My Project

Generated by Doxygen 1.13.2

ŀ	elease aprasymai	1
	1.1 v.pradinė	1
	1.2 v0.1	1
	1.3 V0.2	1
	1.4 V0.3	1
	1.5 V0.3.1	1
	1.6 V0.4	1
	1.7 V0.4.1	2
	1.8 V0.4.2	2
	1.9 V1.0 pradinis relizas	2
	1.10 V1.1	2
	1.11 V1.2	2
	1.12 V1.5	2
	1.13 V2.0	2
	1.14 Naudojimos instrukcija	2
	1.15 Diegimo instrukcija	3
	1.16 Tyrimai	3
	1.16.0.1 Matavimo sistemos parametrai:	3
	1.16.1 Pirmas tyrimas (Failų kūrimas ir jų uždarymas)	3
	1.16.2 Antrasis tyrimas (Duomenų apdorojimas)	4
	1.16.2.1 1,000 studentų	4
	1.16.2.2 10,000 studentų	4
	1.16.2.3 100,000 studentų	4
	1.16.2.4 1,000,000 studentų	4
	1.16.2.5 10,000,000 studentų	4
	1.16.3 Trečias tyrimas (Konteinerių testavimas)	5
	1.16.4 Naudojant std::vector	5
	1.16.4.1 1,000 studentų	5
	1.16.4.2 10,000 studentų	5
	1.16.4.3 100,000 studentų	5
	1.16.4.4 1,000,000 studentų	6
	1.16.4.5 10,000,000 studentų	6
	1.16.5 Naudojant std::list	6
	1.16.5.1 1,000 studentų	6
	1.16.5.2 10,000 studentų	6
	1.16.5.3 100,000 studentų	6
	1.16.5.4 1,000,000 studentų	6
	1.16.5.5 10,000,000 studentų	7
	1.16.6 Naudojant std::deque	7
	1.16.6.1 1,000 studentų	7
	1.16.6.2 10,000 studentų	7
	1.16.6.3 100,000 studentų	7

1.16.6.4 1,000,000 studentų	 	7
1.16.6.5 10,000,000 studentų	 	7
1.16.7 Naudojant naują Vector klasę	 	8
1.16.7.1 1,000 studnetų	 	8
1.16.7.2 10,000 studentų	 	8
1.16.7.3 100,000 studentų	 	8
1.16.7.4 1,000,000 studentų	 	8
1.16.7.5 10,000,000 studentų	 	8
1.16.8 Ketvirtas tyrimas (Skirstymas)	 	8
1.16.8.1 Vector	 	9
1.16.8.2 1 Strategija	 	9
1.16.8.3 2 Strategija	 	9
1.16.8.4 3 Strategija	 	9
1.16.8.5 List	 	9
1.16.8.6 1 Strategija	 	9
1.16.8.7 2 Strategija	 	10
1.16.8.8 3 Strategija	 	10
1.16.8.9 Deque	 	10
1.16.8.10 1 Strategija	 	10
1.16.8.11 2 Strategija	 	10
1.16.8.12 3 Strategija	 	10
1.16.9 Penktas tyrimas (Struct vs Class)	 	11
1.16.9.1 Veikimo greitis -O1	 	11
1.16.9.2 Veikimo greitis -O2	 	11
1.16.9.3 Veikimo greitis -O3	 	11
2 Vectoriaus klasė		13
2.1 Vectoriaus metodai	 	13
2.1.1 push_back()	 	13
2.1.2 pop_back()		
2.1.3 at()		
2.1.4 size()		
2.1.5 capacity()	 	14
2.2 Spartos analizė	 	14
3 Class Index		15
3.1 Class List	 	15
4 File Index		17
4.1 File List	 	17
5 Class Documentation		19
5.1 Vector< T > Class Template Reference	 	19

	iii
6 File Documentation	21
6.1 vector.hpp	21
Index	25

Release aprašymai

1.1 v.pradinė

Įvadimai studentų duomenys ir ir išvedami jų apskaičiuoti vidurkiai ar medianos į komdų eilutę

1.2 v0.1

Galima generuoti studentų duomenis ir sukurtos 2 projekto versijos 1 - naudojant std::vector, 2 - naudojant c masyvus

1.3 V0.2

Pridėtas duomenų įvesties į ir išvesties iš failo pasirinkimas, panaikinta c masyvą naudojanti programos versija

1.4 V0.3

Pridėtas duomenų rūšiavimas pagal pasirinktus kriterijus

1.5 V0.3.1

Klaidų žinutės lietuvių kalba

1.6 V_{0.4}

Sukurtas README.md failas kuriami surašyti programos spartos matmenys ir pridėtas studentų failo generavimo funkcionalumas

1.7 V0.4.1

Pataisyti ir papildyti matavimai, klaidų ištaisymas

1.8 V0.4.2

Klaidos pataisymas

1.9 V1.0 pradinis relizas

Sukurtos papildomai dvi programos veikimo versijos, papildytas README programos veikimo spartos matmenimis ir testavimo detalėmis

1.10 V1.1

Studentas perkeltas į klasę

1.11 V1.2

Relizuota "Rule of five" ir įvesties/išvesties operatorius Student klasėje

1.12 V1.5

Sukurta bazinė klasė žmogus(Person) ir pritaikyta Studnet klasei

1.13 V2.0

Sukurti Doxygen HTML ir PDF dokumentacija, pridėti unit testai naudojant gtest

1.14 Naudojimos instrukcija

- Paleidimas: Nueiti j norimo naudojimo konteinerio build aplankala ir paleisti programa "1-oji-uzduotis"
- · Skaičiavimų atlikimas:
 - 1. Paleidus programą duodamas pasirinkimas 1-6, jeigu norite atlikti skaičiavimus su studentai pasirinkite 1-4 pagal poreikį (ką pasirinkimai daro bus aprašyta programos veikimo metu)
 - 2. Jeigu pasirinkote 4 pasirinkimą įvesikte studentų failo pavadinimą (studentų failas turi būti tame pačiame aplankale iš kurios ir paleidote programą)
 - 3. Pasirinkite rūšiavimo būdą (vidurkių ir medianų rūšiavimas yra nuo mažiausio iki didžiausio)
 - 4. Pasirinkite išvesties būdą
 - 5. Pasirinkite skirstymo strategiją
 - 6. Jeigu pasirinkote įrašyti pažimius ranka ar generuoti juos sekite pragramoje nurodytas instrukcijas

1.15 Diegimo instrukcija

- 1. Nueikite į norimos programos versijos aplankalo (Deque/List/Vector)
 - cd Vector

Arba

• cd List

Arba

- cd Deque
- 2. Sukurkite build aplankalą ir įeikite į jį

```
mkdir build && cd build
```

3. Paleiskite cmake comandą

cmake ..

4. Išeikite iš aplankalo ir sukompiliuokite programą

```
cd .. && cmake --build build
```

5. Pragrama bus build aplankale su pavadinimu "1-oji-uzduotis"

1.16 Tyrimai

1.16.0.1 Matavimo sistemos parametrai:

CPU: 7800x3d \ RAM: 32GB | 6000 MT/s \ SSD: NVMe M.2 | 7,000/7,000MB/s read/write

1.16.1 Pirmas tyrimas (Failų kūrimas ir jų uždarymas)

- Kiekvienas studentas turi po 10 namų darbų rezultatų + egzaminas
- Laiko matavimui naudoajam chrono biblioteka
- · Matavimai atliekami penkis kartus ir iš jų išgaunami vidurkiai
- · Kodas buvo sukompiliuotas naudojant -O3 gaire

Studentu sk.	Laikas 1	Laikas 2	Laikas 3	Laikas 4	Laikas 5	Vidurkiai
1,000	866 s	966 s	877 s	792 s	936 s	887 s
10,000	6486 s	6903 s	6497 s	6364 s	6307 s	6511 s
100,000	68 ms	66 ms	65 ms	66 ms	67 ms	66 ms
1,000,000	594 ms	592 ms	587 ms	595 ms	608 ms	595 ms
10,000,000	5917 ms	5827 ms	5871 ms	5843 ms	5887 ms	5869 ms

>Failo kūrimo pavizdys:

1.16.2 Antrasis tyrimas (Duomenų apdorojimas)

- Laiko matavimui naudoajam chrono biblioteka
- Duomenys gaunaumi iš ankščiau sugeneruotų failų
- Kiekvienas studentas turi po 10 namų darbų rezultatų + egzaminas
- Matavimai atliekami penkis kartus ir iš jų išgaunami vidurkiai
- Matuojami vykdomi su penkiais skirtingais failo dydžiais
- · Kodas buvo sukompiliuotas naudojant -O3 gaire
- · Matuojami:
 - nuskaitymas iš failo
 - studentų rūšiavimą į dvi grupes/kategorijas
 - surūšiuotų studentų išvedimą į du naujus failus
 - visos programos veikimo laikas

1.16.2.1 1,000 studentų

Matavimas	Laikas 1	Laikas 2	Laikas 3	Laikas 4	Laikas 5	Vidurkiai
Nuskaitymas	545 s	639 s	518 s	509 s	485 s	539 s
Rūšiavimas	101 s	134 s	100 s	101 s	101 s	107 s
Išvedimas	340 s	435 s	394 s	362 s	369 s	380 s
Veikimo laikas	1092 s	1334 s	1113 s	1076 s	1056 s	1134 s

1.16.2.2 10,000 studentų

Matavimas	Laikas 1	Laikas 2	Laikas 3	Laikas 4	Laikas 5	Vidurkiai
Nuskaitymas	5524 s	5118 s	5430 s	5809 s	5024 s	5381 s
Rūšiavimas	1043 s	1129 s	1133 s	1107 s	1106 s	1104 s
Išvedimas	2795 s	2835 s	2870 s	2859 s	2770 s	2826 s
Veikimo laikas	10321 s	10053 s	10386 s	10760 s	9873 s	10279 s

1.16.2.3 100,000 studentų

Matavimas	Laikas 1	Laikas 2	Laikas 3	Laikas 4	Laikas 5	Vidurkiai
Nuskaitymas	47 ms	48 ms	46 ms	49 ms	47 ms	47 ms
Rūšiavimas	7 ms	7 ms	6 ms	6 ms	6 ms	6 ms
Išvedimas	27 ms	27 ms	25 ms	32 ms	33 ms	29 ms
Veikimo laikas	90 ms	92 ms	88 ms	98 ms	97 ms	93 ms

1.16.2.4 1,000,000 studentų

Matavimas	Laikas 1	Laikas 2	Laikas 3	Laikas 4	Laikas 5	Vidurkiai
Nuskaitymas	440 ms	443 ms	443 ms	444 ms	444 ms	443 ms
Rūšiavimas	51 ms	51 ms	53 ms	50 ms	52 ms	51 ms
Išvedimas	270 ms	273 ms	275 ms	267 ms	268 ms	270 ms
Veikimo laikas	848 ms	855 ms	859 ms	849 ms	853 ms	853 ms

1.16.2.5 10,000,000 studentų

1.16 Tyrimai 5

Matavimas	Laikas 1	Laikas 2	Laikas 3	Laikas 4	Laikas 5	Vidurkiai
Nuskaitymas	4476 ms	4483 ms	4502 ms	4465 ms	4491 ms	4483 ms
Rūšiavimas	668 ms	677 ms	685 ms	670 ms	679 ms	676 ms
Išvedimas	2602 ms	2628 ms	2586 ms	2640 ms	2665 ms	2624 ms
Veikimo laikas	8686 ms	8750 ms	8730 ms	8727 ms	8781 ms	8735 ms

1.16.3 Trečias tyrimas (Konteinerių testavimas)

- Laiko matavimui naudoajam chrono biblioteka
- · Duomenys gaunaumi iš ankščiau sugeneruotų failų
- Kiekvienas studentas turi po 10 namų darbų rezultatų + egzaminas
- Matavimai atliekami penkis kartus ir iš jų išgaunami vidurkiai
- · Matuojami vykdomi su penkiais skirtingais failo dydžiais
- · Kodas buvo sukompiliuotas naudojant -O3 gaire
- · Duomenys rūšiuojami studento pažymių vidurkio didėjimo tvarka
- · Matuojas:
 - Duomenų nuskaitymas iš failų į atitinkamą konteinerį
 - Studentų rūšiavimas didėjimo tvarką konteineryje
 - Studentų skirstymas į dvi grupes/kategorijas
- Studentams saugoti bus naudojami 4 skirtingi konteineriai:
 - std::vector
 - std::list
 - std::deque
 - Mano sukurta Vector klasė

1.16.4 Naudojant std::vector

1.16.4.1 1,000 studentų

Matavimas	Laikas 1	Laikas 2	Laikas 3	Laikas 4	Laikas 5	Vidurkiai
Nuskaitymas	504 s	573 s	582 s	609 s	495 s	552 s
Rušiavimas	53 s	65 s	67 s	64 s	52 s	60 s
Skirstymas	98 s	119 s	112 s	122 s	99 s	110 s

1.16.4.2 10,000 studenty

Matavimas	Laikas 1	Laikas 2	Laikas 3	Laikas 4	Laikas 5	Vidurkiai
Nuskaitymas	5396 s	5124 s	5232 s	4846 s	5028 s	5125 s
Rušiavimas	826 s	745 s	785 s	939 s	943 s	847 s
Skirstymas	955 s	941 s	965 s	997 s	1099 s	991 s

1.16.4.3 100,000 studentų

Matavimas	Laikas 1	Laikas 2	Laikas 3	Laikas 4	Laikas 5	Vidurkiai
Nuskaitymas	49040 s	46073 s	48257 s	49288 s	50360 s	48603 s
Rušiavimas	11722 s	12060 s	11927 s	12071 s	12136 s	11983 s
Skirstymas	9479 s	9184 s	8919 s	9446 s	9274 s	9260 s

1.16.4.4 1,000,000 studentų

Matavimas	Laikas 1	Laikas 2	Laikas 3	Laikas 4	Laikas 5	Vidurkiai
Nuskaitymas	430 ms	435 ms	437 ms	443 ms	436 ms	436 ms
Rušiavimas	134 ms	140 ms	145 ms	141 ms	136 ms	139 ms
Skirstymas	111 ms	109 ms	110 ms	110 ms	109 ms	109 ms

1.16.4.5 10,000,000 studentų

Matavimas	Laikas 1	Laikas 2	Laikas 3	Laikas 4	Laikas 5	Vidurkiai
Nuskaitymas	4414 ms	4401 ms	4396 ms	4444 ms	4414 ms	4413 ms
Rušiavimas	1743 ms	1665 ms	1729 ms	1722 ms	1660 ms	1703 ms
Skirstymas	1350 ms	1357 ms	1348 ms	1343 ms	1350 ms	1349 ms

1.16.5 Naudojant std::list

1.16.5.1 1,000 studentų

Matavimas	Laikas 1	Laikas 2	Laikas 3	Laikas 4	Laikas 5	Vidurkiai
Nuskaitymas	560 s	576 s	606 s	485 s	594 s	564 s
Rušiavimas	52 s	64 s	66 s	52 s	65 s	59 s
Skirstymas	99 s	121 s	119 s	94 s	126 s	111 s

1.16.5.2 10,000 studentų

Matavimas	Laikas 1	Laikas 2	Laikas 3	Laikas 4	Laikas 5	Vidurkiai
Nuskaitymas	4843 s	5330 s	4923 s	4755 s	5391 s	5048 s
Rušiavimas	761 s	738 s	756 s	757 s	735 s	749 s
Skirstymas	1005 s	1068 s	894 s	882 s	963 s	962 s

1.16.5.3 100,000 studentų

Matavimas	Laikas 1	Laikas 2	Laikas 3	Laikas 4	Laikas 5	Vidurkiai
Nuskaitymas	47977 s	47000 s	48757 s	49032 s	59094 s	50372 s
Rušiavimas	12449 s	12087 s	12294 s	12273 s	12074 s	12235 s
Skirstymas	9721 s	9184 s	10342 s	9746 s	9834 s	9765 s

1.16.5.4 1,000,000 studentų

1.16 Tyrimai 7

Matavimas	Laikas 1	Laikas 2	Laikas 3	Laikas 4	Laikas 5	Vidurkiai
Nuskaitymas	476 ms	472 ms	477 ms	477 ms	473 ms	475 ms
Rušiavimas	285 ms	233 ms	256 ms	243 ms	233 ms	250 ms
Skirstymas	167 ms	155 ms	168 ms	165 ms	162 ms	163 ms

1.16.5.5 10,000,000 studentų

Matavimas	Laikas 1	Laikas 2	Laikas 3	Laikas 4	Laikas 5	Vidurkiai
Nuskaitymas	4643 ms	4681 ms	4723 ms	4707 ms	4613 ms	4673 ms
Rušiavimas	5225 ms	5597 ms	5502 ms	5185 ms	5349 ms	5371 ms
Skirstymas	1647 ms	1710 ms	1669 ms	1654 ms	1658 ms	1667 ms

1.16.6 Naudojant std::deque

1.16.6.1 1,000 studentų

Matavimas	Laikas 1	Laikas 2	Laikas 3	Laikas 4	Laikas 5	Vidurkiai
Nuskaitymas	589 s	511 s	480 s	565 s	593 s	547 s
Rušiavimas	133 s	108 s	100 s	124 s	126 s	118 s
Skirstymas	102 s	84 s	81 s	99 s	91 s	91 s

1.16.6.2 10,000 studentų

Matavimas	Laikas 1	Laikas 2	Laikas 3	Laikas 4	Laikas 5	Vidurkiai
Nuskaitymas	4974 s	4865 s	4524 s	4909 s	4793 s	4813 s
Rušiavimas	1103 s	1213 s	1129 s	1070 s	1106 s	1124 s
Skirstymas	891 s	814 s	760 s	852 s	768 s	817 s

1.16.6.3 100,000 studentų

Matavimas	Laikas 1	Laikas 2	Laikas 3	Laikas 4	Laikas 5	Vidurkiai
Nuskaitymas	45226 s	45315 s	57134 s	46732 s	45353 s	47952 s
Rušiavimas	13310 s	13076 s	13947 s	12625 s	12929 s	13177 s
Skirstymas	8509 s	8437 s	8048 s	8168 s	8224 s	8277 s

1.16.6.4 1,000,000 studentų

Matavimas	Laikas 1	Laikas 2	Laikas 3	Laikas 4	Laikas 5	Vidurkiai
Nuskaitymas	453 ms	461 ms	458 ms	452 ms	453 ms	455 ms
Rušiavimas	159 ms	166 ms	155 ms	164 ms	164 ms	161 ms
Skirstymas	128 ms	132 ms	140 ms	136 ms	127 ms	132 ms

1.16.6.5 10,000,000 studentų

Matavimas	Laikas 1	Laikas 2	Laikas 3	Laikas 4	Laikas 5	Vidurkiai
Nuskaitymas	4520 ms	4489 ms	4540 ms	4530 ms	5122 ms	4640 ms
Rušiavimas	2040 ms	1952 ms	1952 ms	1982 ms	1969 ms	1979 ms
Skirstymas	1496 ms	1479 ms	1503 ms	1482 ms	1500 ms	1492 ms

1.16.7 Naudojant naują Vector klasę

1.16.7.1 1,000 studnetų

Matavimas	Laikas 1	Laikas 2	Laikas 3	Laikas 4	Laikas 5	Vidurkiai
Nuskaitymas	582 s	565 s	576 s	696 s	596 s	603 s
Rušiavimas	133 s	129 s	129 s	129 s	136 s	131 s
Skirstymas	152 s	146 s	151 s	156 s	144 s	150 s

1.16.7.2 10,000 studentų

Matavimas	Laikas 1	Laikas 2	Laikas 3	Laikas 4	Laikas 5	Vidurkiai
Nuskaitymas	6914 s	7813 s	6592 s	6308 s	6574 s	6840 s
Rušiavimas	1801 s	1753 s	1473 s	1493 s	1813 s	1667 s
Skirstymas	2303 s	2246 s	2304 s	2066 s	2123 s	2208 s

1.16.7.3 100,000 studentų

Matavimas	Laikas 1	Laikas 2	Laikas 3	Laikas 4	Laikas 5	Vidurkiai
Nuskaitymas	56841 s	53579 s	54079 s	58699 s	54874 s	55614 s
Rušiavimas	18657 s	19323 s	19014 s	18681 s	18608 s	18857 s
Skirstymas	17205 s	12676 s	12705 s	13748 s	12706 s	13808 s

1.16.7.4 1,000,000 studentų

Matavimas	Laikas 1	Laikas 2	Laikas 3	Laikas 4	Laikas 5	Vidurkiai
Nuskaitymas	524 ms	508 ms	508 ms	507 ms	498 ms	509 ms
Rušiavimas	232 ms	232 ms	227 ms	232 ms	236 ms	232 ms
Skirstymas	291 ms	286 ms	276 ms	257 ms	270 ms	276 ms

1.16.7.5 10,000,000 studentų

Matavimas	Laikas 1	Laikas 2	Laikas 3	Laikas 4	Laikas 5	Vidurkiai
Nuskaitymas	6073 ms	5933 ms	5660 ms	5653 ms	5420 ms	5758 ms
Rušiavimas	2954 ms	2883 ms	2832 ms	2834 ms	2942 ms	2889 ms
Skirstymas	3855 ms	3704 ms	3552 ms	3355 ms	3298 ms	3553 ms

1.16.8 Ketvirtas tyrimas (Skirstymas)

• Laiko matavimui naudoajam chrono biblioteka

1.16 Tyrimai 9

- · Duomenys gaunaumi iš ankščiau sugeneruotų failų
- Kiekvienas studentas turi po 10 namų darbų rezultatų + egzaminas
- Matavimai atliekami penkis kartus ir iš jų išgaunami vidurkiai
- · Kodas buvo sukompiliuotas naudojant -O3 gaire
- · Matuojami vykdomi su penkiais skirtingais failo dydžiais
- · Duomenys nerūšiuojami
- · Naudojamos 3 strategijos:
- 1. Bendro studentai konteinerio skaidymas (rūšiavimas) į du naujus to paties tipo konteinerius
- 2. Bendro studentų konteinerio skaidymas (rūšiavimas) panaudojant tik vieną naują konteinerį
- 3. Bendro studentų konteinerio skaidymas (rūšiavimas) panaudojant "efektyvius" darbo su konteineriais metodus (erase, remove_if)

1.16.8.1 Vector

1.16.8.2 1 Strategija

Studentu sk.	Laikas 1	Laikas 2	Laikas 3	Laikas 4	Laikas 5	Vidurkiai
1,000	86 s	82 s	103 s	87 s	80 s	87 s
10,000	1064 s	1212 s	1122 s	1155 s	1119 s	1134 s
100,000	7906 s	7346 s	7287 s	7355 s	7335 s	7445 s
1,000,000	52 ms	53 ms	53 ms	49 ms	53 ms	52 ms
10,000,000	711 ms	707 ms	701 ms	699 ms	707 ms	705 ms

1.16.8.3 2 Strategija

Studentu sk.	Laikas 1	Laikas 2	Laikas 3	Laikas 4	Laikas 5	Vidurkiai
1,000	58 s	70 s	71 s	60 s	69 s	65 s
10,000	807 s	761 s	796 s	769 s	737 s	774 s
100,000	6122 s	5950 s	6083 s	6338 s	5944 s	6087 s
1,000,000	46 ms	47 ms	46 ms	46 ms	47 ms	46 ms
10,000,000	571 ms	570 ms	560 ms	562 ms	564 ms	565 ms

1.16.8.4 3 Strategija

Studentu sk.	Laikas 1	Laikas 2	Laikas 3	Laikas 4	Laikas 5	Vidurkiai
1,000	36 s	41 s	48 s	43 s	40 s	41 s
10,000	616 s	562 s	571 s	614 s	614 s	595 s
100,000	4613 s	4101 s	4130 s	4014 s	3839 s	4139 s
1,000,000	28 ms	28 ms	29 ms	29 ms	33 ms	29 ms
10,000,000	355 ms	356 ms	354 ms	355 ms	351 ms	354 ms

1.16.8.5 List

1.16.8.6 1 Strategija

Studentu sk.	Laikas 1	Laikas 2	Laikas 3	Laikas 4	Laikas 5	Vidurkiai
1,000	138 s	103 s	97 s	103 s	119 s	112 s
10,000	1207 s	1020 s	1117 s	953 s	994 s	1058 s
100,000	9856 s	9813 s	9280 s	9690 s	10011 s	9730 s
1,000,000	96 ms	100 ms	97 ms	97 ms	98 ms	97 ms
10,000,000	946 ms	956 ms	956 ms	948 ms	1000 ms	961 ms

1.16.8.7 2 Strategija

Studentu sk.	Laikas 1	Laikas 2	Laikas 3	Laikas 4	Laikas 5	Vidurkiai
1,000	17 s	21 s	18 s	25 s	16 s	19 s
10,000	218 s	177 s	175 s	181 s	179 s	186 s
100,000	1699 s	1693 s	1693 s	1682 s	1678 s	1689 s
1,000,000	16 ms	17 ms	17 ms	17 ms	16 ms	16 ms
10,000,000	172 ms	172 ms	173 ms	170 ms	170 ms	171 ms

1.16.8.8 3 Strategija

Studentu sk.	Laikas 1	Laikas 2	Laikas 3	Laikas 4	Laikas 5	Vidurkiai
1,000	60 s	50 s	63 s	49 s	50 s	54 s
10,000	529 s	517 s	674 s	553 s	677 s	590 s
100,000	5377 s	5615 s	5088 s	5006 s	5225 s	5262 s
1,000,000	66 ms	69 ms	68 ms	68 ms	66 ms	67 ms
10,000,000	668 ms	668 ms	685 ms	665 ms	676 ms	672 ms

1.16.8.9 Deque

1.16.8.10 1 Strategija

Studentu sk.	Laikas 1	Laikas 2	Laikas 3	Laikas 4	Laikas 5	Vidurkiai
1,000	84 s	85 s	138 s	107 s	84 s	99 s
10,000	844 s	804 s	786 s	898 s	832 s	832 s
100,000	10858 s	8951 s	8304 s	7947 s	8524 s	8916 s
1,000,000	82 ms	84 ms	80 ms	80 ms	80 ms	81 ms
10,000,000	820 ms	818 ms	810 ms	820 ms	819 ms	817 ms

1.16.8.11 2 Strategija

Studentu sk.	Laikas 1	Laikas 2	Laikas 3	Laikas 4	Laikas 5	Vidurkiai
1,000	37 s	34 s	33 s	35 s	29 s	33 s
10,000	248 s	249 s	250 s	266 s	257 s	254 s
100,000	2483 s	2414 s	2526 s	2483 s	2520 s	2485 s
1,000,000	24 ms	24 ms	24 ms	24 ms	23 ms	23 ms
10,000,000	243 ms	253 ms	239 ms	243 ms	243 ms	244 ms

1.16.8.12 3 Strategija

1.16 Tyrimai 11

Studentu sk.	Laikas 1	Laikas 2	Laikas 3	Laikas 4	Laikas 5	Vidurkiai
1,000	47 s	48 s	53 s	57 s	58 s	52 s
10,000	460 s	446 s	452 s	425 s	436 s	443 s
100,000	4231 s	4184 s	4566 s	4238 s	4094 s	4262 s
1,000,000	49 ms	46 ms	48 ms	49 ms	48 ms	48 ms
10,000,000	465 ms	466 ms	467 ms	465 ms	468 ms	466 ms

1.16.9 Penktas tyrimas (Struct vs Class)

- Laiko matavimui naudoajam chrono biblioteka
- · Duomenys gaunaumi iš ankščiau sugeneruotų failų
- Kiekvienas studentas turi po 10 namų darbų rezultatų + egzaminas
- Matavimai atliekami penkis kartus ir iš jų išgaunami vidurkiai
- Matuojami du kodo atvėjai, Vienas naudojant Struktūras studentams kitas klases
- Matavimui naudajami tik 1,000,000 ir 10,000,000 studentų kiekiai
- Matavimui bus lyginami -O1, -O2 ir -O3 kompiliavmo gairės (3 atvėjai, kodo veikimo greitis ir bin failo dydis)
- Matuojamas pilnas programos veikimo laikas (neskaitant vartotojo įvesties)
- Naudojamas vector tipo konteineris studentų masyui saugoti

1.16.9.1 Veikimo greitis -O1

(stud. sk.) Duom. tipas	Laikas 1	Laikas 2	Laikas 3	Laikas 4	Laikas 5	Vidurkiai
(1,000,000) Klasė	1562 ms	1619 ms	1616 ms	1630 ms	1593 ms	1604 ms
(1,000,000) Struktūra	1306 ms	1333 ms	1321 ms	1328 ms	1311 ms	1319 ms
(10,000,000) Klasė	17244 ms	17597 ms	17800 ms	17520 ms	17590 ms	17550 ms
(10,000,000) Struktūra	13950 ms	14018 ms	14012 ms	14125 ms	14019 ms	14024 ms

Klasės metodo bin dydis: 107.94 KiB Struktūros metodo bin dydis: 110.88 KiB

1.16.9.2 Veikimo greitis -O2

(stud. sk.) Duom. tipas	Laikas 1	Laikas 2	Laikas 3	Laikas 4	Laikas 5	Vidurkiai
(1,000,000) Klasė	1559 ms	1607 ms	1599 ms	1606 ms	1597 ms	1593 ms
(1,000,000) Struktūra	1443 ms	1338 ms	1337 ms	1359 ms	1358 ms	1367 ms
(10,000,000) Klasė	16920 ms	17292 ms	17082 ms	17048 ms	17276 ms	17123 ms
(10,000,000) Struktūra	14104 ms	14132 ms	14284 ms	14277 ms	14272 ms	14213 ms

Klasės metodo bin dydis: 117.92 KiB Struktūros metodo bin dydis: 119.91 KiB

1.16.9.3 Veikimo greitis -O3

(stud. sk.) Duom. tipas	Laikas 1	Laikas 2	Laikas 3	Laikas 4	Laikas 5	Vidurkiai
(1,000,000) Klasė	1569 ms	1556 ms	1550 ms	1551 ms	1572 ms	1559 ms
(1,000,000) Struktūra	1264 ms	1329 ms	1291 ms	1278 ms	1292 ms	1290 ms
(10,000,000) Klasė	16396 ms	16528 ms	16528 ms	16639 ms	16589 ms	16536 ms
(10,000,000) Struktūra	13311 ms	13454 ms	13388 ms	13425 ms	13332 ms	13382 ms

Klasės metodo bin dydis: 129.52 KiB Struktūros metodo bin dydis: 123.69 KiB

Vectoriaus klasė

2.1 Vectoriaus metodai

2.1.1 push_back()

push_back funkcija įdeda elementą į masyvo galą

```
Vector<int> my_vector;
my_vector.push_back(20);
std::cout « my_vector.at(0) « std::endl;
// Išveda 20
```

2.1.2 pop_back()

pop_back funkcija išėma elementą iš masyvo galo ir gražino jo vertę

```
Vector<int> my_vector;

my_vector.push_back(20);
my_vector.push_back(5);

std::cout « my_vector.pop_back() « std::endl;
// Išveda 20
std::cout « my_vector.pop_back() « std::endl;
// Išveda 5
```

2.1.3 at()

Gražina nuorodą (refrence) į masyvo elementą nurodytame indekse. Jei indeksas už masyvo ribų išmetamas erroras

```
Vector<int> my_vector;
my_vector.push_back(20);
std::cout « my_vector.at(0) « std::endl;
// Išveda 20
std::cout « my_vector.at(1) « std::endl;
// std::out_of_range
// at() index out of range
```

14 Vectoriaus klasė

2.1.4 size()

Gražina masyvo elementų kiekį

```
Vector<int> my_vector;

my_vector.push_back(20);
my_vector.push_back(5);
my_vector.push_back(-7);

std::cout « my_vector.size() « std::endl;
// Išveda 3
```

2.1.5 capacity()

Gražina reservuotą masyvo elementų skaičių

```
Vector<int> my_vector;

my_vector.push_back(20);
my_vector.push_back(5);
my_vector.push_back(-7);

std::cout « my_vector.capacity() « std::endl;
// Išveda 4
```

2.2 Spartos analizė

- Laiko matavimui naudoajam chrono biblioteka
- · Testavimo eiga:
 - 1. Pradedamas laiko matavimas
 - 2. Sukuriamas tuščias vector konteineris su int tipo parametru
 - 3. Vektorius užpildomas didėjančia skaičiū seka iki nustatyto elementų kiekio
 - 4. Sustabdomas laiko skaičiavimas
 - 5. Sunaikinamas vector konteineris
- Testai pakartojami po 10 kartų ir iš jū gaunamas vidurkis

Elementų kiekis	std::vector greitis	Vector greitis
10000	7.883e-06s	1.9581e-05s
100000	0.00025s	0.00018s
1000000	0.00178s	0.00123s
10000000	0.00998s	0.01192s
100000000	0.07464s	0.0928s

Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:	
Vector < T >	19

16 Class Index

File Index

4.1 File	List
----------	------

Here is a list of all documented files with brief descriptions:				
vector.hpp	21			

18 File Index

Class Documentation

5.1 Vector < T > Class Template Reference

Public Member Functions

- Vector (const Vector < T > & other)
- Vector< T > & operator= (const Vector< T > & other)
- Vector (Vector < T > &&other) noexcept
- Vector< T > & operator= (Vector< T > &&other) noexcept
- T & operator[] (const size_t index)
- bool **operator==** (const Vector< T > &other)
- bool **operator!=** (const Vector< T > &other)
- void assign (const size_t count, const T &value)
- void push_back (const T &value)
- T pop_back ()
- · void clear ()
- void resize (size_t new_size, const T &value={})
- void reserve (size_t new_capacity)
- void erase (size_t index)
- void insert (size_t index, const T &value)
- T & at (const size_t index)
- void shrink to fit ()
- void swap (Vector < T > &other)
- T & front () const
- T & back () const
- size_t get_size () const
- size_t get_capacity () const
- T * begin () const
- T * end () const
- T * get_data () const
- bool empty () const
- size_t max_size () const

The documentation for this class was generated from the following file:

· vector.hpp

20 Class Documentation

File Documentation

6.1 vector.hpp

```
00001 #ifndef VECTOR_HPP
00002 #define VECTOR_HPP
00003 #include <memory>
00004 #include <limits>
00005
00006 template <typename T>
00007 class Vector
} 80000
          size_t size;
size_t capacity;
std::unique_ptr<T[]> data;
00009
00010
00011
00012
00013 public:
00014
          Vector() : size(0), capacity(1), data(new T[1]) {}
00015
           ~Vector()
00016
           {
00017
               size = 0;
               capacity = 0;
00018
00019
               data.release();
00020
00021
00022
           Vector(const Vector<T> &other)
00023
00024
               size = other.size;
               capacity = other.capacity;
00026
               data.reset(new T[capacity]);
               for (size_t i = 0; i < size; i++)</pre>
00027
00028
               {
00029
                    data[i] = other.data[i];
00030
00031
           }
00032
00033
           Vector<T> &operator=(const Vector<T> &other)
00034
00035
               if (this != &other)
00036
                   size = other.size;
00038
                    capacity = other.capacity;
                    data.reset(new T[capacity]);
for (size_t i = 0; i < size; i++)</pre>
00039
00040
00041
00042
                        data[i] = other.data[i];
00043
00044
00045
               return *this;
00046
          }
00047
00048
           Vector(Vector<T> &&other) noexcept
00049
               size = std::move(other.size);
00051
               capacity = std::move(other.capacity);
00052
               data = std::move(other.data);
00053
00054
00055
           Vector<T> &operator=(Vector<T> &&other) noexcept
00057
               if (this != &other)
```

22 File Documentation

```
00058
               {
00059
                   size = std::move(other.size);
00060
                   capacity = std::move(other.capacity);
                   data = std::move(other.data);
00061
00062
00063
               return *this;
00064
          }
00065
00066
          T &operator[](const size_t index)
00067
00068
               if (index < size)</pre>
00069
               {
00070
                   return data[index];
00071
00072
00073
               throw std::out_of_range("operator[] index out of range");
00074
          }
00075
00076
          bool operator==(const Vector<T> &other)
00077
00078
               if (size != other.size)
00079
08000
                   return false;
00081
00082
00083
               for (size_t i = 0; i < size; i++)</pre>
00084
00085
                    if (data[i] != other.data[i])
00086
00087
                        return false:
00088
                   }
00089
00090
               return true;
00091
00092
00093
          bool operator!=(const Vector<T> &other)
00094
               if (size != other.size)
00096
00097
                   return true;
00098
00099
               for (size_t i = 0; i < size; i++)</pre>
00100
00101
00102
                    if (data[i] != other.data[i])
00103
00104
                        return true;
00105
                   }
00106
00107
               return false;
00108
          }
00109
00110
           void assign(const size_t count, const T &value)
00111
00112
               this->resize(count);
               for (size_t i = 0; i < count; i++)</pre>
00113
00114
00115
                   data[i] = value;
00116
00117
          }
00118
00119
           void push_back(const T &value)
00120
00121
               if (size >= capacity)
00122
                   capacity = (capacity == 0) ? 1 : capacity * 2;
std::unique_ptr<T[]> new_data(new T[capacity]);
for (size_t i = 0; i < size; i++)</pre>
00123
00124
00125
00126
00127
                        new_data[i] = data[i];
00128
00129
                   data.swap(new_data);
00130
               data[size++] = value;
00131
00132
          }
00133
00134
           T pop_back()
00135
               if (size > 0)
00136
00137
               {
00138
                   return data[--size];
00139
00140
               throw std::out_of_range("pop_back() called on empty vector");
00141
           }
00142
           void clear()
00143
00144
```

6.1 vector.hpp 23

```
00145
               size = 0;
00146
               capacity = 1;
00147
               data.reset(new T[capacity]);
00148
          }
00149
00150
          void resize(size t new size, const T &value = {})
00151
00152
               if (new_size > capacity)
00153
               {
00154
                   capacity = new_size;
00155
              }
00156
               std::unique_ptr<T[]> new_data(new T[capacity]);
for (size_t i = 0; i < size; i++)</pre>
00157
00158
00159
00160
                   new_data[i] = data[i];
00161
               for (size_t i = size; i < new_size; i++)</pre>
00162
00163
00164
                   new_data[i] = value;
00165
00166
00167
               size = new size;
00168
               data.swap (new_data);
00169
          }
00170
          void reserve(size_t new_capacity)
00171
00172
00173
               if (new_capacity < size)</pre>
00174
               {
00175
                   throw std::out of range("reserve() new capacity is less than current size");
00176
              }
00177
00178
               std::unique_ptr<T[]> new_data(new T[new_capacity]);
00179
               for (size_t i = 0; i < size; i++)</pre>
00180
00181
                   new data[i] = data[i];
00182
00183
               data.swap(new_data);
00184
              capacity = new_capacity;
00185
00186
00187
          void erase(size t index)
00188
00189
               if (index < size)</pre>
00190
00191
                   for (size_t i = index; i < size - 1; i++)</pre>
00192
                       data[i] = data[i + 1];
00193
00194
00195
                   size--;
00196
00197
               else
00198
               {
                   throw std::out_of_range("erase() index out of range");
00199
00200
               }
00201
          }
00202
00203
          void insert(size_t index, const T &value)
00204
               if (index < size)</pre>
00205
00206
               {
00207
                   if (size >= capacity)
00208
00209
                       capacity = (capacity == 0) ? 1 : capacity * 2;
00210
                       std::unique_ptr<T[]> new_data(new T[capacity]);
00211
                       for (size_t i = 0; i < size; i++)</pre>
00212
00213
                            new_data[i] = data[i];
00214
00215
                       data.swap(new_data);
00216
                   }
00217
                   for (size_t i = size - 1; i >= index; i--)
00218
00219
                   {
00220
                       data[i + 1] = data[i];
00221
00222
                   size++;
00223
                   data[index] = value;
00224
               }
00225
               else
00226
               {
00227
                   throw std::out_of_range("insert() index out of range");
00228
00229
          }
00230
00231
          T &at(const size t index)
```

24 File Documentation

```
00232
          {
00233
              if (index < size)</pre>
00234
00235
                  return data[index];
00236
00237
00238
              throw std::out_of_range("at() index out of range");
00239
          }
00240
00241
          void shrink_to_fit()
00242
              std::unique_ptr<T[]> new_data(new T[size]);
00243
00244
              for (size_t i = 0; i < size; i++)</pre>
00245
00246
                  new_data[i] = data[i];
00247
00248
              data.swap(new_data);
00249
              capacity = size;
00250
          }
00251
00252
          void swap(Vector<T> &other)
00253
00254
              std::swap(size, other.size);
              std::swap(capacity, other.capacity);
data.swap(other.data);
00255
00256
00257
          }
00258
00259
          T &front() const
00260
00261
              if (size > 0)
00262
              {
00263
                  return data[0];
00264
00265
              throw std::out_of_range("front() called on empty vector");
00266
          }
00267
00268
          T &back() const
00269
00270
              if (size > 0)
00271
00272
                  return data[size - 1];
00273
00274
              throw std::out_of_range("back() called on empty vector");
00275
          }
00276
00277
          size_t get_size() const
00278
00279
              return size;
00280
          }
00281
00282
          size_t get_capacity() const
00283
          {
00284
              return capacity;
00285
          }
00286
00287
          T *begin() const
00288
00289
             return data.get();
00290
          }
00291
00292
          T *end() const
00293
00294
              return data.get() + size;
00295
          }
00296
00297
          T *get_data() const
00298
00299
             return data.get();
00300
          }
00301
00302
          bool empty() const
00303
00304
              return size == 0;
00305
00306
00307
          size_t max_size() const
00308
          {
00309
              return std::numeric_limits<size_t>::max();
00310
00311 }:
00312 #endif // VECTOR_HPP
```

Index

Release aprašymai, 1

Vector< T >, 19 Vectoriaus klasė, 13