P. Maurer

ENS Rennes

Recasages: 120, 121, 123, 126, 170

Référence : Caldero-Germoni, H2G2.

Loi de réciprocité quadratique

On commence par des rappels sur le symbole de Legendre. On se donne p un nombre premier et $q = p^n$ avec $n \ge 1$.

Proposition 1. Si
$$p = 2$$
, on a $\mathbb{F}_q^2 = \mathbb{F}_q$. Si $p > 2$, on a $|\mathbb{F}_q^2| = \frac{q+1}{2}$ et $|\mathbb{F}_q^{*2}| = \frac{q-1}{2}$.

Démonstration. Si p=2, \mathbb{F}_q est de caractéristique 2, le morphisme de Frobenius $x\mapsto x^2$ est bijectif de \mathbb{F}_q sur \mathbb{F}_q^2 . On en déduit le résultat.

Supposons désormais p>2. On pose φ : $\begin{cases} \mathbb{F}_q^* \to \mathbb{F}_q^{*2} \\ x \mapsto x^2 \end{cases}$. Le premier théorème d'isomorphisme donne

$$\mathbb{F}_q^{*2} \simeq \mathbb{F}_q^* / \operatorname{Ker} \varphi,$$

où Ker
$$\varphi = \{x \in \mathbb{F}_q^* : x^2 = 1\} = \{-1,1\}$$
. On en déduit que $|\mathbb{F}_q^{*2}| = |\mathbb{F}_q^*|/2 = \frac{q-1}{2}$, puis que $|\mathbb{F}_q^2| = \frac{q+1}{2}$.

Proposition 2. On suppose p > 2 et on se donne $a \in \mathbb{F}_q^*$. Alors

$$a^{\frac{q-1}{2}} = \begin{cases} 1 & \text{si a est un carr\'e dans } \mathbb{F}_q^* \\ -1 & \text{si a n'est pas un carr\'e dans } \mathbb{F}_q^* \end{cases}.$$

 $\begin{array}{l} \textbf{D\'{e}monstration.} \text{ On pose } X = \left\{a \in \mathbb{F}_q^{*2}: \ a^{\frac{q-1}{2}} = 1\right\}. \text{ Alors } |X| \leq \frac{q-1}{2} \text{ car un polyn\^{o}me de degr\'{e}} \\ \frac{q-1}{2} \text{ a au plus } \frac{q-1}{2} \text{ racines. Par ailleurs, si } a \in \mathbb{F}_q^{*2}, \text{ il existe } x \in \mathbb{F}_q^* \text{ tel que } a = x^2 \text{ et on a donc} \\ a^{\frac{q-1}{2}} = x^{2 \times \frac{q-1}{2}} = x^{q-1} = 1, \text{ donc } a \in X. \text{ Ainsi, on a l'inclusion } \mathbb{F}_q^{*2} \subset X, \text{ et } |X| \leq |\mathbb{F}_q^{*2}| \text{ d'après la proposition 1. Ceci conclut que } \mathbb{F}_q^{*2} = X. \end{array}$

Par ailleurs, pour tout $a \in \mathbb{F}_q^*$, on a $\left(a^{\frac{q-1}{2}}\right)^2 = 1$, donc $a^{\frac{q-1}{2}} \in \{-1,1\}$. Ceci termine la preuve. \square

Définition 3. On définit le symbole de Legendre pour p > 2 et $a \in \mathbb{F}_p$ par

$$\left(\frac{a}{p}\right) = \begin{cases} 1 & \text{si a est un carr\'e dans } \mathbb{F}_q^*, \\ -1 & \text{si a n'est pas un carr\'e dans } \mathbb{F}_q^*, \\ 0 & \text{si } a = 0. \end{cases}$$

Proposition 4. Soit p un nombre premier impair et a un élément de \mathbb{F}_p^* . On a

$$|\{x \in \mathbb{F}_p : ax^2 = 1\}| = 1 + \left(\frac{a}{p}\right).$$

Démonstration. On distingue deux cas.

- Si a est un carré, alors il existe $y \in \mathbb{F}_p^*$ tel que $a = y^2$ et on a $ax^2 = 1 \iff (yx)^2 = 1 \iff xy \in \{-1,1\}$ donc $|\{x \in \mathbb{F}_p : ax^2 = 1\}| = 2$, et d'autre part $\left(\frac{a}{p}\right) = 1$ donc $1 + \left(\frac{a}{p}\right) = 2$.
- Supposons que a n'est pas un carré. Pour $x \in \mathbb{F}_p^*$, on a $ax^2 = 1 \iff a = (x^{-1})^2$, et il est clair que $a0^2 \neq 1$. On en déduit que $|\{x \in \mathbb{F}_p : ax^2 = 1\}| = 0$, et d'autre part on a $\left(\frac{a}{p}\right) = -1$ donc $1 + \left(\frac{a}{p}\right) = 0$.

Théorème 5. (Loi de réciprocité quadratique)

Soit p et q deux nombres premiers impairs distincts. Alors on a

$$\left(\frac{p}{q}\right)\cdot\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\cdot\frac{q-1}{2}}.$$

Démonstration.

Notons $d = \frac{p-1}{2}$. On va calculer le cardinal modulo p de la sphère X de \mathbb{F}_q^p de deux manières :

$$X := \left\{ (x_1, \dots, x_p) \in \mathbb{F}_q^p : \sum_{i=1}^p x_i^2 = 1 \right\}.$$

Etape 1 : par l'action de $\mathbb{Z}/p\mathbb{Z}$ sur X.

On fait agir $\mathbb{Z}/p\mathbb{Z}$ par permutation des indices sur \mathbb{F}_q^p , de sorte que pour $k \in \mathbb{Z}/p\mathbb{Z}$, on ait

$$k \cdot (x_1, \dots, x_n) = (x_{1+k}, \dots, x_{n+k}),$$

les indices étant vus modulos $p: x_{\ell+p} = x_{\ell}$ pour tout ℓ .

Ceci induit une action de $\mathbb{Z}/p\mathbb{Z}$ sur X, pour laquelle il y a alors deux types d'orbites : les singletons $\{(x,\ldots,x):x\in X\}$, dont le stabilisateur est $\mathbb{Z}/p\mathbb{Z}$ tout entier et dont l'orbite est triviale, et les autres orbites, dont le stabilisateur est trivial.¹

Au vu de la définition de X, on a $|\{(x,\ldots,x): x\in X\}|=|\{x\in \mathbb{F}_q: px^2=1\}|$, donc d'après la proposition 4, il y en a $1+\left(\frac{p}{q}\right)$. Par ailleurs, si (x_1,\ldots,x_p) est dans une orbite non triviale, on a

$$|\operatorname{Orb}(x_1,\ldots,x_p)| = \frac{|\mathbb{Z}/p\mathbb{Z}|}{|\operatorname{Stab}(x_1,\ldots,x_p)|} = p.$$

^{1.} On rappelle que $|\operatorname{Stab}(x)|$ divise $|\mathbb{Z}/p\mathbb{Z}| = p$ qui est premier, donc $\operatorname{Stab}(x)$ est soit trivial soit égal à $\mathbb{Z}/p\mathbb{Z}$ tout entier. Il est clair que si $(x_1, \dots, x_p) \in X^p$ ne vérifie pas $x_1 = \dots = x_p$, son stabilisateur ne peut être $\mathbb{Z}/p\mathbb{Z}$ tout entier, il est donc trivial.

D'après la formule des classes, il vient $|X| = 1 + \left(\frac{p}{q}\right) + pk$, où k est le nombre d'orbites non triviales. Modulo p, ceci donne

$$|X| \equiv 1 + \left(\frac{p}{q}\right)[p].$$

Etape 2 : par congruence de deux formes quadratiques.

Notons Q la forme quadratique définie par $Q(x) = \sum_{i=1}^{p} x_i^2$ sur \mathbb{F}_q^p . Alors Q est représentée par la matrice I_p , qui est congruente à

$$A = \begin{pmatrix} 0 & 1 & & & & \\ 1 & 0 & & & & & (0) \\ & 0 & 1 & & & & \\ & & 1 & 0 & & & \\ & & & \ddots & & & \\ & & & & 0 & 1 \\ & & & & & 1 & 0 \\ & & & & & & a \end{pmatrix},$$

où $a = (-1)^{\frac{p-1}{2}} = (-1)^d$. En effet, on a $\det(A) = (-1)^{\frac{p-1}{2}} \times a = (-1)^{p-1} = 1$, donc A et I_p ont même déterminant, donc même discriminant dans $\mathbb{F}_q^*/\mathbb{F}_q^{*2}$. Le théorème de classification des formes quadratiques sur \mathbb{F}_q permet alors d'affirmer que Q et la forme quadratique Q' définie par

$$Q'(y_1, \ldots, y_d, z_1, \ldots, z_d, t) := 2(y_1 z_1 + \cdots + y_d z_d) + at^2$$

sont congruentes. Autrement dit, il existe une application linéaire bijectife ϕ telle que $Q \circ \phi = Q'$. En posant $X' = \{(y_1, \dots, y_d, z_1, \dots, z_d, t) \in \mathbb{F}_q^p : 2(y_1 z_1 + \dots + y_d z_d) + at^2 = 1\}$, on a alors

$$X' = \phi^{-1}(X)$$
.

Comme ϕ^{-1} est bijective, on en déduit que |X'| = |X|, et cette égalité est en particulier vraie modulo p.

Etape 3 : calcul de |X'| et conclusion.

On distingue deux types d'éléments de la forme $(y_1, \ldots, y_d, z_1, \ldots, z_d, t)$ dans X'.

- D'une part, les éléments tels que $y_1 = \cdots = y_d = 0$. Pour $t \in \mathbb{F}_q$ tel que $at^2 = 1$, il suffit alors de choisir (z_1, \ldots, z_d) , et il y a q^d manières de le faire. La proposition 4 permet de conclure qu'il y a $q^d \left(1 + \left(\frac{a}{q}\right)\right) = q^d \left(1 + a^{\frac{q-1}{2}}\right)$ éléments de ce type.
- D'autre part, les éléments tels qu'au moins un y_i est non nul pour $i \in [1, d]$. Il y a alors $q^d 1$ manière de choisir le d-uplet (y_1, \ldots, y_d) , q manières de choisir t, et une fois ces éléments fixés, choisir (z_1, \ldots, z_d) de sorte que $2(y_1 z_1 + \cdots + y_d z_d) + at^2 = 1$ revient à les choisir dans un hyperplan affine de \mathbb{F}_q^d . Le cardinal d'un tel hyperplan est q^{d-1} .

Aussi, il y a un total de $(q^d-1)qq^{d-1}=(q^d-1)q^d$ éléments de ce type.

On en déduit que $|X'| = q^d \left(q^d - 1 + 1 + a^{\frac{q-1}{2}}\right) = q^d \left(q^d + a^{\frac{q-1}{2}}\right) = q^d \left(q^d + (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}\right)$. Par ailleurs, $|X| \equiv |X'|$ [p], donc d'après le résultat de l'étape 1, il vient

$$1 + \left(\frac{p}{q}\right) \ \equiv \ q^d\!\!\left(q^d + (-1)^{\frac{p-1}{2}\cdot\frac{q-1}{2}}\right)[p]$$

Par ailleurs, $q^d = q^{\frac{p-1}{2}} = \left(\frac{q}{p}\right)$ par définition du symbole de Legendre. On en déduit

$$1 + \left(\frac{p}{q}\right) \equiv \left(\frac{q}{p}\right) \left(\left(\frac{q}{p}\right) + (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}\right) [p]$$

$$\equiv \left(\frac{q}{p}\right)^2 + \left(\frac{q}{p}\right) (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}} [p]$$

$$\equiv 1 + \left(\frac{q}{p}\right) (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}} [p]$$

En effet, on a $\left(\frac{q}{p}\right)^2 = \left(q^{\frac{p-1}{2}}\right)^2 = q^{p-1} = 1$, puisque $q \in \mathbb{F}_p^*$ (on a supposé $q \neq p$ dans les hypothèses du théorème). On en déduit finalement que

$$\left(\frac{p}{q}\right) \; \equiv \; \left(\frac{q}{p}\right) (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}} [p],$$

donc en multipliant de part et d'autre par $\left(\frac{q}{p}\right)$,

$$\bigg(\frac{p}{q}\bigg)\!\bigg(\frac{q}{p}\bigg) \; \equiv \; \; (-1)^{\frac{p-1}{2}\cdot\frac{q-1}{2}}[p].$$

Cette égalité modulo p étant dans $\{-1,1\}$, elle est encore vraie sur \mathbb{Z} , et ceci conclut la preuve du théorème.