Project Report

Team ID	PNT2022TMID48657
Project Name	Smart waste management system for metropolitan cities
Team Lead	AJITH KUMAR K
Team Member 1	ARAVINTH RAJ K
Team Member 2	MURUGANATHAN M
Team Member 3	MANOJ KUMAR A

1. INTRODUCTION

1.1 Project Overview:

Our waste generation is constantly growing to form a global garbage crisis. Even though we indulge in creating a more sustainable and greener, we still fail to handle our waste generation and management. Combining technology support with a vision of social, economic and environmental sustainability is the best way out of this problem. It is done in the following manner. The smart bin system undergoes a thorough system check and battery level monitoring in order to function efficiently. If the battery level is found to be low, it has to be recharged immediately, else it can proceed to the next step. The threshold level levels of the bin are indicated my multiple sensors attached to bin. If the garbage exceeds the level, then an alert message is sent to the garbage collectors as well as to the municipality or area administration. The area in which garbage is found to overflow is allocated to respective garbage collectors in the form of messages through GSM system. Once the waste bin is emptied, an information update is sent to the municipality and server is updated. This is how the waste from bins can be efficiently handled and managed using technology which in turn keeps the environment clean and healthy.

1.2 Purpose:

We amalgamate technology along with waste management in order to effectively create a safe and a hygienic environment. Smart waste management is about using technology and data to create a more efficient waste industry. Based on IoT (Internet of Things) technology, smart waste management aims to optimize resource allocation, reduce running costs, and increase the sustainability of waste services. This makes it possible to plan more efficient routes for the trash collectors who empty the bins, but also lowers the chance of any bin being full for over a week. A good level of coordination exists between the garbage collectors and the information supplied via technology. This makes them well aware of the existing garbage level and instigate them whenever the bins reach the threshold level. They are sent with alert messages so that they can collect the garbage on time without littering the surrounding area. The fill patterns of specific containers can be identified by historical data and managed accordingly in the long term. In addition to hardware solutions, mobile applications are used to overcome the challenges in the regular waste management system, such as keeping track of the drivers while they are operating on the field. Thus, smart waste management provides us with the most optimal way of managing the waste in an efficient manner using technology

2. LITERATURE SURVEY:

2.1 Existing problem:

Waste management has become an alarming challenge in local towns and cities across the world. Often the local area bins are overflowing and the municipalities are not aware of it. This affects the residents of that particular area in numerous ways starting from bad odour to unhygienic and unsafe surroundings. Poor waste management - ranging from non-existing collection systems to ineffective disposal causes air pollution, water and soil contamination. Open and unsanitary areas contribute to contamination of drinking water and can cause infection and transmit diseases. Toxic components such as Persistent Organic Pollutants (POPs) pose particularly significant risks to human health and the environment as they accumulate through the food chain. Animals eating contaminated plants have higher doses of contaminants than if they were directly exposed. Precipitation or surface water seeping through waste will absorb hazardous components from landfills, agricultural areas, feedlots, etc. and carry them into surface and

groundwater. Contaminated groundwater also poses a great health risk, as it is often used for drinking, bathing and recreation, as well as in agricultural and industrial activities. Landfills and waste transfer stations can attract various pests (insects, rodents, gulls, etc.) that look for food from waste. These pests can spread diseases through viruses and bacteria (i.e., salmonella and e-coli), which are a risk to human health.

2.2 References:

PAPER 1:

TITLE: IoT Based Waste Management for Smart City

AUTHOR NAME: Parkash Tambare, Prabu Venkatachalam

PUBLICATION YEAR: 2016

DESCRIPTION:

In the current situation, we frequently observe that the trash cans or dust cans that are located in public spaces in cities are overflowing due to an increase in the amount of waste produced each day. We are planning to construct "IoT Based Waste Management for Smart Cities" to prevent this from happening because it makes living conditions for people unsanitary and causes unpleasant odours in the surrounding area. There are numerous trash cans scattered throughout the city or on the campus that are part of the proposed system. Each trash can is equipped with a low-cost embedded device that tracks the level of the trash cans and an individual ID that will enable it to be tracked and identified.

PAPER 2:

AUTHOR NAME: Mohammad Aazam, Marc St-Hilaire, Chung-Horng Lung, Ioannis Lambadaris

PUBLICATION YEAR: 2016

DESCRIPTION:

Each bin in the Cloud SWAM system that Mohammad Aazam et al suggested has sensors that can detect the amount of waste inside. There are separate bins for

organic, plastic/paper/bottle/glass, and metal waste. This way, each form of waste is already divided, and it is known how much and what kind of waste is collected thanks to the status. Different entities and stakeholders may benefit from the accessibility of cloud-stored data in different ways. Analysis and planning can begin as soon as garbage is collected and continue through recycling and import/export-related activities. Timely garbage collection is provided via the Cloud SWAM system. A timely and effective method of waste collection improves health, hygiene, and disposal.

PAPER 3:

TITLE: Arduino Microcontroller Based Smart Dustbins for Smart Cities

AUTHOR NAME: K. Suresh, S. Bhuvanesh and B. Krishna Devan

PUBLICATION YEAR: 2019

DESCRIPTION:

In this paper, a technique for cleaning up our surroundings and environment is described. The Indian government just began work on a smart city initiative, and in order for these towns to be smarter than they already are, the garbage collection and disposal system must be improved upon. Self-Monitoring Automated Route Trash (SMART) dustbins are intended for use in smart buildings such as colleges, hospitals, and bus stops, among other places. In this study, we have employed the PIR and Ultrasonic sensors to detect human presence, the Servomotor to open the dustbin lid, and the Ultrasonic sensor to detect the level of rubbish. Signals between two trash cans are transmitted using a communication module, and the GSM module sends the message to the operator.

2.3 Problem Statement Definition:

Problem	I am	I am trying	But	Because	Which
Statement	(Customer)	to			makes me
(PS)					feel
PS-1	Council	Monitor the	I have not	Because of	unhygienic
		waste in my	much	high cost	
		city	effective		

			system for monitoring		
PS-2	Council	Manage the waste in my city	I have not much effective system for managing	Because of more time consuming	unsafe

3.IDEATION & PROPOSED SOLUTION:

3.1 Empathy map canvas:

3.3 Proposed Solution:

S.No.	Parameter	Description
1	Problem Statement (Problem	This project deals with the
	to be solved)	problem of waste management
	,	in smart cities, where the
		garbage collection system is
		not optimized. This project
		enables the organizations to
		meet their needs of smart
		garbage management systems.
		This system allows the
		authorised person to know the
		fill level of each garbage bin
		in a locality or city at all
		times, to give a cost-effective
		and time-saving route to the
		truck drivers
2	Idea / Solution description	The key research objectives
	-	are as follows: • The
		proposed system would be
		able to automate the solid
		waste monitoring process and
		management of the overall
		collection process using IOT
		(Internet of Things). • The
		Proposed system consists of
		main subsystems namely
		Smart Trash System(STS) and
		Smart Monitoring and
		Controlling Hut(SMCH). • In
		the proposed system,
		whenever the waste bin gets
		filled this is acknowledged by
		placing the circuit at the waste
		bin, which transmits it to the
		receiver at the desired place in
		the area or spot. • In the
		proposed system, the received
		signal indicates the waste bin
		status at the monitoring and
		controlling system.
3	Novelty / Uniqueness	We are going to establish
		SWM in our college but the
		real hard thing is that janitor
		(cleaner) don't know to

		T
		operate these thing practically
		so here our team planned to
		build a wrist band to them,
		that indicate via light blinking
		when the dustbin fill and this
		is Uniqueness we made here
		beside from project constrain.
4	Social Impact / Customer	From the public perception as
	Satisfaction	worst impacts of present solid
		waste disposal practices are
		seen direct social impacts such
		as neighbourhood of landfills
		to communities, breeding of
		pests and loss in property
		values
5	Business Model (Revenue	Waste Management organises
	Model)	its operations into two
	1710001)	reportable business segments:
		reportable business segments.
		Solid Waste, comprising the
		Company's waste collection,
		transfer, recycling and
		resource recovery, and
		disposal services, which are
		operated and managed locally
		by the Company's various
		subsidiaries, which focus on
		distinct geographic areas; and
		Corporate and Other,
		comprising the Company's
		other activities, including its
		_
		development and operation of
		landfill gas-toenergy facilities
		in the INDIA, and its
		recycling brokerage services,
		as well as various corporate
6	Socialities of the C. L.C.	functions.
6	Scalability of the Solution	In this regard, smart city
		design has been increasingly
		studied and discussed around
		the world to solve this
		problem. Following this
		approach, this paper presented
		an efficient IoTbased and real-
		time waste management
		model for improving the living

environment in cities, focused on a citizen perspective. The proposed system uses sensor and communication technologies where waste data is collected from the smart bin, in real-time, and then transmitted to an online platform where citizens can access and check the availability of the compartments scattered around a city.

3.4 Problem solution fit:

4.REQUIREMENT ANALYSIS

4.1 Functional requirement

S.No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub- Task)
1	Detailed bin inventory.	All monitored bins and stands can be seen on the map, and you can visit them at any time via the Street View feature from Google. Bins or stands are visible on the map as green, orange or red circles. You can see bin details in the Dashboard – capacity, waste type, last measurement, GPS location and collection schedule or pick recognition
2	Real time bin monitoring	The Dashboard displays real- time data on fill-levels of bins monitored by smart sensors. In addition to the % of fill-level, based on the historical data, the tool predicts when the bin will become full, one of the functionalities that are not included even in the best waste management software Sensors recognize picks as well; so you can check when the bin was last collected. With real-time data and predictions, you can eliminate the overflowing bins and stop collecting halfempty ones.
3	Expensive bins	We help you identify bins that drive up your collection costs. The tool calculates a rating for each bin in terms of collection costs. The tool considers the average distance depolindischarge in the area. The tool assigns bin a rating (1-10) and calculates distance from depo-bin discharge
4	Adjust bin distribution.	Ensure the most optimal distribution of bins. Identify

		areas with either dense or
		sparse bin distribution. Make
		sure all trash types are
		represented within a stand.
		Based on the historical data,
		you can adjust bin capacity or
		location where necessary.
5	Eliminate unefficient picks.	Eliminate the collection of
		half-empty bins. The sensors
		recognize picks. By using
		realtime data on fill-levels and
		pick recognition, we can show
		you how full the bins you
		collect are. The report shows
		how full the bin was when
		picked. You immediately see
		any inefficient picks below
		80% full.
6	Plan waste collection routes	The tool semi-automates
		waste collection route
		planning. Based on current bin
		filllevels and predictions of
		reaching full capacity, you are
		ready to respond and schedule
		waste collection. You can
		compare planned vs. executed
		routes to identify any
		inconsistencies.

5.PROJECT DESIGN:

5.1Data Flow Diagrams:

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the graphically.

It shows how data enters and leaves the system, what changes the infor ation, and where data is stored.

A smart waste management platform uses analytics to translate the data gather in your bins into actionable insights to help you improve your wast You can receive data on metric such as The first test conducted is the situation where the garbage bin is empty or its garbage level is very low

• Then, the bin is filled with more garbage until its level has surpassed the first threshold value, which is set to 80% then the first warning SMS is being sent, as depicted

The first notification SMS sent by the system, once the waste reaches the level of 85% full

- The second notification SMS sent by the system, indicating that bin is at least 95% full andthe garbage needs to be collected immediately
- * Locations prone to overflow
- * The number of bins needed to avoid overflowing waste *The number of collection services that could be saved
- * The amount of fuel that could be saved
- * The driving distance that could be saved

5.2 User stories:

USER TYBE	Functional Requirement	User story number	User story task	Acceptance criteria	Priority	release
Admin	login	USN 1	As an admin, I gave an	I can manage web account/dashboard	Medium	Sprint 2

			user id and password for ever workers and manage them.			
Co Admin	Login	USN 2	As a co admin, I'll manage agarbage level monitor, if garbage get filling alert I will post location and garbage id to truck trash monitoring	I can manage garbage monitoring	high	Sprint 1
Truck driver	login	USN 3	As a truck driver,I'll follow the route send by co admin to reach the filled garbage	I can drive to reach the garbage filled route in shortest route given	Medium	Sprint 2
Local garbage collector	login	USN 4	As a garbage collector,I'll collect all the trash from garbage and load into garbage truck and send them to landfill	I can collect trash and pulled to truck and send off	Medium	Sprint 2
Municipality	login	USN 5	As a municipality, I'll check the process are happening in discipline manner with out any issues	I can manage all these process are going good	high	Sprint 1

6.PROJECT PLANNING & SCHEDULING:

6.1 Sprint Planning & Estimation:

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Login	USN-1	As a Administrator, I need to give user id and passcode for ever workers over there in municipality	10	High	Ajith Kumar
Sprint-1	Login	USN-2	As a Co- Admin, I'll control the waste level by monitoring them vai real time web portal. Once the filling happens, I'll notify trash truck with location of bin with bin ID	10	High	Aravinth raj
Sprint- 2	Dashboard	USN-3	As a Truck Driver, I'll follow Co- Admin's	20	Low	Muruganathan

			Instruction to reach the filling bin in short roots and save time			
Sprint-3	Dashboard	USN-4	As a Local Garbage Collector, I'II gather all the waste from the garbage, load it onto a garbage truck, and deliver it to Landfills	20	Medium	Manoj kumar
Sprint-4	Dashboard	USN-5	As a Municipality officer, I'll make sure everything is proceeding as planned and without any problems	20	High	Murugananthan

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total	Duration	Sprint	Sprint	Story	Sprint
	Story		Start Date	End Date	Points	Release
	Points				Completed	Date
					(as on	
					Planned	
					End Date)	
Sprint-1	20	6 Days	24 Oct	29 Oct	20	29 Oct
			2022	2022		2022
Sprint-2	20	6 Days	31 Oct	05 Nov	20	05 Nov
			2022	2022		2022
Sprint-3	20	6 Days	07 Nov	12 Nov	20	12 Nov
			2022	2022		2022
Sprint-4	20	6 Days	14 Nov	19 Nov	20	19 Nov
			2022	2022		2022

CODING & SOLUTIONING:

User acceptance Testing:

The purpose of this document is to briefly explain the test coverage and open issues of the [ProductName] project at the time of the release to User Acceptance Testing (UAT).

Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	10	4	2	3	20
Duplicate	1	0	3	0	4
External	2	3	0	1	6
Fixed	11	2	4	20	37
	0	0	1	0	1
Not Reproduced					
Skipped	0	0	1	1	2
Won't Fix	0	5	2	1	8
Totals	24	14	13	26	7

Test Case Analysis:

This report shows the number of test cases that have passed, failed, and untested

Total Cases	Not Tested	Fai I	Pas s
7	0	0	7
51	0	0	51
51			
2	0	0	2
3	0	0	3
9	0	0	9
4	0	0	4
2	0	0	2
	7 51 2 3 9	7 0 51 0 2 0 3 0 9 0 4 0	Cases Not Tested Fail 7 0 0 51 0 0 2 0 0 3 0 0 9 0 0 4 0 0

RESULTS:

Performance Metrics:

ADVANTAGES & DISADVANTAGES ADVANTAGES:

- Reduction in Collection Cost
- No Missed Pickups
- Reduced Overflows
- Waste Generation Analysis
- CO2 Emission Reduction

DISADVANTAGES:

- System requires a greater number of waste bins for separate waste collection as per population in the city.
- This results into high initial cost due to expensive smart dustbins compare to other methods. Sensor nodes used in the dustbins have limited memory size.

CONCLUSION:

A Smart Waste Management system that is more effective than the one in use now is achievable by using sensors to monitor the filling of bins. Our conception of a "smart waste management system" focuses on monitoring waste management, offering intelligent technology for waste systems, eliminating human intervention, minimizing human time and effort, and producing a healthy and trash-free environment. The suggested approach can be implemented in smart cities where residents have busy schedules that provide little time for garbage management. If desired, the bins might be put into place in a metropolis where a sizable container would be able to hold enough solid trash for a single unit. The price might be high.

FUTURE SCOPE:

There are several future works and improvements for the proposed system, including the following:

1. Change the system of user authentication and atomic lock of bins, which would aid in protecting the bin from damage or theft.

- 2. The concept of green points would encourage the involvement of residents or end users, making the idea successful and aiding in the achievement of collaborative waste management efforts, thus fulfilling the idea of Swachh Bharath
- 3. Having case study or data analytics on the type and times waste is collected on different days or seasons, making bin filling predictable and removing the reliance on electronic components, and fixing the coordinates.
- 4. Improving the Server's and Android's graphical interfaces

Appendix:

```
import wiotp.sdk.device
import time
import json
myConfig = {
 "identity": {
 "orqId": "9opizh",
 "typeId": "NodeMCU",
 "deviceId":"123456"
 },
 "auth": {
 "token": "8098439666"
}
client = wiotp.sdk.device.DeviceClient(config=myConfig,
logHandlers=None)
client.connect()
while True:
name="smartbridge"
latitude=17.4225176
longitude=70.5450042
myData={'name': 'name', 'lat': latitude, 'lon': longitude}
 client.publishEvent(eventId="status", msgFormat="json",
data=myData, qos=0, onPublish=None)
print ("Published data to IBM iot platform: %s", myData)
time.sleep (5)
client.disconnect ()
```

GitHub Link:

https://github.com/IBM-EPBL/IBM-Project-43069-1660712666