1. For the following signals verify if they are of energy/power type. Accordingly compute the energy and power of the signal over a duration of T seconds

(a)
$$q(t) = Ae^{j(2\pi f_0 t + \theta)}$$

(b)
$$g(t) = Ae^{-bt}(t > 0)$$

(c)
$$g(t) = t(t > 0)$$

(d)
$$g(t) = Kt^{-1/4}(t > 0)$$

- 2. Let $x_1(t)$ and $x_2(t)$ are periodic signals with fundamental periods T_1 and T_2 respectively. Under what condition is the sum $x(t) = x_1(t) + x_2(t)$ is periodic, and what is the fundamental period of x(t) if it is periodic? Is $x(t) = \cos(60\pi t) + \sin(50\pi t)$ periodic? If yes find fundamental time period.
- 3. Determine the values of E_{∞} and P_{∞} for each of the following signals

(a)
$$x_1(t) = e^{-5t}u(t)$$

(b)
$$x_2(t) = e^{j(4t+\pi/4)}$$

(c)
$$x_1(n) = \left(\frac{1}{3}\right)^n u(n)$$

4. A continuous-time signal x(t) is shown in Fig. 1. Sketch and label carefully each of the following signals:

(a)
$$x(t-2)$$

(b)
$$x(3-t)$$

(c)
$$x(2t+1)$$

(d)
$$\left[x(t) + x(-t)\right] u(t)$$

5. A discrete-time signal x(n) is shown in Fig. 2. Sketch and label carefully each of the following signals:

(a)
$$x(n-3)$$

(b)
$$x(3-n)$$

(c)
$$x(3n)$$

(d)
$$x(n-2)\delta(n-2)$$

Fig. 2. A discrete-time signal

6. Determine whether each of the following signals is periodic

(a)
$$x_1(n) = u(n) + u(-n)$$

(b)
$$x_2(t) = 2e^{j(t+\pi/4)}u(t)$$

(c)
$$x_2(n) = u(n) + u(-n) - \delta(n)$$

(c)
$$x_2(n) = u(n) + u(-n) - \delta(n)$$
 (d) $x_3(n) = \sum_{k=-\infty}^{+\infty} \{\delta(n-4k) - \delta(n-1-4k)\}$

7. Check whether the following results holds

(a)
$$e^{j(\omega_o+2\pi)t} = e^{j\omega_o t}$$
, $t \in \mathbf{i}$

(a)
$$e^{j(\omega_o+2\pi)t} = e^{j\omega_o t}$$
, $t \in i$ (b) $e^{j(\omega_o+2\pi)n} = e^{j\omega_o n}$, $n \in \mathfrak{C}$

Is there any conclusion from the solution of above problem in the context of periodicity of continuous time vs. discrete time complex exponential signal?

8. Prove that complex exponential signal, i.e., $x(t) = e^{j\omega_0 t}$ has infinite total energy but finite average power.