

Chapter 2 Entity Relationship Modeling

Department: Computer

Course: DBMS

Faculty: Sana Shaikh

Learning Objectives:

- Quick Recap
- Constraints on Relationship
 - Cardinality of a Relationship
 - Relationship Participation
- Attributes on Relationship
- Weak Entity
- How to Evaluate a Data Model?
- Solving few examples

Learning Outcomes:

Students should be able to:

- Understand the need of Attributes on Relationship
- Apply constraints on relationships for any real world problems
- Differentiate between weak and strong Entities.
- Evaluate data model
- Develop a basic Entity Relationship Model with the appropriate entities, attributes, relationships, connectivity, and cardinality using Chen notation

Quick Recap

- Entity Types and Entity Sets
- Domain of Attributes
- Types of Attributes
- Key attribute
- NULL Values
- Degree of a Relationship

Relationships

- ☐ Associations between instances of one or more entity types that is of interest
- ☐ Given a name that describes its function.
 - relationship name is an <u>active</u> or a <u>passive</u> verb.

An author writes one or more books A book can be written by one or more authors.

Degree of Relationships

Degree: number of entity types that participate in a relationship

Three cases

Unary: between two instances of one entity type

Binary: between the instances of two entity types

Ternary: among the instances of three entity types

- Sometimes a relationship associates an entity set to itself
- also known as Recursive relationships

Unary Relationships

Unary Relationships

Ternary Relationship

Ternary Relationship

Ternary Relationship

Kinds of Constraints

What kind of constraints can be defined in the ER Model?

- □ Cardinality Constraints
- □ Participation Constraints

Together called "Structural Constraints"

Constraints are represented by specific notation in the ER diagram

Cardinality and Connectivity

Cardinality and Connectivity

Relationships can be classified as either

Cardinality: minimum and maximum number of instances of Entity B that can (or must be) associated with each instance of entity A.

The "Cardinality Ratio" for a binary relationship specifies the number of relationship instances that an entity can participate in

- The "Cardinality Ratio" for a binary relationship specifies the number of relationship instances that an entity can participate in
 - Works-In is a binary relationship
 - Participating entities are DEPARTMENT : EMPLOYEE
 - One department can have Many employees

- □ The "Cardinality Ratio" for a binary relationship specifies the number of relationship instances that an entity can participate in
 - Works-In is a binary relationship
 - Participating entities are DEPARTMENT : EMPLOYEE
 - One department can have Many employees

Cardinality Ratio is 1: N

- □ 1-to-1 (1 : 1)
- Both entities can
 participate in only one
 relationship instance

- □ 1-to-1 (1 : 1)
- Both entities can participate in only **one** relationship instance

•One-to-one: An entity in A is associated with at most one entity in B, and an entity in B is associated with at most one entity in A.

A man may be married to at most one woman, and a woman may be married to at most one man (both men and women can be unmarried)

•One-to-one: An entity in A is associated with at most one entity in B, and an entity in B is associated with at most one entity in A.

A man may be married to at most one woman, and a woman may be married to at most one man (both men and women can be unmarried)

- □ 1-to-Many, Many-to-1 (1 : N, N : 1)
 - One entity can participate in **many** relationship instances

Many - to - 1

□ 1-to-Many, Many-to-1

(1:N,N:1)

- One entity can participate in **many** relationship instances

Many - to - 1

□ 1-to-Many, Many-to-1

(1:N,N:1)

- One entity can participate in **many** relationship instances

Many - to - 1

•One-to-many: An entity in A is associated with any number in B. An entity in B is associated with at most one entity in A.

A woman may be the mother of many (or no) children. A person may have at most one mother.

•One-to-many: An entity in A is associated with any number in B. An entity in B is associated with at most one entity in A.

A woman may be the mother of many (or no) children. A person may have

•Many-to-one: An entity in A is associated with at most one entity in B. An entity in B is associated with any number in A.

Many people can be born in any county, but any individual is born in at most one country.

•Many-to-one: An entity in A is associated with at most one entity in B. An entity in B is associated with any number in A.

Many people can be born in any county, but any individual is born in at most one country.

- ☐ Many-to-Many (N: M)
 - Both entities can participate in many relationship instance

- Many-to-Many (N: M)
 - Both entities can participate in many relationship instance

•Many-to-many: Entities in A and B are associated with any number from each other.

•Many-to-many: Entities in A and B are associated with any number from each other.

Connectivity

Chen Model

1 to represent one.

M to represent many

1

М

Crow's Foot

One

——— Mandatory one , means (1,1)

———— many

One or many

1:M relationship

Relational modeling ideal

The 1: M relationship between PAINTER and PAINTING

Binary Relationships

1:1 relationship

Should be rare in any relational database design

A single entity instance in one entity class is related to a single entity instance in another entity class

The 1:1 Relationship Between PROFESSOR and DEPARTMENT

Binary Relationships

M:N relationships

Must be avoided because they lead to data redundancies.

The M:N Relationship Between STUDENT and CLASS

Existence Dependency/ Participation Constraint

 Existence dependency indicates whether the existence of an entity depends on its relationship to another entity via the relationship type

 Every employee must work for a department - EMPLOYEE is existentially dependent on DEPARTMENT via the Works In relationship type

Kinds of participating constraints

- TOTAL Participation (Existence Dependency)
 Constraint: Every employee must work for a department
- PARTIAL Participation
 Constraint: Not every employee is a manager

Participation Constraint

- Given an entity set E, and a relationship R it participates in:
 - If every entity in E participates in at least one relationship in R, it is total participation
 - partial otherwise

Participation Constraint

- Relationship types can also have attributes
- Example: To record since when Men is married to a Women
- □ Draw ER diagram for above example.

An entity set without enough attributes to have a primary key

E.g. Transaction Entity

Attributes:

transaction-number, transaction-date, transaction-amount, transaction-type transaction-number: may not be unique across accounts

- A weak entity set must be associated with an identifying or owner entity set
- Account is the owner entity set for Transaction
- Weak Entity Type always has a total participation constraint with respect to its identifying relationship

Still need to be able to distinguish between different weak entities associated with the same strong entity

Discriminator: A set of attributes that can be used for that

Sr. No.	Key	Strong Entity	Weak Entity
1	Key		
2	Dependency		
3	Represented by		
4	Relationship Representation		
5	Participation		

Sr. No.	Key	Strong Entity	Weak Entity
1	Key	Strong entity always have one primary key.	Weak entity have a foreign key referencing primary key of strong entity.
2	Dependency		
3	Represented by		
4	Relationship Representation		
5	Participation		

Sr. No.	Key	Strong Entity	Weak Entity
1	Key	Strong entity always have one primary key.	Weak entity have a foreign key referencing primary key of strong entity.
2	Dependency	Strong entity is independent of other entities.	Weak entity is dependent on strong entity.
3	Represented by		
4	Relationship Representation		
5	Participation		

Sr. No.	Key	Strong Entity	Weak Entity
1	Key	Strong entity always have one primary key.	Weak entity have a foreign key referencing primary key of strong entity.
2	Dependency	Strong entity is independent of other entities.	Weak entity is dependent on strong entity.
3	Represented by	A strong entity is represented by single rectangle.	A weak entity is represented by double rectangle.
4	Relationship Representation		
5	Participation		

Sr. No.	Key	Strong Entity	Weak Entity
1	Key	Strong entity always have one primary key.	Weak entity have a foreign key referencing primary key of strong entity.
2	Dependency	Strong entity is independent of other entities.	Weak entity is dependent on strong entity.
3	Represented by	A strong entity is represented by single rectangle.	A weak entity is represented by double rectangle.
4	Relationship Representation	Relationship between two strong entities is represented by single diamond.	Relationship between a strong and weak entity is represented by double diamond.
5	Participation		

Sr. No.	Key	Strong Entity	Weak Entity
1	Key	Strong entity always have one primary key.	Weak entity have a foreign key referencing primary key of strong entity.
2	Dependency	Strong entity is independent of other entities.	Weak entity is dependent on strong entity.
3	Represented by	A strong entity is represented by single rectangle.	A weak entity is represented by double rectangle.
4	Relationship Representation	Relationship between two strong entities is represented by single diamond.	Relationship between a strong and weak entity is represented by double diamond.
5	Participation	Strong entity may or may not participate in entity relationships.	Weak entity always participates in entity relationships.

How to Evaluate a Data Model?

A good data model has the following:

- Accuracy and completeness
- Non redundancy
- Enforcement of business rules
- Data Reusability
- Stability and Flexibility
- Communication Effectiveness
- Simplicity