Numerical Method

Questionxol:-

$$V(t) = \frac{gm}{c} \cdot \left[1 - e^{-ct/m}\right]$$
 $g = 9.8 \text{ m/s}^2$
 $c = 15 \text{ kg/s}$
 $V = 35 \text{ m/s}$
 $V = 35 \text{ m/s}$
 $V = 95 \text{ m/s}$

Answer:-

Substituing given values, in eq C

$$35 = \frac{9.81(m)}{15} \left[1 - e^{(-15/m)} 9 \right]$$

$$9.81m(1-e^{-\frac{135}{m}}) - 525 = 0$$

So,

$$f(m) = 9.81^{n}(1 - e^{-\frac{135}{m}}) - 525$$
 - 3

the interval within which the roots

Formula for Newton-Raphson's Method 9(n+1) = 7(n - f(xn)) - (2) $f'(\chi_n)$ and f(Xe) = -31.7985 $f(\chi_u) = 1.562$ Now let upper limit only as, xo = 60 $f(\alpha_0) = 1.562$ Taking derivative of f(m) we get $f'(m) = 9.81 \left[1 - e^{-135/m} \left[1 + \frac{135}{m}\right]\right]$ using eq 2 with n=0 $x_1 = x_0 - f(x_0) = x_1 = 60 - \frac{1.562}{6.4496}$ $\int '(\chi_0)$ Hence $\alpha_1 = 59.7578$ and $f(x_1) = -0.002561$ $f'(x_1) = 6.4707$ is (by putting value in eq(4)) Again using eq 2

$$\alpha_2 = 59.7578 - (-0.002561)$$

$$6.4707$$

$$\chi_2 = 59.7582.$$

$$f(dz) = -0.000000$$

3 Hence the root required.

$$m = 59.7582$$

Question no. 02.

use bisaction Method. to find position of no moment

Answer: -

Let 2 supporting forces be F1 and F2 Sum of torque and forces be equal to zero.

$$F_a = 3 \times \frac{100}{2}$$

$$F_{C} = 0$$

Henre forces w.r.t sections are

$$F_{c} = 0$$

$$= SSOLb$$

We have forces supporting: -

as
$$F_1 = 2651b$$
 $F_2 = 2851b$

NOW Applying bisection

Now applying bisection method, Limits

$$\gamma le = 6$$
 $\gamma lu = 10$

$$M = -185 \times +1650$$

$$M(9(u) = -200$$

$$\chi_{\gamma} = 8$$
 as $\left(\frac{\chi_{\ell} + \chi_{ij}}{2}\right)$

$$M(x_1) = -185(8) + 1650$$

Hence
$$xe = xx$$

Sor
$$\chi_{\gamma} = \frac{9+10}{2} = 9$$

$$M(xr) = -15$$

$$M(x_1) = -185(8.5) + 1650 = 77.5 \ \frac{7}{4}$$

$$M(\chi_u) = -15$$

Scanned with CamScanner

Again

Hence Mr= 8.873

$$M(xu) = +15$$
 $M(xv) = 8.125$ $M(xv) = 8.125$

$$M(x_7) = -15$$

$$M(x_0) = -3.4375$$

$$M(xu) = 2.3475$$

M(x8) = -3.4375 78th

(wth x=8,91 feet is where moment =0

Question no . 03 .

$$0=1-\frac{Q^2}{9A_c^3}\cdot B$$

a) Bisection Method xe = 0.5, xu = 2.5

Substiting values in (we get

$$0 = 1 - \frac{20^{2}}{9.81 \times \left[3y + y_{/2}^{2}\right]^{3}} \times (3+y)$$

$$f(y) = 1 - \frac{40.77}{(3y+y^2/2)^3} \times (3+y) - 2$$

as
$$xe=0.5$$
 and $xu=2.5$

$$f(xe) = -32.26$$
 byputting in eq 2

using bisection method,

$$y_1 = 0.5 + 2.5 = 1.5$$
, $f(y_1) = -0.03$

Error = 66.67%.

Now, as $f(x_r) f(x_e) > 0$, This means solution lies blw x_r and x_u .

So, $\chi_{\ell} = \chi_{\gamma}$, $\chi_{u} = \chi_{u}$

Iteration table.

iteration table.							
N	o. Xe	χ_{μ} χ_{γ}	flxes	f(Xu)	$f(x_r)$	£a	
i i	0.5	2.5 1.5	-32.258	0.8130	-0,079	66.6	
a	1.5	2.5 2	-0.03095	0.81303	0.60181	25	
3					1 6.378909		
4	1.5	1.75 1.6	525 -0.030	DAS 0.37	8909 0.2069	179 7.4973	
2	1.5	1.625 1	.5625 -0.0	3095 0.7	2069 0.097	.9S L	
6	1.5	1.5625	1.53125 -0.0	3395 0.	69795 or 03	62 2.04	
7			1.515625 "		3626 0.00	,	
8	1.5	1.515625	1.507813 "	6,0	03384 -0.01	1359 6.51	
	Hence a	fter 8 H	erations, w	le obtair)		

6) using False-Position Method:-

Formula

$$\chi_{Y} = \chi_{U} - \frac{f(\chi_{U})(\chi_{\ell} - \chi_{U})}{f(\chi_{\ell}) - f(\chi_{U})} - 3$$

$$xy = 2.4508$$
 by putting $xe = 0.5$ in eq. (3) $xu = 2.5$

As now
$$f(xr)f(xe)ZO$$
 Hence root lies between Xe and XY , for next we tak $Xe = Xe$ $Xu = XY$.

Iteration table: -	Hero	ation	tal	610	2: -
--------------------	------	-------	-----	-----	------

No.	×ı	Xu	Xx	f(x1)	f(Xu)	f(Xr)	Ea
1	0.5	2.5	2.450	-32.258	0.813032	0.7998	66.6
2	0,5	2.45	2.403	-32.258	0.79987	0.7861	66.1
3			2-3151	-16.1291	0.78612	0.7569	65.5
4	6,5	2.315	2.2337	//	7.50		
5	0,5	۵,33	2.1591		0.7569	0.7256	64-4
6	0,5	2.159	2.0908	"	0,7256	6.6921	63.4
7	0.5	2.090	2.0286		0.6921	0.6569	62.3
3	6.5		1.9719		0.6569	6,6503	62.3
				"	6.6203	0.5825	61.4
7	0.5	1.9719	1.9206	//	ر 3825	0.5441	60,1
2	0.5	1.906	1-874			3 191	٦, ٥٥
	0,2	. 106	879	'1	0.544)	0.5054	28.6
		Xy = 1	.8743))
			<u> </u>				

Question no 4

$$V = \pi h^2 \frac{(3R - h)}{3}$$
 $R = 3m$
 $V = 30m^3$

False position method.

Formula:-

$$\chi_{n+1} = \frac{\chi_{n-1} \cdot f(\chi_n) - \chi_n f(\chi_{n-1})}{f(\chi_n)} - \frac{2}{2}$$
putting values in eq.(1)

$$30 = \pi h^2 (3(3) - h)$$

$$f(h) = \pi h^2 (9 - h) - 90$$

$$x_2 = x_0 \cdot f(x_1) - x_1 \cdot f(x_0)$$

$$f(x_1) - f(x_0)$$

$$h_2 = (0.79.64) - 3(-90)$$

$$79.64 - (-90)$$

$$h_2 = 1.59159$$

$$f(h_2) = -31.0454$$

$$graph 3 = h_1.f(h_2) - h_2.f(h_1)$$

$$h_3 = h_1.f(h_2) - h_2.f(h_1)$$

$$h_3 = (3).(-31.0454) - (1.59159)(79.64)$$

$$h_3 = 1.9866$$

$$f(h_3) = -3.0437$$

$$f(h_3) = -3.0437$$

$$f(h_3) - f(h_2)$$

$$h_4 = h_2.f(h_3) - h_3.f(h_2)$$

$$h_4 = (1.59159)(-3.0437) - 1.9866(-31.045)$$

$$h_4 = 2.02953$$

$$f(h_4) = 0.19977$$

$$3 \text{ iteration}$$

$$f(h_4) = 0.19977$$

Juestion « 05

Newton Raphson to find a.

Answer

solving both above equations

Question * 06

use data to find following,

1- jam density

2- speed at max. flow

3 - density at max. flow

4 - capacity

5 - Y2 o

us = c lnki,

Expanding above eq.

us = c[lnkj-lnk]

Us = -clrk+clnkj

let Us=Y and lnk=X

-c=m c lnkj=c

we get Y=mX+C

plotting given data we get

$$Y = -30.001x + 149.93$$

Comparing it to greenberg's Model
 $Y = Us$, $clnkj = 149.93$

$$m = -30.001 = -0$$

we get

$$C = 30.001$$

 $Clikj = 149.93$
 $Kj = 148.04$ — For part 1

Flow & Q=Ku

=
$$kc \ln kj$$

For max. flow, $\frac{ds}{dk} = 0$

$$\frac{d}{dk} \left(\frac{k c \ln k j}{k} \right) = 0$$

$$\frac{d}{dk} \left(\frac{k c \ln k j}{k} - \frac{k c \ln k}{k} \right) = 0$$

$$C \ln kj - c \ln k - c = 0$$

$$c \ln kj/k = c$$

$$kj/k = e$$

$$kj/e = k$$

Ki=148.04 Vpm : Ko = 148.04 = 54.46 put this back in greenberg's model Vo = clnKj/v V = 30.001mph Capacity (Omax) = marflow = Uo Ko

 $= 30.001 \times 54.46$ = 1633.88 Vph