Алгоритми та структури даних. Основи алгоритмізації

Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра автоматизованих систем обробки інформації і управління

Звіт

з лабораторної роботи № 4 з дисципліни «Алгоритми та структури даних. Основи алгоритмізації»

«Дослідження арифметичних циклічних алгоритмів»

Варіант___23___

Виконав студент	Берлінський Ярослав Владленович
· ——	(шифр, прізвище, ім'я, по батькові)
Перевірив	
	(прізвище, ім'я, по батькові)

Назва роботи: дослідження арифметичних циклічних алгоритмів.

Мета: дослідити особливості роботи арифметичних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

Варіант: 23

Умова задачі:

23. Задані значення х і п.

Обчислити суму п членів ряду:

$$S = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!}$$

Постановка задачі.

Формулою заданий n-ний член. Фактично, поставлена задача зводиться до знаходження суми усіх таких членів від n=0 до заданого цілого числа.

Результатом розв'язку є сума ряду чисел, представлених вищезазначеною формулою n-го члена, яка обчислюється за допомогою арифметичного циклу.

Побудова математичної моделі: для більшої наочності складемо таблицю імен змінних.

3мінна	Тип	Ім'я	Призначення
Змінна, що вводиться з клавіатури	Дійсний	X	Початкові дані
Порядкова кількість членів, починаючи від нуля	Цілий	n	Початкові дані
n-й номер доданку	Цілий	i	Параметр арифм. циклу
Параметр для знаходження $(2k)!$	Цілий	j	Параметр вкладеного арифм. циклу
3начення (2 <i>k</i>)!	Цілий	factorial	Проміжкові дані
Значення суми членів	Дійсний	Sum	Проміжкові дані. Результат

Фактично задана умова зводиться до послідовного знаходження усіх членів ряду до n-го елемента включно. Інтерпретуємо рішення задачі математичною моделлю:

- нехай існує деяке число х та n, де n=k(введено з клавіатури, тобто k – якесь конкретне число). Тоді вищезазначену суму можна представити:

$$\sum_{n=0}^{k} (-1)^n \frac{x^{2n}}{(2n)!}$$

Дійсно! Адже, проаналізувавши задану в умові формулу, доходимо до висновку, що

$$при n = 0$$
 $S = 1$

при
$$n = 1$$
 $S = 1 - \frac{x^2}{2!}$

при
$$n = 2$$
 $S = 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$

при
$$n = 3$$
 $S = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!}$

і не обмежуючи загальності, маємо право стверджувати, що

при
$$n=k$$
 $S=1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+\cdots+(-1)^k\frac{x^{2k}}{(2k)!}$

Варто наперед підмітити, що незалежно від значень змінної х, перший доданок суми, зазначеної в умові, має дорівнювати 1. Звісно, підставивши х=0, отримуємо

$$S = \frac{0^0}{(2*0)!} - \frac{0^2}{2!} + \frac{0^4}{4!} - \frac{0^6}{6!} + \dots = 1$$

Також слід не забувати, що 0^0 не завжди детермінується, але у C-подібних мовах програмування та у Python такий вираз дорівнюватиме 1, що дає нам можливість

розрахувати
$$\frac{0^0}{(2*0)!} = 1.$$

Отже, довівши справедливість твердження, можна приступати до розробки програмової специфікації алгоритму.

Розв'язання.

1. Програмні специфікації запишемо у псевдокоді та у графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії;

<u>Крок 2. Розпишемо дію знаходження суми арифметичним циклом при заданому N;</u>

<u>Крок 3. Деталізуємо дію знаходження (2k)!</u>

Псевдокод

<u>Крок 1</u>

1) Початок

Введення х

Введення **n**

factorial: = 1

Sum: = 0

expression: = 1

<u>Обчислення суми при</u>

заданому N

Виведення s i k

Кінець

Крок 2

2) Початок

Введення х

Введення **n**

factorial: = 1

Sum: = 0

expression: = 1

повторити

для і від 0 до n

<u>дія знаходження</u> (2k)!

expression:=pow(-1,i)*

(pow(x,2*i)/factorial)

factorial=1

Sum:=Sum+expression

Форматовано

вивести n i expression

все повторити

Виведення **Sum**

Кінець

<u>Крок 3</u>

```
3) Початок
 Введення х
 Введення п
factorial: = 1
 Sum: = 0
 expression: = 1
 повторити
 для і від 0 до п
  повторити
   для ј від 1 до 2*і
     factorial:=factorial*j
  все повторити
  expression:=pow(-1,i)*
  (pow(x,2*i)/factorial)
  factorial=1
  Sum:=Sum+expression
  Форматовано
  вивести n i expression
 все повторити
 Виведення Sum
 Кінець
```

Блок-схема

Крок №1

Крок №2 Початок Введення х Введення п factorial: = 1 Sum: = 0 expression: = 1 i, 0, n Розрахунок факторіала (2*n)! expression: = (-1)**i*(x**(2*i)/factorial) factorial: = 1 Sum:=Sum+expression Форматоване виведення expression при заданому N

Виведення Sum,

Випробування алгоритму

Перевіримо правильність алгоритму на довільних конкретних значеннях початкових даних.

Тест №1(x=0;n=2)

Блок	Дія
1	Початок
2	Введення x=0, n=2
3	factorial: = 1 Sum: = 0 expression: = 1
4	Початок арифм. циклу. i=0; i<=2; i++
5	Початок вклад. арифм. циклу. j=1; j<=0; j++ -> вихід
6	expression=(-1)^0*(0^(2*0)/1)=1
7	factorial=1
8	Sum=0+1=1
9	Вивести «При N = 0 значення виразу дорівнює: 1»
10	Повернення до циклу. i=1; i<=2; i++
11	Початок вклад. арифм. циклу. j=1; j<=2; j++
12	factorial=1*1=1
13	Повернення до циклу. j=2; i<=2; i++
14	factorial=1*2=2
15	Вихід з вклад. арифм. циклу
16	expression=(-1)^1*(0^(2*1)/2)=0
17	factorial=1
18	Sum=1+0=1
19	Вивести «При N = 1 значення виразу дорівнює: 0»
20	Повернення до циклу. i=2; i<=2; i++
21	Початок вклад. арифм. циклу. j=1; j<=4; j++
22	factorial=1*1=1
23	Повернення до циклу. j=2; i<=2; i++
24	factorial=1*2=2
25	Початок вклад. арифм. циклу. j=3; j<=4; j++
26	factorial=2*3=6

27	Повернення до циклу. j=4; i<=2; i++
28	factorial=6*4=24
29	Вихід з вклад. арифм. циклу
30	expression=(-1)^2*(0^(2*2)/24)=0
31	factorial=1
32	Sum=1+0=1
33	Вивести «При N = 1 значення виразу дорівнює: 0»
34	Вихід з арифм. циклу.
35	Виведення Sum=1

Тест №2(x=2; n=5)

Блок	Дія
2	Введення x=2, n=5
3	factorial: = 1 Sum: = 0 expression: = 1
4	Початок арифм. циклу. i=0; i<=5; i++
5	Початок вклад. арифм. циклу. j=1; j<=0; j++ -> вихід
6	expression=(-1)^0*(2^(2*0)/1)=1
7	factorial=1
8	Sum=0+1=1
9	Вивести «При N = 0 значення виразу дорівнює: 1»
10	Повернення до циклу. i=1; i<=5; i++
11	Початок вклад. арифм. циклу. j=1; j<=2; j++
12	factorial=1*1=1
13	Повернення до циклу. j=2; j<=2; i++
14	factorial=1*2=2
15	Вихід з вклад. арифм. циклу
16	expression=(-1)^1*(2^(2*1)/2)=-2
17	factorial=1
18	Sum=1+(-2)=-1
19	Вивести «При N = 1 значення виразу дорівнює: -2»
20	Повернення до циклу. i=2; i<=5; i++

21	Початок вклад. арифм. циклу. j=1; j<=4; j++
22	factorial=1*1=1
23	Повернення до циклу. j=2; j<=4; i++
24	factorial=1*2=2
25	Повернення до циклу. j=3; j<=4; j++
26	factorial=2*3=6
27	Повернення до циклу. j=4; j<=4; i++
28	factorial=6*4=24
29	Вихід з вклад. арифм. циклу
30	expression=(-1)^2*(2^(2*2)/24)=0.(6)
31	factorial=1
32	Sum=-1+0.(6)=-0.(3)
33	Вивести «При N = 2 значення виразу дорівнює: 0.(6)»
34	Повернення до циклу. i=3; i<=5; i++
35	Початок вклад. арифм. циклу. j=1; j<=6; j++
36	factorial=1*1=1
37	Повернення до циклу. j=2; j<=6; i++
38	factorial=1*2=2
39	Повернення до циклу. j=3; j<=6; j++
40	factorial=2*3=6
41	Повернення до циклу. j=4; j<=6; i++
42	factorial=6*4=24
43	Повернення до циклу. j=5; j<=6; i++
44	factorial=24*5=120
45	Повернення до циклу. j=6; j<=6; j++
46	factorial=120*6=720
47	Вихід з вклад. арифм. циклу
48	expression=(-1)^3*(2^(2*3)/720)=-0.0(8)
49	factorial=1
50	Sum=-0.(3)+(-0.0(8))=-0.4(2)
51	Вивести «При N = 3 значення виразу дорівнює: -0.0(8)»
52	Повернення до циклу. i=4; i<=5; i++
53	Початок вклад. арифм. циклу. j=1; j<=8; j++

54	factorial=1*1=1
55	Повернення до циклу. j=2; j<=8; i++
56	factorial=1*2=2
57	Повернення до циклу. j=3; j<=8; j++
58	factorial=2*3=6
59	Повернення до циклу. j=4; j<=8; i++
60	factorial=6*4=24
61	Повернення до циклу. j=5; j<=8; i++
62	factorial=24*5=120
63	Повернення до циклу. j=6; j<=8; j++
64	factorial=120*6=720
65	Повернення до циклу. j=7; j<=8; i++
66	factorial=720*7=5040
67	Повернення до циклу. j=8; j<=8; j++
68	factorial=5040*8=40320
69	Вихід з вклад. арифм. циклу
71	expression=(-1)^4*(2^(2*4)/40320)=0.006349206349206349
72	factorial=1
73	Sum=-0.4(2)+ 0.006349206349206349=-0.415873015873015950
74	Вивести «При N = 4 значення виразу дорівнює: 0.006349206349206349»
75	Повернення до циклу. i=5; i<=5; i++
76	Початок вклад. арифм. циклу. j=1; j<=10; j++
77	factorial=1*1=1
78	Повернення до циклу. j=2; j<=10; i++
79	factorial=1*2=2
80	Повернення до циклу. j=3; j<=10; j++
81	factorial=2*3=6
82	Повернення до циклу. j=4; j<=10; i++
83	factorial=6*4=24
84	Повернення до циклу. j=5; j<=10; i++
85	factorial=24*5=120
86	Повернення до циклу. j=6; j<=10; j++
87	factorial=120*6=720

88	Повернення до циклу. j=7; j<=10; i++
89	factorial=720*7=5040
90	Повернення до циклу. j=8; j<=10; j++
91	factorial=5040*8=40320
92	Повернення до циклу. j=9; j<=10; i++
93	factorial=40320*9=362880
94	Повернення до циклу. j=10; j<=10; j++
95	factorial=362880*10=3628800
96	Вихід з вклад. арифм. циклу
97	expression=(-1)^5*(2^(2*5)/3628800)=-0.000282186948853615
98	factorial=1
99	Sum=-0.415873015873015950+(-0.000282186948853615)= -0.416155202821869574
100	Вивести «При N = 5 значення виразу дорівнює: - 0.000282186948853615»
101	Вихід з арифм. циклу.
102	Виведення Sum=-0.416155202821869574

Висновок: отже, за допомогою арифметичного циклу була розв'язана типічна задача на суму ряду п чисел, що задані формулою п-го члена. Не обмежуючи загальності, було сформульовано базисні кроки підрахунку суми, а також її виразів-компонентів.

Кажучи про математичний апарат рішення поставленої задачі. Числовий ряд є скінченим, тож для виконання розрахунків необхідно знати кількість членів ряду n, а також аргумент x.

Тож алгоритм арифметичних циклів з параметром стає в нагоді для вирішення подібних завдань.

Впродовж зробленої роботи було виконано 2 тести: для x=0(тривіальний випадок) та x=2.