Table of Contents

Ι.	Intro	oauction to firewall	
	i.	Description	2
	ii.	Types	
	iii.	Components	
II.	Fire	wall Configuration using CISCO Packet Tracer	
	i.	Step 0: Outlining the components and their connections	4
	ii.	Step 1 : Making the topology	4
	iii.	Step 2 : Assigning IP Address to ASA and ISP Router	5
	iv.	Step 3 : Setting Inside and Outside on ASA Firewall	
	v.	Step 4: Configuration of DHCP Server and DNS IP on ASA	
	vi.	Step 5 : Configuration of default route on ASA	15
	vii.	Step 6: Configuration of OSPF on ISP Router	15
	viii.	Step 7: Creation of Object Network and Enable NAT on ASA	116
	ix.	Step 8 : Create ACL on ASA	19
	х.	Step 9 : Verification	
III.	Con	clusion	24

Introduction to Firewall

A firewall is a network security system that monitors and controls incoming and outgoing network traffic based on predetermined security rules. A firewall typically establishes a barrier between a trusted network and an untrusted network, such as the Internet.

Depending on the organization's firewall policy, the firewall may completely disallow some traffic or all traffic, or it may perform verification on some or all of the traffic. There are two commonly used types of firewall policies:

- Whitelisting The firewall denies all connections except for those specifically listed as acceptable.
- Blacklisting The firewall allows all connections except those specifically listed as unacceptable.

Firewalls can be standalone systems or they can be included in other infrastructure devices, such as routers or servers.

Type of	Parameters /	Layer of	Protocols	<u>Attacks</u>
Firewall	<u>Purpose</u>	<u>Working</u>		
Packet-	Source & Destination	Layer 3 of	ICMP	DoS attacks
filtering	IP Addresses	OSI Model	ARP	
firewall	Source & Destination		RARP	
	Port Numbers		BOOTP	
	Protocols		DHCP	

Stateful	Source & Destination	Layer 4 of	UDP	DDoS and
firewall	IP Addresses	OSI Model	ICMP	Vulnerability
	Source & Destination			attacks
	Port Numbers			
	It has state table,			
	dynamic memory.			
Proxy	Shielding and	Application	DNS	Vulnerability
firewall	filtering mechanism	layer of	FTP	attacks
	between internal and	OSI Model	HTTP	
	external networks.		ICMP	
	Used for		SMTP	
	authentication			
	schemes.			
Web	Protects Web app by	Application	HTTP	SQL injection
application	applying set of rules	layer of	HTTPS	attack
firewall	to HTTP	OSI Model		XSS attack
	conversation			DDoS attacks

Components of Firewall

1. Perimeter router

It is used to provide a link to the public networking system like the internet, or a distinctive organization. It performs the routing of data packets with the help of an appropriate routing protocol. It also provides the filtering of packets and addresses translations.

2. Firewall

The provision of distinctive levels of security and supervises traffic among each level. Most of the firewalls are present near the router that provides security from external threats, but sometimes the firewall is present in the internal network to protect from internal attacks.

3. Virtual Private Network (VPN)

Its function is to provide a secure connection among two machines or networks. It provides the secure remote access of the network, thereafter connecting two WAN networks on the same platform while not being physically connected.

4. Intrusion Detection System (IDS)

It is used to identify, investigate, and resolve unauthorized attacks. A hacker can attack the network in various ways. It can execute a denial-of-service (DoS) attack or an attack from the backside of the network through some unauthorized access.

Firewall Configuration using CISCO Packet Tracer

Step 0 : Outlining the components and their connections

Components used include:

- 1. PCs PC0, PC1 & PC2
- 2. Switch 2950-24T Switch0
- 3. Firewall 5505 ASA0
- 4. Router 2621XM ISP Router
- 5. Server PT Google Server

Step 1: Making the topology

Component	Connected to	Via
PC0 – FA0	Switch0 – FA0/1	Copper Straight-through
PC1 – FA0	Switch0 – FA0/2	Copper Straight-through
Switch0 – FA0/3	ASA0 – Ethernet0/1	Copper Cross-Over
PC2 – RS232	ASA0 - Console	Console
ASA0 – Ethernet0/0	ISP Router – FA0/0	Copper Straight-through
ISP Router – FA0/1	Google Sever – FA0	Copper Cross-Over

Step 2: Assigning IP Address to ASA and ISP Router

Following IP Address allocation is proposed:

Device	Connection	IP Address
ASA0	Ethernet0/0	50.1.1.2
ISP Router	FA0/0	50.1.1.1
ISP Router	FA0/1	8.8.8.1
Google Server	FA0	8.8.8.8
ASA0	Ethernet0/1	10.1.1.1

We will configure the firewall using the Command Line Terminal of PC2.

For this, Click on PC2 \rightarrow Desktop \rightarrow Terminal

To enable and check the basic pre-configuration of firewall, use the commands:

en sh running-config

Remove default configuration settings:

conf t

 $no\ dhcpd\ address\ 192.168.1.5\text{-}192.168.1.36\ inside\ (Removed\ DHCPD\ Address)}\\ sh\ running\text{-}config$

Step 3: Setting Inside and Outside on ASA Firewall

Rather than removing the default IP Addresses, we can set a new IP Address so that the previous one will automatically get removed.

Port works in two scenarios – either inside where interface connects to private network or outside where interface connects to the public network.

Setting IP Address and Security level of vlan1 (inside) using CLI of PC2

```
conf t
int vlan 1
ip add 10.1.1.1 255.0.0.0
no shut
nameif inside
security-level 100 (Between 0 and 100 – low to high security)
exit
int e0/1
switchport access vlan 1
exit
```


Setting IP Address and Security level of vlan2 (outside) using CLI of PC2

```
conf t
int vlan 1
ip add 50.1.1.2 255.0.0.0
no shut
nameif outside
security-level 0 (Between 0 and 100 – low to high security)
exit
int e0/0
switchport access vlan 2
exit
```


Setting IP Address of ISP Router

Enable the configuration and then set the IP Address by configuring the FA0/0 interface of the ISP Router.

```
en
conf t
int f0/0
ip add 50.1.1.1 255.0.0.0
no shut
exit
```


Enable the configuration and then set the IP Address by configuring the FA0/1 interface of the ISP Router.

int f0/1 ip add 8.8.8.1 255.0.0.0 no shut exit

Set the IP Address by configuring the FA0 interface of the Google Server

Step 4: Configuration of DHCP Server and DNS IP on ASA

The PCs connected to the interface would automatically be allotted IP Addresses by the firewall.

Set IP Configuration of PC0 from Static to DHCP

Set IP Configuration of PC1 from Static to DHCP

The DHCP addresses won't be provided as of now.

Setting DHCP Server and the DNS IP of firewall using CLI of PC2

Using global configuration mode:

dhcpd address 10.1.1.10-10.1.1.30 inside (Specifying the DHCP range) dhcpd dns 8.8.8.8 interface inside (Setting DNS IP)

DHCP Server providing IP Address to PC0

DHCP Server providing IP Address to PC1

Step 5 : Configuration of Default Route on ASA

To configure the default route on ASA using CLI Terminal of PC2

route outside 0.0.0.0 0.0.0.0 50.1.1.1 (IPAddress SubnetMask DefaultRoute)

Step 6: Configuration of OSPF on ISP Router

Configure OSPF or any dynamic routing protocol by enabling global configuration mode

```
en
conf t
router ospf?
router ospf 1 (Process ID)
net 50.0.0.0?
(Networks directly connected with the router)
net 50.0.0.0 0.255.255.255 area 0
net 8.0.0.0 0.255.255.255 area 0
```


Step 7: Creation of Object Network and Enable NAT on ASA

Create object network using CLI Terminal of PC2

object network? object network LAN subnet 10.0.0.0 255.0.0.0

Enabling NAT on ASA

nat ?
nat (inside,Outside) dynamic interface

Checking Communication

Now, if we try to ping Google Server using Command prompt of PC0 and PC1, we aren't able to get a response.

To solve this issue, we will have to configure and create ACL on ASA.

Step 8 : Create ACL on ASA

Using CLI Terminal of PC2 and enabling global configuration

conf t
access-list?
access-list oti?
access-list oti extended permit tcp any any (From any source to any destination)
access-list oti extended permit icmp any any
access-group oti in interface outside

The request-response mechanism is now perfectly working between the Google Server and the PCs 0 & 1 as the firewall allows the communication.

Simple PDUs successfully sent from PC0 and PC1 to Google Server.

Step 9: Verification

Using privilege mode of the firewall

show nat show xlate

Using running configuration on CLI Terminal of ASA firewall

By adding third PC to inside network and initiating communication between that PC and the Google Server

IP Address successfully allocated to the added PC by the DHCP Server

Communication successful between the added PC and the Google Server

Conclusion:

We have therefore configured ASA firewall using CISCO Packet Tracer. We can add as many PCs and end-devices in the network and all will have access to the internet, in our case Google Server, via the firewall.

Note: The IP address range in the DHCP Server must be adjusted accordingly.