

LABORATORIO DE DISEÑO LOGICO

Objetivo general

Analizar cuáles son las funciones específicas de los circuitos combinacionales.

Aprendizajes esperados

Saber Conocer

Comprender las funciones de los circuitos combinacionales. Identificar las características técnicas de los circuitos combinacionales usados en esta práctica.

Saber Hacer

Uso de protoboard.

Uso de multímetro.

Uso de fuente de poder.

Uso de simuladores

Saber Ser

Desarrollan habilidades analíticas, críticas, integridad y compromiso ético.

SESIÓN 3 Circuitos combinacionales

INTRODUCCION

Circuito combinacional.

Está formado por funciones lógicas elementales (AND, OR, NAND, NOR, etc.), que tiene un determinado número de entradas y salidas.

ENTRADA	SALIDAS
A	Z
0	1
1	1

Entrada = 1BitSalida = 2 valores

ENTR	SALIDAS	
A	В	Z
0	0	1
0	1	1
1	0	1
1	1	1

Entrada = 2BitsSalida = 4 valores

Laboratorio de Ingeniería "Eléctrica-Electrónica" L3

	ENTRADAS								
A	В	C	Z						
0	0	0	1						
0	0	1	1						
0	1	0	1						
0	1	1	1						
1	0	0	1						
1	0	1	1						
1	1	0	1						
1	1	1	1						

$$2^n \rightarrow 2^{Entrada} \rightarrow 2^3 = 8 \rightarrow 8 \text{ valores}$$

Entrada = 3 Bits Salida = 8 valores

Las fases, en el proceso de síntesis y diseño de circuitos combinacionales:

- -Definición de la función a realizar y especificación de las entradas y salidas.
- -Tabla de la verdad.
- -Ecuaciones lógicas de las salidas.
- -Simplificación de las ecuaciones.
- -Realización o implementación de las ecuaciones simplificadas mediante puertas lógicas.

- -Definición de la función a realizar y especificación de las entradas y salidas. **Suma de productos**,2 entradas 4 salidas
- -Tabla de la verdad.

Α	В	Z
0	0	0
0	1	1
1	0	0
1	1	1

-Ecuaciones lógicas de las salidas.

$$B(\overline{A} + A) = B$$

Realización o implementación de las ecuaciones simplificadas mediante puertas lógicas

-Definición de la función a realizar y especificación de las entradas y salidas.

Producto de sumas,2 entradas 4 salidas

-Tabla de la verdad.

Α	В	Z
0	0	0
0	1	1
1	0	0
1	1	1

Realización o implementación de las ecuaciones simplificadas mediante puertas lógicas

-Ecuaciones lógicas de las salidas.(Las entradas en estado alto se niegan)

$$(A+B)\cdot (\overline{A}+B)$$

Simplificación de las ecuaciones.

$$A + AB + BA + B = B (A + A + 1) = B$$

$$04/08/2021$$
O4/08/2021
$$A + AB + BA + B = B (A + A + 1) = B$$
Todos los derechos reservados Facultad de Estudios Superiores
Aragón

CÓDIGO BCD

(Binary-Coded Decimal (BCD) o Decimal codificado). Binario es un estándar para representar números decimales en el **sistema binario**, en donde cada dígito decimal es codificado con una secuencia de 4 bits.

Funcionamiento

Recibe **n** entradas y produce 2ⁿ salidas. De todas las salidas, solo se generará un 1 en la salida cuyo subíndice corresponde al código binario de la combinación de entrada.

Representación

DECIMAL	0	1	2	3	4	5	6	7	8	9
BCD	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001

MULTIPLEXORES

Un multiplexor es un circuito Combinacional que selecciona información binaria de una o muchas líneas de entrada y la dirige a una sola línea de salida. La selección de una línea de entrada particular se controla con un conjunto de líneas de selección. Normalmente hay 2ⁿ líneas de entrada y n líneas de selección cuyas combinaciones de bits determinan cual entrada se selecciona.

Tabla de verdad

ENTRA	ADAS	SELECCION	SALIDA
Α	В	S	Z
1	0	0	1
0	1	1	1

Diagrama lógico

Circuito simplificado

2^n=2**^**1=2 entradas

Laboratorio de Ingeniería "Eléctrica-Electrónica" L3

MULTIPLEXORES

ENTRA	DAS	SELECCION	SALIDA		
Α	В	S	Z		
1	0	0	1		
0	1	1	1		

ENTRADAS				SELE	CCION	SALIDA
Α	В	С	D	S1	S2	Z
1	0	0	0	0	0	1
0	1	0	0	0	1	1
0	0	1	0	1	0	1
0	0	0	1	1	1	1

0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0	Α	В	С	D	Е	F	G	Н	S1	S2	S3	Z
0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0	1	0	0	0	0	0	0	0	0	0	0	0
0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1	0	1	0	0	0	0	0	0	0	0	1	1
0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1	0	0	1	0	0	0	0	0	0	1	0	0
0 0 0 0 1 0 0 1	0	0	0	1	0	0	0	0	0	1	1	1
	0	0	0	0	1	0	0	0	1	0	0	0
	0	0	0	0	0	1	0	0	1	0	1	1
	0	0	0	0	0	0	1	0	1	1	0	0
0 0 0 0 0 0 1 1 1 1	0	0	0	0	0	0	0	1	1	1	1	1

Circuito simplificado

2^n=2^1=2 entradas

Circuito simplificado

2^n=2^2=4 entradas

Circuito simplificado

Laboratorio de Ingeniería "Eléctrica-Electrónica" L3

SN74LS151

l ₃	l ₂	4	l ₀	Z	Z	Ī
N 1 k			_			

Nombre de pines S₀-S₂ Selección de entradas

Habilitar entrada (Activada en bajo)

Entradas el multiplexor

Salida del multiplexor

complementario salida de multiplexor

Vcc Voltaje

Tierra GND

Configuración	parámetro	Min	Normal	Max	Unidades
V_{CC}	Voltaje de alimentación.	4.75	5	5.25	V
T _A	Temperatura de funcionamiento de aire libre	0	25	70	°C
I _{OH}	Corriente de salida de nivel			-0.4	mA
I _{OL}	Nivel de corriente de salida			8	mA

SN74LS151

Ejemplo 1: va a mostrar el valor 1 si el número introducido es par en la selección de

entrada

Figura 3.1 Diagrama eléctrico del circuito SN74LS151.

SN74LS151

Figura 3.2 Conexión en protoboard para el ejemplo SN74LS151.

DEMULTIPLEXORES

El Demultiplexor es un circuito destinado a transmitir una señal binaria a una determinada línea, elegida mediante un seleccionador, de entre las diversas líneas existentes.

Si la entrada (**E**) es 0, No va hacer nada el sistema

Si la entrada (E) es 1, va hacer algo el sistema

Tabla de verdad

Е	S1	S2	А	В	С	D
0	Х	Χ	Х	Х	Χ	Х
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1

Circuito correspondiente

Circuito simplificado

COMPARADOR

Un circuito comparador combinatorio compara dos entradas binarias (A y B de n Bits)para indicar la relación de igualdad o desigualdad entre ellas por medio de tres banderas lógicas que corresponden a las relaciones A igual a B,A mayor a B y A menor a B. Cada una de estas banderas se activara solo cuando la relación a la que corresponde sea verdadera, es decir su salida será 1 y las otras producirán una salida igual a cero.

Dentro de la familia de circuitos TTL se les denomina a estos circuitos con el numero 7485 y manejan entradas de 4 bits, además de que también se les puede conectar en cascada para manejar entradas mas grandes.

Diseño de un comparador de 1 bit.

Para este caso se requiere crear una tabla de verdad correspondiente y luego determinar las funciones booleanas que producen las salidas requeridas

Tabla de verdad

Numero	Numero	A=B	A>B	A <b< th=""></b<>
Α	В	S1	S2	S3
0	0	1	0	0
0	1	0	0	1
1	0	0	1	0
1	1	1	0	0

Circuito lógico

Laboratorio de Ingeniería "Eléctrica-Electrónica" L3

Configuración	parámetro	Min	Normal	Max	Unidades
V _{CC}	Voltaje de alimentación.	4.75	5	5.25	V
V _{IH}	Voltaje de entrada de alto nivel.	2			V
V _{IL}	Voltaje de entrada de nivel bajo			0.8	V
I _{OH}	Corriente de salida de nivel			-0.4	mA
I _{OL}	Nivel de corriente de salida			8	mA
T _A	Temperatura de funcionamiento de aire libre	0		70	°C

DATA INPUTS 16 111 15 12 CASCADING INPUTS OUTPUTS

Nombre de pines

Pin 1,9,11,14 para B3 B0,B1,B2 input Pin 10,12,13,15 para A0,A1,A2,A3 input Pin 2,3,4 input para (a<b) (a=b) (a>b) Pin 5,6,7 Output para (a>b) (a=b) (a<b)

Pin 8 Tierra

Pin 16 Voltaje

Un DIP switch se trata de un conjunto de micro-interruptores eléctricos que se presenta en un formato encapsulado (que se denomina Dual In - Line Package - DIP), la totalidad del paquete de interruptores se puede también referir como interruptor DIP en singular, pueden contener 2, 4, 5, 6, 8 hasta 9 micro-interruptores.

Tamaños de DIP swhich

Este tipo de micro-interruptor se utiliza comúnmente para modificar/personalizar el comportamiento hardware de un dispositivo electrónico en ciertas situaciones especificas.

Los interruptores DIP son una alternativa a los jumper (o puente, elemento que permite interconectar dos terminales de manera temporal sin tener que efectuar una operación que requiera una herramienta adicional).

SN74LS85N

Ejemplo 2: comparar 2 números de 1 bit cada uno.

Figura 3.3 Diagrama eléctrico del circuito SN74LS85.

SN74LS85N

Figura 3.4 Conexión en protoboard para el ejemplo SN74LS85N.

MATERIAL Y EQUIPO

- -Fuente de poder.
- -Caimanes.
- -Protoboard.
- -2 Jumper macho-macho.
- -Alambre.
- -Circuito integrado 74LS151, 74LS85.
- -4 diodos emisores de luz (led).
- -12 Resistencias 1000 ohms Ω a ½ watt.
- -3 Resistencias de 330 ohms Ω a ½ watt
- -2 Dip switch de 8 pines..

DESARROLLO

Con el uso de un simulador propuesto por el profesor el alumno arma los circuitos de la figura 3.1 y 3.3, llevarlos a clase para probarlos con el profesor.

Construir un circuito combinacional implementando un multiplexor para un sistema que devuelva una salida con un valor de 1 si el numero introducido es impar, y que devuelva el valor contrario si no es impar, hacerlo con un multiplexor de 8 A 1 con el SN74LS151

EJERCICIO

Construir un comparador de dos números cada uno de dos bits, simularlo con ayuda de la compuerta 74LS85, llenar la tabla de verdad, con los resultados obtenidos.

Numero	Numero	A=B	A>B	A <b< th=""></b<>
Α	В	S1	S2	S3
00	00			
00	01			
00	10			
00	11			
01	00			
01	01			
01	10			
01	11			
10	00			
10	01			
10	10			
10	11			
11	00			
11	01			
11	10			
11	11			

CONCLUSIONES

Escriba sus conclusiones de esta practica.

Bibliografía y Referencias

- ✓ Joven club de computación, circuito Combinacional, gobierno de cuba, Disponible en https://www.ecured.cu/Circuito,Combinacional(04/11/18).
- ✓ Molina Marticonera José Luis, Análisis de sistemas combinacionales, Industria Argentina, Disponible en http://www.profesormolina.com. ar/electronica/componentes/int/sist_comb.htm(04/11/18).
- ✓ Silva Leopoldo, Multiplexores, Universidad Técnica Federico Santa María, disponible en http://profesores.elo.utfsm.cl/~tarredondo/info/digital-systems/7-Sistemas%20Combinacionales.pdf, (04/11/18).
- ✓ LITERATURE FULFILLMENT, SN74LS151, Demver, Disponible en:https://4donline.ihs.com/images/VipMasterIC/IC/ONSM/ONSMS12268/ONS MS12268-1.pdf?hkey=EF798316E3902B6ED9A73243A3159BB0,(04/11/18)
- ✓ Gissell Maria Caraballo, DIP Swich, Disponible en https://electronicaradical.blogspot.com/2015/04/dip-switch-interruptor-dip.html