МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И.УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЁТ

по лабораторной работе №1 по дисциплине «Машинное обучение»

Тема: Предобработка данных

 Студент гр. 6304
 ________ Корытов П.В.

 Преподаватель
 ________ Жангиров Т.Р.

Санкт-Петербург 2020

1. Цель работы

Ознакомиться с методами предобработки данных из библиотеки *Scikit Learn*.

2. Ход работы

2.1. Загрузка данных

1. Загружен указанный набор данных, проведены преобразования данных (рис. 1)

	age	creatinine_phosphokinase	ejection_fraction	platelets	serum_creatinine	serum_sodium
0	75.0	582	20	265000.00	1.9	130
1	55.0	7861	38	263358.03		136
2	65.0	146	20	162000.00	1.3	129
3	50.0	111	20	210000.00	1.9	137
4	65.0	160	20	327000.00	2.7	116
294	62.0	61	38	155000.00		143
295	55.0	1820	38	270000.00	1.2	139
296	45.0	2060	60	742000.00	0.8	138
297	45.0	2413	38	140000.00	1.4	140
298	50.0	196	45	395000.00	1.6	136

Рисунок 1 – Вывод набора данных

2. Построены гистограммы для выделенных признаков (рис. 2)

Рисунок 2 – Гистограммы призаков

2.2. Стандартизация данных

1. Проведена нормализация данных с помощью StandardScaler на основе первых 150 наблюдений. Гистограммы стандартизованных данных представлены на рис. 3.

Рисунок 3 – Гистограммы нормализованных признаков (на осн. первых 150)

2. Проведена та же процедура на всем датасете. Результаты на рис. 4

Рисунок 4 – Гистограммы нормализованных признаков

4. Вычислено мат. ожидание и СКО для исходных данных и обоих порций нормализованных данных. Результаты в таблице 1.

Таблица 1. Признаки

Признак	age	creatinine	ejection_f	platelets	serum_crea	serum_sodi
Среднее (исх.)	60.8339	581.8395	38.0836	263358.0293	1.3939	136.6254
Среднее (стандарт. 150)	-0.1697	-0.0213	0.0105	-0.0352	-0.1086	0.0379
Среднее (стандарт. 150 scaler)	62.9467	607.1533	37.9467	266746.7495	1.5206	136.4533
Среднее (стандарт. полн.)	0.0000	0.0000	-0.0000	0.0000	0.0000	-0.0000
Среднее (стандарт. полн. scaler)	60.8339	581.8395	38.0836	263358.0293	1.3939	136.6254
СКО (исх)	11.8749	968.6640	11.8150	97640.5477	1.0328	4.4051
СКО (стандарт. 150)	0.9538	0.8142	0.9061	1.0151	0.8854	0.9704
СКО (стандарт. 150 scaler)	12.4498	1189.7432	13.0393	96191.7902	1.1664	4.5396
СКО (стандарт. полн.)	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
СКО (стандарт. полн. scaler)	11.8749	968.6640	11.8150	97640.5477	1.0328	4.4051

Судя по результатам в таблице 1 и рис. 4, StandardScaler центрирует данные относительно среднего и масштабирует относительно дисперсии. Предположительная формула:

$$Y_i = \frac{X_i - M[X]}{\sqrt{D[X]}},\tag{2.1}$$

где X — исходные данные, Y — преобразованные данные.

В объекте scaler записывается дисперсия и мат. ожидание исходных данных. При ограничении размера выборки для настройки результаты нормализуются менее качественно, т.е. мат. ожидание и СКО отличаются от 0 и 1.

2.3. Приведение к диапазону

1. Данные приведены к диапазону в помощью MinMaxScaler. Гистограммы приведены на рис. 5.

Рисунок 5 — Гистограммы данных после MinMaxScaler

Исходя из гистограмм, MinMaxScaler масштабирует данные к промежутку [0,1].

2. Из атрибутов scaler-а получены значения атрибутов. Результаты приведены в таблице 2.

Таблица 2. Минимальные и максимальные значения признаков

Признак	Минимум	Максимум
age	40	95
creatinine_phosphokinase	23	7861
ejection_fraction	14	80
platelets	25100	850000
serum_creatinine	0.5	9.4
serum_sodium	113	148

3. Проведено приведение с помощью MaxAbsScaler и RobustScaler. Гистограммы данных приведены на рис. 6 и рис. 7.

Рисунок 6 – Гистограммы данных после MaxAbsScaler

Рисунок 7 — Гистограммы данных после RobustScaler

MaxAbsScaler изменяет данные таким образом, чтобы максимальное значение по модулю было равно 1. RobustScaler центрирует по медиане и масштабирует данные относительно диапазона между 25-м и 75-м процентилем.

4. Написана функция для приведения данных к диапазону [-5, 10]. Результат приведен в листинге 1.

Листинг 1. Функция для приведения данных к диапазону [-5, 10]

Гистограммы для этого преобразования представлены на рис. 8.

Рисунок 8 – Гистограммы после fit_5_10

2.4. Нелинейные преобразования

1. С помощью QuantileTransform данные приведены к равномерному и нормальному распределению. Результаты представлены на рис. 9, 10.

Рисунок 9 — Гистограммы после QuantileTransform c равномерным распределением

Рисунок $10-\Gamma$ истограммы после QuantileTransform с нормальным распределением

Параметр n_quantiles определяет количество вычисляемых процентилей в ходе настройки. Увеличение повышает частоту дискретизации функции распределения.

2. Данные приведены к нормальному распределению через PowerTransformer. Результаты на рис. 11.

Рисунок 11 — Гистограммы после PowerTransformer

2.5. Дискретизация признаков

1. Проведена дискретизация признаков с помощью KBinsDiscretizer. Гистограммы дискретизованных данных приведены на рис 12.

Рисунок 12 — Гистограммы после KBinsDiscretizer

Поскольку значения по оси ординат являются числовыми идентификаторами дискретных значений, построение гистограммы не имеет смысла.

3. Выводы

Произведено знакомство с методами предобработки данных библиотеки Scikit Learn.

Проведена стандартизация данных; установлено, что стандартизация с учетом неполного набора данных снижает качество выходных данных.

Проведено приведение данных к диапазону. Гистограммы данных, приведенных к диапазону, схожи с гистограммами стандартизованных данных.

Также проведены нелинейные преобразования данных. Предположительно, использование QuantileTransform может иметь смысл при наличии в данных выбросов; однако в этом случае искажается структура данных.

Также проведена дискретизация данных.

ПРИЛОЖЕНИЕ А

Исходный код программы

```
1 #!/usr/bin/env python
2 # coding: utf-8
3
4
   # In[1]:
5
6
7
    import numpy as np
    import pandas as pd
8
9
10
   from tabulate import tabulate
    from IPython.core.debugger import set_trace
11
    from IPython.display import display
12
    from matplotlib import pyplot as plt
13
    from sklearn import preprocessing
14
15
16
17 # In[2]:
18
19
20 df =
    → pd.read csv('../data/heart failure clinical records dataset.csv')
21 df =

    df.drop(columns=['anaemia','diabetes','high_blood_pressure','sex','si

22
23
    display(df)
24
25
26
   # In[3]:
27
28
29
    fig, axes = plt.subplots(2, 3, figsize=(12, 6))
30
    n bins = 20
31
    axes[0, 0].hist(df['age'].values, bins = n_bins)
32
    axes[0, 0].set_title('age')
33
34
35
    axes[0, 1].hist(df['creatinine phosphokinase'].values, bins =
    \rightarrow n_bins)
    axes[0, 1].set_title('creatinine_phosphokinase')
36
37
38
    axes[0, 2].hist(df['ejection_fraction'].values, bins = n_bins)
    axes[0, 2].set_title('ejection_fraction')
39
40
41
    axes[1, 0].hist(df['platelets'].values, bins = n_bins)
42
    axes[1, 0].set_title('platelets')
```

```
43
44
    axes[1, 1].hist(df['serum creatinine'].values, bins = n bins)
45
    axes[1, 1].set title('serum creatinine')
46
47
    axes[1, 2].hist(df['serum sodium'].values, bins = n bins)
    axes[1, 2].set title('serum sodium')
48
49
50
    fig.tight_layout()
51
52
    plt.savefig('./img/hist-1.png')
    plt.show()
53
54
55
56 # In[4]:
57
58
59
    data = df.to numpy(dtype='float')
60
61
62
   # In[5]:
63
64
65
    scaler = preprocessing.StandardScaler().fit(data[:150,:])
    data scaled = scaler.transform(data)
66
67
68
69
   # In[6]:
70
71
    TITLES = ['age', 'creatinine_phosphokinase', 'ejection_fraction',
72
        'platelets', 'serum_creatinine', 'serum_sodium']
73
74
    def plot data(data scaled):
        fig, axes = plt.subplots(2, 3, figsize=(12, 6))
75
76
        ax order = [(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)]
77
        for i, ax ind in enumerate(ax order):
78
79
            axes[ax ind].hist(data scaled[:,i], bins = n bins)
80
            axes[ax_ind].set_title(TITLES[i])
81
82
        fig.tight layout()
83
        return fig
84
85
    plot data(data scaled)
    plt.savefig('./img/hist-2.png')
86
87
    plt.show()
88
89
```

```
90 # In[7]:
 91
 92
 93
     def calc metrics(data):
         mean = [np.mean(col) for col in data.T]
 94
 95
         std = [np.std(col) for col in data.T]
         return mean, std
 96
 97
 98
     calc metrics(data)
 99
100
101
    # In[8]:
102
103
104 def shorten(s):
         if len(s) < 10:
105
106
             return s
107
         return s[:10] + '...'
108
109
     mean src, std src = calc metrics(data)
110
     mean sc, std sc = calc metrics(data scaled)
111
112
     scaler2 = preprocessing.StandardScaler()
113
     data scaled2 = scaler2.fit transform(data)
114
     mean sc2, std sc2 = calc metrics(data scaled2)
115
116
     plot data(data scaled2)
     plt.savefig('./img/hist-3.png')
117
118
     plt.show()
119
120
     header = ['Признак', *[shorten(t) for t in TITLES]]
121
     table = [
         ['Среднее (исх.)', *mean src],
122
         ['Среднее (стандарт. 150)', *mean_sc],
123
124
         ['Среднее (стандарт. 150 scaler)', *scaler.mean],
         ['Среднее (стандарт. полн.)', *mean_sc2],
125
         ['Среднее (стандарт. полн. scaler)', *scaler2.mean ],
126
         ['CKO (ucx)', *std src],
127
         ['CKO (стандарт. 150)', *std_sc],
128
         ['CKO (стандарт. 150 scaler)', *[np.sqrt(v) for v in
129

    scaler.var ]],

         ['CKO (стандарт. полн.)', *std_sc2],
130
131
         ['CKO (стандарт. полн. scaler)', *[np.sqrt(v) for v in

    scaler2.var ]]

132
     ]
133
134
     latex_t1 = tabulate(table, headers=header,
        tablefmt='latex_booktabs', floatfmt=".4f")
```

```
135 with open('./output/t1.tex', 'w') as f:
         f.write(latex t1)
136
137
138
139 # In[9]:
140
141
142
     min max scaler = preprocessing.MinMaxScaler()
143
     min_max_data = min_max_scaler.fit_transform(data)
144
     plot data(min max data)
145
146
     plt.savefig('./img/hist-min-max.png')
147
     plt.show()
148
149
150 # In[10]:
151
152
153 header = ['Признак', 'Минимум', 'Максимум']
154
    table = [
155
         (title, min , max )
         for title, min , max in zip(TITLES, min max scaler.data min ,
156
          → min max scaler.data max )
157
     ]
158
159
    latex t2 = tabulate(table, headers=header,
     → tablefmt='latex booktabs')
160 with open('./output/t2.tex', 'w') as f:
161
         f.write(latex t2)
162
163
164 # In[11]:
165
166
167
     max abs data = preprocessing.MaxAbsScaler().fit transform(data)
     robust data = preprocessing.RobustScaler().fit transform(data)
168
169
170
     plot data(max abs data)
171
     plt.savefig('./img/hist-max-abs.png')
172
     plt.show()
173
174
     plot data(robust data)
175
     plt.savefig('./img/hist-robust.png')
176
     plt.show()
177
178
179
    # In[12]:
180
```

```
181
182 def fit 5 10(data):
         data = data.copy()
183
184
         for col in range(data.shape[1]):
             min , max = np.min(data[:, col]), np.max(data[:, col])
185
             data[:, col] = [(x - min) / (max - min) * 15 - 5  for x in
186
                 data[:, col]]
         return data
187
188
     data_5_{10} = fit_5_{10}(data)
189
     plot data(data 5 10)
190
191
     plt.savefig('./img/hist-5-10.png')
     plt.show()
192
193
194
195 # In[13]:
196
197
198 quantile transformer =
      → preprocessing.QuantileTransformer(n quantiles=100,
       random state=0)
     quantile data = quantile transformer.fit transform(data)
199
200
201
     plot data(quantile data)
     plt.savefig('./img/hist-quantile.png')
202
203
     plt.show()
204
205
206 # In[14]:
207
208
209
     quantile normal transformer =
         preprocessing.QuantileTransformer(n quantiles=100,
      → random state=0, output distribution='normal')
     quantile normal data =
         quantile normal transformer.fit transform(data)
211
212
     plot data(quantile normal data)
     plt.savefig('./img/hist-quantile-normal.png')
213
214
     plt.show()
215
216
217 # In[15]:
218
219
220
     power transformer = preprocessing.PowerTransformer()
221
     power data = power transformer.fit transform(data)
222
```

```
223
     plot_data(power_data)
224 plt.savefig('./img/hist-power.png')
225
     plt.show()
226
227
228 # In[16]:
229
230
    est = preprocessing.KBinsDiscretizer(n_bins=[3, 4, 3, 10, 2, 4],
231

→ encode='ordinal')
232
     disc_data = est.fit_transform(data)
233
234
     plot_data(disc_data)
    plt.savefig('./img/hist-disc.png')
235
236
     plt.show()
237
238
239 # In[]:
```