ΘΕΜΑ 4

Ένα σώμα μάζας m=34~Kg εκτοξεύεται κατακόρυφα από την επιφάνεια της Γης με ταχύτητα \vec{v}_0 . Η ταχύτητα του σώματος μηδενίζεται τη στιγμή που βρίσκεται σε ύψος $h=7R_{\Gamma}$, οπότε διασπάται σε δύο κομμάτια με μάζες $m_1=10~Kg$ και $m_2=24~Kg$ αντίστοιχα. Το κομμάτι μάζας m_1 κατευθύνεται προς την επιφάνεια της Γης κινούμενο στην ευθεία που περνά από το κέντρο της, ενώ το κομμάτι μάζας m_2 φτάνει στο άπειρο με ταχύτητα που έχει μέτρο $v_{\infty}=3\cdot 10^3~\frac{m}{s}$. Η αντίσταση του αέρα θεωρείται αμελητέα. Δίνονται: η ακτίνα της Γης $R_{\Gamma}=6400~Km$ και το μέτρο της επιτάχυνσης της βαρύτητας στην επιφάνεια της Γης $g_0=10~\frac{m}{s^2}$. Να υπολογίσετε:

4.1. Την ταχύτητα \vec{u}_0 .

Μονάδες 6

4.2. Την ταχύτητα \vec{v}_2 του κομματιού μάζας m_2 αμέσως μετά τη διάσπαση του σώματος.

Μονάδες 6

4.3. Την ταχύτητα \vec{v}_1 του κομματιού μάζας m_1 αμέσως μετά τη διάσπαση του σώματος και την ταχύτητα \vec{v}_3 με την οποία φτάνει στην επιφάνεια της Γης.

Μονάδες 8

4.4. Το ρυθμό μεταβολής της ορμής του κομματιού μάζας m_1 τη στιγμή που βρίσκεται σε ύψος $h_1=R_{\Gamma}$.

Μονάδες 5