Versuchsbericht zu

E3 – Elektrische Resonanz

Gruppe Mi 10

Alex Oster(a_oste16@uni-muenster.de)

Jonathan Sigrist(j_sigr01@uni-muenster.de)

durchgeführt am 24.01.2018 betreut von Wladislaw Hartmann

Inhaltsverzeichnis

1	Kur	zfassung	1	
2	Seri	Serienresonanzkreis		
	2.1	Methoden	1	
		2.1.1 Aufbau	1	
		2.1.2 Unsicherheiten	1	
	2.2	Durchführung und Datenanalyse	1	
	2.3	Diskussion	1	
3	Parallelresonanzkreis			
	3.1	Methoden	2	
		3.1.1 Aufbau	2	
		3.1.2 Unsicherheiten	2	
	3.2	Durchführung und Datenanalyse	2	
	3.3	Diskussion	2	
4	Sch	schlussfolgerung		
5	Anh	nang	4	
	5 1	Unsicherheitsrachnung	1	

1 Kurzfassung

Dieser Bericht befasst sich mit der Betrachtung von elektrischer Resonanz bei Schwingkreisen. Dazu werden zwei verschiedene Schwingkreise betrachtet; ein serieller, bei dem der regulierbare Kondensator in Reihe zu der verwendeten Spule geschaltet ist und ein paralleler, bei dem Kondensator und Spule parallel geschaltet sind.

2 Serienresonanzkreis

2.1 Methoden

2.1.1 Aufbau

2.1.2 Unsicherheiten

Die bei diesem Versuch auftretenden Unsicherheiten setzen sich aus der Unsicherheit für Die Berechnung der kombinierten Unsicherheiten erfolgt nach GUM und ist im Anhang aufgeführt.

2.2 Durchführung und Datenanalyse

2.3 Diskussion

3 Parallelresonanzkreis

3.1 Methoden

3.1.1 Aufbau

3.1.2 Unsicherheiten

Die bei diesem Versuch auftretenden Unsicherheiten setzen sich aus der Unsicherheit für Die Berechnung der kombinierten Unsicherheiten erfolgt nach GUM und ist im Anhang aufgeführt.

3.2 Durchführung und Datenanalyse

3.3 Diskussion

4 Schlussfolgerung

5 Anhang

5.1 Unsicherheitsrechnung

$$x = \sum_{i=1}^{N} x_i; \quad u(x) = \sqrt{\sum_{i=1}^{N} u(x_i)^2}$$

Abbildung 1: Formel für kombinierte Unsicherheiten des selben Typs nach GUM.

$$f = f(x_1, \dots, x_N); \quad u(f) = \sqrt{\sum_{i=1}^{N} \left(\frac{\partial f}{\partial x_i} u(x_i)\right)^2}$$

Abbildung 2: Formel für sich fortpflanzende Unsicherheiten nach GUM.