Uniwersytet Warszawski

Wydział Matematyki, Informatyki i Mechaniki

Wiktor Zuba

Nr albumu: 320501

Efektywne algorytmy generacji obiektów kombinatorycznych???

Praca magisterska na kierunku INFORMATYKA

Praca wykonana pod kierunkiem **prof. Wojciech Rytter** Instytut Informatyki

Oświadczenie kierującego pracą

Potwierdzam, że niniejsza praca została przygotowana pod moim kierunkiem i kwalifikuje się do przedstawienia jej w postępowaniu o nadanie tytułu zawodowego.

Data

Podpis kierującego pracą

Oświadczenie autora (autorów) pracy

Świadom odpowiedzialności prawnej oświadczam, że niniejsza praca dyplomowa została napisana przeze mnie samodzielnie i nie zawiera treści uzyskanych w sposób niezgodny z obowiązującymi przepisami.

Oświadczam również, że przedstawiona praca nie była wcześniej przedmiotem procedur związanych z uzyskaniem tytułu zawodowego w wyższej uczelni.

Oświadczam ponadto, że niniejsza wersja pracy jest identyczna z załączoną wersją elektroniczną.

Data

Podpis autora (autorów) pracy

	Streszczenie
???	
	Słowa kluczowe
???	
	Dziedzina pracy (kody wg programu Socrates-Erasmus)
???	
	Klasyfikacja tematyczna
???	

Tytuł pracy w języku angielskim

 $Effective \ algorithms \ of \ combinatorial \ objects \ generation \ref{eq:combinatorial}$

Spis treści

W	prow	vadzenie
1.	Wła	asności hiperkostki
	1.1.	Podstawy kombinatoryczne
	1.2.	Własność ekspansji
2.	Pro	blemy na wadliwej hiperkostce
	2.1.	Graf z wadami
	2.2.	Spójność wadliwej hiperkostki
		2.2.1. Podejście ekspansywne
Bi	hliog	rrafia 1

Wprowadzenie

Rozdział 1

Własności hiperkostki

Definicja 1.0.1. Hiperkostką wymiaru $n(Q_n)$ nazwiemy graf, w którym każdy wierzchołek odpowiada ciągowi binarnemu długości n, zaś krawędzią połączone są te wierzchołki, których ciągi binarne różnią się na dokładnie jednej pozycji.

$$V(Q_n) = \{(v_0, ..., v_{n-1}) : v_i \in \{0, 1\}\}, E(Q_n) = \{(u, v) : \sum_i |u_i - v_i| = 1\}$$

W przypadku pełnej hiperkostki bardzo łatwo jest określić długość najkrótszej ścieżki pomiedzy wierzchołkami – jest ona równa ilości pozycji na których róznią się ciągi tych wierzchołków.

Hiperkostka jest grafem dwudzielnym, w którym jedną składową jest zbiór wierzchołków o ciągach z parzystą liczbą jedynek, zaś drugą tych o ich nieparzystej liczbie.

Cowięcej przy badaniu hiperkostek często dzieli się je na n+1 warstw, gdzie dla $i \in \{0, 1, ..., n\}$ i-tą warstwę stanowią te wierzchołki, których ciągi binarne mają dokładnie i jedynek (warstwa zawiera zatem wierzchołki oddalone o i od wierzchołka zerowego $(\overline{0})$).

Definicja 1.0.2. Numerowaniem klasycznym (naturalnym) hiperkostki nazwiemy takie numerowanie $\varphi: V(Q_n) \to \{1, ..., |V(Q_n)|\}$ jej wierzchołków, że $\varphi(v) = 1 + \sum_i v_i \cdot 2^i$

Definicja 1.0.3. Numerowaniem warstwowym hiperkostki nazwiemy jej numerowanie w kolejności przeszukiwania grafu wszerz zaczynając od wierzchołka $\overline{0}$ z wybieraniem sąsiadów w kolejności leksykograficznej.

Uwaga 1. Jest to takie numerowanie $\varphi: V(Q_n) \to \{1,...,|V(Q_n)|\}$ jej wierzchołków, że wierzchołki z i-tej warstwy otrzymują numery od $\sum_{j=0}^{i-1} \binom{n}{j} + 1$ do $\sum_{j=0}^{i} \binom{n}{j}$. W obrębie jednej warstwy numery przyznawane są przeciwnie do kolejności leksykograficznej na odwróconych słowach. $\varphi(v) > \varphi(u) \Leftrightarrow (\sum_{i=0}^n v_i > \sum_{i=0}^n u_i) \vee ((\sum_{i=0}^n v_i = \sum_{i=0}^n u_i) \wedge (\sum_{i=0}^n 2^{n-i}v_i < \sum_{i=0}^n 2^{n-i}u_i))$

Dowód. Indukcyjnie po warstwach.

Dla warstwy 0 oczywiste.

Zakładając, że *i*-ta warstwa jest ponumerowana w tym porządku weźmy dwa wierzchołki u, v z warstwy i+1: $u=(\overline{y_1},1,\overline{x}), v=(\overline{y_2},0,\overline{x}).$

Jeśli $\overline{y_1}$ zawiera same 0, to $\overline{y_2}$ zawiera dokładnie jedną 1, sąsiedzi tych wierzchołków z poprzedniej warstwy o namniejszych numerach to odpowiednio $(\overline{0},0,x),(\overline{0},0,x)$, tak więc zostaną ponumerowane jako sąsiedzi tego samego wierzchołka, jednak u otrzyma mniejszy numer jako sąsiad mniejszy leksykograficznie.

Jeśli $\overline{y_1}$ zawiera 1, to $\overline{y_2}$ też, więc sąsiedzi tych wierzchołków z poprzedniej warstwy o namniejszych numerach to odpowiednio $(\overline{y_1'}, 1, \overline{x}), (\overline{y_2'}, 0, \overline{x}),$ gdzie $\overline{y_1'}$ i $\overline{y_2'}$, to odpowiednio $\overline{y_1}$ i $\overline{y_2}$ z pierwszymi 1 zamienionymi na 0. Z założenia indukcyjnego sąsiad u ma mniejszy numer niż sąsiad v, więc u ma mniejszy numer niż v.

1.1. Podstawy kombinatoryczne

$$\binom{2n}{n} = \frac{2^{2n}\Gamma(n+\frac{1}{2})}{\sqrt{\pi}\Gamma(n+1)}, \qquad \binom{2n+1}{n} = \binom{2n+1}{n+1} = \frac{2^{2n+1}\Gamma(n+\frac{3}{2})}{\sqrt{\pi}\Gamma(n+2)}$$

$$\Gamma(z) = \int\limits_{0}^{\infty} x^{z-1}e^{-x}dx \quad \text{dla } n \in \mathbb{N} \ \Gamma(n) = (n-1)!,$$
 ogólniej dla $x \in \mathbb{R}, x > 1$ $\frac{\Gamma(x+1)}{\Gamma(x)} = x, \qquad \frac{\Gamma(x+\frac{1}{2})}{\Gamma(x)} < \frac{\Gamma(x+1)}{\Gamma(x+\frac{1}{2})} \Rightarrow \sqrt{x-\frac{1}{2}} < \frac{\Gamma(x+\frac{1}{2})}{\Gamma(x)} < \sqrt{x}$ Daje to ograniczenia: $\frac{2^{2n}}{\sqrt{\pi}(n+\frac{1}{2})} < \binom{2n}{n} < \frac{2^{2n}}{\sqrt{\pi n}}, \qquad \frac{2^{2n+1}}{\sqrt{\pi}(n+\frac{3}{2})} < \binom{2n+1}{n} = \binom{2n+1}{n+1} < \frac{2^{2n+1}}{\sqrt{\pi}(n+1)}$ Lub równoważnie: $\frac{2^n}{\sqrt{\pi}(\lceil \frac{n}{2} \rceil + \frac{1}{2})} < \binom{n}{\lfloor \frac{n}{2} \rfloor} = \binom{n}{\lceil \frac{n}{2} \rceil} < \frac{2^n}{\sqrt{\pi}\lceil \frac{n}{2} \rceil}$

Lemat 2. Dla
$$k \leqslant \lfloor \frac{n+1}{2} \rfloor$$
 zachodzi ograniczenie $\sum_{i=0}^{k-1} \binom{n}{i} \leqslant 2^{n-1} \frac{\binom{n}{k}}{\binom{n}{\lfloor \frac{n}{2} \rfloor}}$

 $Dow \acute{o}d.$ (Uogólnienie dowodu z podobnego lematu dla n=2m, k < mz [1]) Załóżmy najpierw, że $k < \left\lfloor \frac{n}{2} \right\rfloor$

Zdefiniujmy
$$c = \frac{\binom{n}{k}}{\binom{n}{\lfloor \frac{n}{2} \rfloor}} < 1, t = \lfloor \frac{n}{2} \rfloor - k, A = \sum_{i=0}^{k-1} \binom{n}{i}, B = \sum_{i=k}^{\lfloor \frac{n}{2} \rfloor - 1} \binom{n}{i}$$

$$\forall_{1 \leq i \leq k} \frac{\binom{n}{k-i}}{\binom{n}{k}} < \frac{\binom{n}{k-i+1}}{\binom{n}{\lfloor \frac{n}{2} \rfloor - i + 1}} \Leftrightarrow \frac{k-c+1}{n-k+c} < \frac{\lfloor \frac{n}{2} \rfloor - c + 1}{\lceil \frac{n}{2} \rceil + c},$$

co wynika z szeregu prostych nierówności $\frac{k-c+1}{n-k+c}\leqslant \frac{k-c+1}{k+c+1}<\frac{\lfloor\frac{n}{2}\rfloor-c+1}{\lfloor\frac{n}{2}\rfloor+c+1}\leqslant \frac{\lfloor\frac{n}{2}\rfloor-c+1}{\lceil\frac{n}{2}\rceil+c})$

Daje nam to ograniczenia $\forall_{1 \leqslant i \leqslant k} \ \frac{\binom{n}{k-i}}{\binom{n}{\lfloor \frac{n}{n} \rfloor - i}} < c.$

Suma ostatnich t wyrazów szeregu \bar{A} jest majoryzowana przez $c \cdot B$, wcześniejszych t przez c razy suma ostatnich t (a więc przez $c^2 \cdot B$). Daje nam to oszacowanie $A < (c + c^2 + c^3 + \dots + c^{\left \lfloor \frac{k}{t} \right \rfloor}) \cdot B < (c + c^2 + c^3 + \dots) \cdot B = \frac{c}{1-c} \cdot B$. Jednocześnie $A + B = \sum_{i=0}^{\left \lfloor \frac{n}{2} \right \rfloor - 1} \binom{n}{i} < 2^{n-1}$. $A = c \cdot A + (1-c) \cdot A = c(A + \frac{1-c}{c}A) < c \cdot (A+B) < c \cdot 2^{n-1}$.

Pozostaje udowodnić przypadki większych k:

Dla
$$n = 2m, k = m \sum_{i=0}^{m-1} {2m \choose i} = 2^{2m-1} - \frac{1}{2} {2m \choose m} < 2^{2m-1} = 2^{n-1} \cdot \frac{{n \choose k}}{{n \choose \lfloor \frac{n}{2} \rfloor}}$$

Dla
$$n = 2m + 1, k = m \sum_{i=0}^{m-1} {2m+1 \choose i} = 2^{2m} - {2m+1 \choose m} < 2^{2m} = 2^{m-1} \cdot \frac{{n \choose k}}{{n \choose \lfloor \frac{n}{2} \rfloor}}$$

Dla
$$n=2m+1, k=m+1$$
 $\sum_{i=0}^{m} {2m+1 \choose i} = 2^{2m} = 2^{n-1} \cdot \frac{{n \choose k}}{{n \choose \lfloor \frac{n}{2} \rfloor}}$ (jedyna nieostra nierówność)

1.2. Własność ekspansji

Definicja 1.2.1. Dla grafu G oraz wierzchołka $v \in V(G)$ definiujemy sąsiedztwo wierzchołka jako zbiór wierzchołków połączonych z nim krawędzią: $N(v) = \{u \in V(G) : (u, v) \in E(G)\}.$

Definicja 1.2.2. Dla grafu G oraz zbioru wierzchołków $S \subseteq V(G)$ definiujemy sąsiedztwo zbioru wierzchołków jako zbiór tych sąsiadów wierzchołków ze zbioru, które same do tego zbioru nie należą: $N(S) = (\bigcup_{v \in S} N(v)) \setminus S$

Definicja 1.2.3. Dla grafu G oraz zbioru wierzchołków $S \subseteq V(G)$ definiujemy wnętrze zbioru wierzchołków jako zbiór tych wierzchołków z S, których wszyscy sąsiadzi również należą do tego zbioru: $In(S) = \{v \in S : N(v) \subseteq S\}$

Definicja 1.2.4. Graf G posiada własność ε -ekspansji wierzchołkowej, jeżeli dla każdego zbioru wierzchołków $S\subseteq V(G)$ takiego, że $|S|\leqslant \frac{|V(G)|}{2}$ zachodzi $|N(S)|\geqslant \varepsilon\cdot |S|$

Lemat 3. Zbiór pierwszych l wierzchołków hiperkostki według numerowania warstwowego posiada maksymalne wnętrze wśród zbiorów wielkości l.

Jest to jeden z lematów dowodzonych w pracy [2].

Lemat 4. Dla hiperkostki do udowodnienia własności ε_n -ekspansji wierzchołkowej wystarczy rozważyć zbiory S postaci $S_k, k \leq 2^{n-1}$.

 $Dow \acute{o}d$. Weżmy dowolne $S \subseteq V(G), l = |S| + |N(S)|$ z Lematu 1.2 wynika, że $\frac{|N(S)|}{|S|} = \frac{|N(S)| + |S|}{|S|} - 1 \geqslant \frac{|S_l|}{|In(S_l)|} - 1 = \frac{|S_l \setminus In(S_l)|}{|In(S_l)|} \geqslant \frac{|N(In(S_l))|}{|In(S_l)|}$. Z definicji S_l wynika, że $In(S_l) = S_k$ dla $k = In(S_l)$.

Pozostaje udowodnić, że wystarczy rozważyć te S_k , że $k \leq 2^{n-1}$

Dla $l = |N(S)| + |S| \ge (\varepsilon_n + 1) \cdot 2^{n-1}$ mamy $|S| > 2^{n-1}$ lub $|N(S)| \ge \varepsilon_n |S|$, wystarczy więc rozważyć przypadek $l < (\varepsilon_n + 1) \cdot 2^{n-1}$. Dla n = 2m + 1 weżmy $k = 2^{n-1} = \sum_{i=0}^{m} {2m+1 \choose i}$, wtedy $S_k = \text{pełne } m + 1$ pierwszych warstw

Dla n=2m+1 weżmy $k=2^{n-1}=\sum_{i=0}^m {2m+1 \choose i}$, wtedy $S_k=$ pełne m+1 pierwszych warstw i $N(S_k)=$ warstwa m+1. Przykład ten pokazuje, że $\varepsilon_n\leqslant \frac{{2m+1 \choose m+1}}{2^{2m}}$, więc $l<2^{2m}+{2m+1 \choose m+1}\Rightarrow S_l$ mieści się w piewszych m+2 warstwach $\Rightarrow S_k=In(S_l)$ mieści się w pierwszych m+1 warstwach $\Rightarrow k\leqslant 2^{2m}=2^{n-1}$.

Dla n=2m weżmy $k=2^{n-1}=\sum_{i=0}^{m-1}{2m\choose i}+\frac{1}{2}{2m\choose m}$, wtedy $S_k=$ pełne m pierwszych

warstw + połowa środkowej. W środkowej warstwie pierwsze $\binom{2m-1}{m-1} = \frac{1}{2} \binom{2m}{m}$ wierzchołków to dokładnie te, których ciągi binarne kończą się na 1. Wtedy też $S_k \cup N(S_k)$ to dokłanie pełne m+1 pierwszych warstw plus te wierzchołki z warstwy m+2, które kończą się na $1 \Rightarrow |N(S_k)| = {2m-1 \choose m} + {2m-1 \choose m} = {2m-1 \choose m-1} + {2m-1 \choose m} = {2m \choose m}$. Przykład ten pokazuje, że $\varepsilon_n \leqslant \frac{\binom{2m}{m}}{2^{2m-1}}$, więc $l < 2^{2m-1} + \binom{2m}{m} \Rightarrow S_l$ mieści się w piewszych m+1 warstwach plus tych wierzchołkach z warstwy m+2, które kończą się na $1 \Rightarrow k \leqslant 2^{n-1}$.

Wniosek 5. Hiperkostka wymiaru n nie posiada własności $\frac{2\sqrt{2}}{\sqrt{\pi n}}$ -ekspansji wierzchołkowej.

$$\begin{array}{l} Dow \acute{od}. \ \ Dla \ n = 2m+1 \\ \frac{|N(S_{2^{2m}})|}{|S_{2^{2m}}|} = \frac{\binom{2^{m+1}}{m+1}}{2^{2m}} = \frac{2^{2^{m+1}}}{2^{2m}} = \frac{2}{\sqrt{\pi(m+1)}} = \frac{2}{\sqrt{\pi(m+1)}} = \frac{2}{\sqrt{\pi(\frac{n}{2}+\frac{1}{2})}} = \frac{2\sqrt{2}}{\sqrt{\pi(n+1)}} < \frac{2\sqrt{2}}{\sqrt{\pi n}}. \\ Dla \ n = 2m \ \frac{|N(S_{2^{2m-1}})|}{|S_{2^{2m-1}}|} = \frac{\binom{2m}{m}}{2^{2m-1}} < \frac{2^{2m}}{2^{2m-1}\sqrt{\pi(m+1)}} = \frac{2}{\sqrt{\pi m}} = \frac{2}{\sqrt{\pi \cdot \frac{n}{2}}} = \frac{2\sqrt{2}}{\sqrt{\pi n}}. \end{array}$$

Twierdzenie 6. Hiperkostka Q_n posiada własność $\frac{1}{\sqrt{\pi n}}$ -ekspansji wierzchołkowej.

Dowód. Jeśli
$$k = \sum_{i=0}^{r} \binom{n}{i}$$
 (pełne $r+1 \leqslant \lfloor \frac{n}{2} \rfloor + 1$ warstw), to $\frac{|N(S_k)|}{|S_k|} = \frac{\binom{n}{r+1}}{\sum_{i=0}^{r} \binom{n}{i}} > \frac{\binom{n}{r+1} \binom{n}{\lfloor \frac{n}{2} \rfloor}}{2^{n-1} \binom{n}{r+1}} = \frac{\binom{n}{r+1} \binom{n}{\lfloor \frac{n}{2} \rfloor}}{2^{n-1} \sqrt{\pi(\lceil \frac{n}{2} \rceil + \frac{1}{2})}} = \frac{2}{\sqrt{\pi(\lceil \frac{n}{2} \rceil + \frac{1}{2})}} \geqslant \frac{2\sqrt{2}}{\sqrt{\pi(n+\frac{3}{2})}} \geqslant \frac{2}{\sqrt{\pi n}}$ (dla $n \geqslant 2$).

W pozostałych przypadkach można otrzymać ograniczenie choć dużo gorsze wiedząc, że dodanie wierzchołka do S zmniejszy N(S) o co najwyżej 1.

Weźmy teraz
$$\sum_{i=0}^{r} \binom{n}{i} < k < \sum_{i=0}^{r} \binom{n}{i} + \binom{n-1}{r}$$

$$\frac{|N(S_k)|}{|S_k|} > \frac{\binom{n}{r+1} - \binom{n-1}{r}}{\sum_{i=0}^r \binom{n}{i} + \binom{n-1}{r}} = \frac{\binom{n-1}{r+1}}{\sum_{i=0}^r \binom{n}{i} + \binom{n-1}{r}} \ge \frac{\frac{1}{2} \binom{n}{r+1}}{\sum_{i=0}^r \binom{n}{i} + \frac{1}{2} \binom{n}{r+1}} \left(\frac{\sqrt{\pi(n+\frac{3}{2})}}{\sqrt{2}} + 1\right)^{-1} > \frac{1}{\sqrt{\pi n}} \text{ (dla } n \ge 7).$$

Analogicznie da
$$\sum_{i=0}^{r} \binom{n}{i} + \binom{n-1}{r} < k < \sum_{i=0}^{r+1} \binom{n}{i}$$

$$\frac{|N(S_k)|}{|S_k|} > \frac{2\binom{n-1}{r+1} - \binom{n-1}{r+1}}{\sum_{i=0}^{r+1} \binom{n}{i}} = \frac{\binom{n-1}{r+1}}{\sum_{i=0}^{r+1} \binom{n}{i}} > \frac{\binom{n-1}{r+1}}{2^{n-1} \cdot \binom{n}{r+1}} + \binom{n}{r+1}}{2^{n-1} \cdot \binom{n}{r+1} \cdot \binom{n}{r+1}} > \frac{\binom{n}{r+1} \binom{n}{\lfloor \frac{n}{2} \rfloor}}{(2^{n-1} + \binom{n}{\lfloor \frac{n}{2} \rfloor}) \binom{n}{r+1}} = \frac{\binom{n}{\lfloor \frac{n}{2} \rfloor}}{2^{n-1} + \binom{n}{\lfloor \frac{n}{2} \rfloor}} > \frac{\binom{n}{r+1} \binom{n}{\lfloor \frac{n}{2} \rfloor}}{\binom{n}{\lfloor \frac{n}{2} \rfloor}} > \frac{\binom{n}{r+1} \binom{n}{\lfloor \frac{n}{2} \rfloor}}{\binom{n}{r+1} \cdot \binom{n}{r+1}} > \frac{\binom{n}{r+1} \binom{n}{r+1}}{\binom{n}{\lfloor \frac{n}{2} \rfloor}} > \frac{\binom{n}{r+1} \binom{n}{\lfloor \frac{n}{2} \rfloor}}{\binom{n}{r+1} \cdot \binom{n}{r+1}} > \frac{\binom{n}{r+1} \binom{n}{r+1}}{\binom{n}{\lfloor \frac{n}{2} \rfloor}} > \frac{\binom{n}{r+1} \binom{n}{\lfloor \frac{n}{2} \rfloor}}{\binom{n}{r+1} \cdot \binom{n}{r+1}} > \frac{\binom{n}{r+1} \binom{n}{r+1}}{\binom{n}{\lfloor \frac{n}{2} \rfloor}} > \frac{\binom{n}{r+1} \binom{n}{r+1}}{\binom{n}{r+1}} > \frac{\binom{n}{r+1}}{\binom{n}{r+1}} > \frac{$$

$$\left(\frac{\sqrt{\pi(n+\frac{3}{2})}}{\sqrt{2}}+1\right)^{-1} > \frac{1}{\sqrt{\pi n}} \text{ (dla } n \geqslant 7).$$

Dla przypadków $n\leqslant 6$ można ręcznie sprawdzić wszystkie 2^{n-1} przypadków, aby również otrzymać oszacowanie $\frac{1}{\sqrt{\pi n}}$.

Rozdział 2

Problemy na wadliwej hiperkostce

2.1. Graf z wadami

Definicja 2.1.1. W grafie G możemy wyróżnić niektóre wierzcholki (czasem również krawędzie) i oznaczyć jako wadliwe. Graf z niepustym takim wyróżnionym zbiorem wierzcholków wadliwych $F \subseteq V(G)$ nazywamy grafem z wadami (lub grafem wadliwym)

Wadliwe wierzchołki (i/lub krawędzie) najczęściej traktowane są jako usunięte z grafu – mówimy w tym przypadku o grafie G - F. Wyróżnianie wadliwych wierzchołków w grafie zamiast definiowania nowego grafu jest umotywowane głównie w przypadkach, gdy pełny graf łatwo zdefiniować i zapisać w pamięci małej względem jego rozmiaru (np. klika, hiperkostka, graf de Bruijna), a zbiór wadliwych wierzchołków jest również mały.

2.2. Spójność wadliwej hiperkostki

Ten podrozdział jest napisany w większości na podstawie [3].

Uwaga 7. Aby zbadać spójność grafu G - F dla spójnego grafu G wystarczy sprawdzić czy wciąż istnieje ścieżka pomiędzy dowolnymi dwoma wierzchołkami, które oryginalnym grafie sąsiadowały z jakimś spośród usuniętych wierzchołków (wszystkie takie wierzchołki należą do jedenj spójnej składowej).

Dowód. Aby udowodnić spójność trzeba pokazać, że istnieje ścieżka pomiędzy dowolnymi dwoma wierzchołkami, jednak skoro w oryginalnym grafie taka ścieżka istniała, to w nowym grafie jedyną przeszkodą jest to, że na tej ścieżce mogły występować wierzchołki, które zostały usunięte. Taką scieżkę można naprawić wstawiając w miejsca od pierwszego do ostatniego wystąpienia wierzchołka usuniętego ścieżkę pomiędzy odpowiednimi ich sąsiadami istniejącą w pomniejszonym grafie. □

2.2.1. Podejście ekspansywne

Twierdzenie 8. Niech graf G posiada własność ε -ekspansji wierzchołkowej z $\varepsilon>0$ i maksymalny stopień wierzchołka Δ , oraz dana jest wyrocznia zwracająca dla danego wierzchołka listę jego sąsiadów. Wtedy istnieje algorytm, który otrzymuje na wejściu zbiór $F\subseteq V(G)$ oraz ε i testuje spójność G-F w czasie $O\left(\frac{|F|^2\cdot\Delta^2\cdot\log(|V(G)|)}{\varepsilon}\right)$

Lemat 9. Spójna składowa $S \subseteq V(G) \setminus F$ grafu G - F jest jednego z dwóch typów:

- $gl\acute{o}wna |S| > \frac{|V(G)|}{2}$
- $mala |S| \leqslant \frac{|F|}{\varepsilon}$

Uwaga 10. Co prawda dla dużego |F| i malego ε może być tak, że składowa jest jednocześnie główna i mała, jednak po pierwsze jest to przypadek mało interesujący, gdyż wtedy zwykle przeszukiwanie grafu spełnia tezę twierdzenia, a po drugie przypadek ten nie psuje w żaden sposób otrzymywanego algorytmu. W lemacie istotne jest to, że w grafie nie ma składowych średnich wielkości.

Fakt 11. Może być tylko jedna składowa główna.

Dowód. (Lematu)

Weźmy spójną składową S grafu G-F $(N_{G-F}(S)=0)$, jeżeli $S\leqslant \frac{|V(G)|}{2}$, to z własności ε -ekspansji wierzchołkowej grafu G $|N_G(S)|\geqslant \varepsilon\cdot |S|$ (gdzie S jest teraz traktowane jako podzbiór wierzchołków grafu G). Gdyby zachodziło $|S|>\frac{|F|}{\varepsilon}$, to mielibyśmy $|N_G(S)|>\frac{\varepsilon\cdot |F|}{\varepsilon}=|F|$, co daje sprzeczność ponieważ aby w grafie G-F to sąsiedztwo było puste z grafu G trzeba usunąć co najmniej $N_G(S)$ wierzchołków.

Dowód. (Twierdzenia)

Chcemy sprawdzić, czy wszyscy sąsiedzi wierzchołków usuniętych należą do tej samej spójnej składowej. Na podstawie lematu 9, jeśli składowa zawierająca taki wierzchołek jest większa niż $\frac{|F|}{\varepsilon}$, to jest to składowa główna. Jeżeli wszystkie takie wierzchołki spełniają ten warunek, to G-F jest spójny. Jeżeli natomiast, któraś z tych składowych okaże się mała, to G-F nie jest spójny.

Wystarczy więc uruchomić liniowe przeszukiwanie grafowe w każdym wierzchołku sąsiadującym z wierzchołkiem wadliwym i przerywać po przejrzeniu $\frac{|F|}{\varepsilon}$ wierzchołków.

Algorytm liniowego przeszukiwania grafowego uruchamiany jest co najwyżej $|F| \cdot \Delta$ razy. Za każdym razem przeglądamy co najwyżej $\frac{|F|}{\varepsilon}$ wierzchołków. Dla każdego przeglądanego wierzchołka sprawdzamy conajwyżej Δ sąsiadów. Daje to złożoność z tezy twierdzenia. \Box

Wniosek 12. Ponieważ zgodnie z twierdzeniem 6 hiperkostka Q_n posiada własność $\frac{1}{\sqrt{\pi n}}$ -ekspansji wierzchołkowej, oraz można znaleźć wszystkich sąsiadów wierzchołka w czasie liniowym od ich ilości powyższy algorytm testuje spójność wadliwej hiperkostki w czasie $O(|F|^2 \cdot n^{3.5})$ (wyrażonego w ilości operacji na wierzchołkach).

Bibliografia

- [1] L. Lovasz, J. Pelikan and K. Vesztergombi. "Discrete Mathematics, Elementary and Beyond." *Undergraduate Texts in Mathematics. New York: Springer, first edition, 2003*
- [2] L. H. HARPER, "Optimal Numberings and Isoperimetric Problems on Graphs" JOUR-NAL OF COMBINATORIAL THEORY 1, 385-393 (1966)
- [3] Tomas Dvorak, Jiri Fink, Petr Gregor, Vaclav Koubek and Tomasz Radzik, "Efficient connectivity testing of hypercubic networks with faults"
- [4] Jiri Fink and Petr Gregor, "Long paths and cycles in hypercubes with faulty vertices"
- [5] Jiri Fink and Petr Gregor, "Long pairs of paths in faulty hypercubes"
- [6] Frank Harary, John P. Hayes and Horng–Jyh Wu, "A survey of theory of hypercube graphs" Comput. Math. Applic. Vol. 15, No 4, pp. 277-289, 1988
- [7] Frank Harary, Marilynn Livingston, "Independent domination in hypercubes" Appl. Math. Lett. Vol. 6, No 3, pp. 27-28, 1993
- [8] Wojciech Rytter & Bartosz Szreder, "Wprowadzenie do kombinatoryki algorytmicznej"
- [9] DONALD E. KNUTH, "Generating All Tuples and Permutations" THE ART OF COMPUTER PROGRAMMING VOLUME 4, FASCICLE 2
- [10] FRANK RUSKEY, "Combinatorial Generation" Working Version, October 1, 2003
- [11] Tibor Szabo, Emo Weltz, "Unique Sink Orientations of Cubes"
- [12] Chi Him Wong, "Novel universal cycle constructions for a variety of combinatorial objects" Guelph, Ontario, Canada, April, 2015