Линейная алгебра

Нормированные пространства

Глеб Карпов

МНаД ФКН ВШЭ

Пространства со скалярным произведением (Inner product spaces)

і Скалярное произведение

Пусть $\mathbb V$ — векторное пространство. Скалярное произведение на $\mathbb V$ — это **функция**, которая каждой паре векторов $\mathbf x, \mathbf y$ сопоставляет скаляр, обозначаемый как $(\mathbf x, \mathbf y)$ или $\langle \mathbf x, \mathbf y \rangle$, так что выполняются свойства 1–4 ниже.

- 1. Симметричность (сопряжённая): $(\mathbf{x}, \mathbf{y}) = (\mathbf{y}, \mathbf{x})$,
- 2. Линейность: $(\alpha \mathbf{x} + \beta \mathbf{y}, \mathbf{z}) = \alpha(\mathbf{x}, \mathbf{z}) + \beta(\mathbf{y}, \mathbf{z})$ для любых векторов $\mathbf{x}, \mathbf{y}, \mathbf{z}$ и любых скаляров α, β ,
- 3. Неотрицательность: $(\mathbf{x}, \mathbf{x}) \geq 0 \quad \forall \mathbf{x}$,
- 4. Невырожденность: $(\mathbf{x}, \mathbf{x}) = 0$ тогда и только тогда, когда $\mathbf{x} = \mathbf{0}$.

Слайд для записей

Скалярное произведение в координатных пространствах

i Definition

Скалярное произведение двух векторов $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ — это число, вычисляемое по формуле:

$$\mathbf{u} \cdot \mathbf{v} = \sum_{i=1}^{n} u_i v_i = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

Геометрический смысл:

$$\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| \cdot |\mathbf{v}| \cdot \cos \theta$$

где θ — угол между векторами \mathbf{u} и \mathbf{v} .

Обозначения скалярного произведения

Различные способы записи

1. Через транспонирование

$$\mathbf{u}^T \mathbf{v}$$

Матричная форма:

$$\mathbf{u}^T\mathbf{v} = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$

2. Через угловые скобки

$$\langle \mathbf{u}, \mathbf{v}
angle$$

Альтернативно: - ${\bf u}\cdot {\bf v}$ — точечное произведение **Обозначения эквивалентны:**

$$\mathbf{u}^T \mathbf{v} = \langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u} \cdot \mathbf{v}$$

Результат:

$$=u_1v_1+u_2v_2+\cdots+u_nv_n$$

Свойства нормы:

1. Однородность: $\|\alpha \mathbf{v}\| = |\alpha| \cdot \|\mathbf{v}\|$ для любых \mathbf{v} и скаляров α .

і Определение (норма и нормированное пространство)

Свойства нормы:

- 1. Однородность: $\| \alpha \mathbf{v} \| = |\alpha| \cdot \| \mathbf{v} \|$ для любых \mathbf{v} и скаляров α .
- 2. Неравенство треугольника: $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$.

і Определение (норма и нормированное пространство)

Свойства нормы:

- 1. Однородность: $\|\alpha \mathbf{v}\| = |\alpha| \cdot \|\mathbf{v}\|$ для любых \mathbf{v} и скаляров α .
- 2. Неравенство треугольника: $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$.
- 3. Неотрицательность: $\|\mathbf{v}\| \ge 0$ для всех векторов \mathbf{v} .

і Определение (норма и нормированное пространство)

Свойства нормы:

- 1. Однородность: $\|\alpha \mathbf{v}\| = |\alpha| \cdot \|\mathbf{v}\|$ для любых \mathbf{v} и скаляров α .
- 2. Неравенство треугольника: $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$.
- 3. Неотрицательность: $\|\mathbf{v}\| \geq 0$ для всех векторов \mathbf{v} .
- 4. Невырожденность: $\|\mathbf{v}\| = 0$ тогда и только тогда, когда $\mathbf{v} = \mathbf{0}$.
- і Определение (норма и нормированное пространство)

Разные нормированные пространства

Любое пространство со скалярным произведением является нормированным, поскольку норма $\|\mathbf{v}\| = \sqrt{(\mathbf{v},\mathbf{v})}$ удовлетворяет свойствам 1–4. Однако существуют и другие нормы. Например, для $p,1 \leq p < \infty$, можно определить норму $\|\cdot\|_n$ на \mathbb{R}^n как

$$\|\mathbf{x}\|_p = (|x_1|^p + |x_2|^p + \dots + |x_n|^p)^{1/p} = \left(\sum_{k=1}^n |x_k|^p\right)^{1/p}.$$

Также можно определить норму $\|\cdot\|_{\infty}$ (при $p=\infty$) как

$$\|\mathbf{x}\|_{\infty} = \max\left\{|x_k|: k=1,2,\ldots,n\right\}$$

Ортогональность. Ортогональные и ортонормированные базисы.

і Определение

Два вектора ${\bf u}$ и ${\bf v}$ называются ортогональными (перпендикулярными), если $({\bf u},{\bf v})=0$. Запись ${\bf u}\perp {\bf v}$ обозначает ортогональность векторов.

Для ортогональных векторов ${f u}$ и ${f v}$ верно тождество Пифагора:

$$\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$$
 if $\mathbf{u} \perp \mathbf{v}$

Доказательство:

$$\begin{aligned} \|\mathbf{u} + \mathbf{v}\|^2 &= (\mathbf{u} + \mathbf{v}, \mathbf{u} + \mathbf{v}) = (\mathbf{u}, \mathbf{u}) + (\mathbf{v}, \mathbf{v}) + (\mathbf{u}, \mathbf{v}) + (\mathbf{v}, \mathbf{u}) \\ &= \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 \\ &\qquad \qquad ((\mathbf{u}, \mathbf{v}) = (\mathbf{v}, \mathbf{u}) = 0 \text{ because of orthogonality }). \end{aligned}$$