

SAT solvers

Computational Models of Argumentation

Christophe Yang Quentin Januel Sylvain Declercq

2022

Contents

1	Flowchart	3
2	Extensions	4
3	Schema	5

1 Flowchart

2 Extensions

Let F := (A, R) be an Argumentation Framework and $S \subset A$, then S is

• conflict-free if for all (a, b) in S^2 , (a, b) is not in R.

$$\phi_{cf}(F) = \bigwedge_{(a,b) \in R} \neg (a \land b)$$

 \bullet admissible if S is conflict-free and defends all its arguments.

$$\phi_{ad}(F) = \phi_{cf}(F) \land \bigwedge_{a \in A} \left(a \implies \bigwedge_{(b,a) \in R} \bigvee_{(c,b) \in R} c \right)$$

• complete if S is admissible and contains all the arguments that it defends.

$$\phi_{co}(F) = \phi_{cf}(F) \land \bigwedge_{a \in A} \left(a \iff \bigwedge_{(b,a) \in R} \bigvee_{(c,b) \in R} c \right)$$

- **grounded** if S is complete and that there is no complete extension $S' \neq S$ such that $S' \subset S$. Apply unit propagation to ϕ_{co} .
- **preferred** if S is complete and that there is no complete extension $S' \neq S$ such that $S \subset S'$. There is no encoding to SAT. Instead, use ϕ_{co} and if the solution is not preferred, forbid it in the logical formula and try again.
- stable if S is conflict-free and attacks all the arguments it does not contain.

$$\phi_{st}(F) = \bigwedge_{a \in A} \left(a \iff \bigwedge_{(b,a) \in R} \neg b \right)$$

3 Schema

In the schema below, the arrow is an implication. $\,$

