

María Alejandra Rodríguez Ríos ...

Universidad Nacional de Colombia Facultad de Ciencias Análisis Funcional

Sandra Natalia Florez Garcia Edgar Santiago Ochoa Quiroga

Ejercicio 1 Sea $(E, \|\cdot\|)$ un espacio vectorial normado. Defina

$$K = \{x \in E : ||x|| = 1\}.$$

Demuestre que E es de Banach si y solamente si K es completo.

Demostración. (\Rightarrow) Supongamos que E es un espacio de Banach y considere $(x_n)_{n\in\mathbb{N}}$ una sucesión de Cauchy en K \subset E, como E es completo, existe $x\in E$ tal que $x_n\to x$. Por lo que faltaría ver que $x\in K$, es decir, que $\|x\|=1$. Por la convergencia de la sucesión, tenemos que dado $\varepsilon>0$ existe $N\in\mathbb{Z}^+$ tal que si $n\geq N$, entonces

$$\|\mathbf{x}_{n} - \mathbf{x}\| < \varepsilon$$
.

Ahora, tenemos que cada x_n es de norma 1 ya que x_n es una sucesión de Cauchy en K, luego por la desigualdad triangular tenemos que

$$||x|| \le ||x - x_n|| + ||x_n|| < \varepsilon + 1,$$

y además

$$1 = \|x_n\| \le \|x_n - x\| + \|x\| < \varepsilon + \|x\|.$$

Si juntamos las dos desigualdades, obtenemos que

$$1-\varepsilon < ||\mathbf{x}|| < 1+\varepsilon$$
.

Así tomando $\varepsilon \to 0$ tenemos que ||x|| = 1, mostrando así que K es completo.

 (\Leftarrow) Sea $(x_n)_{n\in\mathbb{N}}$ una sucesión de Cauchy en E. Por lo cual, la sucesión $(\|x_n\|)_{n\in\mathbb{N}}$ es de Cauchy en \mathbb{R} y como este espacio es completo, se sigue que $\|x_n\|\to a$. Consideremos dos casos, si a=0, por la definición de convergencia, dado $\epsilon>0$, existe $N\in\mathbb{Z}^+$ tal que si $n\geq N$ tenemos que $\|\|x_n\|-0\|<\epsilon$, esto es igual a $\|x_n\|<\epsilon$, así, concluimos que $x_n\to 0$ por lo cual hemos acabado en este caso.

Si $\alpha \neq 0$, sin pérdida de generalidad podemos asumir que $x_n \neq 0$ para todo $n \in \mathbb{N}$, ya que en caso contrario la cantidad de ceros sería finita, lo cual no afectarían a la convergencia porque al suponer que la cantidad de ceros es infinita, al ser x_n una sucesión de Cauchy eso implicaría que x_n converge a 0 ya que existiría una subsucesión convergente a 0, y ese caso fue el anterior. Así, definimos $y_n = \frac{x_n}{\|x_n\|}$, luego como las sucesiones de Cauchy en \mathbb{R} son acotadas, existen

constantes tales que $0 < M_1 \le ||x_n|| \le M_2$, a partir de un $n \ge N$ tenemos que

$$\begin{split} \|y_n - y_m\| &= \left\| \frac{x_n}{\|x_n\|} - \frac{x_m}{\|x_m\|} \right\| \\ &= \left\| \frac{x_n \|x_m\| - x_m \|x_n\|}{\|x_n\| \|x_m\|} \right\| \\ &\leq \frac{1}{M_1^2} \|x_n \|x_m\| - x_m \|x_n\| \| \\ &= \frac{1}{M_1^2} \|x_n \|x_m\| - x_m \|x_m\| + x_m \|x_m\| - x_m \|x_n\| \| \\ &= \frac{1}{M_1^2} \|(x_n - x_m) \|x_m\| + x_m (\|x_m\| - \|x_n\|) \| \\ &\leq \frac{1}{M_1^2} (\|(x_n - x_m) \|x_m\| + \|x_m (\|x_m\| - \|x_n\|) \|) \\ &\leq \frac{M_2}{M_1^2} (\|x_n - x_m\| + \|\|x_m\| - \|x_n\|\|). \end{split}$$

Luego, como (x_n) y $(\|x_n\|)$ son de Cauchy para n y m suficientemente grandes $\|x_n - x_m\| < \varepsilon$ y $\|\|x_m\| - \|x_n\|\| < \varepsilon$. Así hemos concluido que (y_n) es de Cauchy, pero claramente $y_n \in K$, como este es completo por hipótesis tenemos que $y_n \to y$. Podemos notar que $x_n = \|x_n\|y_n$, así tenemos que

$$\begin{aligned} \|x_n - ay\| &= \|\|x_n\|y_n - ay_n + ay_n - ay\| \\ &= \|y_n(\|x_n\| - a) + a(y_n - y)\| \\ &\leq \|\|x_n\| - a\| + \|a\|\|(y_n - y)\|. \end{aligned}$$

Como $||x_n|| \to \alpha$ y $y_n \to y$, por la desigualdad concluimos que $x_n \to \alpha y$, mostrando así que (x_n) converge en E y por tanto es Banach.

Ejercicio 2 Sean $(E, \|\cdot\|_E)$ y $(F, \|\cdot\|_F)$ espacios vectoriales normados. Considere $T: E \to F$ una transformación lineal. Muestre que las siguientes afirmaciones son equivalentes:

- (i) T es continua.
- (ii) T es continua en cero.
- (iii) T es acotada. Es decir, existe M > 0 tal que para todo $x \in E$,

$$\|Tx\|_F \leq M\|x\|_E$$
.

(iv) Si $\overline{B(0,1)} = \{x \in E : \|x\|_E \le 1\}$, entonces la imagen directa T(B(0,1)) es un conjunto acotado de F.

Demostración. Para establecer la equivalencia entre estas afirmaciones, probaremos la cadena de implicaciones $(i) \rightarrow (ii) \rightarrow (iii) \rightarrow (iv) \rightarrow (i)$.

• (i) \rightarrow (ii): Si T es continua en todo punto de E, en particular es continua en el origen.

• (ii) \rightarrow (iii): Supongamos que T es continua en el origen. Entonces, por definición de continuidad, dado $\varepsilon = \frac{1}{9}$, existe $\delta > 0$ tal que si $\|x\|_{E} < \delta$, entonces $\|Tx\|_{F} < \frac{1}{9}$.

Sea $x \in E$ con $x \neq 0$, y definamos $y = \frac{\delta x}{3\|x\|_E}$. Entonces, $\|y\|_E = \frac{\delta}{3} < \delta$, por lo que se cumple que $\|Ty\|_F < \frac{1}{9}$.

Utilizando la linealidad de T, tenemos

$$\begin{split} \left\| T \left(\frac{\delta x}{3 \|x\|_E} \right) \right\|_F &< \frac{1}{9}, \\ \frac{\delta}{3 \|x\|_E} \| Tx\|_F &< \frac{1}{9}, \\ \| Tx\|_F &< \frac{3}{\delta} \|x\|_E. \end{split}$$

Por lo tanto, si tomamos $M = \frac{3}{\delta}$, se tiene que para todo $x \in E$,

$$\|\mathsf{T}x\|_{\mathsf{F}} \leq M\|x\|_{\mathsf{E}},$$

lo cual demuestra que T es acotada.

• (iii) \Rightarrow (iv): Supongamos que T es acotada. Entonces existe M > 0 tal que para todo $x \in E$, se cumple que $\|Tx\|_F \le M\|x\|_E$. En particular, si $x \in \overline{\mathcal{B}(0,1)}$, es decir, $\|x\|_E \le 1$, entonces

$$\|Tx\|_F \leq M$$

como lo anterior se tiene para todo punto en $\overline{\mathcal{B}(0,1)}$, se tiene que $T(\overline{\mathcal{B}(0,1)})$ está contenido en la bola cerrada de radio M en F, lo que implica que $T(\overline{\mathcal{B}(0,1)})$ es un conjunto acotado.

• (iv) \Rightarrow (i): Supongamos que $T(\overline{B(0,1)})$ es acotado. Entonces existe una constante M > 0 tal que para todo $x \in \overline{B(0,1)}$, se cumple que

$$||Tx||_F \leq M$$
.

Sea $x \in E$ con $x \neq 0$. Tomemos $y = \|x\|_E \cdot \frac{x}{\|x\|_E}$, donde $\frac{x}{\|x\|_E} \in \overline{B(0,1)}$. Usando la linealidad de la tranformación T y la desigualdad anterior, obtenemos,

$$\|Tx\|_F = \left\|T\left(\|x\|_E \cdot \frac{x}{\|x\|_E}\right)\right\|_F = \|x\|_E \cdot \left\|T\left(\frac{x}{\|x\|_E}\right)\right\|_F \leq \|x\|_E \cdot M.$$

Por lo tanto, T es acotada. Luego, para todo $\epsilon>0$ con $x',y'\in E$ tenemos que si $\|x'-y'\|<\delta$

$$\|Tx' - Ty'\| = \|T(x' - y')\| = M\|x' - y'\| < M\delta = M\frac{\varepsilon}{M}.$$

$$luego,\,\delta=\frac{\epsilon}{M}.$$

Con lo cual se concluye la demostración.

Ejercicio 3 Demuestre que si $T \in \mathcal{L}(E, F)$, entonces:

- (i) $\|Tx\|_{F} \le \|T\| \|x\|_{E}$, para todo $x \in E$.
- (ii) $\|T\| = \sup_{\substack{x \in E \\ x \neq 0}} \frac{\|Tx\|_F}{\|x\|_E}.$
- (iii) $\|T\| = \sup_{\|x\|_E = 1} \|Tx\|_F$.
- (iv) $\|T\| = \inf\{M > 0 : \|Tx\|_F \le M\|x\|_E, \, \forall x \in E\}.$

Demostración.

(i) Sea $\mathcal{L}(E, F)$ un espacio vectorial con la norma

$$\|T\| = \sup_{\substack{x \in E \\ \|x\| \le 1}} \frac{\|Tx\|_F}{\|x\|_E}.$$

Por definición de supremo, se tiene que $||Tx|| \le ||T||$ para todo $x \in E$ con $||x|| \le 1$, si x = 0, la desigualdad se cumple trivialmente.

Ahora, tomemos $x \in E$ con $x \neq 0$, y definamos

$$y = \frac{x}{\|x\|},$$

entonces, usando la linealidad de T, se tiene que

$$||Ty|| = \left||T\left(\frac{x}{||x||}\right)\right|| = \frac{1}{||x||}||Tx||.$$

Por la definición del supremo, como $\|y\|=1$, se cumple que $\|Ty\|\leq \|T\|$, y por lo tanto,

$$\frac{1}{\|\mathbf{x}\|}\|\mathsf{T}\mathbf{x}\| \leq \|\mathsf{T}\|,$$

multiplicando ambos lados por $\|x\|$,

$$\|\mathsf{T}x\| \leq \|\mathsf{T}\| \|x\|.$$

Así, se concluye que para todo $x \in E$, se cumple $||Tx|| \le ||T|| ||x||$, como queríamos.

4

(ii-iv) Definamos:

$$\begin{split} &\alpha = \sup_{\|x\|_E = 1} \|Tx\|_F,\\ &\beta = \sup_{\substack{x \in E \\ x \neq 0}} \frac{\|Tx\|_F}{\|x\|_E},\\ &\gamma = \inf\{M > 0: \|Tx\|_F \leq M\|x\|_E, \, \forall x \in E\}. \end{split}$$

Veamos que $\|Tx\| \le \alpha$ para todo $x \in E$ con $\|x\| = 1$. Tomemos $y \in E$ con $y \ne 0$ tal que $x = \frac{y}{\|y\|}$, por lo que

$$\|\mathsf{T}x\| = \left\|\mathsf{T}\left(\frac{\mathsf{y}}{\|\mathsf{y}\|}\right)\right\| = \frac{\|\mathsf{T}\mathsf{y}\|}{\|\mathsf{y}\|} \le \alpha,$$

como esto es válido para todo $y \in E$ con $y \neq 0$, se concluye que $\beta \leq \alpha$.

Por otro lado, para todo $x \in E$ con $x \neq 0$, se cumple que,

$$\frac{\|Tx\|}{\|x\|} \le \beta,$$

entonces, usando la linealidad de T,

$$\left\| T\left(\frac{x}{\|x\|}\right) \right\| \leq \beta,$$

si definimos $y = \frac{x}{\|x\|}$, entonces $\|y\| = 1$, y se obtiene que $\|Ty\| \le \beta$ para todo $y \in E$ con $\|y\| = 1$. Por lo tanto, $\alpha \le \beta$.

En consecuencia, $\alpha = \beta$.

Ahora, si M > 0 es un número en el conjunto que define a γ , entonces se cumple que $\|Tx\| \le M\|x\|$ para todo $x \in E$. Esto implica que

$$\frac{\|\mathsf{T}x\|}{\|x\|} \leq \mathsf{M},$$

y por lo tanto, $\beta \leq M$ para todo M en dicho conjunto. En consecuencia, $\beta \leq \gamma$.

Por otro lado, ya sabemos que $\frac{\|Tx\|}{\|x\|} \le \beta$ para todo $x \in E$, $x \ne 0$, lo cual equivale a $\|Tx\| \le \beta \|x\|$. Es decir, β también cumple la propiedad del conjunto que define γ , así que $\gamma \le \beta$. Entonces, podemos concluir que,

$$\alpha = \beta = \gamma$$
.

Finalmente, notemos que $||T|| \ge \alpha$, ya que,

$${x \in E : ||x|| = 1} \subseteq {x \in E : ||x|| \le 1}.$$

Si M pertenece al conjunto que define a γ , entonces para todo $x \in E$ con $||x|| \le 1$, se tiene $||Tx|| \le M$, y como M es una cota superior de ||Tx|| sobre la bola unitaria, se concluye que $||T|| \le M$. Esto válido para todo M del conjunto que define a γ , por lo que se tiene que $||T|| \le \gamma$.

Por lo tanto,

$$\|T\| = \alpha = \beta = \gamma$$
.

Con lo cual, concluimos la demostración.

Ejercicio 4 Sean $(E, \|\cdot\|_E)$ y $(F, \|\cdot\|_F)$ espacios vectoriales normados. Suponga que F es un espacio de Banach. Muestre que $\mathcal{L}(E, F)$ es un espacio de Banach con la norma usual de $\mathcal{L}(E, F)$. En particular, concluya que $E^* = \mathcal{L}(E, \mathbb{R})$ y $E^{**} = \mathcal{L}(E^*, \mathbb{R})$ son espacios de Banach.

Demostración.

Sea $(E, \|\cdot\|_E)$ un espacio normado y sea $(F, \|\cdot\|_F)$ un espacio de Banach. Consideremos el conjunto $\mathcal{L}(E, F)$ de todas las aplicaciones lineales y continuas de E en F, provisto de la norma definida por

$$\|\mathsf{T}\| := \sup_{\|\mathsf{x}\|_{\mathsf{F}} < 1} \|\mathsf{T}(\mathsf{x})\|_{\mathsf{F}}.$$

Queremos demostrar que $\mathcal{L}(E, F)$, con esta norma, es un espacio de Banach.

Sea $(T_n)_{n\in\mathbb{N}}\subseteq\mathcal{L}(E,F)$ una sucesión de Cauchy. Por definición, para todo $\varepsilon>0$, existe $N\in\mathbb{N}$ tal que para todo $n,m\geq N$,

$$\|\mathsf{T}_{\mathsf{n}}-\mathsf{T}_{\mathsf{m}}\|<\varepsilon$$
,

es decir, para todo $x \in E$ con $||x||_E \le 1$, se tiene que,

$$\|T_n(x) - T_m(x)\|_F < \varepsilon$$
.

Ahora, sea $x \in E$ arbitrario (no necesariamente de norma menor o igual que uno), tenemos que para todo $n, m \ge N$, se cumple que,

$$\|T_n(x) - T_m(x)\|_F = \|(T_n - T_m)(x)\|_F \leq \|T_n - T_m\| \cdot \|x\|_E.$$

Dado $\epsilon > 0$, si $x \neq 0$, se puede tomar $\delta := \frac{\epsilon}{\|x\|_E}$, y por ser (T_n) de Cauchy, existe $N \in \mathbb{N}$ tal que para todo $n, m \geq N$,

$$\|T_n - T_m\| < \delta = \frac{\varepsilon}{\|x\|_E},$$

lo que implica

$$\|T_n(x) - T_m(x)\|_F < \epsilon$$
.

En el caso x=0, se tiene trivialmente que $T_n(0)=0$ para todo n, por lo que la sucesión es constante y, en particular, de Cauchy. Así, se concluye que para todo $x\in E$, la sucesión $(T_n(x))_{n\in\mathbb{N}}\subseteq F$ es de Cauchy.

Como F es un espacio de Banach, existe un elemento $T(x) \in F$ tal que

$$T_n(x) \to T(x) \in F$$

esto define una aplicación $T : E \rightarrow F$ mediante

$$T(x):=\lim_{n\to\infty}T_n(x).$$

Veamos que T es lineal. Sean $x,y\in E$ y $\lambda\in \mathbb{K}$ (donde $\mathbb{K}=\mathbb{R}$ o \mathbb{C}). Como cada T_n es lineal, se tiene

$$T_n(\lambda x + y) = \lambda T_n(x) + T_n(y),$$

y como los límites existen en F, se concluye que

$$T(\lambda x+y)=\lim_{n\to\infty}T_n(\lambda x+y)=\lim_{n\to\infty}(\lambda T_n(x)+T_n(y))=\lambda T(x)+T(y),$$

es decir, T es lineal.

Mostremos ahora que T es acotada. Como (T_n) es Cauchy en $\mathcal{L}(E,F)$, existe una constante M>0 tal que $\|T_n\|\leq M$ para todo $n\in\mathbb{N}$. Entonces, para todo $x\in E$,

$$||T_n(x)||_F \le ||T_n|| \cdot ||x||_E \le M||x||_E$$

y pasando al límite cuando $n \to \infty$,

$$\|T(x)\|_{E} \leq M\|x\|_{E}$$
.

Esto demuestra que $T \in \mathcal{L}(E, F)$, es decir, T es lineal y continua.

Finalmente, veamos que $T_n \to T$ en $\mathcal{L}(E,F)$. Dado $\epsilon > 0$, existe $N \in \mathbb{N}$ tal que para todo $n,m \geq N$,

$$\|T_n - T_m\| < \epsilon$$
.

Fijado n > N, y tomando el límite cuando $m \to \infty$, se obtiene

$$\|T_n-T\|=\sup_{\|x\|_E\leq 1}\|T_n(x)-T(x)\|_F\leq \epsilon.$$

Por tanto, $||T_n - T|| \to 0$, lo que implica que $T_n \to T$ en $\mathcal{L}(E, F)$.

Concluimos que $\mathcal{L}(E,F)$, con la norma $\|\cdot\|$, es un espacio de Banach. Además, al ser \mathbb{R} un espacio normado y de Banach con la norma usual, entonces $\mathcal{L}(E,\mathbb{R})$ y $\mathcal{L}(E^*,\mathbb{R})$ son espacios de Banach.

Ejercicio 5 Sean E y F espacios vectoriales normados. Suponga que E es de dimensión finita (no se asume que F sea de dimensión finita).

(i) Muestre que todas las normas asignadas a E son equivalentes.

Demostración. Para mostrar que todas las normas definidas en E son equivalentes, primero vamos a mostrar que se tiene la transitividad entre normas equivalentes, además es importante resaltar que en este caso estamos tomando como norma base, la norma 1 definida como,

$$||x||_1 = \sum_{i=0}^n |\alpha_i|,$$

donde $x = \sum_{i=0}^{n} \alpha_i e_i \in E$.

Ahora, supongamos que $\|\cdot\|_a$ y $\|\cdot\|_b$ son dos normas definidas sobre E que son equivalentes a la norma $\|\cdot\|_1$. Esto quiere decir que existen constantes positivas C_1 , C_2 , C_1' , C_2' tales que, para todo $x \in E$, se cumple

$$C_1 ||x||_1 \le ||x||_a \le C_2 ||x||_1,$$

 $C'_1 ||x||_1 \le ||x||_b \le C'_2 ||x||_1.$

A partir de estas desigualdades, queremos establecer la equivalencia directa entre $\|\cdot\|_{\mathfrak{a}}$ y $\|\cdot\|_{\mathfrak{b}}$. Combinando las desigualdades anteriores podemos decir que,

$$\begin{cases} C_1 \|x\|_1 \leq \|x\|_{\alpha} \leq C_2 \|x\|_1 & \Rightarrow & \frac{C_1}{C_2} \|x\|_1 \leq \frac{1}{C_2} \|x\|_{\alpha} \leq \|x\|_1 & \Rightarrow & \frac{1}{C_2} \|x\|_{\alpha} \leq \frac{1}{C_1'} \|x\|_{b} \\ C_1' \|x\|_1 \leq \|x\|_{b} \leq C_2' \|x\|_1 & \Rightarrow & \|x\|_1 \leq \frac{1}{C_1'} \|x\|_{b} \leq \frac{C_2'}{C_1'} \|x\|_1 & \Rightarrow & \|x\|_{\alpha} \leq \frac{C_2}{C_1'} \|x\|_{b} \\ \|x\|_1 \leq \frac{1}{C_1} \|x\|_{\alpha} \leq \frac{C_2}{C_1} \|x\|_1 & \Rightarrow & \|x\|_1 \leq \frac{1}{C_1} \|x\|_{\alpha} & \Rightarrow & \frac{1}{C_2'} \|x\|_{b} \leq \frac{1}{C_1} \|x\|_{\alpha} \\ \frac{C_1'}{C_2'} \leq \frac{1}{C_2'} \|x\|_{b} \leq \|x\|_1 & \Rightarrow & \frac{1}{C_2'} \|x\|_{b} \leq \|x\|_1 \end{cases}$$

Luego,

$$\frac{C_1}{C_2'} \|x\|_b \leq \|x\|_a \leq \frac{C_2}{C_1'} \|x\|_b$$

como C_1, C_2, C_1', C_2' son constantes positivas, $\frac{C_1'}{C_2'}$ y $\frac{C_2}{C_1'}$ también lo son. Lo que nos indica que $\|\cdot\|_{\mathfrak{a}}$ y $\|\cdot\|_{\mathfrak{b}}$ son equivalentes.

Ahora, queremos probar que

$$C_1 \|x\|_1 \le \|x\|_{\mathfrak{a}} \le C_2 \|x\|_1$$

se cumple para todo $x \in E$, donde C_1 , C_2 son constantes positivas.

Para el caso x = 0, la proposición se cumple trivialmente. Entonces, tomemos $x \neq 0$ y veamos que, dividiendo entre $||x||_1$

$$C_1 \le \frac{\|x\|_{\alpha}}{\|x\|_1} \le C_2 \text{ por lo que, } C_1 \le \left\|\frac{x}{\|x\|_1}\right\|_{\alpha} \le C_2 \text{ , así } C_1 \le \|u\|_{\alpha} \le C_2 \quad (1)$$

si tomamos $u = \frac{x}{\|x\|_1}$, donde $\|u\|_1 = 1$. Esto nos indica que basta con probar (1) para $u \in E$, con $\|u\|_1 = 1$.

Ahora, veamos que cualquier norma $\|\cdot\|_{\mathfrak{a}}$ en el espacio E, es continua en $\|\cdot\|_{1}$

Sea
$$\|\cdot\|_a : (\mathsf{E}, \|\cdot\|_1) \to (\mathbb{R}, |\cdot|)$$
 definida por $\mathsf{x} \mapsto \|\mathsf{x}\|_a$.

Queremos mostrar que esta función es continua, es decir, que para todo $\varepsilon > 0$, existe $\delta > 0$ tal que si $\|x - x'\|_1 < \delta$, entonces

$$|||x||_{q} - ||x'||_{q}| < \varepsilon$$
.

Por la desigualdad triangular para la norma $\|\cdot\|_{\mathfrak{a}}$ se tiene

$$|\|\mathbf{x}\|_{a} - \|\mathbf{x}'\|_{a}| \le \|\mathbf{x} - \mathbf{x}'\|_{a}$$

ahora, escribamos $x=\sum_{i=1}^n \alpha_i e_i$ y $x'=\sum_{i=1}^n \alpha_i' e_i$, con $\{e_i\}_{i=1}^n$ una base finita de E, luego,

$$\begin{split} \|x-x'\|_\alpha &= \left\|\sum_{i=1}^n (\alpha_i-\alpha_i')e_i\right\|_\alpha \\ &\leq \sum_{i=1}^n |\alpha_i-\alpha_i'|\cdot \|e_i\|_\alpha \\ &\leq \left(\max_{1\leq i\leq n} \|e_i\|_\alpha\right)\sum_{i=1}^n |\alpha_i-\alpha_i'| \\ &= \left(\max_{1\leq i\leq n} \|e_i\|_\alpha\right) \|x-x'\|_1. \end{split}$$

Por lo tanto, si tomamos

$$\delta = \frac{\epsilon}{\text{m\'ax}_{1 \leq i \leq n} \, \|e_i\|_{\mathfrak{a}}},$$

entonces, si $||x - x'||_1 < \delta$, se sigue que,

$$|||x||_{\mathfrak{a}} - ||x'||_{\mathfrak{a}}| \le ||x - x'||_{\mathfrak{a}} < \varepsilon.$$

Esto prueba que $\|\cdot\|_{\alpha}$ es continua en $(E, \|\cdot\|_1)$.

Ahora veamos cuales serían las constantes para decir que las normas son equivalentes para eso vamos a probar que si B(0,1) es compacto y acotado entonces en ese conjunto se alcanza máximo y mínimo.

Por lo demostrado anteriormente sabemos que $\|\cdot\|_{\alpha}$ es una función continua y como E es un espacio vectorial de dimensión finita, luego, el conjunto

$$B = \{x \in E : ||x||_1 = 1\}$$

es compacto por ser cerrado y acotado, por lo que existe un isomorfismo lineal $T: \mathbb{R}^n \to E$, por el teorema del valor extremo, la función continua definida sobre B alcanza su máximo y su mínimo. Definamos

$$C_1 = \min_{\|x\|_1=1} \|x\|_{\alpha}, \quad C_2 = \max_{\|x\|_1=1} \|x\|_{\alpha}.$$

Como $x \neq 0$ y $||x||_1 = 1$, entonces C_1 y C_2 son constantes positivas, con $C_2 \geq C_1$, y se cumple que

$$C_1 \leq \|x\|_{\mathfrak{a}} \leq C_2.$$

Luego, por la definición de equivalencia de normas, $\|\cdot\|_{\alpha}$ y $\|\cdot\|_{1}$ son equivalentes.

(ii) Muestre que toda transformación lineal $T: E \to F$ es continua.

Demostración. Sea $T : E \to F$ una transformación lineal, veamos que T es continua, para esto de acuerdo con el ejercicio 2 de este taller, sabemos que basta con mostrar que es acotada.

Como por hipótesis E es un espacio vectorial de dimensión finita, tomemos la base de E como $\mathcal{B} = \{\nu_1, \nu_2, \dots, \nu_n\}, \text{ luego si } x \in \text{E tenemos que } x = \sum_{i=1}^n x_i \nu_i, \text{ entonces la transformación lineal T es de la forma,}$

$$\begin{split} \mathsf{T} x &= \mathsf{T} \left(\sum_{i=1}^n x_i \nu_i \right) \\ &= \sum_{i=1}^n x_i \mathsf{T}(\nu_i), \\ &\leq \sum_{i=1}^n x_i \nu_i \max_{1 \leq i \leq n} \mathsf{T}(\nu_i), \end{split}$$

así, tenemos que

$$\begin{split} \|T\|_{E} &= \left\| \sum_{i=1}^{n} x_{i} T(\nu_{i}) \right\|_{E} \\ &\leq \sum_{i=1}^{n} \left\| x_{i} T(\nu_{i}) \right\|_{E} \\ &= \sum_{i=1}^{n} |x_{i}| \cdot \|T(\nu_{i})\|_{E}, \end{split}$$

por el punto anterior, como E es un espacio de dimensión finita existen constantes positivas C_1 y C_2 , tal que $C_1\|x\|_E \le \|x\|_1 \le C_2\|x\|_E$ y si tomamos a $M_1 = \max_{1 \le i \le n} \|T(\nu_i)\|_E$, entonces,

$$\begin{split} \sum_{i=1}^{n} |x_{i}| \cdot \|T(\nu_{i})\|_{E} \|x\|_{1} &\leq \max_{1 \leq i \leq n} \|T(\nu_{i})\|_{E}, \\ &\leq M_{1}C_{2} \|x\|_{E} \\ &= M \|x\|_{E}, \end{split}$$

por lo cual, T es acotado y continuo.

(iii) Dé un ejemplo donde se verifique que (ii) puede ser falsa si E es de dimensión infinita.

Solución. Sea $T:(C^1([0,1]),\|\cdot\|_{\infty}) \longrightarrow (\mathbb{R},|\cdot|)$ donde por $f\mapsto f'(0)$. Note que T es una transformación lineal.

Queremos mostrar por la linealidad de la derivada que la transformación no es continua, por lo tanto, demostremos que T no es acotada.

Demostración. Supongamos que $T \in \mathcal{L}(E, \mathbb{R})$ con $\|\cdot\|_{\mathcal{L}^{\infty}}$, por lo cual, existe M > 0 tal que

$$|T(x)| = |f'(0)| \leq M \|f\|_{\mathcal{L}^\infty} \quad \text{para todo } f \in C^1([0,1]).$$

Sea $n \ge 2$ y $f(x) = (1-x)^n$, entonces, por la forma en la que está definida f tenemos que su máximo es 1 y se alcanza cuando f se evalúa en 0, luego $||f||_{\mathcal{L}^{\infty}} = 1$, tomando la derivada de f tenemos que

$$f'(x) = -n(1-x)^{n-1}, \quad f'(0) = -n.$$

Reemplazando

$$n=|f'(0)|\leq M\|f\|_{\infty}=M.$$

Por tanto, cuando $n \to \infty$, se tendría $n \le M$ para todo $n \ge 2$, lo cual es una contradicción. Entonces T no es acotada.

Ejercicio 6

Considere $E = c_0$, donde

$$c_0 = \left\{ u = \{u_n\}_{n \geq 1} : \text{tales que } u_n \in \mathbb{R}, \ \lim_{n \to \infty} u_n = 0 \right\}.$$

Es decir, c_0 es el conjunto de las secuencias reales que tienden a cero. Dotamos a este espacio con la norma $\|u\|_{\ell^{\infty}} = \sup_{n \in \mathbb{Z}^+} |u_n|$. Considere el funcional $f : E \to \mathbb{R}$ dado por

$$f(u) = \sum_{n=1}^{\infty} \frac{1}{2^n} u_n.$$

(i) Muestre que $f \in E^*$ y calcule $||f||_{E^*}$.

Solución. Primero, observemos que el funcional está bien definido, esto ya que las sucesiones convergentes son acotadas, el supremo existe y como

$$\left|\frac{1}{2^n}u_n\right|\leq \|u\|_{\ell^\infty}\frac{1}{2^n},$$

por el criterio de comparación converge absolutamente, ya que el lado derecho de la desigualdad es una serie geométrica. Luego, dadas $u,v\in E$ y $\lambda\in\mathbb{R}$, tenemos que $u+\lambda v\in E$, donde $u+\lambda v=\{u_n+\lambda v_n\}_{n\geq 1}$. Así, por la convergencia absoluta tenemos que f es lineal, ya que

$$\begin{split} f(u+\lambda \nu) &= \sum_{n=1}^{\infty} \frac{1}{2^n} (u_n + \lambda \nu_n) \\ &= \sum_{n=1}^{\infty} \left(\frac{1}{2^n} u_n + \frac{1}{2^n} \lambda \nu_n \right), \\ &= \sum_{n=1}^{\infty} \frac{1}{2^n} u_n + \lambda \sum_{n=1}^{\infty} \frac{1}{2^n} \nu_n \\ &= f(u) + \lambda f(\nu). \end{split}$$

Ahora, mostremos que f es acotado. Observe que para una suma parcial se tiene que

$$\begin{split} \left| \sum_{n=1}^{m} \frac{1}{2^{n}} u_{n} \right| &\leq \sum_{n=1}^{m} \frac{1}{2^{n}} |u_{n}| \\ &\leq \sup_{n \in \mathbb{Z}^{+}} |u_{n}| \sum_{n=1}^{m} \frac{1}{2^{n}} \\ &= \|u\|_{\ell^{\infty}} \sum_{n=1}^{m} \frac{1}{2^{n}}. \end{split}$$

Note que, si hacemos $m \to \infty$ al lado derecho tenemos una serie geométrica que converge a 1, por lo cual, tenemos que

$$|f(u)| \leq ||u||_{\ell^{\infty}}$$
.

Mostrando así que f es acotada.

Faltaría simplemente calcular $\|f\|_{E^*}$. Por la cota hallada previamente si tomamos el supremo a ambos lados tenemos que

$$\|f(u)\|_{E^*} = \sup_{\|u\|_{\ell^\infty} \le 1} |f(u)| \le \sup_{\|u\|_{\ell^\infty} \le 1} \|u\|_{\ell^\infty} = 1.$$

Ahora considere la sucesión u^N , donde $N \in \mathbb{Z}^+$ y está definida de la siguiente manera

$$u_n = \begin{cases} 1 & \text{Si } n \leq N, \\ 0 & \text{Si } n > N. \end{cases}$$

Claramente $\|u^N\|_{\ell^\infty}=1$, luego por la desigualdad mostrada en el ejercicio 3 numeral (i) tenemos

$$\begin{split} \sum_{i=1}^{N} \frac{1}{2^{n}} &= |f(u^{N})| \\ &\leq \|f\|_{E^{*}} \|u^{N}\|_{\ell^{\infty}} \\ &= \leq \|f\|_{E^{*}}. \end{split}$$

Así como el lado derecho de la desigualdad no depende de N, si tomamos $N\to\infty$ tenemos que

$$1 \leq ||f||_{E^*}$$
.

Por lo que concluimos que $||f||_{E^*} = 1$.

 $O^{\circ}O$

(ii) ¿Es posible encontrar $u \in E$ tal que $\|u\| = 1$ y $f(u) = \|f\|_{E^*}$?

Solución. En el numeral anterior vimos que $||f||_{E^*} = 1$, ahora queremos ver si existe una sucesión $u \in E$ de norma 1 tal que f(u) = 1. Supongamos que existe tal sucesión y veamos como esto nos lleva a una contradicción. Por hipótesis

$$u_n \le |u_n| \le \|u\|_{\ell^\infty} = 1,$$

luego $u_n-1\leq 0$ para todo $n\in \mathbb{Z}^+.$ Así podemos notar que

$$\begin{split} \left| \sum_{n=1}^{m} \frac{1}{2^{n}} (u_{n} - 1) \right| &\leq \sum_{n=1}^{m} \frac{1}{2^{n}} |u_{n} - 1| \\ &= \sum_{n=1}^{m} \frac{1}{2^{n}} (1 - u_{n}) \\ &= \sum_{n=1}^{m} \frac{1}{2^{n}} - \sum_{n=1}^{m} \frac{1}{2^{n}} u_{n}. \end{split}$$

Luego si m $\rightarrow \infty$ tenemos que

$$\left|\sum_{n=1}^{\infty} \frac{1}{2^n} (u_n - 1)\right| \leq 1 - f(u) = 0,$$

por lo tanto

$$\sum_{n=1}^{\infty} \frac{1}{2^n} (u_n - 1) = 0.$$

Ahora, note que si existe algún $u_n < 1$ la suma de arriba sería negativa, no igual a 0. Por lo que $u_n = 1$ para todo $n \in \mathbb{Z}^+$, pero esto implicaria que $u \notin E$, ya que esa sucesión no converge a 0. Luego no puede existir una sucesión u que cumpla lo mencionado.

 $\Omega^{\hat{}}\Omega$