CS 460/560 Introduction to Computational Robotics Fall 2019, Rutgers University

EKF, UKF, Particle Filters, and SLAM

Instructor: Jingjin Yu

Outline

Kalman filter recap

Extended Kalman filter (EKF)

Unsented Kalman filter (UKF) and particle filters

Simultaneous localization and mapping (SLAM)

Sensing review

Kalman Filter Review

Kalman filter is a type of Bayesian filters over a Hidden Markov model

- \Rightarrow The x_i s are hidden (actual) system states that are not directly known
- \Rightarrow We can **only observe** x_i using sensors to get observations z_i
- ⇒The (discrete) process is often modeled as a two-step iterative one
 - \Rightarrow Noisy state change: $x_k = f(x_{k-1}, u_{k-1}) + \omega_{k-1}$
 - \Rightarrow Noisy measurement after state change: $z_k = h(x_k) + v_k$
- \Rightarrow The sequence of "data" is $u_0, z_1, u_1, z_2, u_2, z_3, ...$
- \Rightarrow The goal is to derive an $\hat{x_k}$ as an accurate **estimate** of x_k

Kalman Filter Review – Assumptions

Stochastic, discrete-time linear system

$$x_k = Ax_{k-1} + Bu_{k-1} + \omega_{k-1}, \qquad \omega_{k-1} \sim N(0, Q) \tag{1}$$

$$\Rightarrow x_k, \omega_{k-1} \in \mathbb{R}^n, u_{k-1} \in \mathbb{R}^m, A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}$$

Linear observer (sensor)

$$z_k = Hx_k + \nu_k, \qquad \nu_k \sim N(0, R) \tag{2}$$

$$\Rightarrow z_k, v_k \in \mathbb{R}^{\ell}, H \in \mathbb{R}^{\ell \times n}$$

Both ω_{k-1} and ν_k are **zero mean Gaussians** and are **uncorrelated** \Rightarrow i.e., $Cov(\omega, \nu) = 0$

Kalman Filter Review – Linear System Example

"Real" examples of linear dynamical systems

⇒Continuous

$$\begin{pmatrix} \dot{x_1} \\ \dot{x_2} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$\begin{pmatrix} x_{1,k} \\ x_{2,k} \end{pmatrix} = \begin{pmatrix} 1 & \Delta t \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_{1,k-1} \\ x_{2,k-1} \end{pmatrix}$$

⇒Discrete (1D actual), with "control"

$$\begin{pmatrix} x_{1,k} \\ x_{2,k} \end{pmatrix} = \begin{pmatrix} 1 & \Delta t \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_{1,k-1} \\ x_{2,k-1} \end{pmatrix} + \begin{pmatrix} 0 & \frac{1}{2} (\Delta t)^2 \\ 0 & \Delta t \end{pmatrix} \begin{pmatrix} 0 \\ a \end{pmatrix}$$

Kalman Filter Review – Formulas

We have the iterative update algorithm

To run the algorithm

- \Rightarrow The values of A, B, and H are known, u_{k-1} and z_k are also known
- \Rightarrow The values of Q and R are estimated (system identification or sys ID)
- \Rightarrow Initial values \hat{x}_0 and P_0 are guessed
- \Rightarrow Usually P_k and K_k will quickly converge with the right Q and R

Extended Kalman Filter (EKF) – Assumptions

Kalman filter requires linearity, i.e.,

$$x_k = Ax_{k-1} + Bu_{k-1} + \omega_{k-1}, \quad \omega_{k-1} \sim N(0, Q)$$

$$z_k = Hx_k + \nu_k, \quad \nu_k \sim N(0, R)$$
(2)

These **nice assumptions** often do not hold in practice!

⇒ More realistic assumptions are

$$x_k = f(x_{k-1}, u_{k-1}, \omega_{k-1}), \qquad \omega_{k-1} \sim N(0, Q)$$

$$z_k = h(x_k, \nu_k), \qquad \qquad \nu_k \sim N(0, R)$$
(1*)
(2*)

- \Rightarrow The functions f and h are **non-linear**
- \Rightarrow Here, we know f, h, u_{k-1} , z_k , and estimate Q and R
- \Rightarrow But, locally, f and h may be linearly approximated
- ⇒This is achieved using **Taylor series**

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \dots$$

Extended Kalman filter provides an **ad-hoc** extension to Kalman filters based on these assumptions, to compute the estimate, \hat{x}_k .

Update Equations for EKF

We have the iterative update algorithm

To run the algorithm

- \Rightarrow Again, estimate Q and R offline (sys ID)
- \Rightarrow Start filter with some initial \hat{x}_0 and P_0
- \Rightarrow The values for A, W, H, and V change in each iteration
- \Rightarrow Similar to Kalman filter, P_k and K_k can converge quickly if the model is right

A Note on the Two Update Steps

Both Kalman filter and EKF have time and measurement updates

⇒ Kalman filter

Time update
$$T_1$$

$$\hat{x}_k^- = A\hat{x}_{k-1} + Bu_{k-1}$$

$$P_k^- = AP_{k-1}A^T + Q$$

Time update
$$T_1$$
 Measurement update M_1
$$\hat{x}_k^- = A\hat{x}_{k-1} + Bu_{k-1} \\ P_k^- = AP_{k-1}A^T + Q$$
 $K_k = P_k^-H^T(HP_k^-H^T + R)^{-1}, P_k = (I - K_kH)P_k^-$

⇒Extended Kalman filter

Time update
$$T_2$$

$$\hat{x}_k^- = f(\hat{x}_{k-1}, u_{k-1}, 0)$$

$$P_k^- = A_k P_{k-1} A_k^T + W_k Q_{k-1} W_k^T$$

$$A_k = \frac{\partial f}{\partial x}|_{\hat{x}_{k-1}, u_{k-1}, 0}$$

$$W_k = \frac{\partial f}{\partial \omega}|_{\hat{x}_{k-1}, u_{k-1}, 0}$$

Time update
$$T_2$$
 Measurement update M_2
$$\widehat{x}_k^- = f(\widehat{x}_{k-1}, u_{k-1}, 0)$$

$$P_k^- = A_k P_{k-1} A_k^T + W_k Q_{k-1} W_k^T$$

$$A_k = \frac{\partial f}{\partial x}|_{\widehat{x}_{k-1}, u_{k-1}, 0}$$

$$W_k = \frac{\partial f}{\partial \omega}|_{\widehat{x}_{k-1}, u_{k-1}, 0}$$
 Measurement update
$$\widehat{x}_k = \widehat{x}_k^- + K_k \left(z_k - h(\widehat{x}_k^-, 0) \right)$$

$$K_k = P_k^- H_k^T \left(H_k P_k^- H_k^T + V_k R V_k^T \right)^{-1}$$

$$P_k = (I - K_k H_k) P_k^-$$

$$H_k = \frac{\partial h}{\partial x}|_{\widehat{x}_k^-, 0}, V_k = \frac{\partial h}{\partial y}|_{\widehat{x}_k^-, 0}$$

One can mix and match these!

- \Rightarrow E.g., one can build a filter with T_2 and M_1 . Or T_1 and M_2
- ⇒This generally applies to two-stage filters including later ones

Issues with the Extended Kalman Filter

There are many issues with EKF

- \Rightarrow Can perform poorly with highly non-linear f and h
 - \Rightarrow i.e., Taylor expansion may not capture f or h well enough
 - \Rightarrow This can be particularly true for f

 \Rightarrow Also, computing $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial \omega}$, and $\frac{\partial h}{\partial v}$ may be difficult or impossible \Rightarrow E.g., f may be very complex and may not even have a closed form

Unscented Kalman Filter and Particle Filter

Unscented Kalman filter (UKF) and Particle filter avoid such problems

- ⇒For time update
 - \Rightarrow Directly **sample** \hat{x}_{k-1} and obtain a certain number of samples \hat{x}_{k-1}^i with weights
 - ⇒ Directly "push" the samples through *f*
 - \Rightarrow Compute \hat{x}_k^- and P_k^- from these updated samples
 - ⇒ This can be imagined as running many Kalman filters
- ⇒Similar steps for measurement update
- ⇒Comparison to Kalman filter/EKF

UKF/particle filters

- ⇒ Difference between UKF and particle filters
 - ⇒ UKF uses deterministic samples (so called "unscented" transformation)
 - ⇒ Particle filters use Monte Carlo sampling, usually with more samples than UKF

Simultaneous Localization and Mapping

Suppose you arrived a new town (e.g., travel, or playing an RPG)

- ⇒How do you explore?
- ⇒ Move around and look for landmarks

 ⇒ Houses, buildings, roads, etc.
- ⇒Build map based on the landmarks
- ⇒Localize yourself on the map

Robots would need to do the same

- ⇒Build a map using landmarks
- ⇒Localize using the map
- ⇒Simultaneous localization and mapping (SLAM)
- ⇒This is partially a "chicken-egg" problem
- ⇒Very similar to Kalman filter
 - ⇒ Time update

SLAM, More Formally

Problem setup

- \Rightarrow A robot moves in an environment with states x_k
- \Rightarrow Make relative observation of $\mathbf{m}=m_1$, ..., m_n landmark locations
- \Rightarrow State history $X_k = \{x_0, \dots, x_k\} = X_{k-1} \cup \{x_k\}$
- \Rightarrow Control u_k applied at x_{k-1}
- $\Rightarrow U_k = \{u_1, ..., u_k\} = U_{k-1} \cup \{u_k\}$
- $\Rightarrow z_{ik}$: an observation of the *i*-th landmark at time step k
- $\Rightarrow {\bf z}_k = (z_{1k}, ..., z_{nk}) \text{ and } Z_k = \{{\bf z}_1, ..., {\bf z}_k\} = Z_{k-1} \cup \{{\bf z}_k\}$
- \Rightarrow Motion model: $P(x_k \mid x_{k-1}, u_k)$
 - \Rightarrow This is similar to $x_k = f(x_{k-1}, u_k, \omega)$
 - ⇒ Note the indexing is different from Kalman filter this is due to convention
- \Rightarrow Observation model: $P(\mathbf{z}_k \mid x_k, \mathbf{m})$

SLAM is to compute the following probability distribution bout Kalman filter?

What about Kalman filter?

$$P(x_k, \mathbf{m} \mid Z_k, U_k, x_0)$$

 x_k : location | m: map

SLAM also has time and observation (measurement) updates

SLAM Time Update

The time update makes predictions based on x_{k-1} and u_k

End goal:
$$P(x_k, \mathbf{m} \mid Z_k, U_k, x_0)$$

$$= \int P(x_k, \mathbf{m} \mid Z_{k-1}, U_k, x_0) \, dx_{k-1} \quad \text{(marginalization)}$$

$$= \int \frac{P(x_k, x_{k-1}, \mathbf{m}, Z_{k-1}, U_k, x_0)}{P(Z_{k-1}, U_k, x_0)} \, dx_{k-1} \quad \text{(marginalization)}$$

$$= \int \frac{P(x_k, x_{k-1}, \mathbf{m}, Z_{k-1}, U_k, x_0)}{P(Z_{k-1}, U_k, x_0)} \, dx_{k-1}$$

$$= \int \frac{P(x_k, x_{k-1}, \mathbf{m}, Z_{k-1}, U_k, x_0)}{P(x_{k-1}, \mathbf{m}, Z_{k-1}, U_k, x_0)} \, dx_{k-1}$$

$$= \int P(x_k \mid x_{k-1}, \mathbf{m}, Z_{k-1}, U_k, x_0) P(x_{k-1}, \mathbf{m} \mid Z_{k-1}, U_k, x_0) dx_{k-1}$$

$$= \int P(x_k \mid x_{k-1}, u_k) P(x_{k-1}, \mathbf{m} \mid Z_{k-1}, U_{k-1}, x_0) dx_{k-1}$$

⇒The last step applies two conditional independences

$$\Rightarrow P(x_k \mid x_{k-1}, u_k) = P(x_k \mid x_{k-1}, \mathbf{m}, Z_{k-1}, U_k, x_0)$$

$$\Rightarrow P(x_{k-1}, \mathbf{m} \mid Z_{k-1}, U_{k-1}, x_0) = P(x_{k-1}, \mathbf{m} \mid Z_{k-1}, U_k, x_0)$$

 \Rightarrow The term $P(x_k \mid x_{k-1}, u_k)$ is provided

$$\Rightarrow$$
 E.g., $x_k = Ax_{k-1} + Bu_k + \omega_{k-1}$ in a Kalman filter

- \Rightarrow The term $P(x_{k-1}, \mathbf{m} \mid Z_{k-1}, U_{k-1}, x_0)$ is from previous iteration or x_0
- ⇒So this step is basically the same as the time update of a Kalman filter

SLAM Observation Update

Last slide: $P(x_k, \mathbf{m} \mid Z_{k-1}, U_k, x_0)$

The observation update estimate x_k , \mathbf{m} based on time update and \mathbf{z}_k

$$\begin{split} &P(x_{k},\mathbf{m}\mid Z_{k},U_{k},x_{0})\\ &=P(x_{k},\mathbf{m}\mid \mathbf{z}_{k},Z_{k-1},U_{k},x_{0})\\ &=\frac{P(x_{k},\mathbf{m},\mathbf{z}_{k},Z_{k-1},U_{k},x_{0})}{P(\mathbf{z}_{k},Z_{k-1},U_{k},x_{0})}\\ &=\frac{P(x_{k},\mathbf{m},\mathbf{z}_{k},Z_{k-1},U_{k},x_{0})}{P(x_{k},\mathbf{m},Z_{k-1},U_{k},x_{0})}\frac{P(x_{k},\mathbf{m},Z_{k-1},U_{k},x_{0})}{P(Z_{k-1},U_{k},x_{0})}\frac{P(Z_{k-1},U_{k},x_{0})}{P(\mathbf{z}_{k},Z_{k-1},U_{k},x_{0})}\\ &=\frac{P(\mathbf{z}_{k}\mid\mathbf{m},x_{k},Z_{k-1},U_{k},x_{0})}{P(\mathbf{z}_{k}\mid Z_{k-1},U_{k},x_{0})}\\ &=\frac{P(\mathbf{z}_{k}\mid\mathbf{x}_{k},\mathbf{m})P(x_{k},\mathbf{m}\mid Z_{k-1},U_{k},x_{0})}{P(\mathbf{z}_{k}\mid Z_{k-1},U_{k},x_{0})} \quad \text{(conditional independence)}\\ &\propto P(\mathbf{z}_{k}\mid x_{k},\mathbf{m})P(x_{k},\mathbf{m}\mid Z_{k-1},U_{k},x_{0}) \end{split}$$

- \Rightarrow The term $P(\mathbf{z}_k \mid Z_{k-1}, U_k, x_0)$ can be normalized and does not matter
- \Rightarrow The term $P(\mathbf{z}_k \mid x_k, \mathbf{m})$ is based on observation
 - \Rightarrow In extended Kalman filter, this is just $z_k = h(x_k, v_k)$
 - □ In SLAM this is the challenging step
 - ⇒ Uses many techniques, e.g., iterative closest point fitting (ICP)
 - ⇒ Not part of the focus of this course mostly computer vision techniques
- \Rightarrow The term $P(x_k, \mathbf{m} \mid Z_{k-1}, U_k, x_0)$ is from time update

Sensing Review

Sensor mechanisms

Localization techniques

- **⇒**Triangulation
- **⇒**Trilateration

Bayesian filters

- ⇒Kalman filter, EKF
- ⇒UKF/particle filters
- ⇒Simultaneous localization and mapping (SLAM)

