Московский государственный технический университет им. Н.Э. Баумана

Факультет «Головной учебно-исследовательский и методический центр профессиональной реабилитации лиц с ограниченными возможностями здоровья (инвалидов)» Кафедра «Системы обработки информации и управления»

Лабораторная работа 1

по дисциплине «Методы машинного обучения в АСОИУ»

"Создание "истории о данных" (Data Storytelling) "

СТУДЕНТ:

студент группы ИУ5Ц-21М

Москалик А.А.

ПРЕПОДАВАТЕЛЬ:

Гапанюк Ю.Е.

Цель лабораторной работы: изучение различных методов визуализация данных и создание истории на основе данных.

Краткое описание. Построение графиков, помогающих понять структуру данных, и их интерпретация.

Задание:

Выбрать набор данных (датасет). Вы можете найти список свободно распространяемых датасетов здесь.

Создать "историю о данных" в виде юпитер-ноутбука, с учетом следующих требований:

- 1. История должна содержать не менее 5 шагов (где 5 рекомендуемое количество шагов). Каждый шаг содержит график и его текстовую интерпретацию.
- 2. На каждом шаге наряду с удачным итоговым графиком рекомендуется в юпитер-ноутбуке оставлять результаты предварительных "неудачных" графиков.
- 3. Не рекомендуется повторять виды графиков, желательно создать 5 графиков различных видов.
- 4. Выбор графиков должен быть обоснован использованием методологии data-to-viz. Рекомендуется учитывать типичные ошибки построения выбранного вида графика по методологии data-to-viz. Если методология Вами отвергается, то просьба обосновать Ваше решение по выбору графика.
- 5. История должна содержать итоговые выводы. В реальных "историях о данных" именно эти выводы представляют собой основную ценность для предприятия.

Ход работы

Подготовка

Подключение библиотек

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

Загрузка датасета

```
data = pd.read_csv('/kaggle/input/student-study-performance/study_perform
```

1. Предварительный анализ данных

```
print(data.head())
print(data.describe())
```

```
gender race_ethnicity parental_level_of_education
                                                              lunch
                                   bachelor's degree
  female
                 group B
                                                           standard
  female
                                        some college
                                                           standard
1
                 group C
                                     master's degree
2
  female
                 group B
                                                           standard
3
                                  associate's degree free/reduced
    male
                 group A
4
     male
                 group C
                                        some college
                                                           standard
  test_preparation_course math_score reading_score writing_score
0
                     none
                                   72
                                                  72
                                                  90
1
                                                                  88
                completed
                                   69
2
                                                  95
                                   90
                                                                  93
                     none
3
                                   47
                                                  57
                                                                  44
                     none
                                                                  75
                     none
                                   76
                                                  78
       math_score reading_score writing_score
      1000.00000
                     1000.000000
                                    1000.000000
count
mean
         66.08900
                       69.169000
                                      68.054000
std
         15.16308
                       14.600192
                                      15.195657
min
          0.00000
                       17.000000
                                      10.000000
                                      57.750000
25%
         57.00000
                       59.000000
50%
         66.00000
                       70.000000
                                      69.000000
75%
        77.00000
                       79.000000
                                      79.000000
max
        100.00000
                      100.000000
                                     100.000000
```

Таблица отображает два разных вида статистической информации о датасете: data.head() показывает первые пять строк датасета, как

- пол (gender),
- этническая принадлежность (race/ethnicity),
- уровень образования родителей (parental level of education),
- завтрак (lunch),
- прохождение подготовительных курсов (test preparation course),
- баллы по математике (math score), чтению (reading score) и письму (writing score).

data.describe() предоставляет описательную статистику для всех числовых столбцов в датасете.

Это включает:

- Количество значений (count)
- Среднее значение (mean)
- Стандартное отклонение (std), показывающее разброс данных

- Минимальное значение (min) -25-й перцентиль (25%), который является первым квартилем
 - Медианное значение (50%), также известное как второй квартиль
 - 75-й перцентиль (75%), который является третьим квартилем
 - Максимальное значение (max)

2. Исследование данных

Первый фрагмент кода выбирает только числовые столбцы из DataFrame data с помощью $select_dtypes(include=[np.number])$. После этого для каждой числовой переменной строится гистограмма. Гистограммы показывают распределение данных по каждому числовому признаку с помощью столбиков, где высота каждого столбика соответствует количеству наблюдений в каждом интервале. Опция bins=15 указывает, что для каждой гистограммы следует использовать 15 интервалов (столбиков), а figsize=(15, 10) задаёт размер всего рисунка, на котором будут расположены гистограммы.

Второй фрагмент кода строит корреляционную матрицу для числовых переменных и визуализирует её с помощью тепловой карты (heatmap). Корреляционная матрица позволяет оценить степень линейной связи между парами переменных. Значения корреляции варьируются от -1 до 1, где 1 означает идеальную положительную корреляцию, -1 — идеальную отрицательную корреляцию, а 0 — отсутствие линейной связи. Аргументы $annot=True\ u\ fmt=".2f"$ указывают на необходимость отображения числовых значений корреляций с двумя десятичными знаками на тепловой карте, а cmap='coolwarm' задаёт цветовую схему.

```
import seaborn as sns
import matplotlib.pyplot as plt

# Визуализация только числовых переменных
data_numeric = data.select_dtypes(include=[np.number])
data_numeric.hist(bins=15, figsize=(15, 10))
plt.show()

# Корреляционная матрица только для числовых переменных
plt.figure(figsize=(10, 8))
sns.heatmap(data_numeric.corr(), annot=True, fmt=".2f", cmap='coolwarm')
plt.show()
```


На представленных диаграммах показаны гистограммы, отображающие распределение оценок студентов по трем предметам: математике (math_score), чтению (reading score) и письму (writing score).

Все три гистограммы демонстрируют, что оценки сосредоточены в среднем диапазоне, с относительно меньшим количеством очень низких и очень высоких оценок. Это типично для школьных оценок, где большинство студентов проявляют средний уровень успеваемости, а оценки на краях спектра (очень высокие или очень низкие) менее обычны.

Тепловая карта показывает корреляционные связи между оценками по математике, чтению и письму. Все три переменные имеют сильную положительную корреляцию друг с другом, значения варьируются от 0.80 до 0.95. Это означает, что учащиеся, которые хорошо справляются с одним предметом, склонны показывать хорошие результаты и в других предметах. Самая сильная корреляция наблюдается между чтением и письмом (0.95), что указывает на то, что навыки в этих областях развиты схожим образом.

3. Очистка данных

```
[]:
       # Пропущенные значения отсутствуют на предоставленном снимке экрана,
       # но если они есть, можно их заполнить таким образом:
       # data['column_name'] = data['column_name'].fillna(data['column_name'].me
       # data['column_name'] = data['column_name'].fillna(data['column_name'].mc
       # Кодируем категориальные переменные
       # One-Hot Encoding для переменных с малым числом категорий
       data = pd.get_dummies(data, columns=['gender', 'race_ethnicity', 'parenta')
       # Масштабирование признаков, для этого можно использовать StandardScaler
       from sklearn.preprocessing import StandardScaler
       scaler = StandardScaler()
       # Масштабируем только числовые столбцы
       scaled_columns = scaler.fit_transform(data[['math_score', 'reading_score']
       data[['math_score', 'reading_score', 'writing_score']] = scaled_columns
       # Проверяем результаты
       print(data.head())
          math_score reading_score writing_score gender_female gender_male
            0.390024
                           0.193999
                                          0.391492
                                                                        False
                                                             True
                           1.427476
                                                             True
                                                                        False
        1
            0.192076
                                          1.313269
        2
                           1.770109
                                          1.642475
                                                            True
                                                                        False
            1.577711
        3
           -1.259543
                          -0.833899
                                         -1.583744
                                                           False
                                                                         True
        4
            0.653954
                           0.605158
                                          0.457333
                                                           False
                                                                         True
          race_ethnicity_group A race_ethnicity_group B race_ethnicity_group C
        0
                           False
                                                    True
                                                                          False
       1
                           False
                                                   False
                                                                           True
       2
                           False
                                                    True
                                                                          False
        3
                            True
                                                   False
                                                                          False
        4
                           False
                                                   False
                                                                           True
          race_ethnicity_group D race_ethnicity_group E \
       0
                           False
                                                  False
       1
                           False
                                                  False
       2
                           False
                                                  False
       3
                           False
                                                  False
       4
                           False
                                                  False
          parental_level_of_education_associate's degree \
       0
                                                  False
       1
                                                  False
       2
                                                  False
       3
                                                   True
       4
                                                  False
```

```
parental_level_of_education_bachelor's degree \
0
                                            True
1
                                           False
2
                                           False
3
                                           False
4
                                           False
   parental_level_of_education_high school
0
                                     False
1
                                     False
2
                                     False
3
                                     False
4
                                     False
    parental_level_of_education_master's degree
0
                                              False
1
                                              False
2
                                               True
3
                                              False
4
                                              False
    parental_level_of_education_some college \
0
                                          False
1
                                           True
2
                                          False
3
                                          False
4
                                           True
    parental_level_of_education_some high school
                                                      lunch_free/reduced
0
                                               False
                                                                     False
1
                                               False
                                                                     False
2
                                               False
                                                                     False
3
                                               False
                                                                      True
                                               False
                                                                     False
    lunch standard test preparation course completed
0
              True
                                                    False
1
              True
                                                     True
2
              True
                                                    False
3
              False
                                                    False
4
              True
                                                    False
    test_preparation_course_none
0
                              True
1
                             False
2
                              True
3
                              True
                              True
```

Эти данные представляют обработанный датасет, где:

- math_score, reading_score, writing_score это стандартизированные баллы по математике, чтению и письму. Стандартизация преобразует распределение оценок так, чтобы среднее значение было 0, а стандартное отклонение 1.
- gender_female, gender_male это флаги, полученные после one-hot кодирования пола, где True означает, что учащийся соответствует категории, а False не

соответствует.

- столбцы (race_ethnicity_group A, race_ethnicity_group B и т.д.) также являются результатом one-hot кодирования и показывают принадлежность учащегося к определенной этнической группе.
- столбцы, связанные с parental_level_of_education_..., указывают на уровень образования родителей.
- lunch_free/reduced, lunch_standard указывают на тип питания учащегося, где True означает, что данный тип питания учащегося соответствует названию столбца.
- test_preparation_course_completed, test_preparation_course_none показывают, завершил ли учащийся подготовительные курсы. Значение True или False для каждой из этих dummy-переменных показывает, принадлежит ли наблюдение к соответствующей категории.

4. Формирование гипотез и тестирование

- 1. Т-тест для сравнения математических оценок по курсу подготовки это помогает определить, влияет ли участие в подготовительных курсах на успеваемость по математике.
- 2. Исследование зависимостей между категориальными и числовыми переменными позволяет выявить, как различные категориальные признаки (например, пол или этническая принадлежность) влияют на числовые результаты (оценки).
- 3. Анализ распределений каждого признака в разрезе различных групп изучает, как признаки распределяются среди разных групп, что может помочь выявить паттерны или необходимость корректировки данных.
- 4. Создание сводных таблиц для сравнения средних значений между различными группами обеспечивает наглядное сравнение, которое может быть полезно для подтверждения или опровержения гипотез.

Т-тест для сравнения математических оценок по курсу подготовки

```
rom scipy.stats import ttest_ind

"Сегментируем оценки по группам
roup_completed = data[data['test_preparation_course_completed'] == True]['math_score']
roup_none = data[data['test_preparation_course_none'] == True]['math_score']

"Применяем t-тест
_stat, p_val = ttest_ind(group_completed, group_none)

"Выводим результаты
rint(f"T-Statistic: {t_stat}, P-Value: {p_val}")

"Интерпретация результатов
lpha = 0.05 # Уровень значимости
f p_val < alpha:
    print("Отклоняем нулевую гипотезу, существует значимая разница.")
lse:
    print("Не отклоняем нулевую гипотезу, значимой разницы нет.")
```

T-Statistic: 5.704616417349099, P-Value: 1.535913460714764e-08 Отклоняем нулевую гипотезу, существует значимая разница.

Р-значение в результате говорит о вероятности получить данные, как минимум такие же экстремальные, как те, что были получены во время теста, если нулевая гипотеза верна. Очень маленькое Р-значение, такое как 1.53e-08 (что эквивалентно 0.00000001539), гораздо меньше стандартного порога $\alpha = 0.05$, и поэтому можно сделать вывод о том, что есть статистически значимая разница между группами.

Значение Т-статистики 5.704 указывает на то, насколько велико отклонение средних значений между группами в единицах стандартного отклонения. Большое значение Т-статистики в сочетании с маленьким Р-значением подтверждает, что различия между группами значимы с точки зрения статистики.

Исследование зависимостей между категориальными и числовыми переменными

```
import seaborn as sns
import matplotlib.pyplot as plt

sns.boxplot(x='test_preparation_course_completed', y='math_score', data=data)
plt.title('Влияние подготовительных курсов на оценки по математике')
plt.show()
```


Анализ распределений каждого признака в разрезе различных групп

```
import warnings
warnings.filterwarnings('ignore', category=FutureWarning)
import seaborn as sns
import matplotlib.pyplot as plt

# Гистограмма для мужчин
sns.histplot(data[data['gender_male'] == True]['math_score'], color="blue", label='Male

# Гистограмма для женщин
sns.histplot(data[data['gender_female'] == True]['math_score'], color="red", label='Female']
plt.legend(title='Gender')
plt.title('Distribution of Math Scores by Gender')
plt.xlabel('Math Score')
plt.ylabel('Density')
plt.show()
```


Этот код создает две наложенные гистограммы для мужчин и женщин, что позволяет визуально сравнить распределение оценок по математике. Аргумент stat="density" гарантирует, что площадь под гистограммой нормализуется, что делает сравнение более честным, особенно если размеры групп различаются.

Создание сводных таблиц для сравнения средних значений между различными группами

Таблица, представляет средние значения оценок по математике, чтению и письму для разных групп по полу (мужчины и женщины), где данные были

стандартизированы (среднее = 0, стандартное отклонение = 1). Столбцы math_score, reading_score, и writing_score показывают средние значения для каждой группы. False обозначает женщин, True — мужчин.

5. Создание окончательной визуализации для истории

```
[]:
         import seaborn as sns
         import matplotlib.pyplot as plt
         # Предполагая, что вы преобразовали 'parental_level_of_education' в столбцы формата 'р\epsilon
         education_levels = [col for col in data.columns if col.startswith('parental_level_of_ed
         plt.figure(figsize=(15, 10))
         for i, level in enumerate(education_levels, 1):
              plt.subplot(2, 3, i) # Предполагая, что у нас не больше 6 категорий образования
               sns.boxplot(x=data[level], y=data['math_score'])
              plt.title(f'Оценки по математике: {level.split("_")[-1]}')
              plt.xlabel('Присутствие уровня образования')
              plt.ylabel('Оценки по математике')
              if i == len(education_levels):
                    plt.xticks([0, 1], ['Heт', 'Да'])
              else:
                    plt.xticks([]) # Скрываем подписи x-оси для наглядности
         plt.tight_layout()
         plt.show()
       Оценки по математике: associate's degree
                                                 Оценки по математике: bachelor's degree
                                                                                            Оценки по математике: high school
   1
Оценки по математике
- 1 0
                                         математике
-1
                                                                                   по математике
                                                                                     -1
                                         Оценки
            Присутствие уровня образования
                                                     Присутствие уровня образования
                                                                                              Присутствие уровня образования
                                                                                          Оценки по математике: some high school
        Оценки по математике: master's degree
                                                  Оценки по математике: some college
Оценки по математике
                                         Оценки по математике
- 1 0
                                                                                   Оценки по математике
  -1
  -3
                                           -3
                                                                                    -3
            Присутствие уровня образования
                                                     Присутствие уровня образования
                                                                                              Присутствие уровня образов
```

Этот код создает отдельные диаграммы для каждой категории образования родителей и показывает распределение оценок по математике для студентов, чьи родители соответствуют этой категории образования.

Создадим диаграмму рассеяния (scatter plot), которая может помочь визуализировать взаимосвязь между различными переменными в датасете. Например, можно исследовать зависимость между оценками по математике и оценками по чтению, разделяя данные по наличию или отсутствию подготовительных курсов.

```
import seaborn as sns
import matplotlib.pyplot as plt

# Диаграмма рассеяния, показывающая взаимосвязь между оценками по математике и чтению
# разделяем по наличию подготовительных курсов
plt.figure(figsize=(10, 6))
sns.scatterplot(x='math_score', y='reading_score', hue='test_preparation_course_complet
plt.title('Взаимосвязь оценок по математике и чтению в зависимости от подготовительных
plt.xlabel('Оценка по математике')
plt.ylabel('Оценка по чтению')
plt.legend(title='Завершил подготовительные курсы')
plt.grid(True)
plt.show()
```


Этот график поможет визуально оценить, есть ли различия в оценках по математике и чтению между студентами, которые завершили подготовительные курсы, и теми, кто их не проходил.

Вывод: На основе выполненных задач, таких как анализ данных, тестирование гипотез, визуализация результатов, и сводные анализы, можно считать, что лабораторная работа по созданию "истории о данных" выполнена успешно. Был проведен комплексный анализ, используя различные методы статистической обработки и визуализации данных, что позволило выявить значимые закономерности и подтвердить сформулированные гипотезы.