Ex. No. 1

10-01-2020

DERIVE THE CONTROLLER GAIN USING ROOT LOCUS FROM THE

TIME DOMAIN SPECIFICATION

Aim:

To Derive the Controller gain using root locus from the time domain specification.

Tools required:

- 1. Matlab
- 2. Personal Computer

Formula Used:

i) % Peak Overshoot:

% pk =
$$e^{-\frac{\delta\pi}{\sqrt{(1-\delta^2)}}}$$

where $\delta = Damping Ratio$

ii) Rise Time:

$$T_r = \frac{\pi - \theta}{\omega_d}$$

$$T_r = \frac{\pi - \theta}{\omega_d}$$
 where $\theta = \frac{\tan^{-1}(\sqrt{1} - \delta^2)}{\delta}$

where $\omega_d = \omega_n \sqrt{1 - \delta^2}$

 ω_d = Damping Frequency

 ω_n = Natural Frequency

The physical parameter are:

% Peak Overshoot = 5%

Rise Time 3 sec

Procedure:

1. Matlab Software:

- The Matlab Software is operated and a new Script Screen is opened.
- The Damping ratio and Natural frequency are found using the data sheet and data(% of Peak Overshoot, Rise time).

2. Experiment's Procedure:

- A program for Root locus is written and the program is saved in a folder.
- After saving the program. The program is made to run and any error occurred is corrected and the program is run again.
- The root locus graph is displayed. A random point on the root locus is chosen and k values and the poles are displayed in the output.
- Then the calculated values of k, Natural frequency and damping ratio are entered in the program. The rise time and Peak Overshoot values are obtained from the output graph.
- Then a Control system is designed using the code controlSystemDesigner Plant and then compensated as for our needs.
- The Rise time and Settling time characteristics are displayed on the output by Right click → Properties → Characteristics
 - Rise Time
 - Settling Time
- After obtaining the graph, the required output is snipped using snipping tool and the program is closed.

Matlab Code:

```
sys= (s+7)/(s*(s+5)*(s+15)*(s+20));
rlocus(sys)
axis([-22 3 -15 15])
zeta= 0.7;
wn= 1.8;
sgrid(zeta,wn)
[k,poles]= rlocfind(sys);

sys_cl=feedback(k*sys,1);
step(sys_cl);
s=tf('s');
plant= (s+7)/(s*(s+5)*(s+15)*(s+20));
controlSystemDesigner(plant)
```

Output:

Rise Time and Peak Time:

Control System Designer:

Root Locus:

Step Response:

<u>Inference:</u>			
On the Software:			
On the Procedure:			
D 1.			
<u>Result:</u>			