

Advanced Electromagnetics: 21st Century Electromagnetics

Lorentz Oscillator Model

4

Lecture Outline

- High level picture of dielectric response
- Qualitative description of resonance
- Derivation of Lorentz oscillator model

ົກ EMPossible

€,

High Level Picture of Dielectric Response

Atoms at Rest

Without an applied electric field \vec{E} , the electron "clouds" around the nuclei are symmetric and at rest.

NEMPossible

Applied Wave

The electric field \vec{E} of a electromagnetic wave pushes the electrons away from the nuclei producing "clouds" that are offset.

MPossible

Secondary Waves

The motion of the charges emits secondary waves that interfere with the applied wave to produce an overall slowing effect on the wave.

NEMPossible

■(\$,

Qualitative Description of Resonance

lide 40

Visualizing Resonance — Low Frequency • Driving force is able to modulate amplitude • Displacement is in phase with driving force • There exists a DC offset

Derivation of Lorentz Oscillator Model

lide 16

Fourier Transform the Equation of Motion

$$m\frac{\partial^{2}\vec{r}}{\partial t^{2}} + m\Gamma\frac{\partial\vec{r}}{\partial t} + m\omega_{0}^{2}\vec{r} = -q\vec{E}$$

$$\downarrow^{\text{Fourier transform}}$$

$$m(-j\omega)^{2}\vec{r}(\omega) + m\Gamma(-j\omega)\vec{r}(\omega) + m\omega_{0}^{2}\vec{r}(\omega) = -q\vec{E}(\omega)$$

$$\downarrow^{\text{Simplify}}$$

$$\left(-m\omega^{2} - j\omega m\Gamma + m\omega_{0}^{2}\right)\vec{r}(\omega) = -q\vec{E}(\omega)$$

ி EMPossible

Charge Displacement $\vec{r}(\omega)$

$$(-m\omega^{2} - j\omega m\Gamma + m\omega_{0}^{2})\vec{r}(\omega) = -q\vec{E}(\omega)$$

$$\downarrow \text{Solve for } \vec{r}(\omega)$$

$$\vec{r}(\omega) = -\frac{q}{m_{e}} \frac{\vec{E}(\omega)}{\omega_{0}^{2} - \omega^{2} - j\omega\Gamma}$$

The displacement $\vec{r}(\omega)$ describes how far charge is displaced from its equilibrium position.

ົກ EMPossible

Electric Dipole Moment $\vec{\mu}(\omega)$

Definition of Electric Dipole Moment:
$$\vec{\mu}(\omega) = -q\vec{r}(\omega)$$

distance from center

** Sorry for the confusing notation, but μ here is NOT permeability.

$$\vec{\mu}(\omega) = \frac{q^2}{m_e} \frac{\vec{E}(\omega)}{\omega_0^2 - \omega^2 - j\omega\Gamma}$$

The electric dipole moment $\vec{\mu}(\omega)$ is a measure of the strength and separation of positive and negative charges.

NEMPossible

Lorentz Polarizability $\alpha(\omega)$

Definition of Lorentz Polarizability: $\vec{\mu}(\omega) = [\alpha(\omega)]\vec{E}(\omega)$

** Sorry for the confusing notation, but α here is NOT absorption.

 $[\alpha(\omega)]$ is a tensor quantity for anisotropic materials. For simplicity, the scalar form will be adopted here. This is the Lorentz polarizability for a single atom.

$$\alpha(\omega) = \frac{q^2}{m_e} \frac{1}{\omega_0^2 - \omega^2 - j\omega\Gamma}$$

The Lorentz polarizability $[\alpha(\omega)]$ is a measure of how easily electrical charges are displaced. Charge may be more easily displaced in some directions that others.

႟EMPossible

Polarization Per Unit Volume $\vec{P}(\omega)$

Average dipole moment over all atoms in a material. Definition: $\vec{P}(\omega) = \frac{1}{V} \sum_{v} \vec{\mu}_i(\omega)$

Equivalent uniform polarization

There is some randomness to the polarized atoms so a statistical approach is taken to compute the average.

$$\vec{P}(\omega) = N \langle \vec{\mu}(\omega) \rangle = \frac{Nq^2}{m_e} \frac{\vec{E}(\omega)}{\omega_0^2 - \omega^2 - j\omega\Gamma}$$

ົກ EMPossible

 $N \equiv$ Number of atoms per unit volume

 $\langle \rangle \equiv$ Statistical volume average

Electric Susceptibility $\chi_{\rm e}(\omega)$ (1 of 2)

A material becomes polarized \vec{P} in the presence of an electric field \vec{E} according to

$$\vec{P}(\omega) = \varepsilon_0 \chi_e(\omega) \vec{E}(\omega)$$

 $\chi_{\rm e}(\omega)$ is called the *electric susceptibility* and is a measure of how easily an electric field \vec{E} can polarize a material.

This leads to an expression for the electric susceptibility:

$$\chi_{\rm e}(\omega) = \frac{N\alpha(\omega)}{\varepsilon_0} = \left(\frac{Nq^2}{\varepsilon_0 m_{\rm e}}\right) \frac{1}{\omega_0^2 - \omega^2 - j\omega\Gamma}$$

♠ EMPossible

Electric Susceptibility $\chi_{\rm e}(\omega)$ (2 of 2)

The electric susceptibility of a dielectric material is:

$$\chi_{\rm e}(\omega) = \frac{\omega_{\rm p}^2}{\omega_0^2 - \omega^2 - j\omega\Gamma} \qquad \omega_{\rm p}^2 = \frac{Nq^2}{\varepsilon_0 m_{\rm e}} _{\rm frequency}^{\rm plasma}$$

$$q = 1.60217646 \times 10^{-19} \text{ C}$$

 $\varepsilon_0 = 8.8541878176 \times 10^{-12} \text{ F/m}$
 $m_c = 9.10938188 \times 10^{-31} \text{ kg}$

- Note this is the susceptibility of a dielectric which has only one resonance.
- The location of atoms is important because they can influence each other. This was ignored.
- Real materials have many sources of resonance and all of these must be added together.
- Electric susceptibility is the *transfer function* of the oscillator system.

NEMPossible

