Two-way ANOVA (이원분산분석)

숙명여자대학교 경영학부 오중산

- 이원분산분석 정의
 - ◆ 두 개 이상 집단간의 종속변수 모평균 차이가 또 다른 독립변수에 의해 영향을 받 는지 확인하는 통계분석방법
 - ◆ 두 개 독립변수 간에 상호작용효과(interaction effect)가 존재하는지 확인하는 통계분석방법
 - ◆ 이원(two-way)은 단순히 독립변수가 두 개라는 것이 아니라, 이들이 상호작용한 다는 의미

- 독립변수 간의 상호작용
 - ◆ 어떤 독립변수 (IV_1) 가 종속변수(DV)에 미치는 주효과(관계)에 또 다른 독립변수 (IV_2) 가 영향을 미칠 때 IV_1 와 IV_2 가 상호작용한다고 함
 - 상호작용은 IV_1 와 DV 간의 기존 '관계'에 IV_2 가 영향을 미치는 것을 의미함
 - IV_1 에 따라 구분된 집단 간에 모평균 차이가 존재할 때, 이 차이가 IV_2 에 의해 영향을 받음
 - ❖ 집단 간의 모평균 차이가 더 벌어지거나, 좁혀질 수 있음

- 이원분산분석 예시
 - ◆ 직무(IV $_1$: 내근/외근)에 따른 하루 섭취 칼로리(DV) 모평균 차이에 경력(IV $_2$: Low/Medium/High)이 미치는 영향
 - 일원분산분석 결과, 직무에 따른 섭취 칼로리 모평균 차이가 있어야 함
 - ❖ 사전에 One-way ANOVA에서 H₂ 채택이 Two-way ANOVA의 전제 조건
 - ❖ 예: 외근직의 섭취 칼로리 모평균이 내근직의 섭취 칼로리 모평균에 비해 큼
 - 경력에 따른 섭취 칼로리 모평균 차이 여부는 참고사항일뿐, Two-way ANOVA 전제 조건이 아님

- 이원분산분석 예시
 - 직무 (IV_1) 에 따라 하루 섭취 칼로리(DV) 모평균 차이에 경력 (IV_2) 이 미치는 영향
 - IV₂가 기존 관계를 강화하는 경우
 - ❖ 경력이 높아질수록 외근직과 내근직의 하루 섭취 칼로리 모평균 차이가 더 확대됨

	경력L	경력M	경력H	평균
내근직	2,000	2,200	2,300	2,167
외근직	2,500	2,900	3,200	2,867
차이	500	700	900	700

- 이원분산분석 예시
 - 직무(IV_1)에 따라 하루 섭취 칼로리(DV) 모평균 차이에 경력(IV_2)이 미치는 영향
 - IV₂가 기존 관계를 약화하는 경우
 - ❖ 경력이 높아질수록 외근직과 내근직의 하루 섭취 칼로리 모평균 차이는 줄어듦

	경력L	경력M	경력H	평균
내근직	2,000	2,200	2,300	2,167
외근직	2,500	2,600	2,650	2,583
차이	500	400	350	417

이원분산분석 가설과 세 가지 전제조건

- 이원분산분석의 두 가지 가설
 - ◆ H₀: 두 독립변수 간에 **상호작용효과가 없다.**
 - ◆ H_a: 두 독립변수 간에 **상호작용효과가 있다.**
- 세 가지 전제조건
 - ◆ 독립성은 기본적으로 만족해야 하며, 정규성/등분산성은 IV_1 을 기준으로 구분된 집단에 대해서만 확인

이원분산분석 가설검정

- Two-way ANOVA Table과 가설검정
 - F_A 에 따른 p-value와 F_{AC} 에 따른 p-value가 모두 유의하면 대립가설 채택 * 두 p-value 중에서 하나라도 유의하지 않으면 귀무가설 채택
 - F_A 와 F_C 는 두 독립변수 각각에 대한 One-way ANOVA 가설검정에 활용 • SSTR(요인효과) = SSTR_A + SSTR_C + SSTR_{AC}

분산요인	제곱 합	자유도	평균자승	F-statistics
A(IV ₁)	SSTR _A	(k-1)	$MSTR_A = SSTR_A / (k-1)$	$F_A = MSTR_A / MSE$
C(IV ₂)	SSTR _C	(g-1)	$MSTR_C = SSTR_C / (g-1)$	$F_C = MSTR_C / MSE$
$A \times C(IV_1 \times IV_2)$	SSTR _{AC}	(k-1)(g-1)	$MSTR_{AC} = SSTR_{AC} / (k-1)(g-1)$	$F_{AC} = MSTR_{AC} / MSE$
오차분산	SSE	N-k×g	$MSE = SSE / [N-k \times g]$	
총분산	SST	N -1		

이원분산분석 검정 절차

- 일원분산분석의 1~5단계 수행
 - ◆ IV₁에 따라 구분된 집단 간에 DV 모평균 차이가 유의함을 확인해야 함
 - ◆ 6단계는 목적에 따라 수행할 수도 있고, 안 할 수도 있음
 - IV₁에 따른 일원분산분석도 목적이라면 수행
- 7단계: 가설검정 및 그래프 그리기
 - ◆ aov 함수를 이용한 이원분산분석 가설검정
 - 기본 명령문: aov(DV~IV₁*IV₂, data = 이상치 제거된 전체 df)
 - ♦ HH패키지에 있는 interaction2wt 함수 사용하여 그래프 그리기
 - 기본 명령문: interaction2wt(DV~IV₁*IV₂, data = 이상치 제거된 전체 df)

이원분산분석 검정 절차

- 8단계: 추가 분석
 - ◆ IV_1 과 IV_2 를 동시에 고려하여 집단을 세분화했을 때, 집단 간에 DV 모평균의 차이가 존재할까?
 - 이원분산분석에서 대립가설이 채택되면 이런 추가적인 일원분산분석을 추가 수행할 수 있음
 - 주의사항! 이원분산분석에서 대립가설의 채택여부와 무관하게 추가 일원분산분석에서 집단 간에 종속변수 모평균 차이가 유의하게 추정될 수 있음
 - ◆ IV_1 과 IV_2 를 동시에 고려한 새로운 변수 (IV_3) 를 만들고 이에 따라 일원분산분석 $1\sim6$ 단계 시행
 - IV_1 에 따른 집단 개수 k와 IV_2 에 따른 집단 개수 g를 고려하면 IV_3 에 따른 집단 개수는 $k \times g$ 가 됨

이원분산분석 실습

- 다음과 같은 Two-way ANOVA를 실행하시오.
 - ◆ 데이터: pttest
 - \bullet IV₁: gender / IV₂: os
 - ◆ DV: expense
 - ◆ 유의수준(α) = 0.05