STAT 4710J Midterm Reference Sheet

Pandas

Suppose df is a DataFrame; s is a Series. pd is the Pandas package.

Function	Description	
df[col]	Returns the column labeled col from df as a Series.	
df[[col1, col2]]	Returns a DataFrame containing the columns labeled col1 and col2.	
s.loc[rows] / df.loc[rows, cols]	Returns a Series/DataFrame with rows (and columns) selected by their index values.	
s.iloc[rows] / df.iloc[rows, cols]	Returns a Series/DataFrame with rows (and columns) selected by their positions.	
s.isnull() / df.isnull()	Returns boolean Series/DataFrame identifying missing values	
s.fillna(value) / df.fillna(value)	Returns a Series/DataFrame where missing values are replaced by value	
df.drop(labels, axis)	Returns a DataFrame without the rows or columns named labels along axis (either 0 or 1)	
df.rename(index=None, columns=None)	Returns a DataFrame with renamed columns from a dictionary index and/or columns	
df.sort_values(by, ascending=True)	Returns a DataFrame where rows are sorted by the values in columns by	
s.sort_values(ascending=True)	Returns a sorted Series.	
s.unique()	Returns a NumPy array of the unique values	
s.value_counts()	Returns the number of times each unique value appears in a Series	
<pre>pd.merge(left, right, how='inner', on='a')</pre>	Returns a DataFrame joining DataFrames left and right on the column labeled a; the join is of tinner	
<pre>left.merge(right, left_on=col1, right_on=col2)</pre>	Returns a DataFrame joining DataFrames left and right on columns labeled col1 and col2.	
<pre>df.pivot_table(index, columns, values=None, aggfunc='mean')</pre>	Returns a DataFrame pivot table where columns are unique values from columns (column name or list), and rows are unique values from index (column name or list); cells are collected values using aggfunc. If values is not provided, cells are collected for each remaining column with multi-level column indexing.	
df.set_index(col)	Returns a DataFrame that uses the values in the column labeled col as the row index.	
df.reset_index()	Returns a DataFrame that has row index 0, 1, etc., and adds the current index as a column.	

Let grouped = df.groupby(by) where by can be a column label or a list of labels.

Function	Description	
grouped.count()	Return a Series containing the size of each group, excluding missing values	
grouped.size()	Return a Series containing size of each group, including missing values	
grouped.mean()/grouped.min()/grouped.max()	Return a Series/DataFrame containing mean/min/max of each group for each column, excluding missing values	
grouped.filter(f) grouped.agg(f)	Filters or aggregates using the given function f	
Function Descr	iption	

Function	Description	
s.str.len()	Returns a Series containing length of each string	
s.str.lower()/s.str.upper()	Returns a Series containing lowercase/uppercase version of each string	
s.str.replace(pat, repl)	Returns a Series after replacing occurences of substrings matching regular expression pat with string repl	
s.str.contains(pat)	Returns a boolean Series indicating whether a substring matching the regular expression pat is contained in each string	
s.str.extract(pat)	Returns a Series of the first subsequence of each string that matches the regular expression pat. If pat contains one group, then only the substring matching the group is extracted	

Visualization

Matplotlib: x and y are sequences of values.

Function Description	
plt.plot(x, y)	Creates a line plot of x against y
plt.scatter(x, y)	Creates a scatter plot of x against y
plt.hist(x, bins=None)	Creates a histogram of x; bins can be an integer or a sequence
plt.bar(x, height)	Creates a bar plot of categories x and corresponding heights height

Tukey-Mosteller Bulge Diagram.

Function	Description Create a barplot of value counts of variable x from data		
<pre>sns.countplot(data, x)</pre>			
<pre>sns.histplot(data, x, kde=False) sns.displot(x, data, rug = True, kde = True)</pre>	Creates a histogram of x from data; optionally overlay a kernel density estimator. displot is similar but can optionally overlay a rug plot.		
<pre>sns.boxplot(data, x=None, y) sns.violinplot(data, x=None, y)</pre>	Create a boxplot of y, optionally factoring by categorical x, from data. violinplot is similar but also draws a kernel density estimator of y.		
<pre>sns.scatterplot(data, x, y)</pre>	Create a scatterplot of x versus y from data		
sns.lmplot(x, y, data, fit_reg=True) Create a scatterplot of x versus y from data, and by default overlay regression line			
<pre>sns.jointplot(x, y, data, kind)</pre>	Combine a bivariate scatterplot of x versus y from data, with univariate density plots of each variable overlaid on the axes; kind determines the visualization type for the distribution plot, can be scatter, kde or hist		

Regular Expressions

List of all metacharacters: . ^ \$ * + ?] [\ | () { }

Operator	Description		Operator	Description
	Matches any characte	er except \n	*	Matches preceding character/group zero or more times
\\	Escapes metacharact	ers	?	Matches preceding character/group zero or one times
I	Matches expression on either side of expression; has lowest priority of any operator		+	Matches preceding character/group one or more times
\d, \w, \s	Predefined character alphanumerics (a-z, A or whitespace, respec	Z-Z, 0-9, and underscore),	^, \$	Matches the beginning and end of the line, respectively
\D, \W, \S	Inverse sets of \d, \w,	\s, respectively	()	Capturing group used to create a sub-expression
{m}	Matches preceding character/group exactly m times		[]	Character class used to match any of the specified characters or range (e.g. [abcde] is equivalent to [a-e])
{m, n}	Matches preceding character/group at least m times and at most n times if either m or n are omitted, set lower/upper bounds to 0 and ∞, respectively		[^]	Invert character class; e.g. [^a-c] matches all characters except a, b, c
Function		Description		
re.match(pattern, string) Returns a match if zero or		more characte	ers at beginning of string matches pattern, else None	
re.search(pattern, string) Returns a match if zero or n		more characte	ers anywhere in string matches pattern, else None	
re.findal	re.findall(pattern, string) Returns a list of all non-overlapping matches of pattern in string (if none, returns empty list)			ches of pattern in string (if none, returns empty list)
re.sub(pa	ttern, repl, string)	Returns string after repla	cing all occurr	rences of pattern with repl

Modeling

Concept	Formula	Concept	Formula
$L_1 \mathrm{loss}$	$L_1(y,\hat{y}) = \mid y - \hat{y} \mid$	Correlation r	$r = rac{1}{n} \sum_{i=1}^n rac{x_i - ar{x}}{\sigma_x} rac{y_i - ar{y}}{\sigma_y}$
L_2 loss	$L_2(y,\hat{y}) = (y-\hat{y})^2$	Linear regression prediction of \boldsymbol{y}	$\hat{y} = a + bx$
Empirical risk with loss ${\cal L}$	$R(\theta) = \frac{1}{n} \sum_{i=1}^{n} L(y_i, \hat{y}_i)$	Least squares linear regression, slope \hat{b}	$\hat{b} = r \frac{\sigma_y}{\sigma_x}$

Ordinary Least Squares

Multiple Linear Regression Model: $\hat{\mathbb{Y}} = \mathbb{X}\theta$ with design matrix \mathbb{X} , response vector \mathbb{Y} , and predicted vector $\hat{\mathbb{Y}}$. If there are p features plus a bias/intercept, then the vector of parameters $\theta = [\theta_0, \theta_1, \dots, \theta_p]^T \in \mathbb{R}^{p+1}$. The vector of estimates $\hat{\theta}$ is obtained from fitting the model to the sample (\mathbb{X}, \mathbb{Y}) .

Concept	Formula	Concept	Formula
Mean squared error	$R(heta) = rac{1}{n} Y - X heta _2^2$	Normal equation	$\mathbb{X}^T \mathbb{X} \hat{ heta} = \mathbb{X}^T \mathbb{Y}$
Least squares estimate, if $\mathbb X$ is full rank	$\hat{\theta} = (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T \mathbb{Y}$	Residual vector, \boldsymbol{e}	$e=\mathbb{Y}-\hat{\mathbb{Y}}$
		Multiple R^2 (coefficient of determination)	$R^2 = rac{ ext{variance of fitted values}}{ ext{variance of } y}$
Ridge Regression .2 Regularization	$rac{1}{n} Y-X heta _2^2+\lambda heta _2^2$	Squared L2 Norm of $ heta \in \mathbb{R}^d$	$ heta _2^2 = \sum_{j=1}^d heta_j^2$
tidge regression estimate closed form)	$\hat{ heta}_{ ext{ridge}} = (\mathbb{X}^T \mathbb{X} + n \lambda I)^{-1} \mathbb{X}^T \mathbb{Y}$		
ASSO Regression 1 Regularization	$rac{1}{n} Y-X heta _2^2+\lambda heta _1$	L1 Norm of $ heta \in \mathbb{R}^d$	$ heta _1 = \sum_{j=1}^d heta_j $

Scikit-Learn

Suppose sklearn.model_selection and sklearn.linear_model are both imported packages.

Package	Function(s)	Description
sklearn.linear_model	LinearRegression()	Returns an ordinary least squares Linear Regression model.
	LassoCV(), RidgeCV()	Returns a Lasso (L1 Regularization) or Ridge (L2 regularization) linear model, respectively, and picks the best model by cross validation.
	model.fit(X, y)	Fits the scikit-learn model to the provided X and y.
	model.predict(X)	Returns predictions for the \boldsymbol{X} passed in according to the fitted model.
sklearn.model_selection	<pre>train_test_split(*arrays, test_size=0.2)</pre>	Returns two random subsets of each array passed in, with 0.8 of the array in the first subset and 0.2 in the second subset.

SQL

SQLite syntax:

SELECT [DISTINCT]

{* | expr [[AS] c_alias]

{,expr [[AS] c_alias] ...}}

FROM tableref {, tableref}

[[INNER | LEFT] JOIN table_name

ON qualification_list]

[WHERE search_condition]

[GROUP BY colname {,colname...}]

[HAVING search_condition]

[ORDER BY column_list]

[LIMIT number]

[OFFSET number of rows];

Syntax	Description
SELECT column_expression_list	List is comma-separated. Column expressions may include aggregation functions (MAX, FIRST, COUNT, etc). AS renames columns. DISTINCT selects only unique rows.
FROM s INNER JOIN t ON cond	Inner join tables s and t using cond to filter rows; the INNER keyword is optional.
FROM s LEFT JOIN t ON cond	Left outer join of tables s and t using cond to filter rows.
FROM s, t	Cross join of tables s and t: all pairs of a row from s and a row from $\ensuremath{\text{t}}$
WHERE a IN cons_list	Select rows for which the value in column a is among the values in a cons_list.
ORDER BY RANDOM LIMIT n	Draw a simple random sample of n rows.
ORDER BY a, b DESC	Order by column a (ascending by default) , then $\ensuremath{\text{b}}$ (descending).
CASE WHEN pred THEN cons ELSE alt END	Evaluates to cons if pred is true and alt otherwise. Multiple WHEN/THEN pairs can be included, and ELSE is optional.
WHERE s.a LIKE 'p'	Matches each entry in the column a of table s to the text pattern p. The wildcard % matches at least zero characters.
LIMIT number	Keep only the first number rows in the return result.
OFFSET number	Skip the first number rows in the return result.