第六章 纤维及其织物的阻燃机理和技术

6.1 纤维的种类

天然纤维

棉、丝、羊毛

人造纤维

粘胶纤维

合成纤维

尼龙、涤纶、 腈纶 无机纤维

玻璃纤维、石棉

人造纤维:是使用天然纤维制造的化学纤维,是将不能直接纺织的原料经过化学方法制造而成的纤维。简单的讲就是以天然纤维素为原料,经碱化、老化、磺化等工序制成可溶性纤维素磺酸酯,再溶于稀碱液制成粘胶,经湿法纺丝而制成。

合成纤维: 属于石油产品,以石油为原料制得。

无机纤维: 以矿物质为原料制成的化学纤维。

图 5-2 全球纤维需求

据统计,由于纺织品引起的火灾约占火灾总数的40%以上。特别是建筑住宅火灾,纺织品着火蔓延所占的比例更大,在纺织品中以床上用品和室内装饰织物为起火的主要原因。

1700年,发表了一个阻燃纤维素的专利。该专利以含铝矾土(十二水合硫酸铝钾)、硫酸铁及硼砂(十水合硼酸钠)的混合物为纤维素的阻燃剂。

阻燃纤维织物的一个 重大进展是采用含卤有机 物-金属氧化物双组份阻 燃系统,特别是以氯化石 蜡和三氧化二锑阻燃纺织 品。

6.2 纤维的燃烧性能

表 5-3 纤维燃烧性的区分依据

分 类	燃烧性	纤维名称		
不燃性纤维	不能点燃	玻璃纤维、金属纤维、石棉、碳纤维、硅纤维		
难燃纤维	遇火燃烧,但难以点燃,燃烧速度慢	氟纤维、聚氯乙烯、聚偏氯乙烯、改性丙烯腈纤维		
可燃纤维	遇到火焰能发烟燃烧,但离开火源就自行熄灭	聚酯、聚酰胺、维纶、醋酸纤维、羊毛、丝		
易燃纤维	容易点燃,燃烧速度快	聚丙烯、聚丙烯腈、棉麻、黏胶纤维		

表 5-5 纤维的燃烧状况

纤维试验		燃 烧 状 况					
		接近火焰时	在火焰中	离开火焰	臭味	灰	
	羊毛	收缩	收缩,燃烧	能继续燃烧,但 困难,燃前先收缩	烧羽毛的臭味	黑色、脆、容易 破坏	
天然纤维	棉麻	和火焰接触即燃烧	燃烧	继续很快燃烧, 有残渣	烧纸的臭味	灰色,柔软	
人造纤维	黏胶纤维	和火焰接触即燃烧	燃烧	继续极快燃烧, 无残渣	烧纸的臭味	几乎无灰	
化学纤维	涤纶	接触火焰前熔融	熔融,燃烧	容易燃烧	特殊臭味	黑色硬球	
化子红维	腈纶	接触前熔融、	熔融,燃烧	闪光,迅速燃烧	略有烧肉臭味	硬、黑、不整齐	

表 5-6 几种纤维材料燃烧时烟雾及气体的生成

++ +4	最大烟密度	气体的浓度/μL・L-1		
材 料	(Maximum Specific Optical Density)	CO	HCI	HCN
尼龙织物	16	30	0	0
75%羊毛-25%棉纤维	14	50	0	6
改性丙烯腈织物	39	220	110	30
芳香族聚酰胺织物	32	130	0	3
羊毛地毯	123	190	0	15
改性丙烯腈地毯	410	400	1000	70

表 5-7 几种纺织品燃烧时能见度的降低

样品织物	能见度降低/% (Decrease in visibility)	烟密度 (Optical density)	样品织物	能见度降低/% (Decrease in visibility)	烟密度 (Optical density)
聚丙烯腈	97	1.5	尼 龙	6	0.03
棉织物	4	0.02	涤 纶	28	0.14
阻燃处理的棉织物	98	1. 7	65/35 涤棉混纺织物	99	2.00
黏胶	4	0.02	55/45 涤毛混纺织物	98	1.70
羊毛	18	0.09	PVC 织物	34	0.18

6.3 纤维及织物的阻燃改性方法

图 5-3 纤维与纺织品燃烧过程

(a) **移除热量**:通过阻燃体系的熔融、降解等反应过程移除纤维素燃烧过程中产生的热量,降低纤维的进一步降解,这类阻燃剂主要有无机、有机含磷化合物及氢氧化铝等。

图 5-3 纤维与纺织品燃烧过程

- (a) 移除热量:通过阻燃体系的熔融、降解等反应过程移除纤维素燃烧过程中产生的热量,降低纤维的进一步降解,这类阻燃剂主要有无机、有机含磷化合物及氢氧化铝等。
- (b) 提高热分解温度:提高热分解温度可以降低相同情况下纤维素分解的可能性,从而减少了燃烧的发生,这类阻燃剂主要为一些耐热的芳香族反应型阻燃剂。

图 5-3 纤维与纺织品燃烧过程

- (a) 移除热量:通过阻燃体系的熔融、降解等反应过程移除纤维素燃烧过程中产生的热量,降低纤维的进一步降解,这类阻燃剂主要有无机、有机含磷化合物及氢氧化铝等。
- (b)提高热分解温度:提高热分解温度可以降低相同情况下纤维素分解的可能性,从而减少了燃烧的发生,这类阻燃剂主要为一些耐热的芳香族反应型阻燃剂。
- (c) **降低可燃性挥发物的生成,提高炭的生成量**:大多数磷、 氮阻燃剂。

图 5-3 纤维与纺织品燃烧过程

- (a) 移除热量:通过阻燃体系的熔融、降解等反应过程移除纤维素燃烧过程中产生的热量,降低纤维的进一步降解,这类阻燃剂主要有无机、有机含磷化合物及氢氧化铝等。
- (b)提高热分解温度:提高热分解温度可以降低相同情况下纤维素分解的可能性,从而减少了燃烧的发生,这类阻燃剂主要为一些耐热的芳香族反应型阻燃剂。
- (c)降低可燃性挥发物的生成,提高炭的生成量:大多数磷、 氮阻燃剂。
- (d) **降低燃烧区与氧气的接触**:卤素阻燃体系等主要利用此方法进行阻燃。

图 5-3 纤维与纺织品燃烧过程

- (a) 移除热量:通过阻燃体系的熔融、降解等反应过程移除纤维素燃烧过程中产生的热量,降低纤维的进一步降解,这类阻燃剂主要有无机、有机含磷化合物及氢氧化铝等。
- (b)提高热分解温度:提高热分解温度可以降低相同情况下纤维素分解的可能性,从而减少了燃烧的发生,这类阻燃剂主要为一些耐热的芳香族反应型阻燃剂。
- (c)降低可燃性挥发物的生成,提高炭的生成量:大多数磷、 氮阻燃剂。
- (d) 降低燃烧区与氧气的接触: 卤素阻燃体系等主要利用此方法进行阻燃。
- (e) 改变燃烧氧化机理,提高点燃温度:如卤素与锑类化合物协同阻燃体系。

6.3 纤维及织物的阻燃机理

(1) 覆盖层机理

指某些阻燃剂在高温下能与纤维表面形成玻璃状或 稳定泡沫覆盖层,一方面可以阻止氧气的供应,另一方面 阻止可燃性气体的逸出,从而达到阻燃的目的。

硼砂-硼酸是一种含有结晶水的低熔点化合物,在接近火焰时会很快熔融而覆盖在纤维表面,这种覆盖层对热很稳定,它隔断了保持继续燃烧所需的氧气供应,从而使燃烧难以进行,属于这一类的阻燃剂有硼酸盐和某些磷化合物。

(2) 生成不燃性气体机理

阻燃剂受热分解出不燃性气体,将纺织品分解出来的可燃性气体浓度冲淡到能产生火焰浓度以下。

例如:卤素阻燃剂、铵盐、碳酸盐等受热分解会产生NH₃、CO₂、HCl、HBr等不燃性气体,他们冲淡了纺织品受热分解所产生的可燃性气体,使火焰中心处于氧气供应不足,并由于气体的生成和热对流,带走了一部分热量,起到阻燃作用。

(3) 吸热机理

织物受热,阻燃剂和纤维在同样温度下分解,阻燃剂分解需要的能量,将带走织物上的热量,得到阻燃效果。

(4) 催化脱水机理

阻燃剂在高温下,生成具有脱水能力的羧酸。酸酐等,与纤维及纺织品基体反应,促进脱水炭化,减少可燃性气体的生成。

(5) 自由基控制机理

有机物在燃烧过程中产生的自由基能使燃烧加剧,若 用含卤素的有机物对织物进行阻燃处理,含卤化合物在高 温下裂解成卤素自由基,它与氢自由基结合就终止了连锁 反应,减缓燃烧速度。

6.4 纺织品的阻燃处理

阻燃织物的阻燃性与<u>纤维的化学性质</u>、<u>织物的密度和结构</u>、所用阻燃剂的效率及环境等很多因素有关。

纺织品的<u>密度与结构</u>影响它的<u>燃烧速度及引燃性</u>,密度低的织物比密度高的燃烧速度<u>大</u>得多,因而阻燃前者所需的阻燃剂量要<u>大</u>。

纺织品的阻燃处理主要采用<u>喷涂、涂刷</u>和<u>浸渍</u>的方法

一、纺织品的耐久性阻燃处理

Erifon工艺:将含锑和钛的无机阻燃剂氯氧化锑和氯氧化钛在pH值为4的酸性溶液中浸扎于纺织品上,再令纺织品通过硫酸钠溶液,最后将纺织品冲洗和干燥,阻燃处理即告完成。

Titanox工艺: 所用阻燃剂是醋酸氯化钛和氯氧化锑。

二、纺织品的非耐久性阻燃处理

对织物进行非耐久性阻燃处理,采用<u>水溶性阻燃剂</u>是 最容易实现的。

只需以阻燃剂水溶液对织物浸扎后干燥即可。

调节<u>阻燃剂溶液的浓度</u>和<u>织物对整理液的吸着情况</u>,即可控制织物所含的阻燃剂量。

表 13-4 用于纺织品非耐久性阻燃处理的配方

编号	硼砂 Na ₂ B ₄ O ₇ ·10H ₂ O	硼酸 H ₃ BO ₃	磷酸氢二铵 (NH ₄) ₂ HPO ₄	十二水合磷酸钠 Na ₃ PO ₄ ·12H ₂ O	其他
1	70	30	, , , ,	· · · · · · · · · · · · · · · · · · ·	1
2	47	20	33		ļ
3		50	}	50	ļ
4		50	50		
5	50	35		15	
6			25		75⊕
_ 7	15	47	-		75 [©] 38 [©]

三、纺织品的半耐久性阻燃处理

半耐久性阻燃织物可耐洗<u>1~15次</u>。对用于家具、窗帘的纺织品,半耐久性阻燃处理是适宜的。

在纺织品上沉淀无机氧化物,如 $WO_3 \bullet xH_2O$ 和 $SnO_2 \bullet yH_2O$ 共沉淀,可提高阻燃纺织品的耐洗性能,还可提高其抗阴燃性。

大多数能赋予棉纤维半耐久阻燃性的阻燃剂是<u>含磷和</u> <u>氮的化合物</u>。

6.5 纤维及纺织品用阻燃剂

一、阻燃棉纤维及其织物

阻燃棉织品一般采用后处理阻燃方法,这种方法能赋 予棉织品一定程度的耐久阻燃性。

如果采用的阻燃剂为<u>易溶于水的盐类</u>(磷酸铵、溴化物、硼砂-硼酸混合物等),则其阻燃性是<u>不耐久</u>的。

如果采用的阻燃剂是<u>反应型</u>的(烷基磷酰胺衍生物、 四羟甲基磷盐缩合物、树脂粘结的锑-溴阻燃系统等),则 其棉织物可获得耐久阻燃性。

表 13-1 用于处理棉纤维及其织物的阻燃剂

阻燃剂名称	阻燃剂结构式或配方	阻燃性
聚磷酸铵(APP)	(NH ₄ PO ₃),	不耐久或半耐久(与 APP 的聚合度 n 有关)
磷酸氢二铵	(NH ₄) ₂ HPO ₄	不耐久
羟甲基化膦酰胺	(CH₃O)₂PCH₂CH₂CONHCH₂OH	耐水洗 50 次以上
	(Pyrovatex CP, TFR1 或 Alliamit)	
四羟甲基 镤盐缩 合物		半耐久
	(Proban)	
氯化石蜡	$C_n H_{(2n-pn+2)} Cl_m$	半耐久
卤-锑系统(含脂肪	$DBDPO(HBCD) + Sb_2O_3(Sb_2O_5) + 两$	半耐久或耐久
族或芳香族溴)	烯酸树脂(Myflam, Flacavon)	

二、阻燃粘胶纤维及其织物

阻燃粘胶纤维时,通常是在纤维制造过程中将阻燃剂加入纺丝料中,这可赋予纤维较耐久的阻燃性,且可消除纺织品阻燃后处理可能引起的环境污染。

目前仍在且广泛使用于粘胶纤维的阻燃剂是<mark>环状二硫代焦磷酸酯</mark>,最早由瑞士Sandoz公司合成,商品名为Sandoflame5060(现为Clariant公司产品Exolit5060)。

$$CH_3$$
 CH_2O P OCH_2 CH_3 CH_3 CH_3 CH_3 CH_3

环状二硫代焦磷酸酯

三、阻燃合成纤维及其织物

合成纤维的阻燃处理可采用<u>原丝改性</u>或<u>织物后处理</u>两种方法。

锦纶: 硫脲、硫氰酸铵、氨基磺酸酯(盐)、聚硼酸酯、卤化锡、含锆络合物。

腈纶: 丙烯腈与偏二氯乙烯共聚物、丙烯腈与氯乙烯 乳液共聚物。

聚丙烯酸酯纤维:交联结构的丙烯酸与丙烯酰胺共聚物。