УПРАЖНЕНИЯ

по дисциплината

"Компютърни мрежи и комуникации"

Лектор: проф. д-р Ганчев ФМИ, ПУ "П. Хилендарски" 13.09.2023 г.

3. *IPv4* подмрежи

Студент:	Фак. №				
Дата и час на започване на упражнението:					
Значения на числата Х, Y и	Z за използване в упражнението:				
	(пресмята се от студента; М и L са съответно предпоследната а от Фак. №, считано отляво надясно)				
Y=	(число в интервала [1, 10], зададено от преподавателя)				
X=Y+Z=	(пресмята се от студента; ако X=127 , вместо него да се използва числото 126 за първия байт в адресите по-долу)				
Цели					
· Разграничаване между <i>II</i> подмрежова маска <i>(subnet</i>	Pv4 мрежова маска по подразбиране (default network mask) и IPv4 mask);				
· Определяне на наличнит маска;	ге подмрежи за конкретен <i>IPv4</i> мрежов адрес и <i>IPv4</i> подмрежова				
· Определяне на <i>IPv4</i> подмадрес, и изисквания за бро	ирежова маска, която трябва да се използва за даден <i>IPv4</i> мрежов й подмрежи и хостове;				
· Определяне броя на под мрежов адрес и подмрежо	имрежите и броя на хостовете във всяка подмрежа за дадени <i>IPv4</i> ва маска;				
· Използване на операцията е от <i>IPv4</i> (под)мрежата на г	а "логическо И" (<i>AND</i>) за определяне дали <i>IPv4</i> адресът на получателя подателя или не;				
· Идентифициране на вали адрес и подмрежова маска	дни и невалидни <i>IPv4</i> адреси на хостове въз основа на <i>IPv4</i> мрежов				

-

^і По материали на *Cisco* и *Forouzan*

Обща информация

Подмрежовата маска се използва за разделяне на дадена *IPv4* мрежа на отделни подмрежи. Това се прави със следните цели: 1) намаляване размера на *broadcast* домейна (т.е. създаване на по-малки мрежи с по-малко количество трафик); 2) позволяване на локални компютърни мрежи (*LANs*), разположени в различни географски местоположения, да комуникират; 3) за отделяне на една *LAN* от друга (например от съображения за сигурност). Подмрежите се разделят от маршрутизатори; всеки маршрутизатор сам решава дали един пакет може да премине от една подмрежа към друга. За пакет, преминал през един маршрутизатор, се казва че е направил един скок (*hop*). (Под)мрежовата маска помага на хостовете и маршрутизаторите да определят дали получателят, към който искат да изпратят даден *IPv4* пакет, се намира в собствената им (под)мрежа или в друга такава. Когато една *IPv4* мрежа е разделена на подмрежи, всеки неин адрес се състои от три части: *NetID*, *SubnetID* и *HostID*.

Стъпка 1: Подмрежова маска (subnet mask)

Целта на подмрежовата маска е да помогне на хостовете и маршрутизаторите да определят местоположението на хост-получател.

Стъпка 2: Използване на операцията "логическо И" (AND)

Хостовете и маршрутизаторите използват тази операция за определяне на това дали хостътполучател е в същата *IPv4* (под)мрежа или не. В началото хостътподател сравнява (чрез *AND*) собствения си *IPv4* адрес с (под)мрежовата маска (с която е конфигуриран), за да определи/идентифицира *IPv4* (под)мрежата, в която се намира. След това прави същото с адреса на хоста-получател, за да определи дали той е в същата или в друга *IPv4* (под)мрежа. Ако *IPv4* (под)мрежата е една и съща, двата възела ще комуникират без посредничеството на маршрутизатор (на нивото на каналния слой). Ако *IPv4* (под)мрежите са различни, хостовете ще трябва да комуникират през маршрутизатор/и (на нивото на мрежовия слой), ако той/те им позволят.

Стъпка 3: Използване на мрежова маска по подразбиране за *IPv4* мрежи от клас С

Забележка: Ако се използва мрежова маска по подразбиране, това означава, че съответната *IPv4* мрежа <u>HE</u> е разделена на подмрежи.

а. Хост 1 сравнява собствения си IPv4 адрес с мрежовата маска, използвайки операцията AND:

Резултатът представлява *IPv4* адресът на мрежата (в случая **200.1.1.0**), към която принадлежи хост 1.

б. След това хост 1 сравнява *IPv4* адреса на хоста-получател 2 със собствената си мрежова маска, използвайки пак операцията *AND*.

Резултатът представлява *IPv4* адресът (**200.1.2.0**) на мрежата, към която принадлежи хост 2.

Чрез сравняване на двата резултата хост 1 установява, че се намира в различна *IPv4* мрежа от тази на хост 2. Затова той трябва да насочи всеки кадър, съдържащ капсулиран *IPv4* пакет, предназначен за хост 2, към своя маршрутизатор по подразбиране (default gatewayⁱⁱ), по-точно към *MAC* адреса, съответстващ на *IP* адрес 200.1.1.1, който му е зададен при конфигуриране. След това този маршрутизатор ще повтори операцията *AND*, за да определи към кой свой мрежов интерфейс (порт) да комутира *IPv4* пакета.

Стъпка 4: Разделяне на *IPv4* мрежа от клас С на подмрежи

Примерна задача: Мрежа, използваща *IPv4* адресен блок от клас C, трябва да се раздели на **6** подмрежи с <u>еднакъв размер</u>. Да се намерят *подмрежовата маска* и *адресният диапазон* на всяка подмрежа.

Решение: Тъй като $2^2 < 6 < 2^3$, ще са необходими **3** бита за адресиране на подмрежите. Тези битове се заемат от лявата страна (т.е. по старшинство) на *HostID* частта на *IPv4* адреса. Така подмрежовата маска ще бъде следната:

Диапазонът на използваемите *IPv4* адреси (т.е. тези, които могат да се задават на мрежови възли) е ограден с червен правоъгълник на следната фигура. Две от подмрежите остават като резерв (за бъдещо използване) при това разделяне.

^{II} В *TCP/IP* терминологията терминът *'gateway'* по-често се използва в смисъл на "маршрутизатор", а не на "комуникационен шлюз", който е съответстващият му български термин.

Page 3 of 5

Стъпка 5: Задача за разделяне на IPv4 мрежа на подмрежи

Даден е следният *IPv4* адрес: **X.(X+10).(X+20).(X+30)**. Отговорете на следните въпроси:

Кой/и байт/ове	е представлява/т <i>Н</i>	ostD частта на този IPv4 адр	pec?
Кой е двоичния	ят еквивалент на то	ози <i>IPv4</i> адрес?	
 Към коя <i>IPv4</i> м	 режа принадлежи	 този адрес?	

Ако тази *IPv4* мрежа се раздели на (**L**+10) подмрежи с еднакъв размер (**L** е последната цифра от Фак. \mathbb{N} считано отляво надясно):

5. Каква подмрежова маска е използвана? Запишете я по следните два начина:

	· · ·		
	в точков десетичен вид:	_ ·	·
	в двоичен вид:	·	•
6.	 Какъв е максималният брой подмрежи, които могат 	да бъдат създаде	ени с тази маска?
7.	7. Колко бита остават за идентифициране на хостове	в HostD частта сл	ед разделянето на
	подмрежи?		

8.	колко налични 1РV4 адреса има във всяка подмрежа?
9.	Колко от тези <i>IPv4</i> адреси най-много могат да бъдат използвани за адресиране на мрежови интерфейси във всяка подмрежа?
10.	Какъв е максималният възможен брой на хостовете във всяка подмрежа?
11.	Какъв е адресният диапазон (в точкова десетична нотация) на първите две и последните две подмрежи?