Frühjahr 22 Themennummer 2 Aufgabe 1 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Entscheiden Sie, welche der folgenden Aussagen korrekt sind. Begründen Sie jeweils Ihre Antwort durch einen kurzen Beweis oder ein Gegenbeispiel.

- (a) Es gibt eine Funktion $f:(0,1)\to\mathbb{R}$, die nur in genau einem Punkt stetig ist.
- (b) Ist $f:(0,1)\to\mathbb{R}$ stetig differenzierbar mit $\sup_{x\in(0,1)}|f'(x)|<\infty$, dann ist f beschränkt und gleichmäßig stetig.
- (c) Die Funktionenfolge $(f_n)_{n\in\mathbb{N}}$ mit $f_n(x)=x^n(1-x^{2n})$ für $x\in[0,1]$ konvergiert gleichmäßig.

Lösungsvorschlag:

Die ersten beiden Aussagen sind korrekt, die dritte ist falsch.

- (a) Wir betrachten die Funktion $f(x) \coloneqq \begin{cases} x, & \text{für } x \in \mathbb{Q} \\ 1-x, & \text{für } x \in \mathbb{R} \backslash \mathbb{Q} \end{cases}$ und behaupten, dass diese genau in $x = \frac{1}{2}$ stetig ist. Ist $x \in (0,1) \backslash \{\frac{1}{2}\}$, so finden wir wegen der Dichtheit der rationalen und der irrationalen Zahlen in den reellen Zahlen, zwei Folgen $(q_n)_{n \in \mathbb{N}}, (r_n)_{n \in \mathbb{N}}$ die gegen x konvergieren und $q_n \in \mathbb{Q}$ und $r_n \in \mathbb{R} \backslash \mathbb{Q}$ für alle $n \in \mathbb{N}$ erfüllen. Es gilt dann $\lim_{n \to \infty} f(q_n) = x \neq 1 x = \lim_{n \to \infty} f(r_n)$ und f ist unstetig in x. Man beachte, dass die Gleichung $x = 1 x \iff 2x = 1$ in \mathbb{R} nur die Lösung $x = \frac{1}{2}$ hat. Für die Stetigkeit in $x = \frac{1}{2}$ sei $\varepsilon > 0$ beliebig gewählt, ist dann $|x \frac{1}{2}| < \varepsilon$, so folgt $|f(x) f(\frac{1}{2})| = |x \frac{1}{2}| < \varepsilon$, falls $x \in \mathbb{Q}$ ist und $|f(x) f(\frac{1}{2})| = |1 x \frac{1}{2}| = |\frac{1}{2} x| < \varepsilon$, falls $x \in \mathbb{R} \backslash \mathbb{Q}$ ist. In jedem Fall ist also $|f(x) f(\frac{1}{2})| < \varepsilon$ und daher f stetig in $\frac{1}{2}$.
- (b) Für alle $y < x \in (0,1)$ ist f stetig auf [y,x] und differenzierbar auf (y,x), daher gilt nach dem Zwischenwertsatz

$$\left| \frac{f(x) - f(y)}{x - y} \right| = |f'(\xi)| \le \sup_{x \in (0,1)} |f'(x)| < \infty$$

für ein $\xi \in (x,y)$. Wir können das zu $|f(x)-f(y)| < \sup_{x \in (0,1)} |f'(x)| \cdot |x-y|$ umformen,

die Funktion f ist also sogar lipschitzstetig zur Konstante $L := \sup_{x \in (0,1)} |f'(x)|$ und

damit insbesondere gleichmäßig stetig. Außerdem folgt aus der Wahl $y=\frac{1}{2}$ auch $|f(x)-f(\frac{1}{2})|<\frac{1}{2}\sup_{x\in(0,1)}|f'(x)|$ für alle $x\in(0,1)$, denn für alle $x\in(0,1)$ ist $|x-\frac{1}{2}|<\frac{1}{2}$,

für $x>\frac{1}{2}$ folgt die Ungleichung aus der obigen Ungleichung, für $x=\frac{1}{2}$ ist die Ungleichung trivial und für $x<\frac{1}{2}$ ist $|f(x)-f(\frac{1}{2})|=|f(\frac{1}{2})-f(x)|$. Daher ist $\frac{1}{2}\sup_{x\in(0,1)}|f'(x)|<\infty$ eine obere Schranke an f und f ist beschränkt.

(c) Die Funktion $g:[0,1] \to \mathbb{R}, g(y)=y(1-y^2)$ ist nichtnegativ und stetig auf einem kompakten Intervall, besitzt also ein Maximum. Dieses wird im Inneren angenommen, weil an den Randwerten die Funktion g Nullstellen hat. Die Ableitung

 $g'(y)=1-3y^2$ besitzt auf (0,1) nur die Nullstelle $y=\frac{1}{\sqrt{3}}$, bei dieser Stelle muss es sich um das Maximum handeln. Eingestzt ergibt sich, also $g(\frac{1}{\sqrt{3}})=\frac{1}{\sqrt{3}}(1-\frac{1}{3})=\frac{2}{(\sqrt{3})^3}$. Die Funktion f konvergiert punktweise, aber nicht gleichmäßig gegen die Nullfunktion. Für $x\in[0,1)$ konvergiert x^n nämlich gegen 0, also auch $x^{2n}=(x^n)^2$ und daher $f_n(x)\to 0(1-0)=0$. für x=1 ist bereits $f_n(1)=0$ was ebenso gegen 0 konvergiert. Die Konvergenz ist aber nicht gleichmäßig, weil für alle $n\in\mathbb{N}$ die Ungleichung $\|f\|_\infty\geq f\left(\sqrt[n]{\frac{1}{\sqrt{3}}}\right)=g(\frac{1}{\sqrt{3}})=\frac{2}{(\sqrt{3})^3}$ gilt, was für $n\to\infty$ nicht gegen 0 konvergiert. Man beachte insbesondere, dass $\sqrt[n]{\frac{1}{\sqrt{3}}}\in(0,1)$ für alle $n\in\mathbb{N}$ gilt.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$