Nonreversible MCMC for latent phylogenetic trees

Jere Koskela

Inference for expensive systems in mathematical biology University of Oxford, 23–24 March 2022

Outline

The coalescent

Metropolis-Hastings

The zig-zag process

Zig-zag for the coalescent

The coalescent¹

¹J F C Kingman. The coalescent, Stoch Proc Appl 13(3):235–248, 1982.

The coalescent as missing data

Metropolis-Hastings²

- 1. Set $X_1 \leftarrow x$.
- 2. For $i \in \{2, ..., m\}$ do
 - 2.1 Sample $Y \sim q(X_{i-1}, \cdot)$.
 - 2.2 Sample $U \sim U(0,1)$.
 - 2.3 If $U \le \min \left\{ 1, \frac{\pi(Y)q(Y, X_{i-1})}{\pi(X_{i-1})q(X_{i-1}, Y)} \right\}$, set $X_i \leftarrow Y$.
 - 2.4 Else set $X_i \leftarrow X_{i-1}$.

 $^{^2}$ W K Hastings. Monte Carlo sampling methods using Markov chains and their applications, Biometrika 57(1):97-109, 1970.

Reversibility ⇒ diffusive behaviour

The zig-zag process³

- 1. Set $(x, v) \in \mathbb{R}^n \times \{-1, 1\}^n$.
- 2. Set $t \leftarrow 0$.
- 3. While t < T do
 - 3.1 Sample $Y \sim \text{Exp}(1)$.
 - 3.2 Set ρ such that $\sum_{i=1}^{n} \int_{t}^{t+\rho} \lambda_i(x+sv,v) ds = Y$.
 - 3.3 Set $x \leftarrow x + \rho v$.
 - 3.4 Set $t \leftarrow t + \rho$.
 - 3.5 Sample $I \sim \text{Categorical}(\lambda_1(x, v), \dots, \lambda_n(x, v))$.
 - 3.6 Set $v_I \leftarrow -v_I$.
- \triangleright Between switches, x moves with constant velocity v.
- ightharpoonup Target density π is invariant if

$$\lambda_i(x, v) = v_i \partial_i \log \pi(x) \vee 0.$$

³J Bierkens, P Fearnhead and G Roberts. The zig-zag process and super-efficient sampling for Bayesian analysis of big data, Ann Stat 47(3):1288–1320, 2019.

The zig-zag process

(d) 2D S-shaped density

³J Bierkens, P Fearnhead and G Roberts. The zig-zag process and super-efficient sampling for Bayesian analysis of big data, Ann Stat 47(3):1288–1320, 2019.

The three leaf au-space

One third of the four leaf τ -space⁴

 $^{^4}$ A Gavryushkin and A J Drummond. The space of ultrametric phylogenetic trees, J Theor Biol 403:197–208, 2016.

Simulation study^{5,6,7}

Figure 3.

Perfect phylogeny of the Griffiths and Tavaré (1994) data set.

⁵A Hobolth, M K Uyenoyama and C Wiuf. Importance sampling for the infinite sites model, Stat Appl Genet Mol Biol 7(1) Article 32, 2008.

⁶R C Griffiths and S Tavaré. Ancestral inference in population genetics, Stat Sci 9:307–319, 1994.

⁷R H Ward, B L Frazier, K Dew and S Pääbo. Extensive mitochondrial diversity within a single Amerindian tribe, Proc Natl Acad Sci USA 88:8720–8724, 1991.

Mutation rate (55 samples, 18 segregating sites)

Run times: 3.5 min vs. 0.5 min.

Tree height (55 samples, 18 segregating sites)

Run times: 3.5 min vs. 0.5 min.

Mutation rate (550 samples, 38 segregating sites)

Run times: 70 min vs. 45 min.

Tree height (550 samples, 38 segregating sites)

Run times: 70 min vs. 45 min.

Mutation rate (55 samples, 252 segregating sites)

Run times: 50 min vs. 1 min.

Tree height (55 samples, 252 segregating sites)

Run times: 50 min vs. 1 min.