Optimal Control and Planning

CS 285

Instructor: Sergey Levine

UC Berkeley

Today's Lecture

- 1. Introduction to model-based reinforcement learning
- 2. What if we know the dynamics? How can we make decisions?
- 3. Stochastic optimization methods simple and commonly used
- 4. Monte Carlo tree search (MCTS)
- 5. Trajectory optimization LQR and its non-linear extensions
- Goals:
 - Understand how we can perform planning with known dynamics models in discrete and continuous spaces

Recap: the reinforcement learning objective

$$\underbrace{p_{\theta}(\mathbf{s}_1, \mathbf{a}_1, \dots, \mathbf{s}_T, \mathbf{a}_T)}_{\pi_{\theta}(\tau)} = p(\mathbf{s}_1) \prod_{t=1}^{T} \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)$$

$$\theta^* = \arg\max_{\theta} E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(\mathbf{s}_t, \mathbf{a}_t) \right]$$

Recap: model-free reinforcement learning

$$p_{\theta}(\mathbf{s}_1, \mathbf{a}_1, \dots, \mathbf{s}_T, \mathbf{a}_T) = p(\mathbf{s}_1) \prod_{t=1}^T \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) p(\mathbf{s}_t | \mathbf{s}_t, \mathbf{a}_t)$$
 assume this is unknown don't even attempt to learn it

$$\theta^* = \arg\max_{\theta} E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(\mathbf{s}_t, \mathbf{a}_t) \right]$$

What if we knew the transition dynamics?

- Often we do know the dynamics
 - 1. Games (e.g., Atari games, chess, Go)
 - 2. Easily modeled systems (e.g., navigating a car)
 - 3. Simulated environments (e.g., simulated robots, video games)
- Often we can learn the dynamics
 - 1. System identification fit unknown parameters of a known model
 - 2. Learning fit a general-purpose model to observed transition data

this is the focus of many model-based RL models were learn about in this course

Does knowing the dynamics make things easier?

Often, yes!

Model-based reinforcement learning

- 1. Model-based reinforcement learning: learn the transition dynamics, then figure out how to choose actions
- 2. Today: how can we make decisions if we *know* the dynamics?
 - a. How can we choose actions under perfect knowledge of the system dynamics?
 - b. Optimal control, trajectory optimization, planning
- 3. Next week: how can we learn unknown dynamics?
- 4. How can we then also learn policies? (e.g. by imitating optimal control)

The objective

$$\min_{\mathbf{a}_1,\ldots,\mathbf{a}_T} \log p(\text{eaten by tiger}|\mathbf{a}_1,\ldots,\mathbf{a}_T)$$

$$\min_{\mathbf{a}_1,\dots,\mathbf{a}_T} \sum_{t=1}^T c(\mathbf{s}_t, \mathbf{a}_t) \text{ s.t. } \mathbf{s}_t = f(\mathbf{s}_{t-1}, \mathbf{a}_{t-1})$$

so we can write this as a constrained optimization problem, where we want to minimize cost resulting from our actions for all timesteps. This is subject to the constraint that state s_t is a function of the previous state and the action we took

The deterministic case

after the environment tells the agent which state its in, the agent performs an optimization given their current state. they imagine a sequence of actions that minimize total cost. then they send these actions back to the world and they get executed

in the deterministic case, this works and you can get optimal behavior. but in the stochastic case, it doesn't and can be very suboptimal

$$\mathbf{a}_1, \dots, \mathbf{a}_T = \arg\max_{\mathbf{a}_1, \dots, \mathbf{a}_T} \sum_{t=1}^T r(\mathbf{s}_t, \mathbf{a}_t) \text{ s.t. } \mathbf{a}_{t+1} = f(\mathbf{s}_t, \mathbf{a}_t)$$
this is a mistake. it should be s_t+1

The stochastic open-loop case

$$p_{\theta}(\mathbf{s}_1, \dots, \mathbf{s}_T | \mathbf{a}_1, \dots, \mathbf{a}_T) = p(\mathbf{s}_1) \prod_{t=1}^T p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)$$

$$\mathbf{a}_1, \dots, \mathbf{a}_T = \arg\max_{\mathbf{a}_1, \dots, \mathbf{a}_T} E\left[\sum_t r(\mathbf{s}_t, \mathbf{a}_t) | \mathbf{a}_1, \dots, \mathbf{a}_T\right]$$
 why is this suboptimal?

because it's stochastic, you don't know which states you'll transition to. thus, you don't necessarily want to use the plan you started with, because you could be in a state you didn't expect. Thus, you will want to update your plan along the way.

Aside: terminology

what is this "loop"?

agent gets to look at the state before taking an action

closed-loop

open-loop

you're given a state and you have to commit to a sequence of actions without looking at which states are revealed to you. so your planned sequence of actions is completed without regard to our future states...we might not even pay attention to which states we land in. this can be optimal in deterministic settings, but not in stochastic

only sent at t = 1, then it's one-way!

The stochastic closed-loop case

$$p(\mathbf{s}_1, \mathbf{a}_1, \dots, \mathbf{s}_T, \mathbf{a}_T) = p(\mathbf{s}_1) \prod_{t=1}^T \pi(\mathbf{a}_t | \mathbf{s}_t) p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)$$

$$\pi = \arg\max_{\pi} E_{\tau \sim p(\tau)} \left[\sum_{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right]$$

form of π ?

neural net

time-varying linear

$$\mathbf{K}_t \mathbf{s}_t + \mathbf{k}_t$$

its "global" in that it tells the agent what to do in every state it could possible encounter

find a policy that depends on our current state. we assume that we won't deviate too much from our current state, so the policy is specific to our state or some small-region around our state.

(more on this later)

Open-Loop Planning

But for now, open-loop planning

$$\mathbf{a}_1, \dots, \mathbf{a}_T = \arg\max_{\mathbf{a}_1, \dots, \mathbf{a}_T} \sum_{t=1}^T r(\mathbf{s}_t, \mathbf{a}_t) \text{ s.t. } \mathbf{a}_{t+1} = f(\mathbf{s}_t, \mathbf{a}_t)$$

Stochastic optimization

abstract away optimal control/planning:

$$\mathbf{a}_1, \dots, \mathbf{a}_T = \arg\max_{\mathbf{a}_1, \dots, \mathbf{a}_T} J(\mathbf{a}_1, \dots, \mathbf{a}_T)$$

$$\text{don't care what this is}$$

simplest method: guess & check

"random shooting method"

- 1. pick $\mathbf{A}_1, \dots, \mathbf{A}_N$ from some distribution (e.g., uniform)
- 2. choose \mathbf{A}_i based on $\arg \max_i J(\mathbf{A}_i)$

choose the best action sequence of all the sequences that we attempted

for low-dimension and small horizons, this can actually work well in practice. one major advantage of this approach is that it's extremely simple to implement. it's also very efficient on modern hardware. you could run A_1 through A_N in parallel. A disadvantage is that you might not pick very good actions, because you're relying on one of the sequences being very good

this is pretty good for a stochastic optimization algo for control problems in low to moderate dimensions and low to moderate time horiztons

Cross-entropy method (CEM)

- 1. pick $\mathbf{A}_1, \dots, \mathbf{A}_N$ from some distribution (e.g., uniform)
- 2. choose \mathbf{A}_i based on $\arg \max_i J(\mathbf{A}_i)$

$J({f A})$ we fit a new the sample rewards. It samples from and we remark the sample from the samples from the samples from the sample from

can we do better?

we start with a uniform distribution and do some rollouts. then, we see how those rollouts did. then, we fit a new distribution towards the samples that have better rewards. then we generate more samples from the new distribution, and we repeat the process

typically use Gaussian distribution

cross-entropy method with continuous-valued inputs:

- 1. sample $\mathbf{A}_1, \dots, \mathbf{A}_N$ from $p(\mathbf{A})$
- 2. evaluate $J(\mathbf{A}_1), \ldots, J(\mathbf{A}_N)$
- 3. pick the elites $\mathbf{A}_{i_1}, \dots, \mathbf{A}_{i_M}$ with the highest value, where M < N
- 4. refit $p(\mathbf{A})$ to the elites $\mathbf{A}_{i_1}, \dots, \mathbf{A}_{i_M}$

if you choose your distribution to be a Gaussian, you'd fit a gaussian by finding the max likelihood fit to the best M samples

pick a subset of your samples with the highest value. A rule of thumb is to to pick M where M is 10% of N

What's the upside?

- 1. Very fast if parallelized
- 2. Extremely simple
 - 3. Doesn't require model to be differentiable w.r.t. actions
 - 4. Can work for discrete actions too by using other distribution classes

What's the problem?

- 1. Very harsh dimensionality limit
- 2. Only open-loop planning

we are relying on the random sampling procedure to get us good coverage.

if you have more than 30-60 dimensions, these methods don't work very well. I think dimensions refers to action-dimensions times the number of timesteps.

if you're doing planning, rule of thumb, 10 dimensions and 15 timesteps is about the max you can do

closed-loop feedback can work for continuous and discrete space, but more commonly used in discrete space.

this is often used in board games (i.e. AlphaGo)

MCTS is good for games of chance (e.g. poker)

this isn't an optimal strategy, but can get pretty good. in practice this is a very good algorithm for discrete stochastic settings in the closed-loop case

> so you could pick a depth, then expand the tree to that depth. then you could just run some baseline or random policy, and the value you get when you run that random policy won't be correct, and especially if you have a discount factor, the random policy will give us some idea of how good the state is a_t $\pi(a_t|s_t)$ $\pi(a_t|s_t)$ $\pi(a_t|$

how to approximate value without full tree?

e.g., random policy

can't search all paths – where to search first?

intuition: choose nodes with best reward, but also prefer rarely visited nodes

generic MCTS sketch

find which leaf node to expand

- 1. find a leaf s_l using TreePolicy (s_1)
- 2. evaluate the leaf using DefaultPolicy (s_l)
- 3. update all values in tree between s_1 and s_l take best action from s_1

UCT TreePolicy (s_t)

if s_t not fully expanded, choose new a_t else choose child with best $Score(s_{t+1})$

$$Score(s_t) = \frac{Q(s_t)}{N(s_t)} + 2C\sqrt{\frac{2\ln N(s_{t-1})}{N(s_t)}}$$

N =the number of times we've visited a node Q/N = the average reward Q = 30

Additional reading

- 1. Browne, Powley, Whitehouse, Lucas, Cowling, Rohlfshagen, Tavener, Perez, Samothrakis, Colton. (2012). A Survey of Monte Carlo Tree Search Methods.
 - Survey of MCTS methods and basic summary.

Trajectory Optimization with Derivatives

Can we use derivatives?

$$\min_{\mathbf{u}_1,\dots,\mathbf{u}_T} \sum_{t=1}^T c(\mathbf{x}_t,\mathbf{u}_t) \text{ s.t. } \mathbf{x}_t = f(\mathbf{x}_{t-1},\mathbf{u}_{t-1})$$

when you have constrained optimization with equality constraints, you can substitute it into the cost function to get unconstrained optimization

$$\min_{\mathbf{u}_1,\ldots,\mathbf{u}_T} c(\mathbf{x}_1,\mathbf{u}_1) + c(f(\mathbf{x}_1,\mathbf{u}_1),\mathbf{u}_2) + \cdots + c(f(f(\mathbf{x}_1,\mathbf{u}_1),\mathbf{u}_2)) + \cdots + c(f(f(\mathbf{x}_1,\mathbf{u}_1),\mathbf{u}_2),\mathbf{u}_2) + \cdots + c(f(f(\mathbf{x}_1,\mathbf{u}_2),\mathbf{u}_2),\mathbf{u}_2) + \cdots + c(f(f(\mathbf{x}_1,\mathbf{u}_2),\mathbf{u}_2)) + \cdots + c(f(f(\mathbf{x}_1,\mathbf{u}_2),\mathbf{u}_2),\mathbf{u}_2) + \cdots + c(f(f(\mathbf{x}_1,\mathbf{u}_2),\mathbf{u}_2),\mathbf{u}_2) + \cdots + c(f(f(\mathbf{x}_1,\mathbf{u}_2),\mathbf{u}_2),\mathbf{u}_2) + \cdots + c(f(f(\mathbf{x}_1,\mathbf{u}_2$$

usual story: differentiate via backpropagation and optimize!

need
$$\frac{df}{d\mathbf{x}_t}, \frac{df}{d\mathbf{u}_t}, \frac{dc}{d\mathbf{x}_t}, \frac{dc}{d\mathbf{u}_t}$$

in practice, it really helps to use a 2nd order method!

$$\mathbf{s}_{t}$$
 – state

$$\mathbf{a}_t$$
 – action

$$\mathbf{s}_t - \text{state}$$
 $\mathbf{x}_t - \text{state}$

$$\mathbf{u}_t$$
 – action

Shooting methods vs collocation

shooting method: optimize over actions only

$$\min_{\mathbf{u}_1,\ldots,\mathbf{u}_T} c(\mathbf{x}_1,\mathbf{u}_1) + c(f(\mathbf{x}_1,\mathbf{u}_1),\mathbf{u}_2) + \cdots + c(f(f(\mathbf{x}_1,\mathbf{u}_1),\mathbf{u}_T))$$

Shooting methods vs collocation

collocation method: optimize over actions and states, with constraints

$$\underline{\min}_{\mathbf{u}_1,\dots,\mathbf{u}_T,\mathbf{x}_1,\dots,\mathbf{x}_T} \sum_{t=1}^T c(\mathbf{x}_t,\mathbf{u}_t) \text{ s.t. } \mathbf{x}_t = f(\mathbf{x}_{t-1},\mathbf{u}_{t-1})$$

in this case, it's deterministic

we regulate our trajectory. we have linear dynamics and quadratic costs. we're allowed to have different F, f, C, and c for every time step!

$$\min_{\mathbf{u}_{1},...,\mathbf{u}_{T}} c(\mathbf{x}_{1},\mathbf{u}_{1}) + c(f(\mathbf{x}_{1},\mathbf{u}_{1}),\mathbf{u}_{2}) + \cdots + c(f(f(\ldots),\ldots),\mathbf{u}_{T})$$

$$f(\mathbf{x}_{t},\mathbf{u}_{t}) = \mathbf{F}_{t} \begin{bmatrix} \mathbf{x}_{t} \\ \mathbf{u}_{t} \end{bmatrix} + \mathbf{f}_{t} \qquad c(\mathbf{x}_{t},\mathbf{u}_{t}) = \frac{1}{2} \begin{bmatrix} \mathbf{x}_{t} \\ \mathbf{u}_{t} \end{bmatrix}^{T} \mathbf{C}_{t} \begin{bmatrix} \mathbf{x}_{t} \\ \mathbf{u}_{t} \end{bmatrix} + \begin{bmatrix} \mathbf{x}_{t} \\ \mathbf{u}_{t} \end{bmatrix}^{T} \mathbf{c}_{t}$$

$$\frac{\mathbf{d}_{t}}{\mathbf{d}_{t}} = \mathbf{d}_{t}$$

 \mathbf{x}_T (unknown)

you have a quadratic objective for the last action, you solve this by setting the derivative to 0. and then you get the optimal uT. note that it depends on xT, so we need to find out what xT is too

$$\min_{\mathbf{u}_1, \dots, \mathbf{u}_T} c(\mathbf{x}_1, \mathbf{u}_1) + c(f(\mathbf{x}_1, \mathbf{u}_1), \mathbf{u}_2) + \dots + c(f(f(f(\dots), \dots), \mathbf{u}_T))$$

$$c(\mathbf{x}_t, \mathbf{u}_t) = \frac{1}{2} \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix}^T \mathbf{C}_t \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix} + \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix}^T \mathbf{c}_t$$

only term that depends on
$$\mathbf{u}_T$$

$$f(\mathbf{x}_t, \mathbf{u}_t) = \mathbf{F}_t \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix} + \mathbf{f}_t$$

Base case: solve for \mathbf{u}_T only

choosing uT is just finding uT that minimizes this expression. No other timesteps are affected by uT

$$Q(\mathbf{x}_T, \mathbf{u}_T) = \text{const} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_T \\ \mathbf{u}_T \end{bmatrix}^T \mathbf{C}_T \begin{bmatrix} \mathbf{x}_T \\ \mathbf{u}_T \end{bmatrix} + \begin{bmatrix} \mathbf{x}_T \\ \mathbf{u}_T \end{bmatrix}^T \mathbf{c}_T$$

$$\mathbf{C}_T = \left[egin{array}{ccc} \mathbf{C}_{\mathbf{x}_T,\mathbf{x}_T} & \mathbf{C}_{\mathbf{x}_T,\mathbf{u}_T} \ \mathbf{C}_{\mathbf{u}_T,\mathbf{x}_T} & \mathbf{C}_{\mathbf{u}_T,\mathbf{u}_T} \end{array}
ight]$$

$$\mathbf{c}_T = \left[egin{array}{c} \mathbf{c}_{\mathbf{x}_T} \ \mathbf{c}_{\mathbf{u}_T} \end{array}
ight]$$

$$\nabla_{\mathbf{u}_T} Q(\mathbf{x}_T, \mathbf{u}_T) = \mathbf{C}_{\mathbf{u}_T, \mathbf{x}_T} \mathbf{x}_T + \mathbf{C}_{\mathbf{u}_T, \mathbf{u}_T} \mathbf{u}_T + \mathbf{c}_{\mathbf{u}_T}^T = 0$$

$$\mathbf{K}_T = -\mathbf{C}_{\mathbf{u}_T, \mathbf{u}_T}^{-1} \mathbf{C}_{\mathbf{u}_T, \mathbf{x}_T}$$

$$\mathbf{u}_T = -\mathbf{C}_{\mathbf{u}_T, \mathbf{u}_T}^{-1} \left(\mathbf{C}_{\mathbf{u}_T, \mathbf{x}_T} \mathbf{x}_T + \mathbf{c}_{\mathbf{u}_T} \right)$$

$$\mathbf{u}_T = \mathbf{K}_T \mathbf{x}_T + \mathbf{k}_T$$

$$\mathbf{u}_T = \mathbf{K}_T \mathbf{x}_T + \mathbf{k}_T \qquad \mathbf{k}_T = -\mathbf{C}_{\mathbf{u}_T,\mathbf{u}_T}^{-1} \mathbf{c}_{\mathbf{u}_T}$$

this is an optimal choice for uT

$$\mathbf{u}_{T} = \mathbf{K}_{T} \mathbf{x}_{T} + \mathbf{k}_{T} \qquad \mathbf{K}_{T} = -\mathbf{C}_{\mathbf{u}_{T}, \mathbf{u}_{T}}^{-1} \mathbf{C}_{\mathbf{u}_{T}, \mathbf{x}_{T}} \qquad \mathbf{k}_{T} = -\mathbf{C}_{\mathbf{u}_{T}, \mathbf{u}_{T}}^{-1} \mathbf{c}_{\mathbf{u}_{T}}$$

$$Q(\mathbf{x}_{T}, \mathbf{u}_{T}) = \operatorname{const} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_{T} \\ \mathbf{u}_{T} \end{bmatrix}^{T} \mathbf{C}_{T} \begin{bmatrix} \mathbf{x}_{T} \\ \mathbf{u}_{T} \end{bmatrix} + \begin{bmatrix} \mathbf{x}_{T} \\ \mathbf{u}_{T} \end{bmatrix}^{T} \mathbf{c}_{T}$$

Since \mathbf{u}_T is fully determined by \mathbf{x}_T , we can eliminate it via substitution!

 $\mathbf{V}_T = \mathbf{C}_{\mathbf{x}_T,\mathbf{x}_T} + \mathbf{C}_{\mathbf{x}_T,\mathbf{u}_T} \mathbf{K}_T + \mathbf{K}_T^T \mathbf{C}_{\mathbf{u}_T,\mathbf{x}_T} + \mathbf{K}_T^T \mathbf{C}_{\mathbf{u}_T,\mathbf{u}_T} \mathbf{K}_T$

 $\mathbf{v}_T = \mathbf{c}_{\mathbf{x}_T} + \mathbf{C}_{\mathbf{x}_T,\mathbf{u}_T} \mathbf{k}_T + \mathbf{K}_T^T \mathbf{C}_{\mathbf{u}_T} + \mathbf{K}_T^T \mathbf{C}_{\mathbf{u}_T,\mathbf{u}_T} \mathbf{k}_T$

$$V(\mathbf{x}_T) = \mathrm{const} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_T \\ \mathbf{K}_T \mathbf{x}_T + \mathbf{k}_T \end{bmatrix}^T \mathbf{C}_T \begin{bmatrix} \mathbf{x}_T \\ \mathbf{K}_T \mathbf{x}_T + \mathbf{k}_T \end{bmatrix} + \begin{bmatrix} \mathbf{x}_T \\ \mathbf{K}_T \mathbf{x}_T + \mathbf{k}_T \end{bmatrix}^T \mathbf{c}_T$$

$$V(\mathbf{x}_T) = \frac{1}{2} \mathbf{x}_T^T \mathbf{C}_{\mathbf{x}_T, \mathbf{x}_T} \mathbf{x}_T + \frac{1}{2} \mathbf{x}_T^T \mathbf{C}_{\mathbf{x}_T, \mathbf{u}_T} \mathbf{K}_T \mathbf{x}_T + \frac{1}{2} \mathbf{x}_T^T \mathbf{K}_T^T \mathbf{C}_{\mathbf{u}_T, \mathbf{x}_T} \mathbf{x}_T + \frac{1}{2} \mathbf{x}_T^T \mathbf{K}_T^T \mathbf{C}_{\mathbf{u}_T, \mathbf{u}_T} \mathbf{K}_T \mathbf{x}_T + \frac{1}{2} \mathbf{x}_T^T \mathbf{C}_{\mathbf{x}_T, \mathbf{u}_T} \mathbf{k}_T + \mathbf{x}_T^T \mathbf{C}_{\mathbf{x}_T} + \mathbf{x}_T^T \mathbf{K}_T^T \mathbf{C}_{\mathbf{u}_T} + \mathbf{const}$$

$$\mathbf{v}_T^T \mathbf{K}_T^T \mathbf{C}_{\mathbf{u}_T, \mathbf{u}_T} \mathbf{k}_T + \frac{1}{2} \mathbf{x}_T^T \mathbf{C}_{\mathbf{x}_T, \mathbf{u}_T} \mathbf{k}_T + \mathbf{x}_T^T \mathbf{C}_{\mathbf{x}_T} + \mathbf{x}_T^T \mathbf{K}_T^T \mathbf{C}_{\mathbf{u}_T} + \mathbf{const}$$

$$\mathbf{v}_T^T \mathbf{c}_T \mathbf{$$

Solve for \mathbf{u}_{T-1} in terms of \mathbf{x}_{T-1} \mathbf{u}_{T-1} affects \mathbf{x}_T ! $f(\mathbf{x}_{T-1}, \mathbf{u}_{T-1}) = \mathbf{x}_T = \mathbf{F}_{T-1} \begin{vmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{vmatrix} + \mathbf{f}_{T-1}$ $Q(\mathbf{x}_{T-1}, \mathbf{u}_{T-1}) = \operatorname{const} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix}^{T} \mathbf{C}_{T-1} \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix} + \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix}^{T} \mathbf{c}_{T-1} + V(f(\mathbf{x}_{T-1}, \mathbf{u}_{T-1}))$ $V(\mathbf{x}_T) = \text{const} + \frac{1}{2}\mathbf{x}_T^T\mathbf{V}_T\mathbf{x}_T + \mathbf{x}_T^T\mathbf{v}_T$ $V(\mathbf{x}_T) = \operatorname{const} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix}^T \mathbf{F}_{T-1}^T \mathbf{V}_T \mathbf{F}_{T-1} \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix} + \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix}^T \mathbf{F}_{T-1}^T \mathbf{V}_T \mathbf{f}_{T-1} + \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix}^T \mathbf{F}_{T-1}^T \mathbf{v}_T$

linear

linear

quadratic

$$Q(\mathbf{x}_{T-1}, \mathbf{u}_{T-1}) = \operatorname{const} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix}^T \mathbf{Q}_{T-1} \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix} + \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix}^T \mathbf{q}_{T-1}$$

$$\mathbf{Q}_{T-1} = \mathbf{C}_{T-1} + \mathbf{F}_{T-1}^T \mathbf{V}_T \mathbf{F}_{T-1}$$

$$\mathbf{q}_{T-1} = \mathbf{c}_{T-1} + \mathbf{F}_{T-1}^T \mathbf{V}_T \mathbf{f}_{T-1} + \mathbf{F}_{T-1}^T \mathbf{v}_T$$

$$\nabla_{\mathbf{u}_{T-1}} Q(\mathbf{x}_{T-1}, \mathbf{u}_{T-1}) = \mathbf{Q}_{\mathbf{u}_{T-1}, \mathbf{x}_{T-1}} \mathbf{x}_{T-1} + \mathbf{Q}_{\mathbf{u}_{T-1}, \mathbf{u}_{T-1}} \mathbf{u}_{T-1} + \mathbf{q}_{\mathbf{u}_{T-1}}^T = 0$$

$$\mathbf{u}_{T-1} = \mathbf{K}_{T-1}\mathbf{x}_{T-1} + \mathbf{k}_{T-1}$$
 $\mathbf{K}_{T-1} = -\mathbf{Q}_{\mathbf{u}_{T-1},\mathbf{u}_{T-1}}^{-1}\mathbf{Q}_{\mathbf{u}_{T-1},\mathbf{x}_{T-1}}$ $\mathbf{k}_{T-1} = -\mathbf{Q}_{\mathbf{u}_{T-1},\mathbf{u}_{T-1}}^{-1}\mathbf{q}_{\mathbf{u}_{T-1}}$

Backward recursion

start at last time step

for t = T to 1:

$$\mathbf{Q}_t = \mathbf{C}_t + \mathbf{F}_t^T \mathbf{V}_{t+1} \mathbf{F}_t$$

$$\mathbf{q}_t = \mathbf{c}_t + \mathbf{F}_t^T \mathbf{V}_{t+1} \mathbf{f}_t + \mathbf{F}_t^T \mathbf{v}_{t+1}$$

$$Q(\mathbf{x}_t, \mathbf{u}_t) = \text{const} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix}^T \mathbf{Q}_t \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix} + \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix}^T \mathbf{q}_t$$

$$\mathbf{u}_t \leftarrow \arg\min_{\mathbf{u}_t} Q(\mathbf{x}_t, \mathbf{u}_t) = \mathbf{K}_t \mathbf{x}_t + \mathbf{k}_t$$
 choose action

$$\mathbf{K}_t = -\mathbf{Q}_{\mathbf{u}_t, \mathbf{u}_t}^{-1} \mathbf{Q}_{\mathbf{u}_t, \mathbf{x}_t}$$

$$\mathbf{k}_t = -\mathbf{Q}_{\mathbf{u}_t, \mathbf{u}_t}^{-1} \mathbf{q}_{\mathbf{u}_t}$$

$$\mathbf{V}_t = \mathbf{Q}_{\mathbf{x}_t, \mathbf{x}_t} + \mathbf{Q}_{\mathbf{x}_t, \mathbf{u}_t} \mathbf{K}_t + \mathbf{K}_t^T \mathbf{Q}_{\mathbf{u}_t, \mathbf{x}_t} + \mathbf{K}_t^T \mathbf{Q}_{\mathbf{u}_t, \mathbf{u}_t} \mathbf{K}_t$$

$$\mathbf{v}_t = \mathbf{q}_{\mathbf{x}_t} + \mathbf{Q}_{\mathbf{x}_t, \mathbf{u}_t} \mathbf{k}_t + \mathbf{K}_t^T \mathbf{Q}_{\mathbf{u}_t} + \mathbf{K}_t^T \mathbf{Q}_{\mathbf{u}_t, \mathbf{u}_t} \mathbf{k}_t$$

$$V(\mathbf{x}_t) = \mathrm{const} + rac{1}{2}\mathbf{x}_t^T\mathbf{V}_t\mathbf{x}_t + \mathbf{x}_t^T\mathbf{v}_t$$
 express value function which is quadratic

we know $\mathbf{x}_1!$

Forward recursion

since we know X1, we can then go forward and numerically calculation values for u

when we've completed the recursion, we've produced an expression for K and k for every single timestep

Backward recursion

for t = T to 1:

$$\mathbf{Q}_t = \mathbf{C}_t + \mathbf{F}_t^T \mathbf{V}_{t+1} \mathbf{F}_t$$

$$\mathbf{q}_t = \mathbf{c}_t + \mathbf{F}_t^T \mathbf{V}_{t+1} \mathbf{f}_t + \mathbf{F}_t^T \mathbf{v}_{t+1}$$

$$Q(\mathbf{x}_t, \mathbf{u}_t) = \text{const} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix}^T \mathbf{Q}_t \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix} + \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix}^T \mathbf{q}_t$$

$$\mathbf{u}_t \leftarrow \arg\min_{\mathbf{u}_t} Q(\mathbf{x}_t, \mathbf{u}_t) = \mathbf{K}_t \mathbf{x}_t + \mathbf{k}_t$$

$$\mathbf{K}_t = -\mathbf{Q}_{\mathbf{u}_t, \mathbf{u}_t}^{-1} \mathbf{Q}_{\mathbf{u}_t, \mathbf{x}_t}$$

$$\mathbf{k}_t = -\mathbf{Q}_{\mathbf{u}_t, \mathbf{u}_t}^{-1} \mathbf{q}_{\mathbf{u}_t}$$

$$\mathbf{k}_{t} = -\mathbf{Q}_{\mathbf{u}_{t},\mathbf{u}_{t}}^{T} \mathbf{q}_{\mathbf{u}_{t}}$$

$$\mathbf{V}_{t} = \mathbf{Q}_{\mathbf{x}_{t},\mathbf{x}_{t}} + \mathbf{Q}_{\mathbf{x}_{t},\mathbf{u}_{t}}^{T} \mathbf{K}_{t} + \mathbf{K}_{t}^{T} \mathbf{Q}_{\mathbf{u}_{t},\mathbf{x}_{t}} + \mathbf{K}_{t}^{T} \mathbf{Q}_{\mathbf{u}_{t},\mathbf{u}_{t}}^{T} \mathbf{K}_{t}$$

$$\mathbf{v}_{t} = \mathbf{q}_{\mathbf{x}_{t}} + \mathbf{Q}_{\mathbf{x}_{t},\mathbf{u}_{t}}^{T} \mathbf{k}_{t} + \mathbf{K}_{t}^{T} \mathbf{Q}_{\mathbf{u}_{t}} + \mathbf{K}_{t}^{T} \mathbf{Q}_{\mathbf{u}_{t},\mathbf{u}_{t}}^{T} \mathbf{k}_{t}$$

$$V(\mathbf{x}_{t}) = \operatorname{const} + \frac{1}{2} \mathbf{x}_{t}^{T} \mathbf{V}_{t} \mathbf{x}_{t} + \mathbf{x}_{t}^{T} \mathbf{v}_{t}$$

$$\mathbf{v}_t = \mathbf{q}_{\mathbf{x}_t} + \mathbf{Q}_{\mathbf{x}_t, \mathbf{u}_t} \mathbf{k}_t + \mathbf{K}_t^T \mathbf{Q}_{\mathbf{u}_t} + \mathbf{K}_t^T \mathbf{Q}_{\mathbf{u}_t, \mathbf{u}_t} \mathbf{k}_t$$

$$V(\mathbf{x}_t) = \text{const} + \frac{1}{2}\mathbf{x}_t^T\mathbf{V}_t\mathbf{x}_t + \mathbf{x}_t^T\mathbf{v}_t$$

total cost from now until end if we take \mathbf{u}_t from state \mathbf{x}_t

total cost from now until end from state
$$\mathbf{x}_t$$

$$V(\mathbf{x}_t) = \min_{\mathbf{u}_t} Q(\mathbf{x}_t, \mathbf{u}_t)$$

LQR for Stochastic and Nonlinear Systems

now lets extend LQR to stochastic dynamics and non-linear systems

Stochastic dynamics

$$f(\mathbf{x}_t, \mathbf{u}_t) = \mathbf{F}_t \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix} + \mathbf{f}_t$$

$$\mathbf{x}_{t+1} \sim p(\mathbf{x}_{t+1}|\mathbf{x}_t,\mathbf{u}_t)$$

$$p(\mathbf{x}_{t+1}|\mathbf{x}_t, \mathbf{u}_t) = \mathcal{N}\left(\mathbf{F}_t \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix} + \mathbf{f}_t, \Sigma_t\right)$$

Solution: choose actions according to $\mathbf{u}_t = \mathbf{K}_t \mathbf{x}_t + \mathbf{k}_t$

 $\mathbf{x}_t \sim p(\mathbf{x}_t)$, no longer deterministic, but $p(\mathbf{x}_t)$ is Gaussian

no change to algorithm! can ignore Σ_t due to symmetry of Gaussians (checking this is left as an exercise; hint: the expectation of a quadratic under a Gaussian has an analytic solution)

The stochastic closed-loop case

$$p(\mathbf{s}_1, \mathbf{a}_1, \dots, \mathbf{s}_T, \mathbf{a}_T) = p(\mathbf{s}_1) \prod_{t=1}^T \pi(\mathbf{a}_t | \mathbf{s}_t) p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)$$

$$\pi = \arg\max_{\pi} E_{\tau \sim p(\tau)} \left[\sum_{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right]$$

form of π ?

time-varying linear

$$\mathbf{K}_t \mathbf{s}_t + \mathbf{k}_t$$

Linear-quadratic assumptions:

$$f(\mathbf{x}_t, \mathbf{u}_t) = \mathbf{F}_t \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix} + \mathbf{f}_t \qquad c(\mathbf{x}_t, \mathbf{u}_t) = \frac{1}{2} \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix}^T \mathbf{C}_t \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix} + \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix}^T \mathbf{c}_t$$

Can we approximate a nonlinear system as a linear-quadratic system?

$$f(\mathbf{x}_t, \mathbf{u}_t) \approx f(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t) + \nabla_{\mathbf{x}_t, \mathbf{u}_t} f(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t) \begin{bmatrix} \mathbf{x}_t - \hat{\mathbf{x}}_t \\ \mathbf{u}_t - \hat{\mathbf{u}}_t \end{bmatrix}$$

$$c(\mathbf{x}_t, \mathbf{u}_t) \approx c(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t) + \nabla_{\mathbf{x}_t, \mathbf{u}_t} c(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t) \begin{bmatrix} \mathbf{x}_t - \hat{\mathbf{x}}_t \\ \mathbf{u}_t - \hat{\mathbf{u}}_t \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_t - \hat{\mathbf{x}}_t \\ \mathbf{u}_t - \hat{\mathbf{u}}_t \end{bmatrix}^T \nabla_{\mathbf{x}_t, \mathbf{u}_t}^2 c(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t) \begin{bmatrix} \mathbf{x}_t - \hat{\mathbf{x}}_t \\ \mathbf{u}_t - \hat{\mathbf{u}}_t \end{bmatrix}$$

$$f(\mathbf{x}_t, \mathbf{u}_t) \approx f(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t) + \nabla_{\mathbf{x}_t, \mathbf{u}_t} f(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t) \begin{bmatrix} \mathbf{x}_t - \hat{\mathbf{x}}_t \\ \mathbf{u}_t - \hat{\mathbf{u}}_t \end{bmatrix}$$

$$c(\mathbf{x}_t, \mathbf{u}_t) \approx c(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t) + \nabla_{\mathbf{x}_t, \mathbf{u}_t} c(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t) \begin{bmatrix} \mathbf{x}_t - \hat{\mathbf{x}}_t \\ \mathbf{u}_t - \hat{\mathbf{u}}_t \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_t - \hat{\mathbf{x}}_t \\ \mathbf{u}_t - \hat{\mathbf{u}}_t \end{bmatrix}^T \nabla_{\mathbf{x}_t, \mathbf{u}_t}^2 c(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t) \begin{bmatrix} \mathbf{x}_t - \hat{\mathbf{x}}_t \\ \mathbf{u}_t - \hat{\mathbf{u}}_t \end{bmatrix}$$

$$\bar{f}(\delta \mathbf{x}_t, \delta \mathbf{u}_t) = \mathbf{F}_t \begin{bmatrix} \delta \mathbf{x}_t \\ \delta \mathbf{u}_t \end{bmatrix}$$
$$\nabla_{\mathbf{x}_t, \mathbf{u}_t} f(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t)$$

$$\bar{c}(\delta \mathbf{x}_{t}, \delta \mathbf{u}_{t}) = \frac{1}{2} \begin{bmatrix} \delta \mathbf{x}_{t} \\ \delta \mathbf{u}_{t} \end{bmatrix}^{T} \mathbf{C}_{t} \begin{bmatrix} \delta \mathbf{x}_{t} \\ \delta \mathbf{u}_{t} \end{bmatrix} + \begin{bmatrix} \delta \mathbf{x}_{t} \\ \delta \mathbf{u}_{t} \end{bmatrix}^{T} \mathbf{c}_{t}$$

$$\nabla^{2}_{\mathbf{x}_{t}, \mathbf{u}_{t}} c(\hat{\mathbf{x}}_{t}, \hat{\mathbf{u}}_{t}) \qquad \nabla_{\mathbf{x}_{t}, \mathbf{u}_{t}} c(\hat{\mathbf{x}}_{t}, \hat{\mathbf{u}}_{t})$$

$$\delta \mathbf{x}_t = \mathbf{x}_t - \hat{\mathbf{x}}_t$$
$$\delta \mathbf{u}_t = \mathbf{u}_t - \hat{\mathbf{u}}_t$$

Now we can run LQR with dynamics \bar{f} , cost \bar{c} , state $\delta \mathbf{x}_t$, and action $\delta \mathbf{u}_t$

Iterative LQR (simplified pseudocode)

until convergence:

$$\mathbf{F}_t = \nabla_{\mathbf{x}_t, \mathbf{u}_t} f(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t)$$

$$\mathbf{c}_t = \nabla_{\mathbf{x}_t, \mathbf{u}_t} c(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t)$$

$$\mathbf{C}_t = \nabla^2_{\mathbf{x}_t, \mathbf{u}_t} c(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t)$$

Run LQR backward pass on state $\delta \mathbf{x}_t = \mathbf{x}_t - \hat{\mathbf{x}}_t$ and action $\delta \mathbf{u}_t = \mathbf{u}_t - \hat{\mathbf{u}}_t$

Run forward pass with real nonlinear dynamics and $\mathbf{u}_t = \mathbf{K}_t(\mathbf{x}_t - \hat{\mathbf{x}}_t) + \mathbf{k}_t + \hat{\mathbf{u}}_t$

Update $\hat{\mathbf{x}}_t$ and $\hat{\mathbf{u}}_t$ based on states and actions in forward pass

Why does this work?

Compare to Newton's method for computing $\min_{\mathbf{x}} g(\mathbf{x})$:

until convergence:

$$\mathbf{g} = \nabla_{\mathbf{x}} g(\hat{\mathbf{x}})$$

$$\mathbf{H} = \nabla_{\mathbf{x}}^2 g(\hat{\mathbf{x}})$$

$$\hat{\mathbf{x}} \leftarrow \arg\min_{\mathbf{x}} \frac{1}{2} (\mathbf{x} - \hat{\mathbf{x}})^T \mathbf{H} (\mathbf{x} - \hat{\mathbf{x}}) + \mathbf{g}^T (\mathbf{x} - \hat{\mathbf{x}})$$

Iterative LQR (iLQR) is the same idea: locally approximate a complex nonlinear function via Taylor expansion

In fact, iLQR is an approximation of Newton's method for solving

$$\min_{\mathbf{u}_1,\ldots,\mathbf{u}_T} c(\mathbf{x}_1,\mathbf{u}_1) + c(f(\mathbf{x}_1,\mathbf{u}_1),\mathbf{u}_2) + \cdots + c(f(f(\mathbf{x}_1,\mathbf{u}_1),\mathbf{u}_2)) + \cdots + c(f(f(\mathbf{x}_1,\mathbf{u}_1),\mathbf{u}_2)$$

In fact, iLQR is an approximation of Newton's method for solving

$$\min_{\mathbf{u}_1,\ldots,\mathbf{u}_T} c(\mathbf{x}_1,\mathbf{u}_1) + c(f(\mathbf{x}_1,\mathbf{u}_1),\mathbf{u}_2) + \cdots + c(f(f(\mathbf{x}_1),\mathbf{u}_1),\mathbf{u}_2) + \cdots + c(f(f(\mathbf{x}_1),\mathbf{u}_1),\mathbf{u}_2) + \cdots + c(f(f(\mathbf{x}_1),\mathbf{u}_1),\mathbf{u}_2) + \cdots + c(f(f(\mathbf{x}_1),\mathbf{u}_2),\mathbf{u}_2) + \cdots + c(f(f(\mathbf{x}_1),\mathbf{u}_2),\mathbf{u}_2$$

To get Newton's method, need to use second order dynamics approximation:

$$f(\mathbf{x}_t, \mathbf{u}_t) \approx f(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t) + \nabla_{\mathbf{x}_t, \mathbf{u}_t} f(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t) \begin{bmatrix} \delta \mathbf{x}_t \\ \delta \mathbf{u}_t \end{bmatrix} + \frac{1}{2} \left(\nabla_{\mathbf{x}_t, \mathbf{u}_t}^2 f(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t) \cdot \begin{bmatrix} \delta \mathbf{x}_t \\ \delta \mathbf{u}_t \end{bmatrix} \right) \begin{bmatrix} \delta \mathbf{x}_t \\ \delta \mathbf{u}_t \end{bmatrix}$$

differential dynamic programming (DDP)

$$\hat{\mathbf{x}} \leftarrow \arg\min_{\mathbf{x}} \frac{1}{2} (\mathbf{x} - \hat{\mathbf{x}})^T \mathbf{H} (\mathbf{x} - \hat{\mathbf{x}}) + \mathbf{g}^T (\mathbf{x} - \hat{\mathbf{x}})$$

why is this a bad idea?

until convergence:

$$\mathbf{F}_t = \nabla_{\mathbf{x}_t, \mathbf{u}_t} f(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t)$$

$$\mathbf{c}_t = \nabla_{\mathbf{x}_t, \mathbf{u}_t} c(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t)$$

$$\mathbf{C}_t = \nabla^2_{\mathbf{x}_t, \mathbf{u}_t} c(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t)$$

Run LQR backward pass on state $\delta \mathbf{x}_t = \mathbf{x}_t - \hat{\mathbf{x}}_t$ and action $\delta \mathbf{u}_t = \mathbf{u}_t - \hat{\mathbf{u}}_t$

Run forward pass with
$$\mathbf{u}_t = \mathbf{K}_t(\mathbf{x}_t - \hat{\mathbf{x}}_t) + \mathbf{k}_t \mathbf{k}_t + \hat{\mathbf{u}} \hat{\mathbf{u}}_t$$

Update $\hat{\mathbf{x}}_t$ and $\hat{\mathbf{u}}_t$ based on states and actions in forward pass

search over α until improvement achieved

Case Study and Additional Readings

Case study: nonlinear model-predictive control

Synthesis and Stabilization of Complex Behaviors through Online Trajectory Optimization

Model predictive control: every timestep, you observe your current state xt, then you use your favorite planning or control method to figure out a plan (i.e. a sequence of actions all the way to time T). Then you do the first step of that plan. Then you discard the remaining part of your plan, and create a new plan based on your new state.

Yuval Tassa, Tom Erez and Emanuel Todorov University of Washington

every time step: observe the state \mathbf{x}_t use iLQR to plan $\mathbf{u}_t, \dots, \mathbf{u}_T$ to minimize $\sum_{t'=t}^{t+T} c(\mathbf{x}_{t'}, \mathbf{u}_{t'})$ execute action \mathbf{u}_t , discard $\mathbf{u}_{t+1}, \dots, \mathbf{u}_{t+T}$

Synthesis of Complex Behaviors with Online Trajectory Optimization

Yuval Tassa, Tom Erez & Emo Todorov

IEEE International Conference on Intelligent Robots and Systems 2012

Additional reading

- 1. Mayne, Jacobson. (1970). Differential dynamic programming.
 - Original differential dynamic programming algorithm.
- 2. Tassa, Erez, Todorov. (2012). Synthesis and Stabilization of Complex Behaviors through Online Trajectory Optimization.
 - Practical guide for implementing non-linear iterative LQR.
- 3. Levine, Abbeel. (2014). Learning Neural Network Policies with Guided Policy Search under Unknown Dynamics.
 - Probabilistic formulation and trust region alternative to deterministic line search.

What's wrong with known dynamics?

Next time: learning the dynamics model