LÒGICA I LLENGUATGES

SOLUCIONS DE PROBLEMES

SETMANA DEL 1 DE MAIG

Exercici 1. Considerem l'autòmat amb pila $M=(K,\Sigma,\Gamma,\Delta,q_0,F)$ on $K=\{q_0,f\}, \Sigma=\{0,1\}, \Gamma=\{1\}, F=\{f\}$ i Δ consta de les següents transicions:

 $1.((q_0,0,\lambda),(q_0,1)),$

 $2.((q_0,0,\lambda),(q_0,11)),$

 $3.((q_0,\lambda,\lambda),(f,\lambda)),$

 $4.((f,1,1),(f,\lambda)).$

Llavors, es demana:

- (a) Demostrar que $\lambda,011,00111,000111111 \in L(M)$.
- (b) Demostrar que $0111 \notin L(M)$.
- (c) Descriure el llenguatge L(M).

Solució : (a) Tenim que $\lambda \in L(M)$ per la transició 3.

El següent còmput reconeix 011: vspace6mm

estat	cinta	pila	transició
q_0	011	λ	_
q_0	11	11	2
f	11	11	3
f	1	1	4
f	λ	λ	4

El següent còmput reconeix 00111.

estat	cinta	pila	transició
q_0	00111	λ	_
q_0	0111	11	2
q_0	111	111	1
f	111	111	3
f	11	11	4
f	1	1	4
f	λ	λ	4

El següent còmput reconeix 00011111.

estat	cinta	pila	transició
q_0	00011111	λ	_
q_0	0011111	11	2
q_0	011111	1111	2
q_0	11111	11111	1
f	11111	11111	3
f	1111	1111	4
f	111	111	4
f	11	11	4
f	1	1	4
f	λ	λ	4

(b) Tenim els següents còmputs per a 0111:

estat	cinta	pila	transició
q_0	0111	λ	_
q_0	111	1	1
f	111	1	3
f	11	λ	4

estat	cinta	pila	transició
q_0	0111	λ	_
q_0	111	11	2
f	111	11	3
f	11	1	4
f	1	λ	4

Com tenim que en cap dels dos còmputs es llegeix tota la paraula d'entrada, 0111 no és reconeguda per M.

(c)
$$L(M) = \{0^n 1^m : n \le m \le 2n\}.$$

Exercici 2. Considerem l'autòmat amb pila $M=(K,\Sigma,\Gamma,\Delta,q_0,F)$ on $K=\{q_0,f\},\ \Sigma=\{a,b\},\ \Gamma=\{c\},\ F=\{f\}$ i Δ consta de les següents transicions:

- $1.((q_0, a, \lambda), (q_0, c)),$
- $2.((q_0, b, \lambda), (q_0, c)),$
- $3.((q_0, a, \lambda), (f, \lambda)),$
- $4.((f,a,c),(f,\lambda)),$
- $5.((f, b, c), (f, \lambda)).$

Llavors, es demana:

- (a) Demostrar que $baa, bab, baaaa \in L(M)$.
- (b) Descriure el llenguatge L(M).

Solució: (a) El següent còmput reconeix baa.

estat	cinta	pila	transició
q_0	baa	λ	-
q_0	aa	c	2
f	a	c	3
f	λ	λ	4

El següent còmput reconeix bab.

estat	cinta	pila	transició
q_0	bab	λ	_
q_0	ab	c	2
f	b	С	3
f	λ	λ	5

I el següent còmput reconeix baaaa.

estat	cinta	pila	transició
q_0	baaaa	λ	_
q_0	aaaa	c	2
q_0	aaa	cc	1
f	aa	cc	3
f	a	С	4
f	λ	λ	4

(b)
$$L(M) = \{xay : x, y \in \{a, b\}^* \text{ tals que } |x| = |y|\}.$$

Exercici 3. Considerem l'autòmat amb pila $M=(K,\Sigma,\Gamma,\Delta,q_0,F)$ on $K=\{q_0,q_1,q_2\},\ \Sigma=\{a,b\},\ \Gamma=\{a,b,c\},\ F=\{q_2\}$ i Δ consta de les següents transicions:

- $1.((q_0,\lambda,\lambda),(q_1,c)),$
- $2.((q_1, a, c), (q_1, ac)).$
- $3.((q_1, a, a), (q_1, aa)).$
- $4.((q_1, a, b), (q_1, \lambda)).$
- $5.((q_1,b,c),(q_1,bc)).$
- $6.((q_1,b,b),(q_1,bb)).$
- $7.((q_1, b, a), (q_1, \lambda)).$
- $8.((q_1,\lambda,c),(q_2,\lambda)).$

Llavors es demana:

- (a) Demostrar que λ , aabb, $abbbabaa \in L(M)$.
- (b) Descriure el llenguatge L(M).

Solució: (a) El següent còmput reconeix λ .

estat	cinta	pila	transició
q_0	λ	λ	_
q_1	λ	С	1
q_2	λ	λ	8

El següent còmput reconeix aabb.

estat	cinta	pila	transició
q_0	aabb	λ	-
q_1	aabb	c	1
q_1	abb	ac	2
q_1	bb	aac	2
q_1	b	ac	7
q_1	λ	c	7
q_2	λ	λ	8

I el següent còmput reconeix abbbabaa.

estat	cinta	pila	transició
q_0	abbbabaa	λ	_
q_1	abbbabaa	c	1
q_1	bbbabaa	ac	2
q_1	bbabaa	c	7
q_1	babaa	bc	5
q_1	abaa	bbc	6
q_1	baa	$^{\mathrm{bc}}$	4
q_1	aa	bbc	6
q_1	a	bc	4
q_1	λ	С	4
q_2	λ	λ	8

Observem que el símbol c es un símbol especial que s'utilitza per a marcar la base de la pila.

(b)
$$L(M) = \{x \in \{a, b\}^* : n_a(x) = n_b(x)\}.$$

<u>Exercici 4</u>. Definir un autòmat amb pila M tal que $L(M)=\{a^ib^jc^k:i=j\vee i=k\}.$

Solució: Definim l'autòmat amb pila $M=(K,\Sigma,\Gamma,\Delta,q_0,F)$ on $K=\{q_0,q_1,q_2,q_3,q_4\},\ \Sigma=\{a,b,c\},\ \Gamma=\{a,b,c\},\ F=\{q_2,q_4\}\ \text{y}\ \Delta$ consta de les següents transicions:

- 1. $((q_0, a, \lambda), (q_0, a))$.
- 2. $((q_0, \lambda, \lambda), (q_1, \lambda))$.
- 3. $((q_1, b, a), (q_1, \lambda))$.
- 4. $((q_1, \lambda, \lambda), (q_2, \lambda))$.

```
5. ((q_2, c, \lambda), (q_2, \lambda)).
    6. ((q_0, \lambda, \lambda), (q_3, \lambda)).
    7. ((q_3, b, \lambda), (q_3, \lambda)).
    8. ((q_3, \lambda, \lambda), (q_4, \lambda)).
    9. ((q_4, c, a), (q_4, \lambda)).
    Tenim que q_2 reconeix \{a^ib^jc^k: i=j\}, i q_4 reconeix \{a^ib^jc^k: i=k\}.
    Exercici 5. Considerem l'autòmat amb pila determinista M = (K, \Sigma, \Gamma, \Delta, q_0, F)
on K = \{q_0, f\}, \Sigma = \{a, b, c\}, \Gamma = \{a, b\}, F = \{f\} \text{ i } \Delta \text{ consta de les següents}
transicions:
    1.((q_0, a, \lambda), (q_0, a)),
    2.((q_0,b,\lambda),(q_0,b)),
    3.((q_0,c,\lambda),(f,\lambda)),
    4.((f, a, a), (f, \lambda)),
    5.((f, b, b), (f, \lambda)).
    Llavors, simular M mitjançant un programa en JAVA.
    Solució: Representem a q_0 per 0 i a f per 1.
public boolean simular (String entrada)
\{ \text{ int } q = 0, i = 0; 
  boolean b = true;
  char c = entrada.charAt(0);
  Stack \langle Character \rangle pila = new Stack \langle Character \rangle();
  while ((c!= '$') && b)
  { switch(q)
          \{ case 0: 
          if (c == 'a') pila.push('a');
         else if (c == 'b') pila.push('b');
         else if (c == 'c') q = 1;
          else b = false;
         break;
         case 1:
         if ((c == 'a') \&\& pila.peek() == a) pila.pop();
         else if ((c == b') \&\& pila.peek() == b) pila.pop();
         else b = false;
          break; }
```

c = entrada.charAt(++i);

if ((q == 1) && b) return true; else return false; }

Exercici 6. Considerem la gramàtica incontextual $G=(V,\Sigma,P,S)$ on $V=\{S,A,B,C\}, \Sigma=\{a,b\}$ i $P=\{S\to ABC,A\to 0A1,A\to\lambda,B\to 1B,B\to 1,C\to 1C\,0,C\to\lambda\}$. Llavors, es demana:

- (a) Donar derivacions per a les paraules 01110 i 0111100.
- (b) Determinar el llenguatge L(G).

Solució: (a) En primer lloc, enumerem les produccions de P:

- 1. $S \to ABC$
- $2. A \rightarrow 0A1$
- 3. $A \rightarrow \lambda$
- 4. $B \rightarrow 1B$
- 5. $B \rightarrow 1$
- 6. $C \rightarrow 1C0$
- 7. $C \rightarrow \lambda$

Llavors, tenim les següents derivacions:

$$S \Rightarrow^1 ABC \Rightarrow^2 0A1BC \Rightarrow^3 01BC \Rightarrow^5 011C \Rightarrow^6 0111C0 \Rightarrow^7 01110.$$

 $S\Rightarrow^1ABC\Rightarrow^20A1BC\Rightarrow^301BC\Rightarrow^5011C\Rightarrow^60111C0\Rightarrow^601111C00\Rightarrow^70111100.$

(b) Per la definició de llenguatge associat a una gramática, sabem que L(G)=L(S). Llavors, per la regla 1, tenim que $L(G)=L(S)=L(A)\cdot L(B)\cdot L(C)$. Per les regles 2 i 3, tenim que $L(A)=\{0^n1^n:n\geq 0\}$. Per les regles 4 i 5, $L(B)=\{1^n:n\geq 1\}$. I per les regles 6 i 7, $L(C)=\{1^n0^n:n\geq 0\}$. Per tant, $L(G)=\{0^n1^m0^k:m>n+k\}$.

 $\underline{\text{Exercici 7}}.$ Definir gramàtiques in contextuals que generin els següents llenguatges:

- (a) El llenguatge de les paraules de longitut senar en $\{a,b\}^*$ amb a com a símbol central.
- (b) El llenguatge de les paraules de longitut parell en $\{a,b\}^*$ amb dos símbols centrals iguals.
- (c) El llenguatge de les paraules de longitut senar en $\{a,b\}^*$ que tenen iguales els símbols central, primer i últim.

Solució: (a) Definim la gramàtica incontextual definida per les següents produccions:

- 1. $S \rightarrow aSa$
- $2.\ S \rightarrow aSb$
- 3. $S \rightarrow bSa$

- 4. $S \rightarrow bSb$
- 5. $S \rightarrow a$
- (b) Definim la gramàtica incontextual definida per les següents produccions:
- 1. $S \rightarrow aSa$
- 2. $S \rightarrow aSb$
- 3. $S \rightarrow bSa$
- 4. $S \rightarrow bSb$
- 5. $S \rightarrow aa$
- 6. $S \rightarrow bb$
- (c) Definim la gramàtica incontextual definida per les següents produccions:
- 1. $S \rightarrow aAa$
- 2. $S \rightarrow bBb$
- 3. $A \rightarrow aAa$
- 4. $A \rightarrow aAb$
- 5. $A \rightarrow bAa$
- 6. $A \rightarrow bAb$
- 7. $A \rightarrow a$
- 8. $B \rightarrow aBa$
- 9. $B \rightarrow aBb$
- 10. $B \rightarrow bBa$
- 11. $B \rightarrow bBb$
- 12. $B \rightarrow b$

 $\underline{\text{Exercici 8}}.$ Definir gramàtiques in contextuals que generin els següents llenguatges:

- (a) $\{a^i b^i : i \ge 2\}$.
- (b) $\{a^i b^j : i \ge j\}$.
- (c) $\{a^i b^j : j \le i \le 2j\}.$
- (d) $\{a^i b^j c^k : i = k\}.$
- (e) $\{a^i b^j c^k : i = j + k\}.$
- (f) $\{a^i b^j c^k : j = i + k\}.$

Solució:

- (a) Definim la gramàtica incontextual definida per les següents produccions:
- 1. $S \rightarrow aaTbb$.
- 2. $T \rightarrow aTb$.
- 3. $T \rightarrow \lambda$.
- (b) Definim la gramàtica incontextual definida per les següents produccions:
- 1. $S \rightarrow aS$
- 2. $S \rightarrow aSb$
- 3. $S \rightarrow \lambda$
- (c) Definim la gramàtica incontextual definida per les següents produccions:
- 1. $S \rightarrow aSb$
- 2. $S \rightarrow aaSb$
- 3. $S \rightarrow \lambda$
- (d) Definim la gramàtica incontextual definida per les següents produccions:
- 1. $S \rightarrow aSc$
- 2. $S \rightarrow B$
- 3. $B \rightarrow bB$
- 4. $B \rightarrow \lambda$
- (e) Definim la gramàtica incontextual definida per les següents produccions:
- 1. $S \rightarrow aSc$
- $2.\ S\to X$
- 3. $X \rightarrow aXb$
- 4. $X \rightarrow \lambda$
- (f) Definim la gramàtica incontextual definida per les següents produccions:
- 1. $S \to XY$
- 2. $X \rightarrow aXb$
- 3. $X \to \lambda$
- 4. $Y \rightarrow bYc$
- 5. $Y \rightarrow \lambda$