Sampling & Quantization

Mach band effect

- Human perception
 - Characteristics of HVS

Color sensing

Estimate the color

Sampling

- Sampling
 - o determines spatial resolution
 - o space digitization

- Image frequency
 - o what are freq contents inside an image?
 - o is the uniform sampling optimal?
 - o is oversampling useful?
 - o strive for efficient sampling
 - · sampling density
 - · data storage, data transmission

Image representations

Sampling

Grid

- o continuous image is digitized at sampling points
- o sampling points ordered in the plane
- o their geometric relation grid
- o smallest grid point corresponds to pixel (2D)
- o voxel (3D)

Neighbourhood

	(x,y-1)			((v_1 v
(x-1,y)	p	(x+I,y)	$N_4(p) =$	$\begin{cases} (x-1,y) \\ (x+1,y) \\ (x,y-1) \end{cases}$
	(x,y+1)			$\begin{cases} (x,y-1) \\ (x,y+1) \end{cases}$

(x-1,y-1)		(x+1,y-1)	
	p		$N_D(p)$
(x-1,y+1)		(x+1,y+1)	

	(x+1,y-1)	(x,y-I)	(x-1,y-1)
$N_8(p$	(x+1,y)	p	(x-1,y)
	(x+1,y+1)	(x,y+1)	(x-1,y+1)

1	x		1 1	(0,0)
,y-1)	(x+1,	(x,y-1)	(x-1,y-1)	
1,y)	(x+1	(x,y)	(x-1,y)	y
y+1)	(x+1)	(x,y+1)	(x-1,y+1)	
	(x+1,	(x,y+I)	(x-1,y+1)	

- Neighbour interactions
 - o distance, energy, edges, features
 - o sq. grid neighbourhood paradox
 - N₄: broken ring encloses
 - N₈: complete ring without enclosure

Sampling

- Hierarchical grids
 - neighbours at finer scale become focal cell or centroids for coarser scale
 - o smooth out or simplify some grids
 - · dynamic grid resolution
 - $\circ \theta$, r can be used to find out current resolution scale

Quantization

- Quantizer
 - o SISO scalar quantizer
 - o mappings $[x_{i-1}, x_i) \rightarrow y_i$
 - o what are the unknowns?

$$x \in [t_k, t_{k+1}) \Rightarrow Q(x) = r_k$$

Quantization

- Uniform quantizers
 - o all ranges divided equally with $\Delta = [t_k, t_{k+1})$ intervals
 - o deadzone

Midtread quantizer

Midrise quantizer

- Non-uniform quantizers
 - o ranges divided via predefined function which gives Δ intervals

Logarithmic quantizer

Logarithmic quantizer for image filter weights

