

SIIM-ISIC Melanoma Classification

Statistical Machine Learning project by:
Abdalghani Azza M. N., Bartole Davide and Tedisco Francesca

Problem statement:

Melanoma is a common skin cancer.

Classification problem

Data Description

The ISIC (International Skin Imaging Collaboration) archive contains the largest available collection of dermoscopic images of skin lesions.

```
'data.frame': 33126 obs. of 5 variables:

$ target : Factor w/ 2 levels "No melanoma",..: 1 1 1 1 1 1 1 1 1 1 1 1 ...

$ age : num 45 45 50 45 55 40 25 35 30 50 ...

$ anatomy : Factor w/ 7 levels "", "head/neck",..: 2 7 3 2 7 3 3 6 6 3 ...

$ sex : Factor w/ 3 levels "", "female", "male": 3 2 2 2 2 2 3 2 3 2 ...

$ image_name: chr "ISIC_2637011" "ISIC_0015719" "ISIC_0052212" "ISIC_0068279" ...
```

Data visualisation:

Age approximation

Anatomy = site of body

Proposed solutions:

1. Logistic Regression

- Images as input

- Target as output

Logit function

- Train set

- Test set (15%)

Accuracy=98,23%

False Positive Rate=0
False Negative Rate=1

No Melanoma
4881

Melanoma
0

0

2. ResNet18

- 18 layers
- Skip connections
- Winner of the ImageNet challenge 2015

Data transformation

Normalization with:

$$MU = [0.485, 0.456, 0.406]$$

$$S = [0.229, 0.224, 0.225]$$

- Vertical Flip (p=0.5)
- Horizontal Flip (p=0.5)
- To tensor

Learning rate: 1e-3

- Predictions done with Test Time Augmentation

2.a. ResNet18: Images as Inputs

- CNN that envelopes the ResNet18

- Loss: BCE with logit loss
- Optimizer: Adam
- 10 epochs
- Dataset divided in 3 parts:
 - Training set (72%) \rightarrow batch size: 64
 - Validation set (20%) \rightarrow batch size: 16
 - Test set (8%) \rightarrow batch size: 16

Results

Accuracy: 98.23%

FPR: 0%

FNR: 100%

	No melanoma	Melanoma
No melanoma	2603	47
Melanoma	0	0

2.b. ResNet18: Images as inputs and bagging

- CNN that envelopes the ResNet18
- Bagging using 10 samples given by weighted bootstrap

- Loss: BCE with logit loss
- Optimizer: Adam
- 10 epochs
- Dataset divided in 3 parts:
 - Training set (72%) \rightarrow batch size: 64
 - Validation set $(20\%) \rightarrow \text{batch size: } 16$
 - Test set (8%) \rightarrow batch size: 16

Results

Accuracy: 83.51%

FPR: 19.05%

FNR: 13.6%

	No melanoma	Melanoma
No melanoma	1139	169
Melanoma	268	1074

2.c. ResNet18: Images, meta features and bagging

- 2 sets of layers
- Convolutional layers for the images
- Sequential layers for the meta features
 - Sex
 - Age
 - Site of the mole
- Bagging using 10 samples given by weighted bootstrap

- Loss: BCE with logit loss
- Optimizer: Adam
- 10 epochs

- Dataset divided in 3 parts:
 - Training set (72%) \rightarrow batch size: 64
 - Validation set (20%) \rightarrow batch size: 16
 - Test set (8%) \rightarrow batch size: 16

Results

Accuracy: 96.53%

FPR: 6.25%

FNR: 0.32%

	No melanoma	Melanoma
No melanoma	1319	4
Melanoma	88	1239

3. EfficientNet: Scaling up CNN

Comparison of different scaling methods. Unlike conventional scaling methods (b)-(d) that arbitrary scale a single dimension of the network, our compound scaling method uniformly scales up all dimensions in a principled way.

EfficientNet-B0:

Stage i	Operator $\hat{\mathcal{F}}_i$	Resolution $\hat{H}_i \times \hat{W}_i$	#Channels \hat{C}_i	\hat{L}_i
1	Conv3x3	224×224	32	1
2	MBConv1, k3x3	112×112	16	1
3	MBConv6, k3x3	112×112	24	2
4	MBConv6, k5x5	56×56	40	2
5	MBConv6, k3x3	28×28	80	3
6	MBConv6, k5x5	14×14	112	3
7	MBConv6, k5x5	14×14	192	4
8	MBConv6, k3x3	7 × 7	320	1
9	Conv1x1 & Pooling & FC	7 × 7	1280	1

Basic network structure of EfficientNet-BO

3.a. Images as inputs for EfficientNet-b0

Image Augmentation:

- Normalization with:

MU = [0.485, 0.456, 0.406]

S = [0.229, 0.224, 0.225]

- Vertical Flip (p=0.5)
- Horizontal Flip (p=0.5)
- To tensor

Hyperparameters:

Epochs = 20

LR = 1e-3

Batch size = 32

B = 0.5

MelanomaNet:

- Pretrained EfficientNet-b0
- Global Average Pooling
- Droupout
- Dense output

- Split into 80% train and 20% val datasets.

 $\hbox{-} Weighted Random Sampler\\$

- Adam Optimizer

- Loss : Binary Cross-Entropy (BCEWithLogitsLoss)

- GPU device

Results:

Validation accuracy and loss

- Accuracy: 96.6%

- Output Results:

- 10605 benign

- 377 malignant

	image_name	target	class
0	ISIC_0052060	1.710294e-14	"bengin"
1	ISIC_0052349	8.461608e-24	"bengin"
2	ISIC_0058510	3.301137e-23	"bengin"
3	ISIC_0073313	5.592170e-14	"bengin"
4	ISIC_0073502	9.411071e-10	"bengin"
5	ISIC_0074618	2.273408e-05	"bengin"
6	ISIC_0076801	1.325034e-12	"bengin"
7	ISIC_0077586	8.564031e-07	"bengin"
8	ISIC_0082004	1.457258e-04	"bengin"
9	ISIC_0082785	4.364880e-07	"bengin"

3.b. Images + meta features for EfficientNet-b0

- meta features : [sex, age_approx, anatom_site_general_challenge]

* Preprocessing the data:

- Encoding

* Weighted bootstrap as bagging.

* split data into 3 parts (train, val, test).

3.b. Images + meta features for EfficientNet-b0

- *hyper-parameters:
- Epochs = 5
- Early stopping patience = 3
- batch size = 64, 16, 16

- Loss: BCE with logit loss
- Optimizer: Adam

Results

	No Melanoma	Melanoma
No melanoma	1374	44
Melanoma	33	1199

- Accuracy: 97.3%
- FPR = 0.0234
- FNR = 0.0354
- Output Results :
 - 10659 benign
 - 323 malignant

	image_name	prediction	target
0	ISIC_0052060	9.522337e-12	benign
1	ISIC_0052349	1.233248e-11	benign
2	ISIC_0058510	6.661144e-10	benign
3	ISIC_0073313	3.914397e-10	benign
4	ISIC_0073502	9.470966e-07	benign

Pred: "benign"	Pred: "benign"	Pred: "benign"	Pred: "benign"					
	8			0	0	1.		
Pred: "benign"	Pred: "malignant"	Pred: "benign"	Pred: "benign"	Pred: "benign"				
*								
Pred: "benign"	Pred: "benign"	Pred: "benign"	Pred: "benign"					
*	0	0	8					9
Pred: "benign"	Pred: "benign"	Pred: "malignant"	Pred: "benign"					
	8		et.		0			-
Pred: "benign"	Pred: "benign"	Pred: "benign"	Pred: "malignant"					
-		•	1984		1			

Predictions for Test file:

Comparison between EfficientNet and ResNet predictions:

	EfficientNet-b0			
		No melanoma	Melanoma	
ResNet18	No melanoma	9873	86	
	Melanoma	786	237	

Predictions are done using Test Time Augmentation

Future work:

- Different Architectures
- Higher number of Bootstrap
- Different Cut-off for the classification
- Advance augmentation : e.g Hair augmentation
- Different size of images

Thanks for your attention!

References:

- EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks (ICML 2019)
- Deep Residual Learning for Image Recognition