Homework 2

1 What is Cantor's Theorem?

The set of all sets of positive integers (i.e., the power set of the set of positive integers) is not enumerable. [JD.Cheng_ToC1]

2 Mathematics notion

Suppose \mathbb{N}^+ is the set of positive integers, then its power set $\mathbf{P}(\mathbb{N}^+)$ is not enumerable.

3 Proof

3.1 Method 1: reductio ad absurdum

Suppose S_i ($i \in \mathbb{N}$) are the sets of positive integers, i.e., S_i are the elements of $\mathbf{P}(\mathbb{N}^+)$. Then we can construct a sequence

$$L: S_0, S_1, S_2, ...$$

Our goal is to find that if this sequence captures all S_i . With the set

$$\Delta(L) = \{ n | n \in \mathbb{N}^+, n \notin S_n \}$$

we can assume that $\exists m \in \mathbb{N}^+, S_m = \Delta(L)$. However, this contradicts the definition of $\Delta(L)$. Therefore, $\forall m \in \mathbb{N}^+, S_m \neq \Delta(L)$, i.e., some S_i are not in L. Thus, we cannot list S_i as a sequence, i.e., the set $\mathbf{P}(\mathbb{N}^+)$ is not enumerable.

3.2 Method 2: diagonalization method

The subsets of set can be represented by binary arrays, where 0 represents not existence, 1 represents existence. And suppose these subsets can be listed in order.

Suppose a power set $P(\mathbb{N}^+)$ with elements $S_0, S_1, S_2, ...$, there are binary arrays $s_0, s_1, s_2, ...$ Then the power set can be written as a matrix. For example,

$$s_0 = 1 \quad 1 \quad 0 \quad 1 \quad 0 \quad 1 \quad \dots$$
 $s_1 = 1 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0 \quad \dots$
 $s_2 = 0 \quad 1 \quad 1 \quad 1 \quad 0 \quad 1 \quad \dots$
 $s_3 = 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1 \quad \dots$
 $s_4 = 1 \quad 0 \quad 1 \quad 1 \quad 1 \quad \dots$
 \dots

Extract the diagonal of the matrix and denote it as *D*:

$$D = 10111...$$

No matter how to permutate the binary arrays, D is determined as long as the mapping relation is determined. Thus, among all the elements in $P(\mathbb{N}^+)$, the *i*-th number of the *i*-th element must equal to the

i-th number of *D*. Then we have

 $\overline{D} = 01000...$

Since \overline{D} is also an binary array, then it must be an element in $\mathbf{P}(\mathbb{N}^+)$. However, \overline{D} breaks the rule of the matrix. Because if we put \overline{D} in the i-th line of the matrix, the i-th number of \overline{D} must not equal to the i-th number of D. After all, the set $\mathbf{P}(\mathbb{N}^+)$ is not enumerable.