

Métodos Numéricos para Ingeniería Factorización de Crout para sistemas lineales tridiagonales

Introducción

Para resolver el siguiente sistema lineal $n \times n$, donde se supone que tiene una solución única:

$$E_{1}: a_{11}x_{1} + a_{12}x_{2} = b_{1}$$

$$E_{2}: a_{21}x_{1} + a_{22}x_{2} + a_{23}x_{3} = b_{2}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$E_{n-1}: \qquad a_{n-1,n-2}x_{n-2} + a_{n-1,n-1}x_{n-1} + a_{n-1,n}x_{n} = b_{n-1}$$

$$E_{n}: \qquad a_{n,n-1}x_{n-1} + a_{nn}x_{n} = b_{n}$$

$$(0.1)$$

Para $x = (x_1, x_2, ..., x_n)^t$, dado $A = (a_{ij})$ con i, j = 1, 2, ..., n y $b = (b_i)$ para i = 1, 2, ..., n.

Escribiendo el sistema (0.1) en forma matricial, se tiene:

$$Ax = b$$
.

El algoritmo que resuelve el sistema de ecuaciones se muestra en la siguiente sección.

Factorización de Crout para sistemas lineales tridiagonales

ENTRADA la dimensión n; las entradas de la matriz ampliada A.

SALIDA la solución x_1, \ldots, x_n .

(Los pasos 1-3 configuran y resuelven Lz = b.)

Paso 1 Determine $l_{11} = a_{11}$;

$$u_{12} = a_{12}/l_{11};$$

 $z_1 = a_{1,n+1}/l_{11}.$

Paso 2 Para i = 2, ..., n-1 determine $l_{i,i-1} = a_{i,i-1}$; (i-ésima fila de L.)

$$l_{ii} = a_{ii} - l_{i,i-1}u_{i-1,i};$$

 $u_{i,i+1} = a_{i,i+1}/l_{ii};$ ((i + 1)-ésima columna de U .)
 $z_i = (a_{i,n+1} - l_{i,i-1}z_{i-1})/l_{ii}.$

Paso 3 Determine $l_{n,n-1} = a_{n,n-1}$; (enésima fila de L.)

$$l_{nn} = a_{nn} - l_{n,n-1} u_{n-1,n};$$

$$z_n = (a_{n,n+1} - l_{n,n-1} z_{n-1}) / l_{nn}.$$

(Pasos 4 y 5 resuelven Ux = z.)

Paso 4 Determine $x_n = z_n$.

Paso 5 Para i = n - 1, ..., 1 determine $x_i = z_i - u_{i,i+1}x_{i+1}$.

Paso 6 SALIDA (x_1, \ldots, x_n) ;

PARE.

Problema

Considere uns sistema matricial del la forma $A(\alpha) x = b(\alpha)$, donde

$$A\left(\alpha\right)_{ij} = \begin{cases} \sin\left((i+j)\alpha\right)\cos\left((i+j)\alpha\right) & \text{si } i=j,\\ -\sin\left(\alpha\right) & \text{si } j=i-1 \text{ y } i \text{ impar,} \\ \cos\left(\alpha\right) & \text{si } j=i-1 \text{ y } i \text{ par,} \\ 1 & \text{si } j=i+1, \\ 0 & \text{en cualquier otro caso.} \end{cases}$$

con $i, j \in \{1, 2, ..., n\}$ y el vector $b(\alpha)$ es el siguiente,

$$b\left(\alpha\right)_{i} = \begin{cases} \sin\left(i\alpha\right) & \text{si } i \text{ es par,} \\ \cos\left(i\alpha\right) & \text{si } i \text{ es impar.} \end{cases}$$

 $con i \in \{1, 2, \dots, n\}$

Actividades

Objetivo: Programar una función en Python que construya la matriz $A(\alpha)$ y el vector $b(\alpha)$ en función de los parámetros de entrada α y n. Además, implementar el algoritmo de factorización de Crout para sistemas lineales tridiagonales conforme a las especificaciones del documento proporcionado.

- 1. Implemente en Python el algoritmo de factorización de Crout para sistemas lineales tridiagonales siguiendo estrictamente las instrucciones del documento. No se deben utilizar variantes alternativas del algoritmo.
- 2. Desarrolle una función en Python que reciba como parámetros de entrada los valores de α y n, y que construya la matriz $A(\alpha)$ y el vector $b(\alpha)$.
- 3. Utilizando el algoritmo de factorización de Crout para sistemas lineales tridiagonales, resuelva el sistema lineal $A(\alpha)x = b(\alpha)$ para los valores $\alpha = 1$ y n = 10. Calcule el error relativo entre $A(\alpha)x$ y $b(\alpha)$ para la solución encontrada en el paso anterior. ¿Podemos afirmar que el algoritmo proporciona una buena aproximación para los valores de n y α ? Justifique su respuesta. Incluya esta justificación como comentario en la implementación del algoritmo.