SF1685: Calculus

Introduction

Lecturer: Per Alexandersson, perale@kth.se

Main topics for the course

- ► Functions
- ► Limits and continuity
- Derivatives
- ► Applications of derivatives (finding minima and maxima)
- ► Integrals
- ► Applications of integrals
- ► Series (infinite sums)

Some notation

Sets of numbers, $\mathbb{N} = \{1, 2, 3, \dots\}, \mathbb{Z}, \mathbb{R}$.

Intervals of real numbers: [1, 5], $[\pi, 8)$.

Set membership symbols: \in and \notin .

Set building notation:

$$X = \{x \in \mathbb{R} : x < 0 \text{ or } x^2 = x\}.$$

What is a function?

A **function** $f: X \to Y$, associates a value, f(x), to every $x \in X$.

The set X is called the **domain**, and Y is the **range**.

We are sometimes sloppy, and deduce the domain from the context — usually the largest one that makes sense.

Some questions to discuss

Question

+24

\X1=2

Which values of x solve $x^2 = 4$? What is $\sqrt{9}$?

2× 10 52=x

Question

What is the natural range and domain for each of the functions since to

f(x) =
$$\sqrt{x-2}$$
, $g(x) = \frac{x^2-4}{x-2}$, $h(x) = \frac{1}{\sin(x)}$? $(x = 1, x)$

(XER) x = 23

Question

What is the natural range and domain for the function log(x)? log denotes the natural logarithm.

Solutions

Combining functions

If we have two functions, f and g, we can combine them in several ways to create new functions:

- ▶ f + g. This is the function $x \mapsto f(x) + g(x)$.
- ▶ $f \cdot g$. This is the function $x \mapsto f(x) \cdot g(x)$.
- ▶ $f \circ g$. This is the function $x \mapsto f(g(x))$. Called **composition**.

Combining functions — discussion

Let
$$f(x) = \sqrt{x}$$
, $g(x) = \log(1 - x)$ and $h(x) = 1 + x^2$.

Question

What are the domains of f + g, f + h and g + h?

Question

What are the domains of the functions $f \circ h$, $h \circ f$ and $g \circ f$?

Combining functions — notes

Domains:
$$f: [0, 0] \sqrt{x}$$
 $foh: \sqrt{1+x^2}$ R
 $5: (-0, 1) \log(1-x)$ $hof: 1 = \sqrt{x^2}$ $[0, 0]$
 $h: R$ $1+x^2$ $5 \circ f: lg(1-\sqrt{x})$, $[0, 1]$.

 $f+5: [0, 0]$
 $5 \circ h: [-0, 1]$

The graph of a function

Formally, the **graph** of a function $f : \mathbb{R} \to \mathbb{R}$ is the set $\{(x, f(x)) : x \in \mathbb{R}\}$. This is a subset of \mathbb{R}^2 , which we sometimes like to draw (in the *xy*-plane).

Polynomials

Polynomials are functions which can be expressed in the form

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0.$$

If $a_n \neq 0$, then the **degree** of P is n. The set of polynomials with coefficients in \mathbb{R} is denoted $\mathbb{R}[x]$.

Polynomials

Polynomials are functions which can be expressed in the form

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0.$$

If $a_n \neq 0$, then the **degree** of P is n. The set of polynomials with coefficients in \mathbb{R} is denoted $\mathbb{R}[x]$.

What is the degree of the polynomial 1? Of the polynomial 0?

Polynomials

Polynomials are functions which can be expressed in the form

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0.$$

If $a_n \neq 0$, then the **degree** of P is n. The set of polynomials with coefficients in \mathbb{R} is denoted $\mathbb{R}[x]$.

What is the degree of the polynomial 1? Of the polynomial 0?

The number of zeros (roots) of a polynomial is at most as much as its degree.

Rational functions

A rational function is a function of the form

$$\frac{P(x)}{Q(x)}$$
, where P, Q are polynomials.

Rational functions

A rational function is a function of the form

$$\frac{P(x)}{Q(x)}$$
, where P, Q are polynomials.

What is the domain for such a function?

Rational functions

A rational function is a function of the form

$$\frac{P(x)}{Q(x)}$$
, where P, Q are polynomials.

What is the domain for such a function? Is f(x) = 2x + 3 a rational function?

$$\frac{2x+3}{2}$$

Trigonometric functions

We have sin(x), cos(x), tan(x) and so on. We always use **radians**.

Identities you should know:

$$\sin^{2}(x) + \cos^{2}(x) = 1, \qquad \cos(2x) = \cos^{2}(x) - \sin^{2}(x), \qquad \sin(2x) = 2\sin(x)\cos(x).$$

$$\cos(2x) + 1 = 2\cos^{2}(x) - \sin^{2}(x), \qquad \sin(2x) = 2\sin(x)\cos(x).$$

$$\cos(2x) + 1 = 2\cos^{2}(x) - \sin^{2}(x), \qquad \sin(2x) = 2\sin(x)\cos(x).$$

Piecewise functions, strange functions

Sometimes, it is convenient to define functions with cases, so-called **piecewise** functions. The absolute value function (with $\mathbb R$ as domain) is defined as

$$|x| := \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0. \end{cases}$$

Another example is

$$g(x) := \begin{cases} 2x + 3 & \text{if } x \ge 2 \\ 0 & \text{if } 0 < x < 2 \\ x^2 & \text{if } x < 0 \end{cases}.$$

About the equality sign (=)

Consider these mathematical expressions:

- 1. $x^2 + 5x + 6 = 0$ tan. How, the her some x.
- 2. $f(x) = x^2 + \sin(x)$:= Definition, intoluus notation.
- 3. $\cos^2(x) + \sin^2(x) = 1$ Telestis, relation.
- 4. $a^2 + b^2 = c^2$ Relation / I clertis: 5. $x^2/x = x$ "Identif" alsela.
- 6. $x^2 \ge 0 \iff x \ne 0$ Equivalence.

What is the *meaning* (or intention) of the equality sign in each case?

$$f'(x) = 2x-2 = 0$$

$$f'(x) = x^2-2x+3,$$

$$f'(x)$$

1'(x)=2x-2

Notes?

It
$$f(x)=0$$
 for $x \in \mathbb{R}$,

we may write $f(x)=0$.

Therefore $f(x)=0$.

Exercises I

Question

Let $f(x) = 2x + \frac{1}{x}$ and $g(x) = x^2 - \frac{1}{x}$. What are the natural domains for f and g? What is the natural domain for f + g?

Question

Find all solutions to the equation $\frac{\sin(x)}{x} = 0$.

Question

Find numbers a and b so that $\frac{x+1}{x^2+5x+6} = \frac{a}{x+2} + \frac{b}{x+2}$.

Exercises II

Question

Verify that $|x| = \sqrt{x^2}$ is true for all $x \in \mathbb{R}$.

Question

Let f(x) be defined as $\sqrt{1-x}$ if $x \le 1$ and $-\sqrt{x-1}$ otherwise. What is the domain and range of f? Is f invertible?

Notes?