Experian Fraud Detection

ABRAHAM OWODUNNI (ML ENG)

Introduction

Business Problem

- Importance/Impact
- Challenges

Solution

- Approach
- Key Component

Business Problem

Approach

Seamless Integration

Monitoring

Merchant: _▼	Catarani
Merchant:	Category: Category
Amount: Amount	Latitude: Latitude
Longitude: Longitude	City Population: City Population

Feature Engineering

Data

- Used simulated data
- 20 features (geo, address, personal)
- Training data (1 million plus rows)
- Test data (500k plus)

Feature Engineering

- Cleaning
- Feature extraction
- Handling categorical and numerical data
- Visualization
- Ethics

Distribution of Transaction (Fraud vs Non-Fraud)

The peaks and possible events

Fraud by Hour

Higher activities when users are typically in active.

Top 10 Merchants

Do more investigation into this

Distribution of Transaction (Male vs Female)

Even with females slightly edging but when it comes to fraudulent transactions males edge it.

Distribution of Transactions by Gender

Model Research

Classifiers

- Accuracy
- F1 (Recall & Precision)
- AUC-ROC

Objective

Considerations

- Speed
- Model interpretability
- Computational efficiency

Model Selection

Model	Precision	Recall	F1	Speed (seconds)
Logistic Regression	0.18	0.73	0.29	9.4
Decision Tree	0.72	0.74	0.73	99.5
Random Forest	0.94	0.69	0.80	1838.8
XGBClassifier	0.92	0.77	0.84	8.2
CatBoost	0.91	0.76	0.83	448.8

Model Tuning

Challenges

Computational Limitations

- CPU
- GPU

Approach

• Trial and Error

Parameters

- Learning Rate: 0.6
- N_estimation: 400
- Max Depth: 8

Prediction Improvement

Threshold Optimization

F1-Score improved from 0.86 to 0.88
Precision 0.92 to 0.90
Recall 0.84 to 0.86

Production and Deployment

Key point: This is an iterative process and not linear

Recommendation

More Data

- Category of fraud
- Payment method used
- Average monthly spend
- System information

Techniques

- Anomaly detection
- Behavioral analysis
- Clustering

So When Do I Start ;)

