Data Sheet S6B33BC

132 RGB Segment & 162 Common Driver For 65K Color STN LCD

June. 2. 2005 Ver. 0.3

System LSI Division Semiconductor Business SAMSUNG ELECTRONICS CO., LTD.

Contents in this document are subject to change without notice. No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express written permission of SAMSUNG ELECTRONICS.

Precautions for Light

Light has characteristics to move electrons in the integrated circuitry of semiconductors, therefore may change the characteristics of semiconductor devices when irradiated with light. Consequently, the users of the packages which may expose chips to external light such as COB, COG, TCP and COF must consider effective methods to block out light from reaching the IC on all parts of the surface area, the top, bottom and the sides of the chip. Follow the precautions below when using the products.

- 1. Consider and verify the protection of penetrating light to the IC at substrate (board or glass) or product design stage.
- 2. Always test and inspect products under the environment with no penetration of light.

CONTENTS

INTRODUCTION	1
FEATURES	1
PAD CONFIGURATION	4
PAD CENTER COORDINATES	7
PIN DESCRIPTION	12
FUNCTIONAL DESCRIPTION	15
MPU INTERFACE	
DISPLAY DATA RAM	
INSTRUCTION DESCRIPTION	28
INSTRUCTION PARAMETER	64
POWER ON/OFF SEQENCE	67
SPECIFICATIONS	
ABSOLUTE MAXIMUM RATINGS	
OPERATING VOLTAGE	71
DC CHARACTERISTICS (1)	72
DC CHARACTERISTICS (2)	73
DC CHARACTERISTICS (3)	74
DC CHARACTERISTICS (4)	75
DC CHARACTERISTICS (5)	76
AC CHARACTERISTICS	77
SYSTEM APPLICATION DIAGRAM	82
OTP CALIBRATION MODE	83
OTP CALIBRATION MODE	84
SEQUENCE FOR SETTING THE MODIFIED ELECTRONIC VOLUME	84
EPROM CELL STRUCTURE	85
V1OUT CALIBRATION FLOW	85
VOLTAGES AND WAVEFORMS FOR OTP PROGRAMMING	86
REVISION HISTORY	87

INTRODUCTION

S6B33BC is a mid-display-size-compatible driver for liquid crystal dot matrix gray-scale graphic systems. With on-chip CR oscillator circuit, the display-timing signal is generated without being sent from MPU. Also, it is capable of using 8bit/16bit data bus alternatively and operating with 68/80-series MPU in asynchronous. Due to the LCD driving signal (132 RGB X 162 output) corresponding to the display data and the internal bit-map display RAM of $132 \times 162 \times 19$ -bit, S6B33BC is capable of operating max. 132 RGB x 162 dot LCD panels in low-power consumption. Being the segment RGB 3-output, one pixel is 19-bit data and S6B33BC can display max 65,536 color out of 524,288 color palettes.

FEATURES

Driver Output

132 RGB x 162

Gray Scale Function

- 65,536 color display of R: 32 gray scale, G: 64 gray scale, B: 32 gray scale (using gamma correction with 524k palettes)
- 4,096 color display of R: 16 gray scale, G: 16 gray scale, B: 16 gray scale
- 256 color display of R: 8 gray scale, G: 8 gray scale, B: 4 gray scale

On-chip Display Data RAM

Capacity: 132 x 19 x 162 = 406.296 kbits

Display Mode

- Normal display mode: Entire duty displaying, Partial display mode: Partial duty displaying
- Area scroll mode: Particular area scrolling, Standby mode: Internal display clocks off

Microprocessor Interface

- 8-bit/16 bit parallel bi-directional interface with 6800-series or 8080-series
- 3/4 Pin SPI (only write operation)

On-chip Low Power Analog Circuit

- On-chip CR oscillator (Internal cap. & external resistor), external clock available
- Voltage converter / Voltage regulator / Voltage follower
- On-chip electronic contrast control (256 steps)

Operating Voltage Range

- VDD = 1.65 to 1.95 [V] (Typical 1.8 [V])
- VDD3 = 1.65 to 3.3[V]

When VDD3 = 1.65 to 1.95 [V], VDD = VDD3 (No using Internal Regulator, REG_ENB = "VDD3")

When VDD3 > 1.95 [V], VDD = REG_OUT (Using Internal Regulator, REG_ENB = "VSS")

- VIN1 = 2.4 ~ 3.6 [V]
- Display operating voltage (V1): 2.0 to 4.0 V
- LCD Operating Voltage Range: Max. 20 V

Low Power Consumption

- TBD μA Typ. (Refer to DC CHARACTERISTICS (2))

Package Type

COG (Output Pad Pitch Min. 30 μ m)

Special Features

Non-Volatile Memory (OTP) for V1 Calibration

BLOCK DIAGRAM

Figure 1. Block Diagram

PAD CONFIGURATION

Figure 2. S6B33BC Chip Pad Configuration

Table 1. S6B33BC Pad Dimensions

Item	Pad No.	Si	Unit	
item	Fau No.	X Y		
Chip size (with S/L 100μm)	-	15130	1260	
Pad pitch	15~79,96~177	8	0	
	80~95	10		
	1~14,178~741	3	μm	
	15~177	60	104	
Top size of bumped pad	1~14,178~191,218~715	17	120	
	192~217, 716~741	120	17	
Bumped pad height	All Pad	1	7	

Figure 3. COG Align Key Coordinate

Figure 4. ESI Align Key Coordinate

Figure 5. COF Align Key Coordinate

PIN CONFIGURATION

Figure 6. S6B33BCX Chip Pin Configuration

PAD Center Coordinates

Table 2. Pad Center Coordinates

[Unit: μm]

NO	NAME	Х	Υ	NO	NAME	Х	Υ	NO	NAME	Х	[Unit: μ
1	DUMMY<22>	-7305	-513	51	OTPG	-3760	-521	101	MPU<1>	560	-521
2	COM<92>	-7305	-513	52	V1IN	-3680		101	VDD3	640	-521
3	COM<92>	-7275	-513	53	V1IN	-3600	-521 -521	102	PS	720	-521
4	COM<91>	-7245	-513	54	V10UT	-3520	-521	103	VSS	800	-521
5	COM<89>	-7215	-513	55	V10UT	-3440	-521	104	VSS	880	-521
6	COM<88>			56	V1OO1	1	-521	106	VSS	960	-521
7	COM<87>	-7155 -7125	-513 -513	57	VMOUT	-3360 -3280	-521	107	VSS	1040	-521
8	COM<86>	-7125	-513	58	VMOUT	-3200	-521	107	VSS	1120	-521
9	COM<85>	-7095	-513	59	VMIN	-3120	-521	109	VSS	1200	-521
	COM<84>								VSSA		
10	COM<83>	-7035	-513	60	VMIN	-3040 -2960	-521	110	VSSA	1280	-521
11		-7005	-513	61	DC2OUT		-521	111		1360	-521
12	COM<82>	-6975	-513	62	DC2OUT	-2880	-521	112	VSSA	1440	-521
13	COM<81>	-6945	-513	63	DC2IN	-2800	-521	113	VSSB	1520	-521
14	DUMMY<23>	-6915	-513	64	DC2IN	-2720	-521	114	VSSB	1600	-521
15	VOIN	-6640	-521	65	FUSE_EN	-2640	-521	115	VSSB	1680	-521
16	REG_ENB	-6560	-521	66	TEST<0>	-2560	-521	116	VSSB	1760	-521
17	VDD3	-6480	-521	67	TEST<1>	-2480	-521	117	VSSB	1840	-521
18	INTRS	-6400	-521	68	TEST<2>	-2400	-521	118	VSSO	1920	-521
19	VSS	-6320	-521	69	TEST<3>	-2320	-521	119	VSSO	2000	-521
20	CDIR_P	-6240	-521	70	TEST<4>	-2240	-521	120	VIN1R	2080	-521
21	VDD3	-6160	-521	71	VDD3	-2160	-521	121	VIN1R	2160	-521
22	OSC5	-6080	-521	72	CL	-2080	-521	122	VIN1R	2240	-521
23	VSS	-6000	-521	73	PM	-2000	-521	123	VIN1A	2320	-521
24	OSC4	-5920	-521	74	FR	-1920	-521	124	VIN1A	2400	-521
25	OSC3	-5840	-521	75	RSTB	-1840	-521	125	VIN1A	2480	-521
26	OSC2	-5760	-521	76	RS	-1760	-521	126	VIN1	2560	-521
27	OSC1	-5680	-521	77	WRB	-1680	-521	127	VIN1	2640	-521
28	REG_OUT	-5600	-521	78	RDB	-1600	-521	128	VIN1	2720	-521
29	REG_OUT	-5520	-521	79	VDD3	-1520	-521	129	VIN1	2800	-521
30	VDDO	-5440	-521	80	DB<0>	-1440	-521	130	VIN1	2880	-521
31	VDDO	-5360	-521	81	DB<1>	-1340	-521	131	VIN2	2960	-521
32	VDD	-5280	-521	82	DB<2>	-1240	-521	132	VIN2	3040	-521
33	VDD	-5200	-521	83	DB<3>	-1140	-521	133	VIN45	3120	-521
34	VDD	-5120	-521	84	DB<4>	-1040	-521	134	VIN45	3200	-521
35	VDD	-5040	-521	85	DB<5>	-940	-521	135	VOUT45	3280	-521
36	VDDM	-4960	-521	86	DB<6>	-840	-521	136	VOUT45	3360	-521
37	VDDM	-4880	-521	87	DB<7>	-740	-521	137	C11P	3440	-521
38	VDDM	-4800	-521	88	DB<8>	-640	-521	138	C11P	3520	-521
39	VDDM	-4720	-521	89	DB<9>	-540	-521	139	C11M	3600	-521
40	VDD3	-4640	-521	90	DB<10>	-440	-521	140	C11M	3680	-521
41	VDD3	-4560	-521	91	DB<11>	-340	-521	141	C12P	3760	-521
42	VDD3	-4480	-521	92	DB<12>	-240	-521	142	C12P	3840	-521
43	VDD3	-4400	-521	93	DB<13>	-140	-521	143	C12M	3920	-521
44	OTPD	-4320	-521	94	DB<14>	-40	-521	144	C12M	4000	-521
45	OTPD	-4240	-521	95	DB<15>	60	-521	145	C21P	4080	-521
46	OTPD	-4160	-521	96	CS1B	160	-521	146	C21P	4160	-521
47	OTPD	-4080	-521	97	CS2	240	-521	147	C21M	4240	-521
48	OTPG	-4000	-521	98	VDD3	320	-521	148	C21M	4320	-521
49	OTPG	-3920	-521	99	MPU<0>	400	-521	149	C22P	4400	-521
50	OTPG	-3840	-521	100	VSS	480	-521	150	C22P	4480	-521

Table 2. Pad Center Coordinates (Continued)

[Unit: μm]

NO	NAME	Х	Υ	NO	NAME	Х	Υ	NO	NAME	Х	[Unit: μι Υ
151	C22M	4560	-521	201	COM<20>	7448	-189	251	COM<68>	6465	513
152	C22M	4640	-521	202	COM<21>	7448	-159	252	COM<69>	6435	513
153	C23P	4720	-521	203	COM<22>	7448	-129	253	COM<70>	6405	513
154	C23P	4800	-521	204	COM<23>	7448	-99	254	COM<71>	6375	513
155	DUMMY<0>	4880	-521	205	COM<24>	7448	-69	255	COM<72>	6345	513
156	DUMMY<1>	4960	-521	206	COM<25>	7448	-39	256	COM<73>	6315	513
157	C23M	5040	-521	207	COM<26>	7448	-9	257	COM<74>	6285	513
158	C23M	5120	-521	208	COM<27>	7448	21	258	COM<75>	6255	513
159	VRN	5200	-521	209	COM<28>	7448	51	259	COM<76>	6225	513
160	VRN	5280	-521	210	COM<29>	7448	81	260	COM<77>	6195	513
161	VRN	5360	-521	211	COM<30>	7448	111	261	COM<78>	6165	513
162	VEE	5440	-521	212	COM<31>	7448	141	262	COM<79>	6135	513
163	VEE	5520	-521	213	COM<32>	7448	171	263	COM<80>	6105	513
164	VEE	5600	-521	214	COM<33>	7448	201	264	DUMMY<9>	6075	513
165	DUMMY<2>	5680	-521	215	COM<34>	7448	231	265	DUMMY<10>	6045	513
166	VCC	5760	-521	216	COM<35>	7448	261	266	DUMMY<11>	6015	513
167	VCC	5840	-521	217	DUMMY<7>	7448	291	267	DUMMY<12>	5985	513
168	VCC	5920	-521	218	DUMMY<8>	7455	513	268	DUMMY<13>	5955	513
169	VRP	6000	-521	219	COM<36>	7425	513	269	SEGC<0>	5925	513
170	VRP	6080	-521	220	COM<37>	7395	513	270	SEGB<0>	5895	513
171	VRP	6160	-521	221	COM<38>	7365	513	271	SEGA<0>	5865	513
172	C31P	6240	-521	222	COM<39>	7335	513	272	SEGC<1>	5835	513
173	C31P	6320	-521	223	COM<40>	7305	513	273	SEGB<1>	5805	513
174	C31M	6400	-521	224	COM<41>	7275	513	274	SEGA<1>	5775	513
175	C31M	6480	-521	225	COM<42>	7245	513	275	SEGC<2>	5745	513
176	DUMMY<3>	6560	-521	226	COM<43>	7215	513	276	SEGB<2>	5715	513
177	VOIN	6640	-521	227	COM<44>	7185	513	277	SEGA<2>	5685	513
178	DUMMY<4>	6915	-513	228	COM<45>	7155	513	278	SEGC<3>	5655	513
179	COM<0>	6945	-513	229	COM<46>	7125	513	279	SEGB<3>	5625	513
180	COM<1>	6975	-513	230	COM<47>	7095	513	280	SEGA<3>	5595	513
181	COM<2>	7005	-513	231	COM<48>	7065	513	281	SEGC<4>	5565	513
182	COM<3>	7035	-513	232	COM<49>	7035	513	282	SEGB<4>	5535	513
183	COM<4>	7065	-513	233	COM<50>	7005	513	283	SEGA<4>	5505	513
184	COM<5>	7095	-513	234	COM<51>	6975	513	284	SEGC<5>	5475	513
185	COM<6>	7125	-513	235	COM<52>	6945	513	285	SEGB<5>	5445	513
186	COM<7>	7155	-513	236	COM<53>	6915	513	286	SEGA<5>	5415	513
187	COM<8>	7185	-513	237	COM<54>	6885	513	287	SEGC<6>	5385	513
188	COM<9>	7215	-513	238	COM<55>	6855	513	288	SEGB<6>	5355	513
189	COM<10>	7245	-513	239	COM<56>	6825	513	289	SEGA<6>	5325	513
190	COM<11>	7275	-513	240	COM<57>	6795	513	290	SEGC<7>	5295	513
191	DUMMY<5>	7305	-513	241	COM<58>	6765	513	291	SEGB<7>	5265	513
192	DUMMY<6>	7448	-459	242	COM<59>	6735	513	292	SEGA<7>	5235	513
193	COM<12>	7448	-429	243	COM<60>	6705	513	293	SEGC<8>	5205	513
194	COM<13>	7448	-399	244	COM<61>	6675	513	294	SEGB<8>	5175	513
195	COM<14>	7448	-369	245	COM<62>	6645	513	295	SEGA<8>	5145	513
196	COM<15>	7448	-339	246	COM<63>	6615	513	296	SEGC<9>	5115	513
197	COM<16>	7448	-309	247	COM<64>	6585	513	297	SEGB<9>	5085	513
198	COM<17>	7448	-279	248	COM<65>	6555	513	298	SEGA<9>	5055	513
199	COM<18>	7448	-249	249	COM<66>	6525	513	299	SEGC<10>	5025	513
200	COM<19>	7448	-219	250	COM<67>	6495	513	300	SEGB<10>	4995	513
_50	55				303077		0.0		0_001107		0.0

Table 2. Pad Center Coordinates (Continued)

[Unit: μm]

NO	NAME	Х	Υ	NO	NAME	Х	Υ	NO	NAME	Х	[Unit: μn
301	SEGA<10>	4965	513	351	SEGB<27>	3465	513	401	SEGC<44>	1965	513
302	SEGC<11>	4935	513	352	SEGA<27>	3435	513	402	SEGB<44>	1935	513
303	SEGB<11>	4905	513	353	SEGC<28>	3405	513	403	SEGA<44>	1905	513
304	SEGA<11>	4875	513	354	SEGB<28>	3375	513	404	SEGC<45>	1875	513
305	SEGC<12>	4845	513	355	SEGA<28>	3345	513	405	SEGB<45>	1845	513
306	SEGB<12>	4815	513	356	SEGC<29>	3315	513	406	SEGA<45>	1815	513
307	SEGA<12>	4785	513	357	SEGB<29>	3285	513	407	SEGC<46>	1785	513
308	SEGC<13>	4755	513	358	SEGA<29>	3255	513	408	SEGB<46>	1755	513
309	SEGB<13>	4725	513	359	SEGC<30>	3225	513	409	SEGA<46>	1725	513
310	SEGA<13>	4695	513	360	SEGB<30>	3195	513	410	SEGC<47>	1695	513
311	SEGC<14>	4665	513	361	SEGA<30>	3165	513	411	SEGB<47>	1665	513
312	SEGB<14>	4635	513	362	SEGC<31>	3135	513	412	SEGA<47>	1635	513
313	SEGA<14>	4605	513	363	SEGB<31>	3105	513	413	SEGC<48>	1605	513
314	SEGC<15>	4575	513	364	SEGA<31>	3075	513	414	SEGB<48>	1575	513
315	SEGB<15>	4545	513	365	SEGC<32>	3045	513	415	SEGA<48>	1545	513
316	SEGA<15>	4515	513	366	SEGB<32>	3015	513	416	SEGC<49>	1515	513
317	SEGC<16>	4485	513	367	SEGA<32>	2985	513	417	SEGB<49>	1485	513
318	SEGB<16>	4455	513	368	SEGC<33>	2955	513	418	SEGA<49>	1455	513
319	SEGA<16>	4425	513	369	SEGB<33>	2925	513	419	SEGC<50>	1425	513
320	SEGC<17>	4395	513	370	SEGA<33>	2895	513	420	SEGB<50>	1395	513
321	SEGB<17>	4365	513	371	SEGC<34>	2865	513	421	SEGA<50>	1365	513
322	SEGA<17>	4335	513	372	SEGB<34>	2835	513	422	SEGC<51>	1335	513
323	SEGC<18>	4305	513	373	SEGA<34>	2805	513	423	SEGB<51>	1305	513
324	SEGB<18>	4275	513	374	SEGC<35>	2775	513	424	SEGA<51>	1275	513
325	SEGA<18>	4245	513	375	SEGB<35>	2745	513	425	SEGC<52>	1245	513
326	SEGC<19>	4215	513	376	SEGA<35>	2715	513	426	SEGB<52>	1215	513
327	SEGB<19>	4185	513	377	SEGC<36>	2685	513	427	SEGA<52>	1185	513
328	SEGA<19>	4155	513	378	SEGB<36>	2655	513	428	SEGC<53>	1155	513
329	SEGC<20>	4125	513	379	SEGA<36>	2625	513	429	SEGB<53>	1125	513
330	SEGB<20>	4095	513	380	SEGC<37>	2595	513	430	SEGA<53>	1095	513
331	SEGA<20>	4065	513	381	SEGB<37>	2565	513	431	SEGC<54>	1065	513
332	SEGC<21>	4035	513	382	SEGA<37>	2535	513	432	SEGB<54>	1035	513
333	SEGB<21>	4005	513	383	SEGC<38>	2505	513	433	SEGA<54>	1005	513
334	SEGA<21>	3975	513	384	SEGB<38>	2475	513	434	SEGC<55>	975	513
335	SEGC<22>	3945	513	385	SEGA<38>	2445	513	435	SEGB<55>	945	513
336	SEGB<22>	3915	513	386	SEGC<39>	2415	513	436	SEGA<55>	915	513
337	SEGA<22>	3885	513	387	SEGB<39>	2385	513	437	SEGC<56>	885	513
338	SEGC<23>	3855	513	388	SEGA<39>	2355	513	438	SEGB<56>	855	513
339	SEGB<23>	3825	513	389	SEGC<40>	2325	513	439	SEGA<56>	825	513
340	SEGA<23>	3795	513	390	SEGB<40>	2295	513	440	SEGC<57>	795	513
341	SEGC<24>	3765	513	391	SEGA<40>	2265	513	441	SEGB<57>	765	513
342	SEGB<24>	3735	513	392	SEGC<41>	2235	513	442	SEGA<57>	735	513
343	SEGA<24>	3705	513	393	SEGB<41>	2205	513	443	SEGC<58>	705	513
344	SEGC<25>	3675	513	394	SEGA<41>	2175	513	444	SEGB<58>	675	513
345	SEGB<25>	3645	513	395	SEGC<42>	2145	513	445	SEGA<58>	645	513
346	SEGA<25>	3615	513	396	SEGB<42>	2115	513	446	SEGC<59>	615	513
347	SEGC<26>	3585	513	397	SEGA<42>	2085	513	447	SEGB<59>	585	513
348	SEGB<26>	3555	513	398	SEGC<43>	2055	513	448	SEGA<59>	555	513
349	SEGA<26>	3525	513	399	SEGB<43>	2025	513	449	SEGC<60>	525	513
350	SEGC<27>	3495	513	400	SEGA<43>	1995	513	450	SEGB<60>	495	513

Table 2. Pad Center Coordinates (Continued)

[Unit: µm]

NO	NAME	Х	Υ	NO	NAME	Х	Υ	NO	NAME	Х	[Unit: μn
451	SEGA<60>	465	513	501	SEGB<77>	-1035	513	551	SEGC<94>	-2535	513
452	SEGC<61>	435	513	502	SEGA<77>	-1065	513	552	SEGB<94>	-2565	513
453	SEGB<61>	405	513	503	SEGC<78>	-1005	513	553	SEGA<94>	-2595	513
454	SEGA<61>	375	513	504	SEGB<78>	-1125	513	554	SEGC<95>	-2625	513
455	SEGC<62>	345	513	505	SEGA<78>	-1125	513	555	SEGB<95>	-2655	513
-	SEGB<62>	315		506	SEGC<79>		513	556	SEGB<95>		513
456 457	SEGA<62>	285	513 513	507	SEGB<79>	-1185 -1215	513	557	SEGC<96>	-2685 -2715	513
_	SEGC<63>	255	513	508	SEGA<79>	-1215	513	558		-2715	513
458									SEGB<96>		
459	SEGB<63>	225	513	509	SEGC<80>	-1275	513	559	SEGA<96>	-2775	513
460	SEGA<63>	195	513	510	SEGB<80>	-1305	513	560	SEGC<97>	-2805	513
461	SEGC<64>	165	513	511	SEGA<80>	-1335	513	561	SEGB<97>	-2835	513
462	SEGB<64>	135	513	512	SEGC<81>	-1365	513	562	SEGA<97>	-2865	513
463	SEGA<64>	105	513	513	SEGB<81>	-1395	513	563	SEGC<98>	-2895	513
464	SEGC<65>	75	513	514	SEGA<81>	-1425	513	564	SEGB<98>	-2925	513
465	SEGB<65>	45	513	515	SEGC<82>	-1455	513	565	SEGA<98>	-2955	513
466	SEGA<65>	15	513	516	SEGB<82>	-1485	513	566	SEGC<99>	-2985	513
467	SEGC<66>	-15	513	517	SEGA<82>	-1515	513	567	SEGB<99>	-3015	513
468	SEGB<66>	-45	513	518	SEGC<83>	-1545	513	568	SEGA<99>	-3045	513
469	SEGA<66>	-75	513	519	SEGB<83>	-1575	513	569	SEGC<100>	-3075	513
470	SEGC<67>	-105	513	520	SEGA<83>	-1605	513	570	SEGB<100>	-3105	513
471	SEGB<67>	-135	513	521	SEGC<84>	-1635	513	571	SEGA<100>	-3135	513
472	SEGA<67>	-165	513	522	SEGB<84>	-1665	513	572	SEGC<101>	-3165	513
473	SEGC<68>	-195	513	523	SEGA<84>	-1695	513	573	SEGB<101>	-3195	513
474	SEGB<68>	-225	513	524	SEGC<85>	-1725	513	574	SEGA<101>	-3225	513
475	SEGA<68>	-255	513	525	SEGB<85>	-1755	513	575	SEGC<102>	-3255	513
476	SEGC<69>	-285	513	526	SEGA<85>	-1785	513	576	SEGB<102>	-3285	513
477	SEGB<69>	-315	513	527	SEGC<86>	-1815	513	577	SEGA<102>	-3315	513
478	SEGA<69>	-345	513	528	SEGB<86>	-1845	513	578	SEGC<103>	-3345	513
479	SEGC<70>	-375	513	529	SEGA<86>	-1875	513	579	SEGB<103>	-3375	513
480	SEGB<70>	-405	513	530	SEGC<87>	-1905	513	580	SEGA<103>	-3405	513
481	SEGA<70>	-435	513	531	SEGB<87>	-1935	513	581	SEGC<104>	-3435	513
482	SEGC<71>	-465	513	532	SEGA<87>	-1965	513	582	SEGB<104>	-3465	513
483	SEGB<71>	-495	513	533	SEGC<88>	-1995	513	583	SEGA<104>	-3495	513
484	SEGA<71>	-525	513	534	SEGB<88>	-2025	513	584	SEGC<105>	-3525	513
485	SEGC<72>	-555	513	535	SEGA<88>	-2055	513	585	SEGB<105>	-3555	513
486	SEGB<72>	-585	513	536	SEGC<89>	-2085	513	586	SEGA<105>	-3585	513
487	SEGA<72>	-615	513	537	SEGB<89>	-2115	513	587	SEGC<106>	-3615	513
488	SEGC<73>	-645	513	538	SEGA<89>	-2145	513	588	SEGB<106>	-3645	513
489	SEGB<73>	-675	513	539	SEGC<90>	-2175	513	589	SEGA<106>	-3675	513
490	SEGA<73>	-705	513	540	SEGB<90>	-2205	513	590	SEGC<107>	-3705	513
491	SEGC<74>	-735	513	541	SEGA<90>	-2235	513	591	SEGB<107>	-3735	513
492	SEGB<74>	-765	513	542	SEGC<91>	-2265	513	592	SEGA<107>	-3765	513
493	SEGA<74>	-705	513	543	SEGB<91>	-2295	513	593	SEGC<107>	-3795	513
494	SEGC<75>	-825	513	544	SEGA<91>	-2325	513	594	SEGB<108>	-3825	513
494	SEGB<75>	-855	513	545	SEGC<92>	-2355	513	595	SEGB<108>	-3855	513
-	SEGB<75>										
496	SEGA<75>	-885	513	546	SEGB<92>	-2385	513	596	SEGC<109>	-3885	513
497		-915	513	547	SEGA<92>	-2415	513	597	SEGB<109>	-3915	513
498	SEGB<76>	-945 075	513	548	SEGC<93>	-2445	513	598	SEGA<109>	-3945	513
499	SEGA<76>	-975	513	549	SEGB<93>	-2475	513	599	SEGC<110>	-3975	513
500	SEGC<77>	-1005	513	550	SEGA<93>	-2505	513	600	SEGB<110>	-4005	513

Table 2. Pad Center Coordinates (Continued)

[Unit: µm]

											_[Unit: μn
NO	NAME	Х	Υ	NO	NAME	Х	Υ	NO	NAME	Х	Υ
601	SEGA<110>	-4035	513	651	SEGB<127>	-5535	513	701	COM<130>	-7035	513
602	SEGC<111>	-4065	513	652	SEGA<127>	-5565	513	702	COM<129>	-7065	513
603	SEGB<111>	-4095	513	653	SEGC<128>	-5595	513	703	COM<128>	-7095	513
604	SEGA<111>	-4125	513	654	SEGB<128>	-5625	513	704	COM<127>	-7125	513
605	SEGC<112>	-4155	513	655	SEGA<128>	-5655	513	705	COM<126>	-7155	513
606	SEGB<112>	-4185	513	656	SEGC<129>	-5685	513	706	COM<125>	-7185	513
607	SEGA<112>	-4215	513	657	SEGB<129>	-5715	513	707	COM<124>	-7215	513
608	SEGC<113>	-4245	513	658	SEGA<129>	-5745	513	708	COM<123>	-7245	513
609	SEGB<113>	-4275	513	659	SEGC<130>	-5775	513	709	COM<122>	-7275	513
610	SEGA<113>	-4305	513	660	SEGB<130>	-5805	513	710	COM<121>	-7305	513
611	SEGC<114>	-4335	513	661	SEGA<130>	-5835	513	711	COM<120>	-7335	513
612	SEGB<114>	-4365	513	662	SEGC<131>	-5865	513	712	COM<119>	-7365	513
613	SEGA<114>	-4395	513	663	SEGB<131>	-5895	513	713	COM<118>	-7395	513
614	SEGC<115>	-4425	513	664	SEGA<131>	-5925	513	714	COM<117>	-7425	513
615	SEGB<115>	- 4455	513	665	DUMMY<14>	-5955	513	715	DUMMY<19>	-7455	513
616	SEGA<115>	-4485	513	666	DUMMY<15>	-5985	513	716	DUMMY<20>	-7448	291
617	SEGC<116>	-4515	513	667	DUMMY<16>	-6015	513	717	COM<116>	-7448	261
618	SEGB<116>	-4545	513	668	DUMMY<17>	-6045	513	718	COM<115>	-7448	231
619	SEGA<116>	-4575	513	669	DUMMY<18>	-6075	513	719	COM<114>	-7448	201
620	SEGC<117>	-4605	513	670	COM<161>	-6105	513	720	COM<113>	-7448	171
621	SEGB<117>	-4635	513	671	COM<160>	-6135	513	721	COM<112>	-7448	141
622	SEGA<117>	-4665	513	672	COM<159>	-6165	513	722	COM<111>	-7448	111
623	SEGC<118>	- 4695	513	673	COM<158>	-6195	513	723	COM<110>	-7448	81
624	SEGB<118>	-4725	513	674	COM<157>	-6225	513	724	COM<109>	-7448	51
625	SEGA<118>	-4755	513	675	COM<156>	-6255	513	725	COM<108>	-7448	21
626	SEGC<119>	- 4785	513	676	COM<155>	-6285	513	726	COM<107>	-7448	-9
627	SEGB<119>	-4815	513	677	COM<154>	-6315	513	727	COM<106>	-7448	-39
628	SEGA<119>	-4845	513	678	COM<153>	-6345	513	728	COM<105>	-7448	-69
629	SEGC<120>	-4875	513	679	COM<152>	-6375	513	729	COM<104>	-7448	-99
630	SEGB<120>	-4905	513	680	COM<151>	-6405	513	730	COM<103>	-7448	-129
631	SEGA<120>	-4935	513	681	COM<150>	-6435	513	731	COM<102>	-7448	-159
632	SEGC<121>	-4965	513	682	COM<149>	-6465	513	732	COM<101>	-7448	-189
633	SEGB<121>	-4995	513	683	COM<148>	-6495	513	733	COM<100>	-7448	-219
634	SEGA<121>	-5025	513	684	COM<147>	-6525	513	734	COM<99>	-7448	-249
635	SEGC<122>	-5055	513	685	COM<146>	-6555	513	735	COM<98>	-7448	-279
636	SEGB<122>	-5085	513	686	COM<145>	-6585	513	736	COM<97>	-7448	-309
637	SEGA<122>	-5115	513	687	COM<144>	-6615	513	737	COM<96>	-7448	-339
638	SEGC<123>	-5145	513	688	COM<143>	-6645	513	738	COM<95>	-7448	-369
639	SEGB<123>	-5175	513	689	COM<142>	-6675	513	739	COM<94>	-7448	-399
640	SEGA<123>	-5205	513	690	COM<141>	-6705	513	740	COM<93>	-7448	-429
641	SEGC<124>	-5235	513	691	COM<140>	-6735	513	741	DUMMY<21>	-7448	- 459
642	SEGB<124>	-5265	513	692	COM<139>	-6765	513				
643	SEGA<124>	-5295	513	693	COM<138>	-6795	513				
644	SEGC<125>	-5325	513	694	COM<137>	-6825	513				
645	SEGB<125>	-5355	513	695	COM<136>	-6855	513				
646	SEGA<125>	-5385	513	696	COM<135>	-6885	513				
647	SEGC<126>	-5415	513	697	COM<134>	-6915	513				
648	SEGB<126>	-5445	513	698	COM<133>	-6945	513				
649	SEGA<126>	-5475	513	699	COM<132>	-6975	513				
650	SEGC<127>	-5505	513	700	COM<131>	-7005	513				

PIN DESCRIPTION

Table 3. Power Supply Pins

Name	I/O	Description						
VDD3	Supply	I/O power supply. VDD3 is more than VDD.						
VDD	Supply	Regulated power supply input pin for internal digital block. This pin is connected to REG_OUT outside the chip with stabilization capacitor. When the internal regulator is not used,VDD should be tied to external 1.8V directly.						
VDDO	Supply	Internal oscillator power supply This pin is connected to VDD.						
VDDM	Supply	isplay Data RAM power supply, this pin is connected to VDD.						
VSS VSSO VSSA VSSB	GND	Ground						
V1IN / V1OUT	1/0	LCD segment high selected driving voltage input / output pin						
VMIN / VMOUT	1/0	CD common/segment non-selected driving voltage input / output pin						
VOIN	I	LCD segment low selected driving voltage input pin						
VCC / VRP	1/0	LCD common high selected driving voltage input / output pin						
VEE / VRN	1/0	LCD common low selected driving voltage input / output pin The relationship between VCC, V1, VM, V0 and VEE: VCC > V1 > VM > V0(=VSS) > VEE (V1 - VM = VM - V0, VCC -VM = VM - VEE)						
VIN1R	Supply	Internal regulator power supply This pin is connected to VIN1.						
VIN1 VIN1A	I	Power supply for 1'st booster circuit and VM Amp						
VIN2	I	Power supply for DC2-Amp						
VOUT45	0	1'st booster output pin						
VIN45	I	Power supply for V1. Connect to VOUT45 or VIN1						
C11P C11M C12P C12M	0	External capacitor connection pins used for 1'st booster circuit						
V1T	I	Thermistor resistor connection pin						
INTRS	I	External resistor select pin for temperature compensation circuit - INTRS = L : External resistor mode, INTRS = H : Internal resistor mode						
DC2IN	I	Power supply for 2'nd booster. Connect to DC2OUT pin						
DC2OUT	0	Power output pin for 2'nd booster input						
C21P C21M C22P C22M C23P C23M	0	External capacitor connection pins used for 2'nd booster circuit						
C31P C31M	0	External capacitor connection pins used for 3'rd booster circuit						
OTPG	I	Gate Voltage for OTP programming						
OTPD	I	Drain Voltage for OTP programming						

Table 4. MPU Interface Pins

Name	I/O		Description								
RSTB	1		Reset input pin. When RSTB is "L", initialization is executed.								
		MPU interface select pin									
		PS	MPU[1]	MPU[0]		Description					
		Н	L	L	8080-9	series 8bit interface					
PS		Н	L	Н	8080-9	series 16bit interface					
MPU[1:0]	I	Н	Н	L	6800-9	series 8bit interface					
Wil O[1.0]		Н	Н	Н	6800-9	series 16bit interface					
		L	L	Х	3 pin S	SPI(Write only)					
		L	Н	X	4 pin S	SPI(Write only)					
		NOTE	: In serial n	node, WRB a	and RDB	must be fixed to either VDD3 or VSS.					
CS1B CS2	I	Data /	Chip select input pins Data / instruction I/O is enabled only when CS1B is "L" and CS2 is "H". When chip select is non-active, DB0 to DB15 may be high impedance.								
D/I (RS)	1	- D/I =	Data / Instruction select input pin – D/I = "H": DB0 to DB15 are display data – D/I = "L": DB0 to DB7 are instruction data								
		Read /	Read / Write execution control pin								
		PS	MPU[1]	MPU Type	WRB	Description					
WRB (R/W)	1	Н	Н	6800- series	R/W	Read / Write control input pin - R/W = "H": read - R/W = "L": write					
		Н	L	8080- series	WRB	Write enable clock input pin The data on DB0 to DB15 are latched at the rising edge of the WRB signal.					
		Read /	Write exec	ution control	pin						
		PS	MPU[1]	MPU type	RDB	Description					
RDB (E)	I	Н	Н	6800- series	E	Read / Write control input pin - R/W = "H": When E is "H", DB0 to DB15 are in an output status. - R/W = "L": The data on DB0 to DB15 are latched at the falling edge of the E signal.					
		Н	L	8080- series	RDB	Read enable clock input pin When RDB is "L", DB0 to DB15 are in an output status.					
DB[15:8] DB[7]/SDI DB[6]/SCL DB[5:0]	I/O	-DB[15:0]: 16-bit bi-directional data busSDI: Serial data input pin. The data is latched at the rising edge of SCLSCL: Serial clock input pin. When these pins are not used according to mode, these pins must be connected to VDD3 or VSS									
CDIR_P	I			n select pin.							
	1	Common direction select pin.									

Name	I/O	Description
OSC1 OSC2 OSC3 OSC4	I/O	CR oscillator output pin When the internal CR oscillator is used, connect to OSC1, OSC3 through a resistor. OSC1 – OSC2: Using in normal display mode, partial display mode 0 OSC3 – OSC4: Using in partial display mode 1 When an external oscillator is used, OSC1 pin is connected to VSS.
OSC5	I	External clock input pin When an external input is used, it is input to this pin. But the internal oscillator is used, this pin is connected to VDD3 or VSS.
REG_ENB	I	Internal regulator enable/disable input pin - REG_ENB = "L" (tied to VSS) : enable internal regulator - REG_ENB = "H" (tied to VDD3) : disable internal regulator
REG_OUT	0	Internal voltage regulator output pin The regulator output port from this pin is used as a power supplier for an internal digital block via VDD pins.

Table 6. Timing signal Pins for monitoring

Name	I/O	Description					
CL	0	Shift clock output pin					
PM	0	Field delimiter output pin					
FR	0	Liquid crystal alternating current output pin					

Table 7. LCD driver output pins

Name	I/O	Description
SEGA0 to 131	0	LCD driving segment output (Red or Blue)
SEGB0 to 131	0	LCD driving segment output (Green)
SEGC0 to131	0	LCD driving segment output (Blue or Red)
COM0 to 161	0	LCD common outputs

Table 8. Test pins

Name	I/O	Description
TEST[4:0]	I	Don't use these pins. IC maker's test pins These pins must be tied to VDD3.
FUSE_EN	I	Don't use this pin. IC maker's test pin. This pin must be tied to VDD3.

FUNCTIONAL DESCRIPTION

MPU INTERFACE

Chip Select Input

There are CS1B and CS2 pins for chip selection. The S6B33BC can interface with an MPU only when CS1B is "L" and CS2 is "H". When these pins are set to any other combination, D/I, RDB, and WRB inputs are disabled and DB0 to DB15 are to be high impedance. And, in case of serial interface, the internal shift register and the counter are reset.

Parallel/Serial Interface

The S6B33BC has four types of interface with an MPU, which are two serial and two parallel interfaces. This parallel or serial interface is determined by PS pin as shown in Table9.

PS	MPU[1]	CS1B	CS2	MPU bus type
	L	0045	000	8080-Series MPU
Н	Н	CS1B	CS2	6800-Series MPU
1	L	CS1B	CS2	3–Pin SPI
L	Н	COID	U32	4-Pin SPI

Table 9. Parallel / Serial Interface Mode.

Parallel Interface (PS="H")

The 8-bit/16-bit bi-directional data bus is used in parallel interface. The type of MPU is selected by MPU[1] and the mode of data-bus is controlled by MPU[0] as shown in below. In accessing internal registers (D/I = "L"), only DB[7:0] are valid.

MPU[1]	MPU[0]	CS1B	CS2	RDB	WRB	Data Bus	MPU bus type	
_	L	CS1B CS2 RDB WRB		WRB	DB[7:0]			
L	Н	CSIB	032	KDB	WKD	DB[15:0]	8080-series MPU	
ш	L	CC1D	CS2	Е	D/M	DB[7:0]	6900 parios MDLI	
H	Н	CS1B	US2	E	R/W	DB[15:0]	6800-series MPU	

Table 10. Microprocessor Selection for Parallel Interface

Table 11. Parallel Data Transfer

	6800-	series	8080-s	eries		
D/I	RDB WRB	RDB	WRB	Description		
Н	Н	Н	L	Н	Read display data	
Н	Н	L	Н	L	Write display data	
L	Н	Н	L	Н	Read out internal status register	
L	Н	Ĺ	H L		Write instruction data	

Figure 7. 6800-Series MPU Interface protocol (MPU[1]="H")

Figure 8. 8080-Series MPU Interface Protocol (MPU[1]="L")

Serial Interface(PS="L")

Communication with the microprocessor occurs via a clock-synchronized serial peripheral interface when PS is low. When using the serial interface, read operations are not allowed. When the chip select inputs are valid (CS1B = "L" & CS2 = "H"), the serial data is sent most significant bit first on the rising edge of a serial clock going into DB6 and processed as 8 bit parallel data on the eighth clock. Since the clock signal is easy to be affected by the external noise caused by the line length, the operation check on the actual machine is recommended. And Invalid, the internal shift register and the counter are reset.

The serial interface type is selected by setting PS as shown in Table 12.

PS	MPU[1]	CS1B	CS2	D/I	Serial Data	Serial Clock	SPI Mode
1	L	CS1B	CS2	By S/W	DDI71	DDIGI	3-Pin
L	Н	CS1B	CS2	D/I	DB[7]	DB[6]	4-Pin

Table 12. Microprocessor Selection for Serial Interface

3-Pin SPI Interface (PS = "L" & MPU[1] = "L")

In 3-Pin SPI Interface mode, the first bit of serial 9bits is used to indicate whether serial data input is display or instruction data instead of D/I pin. The serial data format consists of D/I (1bit) and DATA (8bits). For details, refer the Figure 8.

Figure 9. 3-Pin SPI Timing (D/I is not used)

4-Pin Serial Interface (PS="L" & MPU[1]="H")

In 4-pin SPI interface mode, D/I pin is used for indicating whether serial data input is display or instruction data. Data is display data when D/I is high and instruction data when D/I is low.

Serial data can be read on the rising edge of serial clock going into DB6 and processed as 8-bit parallel data on the eighth serial clock.

Figure 10. 4-Pin Serial Interface Timing

DISPLAY DATA RAM

The on-chip display data RAM of S6B33BC is a static RAM that is stored the data for the display. It is a 132 x 19 x 162 structure. It is controlled by 2 addresses, X and Y. And, RAM area selection and automatic address count up functions are accomplished by the internal instructions.

DDRAM Address Area Selection

A part of DDRAM address area of S6B33BC can be accessed by X and Y address area settings. After setting RAM area, the addresses become the start address.

Figure 11. DDRAM Address Area

Table 13. X address Control

	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0			
Code	0	0	1	0	0	0	0	1			
P1		X start address set(Initial Status = 00H)									
P2		X end address set(Initial Status = A1H)									

Table 14. Y address Control

	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0				
Code	0	0	1	1	0	0	0	1				
P1		Y start address set (Initial status = 00H)										
P2			Y end	address set	(Initial status	s =83H)						

RAM Addressing Count up

By selecting the X address and Y address area by the internal instructions, the address counts up from its start address to end address after data access operation. When one address is equal to the end address, it returns to the start address. At this time, the other address is increased by 1.

Y address count mode (Y address = 00h to 83h, X address = 00h to A1h)

Figure 12. Y address count mode

X address count mode (Y address = 00h to 83h, X address = 00h to A1h)

Figure 13. X address count mode

B7H

Partial Display Mode

The S6B33BC realizes the partial display function with low duty driving for saving power consumption and showing the various display duties. It is set as display start/end line number.

Area Scroll Function

The S6B33BC realizes the specific area scroll function. (1/162 duty case).

Figure 15. Area scroll examples (duty = 1/162, center scroll mode)

Display Direction

SDIR

The SDIR flag of Driver Output Mode Set instruction selects the direction of segment display.

Figure 16. 8-bit data bus mode when SDIR = L

Figure 17. 16-bit data bus mode when SDIR = L

Figure 18. 8-bit data bus mode when SDIR = H

Figure 19. 16-bit data bus mode when SDIR = H

CDIR

The direction of common scanning is selected by CDIR register.

132 Display Lines (DLN=00)

144 Display Lines (DLN=01)

162 Display Lines (DLN=10)

96 Display Lines (DLN=11)

SWP

The SWP flag of Driver Output Mode Set instruction selects the swapping of segment display.

D10 D9

	SEGAi	SEGBi	SEGCi	
SWP = 0	RED	GREEN	BLUE	Color
SVVP = U	D15 ~ D11	D10~ D5	D4 ~ D0	Assigned Bit
SWP = 1	BLUE	GREEN	RED	Color
SVVP = 1	D4~ D0	D10 ~ D5	D15 ~ D11	Assigned Bit

D8

D7

D6

D5

D4

D3

D2

Figure 20. The relationship between SEG outputs and RGB color

MPU I/F

D15 D14 D13 D12 D11

On-Chip Regulator Configuration

Figure 21. Regulator Application

Oscillator Circuit

When internal oscillator is used(EXT=0), the selection of oscillator resistor is determined by display mode.

- Normal display mode/ Partial display mode 0 : resistor1 between OSC1 and OSC2
- Partial display mode 1 : resistor2 between OSC3 and OSC4

Note: In R-C oscillator, the oscillation frequency is changed according to the external resistance value, ITO wire length, or operating power-supply voltage (VDDO).

When external clock is used (EXT=1), clock frequency should be adjusted to display mode that is selected.

Example of external oscillator application

Figure 22. External oscillator application

Example of internal oscillator application

When normal/partial display mode 0 is used.

When all display mode is used.

Figure 23. Internal oscillator application

Discharge Circuit

Driving voltage level discharge time at standby ON.

The relation between voltage level and discharge time from when "Standby ON" command is inputted.

LEVEL	CONDITION	T[ms]	$\Delta V+, \Delta V-[mV]$
+VR,V1,VM,-VR	+VR=12.0V, V1=3.0V, VM=1.5V, -VR=-9.0V	100	< 50
	at T=0	300	< 20

INSTRUCTION DESCRIPTION

Table 15. Instruction Table

	Table 15. Instruction			Table										
Instruction Name	D/I	WRB	RDB	DB15 ~DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex.	Parameter
Non Operation	0	0	1	*	0	0	0	0	0	0	0	0	00	
Oscillation Mode Set	0	0	1	*	0	0	0	0	0	0	1	0	02	1Byte
Driver Output Mode Set	0	0	1	*	0	0	0	1	0	0	0	0	10	1Byte
Monitor Signal Control	0	0	1	*	0	0	0	1	1	0	0	0	18	1Byte
DC-DC Select	0	0	1	*	0	0	1	0	0	0	0	0	20	1Byte
Bias Set	0	0	1	*	0	0	1	0	0	0	1	0	22	1Byte
DCDC Clock Division Set	0	0	1	*	0	0	1	0	0	1	0	0	24	1Byte
DCDC and AMP ON/OFF set	0	0	1	*	0	0	1	0	0	1	1	0	26	1Byte
Temperature Compensation Set	0	0	1	*	0	0	1	0	1	0	0	0	28	1Byte
Contrast Control(1)	0	0	1	*	0	0	1	0	1	0	1	0	2A	1Byte
Contrast Control(2)	0	0	1	*	0	0	1	0	1	0	1	1	2B	1Byte
Standby Mode OFF	0	0	1	*	0	0	1	0	1	1	0	0	2C	-
Standby Mode ON	0	0	1	*	0	0	1	0	1	1	0	1	2D	-
Addressing Mode Set	0	0	1	*	0	0	1	1	0	0	0	0	30	1Byte
ROW Vector Mode Set	0	0	1	*	0	0	1	1	0	0	1	0	32	1Byte
N-line Inversion Set	0	0	1	*	0	0	1	1	0	1	0	0	34	1Byte
Frame Frequency control	0	0	1	*	0	0	1	1	0	1	1	0	36	1Byte
256 Color Red Palette	0	0	1	*	0	0	1	1	1	0	0	0	38	8Byte
256 Color Green Palette	0	0	1	*	0	0	1	1	1	0	1	0	3A	8Byte
256 Color Blue Palette	0	0	1	*	0	0	1	1	1	1	0	0	3C	4Byte
Entry Mode Set	0	0	1	*	0	1	0	0	0	0	0	0	40	1Byte
X-address Area Set	0	0	1	*	0	1	0	0	0	0	1	0	42	2Byte
Y-address Area Set	0	0	1	*	0	1	0	0	0	0	1	1	43	2Byte
65K Color Red Palette	0	0	1	*	0	1	0	0	1	0	0	0	48	32Byte
65K Color Green Palette	0	0	1	*	0	1	0	0	1	0	1	0	4A	64Byte
65K Color Blue Palette	0	0	1	*	0	1	0	0	1	1	0	0	4C	32Byte
RAM Skip Area Set	0	0	1	*	0	1	0	0	0	1	0	1	45	
Display OFF	0	0	1	*	0	1	0	1	0	0	0	0	50	1Byte -
Display ON	0	0	1	*	0	1	0	1	0	0	0	1	51	<u>-</u>
Specified Display Pattern Set	0	0	1	*	0	1	0	1	0	0	1	1	53	1Byte
Partial Display Mode Set	0	0	1	*	0	1	0	1	0	1	0	1	55	1Byte
Partial Display Start Line Set	0	0	1	*	0	1	0	1	0	1	1	0	56	1Byte
Partial Display End Line Set	0	0	1	*	0	1	0	1	0	1	1	1	57	1Byte
Area Scroll Mode Set	0	0	1	*	0	1	0	1	1	0	0	1	59	4Byte
Scroll Start Line Set	0	0	1	*	0	1	0	1	1	0	1	0	59 5A	4Byte 1Byte
Data Format Select (Format A)	0	0	1	*	0	1	1	0	0	0	0	0	60	ТБуце
Data Format Select (Format B)	0	0	1	*	0	1	1	0	0	0	0	1	61	
Set Display Data Length	X	X	X	*	1	1	1	1	1	1	0	0	FC	1Byte
					'	'				'	U	U		
Display Data Write Display Data Read	1	0	0		Display Data Write								-	
Status Read	0	1	0	Display Data Read						-	-			
Test Mode	0	0	1	0 Status Data Read * 1 1 1 1 * * * * *					- F*	- 1Byte				
OTP Mode Off	0	0	1	*	1	1	1	0	1	0	1	0	EA	- I Dyle
OTP Mode On	0	0	1	*	1	1	1	0	1	0	1	1	EB	-
Offset Volume Set	0			*	1					1				
OTP Write Enable	0	0	1	*	1	1	1	0	1	1	0	1	ED EF	1Byte -
OTT WHILE EHABIE	U	U				I	ı	U	I	ı	ı	I	ĽF	

*: Don't care

Parameter: The number of parameter bytes that follows instruction data.

Non Operation (00H)

This instruction is Non operation.

D/I	WRB	RDB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	0	0	0	0	0	0	0

Oscillation Mode Set (02H)

Setting internal function mode.

D/I	WRB	RDB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	4	0	0	0	0	0	0	1	0
	U	0 1	0	0	0	0	0	0	EXT	osc

EXT: External clock selecting

EXT = 0: Internal clock mode (Initial status)

EXT = 1: External clock mode

OSC: Internal oscillator ON/OFF

OSC = 0: Internal oscillator OFF(Initial status)

OSC = 1: Internal oscillator ON

Driver Output Mode Set(10H)

This instruction sets the display direction.

D/I	WRB	RDB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	•	4	0	0	0	1	0	0	0	0
0	U	•	0	0	DI	_N	0	SDIR	SWP	CDR

DLN: Display Line number selecting

		<u> </u>
DB5	DB4	Display Duty
0	1/132 (Initial status)	
0	1	1/144
1	0	1/162
1	1	1/96

SDIR: Segment direction

This bit is for controlling the direction of segment driver.

SDIR = 0 (Initial status)

SWP: Swap segment output SEGAi and SEGCi

This bit is for swapping the output of segment driver.

SWP = 0 (Initial status)

CDR: Software COM direction change register

This bit and CDIR_P pin are for controlling the direction of common driver.

CDR = 0 (Initial status)

In case software control of COM direction, CDIR_P pin must be fixed at VSS.

In case hardware control of COM direction, CDR register must be set at 0.

CDIR_P	CDR	CDIR (Internal Register)
0	0	0
0	1	1
1	0	1
1	1	1

Monitor Signal Control (18H)

This instruction configures the output enable and timing of monitor signal

D/I	WRB	RDB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	4	0	0	0	1	1	0	0	0
U	U	l	0	0	0	0	0	PM	CL	FR

PM: Enable to transfer field delimiter signal to output pin by active high PM = 0 (Initial status)

CL: Enable to transfer shift signal to output pin by active high CL = 0 (Initial status)

FR: Enable to transfer liquid crystal alternating signal to output pin by active high FR = 0 (Initial status)

DC-DC Select (20H)

Selects DC-DC step-up of the common driver in normal and partial mode

D/I	WRB	RDB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	•	4	0	0	1	0	0	0	0	0
U	U	0 1	0	0	0	0	DC	(2)	DC	(1)

DC(1): 1'st DC-DC booster boosting step select for V1 generation in normal mode and partial mode 0.

DC(2): 1'st DC-DC booster boosting step select for V1 generation in partial mode 1.

DC	(2) : In	partial mode 1	Oprating voltage range
DB3	DB2	DC-DC step up	VIN1
0	0	X1.0	2.4~3.6[V]
0	1	X1.5	2.4~3.6[V]
1	0	X2.0	2.4~2.75[V]
1	1	X2.0	2.4~2.75[V]

DO	C(1) : In	normal mode	Oprating
	partia	al mode 0	voltage range
DB1	DB0	DC-DC step up	VIN1
0	0	X1.0	2.4~3.6[V]
0	1	X1.5	2.4~3.6[V]
1	0	X2.0	2.4~2.75[V]
1	1	X2.0	2.4~2.75[V]

DC-DC Select and power supply for V1 Op-Amp.

Even if VIN45 is connected to VOUT45 or VIN1, a setup by software must be able to be performed. Power supply for V1 Op-Amp. is decided by Hardware setting and Software setting.

The example of usage is shown below.

Figure 28. Example: Hardware Setting: VIN45 connected to VOUT45

Software Setting 1 : Power supply for V1 Op.Amp. uses 1'st booster output (not VIN1).

Hardware setting: VIN45 connected to (1) VOUT45 (when VOUT45 is used) (2) VIN1 (when VOUT45 is not used)

Instruction setting: DC-DC Select (20H) - DC Register

Set value "00" Power supply for 1'st booster output uses 1XVIN1. (Initial status) Set value "01" Power supply for 1'st booster output uses 1.5XVIN1. Set value "10" or "11" Power supply for 1'st booster output uses 2XVIN1.

Software setting 1: DC/DC and AMP ON/OFF (26H) - DCDC1 Register

Set value "0" Power supply for VOUT45 uses VIN1. (Initial status) Set value "1" Power supply for VOUT45 uses 1'st booster output.

Bias Set (22H)

This instruction set up the value of bias in normal mode and in partial mode.

D/I	WRB	RDB	DB7	DB6	DB5	DB4	DB3	DB9	DB1	DB0
0	0	4	0	0	1	0	0	0	1	0
U	U	1	0	0	Bias	s(2)	0	0	Bias	s(1)

Bias(1): Bias value selecting in normal mode and partial mode0.

Bias(2): Bias value selecting in partial mode1.

		Bias(2)	: In partial mode 1			
DB5	DB4	Bias	DCDC2 step up	DC2OUT		
0	0	1/4	X(-3)	3/4xV1		
0	1	1/5	X(-3)	V1		
1	0	1/6	X(-4)	5/6xV1		
1	1	1/7	X(-4)	V1		

	Bias	(1):ln n	ormal, partial mod	le 0	
DB1	DB0	Bias	DCDC2 step up	DC2OUT	
0	0	1/4	X(-3)	3/4xV1	
0	1	1/5	X(-3)	V1	
1	0	1/6	X(-4)	5/6xV1	
1	1	1/7	X(-4)	V1	

DCDC Clock Division Set(24H)

This instruction sets the internal booster clock frequency.

D/I	WRB	RDB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	4	0	0	1	0	0	1	0	0
"	0	ı	0	0	DIV	/(2)	0	0	DIV	/(1)

DIV(1): DC-DC Charge Pump Division Ratio in Normal Mode Display and Partial Display Mode0

- DIV(1) = 10 (Initial status)

DIV(2): Division Ratio in Partial Display Mode1

- DIV(2) = 10 (Initial status)

DB5	DB4	DIV(2)
0	0	fPCK = fOSC/8
0	1	fPCK = fOSC/16
1	0	fPCK = fOSC/32
1	1	fPCK = fOSC/64

DB1	DB0	DIV(1)			
0	0	fPCK = fOSC/16			
0	1	fPCK = fOSC/32			
1	0	fPCK = fOSC/64			
1	1	fPCK = fOSC/128			

Note: fOSC = (ROUNDUP (Duty/3) + dummy) x 4 x 16 x frame frequency

DC/DC and AMP ON/OFF Set (26H)

This instruction set up the DC/DC and Op-amp in common start up setting.

D/I	WRB	RDB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0 1	0	0	1	0	0	1	1	0
			0	0	0	0	AMP	DCDC3	DCDC2	DCDC1

AMP: Built-in OP-AMP ON/OFF.

- AMP=0: OP-AMP OFF (Initial status)

- AMP=1: OP-AMP ON

DCDC1: Built-in 1'st Booster ON/OFF

- DCDC1= 0: 1'st Booster OFF (Initial status)

- DCDC1= 1: 1'st Booster ON

DCDC2: Built-in 2'nd Booster ON/OFF

- DCDC2= 0: 2'nd Booster OFF (Initial status)

- DCDC2= 1: 2'nd Booster ON

DCDC3: Built-in 3'rd Booster ON/OFF

- DCDC3= 0: 3'rd Booster OFF (Initial status)

- DCDC3= 1: 3'rd Booster ON

Temperature Compensation Set (28H)

This Instruction sets up the driving voltage slope for temperature compensation.

	D/I	WRB	RDB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	0 0	0	4	0	0	1	0	1	0	0	0
		U	0 1	'	0	0	0	0	0	0	TO

TCS: Temperature compensation slope set

- TCS = 00 : 0.00%/degC (Initial status)

TCS = 01 : -0.05%/degCTCS = 10 : -0.10%/degCTCS = 11 : -0.15%/degC

TCS Reg	ister Set *	Temp. Coefficient			
DB1	DB0	remp. Coemcient			
0	0	0.00%/°C			
0	1	-0.05%/°C			
1	0	-0.10%/°C			
1	1	-0.15%/°C			

Temperature Compensation

If external temperature compensation is needed, circuit diagram is described as below. To use temperature compensation, two resistors and one thermistor are needed.

Contrast Control (1) (2AH)

This instruction updates the contrast control value in normal display mode and partial display mode 0.

D/I	WRB	RDB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	4	0	0	1	0	1	0	1	0
0	0	'			Contra	st contro	l value (0	to 255)		

The relation between V1 voltage (typ.) and Contrast(1) set value (3bit step case)

Contrast(1) (HEX)	V1 [V]										
00h	2.000	30h	2.376	60h	2.753	90h	3.129	C0h	3.506	F0h	3.882
08h	2.063	38h	2.439	68h	2.816	98h	3.192	C8h	3.569	F8h	3.945
10h	2.125	40h	2.502	70h	2.878	A0h	3.255	D0h	3.631	FFh	4.000
18h	2.188	48h	2.565	78h	2.941	A8h	3.318	D8h	3.694		
20h	2.251	50h	2.627	80h	3.004	B0h	3.380	E0h	3.757		
28h	2.314	58h	2.690	88h	3.067	B8h	3.443	E8h	3.820		

Contrast Control (2) (2BH)

This instruction updates the contrast control value in partial display mode 1.

D/I	WRB	RDB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	4	0	0	1	0	1	0	1	1
"	U	'			Contra	st contro	l value (0	to 255)		

The relation between V1 voltage (typ.) and Contrast(2) set value (3 bit step case)

Contrast(2) (HEX)	V1 [V]										
00h	2.000	30h	2.376	60h	2.753	90h	3.129	C0h	3.506	F0h	3.882
08h	2.063	38h	2.439	68h	2.816	98h	3.192	C8h	3.569	F8h	3.945
10h	2.125	40h	2.502	70h	2.878	A0h	3.255	D0h	3.631	FFh	4.000
18h	2.188	48h	2.565	78h	2.941	A8h	3.318	D8h	3.694		
20h	2.251	50h	2.627	80h	3.004	B0h	3.380	E0h	3.757]	
28h	2.314	58h	2.690	88h	3.067	B8h	3.443	E8h	3.820		

Note:

S6B33BC has a hardware protection for "2VR < 20V". It means the limitation of contrast value in each bias. If 1/6 bias is set, max contrast value is limited to A9h, and if 1/7 bias is set, max contrast value is limited to 6Dh.

Standby Mode OFF (2CH)

This instruction releases the standby mode.

D/I	WRB	RDB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	0	1	0	1	1	0	0

The internal statuses during standby off are as following:

- All common output: +VR or -VR or VM or VSS
- All segment output: VSS or V1
- Oscillator circuit: On (EXT = 0, OSC=1), OFF (others)
- Displaying clocks (FR, PM, CL): In operation

Function and Pin condition at standby OFF

Function/Pin	Condition
DC/DC booster(1'st,2'nd,3'rd)	ON(Operate)
COM outputs	+VR or VM or VSS or -VR
SEG outputs	V1 or VSS

Standby Mode ON (2DH)

This instruction enters the standby mode to reduce the power consumption to the static power consumption value (Initial status). The following instructions, standby off and display on, cause returning to the normal operation status.

D/I	WRB	RDB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	0	1	0	1	1	0	1

The internal statuses during standby on are as following:

- All common and segment output: VSS
- Oscillator circuit: OFF
- Displaying clocks (FR, PM, CL) are held.

Function and Pin condition at standby ON

Function/Pin	Condition
DC/DC booster(1'st,2'nd,3'rd)	OFF
SEG and COM outputs	VSS

LCD driving power output condition at Standby ON.

level	Condition
+VR	VSS
V1	VSS
VM	VSS
-VR	VSS

Addressing Mode Set (30H)

D/I	WRB	RDB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	4	0	0	1	1	0	0	0	0
0	0	'	0	GSM		DSG	SGF	SC	3P	SGM

GSM: Gray Scale Mode

- 00: 65,536 color mode (Initial status)

- 01: 4,096 color mode (refer to "Data Format Select (60H/61H)")

- 10: 256 color mode

- 11: 256 color mode

Note: 256 color mode only supports 8bit access mode.(refer to "Display Data Write/Read")

DSG: Duty Adjust Setting

- 0: Dummy subgroup is one subgroup

- 1: Dummy subgroup is none (Initial status)

SGF: Sub Group Frame Inversion mode setting

- 0: SG Frame inversion OFF

- 1: SG Frame inversion ON (Initial status)

SGM: Sub Group inversion mode setting

- 0: SG inversion OFF

- 1: SG inversion ON (Initial status)

SGP: Sub Group Phase mode setting

- 00: Same phase in all pixels

- 01: Different phase by 1pixel-unit

- 10: Different phase by 2pixel-unit (Initial status)

- 11: Different phase by 4pixel-unit

Row Vector Mode Set (32H)

Setting ROW function.

D/I	WRB	RDB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	4	0	0	1	1	0	0	1	0
U	U	'	0	0	0	0		INC		VEC

INC: Row Vector Increment Mode. This Parameter set up Row vector increment period

DB3	DB2	DB1	Row Vector Increment Period
0	0	0	Every subgroup
0	0	1	Every 2subgroup
0	1	0	Every 4subgroup
0	1	1	Every 8subgroup
1	0	0	Every 16subgroup
1	0	1	Every 16subgroup
1	1	0	Every 16subgroup
1	1	1	Every sub-frame (initial status)

VEC: ROW Vector Sequence Mode

- 0: R1->R2->R3->R4 -> R1... (Initial status)

- 1: R1->R3->R2->R4 -> R1...

N-block inversion Set (34H)

This instruction set up N block inversion for AC driving.

D/I	WRB	RDB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	•	1	0	0	1	1	0	1	0	0
	U	'	FIM	FIP	0		N-bl	ock inver	sion	

FIM: Forcing Inversion Mode

FIM = 0: Forcing Inversion OFF

FIM = 1: Forcing Inversion ON (Initial status)

FIP: Forcing Inversion Period

FIP = 0: Forcing Inversion Period is one frame (Initial status)

FIP = 1: Forcing Inversion Period is two frame

N-block Inversion: This parameter indicates the basic period of polarity inversion.

The whole period of polarity inversion is decided by FIM, FIP and this parameter. (Initial status: 01101)

DB7	DB6	DB5	DB4 – DB0	Polarity Inversion Period
х	Х	x	0	every frame
0	Х	x	1	every 1 block
:	:	:	:	:
0	Х	x	31	every 31 blocks
1	0	x	1	every 1 block and every frame
:	:	:	:	:
1	0	x	31	every 31 blocks and every frame
1	1	x	1	every 1 block and every 2 frames
:	:	:	:	:
1	1	x	31	every 31 blocks and every 2 frames

Frame Frequency Control (36H)

This instruction controls the internal frame frequency.

D/I	WRB	RDB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	•	4	0	0	1	1	0	1	1	0
"	U	'	0	0	0	0	0	0	0	LFS

LFS: Low frame frequency set for low power consumption.

LFS = 0 : Low frequency set OFF (Initial status)

LFS = 1 : Low frequency set ON

Note: fFR @ (LFS=1) = fFR @ (LFS=0) / 2

Gamma correction

The S6B33BC provides the gamma correction function. Gray scale data can be selected by instruction.

<Red/Green/Blue Palette Initial Value>

65K Color Mode Palettes

At 65K-color mode, the instruction and parameter below set each Gray Scale level of the Red/Green/Blue. Gray scale level is determined by GS data.

Red Palette (48H)

D/I	WRB	RDB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
			0	1	0	0	1	0	0	0	
			0	0		GS da	ata "00000	0" to RAN	l data		
			0	0		GS da	ata "0000 <i>"</i>	1" to RAN	l data		
			0	0		GS da	ata "00010	0" to RAN	l data		
			0	0		GS da	ata "0001 <i>"</i>	1" to RAN	l data		
			0	0		GS da	ata "00100	0" to RAN	l data		
			0	0		GS da	ata "0010	1" to RAN	I data		
			0	0		GS da	ata "00110	0" to RAN	I data		
			0	0		GS da	ata "0011 <i>"</i>	1" to RAN	l data		
			0	0		GS da	ata "01000	0" to RAM	l data		
			0	0		GS da	ata "0100	1" to RAN	l data		
			0	0		GS da	ata "01010	0" to RAM	l data		
			0	0		GS da	ata "0101 <i>"</i>	1" to RAN	l data		
			0	0		GS da	ata "01100	0" to RAN	l data		
			0	0		GS da	ata "0110	1" to RAN	l data		
			0	0		GS da	ata "01110	0" to RAN	l data		
0	0	1	0	0		GS da	ata "0111 <i>"</i>	1" to RAN	l data		
			0	0		GS da	ata "10000	0" to RAM	l data		
			0	0		GS da	ata "1000	1" to RAN	l data		
			0	0		GS da	ata "10010	0" to RAN	l data		
			0	0		GS da	ata "1001 <i>"</i>	1" to RAN	I data		
			0	0		GS da	ata "10100	0" to RAN	l data		
			0	0		GS da	ata "1010	1" to RAN	l data		
			0	0		GS da	ata "1011(0" to RAN	l data		
			0	0		GS da	ata "1011 <i>"</i>	1" to RAN	l data		
			0	0		GS da	ata "11000	0" to RAN	l data		
			0	0		GS da	ata "1100 <i>"</i>	1" to RAN	l data		
			0	0	GS data "11010" to RAM data						
			0	0							
			0	0		GS da	ata "11100	0" to RAN	l data		
			0	0		GS da	ata "1110 <i>"</i>	1" to RAN	l data		
			0	0		GS da	ata "1111(0" to RAN	l data		
			0	0		GS da	ata "1111 <i>"</i>	1" to RAN	l data		

Green Palette (4AH)

D/I	WRB	RDB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
			0	1	0	0	1	0	1	0
			0		•	SS data "0	00000" to	RAM dat	a	
			0		•	SS data "0	00001" to	RAM dat	a	
			0		G	S data "0	00010" to	RAM dat	а	
			0		•	S data "0	00011" to	RAM dat	a	
			0		G	S data "0	00100" to	RAM dat	a	
			0		•	SS data "0	00101" to	RAM dat	a	
			0		•	SS data "0	00110" to	RAM dat	a	
			0		•	S data "0	00111" to	RAM dat	a	
			0		•	S data "0	01000" to	RAM dat	a	
			0		•	S data "0	01001" to	RAM dat	a	
			0		•	S data "0	01010" to	RAM dat	a	
			0		•	S data "0	01011" to	RAM dat	a	
			0		G	S data "0	01100" to	RAM dat	а	
			0		•	S data "0	01101" to	RAM dat	a	
			0		G	S data "0	01110" to	RAM dat	а	
0	0	1	0		G	S data "0	01111" to	RAM dat	а	
			0		G	S data "0	10000" to	RAM dat	а	
			0		G	S data "0	10001" to	RAM dat	а	
			0		G	S data "0	10010" to	RAM dat	а	
			0		G	S data "0	10011" to	RAM dat	а	
			0		G	S data "0	10100" to	RAM dat	а	
,			0		G	S data "0	10101" to	RAM dat	а	
,			0		G	S data "0	10110" to	RAM dat	а	
,			0		G	S data "0	10111" to	RAM dat	а	
,			0		G	S data "0	11000" to	RAM dat	а	
			0		G	S data "0	11001" to	RAM dat	а	
			0		G	S data "0	11010" to	RAM dat	а	
			0		G	S data "0	11011" to	RAM dat	а	
			0		•	S data "0	11100" to	RAM dat	a	
			0		•	S data "0	11101" to	RAM dat	a	
			0		G	S data "0	11110" to	RAM dat	а	
			0		0	S data "0	11111" to	RAM dat	a	

Green Palette (Continued)

D/I	WRB	RDB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
			0		G	S data "1	00000" to	RAM dat	a	
			0		G	S data "1	00001" to	RAM dat	a	
			0		G	S data "1	00010" to	RAM dat	а	
			0		G	S data "1	00011" to	RAM dat	а	
			0		G	S data "1	00100" to	RAM dat	a	
			0		G	S data "1	00101" to	RAM dat	a	
			0		G	S data "1	00110" to	RAM dat	а	
			0		G	S data "1	00111" to	RAM dat	а	
			0		G	S data "1	01000" to	RAM dat	a	
			0		G	S data "1	01001" to	RAM dat	a	
			0		G	S data "1	01010" to	RAM dat	a	
			0		G	S data "1	01011" to	RAM dat	a	
			0		G	S data "1	01100" to	RAM dat	a	
			0		G	S data "1	01101" to	RAM dat	а	
			0		G	S data "1	01110" to	RAM dat	а	
	0	1	0		G	S data "1	01111" to	RAM dat	а	
0	0	ı	0		G	S data "1	10000" to	RAM dat	а	
			0		G	S data "1	10001" to	RAM dat	a	
			0		G	S data "1	10010" to	RAM dat	a	
			0		G	S data "1	10011" to	RAM dat	а	
			0		G	S data "1	10100" to	RAM dat	а	
			0		G	S data "1	10101" to	RAM dat	а	
			0		G	S data "1	10110" to	RAM dat	а	
			0		G	S data "1	10111" to	RAM dat	а	
			0		G	S data "1	11000" to	RAM dat	а	
			0		G	S data "1	11001" to	RAM dat	а	
			0		G	S data "1	11010" to	RAM dat	a	
			0		G	S data "1	11011" to	RAM dat	a	
			0		G	S data "1	11100" to	RAM dat	a	
			0		G	S data "1	11101" to	RAM dat	a	
			0		G	S data "1	11110" to	RAM dat	a	
			0		G	S data "1	11111" to	RAM dat	a	

Blue Palette (4CH)

D/I	WRB	RDB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
			0	1	0	0	1	1	0	0
			0	0		GS da	ata "00000	0" to RAN	I data	
			0	0		GS da	ata "0000	1" to RAN	I data	
			0	0		GS da	ata "00010	0" to RAN	I data	
			0	0		GS da	ata "0001 <i>"</i>	1" to RAN	I data	
			0	0		GS da	ata "00100	0" to RAN	I data	
			0	0		GS da	ata "0010	1" to RAN	I data	
			0	0		GS da	ata "00110	0" to RAN	I data	
			0	0		GS da	ata "0011 <i>"</i>	1" to RAN	I data	
			0	0		GS da	ata "01000	0" to RAN	I data	
			0	0		GS da	ata "0100	1" to RAN	I data	
			0	0		GS da	ata "01010	0" to RAN	I data	
			0	0		GS da	ata "0101 <i>"</i>	1" to RAN	I data	
			0	0		GS da	ata "01100	0" to RAN	I data	
			0	0		GS da	ata "0110 <i>"</i>	1" to RAN	I data	
			0	0		GS da	ata "01110	0" to RAN	I data	
0	0	1	0	0		GS da	ata "0111 <i>1</i>	1" to RAN	I data	
			0	0		GS da	ata "10000	0" to RAN	I data	
			0	0		GS da	ata "1000	1" to RAN	I data	
			0	0		GS da	ata "10010	0" to RAN	l data	
			0	0		GS da	ata "1001 <i>"</i>	1" to RAN	I data	
			0	0		GS da	ata "10100	0" to RAN	I data	
			0	0		GS da	ata "1010	1" to RAN	I data	
			0	0		GS da	ata "10110	0" to RAN	I data	
			0	0		GS da	ata "1011 <i>"</i>	1" to RAN	I data	
			0	0		GS da	ata "11000	o" to RAN	l data	
			0	0		GS da	ata "1100 <i>"</i>	1" to RAN	l data	
			0	0		GS da	ata "1101(o" to RAM	l data	
			0	0		GS da	ata "1101 <i>"</i>	1" to RAN	l data	
			0	0		GS da	ata "11100	o" to RAN	l data	
			0	0		GS da	ata "1110 <i>"</i>	1" to RAN	l data	
			0	0		GS da	ata "11110	0" to RAN	l data	
			0	0		GS da	ata "1111	1" to RAN	l data	

Initial value for each Palette

Gray Scale		Initial Gray Scale Level	
Data	Red	Green	Blue
000000	0	0	0
000001	2	2	2
000010	4	4	4
000011	6	6	6
000100	8	8	8
000101	10	10	10
000110	12	12	12
000111	14	14	14
001000	16	16	16
001001	18	18	18
001010	20	20	20
001011	22	22	22
001100	24	24	24
001101	26	26	26
001110	28	28	28
001111	30	30	30
010000	32	32	32
010001	34	34	34
010010	36	36	36
010011	38	38	38
010100	40	40	40
010101	42	42	42
010110	44	44	44
010111	46	46	46
011000	48	48	48
011001	50	50	50
011010	52	52	52
011011	54	54	54
011100	56	56	56
011101	58	58	58
011110	60	60	60
011111	63	62	63

Initial value for each Palette

Gray Scale		Initial Gray Scale Level	
Data	Red	Green	Blue
100000	-	64	-
100001	-	66	-
100010	-	68	-
100011	-	70	-
100100	-	72	-
100101	-	74	-
100110	-	76	-
100111	-	78	-
101000	-	80	-
101001	-	82	-
101010	-	84	-
101011	-	86	-
101100	-	88	-
101101	-	90	-
101110	-	92	-
101111	-	94	-
110000	-	96	-
110001	-	98	-
110010	-	100	-
110011	-	102	-
110100	-	104	-
110101	-	106	-
110110	-	108	-
110111	-	110	-
111000	-	112	-
111001	-	114	-
111010	-	116	-
111011	-	118	-
111100	-	120	-
111101	-	122	-
111110	-	124	-
111111	-	127	-

The relationship between Gray Scale level and RAM data for Red/Blue

		RAM	Data			GS Level	RAM Data						GS Level
DB5	DB4	DB3	DB2	DB1	DB0		DB5	DB4	DB3	DB2	DB1	DB0	
0	0	0	0	0	0	0	1	0	0	0	0	0	32
0	0	0	0	0	1	1	1	0	0	0	0	1	33
0	0	0	0	1	0	2	1	0	0	0	1	0	34
0	0	0	0	1	1	3	1	0	0	0	1	1	35
0	0	0	1	0	0	4	1	0	0	1	0	0	36
0	0	0	1	0	1	5	1	0	0	1	0	1	37
0	0	0	1	1	0	6	1	0	0	1	1	0	38
0	0	0	1	1	1	7	1	0	0	1	1	1	39
0	0	1	0	0	0	8	1	0	1	0	0	0	40
0	0	1	0	0	1	9	1	0	1	0	0	1	41
0	0	1	0	1	0	10	1	0	1	0	1	0	42
0	0	1	0	1	1	11	1	0	1	0	1	1	43
0	0	1	1	0	0	12	1	0	1	1	0	0	44
0	0	1	1	0	1	13	1	0	1	1	0	1	45
0	0	1	1	1	0	14	1	0	1	1	1	0	46
0	0	1	1	1	1	15	1	0	1	1	1	1	47
0	1	0	0	0	0	16	1	1	0	0	0	0	48
0	1	0	0	0	1	17	1	1	0	0	0	1	49
0	1	0	0	1	0	18	1	1	0	0	1	0	50
0	1	0	0	1	1	19	1	1	0	0	1	1	51
0	1	0	1	0	0	20	1	1	0	1	0	0	52
0	1	0	1	0	1	21	1	1	0	1	0	1	53
0	1	0	1	1	0	22	1	1	0	1	1	0	54
0	1	0	1	1	1	23	1	1	0	1	1	1	55
0	1	1	0	0	0	24	1	1	1	0	0	0	56
0	1	1	0	0	1	25	1	1	1	0	0	1	57
0	1	1	0	1	0	26	1	1	1	0	1	0	58
0	1	1	0	1	1	27	1	1	1	0	1	1	59
0	1	1	1	0	0	28	1	1	1	1	0	0	60
0	1	1	1	0	1	29	1	1	1	1	0	1	61
0	1	1	1	1	0	30	1	1	1	1	1	0	62
0	1	1	1	1	1	31	1	1	1	1	1	1	63

The relationship between Gray Scale level and RAM data for Green

	RAM Data						GS Level RAM Data						GS Level		
DB	DB	DB	DB	DB	DB	DB		DB	DB	DB	DB	DB	DB	DB0	
6	5	4	3	2	1	0		6	5	4	3	2	1	DBO	
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	32
0	0	0	0	0	0	1	1	0	1	0	0	0	0	1	33
0	0	0	0	0	1	0	2	0	1	0	0	0	1	0	34
0	0	0	0	0	1	1	3	0	1	0	0	0	1	1	35
0	0	0	0	1	0	0	4	0	1	0	0	1	0	0	36
0	0	0	0	1	0	1	5	0	1	0	0	1	0	1	37
0	0	0	0	1	1	0	6	0	1	0	0	1	1	0	38
0	0	0	0	1	1	1	7	0	1	0	0	1	1	1	39
0	0	0	1	0	0	0	8	0	1	0	1	0	0	0	40
0	0	0	1	0	0	1	9	0	1	0	1	0	0	1	41
0	0	0	1	0	1	0	10	0	1	0	1	0	1	0	42
0	0	0	1	0	1	1	11	0	1	0	1	0	1	1	43
0	0	0	1	1	0	0	12	0	1	0	1	1	0	0	44
0	0	0	1	1	0	1	13	0	1	0	1	1	0	1	45
0	0	0	1	1	1	0	14	0	1	0	1	1	1	0	46
0	0	0	1	1	1	1	15	0	1	0	1	1	1	1	47
0	0	1	0	0	0	0	16	0	1	1	0	0	0	0	48
0	0	1	0	0	0	1	17	0	1	1	0	0	0	1	49
0	0	1	0	0	1	0	18	0	1	1	0	0	1	0	50
0	0	1	0	0	1	1	19	0	1	1	0	0	1	1	51
0	0	1	0	1	0	0	20	0	1	1	0	1	0	0	52
0	0	1	0	1	0	1	21	0	1	1	0	1	0	1	53
0	0	1	0	1	1	0	22	0	1	1	0	1	1	0	54
0	0	1	0	1	1	1	23	0	1	1	0	1	1	1	55
0	0	1	1	0	0	0	24	0	1	1	1	0	0	0	56
0	0	1	1	0	0	1	25	0	1	1	1	0	0	1	57
0	0	1	1	0	1	0	26	0	1	1	1	0	1	0	58
0	0	1	1	0	1	1	27	0	1	1	1	0	1	1	59
0	0	1	1	1	0	0	28	0	1	1	1	1	0	0	60
0	0	1	1	1	0	1	29	0	1	1	1	1	0	1	61
0	0	1	1	1	1	0	30	0	1	1	1	1	1	0	62
0	0	1	1	1	1	1	31	0	1	1	1	1	1	1	63

The relationship between Gray Scale level and RAM data for Green (Continued)

		RA	AM Da	ıta			GS Level	RAM Data					GS Level		
DB 6	DB 5	DB 4	DB 3	DB 2	DB 1	DB 0		DB 6	DB 5	DB 4	DB 3	DB 2	DB 1	DB0	
1	0	0	0	0	0	0	64	1	1	0	0	0	0	0	96
1	0	0	0	0	0	1	65	1	1	0	0	0	0	1	97
1	0	0	0	0	1	0	66	1	1	0	0	0	1	0	98
1	0	0	0	0	1	1	67	1	1	0	0	0	1	1	99
1	0	0	0	1	0	0	68	1	1	0	0	1	0	0	100
1	0	0	0	1	0	1	69	1	1	0	0	1	0	1	101
1	0	0	0	1	1	0	70	1	1	0	0	1	1	0	102
1	0	0	0	1	1	1	71	1	1	0	0	1	1	1	103
1	0	0	1	0	0	0	72	1	1	0	1	0	0	0	104
1	0	0	1	0	0	1	73	1	1	0	1	0	0	1	105
1	0	0	1	0	1	0	74	1	1	0	1	0	1	0	106
1	0	0	1	0	1	1	75	1	1	0	1	0	1	1	107
1	0	0	1	1	0	0	76	1	1	0	1	1	0	0	108
1	0	0	1	1	0	1	77	1	1	0	1	1	0	1	109
1	0	0	1	1	1	0	78	1	1	0	1	1	1	0	110
1	0	0	1	1	1	1	79	1	1	0	1	1	1	1	111
1	0	1	0	0	0	0	80	1	1	1	0	0	0	0	112
1	0	1	0	0	0	1	81	1	1	1	0	0	0	1	113
1	0	1	0	0	1	0	82	1	1	1	0	0	1	0	114
1	0	1	0	0	1	1	83	1	1	1	0	0	1	1	115
1	0	1	0	1	0	0	84	1	1	1	0	1	0	0	116
1	0	1	0	1	0	1	85	1	1	1	0	1	0	1	117
1	0	1	0	1	1	0	86	1	1	1	0	1	1	0	118
1	0	1	0	1	1	1	87	1	1	1	0	1	1	1	119
1	0	1	1	0	0	0	88	1	1	1	1	0	0	0	120
1	0	1	1	0	0	1	89	1	1	1	1	0	0	1	121
1	0	1	1	0	1	0	90	1	1	1	1	0	1	0	122
1	0	1	1	0	1	1	91	1	1	1	1	0	1	1	123
1	0	1	1	1	0	0	92	1	1	1	1	1	0	0	124
1	0	1	1	1	0	1	93	1	1	1	1	1	0	1	125
1	0	1	1	1	1	0	94	1	1	1	1	1	1	0	126
1	0	1	1	1	1	1	95	1	1	1	1	1	1	1	127

256 Color Mode Palettes

At 256-color mode, the instruction and parameter below set each Gray Scale level of the Red/Green/Blue. Gray scale level is determined by GS data.

Red Palette (38H)

D/I	WRB	RDB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
			0	0	1	1	1	0	0	0
			0	0		GS (data "000	" to RAM	data	
			0	0		GS (data "001	" to RAM	data	
			0	0		GS (data "010	" to RAM	data	
0	0	1	0	0		GS (data "011	" to RAM	data	
			0	0		GS (data "100	" to RAM	data	
			0	0		GS (data "101	" to RAM	data	
			0	0		GS (data "110	" to RAM	data	
			0	0		GS	data "111	" to RAM	data	

Green Palette (3AH)

D/I	WRB	RDB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
			0	0	1	1	1	0	1	0
			0			GS data	"000" to F	RAM data		
			0			GS data	"001" to F	RAM data		
			0			GS data	"010" to F	RAM data		
0	0	1	0			GS data	"011" to F	RAM data		
			0			GS data	"100" to F	RAM data		
			0			GS data	"101" to F	RAM data		
			0			GS data	"110" to F	RAM data		
			0			GS data	"111" to F	RAM data		

Blue Palette (3CH)

D/I	WRB	RDB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
			0	0	1	1	1	1	0	0
			0	0		GS	data "00"	to RAM	data	
0	0	1	0	0		GS	data "01"	to RAM	data	
			0	0		GS	data "10"	to RAM	data	
	0 0					GS data "11" to RAM data				

Initial value for each Palette

Gray Scale		Initial Gray Scale Level	
Data	Red	Green	Blue
000	0	0	0
001	24	48	28
010	28	56	36
011	32	64	63
100	34	72	-
101	40	80	-
110	48	89	-
111	63	127	-

Entry Mode Set (40H)

Setting internal function mode.

D/I	WRB	RDB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
•	0	4	0	1	0	0	0	0	0	0
0	U	'	0	0	0	0	0	MDI	X/Y	RMW

MDI: Memory data inversion setting for low power consumption.

MDI = 0: Memory data inversion OFF (Initial status)

MDI = 1: Memory data inversion ON

00h

<MDI=0> <MDI=1>

Display Data Write Display Data Read

Memory 00h

00h 00h Display Data Write

00h

FFh

X/Y: Memory address counter mode setting

X/Y = 0: Y address counter mode (Initial status)

X/Y = 1: X address counter mode

RMW: Read modify write mode ON/OFF select

RMW = 0: Read modify write OFF (Initial status)

RMW = 1: Read modify write ON. When this mode is on, X(Y) address of on-chip display RAM is not increment in reading display data but in writing display data.

X Address Area Set (42H)

Data Bus

This instruction and parameter set up the X address areas of the on-chip display data RAM.

D/I	WRB	RDB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
			0	1	0	0	0	0	1	0
0	0	1		>	start add	dress set ((Initial Sta	tus = 00H	1)	
)	Cend add	ress set (Initial Sta	tus = A1H	l)	

The current X address of the on-chip display data RAM is the X start address by setting this instruction. In X address count mode (X/Y = "H"), the X address is increased from X start address to X end address. When X address is equal to the X end address, the Y address is increased by 1 and the X address returns to X start address. The X start and X end addresses must be set as a pair and X start address must be less than X end address.

Y Address Area Set (43H)

This instruction and parameter set up the Y address areas of the on-chip display data RAM.

D/I	WRB	RDB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
			0	1	0	0	0	0	1	1
0	0	1		Y	start add	ress set	(Initial Sta	tus = 00H	1)	
				•	Y end add	ress set (Initial Sta	tus = 83H)	

The current Y address of the on-chip display data RAM is the Y start address by setting this instruction. In Y address count mode (X/Y = "L"), the Y address is increased from Y start address to Y end address. When Y address is equal to the Y end address, the X address is increased by 1 and the Y address returns to Y start address. The Y start and Y end address must be set as a pair and Y start address must be less than Y end address.

RAM Skip Area Set (45H)

This instruction and parameter set up the X address areas of the on-chip display data RAM.

D/I	WRB	RDB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	0	4	0	1	0	0	0	1	0	1
0	U	'	0	0	0	0	0	0	RS	SK

RSK: RAM Skip function ON/OFF set

- RSK = 00 : No Skip

RSK = 01 : Y address 40h - 43h skip(128 RGB)
 RSK = 10 : Y address 3Ch - 47h skip(120 RGB)
 RSK = 11 : Y address 30h - 53h skip(96 RGB)

RAM Skip Area Set

RAM Skip Area Set can skip a part of RAM Y-address area. After setting RAM skip area, Y-address count skip this area and count. In other words, Y address after skip area is changed into Y address which added a part for skip area.

Display OFF (50H)

Turn the display OFF(Initial status).

When display is off, all segment and common output are VSS level.

D/I	WRB	RDB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	1	0	1	0	0	0	0

Function and Pin condition at Display OFF

Function/Pin	Condition
DC/DC booster(1'st,2'nd,3'rd)	ON(Operate)
SEG and COM outputs	VSS

Display ON (51H)

Turns the display ON.

In case of being standby mode, this instruction does not work. This instruction is executed after standby mode off.

D/I	WRB	RDB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	1	0	1	0	0	0	1

Function and Pin condition at Display ON

Function/Pin	Condition
DC/DC booster(1'st,2'nd,3'rd)	ON(Operate)
COM outputs	+VR or VM or -VR
SEG outputs	V1 or VSS

Specified Display Pattern Set (53H)

This instruction sets the specified display pattern.

D/I	WRB	RDB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0		0 4	0	1	0	1	0	0	1	1
	U		0	0	0	0	0	0	SI	OP

SDP: Specified Display Pattern set

- SDP = 00 : Normal display
- SDP = 01 : Reverse display : Display data reversing mode setting without the contents of the display RAM
- SDP = 10: Whole display pattern becomes OFF regardless of the RAM data.
- SDP = 11 : Whole display pattern becomes ON regardless of the RAM data.

Partial Display Mode Set (55H)

D/I	WRB	RDB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	0	4	0	1	0	1	0	1	0	1
0	U	ı	0	0	0	0	0	0	PDM	PT

PT: Partial Display ON/OFF

- PT = 0: Partial display OFF = Normal mode (Initial status)

- PT = 1: Partial display ON

PDM: Partial Display mode set

- PDM = 0: Partial mode 0 : Duty ratio is same as Normal display mode(initial status)

- PDM = 1: Partial mode 1 : Duty ratio is changed from Normal display mode

(DSG = 0: 69 line fixed(including 1 dummy subgroup),

DSG = 1 : 66 line fixed(no dummy subgroup))

Applied parameter in PDM0 and PDM1 are summarized as below

PDM	Contrast	Duty	Bias	DC-DC Select	osc	PCK
0	Contrast control(1)	Normal	Bias(1)	DC(1)	OSC1-OSC2	DIV(1)
1	Contrast control(2)	1/69	Bias(2)	DC(2)	OSC3-OSC4	DIV(2)

Operation in Partial Display Mode 0 (PDM=0)

On scanning except partial display area

- SEG output select V0 or V1 level depend on "FR" value. Refer to Page58.
- All of COM output is fixed VM level.

On scanning partial display area

- It is equal to be in normal mode

Operation in Partial Display Mode 1 (PDM=1)

Display area is from partial start line to partial end line.

(COM driver output is fixed VM except display area, only max69 line output COM signal.

On scanning except partial display area

- SEG output select V0 or V1 level depend on "FR" value. Refer to Page58.
- All of COM output is fixed VM level.

On scanning partial display area

- It is equal to be in normal mode

SAMSUNG FLECTRONICS

ELECTRONICS 55

Partial Display Mode0

Item	Partial Display Area	Out of Partial Display Area					
Duty	Same as normal of	display mode					
Bias	Same as normal display mode (Bias(1) setting)						
Contrast	Same as normal display mod	Same as normal display mode (Contrast(1) setting)					
Oscillator	Same as normal display mode (OSC1 – OSC2)						
SEC Output lovel	Company made (VA VO)	Depends on Internal "FR" signal					
SEG Output level	Same as normal mode (V1,V0)	See page 58					
COM Output lovel	Same as normal mode	VM fixed					
COM Output level	(+VR,VM,-VR)	v ivi fixed					

In case of COM 6 to COM11 Partial display

Partial display mode1

Item	Partial Display Area	Out of Partial Display Area	Out of Display Area							
Duty		1/66duty								
Bias		Bias(2) setting								
Contrast		Contrast(2) setting								
Oscillator	(C	SC3 – OSC4) setting value								
SEG Output	Same as normal mode	Depends on "FR" signal								
level	(V1,V0)	See page 58	-							
COM Output level	Same as normal mode (+VR, VM, -VR)	VM fixed	VM fixed							

Partial Display Start Line Set (56H), Partial Display End Line Set(57H)

These 2 instructions set the partial display area and it is possible to display a part.

Partial Display Start Line Set (56H)

D/I	WRB	RDB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	0	4	0	1	0	1	0	1	1	0
0	U	ı				Partial s	start line			

Partial Display End Line Set (57H)

	0	0	1	U	1	U	Portiol	end line	1	1	1
ŀ				0	4	_	4	0	4	4	4
	D/I	WRB	RDB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0

COM 0	line 0
COM 1	line 1
COM 2	line 2
COM 3	line 3
	:
	:
	:
COM 158	line 158
COM 159	line 159
COM 160	line 160
COM 161	line 161

Parameter set appoints display line number. At PDM 0, Parameter Size is able to be in a number of Display lines. But that is not able to be over max 69 line at PDM 1. Partial end line must set bigger number than Partial start line.

Example of Segment Voltage in non-display area

Area scroll Set (59H)

This instruction sets up area scroll field (start line, end line, Lower fixed line number), and it is possible to make screen to display as partial scroll field.

D/I	WRB	RDB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		
			0	1	0	1	1	0	0	1		
			0	0	0	0	0	0	SC	CM		
0	0	1		Scroll area start line								
					;	Scroll are	a end line	:				
					I	_ower fixe	ed numbe	r				

Note: In lower and center scroll mode, scroll area end line must be smaller than (duty - lower fixed number).

SCM: Scroll mode setting

DB1	DB0	Mode
0	0	Entire display(Initial status)
0	1	Upper scroll display
1	0	Lower scroll display
1	1	Center scroll display

Entire Display

Upper Display

Lower Display

Center Display

Scroll Start Line Set (5AH)

This instruction and parameter set up scroll start line. On this instruction, scroll start line becomes the first of area scroll field. Scroll operation is occurred every issue of this instruction.

U	U	'				Scroll s	tart line			
0	0	1	0	1	0	1	1	0	1	0
D/I	WRB	RDB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0

<Example>

-DLN : 2'b10 (1/162 duty)

-SCM : 2'b11 (Center display mode)

-Scroll area start line : 6 -Scroll area end line : 152 -Lower fixed number : 9 -Scroll start line : 40

Data Format Select (60H/61H)

D/I	WRB	RDB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	1	1	0	0	0	0	DFS

DFS: 4,096 Color Mode Data Format Select

- 0 : 4,096 Color Data Format A (Initial Status)

8 bit mode:

DB[7:0]: XXXXRRRR (1'st write)
DB[7:0]: GGGGBBBB(2'nd write)

16 bit mode:

DB[15:0]:XXXXRRRRGGGGBBBB (12 bit)

- 1: 4,096 Color Data Format B

8 bit mode:

DB[7:0]: RRRRGGGG(1'st write)
DB[7:0]: BBBBXXXX(2'nd write)

16 bit mode:

DB[15:0] :RRRRGGGGBBBBXXXX (12 bit)

Display Data Write/Read

D/I	WRB	RDB	DB15 ~ DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0			
1	0	1		Display RAM write in data										
1	1	0		Display RAM read out data										

GSM = 00(65,536 Color Mode)

(1) 16bit access mode

١.	, 10011 acces 111	0 4 0																
		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	J
	1'st cycle	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B4	В3	B2	B1	В0	
	2'nd cycle	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B4	В3	B2	B1	В0	

(2) 8bit access mode

	7	6	5	4	3	2	1	0
1'st cycle	R4	R3	R2	R1	R0	G5	G4	G3
2'nd cycle	G2	G1	G0	B4	В3	B2	B1	В0
3'rd cycle	R4	R3	R2	R1	R0	G5	G4	G3
4'th cycle	G2	G1	G0	B4	В3	B2	B1	В0

GSM = 01(4,096 Color Mode), DFS = 0

(1) 16bit access mode

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1'st cycle	Х	Х	Х	Х	R3	R2	R1	R0	G3	G2	G1	G0	В3	B2	B1	В0
2'nd cycle	Х	Х	Х	Х	R3	R2	R1	R0	G3	G2	G1	G0	В3	B2	B1	В0

(2) 8bit access mode

	7	6	5	4	3	2	1	0
1'st cycle	Х	Х	Х	Х	R3	R2	R1	R0
2'nd cycle	G3	G2	G1	G0	В3	B2	B1	В0
3'rd cycle	Х	Х	Х	Х	R3	R2	R1	R0
4'th cycle	G3	G2	G1	G0	В3	B2	B1	В0

GSM = 01(4,096 Color Mode), DFS = 1

(3) 16bit access mode

١-	/																	_
		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	1'st cycle	R3	R2	R1	R0	G3	G2	G1	G0	В3	B2	B1	В0	X	Х	Х	Х	
	2'nd cycle	R3	R2	R1	R0	G3	G2	G1	G0	В3	B2	B1	В0	X	Х	Χ	Х	

(4) 8bit access mode

,									
	7	6	5	4	3	2	1	0	
1'st cycle	R3	R2	R1	R0	G3	G2	G1	G0	
2'nd cycle	В3	B2	B1	В0	Х	Х	Х	Х	
3'rd cycle	R3	R2	R1	R0	G3	G2	G1	G0	
4'th cycle	В3	B2	B1	В0	X	Х	Х	Х	

GSM = 10 or 11 (256 Color Mode)

(1) 8bit access mode

	7	6	5	4	3	2	1	0
1'st cycle	R2	R1	R0	G2	G1	G0	B1	В0
2'nd cycle	R2	R1	R0	G2	G1	G0	B1	В0

Status Read

D/I	WRB	RDB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	1	0	BSY	X/Y	OPRT	PDM	PT	STB	REV	DP

This instruction indicates the internal status of the S6B33BC.

DP: (0: Display OFF Status, 1: Display ON Status)

REV: (0: Display Image Non-Reversing, 1: Display Image Reversing)

STB: (0: Standby Mode OFF Status, 1: Standby Mode ON Status)

PT: (0: Partial Display Mode OFF Status, 1: Partial Display Mode ON Status)

PDM: (0: Partial Display Mode 0, 1: Partial Display Mode 1)

OPRT: (0: OTP mode non-protection status, 1: OTP mode protection status)

X/Y: (0: Y-address Count Mode, 1: X-address Count Mode)

BSY: (0: No Busy, 1: Busy)

OTP Mode On (EBH)

This command is used to turn OTP mode on. (Initial status)

RS	RW_WR	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	1	1	0	1	0	1	1

OTP Mode Off (EAH)

This command is used to turn OTP mode off

RS	RW_WR	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	1	1	0	1	0	1	0

Offset Volume Set (EDH)

This command is used to set offset value x (-32 to +31) to electronic volume by 2s complement.

RS	RW_WR	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	1	1	0	1	1	0	1
0	0	0	0	P15	P14	P13	P12	P11	P10

 $\boldsymbol{0}$: OTP cell is able to be programmed

1 : OTP cell isn't able to be programmed

<u>P15</u>	<u>P14</u>	<u>P13</u>	<u>P12</u>	<u>P11</u>	<u>P10</u>	Offset Volume(x)
0	1	1	1	1	1	31
:	:	:	:	:	:	
0	0	0	0	0	1	1
0	0	0	0	0	0	0
1	1	1	1	1	1	-1
	:	:	:	:	:	:
1	0	0	0	0	0	-32

OTP Write Enable (EFH)

This command is used to write offset value (OV) into EPROM cells.

	RS	RW_WR	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
i	0	0	1	1	1	0	1	1	1	1

INSTRUCTION PARAMETER

Table 16. Instruction Parameter

Instruction	Hex	Para.	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		
Oscillation Mode Set	02H	1	0	0	0	0	0	0	EXT	OSC		
Communicati Wiede Cet	0211		*	*	*	*	*	*	0	0		
Driver Output Mode Set	10H	1	0	0		_N	0	SDIR	SWP	CDR		
					0	0		0	0	0		
Monitor Signal Control	18H	1	0	0	0	0	0	PM 0	CL 0	FR 0		
			0	0	0	0	D	C(2)	DC			
DC-DC Set	20H	1	*	*	* *		0	0	0	0		
Di 0-4	22H	1	0	0	Bia	s(2)	0	0	Bia			
Bias Set			*	*	0 0		*	*	0 0			
DCDC Clock Division Set	Set 24H		0	0	DI\	/(2)	0	0	DI۱	,		
BOBO GIOCK BIVISION GCC	2-711	1	*	*	1	0	*	*	1	0		
DCDC and AMP ON/OFF Set	26H	1	0	0	0	0	AMP	DCDC3	DCDC2	DCDC1		
							0	0	0 T(0		
Temperature Compensation Set	28H	1	0	0	0	0	0	0	0	,S 0		
			Cont	rast cont	rol value	in norma	l and na	tial dienlav		-		
Contrast Control (1)	2AH	1	Contrast control value in normal and partial display mode 0 (0 to 255) 0 0 0 0 0 0 0 0 0									
0 1 10 1 10	0011	_				_	_	·	e 1(0 to 255	•		
Contrast Control(2)	2BH	1	0	0	0	0	0	0	0	0		
	0011	1	0	G	SM	DSG	SGF	S	GP	SGM		
Addressing Mode Set	30H		*	0	0	1	1	1	0	1		
DOWN A M L O A	0011	_	0	0	0	0	<u> </u>	INC		VEC		
ROW Vector Mode Set	32H	1	*	*	*	*	1	1	1	0		
N-line Inversion Set	34H	1	FIM	FIP	0		1	N-block Inve				
N-line inversion set	3411	'	1	0	*	0	1	1	0	1		
Frame Frequency Control	36H	1	0	0	0	0	0	0	0	LFS		
- rame requestey contact				*	*		*		*	0		
Entry Mode Set	40H	1	0	0	0	0	0	MDI 0	X/Y 0	RMW		
,			* * * * 0 0 0 0 X Start address set									
	42H	2	0	0	0	0	0	0	0	0		
X-address Area Set			X end address set									
										1		
	43H	2		Y start address set								
Y-address Area Set			0	0	0	0	0	0	0	0		
1 444100071104 001	1011			Y end address set								
			1	0	0	0	0	0	1	1		
RAM Skip Area Set	45H	1	0	0	0	0	0	0		SK		
			0	0	0	0	0	0	0 SI	0		
Specified Display Pattern Set	53H	1	*	*	*	*	*	*	0	0		
			0	0	0	0	0	0	PDM	PT		
Partial Display Mode Set	55H	1	*	*	*	*	*	*	0	0		
Double Display Otant Line C. 1	FC! !	1 -	Partial start line									
Partial Display Start Line Set	56H		0	0	0	0	0	0	0	0		
Partial Display End Line Set	57H	1				Par	tial end li					
Tartial Display Ella Ellie Get			1	0	1	0	0	0	0	1		

Table 16. Instruction Parameter (Continued)

Instruction	Hex	Para.	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
		4	0	0	0	0	0	0	SC	CM	
			*	*	*	*	*	*	0	0	
Area Scroll Mode Set			Scroll area start line								
	5011		0	0	0	0	0	0	0	0	
	59H		Scroll area end line								
			1	0	1	0	0	0	0	1	
			Lower Fixed number								
			0	0	0	0	0	0	0	0	
Scroll Start Line Set	EALL	1	Scroll start line								
Scroll Start Line Set	5AH		0	0	0	0	0	0	0	0	
0" 111 0 1	EDH	1	1	1	1	0	1	1	0	1	
Offset Volume Set	EDH		*	*	*	0	0	0	0	0	

Reset Operation

When RSTB becomes "L", following procedure is occurred.

- X start address: 0, X end address: 161, Y start address: 0, Y end address: 131
- Display OFF
- Read Modify Write Mode OFF
- Function Mode Set

MDI = 0: Memory Data Inversion OFF

OSC = 0: Oscillator OFF

EXT = 0: Internal Oscillator Mode

REV = 0: Reversing mode OFF

X/Y = 0: Y-address Count Mode

Standby Mode ON

- DCDC Clock Division Set

DIV(1) = 10: fPCK = fOSC/64

DIV(2) = 10: fPCK = fOSC/32

- Duty Set

Display Duty = 00: 1/132 duty

- DC-DC Select

DC(1) = 0: X1 step-up

DC(2) = 0: X1 step-up

- Bias Set

Bias(1) = 0H: 1/4 bias

Bias(2) = 0H: 1/4 bias

- DC/DC and AMP ON/OFF Set

AMP =0: Built-in OP-AMP OFF

DCDC1 =0: Built-in 1'st booster OFF

DCDC2 =0: Built-in 2'nd booster OFF

DCDC3 =0: Built-in 3'rd booster OFF

- N-block inversion

FIM =1: Forcing Inversion ON

FIP =0: Forcing Inversion Period in one frame

N-block inversion = 0DH: 13 block inversion

- Frame Frequency Control

LFS =0: Low Frequency Set OFF

- Partial Display Mode

PT = 0: Partial Display Mode OFF

- Partial Display Area Set

Partial start line = 00H

Partial end line = 81H

-Area Scroll Set

Mode = 00H : Entire Display Scroll Mode

Area Start Line: 00H Area End Line: A1H

Lower Fixed Line Number: 00H

- Scroll Start Line Set Scroll Start Line: 00H

- Addressing Mode Set

GSM=00: 65,536 Color Mode

DSG = 1: No dummy subgroup

SGF = 1: SG Frame Inversion ON

SGM = 1: SG Inversion Mode ON

SGP=10: Different phase by 2pixel-unit

- Row Vector Mode Set

INC =111: Increment every sub-frame

VEC=0: R1->R2->R3->R4->R1->...

POWER ON/OFF SEQENCE

Power ON Sequence

External Power Input Sequence

a) With Internal Regulator

VDD3 must be applied earlier than VIN1/VIN1R/VIN1A or at least applied sinusphere with these signals. When C1 of figure 20. regulator application is $1\mu F$, RSTB must be applied after VIN1/VIN1R/VIN1A have been applied. The applied time gap between VIN1/VIN1R/VIN1A and RSTB is minimum 2ms. As C1 becomes larger, this time gap must be increased. Otherwise function is not guaranteed.

b) Without Internal Regulator

VDD3 must be applied earlier than VIN1/VIN1R/VIN1A or at least applied simultaneously with these signals. RSTB must be applied after VIN1/VIN1R/VIN1A have been applied. The applied time gap between VIN1/VIN1R/VIN1A and RSTB is minimum 1ms. Otherwise function is not guaranteed.

Power OFF Sequence

Note: When the signal of the hardware reset comes during the power-off period, COM/SEG output is forcibly lowered to the GND levels. Discharge resistor must be added at VCC pin. Refer application system diagram.

External Power Off Sequence

a) With Internal Regulator

VDD3 must be powered down later than VIN1/VIN1R/VIN1A or at least powered down simultaneously with these signals. VIN1/VIN1R/VIN1A must be powered down after RSTB have been powered down. The time gap of powered down between RSTB and VIN1/VIN1R/VIN1A is minimum 1ms. Otherwise function is not guaranteed.

b) Without Internal Regulator

VDD3 must be powered down later than VIN1/VIN1R/VIN1A or at least powered down simultaneously with these signals. VIN1/VIN1R/VIN1A must be powered down after RSTB have been powered down. The time gap of powered down between RSTB and VIN1/VIN1R/VIN1A is minimum 1ms. Otherwise function is not guaranteed.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Rating	Unit
	VDD3	-0.3 to +4.0	
Supply Voltage range	VDD	-0.3 to +2.3	V
	VIN1		
LCD Supply Voltage range	e VCC – VEE 22		V
Input Voltage range	Vin	- 0.3 to VDD3 +0.3	V
Operating Temperature range	Topr	-30 to +70	°C
Storage Temperature range	Tstr	-55 to +150	°C

OPERATING VOLTAGE

Item	Symbol	Min.	Тур.	Max.	Unit
Supply Voltage (1)	VDD3 (*1)	1.65	-	3.3	V
Supply Voltage (2)	VDD	1.65	-	1.95	V
Supply Voltage (3)	VIN1 (*2)	2.4	3.0	3.6	V
Supply Voltage (4)	VIN2	2.4	3.0	5.5	

^(*1) When VDD3 = 1.65 to 1.95 [V], VDD = VDD3 (No using Internal Regulator, REG_ENB = " VDD3") When VDD3 > 1.95 [V], VDD = REG_OUT (Using Internal Regulator, REG_ENB = " VSS")

SAMSUNG ELECTRONICS

^(*2) VIN1 = VIN1R, VIN1A

DC CHARACTERISTICS (1)

(Vss = 0V, VDD3 = 1.65 to 3.3V, Ta = -30 to 70 $^{\circ}$ C)

Ite	em	Symbol	Condition	Min	Тур	Max	Unit	Remarks	
Operating	g voltage	VDD3(*1)		1.65		3.3	V	VDD3	
Operating	g voltage	VDD		1.65		1.95	V	VDD	
Operating	g voltage	VIN1		2.4	-	3.6	V	VIN1,VIN1A	
Operating	g voltage	VIN2		2.4	-	5.5	V		
Operating	g voltage	VIN45		2.4	-	5.5	V	VOUT45	
			1/4 Bias	1.5	-	3.0			
Operation	a voltago	DC2IN	1/5 Bias	2.0 - 4.0		4.0	V	DC2OUT	
Operating	y voitage	DCZIN	1/6 Bias	1.67	1.67 - 3.33		V	DC2001	
			1/7 Bias	2.0	-	4.0			
Operating	g voltage	2Vr	2Vr = (+VR)-(-VR)	4.0	-	20	V	+VR, -VR	
Output	voltage	VREG	REG_OUT voltage	1.	8 ± 0.	15	V	VREG	
		VM	_	1.0		2.0	V	VMOUT	
Driving vol ran	• .	VCC	External power supply mode	5.0		12.0	V	VRP	
10.	.90	VEE	mode	-3.0		-8.0	V	VRN	
Input	High	VIH		0.8VDD3	-	VDD3	V		
voltage	Low	VIL		VSS	-	0.2VDD3	V		
Output	High	Voн	Iон = 0.5mA	0.8VDD3	-	VDD3			
voltage	Low	Vol	IOL = 0.5mA	VSS	-	0.2VDD3	V		
Input leaka	ge current	lıL	VIN = VDD or VSS	-1.0	-	+1.0	μΑ		
Output leak	age current	loz	VIN = VDD or VSS	-3.0	-	+3.0	μΑ		
Oscillator	Normal or Partial 0	Fosc1	(*R1)=TBD Ohm, (fFR=80Hz target), DSG=0, 162 Duty, Vdd3=3V, Ta=25°C	253.4	281.6	309.7	kHz	OSC1 - OSC2	
Frequency Tolerance	Partial 1	Fosc2	(*R1)=TBD Ohm, (fFR=60Hz target), DSG=0, 66 Duty Vdd3=3V, Ta=25°C	79.5	88.3	97.2	kHz	OSC3 - OSC4	
Oscillator Frequency	Normal or Partial 0	Fosc1	(*2)	207.3		518.4	kHz	OSC1 - OSC2	
Range	Partial 1	Fosc2	(*3)	56.3		168.9	kHz	OSC3 - OSC4	
Driving vol	Itage input	V1		2.0	_	4.0	V		
ran	nge	VM		1.0	_	2.0	v		
Regulator o	utput range	REG_OUT	REG_ENB = "L"	1.65	1.8	1.95	V		

Note: (*R1),(*R2) resistances are only recommended to get target frame frequency. But the value is not absolute.

- (*1) When VDD3 = 1.65 to 1.95 [V], VDD = VDD3 (No using Internal Regulator, REG_ENB = "VDD3") When VDD3 > 1.95 [V], VDD = REG_OUT (Using Internal Regulator, REG_ENB = "VSS")
- (*2) Minimum oscillator frequency range is defined at fFR=60Hz and display line number=96 Maximum oscillator frequency range is defined at fFR=150Hz and display line number=162
- (*3) Minimum oscillator frequency range is defined at fFR=40Hz and display line number=66 Maximum oscillator frequency range is defined at fFR=120Hz and display line number=66

DC CHARACTERISTICS (2)

Item	Item		Condition		Тур	Max	Unit	Remarks
Driver output	SEG Driver output		V1=3.0 V, V0=0V, Ta = 25°C, Iload=50uA	-	1.5	2.0	kΩ	SEGn
resistance	СОМ	Ron-com	VCC=10.5 V, VM=1.5V, VEE=-7.5V, Ta = 25°C, Iload=100uA	-	1.0	1.5	kΩ	COMn
Current	Normal Mode	IDD	VDD3=VIN1=3.0V, V1=3.0V, Bias(1)=1/6, DC(1)=x1.5, Ta=25°C, Display line=162 DSG=1 (No dummy) fosc1=172.8kHz (fFR=80Hz) No load, No access, All white pattern	-	TBD	TBD	μА	VDD3
consumption	Partial1 Mode		VDD3=VIN1=3.0V, V1=3.0V, Bias(2)=1/5, DC(2)=x1.5, Ta=25°C, 1/66 duty fosc2=49.28kHz (fFR=60Hz) No load, No access, All white pattern	-	TBD	TBD	μΑ	1 + VIN1

^{*: &}quot;IDD" is determined from lowest power consumption for dc-dc converter.

DC CHARACTERISTICS (3)

 $(Vss = 0V, VDD3 = 1.65 \text{ to } 3.3V, VIN1=2.4 \text{ to } 3.6V, Ta = -30 \text{ to } 70 \,^{\circ}\text{C})$

Item	Symbol	Condition	Min	Тур	Max	Unit	Remarks
	Δ (+VR)	Isource = 80uA	-	-	200	mV	+VR
Voltage shift range(*1)	Δ (V1)	Isource = 250uA	-	-	50	mV	V1
voltage stillt range(1)	Δ (VM)	Isource,sink = 250uA	-	-	50	mV	VM
	Δ (-VR)	Isink = 80uA	-	-	200	mV	-VR

(*1) Voltage shift means output voltage deference between output current = Iload and no-load. Refer to the following figure. (in case of source current mode)

Item	Symbol	Condition	Min	Тур	Max	Unit	Remarks
Tolerance of Bias ratio	Δ (+VR)_0 Δ (-VR)_0(*1)	No load	-200	-	+200	mV	+VR -VR

(*1) Tolerance of bias ratio definition Δ (+VR)_0 = ((+VR) - VM) - VM / Bias Δ (-VR)_0 = (VM - (-VR)) - VM / Bias

DC CHARACTERISTICS (4)

(Vss = 0V, VDD3 = 1.65 to 3.3V, VIN1=2.4 to 3.6V, Ta = -30 to 70 $^{\circ}$ C)

Item	Symbol	Condition	Min	Тур	Max	Unit	Remarks	
Temperature compensation	ΔVt	VDD3=VIN1=V1=3.0V, -20 to 70 °C		-0.02	-	+0.02	%/°C	V1
Tolerance of Contrast step of V1	ΔVstep			3.92	7.84	11.76	mV	V1
	ΔV1 ΔVM	Contrast set = FFh	V1	3.95	4.00	4.05	V	V1
Voltago rango			VM	1.95	2.00	2.05	V	VM
Voltage range		0	V1	1.95	2.00	2.05	V	V1
		Contrast set = 00h	VM	0.95	1.00	1.05	V	VM

ltem		Condition			Unit	Pof	
	item		Load current	Voltage range	Max	Unit	Ref
	+VR-VM - VM -(-V	'R)	I Load = +100uA (+VR) I Load = -100uA (-VR)	+VR=5.0~12.0 V	150	mV	Fig.1
Offset Voltage		Α	I Load = +100uA (V1, VM)	V1=2.0~4.0V VM=1.0~2.0V			
voltage	V1-VM - VM-V0	В	I Load = +100uA (+VR) I Load = -100uA (-VR)	-VR=-3.0~-8.0 V	50	mV	Fig.2

Fig. 1: Offset voltage definition (+VR,VM,-VR)

Fig. 2: Offset voltage definition (V1,VM,V0)

DC CHARACTERISTICS (5)

(Vss = 0V, Vdds = 1.65 to 3.3V, VIN1=2.4 to 3.6V, Ta = -30 to 70 °C)

Item		Range				
		Min	Max			
	V1OUT	2.0 V	4.0 V (DC(1) and DC(2) = X2) (*1)			
Voltage Level	VMOUT	1.0 V	2.0 V (DC(1) and DC(2) = X2) (*2)			
	DC2OUT	1.5V (1/4 Bias, V1OUT = 2V)	4.0V (DC(1) and DC(2) = X2) (*3) (1/5 bias, V1OUT = 4V)			

(*1) This definition is shown as below

If V1OUT input voltage is set over VIN45.
V1OUT output voltage must be clipped near VIN45.
In this case, V1OUT output level must not be unstable. Refer to Fig.1

(*2) This definition is shown as below

If VMOUT input voltage is set over VIN1, VMOUT output voltage must be clipped near VIN1.

<u>In this case, VMOUT output level must not be unstable.</u> Refer to Fig.2

(*3) This definition is shown as below

If DC2OUT input voltage is set over VIN2,
DC2OUT output voltage must be clipped near VIN2.
In this case, DC2OUT output level must not be
unstable. Refer to Fig.3

AC CHARACTERISTICS

Read / Write Characteristics (8080-series MPU)

Figure 24.Parallel Interface (8080-series MPU) Timing Diagram

Table 5.AC Characteristics (8080-series Parallel Mode)

 $(VDD3 = 1.65 \sim 3.3V, Ta = -30 \text{ to } +70^{\circ}C)$

						0 to +70°C)
Item	Signal	Symbol	Condition	Min	Max	Unit
Address setup time Address hold time	D/I	t _{AS80} t _{AH80}		TBD TBD		ns
System cycle time(Write)		t _{CY80}		TBD		ns
Pulse width low for write Pulse width High for write	WRB (WRB)	t _{PWL80(W)} t _{PWH80(W)}		TBD TBD		ns
Pulse width low for read Pulse width high for read	RDB (RDB)	t _{PWL80(R)} t _{PWH80(R)}		TBD TBD		ns
Data setup time Data hold time	DB0	t _{DS80} t _{DH80}		TBD TBD		ns
Read access time	to DB15	t _{ACC80}	CL = 100 pF		TBD	ns
Output disable time		t _{OD80}	no load	TBD		ns

NOTE: *1. The input signal rise time and fall time (tr, tf) is specified at 10 ns or less.

(tr + tf) < (tCY80 - tPWL80(W) - tPWH80(W)) for write, (tr + tf) < (tCY80 - tPWLR80 - tPWHR80) for read

Read / Write Characteristics (6800-series Microprocessor)

Figure 25.Parallel Interface (6800-series MPU) Timing Diagram

Table 6.AC Characteristics (6800-series Parallel Mode)

 $(VDD3 = 1.65 \sim 3.3V, Ta = -30 \text{ to } +70^{\circ}C)$

	,	1		0 10 110 0)		
ltem	Signal	Symbol	Condition	Min	Max	Unit
Address setup time Address hold time	D/I R/W	tas68 tah68		TBD TBD		ns
System cycle time(Write)		tCY68		TBD		ns
Enable width high for write Enable width low for write	RDB (E)	tewH68(W) tewL68(W)		TBD TBD		ns
Enable width high for read Enable width low for read	RDB (E)	tEWH68(R) tEWL68(R)		TBD TBD		ns
Data setup time Data hold time	DB0	tDS68 tDH68		TBD TBD		ns
Read access time	to DB15	TACC68	C _L = 100 pF		TBD	ns
Output disable time	2210	tod68	no load	TBD		ns

NOTE: *1. The input signal rise time and fall time (tr, tf) is specified at 10 ns or less. (tr + tf) < (tCY68 - tEWH68(W) - tEWL68(W)) for write, (tr + tf) < (tCY68 - tEWH68(R) - tEWL68(R)) for read

Serial Data Interface (4 Pin) Timing

Figure 26. Serial Interface (4 Pin) Timing Diagram

Table 7.Serial Data Interface Timing

 $(VDD3 = 1.65 \sim 3.3V, Ta = -30 \text{ to } +70^{\circ}C)$

Item	Signal	Symbol	Condition	Min	Unit
SCL Cycle Time	SCL	tscyc		TBD	ns
SCL High Pulse Width	SCL	tshw		TBD	ns
SCL Low Pulse Width	SCL	tsLw		TBD	ns
SDI Setup time	SDI	tsds		TBD	ns
SDI Hold time	SDI	tsdн		TBD	ns
D/I Setup time	D/I	tsas		TBD	ns
D/I Hold time	D/I	tsah		TBD	ns
Chin Coloot Cotup time	CS1B	tooo		TBD	20
Chip Select Setup time	(CS2)	tcss		טפו	ns
Chin Soloet Hold time	CS1B	toou		TBD	nc
Chip Select Hold time	(CS2)	tcsh		וסט	ns

Serial Data Interface (3 Pin) Timing

Figure 27. Serial Interface (3 Pin) Timing Diagram

Table 8.Serial Data Interface Timing

 $(VDD3 = 1.65 \sim 3.3V, Ta = -30 \text{ to } +70^{\circ}C)$

			(135.	5 1100 0.01, 1a 0	0 10 17 0 0
Item	Signal	Symbol	Condition	Min	Unit
SCL Cycle Time	SCL	tscyc		TBD	ns
SCL High Pulse Width	SCL	tshw		TBD	ns
SCL Low Pulse Width	SCL	tslw		TBD	ns
SDI Setup time	SDI	tsds		TBD	ns
SDI Hold time	SDI	tsdн		TBD	ns
Chip Select Setup time	CS1B	tono		TBD	20
Only Select Setup time	(CS2)	tcss		טטו	ns
Chip Select Hold time	CS1B	tсsн		TBD	ne
	(CS2)	ICSH		טטו	ns

Reset Input Timing

Figure 28.Reset Input Timing Diagram

Table 9.AC Characteristics (Reset mode)

 $(VDD3 = 1.65 \sim 3.3V, Ta = -30 \text{ to } +70^{\circ}C)$

Item	Signal	Symbol	Condition	Min.	Max.	Unit
Reset low pulse width	RSTB	Trw		1000	-	ns
Reset time	-	tr		-	1000	ns

SYSTEM APPlication DIAgram

Internal Power Mode

V1OUT

VMOUT

VMIN

VOIN

V1IN

C23P

C23M

VEE

VRN

C31P

C31M VRP

VCC

External Component

Name	Device
R1,R2	Resistors
C1,C2,C3	Capacitors
D1	Schottky barrier diode
Rd	Discharge Resistor

Values of external Components

Item	Capacitance
C1	1.0 to 4.7μF
C2	1.0 to 2.2μF
C3	1.0 to 2.2μF
D1	Vforward = Max. 0.3V at 1mA Vreverse = Min. 15V
Rd	Typ. 1M ohm

Note: Employing Rd is recommended when abnormal I display occurs in recovery sequence after detaching battery. (It depends on module or panel characteristics.)

Maximum rating voltage of capacitors

Maximum rating voice	ago or oupdoitor
Item	Maximum
item	rating voltage
REG_OUT to VSS	3V
VOUT45 to VSS	11V
C11P to C11M	6V
C12P to C12M	6V
VMOUT to VSS	3V
DC2OUT to VSS	5V
V1OUT to VSS	6V
C21P to C21M	5V
C22P to C22M	10V
C23P to C23M	13V
C24P to C24M	13V
VSS to VRN	13V
C31P to C31M	17V
VRP to VSS	18V

External Power Mode

OTP calibration mode

SEQUENCE FOR SETTING THE MODIFIED ELECTRONIC VOLUME

- Next figure is a Block Diagram of Sequence for Setting the Modified Electronic Volume.

Figure 29. Sequence for Setting the Modified Electronic Volume

Initially, OTP cell is not programmed and has 6'b00000 value. When the external reset is applied, OTP mode is On. MEV is EV + OTP_OV. Since OTP_OV is 6'b00000, MEV is EV. For V10UT calibration The instruction "OTP mode off" is executed, and then MEV is EV + OV and user can adjust MEV value using the instruction "Set offset volume register". When MEV overflows or underflows, MEV will be saturated. Repeat this step until end of the calibration. If V10UT calibration is suitable, OTP writing process is executed, and then OTP cell is programmed and OTP_OV is programmed with OV. Finally, V10UT calibration process is finished. Again, when the external reset is applied, OTP mode is ON. MEV is EV + OTP_OV. Accordingly MEV is the EV that has always the offset with OTP_OV value. However, if programmed OTP_OV is unlike, the instruction "OTP mode off" can be executed and then MEV will be EV + OV. Accordingly OV can be adjusted with instructions although OTP cell is programmed.

EPROM CELL STRUCTURE

OTP (One Time Programmable) has been implemented on the S6B33B3. The EPROM stores the offset volume for V1OUT calibration after the device has been assembled and calibrated on a LCD module. For OTP programming, OTPD pin and OTPG pin are used. These pins should be available to on the module glass by ITO.

The OTP block of the S6B33B3 consists of 7 bits. 1 bit is used for OTP mode protection bit (OPRT), and 6 bits are used for V1OUT calibration (OV5~OV0). OPRT can be read or written automatically in this LSI.

EPROM block

N	1SB						LSB
0	PRT	OV5	OV4	OV3	OV2	OV1	OV0

Description

OPRT: The Offset Volume(OV) can be written to EPROM cells only when OPRT bit = '0' OV5~OV0: The OV is used for calibrating the V1OUT voltage as an offset to the EV register value.

V10UT CALIBRATION FLOW

V1OUT may be calibrated with OTP in the following order.(ex: EV = 32, OV=-3)

STEP	RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description
1.											Apply external reset (OTP data read)
2.	0	0	0	0	1	0	1	0	1	0 or 1	Set contrast control 1 or 2 by using
۷.	0	0	0	0	1	0	0	0	0	0	instruction (EV = 32)
3.	0	0	1	1	1	0	1	0	1	0	OTP mode off by using the instruction
4.	0	0	1	1	1	0	1	1	0	1	Set offset volume by using the
4.	0	0	0	0	1	1	1	1	0	1	instruction (OV = -3)
5											Repeat STEP 4. Until the end of the calibration
6.											Apply programming voltages for OTP programming (OTPG=12.5V,OTPD=12V)
7.	0	0	0	0	1	0	1	1	0	1	Standby on by using the instruction.
8	0	0	1	1	1	0	1	1	1	1	OTP write Enable (Only available when OPRT= 0)
9											Apply external reset
10.											Cut off programming voltages for OTP programming (OTPG,OTPD)

After the external reset, the calibrated data are automatically transferred to the 6-bit reference voltage control register.

^{*}Step 6. 7. 8. 9 are OTP WRITING PROCESS.

^{*}OTP WRITING PROCESS is available when OPRT is zero (if OPRT = 1, OTP cell could not be programmed).

VOLTAGES AND WAVEFORMS FOR OTP PROGRAMMING

Figure 30. Voltages and waveforms for OTP programming (OTP Writing Process)

Specific timings (t1~t3)

Timing	Min	Max
t1,t2	100uS	-
t3	100mS	300mS

OTPG/D Voltage Tolerance

ltem Min		Тур	Max	Unit	Remarks
Tolerance of OTPG	12.4	12.5	12.6	V	±100mV
Tolerance of OTPD	11.9	12.0	12.1	V	±100mV

Revision history

	S6B33BC Specification Revision History						
Version	Content	Author	Date				
0.0	Original	D.C.Park	Jan.31. 2005				
0.1	 Add pad configuration. The range of power (VDD, VDD3) is modified. Without internal regulator VDD: 1.8 ± 0.15 [V] (Typical: 1.8V) → VDD: 1.65 to 1.95 [V] VDD3: 1.8 to 3.3 [V] → VDD3: 1.65 to 3.3 [V] Add the pin description of VDD3. (Page 12,26) VDD3 is more than VDD. 	D.C.Park	Apr.1. 2005				
0.2	 OTP writing time is modified from 50ms~1000ms to 100ms~300ms. (Page 67) The interval time between set various registers and ram data and display on is modified from 300ms to 100ms. (Page 86) 	D.C.Park	Apr.21. 2005				
0.3	 Change Operating Voltage Range (VDD, VDD3) in Features (Page 1) Change pad size of 1~16, 170~701 in Table 1.S6B33BCX Pad Dimensions (Page 4) Change VDD3, VDD range in Figure 21 Regulator Application (page 26) Change voltage name in power on/off sequence. (page 68, 70) VIN1/VIN1R/VIN1 → VIN1/VIN1R/VIN1A Change VDD3 comment in Operating Voltage (page 71) Change VDD3 comment in DC Characteristics (1) (page72~73) 	D.C.Park	Jun.2. 2005				

