ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΤΟΜΕΑΣ ΘΕΩΡΗΤΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΑΘΗΜΑ: ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ

14.11.2016

2η ΑΣΚΗΣΗ

Υποχρεωτικό τμήμα (Θεωρία-Εφαρμογές)

2.1 Άμεσοι μέθοδοι για την Αριθμητική Επίλυση Γραμμικών Συστημάτων.

Δίνεται ο πίνακας
$$A = \left[\begin{array}{ccc} 1 & 1 & 1 \\ 2 & 4 & 5 \\ 3 & 5 & 9 \end{array} \right].$$

- **α)** Να βρεθεί ο A^{-1} με τη μέθοδο απαλοιφής
 - (i) Gauss με μερική οδήγηση
 - (ii) Jordan με μερική οδήγηση
- β) Να υπολογιστεί ο αριθμός συνθήκης $\kappa(A) = ||A||_{\infty} ||A^{-1}||_{\infty}$.
- **y)** Να υπολογιστεί ο A^{-1} με τη χρήση συνάρτησης της MatLab.
- **δ)** Ποιά μέθοδος παράγει καλύτερα αποτελέσματα; Να δικαιολογήσετε με βάση τη θεωρία.

2.2 Επαναληπτικές μέθοδοι για την Αριθμητική Επίλυση Γραμμικών Συστημάτων.

Δίνεται το γραμμικό σύστημα:
$$\begin{bmatrix} 4 & -k & -1 \\ -k & 4 & 0 \\ -1 & 0 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} k+5 \\ -k-4 \\ -5 \end{bmatrix}, \quad k \in R$$

- **α)** Να δοθούν οι επαναληπτικές μέθόδοι (i) **Jacobi(J)** και (ii) **Gauss-Seidel (GS)** υπό μορφή συνιστωσών για την επίλυση του ανωτέρω γραμμικού συστήματος.
- **β)** Να βρεθεί ικανή και αναγκαία συνθήκη (διάστημα τιμών του k) έτσι ώστε η ε.μ. **GS** να συγκλίνει.
- γ) Υπάρχουν τιμές του k έτσι ώστε η μέθοδος ${\bf J}$ να συγκλίνει ταχύτερα από τη μέθοδο ${\bf GS}$.

2.3 Αριθμητικός Υπολογισμός των Ιδιοτιμών και Ιδιοδιανυσμάτων ενός πίνακα με τη μέθοδο των δυνάμεων.

Δίνεται ο πίνακας
$$A = \begin{bmatrix} -4 & 14 & 0 \\ -5 & 13 & 0 \\ -1 & 0 & 2 \end{bmatrix}$$
.

- α) Εφαρμόστε δύο βήματα του αλγορίθμου της κανονικοποιημένης μεθόδου των δυνάμεων για την εύρεση προσεγγιστικής τιμής της μέγιστης κατά μέτρο ιδιοτιμής και του αντίστοιχου ιδιοδιανύσματος του πίνακα $\bf A$. Λάβετε ως αρχικό διάνυσμα το $[1,1,1]^T$ και επιθυμητή ακρίβεια $\epsilon=0.0001$.
- **β)** Να υπολογιστεί η μέγιστη κατά μέτρο ιδιοτιμή και το αντίστοιχο ιδιοδιάνυσμα του πίνακα **A** με τη χρήση συνάρτησης της MatLab.

Προαιρετικό τμήμα (Υλοποίηση Αλγορίθμων - Αποτελέσματα)

2.4 Επίλυση ενός γραμμικού συστήματος και υπολογισμός του αντιστρόφου ενός πίνακα

Δίνεται το γραμμικό σύστημα $\mathbf{A}\mathbf{x} = \mathbf{b}$, $\mathbf{A} = (a_{ij}) \in \mathbf{R}^{\mathbf{n},\mathbf{n}}$, $\mathbf{x} = (x_i)$, $\mathbf{b} = (b_i) \in \mathbf{R}^{\mathbf{n}}$, όπου ο \mathbf{A} είναι μεγάλος και πυκνός πίνακας.

- 2.4.1 Να υλοποιήσετε σε γλώσσα C (ή C++) τον αλγόριθμο της μεθόδου απαλοιφής του Gauss με μερική οδήγηση για την επίλυση του γραμμικού συστήματος και να εκτιμηθεί το σχετικό σφάλμα της λύσης x με τον υπολογισμό των ποσοτήτων
 - α) $\frac{||\delta \mathbf{x}||_{\infty}}{||\mathbf{x}||_{\infty}}$, όπου $||\delta \mathbf{x}||_{\infty}=||\mathbf{x}-\hat{\mathbf{x}}||_{\infty}$ το απόλυτο σφάλμα
 - β) $\frac{||\delta \mathbf{r}||_{\infty}}{||\mathbf{x}||_{\infty}}$, όπου $||\delta \mathbf{r}||_{\infty} = ||\mathbf{b} \mathbf{A}\hat{\mathbf{x}}||_{\infty}$ το υπόλοιπο

και $\hat{\mathbf{x}}$: η υπολογιζόμενη λύση από την εφαρμογή του αλγορίθμου.

Υπόδειξη: Για πειραματικούς λόγους συνήθως δίνεται το διάνυσμα \mathbf{x} (ως προκαθοριζόμενη λύση) και στη συνέχεια υπολογίζεται το $\mathbf{b} = \mathbf{A} * \mathbf{x}$. (Για παράδειγμα, αν $\mathbf{x} = (1, 1, \cdots, 1)^T$, τότε $\mathbf{b}_i = (\mathbf{A} * \mathbf{x})_i = \sum_{i=1}^n a_{ij}, \quad i = 1, 2, \cdots, n$).

- 2.4.2 Με κατάλληλη τροποποίηση του προγράμματος που χρησιμοποιήσατε στο 2.4.1
 - **α)** να υπολογίσετε τον αντίστροφο ${f A}^{-1}$ του πίνακα ${f A}$
 - b) na upologísete ton aribhó sunbýkhs: $\kappa(\mathbf{A}) = ||\mathbf{A}||_{\infty} ||\mathbf{A}^{-1}||_{\infty}.$

Τα προγραμματά σας σε όλες τις ανωτέρω περιπτώσεις πρέπει να δίνουν στο χρήστη τις ακόλουθες δυνατότητες επιλογής:

- (i) να εισάγει τα απαραίτητα δεδομένα
- (ii) να δημιουργεί ένα συγκεκριμένο γραμμικό σύστημα (με τη βοήθεια τύπων)
- (iii) να δημιουργεί ένα τυχαίο γραμμικό σύστημα (με τη βοήθεια της συνάρτησης rand για τη δημιουργία τυχαίων αριθμών)
- **2.4.3** Στη συνέχεια να κάνετε κατάλληλη πινακοποίηση των αποτελεσμάτων σας (βλ. παρακάτω πίνακα 2.4). Συμπεράσματα Αιτιολογήσεις.

Εφαρμογές

Εφαρμογή 1:
$$\mathbf{n} = \mathbf{4}$$
, $\mathbf{A} = \begin{bmatrix} 5 & 7 & 6 & 5 \\ 7 & 10 & 8 & 7 \\ 6 & 8 & 10 & 9 \\ 5 & 7 & 9 & 10 \end{bmatrix}$

Για την πειραματική επαλήθευση στο **2.4.1** θεωρήστε ότι η λύση του γρ. συστήματος είναι η $\mathbf{x}=(1,\ -2,\ 2,\ -1)^T$, υπολογίστε το $\mathbf{b}=\mathbf{A}\mathbf{x}$ και επιλύστε το γραμμικό σύστημα $\mathbf{A}\mathbf{x}=\mathbf{b}$. Στη συνέχεια εφαρμόστε το **2.4.2** για τον υπολογισμό του αντιστρόφου.

Εφαρμογή 2:
$$\mathbf{n} = \mathbf{8}$$
, $\mathbf{A} = \begin{bmatrix} 10 & -2 & -1 & 2 & 3 & 1 & -4 & 7 \\ 5 & 11 & 3 & 10 & -3 & 3 & 3 & -4 \\ 7 & 12 & 1 & 5 & 3 & -12 & 2 & 3 \\ 8 & 7 & -2 & 1 & 3 & 2 & 2 & 4 \\ 2 & -13 & -1 & 1 & 4 & -1 & 8 & 3 \\ 4 & 2 & 9 & 1 & 12 & -1 & 4 & 1 \\ -1 & 4 & -7 & -1 & 1 & 1 & -1 & -3 \\ -1 & 3 & 4 & 1 & 3 & -4 & 7 & 6 \end{bmatrix}$

Για την πειραματική επαλήθευση στο **2.4.1** θεωρήστε ότι η λύση του γρ. συστήματος είναι η $\mathbf{x} = (-1,\ 1,\ -1,\ 1\ -1,\ 1\ -1,\ 1)^T$, υπολογίστε το $\mathbf{b} = \mathbf{A}\mathbf{x}$ και επιλύστε το γραμμικό σύστημα $\mathbf{A}\mathbf{x} = \mathbf{b}$. Στη συνέχεια εφαρμόστε το **2.4.2** για τον υπολογισμό του αντιστρόφου.

Εφαρμογή 3:
$$\mathbf{n} = \mathbf{10}, \qquad \mathbf{A} = (a_{ij}) = \frac{1}{i+j-1}, \quad i,j = 1,2,\cdots,n$$

όπου προκαθορίζετε εκ των προτέρων τη λύση (παρόμοια με την εφαρμογή 2).

Στη συνέχεια εφαρμόστε το 2.4.2 για τον υπολογισμό του αντιστρόφου.

Αποτελέσματα

Πίνακας 2.4

Επίλυση του $\mathbf{A}\mathbf{x}=\mathbf{b}$ και υπολογισμός του \mathbf{A}^{-1} (μέθοδος Gauss)			
Εφαρμογή	Σχ. Σφάλμα	Σχ. Υπόλοιπο	Αριθμός Συνθήκης
	$rac{ \delta \mathbf{x} _{\infty}}{ \mathbf{x} _{\infty}}$	$rac{ \delta \mathbf{r} _{\infty}}{ \mathbf{x} _{\infty}}$	$\kappa(A)$
1			
2			
3			

Οδηγίες για την παράδοση της 2ης Άσκησης

Προσοχή: Η άσκηση είναι **ατομική**(δηλαδή ο κάθε φοιτητής θα πρέπει να εργαστεί μόνος του).

Καταληκτική ημερομηνία παράδοσης:

Η **2η Άσκηση** θα υποβληθεί ηλεκτρονικά στην **e-class** του μαθήματος μέχρι και την **Παρασκευή 2/12/2016** και ώρα **23:55**.

Για το Υποχρεωτικό τμήμα της 2ης Άσκησης (δηλ. τα ερωτήματα 2.1, 2.2 και 2.3) θα πρέπει να επισυνάψετε ΜΟΝΟ ένα Φάκελο (συμπιεσμένο) με όνομα **ASK2_xxxxxxx.zip** ή (.rar), όπου xxxxxxx τα τελευταία ψηφία του Α.Μ. σας. Μέσα στον φάκελο αυτό να περιέχονται τα ακόλουθα:

- 1. το αρχείο με όνομα $ask2_2.1.3_INVA_xxxxxxx$ που θα περιέχει μόνο τον πηγαίο(source) κώδικα (σε MatLab) για την εύρεση του αντιστρόφου A^{-1} .
- 2. το αρχείο με όνομα **ask2_2.3.2_MAX_EIGENV_xxxxxxx** που θα περιέχει μόνο τον πηγαίο(source) κώδικα (σε MatLab) για την εύρεση της μέγιστης κατά μέτρο ιδιοτιμής και του αντιστοίχου ιδιοδιανύσματος του πίνακα **A** και
- 3. ένα **αρχείο κειμένου**(.doc σε word ή σε pdf) με όνομα **ask2_YPOXR_Apanthseis_xxxxxxx**, το οποίο θα περιέχει τις απαντήσεις σας.

Για το **Προαιρετικό** τμήμα της 2ης Άσκησης (δηλ. το ερώτημα 2.4) θα πρέπει επιπλέον να συμπεριλάβετε στον Φάκελο **ASK2_xxxxxx.zip** ή **(.rar)** τα ακόλουθα:

- 1. το αρχείο με όνομα **ask2_2.4.1_GAUSS_xxxxxxx** που θα περιέχει μόνο τον πηγαίο(source) κώδικα (σε C ή C++ ή και MatLab) για την επίλυση ενός γραμμικού συστήματος με τη μέθοδο Gauss,
- 2. το αρχείο με όνομα **ask2_2.4.2_TropGAUSS_xxxxxxx** που θα περιέχει μόνο τον πηγαίο(source) κώδικα (σε C ή C++ ή και MatLab) για την εύρεση του αντιστρόφου με τη μέθοδο Gauss και
- 3. ένα **αρχείο κειμένου** με όνομα **ask2_2.4.3_apotel_xxxxxxx** που θα περιέχει τους πίνακες αποτελεσμάτων, τα σχόλια και τα συμπεράσματά σας.

ΠΡΟΣΟΧΗ

- 1. Η Άσκηση είναι ατομική και σε περίπτωση αντιγραφής δεν βαθμολογείται.
- 2. Η Άσκηση θα πρέπει να λυθεί με βάση τη θεωρία που έχετε διδαχθεί.
- 3. Μετά την λήξη της καταληκτικής ημερομηνίας παράδοσης η άσκηση δεν θα γίνεται δεκτή.
- 4. Θα πρέπει να επισκέπτεστε συχνά την ιστοσελίδα (στην e-class) του μαθήματος και να ενημερώνεστε με το σχετικό υλικό(Ασκήσεις, Ανακοινώσεις, Βαθμολογίες κ.α.).