1 Motivation

The main idea of simplicial homology can be summarized as follows:

We want to find a new homotopy invariant as a tool to distinguish topological spaces. With simplicial homology, we assign a succession of abelian Groups to simplicial complexes.

2 Simplicial Homology Groups

Definition 2.1. Let K be a simplicial complex. A p-chain on K is a function c from the set of oriented p-simplices of K to the an abelian Group G such that:

- 1. $c(\sigma) = -c(\sigma')$ if σ and σ' are opposite orientations of the same simplex.
- 2. $c(\sigma) = 0$ for all but finitely many oriented p-simplices σ .

We add p-chains by adding their values; the resulting group (which is free abelian) is denoted $C_p(K; G)$ and is called the group of (oriented) p-chains of K with coefficients in G.

Definition 2.2. Let K be a simplicial complex and G an abelian group. We define the boundary operator

$$\partial_p: C_p(K;G) \to C_{p-1}(K;G)$$

to be the linear map uniquely defined by its action on an elementary chain corresponding to an oriented simplex $\sigma = (v_0, \dots, v_p)$:

$$\partial_p \sigma = \partial_p(v_0, \dots, v_p) = \sum_{i=0}^p (-1)^i(v_0, \dots, \hat{v}_i, \dots, v_p)$$

where the symbol \hat{v}_i means that the vertex v_i is to be deleted from the vertex set.

Lemma 2.3. Let K be a simplicial complex and G an abelian group then $(C_p(K;G), \partial_p)_{p \in \mathbb{Z}}$ is a chain complex, i.e. $\partial^2 = 0$

Definition 2.4. We define

$$H_p(K;G) := \ker \partial_p / \operatorname{Im} \partial_{p+1}$$

to be the p-th simplicial homology group of K

Examples 2.5. For the 1-sphere, triangulate the space, compute the boundary of all elementary chains and evaluate the resulting matrices to find:

$$H_0(\mathbb{S}^1) \cong \mathbb{Z}$$
 $H_1(\mathbb{S}^1) = \mathbb{Z}$, $H_{n>1}(\mathbb{S}^1) = 0$

For the Torus T and the Klein Bottle S it is more convenient to reduce the problem to chains that are carried by the boundary of the rectangle associated with the fundamental polygon. This yields

$$H_0(S) \cong \mathbb{Z} \qquad H_1(S) \cong \mathbb{Z} \oplus \mathbb{Z}_2 \qquad H_{n>1}(S) = 0$$

$$H_0(S; \mathbb{Z}_2) \cong \mathbb{Z}_2 \qquad H_1(S; \mathbb{Z}_2) \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2 \qquad H_2(S; \mathbb{Z}_2) = \mathbb{Z}_2 \qquad H_{n>2}(S; \mathbb{Z}_2) = 0$$

$$H_0(T) \cong \mathbb{Z} \qquad H_1(T) \cong \mathbb{Z} \oplus \mathbb{Z} \qquad H_2(T) = \mathbb{Z} \qquad H_{n>2}(T) = 0$$

$$H_0(T; \mathbb{Z}_2) \cong \mathbb{Z}_2 \qquad H_1(T; \mathbb{Z}_2) \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2 \qquad H_2(T; \mathbb{Z}_2) = \mathbb{Z}_2 \qquad H_{n>2}(T; \mathbb{Z}_2) = \mathbb{Z}_2$$

Seminar "Topology vs. Combinatorics", WS 2018/19, Universität Regensburg

4 Functoriality Property

Definition 4.1. Let $f: K \to L$ be a simplicial map. If $[v_0 \dots v_p]$ is a simplex of K, then the points $f(v_0) \dots f(v_p)$ span a simplex of L. We construct a homomorphism $f_{\sharp}: C_p(K) \to C_p(L)$ by defining it on oriented simplices as follows:

$$f_{\sharp}([v_0,\ldots,v_p]) = \begin{cases} [f(v_0),\ldots,f(v_p)], & \text{if } f(v_0),\ldots,f(v_p) \text{ are distinct} \\ 0, & \text{otherwise.} \end{cases}$$

The family $(f_{\sharp})_{p\in\mathbb{Z}}$ is called the *chain map induced by the simplicial map* f.

Definition 4.2. Let K and L be simplicial complexes; let $h:|K|\to |L|$ be a continuous map. Choose a subdivision K' of K such that h has a simplicial approximation $f:K'\to L$. Let $\lambda:\mathcal{C}(K)\to\mathcal{C}(K')$ be the subdivision operator.

We define the homomorphism induced by h

$$h_*: H_p(K) \to H_p(L)$$
 via $h_* = f_* \circ \lambda_*$.

Theorem 4.3 (functioniality II). The identity map $id: |K| \to |K|$ induces the identity homomorphism $i_*: H_p(K) \to H_p(K)$. If $h: |K| \to |L|$ and $k: |L| \to |M|$ are continuous maps, then $(k \circ h)_* = k_* \circ h_*$.

5 Homotopy Invariance of Simplical Homology

Theorem 5.1. Let $f: |K| \to |L|$ be a homeomorphism, then $f_*: H_n(K) \to H_n(L)$ is an isomorphism.

Theorem 5.2. Let K, L be simplicial complexes. If $f, g : |K| \to |L|$ are homotopic maps then $f_* = g_* : H_q(K) \to H_q(L)$ for all q

Theorem 5.3. If two polyhedra K and L are homotopy equivalent, then their homology groups are isomorphic $H_n(X) \cong H_n(Y)$ in all dimensions.

Definition 5.4. Given two simplicial maps $f, g: K \to L$, these maps are said to be *contiguous* if for each simplex $v_0 \dots v_p$ of K, the points

$$f(v_0), \dots, f(v_p), g(v_0), \dots, g(v_p)$$

span a simplex of L.

Theorem 5.5. If $f, g: K \to L$ are contiguous simplicial maps, then they induce the same chain maps f_{\sharp} and g_{\sharp} .

Theorem 5.6. If $f, g: |K| \to |L|$ are homotopic maps we can find a barycentric subdivision K^m and a sequence of simplicial maps $s_1, \ldots, s_n: |K^m| \to |L|$ such that s_1 simplicially approximates f while s_n simplicially approximates g, and each pair s_i, s_{i+1} is contiguous.

Exercise 1. Compute the simplicial Homology groups of $\mathbb{R}P^2$ with coefficients in \mathbb{Z} and \mathbb{Z}_2 .

Exercise 2. Compute the simplicial homology groups of \mathbb{S}^2 and \mathbb{S}^3 . Formulate a conjecture for \mathbb{S}^n .

Literatur

- [1] M.A. Armstrong, *Basic Topology*, korrigierter Nachdruck des Originals von 1979, Undergraduate Texts in Mathematics, Springer, 1983.
- [2] A. Hatcher. *Algebraic Topology*, Cambridge University Press, 2002. Online verfügbar unter http://www.math.cornell.edu/~hatcher/.
- [3] J.R. Munkres. Elements of algebraic topology, Addison-Wesley, 1984.
- [4] D.L. Ferrario and R.A. Piccinini. Simlicial Structures in Topology, CMS Books in Mathematics, Springer New York, 2010. ISBN:9781441972361