Universidad de Granada

Análisis Matemático I Ejercicios resueltos

Doble Grado de Informática y Matemáticas ${\rm Curso}~2016/17$

1. Topología de un espacio métrico.

Ejercicio. Dado el conjunto $A = \{(x, y) \in \mathbb{R}^2 : 0 < x \le 1\}$, ¿es abierto?

Demostración. Tenemos que comprobar si A es abierto, es decir, si es cierto que $\forall a \in A \ \exists s > 0 \ tal \ que \ B(a,s) \subset A$. Para ello, fijo $y \in \mathbb{R}$ y escojo $x_o = (1,y) \in A$. Además, tomo s > 0 cualquiera. Veamos que hay puntos $z \in B(x_o,s)$ que no pertenecen a A.

Sea
$$z = (1 + \frac{s}{2}, y)$$
. Entonces, se tiene que $d(z, x_o) = \sqrt{\left(\frac{s}{2}\right)^2 + 0} = \frac{s}{2} < s$, y por tanto $z \in B(x_o, s)$.

Claramente $z \notin A$, pues $1 + \frac{s}{2} > 1$. Así, concluimos que z es un punto de $B(x_o, s)$ que no pertenece a A, por lo que $B(x_o, s) \not\subseteq A$, y A no es abierto.

Página 1 de 1