Unidad 2: Lógica Proposicional Álgebra y Geometría Analítica

Iker M. Canut

4 de agosto de $2020\,$

Definiciones 1.

Las proposiciones son oraciones declarativas que tienen un valor de verdad (V o F). Los conectores lógicos son operadores que sirven para formar proposiciones nuevas, a partir de proposiciones dadas:

1. NEGACIÓN:

2. CONJUNCIÓN:

p	q	$p \wedge q$
0	0	0
0	1	0
1	0	0
1	1	1

3. DISYUNCIÓN:

p	q	$p \lor q$
0	0	0
0	1	1
1	0	1
1	1	1

DISY. EXCLUSIVA:

٨	<i>J</i> I	· 12.	ACL
	p	q	$p\underline{\lor}q$
	0	0	0
	0	1	1
	1	0	1
	1	1	0

4. IMPLICACIÓN:

-	TIVIL DI CII CI				
	p	q	$p \rightarrow q$		
	0	0	1		
	0	1	1		
	1	0	0		
	1	1	1		

5. BICONDICIONAL:

p	q	$p \leftrightarrow q$
0	0	1
0	1	0
1	0	0
1	1	1

Las proposiciones primitivas son proposiciones que no se pueden formar a partir de otras proposiciones (utilizando conectores lógicos).

Una proposición compuesta es una tautología (T_0) si es verdadera para todas las asignaciones de verdad de las proposiciones que la componen. Análogamente, se define la **contradicción** (F_0) , si es falsa para todas las asignaciones posibles.

Dos proposiciones S_1 y S_2 son **lógicamente equivalentes**, y notamos $S_1 \Leftrightarrow S_2$ si tienen las mismas tablas de verdad. Si $S_1 \Leftrightarrow S_2$, entonces $S_1 \leftrightarrow S_2$ es una tautología.

p	q	$p \rightarrow q$	$\neg p \vee q$
0	0	1	1
0	1	1	1
1	0	0	0
1	1	1	1

p	q	$p \rightarrow q$	$q \rightarrow p$	$(p \to q) \land (q \to p)$	$p \leftrightarrow q$
0	0	1	1	1	1
0	1	1	0	0	0
1	0	0	1	0	0
1	1	1	1	1	1

Leyes de la Lógica 2.

Doble negación: De Morgan:

$$\begin{array}{lll}
\mathbf{n}: & \neg(\neg p) \Leftrightarrow p \\
\neg(p \lor q) \Leftrightarrow \neg p \land \neg q & \neg(p \land q) \Leftrightarrow \neg p \lor \neg q \\
p \lor q \Leftrightarrow q \lor p & p \land q \Leftrightarrow q \land p \\
p \lor (q \lor r) \Leftrightarrow (p \lor q) \lor r & p \land (q \land r) \Leftrightarrow (p \land q) \land r \\
p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r) & p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r) \\
p \lor p \Leftrightarrow p & p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r) \\
p \lor p \Leftrightarrow p & p \land p \Leftrightarrow p \\
p \lor \neg p \Leftrightarrow T_0 & p \land \neg p \Leftrightarrow F_0 \\
p \lor T_0 \Leftrightarrow p & p \land T_0 \Leftrightarrow p \\
p \lor T_0 \Leftrightarrow p & p \land F_0 \Leftrightarrow F_0 \\
p \lor (p \land q) \Leftrightarrow p & p \land (p \lor q) \Leftrightarrow p \\
p \lor (\neg p \land q) \Leftrightarrow p \lor q & p \land (\neg p \lor q) \Leftrightarrow p \land q
\end{array}$$

$$\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$$
$$p \land q \Leftrightarrow q \land p$$

Conmutativa: Asociativa: Distributiva:

$$p \lor q \Leftrightarrow q \lor p$$

$$p \lor (q \lor r) \Leftrightarrow (p \lor q) \lor r$$

$$p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor q)$$

$$p \wedge (q \wedge r) \Leftrightarrow (p \wedge q) \wedge r$$
$$p \wedge (q \vee r) \Leftrightarrow (p \wedge q) \vee (p \wedge r)$$

Idempotente: Inversa:

$$p \lor p \Leftrightarrow p$$
$$p \lor \neg p \Leftrightarrow T_0$$
$$p \lor F_0 \Leftrightarrow p$$

$$p \land p \Leftrightarrow p$$

$$p \land \neg p \Leftrightarrow F_0$$

$$p \land T_0 \Leftrightarrow p$$

Neutro: Dominación: Absorción:

$$p \lor F_0 \Leftrightarrow p$$

$$p \lor T_0 \Leftrightarrow T_0$$

$$p \lor (p \land q) \Leftrightarrow p$$

2

$$p \land F_0 \Leftrightarrow F_0$$

$$p \land (p \lor q) \Leftrightarrow p$$

$$p \land (\neg p \lor q) \Leftrightarrow p \land q$$

$$\bullet$$
 $S_1 \Leftrightarrow S_1$

•
$$S_1 \Leftrightarrow S_2$$
 si y solo si $S_2 \Leftrightarrow S_1$

•
$$S_1 \Leftrightarrow S_2$$
 y también $S_2 \Leftrightarrow S_3$, entonces $S_1 \Leftrightarrow S_3$

2.1. Reglas de Sustitución

Supongamos que una proposición compuesta P es una tautología y que p es una proposición primitiva que aparece en P. Si reempazamos cada ocurrencia de p por la proposición q, entonces la proposición resultante también es una tautología.

Sea P una proposición compuesta y p una proposición arbitraria que aparece en P. Sea q una proposición tal que $p \Leftrightarrow q$, supongamos que reemplazamos en P una o más ocurrencias de p por q, y llamamos P' a la proposición obtenida. Luego, $P \Leftrightarrow P'$.

2.2. Proposiciones Relacionadas con $p \rightarrow q$

■ Recíproca: $q \to p$ $p \to q \Leftrightarrow \neg q \to \neg p$

■ Inversa: $\neg p \rightarrow \neg q$ $q \rightarrow p \Leftrightarrow \neg p \rightarrow \neg q$

■ Contrarrecíproca: $\neg q \rightarrow \neg p$

Sea S una proposición que no contiene conectivas lógicas distintas de \land y \lor , entonces el **dual** de S, notado S^d , es la proposición que se obtiene al reemplazar cada \land por \lor , cada T_0 por F_0 , y viceversa.

Si
$$(S \Leftrightarrow T) \to (S^d \Leftrightarrow T^d)$$

3. Cuantificadores

Una **proposición abierta** es una expresión que contiene variables, que al ser sustituidas por valores determinados, hace que la expresión se convierta en una proposición.

Cuantificador Existencial: $\exists x \ p(x)$, existe x tal que p(x) es V. Cuantificador Universal: $\forall x \ p(x)$, para todo x, p(x) es V.

Para demostrar un cuantificador:

- Existencial, basta con encontrar un ejemplo.
- Universal, hav que demostrarlo.
- ¬ Existencial, hay que demostrarlo.
- ¬ Universal, basta con encontrar un contraejemplo.

Si p(x,y) es una proposición abierta en dos variables, $\forall x \forall y \ p(x,y) \Leftrightarrow \forall y \forall x \ p(x,y)$, con lo que se simplifica a $\forall x,y \ p(x,y)$.

3.1. Implicación Lógica

p implica lógicamente q, y se nota $p \Rightarrow q$, si $p \rightarrow q$ es una T_0 . e.g $\forall x \ p(x) \Rightarrow \exists x \ p(x)$ (considerando un universo no vacio)

3.2. Cuantificadores Implicitos

Sean p(x) y q(x) proposiciones abiertas,

- p(x) es logicamente equivalente a q(x) cuando el bicondicional $p(a) \leftrightarrow q(a)$ es verdadero para cada a en el universo dado: $\forall x[p(x) \Leftrightarrow q(x)]$.
- p(x) implica logicamente q(x) si $p(a) \rightarrow q(a)$ es verdadera para cada a en el universo dado: $\forall x[p(x) \Rightarrow q(x)]$.
- Dada la proposición $\forall x[p(x) \to q(x)]$ podemos definir la **contrapositiva** $\forall x[\neg q(x) \to \neg p(x)]$, la **recíproca** $\forall x[q(x) \to p(x)]$ y la **inversa** $\forall x[\neg p(x) \to \neg q(x)]$.

3.3. Equivalencias e Implicaciones Lógicas para Proposiciones Cuantificadas

$$\exists x [p(x) \land q(x)] \Rightarrow [\exists x \ p(x) \land \exists x \ q(x)]$$
$$\exists x [p(x) \lor q(x)] \Leftrightarrow [\exists x \ p(x) \lor \exists x \ q(x)]$$
$$\forall x [p(x) \land q(x)] \Leftrightarrow [\forall x \ p(x) \land \forall x \ q(x)]$$
$$\forall x [p(x) \lor q(x)] \Leftarrow [\forall x \ p(x) \lor \forall x \ q(x)]$$

3.4. Negación de Cuantificadores

$$\neg [\exists x \ p(x)] \Leftrightarrow \forall x \ \neg p(x)$$
$$\neg [\forall x \ p(x)] \Leftrightarrow \exists x \ \neg p(x)$$