MY SOLUTIONS FOR "MODERN QUANTUM MECHANICS (3RD EDITION)" BY J. J. SAKURAI

HEEWON LEE

0. Introduction

This document is an archive of my solutions to Sakurai's "Modern Quantum Mechanics" textbook.

1. Chapter 1

1. We first recall that the average speed of a particle in a system with temperature T is given by

$$\bar{v} = \sqrt{\frac{8k_BT}{\pi m_{Ag}}}.$$

Suppose a silver atom moving at this speed passes through a region of length l_1 where it is accelerated upwards by a, followed by a region of length l_2 where it moves at constant velocity. The total upwards displacement is given by

$$\Delta z = \frac{1}{2} a_z \left(\frac{l_1}{\overline{v}}\right)^2 + a_z \left(\frac{l_1}{\overline{v}}\right) \cdot \frac{l_2}{\overline{v}}$$
$$= \frac{a_z l_1 (l_1 + l_2)}{2\overline{v}^2}.$$

The separation between the spin-up and spin-down beams is twice this value.

The silver atom's magnetic moment has value $\mu=9.27\times 10^{-24}J/T$ and the vertical magnetic field changes by $\frac{\partial B_z}{\partial z}=10T/m$; hence, the upward force is given by $F_z=\mu\frac{\partial B_z}{\partial z}=9.27\times 10^{-23}N$.

$$\begin{split} 2\Delta z &= \frac{a_z l_1 (l_1 + 2 l_2)}{\bar{v}^2} \\ &= l_1 (l_1 + 2 l_2) \cdot \frac{F_z}{m_{Ag}} \cdot \frac{\pi m_{Ag}}{8 k_B T} \\ &= (1m) (3m) \cdot (9.27 \times 10^{-23} N) \cdot \frac{\pi}{8 (1.37 \times 10^{-23} J/K) (1273 K)} \\ &\approx 6.22 mm. \end{split}$$

Date: October 14, 2023.

2.

$$\begin{split} [AB,CD] &= ABCD - CDAB \\ &= -ACDB + A(CB+BC)D - CDAB \\ &= -AC(DB+BD) + A\left\{C,B\right\}D - CDAB + ACDB \\ &= -AC\left\{D,B\right\} + A\left\{C,B\right\}D - C(DA+AD)B + CADB + ACDB \\ &= -AC\left\{D,B\right\} + A\left\{C,B\right\}D - C\left\{D,A\right\}B + (CA+AC)DB \\ &= -AC\left\{D,B\right\} + A\left\{C,B\right\}D - C\left\{D,A\right\}B + \left\{C,A\right\}DB \end{split}$$