06 - Regularization for Image Classification Numerical Methods for Deep Learning

February 7, 2018

Regularization

- We are attempting to recover weights to fit some data.
- ▶ Simplest case a single data $\mathbf{Y} = [x_1, x_2]$.
- ► In many cases (MNIST) non-unique solution (too many unknowns, too few equations)

In general - if the data "lives" in high dimensions (e.g. images) then we need many examples to have a unique classifier. The examples need to be independent that is \mathbf{Y} is full rank.

Regularization

- Symptom of the need for regularization Hessian highly ill-conditioned
- Solution may be "wild" and oscillate.
- Add a demand on the solution to be regular

$$\min_{W} J(\mathbf{W}; \mathbf{Y}) = E(\mathbf{W}; \mathbf{Y}) + \alpha R(\mathbf{W})$$

Type of Regularization

Tikhonov

$$R(\mathbf{W}) = \frac{1}{2} \|\mathbf{W}\|_F^2$$

asks for all the entries to be small.

In some cases, X are images.

$$\mathbf{w}^{\top}\mathbf{x} \approx \int_{\Omega} w(\boldsymbol{\xi})\mathbf{x}(\boldsymbol{\xi})d\boldsymbol{\xi}.$$

Weighted Tikhonov

$$R(\mathbf{W}) = \frac{1}{2} \|\mathbf{LW}\|_F^2$$

asks for all the entries to be smooth.

Smooth Regularization

In some cases, **X** are images.

$$\mathbf{w}^{\top}\mathbf{x} \approx \int_{\Omega} w(\boldsymbol{\xi})\mathbf{x}(\boldsymbol{\xi})d\boldsymbol{\xi}.$$

Weighted Tikhonov

$$R(\mathbf{W}) = \frac{1}{2} \|\mathbf{LW}\|_F^2$$

asks for all the entries to be smooth.

$$\mathbf{L} pprox
abla^2$$

Discretization of ∇^2

Finite difference in 1D

$$\nabla^2 u \approx \frac{1}{h^2}(-2\mathbf{u}_j + \mathbf{u}_{j-1} + \mathbf{u}_{j+1}).$$

Finite difference in 2D

$$\nabla^2 u \approx \frac{1}{h^2} (-4\mathbf{u}_{ij} + \mathbf{u}_{i-1j} + \mathbf{u}_{i+1j} + \mathbf{u}_{ij-1} + \mathbf{u}_{ij+1}).$$

Code in 1D

L1D =
$$@(n,h) 1/h^2 *...$$

spdiags(ones(n,1) * [1 -2 1],-1:1,n,n)

Discretization of ∇^2

In 2D
$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

Use Kroneker products

$$\operatorname{vec}(\mathsf{LUI}) = (\mathsf{I}^{\top} \otimes \mathsf{L}) \operatorname{vec}(\mathsf{U}).$$

Code in 2D

$$L = kron(speye(n2), L1D(n1,h1)) + ...$$

 $kron(L1D(n2,h2), speye(n1));$

More about discrete ∇^2

Note that L can also be written as a convolution

$$\mathbf{L} = \frac{1}{h^2} \ \mathbf{U} * \begin{pmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

.

In general - any differential operator with constant coefficients can be written as convolution

Newton like methods - recap

$$\min_{\mathbf{W}} J(\mathbf{W}) = E(\mathbf{W}) + \alpha R(\mathbf{W})$$

Requires derivatives of the regularization

Tip: Use $\nabla^2 R$ as a preconditioner for the conjugate gradient solver in the Newton iteration.

Test problems

- Simple linear problem
- Circle
- Peaks
- Spiral
- MNIST
- CIFAR10

Problems

Test your codes on all 5 problems. What is the best accuracy you can get.

Which of the methods is the most effective?