

Analyse der erfolgreichsten Beachvolleyballteams der Welt mit Hilfe von R

Sonstige Beteiligung Angewandte Programmierung

Mark Ebinger

FOM – Master of Science – Big Data & Business Analytics

Stuttgart, 30.07.2022

- 1. Warum Beachvolleyballdaten?
- 2. Wie bin ich vorgegangen?
 - a. Data Understanding
 - b. Data Preparation
 - c. Data Modelling & Evaluation
- 3. Fazit

- 1. Warum Beachvolleyballdaten?
- 2. Wie bin ich vorgegangen?
 - a. Data Understanding
 - b. Data Preparation
 - c. Data Modelling & Evaluation
- 3. Fazit

Warum Beachvolleyballdaten?

- Große Leidenschaft für (Beach-)Volleyball
- Wer sind die besten Beachvolleyballteams der Welt?
- Bin ich mit 178 cm zu klein?
- Bin ich mit 28 Jahren schon zu alt?

- 1. Warum Beachvolleyballdaten?
- 2. Wie bin ich vorgegangen?
 - a. Data Understanding
 - b. Data Preparation
 - c. Data Modelling & Evaluation
- 3. Fazit

Data Understanding

- Datensatz aus Kaggle mit 78.756 Datensätze und 65 Spalten
- Beachvolleyball-Profispiele 2000 2019

```
# CRISP-DM - Schritt 2: Data Understanding

# Schritt 2.1: Daten laden
beach1 <- read.csv("C:/Users/Mark/Karriere/2021-2024_Master Big Data/2_Semester/
# Schritt 2.2.: Erster Blick auf die Daten
head(beach1)
tail(beach1)|
summary(beach1)
str(beach1)</pre>
```

		₹ Filter Cols: €	< 1 - 50	> >>						Q	
*	circuit	tournament	country	year ‡	date	gender	match_num *	w_player1	w_p1_birthdate	w_p1_age	w_p
1	AVP	Huntington Beach	United States	2002	2002-05-24	М	1	Kevin Wong	1972-09-12	29.69473	
2	AVP	Huntington Beach	United States	2002	2002-05-24	M	2	Brad Torsone	1975-01-14	27.35661	
3	AVP	Huntington Beach	United States	2002	2002-05-24	М	3	Eduardo Bacil	1971-03-11	31.20329	
4	AVP	Huntington Beach	United States	2002	2002-05-24	M	4	Brent Doble	1970-01-03	32.38604	
5	AVP	Huntington Beach	United States	2002	2002-05-24	М	5	Albert Hannemann	1970-05-04	32.05476	

- 1. Warum Beachvolleyballdaten?
- 2. Wie bin ich vorgegangen?
 - a. Data Understanding
 - b. Data Preparation
 - c. Data Modelling & Evaluation
- 3. Fazit

Data Preparation

Herausforderungen in Daten:

- Pro Spieler eine Spalte → 2 Spieler pro Team = 2 Spalten
- Pro Match eine Zeile:
 - Spalten pro Gewinnerteam
 - Spalten pro Verliererteam

÷	w_player1	w_p1_birthdate	w_p1_age	w_p1_hgt	w_p1_country	w_player2	w_p2_birthdate	w_p2_age	w_p2_hgt
1	Kevin Wong	1972-09-12	29.69473	79	United States	Stein Metzger	1972-11-17	29.51403	75
2	Brad Torsone	1975-01-14	27.35661	78	United States	Casey Jennings	1975-07-10	26.87201	75
3	Eduardo Bacil	1971-03-11	31.20329	74	Brazil	Fred Souza	1972-05-13	30.02875	79
4	Brent Doble	1970-01-03	32.38604	78	United States	Karch Kiraly	2060-11-03	41.55236	74
5	Albert Hannemann	1970-05-04	32.05476	75	United States	Jeff Nygaard	1972-08-03	29.80424	80

÷	l_player1	I_p1_birthdate	l_p1_age	l_p1_hgt [‡]	I_p1_country	l_player2	l_p2_birthdate	l_p2_age	I_p2_hgt	I_p2_count
	Chuck Moore	1973-08-18	28.76386	76	United States	Ed Ratledge	1976-12-16	25.43463	80	United Stat
	Mark Paaluhi	1971-03-08	31.21150	75	United States	Nick Hannemann	1972-01-12	30.36277	78	United Stat
	Adam Jewell	1975-06-24	26.91581	77	United States	Collin Smith	1975-05-26	26.99521	76	United Stat
	David Swatik	1973-02-14	29.27036	76	United States	Mike Mattarocci	1969-10-05	32.63244	80	United Stat
	Adam Roberts	1976-01-25	26.32717	73	United States	Jim Walls	1978-03-26	24.16153	75	United Stat

Data Preparation

```
# Schritt 3.2: Spalte mit Sieg = 1 & Niederlage = 0
beach2$win <- 1
beach2$lost <- 0
# Schritt 3.3: Teams mit Teamdaten erzeugen
beach2$wteam <- paste(beach2$w_player1, beach2$w_player2, sep="/")</pre>
beach2$avg_w_age <- (beach2$w_p1_age + beach2$w_p2_age)/2
beach2$avg_w_heightcm <- ((beach2$w_p1_hgt + beach2$w_p2_hgt)/2)*2.54
beach2$lteam <- paste(beach2$l_player1, beach2$l_player2, sep="/")</pre>
beach2$avg_1_age <- (beach2$1_p1_age + beach2$1_p2_age)/2
beach2\alpha_1heightcm <- ((beach2\beta_p1hgt + beach2\beta_p2hgt)/2)*2.54
# Schritt 3.4: Eine Datentabelle nur mit Siegerdaten
beach2winner <- subset(beach2, select=c(year, wteam, w_p1_country,avg_w_age, avg_w_heightcm, win))
# Schritt 3.5: Eine Datentabelle nur mit Verliererdaten
beach2loser <- subset(beach2, select=c(year, lteam, l_p1_country,avg_l_age, avg_l_heightcm, lost))</pre>
# Schritt 3.6: Gleiche Bezeichnung der Überschriften
names(beach2winner) <- c("year", "team", "country", "age", "height", "win_lost")
names(beach2loser) <- c("year", "team", "country", "age", "height", "win_lost")
# Schritt 3.7: Daten zusammenfassen in einem Datensatz untereinander
beach3 <- rbind(beach2winner, beach2loser)</pre>
```


- 1. Warum Beachvolleyballdaten?
- 2. Wie bin ich vorgegangen?
 - a. Data Understanding
 - b. Data Preparation
 - c. Data Modelling & Evaluation
- 3. Fazit

Data Modelling & Evaluation Wer sind die besten Beachvolleyballteams der Welt?

```
# CRISP-DM - Schritt 4: Modelling

# Frage 4.1: Was waren die erfolgreichsten Teams?

topteams <- beach3 %>%
   group_by (team, country) %>%
   summarize(height = mean(height) ,wins = sum(win_lost), games = n())
```

topteams\$winning_rate <- topteamstopteams50 <- topteams %>% filt

ai	\$	team	country	height [‡]	wins [‡]	games [‡]	winning_rate **
t(1	Oleg Stoyanovskiy/Viacheslav Krasilnikov	Russia	200.66	48	59	0.8135593
	2	Phil Dalhausser/Todd Rogers	United States	196.85	255	314	0.8121019
	3	Anders Mol/Christian Sorum	Norway	189.23	108	133	0.8120301
	4	Emanuel Rego/Tande Ramos	Brazil	194.31	76	94	0.8085106
	5	Emanuel Rego/Ricardo Santos	Brazil	195.58	435	544	0.7996324
	6	Jonas Reckermann/Julius Brink	Germany	193.04	139	174	0.7988506
	7	Alison Cerutti/Emanuel Rego	Brazil	196.85	173	218	0.7935780
	8	Alison Cerutti/Harley Marques	Brazil	198.12	53	67	0.7910448
	9	Phil Dalhausser/Sean Rosenthal	United States	199.39	86	109	0.7889908
	10	Alison Cerutti/Bruno Oscar Schmidt	Brazil	194.31	175	222	0.7882883

Data Modelling & Evaluation Bin ich zu klein?

```
# Frage 4.3.2: Sind größere Teams erfolgreicher als kleinere Teams?
summary(topteams100)
summary(lm(topteams100$winning_rate~topteams100$height, data=topteams100))
```

team Length:185 Class :character Mode :character	country Length:185 Class :character Mode :character	height Min. :185.4 1st Qu.:191.8 Median :194.3 Mean :194.4 3rd Qu.:196.8 Max. :205.7	wins Min. : 13.00 1st Qu.: 33.00 Median : 53.00 Mean : 74.56 3rd Qu.: 83.00 Max. :435.00	games Min. : 51.0 1st Qu.: 72.0 Median :103.0 Mean :132.6 3rd Qu.:166.0 Max. :544.0	winning_rate Min. :0.2388 1st Qu.:0.4259 Median :0.5192 Mean :0.5283 3rd Qu.:0.6211 Max. :0.8136
> [NA's :3	Max433.00	Max344.0	Max0.8130

Data Modelling & Evaluation Bin ich zu klein?

```
# Frage 4.3.2: Sind größere Teams erfolgreicher als kleinere Teams?
summary(topteams100)
summary(lm(topteams100$winning_rate~topteams100$height, data=topteams100))
#P-Wert: Hohe Signifikanz 0.00161
#Regressionskoeffizenz: 0.008314 --> 1 cm größer erhöht die Siegquote um 0,8 %
#Bestimmtheitsmaß:0,05393
```


Data Modelling & Evaluation Bin ich schon zu alt?

```
# Frage 4.3.1: Exkurs Histogram Altersverteilung
hist(beach3$age, freq = FALSE, xlab="Age")
mean(beach3$age)

# Frage 4.3.1: Sind erfahrenere Teams (über 30 Jahre) erfolgreicher als junge Teams?
beach3$age_group <- ifelse(beach3$age>30, "experienced", "young & wild")

t.test(win_lost~age_group, data = beach3)

#Ergebnis: Ja, höchste Signifikanz
# Erfahren: 0.53 vs. Young & wild: 0.48
```


- 1. Warum Beachvolleyballdaten?
- 2. Wie bin ich vorgegangen?
 - a. Data Understanding
 - b. Data Preparation
 - c. Data Modelling & Evaluation
- 3. Fazit

Fazit

- Zu Beginn Datensatz prüfen, ob Problemstellung wirklich beantwortet werden kann → Zahlreiche Möglichkeiten in R, Daten zu bearbeiten
- Die erfolgreichsten Teams kommen aus Russland, USA, Norwegen, Brasilien und Deutschland
- Ja, ich bin zu klein → Es gibt aber auch zahlreiche andere Einflüsse
- Nein, ich bin im besten Beachvolleyballalter → Erfahrung kann ein Sieggarant sein

