Министерство образования Республики Беларусь

Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Факультет компьютерных систем и сетей Кафедра электронных вычислительных машин Дисциплина: Хранение и управление данными

ОТЧЕТ по лабораторной работе № 3

по теме: «Настройка FC SAN и настройка IP SAN»

Студент: Преподаватель:

1 ЦЕЛЬ И ЗАДАЧИ РАБОТЫ

1.1 Цели и задачи настройки FC SAN

Цели: Провести углублённое исследование функциональных возможностей и задач, реализуемых с использованием Fibre Channel SAN в корпоративных системах хранения данных. Fibre Channel SAN применяется для создания высокопроизводительных сетей хранения с высокой пропускной способностью и низкой задержкой, что особенно востребовано в крупных компаниях и центрах обработки данных, где важно обеспечить быстрый доступ к значительным объёмам информации.

Задачи:

- 1. Настроить и оптимизировать конфигурацию для работы в среде Fibre Channel SAN. Эта предполагает задача организацию безопасности, оптимальное распределение пропускной способности и постоянный мониторинг сетевого трафика для предотвращения задержек «узких мест». Также важно убедиться, что все поддерживают совместимые протоколы и скорости обмена данными.
- 2. Определить, какие устройства и серверы будут подключены к системе хранения данных, и выполнить их настройку. Это также включает в себя контроль доступа к данным на уровне сети хранения для обеспечения безопасности и предотвращения несанкционированного доступа.
- 3. Реализовать мониторинг производительности и анализа сетевой Fibre Channel SAN. Необходимо настроить активности в которая будет отслеживать ключевые мониторинга, производительности, такие как скорость передачи данных, уровень загрузки каналов и задержки. Это позволит выявлять и оперативно устранять потенциальные проблемы, оптимизируя распределение ресурсов. Важно также реализовать сбор и анализ статистики по использованию сети ДЛЯ выявления возможных **УЗКИХ** мест инфраструктуры. планирования будущих улучшений Наличие детализированных данных о сетевой активности поможет прогнозировать нагрузки и своевременно принимать меры для поддержания высокого уровня производительности и доступности системы хранения.

1.2 Цели и задачи настройки IP SAN

Цели: Организовать инфраструктуру для функционирования системы хранения данных на базе iSCSI SAN и настроить сетевой интерфейс для надёжного подключения к хранилищу. Протокол iSCSI, использующий IP-сети, упрощает интеграцию с существующей сетевой архитектурой и может быть реализован с меньшими затратами, чем традиционные решения на Fibre Channel.

Задачи:

- 1. Проверить настройки iSCSI, чтобы убедиться, что все параметры соответствуют требованиям системы и обеспечивают безопасное соединение. Важными элементами являются корректные IP-адреса, маска подсети, а также параметры авторизации и шифрования, которые обеспечивают защиту данных при их передаче.
- 2. Настроить логическую единицу хранения iSCSI LUN, которая будет представлять собой виртуальное пространство для хранения данных, доступное через IP-сеть. Логическая единица хранения позволяет эффективно распределять ресурсы между серверами и устройствами, обеспечивая централизованный доступ к данным.
- 3. Привязать iSCSI LUN к целевому хосту, чтобы он мог использовать выделенное пространство для хранения данных. На этом этапе нужно настроить права доступа, протестировать соединение и проверить надёжность и скорость передачи данных между хранилищем и хостом.
- 4. Настроить мониторинг и управление iSCSI-соединениями для обеспечения стабильной работы системы хранения данных. На этом этапе необходимо внедрить инструменты ДЛЯ постоянного контроля производительности iSCSI-соединений, такие как мониторинг нагрузки на сеть, скорости передачи данных и ошибок соединения. Это позволит своевременно обнаруживать и устранять потенциальные проблемы, а обеспечивать высокий уровень доступности данных И предотвращать простоев в работе системы хранения.

2 ВЫПОЛНЕНИЕ РАБОТЫ

2.1 Настройка FC SAN

Для начала работы необходимо ответить мировые имена портов хранения. Для этого надо перейти на VNXe \rightarrow Settings \rightarrow More configuration \rightarrow Port Settings. Далее раскрыть модуль ввода/вывода 0 и выбрать каждый оптоволоконный канал для определения мирового времени и другой информации для каждого из портов хранения (рисунки 2.1.1 — 2.1.4). В таблице 2.1.1 представлены имена портов хранения.

Таблица 2.1.1 – Мировые имена портов хранения

Мировые имена портов хранения	Имя узла
50:06:01:60:88:E0:02:22	FC port 0 SPA
50:06:01:6C:08:E0:02:22	FC port 0 SPB
50:06:01:65:08:E0:02:22	FC port 1 SPA
50:06:01:6D:08:E0:02:22	FC port 1 SPB
50:06:01:66:08:E0:02:22	FC port 2 SPA
50:06:01:6E:08:E0:02:22	FC port 2 SPB
50:06:01:67:08:E0:02:22	FC port 3 SPA
50:06:01:6F:08:E0:02:22	FC port 3 SPB

Рисунок 2.1.1 – Мировые имена портов FC port 0

Рисунок 2.1.2 – Мировые имена портов FC port 1

Рисунок 2.1.3 – Мировые имена портов FC port 2

Рисунок 2.1.4 – Мировые имена портов FC port 3

Следом необходимо отметить мировые имена портов хостаинициатора. Для этого перейти на VNXe \rightarrow Hosts \rightarrow Initiators (рисунок 2.1.5).

Рисунок 2.1.5 — Вкладка Initiators

Ответы на следующие вопросы:

1. Что такое FLOGI?

Ответ: Регистрация в системе коммутации – Fabric login (FLOGI).

2. Какое мировое имя у первого порта, принадлежащего Fibre Channel Fabric?

Рисунок 2.1.6 – Мировое имя первого порта FC Fabric

Ответ: 25:11:00:0d:ec:18:cb:40 (рисунок 2.1.6).

3. Почему поле идентификатора источника (S_ID) кадра FLOGI содержит одни нули?

Ответ: S_ID кадра FLOGI устанавливается в нулевое значение, если пакет используется для запроса нового адреса.

4. Какой адрес назначен первому порту принадлежащему Fibre Channel Fabric?

Рисунок 2.1.7 – Адрес первого порта FC Fabric

Ответ: 10:00:00:00:с9:44:49:55:20:00:00:00:с9:44:49:55 (рисунок 2.1.7).

5. Какое шестнадцатеричное представление FC-4 TYPE запрашивается и какой протокол оно представляет? Какой сервис ответственен за GID_FT запрос?

Рисунок 2.1.8 – Конфигурация кадра GID_FT

Ответ: FC_CT (0x20) DNS (рисунок 2.1.8). FC_GS.

2.2 Настройка IP_SAN

Для настройки необходимо пройти по следующему пути Settings \rightarrow iSCSI Settings \rightarrow iSCSI Interfaces, выбрать Ethernet Port 3 и нажать создать (рисунок 2.2.1).

Рисунок 2.2.1 – Создание iSCSI интерфейса

Теперь необходимо создать LUN, который будет обслуживаться с помощью iSCSI. Для этого надо выбрать LUN в панели инструментов EMC Unisphere System. На рисунке 2.2.2 отображено создание LUN.

Рисунок 2.2.2 – Создание LUN

На рисунке 2.2.3 выбраны пул хранения, из которого будет извлечен LUN и многоуровневая политика.

Рисунок 2.2.3 – Настройка LUN

В окне настройки расписания снимков выбрать опцию не настраивать расписание снимков (рисунок 2.2.4).

Рисунок 2.2.4 – Настройка расписания снимков

Настройка соединения с хостом представлена на рисунке 2.2.5. Требуется выбрать хост, который уже принадлежит массиву, использующему протокол iSCSI. Также выбрать LUN опцию напротив хоста Windows 2k8.

Рисунок 2.2.5 – Настройка соединения с хостом Итог настройки LUN (рисунок 2.2.6).

Рисунок 2.2.6 – Просмотр созданного LUN

Проверка, что LUN создан успешно и связан с хостом (рисунок 2.2.7).

Рисунок 2.2.7 – Окно хостов Windows 2k8

Ответы на следующие вопросы:

1. Какой IP адрес у инициатора?

Рисунок 2.2.8 – IP адрес инициатора

Ответ: 172.12.10.10 (рисунок 2.2.8).

2. Какой IP адрес у цели?

Рисунок 2.2.9 – IP адрес цели

Ответ: 172.12.10.4 (рисунок 2.2.9).

3. Какой фильтр следует использовать, чтобы увидеть только iSCSI коммуникации?

Рисунок 2.2.10 – Фильтр для iSCSI коммуникаций

Ответ: Фильтр iSCSI.

4. Какое название у инициатора?

Рисунок 2.2.11 – Название инициатора

Ответ: Vmware_b1:7f:af (рисунок 2.2.11).

5. Какое название у цели?

Рисунок 2.2.12 — Название цели

Ответ: Cisco_a2:16:80 (рисунок 2.2.12).

6. Как настроены следующие опции: HeaderDigest, DataDigest, MaxRecvDataSegmentLength?

Рисунок 2.2.13 – Конфигурация кадра iSCSI

Ответ: Настройки представлены на рисунке 2.2.13. 7. Сколько LUN's доступно данному инициатору?

Ответ: 1 LUN (рисунок 2.2.13).

3 ВЫВОДЫ

3.1 Настройка Fibre Channel SAN

В результате проделанной работы были успешно настроены и установлены оптимальные параметры для работы сети хранения данных на основе Fibre Channel. Выполнение зонирования и распределение полосы пропускания позволили создать стабильную и безопасную среду для передачи данных, снижая вероятность возникновения сетевых задержек. Таким образом, достигнута надёжная и высокопроизводительная среда для корпоративных нужд.

3.2 Настройка IP SAN

Проведённая настройка iSCSI SAN показала, что инфраструктура хранения данных может быть эффективно реализована с использованием IP-сети. Проверка параметров iSCSI, включая IP-адреса, маску подсети и безопасность соединений, обеспечила стабильность и надёжность передачи данных. Настроенный iSCSI LUN позволил создать централизованное пространство для хранения, доступное нескольким серверам, а его привязка к целевому хосту обеспечила высокую производительность при взаимодействии с данными. Таким образом, система iSCSI SAN успешно интегрирована в существующую сеть, предлагая экономически выгодное и функционально полноценное решение.