ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования

«Нижегородский государственный университет им. Н. И. Лобачевского

УСТОЙЧИВОСТЬ ЛИНЕЙНЫХ ДИНАМИЧЕСКИХ СИСТЕМ

Контрольные задания для практических занятий по курсу «Теория управления». Часть 3.

ББК В181+Б161.61

Устойчивость линейных динамических систем. Контрольные задания для практических занятий по курсу Теория управления» Часть 3 для студентов специальности «Прикладная математика и информатика.-/Сост. Ю.И.Неймарк, Н.Я.Коган, Л.В.Коган, В.П.Савельев, Г.В.Белякова. – Н.Новгород: ННГУ, 2008. 29 с.

В третьей части сборника контрольных заданий по курсу «Теория управления» приведены краткие сведения, примеры и контрольные задачи по исследованию устойчивости линейных непрерывных и дискретных динамических звеньев.

Составители: Неймарк Ю.И.. Д,т,н.академик РАН, проф. Каф. ТУи ДМ;

Коган Н.Я., канд.физ.-мат.наук, доц. каф. ТУи ДМ; Коган Л.В.., канд.физ.-мат.наук, доц. каф. ТУи ДМ; Савельев В.Пю., канд.физ.-мат.наук, доц. каф. ТУи ДМ; Белякова Г.В.., канд.физ.-мат.наук, доц. каф. ТУи ДМ

Рецензент: Баркалов А.В., канд.физ.-мат.наук, доц.каф. МОЭВМ.

Нижегородский государственный университет 2008

ОБЩИЕ ПОЯСНЕНИЯ К ЗАНЯТИЯМ

Линейное динамическое звено является устойчивым, если его собственный выход стремится к нулю при неограниченном увеличении времени.

Для устойчивости непрерывного звена необходимо и достаточно, чтобы все полюса z_i его коэффициента передачи (нули характеристического полинома) располагались в плоскости комплексного переменного слева от мнимой оси, т.е. выполнены условия $\operatorname{Re} z_i < 0$.

Дискретное динамическое звено устойчиво, когда все полюса его коэффициента передачи (нули характеристического полинома) расположены в плоскости комплексного переменного внутри круга единичного радиуса, т.е. выполнены условия $|z_i| < 1$.

Пусть характеристический полином $P(z,\lambda)$ зависит от параметров λ (λ -вектор), и Λ -пространство параметров. Тогда значения λ , при которых динамическое звено устойчиво, образуют в пространстве Λ область, называемую областью устойчивости.

I. Занятие 1-2. Алгебраические критерии устойчивости.

Алгебраические критерии позволяют выразить условия устойчивости динамического звена через коэффициенты его характеристического полинома.

1.1. λ -преобразование, критерий Рауса-Гурвица.

Пусть $P_n(z) = b_0 z^n + b_1 z^{n-1} + ... + b_{n-1} z + b_n$ - характеристический полином непрерывного динамического звена и S_n - число его нулей, расположенных слева от мнимой оси в плоскости комплексного переменно-

го (z). Полином однозначно определяется своими коэффициентами, которые запишем в виде таблицы

$$\begin{pmatrix} b_0 & 0 & b_2 & 0 & \dots \\ 0 & b_1 & 0 & b_3 & \dots \end{pmatrix}.$$

Подвергнем полином λ -преобразованию, состоящему в том, что нижняя строка таблицы умножается на $\lambda = b_0/b_1$ и вычитается из верхней так, как показано стрелками. Опуская первый столбец, который, после преобразования состоит из нулей, получим таблицу:

$$\begin{pmatrix} 0 & b_2 - \lambda b_3 & 0 & b_4 - \lambda b_5 & 0 & \dots \\ b_1 & 0 & b_3 & 0 & b_5 & \dots \end{pmatrix},$$

соответствующую полиному $P_{n-1}(z)$ степени n-1, у которого число нулей, лежащих слева от мнимой оси, обозначим S_{n-1} . Между S_n и S_{n-1} существует связь

$$S_n = \begin{cases} S_{n-1}, & ecnu & \lambda = b_0/b_1 < 0, \\ S_{n-1} + 1, & ecnu & \lambda = b_0/b_1 > 0. \end{cases}$$

Осуществляя λ - преобразование n раз, получим n значений λ . Число нулей полинома $P_n(z)$, имеющих отрицательную вещественную часть, равно числу положительных значений λ .

Для устойчивости звена необходимо и достаточно, чтобы все значения λ были положительными.

Условия устойчивости, полученные λ -преобразованиями, можно представить в детерминантной форме, называемой критерием Рауса-Гурвица.

Для того, чтобы все нули полинома $P_n(z)$ имели отрицательные действительные части, необходимо и достаточно, чтобы при $b_0>0\;$ все

главные миноры $\Delta_1, \Delta_2, ..., \Delta_n$ определителя Гурвица Δ_n были положительными

$$\Delta_n = \begin{vmatrix} b_1 & b_3 & b_5 & \dots 0 \\ b_0 & b_2 & b_4 & \dots 0 \\ 0 & b_1 & b_3 & \dots 0 \\ 0 & b_0 & b_2 & \dots 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots b_n \end{vmatrix}.$$

РЕШЕНИЕ ТИПОВЫХ ПРИМЕРОВ.

1. С помощью λ -преобразований найти условия устойчивости непрерывного динамического звена, имеющего характеристический полином $P_3(z) = b_0 z^3 + b_1 z^2 + b_2 z + b_3$.

Составим таблицу коэффициентов полинома $P_3(z)$ и трижды последовательно применим λ -преобразование:

$$\begin{pmatrix}
b_0 & 0 & b_2 & 0 \\
0 & b_1 & 0 & b_3
\end{pmatrix}
\xrightarrow{\lambda_1 = \frac{b_0}{b_1}}
\begin{pmatrix}
0 & b_2 - \frac{b_0 b_3}{b_1} & 0 \\
b_1 & 0 & b_3
\end{pmatrix}
\xrightarrow{\lambda_2 = \frac{b_1^2}{b_1 b_2 - b_0 b_3}}
\begin{pmatrix}
b_2 - \frac{b_0 b_3}{b_1} & 0 \\
0 & b_3
\end{pmatrix}
\xrightarrow{\lambda_3 = \frac{b_2 b_1 - b_0 b_3}{b_1 b_3}}
\xrightarrow{\lambda_3 = \frac{b_2 b_1 - b_0 b_3}{b_1 b_3}}$$

Условия устойчивости $\lambda_1>0, \lambda_2>0, \lambda_3>0$ выражаются через коэффициенты полинома следующим образом:

$$b_0 > 0$$
, $b_1 > 0$, $b_3 > 0$, $b_2 \cdot b_1 - b_0 \cdot b_3 > 0$.

2. Динамика линеаризованной модели одноосного гироскопического стабилизатора с линейным управлением может быть описана уравнениями: $v = w - nu + m \, v$, w = -u, v = w. Параметр n характе-

ризует вязкое трение в оси стабилизации, параметр m пропорционален коэффициенту усиления управляющей системы. Найти область устойчивости в плоскости параметров.

Применим преобразование Лапласа при нулевых начальных условиях и находим характеристическое уравнение системы.

$$egin{array}{c|cccc} p+n & -1 & -m \\ 1 & p & 0 \\ 0 & -1 & p \end{array} = 0 \quad \text{или } p^3+np^2+p+m=0.$$

 $b_0=1, b_1=n, b_2=1, b_3=m.$ Коэффициент при старшей степени положителен. Составим определитель Гурвица и вычислим его главные миноры

$$\Delta_3 = \begin{vmatrix} n & m & 0 \\ 1 & 1 & 0 \\ 0 & n & m \end{vmatrix}, \quad \Delta_1 = n, \quad \Delta_2 = \begin{vmatrix} n & m \\ 1 & 1 \end{vmatrix}.$$

Условия устойчивости: $\Delta_1>0,\ \Delta_2>0,\ \Delta_3>0$, т.е. n>0,n-m>0, m>0.

В плоскости параметров n, m область устойчивости имеет вид:

КОНТРОЛЬНЫЕ ЗАДАНИЯ

Используя λ -преобразование, исследовать устойчивость динамических звеньев, характеристические уравнения которых приведены ниже:

1.
$$4z^3 + 5z^2 + z + 8 = 0$$
.

2.
$$8z^4 + 2z^3 + 3z^2 + 2z + 1 = 0$$
.

3.
$$z^4 + 4z^3 + 3z^2 + 5z + 1 = 0$$
.

4.
$$4z^5 + z^4 + 2z^3 + z^2 + 2z + 1 = 0$$
.

5.
$$z^5 + 2z^4 + 4z^3 + 20z^2 + 6z + 4 = 0$$
.

6.
$$z^6 + 3z^5 + 8z^4 + 11z^3 + 11z^2 + 6z + 1 = 0$$
.

С помощью критерия Рауса-Гурвица выделить области устойчивости в плоскости параметров au и au:

7.
$$\tau z + \nu = 0$$
.

8.
$$z^2 + \tau z + \nu = 0$$
.

9.
$$z^3 + \tau z^2 + \nu z + 1 = 0$$
.

10.
$$z^3 + \tau z^2 + z + v = 0$$
.

11.
$$\tau z^3 - z^2 + vz - 1 = 0$$
.

12.
$$z^4 + \tau z^3 + z^2 + \nu z + 1 = 0$$
.

13. Выяснить устойчивость системы прямого регулирования (рис.1).

Рис.1

Уравнение, описывающее связь между входом и выходом объекта, имеет вид: $T_0\dot{y}+y=\xi-k_0x$. Регулятор описывается уравнением: $T_1^2\ddot{x}+T_2\dot{x}+x=k_py$. Числовые значения параметров:

$$K_0 = 7$$
, $T_1^2 = 0.2 ce\kappa^2$, $T_2 = 5 ce\kappa$, $K_p = 25$.

Изменится ли устойчивость системы, если

а) увеличить в два раза K_p - коэффициент усиления регулятора;

- б) уменьшить в два раза постоянную времени T_0 объекта при новом $K_p\,.$
- 14. Электромеханическая следящая система, структурная схема которой изображена на рис.2 описывается уравнениями:

Выяснить устойчивость системы для двух значений коэффициента усиления тахогенератора:

$$k_{me} = 2 \cdot 10^{-3} \, \text{g} \cdot \text{cek/pad}, \ k_{me} = 3 \cdot 10^{-3} \, \text{g} \cdot \text{cek/pad}.$$

Рис.2

15. Выяснить устойчивость непрерывной динамической системы, структурная схема которой изображена на рис.3

Рис.3

$$K_1(z) = \frac{200}{0.01z + 1}, \ K_2(z) = \frac{10}{0.2z + 1}, \ K_3(z) = \frac{3}{z}, \ K_4(z) = 0.1z.$$

16. Выяснить устойчивость непрерывной динамической системы, структурная схема которой изображена на рис.4

$$K_1(z) = \frac{2}{0,1z+1}$$
, $K_2(z) = \frac{3}{z(0,1z+1)}$, $a_1 = -3$, $a_2 = -1$.

Рис.4

17. Малые собственные колебания одноосного гиростабилизатора (см. задачу 2 на стр.5) при учете инерционности управляющей системы могут быть описаны линеаризованными уравнениями вида:

 $\dot{u}=w-nu+\xi, \ \dot{w}=-u, \ \dot{v}=w, \ T\dot{\xi}+\xi=m\, {\rm V}, \ {\rm где} \ T$ -постоянная времени управляющей системы.

С помощью критерия Рауса-Гурвица найти условия устойчивости собственных колебаний гиростабилизатора. Выяснить как зависит область устойчивости в плоскости параметров n и m от параметра T.

1.2. Критерий Шура.

Пусть $P_n(z) = b_0 z^n + b_1 z^{n-1} + \ldots + b_{n-1} z + b_n$ - характеристический полином дискретного динамического звена и S_n - число его нулей внутри круга единичного радиуса. Составим таблицу из коэффициентов полинома $P_n(z)$.

$$\begin{pmatrix} b_0, b_1, b_2, \dots, b_n \\ b_n, b_{n-1}, b_{n-2}, \dots, b_0 \end{pmatrix}.$$

В верхней строке стоят коэффициенты полинома в порядке возрастания индекса, в нижней — записаны те же коэффициенты, но в обратном порядке. Подвергнем таблицу преобразованию, которое назовем w- переходом. Умножаем нижнюю строку на w и складываем ее с верхней. Значение w выбираем следующим образом:

$$w = \begin{cases} w^* = -\frac{b_0}{b_n}, & \text{если } |b_n| > |b_0|, \\ w^{**} = -\frac{b_n}{b_0}, & \text{если } |b_n| < |b_0|. \end{cases}$$

Полученные коэффициенты записываем в верхней строке, а зануляющийся первый или последний коэффициент отбрасываем. В нижней строке повторяем верхнюю, но в обратном порядке. Коэффициенты полученной таблицы определяют полином $P_{n-1}(z)$ степени n-1, причем между S_n и S_{n-1} существует связь

$$S_n = \begin{cases} S_{n-1}, & \text{если } w = \mathbf{w}^*, \\ S_{n-1} + 1, & \text{если } w = \mathbf{w}^{**}. \end{cases}$$

Выполняя w-переходы n раз, получим последовательность значений w. Тогда S_n равно числу k значений $w=w^{**}$ в этой последовательности. Для того, чтобы все нули полинома располагались внутри круга единичного радиуса, необходимо и достаточно, чтобы k=n.

РЕШЕНИЕ ТИПОВ ПРИМЕРОВ

1. Выяснить с помощью критерия Шура устойчивость дискретного дина-мического звена, имеющего характеристический полином

$$P_3(z) = 6z^3 + z^2 - z + 2.$$

Составим таблицу из коэффициентов полинома и трижды осуществим w-переходы

$$\begin{pmatrix} 6 & 1 & -1 & 2 \\ 2 & -1 & 1 & 6 \end{pmatrix} \xrightarrow{w^* = -\frac{1}{3}} \begin{pmatrix} 16/3 & 4/3 & -4/3 \\ -4/3 & 4/3 & 16/3 \end{pmatrix} \xrightarrow{w_2^* = \frac{1}{4}} \rightarrow \begin{pmatrix} 5 & 5/3 \\ 5/3 & 5 \end{pmatrix} \xrightarrow{w_3^* = \frac{1}{3}} \rightarrow$$

Согласно критерия Шура, все значения $w=w^{**}$ и, следовательно, звено устойчиво.

2. Выяснить асимптотическое поведение решения разностного уравнения 2y(n+3) - y(n+2) - y(n+1) + y(n) = 0 при $n \to \infty$.

Применим z -преобразование при нулевых начальных условиях и найдем характеристический полином разностного уравнения

$$P_3(z) = 2z^3 - z^2 - z + 1.$$

С помощью критерия Шура определим расположение нулей $P_3(z)$ относительно окружности единичного радиуса в плоскости комплексного переменного.

Запишем таблицу коэффициентов и применим трижды w-переходы:

$$\begin{pmatrix}
2 & -1 & -1 & +1 \\
2 & -1 & -1 & 2
\end{pmatrix}
\xrightarrow{w_1^{**} = -\frac{1}{2}}
\begin{pmatrix}
3/2 & -1/2 & -1/2 \\
-1/2 & -1/2 & 3/2
\end{pmatrix}
\xrightarrow{w_2^{**} = \frac{1}{3}}$$

$$\rightarrow \begin{pmatrix}
8/6 & -4/6 \\
-4/6 & 8/6
\end{pmatrix}
\xrightarrow{w_3^{*} = \frac{1}{2}}$$

Число значений w равных w^{**} равно степени полинома, т.е. K=3. Следовательно, нули характеристического полинома расположены внутри круга единичного радиуса и $y(n) \to 0$ при $n \to \infty$.

КОНТРОЛЬНЫЕ ЗАДАНИЯ

В задачах 1-6 приведены характеристические уравнения дискретных динамических звеньев. Выяснить устойчивость звеньев.

1.
$$z^2 + z + 0.5 = 0$$
.

2.
$$z^3 + 2z^2 + 4z + 0.5 = 0$$
.

3.
$$5z^3 + 2z^2 + 3z + 1 = 0$$
.

4.
$$3z^2 - z + 1 = 0/$$

5.
$$4z^4 + z^3 + 2z^2 - z + 1 = 0$$
.

6.
$$2z^4 + 0.5z^3 + z^2 + 8z + 1 = 0.$$

В задачах 7-10 характеристические уравнения дискретных динамических звеньев зависят от параметров τ и ν . Найти условия устойчивости.

7.
$$z^2 + z + \tau = 0$$
.

8.
$$2z^2 + \tau z + 1 = 0$$
.

9.
$$z^2 + \tau z + \nu = 0$$
.

$$10. z^3 + \tau z^2 + z + \nu = 0.$$

11. Для приведенных ниже разностных схем численного интегрирования дифференциальных уравнений вида $\dot{y} = f(y,t)$ найти из условия устойчивости вычислительной процедуры ограничения на h-величину шага интегрирования, если f(y,t) = -3y + x(t).

1. Метод Эйлера (ломанных)

$$y_{n+1} = y_n + h \cdot f(y_n, t_n)$$
 - явный метод;

$$y_{n+1} = y_n + h \cdot f(y_{n+1}, t_{n+1})$$
- неявный метод.

2. Методы Рунге-Кутта

Второго порядка.

а). Метод Эйлера-Коши

$$y_{n+1} = y_n + \frac{h}{2}(k_1 + k_2), \quad k_1 = f(y_n, t_n), \quad k_2 = f(y_n + hk_1, t_{n+1})$$

б). Усовершенствованный метод ломанных

$$y_{n+1} = y_n + hk_2$$
, $k_1 = f(y_n, t_n)$, $k_2 = f(y_n + \frac{h}{2}k_1, t_n + \frac{h}{2})$

<u>Четвертого порядка</u>.

$$y_{n+1} = y_n + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4),$$

$$k_1 = f(y_n, t_n), k_2 = f(y_n + \frac{h}{2}k_1, t_n + \frac{h}{2}),$$

$$k_3 = f(y_n + \frac{h}{2}k_2, t_n + \frac{h}{2}), k_4 = f(y_n + hk_3, t_n + h).$$

12. Выяснить устойчивость дискретных систем со следующими структурными схемами:

a)
$$K_1(z)$$
 $K_2(z)$ $K_3(z)$

$$K_1(z) = \frac{z}{z - 0.5}; K_2(z) = \frac{0.1z}{z^2 + 0.4z + 0.2}; K_3(z) = \frac{10z}{z - 0.1}.$$

$$K_1 = 10, K_2(z) = \frac{0.17}{z - 1}, K_3(z) = \frac{z}{z - 0.1},$$

 $K_4(z) = \frac{z}{z - 0.2}, K_5(z) = \frac{z(z - 1)}{z^2 + 6z + 8}.$

13. Выяснить устойчивость импульсных систем, заданных структурными схемами:

a)

б)

$$K_1(p) = \frac{15(p+4)}{p(p+8)}, K_2(p) = \frac{1}{p+4}.$$

Период следования импульсов $T_{n} = \frac{1}{8}$.

В задачах 14-17 выяснить асимптотическое поведение решений разностных уравнений при $n \to \infty$.

14.
$$2y(n+3) - y(n) = 0$$
.

15.
$$y(n+3)-3y(n+2)+2y(n+1)-5y(n)=0$$
.

16.
$$2\Delta^3 y(n) + \Delta y(n) - y(n) = 0$$
.

17.
$$\begin{cases} y(n+2) - 3y(n) - x(n) = 0 \\ 4x(n+1) + 5y(n) + x(n) = 0 \end{cases}$$

II. ЗАНЯТИЯ 3-6. <u>Частотные критерии устойчивости.</u>

2.1. Критерий Михайлова.

В характеристическом полиноме $P_n(z) = b_0 z^n + b_1 z^{n-1} + x... + b_n$ непрерывного динамического звена полагаем $z = i \omega$. В плоскости комплексного переменного строим годограф Михайлова $P_n(i \omega)$ при изменении ω от θ до τ . Для того, чтобы звено было устойчивым, необходимо и достаточно, чтобы при возрастании ω аргумент $P(i \omega)$ менялся монотонно и его полное приращение равнялось $n \frac{\pi}{2}$, т.е.

$$\Delta \arg P_n(i\omega) = n\frac{\pi}{2}.$$

Для дискретного динамического звена имеет место аналогичный критерий, состоящий в следующем: в характеристическом полиноме $P_n(z)$ полагаем $z=e^{i\omega}$, строим годограф $P_n(e^{i\omega})$ при изменении ω от 0 до π и определяем полное приращение $\arg P_n(e^{i\omega})$. Звено устойчи- $0 \le \omega \le \pi$

во, если
$$\Delta \arg P_n(e^{i\omega}) = n\pi$$
. $0 \le \omega \le \pi$

РЕШЕНИЕ ТИПОВОГО ПРИМЕРА

Выяснить устойчивость непрерывного динамического звена, имеющего коэффициент передачи $K(z)=\frac{2z+1}{6z^3+2z^2+4z+1}.$

Характеристический полином звена $P_3(z) = 6z^3 + 2z^2 + 4z + 1$.

Подставим $z=i\omega$ в характеристический полином и построим в плоскости комплексного переменного годограф Михайлова при изменении от ω до ∞ : $P_3(i\omega)=-i6\omega^3-2\omega^2+i4\omega+1$. Выделим действительную и мнимую части: $P_3(i\omega)=u(\omega)+i\,\mathrm{v}(\omega)$ $u(\omega)=-2\omega^2+1$, $v(\omega)=-6\omega^3+4\omega$.

Графики $u(\omega)$ и $v(\omega)$ имеют вид:

Строим годограф Михайлова. Аргумент $P_3(i\omega)$ изменяется монотонно и

 $\Delta \arg P_3(i\omega) = 3 \frac{\pi}{2}$. Динамическое звено устойчиво.

КОНТРОЛЬНЫЕ ЗАДАНИЯ

В задачах 1-6 приведены характеристические уравнения непрерывных динамических звеньев. Выяснить устойчивость звеньев.

1.
$$3z^3 + 8z^2 + z + 2 = 0$$
.

2.
$$z^4 + 5z^3 + 12z^2 + 8z + 8 = 0$$
.

3.
$$z^4 + 3z^3 + 15z^2 + 20z + 1 = 0$$
.

4.
$$z^5 + 6z^4 + 17z^3 + 20z^2 + 16z + 6 = 0$$
.

5.
$$0.04z^5 + 0.48z^4 + 1.84z^3 + 52.4z^2 + 101z + 50 = 0.$$

- 6. Для системы прямого регулирования (задача 13 п.1.1) определить K_p значение коэффициента усиления регулятора, при котором система находится на границе устойчивости.
- 7. Коэффициент передачи разомкнутой системы автоматического управления имеет вид: $K(z)=\frac{k}{(T_1^2z^2+2\xi T_1z+1)(T_2z+1)(T_3z+1)},$

$$T_1 = 0.1 \ cek$$
 , $T_2 = 0.5 \ cek$, $T_3 = 0.4 \ cek$, $\xi = 0.01$.

Определить значение k-коэффициента усиления разомкнутой системы, при котором замкнутая система находится на границе устойчивости.

8. Структурная схема системы автоматического управления приведена на рис.5

Рис.5

$$K_1(z) = k_1(T_1z+1), \ K_2(z) = \frac{k_2}{T_2z+1}, \ K_3(z) = \frac{k_3}{T_3^2z^2+1}, \ K_4(z) = k_4.$$

Общий коэффициент усиления разомкнутой системы равен

$$k = k_1 \cdot k_2 \cdot k_3 \cdot k_4$$

постоянные времени $T_2=0,2\;cek.,\;T_3=0,8\;cek.$ Найти величину постоянной времени T_1 корректирующего устройства, при которой система находится на границе устойчивости.

В задачах 9-12 приведены характеристические уравнения дискретных звеньев. Выяснить устойчивость звеньев.

9.
$$z^2 + 3z + 1 = 0$$
.

10.
$$2z^2 - z + 1, 2 = 0.$$

11.
$$z^3 - 0.1z^2 - 0.01z = 0.$$

12.
$$z^3 + 2,1z^2 + 0,2z = 0$$
.

2.2.Критерий Найквиста

Для устойчивости замкнутой непрерывной динамической системы, структурная схема которой показана на рис.6, необходимо и достаточно, чтобы приращение аргумента функции $F(\omega)=1+K(i\omega)$ при изменении ω от 0 до ∞ равнялось $k\pi$, где k- число полюсов коэффициента передачи разомкнутой системы, которые в плоскости комплексного пе-

Рис.6

фазовой частотной характеристики разомкнутой системы и определяется полное изменение угла поворота вектора, один конец которого расположен в точке -1+i0, а другой – пробегает по годографу $K(i\omega)$ в направлении изменения ω от 0 до ∞ .

РЕШЕНИЕ ТИПОВОГО ПРИМЕРА

Коэффициент передачи разомкнутой непрерывной системы имеет

8

вид:
$$K(z) = \frac{8}{(z-1)(z+3)(z+2)}$$
. Выяснить устойчивость замкнутой

Разомкнутая система неустойчива и ее характеристический полином имеет один нуль справа от мнимой оси, т.е. k=1. Строим годограф амплитудно-фазовой частотной характеристики разомкнутой системы:

$$K(i\omega) = \frac{8}{(i\omega - 1)(i\omega + 3)(i\omega + 2)} = -8\frac{(4\omega^2 + 6) + i(-\omega^3 + \omega)}{(4\omega^2 + 6)^2 + (-\omega^3 + \omega)^2}$$

Полное изменение угла вектора, соединяющего точку -1+i0 с годографом кривой $K(i\omega)$, при изменении ω от 0 до равно $+\pi$. Следовательно, замкнутая система устойчива.

КОНТРОЛЬНЫЕ ЗАДАНИЯ

В задачах 1-8 приведены коэффициенты передачи разомкнутых непрерывных систем автоматического регулирования. Выяснить устойчивость замкнутых систем, используя критерий Найквиста.

1.
$$K(z) = \frac{1}{Tz+1}$$
.

системы.

2.
$$K(z) = \frac{1}{T^2 z^2 + 2\xi T z + 1}, \ \xi > 0.$$

3.
$$K(z) = \frac{1}{z(Tz+1)}$$
.

4.
$$K(z) = \frac{1}{z^2(Tz+1)}$$
.

5.
$$K(z) = \frac{1}{z(T^2z^2 + 2\xi Tz + 1)}$$
, $T = 0.1$; $\xi = 0.02$.

6.
$$K(z) = \frac{10}{(0.1z+1)(0.3z+1)}$$
.

7.
$$K(z) = \frac{2}{Tz - 1}$$
.

8.
$$K(z) = \frac{0.5}{(T_1 z + 1)(T_2 z - 1)}$$
.

9. Неустойчивое звено охвачено отрицательной обратной связью (рис.7). Найти значения K -коэффициента усиления обратной связи, при которых замкнутая система устойчива.

a)
$$K(z) = \frac{1}{Tz-1}$$
;

$$K(z) = \frac{1}{(T_1z+1)(T_2z-1)},$$
 $T_2 > T_1.$

Рис.7

10. Используя принцип аргумента Коши получить аналог критерия Найквиста для дискретного динамического звена.

2.3. *D* -разбиение

Пусть $P_n(z,\lambda_1,\lambda_2,...,\lambda_m)$ - полином от z, зависящий от параметров $\lambda_1,\lambda_2,...,\lambda_m$, и пусть в плоскости комплексного переменного z задана некоторая область G, ограниченная кривой Γ . Пространство параметров Λ может быть разделено на области D(S), в каждой из которых полином P_n имеет S нулей внутри G $(0 \le S \le n)$. Подобное разбиение называется D-разбиением пространства параметров Λ относительно области G. При исследовании вопросов устойчивости и качества систем автоматического управления наибольший интерес представляет нахождение областей D(n), т.е. областей устойчивости и их подобластей, соответствующих некоторому заданному расположению нулей характеристического полинома.

1. D -разбиение по одному параметру

Построить D-разбиение полинома $P_n(z,\lambda)$ линейно зависящего от одного комплексного параметра $\lambda=\lambda_1+i\lambda_2$, т.е. $P_n(z,\lambda)=\mathrm{A}(z)+\lambda B(z)$. Область G ограничена кривой Γ : $z=z(\omega)$; $\alpha\leq\omega\leq\beta$. Когда точка $z(\omega)$ при изменении ω от α до β пробегает кривую Γ , область G остается слева.

Подставляя $z=z(\omega)$ в характеристическое уравнение, разрешенное относительно λ , получим уравнение границы D-разбиения $\lambda=-rac{\mathrm{A}(z(\omega))}{\mathrm{B}(z(\omega))}$, где $\alpha\leq\omega\leq\beta$, или в параметрической форме:

$$\lambda_1 = -\operatorname{Re} \frac{\operatorname{A}(z(\omega))}{\operatorname{B}(z(\omega))}, \quad \lambda_2 = -\operatorname{Im} \frac{\operatorname{A}(z(\omega))}{\operatorname{B}(z(\omega))} \quad \alpha \leq \omega \leq \beta.$$

Граница разбивает комплексную плоскость параметра λ на области D(S). Для определения числа S наносим на границу штриховку так,

чтобы при движении вдоль границы в направлении увеличения ω заштрихованная сторона находилась слева. Переход через границу с заштрихованной стороны на незаштрихованную приводит к потере одного корня в области G,т.е. происходит переход из области D(S) в область D(S-1). Тогда для определения числа S достаточно найти его для любой точки комплексной плоскости λ , а затем, непрерывно обходя все области D(S) и учитывая направление штриховки, установить значения S для всех областей D-разбиения. Если же интерес представляет только область устойчивости D(n), можно обойтись без вычисления корней полинома. Для этого выбираются области, имеющие наибольшее S (подозрительные на области устойчивости), и для любой точки из этих областей проверяется выполнение условий любого из критериев устойчивости.

РЕШЕНИЕ ТИПОВОГО ПРИМЕРА

Построить D -разбиение полинома $P(z,\lambda) = \lambda(2z^3 + z^2) + 2z + 1$ по параметру λ относительно круга единичного радиуса. Уравнение

границы
$$\Gamma: z = e^{i\omega}, 0 \le \omega \le 2\pi$$
.

Подставляя это выражение в разрешенное относительно λ характеристическое уравнение, получим уравнение границы D-разбиения $\lambda = -e^{-2i\omega}$,

$$0 \leq \omega \leq 2\pi$$
 . В плоскости комплексного параметра $\lambda = \lambda_1 + i\lambda_2$

это уравнение определяет окружность единичного радиуса, пробегаемую дважды в отрицательном направлении (по часовой стрелке), поэтому с левой стороны границы наносим двойную штриховку.

Для определения числа S возьмем значение $\lambda=0$, тогда P(z,0)=2z+1. Полином P(z,0) первой степени и его нуль принадлежит области G. Следовательно, внутри круга – область D(1), а вне его – область D(3).

КОНТРОЛЬНЫЕ ЗАДАНИЯ

В задачах 1-7 построить D-разбиение по параметру λ относительно левой полуплоскости.

1.
$$z^3 + 2z^2 + z + \lambda = 0$$
.

2.
$$z^3 + \lambda z^2 + z + 1 = 0$$
.

3.
$$z^4 + 2z^3 + z^2 + z + \lambda = 0$$
.

4.
$$z^4 + 3z^3 + z^2 + 4z + \lambda = 0$$
.

5.
$$z^4 + z^3 + \lambda z^2 + z + 1 = 0$$
.

6.
$$z^4 + z^3 + \lambda z^2 + z + 1 = 0$$
.

7.
$$z^4 + z^3 + (\lambda + 1)z^2 + z + 1 = 0$$
.

- 8. В системе прямого регулирования (задача 13,п.1.1) найти значения T_2 -постоянной времени демпфирования, при которых система устойчива: $T_0=1\ cek.,\ T_1=0,1\ cek.,\ k_0=2,\ k_p=20$.
- 9. Уравнения, описывающие собственные движения одноосного гироскопического стабилизатора могут быть записаны в виде:

$$\dot{u} = w + nu - m v$$
, $\dot{w} = -u + lw$, $\dot{v} = w$.

Параметры n и l характеризуют вязкое трение в осях стабилизации и прецессии соответственно. Параметр m пропорционален коэффициенту

усиления управляющей системы. Найти значения параметра m, при которых гиростабилизатор устойчив.

10. На рис.8 изображена структурная схема системы автоматической стабилизации курса судна.

Связь между выходами и входами динамических звеньев может быть описана следующими уравнениями:

$$I\ddot{\varphi}+h\dot{\varphi}=-k\psi$$
 — судно
$$\sigma=a\varphi+b\dot{\varphi}$$
 — регулятор
$$T\dot{\psi}+\psi=\sigma$$
 — рулевая машина

Эти уравнения записаны при следующих предположениях:

- 1. на судно действует:
- а) момент со стороны среды, пропорциональный угловой скорости поворота судна (с коэффициентом h),
- б) момент со стороны руля, пропорциональный углу его поворота (с коэффициентом k);
 - 2. измеритель идеальный;
- 3. регулятор безинерционный, реализует стратегию управления по углу и по скорости с коэффициентами усиления a и b соответственно;
 - 4. Учтена инерционность рулевой машины.

Найти значения коэффициента b усиления скоростной коррекции в стратегии управления судном, при которых система устойчива. Рассмотреть случаи $h \geq 0$ и h < 0.

В задачах 11-15 построить D-разбиение полиномов по одному параметру относительно круга единичного радиуса.

11.
$$(z-1) + \lambda(z+1) = 0$$
.

12.
$$z^2 + z + \lambda = 0$$
.

13.
$$z^2 + \lambda z + 1 = 0$$
.

14.
$$z^3 + (1 + \lambda)(z^2 + z) + 1 = 0$$
.

15.
$$z^3 + z^2 + \lambda z + \lambda = 0$$
.

16. Построить D -разбиение полинома $z^2 + z + \lambda = 0$ по параметру λ относительно областей, показанных на рис.9, а,б.

II. D -разбиение по двум параметрам

Пусть полином линейно зависит от двух действительных параметров τ и ν $P_n(z,\tau,\nu)=A(z)\tau+B(z)\nu+C(z)$. Требуется построить D-разбиение плоскости параметров $(\tau;\nu)$ относительно области G. Пусть кривая $\Gamma:z=z(\omega)$ $\alpha\le\omega\le\beta$ граница области G. Подставляя $z=z(\omega)$ в уравнение $P_n(z,\tau,\nu)=0$ получим уравнение для определения границ D-разбиения.

$$A(z(\omega))\tau + B(z(\omega))\nu + C(z(\omega)) = 0$$

Выделяя в функциях $A(z(\omega)), B(z(\omega)), C(z(\omega))$ действительную и мнимую части:

$$A(z(\omega)) = A_1(\omega) + iA_2(\omega),$$

$$B(z(\omega)) = B_1(\omega) + iB_2(\omega),$$

$$C(z(\omega)) = C_1(\omega) + iC_2(\omega)$$

и приравнивая в уравнении действительную и мнимую части нулю, получим систему линейных алгебраических уравнений относительно au и au.

$$\begin{cases} A_1(\omega)\tau + B_1(\omega)\nu + C_1(\omega) = 0, \\ A_2(\omega)\tau + B_2(\omega)\nu + C_2(\omega) = 0. \end{cases}$$
 (*)

Система (*) определяет отображение кривой Γ на плоскость параметров τ и ν . Образ кривой Γ на плоскости τ и ν является границей D-разбиения. Она состоит из основной кривой N и особых прямых L_{ϖ^*} . Основная кривая получается, когда ранг матрицы коэффициентов системы (*) равен двум. Ее уравнение в параметрической форме имеетвид:

$$\tau = -\frac{\Delta \tau(\omega)}{\Delta(\omega)}, \quad \nu = -\frac{\Delta \nu(\omega)}{\Delta(\omega)} \quad \alpha \le \omega \le \beta,$$

где

$$\Delta = \begin{vmatrix} A_1(\omega) & B_1(\omega) \\ A_2(\omega) & B_2(\omega) \end{vmatrix}, \quad \Delta \tau = \begin{vmatrix} C_1(\omega) & B_1(\omega) \\ C_2(\omega) & B_2(\omega) \end{vmatrix}, \quad \Delta v = \begin{vmatrix} A_1(\omega) & C_1(\omega) \\ A_2(\omega) & C_2(\omega) \end{vmatrix}.$$

Особые прямые L_{ω^*} отвечают особым значениям $z^* = Z(\omega^*)$, для которых ранг матрицы коэффициентов и ранг расширенной матрицы равны 1. В этом случае уравнения (*) линейно зависимы и определяют уравнение особой прямой.

Штриховка границ D-разбиения определяется следующим образом. Основная кривая N штрихуется по отношению к направлению движения по ней при возрастании ω слева, если $\Delta>0$, и справа, если $\Delta<0$. На особые прямые штриховка наносится так, чтобы она продолжала штриховку основной кривой, и чтобы число нулей полинома в области G сохранялось при обходе по замкнутому контуру вокруг особой точки (рис.10,a,б).

Рис.10

В частных случаях, когда область G является левой полуплоскостью $\operatorname{Re} z < 0$ и Γ : $z = i\omega$, $-\infty < \omega < +\infty$, или кругом единичного радиуса |z| < 1 и Γ : $z = e^{i\omega}$, $-\pi \le \omega < +\pi$, основная кривая N проходится дважды в силу четности функций $\tau = \tau(\omega), \nu = \nu(\omega)$, и на нее наносится двойная штриховка.

Определение числа S для областей D-разбиения производится так же, как для D-разбиения по одному параметру.

РЕШЕНИЕ ТИПОВОГО ПРИМЕРА

Найти область устойчивости в плоскости параметров (τ, ν) непрерывного звена, характеристическое уравнение которого имеет вид: $\tau z^3 + \nu z^2 + z - \tau + \nu + 1 = 0.$

Для определения области устойчивости построим D-разбиение характеристического полинома по параметрам τ и ν относительно области G : $\operatorname{Re} z < 0$.

Подставим уравнение границы Γ области G в характеристическое уравнение: $z=i\omega, \quad -\infty < \omega < \infty$

$$-\tau i\omega^3 - v\omega^2 + i\omega - \tau + v + 1 = 0$$
.

Выделяя действительную и мнимую части, получим:

$$\begin{cases} \tau - (1 - \omega^2) v - 1 = 0, \\ \omega^3 \tau - \omega = 0. \end{cases}$$

Определим Δ , $\Delta \tau$, $\Delta \nu$.

$$\Delta = \begin{vmatrix} 1 & -(1-\omega^2) \\ \omega^3 & 0 \end{vmatrix} = \omega^3 (1-\omega^2),$$

$$\Delta \tau = \begin{vmatrix} -1 & -(1-\omega^2) \\ -\omega & 0 \end{vmatrix} = -\omega \ (1-\omega^2),$$

$$\Delta v = \begin{vmatrix} 1 & -1 \\ \omega^3 & -\omega \end{vmatrix} = -\omega \ (1 - \omega^2).$$

Уравнение основной кривой N имеет вид:

$$\tau = -\frac{\Delta \tau}{\Delta} = \frac{1}{\omega^2}, \quad v = -\frac{\Delta v}{\Delta} = \frac{1}{\omega^2}, \quad -\infty < \omega < \infty.$$

Значения $\omega^*=0, \quad \omega^*=\infty$ и $\omega^*=\pm 1$ являются особыми и им соответствуют особые прямые: $L_{\omega=0}: \nu-\tau+1=0, \ L_{\omega=\infty}: \tau=0$ $L_{\omega^*=\pm 1}: \tau=1$. В плоскости (τ,ν) построим уравнение границ D - разбиения. Так как основная кривая пробегается дважды — один раз при отрицательных ω , другой — при положительных, - и $\Delta(\omega)$ -нечетная функция, то кривая N штрихуется дважды. При $|\omega|<1$ $\Delta(\omega)>0$ ос-

новная кривая штрихуется слева, при $|\omega| > 1$ $\Delta(\omega) < 0$ - справа. Особые прямые штрихуются навстречу штриховке основной кривой в особых точках.

Прямые $L_{\omega=0}, L_{\omega=\infty}$ штрихуются однократно, прямая $L_{\omega=\pm 1}$ штрихуются дважды. Границы разбивают плоскость параметров на 8 областей, две из которых имеют наибольшее s , т.е. являются претендентами на область устойчивости. Возьмем любую точку в одной из этих областей, например: $\tau=2,\ \nu=1,5$. Получаем полином

 $P(z) = 2z^3 + 1.5z^2 + z + 0.5$. Составим определитель Гурвица

$$\Delta = \begin{vmatrix} 1,5 & 0,5 & 0 \\ 2 & 1 & 0 \\ 0 & 1,5 & 0,5 \end{vmatrix}.$$

Коэффициент $a_0=2>0$ и все главные миноры – положительны:

$$\Delta_1 = 1.5 > 0$$
, $\Delta_2 = 0.5 > 0$, $\Delta_3 = 0.25 > 0$.

Следовательно, область $\tau>1, -1<\nu-\tau<0$ - область D(3). Обходя непрерывно все области, устанавливаем для них значения s. Таким образом, в плоскости параметров τ и ν имеются две области устойчивости: $\tau>1, -1<\nu-\tau<0$ и $0<\tau<1, \nu-\tau>0$.

КОНТРОЛЬНЫЕ ЗАДАНИЯ

В задачах 1-11 построить D - разбиение по параметрам au и au относительно левой полуплоскости:

1.
$$z^3 + \tau z^2 + \nu z + 1 = 0$$
.

2.
$$z^4 + z^3 + 2z^2 + \tau z + v = 0$$
.

3.
$$\tau z^3 + v z^2 + (2v+1)z - \tau - v - 3 = 0$$
.

4.
$$\tau z^4 + z^3 + 2z^2 + \nu z + 1 = 0$$
.

5.
$$z^3 + \tau z^2 + z + \nu = 0$$
.

6.
$$\tau z^3 + z^2 + \nu z + 1 = 0$$
.

7.
$$z^4 + z^3 + \tau z^2 + z + \nu = 0$$
.

8.
$$z^4 + \tau z^3 + vz^2 + z + 1 = 0$$
.

9.
$$\tau z^4 + z^3 + vz^2 + z + 1 = 0$$
.

10.
$$\tau z^3 + (\tau + \nu)z^2 + z + \tau + \nu + 1 = 0$$
.

11.
$$\tau z^4 + z^3 + z^2 + (\tau + \nu + 1)z + \nu + 1 = 0$$
.

12. В системе прямого регулирования (задача 13, п.1.1) определить область устойчивости в плоскости параметров:

а)
$$\tau = T_0$$
 и $\nu = K_0$, если $T_1^2 = 0.2 \; cek$, $T_2 = 5 \; cek$, $K_p = 25$,

б)
$$\tau = T_1$$
 и $\nu = K_p$, если $T_0 = 0.2 \; cek$, $T_2 = 5 \; cek$, $K_0 = 20$.

13. Найти область устойчивости одноосного гиростабилизатора (типовой пример 2, п.1.1) в плоскости параметров: $\tau = n, \ \nu = m$.

14. Коэффициент передачи разомкнутой системы автоматического регулирования имеет вид

$$K(z)=rac{k(T_4z+1)}{z(T_1z+1)(T_2z+1)(T_3z+1)}, \quad T_1=0,1~cek,~T_3=0,8~cek,~k=4.$$
 Най

ти область устойчивости замкнутой системы в плоскости параметров $T_2 = au$ и $T_4 = au$.

15. Для системы управления курсом судна (задача 10, п.2.3) найти область устойчивости в пространстве параметров:

- a) $\tau = T$, v = a;
- б) $\tau = T$, $\nu = b$;
- B) $\tau = a$, $\nu = b$.
- 16. Найти значения параметров τ и ν , при которых решения разностных уравнений:
- a) $y(n+2) + \tau y(n+1) + \nu y(n) = 0$,
- 6) $\tau y(n+2) + 2y(n+1) + \nu y(n) = 0$

стремятся к нулю при $n \to \infty$.

17. Построить D -разбиение полинома $P_2(z) = z^2 + \tau z + \nu$ по параметрам τ и ν относительно области, показанной на рис.9(a).

ЛИТЕРАТУРА

- 1. Ю.И.Неймарк, Н.Я.Коган и др. «Функциональная модель линейной динамической системы» (методическая разработка по курсу «Теории управления. Часть 2.), Н.Новгород, 1998.
- 2. А.А.Красовский, Г.А.Поспелов. Основы автоматики и технической кибернетики. Госэнергоиздат, М., 1962..
- 3. Ю. И. Неймарк, Динамические системы и управляемые процессы. М.,Наука, 1978.