Fuzzy Set Theory

Jonathan Lawry

Department of Engineering Mathematics University of Bristol

Introduction

- Fuzzy sets were introduced by Lotfi Zadeh in his 1965 seminal paper.
- Although, the fundamental idea dates back to Max Black and Jan Lukasiewicz.
- Fuzzy sets don't quantify beliefs in propositions like probability and Dempster-Shafer theory.
- Instead they allow for the formal representation of vague (or fuzzy) propositions as fuzzy sets.
- Fuzzy sets are sets to which elements can belong to some partial degree.

Sorities Paradoxes

- Many natural language concepts are vague in that the dividing line between where the concept does and does not hold is uncertainty.
- Vague concepts are prone to sorities paradoxes.

Membership Functions

- A (crisp) set $A \subseteq W$ can be characterised by a membership function $\chi_A : W \to \{0,1\}$ so that $\chi_A(w) = \begin{cases} 1 : w \in A \\ 0 : w \notin A \end{cases}$
- A fuzzy set \tilde{A} is characterised by a membership function $\chi_{\tilde{A}}: W \to [0,1]$ so that $\chi_{\tilde{A}}(w) = \alpha$ means that w is a member of \tilde{A} to degree α .
- Let $W = \{1, ..., 6\}$ denote the scores on a dice. Let \tilde{A} be the set of score which can be described as *high*.
- A possible membership function for \tilde{A} could give $\chi_{\tilde{A}}(w) = 0$ for all $w \leq 3$, $\chi_{\tilde{A}}(4) = 0.3$, $\chi_{\tilde{A}}(5) = 0.7$, and $\chi_{\tilde{A}}(6) = 1$

Notation

- Support: The support of a fuzzy set \tilde{A} is given by $Supp(\tilde{A}) = \{w \in W : \chi_{\tilde{A}}(w) > 0\}$
- A simple notation for (finite) fuzzy sets is:

$$ilde{A} = \sum_{w \in Supp(ilde{A})} w/\chi_{ ilde{A}}(w)$$

So for the fuzzy set representing high on the previous slide we have:

$$\tilde{A} = 4/0.3 + 5/0.7 + 6/1$$

Avoiding Sorities

- Let *W* be the set of positive integers, representing grains of sand.
- Let \tilde{A} be the fuzzy set of numbers of grains of sand which can be described as a *heap*.
- Let $\chi_{\tilde{A}}$ be an increasing function of w and $\chi_{\tilde{A}}$ be a decreasing function of w

Fuzzy Set Calculus

- Consider crisp sets $A, B \subseteq W$. $w \in A \cap B$ iff $w \in A$ and $w \in B$.
- For membership functions $\chi_{A \cap B}(w) = 1$ iff $\chi_A(w) = 1$ and $\chi_B(w) = 1$.
- Q: Is there a function $T: \{0,1\}^2 \to \{0,1\}$ such that $\chi_{A \cap B}(w) = T(\chi_A(w), \chi_B(w))$?
- A: Lots of them, but when restricted to $\{0,1\}^2$ they all give the same answer!
- **Examples:** $T(x, y) = \min(x, y)$, $T(x, y) = x \times y$, $T(x, y) = \max(0, x + y 1)$
- We use the same trick for fuzzy sets.

Combination Operators

- We define function $T:[0,1]^2 \to [0,1]$, $S:[0,1]^2 \to [0,1]$ and $C:[0,1] \to [0,1]$ such that for any fuzzy sets \tilde{A} and \tilde{B} we define: $\forall w \in W$
- But in this case the crisp intersection functions do not all give the same value:
- **Example:** Suppose $\chi_{\tilde{A}}(w) = 0.3$ and $\chi_{\tilde{B}}(w) = 0.5$.
- If $T(x,y) = \min(x,y)$ then $\chi_{\tilde{A} \cap \tilde{B}}(w) = 0.3$
- If $T(x,y) = x \times y$ then $\chi_{\tilde{A} \cap \tilde{B}}(w) = 0.15$
- What *T* (and *S* and *C*) function should be choose?

T-norms

- T-norms (Triangular norms) are functions $T : [0,1]^2 \rightarrow [0,1]$ which satisfy the following properties:
- **T1:** $\forall x \in [0,1] \ T(x,1) = x$.
- **T2:** $\forall x, y, z \in [0, 1]$, if $y \le z$ then $T(x, y) \le T(x, z)$.
- **T3:** $\forall x, y \in [0, 1], T(x, y) = T(y, x).$
- **T4:** $\forall x, y, z \in [0, 1], T(x, T(y, z)) = T(T(x, y), z).$
- **Examples:** $T(x, y) = \min(x, y)$ (minimum), $T(x, y) = x \times y$ (product), $T(x, y) = \max(0, x + y 1)$ (bounded difference),

$$T(x,y) = \begin{cases} x : y = 1 \\ y : x = 1 \\ 0 : \text{otherwise} \end{cases}$$

Ordering of T-norms

- We can order t-norms in terms of the degree to which they preserve membership. i.e. some t-norms are more conservative than others.
- $T_1 \le T_2$ if $\forall x, y \in [0,1]$ $T_1(x,y) \le T_2(x,y)$
- **Theorem:** For any t-norm T $drastic \leq T \leq min$
- **Examples:** $drastic(x, y) \le max(0, x + y 1) \le x \times y \le min(x, y)$
- But are there other critierion for choosing a t-norm?

Idempotence

- **T5**: $\forall x \in [0,1] \ T(x,x) = x$
- **Theorem:** min is the only idempotent t-norm.
- **Proof:** Clearly min is idempotent since min(x, x) = x.
- Now assume that there exists an idempotent t-norm T such that $\forall x \in [0,1]$ T(x,x) = x.
- If $x \le y$ then by **T2** and **T1** it holds that:

$$\min(x,y) = x = T(x,x) \le T(x,y) \le T(x,1) = x = \min(x,y)$$

■ If $y \le x$ then by **T2** and **T1** it holds that:

$$\min(x, y) = y = T(y, y) \le T(y, x) \le T(y, 1) = y = \min(x, y)$$

Families of T-norms

- Frank's t-norms: $T_s(x,y) = \log_s \left[1 + \frac{(s^x 1)(s^y 1)}{s 1} \right]$ where s > 0 and $s \neq 1$.
- Special cases: $\lim_{s\to 1} T_s(x,y) = x \times y$, $\lim_{s\to 0} T_s(x,y) = \min(x,y)$, $\lim_{s\to \infty} T_s(x,y) = \max(0,x+y-1)$.
- Dombi Family:

$$T_{\lambda}(x,y) = \left\{1 + \left[\left(\frac{1}{x}-1\right)^{\lambda} + \left(\frac{1}{y}-1\right)^{\lambda}\right]^{\frac{1}{\lambda}}\right\}^{-1} \text{ where } \lambda > 0.$$

■ Special cases: $\lim_{\lambda \to 0} T_{\lambda}(x, y) = drastic(x, y)$, $T_{1}(x, y) = \frac{xy}{x+y-xy}$, $\lim_{\lambda \to \infty} T_{\lambda}(x, y) = \min(x, y)$

T-conorms

- **S1**: $\forall x \in [0,1] \ S(x,0) = x$.
- **S2:** $\forall x, y, z \in [0, 1]$ if $y \le z$ then $S(x, y) \le S(x, z)$.
- **S3:** $\forall x, y \in [0,1] \ S(x,y) = S(y,x).$
- **S4:** $\forall x, y, z \in [0,1]$ S(x, S(y, z)) = S(S(x, y), z).
- **Examples:** $S(x,y) = \max(x,y)$ (maximum), S(x,y) = x + y xy (algebraic sum), $S(x,y) = \min(1,x+y)$

(bounded sum),
$$S(x,y) = \begin{cases} x : y = 0 \\ y : x = 0 \\ 1 : \text{ otherwise} \end{cases}$$

- **S5**: $\forall x \in [0,1] \ S(x,x) = x \ (idempotence)$
- **Theorem:** max is the only idempotent T-conorm.

Complementation Functions

- **C1:** C(0) = 1 and C(1) = 0.
- **C2:** *C* is a decreasing function.
- **C3:** C is a continuous function on [0,1].
- **C4:** $\forall x \in [0,1] \ C(C(x)) = x$.
- **Examples:** $\forall x \in [0,1]$ C(x) = 1 x
- Sugeno Class: $\forall x \in [0,1]$ $C_{\lambda}(x) = \frac{1-x}{1+\lambda x}$ where $\lambda > -1$.
- These axioms restrict C to a rescaling of C(x) = 1 x.

The Nature of Complement

- **Theorem:** If C satisfies **C1** to **C4** then ([0,1], C, <) is isomorphic to ([0,1], 1-x, <)
- **Proof:** Since C(1) = 0 and C(0) = 1 then by continuity (C4) it follows that there is some value k such that C(k) = k.
- Define $f(x) = \begin{cases} \frac{x}{2k} : x \le k \\ 1 \frac{C(x)}{2k} : x > k \end{cases}$.
- Then f(0) = 0, f(1) = 1, f(k) = 0.5 and it is easy to check that f is strictly increasing and continuous, hence a bijection.
- For $x \le k$, $C(x) \le C(k) = k$ so $f(C(x)) = 1 \frac{C(C(x))}{2k} = 1 \frac{x}{2k} 1 f(x)$.
- Similarly for x > k.

Duality

- We might want fuzzy sets to satisfy de Morgan's Laws, $(\tilde{A} \cup \tilde{B}) = (\tilde{A}^c \cap \tilde{B}^c)^c$.
- If so then we need: $S(\chi_{\tilde{A}}(w), \chi_{\tilde{B}}(w)) = 1 \chi_{\tilde{A}^c \cap \tilde{B}^c}(w) = 1 T(\chi_{\tilde{A}^c}(w), \chi_{\tilde{B}^c}(w)) = 1 T(1 \chi_{\tilde{A}}(w), 1 \chi_{\tilde{B}}(w)).$
- So t-conorm S(x, y) = 1 T(1 x, 1 y) is the *dual* of t-norm T.
- **Examples:** $\max(x, y)$ is the dual of $\min(x, y)$, x + y xy is the dual of $x \times y$, $\min(1, x + y)$ is the dual of $\max(0, x + y 1)$ and the drastic t-conorm is the dual of the drastic t-norm.

Frank's Equation

■ We might want membership functions to be additive so that:

$$\chi_{\tilde{A}\cup\tilde{B}}(w)=\chi_{\tilde{A}}(w)+\chi_{\tilde{B}}(w)-\chi_{\tilde{A}\cap\tilde{B}}(w)$$

This gives:

$$\forall x, y \in [0,1] \ S(x,y) = x + y - T(x,y)$$

Combining this with duality gives:

$$\forall x, y \in [0, 1] \ 1 - T(1 - x, 1 - y) = x + y - T(x, y)$$
$$\Rightarrow T(x, y) - T(1 - x, 1 - y) = x + y - 1$$

 Frank's equation is only (well almost) satisfied by Frank's t-norms.

Excluded Middle and Non-Contradiction

- Law of Excluded Middle: $\forall w \in W \ \chi_{\tilde{A} \sqcup \tilde{A}^c}(w) = 1$.
- Law of Non-Contradiction: $\forall w \in W \ \chi_{\tilde{A} \cap \tilde{A}^c}(w) = 0$.
- Fuzzy logic is not guaranteed to satisfy these laws.
- Take $T = \min$, $S = \max$ and $\chi_{\tilde{A}}(x) = 0.5$.
- Then $\chi_{\tilde{A}\cup\tilde{A}^c}(w)=\max(0.5,0.5)=0.5$ and $\chi_{\tilde{A}\cap\tilde{A}^c}(w)=\min(0.5,0.5)=0.5$
- Taking $T(x, y) = \max(0, x + y 1)$ and $S = \min(1, x + y)$ then both laws are satisfied.
- There is no pair *S*, *T* which satisfy both idempotence and the laws of excluded middle and non-contradiction.

From Fuzzy to Crisp Sets

- facture α -cuts provide a way of representing fuzzy sets as a nested sequence of crisp sets.
- For fuzzy set Ã:

$$\tilde{A}_{\alpha} = \{ w \in W : \chi_{\tilde{A}}(w) \ge \alpha \}$$

- If $\alpha_1 \leq \alpha_2 \leq \ldots \leq \alpha_n$ then $\tilde{A}_{\alpha_1} \supseteq \tilde{A}_{\alpha_2} \supseteq \ldots \supseteq \tilde{A}_{\alpha_n}$
- **Example:** Let $W = \{w_1, w_2, w_3\}$ and $\tilde{A} = w_1/1 + w_2/0.5 + w_3/0.2$ then:

$$\tilde{A}_{\alpha} = \begin{cases} \{w_1, w_2, w_3\} : \alpha \in [0, 0.2] \\ \{w_1, w_2\} : \alpha \in (0.2, 0.5] \\ \{w_1\} : \alpha \in (0.5, 1] \end{cases}$$

α -cuts to Fuzzy Sets

- The alpha cuts of a fuzzy sets can be used to determine the membership function as follows:
- $\chi_{\tilde{A}}(w) = \int_{\alpha: w \in \tilde{A}_{\alpha}} d\alpha$
- lacksquare Or alternatively $\chi_{\tilde{\mathcal{A}}}(w) = \sup\{\alpha: w \in \tilde{\mathcal{A}}_{\alpha}\}$
- Dubois and Prade, have proposed using the alpha cut approach to extend functions from crisp to fuzzy sets.
- Let $f: 2^W \to \mathbb{R}$ then f can be extended to fuzzy sets according to:
- $f(\tilde{A}) = \int_0^1 f(\tilde{A}_{\alpha}) d\alpha$ or
- $f(\tilde{A}) = \sup\{f(\tilde{A}_{\alpha}) : \alpha \in (0,1]\}$

Fuzzy Set Valued Functions

- If $f: 2^W \times 2^W \to 2^W$ then we can extend f to fuzzy sets as follows:
- Let $f(\tilde{A}, \tilde{B})_{\alpha} = f(\tilde{A}_{\alpha}, \tilde{B}_{\alpha})$ and then take $\chi_{f(\tilde{A}, \tilde{B})}(w) = \sup\{\alpha : w \in f(\tilde{A}, \tilde{B})_{\alpha}\}$
- Let $W = \mathbb{N}$ and let f be defined by $f(A, B) = \{w_1 + w_2 : w_1 \in A, w_2 \in B\}$ e.g. $f(\{1, 2\}, \{4, 5\}) = \{5, 6, 7\}$
- Let $\tilde{A} = 2/0.3 + 3/1 + 4/0.5$ and $\tilde{B} = 5/0.6 + 6/0.8 + 7/1$

$$\tilde{A}_{\alpha} = \begin{cases} \{2,3,4\} : \alpha \in [0,0.3] \\ \{3,4\} : \alpha \in (0.3,0.5] \end{cases} \qquad \tilde{B}_{\alpha} = \begin{cases} \{5,6,7\} : \alpha \in [0,0.6] \\ \{6,7\} : \alpha \in (0.6,0.8] \\ \{7\} : \alpha \in (0.8,1] \end{cases}$$

Fuzzy Set Valued Functions:2

	{2,3,4}	{3,4}	{3}
$ ilde{A}+ ilde{B}$	[0, 0.3]	(0.3, 0.5]	(0.5, 1]
{5, 6, 7}	{7, 8, 9, 10, 11}	$\{8, 9, 10, 11\}$	{8, 9, 10}
[0, 0.6]	[0, 0.3]	(0.3, 0.5]	(0.5, 0.6]
{6,7}			$\{9, 10\}$
(0.6, 0.8]	Ø	Ø	(0.6, 0.8]
{7}			{10}
(0.8, 1]	Ø	Ø	(0.8, 1]

$$(\tilde{A} + \tilde{B})_{\alpha} = \begin{cases} \{7, 8, 9, 10, 11\} : \alpha \in [0, 0.3] \\ \{8, 9, 10, 11\} : \alpha \in (0.3, 0.5] \\ \{8, 9, 10\} : \alpha \in (0.5, 0.6] \\ \{9, 10\} : \alpha \in (0.6, 0.8] \\ \{10\} : \alpha \in (0.8, 1] \end{cases}$$

 $\tilde{A} + \tilde{B} = 10/1 + 9/0.8 + 8/0.6 + 11/0.5 + 7/0.3$

