Processamento de amplitude

Prof. Regis Rossi A. Faria

Tópicos

- Conceitos fundamentais
 - Amplitude, níveis e loudness (volume)
 - Relação sinal-ruído e faixa dinâmica
- Processamentos de amplitude típicos
 - Amplificação, atenuação e normalização;
 - Compressão e expansão
 - Distorções; clipping;
- Laboratório de dinâmica e compansão

Conceitos sobre amplitude

- Usualmente três conceitos distintos relacionados a amplitude podem ser confundir, embora sejam distintos
 - Nível (ex: em dB) → medida de intensidade
 - Ganho
 - Loudness (volume)
- Cadeia de controle de amplitude:
 - há vários estágios onde ganhos e controles de amplitude são aplicados
 o resultado precisa ser calibrado para um nível desejado ou calibrado

Nível

- Nível de pico e Nível médio
 - Os valores de picos e médios não são suficientes para caracterizar o nível sonoro porque o primeiro só registra transitórios que não representam toda a duração do som, e o segundo tende a registrar valores nulos devido à natureza oscilatória do som (+ cancela -)

Nível RMS

 O nível RMS (Root Mean Square) ou raiz quadrática média,
 é uma medida que permite obter valores eficazes médios e constantes para o sinal sonoro

Nível

Nível RMS

- O nível RMS (Root Mean Square) ou raiz quadrática média,
 é uma medida que permite obter valores eficazes médios e constantes para o sinal
- No método RMS os valores das amplitudes são lidos em tempos regularmente espaçados, são elevados ao quadrado, calcula-se uma média dos valores quadráticos, e extrai-se a raiz quadrada desta média
- Níveis RMS são proporcionais aos picos mas variam conforme a forma da onda
- Enganos: nível de saída (output level) e volume

Loudness

- Conceitos
- Medida perceptual de intensidade
- Loudness de programa (*program loudness*): definidos por padrões pela ITU, EBU, ATSC
 - Medida calculada usando o nível das amostras, ponderando pelo conteúdo de frequências, combinando todos os canais presentes, e integrando ao longo da duração
 - Diferente hoje do antigo medidor de volume VU
 - Padrão que define loudness: ITU BS.1770-3

Loudness

- Program loudness é medido em LUFS (loudness units below full scale)
 - Ex:
 - um tom de 1kHz em ambos os canais estéreo de um programa, medindo -20dBFS em cada canal, terá -20LUFS
 - Um tom de 1kHz em só um canal do programa, com -20dBFS, terá -23LUFS
 - Relações de fase não alteram a medida (polaridade)
- Normalização de loudness: volume de programa alvo definido usualmente por padrão
 - Ex:
 - No Brasil, o nível de controle definido é -20dBFS; Na Europa (EBU) definiu
 -23LUFS +/- 1dB; Nos EUA, -24LUFS+/-2dB

Decibéis

- Decibel: medida relativa
- Em sistemas digitais 0 dB = referência
 - Ex: +6dB = duas vezes mais amplitude [20log(2)=6]
- dBu, dBm, dB SPL, dBFS
 - São unidades, referências pré-definidas que podem ser convertidas para valores absolutos em volts ou potência em equipamentos
 - $dBu \rightarrow 0.775V$
 - $dBm \rightarrow 1mW$

Relação sinal/ruído

- Signal to noise ratio (SNR)
 - Mede a relação entre o nível do sinal de interesse e o nível de ruído de fundo (noise floor) inerente a todo sistema e presente na ausência do sinal de interesse
 - É comum expressar o SNR em uma escala em dB:

$$SNR = 20log \frac{maxima\ amplitude\ RMS\ do\ sinal}{maxima\ amplitude\ RMS\ do\ ruido}$$

 A SNR é que define a faixa dinâmica do sistema, o intervalo útil para acomodar variações de nível do sinal de interesse

Processamentos de amplitude

- Estes incluem
 - Amplificação, Atenuação, Normalização
 - Compressão e Expansão (compansão) da faixa dinâmica (medida usualmente em dB)
- Alguns efeitos de relevância para a música são baseados na variação periódica de amplitude, como o tremolo
- Efeitos de amplitude podem ainda ser implementados pela aplicação de envelopes de amplitude, como o tradicional envelope ADSR que conforma as amplitudes de cada segmento de uma nota sonora

Ganho, amplificação, atenuação

- Amplificação
 - expressa como um ganho positivo, usualmente em dB
- Atenuação
 - expressa um ganho negativo, usualmente em dB
- Ganhos
 - expressos como em diagramas gráficos

Normalização

- Processo que altera a amplitude de todas as amostras do sinal com um ganho comum, determinado em função da amplitude máxima dentre as amostras
- Pode-se dividir a amplitude de todas as amostras pela máxima amplitude dentre as amostras, tornando a amplitude_max = 1 e todas as demais um percentual menor que a máxima
 - Max = Máxima_A(i)
 - Para i=0 até N-1 → A(i)=A(i)/Max
- Pode-se aplicar um ganho constante a todas as amostras tal que a amplitude máxima atinja um valor específico (ex: norma desejada = 0 dB, ou = -3 dB, etc.)
 - Ganho_constante = Nivel_desejado Maxima_A(i)

Envelopes

- Envelopes permitem "encapsular" ou definir a envoltória de um sinal, tanto no domínio do tempo quanto do da frequência
- Podem ser considerados uma espécie de modulação, que força o sinal a se conformar a uma determinada envoltória
- São bastante utilizados para segmentação e isolamento de sons em diversas aplicações

Envelopes temporais

- Os envelopes definem um perfil de valores no tempo que permitem moldar certos segmentos do sinal com características específicas, distintas de outros
- Um exemplo é o envelope de amplitude ADSR, que define os valores máximos de amplitude que o sinal oscilante poderá assumir no decorrer de uma nota musical típica

Envelope ADSR c/ 4 trechos: ataque, decaimento, sustentação e liberação

Envelopes de notas musicais

Notas musicais de instrumentos acústicos diferentes exibem uma evolução no tempo também diferente, caracterizando trechos com perfis de amplitude distintos nos estágios do Ataque, Decaimento, Sustentação e Liberação (Release)

Envelopes temporais e espectrais

- Além de exibir perfis de amplitude distintos, cada estágio exibe também um perfil espectral distinto
- O perfil espectral permite traçar uma envoltória ou envelope espectral, que delimita a faixa espectral contida no som
- Vejamos o espectro característico de cada estágio da nota musical usando o programa Audacity

Formas e geração de envelopes

- Os envelopes podem ter várias formas possíveis, de acordo com o efeito que se deseja criar na evolução da nota
- Podem ser disparados por um evento (ex: gate input, nota de um teclado, etc.)
- Após o disparo, um gerador de envelope poderá controlar então o perfil da amplitude do som ao longo de sua duração

Curvas de transferência

- Curvas de transferências são usadas para modificar a amplitude de grandezas sonoras, tanto no domínio do tempo quanto na frequência
- Como as funções, elas permitem determinar qual será a nova amplitude A' da grandeza alterada em função do seu valor original A
- Um exemplo clássico são as curvas de compressão e expansão dinâmicas

- Operações que conformam ou limitam a faixa dinâmica de um sinal s(t) de forma que não exceda um valor máximo nem seja inferior a um valor mínimo
- O conceito da operação de compressão (limitação da amplitude) e de expansão (ampliação da amplitude) pode ser explicado por meio de uma única curva de transferência de compansão, que exibe a relação entre o valor de entrada A versus o valor de saída A'

- Uma mesma curva portanto, dependendo do valor de entrada, pode atuar ampliando ou reduzindo a amplitude instantânea do sinal s(t)
- Cinco parâmetros são necessários para se definir uma curva de compansão:
 - (a) valor mínimo (amplitude inicial de operação)
 - (b) valor máximo (amplitude final de operação)
 - (c) limiar (amplitude de atuação de referência, ou threshold)
 - (d) taxa de compressão/expansão (ex: 2:1, 1.5: 1, etc.)
 - (d) geometria da curva (linear, quadrática, exponencial, semi-retas, etc.)

Note ainda que:

√ (A'_{max} – A'_{min}) será a faixa dinâmica de saída

- Além destes parâmetros, alguns compressores/expansores trazem outros parâmetros como
 - tempo de ataque (tempo para o efeito atuar)
 - tempo de release (tempo para parar de atuar ou para decaimento)
- Processadores dinâmicos costumam ainda incluir um fator de amplificação global que desloca toda a curva segundo um ganho global

• Note também que frequentemente a curva apresentará sua escala definida entre o valor máximo digital admissível (0 dB) e todos os valores de amplitude abaixo, até o limite do nível de ruído (noise floor)

Distorções

Clipping

- é a saturação de um sinal, em que as amplitudes das amostras atingem ou ultrapassam o máximo registrável e são então ceifadas ao valor máximo
- Ocorre devido ao excesso de ganho de amplificação
- THD (total harmonic distortion)
 - Tipo de distorção não-linear quando frequências múltiplas de uma fundamental do sinal são adicionadas ao mesmo, devido ao meio que o transmite ou processa
 - Calculada como uma razão de distorção do sinal em relação ao sinal original

eof