МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ

Отчет по Лабораторной работе №2 «Прямые методы решения СЛАУ» Вариант 5

Подготовила: Врублевская Екатерина Александровна, 2 курс 13 группа

1. Постановка задачи

Обращение матрицы методом Гаусса с выбором ГЭ по столбцу

1. Написать программу, которая обращает матрицу методом Гаусса с выбором главного элемента по столбцу. Применить программу к следующим ниже входным данным и вывести результат.

- 2. Найти точные обратные матрицы с использованием библиотеки SymPy и вычислить нормы разности между точной и приближенной матрицами A^{-1} .
- 3. Проведите экспериментальное исследование скорости обращения матрицы в зависимости от размерности системы, используя для тестов матрицу А со случайными числами. Постройте график зависимости времени работы от размерности. Матрицу размерности ваша программа на вашем компьютере может обратить за одну минуту?

2. Основная часть

Входные данные:

$$A = \begin{pmatrix}
-1 & -4 & -5 & -1 & 0 & -1 & -1 \\
-1 & -4 & 0 & 4 & -4 & 0 & -4 \\
-2 & -8 & -5 & -1 & 0 & -4 & 0 \\
-4 & -16 & -10 & 2 & -4 & -2 & 0 \\
-8 & -32 & -20 & 4 & -8 & 0 & -2 \\
-16 & -64 & -40 & 8 & -16 & -7 & -4 \\
5 & -5 & -5 & -2 & 0 & -2 & -1
\end{pmatrix}$$

Результат выполнения:

Входные данные:

Результат выполнения:

Полученная мной матрица:

```
9,9999999990 -4,5E1 1,2E2 -2,1E2 2,5E2 -2,1E2 1,2E2 -4,4999999999E1 9,999999999E -9,999999999E1
-1,928968254E1 1,0930357143E2 -3,1147619047E2 5,6258333333E2 -6,8769999999E2 5,8008333333E2 -3,343333333E2 1,2617857143E2 -2,8178571428E1 2,8289682539E0
1,5855753968E1 -1,0350267857E2 3,1791984127E2 -5,9740833333E2 7,4812499999E2 -6,413736111E2 3,7398333333E2 -1,4238214286E2 3,2014484127E1 -3,2316468254E0
-7,3185736331E0 5,2583313492E1 -1,7211865079E2 3,3730879629E2 -4,3436805555E2 2,79776527777E2 -2,2466574074E2 8,6486706348E1 -1,9617162699E1 1,9942680776E0
2,0975694444E0 -1,6106076389E1 5,5620833333E1 -1,13411805555E2 1,5041319444E2 -1,3444479167E2 8,089861111E1 -3,1561805555E1 7,2364583333E0 -7,4218749999E-1
-3,8825231481E-1 3,1331597222E0 -1,1289583333E1 2,3849305555E1 -3,25000694444E0 -4,1645833333E0 2,006944444E0 -1,0513888889E0 2,47916666E1 -2,604166666E-2
-3,4887566137E-3 3,0109126984E-2 -1,1547619047E-1 2,58333333333333333333333333E2 -3,745222222E-4 3,479777778E-1 9,365079365E-2 -2,2470238095E-2 2,3974807725E-3
1,4880952381E-4 -1,314484127E-3 5,1587301586E-3 -1,1805555555E-2 1,7361111111E-2 -1,7013888889E-2 1,1111111111E-2 -4,6626984127E-3 1,1408730159E-3 -1,2400793651E-4
-2,7557319223E-6 2,4801587301E-5 -9,9206349205E-5 2,3148148148E-4 -3,4722222222E-4 3,472222222E-4 -2,3148148148E-4 9,9206349206E-5 -2,4801587301E-5 2,7557319224E-6
```

Полученная методом из библиотеки sympy матрица:

Binv												
Matrix([
]	10,	-45,	120,	-210,	252,	-210,	120,	-45,	10,	-1],	
]	-4861/252,	6121/56,	-6541/21,	6751/12,	-6877/10,	6961/12,	-1003/3,	3533/28,	-789/28,	7129/2520],	
	[79913/5040,	-115923/1120,	400579/1260,	-71689/120,	5985/8,	-461789/720,	22439/60,	-39867/280,	161353/5040,	-6515/2016],	
	[-6	63941/90720,	264767/5040,	-433739/2520,	728587/2160,	-62549/144,	273431/720,	-242639/1080,	435893/5040,	-197741/10080,	4523/2268],	
	[6041/2880,	-92771/5760,	13349/240,	-163313/1440,	43319/288,	-129067/960,	58247/720,	-45449/1440,	6947/960,	-95/128],	
]	-6709/17280,	18047/5760,	-5419/480,	34343/1440,	-93773/2880,	28603/960,	-8771/480,	10427/1440,	-3229/1920,	3013/17280],	
]	67/1440,	-1123/2880,	349/240,	-2281/720,	40/9,	-1999/480,	1877/720,	-757/720,	119/480,	-5/192],	
]	-211/60480,	607/20160,	-97/840,	31/120,	-107/288,	57/160,	-41/180,	59/630,	-151/6720,	29/12096],	
]	1/6720,	-53/40320,	13/2520,	-17/1440,	5/288,	-49/2880,	1/90,	-47/10080,	23/20160,	-1/8064],	
	Γ	-1/362880.	1/40320.	-1/10080	1/4320.	-1/2880.	1/2880.	-1/4320.	1/10080.	-1/40320.	1/36288011)	

Норма разности между полученными матрицами: $4.994296753935146*10^{-7}$

4.994296753935146E-7

Входные данные:

$$A = \begin{pmatrix} 5 & 3 & 3 & -4 & 5 & -5 & -4 & -5 & 0 & 2 \\ 5 & 3 & -1 & 2 & 3 & 0 & -4 & 1 & -4 & -5 \\ 10 & 6 & 2 & -3 & -2 & -2 & -1 & 0 & -3 & -5 \\ 20 & 12 & 4 & -5 & -1 & -4 & 4 & -2 & -2 & -4 \\ 40 & 24 & 8 & -10 & 5 & -1 & 5 & 2 & 0 & -3 \\ 80 & 48 & 16 & -20 & 10 & -12 & -3 & -3 & 3 & 2 \\ 160 & 96 & 32 & -40 & 20 & -24 & -3 & -4 & 1 & 4 \\ 320 & 192 & 64 & -80 & 40 & -48 & -6 & -11 & 0 & -3 \\ 640 & 384 & 128 & -160 & 80 & -96 & -12 & -22 & -5 & 2 \\ -3 & -3 & 0 & 0 & 5 & 3 & -2 & 2 & 5 & -2 \end{pmatrix}$$

Полученная мной матрица:

```
-0,7482142857E-1 -4,2482142857E-1 -2,9982142857E-1 -4,982142857E-2 -7,7482142857E-1 -7,8732142857E-1 -8,1232142857E-1 -7,232142857E-2 4,0482142857E-1 5E-1 3,0674886621E-1 5,6748866213E-2 -6,8251133787E-2 -7,9444160998E-1 5,1151077098E-1 -1,2360827664E-1 1,458361678E-1 1,0623441043E0 -5,6500283447E-1 -8,333333333E-1 1,0169019274E1 9,669019274E0 6,919019274E0 1,2847590703E1 1,045473356E1 2,213925737E1 1,5000368481E1 -1,4186933107E1 -7,4203514739E-1 0E0 5,7498639456E0 3,7498639456E0 3,7498639456E0 7,6070068027E0 5,921292517E0 1,2907006803E1 8,6403401361E0 -8,218707483E0 -4,2034013605E-1 0E0 -5,6424036281E-1 -5,6424036281E-1 -5,6424036281E-1 -8,4995464853E-1 -6,2138321995E-1 -1,6166213152E0 -8,6106575964E-1 1,0252834467E0 -1,2267573696E-2 0E0 2,1253968254E-1 2,1253968254E-1 2,1253968254E-1 4,1253968254E-1 9,7920634921E-1 -1,0968253968E-1 -6,3412698413E-1 1,8301587302E-1 0E0 -4,1587301587E-1 -4,1587301587E-1 -4,1587301587E-1 -1,0825396825E0 -5,2698412698E-1 6,5079365079E-1 -6,3492063492E-3 0E0 3,380952381E-1 3,380952381E-1 3,380952381E-1 3,380952381E-1 3,380952381E-1 3,380952381E-1 3,380952381E-1 3,380952381E-1 3,380952381E-1 3,428571429E-1 -1,1428571429E-1 -1,1428571429E-1 -1,1428571429E-2 -7,1428571429E-2 -7,14285
```

Полученная методом из библиотеки sympy матрица:

Ci	nv										
Matrix([
]	-3779/5600,	-2379/5600,	-1679/5600,	-279/5600,	-4339/5600,	-4409/5600,	-4549/5600,	-81/1120,	2267/5600,	1/2],	
[1	08221/352800,	20021/352800,	-24079/352800,	-280279/352800,	180461/352800,	-43609/352800,	51451/352800,	74959/70560,	-199333/352800,	-5/6],	
]	358763/35280,	341123/35280,	244103/35280,	453263/35280,	368843/35280,	781073/35280,	529213/35280,	-100103/7056,	-26179/35280,	Θ],	
1	84523/14700,	84523/14700,	55123/14700,	111823/14700,	87043/14700,	189733/14700,	127013/14700,	-24163/2940,	-6179/14700,	Θ],	
]	-24883/44100,	-24883/44100,	-24883/44100,	-37483/44100,	-27403/44100,	-71293/44100,	-37973/44100,	9043/8820,	-541/44100,	0],	
[1339/6300,	1339/6300,	1339/6300,	1339/6300,	2599/6300,	6169/6300,	-691/6300,	-799/1260,	1153/6300,	Θ],	
[-131/315,	-131/315,	-131/315,	-131/315,	-131/315,	-341/315,	-166/315,	41/63,	-2/315,	Θ],	
[71/210,	71/210,	71/210,	71/210,	71/210,	71/210,	211/210,	-11/42,	-43/210,	0],	
]	-4/35,	-4/35,	-4/35,	-4/35,	-4/35,	-4/35,	-4/35,	2/7,	-3/35,	0],	
[-1/14,	-1/14,	-1/14,	-1/14,	-1/14,	-1/14,	-1/14,	-1/14,	1/14,	0]])	

Норма разности между полученными матрицами: $6.1755308999963336*10^{-12}$

6.1755308999963336E-12

Провожу экспериментальное исследование скорости обращения матрицы в зависимости от размерности системы, используя для тестов матрицу А со случайными числами.

График зависимости времени работы программы от размерности матрицы

Как мы видим, начиная с размерности матрицы 1000*1000 резко возрастает время обращения матрицы.

Моя программа на моем компьютере может обратить за одну минуту матрицу размерности 3100 (3100*3100).

Листинг кода программы:

```
oublic class GaussianMethod {
       this.decomposition = copyMatrix(matrix);
   public void calcDecomposition() {
   private void rearrangeRows(double[][] matrix, int k, int i) {
```

```
sum += decomposition[i][j] * y[j];
public double[][] findInverseMatrix() {
private void transposeMatrix(double[][] matrix) {
private boolean isDecomposed() {
private double[][] copyMatrix(double[][] from) {
```

```
DecimalFormat("0.#########E0");
        testInverse();
```

```
private static void testInverse() {
public static double getNorm(double[][] matrix1, double[][] matrix2) {
```

3. Заключение

Метод Гаусса с выбором ГЭ по столбцу получает LU-разложение исходной матрицы один раз и потом использует ее для дальнейших расчетов. Это позволяет неплохо уменьшить время вычисления обратной матрицы, так как построение разложения здесь самая трудоемкая операция $(O(n^3))$. Для вычисления обратной матрицы я использую класс GaussianMethod. В нем есть поля matrix и decomposition, которые представляют собой исходную матрицу и ее LU-разложение, хранящееся в одной матрице, соответственно. Также т.к. реализовываю метод с выбором ГЭ по столбцу, в классе есть поле permutations, которое хранит вектор перестановок строк. LU-разложение получаем в

методе calcDecomposition(), далее рассчитывается обратная матрица в методе findInverseMatrix(). Как именно она считается? Исходя из того, что AB = I, где $B=A^{-1}$, I — единичная матрица. Каждый столбец матрицы рассчитывается по следующей схеме:

 $\begin{cases} Ly_i = l_i \\ Ub_i = y_i \end{cases}$ где $\mathbf{b_i}$ — искомый столбец обратной матрицы, $\mathbf{l_i}$ — столбец единичной матрицы, в котором i-я компонента равна 1.

Каждая СЛАУ решается в методе solve().

Вычислительная сложность алгоритма — $O(n^3)$.