CS 460/560 Introduction to Computational Robotics Fall 2019, Rutgers University

# Lecture 06 Kalman Filter Intro

Instructor: Jingjin Yu

## Outline

Uncertainty

Model of dynamical systems

Bayesian filtering: the concept

An illustrative example

Applications of Kalman filters

Derivation of Kalman Filter

A 1D example

# Uncertainty

## An everyday experience

- ⇒Where **exactly** are we?
- ⇒E.g., in a classroom
- ⇒We do not know!
- ⇒ Position is estimated
- ⇒We can get philosophical



#### A more accurate model

- $\Rightarrow$ A **dynamical system** with state x (a function of time)
- $\Rightarrow$  Positions (i.e., x) are estimates
- $\Rightarrow$ Associate each location x with some probability
- $\Rightarrow$ This gives us a probability distribution P(x)
- $\Rightarrow$  For a robot, P(x) changes as the robot moves around
- $\Rightarrow$  Kalman filter (and other Bayesian filters) tracks P(x) as x changes over time



# Modeling Dynamical Systems

A dynamical system (e.g., a car) is often modeled as

$$\dot{x} = f(x, u)$$



 $\Rightarrow$  E.g., for a car,  $x = (x_1, x_2, \theta)$ 

 $\Rightarrow \dot{x} = \frac{dx}{dt}$  is the time derivative, i.e., the velocity of the system

 $\Rightarrow$  For a car,  $\dot{x} = (\dot{x_1}, \dot{x_2}, \dot{\theta})$ 

#### $\Rightarrow u$ : the control input

 $\Rightarrow$  E.g., for a real car,  $u = (\theta, v)$  (one possible control)

 $\Rightarrow \theta$  is the front wheel bearing

 $\Rightarrow v$  is the forward speed (for a 2-wheel drive, assuming no slippery)

 $\Rightarrow u$  may be speed, acceleration, and so on...

#### $\Rightarrow f$ : system **evolution** function

 $\Rightarrow$  How do x, u determine  $\dot{x}$ 

## In **discrete** settings, often written as $x_t = f(x_{t-1}, u_{t-1})$

 $\Rightarrow$  May view this as integration of the continuous model:  $x_t = x_{t-1} + \int_{t-1}^t \dot{x} dt$ 

 $\Rightarrow$ Often written as  $x_k = f(x_{k-1}, u_{k-1})$ 



# Modeling Dynamical Systems, Continued

## **Examples**

- $\Rightarrow$ A car going at fixed speed along  $x_1$ -axis:  $\dot{x_1} = 1$ 
  - $\Rightarrow$  In this case, f(x, u) = 1 is a constant
- $\Rightarrow$ An accelerating car along  $x_1$ -axis with acceleration  $a: \dot{x_1} = at$ 
  - $\Rightarrow u = a$ , the acceleration, f(x, u) = at, does not depend on x
- ⇒A car going clockwise along the unit circle around the origin at unit speed

$$\Rightarrow \dot{x} = (\dot{x}_1, \dot{x}_2, \dot{\theta}) = (x_2, -x_1, -1)$$

- $\Rightarrow$  Initial condition:  $x_1 = 1, x_2 = 0$
- ⇒ The car will keep circling the unit circle at unit speed
- $\Rightarrow$  So it takes  $2\pi$  time to go one round

## Linear and non-linear systems

- $\Rightarrow$ Linear systems: f is a linear function, e.g.,  $\dot{x} = Ax + Bu$
- $\Rightarrow$ Non-linear systems: f is non-linear

## What to grasp from the last two slides?

- ⇒Dynamical systems may be modeled as what we have described
- $\Rightarrow$ In particular, given  $x_{k-1}$ ,  $u_{k-1}$ , and f(x, u), we can **predict**  $x_k$



# Kalman Filter as a Bayesian Filter

Kalman filter is a type of Bayesian filters over a Hidden Markov model





- $\Rightarrow x_i$ s are **hidden (actual)** system states
- ⇒They cannot be known exactly Other examples: temperature of a room, population
- $\Rightarrow$  We can **only observe**  $x_i$  using sensors to get  $z_i$

Thermometer, census

- ⇒The (discrete) process is modeled as a two-step iterative one
  - $\Rightarrow$  Noisy state change:  $x_k = f(x_{k-1}, u_{k-1}) + \omega_{k-1}$
  - $\Rightarrow$  Noisy measurement after state change:  $z_k = h(x_k) + v_k$  "white noises"
  - ⇒ More details coming up

 $\Rightarrow$  The "data" that we get are  $u_0, z_1, u_1, z_2, u_2, z_3, ...$ 

A dynamical system

- $\Rightarrow$  We want to provide  $\hat{x_k}$  as an accurate estimate of  $x_k$
- ⇒Yields **Kalman filters**, particle filters, and so on

# An Example

## A hypothetical measurement of a variable x

 $\Rightarrow$  Mean: 0.5

 $\Rightarrow$  Variance: 0.01

⇒200 sequential measurements

⇒Note: only the mean is shown in the second figure, not the variance



Important: Kalman filter is not simple averaging!

⇒It has (limited) predictive power

# **Applications**

## Numerous applications

#### ⇒GPS

- ⇒ Minimizes error in tracking the position in altitude, latitude, longitude
- $\Rightarrow$  Reduces error from  $\sim$ 30 meters to less than 5 meters

#### ⇒ Aircraft autopilot

- ⇒ Internal inertial guidance system generates errors over time
- ⇒ Minimize with a 6D Kalman filter: yaw, pitch, roll, altitude, latitude, longitude

#### ⇒ Many, many other similar applications

- ⇒ Radar
- ⇒ Economic signals, e.g., stock time series
- ⇒ Weather forecasting
- ⇒ ...

# Kalman Filter in More Detail

Kalman filter is a minimum mean square estimator (MMSE) for estimating the state  $x \in \mathbb{R}^n$  of a discrete-time controlled process with a linear system equation and a linear observer under "white noise".

⇒Linear stochastic system

$$\frac{x_k = Ax_{k-1} + Bu_{k-1}}{\text{Linear}} + \omega_{k-1}, \qquad \omega_{k-1} \sim N(0, Q)$$
Gaussian (1)

⇒With a linear observer (sensor)

$$\frac{z_k = Hx_k + \nu_k, \qquad \nu_k \sim N(0, R)}{\text{Linear}} \tag{2}$$

- $\Rightarrow \omega$  and  $\nu$  are unknown but independent (i.e., Q and R are unknown)
- $\Rightarrow$  Kalman filter tries to provide estimates of true  $x_k$  through the minimization of the estimation error based on (1) and (2)
- ⇒It does the minimization using the MMSE

# Kalman Filter in More Detail

Kalman filter is a minimum mean square estimator (MMSE) for estimating the state  $x \in \mathbb{R}^n$  of a discrete-time controlled process with a linear system equation and a linear observer under "white noise".

A: State transition model

$$\begin{array}{c}
x_k = Ax_{k-1} + Bu_{k-1} + \omega_{k-1}, & \omega_{k-1} \sim N(0, Q) \\
B: Control-input model

\Rightarrow \text{With a linear observer (sensor)} \\
H: Observation model

$$\begin{array}{c}
E = Hx_k + \nu_k, & \nu_k \sim N(0, R) \\
\hline
\text{Linear}

\end{array}$$
(1)

Gaussian

(2)$$

- $\Rightarrow \omega$  and  $\nu$  are unknown but independent (i.e., Q and R are unknown)
- $\Rightarrow$ Kalman filter tries to provide estimates of true  $x_k$  through the minimization of the estimation error based on (1) and (2)
- ⇒It does the minimization using the MMSE

# Input and Output of a Kalman Filter

A Kalman filter provides an estimate of  $x_k$  under uncertainty

## This is an **iterative** process

- $\Rightarrow$  In each iteration, the input:  $\hat{x}_{k-1}$ ,  $P_{k-1}$ ,  $u_{k-1}$ ,  $z_k$ , A, B, H, Q, R (Q, R esti.)
  - $\Rightarrow \hat{x}_{k-1}, P_{k-1}$ : **estimated** system state/variance at time k-1;  $\hat{x}_0, P_0$  are guessed
  - $\Rightarrow u_{k-1}$ : system input at time k-1, e.g., how hard the gas pedal is pressed
  - $\Rightarrow f(x_{k-1}, u_{k-1}) = Ax_{k-1} + Bu_{k-1}$ , A and B are known
  - $\Rightarrow z_k = Hx_k$ : the observation of  $x_k$ , H is known
- $\Rightarrow$  The output:  $\hat{x}_k$ ,  $P_k$ 
  - $\Rightarrow \hat{x}_k$ ,  $P_k$ : **estimated** system state/variance at time k
- ⇒An illustration



⇒The Kalman filter computes a **distribution** 

- ⇒ The estimate is not a single value! For 1D, two values: mean + variance
- $\Rightarrow$  For dimension n, an n-vector and an  $n \times n$  covariance matrix
- ⇒ Same applies to other variables



These are the "mean" part

 $Z_k$ 

# Deriving the MMSE (I)



The goal is to find true state  $x_k$ 

 $\Rightarrow$  But recall this is not possible because  $x_k$  is a hidden state

A **trick**: x, P, A, B, u, z... are high dimensional, but can treat as 1D

In each iteration, a Kalman filter does two updates

- $\Rightarrow$ Time update:  $\hat{x}_k^- = A\hat{x}_{k-1} + Bu_{k-1}$ 
  - $\Rightarrow$  Error of this step  $e_k^- \equiv x_k \hat{x}_k^-$
  - $\Rightarrow$  (a priori) Variance is  $P_k^- = E[e_k^- e_k^{-T}]$
- $\Rightarrow$  Measurement update:  $\hat{x}_k = \hat{x}_k^- + K_k(z_k H\hat{x}_k^-)$ 
  - $\Rightarrow$  The term  $(z_k H\hat{x}_k^-)$  is called the measurement innovation
  - $\Rightarrow$  It gives us the "new information" from  $z_k$  that is not already in  $\hat{x}_k^-$
  - $\Rightarrow$  Error of this step  $e_k \equiv x_k \hat{x}_k$
  - $\Rightarrow$  (a posteriori) Variance is  $P_k = E[e_k e_k^{\mathrm{T}}]$

Kalman filter seeks the best  $K_k$  to minimize  $E[||e_k||^2]$ 

 $\Rightarrow$  This is the same as minimizing the **trace** of  $P_k$ 

$$\Rightarrow e_k \equiv x_k - \hat{x}_k = x_k - \hat{x}_k^- - K_k(z_k - H\hat{x}_k^-)$$

# Deriving the MMSE (II)

$$e_{k} \equiv x_{k} - \hat{x}_{k} = x_{k} - \hat{x}_{k}^{-} - K_{k}(z_{k} - H\hat{x}_{k}^{-})$$

$$= x_{k} - \hat{x}_{k}^{-} - K_{k}(z_{k} - Hx_{k} + Hx_{k} - H\hat{x}_{k}^{-})$$

$$= x_{k} - \hat{x}_{k}^{-} - K_{k}H(x_{k} - \hat{x}_{k}^{-}) - K(z_{k} - Hx_{k})$$

$$= (I - K_{k}H)(x_{k} - \hat{x}_{k}^{-}) - K_{k}(z_{k} - Hx_{k})$$

$$= (I - K_{k}H)e_{k}^{-} - K_{k}\nu_{k}$$

$$e_{k}^{-} \text{ and } \nu_{k} \text{ have zero covariance}$$

$$P_{k} = E[e_{k}e_{k}^{T}]$$

$$= (I - K_{k}H)E[e_{k}^{-}e_{k}^{-T}](I - K_{k}H)^{T} + E[K_{k}\nu_{k}\nu_{k}^{T}K_{k}^{T}]$$

$$= (I - K_{k}H)P_{K}^{-}(I - K_{k}H)^{T} + K_{k}RK_{k}^{T}$$

To minimize the trace of 
$$P_k$$
, take  $\frac{\partial tr(P_k)}{\partial K_k} = 0$ 

Yields 
$$K_k = \frac{P_k^- H^T}{HP_k^- H^T + R}$$
, the optimal Kalman gain

# Interpreting the Kalman Gain



Recall the Kalman gain  $K_k = \frac{P_k^- H^T}{H P_k^- H^T + R}$  is used for computing  $\hat{x}_k$ 

$$\hat{x}_k = \hat{x}_k^- + K_k(z_k - H\hat{x}_k^-)$$

As  $R \to 0$ , measurement becomes more accurate,  $K_k \to H^{-1}$ 

$$\hat{x}_k = \hat{x}_k^- + K_k(z_k - H\hat{x}_k^-) \to H^{-1}z_k$$

As  $P_k^- \to 0$ , state propagation becomes more accurate,  $K_k \to 0$ 

$$\hat{x}_k = \hat{x}_k^- + K_k(z_k - H\hat{x}_k^-) \to \hat{x}_k^-$$

# Deriving The Iterative Update Algorithm

#### Recall - in each step, two updates

```
Time update: \hat{x}_k^- = A\hat{x}_{k-1} + Bu_{k-1}
         \Rightarrow Error of this step e_k^- \equiv x_k - \hat{x}_k^-
         \Rightarrow (a priori) Variance is P_k^- = E[e_k^- e_k^{-T}]
```

Measurement update:  $\hat{x}_k = \hat{x}_k^- + K_k(z_k - H\hat{x}_k^-)$  $\Rightarrow$  Error of this step  $e_k \equiv x_k - \hat{x}_k$  $\Rightarrow$  (a posteriori) Variance is  $P_k = E[e_k e_k^T]$ 

For time update 
$$\hat{x}_k^- = A\hat{x}_{k-1} + Bu_{k-1}$$

$$\Rightarrow e_k^- \equiv x_k - \hat{x}_k^- = Ax_{k-1} + Bu_{k-1} + \omega_{k-1} - \hat{x}_k^-$$

$$= A(x_{k-1} - \hat{x}_{k-1}) + \omega_{k-1}$$

$$= Ae_{k-1} + \omega_{k-1}$$

$$\Rightarrow P_k^- = E[e_k^- e_k^{-T}]$$

$$= AE[e_{k-1}e_{k-1}^T]A^T + Q$$

$$= AP_{k-1}A^T + Q$$

zero covariance

For measurement update  $\hat{x}_k = \hat{x}_k^- + K_k(z_k - H\hat{x}_k^-)$ 

⇒Already computed

$$\Rightarrow K_k = \frac{P_k^- H^T}{H P_k^- H^T + R}$$

$$\Rightarrow P_k = (I - K_k H) P_K^- (I - K_k H)^T + K_k R K_k^T = (I - K_k H) P_k^-$$

# Tuning Parameters and Running the Filter

## We have the iterative update algorithm

## Time update

$$\hat{x}_{k}^{-} = A\hat{x}_{k-1} + Bu_{k-1} \\ P_{k}^{-} = AP_{k-1}A^{T} + Q$$

#### Measurement update

$$\hat{x}_{k} = \hat{x}_{k}^{-} + K_{k}(z_{k} - H\hat{x}_{k}^{-})$$

$$K_{k} = \frac{P_{k}^{-}H^{T}}{HP_{k}^{-}H^{T} + R}$$

$$P_{k} = (I - K_{k}H)P_{k}^{-}$$

## To run the algorithm

- $\Rightarrow$  First estimate Q and R offline
- ⇒Starting from some estimate and then tuning
- ⇒This is known as **system identification**
- $\Rightarrow$ Then start filter with some initial  $\hat{x}_0$  and  $P_0$
- $\Rightarrow$ Usually  $P_k$  and  $K_k$  will quickly converge

# Example: Estimating a Random Constant

Suppose we are measuring a random constant, e.g., temperature of a light bulb

- $\Rightarrow$  System:  $x_k = x_{k-1} + \omega_{k-1}, \ x_k, \omega_k \in \mathbb{R}$
- $\Rightarrow$ Observation:  $z_k = x_k + v_k, z_k, v_k \in \mathbb{R}$

## Filter update equations

⇒Time update

$$\Rightarrow \hat{x}_k^- = \hat{x}_{k-1}$$
$$\Rightarrow P_k^- = P_{k-1} + Q$$

⇒ Measurement update

$$\Rightarrow \hat{x}_k = \hat{x}_k^- + K_k(z_k - H\hat{x}_k^-)$$

$$\Rightarrow K_k = P_k^- (P_k^- + R)^{-1}$$

$$\Rightarrow P_{\nu} = (1 - K_{\nu}) P_{\nu}^-$$

## Running the example

- $\Rightarrow$  If both (real, not our estimated) Q and R are large, it's hopeless
- $\Rightarrow$  If  $P_0$  is small, it trusts  $x_0$  a lot
  - $\Rightarrow$  If  $x_0$  is bad, then it takes long time to converge with small  $P_0$