Mestrado Integrado em Engenharia Informática Tópicos de Matemática Discreta 5. Funções

José Carlos Costa

Dep. Matemática Universidade do Minho

 1° semestre 2020/2021

Observação

Recorde-se que uma função ou aplicação é uma correspondência $f:A \to B$ que é

- total: Dom(f) = A (o domínio é igual ao conjunto de partida);
- e univoca: $\forall_{a \in A} \forall_{b_1, b_2 \in B} ((a, b_1) \in f \land (a, b_2) \in f) \rightarrow b_1 = b_2).$

Equivalentemente, f é uma função se

$$\forall_{a\in A} \exists_{b\in B}^1 (a,b) \in f.$$

- O único elemento b de B tal que $(a,b) \in f$ é dito a imagem de a por f ou o valor que a função f assume em a, e escreve-se f(a) = b ou $a \mapsto b$.
- Ao conjunto de chegada B também é usual chamar-se o codomínio de f.

Notação

Sejam A e B conjuntos.

- O conjunto de todas as funções de A em B é um subconjunto de $\mathcal{P}(A \times B)$ que se denota por B^A .
- Se A e B são conjuntos finitos, com m e n elementos respetivamente, então B^A tem n^m elementos. Ou seja, existem n^m funções de A em B.

• Sejam $A = \{0, 1, 2\}$ e $B = \{u, v, x, y\}$. Considere as seguintes relações binárias R_1 , R_2 e R_3 de A em B,

 R_1 não é uma função pois não é relação unívoca: $(1, u), (1, v) \in R_1 \text{ e } u \neq v. \quad \text{Dom}(R_2) = \{0, 2\} \neq A.$

 R_2 não é uma função pois não é relação total:

 R_3 é uma função.

② A relação identidade $id_A = \{(a, a) : a \in A\}$ num conjunto A, que a cada elemento $a \in A$ faz corresponder a, é uma função chamada a função identidade em A. Pode escrever-se

$$\mathrm{id}_A:\ A\ o\ A$$

$$a \mapsto a$$
.

lacktriangle A relação $R = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} : y = 2x\}$ é uma função de \mathbb{Z} em \mathbb{Z} . Para cada $x \in \mathbb{Z}$, tem-se R(x) = 2x. Escreve-se

$$R: \ \mathbb{Z} \to \mathbb{Z}$$
$$x \mapsto 2x.$$

- **1** A relação $S = \{(x, y) \in \mathbb{N}_0 \times \mathbb{Z} : x = y^2\}$ não é uma aplicação de \mathbb{N}_0 em \mathbb{Z} . Tem-se, por exemplo, $(4,2) \in S$ e $(4,-2) \in S$ e $2 \neq -2$.
- As relações

$$f_{1} = \{(x, y) \in \mathbb{R} \times \mathbb{R} : y = x^{2}\},$$

$$f_{2} = \{(x, y) \in \mathbb{R}_{0}^{+} \times \mathbb{R} : y = x^{2}\},$$

$$f_{3} = \{(x, y) \in \mathbb{R} \times \mathbb{R}_{0}^{+} : y = x^{2}\},$$

$$f_{4} = \{(x, y) \in \mathbb{R}_{0}^{+} \times \mathbb{R}_{0}^{+} : y = x^{2}\},$$

são aplicações

DEFINICÃO

Funções $f: A \rightarrow B$ e $g: C \rightarrow D$ dizem-se iguais, e escreve-se f = g, se

- i) A = C (ou seja, $f \in g$ têm o mesmo domínio);
- ii) B = D (ou seja, $f \in g$ têm o mesmo codomínio);
- iii) $\forall_{x \in A} f(x) = g(x)$.

EXEMPLOS

- As funções do exemplo 5 anterior são todas distintas.
- Consideremos as funções

Tem-se que:

- f = g porque $f \in g$ têm o mesmo domínio, \mathbb{Z} , o mesmo codomínio, \mathbb{Z} , e f(x) = g(x) para todo o elemento x do domínio;
- $f \neq h$ pois $f \in h$ têm codomínios distintos, $\mathbb{Z} \in \mathbb{N}_0$ respetivamente;
- $f \neq k$ já que para x = 6, por exemplo, $f(x) = 6 \neq -6 = k(x)$;
- $h \neq k$ pois $h \in k$ têm codomínios distintos e, por exemplo, $h(4) \neq k(4)$.

DEFINICÃO

Seja $f: A \to B$ uma função e sejam $X \subseteq A$ e $Y \subseteq B$. Designa-se por:

• imagem de X por f o conjunto

$$f(X) = \{f(x) : x \in X\};$$

• imagem inversa ou pré-imagem de Y por f o conjunto

$$f^{\leftarrow}(Y) = \{a \in A : f(a) \in Y\}.$$

EXEMPLOS

• Sejam $A = \{1, 3, 5, 7\}$ e $B = \{0, 1, 2, 3, 4\}$. Consideremos a função $f: A \to B$ representada pelo diagrama seguinte. Então,

•
$$f(A) = Im(f) = \{0, 2, 3\};$$

•
$$f({1,3}) = f({3,5}) = {0,2};$$

•
$$f^{\leftarrow}(B) = A$$
;

•
$$f^{\leftarrow}(\{0,1\}) = \{3\};$$

•
$$f^{\leftarrow}(\{4\}) = \emptyset$$
;

•
$$f^{\leftarrow}(\{1,2,3\}) = \{1,5,7\}.$$

2 Consideremos a aplicação $f: \mathbb{Z} \to \mathbb{Z}$ definida por

$$f(n) = \begin{cases} 2n+3 & \text{se } n \ge 0\\ 3-n & \text{se } n < 0 \end{cases}$$

e sejam
$$X = \{-4, 0, 1, 2\}$$
 e $Y = \{-5, 0, 5\}$. Então,

$$f(X) = \{f(-4), f(0), f(1), f(2)\} = \{7, 3, 5, 7\} = \{3, 5, 7\}$$

е

$$f^{\leftarrow}(Y) = \{ n \in \mathbb{Z} : f(n) = -5 \lor f(n) = 0 \lor f(n) = 5 \}$$

$$= \{ n \in \mathbb{Z} : (2n + 3 = -5 \land n \ge 0) \lor (3 - n = -5 \land n < 0) \lor \lor (2n + 3 = 0 \land n \ge 0) \lor (3 - n = 0 \land n < 0) \lor \lor (2n + 3 = 5 \land n \ge 0) \lor (3 - n = 5 \land n < 0) \}$$

$$= \{ 1, -2 \}.$$

As propriedades que introduzimos de seguida são fundamentais no estudo de funções.

Definição

Uma aplicação $f: A \rightarrow B$ diz-se:

- injetiva quando $\forall_{a_1,a_2 \in A} (f(a_1) = f(a_2) \rightarrow a_1 = a_2);$
- sobrejetiva quando $\forall_{b \in B} \exists_{a \in A} f(a) = b$;
- bijetiva quando é injetiva e sobrejetiva.

As propriedades acima podem ser caracterizadas da seguinte forma.

OBSERVAÇÃO

Uma aplicação $f: A \rightarrow B$ é:

- injetiva se e só se $\forall_{a_1,a_2 \in A} (a_1 \neq a_2 \rightarrow f(a_1) \neq f(a_2));$
- sobrejetiva se e só se Im(f) = B;
- bijetiva se e só se $\forall_{b \in B} \exists_{a \in A}^1 f(a) = b$.

• Consideremos as funções f_1 , f_2 , f_3 e f_4 definidas pelo diagrama seguinte:

- f₁ é injetiva e não é sobrejetiva (logo também não é bijetiva);
- f₂ é bijetiva;
- f₃ não é injetiva (donde não é bijetiva) e é sobrejetiva;
- f₄ não é injetiva nem sobrejetiva (nem bijetiva).
- ② Consideremos a aplicação $f: \mathbb{Z} \to \mathbb{Z}$, $x \mapsto |x|$.
 - f não é injetiva porque, por exemplo, f(2) = f(-2) e $2 \neq -2$.
 - f não é sobrejetiva pois $\operatorname{Im}(f) = \mathbb{N}_0 \neq \mathbb{Z}$. Por exemplo, -5 pertence ao codomínio \mathbb{Z} e não existe x no domínio \mathbb{Z} tal que f(x) = -5.
- $\textbf{ 0} \ \, \text{A função} \, \, g: \mathbb{Z} \rightarrow \mathbb{N}_0 \text{, } x \mapsto |x| \text{, não \'e injetiva mas \'e sobrejetiva}.$

- **1** Seja $f: \mathbb{Z} \to \mathbb{Z}$ a função definida por f(x) = 2x + 3 para todo o $x \in \mathbb{Z}$.
 - f é injetiva pois, para quaisquer $x, y \in \mathbb{Z}$,

$$f(x) = f(y) \rightarrow 2x + 3 = 2y + 3$$

 $\rightarrow x = y.$

- f não é sobrejetiva pois, por exemplo, não existe $x \in \mathbb{Z}$ com f(x) = 4.
- **1** A aplicação $g: \mathbb{R} \to \mathbb{R}$ é bijetiva. $x \mapsto 2x + 3$
- **o** A aplicação identidade $id_A: A \rightarrow A$ num conjunto A é bijetiva.
- Consideremos as aplicações

TMD Cap 5

- f₁ não é injetiva nem sobrejetiva;
- f₂ é injetiva e não é sobrejetiva;
- f₃ não é injetiva mas é sobrejetiva;
- f₄ é bijetiva.

OBSERVAÇÃO

① Sejam $f: A \rightarrow B$ e $g: B \rightarrow C$ funções.

A relação composta $g\circ f$ é uma função (de A em C), tendo-se $(g\circ f)(a)=g(f(a))$ para cada $a\in A$. Ou seja, $g\circ f$ é a função $g\circ f:A\to C$

$$g \circ f : A \to C$$

 $a \mapsto g(f(a))$

chamada a função composta de g com f.

A relação inversa de uma função pode não ser uma função.

Por exemplo, sejam $A = \{1, 2, 3\}$ e $B = \{a, b\}$. Para $f : A \to B$, $1 \mapsto a$, $2 \mapsto b$, $3 \mapsto a$, tem-se $f^{-1} = \{(a, 1), (b, 2), (a, 3)\}$ que não é uma função pois $(a, 1) \in f^{-1}$, $(a, 3) \in f^{-1}$ e $1 \neq 3$.

TEOREMA

Sejam $f: A \rightarrow B$ e $g: B \rightarrow C$ funções.

- Se f e g são injetivas (resp. sobrejetivas, bijetivas), então a função composta $g \circ f$ é injetiva (resp. sobrejetiva, bijetiva).
- ② A relação inversa f^{-1} é uma função (de B em A) se e só se f é bijetiva.

Observação

Seja $f:A \to B$ uma aplicação bijetiva.

• A relação inversa de f é uma aplicação $f^{-1}: B \to A$, chamada a função inversa de f, tal que

$$f^{-1} \circ f = \mathrm{id}_A$$
 e $f \circ f^{-1} = \mathrm{id}_B$.

② Prova-se que f^{-1} é a única função de B para A nestas condições. Ou seja, se existe uma aplicação $g:B\to A$ tal que

$$g\circ f=\mathrm{id}_{\mathcal{A}}\quad \text{e}\quad \ f\circ g=\mathrm{id}_{\mathcal{B}},$$
 então $g=f^{-1}.$

3 Note-se que, dados $a \in A$ e $b \in B$, tem-se

$$b = f(a)$$
 se e só se $a = f^{-1}(b)$.

1 A função $f: \mathbb{R}_0^+ \to \mathbb{R}_0^+$ é bijetiva. A sua inversa é $f^{-1}: \mathbb{R}_0^+ \to \mathbb{R}_0^+$. $x \mapsto x^2$ $x \mapsto \sqrt{x}$

Tem-se, por exemplo, $f(3) = 9 e f^{-1}(9) = 3$.

- **2** A função bijetiva $g: \mathbb{N}_0 \to \mathbb{N}$ tem inversa $g^{-1}: \mathbb{N} \to \mathbb{N}_0$. $n \mapsto n+1$ $n \mapsto n-1$
- **3** Sejam $f: \mathbb{R} \to \mathbb{R}$ e $g: \mathbb{R} \to \mathbb{R}$. Neste caso existem as funções $x \mapsto x + 2$ $x \mapsto 3x$

compostas $g \circ f$ e $f \circ g$. Para cada $x \in \mathbb{R}$, tem-se

$$g(f(x)) = g(x+2) = 3(x+2) = 3x + 6$$

e

$$f(g(x)) = f(3x) = 3x + 2.$$

Então, $g \circ f : \mathbb{R} \to \mathbb{R}$ e $f \circ g : \mathbb{R} \to \mathbb{R}$ $x \mapsto 3x + 2$ $x \mapsto 3x + 6$