

- **1.** The function F above satisfies the conclusion of Rolle's Theorem in the interval [a,b] because
 - I. F is continuous.
 - II. F is differentiable on (a, b).
 - III. F(a) = F(b) = 0.

- A) I only
- B) II only
- C) I and III only
- D) I, II, and III
- E) F does not satisfy Rolle's Theorem
- **2.** If $Q(x) = (3x+2)^3$, then the third derivative of Q at x=0 is
 - **A)** 0
 - **B)** 9
 - **C)** 54
 - **D)** 162
 - E) 224
- **3.** If a function g is differentiable on the interval [-4, 4], then which of the following statements is true?
 - A) g is not continuous on [-5, 5].
 - B) g is not differentiable on [-5, 5].
 - C) g'(c) = 0 for some c in [-4, 4].
 - $\mathsf{D})$ The conclusion of the Mean Value Theorem applies to g.
 - E) None of the above statements are true.

4. The value of c guaranteed to exist by the Mean Value Theorem for $f(x) = x^2$ in the interval [0,3] is

- **A)** 1
- **B)** 2
- C) $\frac{3}{2}$
- D) $\frac{1}{2}$
- E) None of these

5. The graph of the derivative of a function f is shown above. Which of the following are true about the original function f?

- I. f is increasing on the interval (-2,1).
- II. f is continuous at x = 0.
- III. f has an inflection point at x = -2.
- A) I only
- B) II only
- C) III only
- D) II and III only
- E) I, II, and III

6. Two particles move along the x-axis and their positions at time $0 \le t \le 2\pi$ are given by $x_1 = \cos t$ and $x_2 = e^{(t-3)/2} - 0.75$. For how many values of t do the two particles have the same velocity?

- **A)** 0
- **B**) 1
- **C)** 2
- **D**) 3
- E) 4

7. The conical reservoir shown above has diameter 12 feet and height 4 feet. Water is flowing into the reservoir at the constant rate of 10 cubic feet per minute. At the instant when the surface of the water is 2 feet above the vertex, the water level is rising at the rate of

- **A)** 0.177 ft per min
- **B)** 0.354 ft per min
- **C)** 0.531 ft per min
- **D)** 0.708 ft per min
- E) 0.885 ft per min

8. The position of a particle moving on the x-axis, starting at time t = 0, is given by $x(t) = (t-a)^3(t-b)$, where 0 < a < b. Which of the following statements are true?

- I. The particle is at a positive position on the x-axis at time $t = \frac{a+b}{2}$.
- II. The particle is at rest at time t = a.
- III. The particle is moving to the right at time t = b.
- A) I only
- B) II only
- C) III only
- D) I and II only
- E) II and III only

9. Let the function f be differentiable on the interval [0, 2.5] and define g by g(x) = f(f(x)). Use the table below to estimate g'(1).

	0.0						
f(x)	1.7	1.8	2.0	2.4	3.1	4.4	

- **A)** 0.8
- **B)** 1.2
- C) 1.6
- **D)** 2.0
- E) 2.4

10. Which of the following are true about a particle that starts at t=0 and moves along a number line if its position at time t is given by $s(t) = (t-2)^3(t-6)$?

- The particle is moving to the right for t > 5. I.
- II. The particle is at rest at t = 2 and t = 6.
- III. The particle changes direction at t=2.
- A) I only
- B) II only
- C) III only
- D) I and III only
- E) None are true.

11. The graph of the function f is shown above. Which of the following statements are true?

I.
$$\lim_{h \to 0} \frac{f(2+h) - f(2)}{h} = f'(5).$$
II.
$$\frac{f(5) - f(2)}{5 - 2} = \frac{2}{3}.$$
III.
$$f''(1) \le f''(5).$$

II.
$$\frac{f(5) - f(2)}{5 - 2} = \frac{2}{3}$$

III.
$$f''(1) \le f''(5)$$
.

- A) I and II only
- B) I and III only
- C) II and III only
- D) I, II, and III
- E) None of these

12. If $x^2 - y^2 = 25$, then $\frac{d^2y}{dx^2} =$

- A) $-\frac{x}{y}$ B) $\frac{5}{y^2}$
- $C) \frac{x^2}{y^3}$
- D) $-\frac{25}{v^3}$
- E) $\frac{4}{y^3}$

13. A rectangle with one side on the x-axis has its upper vertices on the graph of $y = 4 - x^2$, as shown in the figure above. What is the maximum area of the rectangle?

- **A)** 1.155
- B) 1.855
- C) 3.709
- D) 6.158
- E) 12.316

14. Let f be a twice-differentiable function of x such that, when x = c, f is decreasing, concave up, and has an x-intercept. Which of the following is true?

- A) f(c) < f'(c) < f''(c)
- B) f(c) < f''(c) < f'(c)
- C) f'(c) < f(c) < f''(c)
- D) f'(c) < f''(c) < f(c)
- E) f''(c) < f(c) < f'(c)

15. If $f'(x) = \arctan(x^3 - x)$, at how many points is the tangent line to the graph of f(x) parallel to the line y = 2x?

- A) None
- **B)** 1
- **C)** 2
- **D**) 3
- E) Infinitely many