Audio & Speech Technology

[6] Speech Synthesis & Recognition

Phoneme

Phoneme = Smallest segment of speech sound

Vowels

IPA Example

i: see,heat

a: arm,father

u: blue,foot

call,horse

3: turn,learn

I ship,hit

mat,black

put,could

Consonants

IPA	Example	IPA	Example
b	<u>b</u> ook	1	<u>l</u> eg, <u>l</u> itt <u>le</u>
d	<u>d</u> ay, <u>d</u> i <u>d</u>	Z	<u>z</u> oo,la <u>z</u> y
f	<u>f</u> ind,i <u>f</u>	3	plea <u>s</u> ure
g	give,flag	ſ	<u>sh</u> e,cra <u>sh</u>
h	<u>h</u> ow	t∫	<u>ch</u> eck
j	<u>y</u> es, <u>y</u> ellow	n	<u>n</u> o,te <u>n</u>
k	<u>c</u> at,ba <u>c</u> k	ŋ	si <u>ng</u>

IPA = International Phonetic Alphabet

Thai Phonemes

SHORT VOWELS		
IPA	ตัวอักษร	
a	ು, ಁಁ	
е	ఃః, ్్	
ε	េះ, េើ	
i	ಿ, ಿ	
0	ြႊ, ့	
Э	เาะ, ๎็อ	
u	್ಳ, ್ಳಂ	
ш	ೆ, ೆ	
γ	เอะ	

(เสียงสระสั้น)

LON	LONG VOWELS		
IPA	ตัวอักษร		
a:	ാ, ാ		
e:	េ, េ		
ε :	េេ, េេ		
iː	ೆ, ೆಂ		
O:	ি, ি		
ɔ ː	മ, മ		
u:	୍ଷ୍ର, ୍ଷ୍ର,		
W I	ീമ, ീ		
γ:	േമ, േീ		
	(เสียงสระยาว)		

DIPHTHONGS		
IPA	ตัวอักษร	
ia?, iə?	េី១៩	
ia, iə	เวีย, เวียว	
ua?, uə?	័ាះ	
ua, uə	്ാ, ാ	
ша?, шә?	េឺอะ	
ша, шә	ి ల, ిేల	

(เสียงสระควบ)

Thai Phonemes

CONSONANTS					
IPA	ตัวอักษร	IPA	ตัวอักษร		
b	บ	р	ป		
d	ฎ,ด	ph	ผ,พ,ภ		
f	ฝ,ฟ	r	ร,หร		
h	ห,ฮ	S	ช,ศ,ษ,ส		
j	ญ,ย,อย,หย	t	ฏ,ต		
k	ก	t h	ฐ,ฑ,ฒ,ถ,ท,ธ		
$k^h (/x/)$	ข,ฃ,ค,ฅ,ฆ	ts	ବ		
	ล,ฬ,หล	teh	ฉ, ช, ฌ		
m	ม,หม	W	ว,หว		
n	ณ,น,หน	7	อ, ะ		
ŋ	ง,หง				

cup,duck

TONES		
IPA	วรรณยุกต์	
а	เสียงสามัญ	
à	เสียงเอก	
â	เสียงโท	
á	เสียงตรี	
ă	เสียงจัตวา	

Ex เงิบมาก **♣** ŋ͡ɤːbmaːk

See more at http://en.wikipedia.org/wiki/International_Phonetic_Alphabet_chart_for_English_dialects

Signal Vocal Tract Lips Radiation Speech Signal

http://ars.els-cdn.com/content/image/1-s2.0-S016763930700177X-gr1.jpg

Voiced Speech

5

7

- Vocal cords vibrate
- Excitation is periodic signal
- Characterized by Low Freq.

Voiced Speech

- Vocal cords vibrate
- Excitation is periodic signal
- Characterized by Low Freq.

Voiced Speech

Fundamental Frequency

• Male : 50-200 Hz

• Female : 150-300 Hz

Child: 200-400 Hz

Voiced Speech

- All vowel in English = Voiced speech.
- Voiced consonants

IPA	Example
b	<u>b</u> ook
d	<u>d</u> ay, <u>d</u> i <u>d</u>
g	give,flag
V	<u>v</u> anilla
Z	<u>z</u> oo,la <u>z</u> y
ð	<u>th</u> en
3	plea <u>s</u> ure
dʒ	jump,gin

IPA	Example
1	<u>leg,little</u>
m	<u>m</u> an
n	<u>n</u> o,te <u>n</u>
ŋ	si <u>ng</u>
r	<u>r</u> ed,t <u>r</u> y
W	<u>w</u> indo <u>w</u>
j	<u>y</u> es, <u>y</u> ellow

Unvoiced Speech

- Vocal cords dose not vibrate
- Excitation is random noise
- Characterized by High Freq.

Unvoiced Speech

- Vocal cords dose not vibrate
- Excitation is random noise
- Characterized by High Freq.

11

Unvoiced Speech

Unvoiced consonants

IPA	Example	
р	<u>p</u> et	
f	<u>f</u> ind <u>,</u> i <u>f</u>	
θ	thirty,both	
t	<u>t</u> en	
S	<u>s</u> ir	
ſ	she,crash	
t∫	<u>ch</u> eck	
k	<u>k</u> ing, <u>c</u> at	

Formant

- Vocal tract = Resonance Tube
- Formant = Resonant Frequency of Vocal Tract
- Vocal tract has a fixed characteristic in the order of 10 ms
- 3-4 formants present below 4kHz of speech

Phonetic	Example	F ₁	F ₂	F ₃
Symbol	Word	(Hz)	(Hz)	(Hz)
/ow/	bought	570	840	2410
/00/	boot	300	870	2240
/u/	foot	440	1020	2240
/a/	hot	730	1090	2440
/uh/	but	520	1190	2390
/er/	bird	490	1350	1690
/ae/	bat	660	1720	2410
/e/	bet	530	1840	2480
/i/	bit	390	1990	2550
/iy/	beet	270	2290	3010

http://hyperphysics.phy-astr.gsu.edu/hbase/music/imgmus/vow5.gif http://cnx.org/content/m15459/latest/sub_formants-voweltable.png

Frequency Domain

Speech Production Model

K = Volumn Control

 $a_i = Filter Coefficients$

Depend on phonemes

and speakers

Can be estimated

by using LPC

Time Domain

$$s[n] = \sum_{k=1}^{P} a_i s[n-k] + K \cdot x[n]$$

$$P \in \{10,12,14\}$$

$$s[n] = Speech Signal$$

$$x[n] = Excitation$$

Impulse Train for voiced speech [Varying Pitch]

Random noise for unvoiced Speech

Linear Predictive Coding

Current sample Previous samples
$$s[n] = \sum_{k=1}^{P} a_k s[n-k] + \varepsilon[n]$$
 LPC Coefficients Prediction Error

$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ \vdots \\ a_P \end{bmatrix} = \begin{bmatrix} R[0] & R[1] & R[2] & \cdots & R[P-1] \\ R[1] & R[0] & R[1] & \cdots & R[P-2] \\ R[2] & R[1] & R[0] & \cdots & R[P-3] \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ R[P-1] & R[P-2] & R[P-3] & \cdots & R[0] \end{bmatrix}^{-1} \begin{bmatrix} R[1] \\ R[2] \\ R[3] \\ \vdots \\ R[P] \end{bmatrix}$$

Linear Predictive Coding

Speech Waveform [Phoneme]

LPC Model

LPC Coefficients

Speech Production Model

$$s[n] = \sum_{k=1}^{P} a_{i} s[n-k] + K \cdot x[n]$$

Linear Predictive Coding

 $s[n] = \sum_{k=1}^{P} a_k s[n-k] + \varepsilon[n]$

Speech Production Model

 $s[n] = \sum_{k=1}^{P} a_i s[n-k] + K \cdot x[n]$

Excitation can be estimated from prediction error

- Voiced/Unvoiced Classes
- Pitches

$$\varepsilon[n] = K \cdot x[n]$$

Speech Synthesis

TTS: Text-to-Speech

http://en.wikipedia.org/wiki/Speech_synthesis

Time & Pitch Manipulation

- **Time Stretching =** Change duration of sound (Shorten/Lengthen) without affecting its pitches
- **Pitch Shifting/Scaling =** Change pitch of sound (Lower/Higher) without affecting its duration

Techniques

- Resampling
- Phase Vocoder
- PSOLA (Pitch Synchronous Overlap and Add)

Concatenative Synthesis

กาก **→ k a: k**

- Concatenate segments of recorded speech
- Produce natural synthesized speech
- Large databases of segmented recorded speech (phones, diphones, words, phrases, sentences)
- Unit selection synthesis, Diphone synthesis, Domainspecific synthesis

PSOLA Pitch Synchronous Overlap and Add

Epoch (Pitch Mark) = Single instant in each pitch period that serves as an "anchor"

PSOLA Pitch Synchronous Overlap and Add

Time segmentation using overlapping window with center at epoch

Paul Taylor, Text-to-Speech Synthesis

31

PSOLA Pitch Synchronous Overlap and Add

Paul Taylor, Text-to-Speech Synthesis

PSOLA Pitch Synchronous Overlap and Add

Pitch Manipulation

Paul Taylor, Text-to-Speech Synthesis

Formant Synthesis

- Create a waveform using acoustic model and does not use human speech samples at runtime
- Smaller program, Higher synthesizing speed, avoiding the acoustic glitches
- Artificial, robotic-sounding speech

Styger, T., & Keller, E. (1994). Formant synthesis.

Formant Synthesis

Single Formant Synthesis Filter

$$y[n] = s[n] + 2e^{-\pi B/F_s} \cos(2\pi \frac{F_R}{F_S})y[n-1] - e^{-2\pi B/F_S}y[n-2]$$

 F_R = Resonance Frequency (Formant)

B = Bandwidth of Resonance Filter

 $F_S =$ Sampling Frequency

	/a/	/e/	/i/	/o/	/w/	BW
Fl	750	469	281	468	312	90
F2	1187	2031	2281	781	1219	110
F3	2595	2687	3187	2656	2469	170
F4	3781	3375	3781	3281	3406	250
F5	4200	4200	4200	4200	4200	300

Paul Taylor, Text-to-Speech Synthesis

HMM-based Synthesis

We know phone sequence and duration for each phone. The phone sequence tells us which models to use in which order, but not which states to use, or which observations to generate. A duration tells us how many observations that should be generated, but again not which states to generate from.

Generate the most likely sequence of observations from the sequence of models

Each state will generate its mean observation

HMM-based Synthesis

สัตว์ปีก → sadpi:k

Duration 2 5 1 1 9 2 Frames

Speech Recognition

Speaker Model	Speaker Dependence [used by a single speaker] Speaker Independence [used by any speaker]
Vocabulary Size	Small Vocabulary [10 words] Medium Vocabulary [100 words] Large Vocabulary [1000 words] Very Large Vocabulary [10000 words] Out-of-Vocabulary [10000 words]
Speech Utterance	Isolated Words [single word] Connected Words / Discontinuous Speech [full sentence separated by silence] Continuous Speech [Naturally spoken sentences] Spontaneous Speech [Include mispronunciations, false-starts, and nonwords]

Growth of SR

Year	Progress of ASR System
1952	Digit Recognizer
1976	1000 word connected recognizer with constrained grammar
1980	1000 word LSM recognizer (separate words w/o grammar)
1988	Phonetic typewriter
1993	Read texts (WSJ news)
1998	Broadcast news, telephone conversations
1998	Speech retrieval from broadcast news
2002	Rich transcription of meetings, Very Large Vocabulary, Limited Tasks, Controlled Environment
2004	Finnish online dictation, almost unlimited vocabulary based on morphemes
2006	Machine translation of broadcast speech
2008	Very Large Vocabulary, Limited Tasks, Arbitrary Environment
2009	Quick adaptation of synthesized voice by speech recognition (in a project where TKK participates in)
2011	Unlimited Vocabulary, Unlimited Tasks, Many Languages, Multilingual Systems for Multimodal Speech Enabled Devices
Future Direction	Real time recognition with 100% accuracy, all words that are intelligibly spoken by any person, independent of vocabulary size, noise, speaker characteristics or accent.

Vimala.C & Dr.V.Radha, A Review on Speech Recognition Challenges and Approaches

Speech Recognition

Approaches

- Hidden Markov Models (HMM)
 - Monophone Models
 - Triphone Models
- Neural Networks (NN)
- Dynamic Time Warping (DTW)

Speech Recognition

Vimala.C & Dr.V.Radha, A Review on Speech Recognition Challenges and Approaches

HMM Speech Recognition

$$\hat{W} = \underset{W}{\operatorname{arg max}} P(W \mid X) = \underset{W}{\operatorname{arg max}} \frac{P(X \mid W)P(W)}{P(X)}$$

X = Observation Sequence ที่มี

W = Symbol Sequence ที่เป็นไปได้
Sequence of phoneme (word, phrase, sentences)

 \hat{W} = Symbol Sequence ที่ Recognized ได้ สำหรับ Observation Sequence X $P(X|W) = ext{Prob.}$ ของการเกิดX จากคำ/วลี/ประโยค W

หาได้จาก Acoustic Model

P(W) = Prob. ของการเกิด คำ/วลี/ประโยค W

หาได้จาก Language Model

Acoustic Model

 Statistical model that describe the probability of acoustic observation sequence

Composed HMM for word กาก [ka:k]

Monophone Model
[Context Independent]

Acoustic Model

 Statistical model that describe the probability of acoustic observation sequence

Composed HMM for word กาก [ka:k]

Triphone Model
[Context Dependent]

Acoustic Model

Monophone Model [Context Independent]

แม่งง = m, ε:, ŋ, o, ŋ

Triphone Model [Context Dependent]

Word Internal

แม่งง = *-m+ε:, m-ε:+*, *-ŋ+o, ŋ-o+ŋ, o-ŋ+*

Cross-Word

แม่งง = *-m+ɛː, m-ɛː+ŋ, ɛː-ŋ+o, ŋ-o+ŋ, o-ŋ+*

 Statistical Model that describe the probability of the symbol sequence (word/phrase/sentence)

Language Model

Language Model

Finite State Networks

Assume that words are Independent

P("buy two tickets for Jandara") = P(two)P(Jandara)
P("buy one ticket for Die Hard") = P(one ticket)P(Die Hard)
P("buy one Die Hard") = 0

Language Model

Finite State Networks

47

Language Model

n-gram Language Model

$$P(w_1, w_2, ..., w_L) = \prod_{i=1}^{L} P(w_i | w_1, w_2, ..., w_{i-1})$$

$$\approx \prod_{i=1}^{L} P(w_i | w_{i-(n-1)}, w_{i-(n-2)}, ..., w_{i-1})$$

Unigram

$$P(w_1,...,w_L) \approx \prod_{i=1}^L P(w_i)$$

Bigram

$$P(w_1,...,w_L) \approx \prod_{i=1}^{L} P(w_i | w_{i-1})$$

$$P(w_1,...,w_L) \approx \prod_{i=1}^{L} P(w_i | w_{i-1}, w_{i-2})$$

Language Model

P(หมีเป็นสัตว์กินเบียร์) = P(หมี)×P(เป็น|หมี)×P(สัตว์|เป็น,หมี) ×P(กิน|สัตว์,เป็น,หมี)×P(เบียร์|กิน,สัตว์,เป็น,หมี)

Unigram Approximation

 $P(หมีเป็นสัตว์กินเบียร์) \approx P(หมี) \times P(เป็น) \times P(สัตว์) \times P(กิน) \times P(เบียร์)$

Bigram Approximation

P(หมีเป็นสัตว์กินเบียร์) ≈ P(หมี|<start>)×P(เป็น|หมี)×P(สัตว์|เป็น)
×P(กิน|สัตว์)×P(เบียร์|กิน)×P(<end>|เบียร์)

Trigram Approximation

 $P(หมีเป็นสัตว์กินเบียร์) \approx P(หมี|<start>,<start>) \times P(เป็น|หมี,<start>) \times P(สัตว์|เป็น,หมี) \times P(กิน|สัตว์,เป็น) \times P(เบียร์|กิน,สัตว์) \times P(<end>|เบียร์,กิน)$

