Indian Institute of Technology Roorkee

MAN-001(Mathematics-1), Autumn Semester: 2019-20

Assignment-1: Matrix Algebra I

(1) Reduce each of the following matrices into row echelon form and then find their ranks:

(a)
$$\begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 7 & 8 & 9 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 2 & 4 & 6 \\ -1 & 3 & 2 \\ 1 & 4 & 6 \\ 2 & 8 & 7 \end{bmatrix}$$
 (c)
$$\begin{bmatrix} 1 & -2 & 5 & -3 \\ 2 & 3 & 1 & -4 \\ 3 & 8 & -3 & -5 \end{bmatrix}$$
 (d)
$$\begin{bmatrix} 1 & 1 & 2 & 0 & -4 \\ 1 & 2 & 0 & -4 & 1 \\ 2 & 0 & -4 & 1 & 1 \\ 0 & -4 & 1 & 1 & 2 \\ -4 & 1 & 1 & 2 & 0 \end{bmatrix}$$

(2) Examine the following set of vectors over \mathbb{R} for linear dependence:

- (a) $\{(1,1,2), (1,2,5), (5,3,4)\}$ (b) $\{(1,-1,1), (2,1,1), (8,1,5)\}$ (c) $\{(1,1,-1,1), (1,-1,2,-1), (3,1,0,1)\}$ (d) $\{(1,2,1), (2,1,0), (1,-1,2)\}$
- (3) (a) Find the conditions on α and β for which the matrix

$$\begin{pmatrix} \alpha & 1 & 2 \\ 0 & 2 & \beta \\ 1 & 3 & 6 \end{pmatrix} \text{ has (i) } \text{rank} = 1 \quad \text{(ii) } \text{rank} = 2 \quad \text{(iii) } \text{rank} = 3 .$$

- (b) For what values of α and β is the following system consistent? $2x + 4y + (\alpha + 3)z = 2$, x + 3y + z = 2, $(\alpha 2)x + 2y + 3z = \beta$.
- (4) Solve the following system of linear equations by Gauss elimination method:
 - (a) x + 4y z = 4, x + y 6z = -4, 3x y z = 1
 - (b) x + 2y z = 1, 2x + y + 5z = 2, 3x + 3y + 4z = 1
 - (c) x + 2y + z = 2, 3x + y 2z = 1, 2x + 4y + 2z = 4
- (5) Consider the following systems of linear equations:
 - (a) -2x + y + z = a, x 2y + z = b, x + y 2z = c.
 - (b) x + y z = 1, $2x + 3y + \lambda z = 3$, $x + \lambda y + 3z = 2$.
 - (c) $\lambda x + y + z = p$, $x + \lambda y + z = q$, $x + y + \lambda z = r$.

Find the values of unknown constant(s) such that each of the above systems has

- (i) no solution (ii) a unique solution (iii) infinitely many solutions .
- (6) Use Gauss elimination method to show that following system has no solution:

$$2\sin x - \cos y + 3\tan z = 3 \qquad 2x_2 + 2x_3 + 3x_4 = b_1$$

- (a) $4\sin x + 2\cos y 2\tan z = 10$, (b) $2x_1 + 4x_2 + 6x_3 + 7x_4 = b_2$ for some $(b_1, b_2, b_3) \in \mathbb{R}^3$. $6\sin x - 3\cos y + \tan z = 9$. $x_1 + x_2 + 2x_3 + 2x_4 = b_3$,
- (7) Let P_2 be the set of all polynomials of degree 2 or less. Use Gauss elimination method to find all polynomials $f \in P_2$: f(1) = 2 and f(-1) = 6.
- (8) Find the values of k for which the following system of equations has
 - (i) trivial solution (ii) non-trivial solution.

(a)
$$3x + (3k - 8)y + 3z = 0$$

(b) $(k - 1)x + (3k + 1)y + 2kz = 0$
 $3x + (3k - 8)y + 3z = 0$
 $3x + 3y + (3k - 8)z = 0$
(b) $(k - 1)x + (4k - 2)y + (k + 3)z = 0$
 $2x + (3k + 1)y + 3(k - 1)z = 0$

(9) By employing elementary row operations, find the inverse of the following matrices:

$$(a) \left(\begin{array}{ccc} 1 & -1 & 2 \\ 2 & 1 & 0 \\ 3 & 4 & 1 \end{array}\right), \qquad (b) \left(\begin{array}{cccc} 1 & 1 & 1 & 1 \\ 2 & 1 & 3 & 0 \\ 3 & 0 & 2 & 5 \\ 2 & 1 & 1 & 3 \end{array}\right)$$

(10) If p is a solution of a non-homogeneous system AX = Y, then show that v + p is also a solution of AX = Y, for every solution v of the homogeneous system AX = 0.

- (11) (a) Let A be an $n \times n$ matrix. Prove the following two statements:
 - (i) If A is invertible and AB = 0 for some $n \times n$ matrix B, then B = 0.
 - (ii) If A is not invertible, then there exists an $n \times n$ matrix B such that AB = 0
 - (b) If $A = \begin{bmatrix} 1 & 2 & -1 & 3 \\ -2 & 1 & 0 & 1 \\ 0 & 5 & -2 & 7 \\ -1 & 3 & -1 & 4 \end{bmatrix}$, find a 4×4 matrix $B \neq 0$ such that AB = 0.
- (12) Consider a 4×5 matrix $A = \begin{bmatrix} 1 & 7 & -1 & -2 & -1 \\ 3 & 21 & 0 & 9 & 0 \\ 2 & 14 & 0 & 6 & 1 \\ 6 & 42 & -1 & 13 & 0 \end{bmatrix}$.
 - (a) Find the row-reduced echelon form
 - (b) Find an invertible matrix P such that $PA = \begin{bmatrix} 1 & 7 & -1 & -2 & 1 \\ 0 & 0 & 3 & 15 & 3 \\ 0 & 0 & 2 & 10 & 3 \\ 0 & 0 & 5 & 25 & 6 \end{bmatrix}$.
 - (c) Find the locus of the point $(x, y, z) \in \mathbb{R}^3$ such that for each column vector $Y = (x, y, z, 5)^T$, the equation AX = Y has a solution.
 - (d) If $X = (x_1, x_2, x_3, x_4, x_5)^T$, then find the conditions on x_1, x_2, x_3, x_4, x_5 such that AX = 0.

ANSWERS

- (1) (a) 4 (b) 3 (c) 2 (d) 4
- (2) (a) LD (b) LD (c) LI (d) LI
- (3) (a) (i) Not possible (ii) $\alpha = \frac{1}{3}$ or $\beta = 4$ (iii) $\alpha \neq \frac{1}{3}$, $\beta \neq 4$ (b) $\alpha = 3$ and $\beta = 1$; or $\alpha = -2$ and $\beta = 6$; or $\alpha \neq 3, -2$.
- (4) (a) (1,1,1) (b) No solution (c) (1,0,1)
 - (5) [(a)]
 - (i) $a+b+c\neq 0$ (ii) Not possible (iii) a+b+c=0 (b) (i) $\lambda=-3$ (ii) $\lambda\neq -3,2$ (iii) $\lambda=2$

 - (c) (i) $\lambda = 1$ and $p + q 2r \neq 0$ OR $\lambda = 1$ and $q \neq r$
 - OR $\lambda = -2$ and $p + q + r \neq 0$ and $q \neq r$
 - (ii) $\lambda \neq 1, -2$
 - (iii) $\lambda = 1$ and p = q = r OR $\lambda = -2$ and p + q + r = 0
- (7) $f = (4-k)x^2 2x + k, \ k \in \mathbb{R}$
- (8) (a) (i) $k \neq \frac{2}{3}, \frac{11}{3}$ (ii) $k = \frac{2}{3}$ or $\frac{11}{3}$
- (9) (a) $\frac{1}{13} \begin{bmatrix} 1 & 9 & -2 \\ -2 & -5 & 4 \\ 5 & -7 & 3 \end{bmatrix}$ (b) $\frac{1}{4} \begin{bmatrix} -16 & 4 & -4 & 12 \\ 5 & -1 & -1 & 0 \\ 9 & -1 & 3 & -8 \\ 6 & -2 & 2 & -4 \end{bmatrix}$
- (11) (b) $\begin{bmatrix} 1 & -1 & 1 & 0 \\ 2 & -7 & 2 & -5 \\ 5 & 0 & 5 & 5 \\ 0 & 5 & 0 & 5 \end{bmatrix}$ (This is just one solution. The matrix B is not unique).
- (12) (a) $\begin{bmatrix} 1 & 7 & 0 & 3 & 0 \\ 0 & 0 & 1 & 5 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 0 & 0 & 0 \\ -3 & 1 & 0 & 0 \\ -2 & 0 & 1 & 0 \\ -6 & 0 & 0 & 1 \end{bmatrix}$

 - (d) $x_1 + 7x_2 + 3x_4 = 0$, $x_3 + 5x_4 = 0$, $x_5 = 0$.