Dualité et algèbre bilinéaire

Romain Gicquaud

Année universitaire 2019–2020

Table des matières

1	Dua	ı <mark>lité</mark>
	1.1	Formes linéaires
	1.2	Hyperplans
	1.3	Bases duales
	1.4	Polynôme interpolateur de Lagrange
	1.5	(*) Formes linéaires et sous-espaces vectoriels
	1.6	(*) Formes linéaires et applications
	1.7	Exercices
2	For	mes bilinéaires 17
	2.1	Généralités
	2.2	Bases standards de $B(E)$
	2.3	Formes bilinéaires symétriques et antisymétriques
		2.3.1 Définitions et premières propriétés
		2.3.2 Formes quadratiques
		2.3.3 Réduction des formes bilinéaires symétriques et des formes quadratiques 23
		2.3.4 (*) Réduction des formes bilinéaires alternées
	2.4	Exercices
	D	
3		duit scalaire 31
	3.1	Définitions
	3.2	Exemples de référence
	3.3	Caractérisation matricielle
	3.4	Deux inégalités fondamentales
	3.5	Angle entre deux vecteurs
	3.6	Orthogonalité
	3.7	Exercices
4	Esp	aces euclidiens 43
	4.1^{-}	Le dual d'un espace euclidien
	4.2	Familles orthogonales et orthonormales
	4.3	Supplémentaire orthogonal d'un sous-espace vectoriel
	4.4	Projections et symétries orthogonales
		4.4.1 Projections orthogonales
		4.4.2 Symétries orthogonales
	4.5	Distance à un sous-espace vectoriel
	4.6	L'orthogonalisation de Gram-Schmidt
	4.7	Exercices
5		lomorphismes des espaces euclidiens 55
	5.1	Adjoint d'un endomorphisme
	5.2	Endomorphismes symétriques
	5.3	Endomorphismes orthogonaux
	5.4	Endomorphismes symétriques et applications bilinéaires symétriques
	K	Expansions

Chapitre 1

Dualité

Sommaire

1.1	Formes linéaires
1.2	Hyperplans
1.3	Bases duales
1.4	Polynôme interpolateur de Lagrange
1.5	(*) Formes linéaires et sous-espaces vectoriels
1.6	(*) Formes linéaires et applications
1.7	Exercices

Dans ce chapitre, E désigne un \mathbb{K} -espace vectoriel ($\mathbb{K} = \mathbb{Q}, \mathbb{R}, \mathbb{C}$ ou plus généralement un corps commutatif) de dimension finie $n \in \mathbb{N}^*$, sauf mention du contraire. On rappelle que \mathbb{K} lui-même est un \mathbb{K} -espace vectoriel de dimension 1; sa base canonique est (1).

 δ désigne le symbole de Kronecker (Léopold Kronecker 1823–1891) :

$$\forall (i,j) \in \mathbb{N}^2, \ \delta_{ij} = \begin{cases} 1 \text{ si } i = j, \\ 0 \text{ si } i \neq j. \end{cases}$$

En particulier, si $\mathcal{B} = (e_1, \dots, e_n)$ est une base quelconque de E, on a

$$\operatorname{Mat}_{\mathcal{B}}(\operatorname{Id}) = (\delta_{ij})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}}.$$

1.1 Formes linéaires

Définition 1. 1. Une forme linéaire sur E est une application linéaire de E vers \mathbb{K} . Usuellement une forme linéaire est désignée par une lettre grecque : φ (phi), ψ (psi), θ (theta)...

2. L'ensemble des formes linéaires sur E s'appelle l'espace dual de E (ou plus simplement le dual de E). On le note E^* .

En vertu de la définition, une forme linéaire φ est une application de E vers $\mathbb K$ qui satisfait

$$\forall u, v \in E, \ \forall \lambda \in \mathbb{K}, \varphi(u + \lambda v) = \varphi(u) + \lambda \varphi(v).$$

Proposition 2. E^* est un espace vectoriel pour l'addition des applications et la multiplication par un scalaire. Si E est de dimension finie, E^* l'est aussi et $\dim(E^*) = \dim(E)$. Et donc, dans ce cas, E^* est isomorphe à E.

Nous verrons par la suite (section 1.3) comment trouver des bases de E^* si E est de dimension finie. Remarquons également que, même si E et E^* sont isomorphes, il n'existe pas de manière canonique (c'est-à-dire indépendante de tout choix) de construire un isomorphisme entre E et E^* , ceci nécessite d'avoir à disposition d'autres objets (voir le chapitre 2). Le cas où E est de dimension infinie dépasse le cadre de ce cours.

Preuve de la proposition 2. On a que $E^* = \mathcal{L}(E, \mathbb{K})$ donc E^* est muni d'une structure d'espace vectoriel. De plus, si E est de dimension finie,

$$\dim(E^*) = \dim(\mathcal{L}(E, \mathbb{K})) = \dim(E)\dim(\mathbb{K}) = \dim(E).$$

2 1.1 Formes linéaires

Pour montrer que E^* est un espace vectoriel, on aurait pu également voir que si $\varphi, \psi \in E^*$ sont deux formes linéaires et $\lambda \in \mathbb{K}$ un scalaire, l'application $\varphi + \lambda \psi$ définie par

$$\forall u \in E, \ (\varphi + \lambda \psi)(u) = \varphi(u) + \lambda \psi(u)$$

est une forme linéaire. L'élément neutre de E^* est la forme linéaire nulle 0_{E^*} :

$$\forall u \in E, \ 0_{E^*}(u) = 0_{\mathbb{K}}.$$

Proposition 3. Soit φ une forme linéaire non nulle sur E. Alors φ est surjective et dim Ker $(\varphi) = n-1$.

 $D\acute{e}monstration$. Donnons deux preuves de la surjectivité de φ :

- 1. Im φ est un sous-espace vectoriel de \mathbb{K} donc rg φ = dim Im φ = 0 ou 1. Si rg φ = 0, Im φ = $\{0_{\mathbb{K}}\}$ donc $\forall u \in E, \varphi(u)$ = 0, autrement dit $\varphi = 0_{E^*}$, ce que nous avons exclu dans les hypothèses de la proposition. Donc rg φ = 1 et Im φ = \mathbb{K} , c'est-à-dire φ surjective.
- 2. Puisque φ est non-nulle, il existe un vecteur $u \in E$ tel que $x := \varphi(u) \neq 0$. Soit maintenant $y \in \mathbb{K}$, on cherche un vecteur $v \in E$ tel que $\varphi(v) = y$. Or, pour tout $\lambda \in \mathbb{K}$, si $v = \lambda u$

$$\varphi(v) = \varphi(\lambda u) = \lambda \varphi(u) = \lambda x.$$

En choisissant $\lambda = y/x$ (cette opération est permise car $x \neq 0$), on a donc

$$\varphi\left(\frac{y}{x}u\right) = \frac{y}{x}\varphi(u) = \frac{y}{x}x = y.$$

Ce qui montre que pour tout $y \in \mathbb{K}$, il existe $v \in E$ tel que $y = \varphi(v)$: φ est surjective.

Pour démontrer le second point de la proposition, utilisons le théorème du rang appliqué à φ :

$$\dim E = \dim \operatorname{Ker} (\varphi) + \operatorname{rg} \varphi.$$

Nous avons dim E=n, par définition, et nous avons vu, dans le premier point que rg $\varphi=1$. Ceci montre que dim Ker $(\varphi)=n-1$.

Donnons maintenant quelques exemples de références :

• Si E est un espace vectoriel quelconque de dimension n et si $\mathcal{B} = (e_1, \dots, e_n)$ est une base de E, on a, par définition

$$\forall u \in E, \exists !(u_1, \dots, u_n) \in \mathbb{K}^n, \quad u = \sum_{i=1}^n u_i e_i.$$

Soit $\varphi \in E^*$. Comme φ est linéaire, on a

$$\varphi(u) = \varphi\left(\sum_{i=1}^n u_i e_i\right) = \sum_{i=1}^n u_i \varphi(e_i).$$

Ainsi φ est parfaitement déterminée par le n-uplet d'éléments de \mathbb{K}^n

$$\varphi(\mathcal{B}) = (\varphi(e_1), \dots, \varphi(e_n)),$$

l'image par φ de $\mathcal B$ qui n'est autre que la matrice, de format (1,n), de φ relativement à la base $\mathcal B$:

$$\varphi(u) = (\varphi(e_1) \quad \varphi(e_2) \quad \cdots \quad \varphi(e_n)) \cdot \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix},$$

c'ést l'écriture matricielle du scalaire $\varphi(u)$.

Dans le cas particulier où $E = \mathbb{K}^n$ muni de sa base canonique

$$\begin{cases} e_1 = (1, 0, \dots, 0), \\ e_2 = (0, 1, \dots, 0), \\ \vdots \\ e_n = (0, 0, \dots, 1), \end{cases}$$

on a que $\varphi \in E^*$ si et seulement s'il existe n scalaires $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$ tels que

$$\varphi((x_1,\ldots,x_n))=\alpha_1x_1+\cdots+\alpha_nx_n=\sum_{i=1}^n\alpha_ix_i.$$

On a alors, pour tout i = 1, ..., n, $\alpha_i = \varphi(e_i)$: les α_i sont déterminés de manière unique par φ . Par exemple,

$$\varphi = 0_{E^*} \Leftrightarrow (\alpha_1, \dots, \alpha_n) = (0, \dots, 0).$$

• Si $E = M_n(\mathbb{K})$ est le \mathbb{K} -espace vectoriel des matrices carrées de taille n à coefficients dans \mathbb{K} , $\dim(E) = n^2$. La base canonique de E est la base

$$\mathcal{B} = (E_{11}, E_{12}, \dots, E_{1n}, E_{21}, E_{22}, \dots, E_{2n}, \dots, E_{n1}, E_{n2}, \dots, E_{nn}),$$

formée des matrices élémentaires E_{kl} définies par $E_{kl} = (\delta_{ik}\delta_{jl})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}}$, avec δ le symbole de Kronecker (E_{kl} est la matrice carrée de taille n ayant des zéros partout sauf un 1 à l'intersection de la k-ième ligne et de la l-ième colonne). L'application trace

$$A = (a_{ij})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}} \mapsto \operatorname{tr} A \coloneqq \sum_{i=1}^n a_{ii}$$

est une forme linéaire sur $M_n(\mathbb{K})$. En effet, pour toutes matrices $A, B \in M_n(\mathbb{K})$ et pour tout scalaire $\lambda \in \mathbb{K}$, on a

$$\operatorname{tr}(A+\lambda B) = \sum_{i=1}^{n} (a_{ii} + \lambda b_{ii}) = \sum_{i=1}^{n} a_{ii} + \lambda \sum_{i=1}^{n} b_{ii} = \operatorname{tr}(A) + \lambda \operatorname{tr}(B).$$

• Soit $E = \mathbb{K}_n[X] = \{P \in \mathbb{K}[X], \deg(P) \leq n\}$ l'ensemble des polynômes de degré au plus n. La base canonique de E est $\mathcal{B} = (1, X, X^2, \dots, X^n)$, donc $\dim(E) = \operatorname{Card}(\mathcal{B}) = n + 1$. Pour tout $x \in \mathbb{K}$, l'application $\delta_x : P \mapsto P(x)$ est une forme linéaire sur E appelée évaluation en x. Plus généralement, si $x \in \mathbb{K}$ et $k \in \mathbb{N}$, on peut définir une forme linéaire sur E par

$$\psi_{x,k}: P \mapsto P^{(k)}(x) \tag{1.1.1}$$

(évaluation de la dérivée k-ième de P en x). Remarquons que si $k \ge n+1$, $\psi_{x,k} = 0_{E^*}$.

• Soit $E = \mathcal{C}([a,b],\mathbb{R})$ l'espace vectoriel des applications continues de l'intervalle [a,b] dans \mathbb{R} , avec a et b deux réels, a < b. C'est un espace vectoriel de dimension infinie. L'application

$$I: f \mapsto \int_a^b f(t)dt$$

est une forme linéaire sur E grâce à la linéarité de l'intégrale. Et, comme précédemment, si $x \in [a,b]$, l'application δ_x suivante est une forme linéaire : $\delta_x : f \mapsto f(x)$.

Donnons maintenant un critère pour vérifier qu'une famille de formes linéaires $(\varphi_1, \ldots, \varphi_n)$ est une base de E^* .

Proposition 4. Soient $(\varphi_1, \ldots, \varphi_n)$ une famille de n formes linéaires sur E et (e_1, \ldots, e_n) une base de E. Alors

$$(\varphi_1, \dots, \varphi_n) \text{ est une base de } E^* \Leftrightarrow \begin{vmatrix} \varphi_1(e_1) & \varphi_1(e_2) & \cdots & \varphi_1(e_n) \\ \varphi_2(e_1) & \varphi_2(e_2) & \cdots & \varphi_2(e_n) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_n(e_1) & \varphi_n(e_2) & \cdots & \varphi_n(e_n) \end{vmatrix} \neq 0.$$

Démonstration. Nous savons que dim (E^*) = n donc si la famille $(\varphi_1, \ldots, \varphi_n)$ est libre, elle sera

4 1.2 Hyperplans

libre maximale donc une base de E. Nous avons

$$(\varphi_1, \dots, \varphi_n) \text{ li\'e}$$

$$\Leftrightarrow \exists (\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n \setminus \{(0, \dots, 0)\}, \lambda_1 \varphi_1 + \dots + \lambda_n \varphi_n = 0$$

$$\Leftrightarrow \exists (\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n \setminus \{(0, \dots, 0)\}, \forall i \in \{1, \dots, n\}, (\lambda_1 \varphi_1 + \dots + \lambda_n \varphi_n)(e_i) = 0$$

$$\Leftrightarrow \exists (\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n \setminus \{(0, \dots, 0)\}, \forall i \in \{1, \dots, n\}, \lambda_1 \varphi_1(e_i) + \dots + \lambda_n \varphi_n(e_i) = 0$$

$$\Leftrightarrow \exists (\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n \setminus \{(0, \dots, 0)\}, \underbrace{\begin{pmatrix} \varphi_1(e_1) & \varphi_2(e_1) & \dots & \varphi_n(e_1) \\ \varphi_1(e_2) & \varphi_2(e_2) & \dots & \varphi_n(e_2) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_1(e_n) & \varphi_2(e_n) & \dots & \varphi_n(e_n) \end{pmatrix}}_{=M} \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$\Leftrightarrow \text{Ker } (M) \neq \{0_{M_{n,1}}(\mathbb{K})\}$$

$$\Leftrightarrow \det(M) = 0.$$

D'où le résultat (la matrice donnée dans la proposition est la transposée de M et on sait que $\det(M) = \det({}^tM)$.

1.2 Hyperplans

Définition 5. On appelle hyperplan de E le noyau d'une forme linéaire non nulle sur E:

$$H$$
 hyperplan de $E \Leftrightarrow \exists \varphi \in E^* \setminus \{0_{E^*}\}, H = Ker(\varphi).$

Par conséquent, un hyperplan H de E est un sous-espace vectoriel de de E de dimension n-1 si dim E=n (voir la proposition 3).

Théorème 6. Soit H un sous-espace vectoriel de E. Les propositions suivantes sont équivalentes :

- i) H est un hyperplan de E,
- ii) H est un sous-espace vectoriel strict de E et $\forall u \in E \setminus H$, $E = H \oplus \mathbb{K}u$,
- iii) dim H = n 1.

Démonstration. • $i \Rightarrow iii$: Si H est un hyperplan, soit $\varphi \in E^*$ telle que $H = \text{Ker }(\varphi)$. On a vu (voir proposition 3) que $\dim(H) = \dim \text{Ker }(\varphi) = n - 1$.

• $iii \Rightarrow ii$: On a dim $H = n - 1 < \dim E$ donc H est un sous-espace vectoriel strict de E. Soit $u \in E \setminus H$. Posons $F = \mathbb{K}u$. Si $v \in F \cap H$, $v \neq 0$, on a $u = \lambda v$ pour un certain $\lambda \in \mathbb{K}^*$ et, comme $v \in H$, $u = \lambda^{-1}v \in H$, ce qui contredit le choix de u. Donc $F \cap H = \{0_E\}$. Par ailleurs, on sait

$$\dim(F + H) = \dim(F) + \dim(H) - \dim(F \cap H) = 1 + (n - 1) - 0 = n$$

donc F + H = E et, comme $F \cap H = \{0_E\}$, on a $F \oplus H = E$, ce qui est ii.

• $ii \Rightarrow i$: Soit $u \in E \setminus H$. Soit φ l'application de E dans \mathbb{K} définie de la manière suivante : Pour tout $v \in E$, on peut écrire de manière unique $v = v_0 + v_1$ avec $v_0 \in H$ et $v_1 = \mathbb{K}u$ donc (de manière unique là encore) $v_1 = \lambda_v u$. On pose alors $\varphi(v) \coloneqq \lambda_v$. Montrons que φ est linéaire. Soient $v, w \in E$ et $\alpha \in \mathbb{K}$, notons

$$\begin{cases} v = v_0 + \lambda_v u, \\ w = w_0 + \lambda_w u \end{cases}$$

leur décomposition dans la somme directe $E=H\oplus \mathbb{K} u$ de sorte que

$$\varphi(v) = \lambda_v, \varphi(w) = \lambda_w.$$

On a alors que l'égalité

$$v + \alpha w = \underbrace{\left(v_0 + \alpha w_0\right)}_{\in H} + \underbrace{\left(\lambda_v + \alpha \lambda_w\right) u}_{\in \mathbb{K}u}$$

est la décomposition de $v + \alpha w$ dans la somme directe et, selon la définition de φ ,

$$\varphi(v + \alpha w) = \lambda_v + \alpha \lambda_w = \varphi(v) + \alpha \varphi(w).$$

Ce qui montre que φ est une forme linéaire. Reste à voir maintenant que Ker $(\varphi) = H$. Or, si $v \in H$, on a que v = v + 0 u est la décomposition de v dans la somme directe $E = H \oplus \mathbb{K}u$. Donc $\varphi(v) = \lambda_v = 0$ et $v \in \text{Ker }(\varphi)$, ce qui montre que $H \subset \text{Ker }(\varphi)$. En particulier, $\dim(\text{Ker }(\varphi)) \ge \dim(H) = n - 1$. Or la décomposition de u dans la somme directe est u = 0 + 1 u d'où on tire $\varphi(u) = 1$. Donc $\varphi \ne 0_{E^*}$ et $\dim(\text{Ker }(\varphi)) = n - 1 = \dim H$. Comme $H \subset \text{Ker }(\varphi)$, ceci montre que $H = \text{Ker }(\varphi)$, autrement dit H est un hyperplan de E.

Théorème 7. Soient φ et ψ deux formes linéaires non nulles sur E. On a

$$(\operatorname{Ker}(\varphi) = \operatorname{Ker}(\psi)) \Leftrightarrow (\exists \lambda \in \mathbb{K}^*, \psi = \lambda \varphi).$$

Démonstration. Si $\psi = \lambda \varphi$ avec $\lambda \in \mathbb{K}^*$, on a trivialement que Ker (φ) = Ker (ψ) . Supposons donc que Ker (φ) = Ker (ψ) . Distinguons deux cas :

- Si Ker (φ) = Ker (ψ) = E, on a $\varphi = \psi = 0_{E^*}$ et les deux formes sont proportionnelles l'une à l'autre (prendre par exemple $\lambda = 1$).
- Si Ker (φ) = Ker (ψ) = H avec H un hyperplan de E. Soit $u \in E \setminus H$. On a alors $\varphi(u) \neq 0$ et $\psi(u) \neq 0$. Posons

$$\lambda = \frac{\psi(u)}{\varphi(u)} \in \mathbb{K}^*.$$

Montrons que $\psi = \lambda \varphi$. Soit $v \in E$. Notons, comme dans la preuve du théorème précédent $v = v_0 + \alpha u$ la décomposition de v dans la somme directe $E = H \oplus \mathbb{K} u$ ($v_0 \in H$ et $\alpha \in \mathbb{K}$). On a alors

$$\psi(v) = \psi(v_0) + \alpha \psi(u) \qquad \text{(linéarité de } \psi)$$

$$= 0 + \alpha \frac{\psi(u)}{\varphi(u)} \varphi(u) \qquad (v_0 \in \text{Ker } (\psi))$$

$$= \lambda \varphi(v_0) + \alpha \lambda \varphi(u) \qquad (v_0 \in \text{Ker } (\varphi))$$

$$= \lambda (\varphi(v_0) + \alpha \varphi(u))$$

$$= \lambda \varphi(v_0 + \alpha u)$$

$$= \lambda \varphi(v).$$

Nous avons donc montré que pour tout $v \in E$ on a $\psi(v) = \lambda \varphi(v)$, autrement dit $\psi = \lambda \varphi$.

Remarquons que la preuve nous montre qu'une forme linéaire φ (non nulle) est définie connaissant son noyau et la valeur qu'elle prend sur un vecteur $u \in E \setminus \text{Ker } (\varphi)$. Donnons maintenant quelques exemples :

• $H = \{(x, y, z) \in \mathbb{R}^3 | x - y + z = 0\}$ est un hyperplan de \mathbb{R}^3 . C'est le plan vectoriel (dim H = 3 - 1 = 2) d'équation x - y + z = 0 puisque $\varphi(x, y, z) = x - y + z$ définit une forme linéaire sur \mathbb{R}^3 . On a

$$H = \{(y-z, y, z), (y, z) \in \mathbb{R}^2\} = \text{Vect}\{(1, 1, 0), (-1, 0, 1)\}$$

donc une base de H est donnée par $\mathcal{G} = \{(1,1,0),(-1,0,1)\}$ (c'est une famille génératrice minimale car $\operatorname{Card} \mathcal{G} = 2 = \dim H$).

Les vecteurs $u_1 = (2, -1, -3)$ et $u_2 = (1, 1, 1)$ appartiennent-ils à H? Il suffit pour cela de calculer $\varphi(u_1)$ et $\varphi(u_2)$:

$$\varphi(u_1) = 2 - (-1) + (-3) = 0$$
 donc $u_1 \in H$,
 $\varphi(u_2) = 1 - 1 + 1 = 1 \neq 0$ donc $u_2 \notin H$.

Les supplémentaires de H sont les droites vectorielles $\mathbb{R}u_0$ avec $u_0 = (a, b, c) \notin H$, autrement dit tels que $a - b + c \neq 0$.

• Pour tout $a \in \mathbb{R}$, nous avons noté $\delta_a : P \mapsto P(a)$ la forme linéaire "évaluation en a". C'est une forme linéaire non nulle sur $\mathbb{K}_n[X]$ car $\delta_a(1) = 1$. Donc $H_a = \text{Ker } \delta_a$ est un hyperplan de $\mathbb{K}_n[X]$.

La famille $\mathcal{L} = (X-a, (X-a)^2, \dots, (X-a)^n)$ est une famille de n vecteurs dans H_a linéairement indépendents (car échelonnés par leur degré). C'est une famille libre maximale de H_a donc une base de H_a .

6 1.3 Bases duales

Exercice. 1. Montrer qu'un hyperplan de E est un sous-espace vectoriel strict de E qui n'est inclus (strictement) dans aucun autre sous-espace vectoriel de E hormis E lui-même.

2. (difficile) Montrer que tout hyperplan de $M_n(\mathbb{K})$ intersecte $GL_n(\mathbb{K})$.

1.3 Bases duales

Dans toute cette section E est un \mathbb{K} -espace vectoriel de dimension finie n.

Théorème 8 (Base duale). Soit $\mathcal{B} = (e_1, \dots, e_n)$ une base de E. Pour tout $i \in \{1, \dots, n\}$, on note e_i^* la forme linéaire sur E définie par

$$\forall j \in \{1, ..., n\}, e_i^*(e_j) = \delta_{ij}$$
 (relations d'orthogonalité de Kronecker),

avec δ_{ij} le symbole de Kronecker. e_i^* est appelé la ième forme (linéaire) coordonnée de la base \mathcal{B} . On a

- 1. La famille (e_1^*, \ldots, e_n^*) est une base de E appelée base duale de \mathcal{B} .
- 2. Pour tout $u \in E$,

$$u = \sum_{i=1}^{n} e_i^*(u)e_i. \tag{1.3.1}$$

3. Pour tout
$$\varphi \in E^*$$
, $\varphi = \sum_{i=1}^n \varphi(e_i)e_i^*$.

Remarquons que le deuxième point justifie l'appellation "forme linéaire coordonnée" pour e_i^* car $e_i^*(u)$ est la coordonnée de u le long du vecteur e_i .

 $D\acute{e}monstration$. Nous avons défini les e_i^* sur une base de E, nous savons alors qu'il existe une et une seule manière de les définir sur E tout entier par linéarité. Montrons maintenant chacun des trois points.

• La famille des e_i^* est une famille libre. En effet, si $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$ sont tels que

$$\lambda_1 e_1^* + \dots + \lambda_n e_n^* = 0_{E^*},$$

on a, pour tout $i \in \{1, ..., n\}$, $0 = \left(\sum_{j=0}^{n} \lambda_j e_j^*\right) (e_i) = \sum_{j=0}^{n} \lambda_j e_j^* (e_i) = \sum_{j=0}^{n} \lambda_j \delta_{ji} = \lambda_i$. Donc $\lambda_i = 0$ pour tout i, ce qui montre bien que la famille des e_i^* est libre. Comme elle est de rang maximal $n = \dim E^*$, c'est une base de E^* .

• Pour tout $u \in E$, notons $u = u_1 e_1 + \dots + u_n e_n$ sa décomposition dans la base \mathcal{B} . On a

$$e_i^*(u) = e_i^*(u_1e_1 + \dots + u_ne_n) = \sum_{j=1}^n u_j e_i^*(e_j) = \sum_{j=1}^n u_j \delta_{ij} = u_i,$$

ce qui montre que $u = \sum_{i=1}^{n} e_i^*(u)e_i$.

• Soit $\varphi \in E^*$. En utilisant la formule précédente, on a, pour tout $u \in E$,

$$\varphi(u) = \varphi\left(\sum_{i=1}^{n} e_{i}^{*}(u)e_{i}\right) = \sum_{i=1}^{n} e_{i}^{*}(u)\varphi(e_{i}) = \sum_{i=1}^{n} \varphi(e_{i})e_{i}^{*}(u),$$

d'où on tire $\varphi = \sum_{i=1}^{n} \varphi(e_i) e_i^*$.

Remarquons ici que pour établir les points 2 et 3, nous n'avons pas utilisé le fait que les e_i^* forment une base de E^* . La formule du point 3 montre que les e_i^* forment une famille génératrice de E^* .

Théorème 9 (Base antéduale). Soit $\Phi = (\varphi_1, \dots, \varphi_n)$ une base de E^* . Il existe une unique base $\mathcal{F} = (f_1, \dots, f_n)$ de E telle que

$$\forall (i,j) \in \{1,\ldots,n\}^2, \ \varphi_i(f_j) = \delta_{ij}.$$

Cette base est appelée antéduale (ou préduale) de la base Φ .

Démonstration. La principale difficulté de cette preuve, par rapport à la preuve de l'existence d'une base duale, est qu'on ne peut pas construire les éléments de E comme on construit une forme linéaire. Il faut donc procéder différemment. Soit $\mathcal{B} = (e_1, \ldots, e_n)$ une base quelconque de E. Nous cherchons des vecteurs $f_1, \ldots f_n \in E$ que nous pouvons écrire

$$f_j = \sum_{k=1}^n p_{kj} e_k$$

avec $P = (p_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le n}}$ la matrice de passage de \mathcal{B} à \mathcal{F} . \mathcal{F} est la base préduale de Φ si et seulement si, pour tout $(i,j) \in \{1,\ldots,n\}^2$, on a

$$\delta_{ij} = \varphi_i(f_j) = \varphi_i\left(\sum_{k=1}^n p_{kj}e_k\right) = \sum_{k=1}^n p_{kj}\varphi_i(e_k).$$

Soit A la matrice définie par

$$A = (a_{ki})_{\substack{1 \le k \le n \\ 1 \le i \le n}}, \quad a_{ki} = \varphi_i(e_k).$$

L'égalité $\delta_{ij} = \sum_{k=1}^{n} p_{kj} \varphi_i(e_k)$ peut s'écrire matriciellement $I_n = PA$. Donc, si on montre que A est inversible, on aura $P = A^{-1}$, ce qui démontrera l'existence et l'unicité de la base antéduale. Soit

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

un vecteur colonne tel que AX = 0. On a alors, pour tout $k \in \{1, ..., n\}$,

$$0 = (AX)_k = \sum_{i=1}^n \varphi_i(e_k) x_i = \left(\sum_{i=1}^n x_i \varphi_i\right) (e_k).$$

La forme linéaire $\varphi = \sum_{i=1}^{n} x_i \varphi_i$ est nulle en chacun des vecteurs e_1, \dots, e_n et ces vecteurs forment une base de E, donc $\varphi = 0_{E^*}$:

$$0_{E^*} = \sum_{i=1}^n x_i \varphi_i.$$

Mais comme les φ_i forment une base de E^* , on en déduit que tous les x_i sont nuls, i.e. X = 0. Nous avons donc montré que le noyau de A est réduit à 0, donc A est inversible.

Les deux théorèmes précédents montrent qu'il existe une bijection canonique entre les bases de E et celles de E^* . Donnons maintenant quelques exemples de calcul de base duale et préduale.

• Dans $E = \mathbb{R}^3$ muni de sa base canonique $\mathcal{B}_0 = (e_1, e_2, e_3)$, posons

$$u_1 = e_1 + e_3$$
, $u_2 = e_1 - e_2$, $u_3 = e_2 - e_3$.

 $\mathcal{B} = (u_1, u_2, u_3)$ est une base de \mathbb{R}^3 : en effet,

$$\det_{\mathcal{B}_0} \mathcal{B} = \begin{vmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{vmatrix} = 2 \neq 0$$

Notons P la matrice de passage de \mathcal{B}_0 à \mathcal{B} :

$$P = \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{pmatrix}$$

8 1.3 Bases duales

Déterminons maintenant la base duale \mathcal{B}^* de \mathcal{B} :

$$\mathcal{B}^* = (u_1^*, u_2^*, u_3^*),$$

on doit résoudre $u_i^*(u_j) = \delta_{ij}$ pour $1 \le i, j \le 3$. Faisons le calcul pour u_1^* . Posons $u_1^* = ae_1^* + be_2^* + ce_3^*$. On veut

$$\begin{cases} 1 = u_1^*(u_1) \\ 0 = u_1^*(u_2) \Leftrightarrow \begin{cases} 1 = ae_1^*(u_1) + be_2^*(u_1) + ce_3^*(u_1) \\ 0 = ae_1^*(u_2) + be_2^*(u_2) + ce_3^*(u_2) \Leftrightarrow \\ 0 = ae_1^*(u_3) + be_2^*(u_3) + ce_3^*(u_3) \end{cases} \Leftrightarrow \begin{cases} 1 = a + c \\ 0 = a - b \\ 0 = b - c \end{cases}$$

La solution de ce système est $a = b = c = \frac{1}{2}$. Donc $u_1^* = \frac{1}{2}(e_1^* + e_2^* + e_3^*)$. On trouve de même :

$$u_2^* = \frac{1}{2}(e_1^* - e_2^* - e_3^*), \quad u_3^* = \frac{1}{2}(e_1^* + e_2^* - e_3^*).$$

Grâce à ce qui précède, nous pouvons déterminer P^{-1} , la matrice de passage de \mathcal{B} à \mathcal{B}_0 . Il faut pour cela connaître les coordonnées de e_1, e_2, e_3 dans \mathcal{B} . On utilise pour cela la formule (1.3.1):

$$e_j = \sum_{i=1}^{3} u_i^*(e_j)u_i$$
. Donc

$$P^{-1} = (u_i^*(e_j))_{\substack{1 \le i \le 3 \\ 1 \le j \le 3}} = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & -1 \\ 1 & 1 & -1 \end{pmatrix}.$$

Remarquez que $P^{-1} = {}^tQ$ où Q est la matrice de passage de \mathcal{B}_0^* à \mathcal{B}^* (Pourquoi?).

• Dans $E = \mathbb{K}_n[X]$ muni de sa base canonique $\mathcal{B}_0 = (1, X, X^2, \dots, X^n)$, on a grâce à la formule de Taylor

$$\forall P \in E, \quad P = \sum_{i=0}^{n} \frac{P^{(i)}(0)}{i!} X^{i}$$
 (1.3.2)

En posant $\forall P \in E$, $\varphi_i(P) := \frac{P^{(i)}(0)}{i!}$, on a que $\varphi_i \in E^*$ (on a $\varphi_i = \psi_{0,i}$, voir (1.1.1)) et la formule (1.3.2) s'écrit

$$\forall P \in E, \ P = \sum_{i=0}^{n} \varphi_i(P) X^i,$$

autrement dit, $\varphi_i(P)$ est la coordonnée le long de X^i dans la base \mathcal{B}_0 :

$$(\varphi_0, \varphi_1, \dots, \varphi_n)$$
 est la base duale de \mathcal{B}_0 .

En particulier, \mathcal{B}_0 est une base de E^* et on a $\forall \varphi \in E^*, \varphi = \sum_{i=0}^n \varphi(X^i)\varphi_i$.

• Soit $E = \mathbb{R}_2[X]$ muni de sa base canonique $\mathcal{B}_0 = (1, X, X^2)$, on considère les trois formes linéaires définies par

$$\varphi_0(P) = P(0), \ \varphi_1(P) = P(1), \varphi_2(P) = P(2),$$

c'est-à-dire les évaluations en 0, 1 et 2.

Montrons tout d'abord que $(\varphi_0, \varphi_1, \varphi_2)$ est une base de E^* . On calcule pour cela

$$\det_{\mathcal{B}_0}(\varphi_0, \varphi_1, \varphi_2) = \begin{vmatrix} \varphi_0(1) & \varphi_1(1) & \varphi_2(1) \\ \varphi_0(X) & \varphi_1(X) & \varphi_2(X) \\ \varphi_0(X^2) & \varphi_1(X^2) & \varphi_2(X^2) \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & 4 \end{vmatrix} = \begin{vmatrix} 1 & 2 \\ 1 & 4 \end{vmatrix} = 4 - 2 = 2 \neq 0,$$

donc $(\varphi_0, \varphi_1, \varphi_2)$ est une base de E^*

Trouvons maintenant la base antéduale de $(\varphi_0, \varphi_1, \varphi_2)$. On cherche une famille (P_0, P_1, P_2) d'éléments de E telle que $\varphi_i(P_j) = \delta_{ij}$ pour $0 \le i, j \le 2$. Faisons le calcul pour P_0 . Posons $P_0 = a + bX + cX^2$. On doit résoudre le système suivant :

$$\begin{cases} 1 = \varphi_0(P_0) \\ 0 = \varphi_1(P_0) \Leftrightarrow \begin{cases} 1 = a \\ 0 = a + b + c \\ 0 = a + 2b + 4c \end{cases} \Leftrightarrow \begin{cases} a = 1 \\ b = -\frac{3}{2} \\ c = \frac{1}{2} \end{cases}$$

Donc

$$P_0 = 1 - \frac{3}{2}X + \frac{1}{2}X^2 = \frac{(X-1)(X-2)}{(0-1)(0-2)}.$$

En procédant de même pour P_1 et P_2 , on obtient

$$P_1 = 2X - X^2 = \frac{(X-0)(X-2)}{(1-0)(1-2)}, \quad P_2 = -\frac{1}{2}X + \frac{1}{2}X^2 = \frac{(X-0)(X-1)}{(2-0)(2-1)}.$$

On a ici un exemple simple de $polyn\^omes$ interpolateurs de Lagrange pour pour les valeurs 0, 1 et 2. Finalement, déterminons les 3 réels a, b, c tels que

$$\forall P \in E, \int_0^2 P(t)dt = aP(0) + bP(1) + cP(2).$$

L'application $\varphi: P \mapsto \int_0^2 P(t)dt$ est une application linéaire sur E. Donc (formule (2)), on a

$$\varphi = \varphi(P_0)\varphi_0 + \varphi(P_1)\varphi_1 + \varphi(P_2)\varphi_2.$$

Il nous suffit donc de calculer $\varphi(P_0)$, $\varphi(P_1)$, $\varphi(P_2)$:

$$\varphi(P_0) = \int_0^2 \left(1 - \frac{3}{2}t + \frac{1}{2}t^2\right) dt = \frac{1}{3},$$

$$\varphi(P_1) = \int_0^2 \left(2t - t^2\right) dt = \frac{4}{3},$$

$$\varphi(P_2) = \int_0^2 \left(-\frac{1}{2}t + \frac{1}{2}t^2\right) dt = \frac{1}{3}.$$

On a donc $\varphi = \frac{1}{3}\varphi_0 + \frac{4}{3}\varphi_1 + \frac{1}{3}\varphi_2$, ce qu'on peut écrire sous la forme

$$\forall P \in E, \int_{0}^{2} P(t)dt = \frac{1}{3}P(0) + \frac{4}{3}P(1) + \frac{1}{3}P(2)$$
 (formule des trois niveaux).

La proposition suivante permet d'éviter de vérifier qu'une famille \mathcal{B} de E (resp. \mathcal{B}^* de E^*) est une base :

Proposition 10. Soient $(e_1, ..., e_n)$ une famille d'élements de E et $[\varphi_1, ..., \varphi_n)$ une famille d'élements de E^* tels que

$$\forall i, j \in \{1, \ldots, n\}, \varphi_j(e_i) = \delta_{ij}.$$

Alors (e_1, \ldots, e_n) est une base de E et $(\varphi_1, \ldots, \varphi_n)$ une base de E^* .

Démonstration. Comme chacune des deux familles contient $n = \dim(E)$ vecteurs, il suffit de montrer que ces familles sont libres. Soient donc $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$ n scalaires tels que

$$\lambda_1 e_1 + \dots + \lambda_n e_n = 0_E.$$

On a alors, pour tout $i \in \{1, ..., n\}$,

$$0 = \varphi_i(\lambda_1 e_1 + \dots + \lambda_n e_n)$$

= $\lambda_1 \varphi_i(e_1) + \dots + \lambda_n \varphi_i(e_n)$
= λ_i .

Tous les λ_i sont donc nuls : (e_1, \ldots, e_n) est une famille libre de E. Comme elle est libre maximale, c'est une base de E.

La preuve du fait que $(\varphi_1, \dots, \varphi_n)$ est une base de E^* est similaire et laissée au lecteur. \square

1.4 Polynôme interpolateur de Lagrange

Essayons de généraliser l'exemple précédent. On se donne n abscisses $x_1, \ldots, x_n \in \mathbb{K}$ (deux à deux distinctes) et autant d'ordonnées $y_1, \ldots, y_n \in \mathbb{K}$ (non nécessairement distinctes). On cherche un polynôme P tel que, pour tout $i = 1, \ldots, n$, on a

$$P(x_i) = y_i$$
.

L'espace $\mathbb{K}_{n-1}[X]$ étant un espace de dimension n, on s'attend à ce qu'il existe exactement un tel polynôme P. En effet, si on note $P = a_0 + a_1X + \cdots + a_{n-1}X^{n-1}$, on a

$$P(x_i) = a_0 + a_1 x_i + \dots + a_{n-1} x_i^{n-1}.$$

Les n équations $P(x_i) = y_i$ conduisent alors au système

$$\begin{cases} y_1 = a_0 + a_1 x_1 + \dots + a_{n-1} x_1^{n-1}, \\ \dots \\ y_n = a_0 + a_1 x_n + \dots + a_{n-1} x_n^{n-1} \end{cases}$$

Soit, sous forme matricielle,

$$\underbrace{\begin{pmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{pmatrix}}_{V_{x_1,\dots,x_n}} \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}.$$

La matrice du système $V_{x_1,...,x_n}$ et appelée matrice de Vandermonde. Son d'éterminant est connu¹:

$$\det(V_{x_1,\ldots,x_n}) = \prod_{i< j} (x_j - x_i).$$

Elle est donc inversible si et seulement si tous les x_i sont deux à duex distincts. Le calcul de son inverse est cependant plus délicat.

Formalisons ce problème en termes de bases duales. Considérons les n formes linéaires φ_i : $\mathbb{K}_{n-1}[X] \to \mathbb{K}$ définies par

$$\varphi_i(P) = P(x_i).$$

Cherchons des polynômes L_j tels que

$$\varphi_i(L_j) = \delta_{ij}, \ i, j \in \{1, \dots, n\}.$$
 (1.4.1)

En vertu de la proposition 10, nous aurons alors que la famille $(\varphi_1, \ldots, \varphi_n)$ est une base de $(\mathbb{K}_{n-1}[X])^*$ et que la famille (L_1, \ldots, L_n) est une base de $\mathbb{K}_{n-1}[X]$. Fixons $j \in \{1, \ldots, n\}$. les équations (1.4.1) avec $i \neq j$,

$$0 = \varphi_i(L_i) = L_i(x_i),$$

montrent que les x_i $(i \neq j)$ sont racines de L_j et donc que L_j est divisible par le produit des $(X - x_i)$:

$$\prod_{i\neq j} (X-x_i)|L_j.$$

Comme ce produit est exactement de degré n-1, on a que

$$L_j = \omega_j \prod_{i \neq j} (X - x_i)$$

avec ω_j une constante à déterminer. Celle-ci nous est donnée par la condition $\varphi_j(L_j)$ = 1 :

$$1 = \varphi_j(L_j) = L_j(x_j) = \omega_j \prod_{i \neq j} (x_j - x_i).$$

On a donc

$$\omega_j = \frac{1}{\prod_{i \neq j} (x_j - x_i)}$$

et

$$L_j = \frac{\prod_{i \neq j} (X - x_i)}{\prod_{i \neq j} (x_j - x_i)}$$

La solution de notre problème initial est maintenant à portée de main. Le polynôme P que nous cherchons doit satisfaire les équations $\varphi_i(P) = y_i, j \in \{1, ..., n\}$. Or la solution est donnée par

$$P = y_1 L_1 + \dots + y_n L_n = \sum_{j=1}^n y_1 \frac{\prod_{i \neq j} (X - x_i)}{\prod_{i \neq j} (x_j - x_i)}.$$

En effet, en utilisant les propriétés des bases duales, on obtient $\varphi_i(P) = y_i$. Ce polynôme est appelé polynôme interpolateur de Lagrange.

¹Et c'est peut-être un exercice que vous avez dégà fait!

1.5 (*) Formes linéaires et sous-espaces vectoriels

Nous avons vu dans la section 1.2 le lien entre formes linéaires et hyperplans. Essayons de généraliser cette construction pour inclure tous les sous-espaces vectoriels de E.

Définition 11. 1. Soit A une partie de E. On définit

$$A^{\perp} := \{ \varphi \in E^* | \forall a \in A, \ \varphi(a) = 0 \},$$

autrement dit A^{\perp} est l'ensemble des formes linéaires s'annulant sur tous les éléments de A.

2. Soit B une partie de E^* . On définit de manière analogue l'ensemble des $u \in E$ sur lesquels tous les éléments de B s'annulent :

$$^{\perp}B \coloneqq \{u \in E | \forall \varphi \in B, \ \varphi(u) = 0\}$$

Remarquons ici la notation que nous avons employée : A^{\perp} est une partie de E^* alors que $^{\perp}B$ est une partie de E, la différence permet ici de savoir si l'on a affaire à un sous-espace de E ou de E^* .

Exemple. 1. On a $E^{\perp} = \{0_{E^*}\}$ et $\{0_E\}^{\perp} = E^*$. De même, $^{\perp}(E^*) = \{0_E\}$ et $^{\perp}\{0_{E^*}\} = E$.

2. Si $H = \text{Ker } \varphi$ est un hyperplan de E, on a $H^{\perp} = \mathbb{K} \varphi$, c'est le théorème 7.

Le principal résultat de cette section est contenu dans les deux théorèmes suivants :

Théorème 12. 1. Si A et A' sont deux parties de E avec $A \subset A'$, on a $(A')^{\perp} \subset A^{\perp}$ (l'application $A \mapsto A^{\perp}$ renverse l'inclusion).

- 2. Si A est une partie de E, $A^{\perp} = (\text{Vect}(A))^{\perp}$ est un sous-espace vectoriel de E^* et $^{\perp}(A^{\perp}) = \text{Vect}(A)$. En particulier, si A est un sous-espace vectoriel de E, on a $^{\perp}(A^{\perp}) = A$.
- 3. Si A est un sous-espace vectoriel de E,

$$n = \dim(A) + \dim(A^{\perp}).$$

Le deuxième point de ce théorème est important : Si A est un sous-espace vectoriel de E, connaître A est équivalent à connaître A^{\perp} puisque l'un se déduit de l'autre. Les bases de A^{\perp} (ou plus généralement les familles génératrices) forment des systèmes d'équations de A.

Démontration du théorème 12. 1. Soit $\varphi \in (A')^{\perp}$: $\forall u \in A'$, $\varphi(u) = 0$. En particulier, comme $A \subset A'$, on a $\forall u \in A$, $\varphi(u) = 0$, c'est-à-dire $\varphi \in A^{\perp}$. Ceci montre donc que $(A')^{\perp} \subset A^{\perp}$.

2. Soient $\varphi, \psi \in A^{\perp}$ et $\lambda \in \mathbb{K}$. On a, pour tout $a \in A$,

$$(\lambda \varphi + \psi)(a) = \lambda \varphi(a) + \psi(a) = \lambda \times 0 + 0 = 0,$$

ce qui montre que $\lambda \varphi + \psi \in A^{\perp}$ et donc que A^{\perp} est un sous-espace vectoriel de E^* . Par définition de A^{\perp} , si $a \in A$, on a

$$\forall \varphi \in A^{\perp}, \ \varphi(a) = 0,$$

ce qui montre que $a \in {}^{\perp}(A^{\perp}) : A \subset {}^{\perp}(A^{\perp})$. Comme ${}^{\perp}(A^{\perp})$ est un sous-espace vectoriel de E (voir théorème 13), nous avons $\operatorname{Vect}(A) \subset {}^{\perp}(A^{\perp})$. Nous devons maintenant montrer l'inclusion réciproque : ${}^{\perp}(A^{\perp}) \subset \operatorname{Vect}(A)$. Nous allons montrer

$$\operatorname{Vect}(A)^c \subset (^{\perp}(A^{\perp}))^c$$
.

Si $\operatorname{Vect}(A) = E$, il n'y a rien à faire. Sinon, soit $u \in \operatorname{Vect}(A)^c$. Nous devons montrer $u \notin {}^{\perp}(A^{\perp})$, autrement dit

$$\exists \varphi \in A^{\perp}, \varphi(u) \neq 0$$

(c'est la négation de $\forall \varphi \in A^{\perp}, \varphi(u) = 0$). Nous cherchons donc une forme linéaire $\varphi \in A^{\perp}$ (nulle sur Vect(A)) telle que $\varphi(u) \neq 0$. Soit $k = \dim(\operatorname{Vect}(A)) < n$. On se donne (e_1, \ldots, e_k) une base de Vect(A). Posons $e_{k+1} = u$ et complêtons la famille libre (e_1, \ldots, e_{k+1}) en une base (e_1, \ldots, e_n) de E. Prenons la forme linéaire φ définie par

$$\varphi(e_i) = 0 \text{ si } i \neq k+1, \quad \varphi(e_{k+1}) = 1.$$

On a alors $e_1, \ldots, e_k \in \text{Ker }(\varphi)$ donc $A = \text{Vect}(e_1, \ldots, e_k) \subset \text{Ker }(\varphi)$, ce qui montre $\varphi \in A^{\perp}$ et $\varphi(u) = \varphi(e_{k+1}) = 1 \neq 0$. Ceci achève la preuve de $x \notin {}^{\perp}(A^{\perp})$.

3. Soit $k = \dim(A)$. Choisissons une base (e_1, \ldots, e_k) de A que nous complêtons en une base (e_1, \ldots, e_n) . Soit (e_1^*, \ldots, e_n^*) la base duale. Posons $B := \text{Vect}(e_1^*, \ldots, e_k^*)$, de sorte que $\dim(B) = k = \dim(A)$. Si $\varphi \in B$, on peut écrire de manière unique

$$\varphi = \lambda_1 e_1^* + \dots + \lambda_k e_k^*.$$

Donc si $\varphi \in B \cap A^{\perp}$, on a $\varphi = \lambda_1 e_1^* + \dots + \lambda_k e_k^*$ et $\varphi(e_1) = \dots = \varphi(e_k) = 0$. Donc

$$\lambda_1 = \varphi(e_1) = 0, \dots, \lambda_k = \varphi(e_k) = 0,$$

ce qui montre que $\varphi = 0_{E^*}$:

$$B \cap A^{\perp} = \{0_{E^*}\}.$$

Soit maintenant $\psi \in E^*$ quelconque. Il existe des coefficients $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$ tels que $\psi = \alpha_1 e_1^* + \cdots + \alpha_n e_n^*$. Posons

$$\psi_B = \alpha_1 e_1^* + \dots + \alpha_k e_k^*, \quad \psi_{A^{\perp}} = \alpha_{k+1} e_{k+1}^* + \dots + \alpha_n e_n^*.$$

On a clairement $\psi_B \in B$. De plus, on voit que $\psi_{A^{\perp}}(e_1) = \cdots = \psi_{A^{\perp}}(e_k) = 0$ donc $A \subset \operatorname{Ker}(\psi_{A^{\perp}})$ et $\psi_{A^{\perp}} \in A^{\perp}$. Nous avons donc montré que $B + A^{\perp} = E^*$. Finalement

$$n = \dim(E^*) = \dim(B) + \dim(A^{\perp}) = \dim(A) + \dim(A^{\perp}).$$

Théorème 13. 1. Si B et B' sont deux parties de E* avec $B \subset B'$, on $a^{\perp}(B') \subset B'$ (l'application $B \mapsto B'$ renverse l'inclusion).

- 2. Si B est une partie de E^* , ${}^{\perp}B = {}^{\perp}(\operatorname{Vect}(B))$ est un sous-espace vectoriel de E et $({}^{\perp}B)^{\perp} = \operatorname{Vect}(B)$.
- 3. Si B est un sous-espace vectoriel de E^* ,

$$n = \dim(B) + \dim({}^{\perp}B).$$

La preuve de ce second théorème est similaire à celle du premier. Nous la laissons donc en exercice. L'analogie entre ces deux théorèmes est assez remarquable et illustre la dualité (au sens usuel) entre E et E^* . Nous avons vu que E et E^* sont isomorphes, mais pas de manière naturelle. Cependant, nous avons le fait suivant :

Théorème 14. On appelle bidual de E le dual de E^* (l'ensemble des formes linéaires sur E^*) noté E^{**} . Si $u \in E$, on définit une forme linéaire $\Theta_u : E^* \to \mathbb{K}$ par

$$\Theta_u(\varphi) = \varphi(u).$$

On a donc $\Theta_u \in E^{**}$ et l'application $u \mapsto \Theta_u$ est linéaire. Si E est de dimension finie, cette application est un isomorphisme entre E et E^{**} .

Démonstration. Vérifions que Θ_n est linéaire. Si $\varphi, \psi \in E^*$ et $\lambda \in \mathbb{K}$, on a

$$\Theta_{u}(\lambda\varphi + \psi) = (\lambda\varphi + \psi)(u) = \lambda\varphi(u) + \psi(u) = \lambda\Theta_{u}(\varphi) + \Theta_{u}(\psi),$$

ce qui montre que Θ_u est une forme linéaire sur $E^*: \Theta_u \in E^{**}$. De plus, si $u, v \in E$ et si $\lambda \in \mathbb{K}$, on a, pour tout $\varphi \in E^*$,

$$\Theta_{\lambda u+v}(\varphi) = \varphi(\lambda u+v) = \lambda \varphi(u) + \varphi(v) = \lambda \Theta_u(\varphi) + \Theta_v(\varphi).$$

Remarquons qu'on a utilisé ici le fait que φ est linéaire (!). Nous avons donc montré (φ étant quelconque) que $\Theta_{\lambda u+v} = \lambda \Theta_u + \Theta_v$, ce qui montre que $\Theta: u \mapsto \Theta_u$ est linéaire. Ensuite, on a dim $E^{**} = \dim(E^*) = \dim(E)$, donc pour montrer que Θ est un isomorphisme, il suffit de montrer que Θ est injective. Or, si $\Theta_u = 0$ pour un certain $u \in E$, on a $\forall \varphi \in E^*, 0 = \Theta_u(\varphi) = \varphi(u)$, ce qui impose u = 0 (on consultera ici la preuve du théorème 12 où l'on montre que pour tout sous-espace A et tout $u \neq 0$ il existe une forme linéaire φ nulle sur A et telle que $\varphi(u) \neq 0$, il suffit ici de prendre $A = \{0\}$). Θ est donc un isomorphisme.

1.6 (*) Formes linéaires et applications

Dans cette section, donnons-nous E et F deux \mathbb{K} -espaces vectoriels de dimension finie.

Définition 15. Soit $\Phi \in L(E, F)$ une application linéaire. On appelle application transposée l'application linéaire ${}^t\Phi : F^* \to E^*$ définie par ${}^t\Phi(\varphi) = \varphi \circ \Phi$ pour tout $\varphi \in F^*$.

Nous laissons le soin au lecteur de vérifier que ${}^t\Phi$ est bien définie et linéaire.

Théorème 16. Soit \mathcal{B} (resp. \mathcal{C}) une base de E (resp. de F). Notons \mathcal{B}^* (resp. \mathcal{C}^*) sa base duale. On a alors

$$\operatorname{Mat}_{\mathcal{C}^*,\mathcal{B}^*}({}^t\Phi) = {}^t(\operatorname{Mat}_{\mathcal{B},\mathcal{C}}(\Phi)).$$

Autrement dit, la matrice de l'application transposée (dans les bases duales) est la transposée de l'application elle-même.

Démonstration. Notons $n = \dim(E)$ et $m = \dim(F)$. Soient $A = (a_{ij})$ et $B = (b_{ij})$ les matrices de Φ et Φ :

$$\forall j \in \{1, \dots, n\}, \ \Phi(e_j) = \sum_{i=1}^m a_{ij} f_i, \qquad \forall i \in \{1, \dots, m\}, \ ^t \Phi(f_i^*) = \sum_{j=1}^n b_{ji} e_j^*.$$

On a $\sum_{j=1}^{n} b_{ji} e_{j}^{*} = {}^{t}\Phi(f_{i}^{*}) = f_{i}^{*} \circ \Phi$. La formule (1.3.1) peut s'écrire (en enlevant la référence à $u \in E$) $\mathrm{Id}_{E} = \sum_{j=1}^{n} e_{j}^{*}(\cdot)e_{j}$, d'où

$$\sum_{i=1}^{n} b_{ji} e_{j}^{*} = f_{i}^{*} \circ \Phi \circ \mathrm{Id}_{E} = \sum_{i=1}^{n} e_{i}^{*}(\cdot) f_{i}^{*}(\Phi(e_{j})) = \sum_{i=1}^{n} a_{ij} e_{i}^{*}(\cdot).$$

En identifiant, on trouve donc $b_{ji} = a_{ij}$ pour toute paire (i, j), ce qui montre $B = {}^tA$.

1.7 Exercices

Exercice 1.1. Dans $M_n(\mathbb{K})$, E_{ij} désigne la matrice, dite élémentaire, dont les coefficients sont nuls sauf celui situé à l'intersection de la ligne i et de la colonne j qui vaut $1: E_{ij} = (\delta_{ik}\delta_{jl})_{1 \le k \le n}$

- 1. Justifier que $\mathcal{B}_0 = (E_{ij})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}}$ est une base de $M_n(\mathbb{K})$ (c'est sa base canonique). En déduire $\dim(M_n(\mathbb{K}))$.
- 2. On note $(E_1, E_2, ..., E_n)$ la base canonique de $M_{n,1}(\mathbb{K})$ (l'espace des matrices colonnes de longueur n). Prouver que, pour toute paire (i,j) d'entiers entre 1 et n, on a ${}^tE_i.E_j = \delta_{ij}$, et $E_i.{}^tE_j = E_{ij}$.
- 3. En utilisant la question précédente, montrer que, pour tous i, j, k, l entiers entre 1 et n, on a $E_{ij}E_{kl} = \delta_{jk}E_{il}$.
- 4. Soit $A = (a_{ij})$ une matrice de $M_n(\mathbb{K})$ dont on note L_1, \ldots, L_n les lignes et C_1, \ldots, C_n les colonnes. Décrire les matrices $E_{ij}A$ et AE_{ij} . En déduire le centre de $M_n(\mathbb{K})$: $\mathcal{C} := \{A \in M_n(\mathbb{K}), \forall M \in M_n(\mathbb{K}), AM = MA\}$.

Exercice 1.2. 1. Définir, à l'aide de quantificateurs, les propriétés suivantes de la matrice $A \in M_n(\mathbb{K})$:

- A est triangulaire supérieure (resp. inférieure),
- A est diagonale,
- A est scalaire,
- A est symétrique (resp. antisymétrique).
- 2. Soit $D \in M_n(\mathbb{K})$ une matrice diagonale. Donner une condition nécessaire et suffisante pour que D soit inversible et déterminer alors son inverse.
- 3. On note S_n (resp. A_n) l'ensemble des matrices symétriques (resp. antisymétriques) de $M_n(\mathbb{K})$. Après avoir rappelé les propriétés de la transposition, montrer que S_n et A_n sont deux sous-espaces supplémentaires dans $M_n(\mathbb{K})$.
- 4. Donner une base de S_n et de A_n lorsque n = 2 ou 3 puis généraliser. Donner la dimension de S_n et A_n .

1.7 Exercices

Exercice 1.3. Pour toute matrice $A = (a_{ij})$ de $M_n(\mathbb{K})$, on appelle trace de A le scalaire $\operatorname{tr}(A) = \sum_{i=1}^n a_{ii}$.

- 1. Prouver que l'application $\operatorname{tr}: M_n(\mathbb{K}) \to \mathbb{K}$ est une forme linéaire non nulle sur $M_n(\mathbb{K})$.
- 2. En déduire que $H = \{A \in M_n(\mathbb{K}), \operatorname{tr}(A) = 0\}$ est un hyperplan de $M_n(\mathbb{K})$ et en donner une base lorsque n = 2.
- 3. Prouver que pour toutes matrices $A, B \in M_n(\mathbb{K})$, $\operatorname{tr}({}^tA) = \operatorname{tr}(A)$, et $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.
- 4. Prouver que $\forall A, B \in M_n(\mathbb{K}), \forall p \in \mathbb{N}^*, \operatorname{tr}((AB)^p) = \operatorname{tr}((BA)^p)$.
- 5. A-t-on $\operatorname{tr}(AB) = \operatorname{tr}(A)\operatorname{tr}(B)$ pour tout couple de matrices $A, B \in M_n(\mathbb{K})$?
- 6. Prouver que pour toute matrice $A \in M_n(\mathbb{R})$, on a $\operatorname{tr}({}^t A.A) \geqslant 0$ avec égalité si et seulement si $A = O_n$.

Exercice 1.4. Dans $E = \mathbb{R}^5$ muni de sa base canonique $\mathcal{B}_0 = (e_1, e_2, e_3, e_4, e_5)$, on considère F = Vect(u, v, w, t) où

$$u = (1, 0, 2, 0, 3), \quad v = (2, 0, 1, 0, -1), \quad w = (-1, 0, 1, 0, 2), \quad t = (-1, 0, 4, 0, 9).$$

Par la méthode d'échelonnement, déterminer le rang de la famille (u, v, w, t), une base de F, sa dimension, l'un de ses supplémentaires dans E et une forme linéaire $\varphi \in (\mathbb{R}^5)^*$ telle que $F = \operatorname{Ker} \varphi$.

Exercice 1.5. Dans $E = \mathbb{R}^4$, muni de sa base canonique $\mathcal{B} = (e_1, e_2, e_3, e_4)$, on considère $F = \{(x, y, z, t) \in \mathbb{R}^4, 3z + t = 5x + 4y\}$. Justifier que F est un hyperplan de E, en déduire sa dimension, puis en donner une base, toutes ses équations et tous ses supplémentaires dans E.

Exercice 1.6. Reprendre l'exercice précédent avec $E = \mathbb{R}_2[X]$ et $F = \{P \in E, P(1) + P'(1) = 0\}$.

Exercice 1.7. Dans E un \mathbb{K} -espace vectoriel de dimension finie n, on considère deux vecteurs distincts u, v. Construire une forme linéaire φ sur E telle que $\varphi(u) \neq \varphi(v)$. (On pourra compléter $e_1 = u - v$ en une base de E).

Exercice 1.8. Dans $E = \mathbb{R}^3$ muni de sa base canonique $\mathcal{B}_0 = (e_1, e_2, e_3)$, on considère

$$u_1 = e_2 + e_3$$
, $u_2 = e_2 - e_3$, $u_3 = e_1 + e_2 - 2e_3$.

- 1. Justifier que $\mathcal{B}_1 = (u_1, u_2, u_3)$ est une base de E et déterminer sa base duale. En déduire la matrice de passage Q de \mathcal{B}_1 à \mathcal{B}_0 .
- 2. On pose $F = \text{Vect}(u_1, u_2)$. Justifier que F est un hyperplan de E et déterminer l'une de ses équations.
- 3. Déterminer un système d'équations de $G = \text{Vect}(u_3)$.

Exercice 1.9. Sur $E = \mathbb{R}_3[X]$, on considère les cinq formes linéaires suivantes :

$$\varphi_1(P) = P(0), \quad \varphi_2(P) = P'(0), \quad \varphi_3(P) = P(1), \quad \varphi_4(P) = P'(1), \quad \psi(P) = \int_0^1 P(t)dt.$$

- 1. Prouver que $(\varphi_1, \varphi_2, \varphi_3, \varphi_4)$ est une base de E^* et déterminer sa base préduale (H_1, H_2, H_3, H_4) .
- 2. Déterminer les réels a,b,c,d tels que $\psi=a\varphi_1+b\varphi_2+c\varphi_3+d\varphi_4$.

Exercice 1.10. Dans $E = \mathbb{R}^5$ muni de sa base canonique, on considère l'ensemble F_1 des vecteurs (x, y, z, t, u) satisfaisant

$$\begin{cases} x + 2y + 3z + 4t + 5u = 0, \\ x + y + z + t + u = 0, \\ 5x + 4y + 3z + 2t + u = 0. \end{cases}$$

- 1. Justifier que F_1 est un sous-espace vectoriel de E et que $2 \leq \dim(F_1) \leq 4$.
- 2. Les vecteurs u = (6, -9, 1, 1, 1) et v = (2, -1, 1, -2, 1) appartiennent-ils à F_1 ?
- 3. Déterminer une base de F_1 et en déduire sa dimension.
- 4. Déterminer un supplémentaire G_1 de F_1 dans E puis en donner un système d'équations.
- 5. On pose $F_2 = \text{Vect}(e_1, e_2)$. Déterminer $F_1 \cap F_2$.

Exercices plus difficiles:

Exercice 1.11. Soit n un entier naturel, $n \ge 2$.

1. \mathbb{R}^{n-1} est-il un hyperplan de \mathbb{R}^n ? Donner la forme générale des formes linéaires sur \mathbb{R}^n . En déduire une caractérisation de ses hyperplans.

2. Soit $E = \mathbb{R}_n[X]$. On pose $H_1 = \mathbb{R}_{n-1}[X]$, $H_2 = \{P \in \mathbb{R}_n[X], P(1) = 0\}$, $H_3 = \{P \in \mathbb{R}_n[X], P(0) = 1\}$. H_1 , H_2 et H_3 sont-ils des hyperplans de $\mathbb{R}_n[X]$? Donner deux supplémentaires distincts de H_1 et de H_2 .

Exercice 1.12. Soit E un \mathbb{K} -espace vectoriel de dimension finie n.

- 1. Soient H_1 , H_2 deux hyperplans de E. Discuter la dimension de $H_1 \cap H_2$. Plus généralement, si F est un sous-espace vectoriel de E, discuter la dimension de $F \cap H_1$.
- 2. Soient H_1, H_2 et H_3 trois hyperplans de E. On se donne $\varphi_1, \varphi_2, \varphi_3$ trois formes linéaires telles que $H_i = \operatorname{Ker} \varphi_i$ pour i = 1, 2, 3. Discuter suivant le rang r de $(\varphi_1, \varphi_2, \varphi_3)$ la dimension de $H_1 \cap H_2 \cap H_3$. Interpréter géométriquement les résultats lorsque n = 3.
- 3. Si H_1, H_2, \ldots, H_p sont p hyperplans de E, prouver que $\dim(H_1 \cap H_2 \cap \cdots \cap H_p) \ge n p$.
- 4. Soient H un hyperplan et u un vecteur de $E \setminus H$. Montrer qu'on peut construire une base de E contenant u et aucun vecteur de H.

Exercice 1.13. On se propose de prouver que pour toute forme linéaire φ sur $M_n(\mathbb{K})$, il existe une unique matrice A telle que

$$\forall X \in M_n(\mathbb{K}), \ \varphi(X) = \operatorname{tr}(AX).$$

- 1. Soit $A \in M_n(\mathbb{K})$. Justifier que l'application φ_A de $M_n(\mathbb{K})$ dans \mathbb{K} définie par $\varphi_A(X) = \operatorname{tr}(AX)$ est une forme linéaire sur $M_n(\mathbb{K})$.
- 2. On note Φ l'application de $M_n(\mathbb{K})$ dans son dual définie par $\Phi(A) = \varphi_A$. Montrer que Φ est linéaire.
- 3. Montrer que Ker $(\Phi) = \{O_n\}$ (on calculera pour cela $\varphi_A(E_{ij})$).
- 4. En déduire que Φ est un isomorphisme et conclure.

1.7 Exercices