Guía 9. Análisis de Algoritmos.

- 1. Quadrating probing utiliza la siguiente función de hashing: $H(x, i) = (h(x) + c*i + d*i^2) \mod m$, para i > 0, en que h(x) es la posición inicial del dato x e i es el intento i-ésimo en direccionamiento abierto.
 - a) Insertar los datos de $A = \{22, 4, 28, 88, 13, 10, 31, 15, 17, 59\}$ en una tabla de tamaño 11 con $h(x) = x \mod 11$, c = 1 y d = 3. Grafique la tabla resultante y calcule la cantidad promedio de accesos necesarios para una búsqueda exitosa.
 - b) Verifique que si dos datos colisionan usando H(x, i) entonces sus secuencias de búsqueda son las mismas.
- 2. Suponga que cada letra tiene asociado un valor entero según la siguiente tabla:

a	b	c	d	e	f	g	h	i	j	k	1	m	n	О	р	q
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

r	S	t	u	V	W	X	у	Z
18	19	20	21	22	23	24	25	26

Para la función de hashing: h(P) = (suma dígitos de cada carácter de P) mod 7, insertar las siguientes palabras en una tabla de tamaño 7 usando direccionamiento abierto con linear probing para resolver colisiones: A = {algoritmo, analisis, greedy, horowitz, arbol, busqueda, maximo}. Determine la cantidad de accesos promedio en búsqueda exitosa.

- 3. Para la variante de hashing con encadenamiento se propone que la tabla tenga acceso a árboles AVL (de altura balanceada) en vez de listas. Se pide:
 - a) Estimar el costo de esta estructura para la operación de búsqueda de un dato en el mejor y el peor caso, explicando a cuál caso corresponde cada uno.
 - b) Insertar los datos del conjunto A = {16, 72, 826, 1016, 12, 42, 623, 22, 32} en una tabla de tamaño 10 con h(x) = x mod 10, usando esta modalidad de inserción. Grafique la tabla con el resultado.

- 4. Sea la función de hashing siguiente: $h(x) = \lfloor (2*x+3)/13 \rfloor \mod 13$ y una tabla de tamaño 13. Dados los 12 datos: 126, 25, 63, 70, 52, 8, 33, 111, 94, 5, 18 y 56.
 - a) Use encadenamiento para insertar los datos en la tabla y $\sum_{k=1}^{n} accesos_{k}$ determine el valor de $C_{n} = \frac{\sum_{k=1}^{n} accesos_{k}}{n}$, en que $accesos_{k}$ indica los accesos necesarios para alcanzar el dato k al buscarlo exitosamente.
 - b) Use direccionamiento abierto con double hashing para distribuir los datos de la tabla considerando que $s(x) = \lceil (x+3)/13 \rceil \mod 13$ y determine el valor de C_n en este caso.
 - c) Determine α , el factor de carga de la tabla. Compare los valores de (a) y (b) con los valores teóricos de $C_n \cong 1 + \alpha/2$ para encadenamiento y $C_n \cong (1/\alpha) \ln(1/(1-\alpha))$ para direccionamiento abierto. Respectivamente ¿Cuál de los dos es el mejor?
- 5. Suponga que una relación de equivalencia distribuye los datos de un conjunto en los siguientes subconjuntos:

$$A_1 = \{1, 4, 8, 12, 15\}$$

 $A_2 = \{2, 6, 10, 14\}$
 $A_3 = \{3, 7, 11\}$
 $A_4 = \{5, 9, 13\}$

Describir usando Union-Find el árbol de cada conjunto, sabiendo que el primer dato es el canónico, y luego realice las siguientes operaciones usando Unión ponderada: Union(15, 14), Union(11, 13), Union(4, 7).

¿Cuál es el árbol resultante? ¿Cuál es el costo en cantidad de accesos para realizar Find(i) para $1 \le i \le 15$ usando compresión de caminos?