TIN - Študentská zbierka príkladov

16. januára 2019

Obsah

1	Chomského hierarchia	3
2	Regulárne jazyky	3
3	Bezkontextové jazyky	5
4	Algoritmy	7
5	Uzáverové vlastnosti	8
6	Turingove stroje	9
7	Diagonalizácia	10
8	Redukcie, rekurzívne a rekurzívne vyčísliteľné jazyky	10
9	Zložitosť	11
10	NP problémy, polynomiálna redukcia	12
11	Vyčíslitelné funkcie	13
12	Petriho siete	13

1 Chomského hierarchia

1. 1. opravný termín skúšky 2017

Formálne definujte pojem gramatika a pre každú triedu Chomského hierarchie uveď te typ gramatiky generujúcu jazyky tejto triedy.

2. 2. opravný termín skúšky 2017

Uvažujte Chomského hierarchiu jazykov rozšírenú o triedu rekurzívnych jazykov a triedu deterministických bezkontextových jazykov. Pre každú triedu tejto klasifikácie uveďte a zdôvodnite, či je v tejto triede rozhodnuteľný, alebo čiastočne rozhodnuteľný, problém náležitosti (členstva) daného reťazca do jazyka.

2 Regulárne jazyky

1. 1. priebežný test 2018

Pre deterministický konečný automat $A = (\{q_0, q_1, q_2, q_3\}, \{a, b, c\}, \delta, q_0, \{q_3\}),$ kde δ je definovaná ako:

$$\delta(q_0, a) = q_1$$
 $\delta(q_0, b) = q_0$ $\delta(q_0, c) = q_0$

$$\delta(q_1, a) = q_2 \qquad \delta(q_1, b) = q_0 \qquad \delta(q_1, c) = q_0$$

$$\delta(q_2, a) = q_2$$
 $\delta(q_2, b) = q_3$ $\delta(q_2, c) = q_0$

$$\delta(q_3, a) = q_3$$
 $\delta(q_3, b) = q_3$ $\delta(q_3, c) = q_3$

zapíšte jazyk L(A) v tvare regulárneho výrazu. Ďalej zostrojte pravú lineárnu gramatiku G, pre ktorú platí, že L(G) = L(A).

2. 1. priebežný test 2018

Uvážme nasledujúci problém P: pre nedeterministický konečný automat $A=(Q,\Sigma,\delta,q_0,F)$ rozhodnite, či je jazyk L(A) nekonečný.

- Zapíšte stručne hlavnú myšlienku algoritmu, ktorý rieši problém P.
- Na základe prechodovej funkcie δ zapíšte formálne reláciu $R_{\delta} \subseteq Q \times Q$, ktorá popisuje, či je v automate A možný (priamy) medzi danou dvojicou stavov (p,q). Na základe tejto relácie a ich uzáveru zapíšte predikát, ktorý rozhoduje problém P.
- Demonštrujte použitie tohto predikátu na automatu $A = (\{q_0, q_1, q_2\}, \{a\}, \delta, q_0, \{q_2\}),$ kde δ je definovaná ako:

$$\delta(q_0, a) = \{q_1, q_2\})$$

$$\delta(q_1, a) = \{q_1, q_2\})$$

$$\delta(q_2, a) = \emptyset$$

3. Riadny termín skúšky 2017

Formálne definujte nedeterministický konečný automat, jeho konfiguráciu, reláciu prechodu medzi konfiguráciami a jazyk prijímaný týmto automatom.

4. Riadny termín skúšky 2017

Rozhodnite a dokážte, či jazyk

$$L = \{ w \in \{a, b, c\}^* \mid \#_a(w) \mod 2 = \#_b(w) \mod 2 \}$$

kde $\#_x(w)$ označuje počet znakov x v reťazci w a mod značí operáciu modulo, je regulárny.

Poznámka: Pri dokazovaní, že je jazyk regulárny, stačí uviesť odpovedajúcu gramatiku alebo automat. Pri dokazovaní, že jazyk nie je regulárny, použite Pumping Lemma.

5. Riadny termín skúšky 2017

Formálne zapíšte obecný tvar sústavy rovníc nad regulárnymi výrazmi v štandardnom tvare. Ďalej uvažujte jazyk generovaný gramatikou $G = (\{X,Y\},\{x,y\},P,X)$, kde P je tvorená pravidlami:

$$X \to xyX \mid xxY \mid \varepsilon$$

$$Y \rightarrow yY \mid x$$

Zostavením príslušnej sústavy rovníc nad regulárnymi výrazmi vo štandardnom tvare a jej riešením vyjadrite jazyk L(G).

Poznámka: Preferované riešenie neprevádza G na ekvivalentný konečný automat.

6. 1. opravný termín skúšky 2017

Rozhodnite a dokážte, či jazvk

$$L = \{ w \in \{a, b, c\}^* \mid \#_a(w) + \#_b(w) = \#_c(w) \lor \#_c(w) \ge 2 \}$$

kde $\#_x(w)$ označuje počet znakov x v refazci w, je regulárny.

Poznámka: Pri dokazovaní, že je jazyk regulárny, stačí uviesť odpovedajúcu gramatiku alebo automat. Pri dokazovaní, že jazyk nie je regulárny, použite Pumping Lemma.

7. 2. opravný termín skúšky 2017

Rozhodnite a dokážte, či nasledujúci jazyk je regulárny.

$$L = \{ w \in \{a, b, c\}^* \mid \#_a(w) = \#_b(w) \land \#_b(w) \le 2 \}$$

Poznámka: $\#_x(w)$ označuje počet znakov x v reťazci w. Pri dokazovaní, že je jazyk regulárny, stačí uviesť odpovedajúcu gramatiku alebo automat. Pri dokazovaní, že jazyk nie je regulárny, použite Pumping Lemma.

8. Riadny termín skúšky 2018

Formálne definujte gramatiku typu 3, reláciu priamej derivácie a jazyk generovaný touto gramatikou.

9. Riadny termín skúšky 2018

Rozhodnite a dokážte, či jazyk

$$L = \{ w \in \{a, b\}^* \mid \#_a(w) \bmod 2 < \#_a(w) \bmod 3 \}$$

kde $\#_x(w)$ označuje počet znakov x v reťazci w a mod značí operáciu modulo, je regulárny.

Poznámka: Pri dokazovaní, že je jazyk regulárny, stačí uviesť odpovedajúcu gramatiku alebo automat. Pri dokazovaní, že jazyk nie je regulárny, použite Pumping Lemma.

3 Bezkontextové jazyky

1. 1. priebežný test 2018

Pre bezkontextový jazyk

$$L = \{a^n b^m c^{3n} \mid n > 0 \land m \text{ je nepárne (liché)}\}\$$

zostrojte a formálne zapíšte (v zhode s definíciou):

- bezkontextovú gramatiku G takú, že L(G) = L
- \bullet zásobníkový automat A taký, že L(A) = L

2. 1. priebežný test 2018

Presne a formálne definujte gramatiky typu 0 a typu 2. Nech $G_1=(N_1,\Sigma_1,P_1,S_1)$ a $G_2=(N_2,\Sigma_2,P_2,S_2)$ sú gramatiky typu 2 a $N_1\cap N_2=\emptyset$. Zostrojte gramatiky G_\cdot,G_*,G_\cup typu 2 také, že:

$$L(G_{\cdot}) = L(G_1) \cdot L(G_2)$$

$$L(G_*) = L(G_1)^*$$

$$L(G_{\cup}) = L(G_1) \cup L(G_2)$$

3. 2. priebežný test 2018

Formálne zapíšte Pumping lemma pre bezkontextové jazyky.

4. 2. priebežný test 2018

Rozhodnite a dokážte, či jazyk L nad abecedou $\Sigma = \{a,b,c\}$ je bezkontextový:

$$L = \{c^i w \mid i > 0 \land \#_a(w) \le 3 * \#_b(w)\} \cap \{c^i ww \mid i \ge 0 \land w \in \{a, b\}^*\}$$

kde $\#_x(w)$ označuje počet znakov x v reťazci w.

5. 2. priebežný test 2018

Pre deterministický zásobníkový automat (DZA) $M = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ formálne definujte tvar prechodovej funkcie δ a konfiguráciu automatu M.

6. 2. priebežný test 2018

Nech $M = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ je DZA. Dokážte, že jazyk

$$L = \{ w \in \Sigma^* \mid w \in L(M) \land w \text{ obsahuje podreťazec } ab \}$$

je deterministický bezkontextový jazyk (je možné sa odkázať na vlastnosti bezkontextových jazykov z prednášky).

7. Riadny termín skúšky 2017

Ukážte, že pre jazyk

$$L = \{wcw^R \mid w \in \{a, b\}^*\}$$

kde w^R označuje reverzáciu reťazca w, platí Pumping Lemma pre bezkontextové jazyky pre hodnotu k=3 (k je konštanta z Pumping Lemma).

8. Riadny termín skúšky 2017

Navrhnite bezkontextovú gramatiku pre jazyk

$$L=\{a^nb^mc^md^n\mid n,m\geq 0\}$$

9. Riadny termín skúšky 2017

Formálne definujte bezkontextovú gramatiku, priamu deriváciu, reláciu derivácie a jazyk generovaný touto gramatikou.

10. 1 opravný termín skúšky 2017

Formálne definujte (nedeterministický) zásobníkový automat, jeho konfiguráciu, reláciu prechodu medzi konfiguráciami a jazyk prijímaný týmto automatom.

11. 1 opravný termín skúšky 2017

Rozhodnite a dokážte, či nasledujúce jazyky nad abecedou $\Sigma = \{a,b,c\}$ sú bezkontextové:

$$L_1 = \{ w \in \Sigma^* \mid (w = zcz^R \wedge z \in \{a,b\}^*) \vee \#_a(w) = \#_b(w) \}$$

$$L_2 = \{ w \in \Sigma^* \mid (w = zcz^R \land z \in \{a, b\}^*) \land \#_a(w) = \#_b(w) \}$$

kde $\#_x(w)$ označuje počet znakov xv reťazciw a w^R označuje reverzáciu reťazca w.

12. 2 opravný termín skúšky 2017

Uvažujme gramatiku $G = (\{S, A, B\}, \{a, b\}, P, S)$ s pravidlami P:

$$S \rightarrow aSB \mid ASB \mid aa$$

$$A \rightarrow aAa \mid B$$

$$B \to bb \mid A$$

Zostroje (systematickým postupom z prednášky) a formálne zapíšte zásobníkový automat M taký, že L(G)=L(M), ktorý modeluje syntaktickú analýzu zhora nadol.

Zapíšte postupnosť konfigurácii stroje M pre vstupný reťazec bbaab.

13. 2 opravný termín skúšky 2017

Rozhodnite a dokážte, či je nasledujúci jazyk bezkontextový.

$$L = \{ w \in \{a, b, c\}^* \mid \#_a(w) + \#_c(w) \le \#_b(w) + \#_c(w) \}$$

Poznámka: Pri dokazovaní, že je jazyk bezkontextový, stačí uviesť odpovedajúcu gramatiku alebo automat. Pri dokazovaní, že jazyk nie je bezkontextový, použite Pumping Lemma.

14. Riadny termín skúšky 2018

Formálne definujte nedeterministický zásobníkový automat, jeho konfiguráciu, reláciu prechodu a jazyk prijímaný týmto automatom.

15. Riadny termín skúšky 2018

Navrhnite bezkontextovú gramatiku pre jazyk

$$L = \{a^i b^j c^k \mid i, j, k > 0 \land (i \ge 3j \lor 2i \le k)\}$$

16. Riadny termín skúšky 2018

Ukážte, že pre jazyk

$$L = \{w \in \{a, b\}^* \mid \#_a(w) = \#_b(w)\}\$$

kde $\#_x(w)$ označuje počet znakov x v reťazci w, platí Pumping Lemma pre bezkontextové jazyky pre hodnotu k=2 (k je konštanta z Pumping Lemma).

17. Riadny termín skúšky 2018

Nech $M=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$ je nedeterministický zásobníkový automat. Popíšte konštrukciu nedeterministického zásobníkového automatu M', pre ktorý platí:

$$L(M') = \{ w \in \Sigma^* \mid w \in L(M) \land \#_a(w) \mod 3 \neq 0 \}$$

4 Algoritmy

1. Riadny termín skúšky 2016

Definujte sústavu rovníc nad regulárnymi výrazmi v štandardnom tvare. Ďalej uvažujte obecnú lineárnu gramatiku G. Popíšte formálne algoritmus nájdenia regulárneho výrazu R takého, že L(G)=L(R), bez toho, aby bolo potrebné ku gramatike G vytvárať ekvivalentný konečný automat a/alebo gramatiku G transformovať. Algoritmus nájdenia regulárneho výrazu ilustrujte na príklade netriviálnej (s rekurziou, aspoň 2 nonterminály a 4 pravidla) pravej lineárnej gramatiky G, ktorá nie je regulárna.

2. Riadny termín skúšky 2017

Zapíšte algoritmus (vrátane výpočtu množiny neterminálov $N_t = \{A \mid A \Rightarrow^+ \varepsilon\}$), ktorý danú bezkontextovú gramatiku transformuje na jazykovo ekvivalentnú bezkontextovú gramatiku bez epsilon pravidiel.

3. 1. opravný termín skúšky 2017

Formálne definujte pojem ε -uzáver stavu RKA (rozšíreného konečného automatu, tj. nedeterministického automate s ε prechodmi) a formálne zapíšte algoritmus, ktorý v polynomiálnom čase prevedie vstupný RKA na nedeterministický konečný automat bez ε prechodov (NKA). Ďalej uvažujte nasledujúci RKA A:

Pomocou zapísaného algoritmu preveď te A na jazykovo ekvivalentný NKA (t.j. bez ε prechodov).

4. 2. opravný termín skúšky 2017, Riadny termín skúšky 2018

Zapíšte algoritmus, ktorý daný nedeterministický konečný automat bez ε prechodov prevedie na jazykovo ekvivalentný konečný automat. Algoritmus demonštrujte na automatu uvedenom nižšie.

5 Uzáverové vlastnosti

1. 2. priebežný test 2018

Rozhodnite a dokážte, či platia nasledujúce tvrdenia (\mathcal{L}_2 značí triedu všetkých bezkontextových jazykov a \mathcal{L}_3 značí triedu regulárnych jazykov):

- $\exists L_1 \in \mathcal{L}_2 : \forall L_2 \in \mathcal{L}_2 : L_1 \cap L_2 \in \mathcal{L}_2$
- $\exists L_1 \in \mathcal{L}_2 \setminus \mathcal{L}_3 : \forall L_2 \in \mathcal{L}_3 : L_1 \cap L_2 \in \mathcal{L}_3$
- Trieda bezkontextových jazykov nad abecedou $\Sigma = \{a, b\}$ je uzavrená vzhľadom k binárnej operácii o definovanej nasledovne:

$$L_1 \circ L_2 = \{ w \in \Sigma^* \mid (w \in L_1 \land w \in L_2) \lor |w| > 1 \}$$

2. Riadny termín skúšky 2017

Rozhodnite a dokážte, či pre jazyky nad abecedou Σ platí:

$$\forall L_1 \in \mathcal{L}_3 : \exists L_2 \in \mathcal{L}_2 \setminus \mathcal{L}_3 : L_1 \cap L_2 \in \mathcal{L}_3$$

kde \mathcal{L}_3 a \mathcal{L}_2 značia triedu regulárnych resp. bezkontextových jazykov.

3. 1. opravný termín skúšky 2017

Rozhodnite a dokážte, či pre jazyky nad abecedou $\Sigma = \{a, b, c\}$ platí:

•
$$\forall L \in \mathcal{L}_3 : |L| = \infty \to \Diamond L \in \mathcal{L}_2$$

•
$$\forall L \in \mathcal{L}_3 : |L| = \infty \to \Diamond L \in \mathcal{L}_2 \setminus \mathcal{L}_3$$

$$kde \lozenge L = \{ w \in L \mid \#_a(w) + \#_b(w) = \#_c(w) \}$$

4. 1. opravný termín skúšky 2017

Rozhodnite a dokážte, či pre jazyky nad abecedou Σ platí:

$$\forall L_1 \in \mathcal{L}_3 : \exists L_2 \in \mathcal{L}_2 \setminus \mathcal{L}_3 : L_1 \cup L_2 \in \mathcal{L}_3$$

 \mathcal{L}_3 a \mathcal{L}_2 značia triedu regulárnych resp. bezkontextových jazykov.

5. Riadny termín skúšky 2018

Nech \mathcal{L}_{CK} značí triedu co-konečných jazykov, ktorých komplement je konečný. Rozhodnite a dokážte, či platí:

$$\forall L_1, L_2 \in \mathcal{L}_{CK}$$
 je jazyk $L_1 \cdot L_2$ regulárny

6. 2. opravný termín skúšky 2017

Nech \mathcal{L}_{DBJ} značí triedu deterministických bezkontextových jazykov a \mathcal{L}_3 triedu regulárnych jazykov. Rozhodnite a dokážte, či platí:

$$\exists L_1 \in \mathcal{L}_{DBJ} : \exists L_2 \in \mathcal{L}_3 : L_1 \cap L_2 \notin \mathcal{L}_{DBJ}$$

6 Turingove stroje

1. 2. priebežný test 2017

Definujte prechodovú funkciu NTS, reťazec prijímaný TS, jazyk prijímaný TS. TS zadaný prechodovou funkciou má na vstupe $\Delta abca \Delta^w$. Doplňte 4 pravidlá tak, aby výstup bol $\Delta acba \Delta^w$.

2. 2. priebežný test 2018

Pre deterministický Turingov stroj $M=(Q,\Sigma,\Gamma,\delta,q_0,q_f)$ formálne definujte tvar prechodovej funkcie $\delta,$ konfiguráciu stroja Ma reláciu prechodu \vdash_M medzi konfiguráciami.

3. 2. priebežný test 2018

Zostrojte a formálne zapíšte deterministický Turingov stroj M o najviac 4 stavoch a 4 prechodoch tak, aby platilo $(q_0, \Delta a^i \Delta^w, 0) \vdash^*_M (q_f, \Delta b^i \Delta^w, n)$, kde i,n ≥ 0 .

7 Diagonalizácia

1. 1. opravný termín skúšky 2017

Pomocou techniky diagonalizácie dokážte, že existuje jazyk, ktorý nie je rekurzívne vyčísliteľný.

2. Riadny termín skúšky 2016

Dokážte, že existuje totálna funkcia $f:\mathbb{N}\to\mathbb{N},$ ktorá nie je primitívne rekurzívna.

8 Redukcie, rekurzívne a rekurzívne vyčísliteľné jazyky

1. Riadny termín skúšky 2017

Formálne definujte pojem redukcie jazyka L_1 na jazyk L_2 a zapíšte príslušné tvrdenia (implikácie) pre určovanie rozhodnuteľnosti resp. nerozhodnuteľnosti jazykov.

2. Riadny termín skúšky 2017

Rozhodnete a dokážte, či sú rekurzívne vyčísliteľné jazyky uzavreného vzhľadom k operácii pozitívna iterácia +.

3. Riadny termín skúšky 2017

Rozhodnite a dokážte, či existuje rekurzívne vyčísliteľný jazyk L_1 a rekurzívny jazyk L_2 , pre ktoré platí $L_2 \leq L_2$ (tj. L_1 sa redukuje na L_2).

4. 1. opravný termín skúšky 2017

Rozhodnite a dokážte, či existuje jazyk L, ktorý nie je rekurzívny, ale je rekurzívne vyčísliteľný, a jeho doplnok \overline{L} je tiež rekurzívne vyčísliteľný.

5. Riadny termín skúšky 2016

Rozhodnite a dokážte, či jazyk:

 $L_1 = \{\langle M \rangle \mid \exists w \in \Sigma^* \text{ také, že } M \text{ zastaví na } w\}$ je rekurzívny $L_2 = \{\langle M \rangle \mid \exists w \in \Sigma^* \text{ také, že } M \text{ nezastaví na } w \text{ behom } 17 \text{ krokov}\}$ je rekurzívne vyčísliteľný

 $\langle M \rangle$ označuje kód Turingovho stroja so vstupnou abecedou Σ

6. Riadny termín skúšky 2017

Pre abecedu $\Sigma = \{a, b\}$ rozhodnite a dokážte, či:

 $L_1=\{\langle M\rangle\mid M$ je Turingov stroj taký, že $|L(M)\cap\{a,b\}|=1\}$ je rekurzívny

 $L_2=\{\langle M\rangle\mid M$ je Turingov stroj taký, že $|L(M)\cap\{a,b\}|\geq 1\}$ je rekurzívne vyčísliteľný

 $L_3 = \{\langle M \rangle \mid M$ je Turingov stroj, pre ktorý platí, že existuje $w \in \{a,b\}^{42}$ také, že M zastaví na w do |w| krokov $\}$ je rekurzívny

Poznámka: $\langle M \rangle$ označuje kód Turingovho stroja M.

7. 1. opravný termín skúšky 2017

 $L_1=\{\langle M\rangle\mid M$ je Turingov stroj taký, že L(M) je bezkontextový jazyk} je rekurzívne vyčísliteľný

 $L_2 = \{\langle M \rangle \mid M$ je Turingov stroj taký, že $|L(M)| \geq 3\}$ je rekurzívne vyčísliteľný

Poznámka: $\langle M \rangle$ označuje kód Turingovho stroja M.

8. Riadny termín skúšky 2018

Definujte triedu rekurzívnych a rekurzívne vyčísliteľných jazykov. Ďalej pre každú triedu uveď te jazyk, ktorý do danej triedy patrí, a jazyk, ktorý do triedy nepatrí.

9. Riadny termín skúšky 2018

Definujte jazyk L_{HP} , ktorý špecifikuje problém zastavenia. Ďalej rozhodnite a dokážte, či existuje rekurzívny jazyk L, pre ktorý platí, že $L \leq L_{HP}$ (tj. L sa redukuje na L_{HP}).

10. Riadny termín skúšky 2018

Pre abecedu $\Sigma = \{a, b\}$ rozhodnite a dokážte, či:

 $L_1 = \{\langle M \rangle \mid M \text{ je Turingov stroj taký, že } |L(M)| > |\Sigma| \}$ je rekurzívny

 $L_2=\{\langle M\rangle\mid M$ je Turingov stroj, pre ktorý platí, že $\exists w\in L(M):|w|>|\langle M\rangle|\}$ je rekurzívne vyčísliteľný

Poznámka: $\langle M \rangle$ označuje reťazec, ktorý kóduje Turingov stroj M. V dôkazoch stačí uviesť hlavnú myšlienku redukcie či konštrukcie požadovaného Turingovho stroja.

9 Zložitosť

1. Riadny termín skúšky 2017

Definujte formálne časovú zložitosť Turingových strojov a triedu jazykov $DTIME[n^5].$

2. Riadny termín skúšky 2017

Rozhodnite a dokážte, či platí:

$$n^3 \in \mathcal{O}(10n^2 + 100)$$

$$10n^2 + 100 \in \mathcal{O}(n^3)$$

3. Riadny termín skúšky 2017

Rozhodnite a dokážte, či platí:

$$L_1, L_2 \in DTIME[n^3] \Rightarrow \{uv \mid u \in L_1 \land v \in L_2\} \in NTIME[n^3]$$

4. 1. opravný termín skúšky 2017

Definujte formálne:

- pre funkciu $f: \mathbb{N} \to \mathbb{N}$ množinu $\mathcal{O}(f(n))$
- priestorovú zložitosť nedeterministických Turingových strojov
- 5. 1. opravný termín termín skúšky 2017

Rozhodnite a dokážte, či platí:

$$L \in DTIME[n^4] \Rightarrow \{u_1, u_2 \dots u_k \mid k \ge 1, \forall 1 \le i \le k : u_i \in L\} \in NTIME[n^4]$$

6. Riadny termín skúšky 2018

Formálne definujte:

- $\bullet\,$ priestorovú zložitosť nedeterministických Turingových strojov, ktorý prijíma jazyk L
- asymptotické horné obmedzenie funkcie $f: \mathbb{N} \to \mathbb{N}$ (tj. $\mathcal{O}(f(n))$
- triedu jazykov $NSPACE[2^n]$
- 7. Riadny termín skúšky 2018

Pre $\Sigma = \{a, b, c\}$ rozhodnite a dokážte, či platí:

 $L \in DTIME[n^5] \Rightarrow \{w \in \Sigma^* \mid \exists w' \in L \text{ také, že } w' \text{ je podslovo slova } w\} \in DTIME[n^7]$

10 NP problémy, polynomiálna redukcia

1. Riadny termín skúšky 2017

Definujte formálne, kedy je jazyk NP-úplný a dokážte, že nasledujúci jazyk je NP-úplný:

 $L = \{(\phi_1, \phi_2) \mid \phi_1, \phi_2 \text{ sú výrokové formule v konjunktívnej normálnej forme, pre ktoré existujú dve rôzne valuácie premenných <math>v_1$ a v_2 také, že $\phi_1(v_1) \neq \phi_2(v_1) \land \phi_1(v_2) \neq \phi_2(v_2)\}$

Poznámka: $\phi_i(v_i) \in \{true, false\}$ označuje, či je formula ϕ_i pravdivá pri valuácií premenných v_i .

2. 1. opravný termín skúšky 2017

Definujte formálne, kedy je jazyk NP-úplný a dokážte, že nasledujúci jazyk je NP-úplný:

 $L = \{(\phi, n) \mid \phi \text{ je výroková formula nad premennými } x_1, \dots, x_k \text{ v konjunktívnej normálnej forme, } n \in \mathbb{N}_{\vdash} \text{ a naviac platí, že existuje valuácia } v$ premenných x_1, \dots, x_k , ktorá splňuje ϕ , a pre ktorú platí $E(v) \geq n$,

kde $E(v) \in \mathbb{N}$ značí číslo, ktorého binárny zápis n_1, \ldots, n_k je definovaný nasledovným spôsobom:

$$n_i = \left\{ \begin{array}{ll} 0 & \text{ak } v(x_i) = true \\ 1 & \text{ak } v(x_i) = false \end{array} \right.$$

3. Riadny termín skúšky 2018

Definujte formálne, kedy je jazyk NP-úplný. Ďalej uveď te hlavnú myšlienku dôkazu, že jazyk L definovaný nižšie je NP-úplný:

 $L = \{(\phi_1, \phi_2) \mid \phi_1, \phi_2 \text{ sú výrokové formule v konjunktívnej normálnej forme, pre ktoré existuje valuácia premenných <math>\vec{v}$ taká, že $\phi_1(\vec{v}) \neq \phi_2(\vec{v})\}$

Poznámka: $\phi_i(\vec{v}) \in \{true, false\}$ označuje, či je formula ϕ_i pravdivá pri valuácií premenných \vec{v} .

11 Vyčíslitelné funkcie

1. 1. opravný termín skúšky 2017

Pomocou počiatočných funkcií a operátorov kombinácie, kompozície a primitívnej rekurzie vyjadrite funkciu:

$$tplus(x,y) = x + 3y$$

Nepoužívajte žiadne ďalšie funkcie zavedené na prednáškach mimo počiatočných funkcií. Nepoužívajte zjednodušenú syntax zápisu funkcií - dodržujte presne definičný tvar operátorov kombinácie, kompozície a primitívne rekurzie.

12 Petriho siete

1. Riadny termín skúšky 2017

Definujte formálne P/T Petriho siete. V zhode s touto definíciou popíšte sieť na obrázku (všetky miesta majú neobmedzenú kapacitu). Ďalej popíšte množinu výpočtových postupností tejto Petriho siete ako jazyk nad množinou jej prechodov.

2. 1. opravný termín skúšky 2017

Pre P/T Petriho sieť $N = (P, T, F, W, K, M_0)$ definujte formálne:

- predpis pre výpočet nasledujúceho značenia M' zo značenia M pri prevediteľnom prechode t (tj. platí $M[t\rangle M')$
- $\bullet\,$ množinu $|M_0\rangle$ dosiahnuteľných značení siete N
- (obecnú) prechodovú funkciu $\delta:[M_0\rangle\times T^*\to [M_0\rangle$

3. Riadny termín skúšky 2018

Definujte formálne P/T Petriho siete. V zhode s touto definíciou popíšte sieť na obrázku (všetky miesta majú neobmedzenú kapacitu). Ďalej zapíšte prevediteľnú postupnosť prechodov a odpovedajúcich značení, v ktorej sa vyskytujú všetky prechody (použite zavedenú notáciu $M[t\rangle M')$.

