Calculus II

Simplify basic trigonometric functions evaluated on basic inverse trigonometric functions

Todor Milev

2019

Find
$$\tan \left(\arcsin\left(\frac{1}{3}\right)\right)$$
.

Find
$$\tan \left(\arcsin \left(\frac{1}{3}\right)\right)$$
.

• Let $\theta = \arcsin\left(\frac{1}{3}\right)$, so $\sin \theta = \frac{1}{3}$.

Find $\tan \left(\arcsin \left(\frac{1}{3}\right)\right)$.

- Let $\theta = \arcsin\left(\frac{1}{3}\right)$, so $\sin \theta = \frac{1}{3}$.
- Draw a right triangle with opposite side 1 and hypotenuse 3.

Find $\tan \left(\arcsin \left(\frac{1}{3}\right)\right)$.

- Let $\theta = \arcsin\left(\frac{1}{3}\right)$, so $\sin \theta = \frac{1}{3}$.
- Draw a right triangle with opposite side 1 and hypotenuse 3.

Find
$$\tan \left(\arcsin \left(\frac{1}{3}\right)\right)$$
.

- Let $\theta = \arcsin\left(\frac{1}{3}\right)$, so $\sin \theta = \frac{1}{3}$.
- Draw a right triangle with opposite side 1 and hypotenuse 3.
- Let the angle θ be as labeled.

Find
$$\tan \left(\arcsin \left(\frac{1}{3}\right)\right)$$
.

- Let $\theta = \arcsin\left(\frac{1}{3}\right)$, so $\sin \theta = \frac{1}{3}$.
- Draw a right triangle with opposite side 1 and hypotenuse 3.
- Let the angle θ be as labeled. Then $\sin \theta = \frac{1}{3}$

Find
$$\tan \left(\arcsin \left(\frac{1}{3}\right)\right)$$
.

- Let $\theta = \arcsin\left(\frac{1}{3}\right)$, so $\sin \theta = \frac{1}{3}$.
- Draw a right triangle with opposite side 1 and hypotenuse 3.
- Let the angle θ be as labeled. Then $\sin \theta = \frac{1}{3}$ and so $\theta = \arcsin \left(\frac{1}{3}\right)$.

Find
$$\tan \left(\arcsin \left(\frac{1}{3}\right)\right)$$
.

- Let $\theta = \arcsin\left(\frac{1}{3}\right)$, so $\sin \theta = \frac{1}{3}$.
- Draw a right triangle with opposite side 1 and hypotenuse 3.
- Let the angle θ be as labeled. Then $\sin \theta = \frac{1}{3}$ and so $\theta = \arcsin \left(\frac{1}{3}\right)$.
- Length of adjacent side = ?

Find
$$\tan \left(\arcsin \left(\frac{1}{3}\right)\right)$$
.

- Let $\theta = \arcsin\left(\frac{1}{3}\right)$, so $\sin \theta = \frac{1}{3}$.
- Draw a right triangle with opposite side 1 and hypotenuse 3.
- Let the angle θ be as labeled. Then $\sin \theta = \frac{1}{3}$ and so $\theta = \arcsin \left(\frac{1}{3}\right)$.
- Length of adjacent side = $\sqrt{3^2 1^2}$

Find $\tan \left(\arcsin \left(\frac{1}{3}\right)\right)$.

- Let $\theta = \arcsin\left(\frac{1}{3}\right)$, so $\sin \theta = \frac{1}{3}$.
- Draw a right triangle with opposite side 1 and hypotenuse 3.
- Let the angle θ be as labeled. Then $\sin \theta = \frac{1}{3}$ and so $\theta = \arcsin \left(\frac{1}{3}\right)$.
- Length of adjacent side = $\sqrt{3^2 1^2} = \sqrt{8} = 2\sqrt{2}$.

Find
$$\tan \left(\arcsin \left(\frac{1}{3}\right)\right)$$
.

- Let $\theta = \arcsin\left(\frac{1}{3}\right)$, so $\sin \theta = \frac{1}{3}$.
- Draw a right triangle with opposite side 1 and hypotenuse 3.
- Let the angle θ be as labeled. Then $\sin \theta = \frac{1}{3}$ and so $\theta = \arcsin \left(\frac{1}{3}\right)$.
- Length of adjacent side = $\sqrt{3^2 1^2} = \sqrt{8} = 2\sqrt{2}$.
- Then tan $\left(\arcsin\left(\frac{1}{3}\right)\right) = ?$

Find
$$\tan \left(\arcsin\left(\frac{1}{3}\right)\right)$$
.

- Let $\theta = \arcsin\left(\frac{1}{3}\right)$, so $\sin \theta = \frac{1}{3}$.
- Draw a right triangle with opposite side 1 and hypotenuse 3.
- Let the angle θ be as labeled. Then $\sin \theta = \frac{1}{3}$ and so $\theta = \arcsin \left(\frac{1}{3}\right)$.
- Length of adjacent side = $\sqrt{3^2 1^2} = \sqrt{8} = 2\sqrt{2}$.
- Then $\tan \left(\arcsin \left(\frac{1}{3}\right)\right) = \frac{1}{2\sqrt{2}}$.

