# TEORÍA DE ALGORITMOS

Tema 8. Diseño de Algoritmos: Backtracking



Universidad de Granada

Curso 2010-2011



#### Motivación de la técnica

Hay problemas para los que

- NO se conoce un algoritmo para su resolución
- o al menos, NO cuentan con un algoritmo eficiente para calcular su solución

en estos casos, la único posibilidad es una **exploración directa** de todas las posibilidades

#### Motivación de la técnica

#### Por ejemplo, el ajedrez



- se conjetura que con blancas siempre se puede ganar
- no se conoce un modo eficiente de encontrar las jugadas

#### Motivación de la técnica

Por ejemplo, el *n*-puzle  $n = t^2 - 1$ 

$$n=t^2-1$$

| 2 | 3 | 8 |
|---|---|---|
| 0 | 1 | 7 |
| 6 | 5 | 4 |



| 0 | 1 | 2 |
|---|---|---|
| 3 | 4 | 5 |
| 6 | 7 | 8 |

- existen metodos de búsqueda efectivos para n pequeño
- para *n* bastante grande no hay un método eficiente

#### Descripción de la técnica

La técnica Backtracking es un método de **búsqueda** de soluciones **exhaustiva** sobre grafos dirigidos acíclicos, el cual se acelera mediante **poda** de ramas poco prometedoras.

#### Esto es,

- se representan todas las posibilidades en un árbol
- se resuelve buscando la solución por el árbol (de una determinada manera)
- hay zonas que se evitan por no contener soluciones (poda)

#### Descripción de la técnica

- la solución del problema se representa en una n-tupla  $(X_1, X_2, \dots, X_n)$  (no llenando necesariamente todas las componentes)
- cada X<sub>i</sub> se escoje de un conjunto de candidatos
- a cada *n*-tupla se le llama **estado**
- se trata de buscar estados solución del problema

#### condiciones de parada

- cuando se consiga un estado solución
- cuando se consigan todos los estados solución



#### Elementos de la técnica

Al diseñar un algoritmo backtraking debemos considerar los siguientes elementos:

- Representación de la solución en una tupla  $(X_1, \ldots, X_n)$
- Una función objetivo para determinar si la tupla a analizar es una solución
- Unas restricciones a los candidatos para rellenar la tupla:
  - Implícitas del problema. Valores que puede tomar cada valor  $X_i$
  - Explícitas o externas al problema. Por ejemplo, problema mochila, el peso no debe superar la capacidad de la mochila
- Una función de poda para eliminar partes del árbol de búsqueda
- Organización del problema en un árbol de búsqueda



- Construir la solución al problema en distintas etapas.
- En cada paso se elige un candidato y se añade a la solución, y se avanza en la solución parcial.
- Si no es posible continuar en la construcción hacia una solución completa, se abandona ésta y la última componente se cambia por otro valor.
- Si no quedan más valores por probar, se retrocede al candidato anterior, se desecha, y se selecciona otro candidato.















































#### Diseño de la técnica

Para diseñar un algoritmo con la técnica backtracking, debemos seguir los siguientes pasos:

- Buscar una representación del tipo  $(X_1, X_2, ..., X_n)$  para las soluciones del problema
- Identificar las restricciones implícitas y explícitas del problema
- Establecer la organización del árbol que define los diferentes estados en los que se encuentra una (sub)solución
- Definir una función solución para determinar si una tupla es solución
- Definir una función de poda  $B_k(X_1, X_2, ..., X_k)$  para eliminar ramas del árbol que puedan derivar en soluciones poco deseables o inadeciadas
- Aplicar la estructura genérica de un algoritmo backtracking



```
solucion[i] \in S_i para i=1,2,\ldots,n
```

#### Eficiencia

La eficiencia en un algoritmo backtracking suele ser de tipo exponencial  $a^n$ 

- depende de la ramificación del árbol
- del tiempo de ejecución de la función solución
- del tiempo de ejecución de la función poda
- del ahorro de utilizar la poda

Nota: las buenas funciones de poda no son muy eficientes

# Ejemplo: el problema de las n reinas

Supongamos que tenemos un tablero de ajedrez:



¿Podemos colocar 8 reinas sin que se amenacen?

## Ejemplo: el problema de las *n* reinas

Recordemos que las reinas se mueven por el tablero

- cualquier número de casillas en horizontal
- cualquier número de casillas en vertical
- cualquier número de casillas en diagonal



entonces no puede haber dos reinas

- en la misma fila
- en la misma columna
- en la misma diagonal

### Una solución al problema



### (Problema)

Dado un tablero (cuadrado) con n casillas de lado, ¿podemos colocar n reinas en el tablero sin que se amenacen?

### Elementos de la técnica backtracking:

- Representación del problema. En *n*-tuplas  $(x_1, x_2, \dots, x_n)$ , donde  $x_i$  es la fila donde está la reina de la columna i
- Restricciones implicitas. Las componentes  $x_i \in \{1, 2, ..., n\}$
- Restricciones explicitas. No puede haber dos reinas en la misma fila, columna y diagonal
- Árbol de estados. En el nivel i se obtiene la posición de la reina i
- Función objetivo. La n-tupla está completa y cumple las restricciones.
- Función poda. Dada por las restricciones explicitas



k= columna (la reina de la columna k)

```
(Función de poda)
funcion PODA ( k . sol[n] )
    para (j=1) hasta (j=k-1)
        si (sol[j]==sol[k]) //misma fila
            devolver false
        si (sol[j]-sol[k]==j-k) //misma diagonal
            devolver false
        si (sol[j]-sol[k]==k-j) //misma diagonal
            devolver false
    devolver true
```

```
(Problema de las n reinas)
funcion REINAS ( k, n , solucion[n] )
   para (i=1) hasta (i=n)
      solucion[k]=i
      si ( PODA (k, solucion)== true )
      si ( k==n )
            devolver solucion
      sino
            REINAS ( k+1, n , solucion[n] )
```

La solución vendrá de REINAS (1, n, solucion[n])

### (Ejercicio)

Implementar en C++ el problema de las n reinas y utilizarlo para calcular la solución de las 4, 8, 16, 32 y 64 reinas.

Supongamos una cuadricula 3x3 con números del 0 al 8 (sin repetir)

| 2 | 3 | 8 |
|---|---|---|
| 0 | 1 | 7 |
| 6 | 5 | 4 |

¿Podemos llevar esta configuración a una ordenada?

| 0 | 1 | 2 |
|---|---|---|
| 3 | 4 | 5 |
| 6 | 7 | 8 |

### Existen cuatro movimientos permitidos

1 Intercambiar el cero con la casilla superior

| 2 | 3 | 8 |               | 0 | 3 | 8 |
|---|---|---|---------------|---|---|---|
| 0 | 1 | 7 | $\rightarrow$ | 2 | 1 | 7 |
| 6 | 5 | 4 |               | 6 | 5 | 4 |

2 Intercambiar el cero con la casilla inferior

### Existen cuatro movimientos permitidos

3 Intercambiar el cero con la casilla situada a la derecha

| 2 | 3 | 8 |               | 2 | 3 | 8 |
|---|---|---|---------------|---|---|---|
| 0 | 1 | 7 | $\rightarrow$ | 1 | 0 | 7 |
| 6 | 5 | 4 |               | 6 | 5 | 4 |

4 Intercambiar el cero con la casilla situada a la izquierda

| 2 | 3 | 8 |               | 0 | 3 | 8 |
|---|---|---|---------------|---|---|---|
| 7 | 1 | 0 | $\rightarrow$ | 7 | 0 | 1 |
| 6 | 5 | 4 |               | 6 | 5 | 4 |

Utilizando estos movimientos no siempre es posible llegar a

| ſ | 0 | 1 | 2 |
|---|---|---|---|
|   | 3 | 4 | 5 |
|   | 6 | 7 | 8 |

### (Teorema)

Dada una configuración del 8-puzle, siempre podemos llegar a

| 0 | 1 | 2 |
|---|---|---|
| 3 | 4 | 5 |
| 6 | 7 | 8 |

o bien, a

| 0 | 3 | 6 |
|---|---|---|
| 1 | 4 | 7 |
| 2 | 5 | 8 |

En general, podemos plantearnos el problema del n-puzle, donde  $n = t^2 - 1$  para t un entero que dos

Elementos de la técnica backtraking:

1=izquierda, 2=derecha, 3=arriba, 4=abajo

- Representación del problema. En *n*-tuplas  $(x_1, x_2, ..., x_n)$ , donde  $x_i$  es el movimiento *i*-ésimo.
- Restricciones implicitas. Las componentes  $x_i \in \{1, 2, 3, 4\}$
- Restricciones explicitas. No hay
- Árbol de estados. En el nivel i se obtiene el movimiento i-ésimo
- Función objetivo. Determina si con los movimientos realizados la matriz es igual a una de las matrices objetivo.
- Función poda. Poda por profundidad, sólo se permiten cierto número de movimientos

```
k= movimiento actual (k-ésimo)
n= número máximo de movimientos
```

```
(Problema del n-puzle)
funcion PUZLE ( k , solucion[n] )
    si ( TEST_SOLUCION ( solucion )== true )
        devolver solucion
    si (k < n) // funcion de poda
        para (i=1) hasta (i=4)
            solucion[k] = i
            PUZLE (k+1, solucion)
    devolver "No encuentro solucion"
```

La solucion viene dada por PUZLE (1, {0,0,...,0})

### Supongamos la siguiente situación:

- 1 tenemos una mochila cuyo peso máximo de carga es M
- ② una serie de objetos a transportar  $1, 2, \dots, n$  donde:
  - el objeto *i* tiene un peso *p<sub>i</sub>*
  - ullet el objeto i tiene un valor  $v_i$

### (Pregunta)

¿Cómo podemos llenar la mochila (respetando el límite de peso) para maximizar el valor de la carga ?

#### Dos variantes:

- Variante A. Los objetos son indivisibles, esto es, no se pueden romper para meter un trozo en la mochila.
- Variante B. Los objetos se pueden dividir en partes más pequeñas, con peso y valor proporcional al original.

para la técnica backtraking, consideramos la Variante A

### Elementos del algoritmo:

- Cada tupla solución solucion[n], con valores {0,1} en cada componente. Indican si se lleva el objeto i en cada caso.
- Organización del árbol de estados. En cada nivel i del árbol seleccionamos (o no) llevar el objeto i.
- Función objetivo. Encontrar alguna solución óptima al problema de la mochila.
- Restricciones implícitas. Cada elemento de la tupla solución sólo podrá tener los valores 0 ó 1.
- Restricciones explícitas. La suma del peso de todos los objetos no debe ser superior a M.
- Función de Poda. Un nodo no será explorado si el peso del objeto asociado a tal nodo, añadido a la mochila, supera la capacidad máxima de ésta.



```
funcion BENEFICIO ( k , solucion[n], valor[n] )
    suma=0;
    para (i=1) hasta (i=k)
        suma = suma+valor[i]*solucion[i]
    devolver suma
```

```
(Función de Poda)
funcion PODA ( k , solucion[n], peso[n] )
  si (BENEFICIO (k, solucion, peso) > M )
      devolver false
  devolver true
```

```
(Problema de la mochila)
funcion MOCHILA (k,sol[n],peso[n],valor[n],valor_max)
   solucion[k] = 0
   si(k < n)
        MOCHILA (k+1,sol,peso,valor,valor_max)
   solucion[k] = 1
   si (PODA (k,sol,peso) == true)
        si ( BENEFICIO(k,sol,valor) > valor_max)
            valor_max=BENEFICIO(k,sol,valor)
        si(k < n)
            MOCHILA (k+1,sol,peso,valor,valor_max)
    devolver valor max
```

### Supongamos que tenemos:

- un conjunto de enteros no negativos  $X = \{x_1, \dots, x_n\}$
- un entero M

### (Problema)

Calcular qué subconjuntos de X suman exactamente M

### (Ejemplo)

Supongamos que  $X = \{2, 3, 5, 10, 20\}$  y M = 15, entonces existen dos soluciones posibles:

- $x_1 = 2$ ,  $x_2 = 3$  y  $x_4 = 10$
- $x_3 = 5$  y  $x_4 = 10$

### Elementos del algoritmo:

- Cada tupla solución solucion[n], con valores {0,1} en cada componente. Indican si se considera el entero i en cada caso.
- Organización del árbol de estados. En cada nivel *i* del árbol seleccionamos (o no) el entero *i*.
- Función objetivo. Determina si la suma de los enteros seleccionados es M.
- Restricciones implícitas. Cada elemento de la tupla solución sólo podrá tener los valores 0 ó 1.
- Restricciones explícitas. La suma de los enteros seleccionados es M.

Supuesto que ordenamos los enteros de menor a mayor:

- Función de Poda. La función de poda tendrá en cuenta dos condiciones. Si estamos en la etapa k y
  - $\sum_{i=1}^{k} v_i x_i + \sum_{i=k+1}^{n} v_i < M$  entonces podamos la rama (aún considerando todos los enteros restantes no llegamos a M)
  - $\sum_{i=1}^{k} v_i x_i + v_{k+1} > M$  entonces podamos la rama (nos pasamos con el entero restante más pequeño)

```
(Función de poda)
funcion PODA ( k , solucion[n], enteros[n] )
    suma=0: suma2=0
    para (i=0) hasta (i=k-1)
        suma=suma + enteros[i]*solucion[i]
    para (i=k) hasta (i=n)
        suma2=suma2 + enteros[i]
    si ( suma + enteros[k] > M )
        devolver false
    si ( suma + suma2 < M )
        devolver false
    devolver true
```

```
solucion[][n] // donde acumular las soluciones j=0
```

```
(suma de subconjuntos)
funcion SUMA ( k , eleccion[n] , enteros[n] )
   eleccion[k]=0
   si ( k < n && PODA (k, election, enteros) == true )
       SUMA (k+1, election, enteros)
   eleccion[k]=1
   si ( TEST_SOLUCION ( eleccion )== true )
       solucion[j] = eleccion
       j=j+1
   si ( k < n && PODA (k, election, enteros) == true )
       SUMA (k+1, election, enteros)
    devolver solucion
```

## Ejemplo: colorear un grafo

### (Problema)

Dado un grafo **no dirigido**, ¿cuál es el número mínimo de colores que tenemos que utilizar para colorearlo de manera que dos vértices adyacentes no compartan el mismo color?

### (Problema)

Dado un grafo no dirigido, ¿cuál es su número cromático?



### Ejemplo: colorear un grafo

Elementos del algoritmo:

Para un grafo con n vértices y k colores

- Cada tupla solución, con valores {1,2,...,k} en cada componente. Indican con qué color está coloreado cada vértices.
- Organización del árbol de estados. En cada nivel i del árbol coloreamos el vértice i.
- Función objetivo. Determina el número mínimo de colores.
- Restricciones implícitas. Cada elemento de la tupla toma valores en  $\{1, 2, ..., k\}$ .
- Restricciones explícitas. No puede haber dos vértices adyacentes con el mismo valor.
- Función de poda. Determina si hay dos vértices adyacentes con el mismo color



## Ejemplo: colorear un grafo

Implementar en C++ el algoritmo backtraking para resolver el problema de colorear un grafo