Interpretable Machine Learning

SHAP (SHapley Additive exPlanation) Values

Learning goals

- Get an intuition of additive feature attributions
- Understand the concept of Kernel SHAP
- Ability to interpret SHAP plots
- Global SHAP methods

Question: How much does a feature j contribute to the prediction of a single observation.

Idea: Use Shapley values from cooperative game theory

Question: How much does a feature *j* contribute to the prediction of a single observation.

Idea: Use Shapley values from cooperative game theory

Procedure:

- ullet Compare "reduced prediction function" of feature coalition S with $S \cup \{j\}$
- Iterate over possible coalitions to calculate the marginal contribution of feature j
 to sample x

$$\phi_j = \frac{1}{\rho!} \sum_{\tau \in \Pi} \hat{f}_{S_j^{\tau} \cup \{j\}}(\mathbf{x}_{S_j^{\tau} \cup \{j\}}) - \hat{f}_{S_j^{\tau}}(\mathbf{x}_{S_j^{\tau}})}$$
marginal contribution of feature j

Question: How much does a feature *j* contribute to the prediction of a single observation.

Idea: Use Shapley values from cooperative game theory

Procedure:

- ullet Compare "reduced prediction function" of feature coalition S with $S \cup \{j\}$
- Iterate over possible coalitions to calculate the marginal contribution of feature j
 to sample x

$$\phi_j = \frac{1}{p!} \sum_{\tau \in \Pi} \hat{f}_{S_j^{\tau} \cup \{j\}}(\mathbf{x}_{S_j^{\tau} \cup \{j\}}) - \hat{f}_{S_j^{\tau}}(\mathbf{x}_{S_j^{\tau}})$$
marginal contribution of feature *j*

Remember:

- \hat{f} is the prediction function, p denotes the number of features
- Non-existent features in a coalition are replaced by values of random feature values
- Recall S_j^{τ} defines the coalition as the set of players before player j in order $\tau = (\tau^{(1)}, \dots, \tau^{(p)})$ $\tau^{(1)} \quad \tau^{(|S|)} \quad \tau^{(|S|+1)} \quad \tau^{(|S|+2)} \quad \tau^{(p)}$

Example:

- Train a random forest on bike sharing data only using features humidity (hum), temperature (temp) and windspeed (ws)
- Calculate Shapley value for an observation \mathbf{x} with $\hat{f}(\mathbf{x}) = 2573$
- Mean prediction is $\mathbb{E}(\hat{t}) = 4515$

Example:

- Train a random forest on bike sharing data only using features humidity (hum), temperature (temp) and windspeed (ws)
- Calculate Shapley value for an observation ${\bf x}$ with $\hat{f}({\bf x})=$ 2573
- Mean prediction is $\mathbb{E}(\hat{t}) = 4515$

Exact Shapley calculation for humidity:

S	$\mathcal{S} \cup \{j\}$	$f_{\mathcal{S}}$	$f_{S\cup\{j\}}$	weight
Ø	hum	4515	4635	2/6
temp	temp, hum	3087	3060	1/6
ws	ws, hum	4359	4450	1/6
temp, ws	hum, temp, ws	2623	2573	2/6

$$\phi_{\textit{hum}} = \frac{2}{6}(4635 - 4515) + \frac{1}{6}(3060 - 3087) + \frac{1}{6}(4450 - 4359) + \frac{2}{6}(2573 - 2623) = 34$$

FROM SHAPLEY TO SHAP

Example continued: Same calculation can be done for temperature and windspeed:

- $\phi_{temp} = ... = -1654$
- $\phi_{ws} = ... = -323$

Remember: Shapley values explain the difference between actual and average prediction:

$$2573 - 4515 = 34 - 1654 - 323 = -19$$

 $\hat{f}(\mathbf{x}) - \mathbb{E}(\hat{f}) = \phi_{hum} + \phi_{temp} + \phi_{ws}$

$$\hat{f}(\mathbf{x}) = \underbrace{\mathbb{E}(\hat{f})}_{\phi_{\text{D}}} + \phi_{\text{hum}} + \phi_{\text{temp}} + \phi_{\text{ws}}$$

SHAP DEFINITION Lundberg et al. 2017

Aim: Find an additive combination that explains the prediction of an observation **x** by computing the contribution of each feature to the prediction using a (more efficient) estimation procedure.

Definition

- Define simplified (binary) coalition feature space $\mathbf{Z}' \in \{0,1\}^{K \times p}$ with K rows and p columns
- Rows are referred to as $\mathbf{z}^{\prime(k)} = \{z_1^{\prime(k)}, \dots, z_D^{\prime(k)}\}$ with $k \in \{1, \dots, K\}$ (indexes *k*-th coalition)
- Columns are referred to as z_i with $j \in \{1, ..., p\}$ being the index of the original feature

Example:

Coalition	$\mathbf{z}^{\prime(k)}$	hum	temp	ws	
Ø	$z'^{(1)}$	0	0	0	
hum	$z'^{(2)}$	1	0	0	
temp	$z'^{(3)}$	0	1	0	
ws	$z'^{(4)}$	0	0	1	
hum, temp	$z'^{(5)}$	1	1	0	
temp, ws	$z'^{(6)}$	0	1	1	
hum, ws	z ′ ⁽⁷⁾	1	0	Interpreta	ble Machine Learr

Aim: Find an additive combination that explains the prediction of an observation **x** by computing the contribution of each feature to the prediction using a (more efficient) estimation procedure.

Definition

- Define simplified (binary) coalition feature space $\mathbf{Z}' \in \{0,1\}^{K \times p}$ with K rows and p columns
- Rows are referred to as $\mathbf{z}^{\prime(k)} = \{z_1^{\prime(k)}, \dots, z_n^{\prime(k)}\}$ with $k \in \{1, \dots, K\}$ (indexes *k*-th coalition)
- Columns are referred to as \mathbf{z}_i with $j \in \{1, \dots, p\}$ being the index of the original feature

$$g\left(\mathbf{z}^{\prime(k)}\right) = \phi_0 + \sum_{i=1}^{p} \phi_i z_j^{\prime(k)}$$

Aim: Find an additive combination that explains the prediction of an observation **x** by computing the contribution of each feature to the prediction using a (more efficient) estimation procedure.

Definition

- Define simplified (binary) coalition feature space $\mathbf{Z}' \in \{0,1\}^{K \times p}$ with K rows and p columns
- Rows are referred to as $\mathbf{z}^{\prime(k)} = \{z_1^{\prime(k)}, \dots, z_n^{\prime(k)}\}$ with $k \in \{1, \dots, K\}$ (indexes k-th coalition)
- Columns are referred to as z_i with $j \in \{1, \dots, p\}$ being the index of the original feature

Aim: Find an additive combination that explains the prediction of an observation **x** by computing the contribution of each feature to the prediction using a (more efficient) estimation procedure.

Definition

- Define simplified (binary) coalition feature space $\mathbf{Z}' \in \{0,1\}^{K \times p}$ with K rows and p columns
- Rows are referred to as $\mathbf{z}^{\prime(k)} = \{z_1^{\prime(k)}, \dots, z_n^{\prime(k)}\}$ with $k \in \{1, \dots, K\}$ (indexes k-th coalition)
- Columns are referred to as z_i with $j \in \{1, \dots, p\}$ being the index of the original feature

SHAP DEFINITION Lundberg et al. 2017

Aim: Find an additive combination that explains the prediction of an observation **x** by computing the contribution of each feature to the prediction using a (more efficient) estimation procedure.

$$g(\mathbf{z}'^{(k)})$$
: Marginal Contribution

Contribution of coalition $\mathbf{z}^{\prime(k)}$ to the prediction

$$g\left(\mathbf{z}'^{(k)}\right) = \phi_0 + \sum_{j=1}^{p} \phi_j z_j'^{(k)}$$

Additive Feature Attribution

Problem

How do we estimate the Shapley values ϕ_i ?

Definition: A kernel-based, model-agnostic method to compute Shapley values via local surrogate models (e.g. linear model)

- Sample coalitions
- Transfer coalitions into feature space & get predictions by applying ML model
- Compute weights through kernel
- Fit a weighted linear model
- Return Shapley values

Step 1: Sample coalitions

• Sample K coalitions from the simplified feature space

$$\mathbf{z}^{\prime(k)} \in \{0,1\}^p, \quad k \in \{1,\ldots,K\}$$

• For our simple example, we have in total $2^p = 2^3 = 8$ coalitions (without sampling)

Coalition	$\mathbf{z}^{\prime(k)}$	hum	temp	ws
Ø	$z'^{(1)}$	0	0	0
hum	$z'^{(2)}$	1	0	0
temp	z ′ ⁽³⁾	0	1	0
WS	z ′ ⁽⁴⁾	0	0	1
hum, temp	z'(5) z'(6) z'(7) z'(8)	1	1	0
temp, ws	$z'^{(6)}$	0	1	1
hum, ws	$z'^{(7)}$	1	0	1
hum, temp, ws	z ′ ⁽⁸⁾	1	1	1

Step 2: Transfer Coalitions into feature space & get predictions by applying ML model

- $\mathbf{z}^{\prime(k)}$ is 1 if features are part of the k-th coalition, 0 if they are absent
- To calculate predictions for these coalitions, we need to define a function which maps the binary feature space back to the original feature space

						-		
Coalition	$\mathbf{z}^{\prime(k)}$	hum	temp	WS	x ^{coalition}	hum	temp	WS
Ø	$z'^{(1)}$	0	0	0	$\mathbf{x}^{\{\varnothing\}}$	Ø	Ø	Ø
hum	$z'^{(2)}$	1	0	0	x ^{hum}	51.6	Ø	Ø
temp	$z'^{(3)}$	0	1	0	x ^{temp}	Ø	5.1	Ø
ws	$z'^{(4)}$	0	0	1	x ^{ws}	Ø	Ø	17.0
hum, temp	$z'^{(5)}$	1	1	0	x ^{hum,temp}	51.6	5.1	Ø
temp, ws	$z'^{(6)}$	0	1	1	x ^{temp,ws}	Ø	5.1	17.0
hum, ws	$z'^{(7)}$	1	0	1	x ^{hum,ws}	51.6	Ø	17.0
hum, temp, ws	$z'^{(8)}$	1	1	1	x ^{hum,temp,ws}	51.6	5.1	17.0

Step 2: Transfer Coalitions into feature space & get predictions by applying ML model

- Define $h_x\left(\mathbf{z}^{\prime(k)}\right) = \mathbf{z}^{(k)}$ where $h_x:\{0,1\}^p \to \mathbb{R}^p$ maps 1's to feature values of observation \mathbf{x} for features part of the k-th coalition and 0's to feature values of a randomly sampled observation for features absent in the k-th coalition (feature values are permuted multiple times)
- Predict with ML model on this dataset $\hat{f}:\hat{f}\left(h_{x}\left(\mathbf{z}^{\prime(k)}\right)\right)$

	_				$h_{x}(\mathbf{z}^{\prime(k)})$			>	
Coalition	$\mathbf{z}^{\prime(k)}$	hum	temp	ws	$\mathbf{z}^{(k)}$	hum	temp	ws	$\hat{f}\left(h_{x}\left(\mathbf{z}^{\prime\left(k\right)}\right)\right)$
Ø	$z'^{(1)}$	0	0	0	z ⁽¹⁾	64.3	28.0	14.5	6211
hum	$z'^{(2)}$	1	0	0	$z^{(2)}$	51.6	28.0	14.5	5586
temp	$z'^{(3)}$	0	1	0	z ⁽³⁾	64.3	5.1	14.5	3295
WS	$z'^{(4)}$	0	0	1	$\mathbf{z}^{(4)}$	64.3	28.0	17.0	5762
hum, temp	$z'^{(5)}$	1	1	0	z ⁽⁵⁾	51.6	5.1	14.5	2616
temp, ws	z ′ ⁽⁶⁾	0	1	1	$z^{(6)}$	64.3	5.1	17.0	2900
hum, ws	$z'^{(7)}$	1	0	1	$z^{(7)}$	51.6	28.0	17.0	5411
hum, temp, ws	$z'^{(8)}$	1	1	1	z ⁽⁸⁾	51.6	5.1	17.0	2573

Step 3: Compute weights through Kernel

Intuition: We learn most about individual features if we can study their effects in isolation or at maximal interaction: Small coalitions (few 1's) and large coalitions (i.e. many 1's) get the largest weights

Step 3: Compute weights through Kernel

see shapley_kernel_proof.pdf

Intuition: We learn most about individual features if we can study their effects in isolation or at maximal interaction: Small coalitions (few 1's) and large coalitions (i.e. many 1's) get the largest weights

Step 3: Compute weights through Kernel

Purpose: to include this knowledge in the local surrogate model (linear regression), we calculate weights for each coalition which are the observations of the linear regression

$$\pi_{x}(\mathbf{z}') = \frac{(p-1)}{\binom{p}{|\mathbf{z}'|}|\mathbf{z}'|(p-|\mathbf{z}'|)} \rightsquigarrow \pi_{x}(\mathbf{z}' = (1,0,0)) = \frac{(3-1)}{\binom{3}{1}} 1 (3-1) = \frac{1}{3}$$

Coalition	$\mathbf{z}^{\prime(k)}$	hum	temp	ws	weight
Ø	$z'^{(1)}$	0	0	0	∞
hum	$z'^{(2)}$	1	0	0	0.33
temp	$z'^{(3)}$	0	1	0	0.33
WS	$z'^{(4)}$	0	0	1	0.33
hum, temp	$z'^{(5)}$	1	1	0	0.33
temp, ws	$z'^{(6)}$	0	1	1	0.33
hum, ws	$z'^{(7)}$	1	0	1	0.33
hum, temp, ws	z ′ ⁽⁸⁾	1	1	1	∞

Step 3: Compute weights through Kernel

Purpose: to include this knowledge in the local surrogate model (linear regression), we calculate weights for each coalition which are the observations of the linear regression

1 .//\ 1

Coalition	$\mathbf{z}'^{(k)}$	hum	temp	ws	weight
Ø	$z'^{(1)}$	0	0	0	∞
hum	$z'^{(2)}$	1	0	0	0.33
temp	$z'^{(3)}$	0	1	0	0.33
WS	$\mathbf{z}'^{(4)}$	0	0	1	0.33
hum, temp	$z'^{(5)}$	1	1	0	0.33
temp, ws	$z'^{(6)}$	0	1	1	0.33
hum, ws	$z'^{(7)}$	1	0	1	0.33
hum, temp, ws	z ′ ⁽⁸⁾	1	1	1	∞

 $[\]leadsto$ weights for empty and full set are infinity and not used as observations for the linear regression

 $[\]leadsto$ instead constraints are used such that properties (local accuracy and missingness) are satisfied

Step 4: Fit a weighted linear model

Aim: Estimate a weighted linear model with Shapley values being the coefficients ϕ_j

$$g\left(\mathbf{z}^{\prime(k)}\right) = \phi_0 + \sum_{j=1}^{\rho} \phi_j Z_j^{\prime(k)}$$

and minimize by WLS using the weights π_x of step 3

$$L\left(\hat{f},g,\pi_{X}\right) = \sum_{k=1}^{K} \left[\hat{f}\left(h_{X}\left(\mathbf{z}^{\prime(k)}\right)\right) - g\left(\mathbf{z}^{\prime(k)}\right)\right]^{2} \pi_{X}\left(\mathbf{z}^{\prime(k)}\right)$$

with $\phi_0 = \mathbb{E}(\hat{f})$ and $\phi_p = \hat{f}(x) - \sum_{j=0}^{p-1} \phi_j$ we receive a p-1 dimensional linear regression problem

Step 4: Fit a weighted linear model

Aim: Estimate a weighted linear model with Shapley values being the coefficients ϕ_j

$$g\left(\mathbf{z}^{\prime(k)}\right) = \phi_0 + \sum_{j=1}^{p} \phi_j z_j^{\prime(k)} \leadsto g\left(\mathbf{z}^{\prime(k)}\right) = 4515 + 34 \cdot z_1^{\prime(k)} - 1654 \cdot z_2^{\prime(k)} - 323 \cdot z_3^{\prime(k)}$$

$\mathbf{z}^{\prime(k)}$	hum	temp	ws	weight	Î
$z'^{(2)}$	1	0	0	0.33	4635
$z'^{(3)}$	0	1	0	0.33	3087
${f z}'^{(4)}$	0	0	1	0.33	4359
$z'^{(5)}$	1	1	0	0.33	3060
$z'^{(6)}$	0	1	1	0.33	2623
$z'^{(7)}$	1	0	1	0.33	4450
	output				

Step 5: Return SHAP values

Intuition: Estimated Kernel SHAP values are equivalent to Shapley values

$$g(\mathbf{z}^{\prime(8)}) = \hat{f}(h_{x}(\mathbf{z}^{\prime(8)})) = 4515 + 34 \cdot 1 - 1654 \cdot 1 - 323 \cdot 1 = \underbrace{\mathbb{E}(\hat{f})}_{\phi_{0}} + \phi_{hum} + \phi_{temp} + \phi_{ws} = \hat{f}(\mathbf{x}) = 2573$$

Local Accuracy

$$f(\mathbf{x}) = g(\mathbf{x}') = \phi_0 + \sum_{j=1}^{p} \phi_j x_j'$$

Intuition: If the coalition includes all features $(\mathbf{x}' \in \{1\}^p)$, the attributions ϕ_j and the null output ϕ_0 sum up to the original model output $f(\mathbf{x})$

Local accuracy corresponds to the **axiom of efficiency** in Shapley game theory

Local Accuracy

$$f(\mathbf{x}) = g(\mathbf{x}') = \phi_0 + \sum_{j=1}^{p} \phi_j x_j'$$

Missingness

$$x_j'=0\Longrightarrow \phi_j=0$$

Intution: A missing feature gets an attribution of zero

Local Accuracy

$$f(\mathbf{x}) = g(\mathbf{x}') = \phi_0 + \sum_{j=1}^{p} \phi_j x_j'$$

Missingness

$$x_j'=0\Longrightarrow \phi_j=0$$

Consistency

 $\hat{f}_{x}\left(\mathbf{z}^{\prime(k)}\right) = \hat{f}\left(h_{x}\left(\mathbf{z}^{\prime(k)}\right)\right)$ and $\mathbf{z}_{-j}^{\prime(k)}$ denote setting $z_{j}^{\prime(k)} = 0$. For any two models \hat{f} and \hat{f}^{\prime} , if

$$\hat{f}_{x}'\left(\mathbf{z}^{\prime(k)}\right) - \hat{f}_{x}'\left(\mathbf{z}_{-j}^{\prime(k)}\right) \geq \hat{f}_{x}\left(\mathbf{z}^{\prime(k)}\right) - \hat{f}_{x}\left(\mathbf{z}_{-j}^{\prime(k)}\right)$$

for all inputs $\mathbf{z}^{\prime(k)} \in \{0,1\}^p$, then

$$\phi_j\left(\hat{f}',\mathbf{x}\right) \geq \phi_j(\hat{f},\mathbf{x})$$

Local Accuracy

$$f(\mathbf{x}) = g(\mathbf{x}') = \phi_0 + \sum_{j=1}^{p} \phi_j x_j'$$

Missingness

$$x_j'=0\Longrightarrow \phi_j=0$$

Consistency

$$\hat{f}_{x}'\left(\mathbf{z}^{\prime(k)}\right) - \hat{f}_{x}'\left(\mathbf{z}_{-j}^{\prime(k)}\right) \geq \hat{f}_{x}\left(\mathbf{z}^{\prime(k)}\right) - \hat{f}_{x}\left(\mathbf{z}_{-j}^{\prime(k)}\right) \Longrightarrow \phi_{j}\left(\hat{f}',\mathbf{x}\right) \geq \phi_{j}(\hat{f},\mathbf{x})$$

Intution: If a model changes so that the marginal contribution of a feature value increases or stays the same, the Shapley value also increases or stays the same

From consistency the Shapley axioms of additivity, dummy and symmetry follow

