AD-A015 544

A STUDY OF MILLIMETER AND SUBMILLIMETER WAVE ATTENUATION AND DISPERSION IN THE EARTH'S ATMOSPHERE

M. Greenebaum, et al

Riverside Research Institute

Prepared for:

Army Missile Command Defense Advanced Research Projects Agency

15 August 1975

DISTRIBUTED BY:

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PA	IGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
T. REPORT NUMBER 2.	GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
A Study of Millimeter and Subm. Wave Attenuation and Dispersion	illimeter n in the	Final Technical Report 3/19 to 8/15/75
Earth's Atmosphere		6. PERFORMING ORS, REPORT NUMBER F-1/306-3-14
M. Greeneb au m and D. Koppel		DAAH01-74-C-0419, Mod. P00009
Riverside Research Institute 80 West End Avenue New York, NY 10023		DARPA Order No. 2281 Program Code No. 5E20
New York, NY 10023 II. CONTROLLING OFFICE NAME AND ADDRESS Defense Advanced Research Proje	octs Acons	15 August 1975
Arlington, Virginia 22209	ects Agency	13. NUMBER OF PAGES 45
U. S. Army Missile Command Redstone Arsenal, Alabama 35809		is. SECURITY CLASS. (of this report) Unclassified
, , , , , , , , , , , , , , , , , , , ,		15a, DECLASSIFICATION/OOWNGRADING SCHEDULE N/A

6. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. OISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)

IS. SUPPLEMENTARY NOTES

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE
US Department of Commerce
Springfield, VA. 22151

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Millimeter waves
Submillimeter waves
Far infrared radiation
Atmospheric attenuation
Wave dispersion

Electromagnetic transmission Molecular spectroscopy Infrared spectroscopy

20. ABSTRACT (Continue on reverse side if necessery and identity by block number)

A summary is presented of new calculations of atmospheric absorption line parameters and of a slant-path absorption model (SLAM) intended for use in the millimeter and submillimeter wave spectral regions. Results of a literature survey concerning altitude-dependent attenuation and dispersion in this spectral region, as well as weather-dependent scattering and fading strengths, are also summarized. Recommendations are given for

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE/When Data Kniered)

20. (Cont'd)

reducing the uncertainties in the model predictions.

A list of 318 absorption lines of the molecular oxygen isotopes of principal concern in atmospheric transmission below 300 cm⁻¹ is included, together with their integrated strengths at 296K, line widths, lower-state energies, and identifying quantum numbers, in the format of the AFCRL Atmospheric Absorption Line Parameters Compilation. Reference is made to a series of Technical Reports which give complete documentation of the calculations leading to these values and detailed description of the SLAM program.

80 West End Avenue / New York, New York 10023 / (212) 873-4000

15 August 1975

FINAL REPORT F-1/306-3-14

A STUDY OF MILLIMETER AND SUBMILLIMETER

WAVE ATTENUATION AND DISPERSION

IN THE EARTH'S ATMOSPHERE

This research was supported by the Defense Advanced Research Projects Agency of the Department of Defense and was monitored by the U.S. Army Missile Command under Contract Number DAAHO 1-74-C-0419, Mod P00009.

PRINCIPAL INVESTIGATOR: M. Greenebaum TELEPHONE: (212) 873-4000

ARPA ORDER NO. 2281
PROGRAM CODE NO. 5E20

contract mod. expiration daye: 15 August 1975

amount of contract mod.: \$ 42,453

contract no.: DAAH01-74-C-0419,

Mod. P00009

The views and conclusions contained in this document are those of the author(s) and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the U.S. Govt.

ABSTRACT

A summary is presented of new calculations of atmospheric absorption line parameters and of a slant-path absorption model (SLAM) intended for use in the millimeter and submillimeter wave spectral regions. Results of a literature survey concerning altitude-dependent attenuation and dispersion in this spectral region, as well as weather-dependent scattering and fading strengths, are also summarized. Recommendations are given for improving the data base and for reducing the uncertainties in the model predictions.

A list of the 318 absorption lines of the molecular oxygen isotopes of principal concern in atmospheric transmission below 300 cm⁻¹ is included, together with their integrated strengths at 296K, line widths, lower-state energies, and identifying quantum numbers, in the format of the AFCRL Atmospheric Absorption Line Parameters Compilation. Reference is made to a series of Technical Reports which give complete documentation of the calculations leading to these values and to similar calculations for carbon monoxide, as well as of a detailed description of the SLAM program.

AUTHORIZATION

The research described in this report was performed by M. Greenebaum and D. Koppel, with the assistance of S. Rosenberg. This report was compiled and edited by M. Greene-baum and M. King.

This research was sponsored by the Advanced Research Projects Agency of the Department of Defense and administered by the U. S. Army Missile Command, Redstone Arsenal, Alabama, under Contract No. DAAHO1-74-C-0419, Mod. P00009.

Submitted by:

M. King Manager, Optics Laboratory Approved by:

W. F. Konig, Jr. Research Director

Junion F. Konig L.

TABLE OF CONTENTS

	P. s
ABSTRACT	ii
I. INTRODUCTION AND SUMMARY	1
II. CALCULATION OF MILLIMETER AND SUBMILLIMETER ABSORPTION LINE PARAMETERS FOR THE MOLECULAR	
OXYGEN ISOTOPES: 1602, 160180, AND 1502	5
III. SLANT-PATH ABSORPTION MODEL (SLAM) DEVELOPMENT	17
IV. OTHER COMPUTER CALCULATIONS PERFORMED	26
V. RESULTS OF LITERATURE SURVEY	27
VI. RECOMMENDATIONS FOR IMPROVEMENT OF DATA BASE	30
VII. REFERENCES	33
LIST OF FIGURES	v
LIST OF TABLES	v

LIST OF FIGURES

Fig. No.	<u>Title</u>	Page
1	Listing of APL function SUBMMO2	16
2	SLAM graphical output at 337 μm , VVW profile	19
3	SLAM graphical output at 337 μm , Gross profile	20
4	Attenuation due to atmospheric gases along a zenith path through a cloudless maritime polar atmosphere (After Lukes (Ref. 38))	23
5	Horizontal (homogeneous) transmissivity at sea level, h = 0 km (After Liebe (Ref. 39))	24
6	Horizontal (homogeneous) transmissivity at h = 10 km (U. S. Std. Atm. 62) (After Ref. 39)	25
7	Atmospheric emission, 10-34 cm ⁻¹ (Ref. 20)	28

LIST OF TABLES

Table No.	<u>Title</u>	Page(s)
I	Relative Abundances of the Isotopes of O2	7
II	RRI Absorption Line Parameters for Molecular Oxygen Isotopes 160160, 160180, and 180180 Whose Line Strengths Exceed 3.7 E-30 at 296K	8-14
III	SLAM Tabular Output	21

I. INTRODUCTION AND SUMMARY

A. PROGRAM OBJECTIVES

The millimeter and submillimeter wave region has been of increasing interest to both the research and technology communities over the past twenty years. The principal difficulties preventing more extensive use of this sub-terahertz spectral region are connected with the atmospheric propagation characteristics. In much of the region, the atmosphere is essentially opaque at low altitudes, but precise measures of the degree of opacity as a function of altitude have not been readily available. Recent increases in the understanding of the relevant molecular spectroscopy at both the theoretical and experimental levels, together with the current development of more powerful sub-terahertz sources, led RRI to propose the study of millimeter wave propagation in the atmosphere which is the subject of this report. The specific objectives of this study were as follows:

To review the experimental and theoretical data now available concerning atmospheric propagation of millimeter and submillimeter waves and use this data to predict the altitude-dependent transfer characteristics of principal interest for ARPA-related systems studies. These were to be "state-of-the-art" predictions based on a comprehensive literature search emphasizing attenuation and dispersion, but also addressing questions of weather-dependent scattering and expected fading strengths. Inadequacies in the present data base were to be exposed by determining the degree of uncertainty resulting in the predicted transfer characteristics. RRI was to recommend

data-gathering or verification experiments which might be required to eliminate the inadequacies in this data base. Finally, RRI was to develop a computer model of the atmosphere which would be of general utility wherever the sea-level attenuation is 3dB/km or less.

B. SUMMARY OF RESULTS

From the study of the journal and report literature on altitude-dependent transfer characteristics in the millimeter and submillimeter region, it became evident that the only atmospheric absorbers generally considered were water vapor, oxygen (microwave region only), and--occasionally--ozone. On the other hand, from recent studies of the stratospheric emission from the atmosphere, it was clear that other species, especially oxygen, were important in the submillimeter region. Therefore, a state-of-the-art computer model was developed 1 which would predict the transfer characteristics using as input the absorption line parameters in "AFCRL format" for any species of interest, and an appropriate set of line parameters for oxygen² and carbon monoxide³ was developed, supplementing the already-existing data4 on water and ozone. (Additional species of importance, such as NO2, will be added in a followon study. 5) These new line parameter calculations have also been made available to AFCRL⁶ for incorporation into their master list of line parameters4 for DoD-wide and general use. The dominant uncertainties in the absorption calculations were determined to be tied up with the oxygen line widths and their pressure dependence2 and with the still-unresolved issue of the correct line-shape to use for the water absorptions. 1 The computer model (SLAM) is a high-resolution, slant-path absorption model used to generate predictions, at any altitude below 40 km, of the local attenuation (dB/km) as well as the total attenuation (dB) from that altitude out to space and down to sea level. Extensions of the model to dispersion calculations

is possible under algorithms which have recently been worked out.

The literature survey revealed that the dispersion and attenuation in the 60 GHz oxygen complex have been under active study at OT/ITS, 7 and that better line widths for oxygen are becoming available as a result. 2 Scattering by dry aerosols and by various water cloud models in the submillimeter region has been studied recently, 8 so that it did not prove necessary to spend much time on the scattering problem. The key uncertainty remaining is scattering at high altitudes, especially by cirrus clouds, whose particles are irregularly shaped and faceted, and whose complex index of refraction at temperatures characteristic of such clouds is imprecisely known. 8 (RRI has proposed to study the complex index of refraction at these temperatures. 9)

Dispersion and fading has been studied most extensively by the Russians, 10-13 and (only in the millimeter-wave region) by workers in the U. S., 14 England, 15 and Germany. 16 The most recent Russian work was studied by abstract only, since the conference proceedings proved to be unavailable. 17 Sufficient theoretical understanding of the dispersion/fading relationship exists for it to be possible to extend the SLAM program to make detailed predictions in any desired frequency range, should the ise. Such extensions are not provided for under the it contract or its immediate follow-on.

C. ORGANIZATION OF THIS REPORT

Sections II through IV summarize the computer calculations performed during the period 1 March through 15 August 1975, in support of this Contract Modification. Much more detail will be found in a series of Technical Reports¹⁻³ which include complete program documentation on the subjects covered. Section II describes the nature of the calculation of millimeter and submillimeter wave absorption line parameters for the

molecular oxygen isotopes, ¹⁶O₂, ¹⁶O¹⁸O, and ¹⁸O₂ (with ¹⁶O¹⁷O to be the subject of a separate Technical Report ¹⁸). ² Sec. III describes the status of the <u>slant-path absorption model</u> (<u>SLAM</u>) development as of 15 August. ¹ Section IV briefly describes the calculations performed of the absorption line parameters of several isotopes of carbon monoxide, of which only ¹²C¹⁶O turns out to be significant. ³ The preliminary calculations on NO and on ¹⁶O¹⁷O are also discussed, as are several miscellaneous computations which will be of use in related problems.

Section V summarizes the results of the RRI survey of the atmospheric propagation literature, atmospheric models, and trace-species spectroscopy in the millimeter and submillimeter wave regions. Section VI contains our recommendations for experimental studies and data-gathering needed to improve the data base for computations of altitude-dependent transfer characteristics and their degree of variability.

II. CALCULATION OF MILLIMETER AND SUBMILLIMETER ABSORPTION LINE PARAMETERS FOR THE MOLECULAR OXYGEN ISOTOPES: 1602, 160180, AND 1802

One of the principal objectives of the RRI efforts on atmospheric propagation in the millimeter-through-submillimeter wave region has been to develop detailed predictions of the molecular attenuation as a function of frequency and altitude. To aid in this study, a computer tape was obtained from AFCRL in April 1975 which contained the AFCRL Atmospheric Absorption Line Parameters Compilation, 4 converted to the 9-track format compatible with RRI's XDS Sigma 9 computer, and listed from the beginning to 585.5 cm⁻¹ (the first 8095 absorption lines). This computer tape was to be used as input for the SLAM program described in Section III and in Tech. Report T-2/306-3-14.1 However, study of the printout of the first several thousand lines revealed that all of the important oxygen absorption lines in the submillimeter region (starting at 12.292 cm⁻¹) 19 were absent, as were all of the carbon monoxide (CO) and nitrous oxide (N2O) pure rotation lines. In addition, the microwave oxygen absorption lines had incorrect line-widths. meant that the AFCRL compilation could be used for H2O (all isotopes) and 1603 (ozone) in the submillimeter region, but that absorptions due to all other species (oxygen being most important²⁰) would have to be added.

From preliminary computations of the line positions and strengths for molecular oxygen, it was obvious that much more work would be required: the absorption frequencies quoted in the literature for the submillimeter spectrum were discrepant by more than 0.1 cm⁻¹; transition matrix elements were

available only for the first 24 lines (to 96.81 cm⁻¹); line-width estimates^{19,22} were 50 percent discrepant.

Based on the 1955 work of Tinkham and Strandberg²¹ (as corrected by Gebbie, et al. 19 in 1969), transition matrix elements were generated for 15 more 1602 lines with the aid of a HP-35 calculator. Line strengths remained high even at 153.87 cm⁻¹, consistent with observations of O2 lines in emission out to 200 cm⁻¹ in the stratosphere. 22 However, the observed lines appear at frequencies²² which are in significant discrepancy with Gebbie's values 19,20 and no line-strength computations had been published for the high-frequency lines. It was decided to re-do the Tinkham-Strandberg calculations ab initio, therefore, based on the latest estimates of the oxygen molecular parameters (B₀, B₁, B₂, λ_0 , λ_1 , μ_0 , and μ_1). 23-28 The necessary calculations were performed, a set of APL computer programs was written for the XDS Sigma 9 computer, and these programs were executed to generate a reliable set of line parameters for molecular oxygen isotopes $^{16}\mathrm{O}_2$, $^{16}\mathrm{O}^{18}\mathrm{O}_1$, and $^{18}\mathrm{O}_2$ (all of which have nuclear spin I = 0). These computations are fully documented in Tech. Report T-1/306-3-14.2 Table I gives the relative isotopic abundances of the various oxygen isotopes from which it is evident that ignoring $^{16}\mathrm{O}^{17}\mathrm{O}$ (which has a more complicated spectrum owing to the hyperfine structure induced by the spin I = 5/2 of the ¹⁷O atom) will not hurt too much in a "first cut" study of the atmospheric transfer characteristics. Nevertheless, 160170 (as well as the Zeeman effect in 160160, important at high altitudes 7) will ultimately be included in the line parameter compilation, 18 although it is not treated here or in Ref. 2.

Table II, taken from Appendix G of Ref. 2, is a file listing of the absorption line parameters for the three molecular isotopes considered whose line strengths exceed $3.7 \cdot 10^{-30}$ cm⁻¹ per (molecule cm⁻²), based on the molecular parameters of Steinbach

Table I: Relative Abundances of the Isotopes of O2

Isotopic Species	Relative Abundance
16016O	0.99519
16 ₀ 18 ₀	4.07.10-3
16 ₀ 17 ₀	7.38.10-4
¹⁸ 0 ¹⁸ 0	4.16.10-6
¹⁷ 0 ¹⁸ 0	1.51.10-6
17 ₀ 17 ₀	1.37.10-7

Based upon the following isotopic abundances of atomic oxygen:

180: 99.759%, 170: 0.037%, 180: 0.204%

Reference: Handbook of Chemistry and Physics, 52nd Edition, 1971-1972, Chemical Rubber Co., Cleveland, Ohio.

Table I

DXYGENEXIST ABSORPTION LINE PARAMETERS FOR MOLECULAR OXYGEN ISOTOPES (AFCRL FORMAT)

ALL LINES OF 016-016, 016-018, AND 018-018 WITH V = 0 OR 1 AND WHOSE STRENGTHS EXCEED 3.7E-30 INV CM PER MOLECULE PER CM SQ AT 296K. LINEWIDTHS INTERPOLATED FROM KRUPENIE'S COMPILATION; BU, B1, B2, ETC., FROM REF. 7 FOR V = 9, FROM REF. 5 FOR V = 1.

	FREG	STRENGTH	HIDTH	E 1 1	V 1	ا ال	K'	V 1 1	J 1 1	(11	ID	DATE	150	*(3
								0	40	41	• 1 =	75	66	. 7	7
1	1 • 6 4 9 5 3	4.62E=30	.035	2460.774	0	_	+1	0			39-	75	66	Ù T	7
2	1 . 66655	1.386-29	•035	2530 • +52	0		39	_		-	37-	75	66		7
3	1.68362	3-878-29	.035	2011.215	0		37	0	-	_	35-	75	66		7
4	1.70076	1 . 03E=28	.035	1803.180	0		36	0			33-	75	66		7
5	1 . 71796		.032	1606 • 353	0		32	0			31-	75	66		7
6	1 . 73524	6.09E-28	.032	1420.767	0	7.5	31	0		7.5	29-	75	66		7
7	1.75262	1 . 36E-27	.032	1246.452	0	200	29	0				75	68	•	7
8	1 . 76 + 31	3 . 73E = 30	.032	1178 • 121	0		29	0	28			75	66		7
9	1.77012	2.852-27	.032	1083.436	0	27		0		_	27-	75	65		7
10	1.77256	5.33E=30	.032	1099.777	5		28	0				75	68	66	7
11	1 . 78084	7 . +9E =30	.032	1024 • 107	0	27		0			27-	75	66	-	7
12	1 . 78776	5 . 63E = 27	.032	931 - 745	0		25	0	_	_	25-	75	68		7
13	1.78914	1.04E-29	.032	951 - 113	0		26	0		-	26-	75			7
14	1.79748	1 . + 2 E - 29		880 . 799	0		25	0			25-				7
15	1 . 79998	5.57E=30		2339 • 133	1		23	1	55	23	23-	75			7
16	1 - 80558	1.05E-26		791 - + 05	0	23	5.3	0			53-	75			7
17	1 - 80586	1.916-29		813-167	0	24	24	0	53		24-	75			7
18	1.81.28	2.546-29		748.219	0		53	0	55	53	53-	75			7
_	1.81923	9.67E-30		2211 - 583	1	21		1	20	21	51-	75			7
19	1.82275	3.326-29		685 - 959	0	22		0			55-	75			7
20	1.82363	1 . 83E - 26		662 . 437	0	21	21	0			51-	75			7
55	1.83127	4.286-29		626.388	0	21	51	0		51		75			7
23	1 . 83877	1.586-29	.037	2095.301	1	19	19	1			19-	75			7
24	1.83986	5 . 43E - 29		569.509	O	50	50	0			50-	75			7
25	1 - 8 - 199	3.00E-26		544.863	0	19	19	0			19-	75			7
	1 - 8 + 852	6.78E-29	+037	515.324	0	19	19	0			19-	7			7
26 27	1.85727	8 · 3 · E = 29		463.835	0		18	0		18	18-	7.		-	7
	1.85869	2 - 41 E = 29		1990 + 305	1		17	1			17-	75		6	
28	1 - 8 6 0 7 5	++60E=26		+38 - 702	0		17	0	16	17		79		6	7
29	1.6611	1 . 01E=26		+15.043	0	17	17	0	16		17-	79		8	7
30	1 . 87509	1.205-21	.038	368.952	0	16	16	0		16		79		8	7
31	1 . 87679	2 . 74E = 26		2.084	0	1	1	0	5		1+	7	1 010	6	
35		3.436-25		1496 - 613	1	15	15	1	1 +	-	15-	79	70.0	6	7
33	1 . 87915			343.970	0	15	15	0	1 4	15	15-	7	70 000	6	7
34	1.88008			325.562	0	15	15	0	14	15	15-	7	_		7
35	1.88420			1558 . 465	1	1	1	1	2			7	_	6	7
36	1 - 88985			2.633	0	1	1	0	2		_	7		8	7
37	1.89204				0	14	14	0	13		14-	7	_	8	7
38	1 - 89350				0	13		0	12		13-	7	_	6	7
39	1.90026			- A 22	1	13		1	12		13-	7		6	1
+0	1.900+1				ō		13	0	12	13	13-	7	_	68	7
41	1.90302				0	12		0	11	12	12-			68	7
42	1.91282		121		ō	11		0	10	11	11-			66	7
+3	1.92175				1	11		1	10		11-	7	5 (66	7
44	1.92295	5.61E=2	7 .041	4/43.43/	•	• •		_							

Table I (Cont'd)

DAYGENEXIST ABSORPTION LINE PARAMETERS FOR MOLECULAR DAYGEN ISOTOPES CAFORL FORMAT

										. •			,	
	FREG	STRENGTH	HIOTH	E * '	v '	١ ر	K '	V 1 1	J	۱ <u>۲</u> ۱	10	DATE	150	13
+5	1 . 92298	2.216-28	.041	179.348	U	1 1	1 1	С	10	• •	11-	75	5 7	7
-6	1.93133	1.03E-28	.047	8 . 025	0	2	2	ŏ	3	. 5	2+	75	08	7
47	1.93361	2.36F-28	.042	149+187	0	10	10	Ü	9	10	10-	75	5 5	7
48	1 . 9 + + 8 8	2 6E . 28	.043	122.036	0	9	,	. 0	5	9	9-	75	6.5	7
49	1 . 9 4 5 4 8	1 . 22E - 25	.043	128 . 492	0	9	9	0	8	9	9.	75	64	7
50	1.94764	6.336-59	.043	1683 - 497	1	9	9	1	8	9	9-	75	06	7
51	1.94957	7.55E-26	.044	16.388	5	3	3	Ü		3	3+	75	65	7
52	1.95657	1 . + 8E = 28	.044	16 - 146	0	3	3	ō	4	3	3+	75	6.8	7
53	1.95705	2 . 50E - 28	. 0 + +	97 . 595	O	8	8	O	7	H	8-	75	68	7
5 +	1.96204	3.926-59	.0++	1572.612	1	3	3	1	4	3	3+	75	66	7
55	1.97052	2 . 48 E = 28		75 . 865	Ü	7	7	C	6	7	7-	75	6 8	7
56	1 • 97351	1.76E-25	.0+4	79.607	0	7	7	O	6	7	7 -	75	66	7
57	1.975+9	1 . 87E=28	.043	26.989	0	4	4	O	5	4	4 +	75	64	7
58	1.97649	6 · +8E=29	.044	1635 • 1 4 7	1	7	7	1	6	7	7-	75	66	7
59	1.98602	5.366-58	.044	56 . 845	0	6	6	0	5	6	6 -	75	63	7
60	1.98774	1.116-25	.0+5	42.224	0	5	5	0	6	5	5+	75	66	7
61	1.99103	2 · 19E = 28	.042	+0.550	0	5	5	Ú	6	5	5+	75	68	7
63	2.00064	5 · #CE = 24	.0+2	1598 • 164	1	5	5	1	6	5	5+	75	66	7
63	2.03.55	2 - 4 4 E = 28	.041	56.827	O	6	6	0	7	6	6+	75	64	7
64	2.00+91	5.51E-5R	.044	40.536	0	5	5	0	4	5	5-	75	68	7
65	2.01159	1 - 1 3 - 25	.044	42.500	0	5	5	0	4	5	5-	75	06	7
66	2.01509	5 . X . E = 2 9	.044	1598 • 1 • 9	1	5	5	1	4	5	5-	75	66	7
67	2.01589	1.316-52	.041	79.565	0	7	7	0	8	7	7+	75	66	7
68	2.01677		.041	75 • 819	0	7	7	0	8	7	7+	75	68	7
69	2.02811	C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	.041	97.524	0	8	8	0	9	8	8+	75	68	7
70	2.02949		.041	1635.094	1	7	7	1	3	7	7+	75	66	7
71	2.03011		.045	26.934	0		•	0	3	4	4 =	75	68	7
72	2.03881		.040	121 . 942	0	9	9	0	10	9	9+	75	68	7
73	2.03976		.040	128 - 398	0	9	9	0	10	9	9+	75	66	7
74	2.04904		.039	149.072	0	10	10	0	11	10	10+	75	68	7
75	2.05418	7.06E-29	.040	1683.390	1	9	,	1	10	9	9+	75	66	7
76	2.05892		• 039	178.912	0		11	0			11+	75	68	7
77	2.06143	1 . 25E - 25		188 - 71 4	0		11	0		-	11+	75	66	7
78 79	2.06853		• 039	211.461	0	12	15	0	13		12+	75	68	7
80	2.06938		• 0 • 7	16.033	0	3	3	0	5	3	3-	75	68	7
81	2.07792	6.556-29		1743.043	1	_	11	1			11+	75	66	7
85	2.08181		.038	246 • 718	0		13	0		-	13+	75	68	7
83	2.08435	1.056-25		260.501	0		13	0			13+	75	66	7
8+	2.08715	The second second second	• 0 4 7	16.253	0	3	3	0	5	3	3-	75	66	7
85	2.08728		.036	284.681	0	14	1+	0			1++	75	68	7
86	2.09623	The second secon	• 0 4 7	1572 + 486	1	3	3	1	5	3	3-	75	66	7
87	2.09798		.034	325 • 350	0		15	0			15+	75	68	7
88	2.10139	5.566-29		1814.041	1		13	1			13+	75	66	7
89			.034	343.748	0		15	0		-	15+	75	66	7
90	2 • 10519	1 • 52E = 28		368 • 722	0	-	16	0	17	-	16+	75	68	7
91	2 • 116 • •	1 · 30E · 28	.036	414.795	0	17		0	_	_	17+	75	6.8	7
92	2 • 120 • 2	5 . 97E - 26	.036	1896.373	1	15		1			15+	75	66	7
93	2 - 12285	_ LUE	.036	463.569	0	-	_	0		-	17+	75	66	7
94	2 • 13158	9.03E-29	_	515.041	0	18	18	O			18+	75	68	7
4		2.435-53	- 033	272.047	•	17	47	u	20	17	19+	75	4.8	7

Table I (Cont'd)

ABSORPTION LINE PARAMETERS FOR MOLECULAR DXYGEN ISOTOPES (AFCRL FORMAT) OXYGENEXIST VII JIIKII ID DATE ISS TO J' K' EII STRENGTH WIOTH FREU 18 17 17+ 75 66 17 17 3-196-29 -036 1990.025 1 2.13836 95 20 19 19+ 65 0 0 19 19 544.566 2.13907 4.04E-26 .035 21 20 20+ 75 04 96 0 50 50 569 - 208 7 . 35E-29 .035 2.14024 97 75 64 22 21 21+ 0 626.070 0 21 21 5.50E-29 .035 2 . 1 4886 98 6. 2 2. 2 2 7.804 0 1 - 18E - 28 . 048 2 - 15239 68 99 75 23 22 22+ 22 22 0 685.624 4.66E-29 .034 2.15744 100 56 22 21 21+ 662 - 103 0 21 21 2.56E-26 .035 2.15746 101 64 20 19 19+ 1 1 19 19 2094.982 2 . 17E-29 .035 2 . 15790 102 6.5 23 23 24 23 23+ 0 747.867 3.656-53 .035 2 . 16598 67. 103 25 24 24+ 812./98 2.78E-29 .032 0 24 24 2.17450 75 56 104 23 23 24 23 23+ 0 791 . 034 0 1.52E-26 .032 2 - 17564 105 22 21 21+ 66 21 21 1 2211 . 225 1.39E-29 .035 2 - 17715 26 25 25+ 106 75 68 25 25 2 . 10E-29 .032 880.413 107 2.18298 75 6.6 27 26 26+ 26 26 0 0 1.566-29 .032 950 - 711 108 2 - 191 - 5 75 66 25 25 26 25 25+ 0 8 . 49E-27 . 032 931 - 339 0 2.19368 75 24 23 23+ 66 109 23 23 1 2338 . 737 8.595-30 .035 2.19619 75 110 68 28 27 27+ 27 27 1023.688 1 . 1 . E - 29 . 032 2 . 19989 7 111 29 28 28+ 75 68 28 28 0 Ü 8.28E-30 .032 7 1099.341 5.50835 112 75 28 27 27+ 27 27 0 4.45E-27 .032 C 1082 . 991 2.21160 26 25 25+ 75 66 113 25 25 4.66E-30 .032 2477.495 2.21506 75 63 114 30 29 29+ 0 0 29 29 1177 . 668 2.21674 5.90E-30 .032 31 30 30+ 115 75 68 30 30 ú 1258 - 667 4 . 15E-30 . 032 2.22514 75 66 116 1245 - 975 29 29 ٥ 0 2.20E-27 .032 7 2.22943 75 66 117 32 31 31+ 31 31 1420.255 0 1.02E-27 .032 2.24720 34 33 33+ 75 66 118 ٥ 33 33 1605.806 2.26492 + . 48E-28 .032 75 36 35 35+ 65 119 0 0 35 35 1802.598 1.85E-28 .032 7 2.28260 120 38 37 37+ 75 66 37 37 0 2010.599 7 7.24E-29 .032 9200E . 2 75 121 40 39 39+ 39 39 0 2.67E-29 .032 0 2229 . 174 2.31789 75 7 66 122 42 41 41+ 41 41 2463.088 3.53E-30 .035 0 7 2.33551 75 66 123 1-0 1 0.000 0 1 1 1.00E-25 .050 3.96108 68 75 124 0 0.563 1.94E-28 .050 7 3.96140 125 1-75 66 1556 - 378 5 . 17E-29 .050 3.97713 75 68 7 126 56 0 1 0.000 0 2.916-28 .050 7.80360 7 75 68 127 ۵ SH 2 1.67E-28 .050 0.000 0 2 9.95599 68 128 SF 75 0 4.525 0 3 11.50856 4.25E-29 .048 75 66 129 3 1560 - 355 1 1 . 1 . E - 29 . 0 48 130 12-13118 75 66 2.22E-26 .048 3.961 12.29178 7 75 68 56 131 2 ٥ 0 2.633 13.40060 7 75 66 132 SG 2 3 1558 . 465 1 . 25E-28 .045 14.02102 75 66 133 53 0 3 2.084 2.436-25 .045 14-16858 68 75 134 ٥ 3 2.633 2.05F-28 .045 15.46998 75 66 135 9H 2 1558 - 465 1 5 - 38F - 29 . 045 16-10831 66 136 SH ٥ 2 3 1.04E-25 .045 2.084 0 16.25289 68 75 137 SF 0 4 9.956 16.97828 8 . 41E-29 . 048 75 68 138 90 8.025 6.35E-28 .047 18.90961 68 139 SH 0 2.40E-28 .047 8.025 20.93973 75 68 SF 140 18.103 0 1.22E-28 .045 22.43321 66 SF 141 3 9 1574.574 23.57570 3+24E+29 +045 SF 66 75 142 5 18.337 6.28E-26 .045 23.86295 90 68 1+3 16.146 7 . 75E-28 .044

144

24.38978

Table I (Cont'd)

DXYGENEXIST ABSCRPTION LINE PARAMETERS FOR MOLECULAR DXYGEN ISOTOPES (AFCRL FORMAT)

							02 44	SATUEN	150	OPE	SIA	FCHL F	ALNC	T ?
	FREG	STRENGTH H	HTOI	E''	y ı	٠ ر	KI	γī	ال ا	1611	ID	DATE	15.7	~ 0
1+5	25.53774	2.05E-28 .	044	1532 442					_			0.1.		5
1 - 6	25 - 81252		-	1572+612	1	•	5	1	•	3	8G	75	66	7
147	26.39469		044	16.388	0	•	5	0	4	3	SG	75	66	7
1 48	27.55283		044	16:146	0	5	5	0	•	3	3 H	75	69	7
1+9	27.42411		044	16.388	1	5	5	1		3	SH	75	65	7
150	27.48090		044	28.944	0	5	5	0	4	3	SH	75	63	7
151	29.85639		043	26.989	0	5	•	C	•		SF	75	64	7
152	31.84241		043	26.989	Ö	5	6	0	5	4	SG	75	68	7
153	13.32407		0+3	+2 - 5 + 1	٥	6	6	0	5	•	SH	75	6 8	7
154	J+ . 982+5			1600 - 164	1	6	7	0	5	5	SF	75	64	7
155	J5 · 31509		042	+0.550	Ô	6	7	1	5	5	SF	75	66	7
156	35.39530	9.10E=26 .	0+3	44.212	o	6	7	0	6	5	36	75	68	7
157	16.74309		0+2	1598 - 164	1	6	7	0	5	5	SF	75	66	7
158	17.28562	3.06E-28 .	0+2	*0.550	ō	7	7	1	6	5	SG	75	66	7
159	17:38305	* . 91E - 25 .	042	42.224	o	6	,	0	6	5	SH	75	64	7
160	18.76386	1 . 96E=28 .	0+3	58 - 831	0	7	8	C	6	5	SG	75	66	7
161	18.95558	8.01E-29 .	0+2	1598 - 164	1	7	7	•	6	6	SF	75	68	7
162	19.35655	1.5+E=25 .	0+2	42.554	ō	7	7	1	6	5	SH	75	66	7
163	40.76842	1.02E=27 .0	C+1	56.827	0	7	8	o	6	5	SH	75	66	7
164	+2.72546		C+1	56.827	0	8	K	o	7	6	SG	75	69	7
165	++ • 20080		2+0	77 . 835	0	8	•	0	,	6	SF	75	68	7
166	+6 -21758	1 . 0 + E = 27 . (0 + 1	75 - 619	O	8	9	٥	8	,	SG	75	68	7
167	46 - 37341		2+0	1637.123	1	8	9	1	7	7	SF	75	68	7
168	+6.91156		2+0	81 . 581	0		9	Ö	ź	7	SF	75	66	7
169	+8 - 162 + 5		0 + 1	75 - 819	0	9	•	o	8	<i>,</i>	SH	75 75	66	7
170	+8.40290		041	1635.094	1	8	9	1	8	7	SG	75	64	7
	48 - 927 45		0 4 1	79.565	0	8	9	ō	8	7	SG	75	66	7
172 173	+9 • 63509		3 + 5	99.552	O	9	10	ŏ	8	ä	SF	75	66	7
174	50 - 35054	8 . 0 9 E = 5 8 . 0		1635.094	1	9	9	1	8	7	SH	75	66	ź
175	50.87292		1	79.565	0	9	9	ō	8	7	SH	75	66	7
176	53 - 596 # 1	1.03E-27 .0		97.524	0	9	10	0	9	8	SG	75	68	ź
177	55.066/8	3.046-58 .0		97.524	0	10	10	0	9	8	SH	75	68	ź
178	57 · 10558	2.085=28 .0		123.981	0		11	0	9	9	SF	75	68	7
179	57 - 75231		40	121.942	0		11	0	10	9	SG	75	68	7
180	58 + 1563			685. ***	1		1 1	1	9	9	SF	75	66	7
181	59.02856		+1	130.438	0	_	11	0	9	9	SF	75	66	7
182	59.80650	2.30E=28 .0		121.542	0		11	0	10	9	SH	75	68	7
183	60 - 45539	4.95E-25 .C	_	683.390	1		11	1	10	9	SG	75	66	7
184	60.49582	5.01E=58 .0	_	128 - 398	0	_	1 1	0	10	9	SG	75	66	7
185	61.72944	7 . +5E=29 .0		151 - 121	0		12	0	10	10	SF	75	68	7
186	62.37713	1 . + 3E - 25 .0	-	683:390	1		1 1	1	10	9	SH	75	66	7
187	62.54486	9 - 9 - 28 - 0		128:398	0	_	11	0	10	9	SH	75	66	7
188	04 · 45768	2 · 72E = 28 · 0		149.072	0			0			SG	75	68	7
189	65.92213	1.896-28 .0		180.971	0		15	0			SH	75	68	7
190	67.98106	8-82E-28 .0:	_	178 - 912	0		3	0			SF	75	68	7
191	09-11929	+ . 80E=29 .O.		745 - 120	1		3	0			SG	75	68	7
192	69.88407	2 . 50E = 28 . 0:		178.912	٥		3	1			SF	75	66	7
193	69.90770	9-196-26 -04		190 - 775	0	- 0	3	0			BH	75	68	7
194	71 - 19601	2.246-28 .0:	2474	743.043	1		3	0			3F		66	7
					•	15 1	3	1	12	1 :	3 G	75	66	7

Table I (Cont'd)

JXYGENEXIST	ABSCRPTION LINE	PAHAMETERS	FOR	MOLECULAR	OXTGEN	ISUTOPES	LAFCAL	FORMAT)

	FHEG	STHENGTH	WIDTH	E''	٧ '	ال	K!	y 1 1	۱۱	KII	ID	DATE	150	MO
195	/1 - 3 + 5 5 8	1 . 74E=28	.0.0	213.530	U	13	19	0	12	12	SF	75	68	7
196	/1.96913	4.28E=25		185 - 714	0	12	13	0	12	11	SG	75	66	7
197	13.09642	6 · 32E -29		1743.043	1	13	13	1	12	11	SH	75	66	7
198	73.41411	8 . 03E -28	.039	211 . 461	0	13	1 .	O	13	12	SG	75	68	7
199	73 . 86939	1 . 21E - 25	.039	188 - 714	0	13	13	0	12	11	SH	75	66	7
270	15.30761	2 . 25E-28	.039	211 . 461	0	1 4	1.	0	13	12	SH	75	68	7
201	16.76602	1 . 57E=28	.038	248 . 796	0	14	15	0	13	13	SF	75	64	7
202	78 - 8 - 39 4	7 - 18E = 28	.038	246.718	0	14	15	C	_	13	8 G	75	6 15	7
303	80.47340	3 · 9 2 E = 2 9		1816 - 139	1	1 4	15	1	-	13	SF	75	66	7
5)-	00.72815	5 OE - 58		246.718	0	15	15	0	_	13	SH	75	6 5	7
205	b1 · 38685		.038	262.583	0	-	15	0		13	SF	75	66	7
506	95.18358	1.396-58	.038	286.769	0	15	16	0	_	14	SF	75	64	7
207	62.57138	1 . 79E -28		1814.041	1	1 4	15	1	_	13	SG	75	06	
508	83.46866	3.416-52		260.501	0	14	15	0	14	13	SG	75	66	7
209	84.27043	6.30E-58		284 • 681	0	15	16	0	-	14	SG	75	65	7
210	84 45053	4.97E-29		1814 • 0 • 1	1	-	15	1	14	13	Sr.	75 75	66	7
211	85.34874	9 . 46E = 26		260.501	Ö	15	15	0	_	14	SH	75	68	,
212	a6 · 1 4551	1.746-28		327.446	υ	16	17	o	15	15	SF	75	68	7
213	87.59720	1.516-58		325 • 350	•		17	ŏ	16	15	SG	75	68	7
214	59·693+3	1 - 496 - 28		325 • 350			17	o	16	15	SH	75	68	7
216	91.55954			1898 + +92		_	17	ī	15	15	SF	75	66	7
217	=2.85169	5.626-26		3+5+850	ō		17	ō	15	15	SF	75	66	7
218	93.00758	1 . 03E - 28	.037	370.827	0		18	0	16	16	SF	75	68	7
219	93.93166	1.336-28		1896 - 373	1	16	17	1	16	15	SG	75	66	7
220	94.95307	2.526-25		343.748	o	16	17	O	16	15	SG	75	66	7
221	95-11278	4 . 61E = 28		368 . 722	0	17	18	0	17	16	50	75	68	7
252	35.79035	3 - 65 - 29		1896 - 373	1	17	17	1	16	15	SH	75	66	7
223	76.81382	6 . 91E-26	.03+	343.748	0	17	17	0	16	15	SH	75	66	7
224	96.97004	1 . 26E=28	.035	368 . 722	0	18	18	0	17	16	SH	75	68	7
225	78 + 41 + 25	8 . 67E=29	.037	+16.909	0	18	19	0	17	17	SF	75	68	7
226	100.52832	3 . 856 - 28		+14.795	0	18	19	0	18	17	80	75	68	7
227	102.37684	1 . C5E-28		+14.795	0	50.50	19	0	18	17	SH	75	68	7
228	1-3-13716	5 . ORE - 58	_	1992 • 16 4	1		19	1	17	17	8F	75	66	7
229	103.81702	7 - 16E = 29		+65.692	0	19	50	0	18	18	SF	75	68	7
\$30	104.30063	3 . 92E - 26		440.562	0	18	19	0	17	17	84	75	66	7
531	1.5.27552	9 · 53E - 29	_	1990 • 025	1	13	19	1	18	17	8 0	75 75	66	7
232	1.5.93987	3 · 17E = 28		+63 - 569	0	19	20	0	18	18	80	75	66	7
533	106.42105	1 . 7 4 E = 25		438 442	0	18	19	1	18	17	SH	75	66	7
23+	107.11429	2 · 50E = 29		+63.569	ō	20	20	ô	19	18	SH	75	68	7
235		4 · 72E=26		+38++42	Ö	19	19	ŏ		17	SH	75	66	7
236 237	108.26304	5 · 82E - 29		517.172	ŏ	20	21	ŏ	19	19	SF	75	100	7
238	111.34725	5.29E=58		515.041	0	20	21	Ö	20	19	80	75		7
238	113 • 17852	6.90E=29		515.041	ŏ	21	21	o	20	19	SH	75		7
240	114 • 4 • 353	1 · 36E=29		2097 - 140	1	20	21	ī	19	19	SF	75		
2+1	114+61004	4 · 65E = 29		571 • 349	ō	21	22	ō	20	20	SF	75		7
2+2	115.73199	2.56E-26		546 - 705	o	20	21	ō	19	19	SF	75	66	7
243	116.601+2	5.996-29		2094 . 982	1	20	100 / Ton 1	1	20	_	80	75	66	7
544	116.75028	2.04E-28	-	569 - 208	0	21		0		20	SG	75	68	7

Table I (Cont'd)

UXYGE	FNEXIST AB	SURPTION LI	NE PA	RAMETERS F	ON M	OLEC	ULAR	OXYGEN	IS	TOP	ES IA	FCRL FI	UHMA	1.4
	FREU	STRENGTH		E''	y ı	، ز		٧٠				OATE		
245	117.87106	1-136-25	.035	E.L. 844	•	12/2								
246	118.42066	1.61E-29		544.566	0	20		0		19	50	75	66	7
2+7	118-57303	5 . 47E-29		569.208	1	21		1		19	SH	75	66	7
2 - 8	119.69469		.035	544.566	0	22		٥	2 3		SH	75	68	7
249	119.99990		.035	628.219	O	21		0		19	SH	75	66	7
250	122-1-877	1.605-28		626.070	0	25		O	21		SF	75	68	7
251	163.96305		.035	626.070	0	22		O	52		SG	75	68	7
252	125.38508		.036	687 . 782	0	53		C		21	SH	75	68	7
253	125.73056	8 · 35E - 3U		2213.402		23	_	0	22		SF	75	6 H	7
254	127 - 14400	and the second second	.035	664.261	1	55		1	21		SF	75	66	7
255	127.54252		.034	685-624	٥	55		0	21	117.00	SF	75	66	7
256	127.90771		035	2211.225	1	23	_	0	23		50	75	68	7
257	129 - 301 +6	6 . 79E -26		662-103	o	22		1	22		50	75	66	7
258	129.34838		034	685-624	Ö	22	23	0	22		SO	75	66	7
259	129.70769		035	2211.225	1	23	22	0	53		SH	75	69	7
260	130.76535		035	750.033	Ô		-	1	22		SH	75	66	7
261	131-10704	1 . 81E-26		662.103	o	24	25 23	0	23		SF	75	68	7
565	132.93134	_	032	747.867	0	24	25	0	22		SH	75	66	7
263	134.72882		032	747.867	o	25		0	2+	53	SG	75	65	7
264	136 - 1 - 053	1 . 63E=29		814.972	Ö	25	26	0	24	53	SH	75	68	7
265	: 16.99647		035	2340.933	1	24	25	0	24	24	SF	75	68	7
569	138.31503	_	032	812.798	o	25	26	1	53	23	SF	75	66	7
267	138.53489	8 . 9UE - 27 .	035 .	793.210	o	24	25	0	25	24	SG	75	68	7
268	139.19266	2.08E-29 .	032	2338 . 737	1	24	25	1	23	53	SF	75	66	7
269	140-10417	1 . H7E=29 .	032	812.798	0	26	26	ô	25	24	SG	75	66	7
270	140.71053	3.86E-56 .	032	791.034	o	24	25	ŏ	24	23	SH	75	68	7
271	140.97360		032	2338 . 737	1	25	25	1	24	23	SH	75	66	7
272	141.51641		032	882.596	0	26	27	ō	25	25	SF	75 75	66	7
273	1+2+49829		035	791.034	0	25	25	0	24	23	SH	75	66	7
275	1+3+69339	The second second	032	880 + 13	0	26	27	ō	26	25	SG	75	68	7
276	1+5+47+23		035	880.413	O	27	27	0	26	25	SH	75	68	7
277	1+6+87+78		032	952.902	0	21	85	0	26	26	SF	75	68	7
278	1+9-90285		035	950 • 711	0	27	28	0	27	26	50	75	68	7
279	150.45451		035	933.533	0	26	27	0	25	25	SF	75	66	7
280	150 - 83479	1.126-29		2477.495	1		27	2	26	25	50	75	66	7
281	152.09653	1.01E=29 . 2.06E=26 .		950 - 711	0	58	28	0	27	26	SH	75	64	7
282	152.23345			931 - 339	0		27	0	26	25	SG	75	66	7
283	153.86664			1025.887	0		29	0	27	27	SF	75	68	7
284	154+43335		032	931 - 339	0	27	_	0	26	25	SH	75	66	7
285	156-19765			1023.688	0		29	0	28	27	SG	75	68	7
286	157.58621			1023.688	0		29	0	28	27	SH	75	68	7
287	159.79453	The second second		1101.549	0		30	0	28	28	SF	75	68	7
288	161.24605			1099 • 3 • 1	0		30	0	29	28	80	75	68	7
289	161 - 55061			1085.206	0		29	0		27	SF	75	66	7
290	161-691+8			1099.341	0		30	0		28	SH	75	68	7
291	163.45765			2627 • 478	1		29	1		27	80	75	66	7
292	165-14960	1.35E-29 ·		177.668	0		29	3		27	S G	75	66	7
293	165-21027			082.994	0		31	0	30	29	90	75	68	7
294	1/0-49833			258 - 667	0		29	0		27	SH	75	66	7
				-J0 1 0 0 /	•	31	32	٥	31	30	9.6	7.	4 .	

Table I (Cont'd)

JXYGENFXIST	ABSCRPTION LINE	PARAMETERS	FOR MOLECULAR	OXYGEN	ISOTOPES	(AECH)	ECOMAT1
-------------	-----------------	------------	---------------	--------	----------	--------	---------

	FREG	STRENGTH	WIDTH	£ , ,	y 1	ار	KI	y 1 1	ار	1611	טו	DATE	15.3	45
295	1/2.56267	1 - 15E-27	.032	1248.204			120							
296	174.79210	4.89E=2/	.032	1245 - 975	0	30		0	29		SF	75	65	7
297	175 - 8 - 053	6+3+E=30	.035	1342 - 332	0	30		0	30	_	SG	75	65	7
298	176.52734	1 . 28E = 27	.032		0	35	33	U	35	31	SG	75	05	7
249	181-17599	4.25E-30	.032	1245 • 975	0	31	31	C	30	29	SH	75	66	7
300	183.85086	5-136-28		1428 - 663	0	33	34	0	33	32	SG	75	6 1	7
301	186.09807	2 · 18E - 27	•032	1422.502	0	32		0	31	31	SF	75	66	7
302	187.81602		•032	1+20+255	0	35	33	0	32	31	SG	75	66	7
303	195 - 10879	5 . 71E = 28	.032	1+20.255	O	33	33	0	32	31	SH	75	66	7
304	197.37371	2 - 17E-28	.035	1608 • 071	0	34	35	O	33	33	SF	75	66	7
305	199.07447	9-196-28	.035	1605.806	0	34	35	0	34	33	SG	75	56	ź
306	200+33+61		.035	1605 - 806	0	35	35	0	34	33	SH	75	66	7
307			•032	1804 - 881	0	36	37	0	35	35	SF	75	66	'
308	208 • 61722		.035	1802 - 598	0	36	37	0	36	35	SG	75	66	,
309	210.1008	the second second	• C35	1802.598	0	37	37	0	36	35	SH	75		,
	217.52647		· 032	2012.899	0	38	39	ō	37	37	SF	75	66	′
310	219.82673		.032	2010.599	0	38	39	ŏ	38	37	SG	-	66	7
311	221.49328		.032	2010.599	0	-	39	ō	38	37	SH	75	66	7
312	558.94523	1 - 15E - 29	•032	2232.092	0		41	0	39	39	SF	75	06	7
313	531.0000%		.032	2229.774	0		+1	o	40	39		75	66	7
314	232-64995	1.c6E=29	.032	2229 . 774	U		41	o	+0		50	75	66	7
315	239.80093	3.88E-30	.032	2462.424	o		43	ŏ	-	39	SH	75	66	7
316	2+2 • 136 + 4	1 . 63E = 29		2460.088	ŏ		43		41	+1	SF	75	66	7
317	243.76899	4.21E-30		2460.088	0		+3		42		50	75	66	7
318	253.23294			2701.504	o		45	_	_		SH	75	66	7
					•	7 7	73	0	44	43	SG	75	66	7

and $Gordy^{28}$ (Ref. 7 of T-1/306-3-14)² in the vibrational ground state (v = v' = v'' = 0), and on those of Albritton, et al.²⁶ (Ref. 5 of T-1/306-3-14)² in the first excited vibrational state (v = v' = v'' = 1) of $^{16}O_2$. The line-widths quoted (WIDTH) are nominal values adapted from a review article by Krupenie. 29 Units are as follows: frequency: cm⁻¹; integrated line strength at 296K: cm⁻¹ per (molecule cm⁻²); half-width at half-maximum absorption: cm^{-1} atm⁻¹; energy E'' of the lower state of the transition relative to the vibrational and rotational ground state: cm^{-1} ; quantum numbers of upper (v', J', K') and lower (v'', J'', K'') states; shorthand identification of transition; month and year of date of computation (July 1975); isotope code $(66 = {}^{16}0{}^{16}0, 68 = {}^{16}0{}^{18}0, 88 = {}^{18}0{}^{18}0);$ molecular constituent code (7 = oxygen). The format is identical with that of the AFCRL Atmospheric Absorption Line Parameters Compilation with the exception that the frequency is given to five decimal places (F10.5 format) instead of three (F10.3).

The results have been discussed with AFCRL personnel, as well as with Drs. Strandberg, Mizushima, Steinbach, and Zare (respectively of MIT/RLE, Univ. of Colorado, AFOSR, and Columbia Univ.)² and a deck of punched cards containing the cardimage records in the file listed in Table II was sent to AFCRL on 28 July 1975. (The computations of line strength made use of some unpublished results in Steinbach's thesis.³⁰) The line widths must be viewed as preliminary,² and subject to update within a year.³¹

Fig. 1 gives a sample APL program used to generate the data, in this case the transition frequencies. Further details are contained in Ref. 2.

```
V SUBMMO 2; N; ENJ; ENJMINUS; ENJPLUS; ABO; AB1; AB2; AL1; AM1; BB1; BB2; BL11; BMO; BM1; MESS0; MESS1; MESS2; ARG1; EDF; EDG; EDR
      THIS PROGRAM CALCULATES THE TRANSITION FREQUENCIES,
A NUF, NUG, AND NUH (IN THE SUBMM REGION), AND THE ENERGIES
B OF THE RESPECTIVE LOWER STATES, ELF, ELG, AND ELH,
     A
 1
    A ALL GIVEN IN INVERSE CM.
                                             INPUTS REQUIRED: BO, B1, B2,
5]
      A LAMO, LAMI, MUO, AND NINPUT.
       A (EXAMPLE: NINPUT+((2×1 27)-1) PRODUCES 1 3 5 ...51 53.)
      'REFNO = ', REFNO
'NINPUT: '; NINPUT
1]
3]
       B1 + - (|B1|)
10] 32+-(|22)
.1] MUO+-(|MUO)
      MU1+-(|MU1)
12]
13] N+NINPUT, (NINPUT+2)
      ENJ + (B0 \times N \times (N+1)) + (B1 \times (N+2) \times ((N+1) \times 2)) + (2 \times LAM0 + 3) + (2 \times LAM1 \times N \times (N+1) + 3) - (MU0 + (MU1 \times N \times (N+1)))
14]
15] ENJ+ENJ+(B2×(N*3)×((N+1)+3))
16] ENN+((pN)+2)+ENJ
17] ABO+(**2)+1-#
[8] AB1+(N*4)+(7*(N*2))+2-((2*(N*3))+(6*N))
[9] AB2+(N*6)+(18*(N*4))+(33*(N*2))+4-((3*(N*5))+(31*(N*3))+(18*N))
20] AL1+(N+2)+4-N
      AM1+(7\times(N+2))+4-(7\times N)
?1]
22]
      BB1+(4\times(N*3))+(6\times N)-((6\times(N*2))+2)
23] BB2+(6×(N*5))+(32×(N*3))+(18×N)-((15×(N*4))+(33×(N*2))+4)
24]
       BL11+(6×N)-3
25] BMO+11-0.5
26] BM1+(2\times(N*3))+(9\times N)-((3\times(N*2))+4)
27]
      M\&SSO + (B0 \times AB0) + (B1 \times AB1) + (B2 \times AB2) - ((LAM0 *3) + (LAM1 \times AL1 *3) + (3 \times MU0 *2) + (0.5 \times MU1 \times AM1))
28] MESS1+(B0×((2×N)-1))+(B1×BB1)-((LAM0+((2×N)-1))+((LAM1×AM1)+BL11)+(MU0×BM0)+(0.5×MU1×BM1))
29] MESS1+MESS1+(B2×BB2)
30] MESS2+(LAM0)+(LAM1×AB0)
31] ARG1+(MESS1*2)+(4×(MESS2*2)*N×(N-1)*(((2×N)-1)**2))
32] ENJMINUS+MESS 0+(ARG1 * 0.5)
33] E1 0+MESS 0+MESS1
34] ENNMIN1+((pN)+2)+ENJMINUS
35] ENNMIN1[1]+E10[1]
36] ENJPLUS+MESSO-(ARG1 *0.5)
37] ENNPLU1+( >N)+2)+ENJPLUS
38] A EDF, EDG, AND EDH ARE IN GIGAHERTZ
39] EDF+(((pN)+2)+ENJMINUS)-ENN
40] EDG+(((<math>\rho N) \div 2) +ENJMINUS) -ENNPLU1
41] EDH+(((pN) +2)+ENJ)-ENNPLU1
      +( N[1] ≠0)/CONTINUE
42]
43] ENNMIN1[2]+E10[2]
44] E10[1]+ENN[1]+ENNMIN1[1]+ENNPLU1[1]
       EDF[ 1 ]+0
457
45] EDF(1]+0
46] CONTINUE:SPEEDOFLIGHT+29.9792458A [GHZ PER INVERSE CM]
47] A ELF, ELG, ELH, NUF, NUG, AND NUH ARE IN INVERSE CM.
48] ELF+(ENN-E10[1])+SPEEDOFLIGHT
49] ELG+(ENNPLU1-E10[1])+SPEEDOFLIGHT
50]
       EL H+ EL G
      NUF+EDF + SPEEDO FLIGHT
51]
       NUG+EDG +SPEEDOFLICHT
52]
-53] NUH+EDH + SPEEDOFLIGHT
```

Fig. 1: Listing of APL function SUBMMO2

III. SLANT-PATH ABSORPTION MODEL (SLAM) DEVELOPMENT

As mentioned in Section II, one of the main objectives of the present RRI study has been the development of detailed predictions of molecular attenuation as a function of frequency and altitude. Because narrow-band sources in the millimeter and submillimeter wave regions are of interest, a frequency resolution of .001 $cm^{-1} = 30$ MHz was chosen; this choice is compatible with the data resolution in the well-known AFCRL line parameters compilation. 4 Also, in the interest of allowing cross-checks with already-existing slant-path calculations (which heretofore have considered only water and (sometimes) ozone in the submillimeter region, and only water plus oxygen in the millimeter region), a single standard atmospheric model was chosen initially: 5 the Midlatitude Winter Model employed by McClatchey, et al. 32 To make the spectroscopic data as up-to-date as possible, the most recent version of the AFCRL computer tape containing the Atmospheric Absorption Line Parameters Compilation4 was obtained; 33 as already discussed in Section II, this data was supplemented by line parameters developed at RRI for oxygen² and carbon monoxide³ in the region below 250 cm⁻¹. (Other species known to be of importance in this spectral region at high altitude--on the basis of atmospheric emission spectra^{20,22} and solar spectral studies 34,35 -- are to be added at a later date. 5,9)

As to frequency coverage and data output format, it was realized from the outset⁵ that the results must be useful for analyzing communications systems and other applications in this spectral region, not only at ground level, but also with transmitters and receivers at higher altitudes. Hence, emphasis has been placed on calculating the total attenuation (dB) down to the

ground and out into space at any given frequency, at the set of reasonably spaced atmospheric levels given in McClatchey, et al, 32 and in the following spectral regions: 1 the vicinity of the 60 GHz oxygen band, 7 the first three peaks in the submillimeter spectrum of $^{16}O_2$, $^{2,19-22,28,30}$ and their immediate neighborhood, and at the 337- μm HCN laser line. ³² In addition, the model was to be capable of predicting absorptions in the "window" regions wherever the sea-level attenuation is 3 dB/km or less. 5 This made it necessary to include not only the Lorentz 4 , 32 and Van Vleck-Weisskopf line profiles, but also the "kinetic" (Gross/ Zhevakin-Naumov) line shapes as options. (For details, see Tech. Report T-2/306-3-14.1) To make the results readily understandable, provision was made for both tabular and graphical output, samples of which appear in Figs. 2 and 3 and in Table III (taken from Ref. 1). At each altitude, the horizontal attenuation (dB/km) as well as the attenuation \underline{down} to the ground and <u>up</u> to space (dB) are given.

Since, at the present time, 1 only pressure broadening is considered, the program is only nominally valid from 0 to 100 km altitude; a more realistic range of validity is 0 to 40 km. 1 Extensions to Voigt-type profiles will extend the range of validity of the SLAM program in the near future to the higher altitudes, 5 particularly when more realistic water vapor profiles than are used by McClatchey, et al³² are included in the model at the same time. 5,9

The principal uncertainty in the predictions (besides the obviously variable water vapor concentration) is tied up with the still-unresolved issue of the correct line-shape to use for the water vapor absorptions as well as with the oxygen line widths and their pressure dependence. As an illustration of the order of magnitude of the line-shape effect. Figs. 2 and 3 may be compared. Both refer to the 337- μ m HCN laser line, one with a Van Vleck-Weisskopf profile, 32,37 the other with the

Fig. 2: SLAM Graphical Output at $337\mu\text{m}\text{,}\ \text{VVW Profile}$

Fig. 3: SLAM Craphical Output at 337 $\mu\text{m}\text{,}$ Gross Profile

Table III: SLAM Tabular Output

		•		C.at	-								N	N	N	N	~	0	0				N	~	-	0	0	-4		-4	-4	e.	N	C	2	6	0	0	
				C		0	0	0	E-0	9	P	9	?	9	9	0	0	O	0				0	о ш	0	0	0	9	0	9	9	0	?	P	0	0		0	
				4	99	33	53	87	0	46	90	29	90	36	4.	=	83	8	00				87	66	53	38	23	20	0	1 0	80	08	68	42	9	0	00	8	
			15	00	926		0	2	2	C	17	15		622	C	-	16		8				0	927	-	0	0	0		16	-	m	1	1		2	000		
			9	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			2	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
					02																																0		
	148	0		*	89E	K	9	9	390	3	-	•	•	N	*	5	•						3	0	4	Œ	3	B	5	C	6 0	•	4	9	1	0	10E	0	
	N		3	S	20	16	60	12	13	13	£1	C	13	513	13	13		513	513				03	154	92	9	13	13	m	13	£1	514	4	*		514	*	4	
		•	3	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			20	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	411	N N	C	C	01			0	0	0	0	0	0	0	0	0	*0	02	0					0			0	0	0	0	0	0	0	0	0	Ò	Ö		
		-		9E	1	ZE	OE	w	5E-	w	w	• E•	16-	3E •	ū		SE •	36						SE			W	ш	ш	w	ш		-36	W			1E-		
	79			0	253	(4)	9	0	K	-	9		510	B	~		405	307	953				0	260	C	*	-	•	0		977	30		0	9	2	134	Ŋ	
		ပ္ပ	9		9	-	6	'n		'n					•	9.		2	*			101		9.					ņ								•		
0		141		o	00																																00		
00	OND	IL		0	0	0	0	0	0	0	0	0	•	0	0	•	0	0	0				•	0	•	0	•	•	•	•	0	0	0	0	?	0	0	•	
0	0	8	1	-	(1)		_	01		7												F		(7)	E)	-	gn	7									45		
		Q. LL																				EIG																	
•		Y O	1	0	0				01	0	0	0		0	0	0	0	10	8			I						0		0	0	0	0	0	0	0	0		00
OCNO		188		60	O7E	0	•	-	1	36	36	9	36	35	25	26	25	BE	0	0			0	00	9	~	1	9 E	1	9E	OE	4	2E	2E	8E	9E	9E	0	0
18	•	M		E	76	57	19	91	22	4.9	60	*	40	46	1.4	£4	32	0	8	00		0	*	~	80	49	91	16	42	96	38	87		99	05	95	525	8	00
0	(1)	u	-	. 0		•		•	.7	•	•	-	•			•			•	•		_	•		•	•	-			•		•	•	•		· O	•	•	•
	OND	_			02																																02		
		Z			16				99			36		OE				SE.	36				w		w	ш	w	w	w	ш	w	ш		ш	ш	ш	OE	W	ш
* ^ C		>			73	78	39	16	28	32	33	34	46	10	35		35	35	361	135			8	378	82	*	21	33	37	9	39		0	0	9	04	*	4	4.2
4		o	C	30										5			.5			5				.3					.51					.51	.51	.51		.51	
9.7		174			N																																S		
N	90	29.			O W														6-0		4																E-0		
	7 V T		•		154	0	N		1		C		1	340	-	m			352			œ	9	35	4.1	31	9	95	5	66		45	79	65	9	02	26	S	E#
3 \ 2	28	150	UC	2 4	0	-	N	-	(7)		9	(7)	-	C	0	N					N	0			-	C	-	3	*	9	3	9	N	1	~	S		3	•
713	20	.7		_	_	_		_				_					_			-			_		_													Ī	
29.	_		5	00	000	0	0	0	0	0	0	00	8	0	0	0	0	0	0	0	>		0	0	0	0	0	Ō	O	0	0	13	0	0)	0	000	0	Ō
		6	1 10	- •	N	•	•		ò	•	*	;		ò	è		ò	•	ò	ò	Z	I	•	•	•	•	•	ò	12.		•		ò	è		ò	ò	ċ	•
•	BOT		3 .	7 7 1								. •			- •	_	•	•	,		REGI	EI						- •			•					•••	•	_,	=
>	>			•																	L.	-																	

"kinetic" profile. For comparison, Fig. 4 is presented, giving a low-resolution survey of the entire spectral range 0.1 µm to 10 cm, from the critical review by the late G. D. Lukes, ³⁸ which includes representative measurements on the plot. As to the oxygen line widths, ² part of the problem is that the experimental data do not agree very well with the sum-of-Lorentzians calculations near 1 atm in the microwave region. ⁷ Our SLAM output plots^{1,9} based on the sum-of-Lorentzian approach agree well with the data in Figs. 5 and 6 taken from Ref. 39. The submillimeter line widths have never been directly measured, and only indirect information of low accuracy^{19,20,22} is available. ² With the recent development of workable interacting-line theories, it should soon be possible to improve the SLAM program to include them, ⁹ just as Liebe has recently done. ⁷

Extensions to the SLAM program to dispersion calculations and turbulence prediction are possible, based on the well-known integral relationship between attenuation and dispersion, ⁹ for "any" assumed line profile. The dispersion results in Figs. 5 and 6 were developed on the basis of a Lorentzian line profile analysis, for example. ^{7,39}

Fig. 4: Attenuation Due to Atmospheric Gases Along a Zenith Path Through a Cloudless Maritime Polar Atmosphere (After Lukes, Ref. 38.)

Fig. 5 Horizontal (homogeneous) transmissivity at sea level, h = 0 km. Variations are shown due to different linewidth values: (1) γ_1 = 666 MHz ± 25%, (2) γ_1 = 968 MHz. (After Liebe and Welch, Ref. 39.)

Fig. 6 Horizontal (homogeneous) transmissivity at h = 10 km (U.S. Std. Atm. 62). Variations are shown due to different linewidth values: 1 γ_1 =255 MHz \pm 25%. (After Liebe and Welch, Ref. 39.)

-25-

IV. OTHER COMPUTER CALCULATIONS PERFORMED

As indicated in Section II, absorption line parameters for a number of trace species known to be of some importance as absorbers in the millimeter-to-submillimeter wave spectral region are required in order to correctly predict attenuation at altitudes above the tropopause. In view of a controversy in the literature concerning the degree of importance of carbon monoxide as an absorber 3,20,40-43 in this spectral region, and the simplicity of the molecule, it was decided to compute the CO line parameters first. Only the ground vibrational state was considered for the isotopic species: 12C16O, 12C17O, 12C18O, and 13C160, and (in view of the low concentration) the hyperfine structure in $^{12}C^{17}O$ was ignored. The latest dipole moment value for 12C160 was used:44 -0.10980(3) Debye units, whose uncertainty is much less than the earlier value 45 0.112(5) D. For details concerning linewidths assumed and values chosen for Bo, Do, and H_0 , see Tech. Report T-3/306-3-14. When the AFCRL criterion⁴ for "Existing Intensity Minimum at T = 296K" is applied (1.9 E-23 cm⁻¹ per molecule cm⁻²), only lines of ¹²C¹⁶O remain in the list.³

As to the status of our computations of line parameters for other trace species as of 15 August 1975: Line positions only have been computed for ¹⁴N¹⁶O (dominant isotope of nitric oxide); subroutines for evaluations of the Wigner six-j symbols have been completed and tested, in preparation for computing the line strengths of the ¹⁶O¹⁷O lines in accordance with unpublished work⁴⁶ by Steinbach; ¹⁸ unpublished reports of work performed at the National Physical Laboratory, Teddington, England on nitric acid vapor and other trace species observed²⁰ in emission in the stratosphere have been received and studied.⁴⁷

V. RESULTS OF LITERATURE SURVEY

The literature on atmospheric propagation of electromagnetic radiation with wavelengths in the millimeter and submillimeter region is scattered over a large number of incompletely indexed journals and reports. Starting with the past several years of Physics Abstracts and cover-to-cover searches of such journals as Izvestia V. U. Z. Radiofizika, J. Quant. Spectrosc. and Rad. Transfer, Infrared Physics, Radio Engineering and Electronic Physics, and Izvestia Acad. Sci. USSR, Atmospheric and Oceanic Physics over the past three years, over 1000 card-indexed citations were obtained. The subjects covered include not only absorption and emission measurements and predictions, dispersion calculations, etc., but also atmospheric models, trace-species spectroscopy (HNO3, NO2, SO2, etc.), and in situ measurements of constituent concentrations vs. altitude. Aside from the references directly cited in support of other sections of this report, there would be no useful purpose served by merely listing author, title, and reference without comment for so disparate (yet voluminous) a collection. RRI has proposed the preparation of specialized bibliographies organized by subject and aimed at an audience of systems analysts, which would draw upon this collection. 9 One general comment is in order, however: the Russian literature on applications of submillimeter wave technology to meteorology \ and astrophysics has continued in a steady stream since 1963, but English-language translations are lately subject to a lag of more than two years.

The extensive British work on far-infrared Fourier-transform spectroscopy and its applications to stratospheric meteorology and astrophysics has been summarized recently in Ref. 20 (Fig. 7).

Fig. 7: Atmospheric Emission, 10-34 cm⁻¹ (After Ref. 20) Resolution is 0.0625 cm⁻¹; taken at 12 km altitude, at zenith angle of 75°, from Comet 2E aircraft (UK).

Fig. 7 shows a typical atmospheric emission spectrum taken at an altitude of 12 km, with the emission lines of water, oxygen, and ozone clearly marked. A comparison synthetic spectrum of ozone is superimposed in the figure. Of course, since a high emissivity is indicative of a high absorptivity (albeit with a somewhat modified frequency-dependence), the peaks in the figure also indicate absorption peaks.

One final comment: reference is frequently made to a paper by Hall 48 which gives the water vapor absorption as a function of frequency. We wish to point out that, as noted by Falcone 49 and Emery 50,51 Hall made an unfortunate error in the frequency dependence which he attributed to the "kinetic" line shape. Thus, papers such as the one by Burch⁵² which are based on the results of Hall48 (or its unpublished predecessors) must be employed with caution. 1 Our Fig. 4, from the summary paper by Lukes, 38 does not suffer from this defect, since it takes cognizance of Bastin's work, 53 of which Emery's 1 is a refinement. Fig. 4 represents the best low-resolution display of the total zenith attenuation at sea level which has yet appeared in the literature, although the submillimeter spectrum of oxygen^{2,19-22} is neglected. Tech. Report T-2/306-3-14 discusses in detail the relationship of our SLAM results with those in the literature. 1

VI. RECOMMENDATIONS FOR IMPROVEMENT OF DATA BASE

In connection with Figs. 2 and 3, it was pointed out that the water vapor line-shape choice makes a substantial difference in the total attenuation predicted. Limited experimental data is available as a function of pressure 20,38,40,51 and near 1 atm the theory underestimates the attenuation by roughly a factor of two (in dB) when only the monomeric form of water is considered. The water dimer is clearly important as a source of additional attenuation at high pressure, 40 but the quantitative details are still controversial. 41-43 Molecular beam studies have recently been made of the microwave absorption by the dimer molecule, (H₂O)₂, 54 which have determined the bond lengths precisely, but still leave the bond angles uncertain. 55 Direct submillimeterwave molecular-beam absorption studies are thus desirable, to determine where the bound states lie. 9,55 Further theoretical calculations should then be possible to determine the linewidths, and thereby put the subject of dimer absorption on a firmer foundation than at present. 56

At high altitudes, the CIAP-related studies of the strato-sphere^{20,22,36} have produced emission data. The SLAM calculations should be cast into a form capable of predicting emission (not merely absorption) so as to compare observations against predictions. At altitudes below the tropopause, with which the CIAP program was hardly concerned,³⁶ measurements are desirable at selected frequencies, to act as a check on the various model computations, especially the oxygen linewidths and the water vapor line-shapes.^{1,2,5,9}

From the discussion in Sections II through IV, it is clear

that continued effort is required to obtain reliable atmospheric absorption line parameters in the millimeter and submillimeter wave region for all of the trace species which have been identified in the recent stratospheric emission studies, 20,22,34-36 i. e., nitric acid (HNO3) vapor, nitrous oxide (N20), nitrogen dioxide (NO₂), nitric oxide (NO), carbon monoxide (CO), and sulfur dioxide (SO₂). 5,9 AFCRL has been funding some work on HNO3 and NO2, with which RRI has been cooperating, and the N. P. L. group 47 has been doing laboratory spectroscopy on these species; reduction to line parameters has not yet been accomplished, however, and it is line parameters which are required for SLAM-type computations. 57 Also, as discussed in Ref. 2, as well as in Sec. II below, ongoing work on the oxygen microwave-spectrum 31 line-widths must be incorporated into the line parameters or into the SLM program if the ±25% uncertainty indicated in Figs. 5 and 6 is to be reduced. 5,9 Direct measurement of the line widths of the oxygen submillimeter lines might further improve not only the submillimeter transmission predictions, but also those in the microwave region. 2 Such measurements have been recommended by us. 2,9

As to scattering from clouds, the theory seems to be well in hand. 8,38 However, in most of the spectral region under discussion, relative transparency occurs only at altitudes sufficiently high for water clouds to be rare. Thus, scattering from ice clouds (e. g., cirrus) becomes important. 5,8,9 Little is known concerning the complex index of refraction of ice at cirrus temperatures, 5,8 so that RRI has suggested measurements of the complex refractive index. The non-ellipsoidal shape of the ice crystals is also a problem which merits further study.

Owing to time constraints, the SLAM program does not yet have a dispersion-prediction capability. As discussed above, such a capability is relatively easy to implement, and should be done. 5,9 Extension to turbulence-prediction is also possible and desirable.

Another area in which an improvement can be made in the data base needed for system design in the millimeter-to-submillimeter wave region is that of receiver technology. It is clear from the literature survey performed for the present study that data on receivers in this spectral region is available, but scattered widely over the literature. It should be studied systematically.

Finally, as indicated in Section V, RRI has proposed the preparation of specialized bibliographies intended for use by systems designers in the region between 50 GHz and 3 THz on the subjects covered by the over 1000 references studied during the course of the present contract. Owing to the interdisciplinary nature of the subject matter, these references are to be found in the geophysical, spectroscopic, optical engineering, astronomical, and chemical literature, besides the literature which a microwave or communications system engineer is likely to consult. The resulting (apparent) data gap can be bridged by means of such subject bibliographies.

REFERENCES

- Koppel, D., "Present Status of the RRI Slant-Path Absorption Model (SLAM) Computer Program," Tech. Report T-2/306-3-14, Riverside Research Institute, New York, N. Y. (in preparation).
- 2. Greenebaum, M., "The Calculation of Millimeter and Submillimeter Wave Absorption Line Parameters for the Molecular Oxygen Isotopes: 1602, 160180, and 1802," Tech. Report T-1/306-3-14, Riverside Research Institute, New York, N. Y., 15 August 1975.
- 3. Greenebaum, M., "The Calculation of Pure-Rotation Absorption Line Parameters for Carbon Monoxide: 12C160, 12C170, 12C180, and 13C160," Tech. Report T-3/306-3-14, Riverside Research Institute, New York, N. Y. (in preparation).
- McClatchey, R. A., Benedict, W. S., Clough, S. A., Burch, D. E., Calfee, R. F., Fox, K., Rothman, L. S., and Garing, J. S., "AFCRL Atmospheric Absorption Line Parameters Compilation," AFCRL-TR-73-0096, Environmental Research Paper No. 434, Air Force Cambridge Research Laboratories, Bedford, Mass., 26 January 1973.
- 5. Anonymous, "Proposal for Studies Relating to Atmospheric Propagation of Millimeter and Submillimeter Waves," RRIP/306-12, Riverside Research Institute, New York, N. Y., 5 May 1975.
- Private communication to R. A. McClatchey (AFCRL) from M. Greenebaum (RRI), 28 July 1975.
- 7. Liebe, H. J., "Molecular Transfer Characteristics of Air Between 40 and 140 GHz," IEEE Trans. MTT-23 (4), 380-386 (1975); "Studies of Oxygen and Water Vapor Microwave Spectra Under Simulated Atmospheric Conditions," OT Report 75-65, Institute for Telecommunication Sciences, Boulder, Colo., June 1975; "A Pressure-Scanning Millimeter-Wave Dispersion Spectrometer," Rev. Scient. Instr., 46 (7), 817-825 (1975); and references therein.
- 8. Deirmendjian, D., "Far Infrared and Submillimeter Scattering.
 I. The Optical Constants of Water--A Survey," Report No.
 R-1486-PR, The Rand Corp., Santa Monica, Ca., Feb. 1974;
 "Extinction of Submillimeter Waves by Clouds and Rain,"
 WN-8816-PR, The Rand Corp., Santa Monica, Ca., Aug. 1974,
 "FOUO". For earlier work, see Ref. 38.

- 9. Material presented at RRI briefing to ARPA/STO, 21 July 1975, by M. Greenebaum.
- 10. Armand, N. A., Izyumov, A. O., Polevoy, B. I., Sokolov, A. V., and Topkov, A. I., "Fluctuation of Millimeter Radio Waves Propagated Through a Turbulent Atmosphere Near the Oxygen Absorption Line Centered at the Wavelength of 5 mm," Radio Engnrg. and Electronic Phys., 18 (4), 492-497 (1973), translated from the Russian.
- 11. Izyumov, A. O., "Amplitude and Phase Fluctuations of a Plane Monochromatic Submillimeter Wave in a Near-Ground Layer of Moisture-Containing Turbulent Air," Radio Engnrg. and Electronic Phys., 13 (7), 1009-1013 (1968), translated from the Russian; Armand, N. A., Izyumov, A. O., and A. V. Sokolov, "Fluctuations of Submillimeter Waves in a Turbulent Atmosphere," Radio Engnrg. and Electronic Phys., 16 (8), 1259-1266 (1971), translated from the Russian; L. I. Sharapov, A. S. Bryukhovetskii, I. Kh. Vakser, and V. A. Komyak, "The Influence of Molecular Oxygen Absorption Band on Amplitude Fluctuations of Millimeter Radio Waves," Izv. V. U. Z. Radiofiz., 16 (10), 1504-1509 (1973), in Russian.
- 12. Rozenberg, V. I., "Radar Characteristics of Rain in the Submillimeter Range," Radio Engnrg. and Electronic Phys., 15 (12), 2157-2163 (1970), translated from the Russian; Kolosov, M. A. and Sokolov, A. V., "Certain Problems of Propagation of Millimeter and Submillimeter Radiowaves," Radio Engnrg. and Electronic Phys., 15 (4), 563-570 (1970), translated from the Russian.
- 13. Sokolov, A. V., Sukhonin, E. V., Iskhakov, I. A., Vardanyan, A. S., "Attenuation of Millimeter and Submillimeter Radio Waves in the Earth's Atmosphere Through Slant Paths," Proc. Fifth Colloq. on Microwave Communications, Vol. III, <u>Electromagnetic Theory</u>, <u>Antennas and Propagation</u>, Budapest, Hungary, 24-30 June 1974, pp. ET-38/335-337.
- 14. Morrison, J. A. and Cross, M.-J., "Scattering of a Plane Electromagnetic Wave by Axisymmetric Raindrops," Bell Syst. Tech. J., 53 (6), 955-1019 (1974) and references therein; Richard, V. and Kammerer, J., "Millimeter Wave Rain Backscatter Measurements," 1974 Millimeter Waves Techniques Conf., NELC, San Diego, Ca., 26-28 March 1974, pp. B1-1 to B1-30; Sullivan, J. F., and Richardson, H. M., "Propagation of 15.6-31.2 and 45-90 GHz Coherent Signal Pairs," in Telecommunications Aspects on Frequencies Between 10 and 100 GHz, A. W. Biggs, Ed., AGARD, Paris, France, April 1973 (AD-760 628), pp. 10-1 to 10-11.
- 15. Llewellyn-Jones, D. T. and Zavody, A. M., "The Influence

- of Rainfall on Line-of-Sight Propagation at 110 GHz in S. E. England," in the AGARD volume cited in Ref. 14c, pp. 15-1 to 15-6.
- 16. Sander, J., "Rain Attenuation of Millimeter Waves at $\lambda = 5.77$, 3.3, and 2 mm," IEEE Trans. <u>AP-23</u> (2), 213-220 (1975).
- 17. Private communication to M. Greenebaum (RRI) from L. B. Felsen (PINY) concerning Ref. 13, 26 June 1975.
- 18. Greenebaum, M., "The Hyperfine Spectrum of 160170 and the Weak-Field Zeeman Effect in 160160 in the Microwave and Submillimeter Wave Spectral Regions," Technical Report T-4/306-3-14, Riverside Research Institute, New York, N. Y. (in preparation).
- 19. Gebbie, H. A., Burroughs, W. J., and Bird, G. R., "Magnetic Dipole Rotation Spectrum of Oxygen," Proc. Roy. Soc. (London) A 310, 579-590 (1969).
- 20. Beckman, J. E. and Harries, J. E., "Submillimeter-wave Atmospheric and Astrophysical Spectroscopy," Appl. Optics, 14 (2), 470-485 (1975).
- 21. Tinkham, M. and Strandberg, M. W. P., "Theory of the Fine Structure of the Molecular Oxygen Ground State," Phys. Rev., 97 (4), 937-951 (1955).
- 22. Bussoletti, E. and Baluteau, J. P., "Determination of H₂O/O₂ Stratospheric Mixing Ratio from High Resolution Spectra in the Far Infrared," infrared Physics, <u>14</u> (4), 293-302 (1974).
- 23. Wilheit, T. T., Jr. and Barrett, A. H., "Microwave Spectrum of Molecular Oxygen," Phys. Rev. A, <u>1</u> (1), 213-215 (1970).
- 24. Welch, W. M. and Mizushima, M., "Molecular Parameters of the O₂ Molecule," Phys. Rev. A, <u>5</u> (6), 2692-2695 (1972).
- 25. Evenson, K. M. and Mizushima, M., "Laser Magnetic Resonance of the O₂ Molecule Using 119- and 78- μ m H₂O Laser Lines," Phys. Rev. A, <u>6</u> (5), 2197-2204 (1972).
- 26. Albritton, D. L., Harrop, W. J., Schmeltekopf, A. L., and Zare, R. N., "Calculation of Centrifugal Distortion Constants for Diatomic Molecules from RKR Potentials," and "Resolution of the Discrepancies Concerning the Optical and Microwave Values for B₀ and D₀ of the X³Σ State of O₂," J. Molec. Spectrosc., 46 (1), 25-36, 103-118 (1973).
- 27. Tomuta, L., Mizushima, M., Howard, C. J., and Evenson, K. M., "Rotational Structure and Magnetic g Factors for O_2 ($X^3\Sigma_g$, v=0) from Laser-Magnetic-Resonance Spectra," Phys. Rev. A (to be published August 1975); private communication to M. Greenebaum from M. Mizushima, 7/7/75.

- 28. Steinbach, W. and Gordy, W., "Millimeter and Submillimeter Wave Spectrum of 1802," Phys. Rev. A, 8 (4), 1753-1758 (1973); "Microwave Spectrum and Molecular Constants of 180180," Phys. Rev. A, 11 (3), 729-731 (1975).
- 29. Krupenie, P. H., "The Spectrum of Molecular Oxygen," J. Phys. Chem. Ref. Data, 1 (2), 423-534 (1972), Table 34.
- 30. Steinbach, W. R., "Millimeter and Submillimeter Wave Spectra of the Oxygen Isotopes: 1602, 1802, and 160180,"
 Ph. D. thesis, Dept. of Physics, Duke Univ., Durham,
 N. C., 1974.
- 31. Liebe, H. J., Refs. 7 and private communication, Aug. 1975.
- 32. McClatchey, R. A., Fenn, R. W., Selby, J. E. A., Volz, F. E., and Garing, J. S., "Optical Properties of the Atmosphere (Third Edition)," AFCRL-TR-0497, Environmental Research Paper No. 411, Air Force Cambridge Research Laboratories, Bedford, Mass., 24 August 1972.
- 33. Computer tape run of 1 April 1975 at AFCRL sent to RRI.
- 34. Gebbie, H. A., Chamberlain, J., and Burroughs, W. J., "Submillimetre wave solar observations," Nature, 220, 893-895 (1968).
- 35. Nolt, I. G., Martin, T. Z., Wood, C. W., and Sinton, W. M., "Far Infrared Absorption of the Atmosphere Abore 4.2 km," J. Atmos. Sci., 28 (2), 238-241 (1971).
- 36. Hard, T. M., "Summary of Recent Reports of Stratospheric Trace-Gas Profiles," preprint of Chapter 3 of <u>CIAP Monograph I</u>, Transportation Systems Center, Cambridge, Mass., November 1974.
- 37. Private communication to M. Greenebaum (RRI) from R. A. McClatchey (AFCRL), 4 June 1975.
- 38. Lukes, G. D., "Penetrability of Haze, Fog, Clouds and Precipitation by Radiant Energy over the Spectral Range 0.1 Micron to 10 Centimeters," CNA Naval Warfare Analysis Group Study 61, Center for Naval Analyses, U. Rochester, Arlington, Va., May 1968.
- 39. Liebe, H. J. and Welch, W. M., "Molecular Attenuation and Phase Dispersion Between 40 and 140-GHz for Path Models from Different Altitudes," OT Report 73-10, Institute for Telecommunication Sciences, Boulder, Colo., May 1973. (See also Ref. 7.)
- 40. Harries, J. E. and Burroughs, W. J., "Observations of Millimetre Wavelength Solar Radiation at Sea Level," Infrared Physics, 10, 165-172 (1970).
- 41. Kislyakov, A. G., "On the Atmospheric Transparency Spectrum in the Millimeter Waveband," Infrared Physics, 12, 61-63 (1972).

- 42. Harries, J. E., "Absorption by Minor Atmospheric Constituents near 8 cm⁻¹," Infrared Physics, <u>12</u>, 143-144 (1972); Harries, J. E. and Ade, P. A. R., "The High Resolution Millimetre Wavelength Spectrum of the Atmosphere," Infrared Physics, <u>12</u>, 81-94 (1972).
- 43. Kislyakov, A. G. and Ryskin, V. G., "Telluric Lines of Certain Minor Gas Constituents in the Millimeter and Submillimeter Bands," Izv. Acad. Sci. USSR, Atmos. Ocean. Phys., 9 (11), 654-658 (1973) (translated from the Russian); Kislyakov, A. G. and Naumov, A. I., "Optical Thickness of the Atmosphere in the 1.9-2.8 mm Wave Region," Izv. Acad. Sci. USSR, Atmos. Ocean. Phys., 6 (3), 134-140 (1970) (translated from the Russian).
- 44. Private communication to M. Greenebaum (RRI) from F. J. Lovas (NBS) concerning work by J. S. Muenter (Univ. of Rochester), 16 July 1975.
- 45. Lovas, F. J. and Tiemann, E., "Microwave Spectral Tables.
 I. Diatomic Molecules," J. Phys. Chem. Ref. Data, 3 (3), 609-770 (1974); Krupenie, P. H., "The Band Spectrum of Carbon Monoxide," NSRDS-NBS 5, National Bureau of Stanards, Washington, D. C., July 8, 1966.
- 46. Private communication to M. Greenebaum (RRI) from W. R. Steinbach (AFOSR), 21 July 1975.
- 47. Fleming, J. W., "High Resolution Far Infrared Studies of the Absorption Spectra of Gases," NPL Report Mat. App. 34, National Physical Laboratory, Div. of Materials Applications, Teddington, Middlesex, England, September 1974; Stone, N. W. B., "Spectroscopy of Some Gases in the Far Infrared, Using a Michelson Interferometer," Ph. D. thesis, Univ. of London, 1964, Chapter IV.
- 48. Hall, J. T., "Attenuation of Millimeter Wavelength Radiation by Gaseous Water," Appl. Optics, 6 (8), 1391-1398 (1967).
- 49. Falcone, V. J., Jr., "Comments on 'Attenuation of Millimeter Wavelength Radiation by Gaseous Water Vapor'," Appl. Optics, <u>6</u> (11), 2005-2006 (1967).
- 50. Emery, R. J., "Further Comments on Attenuation of Millimeter Wavelength Radiation by Atmospheric Water Vapor," Appl. Optics, 7 (6), 1247-1248 (1968).
- 51. Emery, R., "Atmospheric Absorption Measurements in the Region of 1 mm Wavelength," Infrared Physics, 12, 65-79 (1972).
- 52. Burch, D. E., "Absorption of Infrared Radiant Energy by CO₂ and H₂O. III. Absorption by H₂O between 0.5 and 36 cm (278 μ -2 cm)," J. Opt. Soc. Amer., <u>58</u> (10), 1383-1394 (1968).
- 53. Bastin, J. A., "Extreme Infra-red Atmospheric Absorption," Infrared Physics, 6, 209-221 (1966).

- 54. Dyke, T. R. and Muenter, J. S., "Molecular Beam Electric Deflection Studies of Water Polymers," J. Chem. Phys., 57 (11), 5011-5012 (1972); "Microwave Spectrum and Structure of Hydrogen Bonded Water Dimer," J. Chem. Phys., 60 (7), 2929-2930 (1974).
- 55. Private communication to M. Greenebaum (RRI) from J. S. Muenter (Univ. of Rochester), April 1975.
- 56. Viktorova, A. A. and Zhevakin, S. A., "The Rotational Spectrum of Water Vapor Dimer," Izv. V. U. Z. Radiofiz., 18 (2), 211-221 (1975) (in Russian).
- 57. Results of a discussion with AFCRL personnel and L. D. G. Young (Texas A and M Univ.) at AFCRL, 2 July 1975.