

Syntactic Analysis

Top-down Parsing

Copyright 2009, Pedro C. Diniz, all rights reserved.

Students enrolled in the Compilers class at Instituto Superior Técnico (IST/UTL) have explicit permission to make copies of these materials for their personal use.

Parsing Techniques

Top-down parsers (LL(1), recursive descent)

- · Start at the root of the parse tree and grow toward leaves
- Pick a production & try to match the input
- Bad "pick" ⇒ may need to backtrack
- Some grammars are backtrack-free (predictive parsing)

Bottom-up parsers (LR(1), operator precedence)

- Start at the leaves and grow toward root
- As input is consumed, encode possibilities in an internal state
- Start in a state valid for legal first tokens
- Bottom-up parsers handle a large class of grammars

Top-down Parsing

A top-down parser starts with the root of the parse tree

The root node is labeled with the goal symbol of the grammar

Top-down parsing algorithm:

Construct the root node of the parse tree

Repeat until the fringe of the parse tree matches the input string $% \left(\frac{1}{2}\right) =\left(\frac{1}{2}\right) \left(\frac{1}{2}\right$

- At a node labeled A, select a production with A on its lhs and, for each symbol on its rhs, construct the appropriate child
- 2 When a terminal symbol is added to the fringe and it doesn't match the fringe, backtrack
- 3 Find the next node to be expanded(label ∈ NT)
- The key is picking the right production in step 1
 - That choice should be guided by the input string

Remember the Expression Grammar?

Example CFG:

1	Goal → Expr
2	$Expr \rightarrow Expr + Term$
3	Expr - Term
4	Term
5	Term → Term * Factor
6	Term / Factor
7	Factor
8	Factor → number
9	l <u>id</u>

And the input $\underline{x} - \underline{2} * \underline{y}$

Left Recursion

Top-down parsers cannot handle left-recursive grammars

Formally,

A grammar is *left recursive* if $\exists A \in NT$ such that \exists a derivation $A \Rightarrow^+ A\alpha$, for some string $\alpha \in (NT \cup T)^+$

Our expression grammar is left recursive

- · This can lead to non-termination in a top-down parser
- For a top-down parser, any recursion must be right recursion
- We would like to convert the left recursion to right recursion

Non-termination is a bad property in any part of a compiler

Eliminating Left Recursion

To remove left recursion, we can transform the grammar

Consider a grammar fragment of the form

$$Fee \rightarrow Fee \alpha$$
 $\mid \beta$

where neither α nor β start with Fee

We can rewrite this as

$$\begin{array}{c} \mathit{Fee} \to \beta \; \mathit{Fie} \\ \mathit{Fie} \; \to \alpha \; \mathit{Fie} \\ | \; \; \epsilon \end{array}$$

where Fie is a new non-terminal

This accepts the same language, but uses only right recursion

Eliminating Left Recursion

The expression grammar contains two cases of left recursion

Applying the transformation yields

These fragments use only right recursion They retain the original left associativity

Eliminating Left Recursion

Substituting them back into the grammar yields

		0 .	
1	Goal	→	Expr
2	Expr Expr'	\rightarrow	Term Expr'
3	Expr'	\rightarrow	+ Term Expr'
4			- Term Expr'
5		1	ε
6	Term	\rightarrow	Factor Term'
7	Term'	\rightarrow	* Factor
			Term'
8			/ Factor
			Term'
9			ε
10	Factor	\rightarrow	number
11		1	id
12		1	(Expr)

- This grammar is correct, if somewhat non-intuitive.
 It is left associative, as was
- the original

 A top-down parser will terminate using it.
- A top-down parser may need to backtrack with it.

Eliminating Left Recursion

The transformation eliminates immediate left recursion What about more general, indirect left recursion?

The general algorithm:

```
arrange the NTs into some order A_1, A_2, ..., A_n for i \leftarrow 1 to j ...

Must start with 1 to ensure that A_1 \rightarrow A_1 \beta is transformed replace each production A_1 \rightarrow A_1 with A_1 \rightarrow A_1 \beta is transformed where A_1 \rightarrow \delta_1 \beta, j... j
```

This assumes that the initial grammar has no cycles $(A_i \Rightarrow^* A_i)$, and no epsilon productions

And back

Eliminating Left Recursion

How does this algorithm work?

- 1. Impose arbitrary order on the non-terminals
- 2. Outer loop cycles through NT in order
- 3. Inner loop ensures that a production expanding A_i has no non-terminal A_s in its rhs, for s < i
- 4. Last step in outer loop converts any direct recursion on A_i to right recursion using the transformation showed earlier
- 5. New non-terminals are added at the end of the order & have

At the start of the i^{th} outer loop iteration For all k < i, no production that expands A_k contains a non-terminal A_i in its rhs, for s < k

Example

• Order of symbols: G, E, T

 $G \rightarrow E$ $E \rightarrow E + T$ $E \rightarrow T$ $T \rightarrow E \sim T$ $T \rightarrow i\underline{d}$

Example

• Order of symbols: G, E, T

1. $A_i = G$ $G \rightarrow E$ $E \rightarrow E + T$ $E \rightarrow T$ $T \rightarrow E \sim T$ $T \rightarrow i\underline{d}$

Picking the "Right" Production

If it picks the wrong production, a top-down parser may backtrack Alternative is to look ahead in input & use context to pick correctly

How much lookahead is needed?

- In general, an arbitrarily large amount
- Use the Cocke-Younger, Kasami algorithm or Earley's algorithm

Fortunately

- Large subclasses of CFGs can be parsed with limited lookahead
- · Most programming language constructs fall in those subclasses

Among the interesting subclasses are LL(t) and LR(t) grammars

Predictive Parsing

Basic idea

Given $A \to \alpha \mid \beta$, the parser should be able to choose between α and β

FIRST Sets

For some rhs $\alpha \in G$, define FIRST(α) as the set of tokens that appear as the first symbol in some string that derives from α

That is, $\underline{x} \in \text{First}(\alpha) \ \text{\it iff} \ \alpha \Rightarrow^* \underline{x} \ \gamma, \ \text{ for some } \gamma$

We will defer the problem of how to compute FIRST sets until we look at the *LL_(1)* table construction algorithm

Predictive Parsing

Basic ide

Given $\mathcal{A} \to \alpha \mid \beta,$ the parser should be able to choose between α and β

FIRST Sets

For some $rhs \alpha \in G$, define $First(\alpha)$ as the set of tokens that appear as the first symbol in some string that derives from α

That is, $\underline{x} \in FIRST(\alpha)$ iff $\alpha \Rightarrow^* \underline{x} \gamma$, for some γ

The LL(1) Property

If $A \to \alpha$ and $A \to \beta$ both appear in the grammar, we would like

 $First(\alpha) \cap First(\beta) = \emptyset$

This would allow the parser to make a correct choice with a lookahead of exactly one symbol!

This is almost correct
See the next slide

INSTITUTO SUPERIOR TECNICO

Predictive Parsing

What about &-productions?

 \Rightarrow They complicate the definition of LL(1)

If $\mathcal{A} \to \alpha$ and $\mathcal{A} \to \beta$ and $\epsilon \in \text{First}(\alpha)$, then we need to ensure that $\text{First}(\beta)$ is disjoint from $\text{Follow}(\alpha)$, too

Define $FIRST^+(\alpha)$ as

- First(a) \cup Follow(a), if $\epsilon \in \text{First}(a)$
- First(α), otherwise

Then, a grammar is LL(1) iff $A \to \alpha$ and $A \to \beta$ implies

 $First^+(\alpha) \cap First^+(\beta) = \emptyset$

FOLLOW(α) is the set of all words in the grammar that can legally appear immediately after an α

report an error and return false

Parsers that capitalize on the *LL(1)* property are called <u>predictive parse</u>

One kind of predictive parser is the

<u>cent</u> parse

Left Factoring (Generality)

Question

By eliminating left recursion and left factoring, can we transform an arbitrary CFG to a form where it meets the LL(t) condition? (and can be parsed predictively with a single token lookahead?)

Answer

Given a CFG that doesn't meet the *LL(t)* condition, it is undecidable whether or not an equivalent *LL(t)* grammar exists.

<u>Example</u>

 $\{a^{n} \ 0 \ b^{n} \mid n \ge 1\} \ \cup \ \{a^{n} \ 1 \ b^{2n} \mid n \ge 1\} \ \text{ has no } LL(t) \text{ grammar}$

Recursive Descent (Summary)

- 1. Build FIRST (and FOLLOW) sets
- 2. Massage grammar to have LL(1) condition
 - a. Remove left recursion
 - b. Left factor it
- 3. Define a procedure for each non-terminal
 - a. Implement a case for each right-hand side
 - b. Call procedures as needed for non-terminals
- 4. Add extra code, as needed
 - a. Perform context-sensitive checking
 - b. Build an IR to record the code

Can we automate this process?

FIRST and FOLLOW Sets

First(α)

For some $\alpha \in T \cup NT$, define FIRST(α) as the set of tokens that appear as the first symbol in some string that derives from α

That is, $\underline{x} \in FIRST(\alpha)$ iff $\alpha \Rightarrow^* \underline{x} \gamma$, for some γ

$Follow(\alpha)$

For some $\alpha \in NT$, define FOLLOW(α) as the set of symbols that can occur immediately after α in a valid sentence.

 $FOLLOW(S) = \{EOF\}, where S is the start symbol$

To build FIRST sets, we need FOLLOW sets ...

Computing FIRST Sets

Define FIRST as

- If $\alpha \Rightarrow \underline{a}\beta$, $\underline{a} \in T$, $\beta \in (T \cup NT)^*$, then $\underline{a} \in FIRST(\alpha)$
- $\bullet\quad \text{If }\alpha\Rightarrow^*\epsilon\text{, then }\epsilon\in\text{FIRST}(\alpha)$
- If $\alpha \Rightarrow \beta_1 \beta_2 \dots \beta_k$ then $\underline{a} \in \text{FIRST}(\alpha)$ if form some $i \ a \in \text{FIRST}(\beta_i)$ and $\varepsilon \in \text{FIRST}(\beta_1), \dots, \text{FIRST}(\beta_{i-1})$

Note: if $\alpha = X\beta$, First(α) = First(X)

To compute FIRST

- Use a fixed-point method
- FIRST(A) $\in 2^{(T \cup E)}$
- · Loop is monotonic
- ⇒Algorithm halts

for each $A \in NT$ if $\varepsilon \in FIRST(A)$ then $FIRST(A) \leftarrow FIRST(A) \cup FOLLOW(A)$

Computing FOLLOW Sets

Define FOLLOW as

- Place \$ in FOLLOW(S) where S is the start symbol
- If $A \to \alpha B\beta$ then any $(a/\epsilon) \in FIRST(\beta)$ is in FOLLOW(A)
- If $A \to \alpha B$ or $A \to \alpha B\beta$ where $\epsilon \in \text{FIRST}(\beta)$, then everything in FOLLOW(A) is in FOLLOW(B).

To compute FOLLOW

- · Use a fixed-point method
- FOLLOW(A) $\in 2^{(T \cup E)}$
- · Loop is monotonic
- ⇒ Algorithm halts

Building Top-down Parsers

Given an LL(1) grammar, and its FIRST & FOLLOW sets ...

- Emit a routine for each non-terminal
 - Nest of if-then-else statements to check alternate rhs's
 - Each returns true on success and throws an error on false
 - Simple, working (, perhaps ugly,) code
- This automatically constructs a recursive-descent parser

Improving matters

I don't know of a system that does this .

- Nest of if-then-else statements may be slow
 Good case statement implementation would be better
- What about a table to encode the options?
 - Interpret the table with a skeleton, as we did in scanning

Building Top-down Parsers

Building the complete table

- Need a row for every NT & a column for every T
- Need a table-driven interpreter for the table
- Algorithm:
 - consider X the symbol on top of the symbol stack (TOS) and the current input symbol a
 - This tuple (X,a) determines the action as follows:
 - If X = a = \$ the parser halts and announces success
 - If X = a \neq \$ the parser pops X off the stack and advances the input
 - If X = 2 ≠ 5 the parset pops X of the stack and advances us input.
 If X is non-terminal, consults entry M[X,a] of parsing table M. If not an error entry, and is a production i.e., M[X,a] = { X → UVW } then replace X with WVU (reverse production RHS). If error invoke error recovery routine.

Error Recovery in Predictive Parsing

- What happens when M[X,a] is empty?
- Announce Error, Stop and Terminate!?
- Engage in Error Recovery mode:
 - Panic-mode:
 - skip symbols on the input until a token in a synchronizing (synch) set of tokens appears on the input;
 - · complete entries to the table
 - Phrase-level mode:
 - invoke an external (possibly programmer-defined) procedure that manipulates the stack and the input;

 - · less structure, more ad-hoc

Panic-Mode Error Recovery

- · No universally accepted method
- Heuristics to fill in empty table entries include:
 - Place all symbols in Follow(A) a synch set of the non-terminal A; skip input tokens until on elements of synch is seen and then pop A
 - Pretends like we have seen A and successfully parsed it.
 - Use hierarchical relation between grammar symbols (e.g., expr and stats). Use First(H) as synch of lower non-terminal symbols.
 - In effect skip or ignore lower constructs poping then off the stack
 - Add First(A) to synch set of A without poping. Skip input until they match
 Try to move on to the beginning of the next occurrence of A
 - If $A \Rightarrow \epsilon,$ then try to use this production as default and proceed

 - If a terminal cannot be matched, pop it from the stack
 In effect mimicing its insertion in the input stream

