Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Институт цифрового развития Кафедра инфокоммуникаций

ОТЧЕТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ №1.4 дисциплины «Алгоритмизация»

Выполнил: Степанов Леонид Викторович 2 курс, группа ИВТ-б-о-22-1, 09.03.01 «Информатика и вычислительная техника», направленность (профиль) «Программное обеспечение средств вычислительной техники и автоматизирование систем», очная форма обучения (подпись) Руководитель практики: Воронкин Р.А., канд. техн. наук, доцент, доцент кафедры инфокоммуникаций (подпись) Отчет защищен с оценкой Дата защиты

Ставрополь, 2023 г.

Порядок выполнения работы:

1. Написал программу (mini.py), которая считает количество времени необходимое для выполнения функции поиска минимума

Рисунок 1 – Результат выполнения программы mini.py

			_	_	_	-	-		-	-	
1	X	1000	2000	3000	4000	5000	6000	7000	8000	9000	45000
2	у	0,000090	0,000274	0,000551	0,000921	0,001395	0,001960	0,002625	0,003393	0,004278	0,015486389
3	x^2	1000000	4000000	9000000	16000000	25000000	36000000	49000000	64000000	81000000	285000000
4	xy	0,0901271	0,548765	1,652736	3,6823916	6,9735735	11,7588642	18,3781388	27,1415432	38,4993207	108,7254601
5	Υ	-0,00036548	0,00015607	0,00067762	0,001199171	0,001720721	0,002242271	0,002763822	0,003285372	0,003806922	0,015486489
6	y^2	0,0000000081	0,0000000753	0,0000003035	0,0000008475	0,0000019452	0,0000038409	0,0000068930	0,0000115104	0,0000182987	4,37226E-05

Рисунок 2 – Таблица значений в excel

При помощи метода наименьших квадратов вывели систему уравнений: 285000000a+45000b=26,7544015 и 45000a+9b=0,0004218, решив которую мы нашли график функции: y=0,000000094x-0,000003367 и посчитали парную корреляцию.

Рисунок 3 — График функции у = 0.0000000272x + 0.0000011944

```
=(9 * K4 - K1*K2)/КОРЕНЬ((9 * K3 -K1^2)*(9*K6-K2^2))
```

Рисунок 4 — Формула нахождения парной корреляции

Рисунок 5 – Коэффициент парной корреляции для худшего случая

2. Написал программу (linS.py), которая использует алгоритм линейного поиска, она рассчитывает какое время необходимо при среднем случае при разных значениях длинны массива: от 100 до 1000 с шагом 100

Рисунок 6 – Результат выполнения программы linS.py

-											
2	X	100	200	300	400	500	600	700	800	900	4500,0000000000
3	у	0,0000023400	0,0000041700	0,0000062300	0,0000084900	0,0000110700	0,0000138700	0,0000164700	0,0000192800	0,0000212600	0,0001031800
4	x^2	10000	40000	90000	160000	250000	360000	490000	640000	810000	2850000,00000000000
5	y*x	0,000234	0,000834	0,001869	0,003396	0,005535	0,008322	0,011529	0,015424	0,019134	0,0662770000
6	y^2	0,00000000000548	0,0000000001739	0,00000000003881	0,00000000007208	0,00000000012254	0,00000000019238	0,00000000027126	0,00000000037172	0,00000000045199	0,00000000154365
7	٧	0,00000026	0,00000297	0,00000568	0,00000839	0,00001110	0,00001381	0,00001652	0,00001923	0,00002194	

Рисунок 7 – Таблица значений в excel

При помощи метода наименьших квадратов вывели систему уравнений: 285000000a+45000b = 108,7254601 и 45000a + 9b = 0,015486489, решив которую мы нашли график функции: y = 0,00000052x - 0,00088703 и посчитали парную корреляцию.

Рисунок $8 - \Gamma$ рафик функции y = 0.0000000271x - 0.0000024472

Рисунок 9 – Формула расчёта парной корреляции

L	r-исх	0,998291599
2		
3		

Рисунок 10 – Коэффициент парной корреляции для среднего случая

Вывод: в результате проделанной работы, мы выяснили, что время выполнения нахождения минимума и максимума линейно зависит от длинны массива.