

Predicting first-year engineering student success: from traditional statistics to machine learning

Ramaravind Kommiya Mothilal Tom Broos Maarten Pinxten Tinne De Laet

Tinne.DeLaet@kuleuven.be
@TinneDeLaet

population-wide insights individual predictions

prior academic achievement (secondary education)

- grades math, physics, chemistry
- number of hours math
- effort level

learning and studying skills

- motivation
- time management
- concentration
- performance anxiety
- use of test strategies

preference for time pressure

prior academic achievement (secondary education)

- grades math, physics, chemistry
- number of hours math
- effort level

learning and studying skills

- motivation
- time management
- concentration
- performance anxiety
- use of test strategies

academic achievement (AA)GPA of first semester

prior academic achievement (secondary education)

- grades math, physics, chemistry
- number of hours math
- effort level

learning and studying skills

- motivation
- time management
- concentration
- performance anxiety
- use of test strategies

preference for time pressure

(AA) GPA of first semester

GPA of first semester (wavg)

explanatory modelling

- multiple linear regression
 predictive modelling
- logistic regression
- boosted trees

Research questions

Do statistical modelling (multiple linear & logistic regression) and boosted trees identify the same factors for first-year engineering student success?

Research questions

Do statistical modelling (multiple linear & logistic regression) and boosted trees identify the same factors for first-year engineering student success?

Can boosted trees more accurately predict first-year student success than logistic regression?

Research questions

Do statistical modelling (multiple linear & logistic regression) and boosted trees identify the same factors for first-year engineering student success?

Can boosted trees more accurately predict first-year student success than logistic regression?

Can Local Interpretable Model-agnostic Explanations (LIME) generate interpretable insights in the factors important for predicting first-year student success?

KU LEUVEN

KU LEUVEN

first-year Bachelor of Engineering Science students two academic years: 2015-2016 and 2016-2017 N=811

EXPLANATORY MODELLING

→ MULTIPLE LINEAR REGRESSION

Hypotheses

- Prior academic experience positively AA.
- Affective and goal strategies positively affect AA.
- Preference for time pressure does not affect AA.

EXPLANATORY MODELLING

→ MULTIPLE LINEAR REGRESSION

Hypotheses

- Prior academic experience positively AA.
- Affective and goal strategies positively affect AA.
- Preference for time pressure does not affect AA.

	model	regression type	R ²
1	wavg ~ <u>math+phy+chem+hrs</u>	standard	0.37
2	wavg ~ <u>aff</u> + goal + press	standard	0.06
3	wavg ~ math+phy+chem+hrs + aff + goal + press + eff	sequential	

EXPLANATORY MODELLING → MULTIPLE LINEAR REGRESSION

Hypotheses

Prior academic experience positively AA.

Affective and goal strategies positively affect AA.

Preference for time pressure does not affect AA.

	model	regression type	R ²
1	wavg ~ math+phy+chem+hrs	standard	0.37
2	wavg ~ <u>aff</u> + goal + press	standard	0.06
3	wavg \sim math+phy+chem+hrs + aff + goal + press + eff	sequential	

EXPLANATORY MODELLING WITH PREDICTIVE VALIDITY → LOGISTIC REGRESSION

EXPLANATORY MODELLING WITH PREDICTIVE VALIDITY → LOGISTIC REGRESSION

precision	recall	F1- score
0.41	0.45	0.43
0.63	0.59	0.61
0.63	0.60	0.62

PREDICTIVE MODELLING → BOOSTED TREES

PREDICTIVE MODELLING → BOOSTED TREES

precision	recall	F1- score
0.64	0.80	0.71
0.88	0.77	0.82
0.87	0.85	0.86
0.68	0.70	0.69

individual predictions
population-wide insights

individual predictions population-wide insights

Local Interpretable
Model-agnostic Explanations
(LIME)

EXPLANATORY MODELLING WITH PREDICTIVE VALIDITY → BOOSTED TREES + LIME

individual predictions

Prediction probabilities

EXPLANATORY MODELLING WITH PREDICTIVE VALIDITY

population-wide insights

 \rightarrow BOOSTED TREES + LIME

no-risk (wavg > 11.5)

at risk (wavg ≤ 8.5)

Do statistical modelling (multiple linear & logistic regression) and boosted trees identify the same factors for first-year engineering student success?

Can boosted trees more accurately predict first-year student success than logistic regression?

Can Local Interpretable Model-agnostic Explanations (LIME) generate interpretable insights in the factors important for predicting first-year student success?

Do statistical modelling (multiple linear & logistic regression) and boosted trees identify the same factors for first-year engineering student success?

Hypotheses

- Prior academic experience positively AA. 🕢
- Affective and goal strategies positively affect AA.

Do statistical modelling (multiple linear & logistic regression) and boosted trees identify the same factors for first-year engineering student success?

Can boosted trees more accurately predict first-year student success than logistic regression?

precision & recall / 20%

Do statistical modelling (multiple linear & logistic regression) and boosted trees identify the same factors for first-year engineering student success?

Can boosted trees more accurately predict first-year student success than logistic regression?

Can Local Interpretable Model-agnostic Explanations (LIME) generate interpretable insights in the factors important for predicting first-year student success?

Questions for discussion during the conference

How would your university profit from research on firstyear student success?

What is still required to transfer the research to practice?

Successful Transition from secondary to higher Education using Learning Analytics

enhance a successful transition from secondary to higher education by means of learning analytics

- √ design and build analytics dashboards,
- ✓ dashboards that go beyond identifying at-risk students, allowing actionable feedback for all students on a large scale.

www.stela-project.eu

