Weekly Assignment 4: Solution Total: 100

CS 2500: Algorithms

Due Date: October 29, 2024 at 11.59 PM

Weighted Median

1. Let x_1, x_2, \ldots, x_n be n elements, each assigned an equal weight $w_i = \frac{1}{n}$ for all $i = 1, 2, \ldots, n$. The total sum of the weights is

$$\sum_{i=1}^{n} w_i = \sum_{i=1}^{n} \frac{1}{n} = 1.$$

To find the weighted median, we need an element x_k such that

$$\sum_{x_i < x_k} w_i < \frac{1}{2} \quad \text{and} \quad \sum_{x_i > x_k} w_i \le \frac{1}{2}.$$

Since each weight $w_i = \frac{1}{n}$, each subset of k elements has a total weight $k \cdot \frac{1}{n} = \frac{k}{n}$.

- (a) Case of Odd n: For an odd number of elements n=2m+1, the median x_k is the middle element, where k=m+1.
 - The weight of elements less than x_k is $\frac{m}{n} < \frac{1}{2}$.
 - The weight of elements greater than x_k is also $\frac{m}{n} \leq \frac{1}{2}$.

Thus, x_k satisfies the conditions for the weighted median when all weights are equal.

- (b) Case of Even n: For an even number of elements n=2m, there is no single middle element. Instead, there are two middle elements, located at positions m and m+1 in the sorted list. To satisfy the weighted (lower) median conditions, we choose the lower of the two middle elements, x_m , as the weighted median. This ensures:
 - The weight of elements strictly less than x_m is

$$\frac{m-1}{n} = \frac{m-1}{2m} < \frac{1}{2}.$$

• The weight of elements strictly greater than x_m is

$$\frac{m}{n} = \frac{1}{2}.$$

This choice of x_m meets both conditions required for the weighted (lower) median.

Conclusion: The median of x_1, x_2, \ldots, x_n is the same as the weighted (lower) median when each element has an equal weight $w_i = \frac{1}{n}$, with the lower of the two middle elements chosen if n is even.

Finding the *i* Largest Elements in a List

1. Method 1: Sort the Numbers and List the i Largest

- (a) Steps involved in this method:
 - Sort the array: Start by sorting the entire list of n numbers in descending order (or ascending order and then take the last i elements).

 ${
m CS}$ 2500: Algorithms

- Select the *i* largest elements: After sorting, the *i* largest elements will be the first *i* elements in the sorted list if sorted in descending order, or the last *i* elements if sorted in ascending order.
- Output the sorted i largest elements: Simply extract and output these i elements in the order they appear.
- (b) The worst-case time complexity of this approach is $O(n \log n)$.
 - Sorting a list of n numbers using a comparison-based sorting algorithm (such as Merge Sort or Heap Sort) takes $O(n \log n)$ time.
 - After sorting, selecting the top i elements is an O(i) operation, but this is dominated by the $O(n \log n)$ sorting time.

Therefore, the overall worst-case time complexity for this method is $O(n \log n)$.

2. Method 2: Use an Order-Statistic Algorithm

- (a) An order-statistic algorithm, such as Quickselect, can be used to find the i-th largest element in the list. The steps are as follows:
 - Find the *i*-th largest element: Use Quickselect (a selection algorithm) to find the *i*-th largest element in the list. Quickselect has an average time complexity of O(n), but in the worst case, it can be $O(n^2)$. However, with median-of-medians or similar optimizations, it can be made worst-case O(n).
 - \bullet Partition the list: Once the *i*-th largest element is found, partition the list into elements that are greater than or equal to this *i*-th largest element and those that are less.
- (b) Steps involved in this method after identifying the *i*th largest element:
 - Select elements greater than or equal to the *i*-th largest element: After finding the *i*-th largest element, we have a partitioned list where one part contains all elements greater than or equal to this element.
 - Sort the subset of *i* largest elements: Sort the subset of *i* largest elements to ensure they are in descending order (or ascending order, depending on preference).
 - \bullet Output the sorted *i* largest elements: Output these sorted *i* largest elements.
- (c) Overall worst-case time complexity:
 - Finding the *i*-th largest element: Using Quickselect, the worst-case time complexity to find the *i*-th largest element is $O(n^2)$ due to poor pivot choices in the worst case.
 - Partitioning and sorting the i largest elements: Once we have identified the i-th largest element, partitioning the list around this element is an O(n) operation. Sorting the i largest elements then takes $O(i \log i)$ time.

Therefore, the overall worst-case time complexity of Method 2 is:

$$O(n^2) + O(i\log i) = O(n^2)$$

- Comparison with Method 1: In the worst case, Method 2 does not offer better performance than Method 1, as Method 1 has a worst-case time complexity of $O(n \log n)$, which is better than $O(n^2)$.
- Average-case comparison: In practice, Quickselect performs closer to O(n) on average. Thus, if we consider the average case, Method 2 could be more efficient than Method 1, especially for small values of i, where $i \log i$ remains small.

3. Comparison and Analysis

(a) Two methods:

- Method 1 (Sorting): This has a time complexity of $O(n \log n)$, regardless of i.
- Method 2 (Order-Statistic): This has a worst-case time complexity of $O(n^2)$ due to Quick-select's possible poor pivot choices.

CS 2500: Algorithms

Comparison:

- In the worst case, Method 1 is generally more efficient than Method 2 because $O(n \log n)$ is better than $O(n^2)$.
- However, in the average case, Quickselect is expected to perform closer to O(n). When i is small relative to n, $O(i \log i)$ is also small, making Method 2's average case $O(n+i \log i)$ potentially faster than Method 1's $O(n \log n)$. For example, if $i = O(\log n)$, Method 2's average-case complexity $O(n+i \log i) \approx O(n)$, which can be better than $O(n \log n)$.
- As i grows closer to n, the $i \log i$ term approaches $n \log n$, reducing Method 2's advantage. Therefore, Method 2 is more efficient in the average case when i is relatively small compared to n.
- (b) **Scenario:** Method 1 would be preferable when we need all or nearly all elements in sorted order, or when we don't know the exact value of i in advance.

Reasoning: If i is very close to n (say, i = n - 1), then Method 1's time complexity $O(n \log n)$ becomes comparable to Method 2's time complexity in the average case, $O(n + (n - 1) \log(n - 1)) = O(n \log n)$.

Additionally, if a fully sorted list is needed for other operations, Method 1 avoids the need for multiple steps to first find the i-th largest element and then sort a subset. Method 1 thus provides a fully sorted list at the outset, which can be advantageous in cases where we might need more than just the top i elements.