Отчёт по лабораторной работе №1

Основы информационной безопасности

Бережной Иван Александрович

Содержание

1	Цель работы	4
2	Задание	5
3	Выполнение лабораторной работы	6
4	Выполнение домашнего задания	13
5	Ответы на контрольные вопросы	15
6	Выводы	17

Список иллюстраций

3.1	Создание ВМ																						6
3.2	Выбор языка ОС																						7
3.3	Выбор доп языка ОС																						7
3.4	Выбор языков клавиатуры																						7
3.5	Дополнительное ПО																						8
3.6	Выбор диска																						8
3.7	Отключение KDUMP																						8
3.8	Настройка Ethernet																						9
3.9	Пароль для root																						9
3.10) Добавление пользователя																						10
3.11	Завершение установки																						10
3.12	2 Первый взгляд																						11
3.13	3 Установка дополнений гос <mark>т</mark>	'eı	30	й	OC	· •																	11
3.14	Запуск установки	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	12
4.1	Обзор dmesg																						13
4.2	Использование dmesg 1 .																						13
4.3	Использование dmesg 2 .																						14
4.4	Использование dmesg 3 .																						14

1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

2 Задание

- 1. Установить операционную систему Rocky на виртуальную машину
- 2. Получить следующую информацию:
 - 1. Версия ядра Linux (Linux version).
 - 2. Частота процессора (Detected Mhz processor).
 - 3. Модель процессора (СРИО).
 - 4. Объем доступной оперативной памяти (Memory available).
 - 5. Тип обнаруженного гипервизора (Hypervisor detected).
 - 6. Тип файловой системы корневого раздела.
 - 7. Последовательность монтирования файловых систем.

3 Выполнение лабораторной работы

Создадим новую виртуальную машину в VirtualBox. Зададим имя, количество ядер (4), объём оперативной памяти (4гб) и размер диска (45гб). Подключим ISO-файл с ос Rocky (рис. 3.1).

Рис. 3.1: Создание ВМ

Выберем основной язык ОС (рис. 3.2).

Рис. 3.2: Выбор языка ОС

И дополнительный язык. Разумеется, русский (рис. 3.3).

Рис. 3.3: Выбор доп языка ОС

Выберем языки для клавиатуры. Также русский и английский. Не забудем установить горячие клавиши для смены языка. В данном случае alt+shift (рис. 3.4).

Рис. 3.4: Выбор языков клавиатуры

Установим дополнительное ПО, которое нам пригодится, а именно графическую оболочку и инструменты разработчика (рис. 3.5).

Рис. 3.5: Дополнительное ПО

Выберем диск, куда установим ОС (рис. 3.6), отключим KDUMP (рис. 3.7) и настроим выход в интернет (рис. 3.8).

Рис. 3.6: Выбор диска

Рис. 3.7: Отключение KDUMP

Рис. 3.8: Настройка Ethernet

Установим пароль для рута (рис. 3.9), а также создадим пользователя с правами администратора (рис. 3.10).

Рис. 3.9: Пароль для root

Рис. 3.10: Добавление пользователя

После завершения установки (рис. 3.11) нам откроется графическая оболочка (рис. 3.12). Установим дополнения гостевой ос в разделе "Устройства" -> "Под-ключить образо дополнений гостевой ОС" в верхнем меню VirtualBox (рис. 3.13). Жмём "Run" (рис. 3.14).

Рис. 3.11: Завершение установки

Рис. 3.12: Первый взгляд

Рис. 3.13: Установка дополнений гостевой ОС

Рис. 3.14: Запуск установки

4 Выполнение домашнего задания

Откроем командную строку и впишем dmesg | less (рис. 4.1). Чтобы выйти из процесса, нажмём Ctrl+Z.

Рис. 4.1: Обзор dmesg

Теперь найдём запрашиваемую информацию, такую как версию ядра, частота процессора и модель процессора (рис. 4.2).

```
[iaberezhnoyj@iaberezhnoyj ~]$ dmesg | grep -i "linux version"
[ 0.000000] Linux version 5.14.0-503.14.1.el9_5.x86_64 (mockbuild@iadl-prod-build001.bld.equ.rockylinux.org) (gcc (GCC)
11.5.0 20240719 (Red Hat 11.5.0-2), GNU ld version 2.35.2-54.el9) #1 SMP PREEMPT_DYNAMIC Fri Nov 15 12:04:32 UTC 2024
[iaberezhnoyj@iaberezhnoyj ~]$ dmesg | grep -i "mhz processor"
[ 0.0000007] tsc: Detected 3092.680 BM1 processor
[iaberezhnoyj@iaberezhnoyj ~]$ dmesg | grep -i "cpu0"
[ 0.152585] smpboot: CMPUS AMD Ryzen 5 5600G with Radeon Graphics (family: 0x19, model: 0x50, stepping: 0x0)
[iaberezhnoyj@iaberezhnoyj ~]$
```

Рис. 4.2: Использование dmesg 1

Посмотрим на свободный объём оперативной памяти (рис. 4.3).

```
[aberezhnoy]@iaberezhnoyj ~]$ dmesg | grep ~i "memory"

[a.003973] ACPI: Reserving PACP table beauty at [mem 0xdfff00f0-0xdfff01e3]
[a.003974] ACPI: Reserving pACP table beauty at [mem 0xdfff00f20-0xdfff02972]
[a.003974] ACPI: Reserving PACP table beauty at [mem 0xdfff00f20-0xdfff0237]
[a.003975] ACPI: Reserving PACP table beauty at [mem 0xdfff00f20-0xdfff0237]
[a.003975] ACPI: Reserving PACP table beauty at [mem 0xdfff00f20-0xdfff0237]
[a.003975] ACPI: Reserving PACP table beauty at [mem 0xdfff00f20-0xdfff00f237]
[a.003975] ACPI: Reserving PACP table beauty at [mem 0xdfff00f20-0xdfff00f237]
[a.003975] ACPI: Reserving PACP table beauty at [mem 0xdfff00f20-0xdfff00f237]
[a.003975] ACPI: Reserving PACP table beauty at [mem 0xdfff00f20-0xdfff00f237]
[a.003930] PACP table beauty at [mem 0xdfff00f20-0xdfff00f20]
[a.003930] PACP table beauty at [mem 0xdff00f000-0xd0000fff]
[a.003930] PACP table beauty at [mem 0xdff00f000-0xd0000fff]
[a.003930] PACP table beauty at [mem 0xdff00f000-0xd0000fff]
[a.00332] PACP table beauty at [mem 0xdff00f000-0xdf00fff]
[a.00332] PACP table beauty at [mem 0xdff00f000-0xdffff]
[a.00332] PACP table beauty at [mem 0xdff00f000-0xdffff]
[a.00333] PACP table beauty at [mem 0xdff00f000-0xdfffff]
[a.00333] PACP table beauty at [mem 0xdff00f000-0xdffff]
[a.00333] PACP table beauty at [mem 0xdff00f000-0xdffff]
[a.00333] PACP table beauty at [mem 0xdf00f000-0xdffff]
[a.00333] PACP table beauty at [mem 0xdf00f000-0xdffff]
[a.00333] PACP table beauty at [mem 0xdf00f000-0xdfff]
[a.00333] PACP table beauty at [mem 0xdf00f000-0xdffff]
[a.00333] PACP table beauty at [mem 0xdf00f000-0xdffff]
[a.00333] PACP table beauty at [mem 0xdf00f000-0xdffff]
[a.00333] PACP table b
```

Рис. 4.3: Использование dmesg 2

И, наконец, проверим тип виртуализации (KVM), тип файловой системы корневого раздела (XFS) и порядок монтирования файловых систем (рис. 4.4).

```
[iaberezhnoyj@iaberezhnoyj ~]$ dmesg | grep -i "hypervisor"
[ 0.000000] hypervisor detected: KVM
[ 0.000000] hypervisor detected: KVM
[ 2.057943] vmmgfx 0000:00:02:0: [drm] *ERROR* vmwgfx seems to be running on an unsupported hypervisor.
[iaberezhnoyj@iaberezhnoyj ~]$ dmesg | grep -i "filesystem"
[ 3.965255] KFS (dm-0): Mounting V5 Filesystem 36ca9d6c-30ad-4050-b682-2940a9b57c83
[ 6.072923] KFS (sdal): Mounting V5 Filesystem 69f55c2c-8be4-4d8d-b48a-a98554629eff
[iaberezhnoyj@iaberezhnoyj ~]$
```

Рис. 4.4: Использование dmesg 3

5 Ответы на контрольные вопросы

- 1. Учётная запись пользователя в Linux содержит: имя пользователя (логин), UID (идентификатор пользователя), GID (идентификатор основной группы), домашний каталог, оболочку (shell), хеш пароля, дополнительные группы.
- 2. Перечислим команды для:
 - Получения справки по команде: man
 - Перемещения по файловой системе: cd
 - Просмотра содержимого каталога: 1s
 - Определения объёма каталога: du
 - Работы с директориями и файлами: mkdir создание папки, rmdir удаление папки, rm удаление файла, touch создание файла.
 - Изменения прав: chmod
 - Просмотра истории команд: history
- 3. Файловая система (ФС) это способ хранения и организации данных на диске. Примеры файловых систем:
- ext4 стандартная для Linux, поддерживает файлы до 16 ТБ.
- XFS быстрая, подходит для больших файлов и серверов.
- NTFS файловая система Windows, поддерживается в Linux.
- FAT32 совместима с разными ОС, но ограничение на файл 4 ГБ.
- 4. Чтобы посмотреть, какие файлы подмонтированы в ОС, нужно вбить команду mount.

5. Зависший процесс можно удалить командой kill.

6 Выводы

В ходе выполнения лабораторной работы мы научились создавать виртуальные машины и устанавливать ОС на них. Также поработали с терминалом и вспомнили основные команды.