CS630 Graduate Algorithms

September 24, 2024 by Dora Erdos and Jeffrey Considine

- approximation algorithms
 - vertex cover 2-approximation
 - set cover
 - vertex cover ln n approx
 - dominating set
 - independent set

Acyclic Subgraph

Given graph G, find it's largest acyclic subgraph:

delete some of its edges, such that the remaining graph doesn't contain any directed cycles and has the maximum number of edges.

Acyclic Subgraph

Given graph G, find it's largest acyclic subgraph:

delete some of its edges, such that the remaining graph doesn't contain any directed cycles and has the maximum number of edges.

Vertex Cover 2x-optimal greedy algorithm

Vertex Cover: Given a graph G(V,E) find the smallest subset of vertices S, such that it forms a vertex cover. That is, every edge (u,v) has at least one of its nodes in S.

```
Algorithm 1: GreedyVC(G(V, E))

1 S \leftarrow empty set of vertices;

2 for (u, v) is an edge do

3 | if u \notin S AND v \notin S then

4 | S \leftarrow S \cup \{u, v\};

5 return S;
```

Vertex Cover 2x-optimal greedy algorithm

Claim: The GreedyVC() algorithm returns a set S that is at most twice as large as the smallest vertex cover.

Vertex Cover 2x-optimal greedy algorithm

Claim: The GreedyVC() algorithm returns a set S that is at most twice as large as the smallest vertex cover.

proof:

- Consider the set A of edges that this algorithm chooses.
- None of these edges share a vertex, hence any vertex cover must include at least IAI vertices
- Set S contains $2 \cdot |A|$ vertices

Approximation algorithms

Suppose that the optimal solution to an optimization problem P has value m*, and algorithm A returns a solution with value m. We say that A is an approximation algorithm with approximation factor c (also called approx. ratio) if on *any* input

if P is a *minimization* problem then $m^* \le m \le c \cdot m^*$

. sometimes we use the notation $\frac{1}{c} \cdot m \leq m^*$

or if P is a *maximization* problem then $m \le m^* \le c \cdot m$

We say that A is a c-approximation algorithm

Approximation algorithms

A is a c-approximation algorithm if it returns the value m and we have $m \le c \cdot m^*$ or $m^* \le c \cdot m$ for the min/max problem.

- c is always $c \ge 1$
- if c = 1, then A always yields the optimal solution

Goal:

- find A for which we can prove that it is a c-approximation for all inputs
- the smaller the c the better
- sometimes for efficiency we may use an approximation algorithm even if there exist a (slow) polynomial optimal algorithm

Greedy approximation algorithm for Independent Set

Independent Set: Given a graph G(V,E), an independent set is a subset of its vertices S*, such that for each edge (u,v) at most one of u or v is in S*

Greedy algorithm to find the max independent set:

GreedylS is a (D+1)-approximation

Let be the maximum degree in G and let S be the set returned by GreedyIS

GreedylS is a (D+1)-approximation

Let D be the maximum degree in G and let S be the set returned by GreedyIS

Goal: find a lower bound on ISI

- a node u is in V—S (thus not in S) because it has a neighbor v in s
- Each v in S has at most D neighbors
- we get $|V S| \le D \cdot |S|$
- Adding up the two we get $|V| = |V S| + |S| \le D \cdot |S| + |S| = (D + 1)|S|$
- in conclusion $|OPT| \le |V| \le (D+1)|S|$

Set Cover greedy algorithm

Set Cover: Given a universe U of items i_1 , i_2 , ..., i_n and subsets of items S_1 , S_2 , ..., S_m , select a minimum number of the subsets so that their union contains every item in U.

Greedy algorithm:

Set Cover greedy algorithm

Set Cover: Given a universe U of items i_1 , i_2 , ..., i_n and subsets of items S_1 , S_2 , ..., S_m , select a minimum number of the subsets so that their union contains every item in U.

Greedy algorithm:

In each iteration select the set that covers the most additional items.

```
Algorithm 1: GreedySC(U, S_1, \dots S_m)

1 X \leftarrow U/* uncovered elements in U */

2 C \leftarrow empty set of subsets;

3 while X is not empty do

4 | Select S_i that covers the most items in X;

5 | C \leftarrow C \cup S_i;

6 | X \leftarrow X \setminus S_i;

7 return C;
```

SC greedy approximation

Theorem: if the optimal solution to SC uses k sets, than the greedy solution uses at most $k \ln n$ sets

reminder from calculus: for any t > 0 we have
$$\left(1 - \frac{1}{t}\right)^t < \frac{1}{e}$$

14

SC greedy approximation

Theorem: if the optimal solution to SC uses k sets, than the greedy solution uses at most $k \ln n$ sets.

reminder from calculus: for any t > 0 we have $\left(1 - \frac{1}{t}\right)^t < \frac{1}{e}$

proof:

- since the optimal solution uses k sets, there is at least one set in the opt that covers 1/k
 fraction of all items
- . since GreedySC selects the largest set, it also covers at least $\frac{n}{k}$ items
- . after the first iteration at most $n\left(1-\frac{1}{k}\right)$ remain uncovered
- · again, there must be a set in the cover that contains at least 1/k of the remaining
- . thus after two iterations $n\left(1-\frac{1}{k}\right)^2$ are uncovered
- . after $k \ln n$ rounds there are at most $n \left(1 \frac{1}{k}\right)^{k \ln n}$ uncovered items left

$$n\left(1-\frac{1}{k}\right)^{k\ln n} < \left(\frac{1}{e}\right)^{\ln n} = 1$$

• there are at most $k \ln n$ sets returned by the greedy algorithm

SC greedy approximation — how to get k ln n

Reminder from calculus for any t > 0

$$\left(1 - \frac{1}{t}\right)^t < \frac{1}{e}$$

After r iterations the number of uncovered elements is

$$n\left(1-\frac{1}{k}\right)^r$$

Use trick to get
$$1 \le n \left(\left(1 - \frac{1}{k} \right)^k \right)^{\frac{r}{k}} < n \left(\frac{1}{e} \right)^{\frac{r}{k}}$$

Some manipulations:

$$e^{\frac{r}{k}} < n \Rightarrow \frac{r}{k} < \ln n \Rightarrow r < k \ln n$$

After r iterations there are no uncovered vertices left.

GreedySC for Vertex Cover

Can we use the approximate solution for Set Cover to solve Vertex Cover?

Dominating Set

Dominating Set: Given a graph G(V,E) a dominating set is a subset of its vertices S, such that for each node v either v is in S or it has a neighbor in S.

DS problem: Given G, find a minimum size dominating set.

Dominating Set

Dominating Set: Given a graph G(V,E) a dominating set is a subset of its vertices S, such that for each node v either v is in S or it has a neighbor in S.

DS problem: Given G, find a minimum size dominating set.

Independent Set: Given a graph G(V,E), an independent set is a subset of its vertices S, such that for each edge (u,v) at most one of u or v is in S

claim: The *maximum* independent set is also a dominating set.

What is the relationship between DS and IS?

Dominating Set and Set Cover

Design an In n -approximation algorithm for Dominating Set.