Verão IME-USP 2019 - Álgebra Linear - Lista 1

araujofpinto

janeiro 2019

- 1. Os símbolos + e . denotarão a soma e a multiplicação de números reais, enquanto os símbolos \oplus e \odot denotarão a soma e a multiplicação por escalar nos espaços vetoriais.
 - (\mathbb{R}) Corpo
 - (\mathbb{R}^2) A soma e a multiplicação por escalar de vetores do \mathbb{R}^2 são dadas por:
 - $(a,b) \oplus (c,d) = (a+c,b+d)$ e $\lambda \odot (a,b) = (\lambda.a,\lambda.b)$ Estando bem definidas, basta demonstrarmos os axiomas de espaço vetorial:
 - (S1) (Soma associativa) $[(a,b) \oplus (c,d)] \oplus (e,f) = (a+c,b+d) \oplus (e,f) = ([a+c]+e,[b+d]+f) = (a+[c+e],b+[d+f]) = (a,b) \oplus (c+e,d+f) = (a,b) \oplus [(c,d) \oplus (e,f)]$
 - **(S2)** (Soma comutativa) $(a, b) \oplus (c, d) = (a + c, b + d) = (c + a, d + b) = (c, d) \oplus (a, b)$
 - (S3) (Vetor nulo) $\vec{0} = (0,0)$, pois $(a,b) \oplus (0,0) = (a+0,b+0) = (a,b)$
 - (S4) (Elemento oposto) -(a,b) = (-a,-b), pois $(a,b) \oplus (-a,-b) = (a+[-a],b+[-b]) = (0,0) = \vec{0}$
 - (M1) (Multiplicação associativa) $\lambda \odot [\alpha \odot (a,b)] = \lambda \odot [(\alpha.a,\alpha.b)] = (\lambda.[\alpha.a],\lambda.[\alpha.b]) = ([\lambda.\alpha].a,[\lambda.\alpha].b) = [\lambda.\alpha] \odot (a,b)$
 - (M2) (Unidade multiplicativa) $1 \odot (a, b) = (1.a, 1.b) = (a, b)$
 - (**D1**) (Distributiva em V) $\lambda \odot [(a,b) \oplus (c,d)] = \lambda \odot [(a+c,b+d)] = (\lambda.[a+c], \lambda.[b+d]) = (\lambda.a+\lambda.c, \lambda.b+\lambda.d) = (\lambda.a, \lambda.b) \oplus (\lambda.c, \lambda.d) = \lambda \odot (a,b) \oplus \lambda \odot (c,d)$
 - (**D2**) (Distributiva em \mathbb{R}) $[\lambda + \alpha] \odot (a, b) = ([\lambda + \alpha].a, [\lambda + \alpha].b) = (\lambda.a + \alpha.a, \lambda.b + \alpha.b) = (\lambda.a, \lambda.b) \oplus (\alpha.a, \alpha.b) = \lambda \odot (a, b) \oplus \alpha \odot (a, b)$

Logo, \mathbb{R}^2 é um espaço vetorial real com esta soma e esta multiplicação por escalar.

- (\mathbb{R}^3) A soma e a multiplicação por escalar de vetores do \mathbb{R}^3 são dadas por:
 - $(a_1, a_2, a_3) \oplus (b_1, b_2, b_3) = (a_1 + b_1, a_2 + b_2, a_3 + b_3)$ e $\lambda \odot (a, b, c) = (\lambda.a, \lambda.b, \lambda.c)$ Estando bem definidas, basta demonstrarmos os axiomas de espaço vetorial:
 - (S1) (Soma associativa) $[(a_1, a_2, a_3) \oplus (b_1, b_2, b_3)] \oplus (c_1, c_2, c_3) = (a_1 + b_1, a_2 + b_2, a_3 + b_3) \oplus (c_1, c_2, c_3) = ([a_1 + b_1] + c_1, [a_2 + b_2] + c_2, [a_3 + b_3] + c_3) = (a_1 + [b_1 + c_1], a_2 + [b_2 + c_2], a_3 + [b_3 + c_3]) = (a_1, a_2, a_3) \oplus (b_1 + c_1, b_2 + c_2, b_3 + c_3) = (a_1, a_2, a_3) \oplus [(b_1, b_2, b_3) \oplus (c_1, c_2, c_3)]$
 - (S2) (Soma comutativa) $(a_1, a_2, a_3) \oplus (b_1, b_2, b_3) = (a_1 + b_1, a_2 + b_2, a_3 + b_3) = (b_1 + a_1, b_2 + a_2, b_3 + a_3) = (b_1, b_2, b_3) \oplus (a_1, a_2, a_3)$
 - (S3) (Vetor nulo) $\vec{0} = (0,0,0)$, pois $(a_1,a_2,a_3) \oplus (0,0,0) = (a_1+0,a_2+0,a_3+0) = (a_1,a_2,a_3)$
 - (S4) (Elemento oposto) $-(a_1, a_2, a_3) = (-a_1, -a_2, -a_3)$, pois $(a_1, a_2, a_3) \oplus (-a_1, -a_2, -a_3) = (a_1 + [-a_1], a_2 + [-a_2], a_3 + [-a_3]) = (0, 0, 0) = \vec{0}$
 - (M1) (Multiplicação associativa) $\lambda \odot [\alpha \odot (a_1, a_2, a_3)] = \lambda \odot [(\alpha.a_1, \alpha.a_2, \alpha.a_3)] = (\lambda.[\alpha.a_1], \lambda.[\alpha.a_2], \lambda.[\alpha.a_3]) = ([\lambda.\alpha].a_1, [\lambda.\alpha].a_2, [\lambda.\alpha].a_3) = [\lambda.\alpha] \odot (a_1, a_2, a_3)$
 - (M2) (Unidade multiplicativa) $1 \odot (a_1, a_2, a_3) = (1.a_1, 1.a_2, 1.a_3) = (a_1, a_2, a_3)$
 - (**D1**) (Distributiva em V) $\lambda \odot [(a_1, a_2, a_3) \oplus (b_1, b_2, b_3)] = \lambda \odot (a_1 + b_1, a_2 + b_2, a_3 + b_3) = (\lambda . [a_1 + b_1], \lambda . [a_2 + b_2], \lambda . [a_3 + b_3)]) = (\lambda . a_1 + \lambda . b_1, \lambda . a_2 + \lambda . b_2, \lambda . a_3 + \lambda . b_3) = (\lambda . a_1, \lambda . a_2, \lambda . a_3) \oplus (\lambda . b_1, \lambda . b_2, \lambda . b_3) = \lambda \odot (a_1, a_2, a_3) \oplus \lambda \odot (b_1, b_2, b_3)$
 - (**D2**) (Distributiva em \mathbb{R}) $[\lambda + \alpha] \odot (a_1, a_2, a_3) = ([\lambda + \alpha].a_1, [\lambda + \alpha].a_2, [\lambda + \alpha].a_3) = (\lambda.a_1 + \alpha.a_1, \lambda.a_2 + \alpha.a_2, \lambda.a_3 + \alpha.a_3) = (\lambda.a_1, \lambda.a_2, \lambda.a_3) \oplus (\alpha.a_1, \alpha.a_2, \alpha.a_3) = \lambda \odot (a_1, a_2, a_3) \oplus \alpha \odot (a_1, a_2, a_3)$

Logo, \mathbb{R}^3 é um espaço vetorial real com esta soma e esta multiplicação por escalar.

- (\mathbb{R}^n) A soma e a multiplicação por escalar de vetores do \mathbb{R}^n são dadas por:
 - $(a_1,\ldots,a_n)\oplus(b_1,\ldots,b_n)=(a_1+b_1,\ldots,a_n+b_n)$ e $\lambda\odot(a_1,\ldots,a_n)=(\lambda.a_1,\ldots,\lambda.a_n)$ Estando bem definidas, basta demonstrarmos os axiomas de espaço vetorial:

- (S1) (Soma associativa) $[(a_1, \ldots, a_n) \oplus (b_1, \ldots, b_n)] \oplus (c_1, \ldots, c_n) = (a_1 + b_1, \ldots, a_n + b_n) \oplus (c_1, \ldots, c_n) = ([a_1 + b_1] + c_1, \ldots, [a_n + b_n] + c_n) = (a_1 + [b_1 + c_1], \ldots, a_n + [b_n + c_n]) = (a_1, \ldots, a_n) \oplus (b_1 + c_1, \ldots, b_n + c_n) = (a_1, \ldots, a_n) \oplus [(b_1, \ldots, b_n) \oplus (c_1, \ldots, c_n)]$
- (S2) (Soma comutativa) $(a_1, \ldots, a_n) \oplus (b_1, \ldots, b_n) = (a_1 + b_1, \ldots, a_n + b_n) = (b_1 + a_1, \ldots, b_n + a_n) = (b_1, \ldots, b_n) \oplus (a_1, \ldots, a_n)$
- (S3) (Vetor nulo) $\vec{0} = (0, \dots, 0)$, pois $(a_1, \dots, a_n) \oplus (0, \dots, 0) = (a_1 + 0, \dots, a_n + 0) = (a_1, \dots, a_n)$
- (S4) (Elemento oposto) $-(a_1, \ldots, a_n) = (-a_1, \ldots, -a_n)$, pois $(a_1, \ldots, a_n) \oplus (-a_1, \ldots, -a_n) = (a_1 + [-a_1], \ldots, a_n + [-a_n]) = (0, \ldots, 0) = \vec{0}$
- (M1) (Multiplicação associativa) $\lambda \odot [\alpha \odot (a_1, \ldots, a_n)] = \lambda \odot [(\alpha.a_1, \ldots, \alpha.a_n)] = (\lambda.[\alpha.a_1], \ldots, \lambda.[\alpha.a_n]) = ([\lambda.\alpha].a_1, \ldots, [\lambda.\alpha].a_n) = [\lambda.\alpha] \odot (a_1, a_2, a_n)$
- (M2) (Unidade multiplicativa) $1 \odot (a_1, \ldots, a_n) = (1.a_1, \ldots, 1.a_n) = (a_1, \ldots, a_n)$
- (D1) (Distributiva em V) $\lambda \odot [(a_1, \dots, a_n) \oplus (b_1, \dots, b_n)] = \lambda \odot (a_1 + b_1, \dots, a_n + b_n) = (\lambda \cdot [a_1 + b_1], \dots, \lambda \cdot [a_n + b_n)]) = (\lambda \cdot a_1 + \lambda \cdot b_1, \dots, \lambda \cdot a_n + \lambda \cdot b_n) = (\lambda \cdot a_1, \dots, \lambda \cdot a_n) \oplus (\lambda \cdot b_1, \dots, \lambda \cdot b_n) = \lambda \odot (a_1, \dots, a_n) \oplus \lambda \odot (b_1, \dots, b_n)$
- (**D2**) (Distributiva em \mathbb{R}) $[\lambda + \alpha] \odot (a_1, \dots, a_n) = ([\lambda + \alpha].a_1, \dots, [\lambda + \alpha].a_n) = (\lambda.a_1 + \alpha.a_1, \dots, \lambda.a_n + \alpha.a_n) = (\lambda.a_1, \dots, \lambda.a_n) \oplus (\alpha.a_1, \dots, \alpha.a_n) = \lambda \odot (a_1, \dots, a_n) \oplus \alpha \odot (a_1, \dots, a_n)$

Logo, \mathbb{R}^n é um espaço vetorial real com esta soma e esta multiplicação por escalar.

 $(\mathbb{M}_n(\mathbb{R}))$

 $(\mathbb{M}_{m\times n}(\mathbb{R}))$

 $(\mathcal{P}(\mathbb{R}))$

 $(\mathcal{F}(X,\mathbb{R}))$

- 2. Lembre-se cancelamento em $V: v \oplus u = v \oplus w \Rightarrow u = w$ n
 - (a) $0 \odot u = (0+0) \odot u = 0 \odot u \oplus \odot u \Rightarrow 0 \odot u = 0_V$.
 - **(b)** $\alpha \odot 0_V = \alpha \odot (0_V \oplus 0_V) = \alpha \odot 0_V \oplus \alpha \odot 0_V \Rightarrow \alpha \odot 0_V = 0_V.$
 - (c) $(-\alpha) \odot u \oplus \alpha \odot u = (-\alpha \oplus \alpha) \odot u = 0 \odot u = 0_V = -(\alpha \odot u) \oplus \alpha \odot u \Rightarrow (-\alpha) \odot u = -(\alpha \odot u)$

$$\alpha \odot (-u) \oplus \alpha \odot u = \alpha \odot (u \oplus -u) = \alpha \odot 0_V = 0_V = -(\alpha \odot u) \oplus \alpha \odot u \Rightarrow \alpha \odot (-u) = -(\alpha \odot u).$$

- (d) Se $\alpha \neq 0$, então $\alpha \odot u = 0_V$ implica $(\frac{1}{\alpha}.\alpha) \odot u = 1 \odot u = u = (\frac{1}{\alpha}) \odot 0_V = 0_V$, ou seja, $u = 0_V$.
- (e) Se $\alpha \odot u = \alpha \odot v$ e $\alpha \neq 0$, então $(\frac{1}{\alpha}.\alpha) \odot u = (\frac{1}{\alpha}.\alpha) \odot v$, ou seja, u = v.
- (f) Se $\alpha \odot u = \beta \odot u$ e $u \neq 0_V$, então $(\alpha \beta) \odot u = 0_V$, de onde $\alpha \beta = 0$ e $\alpha = \beta$.
- 3. A soma e a multiplicação por escalar de vetores de $V \times W$ são dadas por: $(v_1, w_1) \oplus (v_2, w_2) = (v_1 + v_2, w_1 + w_2)$ e $\lambda \odot (v, w) = (\lambda.v, \lambda.w)$ As operações $v_1 + v_2$ e $\lambda.v$ são as do espaço vetorial V, enquanto $w_1 + w_2$ e $\lambda.w$ são as do espaço vetorial W e, portanto, estas satisfazem os axiomas de espaço vetorial. Estando as operações bem definidas em $V \times W$, basta demonstrarmos os axiomas de espaço vetorial:
 - (S1) (Soma associativa) $[(v_1, w_1) \oplus (v_2, w_2)] \oplus (v_3, w_3) = (v_1 + v_2, w_1 + w_2) \oplus (v_3, w_3) = ([v_1 + v_2] + v_3, [w_1 + w_2] + w_3) = (v_1 + [v_2 + v_3], w_1 + [w_2 + w_3]) = (v_1, w_1) \oplus (v_2 + v_3, w_2 + w_3) = (v_1, w_1) \oplus [(v_2, w_2) \oplus (v_3, w_3)]$
 - (S2) (Soma comutativa) $(v_1, w_1) \oplus (v_2, w_2) = (v_1 + v_2, w_1 + w_2) = (v_2 + v_1, w_2 + w_1) = (v_2, w_2) \oplus (v_1, w_1)$
 - (S3) (Vetor nulo) $\vec{0} = (0_V, 0_W)$, pois $(v, w) \oplus (0_V, 0_W) = (v + 0_V, w + 0_W) = (v, w)$
 - (S4) (Elemento oposto) -(v, w) = (-v, -w), pois $(v, w) \oplus (-v, -w) = (v + [-v], w + [-w]) = (0_V, 0_W) = \vec{0}$
 - (M1) (Multiplicação associativa) $\lambda \odot [\alpha \odot (v, w)] = \lambda \odot [(\alpha.v, \alpha.w)] = (\lambda.[\alpha.v], \lambda.[\alpha.w]) = ([\lambda.\alpha].v, [\lambda.\alpha].w) = [\lambda.\alpha] \odot (v, w)$
 - (M2) (Unidade multiplicativa) $1 \odot (v, w) = (1.v, 1.w) = (v, w)$
 - (**D1**) (Distributiva em V) $\lambda \odot [(v_1, w_1) \oplus (v_2, w_2)] = \lambda \odot [(v_1 + v_2, w_1 + w_2)] = (\lambda . [v_1 + v_2], \lambda . [w_1 + w_2]) = (\lambda . v_1 + \lambda . v_2, \lambda . w_1 + \lambda . w_2) = (\lambda . v_1, \lambda . w_1) \oplus (\lambda . v_2, \lambda . w_2) = \lambda \odot (v_1, w_1) \oplus \lambda \odot (v_2, w_2)$
 - (**D2**) (Distributiva em \mathbb{R}) $[\lambda + \alpha] \odot (v, w) = ([\lambda + \alpha].v, [\lambda + \alpha].w) = (\lambda.v + \alpha.v, \lambda.w + \alpha.w) = (\lambda.v, \lambda.w) \oplus (\alpha.v, \alpha.w) = \lambda \odot (v, w) \oplus \alpha \odot (v, w)$

Logo, $V \times W$ é um espaço vetorial real com esta soma e esta multiplicação por escalar.

- 4. A soma e a multiplicação por escalar de vetores de $V=\{x\in\mathbb{R}:x>0\}$ são dadas por:
 - $x \oplus y = x.y$, e $\lambda \odot x = x^{\lambda}$ As operações x.y e x^{λ} são a multiplicação e a potenciação de números reais positivos. Estando as operações bem definidas em V, pois $x.y \in V$ e $x^{\lambda} \in V$, basta demonstrarmos os axiomas de espaço vetorial:
 - (S1) (Soma associativa) $[x \oplus y] \oplus z = [x.y] \oplus z = [x.y].z = x.[y.z] = x \oplus [y.z] = x \oplus [y \oplus z]$
 - (S2) (Soma comutativa) $x \oplus y = x.y = y.x = y \oplus x$
 - (S3) (Vetor nulo) $\vec{0} = 1$, pois $x \oplus \vec{0} = x.1 = x$
 - **(S4)** (Elemento oposto) $-x = x^{-1}$, pois $x \oplus -x = x \cdot x^{-1} = 1 = \vec{0}$
 - (M1) (Multiplicação associativa) $\lambda \odot [\alpha \odot x] = \lambda \odot [x^{\alpha}] = [x^{\alpha}]^{\lambda} = x^{[\alpha.\lambda]} = [\lambda.\alpha] \odot x$
 - (M2) (Unidade multiplicativa) $1 \odot x = x^1 = x$
 - **(D1)** (Distributiva em V) $\lambda \odot [x \oplus y] = \lambda \odot [x.y] = [x.y]^{\lambda} = [x^{\lambda}].[y^{\lambda}] = [x^{\lambda}] \oplus [y^{\lambda}] = \lambda \odot x \oplus \lambda \odot y$
 - **(D2)** (Distributiva em \mathbb{R}) $[\lambda + \alpha] \odot x = x^{[\lambda + \alpha]} = [x^{\lambda}][x^{\alpha}] = [x^{\lambda}] \oplus [x^{\alpha}] = \lambda \odot x \oplus \alpha \odot x$

Logo, V é um espaço vetorial real com esta soma e esta multiplicação por escalar.

- 5. (a)
 - (b)
- 6. (a) (i) $0_V \in U$ e $0_V \in W$, pois U e W são subespaços vetoriais de V. Logo, $0_V \in U \cap W$
 - (ii) Dados v_1,v_2 em $U\cap W$, temos que $v_1+v_2\in U$ e $v_1+v_2\in W$, pois U e W são subespaços vetoriais de V. Logo, $v_1+v_2\in U\cap W$
 - (iii) Dados $v \in U \cap W$ e $\lambda \in \mathbb{R}$, temos que $\lambda.v \in U$ e $\lambda.v \in W$, pois U e W são subespaços vetoriais de V. Logo, $\lambda.v \in U \cap W$

Portanto, $U \cap W$ é subespaço vetorial de V.

- (b) (i) $0_V \in U$ e $0_V \in W$, pois U e W são subespaços vetoriais de V. Logo, $0_V \in U + W$, pois $0_V = 0_V + 0_V$ \square
 - (ii) Dados v_1, v_2 em U + W, temos que $v_1 = u_1 + w_1$ e $v_2 = u_2 + w_2$ com u_1, u_2 em U e w_1, w_2 em W, donde $v_1 + v_2 = (u_1 + w_1) + (u_2 + w_2) = (u_1 + u_2) + (w_1 + w_2)$ com $u_1 + u_2 \in U$ e $w_1 + w_2 \in W$, pois U e W são subespaços vetoriais de V. Logo, $v_1 + v_2 \in U + W$
 - (iii) Dados $v \in U+W$ e $\lambda \in \mathbb{R}$, temos que v=u+w com $u \in U$ e $w \in W$, donde $\lambda.v=\lambda.(u+w)=\lambda.u+\lambda.w$ com $\lambda.u \in U$ e $\lambda.w \in W$, pois U e W são subespaços vetoriais de V. Logo, $\lambda.v \in U+W$ \square Portanto, U+W é subespaço vetorial de V.
- (c) (\Rightarrow) Suponha, por absurdo, que U não está contido em W, nem W está contido em U. Então existem $u \in U$ e $w \in W$ tais que $u \notin U$ e $\notin W$. Mas u e w estão em $U \cup W$ que é, por hipótese, subespaço vetorial de V. Logo, u+w está em $U \cup W$, donde $u+w \in U$ ou $u+w \in W$. Se $u+w \in U$, então $(u+w)+(-u)=w \in U$ e, se $u+w \in W$, então $(u+w)+(-w)=u \in W$. Absurdo, pois $u \notin U$ e $\notin W$. Logo $U \subseteq W$ ou $W \subseteq U$. \square (\Leftarrow) Se $U \subset W$, então $U \cup W = W$, logo $U \cup W$ é subespaço vetorial de V, pois W é subespaço vetorial de V. Se $W \subset U$, então $U \cup W = U$, logo $U \cup W$ é subespaço vetorial de V. \square
- (d) Como U+W é subespaço vetorial de V, para mostrarmos que U+W é subespaço vetorial de S, basta demonstrarmos que $U+W\subseteq S$. Dado $v\in U+W$, temos que v=u+w com $u\in U$ e $w\in W$. Mas $u\in U\cup W$ e $w\in U\cup W$, logo $u\in S$ e $w\in S$. Como S é subespaço vetorial de V, segue que $v=u+w\in S$. Logo $U+W\subseteq S$ e, portanto, U+W é subespaço vetorial de S \square . \square
- 7. (a)
 - (b) Note que $U_2 = [(1,1,1),(-1,-1,-1)] = [(1,1,1)]$, pois (-1,-1,-1) é múltiplo de (1,1,1), de onde $dim(U_2) = 1$. Mais ainda, temos que (1,1,1) = (1,0,1) + (0,1,0) está em U_1 e, portanto, $U_2 \subseteq U_1$. Mas $dim(U_1) = 2$, pois os vetores (1,0,1) e (0,1,0) são linearmente independentes, já que a(1,0,1) + b(0,1,0) = (0,0,0) implicam a = b = 0. Logo, $U_1 \neq U_2$.
 - (c) $U_1 \neq U_2$, já que $(1,0,0) \notin U_2$, pois (1,0,0) não é combinação linear de (0,1,0) e (0,0,1). Para ver isso, escreva (1,0,0) = a(0,1,0) + b(0,0,1), e note que o sistema 3×2 gerado não tem solução:

$$\begin{cases} 0.a + 0.b = 1\\ 1.a + 0.b = 0\\ 0.a + 1.b = 0 \end{cases}$$

Também temos que $(0,0,1) \notin U_1$, pois (0,0,1) não é combinação linear de (1,0,0) e (0,1,0). Para ver isso, escreva (0,0,1) = a(1,0,0) + b(0,1,0), e note que o sistema 3×2 gerado não tem solução:

$$\begin{cases} 1.a + 0.b = 0 \\ 0.a + 1.b = 0 \\ 0.a + 0.b = 1 \end{cases}$$

- (d) Note que 2t + 2 = 2(t + 1) pertence a $U_1 \cap U_2$. Mas $t^2 1$ não pertence a U_2 e nem $t^2 + t$ pertence a U_1 . Logo, $U_1 \neq U_2$.
- (e)
- 8. (a) S é subespaço vetorial de V, pois:

(i)
$$0_V = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \in S$$

- (ii) Dados v_1, v_2 em S, temos que $v_1 = \begin{pmatrix} x_1 & y_1 \\ z_1 & t_1 \end{pmatrix}$ e $v_2 = \begin{pmatrix} x_2 & y_2 \\ z_2 & t_2 \end{pmatrix}$, com $x_1 y_1 z_1 = 0$ e $x_2 y_2 z_2 = 0$. Logo, $v_1 + v_2 = \begin{pmatrix} x_1 + x_2 & y_1 + y_1 \\ z_1 + z_2 & t_1 + t_2 \end{pmatrix}$ e $(x_1 + x_2) (y_1 + y_2) (z_1 + z_2) = (x_1 y_1 z_1) + (x_2 y_2 z_2) = 0 + 0 = 0$ e, portanto, $v_1 + v_2 \in S$.
- (iii) Dados v em S e $\lambda \in \mathbb{R}$, temos que $v = \begin{pmatrix} x & y \\ z & t \end{pmatrix}$ com x y z = 0. Logo, $\lambda . v = \begin{pmatrix} \lambda x & \lambda y \\ \lambda z & \lambda t \end{pmatrix}$ e $\lambda x - \lambda y - \lambda z = \lambda (x - y - z) = \lambda 0 = 0$ e, portanto, $\lambda v \in S$.

Para determinar um gerador de S, note que, dado $v \in S$, temos que $v = \begin{pmatrix} x & y \\ z & t \end{pmatrix}$ com x - y - z = 0, ou ainda, $v = \begin{pmatrix} y + z & y \\ z & t \end{pmatrix} = \begin{pmatrix} y & y \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} z & 0 \\ z & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & t \end{pmatrix} = y \cdot \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} + z \cdot \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} + t \cdot \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$. Logo, $\left\{\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\right\}$ é um possível gerador de S.

(b) S não é subespaço vetorial de V.

Para ver isso, tome $v=(3,2)\in S$ e note que um múltiplo de v não está em S, como 5.v=5.(3,2)=(15,10) que não pertence a S, já que $(15,10)=\alpha(1,2)+(3,2)$ gera o sistema $2\times 1:\begin{cases} 1.\alpha+3=15\\ 2.\alpha+2=10 \end{cases}$ que não tem solução.

Note que S é um espaço afim de V paralelo ao subespaço vetorial $T = \{v \in \mathbb{R}^2 : v = t(1,2), t \in \mathbb{R}\} = \{(x,y) \in \mathbb{R}^2 : y = 2x\}$, isto é, S é o espaço afim resultante da translação de T por (3,2) (ou por qualquer outro vetor de T): $S = T + \{(3,2)\}$.

- (c) S é subespaço vetorial de V, pois:
 - (i) 0_V é o polinômio nulo dado por $0_V(x) = 0$ para x em \mathbb{R} . Como $0_V(-1) = 0$ e $0_V(1) = 0$, segue que $0_V \in S$.
 - (ii) Dados p, q em S, temos que p(-1) = p(1) = 0 e q(-1) = q(1) = 0. Logo, $p + q \in V$ com (p + q)(-1) = p(-1) + q(-1) = 0 + 0 = 0 e (p + q)(1) = p(1) + q(1) = 0 + 0 = 0 e, portanto, $p + q \in S$.
 - (iii) Dados p em S e $\lambda \in \mathbb{R}$, temos que p(-1) = p(1) = 0. Logo, $\lambda \cdot p \in V$ com $(\lambda \cdot p)(-1) = \lambda p(-1) = \lambda 0 = 0$ e, portanto, $\lambda \cdot p \in S$.

Para determinar um gerador de S, note que, dado $p \in S$, temos que $p(x) = ax^3 + bx^2 + cx + d$ com p(-1) = -a + b - c + d = 0 e p(1) = a + b + c + d = 0, gerando o sistema linear homogêneo 2×4 : $\begin{cases} -a + b - c + d = 0 \\ a + b + c + d = 0 \end{cases}$ que pode ser escalonado para $\begin{cases} -a + b - c + d = 0 \\ 0a + 2b + 0c + 2d = 0 \end{cases}$, que é um sistema possível e indeterminado com 2 graus de liberdade, pois para quaisquer valores de c,d em \mathbb{R} , temos uma solução para o sistema com b = -d e a = -c.

Ou seja, se $p \in S$, então $p(x) = (-c)x^3 + (-d)x^2 + cx + d = [-cx^3 + cx] + [-dx^2 + 1] = c[-x^3 + x] + d[-x^2 + 1]$. Logo, tomando q_1, q_2 em S tais que $q_1(x) = -x^3 + x$ e $q_2(x) = -x^2 + 1$, temos que $\{q_1, q_2\}$ é um possível gerador de S.

- (d) S é subespaço vetorial de V, pois:
 - (i) $tr(0_V) = 0 + \cdots + 0 = 0 \Rightarrow 0_V \in S$
 - (ii) Dados A, B em S, temos que $A \in V$ e $B \in V$, com tr(A) = 0 e tr(B) = 0. Logo, $A + B \in V$ e tr(A + B) = tr(A) + tr(B) = 0 + 0 = 0 e, portanto, $A + B \in S$.
 - (iii) Dados A em S e $\lambda \in \mathbb{R}$, temos que $A \in V$ com tr(A) = 0.

Logo,
$$\lambda A \in V$$
 e $tr(\lambda A) = \lambda tr(A) = \lambda 0 = 0$ e, portanto, $\lambda A \in S$.

S é um subespaço vetorial de V com dimensão n^2-1 , já que a única restrição nas n^2 entradas de uma matriz $n \times n$ é que $tr(A) = \sum_{i=1}^n a_{ii} = 0$ e, portanto, podemos tirar uma das entradas da diagonal em função das outras, como por exemplo $a_{11} = -\sum_{i=2}^n a_{ii}$.

- (e) S é subespaço vetorial de V, pois:
 - (i) $0_V = (0,0,0,0) \in S$, pois 0 0 + 0 + 0 = 0 e -0 + 2.0 + 0 0 = 0
 - (ii) Dados $v_1 = (x_1, y_1, z_1, t_1)$ e $v_2 = (x_2, y_2, z_2, t_2)$ em S, temos que $x_1 y_1 + z_1 + t_1 = 0$, $-x_1 + 2y_1 + z_1 t_1 = 0$, $x_2 y_2 + z_2 + t_2 = 0$ e $-x_2 + 2y_2 + z_2 t_2 = 0$. Logo, $v_1 + v_2 = (x_1 + x_2, y_1 + y_2, z_1 + z_2, t_1 + t_2) \in S$, pois $(x_1 + x_2) (y_1 + y_2) + (z_1 + z_2) + (t_1 + t_2) = 0 + 0 = 0$ e $-(x_1 + x_2) + 2(y_1 + y_2) + (z_1 + z_2) (t_1 + t_2) = 0 + 0 = 0$.
 - (iii) Dados v = (x, y, z, t) em S e $\lambda \in \mathbb{R}$, temos que $\lambda \cdot v = (\lambda x, \lambda y, \lambda z, \lambda t)$ com $(\lambda x) (\lambda y) + (\lambda z) + (\lambda t) = \lambda 0 = 0$ e $-(\lambda x) + 2(\lambda y) + (\lambda z) (\lambda t) = \lambda 0 = 0$ e, portanto, $\lambda \cdot p \in S$.

Dado
$$v=(x,y,z,t)$$
 em S , geramos o sistema linear homogêneo $2\times 4: \begin{cases} x-y+z+t=0\\ -x+2y+z-t=0 \end{cases}$ que pode

ser escalonado para
$$\begin{cases} x-y+z+t=0\\ 0x+y+2z+0t=0 \end{cases}$$
 que é um sistema possível e indeterminado com 2 graus de liberdade, pois para quaisquer valores de z e t em \mathbb{R} , temos uma solução para o sistema com $y=-2z$ e $x=-3z-t$.

Ou seja, se
$$v \in S$$
, então $v = (-3z - t, -2z, z, t) = (-3z, -2z, z, 0) + (-t, 0, 0, t) = z(-3, -2, 1, 0) + t(-1, 0, 0, 1)$.

Logo,
$$\{(-3, -2, 1, 0), (-1, 0, 0, 1)\}$$
 é um possível gerador de S .

9. Para mostrarmos que $\mathbb{M}_2(\mathbb{R})$ é gerado por $\{A_1, A_2, A_3, A_4\}$, vamos demonstrar que qualquer matriz $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ é combinação linear de A_1, A_2, A_3 e A_4 , ou seja, que existe solução para o sistema linear 4×4 gerado pela equação

$$\text{matricial } A = x.A_1 + y.A_2 + z.A_3 + t.A_4 : \begin{cases} x + y + z + 0t = a \\ x + y + 0z + t = b \\ x + 0y + z + t = c \\ 0x + y + z + t = d \end{cases} \text{ que é equivalente a } \begin{cases} 1 & 1 & 1 & 0 & | & a \\ 1 & 1 & 0 & 1 & | & b \\ 1 & 0 & 1 & 1 & | & c \\ 0 & 1 & 1 & 1 & | & d \end{cases}$$

Escalonando o sistema, obtemos:
$$\begin{pmatrix} 1 & 1 & 1 & 0 & | & a \\ 0 & 0 & -1 & 1 & | & b-a \\ 0 & -1 & 0 & 1 & | & c-a \\ 0 & 1 & 1 & 1 & | & d \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 & | & a \\ 0 & 1 & 1 & 1 & | & d \\ 0 & -1 & 0 & 1 & | & c-a \\ 0 & 0 & -1 & 1 & | & b-a \end{pmatrix} \rightarrow$$

$$\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 & | & a \\ 0 & 1 & 1 & 1 & | & d \\ 0 & 0 & 1 & 2 & | & d+c-a \\ 0 & 0 & -1 & 1 & | & b-a \\ \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 & | & a \\ 0 & 1 & 1 & 1 & | & d \\ 0 & 0 & 1 & 2 & | & d+c-a \\ 0 & 0 & 0 & 3 & | & b+c+d-2a \\ \end{pmatrix} \text{ que \'e um sistema possível e determinado, cuja solução \'e dada por:}$$

$$t = \frac{b+c+d-2a}{3}, \ z = d+c-a-2\frac{b+c+d-2a}{3} = \frac{a+c+d-2b}{3}, \ y = d-\frac{a+c+d-2b}{3} - \frac{b+c+d-2a}{3} = \frac{a+b+d-2c}{3} = \frac{a+b+d-2c}{3} = a-\frac{a+b+d-2c}{3} = \frac{a+b+d-2c}{3}, \ a+\frac{a+c+d-2b}{3}, \ a+\frac{a+c+d-2b}{3}, \ a+\frac{a+c+d-2b}{3}, \ b+\frac{b+c+d-2a}{3} = a+\frac{b+d-2c}{3}.$$

Portanto, $\{A_1, A_2, A_3, A_4\}$ é gerador de $M_2(\mathbb{R})$.

 $\frac{a+b+d-2c}{3}.A_2+\frac{a+c+d-2b}{3}.A_3+\frac{b+c+d-2a}{3}.A_4, \text{ ou seja } (x,y,z,t) \text{ \'e a representação de A em coordenadas na base } \mathcal{B}, \text{ isto \'e}, A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}=(\frac{a+b+c-2d}{3},\frac{a+b+d-2c}{3},\frac{a+c+d-2b}{3},\frac{b+c+d-2a}{3})_{\mathcal{B}}.$

10. Seja F o plano afim de \mathbb{R}^3 que contém os vetores (1,0,0),(0,1,0) e (0,0,1).

A equação cartesiana de F é da forma ax + by + cz = d. Substituindo os vetores dados na equação, obtemos o

sistema linear
$$3 \times 4: \begin{cases} a+0b+0c=d \\ 0a+b+0c=d \\ 0a+0b+c=d \end{cases}$$
 que é um sistema possível e indeterminado com 1 grau de liberdade,

pois para qualquer valor de d em \mathbb{R} , temos uma solução para o sistema com $c=d,\,b=d$ e a=d. Portanto, uma possível equação cartesiana de F é x+y+z=1.

Para obter a equação vetorial de F, note que qualquer $v=(x,y,z)\in F$ pode ser escrito como v=(1-y-z,y,z)=(1,0,0)+(-y,y,0)+(-z,0,z)=(1,0,0)+y.(-1,1,0)+z.(-1,0,1), logo uma possível equação vetorial de F é dada por $(x,y,z)=(1,0,0)+\alpha.(-1,1,0)+\beta.(-1,0,1), \alpha, \beta$ em \mathbb{R} ; e uma possível equação paramétrica é dada por $(x,y,z)=(1-\alpha-\beta,\alpha,\beta), \alpha,\beta$ em \mathbb{R} .

Portanto,
$$F = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 1\}$$
 ou $F = \{(x, y, z) \in \mathbb{R}^3 : (x, y, z) = (1, 0, 0) + \alpha \cdot (-1, 1, 0) + \beta \cdot (-1, 0, 1), \alpha \in \mathbb{R}, \beta \in \mathbb{R}\}$ ou $F = \{(x, y, z) \in \mathbb{R}^3 : (x, y, z) = (1 - \alpha - \beta, \alpha, \beta), \alpha \in \mathbb{R}, \beta \in \mathbb{R}\}$

11. Vamos provar por indução em m.

Para m=1, dados v_1 em F e $\alpha_1=1$, temos que $\alpha_1v_1=v_1\in F$. Para m=2, dados v_1,v_2 em F e α_1,α_2 em $\mathbb R$ com $\alpha_1+\alpha_2=1$, temos que $\alpha_1v_1+\alpha_2v_2\in F$ pela definição de espaço afim.

Note que, para m=3, dados v_1,v_2,v_3 em F e $\alpha_1,\alpha_2,\alpha_3$ em \mathbb{R} com $\alpha_1+\alpha_2+\alpha_3=1$, temos que pelo menos um dos coeficientes $\alpha_j\neq 1$; sem perda de generalidade, considere $\alpha_3\neq 1$, então $\alpha_1v_1+\alpha_2v_2+\alpha_3v_3$ pode ser escrito como $\alpha_1v_1+\alpha_2v_2+\alpha_3v_3=(1-\alpha_3)[\frac{\alpha_1}{1-\alpha_3}v_1+\frac{\alpha_2}{1-\alpha_3}v_2]+\alpha_3v_3$ e, como $\frac{\alpha_1}{1-\alpha_3}+\frac{\alpha_2}{1-\alpha_3}=1$, temos $u=\frac{\alpha_1}{1-\alpha_3}v_1+\frac{\alpha_2}{1-\alpha_3}v_2\in F$ pela hipótese de indução e, portanto, $\alpha_1v_1+\alpha_2v_2+\alpha_3v_3=(1-\alpha_3)u+\alpha_3v_3\in F$, pois u e v_3 estão em F e $(1-\alpha_3)+\alpha_3=1$.

Para o caso geral, suponha demonstrado que, dados $v_1,\ldots,v_m\in F$, então $\alpha_1v_1+\cdots+\alpha_mv_m\in F$, se $\alpha_1+\cdots+\alpha_m=1$; e vamos demonstrar que, dados $v_1,\ldots,v_{m+1}\in F$, então $\alpha_1v_1+\cdots+\alpha_mv_m+\alpha_{m+1}v_{m+1}\in F$, se $\alpha_1+\cdots+\alpha_m+\alpha_m+\alpha_{m+1}v_{m+1}=1$. Pelo menos um dos coeficientes $\alpha_j\neq 1$; sem perda de generalidade, considere $\alpha_{m+1}\neq 0$, então $\alpha_1v_1+\cdots+\alpha_mv_m+\alpha_{m+1}v_{m+1}$ pode ser escrito como $\alpha_1v_1+\cdots+\alpha_mv_m+\alpha_{m+1}v_{m+1}=(1-\alpha_{m+1})[\frac{\alpha_1}{1-\alpha_{m+1}}v_1+\cdots+\frac{\alpha_m}{1-\alpha_{m+1}}v_1+\cdots+\frac{\alpha_m}{1-\alpha_{m+1}}v_1+\cdots+\frac{\alpha_m}{1-\alpha_{m+1}}v_1+\cdots+\frac{\alpha_m}{1-\alpha_{m+1}}v_m\in F$ e, portanto, $\alpha_1v_1+\cdots+\alpha_mv_m+\alpha_{m+1}v_{m+1}=(1-\alpha_{m+1})u+\alpha_{m+1}v_{m+1}\in F$, pois u e v_{m+1} estão em F e $(1-\alpha_{m+1})+\alpha_{m+1}=1$.

12. Sejam F_1 e F_2 espaços afim de V. Vamos mostrar que $F_1 \cap F_2$ é um espaço afim de V, ou seja, dados u, v em $F_1 \cap F_2$ e $\alpha \in \mathbb{R}$, queremos que $\alpha u + (1 - \alpha)v$ esteja em $F_1 \cap F_2$.

Como F_1 é um espaço afim de V, temos que $\alpha u + (1 - \alpha)v \in F_1$ e, como F_2 é um espaço afim de V, temos que $\alpha u + (1 - \alpha)v \in F_2$.

Logo $\alpha u + (1 - \alpha)v$ esteja em $F_1 \cap F_2$ e, portanto, $F_1 \cap F_2$ é um espaço afim de V.

Observação: Esse resultado vale para intersecções infinitas de espaços afim

- 13. Sejam V um espaco vetorial real, $v_1, \ldots, v_n \in V$ e $v \in V$.
 - (a) (\Rightarrow) Como $\{v_1, \ldots, v_n, v\}$ é linearmente independente, nenhum dos vetores é combinação linear dos outros vetores, logo $v \notin [v_1, \ldots, v_n]$.

(\Leftarrow) (Lema da aula 10) Para verificarmos que $\{v_1, \ldots, v_n, v\}$ é linearmente independente, considere $\lambda_1 v_1 + \cdots + \lambda_n v_n + \alpha v = 0_V$ (*). Note que, se $\alpha \neq 0$, então $v = -\frac{\lambda_1}{\alpha} v_1 + \cdots + -\frac{\lambda_n}{\alpha} v_n \in [v_1, \ldots, v_n]$.

Como $\alpha = 0$, a equação (*) se torna $\lambda_1 v_1 + \dots + \lambda_n v_n = 0_V$, que só tem a solução trivial $\lambda_1 = \dots = \lambda_n = 0$, pois $\{v_1, \dots, v_n\}$ é linearmente independente.

(b) É claro que $[v_1, \ldots, v_n] \subseteq [v_1, \ldots, v_n, v]$.

Para mostrarmos que $[v_1, \ldots, v_n, v] \subseteq [v_1, \ldots, v_n]$, note que $v = \beta_1 v_1 + \ldots + \beta_n v_n$ e, dado $w \in [v_1, \ldots, v_n, v]$, temos $w = \lambda_1 v_1 + \dots + \lambda_n v_n + \alpha v = \lambda_1 v_1 + \dots + \lambda_n v_n + \alpha \cdot [\beta_1 v_1 + \dots + \beta_n v_n = [\lambda_1 + \alpha \beta_1] v_1 + \dots + [\lambda_n + \alpha \beta_n] v_n \in \mathbb{R}$

Logo, $[v_1, ..., v_n] = [v_1, ..., v_n, v]$

14. (a) A equação $a(1,0,0)+b(0,1,0)+c(0,0,1)+d(2,2,5)=0_V=(0,0,0)$ gera o sistema linear homogêneo $3\times 4:\begin{cases} a+0b+0c+2d=0\\ 0a+b+0c+2d=0\\ 0a+0b+c+5d=0 \end{cases}$ que é um sistema possível e indeterminado com 1 grau de liberdade e,

portanto, U é linearmente dependente. Como o sistema (já escalonado) tem 3 linhas não-nulas (ou 3 colunas com pivôs), temos que o subespaço S = spanU tem dimensão 3 e, como $S \subseteq \mathbb{R}^3$, temos $S = \mathbb{R}^3$. Logo, uma possível base de $S \in \{(1,0,0), (0,1,0), (0,0,1)\}.$

(b) A equação $a(1,1,1) + b(1,2,1) + c(3,2,-1) = 0_V = (0,0,0)$ gera o sistema linear homogêneo 3×3

$$\begin{cases} a+b+3c=0\\ a+2b+2c=0\\ a+b-c=0 \end{cases} \text{ que pode ser escalonado como} \begin{pmatrix} 1 & 1 & 3 & | & 0\\ 1 & 2 & 2 & | & 0\\ 1 & 1 & -1 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 3 & | & 0\\ 0 & 1 & -1 & | & 0\\ 0 & 0 & -4 & | & 0 \end{pmatrix}, \text{ mostrando most most matrix},$$

que este é um sistema possível e determinado com a única solução sendo a trivial a=b=c=0 e, portanto, U é linearmente independente.

(c) A equação $a(1,2,3) + b(1,4,9) + c(1,8,27) = 0_V = (0,0,0)$ gera o sistema linear homogêneo 3×3

$$\begin{cases} a+b+c=0 \\ 2a+4b+8c=0 \\ 3a+9b+27c=0 \end{cases} \quad \text{que pode ser escalonado como} \begin{pmatrix} 1 & 1 & 1 & | & 0 \\ 2 & 4 & 8 & | & 0 \\ 3 & 9 & 27 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & | & 0 \\ 0 & 2 & 6 & | & 0 \\ 0 & 6 & 24 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & | & 0 \\ 0 & 2 & 6 & | & 0 \\ 0 & 6 & 24 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & | & 0 \\ 0 & 2 & 6 & | & 0 \\ 0 & 6 & 24 & | & 0 \end{pmatrix}$$

 $\rightarrow \begin{pmatrix} 1 & 1 & 1 & | & 0 \\ 0 & 2 & 6 & | & 0 \\ 0 & 0 & 6 & | & 0 \end{pmatrix}, \text{ mostrando que este é um sistema possível e determinado com a única solução sendo}$ a trivial a = b = c = 0 e, portanto, U é linearmente independente.

(d) Sejam p, q, r, s em V, dados por $p(x) = 1, q(x) = x - 1, r(x) = x^2 + 2x + 1, s(x) = x^2$ para $x \in \mathbb{R}$.

A equação $a.p+b.q+c.r+d.s=0_V$, onde 0_V é o polinômio nulo, resulta em $a.p(x)+b.q(x)+c.r(x)+d.s(x)=0_V$

A equação
$$a.p + 0.q + c.r + a.s = 0$$
, onde 0 , estima em $a.p(x) + 0.q(x) + c.r(x) + a.s(x) = a.1 + b.(x - 1) + c.(x^2 + 2x + 1) + d.x^2 = (a - b + c).1 + (b + 2c).x + (c + d).x^2 = 0$, gerando o sistema linear homogêneo 3×4
$$\begin{cases} a - b + c + 0d = 0 \\ 0a + b + 2c + 0d = 0 \\ 0a + 0b + c + d = 0 \end{cases}$$
 que já está escalonado.

Este é um sistema possível e indeterminado com 1 grau de liberdade e, portanto, U é linearmente dependente. Como o sistema (já escalonado) tem 3 linhas não-nulas (ou 3 colunas com pivôs), temos que o subespaço S = spanU tem dimensão 3 e, como $\{p,q,s\}$ é linearmente independente, temos que uma possível base de $S \notin \{p,q,s\}$. Outra base possível seria $\{1,x,x^2\}$.

(e) Sejam p, q, r, s em V, dados por $p(x) = x(x-1) = x^2 - x, q(x) = x^3, r(x) = 2x^3 - x^2, s(x) = x$ para $x \in \mathbb{R}$.

A equação $a.p+b.q+c.r+d.s=0_V$, onde 0_V é o polinômio nulo, resulta em $a.p(x)+b.q(x)+c.r(x)+d.s(x)=a.(x^2-x)+b.x^3+c.(2x^3-x^2)+d.x=(-a+d).x+(a-c).x^2+(b+2c).x^3=0$, gerando o sistema linear homogêneo $3\times 4\begin{cases} -a+0b+0c+d=0\\ a+0b-c+0d=0 \end{cases}$ que pode ser escalonado como $\begin{pmatrix} -1 & 0 & 0 & 1 & | & 0\\ 1 & 0 & -1 & 0 & | & 0\\ 0 & 1 & 2 & 0 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 0 & 0 & 1 & | & 0\\ 0 & 1 & 2 & 0 & | & 0 \end{pmatrix}$

$$\rightarrow \begin{pmatrix} -1 & 0 & 0 & 1 & | & 0 \\ 0 & 0 & -1 & 1 & | & 0 \\ 0 & 1 & 2 & 0 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 0 & 0 & 1 & | & 0 \\ 0 & 1 & 2 & 0 & | & 0 \\ 0 & 0 & -1 & 1 & | & 0 \end{pmatrix}$$

Este é um sistema possível e indeterminado com 1 grau de liberdade e, portanto, U é linearmente dependente. Como o sistema (já escalonado) tem 3 linhas não-nulas (ou 3 colunas com pivôs), temos que o subespaco S=spanU tem dimensão 3 e, como $\{q,r,s\}$ é linearmente independente, temos que uma possível base de $S \in \{q, r, s\}$. Outra base possível seria $\{x, x^2, x^3\}$.

7

 $-b(0,1,0,1) + c(1,0,0,1) + d(0,0,1,1) = 0_V = (0,0,0,0)$ gera o sistema linear

A equação
$$a(1,0,0,-1) + b(0,1,0,1) + c(1,0,0,1) + d(0,0,1,1) = 0_V = (0,0,0,0)$$
 gera o sistema linear homogêneo 4×4
$$\begin{cases} a + 0b + c + 0d = 0 \\ 0a + b + 0c + 0d = 0 \\ 0a + 0b + 0c + d = 0 \end{cases}$$
 que pode ser escalonado como
$$\begin{pmatrix} 1 & 0 & 1 & 0 & | & 0 \\ 0 & 1 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 1 & | & 0 \\ -1 & 1 & 1 & 1 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & 0 & | & 0 \\ 0 & 1 & 0 & 0 & | & 0 \\ -1 & 1 & 1 & 1 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & 0 & | & 0 \\ 0 & 1 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 1 & | & 0 \\ 0 & 0 & 2 & 1 & | & 0 \\ 0 & 0 & 0 & 0 & 1 & | & 0 \\ 0 & 0 & 0 & 0 & 1 & | & 0 \\ 0 & 0 & 0 & 0 & 1 & | & 0 \\ 0 & 0 & 0 & 0 & 1 & | & 0 \\ 0 & 0 & 0 & 0 & 1 & | & 0 \\ 0 & 0 & 0 & 0 & 1 & | & 0 \\ 0 & 0 & 0 & 0 & 1 & | & 0 \\ 0 & 0 & 0 & 0 & 1 & | & 0 \\ 0 & 0 & 0 & 0 & 1 & | & 0 \\ 0 & 0 & 0 & 0 & 1 & | & 0 \\ 0 & 0 & 0 & 0 & 1 & | & 0 \\ 0 & 0 & 0 & 0 & 1 & | & 0 \\ 0 & 0 & 0 & 0 & 1 & | & 0 \\ 0 & 0 & 0 & 0 & 1 & | & 0 \\ 0 & 0 & 0 & 0 & 1 & | & 0 \\ 0 & 0 & 0 & 0 & 1 & | & 0 \\ 0 & 0 & 0 & 0 & 1 & | & 0 \\ 0 & 0 & 0 & 0 & 1 & | & 0 \\ 0 & 0 & 0 & 0 & 1 & | & 0 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 1 & 0 & | & 0 \\ 0 & 1 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 1 & | & 0 \\ 0 & 1 & 2 & 1 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & 0 & | & 0 \\ 0 & 1 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 1 & | & 0 \\ 0 & 0 & 2 & 1 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & 0 & | & 0 \\ 0 & 1 & 0 & 0 & | & 0 \\ 0 & 0 & 2 & 1 & | & 0 \\ 0 & 0 & 0 & 1 & | & 0 \end{pmatrix}, \text{ mostrando que este \'e um}$$

linearmente independente.

(g) Sejam $f, g, h \in U$ dadas por f(x) = 1, $g(x) = e^x$ e $h(x) = xe^x$.

A equação $af + bg + ch = 0_V$, onde 0_V é a função nula de V dada por $0_V(x) = 0$ para $x \in \mathbb{R}$, nos gera infinitas equações $af(x) + bg(x) + ch(x) = a + be^x + cxe^x = 0$ para cada $x \in \mathbb{R}$.

Escolhendo 3 valores para x em \mathbb{R} , como x=0, x=1 e x=-1; obtemos o sistema linear homogêneo

$$3\times 3\begin{cases} 1a+1b+0c=0\\ 1a+eb+ec=0\\ 1a+\frac{1}{e}b-\frac{1}{e}c=0 \end{cases}$$
 que é um sistema possível e determinado com solução $a=0,\ b=0$ e $c=0.$

trivial é a única, temos que U é linearmente independente.

(h) Sejam $f, g, h \in U$ dadas por f(x) = 1, $g(x) = \sin x$ e $h(x) = \cos x$.

A equação $af + bg + ch = 0_V$, onde 0_V é a função nula de V dada por $0_V(x) = 0$ para $x \in \mathbb{R}$, nos gera infinitas equações $af(x) + bg(x) + ch(x) = a + b\sin x + c\cos x = 0$ para cada $x \in \mathbb{R}$.

Escolhendo 3 valores para x em \mathbb{R} , como $x=0,\ x=\frac{\pi}{2}$ e $x=\pi$; obtemos o sistema linear homogêneo

$$3\times 3\begin{cases} 1a+0b+1c=0\\ 1a+1b+0c=0\\ 1a+0b-c=0 \end{cases}$$
 que é um sistema possível e determinado com solução $a=0,\ b=0$ e $c=0.$

Como a solução trivial é a única, temos que U é linearmente independente.

(i) Sejam $f, g, h \in U$ dadas por f(x) = 1, $g(x) = \sin^2 x$ e $h(x) = \cos^2 x$. Note que f = g + h e, portanto, U é linearmente dependente.

Algumas possíveis bases de spanU seriam $\{\sin^2 x, \cos^2 x\}$ ou $\{1, \sin^2 x\}$ ou $U = \{1, \cos^2 x\}$

(j) A equação $aA_1 + bA_2 + cA_3 = 0_V = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ gera o sistema linear homogêneo 4×3 $\begin{cases} a+b+c=0 \\ a+0b+c=0 \\ 0a+0b+c=0 \\ 0a+b+c=0 \end{cases}$

a trivial a = b = c = 0 e, portanto, U é linearmente independente.

15. (a) Como $V = \mathbb{R}^4$ tem dimensão 4 e \mathcal{B} tem 4 vetores, para provarmos que \mathcal{B} é base de \mathbb{R}^4 , basta mostrarmos que \mathcal{B} é gerador de \mathbb{R}^4 ou que \mathcal{B} é linearmente independente.

Vamos mostrar que \mathcal{B} é linearmente independente. Para isso, vamos mostrar que a(1,1,1,1)+b(0,1,1,1)+ $c(0,0,1,1)+d(0,0,0,1)=0_V=(0,0,0,0)$ tem apenas a solução trivial. Como esta equação gera o sistema

linear homogêne
o
$$4\times 4 \begin{cases} a+0b+0c+0d=0\\ a+b+0c+0d=0\\ a+b+c+0d=0\\ a+b+c+d=0 \end{cases}$$
 que já está escalonado (a menos de trocas de linhas), temos

que este a solução nula é a única solução e, portanto, \mathcal{B} é linearmente independente, donde \mathcal{B} é base de \mathbb{R}^4 .

(b) Sejam p,q,r,s em $\mathcal{P}_3(\mathbb{R})$ definidos por $p(x)=1,\ q(x)=1-x,\ r(x)=(1-x)^2=1-2x+x^2$ e $s(x) = (1-x)^3 = 1 - 3x + 3x^2 - x^3$.

Como $\mathcal{P}_3(\mathbb{R})$ tem dimensão 4 e \mathcal{B} tem 4 vetores, para provarmos que \mathcal{B} é base de $\mathcal{P}_3(\mathbb{R})$, basta mostrarmos que \mathcal{B} é gerador de $\mathcal{P}_3(\mathbb{R})$ ou que \mathcal{B} é linearmente independente.

Para verificarmos se \mathcal{B} é linearmente independente, vamos analisar a equação $ap + bq + cr + ds = 0_V =$ $0.1 + 0.x + 0.x^2 + 0.x^3$.

Esta equação gera o sistema linear homogêne
o $4\times4\begin{cases} a+b+c+d=0\\ 0a-b-2c-3d=0\\ 0a+0+c+3d=0\\ 0a+0b+0a-d=0 \end{cases},$ que já está escalonado e tem

todas as linhas não nulas (ou tem os pivôs na diagonal não-nulos) e sua única solução é a trivial, de onde \mathcal{B} é linearmente independente.

Portanto, \mathcal{B} é base de $\mathcal{P}_3(\mathbb{R})$.

16. Como \mathbb{R}^3 tem dimensão 3 e \mathcal{B} tem 3 vetores, para provarmos que \mathcal{B} é base de \mathbb{R}^3 , basta mostrarmos que \mathcal{B} é gerador de \mathbb{R}^3 ou que \mathcal{B} é linearmente independente.

Para verificarmos se \mathcal{B} é linearmente independente, vamos analisar a equação $\alpha(a,1,0) + \beta(1,a,0) + \gamma(0,1,a) =$ $0_V = (0,0,0)$ em função do parâmetro a.

Esta equação gera o sistema linear homogêne
o $3\times 3 \begin{cases} a\alpha+\beta+0\gamma=0\\ \alpha+a\beta+\gamma=0\\ 0\alpha+0\beta+a\gamma=0 \end{cases}$, que tem a última linha nula quando
 a=0o portente. Para esta esta esta equação gera o sistema linear homogêneo 3×3

a=0 e, portanto, \mathcal{B} não é base de \mathbb{R}^3 se a=0.

Se $a \neq 0$, o sistema pode ser escalonado como $\begin{pmatrix} a & 1 & 0 & | & 0 \\ 1 & a & 1 & | & 0 \\ 0 & 0 & a & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} a & 1 & 0 & | & 0 \\ 0 & a - \frac{1}{a} & 1 & | & 0 \\ 0 & 0 & a & | & 0 \end{pmatrix}$ e, portanto, $\mathcal B$ será

linearmente independente se os pivôs na diagonal forem não-nulos, ou seja $a \neq 0$ e $a - \frac{1}{a} \neq 0$, ou ainda, $a \neq 0$, $a \neq 1$ e $a \neq -1$.

Portanto, \mathcal{B} é base de \mathbb{R}^3 se, e somente se, $a \notin \{-1, 0, 1\}$.

17. Como \mathbb{R}^3 tem dimensão 3 e \mathcal{B} tem 3 vetores, para provarmos que \mathcal{B} é base de \mathbb{R}^3 , basta mostrarmos que \mathcal{B} é gerador de \mathbb{R}^3 ou que \mathcal{B} é linearmente independente.

Vamos mostrar que \mathcal{B} é linearmente independente. Para isso, vamos mostrar que a(1,0,1) + b(1,1,-1) + b(1,1,-1) $c(0,2,0) = 0_V = (0,0,0)$ tem apenas a solução trivial.

Esta equação gera o sistema linear homogêne
o $3\times 3 \begin{cases} a+b+0c=0\\ 0a+b+2c=0\\ a-b+0c=0 \end{cases}$ que pode ser escalonado como:

$$\begin{pmatrix} 1 & 1 & 0 & | & 0 \\ 0 & 1 & 2 & | & 0 \\ 1 & -1 & 0 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & | & 0 \\ 0 & 1 & 2 & | & 0 \\ 0 & -2 & 0 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & | & 0 \\ 0 & 1 & 2 & | & 0 \\ 0 & 0 & 4 & | & 0 \end{pmatrix}$$

Logo, a solução trivial é a única solução e, portanto, \mathcal{B} é linearmente independente, donde \mathcal{B} é base de \mathbb{R}^3 .

9

Para determinar as coordenadas de um vetor (x, y, z) na base \mathcal{B} , queremos escrever (x, y, z) como combinação linear dos vetores da base \mathcal{B} , ou seja, queremos encontrar a, b, c tais que (x, y, z) = a(1, 0, 1) + b(1, 1, -1) + c(0, 2, 0).

Esta equação gera o sistema linear
$$3 \times 3 \begin{cases} a+b+0c=x \\ 0a+b+2c=y \\ a-b+0c=z \end{cases}$$
 que pode ser escalonado como $\begin{pmatrix} 1 & 1 & 0 & | & x \\ 0 & 1 & 2 & | & y \\ 1 & -1 & 0 & | & z \end{pmatrix} \rightarrow$

Portanto,
$$(x, y, z) = [\frac{x}{2} + \frac{z}{2}].(1, 0, 1) + [\frac{x}{2} - \frac{z}{2}].(1, 1, -1) + [\frac{y}{2} + \frac{z}{4} - \frac{x}{4}].(0, 2, 0) = (\frac{x}{2} + \frac{z}{2}, \frac{x}{2} - \frac{z}{2}, \frac{y}{2} + \frac{z}{4} - \frac{x}{4})_{\mathcal{B}}.$$

Logo, as coordenadas dos vetores pedidos na base \mathcal{B} são $(1, 0, 0) = (\frac{1}{2}, \frac{1}{2}, -\frac{1}{4})_{\mathcal{B}}, (0, 1, 0) = (0, 0, \frac{1}{2})_{\mathcal{B}}$ e $(0, 0, 1) = (\frac{1}{2}, -\frac{1}{2}, \frac{1}{4})_{\mathcal{B}}.$

As outras coordenadas pedidas são: $(1,1,1)_{\mathcal{B}} = 1(1,0,1) + 1(1,1,-1) + 1(0,2,0) = (2,3,0)_{\mathcal{C}}$ $(2,3,-1)_{\mathcal{B}} = 2(1,0,1) + 3(1,1,-1) - 1(0,2,0) = (5,1,-1) = (5,1,-1)_{\mathcal{C}}$ $(0,0,1)_{\mathcal{B}} = 0(1,0,1) + 0(1,1,-1) + 1(0,2,0) = (0,2,0) = (0,2,0)_{\mathcal{C}}$

18. **(a)**
$$\alpha_{1}A_{1} + \alpha_{2}A_{2} + \alpha_{3}A_{3} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \Rightarrow \begin{cases} \alpha_{1} - \alpha_{2} = 0 \\ \alpha_{1} + \alpha_{2} + 2\alpha_{3} = 0 \\ \alpha_{1} + \alpha_{2} + 2\alpha_{3} = 0 \end{cases} \rightarrow \begin{pmatrix} 1 & -1 & 0 & | & 0 \\ 1 & 1 & 2 & | & 0 \\ 1 & 1 & 2 & | & 0 \\ 1 & 1 & 2 & | & 0 \\ 1 & 0 & 2 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 & | & 0 \\ 0 & 2 & 2 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 1 & 2 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 & | & 0 \\ 0 & 2 & 2 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 1 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 & | & 0 \\ 0 & 2 & 2 & | & 0 \\ 0 & 0 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \alpha_{1} = \alpha_{2} = \alpha_{3} = 0$$

Portanto, S é linearmente independente.

(b) Seja $\begin{pmatrix} a & b \\ b & c \end{pmatrix}$ uma matriz qualquer em V, vamos mostrar que existe solução para $\alpha_1 A_1 + \alpha_2 A_2 + \alpha_3 A_3 = 0$

$$\begin{pmatrix} a & b \\ b & c \end{pmatrix}, \text{ resolvendo o sistema} \begin{cases} \alpha_1 - \alpha_2 = a \\ \alpha_1 + \alpha_2 + 2\alpha_3 = b \\ \alpha_1 + \alpha_2 + 2\alpha_3 = b \end{cases} \rightarrow \begin{cases} \alpha_1 - \alpha_2 = a \\ \alpha_1 + \alpha_2 + 2\alpha_3 = b \end{cases} \rightarrow \begin{pmatrix} \alpha_1 - \alpha_2 = a \\ \alpha_1 + \alpha_2 + 2\alpha_3 = b \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 & | & a \\ 1 & 1 & 2 & | & b \\ 1 & 0 & 2 & | & c \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 & | & a \\ 1 & 1 & 2 & | & b \\ 1 & 0 & 2 & | & c \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 & | & a \\ 1 & 1 & 2 & | & b \\ 1 & 0 & 2 & | & c \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 & | & a \\ 1 & 1 & 2 & | & b \\ 1 & 0 & 2 & | & c \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 & | & a \\ 1 & 1 & 2 & | & b \\ 1 & 0 & 2 & | & c \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 & | & a \\ 1 & 1 & 2 & | & b \\ 1 & 0 & 2 & | & c \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 & | & a \\ 1 & 1 & 2 & | & b \\ 1 & 0 & 2 & | & c \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 & | & a \\ 1 & 1 & 2 & | & b \\ 1 & 0 & 2 & | & c \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 & | & a \\ 1 & 1 & 2 & | & b \\ 1 & 0 & 2 & | & c \end{pmatrix}$$

Portanto, S é gerador de V

- (c) Como S é um gerador de V linearmente independente, temos que S é base de V. Como S tem S elementos, segue que a dimensão de S é S.
- 19. (a) É claro que os polinômios q_1 e q_2 dados por $q_1(x) = 1 x + x^2 x^3$ e $q_2(x) = 1 + x + x^2 + x^3$ formam um conjunto linearmente independente (já que um não é múltiplo do outro) e, portanto, $dim(U \cap V) = dim[1 x + x^2 x^3, 1 + x + x^2 + x^3] = 2$.

Portanto, $dim(U+V) = dim(U) + dim(V) - dim(U \cap V) = 3 + 3 - 2 = 4$. Logo, U+V é um subespaço vetorial de dimensão 4 dentro de $\mathcal{P}_3(\mathbb{R})$, que também tem dimensão 4 e, portanto, $U+V=\mathcal{P}_3(\mathbb{R})$.

- (b) A soma não é direta, pois $dim(U \cap V) > 0$.
- 20. Sabemos que $dim(U+W)=dim(U)+dim(W)-dim(U\cap W)=3+3-dim(U\cap W)=6-dim(U\cap W)$. Como $dim(U+W)\leq dim(\mathbb{R}^4)=4$ e $dim(U\cap W)\leq dim(U)=3$, temos que $U\cap W$ tem dimensão 2 ou 3: Se $dim(U\cap W)=3$, então $U\cap W=U=W$ e, portanto, U+W=U=W; se $dim(U\cap W)=2$, então dim(U+W)=4 e, portanto, $U+W=\mathbb{R}^4$.

Para descobrirmos a dimensão de $U \cap W$, vamos verificar quantos vetores (2 ou 3) linearmente independentes existem no conjunto gerador de $U \cap W$ dado por $\{(1, 2, 1, 0), (-1, 1, 0, 1), (1, 5, 2, 1)\}$. Se $\alpha_1(1, 2, 1, 0) + \alpha_2(-1, 1, 0, 1) + \alpha_3(-1, 1, 0, 1)$

$$\alpha_3(1,5,2,1) = (0,0,0,0), \text{ temos o sistema} \begin{cases} \alpha_1 - \alpha_2 + \alpha_3 = 0 \\ 2\alpha_1 + \alpha_2 + 5\alpha_3 = 0 \\ \alpha_1 + 2\alpha_3 = 0 \\ \alpha_2 + \alpha_3 = 0 \end{cases} \rightarrow \begin{pmatrix} 1 & -1 & 1 & | & 0 \\ 2 & 1 & 5 & | & 0 \\ 1 & 0 & 2 & | & 0 \\ 0 & 1 & 1 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 & | & 0 \\ 0 & 1 & 1 & | & 0 \\ 0 & 1 & 1 & | & 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & -1 & 1 & | & 0 \\ 0 & 3 & 3 & | & 0 \\ 0 & 1 & 1 & | & 0 \\ 0 & 1 & 1 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 & | & 0 \\ 0 & 3 & 3 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

Como o sistema escalonado tem 2 colunas com pivôs, segue que $dim(U \cap W) = 2$ e, portanto, dim(U + W) = 4, ou seja, $U+W=\mathbb{R}^4$.

21. (a) Como $\{(1,0,0),(1,1,1)\}$ é linearmente independente, temos dim(U) = 2 e como $\{(0,1,0),(0,0,1)\}$ é linearmente independente, temos dim(W) = 2.

Se
$$v \in U \cap W$$
, então $v = \alpha_1(1, 0, 0) + \alpha_2(1, 1, 1) = \beta_1(0, 1, 0) + \beta_2(0, 0, 1)$, gerando o sistema
$$\begin{cases} \alpha_1 + \alpha_2 = 0 \\ \alpha_2 = \beta_1 \\ \alpha_2 = \beta_2 \end{cases}$$

que é um sistema possível e indeterminado com 1 grau de liberdade cuja solução pode ser dada por $-\alpha_1$ $\alpha_2 = \beta_1 = \beta_2$, ou seja $(\alpha_1, \alpha_2, \beta_1, \beta_2) = (-\alpha_2, \alpha_2, \alpha_2, \alpha_2) = \alpha_2(-1, 1, 1, 0)$, de onde $dim(U \cap W) = 1$ e $\{(-1,1,1,0)\}$ é base de $U \cap W$.

Logo, $dim(U+W)=dim(U)+dim(W)-dim(U\cap W)=2+2-1=3$ e, portanto, U+W é um subespaço vetorial de dimensão 3 dentro de \mathbb{R}^3 , que também tem dimensão 3 e, portanto, $U+W=\mathbb{R}^3$. Por isso, uma possível base de U + W é a base canônica $C = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}.$

- (b)
- (c) Como U é solução de um sistema homogêneo escalonado 2×4 , temos que o sistema é possível e indeterminado com 2 graus de liberdade, ou seja, temos dim(U) = 2. Como W é solução de um sistema homogêneo escalonado 1×4 , temos que o sistema é possível e indeterminado com 3 graus de liberdade, ou seja, temos dim(W) = 3.

Se
$$(x, y, z, t) \in U \cap W$$
, então temos o sistema
$$\begin{cases} x + y = 0 \\ z - t = 0 \end{cases} \rightarrow \begin{pmatrix} 1 & 1 & 0 & 0 & | & 0 \\ 0 & 0 & 1 & -1 & | & 0 \\ 1 & -1 & 1 & 1 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & 0 & | & 0 \\ 0 & 0 & 1 & -1 & | & 1 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & 0 & | & 0 \\ 0 & 0 & 1 & -1 & | & 1 & | & 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 1 & 0 & 0 & | & 0 \\ 0 & 0 & 1 & -1 & | & 0 \\ 0 & -2 & 1 & 1 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & 0 & | & 0 \\ 0 & -2 & 1 & 1 & | & 0 \\ 0 & 0 & 1 & -1 & | & 0 \end{pmatrix}$$
 que é um sistema possível e indeterminado com 1 gray de liberdade cuia solução pode ser dada em função do parâmetro t por $z = -t$, $y = 0$, e $x = 0$, ou

$$\rightarrow \begin{pmatrix} 1 & 1 & 0 & 0 & | & 0 \\ 0 & 0 & 1 & -1 & | & 0 \\ 0 & -2 & 1 & 1 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & 0 & | & 0 \\ 0 & -2 & 1 & 1 & | & 0 \\ 0 & 0 & 1 & -1 & | & 0 \end{pmatrix}$$
que é um sistema possível e indeterminado com

1 grau de liberdade cuja solução pode ser dada em função do parâmetro t por z=-t, y=0 e x=0, ou seja (x, y, z, t) = (0, 0, -t, t) = t(0, 0, -1, 1), de onde $dim(U \cap W) = 1$ e $\{(0, 0, -1, 1)\}$ é base de $U \cap W$. Logo, $dim(U+W)=dim(U)+dim(W)-dim(U\cap W)=2+3-1=4$ e, portanto, U+W é um subespaço vetorial de dimensão 4 dentro de \mathbb{R}^4 , que também tem dimensão 4 e, portanto, $U+W=\mathbb{R}^4$. Por isso, uma possível base de U + W é a base canônica $C = \{(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)\}.$

- 22. (a) Temos dim(U) = 1 e dim(W) = 2. Como $u_1 \notin W$, temos que $2 = dim(W) < dim(U + W) \le dim(V) = 3$, logo U+W é um subespaço vetorial de dimensão 3 dentro de V, que também tem dimensão 3 e, portanto, V=U+W. Como $dim(U\cap W)=dim(U+W)-dim(U)-dim(W)=3-1-2=0$, temos que a soma é direta, ou seja $V = U \oplus W$.
 - **(b)** U é o conjunto solução do sistema $\begin{cases} x + 2y + z = 0 \\ -x + 3y + 2z = 0 \end{cases} \rightarrow \begin{pmatrix} 1 & 2 & 1 & | & 0 \\ -1 & 3 & 2 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 1 & | & 0 \\ 0 & 5 & 3 & | & 0 \end{pmatrix}$ que é possível e indeterminado com 1 grau de liberdade. Uma possível base de U é o conjunto unitário $\{(1, -3, 5)\}$. Logo, W = [(0, 1, 0), (0, 0, 1)] é um subespaço de dimensão 2 tal que $V = U \oplus W$.
 - (c) Como U não está contido em W, tome u_1 em U com $u_1 \notin W$. Como $u_1 \notin W$, temos que 2 = dim(W) < dim W $dim(U+W) \leq dim(V) = 3$, logo U+W é um subespaço vetorial de dimensão 3 dentro de V, que também tem dimensão 3 e, portanto, V = U + W. Como $dim(U \cap W) = dim(U + W) - dim(U) - dim(W) = 3 - 1 - 2 = 0$, temos que a soma é direta, ou seja $V = U \oplus W$.

$$23. \ \, \textbf{(a)} \ \, A \in U \Rightarrow A = \begin{pmatrix} d_1 & a & b \\ a & d_2 & c \\ b & c & d_3 \end{pmatrix} = \begin{pmatrix} d_1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & d_3 \end{pmatrix} + \begin{pmatrix} 0 & a & 0 \\ a & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ b & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ b & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} +$$

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & c \\ 0 & c & 0 \end{pmatrix} = d_1 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + d_2 \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} + d_3 \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} + a \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} ,$$

$$\log_U \mathcal{B}_U = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \right\} \text{ \'e um conjunto}$$
 gerador de U . Como \mathcal{B}_U \'e linearmente independente (verificar), segue que \mathcal{B}_U \'e base de U e, portanto, a
$$\dim(U) = 6.$$

- (b) $A \in U \Rightarrow A = \begin{pmatrix} 0 & e & f \\ -e & 0 & g \\ -f & -g & 0 \end{pmatrix} = \begin{pmatrix} 0 & e & 0 \\ -e & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & f \\ 0 & 0 & 0 \\ -f & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & g \\ 0 & -g & 0 \end{pmatrix} = e \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + f \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + f \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} + f \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} + f \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} + f \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + f \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + f \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + f \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + f \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + f \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + f \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + f \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + f \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + f \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + f \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + f \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + f \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + f \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + f \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + f \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + f \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + f \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + f \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + f \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + f \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + f \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + f \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + f \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + f \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + f \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + f \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + f \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + f \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + f \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + f \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + f \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + f \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + f \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + f \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + f \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + f \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + f \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + f \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + f \begin{pmatrix} 0 & 0 &$
- (c) Note que, se $A \in U \cap W$, temos $A = \begin{pmatrix} d_1 & a & b \\ a & d_2 & c \\ b & c & d_3 \end{pmatrix} = \begin{pmatrix} 0 & e & f \\ -e & 0 & g \\ -f & -g & 0 \end{pmatrix}$ e, portanto, $A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, isto $e, U \cap W = \{\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}\}$.

Mas $dim(U+W)=dim(U)+dim(W)-dim(U\cap W)=6+3-0=9$ e, portanto, U+W é um subespaço vetorial de dimensão 9 dentro de $\mathbb{M}_3(\mathbb{R})$, que também tem dimensão 9 e, portanto, $\mathbb{M}_3(\mathbb{R})=U+W$. Como $dim(U\cap W)=0$, temos que a soma é direta, ou seja $\mathbb{M}_3(\mathbb{R})=U\oplus W$.

24. Para ver que V=U+W, tome f em V arbitrária e defina g_f,h_f em V por $g_f(x)=\frac{f(x)+f(-x)}{2}$ e $h_f(x)=\frac{f(x)-f(-x)}{2}$ e observe que $f=g_f+h_f$. Além disso, $g_f\in U$ (pois $g_f(-x)=\frac{f(-x)+f(-[-x])}{2}=g_f(x)$), e $h_f\in W$ (pois $h_f(-x)=\frac{f(-x)-f(-[-x])}{2}=-h_f(x)$). Portanto, temos V=U+W. Note que, se $f\in U\cap W$, então dado $x\in \mathbb{R}$, temos f(-x)=f(x) (pois $f\in U$) e f(-x)=-f(x) (pois $f\in W$)

e, portanto, f(x) = -f(x), ou seja f(x) = 0 e, portanto, $f = 0_V$ a função nula. Logo, $U \cap W = \{0_V\}$.

- Como V=U+W e $U\cap W=\{0_V\}$, temos que a soma é direta, isto é, $V=U\oplus W.$
- 25. **(a)**
 - (b)
 - (c)
 - (d)
 - (e)
- 26. **(a)**
 - (b)
 - (c)
- 27. **(a)**
 - (b)
 - (c)
- 28. **(a)**
 - (b)
 - (c)