RF-IDraw: Virtual Touch Screen in the Air

Deepak Vasisht Jue Wang, Dina Katabi

How Do We Get Virtual Touch Screens?

How Do We Get Virtual Touch Screens?

But ... accuracy is not enough ...

How Do We Get Virtual Touch Screens?

Antenna Array Receiver

Array's beam points to source

More Antennas→ Less uncertainty

Not practical!

RF-IDraw

Enables virtual touch screens in the air

Motion tracking to within 3.7cm

 Rich interface that recognizes words written in the air

Works with standard RFIDs and RFID readers

How Does it Work?

Ambiguity

Higher resolution

Spacing is λ

High resolution

Ambiguity in position

Low resolution

No ambiguity

Narrowly spaced and widely spaced antennas create an overlay of multi-resolution beams.

Use fewer antennas, but place them smartly

Localization

Localization

Are we done?

Let's Try

Errors are random and don't preserve the shape of the trajectory.

2

Noiseless Scenario

Noiseless Scenario

Noiseless Scenario

Impact of Noise

Impact of Noise

Want errors to be systematic –i.e., they may move the trajectory but preserve its shape

Idea: Stick with your choices

Idea: Stick with your choices

Sticking with a beam, even if it is not in the exact location, causes systematic errors

Performance Results

Implementation

- ThingMagic RFID Readers
 - Reader has 4 antennas
 - Used two readers

Alien Squiggle RFID Tags

Baseline: 2 Antenna arrays with 4 antennas each

Setup

Ground Truth: VICON motion capture system

Example

Examples

Metric: Absolute Positioning Error

Absolute Positioning Error

Metric: Trajectory Error

Trajectory Error

Virtual Touch Screen Application

• 5 users wrote 150 words

Words used as touch gestures on Android using MonkeyRunner API

Word recognition using MyScript Stylus app

Example

RF-IDraw delivers accurate virtual touch screens

Related Work

RF-based localization

Witrack [NSDI,14], WiSee [Mobicom'14], ArrayTrack [NSDI'13],
PinPoint [NSDI'13], PinIt [SIGCOMM'13], Zee [MobiCom'12],
PinLoc [MobySys'12], FM-based [MobySys'12], EZ
[MobiCom'10],

Kinect and vision-based gesture recognition

Zhang et al [IEEE Multimedia'13], Murata et al [IJDSN'14], Yin et al [IEEE VL/HCC'14]

Conclusion

- RF-IDraw the first wireless system that enables virtual touch screens on the air
- It focuses on trajectory tracking as opposed to point-by-point localization
- It introduces the concept of multi-resolution arrays
- Its design applies beyond RFIDs to other wireless technologies – e.g., WiFi