Analisi dei requisiti

v0.4

7Last

Versioni

Ver.	Data	Redattore	Verificatore	Descrizione
0.4 0.3	2024-04-30 2024-04-29	Elena Ferro Elena Ferro		Aggiunta casi d'uso per dati urbani Aggiunta casi d'uso per dati atmosferici
0.2 0.1	2024-04-24 2024-03-08	Elena Ferro Matteo Tiozzo		Aggiunta sezione requisiti Stesura struttura documento

Indice

1	Intro	duzione 6	•
	1.1	Scopo del documento)
	1.2	Glossario)
	1.3	Riferimenti 6)
		1.3.1 Normativi)
		1.3.2 Interni)
2	Des	crizione del prodotto 7	,
	2.1	Obiettivi del prodotto	,
	2.2	Architettura del prodotto	•
	2.3	Funzionalità del prodotto	,
	2.4	Caratteristiche degli utenti 8	}
		2.4.1 Conoscenze e competenze	}
		2.4.2 Dispositivi	}
3	Cas	d'uso 8	}
	3.1	Introduzione 8	}
	3.2	Struttura dei casi d'uso	}
	3.3	Attori)
	3.4	Elenco dei casi d'uso 9)
		3.4.1 UC-1: Visualizzazione dashboard generale)
		3.4.1.1 UC-1.1: Visualizzazione panel con tabella sensori 10)
		3.4.1.2 UC-1.2: Visualizzazione mappa interattiva sensori 11	
		3.4.1.3 UC-1.3: Visualizzazione <i>panel</i> numero sensori	
		3.4.1.4 UC-1.4: Visualizzazione tabella sensori non trasmettenti 13	,
		3.4.2 UC-2: Visualizzazione dashboard temperatura 14	
		3.4.2.1 UC-2.1: Visualizzazione grafico time series temperatura 14	
		3.4.2.2 UC-2.2: Visualizzazione mappa sensori temperatura 15	•
		3.4.2.3 UC-2.3: Visualizzazione panel temperatura media in un determina	ato
		periodo di tempo)
		3.4.2.4 UC-2.4: Visualizzazione panel temperatura in tempo reale . 17	•
		3.4.2.5 UC-2.5: Visualizzazione panel temperatura massima in un	
		determinato periodo di tempo	}
		3.4.2.6 UC-2.6: Visualizzazione panel temperatura minima in un determin	nato
		periodo di tempo)

3.4.3	UC-3: V	'isualizzazione dashboard umidità	20
	3.4.3.1	UC-3.1: Visualizzazione grafico time series umidità	21
	3.4.3.2	UC-3.2: Visualizzazione mappa sensori umidità	22
	3.4.3.3	UC-3.3: Visualizzazione panel umidità media in un determinate	O
		periodo di tempo	23
	3.4.3.4	UC-3.4: Visualizzazione panel umidità in tempo reale	24
	3.4.3.5	UC-3.5: Visualizzazione panel umidità massima in un determin	ato
		periodo di tempo	25
	3.4.3.6	UC-3.6: Visualizzazione panel umidità minima in un determina	to
		periodo di tempo	26
3.4.4	UC-4: Visualizzazione dashboard qualità dell'aria		
	3.4.4.1	UC-4.1: Visualizzazione grafico time series qualità dell'aria .	28
	3.4.4.2	UC-4.2: Visualizzazione mappa interattiva sensori qualità dell'	aria 29
	3.4.4.3	UC-4.3: Visualizzazione panel qualità dell'aria media in un	
		determinato periodo di tempo	30
	3.4.4.4	UC-4.4: Visualizzazione panel qualità dell'aria in tempo reale	31
	3.4.4.5	UC-4.5: Visualizzazione panel giorno con qualità dell'aria	
		peggiore in un determinato periodo di tempo	32
	3.4.4.6	UC-4.6: Visualizzazione panel giorno con qualità dell'aria	
		migliore in un determinato periodo di tempo	32
3.4.5	UC-5: V	'isualizzazione dashboard precipitazioni	32
	3.4.5.1	UC-5.1: Visualizzazione grafico time series quantità precipitazio	oni
		in un determinato periodo di tempo	33
	3.4.5.2	UC-5.2: Visualizzazione mappa sensori precipitazioni	34
	3.4.5.3	UC-5.3: Visualizzazione panel quantità di precipitazioni media	I
		in un determinato periodo di tempo	35
	3.4.5.4	UC-5.4: Visualizzazione panel quantità di precipitazioni in	
		tempo reale	36
	3.4.5.5	UC-5.5: Visualizzazione panel giorno con precipitazioni maggi	ori
		in un determinato periodo di tempo	37
	3.4.5.6	UC-5.6: Visualizzazione panel giorno con precipitazioni minori	
		in un determinato periodo di tempo	37
3.4.6	UC-6: V	'isualizzazione dashboard traffico	37
	3.4.6.1	UC-6.1: Visualizzazione grafico time series traffico	38
	3.4.6.2	UC-6.2: Visualizzazione mappa sensori traffico	39
	3463	UC-6.3. Visualizzazione panel numero veicoli in tempo reale	4 0

			3.4.6.4	UC-6.4: Visualizzazione panel velocità media in tempo reale	41
			3.4.6.5	UC-6.5: Visualizzazione panel calcolo ora di punta (numero	
				veicoli e velocità media)	42
		3.4.7	UC-7: Vi	isualizzazione dashboard colonnine di ricarica	42
			3.4.7.1	UC-7.1: Visualizzazione mappa colonnine di ricarica con stato	43
			3.4.7.2	UC-7.2: Visualizzazione panel numero colonnine di ricarica	
				per stato in tempo reale	44
		3.4.8	UC-8: V	isualizzazione dashboard parcheggi	45
			3.4.8.1	UC-8.1: Visualizzazione mappa interattiva parcheggi con	
				rispettivo stato di occupazione	46
			3.4.8.2	UC-8.2: Visualizzazione panel con conteggio parcheggi per	
				stato in tempo reale	47
		3.4.9	UC-9: V	isualizzazione dashboard isole ecologiche	48
			3.4.9.1	UC-9.1: Visualizzazione panel con conteggio isole ecologiche	
				piene in tempo reale	49
			3.4.9.2	UC-9.2: Visualizzazione mappa interattiva isole ecologiche	
				per stato di riempimento	50
		3.4.10	UC-10: \	Visualizzazione dashboard livello di acqua	51
			3.4.10.1	UC-10.1: Visualizzazione grafico time series livello di acqua	52
			3.4.10.2	UC-10.2: Visualizzazione mappa sensori livello di acqua	53
			3.4.10.3	UC-10.3: Visualizzazione panel livello di acqua medio in un	
				determinato periodo di tempo	54
			3.4.10.4	UC-10.4: Visualizzazione panel livello di acqua in tempo reale	55
		3.4.11	UC-11: \	Visualizzazione messaggio assenza di dati	56
				Trasmissione dati temperatura	56
		3.4.13	UC-13: 1	Trasmissione dati umidità	57
		3.4.14	UC-14: 1	Trasmissione dati qualità dell'aria	58
		3.4.15	UC-15: 1	Trasmissione dati precipitazioni	59
		3.4.16	UC-16: 1	Trasmissione dati traffico	59
		3.4.17	UC-17: 1	Trasmissione dati colonnine di ricarica	60
				Trasmissione dati parcheggi	61
		3.4.19	UC-19: 1	Trasmissione dati isole ecologiche	62
		3.4.20	UC-20: 1	Trasmissione dati livello di acqua	62
4	Req	uisiti			63
	4.1	Definiz	zione di u	un requisito	63

4.2	ripologie ai requisiri	03
	4.2.1 Codifica dei requisiti	64
	4.2.2 Fonti dei requisiti	64
	4.2.3 Importanza dei requisiti	65
4.3	Requisiti funzionali	65
4.4	Requisiti qualitativi	70
4.5	Requisiti di vincolo	71
4.6	Tracciamento	72
	4.6.1 Requisito - Fonte	72
4.7	Riepilogo	73
Indic	e delle tabelle	
1	Requisiti funzionali	70
2	Requisiti qualitativi	71
3	Requisiti di vincolo	71
4	Tracciamento requisito - fonte	73
5	Riepilogo	73

1 Introduzione

1.1 Scopo del documento

Questo documento ha lo scopo di illustrare i casi d'uso e i requisiti del capitolato_G proposto da *Sync Lab S.r.l.*, a seguito di un'analisi da parte del gruppo e di un confronto tenuto con l'azienda.

Vengono presentate le funzionalità che il progetto dovrà offrire, suddivise in requisiti obbligatori, desiderabili e opzionali, in accordo con le richieste del proponente_G.

1.2 Glossario

Per evitare qualsiasi ambiguità o malinteso sui termini utilizzati nel seguente documento, è stato a io_G , contenente le definizioni necessarie. È possibile individuare ogni termine presente nel glossario_G grazie ad uno stile specifico:

- Ad ogni parola presente sarà aggiunta una "G" al pedice della stessa.
- Verrà fornito il link al glossario_G online (v.1.0) per ciascuna parola.

1.3 Riferimenti

1.3.1 Normativi

- Capitolato_G C6 SyncCity_G: Smart city_G monitoring platform https://www.math.unipd.it/~tullio/IS-1/2023/Progetto/C6.pdf
- Regolamento di progetto didattico
 https://www.math.unipd.it/~tullio/IS-1/2023/Dispense/PD2.pdf
- Norme di progetto_G

1.3.2 Interni

Durante la fase di Analisi del capitolato_G il gruppo ha proposto all'azienda l'utilizzo di Redpanda come piattaforma di *streaming* alternativa ad Apache Kafka_G. A seguito di un confronto con l'azienda, è stato deciso di utilizzare XYZ.

Come richiesto dalla proponente_G, il gruppo ha prodotto un documento aggiuntivo di confronto tra le due tecnologie, disponibile nella documentazione esterna.

2 Descrizione del prodotto

2.1 Obiettivi del prodotto

L'obiettivo del prodotto è quello di sviluppare una piattaforma di monitoraggio per una $Smart\ City_G$ che consenta ad esempio alle autorità locali di avere una visione d'insieme delle condizioni della città, permettendo loro di prendere decisioni informate e tempestive riguardo ad eventuali interventi e ottimizzazioni dei servizi da effettuare.

2.2 Architettura del prodotto

Il prodotto è costituito da 4 componenti principali:

- **Simulatore**: rappresenta la sorgente di dati. In uno scenario reale, i dati sarebbero raccolti da migliaia di sensori installati in città. La proponente_G richiede che i dati siano più realistici possibili, non escludendo la possibilità di inserire rilevazioni provenienti da sensori reali. È stato scelto di utilizzare Python_G come linguaggio di programmazione per la simulazione dei dati;
- Piattaforma di streaming: svolge la funzione di broker_G per disaccoppiare lo stream
 di informazioni provenienti dai simulatori dei sensori. Si occupa di ricevere i dati
 provenienti dal simulatore e di inviarli ai vari consumatori. In questo caso, il consumatore
 principale è il database di cui si discute al punto successivo. A tal fine, si è scelto
 di utilizzare XYZ come piattaforma di streaming;
- **Database**: necessario per la persistenza dei dati raccolti. Per questo scopo è stato adottato ClickHouse_G, un database colonnare.
- **Dashboard**_G: permette di visualizzare in tempo reale i dati raccolti. Questo componente rappresenta l'interfaccia utente del prodotto. Si è scelto di utilizzare Grafana_G come strumento per la creazione della dashboard_G.

2.3 Funzionalità del prodotto

Una volta che il sistema sarà in funzione, esso sarà in grado di:

Raccogliere e memorizzare i dati provenienti dai sensori;

- Visualizzare i dati raccolti in tempo reale attraverso una dashboard_G, offrendo una panoramica delle condizioni della città. Tra le informazioni visualizzate ci saranno una mappa con la posizione dei sensori e alcuni grafici che mostrano gli andamenti delle misurazioni;
- Calcolare un indice di salute della città, basato sulle ultime rilevazioni dei sensori.
 Questo indice sarà rappresentato da un punteggio da 0 a 100, dove un punteggio più alto corrisponderà a condizioni di vita migliori;
- Notificare automaticamente le autorità locali in caso di superamento di soglie critiche da parte dei sensori.

2.4 Caratteristiche degli utenti

Si prevede che gli utenti principali saranno i dipendenti delle autorità locali responsabili del monitoraggio dello stato di salute, sicurezza ed efficienza della città. Gli utenti interagiscono solamente con il sistema attraverso la dashboard_©.

2.4.1 Conoscenze e competenze

Si suppone che tali utenti siano in grado di comprendere i dati visualizzati dalla dashboard_© e filtrare le informazioni per ottenere una visione d'insieme della situazione.

2.4.2 Dispositivi

Per accedere alla piattaforma gli utenti potranno indifferentemente utilizzare un dispositivo mobile, un computer o un tablet.

3 Casi d'uso

3.1 Introduzione

In questa sezione del documento vengono analizzati nel dettaglio i casi d'uso individuati per il sistema. nel corso dell'analisi del capitolato_G e dei colloqui con la proponente_G.

3.2 Struttura dei casi d'uso

In tutto il documento ci si riferirà ai casi d'uso utilizzando la sigla UC seguita dal rispettivo codice nella forma

UC-[identificativo_caso_principale].[identificativo_sotto_caso]

il quale permette di utilizzarlo come riferimento in questo e altri documenti. Per ciascun caso d'uso vengono definiti i seguenti elementi:

- Attore principale: l'attore primariamente coinvolto nel caso d'uso;
- **Precondizioni**: le condizioni che devono essere verificate affinché il caso d'uso possa essere eseguito;
- **Postcondizioni**: le condizioni che devono essere verificate al termine dell'esecuzione del caso
- **Scenario principale**: la sequenza di passi che descrive il comportamento del sistema durante l'esecuzione del caso d'uso:
- **User story**_G: una descrizione testuale del caso d'uso.

3.3 Attori

I seguenti attori sono coinvolti nei casi d'uso:

- Impiegati presso autorità locali: essi possono accedere al sistema per visualizzare i dati monitoraggio della Smart City_G.
- **Sensori**: sorgente di dati con un determinato dominio di interesse che effettua misurazioni e trasmette i dati al sistema.

3.4 Elenco dei casi d'uso

3.4.1 UC-1: Visualizzazione dashboard generale

- Attore principale: Autorità locale;
- **Precondizioni**: L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- Postcondizioni: L'autorità locale visualizza la dashboard_G generale con i dati relativi ai sensori presenti nella città;
- Scenario principale:

- 1. L'autorità locale accede alla piattaforma;
- 2. Il sistema carica i dati relativi ai sensori interrogando il database.
- **User story**_G: Come autorità locale desidero poter visualizzare una dashboard_G generale con i dati relativi ai sensori presenti, la quale mi consente di monitorare quanti, quali sensori sono presenti e la loro posizione.

Figura 1: UC-1: Visualizzazione dashboard_G generale

3.4.1.1 UC-1.1: Visualizzazione panel con tabella sensori

- Attore principale: Autorità locale;
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- Postcondizioni: L'autorità locale visualizza il panel contenente una tabella di tutti i sensori collegati al sistema;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard₆ generale.
- User story_G: Come autorità locale desidero poter visualizzare un panel contenente una tabella di tutti i sensori collegati al sistema. I dati che dovranno essere presenti nella tabella sono: identificativo del sensore_G, posizione e tipo di sensore_G. I dati presenti nella tabella mi consentiranno di avere una visione d'insieme dei sensori presenti.

Figura 2: UC-1.1: Visualizzazione panel con tabella sensori

3.4.1.2 UC-1.2: Visualizzazione mappa interattiva sensori

- Attore principale: Autorità locale;
- **Precondizioni**: L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- **Postcondizioni**: L'autorità locale visualizza un *panel* contenente una mappa interattiva popolata con dei marker rappresentanti la posizione dei sensori;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati trasmessi dai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard_G generale.
- User story_G: Come autorità locale desidero poter visualizzare una mappa interattiva popolata con dei marker rappresentanti la posizione dei sensori e contenenti il loro identificativo. Essa mi consentirà di visualizzare la distribuzione dei sensori nel territorio ed eventualmente interventire nel caso in cui siano presenti zone non coperte.

Figura 3: UC-1.2: Visualizzazione mappa interattiva sensori

3.4.1.3 UC-1.3: Visualizzazione *panel* numero sensori

- Attore principale: Autorità locale;
- **Precondizioni**: L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- **Postcondizioni**: L'autorità locale visualizza un *panel* contenente il conteggio totale di sensori presenti nel sistema;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati trasmessi dai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard_G generale.
- User story_G: Come autorità locale desidero poter visualizzare il conteggio totale di sensori presenti nel sistema, in modo da poter decidere eventualmente di aggiungerne altri.

Figura 4: UC-1.3: Visualizzazione panel numero sensori

3.4.1.4 UC-1.4: Visualizzazione tabella sensori non trasmettenti

- Attore principale: Autorità locale;
- **Precondizioni**: L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- **Postcondizioni**: L'autorità locale visualizza una tabella contenente i sensori che non trasmettono da più di un giorno;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati trasmessi dai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard_G generale.
- User story_G: Come autorità locale desidero poter visualizzare una tabella contenente i sensori che non trasmettono da più di un giorno, in modo da poter intervenire e ripristinare il corretto funzionamento.

Figura 5: UC-1.4: Visualizzazione tabella sensori che non trasmettono da più di 1 giorno

3.4.2 UC-2: Visualizzazione dashboard temperatura

- Attore principale: Autorità locale;
- **Precondizioni**: L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- Postcondizioni: L'autorità locale visualizza la dashboard_G relativa ai sensori di temperatura presenti nella città;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati trasmessi dai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard $_{\mathbb{G}}$ relativa ai sensori di temperatura.
- User story_G: Come autorità locale desidero poter visualizzare una dashboard_G relativa ai sensori di temperatura presenti nella città, la quale dovrà contenere informazioni utili per monitorare l'andamento della temperatura sulla base di dati storici e in tempo reale, mostrando anche statistiche quali la temperatura media, massima e minima in un determinato periodo di tempo.

Figura 6: UC-2: Visualizzazione dashboard_G temperatura

3.4.2.1 UC-2.1: Visualizzazione grafico time series temperatura

- Attore principale: Autorità locale;
- Precondizioni:

- 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- 2. Il sistema ha caricato la dashboard_G relativa ai sensori di temperatura;
- **Postcondizioni**: L'autorità locale visualizza un grafico time series_G contenente le misurazioni storiche della temperatura;

- 1. L'autorità locale accede alla piattaforma;
- 2. Il sistema carica i dati relativi ai sensori interrogando il database;
- 3. L'autorità locale seleziona la visualizzazione della dashboard $_{\mathbb{G}}$ relativa ai sensori di temperatura.
- **User story**_G: Come autorità locale desidero poter visualizzare un grafico time series_G contenente le misurazioni storiche della temperatura per poter monitorarne l'andamento nel tempo e facilmente individuare eventuali anomalie.

Figura 7: UC-2.1: Visualizzazione grafico time series_G per temperatura

3.4.2.2 UC-2.2: Visualizzazione mappa sensori temperatura

• Attore principale: Autorità locale;

Precondizioni:

- 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione:
- 2. Il sistema ha caricato la dashboard_G relativa ai sensori di temperatura;
- **Postcondizioni**: L'autorità locale visualizza una mappa interattiva popolata con dei marker rappresentanti la posizione dei sensori di temperatura;

- 1. L'autorità locale accede alla piattaforma;
- 2. Il sistema carica i dati relativi ai sensori interrogando il database;
- 3. L'autorità locale seleziona la visualizzazione della dashboard $_{\mathbb{G}}$ relativa ai sensori di temperatura.
- User story_G: Come autorità locale desidero poter visualizzare una mappa interattiva popolata con dei marker rappresentanti la posizione dei sensori di temperatura e contenenti il loro identificativo. Essa mi consentirà di visualizzare la distribuzione dei sensori di temperatura nel territorio ed eventualmente interventire nel caso in cui siano presenti zone non coperte.

Figura 8: UC-2.2: Visualizzazione mappa interattiva sensori temperatura

3.4.2.3 UC-2.3: Visualizzazione panel temperatura media in un determinato periodo di tempo

- Attore principale: Autorità locale;
- Precondizioni:

- 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- 2. Il sistema ha caricato la dashboard_G relativa ai sensori di temperatura;
- **Postcondizioni**: L'autorità locale visualizza un *panel* contenente la temperatura media in un determinato periodo di tempo;

- 1. L'autorità locale accede alla piattaforma;
- 2. Il sistema carica i dati relativi ai sensori interrogando il database;
- 3. L'autorità locale seleziona la visualizzazione della dashboard $_{\mathbb{G}}$ relativa ai sensori di temperatura.
- **User story**_G: Come autorità locale desidero poter visualizzare la temperatura media in un determinato periodo di tempo in modo da poterne monitorare l'andamento.

Figura 9: UC-2.3: Visualizzazione *panel* temperatura media in un determinato periodo di tempo

3.4.2.4 UC-2.4: Visualizzazione panel temperatura in tempo reale

• Attore principale: Autorità locale;

Precondizioni:

- 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione:
- 2. Il sistema ha caricato la dashboard_G relativa ai sensori di temperatura;
- **Postcondizioni**: L'autorità locale visualizza un *panel* contenente la temperatura in tempo reale;

- 1. L'autorità locale accede alla piattaforma;
- 2. Il sistema carica i dati relativi ai sensori interrogando il database;
- 3. L'autorità locale seleziona la visualizzazione della dashboard $_{\mathbb{G}}$ relativa ai sensori di temperatura.
- **User story**_G: Come autorità locale desidero poter visualizzare la temperatura in tempo reale in modo da poterne monitorare l'andamento e poterla facilmente confrontare con i dati storici.

Figura 10: UC-2.4: Visualizzazione panel temperatura in tempo reale

3.4.2.5 UC-2.5: Visualizzazione panel temperatura massima in un determinato periodo di tempo

- Attore principale: Autorità locale;
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione:
 - 2. Il sistema ha caricato la dashboard_G relativa ai sensori di temperatura;
- Postcondizioni: L'autorità locale visualizza un panel contenente la temperatura massima in un determinato periodo di tempo;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - Il sistema carica i dati relativi ai sensori interrogando il database;

- 3. L'autorità locale seleziona la visualizzazione della dashboard $_{\mathbb{G}}$ relativa ai sensori di temperatura.
- User story_G: Come autorità locale desidero poter visualizzare la temperatura massima in un determinato periodo di tempo in modo da poterla prendere come riferimento e confrontarla con la temperatura attuale.

Figura 11: UC-2.5: Visualizzazione panel temperatura massima

3.4.2.6 UC-2.6: Visualizzazione panel temperatura minima in un determinato periodo di tempo

- Attore principale: Autorità locale;
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. Il sistema ha caricato la dashboard_© relativa ai sensori di temperatura;
- **Postcondizioni**: L'autorità locale visualizza un *panel* contenente la temperatura minima in un determinato periodo di tempo;
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. Il sistema ha caricato la dashboard_G relativa ai sensori di temperatura;
- **Postcondizioni**: L'autorità locale visualizza un *panel* contenente la temperatura minima in un determinato periodo di tempo;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;

- 2. Il sistema carica i dati relativi ai sensori interrogando il database;
- 3. L'autorità locale seleziona la visualizzazione della dashboard $_{\mathbb{G}}$ relativa ai sensori di temperatura.
- User story_G: Come autorità locale desidero poter visualizzare la temperatura minima in un determinato periodo di tempo in modo da poterla prendere come riferimento e confrontarla con la temperatura attuale.

Figura 12: UC-2.6: Visualizzazione panel temperatura minima

3.4.3 UC-3: Visualizzazione dashboard umidità

- Attore principale: Autorità locale;
- **Precondizioni**: L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- Postcondizioni: L'autorità locale visualizza la dashboard_G relativa ai sensori di umidità presenti nella città;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati trasmessi dai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard $_{\mathbb{G}}$ relativa ai sensori di umidità.
- **User story**_G: Come autorità locale desidero poter visualizzare una dashboard_G relativa ai sensori di umidità presenti nella città, la quale dovrà contenere informazioni utili per monitorare l'andamento dell'umidità sulla base di dati storici e in tempo

reale, mostrando anche statistiche quali l'umidità media, massima e minima in un determinato periodo di tempo.

Figura 13: UC-3: Visualizzazione dashboard_G umidità

3.4.3.1 UC-3.1: Visualizzazione grafico time series umidità

- Attore principale: Autorità locale;
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. Il sistema ha caricato la dashboard_G relativa ai sensori di umidità
- Postcondizioni: L'autorità locale visualizza un grafico time series_G contenente le misurazioni storiche di umidità;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard $_{\mathbb{G}}$ relativa ai sensori di umidità;
- User story_G: Come autorità locale desidero poter visualizzare un grafico time series_G
 contenente le misurazioni storiche di umidità per poter monitorarne l'andamento
 nel tempo e facilmente individuare eventuali anomalie.

Figura 14: UC-3.1, Visualizzazione grafico time series_€ umidità

3.4.3.2 UC-3.2: Visualizzazione mappa sensori umidità

• Attore principale: Autorità locale;

- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. Il sistema ha caricato la dashboard_G relativa ai sensori di umidità;
- **Postcondizioni**: L'autorità locale visualizza una mappa interattiva popolata con dei marker rappresentanti la posizione dei sensori di umidità;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard_© relativa ai sensori di umidità.
- **User story**_G: Come autorità locale desidero poter visualizzare una mappa interattiva popolata con dei marker rappresentanti la posizione dei sensori di umidità e contenenti il loro identificativo. Essa mi consentirà di visualizzare la distribuzione dei sensori di umidità nel territorio ed eventualmente interventire nel caso in cui siano presenti zone non coperte.

Figura 15: UC-3.2: Visualizzazione mappa interattiva sensori umidità

3.4.3.3 UC-3.3: Visualizzazione panel umidità media in un determinato periodo di tempo

- Attore principale: Autorità locale;
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. Il sistema ha caricato la dashboard_G relativa ai sensori di umidità;
- **Postcondizioni**: L'autorità locale visualizza un *panel* contenente l'umidità media in un determinato periodo di tempo;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard_⊖ relativa ai sensori di umidità.

• **User story**_G: Come autorità locale desidero poter visualizzare l'umidità media in un determinato periodo di tempo in modo da poterne monitorare l'andamento.

Figura 16: UC-3.3: Visualizzazione *panel* umidità media in un determinato periodo di tempo

3.4.3.4 UC-3.4: Visualizzazione panel umidità in tempo reale

Attore principale: Autorità locale;

Precondizioni:

- 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- 2. Il sistema ha caricato la dashboard_G relativa ai sensori di umidità;
- Postcondizioni: L'autorità locale visualizza un panel contenente l'umidità in tempo reale;

• Scenario principale:

- 1. L'autorità locale accede alla piattaforma;
- 2. Il sistema carica i dati relativi ai sensori interrogando il database;
- 3. L'autorità locale seleziona la visualizzazione della dashboard $_{\mathbb{G}}$ relativa ai sensori di umidità.
- User story_G: Come autorità locale desidero poter visualizzare l'umidità in tempo reale in modo da poterne monitorare l'andamento e poterla facilmente confrontare con i dati storici.

Figura 17: UC-3.4: Visualizzazione panel umidità in tempo reale

3.4.3.5 UC-3.5: Visualizzazione panel umidità massima in un determinato periodo di tempo

- Attore principale: Autorità locale;
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. Il sistema ha caricato la dashboard_G relativa ai sensori di umidità;
- **Postcondizioni**: L'autorità locale visualizza un *panel* contenente l'umidità massima in un determinato periodo di tempo;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard $_{\mathbb{G}}$ relativa ai sensori di umidità.
- **User story**_G: Come autorità locale desidero poter visualizzare l'umidità massima in un determinato periodo di tempo in modo da poterla prendere come riferimento e confrontarla con l'umidità attuale.

Figura 18: UC-3.5: Visualizzazione panel umidità massima

3.4.3.6 UC-3.6: Visualizzazione panel umidità minima in un determinato periodo di tempo

- Attore principale: Autorità locale;
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. Il sistema ha caricato la dashboard_G relativa ai sensori di umidità;
- **Postcondizioni**: L'autorità locale visualizza un *panel* contenente l'umidità minima in un determinato periodo di tempo;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard_G relativa ai sensori di umidità.
- **User story**_G: Come autorità locale desidero poter visualizzare l'umidità minima in un determinato periodo di tempo in modo da poterla prendere come riferimento e confrontarla con l'umidità attuale.

Figura 19: UC-3.6: Visualizzazione panel umidità minima

3.4.4 UC-4: Visualizzazione dashboard qualità dell'aria

- Attore principale: Autorità locale;
- **Precondizioni**: L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- Postcondizioni: L'autorità locale visualizza la dashboard_G relativa ai sensori di qualità dell'aria presenti nella città;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati trasmessi dai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard $_{\mathbb{G}}$ relativa ai sensori di qualità dell'aria.
- **User story**_G: Come autorità locale desidero poter visualizzare una dashboard_G relativa ai sensori di qualità dell'aria presenti nella città, la quale dovrà contenere informazioni utili per monitorare l'andamento della qualità dell'aria sulla base di dati storici e in tempo reale, mostrando anche statistiche quali il giorno con la qualità dell'aria peggiore e il giorno con la qualità dell'aria migliore in un determinato periodo di tempo.

Figura 20: UC-4: Visualizzazione dashboard_G qualità dell'aria

3.4.4.1 UC-4.1: Visualizzazione grafico time series qualità dell'aria

Attore principale: Autorità locale;

• Precondizioni:

- 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- 2. Il sistema ha caricato la dashboard_G relativa ai sensori di qualità dell'aria
- **Postcondizioni**: L'autorità locale visualizza un grafico time series_G contenente le misurazioni storiche di qualità dell'aria;

Scenario principale:

- 1. L'autorità locale accede alla piattaforma;
- 2. Il sistema carica i dati relativi ai sensori interrogando il database;
- 3. L'autorità locale seleziona la visualizzazione della dashboard $_{\mathbb{G}}$ relativa ai sensori di qualità dell'aria;
- User story_G: Come autorità locale desidero poter visualizzare un grafico time series_G
 contenente le misurazioni storiche di qualità dell'aria per poter monitorarne l'andamento nel tempo e facilmente individuare eventuali anomalie.

Figura 21: UC-4.1, Visualizzazione grafico time series_⊖ qualità dell'aria

3.4.4.2 UC-4.2: Visualizzazione mappa interattiva sensori qualità dell'aria

• Attore principale: Autorità locale;

• Precondizioni:

- 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- 2. Il sistema ha caricato la dashboard_G relativa ai sensori di qualità dell'aria;
- **Postcondizioni**: L'autorità locale visualizza una mappa interattiva popolata con dei marker rappresentanti la posizione dei sensori della qualità dell'aria;

• Scenario principale:

- 1. L'autorità locale accede alla piattaforma;
- 2. Il sistema carica i dati relativi ai sensori interrogando il database;
- 3. L'autorità locale seleziona la visualizzazione della dashboard $_{\mathbb{G}}$ relativa ai sensori della qualità dell'aria.
- **User story**_G: Come autorità locale desidero poter visualizzare una mappa interattiva popolata con dei marker rappresentanti la posizione dei sensori della qualità dell'aria e contenenti il loro identificativo. Essa mi consentirà di visualizzare la distribuzione dei sensori della qualità dell'aria nel territorio ed eventualmente interventire nel caso in cui siano presenti zone non coperte.

Figura 22: UC-4.2: Visualizzazione mappa interattiva sensori qualità dell'aria

3.4.4.3 UC-4.3: Visualizzazione panel qualità dell'aria media in un determinato periodo di tempo

- Attore principale: Autorità locale;
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. Il sistema ha caricato la dashboard_G relativa ai sensori di qualità dell'aria;
- **Postcondizioni**: L'autorità locale visualizza un *panel* contenente qualità dell'aria media in un determinato periodo di tempo;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard $_{\mathbb{G}}$ relativa ai sensori di qualità dell'aria.

• **User story**_G: Come autorità locale desidero poter visualizzare della qualità dell'aria media in un determinato periodo di tempo in modo da poterne monitorare l'andamento.

Figura 23: UC-4.3: Visualizzazione *panel* qualità dell'aria media in un determinato periodo di tempo

3.4.4.4 UC-4.4: Visualizzazione panel qualità dell'aria in tempo reale

Attore principale: Autorità locale;

Precondizioni:

- 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- 2. Il sistema ha caricato la dashboard_G relativa ai sensori di qualità dell'aria;
- Postcondizioni: L'autorità locale visualizza un panel contenente qualità dell'aria in tempo reale;

• Scenario principale:

- 1. L'autorità locale accede alla piattaforma;
- 2. Il sistema carica i dati relativi ai sensori interrogando il database;
- 3. L'autorità locale seleziona la visualizzazione della dashboard $_{\mathbb{G}}$ relativa ai sensori di qualità dell'aria.
- **User story**_©: Come autorità locale desidero poter visualizzare della qualità dell'aria in tempo reale in modo da poterne monitorare l'andamento e poterla facilmente confrontare con i dati storici.

Figura 24: UC-4.4: Visualizzazione panel qualità dell'aria in tempo reale

3.4.4.5 UC-4.5: Visualizzazione panel giorno con qualità dell'aria peggiore in un determinato periodo di tempo

3.4.4.6 UC-4.6: Visualizzazione panel giorno con qualità dell'aria migliore in un determinato periodo di tempo

3.4.5 UC-5: Visualizzazione dashboard precipitazioni

- Attore principale: Autorità locale;
- **Precondizioni**: L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- **Postcondizioni**: L'autorità locale visualizza la dashboard_G relativa ai sensori di precipitazioni presenti nella città;

Scenario principale:

- 1. L'autorità locale accede alla piattaforma;
- 2. Il sistema carica i dati trasmessi dai sensori interrogando il database;
- 3. L'autorità locale seleziona la visualizzazione della dashboard_G relativa ai sensori di precipitazioni.
- User story_G: Come autorità locale desidero poter visualizzare una dashboard_G relativa ai sensori di precipitazioni presenti nella città, la quale dovrà contenere informazioni utili per monitorare l'andamento dele precipitazioni sulla base di dati storici e in tempo reale, mostrando anche statistiche quali quantità di precipitazioni media, massima e minima in un determinato periodo di tempo.

Figura 25: UC-5: Visualizzazione dashboard_G precipitazioni

3.4.5.1 UC-5.1: Visualizzazione grafico time series quantità precipitazioni in un determinato periodo di tempo

- Attore principale: Autorità locale;
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. Il sistema ha caricato la dashboard_G relativa ai sensori di precipitazioni
- Postcondizioni: L'autorità locale visualizza un grafico time series_G contenente le misurazioni storiche di precipitazioni;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard_G relativa ai sensori di precipitazioni;
- **User story**_G: Come autorità locale desidero poter visualizzare un grafico time series_G contenente le misurazioni storiche di precipitazioni per poter monitorarne l'andamento nel tempo e facilmente individuare eventuali anomalie.

Figura 26: UC-5.1, Visualizzazione grafico time series_⊖ precipitazioni

3.4.5.2 UC-5.2: Visualizzazione mappa sensori precipitazioni

• Attore principale: Autorità locale;

• Precondizioni:

- 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- 2. Il sistema ha caricato la dashboard_G relativa ai sensori di precipitazioni;
- **Postcondizioni**: L'autorità locale visualizza una mappa interattiva popolata con dei marker rappresentanti la posizione dei sensori di precipitazioni;

• Scenario principale:

- 1. L'autorità locale accede alla piattaforma;
- 2. Il sistema carica i dati relativi ai sensori interrogando il database;
- 3. L'autorità locale seleziona la visualizzazione della dashboard $_{\mathbb{G}}$ relativa ai sensori di precipitazioni.
- User story_G: Come autorità locale desidero poter visualizzare una mappa interattiva popolata con dei marker rappresentanti la posizione dei sensori di precipitazioni e contenenti il loro identificativo. Essa mi consentirà di visualizzare la distribuzione dei sensori di precipitazioni nel territorio ed eventualmente interventire nel caso in cui siano presenti zone non coperte.

Figura 27: UC-5.2: Visualizzazione mappa interattiva sensori precipitazioni

3.4.5.3 UC-5.3: Visualizzazione panel quantità di precipitazioni media in un determinato periodo di tempo

- Attore principale: Autorità locale;
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. Il sistema ha caricato la dashboard_G relativa ai sensori di quantità di precipitazioni;
- **Postcondizioni**: L'autorità locale visualizza un *panel* contenente di quantità di precipitazioni media in un determinato periodo di tempo;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard $_{\mathbb{G}}$ relativa ai sensori di quantità di precipitazioni.

• **User story**_©: Come autorità locale desidero poter visualizzare di quantità di precipitazioni media in un determinato periodo di tempo in modo da poterne monitorare l'andamento.

Figura 28: UC-5.3: Visualizzazione *panel* quantità di precipitazioni media in un determinato periodo di tempo

3.4.5.4 UC-5.4: Visualizzazione panel quantità di precipitazioni in tempo reale

- Attore principale: Autorità locale;
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. Il sistema ha caricato la dashboard_G relativa ai sensori di quantità di precipitazioni;
- Postcondizioni: L'autorità locale visualizza un panel contenente di quantità di precipitazioni in tempo reale;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard_G relativa ai sensori di quantità di precipitazioni.
- **User story**_G: Come autorità locale desidero poter visualizzare di quantità di precipitazioni in tempo reale in modo da poterne monitorare l'andamento e poterla facilmente confrontare con i dati storici.

Figura 29: UC-5.3: Visualizzazione panel quantità di precipitazioni in tempo reale

3.4.5.5 UC-5.5: Visualizzazione panel giorno con precipitazioni maggiori in un determinato periodo di tempo

3.4.5.6 UC-5.6: Visualizzazione panel giorno con precipitazioni minori in un determinato periodo di tempo

3.4.6 UC-6: Visualizzazione dashboard traffico

- Attore principale: Autorità locale;
- **Precondizioni**: L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- Postcondizioni: L'autorità locale visualizza la dashboard_G relativa ai sensori di traffico presenti nella città;

Scenario principale:

- 1. L'autorità locale accede alla piattaforma;
- 2. Il sistema carica i dati trasmessi dai sensori interrogando il database;
- 3. L'autorità locale seleziona la visualizzazione della dashboard $_{\mathbb{G}}$ relativa ai sensori di traffico.
- **User story**_G: Come autorità locale desidero poter visualizzare una dashboard_G relativa ai sensori di traffico presenti nella città, la quale dovrà contenere informazioni utili per monitorare l'andamento del traffico sulla base di dati storici e in tempo reale, mostrando anche statistiche quali numero di veicoli in tempo reale, velocità media in tempo reale e calcolo dell'ora di punta (basato su numero veicoli e velocità media).

Figura 30: UC-6: Visualizzazione dashboard_⊖ traffico

3.4.6.1 UC-6.1: Visualizzazione grafico time series traffico

Attore principale: Autorità locale;

Precondizioni:

- 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- 2. Il sistema ha caricato la dashboard_G relativa ai sensori di traffico
- **Postcondizioni**: L'autorità locale visualizza un grafico time series_G contenente le misurazioni storiche di traffico;

• Scenario principale:

- 1. L'autorità locale accede alla piattaforma;
- 2. Il sistema carica i dati relativi ai sensori interrogando il database;
- 3. L'autorità locale seleziona la visualizzazione della dashboard $_{\mathbb{G}}$ relativa ai sensori di traffico;
- **User story**_G: Come autorità locale desidero poter visualizzare un grafico time series_G contenente le misurazioni storiche di traffico per poter monitorarne l'andamento nel tempo e facilmente individuare eventuali anomalie o congestioni.

Figura 31: UC-6.1, Visualizzazione grafico time series_⊖ traffico

3.4.6.2 UC-6.2: Visualizzazione mappa sensori traffico

• Attore principale: Autorità locale;

- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. Il sistema ha caricato la dashboard_G relativa ai sensori di traffico;
- **Postcondizioni**: L'autorità locale visualizza una mappa interattiva popolata con dei marker rappresentanti la posizione dei sensori del traffico;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard $_{\mathbb{G}}$ relativa ai sensori del traffico.
- **User story**_©: Come autorità locale desidero poter visualizzare una mappa interattiva popolata con dei marker rappresentanti la posizione dei sensori del traffico e contenenti il loro identificativo. Essa mi consentirà di visualizzare la distribuzione dei sensori del traffico nel territorio ed eventualmente interventire nel caso in cui siano presenti zone non coperte.

Figura 32: UC-6.2: Visualizzazione mappa interattiva sensori traffico

3.4.6.3 UC-6.3: Visualizzazione panel numero veicoli in tempo reale

- Attore principale: Autorità locale;
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. Il sistema ha caricato la dashboard_G relativa ai sensori di traffico;
- **Postcondizioni**: L'autorità locale visualizza un *panel* contenente il numero di veicoli in tempo reale;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard $_{\oplus}$ relativa ai sensori di traffico.

• **User story**_G: Come autorità locale desidero poter visualizzare del numero di veicoli in tempo reale in modo da poterne monitorare l'andamento e poterla facilmente confrontare con i dati storici.

Figura 33: UC-6.3: Visualizzazione panel numero di veicoli in tempo reale

3.4.6.4 UC-6.4: Visualizzazione panel velocità media in tempo reale

- Attore principale: Autorità locale;
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. Il sistema ha caricato la dashboard_G relativa ai sensori di traffico;
- Postcondizioni: L'autorità locale visualizza un panel contenente la velocità media in tempo reale;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard $_{\mathbb{G}}$ relativa ai sensori di traffico.
- User story_G: Come autorità locale desidero poter visualizzare della velocità media in tempo reale in modo da poterne monitorare l'andamento e poterla facilmente confrontare con i dati storici.

Figura 34: UC-6.4: Visualizzazione panel velocità media in tempo reale

3.4.6.5 UC-6.5: Visualizzazione panel calcolo ora di punta (numero veicoli e velocità media)

3.4.7 UC-7: Visualizzazione dashboard colonnine di ricarica

- Attore principale: Autorità locale;
- **Precondizioni**: L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- Postcondizioni: L'autorità locale visualizza la dashboard_G relativa alle colonnine di ricarica presenti nella città;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati trasmessi dai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard_© relativa alle colonnine di ricarica.
- User story_G: Come autorità locale desidero poter visualizzare una dashboard_G relativa alle colonnine di ricarica presenti nella città, la quale dovrà contenere informazioni riguro il loro stato di funzionamento e manutenzione.

Figura 35: UC-7: Visualizzazione dashboard_G colonnine di ricarica

3.4.7.1 UC-7.1: Visualizzazione mappa colonnine di ricarica con stato

Attore principale: Autorità locale;

Precondizioni:

- 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- 2. Il sistema ha caricato la dashboard_G relativa alle colonnine di ricarica;
- **Postcondizioni**: L'autorità locale visualizza una mappa interattiva popolata con dei marker rappresentanti la posizione delle colonnine di ricarica;

Scenario principale:

- 1. L'autorità locale accede alla piattaforma;
- 2. Il sistema carica i dati relativi ai sensori interrogando il database;
- 3. L'autorità locale seleziona la visualizzazione della dashboard_G relativa delle colonnine di ricarica.
- User story_G: Come autorità locale desidero poter visualizzare una mappa interattiva popolata con dei marker rappresentanti la posizione delle colonnine di ricarica contenenti il loro identificativo e lo stato di funzionamento. Essa mi consentirà di visualizzare la distribuzione delle colonnine di ricarica nel territorio ed eventualmente interventire nel caso in cui vi siano dei guasti.

Figura 36: UC-7.1: Visualizzazione mappa interattiva sensori colonnine di ricarica

3.4.7.2 UC-7.2: Visualizzazione panel numero colonnine di ricarica per stato in tempo reale

- Attore principale: Autorità locale;
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. Il sistema ha caricato la dashboard_G relativa ai dati atmosferici_G;
- Postcondizioni: L'autorità locale visualizza un panel contenente il conteggio delle colonnine di ricarica suddivise per stato di funzionamento;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard $_{\rm G}$ relativa alle colonnine di ricarica.

 User story_G: Come autorità locale desidero poter visualizzare un panel contenente il conteggio delle colonnine di ricarica suddivise per stato di funzionamento per poterle monitorare e intervenire in caso di guasti.

Figura 37: UC-7.2: Visualizzazione panel numero colonnine di ricarica per stato

3.4.8 UC-8: Visualizzazione dashboard parcheggi

- Attore principale: Autorità locale;
- **Precondizioni**: L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione:
- Postcondizioni: L'autorità locale visualizza la dashboard_G relativa ai parcheggi presenti nella città;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati trasmessi dai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard_© relativa ai parcheggi.
- User story_G: Come autorità locale desidero poter visualizzare una dashboard_G relativa ai parcheggi presenti nella città, la quale dovrà contenere informazioni utili per monitorare lo stato di occupazione dei parcheggi sulla base di dati storici e in tempo reale, in modo da poter individuare eventuali zone di criticità e intervenire per aumentare la disponibilità di parcheggi.

Figura 38: UC-8: Visualizzazione dashboard_G parcheggi

3.4.8.1 UC-8.1: Visualizzazione mappa interattiva parcheggi con rispettivo stato di occupazione

- Attore principale: Autorità locale;
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. Il sistema ha caricato la dashboard_© relativa ai parcheggi con rispettivo stato di occupazione;
- **Postcondizioni**: L'autorità locale visualizza una mappa interattiva popolata con dei marker rappresentanti la posizione dei parcheggi con rispettivo stato di occupazione;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard_e relativa ai parcheggi.
- User story_G: Come autorità locale desidero poter visualizzare una mappa interattiva popolata con dei marker rappresentanti la posizione dei parcheggi con rispettivo stato di occupazione e contenenti il loro identificativo. Essa consentirà di individuare facilmente le zone con maggiore affluenza ed eventualmente intervenire per aumentare la disponibilità di parcheggi.

Figura 39: UC-8.1: Visualizzazione mappa interattiva sensori parcheggi con rispettivo stato di occupazione

3.4.8.2 UC-8.2: Visualizzazione panel con conteggio parcheggi per stato in tempo reale

- Attore principale: Autorità locale;
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. Il sistema ha caricato la dashboard_G relativa ai parcheggi;
- **Postcondizioni**: L'autorità locale visualizza un *panel* contenente i parcheggi con rispettivo stato di occupazione in tempo reale;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati relativi ai sensori interrogando il database;

- 3. L'autorità locale seleziona la visualizzazione della dashboard_G relativa ai parcheggi con rispettivo stato di occupazione.
- **User story**_G: Come autorità locale desidero poter visualizzare i parcheggi con rispettivo stato di occupazione in tempo reale in modo da poterne monitorare l'andamento e poterla facilmente confrontare con i dati storici.

Figura 40: UC-8.2: Visualizzazione *panel* parcheggi con rispettivo stato di occupazione in tempo reale

3.4.9 UC-9: Visualizzazione dashboard isole ecologiche

- Attore principale: Autorità locale;
- **Precondizioni**: L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- **Postcondizioni**: L'autorità locale visualizza la dashboard_G relativa alle isole ecologiche presenti nella città;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati trasmessi dai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard $_{\mathbb{G}}$ relativa alle isole ecologiche.
- **User story**_G: Come autorità locale desidero poter visualizzare una dashboard_G relativa alle isole ecologiche presenti nella città, la quale dovrà contenere informazioni utili per monitorare il loro stato di riempimento. In questo modo potrò intervenire per poter svuotare le isole ecologiche piene.

Figura 41: UC-9: Visualizzazione dashboard_G isole ecologiche

3.4.9.1 UC-9.1: Visualizzazione panel con conteggio isole ecologiche piene in tempo reale

- Attore principale: Autorità locale;
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. Il sistema ha caricato la dashboard_G relativa alle isole ecologiche;
- Postcondizioni: L'autorità locale visualizza un panel contenente un conteggio delle isole ecologiche piene in tempo reale;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard $_{\mathbb{G}}$ relativa alle isole ecologiche.
- **User story**_G: Come autorità locale desidero poter visualizzare un conteggio delle isole ecologiche piene in tempo reale in modo da poter intervenire per svuotarle.

Figura 42: UC-9.1: Visualizzazione panel isole ecologiche piene in tempo reale

3.4.9.2 UC-9.2: Visualizzazione mappa interattiva isole ecologiche per stato di riempimento

• Attore principale: Autorità locale;

• Precondizioni:

- 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- 2. Il sistema ha caricato la dashboard_G relativa ai sensori di isole ecologiche;
- **Postcondizioni**: L'autorità locale visualizza una mappa interattiva popolata con dei marker rappresentanti la posizione dei sensori delle isole ecologiche suddivise per stato di riempimento;

Scenario principale:

- 1. L'autorità locale accede alla piattaforma;
- 2. Il sistema carica i dati relativi ai sensori interrogando il database;
- 3. L'autorità locale seleziona la visualizzazione della dashboard_G relativa ai sensori delle isole ecologiche piene.
- User story_G: Come autorità locale desidero poter visualizzare una mappa interattiva popolata con dei marker rappresentanti la posizione dei sensori delle isole ecologiche suddivise per stato di riempimento e contenenti il loro identificativo. Essa mi consentirà di visualizzare la distribuzione delle isole ecologiche nel territorio e di individuare facilmente quelle piene per poter intervenire e svuotarle.

Figura 43: UC-9.2: Visualizzazione mappa interattiva sensori isole ecologiche piene

3.4.10 UC-10: Visualizzazione dashboard livello di acqua

- Attore principale: Autorità locale;
- Precondizioni: L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- Postcondizioni: L'autorità locale visualizza la dashboard_G relativa ai sensori del livello di acqua presenti nella città;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati trasmessi dai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard $_{\mathbb{G}}$ relativa ai sensori del livello di acqua.
- User story_G: Come autorità locale desidero poter visualizzare una dashboard_G relativa ai sensori del livello di acqua presenti nella città, la quale dovrà contenere informazioni utili per monitorare il livello di acqua sulla base di dati storici e in tempo reale, mostrando anche statistiche quali del livello di acqua medio in un determinato periodo di tempo e il livello di acqua in tempo reale.

Figura 44: UC-10: Visualizzazione dashboard_G livello di acqua

3.4.10.1 UC-10.1: Visualizzazione grafico time series livello di acqua

Attore principale: Autorità locale;

Precondizioni:

- 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- 2. Il sistema ha caricato la dashboard_G relativa ai sensori del livello di acqua.
- **Postcondizioni**: L'autorità locale visualizza un grafico time series_G contenente le misurazioni storiche del livello di acqua;

Scenario principale:

- 1. L'autorità locale accede alla piattaforma;
- 2. Il sistema carica i dati relativi ai sensori interrogando il database;
- 3. L'autorità locale seleziona la visualizzazione della dashboard $_{\ominus}$ relativa ai sensori del livello di acqua;
- **User story**_G: Come autorità locale desidero poter visualizzare un grafico time series_G contenente le misurazioni storiche del livello di acqua per poter monitorarne l'andamento nel tempo e facilmente individuare eventuali anomalie.

Figura 45: UC-10.1, Visualizzazione grafico time series_G livello di acqua

3.4.10.2 UC-10.2: Visualizzazione mappa sensori livello di acqua

• Attore principale: Autorità locale;

• Precondizioni:

- 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- 2. Il sistema ha caricato la dashboard_G relativa ai sensori del livello di acqua;
- **Postcondizioni**: L'autorità locale visualizza una mappa interattiva popolata con dei marker rappresentanti la posizione dei sensori del livello di acqua;

• Scenario principale:

- 1. L'autorità locale accede alla piattaforma;
- 2. Il sistema carica i dati relativi ai sensori interrogando il database;
- 3. L'autorità locale seleziona la visualizzazione della dashboard $_{\mathbb{G}}$ relativa ai sensori del livello di acqua.
- User story_G: Come autorità locale desidero poter visualizzare una mappa interattiva popolata con dei marker rappresentanti la posizione dei sensori del livello di acqua e contenenti il loro identificativo. Essa mi consentirà di visualizzare la distribuzione dei sensori del livello di acqua nel territorio ed eventualmente interventire nel caso in cui siano presenti zone non coperte.

Figura 46: UC-10.2: Visualizzazione mappa interattiva sensori livello di acqua

3.4.10.3 UC-10.3: Visualizzazione panel livello di acqua medio in un determinato periodo di tempo

- Attore principale: Autorità locale;
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. Il sistema ha caricato la dashboard_G relativa ai sensori di livello di acqua;
- **Postcondizioni**: L'autorità locale visualizza un *panel* contenente del livello di acqua medio in un determinato periodo di tempo;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard $_{\mathbb{G}}$ relativa ai sensori di livello di acqua.

• **User story**_G: Come autorità locale desidero poter visualizzare del livello di acqua medio in un determinato periodo di tempo in modo da poterne monitorare l'andamento.

Figura 47: UC-10.3: Visualizzazione *panel* livello di acqua medio in un determinato periodo di tempo

3.4.10.4 UC-10.4: Visualizzazione panel livello di acqua in tempo reale

Attore principale: Autorità locale;

Precondizioni:

- 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- 2. Il sistema ha caricato la dashboard_G relativa ai sensori di livello di acqua;
- Postcondizioni: L'autorità locale visualizza un panel contenente il livello di acqua in tempo reale;

• Scenario principale:

- 1. L'autorità locale accede alla piattaforma;
- 2. Il sistema carica i dati relativi ai sensori interrogando il database;
- 3. L'autorità locale seleziona la visualizzazione della dashboard $_{\mathbb{G}}$ relativa ai sensori di livello di acqua.
- **User story**_G: Come autorità locale desidero poter visualizzare il livello di acqua in tempo reale in modo da poterne monitorare l'andamento e poterlo facilmente confrontare con i dati storici.

Figura 48: UC-10.4: Visualizzazione panel livello di acqua in tempo reale

3.4.11 UC-11: Visualizzazione messaggio assenza di dati

• Attore principale: Autorità locale;

Precondizioni:

- 1. L'autorità locale accede alla piattaforma;
- 2. Il sistema carica i dati relativi ai sensori interrogando il database;
- **Postcondizioni**: L'autorità locale visualizza un messaggio che notifica l'assenza di dati:

• Scenario principale:

- 1. L'autorità locale accede alla piattaforma;
- 2. Il sistema carica i dati relativi ai sensori interrogando il database;
- 3. Il sistema non trova dati relativi ai sensori;
- 4. Il sistema mostra un messaggio che notifica l'assenza di dati.

3.4.12 UC-12: Trasmissione dati temperatura

- Attore principale: Sensore_G;
- **Precondizioni**: Il sensore_G è attivo e collegato al sistema;
- Postcondizioni: I dati inviati dal sensore_G sono stati elaborati e memorizzati nel sistema;
- Scenario principale:

- 1. Il sensore_G effettua una misurazione di temperatura;
- 2. Il sensore_G formatta i dati da inviare al sistema, includendo oltre alle misurazioni l'identificativo del sensore_G, il timestamp, e la sua posizione geografica;
- 3. Il sensore_G invia i dati al sistema.
- **User story**_G: Come sensore_G, desidero poter inviare al sistema le rilevazioni della temperatura.

Figura 49: UC-12: Trasmissione dati temperatura

3.4.13 UC-13: Trasmissione dati umidità

- Attore principale: Sensore_G;
- **Precondizioni**: Il sensore_G è attivo e collegato al sistema;
- Postcondizioni: I dati inviati dal sensore_G sono stati elaborati e memorizzati nel sistema;
- Scenario principale:
 - 1. Il sensore, effettua una misurazione dell'umidità;
 - 2. Il sensore_G formatta i dati da inviare al sistema, includendo oltre alle misurazioni l'identificativo del sensore_G, il timestamp, e la sua posizione geografica;
 - 3. Il sensore_G invia i dati al sistema.
- **User story**_G: Come sensore_G, desidero poter inviare al sistema le rilevazioni dell'umidità.

Figura 50: UC-13: Trasmissione dati umidità

3.4.14 UC-14: Trasmissione dati qualità dell'aria

- Attore principale: Sensore_G;
- **Precondizioni**: Il sensore_G è attivo e collegato al sistema;
- Postcondizioni: I dati inviati dal sensore_G sono stati elaborati e memorizzati nel sistema;
- Scenario principale:
 - 1. Il sensore_G effettua una misurazione della quantità di precipitazioni;
 - 2. Il sensore_G formatta i dati da inviare al sistema, includendo oltre alle misurazioni l'identificativo del sensore_G, il timestamp, e la sua posizione geografica;
 - 3. Il sensore_G invia i dati al sistema.
- **User story**_G: Come sensore_G, desidero poter inviare al sistema le rilevazioni della qualità dell'aria.

Figura 51: UC-14: Trasmissione dati precipitazioni

3.4.15 UC-15: Trasmissione dati precipitazioni

Attore principale: Sensore_G;

• **Precondizioni**: Il sensore_G è attivo e collegato al sistema;

 Postcondizioni: I dati inviati dal sensore_G sono stati elaborati e memorizzati nel sistema;

• Scenario principale:

- 1. Il sensore_G effettua una misurazione della quantità di precipitazioni;
- 2. Il sensore_G formatta i dati da inviare al sistema, includendo oltre alle misurazioni l'identificativo del sensore_G, il timestamp, e la sua posizione geografica;
- 3. Il sensore_G invia i dati al sistema.
- **User story**_G: Come sensore_G, desidero poter inviare al sistema le rilevazioni della quantità di precipitazioni.

Figura 52: UC-15: Trasmissione dati precipitazioni

3.4.16 UC-16: Trasmissione dati traffico

Attore principale: Sensore_G;

• **Precondizioni**: Il sensore_G è attivo e collegato al sistema;

- **Postcondizioni**: I dati inviati dal sensore_G sono stati elaborati e memorizzati nel sistema;
- Scenario principale:

- 1. Il sensore_G effettua una misurazione del traffico;
- 2. Il sensore_G formatta i dati da inviare al sistema, includendo oltre alle misurazioni l'identificativo del sensore_G, il timestamp, e la sua posizione geografica;
- 3. Il sensore_G invia i dati al sistema.
- **User story**_G: Come sensore_G, desidero poter inviare al sistema le rilevazioni sui dati del traffico.

Figura 53: UC-16: Trasmissione dati traffico

3.4.17 UC-17: Trasmissione dati colonnine di ricarica

- Attore principale: Sensore_G;
- Precondizioni: Il sensore_G è attivo e collegato al sistema;
- Postcondizioni: I dati inviati dal sensore_G sono stati elaborati e memorizzati nel sistema;
- Scenario principale:
 - 1. Il sensore_G effettua una misurazione dello stato e l'occupazione delle colonnine di ricarica;
 - 2. Il sensore $_{\mathbb{G}}$ formatta i dati da inviare al sistema, includendo oltre alle misurazioni l'identificativo del sensore $_{\mathbb{G}}$, il timestamp, e la sua posizione geografica;
 - 3. Il sensore_G invia i dati al sistema.
- **User story**_G: Come sensore_G, desidero poter inviare al sistema le rilevazioni sullo stato e l'occupazione delle colonnine di ricarica.

Figura 54: UC-17: Trasmissione dati colonnine di ricarica

3.4.18 UC-18: Trasmissione dati parcheggi

- Attore principale: Sensore_G;
- **Precondizioni**: Il sensore_G è attivo e collegato al sistema;
- Postcondizioni: I dati inviati dal sensore_G sono stati elaborati e memorizzati nel sistema;
- Scenario principale:
 - 1. Il sensore_G effettua una misurazione dello stato di riempimento del parcheggio;
 - 2. Il sensore_G formatta i dati da inviare al sistema, includendo oltre alle misurazioni l'identificativo del sensore_G, il timestamp, e la sua posizione geografica;
 - 3. Il sensore_G invia i dati al sistema.
- **User story**_G: Come sensore_G, desidero poter inviare al sistema le rilevazioni sull'occupazione dei parcheggi.

Figura 55: UC-18: Trasmissione dati parcheggi

3.4.19 UC-19: Trasmissione dati isole ecologiche

Attore principale: Sensore_G;

• **Precondizioni**: Il sensore_G è attivo e collegato al sistema;

 Postcondizioni: I dati inviati dal sensore_G sono stati elaborati e memorizzati nel sistema;

• Scenario principale:

- 1. Il sensore_G effettua una misurazione dello stato di riempimento delle isole ecologiche;
- 2. Il sensore_G formatta i dati da inviare al sistema, includendo oltre alle misurazioni l'identificativo del sensore_G, il timestamp, e la sua posizione geografica;
- 3. Il sensore_G invia i dati al sistema.
- User story_G: Come sensore_G, desidero poter inviare al sistema le rilevazioni sullo stato di riempimento delle isole ecologiche.

Figura 56: UC-19: Trasmissione dati isole ecologiche

3.4.20 UC-20: Trasmissione dati livello di acqua

• Attore principale: Sensore_G;

Precondizioni: Il sensore_G è attivo e collegato al sistema;

- Postcondizioni: I dati inviati dal sensore_G sono stati elaborati e memorizzati nel sistema;
- Scenario principale:

- 1. Il sensore_G effettua una misurazione del livello di acqua;
- 2. Il sensore_G formatta i dati da inviare al sistema, includendo oltre alle misurazioni l'identificativo del sensore_G, il timestamp, e la sua posizione geografica;
- 3. Il sensore, invia i dati al sistema.
- **User story**_G: Come sensore_G, desidero poter inviare al sistema le rilevazioni sul livello di acqua.

Figura 57: UC-20: Trasmissione dati livello di acqua

4 Requisiti

4.1 Definizione di un requisito

Per ciascun requisito vengono fornite le seguenti informazioni:

- Codice: codice identificativo del requisito, meglio specificato nella sezione 4.2.1;
- **Descrizione**: breve descrizione del requisito;
- Fonte: provenienza del requisito, meglio specificata nella sezione 4.2.2;
- **Importanza**: indica l'importanza del requisito, meglio specificata nella sezione 4.2.3.

4.2 Tipologie di requisiti

I requisiti possono essere di quattro tipologie:

• Funzionali: descrivono le funzionalità del sistema:

- Qualitativi: descrivono le qualità che il sistema deve avere;
- **Di vincolo**: descrivono i vincoli a cui il sistema deve sottostare;
- **Prestazionali**: descrivono le prestazioni che il sistema deve avere.

4.2.1 Codifica dei requisiti

I requisiti sono codificati nel seguente modo:

R[Tipologia]-[Codice]

dove **[Codice]** è un numero progressivo che identifica univocamente il requisito e **[Tipologia]** è una lettera che identifica la tipologia del requisito:

- F: requisito funzionale;
- Q: requisito qualitativo;
- V: requisito di vincolo;

4.2.2 Fonti dei requisiti

I requisiti possono avere le seguenti fonti:

- Capitolato_G: requisiti individuati a seguito dell'analisi del capitolato_G;
- **Interno**: requisiti individuati durante le riunioni interne e da coloro che hanno il ruolo di analista;
- **Esterno**: requisiti aggiuntivi individuati in seguito a incontri con la proponente_G;
- **Piano di Qualifica**_G: requisiti necessari per adeguare il prodotto agli standard di qualità definiti nel documento *Piano di Qualifica*_G.
- Norme di Progetto_G: requisiti necessari per adeguare il prodotto alle norme stabilite nel documento Norme di Progetto_G;

4.2.3 Importanza dei requisiti

I requisiti possono avere tre livelli di importanza:

- Obbligatorio: requisito irrinunciabile per il committente_G;
- **Desiderabile**: requisito non strettamente necessario, ma che porta valore aggiunto al prodotto;
- Opzionale: requisito relativo a funzionalità aggiuntive.

4.3 Requisiti funzionali

Codice	Importanza	Fonte	Descrizione	
	Obbligatorio	Capitolato _G	La parte <i>IoT</i> dovrà essere simulata	
RF-1			attraverso tool di generazione di	
IXI - I	Obbligatorio	Capilolalog	informazioni random che tuttavia	
			siano verosimili.	
			Il sistema dovrà permettere la	
RF-2	Obbligatorio	Capitolato _⊖	visualizzazione dei dati in tempo	
			reale.	
RF-3	Obbligatorio	Capitolato _G	Il sistema dovrà permettere la	
1(1 -0	Obbligation	Capilolalo _G	visualizzazione dei dati storici.	
	Obbligatorio	Capitolato _G	L'utente deve poter accedere	
RF-4			all'applicativo senza bisogno di	
			autenticazione.	
	Obbligatorio	Capitolato _G	L'utente dovrà poter visualizzare su	
RF-5			una mappa la posizione	
			geografica dei sensori.	
			I tipi di dati che il sistema dovrà	
			visualizzare sono: temperatura,	
			umidità, qualità dell'aria,	
RF-6	Obbligatorio	Capitalata	precipitazioni, traffico, stato delle	
	Obbligatorio	Capitolato _G	colonnine di ricarica, stato di	
			occupazione dei parcheggi, stato	
			di riempimento delle isole	
			ecologiche e livello di acqua.	

Codice	Importanza	Fonte	Descrizione	
RF-7	Obbligatorio	Capitolato _G	I dati dovranno essere salvati su un	
IXIT-7	Oppligatorio	Capilolalo _G	database OLAP.	
RF-8	Obbligatorio	Capitolato _G	I sensori di temperatura rilevano i	
IXI -O	Obbligatorio	Capitolatog	dati in Celsius	
RF-9	Obbligatorio	Capitolato _©	l sensori di umidità rilevano la	
IXI /		Оарпоіатод	percentuale di umidità nell'aria.	
			l sensori livello acqua rilevano il	
RF-10	Obbligatorio	Capitolato _G	livello di acqua nella zona di	
			installazione	
			I dati provenienti dai sensori	
RF-11	Obbligatorio	Capitolato _G	dovranno contenere i seguenti	
IXI - I I			dati: id sensore _G , data, ora e	
			valore.	
	Obbligatorio	Capitolato _G	Sviluppo di componenti quali	
RF-12			widget _G e grafici per la	
IXI IZ			visualizzazione dei dati nelle	
			dashboard _G .	
			Il sistema dovrà permettere la	
RF-13	Obbligatorio	Capitolato _G	visualizzazione dei dati in tempo	
			reale.	
			Il sistema deve permettere di	
RF-14	Obbligatorio	Interno	visualizzare una dashboard _G	
IXI - I4	Obbligatorio	IIIIGIIIO	generale con tutti i dati dei	
			sensori.	
			Il sistema deve permettere di	
RF-15	Obbligatorio	Interno	visualizzare una dashboard _G	
10 10		II II GII IO	specifica per ciascuna categoria	
			di sensori.	

Codice	Importanza	Fonte	Descrizione
			Nella dashboard _G generale
			dovranno essere presenti una
			tabella di tutti i sensori, una
RF-16	Obbligatorio	Interno	mappa interattiva, un widget _⊖
IKE-10	Obbligatorio	II II C II IO	con il conteggio totale dei sensori
			e una tabella contente i sensori
			che non stanno inviando dati da
			più di un giorno.
			Nella dashboard _G della
			temperatura dovranno essere
			visualizzati: un grafico time series _G ,
RF-17	Obbligatorio	Interno	una mappa interattiva, la
131 17	Obbligatorio		temperatura media, minima e
			massima di un certo periodo di
			tempo e la temperatura in tempo
			reale.
			Nella dashboard _G dell'umidità
			dovranno essere visualizzati: un
			grafico time series _G , una mappa
RF-18		Interno	interattiva, l'umidità media,
			minima e massima di un certo
			periodo di tempo e l'umidità in
			tempo reale.
			Nella dashboard _G della qualità
			dell'aria dovranno essere
RF-19			visualizzati: un grafico time series $_{\mathbb{G}}$,
			una mappa interattiva, la qualità
	Obbligatorio	Interno	media dell'aria in un certo
			periodo e in tempo reale, i giorni
			con la qualità dell'aria migliore e
			peggiore in un certo periodo di
			tempo.

Codice	Importanza	Fonte	Descrizione
			Nella dashboard _⊖ delle
			precipitazioni dovranno essere
			visualizzati: un grafico time series _G ,
			una mappa interattiva, la
RF-20	Obbligatorio	Interno	quantità media di precipitazioni in
			un certo periodo e in tempo reale,
			i giorni con la quantità di
			precipitazioni maggiore e minore
			in un certo periodo di tempo.
			Nella dashboard _⊖ del traffico
			dovranno essere visualizzati: un
	Obbligatorio		grafico time series _G , il numero di
RF-20		Interno	veicoli e la velocità media in
			tempo reale e il calcolo dell'ora di
			punta sulla base del numero di
			veicoli e velocità media.
	Obbligatorio	Interno	Nella dashboard _G delle colonnine
			di ricarica dovranno essere
RF-20			visualizzati: una mappa interattiva
KI -20			contenente anche lo stato e il
			numero di colonnine di ricarica
			suddivise per stato in tempo reale.
			Nella dashboard _G dei parcheggi
			dovranno essere visualizzati: una
			mappa interattiva con il rispettivo
RF-21	Obbligatorio	Interno	stato di occupazione e il
			conteggio di parcheggi suddivisi
			per stato di occupazione in
			tempo reale.

Codice	Importanza	Fonte	Descrizione
			Nella dashboard _G delle isole
			ecologiche dovranno essere
			visualizzati: una mappa interattiva
RF-22	Obbligatorio	Interno	con il rispettivo stato di
			riempimento e il conteggio di isole
			ecologiche suddivise per stato di
			riempimento in tempo reale.
			Nella dashboard _G del livello di
			acqua dovranno essere
RF-23	Obbligatorio	Interno	visualizzati: un grafico time series _G ,
IXI -20	Obbligation	IIIIGIIIO	una mappa interattiva, il livello
			medio di acqua in un certo
			periodo e in tempo reale.
	Obbligatorio	Interno	Nel caso in cui non ci siano dati
RF-24			visualizzabili, il sistema deve
NI -24			notificare l'utente mostrando un
			opportuno messaggio.
		Interno	I sensori di qualità dell'aria inviano
RF-25	Obbligatorio		i seguenti dati: <i>PM10, PM2.5, NO2,</i>
10 20	Obbligatorio		CO , CO 3, CO 2 in $\mu g/m^3$ e la qualità
			dell'aria in base all'indice $EAQI_G$.
RF-25	Obbligatorio	Interno	I sensori di precipitazioni inviano la
10 20		11101110	quantità di pioggia caduta in mm.
			l sensori di traffico inviano il
RF-26	Obbligatorio	Interno	numero di veicoli rilevati e la
			velocità in km/h.
			Le colonnine di ricarica inviano lo
RF-27	Obbligatorio	Interno	stato di occupazione e il tempo
			mancante alla fine della ricarica
			(se occupate) o il tempo passato
			dalla fine dell'ultima ricarica (se
			libere).

Codice	Importanza	Fonte Descrizione		
			I sensori di parcheggio inviano lo	
			stato di occupazione del	
RF-28	Obbligatorio	Interno	parcheggio (1 se occupato, 0 se	
			libero) e il timestamp dell'ultimo	
			cambiamento di stato.	
RF-29	Obbligatorio	Interno	Le isole ecologiche inviano lo	
			stato di riempimento (1 se pieno, 0	
			se vuoto) e il timestamp	
			dell'ultimo cambiamento di stato.	
RF-30	Obbligatorio	Interno	I sensori di livello di acqua inviano	
	Oppligatorio	II II O II IO	il livello di acqua in cm.	

Tabella 1: Requisiti funzionali

4.4 Requisiti qualitativi

Codice	Importanza	Fonte Descrizione		
RQ-31	Obbligatorio	Capitolato _G , Piano di Qualifica	Sviluppo di test che dimostrino il corretto funzionamento dei servizi e delle funzionalità previste. Viene richiesta una copertura dell'80% corredata di report.	
RQ-32	Obbligatorio	Capitolato _G , Piano di Qualifica	Il progetto deve essere corredato di documentazione riguardo scelte implementative e progettuali effettuate e relative motivazioni.	
RQ-33	Obbligatorio	Capitolato _G , Piano di Qualifica	Il progetto deve essere corredato di documentazione riguardo problemi aperti e eventuali soluzioni proposte da esplorare.	
RQ-34	Obbligatorio	Capitolato _G , Piano di Qualifica	Tutte le componenti del sistema devono essere testate con <i>test</i> end-to-end _G .	

Tabella 2: Requisiti qualitativi

4.5 Requisiti di vincolo

Codice	Importanza	Fonte	Descrizione	
RV-35	Obbligatorio	Capitolato _G	Deve essere implementato	
160-00	Oppligation	Capilolalo _G	almeno un simulatore di dati.	
RV-36	Desiderabile	Capitolato _G	Devono essere implementati più	
16.0-00	Desiderabile	Capilolalo _G	simulatori di dati.	
RV-37	Obbligatorio	Capitolato _G	I simulatori devono produrre dei	
16.0-07	Obbligation	Capilolalo _G	dati verosimili.	
			Il simulatore di dati deve	
RV-38	Obbligatorio	Capitolato _⊖	pubblicare messaggi in una	
			piattaforma di <i>data streaming</i> .	
		Capitolato _G	La piattaforma di <i>data streaming</i>	
RV-38	Obbligatorio		deve essere integrata con un un	
			database OLAP.	
			Per ciascuna tipologia di sensore	
RV-39	Obbligatorio	o Capitolato _G	Capitolato _G dev'essere sviluppata almeno	
			dashboard _G .	
RV-40	Opzionale	Capitolato _G	Previsione di dati futuri basati sui	
14 7 -40	Opzioriale	Capilolalo _G	dati storici.	
			Deve esistere una dashboard _G per	
RV-41	Desiderabile	Capitolato-	la visualizzazione della posizione	
150-41	Desiderabile	Capitolato ₆	geografica dei sensori su una	
			mappa.	
			Un sistema di notifiche che allerti	
RV-42	Opzionale	Capitolato _G	l'utente in caso di superamento di	
			soglie prestabilite.	

Tabella 3: Requisiti di vincolo

4.6 Tracciamento

4.6.1 Requisito - Fonte

Requisito	Fonte	
RF-1	Capitolato _G	
RF-2	Capitolato _G	
RF-3	Capitolato _G	
RF-4	Capitolato _G	
RF-5	Capitolato _G	
RF-6	Capitolato _G	
RF-7	Capitolato _G	
RF-8	Capitolato _G	
RF-9	Capitolato _G	
RF-10	Capitolato _G	
RF-11	Capitolato _⊖	
RF-12	Capitolato _G	
RF-13	Capitolato _G	
RF-14	Interno	
RF-15	Interno	
RF-16	Interno	
RF-17	Interno	
RF-18	Interno	
RF-19	Interno	
RF-20	Interno	
RF-20	Interno	
RF-20	Interno	
RF-21	Interno	
RF-22	Interno	
RF-23	Interno	
RF-24	Interno	
RF-25	Interno	
RF-25	Interno	
RF-26	Interno	
RF-27	Interno	

Requisito	Fonte
RF-28	Interno
RF-29	Interno
RF-30	Interno
	Capitolato _G ,
RQ-31	Piano di
	Qualifica
	Capitolato _G ,
RQ-32	Piano di
	Qualifica
	Capitolato _G ,
RQ-33	Piano di
	Qualifica
	Capitolato _G ,
RQ-34	Piano di
	Qualifica
RV-35	Capitolato _G
RV-36	Capitolato _G
RV-37	Capitolato _G
RV-38	Capitolato _G
RV-38	Capitolato _G
RV-39	Capitolato _G
RV-40	Capitolato _G
RV-41	Capitolato _G

Tabella 4: Tracciamento requisito - fonte

4.7 Riepilogo

Tipologia	Obbligatorio	Desiderabile	Opzionale	Totale
Funzionali	33	0	0	33
Qualitativi	4	0	0	4
Di vincolo	5	2	2	9

Tabella 5: Riepilogo