一。填空题(本题共10小题,每小题3分,满分30分)

1. 已知曲面 z=xy 上一点 $M_0(x_0,y_0,z_0)$ 处的法线垂直于平面 x+3y+z+9=0 ,则

 $x_0 = \underline{\hspace{1cm}}, y_0 = \underline{\hspace{1cm}}, z_0 = \underline{\hspace{1cm}};$

2. 已知三角形 $\triangle ABC$ 的顶点坐标为 A(0,-1,2), B(3,4,5), C(6,7,8) ,则 $\triangle ABC$ 的面积为 :

3. 曲线 $\begin{cases} x^2 + y^2 = 10 \\ y^2 + z^2 = 25 \end{cases}$ 在点 (1,3,4) 处的法平面为 Π ,则原点到 Π 的距离为_____;

4. 函数 $u = xyz^2$ 在点 (1,1,1) 处沿方向 e = i + j + 2k 的方向导数等于_____;

5. 交换积分次序 $\int_{-1}^{1} dx \int_{-\sqrt{1-x^2}}^{1-x^2} f(x,y) dy = _______;$

6. $\[\[\psi \] \vec{r} = \{x, y, z\}, r = \sqrt{x^2 + y^2 + z^2} \], \[\[\[\psi \] \vec{r} = \underline{\qquad} \];$

8. 设 $f(x) = e^{x^2}$,则 $f^{(2n)}(0) = _____;$

9. 设 $f(x) = \begin{cases} 0, & -\pi < x \le 0 \\ 1+x, & 0 < x \le \pi \end{cases}$, 其以 2π 为周期的 Fourier 级数的和函数记为 S(x),则

 $S(3\pi) = \underline{\hspace{1cm}}$

10. 使二重积分 $\iint_D \left(4-4x^2-y^2\right) d\sigma$ 的值达到最大的平面闭区域 D 为 _______。

- 二. (本题共2小题,每小题9分,满分18分)
- 11. 计算二重积分 $\iint_D (x^2 + y^2 y) d\sigma$, 其中 D 为由 y = x, $y = \frac{1}{2}x$ 及 y = 2 围成的区域.

12. 计算三重积分 $\iint_{\Omega} \frac{\mathrm{e}^z}{\sqrt{x^2+y^2}} \mathrm{d}v$,其中 Ω 是 yoz 平面上的直线 $z=2y-1, y=\frac{1}{3}$ 以及

z=1围成的平面有界区域绕z轴旋转一周得到的空间区域.

- 三. (本题共2小题,每小题8分,满分16分)
- **13.** 计算曲线积分 $\int_L z ds$, 其中 L 为圆锥螺线 $x=t\cos t$, $y=t\sin t$,z=t $(0 \le t \le 2\pi)$

14. 求全微分方程 $(\cos x + 2xy + 1)dx + (x^2 - y^2 + 3)dy = 0$ 的通解.

四. (15) (本题满分 9 分) 求函数 f(x,y) = xy 在圆周 $(x-1)^2 + y^2 = 1$ 上的最大值和最小值.

五. (16) (本题满分 10 分) 已知流体的流速函数 $\mathbf{v}(x,y,z) = \left\{ y^3 - z^3, z^3 - x^3, 2z^3 \right\}$,求该流体流过由上半球面 $z = 1 + \sqrt{1 - x^2 - y^2}$ 与锥面 $z = \sqrt{x^2 + y^2}$ 所围立体表面的外侧的流量.

六. (17) **(本题满分 9 分)** 计算曲线积分 $\int_{\Gamma} \sqrt{x^2+y^2} dx + y \left(xy + \ln \left(x + \sqrt{x^2+y^2} \right) \right) dy$,其中 Γ 是曲线 $y = \sqrt{x} + 1$ 上从点 A(1,2) 到点 C(0,1) 的部分.

七. (18) (本題满分 8 分) 设函数 $f \in C([0,1])$,且 $0 \le f(x) < 1$,利用二重积分证明不等式:

$$\int_0^1 \frac{f(x)}{1 - f(x)} dx \ge \frac{\int_0^1 f(x) dx}{1 - \int_0^1 f(x) dx}$$