

SEQUENCE LISTING

<110> XIA, TAI-HE
NI, DONGHUI
EISHINGDRELO, HAIFENG
ARDATI, ALI
MINNICH, ANNE
JUPP, RAY

<120> NOVEL G PROTEIN-COUPLED RECEPTOR

<130> 41491

<140> 09/886,041
<141> 2001-06-22

<160> 12

<170> PatentIn Ver

<210> 1

<211> 1041

<212> DNA

<213> Homo sapiens

<400> 1

```

atgtacaacg ggtcggtctg ccgcatacgag ggggacacca tctcccaaggat gatccggccg 60
ctgctcattg tgccctttgt gctggcgca cttaggaatg gggtcgccct gtgtgggttc 120
tgcttcacaca tgaagacactg gaagcccagc actgtttacc ttttcaattt ggccgtggct 180
gatttcctcc ttatgatctg cctgcctttt cggacagact attaccttag acgtagacac 240
tgggcttttggggacattcc ctgcccagtg gggctttca cggtggccat gaacagggcc 300
gggagcatcg tggcccttac ggtgggtggct gcggacaggt atttcaaagt ggtccacccc 360
caccacgcgg tgaacactat ctccacccgg gtggcggtg gcatacgctg caccctgtgg 420
gccttgtca tcctggaaac agtgtatctt ttgctggaga accatctctg cgtgcaagag 480
acggccgtct cctgtgagaaatccatcatg gagtcggcca atggctggca tgacatcatg 540
ttccagctgg agttctttat gccccctcgcc atcatctt tttgctctt caagattgtt 600
tggagcctga ggcggaggca gcagctggcc agacaggctc ggatgaagaa ggccgaccgg 660
ttcatcatgg tggtggcaat tgtgttcatc acatgctacc tgcccagctg gtctgtaga 720
ctctatttcc tctggacggt gcccctcgagt gcctgcgatc cctctgtcca tggggccctg 780
cacataaccc tcagcttcac ctacatgaac agcatgctgg atccccctggt gtattatttt 840
tcaagccctt ccttcccaa attctacaac aagctcaaaa tctgcagtct gaaacccaag 900
cagccaggac actcaaaaaac acaaaggccg gaagagatgc caatttcgaa cctcggctcg 960
aggagttgca tcagtgtggc aaatagtttccaaagccagt ctgatggca atgggatccc 1020
cacattgttg agtggcactg a

```

<210> 2

<211> 346

<212> PRT

<213> Homo sapiens

<400> 2

Met Tyr Asn Gly Ser Cys Cys Arg Ile Glu Gly Asp Thr Ile Ser Gln
1 5 10 15

Val Met Pro Pro Leu Leu Ile Val Ala Phe Val Leu Gly Ala Leu Gly
20 25 30

Asn	Gly	Val	Ala	Leu	Cys	Gly	Phe	Cys	Phe	His	Met	Lys	Thr	Trp	Lys
35							40					45			
Pro	Ser	Thr	Val	Tyr	Leu	Phe	Asn	Leu	Ala	Val	Ala	Asp	Phe	Leu	Leu
50							55					60			
Met	Ile	Cys	Leu	Pro	Phe	Arg	Thr	Asp	Tyr	Tyr	Leu	Arg	Arg	Arg	His
65						70				75				80	
Trp	Ala	Phe	Gly	Asp	Ile	Pro	Cys	Arg	Val	Gly	Leu	Phe	Thr	Leu	Ala
					85				90				95		
Met	Asn	Arg	Ala	Gly	Ser	Ile	Val	Phe	Leu	Thr	Val	Val	Ala	Ala	Asp
					100				105				110		
Arg	Tyr	Phe	Lys	Val	Val	His	Pro	His	His	Ala	Val	Asn	Thr	Ile	Ser
					115				120				125		
Thr	Arg	Val	Ala	Ala	Gly	Ile	Val	Cys	Thr	Leu	Trp	Ala	Leu	Val	Ile
					130			135			140				
Leu	Gly	Thr	Val	Tyr	Leu	Leu	Leu	Glu	Asn	His	Leu	Cys	Val	Gln	Glu
					145			150			155			160	
Thr	Ala	Val	Ser	Cys	Glu	Ser	Phe	Ile	Met	Glu	Ser	Ala	Asn	Gly	Trp
					165				170				175		
His	Asp	Ile	Met	Phe	Gln	Leu	Glu	Phe	Phe	Met	Pro	Leu	Gly	Ile	Ile
					180				185				190		
Leu	Phe	Cys	Ser	Phe	Lys	Ile	Val	Trp	Ser	Leu	Arg	Arg	Gln	Gln	
					195			200			205				
Leu	Ala	Arg	Gln	Ala	Arg	Met	Lys	Lys	Ala	Thr	Arg	Phe	Ile	Met	Val
					210			215			220				
Val	Ala	Ile	Val	Phe	Ile	Thr	Cys	Tyr	Leu	Pro	Ser	Val	Ser	Ala	Arg
					225			230			235			240	
Leu	Tyr	Phe	Leu	Trp	Thr	Val	Pro	Ser	Ser	Ala	Cys	Asp	Pro	Ser	Val
					245			250			255				
His	Gly	Ala	Leu	His	Ile	Thr	Leu	Ser	Phe	Thr	Tyr	Met	Asn	Ser	Met
					260			265			270				
Leu	Asp	Pro	Leu	Val	Tyr	Tyr	Phe	Ser	Ser	Pro	Ser	Phe	Pro	Lys	Phe
					275			280			285				
Tyr	Asn	Lys	Leu	Lys	Ile	Cys	Ser	Leu	Lys	Pro	Lys	Gln	Pro	Gly	His
					290			295			300				
Ser	Lys	Thr	Gln	Arg	Pro	Glu	Glu	Met	Pro	Ile	Ser	Asn	Leu	Gly	Arg
					305			310			315			320	
Arg	Ser	Cys	Ile	Ser	Val	Ala	Asn	Ser	Phe	Gln	Ser	Gln	Ser	Asp	Gly
					325			330			335				

Gln Trp Asp Pro His Ile Val Glu Trp His
340 345

<210> 3
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 3
ctatccctc tggacgggtgc

20

<210> 4
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 4
ttatgtcag ggccccatg

19

<210> 5
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 5
tcatgtggaa gcagaaaacca cacagggcga ccccattgc

39

<210> 6
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 6
atgtacaacg ggtcggtctg c

21

<210> 7
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 7
tcagtgccac tcaacaatgt gg 22

<210> 8
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 8
taatacgaact cactataggg 20

<210> 9
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 9
cagtaaacag ctatgaccat 20

<210> 10
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 10
ctatccctc tggacgggtgc 20

<210> 11
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 11
ttatgtgcag ggccccatg 19

<210> 12
<211> 23

<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Probe

<400> 12
tcgagtgcct gcgatccctc tgt