Total 5 Balls -> 3 Red Balls & 2 Blue Balls.

I pick <u>Cne boll</u>. What is prob that the boll is a Blue Ball?

$$P(BR) = \frac{2}{5}$$

I pick up the 2nd Ball, What is the prab that it is aganaBlue Ball? Total Balls = 4 =) If 1st pick was a sed ball 2R & 2B 2 nd 17 ck P(B13) = 214 Total Balls = 4 =) If ist pick was a blueball P(BB) = 1/4

Total Balls = 5 =) 3 Red Balls & 2 Blue

I pick 2 bolls? What is prob that both the balls are bur bolls?

 $\frac{1^{s+}p^{s}ck:-}{5}$

2nd pick Blue Ball:-

 $P(BB) \text{ m ist time} \times P(BB) \text{ m 2 nd time}$ $\frac{2}{5} \times \frac{1}{4} = \frac{2}{20}$

_			Wm.	
ril 2023 20:24		False	True	
Century	talre	160	154	314
	Tore	16	30	46
		176	184	360

N_{Σ}					
	F	T			
F -	160	154	314		
57	1	30	46		
	176	184	360		

$$P(C|IW) = 30|184$$
 $IW = \frac{184}{150}$
 $P(SC|IL) = \frac{16}{170}$
 $IL = 176$

$$\frac{30}{360} = \frac{30}{184}$$

$$P(W \cap C) = \frac{30}{360}$$

$$P(C|W) = P(W \cap C)$$

$$P(W)$$

$$P(C) = \frac{46}{300}$$

$$\frac{30}{360} \left| \frac{46}{30} - \frac{30}{40} \right|$$

$$P(W|C) = \frac{P(W\cap C)}{P(C)}$$

$$P(A)$$
, $P(B)$, $P(A \cap B)$

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A \cap B)}{P(B)}$$

$$rac{7}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) = \frac{30}{18}$$

$$\frac{30 \times 184}{360} \times \frac{184}{360} = \frac{30}{46}$$

$$= P(W|C)$$

 $\frac{P(A), P(B), P(A|B)}{P(B|A) = P(A|B) \times P(B)}$

6 Bayes The mem

L) Buck bone of Naive Bayer Algonthm

$$P(W) = \frac{184}{360}$$

$$P(W) = \frac{30}{360}$$

$$P(W$$

Conditional Probability => P(AIR) = P(ANR)

P(B)

Multiplication Rule => P(AIR) = P(ANR)

Multiplication Rule => P(AIR) = P(ANR) Bayes Theorem -) [P(B|A) = P(AIB) * P(B)

P(A)

P(c|x) = P(x|c) P(c) P(x) P(c) =) Class Prov Probability P(x) =) Predictor Prior Probability P(x|c) =) Likelihood P(c|x) =) Posterior Probability

Three types of Boyes Theorem

- 1. Guastian Maire Rayer & target is continuous
- 2. Multinomial Maire Bayes = target is multinomial odegonias.
- 3. Bernouli's Maire Boyes & target is Binary (atryonical