Advanced Macro Fall 2011

Miklós Koren korenm@ceu.hu koren.hu/teaching

Lecture 11: Continuous time dynamics

Goal of the course

▶ In the next 5 classes, we will study continuous-time dynamic programming.

Goal of the course

- ▶ In the next 5 classes, we will study continuous-time dynamic programming.
- ▶ By the end of the course, I would like you to feel passionate about:
 - dynamic programming
 - continuous-time modelling

Learning outcomes

You will have applicable knowledge of

- discrete-state Markov processes in continuous time
- dynamic programming in continuous time
 - without uncertainty
 - with discrete-state uncertainty
- using dynamic programming in general equilibrium
- aggregation of heterogeneous agent models

Applications

We will cover three applications:

- The expanding variety model of growth (Grossman and Helpman)
- 2. The rising product quality model of growth (Aghion and Howitt)
- 3. A firm-level model of innovation (Klette and Kortum)

Outline

Outline

- ► Today we review Markov processes.
- ▶ We show how they work in continuous time.
- We consider two cases:
 - no uncertainty
 - discrete states

► Hamiltonians and calculus of variations

- ► Hamiltonians and calculus of variations
 - ► Hamiltonians are an engineer's way of thinking.
 - ► The recursive formulation is much more intuitive from the point-of-view of a decision maker in an ever-changing environment.

- Hamiltonians and calculus of variations
 - ► Hamiltonians are an engineer's way of thinking.
 - ► The recursive formulation is much more intuitive from the point-of-view of a decision maker in an ever-changing environment.
- Wiener processes and Brownian motions

- ► Hamiltonians and calculus of variations
 - Hamiltonians are an engineer's way of thinking.
 - ► The recursive formulation is much more intuitive from the point-of-view of a decision maker in an ever-changing environment.
- Wiener processes and Brownian motions
 - They are very useful in finance.
 - but they require a special set of tools.

Why continuous time?

- ▶ Time *is* continuous, only measurement is discrete.
 - ▶ Q1 GDP measures all the value added in the economy between January 1, 2009, 12am and March 31, 2009, 11.59.59pm.
 - Prices are measured monthly, unemployment is reported weekly.
 - ► Full-population census is usually done every 10 years.

Why continuous time?

- ▶ Time *is* continuous, only measurement is discrete.
 - ▶ Q1 GDP measures all the value added in the economy between January 1, 2009, 12am and March 31, 2009, 11.59.59pm.
 - Prices are measured monthly, unemployment is reported weekly.
 - ► Full-population census is usually done every 10 years.
- ▶ It is often useful to think about the "true" model first and then ask how it is measured.

Why continuous time?

- ▶ Time is continuous, only measurement is discrete.
 - ▶ Q1 GDP measures all the value added in the economy between January 1, 2009, 12am and March 31, 2009, 11.59.59pm.
 - Prices are measured monthly, unemployment is reported weekly.
 - ► Full-population census is usually done every 10 years.
- ▶ It is often useful to think about the "true" model first and then ask how it is measured.
- Often, continuous-time math is simpler.

Continuous time

- ▶ In continuous time, $t \in \mathbb{R}$.
- ▶ There are no special points or intervals, all t are similar.
 - We can define arbitrary intervals as we wish.
- Continuous time forces you to think about flows and stocks carefully.

Example 1: "Bill Gates could buy Costa Rica"

- Forbes reports that Bill Gates' net worth, \$50 billion, is higher than the GDP of Costa Rica, hence "Bill Gates could buy Costa Rica".
- ▶ We, economists, know this is totally stupid: net worth is a stock, GDP is a flow.
- But just in case:
 - ► In continuous time, the two actually have different units: GDP is measured in \$/year (or second), net worth is measured in \$.
 - ▶ They cannot be added, subtracted or compared.
 - Even the math does not let you commit this silly mistake.

Example 2: Cash-in-advance models

▶ In cash-in-advance models, all your period consumption has to be financed by your cash in hand:

$$C_t \leq M_t$$
.

Example 2: Cash-in-advance models

In cash-in-advance models, all your period consumption has to be financed by your cash in hand:

$$C_t \leq M_t$$
.

- ▶ But C_t is a flow, M_t is a stock!
- ▶ This comparison does not make sense until you know how often you can replenish your stock of M.

$$C(t, t + \Delta) \equiv \int_{t}^{t+\Delta} c(s)ds \le M(t)$$

▶ The choice of time period, Δ , is crucial.

Example 2 (continued)

- ▶ In practice, there are very few actual flows (maybe your electricity consumption).
- Income, production, consumption etc mostly happen in chunks (you rarely buy a new computer).
- ▶ We will also learn tools to deal with these rare occurrences.

When to use continuous-time modelling?

- Use continuous time if
 - ▶ you need simple and clean formulas
 - you want to think about your problem at different intervals

When to use continuous-time modelling?

- Use continuous time if
 - you need simple and clean formulas
 - you want to think about your problem at different intervals
- ▶ Use discrete time instead if
 - you want to simulate your model in a computer (for a computer, nothing is continuous)
 - you want to estimate your model on data measured at discrete intervals (years, quarters, months)
 - your model assigns a special role to certain points or intervals in time (e.g. trading day).

Markov processes

Markov processes

- A Markov process is a stochastic process for which conditional on the present state of the system, its past and future are independent.
- ► Time homogeneous Markov processes:

$$\Pr[X(t+h) = y \mid X(t) = x] = \Pr[X(h) = y \mid X(0) = x]$$

Many processes have a Markovian representation.

Example: An AR(1) process

► Suppose GDP follows an AR(1) process:

$$y_t = \rho y_{t-1} + u_t$$

lacksquare Knowing y_t helps you predict y_{t+1} , y_{t+2} , etc.

Example: An AR(1) process

► Suppose GDP follows an AR(1) process:

$$y_t = \rho y_{t-1} + u_t$$

- ▶ Knowing y_t helps you predict y_{t+1} , y_{t+2} , etc.
- ▶ But the key is that *nothing else does*.

Markovian representations

- ▶ What if the future depends on the past, not only the present?
 - ➤ Say, unemployment next week depends on last week's number, but also on seasonality.
 - ► We can always increase the state space to include last year's number.

Markovian representations

- ▶ What if the future depends on the past, not only the present?
 - Say, unemployment next week depends on last week's number, but also on seasonality.
 - We can always increase the state space to include last year's number.
- What if there are "news" about the future that are informative?
 - Say, technological developments are reported in Science and this affects future GDP growth.
 - Again, we can include a state variable (or vector) to account for these news.
 - This works as long the news themselves have Markovian dynamics.

Markovian representations

- What if the future depends on the past, not only the present?
 - Say, unemployment next week depends on last week's number, but also on seasonality.
 - We can always increase the state space to include last year's number.
- What if there are "news" about the future that are informative?
 - Say, technological developments are reported in Science and this affects future GDP growth.
 - Again, we can include a state variable (or vector) to account for these news.
 - ► This works as long the news themselves have Markovian dynamics.
- One can use Markovian tools for even inherently forward-looking phenomena.
 - Say, the continuation value in a dynamic contract can be a state variable. (Sargent calls this "dynamic programming squared".)

Discrete time review

First-order difference equations

- ▶ Let x_t be a $k \times 1$ vector.
- ▶ x_t follows a first-order difference equation if $\Delta x_t \equiv x_t x_{t-1}$ is a function of x_{t-1} :

$$\Delta x_t = F(x_{t-1}).$$

- ► This is a special case of a first-order Markov process.
- Being first order is not restrictive. Why?
- ▶ Long-run stability, speed of converge etc. can be characterized by certain properties of F.

Cobweb plot

Continuous time

Moving to continuous time

- \blacktriangleright Let time periods be Δ apart.
- ▶ How can we characterize the time series as Δ becomes smaller and smaller?
- \blacktriangleright We take the limit as $\Delta \to 0$.
 - Often, we will have to rescale changes in the variable for the limit to make sense.

Differential equations

► Suppose *x* follows a difference equation

$$x_{t+\Delta} - x_t = F(x_t, \Delta).$$

- ightharpoonup Note that F may depend on Δ .
 - ▶ It is unreasonable to assume that the equation of motion is the same for a day as for a year.
- Let's look at the *rate* of change in x:

$$\frac{x_{t+\Delta} - x_t}{\Delta} = \frac{F(x_t, \Delta)}{\Delta}.$$

Infinitesimal changes

▶ Now let $\Delta \rightarrow 0$:

$$\lim_{\Delta \to 0} \frac{x_{t+\Delta} - x_t}{\Delta} \equiv \frac{dx(t)}{dt} \equiv \dot{x}(t)$$
$$\dot{x}(t) = \lim_{\Delta \to 0} \frac{F(x_t, \Delta)}{\Delta} \equiv f(x_t).$$

- ▶ Note that for $f(x_t)$ to exist, $F(x_t, \Delta)$ has to be $O(\Delta)$.
 - ▶ Detour: *O*, *o* notation.

Infinitesimal changes

▶ Now let $\Delta \rightarrow 0$:

$$\lim_{\Delta \to 0} \frac{x_{t+\Delta} - x_t}{\Delta} \equiv \frac{dx(t)}{dt} \equiv \dot{x}(t)$$
$$\dot{x}(t) = \lim_{\Delta \to 0} \frac{F(x_t, \Delta)}{\Delta} \equiv f(x_t).$$

- ▶ Note that for $f(x_t)$ to exist, $F(x_t, \Delta)$ has to be $O(\Delta)$.
 - ▶ Detour: *O*, *o* notation.
- Dynamics is described by the above ordinary differential equation.
- ightharpoonup Often, we cannot solve for x(t) in closed form.
- ▶ We can still characterize the steady state, its stability, speed of convergence by the properties of f.

Steady state

lacktriangle The steady state of this system is x^* such that

$$f(x^*) = 0.$$

Stability

- ► The local stability of the steady state depends on the derivative (gradient) of f.
- ► (See Katrin's math course for details.)

Example 1: The Solow model

▶ The law of motion for capital in the Solow model:

$$\dot{k} = sf(k) - \delta k.$$

► The steady-state capital is implicitly given by

$$sf(k^*) = \delta k^*.$$

▶ The steady state is stable if *f* is concave.

Phase diagram

Example 2: The Ramsey model

► The law of motion for capital and consumption in the Ramsey model (we will derive it later):

$$\dot{k} = f(k) - \delta k - c$$
$$\dot{c} = \frac{f'(k) - \delta - \rho}{\theta} c$$

Phase diagram

Discrete time review

Markov chains

- ▶ Let x_t take one of N discrete values: $\{S_1, ..., S_N\}$.
- ▶ We denote the probability that $x_t = S_n$ by π_{nt} .
- ▶ The row vector of probabilities is $\pi_t = \{\pi_{1t}, ..., \pi_{Nt}\}.$
- ▶ The probability of moving from state i to state j is P_{ij} .
- ightharpoonup These probabilities can be collected in a transition matrix P.

$$\pi_{t+1} = \pi_t P$$

Forecasting with Markov chains

▶ If the system starts from state π_0 , the probability distribution of the states at time t:

$$\pi_t = \pi_0 P^t$$

▶ We can use this iteration to forecast any future state of the system.

Stationary distribution

▶ The stationary (invariant) distribution is such that

$$\pi^* = \pi^* P.$$

▶ This is the eigenvector corresponding to the eigenvalue 1.

Stationary distribution

- ▶ Because P is stochastic, there is always at least one eigenvalue of 1.
- \blacktriangleright π^* is unique if 1 is not a multiple eigenvalue.
- $\rightarrow \pi^*$ is asymptotic stationary if all other eigenvalues are less than 1 in absolute value.

Example

▶ Take the following 2×2 transition matrix:

$$P = \begin{bmatrix} 0.9 & 0.1 \\ 0.3 & 0.7 \end{bmatrix}$$

► The steady-state distribution is

$$\pi^* = \begin{pmatrix} 0.75 \\ 0.25 \end{pmatrix}$$

Continuous time

Moving to continuous time

- Let us now take Δ to 0.
- ▶ The set of possible states is given, $S_1, ..., S_N$.
- ▶ What changes with Δ is the transition matrix: $P(\Delta)$.

Moving to continuous time

Intuitively, we don't expect any change over a very short $\Delta \approx 0$ period of time:

$$\lim_{\Delta \to 0} P(\Delta) = I.$$

► But over any positive amount of time, the transition matrix should be nontrivial

$$P(\Delta) \neq I$$
 for all $\Delta > 0$.

- As $\Delta \to 0$, we should put more and more weight on the diagonal elements of P (the probability of no change).
- How to describe such a Markov process?
 - ▶ Formally, we want $P(\Delta) I$ to be $O(\Delta)$.

A rescaled transition matrix

▶ The probability of staying in state i:

$$P_{ii}(\Delta) = 1 - \Lambda_i \Delta.$$

▶ The probability of jumping to state j:

$$P_{ij}(\Delta) = \lambda_{ij}\Delta.$$

▶ (In fact, any function of order $O(\Delta)$ will do.)

Transitions

lacksquare So that $P(\Delta)$ is a transition matrix, we need

$$\Lambda_i = \sum_{j \neq i} \lambda_{ij}$$

- ▶ The λ_{ij} s fully characterize the dynamics of this system.
- ▶ These can be called arrival rates, hazard rates, birth rates if j = i + 1, death rates if j = i 1.
- ▶ Note that λ_{ij} is an arrival *rate*, not a probability.
 - ightharpoonup It can take any non-negative value, not just [0,1].

The transition "rate" matrix

- ▶ More generally, we know that $P(\Delta) I$ is $O(\Delta)$.
- This means that

$$\lim_{\Delta \to 0} \frac{P(\Delta) - I}{\Delta} \equiv \Lambda$$

exists.

- ▶ Because $P(\Delta)\mathbf{1} = \mathbf{1}$ (P is stochastic), $\Lambda\mathbf{1} = \mathbf{0}$.
- The diagonal elements are negative,
- the off-diagonals are positive.
- \blacktriangleright We call the matrix Λ the transition rate matrix.
 - ▶ This fully characterizes the continuous-time Markov chain.

Example 1: Employment and unemployment

- ▶ The hazard rate of losing a job is δ .
 - ▶ The lifetime of a job is exponential with mean $1/\delta$.
 - ▶ Job loss is memoryless: you are just as likely to get fired on your 2nd day as on your 366th.
- ▶ The arrival rate of a new job for an unemployed is λ .
 - ▶ The spell of unemployment is exponential with mean $1/\lambda$.
 - Unemployment is memoryless: you are just as likely to find a job after 1 day of unemployment as after 365.

Example 1: continued

- ► State 0: employment.
- ► State 1: unemployment.

$$\Lambda = \begin{bmatrix} -\delta & \delta \\ \lambda & -\lambda \end{bmatrix}$$

Example 2: incoming emails

- ▶ Let n(t) be the number of emails in your inbox at time t.
- ▶ We want to characterize the dynamics of n.
- Suppose emails arrive at random (think of spam).
 - ► You never erase email:

$$\lambda_{i,j} = 0 \text{ if } j < i$$

No two emails arrive at the same time:

$$\lambda_{i,i+s} = 0 \text{ for all } s \geq 2$$

▶ Each new email arrives with a constant arrival rate:

$$\lambda_{i,i+1} = \lambda$$

- By construction, $\Lambda_i = \lambda$.
- ▶ This is called a Poisson process.

Example 2 (continued)

The transition rate matrix for the Poisson process:

$$\begin{bmatrix} -\lambda & \lambda & 0 & \cdots \\ 0 & -\lambda & \lambda & \cdots \\ 0 & 0 & -\lambda & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

Forecasting with Markov chains

Example 1: Employment and unemployment

- ▶ Suppose you start out employed at t=0, $\pi_0(0)=1$.
- ▶ What is the probability that you will be employed at $t + \Delta$?

$$\pi_0(t + \Delta) = (1 - \delta \Delta)\pi_0(t) + \lambda \Delta \pi_1(t)$$

- with prob $(1-\delta\Delta)$ you remained in state 0
- lacktriangle with prob $\lambda\Delta$ you exited from state 1

Example 1: Employment and unemployment

$$\pi_0(t + \Delta) = (1 - \delta \Delta)\pi_0(t) + \lambda \Delta \pi_1(t)$$

▶ Subtract $\pi_0(t)$ from both sides and divide by Δ .

$$\frac{\pi_0(t+\Delta) - \pi_0(t)}{\Delta} = -\delta \pi_0(t) + \lambda \pi_1(t) = -\delta \pi_0(t) + \lambda [1 - \pi_0(t)]$$

▶ Take $\Delta \rightarrow 0$

$$\dot{\pi}_0(t) = \lambda - (\lambda + \delta)\pi_0(t)$$

► This is a first-order ordinary differential equation, known as the Kolmogorov forward equation.

The Kolmogorov equation

$$\dot{\pi}_0(t) = \lambda - (\lambda + \delta)\pi_0(t)$$

- ▶ To get the likelihood of each state at any t, we can solve the Kolmogorov equation forward, starting from an initial value at t=0.
- The solution to this ODE

$$\pi_0(t) = \frac{\lambda}{\lambda + \delta} \left[1 - Ce^{-(\lambda + \delta)t} \right],$$

where C is a constant of integration (pinned down by the boundary condition).

The steady-state distribution

▶ The steady-state distribution of unemployment is

$$\lim_{t \to \infty} \pi_0(t) = \frac{\lambda}{\lambda + \delta}.$$

► (We will also derive with another method.)

More generally

▶ More generally, the Kolmogorov equation is

$$\dot{\pi}(t) = \pi(t)\Lambda.$$

- ▶ Given an initial $\pi(0)$ and a transition rate matrix Λ , we can calculate the probability of each state in any future t.
 - Often there is no analytical solution for this ODE.
 - However, in dynamic programming it is sufficient to only look at the *immediate future*.
 - ► The transition rates will be sufficient to do recursive optimization.

The stationary distribution

▶ A stationary distribution π^* satisfies

$$\pi^*\Lambda = 0.$$

Example 1: Employment and unemployment

▶ Remember the transition rate matrix:

$$\Lambda = \begin{bmatrix} -\delta & \delta \\ \lambda & -\lambda \end{bmatrix}$$

- lacksquare We are looking for π_0^* and $\pi_1^*=1-\pi_0^*$ such that $\pi^*\Lambda=0$.
- ► That is,

$$-\delta \pi_0^* + \lambda (1 - \pi_0^*) = 0.$$

Example 1: Employment and unemployment

$$-\delta \pi_0^* + \lambda (1 - \pi_0^*) = 0.$$

► This gives us

$$\pi_0^* = \frac{\lambda}{\lambda + \delta}.$$

▶ The same as $\pi_0(\infty)$ (not a coincidence).

Example 1: Employment and unemployment

$$-\delta \pi_0^* + \lambda (1 - \pi_0^*) = 0.$$

► This gives us

$$\pi_0^* = \frac{\lambda}{\lambda + \delta}.$$

- ▶ The same as $\pi_0(\infty)$ (not a coincidence).
- ▶ The steady-state probability of employment
 - increases in the job finding rate
 - decreases in the firing rate

47

Example 3: A faulty email server

- ▶ New emails arrive with rate λ :
 - $n \rightarrow n+1$
- \blacktriangleright With arrival rate η , all emails are lost
 - ightharpoonup n o 0

Example 3: A faulty email server

▶ The transition rate matrix:
$$\begin{bmatrix} -\lambda & \lambda & 0 & \cdots \\ \eta & -\lambda - \eta & \lambda & \cdots \\ \eta & 0 & -\lambda - \eta & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

Example 3: A faulty email server

- ▶ What is the stationary distribution of this process?
- ightharpoonup For all n > 0:

$$\lambda \pi_n^* - (\lambda + \eta) \pi_{n+1}^* = 0$$

▶ This defines π_{n+1}^* recursively as

$$\pi_{n+1}^* = \frac{\lambda}{\lambda + \eta} \pi_n^*.$$

(A geometric distribution.)

▶ In turn,

$$\pi_0^* = \frac{\eta}{\lambda + \eta}.$$

(To make sure that π_n^* s sum to 1.)

A geometric distribution

The Poisson process

The Poisson process

- ▶ The possible states are n = 0, 1, 2,
- ▶ The Poisson process is characterized by an arrival rate λ (aka hazard rate).
- ▶ The transition rate matrix is

$$\begin{bmatrix} -\lambda & \lambda & 0 & \cdots \\ 0 & -\lambda & \lambda & \cdots \\ 0 & 0 & -\lambda & \cdots \end{bmatrix}$$

The Poisson process

- ▶ The possible states are n = 0, 1, 2,
- ▶ The Poisson process is characterized by an arrival rate λ (aka hazard rate).
- ▶ The transition rate matrix is

$$\begin{bmatrix} -\lambda & \lambda & 0 & \cdots \\ 0 & -\lambda & \lambda & \cdots \\ 0 & 0 & -\lambda & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

► The Poisson process is used to characterize *rare, memoryless* events.

Examples

- ▶ Phone calls to emergency center.
- ► Particles emitted via radioactive decay.
- Views of the CEU website.

Characterizing the Poisson process

The two key characteristics of the Poisson process

- 1. No two events happen at the same time ("rare events").
- 2. The future arrival of events is independent of past events ("memoryless").

54

Characterizing the Poisson process

The Poisson process may arise

- ▶ from a truly memoryless process
 - radioactive decay
- from the law of small numbers
 - view of the CEU website from California

Visits to econ.ceu.hu from California

Export shipments of shirts from the U.S.

Export shipments of shirts from the U.S. to Iceland

Counterexamples

- ► Emergency phone calls during a natural disaster.
- Arrival of guests at a restaurant.
- ► Your phone calls to your mother.

Properties of the Poisson process

- ▶ The waiting time between the n-1sth and nth arrival is T_n .
- ▶ T_n is random, exponentially distributed with parameter λ :

$$\Pr(T_n \le t) = 1 - \exp(-\lambda t).$$

Waiting times are independent.

Properties of the Poisson process

- Let N = n(t+h) n(t) denote the number of arrivals between t and t+h.
- ightharpoonup N is a Poisson-distributed random variable with parameter λh .
- \blacktriangleright It takes on values 0, 1, 2, ... with pdf

$$Pr(n = k) = \frac{\exp(-\lambda h)(\lambda h)^k}{k!}$$

61

Properties of Poisson processes (continued)

- ▶ Take two independent Poisson processes with arrival λ_1 and λ_2 .
 - ▶ The sum is also a Poisson process with arrival $\lambda_1 + \lambda_2$.
 - ▶ The waiting time for the first arrival is exponential with parameter $\lambda_1 + \lambda_2$.

Properties of Poisson processes (continued)

- ▶ Take two independent Poisson processes with arrival λ_1 and λ_2 .
 - ▶ The sum is also a Poisson process with arrival $\lambda_1 + \lambda_2$.
 - ▶ The waiting time for the first arrival is exponential with parameter $\lambda_1 + \lambda_2$.
- ▶ Take a Poisson processes with arrival λ and a probability p.
- ▶ Kill each arrival with probability 1 p.
 - ▶ The new process is Poisson with arrival $p\lambda$.

Poisson representation of Markov chains

- ▶ Think of a Markov chain with N states.
- ▶ Starting in any given state, only N-1 things can happen (or nothing).
- ▶ Each N-1 jump has its own arrival rate.
- ▶ The first jump occurs with a Poisson arrival $\lambda_1 + ... + \lambda_{n-1}$ (see above).

Poisson representation of Markov chains (continued)

- ▶ Once there is a jump, which one is it?
- ▶ It could be any one of the 1, ..., n-1.
- ► The probability of jump 1 is

$$\frac{\lambda_1}{\lambda_1 + \dots + \lambda_{n-1}}.$$

Poisson representation of Markov chains (continued)

- Once there is a jump, which one is it?
- ▶ It could be any one of the 1, ..., n-1.
- ► The probability of jump 1 is

$$\frac{\lambda_1}{\lambda_1 + \dots + \lambda_{n-1}}.$$

- ▶ This is a good old probability $\in [0,1]$.
- ▶ This looks more like a discrete transition matrix.

Poisson representation of Markov chains (continued)

- Once there is a jump, which one is it?
- ▶ It could be any one of the 1, ..., n-1.
- ► The probability of jump 1 is

$$\frac{\lambda_1}{\lambda_1 + \dots + \lambda_{n-1}}.$$

- ▶ This is a good old probability $\in [0,1]$.
- ▶ This looks more like a discrete transition matrix.
- ▶ I find it useful to think about Markov chains as the sum of Poisson processes.

Checklist

By now you should understand

- 1. continuous-time Markov chain
- 2. arrival rate matrix
- 3. forward Kolmogorov equation
- 4. stationary distribution
- 5. Poisson process
- 6. Poisson distribution

Appendix

Big-O, small-o

Big-O

A function f(x) is O(g(x)) for a known function g(x) if

$$\lim_{x \to 0} \frac{f(x)}{g(x)} < \infty$$

Small-o

A function f(x) is o(g(x)) for a known function g(x) if

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = 0$$

66

Examples

- $f(x) = x^2$ is both O(x) and o(x). It is also $O(x^2)$.
- $f(x) = x^2 + 2x$ is O(x) but not o(x).
- $f(x) = x^2 + 2x + 4$ is not O(x).