

Faculty of Computer Science Prof. Dr. M. Tilly

Winter Term 2022/2023

$\begin{tabular}{ll} Mock Exam - Applied Artificial Intelligence (AAI) \\ 400 - Unsupervised and Reinforcement Learning (URL) \\ \end{tabular}$

	Date: 02.01.2023	Duration: 90 Minutes	Material: handwritten notes A4; calculator
Nam	e:		
Mati	rix number:		
			Good luck
Note	es:		
1.	The staples must be heets	not be loosened. The exam	n includes 16 pages incl. cover sheet and works
2.	Work on the quest	ions directly in the task. I	f necessary, use the worksheets at the end.
3.	If, in your opinion, assumptions and d		n the tasks or information is missing, make reasonable
4.	The distribution o	f points is for orientation,	but it is not binding.
5.	Please do not writ	e in pencil, red or green p	ens and if possible legible.

SOLUTION is available in the new year!

Name:	Matrix number:

Worksheet

1. Task - General questions

4+6 Points

a)

Mark the correct answer or statement; mark exactly one answer per question.

- 1. Clustering
 - ☐ The silhouette score calculates the surface of a silhouette for eigenfaces,
 - \Box The elbow method can be used to determine the number of clusters k in a given data set.
 - ☐ The elbow method is sometimes also called the KneeLocator.
- 2. k-means vs. DBSCAN
 - \square For k-means the number of clusters is calculated by the algorithm.
 - \square k-means is faster the DBSCAN.
 - □ DBSCAN does not need a-priori knowledge on number of clusters.
- 3. Clustering

Given the following figure. Each column shows the result of a cluster algorithm for a different data set. Name 2 out of 4 clustering algorithms. Write on top of each column:

4. Pre-Processing and Normalization

Name 2 normalization methods:

b)

Describe the DBSCAN algorithm.

2. Task - k-means Clustering

15 Points

Use the k-means algorithm and Euclidean distance to cluster the following 8 examples into 3 clusters:

$$A1=(2,10), A2=(2,5), A3=(8,4), A4=(5,8), A5=(7,5), A6=(6,4), A7=(1,2), A8=(4,9).$$

The distance matrix based on the Euclidean distance is given below

	A1	A2	A3	A4	A5	A6	A7	A8
A1	0	$\sqrt{25}$	$\sqrt{36}$	$\sqrt{13}$	$\sqrt{50}$	$\sqrt{52}$	$\sqrt{65}$	$\sqrt{5}$
A2		0	$\sqrt{37}$	$\sqrt{18}$	$\sqrt{25}$	$\sqrt{17}$	$\sqrt{10}$	$\sqrt{20}$
A3			0	$\sqrt{25}$	$\sqrt{2}$	$\sqrt{2}$	$\sqrt{53}$	$\sqrt{41}$
A4				0	$\sqrt{13}$	$\sqrt{17}$	$\sqrt{52}$	$\sqrt{2}$
A5					0	$\sqrt{2}$	$\sqrt{45}$	$\sqrt{25}$
A6						0	$\sqrt{29}$	$\sqrt{29}$
A7							0	√58
A8								0

Suppose that the initial centers of each cluster are A1, A4 and A7. Run the k-means algorithm for 1 epoch only. At the end of this epoch show:

- 1. The new clusters (i.e. the examples belonging to each cluster)
- 2. The centers of the new clusters
- 3. Draw a 10 by 10 space with all the 8 points and show the clusters after the first epoch and the new centroids

Name:	Matrix number:
runiic.	madin namber.

Worksheet Clustering

3. Task - PCA 2+6+2+5 Points

Consider the following data points (2, 1), (3, 5), (4, 3), (5, 6), (6, 7), (7, 8).

Compute the principal component using PCA Algorithm by the following steps:

- 1. Calculate the mean vector.
- 2. Calculate the covariance matrix.
- 3. Proof that $\lambda 1 = 8.22$ and $\lambda 2 = 0.38$ are eigenvalues of the covariance matrix.
- 4. Calculate the PCA (or eigenvector).

Name:	Matrix number:
i vallic.	Maura number.

Worksheet PCA

4. Task - DBSCAN

10+5 Points

If Epsilon is 2 and minpoint is 2 (minpts), what are the clusters that DBScan would discover with the following 8 examples: A1=(2,10), A2=(2,5), A3=(8,4), A4=(5,8), A5=(7,5), A6=(6,4), A7=(1,2), A8=(4,9).

The distance matrix is the following:

	A1	A2	A3	A4	A5	A6	A7	A8
A1	0	$\sqrt{25}$	$\sqrt{36}$	$\sqrt{13}$	$\sqrt{50}$	$\sqrt{52}$	$\sqrt{65}$	$\sqrt{5}$
A2		0	$\sqrt{37}$	$\sqrt{18}$	$\sqrt{25}$	$\sqrt{17}$	$\sqrt{10}$	$\sqrt{20}$
A3			0	$\sqrt{25}$	$\sqrt{2}$	$\sqrt{2}$	$\sqrt{53}$	$\sqrt{41}$
A4				0	$\sqrt{13}$	$\sqrt{17}$	$\sqrt{52}$	$\sqrt{2}$
A5					0	$\sqrt{2}$	$\sqrt{45}$	$\sqrt{25}$
A6						0	$\sqrt{29}$	$\sqrt{29}$
A7							0	$\sqrt{58}$
A8								0

- 1. Draw the 10 by 10 space and illustrate the discovered clusters.
- 2. What if Epsilon is increased to 10?

Name:	Matrix	number:
ivallie.	wanta	number.

Worksheet PCA

Name: Matrix number:

5. Task - Autoencoder

4+6 Points

a)

Given the following code.

```
class Denoise(Model):
  def __init__(self):
      super(Denoise, self).__init__()
      self.encoder = tf.keras.Sequential([
      layers.InputLayer(input_shape=(28, 28, 1)),
      layers.Conv2D(16, (3, 3), activation='relu', padding='same', strides
         =2),
      layers.Conv2D(8, (3, 3), activation='relu', padding='same', strides
         =2)])
      self.decoder = tf.keras.Sequential([
      layers.Conv2DTranspose(8, kernel_size=3, strides=2, activation='relu'
         , padding='same'),
      layers.Conv2DTranspose(16, kernel_size=3, strides=2, activation='relu
         ', padding='same'),
      layers.Conv2D(1, kernel_size=(3, 3), activation='sigmoid', padding='
         same')])
  def call(self, x):
      encoded = self.encoder(x)
      decoded = self.decoder(encoded)
      return decoded
}
```

Provide the shape of each layer:

b)

Explain how to use **Autoencoder** for anomaly detection!

6. Task - Reinforcement Learning

3+5+10 Points

a)

Explain the concept to Reinforcement Learning using a sketch.

b)

List and describe the characteristics of a Markov Decision Process (MDP).

Name: Matrix number:

c)

Q-learning is a variant of making an agent experience an environment without knowing the model behind it (learning without knowledge of the MDP). With Q-learning the explicit learning of the *policy* is omitted, instead the *policy* is learned directly. The following formula applies:

$$Q_{k+1}(s_t, a_t) < -Q_k(s_t, a_t) + \alpha [R(s, a) + \gamma \max(Q_k(s_{t+1}, a)) - Q_k(s_t, a_t))]$$

where α is the *learning rate* and γ is the *discount factor*. In this example, let the reward matrix R be given as:

state/action	A	В	$\mid C \mid$	D	Е	F
A	-	-	-	-	0	-
В	-	_	-	0	-	100
$^{\mathrm{C}}$	-	_	-	0	-	-
D	-	0	0	_	0	-
${ m E}$	0	_	-	0	-	100
\mathbf{F}	-	0	-	-	0	100

As can be easily seen, there are 6 states S = A, B, C, D, E, F and the actions A that allow an agent to move from a state S_1 to a state S_2 (e.g. from A to E or from D to B,C or E). The example could be a building with rooms, and doors that allow an agent to transition from one room to another.

Apply the Q-learning algorithm step by step. Calculate the following values (k denotes the respective episodes) with $\alpha=1$ and $\gamma=0.8$. An episode ends when the goal (=goal state) is reached:

Name: Matrix number:

$$Q_{k=1}(B,F) =$$

$$Q_{k=2}(D,B) =$$

$$Q_{k=3}(C,D) =$$

$$Q_{k=4}(E,D) =$$

What does the Q-matrix look like after the 4 episodes?

$$Q =$$

Worksheet

