Multilingual Knowledge Graph Bias Analysis

Saurav Chennuri

Department of Computer Science Boston University Boston, MA 02215 saurav07@bu.edu

Zilu Tang

Department of Computer Science Boston University Boston, MA 02215 zilutang@bu.edu

Abstract

Different cultures exhibit different social biases such as gender inequality. With increasing popularity of multi-lingual knowledge graphs (KG), we are interested in investigating the existence of such differences in biases through analyzing their corresponding KG embeddings. By using the latest graph embedding methods, we attempt to identify the differences in biases in KGs in different languages. Our implementation can be found at ¹

1 Introduction

In recent years, large KGs such as DBpedia ², FreeBase ³, and ConceptNet ⁴ has attracted increasing interest by the natural language processing (NLP) community. With efforts to improve multilingual knowledge bases, these projects are providing more coverage to culture-specific entities, and improving general concept coverage in low resource languages.

Knowledge bases, however, just like any language models, are prone to inherit social biases from their data sources [Fisher et al., 2019, Blodgett et al., 2020]. If left untreated, such biases will propagated to KG embeddings, which is wildly used in downstream NLP tasks. An interesting question arises as to whether such biases exist uniformly across different KGs in different languages. Since social biases (one example being gender equality) are known to differ between cultures [Group, 2019], one would expect such differences be encoded in the knowledge graphs which represent its "culture".

Recently Vrandecic [2020] proposed an architecture overview for multilingual Wikipedia and how high language resource Wikipedia pages and their low resource counterparts can compensate each other in covering missing knowledge and resolving conflicting topics. Topics such as bias detection and mitigation that we are interested in this paper can be seen as a special case of conflict resolution, where different KGs differ in their biases towards certain topics.

In this project we would like to investigate social biases that exist in different language KGs through hyperbolic embedding methods. Specifically we will implement multi-relational poincaré embedding (MuRP) as well as its euclidean counterpart multi-relational euclidean embedding (MuRE) [Balazevic et al., 2019] and use it as a probing model to investigate bias following the metric defined by Fisher et al. [2019]. More specifically, we would like to investigate the following ideas:

- 1. How does hyperbolic space change how bias is encoded in the embedding space compared to euclidean space? Does it mitigate or emphasize bias?
- 2. How are social biases encoded differently in different language knowledge graphs?

¹https://github.com/PootieT/multilingual-knowledge-graph-bias

²https://dbpedia.org

³https://developers.google.com/freebase

⁴https://conceptnet.io/

2 Methods

To understand the advantage of multi-relational embedding, we will need to implement both MuRP and MuRE [Balazevic et al., 2019]. We will also need to implement the bias detection methods in KG introduced by Fisher et al. [2019]. Below sections introduces each ideas in detail.

2.1 Multi-relational Poincaré Graph Embedding

Poincaré sphere model of hyperbolic space is one way of representing hyperbolic geometry. Hyperbolic geometry are spaces of constant negative curvature, and they are one form of Riemann manifolds. To understand the poincaré sphere model better, we need to understand about poincaré disk model of hyperbolic space representation. Given this intuition of poincaré disk, we can now move on to understand poincaré sphere which is a 3 dimensional realization of poincaré disk.

In poincaré disk model of hyperbolic space, the embeddings and lines on the hyperbolic space are mapped onto a circular disk in hyperbolic space. On this poincaré disk, the distance between each embedding increases exponentially as we move radially away from the center. This property of poincaré disk is specially useful in providing enough space for embedding heirarchical data that increases exponentially with depth from the root node given a branching factor. So, we use this model of hyperbolic space to embed our data.

There are state of the art models for embedding multi-relational hierarchical data for euclidean spaces and most of them use dot-product as a scoring measure. But there is no clear correspondence to the Euclidean inner product in the hyperbolic space. The Euclidean inner product can be expressed as a function of Euclidean distance and norms as shown in equation 1, i.e.

$$\langle x, y \rangle = \frac{1}{2} \left(-d_E(x, y)^2 + ||x||^2 + ||y||^2 \right) \tag{1}$$

where x,y are relation adjusted embeddings depending on the geometric space where we are embedding our data.

For poincaré embeddings, the inner product estimation and the relation adjusted embeddings are shown as below

$$\langle x, y \rangle = \frac{1}{2} \left(-d_E(h_s^{(r)}, h_o^{(r)})^2 + ||x||^2 + ||y||^2 \right)$$
 (2)

and the poincaré score for relation adjusted embedding for poincaré space as shown as below in equation 3,

$$\langle h_s^r, h_s^r \rangle = \frac{1}{2} \Big(-d_B(exp_0^c(Rlog_0^c(h_s)), h_o \oplus_c r_h)^2 + b_s + b_o \Big)$$
 (3)

 b_s and b_o are bias terms for the tail and head entities. d_E and d_B are distance metrics for euclidean and poincaré spaces as in equations 4 and 5

$$d_E(x,y) = ||x - y|| \tag{4}$$

$$d_B(x,y) = \frac{2}{\sqrt{c}} \tanh^{-1}(\sqrt{c}\| - x \oplus_c y\|)$$
 (5)

Using this inner product definition in equation 3 as a scoring metric in our poincaré sphere model of hyperbolic space, we embed the entities in our knowledge graph.

2.1.1 Visualizing poincaré disk and sphere model

A poincaré disk can be visualized as a circular 2-dimensional disk but in hyperbolic space. The curves and points on the negative curved hyperbolic surface can be mapped to a circular disk and visualized on the disk. It gives an appearance of operating on a disk, but in actuality, we are operating in the hyperbolic geometric space. For visualization, please look at figures 1 and 2

Figure 1: poincaré disk model of hyperbolic space representation. It can be considered as a 2-dimensional interpretation of poincaré sphere

Figure 2: Heirarchical data representation in poincaré disk model

2.1.2 Exponential and logarithmic maps

Before we find the poincaré scores, we needed to adjust the hyperbolic entities along with the relations.

We rotate the subject entity in the poincaré sphere and translate the object entity along the direction of relation via möbius addition

To map the lines and embedding of entities onto the poincaré sphere, we map the hyperbolic entity onto the tangent of the poincaré sphere at $\bf 0$ by logarithmic map, and then align that mapped entity on the tangent along the direction of the relation by multiplying it with a diagonal matrix $\bf M$. After aligning the entity along the relation on the tangent plane, we map it back to the poincaré sphere with exponential map.

This way, we map the hyperbolic subject entities onto the poincaré sphere adjusted to the relation the exponential and logarithmic maps are defined as follows

$$exp_x^c(v) = x \oplus_c \left(tanh\left(\sqrt{c} \frac{\lambda_x^c ||v||}{2}\right) \frac{v}{\sqrt{c}||v||} \right)$$
 (6)

$$log_x^c(y) = \frac{2}{\sqrt{c}\lambda_x^c} tanh^{-1}(\sqrt{c}\| - x \oplus_c y\|) \frac{-x \oplus_c y}{\| - x \oplus_c y\|}$$

$$\tag{7}$$

$$x \oplus_{c} y = \frac{(1 + 2c\langle \mathbf{x}, \mathbf{y} \rangle + c\|y\|^{2})\mathbf{x} + (1 - c\|x\|^{2})y)}{1 + 2c\langle \mathbf{x}, \mathbf{y} \rangle + c^{2}\|x\|^{2}\|y\|^{2}}$$
(8)

The equations for exponential map, logarithmic map and möbius addition are given in the equations 6, 7 and 8. To better understand visually how these exponential and logarithmic maps work and how we adjust the subject entity according to the relation, please refer to figure 3, figure 4 and figure 5.

2.1.3 Riemann Optimization

Since the hyperbolic space we are trying to embed the entities in and train the embeddings, the gradient propagation would also be in the same space. There is an analogy for stochastic gradient descent in hyperbolic space namely "Reimann Stochastic gradient descent"

Since the hyperbolic space are one kind of Riemann manifolds, we use this Riemann optimization method to pass the gradients and train the embeddings. To calculate the gradients in hyperbolic space, we calculate the euclidean gradient $\nabla_E L$ and multiply it with inverse of Poincaré metric tensor, i.e. $\nabla_R = 1/(\lambda_\theta^c)^2 \nabla_E L$. We now use the exponential map exp_θ^c to project this gradient onto the Poincaré space $\nabla_R L \in T_\theta B_c^d$ and compute the Riemann update $\theta \leftarrow exp_\theta^c(-\eta \nabla_R L)$

Figure 3: Representation of a vector in hyperbolic space

Figure 4: Logarithmic map maps the vector in hyperbolic space to the tangent of the poincaré sphere. Here we map it to a tangent at **0**

Figure 5: exponential map maps the vector on the tangent to the poincaré sphere into the poincaré space

2.1.4 Loss function and training the embeddings

The network is implemented in Pytorch. We initialize the input embeddings uniformly at random and pass them through activation functions and operate on them to get the poincaré score output. Ideally if there exists a link between a subject and object entities the score is 1, and if there is no relation, the score is to be zero. Treating this as a binary classification, the Binary Cross Entropy loss function is applied to the outputs of the network which gives the poincaré score

The loss function is given by the equation 9

$$\mathbf{L}(y,p) = -\frac{1}{N} \sum_{i=1}^{N} (y^{(i)} log(p^{(i)}) + (1 - y^{(i)}) log(1 - p^{(i)}))$$
(9)

2.2 Graph Embedding Bias Method

Bias in KG, defined by Fisher et al. [2019] is an unequal probability assigned by a knowledge graph embedding model on a relation, given different values of a sensitive attribute. In our work, we followed previous paper, and focused on investigating the bias in predicting a person's likely profession given different gender of a person (female and male only in our case).

Specifically, the bias is measured with the following approach: for each person entity in the KG, we perturb the embedding to make it more male or female. We then use the model to predict such person's score for having each profession in the KG before and after such perterbation, and use the difference of the score as the bias score for every profession. We repeat such process over all individuals (in large KG we approximate with a subsample of individules), and average the bias score for each profession and report them in a ranked table.

Mathematically, the update of the embedding is defined as:

$$\mathbf{m}(\theta) = \mathbf{g}(e_j, r_{gender}, e_{male}) - \mathbf{g}(e_j, r_{gender}, e_{female})$$
(10)

$$e_j' = e_j + \alpha \frac{\delta \mathbf{m}(\theta)}{\delta e_j} \tag{11}$$

where e_j is the entity embedding of the person j. During implementation, we experimented with various way of achieving such result. One way of updating the embedding is providing a pair(s) of triples in a batch $\{e_j, r_{gender}, e_{male}\}$ and $\{e_j, r_{gender}, e_{female}\}$ while assigning the label as 1 and

0 (for biasing towards male, for female, use 0 and 1). Another way, which we found to produce better results, qualitatively, is by providing the previously mentioned triple one by one both with label 1, obtain the gradient with respect to e_j , subtract male gradient from female gradient, and update the embedding. During embedding update, for Poincaré, we used Reimannian SGD to the proper scaling factor. After obtaining the score for each person entity, we reload the model weights from checkpoints to ensure the updates to weights do not accumulate across person.

3 Datasets

To validate that our graph embedding methods and bias detection methods work, we tested our dataset on FB15K-237[Bordes et al., 2013]. FB15K contains relation triples from Freebase, a large tuple database with structured general human knowledge. It is originally used by Balazevic et al. [2019] as a benchmark for performance comparison with other embedding models.

To train KG embedding on different language KGs, we used different DBpedia KGs that are maintained by a chapter of that specific language. ⁵ Specifically we picked English (en), Swedish (sv), and Indonesian (in). Scandanavian cultures are known to have more gender equality. Amongst the languages spoken in Scandanavian countires (Swedish, Norwegian, Finnish, Icelandic), Swedish DBpedia contains the most triples. For similar reasons, we picked Indonesian, out of several other languages spoken in countries with more orthodox social practices (Arabic, Urdo, Hindi)

For all DBpedia datasets, we preproceesd them with the following steps:

- 1. We first found all variations of the gender entities in a KG and merged different expressions of male and female into either male or female entity. This included converting some surface forms into proper DBpedia entities. For list of all conversions, see data_exploration.py script in the repo. Because there are limited amount of gender triples, we found this necessary in tuning the gender relation to be contextually meaningful.
- 2. We then extracted all gender related triples and profession related triples (where the relation of the triple is "<a href="http://dbpedia.org/resource/gender" or "http://dbpedia.org/resource/occupation" (or equivalents in Indonesian and Swedish) and set them aside.
- 3. We removed any triples with tails that are not a DBpedia resource (mainly text surface form "The Whale"@en and literals like "6"|http://www.w3.org/2001/XMLSchemainteger>)
- 4. Because English and Swedish KGs are too big, we filtered them down to a manageable size such that the network can be trained on 10GB GPU. We sampled 10% and 20% of the English and Swedish left-over triples respectively. For Indonesian KG, we did not sub-sample after filtering away literals because the number of entities are at a manageable size.
- 5. We appended back the gender and profession triples. This way we can keep all gender and profession triples, so all profession and gender entities can more or less keep the original KG's context.
- 6. We split up all triples into 90/5/5 train, test, dev partitions.

While preprossessing DBpedia data, we found a significant flaw with most of the DBpedia data: most of the people in the KG does not have a gender recorded. Hence in the result table, the sum of the count of female instances of any profession plus the male instance do not add up to the count of the profession in the dataset. We believe this can be addressed in the future by predicting the missing link first and then calculate the bias score. With this fact in mind, it does make one wonder where does the KG learn the concept gender from. We originally abandoned using DBPedia and tried using Wikidata5M [Wang et al., 2019] as an alternative dataset, but sadly found out that it suffers from similar issue, so we went back to DBPedia.

Below is a table documenting the statistics of the filtered datasets:

During model training, we used the following parameter for each datasets we have found:

⁵https://docs.google.com/document/d/e/2PACX-1vR7oRoMOkzP5eSLf2vzFPYzJY2BTP-YXdmpmOcczli4GWRZDKq85Ps-DPwbcRJ_xx_UVm4LbargUIay/pub

Language	unique heads	unique relations	unique tails	Unique Entities
FB15K-237	13891	237	13504	14541
English	1540430	7486	729861	2029663
Indonesian	340865	6105	412689	667714
Swedish	1578190	2624	192799	1700652

Table 1: Entity and Relation Counts

Language	train triples	dev triples	test triples
FB15K-237	272115	17535	20466
English	2243938	124664	124663
Indonesian	1923392	106855	106856
Swedish	2402704	133484	133484

Table 2: Train Validation Test Split Counts

For embedding size we used 40 across all models. For batch size, we fixed it to be as large as we can to speed up the experiment process. In most cases, that is 8192. We begin with a negative sampling size of 50 with learning rate of 50. We found with larger entity size more a larger negative sampling size is necessary to obtain a good evaluation accuracy. For larger datasets (DBpedia KGs), we maximizes this to the largest value that GPU permits, and adjust the learning rate inversely with respect to the batch size. Due to time constraints, all DBpedia models are run for 20 epochs, with two evaluations, one at epoch 10 and epoch 20. During each evaluation, we randomly sample a portion of the evaluation set and report the evaluation metrics (such that an evaluation run takes about 5 minutes). For FB15K-237, we ran until the evaluation performance increase become insignificant. Notice, we did not perform extensive hyperparmeter tuning as we are not after the accuracy game. We are more generally interested in the qualitative aspect of our embedding. In general due to more extensive computations performed by Poincaré models, the extra memory requirement during gradient calculation forces us to use a smaller batch size (and hence smaller learning rate as well).

Below is a table of standard link prediction evaluation metrics obtained after training the different models. Hit-k calculates the accuracy of predicting the correct tail within the top-K predictions. Mean rank is the average rank of the correct tail within the final prediction. Mean reciprocal rank shows the average of inverse of the rank of the correct tail in prediction. We included the results from paper as well for a base comparison. We think the reason the author were able to obtain higher accuracy is because they trained for many more epochs with smaller batch size, which we did not have the time for.

As seen from the result, given similar computational resource, within DBpedia KGs, the more relations in a KG, the lower the performance. Swedish link performance results exceeds the other with much less relations and relatively large amount of entities.

4 Experiments

We trained MuRP and MuRE on all of the datasets. For each of the dataset, we calculated bias for each of the occupations across all human entities. We display the top male or female biased occupations given the bias score. For KG with larger sets of human entities, we calculate over a subset of them. For English KG, we selected only those professions with more than 10 occurances in the training. We also filtered the people to only those who have more than 5 triples about them. This ensures we have a good quality set of individuals and profession to evaluate over with.

Here are some basic statistics on the dataset:

Language	Model	Negative Samples	Batch Size	Learning Rate
FB15K-237	Euclidean	50	8192	50
FB15K-237	Poincaré	50	8192	50
English	Euclidean	200	4096	100
English	Poincaré	200	2048	100
Indonesian	Euclidean	200	8192	200
Indonesian	Poincaré	200	4096	100
Swedish	Euclidean	200	8192	200
Swedish	Poincaré	200	4096	100

Table 3: Model Training Hyperparameters

Language	Model	Hit-1	Hit-3	Hit-10	Mean Reciprocal Rank	Mean Rank
FB15K-237 (Paper)	Euclidean	.227	.346	.493	.315	
FB15K-237 (Paper)	Poincaré	.235	.356	.506	.324	
FB15K-237	Euclidean	.176	.266	.405	.251	266
FB15K-237	Poincaré	.172	.262	.399	.247	320
English	Euclidean	.050	.095	.164	.087	319569
English	Poincaré	.034	.079	.143	.071	336469
Indonesian	Euclidean	.197	.301	.382	.262	62839
Indonesian	Poincaré	.220	.308	.386	.278	64915
Swedish	Euclidean	.339	.463	.577	.421	44408
Swedish	Poincaré	.343	.477	.612	.434	70272

Table 4: Link Prediction Performance

5 Results

For readability sake, we only included four tables in the main results section: MuRP and MuRP results on FB15K-237, top male and female biased professions. For results in DBpedia, please refer to the Appendix. Discussions will focus on all of the results (including those in the appendix).

6 Discussion

6.1 Poincaré bias vs. Euclidean bias

We tried to investigate and compare the biases in both the Euclidean and Poincaré spaces. From our observations on FB15K, English-dbpedia, Indonesian-dbpedia, swedish-dbpedia datasets, we observed that the biases in Euclidean space made more sense than those in poincaré especially in the kinds of language data where the information regarding the number of males and females is not available at large. We knew that poincaré space is better in terms of embedding heirarchical datasets, in comparison to euclidean, but one interesting point to investigate would be how both of these embeddings encode the semantic information that actually exist in real world.

6.2 Cross-cultural comparison

Give or take with the quality of our embedding, we can see there are a few unique example professions that stood out in the top male/female biased professions in each of the three KGs. In Indonesia, one of the top male biased profession Caliph (the chief Muslim civil and religious ruler) and Bishop. In addition to religous positions, many included government positions (Member of Pariament, Police, Regent, Parliamentarian, Supreme court, governor, Empress) as well as art and entertainment industry (Actress, Actor, Commedian, Dancer, Songwriter, Screenwriter, Musician, film producer, etc). Top female biased professions in Indonesia include beauty contest, and surprisingly a lot of tech companies (Google, Samsung, Youtube).

As for Swedish results, for top male biased professions, we have mostly jobs in art and entertainment industry (songwriter, singer, musician, rapper, piano, actor) as well as a few leadership positions

dataset	humans	human subsample fraction	professions	gender triples
FB15K-237	4532	1.0	149	6093
English (unfiltered)	67801		7624	6093
English	1075	1.0	813	6093
Indonesian	13894	0.1	1760	757
Swedish	2063	1.0	460	1639

Table 5: Train Validation Test Split Counts

Rank	Scores	Profession	C_{total}	C_{male}	C_{female}
0	-4.834e-05	Association football player	48	36	1
1	-5.46e-05	Director of photography	77	65	0
2	-7.163e-05	Voice Actor	347	227	67
3	-7.212e-05	Cartoonist	37	31	0
4	-7.491e-05	Film Directors	609	459	42
5	-8.377e-05	screen-writer	872	666	71
6	-8.457e-05	Playwright	107	82	5
7	-8.53e-05	Comedy performer	282	201	45
8	-8.532e-05	Politician	99	68	7
9	-8.577e-05	television director	237	183	20
10	-8.682e-05	Writter	441	315	38
11	-8.785e-05	music theater	8	2	0
12	-8.96e-05	engineering (skill)	54	0	0
13	-9.008e-05	hollywood producer	864	634	80
14	-9.154e-05	Auther	291	187	53
15	-9.358e-05	Political Sciences	125	1	0
16	-9.504e-05	Seiyû	28	13	10
17	-9.762e-05	orchestra conductors	68	51	0
18	-9.953e-05	Playback singing	17	10	5
19	-0.00010134	Series Producer	576	393	79
20	-0.00010158	Television actor	2271	1329	545

Table 6: Poincaré Embedding 40, FB15K-237, Male Biased top 20 professions

(mayor, lieutenant general, general). Cross-country skiing also appeared as one of the top. For top female biased positions, we saw many law, and government related positions such as (journalist, Politician, Military, lawyer, baron, knight, diplomat, Official), as well as other STEM professions like (doctors, enigneer). Qualitatively, Swedish DBpedia results are the most consistent, and it could be due to the good link prediction results.

Lastly, for English results, the top male biased results include fields such as sports (football association, sport coach, American football official, national football league), to entertainment industry (actor, jockey, rapper, songwriter, TV producer, cinematographer reality TV). Top female results include military positions (Army, US air force), entertainment (Actress, composer, record producer, musician, novelist, voice acting in Japan) to communication/appearance focused professions such as beauty pageant, advertising, publishing, and modeling.

In general, the results are very noisy. One could say the results do indicate that women hold more leadership positions in Swedish society, and that men control more of religious and government positions. However, without clear interpretation of where the source of such bias comes from, it is hard to make a clear conclusion.

6.3 Influence from count statistics

In almost all graphs, the is a clear pattern that the top male and female biased professions have higher C_{total} than the others. If we look at the whole table, the occurrence decreases and then increases at the bottom ranks. Assuming our bias calculation implementation is correct (no way of verifying because [Fisher et al., 2019] have not open-sourced their code), this metric seems to be influenced a

Rank	Scores	Profession	C_{total}	C_{male}	C_{female}
0	-8.111e-05	Seiyû	28	13	10
1	-8.926e-05	orchestra conductors	68	51	0
2	-9.32e-05	timothy thompson (composer)	272	211	11
3	-9.408e-05	Playback singing	17	10	5
4	-0.00010226	Film Directors	609	459	42
5	-0.00010465	Painoist	53	37	4
6	-0.00010539	Songwriting	380	242	65
7	-0.0001059	guitarrist	157	115	15
8	-0.00010746	lyricists	82	63	7
9	-0.00010754	music production (music industry)	291	206	35
10	-0.00010788	keyboarder	65	48	5
11	-0.00011099	Director of photography	77	65	0
12	-0.00011149	Singer songwriter	286	163	70
13	-0.00011264	Contrabassist	30	23	2
14	-0.00011291	music career	585	418	61
15	-0.00011354	Concert organist	23	16	0
16	-0.00011454	Sister newspaper	4	1	0
17	-0.00011514	Drummers	30	23	0
18	-0.00011521	Multiinstrumentalist	28	19	4
19	-0.00011549	Political Sciences	125	1	0
20	-0.00011555	playwright	107	82	5

Table 7: Euclidean Embedding 40, FB15K-237, Male Biased top 20 professions

Rank	Scores	Profession	C_{total}	C_{male}	C_{female}
0	0.00049628	makeup artist	807	2	0
1	0.00049535	special effects coordinator	668	2	0
2	0.00049266	Sound editor (filmmaking)	321	1	0
3	0.00045964	storyboard artist	106	2	0
4	0.0004478	communication designer	101	2	0
5	0.00044708	hairdresser	68	2	0
6	0.00043116	Digital director	175	4	0
7	0.00039009	animation direction	34	2	0
8	0.00034352	Black and white artist	26	6	0
9	0.00033142	Not Found	96	16	1
10	0.00031555	animated film director	114	26	0
11	0.00028239	choreographic technique	6	1	0
12	0.00024113	Impresario	1	1	0
13	0.0002403	Head basketball coach	1	1	0
14	0.00023955	geologists	1	1	0
15	0.00023926	socialite	1	0	1
16	0.00023715	Biologist	1	1	0
17	0.00023708	backup vocal	19	3	0
18	0.00023619	event promotion	1	0	0
19	0.00023386	oncological biochemist	1	1	0
20	0.00023314	Motivational speaking	1	1	0

Table 8: Poincaré Embedding 40, FB15K-237, Female Biased top 20 professions

lot by simple count statistics. Perhaps with more count, a profession entity is more likely connected with gender somehow, hence be influenced by the gender triple more during perturbation. On the other hand, the pattern is not full-proof. There are instances of professions with high count but is ranked lower and professions with low counts ranked higher. We hypothesize that these are the professions which contain "proportionally" more bias. For example, in ??, "animated film director" has 114 counts while four of the higher ranked professions ("hairdresser", "animation direction",

Rank	Scores	Profession	C_{total}	C_{male}	C_{female}
0	0.00016167	makeup artist	807	2	0
1	0.00016148	special effects coordinator	668	2	0
2	0.00016107	Sound editor (filmmaking)	321	1	0
3	0.00015546	Hairdresser	68	2	0
4	0.00015535	storyboard artist	106	2	0
5	0.00015376	communication designer	101	2	0
6	0.00015147	Digital director	175	4	0
7	0.00014739	animation direction	34	2	0
8	0.00014349	Not Found	96	16	1
9	0.00014293	Black and white artist	26	6	0
10	0.00014178	animated film director	114	26	0
11	0.00013777	female model	150	32	90
12	0.00013702	stunt person	11	6	0
13	0.00013384	choreographic technique	6	1	0
14	0.0001313	socialite	1	0	1
15	0.00013099	designer	20	5	5
16	0.00013056	event promotion	1	0	0
17	0.0001305	Head basketball coach	1	1	0
18	0.00013036	super-models	4	0	4
19	0.00013035	geologists	1	1	0
20	0.00013005	Biologist	1	1	0

Table 9: Euclidean Embedding 40, FB15K-237, Female Biased top 20 professions

"Black and white artist", "Not Found") have lower count than its count. With a simple google search, it's not hard to infer that "animated film director" is a male-dominated field.

Table 10: Result of searching "animated film director" in Google

6.4 Challenges with missing gender triples

In all of the graphs, we noticed significant amount of gender triples missing. Proportionally, FB15K-237 had the most gender triples and we were actually able to see them in the tables. However, there appears to be a lot of erroneous links as well. For instance there are 32 "female models" that are of gender "male" in Table 9. Given missing information, it is hard to tell what are the sources of triples which influenced the entity embeddings. An interesting future direction is to use techniques like influence function Han et al. [2020] to provide more interpretability to node embeddings. On the other hand, it would be worth to investigate what properties in the knowledge graph led to such embedding. If a profession is biased towards male, we can calculate the min-cut, shortest path, number of paths of length K, etc between male and the profession entity on the graph where we treat all relations as edges. Given different relations, we can also try to calculate paths between the two nodes by allowing only subset of relations as possible edges.

6.5 Challenges with Subsampling KG

One of the main challenge when training a KG embedding is the size of the KG. Given limited hardware 10G GPU memory, the maximum entity size is around 2.4 M nodes with node embedding dimension 40. Due to such constraint, we needed to subsample the larger KG graphs. During the

process of sampling, we also want to keep the "structure" of the graph relatively intact. We want to maximize the number of triples per relation or entity, to avoid infrequent entities or relations not yielding good embedding due to lack of training data. We also want to maintain somewhat of a diverse set of relations so embeddings of entities benefit from various types of relations as well as connected neighbors. There are a few ways we thought of sampling but all have their downsides:

- Pick top few most frequent relations or entities. This way we maximize the "quality" of the top few entities / relations' embedding. Unfortunately, we found most of these entities / relations follow the power distribution with long tail. If we want 10% of the original data, we might only get one entity left in the training data.
- Perform weighted sampling given the count of entity / relation occurrence or sum of tail and head occurrence in dataset. This is more or less a better balance between two objectives, and we can tune the preference by using log of count or exponentiating the count to a certain power.
- Randomly sample triples in KG. This is the method we ended up with. However, more questions came up while we were thinking in this direction: what is the best trade-off when maintaining the "quality" of a KG by subsampling relations and entities? How important is entity diversity? How important do the few most frequent entities and relations play in defining the "landscape" of the knowledge graph?

6.6 Future Directions

The following mentioned ideas could be explored by building on our work for future

- Check the bias for other sensitive attributes like "Race", "community", "Ethnicity", "Religion", with other factors like "occupation" etc.
- Biases difference between Poincaré and euclidean model (in hierarchical relationship specifically). One interesting future direction is to investigate in KGs with more hierarchies, and look for relations that are hierarchical in nature. If Poincare represents hierarchical graph better, does it mean it encode the "bias" better as well?
- Identify source of bias given graph properties. We could possible apply the following methods like Shortest path, paths, Min-cut between sensitive attributes and other properties in pursuit of finding the source of bias
- How to sparsify KG graph so it maintain the hierarchical structure well enough for link prediction
- Bias mitigation on top of knowledge graph embeddings

References

- I. Balazevic, C. Allen, and T. Hospedales. Multi-relational poincaré graph embeddings. *Advances in Neural Information Processing Systems*, 32:4463–4473, 2019.
- S. L. Blodgett, S. Barocas, H. Daumé III, and H. Wallach. Language (technology) is power: A critical survey of bias in nlp. *arXiv preprint arXiv:2005.14050*, 2020.
- A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko. Translating embeddings for modeling multi-relational data. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors, *Advances in Neural Information Processing Systems*, volume 26. Curran Associates, Inc., 2013. URL https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf.
- J. Fisher, D. Palfrey, C. Christodoulopoulos, and A. Mittal. Measuring social bias in knowledge graph embeddings. arXiv preprint arXiv:1912.02761, 2019.
- W. B. Group. Women, business and the law 2019: A decade of reform. World Bank, 2019.
- X. Han, B. C. Wallace, and Y. Tsvetkov. Explaining black box predictions and unveiling data artifacts through influence functions. *arXiv* preprint arXiv:2005.06676, 2020.

- D. Vrandecic. Architecture for a multilingual wikipedia. 2020.
- X. Wang, T. Gao, Z. Zhu, Z. Liu, J. Li, and J. Tang. Kepler: A unified model for knowledge embedding and pre-trained language representation. *arXiv preprint arXiv:1911.06136*, 2019.

A Appendix

A.1 Indonesia DBpedia Results

Rank	Profession	Scores	C_{total}	C_{male}	C_{female}
0	Empress	0.0020534	84	0	0
1	Caliph	0.00191078	75	0	0
2	Mother_Country_United States_United States	0.00168522	88	0	0
3	Bishop	0.00167088	91	0	0
4	Novel	0.00140156	147	0	0
5	Member_Parliament_Europe	0.00115505	42	0	0
6	Rock_and_roll	0.00114182	138	0	0
7	Wife_Vice_President_United States_United States	0.00100457	38	0	0
8	Police_State_Republic_Indonesia	0.00097306	251	0	0
9	Classic_music	0.00096806	94	0	0
10	Regent	0.00096412	418	0	0
11	Dangdut	0.00095131	295	0	0
12	Rap	0.00083163	95	0	0
13	Rock	0.00078534	551	0	0
14	Jazz	0.00071153	586	0	0
15	Parliamentarian	0.0006188	125	0	0
16	entertainment	0.00053724	107	0	0
17	Internet	0.00045979	73	0	0
18	Pharmacy	0.00036151	50	0	0
19	Supreme Court_Republic_Indonesia	0.00018654	69	0	0
20	governor	0.00011319	92	0	0

Table 11: Poincaré Embedding 40, Indonesian DBpedia, Male Biased top 20 professions

A.2 Swedish DBpedia Results

A.3 English DBpedia Results

Rank	Profession	Scores	C_{total}	C_{male}	C_{female}
0	Trans_Media	0.00479248	67	0	0
1	Cosmonaut	0.00449267	63	0	0
2	Book	0.00428434	66	0	0
3	Song	0.00424034	54	0	0
4	Fighter	0.00412852	32	0	0
5	Organization_nonprofit	0.00412557	38	0	0
6	Beauty contest	0.00412078	105	0	0
7	vice-regent	0.00382302	205	0	0
8	Army	0.00358525	31	0	0
9	Era_Commander_War	0.00356383	12	0	0
10	Google	0.00355191	108	0	0
11	Private	0.0034907	108	0	0
12	Marines	0.00338265	13	0	0
13	Doctor	0.00337311	178	0	0
14	Schutzstaffel	0.00335675	9	0	0
15	Bachelor of Law	0.00326354	79	0	0
16	NGO	0.00322126	7	0	0
17	Samsung	0.00321324	26	0	0
18	MD_Entertainment	0.00321127	305	0	0
19	Referee_(soccer_soccer)	0.00320898	66	0	0
20	TNI	0.00320402	193	0	0

Table 12: Poincaré Embedding 40, Indonesian DBpedia, Female Biased top 20 professions

Rank	Profession	Scores	C_{total}	C_{male}	C_{female}
0	Regent	6.026e-05	418	0	0
1	Mother_Country_United States_United States	3.57e-05	88	0	0
2	Empress	9.79e-06	84	0	0
3	Model	-3.345e-05	713	0	0
4	Actress	-4.842e-05	2281	0	0
5	Model_(Job)	-5.487e-05	401	0	0
6	Master of Ceremony	-5.858e-05	363	0	0
7	Producer	-6.809e-05	256	0	0
8	Cast	-7.049e-05	654	4	1
9	Presenter	-7.734e-05	284	0	0
10	Comedian	-8.469e-05	194	0	0
11	Caliph	-8.683e-05	75	0	0
12	Actor	-8.89e-05	2364	0	5
13	Dancer	-9.023e-05	294	1	0
14	Songwriter	-9.123e-05	374	0	0
15	Screenwriter	-9.646e-05	222	0	0
16	Singer	-9.681e-05	2675	5	2
17	musician	-0.00010193	359	0	0
18	Producer_film	-0.00010885	157	0	1
19	Vocals	-0.00011022	870	1	1
20	Businessman	-0.00011273	459	0	0

Table 13: Euclidean Embedding 40, Indonesian DBpedia, Male Biased top 20 professions

Rank	Profession	Scores	C_{total}	C_{male}	C_{female}
0	Cosmonaut	0.00132466	63	0	0
1	Beauty contest	0.00128166	105	0	0
2	Song	0.00122522	54	0	0
3	Trans_Media	0.0012137	67	0	0
4	Referee_(soccer_soccer)	0.00113927	66	0	0
5Fighter	0.00112451	32	0	0	
6	Organization_nonprofit	0.00110462	38	0	0
7	YouTube	0.00105859	67	0	0
8	Private	0.00105121	108	0	0
9	Antv	0.00104173	82	0	0
10	EMI	0.00103991	154	0	0
11	MD_Entertainment	0.00101431	305	0	0
12	Army	0.00101251	31	0	0
13	South Kalimantan	0.0009661	194	0	0
14	Google	0.0008913	108	0	0
15	Book	0.00084801	66	0	0
16	Television	0.00084777	105	1	0
17	Catholic_Roman	0.00084057	1997	3	1
18	Samsung	0.0008253	26	0	0
19	Indonesia	0.00080967	13117	3	0
20	Islam	0.0008077	6198	7	4

Table 14: Euclidean Embedding 40, Indonesian DBpedia, Female Biased top 20 professions

Rank	Profession	Scores	C_{total}
0	Songwriter	0.00183121	482
1	Singer	0.00162604	525
2	Musician	0.00162394	429
3	Mayor	0.00156511	293
4	Astronomy	0.00075089	70
5	Composer	0.00059657	70
6	Actor	0.00058228	266
7	Singer	0.00056863	45
8	Singer-songwriter	0.00054025	44
9	Piano	0.00049689	213
10	Painting art	0.00041926	40
11	Dancer	0.0003884	41
12	Rapper	0.00037003	19
13	Law degree	0.00034568	11
14	Conductor	0.00033878	21
15	Los_Angeles_Kings	0.00033103	60
16	songwriter	0.00032011	13
17	Youth literature	0.00031553	27
18	Sculptor	0.00031297	21
19	Cross-country skiing	0.00030766	52
20	Lieutenant general	0.00030088	42

Table 15: Euclidean Embedding 40, Swedish DBpedia, Male Biased top 20 professions

Rank	Profession	Scores	C_{total}	C_{female}
0	Stockholm	0.00017633	1187	0
1	Journalist	9.765e-05	530	1
2	Politician	6.57e-05	363	0
3	Author	5.316e-05	1827	0
4	Military	4.739e-05	280	0
5	Lawyer	4.649e-05	285	1
6	Lawyer	2.244e-05	267	0
7	Translator	1.397e-05	216	0
8	Swedish Church	-1.115e-05	640	0
9	Travkusk	-2.897e-05	159	0
10	Trotting	-3.367e-05	143	0
11	Poet	-5.974e-05	184	0
12	Businessman	-7.509e-05	119	0
13	Diplomat	-8.103e-05	106	0
14	Scriptwriter	-9.757e-05	94	0
15	Teacher	-0.00010664	144	0
16	Doctor	-0.00012358	75	0
17	Playwright	-0.00012988	72	0
18	Series creator	-0.00013092	67	0
19	Engineer	-0.00013653	65	0
20	Official	-0.00014054	66	0

Table 16: Euclidean Embedding 40, Swedish DBpedia, Female Biased top 20 professions

Rank	Profession	Scores	C_{total}
0	Songwriter	0.00482701	482
1	Mayor	0.00445378	293
2	Musician	0.00436379	429
3	Singer	0.00431085	525
4	Astronomy	0.00218133	70
5	Composer	0.0018701	70
6	Singer	0.00179402	45
7	Piano	0.00174245	213
8	Singer-songwriter	0.00162994	44
9	Actor	0.00143001	266
10	Painting art	0.00137375	40
11	Dancer	0.00117425	41
12	Law degree	0.0011027	11
13	Rapper	0.00108797	19
14	Master of Science in Engineering	0.00098262	31
15	Nintendo	0.00098074	80
16	Conductor	0.00097519	21
17	Stockholm	0.00092926	1187
18	Sculptor	0.00090629	21
19	Lieutenant general	0.00090212	42
20	General	0.00088431	36

Table 17: Poincaré Embedding 40, Swedish DBpedia, Male Biased top 20 professions

Rank	Profession	Scores	C_{total}	C_{female}
0	Swedish Church	0.00010978	640	0
1	Journalist	2.423e-05	530	1
2	Author	2.233e-05	1827	0
3	Politician	-6.072e-05	363	0
4	Military	-9.266e-05	280	0
5	Lawyer	-9.622e-05	285	1
6	Trotting	-0.00012097	143	0
7	Lawyer	-0.00014641	267	0
8	Translator	-0.00015073	216	0
9	Baron	-0.0002045	25	0
10	Knight	-0.00020719	23	0
11	Travkusk	-0.0002341	159	0
12	Poet	-0.00029711	184	0
13	Diplomat	-0.00032036	106	0
14	Businessman	-0.00032379	119	0
15	Scriptwriter	-0.00036458	94	0
16	Doctor	-0.00040115	75	0
17	Teacher	-0.00040877	144	0
18	Series creator	-0.0004101	67	0
19	Playwright	-0.00042537	72	0
20	Engineer	-0.00043338	65	0

Table 18: Poincaré Embedding 40, Swedish DBpedia, Female Biased top 20 professions

Rank	Profession	Scores	C_{total}
0	Reality_television	0.00069947	175
1	Classical_music	0.0006744	300
2	Beauty_pageant	0.00065037	66
3	Film_score	0.00062718	96
4	Bishop	0.00057922	106
5	Talk_show	0.00053672	65
6	General	0.00053497	104
7	Poetry	0.00050894	116
8	Hindustani_classical_music	0.00050857	49
9	Documentary_film	0.00050543	55
10	Short_story	0.00050342	73
11	Nonprofit_organization	0.00047156	146
12	Opera	0.00045918	51
13	Sheriff	0.00043167	23
14	Chamber_music	0.00041481	28
15	Literary_criticism	0.00041106	35
16	Association_football	0.00040854	113
17	Pirate	0.00040412	25
18	Doctor_(title)	0.00040279	30
19	Public_house	0.00039895	14
20	Coach_(sport)	0.00039812	28

Table 19: Euclidean Embedding 40, English DBpedia, Male Biased top 20 professions

Rank	Profession	Scores	C_{total}
0	Singing	1.805e-05	1310
1	Film_director	-6.13e-06	3274
2	Actress	-7.73e-06	3043
3	Actor	-8.67e-06	5862
4	Songwriter	-1.122e-05	1765
5	Composer	-1.175e-05	1712
6	Screenwriter	-1.177e-05	2480
7	Record_producer	-1.206e-05	1788
8	Musician	-1.766e-05	1824
9	Author	-1.813e-05	1806
10	Novelist	-1.914e-05	1198
11	Film_producer	-2.19e-05	1580
12	Politician	-2.217e-05	4437
13	Journalist	-2.272e-05	2005
14	Lawyer	-2.555e-05	3563
15	Model_(person)	-2.826e-05	872
16	Poet	-2.927e-05	991
17	Teacher	-3.758e-05	803
18	Television_presenter	-3.847e-05	754
19	Cinematographer	-3.997e-05	669
20	Voice_acting_in_Japan	-4.186e-05	625

Table 20: Euclidean Embedding 40, English DBpedia, Female Biased top 20 professions

Rank	Profession	Scores	C_{total}
0	American_football_official	0.00010667	40
1	National_Football_League	9.837e-05	60
2	Cinematographer	-6.878e-05	669
3	Film_editor	-0.00012494	243
4	General	-0.00012996	104
5	Film_actor	-0.00013622	452
6	Film_director	-0.00014779	3274
7	Television_director	-0.00014978	268
8	Actress	-0.00014995	3043
9	Composer	-0.00014998	1712
10	Actor	-0.00015153	5862
11	Model_(person)	-0.0001528	872
12	Novelist	-0.00016012	1198
13	Conducting	-0.00016111	299
14	Jockey	-0.00016168	510
15	Rapper	-0.0001617	615
16	Game_designer	-0.00016205	214
17	Voice_acting_in_Japan	-0.00016307	625
18	Lyricist	-0.00016672	235
19	Songwriter	-0.00016786	1765
20	Television_producer	-0.00016873	531

Table 21: Poincaré Embedding 40, English DBpedia, Male Biased top 20 professions

Rank	Profession	Scores	C_{total}
0	Member_of_Parliament	0.00086142	337
1	Bishop	0.00083277	106
2	Reality_television	0.00077934	175
3	Film_score	0.00074491	96
4	Talk_show	0.00072417	65
5	Classical_music	0.00071962	300
6	Documentary_film	0.00070873	55
7	United_States_Air_Force	0.00070603	218
8	Hindustani_classical_music	0.00070291	49
9	Short_story	0.00068853	73
10	Beauty_pageant	0.00064871	66
11	Private_equity	0.00063567	32
12	Poetry	0.00062741	116
13	Opera	0.00061221	51
14	Member_of_the_Legislative_Assembly_(India)	0.00059806	271
15	Stand-up_comedy	0.00058327	55
16	Real_estate	0.00058226	61
17	Coach_(sport)	0.00058005	28
18	Publishing	0.00057161	52
19	Advertising	0.00054637	29
20	Army	0.00053263	69

Table 22: Poincaré Embedding 40, English DBpedia, Female Biased top 20 professions