Trig Final (SLTN v618)

• You should have a calculator (like Desmos) and a unit-circle reference sheet.

Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The arc length is 21 meters. The angle measure is 1.9 radians. How long is the radius in meters?

$$\theta = \frac{L}{r}$$
 $r = \frac{L}{\theta}$ $L = r\theta$

r = 11.05 meters.

Question 2

Consider angles $\frac{8\pi}{3}$ and $\frac{-15\pi}{4}$. For each angle, use a spiral with an arrow head to **mark** the angle on a circle below in standard position. Then, find **exact** expressions for $\cos\left(\frac{8\pi}{3}\right)$ and $\sin\left(\frac{-15\pi}{4}\right)$ by using a unit circle (provided separately).

$$\cos(8\pi/3) = \frac{-1}{2}$$

Find $sin(-15\pi/4)$

$$\sin(-15\pi/4) = \frac{\sqrt{2}}{2}$$

Question 3

If $\cos(\theta) = \frac{-65}{97}$, and θ is in quadrant II, determine an exact value for $\tan(\theta)$.

Ignore any negatives and the quadrant, and draw a right triangle (based on SOHCAHTOA) in standard (quadrant I) orientation.

Solve the Pythagorean Equation

$$65^{2} + B^{2} = 97^{2}$$

$$B = \sqrt{97^{2} - 65^{2}}$$

$$B = 72$$

Rescale the triangle so the hypotenuse is 1. Reflect the triangle into Quadrant II in a unit circle.

$$\tan(\theta) = \frac{\frac{72}{97}}{\frac{-65}{97}} = \frac{-72}{65}$$

Question 4

A mass-spring system oscillates vertically with a frequency of 8.64 Hz, an amplitude of 4.12 meters, and a midline at y = 2.51 meters. At t = 0, the mass is at the minimum height. Write an equation to model the height (y in meters) as a function of time (t in seconds).

Any of these equations would get full credit.

$$y = -4.12\cos(2\pi 8.64t) + 2.51$$

or

$$y = -4.12\cos(17.28\pi t) + 2.51$$

or

$$y = -4.12\cos(54.29t) + 2.51$$