Selekcja cech

Wojciech Kosztyła, Wojciech Węgrzynek

Regresja

Dla przypomnienia, w ramach regresji przewidujemy medianę dochodu gospodarstw domowych na podstawie danych o hrabstwach z censusu amerykańskiego 2015.

Regsubsets

Na początku przeprowadziliśmy selekcję cech funkcją regsubsets, przeglądając wszystkie 29 cech. Co ciekawe, czas wykonania był niezauważalny dla człowieka (zaskakująco mały).

Wyboru liczby cech dokonaliśmy za pomocą miar: bic, cp oraz poprawionego r^2. Poniżej zamieszczone są wykresy tych miar (na czerwono zaznaczone są odpowiednie ekstrema).

Ponieważ ekstrema tychże miar wskazywały wciąż na dużą liczbę cech, zdecydowaliśmy się wybrać mniejszą liczbę cech. Poświęciliśmy w ten sposób trochę dokładności modelu na rzecz jego czytelności.

Dobrym kandydatem na liczbę cech wydaje się być 10, jedynie cp odstaje dla niego znacząco od ekstremum.

Liczba cech	BIC	ср	adjr2
10	-6007.64942041253	117.337011847296	0.849137068465889
ekstremalna	-6066.69853851265	14.8681687559433	0.854261601115093

Za najbardziej istotne predyktory można więc uznać te, które pojawiły się w optymalnych modelach dla 10 (lub mniej) cech. Takie predyktory to:

 Poverty - procent ludności poniżej granicy ubóstwa. Używany dla każdej liczby predyktorów.

- Professional procent ludności zatrudnionej w zarządzaniu, biznesie, nauce i sztuce. Używany dla każdej liczby predyktorów (oprócz 1).
- Citizen procent ludności posiadający obywatelstwo Stanów Zjednoczonych. Używany dla każdej liczby predyktorów (oprócz 1 i 2).
- SelfEmployed procent ludności na samozatrudnieniu.
- MeanCommute średni czas przejazdów.
- Asian procent ludności etniczności azjatyckiej.
- Employed procent ludności pracującej.
- Men/Women procent ludności danej płci (cechy wykryte jako liniowo zależne, model regsubsets czasem wybiera jedną, czasem drugą).
- Native procent ludności rdzennych amerykanów.
- Hispanic procent ludności etniczności latynoamerykańskiej.

W metodach skokowych używane cechy były bardzo podobne. W metodzie forward zostały użyte dokładnie te same cechy (przynajmniej dla naszej liczby cech). W metodzie backward zaniechane zostały predyktory Native i Hispanic na rzecz White (procent populacji białej), oraz Black (procent populacji czarnej).

Regresja lasso

Następnie wykonaliśmy regresję lasso w celu wyznaczenia ważnych cech. Wykres poniżej przedstawia zależność współczyników (na znormalizowanych danych) od lambdy.

Z kolei ten przedstawia zależność błędu na zbiorze testowym od lambdy, z zaznaczonym minimum. Można w szczególności zauważyć, że nasz model przeucza jedynie nieznacznie - model bez regularyzacji popełnia niewiele większy błąd, a niewielka stała lambda wystarczy aby ten błąd zminimalizować.

Jeżeli chodzi o selekcję cech za pomocą optymalnego lambda, odrzuciliśmy jedynie 9 z 30 cech. Cechy **odrzucone** przez takie lambda to:

- Black procent ludności czarnej.
- ChildPoverty procent dzieci poniżej granicy ubóstwa.
- Transit procent ludności jeżdżącej (do pracy) środkami komunikacji publicznej.
- Construction procent ludności pracującej w budownictwie.
- Drive procent ludności jeżdżącej (do pracy) samochodem.
- Walk procent ludności chodzącej (do pracy) pieszo.
- OtherTransp procent ludności jeżdżacej (do pracy) innymi środkami transportu.
- WorkAtHome procent ludności pracującej w domu.
- PublicWork procent ludności pracującej w sektorze publicznym.

Klasyfikacja

Proces dla klasyfikacji był analogiczny jak do regresji.

W ramach klasyfikacji przewidujemy zwycięzcę wyborów prezydenckich 2016 w danym hrabstwie.

Regsubsets

Selekcję cech funkcją regsubsets wykonaliśmy analogicznie, jak w przypadku regresji, tym razem jednak przeglądając 33 cechy.

Wyboru liczby cech ponownie dokonaliśmy za pomocą miar: bic, cp oraz poprawionego r^2. Poniżej zamieszczone są wykresy tych miar (na czerwono zaznaczone są odpowiednie ekstrema).

Ponieważ ekstrema tychże miar wskazywały wciąż na dużą liczbę cech, zdecydowaliśmy się wybrać mniejszą liczbę cech - 11.

Liczba cech	BIC	ср	adjr2
11	-7359.71007779601	115.860506586702	0.908661718654433
ekstremalna	-7429.70602258819	11.6952168437128	0.911913904000471

Za najbardziej istotne predyktory można więc uznać te, które pojawiły się w optymalnych modelach dla 11 (lub mniej) cech. Takie predyktory to:

- Poverty procent ludności poniżej granicy ubóstwa. Używany dla każdej liczby predyktorów.
- Professional procent ludności zatrudnionej w zarządzaniu, biznesie, nauce i sztuce. Używany dla każdej liczby predyktorów (oprócz 1).
- Citizen procent ludności posiadający obywatelstwo Stanów Zjednoczonych.
- SelfEmployed procent ludności na samozatrudnieniu.
- MeanCommute średni czas przejazdów.

- Asian procent ludności etniczności azjatyckiej.
- Men/Women procent ludności danej płci (cechy wykryte jako liniowo zależne, model regsubsets czasem wybiera jedną, czasem drugą).
- Native procent ludności rdzennych amerykanów.
- Hispanic procent ludności etniczności latynoamerykańskiej.
- IncomePerCapita średni dochód na osobę
- Transit odsetek ludności podróżujących do pracy

W porównaniu do predyktorów wskazanych przy regresji, różnią się brakiem Employed i pojawieniem się IncomePerCapita i Transit.

W metodach skokowych używane cechy były bardzo podobne. W metodzie forward zostały użyte dokładnie te same cechy, natomiast w metodzie backward zaniechany został predyktor Transit na rzecz PrivateWork (procent populacji pracującej z domu), co jak najbardziej ma sens.

Regresja lasso

Następnie wykonaliśmy regresję lasso w sposób identyczny do poprzedniego, w celu wyznaczenia ważnych cech. Wykres poniżej przedstawia zależność współczyników (na znormalizowanych danych) od lambdy.

Jeżeli chodzi o selekcję cech za pomocą optymalnego lambda, odrzuciliśmy 10 z 32 cech. Cechy **odrzucone** przez takie lambda to:

- White procent ludności białej.
- Black procent ludności czarnej.
- Pacific procent ludności z obszaru pacyficznego.
- Construction procent ludności pracującej w budownictwie.
- Production procent ludności pracującącej w branży produkcyjnej.
- Drive procent ludności jeżdżącej do pracy samochodem.
- WorkAtHome procent ludności pracującej w domu.
- PrivateWork procent ludności pracującej w sektorze prywatnym.
- FamilyWork procent ludności wykonującej prace domowe?.
- Unemployment procent bezrobocia.