

Dr. Michele Caraglio

Institut für Theoretische Physik

WiSe 2021 29.10.2020

Computer Simulations in Statistical Physics

Prof. Dr. T. Franosch

Problem set 2

Proseminar

Problem 2.1 Pseudo-Random Numbers

Maybe the most basic pseudo-random number generator is the linear congruential generator (LCG). This generator creates a sequence of random numbers, X_n , using the recursive relation:

$$X_{n+1} = (aX_n + c) \bmod m, \tag{1}$$

with the constants

- \bullet modulus m
- multiplier a < m
- increment c < m
- "seed" $X_0 < m$.
- a) Illustrate the basic properties of the sequence by setting the modulus m = 9 and varying the constants a, c and X_0 (pen and paper).
- b) Generate a list of pairs of pseudo-random numbers, (X_{2n}, X_{2n+1}) with n = 1, ..., 100.000, using the LCG with constants $\{m_1 = 9, a_1 = 4, c_1 = 1\}$. Repeat for $\{m_2 = 521, a_2 = 364, c_2 = 3\}$ and then for $\{m_3 = 2^{32}, a_3 = 1664525, c_3 = 1013904223\}$. Rescale the random numbers to the interval [0, 1] and plot the first 1000 pairs in a 2D graph. What do you observe? Subsequently, plot the whole list.
- c) Repeat the previous task with Marsaglia's quasi-random number generator (see code-snippet).

Problem 2.2 Box–Muller transform

The Box–Muller transform, by G.E.P. Box and M.E. Muller is a pseudo-random number sampling method for generating pairs of independent, standard, normally distributed (zero expectation, unit variance) random numbers, given a source of uniformly distributed random numbers in the interval [0, 1].

Suppose that u_1 and u_2 are independent samples chosen from the uniform distribution on the unit inteval [0,1]. Then,

$$z_1 = \sqrt{-2 \ln u_1} \cos(2\pi u_2)$$

$$z_2 = \sqrt{-2 \ln u_1} \sin(2\pi u_2)$$
(2)

are two independent random variables with a standard normal distribution ($\mu = 0$ and $\sigma = 1$).

- a) Using the Box-Muller transform, generate a sequence of $N=10^3$ gaussian random number with standard deviation $\sigma=2.5$ and mean $\mu=1$.
- b) Plot an hystogram of the data.
- c) Compute numerically their average value

$$\langle x \rangle = \frac{1}{N} \sum_{i=1}^{N} x_i \,, \tag{3}$$

and their variance

$$\langle x^2 \rangle - \langle x \rangle^2 = \frac{1}{N} \sum_{i=1}^{N} x_i^2 - \langle x \rangle^2 , \qquad (4)$$

and compare them with the expected average μ and variance σ^2 .

d) Plot the autocorrelation function

$$C_n = \frac{\langle (x_i - \mu) \cdot (x_{i+n} - \mu) \rangle}{\sigma^2} , \qquad (5)$$

for n = 0, 1, ..., N - 1 (in the previous expression the average $\langle \cdot \rangle$, is over all possible values of i: i = 1, 2, ..., N - n).

e) Repeat for $N = 10^4$.

Problem 2.3 How To Integrate By Drawing Random Numbers

Imagine a game in which children are randomly throwing pebbles into a square. Each pebble falling inside the square constitutes a trial, and pebbles inside the circle which is inscribed into the square are counted as "hit". This procedure is called direct sampling.

- a) Construct an algorithm which enables the determination of π using this children's game. This algorithm calculates an estimator for π , called $\hat{\pi}(X)$, with random numbers X = (x, y). Write down the function for the estimator explicitly.
- b) Implement the algorithm. Draw enough random numbers $X_n = (x_n, y_n)$ such that the standard error of the mean $\Delta \hat{\pi}$ is smaller than 0.0001^1 . Use a LCG with constants m_3, a_3, c_3 (see last problem).
- c) Repeat the same procedure for a LCG with constants m_1, c_1, a_1 .
- d) Integrate the function $f(x) = x^2$ over the interval I = [0.0, 1.0] using a modification of the above algorithm.

¹As you know, the mean is calculated as $\langle \hat{\pi} \rangle = \frac{1}{N} \sum_{n=1}^{N} \hat{\pi}(X_n)$. If you do not remember how the standard error of the mean is determined, please do a short research in the literature.