

Alfabetos, Cadenas y lenguajes

Profesor: Nelson Contreras Oliva

Clase 2: Alfabetos, Cadenas y lenguajes

Alfabetos y cadenas

Un alfabeto es un conjunto finito no vacío cuyos elementos se llaman símbolos.

Denotamos un alfabeto arbitrario con la letra Σ.

- Una cadena o palabra sobre un alfabeto Σ es cualquier sucesión finita de elementos de Σ . Admitimos la existencia de una única cadena que no tiene símbolos, la cual se denomina cadena vacía y se denota con λ .
- La **cadena vacía** se ve representada por vacío Ø en la teoría de conjuntos.

Ejemplo Alfabeto

- Ejemplo Sea $\Sigma = \{a, b\}$ el alfabeto que consta de los dos símbolos a y b.
- Las siguientes son cadenas sobre Σ:
 - aba
 - ababaaa
 - aaaab.
- Obsérvese que **aba** ≠ **aab**. **El orden de los símbolos en una cadena es significativo** ya que las cadenas se definen como sucesiones, es decir, conjuntos secuencialmente ordenados.

Ejemplo Alfabeto

- El **alfabeto** $\Sigma = \{0, 1\}$ se conoce como alfabeto binario. Las cadenas sobre este alfabeto son secuencias finitas de ceros y unos, llamadas secuencias binarias, tales como:
 - 001
 - 1011
 - 001000001.
- Sea $\Sigma = \{a, b, c, \ldots, x, y, z\}$, el alfabeto del idioma castellano.
- Las palabras oficiales del castellano (las que aparecen en el diccionario DRA) son cadenas sobre Σ .

Ejemplo Alfabeto

• El **conjunto de todas las cadenas** sobre un alfabeto Σ , incluyendo la cadena vacía, se denota por Σ *

• Sea $\Sigma = \{a, b, c\}$, entonces

 $\Sigma * = \{\lambda, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, aab, abc, baa, ... \}$

Notación a utilizar

Notación usada en la teoría de lenguajes

denotan alfabetos.

denota el conjunto de todas las cadenas que se pue-

den formar con los símbolos del alfabeto Σ .

denotan símbolos de un alfabeto.

 a,b,c,d,e,\dots u,v,w,x,y,z,\dots denotan cadenas, es decir, sucesiones finitas de

símbolos de un alfabeto.

denota la cadena vacía, es decir, la única cadena

que no tiene símbolos.

 $A, B, C, \ldots, L, M, N, \ldots$ denotan lenguajes (definidos más adelante).

Concatenación de Cadenas

 Dado un alfabeto Σ y dos cadenas u, v ∈ Σ*, la concatenación de u y v se denota como u · v o simplemente uv y se define descriptivamente así:

• 1. Si $\mathbf{v} = \lambda$, entonces $\mathbf{u} \cdot \lambda = \lambda \cdot \mathbf{u} = \mathbf{u}$.

Es decir, la concatenación de cualquier cadena u con la cadena vacía, a izquierda o a derecha, es igual a u.

• 2. Si u = { a_1 , a_2 ,..., a_n , v = b_1 , b_2 ,..., b_n }, entonces u · v = { a_1 , a_2 ,..., a_nb_1 , b_2 ,..., b_n }.

Es decir, u · v es la cadena formada escribiendo los símbolos de u y a continuación los símbolos de v.

Propiedades Concatenación

- La concatenación de cadenas se puede definir inductiva o recursivamente de la siguiente manera.
- Si u, $v \in \Sigma *$, $a \in \Sigma$, entonces:

1.
$$u \cdot \lambda = \lambda \cdot u = u$$
.

2.
$$u \cdot (va) = (u \cdot v)a$$
.

Propiedad: La concatenación de cadenas es una operación asociativa.

Es decir, si u, v, $w \in \Sigma^*$, entonces (uv)w = u(vw).

Demostración: Se puede hacer escribiendo explícitamente las cadenas u, v, w y usando la definición descriptiva de concatenación. También se puede dar una demostración inductiva usando la definición recursiva de concatenación.

Potencias de una cadena

• Dada $u \in \Sigma * y \in \mathbb{N}$, se define (descriptivamente) u^n en la siguiente forma:

•
$$u^0 = \lambda$$
,
• $u^n = \underbrace{uu ... u}_{n \text{ veces}}$

Longitud de una cadena

 La longitud de una cadena u ∈ Σ* se denota |u| y se define como el numero de símbolos de u (contando los símbolos repetidos). Es decir,

$$|\mathbf{u}| = \begin{bmatrix} \mathbf{0}, & \mathbf{si} \ \mathbf{u} = \lambda, \\ \mathbf{n}, & \mathbf{si} \ \mathbf{u} = a_1, a_2 \dots a_n \end{bmatrix}$$

•
$$|aba| = 3$$
, $|baaa| = 4$

Longitud de una cadena

Ejemplo Si $w \in \Sigma^*$, $n, m \in \mathbb{N}$, demostrar que

$$|w^{n+m}| = |w^n| + |w^m|$$

Solución:

Caso
$$n, m \ge 1$$
. $|w^{n+m}| = |\underbrace{ww \cdots w}_{n+m \text{ veces}}| = (n+m)|w|$. Por otro lado,

$$|w^n| + |w^m| = |\underbrace{ww \cdots w}_{n \text{ veces}}| + |\underbrace{ww \cdots w}_{m \text{ veces}}| = n|w| + m|w|.$$

Caso
$$n = 0, m \ge 1$$
. $|w^{n+m}| = |w^{0+m}| = |w^m|$. Por otro lado,

$$|w^n| + |w^m| = |w^0| + |w^m| = |\lambda| + |w^m| = 0 + |w^m| = |w^m|.$$

Caso $m = 0, n \ge 1$. Similar al caso anterior.

Caso
$$n = 0, m = 0.$$
 $|w^{n+m}| = |w^{0+0}| = |\lambda| = 0.$ Por otro lado,

$$|w^n| + |w^m| = |w^0| + |w^0| = |\lambda| + |\lambda| = 0 + 0 = 0.$$

Reflexión o inversa de una cadena

La reflexión o inversa de una cadena $u \in \Sigma^*$ se denota u^R y se define descriptivamente así:

$$u^R =$$
 $\begin{cases} \lambda, & \text{si } u = \lambda, \\ a_n \dots a_2 a_1, & \text{si } u = a_1 a_2 \dots a_n. \end{cases}$

De la definición se observa claramente que la reflexión de la reflexión de una cadena es la misma cadena, es decir,

$$(u^R)^R$$
 = u, para u $\in \Sigma^*$

Subcadenas, prefijos

Una cadena v es una **subcadena o una subpalabra** de u si existen cadenas x, y tales que u = xvy.

Nótese que x o y pueden ser λ y, por lo tanto, la cadena vacía es una **subcadena** de cualquier cadena.

Un **prefijo** de u es una cadena v tal que u = vw para alguna cadena $w \in \Sigma *$. Se dice que v es un prefijo propio si $v \neq u$.

Subcadenas, sufijos

Un **sufijo** de **u** es una cadena **v** tal que u = wv para alguna cadena w $\in \Sigma *$. Se dice que v es un sufijo propio si v \neq u.

Obsérvese que λ es un prefijo y un sufijo de toda cadena u ya que $u\lambda = \lambda u = u$.

• Por la misma razón, toda cadena u es prefijo y sufijo de si misma.

Ejemplo Prefijo y Sufijos

Sea $\Sigma = \{a, b, c, d\}$, u = bcbaadb.

Prefijos de u :	Sufijos de u :
λ	λ
b	b
bc	db
bcb	adb
bcba	aadb
bcbaa	baadb
bcbaad	cbaadb
bcbaadb	bcbaadb

Lenguajes

Un lenguaje L sobre un alfabeto Σ es un subconjunto de $\Sigma *$, es decir L $\subseteq \Sigma *$.

Casos extremos:

 $L = \emptyset$, lenguaje vacío.

L = Σ *, lenguaje de todas las cadenas sobre Σ.

Todo lenguaje L satisface $\emptyset \subseteq L \subseteq \Sigma^*$, y puede ser finito o infinito.

Lenguajes

Los lenguajes se denotan con letras mayúsculas A, B, C, . . . , L, M, N, En la siguiente grafica se visualizan dos lenguajes A y B sobre Σ .

Ejemplo Lenguajes

$$\Sigma = \{a, b, c\}.$$
 L = $\{a, aba, aca\}.$

Σ = {a, b, c}. L = {a, aa, aaa, . . . } = {
$$a^n$$
: n ≥ 1}.

Σ = {a, b, c}. L = {λ, aa, aba, a
$$b^2$$
a, a b^3 a, . . .} = {a b^n a : n ≥ 0} ∪ {λ}.

 $\Sigma = \{a, b, c, ..., x, y, z\}$. L = $\{u \in \Sigma * : u \text{ aparece en el diccionario español DRA}\}$. L es un lenguaje finito.

 $\Sigma = \{a, b, c\}$. L = $\{u \in \Sigma * : u \text{ no contiene el símbolo c}\}$. Por ejemplo, abbaab \in L pero abbcaa \notin L.

Ejemplo Lenguajes

$$\Sigma = \{0, 1\}.$$

L = conjunto de todas las secuencias binarias que contienen un numero impar de unos.

$$\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}.$$

El conjunto $\mathbb N$ de los números naturales se puede definir como un lenguaje sobre Σ , en la siguiente forma:

 $\mathbb{N} = \{ u \in \Sigma * : u = 0 \text{ ó } 0 \text{ no es un prefijo de } u \}.$

