Курсовая работа

О расстоянии Громова—Хаусдорфа между облаком ограниченных метрических пространств и облаком с нетривиальной стационарной группой

On the Gromov–Hausdorff distance between the cloud of bounded metric spaces and a cloud with nontrivial stabilizer

Нестеров Борис Аркадьевич Кафедра дифференциальной геометрии и приложений Научный руководитель: профессор, д.ф.-м.н. Тужилин Алексей Августинович

1. Введение

Привет!

2. Два определения угла

В данной секции мы рассмотрим два определения угла облака. Для того, чтобы дать эти определения сначала необходимо определить угол между пространствами.

Далее, будем считать, что у облаков нетривиальная стационарная группа и будем обозначать [M] - облако с центром m.

ОПРЕДЕЛЕНИЕ 1. Пусть у облака [M] нетривиальная стационарная группа и его центром является M. Углом между пространствами $X_1, X_2, |X_1M| = r_1, |X_2, M| = r_2, |X_1X_2| = d$, где $r_1, r_2 \neq 0$ называется величина $\arccos\left(\frac{r_1^2 + r_2^2 - d^2}{2r_1r_2}\right)$. Будем обозначать его $\varphi(X_1, X_2)$.

ЗАМЕЧАНИЕ 1. Такое определение естественным образом вытекает из теоремы косинусов, а именно $c^2 = a^2 + b^2 - 2ab\cos(a,b)$.

У угла между пространствами есть следующее свойство.

ЛЕММА 1. Для любых $X_1, X_2 \in [M], \lambda \in St([M])$ выполняется $\varphi(X_1, X_2) = \varphi(\lambda X_1, \lambda X_2)$.

Доказательство. Как в определении угла, будем обозначать

$$|X_1M| = r_1, |X_2, M| = r_2, |X_1X_2| = d.$$

По определению угла получаем следующую цепочку равенств:

$$\varphi(\lambda X_1, \lambda X_2) = \frac{\lambda^2 r_1^2 + \lambda^2 r_2^2 - \lambda^2 d^2}{2\lambda r_1 \lambda r_2} = \varphi(X_1, X_2)$$

Рассмотрим теперь два интересующих нас определения угла облака.

Определение 2. Углом облака [M] называется величина

$$\varphi([M]) = \sup \{ \varphi(X_1, X_2) \mid |X_1, M|, |X_2, M| \neq 0 \}.$$

Определение 3. **Равнобедренным углом** облака [M] называется величина $\varphi_e([M]) = \sup \{ \varphi(X_1, X_2) \mid |X_1, M| = |X_2, M| \neq 0 \}.$

Для этих определений получаем следствие из леммы 1.

ЛЕММА 2. Углы облаков обладают следующими свойствами:

1.
$$\varphi(\lambda[M]) = \varphi([M]),$$

2.
$$\varphi_e(\lambda[M]) = \varphi_e([M]),$$

3.
$$\varphi_e([M]) \leqslant \varphi([M]),$$

4.
$$0 \leqslant \varphi([M]) \leqslant \pi$$
,

5.
$$0 \leqslant \varphi_e([M]) \leqslant \pi$$
.

Доказательство. 1. Следствие леммы 1.

- 2. Следствие леммы 1.
- 3. В определении равнобедренного угла супремум берется по подмножеству пространств из определения угла, следовательно равнобедренный угол не больше.
- 4. Следует из определения арккосинуса и неравенства треугольника.
- 5. Аналогично.

Приведем известные примеры углов облаков.

Гипотеза. Для облаков $[\Delta_1]$, $[\mathbb{R}]$ известно следующее:

- $\bullet \ \varphi([\Delta_1]) = \frac{\pi}{2},$
- $\varphi_e([\Delta_1]) = \frac{\pi}{3}$,
- $\varphi([\mathbb{R}]) = \varphi_e([\mathbb{R}]) = \pi$.

3. Теорема об образе центра

В предыдущей работе была доказана следующая теорема.

ТЕОРЕМА 1. Пусть M – центр облака [M], имеющего нетривиальную стационарную группу. R – соответствие между $[\Delta_1]$ и [M] с конечным искажением ε . Тогда образ пространства Δ_1 лежит от M на расстоянии не большем 2ε .

B ее доказательстве используется следующий факт об облаке $[\Delta_1].$

ТЕОРЕМА 2. Для всякого ограниченного пространства X луч λX , $\lambda \in [0, \infty)$ является геодезической. Иначе говоря, для всяких $\lambda_1, \lambda_2 \in [0, \infty)$ выполняется $|\lambda_1 X, \lambda_2 X| = |\lambda_1 - \lambda_2| \cdot |X, \Delta_1|$.

В общем случае это неверно, в частности, в облаке $[\mathbb{R}]$ луч $\lambda \mathbb{Z}$ не является геодезической ([1]).

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

1. Ivan N. Mikhailov. New geodesic lines in the gromov-hausdorff class lying in the cloud of the real line, 2025.