Problem Set 8

Data Structures and Algorithms, Fall 2020

Due: November 19, in class.

Problem 1

One way to perform topological sorting on a directed acyclic graph G = (V, E) is to repeatedly find a vertex of in-degree 0, output it, and remove it and all of its outgoing edges from the graph. Assuming we use adjacency-list representation, explain how to implement this idea so that it runs in time O(|V| + |E|).

Problem 2

- (a) Give an O(|V| + |E|) time algorithm to compute the component graph of a directed graph G = (V, E). Make sure that there is at most one edge between two vertices in the component graph your algorithm produces.
- **(b)** Consider the two-pass SCC algorithm we introduced in class. Professor Bacon claims that the algorithm would still work correctly if it used the transpose graph in the second depth-first search and scanned the vertices in order of increasing finishing times. Do you agree with Professor Bacon? You need to justify your answer.

Problem 3

You are given a directed graph G=(V,E) in which each node $u\in V$ has an associated price p_u which is a positive integer. Define the array cost as follows: for each $u\in V$, cost [u] is the price of the cheapest node reachable from u (including u itself). Your goal is to design an algorithm that fills in the entire cost array (i.e., for all vertices).

- (a) Give an O(|V| + |E|) time algorithm that works for directed acyclic graphs.
- (b) Give an O(|V| + |E|) time algorithm that works for all directed graphs.

Problem 4 [Bonus Problem]

A directed graph G=(V,E) is "sort-of-connected" if, for every pair of vertices u and v, either u is reachable from v or v is reachable from u (or both). Give an O(|V|+|E|) time algorithm to determine whether a directed graph is sort-of-connected. To get full credit, also prove your algorithm is correct.

Problem 5

(a) Let G = (V, E) be a connected, undirected graph with a real-valued weight function w defined on E. Let A be a subset of E that is included in some minimum spanning tree for G, let (S, V - S) be any cut of G that respects A, and let (u, v) be a safe edge for A crossing (S, V - S). Professor Bacon claims (u, v) is a light edge for the cut. Do you agree with Professor Bacon? You need to justify your answer.

(b) Professor Bacon proposes a new divide-and-conquer algorithm for computing minimum spanning trees, which goes as follows. Given a graph G=(V,E), partition the set V of vertices into two sets V_1 and V_2 such that $|V_1|$ and $|V_2|$ differ by at most 1. Let E_1 be the set of edges that are incident only on vertices in V_1 , and let E_2 be the set of edges that are incident only on vertices in V_2 . Recursively solve a minimum-spanning-tree problem on each of the two subgraphs $G_1=(V_1,E_1)$ and $G_2=(V_2,E_2)$. Finally, select the minimum-weight edge in E that crosses the cut (V_1,V_2) , and use this edge to unite the resulting two minimum spanning trees into a single spanning tree. Do you think Professor Bacon's algorithm is correct? You need to justify your answer.

Problem 6

- (a) Let G = (V, E) be an undirected graph. Prove that if all its edge weights are distinct, then it has a unique minimum spanning tree.
- (b) Let T be a minimum spanning tree of a graph G=(V,E), and let V' be a subset of V. Let T' be the subgraph of T induced by V', and let G' be the subgraph of G induced by V'. Show that if T' is connected, then T' is a minimum spanning tree of G'.

Problem 7

- Let G=(V,E) be an undirected, connected graph whose weight function is $w:E\to\mathbb{R}$, and suppose that all edge weights are distinct. We define a second-best minimum spanning tree as follows. Let \mathcal{T} be the set of all spanning trees of G, and let T' be a minimum spanning tree of G. Then a second-best minimum spanning tree is a spanning tree T such that $w(T)=\min_{T''\in\mathcal{T}-\{T'\}}\{w(T'')\}$.
- (a) Let T be the minimum spanning tree of G. Prove that G contains edges $(u, v) \in T$ and $(x, y) \notin T$ such that $T \{(u, v)\} \cup \{(x, y)\}$ is a second-best minimum spanning tree of G.
- (b) Let T be a spanning tree of G and, for any two vertices u and v, let $\max(u, v)$ denote an edge of maximum weight on the unique simple path between u and v in T. Describe an $O(|V|^2)$ time algorithm that, given T, computes $\max(u, v)$ for all (u, v) pairs.
- (c) Give an $O(|V|^2 + |E| \lg |V|)$ time algorithm to compute a second-best minimum spanning tree of G.