Algèbre Linéaire

Partiel 2 - 25 Mars 2016

Durée: 2 heures. Sans documents ni calculatrices

Exercice 1.

- 1. Rappeler les définitions de matrice inversible et de la transposée d'une matrice.
- 2. Soient $A, B \in M_n(\mathbb{R})$. Montrer que si AB = BA et A est inversible, alors $(A^{-1})B = B(A^{-1})$.

Exercice 2. Soit $A = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 2 & 1 & 0 & 1 \\ 0 & 1 & 1 & 2 \\ 1 & 0 & 0 & 1 \end{pmatrix}$. Calculer A^{-1} par la méthode du pivot de Gauss

(justifier lors de l'échelonnement l'inversibilité de A).

Exercice 3. Dans \mathbb{R}^4 , on considère les vecteurs

$$v_1 = \begin{pmatrix} 2 \\ 0 \\ -2 \\ 4 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 0 \end{pmatrix}, v_3 = \begin{pmatrix} 3 \\ 1 \\ -1 \\ 5 \end{pmatrix}, v_4 = \begin{pmatrix} 2 \\ 4 \\ 8 \\ 3 \end{pmatrix}.$$

Donner le rang de ce système de vecteurs et déterminer une base du sous-espace vectoriel $\text{Vect}\{v_1,v_2,v_3,v_4\}$. A-t-on $\text{Vect}\{v_1,v_2,v_3,v_4\}=\mathbb{R}^4$?

Exercice 4.

1. Résoudre le système suivant :

$$\begin{cases} x_1 & -2x_2 & -x_3 & +3x_4 & -4x_5 & = 0 \\ & x_2 & +x_3 & -x_4 & +x_5 & = 0 \\ x_1 & +3x_2 & +4x_3 & & -3x_5 & = 0 \\ x_1 & +2x_2 & +3x_3 & +x_4 & -4x_5 & = 0 \end{cases}$$

- 2. Justifier que l'ensemble S des vecteurs $\begin{pmatrix} x_1 \\ \vdots \\ x_5 \end{pmatrix} \in \mathbb{R}^5$ étant solutions du système ci-dessus est un sous-espace vectoriel de \mathbb{R}^5 .
- 3. Donner la dimension et une base de S.

Exercice 5. Soient
$$B = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$$
 et $C = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.

- 1. Montrer par récurrence que $B^n = 3^{n-1}B$ pour n > 1.
- 2. Calculer BC et CB.

On admet que $C^n = 3^{n-1}C$ pour $n \ge 1$. On pose $A = \frac{1}{3}(B+4C)$.

- 3. Grâce à la formule du binôme (justifier son utilisation), calculer A^n pour $n \ge 1$.
- 4. Calculer $(B + 4C)(B + I_3)$ avec I_3 la matrice identité de $M_3(\mathbb{R})$. En déduire que A est inversible et donner A^{-1} .