## DATT ASSESSMENT II

TENZIN RABYANG – 30017118
SHEFFIELD HALLAM UNIVERSITY
01-12-2021



## 1a) Adding variables Y and Per2 to Per7 to the data set.

| Obs | у       | per2    | per3    | per4    | per5    | per6     | per7     |
|-----|---------|---------|---------|---------|---------|----------|----------|
| 1   | 39.1459 | 0.29893 | 0.09822 | 0.20925 | 0.22420 | 0.011388 | 0.002847 |
| 2   | 46.5385 | 0.18269 | 0.23077 | 0.12077 | 0.10615 | 0.028846 | 0.005769 |
| 3   | 21.6473 | 0.13411 | 0.06600 | 0.18163 | 0.11563 | 0.014784 | 0.001056 |
| 4   | 49.3992 | 1.93992 | 0.29372 | 0.16956 | 0.10547 | 0.009346 | 0.005340 |
| 5   | 28.9143 | 0.14184 | 0.15276 | 0.11457 | 0.24386 | 0.023459 | 0.002182 |
| 6   | 29.9379 | 0.40215 | 0.35579 | 0.09766 | 0.07558 | 0.029938 | 0.006937 |

▶ Undertake a brief exploratory analysis of the variables Y, A1 and Per2 to Per7 by obtaining the sample mean and sample standard deviation for each of these variables

| The MEANS Procedure |        |            |            |  |  |  |
|---------------------|--------|------------|------------|--|--|--|
| Variable            | N Miss | Mean       | Std Dev    |  |  |  |
| у                   | 0      | 28.4187463 | 13.1720807 |  |  |  |
| per2                | 0      | 0.3783857  | 0.3517812  |  |  |  |
| per3                | 0      | 0.4720161  | 0.2471502  |  |  |  |
| per4                | 0      | 0.0980083  | 0.0496293  |  |  |  |
| per5                | 0      | 0.1204053  | 0.0619437  |  |  |  |
| per6                | 0      | 0.0482862  | 0.0227781  |  |  |  |
| per7                | 0      | 0.0194682  | 0.0152031  |  |  |  |

The MEANS Drocodure

NO MISSING VALUE.

Y: The mean of total cost per active member is at 28.4 pound where average spread of data is 13.17

per2: The mean of number of deferred pensioners per active member is 0.378 while average spread of data is 0.3517

per3: The average value of pensioners per active member is 0.472 where spread of data is at 0.247

per4: Starter in current year per active member has average value of 0.098 with standard deviation of 0.0496

per5: Number of leaver has average of 0.120 with 0.0619 spread.

per6: Number of new pensioner in current year has average of 0.0482 with 0.0227 data spread.

per7: Number of cessation in current year has average value of 0.0194 with 0.0152 data spread.



## histogram for the response Total cost(y)

- ▶ It's Uni-model
- Symmetric/normal distribution
- ▶ Bell like shape
- ► Mean range 25-35
- ▶ Little positive skewed





# **1b)**Investigate each of the factors C1 to C8 by obtaining a simple frequency distribution

- ► C1: Fund type combine scheme of same scales has highest active member with 57.78% while fund type combine scheme of different scales has the lowest with only 4.44%.
- C2: 88.89% of scheme is contracted out.
- C3: 84.44% of scheme is contributory
- ► C4: 97.78% of member can pay AVC's
- ► C5: 91.11% of admin base is in one location
- ▶ C6: 73.33% of admin calculation are not done in IT platform
- C7: 64.44% of special communication are sent to member at year end, while 35.56% aren't.
- C8: 55.56% are not communicate directly to member when rule changes but 44.44% are communicate directly.
- Since, we only have one frequency for member who can't pay the AVC (additional voluntary contributions), which means that frequency of "0" in C4 is only 1.
- Also AVC is done voluntarily, hence the data won't be consistent with

#### The FREQ Procedure

| C1 | Frequency | Percent | Cumulative<br>Frequency | Cumulative<br>Percent |
|----|-----------|---------|-------------------------|-----------------------|
| 1  | 3         | 6.67    | 3                       | 6.67                  |
| 2  | 26        | 57.78   | 29                      | 64.44                 |
| 3  | 14        | 31.11   | 43                      | 95.56                 |
| 4  | 2         | 4.44    | 45                      | 100.00                |

| C2 | Frequency | Percent | Cumulative<br>Frequency | Cumulative<br>Percent |
|----|-----------|---------|-------------------------|-----------------------|
| 0  | 5         | 11.11   | 5                       | 11.11                 |
| 1  | 40        | 88.89   | 45                      | 100.00                |

| СЗ | Frequency | Percent | Cumulative<br>Frequency | Cumulative<br>Percent |
|----|-----------|---------|-------------------------|-----------------------|
| 0  | 7         | 15.56   | 7                       | 15.56                 |
| 1  | 38        | 84.44   | 45                      | 100.00                |

| C4 | Frequency | Percent | Cumulative<br>Frequency | Cumulative<br>Percent |
|----|-----------|---------|-------------------------|-----------------------|
| 0  | 1         | 2.22    | 1                       | 2.22                  |
| 1  | 44        | 97.78   | 45                      | 100.00                |

| C5 | Frequency | Percent | Cumulative<br>Frequency | Cumulative<br>Percent |
|----|-----------|---------|-------------------------|-----------------------|
| 0  | 4         | 8.89    | 4                       | 8.89                  |
| 1  | 41        | 91.11   | 45                      | 100.00                |

| C6 | Frequency | Percent | Cumulative<br>Frequency | Cumulative<br>Percent |
|----|-----------|---------|-------------------------|-----------------------|
| 0  | 33        | 73.33   | 33                      | 73.33                 |
| 1  | 12        | 26.67   | 45                      | 100.00                |

| <b>C</b> 7 | Frequency | Percent | Cumulative<br>Frequency | Cumulative<br>Percent |
|------------|-----------|---------|-------------------------|-----------------------|
| 0          | 16        | 35.56   | 16                      | 35.56                 |
| 1          | 29        | 64.44   | 45                      | 100.00                |

| C8 | Frequency | Percent | Cumulative<br>Frequency | Cumulative<br>Percent |
|----|-----------|---------|-------------------------|-----------------------|
| 0  | 25        | 55.56   | 25                      | 55.56                 |
| 1  | 20        | 44.44   | 45                      | 100.00                |

1000

## 2. Fit of the systematic component of the model

- Scatter plot between the response variable "y" and its predicted value.
- Intercept value is 37.451 and parameter value of all other exploratory variable is non-zero.
- Based on the diagram, I can assume that intercept value is non-zero which **reject** the null hypotheses which states that intercept value is zero.
- Hence the fit of the SYSTEMATIC COMPONENT
   IS VALID.





Investigate the tenability of the appropriate underlying statistical assumptions

- 1. Normality.
- Uni-Model
- Symmetric/ normal distribution
- Mean at 0
- Q-Q plot shows straight line of studentized residual
- Hence the normality Assumption is ACCEPTED.







## 2. Homoscedasticity.

- Not randomly scatter
- Shows pattern
- No constant variance
- Not Accepted

## 3. Mutual Independence

- Since the plots shows certain pattern, there might be relation between the exploratory variable.
- ▶ Not ACCEPTED.





## 4. Adequacy of the Systematic Component.

- Studentized and deleted residual are super impose with each other.
- ▶ Few are not.
- ▶ One residual goes beyond +4.
- It has quite long separation.
- Potential outlier
- Plot shows pattern
- ▶ No constant variance
- ► Hence, Not Accepted.





## 3a) Why not transform C1-C3 and C5-C8

- ▶ IT is categorical data
- ▶ It contains only either value 1 or zero
- ► Log(0)= undefine/null
- $\blacktriangleright$  Log(1) = 0
- ► Hence data will contain only "0" value.
- Data will get inconsistent and disrupted.

**3b)**Add the variables LY = log(Y), LA1 = log(A1), LPer2 = log(Per2),...,LPer7 = log(Per7) to your data set.

| Obs | ly      | la1    | lper2    | lper3    | lper4    | lper5    | lper6    | lper7    |
|-----|---------|--------|----------|----------|----------|----------|----------|----------|
| 1   | 3.66730 | 7.2478 | -1.20754 | -2.32054 | -1.56421 | -1.49522 | -4.47520 | -5.86150 |
| 2   | 3.84028 | 7.8633 | -1.69995 | -1.46634 | -2.11387 | -2.24287 | -3.54578 | -5.15522 |
| 3   | 3.07488 | 7.5464 | -2.00911 | -2.71813 | -1.70580 | -2.15737 | -4.21424 | -6.85330 |
| 4   | 3.89993 | 6.6187 | 0.66265  | -1.22511 | -1.77455 | -2.24929 | -4.67283 | -5.23244 |
| 5   | 3.36434 | 8.2069 | -1.95303 | -1.87892 | -2.16660 | -1.41115 | -3.75251 | -6.12741 |
| 6   | 3.39913 | 8.6085 | -0.91092 | -1.03342 | -2.32623 | -2.58263 | -3.50863 | -4.97091 |
| 7   | 4.11632 | 8.0064 | -1.20397 | -1.14991 | -2.12026 | -2.81341 | -3.21888 | -4.82831 |



# Investigate the fit of the systematic component of the model

- Much better than earlier model.
- Shows better linear/straight line
- ▶ Intercept value of 6.94
- ► Hence Reject Null Hypotheses
- ▶ Fit of model is Valid





## Normality

- Its is Uni-model with Symmetric distribution
- Mean around zero
- Bell like shape
- Can't notice skewedness
- Q-Q plot shows straight line
- Accpeted

## Homoscedasticity

- Much better randomly scatter
- No pattern detected
- But less variance
- Accepted









## Mutual Independence

- Since no pattern recognize, less likely to have mutual relation between the observation.
- Hence, Accepted

## Adequacy of Systematic Component

- Almost perfectly super impose
- Randomly scatter
- Few potential outlier detected
- Extreme value are within ±4.
- Since no recognition of pattern, adequacy is accepted.



| Assumptions                         | M1           | M2       |  |
|-------------------------------------|--------------|----------|--|
| Normality                           | Accepted     | Accepted |  |
| Homoscedasticity                    | Not Accepted | Accepted |  |
| Mutual Independence                 | Not Accepted | Accepted |  |
| Adequacy of Systematic<br>Component | Not Accepted | Accepted |  |



## **4a)** identify an overall "best" model for the prediction of log(Y)

| NUMBE<br>R IN<br>MODEL | R <sup>2</sup> | MSE     |
|------------------------|----------------|---------|
| 1                      | 0.5291         | 0.12328 |
| 2                      | 0.5899         | 0.10995 |
| 3                      | 0.6168         | 0.10523 |
| 4                      | 0.6626         | 0.09497 |
| 5                      | 0.6903         | 0.08942 |
| 6                      | 0.7113         | 0.08553 |
| 7                      | 0.7335         | 0.08109 |
| 8                      | 0.7441         | 0.08003 |
| 9                      | 0.7527         | 0.07956 |
| 10                     | 0.7607         | 0.07926 |
| 11                     | 0.7660         | 0.07983 |
| 12                     | 0.7710         | 0.08055 |
| 13                     | 0.7770         | 0.08098 |
| 14                     | 0.7797         | 0.08267 |
| 15                     | 0.7802         | 0.08533 |
| 16                     | 0.7802         | 0.08838 |

| Number in | R <sup>2</sup> | Adjuste        |
|-----------|----------------|----------------|
| Model     |                | d              |
|           |                | R <sup>2</sup> |
| 1         | 0.5291         | 0.5182         |
| 2         | 0.5899         | 0.5703         |
| 3         | 0.6168         | 0.5888         |
| 4         | 0.6626         | 0.6289         |
| 5         | 0.6903         | 0.6506         |
| 6         | 0.7113         | 0.6657         |
| 7         | 0.7335         | 0.6831         |
| 8         | 0.7441         | 0.6872         |
| 9         | 0.7527         | 0.6891         |
| 10        | 0.7607         | 0.6903         |
| 11        | 0.7660         | 0.6880         |
| 12        | 0.7710         | 0.6852         |
| 13        | 0.7770         | 0.6835         |
| 14        | 0.7797         | 0.6769         |
| 15        | 0.7802         | 0.6665         |
| 16        | 0.7802         | 0.6546         |

| Number in<br>Model | R <sup>2</sup> | Ср                  |
|--------------------|----------------|---------------------|
| 1                  | 0.5291         | 18.9851             |
| 2                  | 0.5899         | 13.2510             |
| 3                  | 0.6168         | 11.8176             |
| 4                  | 0.6626         | 7.9841              |
| 5                  | 0.6903         | 6.4591              |
| 6                  | 0.7113         | 5.7772              |
| 7                  | 0.7335         | <mark>4.9480</mark> |
| 8                  | 0.7441         | 5.6013              |
| 9                  | 0.7527         | 6.5093              |
| 10                 | 0.7607         | 7.4912              |
| 11                 | 0.7660         | 8.8096              |
| 12                 | 0.7710         | 10.1679             |
| 13                 | 0.7770         | 11.4059             |
| 14                 | 0.7797         | 13.0634             |
| 15                 | 0.7802         | 15.0004             |
| 16                 | 0.7802         | 17.0000             |

Now it is impracticable to consider all the model because,

- 1. Not all models are significant.
- 2. Not all models accept the assumptions of regression.
- 3. More model means more computation power is required.
- 4. Not all models produce accuracy results.

Adjusted R-square

Cp method





## **4b)** Employ a backward elimination procedure, justifying your choice of final model.

#### Backward Elimination: Step 14

Variable C2 Removed: R-Square = 0.6626 and C(p) = 7.9841

| Analysis of Variance |    |                   |                |         |        |  |  |  |
|----------------------|----|-------------------|----------------|---------|--------|--|--|--|
| Source               | DF | Sum of<br>Squares | Mean<br>Square | F Value | Pr > F |  |  |  |
| Model                | 4  | 7.46010           | 1.86503        | 19.64   | <.0001 |  |  |  |
| Error                | 40 | 3.79877           | 0.09497        |         |        |  |  |  |
| Corrected Total      | 44 | 11.25887          |                |         |        |  |  |  |

| Variable  | Parameter<br>Estimate | Standard<br>Error | Type II SS | F Value | Pr > F |
|-----------|-----------------------|-------------------|------------|---------|--------|
| Intercept | 7.22187               | 0.46560           | 22.84861   | 240.59  | <.0001 |
| la1       | -0.42340              | 0.04802           | 7.38188    | 77.73   | <.0001 |
| lper2     | -0.14433              | 0.06195           | 0.51554    | 5.43    | 0.0249 |
| lper3     | 0.21755               | 0.08741           | 0.58831    | 6.19    | 0.0171 |
| c1_1      | -0.48115              | 0.19331           | 0.58834    | 6.20    | 0.0171 |

| Model    | Step14  | Spte13 |
|----------|---------|--------|
| R-square | 0.6626  | 0.6903 |
| MSE      | 0.09497 | 0.0894 |
| Ср       | 7.9841  | 6.4591 |

#### Backward Elimination: Step 13

Variable C3 Removed: R-Square = 0.6903 and C(p) = 6.4591

| Analysis of Variance |    |                   |                |         |        |  |  |
|----------------------|----|-------------------|----------------|---------|--------|--|--|
| Source               | DF | Sum of<br>Squares | Mean<br>Square | F Value | Pr > F |  |  |
| Model                | 5  | 7.77163           | 1.55433        | 17.38   | <.0001 |  |  |
| Error                | 39 | 3.48724           | 0.08942        |         |        |  |  |
| Corrected Total      | 44 | 11.25887          |                |         |        |  |  |

| Variable  | Parameter<br>Estimate | Standard<br>Error | Type II SS | F Value | Pr > F |
|-----------|-----------------------|-------------------|------------|---------|--------|
| Intercept | 7.16004               | 0.45299           | 22.33896   | 249.83  | <.0001 |
| la1       | -0.44446              | 0.04795           | 7.68404    | 85.94   | <.0001 |
| lper2     | -0.18152              | 0.06332           | 0.73473    | 8.22    | 0.0067 |
| lper3     | 0.26208               | 0.08811           | 0.79119    | 8.85    | 0.0050 |
| c1_1      | -0.52082              | 0.18878           | 0.68061    | 7.61    | 0.0088 |
| C2        | 0.28542               | 0.15291           | 0.31153    | 3.48    | 0.0695 |

- R-square value not much high
- High Cp value
- ▶ High MSE value
- High error sum of square (residual)

- R-square value bit better
- Low Cp value
- Low MSE value
- Lower error sum of square
- Final "Best" Model



# **4b)** Obtain, discuss, and interpret the parameter estimates for your final model.

- -ve shows, negative relationship
- ▶ Intercept value is 7.16004
- Standard error shows spread of the mean and tell the accuracy.
- t-value can tell the similarity between the target variable and independent variable.
- More, t-value means more similarity or vice versa.
- ▶ All are significant except for C2.

| Parameter Estimates |    |                       |                   |         |         |  |  |  |  |
|---------------------|----|-----------------------|-------------------|---------|---------|--|--|--|--|
| Variable            | DF | Parameter<br>Estimate | Standard<br>Error | t Value | Pr >  t |  |  |  |  |
| Intercept           | 1  | 7.16004               | 0.45299           | 15.81   | <.0001  |  |  |  |  |
| la1                 | 1  | -0.44446              | 0.04795           | -9.27   | <.0001  |  |  |  |  |
| lper2               | 1  | -0.18152              | 0.06332           | -2.87   | 0.0067  |  |  |  |  |
| lper3               | 1  | 0.26208               | 0.08811           | 2.97    | 0.0050  |  |  |  |  |
| c1_1                | 1  | -0.52082              | 0.18878           | -2.76   | 0.0088  |  |  |  |  |
| C2                  | 1  | 0.28542               | 0.15291           | 1.87    | 0.0695  |  |  |  |  |



5) Use appropriate plots to investigate the fit of your final model.

## Normality

- Uni-model with symmetric distribution.
- Mean at almost zero
- Average data spread is 1.0233(sigma)
- Bell like shape
- No skewedness notice
- Q-Q plot shows straight line passing through the origin.
- Hence, accepted.







## Homoscedasticity

- Randomly scatter
- Much better constant variance
- No pattern detected
- R-square 0.6903, Adj R 0.6506
- RMSE- 0.299

## Mutual Independence

 Since no sign of pattern are recognize, its safe to say that to relationship are not present between the observation.

## Adequacy of Systematic Component

- Almost perfectly imposed
- Few of them are not impose
- Residual are well within ±3







In addition to the overall fit, investigate the fit with respect to each of the explanatory variables

## la1- First variable.

- Uni-Model with normal distribution
- Bell like shape
- Mean at 0.006
- Not skewedness notice
- Random scatter
- No pattern
- Better constant variance
- Few potential outlier







## lper2 – Second Variable

- Near normality distributed
- Bell like structure
- Little negative skewed
- Uni-Model.
- Random scatter
- Not much variance
- No pattern
- Few potential outlier







## lper3 – Third variable

- Near normality
- Bit negative skewed
- Uni-model
- Shape like bell
- Mean is near zero
- Average data spread is 1.0124
- Randomly scatter
- No pattern
- But less constant variance
- Few potential outlier







## 6a) Using your final model, investigate and briefly discuss any issues relating to outliers or influential points

### Outlier

 Based on scatter diagram, few potential outlier might present.

Influential points.

- \* Reference line(vref) is 0.730 (2\*sqrt(p/n))
- Three are observed
- Lower one point can be ignore since it is near to vref
- But Two points near 1.5 might be potential outlier
- Not to be concern since all the points are less than 2.





### DIFFITS

- Dff in the table is Difference of fits.
- Since both of observation has lower than ±2
- So, should not be concern about.

## Need more details

- First observation has slightly higher deleted residual of 2.09
- Cut-off value for H is 0.4 (3\*(p/n))
- Range of C is 1±3(p/n) = 0.6 to
   1.4

| Obs | ly      | la1     | lper2    | lper3    | c1_1 | C2 | Dff      |
|-----|---------|---------|----------|----------|------|----|----------|
| 1   | 3.84028 | 7.86327 | -1.69995 | -1.46634 | 1    | 1  | 1.50861  |
| 2   | 2.49848 | 9.40648 | -0.53078 | -0.01307 | 1    | 1  | -1.49533 |

| Obs | ID | ly      | predicted | Dff      | Н       | dresid   | С       |
|-----|----|---------|-----------|----------|---------|----------|---------|
| 1   | 3  | 3.84028 | 3.35401   | 1.50861  | 0.34249 | 2.09029  | 0.92507 |
| 2   | 31 | 2.49848 | 2.83676   | -1.49533 | 0.47089 | -1.58506 | 1.50423 |



6b) Investigate and discuss any issues of multicollinearity in your final model.

## Correlation

- Not much of correlation is found
- Maximum correlation has value of lper3 and la1 with 0.3261.
- Since most of the value is very low, this means weak correlation.
- Don't use ly (target variable)

| Correlation |         |         |         |         |         |         |  |  |  |
|-------------|---------|---------|---------|---------|---------|---------|--|--|--|
| Variable    | la1     | lper2   | lper3   | c1_1    | C2      | ly      |  |  |  |
| la1         | 1.0000  | -0.1785 | 0.3261  | -0.2595 | 0.0685  | -0.7274 |  |  |  |
| lper2       | -0.1785 | 1.0000  | 0.2761  | -0.0521 | 0.2019  | 0.0148  |  |  |  |
| lper3       | 0.3261  | 0.2761  | 1.0000  | -0.2267 | -0.1477 | -0.0476 |  |  |  |
| c1_1        | -0.2595 | -0.0521 | -0.2267 | 1.0000  | 0.0945  | -0.0492 |  |  |  |
| C2          | 0.0685  | 0.2019  | -0.1477 | 0.0945  | 1.0000  | -0.0168 |  |  |  |
| ly          | -0.7274 | 0.0148  | -0.0476 | -0.0492 | -0.0168 | 1.0000  |  |  |  |



### **Variance Inflation Factors**

- Usually, VIF value of more than 10 is considered as high correlation.
- But all of the variables has less than 2 VIF value.
- This also shows weak correlation between exploratory variable.
- However, we can still use advance method call condition indices.

| Parameter Estimates |    |                       |                   |         |         |                       |  |  |
|---------------------|----|-----------------------|-------------------|---------|---------|-----------------------|--|--|
| Variable            | DF | Parameter<br>Estimate | Standard<br>Error | t Value | Pr >  t | Variance<br>Inflation |  |  |
| Intercept           | 1  | 7.16004               | 0.45299           | 15.81   | <.0001  | 0                     |  |  |
| la1                 | 1  | -0.44446              | 0.04795           | -9.27   | <.0001  | 1.35630               |  |  |
| lper2               | 1  | -0.18152              | 0.06332           | -2.87   | 0.0067  | 1.31999               |  |  |
| lper3               | 1  | 0.26208               | 0.08811           | 2.97    | 0.0050  | 1.40957               |  |  |
| c1_1                | 1  | -0.52082              | 0.18878           | -2.76   | 0.0088  | 1.11592               |  |  |
| C2                  | 1  | 0.28542               | 0.15291           | 1.87    | 0.0695  | 1.16222               |  |  |



## **Condition Indices**

- Better method to find correlation
- Two rule of thumb,
  - 1. Condition index value is more roughly 3-4 times than preceding.
  - 2. Should be more than 30.
- 6<sup>th</sup> observation checks both rule.
- Now look for corresponding value of variables.
- Only la1 has high value (OK)
- No other variables has high value as la1.
- Might have very little relation between
   Iper3 and Ia1.(no concern)
- It shows weak correlation.

| Collinearity Diagnostics |            |           |                         |            |         |            |         |            |
|--------------------------|------------|-----------|-------------------------|------------|---------|------------|---------|------------|
|                          |            | Condition | Proportion of Variation |            |         |            |         |            |
| Number                   | Eigenvalue | Index     | Intercept               | la1        | lper2   | lper3      | c1_1    | C2         |
| 1                        | 4.52344    | 1.00000   | 0.00045195              | 0.00045105 | 0.00866 | 0.00879    | 0.00517 | 0.00418    |
| 2                        | 0.91290    | 2.22599   | 0.00012709              | 0.00022337 | 0.00171 | 0.00063810 | 0.87210 | 0.00059494 |
| 3                        | 0.27717    | 4.03982   | 0.00209                 | 0.00230    | 0.38519 | 0.12220    | 0.01223 | 0.08211    |
| 4                        | 0.22337    | 4.50012   | 0.00060370              | 0.00202    | 0.26132 | 0.64765    | 0.05691 | 0.00469    |
| 5                        | 0.05810    | 8.82340   | 0.03402                 | 0.02797    | 0.27402 | 0.04129    | 0.00914 | 0.90023    |
| 6                        | 0.00502    | 30.02076  | 0.96270                 | 0.96704    | 0.06911 | 0.17943    | 0.04445 | 0.00820    |



- 7) Determine the form of confidence interval that best serves this purpose the confidence interval for the fitted mean, or the confidence interval for a predicted observation.
- ► The range of confidence intervals of predict is more than that of mean.
- It means that there is more confidence in predict than mean.
- This is mainly because, confident interval of mean considered whole observation making it harder to make decision.
- ▶ But in predict confident interval, it only takes individual corresponding value rather than whole observation.
- Which make model more confident while making decision
- Hence the pension fund manager should use prediction confident interval rather than mean confident interval

| Output Statistics |                       |                    |                                 |        |        |        |         |          |
|-------------------|-----------------------|--------------------|---------------------------------|--------|--------|--------|---------|----------|
| Obs               | Dependent<br>Variable | Predicted<br>Value | Std<br>Error<br>Mean<br>Predict | 95% CI | L Mean | 95% CL | Predict | Residual |
| 1                 | 3.67                  | 3.8351             | 0.1372                          | 3.5576 | 4.1127 | 3.1697 | 4.5006  | -0.1678  |
| 2                 | 3.84                  | 3.3540             | 0.1750                          | 3.0000 | 3.7080 | 2.6532 | 4.0548  | 0.4863   |
| 3                 | 3.07                  | 3.2229             | 0.2002                          | 2.8179 | 3.6279 | 2.4950 | 3.9508  | -0.1480  |
| 4                 | 3.90                  | 4.0623             | 0.1541                          | 3.7506 | 4.3741 | 3.3819 | 4.7428  | -0.1624  |
| 5                 | 3.36                  | 3.6599             | 0.1020                          | 3.4535 | 3.8663 | 3.0208 | 4.2990  | -0.2956  |
| 6                 | 3.40                  | 3.2284             | 0.1490                          | 2.9271 | 3.5297 | 2.5527 | 3.9041  | 0.1707   |
| 7                 | 4.12                  | 3.8041             | 0.0802                          | 3.6419 | 3.9663 | 3.1779 | 4.4303  | 0.3122   |
| 8                 | 3.62                  | 3.7673             | 0.0815                          | 3.6025 | 3.9322 | 3.1404 | 4.3942  | -0.1449  |
| 9                 | 3.36                  | 3.6916             | 0.0894                          | 3.5108 | 3.8724 | 3.0603 | 4.3229  | -0.3294  |
| 10                | 3.23                  | 3.3293             | 0.1024                          | 3.1221 | 3.5365 | 2.6900 | 3.9686  | -0.1026  |



Obtain the relevant predictions and confidence intervals. Explain how a participating pension fund manager would use this information. Illustrate you answer by considering the results for two different schemes.

- "y" is the actual total cost of active member and "expoP" is prediction from the model.
- In observation 2, actual cost of a member is 39.1459 but model has predicted that total cost is 46.299. With 95% assurance, total cost would be in the range of 23.79 to 90.07.
- Similarly in observation 3, actual cost of a member is 46.53, but model has predicted 28.6173. And with 95% confident, total cost would lies in between 14199 to 57.67.

| ID | у       | expoP   | expoL   | expoU   |
|----|---------|---------|---------|---------|
| 2  | 39.1459 | 46.2996 | 23.7994 | 90.072  |
| 3  | 46.5385 | 28.6173 | 14.1996 | 57.674  |
| 4  | 21.6473 | 25.1002 | 12.1214 | 51.976  |
| 5  | 49.3992 | 58.1098 | 29.4260 | 114.754 |
| 6  | 28.9143 | 38.8586 | 20.5087 | 73.627  |
| 7  | 29.9379 | 25.2397 | 12.8417 | 49.607  |
| 8  | 61.3333 | 44.8861 | 23.9967 | 83.960  |
| 9  | 37.4296 | 43.2643 | 23.1137 | 80.982  |
| 10 | 28.8519 | 40.1095 | 21.3347 | 75.406  |



THANK YOU