COMP9020: Relations — Complete Study Notes

Contents

1. Properties of Relations

Reflexivity

A relation R on set A is reflexive if:

$$\forall x \in A, (x, x) \in R$$

Example: $A = \{1, 2, 3\}, R = \{(1, 1), (2, 2), (3, 3), (1, 2)\}$ is reflexive. **Non-example:** $R = \{(1, 1), (2, 2)\}$ is not reflexive (missing (3, 3)). **Questions:**

- Is $R = \{(a, a), (b, b)\}$ reflexive on $A = \{a, b, c\}$?
- Give an example of a reflexive relation on $A = \{1, 2\}.$
- True/False: A reflexive relation must have exactly |A| elements.

Solutions:

- No, (c,c) is missing.
- $\{(1,1),(2,2)\}.$
- False. It can have more than |A| elements.

Irreflexivity

A relation R is irreflexive if:

$$\forall x \in A, (x, x) \notin R$$

Example: $R = \{(1, 2), (2, 1)\}$ on $A = \{1, 2\}$ is irreflexive.

Non-example: $R = \{(1,1)\}$ is not irreflexive.

Questions and Solutions:

- Q: Give an irreflexive relation on $\{1, 2, 3\}$. A: $R = \{(1, 2), (2, 3), (3, 1)\}$.
- Q: Can a relation be both reflexive and irreflexive? A: No, unless A is empty.

Symmetry

R is symmetric if:

$$(x,y) \in R \Rightarrow (y,x) \in R$$

Example: $\{(1,2),(2,1)\}$ is symmetric.

Non-example: $\{(1,2)\}$ is not symmetric.

Q: Is
$$R = \{(a, b), (b, a), (c, c)\}$$
 symmetric?

A: Yes.

Q: Can a symmetric relation be irreflexive?

A: Yes, e.g., $\{(1,2),(2,1)\}.$

Antisymmetry

R is antisymmetric if:

$$(x,y) \in R$$
 and $(y,x) \in R \Rightarrow x = y$

Example: $\{(1,2)\}$ is antisymmetric.

Non-example: $\{(1,2),(2,1)\}$ is not antisymmetric.

Q: Let $R = \{(a, a), (a, b), (b, c)\}$. Is R antisymmetric?

A: Yes.

Q: Can a relation be both symmetric and antisymmetric?

A: Yes, if only self-pairs exist.

Transitivity

R is transitive if:

$$(x,y) \in R$$
 and $(y,z) \in R \Rightarrow (x,z) \in R$

Example: $\{(1,2),(2,3),(1,3)\}.$

Non-example: $\{(1,2),(2,3)\}$ missing (1,3).

Q: What must be added to $\{(a,b),(b,c)\}$ to make it transitive?

A: Add (a,c).

Q: Transitive closure of $\{(0,1),(1,2)\}$?

A: $\{(0,1),(1,2),(0,2)\}$

Equivalence Relations

Reflexive + Symmetric + Transitive

Example: $\{(1,1),(2,2),(3,3),(1,3),(3,1)\}$

Q: Prove congruence mod n is equivalence.

A: Reflexive, symmetric, and transitive by definition.

Q: Equivalence classes of $R = \{(0,0), (1,1), (1,3), (3,1), (3,3)\}$?

A: $[0] = \{0\}, [1] = [3] = \{1, 3\}$

Partial Orders

Reflexive + Antisymmetric + Transitive

Example: \leq , \subseteq

Q: Is \subseteq a partial order?

A: Yes.

Q: Draw Hasse diagram of $(P(\{a,b\}),\subseteq)$

A: Show all subsets ordered by inclusion.

2. Relational Examples Using Mathematical Symbols

Equality (=)

$$R = \{(a, a) \mid a \in A\}$$

An equivalence relation.

Less Than (<)

$$R = \{(a, b) \mid a < b\}$$

Irreflexive, transitive, asymmetric.

Divides (|)

$$R = \{(a, b) \mid a \mid b\}$$

Reflexive, transitive, antisymmetric partial order.

Exam-Style Questions

- \bullet Prove that " \leq " is a partial order on $\mathbb{Z}.$
- \bullet Show that "|" is transitive on $\mathbb{N}.$
- Is "<" symmetric, antisymmetric, or neither on \mathbb{R} ?