

UNIVERSIDADE FEDERAL DO CEARÁ - CAMPUS DE CRATEÚS DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I

Gabarito Lista II

1. a) y = f(x) + 3

b)
$$y = f(x) - 3$$

c)
$$y = f(x-3)$$

d)
$$y = f(x+3)$$

e)
$$y = -f(x)$$

f)
$$y = f(-x)$$

g)
$$y = 3f(x)$$

h)
$$y = \frac{1}{3}f(x)$$

2. a) Deslocando o gráfico de f(x) 8 unidades para cima;

b) Refletindo o gráfico de f(x) em torno do eixo x e deslocando 1 unidade para baixo;

c) Deslocando o gráfico de f(x) 8 unidades para esquerda;

d) Expandindo o gráfico de f(x) horizontalmente e verticalmente por um fator de 8.

3. a) (3). Desloca o gráfico de f(x) 4 unidades para direita;

b) (1). Desloca o gráfico de f(x) 3 unidades para cima;

c) (4). Comprime verticalmente o gráfico de f(x) por um fator de 3;

d) (5). Desloca o gráfico de f(x) 4 unidades para a esquerda e reflete em torno do eixo x;

e) (2). Desloca o gráfico de f(x) 6 unidades para a esquerda e expande verticalmente por um fator de 2.

4.
$$y = -\sqrt{-x^2 - 5x - 4} - 1$$

5. O gráfico de y = 2sen(x) é o gráfico de y = sen(x) expandindo verticalmente por um fator de 2.

6. a)

b)

c)

d)

- 7. a) $(f+g)(x) = x^3 + 5x^2 1$, $(f-g)(x) = x^3 x^2 + 1$, $(f \cdot g)(x) = 3x^5 + 6x^4 x^3 2x^2$, sendo seu domínio: $D = \mathbb{R}$. $(f/g)(x) = \frac{x^3 + 2x^2}{3x^2 1}$, sendo seu domínio $D = \mathbb{R} \left\{ \pm \sqrt{\frac{1}{3}} \right\}$.
 - b) $(f+g)(x) = \sqrt{x+1} + x 2$, $(f-g)(x) = \sqrt{x+1} x + 2$, $(f.g)(x) = (x-2)\sqrt{x+1}$, sendo seu domínio: $D = \{x \in \mathbb{R} | x \ge -1\}$. $(f/g)(x) = \frac{\sqrt{x+1}}{x-2}$, sendo seu domínio $D = \{x \in \mathbb{R} | x \ge -1 \text{ e } x \ne 2\}$.
 - c) $(f+g)(x) = \sqrt{x-2} + \sqrt{x-3}$, $(f-g)(x) = \sqrt{x-2} \sqrt{x-3}$, $(f.g)(x) = \sqrt{(x-2)(x-3)}$, sendo seu domínio: $D = \{x \in \mathbb{R} | x \ge 3\}$. $(f/g)(x) = \frac{\sqrt{x-2}}{\sqrt{x-3}}$, sendo seu domínio $D = \{x \in \mathbb{R} | x > 3\}$.
- 8. a) $(f \circ g)(x) = 4x^2 + 4x$; $(g \circ f)(x) = 2x^2 1$; $(f \circ f)(x) = x^4 2x^2$; $(g \circ g)(x) = 4x + 3$. O domínio das funções é \mathbb{R} .
 - b) $(f \circ g)(x) = 1 3cos(x)$; $(g \circ f)(x) = cos(1 3x)$; $(f \circ f)(x) = 9x 2$; $(g \circ g)(x) = cos(cos(x))$. O domínio das funções é \mathbb{R} .
 - c) $(f \circ g)(x) = x^2 6x + 11$; $(g \circ f)(x) = x^2 1$; $(f \circ f)(x) = x^4 + 4x^2 + 6$; $(g \circ g)(x) = x 6$. O domínio das funções é \mathbb{R} .
 - d) $(f \circ g)(x) = \frac{2x^2 + 6x + 5}{(x+1)(x+2)}$, domínio: $D = \{x \in \mathbb{R} | x \neq -1, -2\}$; $(g \circ f)(x) = \frac{x^2 + x + 1}{x^2 + 2x + 1}$, domínio: $D = \{x \in \mathbb{R} | x \neq -1, 0\}$; $(f \circ f)(x) = \frac{x^4 + 3x^2 + 1}{x(x^2 + 1)}$, domínio: $D = \{x \in \mathbb{R} | x \neq 0\}$; $(g \circ g)(x) = \frac{2x + 3}{3x + 5}$, domínio: $D = \{x \in \mathbb{R} | x \neq -2, -5/3\}$.
- 9. a) $3sen(x^2) 2$
 - b) $\sqrt{x^6 + 4x^3 + 1}$
- 10. $(f \circ g)(x) = \sqrt{x^2 3x 4}$, domínio: $D = \{x \in \mathbb{R} | x \le -1 \text{ ou } x \ge 4\}$; $(g \circ f)(x) = |x| 3\sqrt{x} 4$, domínio: $D = \{x \in \mathbb{R} | x \ge 0\}$.

11.
$$g(x) = \frac{x^2 + 2}{3}$$

12. a)
$$4x^2 - 4x - 8$$
; $2x^2 + 8x - 13$

- b) 0;11
- c) x = 3 ou x = -2

13.

$$(f \circ g)(x) \begin{cases} x^2 - 4x + 7, \text{ se } x \ge 4\\ 3x - 5, \text{ se } x < 4 \end{cases}$$
.

14.

$$(f \circ g)(x) \begin{cases} 4x + 1, \text{ se } x > 2\\ -4x^2 + 1, \text{ se } -1 \le x \le 1\\ x^4 + x^2, \text{ se } x < -1 \text{ ou } 1 < x < 2 \end{cases}.$$

15. a)
$$f(x) = x^4 e g(x) = 2x + x^2$$
;

b)
$$f(x) = \frac{x}{1+x} e g(x) = \sqrt[3]{x};$$

c)
$$f(t) = sec(t)tg(t)$$
 e $g(t) = t^2$.

16. a)
$$f(x) = \sqrt{x}$$
, $g(x) = x - 1$ e $h(x) = \sqrt{x}$;

b)
$$f(x) = x^4$$
; $g(x) = sec(x)$ e $h(x) = \sqrt{x}$.

- 17. a) Injetora
 - b) Sobrejetora
 - c) Bijetora
 - d) Nem injetora e nem sobrejetora
- a) Nem injetora e nem sobrejetora. Existem retas horizontais que cortam o gráfico mais de uma vez e retas que não cortam o gráfico.
 - b) Bijetora. Toda reta horizontal corta o gráfico em um só ponto.
 - c) Injetora. Nenhuma reta horizontal corta o gráfico mais de uma vez.
 - d) Sobrejetora. Toda reta horizontal corta o gráfico.
- 19. a) Bijetora. É injetora, pois $x_1, x_2 \in \mathbb{R}, x_1 \neq x_2$, tem-se $f(x_1) = 2x_1 + 1 \neq 2x_2 + 1 = f(x_2)$. É sobrejetora, pois para todo $y \in \mathbb{R}$ existe $x \in \mathbb{R}$ tal que y = f(x) = 2x + 1, basta considerar $x = \frac{y-1}{2}$.
 - b) Nem injetora e nem sobrejetora. Não é injetora, pois, por exemplo, $x_1 = 1 \neq -1 = x_2$ tem-se $g(x_1) = g(1) = 0 = g(-1) = g(x_2)$. Não é sobrejetora, pois, por exemplo, não existe $x \in \mathbb{R}$ tal que g(x) = 2.
 - c) Sobrejetora. Não é injetora, pois, por exemplo, $x_1 = -2 \neq 4 = x_2$ tem-se $h(x_1) = h(-2) = 3 = h(4) = h(x_2)$. É sobrejetora, pois para todo $y \in \mathbb{R}_+$ existe $x \in \mathbb{R}$ tal que y = h(x) = |x 1|.
 - d) Injetora. É injetora, pois $x_1, x_2 \in \mathbb{N}, x_1 \neq x_2$, tem-se $m(x_1) = 3x_1 + 2 \neq 3x_2 + 2 = m(x_2)$. Não é sobrejetora, pois, por exemplo, não existe $x \in \mathbb{N}$ tal que m(x) = 1.

- e) Bijetora. É injetora, pois $x_1, x_2 \in \mathbb{R}^*, x_1 \neq x_2$, tem-se $p(x_1) = \frac{1}{x_1} \neq \frac{1}{x_2} = p(x_2)$. É sobrejetora, pois para todo $y \in \mathbb{R}^*$ existe $x \in \mathbb{R}^*$ tal que $y = p(x) = \frac{1}{x}$, basta considerar $x = \frac{1}{y}$.
- f) Bijetora. É injetora, pois $x_1, x_2 \in \mathbb{R}, x_1 \neq x_2$, tem-se $f(x_1) \neq f(x_2)$. É sobrejetora, pois para todo $y \in \mathbb{R}$ existe $x \in \mathbb{R}$ tal que y = f(x).
- g) Injetora. É injetora, pois $x_1, x_2 \in \mathbb{R}, x_1 \neq x_2$, tem-se $h(x_1) \neq h(x_2)$. Não é sobrejetora, pois por exemplo, não existe $x \in \mathbb{R}$ tal que h(x) = 1.

20. b = 2

21. a)
$$f^{-1}(x) = \frac{x-3}{2}$$

b)
$$g^{-1}(x) = \frac{3x+1}{4}$$

c)
$$p^{-1}(x) = \sqrt[3]{x-2} + 1$$

d)
$$q^{-1}(x) = x^3 - 2$$

22. a)

$$f^{-1}: \mathbb{R}_+ \to \mathbb{R}_+$$

$$f^{-1}(x) = \sqrt{x}$$

b)

$$f^{-1}: \mathbb{R}_+ \to \mathbb{R}_-$$

$$f^{-1}(x) = -\sqrt{x}$$

c)

$$f^{-1}: \mathbb{R}_+ \to A$$

$$f^{-1}(x) = 1 - \sqrt{x}$$

d)

$$f^{-1}: \mathbb{R}_- \to A$$

$$f^{-1}(x) = 2 - \sqrt{-x}$$

e)

$$f^{-1}: B \to \mathbb{R}_-$$

$$f^{-1}(x) = -\sqrt{x-1}$$

f)

$$f^{-1}: \mathbb{R} - \{1\} \to \mathbb{R} - \{2\}$$

$$f^{-1}(x) = \frac{2x+1}{x-1}$$

g)

$$f^{-1}: \mathbb{R} - \{-1\} \to \mathbb{R} - \{3\}$$

$$f^{-1}(x) = \frac{3x+4}{x+1}$$

23. Não, pois f não é injetora, por exemplo, $x_1 = 1 \neq -1 = x_2$, tem-se $f(x_1) = f(1) = 1 = f(-1) = f(x_2)$ e portanto não é bijetora.

$$f^{-1}(x) = \begin{cases} \sqrt{x+1}, \text{ se } x \ge -1\\ x+1, \text{ se } x < -1 \end{cases}$$
.

25. a) 4

b) 16

c) $16b^{12}$

d) x^{4n-3}

e) $\sqrt[6]{a\sqrt{b}}$

26. a)

y = 3*

b)

c)

d)

e)

f)

27. a) Deslocando 3 unidades para direita;

- b) Refletindo em torno do eixo y;
- c) Refletindo em torno do eixo y e deslocando 5 unidades para esquerda;
- d) Comprimindo horizontalmente por um fator de 2, expandindo verticalmente por um fator de 3 e transladando 1 unidade para baixo;
- e) Refletindo em torno do eixo y e comprimindo horizontalmente por um fator de 2.

$$28. \ g(x) = 2\left(\frac{1}{e}\right)^x$$

29. a)
$$S = \{-5/3\}$$

b)
$$S = \{9\}$$

c)
$$S = \{-2/3\}$$

d)
$$S = \{-1 \pm \sqrt{6}\}$$

e)
$$S = \{5/7\}$$

f)
$$S = \{-1, 2\}$$

g)
$$S = \{-4/5\}$$

h)
$$S = \{3\}$$

i)
$$S = \{3/14\}$$

j)
$$S = \{3\}$$

k)
$$S = \{1\}$$

l)
$$S = \{-2, 1\}$$

$$m) S = \emptyset$$

- n) $S = \{0, 1\}$
- o) $S = \{5/2\}$
- 30. $S = \{1/2\}$
- 31. $S = \{0\}$
- 32. a) -5/2
 - b) -3
 - c) 2/3
 - d) 6
 - e) 3/4
- 33. a) 81
 - b) 4
 - c) 1/9
 - d) $5\sqrt{5}$
 - e) 9
 - f) 3/2
 - g) 3
- 34. -4/3
- 35. a) $1 + \log_2 a + \log_2 b \log_2 c$
 - b) $3\log_3 a + 2\log_3 b 4\log_3 c$
 - c) $3\log a 2\log b \frac{1}{2}\log c$
 - d) $\frac{1}{3} \log a \frac{2}{3} \log b \frac{1}{6} \log c$
- 36. $2\log_3 a + \frac{1}{2}\log_3 b + \frac{1}{2}\log_3 c \frac{3}{5}\log_3(a+b)$
- $37. \ \frac{2a}{bc^2}$
- 38. 2,0368
- $39. \ \frac{1-2a}{a+b}$
- 40. $\frac{4(3-a)}{a+3}$
- 41. 3/2
- 42. d

43. a)

b)

c)

d)

e)

f)

44. a)
$$D = \{x \in \mathbb{R} | x \neq 3/4\}$$

b)
$$D = \{x \in \mathbb{R} | -1 < x < 1\}$$

c)
$$D = \{x \in \mathbb{R} | x > 1\}$$

d)
$$D = \{x \in \mathbb{R} | -2 < x < 3 \text{ e } x \neq 2\}$$

45. a)
$$S = \{\log_3(1/2)\}$$

b)
$$S = \{\pm \sqrt{\log_3 5}\}$$

c)
$$S = \{\log_9(2/3)\}$$

d)
$$S = \{\log_{45} 405\}$$

e)
$$S = \{\log_{2/3} 8\}$$

f) Ø

g)
$$S = \{1, \log_2 3\}$$

46. a) Período: 2π ; Im(f) = [-1, 1]

b) Período: 2π ; Im(f) = [0, 1]

c) Período: $4\pi;\,Im(f)=[-1,1]$

d) Período: $2\pi/3;\,Im(f)=[-1,1]$

e) Período: $2\pi; Im(f) = [0, 2]$

f) Período: $2\pi;\,Im(f)=[-1,1]$

g) Período: $\pi;\,Im(f)=[-1,1]$

h) Período: $\pi/2$; $Im(f) = \mathbb{R}$

i) Período: 2π ; Im(f) = [0, 2]

- 47. a) $\frac{1}{5} \le m \le \frac{3}{5}$

 - c) $m \ge 1$ ou $m \le \frac{1}{3}$
- 48. a) $D = \left\{ x \in \mathbb{R} | x \neq \frac{\pi}{6} + k \frac{\pi}{2}, k \in \mathbb{Z} \right\}$
 - b) $D = \left\{ x \in \mathbb{R} | x \neq \frac{\pi}{3} + k\pi, k \in \mathbb{Z} \right\}$
 - c) $D = \left\{ x \in \mathbb{R} | x \neq -\frac{\pi}{4} + k\pi, k \in \mathbb{Z} \right\}$
- $49. \ \cos(x) = -\frac{3}{5}, \ tg(x) = -\frac{4}{3}, \ \cot(x) = -\frac{3}{4}, \ \sec(x) = -\frac{5}{3} \ e \ \csc(x) = \frac{5}{4}.$
- $50. \ cotg(x) = \frac{5}{12}, \ sec(x) = -\frac{13}{5}, \ cos(x) = -\frac{5}{13}, \ sen(x) = -\frac{12}{13} \ e \ cossec(x) = -\frac{13}{12}.$
- 51. $cos(x) = \pm \frac{2\sqrt{m}}{m+1}$
- 52. $y = -\frac{25}{7}$
- 53. $m = -\frac{1}{10}$ ou $m = -\frac{1}{2}$
- 54. a) $\frac{\pi}{6}$ b) $\frac{\pi}{4}$
- 55. a) $\frac{2\sqrt{2}}{3}$
 - b) $\frac{33}{65}$
 - $c) \ \frac{\sqrt{21}}{2}$
 - d) $\frac{4}{5}$