CS202 - Algorithm Analysis Graph Algorithms - Module3

Aravind Mohan

Allegheny College

April 13, 2023

Discussion Based On ...

Sedgewick 4.4

Shortest Path Problem

We are given a starting node $\mathbf{s} \in V$ and a weighted graph G(V, E, W).

- a node set V
- an edge set E
- lacktriangle a weight set lacktriangle specifying weights c_{ij} for the edges $(i,j) \in E$

Problem Definition: The shortest path problem is the problem of determining the shortest path from node **s** to all the other nodes in the graph.

Shortest Path Algorithms

- Dijkstra's algorithm: Solves only the problems with nonnegative costs, i.e., $c_{ij} \ge 0$ for all $(i, j) \in E$
- Bellman-Ford algorithm: Applicable to problems with arbitrary costs
- Floyd-Warshall algorithm: Applicable to problems with arbitrary costs and solves a more general all-to-all shortest path problem

Floyd-Warshall and **Bellman-Ford** algorithm solve the problems on graphs that do not have a cycle with negative cost.

The Power of Dijkstra's algorithm:

- Find directions between physical locations, such as driving directions on websites like Google Maps or Mapquest
- In data network routing: find the path for data packets to go through a switching network with minimal delay
- Other shortest path problems arising in plant and facility layout, robotics, transportation, and VLSI design

Find shortest path in graph starting from 0

Distance

Distance

Distance

Distance

Distance

Distance

Dijkstra's Algorithm

Graph(G, s)

Input: Graph G = (V, E) directed or undirected, source vertex $s \in V$

Output: Shortest distance from s to all other vertices in V

```
Let D[s] from \mathbf{s}=\mathbf{0}

Let D[t]=\infty for all vertex t\in V-\{s\}

Let P[t]= undefined for all vertex t\in V

while (visited.size <> |V|)

\alpha= unvisited vertex with minimum distance for all \mathbf{u}\in unvisited neighbors of \alpha

\beta=D[\alpha]+E(\alpha,u)

if (\beta< D[u])

D[u]=\beta

P[u]=\alpha

end if end for visited.add(\alpha) end while
```

Complexity Analysis

Time Complexity - O(V²)

Graph - Exercise

Try out 1

Compute the shortest path to all vertices from start vertex
 a. Show the Distance and Previous array at every step in your solution.

Interested to learn more Graph Algorithms?

Prims Algorithm:

```
https://www.youtube.com/watch?v=A_
W4FGPMfDw&list=
PLKsSK2k9kZ8yomg0hkI10Jp5PhcAe5qvL&
index=2
```

Kruskals Algorithm:

```
https://www.youtube.com/watch?v=
kWVncbEm4g0&list=
PLKsSK2k9kZ8yomg0hkI10Jp5PhcAe5qvL&
index=3
```

Reading Assignment

Sedgewick 4.4

Questions?

Please ask if there are any Questions through Discord, Email, and/or during the office hours!