Universidade Federal de Pernambuco Centro Acadêmico do Agreste Núcleo de Tecnologia Engenharia Civil

Prova 1 - Algebra Linear Prof. Fernando R. L. Contreras

Aluno(a):

- 1. Considere a transformação linear $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ dada por T(x,y,z) = (z,x-y,-z). (a) Determine uma base do núcleo de T. (b) Dê a dimensão da imagem de T. (c) T é sobrejetora? Justifique.
- 2. Mostre que os polinômios $1-t^3$, $(1-t)^2$, 1-t e 1 geram o espaço dos polinômios de grau ≤ 3 .
- 3. Sejam $\beta = \{(1,0),(0,1)\}$, $\beta_1 = \{(-1,1),(1,1)\}$ bases ordenadas de \mathbb{R}^2 . Ache a matriz de mudança de base $[I]_{\beta_1}^{\beta}$. E quais são as coordenadas do vetor $\nu = (3,-2)$ em relação à base β_1 .
- 4. Sejam $\alpha = \{(1,-1),(0,2)\}$ e $\beta = \{(1,0,-1),(0,1,2),(1,2,0)\}$ bases de \mathbb{R}^2 e \mathbb{R}^3 respectivamente e $[T]^{\alpha}_{\beta} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & -1 \end{bmatrix}$. Ache T.

Universidade Federal de Pernambuco Centro Acadêmico do Agreste Núcleo de Tecnologia Engenharia Civil

Prova 1 - Algebra Linear Prof. Fernando R. L. Contreras

Aluno(a):

- 1. Considere a transformação linear $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ dada por T(x,y,z) = (z,x-y,-z). (a) Determine uma base do núcleo de T. (b) Dê a dimensão da imagem de T. (c) T é sobrejetora? Justifique.
- 2. Mostre que os polinômios $1-t^3$, $(1-t)^2$, 1-t e 1 geram o espaço dos polinômios de grau ≤ 3 .
- 3. Sejam $\beta = \{(1,0),(0,1)\}$, $\beta_1 = \{(-1,1),(1,1)\}$ bases ordenadas de \mathbb{R}^2 . Ache a matriz de mudança de base $[I]_{\beta_1}^{\beta}$. E quais são as coordenadas do vetor $\nu = (3,-2)$ em relação à base β_1 .
- 4. Sejam $\alpha = \{(1,-1),(0,2)\}$ e $\beta = \{(1,0,-1),(0,1,2),(1,2,0)\}$ bases de \mathbb{R}^2 e \mathbb{R}^3 respectivamente e $[T]_{\beta}^{\alpha} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & -1 \end{bmatrix}$. Ache T.