Prediction of Emotions from Eye-tracking and Biometric data

Team: EmoEye

Pavel Tikhonov Ivan Kudryakov Marina Morozova Marco Offidani Ziang Guo

Dataset

Participants and Images

- Private dataset, nobody analyzed it
- 160 participants
- 799 images
- 5 seconds to look at the image
- Report perceived emotion

Arousal scale

Arousal-Valence model of Emotion

Participants reported 2 values for each picture

- Arousal (1-7)
- Valence (1-7)

Classification problem!

Eye-tracking and biometric data

Time-series data

- Eye-tracking X, Y coordinates
- Fixation points
- Size of the pupil
- Heart Rate (HR)
- Galvanic Skin Response (GSR)

Task

- Predict emotion from the 5-seconds of eye-tracking, GSR, HR and presented picture
- Emotion two numbers from 1 to 7, arousal and valence
- Why is it important?
 - We want to know one's emotion when doing UX/UI study, preparing advertisements
 - But people lie, especially when it comes to sensitive topics (politics, etc.)

Data pitfalls

EmoEye

Problems in the data

- For some participants, up to 70% of data are not valid on some sensors (GSR, HR)
- 5 seconds are not enough
- Too many classes, highly imbalanced classes
- Arousal and valence scales are not independent

Chosen architectures

Recurrent Neural Networks

Typical architecture to analyze time series data

	X	Y	Pupil Size	GSR	HR	Fixation Point
0	0.45358	0.50776	3.89673	262256	85	224
1	0.45338	0.50856	3.61032	261980	85	224
2	0.45327	0.50885	3.69905	258110	85	224
3	0.45316	0.50887	3.61293	262033	85	224
4	0.45273	0.50853	2.91322	259693	85	224
			1011	5583		
296	0.09939	0.56685	3.09987	239326	83	232
297	0.08465	0.54435	3.29431	241096	83	232
298	0.07976	0.55757	3.15171	242866	83	232
299	0.08623	0.56243	3.13252	239063	83	233
300	0.09130	0.56786	3.35212	243676	83	233

```
CNN LSTM(
(conv1): Conv1d(5, 64, kernel size=(3,), stride=(1,))
(relu1): ReLU()
(conv2): Conv1d(64, 64, kernel size=(3,), stride=(1,))
(relu2): ReLU()
(dropout1): Dropout(p=0.1, inplace=False)
(maxpool1): MaxPool1d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)
(flatten): Flatten(start_dim=1, end_dim=-1)
(1stm): LSTM(148, 64, batch first=True)
(dropout2): Dropout(p=0.1, inplace=False)
(dense1): Linear(in features=64, out features=20, bias=True)
(relu3): ReLU()
(batchnorm1): BatchNorm1d(20, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
(conv layers): Sequential(
 (0): Conv1d(5, 64, kernel_size=(3,), stride=(1,))
  (1): ReLU()
  (2): Conv1d(64, 64, kernel size=(3,), stride=(1,))
  (3): ReLU()
  (4): Dropout(p=0.1, inplace=False)
  (5): MaxPool1d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)
```

Convolutional Neural Networks

We may transform X, Y coordinates into scanpath

Scanpath

```
CNN(
(conv1): Conv2d(1, 32, kernel size=(5, 5), stride=(1, 1))
(relu1): ReLU()
(maxpool1): MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)
(conv2): Conv2d(32, 64, kernel size=(5, 5), stride=(1, 1))
(relu2): ReLU()
(maxpool2): MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)
(dropout1): Dropout(p=0.1, inplace=False)
(conv3): Conv2d(64, 128, kernel size=(5, 5), stride=(1, 1))
(relu3): ReLU()
(maxpool3): MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)
(batchnorm1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
(dropout2): Dropout(p=0.1, inplace=False)
(conv4): Conv2d(128, 256, kernel size=(5, 5), stride=(1, 1))
(relu4): ReLU()
(maxpool4): MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)
(dropout3): Dropout(p=0.1, inplace=False)
(flatten): Flatten(start dim=1, end dim=-1)
(dense1): Linear(in_features=12544, out_features=128, bias=True)
(relu5): ReLU()
(batchnorm2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
(dropout4): Dropout(p=0.1, inplace=False)
```

EmoEye

Multimodal approach

Sims, S. D., & Conati, C. (2020). A Neural Architecture for Detecting User Confusion in Eye-tracking Data. Proceedings of the 2020 International Conference on Multimodal Interaction. doi: 10.1145/3382507.3418828

Figure 4: The RNN architecture used in this paper

Figure 5: Example scanpath image

Figure 6: The CNN architecture used in this paper

Add shown picture. Final architecture

3.35212 243676 83

Skoltech

Augmentation

Scale: [1, 1.5]

Rotate: [-30°, 30°]

Shear: 10°

Horizontal flip: p=0.5

Results

Train Arousal Accuracy 0.05 0.04 0.03 0.03 0.03 0.02

0.1 0.04 0.03

- 0.8

- 0.7

0.6

- 0.5

0.4

- 0.3

- 0.2

- 0.1

Predicted label

50.0%

Test

0.02 0.05 0.09

Predicted label

0.5

58.4%

EmoEye

Separated modules. Accuracies

0-0.29 0.06 0.17 0.11 0.06 0.13 0.19

2 - 0.16 0.17 0.32 0.08 0.09 0.1 0.09

4 - 0.14 0.12 0.16 0.08 0.19 0.19 0.11

0.1 0.08 0.03 0.11 0.39 0.18

0.05 0.14

0.54

N 3 - 0.19 0.14 0.17 0.25 0.07 0.1 0.07

Test Valence Accuracies

CNN: 32.0% CNN-LSTM: 28.1%

VGG16: 14.6%

17

What about competitors?

Eye-tracking is not reliable

Number of classes

3 (positive, neutral and negative)

Previous works

- Less classes (3-5)
- EEG, Facial analysis are used
- Comparable accuracy (50-90%)

3 (positive, neutral and negative)

7 (Joy, Sadness, Disgust, Anger, Fear, Surprise, Neutral)

Gill, R., & Singh, J. (2020). A Review of Neuromarketing Techniques and Emotion Analysis Classifiers for Visual-Emotion Mining. 2020 9th International Conference System Modeling and Advancement in Research Trends (SMART). doi:10.1109/SMART50582.2020.9337074

3-5

3

3

NA

5

TABLE 4: EXISTING RESEARCH USING NEUROMARKETING TECHNIQUES

Reference	Neuromarketing Techniques	Emotion Mining Techniques	Experimental Results	Experimental Study	
[22]	EEG signals and eye tracking	SVM	Accuracy 71.77% and 58.90% for EEG and Eye tracking respectively		
[23] EEG and eye tracking		Variant of Neural Network	Accuracy 77.80% for EEG and 78.51% for Eye tracking	Experimental	
[24]	EEG , Facial analysis	SVM	53% Accuracy	Experimental Study	
[25]	EEG, eye tracking, GSR,	SVM,,RF, Regression	NA	Comparative Study	
[26]	EEG, ECG, GSR, Respiration data	Ada Boost, Random Forest	Accuracy 89.76% for Ace Score	Comparative Study	
[27]	ECG, GSR	Neural Network variant	NA	Analysis Study	
[28]	EEG, GSR	SVM , k-NN	88%,72% Accuracy	Experimental	
[29] Eye-tracking, Facial expression and Galvanic skin response		NA	NA	Analysis Study	
[30]	EEG, GSR, Heart rate	NA	NA	Analysis Study	
[31]	EEG, Facial analysis	Random Forest	96.79% valence, 97.79% arousal	Experimental Study	
[32]	EEG, GSR, Facial Analysis, eye tracking	NA	NA	Review	
[33]			NA	Analysis study	
[4]	EEG, GSR	NA	NA	Analysis study	
[11] GSR, Facial Analysis		NA	Precision 87%, Emotional state prediction	Experimental Study	

What can be improved? What else to try?

Conclusions

- Raw private datasets are tricky
- We have got good accuracy, data are meaningful
- What about transformers?
- Collect better dataset with less diverse images

Github Repository

https://github.com/tikhonovpavel/EmoEye

Work distribution

Pavel Tikhonov - data augmentation techniques, transformer testing Ivan Kudryakov - hyperparameters search Marina Morozova - dataset preparation, general idea of architecture Marco Offidani - presentation, finalization of the report Ziang Guo - hyperparameters search, testing modules separately

Thank you for your attention!

Questions?