Details of illustrations in better.

This document may be diche studied on microliche

INVESTIGATION OF SOLAR FLARES AND ASSOCIATED

PLAGE PHENOMENA

FINAL TECHNICAL REPORT

By

Mutsumi Ishitsuka and Jean Lanat

This research was supported by the United States Air Force under Grant AF-AFOSR-69-1777, monitored by the Air Force Cambridge Research Laboratories of the Office of Aerospace Research, and administrated by the Air Force Office of Scientific Research.

Best Available Copy

	Page
Introduction	1
Chapter I	2
Patrol Observations of Solar Chromosphere by a Monochromatic Heliograph with Lyot Filter	2
Chapter II	4
Radiotelescopic Observations of Solar Radio Emission at 9400 MHz	4
1. Observation results of slowly varying component	6
2. Observation results of outstanding occurrence appearing in total	
flux density records	7
3. Observation results of polarization anomalies appearing in circu-	
lar polarizations records	7
4. Curves of life tracing	8
5. Table of observed hours	8
Chapter III	10
Modification of Shutter System in Monochromatic Heliograph	10
Chapter IV	13
Repair of Lyot Monochromatic Filter	14
Chapter V	15
Modification of Counter Weight of Monochromatic Heliograph	15
Acknowledgements	15
References	17
Plate Nos. 1, ∠, 3 and 4	
Plate Nos. 5, 6 and 7	
Figure 1	
Appendix A	
Appendix B	
Document Control Data - R & D	

Introduction

Throughout the period covered by the Grant, from June 1, 1969 to May 31, 1970, solar patrol observations with a monachromatic haliograph and a 9400 MHz radiopolarimeter were made at the Huanca: Observatory. Repair and modification of instruments, necessary for the observations, were also carried out.

The observation results were edited monthly and suited to the Grant Monitor, Dr. John W. Evans, Sacramento Peak Observation by and Mr. John P. Castelli, Air Force Cambridge Research Laboratories under titles:

"Monthly Report of Solar H-Alpha Patrols", c.d

"Monthly Report of Solar Radio Noise Observations at 9400 MHz".

The Reports were forwarded also to the World Data Centers and to institutions making concurrent observations.

The repairs and modifications were principally made on the monochromatic heliograph with a Lyot filter. The most indispensable and urgent repair was the fixing of the Lyot monochromatic filter, and the most important modifications were a newly built shutter system for the cinematographic camera and a modified construction of the mechanical structure of the counter balance weight.

Although the work financed by the Grant should include correlative—studies between H-alpha flares and 9400 MHz radio bursts after analyzing the obtained observation results, the present report covers only the observations and the instrumental repairs and modifications carried out throughout—the period covered by the Grant, due to illness of the principal investigator—during the grant period.

..!/

CHAPTER I

Patrol Observations of Solar Chromosphere by a Monochromatic Heliograph
with Lyot Filter

Cinematographic patrol observations of the solar chromosphere were carried out during day-light hours, ranging approximately between 1130 and 2230 UT, with the manochromatic heliograph during the Grant period, as well as before its commencement.

The monochromatic heliograph with Lyat filter built by Société d'Etudes et de Construction d'Appareiliages Scientifiques et Industriels (SECASI), France, is characterized by 14 cm aperture; 16 mm image diameter; and built-in Lyot filter with band-pass 0.69 Angstrom at H-alpha 6563 Angstrom; operation temperature 44.80°C.

This apparatus had been operated since July. 1964 for solar flare patrol work under the contract NBS CST-7552. The routine observation were continued since January, 1968 until the commencement of the present grant, although the contract NBS CST-7552 terminated at the end of 1967.

The observations were made with Kodak Solar Flare Patrol Film SO-392 of 35 mm width. The exposures were made at intervals of 30 seconds for inactive state of the sun, and 15 seconds when active regions appeared, unless the sun was occulted by dense clouds. As the shutter speed, regulated automatically by a photoelectric exposuremeter, was too slow for this film and the image lensity appropriate for heliogram reduction had to be obtained by reducing extremely the telescope aperture and photographic processing time, a possible medification of the shutter mechanism had to be urgently considered

to shorten the shutter speed. The modification of the shutter mechanism is detailed in Chapter III.

On the other hand, the built-in Lyot monochromatic filter in the heliograph were suffering from a large air bubble, causing frequently a double image in the daily heliograms. The repair of the monochromatic filter is mentioned in detail in Chapter IV.

Monochromatic heliograms obtained during daily observations were reduced on the next day. The detected solar flares were measured by the method determined by the last resolution of International Astronomical Union (1966).

Compiled Monthly Report of Solar H-Alpha Patrols were sent to:

Scientific Monitor:

Dr. John W. Evans

Sacrament Peak Observatory

New Mexico, U.S.A.

World Data Center A

Upper Atmosphere Geophysics

National Oceanic and Atmospheric

Administration

Boulder, Colorado

U.S.A.

World Data Center B

Moledeshnay 3

Moscow, B-296

U5SR

World Data Center C

Observatoire de Meudon

Meudon (seine-et-oise)

FRANCE

Mr. John P. Castelli

Air Force Cambridge Research Laboratories

L.G. Hanscom Field

Bedford, Massachusetts

U.S.A.

and other observatories which make concurrent observations.

The obtained results are published in the following data bulletins:

1. Solar-Geophysical Data

Edited by U.S. Department of Commerce

National Oceanic and Atmospheric Administration

Environmental Data Service

2. Quarterly Bulletin on Solar Activity

Published by International Astronomical Union

Eidgenösische Sternwarte in Zürich.

An example of Monthly Report of Solar H-alpha Patrols is displayed in Appendix A.

CHAPTER II

Radiotelescopic Observations of Solar Radio Emission at 9400 MHz

During the period covered by the Grant, the observations of solar emission at 9400 MHz were carried out at Huancayo Observatory

radio

from

sunrise to sunset, ranging between 1130 and 2230 UT approximately. The employed radiopolarimeter built by Mitsubishi Electric Corporation, Japan, had been operated since the apparatus was supplied under Grant AF-AFOSR-898-65-68. The apparatus is specified by a 3-foot paraboloidal aerial fixed on an equatorial mounting, a superheterodyne receiver and 2 pen recorders corresponding to to all sum of circular polarizations in right and left hand sense, and difference between two circular polarizations, respectively. The recorded quantities were reduced into flux density by calibrations made more than twice a day.

The calibrations for the total flux density observations were carried out by attaching a non-reflection terminal with known temperature on the primary horn of the paraboloidal aerial, then by directing the aerial to the zenith, without the non-reflection terminal. Through these operations, two different levels of knowr antenna temperatures were marked on the total sum record, that is, a known antenna temperature corresponding to the terminal temperature, ranging about 265° K to 295° K; and a supposed temperature of 10° K corresponding to the zenith. Total sum record of 9400 MHz radio emission from the sun was evaluated by these known levels in terms of effective an elemna temperature, then these values were converted into international flux density units in terms of 10^{-22} W·m⁻². Hz⁻¹ by multiplying a conversion factor 1.129, which was obtained by a correlative study made between the antenna temperature values of Huancayo Observatory, and the international unit values of Toyokawa Observatory, Japan, at the same frequency through June and July, 1968.

The calibrations for the circular polarization observations were made by inserting a matched absorber of known temperature into one of two wave guides connecting the primary horn and the polarization selector, which corresponds to right and left hand sense circular polarization, respectively.

The same insection was made into another wave guide. Two levels obtained by inserting the right and left absorbers corresponding to a known temperature were marked on the difference record, then the aerial was directed to the zenith in order to get the zero level of polarization. The difference records of the solar radio emission were evaluated by three levels of known antenna temperatures obtained by the mentioned procedures and the conversion to the international unit was made as well as of the total flux density evaluation.

The "Monthly Report of Solar Radio Noise at 9400 MHz" compiled each month, consists of:

observation results of slowly varying component,
observation results of outstanding occurrences,
observation results of polarization anomalies,
life tracing curves of great occurrences larger than 300 international units, and
observed hour table.

The following description gives the details of the report.

1. Observation results of slowly varying component:

1st column: Date of observation,

2nd to 4th column: Mean total flux density corresponding to 12-15,

15-18 and 18-21 'JT intervals,

5th column: Mean daily flux density,

6th to 8th column: Circular polarization degree in % corresponding to the same three hour intervals.

2. Observation results of outstanding occurrences appearing in total flux density records:

1st column: Date of observation,

2nd column: Type of occurrence determined by the classification of

Dr. Covington (1970) and type of occurrence by IAU

classification (1969),

3rd column: Time of commencement of occurrence,

4th column: Time of maximum of occurrence,

5th column: Life duration of occurrence in minutes,

6th column: Peak flux density,

7th column: Mean flux density,

8th column: Polarization degree at time of peak flux density,

9th column: Polarization sense at time of peak flux density, r, I and O

corresponding to right, left hand sense circular polariza --

tion and 0 polarization, respectively.

10th column: Polarization process through the occurrence r-0-1 means

a polarization sense inversion from right hand sense to

left hand sense.

Observation results of polarization anomalies appearing in circular po -larization records:

1st column: Date of anomaly,

2nd column: Type of anomaly determined by Huançayo classification

(1969),

3rd column: Time of commencement of anomaly,

4th column: Time of maximum of anomaly

5th column: Life duration of anomaly in minutes,

6th column; Circular polarization at time of maximum anomaly in seems

of international unit of flux density,

..//

7th column: Polarization degree at time of maximum anomaly in percent,

8th column · Sense of circular polarization at maximum anomaly. r, l and 0 means right, left hand sense and zero polarization, respectively,

9th column: Polarization process through the anomaly,

10th column: Type of corresponding occurrence by Dr. Covington's and IAU classification (1970).

4. Curves of life tracing:

When an occurrence greater than 300 international unit above the preoccurrence level was observed, three curves of life tracing were displayed; the first curve of polarization degree in terms of percent, the second of polarization anomaly in terms of flux density and the third of occurrence in terms of flux density.

5. Table of observed hours:

Time periods, in which observations were made in total flux density and circular polarization with permissible accuracy, were tabulated. Time periods lost by calibrations, heavy rains and hail storms, were not men-tioned in the table.

The Monthly Report of Solar Radio Noise Observations at 9400 MHz were sent to:

Grant Monitor

Dr. John W. Evans Sacrament Peak Observatory New Mexico, U.S.A. ..//

Mr. John P. Castelli

Air Force Cambridge Research Laboratories

L.G. Harscom Field

Bedford, Massachusetts

U.S.A.

World Data Center A

Upper Atmosphere Geophysics

Environmental Science Services Administration

Boulder, Colorado

U.S.A.

World Data Center B

Nizmir WDC

P/O Vatutenki, Moscow 17

USSR

World Dat. Center C

Sterrewacht "Sonnenborgh"

Servaabolwerk 13, Utrecht

NETHERLANDS

and other observatories making concurrent observations.

The obtained results are published in the following data bulletins:

1. Geophysics and Space Data Bulletin

Edited by Space Physics Laboratory

Air Force Cambridge Research Laboratories

United States Air Force

2. Solar-Geophysical Data

Edited by U.S. Department of Commerce

National Oceanic and Atmospheric Administration Environmental Service

Quarterly Bulletin on Solar Activity
 Published by International Astronomical Union
 Eidgenösische Sternwarte in Zürich

At the beginning of the grant, the installation of the numerical printing recorders was planned in order to simplify the daily labor in reduction of the data. This plan was abandoned because the numerical display of records was advantageous only when the gain of the instrument might be so stable so that the correction for gain variation would not be necessary. The gain variation of the instrument under ordinary maintainance was about 2.5% and it always required small corrections for flux density evaluation.

CHAPTER III

Modification of Shutter System in Monochromatic Heliograph

The cinematographic comera in the monochromatic heliograph had functioned, since its installation on July 1964, until October 1969, with the original structure, which contained a shutter system regulated automatically through a photoelectric exposuremeter. The shutter speed, however, was slower than 1/9 second, because the design of the shutter was based on the use of sensitive photographic film such as Kodak Mocrofile Film, Kodak High Contrast Copy Film and Kodak Spectroscopic Film 5-E.

When the shutter speed is so slow as 1/8 second, the image definition is inferior than to that taken with a faster shutter speed such as 1/100-1/200 second. So a complete modification of the shutter system was planned by

making use of other faster shutter elements. Another reason why the modification plan was generated, was because a very violent impact shock was produced by a huge electromagnet regulating a shutter sector of the original structure, with which considerable sharpness of the image was lost.

While the new shutter system was designed, experimental exposures were made with a still-camera Nikon F, which had shutter speed rang B-1/1000 second, and had been loaded with Kodak Solar Flare Patrol Film SO-392. During the experimental exposures, the aperture of the monochromatic heliograph was reduced to 72 mm at the back of the objective lens, by locating a metallic diaphragm covered with a set of red and yellow filters, in order not to damage the color filters put in front of the Lyot filter and also in order to avoid excessive heating of the Lyot filter.

The heliograms obtained with the shutter speed 1/125 and 1/250 second displayed an image definition much better than the long exposure heliograms. With this result of the experiment, it was decided that a small shutter element, which does not vibrate the whole apparatus and can stand against high speed operation such as 1/100 - 1/300 second and long use, several months at least, would be adequate for the new design of shutter system.

Consequently the new camera was designed with a small shutter element built in a still-camera Nikkorrex, which was a ready-made shutter of focal plane curtain type named "Copal Square". The advantage of use of this shutter element was its low cost, and that it can easily be purchased. Furthermore, the whole cinematographic camera was replaced with a 35 mm Recording Camera Type A, Fairchild Camera and Instrument Corporation, New York, U. S. A. loaned by the High Altitude Observatory, University of Colorado, U.S.A.

Before beginning the camera design there was a discussion if the use of a shutter element of a still-camera with weak structure, would be appropriate

for cinematographic observations for which the frequency of exposures would be incomparably higher than in the case of a normal still-camera. But the authors considered that the weak structure was found only in the driving system of the shutter element and the shutter element itself built with thin plates of hard steel would stand against hard use for considerably more than 35,000 exposures, as warranted by the manufacturer. Although the life of the shutter element of 35,000 exposures corresponds approximately to use during 2 months, which was practically a very short time, the authors in -sisted in the trial of this shutter element, because it might be considered an expendable article from the point of view of its low cost, even if the replacement would be necessary each 2 months. Fortunatelly, it was later that the durability of the shutter element "Copal Square" exceeded 12 months without any serious change of its performance.

The new shutter system was designed principally by Jean Lanat and was built in the machine shop of the Institute. The construction of new shutter was begun in October, 1969 and the complete system was terminated in February, 1970.

Through the initial trial of the new shutter, a solenoid was used for shutter charging, but he solenoid was replaced with a miniature electric motor as the former produced much vibration to the camera

A photosensitive resistance RCA 4402 was used as exposure-meter detector, which interprets necessary exposure time, instead of the 90 CV exposuremeter installed originally. The exposuremeter detector was placed at the center of the sun's image formed by a newly built telescope of 120 cm focal length and 26.5 mm aperture. The space between the objective lens and the exposuremeter detector was covered with a metallic tube to shield the scate-tering light coming from clouds and environment. The external appearance

.// -13-

of the exposuremeter telescope is shown on plate 4. In order to make coincidence the sensitivity longitude with the longitude of the characteristic curve of photographic emulsion, a neutral filter of adequate transparency, which was determined empirically, was placed in front of the exposuremeter detector. In the future, it will be more convenient to find the coincidence of the exposure longitude with the emulsion longitude by adjusting the relative position angle between two polarizers installed in front of the objective lens of the exposuremeter telescope, and a red filter will be placed in front of the objective lens of the exposuremeter telescope.

Although rigorous examinations about nonuniformity of the image density has not yet been made, the response of new exposuremeter for the atmospheric attenuation seems to be better than that of the original 90 CV exposuremeter. According to a rough estimate, the image density near sunrise is 0.86 minus 0.10, and the density near sunset is 0.86 minus 0.11, when the density of i e sun's image near zenith is kept at 0.86, through normal photographic processing.

The shutter speed has not yet been measured precisely but it is estimated to be approximately 1/100 - 1/125 second for the sun nearby the zenith.

A modification of the illuminator for dater and clock, was required, as the exposure time was reduced considerably and Kodak Solar Flare Patrol Film SO-392 is not very sensitive to the green color of clock indicators. A booster reflector was added to the original illuminator to duplicate the illumination. The external appearance of the booster is shown on Plate 5.

CHAPTER IV

Repair of Lyot Monochromatic Filter

Since the end of 1968, a large air bubble was formed in the immersion oil filled in the Lyot monochromatic filter. It was caused by oil leakage through constant evaporation, which had been appreciable by oil dew stuck on the back surface of the front polarizer of the monochromatic filter. Around the vertical position angle of the telescope, the bubble formed frequently dou-ble images of the sun and it was difficult to make precise measurements of solar flare images. Consequently, the complete fixing of the Lyot filter by the manufacturer, Société D'Optique Précision Electronique et Mécabique (SOPELEM), France, was considered. Although the manufacturer esti-mated 2 weeks for this job, the authors decided to undertake the repair at the Observatory taking into account the long delays at Customs Offices.

A small quantity of the oil was extracted from the Lyot filter and sent to chemical laboratory in Peru and to Dr. Edward Manring, North Carolina State University, U.S.A., in order to identify the quality and type of oil. Thanks to Dr. Edward Manring, 2 types of immersion oil with the refractive index $n_D = 1.5150 \ (-0.0002)$ at 25°C were obtained. oils, with different viscosities, were mixed in a proportion of 1 to 1, then poured into the opened filter. After stabilizing the filter temperature at 55°C, which is higher than the operating temperature of 44.80°C, the filter was covered with the clean front glass. An air bubble of 6 mm diamethe ter remained in the immersion oil. The front alass was secured with clamp screws, after its surfaces were paralleled to the first quarz element of the filter under the operation temperature 44.80°C, with a shop-made au tocollimator.

The repaired filter was examined with a spectrohelioscope to detect the characteristics caused by the repair. No changes of the position angle of

..//

two polarizers and the operation temperature were found during the visual examinations, repeated several times, with the second order spectrum of H-alpha line in dispersion 2.7 A/mm.

CHAPTER V

Modification of the Counter Weight of Monochromatic Heliograph

Since the installation of the monochromatic heliograph, the operators suffered from seriously unbalanced weight distribution over the whole apparatus. Two counter weights of 60 kg attached provisionally at both extremes of the supporter arms for the declination adjustment arc could reduce considerably the weight unbalance but could not eliminate it, because the additional weights and their supporting bars could not be increased, due to the structural weakness of the extremes of the supporter arms of the declination adjustment arc.

During the period covered by the Grant, a new counter weight was hung with a new supporter, constructed with iron tubes, toward the opposite side of the telescope. The new supporter was secured to the outer shell of the de -- clination adjustment arc. The appearance of the new supporter and the counter weights is shown in plate 6.

As a result of the new construction, the provisional weights and the lengths of their supporters could not be only reduced to one-half, but also the weight unbalance over the whole apparatus disappeared completely.

<u>Acknowledgements</u>

We are indebted to Dr. John W. Evans of the Sacramento Peak Observatory, the Air Force Cambridge Research Laboratories for approval of the Grant; to

Mr. John P. Castelli, Ionospheric Physics Laboratory, the Air Force Cambridge Research Laboratories for most helpful technical advice; to Dr. Edward Manring, North Carolina State University, who kindly identified the quality of immersion oil to fill the Lyot monochromatic filter and supplied us sufficient quantity of the oil.

Our thanks are due to Mr. T. Nomura and Mr. J. Cr. Stomo for cooperation in edition of the report, to Messrs. I. Astete, S. Melgar and J. Melgar for maintenance of observations, to Messrs. C. Aliaga and J. Mucha for data reductions, and to Mr. A. de la Cruz for mechanical work in machine shop.

References

U.S. Department of Commerce:
Environmental Science Services
Administration

1970: Solar-Geophysical Data

Descriptive Text,
p. 39 N° 306

International Council of Scientific Unions:

1966: IQSY Note p.p. 8-12, N° 16

Special Committee of International Years of the Quiet Sun

International Council of Scientific Unions:

Special Committee for the IQSY

1968. Annals of the IQSY p.p. 33-34
Volume 1

Mutsumi Ishitsuka:

1969: Final Technical Report
Grant AF-AFOSR-898-67,
Radio Telescope Measure
ment of the Solar Flux
Density on 9400 MHz at
Huancayo, Perú

Plate N° 1 Monochromatic heliograph installed at Huancayo Observatory before modification

Plate N° 2 New cinematographic camera of monochromatic heliograph

Plate N° 3 New shutte Lystem or monochromatic heli gruph

Plate N° 4 New telescope for exposuremeter

Plate N° 5 Illumination booster for dater and clock

Plate N° 6 New counter weight system

Plate N° 7 9400 MHz radiopolari neter Installed at Huancayo Observatory

AUTOMATIC EXPOSURE ADJUSTMENT FOR THE MONOCHROMATIC HELIOGRAPH FIG _ I

T₁ - T₂ - Variable gate generator, length function of the time constant

CI through PHR

PHR - Photo resistor R. variable with sun light

RLII-RLIII - Shutter blades relay release

SL - Selenoid film advance

SWI - Manual or automatic time exposure switch

SWII - Manual or automatic shutter action switch

PG - Automatic shutter action switch (from programmer)

PB - Manual shutter action switch (push button type)

RLI - Relay three poles

M - Arm shutter motor

RLIV - Memory relay

MS - Motor stop microswitch

 $T_1 T_2 T_3 - 2N414$

 $T_4 T_5 - 2N255$

APPENIDIX A

CHARACTERISTICS OF THE MONOCHROMATIC HELIOGRAPH AND

EXAMPLE OF MONTHLY REPORT OF SOLAR H-ALPHA PATROL OBSERVATIONS

Characteristics of the Monochromatic Heliograph

Free aperture

: 14 cm

Operating aperture: 7.2 cm

Image diameter

: 16 mm approximately

Mounting

: Equatorial

Guiding

: Automatic photoelectric system for hour angle

and

declination

Record

: 35 mm cinematographic camera

Exposure control

: Photoelectric-automatic by time length

Nic. ochromatic filter:

Transmission

: H-alpha 6563 A

Band pass

: 0.69 A

Operation temperature ; 44.80°C

Monthly Report

of

Solar H-Alpha Patrols

March, 1970

Departamento de Actividad Solar Instituto Geofísico del Perú Apartado 46, Huancayo Perú

HOURS OF H-ALPHA FLARE PATROL

		Н	OUKS (JF N-/	1 Li 1 1/21		•	Page 1	of 1	Page		
	Station	Huana	ayo, Pe	τύ	N	lonth: _	March		Year:	1970		
Date	From	To	From	 То	From	То	From	То	From	То	From	To
		DATA						4				
1-11	NO		1542	1546	1558	1600	1619	1624	1633	ใ 035	1715	1731
12	1531 1737	1534 1750	2100	2128	2135	2144						
13-15	NO	AFAG										
16	1704	1724	1822	1828	1834	1936						
17-18	NO	DATA						1/50	1653	1655	1657	1/06
19	1243 1708	1616 1712	1623	1627	1632	1644	1645	1650	1033	1000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
20-22	NO	DATA					1-	2040				
23	1131	1132	1153	1155	1203	1205	1242	1340	2 4 2 4	1417	1421	1531
24	1137 1604	1140 1606	1146 1610	1209 1616	1242	1332	1410	1412	1414	(41)	, -,	
25	1315	1424	1434	1503	1507	1517				1014	1335	1337
26	1204	1206	1212	1213	1216	1219	1222	1224	1258	1314	1333	100,
27	1416	1417	1421	1425	2109	2113	2132			1710		
28	1415	1420	1425	1438	1451	1527	1529	1631	1640	1712		
29	1358	1553	1555	1602					105/	1358	1832	1843
30	1315 1901					1338						
31		1246				_				1 1422	(1438) i4+47

HOURS OF H-ALPHA FLARE PATROL

								Page 1	of 1	Page		
	Station	Huane	cayo, Pe	rú	٨	Nonth:	March		Year:	19/0		
	31011011				E	То	From	To	From	То	From	То
Date	From	To	From	Το	From	10	,,,,,,,					
1-11	NO	DATA						1/04	1633	1635	1715	1731
12	1531 1737	1534 1750	1542 2100	1546 2128	1558 2135	1600 2144	1619	1624	1033	1000		
13-15	NO	DATA										
16	1704	1724	1822	1828	1834	1936						
17-18	NO	DATA						1750	1653	1655	1657	1706
19	1243 1708	1616 1712	1623	1627	1632	1644	1645	1650	1055	1000		
20-22	NO	DATA					10	1040				
23	1131	1132	1153	1155	1203	1205	1242	1340	1414	1417	1421	1561
24	1137 1604	1140 1606	1146 1610	1209 1616	1242	1332	1410	1412	1/+1~	1-717	• • •	
25	1315	1424	1434	1503	1507	1517		1	1050	1314	1335	1337
26	1204	1206	1212	1213	1216	1219	1222	1224	1258	1317	10.50	
27	1416	1417	1421	1425	2109	2113		2136	1640	1712		
28	1415	1420	1425	1438	1451	1527	1529	1631	1040	1712		
29	1358	1553	1555	1602				1041	1 356	1358	1832	1843
30	1315 1901											
31	1234 1450									1422	. 1400	. , ,

FLARE DATA

				I PUIL							
								Page 1	of 1	Page	
	Stations	Huancay	o, Perú		Month:	March			Year:	1970	
	Tim	ne of Ob	95 .	Posi	rion	lmn	Obs.	Мах	. Arec		marks
Date	Beg.	End.	Max.	Lat.	M.D.	ımp.	Obs.	Time	Appa	Corr.	
1-11	NO	DATA									_
12	•••	-	•••	-	-	-	-	***	-	-	_
13-15	NO	DATA									_
16	1900	1904	1902	S 02	W 19	Sn	2c	1902	24	0.30	5
17	_	-	-		-	-	-	-	-	-	-
18	NO	DATA									
19	1424	1429	1425U	E 69	N 20	Sn	2c	1425	24 24	- 0.50	4 4
•	1420E	1455	1433U	00	W 60	Sf	2p	1433	24	0.30	7
22	NO	DATA							0.4		4
23	1242E	1249D	1245U	N 18	W 70	Sf	2p	1245	24	-	4
24	1137E	1140D	1139U	N 17	W 80	Sf	2p	1139 1253	48 60	-	5 5
	1245E	1332D	1253U 1631IJ	N 18 N 14	W 80 E 05	Sn Sb	lp 2p	1631	120	1.40	9
•	1631E	1700D	1318U	N 12	E 07	Sb	2p	1318	97	1.00	5
25	1315E 1350	1424D 1407	1355U	5 11	W 28	Sb	2p	1355	73	0 , 80	5
26	1305	1314D	1311	N 16	E 63	16	2p	1311	97	2.30	5
27-30		_	-	-	-		-	-	-	-	-
31	1619E	1628	1623U	S 10	E 80	Sf	2p	1623	36	-	5

PROMINENCES AND FILAMENTS

Da e

1-31 NONE

APPENIDIX B

CHARACTERISTICS OF 9400 MHz RADIOPOLARIMETER AND

EXAMPLE OF MONTHLY REPORT OF SOLAR RADIO NOISE OBSERVATIO: 15 AT 9400 MHz

Characteristics of the 9400 MHz Radiopolarimeter

Frequency

: 9400 MHz

Polarization

: Right and left circular

Receiving system

: Superheterodyne Dicke Radiometer

Intermediate fr quency

: 30 MHz

Band width

: 10 MHz

Receiver noise figure

: Less than 10 db

Integrator time constant ; 0.5 or 1.0 second

Standard noise temperature: 333°K

Polarization switching

frequency

: 80 Hz

Dicke switching

frequency

: 220 Hz

Paraboloidal aerial

Diameter: 91.4 cm

Mounting ; Equatorial motor drive

Monthly Report

of

Solar Radio Noise Observations

March, 1970

Departamento de Actividad Solar Instituto Geofísico del Perú Aparrado 46, Huuncayo Perú

Daily Flux Density and Polarization

Frequency:	9400	MHz	_		March, Year: 1970 Huancayo, Perú
		Total Flux Density of	0.0	•	riodicayo, Tero
		2 Polarizations			

			0 ⁻²² W.m	-2 _{Hz} -1			ization t and Sen	se
Date	12-15	15-18	18-21	Daily	12-15	15-18	18-21	Daily
	UT	UT	UT	Mean	UT	UT	UT	Mean
1	336	336	336	336	0.7	0.6	0.6	0.6
2	336	338	338	337	0.7	0.7	0.8	0.7
3	336	336	336	336	0.1	0.2	0.3	0.2
4	323	323	323	323	0.3	0.3	0.5	0.4
5	316	320	320	319	0.7	0.7	0.8	0.7
6 7 8 9	320 - -	320 - -	320 - -	320 - -	0.1 l - -	0.0	0.1 1	0.1 1
10	316	316	316	316	1.3 r	1.4 r	1.3 r	1.3 r
11	301	301	301	301	1.2 r	1.0 r	0.6 r	0.9 r
12	309	309	309	309	0.9 r	0.6 r	0.6 r	0.7 r
13	300	300	300	300	0.5 r	0.3 r	0.0 c	0.3 r
14	298	298	298	298	0.2 r	0.2 l	0.3 l	0.1 l
15	295	295	294	295	0.0	0.4 l	0.5 l	0.3 l
16	297	297	297	297	0.2	0.4	0.6	0.4
17	295	295	295	295	0.2	0.5	0.5	0.4
18	294	294	294	294	0.4	0.5	0.5	0.5
19	292	294	294	293	0.2	0.3	0.4	0.3
20	294	294	294	294	0.5	0.5	0.5	0.5
21	294	294	294	294	0.5	0.7	1.0	0.7
22	294	294	292	293	0.2	0.2	0.4	0.3
23	299	299	299	299	0.1 r	0.2 r	0.1	0.1 r
24	305	306	306	306	0.5 r	0.2 r	0.2 r	0.2 r
25	305	305	305	305	0.1	0.7 r	1.1	0.6
26 27 28 29 30	304 297 292 295 294 303	304 294 292 295 -	304 292 291 295 294 304	304 294 292 295 294	1.1 1.3 0.8 0.9 0.7 0.7	1.3 1.4 1.0 1.4	1.6 1.4 1.3 1.8 1.1	1.3 1.4 1.0 1.4 0.9
			-		- 5	V • • •	0,11	0.0

Monthly Means: 305.1 Units.

<u>0.33 % Left.</u>

Month: March Year: 1970 Station: Huancayo - Perú

Outstanding Occurrences oin Flux Density

Polarization at time of Max . Polarization nse Process	~ ∾	!					•	~	_	_					-	1	ı	L	<u>.</u>	L					i	1	1	_	
Pol at tim Sense	1, 180	<u>.</u>		-			ı		_	-	_				ь	•	1	_	3	L.					ı	ı	1	<u>.</u>	
Degree	Percent	13.0	33.5	2.8	3.4	2.5	ı	27.9	57.4	4.3	25.5	9.9	10.0	17.7	25.5	ı	1	5.3	18.8	4.3	16.0	4.7	16.8	24.2	1	1	í	44.7	17.5
Total Flux Density 10 ⁻²² W.m ⁻² Hz ⁻¹	Mean	147.7	7.5	81.6			9.6	4.3	17.5	232.8	7.7	21.3			4.7	5.4	5.1	94.8	13.1	19.9			25.1		4.3	14.5	4.9	13.5	18.1
Total Flu 10 ^{–22} W.	Peak	589.1	15.0	104.7	123.4	170.2	33.7	7.5	39.3	729.3	13.1	31.8	54.2	.35.5	13.1	9°4	7.5	346.0	35.5	48.6	26.2	35.5	37.4	67.3	7.5	37.4	18.7	37.4	56.1
ation	Minutes	2.5	5.2	4 6.			18.7	3.5	0.7	6.3	59.4	2.6			2.1	47.7	1.9	3.3	13.0	2.8			4.5		16.7	1.7	5.6	1.1	293.7
Time of Duration Maximum	L)	1127.8	1227.2	1400.3	1400.8	1401.7	1403.5	1512.2	1511.6	1530.9	1616.1	1711.8	1712.2	1712.5	1730.5	1755.4	1826.8	2005.2	2005.8	7008.0	2009.2	2009.8	2023.6	2024.2	2035.8	2029.8	2032.7	1128.0	1419.8
Starting Time	L T	1126.3	1224.8	1358.9			1403.5	1510.6	1511.3	1530.0	1555.6	1711.1			1729.8	1749.8	1825.8	2002.5	2005.8	2007.6			2022.8		2029.3	2029.6	2031.8	1127.6	1303.4
Туре		45	205	46C			29p.i.	215	88	38	208	45C			15	235	205	46C	30p.i.	45C			45C		215	35	48	35	235
Date																												2	

	_																															
Polarization at time of Max .	Polarization Process r & 1	*****		-	_	•	•			1	•	1-0-1	•	•			•	í	.			L	t	h.		L.		•	L	L	Ŀ	
Pol at tin	Sense r, 1&0	-		-		i	ı	_		•	L	-	-	L			3	ł	Ŀ			L	,	L		Ŀ		ì	L	1.	L	
	Degree Percent	ထ	4.2	22 2	9	ı	1	41 5	15,7		45.5	41 4	22.7	14,6	20.0	23,1	13,6	,	34.5	23.6	24.7	28.3	ı	12.5	15.6	11,2	e, -	ı	28.4	33.7	25.2	
Total Flux Density	.m ⁻² Hz -1 Mean	12.8	10.9	5,1	23.1	7 8	3.0	9,4		8.5	4.7	3,9	7 0	157.2			22.0	6.3	36.5			5,8	7.5	10°1	,	6.7		11.2	3.7	24.9	5.0	
Total Flu	10 ⁻²² w.m ⁻² Hz Peak Mear	33,7	29.9	9,4	43.0	18,7	7 5	13,1	18 7	8 6	13,0	11.2	18.6	283 0	240,0	208.5	46.6	6.3	44,2	46 .	88 4	15,4	11,2	16.8	24,3	18.7	22,4	15.0	7.5	58,1	16.9	
	ation Minutes	14.4	8 , 4 , 6	0,1	2.2	33 0	102 2	2.8		486 3E	გ ზ	89 7	4	4 ,6			37.6	6.7	δ			39.2	261.1	11.2		ຕຸກ		70,2	4,7	ا ،6	55.2	
	Time of Duration Maximum UT Mi	1343,2	1429.0	1628.9	1714.8	1716.3	1857 5	2157,9	2159.5	1453.7	1751 4	1923.6	2032.7	2034.1	2035.7	203. 4	2037 3	2119,4	1822.8	1824.8	1826 4	1830.0	1842.6	1621 3	1622,1	1909,4	1911.0	1911.5	1323.9	1324.7	1325.5	
	Starting Time UT	1338,3	1,76,3	1628.6	1714 1	1716 3	1824 4	2157.5		1453,7	1750.6	1854.1	2031 3	2032.7			2037.3	2118.8	1821 2			1830.0	1617.6	1618 1	,	1908 2		1911 5	1317.2	1323.9	1325.5	DATA
	Туре	225	35	15	38	29p.i	228	45C		265	35	225	28 Precursor	46C			29p i	225	46C			i 999	215	45C		45C		29p i	28 Precursor	35	29p i.	O Z
	Date	2								ო									4				5						,,			4-7

Polarization at time of Max	Polarization Process	 광 -	L	ı	t	ŧ	ı	1		_		_	ı	ı	1	ı	1	عرد	L	L	L	Ŀ	•		-	ı
Pola at time	Sense	ا، ا& 0		1	•	1	•	•	_	_			•	1	1	1	b	1	L	<u>.</u>	L	۰	1		L	ı
	Degree	Percent	17.6	1	ı	1	1	1	32.7	19.9	22.2	20,5	í	1	1	1	19.3	17.7	12.9	8,0	21.3	26.7	1	15.3	30.4	ı
Total Flux Density	m-2 _{Hz} -1	Mean	4 .6	3.2	ı	4.8	0,4	ı	3,7	63.2		5,9	5.8	1	4,5	3,8	5,7	25 1	12 2	12.2	18 1	3.4	6.5	16.9	118.8	25.3
Total Flux	10^{-22} W $^{-2}$ Hz $^{-1}$	Peak	6.6	5.6	ı	2.7	ۍ ج. ع	ı	9,4	112.4	116.2	15.0	9.5	ı	7.5	7.0	13,4	26.5	62 6	26 5	49 9	9.6	17.3	36.5	314,9	61.4
	ation	Minutes	3.5	19.2	i	38.5	41.7	ı	9	5.0		24.8	202.7	ı	170.5	135,2	2.8	5.5	69.2	69.2	1,4	5,3	152.7	7,00	9.1	101,7
	Time of Duration	TO	1751.8	1408.7	ı	1437,5	1519.5	ı	1442.2	1443.3	1445.4	1447,2	1849.4	1	1817.5	1758.7	1930.4	1547.2	1549.6	1551,3	1223.3	1252.7	1649.4	1218.0	1220.8	1227,1
	gui	UI	1751.2	1357.1	ı	1414 0	1517 5	ì	1440.6	1442.2		1447.2	1631.6	1	1705.8	1615.3	1929 4	1545 8	1551 3	1551.3	1222.7	1250.6	1627 6	1211 OF	1218.0	1227
	Туре		15	205	ì	205	205	•	28	45C)	29p.i	225	ı	225	225	15	746	 260	29p 1.	38) <u>-</u>	205			29p.i.
	Date		01	-	12	13	4	15~16	17 P ACLIF				18	61	20	21	22	22	۲7		24	Ţ,		05 D rogen		

ion	Aax.	Polarization Process	ح می	1							-				•			ı	•
Polarization	at time of Max.		7, 1 & 0	•	ı						***	-			•	1	3	1	ŧ
		Degree		16.3	•	15.9	14.2	7.7	16.2	22.9	1	5.4	51.4		•	•	•	1	1
	Total Flux Density	10-22w.m-2Hz-1	Mean	5.2	6.0	76.5				3.1	•	13.7	15.2	58.5	3.5	ı	1	8.8	7.8
	Total Flu	10 ⁻²² w.	Peak	13.2	13.2	8°.8	199.9	262.2	73.5	7.5	ı	32.1	22.6	33.8	5.5	•	i	17.0	18.9
		ation	Minutes	5.1	٦. 4	4.4				6.1	5.7U	73.1	3.6		53.2	ı	1	91.4	5.6
		Time ot Duration Maximum	U	1257.1	1453.1	1727.3	1727.6	1728.2	1730.3	1731.3	•	2014.5	1422.3	1423.2	1407.7	ı	1	1823.9	1806.9
		ng	L)	1256.0	1452.8	1726.9				1731.3	2008.8E	2014.5	1421.5		1351.2	ı	ı	1758.6	1806.3
		Туре		15	15	45C				29p.i.	45C	29p.i.	45C		205	1	1	215	38
		Date		26									27		28	29	30	31	

-5-

9-

					0 2		
	Year: 1970 5	Corresponding Occurrence Types	45 205 46C	38 38 45C 45C	235 46C 30P. i. 45C 45C	35 225 235 15 35	35 225 28 Precursor 46C 29p.i.
	March Y Huancayo	Polarization C Process				L L-	-0
	Month Station	Polar Pro Sense	<u></u>			<u></u>	
		me Max Percent	13 0 33 5 4 4 4	25. 4 38. 4 23. 3 23. 3 25. 5 25. 5	29.3 11.8 4.3 24.2	44.7 34.4 22.2 8.7	45.5 41.4 22.7 14.6 20.0 3.1
in Circular Polarization		Polatization at time Max 10 ⁻²² W.m ⁻² Hz ⁻¹ Perce	2, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,	21,7 21,6 5,0 8,3 8,3	24.7 24.7 4 2 2 1 16.3	2.5 4.8 4.2 1.2 8	5.9 4.4 4.1 4.1 1.1 6.3
		Duration Minute	- V 4 0	2,5 2,5 3,3 6,0	, 4 & – & & 5 – & & – & & 6 – & & & – &	4.8 518.3U 6.3 3.2 13.1	2.6 37.4 3.3 4.7 43.5
Anomalies		Starting Time of [ne Maximum 17 UT	1127 5 1227 3 1400.9	1511.5 1530.6 1616.0 1639.8 1712.5		1128.1 1352.1 1340.4 1410.2 1629.1	1751.5 1923.5 2032.7 2034.2 2035.7 2036.5 2037.4
	1Hz	Starting Time UT	1126 6 1222 6 1328 9	1511.2 1511.2 1615.1 1638.7 1710.4	1752 7 2002.7 2006.0 2007.5 2020.4	1126.4 1321.4 1339.4 1408.6 1626.6 1714.1	1750,8 1849.0 2029,4 2032,7 2037,4
	9400 MHz	Туре	120	120 120 120 103	120 145 129 145	103 124 101 101 120	103 120 128 145
	Frequency	Date	_			N	m

											SOF						3	3				ursor											
-7-	Corresponding Occurrence	Types	46C		39°		45C	(4 ر		28 Precursor	35 25 3	. 1. d. 7		15	•	1	1	205	ı		28 Precursor	45C		ſ	7	2	46C	Ċ	.1.d47	38	18	
	Polarization Process	Process	L		i	-	L		_		L	1	L		L	L	•	\$	_	t					•		la.	ن		L	٠	L	
	Polar Pr	Sense	L			L	5		L		5	5	L		٤	. 1		ı			•	_					-	٤-		-	٠.		
	ne Max.	Percent	34.5	24.7	29.6	28.3	12.5	15.6	4.0	6.2	28.4	33.7	25.2		. 00	7.00	ı	1	•		ſ	32.7	19.9	22.2	ı	1	19.3	17.7	15.0	20.6	21.3	26.7	; }
	Polarization at time Max.	10-22w.m-2Hz-1	15.3	21.8	13.1	4.4	2 1	. ec	2.1	2.1	2.1	19.6	4.2		,	 	4.4	1	-	4: 0	1		2.5.	7.92		1	2.5		4, α ⁄` π	5; 4	, 1	7.01	0.7
	uration	Minutes	0	<u>;</u>		6.5	, c	٠.٧	Α.) ;	•	٠ ٥ ٥	5.6			2.9	5.9		, I	14.1	,	,	4.4	- 0.9		,	ď		8.7	6	% C.O	1.0	2.3
	Time of Duration	Maximum UT	1000	1,026.6	1828.1	1830 0	2.000	1621.3	1622.1	1910 9		1323.9	1324.7	1		1752.8	2203.2		1	1446.3		ı	1442.2	1443.2	1445.4	1	9 000	1830.3	1547.2	1549.8	1551.8	1223.3	1252.8
	Starting	Time	5	1871.1			1830.0	6,7191	(1908.5		1320.3	1323.9	1.0201	DATA	1751 3	2200.3		ı	1440.5		ı	1437.8	1442.2		1	•	1929.4	1543.2		1551.3	1222.8	1251.8
	Type			145		•	125	120		120		128	103	127	O Z	001	120	27-	ì	120		1	128	145		,	ı	101	145		129	101	101
	Date	2 2 3		4				5				9			4-7	•	0		11-12	23	2	14-16	17	<u>:</u>		נכיסי	17-81	22	23) 1		, *C	1

-8- Corresponding Occurrence Types	28 Precursor 1035	15 45C	29p.i. 45C 29p.i.	45C
Polarization Process	h-		<u> </u>	 1
Polar Pr	h.			– I
time Max Percent	15.3	26.1 15.9 7.7	14.2 16.2 22.9 22.9 -	51,4 59,5
Polarization at t $10^{-22} \text{wm}^{-2} \text{Hz}^{-1}$	2.6	3.4 13.8 20.2	28 4 9.5 1.7	11.6
Duration	7,4	5.8	5.8 5.7U 30.7	4.0
Starting lime of me Maximum	1218.2 1220.5	1257 2 1 - 3 1 5	1726.6 1730 2 1731 3 - 2014 5	1422.3 1423.2
Startin Time	1210.8 1218.2	1255 8 1726 9	1731 3 2008 6E 2014.5	1420.3
1ype	128	101	129 103 129	145
Date o	25	26		27

Hours of Solar Noise Observations

Frequency, 9400 MHz.

Type of Observations:

Flux Density of 2 polarizations. & polarization

Station Huancayo Peru

Month March

Year: 1970

Date	From	To	From	To	From	То	From	To	From	То	From	То
1 2 3 4 5	ł	1241 1242 1301 1315 1306	1249 1309 1318 1315	1456 1618 1516 1450 1502	1453 1505	1706 1656 1701 1710 1706	1659 1704	2006 2006 2001	2007 2009 2010 2005	2300 2300 2300 2300 2259 2133 2200	2145 2230	ſ
7-9 10	NO 1205	DATA 1251	1303			1710	1713		1	2254	2230	2236
11 12 13 14 15	1200 1200 1200 1150 1150	1247 1256 1300 1236 1256	1255 1306 1307 1243 1305	1502 1506 1511 1301 1506	1505 1509 1515 1304 1509	1702 1716 1706 1506 1656	1705 1720 1708 1509 1659	2010 2006 1706	2014		2004	2252
16 17 18 19 20	1130 1130 1130 1130 1130	1251 1246 1315 1300 1256	1256 1325 1308	1501 1506 1456 1505 1512	1504 1508 1459 1508 1514	1736 1702 1701 1705 1656	1738 1705 1704 1708 1659	19 5 6 1956 2002	2000 1959 2005	2227 2250 2250 2249 2248		
21 22 23 24 25	1220 1130 1130 1125 1125	1256 1242 1306 1301 1330	1251 1313 1311	1506 1746 1502 1501 1450	1509 1513 1505 1504 1457	1701 1705 1706 1706 1706	1704 1708 1708 1709 1709	1951 200′ 2004	1957 2009 2012	2247 2247 2246 2247 2247		
26 27 28 29 30	1147 1125 1125 1125 1125	1246 1300 1321 1246 1306	1253	1506 1501 1456 1457 1501	1509 1504 1500 1615 1504	1706 1655 1656 1746 1549	1708 1658 1658 1748 1852	2015 2002	2018 2005	2247 2247 2248 2247 2247	•	
31	1125	1251	1259	1505	1508	1702	1705	2006	2009	2245		

March , 1 1970

Complex Burst at 9400 MHz, Huancayo, Perú March,, 1 1970

Simple Burst at 9400 MHz. Huancayo, Perü March, 1 1970

Huancayo, Perú March , 1 1970

Codes in the Outstanding Occurrences and Polarization Anomalies.

- 1. Definiteness of occurrence time of phenomena
 - E: Phenomenon in progress before observation began.
 - D. Phenomenon continues after observations began.
 - U: Approximate.
- 2. Types of phenomena in flux density measurements.

1: Simple 1	
-------------	--

- 2. Simple 1F
- 3 Simple 2
- 4. Simple 2F
- 8: Spike
- 20. Simple 3
- 21: Simple 3A
- 22. Simple 3F
- 23: Simple 3AF
- 24: Rise
- 25. Rise A
- 26: Fall

- 27: Rise and Fall
- 28: Precursor
- 29: Post Burst Increase
- 30: Post Burst Increase A
- 31: Post Burst Decrease
- 32: Absorption
- 40: Fluctuation
- 41: Group of Bursts
- 42: Series of Bursts
- 45: Complex
- 46: Complex F
- 47: Great Bursts
- 3. Types of Anomalies in polarization measurements.
 - 101: Simple Small impulsive anomaly
 - 103: Simple impulsive anomaly
 - 120: Gradual anomaly
 - 121: Gradual anomaly mounting other anomaly
 - 124: Rise of polarization
 - 126: Fall of polarization
 - 128: Precursory anomaly before major anomaly
 - 129: G adual decrease after an impulsive anomaly
 - 140: Fluctuation
 - 145 Complex anomaly
 - 150: Complex anomaly inverting polarization sense.

