Problem A. A

Time limit 1000 ms Mem limit 524288 kB

题目描述

在比特航空公司的飞机上,座位分布为n排,每排有六个座位,第三个和第四个座位之间有过道。一些乘客提前在线上登记,另一些乘客在机场的登记柜台登记。

在线登记时,乘客可以选择任何座位,并且不能更改。例如,当 n=6 时,在线登记后的座位安排可能如下图所示(用叉号表示已占用的座位):

将有 *m* 名乘客来到登记柜台。根据比特航空的规定,需要将他们安排在飞机上,使得最终的座位安排相对于过道是对称的。也就是说,如果某排的第一个座位上有乘客,那么同排的第六个座位上也必须有乘客。同样地,第二个和第五个座位,第三个和第四个座位也必须对称。已经在线登记的乘客不能更换座位。在上图所示的初始座位安排中,可以添加七名乘客,使其满足对称条件,例如如下图所示:

给定在线登记后的座位安排。需要安排 m 名乘客,使得最终的座位安排相对于过道是对称的,或者确定这是不可能的。

输入格式

第一行包含两个整数 n 和 m $(1 \le n \le 1000, 0 \le m \le 6000)$,分别表示飞机的排数和将要登记的乘客数量。

接下来的 n 行表示在线登记后的初始座位安排。每行包含六个字符,第 i 行第 j 个字符为 \times ,表示第 i 排第 j 个座位已被占用;为 \cdot ,表示该座位空闲。

输出格式

如果无法找到符合要求的座位安排,输出 Impossible。

否则,输出 n 行,每行六个字符,表示最终的座位安排。第 i 行第 j 个字符为 \times ,表示座位已被占用;为 . ,表示座位空闲。如果存在多个解决方案,可以输出任意一个。

样例1

Input	Output		
1 0 X.XX.X	X.XX.X		

在第一个样例中,m=0,座位安排已经是对称的,因此最终的座位安排与初始安排相同。

样例2

Input	Output		
2 1 X.XX.X X	X.XX.X XX		

在第二个样例中,只有一种方法可以对称地安排乘客。

样例3

Input	Output
3 2 X.XX.X	Impossible
XX.X	

在第三个样例中,如果 m=1,存在解决方案,但 m=2 时不存在对称安排所有乘客的方法。

样例4

Input	Output		
1 103 .X.XXX	Impossible		

在第四个样例中,需要安排的乘客数量超过了飞机上的空闲座位数量。

样例 5

Input	Output			
6 7	XX			
X	XX			
	.XX.			
X.	XX			
X	XX			
	XX			
XX				

第五个样例对应于题目描述中的图示情况。在这个样例中存在多个解决方案,给出了其中一种。

数据范围与提示

子任务	分值	附加限制	子任务依赖	
1	15	m=0		
2	16	初始时飞机上所有座位都是空的		
3	17	m = 1		
4	18	初始时飞机上只有一个座位被占用		
5	34	无附加限制	$1\sim 4$	

Problem B. B

Time limit 1000 ms **Mem limit** 524288 kB

题目描述

如果序列 $[b_1, b_2, \ldots, b_k]$ 满足对某个 $1 \leq i \leq k$, $b_1 < b_2 < \ldots < b_i > \ldots > b_k$,则称该序列为双调序列。

例如,序列 [1],[1,2,3,2],[1,4,10],[3,2] 是双调序列,而序列 [1,1],[2,1,3] 不是双调序列。

给定一个序列 $[a_1,a_2,\ldots,a_n]$ 。需要计算满足 $1\leq l\leq r\leq n$ 且子序列 $[a_l,a_{l+1},\ldots,a_r]$ 是双调序列的 (l,r) 对的数量。

输入格式

第一行输入包含一个整数 $n (1 \le n \le 3 \cdot 10^5)$ 。

第二行输入包含 n 个整数 : a_1, a_2, \ldots, a_n $(1 \le a_i \le n)$.

输出格式

输出一个整数,表示满足条件的(l,r)对的数量。

样例1

Input	Output		
5 1 1 2 3 1	11		

在第一个样例中,满足条件的 (l,r) 对有: – (1,1),序列 [1] – (2,2),序列 [1] – (2,3),序列 [1,2] – (2,4),序列 [1,2,3] – (2,5),序列 [1,2,3,1] – (3,3),序列 [2] – (3,4),序列 [2,3] – (3,5),序列 [2,3,1] – (4,4),序列 [3] – (4,5),序列 [3,1] – (5,5),序列 [1]

样例 2

Input	Output			
3 1 1 1	3			

数据范围与提示

子任务	分值	分值 附加限制 子信	
1	27	$n \leq 500$	
2	14	$n \leq 5000$	1
3	20	所有 a_i 都不同	
4	39	无附加限制	$1\sim 3$

Problem C. C

Time limit 1000 ms Mem limit 524288 kB

题目描述

给定一个 h 行 w 列的表格 A,每个单元格中都有一个整数。行从上到下编号为 1 到 h,列从左到右编号为 1 到 w。

可以对这个表格进行以下操作:

- 选择一个列并删除它(左右两侧的列将变成相邻的)。
- 选择一个行并删除它(上下两侧的行将变成相邻的)。

这些操作可以任意次序、任意次数地进行。

确定是否可以通过这些操作使表格中所有数的和等于给定的数 s,如果可以,输出需要进行的操作及其顺序。

输入格式

第一行包含两个整数 h 和 w $(1 \le h, w \le 15)$, 表示表格的行数和列数。

接下来的 h 行中,每行包含 w 个整数,表示表格 A $(0 \leq A_{i,j} \leq 10^9)$ 。

最后一行包含一个整数 s $(1 \le s \le 10^{18})$, 表示所需的和。

输出格式

如果无法通过操作得到和为s的表格,输出N0。

否则:

- 第一行输出 YES。
- 第二行输出一个整数 k , 表示需要进行的操作次数。
- 接下来的 k 行中,每行包含两个整数 t_j 和 i_j ,其中 $t_j=1$ 表示操作是删除行, $t_j=2$ 表示操作是删除列。 i_j 表示在初始编号中进行操作的行或列的编号。

样例1

Input	Output		
3 3	YES		
3 3 1 2 3	2		
2 3 1	1 3		
3 1 2	2 3		
8			

在第一个样例中,初始表格如下:

1	2	3
2	3	1
3	1	2

删除第三行和第三列后,得到和为8的表格:

1	2	3		1	9	3		1	9
2	3	1	\rightarrow	2	3	_	\rightarrow	1	3
3	1	2			o	1			J

样例 2

Input	Output
2 3 2 2 2 2 2 2 5	NO

在第二个样例中,无法通过允许的操作得到和为5的表格。

样例 3

Input	Output
5 5 1 2 1 4 5 2 5 4 1 2 4 2 4 3 1 5 5 3 2 4 1 2 4 5 2 34	YES 3 1 4 1 5 2 1

在第三个样例中,初始表格如下:

1	2	1	4	5
2	5	4	1	2
4	2	4	3	1
5	5	3	2	4
1	2	4	5	2

删除最后两行和第一列后,得到和为34的表格:

1	2	1	4	5		1	9	1	1	5]										
2	5	4	1	2		2		1	1	9		1	2	1	4	5		2	1	4	5
4	2	4	3	1	\rightarrow		9	4	1		\rightarrow	2	5	4	1	2	\rightarrow	5	4	1	$\overline{2}$
5	5	3	2	1		4	2	4	3	1		1	2	1	3	1		2	1	3	1
5	0	9	-	9		5	5	3	2	4		4		4	0	1			4	0	1
$\mid 1 \mid$	2	4	5	2							J										

数据范围与提示

子任务	分值	附加限制	子任务依赖
1	17	h=1	
2	6	每行的数字和不超过该行的编号	
3	10	$h \leq 3$	1
4	13	$h,w \leq 10$	
5	13	$h,w \leq 12$	4
6	12	$a_{i,j} \leq 6$	
7	29	无附加限制	$1\sim 6$

Problem D. D

Time limit 2000 ms **Mem limit** 524288 kB

题目描述

给定一个无向树,即一个包含 n 个顶点且无环的连通图,以及一个整数 k。固定树中的某个顶点 s 并将其称为首都。

将树的边从首都开始定向。换句话说,如果将树悬挂在顶点 s 上,如果顶点 u 是顶点 v 的父节点,则将边 (u,v) 定向为 $u\to v$ 。注意,这样定向后,每个顶点都可以从首都到达。

定义到顶点 v 的距离为从 s 到 v 的最小边数。称顶点 s 的 **可达性** 为到所有顶点的最大距离。

允许在树中添加不超过 k 条额外的有向边。

对于树中的每个顶点 s,确定如果选择顶点 s 作为首都,添加不超过 k 条额外的有向边,可以达到的最小 **可达性**。

注意,在某些子任务中,只需要输出第一个顶点的答案。

输入格式

第一行包含三个整数 n,k,t $(2\leq n\leq 2\cdot 10^5,1\leq k\leq n-1,n\cdot k\leq 2\cdot 10^5,0\leq t\leq 1)$,分别表示树的顶点数、最多添加的边数限制和一个标志 t,如果 t=0,则只需要输出编号为 1 的顶点的答案,否则输出所有顶点的答案。

接下来的 n-1 行中,每行包含两个整数 u_i 和 v_i $(1 \le u_i, v_i \le n)$,表示树的边。

保证给定的边构成一棵树。

输出格式

如果 t=0,输出一个整数,表示选择编号为 1 的顶点作为首都,添加不超过 k 条额外的有向边,可以达到的最小 **可达性**。

如果 t=1,输出 n 个整数,第 i 个整数表示选择编号为 i 的顶点作为首都,添加不超过 k 条额外的有向边,可以达到的最小 **可达性**。

样例1

Input	Output
5 2 1 1 2 1 3 2 4 2 5	1 1 2 2 2

样例 2

Input	Output
3 1 0	1
2 3	
2 3	

下图展示了第一个样例的示意图。虚线表示添加的边。对于顶点 1 和 2 ,最小 **可达性** 为 1 ,而对于顶点 3 、4 和 5 ,最小 **可达性** 为 2 。

数据范围与提示

子任务	分值	附加限制	子任务依赖
1	5	$u_i=i, v_i=i+1, t=0$	
2	5	$k=1, n\leq 2000, t=0$	
3	10	k=1, t=0	2
4	5	$u_i=i, v_i=i+1$	1
5	5	$n \leq 16$	
6	10	$n \leq 50$	5
7	10	$n \leq 400$	5,6
8	10	$n \leq 2000$	5, 6, 7
9	25	$n \cdot k \leq 50000$	2, 5, 6, 7, 8
10	15	无附加限制	$1\sim 9$

Problem E. E

Time limit 3000 ms Mem limit 262144 kB

题目描述

爱丽丝、鲍勃和查理正在玩"三人纸牌游戏",规则如下:

- 一开始,三位玩家各自有一叠纸牌。爱丽丝的牌堆有 N 张牌,鲍勃的牌堆有 M 张牌,查理的牌堆有 K 张牌。每张牌上都写着字母 a 、 b 或 c 。牌堆中的牌顺序不能改变。
- 玩家轮流出牌,先是爱丽丝。
- 如果当前玩家的牌堆至少有一张牌,则将牌堆顶部的牌弃掉。然后,拿起被弃掉的牌上的字母开 头的玩家继续下一轮。(例如,如果牌上写着 a ,则下一轮由爱丽丝出牌。)
- 如果当前玩家的牌堆为空,则游戏结束,当前玩家获胜。

三位玩家初始牌堆有 3^{N+M+K} 种可能的组合方式。在这些组合中,有多少种会导致爱丽丝获胜?由于答案可能很大,输出结果对 $1\,000\,000\,007 (=10^9+7)$ 取模。

限制条件

- $1 \le N \le 3 \times 10^5$
- $1 < M < 3 \times 10^5$
- $1 < K < 3 \times 10^5$

部分分数

• 通过满足以下测试集的测试将获得 500 分: $1 \leq N \leq 1000$, $1 \leq M \leq 1000$, $1 \leq K \leq 1000$ 。

输入

输入以标准输入给出,格式如下:

N M K

输出

输出结果对 $10000007 (= 10^9 + 7)$ 取模。

示例1

Input	Output				
1 1 1	17				

- 如果爱丽丝的牌是 $\frac{1}{2}$,那么无论鲍勃和查理的牌是什么,爱丽丝都会获胜。共有 $\frac{1}{2}$ $\frac{1}{2$
- 如果爱丽丝的牌是 b ,那么只有当鲍勃的牌是 a ,或者当鲍勃的牌是 c 且查理的牌是 a 时,爱丽丝才会获胜。共有 3+1=4 种这样的组合。
- 如果爱丽丝的牌是 c ,那么只有当查理的牌是 a ,或者当查理的牌是 b 且鲍勃的牌是 a 时,爱丽丝才会获胜。共有 3+1=4 种这样的组合。

因此, 共有9+4+4=17种组合会导致爱丽丝获胜。

示例 2

Input	Output
4 2 2	1227

示例 3

Input	Output			
1000 1000 1000	261790852			