- Determine which of the following sinusoids are periodic and compute their funda-
 - (a) $\cos 0.01 \pi n$
- **(b)** $\cos \left(\pi \frac{30n}{105}\right)$
- (c) $\cos 3\pi n$ (d) $\sin 3n$
- (e) $\sin \left(\pi \frac{62n}{10} \right)$

- 1.3 Determine whether or not each of the following signals is periodic. In case a signal is periodic, specify its fundamental period.
 - (a) $x_a(t) = 3\cos(5t + \pi/6)$
 - **(b)** $x(n) = 3\cos(5n + \pi/6)$
 - (c) $x(n) = 2 \exp[j(n/6 \pi)]$
 - **(d)** $x(n) = \cos(n/8)\cos(\pi n/8)$
 - (e) $x(n) = \cos(\pi n/2) \sin(\pi n/8) + 3\cos(\pi n/4 + \pi/3)$

1.5 Consider the following analog sinusoidal signal:

$$x_a(t) = 3\sin(100\pi t)$$

- (a) Sketch the signal $x_a(t)$ for $0 \le t \le 30$ ms.
- (b) The signal $x_a(t)$ is sampled with a sampling rate $F_s = 300$ samples/s. Determine the frequency of the discrete-time signal $x(n) = x_a(nT)$, $T = 1/F_s$, and show that it is periodic.
- (c) Compute the sample values in one period of x(n). Sketch x(n) on the same diagram with x_a(t). What is the period of the discrete-time signal in milliseconds?
- (d) Can you find a sampling rate F_s such that the signal x(n) reaches its peak value of 3? What is the minimum F_s suitable for this task?

- 1.7 An analog signal contains frequencies up to 10 kHz.
 - (a) What range of sampling frequencies allows exact reconstruction of this signal from its samples?
 - (b) Suppose that we sample this signal with a sampling frequency $F_s = 8 \text{ kHz}$. Examine what happens to the frequency $F_1 = 5 \text{ kHz}$.
 - (c) Repeat part (b) for a frequency $F_2 = 9 \text{ kHz}$.

- 1.8 An analog electrocardiogram (ECG) signal contains useful frequencies up to 100 Hz.
 - (a) What is the Nyquist rate for this signal?
 - (b) Suppose that we sample this signal at a rate of 250 samples/s. What is the highest frequency that can be represented uniquely at this sampling rate?

- 1.9 An analog signal $x_a(t) = \sin(480\pi t) + 3\sin(720\pi t)$ is sampled 600 times per second.
 - (a) Determine the Nyquist sampling rate for $x_a(t)$.
 - (b) Determine the folding frequency.
 - (c) What are the frequencies, in radians, in the resulting discrete time signal x(n)?
 - (d) If x(n) is passed through an ideal D/A converter, what is the reconstructed signal $y_a(t)$?

1.10 A digital communication link carries binary-coded words representing samples of an input signal

$$x_a(t) = 3\cos 600\pi t + 2\cos 1800\pi t$$

The link is operated at 10,000 bits/s and each input sample is quantized into 1024 different voltage levels.

- (a) What are the sampling frequency and the folding frequency?
- (b) What is the Nyquist rate for the signal $x_a(t)$?
- (c) What are the frequencies in the resulting discrete-time signal x(n)?
- (d) What is the resolution Δ ?

The second secon
1.10 Xa(t) = 3Cos600 Mt + 2Cos1800 Mt
cada mues tra en 10,000 bits al Determinar la fre cuencia de mues treo
Fs = Tasa bit = 10,000 - 1,000 HZ Bits myestra 10
El sistema opera a 10,000 bits · Cada mues tra en 1029 niveles (210) cal Determinar la fre cuencia de muestreo y folding fre wen cx? Fs = Tasa bit = 10,000 - 1,000 Hz Bits muestra 10 Folding frea = FN = Fs = 1000 - 500 Hz b) De terminar la fre cuencia de Nyquist para
bloeterminar la fre avencia de Nyquist para la señal Xaltl Fi= 60071 - 300 HZ
F2= 1800 TT = 900 HZ
C) frecuencia en señal discreta W= 271 E Fs
F1= 2 TY 300 = 0.6 TY rad
F2= 27900 = 1.8 M rad
d) Resolución
$A = \frac{10}{1024} = \frac{10}{1024} = 0.0040$ Scribe

1.11 Consider the simple signal processing system shown in Fig. P1.11. The sampling periods of the A/D and D/A converters are T = 5 ms and T' = 1 ms, respectively. Determine the output $y_a(t)$ of the system, if the input is

$$x_a(t) = 3\cos 100\pi t + 2\sin 250\pi t \qquad (t \text{ in seconds})$$

The postfilter removes any frequency component above $F_s/2$.

Figure P1.11

1.15 Sampling of sinusoidal signals: aliasing Consider the following continuous-time sinusoidal signal

$$x_a(t) = \sin 2\pi F_0 t, \quad -\infty < t < \infty$$

Since $x_a(t)$ is described mathematically, its sampled version can be described by values every T seconds. The sampled signal is described by the formula

$$x(n) = x_a(nT) = \sin 2\pi \frac{F_0}{F_s} n, \quad -\infty < n < \infty$$

where $F_s = 1/T$ is the sampling frequency.

- (a) Plot the signal x(n), $0 \le n \le 99$ for $F_s = 5$ kHz and $F_0 = 0.5$, 2, 3, and 4.5 kHz. Explain the similarities and differences among the various plots.
- (b) Suppose that $F_0 = 2 \text{ kHz}$ and $F_s = 50 \text{ kHz}$.
 - **1.** Plot the signal x(n). What is the frequency f_0 of the signal x(n)?
 - 2. Plot the signal v(n) created by taking the even-numbered samples of x(n). Is this a si $\wedge \vee \sqrt{4}/4 \oplus \bigcirc \bigcirc \bigcirc$ frequency?

1.15 Ya(c)=S:0.2446.
Auto Sin Zaliot
Fs=1 XM = Xalati Sen (27 Fo a)
F3=SKHZ F300 0= 0.5123,1.5KHz
Fo = fo = (0.5 2 3 4.5) -0.1,0.4, about
De more dans to
Discreta Fo=1fs=Fo=1S-45=0.5 HZ
F0=115=10-13-13-13-13-13-13-13-13-13-13-13-13-13-
b) Anólisis con fo=2 htz fs=50htz
Fo= Fo = 2 - 0.4 HZ
F0=F0 = 50
0.40
x co 1 = Sen (27 · 0.090)
Scribe

