תרגיל 2

512.4462 מבוא לתקשורת מחשבים

21.4.21

.5.5.21 'ד יום ד' 5.5.21.

1. פרוטוקול העץ הפורש

בציור למעלה Bx מסמן גשר עם מזהה x, מסמן פּוֹרט עם מזהה x, וקו עבה עם סימון Sx מייצג סגמנט מספר x של אתרנט (מספור הסגמנטים למטרות ניתוח בלבד). נניח שהאלגוריתם לחישוב עץ פורש כבר התייצב.

- 1.1. ציינו, לכל גשר, את מרחקו מגשר השורש, ואת פורט השורש (root port) שלו.
 - .1.2 ציירו את העץ הפורש שנוצר.
 - .1.3 ציינו, לכל סגמנט, את הפורט המיועד (designated port) שלו.
 - יכלל? (forwarding כללית איזה גשרים אינם מְקַדמים מסגרות (כלומר לא מבצעים) 1.4
- 1.5. מה יקרה אם גשר B32 יפסיק לפעול (למשל כתוצאה של הפסקת חשמל)? תארו מילולית מהלך הדברים וחזרו על הסעיף הראשון למקרה זה.
- -1.6. נניח כי בשל תקלה בייצור, בגשר B32 נצרב מזהה B16, והוא שולח הודעות בהתאם. חיזרו כעת על הסעיפים 3 ו-4 במקרה זה.
 - 2. ברשת המריצה פרוטוקול עץ פורש (STP), אחד הגשרים התקלקל בצורה הבאה: כאשר מתקבלת חבילה שיעדה לא מופיע בטבלאות, היא נשלחת על כל הפורטים הפיזיים, כולל זה ממנו התקבלה. נתחו בקצרה את השאלות הבאות.
 - 2.1. האם זה יכול לגרום לחבילה לנוע במסלול במעגלי?

- 2.2. האם זה יכול לגרום לחבילות אחרות לא להגיע ליעדם?
- .2.3. האם מסגרות יכולות להגיע אל יעדן יותר מפעם אחת בגלל התקלה? הסבירו.
 - . ברשותנו מאגר רכיבים מצליבים ממימד נתון $c \times c$, כאשר c הוא זוגיי.
- 3.1. מה הגודל המקסימלי של מתג קלוס לא-חוסם **במובן הצר** (strict-sense non-blocking) שניתן לבנות עם רכיבים אלה, אם נדרש שכל קישור יעבור רק שלושה רכיבים מצליבים (כלומר הבנייה ללא רקורסיה)?
 - .3.2 מה מספר רכיבי ההצלבה הנדרש כדי לממש את המתג שנבנה בסעיף הקודם?
- 3.3. מה יהיה הגודל המקסימלי של מתג לא-חוסם במובן הצר כמקודם, אם נתיר שכל קישור יעבור 5 רכיבים מצליבים (כלומר רמה אחת של רקורסיה בשכבה האמצעית)? כמה רכיבים ידרשו לצורך כך?
 - אי אובדן (buffer) עם קצב ריקון קבוע של 100bps מגיע זרם ביטים. חשבו את גודל החוצץ המזערי שיבטיח אי אובדן (ביטים אם קצב ההגעה הרגעי r(t) בזמן t נתון ע"י המשוואות הבאות:
 - $r(t) = 200 + 10\sin(t)$.4.1
 - $r(t) = 50 + 10\sin(t)$.4.2
 - $r(t) = 100 + 10\sin(t)$.4.3
 - n נתון פרמטר טבעי. 4.4

$$r(t) = \begin{cases} 500 & \text{if } t \in [10n, 10n + 2] \\ 0 & \text{if } t \in [10n + 2, 10n + 10] \end{cases}$$

n נתון פרמטר טבעי.4.5

$$r(t) = \begin{cases} 400 & \text{if } t \in [6n, 6n + 2] \\ 0 & \text{if } t \in [6n + 2, 6n + 6] \end{cases}$$