Тема 3. Задача о потоке минимальной стоимости

3.5. Достаточное условие существования потока с неограниченной снизу стоимостью

Предположим, что имеет место неравенство:

$$\Delta_{i_0,j_0} > 0$$
, $(i_0,j_0) \in U_{H}$

и все дуги в цикле сети $S_1=\{I,U_{\scriptscriptstyle \rm B}\cup(i_0,j_0)\}$ имеют то же направление, что и дуга (i_0,j_0) , т. е. являются прямыми. Из доказательства критерия оптимальности следует, что в этом случае имеют место неравенства

$$\Delta x_{ij} \ge 0$$
, $(i,j) \in U$.

Следовательно, при любом $\theta \geq 0$ совокупность $\overline{x} = x + \Delta x$ будет потоком на сети S и

$$\sum_{(i,j)\in U} c_{ij}\overline{x}_{ij} - \sum_{(i,j)\in U} c_{ij}x_{ij} = -\Delta_{i_0j_0}\theta < 0$$

Следовательно, целевая функция (стоимость потока \overline{x}) неограниченно убывает при $\theta \to \infty$. Мы доказали следующую теорему.

Теорема 16 Если существует дуга $(i_0,j_0)\in U_{\scriptscriptstyle H}$ такая, что $\Delta_{i_0j_0}>0$ и все дуги цикла сети $S_1=\{I,U_{\scriptscriptstyle B}\cup(i_0,j_0)\}$ являются прямыми, то существует поток со сколь угодно малой стоимостью (т. е. задача (2.2) не имеет решения).