¿Do We Have Black Chromatin?

Ricky Lim^{1,2}

¹FNWI Universiteit van Amsterdam

²Genome Architecture & Bioinformatics Centre for Genomic Regulation (CRG)

Master Thesis Presentation

mailto:rickylim19@gmail.com

Acknowledgments

A dream you dream alone is only a dream. A dream you dream together is reality. -Yoko Ono

• Supervisors:

- Dr. Guillaume Filion
- Dr. Hans van der Spek

Team Players:

- Heng-Chang Chen, Dr. rer. nat. (Ph.D.)
- Marc Corrales
- Dr. Olivera Vujatovi
- Catarina De Oliveira

Fellowships:

- Fontane
- Huygens Scholarship Programme
- Erasmus Programme

Today's Menu

- Prelude
- 2 Introduction ¿Our Question? Our Strategy
- 3 Our Results
- 4 Conclusion

Prelude Introduction Our Results Conclusion Prelude Introduction Our Results Conclusion

Prelude

Top 10 Most Frequent Words

Top 10 Most Frequent Words

 In 2010, a work by Filion and colleagues proposed that the genome is segmented genome-wide into five major chromatin types in Drosophila.

- In 2010, a work by Filion and colleagues proposed that the genome is segmented genome-wide into five major chromatin types in Drosophila.
- Among these five states, they identified a novel repressive chromatin covering about half of the genome and without the presence of the known heterochromatin markers HP1 and Polycomb.

- In 2010, a work by Filion and colleagues proposed that the genome is segmented genome-wide into five major chromatin types in Drosophila.
- Among these five states, they identified a novel repressive chromatin covering about half of the genome and without the presence of the known heterochromatin markers HP1 and Polycomb.
- Here, we present a genome-wide chromatin landscape in Human H1-hESC based on 68 chromatin features covering histone modifications and transcription factors.

- In 2010, a work by Filion and colleagues proposed that the genome is segmented genome-wide into five major chromatin types in Drosophila.
- Among these five states, they identified a novel repressive chromatin covering about half of the genome and without the presence of the known heterochromatin markers HP1 and Polycomb.
- Here, we present a genome-wide chromatin landscape in Human H1-hESC based on 68 chromatin features covering histone modifications and transcription factors.
- Further supported by other datasets (Lamina-associated domains, CpG islands, RefSeq gene and exon, open chromatin, and RNA-seq), we confirm the existence of Black chromatin among these four major chromatin types in Human.

Prelude Introduction Our Results Conclusion

¿Our Question? Our Strategy

¿Our Question? Our Strategy

Introduction

Chromatin state is a segmentation of the genome based on a unique combination of chromatin proteins.

¹(Filion et al., 2010)

Chromatin state is a segmentation of the genome based on a unique combination of chromatin proteins.

¹(Filion et al., 2010)

Black Chromatin: a novel type of repressive chromatin

Chromatin state is a segmentation of the genome based on a unique combination of chromatin proteins.

¹(Filion et al., 2010)

Black Chromatin: a novel type of repressive chromatin

 Hardly no binding of chromatin proteins

Chromatin state is a segmentation of the genome based on a unique combination of chromatin proteins.

¹(Filion et al., 2010)

Black Chromatin: a novel type of repressive chromatin

- Hardly no binding of chromatin proteins
- Black covers 48% of the genome

Chromatin state is a segmentation of the genome based on a unique combination of chromatin proteins.

¹(Filion et al., 2010)

Black Chromatin: a novel type of repressive chromatin

- Hardly no binding of chromatin proteins
- Black covers 48% of the genome
- Harboring ≈ 4000 genes that are linked to developmental regulation

Yes|No

Yes No

So far Black was only identified in *Drosophila*... **Does Black also present in Humans?**

Our Strategy

Chromosome I (Mb)

Our Strategy

4 Chromatin States in H1-hESC Animated here

Black Is among Our Four Chromatin States

Features of Black Chromatin

Features of Black Chromatin

Features of Black Chromatin

Expression Levels of Black Chromatin

Expression Levels of Black Chromatin

Black Points toward Facultative Biological Process

Black Points toward Facultative Biological Process

No	GO_ID	GO_Term
1	GO:0006259	DNA metabolic process
2	GO:0006397	mRNA processing
3	GO:0006412	translation
4	GO:0006464	cellular protein modification process
5	GO:0006913	nucleocytoplasmic transport
6	GO:0007049	cell cycle
7	GO:0007155	cell adhesion
8	GO:0007165	signal transduction
9	GO:0007267	cell-cell signaling
10	GO:0009058	biosynthetic process
11	GO:0030198	extracellular matrix organization
12	GO:0034641	cellular nitrogen compound metabolic process
13	GO:0042254	ribosome biogenesis
14	GO:0048856	anatomical structure development
15	GO:0050877	neurological system process
16	GO:0051276	chromosome organization
17	GO:0055085	transmembrane transport

• Utility of integrative analysis in Chromatin of H1-hESC

- Utility of integrative analysis in Chromatin of H1-hESC
- ¿Do We have Black Chromatin?

- Utility of integrative analysis in Chromatin of H1-hESC
- ¿Do We have Black Chromatin?
 - Yes, we have

- Utility of integrative analysis in Chromatin of H1-hESC
- ¿Do We have Black Chromatin?
 - Yes, we have
- Future perspectives:

- Utility of integrative analysis in Chromatin of H1-hESC
- ¿Do We have Black Chromatin?
 - Yes, we have
- Future perspectives:
 - Mechanistic explanations of Black Chromatin in Human?

- Utility of integrative analysis in Chromatin of H1-hESC
- ¿Do We have Black Chromatin?
 - Yes, we have
- Future perspectives:
 - Mechanistic explanations of Black Chromatin in Human?
 - Going forward from a normal \rightarrow disease condition?

Q&A

