Error Catastrophe – HIV like melting ice*

G. R. Hart¹ A. L. Ferguson²

¹Department of Physics, University of Illinois at Urbana-Champaign

²Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign

*Error catastrophe and phase transition in the empirical fitness Landscape of HIV Phys. Rev. E 91, 032705

The Hacker Within, Sep 2015

AIDS

Human Immunodeficiency virus (HIV) is difficult to treat and currently has no cure.

One reason for is the high mutation rate and fast replication rate.

Fitness Landscape

The virus can be thought of as living on a fitness landscape.

Within a host the viral population lives as a quasispecies.

Methods 0000

Statistical Mechanics Analogs

 $\begin{array}{c} \mathsf{Diversity} \to \mathsf{Entropy} \\ \mathsf{Fitness} \to \mathsf{-Energy} \\ \mathsf{Mutation} \ \mathsf{Rate} \to \mathsf{Temperature} \\ \mathsf{Error} \ \mathsf{Catastrophe} \to \mathsf{Phase} \ \mathsf{Change} \end{array}$

Fitness Landscape - Potts Model

The infinite range Potts model emerges as the least structured model reproducing the one and two-body mutational probabilities

$$P(\vec{z}) = \frac{1}{Z}e^{-E(\vec{z})}$$

where

$$E(\vec{z}) = \sum_{i=1}^{m} h_i(z_i) + \sum_{i=1}^{m} \sum_{j=i+1}^{m} J_{i,j}(z_i, z_j)$$

The $\{h_i, J_{ij}\}$ are fit to reproduce $P_i^{obs}(A)$ and $P_{i,j}^{obs}(A, B)$

We assume
$$P(\vec{z}) \propto f(\vec{z})$$

Fitness Landscape – Parameter Inference

We fit the $\{h_i, J_{ij}\}$ to the MSA using Bayesian Inference:

$$\begin{split} L(\textit{model/data}) &= P(\textit{model/data}) = \frac{P(\textit{data}/\textit{model})P(\textit{model})}{P(\textit{data})} \\ &\propto P(\textit{data}/\textit{model})P(\textit{model}) \\ &= P(\textit{model}) \prod_{\vec{z} \in I} P_{\textit{model}}(\vec{z})^{P_{\textit{obs}}(\vec{z})M} \end{split}$$

where
$$P(model) = \prod_{i} e^{-\gamma_1 h_i^2} \prod_{i,j} e^{-\gamma_2 J_{ij}^2}$$

We perform Newton descent with analytic gradients

- Synthesize an initial estimate of $\{h_i, J_{ij}\}$
- Evaluate $\{P_i, P_{ij}\}$ by MC sampling the current Hamiltonian
- Refine $\{P_i, P_{ij}\}$ towards $\{P_i^{obs}, P_{ij}^{obs}\}$ by stepping $\{h_i, J_{ij}\}$

Partition Function – Thermodynamic properties

In principle if we have the Hamiltonian we have the partition function

$$Z(T) = \sum_{\vec{z}} e^{-E(\vec{z})/T}$$

The partition function gives us thermodynamics as a function of T

$$F(T) = -T\ln(Z(T))$$

$$S(T) = \frac{U(T) - F(T)}{T}$$

$$U(T) = \frac{\partial \ln(Z(T))}{\partial \beta}$$

$$C_{V}(T) = \frac{\partial U}{\partial T} = \frac{1}{T^{2}} \frac{\partial^{2} \ln(Z(T))}{\partial \beta^{2}}$$

Partition Function – Thermodynamic properties

In principle if we have the Hamiltonian we have the partition function

$$Z(T) = \sum_{\vec{z}} e^{-E(\vec{z})/T} = \sum_{E} g(E)e^{-E/T}$$

The partition function gives us thermodynamics as a function of T

$$F(T) = -T \ln(Z(T)) \qquad \qquad S(T) = \frac{U(T) - F(T)}{T}$$

$$U(T) = \frac{\partial \ln(Z(T))}{\partial \beta} \qquad C_{\nu}(T) = \frac{\partial U}{\partial T} = \frac{1}{T^2} \frac{\partial^2 \ln(Z(T))}{\partial \beta^2}$$

Partition Function – Wang-Landau Algorithm

$$Z(T) = \sum_{\vec{z}} e^{-E(\vec{z})/T} = \sum_{E} g(E)e^{-E/T}$$

Wang-Landau sampling

- Random walk in energy space.
- Accept spin flip based on $P(E_1 \rightarrow E_2) = \min(g(E_1)/g(E_2), 1)$.
- After attempted spin flip increase $g(E_{current})$ by a factor f.
- Every iteration decrease *f* towards 1.

Phase Transition and Error Catastrophe

Ice: low energy & low entropy

Water: high energy & high entropy

Phase Transition and Error Catastrophe

lce: low energy & low entropy \to high fitness & low diversity Water: high energy & high entropy \to low fitness & high diversity

Phase Transition and Error Catastrophe

Error Catastrophe – raising the mutation rate leads to accumulation of lethal mutations and population collapse.

1. Mutagenic drugs could push the protein past the transition

Partition Function – Wang-Landau Algorithm

$$Z(T) = \sum_{\vec{z}} e^{-E(\vec{z})/T} = \sum_{F} g(F)e^{-F/T}$$

Wang-Landau sampling

- Random walk in energy space.
- Accept spin flip based on $P(E_1 \rightarrow E_2) = \min(g(E_1)/g(E_2), 1)$.
- After attempted spin flip increase $g(E_{current})$ by a factor f.
- Every iteration decrease f towards
 1.

Triggering Error Catastrophe

2. Can targeting pairs of residues induce the transition?

Yes

Triggering Error Catastrophe

3. Can immune responses induce the transition?

No

Thank You

Greg Hart grhart2@illinois.edu

