Exercises: Recursion

Subject: CSD203 Author: Hieu Nguyen

1. Write a C program that calculates the sum of the **harmonic series** up to a given integer N:

$$S = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{N}$$

Example:

1	-2
1.00000	N is must positive number
3	0
1.83333	N is must positive number

2. Write a C program that calculates the sum of the **alternating harmonic series** up to a given integer N:

$$S = 1 - rac{1}{2} + rac{1}{3} - rac{1}{4} + \dots + (-1)^{N+1} rac{1}{N}$$

Example:

Example:	
1	-2
1.00000	N is must positive number
3	0
0.83333	N is must positive number

3. Write a C program that calculates the multiple of the **product of a series** up to a given integer N:

$$P = \left(1 + rac{1}{1^2}
ight) imes \left(1 + rac{1}{2^2}
ight) imes \left(1 + rac{1}{3^2}
ight) imes \cdots imes \left(1 + rac{1}{N^2}
ight)$$

Example:

1	-2
2.00000	N is must positive number
5	0
2.49020	N is must positive number

PRF192 Hieu Nguyen

4. Write a C program that calculates the sum of the **approximation taylor series** up to a given integer x, N:

$$e^x = 1 + rac{x}{1!} + rac{x^2}{2!} + rac{x^3}{3!} + \dots + rac{x^N}{N!}$$

Example:

11	2 -1
2.00000	N is must positive number
25	-2 -1
7.00000	N is must positive number

5. Write a C program that calculates the sum of the **finite geometric series** up to a given integer N and float r:

$$S = 1 + r + r^2 + r^3 + \dots + r^{N-1}$$

Example:

0.5 1	-2 -2
1.00000	N is must positive number
0.5 4	0.5 10
1.87500	1.99902

6. Write a C program that calculates the sum of **the Factorial series** up to a given integer N:

$$S = 1! + 2! + 3! + \cdots + N!$$

Example:

1	-2
1	N is must positive number
4	5
33	153

7. Write a C program that calculates the sum of **the Squares Series** up to a given integer N:

$$S = 1^2 + 2^2 + 3^2 + \dots + N^2$$

Example:

1	-2
1	N is must positive number
3	5
14	55

PRF192 Hieu Nguyen

8. Write a C program that calculates the miltiple of **the odd numbers** up to a given integer N:

$$P=1 imes 3 imes 5 imes \cdots imes (2N-1)$$

Example:

1	-2
1	N is must positive number
3	5
15	945

9. Write a C program that calculates the sum of **the Finite Arithmetic Sequence** up to a given integer a d N:

$$S = a + (a + d) + (a + 2d) + \cdots + N$$
-th term

Example:

z.a.r.p.c.	
115	55-5
15	N is must positive number
234	553
26	30

10. Write a C program that calculates the sum of the **Finite Exponential Series** up to a given integer a N:

$$S = a + a^2 + a^3 + \dots + a^N$$

Example:

23	2 -2
14	N is must positive number
42	25
20	62

PRF192 Hieu Nguyen