

Departamento de **Matemática**

GUÍA DE TRABAJOS PRÁCTICOS ANÁLISIS MATEMÁTICO II "A" (61.03) y ANÁLISIS MATEMÁTICO II (81.01)

1er. cuatrimestre 2022

Profesor responsable: José Luis Mancilla Aguilar

La elaboración de las guía de trabajos prácticos fue realizada por María Inés Troparevsky, Eduardo Zitto, Silvia Gigola y Ricardo O. Sirne

Bibliografía

- Apostol T.M., Análisis Matemático 2º Ed., Reverté, 1976.
- Apostol T.M., Calculus, Vol. II, Reverté, 1992.
- Courant R., John F., Introducción al cálculo y al análisis matemático Vol. 2, Limusa, 1999.
- Edwards C.H. Jr., Penney D.E., *Cálculo con geometría analítica* 4⁰ Ed., Prentice-Hall Hispanoamericana, 1994.
- Marsden J., Tromba A.J., Cálculo Vectorial, Ed. Addison-Wesley, 1998.
- Pita Ruiz C., Cálculo vectorial, Prentice-Hall Hispanoamericana, 1995.
- Santaló L.A., Vectores y tensores con sus aplicaciones, Eudeba, 1993.
- Spiegel M.R., Cálculo Superior, Mc-Graw Hill, 1991.

Bibliografía complementaria para ecuaciones diferenciales

- Blanchard P., Devaney R., Hall G., Ecuaciones Diferenciales, Editorial Thomson, 1999.
- Kreider D.L., Kuller R.G., Ostberg D.R., Ecuaciones Diferenciales, Fondo Educativo Interamericano, 1973.
- Zill D.G., Ecuaciones Diferenciales con Aplicaciones, Grupo Editorial Iberoamérica, 1988.

Publicaciones de la cátedra

Se trata del material didáctico publicado a través del "Campus" o la "Página Web" oficiales de la cátedra, incluyendo:

- La Guía de Trabajos Prácticos.
- Ayudas didácticas y apuntes de cátedra.
- Resolución de temas de evaluaciones parciales e integradoras.

<u>IMPORTANTE</u>: La cátedra no se responsabiliza por el contenido de apuntes, ayudas didácticas y ejercicios resueltos que pudieran publicarse por distintos medios, sin importar quién o quiénes sean sus autores. Sólo son válidas la bibliografía y las publicaciones de la cátedra que se indican.

Índice general

I – Geometría del plano y del espacio.	Ę
1. Puntos y conjuntos de puntos	ŗ
2. Conjuntos definidos mediante inecuaciones	
II – Funciones, límite, continuidad. Curvas y superficies.	8
1. Conjuntos de nivel	8
2. Función vectorial de una variable. Curvas	Ć
3. Límite y continuidad de campos	. (
4. Superficies	
III – Derivabilidad. Diferenciabilidad.	12
1. Derivada de función vectorial de una variable. Recta tangente y plano normal a	
curvas	12
2. Derivadas de funciones de varias variables	
3. Diferenciabilidad. Plano tangente y recta normal a superficies	
4. Ítems que permiten reafirmar conceptos teóricos	
IV – Funciones compuestas e implícitas.	10
1. Composición de funciones	
2. Funciones definidas en forma implícita	
2. I unciones definidas en forma implicita	4.
V – Polinomio de Taylor. Extremos y extremos condicionados	23
1. Polinomio de Taylor	23
2. Extremos	24
3. Extremos condicionados	25
VI – Ecuaciones diferenciales - 1ra. Parte	27
1. Conceptos básicos	
2. Resolución de ecuaciones diferenciales	
3. Familias de curvas ortogonales	

4. Líneas de campo	29
VII – Integrales de línea o curvilíneas. 1. Parametrización y orientación de curvas 2. Integral de campos escalares a lo largo de curvas 3. Integral de campos vectoriales a lo largo de curvas (circulación) 3.1. Campos de gradientes	
VIII – Integrales múltiples.	36
1. Integrales dobles	36
1.1. Cambio de variables en integrales dobles	37
2. Integrales triples	38
2.1 Cambio de variables en integrales triples	38 39
IX – Integrales de superficie.	40
1. Área de una superficie	
2. Integral de superficie de campo escalar	40
3. Integral de superficie de campo vectorial (flujo)	41
X – Teoremas integrales	42
XI – Ecuaciones diferenciales - 2da. parte	48
1. Resolución de ecuaciones diferenciales	
2. Aplicaciones básicas	49

I – Geometría del plano y del espacio.

1. Puntos y conjuntos de puntos

1. En el espacio que se indica, realice un gráfico del conjunto de puntos que satisface la ecuación dada.

En \mathbb{R}^2 : a) x = 4 b) y = 2 c) $x^2 + y^2 = 9$ En \mathbb{R}^2 : d) 2x + y = 4 e) $y = x^2$ f) $x^2 + y^2 = 0$ g) $4x^2 + y^2 = 16$ En \mathbb{R}^3 : h) 2x + y = 4 i) $y = x^2$ j) $x^2 + y^2 = 0$ k) $4x^2 + y^2 = 16$ En \mathbb{R}^2 : l) $x^2 - 4y^2 = 16$ m) $y^2 - x^2 = 4$ n) xy = 4 o) $(x - 1)^2 + y^2 = 0$

- 2. Halle, en cada caso, una ecuación cartesiana para el conjunto de puntos del plano xy que se especifica y grafíquelo.
 - a) Recta que contiene a los puntos (2,3) y (3,5).
 - b) Circunferencia de radio R=3 con centro en el punto (3,0).
 - c) Elipse que contiene a los puntos (2,5) y (1,3), tiene ejes paralelos a los ejes coordenados y centro en (2,1).
 - d) Parábola que contiene al punto (0,6), tiene vértice en (3,2) y eje de ecuación y=2.
- 3. En los gráficos, realizados con la misma escala en ambos ejes, se muestra el ángulo α cuya tangente determina la pendiente de la recta oblicua r. Siendo y=m x+b la ecuación de la recta, su pendiente es $m=\operatorname{tg}(\alpha)$ con $\alpha\neq\pi/2$ y $0\leq\alpha<\pi$.

Calcule el valor de α en los siguientes casos:

a)
$$x + y = 2$$
, b) $x - y = 4$, c) $y = \sqrt{3} x + 5$, d) $y = -\sqrt{3} x + 5$, e) $x + \sqrt{3} y = \sqrt{3}$

- 4. En \mathbb{R}^3 , halle una ecuación para:
 - a) La recta que contiene al punto A = (1, 2, 4) y está dirigida por el vector $\vec{r} = (1, 2, 1)$.
 - b) La recta que contiene a los puntos A = (1, 2, 4) y B = (2, 5, 7).
 - c) El segmento \overline{AB} de puntos extremos A=(1,2,4) y B=(2,5,7), y determine el punto medio de dicho segmento.
- 5. Halle, en cada caso, la ecuación cartesiana de un plano que satisfaga las condiciones dadas; grafíquelo.
 - a) Es paralelo al plano x = 0 y contiene el punto P = (1, 2, -3).
 - b) Es perpendicular al eje z y pasa por el punto P = (1, -1, 2).
 - c) Contiene a los puntos (1, 1, 0), (0, 2, 1) y (3, 2, -1).
 - d) Contiene al punto (2,0,1) y es perpendicular al vector $\vec{r}=(3,2,-1)$.
- 6. El ángulo α entre dos vectores no nulos \vec{u} y \vec{v} es, por definición, aquel $\alpha \in [0, \pi]$ tal que $\vec{u} \cdot \vec{v} = ||\vec{u}|| \, ||\vec{v}|| \, \cos(\alpha)$.
 - a) Calcule el ángulo entre: a_1) $\vec{u} = (1, 2)$ y $\vec{v} = (2, 4)$, a_2) $\vec{u} = (1, 2)$ y $\vec{v} = (2, -4)$.
 - b) Calcule el ángulo entre: $\vec{u} = (1, 2, 5)$ y $\vec{v} = (2, 4, 6)$.
 - c) Demuestre que las componentes de un versor \check{r} (o vector unitario), son los cosenos de los ángulos entre \check{r} y los versores canónicos del espacio (cosenos directores y ángulos directores del versor). Interprete gráficamente en \mathbb{R}^2 y en \mathbb{R}^3 .
 - d) Un vector no nulo \vec{r} tiene los mismos ángulos directores que su correspondiente versor $\breve{r} = \vec{r}/||\vec{r}||$. Halle un vector cuyos ángulos directores sean iguales: en \mathbb{R}^2 , ídem para \mathbb{R}^3 ; indique en ambos casos cuál es la medida de dichos ángulos.
- 7. Dados los vectores $\vec{u}=2\,\breve{\imath}+\breve{\jmath}-2\,\breve{k}\,$ y $\vec{v}=2\,\breve{\imath}-2\,\breve{\jmath}-\breve{k}\,$ calcule/halle:
 - a) el ángulo entre \vec{u} y \vec{v} ,
 - $b) ||\vec{u}||,$
 - c) $3\vec{u} 2\vec{v}$,
 - d)un vector unitario paralelo a $\vec{u},$
 - e) la proyección de \vec{u} sobre \vec{v} .
- 8. Calcule el área del paralelogramo tal que dos de sus lados son los segmentos que unen el origen con (1,0,1) y (0,2,1).
- 9. Demuestre que el triángulo de vértices $A=(1,-1,2),\ B=(3,3,8)$ y C=(2,0,1) tiene un ángulo recto.

2. Conjuntos definidos mediante inecuaciones

10. Describa gráficamente las regiones del plano xy definidas por:

a)
$$x + y < 1$$

b)
$$x^2 + y^2 \ge 1, x \ge 0$$

c)
$$x^2 + 4y^2 < 9, x \ge 2$$

d)
$$x^2 - 2x + y^2/4 - y < 14$$

e)
$$x - y^2 > 1$$

$$f) \ 2x^2 - x + y \le 1$$

$$g) y^2 - 4x^2 < 1$$

h)
$$2x + y^2 - y \le 1$$

$$i) xy \ge 1$$

$$j) xy > -1, x + y \ge 0$$

$$k) y < \ln(x)$$

l)
$$x < e^{-y}$$

$$m) y > 2x, y < \pi \operatorname{sen}(x)$$

$$m)$$
 $y \ge 2x$, $y \le \pi \operatorname{sen}(x)$ $n)$ $\operatorname{sen}(x) \le y \le -\cos(x)$, $x \in [-\pi, \pi]$

- 11. Describa en coordenadas cartesianas las siguientes regiones planas:
 - a) Interior del círculo centrado en (0,0) y radio 2.
 - b) Cuadrado de lado 1 con ejes paralelos a los ejes coordenados y vértice inferior izquierdo en (1,1).
 - c) Conjunto abierto y acotado cuya frontera es la elipse centrada en (0,0), ejes paralelos a los coordenados y semiejes de longitudes 2 y 4. ¿Existe respuesta única?.
- 12. Describa mediante inecuaciones y/o ecuaciones el interior y la frontera de los conjuntos dados por:

a)
$$\{(x,y) \in \mathbb{R}^2 : 0 < x^2 + y^2 < 1\}$$

b)
$$\{(x,y) \in \mathbb{R}^2 : x > 0, y < 0\}$$

c)
$$\{(x,y) \in \mathbb{R}^2 : 0 < |x| + |y| < 1\}$$

d)
$$\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$$

e)
$$\{(x, y, z) \in \mathbb{R}^3 : x + y + z > 0\}$$

$$f$$
) $\{(x, y, z) \in \mathbb{R}^3 : 1 \le x^2 + y^2 + z^2 \le 5\}$

$$g) \{(x, y, z) \in \mathbb{R}^3 : z > x^2 + y^2\}$$

h)
$$\{(x, y, z) \in \mathbb{R}^3 : x^2 + z^2 < 1\}$$

$$i) \{(x, y, z) \in \mathbb{R}^3 : z > x^2 - y^2\}$$

$$(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + 4z^2 < 4$$

$$k) \{(x, y, z) \in \mathbb{R}^3 : z^2 < x^2 + y^2 - 4\}$$

$$l) \{(x, y, z) \in \mathbb{R}^3 : z^2 < x^2 - y^2 - 4\}$$

13. Halle, cuando sea posible, un punto exterior, un punto frontera y un punto interior a los siguientes conjuntos de \mathbb{R}^2 . Determine cuáles son compactos y cuáles son arco-conexos.

7

a)
$$x + y > 2$$

a)
$$x + y > 2$$
 b) $x^2 + y^2 \le 4$

$$c) y - 2x^2 \ge 2$$

$$e) 2 < x < 3, y^2 < 1$$

e)
$$2 < x < 3, y^2 < 1$$
 f) $(x - 2y)(y - x^2) = 0$

II – Funciones, límite, continuidad. Curvas y superficies.

1. Conjuntos de nivel

1. En los siguientes casos, determine y grafique el dominio natural de f y analice si es un conjunto cerrado, abierto, acotado. Describa también los conjuntos de nivel de f y esboce su gráfico.

a)
$$f(x,y) = 3(1 - x/2 - y/2)$$

b)
$$f(x,y) = \sqrt{y-x}$$

c)
$$f(x,y) = 25 - x^2$$

$$d) f(x,y) = 9x^2 + 4y^2$$

e)
$$f(x,y) = \sqrt{x^2 + 2y^2}$$

$$f) f(x,y) = (x^2 + y^2 - 16)^{-1/2}$$

g)
$$f(x,y) = e^{-x^2 - y^2}$$

h)
$$f(x, y, z) = \ln(4 - x - y)$$

$$i) f(x, y, z) = x + y + 2z$$

$$f(x,y,z) = e^{x^2+y^2-z^2}$$

2. Grafique, si quedan definidos, el conjunto de nivel 0 y el conjunto de nivel 4 de:

a)
$$f(x,y) = \begin{cases} x+y & \text{si } x \ge -2\\ 0 & \text{si } x < -2 \end{cases}$$
 b) $f(x,y) = \text{sen}(y-x)$

$$b) f(x,y) = \operatorname{sen}(y-x)$$

- 3. Sea $D = \{(x,y) \in \mathbb{R}^2 : x \in [-10,10], y \in [-10,10]\} = [-10,10] \times [-10,10]$ una placa metálica en la cual $T(x,y) = 64 - 4x^2 - 8y^2$ representa la temperatura de cada punto $(x,y) \in D$. Los conjuntos de nivel de T se denominan isotermas porque sus puntos tiene igual temperatura, dibuje algunas de dichas isotermas.
- 4. Si U(x,y) es el potencial electrostático de cada punto $(x,y) \in D \subset \mathbb{R}^2$, los conjuntos de nivel de U se denominan equipotenciales porque sus puntos tienen igual potencial. Trace algunas líneas equipotenciales si $U(x,y) = k/\sqrt{x^2 + y^2}$ con $(x,y) \in \mathbb{R}^2 - \{\bar{0}\}$, donde k es una constante positiva.

2. Función vectorial de una variable. Curvas

- 5. Analice la existencia de los siguiente límites:
- a) $\lim_{u \to 0} \left(\frac{\text{sen}(u)}{|u|}, \sqrt{u} \right)$ b) $\lim_{u \to 0} \left(\frac{e^u 1}{u}, u^2 \right)$ c) $\lim_{t \to 0} (t \text{ sen}(3/t), 4 + t \ln(t))$
- 6. Analice en cada caso si la función es continua y determine si su conjunto imagen es una curva. Halle una expresión cartesiana del conjunto imagen y grafíquelo.

 - a) $\vec{g}: [0,1] \subset \mathbb{R} \to \mathbb{R}^2/\vec{g}(t) = (t,t^2)$ b) $\vec{g}: [0,1] \subset \mathbb{R} \to \mathbb{R}^2/\vec{g}(t) = (1-t,(1-t)^2)$

Observe que en a) y b) se obtiene el mismo conjunto

imagen pero con orientaciones opuestas.

- c) $\vec{q} : \mathbb{R} \to \mathbb{R}^2 / \vec{q}(x) = (x, 2x + 1)$
- d) $\vec{q} : [0, \pi] \subset \mathbb{R} \to \mathbb{R}^2 / \vec{q}(t) = (2 \cos(t), 3 \sin(t))$
- $e) \vec{q} : \mathbb{R} \to \mathbb{R}^3 / \vec{q}(t) = (\cos(t), \sin(t), 3t)$
- f) $\vec{a}: \mathbb{R} \to \mathbb{R}^3 / \vec{a}(t) = (t-1, 2t, t+1)$
- 7. Dados los siguientes conjuntos de puntos descriptos mediante ecuaciones cartesianas, expréselos paramétricamente mediante una ecuación vectorial e indique si con la parametrización adoptada el conjunto cumple con la definición de curva.
 - a) Puntos del plano xy que satisfacen la ecuación:
- a_1) $y = x^2$ a_2) y + 2x = 4 a_3) $x^2 + y^2 = 9$ a_4) xy = 1

b) Puntos de \mathbb{R}^3 que satisfacen las ecuaciones:

$$b_1$$
) $y = x^2$, $x + z = y$

$$b_1$$
) $y = x^2$, $x + z = y$ b_2) $x + y = 5$, $z = x^2 + y^2$

3. Límite y continuidad de campos

- 8. En los siguientes casos determine, si existe, el límite indicado; fundamente la respuesta.
 - a) $\lim_{(x,y)\to(1,-1)} xy y^2$

b) $\lim_{(x,y)\to(0,4)} x y^{-1/2}$

c) $\lim_{(x,y)\to(0,0)} \sqrt{x^2 + y^2}$

d) $\lim_{(x,y)\to(0,0)} \frac{x}{x+y}$

e) $\lim_{(x,y)\to(0,2)} \frac{x^2(y-2)^2}{x^2+(y-2)^2}$

- f) $\lim_{x\to 0} \left(\frac{x}{|x|}, \sqrt{x}\right)$
- g) $\lim_{(x,y)\to(0,0)} \left(y\cos(x^{-1}), \frac{\sin(3x)}{2x}, x-y\right)$ h) $\lim_{(x,y)\to(0,0)} \frac{\sin(x^2-y^2)}{x-y}$

$$i) \lim_{(x,y)\to(0,0)} \frac{e^{x^2+y^2}-1}{x^2+y^2} \qquad j) \lim_{(x,y)\to(0,0)} \frac{x^2\,y+y^5}{x^2+y^4}$$

$$(j) \lim_{(x,y)\to(0,0)} \frac{x^2y+y^5}{x^2+y^4}$$

$$k) \lim_{(x,y)\to(0,0)} \frac{x y^2}{x^2 + y^2}$$

$$k) \lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^2} \qquad l) \lim_{(x,y)\to(0,0)} (x^2+y^2) \ln(x^2+y^2)$$

$$m) \lim_{(x,y)\to(1,-1)} \frac{x^3+y^3}{x+y}$$

$$m) \lim_{(x,y)\to(1,-1)} \frac{x^3+y^3}{x+y} \qquad n) \lim_{(x,y)\to(1,1)} \frac{2y^2-x^2-xy}{y-x}$$

9. Determine los puntos de continuidad de las siguientes funciones:

$$a) \, f(x,y) = \left\{ \begin{array}{ll} 1 & \text{cuando} \; x-y > 0 \\ 0 & \text{cuando} \; x-y \leq 0 \end{array} \right.$$

$$b) f(x,y) = \begin{cases} x^2 - y & \text{si } x \neq 2y \\ 3 & \text{si } x = 2y \end{cases}$$

$$c) f(x,y) = \begin{cases} 0 & \text{cuando } x y \neq 0 \\ 1 & \text{cuando } x y = 0 \end{cases}$$

$$d) f(x,y) = \begin{cases} \frac{x^2 y}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

$$e) f(x,y) = \begin{cases} \frac{(x-2)^2}{(x-2)^2 + y^2} & \sin(x,y) \neq (2,0) \\ 0 & \sin(x,y) = (2,0) \end{cases} \qquad f) f(x,y) = \begin{cases} x & \sin 4x^2 + y^2 < 1 \\ 2x + y & \sin 4x^2 + y^2 \ge 1 \end{cases}$$

$$f) f(x,y) = \begin{cases} x & \text{si } 4x^2 + y^2 < 1\\ 2x + y & \text{si } 4x^2 + y^2 \ge 1 \end{cases}$$

10. Sea
$$f(x,y) = \begin{cases} \frac{x^3 - x(y+1)^2}{x^2 + (y+1)^2} & \text{si } (x,y) \neq (0,-1) \\ k & \text{si } (x,y) = (0,-1) \end{cases}$$
. Determine, si es posible, el valor de k para que f resulte continua en \mathbb{R}^2 .

- 11. Sea $f(x,y) = e^{-x^2 y^2}$.
 - a) Halle las curvas de nivel de f.
 - b) Determine las intersecciones de la gráfica de f con los planos coordenados.
 - c) Realice un gráfico aproximado de f.
- 12. Sean $L = \lim_{\vec{X} \to \vec{A}} f(\vec{X})$ y el límite por curva $L_C = \lim_{\vec{X} \xrightarrow{C} \to \vec{A}} f(\vec{X})$ donde $C \subset \mathbb{R}^n$ con n > 1 es una curva incluida en el dominio de f que contiene al punto \vec{A} , tomando –para el análisis de L_C - únicamente puntos $\vec{X} \in C$.
 - a) Proponga un ejemplo de campo escalar f con algún L_C finito, pero que no exista L.
 - b) Demuestre que si existe L, existe L_C para toda C.

- 13. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ y el punto $(a, b) \in \mathbb{R}^2$. Definimos las funciones \vec{g} y \vec{h} de \mathbb{R} en \mathbb{R}^3 mediante: $\vec{g}(x) = (x, b, f(x, b))$ y $\vec{h}(y) = (a, y, f(a, y))$.
 - a) Estudie las relaciones entre el gráfico de f y los gráficos de los conjuntos imagen de \vec{g} y \vec{h} .
 - b) Si $f(x,y)=x^2+y^2$ y (a,b)=(1,2), halle las expresiones de \vec{g} y \vec{h} . Grafique.
 - c) Si f es continua en (a,b), ¿es \vec{g} continua en a?. Justifique.
 - d) Proponga un ejemplo para mostrar que \vec{g} puede ser continua en a sin que f sea continua en (a,b).

4. Superficies

- 14. Verifique que -en cada caso- el conjunto imagen de la función vectorial que se indica es una superficie, halle una expresión cartesiana para la misma y representela gráficamente.
 - a) $\vec{F}(u,v) = (u,v,u^2+v^2) \cos u^2 + v^2 \le 9$
 - b) $\vec{F}(u,v) = (2\cos(u), 2\sin(u), v) \cos(u,v) \in [0,\pi] \times [0,2]$
 - c) $\vec{F}(x,y) = (x,y,2-4x-6y)$ con $\{(x,y) \in \mathbb{R}^2 : 2x+3y \le 1, x \ge 0, y \ge 0\}$
 - d) $\vec{F}(x,y) = (x, y, 4 x^2)$ con $(x,y) \in [-2, 2] \times [0, 3]$
- 15. Halle una ecuación vectorial para las siguientes superficies.
 - a) $x^2 + y^2 = 16$
 - b) z = xy
 - c) y = x
 - $d) x^2 4x + y^2 z = 0$
- 16. Determine la ecuación de las líneas coordenadas de las siguientes superficies. Interprete gráficamente.
 - a) $\vec{F}(u,v) = (\cos(u), \sin(u), v)$ con $(u,v) \in [0, 2\pi] \times [0, 2]$
 - b) $\vec{F}(u,v) = (u,v,u^2 + 4v^2) \text{ con } (u,v) \in \mathbb{R}^2$
 - c) $\vec{F}(x,y) = (x, y, 1 + x + y) \text{ con } (x,y) \in \mathbb{R}^2$
 - d) $\vec{F}(x,y) = (x, y, \sqrt{10 x^2 y^2})$ con $(x,y) \in \mathbb{R}^2$ tal que $x^2 + y^2 \le 9$

III – Derivabilidad. Diferenciabilidad.

1. Derivada de función vectorial de una variable. Recta tangente y plano normal a curvas

- 1. Calcule, si quedan definidas, las derivadas que se indican en cada caso.
 - a) $\vec{g}'(0)$, si $\vec{g}(t) = (2\operatorname{sen}(t), t \cos(t))$ con $t \in \mathbb{R}$

b)
$$\vec{\sigma}'(0)$$
, si $\vec{\sigma}(t) = \begin{cases} (\operatorname{sen}(t)/t, 2e^t) & \text{si } t \neq 0 \\ (1, 2) & \text{si } t = 0 \end{cases}$

c)
$$\vec{g}'(\pi)$$
, si $\vec{g}(t) = \left(\frac{\sin(2t)}{t-\pi}, \cos(t/2)\right)$ con $t \in \mathbb{R} - \{\pi\}$, siendo $\vec{g}(\pi) = (2,0)$

d)
$$\vec{\sigma}'(0)$$
, si $\vec{\sigma}(x) = \begin{cases} (x, x^2) & \text{si } x \ge 0 \\ (x, x^2 + 1) & \text{si } x < 0 \end{cases}$

- 2. Sea C la curva parametrizada por $\vec{\sigma}(t) = (R \cos(t), R \sin(t)), t \in [0, 2\pi), R > 0$ constante. Halle la ecuación de su recta tangente en $\vec{\sigma}(\pi/4)$. Grafique la curva y la recta tangente indicando la orientación de la curva.
- 3. Sea C la curva imagen de la función vectorial $\vec{\sigma}(t) = (t^2, t^3 + 1, t^3 1), t \in [1, 4].$
 - a) Halle la ecuación de su recta tangente y su plano normal en el punto (4, 9, 7).
 - b) Calcule el módulo de su vector tangente $\vec{\sigma}'(t_0)$, si $\vec{\sigma}(t_0) = (4, 9, 7)$.
 - c) Verifique que C es una curva plana.
 - d) Halle la intersección de C con el plano de ecuación y+z=2.
- 4. Sea C la curva de ecuación $\vec{X} = (t, \sqrt[3]{t}), t \in [-1, 8].$
 - a) Grafique la curva en el espacio xy.
 - b) Halle ecuaciones para su recta tangente y su recta normal en el punto (1,1).

- 5. Si $\vec{X} = (\sqrt{5}\cos(t), \sqrt{5}\sin(t)), t \in \mathbb{R}$ es la posición de un punto material en el plano xyen función del tiempo t, su velocidad es $\vec{v}(t) = \vec{g}'(t)$ y su aceleración es $\vec{a}(t) = \vec{g}''(t)$.
 - a) Calcule y grafique la velocidad y la aceleración del punto material cuando pasa por (1,2).
 - b) Verifique que en este ejemplo el módulo de la velocidad (rápidez) y el de la aceleración se mantienen constantes; indique las correspondiente unidades de medida cuando las coordenadas de la posición se dan en metros (m) y el tiempo en segundos (s).
- 6. En los siguientes casos, halle una parametrización regular de la curva definida por el par de ecuaciones y obtenga una ecuación para su recta tangente en el punto que se indica.
 - a) y = 4 x, $z = 4 x^2$, A = (1, 3, 3)
 - b) $x^2 + y^2 + z^2 = 2$, $z = \sqrt{x^2 + y^2}$, A = (0, 1, 1)
 - c) $z = x + y^2$, $x = y^2$, A = (4, 2, 8)
 - d) $x^2 + y^2 + z^2 = 6$, $z = x^2 + y^2$, A = (1, 1, 2)
- 7. Resuelva los siguientes problemas:
 - a) Una abeja vuela ascendiendo a lo largo de la curva intersección de $z = x^4 + xy^3 + 12$ con x=1. En el punto (1,-2,5) sigue a lo largo de la recta tangente en el sentido de las y crecientes. ¿En qué punto la abeja cruza al plano y=1?.
 - b) Una partícula se mueve en el plano de manera que su posición en el tiempo t es $\vec{r}(t) = (t - \sin(t), 1 - \cos(t))$ con $t \in \mathbb{R}$. Calcule los valores máximos de los módulos de su velocidad y de su aceleración. Dibuje aproximadamente la trayectoria y los vectores velocidad y aceleración.
 - c) Una partícula se mueve de izquierda a derecha a lo largo de la parte superior de la parábola de ecuación $y^2 = 2x$, con rapidez constante de 5 metros/segundo. ¿Cuál es su vector velocidad al pasar por el punto (2,2)?.

2. Derivadas de funciones de varias variables

- 8. En los siguientes casos, calcule las funciones derivadas parciales de f y luego evalúelas en los puntos indicados.
 - a) $f(x,y) = xy + x^2$, en (2,0)
 - b) $f(x,y) = \operatorname{senh}(x^2 + y)$, en (1,-1)
 - c) $f(x, y, z) = \frac{xz}{y+z}$, en (1, 1, 1)

d)
$$f(x, y, z) = \ln(1 + x + y^2 z)$$
, en $(1, 2, 0)$ y en $(0, 0, 0)$

e)
$$f(x,z) = \text{sen}(x\sqrt{z})$$
, en $(\pi/3, 4)$.

$$f(x,y) = \frac{1}{\sqrt{x^2 + y^2}}, \text{ en } (-3,4)$$

g)
$$f(x,y) = \int_{x}^{y^{2}} \operatorname{sen}(\ln(1+t^{3})) dt$$
, en (1,2)

9. Calcule las derivadas parciales de las siguientes funciones en el origen. Analice la continuidad de las funciones y de sus derivadas parciales en el origen.

a)
$$f(x,y) = \begin{cases} \frac{2x^3 - y^3}{x^2 + 3y^2} & \text{para } (x,y) \neq (0,0) \\ 0 & \text{para } (x,y) = (0,0) \end{cases}$$

b)
$$f(x,y) = \begin{cases} \frac{x^2 - 2y^2}{x - y} & \text{para } x \neq y \\ 0 & \text{en otro caso} \end{cases}$$

c)
$$f(x,y) = \begin{cases} 0 & \text{cuando } x y \neq 0 \\ 1 & \text{cuando } x y = 0 \end{cases}$$

10. Determine el dominio natural y obtenga las derivadas de segundo orden de las siguientes funciones, indicando el dominio natural de dichas derivadas:

$$a) f(x,y) = \ln(x^2 + y)$$

b)
$$f(x, y, z) = x \operatorname{sen}(y) + y \cos(z)$$

c)
$$f(x,y) = \operatorname{arctg}(x/y)$$

d)
$$f(x,y) = \sqrt{\frac{x^2}{a^2} + \frac{y^2}{b^2}}$$

e)
$$f(x, y, z) = \ln(x^2 + y^2 + z + 1)$$

11. Dada $f(x,y)=e^x\sin(y)$, demuestre que f es armónica (f es de clase C^2 y satisface $\frac{\partial^2 f}{\partial x^2}+\frac{\partial^2 f}{\partial y^2}=0$).

12. Dada $f(x,y) = \begin{cases} 9 - x^2 - y^2 & \text{cuando } x^2 + y^2 \leq 9 \\ 0 & \text{cuando } x^2 + y^2 > 9 \end{cases}$. Analice la continuidad y la existencia de derivada parcial respecto de y en el punto (3,0).

13. Analice la existencia de las derivadas direccionales de la siguientes funciones en los puntos y direcciones dadas:

a)
$$f(x,y) = 3x^2 - 2xy$$
 $P_0 = (0,2)$ $\ddot{v} = (\frac{1}{2}, \frac{\sqrt{3}}{2})$

b)
$$f(x,y) = \begin{cases} \sqrt{xy} & \text{si } xy \ge 0 \\ x+y & \text{si } xy < 0 \end{cases}$$
 $P_0 = (0,0)$ $\breve{v}_1 = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}) \text{ y } \breve{v}_2 = (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$

14. Analice la existencia de derivadas direccionales en el origen según distintas direcciones e indique si, en dicho punto, existen direcciones de derivada nula.

a)
$$f(x,y) = \frac{x+1}{x^2+y^2+1}$$

b)
$$f(x,y) = \begin{cases} xy \ln(x^2 + y^2) & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

c)
$$f(x,y) = \sqrt{x^n + y^n}, n \in \mathbb{N} - \{1\}$$

c)
$$f(x,y) = \sqrt{x^n + y^n}$$
, $n \in \mathbb{N} - \{1\}$ d) $f(x,y) = \begin{cases} \frac{e^{x^2 + y^2} - 1}{\sqrt{x^2 + y^2}} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$

3. Diferenciabilidad. Plano tangente y recta normal a superficies

15. Halle las matrices jacobianas de los siguientes campos. Cuando sea posible, también exprese los gradientes correspondientes.

a)
$$\vec{F}(x,y) = (3x^2y, x - y)$$
 b) $\vec{G}(x) = (x^2 + 1, 2x)$

b)
$$\vec{G}(x) = (x^2 + 1, 2x)$$

c)
$$h(x, y, z) = xy + z^2x$$
 d) $\vec{L}(x, y) = (x^2y, y, x - xy)$

d)
$$\vec{L}(x,y) = (x^2y, y, x - xy)$$

e)
$$\vec{N}(x, y, z) = (2xy, x^2 - ze^y)$$
 f) $f(x, y) = x \sin(2x - y)$

$$f) \ f(x,y) = x \, \operatorname{sen}(2 \, x - y)$$

- 16. Sea $f(x,y) = x\sqrt{xy}$ y el punto A = (1,4) interior a su dominio natural.
 - a) Indique razones suficientes para asegurar que f es diferenciable en A.
 - b) Halle los versores según los cuales las derivadas direccionales de f en A resultan máxima, mínima y nula, e indique los valores de dichas derivadas.
- 17. Sabiendo que $f \in C^1$ y que f'(A, (0.6, 0.8)) = 2 y f'(A, (0.8, 0.6)) = 5 son los valores de sus derivadas en A según los versores que se indican, calcule la máxima derivada direccional de f en A e indique en qué dirección se produce (el versor correspondiente).
- 18. Dada la superficie S de ecuación z = f(x,y) que admite plano tangente de ecuación 3x + y + 2z = 6 en el punto $A = (2, 1, z_0)$, analice si la recta normal a S en A interseca a la superficie de ecuación $y = x^2$.

- 19. Siendo $\vec{X}=(1+2\,u,\,3\,u-1,\,5\,u)$ con $u\in\mathbb{R}$ una ecuación de la recta normal a la superficie Σ en A=(5,5,10), analice si el plano tangente a Σ en A tiene algún punto en común con el eje x.
- 20. Demuestre que si $L: \mathbb{R}^n \to \mathbb{R}$ con n > 1 es una transformación lineal, la derivada direccional de L en A según $\check{r} \in \mathbb{R}^n$ resulta $L'(A, \check{r}) = L(\check{r})$, independiente del punto $A \in \mathbb{R}^n$.
- 21. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ diferenciable en todo el plano. Sabiendo que el plano tangente a la superficie gráfico de f en el punto $(1, -\frac{1}{2}, f(1, -\frac{1}{2}))$ tiene ecuación 2x 4y 2z = -6, calcule $f(1, -\frac{1}{2})$ y $\nabla f(1, -\frac{1}{2})$.
- 22. Dado el campo escalar $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ diferenciable en el punto $P_0 = (x_0, y_0)$ interior a D, y teniendo en cuenta que la ecuación vectorial de su gráfica puede expresarse como:

$$\vec{X} = (x, y, f(x, y)) \text{ con } (x, y) \in D,$$

demuestre que el vector $\vec{N_0} = (-\frac{\partial f}{\partial x}(P_0), -\frac{\partial f}{\partial y}(P_0), 1)$ es normal a la gráfica de f en $Q_0 = (x_0, y_0, f(x_0, y_0))$. En particular, para los siguientes casos:

- Justifique sintéticamente que f es diferenciable en P_0 .
- Represente el gráfico de f, el plano tangente a la superficie en Q_0 y el vector $\vec{N_0}$ aplicado en el punto Q_0 .
- a) f(x,y) = 5 + 2x 3y, $P_0 = (0,0)$
- b) $f(x,y) = x^2 2x + y^2$, $P_0 = (-1,2)$
- c) $f(x,y) = \sqrt{4 x^2 y^2}$, $P_0 = (1, -1)$
- 23. ¿Cuáles son los puntos de la superficie gráfico de $f(x,y) = x y e^{x+y}$, para los cuales resulta el plano tangente horizontal (paralelo al plano xy)?.
- 24. Sea $f(x, y, z) = e^{x} z + x y^2$. Calcule un valor aproximado de f(0.1, 0.98, 2.05) utilizando una aproximación lineal.
- 25. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ diferenciable, tal que f(1,2) = 5. Sabiendo que su derivada direccional en (1,2) es máxima en la dirección del versor $(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}})$ y que $f'_x(1,2) = 3\sqrt{2}$:
 - a) Halle una ecuación para el plano tangente a la superficie gráfica de f en el punto (1,2,f(1,2)).
 - b) Calcule un valor aproximado de f(1.01, 1.98) utilizando una aproximación lineal.
- 26. Demuestre que $\ln(2x+1/y) \cong 1+2x-y$ en un entorno de $(x_0,y_0)=(0,1)$.

- 27. Halle una expresión lineal que permita aproximar $f(x, y, z) = (x + 1)^2 \ln(1 + y + z)$ en un entorno de (0, 0, 0).
- 28. La elevación de una montaña sobre el nivel del mar está dada por $f(x,y) = 1500 e^{-(x^2+y^2)/200}$. El semieje positivo de las x apunta hacia el este y el de las y hacia el norte.
 - a) Halle y dibuje algunas curvas de nivel de f.
 - b) Un alpinista está en el punto (10, 10, 1500/e). Si se mueve hacia el noreste, ¿asciende o desciende?, ¿con qué pendiente?.
- 29. Considere la superficie S de ecuación vectorial $\vec{X} = (u+v, u-v, uv), (u,v) \in \mathbb{R}^2$.
 - a) Halle una ecuación cartesiana para S.
 - b) Halle una ecuación para el plano tangente a S en (3, -1, 2).
 - c) Analice si la reta normal a S en (3, -1, 2) tiene algún punto en común con el eje y.
- 30. Determine ecuaciones para el plano tangente y la recta normal a la superficies siguientes en los puntos que se indican:
 - a) Paraboloide elíptico de ecuación cartesiana $4x^2 + y^2 16z = 0$ en el punto (2, 4, 2)
 - b) Porción de superficie cilíndrica elíptica de ecuación vectorial:

$$\vec{X} = (v, 2 + \cos(u), 2 \sin(u)), 0 \le u \le \pi, 0 \le v \le 4, Q_0 = (2, 3/2, \sqrt{3})$$

c) Porción de superficie cónica circular recta de ecuación vectorial:

$$\vec{X} = (v \cos(u), 2v, v \sin(u)), 0 \le u \le \pi, 0 \le v \le 3, Q_0 = (0, 4, 2)$$

 $d)\,$ Porción de hiperboloide de una hoja de ecuación vectorial:

$$\vec{X} = (\cos(u)\cosh(v) + 1, \sin(u)\cosh(v), \sinh(v)), D = [0, \pi] \times [-1, 1], Q_0 = (1, 1, 0)$$

- 31. Sea $\vec{\Phi}: D \to \mathbb{R}^3 / \vec{\Phi}(u, x) = (x, 2\cos(u), 2\sin(u))$ con $D = [0, 2\pi] \times [0, 1]$.
 - a) Demuestre que $\vec{\Phi}$ permite parametrizar una porción de superficie cilíndrica. Grafique el conjunto imagen de $\vec{\Phi}$.
 - b) Halle una ecuación para el plano tangente a la superficie en el punto $(1, \sqrt{3}, 1)$ y analice si este plano interseca a los tres ejes de coordenadas.
- 32. Se desea estimar el área de un rectángulo, cuyos lados medidos en metros son $a=10\pm0,1$ y $b=100\pm\Delta b$. Determine con qué precisión mediría el lado b (Δb) para que la contribución de la incerteza en la medición de a y b en el error del área sean del mismo orden.
- 33. El período de oscilación de un péndulo ideal es $T=2\pi\sqrt{l/g}$ donde l es la longitud del hilo y g es la aceleración de la gravedad. Calcule cotas para los errores absoluto y relativo que se cometen en la determinación de g si el período es T=2 segundos (s) con error menor a 0.02 s y l=1 m, con error inferior a 0.001 m (considere $\pi=3.1416$).

4. Ítems que permiten reafirmar conceptos teóricos

- 34. Demuestre que si un campo es diferenciable en un punto, entonces es continuo y derivable en toda dirección en ese punto.
- 35. Demuestre que si $f \in C^2$, entonces $f \in C^1$. Recuerde que f'' es (f')'.
- 36. Si la derivada de f en A según el versor $\check{r}=(u,v)$ es $f'(A,\check{r})=2\,u^2+v\ \forall \check{r}\in\mathbb{R}^2$, ¿qué se puede afirmar acerca de la diferenciabilidad de f en A?.
- 37. Dada $f(x,y) = \frac{x^2 \operatorname{sen}(y)}{x^2 + y^2} \operatorname{si}(x,y) \neq (0,0), \operatorname{con} f(0,0) = 0.$
 - a) Verifique que f es continua y derivable en toda dirección en (0,0), pero no es diferenciable en dicho punto.
 - b) Halle los cuatro versores según los cuales la derivada direccional de f en (0,0) es nula.
- 38. Dada $f(x,y) = \frac{xy^2}{x^2 + y^2}$ si $(x,y) \neq (0,0)$, con f(0,0) = 0.
 - a) Verifique que f es continua y derivable en toda dirección en (0,0), pero no es diferenciable en dicho punto.
 - b) Halle los versores según los cuales la derivada direccional de f en (0,0) es máxima, mínima y nula, indicando los correspondientes valores de dichas derivadas.
- 39. Sea $f(x,y) = \frac{x^2 y^2}{x^2 + y^2}$ para $(x,y) \neq (0,0)$. Demuestre que si se define f(0,0) = 0, la función f resulta diferenciable en \mathbb{R}^2 .
- 40. Analice la continuidad y la diferenciabilidad de las siguientes funciones en el origen.

a)
$$f(x,y) = \frac{x}{x^2 + y^2}$$
 si $(x,y) \neq (0,0)$, con $f(0,0) = 0$

b)
$$f(x,y) = \frac{x^2 y}{x^2 + y^2}$$
 si $(x,y) \neq (0,0)$, con $f(0,0) = 0$

- 41. Sea $f(x,y)=\begin{cases} x\,y\,\frac{x^2-y^2}{x^2+y^2} & \text{cuando }(x,y)\neq(0,0)\\ 0 & \text{cuando }(x,y)=(0,0)\\ \text{das de }f \text{ en }(0,0) \text{ existen y son distintas. Analice si }f\in C^2. \end{cases}$. Verifique que las derivadas cruzadas de forma de forma
- 42. <u>Optativo</u>: Dada $f(x,y) = (x^2 + y^2) \sin(1/(x^2 + y^2)) \sin(x,y) \neq (0,0)$, con f(0,0) = 0, demuestre que f es diferenciable en (0,0) pero sus derivadas parciales de 1° orden no son continuas en dicho punto.

IV – Funciones compuestas e implícitas.

1. Composición de funciones

- 1. Dadas las funciones f y g, calcule **sin realizar la composición** la matriz jacobiana de $h = f \circ g$ en el punto que se indica.
 - a) $f(u,v) = uv^2 + 2uv$, $\vec{g}(x,y) = (x\sqrt{y+1}, y-x)$, A = (2,3)
 - b) $\vec{f}(u,v) = (u\,v,\,u+v^2,\,\ln(v)), \quad \vec{g}(x,y) = (x^2-y^2,x\,y), \quad A = (1,2)$
 - c) $f(x,y) = x^3 + y^2$, $\vec{g}(t) = (\text{sen}(t) 1, 2 + t + t^2)$, $t_0 = 0$
- 2. Dada $f(x,y) = \text{sen}((x-2)^2 + y 1)$ exprésela como composición de dos funciones, f(x,y) = g(h(x,y)), indicando dominio y codominio de cada una de ellas.
- 3. Dadas $f: \mathbb{R}^2 \to \mathbb{R}$ y $\vec{g}(x,y) = (\sqrt{1-x^2-y^2}, \ln(x^2+4y^2-16))$, ¿es posible definir $h=f\circ g$?
- 4. Demuestre que $f(x,y) = \frac{4x^4 + 12x^2y^2 + 9y^4}{4 2x^2 3y^2}$, es constante en los puntos de la elipse de ecuación $2x^2 + 3y^2 = 1$.
- 5. Dadas $\vec{f}(x,y) = (xy^4 + y^2x^3, \ln(x))$ y $\vec{g}(u,v) = (v\sqrt{u}, \sin(u-1)/u)$.
 - a) Halle sus dominios naturales y las expresiones de $\vec{h} = \vec{f} \circ \vec{g}$ y de $\vec{w} = \vec{g} \circ \vec{f}$.
 - b) Calcule $\vec{h}'_v(1,e)$ aplicando la regla de la cadena y usando $\vec{h}(u,v)$ hallada en "a)".
- 6. Dada $h(u) = f(\vec{g}(u))$, calcule h'(0) sabiendo que $f(x,y) = x^2 + 2y$ y $\vec{g}(u) = (|u|, u^2 + u)$. ¿Pudo aplicar la regla de la cadena?
- 7. Si $h = f \circ \vec{g}$, calcule $\nabla h(A)$ en los siguientes casos.
 - a) $A = (0,1), f(u,v) = \sqrt{u/v}$ y $\vec{g}(x,y) = (1 + \ln(x+y), \cos(xy))$
 - b) $A = (1,0), \vec{g}(x,y) = (x, x e^{y^2}, x y), f \in C^1(\mathbb{R}^3) \text{ y } \nabla f(1,1,1) = (3,1,2)$

- 8. Siendo $z = e^x x^2y x$ con $\begin{cases} x = t 1 \\ y = 2t^2 \end{cases}$ resulta z = h(t). Determine las funciones $f: \mathbb{R}^2 \to \mathbb{R}$ y $\vec{g}: \mathbb{R} \to \mathbb{R}^2$ tales que $h = f \circ \vec{g}$. Demuestre que h(1) es un máximo relativo.
- 9. Sea $w=e^{x-y}-z^2\,y+x$ con $x=v-u,\,y=u+u^3\,\ln(v-1),\,z=u\,v$. Halle la dirección de máxima derivada direccional de w=w(u,v) en el punto (1,2) y el valor de dicha derivada máxima.
- 10. Demuestre que z = f(x/y) satisface la ecuación $x z_x + y z_y = 0$, ¿qué hipótesis supuso?.
- 11. Si f(x,y) = x + y y $g(u) = (u-1)^2$, verifique que $\nabla(g \circ f)$ resulta nulo en todos los puntos de la recta de ecuación x + y = 1.
- 12. <u>Campo escalar en puntos de una curva</u>: Sea f un campo escalar diferenciable, C una curva regular parametrizada mediante la función \vec{g} y considere que los puntos de C son interiores al dominio de f. Demuestre que si $\vec{g}(t_0) \in C$, $(f \circ g)'(t_0) = \nabla f(\vec{g}(t_0)) \cdot \vec{g}'(t_0)$. Indique cómo ha utilizado las hipótesis enunciadas.
- 13. Sea $f \in C^1(D)$ una función escalar de dos variables, el punto A interior a D y $\nabla f(A) \neq \bar{0}$. Demuestre que $\nabla f(A)$ es perpendicular a la curva de nivel de f que pasa por A, y está localmente orientado hacia los niveles crecientes. Verifíquelo gráficamente para $f(x,y) = x^2 + y^2$ en los puntos (1,1), (-1,1), (1,-1) y (-1,-1) pertenecientes a la curva de nivel 2.
- 14. Se
a $\vec{f}:\mathbb{R}^2\to\mathbb{R}^2$ / $\vec{f}(u,v)=(x(u,v),y(u,v))$ una función biyectiva y
 C^2 que satisface

$$\frac{\partial(x,y)}{\partial(u,v)}(1,-2) = \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix}$$
 y $\vec{f}(1,-2) = (1,2)$.

- a) Halle un vector tangente en (1,2) a la curva imagen por \vec{f} de la circunferencia de ecuación $u^2 + v^2 = 5$.
- b) Halle un vector tangente en (1,-2) de la preimagen por \vec{f} de la recta de ecuación $y=2\,x.$
- 15. Sea S la superficie parametrizada por $\vec{F}(u,v) = (u\cos(v), u\sin(v), u)$ con $(u,v) \in \mathbb{R}^2$ y C la curva de ecuación $v = u^2 1$ en el plano uv.
 - a) Halle una parametrización regular para la curva C^* , imagen de C a través de \vec{F} .
 - b) Sea A un punto cualquiera de C^* , pruebe que el plano tangente a S en A contiene a la recta tangente a C^* en dicho punto.
- 16. Sea $g: \mathbb{R} \to \mathbb{R}$ diferenciable. Parametrice la superficie S definida por z = y g(x/y) con y > 0. Pruebe que el plano tangente a S en cada uno de sus puntos, pasa por el origen.

- 17. Suponiendo que f tiene derivadas parciales continuas de todos los órdenes y z = f(x, y) donde x = 2s + 3t e y = 3s 2t, calcule $\frac{\partial^2 z}{\partial s^2}$, $\frac{\partial^2 z}{\partial s \partial t}$ y $\frac{\partial^2 z}{\partial t^2}$.
- 18. Si $f: \mathbb{R}^2 \to \mathbb{R}$ es una función armónica (f es de clase C^2 y satisface $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$), demuestre que $f(x^3 3xy^2, 3x^2y y^3)$ también es armónica.

2. Funciones definidas en forma implícita

- 19. Demuestre que las ecuaciones dadas definen implícitamente la variable z en función de las variables x e y en un entorno del punto (x_0, y_0) , cuyo gráfico pasa por $A = (x_0, y_0, z_0)$. Calcule $\nabla f(x_0, y_0)$ en cada caso.
 - a) $x^2 y^2 + z^2 = 0$, $A = (4, 5, z_0)$, $z_0 > 0$
 - b) $z = 2 \ln(z + 3x y^2)$, A = (1, 2, 2)
- 20. Demuestre que $(x^2 + \ln(x+z) y, yz + e^{xz} 1) = (0,0)$ define una curva C regular en un entorno de (1,1,0) y halle una ecuación para el plano normal a C en dicho punto.
- 21. Si la ecuación $(x,y)=(u^3+v^3,\,u\,v-v^2)$ define implícitamente $u=u(x,y)\,$ y $\,v=v(x,y)\,$ con ambas gráficas que pasan por (2,0,1), calcule $\frac{\partial u}{\partial x},\frac{\partial u}{\partial y},\frac{\partial v}{\partial x},\frac{\partial v}{\partial y}$ en (2,0).
- 22. Demuestre que el sistema de ecuaciones

$$\begin{cases} xy^2 + zu + v^2 &= 3\\ x^3z + 2y - uv &= 2\\ xu + yv - xyz &= 1 \end{cases}$$

que se satisface para $(x_0, y_0, z_0, u_0, v_0) = (1, 1, 1, 1, 1)$, define las variables x, y, z como funciones de u, v en un entorno de (u_0, v_0) y calcule $y'_u(u_0, v_0)$.

- 23. Un cierto gas satisface la ecuación $pV = T \frac{4p}{T^2}$, donde p es la presión, V el volumen, T la temperatura y $(p_0, V_0, T_0) = (1, 1, 2)$.
 - a) Calcule $\partial T/\partial p$ y $\partial T/\partial V$ en (p_0, V_0) .
 - b) Suponiendo p=1 y V=1, la relación entre las variables se verifica para T=2. Analice si existe algún valor real $T\neq 2$ que también satisfaga la mencionada relación.
 - c) Si mediciones de p y V arrojaron valores $p=1\pm 0.001$ y $V=1\pm 0.002$, acote el error asociado a la estimación de la temperatura mediante T=2.

- 24. Halle una ecuación cartesiana para la recta tangente a C en los siguientes casos
 - a) $C = \{(x, y) \in \mathbb{R}^2 / x^2 + y^2 + 2xy = 4\}$, en (1, 1)
 - b) $C = \{(x, y) \in \mathbb{R}^2 / xy + \ln(y) = e^x\}, \text{ en } (0, e)$
 - c) $C = \{(x, y, z) \in \mathbb{R}^3 / (xy + z, y + x 2) = (3, 5)\}, \text{ en } (1, 6, -3)$
- 25. Demuestre que la superficie esférica de ecuación $x^2 + y^2 + z^2 = r^2$ y la superficie cónica de ecuación $z^2 = a^2 \, x^2 + b^2 \, y^2$ son ortogonales en todo punto de su intersección.
- 26. Sea C la curva definida como intersección de las superficies de ecuaciones $y=x^2$ y $e^{xz-1}-xy+\ln(yz)=0$. Si L_0 es la recta tangente a C en A=(1,1,1), calcule la distancia desde A hasta el punto en que L_0 interseca al plano de ecuación x+y=8.
- 27. El siguiente sistema de ecuaciones define implícitamente una curva en un entorno del punto A=(5,0,4)

$$\begin{cases} \ln(x-z) + y + x = 5\\ e^{yz} + z - x = 0 \end{cases}$$

Halle la intersección de la recta tangente a dicha curva en el punto A con el plano de ecuación x+z=10.

- 28. <u>Propiedad del plano tangente a una superficie</u>: Sea S una superficie que admite plano tangente Π_0 en el punto A. Demuestre que para toda curva C trazada sobre S que admite recta tangente en A, dicha recta está incluida en Π_0 .
 - Considere S definida en forma implícita y C en forma paramétrica vectorial. Indique las hipótesis que supone para las funciones que permiten dichas definiciones.

V – Polinomio de Taylor. Extremos y extremos condicionados.

1. Polinomio de Taylor

- 1. Exprese el polinomio $p(x,y)=x^3-2\,x\,y+y^2$ en potencias de (x-1) e (y+1).
- 2. Obtenga el polinomio de Taylor de 2° orden de f en A.
 - a) $f(x,y) = e^{x+y}\cos(y-1)$, A = (-1,1)
 - b) $f(x,y) = \cos(x+y), A = (0,0)$
 - c) $f(x,y,z) = \sqrt{xy} \ln(z), A = (1,4,1)$
- 3. Aproxime el valor $1.01^{1.98}$ utilizando el polinomio de Taylor de primer orden (aproximación lineal) de una función adecuada en el punto A = (1, 2).
- 4. Demuestre que en un entorno del punto (1,2) resulta $e^{x-1}\ln(y-1)\cong y-2$.
- 5. Sabiendo que la ecuación $y-z+e^{z}$ x=0 define implícitamente a z=f(x,y) cuyo gráfico pasa por el punto (0,0,1), calcule un valor aproximado para f(0.01,-0.02) mediante el polinomio de Taylor de 2° orden.
- 6. Sabiendo que $p(x,y) = x^2 3xy + 2x + y 1$ es el polinomio de Taylor de 2° orden de f en el punto (2,1), halle una ecuación cartesiana para el plano tangente a la gráfica de f en $(2,1,z_0)$.
- 7. Sea w=f(u,v) definida en forma implícita por $3\,v+u\,e^{2\,w}-w=1$ con f(7,-2)=0. Si $u=x-2\,y\,$ y v=x+y, halle el polinomio de Taylor de primer orden para w(x,y) en el punto (1,-3) y utilícelo para calcular aproximadamente el valor de w cuando x=0.97 e y=-3.01.

2. Extremos

8. Analice la existencia de extremos locales (o relativos) de f en su dominio natural. ¿Se puede determinar si alguno de los extremos hallados es absoluto en dicho dominio?

a)
$$f(x,y) = (x^3 + y^3)(x^3 - y^3)$$

b)
$$f(x,y) = \sqrt{4 - x^2 - y^2}$$

$$c) f(x,y) = \sqrt{(x-1)y}$$

d)
$$f(x,y) = \sqrt{\ln(2 - x^2 - y^2)}$$

e)
$$f(x, y, z) = (x^2 + y^2)(2 - e^{z^2})$$

$$f) \ f(x,y) = \ln(1 + x^4 + y^4)$$

g)
$$f(x,y) = x^3 + y^3 + 48/x + 48/y$$
 h) $f(x,y) = (2x - 3y + 4)^2$

h)
$$f(x,y) = (2x - 3y + 4)^2$$

i)
$$f(x,y) = x^3 + y^3 + 3x^2 - 2y^2 - 4$$

i)
$$f(x,y) = x^3 + y^3 + 3x^2 - 2y^2 - 8$$
 j) $f(x,y) = (x-3y)^2 + (x+y)^4$

- 9. Calcule los extremos de $f(x,y) = x^2 + xy + y^2 ax by$, para $a,b \in \mathbb{R}$ constantes.
- 10. Proponga una función $f: \mathbb{R}^2 \to \mathbb{R}$, que produzca un único máximo local en el punto (1,-2) de valor 5.
- 11. Dada $f(x,y) = ax^3 + bxy + cy^2$, halle todos los valores de a, b y c de manera que (0,0,0)sea un punto silla de la gráfica de f y que f(1,1) sea un mínimo local de los valores de f. ¿Es f(0,0) un extremo local?.
- 12. Sea f una función positiva y C^3 cuyo gradiente se anula sólo en los puntos $P_1 = (1, -1)$ y $P_2 = (-1,1)$. Sabiendo que el determinante hessiano en esos puntos no es nulo, que $f(P_1) = 10$ es un máximo local y que $f(P_2) = 3$ es un mínimo local, estudie los extremos de g(x, y) = 1/f(x, y).
- 13. Sea f(x,y) = h(g(x,y)), donde $g(x,y) = 2 3\frac{(x-1)^2}{2} (y-2)^2 + 2(x-1)(y-2)$ y $h: \mathbb{R} \to \mathbb{R}$ es una función C^2 que satisface h'(u) > 0, $\forall u \in \mathbb{R}$. Analice los extremos de f. Justifique.
- 14. Resuelva:
 - a) Halle una ecuación para el plano tangente en (1,2,4) a la superficie de ecuación $z = f(x,y) + x^2$, sabiendo que f es C^2 y que f(1,2) = 3 es un máximo relativo de los valores de f.
 - b) Sea $f:\mathbb{R}^2 \to \mathbb{R}$ una función C^3 que satisface $\nabla f(1,2)=(1,0),$ y cuya matriz hessiana en (1,2) es $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$. Halle k de manera que $g(x,y) = f(x,y) + kx + (y-2)^2$ tenga extremo relativo en (1, 2). ¿Qué tipo de extremo es?.

- c) Sea la función $G \in C^2$. Sabiendo que G produce un máximo relativo de valor 0 en (1,2,3), halle una ecuación para el plano tangente en (1,2,3) a la superficie de ecuación $G(x,y,z)=4\,x-y^2$.
- 15. Halle los extremos locales de $f(x,y) = 27 x + y + (xy)^{-1}$ en el primer cuadrante $(x,y \in \mathbb{R}^+)$.
- 16. Demuestre que $f(x, y, z) = 4xyz x^4 y^4 z^4$ tiene un máximo local en (1, 1, 1).
- 17. Halle los extremos relativos de los valores de f definida en su dominio natural.
 - a) $f(x, y, z) = -x^3 + 3x + 2y^2 + 4yz + 3y + 8z^2$
 - b) f(x, y, z) = y + x/y + z/x + 1/z
- 18. Halle b de manera que $f(x,y) = (b^{-1}-1)(y-2)^2 + (x-1)^2 2(y-2)^2$ tenga un extremo local en el punto (1,2) y clasifíquelo.
- 19. Sea $f(x,y) = \begin{cases} \sqrt{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ k & \text{si } (x,y) = (0,0) \end{cases}$. Demuestre que f(0,0) es extremo local y clasifíquelo en función del valor de la constante k. ¿Para qué valores de k también es un extremo absoluto en \mathbb{R}^2 ?
- 20. La función C^2 , $f: \mathbb{R}^2 \to \mathbb{R}$ evaluada en puntos de la recta de ecuación $y=3\,x+2$ resulta $x^2-\ln(x-1)+3$. ¿Es posible asegurar que f no tiene un extremo local en (2,8)?.
- 21. Demuestre que $f(x,y,z)=x^2+y^2+z+2$ tiene un mínimo relativo en (-1,1,12) cuando se la evalúa en puntos del plano de ecuación $\vec{X}=(u-3,v+4,2\,u-2\,v+2)$ con $(u,v)\in\mathbb{R}^2$. ¿El punto hallado resulta punto crítico de la función en su dominio?.

3. Extremos condicionados

- 22. Halle los extremos absolutos de $f(x,y) = x^2 + y^2 x y 1$ en ...
 - a) ... la circunferencia $x^2 + y^2 = 1$.
 - b) ... el círculo $x^2 + y^2 \le 1$.
- 23. Halle los extremos de f(x, y, z) = xz yz evaluada en puntos de la curva intersección de las superficies de ecuaciones $x^2 + z^2 = 2$ e yz = 2.
- 24. Halle los extremos absolutos de f(x,y) = 2x(y-1) x y en el triángulo de vértices (0,0), (1,0) y (1,4) (interior y frontera).

- 25. Un cuerpo tiene forma de paralelepípedo rectangular de volumen V y su superficie frontera tiene área A. Determine las dimensiones del paralelepípedo si se desea que dicha área sea mínima para un volumen V dado.
- 26. Un envase cilíndrico debe tener 1 litro de capacidad, el material para las tapas cuesta $0.02\,$ \$/cm² mientras que el de la cara lateral $0.01\,$ \$/cm². Calcule las dimensiones del envase para que el costo sea mínimo.
- 27. Calcule el máximo valor de $f(x, y, z) = x^2 + xy + y^2 + xz + z^2$ sobre la superficie esférica de radio 1 con centro en el origen.
- 28. Calcule la distancia entre los planos de ecuaciones x + y z = 4 y z = x + y + 7.
- 29. Halle el punto de la parábola de ecuación $y = x^2$ más cercano al punto (1, 1/2), aplicando el método de los multiplicadores de Lagrange y realizando la composición correspondiente.
- 30. Halle los puntos de la superficie de ecuación $z=\sqrt{x\,y+1}$ más cercanos al origen. Observe que la superficie está definida para los puntos (x,y) que satisfacen $x\,y\geq -1$, por lo tanto deberá analizar los extremos en el abierto $x\,y>-1$ y en el borde $x\,y=-1$.

VI – Ecuaciones diferenciales - 1ra. parte.

1. Conceptos básicos

- 1. Dadas las siguientes ecuaciones diferenciales ordinarias (EDO)
 - Indique su orden e identifique cuáles son lineales
 - A la derecha de cada EDO se indica una relación entre sus variables, verifique que dicha relación es una solución de la ecuación y analice si es la solución general.

	Ecuación diferencial	Solución a analizar
a)	y' = 3y	$y = C e^{3x}$
b)	y' + 4y = 8x	$y = 2x - e^{-4x} - 1/2$
c)	$y'' - 2y/x^2 = 0$	$y = C x^2 - x^{-1}$
d)	y''' + y'' - y' - y = 1	$y = -1 + 2e^x$
e)	xy'=2y	$y = x^2$
f)	ydy + 4xdx = 0	$y^2 + 4 \ x^2 = C$

- 2. Dada la ecuación diferencial $y=xy'-e^{y'}$, verifique que $y=Cx-e^C$ es su solución general, mientras que $y=x\ln(x)-x$ es una solución singular.
- 3. En los siguientes casos, para cada EDO se indica su SG. Verifique que la SG dada es correcta y grafique a mano alzada la solución particular (SP) que satisface las condiciones dadas.

	Ecuación diferencial	Solución General	Condiciones
a)	y' - 3y = -3	$y = 1 + C e^{3x}$	y(0) = 2
b)	y'y = x	$y^2 - x^2 = A$	y(0) = 1
c)	$y' = x y/(x^2 - 1)$	$x^2 + Cy^2 = 1$	y(0) = 2
d	y'' - y' - 2y = 0	$y = C_1 e^{-x} + C_2 e^{2x}$	y(0) = 2, y'(0) = -3

- 4. Halle una ecuación diferencial tal que la familia de curvas dada sea su solución general.
 - a) xy = C.
 - b) $4x^2 2y^3 = C$.
 - c) Parábolas con eje x y vértice en el origen de coordenadas.
 - d) Rectas que pasan por (2,2).
 - e) Circunferencias en el plano xy con centro en (C,0) y radio R, con $A,R \in \mathbb{R}$.

2. Resolución de ecuaciones diferenciales

- 5. Dada la ecuación diferencial y' + 2xy = 4x (tipo: variables separables), halle la solución que pasa por (0,3).
- 6. Dada la ecuación diferencial $y'+x^{-1}y=3\,x$ (tipo: lineal de 1° orden), halle la solución que pasa por (1,4).
- 7. Halle la solución general de las siguientes ecuaciones diferenciales. En lo casos que se indican condiciones adicionales, obtenga la correspondiente solución particular.

a)
$$x \, dy = dx$$
, $y(-1) = 3$

$$b) \ x \frac{dy}{dx} - y^2 = x y^2$$

c)
$$y' + 3y = 2$$

$$d) \ y y' = x \operatorname{sen}(x^2)$$

e)
$$y' + y \operatorname{sen}(x) = \operatorname{sen}(2x)$$
 f) $xy' = xy - x, \ y(1) = 2$

f)
$$xy' = xy - x$$
, $y(1) = 2$

g)
$$y' + 2x^2y = x^2$$
, $y(0) = 2$ h) $y' + y = 1$, $y(0) = 5/2$

h)
$$y' + y = 1$$
, $y(0) = 5/2$

i)
$$xy' + y = x^2$$
, $y(3) = 0$
 j) $2x dx + x^2y^{-1} dy = 0$

$$j) \ 2x \, dx + x^2 y^{-1} \, dy = 0$$

- 8. Halle la familia de curvas tales que, en cada punto...
 - a) ... la recta normal en el punto pasa por el origen de coordenadas.
 - b) ... la recta tangente en el punto pasa por el origen de coordenadas.
 - c) ... la recta tangente en el punto tiene ordenada al origen igual al doble de la ordenada del punto.
 - d) ... la recta tangente en el punto tiene ordenada al origen igual a la suma de las coordenadas del punto.
 - e) ... la recta tangente en el punto tiene abscisa al origen igual a cuatro veces la abscisa del punto.

3. Familias de curvas ortogonales

- 9. Halle en cada caso la familia de curvas ortogonales a la familia dada. Ilustre mediante un gráfico.
 - a) $y = C x^2$
 - b) xy = C
 - c) $x^2 + y^2 = K$
 - d) 2x + y = C
 - e) $x 3 = By^2$
 - f) y 1 = K x

4. Líneas de campo

10. En los siguientes casos verifique que la curva parametrizada mediante la función \vec{q} es una línea de campo del \vec{F} dado.

a)
$$\vec{g}(t) = (t^2, 2t - 1, \sqrt{t}) \text{ con } t > 0, \vec{F}(x, y, z) = (y + 1, 2, 1/(2z))$$

b)
$$\vec{g}(t) = (t^{-3}, e^t, t^{-1}), \vec{F}(x, y, z) = (-3z^4, y, -z^2)$$

c)
$$\vec{g}(t) = (\text{sen}(t), \cos(t), e^t), \vec{F}(x, y, z) = (y, -x, z)$$

11. Halle una expresión para la familia de líneas de campo en los siguientes casos. Además, salvo en el caso "e)", dibújelas e indique su orientación

a)
$$\vec{F}(x,y) = (-y,x)$$

b)
$$\vec{F}(x,y) = (x^2, y^2)$$

c)
$$\vec{F}(x,y) = \left(\frac{1}{2x-y}, \frac{1}{x}\right)$$

c)
$$\vec{F}(x,y) = \left(\frac{1}{2x-y}, \frac{1}{x}\right)$$
 d) $\vec{F}(x,y) = \left(\frac{y}{x^2+y^2}, \frac{-x}{x^2+y^2}\right)$

e)
$$\vec{F}(x, y, z) = (x, y^2, z)$$

$$f) \vec{F}(x,y) = (2x - y, y)$$

$$g) \vec{F}(x,y) = (x^2, xy)$$

h)
$$\vec{E}(\vec{X}) = \vec{X}/||\vec{X}||^3 \text{ con } \vec{X} = (x, y) \neq \vec{0}.$$

VII – Integrales de línea o curvilíneas.

1. Parametrización y orientación de curvas

1. Para las siguientes curvas en \mathbb{R}^3 , halle dos parametrizaciones que las oriente en sentidos opuestos y grafíquelas.

puestos y grafiquelas.

a)
$$C: \begin{cases} x+2y-z=4\\ y=2x-1 \end{cases}$$
 en el primer octante

b)
$$C: \begin{cases} x^2 + y^2 = 4 \\ z = 2 \end{cases}$$

c)
$$C: \begin{cases} x^2 + y^2 = 4 \\ z = 2x \end{cases}$$
 en el primer octante

d)
$$C: \begin{cases} \frac{x^2}{4} + \frac{z^2}{3} = 4\\ 2x + y = 1 \end{cases}$$

- e) Segmento de puntos extremos $A=(1,2,4)\,$ y $\,B=(2,2,5)\,$
- 2. Sea $\vec{g}:[0,2\pi]\to\mathbb{R}^2$ / $\vec{g}(t)=(\cos(t),\sin(t))$. El conjunto imagen de \vec{g} es una circunferencia de radio 1 centrada en el origen, orientada a partir del punto (1,0) en sentido antihorario.
 - a) Suponiendo que la parametrización dada describe, en función del tiempo t, el movimiento de un punto material que recorre la curva, demuestre que la velocidad (\vec{g}') del punto tiene módulo constante (rapidez constante).
 - b) Reparametrice el movimiento del punto de manera que recorra la misma curva pero cuatro veces más rápido, conservando la orientación. Dibuje los vectores velocidad y aceleración cuando el punto pasa por (0,1).
 - c) Reparametrice el movimiento del punto de manera de recorrer la misma curva pero 2 veces más lento e invirtiendo la orientación. ¿Cuál es su rapidez en este caso?. Dibuje los vectores velocidad y aceleración cuando el punto pasa por (0,1).

2. Integral de campos escalares a lo largo de curvas

- 3. Calcule $\int_C f ds$ en los siguientes casos.
 - a) $f(x,y) = 1/(x^2 + y^2)$, $C: x^2 + y^2 = 4$, $y \ge 0$.
 - b) f(x, y, z) = 2x yz, C recta intersección de los planos de ecuaciones 2y x + z = 2 y x y + z = 4 desde (7, 4, 1) hasta (4, 2, 2).
- 4. Calcule la longitud de:
 - a) La curva parametrizada por $\vec{\sigma}(t) = (t, \frac{2}{3} t^{3/2}, 2), 0 \le t \le 3$. Repita el cálculo pero parametrizándola por longitud de arco.
 - b) La hélice de ecuación $\vec{X} = (3\cos(t), 3\sin(t), 4t)$ con $t \in [0, 2\pi]$. Repita el cálculo pero parametrizándola por longitud de arco tomando el punto $(0, 3, 2\pi)$ como origen de abscisas curvilíneas.
- 5. Calcule la masa de un alambre cuya forma es la de la curva intersección de las superficies de ecuaciones $z = 2 x^2 2y^2$ y $z = x^2$ entre (0, 1, 0) y (1, 0, 1) en el primer octante, si su densidad es $\delta(x, y, z) = kxy$ con k constante.
- 6. Halle la masa de un alambre en forma de V en \mathbb{R}^2 , cuya forma es la de la curva y = |x| entre (-1,1) y (1,1), si su densidad en cada punto es proporcional al valor absoluto del producto de las coordenadas del punto.
- 7. Calcule la masa de un hilo metálico cuya densidad en cada punto es proporcional al producto de las distancias desde el punto a los planos coordenados, si la forma del alambre coincide con la de la curva intersección de la superficie cilíndrica de ecuación $x^2 + y^2 = 4$ con el plano z = 2.
- 8. Halle el centro de masa y la densidad media de un alambre en forma de hélice de ecuación $\vec{X} = (\cos(t), \sin(t), t), t \in [0, 2\pi]$, cuya densidad en cada punto queda definida por $\delta(x, y, z) = k (x^2 + y^2 + z^2)$ con k constante positiva.
- 9. Calcule el momento de inercia respecto de cada eje coordenado de un alambre homogéneo cuya forma es la de la curva parametrizada por $\vec{\sigma}$: $[-a,a] \subset \mathbb{R} \to \mathbb{R}^2 / \vec{\sigma}(t) = (t,\cosh(t))$, si su densidad δ_0 es constante.
- 10. Sean R > 0, $f: D \to \mathbb{R} / f(x, y) = R \sqrt{x^2 + y^2}$ con $D = \{(x, y) \in \mathbb{R}^2 / x^2 + y^2 \le R\}$.
 - a) Justifique geométricamente que los valores de la función representan la distancia de cada punto del dominio a la circunferencia de radio R centrada en el origen.
 - b) Calcule el valor medio de f sobre la curva de ecuación $\vec{X}=(t,m\,t)$ con $t\in[-a,a]$, donde m es constante y $a=\frac{R}{\sqrt{1+m^2}}$. Interprete el resultado obtenido.

11. Suponga que la curva C parametrizada por $\vec{\lambda}:[a,b]\subset\mathbb{R}\to\mathbb{R}^2$ de clase C^1 es la curva de nivel 3 de la función continua $f:U\subset\mathbb{R}^2\to\mathbb{R}$ y su longitud es 4. Calcule $\int_C f\,ds$. ¿Cuál es el valor medio de f sobre la curva?.

3. Integral de campos vectoriales a lo largo de curvas (circulación)

- 12. Calcule la circulación de $\vec{f}(x,y) = (y,-x)$ desde el punto (1,0) hasta el punto (0,-1) a lo largo de ...
 - a) ... un segmento que une los puntos.
 - b) ... las 3/4 partes de la circunferencia de radio 1.

13. Calcule:

- a) $\int_{C^+} (2x, -y) \cdot d\vec{s}$, donde C es el cuadrado |x| + |y| = 1.
- b) $\int_{C^+}(x\,y,x^2)\cdot d\vec{s}$, siendo C la frontera de la región del primer cuadrante definida por: $x\,y\leq 1$, $y\leq x^2$, $8\,y\geq x^2$.

14. Resuelva:

- a) Sea C parametrizada por $\vec{\sigma}(t)=(t,t^2,2\,t)$ con t desde 0 hasta 2. Exprese C como intersección de dos superficies y grafíquela. Calcule la circulación de \vec{f} a lo largo de C cuando $\vec{f}(x,y,z)=(x\,y,x,z\,y)$, respetando la orientación impuesta por la parametrización dada. ¿Cuáles son los puntos inicial y final del recorrido?.
- b) Ídem al inciso anterior para $\vec{\sigma}(t) = (t+1, 2t+1, t)$ con t desde -1 hasta 2, cuando $\vec{f}(x, y, z) = (x + 2y + z, 2y, 3x z)$.
- 15. Calcule el trabajo que realiza una fuerza constante de magnitud 2 con dirección y sentido del versor $\check{\jmath}$, sobre una partícula puntual que sigue la trayectoria $(0,-1) \to (1,0) \to (0,1)$ a lo largo de la semicircunferencia unitaria con centro en (0,0).
- 16. Sea $\vec{f}(x,y,z) = (2g(x,y,z), xy 9xg(x,y,z), 3yg(x,y,z))$ donde g una función escalar continua en \mathbb{R}^3 . Calcule la circulación de \vec{f} desde $(1,y_0,z_0)$ hasta $(8,y_1,z_1)$ a lo largo de la curva C cuyos puntos pertenecen a la superficie de ecuación $z = x y^2$, sabiendo que la proyección de C sobre el plano xy cumple con la ecuación $x = y^3$.
- 17. Dado $\vec{f}(x,y,z) = (x+g(xy+z), y+g(xy+z), 2z)$ con g función escalar continua, demuestre que la circulación de \vec{f} desde A=(2,0,3) hasta B=(3,-1,6) a lo largo del segmento \overline{AB} no depende de g.

3.1. Campos de gradientes

- 18. Analice si el campo dado admite función potencial, en caso afirmativo hállela (¿es única?).
 - a) $\vec{f}(x,y) = (2x + y^2 \operatorname{sen}(2x), 2y \operatorname{sen}^2(x))$
 - b) $\vec{f}(x, y, z) = (x y, x + z y, y z)$
 - c) $\vec{f}(x, y, z) = (y 2xz + 1, x + 2y, -x^2)$
 - d) $\vec{f}(x, y, z) = ((1 + xz)e^{xz}, xe^{xz}, yx^2e^{xz})$
- 19. Sea $\vec{f}(x,y) = (y + x g(x), 3y + x g(x))$ con $\vec{f}(1,1) = (3,5)$, halle g(x) tal que \vec{f} admita función potencial en el semiplano x > 0.
- 20. Siendo \vec{f} un campo de gradientes, demuestre -considerando las hipótesis necesarias- que las líneas de campo son ortogonales a sus conjuntos equipotenciales. En particular, dado $\vec{f}(x,y) = (2x,1)$ cuya función potencial es nula en el punto (1,1), halle las familias de líneas de campo y de líneas equipotenciales. Realice un gráfico a mano alzada, identificando las líneas de ambas familias que pasan por el punto (-1,0).
- 21. Sea $\vec{f}(x,y) = (x, x y^2)$.
 - a) Demuestre que \vec{f} no admite función potencial.
 - b) Calcule la circulación de \vec{f} en sentido positivo a lo largo de la curva frontera de la región descripta por $0 \le y \le 1$, $0 \le x \le y^2$.
- 22. Sea $\vec{f}(x, y, z) = (4x/z, 2y/z, -(2x^2 + y^2)/z^2)$ con $z \neq 0$.
 - a) Demuestre que \vec{f} admite función potencial para z>0 y describa las superficies equipotenciales de \vec{f} para el caso en que el potencial del punto (1,1,1) es igual a 3.
 - b) Calcule la circulación de \vec{f} a lo largo de la curva descripta por: $x = 1 + \log(1 + |\sin(t)|), \ y = e^{t(\pi t)}, \ z = 1 + t/\pi \ \text{con} \ t \in [0, \pi].$
- 23. Si f y g son campos escalares C^2 en D abierto y conexo, y C es una curva suave incluida en D que se la recorre desde A hasta B, verifique que:
 - a) $\int_C (f \nabla g + g \nabla f) \cdot d\vec{s} = f(B) g(B) f(A) g(A)$
 - b) $\int_C (2 f g \nabla f + f^2 \nabla g) \cdot d\vec{s} = f^2(B) g(B) f^2(A) g(A)$
 - c) Si $g \neq 0$ en D, entonces $\int_C \frac{g \nabla f f \nabla g}{g^2} \cdot d\vec{s} = f(B)/g(B) f(A)/g(A)$
- 24. Calcule el trabajo que realiza $\vec{f}(x, y, z) = (y^2 \cos(x) + z^3) \, \breve{i} + (2 y \sin(x) 4) \, \breve{j} + (3 x z^2 + 2) \, \breve{k}$ sobre una partícula cuya trayectoria es la curva parametrizada por:

$$x = \arcsin(t), \ y = 1 - 2t, z = 3t - 1 \text{ con } 0 \le t \le 1.$$

- 25. Un campo conservativo es un campo de fuerzas \vec{f} que admite función potencial ϕ , es decir $\vec{f} = \nabla \phi$. En este caso, en física interesa calcular el trabajo en contra del campo que es $-\int_{\widehat{AB}} \vec{f} \cdot d\vec{s} = -[\phi(B) \phi(A)]$. Para sostener el concepto de calcular mediante la diferencia de potencial entre punto final (B) e inicial (A) del recorrido, en física se acostumbra trabajar definiendo la función potencial $U = -\phi$. Verifique que en este caso $\vec{f} = -\nabla U$, resultando: $-\int_{\widehat{AB}} \vec{f} \cdot d\vec{s} = U(B) U(A)$.
- 26. Siendo \vec{f} un campo de fuerzas y C una arco de curva cerrado, demuestre que:
 - a) Si \vec{f} es conservativo, $\oint_C \vec{f} \cdot d\vec{s} = 0$.
 - b) Si \vec{f} es conservativo y $\int_C \vec{f} \cdot d\vec{s} = 0$, entonces el arco de curva C no es necesariamente cerrado, alcanza con que los puntos extremos A y B pertenezcan al mismo conjunto equipotencial de \vec{f} .
 - c) Si \vec{f} es proporcional a la velocidad no es conservativo. Nota: Suponga C de ecuación $\vec{X} = \vec{\sigma}(t)$ con $t \in [a, b]$, siendo t el tiempo.
- 27. Sea $\vec{H} = H \, \breve{T}$ donde $H = ||\vec{H}||$ es constante y \breve{T} es el versor tangente principal ¹ a la curva suave y simple C de longitud L. Demuestre que $\int_C \vec{H} \cdot d\vec{s} = H \, L$ y que, por lo tanto, \vec{H} no puede ser un campo de gradientes.

Nota: En el análisis básico de circuitos magnéticos, \vec{H} es el vector campo magnético y la expresión H L es típica para el cálculo de la circulación de \vec{H} en cada tramo del circuito. H es la intensidad del campo magnético.

28. Halle valores de a y b para que resulte conservativo el campo de fuerzas

$$\vec{f}(x, y, z) = (a x \operatorname{sen}(\pi y), x^2 \cos(\pi y) + b y e^{-z}, y^2 e^{-z}),$$

para esa elección de a y b calcule la circulación de \vec{f} a lo largo de la curva parametrizada por $\vec{\sigma}(t) = (\cos(t), \sin(2t), \sin^2(t))$ con $0 \le t \le \pi$.

- 29. ¿Para qué valores de a y b, y en qué dominio que contenga a (1,1,1), resulta conservativo el campo $\vec{f}(x,y,z) = (a\,x\,\ln(z))\,\breve{\imath} + (b\,y^2\,z)\,\breve{\jmath} + (x^2/z+y^3)\breve{k}\,?$. Para esa elección de a y b calcule la circulación de \vec{f} desde el punto (1,1,1) hasta el (2,1,2) a lo largo del segmento que los une.
- 30. Verifique que $\int_C (3x-2y^2) dx + (y^3-4xy) dy$ no depende de C, sólo de los puntos inicial y final del arco de curva. Calcule la integral cuando se circula desde (1,3) hasta (2,4).
- 31. Evalúe $\int_C (e^x \sin(y) + 3y) dx + (e^x \cos(y) + 2x 2y) dy$, a lo largo de la elipse de ecuación $4x^2 + y^2 = 4$. Indique gráficamente el sentido de circulación elegido.

¹Versor tangente orientado en el sentido de los arcos crecientes.

32. Sea $\varphi \in C^2(\mathbb{R}^3)$, demuestre que $\vec{f} = \varphi \nabla \varphi$ es un campo de gradientes y calcule $\int_{\lambda_{AB}} \vec{f} \cdot d\vec{s}$ sabiendo que $\varphi(B) = 7$ y que $\int_{\lambda_{AB}} \nabla \varphi \cdot d\vec{s} = 4$. Se supone que A y B son los puntos inicial y final del arco de curva suave λ_{AB} .

<u>Comentario</u>: El análisis de la existencia de función potencial en regiones que no son simplemente conexas se contempla en la práctica de teoremas integrales.

${f VIII-Integrales\ m\'ultiples.}$

1. Integrales dobles

- 1. Grafique las siguientes regiones planas y calcule su área mediante una integral doble.
 - a) Definida por $y \ge x^2$, $y \le x$.
 - b) Definida por $x + y \le 2$, $y \le x$, $y \ge 0$.
 - c) Limitada por $y = x^3$ e y = x.
 - d) Limitada por la línea de nivel 4 de f(x,y) = |x| + |y|.
 - e) Limitada por las curvas de nivel 2 y 4 de f(x,y) = x + 2y en el 1° cuadrante.
- 2. Grafique la región de integración y exprese la integral invirtiendo el orden de integración.

 - a) $\int_1^2 dx \int_x^{2x} f(x,y) dy$ b) $\int_0^1 \int_y^{\sqrt{2-y^2}} f(x,y) dx dy$

 - c) $\int_{-1}^{1} \int_{x^2}^{1} f(x, y) \, dy dx$ d) $\int_{-1}^{1} dy \int_{0}^{e^y} f(x, y) \, dx$
- 3. Calcule la masa y la posición del centro de masa correspondiente a una placa plana definida por $|x| \leq 1$, $0 \leq y \leq 1$, si su densidad en cada punto es proporcional a la distancia desde el punto al eje y.
- 4. Calcule la masa de la placa plana definida por $|x| \le y \le 2$ cuando la densidad en cada punto es proporcional a la distancia desde el punto a la recta de ecuación x=1.
- 5. Sea la placa plana definida por $0 \le y \le \sqrt{4-x^2}$, cuya densidad superficial en cada punto es $\delta(x,y) = k|x|$ con k constante positiva. Calcule la densidad media de la placa.
- 6. Calcule el momento de inercia respecto del eje x de la placa plana D cuya densidad δ_0 es constante, cuando $D = \{(x, y) \in \mathbb{R}^2 / |x| \le y \le 2\}.$

- 7. Interprete gráficamente la región de integración y calcule las siguientes integrales, en algunos casos puede convenirle invertir el orden de integración.

 - a) $\int_{-1}^{1} \int_{|y|}^{1} 2x \, dx dy$ b) $\int_{-2}^{2} \int_{\sqrt{4-x^2}}^{4-x^2} x \, dy dx$

 - c) $\int_0^1 \int_u^1 e^{x^2} dx dy$ d) $\iint_D y dx dy$, D es el disco de radio 1 centrado en el origen
- 8. Optativo: Sea $f:[0,2]\times[0,2]\subset\mathbb{R}^2\to\mathbb{R}$ continua. Si $F(x,y)=\int_0^xdu\int_0^yf(u,v)\;dv$, con (x,y) interior al dominio de f, demuestre que:

$$\frac{\partial^2 F}{\partial x \partial y}(x, y) = \frac{\partial^2 F}{\partial y \partial x}(x, y) = f(x, y).$$

1.1. Cambio de variables en integrales dobles

- 9. Calcule las siguientes integrales aplicando una transformación lineal conveniente.
 - a) $\iint_D x \, dx dy$, D descripto por $1 \le x + y \le 4$, $x \ge 0$, $y \ge x$. Sugerencia: aplique el cambio de variables definido por (x,y) = (v,u-v).
 - b) $\iint_D e^{(y-x)/(x+y)} dxdy$, D descripto por $x+y \le 2$, $x \ge 0$, $y \ge 0$.
 - c) $\iint_D (x-y)^2 \operatorname{sen}^2(x+y) \, dx dy$, D descripto por $-\pi \le y x \le \pi$, $\pi \le x + y \le 3\pi$.
 - d) $\iint_D (x+y)^3 dxdy$, D descripto por $1 \le x+y \le 4$, $-2 \le x-2y \le 1$.
- 10. Resuelva utilizando coordenadas polares. ¿En qué casos merece especial cuidado el análisis de la integrabilidad de la función en el dominio indicado?.
 - a) Calcule el área de un círculo de radio 3 con centro en el origen de coordenadas, inténtelo también en coordenadas cartesianas.
 - b) $\iint_{D} 2x \, dxdy$, $D = \{(x, y) \in \mathbb{R}^2 / x^2 + y^2 \le 16, x + y \ge 0\}$.
 - c) $\iint_D y^2 dxdy$, $D = \{(x, y) \in \mathbb{R}^2 / 1 \le x^2 + y^2 \le 16, y \ge |x|\}$.
 - d) $\iint_D x y \, dx dy$, $D = \{(x, y) \in \mathbb{R}^2 / (x 1)^2 + y^2 \le 4, y \ge 0\}$.
 - e) $\iint_D e^{x^2+y^2} dxdy$, D círculo de radio R con centro en (0,0).
 - f) $\iint_D \frac{x+y}{x^2} dxdy$, D descripto por $0 \le y \le x$, $x+y \le 2$.
 - g) $\iint_D (x+y)^{-1} dxdy$, D descripto por $x \ge 0$, $x+y \le 2$, $y \ge x$.
 - h) Calcule área(D), D descripto por $x^2 + y^2 \le 4a^2$, $x^2 + y^2 \ge 2ax$, con a > 0.
- 11. Resuelva los siguientes ejercicios utilizando los cambios de coordenadas propuestos.
 - a) Calcule área(D), $D=\{(x,y)\in\mathbb{R}^2/|x|+|y|\leq 2\}$, usando $(x,y)=(\frac{u+v}{2},\frac{u-v}{2})$.

- b) Calcule $\iint_D e^{x+y} dxdy$, D descripto por $1 \le x+y \le 4$ en el 1° cuadrante, usando $x+y=u, \ x=v.$
- c) Calcule el área de la región plana definida por $\frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1$ con $a, b \in \mathbb{R}^+$ constantes, usando $(x, y) = (a r \cos(\theta), b r \sin(\theta))$.
- d) Calcule $\iint_D x^{-1} dx dy$, D descripto por $x^2 \le y \le 4 x^2$, $x \ge 1$, $y \le 9$, usando la transformación $(x,y)=(v/u,v^2/u)$.
- 12. Sea f una función continua tal que $\int_0^4 f(t) \ dt = 1$. Calcule $\iint_D f(x^2 + y^2) \ dxdy$ siendo $D \subset \mathbb{R}^2$ el disco descripto por $x^2 + y^2 \le 4$.

2. Integrales triples

- 13. En los siguientes casos, grafique el cuerpo D en el espacio xyz y calcule lo pedido resolviendo una integral triple en coordenadas cartesianas.
 - a) Volumen de $D = \{(x, y, z) \in \mathbb{R}^3 / x + z \le 3, y \ge x, y \le 4, x \ge 0, z \ge 0\}.$
 - b) Masa de D definido por: $z \le 4 x^2$, $z \ge y$, 1° octante, si la densidad es constante.
 - c) Volumen de $D = \{(x, y, z) \in \mathbb{R}^3 / x + y + z \le 4 \land z \ge x + y \land x \ge 0 \land y \ge 0\}.$
 - d) $\iiint_D 3\,x\; dx dy dz\,,\, D \text{ descripto por: } z \geq 2\,x^2 + y^2 + 1\,,\, z \leq 5 y^2.$

2.1 Cambio de variables en integrales triples

- 14. En los siguientes casos, grafique el cuerpo en el espacio xyz y calcule lo pedido en coordenadas cilíndricas.
 - a) Masa de $D=\{(x,y,z)\in\mathbb{R}^3\,/\,x^2+y^2\le 4,\,y\ge x,\,|z|\le 2\},$ si la densidad es $\delta(x,y,z)=k\,x^2$ con k constante positiva.
 - b) Volumen de $D = \{(x, y, z) \in \mathbb{R}^3 / x^2 + z^2 \le 9, x + y \le 3, y \ge 0\}.$
 - c) $\iiint_H 2 y \ dx dy dz$, con H definido por: $x^2 + y^2 \le 2 x$, $0 \le z \le y$.
- 15. En los siguientes casos, grafique el cuerpo en el espacio xyz y calcule lo pedido en coordenadas esféricas.
 - a) Volumen de $D = \{(x, y, z) \in \mathbb{R}^3 / x^2 + y^2 + z^2 \le 4, \ 0 \le y \le x\}.$
 - b) $\iiint_D 2y \ dxdydz$, con D definido por: $x^2 + y^2 + z^2 \le 4, z \le 1$.
 - c) Masa de $H = \{(x, y, z) \in \mathbb{R}^3 / x^2 + y^2 + z^2 \le 2y, y \le x\}$, si la densidad en cada punto es proporcional a la distancia desde el punto al plano xy.

2.2 Cálculos con integrales triples en el sistema de coordenadas más conveniente

- 16. Calcule el volumen del cuerpo D en los siguientes casos.
 - a) $D = \{(x, y, z) \in \mathbb{R}^3 / x + y \le z \le 1 \land x \ge 0 \land y \ge 0\}.$
 - b) $D = \{(x, y, z) \in \mathbb{R}^3 / x^2 + y^2 \le 1 \land y^2 + z^2 \le 1\}.$
 - c) $D = \{(x, y, z) \in \mathbb{R}^3 / z \le \sqrt{x^2 + y^2} \land x^2 + y^2 + z^2 \le 2\}.$
 - d) D limitado por $z = 2x^2 + y^2$, $z + y^2 = 8$.
 - e) D definido por: $y \ge x^2$, $y \le x$, $z \ge x + y$, $x + y + z \le 6$.
 - f) D interior a la esfera de ecuación $x^2+y^2+z^2=4\,r^2$, con $x^2+y^2\geq 2\,r\,x$, en el 1° octante. (r>0).
- 17. Demuestre que $V = \frac{9}{2}a^3$ es el volumen del tetraedro en el primer octante limitado por los planos coordenados y el plano tangente a la superficie de ecuación $x y z = a^3$ en el punto (x_0, y_0, z_0) de la misma $(a \neq 0)$.
- 18. Calcule la masa del cuerpo limitado por $x^2 + y^2 + z^2 = 2$ con $y \ge x^2 + z^2$ cuando la densidad en cada punto es proporcional a la distancia desde el punto al eje y.
- 19. Calcule el momento estático del cuerpo H respecto del plano xz si la densidad en cada punto es proporcional a la distancia desde el punto al plano xy. H está en el 1° octante definido por: x + y + z < 2, z > x + y, y < x.
- 20. Calcule las coordenadas del centro de gravedad de un cuerpo con densidad constante limitado por: $x^2 + z^2 = 1$, y x = 1, 1° octante.
- 21. Calcule el volumen de la región definida por $x^2 + y^2 6 \le z \le \sqrt{x^2 + y^2}$.
- 22. Halle la constante k > 0 de manera que resulte igual a 4π el volumen del cuerpo comprendido entre el paraboloide de ecuación $x^2 + y^2 = k z$ y el plano de ecuación z = k.
- 23. Calcule el momento de inercia respecto del eje x de un cuerpo con densidad constante limitado por las superficies de ecuaciones $x = y^2 + z^2$ y $5x = y^2 + z^2 + 4$.
- 24. Dados $f(x,y,z) = (x+y+z)/(x^2+y^2+z^2)^{3/2}$ y el cuerpo D en el 1° octante con $x+y+z \le 4$, plantee (indicando los correspondientes límites de integración) la integral triple de f extendida a D en coordenadas cartesianas, cilíndricas y esféricas. Resuelva en el sistema que crea más conveniente.

IX – Integrales de superficie.

1. Área de una superficie

- 1. Calcule el área de las siguientes superficies:
 - a) Σ : trozo de superficie cilíndrica de ecuación $x^2 + y^2 = 4$ con $0 \le z \le 2$.
 - b) Σ : frontera del cuerpo definido por: $x+y+z\leq 4,\ y\geq 2\,x$ en el 1° octante.
 - c) Σ : trozo de superficie cilíndrica de ecuación $x^2+y^2=2\,a\,y$ interior a la esfera de ecuación $x^2+y^2+z^2\leq 4\,a^2$ en el 1° octante, con a>0.
 - d) Σ : trozo de superficie cónica de ecuación $z=\sqrt{x^2+y^2}$ con $z\leq 4,\ y\leq \sqrt{3}\,x.$
- 2. Sea Σ una porción de área 2 del plano de ecuación 2x + 3y 2z = 1. Calcule el área de la provección de S sobre el plano xy.

2. Integral de superficie de campo escalar

- 3. Calcule la masa de la porción de superficie cónica de ecuación $4z^2 = x^2 + y^2$ con $0 \le z \le 1$ y $x \le y$, sabiendo que la densidad superficial de masa en cada punto es proporcional a la distancia desde el punto al plano xy.
- 4. Calcule el momento de inercia respecto del eje y de una chapa con forma de tronco de cono de ecuación $y = \sqrt{x^2 + z^2}$ con $1 \le y \le 4$, si la densidad es constante.
- 5. Calcule la integral de $f(x,y,z)=x\,y-z\,$ sobre la superficie cilíndrica de ecuación $y=z^2\,$ con $|x|\leq y\leq 2.$
- 6. Calcule el valor medio de f sobre la superficie plana de ecuación y=x con $z\leq 2$ e $y\leq 4$ en el 1° octante, cuando $f(x,y,z)=x^2y\,z$.

3. Integral de superficie de campo vectorial (flujo)

- 7. Calcule, en cada caso, el flujo de \vec{f} a través de la superficie Σ dada $(\iint_{\Sigma} \vec{f} \cdot \check{n} \ d\sigma)$, indicando gráficamente la orientación de Σ que Ud. ha elegido o aquella que se especifica.
 - a) $\vec{f}(x,y,z)=(y\,,\,x^2-y\,,\,x\,y)\,,$ a través del trozo de superficie cilíndrica de ecuación $y=x^2\,$ con $x+y+z\leq 2\,$ en el 1° octante.
 - b) $\vec{f}(x, y, z) = (x y, x, 2 y)$, a través de la superficie frontera del cuerpo definido por: $x + y \le 4$, $y \ge x$, $z \le x$, $z \ge 0$, orientada hacia afuera del cuerpo.
 - c) $\vec{f}(x,y,z) = (y^3z,\,x\,z-y\,z\,,\,x^2z)\,,$ a través de $2\,y=x^2\,$ con $\,x^2+y^2+z^2\leq 3$ en el 1° octante.
- 8. Sea $\vec{B} = B\,\check{n}$ con B constante, perpendicular al trozo de plano Σ de área S y orientado según dicho \check{n} , demuestre que el flujo de \vec{B} a través de Σ resulta igual al producto $B\,S$.

 Caso elemental: Flujo del campo inducción magnética \vec{B} a través de una superficie plana, en cuyos puntos es perpendicular y constante.
- 9. Dado el cuerpo D definido por: $x^2 + y^2 \le z \le 4$ con superficie frontera ∂D orientada hacia el exterior de D, demuestre que si $\vec{f}(x,y,z) = (y,x,-z)$ el flujo de \vec{f} a través de ∂D es entrante. ¿Por qué el flujo es entrante si ∂D está orientada hacia afuera de D?.
- 10. Dado $\vec{f}(x,y,z) = (x-y,az,by)$, determine la relación entre las constantes a y b para que sea nulo el flujo de \vec{f} a través de la superficie plana de ecuación y+z=3 en el 1° octante con $x \leq 2$. Indique en un gráfico cómo decidió orientar a la superficie.
- 11. Siendo $\vec{f}(x,y,z) = (x,y,z)$, calcule el flujo de \vec{f} a través del trozo de superficie de ecuación $z = a x^2 y^2$ que está por encima del plano de ecuación z = 0 con a > 0. Considere el versor normal a la superficie (\check{n}) con componente en z positiva.
- 12. Una porción Σ de superficie esférica de radio 3 centrada en $\bar{0}$ tiene área 2. Calcule el flujo de \vec{f} a través de Σ orientada hacia el interior de la esfera, si $\vec{f}(x,y,z)=(x,y,z)$.
- 13. Dado \vec{f} continuo en \mathbb{R}^3 tal que $\vec{f}(x,y,z)=(4\,y\,,\,y\,,\,\varphi(x,y,z))$, calcule el flujo de \vec{f} a través del trozo de superficie cilíndrica de ecuación $x^2+y^2=1$ con $0\leq z\leq 2$. Indique en un gráfico la orientación elegida. ¿Por qué el flujo no depende de φ ?.
- 14. Dado $\vec{f}(x,y,z) = (a\,b\,x\,,\,y/a\,,\,-z/b)$, halle las constantes a y b para que resulte un mínimo relativo del flujo de \vec{f} a través de $z=x\,y$ con $(x,y)\in[1,2]\times[1,2]$, si la superficie se orienta de manera que su versor normal \check{n} en cada punto es tal que $\check{n}\cdot(0,0,1)<0$.
- 15. Sea Σ la superficie de ecuación $x^2+y^2=1$ con x^2+z^2-2 $z\leq 0$, $x\geq 0$, $y\geq 0$. Calcule el flujo de \vec{f} a través de Σ , si $\vec{f}(x,y,z)=(x\,,y\,,z^2)$ y Σ se orienta de manera que -en cada punto- la componente según y de su versor normal resulte positiva.

X – Teoremas integrales.

- 1. Trabajando en coordenadas cartesianas y enunciando las hipótesis necesarias en cada caso, demuestre que para todo punto $(x, y, z) \in \mathbb{R}^3$:
 - a) $\nabla \cdot (rot(\vec{f})) = 0$
 - b) $rot(\nabla f) = \bar{0}$
 - c) $\nabla(f g) = f \nabla g + g \nabla f$
 - $d) \ \nabla \cdot (f \, \vec{g}) = \nabla f \cdot \vec{g} + f \ \nabla \cdot \vec{g}$
 - e) $\nabla \times (f \vec{g}) = \nabla f \times \vec{g} + f \nabla \times \vec{g}$
 - f) si $\varphi: \mathbb{R} \to \mathbb{R}$ y $\vec{r} = (x, y, z)$, para \vec{r} no nulo resulta $\nabla \varphi(||\vec{r}||) = \varphi'(||\vec{r}||) \vec{r}/||\vec{r}||$
- 2. Sea $\vec{f} \in C^1$ tal que $\vec{f}(x,y,z) = (2\,x\,,\,-y^2z\,,\,h(x,y))$. Determine la expresión de h de manera que \vec{f} resulte irrotacional, sabiendo que $\vec{f}(0) = (0,0,1)$.
- 3. Si $\vec{f}(x,y,z) = (y^2 z, 2xy + 1, h(x,y,z))$ con $h \in C^1$, ¿es posible hallar h tal que \vec{f} sea solenoidal e irrotacional?.
- 4. Sea $\vec{f}(x,y)=(P(x,y),Q(x,y))$ con $\vec{f}\in C^1$ tal que $Q'_x-P'_y=k\neq 0$ (k constante). Obtenga la fórmula:

$$\operatorname{Área}(D) = k^{-1} \oint_{\partial D^+} \vec{f} \cdot d\vec{s}$$

que permite calcular el área de una región plana D mediante una integral de línea a lo largo de su frontera ∂D .

En los siguientes casos, grafique la región D del plano xy y calcule su área integrando $\vec{f}(x,y)=(0,x)$ a lo largo de su frontera.

- a) D definida por: $\frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1$ con $a, b \in \mathbb{R}^+$ constantes.
- b) D definida por: $x^2 + y^2 \le 2$, $x \ge 1$.
- c) D acotada, con frontera de ecuación $\vec{X} = (\text{sen}(2\,t)\,,\,2\,\text{sen}^2(t))$ con $0 \le t \le \pi$. Nota: Observe que se trata de un círculo de radio 1.

- 5. Siendo $D = \{(x,y) \subset \mathbb{R}^2 / 4x^2 + y^2 \leq 16\}$ y $\vec{f}(x,y) = (g(x)y, g(x) + y^2)$ con $\vec{f} \in C^1$ tal que $\vec{f}(0,1) = (1,2)$, halle una expresión para g de manera que $\oint_{\partial D^+} \vec{f} \cdot d\vec{s}$ resulte numéricamente igual al área de D.
- 6. Sea $\vec{f}(x,y) = (x, xy^2)$ y D una región plana cuyos puntos satisfacen $1 \le x^2 + y^2 \le 4$.
 - a) Calcule mediante una integral de línea la circulación de \vec{f} a lo largo de la frontera de D recorrida en sentido positivo (de manera que el interior de D quede a la izquierda).
 - b) Calcule la circulación pedida en "a)" utilizando el teorema de Green.
- 7. Sea $\vec{f}: \mathbb{R}^2 \{(0,0)\} \to \mathbb{R}^2$, $\vec{f} = (P,Q)$ con $\vec{f} \in C^1$ y $(Q'_x P'_y)(x,y) = 4$ en su dominio. Calcule $\oint_{C^+} \vec{f} \cdot d\vec{s}$ cuando C es una circunferencia con centro en el origen y radio r, sabiendo que para r = 1 el valor de dicha integral es 3π . Grafique y considere los casos de 0 < r < 1 y de r > 1.
- 8. Sean $\vec{f}(x,y,z)=(y+x\,,\,2\,y\,,\,z)$ y C la curva intersección de las superficies de ecuaciones: $z=27-2\,x^2-2\,y^2\,$ y $z=x^2+y^2.$
 - a) Grafique y parametrice C.
 - b) Calcule mediante una integral de línea la circulación de \vec{f} a lo largo de C, indicando gráficamente la orientación elegida.
 - c) Verifique el resultado obtenido en "b)" aplicando el teorema del rotor. ¿Cuál es la superfice más conveniente a elegir?.
- 9. Sea S la superficie de ecuación $y^2 + z^2 = 4$ en el 1° octante, con $x + y \leq 2$. Dado $\vec{f}(x,y,z) = (x\,y\,,\,y\,,\,y\,z)$, calcule la circulación de \vec{f} a lo largo de la curva borde de S con orientación $(0,0,2) \to (0,2,0) \to (2,0,2) \to (0,0,2)$.
- 10. Sea $\vec{f}(x, y, z) = (x, y + z, z)$. Calcule el flujo de \vec{f} a través de la superficie frontera del cuerpo definido por $x^2 + y^2 \le 1$ con $0 \le z \le 1$, considerando la normal exterior.
- 11. Dado $\vec{f}(x,y,z) = (h(x) + yz, xz + yh(x), xy)$ con h' continua y $\vec{f}(1,1,1) = (3,3,1)$, halle h(x) tal que resulte nulo el flujo de \vec{f} a través de la superficie frontera de un cuerpo $D \subset \mathbb{R}^3$.
- 12. Dado $\vec{f}(x,y,z) = (z-xy,y-z,x^3+y)$, calcule aplicando el teorema del rotor la circulación de \vec{f} a lo largo de la curva borde de la región contenida en el plano xy limitada por $y=x,\ y=2x,\ xy=1,\ xy=4$ con x>0, recorrida de manera de desplazarse con la orientación $(1,1,0) \to (2,2,0) \to (\sqrt{2},2\sqrt{2},0)$.

- 13. Calcule el flujo de \vec{f} a través de la superficie S de ecuación $z = \sqrt{25 x^2 y^2}$ con $x^2 + y^2 \le 25$, sabiendo que $\vec{f} = rot(\vec{g})$ con $\vec{g} \in C^2$ y que $\vec{f}(x,y,0) = (0\,,\,y\,,\,x-1)$. Indique gráficamente la orientación que ha elegido para S.

 Nota: Cuando $\vec{f} = rot(\vec{g})$, se dice que \vec{g} es el potencial vectorial de \vec{f} .
- 14. Siendo $\vec{f} = rot(\vec{g})$ con $\vec{g} \in C^2$ y ∂D la supeficie frontera de un cuerpo D, demuestre que el flujo de \vec{f} a través de ∂D es nulo. ¿Se necesita alguna hipótesis para D y ∂D ?.
- 15. Sea \vec{f} un campo solenoidal y Σ una superficie simple y abierta cuyos puntos tienen coordenada $z \geq 0$ y su borde es una curva cerrada incluida en el plano xy. Denotando Σ_{xy} a la proyección de Σ sobre el plano xy, demuestre que $\iint_{\Sigma} \vec{f} \cdot \breve{n} \, d\sigma = \iint_{\Sigma_{xy}} \vec{f} \cdot \breve{n} \, d\sigma$ siempre que ambas superficies se orienten de igual forma (por ejemplo, ambas hacia z^+). La demostración es sencilla si realiza una representación gráfica que le permita fijar ideas. Indique las hipótesis que supone.
- 16. Sea $C \subset \mathbb{R}^3$ la curva determinada por la intersección de las superficies de ecuaciones: $z=2\,x^2+y^2\,$ y $z=6-x^2-y^2.$
 - a) Realice un gráfico aproximado de la curva y las superficies.
 - b) Calcule la circulación del campo \vec{F} tal que $\vec{F}(x,y,z)=(2\,y\,x\,e^{x^2}+z\,,\,e^{x^2}\,,\,x)$ a lo largo de la porción de C con $y\geq 0$, indicando la orientación elegida.
- 17. Dado el campo \vec{f} cuya matriz jacobiana es $D\vec{f}(x,y,z) = \begin{pmatrix} y^2 & 2\,x\,y & 0 \\ 0 & 0 & 0 \\ 0 & z^2 & 2\,y\,z \end{pmatrix}$, calcule la circulación de \vec{f} a lo largo de la curva intersección del plano x+y+z=4 con los planos coordenados. Indique claramente en un esquema con qué sentido ha orientado la curva.
- 18. Sea \vec{f} un campo de clase C^2 , cuyo rotor es $\nabla \times \vec{f}(x,y,z) = (x-y,x-2y,z)$. Calcule la circulación de \vec{f} a lo largo de la curva de ecuación:

$$\vec{X} = \left(3\,\cos(t)\,, 3\,\sin(t)\,,\, 6 - 3\,\cos(t) - 3\,\sin(t)\right)\,\mathrm{con}\;t \in \left[0, 2\pi\right],$$

indique gráficamente qué orientación de ${\cal C}$ impone la parametrización dada.

- 19. Demuestre que si φ es armónico, el flujo de $\varphi \nabla \varphi$ a través de la superficie frontera de un cuerpo H, orientada hacia afuera del cuerpo, es igual a la integral triple de $\|\nabla \varphi\|^2$ extendida a H.
- 20. Demuestre que el flujo de $\vec{f}(x,y,z)=(x+y\,e^z\,,\,Q(x,z)\,,\,5\,z)$ a través del trozo de superficie esférica de ecuación $x^2+y^2+z^2=13\,$ con $z\geq 2\,$ no depende de la función Q. Indique gráficamente la orientación que ha elegido para el versor normal a la superficie y otras hipótesis que debieran considerarse.

21. Demuestre que si \vec{f} es solenoidal, sus líneas de campo no tienen origen (*punto fuente*) ni fin (*punto sumidero*); suponga que puede aplicar el teorema de la divergencia.

Nota: Un caso importante en las aplicaciones es el del vector inducción magnética \vec{B} , las líneas de inducción son cerradas, no tienen origen ni fin (ejemplo: imán recto). Una de las ecuaciones de Maxwell es $div(\vec{B}) = 0$.

22. El campo electrostático creado por una carga puntual q en el origen de coordenadas es:

$$\vec{E}: \mathbb{R}^3 - \{\bar{0}\} \to \mathbb{R}^3 / \vec{E}(\vec{r}) = k q \frac{\vec{r}}{\|\vec{r}\|^3} \text{ con } \vec{r} = (x, y, z) , k > 0 \text{ constante}$$

Demuestre que el flujo de \vec{E} a través de cualquier superficie Σ cerrada que encierre al origen es proporcional a q (resulta igual a $4\pi k q$), mientras que si Σ no encierra ni contiene al origen el flujo es nulo. Complete las hipótesis necesarias para Σ .

- 23. Sean $\vec{f}(x,y,z) = (P(x,y,z), Q(x,y,z), 2z)$ con $\vec{f} \in C^2$ y la región $D \subset \mathbb{R}^3$ descripta por $0 \le z \le 1$, $x^2 + y^2 \le 1$. Sabiendo que $\iiint_D \nabla \cdot \vec{f}(x,y,z) \, dx dy dz = 3$, calcule el flujo de \vec{f} a través de S, siendo S la superficie cilíndrica (¡sin tapas!) descripta en coordenadas cilíndricas por r = 1 con $0 \le z \le 1$, orientada de manera que el vector normal se dirija hacia afuera del cilindro.
- 24. Sea $\vec{f}(x,y,z) = (P(x,y,z), Q(x,y,z), 2)$ un campo vectorial C^2 en la región $R \subset \mathbb{R}^3$ descripta por $x^2 + y^2 + z^2 < 9$. Suponiendo que $\nabla \times \vec{f} = 0$ en R, calcule la circulación de \vec{f} a lo largo de la curva de ecuación $\vec{X} = (\text{sen}(t), 1, \cos(t))$ con $0 \le t \le \pi$.
- 25. Sea $\vec{F}(x,y,z) = (f'_x(x,z), 0, x+y+f'_z(x,z))$ donde $f: \mathbb{R}^2 \to \mathbb{R}$ es una función C^2 . Calcule la circulación de \vec{F} a lo largo de la curva cerrada definida por la intersección de las superficies de ecuaciones $x^2 + y^2 + z^2 = 25$ e y = 4, orientada de manera que su vector tangente en (3,4,0) tenga componente en z negativa.
- 26. Sea $\vec{f}(x,y,z) = (x P(x,y,z), y P(x,y,z), z P(x,y,z) 2)$ un campo vectorial C^2 . Suponiendo que $\iiint_M \nabla \cdot \vec{f}(x,y,z) \, dx dy dz = 3$, donde $M \subset \mathbb{R}^3$ es la región descripta por:

$$x^2 + y^2 + z^2 \le 25$$
, $4\sqrt{x^2 + y^2} \le 3z$.

Calcule el flujo de \vec{f} a través de la superficie S de ecuación $x^2 + y^2 + z^2 = 25$ con $z \ge 4$ considerando S orientada hacia z^+ .

27. Sea $\vec{f}: \mathbb{R}^3 \to \mathbb{R}^3$ un campo vectorial C^2 con $\nabla \times \vec{f}(x,y,z) = (2, 2y-3, 0)$. Sea g(a,b) con $(a,b) \in \mathbb{R}^2$ la circulación de \vec{f} a lo largo del borde del rectángulo descripto por:

$$y = b^2x - a^2$$
, $-1 \le x \le 1$, $-1 \le z \le 1$

orientado de manera que su tangente en $(0, -a^2, 1)$ tiene componente según x negativa. Calcule el mínimo g(a, b).

28. Optativo: Dado $\vec{f}(x, y, z) = (x, y, z)$, determine el valor de la constante a tal que sea máximo el flujo de \vec{f} a través de la frontera del cilindro elíptico descripto por:

$$\frac{x^2}{1 - \frac{4a^2}{1 + 4a^2}} + \frac{y^2}{1 + \frac{4a^2}{1 + 4a^2}} \le 1 , \ 0 \le z \le 1$$

- 29. Sea $\vec{F} \in C^2$ un campo vectorial tal que $\vec{F}(x,y,z) = (x\,P(x,y,z)\,,\,y\,Q(x,y,z)\,,\,z)\,$ y sea S el semicírculo descripto por: $y=0\,,\,x^2+z^2\leq 1\,,\,x\geq 0$. Si el flujo del rotor de \vec{F} a través de S orientado de manera que su normal tenga componente según y positiva es 4, calcule la circulación de \vec{F} a lo largo del arco de circunferencia de ecuación $\vec{X}(t) = (\text{sen}(t)\,,\,0\,,\,-\cos(t))$ con t desde 0 hasta π .
- 30. Sea $\vec{f}(x,y,z)=(0\,,\,0\,,\,z\,R(x,y))$ un campo vectorial C^2 en la región $D\subset\mathbb{R}^3$ descripta por $x^2+y^2+z^2<9$. Suponiendo que el flujo de \vec{f} a través de la frontera del cilindro definido por $x^2+y^2\leq 1\,,\,0\leq z\leq 2$ es igual a 3, calcule $\iint_M R(x,y)\,dxdy$ cuando M es el disco descripto en el plano xy por $x^2+y^2\leq 1$.
- 31. Siendo $\vec{F}(x,y,z) = (x+z\,,\,g(y)+z^2\,,\,z)\,$ con $\vec{F}(0,0,0) = (0,1,0),\,$ halle g(y) tal que sea nulo el flujo de \vec{F} a través de la superficie semiesférica de ecuación $x^2+y^2+z^2=4\,$ con $z\geq 0$ orientada hacia $z^+.$
- 32. Dado $\vec{f} \in C^1$ tal que $\vec{f}(x,y,z) = (x + \varphi(x-y), y + \varphi(x-y), 2z + 4)$, calcule el flujo de \vec{f} a través de la superficie Σ de ecuación $z = x^2 + y^2 1$ con $z \leq 3$. Indique gráficamente cómo decidió orientar a Σ .
- 33. Siendo $\vec{f}(x, y, z) = (x^2 + x g(xy), y^2 y g(xy), z^2)$ con $\vec{f} \in C^1$, calcule el flujo de \vec{f} a través de las superficie esférica de radio 4 con centro en el punto (2, 1, 3).
- 34. Dado $\vec{f}(x,y,z)=(x\,y\,,\,x^2+h(y)\,,\,y\,z-x^2)$ con h' continua, calcule la circulación de \vec{f} a lo largo de la curva C de ecuación:

$$\vec{X} = (1 + \cos(t), 2 + \sin(t), 4) \text{ con } 0 \le t \le 2\pi$$

orientada según lo impone esta parametrización.

- 35. Sea $\vec{f}(x,y,z) = (z^2, 2yz + g(y), g(y) + 2xz)$ con $\vec{f} \in C^1$ tal que $\vec{f}(1,1,1) = (1,1,1)$, ¿cuál debe ser la expresión de g para que \vec{f} resulte irrotacional?.
- 36. Analice si los campos vectoriales dados admiten función potencial en sus dominios naturales, observe que los mencionados dominios son conexos pero no son simplemente conexos.

a)
$$\vec{f}(x,y) = \left(\frac{2x}{x^2 + y^2}, \frac{2y}{x^2 + y^2}\right)$$

b)
$$\vec{f}(x,y) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right)$$

c)
$$\vec{f}(x,y) = \left(\frac{2y}{4x^2 + y^2}, \frac{-2x}{4x^2 + y^2}\right)$$

d)
$$\vec{f}(x,y) = \left(\frac{x}{(x^2 + 9y^2)^{3/2}}, \frac{9y}{(x^2 + 9y^2)^{3/2}}\right)$$

e)
$$\vec{f}(x, y, z) = \left(\frac{2x}{x^2 + y^2}, \frac{2y}{x^2 + y^2}, 4z\right)$$

f)
$$\vec{f}(x,y,z) = \left(\frac{-y}{x^2 + 4y^2}, \frac{x}{x^2 + 4y^2}, z^2 + 1\right)$$

XI – Ecuaciones diferenciales - 2da. parte.

1. Resolución de ecuaciones diferenciales

- 1. Dada la ecuación diferencial $xy' = y + xe^{y/x}$ (tipo: homogénea de 1° orden), halle la solución tal que y(1) = 0.
- 2. Dada $xy^2 dx + (yx^2 + 1) dy = 0$ (tipo: diferencial total exacta), halle la solución particular tal que y(1) = 0.
- 3. Siendo y'' + y' = 2x + 2 (tipo: lineal de 2° orden reducible a 1° orden), determine la solución que en en el punto (0,1) tiene recta tangente paralela al eje x.
- 4. Halle la solución general de las siguientes ecuaciones diferenciales. En lo casos que se indican condiciones adicionales, obtenga la correspondiente solución particular.

a)
$$(2x^2 + y^2)y' = 2xy$$

b)
$$x^2 y' = y^2 + x y$$
, $y(1) = 1$

c)
$$3x^2y dx + (x^3 + \text{sen}(y)) dy = 0, y(1) = 0$$
 d) $2xyy' = x^2 - y^2, y(3) = 2$

d)
$$2xyy' = x^2 - y^2$$
, $y(3) = 2$

e)
$$(2xy^{-3} + 1) dx - (3x^2y^{-4} - 2y) dy = 0$$
 f) $(y/x - 1) dx + dy = 0, y(2) = 2$

f)
$$(y/x - 1) dx + dy = 0, y(2) = 2$$

g)
$$y'' + y' = 0$$
, $y(0) = 0$, $y'(0) = -1$

h)
$$y'' = 0$$
, $y(0) = 1$, $y'(0) = 3$

- 5. Una ecuación diferencial del tipo $y' + P(x) y = Q(x) y^n \text{ con } n > 1$ se denomina ecuación de Bernoulli.
 - a) Demueste que aplicando el cambio de variables definido por $z = y^{1-n}$, la ecuación de Bernoulli se reduce a una EDO tipo lineal de 1° orden.
 - b) Halle la solución particular de $y' + x^{-1}y = 2xy^2$ que pasa por el punto (1,1).

2. Aplicaciones básicas

- 6. <u>Movimiento rectilíneo</u>: Considere un punto material que se deplaza horizontalmente y sin rozamiento, siendo x = x(t) su posición en función del tiempo t, la velocidad es v = x'(t) y la aceleración x''(t).
 - a) Movimiento rectilíneo uniforme: El deplazamiento es a velocidad V constante, entonces debe cumplirse que x'(t) = V. En este caso si para t = 0 la posición es $x(0) = x_0$, demuestre que para t > 0 resulta $x = x_0 + V t$.
 - b) Movimiento rectilíneo uniformemente acelerado: El deplazamiento es con aceleración a constante, de donde debe cumplirse que x''(t) = a. Suponiendo que para t = 0 el punto está en $x(0) = x_0$ con velocidad $x'(0) = v_0$, demuestre que para t > 0 la posición del punto es $x = x_0 + v_0 t + \frac{1}{2} a t^2$.
- 7. <u>Tiro vertical</u>: Un cuerpo puntual de masa m se dispara verticalmente hacia arriba con velocidad inicial $\vec{v}(0) = V_0 \, \check{k}$ en metro/segundo (m/s). La posición del cuerpo en función del tiempo t es $\vec{X} = z(t) \, \check{k}$ y el movimiento comienza en tiempo t = 0 s para el cual z(0) = 0 m y $z'(0) = V_0$.

Aplicando la 2° ley de Newton ($masa \cdot aceleración = suma de las fuerzas aplicadas$), para este caso resulta²: mz'' = -mg, donde g es la aceleración de la gravedad en m/s^2 .

- a) Demuestre que para t > 0 resulta $z = V_0 t \frac{1}{2} g t^2$.
- b) Verifique que la altura máxima es $\frac{1}{2}V_o^2/g$ y se produce en el instante $t_M=V_0/g$.
- c) Compruebe que en el instante $t_r = 2V_0/g$ el cuerpo retorna a su posición inicial (z=0) con velocidad $\vec{v}(t_r) = -V_0 \, \check{k}$.
- 8. <u>Caida vertical con rozamiento del aire</u>: Se deja caer hacia la superficie de la tierra un objeto de masa *m* cuyo deplazamiento se ve amortiguado debido al rozamiento con el aire, el cual genera una fuerza -que se opone al desplazamiento- y es proporcional a la velocidad del objeto. Por simplicidad supondremos el eje *z* orientado hacia abajo.

 Aplicando la 2º lay de Newton (masa geologogión suma de las fuerzas aplicadas) la

Aplicando la 2° ley de Newton ($masa \cdot aceleración = suma de las fuerzas aplicadas$) la ecuación diferencial del movimiento es:

$$m z'' = m g - \gamma z'$$

donde $\gamma > 0$ es constante y g es la aceleración de la gravedad, también constante. Demuestre que la velocidad z' del cuerpo no supera el valor $g m/\gamma$, mientras no haya llegado a la tierra se acerca asintóticamente a dicho valor (ver a qué tiende z'(t) cuando $t \to \infty$).

²El signo "-" es porque la fuerza (peso = mg) se aplica en sentido opuesto al z^+ (hacia abajo).

9. El campo magnético \vec{H} generado por un corriente eléctrica que circula por un alambre conductor rectilíneo filiforme e infinito tiene intensidad $H = ||\vec{H}||$ constante a una distancia r del alambre y sus líneas de campo son circunferencias en planos perpendiculares al alambre.

Considere que la posición de alambre coincide con el eje z y que circula una corriente eléctrica constante de intensidad I hacia z^+ , el campo \vec{H} se orienta según el esquema³.

En este caso las líneas de campo C son circunferencias de radio r en planos paralelos al xy con centro en $(0,0,k), k \in \mathbb{R}$. Sabiendo que $\oint_C \vec{H} \cdot d\vec{s} = I$, demuestre que $H = I/(2\pi r)$ para todo k.

10. Carga de un capacitor: En la figura se representa un circuito serie con una fuente de alimentación que establece una tensión⁴ constante E, un resistor de resistencia eléctrica R, un capacitor de capacitancia C y una llave interruptora LL.

Aplicando la ley de mallas de Kirchoff, al cerrar la llave LL debe cumplirse que $v_R+v=E$ donde $i=C\,dv/dt$ es la intensidad de corriente en el circuito y $v_R=R\,i$ es la tensión en el resistor, es decir, reemplazando resulta: $R\,C\,v'+v=E$.

Suponiendo que en tiempo t=0 segundos se cierra LL con v(0)=0 Volt, demuestre que v crece con el tiempo asintóticamente $(t\to\infty)$ hasta E mientras que i(t) tiende a 0 Ampere desde i(0)=E/R. La resistencia R se mide en Ohm (Ω) y C en Faradios.

³Se indica circulación de corriente eléctrica en sentido convencional.

 $^{^4}$ En el análisis de circuitos eléctricos es común denominar tensi'on a la diferencia de potencial entre terminales de cada componente.

- 11. Ley de enfriamiento de Newton: Considere un cuerpo a temperatura T mayor que la temperatura T_A del ambiente que lo rodea. Suponiendo que T_A se mantiene constante, esta ley establece que la velocidad con la que el cuerpo se enfría es proporcional a la diferencia $T T_A$. Es decir, $dT/dt = -k(T T_A)$ donde t es el tiempo en segundos (s) y k > 0 en s⁻¹ es constante.
 - a) Si el proceso de enfriamiento comienza en t = 0 s con temperatura inicial $T(0) = T_0$, demuestre que T decae exponencialmente desde T_0 hasta T_A .
 - b) Si T(0) = 20 °C, $T_A = 10$ °C y en 60 segundos la temperatura del cuerpo disminuye hasta 15 °C ...
 - b_1) ... ¿cuál es el valor de la constante k?.
 - b_2) ... ¿cuánto tiempo debe transcurrir hasta que el cuerpo esté a 1 °C de T_A ?.
- 12. <u>Desintegración radiactiva</u>: La rapidez de desintegración de una sustancia radiactiva es proporcional a la cantidad de sustancia presente. Si con 50 g de sustancia iniciales, al cabo de 3 días sólo quedan 10 g, ¿qué porcentaje de la cantidad inicial quedará al cabo de 4 días?.
- 13. Crecimiento balanceado no restringido de bacterias: Una población de bacterias en un medio adecuado y sin limitación de nutrientes tiene crecimiento balanceado no restringido, que consiste en la duplicación de la masa celular M cada intervalo determinado de tiempo T. Desde el punto de vista matemático esto se puede expresar mediante la ecuación diferencial $\frac{dM}{dt} = \mu M$, donde t es el tiempo y μ un coeficiente constante. Resuelva la ecuación diferencial suponiendo para t=0 una masa inicial M_0 ...
 - a) ... y calcule el valor de μ sabiendo que la masa se duplica en 20 días.
 - b) ... y, dado que el valor de μ es tal que transcurrido el tiempo T la masa se duplica, demuestre -a partir de la solución de la ec. diferencial- que $M=M_0\,2^{\,t/T}$.
- 14. Una bola esférica de nieve se derrite -manteniendo su forma- de manera que la derivada de su volumen V(t) respecto del tiempo t es proporcional al área de la superficie esférica en ese momento. Si para t=0 el diámetro de la esfera es de 5 cm y 30 minutos después es de 2 cm, ¿en qué momento el diámetro será de 1 cm?.
- 15. Considerando la ley de Newton: "masa(m) · aceleración $(d\vec{v}/dt)$ = suma de las fuerzas aplicadas", si el movimiento rectilíneo de un punto material con masa m se produce en un medio que le opone una fuerza del tipo $\alpha \, v + \beta \, v^n$, donde v es la velocidad, debe cumplirse que $m \, v' = -\alpha \, v \beta \, v^n$; es decir, $v' + \frac{\alpha}{m} \, v = -\frac{\beta}{m} \, v^n$. Considerando n = 2, m = 2 kg, $\alpha = 2$ kg/s, $\beta = 4$ kg/m, y que a los 0 segundos la velocidad inicial es de 20 m/s, determine y grafique el comportamiento de la velocidad del punto en función del tiempo.