ID: 112269

Projeto 4: Desenvolvimento de uma Máquina de Estados de *Moore* para um Kit FPGA

São José dos Campos - Brasil Outubro de 2018

ID: 112269

Projeto 4: Desenvolvimento de uma Máquina de Estados de *Moore* para um Kit FPGA

Relatório apresentado à Universidade Federal de São Paulo como parte dos requisitos para aprovação na disciplina de Laboratório de Sistemas Computacionais: Circuitos Digitais.

Aluno: Willian Dihanster Gomes de Oliveira

Docente: Prof. Dr. Lauro Paulo da Silva Neto

Universidade Federal de São Paulo - UNIFESP

Instituto de Ciência e Tecnologia - Campus São José dos Campos

São José dos Campos - Brasil Outubro de 2018

Resumo

Este projeto teve como principal objetivo o desenvolvimento de uma Máquina de Estados (utilizando uma Máquina de *Moore*) para um contador númerico temporizado. A máquina desenvolvida possui 4 funções, que podem ser controladas pelas entradas *UP* e *DOWN*, sendo elas: contagem crescente, contagem decrescente, manter a contagem e a função *blank* (onde todos os LEDs são apagados). Além disso, o contador segue a sequência númerica 6-9-0-2-4-6-5-3-8, fazendo uma transição de estados a cada 1s e sua saída é mapeada para o display de 7 segmentos do Kit FPGA.

Palavras-chaves: Circuitos Digitais, Contador Automático, Máquina de *Moore*, Kit FPGA

Lista de ilustrações

Figura 1 – I	Diagrama de Estados	14
Figura 2 - C	Circuito para função de próximo estado	16
Figura 3 - C	Circuito para os Registradores	17
Figura 4 - C	Circuito para função de saída	19
Figura 5 - N	Máquina de Estados	19
Figura 6 - 7	Temporizador	20
Figura 7 - C	Circuito que mapeia para o display de 7 segmentos	22
Figura 8 - C	Circuito final desenvolvido.	23
Figura 9 - S	Simulação contagem mantém	23
Figura 10 – S	Simulação contagem decrescente	24
Figura 11 – S	Simulação contagem crescente	24
Figura 12 – S	Simulação contagem $blank$	25
Figura 13 – S	Simulação contagem reset	25
Figura 14 – S	Simulação contagem genérica	26
Figura 15 – S	Simulação display de 7 segmentos	26
Figura 16 – S	Simulação no Kit FPGA	26

Lista de tabelas

Tabela 1 –	Exemplo de entradas e forma de contagem	13
Tabela 2 –	Tabela de Codificação de Estados	14
Tabela 3 –	Tabela de próximo estado, dado uma entrada	15
Tabela 4 –	Tabela da saída, dado um estado	18
Tabela 5 –	Tabela de Saída, dado um estado	21

Sumário

1	INTRODUÇÃO
2	OBJETIVOS
2.1	Geral
2.2	Específico
3	FUNDAMENTAÇÃO TEÓRICA
3.1	Princípios de Circuitos Digitais
3.2	Flip-flops
3.3	Contadores
3.4	Temporizadores
3.5	Máquina de Estados Finitos
3.6	FPGA - Field-Programmable Gate Array 12
3.7	Display de 7 Segmentos
3.8	Intel Quartus Prime Software
4	DESENVOLVIMENTO 13
4.1	Diagrama de Estados
4.2	Função do Próximo Estado
4.3	Registradores
4.4	Função Saída
4.5	Junção dos Componentes da Máquina de Estados 19
4.6	Temporizador
4.7	Display de 7 Segmentos
5	RESULTADOS OBTIDOS E DISCUSSÕES
5.1	Mantém - $UP = 0$ e $DOWN = 0$
5.2	Decrescente - $UP = 0$ e $DOWN = 1$
5.3	Crescente - $UP = 1$ e $DOWN = 0$
5.4	Blank - $UP=1$ e $DOWN=1$
5.5	Uso do reset
5.6	Contagem Genérica
5.7	Display de 7 Segmentos
5.8	Simulação no Kit FPGA
6	CONSIDERAÇÕES FINAIS

6	$SUM\'ARIO$
---	-------------

REFERÊNCIAS																												20	۱
ILL LILLICIAS	 -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		,

1 Introdução

Circuitos eletrônicos são usualmente separados entre duas categorias: digitais e analógicos. Enquanto que na digital, trabalha-se com grandezas com valores discretos, na analógica há o uso de grandezas contínuas (1).

Sendo assim, circuitos e sistemas digitais trabalham com dois estados possíveis, que são representados por dois níveis de tensão diferentes: um ALTO e um BAIXO, que também podem ser representados por '0' e '1'. Dessa forma, circuitos digitais servem como base para diversas aplicações, como por exemplo na construção de computadores, na automação, robótica e etc.

Um exemplo mais simples, são as máquinas de estados finitos, que representam comportamentos de um sistema por um número finito de estados e de transições (2). Assim, pode-se representar contadores, como o desenvolvido neste projeto, que fazem a contagem com uma sequência númerica, fazendo uma transição de estados a cada 1s, de acordo com a entrada definida pelo usuário.

O trabalho está organizado como segue: Capítulo 2 detalha os objetivos do trabalho, Capítulo 3, a fundamentação teórica, Capítulo 4, o desenvolvimento, Capítulo 5, os resultados obtidos e discussões e por fim, no Capítulo 6 as considerações finais.

2 Objetivos

2.1 Geral

Este projeto tem como principal objetivo o desenvolvimento de um contador númerico, implementado com uma Máquina de Estados de *Moore*, seguindo a sequência 6-9-0-2-4-6-5-3-8, com transição de estados a cada 1s e com 4 formas de contagem.

2.2 Específico

Para o pleno desenvolvimento do objetivo desejado, há uma sequência de passos, definidos a seguir:

- Confecção do diagrama de estados para a sequência definida.
- Implementação do circuito combinacional que define a Máquina de Estados de *Moore*, sendo esse circuito composto por 3 partes principais (próximo estado, registradores e saída).
- Implementação do circuito que simula um temporizador de 1s.
- Decodificação da saída do estado da máquina para seu valor correspondente (em binário) da sequência numérica, para o display de 7 segmentos.
- Criação de black-boxes e organização dos circuitos criados em um único circuito principal.
- Avaliação com testes de *waveforms* no *software Quartus Prime* para cada bloco do projeto.
- Avaliação do circuito final (todas as partes integradas) com waveforms no software Quartus Prime e também no Kit FPGA.

3 Fundamentação Teórica

Neste capítulo, serão detalhados alguns dos principais conceitos utilizados para a realização deste projeto.

3.1 Princípios de Circuitos Digitais

Circuitos eletrônicos são geralmente separados entre duas categorias: digitais e analógicos. Na digital, há o uso de grandezas com valores discretos, já na analógica, de grandezas contínuas (1).

Sendo assim, circuitos e sistemas digitais trabalham com dois estados possíveis, que são representados por dois níveis de tensão diferentes: um ALTO e um BAIXO, que também podem ser representados por '0' e '1'. Em circuitos digitais há duas classes principais de circuitos: circuitos combinacionais e circuitos sequencias.

Em circuitos combinacionais há o uso de portas lógicas interconectadas para produzir uma saída especificada, usando a combinação de variáveis de entrada, sem o envolvimento de armazenamento de dados. Já os circuitos sequenciais há a existência de uma seção com lógica combinacional e de uma seção de memória (flip-flops).

Sendo assim, fazendo o uso de porta lógicas, tabela-verdade e álgebra booleana é possível desenvolver sistemas de circuitos digitais para as mais diversas aplicações.

3.2 Flip-flops

Um flip-flop ou multivibrador biestável, pode ser definido como um elemento de memória e, geralmente, é feito de uma configuração de portas lógicas. Comumente, possuem duas saídas: Q e \bar{Q} , a saída normal e saída invertida, respectivamente. No estado ALTO, temos Q=1 e $\bar{Q}=0$, e este estado pode ser chamado de SET. Já no estado BAIXO, temos Q=0 e $\bar{Q}=1$, e pode ser chamado de CLEAR ou RESET. (3) Há diversos tipos de flip-flops, como o tipo D, J-K, T e podem ser utilizados por exemplo, para a criação de contadores, registradores ou temporizadores.

3.3 Contadores

Contadores são circuitos que podem ser implementados a partir de N flip-flops conectados, sendo síncronos ou assíncronos. O valor de N e a forma na qual são conectados

determina o número de estados (ou módulo) e a sequência de estados do contador. Por exemplo, com N flip-flops é possível implementar um contador de 0 até $2^N - 1$. (1)

3.4 Temporizadores

Em certas aplicações, é utilizado a frequência de *clock* do dispositivo. Mas essa frequência pode ser muita alta para determinados casos. Sendo assim, um circuito temporizador pode ser usado. Uma implementação possível é a divisão de frequências, em que são usados *flip-flops* ou contadores para passar a informação, gerando um certo *delay*. (1)

3.5 Máquina de Estados Finitos

As máquinas de estados finitos representam comportamentos de um sistema por um número finito de estados e de transições (2). Há dois principais modelos amplamente utilizadas, sendo elas: Máquina de *Moore* e a Máquina de *Mealy*. As principais diferenças entre as duas é sua função de saída, onde na Máquina de *Moore*, depende apenas do estado atual, já na Máquina de *Mealy*, a saída depende do estado atual e das entradas.

3.6 FPGA - Field-Programmable Gate Array

O FPGA - field-programmable gate array (matriz de portas programáveis) é um dispositivo lógico programável em que se é possível trabalhar e simular circuitos digitais. O Kit FPGA disponível no Laboratório de Circuitos Digitais é o Kit Altera DE2-115 Development and Education Board, com o FPGA Altera Cyclone IV E: EP4CE115F29C7. Esse kit contém, também, um display de 7 segmentos, que será detalhado a seguir. (4)

3.7 Display de 7 Segmentos

Um display de 7 segmentos é uma placa composta por segmentos com LEDs que podem ser ligados ou desligados individualmente, e podem, por exemplo, serem utilizados para a visualização de números decimais de 0 a 9.

3.8 Intel Quartus Prime Software

o *Intel Quartus Prime Software* é um software da *Intel* para o desenvolvimento de sistemas programáveis. Com ele é possível, por exemplo, criar circuitos atráves de esquemáticos ou com alguma linguagem de descrição de *hardware* como a *Verilog*. (5)

4 Desenvolvimento

Neste capítulo, serão detalhados os passos para a implementação da máquina de estados de Moore que represente a sequência ciclíca 6-9-0-2-4-6-5-3-8, com transição de estados a cada 1s e com 4 formas de contagem diferentes, como configurado na Tabela 1.

Tabela 1 – Exemplo de entradas e forma de contagem

Contagem	UP	DOWN
Mantém	0	0
Descrecente	0	1
Crescente	1	0
Blank	1	1

Fonte: O Autor

Portanto, considerando que estamos no estado inicial A, temos que:

- se UP = 0 e DOWN = 0, o estado A será mantido.
- \bullet se UP=0 e DOWN=1, a máquina volta para o estado anterior, ou seja, a sequência apresentada será 8-3-5-6-4-2-0-9-6.
- se UP = 1 e DOWN = 0, temos a sequência crescente, ou seja, a sequência ciclíca será 6-9-0-2-4-6-5-3-8.
- se UP = 1 e DOWN = 1, a máquina mudará para o estado Blank, onde todos os LEDs são apagados.

Uma observação é que se o estado atual é Blank, e se UP=0 e DOWN=1 ou UP=1 e DOWN=0, ambos os casos levarão ao estado inicial A. Além disso, se a entrada reset for requisitada, a contagem também reiniciará do primeiro estado, A.

4.1 Diagrama de Estados

Inicialmente, para desenvolvimento deste projeto, foi realizada a confecção do diagrama de estados com as configurações possíveis para as entradas (UP e DOWN) e os estados da máquina, que pode ser conferido na Figura 1 a seguir. Este diagram foi feito com a ajuda do $\mathit{software}$ $\mathit{on-line}$, Lucid Chart (6).

Figura 1 – Diagrama de Estados

Fonte: Autor

Sendo assim, foi usado uma esquema de codificação de 4 bits para a representação dos estados possíveis da máquina. Cada estado tem sua representação binária, conforme a Tabela 2. Posteriormente, cada estado será decodificado para a saída com seu valor decimal correspondente e mapeado para o display de 7 segmentos do kit FPGA.

Tabela 2 – Tabela de Codificação de Estados.

Número	Estado	Q3	Q2	Q1	Q0
6	A	0	0	0	0
9	В	0	0	0	1
0	\mathbf{C}	0	0	1	0
2	D	0	0	1	1
4	\mathbf{E}	0	1	0	0
6	\mathbf{F}	0	1	0	1
5	G	0	1	1	0
3	Η	0	1	1	1
8	I	1	0	0	0
Blank	Blank	1	0	0	1

4.2 Função do Próximo Estado

Um dos principais componentes de uma máquina de estados finitos é a função de próximo estado. Esta função tem como objetivo ditar qual o próximo estado em que a máquina deve estar. No caso da máquina de *Moore*, como a desejada nesse projeto, a função de próximo estado depende das entradas e do estado atual. Temos, então, na Tabela 3, as possibilidades de entradas, estado atual e próximo estado.

Tabela 3 – Tabela de próximo estado, dado uma entrada.

Estado									do	Próximo	
Atual	\overline{UP}	DOWN	Q3	Q2	Q1	Q0	D3	D2	D1	$\overline{D0}$	Estado
	0	0	0	0	0	0	0	0	0	0	A
В	0	0	0	0	0	1	0	0	0	1	В
\mathbf{C}	0	0	0	0	1	0	0	0	1	0	\mathbf{C}
D	0	0	0	0	1	1	0	0	1	1	D
\mathbf{E}	0	0	0	1	0	0	0	1	0	0	\mathbf{E}
\mathbf{F}	0	0	0	1	0	1	0	1	0	1	\mathbf{F}
G	0	0	0	1	1	0	0	1	1	0	G
Η	0	0	0	1	1	1	0	1	1	1	H
I	0	0	1	0	0	0	1	0	0	0	I
Blank	0	0	1	0	0	1	1	0	0	1	Blank
A	0	1	0	0	0	0	0	0	0	1	I
В	0	1	0	0	0	1	0	0	1	0	A
$^{\mathrm{C}}$	0	1	0	0	1	0	0	0	1	1	В
D	0	1	0	0	1	1	0	1	0	0	\mathbf{C}
\mathbf{E}	0	1	0	1	0	0	0	1	0	1	D
\mathbf{F}	0	1	0	1	0	1	0	1	1	0	\mathbf{E}
G	0	1	0	1	1	0	0	1	1	1	\mathbf{F}
Η	0	1	0	1	1	1	1	0	0	0	G
I	0	1	1	0	0	0	0	0	0	0	Η
Blank	0	1	1	0	0	1	0	0	0	0	A
A	1	0	0	0	0	0	1	0	0	0	В
В	1	0	0	0	0	1	0	0	0	0	\mathbf{C}
\mathbf{C}	1	0	0	0	1	0	0	0	0	1	D
D	1	0	0	0	1	1	0	0	1	0	E
E	1	0	0	1	0	0	0	0	1	1	F
F	1	0	0	1	0	1	0	1	0	0	G
G	1	0	0	1	1	0	0	1	0	1	H
Н	1	0	0	1	1	1	0	1	1	0	I
I	1	0	1	0	0	0	0	1	1	1	A
Blank	1	0	1	0	0	1	0	0	0	0	A
A	1	1	0	0	0	0	1	0	0	1	Blank
В	1	1	0	0	0	1	1	0	0	1	Blank
С	1	1	0	0	1	0	1	0	0	1	Blank
D	1	1	0	0	1	1	1	0	0	1	Blank
Е	1	1	0	1	0	0	1	0	0	1	Blank
F	1	1	0	1	0	1	1	0	0	1	Blank
G	1	1	0	1	1	0	1	0	0	1	Blank
H	1	1	0	1	1	1	1	0	0	1	Blank
I D1 1-	1	1	1	0	0	0	1	0	0	1	Blank
Blank	1	1	1	0	0	1	1	0	0	1	Blank

Nesta Tabela, as entradas são definidas por UP e DOWN, o estado atual é codificado pelas variáveis Q_3 , Q_2 , Q_1 e Q_0 e o próximo estado é codificado pelas variáveis D_3 , D_2 , D_1 e D_0 . Dessa forma, agora é possível gerar o circuito correspondente à tabela. Para isso, extraiu-se os mintermos, e com ajuda do site 32x8 (7) para simplificação com o Mapa de Karnaugh, foram retiradas as expressões que descrevem o circuito da função de próximo estado, que podem ser conferidas a seguir.

- $D_3 = UPDOWN + UP'DOWNQ_3 + UPQ2Q1Q0 + DOWNQ_3'Q_2'Q_1'Q_0'$
- $D_2 = DOWN'Q_2Q_1' + DOWN'Q_2q_0' + UP'Q_2q_0 + UP'Q_2Q_1 + UP'DOWNQ_3Q_0' + UPDOWN'Q_2'Q_1Q_0$
- $D_1 = DOWN'Q_1Q_0' + UP'Q_1Q_0 + UPDOWN'Q_3Q_0' + UP'DOWNQ_2Q_1'Q_0' + DOWNQ_3Q_0' + UPQ_3'Q_0'$
- $D_0 = UPDOWN + UP'DOWN'Q_0 + DOWNQ_1Q_0 + DOWNQ_2Q_0' + DOWNQ_3Q_0' + UPQ_3'Q_0'$

Na Figura 2, temos uma visão geral do circuito correspondente para as equações da função de próximo estado.

Figura 2 – Circuito para função de próximo estado

4.3. Registradores 17

4.3 Registradores

Uma outra parte importante de uma máquina de estados, são os registradores, que têm como principal função armazenar o estado atual, podendo esta função ser implementada atráves de flip-flops. Além disso, essa função pode conter um botão de reset, reinicializando a máquina. Para esta implementação, foram utilizados flip-flops do tipo D. Já para o reset, foi usado uma nova entrada, combinando-a com a saída Q do flip-flop em uma porta lógica and.

Uma visão geral do circuito desenvolvido pode ser conferida na Figura 3.

Figura 3 – Circuito para os Registradores.

Fonte: Autor

4.4 Função Saída

Em uma Máquina de *Moore*, as saídas dependem apenas do estado atual. Sendo assim, temos, na Tabela 4, o mapeamento dos estados e sua saída correspondente, que será enviada para o display de 7 segmentos do Kit FPGA.

	Estad	o Atu	al	Saída						
$\overline{Q3}$	$\overline{Q2}$	Q1	Q0	Y3	Y2	<i>Y</i> 1	$\overline{Y0}$			
0	0	0	0	0	1	1	0			
0	0	0	1	1	0	0	1			
0	0	1	0	0	0	0	0			
0	0	1	1	0	0	1	0			
0	1	0	0	0	1	0	0			
0	1	0	1	0	1	1	0			
0	1	1	0	0	1	0	1			
0	1	1	1	0	0	1	1			
1	0	0	0	1	0	0	0			
1	0	0	1	1	1	1	1			

Tabela 4 – Tabela da saída, dado um estado.

Fonte: O Autor

Cada estado é decodificado para o valor que ele de fato representa. As variáveis Q_3, Q_2, Q_1 e Q_0 correspondem à representação do estado atual da máquina, e as variáveis Y_3, Y_2, Y_1 e Y_0 , ao número (em binário) representado por cada estado. Logo, Y_3, Y_2, Y_1 e Y_0 serão as entradas enviadas ao display de 7 segmentos do Kit FPGA.

Dessa forma, é possível, então, extrair as expressões e montar o circuito correspondente. Asim sendo, fazendo a extração dos mintermos e simplificando com Mapa de *Karnaugh*, temos abaixo as seguintes expressões em soma de produtos:

$$\bullet Y_3 = Q_3 + Q_2' Q_1' Q_0$$

•
$$Y_2 = Q_2Q_1' + Q_2Q_0' + Q_3Q_0 + Q_3'Q_1'Q_0'$$

•
$$Y_1 = Q_1Q_0 + Q_2Q_0 + Q_3Q_0 + Q_3'Q_2'Q_1'Q_0'$$

•
$$Y_0 = Q_2 Q_1 + Q_2' Q_1' Q_0$$

Na Figura 4, temos o circuito correspondente, desenvolvido para as equações obtidas da função de saída.

Figura 4 – Circuito para função de saída

Fonte: Autor

4.5 Junção dos Componentes da Máquina de Estados

Feitas as 3 principais funções da máquina, as black-boxes desses circuitos foram geradas e agrupadas em um único circuito, formando a máquina de estados, como mostrado na Figura 5.

Figura 5 – Máquina de Estados

4.6 Temporizador

Uma outra parte importante a ser desenvolvida é o circuito temporizador, pois o Kit FPGA trabalha com uma frequência de 50MHz, enquanto o objetivo deste projeto é obter transições de estados a cada 1s. Uma estratégia possível é a divisão de frequências, que pode ser implementada atráves de flip-flops, ou mesmo por contadores, dividindo a sequência a cada uso. No caso dos flip-flops, a frequência é sempre dividida por 2.

Sabemos que f=1/T e T=1/f, em que f é a frequência e T o período. Queremos T=1s, e temos $f=50 {\rm MHz}.$ Logo:

$$T = 2^N/50 * 10^6$$
, para $T = 1 \Rightarrow 1 = 2^N/50 * 10^6 \Rightarrow 2^N = 50 * 10^6$

Aplicando log_2 ao dois lados da equação, temos:

$$log_2 2^N = log_2 50 * 10^6 \Rightarrow N = 25.57542$$

Assim, para $T = 1s \Rightarrow N \approx 26$.

Sendo assim, serão necessários aproximadamente 26 flip-flops para que a frequência de 50MHz seja dividida, até alcançarmos 1s. No caso, foram usados 10 contadores de 3 bits, pois cada contador utiliza 3 flip-flops, e no caso do 8º flip-flop foi obtida a saída do bit 23.

Assim, temos $\approx 0.16s$, e portanto, as 3 saídas entram no 9° contador, para que essa frequência seja multiplicada por 3, conseguindo $\approx 0.5s$. Agora, essa nova saída e ligado em um novo contador, permitindo que essa frequência seja multiplicada por 2, chegando mais próximo de 1s. O circuito obtido pode ser visualizado na Figura 6.

Figura 6 – Temporizador

4.7 Display de 7 Segmentos

Dado o circuito de saída, temos agora a entrada que pode ser mapeada para o display de 7 segmentos do Kit FPGA. Sendo assim, essa entrada deve ser convertida para os segmentos do display, que devem estar ligados ou desligados, conforme a Tabela 5.

Entradas					Saídas						
\overline{W}	X	\overline{Y}	Z	Decimal	\overline{a}	b	c	d	e	f	\overline{g}
0	0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	1	0	1	1	0	0	0	0
0	0	1	0	2	1	1	0	1	1	0	1
0	0	1	1	3	1	1	1	1	0	0	1
0	1	0	0	4	0	1	1	0	0	1	1
0	1	0	1	5	1	0	1	1	0	1	1
0	1	1	0	6	1	0	1	1	1	1	1
0	1	1	1	7	1	1	1	0	0	0	0
1	0	0	0	8	1	1	1	1	1	1	1
1	0	0	1	9	1	1	1	1	0	1	1
1	1	1	1	Blank	0	0	0	0	0	0	0

Tabela 5 – Tabela de Saída, dado um estado.

Fonte: Autor

Nesse caso, as entradas W, X, Y e Z representam as variáveis de entradas (isto é, o número em binário que deve ser mostrado no display) e as variáveis a, b, c, d, e, f, g representam cada um dos 7 segmentos do display. Extraindo as expressões da Tabela 5, temos abaixo, as expressões para geração do circuito:

•
$$a = W'Y + W'X'Z' + W'XZ + WX'Y'$$

•
$$b = A'B' + X'Y' + W'Y'Z' + W'YZ$$

•
$$c = X'Y' + W'Z + W'X$$

•
$$d = W'X'Z' + W'X'Y + W'YZ' + WX'Y' + W'XY'Z$$

$$\bullet \ e = X'Y'Z' + W'YZ'$$

•
$$f = W'Y'Z' + W'XY' + W'XZ' + WX'Y'$$

•
$$q = W'X'Y + W'YZ' + W'XY' + WX'Y'$$

Então, montando os circuitos correspondentes para as equações anteriores, temos o circuito desenvolvido na Figura 7. Vale ressaltar que o display contido no Kit FPGA é do tipo ânodo comum (ou seja, é ativo em '0'). Portanto, há inversores antes da saída de cada segmento.

Figura 7 – Circuito que mapeia para o display de 7 segmentos

5 Resultados Obtidos e Discussões

Finalizada a implementação da máquina de estados, o circuito temporizador, o decodificador para o display de 7 segmentos e feita a junção em um único circuito, temos então o circuito final, que pode ser visualizado na Figura 8.

UP DOWN MaquinaEstados Display OUTPUT Te<u>mporizador</u> S2 OUTPUT CLK clock **S1** OUTPUT S0 d OUTPUT OUTPUT OUTPUT

Figura 8 – Circuito final desenvolvido.

Fonte: Autor

Para validar o circuito desenvolvido, foram feitas simulações atráves de *wave forms* no *software Quartus*. Além disso, também foi feita uma simulação e apresentação do pleno funcionamento do projeto no Kit FPGA. Estas simulações podem ser conferidas a seguir.

5.1 Mantém - UP = 0 e DOWN = 0

Com UP=0 e DOWN=0, é esperado que a sequência pare e mantenha seu resultado, como mostra a simulação da Figura 9, onde a sequência seguia de forma crescente, até que mudou para o estado mantém, onde ficou parada no estado F=6, até que a entrada mudasse.

Figura 9 – Simulação contagem mantém.

5.2 Decrescente - UP = 0 e DOWN = 1

Para UP=0 e DOWN=1, a sequência apresentada será da forma decrescente. Sendo assim, a sequência 8-3-5-6-4-2-0-9-6 deve ser apresentada, como pode ser comprovado pela simulação da Figura 10.

Figura 10 – Simulação contagem decrescente.

in_	clk	ВО	
in_	up	ВО	1
in_	down	B 1	1
in_	reset	B 1	1
*	> Saida	U 6	8

Fonte: Autor

5.3 Crescente - UP = 1 e DOWN = 0

Para UP=1 e DOWN=0, a contagem será da forma crescente. Sendo assim, a sequência 6-9-0-2-4-6-5-3-8 deve ser apresentada, como pode ser visualizado na simulação da Figura 11.

Figura 11 – Simulação contagem crescente.

Fonte: Autor

5.4 Blank - UP = 1 e DOWN = 1

Já para UP = 1 e DOWN = 1, é esperado que a máquina avance para um estado de blank, onde todos os LEDs estarão apagados. Isso pode ser implementado atráves de um estado inválido para o display, como o número 15, representado na simulação da Figura 12. Nesse exemplo, a sequência seguia na forma crescente, até que a entrada mudou para blank e a sequência ficou nesse estado até que a entrada mudasse, e então a máquina volta para o primeiro estado e a contagem segue de forma crescente.

5.5. Uso do reset 25

Figura 12 – Simulação contagem blank.

Fonte: Autor

5.5 Uso do reset

Ainda, há uma opção de reset, onde não importando qual seja o estado atual da máquina, ela deve voltar ao estado inicial (A = 6), e então, após desligado o reset, a contagem deve prosseguir. Essa simulação pode ser visualizada na Figura 13, onde a contagem seguia a ordem crescente e um reset foi acionado, forçando a máquina a voltar ao estado inicial e prosseguindo a contagem crescente, como o esperado.

Figura 13 – Simulação contagem reset.

Fonte: Autor

5.6 Contagem Genérica

Foi simulado, também, um caso mais genérico, com uma mistura de combinações das entradas em uma única simulação, como mostrado na Figura 14.

Pode-se notar que a contagem se mantém crescente, com UP=1 e DOWN=0, até que há uma troca, para UP=0 e DOWN=1, e a contagem segue de modo decrescente. Após isso, a entrada DOWN é trocada para DOWN=0, e a contagem se mantém no estado atual. Então, há uma nova troca, e agora UP=1 e DOWN=1, e agora, a máquina vai para o estado blank. Por último, temos UP=1 e DOWN=0, onde a contagem segue crescente, até que o reset é acionado, e então, a contagem é reiniciada do primeiro estado, conforme esperado.

clk 80

up 81

down 80

reset 81

Saida U6 66 9 0 2 4 2 0 9 6 8 15 6 9 6 9 0

Figura 14 – Simulação contagem genérica

Fonte: Autor

5.7 Display de 7 Segmentos

Para este bloco, foram testadas os números possíveis (0-9), como pode ser visto pela waveforms da Figura 15. Como o esperado, o circuito opera corretamente. Por exemplo, o número 1 tem todos os segmentos ligados (em 0) exceto pelo último segmento. Já o número 8 tem todos segmentos ligados.

Figura 15 – Simulação display de 7 segmentos

Fonte: Autor

5.8 Simulação no Kit FPGA

As simulações também foram feitas no Kit FPGA disponível no laboratório da disciplina e apresentado ao professor. Na Figura 16, temos uma imagem da simulação realizada, mostrando apenas o estado inicial da máquina, com valor 6.

Figura 16 – Simulação no Kit FPGA

6 Considerações Finais

Com o desenvolvimento deste projeto, foi possível unir todo o conhecimento adquirido na disciplina de Circuitos Digitais e os do Laboratório de Sistemas Computacionais: Circuitos Digitais.

Então, após a modelagem da máquina, as simulações e os resultados obtidos, pode-se concluir o sucesso em sua implementação, pois a máquina possui todas as suas funcionalidades sendo executadas de acordo com o esperado.

Sendo assim, pode-se concluir a eficiência de uma máquina de estados para o problma apresentado e também suas diversas aplicações. Assim como, a de de um Kit FPGA para essas simulações e ver sua aplicabilidade em outros sistemas.

No entanto, o desenvolvimento de uma máquina de estados é uma tarefa longa e requer muita atenção, pois há a existência de várias partes e geram circuitos complexos e longos.

Além disso, com o desenvolvimento deste projeto, foi possível ver mais na prática uma aplicação de circuitos digitais, ter novas noções de *hardware* e a integração *software* e *hardware*.

Referências

- 1 FLOYD, T. Sistemas digitais: fundamentos e aplicações. [S.l.]: Bookman Editora, 2009. Citado 3 vezes nas páginas 7, 11 e 12.
- 2 GILL, A. et al. Introduction to the theory of finite-state machines. McGraw-Hill, 1962. Citado 2 vezes nas páginas 7 e 12.
- 3 TOCCI, R. J.; WIDMER, N. S.; MOSS, G. L. Sistemas digitais: princípios e aplicações. [S.l.]: Prentice Hall, 2003. v. 8. Citado na página 11.
- 4 FPGA.Altera DE2-115 Development and Education Board. https://www.ee.ryerson.ca/~courses/coe608/labs/DE2_115_User_Manual.pdf. Acessado em 22/10/2018. Citado na página 12.
- 5 QUARTUS PRIME. Intel Quartus Prime Software Suite. https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/overview.html. Acessado em 23/10/2018. Citado na página 12.
- 6 LUCID CHART. Software para a criação de de fluxogramas e diagramas on-line. https://www.lucidchart.com. Acessado em 20/10/2018. Citado na página 13.
- 7 32X8. Logic circuit simplification (SOP and POS). http://www.32x8.com/>. Acessado em 15/10/2018. Citado na página 16.