Говорят, что числа правят миром. Нет, они только показывают, как правят миром.

(Иоганн Вольфганг фон Гёте)

Числовая информация в памяти компьютера. Компьютерные вычисления.

Информатика, 1 курс. Лекция 6.

В этой лекции:

- Типы числовой информации.
- Число как модель.
- Представление чисел в компьютере.
- Аппаратная реализация выполнения арифметических действий

Числовая информация: основные роли

Числа в нашей жизни выступают в одной из трёх ролей:

Число как модель (примеры)

61.13.27, 30.03.16 26.07.2008

87

+15

182

88-54-90

8-952-131-13-13

Число интересно не само по себе, а как модель какого-то объекта.

Число нуждается в метаданных – пояснении, что оно означает.

Это вы проходили в школе:

<u>Требования к представлению чисел в ЭВМ:</u>

- 1. Кодирование с помощью элементов с двумя состояниями (вкл/ выкл).
- 2. Возможность выполнения арифметических и других операций.
- 3. Компактность.

Системы счисления

Десятичная

 $5072 = 2 \cdot 10^{0} + 7 \cdot 10^{1} + 0 \cdot 10^{2} + 5 \cdot 10^{3}$

<u>N -ичная.</u>

 $ABC_N = C \cdot N^O + B \cdot N^1 + A \cdot N^2$

Двоичная.

 $100101_2 = 1.20 + 0.21 + 1.22 + 0.24 + 0.25 = 37_{10}$

Информация в ЭВМ представляется в двоичной системе.

Представление чисел в компьютере

Отрицательные целые числа

Проверим: 17-5 = 17 + (-5)?

$$17_{10} = 10001_2$$

 $5_{10} = 101_2$

Обратный код числа 5 (считая, что это

байт): 11111010

Дополнительный код:

11111011

Вычисляем обе части проверяемого равенства – получаем одинаковый ответ:

 $00001100_2 = 12_{10}$.

0	0	0	1	0	0	0	1
0	0	0	0	0	1	0	1
0	0	0	0	1	1	0	0

Числа с плавающей точкой

$$X = A * B^{C}$$

А – мантисса

В – основание

С – порядок (экспонента)

IEEE754-2008

- действующий стандарт представления чисел с плавающей точкой.
 - половинная точность (16 разрядов);
 - одинарная точность (32 разряда);
 - двойная точность (64 разряда);
 - четверная точность (128 разрядов)

Для вычисления показателя степени из восьмиразрядного поля экспоненты вычитается смещение экспоненты равное $127_{10} = 7F_{16} = 01111111_2$, (то есть, $011111100_2 - 01111111_2 = 124_{10} - 127_{10} = -3_{10}$).

Число равно произведению мантиссы со знаком на двойку в степени экспоненты = $1,01_2*2_{10}^{-3}{}_{10} = 101_2*2_{10}^{-5}{}_{10} = 5_{10}*2_{10}^{-5}{}_{10} = 0,15625_{10}$

Пример:

13.11

13₁₀=1101₂

0.11₁₀ переведём:

0.11

0.22

0.44

0.88

1.76

1.52

1.04

0.08.... хватит, надоело! =0.0001110...₂

(Проверим: 7/64=0,109375)

Итак: $1101.000111_2 = 1.1010001110..._2 * 2^3$

Смещённый порядок: 127+3=130₁₀=10000010₂

Знак – плюс, пишем 0

Получаем:

0100000101010001110...0

Как записать число в формате с плавающей точкой

Ноль и «не числа»

В IEEE754 **ноль** представляется значением с порядком 127 и нулевой мантиссой, поскольку обычным способом представить 0 нельзя.

Также в IEEE754 предусмотрено представление для специальных чисел, работа с которыми вызывает исключение. К таким числам относится **бесконечность** (±∞) и **неопределенность** (NaN). Эти числа позволяет вернуть адекватное значение при переполнении.

Получить **бесконечность** можно при переполнении и при делении ненулевого числа на ноль.

Неопределенность или NaN (от not a number) – это, к примеру, ∞+(- ∞), 0 × ∞, 0/0, ∞/∞, sqrt(x), где x<0

Любая операция с NaN возвращает NaN.

По определению NaN ≠ NaN, поэтому, для проверки значения переменной нужно просто сравнить ее с собой.

Абсолютная и относительная погрешность

Предположим, при выполнении арифметической операции с числами произошло округление, результат стал не совсем точным. Абсолютная величина этой погрешности не превышает «веса» одного разряда в представлении числа.

С фиксированной точкой

«Вес» последнего разряда определяется разрядностью представления чисел.

Абсолютная погрешность постоянна.

Относительная погрешность

переменна, большая для чисел вблизи 0, маленькая для чисел на концах диапазона.

С плавающей точкой

«Вес» последнего разряда мантиссы зависит от порядка.

Абсолютная погрешность

тоже зависит от порядка, вблизи 0 она маленькая.

Относительная погрешность

постоянна, т.к. «вес» последнего разряда пропорционален числу.

Как выполняются вычисления?

Одноразрядный полусумматор

X	Υ	Z	Р
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Для сложения многоразрядных чисел (байтов) нужно учитывать перенос от сложения предыдущих разрядов.

Не пугайтесь: рисовать такие схемы на экзамене вам пока не придётся

А теперь представьте себе, что складываются числа в формате **с плавающей точкой**...

Операции с плавающей точкой реализуются отдельной частью процессора или сопроцессором, им соответствуют особые команды машинного языка.

Итоги:

- Число может выступать в одной из ролей количество, номер, идентификатор.
- Число интересно нам не само по себе, а как модель какого-то объекта.
- Представление чисел в компьютере основано на двоичной системе счисления.
- Существуют две совершенно разные формы представления: с фиксированной точкой (целые числа), с плавающей точкой (вещественные числа)
- Числа с плавающей точкой: больше диапазон значений, фиксированная относительная погрешность.
- Числа с фиксированной точкой: быстрее выполняются вычисления, абсолютная погрешность одинакова для всех чисел диапазона.