Listing of Claims:

This listing of claims replaces all prior versions, and listings, of claims in the captioned application.

1. (Original) A compound having the formula

the *N*-oxide forms, the pharmaceutically acceptable addition salts and the stereochemically isomeric forms thereof, wherein

a¹-a²=a³-a⁴ represents a divalent radical selected from N-CH=CH-CH, N-CH=N-CH or CH-CH=N-CH;

Z represents O, NH or S;

Y represents -C₃₋₉alkyl-, -C₃₋₉alkenyl-, -C₁₋₅alkyl-oxy-C₁₋₅alkyl-,

 $-C_{1-5}$ alkyl-NR¹³- C_{1-5} alkyl-, $-C_{1-5}$ alkyl-NR¹⁴-CO- C_{1-5} alkyl-,

- C_{1-5} alkyl-CO- NR^{15} - C_{1-5} alkyl-, - C_{1-6} alkyl-CO-NH-,

- C_{1-6} alkyl-NH-CO-, -CO-NH- C_{1-6} alkyl-, -NH-CO- C_{1-6} alkyl-, -CO- C_{1-7} alkyl-,

- C_{1-7} alkyl-CO-, C_{1-6} alkyl-CO- C_{1-6} alkyl;

X1 represents a direct bond, O, -O-C1-2alkyl-, CO, -CO- C1-2alkyl-, NR11,

 $-NR^{11} - C_{1\text{--}2} alkyl -, \ NR^{16} - CO -, \ NR^{16} - CO - C_{1\text{--}2} alkyl -, \ -O - N = CH - \ or \ C_{1\text{--}2} alkyl;$

X² represents a direct bond, O, -O-C₁₋₂alkyl-, CO, -CO- C₁₋₂alkyl-, NR¹²,

 NR^{12} - C_{1-2} alkyl-, NR^{17} -CO-, NR^{17} -CO- C_{1-2} alkyl-, Het^{20} - C_{1-2} alkyl-, -O-N=CH- or C_{1-2} alkyl;

R¹ represents hydrogen, cyano, halo, hydroxy, formyl, C₁₋₆alkoxy-, C₁₋₆alkyl-,

C₁₋₆alkoxy- substituted with halo,

C₁₋₄alkyl substituted with one or where possible two or more substituents selected from hydroxy or halo;

R² represents hydrogen, cyano, halo, hydroxy, hydroxycarbonyl-, Het¹⁶-carbonyl-, C₁₋₄alkyloxycarbonyl-, C₁₋₄alkylcarbonyl-, aminocarbonyl-, mono-or

- di(C₁₋₄alkyl)aminocarbonyl-, Het¹, formyl, C₁₋₄alkyl-, C₂₋₆alkynyl-, C₃₋₆cycloalkyl-,
- C₃₋₆cycloalkyloxy-, C₁₋₆alkoxy-, Ar⁵, Ar¹-oxy-, dihydroxyborane,
- C₁₋₆alkoxy- substituted with halo,
- C₁₋₄alkyl substituted with one or where possible two or more substituents selected from halo, hydroxy or NR⁵R⁶,
- C_{1-4} alkylcarbonyl- wherein said C_{1-4} alkyl is optionally substituted with one or where possible two or more substituents selected from hydroxy or C_{1-4} alkyl-oxy-;
- R³ represents hydrogen, C₁₋₄alkyl, cyano or C₁₋₄alkyl substituted with one or more substituents selected from halo, C₁₋₄alkyloxy-, amino-, mono-or di(C₁₋₄alkyl)amino-, C₁₋₄alkyl-sulfonyl- or phenyl;
- R⁴ represents hydrogen, hydroxy, Ar³-oxy, Ar⁴-C₁₋₄alkyloxy-, C₁₋₄alkyloxy-, C₂₋₄alkenyloxy- optionally substituted with Het¹² or R⁴ represents C₁₋₄alkyloxy substituted with one or where possible two or more substituents selected from C₁₋₄alkyloxy-, hydroxy, halo, Het²-, -NR⁷R⁸, -carbonyl- NR⁹R¹⁰ or Het³-carbonyl-;
- R⁵ and R⁶ are each independently selected from hydrogen or C₁₋₄alkyl;
- R^7 and R^8 are each independently selected from hydrogen, C_{1-4} alkyl, Het^8 , aminosulfonyl-, mono- or di (C_{1-4} alkyl)-aminosulfonyl, hydroxy- C_{1-4} alkyl-, C_{1-4} alkyl-, hydroxycarbonyl- C_{1-4} alkyl-, C_{3-6} cycloalkyl, Het^9 carbonyl- C_{1-4} alkyl-, Het^{10} -carbonyl-, polyhydroxy- C_{1-4} alkyl-, Het^{11} - C_{1-4} alkyl- or Ar^2 - C_{1-4} alkyl-;
- R^9 and R^{10} are each independently selected from hydrogen, $C_{1\text{-4}}$ alkyl, $C_{3\text{-6}}$ cycloalkyl, Het 4 , hydroxy- $C_{1\text{-4}}$ alkyl-, $C_{1\text{-4}}$ alkyloxy $C_{1\text{-4}}$ alkyl- or polyhydroxy- $C_{1\text{-4}}$ alkyl-;
- R¹¹ represents hydrogen, C₁₋₄alkyl, Het⁵, Het⁶-C₁₋₄alkyl-, C₂₋₄alkenylcarbonyl- optionally substituted with Het⁷-C₁₋₄alkylaminocarbonyl-, C₂₋₄alkenylsulfonyl-, C₁₋₄alkyloxyC₁₋₄alkyl- or phenyl optionally substituted with one or where possible two or more substituents selected from hydrogen, hydroxy, amino or C₁₋₄alkyloxy-;
- R^{12} represents hydrogen, $C_{1\text{-4}}$ alkyl, $C_{1\text{-4}}$ alkyl-oxy-carbonyl-, Het^{17} , Het^{18} - $C_{1\text{-4}}$ alkyl-, $C_{2\text{-4}}$ alkenylcarbonyl- optionally substituted with Het^{19} - $C_{1\text{-4}}$ alkylaminocarbonyl-, $C_{2\text{-4}}$ alkenylsulfonyl-, $C_{1\text{-4}}$ alkyloxy $C_{1\text{-4}}$ alkyl- or phenyl optionally substituted with one or where possible two or more substituents selected from hydrogen, hydroxy, amino or $C_{1\text{-4}}$ alkyloxy-;
- R¹³ represents hydrogen, C₁₋₄alkyl, Het¹³, Het¹⁴-C₁₋₄alkyl- or phenyl optionally substituted with one or where possible two or more substituents selected from hydrogen, hydroxy, amino or C₁₋₄alkyloxy-;

- R^{14} and R^{15} are each independently selected from hydrogen, C_{1-4} alkyl, Het¹⁵- C_{1-4} alkyl- or C_{1-4} alkyloxy C_{1-4} alkyl-;
- R^{16} and R^{17} are each independently selected from hydrogen, C_{1-4} alkyl, Het 21 - C_{1-4} alkyl- or C_{1-4} alkyloxy C_{1-4} alkyl-;
- Het 1 represents a heterocycle selected from piperidinyl, morpholinyl, piperazinyl, furanyl, pyrazolyl, dioxolanyl, thiazolyl, oxazolyl, imidazolyl, isoxazolyl, oxadiazolyl, pyridinyl or pyrrolidinyl wherein said Het 1 is optionally substituted with one or where possible two or more substituents selected from amino, C_{1-4} alkyl, hydroxy- C_{1-4} alkyl-, phenyl- C_{1-4} alkyl-,
 - C_{1-4} alkyl-oxy- C_{1-4} alkyl- mono- or di $(C_{1-4}$ alkyl)amino- or amino-carbonyl-;
- Het² represents a heterocycle selected from morpholinyl, piperazinyl, piperidinyl, pyrrolidinyl, thiomorpholinyl or dithianyl wherein said Het² is optionally substituted with one or where possible two or more substituents selected from hydroxy, halo, amino, C₁₋₄alkyl-, hydroxy-C₁₋₄alkyl-, C₁₋₄alkyl-oxy-C₁₋₄alkyl-, hydroxy-C₁₋₄alkyl-oxy-C₁₋₄alkyl-, mono- or di(C₁₋₄alkyl)amino-, mono- or di(C₁₋₄alkyl)amino-C₁₋₄alkyl-, aminoC₁₋₄alkyl-, mono- or di(C₁₋₄alkyl)amino-sulfonyl-, aminosulfonyl-;
- Het³, Het⁴ and Het⁸ each independently represent a heterocycle selected from morpholinyl, piperazinyl, piperidinyl, furanyl, pyrazolyl, dioxolanyl, thiazolyl, oxazolyl, imidazolyl, isoxazolyl, oxadiazolyl, pyridinyl or pyrrolidinyl wherein said Het³, Het⁴ or Het⁸ is optionally substituted with one or where possible two or more substituents selected from hydroxy-, amino-, C₁₋₄alkyl-, C₃₋₆cycloalkyl-C₁₋₄alkyl-, aminosulfonyl-, mono- or di(C₁₋₄alkyl)aminosulfonyl or amino-C₁₋₄alkyl-;
- Het⁵ represent a heterocycle selected from pyrrolidinyl or piperidinyl wherein said heterocycle is optionally substituted with one or where possible two or more substituents selected from C_{1-4} alkyl, C_{3-6} cycloalkyl, hydroxy- C_{1-4} alkyl-, C_{1-4} alkyloxy C_{1-4} alkyl or polyhydroxy- C_{1-4} alkyl-;
- Het⁶ and Het⁷ each independently represent a heterocycle selected from morpholinyl, pyrrolidinyl, piperazinyl or piperidinyl wherein said Het⁶ and Het⁷ are optionally substituted with one or where possible two or more substituents selected from C_{1-4} alkyl, C_{3-6} cycloalkyl, hydroxy- C_{1-4} alkyl-, C_{1-4} alkyloxy C_{1-4} alkyl or polyhydroxy- C_{1-4} alkyl-;
- Het⁹ and Het¹⁰ each independently represent a heterocycle selected from furanyl, piperidinyl, morpholinyl, piperazinyl, pyrazolyl, dioxolanyl, thiazolyl, oxazolyl, imidazolyl, isoxazolyl, oxadiazolyl, pyridinyl or pyrrolidinyl wherein said Het⁹ or Het¹⁰ is optionally substituted C_{1-4} alkyl, C_{3-6} cycloalkyl- C_{1-4} alkyl- or amino- C_{1-4} alkyl-;

- Het¹¹ represents a heterocycle selected from indolyl or
- Het¹² represents a heterocycle selected from morpholinyl, piperazinyl, piperidinyl, pyrrolidinyl, thiomorpholinyl or dithianyl wherein said Het¹² is optionally substituted with one or where possible two or more substituents selected from hydroxy, halo, amino, C_{1-4} alkyl-, hydroxy- C_{1-4} alkyl-, C_{1-4} alkyl-oxy- C_{1-4} alkyl-, mono- or di(C_{1-4} alkyl)amino- or mono- or di(C_{1-4} alkyl)amino- C_{1-4} alkyl-;
- Het¹³ represent a heterocycle selected from pyrrolidinyl or piperidinyl wherein said heterocycle is optionally substituted with one or where possible two or more substituents selected from C_{1-4} alkyl, C_{3-6} cycloalkyl, hydroxy- C_{1-4} allkyl-, C_{1-4} alkyloxy C_{1-4} alkyl or polyhydroxy- C_{1-4} alkyl-;
- Het¹⁴ represent a heterocycle selected from morpholinyl, pyrrolidinyl, piperazinyl or piperidinyl wherein said heterocycle is optionally substituted with one or where possible two or more substituents selected from C₁₋₄alkyl, C₃₋₆cycloalkyl, hydroxy-C₁₋₄alkyl-, C₁₋₄alkyloxyC₁₋₄alkyl or polyhydroxy-C₁₋₄alkyl-;
- Het¹⁵ and Het²¹ each independently represent a heterocycle selected from morpholinyl, pyrrolidinyl, piperazinyl or piperidinyl wherein said Het¹⁵ or Het²¹ are optionally substituted with one or where possible two or more substituents selected from C₁₋₄alkyl, C₃₋₆cycloalkyl, hydroxy-C₁₋₄alkyl-, C₁₋₄alkyloxyC₁₋₄alkyl or polyhydroxy-C₁₋₄alkyl-;
- Het¹⁶ represent a heterocycle selected from morpholinyl, pyrrolidinyl, piperazinyl, 1,3,2-dioxaborolane or piperidinyl wherein said heterocycle is optionally substituted with one or more substituents selected from C₁₋₄alkyl;
- Het¹⁷ represent a heterocycle selected from pyrrolidinyl or piperidinyl wherein said heterocycle is optionally substituted with one or where possible two or more substituents selected from C_{1-4} alkyl, C_{3-6} cycloalkyl, hydroxy- C_{1-4} alkyl-, C_{1-4} alkyloxy C_{1-4} alkyl or polyhydroxy- C_{1-4} alkyl-;
- Het¹⁸ and Het¹⁹ each independently represent a heterocycle selected from morpholinyl, pyrrolidinyl, piperazinyl or piperidinyl wherein said Het¹⁸ and Het¹⁹ are optionally substituted with one or where possible two or more substituents selected from
 - $C_{1\text{-4}}$ alkyl, $C_{3\text{-6}}$ cycloalkyl, hydroxy- $C_{1\text{-4}}$ alkyl-, $C_{1\text{-4}}$ alkyloxy $C_{1\text{-4}}$ alkyl-;
- Het²⁰ represents a heterocycle selected from pyrrolidinyl, 2-pyrrolidinyl, piperidinyl, piperazinyl or pyrazolidinyl wherein said heterocycle is optionally substituted with one or where possible two or more substituents selected from C₁₋₄alkyl,

- $C_{3\text{-}6}$ cycloalkyl, hydroxy- $C_{1\text{-}4}$ alkyl-, $C_{1\text{-}4}$ alkyloxy $C_{1\text{-}4}$ alkyl or polyhydroxy- $C_{1\text{-}4}$ alkyl-; and
- Ar¹, Ar², Ar³, Ar⁴ and Ar⁵ each independently represent phenyl optionally substituted with cyano, C₁₋₄alkylsulfonyl-, C₁₋₄alkylsulfonylamino-, aminosulfonylamino-, hydroxy-C₁₋₄alkyl, aminosulfonyl-, hydroxy-, C₁₋₄alkyloxy- or C₁₋₄alkyl.
- 2. (Original) A compound according to claim 1 wherein;

Z represents NH;

- Y represents $-C_{3-9}$ alkyl-, $-C_{2-9}$ alkenyl-, $-C_{1-5}$ alkyl-oxy- C_{1-5} alkyl-, $-C_{1-5}$ alkyl-NR¹³- $-C_{1-5}$ alkyl-, $-C_{1-5}$ alkyl-NR¹⁴-CO- $-C_{1-5}$ alkyl-, $-C_{1-6}$ alkyl-NH-CO-, $-C_{1-6}$ alkyl-, $-C_{1-7}$ alkyl-, $-C_{1-7}$ alkyl-CO- or $-C_{1-6}$ alkyl-CO- $-C_{1-6}$ alkyl-
- X¹ represents O, -O-C₁₋₂alkyl-, -O-N=CH-, NR¹¹ or -NR¹¹-C₁₋₂alkyl-; in a particular embodiment X¹ represents a direct bond, C₁₋₂alkyl-, -O-C₁₋₂alkyl,-NR¹¹-, -O- or -O-CH₂-;
- X^2 represents a direct bond, O, -O-C₁₋₂alkyl-, -O-N=CH-, NR¹⁷-CO-, NR¹⁷-CO-C₁₋₂alkyl-, C₁₋₂alkyl, Het²⁰-C₁₋₂alkyl-, NR¹² or NR¹²-C₁₋₂alkyl-; in a particular embodiment X^2 represents a direct bond, C₁₋₂alkyl-, -O-C₁₋₂alkyl, NR¹⁷-CO-, NR¹⁷-CO-C₁₋₂alkyl-, Het²⁰-C₁₋₂alkyl-, -O- or -O-CH₂-;
- R¹ represents hydrogen, cyano, halo or hydroxy, preferably halo;
- R² represents hydrogen, cyano, halo, hydroxy, hydroxycarbonyl-,

 C₁₋₄alkyloxycarbonyl-, Het¹⁶-carbonyl-, C₁₋₄alkyl-, C₂₋₆alkynyl-, Ar⁵ or Het¹;

 in a further embodiment R² represents hydrogen, cyano, halo, hydroxy,

 or Ar⁵; in a more particular embodiment R² represents hydrogen or halo;
- R³ represents hydrogen;
- R^4 represents hydrogen, hydroxy, C_{1-4} alkyloxy-, Ar^4 - C_{1-4} alkyloxy or R^4 represents C_{1-4} alkyloxy substituted with one or where possible two or more substituents selected from
 - C_{1-4} alkyloxy- or Het^2 -;
- R¹¹ represents hydrogen, C₁₋₄alkyl- or C₁₋₄alkyl-oxy-carbonyl-;
- R^{12} represents hydrogen, C_{1-4} alkyl- or C_{1-4} alkyl-oxy-carbonyl-;
- R¹³ represents hydrogen or Het¹⁴-C₁₋₄alkyl, in particular morpholinyl-C₁₋₄alkyl;
- R^{14} represents hydrogen or C_{1-4} alkyl;
- R^{17} represents hydrogen, C_{1-4} alkyl-, Het^{21} - C_{1-4} alkyl or C_{1-4} alkyl-oxy- C_{1-4} alkyl; in particular R^{17} represents hydrogen or C_{1-4} alkyl;
- Het¹ represents thiazolyl optionally substituted with amino, C_{1-4} alkyl, hydroxy- C_{1-4} alkyl-, phenyl, phenyl- C_{1-4} alkyl-, C_{1-4} alkyl-oxy- C_{1-4} alkyl-, mono- or di(C_{1-4} alkyl)amino- or amino-carbonyl-;

- Het² represents a heterocycle selected from morpholinyl, piperazinyl, piperidinyl or pyrrolidinyl wherein said Het² is optionally substituted with one or where possible two or more substituents selected from hydroxy, amino or C₁₋₄alkyl-; In a further embodiment Het² represents a heterocycle selected from morpholinyl or piperidinyl optionally substituted with C₁₋₄alkyl-, preferably methyl;
- Het¹⁴ represents a heterocycle selected from morpholinyl, piperazinyl, piperidinyl or pyrrolidinyl wherein said Het¹⁴ is optionally substituted with one or where possible two or more substituents selected from hydroxy, amino or C₁₋₄alkyl-;
- Het¹⁶ represents a heterocycle selected from piperidinyl, morpholinyl or pyrrolidinyl;
- Het²⁰ represents a heterocycle selected from pyrrolidinyl, 2-pyrrolidinyl or piperidinyl;
- Het^{21} represents a heterocycle selected from morpholinyl, piperazinyl, piperidinyl or pyrrolidinyl wherein said Het^{21} is optionally substituted with one or where possible two or more substituents selected from hydroxy, amino or C_{1-4} alkyl-;
- Ar⁴ represents phenyl optionally substituted with cyano, hydroxy-, C_{1-4} alkyloxy or C_{1-4} alkyl;
- Ar⁵ represents phenyl optionally substituted with cyano, hydroxy, C_{1-4} alkyloxy or C_{1-4} alkyl.
- 3. (Original) A compound according to claim 1 wherein;

Z represents NH;

Y represents $-C_{3-9}$ alkyl-, $-C_{1-5}$ alkyl-NR¹³- C_{1-5} alkyl-, $-C_{1-5}$ alkyl-NR¹⁴-CO- C_{1-5} alkyl-, $-C_{1-6}$ alkyl-NH-CO- or -CO-NH $-C_{1-6}$ alkyl-;

 X^1 represents -O-, -NR¹¹-, -NR¹⁶-CO-, or -NR¹⁶-CO-C₁₋₂alkyl-;

 X^2 represents a direct bond, $-C_{1-2}$ alkyl-, $-O-C_{1-2}$ alkyl-, $-O-CH_2$ - or $Het^{20}-C_{1-2}$ alkyl-;

R¹ represents hydrogen or halo;

R² represents hydrogen, cyano, halo, hydroxycarbonyl-, C₁₋₄alkyloxycarbonyl-, Het¹⁶-carbonyl- or Ar⁵; in particular R² represents hydrogen or halo;

R³ represents hydrogen;

 R^4 represents hydrogen, hydroxy, $C_{1\text{--}4}$ alkyloxy-, Ar^4 - $C_{1\text{--}4}$ alkyloxy or R^4 represents $C_{1\text{--}4}$ alkyloxy substituted with one or where possible two or more substituents selected from

C₁₋₄alkyloxy- or Het²-;

R¹¹ represents hydrogen;

 R^{12} represents hydrogen, C_{1-4} alkyl- or C_{1-4} alkyl-oxy-carbonyl-;

- R¹³ represents hydrogen or Het¹⁴-C₁₋₄alkyl, in particular hydrogen or morpholinyl-C₁₋₄alkyl;
- Het² represents a heterocycle selected from morpholinyl, piperazinyl, piperidinyl or pyrrolidinyl wherein said Het^2 is optionally substituted with one or where possible two or more substituents selected from hydroxy, amino or $C_{1\text{--}4}$ alkyl-; In a further embodiment Het^2 represents a heterocycle selected from morpholinyl or piperidinyl optionally substituted with $C_{1\text{--}4}$ alkyl-, preferably methyl;

Het¹⁴ represents morpholinyl;

Het¹⁶ represents a heterocycle selected from morpholinyl or pyrrolidinyl;

Het²⁰ represents pyrrolidinyl or piperidinyl;

Ar⁴ represents phenyl;

Ar⁵ represents phenyl optionally substituted with cyano.

- 4. (Previously presented) A compound according to claim 1 wherein the R¹ substituent is at position 4', the R² substituent is at position 5', the R³ substituent is at position 3 and the R⁴ substituent at position 7 of the structure of formula (I).
- 5. (Previously presented) A compound according to claim 1, wherein a^1 - a^2 = a^3 - a^4 represents N-CH=CH-CH.

6.-11. (Cancelled)

12. (Previously presented) A pharmaceutical composition comprising a pharmaceutically acceptable carrier and, as active ingredient, an effective kinase inhibitory amount of a compound as claimed in claim 1.

13-15. (Cancelled)

- 16. (Previously Presented) A process for preparing a compound as claimed in claims 1 comprising;
 - a) coupling 2-acetoxy-8-chloropyrimido[5,4-d]pyrimidine derivatives (II) with suitable substituted anilines (III), to furnish the intermediates of formula (IV), and deprotecting the intermediates of formula (IV) followed by ring closure under suitable conditions:

$$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\$$

b) coupling the known 8-chloro-2(methylthio)-pyrimido[5,4-d]pyrimidine with 2-aminophenol derivatives of formula (XXI), yielding the intermediate compounds of formula (XXII), followed by animating the pyrido[3,2-d]pyrimidine of formula (XXII) using an aminated alcohol (XXIII) under art known conditions, followed by ring closure under Mitsunobu conditions to give the target compounds of formula (I'')

HO
$$R^1$$
 R^2 R^2 R^3 R^3 R^4 R^3 R^4 R^3 R^4 R^2 R^4 R^2 R^4 R^4 R^2 R^4 R

- 17. (Cancelled)
- 18. (Cancelled)