JAiO zima 2024

Rozwiązanie zadań z serii I

Konrad Kaczmarczyk

16 April 2024

Zadanie 0.1. Dla dwóch języków L, K nad alfabetem \sum , definiujemy język zawierający te podciągi słów z L, które można otrzymać poprzez równoczesne usunięcie rozłącznych infiksów, prefiksu i sufiksu, należących do K:

$$L \ominus K = \{v_1 v_2 \dots v_n \in \sum^* | v_1, v_2, \dots, v_n \in \sum^*, n \ge 1, \\ \exists w_0, \dots, w_n \in K, w_0 v_1 w_1 v_2 \dots w_{n-1} v_n w_n \in L\}$$

Rozstrzygnij prawdziwość następujących zdań:

- (a) (1.5 pkt) Dla każdego K, jeśli L jest regularny to $L \ominus K$ jest regularny.
- (b) (1.5 pkt) Dla każdego K, jeśli $L \ominus K$ jest regularny to L jest regularny.
- (c) (2.0 pkt) Istnieje wielomian p taki, że dla dowolnych języków L i K, jeśli L jest rozpoznawany przez automat deterministyczny o n stanach, to $L \ominus K$ jest rozpoznawany przez automat deterministyczny o p(n) stanach.
- (a) Tak, ustalmy dowolne $K \in \sum^*$, i dla dowolnego L będącego regularne, znamy jego automat A(L). Pokażemy teraz że istnieje automat z ε -przejsciami rozpoznający $L \ominus K$. Aby go otrzymać do automatu A(L) wprowadzimy nowy stan początkowy q_1' , oraz nowe stany końcowe q_{k_1}' , q_{k_2}' , itd., gdzie poprzednie stany końcowe już nimi nie są. Teraz wystarczy już wprowadzić nowe ε -przejscia, zadane wzorami:

$$\forall_{q \in Q} (q'_{1}, \varepsilon, q) \in \delta \iff \exists_{w \in K} (q_{1}, w, q) \in \widehat{\delta}$$

$$\forall_{q_{n}, q_{m} \in Q} (q_{n}, \varepsilon, q_{m}) \in \delta \iff \exists_{w \in K} (q_{n}, w, q_{m}) \in \widehat{\delta}$$

$$\forall_{q, q'_{k}, \in Q} (q, \varepsilon, q'_{k_{i}}) \in \delta \iff \exists_{w \in K} (q, w, q_{k_{i}}) \in \widehat{\delta}$$

Zatem istnieje taki automat, a z wykładu wiemy że taki jest równoznaczny z jakims automatem deterministycznym, czyli $L \ominus K$ jest językiem regularnym.

- (b) Nie, niech $K = a^*$, a $L = \{a^n | n \text{ jest liczbą pierwszą}\}$, wtedy język $L \ominus K = a^*$, jest regularny, a sam L nie jest (fakt ten pojawił się na ćwiczeniach).
- (c) Nie, dowiedzmy to używając kontrprzykładu. Niech $L_n = (a+bc)^*c(a+c)^n$, i $K = b^*$. Do budowy automatu deterministycznego rozpoznającego język L_n , potrzebujemy dokładnie 4+n klas, co udowodnimy indukcyjnie. Dla n=0, wystarczą 4 stany i automat wygląda tak,

1

W przypadku kroku indukcyjnego wystarczy zmienić klasę końcową c^n , na zwykłą i dodać nową klasę końcową c^{n+1} , zmienić parę przejsć, żeby otrzymać automat deterministyczny dla L_{n+1} . Teraz rozpatrzmy automat dla $L_n \ominus K$, który generuje słowa dane wyrażeniem $(a+bc+c)^*c(a+c)^n$, który łatwo zauważyć że potrzebuje wykładniczo wiele stanów, bo słowa

są różnych klasach abstrakcji, zatem potrzebują osobnych stanów, a ich jest wykładniczo wiele (dokładnie 2^n), wiemy że nie istnieje wielominan spełniający $p(n+4) > 2^n$, dla wszystkich n, co kończy dowód.