SEQUENTIAL NETWORKS

- CANONICAL FORM OF SEQUENTIAL NETWORKS
- LATCHES AND EDGE-TRIGGERED CELLS. D FLIP-FLOP
- TIMING CHARACTERISTICS
- ANALYSIS AND DESIGN OF CANONICAL NETWORKS
- SR, JK and T FLIP-FLOP
- ANALYSIS OF FLIP-FLOP NETWORKS
- DESIGN OF FLIP-FLOP NETWORKS. EXCITATION FUNCTIONS
- SPECIAL STATE ASSIGNMENTS: ONE-FLIP-FLOP-PER-STATE AND SHIFT-ING REGISTER

STATE-TRANSITION FUNCTION
$$s(t+1) = G(s(t), x(t))$$
 OUTPUT FUNCTION $z(t) = H(s(t), x(t))$

Figure 8.1: a) CANONICAL IMPLEMENTATION OF SEQUENTIAL NETWORK. b) IDEAL CLOCK SIGNAL AND ITS INTERPRETATION.

Figure 8.2: CANONICAL IMPLEMENTATIONS: a) MEALY MACHINE. b) MOORE MACHINE.

Figure 8.3: CANONICAL IMPLEMENTATION WITH BINARY VARIABLES.

EXAMPLE 8.1

INPUT: $\underline{x}(t) = (x_1, x_0), x_i \in \{0, 1\}$

OUTPUT: $z(t) \in \{0, 1\}$

STATE: $\underline{y}(t) = (y_3, y_2, y_1, y_0), y_i(t) \in \{0, 1\}$

INITIAL STATE: y(0) = (0, 0, 0, 0)

FUNCTION: THE TRANSITION AND OUTPUT FUNCTIONS

$$Y_{3} = y_{2}x'_{1}x_{0}$$

$$Y_{2} = (y_{1} + y_{2})x'_{0} + y_{3}x_{1}$$

$$Y_{1} = (y_{0} + y_{3})x'_{1}x_{0} + (y_{0} + y_{1})x_{1}$$

$$Y_{0} = (y_{0} + y_{3})x'_{0}y_{1}x'_{1}x_{0} + y_{2}x_{1}$$

$$z = y_{3} + y_{2} + y_{1} + y_{0}$$

Figure 8.4: CANONICAL NETWORK FOR EXAMPLE 8.1.

CLOCK

- ullet CLOCK PERIOD T
- ullet CLOCK FREQUENCY f=1/T
- ullet (CLOCK) PULSE WIDTH t_w

Figure 8.5: PULSE WIDTH AND CLOCK PERIOD.

Figure 8.6: a) GATED-LATCH. b) TIMING BEHAVIOR.

$$Q(t+t_p) = D(t) \cdot E(t) + Q(t) \cdot E'(t)$$

• LEVEL-SENSITIVE: when E=1 then Q=D

NOR-NOR LATCH

Figure 8.7: a) IMPLEMENTATION OF GATED-LATCH WITH NOR GATES. b) TIMING DIAGRAM.

LIMITATIONS OF GATED-LATCH

Figure 8.8: a) SEQUENTIAL NETWORK. b) CORRECT TIMING BEHAVIOR. c) INCORRECT TIMING BEHAVIOR.

Figure 8.9: EDGE-TRIGGERED CELL: a) LEADING-EDGE-TRIGGERED CELL. b) TRAILING-EDGE-TRIGGERED CELL. c) LEADING-EDGE-TRIGGERED CELL IN NETWORK OF Figure 8.8. d) TRAILING-EDGE-TRIGGERED CELL IN NETWORK OF Figure 8.8.

Figure 8.10: a) MASTER-SLAVE IMPLEMENTATION OF TRAILING-EDGE-TRIGGERED CELL. b) MASTER-SLAVE STATE CHANGE PROCESS.

PRACTICAL BASIC CELL: D flip-flop

Figure 8.11: D FLIP-FLOP AND ITS STATE DIAGRAM.

PS = Q(t)	D(t)		
	0	1	
0	0	1	
1	0	1	
	NS	$\overline{=Q(t+1)}$	

$$Q(t+1) = D(t)$$

TIMING PARAMETERS OF A BINARY CELL

 $\label{eq:Figure 8.12: TIME BEHAVIOR OF CELL.}$

Delays					Input	Size
t_{pLH}	$egin{array}{ c c c c c c c c c c c c c c c c c c c$					
$[ns] \qquad [ns] \qquad [ns] \mid [ns] \mid [ns]$						gates]
0.49 + 0.038L	0.49 + 0.038L $0.54 + 0.019L$ 0.30 0.14 0.2					

L: output load of the flip-flop

• THIS FLIP-FLOP HAS ONLY THE UNCOMPLEMENTED OUTPUT

TIMING CHARACTERISTICS OF SEQUENTIAL NETWORKS

• NETWORK SET-UP TIME: $t_{su}^{x}(net) = d1^{x} + t_{su}(cell)$

Figure 8.13: TIMING FACTORS IN SEQUENTIAL NETWORKS: a) THE NETWORK. b) NETWORK SET-UP TIME.

TIMING FACTORS (cont.)

• NETWORK HOLD TIME: $t_h(net) = t_h(cell)$

Figure 8.14: TIMING FACTORS IN SEQUENTIAL NETWORKS: a) THE NETWORK. c) NETWORK HOLD TIME.

TIMING FACTORS (Cont.)

• NETWORK PROPAGATION DELAY: $t_p(net) = t_p(cell) + d2$

Figure 8.14: TIMING FACTORS IN SEQUENTIAL NETWORKS: a) THE NETWORK. d) NETWORK PROPAGATION DELAY.

Figure 8.15: MAXIMUM CLOCK FREQUENCY: a) CLOCK PERIOD AND SIGNAL DELAYS. b) THE NETWORK.

- ullet t_{in} Time between triggering edge of clock and stabilization of input x
- ullet t_{out} TIME BETWEEN STABILIZATION OF OUTPUT z AND NEXT CLOCK TRIGGERING EDGE

Figure 8.15: MAXIMUM CLOCK FREQUENCY: b) THE NETWORK. c) MINIMUM CLOCK PERIOD.

MAXIMUM CLOCK FREQUENCY (cont.)

$$T_{\min} = 1/f_{\max}$$

$$T_{\min} = \max[(t_{in} + t_{su}^{x}(net)), (t_{p}(cell) + t_{su}^{y}(net)), (t_{p}(net) + t_{out})]$$

$$t_h(cell) \le t_p(cell)$$

$$T_{\min} = \max[(t_{in} + d1^x + t_{su}(cell)), (t_p(cell) + d1^y + t_{su}(cell)), (t_p(cell) + d1^y + t_{su}(cell)), (t_p(cell) + d1^y + t_{su}(cell))]$$

DETERMINE THE MAXIMUM CLOCK FREQUENCY

$$d1^{x} = d1^{y} = 2.5ns$$

$$d2 = 3ns$$

$$t_{su} = 0.3ns$$

$$t_{p} = 1ns$$

$$t_{in} = 2ns$$

$$t_{out} = 3ns$$

THE MINIMUM CLOCK PERIOD

$$T_{\min} = \max[(2+2.5+0.3), (1+2.5+0.3), (1+3+3)] = 7[\text{ns}]$$

THE MAXIMUM FREQUENCY

$$f_{\text{max}} = \frac{1}{7 \times 10^{-9}} \approx 140 (\text{MHz})$$

 $\begin{tabular}{ll} Figure 8.16: a) NETWORK BEHAVIOR WITHOUT CLOCK SKEW. b) NETWORK BEHAVIOR WITH INADMISSIBLE CLOCK SKEW. \\ \end{tabular}$

1. ANALYZE COMBINATIONAL NETWORK

DETERMINE THE TRANSITION AND OUTPUT FUNCTIONS

- 2. DETERMINE HIGH-LEVEL SPECIFICATION OF STATE DE-SCRIPTION OUTPUT FUNCTIONS.
- 3. IF DESIRED (OR REQUIRED), DETERMINE TIME BEHAV-IOR

Figure 8.17: SEQUENTIAL NETWORK IN Example 8.4.

State transition
$$Y_0 = x'y_1' + xy_0'$$

$$Y_1 = xy_0'y_1' + x'y_0'y_1 + xy_0y_1 + x'y_0y_1'$$
 Output
$$z_0 = y_1'$$

$$z_1 = y_0$$

EXAMPLE 8.4 (cont.)

• STATE-TRANSITION AND OUTPUT FUNCTIONS:

\overline{PS}	Inp			
y_1y_0	x = 0	x = 1		
00	01	11	01	
01	11	00	11	
10	10	01	00	
11	00	10	10	
	Y_1Y_0		$z_1 z_0$	
	N	\overline{NS}		

• CODES:

\overline{x}	$\overline{ x }$	$z_1 z_0$	\overline{z}	$y_1 y_0$	
0	a	00	\overline{c}		$\overline{S_0}$
1	b	01	d	01	S_1
		10	e	10	S_2
		11	f	11	S_3

EXAMPLE 8.4 (cont.)

HIGH-LEVEL SPECIFICATION:

Input: $x(t) \in \{a, b\}$

Output: $z(t) \in \{c, d, e, f\}$

State: $s(t) \in \{S_0, S_1, S_2, S_3\}$

Initial state: $s(0) = S_2$

Functions: The state-transition and output functions

\overline{PS}	x(t) = a	x(t) = b	
S_0	S_1	S_3	d
S_1	S_3	S_0	f
S_2	S_2	S_1	c
S_3	S_0	S_2	e
	N	\overline{S}	z(t)

Figure 8.18: a) STATE DIAGRAM FOR SEQUENTIAL NETWORK.

Figure 8.18: b) A sequence of input-output pairs.

PROPAGATION DELAY x to z_0 :

INPUT LOAD FACTORS:	I_x	=	4
SET-UP TIME:	$t_{su}(net)$	=	$t_{pHL}(\text{NOT}) + t_{pHL}(\text{AND3})$
			$+t_{pHL}(\text{OR4}) + t_{su}$
		=	$(0.05 + 0.017 \times 3) + (0.18 + 0.018)$
			+(0.45+0.025)+0.3
		=	1.07 [ns]
HOLD TIME:	$t_h(net)$	=	0.14 [ns]
PROPAGATION DELAY:	$t_p(z_0)$	=	$t_{pLH}(ext{FF}) + t_{pHL}(ext{NOT})$
		=	$(0.49 + 0.038 \times 3)$
			$+(0.05 + 0.017 \times (L+3))$
		=	0.70 + 0.017L [ns]
			(load of NOT is $L + 3$, load of FF is 3)
SIZE:		=	$6 \times 2 + 2 + 3 + 2 \times 6 + 3 \times 1$
		=	32 equivalent gates.

1. TRANSFORM THE TRANSITION AND OUTPUT FUNCTIONS

2. SPECIFY A STATE REGISTER TO ENCODE THE REQUIRED NUMBER OF STATES

3. DESIGN THE REQUIRED COMBINATIONAL NETWORK

EXAMPLE 8.5: DESIGN

Input: $x(t) \in \{a, b, c\}$

Output: $z(t) \in \{0, 1\}$

State: $s(t) \in \{A, B, C, D\}$

Initial state: s(0) = A

Functions: The state-transition and output functions

PS	Input			
	x = a	x = b	x = c	
\overline{A}	C,0	B, $f 1$	B,0	
B	D, 0	B , ${\sf 0}$	A , $oldsymbol{1}$	
C	A,0	D , $oldsymbol{1}$	D , ${\sf 0}$	
D	B,0	A,0	D, 1	
		NS, z		

EXAMPLE 8.5 (cont.)

• CODING:

In	put	code	Sta	ate (code
\overline{x}	x_1	x_0	s	y_1	y_0
\overline{a}	0	1	\overline{A}	0	0
b	1	0	B	1	0
c	1	1	C	0	1
			D	1	1

EXAMPLE 8.5 (cont.)

STATE-TRANSITION AND OUTPUT FUNCTIONS

PS	x_1x_0			
$y_1 y_0$	01	10	11	
00	01,0	10,1	10,0	
10	11,0	10,0	00,1	
01	00,0	11,1	11,0	
11	10,0	00,0	11,1	
	Y_1Y_0, z			
	NS, Output			

NEXT-STATE AND OUTPUT EXPRESSIONS

$$Y_{1} = y'_{1}x_{1} + y_{1}x'_{1} + y'_{0}x'_{0} + y_{0}x_{1}x_{0}$$

$$Y_{0} = y'_{0}x'_{1} + y'_{1}y_{0}x_{1} + y_{0}x_{1}x_{0}$$

$$z = y'_{1}x'_{0} + y_{1}x_{1}x_{0}$$

EXAMPLE 8.5 (cont.)

Figure 8.19: SEQUENTIAL NETWORK IN Example 8.5.

SR FLIP-FLOP

Figure 8.20: SR FLIP-FLOP AND ITS STATE DIAGRAM.

PS = Q(t)	S(t)R(t)			
	00	01	10	11
0	0	0	1	_
1	1	0	1	-
	N	S =	$Q(\tau)$	$\overline{t+1)}$

$$Q(t+1) = Q(t)R'(t) + S(t)$$
 restriction: $R(t) \cdot S(t) = 0$

JK FLIP-FLOP

Figure 8.21: JK FLIP-FLOP AND ITS STATE DIAGRAM.

PS = Q(t)	J(t)K(t)			
	00	01	10	11
0	0	0	1	1
1	1	0	1	0
	N	$\overline{S} =$	Q(t)	(+1)

$$Q(t+1) = Q(t)K'(t) + Q'(t)J(t)$$

T (Toggle) FLIP-FLOP

Figure 8.22: T FLIP-FLOP AND ITS STATE DIAGRAM.

PS = Q(t)	T(t)		
	0	1	
0	0	1	
1	1	0	
	NS	= Q(t+1)	

$$Q(t+1) = Q(t) \oplus T(t)$$

Figure 8.23: T FLIP-FLOP IMPLEMENTED WITH JK FLIP-FLOP.

ANALYSIS OF NETWORKS WITH FLIP-FLOPS

- 1. OBTAIN THE TRANSITION FUNCTION OF THE NETWORK
 - (a) DETERMINE THE INPUTS TO THE FLIP-FLOPS
 - (b) USE THE TRANSITION FUNCTION OF THE FLIP-FLOPS TO DETERMINE THE NEXT STATE

- 2. OBTAIN THE OUTPUT FUNCTION
- 3. DETERMINE A SUITABLE HIGH-LEVEL SPECIFICATION

FF		Delays					Size
type						factor	
	t_{pLH}	t_{pHL}	t_{su}	t_h	t_w	[std.	[equiv.
	[ns]	[ns]	[ns]	[ns]	[ns]	loads]	gates]
D	0.49 + 0.038L	0.54 + 0.019L	0.30	0.14	0.20	1	6
JK	0.45 + 0.038L	0.47 + 0.022L	0.41	0.23	0.20	1	8

L: output load of the flip-flop

These flip-flops have only uncomplemented outputs

Figure 8.24: SEQUENTIAL NETWORK FOR Example 8.6.

$$T_A = x_1 Q_B \quad Q_A(t+1) = Q_A(t) \oplus x_1 Q_B(t)$$

 $T_B = x_0 Q_A \quad Q_B(t+1) = Q_B(t) \oplus x_0 Q_A(t)$
 $z(t) = x_1(t) Q'_B(t)$

STATE-TRANSITION AND OUTPUT FUNCTIONS

\overline{PS}	Input							
Q_AQ_B	x_1x_0				x_1	x_0		
	00	01	10	11	00	01	10	11
00	00	00	00	00	0	0	1	1
01	01	01	11	11	0	0	0	0
10	10	11	10	11	0	0	1	1
11	11	10	01	00	0	0	0	0
	$Q_A Q_B$				2	Z		
		N	S			Out	put	

• CODING:

$\overline{Q_A}$	Q_B	S	$\overline{x_1}$	x_0	x
0	0	S_0	0	0	\overline{a}
0			0	1	b
1		S_2	1	0	c
1	1	S_3	1	1	d

HIGH-LEVEL DESCRIPTION:

INPUT: $x(t) \in \{a, b, c, d\}$

OUTPUT: $z(t) \in \{0, 1\}$

STATE: $s(t) \in \{S_0, S_1, S_2, S_3\}$

INITIAL STATE: $s(0) = S_0$

Functions: the state-transition and output functions

\overline{PS}	x				I	\overline{c}		
				\overline{d}				
$\overline{S_0}$	S_0	S_0	S_0	S_0 S_3 S_3	0	0	1	1
S_1	S_1	S_1	S_3	S_3	0	0	0	0
S_2	S_2	S_3	S_2	S_3	0	0	1	1
S_3	S_3	S_2	S_1	S_0	0	0	0	0
	NS				2	Z		

Figure 8.25: SEQUENTIAL NETWORK FOR Example 8.7

$$J_A = x'Q'_B + xQ_A$$
 $K_A = Q_B$
 $J_B = Q_A$ $K_B = x'Q'_A$
 $z = Q_A + Q'_B$

$$J_{A} = x'Q'_{B} + xQ_{A} K_{A} = Q_{B} J_{B} = Q_{A} K_{B} = x'Q'_{A}$$

$$z = Q_{A} + Q'_{B}$$

$$Q_{A}(t+1) = Q_{A}K'_{A} + Q'_{A}J_{A} = Q_{A}Q'_{B} + Q'_{A}(x'Q'_{B} + xQ_{A}) = Q'_{B}(Q_{A} + x')$$

$$Q_{B}(t+1) = Q_{B}K'_{B} + Q'_{B}J_{B} = Q_{B}(x+Q_{A}) + Q'_{B}Q_{A} = Q_{B}x + Q_{A}$$

STATE-TRANSITION AND OUTPUT FUNCTIONS

\overline{PS}	NS		Output
	x = 0	x = 1	z
Q_AQ_B	$Q_A Q_B$	$Q_A Q_B$	
00	10	00	1
01	00	01	0
10	11	11	1
11	01	01	1

• STATE CODING

$\overline{Q_A}$	Q_B	\overline{S}
0	0	S_0
0	1	S_1
1	0	S_2
1	1	S_3

HIGH-LEVEL DESCRIPTION

INPUT: $x(t) \in \{0, 1\}$

OUTPUT: $z(t) \in \{0, 1\}$

STATE: $s(t) \in \{S_0, S_1, S_2, S_3\}$

INITIAL STATE: $s(0) = S_0$

Functions: The state-transition and output functions

\overline{PS}	Inp		
	x = 0	x = 1	
$\overline{S_0}$	S_2	S_0	1
S_1	S_0	S_1	0
S_2	S_3	S_3	1
S_3	S_1	S_1	1
	NS		\overline{z}

Figure 8.26: STATE DIAGRAM IN Example 8.7.

OTHER CHARACTERISTICS (Example 8.7)

INPUT LOAD FACTOR: $I_r = 2$

SET-UP TIME: $t_{su}(net) = t_{pLH}(\text{NOT}) + t_{pLH}(\text{AND}) + t_{pLH}(\text{OR}) + t_{su}(FF)$ $= (0.02 + 0.038 \times 2) + (0.15 + 0.037) + (0.12 + 0.037) + 0.41$ = 0.86 [ns]

HOLD TIME: $t_h(net) = 0.23 \text{ [ns]}$

PROPAGATION DELAY: $t_p(net) = t_{pHL}(FF) + t_{pLH}(NOT) + t_{pLH}(OR)$ $= (0.47 + 0.022 \times 2) + (0.02 + 0.038 \times 2)$ + (0.12 + 0.037L)= 0.73 + 0.037L [ns]

SIZE: $= 3 + 2 \times 5 + 8 \times 2$ = 29 equivalent gates

• EXCITATION FUNCTION E(Q(t), Q(t+1))

FROM	TO	INPUTS SHOULD BE
Q(t) = 0	Q(t+1) = 0	S(t) = 0, $R(t) = dc$
Q(t) = 0	Q(t+1) = 1	S(t) = 1, $R(t) = 0$
Q(t) = 1	Q(t+1) = 0	S(t) = 0, $R(t) = 1$
Q(t) = 1	Q(t+1) = 1	S(t) = dc, R(t) = 0

EXCITATION FUNCTIONS

D flip-flop

	α .	qoft-c
	Him	HOD
, 7)— I I () I)
\sim \pm \circ		

PS	NS	
	0	1
0	0	1
1	0	1
	D(t)	

\overline{PS}	NS		
	0	1	
0	0-	10	
1	01	-()	
	S(t)	R(t)	

$$D(t) = Q(t+1)$$

JK flip-flop

T flip-flop

\overline{PS}	NS		
	0	1	
0	0-	1-	
1	-1	-()	
	J(t).	$\overline{K(t)}$	

$$\begin{array}{c|cccc} PS & NS \\ \hline & 0 & 1 \\ \hline 0 & 0 & 1 \\ \hline 1 & 1 & 0 \\ \hline & T(t) \\ \hline \end{array}$$

$$T(t) = Q(t) \oplus Q(t+1)$$

THE DESIGN PROCEDURE

- 1. OBTAIN A BINARY DESCRIPTION OF THE SYSTEM
- 2. SELECT THE TYPE OF FLIP-FLOP
- 3. DETERMINE THE INPUTS TO THE FLIP-FLOPS (use the excitation function)
- 4. DESIGN A COMBINATIONAL NETWORK

USE T FLIP-FLOPS

Input: $x(t) \in \{0, 1\}$

Output: $z(t) \in \{0, 1, 2, 3, 4\}$

State: $s(t) \in \{S_0, S_1, S_2, S_3, S_4\}$

Initial state: $s(0) = S_0$

Functions: Counts modulo-5, i.e.,

(0,1,2,3,4,0,1,2,3,4,0...),

Figure 8.27: STATE DIAGRAM FOR Example 8.8.

z	z_2	z_1	z_0
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0

PS	Input		Input	
$Q_2Q_1Q_0$	x = 0	x = 1	x = 0	x = 1
000	000	001	000	001
001	001	010	000	011
010	010	011	000	001
011	011	100	000	111
100	100	000	000	100
	$\dot{N}S$		T_2T	$\overline{1}T_0$

DON'T CARES: 5, 6, AND 7

sm - STATE MAP

$$T_2 = xQ_2 + xQ_1Q_0$$

$$T_1 = xQ_0$$

$$T_0 = xQ_2'$$

 $\label{eq:Figure 8.28: SEQUENTIAL NETWORK IN Example 8.8.}$

EXAMPLE 8.9: DESIGN

Input: $\underline{x}(t) = (x_1, x_0), x_i \in \{0, 1\}$

Output: $z(t) \in \{0, 1\}$

State: $s(t) \in \{a, b, c, d\}$

Initial state: s(0) = a

Functions: The transition and output functions

PS	x_1x_0			
	01	10	11	
\overline{a}	<i>b</i> ,0	<i>c</i> ,1	<i>c</i> ,0	
b	a,0	d, 1	d, 0	
c	d,0	c,0	a,1	
d	<i>c</i> ,0	a,0	d,1	
	NS, z			

EXAMPLE 8.9 (CONT.)

State	Q_1Q_0
\overline{a}	00
b	01
c	10
d	11

\overline{PS}	x_1x_0		
$\overline{Q_1Q_0}$	01	10	11
00	01	10	10
01	00	11	11
10	11	10	00
11	10	00	11
	NS		

Q(t)	Q(t+1)	S	\overline{R}
0	0	0	_
0	1	1	0
1	0	0	1
1	1	_	0

$$S_{1} = x_{1}Q'_{1}$$

$$R_{1} = x'_{0}Q_{1}Q_{0} + x_{1}x_{0}Q_{1}Q'_{0}$$

$$S_{0} = x'_{1}Q'_{0}$$

$$R_{0} = x'_{1}Q_{0} + x'_{0}Q_{1}$$

THE OUTPUT EXPRESSION IS

$$z = x_0'Q_1' + x_1x_0Q_1$$

Figure 8.29: SEQUENTIAL NETWORK IN Example 8.9.

SPECIAL STATE ASSIGNMENTS

ONE FLIP-FLOP PER STATE

Figure 8.30: ONE FLIP-FLOP PER STATE APPROACH: a) STATE DIAGRAM. b) IMPLEMENTATION (Outputs omitted).

PRIMITIVES FOR "one-flip-flop-per-state" APPROACH

Figure 8.31: PRIMITIVES FOR THE "ONE-FLIP-FLOP-PER-STATE" APPROACH.

CONTROLLER FOR SIMPLE VENDING MACHINE

Figure 8.32: A ONE-FLIP-FLOP-PER-STATE IMPLEMENTATION OF A CONTROLLER FOR VENDING MACHINE: a) STATE DIAGRAM. b) IMPLEMENTATION.

SHIFTING STATE REGISTER: Example 8.10

 $\begin{array}{ll} \mathsf{INPUT:} & x(t) \in \{0,1\} \\ \mathsf{OUTPUT:} & z(t) \in \{0,1\} \end{array}$

FUNCTION:
$$z(t) = \begin{cases} 1 & \text{if } x(t-3,t) = 1101 \\ 0 & \text{otherwise} \end{cases}$$

Figure 8.33: IMPLEMENTATION OF PATTERN RECOGNIZER IN EXAMPLE 8.10.