Task 3

Sub task – 1:

Think through what key drivers of churn could be for our client

Analysis of Maximum Likelihood Estimates						
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq	
Intercept	1	-1.2531	0.3203	15.3056	<.0001	
cons_12m	1	2.508E-8	2.816E-7	0.0079	0.9290	
cons_gas_12m	1	-7.48E-7	3.099E-7	5.8216	0.0158	
cons_last_month	1	-2.5E-6	2.679E-6	0.8704	0.3508	
forecast_base_bill_e	1	-0.00002	0.000293	0.0062	0.9375	
forecast_base_bill_y	0	0				
forecast_bill_12m	1	0.000025	0.000053	0.2193	0.6396	
forecast_cons	1	3.295E-6	0.000456	0.0001	0.9942	
forecast_cons_12m	1	-0.00004	0.000062	0.3590	0.5490	
forecast_cons_year	1	7.326E-7	0.000034	0.0005	0.9829	
forecast_discount_en	1	-0.00548	0.00544	1.0121	0.3144	
forecast_price_energ	1	1.1050	1.7367	0.4048	0.5246	
forecast_meter_rent_	1	0.00150	0.000626	5.7805	0.0162	
forecast_price_energ	1	0.4619	0.8493	0.2958	0.5866	
forecast_price_pow_p	1	0.00857	0.00693	1.5289	0.2163	
margin_gross_pow_ele	1	0.00457	0.00156	8.5666	0.0034	
margin_net_pow_ele	1	0.000365	0.00120	0.0926	0.7609	
nb_prod_act	1	0.00624	0.0458	0.0185	0.8917	
net_margin	1	0.000118	0.000078	2.2734	0.1316	
num_years_antig	1	-0.1190	0.0233	26.0703	<.0001	
pow_max	1	-0.00257	0.00316	0.6630	0.4155	

Base on Maximum likelihood estimation, we find that num_years_antig has the significant relation with churn variable.

```
proc freq data=work.only churn nlevels;
tables churn*num years antig;
run;
```

Table of churn by num_years_antig										
	num_years_antig									
churn	2	3	4	5	6	7	8	10	11	Total
1	0.20 0.20 100.00	161 31.82 31.82 100.00	196 38.74 38.74 100.00	72 14.23 14.23 100.00	71 14.03 14.03 100.00	0.40 0.40 100.00	0.20 0.20 100.00	0.20 0.20 100.00	0.20 0.20 100.00	506 100.00
Total	0.20	161 31.82	196 38.74	72 14.23	71 14.03	0.40	0.20	0.20	0.20	506 100.00

Observing the table, it shows little positive skewed distributions where we have maximum churn rate when antiquity of the client is 3 to 4 years old.

	Analysis of Maximum Likelihood Estimates							
Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq		
Intercept	1	1	-13.6442	0.3622	1418.9355	<.0001		
Intercept	2	1	-11.9381	0.1703	4915.9391	<.0001		
Intercept	3	1	-6.0884	0.0786	6005.2600	<.0001		
Intercept	4	1	-4.5044	0.0779	3342.3974	<.0001		
Intercept	5	1	-3.6260	0.0775	2190.4638	<.0001		
Intercept	6	1	-1.3594	0.0723	353.9363	<.0001		
Intercept	7	1	-0.8264	0.0700	139.3874	<.0001		
Intercept	8	1	-0.1907	0.0682	7.8237	0.0052		
Intercept	9	1	1.3482	0.0809	277.7379	<.0001		
Intercept	10	1	2.1305	0.1043	417.5453	<.0001		
Intercept	11	1	4.4339	0.2927	229.5158	<.0001		
price_p1_fix		1	0.0771	0.00341	511.0723	<.0001		
price_p1_var		1	10.9316	0.8404	169.2051	<.0001		
price_p2_fix		1	-0.1144	0.00660	300.5977	<.0001		
price_p2_var		1	-1.9031	0.4409	18.6333	<.0001		
price_p3_fix		1	0.0650	0.00862	56.7506	<.0001		
price_p3_var		1	33.3734	3.2206	107.3838	<.0001		

Now this table shows the significant relations between the prices of power and energy of different period with regards to antiquity of the client (in number of years).

```
proc sgplot data = work.price_inner_join;
    vline num_years_antig/response = price_p1_fix;
    vline num_years_antig/response = price_p2_fix;
    vline num_years_antig/response = price_p1_var;
    vline num_years_antig/response = price_p2_var;
    vline num_years_antig/response = price_p3_fix;
    vline num_years_antig/response = price_p3_var;
run;
```


Above graph shows prices of the power and energy is highest in the 3 to 5 num_years_antig where maximum number of churn rate occur.

Sub-task 2

The following input variables or features must include when building a model are:

- 1. Price p1 fix
- 2. Price_p2_fix
- 3. Price_p3_fix
- 4. Num_year_antig
- 5. margin_gross_pow_ele
- 6. forecast_meter_rent_12m
- 7. forecast_meter_rent_12m

these variable show significant probability when comparing with churn rate. First table.