Statistics for Data Science -1 Lecture 9.4 Variance of a Random Variable

Usha Mohan

Indian Institute of Technology Madras

1. Define what is a random variable.

- 1. Define what is a random variable.
- 2. Types of random variables: discrete and continuous.

- 1. Define what is a random variable.
- 2. Types of random variables: discrete and continuous.
- 3. Probability mass function, graph, and examples.

- 1. Define what is a random variable.
- 2. Types of random variables: discrete and continuous.
- 3. Probability mass function, graph, and examples.
- 4. Cumulative distribution function, graphs, and examples.

- 1. Define what is a random variable.
- 2. Types of random variables: discrete and continuous.
- 3. Probability mass function, graph, and examples.
- 4. Cumulative distribution function, graphs, and examples.
- 5. Expectation and variance of a random variable.

The expected value of a random variable gives the weighted average of the possible values of the random variable, it does not tell us anything about the variation, or spread, of these values.

- The expected value of a random variable gives the weighted average of the possible values of the random variable, it does not tell us anything about the variation, or spread, of these values.
- ► For instance, consider random variables *X*, *Y*, and *Z*, whose values and probabilities are as follows:

- The expected value of a random variable gives the weighted average of the possible values of the random variable, it does not tell us anything about the variation, or spread, of these values.
- ► For instance, consider random variables *X*, *Y*, and *Z*, whose values and probabilities are as follows:
 - ightharpoonup X = 0 with probability 1

- The expected value of a random variable gives the weighted average of the possible values of the random variable, it does not tell us anything about the variation, or spread, of these values.
- ► For instance, consider random variables *X*, *Y*, and *Z*, whose values and probabilities are as follows:
 - X = 0 with probability 1
 - $Y = \begin{cases} -2 & \text{with probability } \frac{1}{2} \\ 2 & \text{with probability } \frac{1}{2} \end{cases}$

- The expected value of a random variable gives the weighted average of the possible values of the random variable, it does not tell us anything about the variation, or spread, of these values.
- ► For instance, consider random variables *X*, *Y*, and *Z*, whose values and probabilities are as follows:
 - ► X = 0 with probability 1

 ► $Y = \begin{cases} -2 & \text{with probability } \frac{1}{2} \\ 2 & \text{with probability } \frac{1}{2} \end{cases}$ ► $Z = \begin{cases} -20 & \text{with probability } \frac{1}{2} \\ 20 & \text{with probability } \frac{1}{2} \end{cases}$

- The expected value of a random variable gives the weighted average of the possible values of the random variable, it does not tell us anything about the variation, or spread, of these values.
- ► For instance, consider random variables *X*, *Y*, and *Z*, whose values and probabilities are as follows:
 - ► X = 0 with probability 1

 ► $Y = \begin{cases} -2 & \text{with probability } \frac{1}{2} \\ 2 & \text{with probability } \frac{1}{2} \end{cases}$ ► $Z = \begin{cases} -20 & \text{with probability } \frac{1}{2} \\ 20 & \text{with probability } \frac{1}{2} \end{cases}$
- ▶ E(X) = E(Y) = E(Z) = 0. However, we notice spread of Z is greater than spread of Y which is greater than spread of X

- The expected value of a random variable gives the weighted average of the possible values of the random variable, it does not tell us anything about the variation, or spread, of these values.
- ► For instance, consider random variables *X*, *Y*, and *Z*, whose values and probabilities are as follows:
 - ► X = 0 with probability 1

 ► $Y = \begin{cases} -2 & \text{with probability } \frac{1}{2} \\ 2 & \text{with probability } \frac{1}{2} \end{cases}$ ► $Z = \begin{cases} -20 & \text{with probability } \frac{1}{2} \\ 20 & \text{with probability } \frac{1}{2} \end{cases}$
- ▶ E(X) = E(Y) = E(Z) = 0. However, we notice spread of Z is greater than spread of Y which is greater than spread of X
- Need for a measure of spread.

Let's denote expected value of a random variable X by the greek alphabet μ .

Let's denote expected value of a random variable X by the greek alphabet μ .

Definition

Let X be a random variable with expected value μ , then the variance of X, denoted by Var(X) or V(X), is defined by

$$Var(X) = E(X - \mu)^2$$

Let's denote expected value of a random variable X by the greek alphabet μ .

Definition

Let X be a random variable with expected value μ , then the variance of X, denoted by Var(X) or V(X), is defined by

$$Var(X) = E(X - \mu)^2$$

▶ In other words, the Variance of a random variable X measures the square of the difference of the random variable from its mean, μ , on the average.

►
$$Var(X) = E(X - \mu)^2$$

- ► $Var(X) = E(X \mu)^2$
- $(X \mu)^2 = X^2 2X\mu + \mu^2$

- ► $Var(X) = E(X \mu)^2$
- $(X \mu)^2 = X^2 2X\mu + \mu^2$
- Using properties of expectation we know $E(X^2-2X\mu+\mu^2)=E(X^2)-2\mu E(X)+\mu^2$ which is same as $E(X^2)-\mu^2$

- ► $Var(X) = E(X \mu)^2$
- $(X \mu)^2 = X^2 2X\mu + \mu^2$
- Using properties of expectation we know $E(X^2 2X\mu + \mu^2) = E(X^2) 2\mu E(X) + \mu^2$ which is same as $E(X^2) \mu^2$
- Let's compute the variance of the random variables discussed earlier.

- Random experiment: Roll a dice once.
- ► Sample space: $S = \{1, 2, 3, 4, 5, 6\}$
- ▶ Random variable *X* is the outcome of the roll.

- Random experiment: Roll a dice once.
- ► Sample space: $S = \{1, 2, 3, 4, 5, 6\}$
- ▶ Random variable *X* is the outcome of the roll.
- ► The probability distribution is given by

X	1	2	3	4	5	6
X^2	1	4	9	16	25	36
$P(X=x_i)$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

- Random experiment: Roll a dice once.
- ► Sample space: $S = \{1, 2, 3, 4, 5, 6\}$
- Random variable X is the outcome of the roll.
- The probability distribution is given by

X	1	2	3	4	5	6
X^2	1	4	9	16	25	36
$P(X=x_i)$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

$$E(X) = 1\frac{1}{6} + 2\frac{1}{6} + 3\frac{1}{6} + 4\frac{1}{6} + 5\frac{1}{6} + 6\frac{1}{6} = 3.5.$$

- Random experiment: Roll a dice once.
- ► Sample space: $S = \{1, 2, 3, 4, 5, 6\}$
- Random variable X is the outcome of the roll.
- The probability distribution is given by

X	1	2	3	4	5	6
X^2	1	4	9	16	25	36
$P(X=x_i)$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

- $E(X) = 1\frac{1}{6} + 2\frac{1}{6} + 3\frac{1}{6} + 4\frac{1}{6} + 5\frac{1}{6} + 6\frac{1}{6} = 3.5.$
- $E(X^2) = 1\frac{1}{6} + 4\frac{1}{6} + 9\frac{1}{6} + 16\frac{1}{6} + 25\frac{1}{6} + 36\frac{1}{6} = 15.167$

- Random experiment: Roll a dice once.
- ► Sample space: $S = \{1, 2, 3, 4, 5, 6\}$
- Random variable X is the outcome of the roll.
- The probability distribution is given by

X	1	2	3	4	5	6
X^2	1	4	9	16	25	36
$P(X=x_i)$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

- $E(X) = 1\frac{1}{6} + 2\frac{1}{6} + 3\frac{1}{6} + 4\frac{1}{6} + 5\frac{1}{6} + 6\frac{1}{6} = 3.5.$
- $E(X^2) = 1\frac{1}{6} + 4\frac{1}{6} + 9\frac{1}{6} + 16\frac{1}{6} + 25\frac{1}{6} + 36\frac{1}{6} = 15.167$
- $Var(X) = 15.167 3.5^2 = 2.917$

X is a random variable which is defined as sum of outcomes

- X is a random variable which is defined as sum of outcomes
- Probability mass function

X	2	3	4	5	6	7	8	9	10	11	12
X^2	4	9	16	25	36	49	64	81	100	121	144
$P(X=x_i)$	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	<u>4</u> 36	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

- X is a random variable which is defined as sum of outcomes
- Probability mass function

X	2	3	4	5	6	7	8	9	10	11	12
X^2	4	9	16	25	36	49	64	81	100	121	144
$P(X=x_i)$	1 36	$\frac{2}{36}$	$\frac{3}{36}$	<u>4</u> 36	<u>5</u> 36	<u>6</u> 36	<u>5</u> 36	4 36	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

$$E(X) = 2 \times \frac{1}{36} + 3 \times \frac{2}{36} + \ldots + 11 \times \frac{2}{36} + 12 \times \frac{1}{36} = 7$$

- X is a random variable which is defined as sum of outcomes
- Probability mass function

X	2	3	4	5	6	7	8	9	10	11	12
X^2	4	9	16	25	36	49	64	81	100	121	144
$P(X=x_i)$	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	4 36	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

- $E(X) = 2 \times \frac{1}{36} + 3 \times \frac{2}{36} + \ldots + 11 \times \frac{2}{36} + 12 \times \frac{1}{36} = 7$
- $E(X^2) = 4 \times \frac{1}{36} + 9 \times \frac{2}{36} + \ldots + 121 \times \frac{2}{36} + 144 \times \frac{1}{36} = 54.833$

- X is a random variable which is defined as sum of outcomes
- Probability mass function

X	2	3	4	5	6	7	8	9	10	11	12
X^2	4	9	16	25	36	49	64	81	100	121	144
$P(X=x_i)$	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	4 36	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

- $E(X) = 2 \times \frac{1}{36} + 3 \times \frac{2}{36} + \ldots + 11 \times \frac{2}{36} + 12 \times \frac{1}{36} = 7$
- $E(X^2) = 4 \times \frac{1}{36} + 9 \times \frac{2}{36} + \ldots + 121 \times \frac{2}{36} + 144 \times \frac{1}{36} = 54.833$
- Var(X) = 54.833 49 = 5.833

Tossing a coin thrice

 $ightharpoonup S = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$

Tossing a coin thrice

- ► *S* = {*HHH*, *HHT*, *HTH*, *HTT*, *THH*, *THT*, *TTH*, *TTT*}
- X is the random variable which counts the number of heads in the tosses

- $ightharpoonup S = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$
- X is the random variable which counts the number of heads in the tosses
 - Probability mass function

X	0	1	2	3
X^2	0	1	4	9
$P(X=x_i)$	1 8	3 8	3 8	1 8

- ► *S* = {*HHH*, *HHT*, *HTH*, *HTT*, *THH*, *THT*, *TTH*, *TTT*}
- X is the random variable which counts the number of heads in the tosses
 - Probability mass function

	Χ	0	1	2	3
1	X^2	0	1	4	9
	$P(X=x_i)$	$\frac{1}{8}$	<u>3</u> 8	<u>3</u> 8	$\frac{1}{8}$

$$E(X) = \sum_{i=0}^{3} x_i p(x_i) =$$

- ► *S* = { HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}
- X is the random variable which counts the number of heads in the tosses
 - Probability mass function

X	0	1	2	3
X^2	0	1	4	9
$P(X=x_i)$	$\frac{1}{8}$	<u>3</u> 8	<u>3</u> 8	$\frac{1}{8}$

$$E(X) = \sum_{i=0}^{3} x_i p(x_i) = \frac{(0 \times 1) + (1 \times 3) + (2 \times 3) + (3 \times 1)}{8} = \frac{3}{2}$$

- ► *S* = {*HHH*, *HHT*, *HTH*, *HTT*, *THH*, *THT*, *TTH*, *TTT*}
- X is the random variable which counts the number of heads in the tosses
 - Probability mass function

	Χ	0	1	2	3
ı	X^2	0	1	4	9
	$P(X=x_i)$	1/8	<u>3</u> 8	<u>3</u> 8	$\frac{1}{8}$

$$E(X) = \sum_{i=0}^{3} x_i p(x_i) = \frac{(0 \times 1) + (1 \times 3) + (2 \times 3) + (3 \times 1)}{8} = \frac{3}{2}$$

$$E(X^2) = \sum_{i=0}^{3} x_i p(x_i) =$$

- ► *S* = { HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}
- X is the random variable which counts the number of heads in the tosses
 - Probability mass function

	X	0	1	2	3
1	X^2	0	1	4	9
	$P(X=x_i)$	1 8	<u>3</u> 8	<u>3</u> 8	1 8

$$E(X) = \sum_{i=0}^{3} x_i p(x_i) = \frac{(0 \times 1) + (1 \times 3) + (2 \times 3) + (3 \times 1)}{8} = \frac{3}{2}$$

$$E(X^{2}) = \sum_{i=0}^{3} x_{i} p(x_{i}) = \frac{(0 \times 1) + (1 \times 3) + (4 \times 3) + (9 \times 1)}{8} = \frac{24}{8} = 3$$

- ► *S* = { HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}
- X is the random variable which counts the number of heads in the tosses
 - Probability mass function

X	0	1	2	3
X^2	0	1	4	9
P(X =	x_i) $\frac{1}{8}$	<u>3</u> 8	<u>3</u> 8	$\frac{1}{8}$

$$E(X) = \sum_{i=0}^{3} x_i p(x_i) = \frac{(0 \times 1) + (1 \times 3) + (2 \times 3) + (3 \times 1)}{8} = \frac{3}{2}$$

$$E(X^2) = \sum_{i=0} x_i p(x_i) =$$

$$(0 \times 1) + (1 \times 3) + (4 \times 3)$$

$$E(X^{2}) = \sum_{i=0}^{3} x_{i} p(x_{i}) = \frac{(0 \times 1) + (1 \times 3) + (4 \times 3) + (9 \times 1)}{8} = \frac{24}{8} = 3$$

$$Var(X) = 3 - 2.25 = 0.75$$

- ► A random variable that takes on either the value 1 or 0 is called a Bernoulli random variable.
- ► Let X be a Bernoulli random variable that takes on the value 1 with probability p.
- The probability distribution of the random variable is

- ► A random variable that takes on either the value 1 or 0 is called a Bernoulli random variable.
- ► Let X be a Bernoulli random variable that takes on the value 1 with probability p.
- The probability distribution of the random variable is

X	0	1
X^2	0	1
	•	

- ► A random variable that takes on either the value 1 or 0 is called a Bernoulli random variable.
- ► Let *X* be a Bernoulli random variable that takes on the value 1 with probability p.
- The probability distribution of the random variable is

X	0	1
X^2	0	1
$P(X=x_i)$	1 - p	р

- ► A random variable that takes on either the value 1 or 0 is called a Bernoulli random variable.
- ► Let X be a Bernoulli random variable that takes on the value 1 with probability p.
- The probability distribution of the random variable is

X	0	1
X^2	0	1
$P(X=x_i)$	1 - p	р

Expected value of a Bernoulli random varaible:

$$E(X) = 0 \times (1 - p) + 1 \times p = p$$

- ▶ A random variable that takes on either the value 1 or 0 is called a Bernoulli random variable.
- Let X be a Bernoulli random variable that takes on the value 1 with probability p.
- The probability distribution of the random variable is

X	0	1
X^2	0	1
$P(X=x_i)$	1 - p	р

Expected value of a Bernoulli random varaible:

$$E(X) = 0 \times (1 - p) + 1 \times p = p$$

Variance of a Bernoulli random variable:

$$Var(X) = p - p^2 = p(1 - p)$$

- Let X be a random variable that is equally likely to takes any of the values $1, 2, \ldots, n$
- ► Probability mass function

- Let X be a random variable that is equally likely to takes any of the values $1, 2, \ldots, n$
- Probability mass function

X	1	2	 n
X^2	1	4	 n ²
$P(X = x_i)$	$\frac{1}{n}$	$\frac{1}{n}$	 $\frac{1}{n}$

- Let X be a random variable that is equally likely to takes any of the values $1, 2, \ldots, n$
- Probability mass function

X	1	2	 n
X^2	1	4	 n ²
$P(X=x_i)$	$\frac{1}{n}$	$\frac{1}{n}$	 $\frac{1}{n}$

$$E(X) = \frac{(n+1)}{2}$$

- Let X be a random variable that is equally likely to takes any of the values $1, 2, \ldots, n$
- Probability mass function

X	1	2	 n
X^2	1	4	 n ²
$P(X = x_i)$	$\frac{1}{n}$	$\frac{1}{n}$	 $\frac{1}{n}$

- $E(X) = \frac{(n+1)}{2}$
- $E(X^2) = \frac{(n+1)(2n+1)}{6}$

- Let X be a random variable that is equally likely to takes any of the values $1, 2, \ldots, n$
- Probability mass function

X	1	2	 n
X^2	1	4	 n^2
$P(X = x_i)$	$\frac{1}{n}$	$\frac{1}{n}$	 $\frac{1}{n}$

- $E(X) = \frac{(n+1)}{2}$
- $E(X^2) = \frac{(n+1)(2n+1)}{6}$
- $Var(X) = \frac{n^2-1}{12}$

Section summary

- Definition of variance
- ► Computational formula of variance of a random variable.