Exercise 4

Solution:

a)

A point x is a fixed point of the function ϕ should satisfy

$$\phi(x) = x$$
 if and only if $f(x) = 0$

For $f(x)=x^3-2$, we can easily get when $x=\sqrt[3]{2}$, f(x)=0 .

Next, we should let $\phi(\sqrt[3]{2}) = \sqrt[3]{2}$.

$$\phi(x) = x(1 - \frac{\omega}{3}) + x^3(1 - \omega) + \frac{2\omega}{3x^2} + 2(\omega - 1)$$

$$\phi(\sqrt[3]{2}) = \sqrt[3]{2}(1 - \frac{\omega}{3}) + 2(1 - \omega) + \frac{2\omega}{3(\sqrt[3]{2})^2} + 2(\omega - 1)$$

Since $\phi(\sqrt[3]{2}) = \sqrt[3]{2}$, we can get

$$\sqrt[3]{2}(1 - \frac{\omega}{3}) + 2(1 - \omega) + \frac{2\omega}{3(\sqrt[3]{2})^2} + 2(\omega - 1) = \sqrt[3]{2}$$

$$\sqrt[3]{2}(1 - \frac{\omega}{3}) + 2(1 - \omega) + \frac{2\omega}{3(\sqrt[3]{2})^2} - 2(1 - \omega) = \sqrt[3]{2}$$

$$\sqrt[3]{2}(1 - \frac{\omega}{3}) + \frac{2\omega}{3(\sqrt[3]{2})^2} = \sqrt[3]{2}$$

$$2(1 - \frac{\omega}{3}) + \frac{2\omega}{3} = 2$$

$$2 - \frac{2\omega}{3} + \frac{2\omega}{3} = 2$$

Therefore, ω can be any value, and the root of f(x)=0 is a fixed point.

b)

The method is locally convergent when $\phi:[a,b]\to\mathbb{R}$ is continuously differentiable and $\alpha\in(a,b)$ is a fixed point of ϕ such that $|\phi'(\alpha)|<1$.

Therefore, for root x, we should find ω that makes $|\phi'(x)| < 1$.

Since
$$\phi(x)=x(1-rac{\omega}{3})+x^3(1-\omega)+rac{2\omega}{3x^2}+2(\omega-1)$$
 , then we can get

$$\phi'(x)=(1-rac{\omega}{3})+3x^2(1-\omega)-rac{4\omega}{3x^3}$$

Because the root $x=\sqrt[3]{2}$, and $|\phi'(x)|<1$, so

$$-1 < \phi'(x) < 1$$
 $-1 < (1 - \frac{\omega}{3}) + 3x^2(1 - \omega) - \frac{4\omega}{3x^3} < 1$
 $-1 < 1 - \frac{\omega}{3} + 3(\sqrt[3]{2})^2(1 - \omega) - \frac{4\omega}{6} < 1$
 $-1 < 1 - \omega + 3(\sqrt[3]{2})^2(1 - \omega) < 1$
 $-1 < (1 - \omega)[1 + 3(\sqrt[3]{2})^2] < 1$
 $-\frac{1}{1 + 3(\sqrt[3]{2})^2} < 1 - \omega < \frac{1}{1 + 3(\sqrt[3]{2})^2}$
 $-\frac{1}{1 + 3(\sqrt[3]{2})^2} - 1 < -\omega < \frac{1}{1 + 3(\sqrt[3]{2})^2} - 1$
 $\frac{2 + 3(\sqrt[3]{2})^2}{1 + 3(\sqrt[3]{2})^2} > \omega > \frac{3(\sqrt[3]{2})^2}{1 + 3(\sqrt[3]{2})^2}$

Therefore, for the value $\frac{3(\sqrt[3]{2})^2}{1+3(\sqrt[3]{2})^2} < \omega < \frac{2+3(\sqrt[3]{2})^2}{1+3(\sqrt[3]{2})^2}$, the method is locally convergent.

c)

The method of second order when satisfied $\phi:[a,b]\to\mathbb{R}$ is twice continuously differentiable and $\alpha\in(a,b)$ is a fixed point of ϕ satisfying $\phi'(\alpha)=0$.

Therefore, for root x, we should find ω that makes $\phi'(x)=0$.

Since
$$\phi'(x)=(1-rac{\omega}{3})+3x^2(1-\omega)-rac{4\omega}{3x^3}$$
 , and the root $x=\sqrt[3]{2}$, we can get

$$\phi'(x) = (1 - \frac{\omega}{3}) + 3x^{2}(1 - \omega) - \frac{4\omega}{3x^{3}} = 0$$

$$\phi'(\sqrt[3]{2}) = (1 - \frac{\omega}{3}) + 3(\sqrt[3]{2})^{2}(1 - \omega) - \frac{4\omega}{3(\sqrt[3]{2})^{3}} = 0$$

$$1 - \frac{\omega}{3} + 3(\sqrt[3]{2})^{2}(1 - \omega) - \frac{2\omega}{3} = 0$$

$$1 - \omega + 3(\sqrt[3]{2})^{2}(1 - \omega) = 0$$

$$\omega - 3(\sqrt[3]{2})^{2}(1 - \omega) = 1$$

$$\omega\sqrt[3]{2} - 6(1 - \omega) = \sqrt[3]{2}$$

$$\omega\sqrt[3]{2} + 6\omega = \sqrt[3]{2} + 6$$

Therefore, for the value $\omega=1$, the method of second order.

Firstly, we want to find in which condition the method is of order higher than 2.

A Taylor expansion of $\phi(x_k)$ around x=lpha gives

$$egin{array}{lll} x_{k+1}-lpha &=& \phi(x_k)-\phi(lpha) \ &=& \phi'(lpha)(x_k-lpha)+rac{\phi''(lpha)}{2}(x_k-lpha)^2+\ldots+rac{\phi^{(p)}(\xi_k)}{p!}(x_k-lpha)^p \end{array}$$

for some point ξ_k between x_k and α . And we can know that if we want to let the method of order higher than 2, it should satisfying $\phi'(\alpha)=0$, $\phi''(\alpha)=0$, and $\phi^{(j)}$ is continuous.

Since
$$\phi'(x)=(1-rac{\omega}{3})+3x^2(1-\omega)-rac{4\omega}{3x^3}$$
 , then we can get

$$\phi''(x)=6x(1-\omega)+rac{4\omega}{x^4}$$

We already get when $\omega=1$, $\phi'(x)=0$ before. However, when $\omega=1$, $\phi''(x)
eq 0$.

Therefore, there is no value of ω make the method is of order higher than 2.