Machine Learning 2019

袁欣

2019年3月10日

1 线性模型

1.1 西瓜数据

从 csv 文件中读取西瓜数据,并进行展示。

• 数据展示:

idx	density	sugar	label
1	0.697	0.460	1
2	0.774	0.376	1
3	0.634	0.264	1
4	0.608	0.318	1
5	0.556	0.215	1
6	0.403	0.237	1

##	dens	sity	sug	gar	label
##	Min.	:0.2430	Min.	:0.0420	0:9
##	1st Qu.	:0.4030	1st Qu	:0.1030	1:8
##	Median	:0.5930	Median	:0.2110	
##	Mean	:0.5326	Mean	:0.2128	
##	3rd Qu.	:0.6570	3rd Qu	:0.2670	
##	Max.	:0.7740	Max.	:0.4600	

• 画图:

1.2 逻辑回归

- 编程实现逻辑回归的梯度下降算法
- 回归参数与代价函数曲线如下:

[1] -4.419850 3.151482 12.495210

• 决策边界如下:

1.2.1 mapFeature

从上图可以看到,逻辑回归对西瓜集的分类是较差的。我们也可以直观的看到西瓜集是线性不可分的!所以这里引入了高阶特征,构建非线性边界去划分西瓜集。

构建方法为选择最高次数,将两变量映射到高阶上形成新特征。例如构建最高幂次为 6 的特征,此时会产生新特征如: x_1^6 、 x_2^6 、 x_1^5 x₂、.....、 x_1 x₂、 x_2 、 x_1 共 28 个特征。

• 构建函数

1.2.2 正则化

- 编程实现正则化逻辑回归的梯度下降算法
- 回归参数、预测精度、代价函数曲线如下:

```
## [1] -18.2576688 55.5141514 -10.7170173 -12.4644799 66.1030944

## [6] -49.1665058 -48.6936829 60.3009426 14.7737220 -32.2204811

## [11] -50.7437367 44.6194226 26.2238727 1.2997743 -15.4884559

## [16] -37.5326066 32.8471126 24.1358494 9.3827915 -0.7082506

## [21] -6.5816698 -21.6262370 25.2981189 19.6096944 9.8597332

## [26] 3.2328093 -0.5628648 -2.6294491
```

[1] "prediction accuracy = 100 %"

• 非线性决策边界如下:

1.2.3 多分类问题

可以利用 One-vs-all 算法,创建伪训练集,例如: 预测天气(Sunny、Cloudy、Rain、Snow), 可以学习四个逻辑回归,判断哪个概率最高,则属于哪一类。

1.2.4 利用牛顿法求解

• 回归参数、代价函数曲线、决策边界如下:

[1] -4.428865 3.158330 12.521196

1.2.5 牛顿法正则化

• 回归参数、代价函数曲线如下:

```
[1]
##
         260.58899 -2305.59070
                                 131.21556 5662.94237 -738.76919
  [6] -205.44986 -2183.57580
                               2171.56434
                                           -331.49342
                                                        268.51504
## [11] -5259.69998
                     -94.64807
                               1782.42515 -318.80433
                                                       -889.53148
## [16] -933.53588 -2313.77204
                               1750.42685
                                            388.24622 -1015.93544
## [21] -1193.47150 6438.19215 -2860.52426
                                          1047.96320
                                                        531.73182
## [26] -599.01104 -1036.47230 -927.34067
```

[1] "prediction accuracy = 100 %"

1.2.6 小结

- 1. 对比可以发现牛顿法比梯度下降法收敛速度快的多!
- 2. 在最小化代价函数的过程中还有很多更高级的方法,如 BFGS(共轭梯度)法、L-BGFS 等,它们的优点是不用选择参数 α 、收敛速度更快,但是它们也更复杂。
- 3. 在非线性边界画图中利用的是等值线绘图,也就是将图形分成一个个小的密度点,计算每个密度点的概率值。密度点概率值为 0.5 的等值线即为边界线。但是在实现过程中 geom_isobands()并不能很好实现这个过程。Matlab 可以利用函数 contour()实现,切记在利用这个函数之前将 X 转置。
- 4. 在 HessianMatrix 矩阵的求逆过程中并没有利用 solve()函数,而是利用了 MASS 包里的 ginv 函数,当矩阵不可逆时,这个函数求得矩阵伪逆。类似于 Matlab 中 inv 与 pinv 的关系。

1.3 线性判别分析

线性判别分析(Linear Discriminant Anaysis, 简称 LDA)是一种经典的线性学习方法。LDA 的思想非常朴素:给定训练集,设法将样本投射到一条直线上,使得同类样本的投影点尽可能接近、异类样本投影点尽可能远离;在对新样本进行分类时,将其投影到同样的直线上,再根据投影点的位置来确定新样本的类型。

[,1] ## [1,] -0.1465098

[2,] -0.7387156

1.3.1 决策边界

