CS 4330 HW1 Solution

January 31, 2019

0.7

a)

Let R be the relation on \mathbb{R} where xRy iff |x-y|<5

Reflexive: $|x - x| < 5 \forall x \in \mathbb{R}$

Symmetric: if |x - y| < 5, |y - x| < 5 for all $x, y \in \mathbb{R}$

Not transitive: let x=7,y=5,z=1, then |x-y|<5, |y-z|<5 but $|x-z|\not<5$

b)

Let R be the relation \leq over real number.

Reflexive: $x \leq x \forall x \in \mathbb{R}$

Transitive: if $x \leq y$ and $y \leq z$ then $x \leq z$ for all $x, y, z \in \mathbb{R}$

Not symmetric: $x \leq y$ but it is not necessarily true that $y \leq x \forall x, y \in \mathbb{R}$. For instance, $3 \leq 5$ but $5 \nleq 3$.

c)

Let xRy, where $x, y \in \mathbb{R}$ iff xy > 0.

Not reflexive: Let x = 0, then $xx \ge 0$ so R is not reflexive

Symmetric: if xy > 0, yx > 0 for all $x, y \in \mathbb{R}$

Transitive: if xy > 0, yz > 0 then $xz > 0 \forall x, y, z \in \mathbb{R}$

0.11

a)

Base case: If n = 1, $S(n) = 1 = \frac{1}{2}1(1+1) = 1$. Therefore, the base case holds.

Suppose $S(n) = 1 + 2 + 3 + \dots + n = \frac{1}{2}n(n+1)$. We want to prove this holds for n+1.

We have

$$S(n+1) = 1 + 2 + \dots + n + (n+1)$$

$$= \frac{1}{2}n(n+1) + (n+1)$$
 using our induction hypothesis
$$= \frac{1}{2}n(n+1) + \frac{1}{2}2(n+1)$$

$$= \frac{1}{2}(n+1)(n+2)$$

Therefore, by induction, we've proved that $S(n) = \frac{1}{2}n(n+1)$.

b)

Base case: If $n=1, C(n)=1^3=1=\frac{1}{4}1^2(1+1)^2=1$. Therefore, the base case holds. Suppose $C(n)=1^3+2^3+\ldots+n^3=\frac{1}{4}n^2(n+1)^2$. We want to prove this holds for n+1. We have

$$C(n+1) = 1^3 + 2^3 + \dots + n^3 + (n+1)^3$$

$$= \frac{1}{4}n^2(n+1)^2 + (n+1)^3 \qquad \text{using our induction hypothesis}$$

$$= \frac{1}{4}n^2(n+1)^2 + \frac{1}{4}4(n+1)^3$$

$$= \frac{1}{4}(n+1)^2(n^2 + 4n + 4)$$

$$= \frac{1}{4}(n+1)^2(n+2)^2$$

Therefore, by induction, we've proved that $C(n) = \frac{1}{4}n^2(n+1)^2$.

1.4

a) $\{w|w \text{ has at least 3 a's and at least 2 b's}\}$

c) $\{w|w \text{ has an even number of a's and one or two b's}\}$

e) $\{w|w \text{ starts with an a and has at most one b}\}$

f) $\{w|w \text{ has an odd number of a's and ends with a b}\}$

g) $\{w|w$ has even length and an odd number of a's $\}$

1.5

c) $L = \{w | w \text{ contains neither the substrings ab nor ba}\}.$

 $\overline{L} = \{w|w \text{ contains either the substrings ab or ba}\}.$

DFA for \overline{L} :

The DFA for L:

d) $L = \{w|w \text{ is any string not in } a^*b^*\}.$

 $\overline{L} = \{w|w \text{ is any string in } a^*b^*\}.$

The DFA for \overline{L} is

The DFA for L is

e) $L = \{w|w \text{ is any string not in } (ab^+)^*\}.$

 $\overline{L} = \{w|w \text{ is any string in } (ab^+)^*\}.$

The DFA for \overline{L} is

The DFA for L is

f) $L = \{w|w \text{ is any string not in } a^* \cup b^*\}.$

 $\overline{L} = \{w|w \text{ is any string in } a^* \cup b^*\}.$

The DFA for \overline{L} is

The DFA for L is

g) $L = \{w|w \text{ is any string that doesn't contain exactly two a'}\}.$

 $\overline{L} = \{w|w \text{ is any string that contains exactly two a'}\}.$

DFA for \overline{L} :

Then, DFA for L is

1.6

a)

 $\{w|w \text{ begins with a 1 and ends with a 0}\}.$

b) $\{w|w \text{ contains at least three 1s}\}.$

c) $\{w|w \text{ contains the substring 0101}\}.$

d) $\{w|w \text{ w has length at least 3 and its third symbol is a 0}\}.$

e) $\{w|w \text{ starts with } 0 \text{ and has odd length, or starts with } 1 \text{ and has even length}\}.$

