# Advanced Analysis of Algorithm

Department of Computer Science Swat College of Science & Technology

CS Course : Advanced Analysis of Algorithm Course Instructor : Muzammil Khan

# Chapter 3

## Complexity Analysis

#### Complexity Analysis

- □ Traditionally
  - The running time of a program described as a function of the size of the input
  - For example,
    - ☐ In a sorting problem, the input size is the number of items *n* in array
  - Input size can also contain more than one parameter e.g. for a graph
- ☐ The running time of an algorithm on a particular input is the number of primitive operations or steps executed
  - The notion of step should be taken in a machine independent

Advanced Analysis of Algorithm

#### Example

- ☐ As an example,
  - Take the pseudo code for an algorithm that finds the maximum element in an array of size *n*
- □ Problem
  - Develop an algorithm to find maximum element in an array of size n
  - Analyze the algorithm for
    - ☐ Time efficiency
    - ☐ Space efficiency
    - □ Correctness

Advanced Analysis of Algorithm

#### Algorithm in Plain Text

- ☐ Steps
- □ Step #1
  - First element of the array Store in variable *max*
- □ Step #2
- Scan array by comparing *max* with other elements
- ☐ Step #3
  - Replace *max* with a larger element
  - ☐ If the *max* is not last value, then repeat step 2 & 3
- □ Step #4
  - Return value held by max

Advanced Analysis of Algorithm

## Pseudocode

- ☐ The function **FIND-MAX** finds the maximum element in an
  - The array  $\mathbf{A}$ , of size  $\mathbf{n}$ , is passed as argument to the function



Advanced Analysis of Algorith

#### **Primitive Operations**

| # | Statement                  | Unit costs     | Remarks                                                                                         |
|---|----------------------------|----------------|-------------------------------------------------------------------------------------------------|
| 1 | $max \leftarrow A[1]$      | Ca<br>Cs       | Cost of accessing A[I] Cost of storing A[I] into max                                            |
| 2 | for j←2 to n do            | Cs<br>Cc<br>Ci | Cost of storing 2 into j Cost of comparing index j with n, and branching Cost of incrementing j |
| 3 | <b>if</b> ( A[j] > max )   | Ca<br>Cc       | Cost of accessing A[j] Cost of comparing A[j] with max, and branching                           |
| 4 | then $max \leftarrow A[j]$ | Ca<br>Cs       | Cost of accessing A[j] Cost of storing storing A[j] into max                                    |
| 5 | return max                 | Cr             | Cost of returning maximum element                                                               |

Advanced Analysis of Algorithm

## Primitive Operations (Cont...)

| ii | Statement                  | Unit Cost      | Operations<br>Count | Total Cost                                                      |
|----|----------------------------|----------------|---------------------|-----------------------------------------------------------------|
| 1  | $max \leftarrow A[1]$      | Ca<br>Cs       | 1<br>1              | Ca + Cs                                                         |
| 2  | for j←2 to n do            | Cs<br>Cc<br>Ci | l<br>n-l<br>n-l     | Cs + (n-1).Cc + (n-1).Ci                                        |
| 3  | $if(A[j] \ge max)$         | Ca<br>Cc       | n-l<br>n-l          | (n-1).Ca + (n-1).Cc                                             |
| 4  | then $max \leftarrow A[j]$ | Ca<br>Cs       | k<br>k              | (Ca + Cs). k<br>$0 \le k \le n$ (k depends on input array data) |
| 5  | return max                 | Cr             | 1                   | Cr                                                              |

 $T(n) = A + B \cdot k + C \cdot n$ , where  $0 \le k \le n$ 

Advanced Analysis of Algorithm

#### Time Complexity

- ☐ Time complexity
  - Three type of time complexity
    - ☐ Best running time (best case running time)
    - Average running time
    - Worst running time
- ☐ Running time of the algorithm for
  - Finding maximum value in the array of length n is  $T(n) = A + B \cdot k + C \cdot n$ , where  $0 \le k \le n$ 
    - $\square$  Hence k is the number of times the statement  $max \leftarrow A[j]$

Advanced Analysis of Algorithm

#### Best Case Running Time

 $T(n) = A + B \cdot k + C \cdot n$ , where  $0 \le k \le n$ 

■ Hence k is the number of times the statement max ← A[j] executed

□ Best Case

- Best case occurs when the statement is not executed at all
  - ☐ This happen when maximum value is at *first* position
- Best (minimum) running time will be

 $T_{best}(n) = A + C.n$ 

Advanced Analysis of Algorithm

#### Average Case Running Time

 $T(n) = A + B \cdot k + C \cdot n$ , where  $0 \le k \le n$ 

■ Hence k is the number of times the statement  $max \leftarrow A[j]$  executed

☐ Average Case

- Average case occurs when the statement is executed on average n/2 times
  - ☐ This happen when maximum value lies in the *middle* of the array

 $T_{average}(n) = A + (B/2 + C).n$ 

 The better average case time can be analysis by probabilistic analysis

Advanced Analysis of Algorithm

#### Worst Case Running Time

T(n) = A + B.k + C.n, where  $0 \le k \le n$ 

■ Hence k is the number of times the statement max ← A[j] executed

□ Worst Case

- $\blacksquare$  In this case the statement is executed n times
  - ☐ This happen when maximum value lies at the *last* position of the array
- The worst case (maximum) time will be

 $T_{worst}(n) = A + (B + C).n$ 

Advanced Analysis of Algorithm

## Comparison of Running Times



Advanced Analysis of Algorithn

#### Space Efficiency

□ So

- ☐ Space analysis of algorithm that find maximum element in the array is simple and straight
  - Determining the space as a function of Array Size
  - Space required by the program
- ☐ The amount of storage requirement of the array
  - Depends on nature of the data
    - □ Integers, Floating point, String etc...
- ☐ Space increases in direct proportion to array size

S(n) = A +Program space Array space requirement requirement

Advanced Analysis of Algorithm

## Correctness - Loop Invariant Technique

- ☐ Several standard algorithms are based on
  - One or More iterative computations using loop structures
  - The correctness of such algorithm is established by proving the correctness of loops
  - One such technique is called Loop Invariant Techniques
- Loop Invariant
  - Is set of conditions or relationship that is either true or false during loop execution
  - Depends on nature of the problem being analyze

Advanced Analysis of Algorithm

#### Correctness (Cont...)

- Loop Invariant Method
  - The algorithm is correct if we establish the following
  - Initialization
    - ☐ Loop invariant is true prior to execution of first iteration
  - Maintenance
    - ☐ Loop invariant is true prior to some iteration, will remain true before next iteration
  - Termination
    - ☐ After termination of the loop, the post condition can be evaluated as true

Advanced Analysis of Algorithm

#### Correctness (Cont...)

☐ The correctness of FIND-MAX algorithm, will establish by loop invariant techniques

FIND-MAX(A)  $max \leftarrow A[1]$  $for j \leftarrow 2 to n do$  $if(A[j] \ge max)$ then  $max \leftarrow A[j]$ return max

- ☐ Define loop invariant S
  - S = After kth iteration, the variable MAX holds the largest value of the first k element of the array
- □ Now
  - Consider the loop invariant method

#### FIND-MAX(A) $max \leftarrow A[1]$ $for j \leftarrow 2 \text{ to } n \text{ do}$ Correctness (Cont...) if(A[j] > max)then $max \leftarrow A[j]$ return max ■ Initialization

- - $Condition\ requires\ that\ the\ prior\ the\ first\ iteration\ the\ statement$ S should be true
  - So; this is trivially (vacuously) true
  - Because
    - ☐ The max contain 1st element of the array &
    - ☐ Loop start with index 2
- Maintenance
  - Condition requires that if S is true before an iteration of loop, it should remain true before the next iteration
  - Can be verified as if max holds the largest value of k element, then it holds the largest of k+1 element

#### Correctness (Cont...)

 $max \leftarrow A[1]$   $for j \leftarrow 2 \text{ to } n \text{ do}$ if(A[j] > max)then  $max \leftarrow A[j]$ return max □ Termination

FIND-MAX(A)

- Condition requires that the post condition should be true
- max should return the maximum value of the array
- The loop terminates when j exceeds n

Advanced Analysis of Algorithm

#### Complexity Analysis

- □ Problem
  - Adding array element
- □ Algorithm

| ARRAY-ADD (A, n)                               | Cost           | Times |
|------------------------------------------------|----------------|-------|
| <ol> <li>result ← 0</li> </ol>                 | $\mathbf{c}_1$ | 1     |
| <ol> <li>for (i ←1; i &lt;= n; i++)</li> </ol> | $c_2$          | n+1   |
| <ol> <li>result ← result + A[i]</li> </ol>     | $\mathbf{c}_3$ | n     |

- $\square$  To compute T(n) the running time of the algorithm,
  - Sum up, product of cost and time column
  - $T(n) = c_1 + c_2(n+1) + c_3(n) = A + Bn$ 
    - Where a and b are constants that depend on c<sub>i</sub> )

Advanced Analysis of Algorithn

# Complexity Analysis (Cont...)

- ☐ In the previous example
  - There are always n passes through the for loop
  - No matter what the value of the numbers/elements in the array
- ☐ This is known as the **Every-case running time** 
  - Means
    - ☐ Best = Average = Worst case running time
- ☐ Other examples include ....
  - Consider the example of search in an array

#### Complexity Analysis (Cont...)

- □ Problem
  - Search Array Members
- ☐ Algorithm

| ARRAY-SEARCH (A, n, key)                       | cost           | Time |
|------------------------------------------------|----------------|------|
| <ol> <li>For (i ←1; i &lt;= n; i++)</li> </ol> | $\mathbf{c}_1$ | ?    |
| <ol><li>if A[i]=key</li></ol>                  | $c_2$          | ?    |
| <ol><li>return i</li></ol>                     | $\mathbf{c}_3$ | ?    |
| 4. return i                                    | C4             | ?    |

- ☐ Computing Running Time
  - Worst Case Analysis
    - $\square$  The loop will execute maximum number of time i.e. n+1
    - $\square$  So T(n) = A + Bn or W(n) = A + Bn or T(n)<sub>w</sub> = A + Bn

Advanced Analysis of Algorit

#### Complexity Analysis (Cont...)

- Average Case Analysis
  - ☐ It is more difficult to analyze the average case than the worst case
  - ☐ To compute average case complexity
    - We need to assign probabilities
  - In case of linear search
    - Equal probabilities are assigned to all array slots i.e. the key is equally likely in any array slot
      - Assuming that key has equal probability 1/n of being in
      - any position & Unit cost is c
  - □ So 1c.1/n + 2c.1/n + 3c.1/n + ... + nc.1/n= c/n (1+2+....+n)= cn (n+1)/2n

= c(n+1)/2

Advanced Analysis of Algorithm

#### Complexity Analysis (Cont...)

- So, average case analysis
  - T(n)=c(n+1)/2 or A(n)=c(n+1)/2
- Best Case Analysis
  - When value is found at first location

 $T(n)=1 \quad \ or \quad \ B(n)=1$ 

■ Worst-case and average-case analysis are done much more often than best-case analysis

Advanced Analysis of Algorithm

| End                           |  |
|-------------------------------|--|
| ☐ End of chapter              |  |
| ☐ You may have quiz next weak |  |
|                               |  |
|                               |  |
|                               |  |
|                               |  |

Advanced Analysis of Algorithm