$11a_{110} (K11a_{110})$

Ideals for irreducible components 2 of X_{par}

$$I_1^u = \langle u^{48} - u^{47} + \dots - 4u^3 + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 48 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{48} - u^{47} + \dots - 4u^3 + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{3} \\ -u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{6} - u^{4} + 1 \\ -u^{6} + 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{14} - 3u^{12} + 4u^{10} - u^{8} + 1 \\ -u^{16} + 4u^{14} - 8u^{12} + 8u^{10} - 4u^{8} - 2u^{6} + 4u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{9} - 2u^{7} + u^{5} + 2u^{3} - u \\ -u^{9} + 3u^{7} - 3u^{5} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{20} - 5u^{18} + 11u^{16} - 10u^{14} - 2u^{12} + 13u^{10} - 9u^{8} + 3u^{4} - u^{2} + 1 \\ -u^{20} + 6u^{18} - 16u^{16} + 22u^{14} - 13u^{12} - 4u^{10} + 10u^{8} - 4u^{6} - u^{4} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{39} + 10u^{37} + \dots + 4u^{3} - 2u \\ u^{41} - 11u^{39} + \dots + 2u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{39} + 10u^{37} + \dots + 4u^{3} - 2u \\ u^{41} - 11u^{39} + \dots + 2u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^{47} 56u^{45} + \cdots 8u^2 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5	$u^{48} + u^{47} + \dots + 4u^3 + 1$
c_2	$u^{48} + 27u^{47} + \dots + 28u^3 + 1$
c_3, c_8	$u^{48} - u^{47} + \dots - 2u^4 + 1$
c_4, c_7	$u^{48} + u^{47} + \dots - 44u + 17$
c_6, c_{10}, c_{11}	$u^{48} + 3u^{47} + \dots + 8u + 1$
<i>C</i> 9	$u^{48} - 25u^{47} + \dots - 4u^2 + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_5	$y^{48} - 27y^{47} + \dots - 28y^3 + 1$
c_2	$y^{48} - 11y^{47} + \dots + 308y^2 + 1$
c_3, c_8	$y^{48} + 25y^{47} + \dots - 4y^2 + 1$
c_4, c_7	$y^{48} - 31y^{47} + \dots + 2620y + 289$
c_6, c_{10}, c_{11}	$y^{48} + 49y^{47} + \dots + 56y + 1$
<i>c</i> 9	$y^{48} - 3y^{47} + \dots - 8y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.958219 + 0.143307I	-1.66920 - 0.31218I	-6.04929 + 0.55460I
u = 0.958219 - 0.143307I	-1.66920 + 0.31218I	-6.04929 - 0.55460I
u = 0.914661 + 0.504015I	4.41403 - 0.70127I	5.15173 + 2.65109I
u = 0.914661 - 0.504015I	4.41403 + 0.70127I	5.15173 - 2.65109I
u = -1.046740 + 0.068635I	0.77690 - 3.72476I	-1.95300 + 3.66807I
u = -1.046740 - 0.068635I	0.77690 + 3.72476I	-1.95300 - 3.66807I
u = 1.011960 + 0.286206I	-2.55221 - 0.92643I	-6.15695 + 0.73591I
u = 1.011960 - 0.286206I	-2.55221 + 0.92643I	-6.15695 - 0.73591I
u = -0.950614 + 0.484261I	0.72805 + 4.58119I	0.34102 - 6.39238I
u = -0.950614 - 0.484261I	0.72805 - 4.58119I	0.34102 + 6.39238I
u = -1.021410 + 0.380117I	-1.89118 + 4.83513I	-2.88338 - 8.66489I
u = -1.021410 - 0.380117I	-1.89118 - 4.83513I	-2.88338 + 8.66489I
u = 0.963622 + 0.510991I	3.78897 - 9.13187I	3.52711 + 9.35882I
u = 0.963622 - 0.510991I	3.78897 + 9.13187I	3.52711 - 9.35882I
u = 0.080810 + 0.850812I	-0.65137 + 8.58815I	2.17259 - 5.82135I
u = 0.080810 - 0.850812I	-0.65137 - 8.58815I	2.17259 + 5.82135I
u = -0.013057 + 0.852192I	-5.99169 - 2.35954I	-2.55512 + 3.34973I
u = -0.013057 - 0.852192I	-5.99169 + 2.35954I	-2.55512 - 3.34973I
u = -0.065516 + 0.840970I	-3.41452 - 3.72023I	-1.09842 + 2.42491I
u = -0.065516 - 0.840970I	-3.41452 + 3.72023I	-1.09842 - 2.42491I
u = -0.757474 + 0.366588I	1.28610 + 1.69703I	6.44180 - 4.95354I
u = -0.757474 - 0.366588I	1.28610 - 1.69703I	6.44180 + 4.95354I
u = 0.079356 + 0.807965I	0.763972 + 0.284532I	4.14710 + 0.31000I
u = 0.079356 - 0.807965I	0.763972 - 0.284532I	4.14710 - 0.31000I
u = 0.546437 + 0.541746I	5.44153 - 3.53716I	7.56794 + 3.98603I
u = 0.546437 - 0.541746I	5.44153 + 3.53716I	7.56794 - 3.98603I
u = 0.468200 + 0.569910I	5.17049 + 4.81347I	6.85493 - 3.77558I
u = 0.468200 - 0.569910I	5.17049 - 4.81347I	6.85493 + 3.77558I
u = -1.214630 + 0.420476I	-3.06688 + 3.96905I	0
u = -1.214630 - 0.420476I	-3.06688 - 3.96905I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.484203 + 0.509344I	2.02079 - 0.49000I	3.99733 + 0.21349I
u = -0.484203 - 0.509344I	2.02079 + 0.49000I	3.99733 - 0.21349I
u = 1.209970 + 0.489477I	-2.57490 - 5.01368I	0
u = 1.209970 - 0.489477I	-2.57490 + 5.01368I	0
u = 1.237110 + 0.425873I	-7.33658 - 0.70647I	0
u = 1.237110 - 0.425873I	-7.33658 + 0.70647I	0
u = -1.243170 + 0.416059I	-4.66901 - 4.18367I	0
u = -1.243170 - 0.416059I	-4.66901 + 4.18367I	0
u = -1.224430 + 0.490742I	-6.86889 + 8.53427I	0
u = -1.224430 - 0.490742I	-6.86889 - 8.53427I	0
u = 1.240090 + 0.455194I	-9.75907 - 2.28164I	0
u = 1.240090 - 0.455194I	-9.75907 + 2.28164I	0
u = -1.237470 + 0.468224I	-9.66500 + 7.07748I	0
u = -1.237470 - 0.468224I	-9.66500 - 7.07748I	0
u = 1.225480 + 0.498822I	-4.07278 - 13.47170I	0
u = 1.225480 - 0.498822I	-4.07278 + 13.47170I	0
u = -0.177212 + 0.446834I	0.31404 - 1.44403I	2.46816 + 4.79849I
u = -0.177212 - 0.446834I	0.31404 + 1.44403I	2.46816 - 4.79849I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_5	$u^{48} + u^{47} + \dots + 4u^3 + 1$
c_2	$u^{48} + 27u^{47} + \dots + 28u^3 + 1$
c_{3}, c_{8}	$u^{48} - u^{47} + \dots - 2u^4 + 1$
c_4, c_7	$u^{48} + u^{47} + \dots - 44u + 17$
c_6, c_{10}, c_{11}	$u^{48} + 3u^{47} + \dots + 8u + 1$
<i>C</i> 9	$u^{48} - 25u^{47} + \dots - 4u^2 + 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_5	$y^{48} - 27y^{47} + \dots - 28y^3 + 1$
c_2	$y^{48} - 11y^{47} + \dots + 308y^2 + 1$
c_3, c_8	$y^{48} + 25y^{47} + \dots - 4y^2 + 1$
c_4, c_7	$y^{48} - 31y^{47} + \dots + 2620y + 289$
c_6, c_{10}, c_{11}	$y^{48} + 49y^{47} + \dots + 56y + 1$
<i>c</i> ₉	$y^{48} - 3y^{47} + \dots - 8y + 1$