

SENIOR CERTIFICATE EXAMINATIONS/ SENIORSERTIFIKAAT-EKSAMEN NATIONAL SENIOR CERTIFICATE EXAMINATIONS/ NASIONALE SENIORSERTIFIKAAT-EKSAMEN

MATHEMATICS P2/WISKUNDE V2

MARKING GUIDELINES/NASIENRIGLYNE

MAY/JUNE/MEI/JUNIE 2024

MARKS: 150 *PUNTE: 150*

These marking guidelines consist of 26 pages./ Hierdie nasienriglyne bestaan uit 26 bladsye.

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out an attempt of a question and did not redo the question, mark the crossed out version.
- Consistent accuracy applies in ALL aspects of the Marking Guidelines. Stop marking at the second calculation error.
- Assuming answers/values in order to solve a problem is NOT acceptable.

LET WEL:

- As 'n kandidaat 'n vraag TWEE KEER beantwoord, sien slegs die EERSTE poging na.
- As 'n kandidaat 'n antwoord op 'n vraag doodtrek en nie oordoen nie, sien die doodgetrekte poging na.
- Volgehoue akkuraatheid word in ALLE aspekte van die Nasienriglyne toegepas. Hou op nasien by die tweede berekeningsfout.
- Aanvaar van antwoorde/waardes om 'n probleem op te los, word NIE toegelaat nie.

GEOMETRY				
G	A mark for a correct statement (A statement mark is independent of a reason)			
S	'n Punt vir 'n korrekte bewering ('n Punt vir 'n bewering is onafhanklik van die rede)			
R	A mark for the correct reason (A reason mark may only be awarded if the statement is correct)			
K	'n Punt vir 'n korrekte rede ('n Punt word slegs vir die rede toegeken as die bewering korrek is)			
S/R	Award a mark if statement AND reason are both correct			
	Ken 'n punt toe as die bewering EN rede beide korrek is			

2.1					
2.1	Distance (x km)	Frequency	Cumulative frequency		
	$0 \le x < 5$	3	3		
	$5 \le x < 10$	7	10		✓ 10
	$10 \le x < 15$	20	30		✓ all values
	$15 \le x < 20$	12	42		correct
	$20 \le x < 25$	5	47		
	$25 \le x < 30$	3	50		(2)
2.2		Ogive/	 Ogief		
	Cumulative frequency/ Kumulative frequency/ Kumulative frequency/ Section 15 10 5 0 0	5 10 1:		30	✓ grounding ✓ plotting a min of 3 points (cf at upper limits) ✓ smooth, increasing curve
		Distanc	e/Afstand		
			km)		(3)
2.3	$Q_3 = 17.8$			√	Q_3 (accept between
	$\mathbf{Q}_1 = 11$				17-19) and
					Q ₁ (accept between
					10-12,5)
	IQR = 6.8			✓	
					(accept 5-9)
					(2)

SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

2.4	$5 \le x < 10$	\checkmark 5 \leq x $<$ 10	
			(1)
2.5	Estimated mean = $\frac{2,5(3) + 7,5(11) + 12,5(20) + 17,5(8) + 22,5(5) + 27,5(3)}{50}$	✓ new frequencies	
	$=\frac{675}{50}$	$\checkmark \sum fx$	
	=13,5 km	✓ answer	(3)
			[11]

3.1	y = kx + 3	
	4 = k(3) + 3	✓ substitution (3; 4)
	3k=1	
	$\therefore k = \frac{1}{3}$	
	3	(1)
	OR	` ` `
	y-intercept of AB: (0; 3)	
	$m_{AB} = \frac{4-3}{3-0}$	✓ substitution (0; 3)
	$=\frac{1}{3}$	
	$\therefore k = \frac{1}{3}$	(1)
3.2	$0 = \frac{1}{3}x + 3$	$\checkmark y = 0$
	$-3 = \frac{1}{3}x$ $x = -9$ $B(-9; 0)$	
	x = -9	(0.0000000
	B(-9; 0)	✓ answer (2)

2.2		(– (-)
3.3	F(0;-2)	$\checkmark F(0;-2)$
	$F\left(\frac{x+3}{2}; \frac{y+4}{2}\right)$	
		x+3 $y+4$
	$\frac{x+3}{2} = 0$ $\frac{y+4}{2} = -2$	$\sqrt{\frac{x+3}{2}} = 0$; $\frac{y+4}{2} = -2$
	$\begin{array}{ccc} z & z \\ x = -3 & y = -8 \end{array}$	
	C(-3;-8)	/ r value / v value
		\checkmark x-value \checkmark y-value (4)
	OR by translation	,
	F(0, 2)	/ E(0, 2)
	F(0;-2)	$\checkmark F(0;-2)$
	$A \to F(x;y) \to (x-3;y-6)$	$\checkmark (x-3;y-6)$
	$F \rightarrow C(0;-2) \rightarrow (0-3;-2-6) = (-3;-8)$	✓ x-value ✓ y-value
3.4	0 (8)	(4)
3.4	$m_{\rm BC} = \frac{0 - (-8)}{-9 - (-3)}$ OR $m_{\rm BC} = \frac{-8 - 0}{-3 - (-9)}$	✓ substitution of B and C into the
	-9-(-3) -3-(-9)	gradient formula
	4	
	$m_{\rm BC} = -\frac{4}{3}$	$\checkmark m_{\mathrm{BC}}$
	$y = -\frac{4}{3}x + c$	/
	3	$\checkmark m_{\text{line}} = m_{\text{BC}}$
	$(-2) = -\frac{4}{3}(-15) + c$	✓ substitution of $S(-15;-2)$
	3	,
	c = -22	
	$y = -\frac{4}{3}x - 22$	/ aquation
	3	✓ equation (5)
	OR	
	$m_{\rm BC} = \frac{0 - (-8)}{-9 - (-3)}$ OR $m_{\rm BC} = \frac{-8 - 0}{-3 - (-9)}$	
	-9-(-3) $-3-(-9)$	✓ substitution into the gradient formula
	4	Torritaria
	$m_{\rm BC} = -\frac{4}{3}$	✓ m _{BC}
	3	BC.
	$y - y_1 = -\frac{4}{3}(x - x_1)$	
		$\checkmark m_{\text{line}} = m_{\text{BC}}$
	$y-(-2)=-\frac{4}{3}(x-(-15))$	✓ substitution of $S(-15;-2)$
		540541441011 01 5(13, 2)
	$y + 2 = -\frac{4}{3}x - 20$	
	$y = -\frac{4}{3}x - 22$	
	3 3 22	✓ equation
		(5)

SC/SS/NSC/NSS - Marking Guidelines/Nasienriglyne

3.5
$$\tan \alpha = m_{AC} = 2$$
$$\alpha = 63,43^{\circ}$$
$$\tan A\hat{B}D = m_{AS} = \frac{1}{3}$$
$$A\hat{B}D = 18,43^{\circ}$$

$$B\hat{A}C = \alpha - A\hat{B}D$$

$$B\hat{A}C = 63,43^{\circ} - 18,43^{\circ}$$

$$\hat{BAC} = 45^{\circ}$$

OR

$$AB = \sqrt{(-9-3)^2 + (0-4)^2}$$

$$AB = 4\sqrt{10}$$

$$BD = 10$$

$$AD = \sqrt{(3-1)^2 + (4-0)^2}$$

$$AD = 2\sqrt{5}$$

 $\hat{BAC} = 45^{\circ}$

$$BD^{2} = AB^{2} + AD^{2} - 2AB.AD\cos B\hat{A}C$$

$$(10)^{2} = \left(4\sqrt{10}\right)^{2} + \left(2\sqrt{5}\right)^{2} - 2\left(4\sqrt{10}\right)\left(2\sqrt{5}\right)\cos B\hat{A}C$$

$$\cos B\hat{A}C = \frac{\sqrt{2}}{2}$$

$$\checkmark \tan \alpha = m_{\rm AC} = 2$$

$$\sqrt{\alpha} = 63,43^{\circ}$$

$$\checkmark \tan A\hat{B}D = m_{AS} = \frac{1}{3}$$

$$\checkmark A\hat{B}D = 18,43^{\circ}$$

✓ answer

✓ length of AB

✓ calculation of remaining 2 lengths

✓ substitution into cosine-rule

✓ rewriting in terms of cos BÂC

✓ answer

(5)

(5)

3.6	A(3; 4) and S(-15; -2)		
	AS = $\sqrt{(x_A - x_S)^2 + (y_A - y_S)^2}$		
	AS = $\sqrt{(3-(-15))^2+(4-(-2))^2}$	$\checkmark AS = \sqrt{(3-(-15))^2 + (4-(-2))^2}$	
	$AS = \sqrt{360} = 6\sqrt{10} = 18,97$	✓ length of AS	
	$\frac{\text{Area of } \Delta ABD}{\text{Area of } \Delta ASC} = \frac{\frac{1}{2}(BD)(\bot h)}{\frac{1}{2}(AS)(AC)\sin BAC}$		
	$\frac{\text{Area of } \Delta ABD}{\text{Area of } \Delta ASC} = \frac{\frac{1}{2}(10)(4)}{\frac{1}{2}(6\sqrt{10})(6\sqrt{5})\sin 45^{\circ}}$	✓ Area ∆ABD	
	Area of $\triangle ASC$ = $\frac{1}{2} \left(6\sqrt{10}\right) \left(6\sqrt{5}\right) \sin 45^{\circ}$	✓ Area ∆ASC	
	$\frac{\text{Area of } \Delta \text{ABD}}{\text{Area of } \Delta \text{ASC}} = \frac{2}{9}$	✓ answer	(5)
	OR		
	$AS = \sqrt{(3 - (-15))^2 + (4 - (-2))^2}$	$\checkmark AS = \sqrt{(3-(-15))^2 + (4-(-2))^2}$	
	$AS = \sqrt{360} = 6\sqrt{10} = 18,97$	✓ length of AS	
	$AB = \sqrt{(-9-3)^2 + (0-4)^2} = 4\sqrt{10}$		
	$AD = \sqrt{(3-1)^2 + (4-0)^2} = 2\sqrt{5}$		
	$\frac{\text{Area of } \Delta ABD}{\text{Area of } \Delta ASC} = \frac{\frac{1}{2}(AB)(AD)\sin \hat{A}}{\frac{1}{2}(AS)(AC)\sin \hat{A}}$		
	$\frac{1}{2}\left(4\sqrt{10}\right)\left(2\sqrt{5}\right)\sin\hat{A}$	✓ Area ∆ABD	
	$= \frac{\frac{1}{2} \left(4\sqrt{10}\right) \left(2\sqrt{5}\right) \sin \hat{A}}{\frac{1}{2} \left(6\sqrt{10}\right) \left(6\sqrt{5}\right) \sin \hat{A}}$	✓ Area ∆ASC	
	$=\frac{2}{9}$	✓ answer	
	,		(5) [22]

4.1	$E\left(\frac{5+\left(-3\right)}{2};\frac{1+\left(-3\right)}{2}\right)$		
	: E(1;-1)		$\checkmark x = 1 \checkmark y = -1 \tag{2}$
4.2	$AB = \sqrt{(x_A - x_B)^2 + (y_A - y_B)^2}$		(-)
	AB = $\sqrt{(x_A - x_B)^2 + (y_A - y_B)^2}$ AB = $\sqrt{(5 - (-3))^2 + (1 - (-3))^2}$		
	AB = $\sqrt{80}$ = $4\sqrt{5}$ = 8,94 units		$\checkmark AB = \sqrt{80} = 4\sqrt{5} = 8,94$ (1)
4.3	$m_{AB} = \frac{1 - (-3)}{5 - (-3)}$		
	$m_{AB} = \frac{1}{2}$		$ \checkmark m_{AB} = \frac{1}{2} $
	$\therefore m_{\rm CE} = -2 \qquad [CE \perp AB]$		✓ m _{CE}
	E(1;-1)		
	y = -2x + c OR	$y - y_1 = -2(x - x_1)$	
	(-1) = -2(1) + c	y-(-1)=-2(x-1)	✓ substitution of E
	c = 1 $y = -2x + 1$	y = -2x + 1	✓ equation (4)

SC/SS/NSC/NSS - Marking Guidelines/Nasienriglyne

4.4
$$y = -2x + 1$$

 $p = -2(2) + 1$
 $p = -3$

OR

$$m_{CE} = -2$$

$$\frac{p - (-1)}{2 - 1} = -2$$

$$p + 1 = -2$$

$$p = -3$$

4.5 BC = $r = 5$ units
$$\therefore (x - 2)^2 + (y + 3)^2 = 25$$

$$x^2 - 4x + 4 + y^2 + 6y + 9 = 25$$

$$x^2 + y^2 - 4x + 6y - 12 = 0$$
 \checkmark substitution of C(2; p) into \bot bisector of AB

(1)

$$\checkmark$$
 Substitution of C and E into the gradient formula
$$\checkmark$$
 BC = $r = 5$ units
$$\checkmark (x - 2)^2 + (y + 3)^2 \checkmark r^2$$

$$\checkmark x^2 - 4x + 4 + y^2 + 6y + 9 = 25$$

$$\checkmark x^2 - 4x + 4 + y^2 + 6y + 9 = 25$$

$$(4)$$

4.6	$(x-2)^2 + (y+3)^2 = 25$ OR $x^2 + y^2 - 4x + 6y - 12 = 0$	
	y = tx + 8	
	$(x-2)^2 + (tx+8+3)^2 = 25$ OR $x^2 + (tx+8)^2 - 4x + 6(tx+8) - 12 = 0$	✓ substitution
	$x^{2} - 4x + 4 + t^{2}x^{2} + 22tx + 121 - 25 = 0$ OR $x^{2} + t^{2}x^{2} + 16tx + 64 - 4x + 6tx + 48 - 12 = 0$	of $y = tx + 8$
	$x^{2}(t^{2}+1)+x(22t-4)+100=0$	✓ standard
	$\Delta < 0$	form
	$\Delta < 0$	✓ Δ < 0
	$(22t-4)^2-4(t^2+1)(100)<0$	
	$484t^2 - 176t + 16 - 400t^2 - 400 < 0$	
	$84t^2 - 176t - 384 < 0$	
	$21t^2 - 44t - 96 < 0$	✓ standard form
	(7t-24)(3t+4) < 0	of Δ
	24 4	
	CV: $\frac{24}{7}$; $-\frac{4}{3}$	✓ critical values
		varues
	+ - + +	
	_4 24	
	3 7	
	(4 24) 4 24	
	$\therefore t \in \left(-\frac{4}{3}; \frac{24}{7}\right) \qquad \mathbf{OR} \qquad -\frac{4}{3} < t < \frac{24}{7}$	✓ answer
		(6)
		[18]

5.1.1	sin 220°	
	$=-\sin 40^{\circ}$	✓ -sin 40°
	=-p	✓ answer
		(2)
5.1.2	$\cos^2 50^\circ$	
	$=\sin^2 40^\circ$	$\sqrt{\sin^2 40}$
	$=p^2$	✓ answer
7.1.0		(2)
5.1.3		
	$=\cos 80^{\circ}$	✓ cos 80°
	$=1-2\sin^2 40^\circ$	✓ double angle
	$=1-2p^2$	√ answer
		(3)
	OR	
	$\cos(-80^\circ)$	
	$=\cos 80^{\circ}$	✓ cos 80°
	$=\cos(30^\circ + 50^\circ)$	
	$=\cos 30^{\circ}\cos 50^{\circ} - \sin 30^{\circ}\sin 50^{\circ}$	√ expansion
	$=\frac{\sqrt{3}p}{2}-\frac{\sqrt{1-p^2}}{2}$	✓ answer
	$=\frac{1}{2}-\frac{1}{2}$	(3)
5.2.1	$LHS = \tan x (1 - \cos^2 x) + \cos^2 x$	(5)
		$\sqrt{\frac{\sin x}{\sin^2 x}}$ $\sqrt{\sin^2 x}$
	$= \frac{\sin x}{\cos x} \left(\sin^2 x\right) + \cos^2 x$	$\frac{\sqrt{\cos x}}{\cos x}$
	$=\frac{\sin^3 x + \cos^3 x}{\sin^3 x + \cos^3 x}$	
	$=\frac{\sin x + \cos x}{\cos x}$	✓ simplification
		✓ factorisation of cubes
	$= \frac{(\sin x + \cos x)(\sin^2 x - \sin x \cos x + \cos^2 x)}{(\sin^2 x - \sin x \cos x + \cos^2 x)}$	ractorisation of cubes
	$\cos x$	
	$= \frac{(\sin x + \cos x)(1 - \sin x \cos x)}{(\sin x + \cos x)}$	$\checkmark \sin^2 x + \cos^2 x = 1$
	$\cos x$	(5)
	= RHS	
	OR	
		l .

	,	
	$RHS = \frac{(\sin x + \cos x)(1 - \sin x \cos x)}{(\sin x + \cos x)(1 - \sin x \cos x)}$	✓ multiplication
	$\cos x$	
	$= \frac{\sin x - \sin^2 x \cos x + \cos x - \sin x \cos^2 x}{\sin^2 x \cos^2 x + \cos^2 x}$	\checkmark ÷ by $\cos x$
	$\cos x$	$\sqrt{-\sin^2 x + 1} = \cos^2 x$
	$= \tan x - \sin^2 x + 1 - \sin x \cos x$	✓ factorisation
	$= \tan x + \cos^2 x - \sin x \cos x$	lactorisation
	$= \tan x \left(1 - \frac{\sin x \cos x}{\tan x} \right) + \cos^2 x$	$ \sqrt{\tan x} = \frac{\sin x}{\cos x} $
	$= \tan x \left(1 - \frac{\sin x \cos x}{\frac{\sin x}{\cos x}} \right) + \cos^2 x$	(5)
	$= \tan x \left(1 - \cos^2 x\right) + \cos^2 x$	(5)
	= LHS	
5.2.2	$\cos x = 0$ or where $\tan x$ is undefined	$\sqrt{\cos x} = 0$ or $\tan x$ undefined
3.2.2	$x = 90^{\circ} + k.360^{\circ}$ or $x = 270^{\circ} + k.360^{\circ}$	$\sqrt{\cos x} = 0$ of tall x underlined
	$x = 90^{\circ}$ or $x = -90^{\circ}$	$\checkmark x = 90^{\circ} \checkmark x = -90^{\circ} $ (3)
5.3.1	$\sin 150^{\circ} + \cos^2 x - 1$	
	2	
	$=\frac{\sin 30^\circ + \cos^2 x - 1}{2}$	✓ sin 30°
	$=\frac{\frac{1}{2}-\left(1-\cos^2 x\right)}{2}$	$\checkmark \sin 30^\circ = \frac{1}{2} \checkmark \text{factor}$
	$= \left(\frac{1}{2} - \sin^2 x\right) \times \frac{1}{2}$	$\sqrt{1-\cos^2 x} = \sin^2 x$
	$=\frac{1-2\sin^2 x}{4}$	✓ simplification
	$=\frac{\cos 2x}{4}$	\checkmark answer in terms of $\cos 2x$ (6)
5.3.2	$\frac{\sin 150^{\circ} + \cos^{2} x - 1}{2} = \frac{1}{25}$ $\frac{\cos 2x}{4} = \frac{1}{25}$ $\cos 2x = \frac{4}{25}$	✓ answer $5.3.1 = \frac{1}{25}$
	ref $\angle = 80,79^{\circ}$ $2x = 80,79^{\circ} + k.360^{\circ}$ or $2x = 279,20^{\circ} + k.360^{\circ}$ $x = 40,40^{\circ} + k.180^{\circ}$ or $x = 139,60^{\circ} + k.180^{\circ}$; $k \in \mathbb{Z}$	√ 2x = 80,79° $ √ 2x = 279,20° $ $ √ x = 40,40° and x = 139,60° $ $ √ + k.180°; k ∈ Z $ (5)

OR	
$\frac{\sin 150^\circ + \cos^2 x - 1}{2} = \frac{1}{25}$	
$\sin 150^\circ + \cos^2 x - 1 = \frac{2}{25}$	
$\sin 30^{\circ} + \cos^2 x - 1 = \frac{2}{25}$	
$\cos^2 x = \frac{29}{50}$	
$\cos x = \pm \sqrt{\frac{29}{50}}$	$\checkmark \cos^2 x = \frac{29}{50}$
$x = 40,40^{\circ} + k.360^{\circ}$ or $x = 319,60^{\circ} + k.360^{\circ}$; $k \in \mathbb{Z}$	
or $x = 139,60^{\circ} + k.360^{\circ}$ or $x = 220,40^{\circ} + k.360^{\circ}$; $k \in \mathbb{Z}$	$\checkmark x = 40,40^{\circ} \checkmark x = 139,60^{\circ}$
	$\checkmark x = 220,40^{\circ} \text{ and } x = 319,60$
	$\checkmark + k.360^{\circ}; k \in \mathbb{Z}$
	(1)

6.1	Period = 360°	√ 360°
6.2	Amplitude = 1	(1) ✓ 1
		(1)
6.3	$a = -45^{\circ}$	$\checkmark a = -45^{\circ} $ (1)
6.4	$\sin 2x = k$	
	$k = \sin(2 \times 165^{\circ}) \mathbf{OR} k = \sin(2 \times (-75^{\circ}))$ $k = \sin 330^{\circ} k = \sin(-150^{\circ})$ $k = -\sin 30^{\circ}$ $k = -\frac{1}{2}$	$\begin{array}{c} \checkmark -\sin 30^{\circ} \\ \checkmark -\frac{1}{2} \end{array}$ (2)
	OR	
	$k = \cos(165^{\circ} - 45^{\circ})$ OR $k = \cos(-75^{\circ} - 45^{\circ})$ $k = \cos 120^{\circ}$ $k = \cos(-120^{\circ})$ $k = -\cos 60^{\circ}$ $k = -\frac{1}{2}$	$\begin{array}{c} \checkmark -\cos 60^{\circ} \\ \checkmark -\frac{1}{2} \end{array}$
6.5	Points of intersection are translated 60° to the left $x = -15^{\circ}$	$\checkmark x = -15^{\circ}$
6.6		(1)
6.6	$\sqrt{2}\sin 2x = \sin x + \cos x$ $\sin 2x = \frac{1}{\sqrt{2}}\sin x + \frac{1}{\sqrt{2}}\cos x$ $\sin 2x = \sin 45^{\circ}\sin x + \cos 45^{\circ}\cos x$ $\sin 2x = \cos(45^{\circ} - x) \mathbf{OR} \sin 2x = \cos(x - 45^{\circ})$	✓ division by $\sqrt{2}$ ✓ special angles ✓ $\cos(45^{\circ}-x)$ or $\cos(x-45^{\circ})$
	∴ 2 roots in the interval $x \in [-90^\circ; 90^\circ]$	✓ answer
		(4) [10]

7.1

7.1.1	$\sin \hat{\mathbf{B}} = \frac{\mathbf{A}\mathbf{D}}{\mathbf{A}\mathbf{B}}$	$\checkmark \sin \hat{B} = \frac{AD}{AB}$
	$AD = AB \sin \hat{B}$	✓ answer
7.1.2	Area of $\triangle ABC = \frac{1}{2}(BC)(AD)$	$\checkmark \frac{1}{2}(BC)(AD)$
7.1.2	2	$2^{(BC)(RD)}$
	$\therefore \text{ Area of } \Delta ABC = \frac{1}{2} (BC)(AB) \sin \hat{B}$	(1)

7.2

7.2.1	In ΔADB	
	$\sin \alpha - AB$	$\int \sin \alpha = AB$
	$\sin \alpha = \frac{AB}{AD}$	$\checkmark \sin \alpha = \frac{AB}{AD}$
	AD = AB	
	$AD = \frac{AB}{\sin \alpha}$	
	In ΔABC	
	$\sin \alpha - \frac{AB}{AB}$	$\sqrt{\sin \alpha} = \frac{AB}{AB}$
	$\sin \alpha = \frac{AB}{AC}$	$\sqrt{\sin \alpha} = \frac{AB}{AC}$
	$AC = \frac{AB}{\sin \alpha}$	
	$AC = \frac{1}{\sin \alpha}$	
	AD = AC	(2)
	OR	
	In $\triangle ADB$ and $\triangle ACB$	

	AB = AB $\hat{ABD} = \hat{ABC} = 90^{\circ}$ BD = BC $\hat{\Delta}ADB = \hat{\Delta}ACB$ ∴ AD = AC	[common side] [given] [given] [S∠S]	\checkmark ΔADB ≡ ΔACB \checkmark R (2)
	OR		
	In $\triangle ADB$ and $\triangle ACB$ $A\hat{D}B = A\hat{C}B = \alpha$ $A\hat{B}D = A\hat{B}C = 90^{\circ}$ AB = AB OR $BD = BC\therefore \triangle ADB = \triangle ACB\therefore AD = AC$	[given] [given] [common side OR given] [∠∠S]	$\checkmark \Delta ADB \equiv \Delta ACB \checkmark R$ (2)
	OR $AD^{2} = AB^{2} + DB^{2}$ $AC^{2} = AB^{2} + BC^{2}$ But DB = BC $\therefore AD^{2} = AC^{2}$	[Pythagoras] [Pythagoras] [given]	✓ both Pythagoras statements✓ DB = BC
	$\therefore AD = AC$		(2)
7.2.2	$\frac{BD}{\sin \theta} = \frac{k}{\sin (180^{\circ} - 2\theta)}$ $BD = \frac{k \sin \theta}{\sin 2\theta}$ $BD = \frac{k \sin \theta}{2 \sin \theta \cos \theta}$ $BD = \frac{k}{2 \cos \theta}$		✓ substitution of (180°-2θ) into sine rule ✓ reduction ✓ double angle
	OR		(3)
	$BC^{2} = k^{2} + BD^{2} - 2k(BD)co$ $BD^{2} = k^{2} + BD^{2} - 2k(BD)co$ $k^{2} - 2k(BD)cos\theta = 0$ $2k(BD)cos\theta = k^{2}$ $\therefore BD = \frac{k}{2cos\theta}$		✓ substitution into cosine- rule ✓ substitution BC with BD into cosine-rule ✓ simplification in terms of BD (3)

7.2.3	Area of $\triangle BCD = \frac{1}{2}(DC)(BD)(\sin C\hat{D}B)$	✓ substitution into area rule
	$=\frac{1}{2}k\left(\frac{k}{2\cos\theta}\right)\sin\theta$	$\sqrt{\frac{\sin\theta}{\cos\theta}} = \tan\theta$
	$=\frac{1}{4}k^2\tan\theta$	$\checkmark \frac{\sin \theta}{\cos \theta} = \tan \theta$ $\checkmark \frac{1}{4}k^2 \tan \theta$
	OR	(3)
	Area of $\triangle BCD = \frac{1}{2} (BD)(BC) (\sin(180^{\circ} - 2\theta))$	✓ substitution into area rule
	$= \frac{1}{2} \left(\frac{k}{2 \cos \theta} \right) \left(\frac{k}{2 \cos \theta} \right) (\sin 2\theta)$	
	$=\frac{2k^2\sin\theta\cos\theta}{8\cos\theta\cos\theta}$	$\sqrt{\frac{\sin \theta}{\cos \theta}} = \tan \theta$ $\sqrt{\frac{1}{4}k^2 \tan \theta}$
	$=\frac{1}{4}k^2\tan\theta$	$\sqrt{\frac{1}{4}k^2}\tan\theta$
		(3)
		[11]

8.1

Construction: Draw diameter CF and draw AF Konstruksie: Trek middellyn CF en verbind AF		✓ Constr	
FĈE = 90°	$[\tan \perp \text{radius}/\text{raaklyn} \perp \text{radius}]$	✓ S ✓ R	
FÂC = 90°	[∠ in semi circle/∠in halwe sirkel]	✓ S/R	
FÂB = FĈB	[∠s same segment/∠e dieselfde segm]	✓ S/R	
∴ BÂC=BĈE			. . .
∴BĈE=Â			(5)

OR

8.1

	Construction: Draw diameter CF and draw FB Konstruksie: Trek middellyn CF en verbind FB	
$F\hat{B}C = 90^{\circ}$ $B\hat{F}C + F\hat{C}B = 90^{\circ}$	[\angle in semi circle/ \angle in halwe sirkel] [sum of \angle s in \triangle /binne \angle e v \triangle]	✓ S/R
OĈE = 90° ∴ BĈE = F	[tan \perp radius/ raaklyn \perp radius]	✓ S ✓ R
but $\hat{A} = \hat{F}$	[∠s in same seg/∠in dies. segment]	✓ S / R
∴BĈE=Â		(5)

OR

8.1

	Construction: Draw radii		✓ construction
	Konstruksie: Trek radiu. OĈE=90° or BĈE=9	sse BO en OC $00^{\circ} - \hat{OCB}$ [tan \perp radius / raaklyn \perp radius]	✓ S ✓R
	$\hat{OCB} = \hat{OBC}$ $\therefore \hat{COB} = 180^{\circ} - 2\hat{OCB}$	[∠s opp equal sides/ ∠e teenoor gelyke sye] [∠s of ∆/∠e van ∆]	✓ S
	$\hat{CAB} = 90^{\circ} - \hat{OCB}$	[\angle at centre = $2 \times \angle$ circumf/ midpts \angle = $2 \times$ omtreks \angle]	✓ S/R
•	∴ BĈE=CÂB		(5)

8.2

8.2.1	$\hat{P} = \hat{R}_2 = 68^{\circ}$	[ext \angle of cyclic quad /buite \angle van kvh]	✓ S ✓ R	(2)
8.2.2	$\hat{Q}_1 = \hat{S}_2$ $\hat{Q}_1 + \hat{S}_2 = 68^{\circ}$ $\therefore \hat{Q}_1 = 34^{\circ}$	[\angle s opp equal sides / \angle e teenoor gelyke sye] [ext \angle of Δ / buite \angle van Δ]	✓ S ✓ S	
8.2.3	$\hat{\mathbf{S}}_1 = \hat{\mathbf{Q}}_1 = 34^{\circ}$	[tan-chord theorem/\(\angle\) tussen rkl en koord]	✓ S ✓ R	(2)
				[11]

9.1	$\hat{A}_2 = \hat{D}_1 = 37^{\circ}$	$[\angle s \text{ in the same seg}/\angle e \text{ in dies segment}]$	✓ S ✓ R
	$\hat{A}_1 = \hat{A}_2 = 37^\circ$	[BA bisects CÂD/BA halveer CÂD]	. 5 · K
	$\hat{D}_3 = \hat{A}_1 = 37^{\circ}$	[\angle s opp equal sides/ \angle e teenoor gelyke sye]	✓✓ any other two
	$\hat{C}_2 = \hat{A}_2 = 37^\circ$	[\(\s \text{ opp equal sides} \) \(\setting \text{ teenoor gelyke sye} \)	statements
	$C_2 = H_2 = 31$	[28 opp equal sides/2e techool getyke sye]	(4)
9.2	ADG=53°	[∠ in semi circle/∠ in halwe sirkel]	✓ S ✓ R
	$\hat{A}_1 = 37^{\circ}$	[proved in 9.1/reeds bewys in 9.1]	
	$\therefore \hat{G}_1 = 90^{\circ}$	[sum of \angle s in \triangle /binne \angle e van \triangle]	✓ S
	∴CG = DG	[line from centre \perp to chord/	✓ R
		lyn uit midpt. \perp op koord]	(4)
	OR		
	$\hat{F}_2 = 2\hat{D}_1 = 74^{\circ}$	$[\angle$ at centre = 2 × \angle at circumference/	✓ S ✓ R
		$midpt. \ \angle s = 2 \times omtreks \angle]$	
	$\hat{\mathbf{D}}_3 = 37^{\circ}$	[proved in 9.1/reeds bewys in 9.1]	
	$\therefore \hat{D}_2 = 16^{\circ}$	[∠ in semi circle/∠ in halwe sirkel]	
	$\hat{\mathbf{C}}_1 = \hat{\mathbf{D}}_2 = 16^{\circ}$	[∠s opp equal sides/∠e teenoor gelyke sye]	
	$\therefore \hat{G}_2 = 90^{\circ}$	[sum of \angle s in \triangle /binne \angle e van \triangle]	✓ S
	∴CG = DG	[line from centre \perp to chord/	✓ R
		lyn uit midpt. \perp op koord]	
			(4)

9.3	$\hat{F}_2 = 2\hat{D}_1 = 74^{\circ} \text{ OR } \hat{F}_2 = 2\hat{A}$	$_2 = 74^{\circ} [\angle \text{ at centre} = 2 \times \angle \text{ at circum.}/$	✓ S
		$midpt. \ \angle s = 2 \times omtreks \angle]$	
	$\frac{FG}{20} = \cos 74^{\circ}$		✓ trig ratio
	20 FG = 5,51		✓ FG
	$\therefore BG = 14,49 \text{ units}$		✓ answer
			(4)
	OR		
	$\hat{F}_2 = 2\hat{D}_1 = 74^{\circ}$	$[\angle$ at centre = $2 \times \angle$ at circumference	✓ S
	2 1	$midpt. \angle = 2 \times omtreks \angle$	5
	$\frac{FG}{20} = \sin 16^{\circ}$		✓ trig ratio
	20		v trig ratio
	FG = 5.51		✓ FG
	$\therefore BG = 14,49 \text{ units}$		✓ answer (4)
	OR		(4)
	DC		
	$\frac{DG}{20} = \cos 16^{\circ}$		✓ trig ratio
	DG = 19,23		✓ length of DG
	BG 270		
	$\frac{BG}{19,23} = \tan 37^{\circ}$		✓ trig ratio
	BG = 14,49 units		✓ answer
	OR		(4)
	OK		
	$\frac{DG}{20} = \cos 16^{\circ}$		✓ trig ratio
	20 DG = 19,23		✓ length of DG
	DG = 17,23		• length of DO
	$FG^2 = FD^2 - DG^2$	[Pythagoras]	
	$FG^2 = 20^2 - (19, 23)^2$		✓ correct use of
	FG = 5,51		Pythagoras
	BG = 20 - 5,51		
	= 14,49 units		✓ answer
			(4)
			[12]

10.1	$\hat{O}_1 = 90^{\circ}$	[given/gegee]		
	$\hat{F}_2 + \hat{F}_3 = 90^\circ$	$[\angle$ in semi circle/ \angle in halwe sirkel]	✓ S ✓ R	
	$\hat{O}_1 = \hat{F}_2 + \hat{F}_3 = 90^\circ$		✓ S	
	∴TODF is a cyclic quad	[ext \angle = int opp \angle /	✓ R	
		buite \angle = teenoorst. binne \angle] OR		
		[converse ext \angle of cyclic quad/ omgekeerde buite $\angle v \ kvh$]		(4)
10.2	$\hat{\mathbf{T}}_{1} = \hat{\mathbf{T}}_{3}$	[vert opp \angle s =/ regoorstaande \angle e]	✓ S/R	
	But $\hat{\mathbf{D}}_3 = \hat{\mathbf{T}}_3$	[ext \angle of cyclic quad/ buite $\angle v kvh$]	✓ S ✓ R	
	$\therefore \hat{\mathbf{T}}_1 = \hat{\mathbf{D}}_3$			(3)
10.3	In ΔDFE and ΔTFO			(0)
	1) $\hat{D}_3 = \hat{T}_3$	[ext \angle of cyclic quad/ buite $\angle v kvh$]	✓ S	
	$2) \hat{\mathbf{F}}_4 = \hat{\mathbf{C}}_2$	[tan-chord theorem/ ∠tussen rkl en koord]	✓ S/R	
	but $\hat{\mathbf{C}}_2 = \hat{\mathbf{F}}_2$	[∠s opp equal sides/ ∠e teenoor gelyke sye]	✓ S	
	$\therefore \hat{\mathbf{F}}_4 = \hat{\mathbf{F}}_2$		✓ S	
	$\hat{\mathbf{E}} = \hat{\mathbf{O}}_2$	$[3^{\mathrm{rd}} \angle \text{ of } \Delta / \angle e \text{ van } \Delta]$	✓ S OR R	
	ΔTFO ΔDFE	$[\angle\angle\angle]$		(5)
				(2)

	OR		
	In $\triangle DFE$ and $\triangle TFO$		
	$\hat{\mathbf{D}}_3 = \hat{\mathbf{T}}_3$	[ext \angle of cyclic quad/buite \angle van \triangle]	✓ S
	$\begin{array}{ccc} 2) \hat{\mathbf{F}}_4 = \hat{\mathbf{C}}_2 \\ \hat{\mathbf{C}}_2 \end{array}$	[tan-chord theorem/∠tussen rkl en koord]	✓ S/R
	$\hat{\mathbf{F}}_2 + \hat{\mathbf{F}}_3 = 90^{\circ}$	$[\angle \text{ in semi circle}/\angle \text{ in halwe sirkel}]$	
	$\hat{D}_1 + \hat{D}_2 = 90^{\circ} - \hat{C}_2$	[sum of \angle s in Δ / binne \angle e van Δ]	
	$\hat{\mathbf{E}} = 90^{\circ} - 2\hat{\mathbf{F}}_{4}$	[ext \angle of \triangle / buite \angle van \triangle]	✓ S
	$\hat{O}_3 = 2\hat{C}_2$	$[\angle$ at centre = 2 × \angle at circumference/	
		$midpt. \ \angle s = 2 \times omtreks \angle]$	
	$\hat{O}_2 = 90^{\circ} - 2\hat{F}_4$	$[\angle s \text{ on a str line}/\angle e \text{ op 'n reguitlyn}]$	✓ S
	$\hat{O}_2 = \hat{E}$		
	$3) \therefore \hat{\mathbf{F}}_4 = \hat{\mathbf{F}}_2$	$[3^{rd} \angle \text{ of } \Delta / \angle e van \Delta]$	✓ S OR R
	ΔΤΓΟ ΔDFE	[∠∠∠]	(5)
10.4	$\hat{\mathbf{B}}_2 = \hat{\mathbf{D}}_1$	[∠s opp equal sides/∠e teenoor gelyke sye]	✓ S / R
	$\hat{\mathbf{B}}_2 = \hat{\mathbf{E}}$	[given/gegee]	
	$\therefore \hat{\mathbf{D}}_{1} = \hat{\mathbf{E}}$		
	∴DB EA	[corresp \angle s =/ooreenkomstige \angle e gelyk]	✓ R
			(2)
10.5	In ΔΟΕΑ DB EA	[proven/reeds bewys]	
	$\frac{OD}{OD} - \frac{OB}{OD}$	[line one side of Δ /lyn een sy van Δ]	✓ R
	DE BA	• •	V K
		OR [prop theorem; DB EA/	
		eweredigheid stelling; DB // EA]	
	$\therefore DE = \frac{DO.AB}{OB}$		✓ S
	OB FO TO		
	$\frac{10}{\text{FE}} = \frac{10}{\text{DE}}$	$[\Delta TFO \parallel \Delta DFE]$	✓ S / R
	TO FF		
	$DE = \frac{TO.FE}{FO}$		✓ S
	DO.AB TO.FE		✓ S
	$\therefore {OB} = {FO}$, ,
	$\therefore \frac{\text{DO.AB}}{\text{DO}} = \frac{\text{TO.FE}}{\text{DO}}$	[DO = OB = FO]	
	DO DO TO.FE		
	$\therefore DO = \frac{10.1 L}{AB}$		(5)
			[19]

TOTAL/TOTAAL: 150