MATH 601 HOMEWORK (DUE 10/16)

HIDENORI SHINOHARA

Contents

1.	Modules	1
2.	The Quadratic Equation	2
3.	Jordan Canonical Form	3

1. Modules

Exercise. (Problem 2) Consider the $m \times n$ matrices given below as presentation matrices for \mathbb{Z} -modules. That is think of the given matrix, H, as giving a linear transformation, $\mathbb{Z}^n \to \mathbb{Z}^m$, $x \mapsto Hx$ and thus giving a presentation of $\operatorname{Coker}(H) = \mathbb{Z}^m / \operatorname{Im}(H)$. Give in each case a familiar finitely generated \mathbb{Z} -module which is isomorphic to the \mathbb{Z} -module which H presents.

•
$$H = 6$$
.
• $H = \begin{bmatrix} 2 & 1 \end{bmatrix}$.
• $H = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$.
• $H = \begin{bmatrix} 4 & 12 \\ 6 & 2 \end{bmatrix}$.
• $H = \begin{bmatrix} 3 & 6 \\ 8 & 4 \\ 10 & 5 \end{bmatrix}$.
• $H = \begin{bmatrix} 36 & 12 & 24 \\ 30 & 18 & 24 \\ 15 & -6 & 12 \end{bmatrix}$.

Proof.

• This *H* generates the exact sequence

$$\mathbb{Z}^1 \xrightarrow{H} \mathbb{Z}^1 \xrightarrow{p} \mathbb{Z}^1/6\mathbb{Z} \xrightarrow{0} 0$$

where p is the map $k \mapsto k + 6\mathbb{Z}$. Thus $\mathbb{Z}/6\mathbb{Z}$ is what H represents.

Exercise. (Problem 3) To what familiar abelian group is the following abelian group isomorphic to? The group generated by a, b, c for which the module of relations is generated by the following relations, 6a - 10b + 4c = 0 and 8a - 20c = 0.

Proof. Solve this!

• Abelian group = \mathbb{Z} module.

$$\bullet \quad \mathbb{Z}^2 \xrightarrow{h} \mathbb{Z}^3 \xrightarrow{q} M \xrightarrow{0} 0$$

- M is an abelian group generated by a, b, c with some relations.
- $\ker(q)$ is the module of relations, and $\ker(q) = \langle 6a 10b + 4c, 8a 20c \rangle$.
- $\bullet \ h = \begin{bmatrix} 6 & 8 \\ -10 & 0 \\ 2 & -20 \end{bmatrix}$
- q(1,0,0) = a, q(0,1,0) = b, q(0,0,1) = c.
- $M = \langle a, b, c \mid 6a 10b + 4c, 8a 20c \rangle$.
- Is the answer just $\mathbb{Z}^3/\langle (6,-10,4),(8,0,-20)\rangle$? I'm certainly not familiar with that abelian group. If I mod \mathbb{Z}^3 by two independent vectors, does that leave \mathbb{Z} ?

Exercise. (Problem 4) How many isomorphism classes of abelian groups with $27783 = 3^47^3$ elements are there?

Proof. Let M be an abelian group with 27783 elements. Then M is a \mathbb{Z} -module with 27783 elements. By the theorem on PP.8-9 of the Module handout, $M \simeq \mathbb{Z}/(d_1) \times \cdots \times \mathbb{Z}/(d_n) \times \mathbb{Z}^{m-s}$. Since M only contains finitely many elements and \mathbb{Z} contains infinitely many elements, $M \simeq \mathbb{Z}/(d_1) \times \cdots \times \mathbb{Z}/(d_n)$. $\gcd(a,b) = 1$ if and only if $\mathbb{Z}/(a)$ is isomorphic to $\mathbb{Z}/(b)$.

- $\mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3$, $\mathbb{Z}_9 \times \mathbb{Z}_3 \times \mathbb{Z}_3$, $\mathbb{Z}_9 \times \mathbb{Z}_9$, $\mathbb{Z}_{27} \times \mathbb{Z}_3$, \mathbb{Z}_{81} .
- $\mathbb{Z}_7 \times \mathbb{Z}_7 \times \mathbb{Z}_7$, $\mathbb{Z}_{49} \times \mathbb{Z}_7$, \mathbb{Z}_{343} .

Thus the combinations of the above are exactly all the distinct classes of abelian groups with 27783 elements, so there are exactly $3 \times 5 = 15$ classes.

2. The Quadratic Equation

Exercise. (Problem 23) Show that if $x^2 - 2y^2 = n$, $n \neq 0$ has one solution, then it has infinitely many. If n is prime in \mathbb{Z} , describe all the solutions.

Proof. Let $n \in \mathbb{Z}$ be given. Suppose $x^2 - 2y^2 = n$ for some $x, y \in \mathbb{Z}$. For each $k \in \mathbb{N}$, pick $a_k, b_k \in \mathbb{Z}$ such that $a_k + b_k \sqrt{2} = u_0^{2k}$ where $u_0 = 1 + \sqrt{2}$. We showed that u_0^{2k} is a unit element for each $k \in \mathbb{N}$. Since $(a_k + b_k \sqrt{2})(a_k - b_k \sqrt{2}) = N(a_k + b_k \sqrt{2}) = N(u_0)^{2k} = 1$ by Problem 2 and 3. Moreover, $u_0^k \neq u_0^{k'}$ whenever $k \neq k'$ since $u_0 \neq 0$ and $|u_0| \neq 1$.

$$n = x^2 - 2y^2 = (x + \sqrt{2}y)(x - \sqrt{2}y)$$
. Then $(x + \sqrt{2}y)(a_k - b_k\sqrt{2}) = (a_kx - 2b_ky) + (b_kx - a_ky)\sqrt{2}$, and $(x - \sqrt{2}y)(a_k + b_k\sqrt{2}) = (a_kx - 2b_ky) - (b_kx - a_ky)\sqrt{2}$.

$$(a_k x - 2b_k y)^2 - 2(xb_k - a_k y)^2 = N((a_k x - 2b_k y) + (xb_k - a_k y)\sqrt{2})$$

$$= N(x + \sqrt{2}y)N(a_k - b_k \sqrt{2})$$

$$= N(x + \sqrt{2}y)(a_k - b_k \sqrt{2})\gamma(a_k + b_k \sqrt{2})$$

$$= N(x + \sqrt{2}y)(a_k + b_k \sqrt{2})\gamma(a_k - b_k \sqrt{2})$$

$$= N(x + \sqrt{2}y)N(a_k + b_k \sqrt{2})$$

$$= N(x + \sqrt{2}y) \cdot 1$$

$$= N(x + \sqrt{2}y)$$

$$= x^2 - 2y^2 = n.$$

If $k \neq k'$, then $a_k - b_k \sqrt{2} \neq a_{k'} - b_{k'} \sqrt{2}$. Thus $(x + \sqrt{2}y)(a_k - b_k \sqrt{2}) \neq (x + \sqrt{2}y)(a_k - b_k \sqrt{2})$, so $(a_k x - 2b_k y, xb_k - a_k y) \neq (a_{k'} x - 2b_{k'} y, xb_{k'} - a_{k'} y)$. Thus we get different solutions for different values of k.

Prime?

Exercise. (Problem 24) For which $\overline{n} \in \mathbb{Z}/(8)$ does $\overline{x}^2 - \overline{2}\overline{y}^2 = \overline{n}$ have solutions?

Proof.

Exercise. (Problem 25) Show that if $n \cong \pm 3 \pmod{8}$, then $x^2 - 2y^2 = n$ has no solutions.

Proof.

3. Jordan Canonical Form

Let k be a field, V a finite dimensional k-vector space, and $T \in \text{End}_k(V)$ a linear transformation.

Exercise. (Problem 1) Show that the set $\{p(x) \in k[x] \mid p(T) = 0 \in \operatorname{End}_k(V)\}$ is an ideal, $I \subset k[x]$. Also, show that $I \neq 0$.

Proof.

- Claim 1: I is nonempty. Let v_1, \dots, v_n be a basis of V. Such a basis must exist since the dimension of V is finite. Let M be the $n \times n$ matrix associated to V with respect to the basis $\{v_1, \dots, v_n\}$. In other words, for any $v \in V$, Mv = T(v) where Mv is the product. Since M is an $n \times n$ matrix, the set $\{M^0, \dots, M^{n^2}\}$ is linearly dependent. Thus there exist $a_{n^2}, \dots, a_0 \in k$ such that
 - $-a_{n^2}M^{n^2} + \dots + a_0M^0 = 0.$
 - $-a_{n^2}, \cdots, a_0$ are not all zero.

Then for any $v \in V$,

$$0 = (a_{n^2}M^{n^2} + \dots + a_0M^0)v$$

= $a_{n^2}M^{n^2}v + \dots + a_0M^0v$
= $a_{n^2}T^{n^2}(v) + \dots + a_0T^0(v)$
= $(a_{n^2}T^{n^2} + \dots + a_0T^0)(v)$.

Therefore, $p(x) = a_{n^2}x^{n^2} + \cdots + a_0x^0 \neq 0$ and p(T) = 0. Thus $p(x) \in I$, so I is nonempty.

- Claim 2: I is closed under subtraction. Let $p(x), q(x) \in I$. Then $p(x) q(x) \in I$ because p(T) - q(T) = 0 - 0 = 0.
- Claim 3: I is closed under multiplication by elements in k[x]. Let $p(x) \in I, r(x) \in I$ k[x]. Then p(T)r(T) = 0, so $r(x)p(x) \in I$.

By Claim 1 and 2, I is a subgroup of k[x] under addition. Then Claim 3 implies that I is an ideal. By Claim 1, $I \neq 0$.

Exercise. (Problem 2) Let $p(x) \in k[x]$ be a nonzero polynomial such that $p(T) = 0 \in K[x]$ $\operatorname{End}_k(V)$. Show that if $p(x) \in k[x]$ is a product of linear polynomials, then there is a k-basis for V with respect to which the matrix for T is in Jordan normal form.

Since k is just a field, I can't assume that k is algebraically closed.

- $p(x) = (x a_1)^{m_1} \cdots (x a_n)^{m_n}$. Let $N = \dim(V)$.
- Let $q(\lambda) = \det(T \lambda \operatorname{Id})$ be the characteristic polynomial of T.
- Let v_1, \dots, v_N be a basis of V.

For each i, $(p(T))(v_i) = 0$. In other words, there exists a j such that $(T - a_i \operatorname{Id})(v) = 0$ for some nonzero v. This can be found by applying each linear factor to v_i and figure out the point where it turns into 0. In other words, $\det(T - a_i \operatorname{Id}) = 0$. This implies that a_i is a root of the characteristic polynomial $q(\lambda)$ of T. Thus $\lambda - a_i$ divides $q(\lambda)$. But I'm not sure what to do next. We want to find the largest number r_i such that $(\lambda (a_i)^{r_j}$ divides $q(\lambda)$. What happens next?

Proof.

Exercise. (Problem 3) Suppose that the field k contains m distinct m-th roots of 1. Suppose that $T^m = \mathrm{Id}_V \in \mathrm{End}_k(V)$. Show that there is a basis of V with respect to which, the matrix for T is diagonal. What can you say about the diagonal entries?

Proof.

- Let r_i, \dots, r_m denote the m distinct mth roots of 1.
- Then each $x r_i$ divides $x^m 1$. Thus $x^m 1 = (x r_1) \cdots (x r_m)$. This means that $p(x) = x^m 1$ is a polynomial such that p(T) = 0 and it is a product of linear polynomials. Then I think that we can use an approach similar to the previous problem.
- Let M denote the diagonal matrix for T. Then M^m must be the identity matrix. Moreover, the ith diagonal entry of M^m is simply the m-th power of the ith diagonal entry of M. Thus each of the diagonal entries in M must be an m-th root of 1. On the other hand, any diagonal matrix where each entry is an m-th root of 1 becomes the identity when raised to the mth power.

Exercise. (Problem 4) Let V be a 9 dimensional k-vector space. Let $T \in \operatorname{End}_k(V)$ have minimal polynomial, $x^2(x-1)^3$. What are the possible Jordan canonical forms for T?

Proof.

```
For any a,b\in\{0,1\}, \begin{bmatrix} 1 & 0 & \cdots & & \\ a & 1 & 0 & \cdots & & \\ 0 & b & 1 & 0 & \cdots & \\ 0 & 0 & 0 & 0 & 0 & \cdots \\ \vdots & \vdots & & & \ddots \end{bmatrix} satisfies x^2(x-1)^3.
```