DWARF Theory: Emergent Orbital Dynamics from Flow Fields

Tyler Nagel May 26, 2025

Abstract

This document summarizes findings from the DWARF simulation framework, where classical orbital mechanics—including Kepler's Laws—emerge from structured density field interactions without assuming gravitational force laws.

1 Orbital Velocity vs Radius

Figure 1 shows the inverse relationship between orbital velocity and orbital radius for Earth, consistent with Newtonian orbital mechanics:

$$v \propto \frac{1}{\sqrt{r}}$$

Figure 1: Earth orbital velocity vs radius.

2 Kepler's Third Law Validation

Using peak analysis from radius time series, we compute orbital period T and average radius r to verify:

$$\frac{r^3}{T^2} \approx \text{constant}$$

Earth simulation data yielded consistent ratios across 117 orbits.

3 System Barycenter Dynamics

The DWARF simulation maintains a coherent barycenter that shifts slightly under the influence of massive outer bodies (e.g., Jupiter), replicating the Solar System's barycentric oscillation.

4 Conclusion

DWARF reproduces Newtonian orbital structures using only density-based flow interaction. No gravitational equations were imposed. These results offer a novel framework for modeling cosmic dynamics from first-principle field behavior.