Dr. Gustafson WATH 360

HW 9.4

These two carves are Hyperbolos

$$9 = x^{2} - y^{2}$$

 $y^{2} = x^{2} - 9$
 $y = \pm \sqrt{x^{2} - 9}$ $-3 > x < 3$

×	3			
-5	±4			
-4	±4 ±17			
-3	٥			
3	0			
4	±17			
5	±4			

9.4]#5

$$\chi^2 + g^2 - \frac{y}{T} = 0$$

$$x^{2}ty^{2} - \frac{1}{T}y = 0$$

 $x^{2} + y^{2} - \frac{1}{T}y + \frac{1}{47^{2}} = \frac{1}{47^{2}}$

$$x^2 + (y - \frac{1}{2T})^2 = \frac{1}{4T^2}$$

-D Circle centered at (0, ot) With racius = | 127

T=±1 T=± 1

$$f(x) = 5x^{2} + 2y^{2} \qquad f(x) = 1$$

$$1 = 6x^{2} + 2y^{2} \qquad 1 = \frac{x^{2}}{4^{2}} + \frac{y^{2}}{b^{2}}$$

$$a^{2} = \frac{1}{5} \qquad b^{2} = \frac{1}{2}$$

.. This equation resembles a Cylinder

9.4 |#19

_x	9		₭ <u>`</u>		৬	٧
		<i>-</i> ∂?+2∫		٦ ا	2	ન્ટ?ન્ટડે
		-21+15	٠.	۱ ۱	ı	-3°-3° -4'-3° -4'-5' -4'-5'
-1	-a	_î+&î	-1	۱	2	-1-21
-1	-1	-^+&^ -^+\$	-	۱ ۱	ι	-î-S
-1	۸	24.45	1	١	٦	Ĉ+ĵ
0	-1	ر ُ+ ثَه	1	١	-2	<u>የ</u> ተፀረን
1	0	?ი-'n	ð	$\cdot $	-1	a^+3 a^+3ĵ
O	1	oî - S	9	.	-ე	∂î +2 ĵ
ı	1	% ተ ጎ ጎ		•		
2	l	ል ስ-ኃ				
ı	2	<u> </u>				
ર	ર	21-23				

9.4 # 24

$$V_2 = [\cos(x)\cos(y), -\sin(x)\sin(y)]$$

$$\frac{\partial V_1}{\partial x} = \left[e^{x} \cos(y), e^{x} \sin(y) \right] \qquad \frac{\partial V_2}{\partial x} = \left[-\sin(x) \cosh(y), -\cos(x) \sinh(y) \right]$$

$$\frac{\partial V_1}{\partial y} = \left[-e^{x} \sin(y), e^{x} \cos(y) \right] \qquad \frac{\partial V_2}{\partial y} = \left[\cos(x) \sinh(y), -\sin(x) \cosh(y) \right]$$