LES DIPOLES EN REGIME PERMANENT

Exercice n°1

On donne $U_{AC} = 30 \text{ V}$.

Déterminer dans le montage ci-contre :

- 1. La résistance équivalente entre les nœuds A et C
- 2. La valeur de la tension U_{BC}
- 3. Les intensités des courants dans chaque résistance.
- 4. La puissance dissipée par effet joule dans R_4 On donne R_1 = 22Ω ; R_2 = 24Ω , R_3 = $12~\Omega$ et R_4 = 30Ω .

Exercice n°2

Simplifier les montages suivants en un générateur de Thévenin puis de Norton unique :

On donne E = 5V; R = 5Ω ; I = 1A.

Exercice n°3

Déterminer les générateurs de Thévenin et de Norton équivalents aux circuits suivants.

a)

b)

$$R_0 = 5\Omega$$
, $R_1 = 10\Omega$, $R_2 = 15\Omega$, $R_3 = 20\Omega$

Exercice n°4

- 1°) Calculer la capacité équivalente, sachant qu'elles sont toutes égales à C.
- 2°) Même question si on remplace les capacités C par des bobines L

Exercice n°5

On considère le circuit ci-contre.

Déterminer l'intensité dans la résistance R:

Exercice n°6

Etude d'un électrolyseur ou voltamètre.

Il est constitué par deux électrodes de nickel plongeant dans une solution aqueuse de soude à 100g/l.

On relève les valeurs suivantes :

±U(V)	0	1	2	2.25	2.5	3	4	5
±I (A)	0	0	0	0.05	0.2	0.5	1.1	1.7

- 1°) Tracer sa caractéristique courant-tension et en déduire sa f.c.é.m. e, sa résistance interne r pour U = 4.5V.
- 2°) Linéariser ce dipôle, puis le modéliser selon la valeur de u.
- 3°) Montrer que le fait que la puissance maximale admissible pour l'électrolyseur soit de 10W se traduit graphiquement par un domaine interdit; en déduire U_{max} et I_{max} ; le vérifier d'après la linéarisation.

Exercice n°7

Soit le montage ci-contre.

R = 90 Ω , E est la f.é.m. de l'alimentation stabilisée réglable de 0 à 30 V, de résistance interne négligeable.

On donne la caractéristique de la diode régulatrice de tension.

1°) Dessiner un modèle de la diode dans les cas u₇ < 10 V et

 $u_Z > 10 \text{ V}$. On calculera dans chaque cas la résistance différentielle.

- 2°) Tracer la courbe donnant u_Z en fonction de E.
- 3°) Calculer le courant maximal et la puissance maximale dissipée dans la résistance R.

