Homework 3

21-260 Differential Equations

Name: Shashank Singh Email: sss1@andrew.cmu.edu Due: Friday, July 13, 2012

Section 7.1, Problem 15

Suppose $x = x_1(t), y = y_1(t)$ and $x = x_2(t), y = y_2(t)$ are both solutions to the linear homogeneous system

$$x' = p_{1,1}(t)x + p_{1,2}(t)y (1)$$

$$y' = p_{2,1}(t)x + p_{2,2}(t)y. (2)$$

Suppose that, for some $c_1, c_2 \in \mathbb{R}$, $x = c_1x_1(t) + c_2x_2(t)$ and $y = c_1y_1(t) + c_2y_2(t)$. Then, by linearity of the derivative,

$$x' = c_1 x_1'(t) + c_2 x_2'(t).$$

Since x_1 and x_2 satisfy equation (1),

$$x' = c_1(p_{1,1}(t)x_1 + p_{1,2}(t)y_1) + c_2(p_{1,1}(t)x_2 + p_{1,2}(t)y_2)$$

= $p_{1,1}(c_1x_1 + c_2x_2) + p_{1,2}(c_1y_1 + c_2y_2)$
= $p_{1,1}x + p_{1,2}y$,

so that equation (1) is satisfied.

The proof that such choices of x and y also satisfy equation (2) is essentially identical, up to the naming of some terms. Thus, the superposition principle holds for this system.

Section 7.1, Problem 20

By the given relation between voltage across and current through an inductor, if V_4 denotes the voltage across the inductor, then

$$\frac{dI}{dt} = \frac{V_4}{1 H}.$$

By Kirchhoff's Voltage Law, if V_3 denotes the voltage across the 1Ω resistor, then

$$\frac{V_4}{1\,H} = \frac{-V_3 - V}{1\,H},$$

so that, by the given relation between voltage across and current through a resistor,

$$\frac{-V_3 - V}{1 H} = \frac{-I(1 \Omega) - V}{1 H}.$$

Removing units of measurement gives the first desired result:

$$\frac{dI}{dt} = -I - V. \quad \blacksquare$$

By the given relationship between voltage across and current through a capacitor, if I_1 is the current through the capacitor, then

$$\frac{dV}{dt} = \frac{I_1}{0.5 F}.$$

By Kirchhoff's Current Law, if I_2 denotes the current through the 2Ω resistor, then

$$\frac{I_1}{0.5 F} = \frac{I - I_2}{0.5 F},$$

so that, by the given relation between voltage across and current through a resistor (and noting that the voltage across this resistor is the same as that over the capacitor),

$$\frac{I - I_2}{0.5 F} = \frac{I - V/(2 \Omega)}{0.5 F}.$$

Removing units of measurement gives the second desired result:

$$\frac{dV}{dt} = 2I - V. \quad \blacksquare$$

Section 7.2, Problem 12

Gauss-Jordan elimination of the augmented matrix

$$\left[\begin{array}{ccc|cccc}
1 & 2 & 3 & 1 & 0 & 0 \\
2 & 4 & 5 & 0 & 1 & 0 \\
3 & 5 & 6 & 0 & 0 & 1
\end{array}\right]$$

gives the matrix

$$\left[\begin{array}{ccc|ccc|c} 1 & 0 & 0 & 1 & -3 & 2 \\ 0 & 1 & 0 & -3 & 3 & -1 \\ 0 & 0 & 1 & 2 & -1 & 0 \end{array}\right],$$

so that

$$\left[\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{array}\right]^{-1} = \left[\begin{array}{ccc} 1 & -3 & 2 \\ -3 & 3 & -1 \\ 2 & -1 & 0 \end{array}\right].$$

Section 7.2, Problem 20

By definition of the inverse and identity matrices and by associativity of matrix multiplication,

$$B = BI = B(AC) = (BA)C = IC = C.$$

Section 7.3, Problem 4

Suppose the following hold:

$$x_1 + 2x_2 - x_3 = 0 (3)$$

$$2x_1 + x_2 + x_3 = 0 (4)$$

$$x_1 - x_2 + 2_3 = 0 (5)$$

Noting that the sum of equations (3) and (5) is equation (4) allows us to ignore equation (4), as it does not additionally constrain the set of solutions. Eliminating the x_1 first term from equation (4) using equation (3) gives:

$$-3x_2 + 3x_3 = 0$$
, or, more simply, $x_2 = x_3$,

and using this equation to eliminate the x_3 term from equation (3) gives:

$$x_1 + x_2 = 0.$$

This simplified system of linear equations has the obvious solution:

$$\mathbf{x} = \left\{ c \begin{bmatrix} -1\\1\\1 \end{bmatrix} : c \in \mathbb{R} \right\}.$$