Devoir surveillé n°04

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont autorisées.

Problème 1 – D'après E3A 2003 MP Maths A

Dans tout le problème, on considère la fonction f de la variable réelle x définie par :

$$f(x) = \sum_{n=1}^{+\infty} \frac{n^{n-1}}{n!} x^n$$

On rappelle la formule de Stirling:

$$n! \sim n^n e^{-n} \sqrt{2\pi n}$$

Partie I

- 1 Montrer que le rayon de convergence de la série entière définissant f est $\frac{1}{e}$.
- 2 Montrer que la série de terme général $\frac{n^{n-1}e^{-n}}{n!}$ converge.
- 3 En déduire la convergence normale de la série définissant f sur $\left[-\frac{1}{e}, \frac{1}{e}\right]$.
- $\boxed{\textbf{4}}$ Quel est le domaine de continuité de f?

Partie II

- **5** Montrer que tout entier naturel n non nul vérifie l'inégalité : $\left(1 + \frac{1}{n}\right)^n \le e$.
- Quelle est la classe de f sur l'intervalle $\left] -\frac{1}{e}, \frac{1}{e} \right[$? Exprimer f' sous forme de série entière sur cet intervalle.

1

- 7 Montrer que f est croissante sur $\left] -\frac{1}{e}, \frac{1}{e} \right[$.
- 8 Déterminer une valeur approchée de $f\left(-\frac{1}{e}\right)$ à 10^{-2} près.

Partie III

Soit m un entier naturel non nul. On considère la fonction φ définie sur \mathbb{R} par : $\varphi(x) = (1 - e^x)^m$.

Après avoir justifié que φ est une fonction de classe \mathcal{C}^{∞} sur \mathbb{R} , montrer que pour tout entier i compris entre 0 et m, il existe un polynôme P_i tel que :

$$\forall x \in \mathbb{R}, \varphi^{(i)}(x) = P_i(e^x)(1 - e^x)^{m-i}$$

10 En développant $\varphi(x)$, montrer que :

$$\forall m \in \mathbb{N} \text{ tel que } m \ge 2, \ \sum_{n=1}^{m} (-1)^n \binom{m}{n} n^{m-1} = 0$$

On considère la fonction définie sur \mathbb{R} par : $g(y) = ye^{-y}$.

- 11 Etudier et représenter la fonction g.
- 12 Montrer l'existence d'un unique réel $\alpha \in]-1,0[$ tel que $\alpha e^{-\alpha}=-\frac{1}{e}.$ Montrer de plus :

$$\forall y \in [\alpha, 1], \ g(y) \in \left[-\frac{1}{e}, \frac{1}{e} \right]$$

13 Montrer que :

$$\forall y \in [\alpha, 1], \ f(ye^{-y}) = \sum_{n=1}^{+\infty} \left(\sum_{m=n}^{+\infty} (-1)^{m-n} \frac{n^{m-1}}{n!(m-n)!} y^m \right)$$

14 Soit $y \in [\alpha, -\alpha]$. On considère la suite double $(z_{n,m})_{(n,m) \in (\mathbb{N}^*)^2}$ définie par

$$z_{n,m} = \begin{cases} (-1)^{m-n} \frac{n^{m-1}}{n!(m-n)!} y^m & \text{si } 1 \le n \le m \\ 0 & \text{sinon} \end{cases}$$

Montrer que cette suite double est sommable.

15 En déduire que : $\forall y \in [\alpha, -\alpha], \ f(ye^{-y}) = y.$

On admettra dans ce qui suit que cette propriété est valable sur l'intervalle $[\alpha, 1]$.

- $\boxed{\textbf{16}} \ \ \text{Représenter graphiquement la fonction } f \ \text{sur l'intervalle} \left[-\frac{1}{e}, \frac{1}{e} \right].$
- 17 Que peut-on dire de la dérivabilité de f en $-\frac{1}{e}$ et $\frac{1}{e}$? Justifier précisément votre réponse.

Exercice 1 CCP MP 2017

On admet que $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$ et on pose $A = \mathbb{N}^* \times \mathbb{N}^*$.

- **1.** Démontrer que la famille $\left(\frac{1}{p^2q^2}\right)_{(p,q)\in A}$ est sommable et calculer sa somme.
- 2. Démontrer que la famille $\left(\frac{1}{p^2+q^2}\right)_{(p,q)\in A}$ n'est pas sommable.

Exercice 2 ★★

Sommation d'Abel (d'après CCP MP 2014)

Soient $(a_n)_{n\geq n_0}$ et $(B_n)_{n\geq n_0}$ deux suites complexes. On définit alors deux suites $(A_n)_{n\geq n_0}$ et $(b_n)_{n\geq n_0}$ de la manière suivante :

$$\forall n \ge n_0, \ \mathbf{A}_n = \sum_{k=n_0}^n a_k$$

$$\forall n \ge n_0, \ b_n = \mathbf{B}_{n+1} - \mathbf{B}_n$$

- 1. Montrer que $\sum_{k=n_0}^n a_k \mathbf{B}_k = \mathbf{A}_n \mathbf{B}_n \sum_{k=n_0}^{n-1} \mathbf{A}_k b_k$ pour tout entier $n \geq n_0$.
- **2.** Dans cette question, on suppose que la suite (A_n) est bornée et que (B_n) est une suite réelle décroissante de limite nulle.
 - **a.** Montrer que la série $\sum_{n\geq n_0} b_n$ converge.
 - **b.** En déduire que la série $\sum_{n\geq n_0} a_n B_n$ converge.
 - c. En déduire en particulier que la série $\sum_{n\geq n_0} (-1)^n \mathbf{B}_n$ converge.
- 3. Soient $\theta \in \mathbb{R} \setminus 2\pi\mathbb{Z}$ et $\alpha \in \mathbb{R}$.
 - **a.** Soit $n \in \mathbb{N}^*$. Calculer $\sum_{k=1}^n e^{ik\theta}$. On donnera le résultat sous la forme $re^{i\varphi}$ où $(r,\varphi) \in \mathbb{R}^2$.
 - **b.** Discuter en fonction du réel α la nature de la série $\sum_{n \in \mathbb{N}^*} \frac{e^{ni\theta}}{n^{\alpha}}$. On précisera notamment dans les cas de convergence s'il s'agit ou non de convergence absolue. De même, dans les cas de divergence, on précisera s'il s'agit ou non de divergence grossière.
 - **c.** En déduire la nature des séries $\sum_{n \in \mathbb{N}^*} \frac{\cos(n\theta)}{n^{\alpha}}$ et $\sum_{n \in \mathbb{N}^*} \frac{\sin(n\theta)}{n^{\alpha}}$.
- **4.** Montrer que si la suite (B_n) converge vers 0, si la suite (A_n) est bornée et si la série $\sum_{n\geq n_0} b_n$ est absolument convergente, alors la série $\sum_{n\geq n_0} a_n B_n$ est convergente.