#### **COMPUTABLE FUNCTIONS**

Dr. A. Beulah AP/CSE



# **LEARNING OBJECTIVE**

- To Design Turing machines for any Languages (K3)
  - To Understand the concept of Turing Machine



18 August 2022 A. Beulah Unit IV 2

• A total function  $\underline{f}: \underline{\Sigma}^* \to \underline{\Sigma}^*$  is Turing-computable if there exists a DTM M such that for every x in  $\underline{\Sigma}^*$ ,

$$(s, BxB) - (h, Bf(x)B).$$

• A partial f:  $\Omega \to \Sigma^*$  is Turing-computable if there exists a DTM M such that  $L(M) = \Omega$  and for every x in  $\Omega$ ,

$$(s, BxB) \rightarrow (h, Bf(x)B).$$



Construct a TM for successive function?

$$f: \underline{N} \rightarrow \underline{N}, f(x) = \underline{x}+1.$$

Assume that the input is encoded in UNARY form.

Let 
$$M = (Q, \Sigma, \Gamma, \delta, q0, B, F)$$

$$Q = \{q0,q1\}$$
  $q0$ =start state  $q1$ =final state

$$\Sigma = \{0\}$$

$$\Gamma = \{0,B\}$$

$$F = \{q1\}$$



Construct a TM for successive function?

$$f: N \rightarrow N, f(x) = x+1.$$

Assume that the input is encoded in UNARY form.

Let 
$$M = (Q, \Sigma, \Gamma, \delta, q0, B, F)$$

$$Q = \{q0,q1\}$$
  $q0$ =start state  $q1$ =final state

$$\Sigma = \{0\}$$

$$\Gamma = \{0,B\}$$

$$F = \{q1\}$$



| States        | Tape Symbols  |                                                     |  |
|---------------|---------------|-----------------------------------------------------|--|
|               | 0             | В                                                   |  |
| $q_{_{ m O}}$ | $(q_0, 0, R)$ | $(\underline{q}_{\underline{1}}, \underline{0}, R)$ |  |
| $q_{_1}$      | _             | _                                                   |  |



Let us consider the input x=3, This is encoded as 000.

$$(q_0, \underline{000B}) \mid -(q_0, 0\underline{00B}) \mid -(q_0, 00\underline{0B})$$
  
 $\mid -(q_0, 000\underline{B}) \mid -(q_1, \underline{0000B})$ 

The machine halts in an accepting state  $q_1$ 

by computing the successive of x



• We can represent numbers on a TM by using the unary representation, which just uses n 0's to represent the number n.

Example: 
$$00000 = 5$$

- We can construct a TM to concatenate two strings together.
- If we represent two numbers in unary form, then a TM which concatenates these two strings is actually performing addition!





Unit IV

- Addition of two numbers as simple as concatenation of two strings.
- Assume two integers are represented in unary form on the tape of a Turing machine.
- Assume the two integers are separated by a 1 between them.
- Design a Turing machine that will add these two numbers.



• f(m,n)=m+n

in 
$$0' \rightarrow B$$
  
 $8(9_{01}, 0) = (9_{11}, B, R)$   
 $8(9_{11}, 0) = (9_{11}, 0, R)$   
 $8(9_{11}, 0) = (9_{21}, 0, R)$   
 $8(9_{21}, 0) = (9_{21}, 0, R)$   
 $8(9_{21}, 0) = (9_{21}, 0, R)$ 





• 3+2



## **SUBTRACTION M - N**

• For example, proper subtraction m – n is defined to be



• The TM M =  $(\{q0,q1,...,q6\}, \{0,1\}, \{0,1,B\}, \partial, q0, B, \{\})$ 



The function  $\partial$  is described below.

$$\partial(q0,0) = (q1,B,R)$$
 Begin. Replace the leading 0 by B.



Unit IV

$$\partial(q1,0) = (q1,0,R)$$
 Search right looking for the first 1.

$$\partial(q1,1) = (\underline{q2},1,R)$$

$$\partial(q2,1) = (q2,1,R)$$
 Search right past 1's until encountering a 0. Change that 0 to 1.

$$\partial(q2,0) = (q3,1,L)$$

$$\partial(q3,0) = (q3,0,L)$$
 Move left to a blank. Enter state q0 to repeat the cycle.

$$\partial(q3,1) = (q3,1,L)$$

$$∂$$
(q3,B) = (q0,B,R)

If in state q2 a B is encountered before a 0, we have situation i described above. Enter state q4 and move left, changing all 1's to B's until encountering a B. This B is changed back to a 0, state q6 is entered and M halts.

$$\partial(q2,B) = (q4,B,L)$$
  
 $\partial(q4,1) = (q4,B,L)$ 

$$\partial(q4,1) = (q4,B,L)$$

$$\partial(q4,0) = (q4,0,L) \ /$$

$$\partial(q4,B) = (q6,0,R)$$

If in state q0 a 1 is encountered instead of a 0, the first block of 0's has been exhausted, as in situation (ii) above. M enters state q5 to erase the rest of the tape, then enters q6 and halts.

$$\partial(q0,1) = (q5,B,R)$$

$$\partial(q5,0) = (q5,B,R)$$

$$\partial(q5,1) = (q5,B,R)$$

$$\partial(q5,B) = (q6,B,R)$$

18 August 2022 A. Beulah

















3-1



# **SUBTRACTION M - N**

|       | symbol        |               |               |  |
|-------|---------------|---------------|---------------|--|
| state | 0             | 1             | В             |  |
| $q_0$ | $(q_1, B, R)$ | $(q_5, B, R)$ | -             |  |
| $q_1$ | $(q_1, 0, R)$ | $(q_2, 1, R)$ | -             |  |
| $q_2$ | $(q_3, 1, L)$ | $(q_2, 1, R)$ | $(q_4, B, L)$ |  |
| $q_3$ | $(q_3, 0, L)$ | $(q_3, 1, L)$ | $(q_0, B, R)$ |  |
| $q_4$ | $(q_4, 0, L)$ | $(q_4, B, L)$ | $(q_6, 0, R)$ |  |
| $q_5$ | $(q_5, B, R)$ | $(q_5, B, R)$ | $(q_6, B, R)$ |  |
| $q_6$ | -             | -             | -             |  |



# PROGRAMMING TECHNIQUES OF TURING MACHINES

- Storage in the Finite Control
- Multiple Tracks
- Checking off Symbols
- Subroutines







#### STORAGE IN THE FINITE CONTROL

- The finite control can be used to hold the finite amount of information.
- It is considered as a pair of elements, like  $(q_0,a)$ , where one exercising control and second component stores a symbol in the finite control.
- Consider a turing machine M which accepts the language 01\* + 10\*
- Let  $M = (Q, \{0,1\}, \{0,1,B\}, \delta, \{q_0,B\},B,F)$
- $Q = \{q_0,q_1\} \times \{0,1,B\}$ =  $([q_0,0], [q_0,1], [q_0,B], [q_1,0], [q_1,1], [q_1,B])$
- $F = \{[q_1,B]\}$







### STORAGE IN THE FINITE CONTROL

$$\delta([q_0, B], 0) = ([q_1, 0], 0, R)$$

$$\delta([q_0, B], 1) = ([q_1, 1], 1, R)$$

$$\delta([q_1,0],1) = ([q_1,0], 1, R)$$

$$\delta([q_1,1],0) = ([q_1,1],0,R)$$

$$\delta([q_1, 0], B) = ([q_1, B], 0, L)$$

$$\delta([q_1, 1], B) = ([q_1, B], 1, L)$$



$$S\left(\begin{bmatrix} 9, 8y \end{bmatrix}, \begin{bmatrix} ay, 5y^2 \end{bmatrix}\right)$$



# **MULTIPLE TRACKS**



$$S(9/0, 2) = (9/0, \times, R)$$

$$BBI$$







| В | В | В | В | > | / |  |
|---|---|---|---|---|---|--|
| а | а | b | С | а | b |  |

extra Track





Consider a turing machine  $M = (Q, \Sigma, \Gamma, \delta, q0, B, F)$  for the language  $L = \{wcw | w \in \{a, b\}^+\}$ 

- a)  $Q = \{[q,d] \mid q = q_1 \ q_2 \dots \ q_9 \ and \ d = a, b \ or \ B\}$
- b)  $\Sigma = \{ [B, d] \mid d = a, b \text{ or } c \}$
- c)  $\Gamma = \{[x, d] \mid x = B \text{ or and } d = a, b, c \text{ or } B\}$
- d)  $q0 = [q_1, B]$
- e)  $F = \{[q_9, B]\}$
- f) B = [B, B]
- g)  $\delta$  is defined for d = a or b and e = a or b.



#### Forward

$$\delta([q_1, B], [B, d]) = ([q_2, d], [\checkmark, d], R)$$

$$\delta([q_2, d], [B, e]) = ([q_2, d], [B, e], R)$$

$$\delta([q_2,d], [B,c]) = ([q_3,d], [B,c], R)$$

$$\delta([q_3,d], [\checkmark, e]) = ([q_3,d], [\checkmark, e], R)$$

$$\delta([q_3,d], [B, d]) = ([q_4,B], [\checkmark, d], \underline{L})$$







#### Backward

$$\delta([q_4,B], [\checkmark,d]) = ([q_4,B], [\checkmark,d], L)$$
  
 $\delta([q_4,B], [B,c]) = ([q_5,B], [B,c], L)$   
 $\delta([q_5,B], [B,d]) = ([q_6,B], [B,d], L)$   
 $\delta([q_6,B], [B,d]) = ([q_6,B], [B,d], L)$   
 $\delta([q_6,B], [\checkmark,d]) = ([q_1,B], [\checkmark,d], R)$ 



#### Terminate

$$\delta([q_5,B], [\checkmark, d]) = ([q_7,B], [\checkmark, d], R)$$
  
 $\delta([q_7,B], [B, c]) = ([q_8,B], [B, c], R)$   
 $\delta([q_8,B], [\checkmark, d]) = ([q_8,B], [\checkmark, d], R)$   
 $\delta([q_8,B], [B, B]) = ([q_9,B], [, B], L)$ 



$$\delta(q0,0) = (q6, B, R)$$

$$\delta(q6, 0) = (q6, 0, R)$$

$$\delta(q6, 1) = (q1, 1, R)$$

$$f(m,n) = m + n$$

$$f(m,n) = mxn$$





#### $\delta$ for subroutine COPY.

| States | Inputs        |               |               |               |
|--------|---------------|---------------|---------------|---------------|
| States | 0             | 1             | 2             | В             |
| $q_1$  | $(q_2, 2, R)$ | $(q_4, 1, L)$ |               |               |
| $q_2$  | $(q_2, 0, R)$ | $(q_2, 1, R)$ |               | $(q_3, 0, L)$ |
| $q_3$  | $(q_3, 0, L)$ | $(q_3, 1, L)$ | $(q_1, 2, R)$ |               |
| $q_4$  |               | $(q_5, 1, R)$ | $(q_4, 0, L)$ |               |



A. Beulah Unit IV

23

| States      | Inputs         |                |   |                |
|-------------|----------------|----------------|---|----------------|
| States      | 0              | 1              | 2 | В              |
| $q_{_{5}}$  | $(q_{7},0,L)$  |                |   |                |
| $q_{_{7}}$  |                | $(q_{8},1,L)$  |   |                |
| $q_{_8}$    | $(q_{9},0,L)$  |                |   | $(q_{10},B,R)$ |
| $q_{_{9}}$  | $(q_{9},0,L)$  |                |   | $(q_0, B, R)$  |
| $q_{_{10}}$ |                | $(q_{11},B,R)$ |   |                |
| $q_{_{11}}$ | $(q_{11},B,R)$ | $(q_{12},B,R)$ |   |                |











 $\delta(q_0, 001001) \mid -Bq_601001B$  $-B0q_{6}1001B$  $B01q_{1}001B$ B01Xq<sub>2</sub>01B  $B01X0q_{2}1B$ B01X01*q*<sub>2</sub>*B*  $B01X0q_310$  $B01Xq_3010$ B01*q*<sub>3</sub>*X010* B01Xq<sub>1</sub>010 B01XX*q*<sub>2</sub>10 B01XX1*q*<sub>2</sub>*0* B01XX10 $q_2B$ B01XX1*q*<sub>3</sub>00 B01XX*q*<sub>3</sub>100 B01X $q_3$ X100 B01XX*q*<sub>1</sub>100 B01X*q*<sub>4</sub>*X100* B01q<sub>4</sub>X0100 B0*q*<sub>4</sub>100100 B01q<sub>5</sub>00100 B0q<sub>7</sub>100100

 $-Bq_{g}0100100$  $-q_9B0100100$  (  $-Bq_00100100$ - BBq<sub>6</sub>100100  $-BB1q_{1}00100$ - BB1X*q*<sub>2</sub>0100 - BB1X0*q*<sub>2</sub>100 - BB1X0*q*<sub>2</sub>100 - BB1X01*q*<sub>2</sub>00 - BB1X010*q*<sub>2</sub>0 - BB1X0100*q*<sub>2</sub>*B*  $-BB1X010q_300$ - BB1X01*q*₃000 - BB1X0*q*<sub>3</sub>1000  $-BB1Xq_301000$  $-BB1q_{3}X01000$ – BB1X*q* ₁01000 - BB1XX*q*<sub>2</sub>1000 - BB1XX1*q* <sub>2</sub>000 - BB1XX10*q*<sub>2</sub>00 - BB1XX100*q*<sub>2</sub>0  $-BB1XX1000q_2B$ - BB1XX100*q*<sub>3</sub>00 - BB1XX10*q*<sub>3</sub>000 – BB1XX1*q*₃0000 - BB1XX*q*<sub>3</sub>10000  $-BB1Xq_{3}X10000$ - BB1XX*q*₁10000

- $|-BB1Xq_{4}X10000$
- $|-BB1q_4X010000|$
- $|-BBq_410010000$
- |- BB1*q<sub>5</sub>0010000*
- $|-BBq_710010000$
- $|-Bq_8B10010000$
- $|-BBq_{10}10010000$
- $-BBBq_{11}0010000$
- $|-BBBBq_{11}010000$
- $|-BBBBBq_{11}10000$
- |- BBBBBBq<sub>12</sub>0000



# **SUMMARY**

- Definition of Total and partial function
- Computing a numerical function using Turing Machine
- Programming techniques of Turing Machine



18 August 2022 A. Beulah Unit IV 29

### TEST YOUR KNOWLEDGE

- Which of the following statements is/are FALSE?
- 1. For every non-deterministic Turing machine, there exists an equivalent deterministic Turing machine.
- 2. Turing recognizable languages are closed under union and complementation.
- 3. Turing decidable languages are closed under intersection and complementation.
- 4. Turing recognizable languages are closed under union and intersection.
- A. 1 and 4 only
- B. 1 and 3 only
- C. 2 only
- D. 3 only



#### TEST YOUR KNOWLEDGE

Which of the following is true for the language
 L={a<sup>p</sup>/ p is prime}

- A. It is not accepted by a Turing Machine
- B. It is regular but not context-free
- C. It is context-free but not regular
- D. It is neither regular nor context-free, but accepted by a Turing machine



## REFERENCE

 Hopcroft J.E., Motwani R. and Ullman J.D, "Introduction to Automata Theory, Languages and Computations", Second Edition, Pearson Education, 2008

