

### Dimensionality Reduction

### Motivation I: **Data Compression**

Technically, a principal component can be defined as a linear combination of optimally-weighted observed variables. The output of PCA are these principal components, the number of which is less than or equal to the number of original variables. Less, in case when we wish to discard or reduce the dimensions in our dataset. The PCs possess some useful properties which are listed below:

- Machine Learning 1- The PCs are essentially the linear combinations of the original variables, the weights vector in this combination is actually the eigenvector found which in turn satisfies the principle of least squares.
  - 2- The PCs are orthogonal, as already discussed.
  - 3- The variation present in the PCs decrease as we move from the 1st PC to the last one, hence the importance.

### **Data Compression**



### Reduce data from 2D to 1D

The main idea of principal component analysis (PCA) is to reduce the dimensionality of a data set consisting of many variables correlated with each other, either heavily or lightly, while retaining the variation present in the dataset, up to the maximum extent.

Intuitively, Principal Component Analysis can supply the user with a lower-dimensional picture, a projection or "shadow" of this object when viewed from its most informative viewpoint.

### **Data Compression**



### Reduce data from 2D to 1D

$$x^{(1)} \in \mathbb{R}^{2} \longrightarrow z^{(1)} \in \mathbb{R}$$

$$x^{(2)} \in \mathbb{R}^{2} \longrightarrow z^{(2)} \in \mathbb{R}$$

$$\vdots$$

$$x^{(m)} \in \mathbb{R}^{2} \longrightarrow z^{(m)} \in \mathbb{R}$$

#### **Data Compression**

#### 10000 -> 1000

### Reduce data from 3D to 2D





Machine Learning

# Dimensionality Reduction

## Motivation II: Data Visualization

The first principal component expresses the most amount of variance & most information. Each additional component expresses less variance and more noise, so representing the data with a smaller subset of principal components preserves the signal and discards the noise.

The correlation between each principal component should be zero as subsequent components capture the remaining variance. Correlation between any pair of eigenvalue/eigenvector is zero so that the axes are orthogonal, i.e., perpendicular to each other in the data space.

### **Data Visualization**

Country

China

India

Russia

Singapore

USA

→ Canada

X,

**GDP** 

(trillions of

US\$)

1.577

5.878

1.632

1.48

0.223

14.527

[resources from en.wikipedia.org]

**X2** 

Per capita

GDP

(thousands

of intl. \$)

39.17

7.54

3.41

19.84

56.69

46.86

X3

Human

Develop-

0.908

0.687

0.547

0.755

0.866

0.91

...

| XE | 18 20 |
|----|-------|
|    |       |

X4

Life

ment Index|expectancy|percentage)|

80.7

73

64.7

65.5

80

78.3

...

× (1) e 1050

Xs

Poverty

Index

(Gini as

32.6

46.9

36.8

39.9

42.5

40.8

...

| = 112 |            |
|-------|------------|
|       | <b>%</b> 6 |

Mean

household

income

(thousands

of US\$)

67.293

10.22

0.735

0.72

67.1

84.3

...

• • •

...

...

...

...

...

...

Andrew Ng

### **Data Visualization**

Sometimes Pcs (z1,z2) have no physical meaning

| ı         |       |       | z"Elk       |
|-----------|-------|-------|-------------|
| Country   | $z_1$ | $z_2$ | <u> </u>    |
| Canada    | 1.6   | 1.2   |             |
| China     | 1.7   | 0.3   | Reduce dota |
| India     | 1.6   | 0.2   | from SOD    |
| Russia    | 1.4   | 0.5   | to 5D       |
| Singapore | 0.5   | 1.7   |             |
| USA       | 2     | 1.5   |             |
| •••       | •••   | •••   |             |

### Data Visualization





Machine Learning

# Dimensionality Reduction

### Principal Component Analysis problem formulation

Dimensionality: It is the number of random variables in a dataset or simply the number of features

Correlation: It shows how strongly two variable are related to each other. The value of the same ranges for -1 to +1  $\,$ 

Orthogonal: Uncorrelated to each other, i.e., correlation between any pair of variables is 0.

### **Principal Component Analysis (PCA) problem formulation**







Reduce from 2-dimension to 1-dimension: Find a direction (a vector  $u^{(1)} \in \mathbb{R}^n$ ) onto which to project the data so as to minimize the projection error. Reduce from n-dimension to k-dimension: Find k vectors  $u^{(1)}, u^{(2)}, \ldots, u^{(k)}$  onto which to project the data, so as to minimize the projection error.

 $x_1$ 

 $x_1$ 

### **PCA** is not linear regression



### **PCA** is not linear regression





Machine Learning

## Dimensionality Reduction

Principal Component Analysis algorithm

#### **Data preprocessing**

Training set:  $x^{(1)}, x^{(2)}, \dots, x^{(m)} \leftarrow$ 

Preprocessing (feature scaling/mean normalization):

$$\mu_j = \frac{1}{m} \sum_{i=1}^m x_j^{(i)}$$
 Replace each  $x_j^{(i)}$  with  $x_j - \mu_j$ .

If different features on different scales (e.g.,  $x_1 =$ size of house,  $x_2 = \text{number of bedrooms}$ ), scale features to have comparable range of values.  $x_i \leftarrow \frac{x_i^{(i)} - \mu_i}{x_i^{(i)}}$ 

The dataset on which PCA technique is to be used must be scaled.

### **Principal Component Analysis (PCA) algorithm**



Reduce data from 2D to 1D





Reduce data from 3D to 2D

$$\begin{array}{ccc} S_{i} & \begin{bmatrix} s_{i} \\ S_{i} \end{bmatrix} \\ \times_{(i)} \in \mathbb{K}_{3} & \longrightarrow S_{(i)} \in \mathbb{M}_{3} \end{array}$$

### **Principal Component Analysis (PCA) algorithm**

Reduce data from n-dimensions to k-dimensions

Compute "covariance matrix":

Compute "covariance matrix":

$$\Sigma = \frac{1}{m} \sum_{i=1}^{n} (x^{(i)})(x^{(i)})^{T}$$
Sigma not summation 
$$\Sigma = \frac{1}{m} \sum_{i=1}^{n} (x^{(i)})(x^{(i)})^{T}$$
Compute "eigenvectors" of matrix  $\Sigma$ :

$$\Rightarrow [U, S, V] = \text{svd}(\text{Sigma});$$

$$\text{Next. matrix}$$

$$U = \begin{bmatrix} u_{\alpha}, u_{\alpha}, u_{\alpha}, \dots, u_{N} \end{bmatrix} \qquad (K \in \mathbb{Z}_{N \times N})$$

$$U \in \mathbb{Z}_{N \times N}$$

### **Principal Component Analysis (PCA) algorithm**

From [U,S,V] = svd(Sigma), we get:



### Principal Component Analysis (PCA) algorithm summary

After mean normalization (ensure every feature has zero mean) and optionally feature scaling:

```
Sigma = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)})(x^{(i)})^{T}
\Rightarrow [U,S,V] = \text{svd}(\text{Sigma});
\Rightarrow \text{Ureduce} = U(:,1:k);
\Rightarrow z = \text{Ureduce}' *x;
\uparrow \qquad \qquad \checkmark \in \mathbb{R}^{\wedge}
```



Machine Learning

## Dimensionality Reduction

Reconstruction from compressed representation

#### **Reconstruction from compressed representation**





Machine Learning

# Dimensionality Reduction

Choosing the number of principal components

Choosing k (number of principal components)

Average squared projection error:  $\frac{1}{m} \stackrel{\text{(i)}}{\approx} 1 \times \frac{1}{m} = \frac{1}{m} \frac{1}{m}$ Total variation in the data: 👆 😤 🗓 🗥 🗥

Typically, choose k to be smallest value so that

→ "99% of variance is retained"

### Choosing k (number of principal components)

Algorithm:

Try PCA with k=1

Compute  $U_{reduce}, \underline{z}^{(1)}, \underline{z}^{(2)},$ 

 $\dots, z_{approx}^{(m)}, x_{approx}^{(1)}, \dots, x_{approx}^{(m)}$ 

Check if

$$\frac{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)} - x_{approx}^{(i)}\|^2}{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)}\|^2} \le 0.01?$$



### Choosing k (number of principal components)

 $\rightarrow$  [U,S,V] = svd(Sigma)

Pick smallest value of k for which

$$\frac{\sum_{i=1}^{k} S_{ii}}{\sum_{i=1}^{m} S_{ii}} \ge 0.99$$

k=100

(99% of variance retained)



Machine Learning

# Dimensionality Reduction

Advice for applying PCA

### **Supervised learning speedup**

$$\rightarrow (x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$$

New training set:

Unlabeled dataset:  $x^{(1)}, x^{(2)}, \dots, x^{(m)} \in \mathbb{R}^{10000}$ 

$$z^{(1)}, z^{(2)}, \dots, z^{(m)} \in \mathbb{R}^{1000}$$

$$n$$
)  $\alpha \cdot (r$ 



 $\downarrow PCA$ 

 $(z^{(1)},y^{(1)}),(z^{(2)},y^{(2)}),\ldots,(z^{(m)},y^{(m)}) \qquad \text{he}^{(z)} = \frac{1}{1+e^{-\Theta^{\tau}z}}$ Note: Mapping  $x^{(i)} \rightarrow z^{(i)}$  should be defined by running PCA only on the training set. This mapping can be applied as well to the examples  $x_{cv}^{(i)}$  and  $x_{test}^{(i)}$  in the cross validation and test Sets

### **Application of PCA**

- Compression
  - Reduce memory/disk needed to store data Speed up learning algorithm Reduce Land Marches L

- Visualization

### Bad use of PCA: To prevent overfitting

 $\rightarrow$  Use  $\underline{z^{(i)}}$  instead of  $\underline{x^{(i)}}$  to reduce the number of features to  $\underline{k} < \underline{n}$ .

Thus, fewer features, less likely to overfit.

Bod

This might work OK, but isn't a good way to address overfitting. Use regularization instead.

$$\Rightarrow \min_{\theta} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \left[ \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_j^2 \right]$$

#### PCA is sometimes used where it shouldn't be

### Design of ML system:

- $\rightarrow$  Get training set  $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$
- $\rightarrow$  Run PCA to reduce  $x^{(i)}$  in dimension to get  $z^{(i)}$
- $\rightarrow$  Train logistic regression on  $\{(z_{test}^{(i)}, y^{(1)}), \dots, (z_{test}^{(n)}, y^{(m)})\}$   $\rightarrow$  Test on test set: Map  $x_{test}^{(i)}$  to  $z_{test}^{(i)}$ . Run  $h_{\theta}(z)$  on
- $\rightarrow$  Test on test set: Map  $x_{test}^{(i)}$  to  $z_{test}^{(i)}$ . Run  $h_{\theta}(z)$  or  $\{(z_{test}^{(1)}, y_{test}^{(1)}), \dots, (z_{test}^{(m)}, y_{test}^{(m)})\}$
- → How about doing the whole thing without using PCA?
- Before implementing PCA, first try running whatever you want to do with the original/raw data  $x^{(i)}$  Only if that doesn't do what you want, then implement PCA and consider using  $z^{(i)}$ .