CHAPTER 3. Finite Volume Method

© Hanfeng Zhai

School of Mechanics and Engineering Science, Shanghai University Shanghai 200444, China

Abstract

Provide the reasoning of finite volume method based on the integration to discretize the Euler equation. We first integrate the Euler equation and hence simplify each term of U and H separately. We therefore give the full term to discretize the Euler equation.

We first give the Euler equation as the controlling equation:

$$\frac{\partial U}{\partial t} + \frac{\partial E}{\partial x} + \frac{\partial F}{\partial y} = 0 \tag{1}$$

Where

$$U = \begin{pmatrix} \rho \\ \rho u \\ \rho v \\ \rho E \end{pmatrix}, E = \begin{pmatrix} \rho u \\ \rho u^2 + P \\ \rho uv \\ \rho vu \end{pmatrix}, F = \begin{pmatrix} \rho v \\ \rho uv \\ \rho v^2 + P \\ \rho vu \end{pmatrix}$$
(2)

We hence integral the Euler equation, as visualized in Fig. 1:

$$\int \left(\frac{\partial U}{\partial t} + \frac{\partial E}{\partial x} + \frac{\partial F}{\partial y}\right) dS = 0 \tag{3}$$

Fig. 1 The integral area of the finite volume method based on single mesh element.

Eq. 3 can be written as:

$$\int \left(\frac{\partial U}{\partial t}\right) dS + \int \left(\frac{\partial E}{\partial x} + \frac{\partial F}{\partial y}\right) dS = 0 \tag{4}$$

Now we define the term H:

$$\vec{H} = E\vec{\imath} + F\vec{\jmath} \tag{5}$$

With the Green-Gauss integration, the right term in Eq. 4 can be written as:

$$\int \vec{v} \cdot \vec{H} d\Omega = \oint \vec{H} d\vec{S} \tag{6}$$

$$= \sum_{i=1}^{\Delta} H_i n_i \, \Delta S_i \tag{7}$$

Based on the Taylor expansion, the term U can be written as:

$$U = U_c + \frac{\partial U}{\partial x}(x - x_c) + \frac{\partial U}{\partial y}(y - y_c) + O(\Delta^2)$$
 (8)

Hence, the mean of the term U can be obtained through integration:

$$\int \frac{Ud\Omega}{d\Omega} = \int U_c d\Omega \tag{9}$$

$$= \frac{Ud\Omega}{d\Omega} + \int \frac{\partial U}{\partial x} (x - x_c) d\Omega \tag{10}$$

Here we define the mean of U as:

$$\int \frac{U_c d\Omega}{d\Omega} = \overline{U} \tag{11}$$

The term U = U(x, t) can be decomposed as the separation of variation:

$$U = \sum_{i=1}^{N} U_i(t)b(x_i)$$
(12)

Thence, the term U can be considered:

$$U(x,t) \cong \overline{U}(t)$$
 (13)

The integration of the first term is written as:

$$\int \frac{\partial U}{\partial t} d\Omega = \int \frac{dU}{dt} d\Omega = \frac{dU}{dt} \Omega \tag{14}$$

Hence, Euler equation can be written as:

$$\frac{dU}{dt}\Omega + \oint \vec{H} \cdot \vec{n} \cdot dS = 0 \tag{15}$$

The right term can be discretized as the following form.

$$\oint \vec{H} \cdot \vec{n} \cdot dS = \vec{H}$$

$$= H_{i + \frac{1}{2}, j} - H_{i - \frac{1}{2}, j} + H_{i, j + \frac{1}{2}} - H_{i, j - \frac{1}{2}}$$
(16)

We therefore define the term in Eq. 16 as *RHS*.

$$RHS = H_{i+\frac{1}{2},j} - H_{i-\frac{1}{2},j} + H_{i,j+\frac{1}{2}} - H_{i,j-\frac{1}{2}}$$

$$\tag{17}$$

The discretized form of the Euler equation is given as the form.

$$\frac{dU}{dt}\Omega + RHS = 0 \tag{18}$$

APPENDIX. Jacobian Matrix

The Jacobian matrix A as formerly introduced in Chap. 1 can be further diagonalized for obtaining the eigenvalue λ . Here we show how the A matrix and the eigen value is derived.

We first give the term *H* based on Eq. 5:

$$H = \vec{H} \cdot \vec{n}$$

$$= \begin{pmatrix} \rho g \\ \rho u g + P n_x \\ \rho v g + P n_y \\ \rho H g \end{pmatrix}$$
(19)

Where

$$\rho H = \rho E + P \tag{20}$$

Hence, we deduce that the Jacobian matrix A can be written as:

$$A = \frac{\partial H}{\partial U}$$

$$= \begin{pmatrix} g & 0 & 0 & 0 \\ \frac{Pn_x + \rho gu}{r} & 0 & 0 & 0 \\ \frac{Pn_y + \rho gv}{r} & 0 & 0 & 0 \\ \frac{Pg + \rho Eg}{r} & 0 & 0 & 0 \end{pmatrix}$$
(21)

Therefore, matrix A is written as:

$$A = \frac{\partial E}{\partial u} n_x + \frac{\partial E}{\partial v} n_y \tag{22}$$

The eigenvalues of matrix A are

$$\begin{cases} \lambda_{1} = q = un_{x} + vn_{y} \\ \lambda_{2} = q = un_{x} + vn_{y} \\ \lambda_{3} = q + c = un_{x} + vn_{y} + c \\ \lambda_{4} = q - c = un_{x} + vn_{y} + c \end{cases}$$
(23)

REFERENCES

- [1] Yuxin Ren. Computational Fluid Dynamics (Basic). Department of Engineering Mechanics, Tsinghua University. 2003.
- [2] Eleuterio F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer-Verlag Berlin Heidelberg 2009. ISBN 978-3-540-25202-3. DOI 10.1007/978-3-540-49834-6.
- [3] Antony Jameson. Advanced Computational Fluid Dynamics AA215A Lecture 4. Winter Quarter, 2012, Stanford, CA.

X. -Q. Yang. Computational Fluid Dynamics (2020).

Full notes series could be found at http://hanfengzhai.net/categories/note