Graph Coloring

Alexander Golovnev

Outline

Map Coloring

Graph Coloring

Bounds on the Chromatic Number

Applications

Brazil, Bolivia, Paraguay, and Armust have different colors

Brazil, Bolivia, Paraguay, and Armust have different colors

Emerald,
Winkie,
and Gillikin
must have
different
colors

Emerald,
Winkie,
and Gillikin
must have
different
colors

Emerald,
Winkie,
and Gillikin
must have
different
colors

Emerald,
Winkie,
and Gillikin
must have
different
colors

Emerald,
Winkie,
and Gillikin
must have
different
colors

Requires at least 4 colors

Requires at least 4 colors

4 colors suffice

Requires at least 4 colors

4 colors suffice

Theorem (Appel, Haken, 1976)

Every map can be colored with 4 colors.

Theorem (Appel, Haken, 1976)

Every map can be colored with 4 colors.

Proved using a computer.

Theorem (Appel, Haken, 1976)

Every map can be colored with 4 colors.

- Proved using a computer.
- Computer checked almost 2000 graphs.

Theorem (Appel, Haken, 1976)

Every map can be colored with 4 colors.

- Proved using a computer.
- · Computer checked almost 2000 graphs.
- Robertson, Sanders, Seymour, and Thomas gave a much simpler proof in 1997 (still using a computer search).

Outline

Map Coloring

Graph Coloring

Bounds on the Chromatic Number

Applications

Graph Coloring

 A graph coloring is a coloring of the graph vertices s.t. no pair of adjacent vertices share the same color.

Graph Coloring

 A graph coloring is a coloring of the graph vertices s.t. no pair of adjacent vertices share the same color.

• The chromatic number $\chi(G)$ of a graph G is the smallest number of colors needed to color the graph.

Chromatic number is 3

Full Graphs

The chromatic number of K_n is n.

Path Graphs

For n > 1, the chromatic number of P_n is 2.

Cycle Graphs

For even n, the chromatic number of C_n is 2.

Cycle Graphs

For odd n > 2, the chromatic number of C_n is 3.

Bipartite Graphs

The chromatic number of a bipartite graph (with at least 1 edge) is 2.

Outline

Map Coloring

Graph Coloring

Bounds on the Chromatic Number

Applications

Theorem (Appel, Haken, 1976)

Every map can be colored with 4 colors.

Theorem (Appel, Haken, 1976)

Every map can be colored with 4 colors.

Fact

Every map corresponds to a planar graph, every planar graph can be formed from a map.

Theorem (Appel, Haken, 1976)

Every map can be colored with 4 colors.

Fact

Every map corresponds to a planar graph, every planar graph can be formed from a map.

Theorem (Appel, Haken, 1976, Restated)

Theorem (Appel, Haken, 1976)

Every map can be colored with 4 colors.

Fact

Every map corresponds to a planar graph, every planar graph can be formed from a map.

Theorem (Appel, Haken, 1976, Restated)

Every planar graph can be colored with 4 colors.

Theorem (Weak Version)

Theorem (Weak Version)

Every planar graph can be colored with 6 colors.

Induction on the number of vertices n.

Theorem (Weak Version)

- Induction on the number of vertices n.
- Base case. n < 6: can color with 6 colors.

Theorem (Weak Version)

- Induction on the number of vertices n.
- Base case. $n \le 6$: can color with 6 colors.
- Induction assumption. All planar graphs on k vertices can be colored with 6 colors.

Theorem (Weak Version)

- Induction on the number of vertices n.
- Base case. $n \le 6$: can color with 6 colors.
- Induction assumption. All planar graphs on k vertices can be colored with 6 colors.
- Induction step. We'll show that any graph on k + 1 vertices can be colored with 6 colors.

Lemma

Lemma

Lemma

Lemma

Greedy Coloring

Greedy Coloring

Greedy Coloring

Greedy Coloring

Greedy Coloring

A graph G of maximum degree Δ can be colored with $\Delta + 1$ colors.

Theorem (Brooks, 1941)

A graph G of maximum degree \triangle can be colored with \triangle colors, unless G is full (K_n) or a cycle of odd length (C_{2k+1}) .

Outline

Map Coloring

Graph Coloring

Bounds on the Chromatic Number

Applications

- Each student takes an exam in each of her courses
- All students in one course take the exam together
- One student cannot take two exams per day
- What is the minimum number of days needed for the exams?

- Each student takes an exam in each of her courses
- · All students in one course take the exam together
- One student cannot take two exams per day
- What is the minimum number of days needed for the exams?

- Each student takes an exam in each of her courses
- · All students in one course take the exam together
- One student cannot take two exams per day
- What is the minimum number of days needed for the exams?

- Each student takes an exam in each of her courses
- · All students in one course take the exam together
- One student cannot take two exams per day
- What is the minimum number of days needed for the exams?

Bandwidth allocation

Different stations are allowed to use the same frequency if they are far apart. What is an optimal assignment of frequencies to stations?

Bandwidth allocation

Different stations are allowed to use the same frequency if they are far apart. What is an optimal assignment of frequencies to stations?

Bandwidth allocation

Different stations are allowed to use the same frequency if they are far apart. What is an optimal assignment of frequencies to stations?

Other Applications

- Scheduling Problems
- Register Allocation
- Sudoku puzzles
- Taxis scheduling
- ...