Sekvenční dělení

INP 2019 FIT VUT v Brně

Dělení čísel s pevnou řádovou čárkou

Budeme se zabývat dělením čísel s pevnou řádovou čárkou bez znaménka. Pro jednotlivé činitele operace dělení zavedeme symboly

D	dělenec
d	dělitel
Q	podíl
q_i	<i>i</i> -tý bit podílu
R_i	<i>i</i> -tý (průběžný) zbytek

Máme vypočítat Q, R tak, aby byla splněna rovnice

$$D = Q . d + R, \qquad 0 \le |R| < d.$$

Pro d, Q, R máme k dispozici n bitů, pro D vyhradíme 2n bitů.

Nejdříve si ukážeme dělení čísel bez znamének, resp. dělení jejich absolutních hodnot.

Pozor, *d* je nutné posunout o *n* bitů doleva.

Příklad 2293: 51 (dekadicky vs binárně, n = 6) Posunutý dělitel

$$2293 : 51 = 0$$

$$\begin{array}{c} 22\underline{9}3 : 51 = 04 \\ -204 \end{array}$$

$$0253 : 51 = 044$$

$$- 204$$

V kroku *i* se pokoušíme odečíst od průběžného zbytku R_i posunutý dělitel 2^{n-i} *d*

$$\frac{100011}{1}10101 : 11001100000 = 01$$

$$-110011$$

$$\begin{array}{rcl}
11111\underline{1}01 & : & 11001100 = 01011 \\
-110011
\end{array}$$

$$00110001$$
: $110011 = 0101100 (44)$

Postup dělení a HW realizace

Při rozhodování o hodnotě bitu podílu q_{n-i} jsme postupovali podle vztahů: je-li 2^{n-i} d menší než nebo rovno R_i , pak $q_{n-i} = 1$, je-li 2^{n-i} d větší než R_i , pak $q_{n-i} = 0$.

 $Q = q_n \dots q_0$ Nový zbytek se vypočte:

$$R_{i+1} := R_i - q_{n-i} 2^{n-i} d$$

Modifikovaný postup – <u>d</u> je v pevné poloze

HW realizace z předchozího obrázku vyžaduje uchovávat hodnotu dělitele na 2*n* bitech a používat 2*n* bitovou odčítačku / sčítačku => zbytečně drahé.

V praxi se posouvá dílčí/průběžný zbytek vlevo a *d* je v pevné poloze (posunut o 2ⁿ bitů), takže

$$R_{i+1} := {2 \over 2} R_i - q_{n-i} d 2^n$$

Dále označme $d' = d \cdot 2^n$

Dělení – modifikovaný postup (38 : 5)

(Praxe: posuv Rivlevo, d v pevné poloze)

D=100	110	d=101 (d	$d' = d.2^n =$	<u>= 101000)</u>		
$Q = q_2 q_3$	q 1 q 0	= 1	11	$R_{i+1}=2R_i-q_{n-i}d'$		
i=0	100110x -101000 10010x	_	2R ₀ =2D q ₂ d' R ₁	d' < 2R ₀	=>	Q= 1
i=1	10010xx -101000 1000xx		2R ₁ q ₁ d' R ₂	d' < 2R ₁	=>	Q=11
i=2	1000xxx - <u>101000</u> 011xxx	_	$2R_2$ q_0d' R = 011	d' < 2R ₂	=>	Q=11 1

Pravidlo pro určení q_{n-i}

Z příkladu plyne pravidlo pro určení q_{n-i} :

```
když d' je větší než 2R_i, pak q_{n-i} = 0, jinak q_{n-i} = 1.
```

V praxi se porovnávání čísel založené na použití komparátorů nepoužívá. Odečtení se provede vždy (zkusmo), tedy

když
$$2R_i$$
 - d je **menší** než 0, pak $q_{n-i} = 0$, jinak $q_{n-i} = 1$.

Dva postupy dělení

- a) Je-li $q_{n-j}=0$, pak je výsledek "zkušebního" odečtení $R_{j+1}=2R_j-d'$. Správný zbytek má ale být $R_{j+1}=2R_j$. Správný zbytek dostaneme opravou, přičtením +d', což nazýváme **restaurací nezáporného zbytku** (návrat k nezápornému zbytku), tedy $R_{j+1}:=R_{j+1}'+d'$. Je-li pravděpodobnost výskytu jedničky v podílu Q rovna 1/2, potřebujeme pro n odečtení v průměru ještě n/2 krát přičítat.
- b) Postup bez restaurace nezáporného zbytku (bez návratu k nezápornému zbytku):

```
když q_{n-i} = 1 (R_i větší než 0), použijeme vztah R_{i+1} := 2R_i - d', když q_{n-i} = 0, použijeme vztah R_{i+1} := 2R_i + d'.
```

Postup je úspornější, protože v každém kroku jen přičítáme d', nebo odčítáme d', nikdy neprovádíme obě operace. Při dělení bez restaurace tedy provedeme n aritmetických operací (+ nebo -), při dělení s restaurací 3/2 n operací.

30=00011110, 7=0111, -7=1001 0011110X 2 D Příklad: 30:7=4, +1001 -d <0 => c3 = 0**1**100110x zb 2 100110xx posuv +0111 +d bez návratu k **0**00010xx >0 => c2 = 1nezápornému zbytku 00010xxx posuv +1001 -d **1**0100xxx <0 => c1 = 00100xxxx posuv +0111 +d **1**011xxxx <0 => c0 = 0+0111 +d (korekce na kladný zbytek)

zbytek 2

0010xxxx

Princip realizace kombinační 4b děličky

(bez návratu k nezápornému zbytku)

Základní stavební prvek: konfigurovatelná sčítačka/odčítačka

Dělení SRT

Dělení čísel se znaménkem se po dlouhou dobu převádělo na dělení absolutních hodnot a dodatečné určení znaménka výsledku. Tuto nedokonalost odstranil *algoritmus SRT* autorů Sweeneyho, Robertsona a Tochera (1958). Prováděné operace se pro každý krok určují "zejména" podle nejvyšších bitů průběžného zbytku R_i .

Pro demonstraci principu uvedeme základní metodu, kdy se operace provádí podle 3 nejvyšších bitů R_i.

Ri	d>0 bit podílu	d>0	d<0 bit podílu	d<0
	bit poulu	operace	bit podiid	operace
000 111	0	posuv vlevo	0	posuv vlevo
001 010 011	1	-d, posuv vlevo	-1	+d, posuv vlevo
101 110 100	-1	+d, posuv vlevo	1	-d, posuv vlevo

49=00110001, 7=0111, -7=1001 -49=11001111 (d>0)

Uplatníme váhy
$$2^{n}...2^{0}$$

Q = -1 1 0 1 -1, tj.
 $-16+8+0+2-1 = -7$

Příklad:

-49:7=-7, zb. 0 SRT

Ri	d>0 bit podílu	d>0 operace	d<0 bit podílu	d<0 operace
000 111	0	posuv vlevo	0	posuv vlevo
001 010 011	1	-d, posuv vlevo	-1	+d, posuv vlevo
101 110 100	-1	+d, posuv vlevo	1	-d, posuv vlevo

Pozn. V případě záporného zbytku je zapotřebí provést korekci na kladný zbytek a **zvýšit** (pro d<0), popř. **snížit** (pro d>0) Q o 1.

Reálný algoritmus dělení SRT

Praktické realizace postupu SRT určují hodnotu číslice podílu podle více bitů průběžného (okamžitého) zbytku a podle více bitů dělitele.

Dále pracují s kódováním "několik bitů najednou".

Například v Pentiu se určují číslice podílu **podle 7 bitů průběžného zbytku a podle 5 bitů hodnoty dělitele**. Používá se radix 4.

Chyba dělení u Pentia (listopad 1994, ztráta \$475M)

! D~d

Intel Corporation (Nov. 1994)

chybny odhad: O misto +2 v I: NV, REM, TRANSC. F.

10

Obvodové realizace dělení: Shrnutí

- Sekvenční děličky
 - viz předchozí slidy
- Kombinační dělička
 - založena na úplné odčítačce
 - obvodová struktura je podobná kombinační násobičce
- Iterační dělička
 - viz další přednáška