BLAAI ASSEBLIEF OM

ESKAMENDATABLAD VIR DIE FISIESE WETENSKAPPE (CHEMIE)

TABEL 1 FISIESE KONSTANTES

NAAM	SIMBOOL	WAARDE
Grootte van lading op 'n elektron	е	$1,6 \times 10^{-19} \mathrm{C}$
Massa van 'n elektron	m _e	$9,1 \times 10^{-31} \text{ kg}$
Standaarddruk	$p^{\scriptscriptstyle{\theta}}$	1,01 × 10 ⁵ Pa
Molêre gasvolume by STD	V_{m}	22,4 dm ³ ⋅mol ⁻¹
Standaardtemperatuur	$T^{\scriptscriptstyle{\theta}}$	273 K
Avogadro se konstante	N _A	$6.02 \times 10^{23} \text{ mol}^{-1}$
Faraday se konstante	F	96 500 C⋅mol ⁻¹

TABEL 2 CHEMIEFORMULES

$n = \frac{m}{M}$		$n = \frac{N}{N_A}$	$n = \frac{V}{V_m}$				
$c = \frac{n}{V}$ OR $c = \frac{m}{MV}$	7	$K_w = [H_3O^+] \cdot [OH^-] = 1 \times 10^{-14}$ at 25 °C (298 K)					
q = It		$E_{sel}^{\theta} = E_{katode}^{\theta} - E_{anode}^{\theta}$					
q = nF		$m{E}_{sel}^{ heta} = m{E}_{oksideermida}^{ heta}$	$_{ m lel}$ – ${\sf E}^{ heta}_{ m reduseermiddel}$				

IEB Copyright © 2019

TABEL 3 PERIODIEKE TABEL

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 2,1 H 1			Ato	oomge	tal (Z)		2,1		ktro- tiwiteit								He
2	3 1,0 Li 7	Be 9				Rela atoom	1 tiewe massa	1					5 2,0 B 10,8	6 2,5 C 12	7 3,0 N 14	8 3,5 O 16	9 4,0 F 19	Ne 20
3	11 0,9 Na 23	Mg 24,3	04 4 0	00.45	00.40	04.40	05.45	00 40	07.40	00 40	00 40	20 40	13 1,5 A£ 27	Si 28	P 31	16 2,5 S 32	Cℓ 35,5	Ar 40
4	19 0,8 K 39	20 1,0 Ca	21 1,3 Sc 45	22 1,5 Ti 48	23 1,6 V 51	24 1,6 Cr 52	25 1,5 Mn 55	26 1,8 Fe 56	27 1,8 Co 59	28 1,8 Ni 59	29 1,9 Cu 63,5	30 1,6 Zn 65,4	31 1,6 Ga	32 1,8 Ge 72,6	33 2,0 As 75	34 2,4 Se 79	35 2,8 Br 80	36 Kr 84
5	37 0,8 Rb	38 1,0 Sr	39 1,2 Y	40 1,4 Zr	41 1,6 Nb	42 1,8 Mo	43 1,9 Tc	44 2,2 Ru	45 2,2 Rh	46 2,2 Pd	47 1,9 Ag	48 1,7 Cd	49 1,7 In	50 1,8 Sn	51 1,9 Sb	52 2,1 Te	53 2,5	54 Xe
6	85,5 55 Cs	56 Ba	89	91 72 Hf	93 73 Ta	96 74 W	99 75 Re	76 Os	103 77 Ir	106 78 Pt	108 79 Au	112 80 Hg	115 81 Tℓ	119 82 Pb	121 83 Bi	128 84 Po	127 85 At	131 86 Rn
7	133 87 Fr	137,3 88 Ra		178,5	181	184	186	190	192	195	197	200,6	204,4	207	209	_	_	_

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lw
7.0		١ ۵		ייף	· u	/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0		O .			IIIG	110	

TABEL 4 STANDAARDELEKTRODEPOTENSIALE

Half-	reaction	on	E°/volt
Li ⁺ + e ⁻	=	Li	-3,05
K ⁺ + e ⁻	\rightleftharpoons	K	-2,93
Cs ⁺ + e ⁻	\rightleftharpoons	Cs	-2,92
Ba ²⁺ + 2e ⁻	\rightleftharpoons	Ва	-2,90
Sr ²⁺ + 2e ⁻	=	Sr	-2,89
Ca ²⁺ + 2e ⁻	=	Ca	-2,87
Na ⁺ + e ⁻	⇌	Na	-2,71
Mg ²⁺ + 2e ⁻	₩	Mg	-2,37
$A\ell^{3+} + 3e^{-}$	=	Αℓ	-1,66
Mn ²⁺ + 2e ⁻	=	Mn	-1,18
2H ₂ O + 2e ⁻		$H_2(g) + 2OH^-$	-0,83
Zn ²⁺ + 2e ⁻	<u>,</u>	Zn	-0,76
Cr ³⁺ + 3e ⁻	⇌	Cr	-0,74
Fe ²⁺ + 2e ⁻	÷	Fe	-0,44
Cd ²⁺ + 2e ⁻	⇌	Cd	-0,40
Co ²⁺ + 2e ⁻	=	Co	-0,28
Ni ²⁺ + 2e ⁻	⇌	Ni	-0,25
Sn ²⁺ + 2e ⁻	÷	Sn	-0,14
Pb ²⁺ + 2e ⁻	⇌	Pb	-0,13
Fe ³⁺ + 3e ⁻	⇌	Fe	-0,04
2H ⁺ + 2e ⁻	=	$H_2(g)$	0,00
S + 2H ⁺ + 2e ⁻	\rightleftharpoons	$H_2S(g)$	+0,14
Sn ⁴⁺ + 2e ⁻	\rightleftharpoons	Sn ²⁺	+0,15
$SO_4^{2-} + 4H^+ + 2e^-$	\rightleftharpoons	$SO_2(g) + 2H_2O$	+0,17
Cu ²⁺ + 2e ⁻	\rightleftharpoons	Cu	+0,34
$2H_2O + O_2 + 4e^-$	\rightleftharpoons	40H ⁻	+0,40
$SO_2 + 4H^+ + 4e^-$	\rightleftharpoons	S + 2H ₂ O	+0,45
l ₂ + 2e ⁻	\rightleftharpoons	2I ⁻	+0,54
$O_2(g) + 2H^+ + 2e^-$	\rightleftharpoons	H_2O_2	+0,68
Fe ³⁺ + e ⁻	\rightleftharpoons	Fe ²⁺	+0,77
Hg ²⁺ + 2e ⁻	\rightleftharpoons	Hg	+0,79
$NO_3^- + 2H^+ + e^-$	\rightleftharpoons	$NO_2(g) + H_2O$	+0,80
Ag ⁺ + e ⁻	\rightleftharpoons	Ag	+0,80
$NO_3^- + 4H^+ + 3e^-$	\rightleftharpoons	$NO(g) + 2H_2O$	+0,96
Br ₂ + 2e ⁻	\rightleftharpoons	2Br ⁻	+1,09
Pt ²⁺ + 2e ⁻	\rightleftharpoons	Pt	+1,20
$MnO_2 + 4H^+ + 2e^-$	\rightleftharpoons	$Mn^{2+} + 2H_2O$	+1,21
$O_2 + 4H^+ + 4e^-$	\rightleftharpoons	2H ₂ O	+1,23
$Cr_2O_7^{2-} + 14H^+ + 6e^-$	\rightleftharpoons	2Cr ³⁺ + 7H ₂ O	+1,33
$C\ell_2(g) + 2e^-$	\rightleftharpoons	2Cℓ ⁻	+1,36
Au ³⁺ + 3e ⁻	\rightleftharpoons	Au	+1,42
MnO ₄ ⁻ + 8H ⁺ + 5e ⁻		$Mn^{2+} + 4H_2O$	+1,51
	\rightleftharpoons	2H ₂ O	+1,77
$F_2(g) + 2e^-$	=	2F ⁻	+2,87

Toenemende reduseervermoë

Toenemende oksideervermoë