1 \mid C = 1) \le 0.75$
- D) $0.75 < P(A = 1, B = 1 \mid C = 1) \le 1.00$

45 Dada la siguiente tabla de probabilidades conjuntas de las 3 variables de interés:

A	0	0	0	0	1	1	1	1
В	0	0	1	1	0	0	1	1
С	0	1	0	1	0	1	0	1
P(A,B,C)	0.093	0.100	0.133	0.163	0.157	0.150	0.117	0.087

¿Cuál es el valor de $P(A=1,B=1\mid C=1)$?

- A) $P(A = 1, B = 1 \mid C = 1) \le 0.25$
- B) $0.25 < P(A = 1, B = 1 \mid C = 1) \le 0.50$
- C) $0.50 < P(A = 1, B = 1 \mid C = 1) \le 0.75$
- D) $0.75 < P(A = 1, B = 1 \mid C = 1) \le 1.00$

En un problema de razonamiento probabilístico correspondiente a diagnóstico de gripe, las variables aleatorias de interés son: Gripe (G):{positivo (POS), negativo (NEG)}; Ventilación (V):{alta (ALT), baja (BAJ)}; Actividad (A):{silencio (SIL), hablando (HAB), ejercicio (EJE)}. La probabilidad conjunta de las tres variables viene dada en la tabla siguiente:

		ALT			BAJ	
P(g, v, a)	SIL	HAB	EJE	SIL	HAB	EJE
POS	0.01	0.01	0.02	0.01	0.03	0.05
\overline{NEG}	0.29	0.20	0.10	0.14	0.09	0.05

La probabilidad condicional $P(G = POS \mid V = ALT, A = SIL)$ es:

- A) $P \le 0.25$
- B) $0.25 < P \le 0.50$
- C) $0.50 < P \le 0.75$
- D) $0.75 < P \le 1.0$

47 Sea x un objeto a clasificar en una clase de C posibles. Indica cuál de los siguientes clasificadores no es de error mínimo (o escoge la última opción si los tres son de error mínimo):

- A) $c(\mathbf{x}) = \underset{c=1,\dots,C}{\operatorname{arg\,min}} \log p(c \mid \mathbf{x})$
- B) $c(\mathbf{x}) = \underset{c=1,\dots,C}{\operatorname{arg\,max}} e^{p(c|\mathbf{x})}$
- C) $c(\mathbf{x}) = \underset{c=1,\dots,C}{\operatorname{arg\,max}} e^{p(\mathbf{x},c)} e^{p(\mathbf{x})}$
- D) Los tres clasificadores anteriores son de error mínimo.

Sea un problema de clasificación en tres clases para datos del tipo $\mathbf{x} = (x_1, x_2)^t \in \{0, 1\}^2$, con las distribuciones de probabilidad de la tabla. Indica en qué intervalo se halla el error del clasificador $c(\mathbf{x})$ dado en la tabla, ε :

- A) $\varepsilon < 0.25$.
- B) $0.25 \le \varepsilon < 0.50$.
- C) $0.50 \le \varepsilon < 0.75$.
- D) $0.75 \le \varepsilon$.

X		$P(c \mid \mathbf{x})$				
$x_1 x$	2	c=1	c=2	c=3	$P(\mathbf{x})$	$c(\mathbf{x})$
0 ()	0.5	0.4	0.1	0.2	2
0	1	0.1	0.8	0.1	0.2	3
1 ()	0.3	0.6	0.1	0.2	2
1 :	1	0.5	0.4	0.1	0.4	3

- Supóngase que estamos aplicando el algoritmo Perceptrón, con factor de aprendizaje $\alpha = 1$ y margen b = 0.1, a un conjunto de 3 muestras bidimensionales de aprendizaje para un problema de 2 clases. Tras procesar las primeras 2 muestras se han obtenido los vectores de pesos $\mathbf{w}_1 = (0,0,-2)^t$, $\mathbf{w}_2 = (0,0,2)^t$. A continuación, se procesa la última muestra (\mathbf{x}_3,c_3) y se obtienen los vectores de pesos $\mathbf{w}_1 = (1,1,-1)^t$, $\mathbf{w}_2 = (-1,-1,1)^t$, ¿cuál de las siguientes es esa última muestra?
 - A) $((2,3)^t,1)$
 - B) $((1,1)^t,1)$
 - C) $((2,1)^t,2)$
 - D) $((2,5)^t,2)$
- En un problema de razonamiento probabilístico correspondiente a diagnóstico de gripe, las variables aleatorias de interés son: Gripe (G):{positivo (POS), negativo (NEG)}; Ventilación (V):{alta (ALT), baja (BAJ)}; Actividad (A):{silencio (SIL), hablando (HAB), ejercicio (EJE)}. La probabilidad conjunta de las tres variables viene dada en la tabla siguiente:

		ALT			BAJ	
P(g, v, a)	SIL	HAB	EJE		HAB	EJE
POS	0.01	0.02	0.02	0.01	0.03	0.05
$\overline{\text{NEG}}$	0.29	0.19	0.10	0.14	0.10	0.04

La probabilidad condicional $P(G = POS \mid V = BAJ, A = EJE)$ es:

- A) $P \le 0.25$
- B) $0.25 < P \le 0.50$
- C) $0.50 < P \le 0.75$
- D) $0.75 < P \le 1.0$
- Sea \mathbf{x} un objeto a clasificar en una clase de C posibles. Indica cuál de los siguientes clasificadores no es de error mínimo (o escoge la última opción si los tres son de error mínimo):
 - A) $c(\mathbf{x}) = \underset{c=1,...,C}{\operatorname{arg max}} \log p(\mathbf{x} \mid c) + \log p(c)$
 - B) $c(\mathbf{x}) = \underset{c=1,...,C}{\operatorname{arg max}} e^{p(c|\mathbf{x})} + e^{p(\mathbf{x})}$
 - C) $c(\mathbf{x}) = \underset{c=1}{\operatorname{arg max}} e^{p(\mathbf{x},c)} e^{p(\mathbf{x})}$
 - D) Los tres clasificadores anteriores son de error mínimo.
- Sea un problema de clasificación en tres clases para datos del tipo $\mathbf{x} = (x_1, x_2)^t \in \{0, 1\}^2$, con las distribuciones de probabilidad de la tabla. Indica en qué intervalo se halla el error del clasificador $c(\mathbf{x})$ dado en la tabla, ε :

bla.	\mathbf{x}	$P(c \mid \mathbf{X})$				
n la	$x_1 x_2$	$c = 1 \ c = 2 \ c = 3$				
II Ia	0 0	0.5 0.1 0.4				
	0 1	0.6 0.4 0				
	1 0	0.1 0.4 0.5				

0

0.5

0.5

 $P(\mathbf{x})$

0.3

0.3

0.1

0.3

 $c(\mathbf{x})$

1

2

2

1

- A) $\varepsilon < 0.25$.
- B) $0.25 \le \varepsilon < 0.50$.
- C) $0.50 < \varepsilon < 0.75$.
- D) $0.75 \le \varepsilon$.
- 53 Dada la siguiente tabla de probabilidades:

B	0	0	1	1
C	0	1	0	1
$P(A=0 \mid B,C)$	0.921	0.900	0.378	0.273
P(B,C)	0.322	0.412	0.108	0.157

¿Cuál es el valor de $P(A=1,B=1 \mid C=1)$?

- A) $P(A = 1, B = 1 \mid C = 1) < 0.25$
- B) $0.25 < P(A = 1, B = 1 \mid C = 1) < 0.50$
- C) $0.50 < P(A = 1, B = 1 \mid C = 1) \le 0.75$
- D) $0.75 < P(A = 1, B = 1 \mid C = 1) \le 1.00$

2. Problemas

1. (Examen de SIN del 26 de Noviembre de 2012; tiempo estimado: 25 minutos)

Para diseñar un sistema de diagnóstico diferencial entre Gripe y Resfriado, se han elaborado histogramas de valores de temperatura corporal en pacientes con estas enfermedades. A partir de estos histogramas se han obtenido las siguientes distribuciones de temperaturas:

$t(^{o}C)$					
$P(T = t \mid D = GRIPE)$	0.05	0.10	0.20	0.30	0.35
$P(T = t \mid D = \text{RESFR})$	0.10	0.30	0.40	0.15	0.05

Sabiendo que la incidencia relativa de la gripe con respecto al resfriado es del 30 % (es decir, P(D = GRIPE) = 0.3), determínese:

- a) La probabilidad a posteriori de que un paciente con 39 grados de fiebre tenga gripe.
- b) El diagnóstico más probable para ese paciente y la probabilidad de que ese diagnóstico sea erróneo.
- c) Las probabilidades de los diagnósticos GRIPE y RESFR $\forall t \in \{36, 37, 38, 39, 40\}$, así como el mínimo error global de diagnóstico $(P_{\star}(error))$ esperado para un sistema diseñado en base a las observaciones utilizadas.

2. Ejercicio Flores Iris, transpa #23 del Tema 1

3. Sea $\lambda \in \mathbb{R}^+$. Decimos que una variable aleatoria $x \in \{0, 1, 2, \ldots\}$ es Poisson (λ) si su función de masa de probabilidad es:

$$p_{\lambda}(x) = \frac{\exp(-\lambda) \lambda^x}{x!}$$

La distribución de Poisson se emplea para modelizar la probabilidad de que un evento dado ocurra un cierto número de veces en un contexto prefijado. El parámetro λ puede interpretarse como la media de ocurrencias de dicho evento. Por ejemplo, x podría ser el número de llamadas telefónicas que recibimos en un día o el número de ocurrencias de una cierta palabra en un documento dado. La figura a la derecha muestra $p_{\lambda=4}(x)$ para todo $x \in \{0,1,\ldots,11\}$.

Sea un problema de clasificación en C clases para objetos representados mediante una característica de tipo contador, $x \in \{0, 1, 2, \ldots\}$. Para toda clase c, suponemos dadas:

- Su probabilidad a priori, P(c).
- Su función de (masa de) probabilidad condicional, $P(x \mid c)$, la cual es Poisson (λ_c) con λ_c conocida.

Se pide:

- a) (0.5 puntos) Sea el caso particular: C=2, $P(c=1)=P(c=2)=\frac{1}{2}$, $\lambda_1=1$, $\lambda_2=2$ y x=2. Determina la probabilidad incondicional de ocurrencia de x=2, P(x=2).
- b) (0.5 puntos) En el caso particular anterior, halla la probabilidad a posteriori $P(c=2 \mid x=2)$, así como la probabilidad de error si x=2 se clasifica en la clase c=2.
- c) (0.5 puntos) Más generalmente, para cualquier número de clases C y cualesquiera probabilidades a priori, considera el caso en el que, dado un cierto $\tilde{\lambda} \in \mathbb{R}^+$, $\lambda_c = \tilde{\lambda}$ para todo c. En tal caso, existe una clase que no depende de x, c^* , en la que se puede clasificar todo x con mínima probabilidad de error. Determínala.
- d) (0.5 puntos) En el caso general, prueba que el clasificador de Bayes para este problema puede expresarse como un clasificador basado en funciones discriminantes lineales como sigue (ln indica logaritmo natural):

$$c^*(x) = \arg\max_{c} g_c(x)$$
 con $g_c(x) = w_c x + w_{c0}$, $w_c = \ln \lambda_c$ y $w_{c0} = \ln p(c) - \lambda_c$