M3P17 Algebraic Combinatorics

0	Introduction	1
	Codes	1
	Graphs	1
	Designs	2
1	Error-correcting Codes	4
	Linear codes	5
	Minimum distance	5
	Check matrices	6
	Hamming codes	7
	Correcting 1 error	7
	Correcting > 1 error	8
	Hamming bound	8
	Perfect codes	9
	Gilbert-Varshamov bound	10
	The Golay code	11
	The 3-perfect code G_{23}	13
	A 5-design from G_{24}	14
	Error correction in G_{24}	15
	Cyclic codes	17
	Ideals	17
	Quotient rings	18
	Basic construction of cyclic codes	19
	Check matrices for cyclic codes	20
	BCH codes	21
2	Strongly Regular Graphs	24
	Adjacency matrices	27
	Eigenvalues of adjacency matrices	28
	Strongly regular graphs with small v	31
	2-weight codes & strongly regular graphs	32

3	Designs	34
	Some theory of 2-designs	34
	Incidence matrices	35
	Symmetric 2-designs	36
	Difference sets	37
	Affine planes	38
	Projective planes	39
	Isomorphisms	40
	Higher-dimensional geometry	41
	2-designs & strongly regular graphs	43

0 Introduction

Combinatorics in the study of discrete structures. These include:

- (1) codes (subsets of \mathbb{Z}_2^n , where $\mathbb{Z}_2 = \{0, 1\}$),
- (2) graphs (vertices and edges),
- (3) designs (collection of subsets of a given set).

Codes

Aims of coding theory: To find codes C such that:

- (1) C has many codewords,
- (2) C corrects enough errors,
- (3) the length of C is not too big.

Graphs

Definition:

A graph is a pair (V, E) where V is a set of vertices, and E is a collection of pairs $\{x, y\}$ (where $x, y \in V$) called edges.

Example:

If
$$V = \{1, 2, 3, 4\}$$
, $E = \{\{1, 2\}, \{1, 3\}, \{2, 3\}, \{2, 4\}\}$, then the graph is $\begin{bmatrix} 1 \\ 4 \end{bmatrix}$

Definition:

For a vertex x, call the other vertices joined to x by an edge the neighbours of x. Call Γ a regular graph if every vertex has the same number of neighbours (say, k), and call k the valency of Γ .

Example:

- (1) \bigcirc is regular with valency 2.
- (2) \bowtie is regular with valency 3.

Definition:

A graph Γ is strongly regular if:

(1) Γ is regular with valency k,

- (2) any pair of joined vertices has the same number of common neighbours a,
- (3) any pair of non-joined vertices has the same number of common neighbours b.

Example:

- (1) \square is strongly regular, with k=2, a=0, b=2.
- (2) The Petersen graph is strongly regular, with k = 3, a = 0, b = 1.

Proposition 0.1 (Friendship Thorem):

In a community where any 2 people have exactly 1 common acquaintance, there is someone who knows everyone.

Proof of Proposition 0.1:

Let vertices = people, and join 2 vertices iff they know each other. Since every 2 vertices have exactly 1 common neighbour, the graph must look like $\sqrt{}$ ie. a windmill (all known proofs use linear algebra).

Designs

Suppose we have v varieties of chocolate to be tested by consumers. We want each customer to test k varieties, and each variety to be tested by r consumers.

Example:

Let v=8, k=4, r=3, then number of consumers $=\frac{vr}{k}=6$. Call the consumers $c_1, ..., c_6$, then c_1 tests 1234, c_2 tests 5678, c_3 tests 1357, c_4 tests 2468, c_5 tests 1247, c_6 tests 3568.

Definition:

Let X be a set, v = |X|, \mathcal{B} be a collection of subsets of X. Call (X, \mathcal{B}) (or just \mathcal{B}) a design if:

- (1) every set in \mathcal{B} has size k,
- (2) every element of X lies in r subsets of \mathcal{B} .

The subsets in \mathcal{B} are called the blocks of the design, and the parameters of the design are (v, k, r).

Example:

The example (8, 4, 3) above is a design.

Definition:

A design (X, \mathcal{B}) is a 2-design if any 2 points (elements of X) lie in the same number of blocks.

Example:

The example (8,4,3) above is not a 2-design.

In general, for $t \geq 1$, call \mathcal{B} a t-design if any t points lie in the same number of blocks.

The larger t is, the stronger the condition is. For large t, non-trivial t-designs are rare (in fact, the 1st non-trivial 6-design was found only in the 1980s).

Example:

Let p be a prime, then \mathbb{Z}_p is a field. Call $\mathbb{Z}_p^2 = \{(x_1, x_2) : x_i \in \mathbb{Z}_p\}$ the affine plane over \mathbb{Z}_p . Define a line in \mathbb{Z}_p^2 to be a subset of the form $\{a + \lambda b : \lambda \in \mathbb{Z}_p\}$, where a and b are fixed vectors in \mathbb{Z}_p^2 , then any 2 vectors in \mathbb{Z}_p^2 lie on a unique line. Now let $X = \mathbb{Z}_p^2$, $\mathcal{B} =$ collection of lines, then (X, \mathcal{B}) is a 2-design with parameters $(p^2, p, p + 1)$ (because there are p + 1 choices for b and p choices for the corresponding $a \Rightarrow r = \frac{kp(p+1)}{v} = p+1$).

1 Error-correcting Codes

Define $\mathbb{Z}_2 = \{0, 1\}$, with addition and multiplication mod 2, and $\mathbb{Z}_2^n = \{(x_1, \dots, x_n) : x_i \in \mathbb{Z}_2\}$. With the usual addition and scalar multiplication, \mathbb{Z}_2^n is a vector space over \mathbb{Z}_2 , with standard basis e_1, \dots, e_n (where $e_k = \underbrace{0 \dots 01}_k 0 \dots 0$) and dimension n.

Definition:

A code C of length n is a subset of \mathbb{Z}_2^n . The vectors in C are called codewords, and the distance between 2 vectors in \mathbb{Z}_2^n is d(x,y) = number of coordinates where x and y differ.

Example:

$$d(10111, 01110) = 3.$$

Proposition 1.1 (Triangle Inequality):

$$d(x,y) + d(y,z) \ge d(x,z).$$

Proof of Proposition 1.1:

Let
$$A = \{i : x_i \neq z_i\}$$
, $B = \{i : x_i = y_i, x_i \neq z_i\}$, $C = \{i : x_i \neq y_i, x_i \neq z_i\}$, then $|A| = |B| + |C|$, $d(x, z) = |A|$, $d(x, y) \geq |C|$ and $d(y, z) \geq |B| \Rightarrow d(x, y) + d(y, z) \geq |C| + |B| = |A| = d(x, z)$.

Definition:

Let $C \subseteq \mathbb{Z}_2^n$ be a code. The minimum distance of C is $d(C) = \min \{d(x,y) : x,y \in C, x \neq y\}$.

Remark:

Let $C \subseteq \mathbb{Z}_2^n$, $e \in \mathbb{N}$, then we say C corrects e errors if whenever a codeword $c \in C$ is sent, and $\leq e$ errors are made such that the vector w is received, the closest codeword to w is c.

Definition:

 $C \subseteq \mathbb{Z}_2^n$ corrects e errors if $\forall c_1, c_2 \in C$ and $w \in \mathbb{Z}_2^n, d(c_1, w), d(c_2, w) \leq e \Rightarrow c_1 = c_2$.

Remark:

Equivalently, for $c \in C$, define a sphere $S_e(c) = \{w \in \mathbb{Z}_2^n : d(c, w) \leq e\}$, then C corrects e errors if $S_e(c_1) \cap S_e(c_2) = \emptyset \ \forall c_1, c_2 \in C, c_1 \neq c_2$.

Proposition 1.2:

Code C corrects e errors iff $d(C) \ge 2e + 1$.

Proof of Proposition 1.2:

Suppose $d(C) \geq 2e + 1$. Pick $x, y \in C$, then if $w \in \mathbb{Z}_2^n$ satisfies $d(x, w), d(y, w) \leq e$, by Proposition 1.1, $d(x, y) \leq d(x, w) + d(y, w) \leq 2e \Rightarrow x = y \Rightarrow C$ corrects e errors.

Conversely, pick $x, y \in C$ such that $x \neq y$, $d(x, y) \leq 2e$. Let x, y possibly differ at bits b_1, \dots, b_{2e} . Pick $w \in \mathbb{Z}_2^n$, such that $w_{b_i} = x_{b_i}$ for $1 \leq i \leq e$, $w_{b_i} = y_{b_i}$ for $e + 1 \leq i \leq 2e$, and $w_i = x_i = y_i$ everywhere else, then $d(x, w), d(y, w) \leq e$ but $x \neq y \Rightarrow C$ does not correct e errors.

Linear codes

Definition:

A linear code is a code $C \subseteq \mathbb{Z}_2^n$ which is a subspace of \mathbb{Z}_2^n ie. $0 \in C$ and $x, y \in C \Rightarrow x+y \in C$.

Proposition 1.3:

Let A be a $m \times n$ matrix over \mathbb{Z}_2 . Then $C = \{x \in \mathbb{Z}_2^n : Ax = 0\}$ is a linear code, and $\dim C = n - \operatorname{rank} A$.

Proof of Proposition 1.3:

Easy peasy.

Example:

$$C_3 = \left\{abcxyz \in \mathbb{Z}_2^6 : x = a + b, y = b + c, z = c + a\right\} = \left\{x \in \mathbb{Z}_2^6 : \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} x = 0\right\}$$
 is a linear code of dimension 3, with basis {100101, 010110, 001011}.

Proposition 1.4:

If C is a linear code with dim C = k, then $|C| = 2^k$.

Proof of Proposition 1.4:

Let c_1, \dots, c_k be a basis of C, then every $c \in C$ is a unique linear combination $c = \lambda_1 c_1 + \dots + \lambda_k c_k$ where $\lambda_i \in \mathbb{Z}_2 \Rightarrow |C| = \prod_i \text{ (number of choices for } \lambda_i \text{)} = 2^k$.

Minimum distance

Definition:

For $x \in \mathbb{Z}_2^n$, the weight of x is $\operatorname{wt}(x) = \operatorname{number}$ of coordinates of x equal to 1.

Remark:

$$\operatorname{wt}(x) = d(x, 0)$$
, and $\operatorname{wt}(x + y) = d(x, y)$.

Proposition 1.5:

Let C be a linear code, then $d(C) = \min \{ \operatorname{wt}(c) : c \in C \setminus \{0\} \}.$

Proof of Proposition 1.5:

Let $c \in C \setminus \{0\}$ have minimal weight r. Since C is linear, $0 \in C$ and $d(c,0) = \operatorname{wt}(c) = r \Rightarrow d(C) \leq r$. Now let $x, y \in C$ and $x \neq y$, then $x + y \in C \setminus \{0\} \Rightarrow d(x,y) = \operatorname{wt}(x+y) \geq r \Rightarrow d(C) \geq r$. Hence d(C) = r.

Example:

Consider $C_3 \subseteq \mathbb{Z}_2^6$. Check that min $\{\operatorname{wt}(c) : c \in C \setminus \{0\}\} = 3$, hence $d(C_3) = 3 \Rightarrow C_3$ corrects 1 error by Proposition 1.2.

Check matrices

Definition:

Suppose A is a $m \times n$ matrix over \mathbb{Z}_2 and $C = \{x \in \mathbb{Z}_2^n : Ax = 0\}$. Then we call A a check matrix of the linear code C.

Proposition 1.6:

Suppose the check matrix A of the linear code C satisfies:

- (1) A has no zero column,
- (2) A does not have 2 equal columns.

Then C corrects 1 error.

Proof of Proposition 1.6:

Suppose C does not correct 1 error, then $d(C) \leq 2$ by Proposition 1.2 \Rightarrow by Proposition 1.5, $\exists c \in C \setminus \{0\}$ such that $\operatorname{wt}(c) = 1$ or 2. If $\operatorname{wt}(c) = 1$, then $c = e_i \Rightarrow$ if Ac = 0, then the i-th column of A is $0 \ (\Rightarrow \Leftarrow)$. If $\operatorname{wt}(c) = 2$, then $c = e_i + e_j \Rightarrow$ if Ac = 0, then $Ae_i + Ae_j = 0 \Rightarrow$ the i-th and j-th column of A are equal $(\Rightarrow \Leftarrow) \Rightarrow C$ corrects 1 error.

Example:

(1)
$$C_3 = \left\{ x \in \mathbb{Z}_2^6 : \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} x = 0 \right\}$$
 corrects 1 error by Proposition 1.6.

(2) Suppose a code C corrects 1 error and has a $3 \times n$ check matrix. By Proposition 1.6, to find the maximum dimension of C, we need to find the largest n such that $\exists \ 3 \times n$ matrix with distinct non-zero columns in $\mathbb{Z}_2^3 \Rightarrow n = 2^3 - 1 = 7$. Pick $A = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{pmatrix}$, then C has dimension 4, and can send 16 messages abcd using codewords abcdxyz, where x = a + b + c, y = a + b + d and z = a + c + d. This is called a Hamming code, denoted Ham(3).

Hamming codes

Definition:

Let $k \geq 3$, then a Hamming code $\operatorname{Ham}(k)$ is a code for which the check matrix has all the non-zero vectors in \mathbb{Z}_2^k as columns.

Proposition 1.7:

- (1) $\operatorname{Ham}(k)$ has length $2^k 1$ and dimension $2^k 1 k$.
- (2) $\operatorname{Ham}(k)$ corrects 1 error.

Proof of Proposition 1.7:

- (1) Since there are $2^k 1$ non-zero vectors in \mathbb{Z}_2^k , the check matrix of $\operatorname{Ham}(k)$ is $k \times (2^k 1)$ and has rank $k \Rightarrow$ the result follows.
- (2) Follows easily from Proposition 1.6.

Definition:

Let $C, C' \subseteq \mathbb{Z}_2^n$ be codes. Call C and C' equivalent codes if there is a permutation of their coordinates which sends the codewords in C bijectively to those in C'.

Example:

All Hamming codes Ham(k) are equivalent.

Correcting 1 error

Suppose we have a code C correcting 1 error, with check matrix A. A codeword c is sent, and 1 error is made, so that c' is received. Since $c' = c + e_i$ for some i, $Ac' = A(c + e_i) = Ac + Ae_i = 0 + Ae_i = i$ -th column of $A \Rightarrow$ the error occurred in the i-th entry of c.

Example:

Let C = Ham(3). Suppose we receive $c' = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 \end{pmatrix}^{\top}$, then $Ac' = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = 6$ th column of $A \Rightarrow$ the corrected codeword is c = 1101010.

Correcting > 1 error

Proposition 1.8:

Let $d \geq 2$, C be a code with check matrix A. Then:

- (1) $d(C) \ge d$ if every set of d-1 columns of A is linearly independent,
- (2) d(C) = d if, in addition, \exists a set of d columns of A that are linearly dependent.

Proof of Proposition 1.8:

- (1) Suppose $d(C) \leq d-1$, then $\exists c \in C \setminus \{0\}$ with $\operatorname{wt}(c) = r \leq d-1 \Rightarrow c = e_{i_1} + \dots + e_{i_r} \Rightarrow Ac = Ae_{i_1} + \dots + Ae_{i_r} = (\text{sum of columns } i_1, \dots, i_r \text{ of } A) = 0 \Rightarrow \text{these columns are linearly dependent } (\Rightarrow \Leftarrow) \Rightarrow d(C) \geq d.$
- (2) Suppose columns i_1, \dots, i_d of A are linearly dependent, in addition to (1). Let $\lambda_1 A_{i_1} + \dots + \lambda_d A_{i_d} = 0$ for some $\lambda_r \in \mathbb{Z}_2$. Since any d-1 columns of A are linearly independent, we must have $\lambda_r = 1 \ \forall r \Rightarrow A(e_{i_1} + \dots + e_{i_d}) = 0 \Rightarrow$ write $c = e_{i_1} + \dots + e_{i_d}$, then $c \in C$ and $\operatorname{wt}(c) = d \Rightarrow$ since $d(C) \geq d$ by (1), we must have d(C) = d.

Example:

If we want a linear code of length 9 and dimension 2 which corrects 2 errors, the check matrix A should be 7×9 (of rank 7), and we also need $C = \{x \in \mathbb{Z}_2^9 : Ax = 0\}$. By Proposition 1.8, to have $d(C) \geq 5$, we need every set of 4 columns of A to be linearly independent. Take $A = (c_1 \ c_2 \ I_7)$, then we need $\operatorname{wt}(c_1), \operatorname{wt}(c_2) \geq 4$, and $\operatorname{wt}(c_1 + c_2) \geq 3 \Rightarrow \operatorname{let} c_1 = (1 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0)^{\top}, c_2 = (0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1)^{\top}$, then they define the code $C = \{abaaa(a+b)bbb : a,b \in \mathbb{Z}_2\} = \{0^9, 101111000, 010001111, 111110111\}.$

Hamming bound

Proposition 1.9:

$$|S_e(v)| = 1 + \binom{n}{1} + \dots + \binom{n}{e}.$$

Proof of Proposition 1.9:

Let d_i = number of $x \in \mathbb{Z}_2^n$ such that d(v, x) = i, then $|S_e(v)| = d_0 + d_1 + \dots + d_e$. The vectors with distance i from v are precisely those differing from v at exactly i coordinates $\Rightarrow d_i = \binom{n}{i} \Rightarrow$ the result follows.

Theorem 1.10 (Hamming bound):

Let C be a code of length n, correcting e errors. Then $|C| \leq \frac{2^n}{1 + \binom{n}{1} + \cdots + \binom{n}{e}}$.

Proof of Theorem 1.10:

Since C corrects e errors, the spheres $S_e(c)$ for $c \in C$ are all disjoint $\Rightarrow \left| \bigcup_{c \in C} S_e(c) \right| = |C| |S_e(c)|$. But $\bigcup_{c \in C} S_e(c) \subseteq \mathbb{Z}_2^n$, so $2^n \ge \left| \bigcup_{c \in C} S_e(c) \right| = |C| \left[1 + \binom{n}{1} + \dots + \binom{n}{e} \right] \Rightarrow |C| \le \frac{2^n}{1 + \binom{n}{1} + \dots + \binom{n}{e}}$.

Example:

Let C be a linear code of length 9 that corrects 2 errors, then by Theorem 1.10, $|C| \leq \frac{2^9}{1+\binom{9}{1}+\binom{9}{2}} = \frac{2^9}{46} < 2^4 \Rightarrow \dim C \leq 3$. From the previous example, $\exists C$ with $\dim C = 2$. To find if $\exists C$ with $\dim C = 3$, we need a 6×9 check matrix A with any 4 columns linearly independent. Take $A = (c_1 \ c_2 \ c_3 \ I_6)$, then c_1, c_2, c_3 satisfy $\operatorname{wt}(c_i) \geq 4 \ \forall i$, $\operatorname{wt}(c_i + c_j) \geq 3 \ \forall i \neq j$, and $\operatorname{wt}(c_1 + c_2 + c_3) \geq 2$. After a tedious exercise, it can be shown that $\nexists c_i \Rightarrow \nexists C$.

Perfect codes

Definition:

A code $C \in \mathbb{Z}_2^n$ is e-perfect $(e \ge 1)$ if it corrects e errors, and $|C| = \frac{2^n}{1 + \binom{n}{1} + \cdots + \binom{n}{e}}$.

Remark:

Equivalently, the union of all the (disjoint) spheres $S_e(c)$ for $c \in C$ is the whole of \mathbb{Z}_2^n .

Proposition 1.11:

Let
$$C = \mathbb{Z}_2^n$$
, then $|C| = \frac{2^n}{1+n} \Leftrightarrow n = 2^k - 1, |C| = 2^{n-k}$ for some k .

Proof of Proposition 1.11:

If
$$|C| = \frac{2^n}{1+n}$$
, then $1+n=2^k$ for some k .
Conversely, if $n=2^k-1$ and $|C|=2^{n-k}$, then obviously $|C|=\frac{2^n}{1+n}$.

Proposition 1.12:

 $\operatorname{Ham}(k)$ is a 1-perfect code.

Proof of Proposition 1.12:

 $\operatorname{Ham}(k)$ has length $n=2^k-1$, dimension n-k and corrects $1 \operatorname{error} \Rightarrow |\operatorname{Ham}(k)| = 2^{n-k} = \frac{2^n}{1+n} \Rightarrow$ the result follows.

Remark:

The only e-perfect codes are:

- (1) $\operatorname{Ham}(k)$, with e = 1,
- (2) $C = \{0 \cdots 0, 1 \cdots 1\}$, with length n = 2e + 1 and dimension 1,
- (3) the Golay code G_{23} , with n = 23, e = 3, dim $G_{23} = 12$.

Gilbert-Varshamov bound

Example:

Let C be a linear code of length 15, correcting 2 errors. Then the Hamming bound gives $|C| \le \frac{2^{15}}{1 + \binom{15}{1} + \binom{15}{2}} = \frac{2^{15}}{121} < 2^9 \Rightarrow \dim C \le 8.$

Theorem 1.13 (GV bound):

Let $n, k, d \in \mathbb{Z}^+$ such that $1 + \binom{n-1}{1} + \cdots + \binom{n-1}{d-2} < 2^{n-k}$, then \exists a linear code of length n and dimension k, such that $d(C) \geq d$.

Example:

Let n = 15 and d = 5, then we have $1 + {14 \choose 1} + {14 \choose 2} + {14 \choose 3} = 470 < 2^9 = 2^{15-6} \Rightarrow \exists$ a code of dimension 6, but we still do not know if \exists codes of dimension 7 or 8.

Proof of Theorem 1.13:

Assume $1+\binom{n-1}{1}+\cdots+\binom{n-1}{d-2}<2^{n-k}$. We want to construct a check matrix A such that A is $(n-k)\times n$ (of rank n-k), and any d-1 columns of A are linearly independent. Choose the 1st n-k columns of A to be e_1,\cdots,e_{n-k} , then clearly they are linearly independent. Now suppose inductively that there are i columns $c_1,\cdots,c_i\in\mathbb{Z}_2^{n-k}$ where $n-k\leq i\leq n-1$, such that any d-1 of these are linearly independent. The number of vectors in \mathbb{Z}_2^{n-k} which are the sum of $\leq d-2$ of c_1,\cdots,c_i is $\leq 1+\binom{i}{1}+\cdots+\binom{i}{d-2}\leq 1+\binom{n-1}{1}+\cdots+\binom{n-1}{d-2}<2^{n-k}$, so $\exists c_{i+1}\in\mathbb{Z}_2^{n-k}$ which is not the sum of $\leq d-2$ of c_1,\cdots,c_i \Rightarrow if we have $A_i=(c_1,\cdots,c_i)$, we can extend it to get $A_{i+1}=(c_1,\cdots,c_{i+1})\Rightarrow$

repeat until we get $A = A_n$ that satisfies all the required properties.

The Golay code

The Golay code is a code of length 23, dimension 12, which corrects 3 errors and is perfect. To construct it, we first construct the extended Golay code G_{24} . Start with H = Ham(3), with check matrix $\begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}$, and its reverse K, with check matrix $\begin{pmatrix} 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 \end{pmatrix}$. Add

the parity check bit (= sum of bits) to H and K to obtain H' and K' respectively, then we get

$$H' = \begin{cases} 00000000 & 11111111 \\ 10001110 & 01110001 \\ 01001011 & 11010100 \\ 00010111 & 11101000 \\ 11000011 & 00111100 \\ 10011001 & 01011010 \\ 10011001 & 01100110 \end{cases}, \ K' = \begin{cases} 00000000 & 11111111 \\ 11100010 & 00011101 \\ 10100101 & 10011010 \\ 1000011 & 0111100 \\ 10010011 & 10110100 \\ 00110011 & 1100100 \\ 00110011 & 1100100 \\ 00110011 & 1100100 \\ 00110011 & 1100100 \\ 00110011 & 1100100 \\ 00110011 & 1100100 \\ 00110011 & 1100100 \\ 00110011 & 1100100 \\ 00110011 & 1100100 \\ 00110011 & 1100100 \\ 00110011 & 1100100 \\ 00110011 & 1100100 \\ 00110011 & 110010$$

length 8 and dimension 4, with codewords of weight 0, 4 or 8. Also, the 14 codewords in H' of weight 4 form a design with parameters (16, 8, 7) $(v = \text{number of bits} \times \text{number of choices per bit} = 8 \times 2 = 16)$.

Proposition 1.14:

$$H \cap K = \{0^7, 1^7\}, \text{ and } H' \cap K' = \{0^8, 1^8\}.$$

Proof of Proposition 1.14:

Let $v \in H \cap K$, then v = abcd(a + b + c)(a + b + d)(a + c + d) since $v \in H \Rightarrow$ since $v \in K$ too, we have $c + (a + b + c) + (a + b + d) + (a + c + d) = b + d + (a + b + d) + (a + c + d) = a + d + (a + b + c) + (a + c + d) = 0 \Rightarrow a + c = c + d = a + b = 0 \Rightarrow a = b = c = d = 0 \text{ or } 1$ $\Rightarrow v = 0^7 \text{ or } 1^7$. Also, by considering parity check bits, $H' \cap K' = \{0^8, 1^8\}$.

Definition:

The extended Golay code G_{24} consists of all vectors in \mathbb{Z}_2^{24} of the form (a+x,b+x,a+b+x), where $a,b\in H', x\in K'$.

Example:

(1)
$$a = b = x = 0^8 \Rightarrow v = 0^{24}$$
.

(2)
$$a = b = x = 1^8 \Rightarrow v = (0^8, 0^8, 1^8).$$

(3)
$$a = x = 1^8, b = 0^8 \Rightarrow v = (0^8, 1^8, 0^8).$$

- (4) $a = b = 0^8$, $x = 1^8 \Rightarrow v = 1^{24}$.
- (5) $a = 10001110, b = 10011001, x = 01001011 \Rightarrow v = 110001011101001001011100.$

Proposition 1.15:

 G_{24} is a linear code of dimension 12.

Proof of Proposition 1.15:

Clearly $0^{24} \in G_{24}$. Now suppose $a_1, a_2, b_1, b_2 \in H', x_1, x_2 \in K'$, then $(a_1 + x_1, b_1 + x_1, a_1 + b_1 + x_1) + (a_2 + x_2, b_2 + x_2, a_2 + b_2 + x_2) = (a_1 + a_2 + x_1 + x_2, b_1 + b_2 + x_1 + x_2, a_1 + a_2 + b_1 + b_2 + x_1 + x_2) \in G_{24}$ since $a_1 + a_2, b_1 + b_2 \in H'$ and $x_1 + x_2 \in K' \Rightarrow G_{24}$ is a linear code.

Moreover, $(a_1 + x_1, b_1 + x_1, a_1 + b_1 + x_1) = (a_2 + x_2, b_2 + x_2, a_2 + b_2 + x_2) \Rightarrow a_1 = a_2, b_1 = b_2, x_1 = x_2 \Rightarrow \text{distinct choices of } (a, b, x) \text{ gives distinct elements of } G_{24} \Rightarrow |G_{24}| = \text{number of triples } (a, b, x) = |H'|^2 |K'| = 2^{12} \Rightarrow \dim |G_{24}| = 12.$

Remark:

 $(a+x, b+x, a+b+x) = (a, 0, a) + (0, b, b) + (x, x, x) \Rightarrow \text{if } a_i, b_i \text{ and } x_i \ (1 \le i \le 4) \text{ are bases}$ for H', H' and K' respectively, then $\{(a_i, 0, a_i), (0, b_i, b_i), (x_i, x_i, x_i)\}$ form a basis for G_{24} .

Definition:

For $v, w \in \mathbb{Z}_2^n$, let [v, w] = number of places where both v and w are 1.

Proposition 1.16:

Let $v, w \in \mathbb{Z}_2^n$, then:

- (1) $\operatorname{wt}(v+w) = \operatorname{wt}(v) + \operatorname{wt}(w) 2[v,w],$
- (2) if $4 \mid \text{wt}(v)$ and $4 \mid \text{wt}(w)$, then $4 \mid \text{wt}(v+w)$ iff [v, w] is even.

Proof of Proposition 1.16:

- (1) Let $r = \operatorname{wt}(v)$, $s = \operatorname{wt}(w)$ and t = [v, w], then we have (reordering coordinates if required) $v = \underbrace{1 \cdots 1}_{t} \underbrace{1 \cdots 1}_{r-t} \underbrace{0 \cdots 0}_{s-t} \underbrace{0 \cdots 0}_{t} \underbrace{1 \cdots 1}_{t} \underbrace{0 \cdots 0}_{t} \underbrace{1 \cdots 1}_{s-t} \underbrace{0 \cdots 0}_{s-t} \underbrace{0 \cdots$
- (2) Follows easily from (1).

Proposition 1.17:

If $a, b, x \in \mathbb{Z}_2^n$, then [a, x] + [b, x] + [a + b, x] is even.

Proof of Proposition 1.17:

Let r = [a, x], s = [b, x], u = number of places where a, b, x are all 1. Then (reordering

coordinates if needed) $x = \underbrace{1 \cdots 1}_{u} \underbrace{1 \cdots 1}_{s-u} \underbrace{1 \cdots 1}_{s-u} \underbrace{0 \cdots 0}_{s-u}, \ a = \underbrace{1 \cdots 1}_{u} \underbrace{1 \cdots 1}_{r-u} \underbrace{0 \cdots 0}_{s-u} \underbrace{0 \cdots 0}_{s-u} \underbrace{0 \cdots 0}_{s-u} \underbrace{1 \cdots 1}_{s-u} \underbrace{0 \cdots 0}_{s-u} \underbrace{0 \cdots 0}_{s-u} \underbrace{1 \cdots 0}_{s-u} \underbrace{1 \cdots 0}_{s-u} \underbrace{0 \cdots 0}_{s-u} \underbrace{1 \cdots 0}_{s-u} \underbrace{0 \cdots 0}_{s-u} \underbrace{0$

Proposition 1.18:

If $c \in G_{24}$, then $4 \mid \text{wt}(c)$.

Proof of Proposition 1.18:

Let c = (a+x,b+x,a+b+x) for some $a,b \in H'$, $x \in K'$, then c = (a,b,a+b)+(x,x,x). Let v = (a,b,a+b), w = (x,x,x), then $4 \mid \text{wt}(v), \text{wt}(w)$ since $4 \mid \text{wt}(a), \text{wt}(b), \text{wt}(a+b), \text{wt}(x)$, and [v,w] = [a,x]+[b,x]+[a+b,x] is even by Proposition 1.17 $\Rightarrow 4 \mid \text{wt}(v+w) = \text{wt}(c)$ by Proposition 1.16(2).

Theorem 1.19:

$$d(G_{24}) = 8.$$

Proof of Theorem 1.19:

Suppose $d(G_{24}) < 8$, then by Proposition 1.18, $\exists c \in G_{24} \setminus \{0\}$ such that $\operatorname{wt}(c) = 4$. Let c = (a+x,b+x,a+b+x) for some $a,b \in H', x \in K'$, then $\operatorname{wt}(a+x) = \operatorname{wt}(a) + \operatorname{wt}(x) - 2[a,x]$ is even. Similarly, $\operatorname{wt}(b+x)$ and $\operatorname{wt}(a+b+x)$ are all even $\Rightarrow \geq 1$ of a+x, b+x, a+b+x must be $0 \Rightarrow x = a,b$ or $a+b \Rightarrow x \in H' \cap K' = \{0^8,1^8\}$ by Proposition 1.14 $\Rightarrow a+x,b+x,a+b+x \in H' \Rightarrow a+x,b+x,a+b+x$ have weight 0, 4 or $8 \Rightarrow 2$ of these are 0^8 . If $a+x=b+x=0^8$, then $a=x=b \Rightarrow c=(0^8,0^8,x)$. If $a+x=a+b+x=0^8$, then $a=x,b=0^8 \Rightarrow c=(0^8,x,0^8)$. If $b+x=a+b+x=0^8$, then $b=x,a=0^8 \Rightarrow c=(x,0^8,0^8)$. Either way, $\operatorname{wt}(c)=0$ or $8 \ (\Rightarrow \Leftarrow) \Rightarrow d(G_{24}) \geq 8 \Rightarrow \operatorname{since}(1^8,0^8,0^8) \in G_{24}, d(G_{24})=8$.

The 3-perfect code G_{23}

Definition:

The Golay code G_{23} is the code of length 23 consisting of codewords in G_{24} with the last bit deleted.

Remark:

 G_{23} is linear, and $|G_{23}| = |G_{24}| = 2^{12} \Rightarrow \dim G_{23} = 12$.

Theorem 1.20:

 G_{23} is 3-perfect.

Proof of Theorem 1.20:

$$d(G_{24}) = 8 \Rightarrow d(G_{23}) \ge 7$$
, and $(0^8, 0^8, 1^8) \in G_{24} \Rightarrow d(G_{23}) = 7 \Rightarrow G_{23}$ corrects 3 errors.
Also, $|G_{23}| = \frac{2^{23}}{1 + \binom{23}{1} + \binom{23}{2} + \binom{23}{2}} = \frac{2^{23}}{2048} = 2^{12} \Rightarrow G_{23}$ is 3-perfect.

Remark:

Codewords in G_{24} are those in G_{23} with parity check bit added.

A 5-design from G_{24}

Define X = set of 24 coordinate positions in G_{24} , and a block $B_c = \text{set of } 8$ coordinate positions of the 1's in each codeword $c \in G_{24}$ of weight 8. Call the blocks the octads of G_{24} .

Theorem 1.21:

The octads of G_{24} form the blocks of a 5-design, where every set of 5 points lies in a unique octad.

Proof of Theorem 1.21:

There is a correspondence $\mathbb{Z}_2^{24} \leftrightarrow \text{subsets of } X, v \leftrightarrow P_v = \text{set of positions of 1's in } v$. Let $v \in \mathbb{Z}_2^{24}$ have weight 5, and delete the last bit of v to get $v' \in \mathbb{Z}_2^{23}$, with wt(v') = 4 or 5, $P_{v'} \subseteq \{1, \dots, 23\}$. Since G_{23} is 3-perfect, $\exists! c' \in G_{23}$ such that $v' \in S_3(c')$ ie. $d(v', c') \leq 3$. If wt(v') = 4, then wt(c') = 7, and $P_{v'} \subseteq P_{c'}$. Add the parity check bit of c' to get $c \in G_{24}$, with $\text{wt}(c) = 8 \Rightarrow P_v = P_{v'} \cup \{24\} \subseteq P_{c'} \cup \{24\} = P_c$.

Otherwise, if $\operatorname{wt}(v') = 5$, then $\operatorname{wt}(c') = 7$ or 8, and $P_{v'} \subseteq P_{c'}$ too. Again, add the parity check bit of c' to get $c \in G_{24}$, with $\operatorname{wt}(c) = 8 \Rightarrow P_v = P_{v'} \subseteq P_{c'} \subseteq P_c$.

Either way, $\exists ! c \in G_{24}$ where $\operatorname{wt}(c) = 8$, with $P_v \subseteq P_c = B_c \Rightarrow$ the result follows.

Proposition 1.22:

- (1) Codewords in G_{24} have weight 0, 8, 12, 16 or 24, and $N_i = N_{24-i}$, where N_i is the number of codewords in G_{24} with weight i.
- (2) Codewords in G_{23} have weight 0, 7, 8, 11, 12, 15, 16 or 23, and $M_i = M_{23-i}$, where M_i is the number of codewords in G_{23} with weight i.

Proof of Proposition 1.22:

(1) The map $G_{24} \rightarrow G_{24}$, $c \mapsto c + 1^{24}$ is a bijection that sends codewords of weight i to

codewords of weight $24 - i \Rightarrow N_i = N_{24-i}$. Also, pick $c \in G_{24} \setminus \{0\}$, then $4 \mid \operatorname{wt}(c)$ by Proposition 1.18 and $\operatorname{wt}(c) \geq 8$ by Theorem 1.19 $\Rightarrow \operatorname{wt}(c) = 8$, 12, 16 or 24.

(2) Similar to (1).

Proposition 1.23:

Let X be a set of v points, \mathcal{B} be a t-design with blocks of size k, in which any t points lie in r_t blocks. Then \mathcal{B} is a (t-1)-design, and $r_{t-1} = \left(\frac{v-t+1}{k-t+1}\right)r_t$.

Proof of Proposition 1.23:

Pick $S \subseteq X$, |S| = t - 1, r(S) = number of blocks containing S. Consider pairs (x, B), where $x \in X \setminus S$ and B is a block containing $S \cup \{x\}$, then the number of such pairs = ways to choose $x \times$ ways to choose B given $x = (v - (t - 1)) \times r_t$.

On the other hand, the number of such pairs is also = ways to choose $B \times$ ways to choose x given $B = r(S) \times (k - (t - 1)) \Rightarrow r(S) = \left(\frac{v - t + 1}{k - t + 1}\right) r_t \Rightarrow$ the result follows.

Corollary 1.24:

A t-design is also an s-design $\forall 1 \leq s \leq t$, and $r_{t-2} = \left(\frac{v-t+2}{k-t+2}\right)r_{t-1}, \dots, r = r_1 = \left(\frac{v-1}{k-1}\right)r_2, b = r_0 = \frac{vr}{k}.$

Proof of Corollary 1.24:

Follows easily from Proposition 1.23.

Proposition 1.25:

- (1) In G_{24} , $N_{16} = N_8 = \text{number of octads} = 759$.
- (2) In G_{23} , $M_7 = 253$, $M_8 = 506$.

Proof of Proposition 1.25:

- (1) Applying Corollary 1.24 to the 5-design formed by the octads of G_{24} gives $r_5 = 1$, $r_4 = \left(\frac{24-5+1}{8-5+1}\right)r_5 = 5$, $r_3 = \left(\frac{24-4+1}{8-4+1}\right)r_4 = 21$, $r_2 = \left(\frac{24-3+1}{8-3+1}\right)r_3 = 77$, $r_1 = \left(\frac{24-2+1}{8-2+1}\right)r_2 = 253$, $N_{16} = N_8 = r_0 = \left(\frac{24-1+1}{8-1+1}\right)r_1 = 759$.
- (2) $M_7 = \text{(number of octads containing point 24)} = r_1 = 253 \Rightarrow M_8 = N_8 M_7 = 506.$

Error correction in G_{24}

Proposition 1.26:

$$\forall c, d \in G_{24}, c \cdot d = c^{\mathsf{T}} d = 0 \in \mathbb{Z}_2.$$

Proof of Proposition 1.26:

By Proposition 1.18, $4 \mid \operatorname{wt}(c), \operatorname{wt}(d), \operatorname{wt}(c+d) \ \forall c, d \in G_{24} \Rightarrow \text{ by Proposition 1.17, since}$ $\operatorname{wt}(c+d) = \operatorname{wt}(c) + \operatorname{wt}(d) - 2[c,d], [c,d] \text{ is even } \Rightarrow c^{\top}d = 0.$

Remark:

With a basis $\{c_i : 1 \le i \le 12\}$ of G_{24} , let $A = \begin{pmatrix} c_1 & \cdots & c_{12} \end{pmatrix}^{\top}$ with size 12×24 , then $Ac = \begin{pmatrix} c_1 & \cdots & c_{12} & c \end{pmatrix}^{\top} = 0 \ \forall c \in G_{24}$. Moreover, since dim $G_{24} = 12$, G_{24} is the solution space for $Ax = 0 \Rightarrow A$ is a check matrix for G_{24} .

Suppose $c \in G_{24}$ is sent and $t \leq 3$ errors are made, such that the received vector is $x = c + e_{i_1} + \cdots + e_{i_t}$. Let the 253 codewords in G_{24} with weight 8 and a 1 in the 1st coordinate be $c_1, \dots c_{253}$, with corresponding octads $B_1, \dots B_{253}$, then $c_i \cdot x = 0$ for $1 \leq i \leq 253$ if $x \in G_{24}$, else we can count how many $c_i \cdot x = 1$ there are.

Proposition 1.27:

The number of i such that $c_i \cdot x = 1$ is:

t	1	2	3	4
x_1 correct				
x_1 wrong	253	176	141	128

Proof of Proposition 1.27:

When t = 1, $x = c + e_j$ for some $c \in G_{24} \Rightarrow c_i \cdot x = c_i \cdot (c + e_j) = c_i \cdot e_j = 1$ iff $j \in B_i$. If x_1 is correct, then $j \neq 1 \Rightarrow$ (number of $c_i \cdot x = 1$) = (number of B_i containing j) = (number of octads containing 1 and j) = $r_2 = 77$. Otherwise, if x_1 is wrong, then $k = 1 \Rightarrow$ (number of $c_i \cdot x = 1$) = (number of B_i containing 1) = $r_1 = 253$.

When t = 2, $x = c + e_j + e_k$ for some $c \in G_{24} \Rightarrow c_i \cdot x = c_i \cdot e_j + c_i \cdot e_k = 1$ iff exactly 1 of $j, k \in B_i$. If x_1 is correct, then $j, k \neq 1 \Rightarrow$ (number of $c_i \cdot x = 1$) = (number of octads containing 1 and j but not k, or 1 and k but not j) = $2(r_2 - r_3) = 2(77 - 21) = 112$. Otherwise, if x_1 is wrong, let j = 1 WLOG \Rightarrow (number of $c_i \cdot x = 1$) = (number of B_i containing 1 but not k) = $r_1 - r_2 = 253 - 77 = 176$.

When t = 3, $x = c + e_j + e_k + e_l$ for some $c \in G_{24} \Rightarrow c_i \cdot x = 1$ iff exactly 1 or 3 of $j, k, l \in B_i$. If x_1 is correct, then $j, k, l \neq 1 \Rightarrow$ (number of $c_i \cdot x = 1$) = $3(r_2 - 2r_3 + r_4) + r_4 = 3(77 - 42 + 5) + 5 = 125$. Otherwise, if x_1 is wrong, let j = 1 WLOG \Rightarrow (number of $c_i \cdot x = 1$) = $(r_1 - 2r_2 + r_3) + r_3 = (253 - 154 + 21) + 21 = 141$.

When t = 4, $x = c + e_j + e_k + e_l + e_m$ for some $c \in G_{24} \Rightarrow c_i \cdot x = 1$ iff exactly 1 or 3 of $j, k, l, m \in B_i$. If x_1 is correct, then $j, k, l, m \neq 1 \Rightarrow$ (number of $c_i \cdot x = 1$) =

 $4(r_2 - 3r_3 + 3r_4 - r_5) + 4(r_4 - r_5) = 4(77 - 63 + 15 - 1) + 4(5 - 1) = 128$. Otherwise, if x_1 is wrong, let j = 1 WLOG \Rightarrow (number of $c_i \cdot x = 1$) = $(r_1 - 3r_2 + 3r_3 - r_4) + 3(r_3 - r_4) = (253 - 231 + 63 - 5) + 3(21 - 5) = 128$.

Cyclic codes

Definition:

A linear code $C \in \mathbb{Z}_2^n$ is cyclic if $(c_1, \dots, c_n) \in C \Rightarrow (c_n, c_1, \dots, c_{n-1}) \in C$.

Remark:

The definition implies that all other cyclic shifts are also $\in C$.

Example:

- (1) $C = \{000, 110, 101, 011\} \subseteq \mathbb{Z}_2^3$ is cyclic.
- (2) Ham(3), with check matrix $A = \begin{pmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{pmatrix}$ is cyclic, because the shifted check matrix $A' = \begin{pmatrix} 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 \end{pmatrix}$ is in fact $\begin{pmatrix} A_1 + A_2 \\ A_3 \\ A_1 \end{pmatrix}$, where $A_i = i$ -th row of A.
- (3) G_{23} is equivalent to a cyclic code.

Ideals

Definition:

A commutative ring $(R, +, \times)$ is a set R with $+, \times$ such that:

- (1) (R, +) is an abelian group with identity 0,
- (2) (R, \times) is commutative and associative,
- $(3) \ \forall a, b, c \in R, \ a \times (b+c) = (a \times b) + (a \times c).$

Example:

 $\mathbb{Z}_2[x]$ is the ring of polynomials $a_0 + a_1x + \cdots + a_nx^n$ with $a_i \in \mathbb{Z}_2$ and normal $+, \times$ for polynomials.

Definition:

Let R be a commutative ring, then a subset $I \subseteq R$ is an ideal if:

(1) I is (am!) a subgroup of (R, +),

$$(2) IR = \{ir : i \in I, r \in R\} \subseteq I.$$

Example:

Let $a \in R$, and define $(a) = \{ar : r \in R\}$, then (a) is an ideal, called the principal ideal generated by a.

Quotient rings

Let I be an ideal of R. For $x \in R$, define the coset $x + I = \{x + i : i \in I\}$, and call the set of all cosets $\frac{R}{I}$. Define $+, \times$ on $\frac{R}{I}$ by (x + I) + (y + I) = (x + y) + I, (x + I)(y + I) = xy + I, then they are well-defined, and make $\frac{R}{I}$ into a (commutative) ring, called the quotient ring.

Example:

Consider $\frac{\mathbb{Z}_{2}[x]}{I}$, where $I = (x^{2} - 1)$, then $\{I, 1 + I, x + I, 1 + x + I\} \subseteq \frac{\mathbb{Z}_{2}[x]}{I}$. Now let $f(x) + I \in \frac{\mathbb{Z}_{2}[x]}{I}$, then $f(x) = (x^{2} - 1)q(x) + r(x)$, where $\deg r < 2 \Rightarrow f(x) + I = r(x) + (x^{2} - 1)q(x) + I = r(x) + I$ since $(x^{2} - 1)q(x) \in I \Rightarrow r(x)$ is either 1, x, 1 + x or $0 \Rightarrow \frac{\mathbb{Z}_{2}[x]}{I} = \{I, 1 + I, x + I, 1 + x + I\}$.

Notation:

Write
$$x + I = \bar{x}$$
, then $\frac{\mathbb{Z}_2[x]}{I} = \{0, 1, \bar{x}, 1 + \bar{x}\}.$

Proposition 1.28:

Let $R = \frac{\mathbb{Z}_2[x]}{I}$ where $I = (x^n - 1)$, $\bar{x} = x + I \in R$, then $R = \{a_0 + \dots + a_{n-1}\bar{x}^{n-1} : a_i \in \mathbb{Z}_2\}$, with the usual addition and multiplication determined by the relation $\bar{x}^n = 1$.

Proof of Proposition 1.28:

Let
$$S = \{a_0 + \dots + a_{n-1}\bar{x}^{n-1} : a_i \in \mathbb{Z}_2\}$$
, then clearly $S \subseteq R$. Now let $f(\bar{x}) \in R$, then $f(x) = (x^n - 1)q(x) + r(x)$, where $\deg r < n \Rightarrow f(\bar{x}) = r(\bar{x}) + (\bar{x}^n - 1)q(\bar{x}) = r(\bar{x}) \in S \Rightarrow R \subseteq S \Rightarrow R = S$.

Example:

Let
$$R = \frac{\mathbb{Z}_2[x]}{(x^3 - 1)}$$
, then $(1 + \bar{x})(1 + \bar{x}^2) = 1 + \bar{x} + \bar{x}^2 + \bar{x}^3 = \bar{x} + \bar{x}^2$.

Remark:

By Proposition 1.28, \exists a bijection $\pi: \mathbb{Z}_2^n \to \frac{\mathbb{Z}_2[x]}{(x^n-1)}$, $(a_0, \dots, a_{n-1}) \mapsto a_0 + \dots + a_{n-1}\bar{x}^{n-1}$, which is also an isomorphism of groups under +.

Example:

Let
$$C = \{000, 110, 011, 101\} \subseteq \mathbb{Z}_2^3$$
, then $\pi(C) = \{0, 1 + \bar{x}, \bar{x} + \bar{x}^2, 1 + \bar{x}^2\} \subseteq \frac{\mathbb{Z}_2[x]}{(x^3 - 1)}$.

Proposition 1.29:

 $C \subseteq \mathbb{Z}_2^n$ is a cyclic (linear) code iff $\pi(C)$ is an ideal of $\frac{\mathbb{Z}_2[x]}{(x^n-1)}$.

Proof of Proposition 1.29:

Suppose $\pi(C) = I$ is an ideal. Let $c, d \in C$, then $\pi(c), \pi(d) \in I \Rightarrow \pi(c+d) = \pi(c) + \pi(d) \in I \Rightarrow c+d \in C \Rightarrow C$ is a linear code. Now write $c = (c_0, \dots, c_{n-1}) \in C$, then $\pi(c) = c_0 + \dots + c_{n-1}\bar{x}^{n-1} \in I \Rightarrow c_{n-1} + c_0\bar{x} + \dots + c_{n-1}\bar{x}^{n-1} = c_{n-1}\bar{x}^n + c_0\bar{x} + \dots + c_{n-1}\bar{x}^{n-1} = \bar{x}\pi(c) \in I \Rightarrow (c_{n-1}, c_0, \dots, c_{n-2}) \in C \Rightarrow C$ is a cyclic code.

Conversely, suppose C is a cyclic code, then $I = \pi(C)$ is a subgroup of $\frac{\mathbb{Z}_2[x]}{(x^n - 1)}$ since C is linear and $0 = \pi(0^n) \in I$. Let $f(\bar{x}) = f_0 + \dots + f_{n-1}\bar{x}^{n-1} \in I$, then $\pi^{-1}(f(\bar{x})) = (f_0, \dots, f_{n-1}) \in C \Rightarrow (f_{n-1}, f_0, \dots, f_{n-2}) \in C \Rightarrow \bar{x}f(\bar{x}) = f_0\bar{x} + \dots + f_{n-1}\bar{x}^n = f_{n-1} + f_0\bar{x} + \dots + f_{n-2}\bar{x}^{n-1} \in I$. Similarly, $\bar{x}^i f(\bar{x}) \in I \ \forall i \Rightarrow g(\bar{x}) f(\bar{x}) \in I \ \forall g(\bar{x}) \in \frac{\mathbb{Z}_2[x]}{(x^n - 1)} \Rightarrow I = \pi(C)$ is an ideal.

Basic construction of cyclic codes

Definition:

Fix $n \in \mathbb{N}$, let $p(x) \in \mathbb{Z}_2[x]$, $p(x) \mid x^n - 1$, I be the ideal of $\frac{\mathbb{Z}_2[x]}{(x^n - 1)}$ defined by $I = (p(\bar{x})) = \left\{p(\bar{x})f(\bar{x}): f(\bar{x}) \in \frac{\mathbb{Z}_2[x]}{(x^n - 1)}\right\}$. Then p(x) is called a generator polynomial for the cyclic code $C = \pi^{-1}(I) \subseteq \mathbb{Z}_2^n$.

Example:

- (1) Let n = 3, p(x) = x + 1, then $p(x) \mid x^3 1 \Rightarrow I = (p(\bar{x})) = \{0, 1 + \bar{x}, 1 + \bar{x}^2, \bar{x} + \bar{x}^2\} \Rightarrow$ the corresponding cyclic code is $C = \{000, 110, 101, 011\}$.
- (2) Let n = 6, then $x^6 1 = (x^3 + 1)^2 = (x + 1)^2(x^2 + x + 1)^2$ in $\mathbb{Z}_2[x] \Rightarrow$ number of p(x) dividing $x^6 1 =$ (number of choices for $(x + 1)^i(x^2 + x + 1)^j$ where $0 \le i, j \le 2$) = (2 + 1)(2 + 1) = 9.
- (3) From (2), let $p(x) = (x^2 + x + 1)^2 = x^4 + x^2 + 1$, then $C = \pi^{-1} ((\bar{x}^4 + \bar{x}^2 + 1)) = \{000000, 101010, 010101, 1111111\}.$

Proposition 1.30:

If deg p = n - k, then dim C = k.

Proof of Proposition 1.30:

It suffices to show that $S = \{p(\bar{x}), \dots, \bar{x}^{k-1}p(\bar{x})\}$ is a basis for $(p(\bar{x})) = \pi(C)$ as a subspace of $\frac{\mathbb{Z}_2[x]}{(x^n-1)}$ over \mathbb{Z}_2 . Suppose $f(\bar{x}) = \sum_{i=0}^{k-1} \lambda_i \bar{x}^i p(\bar{x}) = 0$ in $\frac{\mathbb{Z}_2[x]}{(x^n-1)}$ for some $\lambda_i \in \mathbb{Z}_2$, then $x^n-1 \mid f(x) \Rightarrow f(x) = 0$ in $\mathbb{Z}_2[x]$ since $\deg f \leq (n-k) + (k-1) = n-1 \Rightarrow$ by comparing coefficients, $\lambda_i = 0 \ \forall i \Rightarrow S$ is a linearly independent set.

Now pick $h(\bar{x}) \in (p(\bar{x}))$, then $h(\bar{x}) = g(\bar{x})p(\bar{x})$ for some $g(\bar{x}) \in \frac{\mathbb{Z}_2[x]}{(x^n - 1)}$. Long division gives $g(x)p(x) = q(x)(x^n - 1) + r(x)$ where $\deg r < n \Rightarrow p(x) \mid q(x)(x^n - 1) + r(x) \Rightarrow p(x) \mid r(x)$. Let r(x) = p(x)s(x), then $\deg s \leq n - (n - k) = k \Rightarrow \operatorname{since} g(x)p(x) = q(x)(x^n - 1) + p(x)s(x)$, $h(\bar{x}) = g(\bar{x})p(\bar{x}) = 0 + p(\bar{x})s(\bar{x}) \Rightarrow h(\bar{x})$ is a linear combination of elements in $S \Rightarrow (p(\bar{x})) \subseteq \operatorname{Sp}(S) \Rightarrow S$ is a basis for $(p(\bar{x})) = \pi(C)$.

Example:

Let n = 7, then $x^7 - 1 = (x + 1)(x^3 + x + 1)(x^3 + x^2 + 1)$ in $\mathbb{Z}_2[x]$. Pick $p(x) = x^3 + x + 1$ and let C be its corresponding cyclic code, then dim C = 4, and a basis of C is $\{1101000, 0110100, 0011010, 0001101\}$.

Check matrices for cyclic codes

Let $p(x) = p_0 + \cdots + p_{n-k}x^{n-k} \mid x^n - 1$ be the generator polynomial for a cyclic code C, and call $G = \begin{pmatrix} p_0 & \cdots & p_{n-k} & 0 \\ & \ddots & & \ddots \\ 0 & p_0 & \cdots & p_{n-k} \end{pmatrix}$ (a $k \times n$ matrix) the generator matrix of C.

Proposition 1.31:

Let
$$q(x) = q_0 + \dots + q_k x^k = \frac{x^n - 1}{p(x)}$$
 in $\mathbb{Z}_2[x]$, and $H = \begin{pmatrix} 0 & q_k & \dots & q_0 \\ & \ddots & & \ddots & \\ q_k & \dots & q_0 & & 0 \end{pmatrix}$ (a $(n - k) \times n$ matrix), then H is a check matrix for C .

Proof of Proposition 1.31:

Let
$$q(x)p(x) = \sum_{d=0}^{n} f_d x^d$$
, then $f_d = \sum_{d=0}^{n} q_i p_{d-i} = 0$ for $1 \le d \le n-1$ since $q(x)p(x) = 0$

$$x^{n} - 1 \Rightarrow HG^{\top} = \begin{pmatrix} 0 & q_{k} \cdots q_{0} \\ \vdots & \ddots & \vdots \\ q_{k} \cdots q_{0} & 0 \end{pmatrix} \begin{pmatrix} p_{0} & 0 \\ \vdots & \ddots & \vdots \\ p_{n-k} & p_{0} \\ \vdots & \ddots & \vdots \\ 0 & p_{n-k} \end{pmatrix} = \begin{pmatrix} f_{n-1} \cdots f_{n-k} \\ \vdots & \ddots & \vdots \\ f_{k} \cdots & f_{1} \end{pmatrix} = 0. \text{ Pick}$$

 $c \in C$, then c can be written as a linear combination of the rows of $G \Rightarrow Hc = \sum H(\text{some columns of } G^{\top}) = \sum 0 = 0 \Rightarrow H$ is a check matrix for C.

Example:

Let
$$n = 7$$
, then $x^7 - 1 = (x+1)(x^3 + x + 1)(x^3 + x^2 + 1)$. Pick $p(x) = x^3 + x + 1$, then $G = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{pmatrix}$. Also, $q(x) = (x+1)(x^3 + x^2 + 1) = x^4 + x^2 + x + 1 \Rightarrow H = \begin{pmatrix} 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 \end{pmatrix}$ is a check matrix for the cyclic code C generated by $p(x) \Rightarrow C = \text{Ham}(3)$.

BCH codes

It is usually hard to tell what d(C) of a cyclic code C is, but some special cyclic codes allow d(C) to be computed.

Definition:

A polynomial $f(x) \in \mathbb{Z}_2[x]$ with deg $f \geq 1$ is irreducible if it cannot be factorized as a product of polynomials in $\mathbb{Z}_2[x]$ of smaller degree.

Example:

- (1) x, x + 1 are irreducible.
- (2) $x^2 + 1 = (x+1)^2$ is reducible but $x^2 + x + 1$ is irreducible (no root in \mathbb{Z}_2).
- (3) The irreducible polynomials of degree 3 are $x^3 + x + 1$ and $x^3 + x^2 + 1$.
- (4) The irreducible polynomials of degree 4 are $x^4 + x + 1$ and $x^4 + x^3 + 1$ (note that $x^4 + x^2 + 1 = (x^2 + x + 1)^2$ is reducible).

Remark:

- (1) Every polynomial in $\mathbb{Z}_2[x]$ is a unique product of irreducible polynomials (using the Euclidean algorithm for polynomials).
- (2) For $k \geq 1$, \exists a finite field $\mathbb{F}_{2^k} = \frac{\mathbb{Z}_2[x]}{(p_k(x))}$ of order 2^k , where $p_k(x) \in \mathbb{Z}_2[x]$ has degree k and is irreducible.
- (3) The multiplicative group $\mathbb{F}_{2^k}^* = (\mathbb{F}_{2^k} \setminus \{0\}, \times)$ is cyclic. If $\mathbb{F}_{2^k}^* = \langle \beta \rangle$, then β is called a primitive element of \mathbb{F}_{2^k} .
- (4) Every $\gamma \in \mathbb{F}_{2^k}$ has a minimum polynomial, which is the unique irreducible polynomial

 $m(x) \in \mathbb{Z}_2[x]$ satisfying $m(\gamma) = 0$. Also, $\deg m \leq k$, and $m(x) \mid x^{2^k - 1} - 1$.

Example:

- (1) Let $I = (x^2 + x + 1)$, then $\mathbb{F}_4 = \frac{\mathbb{Z}_2[x]}{I} = \{0 + I, 1 + I, x + I, 1 + x + I\}$. Write $\alpha = x + I$, then $\mathbb{F}_4 = \{0, 1, \alpha, 1 + \alpha\}$, with $\alpha^2 + \alpha + 1 = 0$.
- (2) $\mathbb{F}_{8} = \frac{\mathbb{Z}_{2}[x]}{(x^{3} + x + 1)} = \{0, 1, \alpha, 1 + \alpha, \alpha^{2}, 1 + \alpha^{2}, \alpha + \alpha^{2}, 1 + \alpha + \alpha^{2}\}, \text{ where } \alpha = x + I, \alpha^{3} + \alpha + 1 = 0.$
- (3) $\mathbb{F}_4^* = \langle \alpha \rangle = \langle 1 + \alpha \rangle$ has primitive elements α and $1 + \alpha$.
- (4) $|\mathbb{F}_8^*| = 7 \Rightarrow$ all its elements (except 1) are primitive.
- (5) Let $I = (x^4 + x + 1)$, $\mathbb{F}_{16} = \frac{\mathbb{Z}_2[x]}{I}$, $\alpha = x + I$, then $\alpha^4 + \alpha + 1 = 0$. Also, since $\operatorname{ord}(\alpha) \mid |\mathbb{F}_{16}^*| = 15$, $\alpha^3 \neq 1$ and $\alpha^5 = \alpha^2 + \alpha \neq 1$, $\operatorname{ord}(\alpha) = 15 \Rightarrow \mathbb{F}_{16}^* = \langle \alpha \rangle$.
- (6) In \mathbb{F}_8 , α and α^2 have minimum polynomial $x^3 + x + 1$ (note that $\alpha^6 + \alpha^2 + 1 = (\alpha^3 + \alpha + 1)^2 = 0$), and α^3 has minimum polynomial $x^3 + x^2 + 1$.

Definition:

Let $k, d \in \mathbb{Z}_{\geq 2}$, β be a primitive element of \mathbb{F}_{2^k} , $m_i(x)$ be the minimum polynomial of β^i , $p(x) = \text{lcm}\{m_1(x), \dots, m_{d-1}(x)\}$ and $n = 2^k - 1$, then $p(x) \mid x^n - 1$, and the cyclic code of length n generated by p(x) is called the BCH code of length n and designed distance d.

Example:

- (1) Let k = 3, d = 3. In \mathbb{F}_8 , pick a primitive element α , then $m_1(x) = m_2(x) = x^3 + x + 1 \Rightarrow$ the BCH code is Ham(3).
- (2) Let d = 4, then $m_3(x) = x^3 + x^2 + 1 \Rightarrow p(x) = (x^3 + x + 1)(x^3 + x^2 + 1) = x^6 + \dots + 1 \Rightarrow$ the BCH code is $\{0^7, 1^7\}$.

Theorem 1.32:

Let $n = 2^k - 1$, C be the BCH code of length n and designed distance d. Then:

- $(1) \ d(C) \ge d,$
- (2) $\dim C \ge n \left| \frac{d}{2} \right| k$.

Proof of Theorem 1.32:

Too hard.

Remark:

 $\deg p \le (d-1)k \Rightarrow \dim C = n - \deg p \ge n - (d-1)k \Rightarrow$ the bound in Theorem 1.32 is much better than expected.

Example:

- (1) Let k = 4, then \exists a primitive element $\alpha \in \mathbb{F}_{16}$ with minimum polynomial $x^4 + x + 1 \Rightarrow m_1(x) = m_2(x) = m_4(x) = x^4 + x + 1$, and $m_3(x) \mid x^5 1$ since $\operatorname{ord}(\alpha^3) = 5 \Rightarrow m_3(x) = x^4 + x^3 + x^2 + x + 1$.
- (2) Let d = 3, then $p(x) = \text{lcm}\{m_1, m_2\} = x^4 + x + 1$ from (1) \Rightarrow the BCH code C has dimension 15 deg p = 11 and $d(C) \ge d = 3$.
- (3) Let d = 5, then $p(x) = \text{lcm}\{m_1, m_2, m_3, m_4\} = (x^4 + x + 1)(x^4 + x^3 + x^2 + x + 1)$ from (1) \Rightarrow the BCH code C has dimension $15 \deg p = 7$ and $d(C) \ge d = 5$.

Remark:

Since $1 + \binom{14}{1} + \binom{14}{2} + \binom{14}{3} = 1 + 14 + 91 + 364 = 470 \ge 2^{15-7}$, the GV bound cannot prove that \exists a linear code of length 15 and dimension 7 which corrects 2 errors \Rightarrow BCH beats GV.

2 Strongly Regular Graphs

Definition:

- (1) A graph $\Gamma = (V, E)$ is a set of vertices V and a set of edges E.
- (2) Γ is regular with valency k if every vertex has k neighbours.
- (3) A path in Γ of length r is a sequence of vertices v_0, \dots, v_r where v_i is joined to $v_{i+1} \, \forall i$.
- (4) Γ is connected if \exists a path from v to $w \forall v, w \in V$.
- (5) If Γ is connected, the distance between v and w is d(v, w) = length of shortest path from v to w, and the diameter of Γ is $\text{diam}(\Gamma) = \max \{d(v, w) : v, w \in V\}$.
- (6) 2 graphs (V, E) and (V', E') are isomorphic if \exists a bijection $V \to V'$ which sends E to E'.

Example:

- $(1) \times$ is a disconnected graph.
- (2) $\langle \rangle$ is connected, with regular valency 2 and diameter 3.
- (3) is the Petersen graph, connected with regular valency 3 and diameter 2.
- (4) $\overrightarrow{\text{diam}}(\Gamma) = 1 \Rightarrow \text{any 2 vertices are joined by an edge. Such a graph with } v \text{ vertices is called the complete graph } K_v.$
- $(5) \ \bigstar \cong \bigcirc.$

Proposition 2.1:

Suppose Γ is a connected graph that is regular with valency k and diameter d. Then $|V(\Gamma)| \leq N(k,d) = 1 + \sum_{i=1}^{d} k(k-1)^{i-1}$.

Proof of Proposition 2.1:

Pick $x \in V(\Gamma)$. For $i \geq 1$, let $D_i = \{y \in V(\Gamma) : d(x,y) = i\}$, then $|D_1| = k \Rightarrow |D_2| \leq (k-1)|D_1| = k(k-1) \Rightarrow |D_3| \leq (k-1)|D_2| = k(k-1)^2 \Rightarrow \cdots \Rightarrow \text{since diam}(\Gamma) = d$, $V(\Gamma) = \{x\} \cup D_1 \cup \cdots \cup D_d \Rightarrow |V(\Gamma)| = 1 + \sum_{i=1}^d |D_i| \leq 1 + \sum_{i=1}^d k(k-1)^{i-1}$.

Definition:

Call Γ a Moore graph if Γ is connected with regular valency k and diameter d, with $|V(\Gamma)| = N(k, d)$.

Example:

- (1) Let k = 2, then $|V(\Gamma)| = 1 + \sum_{i=1}^{d} 2 = 2d + 1$. Indeed, $3 \ge 2d + 1$ is a Moore graph.
- (2) Let k = 3, d = 2, then $|V(\Gamma)| = 1 + 3 + 6 = 10$. The Petersen graph is such a graph, and is the only such Moore graph up to isomorphism.
- (3) Let d=2, then $|V(\Gamma)|=1+k+k(k-1)=k^2+1$, and there are no \triangle s nor \square s in Γ . Let k=4, and pick 2 joined vertices $v,w\in V(\Gamma)$, with neighbours a,b,c and x,y,z respectively. Since diam(Γ) = 2, a and x must have a common neighbour (a,x) which is a new vertex. Similarly, there are new vertices $(a,y),\cdots,(c,z)$. Also, there are 2 neighbours of (a,x) among the 9 new vertices that are not of the form (a,?) nor (?,x) (else there will be a \triangle), so the possibilities are (b,y),(b,z),(c,y),(c,z). WLOG, if (a,x) and (b,y) are joined, then (a,x) cannot be joined to (b,z) nor (c,y) (else there will be a \square) \Rightarrow (a,x) and (c,z) are joined. Similarly, (b,y) is joined to (a,x) and (c,z), and (c,z) is joined to (a,x) and (b,y) ($\Rightarrow \Leftarrow$ since there is a \triangle) $\Rightarrow \nexists \Gamma$.

Definition:

A graph Γ is strongly regular with parameters (v, k, a, b) if:

- (1) Γ has v vertices,
- (2) Γ is regular with valency k,
- (3) any 2 joined vertices of Γ have a common neighbours,
- (4) any 2 non-joined vertices of Γ have b common neighbours.

Proposition 2.2:

If Γ is strongly regular with parameters (v, k, a, b), then:

- (1) Γ is connected and diam(Γ) = 2 if b > 0,
- (2) Γ is a disjoint union of complete graphs K_{k+1} if b=0.

Proof of Proposition 2.2:

- (1) If b > 0, then \exists a path of length 2 between any 2 non-joined vertices of $\Gamma \Rightarrow \text{diam}(\Gamma) = 2$.
- (2) If b = 0, let the neighbours of a vertex $x \in V(\Gamma)$ be x_1, \dots, x_k , then x_i, x_j are joined $\forall i \neq j \text{ (else } b > 0) \Rightarrow x, x_1, \dots, x_k \text{ form a complete graph } K_{k+1}$. Any other vertex $y \in V(\Gamma)$ is not joined to $x \Rightarrow y$ is not joined to x_1, \dots, x_k too $\Rightarrow y$ and its neighbours for another K_{k+1} .

Example:

(1) Moore graphs of diameter 2 are strongly regular, with parameters $(k^2 + 1, k, 0, 1)$, since

there are no \triangle s and \square s.

- (2) For $n \geq 4$, let the $\binom{n}{2}$ pairs from $\{1, \dots, n\}$ be vertices of Γ , and join $\{i, j\}$, $\{k, l\}$ iff $|\{i, j\} \cap \{k, l\}| = 1$. Then Γ is strongly regular with parameters $v = \binom{n}{2}$, k = 2n 4, a = n 2, b = 4, called the triangular graph T(n).
- (3) Let the ordered pairs (i, j) (where $i, j \in \{1, \dots, n\}$) be vertices of Γ , and join (i, j), (k, l) iff i = k or j = l. Then Γ is strongly regular with parameters $v = n^2$, k = 2n 2, a = n 2, b = 2, called the lattice graph L(n).
- (4) Let p > 2, $p \equiv 1 \pmod{4}$ be a prime, such that $\mathbb{Z}_p = \{0, \dots, p-1\}$ (with addition and multiplication mod p) is a field. Let $Q = \{x^2 : x \in \mathbb{Z}_p^*\}, \ \psi : \mathbb{Z}_p^* \to Q, \ x \mapsto x^2$, then ψ is a homomorphism with $\operatorname{Ker} \psi = \{x : x^2 = 1\} = \{x : (x+1)(x-1) = 0\} = \{\pm 1\} \Rightarrow |Q| = |\operatorname{Im} \psi| = \frac{|\mathbb{Z}_p^*|}{|\operatorname{Ker} \psi|} = \frac{p-1}{2} \equiv 0 \pmod{2} \Rightarrow -1 \in Q$, since Q must contain an element of order 2. Let $V(\Gamma) = \mathbb{Z}_p$, and join x, y iff $x y \in Q$ (iff $y x \in Q$), then Γ is called the Payley graph P(p).

(5)
$$P(5)$$
 is $4 \underbrace{0}_{2} 1$.

Proposition 2.3:

P(p) is strongly regular, with parameters $v=p,\,k=\frac{p-1}{2},\,a=\frac{p-5}{4},\,b=\frac{p-1}{4}.$

Proof of Proposition 2.3:

Clearly $k = |Q| = \frac{p-1}{2}$. Now pick $x, y \in V(P(p))$ where $x \neq y$, and we aim to find the number of $z \in V(P(p))$ such that $(x, z), (y, z) \in E(P(p))$ ie. $z - x = n^2 \pmod{p}, z - y = m^2 \pmod{p}$ (mod p) $\Rightarrow x - y = m^2 - n^2 = (m+n)(m-n) \pmod{p}$. Since \mathbb{Z}_p is a field, number of distinct solutions $(m+n,m-n) \in \mathbb{Z}_p^2 = (\text{number of distinct divisors of } q) = p-1 \Rightarrow$ number of distinct solutions $(m,n) \in \mathbb{Z}_p^2 = p-1$. But $x-y \in Q \Rightarrow (\pm m,0), (0,\pm n)$ should be excluded (else z = x or z = y). Also, note that (c,d), (m,n) give the same value of $z \Leftrightarrow c^2 - m^2 \equiv (c+m)(c-m) \equiv d^2 - n^2 \equiv (d+n)(d-n) \equiv 0 \pmod{p} \Leftrightarrow c = \pm m, d = \pm n$. Hence x,y have $\frac{(p-1)-4}{2^2} = \frac{p-5}{4}$ common neighbours z if they are joined, $\frac{p-1}{2^2} = \frac{p-1}{4}$ common neighbours otherwise $\Rightarrow P(p)$ is strongly regular, with $a = \frac{p-5}{4}, b = \frac{p-1}{4}$.

Proposition 2.4:

If Γ is strongly regular with parameters (v, k, a, b), then k(k - a - 1) = b(v - k - 1).

Proof of Proposition 2.4:

Pick $x \in V(\Gamma)$, and let A be the set of k neighbours of x, B be the set of v-k-1 non-

neighbours of x, N be the number of edges joining a vertex in A to a vertex in B. Each vertex in A is joined to k-a-1 vertices in B, and each vertex in B is joined to b vertices in $A \Rightarrow (k-a-1)|A| = N = b|B| \Rightarrow k(k-a-1) = b(v-k-1)$.

Example:

Moore graphs of diameter 2 are strongly regular, with parameters $(v, k, 0, 1) \Rightarrow k(k - 1) = v - k - 1 \Rightarrow v = k^2 + 1$ indeed.

Remark:

We can draw the "balloon" picture $\underbrace{1}_{k}\underbrace{1}_{k-a-1}\underbrace{1}_{k}\underbrace{1}_{k-a-1}\underbrace{1}_{k-a-1}\underbrace{1}_{k}\underbrace{1}_{k-a-1}\underbrace{1}_{$

Definition:

Replace all edges of Γ with non-edges and vice-versa but keep the same vertex set, then the new graph obtained is Γ^c , called the complement of Γ .

Proposition 2.5:

If Γ is strongly regular with parameters (v, k, a, b), then Γ^c is also strongly regular, with parameters (v, v - k - 1, v - 2k + b - 2, v - 2k + a).

Proof of Proposition 2.5:

Pick $x \in \Gamma^c$, and let B be the set of neighbours of x in Γ^c (ie. the set of non-neighbours of x in Γ), A be the set of non-neighbours of x in Γ^c (ie. the set of neighbours of x in Γ), then clearly |B| = v - k - 1. Also, in Γ , any vertex $v \in A$ is joined to k - a - 1 vertices in $B \Rightarrow$ in Γ^c , v is joined to |B| - (k - a - 1) = v - k - 1 - k + a + 1 = v - 2k + a vertices in B. Moreover, in Γ , any vertex $w \in B$ is joined to k - b other vertices in $E \Rightarrow 0$ in

Adjacency matrices

Definition:

Let Γ be a graph with vertex set $\{e_1, \dots, e_v\}$. The adjacency matrix of Γ is the $v \times v$ matrix $A = (a_{ij})$, with $a_{ij} = 1$ if e_i is joined to e_j , 0 otherwise.

Example:

The adjacency matrix for
$$e_1 \underbrace{e_2}_{e_5} e_3$$
 is $A = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{pmatrix}$.

Remark:

- (1) A is symmetric, with all entries 0 or 1.
- (2) A has 0's on its main diagonal.

Proposition 2.6:

Let Γ be a strongly regular graph with parameters (v, k, a, b), A be its adjacency matrix, and J be the $v \times v$ matrix consisting of all 1's. Then:

- (1) AJ = kJ,
- (2) $A^2 = (a-b)A + (k-b)I + bJ$.

Proof of Proposition 2.6:

- (1) Γ is regular with valency $k \Rightarrow \text{each row of } A \text{ has exactly } k \text{ 1's } \Rightarrow AJ = kJ$.
- (2) Since A is symmetric, $(A^2)_{ij} = (AA^{\top})_{ij} = (\text{row } i \text{ of } A) \cdot (\text{column } j \text{ of } A^{\top}) = (\text{row } i \text{ of } A) \cdot (\text{row } j \text{ of } A) = k \text{ if } i = j, a \text{ if } i \neq j \text{ and } e_i, e_j \text{ are joined, } b \text{ otherwise}$ $\Rightarrow A^2 \text{ has } k \text{'s on its main diagonal, } a \text{'s where } A \text{ has } 1 \text{'s, and } b \text{'s where } A \text{ has } 0 \text{'s}$ $\Rightarrow A^2 = kI + aA + b(J A I) = (a b)A + (k b)I + bJ.$

Eigenvalues of adjacency matrices

The adjacency matrix A of a graph Γ is real and symmetric, so it has real eigenvalues and is diagonalizable.

Definition:

The multiplicity of an eigenvalue λ is the number of times it appears in $\begin{pmatrix} \lambda_1 & 0 \\ & \ddots \\ 0 & \lambda_v \end{pmatrix} = P^{-1}AP$ for some P.

Lemma 2.7:

Let A be a real $v \times v$ matrix with eigenvalues $\lambda_1, \dots, \lambda_v$, then $\operatorname{Trace}(A) = \sum_{i=1}^v \lambda_i$.

Proof of Lemma 2.7:

 $\lambda_1, \dots, \lambda_v$ are the roots of $\det(xI - A) = (x - a_{11}) \dots (x - a_{vv}) + (\text{terms of degree} \le v - 2) = x^v - (a_{11} + \dots + a_{vv})x^{v-1} + \dots$. Since $\det(xI - A)$ is also $= (x - \lambda_1) \dots (x - \lambda_v)$, comparing coefficients of x^{v-1} gives $\sum_{i=1}^v \lambda_i = \sum_{i=1}^v a_{ii} = \text{Trace}(A)$.

Theorem 2.8:

Let Γ be a strongly regular graph with parameters (v, k, a, b) and adjacency matrix A. Assume WLOG that v > 2k (else pick Γ^c), and suppose Γ is connected (ie. b > 0). Then:

- (1) A has exactly 3 distinct eigenvalues k, r_1, r_2 , where r_1, r_2 satisfy $x^2 (a-b)x (k-b) = 0$,
- (2) eigenvalue k has multiplicity 1, and if m_1, m_2 are the multiplicities of r_1, r_2 respectively, then $m_1 + m_2 = v 1$ and $m_1 r_1 + m_2 r_2 = -k$,
- (3) $r_1, r_2 \in \mathbb{Z}$ unless (v, k, a, b) has the form (4b + 1, 2b, b 1, b).

Proof of Theorem 2.8:

By Proposition 2.6(1), $AJ = kJ \Rightarrow \text{let } \mathbf{j} = \begin{pmatrix} 1 & \cdots & 1 \end{pmatrix}^{\top}$, then $A\mathbf{j} = k\mathbf{j} \Rightarrow k$ is an eigenvalue of A.

Now let \mathbf{w} be an eigenvector of A with $\mathbf{w} \notin \operatorname{Sp}(\mathbf{j})$ such that $A\mathbf{w} = \lambda \mathbf{w}$, then by Proposition 2.6(2), $A^2\mathbf{w} = (a-b)A\mathbf{w} + (k-b)I\mathbf{w} + bJ\mathbf{w} \Rightarrow \lambda^2\mathbf{w} = (a-b)\lambda\mathbf{w} + (k-b)\mathbf{w} + b(c\mathbf{j})$ (where $c = \operatorname{sum}$ of coordinates of \mathbf{w}) $\Rightarrow (\lambda^2 - (a-b)\lambda - (k-b))\mathbf{w} = bc\mathbf{j} \in \operatorname{Sp}(\mathbf{j}) \Rightarrow \operatorname{since} \mathbf{w} \notin \operatorname{Sp}(\mathbf{j})$, $\lambda^2 - (a-b)\lambda - (k-b) = 0$ ie. λ satisfies $x^2 - (a-b)x - (k-b) = 0$.

Let the roots of $x^2 - (a - b)x - (k - b) = 0$ be r_1 and r_2 , and suppose $k = r_1$ or $r_2 \Rightarrow k^2 - (a - b)k - (k - b) = 0$. But by Proposition 2.4, $k(k - a - 1) = b(v - k - 1) \Rightarrow k^2 - (a - b)k - (k - b) = bv \Rightarrow bv = 0 \Rightarrow b = 0 \ (\Rightarrow \Leftarrow) \Rightarrow k \neq r_1, r_2 \Rightarrow$ the eigenspace for k is $Sp(\mathbf{j}) \Rightarrow k$ has multiplicity 1. Moreover, if $r_1 = r_2$, then $(a - b)^2 + 4(k - b) = 0 \Rightarrow$ since $k \geq b$, we must have $(a - b)^2 = 4(k - b) = 0 \Rightarrow a = b = k \ (\Rightarrow \Leftarrow \text{ as } k - 1 \geq a) \Rightarrow r_1 \neq r_2$. Hence k, r_1, r_2 are all distinct.

Let the multiplicities of r_1 and r_2 be m_1 and m_2 respectively, then $m_1 + m_2 = v - 1$ since A is a $v \times v$ matrix, and $m_1r_1 + m_2r_2 + k = \text{Trace}(A) = 0 \Rightarrow m_1r_1 + m_2r_2 = -k$.

Now let $D = (a - b)^2 + 4(k - b)$, then $r_1, r_2 = \frac{1}{2}((a - b) \pm \sqrt{D}) \Rightarrow 2(m_1r_1 + m_2r_2) = (m_1 + m_2)(a - b) + (m_1 - m_2)\sqrt{D} = -2k \Rightarrow \text{if } m_1 \neq m_2, \text{ then } \sqrt{D} \in \mathbb{Q} \Rightarrow \sqrt{D} \in \mathbb{Z} \Rightarrow r_1, r_2$ are either both $\in \mathbb{Z}$ or both of the form $z + \frac{1}{2}$ for some $z \in \mathbb{Z}$. If the latter is true, then $r_1r_2 = -(k - b) \notin \mathbb{Z} \ (\Rightarrow \Leftarrow) \Rightarrow r_1, r_2 \in \mathbb{Z}$. In particular, if $m_2 = 0$, then $m_1 = v - 1$ and $m_1r_1 = -k \Rightarrow v - 1 \mid k \Rightarrow v - 1 \leq k \ (\Rightarrow \Leftarrow \text{ since } v > 2k) \Rightarrow m_1, m_2 > 0 \Rightarrow A$ has exactly 3 eigenvalues.

Otherwise, if $m_1 = m_2 = m$, then 2m = v - 1 and $2m(a - b) = -2k \Rightarrow (v - 1)(a - b) = -2k \Rightarrow v - 1 \leq 2k$. Since v > 2k by assumption, we must have $v = 2k + 1 \Rightarrow a - b = -1 \Rightarrow$ by Proposition 2.4, $k(k - a - 1) = b(v - k - 1) = bk \Rightarrow b = k - a - 1 = k - b \Rightarrow k = 2b \Rightarrow (v, k, a, b) = (4b + 1, 2b, b - 1, b)$.

Remark:

If $v \leq 2k$, then Γ^c is strongly regular, and $v' = v > v + (v - 2k - 2) = 2(v - k - 1) = 2k' \Rightarrow$ Theorem 2.8 applies to Γ^c if it is connected. Otherwise, Γ^c is a disjoint union of complete graphs \Rightarrow we know what Γ^c is.

Theorem 2.9:

If \exists a Moore graph of valency k and diameter 2, then k = 2, 3, 7 or 57.

Proof of Theorem 2.9:

Let Γ be such a Moore graph, then Γ is strongly regular with parameters $(k^2+1,k,0,1)$. Let A be the adjacency matrix of Γ, then since b>0 and $k^2+1>2k$ for k>1, by Theorem 2.8(1), A has 3 eigenvalues k, r_1, r_2 where r_1, r_2 are the roots of $x^2+x-(k-1)=0 \Rightarrow r_1, r_2=\frac{1}{2}(-1\pm\sqrt{4k-3})$. Also, by Theorem 2.8(2), the multiplicities of r_1, r_2 satisfy $m_1+m_2=k^2$ and $m_1r_1+m_2r_2=-k \Rightarrow \frac{1}{2}(-m_1-m_2)+\frac{1}{2}(m_1-m_2)\sqrt{4k-3}=-k \Rightarrow (m_1-m_2)\sqrt{4k-3}=k^2-2k$. If k=2b=2, then $\Gamma=\bigcirc$. Otherwise, if k>2, $r_1, r_2\in\mathbb{Z}\Rightarrow\sqrt{4k-3}\in\mathbb{Z}$ by Theorem 2.8(3). Let $n=\sqrt{4k-3}$, then $k=\frac{n^2+3}{4}\Rightarrow n(m_1-m_2)=k(k-2)=\frac{n^2+3}{4}\times\frac{n^2-5}{4}\Rightarrow m_1-m_2=\frac{(n^2+3)(n^2-5)}{16n}\in\mathbb{Z}\Rightarrow n\mid (n^2+3)(n^2-5)\Rightarrow n\mid 15\Rightarrow n=1,3,5 \text{ or } 15\Rightarrow k$

Theorem 2.10 (Friendship Theorem):

 $= 1 \ (\Rightarrow \Leftarrow), 3, 7 \text{ or } 57. \text{ Hence } k = 2, 3, 7 \text{ or } 57.$

If Γ is a graph in which any 2 vertices have exactly 1 common neighbour, then \exists a vertex that is joined to all the other vertices.

Proof of Theorem 2.10:

Such \exists such a Γ but no vertex is joined to all the other vertices. Let v(P) be the number of neighbours of P, and R be the common neighbour of P and Q, where P and Q are not joined. Let S be the common neighbour of P and P, and P be the common neighbour of P and P

common neighbour of u_1 and Q cannot be T (else P and T have 2 common neighbours) nor R (else P and R have 2 common neighbours) \Rightarrow it is a new vertex v_1 . Similarly, the common neighbour of u_2 and Q cannot be T, R nor v_1 (else P and v_1 have 2 common neighbours) \Rightarrow it is a new vertex $v_2 \Rightarrow$ repeating $\forall u_i$ gives $v(P) = r + 2 \leq v(Q)$. Likewise, $v(Q) \leq v(P) \Rightarrow v(P) = v(Q) \Rightarrow$ any 2 non-joined vertices have the same number of neighbours.

Now let B be a vertex that is not P, Q nor R, then v(B) = v(P) = v(Q) since B is not joined to either P or Q (or both). Also, by assumption, let C be a vertex that is not joined to R, then v(Q) = v(C) = v(R) too \Rightarrow every vertex has the same number of neighbours as $Q \Rightarrow \Gamma$ is regular $\Rightarrow \Gamma$ is strongly regular with parameters (v, k, 1, 1).

By Proposition 2.4, $k(k-2) = v - k - 1 \Rightarrow v = k^2 - k + 1 \Rightarrow v > 2k$ iff $k \ge 3$. If k = 2, then $\Gamma = \Delta$ ($\Rightarrow \Leftarrow$) $\Rightarrow v > 2k \Rightarrow$ let A be the adjacency matrix of Γ , then by Theorem 2.8(1), A has 3 eigenvalues k, r_1, r_2 where r_1, r_2 are the roots of $x^2 - (k-1) = 0 \Rightarrow r_1 = \sqrt{k-1}$, $r_2 = -\sqrt{k-1}$. Also, by Theorem 2.8(2), $m_1 + m_2 = v - 1 = k^2 - k$ and $m_1 r_1 + m_2 r_2 = -k \Rightarrow (m_1 - m_2)\sqrt{k-1} = -k \Rightarrow (m_1 - m_2)^2(k-1) = k^2 \Rightarrow k-1 \mid k^2 \Rightarrow k-1 \mid 1 \Rightarrow k = 0$ or $2 \Leftrightarrow \Rightarrow \#\Gamma$.

Strongly regular graphs with small v

Example:

- (1) T(6) has parameters (15, 8, 4, 4).
- (2) $T(6)^c$ has parameters (15, 6, 1, 3).
- (3) $(K_3)^5$ has parameters (15, 2, 1, 0), and $(K_5)^3$ has parameters (15, 4, 3, 0).
- (4) $[(K_3)^5]^c$ has parameters (15, 12, 9, 12), and $[(K_5)^3]^c$ has parameters (15, 10, 5, 10).

Proposition 2.11:

If Γ is strongly regular with v=15, then $\Gamma=T(6),(K_3)^5,(K_5)^3$ or their complements.

Proof of Proposition 2.11:

Let Γ have parameters (15, k, a, b). If $15 \leq 2k$, replace Γ by $\Gamma^c \Rightarrow$ assume WLOG that 15 > 2k. If b = 0, then $\Gamma = (K_3)^5$ or $(K_5)^3$ by Proposition 2.2. If b > 0, then $2 \leq k \leq 7$.

If k=2, then Γ is a 15-gon ($\Rightarrow \Leftarrow$ since Γ is not strongly regular).

If k = 3, by Proposition 2.4, $3(2 - a) = 11b \Rightarrow 11 \mid 2 - a \Rightarrow a = 2 \Rightarrow b = 0 \ (\Rightarrow \Leftarrow)$.

If k = 4, by Proposition 2.4, $4(3 - a) = 10b \Rightarrow 5 \mid 3 - a \Rightarrow a = 3 \Rightarrow b = 0 \ (\Rightarrow \Leftarrow)$.

If k = 5, by Proposition 2.4, $5(4 - a) = 9b \Rightarrow 9 \mid 4 - a \Rightarrow a = 4 \Rightarrow b = 0 \ (\Rightarrow \Leftarrow)$.

If k = 6, by Proposition 2.4, $6(5 - a) = 8b \Rightarrow 8 \mid 5 - a \Rightarrow a = 1 \Rightarrow b = 3 \Rightarrow \Gamma = T(6)^c$.

If k = 7, by Proposition 2.4, $7(6 - a) = 7b \Rightarrow b = 6 - a$. Also, by Theorem 2.8, the eigenvalues of the adjacency matrix of Γ are $7, r_1, r_2$ where r_1, r_2 are the roots of $x^2 - (a - b)x - (k - b) = x^2 - (2a - 6)x - (1 + a) = 0 \Rightarrow r_1, r_2 = a - 3 \pm \sqrt{(a - 3)^2 + (1 + a)} = a - 3 \pm \sqrt{a^2 - 5a + 10}$. Since $r_1, r_2 \in \mathbb{Z}$, $a^2 - 5a + 10$ is a perfect square, and $0 \le a \le k - 1 = 5 \Rightarrow a = 2$ or 3. If a = 2, then $r_1 = 1$, $r_2 = -3 \Rightarrow m_1 + m_2 = 14$ and $m_1 - 3m_2 = -7 \Rightarrow 4m_2 = 21 \ (\Rightarrow \Leftarrow)$. If a = 3, then $r_1 = 2$, $r_2 = -2 \Rightarrow m_1 + m_2 = 14$ and $2m_1 - 2m_2 = -7 \Rightarrow 4m_1 = 21 \ (\Rightarrow \Leftarrow)$. Hence $\Gamma = T(6)^c, (K_3)^5$ or $(K_5)^3 \Rightarrow \Gamma = T(6), (K_3)^5, (K_5)^3$ or their complements.

2-weight codes & strongly regular graphs

Definition:

A linear code $C \subseteq \mathbb{Z}_2^n$ is a 2-weight code if $\exists w_1, w_2 > 0$, $w_1 \neq w_2$, such that $\operatorname{wt}(c) = w_1$ or $w_2 \ \forall c \in C \setminus \{0\}$, and both occur.

Example:

- (1) $H' \subseteq \mathbb{Z}_2^8$ has weights 0, 4 or $8 \Rightarrow$ it is a 2-weight code.
- (2) $C = \{v \in \mathbb{Z}_2^5 : \text{wt}(v) \text{ even}\}$ is a 2-weight code.
- (3) $C = \{c \in G_{24} : c_{16} = \cdots = c_{24} = 0\}$ has weights 0, 8 or $12 \Rightarrow C$ is a 2-weight code.

Definition:

A linear code is projective if it has a generator matrix whose columns are distinct and non-zero.

Example:

$$H'$$
 is projective, with generator matrix $\begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$.

Theorem 2.12:

Let $C \subseteq \mathbb{Z}_2^n$ be a projective 2-weight linear code, with weights $w_1, w_2 > 0$, $w_1 \neq w_2$. Define Γ with $V(\Gamma) = C$, and join a, b iff $d(a, b) = \text{wt}(a + b) = w_1$, then Γ is strongly regular.

Proof of Theorem 2.12:

Let dim C = k and b_i be the number of codewords of weight w_i for i = 1, 2, then clearly Γ

is regular with valency b_1 . Define A_i to be the $b_i \times n$ matrix whose rows are the codewords with weight w_i , $A = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}$, and $\phi_t : C \to \mathbb{Z}_2$ by $\phi_t(x_1, \dots, x_n) = x_t$. Since every column of A has a non-zero element, ϕ_t is surjective \Rightarrow dim Ker $\phi_t = k - 1 \Rightarrow$ each column of A has $2^{k-1} - 1$ 0's and 2^{k-1} 1's \Rightarrow number of 1's in $A = n \times 2^{k-1} = b_1 w_1 + b_2 w_2 \Rightarrow$ we can solve for b_i as $b_1 + b_2 = 2^k - 1$.

For any fixed j, let r_i be the number of 0's in column j of A_i . Since codewords $c \in C$ with $c_j = 0$ form a 2-weight projective subcode of C, we can calculate r_i in the same way we did for b_i (ie. $r_1 + r_2 = 2^{k-1} - 1$ and $r_1w_1 + r_2w_2 = (n-1) \times 2^{k-2}$) \Rightarrow every column of A_i has r_i 0's. Let A_1 have rows $a_1, \dots, a_{b_1}, s_p =$ number of a_m such that $d(a_j, a_m) = w_p$, then $s_1 + s_2 = b_1 - 1$ and $s_1w_1 + s_2w_2 = \sum_{m=1}^{b_1} d(a_j, a_m) = w_1r_1 + (n - w_1)(b_1 - r_1) \Rightarrow$ we can solve for s_p .

It follows that a_j and 0^n are joined and have s_1 common neighbours $\forall j$. Moreover, for any edge (x,y) with $\operatorname{wt}(x+y) = w_1$, z is a common neighbour of x and y iff x+z is a common neighbour of 0^n and $x+y \Rightarrow$ any pair of joined vertices have s_1 common neighbours. Likewise for A_2 , any pair of non-joined vertices has a constant number of common neighbours $\Rightarrow \Gamma$ is strongly regular.

Example:

Let C = H', $w_1 = 8$, $w_2 = 4$, and join $a, b \in \Gamma^c$ iff d(a, b) = 8 ie. $a = b + 1^8$, then Γ^c has valency 1, and in fact $\Gamma^c = (K_2)^8 \Rightarrow \Gamma$ is also strongly regular.

Designs 3

Definition:

Let X be a set of v points, then a t-design with parameters (v, k, r_t) is a collection \mathcal{B} of subsets of X, all of which have size k (called blocks), such that any t points of X lie in r_t blocks.

Remark:

 \mathcal{B} is trivial if every set of size k is a block.

Example:

- (1) Octads in G_{24} form a 5-design with parameters (24, 8, 1).
- (2) Let $X = \mathbb{Z}_2^n \setminus \{0\}$ with blocks $\{x, y, x + y\}$, then \mathcal{B} is a 2-design with parameters $(2^k - 1, 3, 1).$

Proposition 3.1:

A t-design is also an s-design $\forall 1 \leq s \leq t$, and $r_s = \frac{(v-t+1)\cdots(v-s)}{(k-t+1)\cdots(k-s)}r_t$.

Proof of Proposition 3.1:

Follows from Corollary 1.24.

Notation:

Write $r = r_1$, $b = r_0 =$ number of blocks, then bk = vr by Proposition 3.1.

Example:

- (1) \nexists a 2-design with parameters (56, 11, 1) since $r = r_1 = \frac{56 2 + 1}{11 2 + 1} \times 1 = \frac{55}{10} \notin \mathbb{Z}$. (2) Consider a 2-design with parameters (46, 10, 1), then $r = \frac{45}{9} = 5 \Rightarrow b = \frac{vr}{k} = \frac{46 \times 5}{10} = \frac{46 \times 5}{10$ $23 \Rightarrow$ we do not know if it exists.

Some theory of 2-designs

Notation:

Write $r_2 = \lambda$, such that the parameters of a 2-design become (v, k, λ) .

Proposition 3.2:

For a 2-design, $r(k-1) = \lambda(v-1)$.

Proof of Proposition 3.2:

Consider pairs (ij, B) where $B \in \mathcal{B}$, $i, j \in B$, $i \neq j$, then the number of such pairs is = ways to choose $i, j \in X \times$ ways to choose B containing $i, j = \binom{v}{2} \lambda$.

On the other hand, this number is also = ways to choose $B \in \mathcal{B} \times$ ways to choose $i, j \in B = b\binom{k}{2} \Rightarrow$ by Proposition 3.1, $\frac{\lambda v(v-1)}{2} = \frac{bk(k-1)}{2} = \frac{vr(k-1)}{2} \Rightarrow \lambda(v-1) = r(k-1)$.

Incidence matrices

Definition:

Let \mathcal{B} be a t-design $(t \geq 1)$ with points x_1, \dots, x_v and blocks B_1, \dots, B_b , then the incidence matrix of \mathcal{B} is the $v \times b$ matrix $A = (a_{ij})$, with $a_{ij} = 1$ if $x_i \in B_j$, 0 otherwise.

Remark:

Each row of A has r 1's, and each column of A has k 1's.

Proposition 3.3:

Let \mathcal{B} be a 2-design with parameters (v, k, λ) and incidence matrix A, then AA^{\top} (a $v \times v$ matrix) = $\lambda J_v + (r - \lambda)I_v$.

Proof of Proposition 3.3:

 $(AA^{\top})_{ij} = (\text{row } i \text{ of } A) \cdot (\text{row } j \text{ of } A) = (\text{number of blocks containing both } i \text{ and } j) = \lambda \text{ if } i \neq j, r \text{ otherwise} \Rightarrow \text{the result follows.}$

Proposition 3.4:

Let A be the incidence matrix of a 2-design with parameters (v, k, λ) , then det $AA^{\top} = (r - \lambda)^{v-1}(r + (v-1)\lambda)$.

Proof of Proposition 3.4:

$$\begin{vmatrix} r & \lambda \\ & \ddots \\ & & r \end{vmatrix} = \begin{vmatrix} r & \lambda - r & \cdots & \lambda - r \\ \lambda & r - \lambda & & 0 \\ \vdots & & \ddots \\ \lambda & 0 & & r - \lambda \end{vmatrix} = \begin{vmatrix} r + (v - 1)\lambda & & 0 \\ & \lambda & r - \lambda \\ & \vdots & & \ddots \\ & \lambda & 0 & & r - \lambda \end{vmatrix} = (r - \lambda)^{v-1}(r + (v - 1)\lambda).$$

Theorem 3.5 (Fisher's Inequality):

Let \mathcal{B} a 2-design with parameters (v, k, λ) , with v > k, then $b \ge v$ (and $r \ge k$).

Proof of Theorem 3.5:

By Proposition 3.2, $v > k \Rightarrow r > \lambda$. Let A be the incidence matrix of \mathcal{B} , then by Proposition 3.4, $\det AA^{\top} > 0 \Rightarrow AA^{\top}$ is invertible $\Rightarrow v = \operatorname{rank} AA^{\top} \leq \operatorname{rank} A \leq b$.

Example:

From the previous example, a 2-design with parameters (46, 10, 1) must have b = 23 < v $(\Rightarrow \Leftarrow) \Rightarrow$ no such design exists.

Symmetric 2-designs

Definition:

A 2-design is symmetric if v = b (or equivalently k = r).

Example:

Let $X = \mathbb{Z}_2^3 \setminus \{0\}$ with blocks $\{x, y, x + y\}$, then \mathcal{B} is a 2-design with parameters (7, 3, 1). In addition, $r(k - 1) = \lambda(v - 1) \Rightarrow (3 - 1)r = (7 - 1) \Rightarrow r = 3 = k \Rightarrow \mathcal{B}$ is a symmetric 2-design. \mathcal{B} is also called the Fano plane, and is the smallest projective plane ie. a symmetric 2-design with $\lambda = 1$.

Theorem 3.6:

If \exists a symmetric 2-design with parameters (v, k, λ) where v is even, then $k - \lambda$ is a square.

Proof of Theorem 3.6:

Since b = v, the incidence matrix A of such a design is $v \times v \Rightarrow \det A$ exists and is $\in \mathbb{Z}$. By Proposition 3.4 and Proposition 3.2, $\det A^2 = \det A \det A^\top = \det A A^\top = (r - \lambda)^{v-1} (r + r(k-1)) = (k-\lambda)^{v-1} (k+k(k-1)) = (k-\lambda)^{v-1} k^2 \Rightarrow (k-\lambda)^{v-1}$ is a square \Rightarrow since v-1 is odd, $k-\lambda$ must be a square.

Example:

Suppose \mathcal{B} is a 2-design with parameters (22,7,2), then by Proposition 3.2, $r(k-1) = \lambda(v-1) \Rightarrow (7-1)r = 2(22-1) \Rightarrow r = 7 = k \Rightarrow \mathcal{B}$ is symmetric. But v is even and $k-\lambda = 5$ is not a square \Rightarrow by Theorem 3.6, $\nexists \mathcal{B}$.

Remark:

If v is odd, then the Bruck-Ryser-Chowla Theorem says that if a symmetric 2-design with parameters (v, k, λ) exists, then $z^2 = (k - \lambda)x^2 + (-1)^{\frac{v-1}{2}}\lambda y^2$ has a non-zero solution for $x, y, z \in \mathbb{Z}$.

Theorem 3.7:

If \mathcal{B} is a symmetric 2-design with parameters (v, k, λ) , then any 2 blocks of \mathcal{B} intersect at exactly λ points.

Proof of Theorem 3.7:

Let A be the $v \times v$ incidence matrix of $\mathcal{B} = \{B_1, \dots, B_v\}$, and consider $A^{\top}A$. Since JA = kJ = rJ = AJ and IA = AI, $A(A^{\top}A) = (AA^{\top})A = (\lambda J + (r - \lambda)I)A = A(\lambda J + (r - \lambda)I) = A(AA^{\top})$ by Proposition 3.3. From the proof of Proposition 3.6, since det $A^2 = (k - \lambda)^{v-1}k^2 \neq 0$ (else $r = k = \lambda \Rightarrow k = v \Rightarrow \mathcal{B}$ is a trivial design with b = 1), A is invertible $A^{\top}A = AA^{\top}A = AA^{\top}A$

Difference sets

Example:

Let $X = \mathbb{Z}_7$, $B_0 = \{0, 1, 3\} \subseteq X$. For $0 \le i \le 6$, define $B_0 + i = \{b + i : b \in B_0\}$, then these 7 subsets of X form the blocks of a symmetric 2-design with parameters (7, 3, 1).

Definition:

Let $\lambda, v \in \mathbb{Z}^+$, $B_0 \subseteq \mathbb{Z}_v$. Call B_0 a λ -difference set if $\forall d \in \mathbb{Z}_v \setminus \{0\}$, there are exactly λ pairs $(b_1, b_2) \in B_0 \times B_0$ such that $b_1 - b_2 = d$.

Proposition 3.8:

Suppose B_0 is a λ -difference set in \mathbb{Z}_v . Let $k = |B_0|$, and for $i \in \mathbb{Z}_v$, define $B_0 + i = \{b + i : b \in B_0\}$. Then the subsets $B_0 + i$ form the blocks of a symmetric 2-design with parameters (v, k, λ) .

Proof of Proposition 3.8:

All v subsets $B_0 + i$ have size k, so it suffices to show that any 2 points in \mathbb{Z}_v lie in λ blocks. Pick $r, s \in \mathbb{Z}_v$, $r \neq s$, then $r, s \in B_0 + i \Leftrightarrow r - i, s - i \in B_0 \Rightarrow$ (number of choices for i) = (number of pairs $\in B_0 \times B_0$ with difference r - s) = $\lambda \Rightarrow$ the result follows.

Example:

- (1) Let v = 11, $B_0 = \{1, 4, 9, 5, 3\} \subseteq \mathbb{Z}_{11}$, then by Proposition 3.8, since B_0 is a 2-difference set, we have a symmetric 2-design with parameters (11, 5, 2).
- (2) Let v = 13, $B_0 = \{0, 1, 3, 9\} \subseteq \mathbb{Z}_{13}$, then B_0 is a 1-difference set \Rightarrow we have a symmetric 2-design with parameters (13, 4, 1).

Proposition 3.9:

Let p be a prime, $Q = \{x^2 : x \in \mathbb{Z}_p \setminus \{0\}\}$. If $p \equiv 3 \pmod{4}$, then Q is a $\frac{p-3}{4}$ -difference set, and the corresponding symmetric 2-design has parameters $\left(p, \frac{p-1}{2}, \frac{p-3}{4}\right)$.

Proof of Proposition 3.9:

Note that $Q \leq (\mathbb{Z}_p^*, \times)$, and $|Q| = \frac{p-1}{2} \equiv 1 \pmod{2} \Rightarrow -1 \notin Q \Rightarrow Q \cup (-Q) = \mathbb{Z}_p^*$. For $q \in Q$, define $S_q = \{(x_1, x_2) \in Q \times Q : x_1 - x_2 = q\}$. Since $r \in Q \Rightarrow qr \in Q$ and $x_1 - x_2 = q \Leftrightarrow rx_1 - rx_2 = rq$, we have $(x_1, x_2) \in S_q \Leftrightarrow (rx_1, rx_2) \in S_{rq} \Rightarrow |S_q| = |S_{rq}| \Rightarrow |S_q|$ is constant for $q \in Q$. Moreover, $-q \in -Q$, and $(x_1, x_2) \in S_q \Leftrightarrow (x_2, x_1) \in S_{-q} \Rightarrow |S_q| = |S_{-q}| \Rightarrow |S_x|$ is constant $\forall x \in Q \cup (-Q) = \mathbb{Z}_p^* \Rightarrow Q$ is a difference set in \mathbb{Z}_p , with $\lambda = \frac{|Q| \times (|Q| - 1)}{|\mathbb{Z}_p^*|} = \frac{p-1}{2} \times \frac{p-3}{2} \div (p-1) = \frac{p-3}{4} \Rightarrow$ the result follows.

Affine planes

Definition:

Let F be a finite field, then $F^2 = \{(x_1, x_2) : x_1, x_2 \in F\}$ is a 2-dimensional vector space over F. Define points to be vectors in F^2 and lines to be subsets of the form $\{v + \lambda w : \lambda \in F\} \subseteq F^2$ for some fixed $v, w \in F^2$, then this collection of points and lines is called the affine plane over F, denoted AG(2, F).

Remark:

- (1) If |F| = q, then number of points $= q^2$.
- (2) Lines are solution sets of linear equations ie. $y = mx + c \leftrightarrow \{(0, c) + \lambda(1, m) : \lambda \in F\},\$ $x = c \leftrightarrow \{(c, 0) + \lambda(0, 1) : \lambda \in F\} \Rightarrow \text{number of lines} = q^2 + q.$

Proposition 3.10:

Every line has q points, and every 2 points lie on a unique line ie. AG(2, F) is a 2-design with parameters $(q^2, q, 1)$.

Proof of Proposition 3.10:

Each line $v + \operatorname{Sp}(w) = \{v + \lambda w : \lambda \in F\}$ obviously has q points. Now pick $a, b \in F^2$, then a, b lie on $L = \{a + \lambda(b - a) : \lambda \in F\}$. Suppose a, b also lie on $L' = v + \operatorname{Sp}(w)$, then $a = v + \lambda_1 w$, $b = v + \lambda_2 w \Rightarrow b - a = (\lambda_2 - \lambda_1)w \Rightarrow L' = v + \operatorname{Sp}(w) = v + \lambda_1 w + \operatorname{Sp}(w) = a + \operatorname{Sp}(b - a) = L$.

In AG(2, F), any 2 lines L_1, L_2 meet at 0 or 1 point. If they meet at 0 points, then they are called parallel lines.

Proposition 3.11:

The $q^2 + q$ lines in AG(2, F) fall into q + 1 disjoint sets, each containing q parallel lines.

Proof of Proposition 3.11:

The q+1 disjoint sets are $\mathcal{L}_m = (\text{set of lines } y = mx + c \text{ where } c \in F) \text{ for } m \in F, \text{ and } \mathcal{L}_{\infty}$ = (set of lines x = c where $c \in F$).

Remark:

These q + 1 sets of lines are called the parallel classes of lines.

Proposition 3.12:

Each point in F^2 lies in exactly 1 line for each parallel class.

Proof of Proposition 3.12:

Each parallel class has q disjoint lines, each with q points \Rightarrow the result follows easily.

Projective planes

Definition:

A projective plane is a symmetric 2-design with $\lambda = 1$.

Remark:

By Theorem 3.7, any 2 blocks of a projective plane meet at 1 point.

Definition:

Equivalently, a projective plane is a set of points and lines (subsets of points) such that:

- (1) any 2 points lie on a unique line,
- (2) any 2 lines meet at a unique point,
- (3) \exists 4 points where no 3 points lie on a line.

Remark:

- (1) It follows (not so trivially) that all lines have the same number of points, so a projective plane is indeed a 2-design with $\lambda = 1$. In addition, it is also symmetric.
- (2) \exists a converse to Theorem 3.7: If \mathcal{B} is a 2-design with parameters (v, k, λ) , such that any 2 blocks intersect at exactly λ points, then \mathcal{B} is symmetric.

Example:

Lines in $AG(2,\mathbb{Z}_3)$ fall into 4 parallel classes $\mathcal{L}_0,\mathcal{L}_1,\mathcal{L}_2,\mathcal{L}_\infty$. Introduce points p_0,p_1,p_2,p_∞ to each line in $\mathcal{L}_0,\mathcal{L}_1,\mathcal{L}_2,\mathcal{L}_\infty$ respectively, and add a new line $L_\infty = \{p_0,p_1,p_2,p_\infty\}$, then we have a projective plane.

Proposition 3.13:

Let F be a finite field, |F| = q, and start with AG(2, F). Add q + 1 new points p_m $(m \in F)$ and p_∞ to each line in \mathcal{L}_m and \mathcal{L}_∞ respectively, and add a new line $L_\infty = \{p_m : m \in F\} \cup \{p_\infty\}$, then the points $F^2 \cup \{p_m : m \in F\} \cup \{p_\infty\}$ and the new lines form a projective plane.

Proof of Proposition 3.13:

There are q^2+q+1 points and q^2+q+1 lines, and each line has q+1 points \Rightarrow the points and lines form a symmetric 2-design. Now pick any 2 distinct points a, b. If $a, b \in F^2$, then a, b lie on a unique line in $AG(2, F) \Rightarrow a, b$ lie on a unique extended line. If $a \in F^2$ and $b=p_m$ for some $m \in F \cup \{\infty\}$, then by Proposition 3.12, a lies on a unique line $L \in \mathcal{L}_m \Rightarrow$ the unique line containing a, b is $L \cup \{p_m\}$. If a, b are both p_m for some $m \in F \cup \{\infty\}$, then the unique line containing a, b is L_∞ . Hence any 2 points lie on a unique line $\Rightarrow \lambda = 1 \Rightarrow$ the result follows.

Definition:

This projective plane is called PG(2, F), the projective plane over F.

Remark:

PG(2, F) is a symmetric 2-design with parameters $(q^2 + q + 1, q + 1, 1)$.

Isomorphisms

Definition:

Let (X_1, \mathcal{B}_1) and (X_2, \mathcal{B}_2) be designs. A map $\phi : X_1 \to X_2$ is an isomorphism of designs if ϕ is bijective, and sends the blocks in \mathcal{B}_1 to the blocks in \mathcal{B}_2 bijectively.

Notation:

If $\exists \phi$, write $(X_1, \mathcal{B}_1) \cong (X_2, \mathcal{B}_2)$.

Example:

Let $X_1 = \mathbb{Z}_7$, $\mathcal{B}_1 = 2$ -design with blocks $B_0 + i$ where $B_0 = \{0, 1, 3\}$, with parameters

(7,3,1), and $X_2 = \mathbb{Z}_2^3 \setminus \{0\}$, $\mathcal{B}_2 = \text{blocks of the form } \{x,y,x+y\}$, which is also a 2-design with parameters (7,3,1). We try our luck and construct $\phi: X_1 \to X_2$, $0 \mapsto 100$, $1 \mapsto 010$, $2 \mapsto 001$, then $\{0,1,3\} \mapsto \{100,010,110\} \Rightarrow 3 \mapsto 110$, $\{1,2,4\} \mapsto \{010,001,011\} \Rightarrow 4 \mapsto 011$, \cdots , $5 \mapsto 111$, $6 \mapsto 101 \Rightarrow$ the blocks in \mathcal{B}_1 (amazingly) get mapped to the blocks in $\mathcal{B}_2 \Rightarrow (X_1,\mathcal{B}_1) \cong (X_2,\mathcal{B}_2)$. In fact, we can map $0 \mapsto x$, $1 \mapsto y$, $2 \mapsto z$ for any $z \notin \{x,y,x+y\}$ to get an isomorphism \Rightarrow number of isomorphisms $= 7 \times 6 \times 4 = 168$.

Remark:

The set of isomorphisms $\mathcal{B} \to \mathcal{B}$ form a group under composition, called the automorphism group $\operatorname{Aut}(\mathcal{B})$.

Higher-dimensional geometry

Definition:

Let F be a finite field with |F| = q, then $F^n = \{(x_1, \dots, x_n) : x_i \in F\}$.

Remark:

 F^n is an *n*-dimensional vector space over F, with q^n vectors.

Definition:

Let $1 \le m \le n$, then the q-binomial coefficient is $\binom{n}{m}_q = \frac{(q^n-1)\cdots(q^{n-m+1}-1)}{(q^m-1)\cdots(q-1)}$.

Example:

(1)
$$\binom{n}{1}_q = \frac{q^n - 1}{q - 1}$$
.

(2)
$$\binom{4}{2}_2 = \frac{(2^4 - 1)(2^3 - 1)}{(2^2 - 1)(2 - 1)} = \frac{15 \times 7}{3 \times 1} = 35.$$

(3)
$$\binom{n}{m}_1 = \binom{n}{m}$$
 (consider limits as $q \to 1$).

Proposition 3.14:

- (1) The number of m-dimensional subspaces of F^n is $\binom{n}{m}_q$.
- (2) For a fixed $v \in F^n \setminus \{0\}$, the number of m-dimensional subspaces of F^n containing v is $\binom{n-1}{m-1}_q$ if m > 1, 1 if m = 1.
- (3) For linearly independent $v, w \in F^n \setminus \{0\}$, the number of m-dimensional subspaces of F^n containing v, w is $\binom{n-2}{m-2}_q$ if m > 2, 1 if m = 2.

Proof of Proposition 3.14:

(1) Let S(m) be the number of m-dimensional subspaces of F^n , (w_1, \dots, w_m) be an ordered m-tuple of linearly independent vectors in F^n , and $W = \operatorname{Sp}(w_1, \dots, w_m)$, then the number of pairs $((w_1, \dots, w_m), W)$ is = ways to choose $(w_1, \dots, w_m) \times 1 =$ ways to choose $w_1 \times w_1 \times w_2 \times v_2 \notin \operatorname{Sp}(w_1) \times v_2 \times v_3 \times v_4 \times$

On the other hand, the number of such pairs is also = ways to choose $W \times$ ways to choose $(w_1, \dots, w_m) = S(m) \times$ ways to choose $w_1 \in W \times$ ways to choose $w_2 \in W \setminus \operatorname{Sp}(w_1) \times \dots \times$ ways to choose $w_m \in W \setminus \operatorname{Sp}(w_1, \dots, w_{m-1}) = S(m) \times (q^m - 1)(q^m - q) \cdots (q^m - q^{m-1}) \Rightarrow S(m) = \frac{(q^n - 1) \cdots (q^n - q^{m-1})}{(q^m - 1) \cdots (q^m - q^{m-1})} = \frac{(q^n - 1) \cdots (q^{n-m+1} - 1)}{(q^m - 1) \cdots (q^n - q^{m-1})} = \binom{n}{m}_q$.

- (2) Let W be an m-dimensional subspace containing v, and $V = \operatorname{Sp}(v_2, \dots, v_n)$ where $\{v, v_2, \dots, v_n\}$ is a basis of F^n , then $W \nsubseteq V \Rightarrow \dim(W \cap V) = m 1 \Rightarrow W = \operatorname{Sp}(v) + (W \cap V) \Rightarrow$ ways to choose $W = (\text{number of } (m-1)\text{-dimensional subspaces of } V) = \binom{n-1}{m-1}_q$ if m > 1, 1 if m = 1.
- (3) Similar to (2).

Proposition 3.15:

Let $n \ge 2$, $1 \le m \le n-1$. Define points = vectors $\in F^n$, and blocks = subsets of the form v + W where $v \in F^n$ and W is a m-dimensional subspace of F^n . Then we have:

- (1) a 2-design with parameters (q^n, q^m, λ) , where $\lambda = \binom{n-1}{m-1}_q$ if m > 1, 1 if m = 1,
- (2) a 3-design with parameters $(2^n, 2^m, r_3)$ if $F = \mathbb{Z}_2$ and $m \ge 2$, where $r_3 = \binom{n-2}{m-2}_2$ if m > 2, 1 if m = 2.

Proof of Proposition 3.15:

- (1) Note that all blocks v + W have the same size $|W| = q^m$. Now pick $v_1, v_2 \in F^n$, $v_1 \neq v_2$, then any block containing v_1 is of the form $v_1 + W$, and $v_2 \in v_1 + W \Leftrightarrow v_1 v_2 \in W \Rightarrow$ by Proposition 3.14(2), $\lambda =$ number of blocks containing $v_1, v_2 =$ (number of W containing $v_1 v_2 = \binom{n-1}{m-1}_q$ if m > 1, 1 if $m = 1 \Rightarrow$ the result follows.
- (2) Pick distinct $v_1, v_2, v_3 \in \mathbb{Z}_2^n$, then $v_2, v_3 \in v_1 + W \Leftrightarrow v_2 v_1, v_3 v_1 \in W$. Moreover, if $v_2 v_1, v_3 v_1$ are linearly dependent, then $v_2 v_1 = c(v_3 v_1)$ for some $c \in \mathbb{Z}_2 \Rightarrow c = 0$ or $1 \Rightarrow v_1 = v_3$ or $v_2 = v_3$ ($\Rightarrow \Leftarrow$) $\Rightarrow v_2 v_1, v_3 v_1$ are linearly independent \Rightarrow by Proposition 3.14(3), $v_3 = 0$ number of blocks containing $v_1, v_2, v_3 = 0$ (number of $v_3 v_1 = 0$) if $v_3 v_1 = 0$ if $v_3 v_1 = 0$ if $v_3 v_1 = 0$ the result follows.

Definition:

This design is denoted $AG(n, F)_m$.

Example:

- (1) Let n = 2, m = 1, then the design is AG(2, F), with blocks of the form $v + \operatorname{Sp}(w)$ ie. lines in F^2 .
- (2) $AG(3,\mathbb{Z}_3)$ is a 2-design with parameters (27,3,1).
- (3) $AG(3,\mathbb{Z}_3)_2$ is a 2-design with parameters (27,9,4).
- (4) $AG(3, \mathbb{Z}_2)_2$ is a 3-design with parameters (8, 4, 1).
- (5) The codewords of weight 4 in H' form a 3-design isomorphic to $AG(3, \mathbb{Z}_2)_2$.

2-designs & strongly regular graphs

Definition:

A 2-design is quasi-symmetric if $\exists x, y \in \mathbb{Z}, x \neq y$, such that any 2 blocks intersect at either x or y points, and both occur.

Example:

- (1) In AG(2, F), any 2 lines meet at 0 or 1 point $\Rightarrow AG(2, F)$ is quasi-symmetric.
- (2) Consider points = 23 coordinate positions of G_{23} , blocks = B_c for $c \in G_{23}$, wt(c) = 7, then we have a 4-design with parameters (23,7,1). For $c,d \in G_{23}$, wt(c) = wt(d) = 7, $c \neq d$, we have wt(c+d) = wt(c) + wt(d) 2[c,d] = 14 2[c,d] = 8 or $12 \Rightarrow |B_c \cap B_d| = [c,d] = 3$ or 1, and it is easily checked that both occur \Rightarrow this design is quasi-symmetric.

Proposition 3.16:

Let $\Gamma(\neq K_v, K_v^c)$ be a graph with v vertices and adjacency matrix A, then TFAE:

- (1) Γ is strongly regular,
- (2) $A^2 = \alpha A + \beta I + \gamma J$ for some $\alpha, \beta, \gamma \in \mathbb{R}$.

Proof of Proposition 3.16:

- (1) is true \Rightarrow by Proposition 2.6, (2) is also true.
- (2) is true \Rightarrow number of common neighbours of $i, j = (\text{row } i \text{ of } A) \cdot (\text{row } j \text{ of } A) = (\text{row } i \text{ of } A) \cdot (\text{column } j \text{ of } A) = (A^2)_{ij} = \beta + \gamma \text{ if } i = j, \alpha + \gamma \text{ if } i \neq j \text{ and } i \text{ is joined to } j, \gamma \text{ if } i \neq j \text{ and } i \text{ is not joined to } j \Rightarrow \Gamma \text{ is strongly regular with parameters } (v, \beta + \gamma, \alpha + \gamma, \gamma) \Rightarrow$ (1) is also true.

Theorem 3.17:

Let \mathcal{B} be a quasi-symmetric 2-design, such that any 2 blocks intersect at either x or y points. Let $\Gamma(\mathcal{B})$ be a graph, with vertices = blocks of \mathcal{B} , and join $B_1, B_2 \in \mathcal{B}$ iff $|B_1 \cap B_2| = x$. Then $\Gamma(\mathcal{B})$ is strongly regular.

Proof of Theorem 3.17:

Let M be the $v \times b$ incidence matrix of \mathcal{B} and A be the $b \times b$ adjacency matrix of $\Gamma(\mathcal{B})$, then $(M^{\top}M)_{ij} = (\text{column } i \text{ of } M) \cdot (\text{column } j \text{ of } M) = |B_i \cap B_j| = k \text{ if } i = j, x \text{ if } B_i \text{ is joined to } B_j \text{ in } \Gamma(\mathcal{B}), y \text{ otherwise} \Rightarrow M^{\top}M = kI_b + xA + y(J_b - A - I_b) = (x - y)A + (k - y)I_b + yJ_b \Rightarrow \text{ since } x \neq y, \ A = rM^{\top}M + sI_b + tJ_b \text{ for some } r, s, t \in \mathbb{R} \Rightarrow A^2 = r^2M^{\top}MM^{\top}M + s^2I_b + t^2J_b^2 + 2rsM^{\top}M + 2stJ_b + rtM^{\top}MJ_b + rtJ_bM^{\top}M.$

By Proposition 3.3, $MM^{\top} = \lambda J_v + (r - \lambda)I_v$, $MJ_b = rJ$, $J_vM = kJ$ where $J = v \times b$ matrix consisting of all 1's $\Rightarrow M^{\top}MM^{\top}M = M^{\top}(\lambda J_v + (r - \lambda)I_v)M = (\lambda kJ^{\top} + (r - \lambda)M^{\top})M = \lambda k^2J_b + (r-\lambda)[(x-y)A + (k-y)I_b + yJ_b] = (r-\lambda)(x-y)A = (r-\lambda)(k-y)I_b + (\lambda k^2 + (r-\lambda)y)J_b$, $J_b^2 = bJ_b$, $M^{\top}MJ_b = M^{\top}(rJ) = r(J^{\top}M)^{\top} = rkJ_b$, and $J_bM^{\top}M = (MJ_b)^{\top}M = rJ^{\top}M = rkJ_b \Rightarrow A^2 = \alpha A + \beta I_b + \gamma J_b$ for some $\alpha, \beta, \gamma \in \mathbb{R} \Rightarrow$ by Proposition 3.16, $\Gamma(\mathcal{B})$ is strongly regular.

Example:

- (1) Let the vertices of Γ be lines of AG(2, F), and join L_1, L_2 iff $|L_1 \cap L_2| = 0$ ie. L_1 and L_2 are parallel. Then $\Gamma = (K_q)^{q+1}$, where q = |F|.
- (2) Let the vertices of Γ be the 253 blocks B_c of G_{23} where $\operatorname{wt}(c) = 7$, and join B_c, B_d iff $|B_c \cap B_d| = 3$ ie. $\operatorname{wt}(c+d) = 8$. Then Γ is strongly regular, with $k = (\text{number of } d \text{ such that } \operatorname{wt}(c+d) = 8$ for a fixed c with $\operatorname{wt}(c) = 7$).