ID1020: Union-Find

Dr. Per Brand

pbrand@kth.se

kap. 1.5

Slides adapted from Algorithms 4th Edition, Sedgewick.

Att utveckla en algoritm

- Stegen för att utveckla en användbar algoritm:
 - Bygg en modell av problemet.
 - Hitta en algoritm för att lösa problemet.
 - Är algoritmen snabb nog? Tillräcklig minnessnål?
 - Om inte, kom på varför.
 - Hitta förbättring.
 - Iterera tills man är nöjd.

Sedan, ska man analysera algoritm.

Dynamisk-konnektivitets problemet

- Givet en mängd av N objekt, programmet ska stödja två operationer:
 - Union: skapa en förbindelse mellan (connect) två objekt.
 - **Find**: Finns det en stig (path) som förbinder två objekt?
 - Om det finns en stig säger vi att objekten är i samma komponent

connect 4 and 3

connect 3 and 8

connect 6 and 5

connect 9 and 4

connect 2 and 1

are 0 and 7 connected? X

are 8 and 9 connected? ✓

connect 5 and 0

connect 7 and 2

connect 6 and 1

connect 1 and 0

are 0 and 7 connected? ✓

Ett större konnektivitetsproblem

• Finns det en stig som förbinder p till q? Ja!

Bygg en modell av objekten

Tilllämpningar

- Pixlar i en digitalbild.
- Dator i ett nätverk.
- Kompisar i ett socialt nätverk.
- Transistorer på ett datorchip.
- Element i en matematisk mängder.
- Variabelnamn i ett Fortran program.
- När man programmerar, underlättar det att benämna objekt
 0 till N 1.
 - Använd ett heltal som en array index.
 - Ta bort alla detaljer som inte är relevant till union-find.
 - a[i] == a[j] för alla objekt i samma komponent

Bygg en modell av förbindelserna

- Vi antar "är förbunden till" (connected to) är en ekvivalensrelation:
 - Reflexiv: p är förbunden till p.
 - Symmetrisk: om p är förbunden till q, q är förbunden till p.
 - Transitiv: om p är förbunden till q och q är förbunden till r, p är förbunden till r.
- En ekvivalensrelation partitionerar objekt i ekvivalensklasser som kallas för "connected components".
- Sammanhängande komponent (connected component). Största mängd av objekt som har ömsesidiga förbindelser.

3 (sammanhängande) komponenter

Att implementera Find och Union operationer

- Find. I vilken komponent hittar vi objekt p?
- Connected. Finns objekt p och q i samma komponent?
- Union. Ersätt komponenterna som innehåller objekt p och q med en ny komponent som inkluderar både deras komponenterna , dvs deras "union".

Union-find datatyp (API)

- Mål. Bygg en effektiv datastruktur för union-find.
 - Antal objekt N kan vara enorm.
 - Antal operationer M kan också vara enorm.
 - Klienter kan anropa union och find operationer i vilken ordning som helst.

public class UF

	UF(int N)	initialize union-find data structure with N singleton objects $(0 \text{ to } N-1)$
void	union(int p, int q)	add connection between p and q
int	find(int p)	component identifier for p (0 to $N-1$)
boolean	connected(int p, int q)	are p and q in the same component?

connected()

• connected() kan implementeras med bara en kodrad:

```
public boolean connected(int p, int q) {
    return find(p) == find(q);
}
```

Ett exempel Klient till UF API:et

- Läs in ett antal objekt N från stdin (standard input).
- Upprepa stegen nedan:
 - 1. läs in ett par heltal från stdin
 - 2. om de inte är förbundna ännu, skapa en förbindelse mellan dem och skriv ut paret

```
public static void main(String[] args) {
   int N = StdIn.readInt();
   UF uf = new UF(N);
   while (!StdIn.isEmpty())
      int p = StdIn.readInt();
      int q = StdIn.readInt();
      if (!uf.connected(p, q)) {
         uf.union(p, q);
         StdOut.println(p + " " + q);
```

Quick-find

Quick-find [ivrig metod]

- Datastruktur.
 - Integer array id[] av längd N.
 - Förklaring: id[p] är id:n av komponenten som innehåller p.
 p och q är förbundna iff (om och endast om) de har samma id.

									8	
id∏	0	1	1	8	8	0	0	1	8	8

0, 5 och 6 är förbundna

1, 2, och 7 är förbundna

3, 4, 8, och 9 är förbundna

Quick-find

- Datastruktur.
 - Integer array id[] av längd N.
 - Förklaring: id[p] är id:n av komponenten som innehåller p.

Find. Vad är id av p?
Förbundna? Har p och q samma id?

$$id[6] = 0$$
; $id[1] = 1$
6 och 1 är inte förbundna

• Union. För att förbinda komponenter som innehåller p och q, ändra alla element vars id = id[p] till id[q].

efter ha slagit hop 6 och 1

problem: många värden kan förändras

Quick-find demo

0

(1)

 $\left(2\right)$

(3)

(4)

(5)

(6)

(7)

(8)

(9)

id[] 0 1 2 3 4 5 6 7 8 9

Quick-find demo

									8	
id[]	1	1	1	8	8	1	1	1	8	8

Quick-find: Java implementation

```
public class QuickFindUF {
   private int[] id;
   public QuickFindUF(int N)
      id = new int[N];
      for (int i = 0; i < N; i++) {
                                                               ge varje objekt samma komponent-id
               id[i] = i;
                                                               som dess egen id (N array accesser)
   public boolean find(int p) { return id[p]; }
                                                                  returnera id av p
                                                                  (1 array access)
   public void union(int p, int q) {
      int pid = id[p];
      int qid = id[q];
      for (int i = 0; i < id.length; i++) {
          if (id[i] == pid)
                                                              ändra alla element med id[p] till id[q]
                  id[i] = qid;
                                                              (tar som mest 2N + 2 array accesser)
```

Quick-find är för långsam

 Kostnadsmodell. Antal array accesser (array läsningar och skrivningar).

algoritm	initialize	union	find	connected
quick-find	N	N	1	1

beräkningstiden för array accesser

kvadratisk

• Union är för dyrt. Det tar N^2 array accesser för att bearbeta en sekvens av N union operationer på N objekt.

1 7

Kvadratisk algoritmer skalar inte

förhållanden har gällt

sedan 1950!

- Tumregeln (för nu).
 - 10⁹ operationer per sekund.
 - 10⁹ minnesord av huvudminne.
 - Kan komma åt alla minnesord på ungefär 1 sekund.

- Stort problem för quick-find:
 - Med, 10^9 union operationer på 10^9 objekt, skulle quick-find exekverar mer än 10^{18} operationer => 30+ år av beräkningstid!
- Kvadratisk algoritmer skalar inte med bättre teknologi.
 - Ny dator kan vara 10x snabbare.
 - Men, datorn har 10x mer minnet =>
 vi vill lösa ett problem som är 10x större.
 - Med en kvadratisk algoritm, => 10x långsammare!

Quick Union

Quick-union [lat metod]

- Datastruktur.
 - Integer array id[] av längd N.
 - Förklaring: id[i] är förälder av i.
 - Roten (Root) av i är id[id[id[...id[i]...]]].

fortsätta tills den inte förändras (inga cyklar i algoritm)

föräldern av 3 är 4 roten av 3 är 9

Quick-union

- Datastruktur.
 - Integer array id[] av längd N.
 - Förklaring: id[i] är förälder av i.
 - Roten av i är id[id[id[...id[i]...]]].

- Find. Vad är roten av p?
- Connected. Delar p och q samma rot?
- Union. För att förbinda komponenter som innehåller p och q, tilldelar id av p's rot till id av q's rot.

roten av 3 är 9 roten av 5 är 6 3 och 5 är inte förbundna

Quick-union demo

0 1 2 3 4 5 6 7 8 9

id[] 0 1 2 3 4 5 6 7 8 9

id[] 0 1 2 3 4 5 6 7 8 9

Quick-union demo

Quick-union: Java implementation

```
public class QuickUnionUF {
private int[] id;
public QuickUnionUF(int N) {
   id = new int[N];
   for (int i = 0; i < N; i++) {
                                                          ge varje objekt samma komponent-id
         id[i] = i;
                                                          som dess egen id (N array accesser)
 public int find(int i) {
   while (i != id[i]) {
                                                          följ föräldrapekare tills man når roten
         i = id[i];
                                                          (djupet av trädet array accesser)
   return i;
 public void union(int p, int q) {
   int i = find(p);
   int j = find(q);
                                                          byt roten av p för att peka till roten av q
   id[i] = j;
                                                          (det tar djupet av p och q array accesser)
```

Quick-union är också för långsamt

Kostnadsmodell. Antal array accesser.

algoritm	initialize	union	find	connected	
quick-find	N	N	1	1	
quick-union	N	N [†]	N	N ←	worst cas

† inkluderar kostnaden av att hitta roten

Quick-find defekt.

- Union är för dyrt. (N array accesser).
- Träden är "flat", men det kostar för mycket att behålla dem flat.

Quick-union defekt.

- Träden kan bli för djupa.
- Find/connected för dyrt (kan ta N array accesser).

Quick-union förbättringar

Förbättring 1: Viktning

- Viktad quick-union.
 - Ändra på quick-union för att undvika djupa träd.
 - Spara storleken av trädet (dvs., antal objekt i trädet) i ett attribut.
 - Balansera träden genom att länka roten av det mindre trädet till roten av det större trädet.

Viktad quick-union demo

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9
d[] 0 1 2 3 4 5 6 7 8 9

Viktad quick-union demo

Quick-union och viktad quick-union exempel

quick-union

average distance to root: 5.11

weighted

average distance to root: 1.52

Quick-union and weighted quick-union (100 sites, 88 union() operations)

Viktad quick-union: Java implementation

- Datastruktur. Samma som quick-union, men vi behöver en extra array sz[i] för att räkna antal objekt i trädet med roten i.
- Find/connected. Samma som quick-union.
- Union. Ändringar till quick-union:
 - Länka roten av det mindre trädet till roten av det större trädet.
 - Uppdatera sz[] array.

```
int i = find(p);
int j = find(q);
if (i == j) return;
if (sz[i] < sz[j]) {
    id[i] = j; sz[j] += sz[i];
} else {
    id[j] = i; sz[i] += sz[j];
}</pre>
```

Viktad quick-union analys

- Körtiden.
 - Find: tar tid proportionellt mot djupet av p.
 - Union: tar konstant tid, givet rotnoderna.

lg = base-2 logarithm

• Sats. Djupet av nod x är maximalt 1g N.

Viktad quick-union analys

- Körtiden.
 - Find: tar tid proportionellt mot djupet av p.
 - Union: tar konstant tid, givet rotnoderna.

lg = base-2 logarithm

- Sats. Djupet av nod x är maximalt lg (N).
- Bevis. Vad är det som gör att djupet av objekt x ökar?
 - Ökar med 1 när trädet T1 som innehåller x sammanfogar (merges) med ett annat träd T2.
 - Storleken av trädet som innehåller x minst fördubblas eftersom $|T_2| \ge |T_1|$.
 - Storleken av trädet som innehåller x kan fördubblas som mest 1g N gångar. Varför?

Viktad quick-union analys

Körtiden.

- Find: tar tid proportionellt mot djupet av p.

- Union: tar konstant tid, givet rotnoderna.

Sats. Djupet av nod x är maximalt lg (N).

algoritm	initialize	union	find	connected
quick-find	N	N	1	1
quick-union	N	N [†]	N	N
viktad QU	N	lg N [†]	lg N	lg N

† inkluderar kostnaden av att hitta roten

Kommer algoritmen att terminera med garanterad acceptabelt prestanda? Nej, men det går lätt att förbättra den.

Förbättring 2: stig komprimering

• Quick union med stig komprimering (path compression). Precis efter ha beräknat roten av p, sätt id[] av varje examinerade nod så att den pekar till denna roten.

Förbättring 2: stig komprimering

• Quick union med stig komprimering. Precis efter ha beräknat roten av p, sätt id[] av varje examinerade nod så att den pekar till denna roten.

Förbättring 2: stig komprimering

• Quick union med stig komprimering. Precis efter ha beräknat roten av p, sätt id[] av varje examinerade nod så att den pekar till denna roten.

Förbättring 2: stig komprimering

• Quick union med stig komprimering. Precis efter ha beräknat roten av p, sätt id[] av varje examinerade nod så att den pekar till denna roten.

Förbättring 2: stig komprimering

• Quick union med stig komprimering. Precis efter ha beräknat roten av p, sätt id[] av varje examinerade nod så att den pekar till denna roten.

Resultatet. Nu, find() har bi-effekten att den komprimerar trädet, dvs minska djupet av trädet.

Stig komprimering: Java implementation

- Tvåstegs implementation: lägg till en andra loop till find() för att tilldela id[] av varje examinerade nod till roten.
- Enklare ettstegs-variant (stighalvering): Gör att varannan nod i stigen pekar till sin farfar (grandparent).

```
public int find(int i) {
    while (i != id[i]) {
        id[i] = id[id[i]];
        i = id[i];
    }
    return i;
}
bara en extra rad av kod
    behövdes

i = id[i];
}
```

I praktiken. Det finns ingen anledning att inte komprimera stigen! Den behåller träden nästan "flat".

Viktad quick-union with stig komprimering: amorterad analys

- Sats. [Hopcroft-Ulman, Tarjan] Om man börjar med en tom datastruktur, vilken sekvens som helst av M union-find operationer på N objekt gör mindre än c ($N + M \lg^* N$) array accesser.
 - Analys kan förbättras till $N + M \alpha(M, N)$.
 - Enkel algoritm med fascinerande matematik.

N	lg* N
1	0
2	1
4	2
16	3
65536	4
2 ⁶⁵⁵³⁶	5

itererade lg funktion

Linjärtid algoritm för *M* union-find operationer på *N* objekt?

- Kostnad inom en konstant faktor av inläsningen av data.
- I teori är WQUPC (weighted quick-union with path compression) inte helt linjär.
- I praktiken är WQUPC linjär.

Häpnadsväcknande fakta: Ingen linjärtid algoritm finns [Fredman-Saks].

i "cell-probe" beräkningsmodellen

Sammanfattning

 Slutsats. Viktad quick union (och/eller stig komprimering) möjliggör att lösa problem som annars inte hade kunnat lösas.

algoritm	worst-case tid
quick-find	M N
quick-union	M N
viktad QU	N + M log N
QU + stig komprimering	N + M log N
viktad QU + stig komprimering	N + M lg* N

beräkningstid för M union-find operationer på en mängd av N objekt

Ex. [10⁹ unions och finds med 10⁹ objekt]

- WQUPC minskar tiden från 30 år till 6 sekundar.
- En Supercomputer hjälper inte mycket; det är en bra algoritm som möjliggör lösningen.

Union-Find applikationer

Union-find applikationer

- Perkolation.
- Spel (Go, Hex).
- ✓ Dynamisk konnektivitet.
- Least common ancestor.
- Ekvivalens av ändliga tillståndsautomater.
- Hinley-Milner polymorphiskt typinferens.
- Kruskal's minsta uppspännande träd algoritm.
- Matlab's bwlabel() funktion i bildbehandling.

Perkolation

- En abstrakt modell av många fysiska system:
 - $N \times N$ rutnät av platser (sites).
 - Varje plats är öppen med sannolikheten p (och blockerad med sannolikheten 1-p).
 - Systemet perkolerar iff topp och botten är förbundna genom öppna platser.

Perkolation

- En abstrakt modell av många fysiska system:
 - N x N rutnät (grid) av platser (sites).
 - Varje plats är öppen med sannolikheten p (och blockerad med sannolikheten 1-p).
 - Systemet perkolerar iff topp och botten är förbundna genom öppna platser.

model	system	vacant site	occupied site	percolates
electricity	material	conductor	insulated	conducts
fluid flow	material	empty	blocked	porous
social interaction	population	person	empty	communicates

Sannolikheten av perkolation

• Beror på grid storleken N och ledig plats (site vacancy) sannolikheten p.

Perkolation fasövergång

- När N är stor, teori garanterar en skarp tröskel p*.
 - $p > p^*$: perkulerar med väldig hög sannolikhet.
 - $p < p^*$: perkulerar med väldig låg sannolikhet.
- Vad är värdet av p*?

N = 100

site vacancy probability p

Monte Carlo simulering

- Initialisera alla platser i en N-x-N grid så att deras tillstånd är blockerad (blocked).
- Gör slump platser lediga tills det finns en stig mellan toppen och botten.
- Ledighet procentsats (*vacancy percentage*) uppskatter *p**.

N = 20

• Hur kan man kontrollera om ett N-x-N system perkolerar? Modellera som ett dynamisk konnektivitet problem och använd union-find.

- Hur kan man kontrollera om ett N-x-N system perkolerar?
- ✓ Skapa ett objekt för varje plats och tilldela de namn från 0 to N^2-1 .

- Hur kan man kontrollera om ett N-x-N system perkolerar?
- ✓ Skapa ett objekt för varje plats och tilldela de namn från 0 till $N^2 1$.
- ✓ Platser befinner sig i samma komponent iff de är förbundna med lediga platser.

- Hur kan man kontrollera om ett N-x-N system perkolerar?
- ✓ Skapa ett objekt för varje plats och tilldela de namn från 0 till N² 1.
- ✓ Platser befinner sig i samma komponent iff de är förbundna med lediga platser.
- ✓ Perkolerar iff en av platsen på bottenraden (vilken som helst) är förbunden till en på toppraden (vilken plats som helst).

brute-force algoritm: N 2 anrop till connected()

- Knep. Introducera 2 virtuella platser (virtual sites) med förbindelser till topp och botten.
- ✓ Systemet perkolerar iff den virtuella topp-platsen är förbunden till en virtuell bottenplats

mer effektivt algoritm: bara 1 anrop till connected()

 Vi vill omvandla en blockerad plats till en öppen plats. Hur bygger man en model av detta?

 Markera den nya platsen som ledig; förbinda alla sina angränsande lediga platser.

upp till 4 anrop till union()

Perkolationströskeln

- Vad är perkolation tröskeln p*?
- Ungfär 0.592746 för large square lattices.

En snabb algoritm möjliggör ett noggrannt svar till en vetenskaplig fråga.

Sammanfattning

- Union-Find är en intressant algoritm med många praktiska applikationer
 - Quick-Find, Quick-Union, Weighted Quick-Union, Weighted Quick-Union with Path Compression.
- Med union-find som ett exempel, har vi gätt igenom följande steg i utvecklingen av en algoritm:
 - Bygga en modell av problemet.
 - Hitta en algoritm för att lösa problemet.
 - Är den snabb nog? Passar den i minnet?
 - Om inte, kom på varför.
 - Hitta ett sätt att fixa problemet.
 - Iterera tills man är njöd
- Nästa föreläsningen:
 - Enkel-sortering