Matrizes semelhantes

• Seja V um espaço linear sobre um corpo Ω , tal que dimV = n.

Teorema [4.3]: Seja a transformação linear $T: V \to V$. Designem-se por $T_E = m(T)_E$ e por $T_U = m(T)_U$ as suas representações matriciais em relação às bases ordenadas $E = \{e_1, e_2, ..., e_n\}$ e $U = \{u_1, u_2, ..., u_n\}$, respectivamente.

Sendo $M_{U \to E}$ a matriz mudança de base de U para E, então as representações matriciais referidas verificam a relação matricial

$$m(T)_{U} = (\mathbf{M}_{U \to E})^{-1} m(T)_{E} \mathbf{M}_{U \to E}$$

ou

$$extbf{\textit{T}}_{U} = \left(extbf{\textit{M}}_{U \to E} \right)^{-1} extbf{\textit{T}}_{E} extbf{\textit{M}}_{U \to E}$$

J.A.T.B.

Definição [4.2]: Matrizes Semelhantes

Duas matrizes \mathbf{A} e \mathbf{B} de ordem n sobre um corpo Ω dizem-se matrizes semelhantes, se existir uma matriz $n\tilde{a}o$ singular, de ordem n, \mathbf{P} , tal que

$$B = P^{-1} A P$$

representando-se simbolicamente por $\mathbf{A} \approx \mathbf{B}$.

Teorema [4.4]: Duas matrizes \mathbf{A} e \mathbf{B} de ordem n sobre um corpo Ω e semelhantes representam a mesma transformação linear.

Teorema [4.5]: Duas matrizes \boldsymbol{A} e \boldsymbol{B} de ordem \boldsymbol{n} sobre um corpo Ω são semelhantes, se e só se representam a mesma transformação linear.

Teorema [4.6]: Se as matrizes A e B de ordem n sobre um corpo Ω são semelhantes, então possuem o mesmo determinante.

Teorema [4.7]: Se as matrizes \boldsymbol{A} e \boldsymbol{B} de ordem n sobre um corpo Ω são semelhantes, então possuem a mesma característica.

Teorema [4.8]: Seja **A** uma matriz quadrada de ordem *n* sobre um corpo Ω e $\mathbf{B} = \mathbf{P}^{-1} \mathbf{A} \mathbf{P}$ uma matriz semelhante a **A**. Sendo *k* um número inteiro positivo, então

$$\mathbf{B}^k = \mathbf{P}^{-1} \; \mathbf{A}^k \; \mathbf{P}$$

J.A.T.B. NAL-4.18

Teorema [4.9]: Se \boldsymbol{A} é uma matriz $n\tilde{a}o$ singular, de ordem n, sobre um corpo Ω e $\boldsymbol{B} = \boldsymbol{P}^{-1} \boldsymbol{A} \boldsymbol{P}$ uma matriz semelhante a \boldsymbol{A} , então

$$B^{-1} = P^{-1} A^{-1} P$$

e, portanto, \mathbf{B}^{-1} e \mathbf{A}^{-1} são, também, matrizes semelhantes.

Teorema [4.10]: Seja \boldsymbol{A} uma matriz não singular, de ordem \boldsymbol{n} , sobre um corpo Ω e $\boldsymbol{B} = \boldsymbol{P}^{-1} \boldsymbol{A} \boldsymbol{P}$ uma matriz semelhante a \boldsymbol{A} . Sendo \boldsymbol{k} um número inteiro positivo, então

$$B^{-k} = P^{-1} A^{-k} P$$

e, portanto, \mathbf{B}^{-k} e \mathbf{A}^{-k} são, também, matrizes semelhantes.

J.A.T.B. NAL-4.19

Exemplo 4 [4.6]: Considere a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$, tal que

$$T(x, y, z) = (3x + 2y - z, -2x - 2y + 2z, 3x + 6y - z)$$

Seja a base ordenada para \mathbb{R}^3

$$U = \{\vec{u}_1, \vec{u}_2, \vec{u}_3\} = \{(1, 2, 0), (0, 1, 1), (0, 1, 0)\}$$

Determine:

- a) A matriz T = m(T), que representa T em relação à base canónica para \mathbb{R}^3 .
- b) A matriz semelhante a T = m(T) definida em relação à base ordenada U e indique a lei de transformação que lhe está associada.

Solução:

a) A matriz

$$T = m(T) = \begin{bmatrix} 3 & 2 & -1 \\ -2 & -2 & 2 \\ 3 & 6 & -1 \end{bmatrix}$$

constitui a representação matricial de T em relação à base canónica para \mathbb{R}^3 , $\mathsf{E}_3 = \left\{\vec{i}, \vec{j}, \vec{k}\right\} = \left\{(1,0,0), (0,1,0), (0,0,1)\right\}$.

b) A matriz semelhante a T = m(T) definida em relação à base ordenada U é a matriz $T_U = m(T)_U$, que se relaciona com a matriz T através da relação matricial

$$T_{\mathsf{U}} = \left(M_{\mathsf{U} \to \mathsf{E}_3}\right)^{-1} T M_{\mathsf{U} \to \mathsf{E}_3}$$

onde $\textit{M}_{\text{U} \rightarrow \text{E}_3}$, a matriz *mudança de base de* U *para* E_3 , é definida por

$$\mathbf{M}_{U \to E_3} = \mathbf{E}_3^{-1} \ \mathbf{U} = \mathbf{I}_3 \ \mathbf{U} = \mathbf{U} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

J.A.T.B.

e tem como matriz inversa

$$\left(\mathbf{M}_{\mathsf{U} \to \mathsf{E}_3} \right)^{-1} = \mathbf{U}^{-1} = \frac{1}{|\mathbf{U}|} \begin{bmatrix} \mathbf{Cof} \ \mathbf{U} \end{bmatrix}^{\mathsf{T}} = -\begin{bmatrix} -1 & 0 & 2 \\ 0 & 0 & -1 \\ 0 & -1 & 1 \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ -2 & 1 & -1 \end{bmatrix}$$

Assim,

$$T_{U} = (M_{U \to E_{3}})^{-1} T M_{U \to E_{3}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ -2 & 1 & -1 \end{bmatrix} \begin{bmatrix} 3 & 2 & -1 \\ -2 & -2 & 2 \\ 3 & 6 & -1 \end{bmatrix} M_{U \to E_{3}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ -2 & 1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} 3 & 2 & -1 \\ 3 & 6 & -1 \\ -11 & -12 & 5 \end{bmatrix}_{E_3, U} \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 7 & 1 & 2 \\ 15 & 5 & 6 \\ -35 & -7 & -12 \end{bmatrix}_{U}$$

Uma vez que $T_U \approx T$, então verifica-se $|T_U| = |T| = -16$.

Designando por $\vec{x}_U = (x_1, y_1, z_1)_U$ as *coordenadas* do vector genérico de \mathbb{R}^3 *em relação à base ordenada* U, então

$$\mathbf{Y}_{\mathsf{U}} = \mathbf{T}_{\mathsf{U}} \ \mathbf{X}_{\mathsf{U}} = \begin{bmatrix} 7 & 1 & 2 \\ 15 & 5 & 6 \\ -35 & -7 & -12 \end{bmatrix}_{\mathsf{U}} \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}_{\mathsf{U}} = \begin{bmatrix} 7x_1 + y_1 + 2z_1 \\ 15x_1 + 5y_1 + 6z_1 \\ -35x_1 - 7y_1 - 12z_1 \end{bmatrix}_{\mathsf{U}}$$

pelo que a lei de transformação de T em relação à base U é

$$T: \mathbb{R}^3 \to \mathbb{R}^3$$

em que

$$T(x_1, y_1, z_1)_{U} = (7x_1 + y_1 + 2z_1, 15x_1 + 5y_1 + 6z_1, -35x_1 - 7y_1 - 12z_1)_{U}$$

J.A.T.B.