ANALYSIS AND DESIGN OF ALGORITHMS

Module 02: Introduction to Theoretical Analysis

Ammar Sherif

Review

- Categories of Analysis
- Empirical Analysis
- Recursion
- Fibonacci
- "Sapere Aude"

Outline

- Propositions and Quantifiers
- Implication and De Morgan Laws
- Proofs
 - Direct
 - Contradiction
 - Contrapositive
 - Induction and Strong Induction
- Correctness Proofs
- \circ O, Ω, Θ

LOGIC

Why to study Logic and Proofs

CORRECTNESS

MAKE PROBLEM EASIER

EXPLAIN WHY
THE ALGORITHM
TOOK A DECISION

FUNNY

Propositions

- Statements have truth values [True/False]
- Examples: "This is a time machine," or "this is a cat"
- What is not a proposition?
 - Questions
 - Orders
 - Statements include contradiction
- ∘ Logic operators: not (¬), and (Λ), or (V)
- Predicates
 - P(x): x > 2
 - \circ $P(1) \equiv False$
 - \circ $P(3) \equiv True$

Quantifiers

- ∘ There **exists**, symbol: ∃
- Example: "There is an integer greater than 5"

$$\exists_{x \in \mathbb{Z}} x > 5$$

- ∘ **Universal, for all,** symbol: ∀
- Example: "for all integers, n+1 is greater than n"

$$\forall_{n \in \mathbb{Z}} \ n+1 > n$$

De Morgan laws

- "He is a student and he takes 304" $(A \land B)$
- Negation: "He is not a student, or he does not take 304" $\overline{A \wedge B} \equiv \neg (A \wedge B) \equiv \overline{A} \vee \overline{B}$
- \circ "It rains, or it is sunny" ($A \lor B$)
- Negation: "It does not rain, and it is not sunny"

$$\overline{A \vee B} \equiv \overline{A} \wedge \overline{B}$$

De Morgan laws with Quantifiers

- o "All integers are positive;" its negation would be "There is at least one non-positive integer"
- Proof:

$$\neg(\forall_{x \in \mathbb{Z}} \ x > 0) \equiv \overline{((0 > 0) \land (1 > 0) \land (-1 > 0) \land \cdots)}$$

$$\equiv \overline{(\cdots \land P(-2) \land P(-1) \land P(0) \land P(1) \land \cdots)}$$

$$\equiv (\cdots \lor \overline{P(-2)} \lor \overline{P(-1)} \lor \overline{P(0)} \lor \overline{P(1)} \lor \cdots) \equiv \exists_{x \in \mathbb{Z}} \overline{P(x)}$$

- ° "There is an integer greater than 2 that is even and prime;" its negation would be "All integers greater than 2 are not even and prime at the same time."
- Proof:

$$\neg \left(\exists_{x>2} P(x)\right) \equiv \overline{\left(P(3) \vee P(4) \vee P(5) \vee \cdots\right)} \equiv \left(\overline{P(3)} \wedge \overline{P(4)} \wedge \overline{P(5)} \wedge \cdots\right)$$

$$\equiv \forall_{x>2} \overline{P(x)} \not\equiv \forall_{x\leq 2} \overline{P(x)} \not\equiv \forall_{x\leq 2} P(x)$$

A	\boldsymbol{B}	$A \Longrightarrow B$
Т	Т	T
Т	F	F
F	Т	T
F	F	T

Implication rule

° "if A is true, then B is true"

 $\circ A \Longrightarrow B$

PROOFS

Direct Proofs

- \circ Required: $P \Rightarrow Q$
- $P \Rightarrow Q_1 \Rightarrow Q_2 \Rightarrow \cdots \Rightarrow Q$
- Example: if $x^2 25 = 0 \implies x = \pm 5$
- **Proof**:

$$x^2 - 25 = 0 \Longrightarrow (x - 5)(x + 5) = 0 \Longrightarrow$$

 $(x = 5) \lor (x = -5) \Longrightarrow x = \pm 5$

Proof by Contrapositive

$$\circ (P \Longrightarrow Q) \Longleftrightarrow (\overline{Q} \Longrightarrow \overline{P})$$

- **Intuition**: "if he is a human, he has a brain."
- ∘ **Example**: Assuming $n, a, b \in \mathbb{Z}$, prove $n \nmid ab \Rightarrow (n \nmid a \land n \nmid b)$
- $\circ P \coloneqq n \nmid ab \text{ and } Q \coloneqq (n \nmid a \land n \nmid b)$
- $\circ \text{ Proof: } \overline{Q} \equiv \left(\overline{n \nmid a} \vee \overline{n \nmid b} \right) \Longrightarrow n \mid a \vee n \mid b \Longrightarrow$
 - $\circ n \mid a \Longrightarrow a = nk \Longrightarrow ab = n(kb) \Longrightarrow n \mid ab \Longrightarrow \overline{P}$
 - $oldsymbol{n} \mid b \Longrightarrow b = nt \Longrightarrow ab = n(ta) \Longrightarrow n \mid ab \Longrightarrow \overline{P}$
- $\circ (\bar{Q} \Longrightarrow \bar{P}) \Longrightarrow (P \Longrightarrow Q)$

Proof by Contradiction

- $\circ \overline{P} \Longrightarrow False$
- o **Intuition**: assume your theorem is *false*, prove this assumption leads to a contradiction.
- **Example**: prove that $\sqrt{2}$ is irrational, P
- **Proof**: Assume P is false that is $\sqrt{2}$ is rational $\Rightarrow \exists_{a,b \in \mathbb{Z}^+} \sqrt{2} = \frac{a}{b}$.

 Without loss of generality, assume the $\gcd(a,b) = 1$. $\Rightarrow a^2 = 2b^2 \Rightarrow a^2$ is even $\Rightarrow a$ is even $\Rightarrow a^2 = (2k)^2 = 4k^2$ where $k < a \Rightarrow a^2 = (4k^2 = 2b^2)$ $\Rightarrow 2k^2 = b^2 \Rightarrow b^2$ is even $\Rightarrow (b = 2n)$ where $n < b \Rightarrow \sqrt{2} = \frac{a}{b} = \frac{2k}{2n} = \frac{k}{n}$ which is in a lower terms $\Rightarrow \gcd(a,b) \neq 1$ [Contradiction]

Proof by Induction

$$\circ P(a_0) \land (P(a_i) \Longrightarrow P(a_{i+1}))$$

• **Intuition**: dominoes

• **Example**: prove

$$P(n): \sum_{i=0}^{n} i = \frac{n(n+1)}{2}$$

∘ Inductive step: Assume P(n) is True \Rightarrow

$$\sum_{i=0}^{n+1} i = (n+1) + \sum_{i=0}^{n} i = (n+1) + \frac{n(n+1)}{2} = \frac{2(n+1) + n(n+1)}{2} = \frac{(n+1)(n+2)}{2} \Longrightarrow P(n+1)$$

$$P(0) \Longrightarrow P(1) \Longrightarrow P(2) \Longrightarrow \cdots \Longrightarrow \mathbf{P}(\mathbf{n})$$

Proof by Strong Induction

$$\circ P(a_0) \land \left(\left(P(a_0) \land \cdots \land P(a_i) \right) \Longrightarrow P(a_{i+1}) \right)$$

• **Example**: prove prime factorization

$$P(n)$$
: $\forall_{n\geq 2} \ n = p_0 p_1 \cdots p_k$ where p_i is **prime** $6 = 2 \times 3$

- Base case: P(2) = 2 "prime" $\Rightarrow True$
- ∘ Inductive step: Assume $P(2) \land \cdots \land P(n) \equiv True \Rightarrow n + 1$ has two cases
 - Case 1: n + 1 itself is prime $\Rightarrow P(n + 1)$ is True
 - Case 2: $n+1=a\times b$, where $2\leq a,b<(n+1)\Rightarrow a=p_1p_2\cdots p_k$ from $P(a)\wedge b=q_1q_2\cdots q_m$ from $P(b)\Rightarrow n+1=a\times b=p_1p_2\cdots p_kq_1q_2\cdots q_m$ where p_i and q_i are primes $\Rightarrow P(n+1)$ is True
- $\circ P(2) \Longrightarrow P(3), P(2) \land P(3) \Longrightarrow P(4), P(2) \land P(3) \land P(4) \Longrightarrow P(5), \cdots, P(2) \land \cdots \land P(n-1) \Longrightarrow \mathbf{P}(\mathbf{n})$

CORRECTNESS PROOFS

Remarks and Steps

- We can **only** prove "Statements," "Propositions," or "**Hypothesis**"
 - Therefore, the first step is to formulate such "Hypothesis"
- Guidelines for the Hypothesis
 - o It differs from algorithm to another.
 - It should include an answer to what do you mean by the algorithm is "correct"?
 - To validate your statement, *assume* that you have proved the statement, and make sure with that your algorithm becomes true. [If not, **redfine** your statement until proven]
 - Example for a sorting algorithm, the statement might be "By the end of the algorithm, $A[0] \le A[1] \le \cdots \le A[n-1]$ "

Remarks and Steps (Cont.)

- Guidelines for the Hypothesis:
 - Example for a sorting algorithm, the statement might be "By the end of the algorithm, $A[0] \le A[1] \le \cdots \le A[n-1]$ "
 - When using induction, there must be some variable to induct upon "By the end of the i^{th} iteration, $A[0] \le A[1] \le \cdots \le A[i-1]$ "
- o If you use inductive scheme, do not forget its guidelines
 - Base Case(s) and the Inductive Step
 - Base case depends upon the range of the inductive variable: $n \le 5$, $n \ge 0$
 - \circ Within the inductive step, start with H(k), and try to prove the correctness of H(k+1)
 - Quite straightforward, you go with the code, apply each step. Then, you try to get H(k+1)
- Check out the next example in Jupyter Notebook

ALGORITHMIC COMPLEXITY

Growth rates

- To achieve machine-independence, compare between growth rate instead of absolute values, for large enough input size.
- Example: $T = c_1 * n$, $T = c_2 * n$ We want to say T grows **linearly** with n
- o Divide functions into categories depending on their growth
- Develop notation **upper**, **lower**, and **tight** bounds

Big-Oh the upper bound

- A notation for **upper bounds**; the performance will never be worse than, will be at most.
- Formally:

$$O(g(n)) = \{ f(n) \colon \exists_{c,k} \ \forall_{n \ge k} \ f(n) \le c. \ g(n) \}$$

- ∘ ≤
- Examples:

$$\circ$$
 $n \in O(n^2)$, $n = O(n^2)$

$$0 \cdot 10^5 = O(1)$$

$$0.03n^2 + 10^6n + 10^9 = O(n^2)$$

$$\circ n^2 = O(2n^2)$$

Big-Omega the lower bound

- A notation for **lower bounds**; the performance will never be better than, will be at least.
- Formally:

$$\Omega(g(n)) = \{ f(n) : \exists_{c,k} \ \forall_{n \ge k} \ f(n) \ge c. \ g(n) \}$$

- ∘ **≥**
- Examples:
 - \circ $n \lg(n) = \Omega(n)$
 - $e^n = \Omega(n^3) \Longrightarrow n^3 = O(e^n)$

Big-Theta the tight bound

- A notation for **tight bounds**; the performance will almost be equivalent.
- $\begin{aligned} &\circ \text{ Formally:} \\ &\Theta\big(g(n)\big) = \big\{f(n) \colon \exists_{c_1,c_2,k} \ \forall_{n \geq k} \ c_1 g(n) \leq f(n) \leq c_2 g(n) \,\big\} \\ &= O\big(g(n)\big) \cap \Omega\big(g(n)\big) \end{aligned}$
- o =
- Example:
 - \circ 10 $n = \Theta(n)$

Little-oh the strict upper bound

- A notation for an **upper bound but not tight**; the performance will never be as bad as.
- Formally:

$$o(g(n)) = \{f(n): \forall_{c>0} \exists_k \ \forall_{n \ge k} \ f(n) < cg(n) \}$$

- <
- Example:
 - $\circ 10n = o(n^2) \neq o(n)$

Little-omega the strict lower bound

- A notation for a **lower bound but not tight**; the performance will never be as good as.
- Formally:

$$\omega(g(n)) = \{ f(n) : \forall_{c>0} \exists_k \ \forall_{n \ge k} \ f(n) > cg(n) \}$$

- · >
- Example:

$$\circ 10n = \omega(\sqrt{n}) \neq \omega(n)$$

Recap

- Propositions and Quantifiers
- Implication and De Morgan Laws
- Proofs
 - Direct
 - Contradiction
 - Contrapositive
 - Induction and Strong Induction
- Correctness Proofs
- Ω, Θ, Ο

References

- Discrete Mathematics and its Applications by Rosen
- Introduction to Algorithms by Coreman, Leiserson,
 Rivest, and Stein (CLRS)

QUESTIONS

Contacts

• Github: <u>Tutorials Repo</u>

• Email ID: Asherif