

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

SENIOR CERTIFICATE EXAMINATIONS/ NATIONAL SENIOR CERTIFICATE EXAMINATIONS SENIORSERTIFIKAAT-EKSAMEN/ NASIONALE SENIORSERTIFIKAAT-EKSAMEN

TECHNICAL MATHEMATICS P2/TEGNIESE WISKUNDE V2

2021

MARKING GUIDELINES/NASIENRIGLYNE

MARKS/PUNTE: 150

	Marking Codes/Nasienkodes
A	Accuracy/Akkuraatheid
AO	Answer Only/Slegs antwoord
CA	Consistent accuracy/Volgehoue akkuraatheid
I	Identity/Identiteit
F	Correct Formula/Korrekte formule
M	Method/ <i>Metode</i>
NPR	No penalty for rounding/Geen penaliseering vir afronding
NPU	No penalty for units/Geen penaliseering vir eenhede weggelaat
R	Rounding/Afronding
RE	Reason/Rede
S	Simplification/Vereenvoudiging
SF	Substitution in correct formula/Vervanging in korrekte formule
ST	Statement/Bewering
ST/RE	Statement with Reason/Bewering met rede

These marking guidelines consists of 23 pages. *Hierdie nasienriglyne bestaan uit 23 bladsye.*

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- Consistent accuracy applies in all aspects of the marking guidelines where indicated.
- # Indicates the questions where tolerance range will be applied: Q4.1, Q4.2, Q5.1, Q8.5

LET WEL:

- Indien 'n kandidaat 'n vraag TWEE keer beantwoord, sien slegs die EERSTE poging na.
- Volgehoue akkuraatheid is deurgaans op alle aspekte van die nasienriglyne van toepassing.
- # Toon vrae waar Toleransie Wydte (Verdraagsaamheids omvang) toegepas word: Q4.1, Q4.2, Q5.1, Q8.5

SC/NSC/SS/NSS – Marking Guidelines/*Nasienriglyne*

1 4				
1.4	$m_{\rm KL} = \frac{y_{\rm L} - y_{\rm K}}{x_{\rm L} - x_{\rm K}}$			
			✓ SF	A
	$= \frac{-1-7}{-3-1}$			~ .
			✓ gradient/gradiënt	CA
1.5	= 2		AO Full marks /Volpun	<i>te</i> (2)
1.5	$\tan \theta = m = 2$ $\theta \approx 63.4^{\circ}$		CA from/ vanaf Q/V1.4	<u> </u>
	0≈ 05,4		✓ gradient \checkmark value of /waarde van θ	CA
		Penalty for rounding/	(rounded)/ (afgerond)	CA
		Penaliseering vir afronding	AO Full marks/ Volpunte	
1.6	2 .		<u> </u>	(2)
1.6	y=2x+c		✓ gradient/gradiënt ✓SF (-5; 1)	CA A
	1=2(-5)+c $c=11$		(3,1)	71
	$\therefore y = 2x + 11$		✓equation/verg	CA
	y 2x 111	OR/OF	ODVOE	
	$y - y_1 = m(x - x_1)$		OR/OF ✓ gradient/ <i>gradiënt</i>	CA
	y-1=2(x-(-5))		gradient gradient	CA
	y = 2x + 10 + 1		✓ SF (-5; 1)	A
	$\therefore y = 2x + 11$			G 4
			✓ equation/ vergelyking	CA (3)
1.7	3 17			(3)
	$\therefore y = \frac{3}{2}x + \frac{17}{2}$			
	LHS/LK = -2			
	RHS/ $RK = \frac{3}{2}(-4) + \frac{17}{2}$	$\frac{7}{1} - \frac{5}{1}$	✓ M LHS/ <i>LK</i> ≠ RHS/ <i>RK</i>	CA
	$\frac{\mathbf{KHS}/\mathbf{KK} - 2}{2} = 2$	$\frac{1}{2}$	· W LIB/LK + KIB/KK	
	$LHS/LK \neq RHS/RK$			
	∴ the point does NOT lie ∴ die punt lê NIE op die		✓ conclusion/ gevolgtrekking	CA
	ate punt te NIL op ate	iyn	OB/OF	
		OR/OF	OR/OF	
	$m_{\rm KL} = 2$			
	$m_{\text{New/Nuwe}} = \frac{y_1 - y_2}{x_1 - x_2}$	$=\frac{-2-1}{}=-3$		
	$x_1 - x_2$	-4 + 5	✓ M $m_{\text{New/Nuwe}} \neq m_{\text{KL}}$	A
	$m_{\text{New/Nuwe}} \neq m_{\text{KL}}$		✓ conclusion/ gevolgtrekking	· CA
	∴ the point does NOT lie ∴ die punt lê NIE op die		Conclusion/ gevolgirekking	CA
	ate punt te ML op ate	iyn		
		OR/OF	OR/OF	
	y+2=2(x+4)		✓ M equation/vergelyking	CA
	y = 2x + 6		· 111 equation vergeryming	U 11
	$\therefore \left(-4\;;-2\right)$			
		11	/amalusian/	
	does NOT lie on $y = 2x$	+11	✓ conclusion/ gevolgtrekking	(2)
	$l\hat{e} NIE op y = 2x + 11$			[15]

SC/NSC/SS/NSS - Marking Guidelines/Nasienriglyne

 $x.x_1 + y.y_1 = r^2$

x(-5) + y(12) = 169

12y = 5x + 169

 $y = \frac{5}{12}x + \frac{169}{12}$

✓ substitution/ *vervanging* (–5; 1)

A ✓ 169 CA

✓ S CA

✓ equation/ vergelyking C

CA (4)

A

A

2.2

- ✓ both *x*-intercepts/
 beide *x*-afsnitte
- ✓both *y*-intercepts beide *y*-afsnitte
- ✓elliptical shape/eliptiese vorm C.

(3) [**10**]

$$\left(\sqrt{13}\right)^2 = (3)^2 + (m)^2$$

$$13 = 9 + m^2$$

$$m^2 = 4$$
 OR/OF $m = \sqrt{(\sqrt{13})^2 - 3^2}$
 $\therefore m = 2$

OR/OF

✓ value of / waarde van m

A

AO Full marks / Volpunte

(1)

A

CA

 $\sec^2 \beta + \tan^2 \beta$ 3.1.2

$$= \left(\frac{\sqrt{13}}{3}\right)^2 + \left(\frac{2}{3}\right)^2$$
$$= \frac{13}{9} + \frac{4}{9}$$
$$= \frac{17}{9}$$

CA from/vanaf Q/V3.1.1

- ✓ ratio of/ *verh* $\sec \beta$
- ✓ ratio of/ verh tan β
- ✓ simplification/ *vereenv*

CA

✓ value of/waarde van $\sec^2 \beta + \tan^2 \beta$

CA

OR/OF

 $\sec^2 \beta + \tan^2 \beta$

$$= 1 + \tan^2 \beta + \tan^2 \beta$$

$$= 1 + 2 \tan^2 \beta$$

$$=1+2\left(\frac{2}{3}\right)^2$$

$$=1+\frac{8}{9}$$

$$=\frac{17}{9}$$

√ I

✓ S

A

A

✓ ratio of / verh van $\tan \beta$

CA

✓ value of/waarde van

 $\sec^2 \beta + \tan^2 \beta$

CA (4)

SC/NSC/SS/NSS – Marking Guidelines/*Nasienriglyne*

3.2.1	$\cos \theta = \frac{1}{2}$ $\therefore \theta = 60^{\circ}$	✓ value of/waarde van θ	A (1)
3.2.2	$\tan \alpha = -1$		
3.2.2	$ref/verw. \angle = 45^{\circ}$	✓ref./ verw ∠	A
	$\alpha = 180^{\circ} - 45^{\circ}$	And anodront/2do lang drant	
		✓2nd quadrant/2de kwadrant ✓value/waarde	A CA
	$\alpha = 135^{\circ}$ $0^{\circ} \le \alpha \le 180^{\circ}$	AO Full marks / Volpunte	(3)
3.2.3	$\cos(\alpha - \theta)$		
	$=\cos(135^{\circ}-60^{\circ})$	✓ substitution/ vervanging	CA
	$=\cos 75^{\circ}$		
	$\approx 0,26$ OR /OF $\frac{\sqrt{6}-\sqrt{2}}{4}$	✓ value of/waarde van $cos(α - θ)$ NPR AO Full marks / Volpunte	(2) CA
3.3	$2\tan x + 0,924 = 0$		
	$2\tan x = -0,924$		
	$\tan x = -0,462$	√S	A
	$ref/verw \angle \approx 24.8^{\circ}$	✓ ref./verw∠	CA
	$x \approx 180^{\circ} - 24.8^{\circ} \text{ or/of } x \approx 360^{\circ} - 24.8^{\circ}$		
	$\therefore x \approx 155, 2^{\circ} \text{ or/of } x \approx 335, 2^{\circ}$	$\checkmark x \approx 155,2^{\circ}$	
		CA	
		$\checkmark x \approx 335,2^{\circ}$	CA
		NPR	(4)
			[15]

4.1	$\cos\theta(\tan\theta + \cot\theta)$	$\sin \theta$	
	$\cos\theta$ $\cos\theta$	$\frac{\sqrt{1}}{\cos\theta}$	A
	$= \cos\theta \left(\frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta} \right)$	$\sqrt{I} \frac{\cos \theta}{}$	A
	$= \cos\theta \left(\frac{\sin^2\theta + \cos^2\theta}{\cos\theta \cdot \sin\theta} \right)$	$\sin \theta$	
	$-\cos\theta\left(\frac{-\cos\theta\cdot\sin\theta}{\cos\theta\cdot\sin\theta}\right)$	√S	CA
	$= \cos \theta \left(\frac{1}{\cos \theta \cdot \sin \theta} \right)$	√I	A
	$=\frac{1}{\sin\theta} \text{ OR/}OF \text{ cosec }\theta$		
	$\sin \theta$	✓S C	A
	OR/OF	OD/OF	
	$\cos\theta(\tan\theta + \cot\theta)$	OR/OF	
	$= \cos\theta \cdot \tan\theta + \cos\theta \cdot \cot\theta$	1 0	A
	$= \cos\theta \cdot \frac{\sin\theta}{\cos\theta} + \cos\theta \cdot \frac{\cos\theta}{\sin\theta}$	$\checkmark \mathbf{I} \frac{\sin \theta}{\cos \theta}$	A
	$=\sin\theta + \frac{\cos^2\theta}{\sin\theta}$	$\checkmark \mathbf{I} \frac{\cos \theta}{\sin \theta}$	A
	$=\frac{\sin^2\theta + \cos^2\theta}{1 + \cos^2\theta}$	/~	
	$=$ $\frac{1}{\sin \theta}$	✓S	A
	$= \frac{1}{\sin \theta} OR/OF \csc \theta$	✓I	A
	OR/OF	OR/OF	
	$\cos\theta\bigg(\tan\theta+\frac{1}{\tan\theta}\bigg)$	1	
		$\sqrt{\mathbf{I}} \frac{1}{\tan \theta}$	A
	$= \cos\theta \cdot \left(\frac{\tan^2\theta + 1}{\tan\theta}\right)$	√S	A
	$\left(\frac{-\cos\theta}{\tan\theta}\right)$		
	$(\sec^2\theta)$	$\sqrt{1} \sec^2 \theta$	A
	$= \cos\theta \cdot \left(\frac{\sec^2\theta}{\tan\theta}\right)$	1 500 0	71
	$\cos \theta$ (1 $\cos \theta$)	$1 \cos \theta$	
	$= \cos\theta \cdot \left(\frac{1}{\cos^2\theta} \cdot \frac{\cos\theta}{\sin\theta}\right)$	$\checkmark \mathbf{I} \sec^2 \theta$ $\checkmark \mathbf{I} \frac{1}{\cos^2 \theta} \cdot \frac{\cos \theta}{\sin \theta}$	
	$= \frac{1}{\sin \theta} OR / OF \csc \theta$	A	
	$\sin \theta$	√s C	A
		((5)

SC/NSC/SS/NSS – Marking Guidelines/*Nasienriglyne*

4.0		1	
4.2	$\sin^2(180^\circ + B) \cdot \csc(\pi - B)$		
	$\frac{1}{\sec(2\pi - B)\cdot\cos(180^{\circ} - B)}$		
		$\checkmark \sin^2 \mathbf{B}$	A
	$= \frac{\sin^2 B \cdot \csc B}{\cos^2 B \cdot \csc B}$	✓ cosec B	\mathbf{A}
	$\sec B \cdot (-\cos B)$	✓ secB	\mathbf{A}
	. 2 - 1	✓ – cosB	\mathbf{A}
	$= \frac{\sin^2 \mathbf{B} \cdot \frac{1}{\sin \mathbf{B}}}{-\frac{1}{\cos \mathbf{B}} \cdot \cos \mathbf{B}}$	1	
	$=\frac{\sin \theta}{1}$	\checkmark I $\frac{1}{\sin B}$	A
	$-\frac{1}{\cos B} \cdot \cos B$		
	COSD	\checkmark I $\frac{1}{\cos B}$	A
	$=-\sin B$	cosB ✓S	
			CA
		OR/OF	
	OR/OF		
	. 2 (1000 B) 1		
	$= \frac{\sin^2(180^\circ + B) \cdot \frac{1}{\sin(\pi - B)}}{\frac{1}{\cos(2\pi - B)} \cdot \cos(180^\circ - B)}$		
	$=\frac{\sin(\pi - \mathbf{b})}{1}$	1	
	$\frac{1}{(2 - B)} \cdot \cos(180^{\circ} - B)$	\checkmark I $\frac{1}{\sin(\pi - B)}$	A
	$\cos(2\pi - B)$		
	$\sin^2 \mathbf{p}$ 1	\checkmark I $\frac{1}{\cos(2\pi - B)}$	A
	$\frac{\sin B}{\sin B}$	$\cos(2\pi - B)$	
	$= \frac{\sin^2 B \cdot \frac{1}{\sin B}}{\frac{1}{\cos B} \cdot (-\cos B)}$	$\checkmark \sin^2 \mathbf{B}$	A
	$\frac{1}{\cos B} \cdot (-\cos B)$	✓ sin B	A
		✓ cos B	A
	$\sin^2 \mathbf{B} \cdot \frac{1}{\sin^2 \mathbf{B}}$	$\sqrt{-\cos B}$	
	$=\frac{\sin B}{\sin B}$	V - COSB	A
	$= \frac{\sin^{2} \frac{B \cdot \sin B}{\sin B}}{-\frac{1}{\cos B} \cdot \cos B}$		
	cosB	40	,
	$=-\sin B$	✓S	CA
			(7)
			[12]

QUESTION 5

7.1	are equal/ is gelyk	✓answer/antwoord	A
			(1)

7.2

	T		
7.2.1(a)	$PTS = \hat{R}_1 = 56^{\circ}$ ($\angle s$ in the same segment/ dieselfde segment)	✓ST ✓RE	A
	$\overrightarrow{OSR} = \overset{\land}{R}_1 = 56^{\circ}$ ($\angle s \text{ opp.} = \text{sides}$) $/(\angle^e \text{ teenoorg} = \text{sye})$	✓ST ✓RE	A
	$ \begin{array}{c cccc} $	✓ST	A
	$= koorde \ onderspan = \angle^e$		(5)
7.2.1(b)	$\stackrel{\circ}{\text{PSR}} = 90^{\circ}$ (\angle s in semicircle) $/(\angle^e \text{ in halfsirkel})$	✓ST ✓RE	A
	$\hat{P}_1 + 90^\circ + 56^\circ = 180^\circ$ (sum of \angle s of Δ) /(som van \angle e in Δ)		
	$\therefore \hat{P}_1 = 34^{\circ}$	✓ value of / w	aarde
		van P ₁	CA
	OR/OF	OR/OF	7
	$ \hat{O}_1 = 112^{\circ} \qquad \begin{bmatrix} \angle \text{ at centre} = 2 \times \angle \text{ at circum./} \\ mdpts \angle = 2 \times omtrk \angle \end{bmatrix} $ $ \therefore \hat{P}_1 = \hat{S}_1 = 34^{\circ} (\angle \text{s opp.} = \text{sides/teenoorg} = \text{sye}) $	✓ST ✓RE ✓ value of / w $van \stackrel{\circ}{\mathbf{P}}_1$	A caarde CA (3)
7.2.1(c)	$34^{\circ} + \hat{P}_2 = 56^{\circ}$	✓ST	CA
	$\therefore \hat{\mathbf{P}}_2 = 22^{\circ}$	✓ST	CA
	$\hat{\mathbf{S}}_3 = \hat{\mathbf{P}}_2 = 22^{\circ}$ (\angle s in same segment) $/(\angle^e in dieslfde segment)$ \mathbf{OR}/\mathbf{OF}	✓RE OR/OF	A
	$\hat{S}_1 + \hat{S}_2 + \hat{S}_3 = 90^{\circ}$ (\angle in the semi-circle) $/(\angle^e$ in halfsirkel)	✓ST/RE 0	CA
	$\hat{S}_1 + \hat{S}_2 = 180^\circ - 112^\circ (\text{sum of } \angle \text{s of } \Delta) / (\text{somvan} \angle^e \text{in } \Delta)$ $= 68^\circ$	✓ST/RE	A
	$\hat{S}_3 = 90^{\circ} - 68^{\circ} = 22^{\circ}$	✓ST	CA

	OR/OF	OR/OF	
	$ \hat{O}_{2} + \hat{O}_{3} = 112^{\circ} \qquad \left[\angle \text{ at centre} = 2 \times \angle \text{ at circum.} \right] \\ \text{mdpts} \angle = 2 \times \text{omtrk} \angle $ $ \hat{S}_{2} = \hat{T}_{2} = 34^{\circ} \left[\angle \text{s opp.} = \text{sides/teenoorg} = \text{sye} \right] \\ \therefore \hat{S}_{3} = 90^{\circ} - 68^{\circ} = 22^{\circ} \qquad \left[\angle \text{ in the semi-circle/} \right] \\ \angle \text{ in halfsirkel} $	✓ST/RE ✓ST/RE ✓ST	CA A CA
7.2.2	$\hat{O}_3 = 44^{\circ}$ $\left(\angle \text{at centre} = 2 \times \angle \text{at circum.} / mdpts \angle = 2 \times omtrk \angle \right)$	✓ST ✓RE	(3) A
		✓RE	A
	OR/OF	OR/OF	
	$\hat{O}_3 = 44^{\circ}$ $\begin{pmatrix} \angle \text{ at centre} = 2 \times \angle \text{ at circum.}/\\ mdpts \angle = 2 \times omtrk \angle \end{pmatrix}$	✓ST	A
	$\hat{O}_2 = 68^{\circ}$ $\left(\angle \text{at centre} = 2 \times \angle \text{at circum.}/ \atop mdpts \angle = 2 \times omtrk \angle\right)$	✓ ST	A
	$\hat{SOT} + \hat{OSR} = 44^{\circ} + 68^{\circ} + 56^{\circ} = 168^{\circ} \neq 180^{\circ}$ ∴ OT is not parallel to SR (co-int $\angle s \neq 180^{\circ}$) ∴ OT is nie parallel an SR (ko-binne $\angle s \neq 180^{\circ}$)	✓RE	A
	OR/OF	OR/OF	
	$\hat{S}_2 = \hat{T}_2 = 34^{\circ} \left[\angle s \text{ opp.} = \text{sides/teenoorg} = sye \right]$	✓ST	A
	$\hat{S}_{3} = 90^{\circ} - 68^{\circ} = 22^{\circ} \begin{bmatrix} \angle \text{ in the semi-circle/} \\ \angle^{e} \text{ in dies lf de segment} \end{bmatrix}$	✓ ST	A
		✓RE	A
	OI is the paramet an SK (verwissetende Z. the geryk)		(3) [15]

8.1	$\stackrel{\wedge}{\rm M} = 98^{\circ} \neq 90^{\circ}$	$\checkmark \mathbf{ST} \stackrel{\land}{\mathbf{M}} = 98^{\circ} \neq 90^{\circ} \mathbf{A}$
	∴LN is not a diameter (∠ subtended by LN ≠90°)	✓RE A
	∴ LN is nie 'n middellyn (∠deur LN onderspan \neq 90°) OR/OF	OR/OF
	$\hat{P}_2 + 98^\circ = 180^\circ$ (Opp. \angle s of cyclic quad.) $/(teens \angle^e KVHK)$ $\hat{P}_2 = 82^\circ \neq 90^\circ$	✓ST $P_2 = 82^{\circ} \neq 90^{\circ}$ A
	$P_2 = 82^\circ \neq 90^\circ$ ∴LN is not a diameter (∠ subtended by LN ≠90°) ∴ LN is nie 'n middellyn (∠ deur LN onderspan ≠ 90°)	✓RE A (2)
8.2.1	$\hat{P}_2 + 98^{\circ} = 180^{\circ}$ (Opp. \angle s of cyclic quad.) $\left(teenst \angle^e van \text{ 'n kvhk }\right)$	✓ST/RE A
	$\hat{P}_2 = 82^{\circ}$	$\checkmark \hat{P}_2 = 82^{\circ} \qquad \qquad \mathbf{A} \tag{2}$
8.2.2	$\stackrel{\wedge}{P_1} + 82^{\circ} = 180^{\circ}$ (\angle s on straight line) $/(\angle op 'n \ r.lyn)$	✓ST / RE A
	$\therefore \hat{P}_1 = 98^{\circ}$	$\checkmark \hat{P}_1 = 98^{\circ}$ CA
	OR/OF	OR/OF
	$\hat{P}_1 = 98^{\circ}$ (Ext. \angle of a cyclic quad.) $/(buite \angle van \ kvhk)$	✓ ST / RE A
		$\checkmark \hat{P}_1 = 98^{\circ} \qquad \qquad \mathbf{CA} $ $\tag{2}$
8.2.3	$\hat{L}_{l} = 27^{\circ}$ (tan-chord theorem) / rkl.koord st.	✓ST A ✓RE A (2)

8.3.1		✓ST A ✓ST A ✓ST/RE A (3)
8.3.2	$\frac{KL}{KN} = \frac{KP}{KL} \qquad (\Delta s)$ $\therefore KL^2 = KN.KP$	✓ST A ✓RE A (2)
8.4	$KL^2 = KN.KP$ $(6)^2 = 13.KP$ ∴ $KP \approx 2,77 \text{ units/eenhede}$	✓ subst/ verv A ✓ value of / waarde van KP A (2)
8.5	$\hat{K} + 27^{\circ} + 98^{\circ} = 180^{\circ} \qquad (\angle s \text{ of/} van \Delta)$ $\therefore \hat{K} = 55^{\circ}$ $\hat{K} + \hat{M} = 55^{\circ} + 98^{\circ} \neq 180^{\circ}$ $\therefore \text{ KLMN is not a cyclic quad.}$ $\therefore \text{ KLMN is nie'n kvhk nie}$ $\mathbf{OR/OF}$ $\hat{K} + \hat{L}_{1} + = 86^{\circ} \qquad \left(\begin{array}{c} \text{ext} \angle = \text{sum of opp.in t} \angle s / \\ buite \angle = \text{som van teenoost.binne} \angle e \end{array} \right)$ $\therefore \hat{K} = 55^{\circ}$	✓ST/RE CA ✓value of / waarde van K A ✓Conclusion/gevolgt. A OR/OF ✓ST/RE CA ✓value of / waarde van K A
	 Â + M = 55° + 98° ≠ 180° ∴ KLMN is not a cyclic quad. ∴ KLMN is nie 'n kvhk nie 	✓Conclusion/gevolgt. A (3)

9.1.1	$\frac{AB}{DB} = \frac{AC}{EC}$ (Prop. theorem/ ewerd.st; DE BC)	✓ST/RE	A
	$\frac{1,8}{DB} = \frac{3}{2}$		
	$DB^{-}2$		
	$DB = \frac{2}{3} \times 1, 8m$	(1 1 6/1 5 5 5	
	∴ DB=1,2 m	✓ length of / lengte van DB	A (2)
9.1.2	$AD = \frac{1.8}{3} = 0.6 \text{ m}$ or/of $AD = 1.8 - 1.2 = 0.6 \text{ m}$	√M (CA
	:. DF = $\frac{3}{2}$ (0,6 m)=0,9 m	✓length of/ lengte van DF	CA (2)
9.2	$\frac{\text{CF}}{\text{FB}} = \frac{1}{1} = 1$ (BF = FC; F is the midpoint of/ is	✓ST	A
	die middelpunt van BC)		
	$\frac{CE}{EA} = \frac{2}{1} = 2$ $\therefore \frac{CF}{FB} \neq \frac{CE}{EA}$	✓ST	A
	FB EA ∴ EF is NOT parallel to/aan AB (sides are not prop./ sye nie in verhouding)	✓ Conclusion/ gevolg.	CA
	OR/OF	OR/OF	
	BF = FC; F is the midpoint of/ $mdpt$ van BC AE \neq EC; ; E is NOT the midpoint of/ is NIE die middelpunt van AC	✓ F is the midpoint of/mdpt of BC✓ E is NOT the midpoint	van A
	•	of/ is NIE die middelpunt	
	 ∴ EF is NOT parallel to/aan AB (FE not joining midpoints of two sides of a triangle/ 	van AC ✓Conclusion/ gevolg	A CA
	verbind nie twee middelpunte van 'n driehoek)	Conclusion/ gevolg	(3)
			[7]

10.1.2

10.1.2(a)

angle of sector/ hoek van sektor, $\overrightarrow{FOG} = 20\% \times 2\pi$

 $=\frac{2}{5}\pi=1,26\,\mathrm{rad}$

OR/OF

angle of sector/hk van sektor, $\overrightarrow{FOG} = 360^{\circ} \times \frac{20}{100} = 72^{\circ}$

 $72^{\circ} = 72^{\circ} \times \frac{\pi}{180^{\circ}}$

 $=\frac{2}{5}\pi$ **OR/OF** 1,26 rad

OR/OF

Circmf. / $Omtrek = 2\pi r$

$$=2\pi(6,95)$$

$$=43,67$$
m

 $20\% \times 43,67m = 8,73$

$$s = r\theta$$

$$8,73 = 6,95\theta$$

 $\theta = 1,26 \, \text{rad}$

✓M

A

✓✓ radian/ radiaal

CA

OR/OF

✓angle size/ hoek grootte A

✓M A

✓radian/ radiaal A

OR/OF

✓ Circumf. / *omtrek*

A

./\/

 $\mathbf{C}\mathbf{A}$

✓ radian/ radiaal

CA

NPR NPU

(3)

10.1.2(b)	$\Lambda = r^2 \theta$	✓ Formula/ formule	A
	$A = \frac{r^2 \theta}{2}$	✓SF	A
	$=\frac{(6,95)^2(1,26)}{2}$		
	$\approx 30,43 \text{ m}^2$	✓ area/ <i>oppervlakte</i>	CA NPU
	≈ 50,45 m OR/OF	OR/OF	NI U
		✓ Formula/ formule	A
	$A = \frac{r s}{2} $ $(6.95)(8.73) $ $A = 20\% \times \pi r^{2} $ $= 20\% \times \pi (6.95)^{2} $	✓SF	A
	$A = \frac{r s}{2}$ $= \frac{(6,95)(8,73)}{2}$ $A = 20\% \times \pi r^{2}$ $= 20\% \times \pi (6,95)^{2}$ $\approx 30,35 \text{m}^{2}$	✓ area/ oppervlakte	CA
	$\approx 30,43 \text{ m}^2$	NPU NPR	(3)
10.2.1	18		(0)
	$n = \frac{10}{3600}$		
	n(in rev/sec/sek) = 0.005 rev/sec/sek	✓ M n (in rev/sec/sek)	A
	$n ext{ (in rad/sec/sek)} = 0.005 \text{ rev/sec/sek} \times 2\pi$		
	$=0.01\pi \ rad / sec/sek \ or / of$	✓ value of/ waarde van n	CA
	$0,03141rad / \sec/ \sec k$	NPU NPR AO Full marks/ <i>Volpunte</i>	İ
		AO Fun marks/ volpunie	(2)
10.2.2	$D = 2 \times 10 \text{ m} = 20 \text{ m}$		
	$v = \pi D n \qquad \mathbf{OR/OF} v = 2\pi r n$	✓Formula/ formule	A
	$= \pi \times 20 \times \left(\frac{18}{3600}\right) \qquad = 2\pi \times 10 \times \left(\frac{18}{3600}\right)$	✓SF	CA
	= 0.1π m/s OR/OF ≈ 0.31 m/s	✓circum.velocity/	
		omtrekssnelheid NP U	CA
		NPR	(3)
10.2.3	$\omega = 2\pi n$	✓ Formula/ formule	A
	$=2\pi\left(\frac{18}{3600}\right)$	✓SF	CA
	= 0.01π rad/sec/sek OR/ OF $\approx 3.14 \times 10^{-2}$ rad/sec/sek	= -	
		hoeksnelheid NP U	CA
		NPC NPR	(3)
		111 11	(2)

QUESTION 11

	7 m		
11.1.1	Area = length \times breadth/ Oppervlakte = lengte \times breedte	✓M	A
11.1.1	$187.5 = \text{length} \times 7.5$, 1 41	11
	OR/OF length/lengte = $\frac{A}{b} = \frac{187.5}{7.5}$	✓length/ <i>lengte</i>	A
	length/lengte = 25 m	AO Full marks/ Volpu	nte
			(2)
11.1.2	$p = 15 \mathrm{m}$	✓ values of/waarde van p	CA (1)
11.1.3		✓ formula/formule	(1) A
11.1.3	$A_T = a \left(\frac{o_1 + o_n}{2} + o_2 + o_3 + \dots + o_{n-1} \right)$	-	7.
	$=1.5\left(\frac{15+7}{2}+12+18+15+11\right) \text{m}^2$	✓ value of/ waarde van a ✓ SF	A CA
	=1,5(11+12+18+15+11)m ²		
	$=100,50 \text{ m}^2$	✓ value of/waarde van A _T	CA
	Damaged area/beskadigde oppervlakte = $187,5-100,50 = 87 \text{m}^2$	✓87m ²	CA
	It will take 87×0 , 25 hours = 21, 75 hours to repair		
	the damaged area	✓time/tyd	CA
	Dit sal $87 \times 0,25$ uur = 21,75 ure vat om die beskadigde		
	oppervlakte te herstel		
	OR/OF	OR/OF	
	$A_T = a (m_1 + m_2 + m_3 + + m_n)$	√F	A
	$=1,5\left(\frac{15+12}{2}+\frac{12+18}{2}+\frac{18+15}{2}+\frac{15+11}{2}+\frac{11+7}{2}\right)m^2$	✓ value of/ waarde van a ✓ SF	A CA
	=1,5(13,5+15+16,5+13+9)m ²		
	$=100,50 \text{ m}^2$	✓ value of/waarde van A _T	CA
	Damaged area/ beskadigde oppervlakte = $187,5-100,50 = 87$ m ²	$\sqrt{87}$ m ²	CA
	It will take 87×0 , 25 hours = 21, 75 hours to repair	✓Time/tyd	CA
	the damaged area		
	Dit sal $87 \times 0,25$ uur = $21,75$ ure vat om die beskadigde		
	oppervlakte te herstel		
	OR/OF	OR/OF	

$$A_{T} = a \left(\frac{o_{1} + o_{n}}{2} + o_{2} + o_{3} + ... + o_{n-1} \right)$$

$$= 1,5 \left(\frac{10 + 18}{2} + 13 + 7 + 10 + 14 \right) m^{2}$$

$$= 1,5 \left(14 + 13 + 7 + 10 + 14 \right) m^{2}$$

$$= 87 m^{2}$$
It will take 87×0 , 25 hours $= 21$, 75 hours to repair the damaged area

$$Dit \ sal \ 87 \times 0$$
, $25 \ uur = 21$, $75 \ ure \ vat \ om \ die \ beskadigde$

$$oppervlakte \ te \ herstel$$

$$\checkmark F$$

$$\checkmark \text{value of/ waarde \ van \ A}$$

$$\checkmark \text{SF}$$

$$CA$$

$$\checkmark \text{Value of/ waarde \ van \ A}$$

$$\checkmark \text{CA}$$

11.2.3	Volume of pyramid = $\frac{1}{3}$ (length × breadth) × \perp Height /		
	Volume van piramide = $\frac{1}{3}$ \(\times \left(\text{lengte} \times \text{breedte}\right) \times \perp \text{hoogte}		
	$=\frac{1}{3}(3\times3)\times3,5$	✓SF A value of/waarde	1
	$=10,5\mathrm{cm}^3$	van V _{pyramid /piramide}	
	number of small pyramids / aantal klein piramide = $\frac{1500}{10.5}$	✓M CA	
	≈ 142,86		
	∴ 142		
	Remaining milk/Oorblywende melk = $1500 - (142 \times 10,5)$		
	OR/OF 0,86×10,5	✓ value of/ waarde	
	$=9\mathrm{cm}^3\;\mathbf{OR/OF}\;9ml$	van CA	A
		NPU/NPR	
		(4))
		[17]

TOTAL/TOTAAL: 150