A7 Q1 MAT157: Alex R

Problem 1.

Suppose $f: \mathbb{R} \to \mathbb{R}$ is (n+1)-times differentiable for some positive integer n. If $a, b \in \mathbb{R}$ are such that f(a) = f(b) and $f^{(k)}(a) = 0$ for all $k \in \{1, ..., n\}$, show there exists a point $c \in (a, b)$ such that $f^{(n+1)}(c) = 0$.

Solution.

Let's prove by induction that for all $n \in \{0\} \cup \mathbb{N}$ if (1) f is (n+1)-times differentiable, (2) f(a) = f(b), and (3) $(\forall k \in \{1, \ldots, n\})[f^{(k)}(a) = 0]$, then $(\exists c \in (a, b))[f^{(n+1)}(c) = 0]$.

For the base case, n=0. We have that (1) f is (0+1)-times differentiable and (2) f(a)=f(b). According to the MVT, it is true that $(\exists c \in (a,b)) \left[f^{(1)}(c) = \frac{f(b)-f(a)}{b-a} = 0 \right]$, and consequently it was proven that $(\exists c \in (a,b)) \left[f^{(0+1)}(c) = 0 \right]$.

Assume that the fact holds for n = m. Now, it will be proven for n = m + 1.

For the precondition, assume that (1) f is (m+2)-times differentiable, (2) f(a) = f(b), and (3) $(\forall k \in \{1, \ldots, m+1\})[f^{(k)}(a) = 0]$. Since (1) f is (m+1)-times differentiable, (2) f(a) = f(b), and (3) $(\forall k \in \{1, \ldots, m\})[f^{(k)}(a) = 0]$, according to the induction hypothesis (for n = m), we can find c in (a, b) such that $f^{(m+1)}(c) = 0$. Fix such c.

Now, we have that $f^{(m+1)}$ is differentiable, $f^{(m+1)}(a) = 0$, and $f^{(m+1)}(c) = 0$ for some $c \in (a,b)$. According to the **MVT** for $f^{(m+1)}$, it is true that $(\exists d \in (a,c)) \left[f^{(m+1+1)}(d) = \frac{f^{(m+1)}(c) - f^{(m+1)}(a)}{c-a} = 0 \right]$. Fix such $d \in (a,c) \subset (a,b)$. Thus, it was proven that $(\exists d \in (a,b)) \left[f^{(m+2)}(d) = 0 \right]$.

To sum up, using induction, it was proven that if for some $n \in \{0\} \cup \mathbb{N}$ preconditions (1), (2), and (3) hold, then exists $c \in (a, b)$ such that $f^{(n+1)}(c) = 0$.