Characterizing Molecular Differences Between Male and Female Colorectal Cancer Patients

Echo Tang, Minwoo Cho, Jonathan Le May 2, 2022

Introduction

Colorectal cancer (CRC) is the second most common cause of cancer death

Introduction

- Female CRC patients: significantly better overall survival rates than male patients
- Sex-based differences in gene and protein expression → differences in disease progression and survival
- Identifying sex-based biomarkers and drug targets would significantly improve patient outcomes

Our Goal

 Utilize publicly available datasets to identify molecular differences between male and female CRC patients at a multi-omic level

Methods

 Data from The Cancer Genome Atlas (TCGA) & Clinical Proteomic Tumor Analysis Consortium (CPTAC)

- TCGA: genomics, transcriptomic, and clinical data
 - Over 20,000 primary cancer datasets
 - 33 different cancer types

CPTAC: large-scale proteomic data in relation to TCGA clinical data

Methods

- MAF analysis via R package 'maftools'
 - Determine if mutation type & frequency are sex-differentiated
- Transcriptomic analysis via R package 'DESeq2'
 - Determine if there is differential expression between sexes
- Quantify relationship between gene and protein expression levels via Python packages 'Matplotlib' and 'seaborn'

Dataset Overview - TCGA

	Female	Male
# of patients	244	280
Avg. age (years)	66	68
White	115	122
Black	32	29
Asian	3	8
Native American	0	1
No race info	94	120

Female Patients Show Better Overall Survival Than Male Patients

Mutation types & percentages are quite similar between sexes

Gene expression of the top 5 most mutated genes does not differ between sexes

Gene expression of the top 5 most mutated genes does not differ between sexes cont.

Differential gene expression of the top 5 most mutated genes does not differ between sexes

Gene	log2FoldChange	padj
APC	-0.136	0.364
TP53	-0.063	0.747
TTN	0.119	0.663
KRAS	-0.086	0.463
PIK3CA	0.103	0.449

- Positive log2FoldChange = overexpressed in male patients
- Negative log2FoldChange = overexpressed in female patients
- Significant log2FoldChange are values > 1 or < -1

Differentially expressed genes between male and female patients

Top 5 most overexpressed genes for each sex are highlighted in purple

Differential Gene Expression Analysis

 Initial analysis mainly identified noncancer-related sex-linked genes as the most differentially expressed genes between male and female patients

 We then conducted a differential gene expression analysis between normal and cancer tissue in male and female CRC patients

Differentially expressed genes between normal and cancer tissue in male CRC patients

Top 5 most overexpressed genes for each tissue type that are unique to male patients are labeled

Differentially expressed genes between normal and cancer tissue in female CRC patients

Top 5 most overexpressed genes for each tissue type that are unique to female patients are labeled

RNA & protein expression correlations are sexually differentiated

RNA & protein expression correlations are sexually differentiated

Discussion

Evidence of sex-differentiated survival

- No significant mutation differences
- Identification of differentially expressed genes in male and female patients
 - VSIG1, BPIFB1, CDKN2A, THBS4

Genes of Interest for Female Patients

- VSIG1 cell to cell recognition
 - Overexpressed in female cancer tissue
 - Reduction in metastasis in multiple cancers → better survival rates

- CDKN2A correlated with FUCA2
 - Both involved in immune response

Genes of Interest for Male Patients

- BPIFB1 inflammatory gene
 - Overexpressed in male cancer tissue
 - Associated with tumor growth in gastric cancer

- THBS4 cell adhesion and migration
 - Underexpressed in male cancer tissue
 - Shown to act as a tumor suppressor gene in CRC

Future Directions

 Conduct further research on these genes of interest to potentially identify differences in clinical progression and survival

 Explore potential therapeutic options to target these genes and improve patient outcomes

References

Bernal, C., Silvano, M., Tapponnier, Y., Anand, S., Angulo, C., & Ruiz i Altaba, A. (2020).

Functional Pro-metastatic Heterogeneity Revealed by Spiked-scrnaseq is shaped by cancer cell interactions and restricted by VSIG1. Cell Reports, 33(6), 1-19.

Chang, C.-H., Lee, C.-H., Ho, C.-C., Wang, J.-Y., & Yu, C.-J. (2015). Gender-based impact

of epidermal growth factor receptor mutation in patients with nonsmall cell lung cancer and previous tuberculosis. Medicine, 94(4), 1-8.

 $Hou,\,Y.,\,Li,\,H.,\,\&\,\,Huo,\,W.\,\,(2020).\,\,THBS4\,\,silencing\,\,regulates\,\,the\,\,cancer\,\,stem\,\,cell-like$

properties in prostate cancer via blocking the PI3K/akt pathway. Prostate, 80(10), 753-763.

 $Huang,\,D.,\,Sun,\,W.,\,Zhou,\,Y.,\,Li,\,P.,\,Chen,\,F.,\,Chen,\,H.,\,Xia,\,D.,\,Xu,\,E.,\,Lai,\,M.,\,Wu,\,Y.,\,\&\,Li,\,Li,\,M.,\,M.$

Zhang, H. (2018). Mutations of key driver genes in colorectal cancer progression and metastasis. Cancer and Metastasis Reviews, 37(1), 173-187.

Iguchi, E., Safgren, S. L., Marks, D. L., Olsen, R. L., & Fernandez-Zapico, M. E. (2016).

Pancreatic Cancer, A Mis-interpreter of the Epigenetic Language. Yale Journal of Biology and Medicine, 89(4), 575–590.

Li, J., Xu, P., Wang, L., Feng, M., Chen, D., Yu, X., & Lu, Y. (2020). Molecular biology of BPIFB1 and its advances in disease. *Annals of Translational Medicine*, 8(10), 651–651. https://doi.org/10.21037/atm-20-3462

Lopes-Ramos, C. M., Quackenbush, J., & DeMeo, D. L. (2020). Genome-wide sex and gender differences in cancer. Frontiers in Oncology, 10(1), 1–17.

References

National Institute of Health. (n.d.). Clinical proteomic tumor analysis consortium (CPTAC).

National Cancer Institute Genomic Data Commons. Retrieved April 22, 2022, from https://gdc.cancer.gov/about-gdc/contributed-genomic-data-cancer-research/clinical-protomic-tumor-analysis-consortium-eptac

National Cancer Institute. (n.d.). Common Cancer Sites - Cancer Stat Facts. SEER. Retrieved

April 22, 2022, from <a href="https://seer.cancer.gov/statfacts/html/common.html#:~:text=Lung%20and%20bronchus20cancer%20is%20responsible%20for%20the%20most%20deaths.deadliest%20cancer2C%20causing%2048%2C220%20deaths

National Institute of Health. (n.d.). The Cancer Genome Atlas Program. National Cancer

Institute. Retrieved April 22, 2022, from https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga

- Oh, J.-H., Jang, S. J., Kim, J., Sohn, I., Lee, J.-Y., Cho, E. J., Chun, S.-M., & Sung, C. O. (2020). Spontaneous mutations in the single TTN gene represent high tumor mutation burden.

 Npj Genomic Medicine, 5(1), 1–11.
- Press, O. A., Zhang, W., Gordon, M. A., Yang, D., Lurje, G., Iqbal, S., El-Khoueiry, A., & Lenz, H.-J. (2008). Gender-related survival differences associated with EGFR polymorphisms in metastatic colon cancer. *Cancer Research*, 68(8), 3037–3042.
- Wang, L., Xiao, J., Gu, W., & Chen, H. (2016). Sex difference of EGFR expression and molecular pathway in the liver: Impact on drug design and cancer treatments? Journal of Cancer, 7(6), 671-680.
- Yang, Y., Wang, G., He, J., Ren, S., Wu, F., Zhang, J., & Wang, F. (2017). Gender differences in colorectal cancer survival: A meta-analysis. International Journal of Cancer, 141(10), 1942–1949.
- Zhong, A., Chen, T., Xing, Y., Pan, X., & Shi, M. (2021). Fuca2 is a prognostic biomarker and correlated with an immunosuppressive microenvironment in Pan-Cancer. Frontiers in Immunology, 12(1), 1–12.

Acknowledgements

- Dr. Remo Rohs
- Dr. Jerry Lee
- David Wen
- Nicole Black
- Kate Guion

USCDornsife

Department of Quantitative and Computational Biology

Thank You! Questions?