Dis 7: Sampling Distributions

Relevant textbook chapter: 9

Ch 9 handout and solution offered by Dr. Pac can be accessed here: Handout Solution This handout incorporates reviews with all exercises from Dr. Pac's original handout.

1 Motivation

- In the past two weeks, we discussed random variables, and the probability distributions that such random variables could follow.
- As we learned from Dis 5 and 6,
 - A random variable assign a number to each possible outcome.
 - A discrete probability distribution describes the point probability at all possible values for a discrete random variable.
 - A continuous probability distribution describes the density (PDF) at all possible values for a continuous random variable.

Thus, random variables and their associated probability distributions are related to the **population**.

- However, in reality, what we get to work with is often the **sample** data, which means we need to relate statistics obtained from samples to the population (⇒ process of statistical inference).
- This is why we need to look at the distribution of sample statistics, i.e. sampling distributions

2 Idea of Sampling Distributions (in Words)

- Say that we are interested in making an interpretation on the sample mean \bar{X}
- We first need a sample mean estimate: let's draw a sample of size *n*, and calculate its sample mean
 - We would like this one measure of \bar{X} to simply represent the population mean μ .
 - However, we don't know how precise this estimated sample mean is
- How to solve this?
 - Well, let's repeat this exercise: draw another size n sample, and calculate the new sample mean
 - If we keep repeatedly draw a size n sample and calculate the associated sample mean, we would have a lot of sample mean estimates
 - * If a lot of these sample mean estimates are **around one particular value**, then you're **more confident** that the sample mean you obtain from just one sample of size n could be a good representation of μ
 - * If a lot of these sample mean estimates are **bouncing around all sorts of values**, then you **might not trust** that a single sample mean estimate obtained from one sample of size n is a good representation of μ
 - All these sample mean estimates form a **sampling distribution**; it tells us
 - * What sample mean numbers you often get, and
 - * How much variation is in these sample mean numbers

3 Difference Between Probability Distribution and Sampling Distribution

	Probability Distribution	Sampling Distribution
Generated by	Random variable (e.g. X)	Sample statistic (e.g. \bar{X})
Describes	Probability of a random variable equals to a certain value	Probability of a sample statistic equals to a certain value
Helps us know about	How likely a number is drawn from the population	How likely the sample statistic is calculated as some number

4 Examples of Sampling Distribution

4.1 Sampling distribution of the mean

- Statistic of interest: $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$, obtained from simple random sampling
- How \bar{X} is distributed depends on the distribution of X_i :
 - If each X_i is normally distributed, then $\bar{X} \sim N(\mu_{\bar{X}}, \sigma_{\bar{X}}^2)$ with certainty
 - If each X_i is NOT normally distributed, we might be able to approximate \bar{X} using a normal distribution (i.e. $\bar{X} \stackrel{a}{\sim} N(\mu_{\bar{X}}, \sigma_{\bar{X}}^2)$) based on central limit theorem.

Theorem 1 (Central limit theorem (CLT)). The mean of a random variable drawn from any population is approximately normal for a sufficiently large sample size.

In practice, we use $n \ge 30$ as the cutoff:

- * For non-normally distributed X_i , if $n \geq 30$, then CLT can be invoked, and $\bar{X} \stackrel{a}{\sim} N(\mu_{\bar{X}}, \sigma_{\bar{X}}^2)$
- * For non-normally distributed X_i , if n < 30, then CLT cannot be invoked, so the distribution of \bar{X} is undetermined.
- To summarize, for random variable X, the sampling distribution of \bar{X} is the following:

	X is normally distributed	X is NOT normally distributed
Sample size is small ($n < 30$)		
Sample size is large ($n \ge 30$)		

- What are $\mu_{\bar{X}}$ and $\sigma_{\bar{X}}^2$?
 - $\mu_{\bar{X}}$ is the expected value of \bar{X} :

$$\mu_{\bar{X}} = E(\bar{X}) = E\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n}\sum_{i=1}^{n}E(X_{i}) = \frac{1}{n} \times n \times \mu_{X} = \mu_{X}$$

– $\sigma_{\bar{X}}^2$ is the variance of \bar{X} , and it depends on the population size:

* If population size is infinitely large (in practice, if $N \ge 20n$),

$$\sigma_{\bar{X}}^{2} = V(\bar{X}) = V\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \left(\frac{1}{n}\right)^{2}\sum_{i=1}^{n}V(X_{i}) = \frac{1}{n^{2}} \times n \times \sigma_{X}^{2} = \frac{\sigma_{X}^{2}}{n}$$

- * If population size is not infinitely large (in practice, if N < 20n), then $\sigma_{\bar{X}}^2$ needs to be adjusted:
 - **Finite population correction factor**: an adjustment applied to the **standard error** of sample mean (i.e. $\sigma_{\bar{X}}$), where

Finite population correction factor =
$$\sqrt{\frac{N-n}{N-1}}$$

· Thus, the standard error of sample mean is

$$\sigma_{\bar{X}} = \sqrt{\frac{\sigma_X^2}{n}} \cdot \sqrt{\frac{N-n}{N-1}}$$

which means that the variance of the sample mean is

$$\sigma_{\bar{X}}^2 = (\sigma_{\bar{X}})^2 = \frac{\sigma_{\bar{X}}^2}{n} \cdot \frac{N-n}{N-1}$$

4.2 Sampling distribution of the proportion (from a binomial experiment)

- Say that we have a random variable $X \sim \text{Binomial}(n, p)$ recording the number of successes in n trials where the probability of success in each trial is p.
- Turns out, under certain conditions, *X* can be well approximated by a normal distribution.

Conditions for normal approximation of a binomial random variable *X*:

- 1. $np \ge 5$, and
- 2. $n(1-p) \ge 5$

If the aforementioned conditions are satisfied, then

$$X \stackrel{a}{\sim} N(\mu_X, \sigma_X^2)$$

where, based on binomial distribution properties,

$$\mu_X = E(X) = np$$

$$\sigma_X^2 = V(X) = np(1-p)$$

Aside: A binomial X is a discrete random variable. However, the approximation approximates $X \stackrel{a}{\sim} N(np, np(1-p))$, which is a continuous distribution.

Thus, a **correction factor for continuity** is needed when calculating probability using the normal approximation.

Exercise. Accounting for the correction factor for continuity, how should the following probabilities be expressed for a binomial random variable *X*?

1.
$$P(X = 3) =$$

2.
$$P(X = 2) =$$

3.
$$P(X = 2 \text{ or } 3) =$$

- Why is this needed? ⇒ helps us approximate the sampling distribution of the proportion!
 - As long as a binomial distributed X can be approximated using a normal distribution (i.e. $np \ge 5$ and $n(1-p) \ge 5$), then the proportion of successes (\hat{p}) can be approximated using a normal distribution:

$$\hat{p} = \frac{X}{n} \stackrel{a}{\sim} N(\mu_{\hat{p}}, \sigma_{\hat{p}}^2)$$

- What is $\mu_{\hat{p}}$ and $\sigma_{\hat{p}}^2$?

$$\mu_{\hat{p}} = E(\hat{p}) = E\left(\frac{X}{n}\right) = \frac{1}{n}E(X) = p$$

$$\sigma_{\hat{p}}^2 = V(\hat{p}) = V\left(\frac{X}{n}\right) = \left(\frac{1}{n}\right)^2 V(X) = \frac{p(1-p)}{n}$$

4.3 Sampling distribution of the difference between two means

- Statistic of interest: $\bar{X} \bar{Y}$, where $X \sim N(\mu_X, \sigma_X^2)$, and $Y \sim N(\mu_Y, \sigma_Y^2)$, and X is independent of Y
- From subsection 4.1, assuming that the population sizes are sufficiently large, we know that

$$\bar{X} \sim N(\mu_X, \frac{\sigma_X^2}{n_X})$$
 $\bar{Y} \sim N(\mu_Y, \frac{\sigma_Y^2}{n_Y})$

Since the sum of two normal distributions is still a normal distribution, we have

$$\bar{X} - \bar{Y} \sim N(\mu_{\bar{X} - \bar{Y}}, \sigma^2_{\bar{X} - \bar{Y}})$$

where

$$\mu_{\bar{X}-\bar{Y}} = E(\bar{X} - \bar{Y}) = E(\bar{X}) - E(\bar{Y}) = \mu_X - \mu_Y$$

$$\sigma_{\bar{X}-\bar{Y}}^2 = V(\bar{X} - \bar{Y}) = V(\bar{X}) + V(\bar{Y}) - 2\underbrace{Cov(\bar{X}, \bar{Y})}_{=0 \text{ by indep}} = \frac{\sigma_X^2}{n_X} + \frac{\sigma_Y^2}{n_Y}$$

5 Exercises

- 1. Suppose we draw a simple random sample of four observations: $\{X_1, X_2, X_3, X_4\}$. Each X_i is distributed with mean 4 and standard deviation 2. The realized values for our sample turn out to be: $\{-1,0,5,3\}$.
 - (a) What is $E(\bar{X})$? Would your answer change if you were working with a different sample, such as: $\{4, -1, 2, 6\}$?

(b) What is $V(\bar{X})$? Would your answer change if you were working with a different sample?

(c) What is the distribution of \bar{X} ?

(d) Now suppose n = 64. What is the distribution of \bar{X} ?

(e) Now suppose n = 64, and $X_i \sim N(4,4)$. What is the distribution of \bar{X} ?

2.	The amount of time a bank teller spends with each customer has a population mean $\mu=3.1$ minutes
	and a standard deviation of $\sigma = 0.4$ minutes.

(a) If a random sample of 50 customers is selected from a finite population of 500 customers, what is the probability that the average time per customer will be at least 3 minutes?

(b) Now, suppose that we observe only 16 customers, and answer the same question.

- 3. Let *X* be the number of successes in a binomial experiment with n = 300 and p = 0.55, and let $\hat{p} = \frac{X}{n}$ be the proportion of successes.
 - (a) Is this a case where *X* is well approximated by a normal distribution? If so, exactly what normal distribution should we use?

(b) Using a normal approximation, what is the probability that X=165? Use the correction factor for continuity.

(c)	Is this a case where \hat{p} is well approximated by a normal distribution? If so, exactly what normal distribution should we use?
(d)	Find the approximate probability that \hat{p} is greater than 60%.
(e)	We would like to repeat the same binomial experiment with $p = 0.55$, but with fewer trials. If we want to use the normal distribution to approximate \hat{p} , what is the lowest number of trials needed?

TABLE **3** (Continued)

		\								
_										
	0	z								
	$P(-\infty < Z < Z)$	z)								
Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990