7.4-3.

Show that the expression $q^2 + (n - q - 1)^2$ achieves a maximum over q = 0, 1, ..., n - 1 when q = 0 or q = n - 1.

Proof.

Consider the function $f(x) = x^2 + (n-x-1)^2$ on the range $0 \le x \le n-1$. The first derivate of this expression with respect to x is f'(x) = 2 [2x - (n-1)], which equals to 0 iff 2x - (n-1) = 0, that is, when $x = \frac{n-1}{2}$. Further more, we can conclude the sign of f'(x) on the interval [0, n-1], as Table 1 shows. The sign of f'(x) indicates that f(x) monotonically decreases on $\left[0, \frac{n-1}{2}\right)$ until drop to

x	$\left[0,\frac{n-1}{2}\right)$	$\frac{n-1}{2}$	$\left(\frac{n-1}{2}, n-1\right]$
f'(x)	f'(x) < 0	f'(x) = 0	f'(x) > 0

Table 1. The sign of expression f'(x) = 2[2x - (n-1)] on interval [0, n-1].

the bottom at $\frac{n-1}{2}$, then the function grows steadly all the way on $\left(\frac{n-1}{2}, n-1\right]$. The course of f(x) reveals that the maximum value locates at either of its endpoint. As $f(0) = f(n-1) = (n-1)^2$, $x^2 + (n-x-1)^2$ reaches its maximum when x=0 or x=n-1. Therefore, the expression $q^2 + (n-q-1)^2$ achieves a maximum over q=0,1,...,n-1 when q=0 or q=n-1.

^{*.} Creative Commons 2014, Lawrence X. A. Yan (颜世敏, aka 颜序). Email address: informlarry@gmail.com