Model selection over partially ordered sets

Armeen Taeb*, Peter Bühlmann°, Venkat Chandrasekaran†

Department of Statistics, University of Washington *; Seminar for Statistics, ETH Zürich $^{\circ}$; Departments of Computing and Mathematical Sciences and of Electrical Engineering, Caltech †

Motivation

Model selection with Boolean-logical structure:

- formulate and test hypothesises, e.g. is this variable present?
- easy to define model complexity and false positives

What about for problems that lack Boolean-logical structure?

- ranking: global structure of transitivity
- clustering: global structure of set-partitions
- causal inference: global structure of acyclicity
- continuous problems, e.g. blind-source separation

Shortcomings of the standard perspective

Example I: clustering

true clusters = $\{a,b\}$, $\{c\}$ estimated clusters = $\{a,b,c\}$ Boolean-logical perspective: FD = 2

Example II: causal structure learning

(a) true CPDAG

(b) estimated CPDAG

Boolean-logical perspective: FD = 4

Model organization via posets

Models organized according to a poset \mathcal{L} with relations \preceq :

Attribute	Meaning
\preceq	containment between simpler & more complex models
least element	the "null" model representing no discoveries
$\operatorname{rank}(\cdot)$	measures complexity of a model

False discovery framework

Similarity valuation: A symmetric function $\rho: \mathcal{L} \times \mathcal{L} \to \mathbb{R}$ with:

- $0 \le \rho(x, y) \le \min\{\operatorname{rank}(x), \operatorname{rank}(y)\}\$ for all $x, y \in \mathcal{L}$,
- $\rho(x,y) \le \rho(z,y)$ for all $x \le z$,
- $\bullet \rho(x,y) = \operatorname{rank}(x)$ if and only if $x \leq y$.

Definitions

Letting $x^* \in \mathcal{L}$ be a true model and $\hat{x} \in \mathcal{L}$ be an estimate.

$$\mathrm{TD}(\hat{x}, x^{\star}) \triangleq \rho(\hat{x}, x^{\star}),$$

$$FD(\hat{x}, x^*) \triangleq rank(\hat{x}) - \rho(\hat{x}, x^*) = rank(\hat{x}) - TD(\hat{x}, x^*),$$

$$\mathrm{FDP}(\hat{x}, x^\star) \triangleq \frac{\mathrm{rank}(\hat{x}) - \rho(\hat{x}, x^\star)}{\mathrm{rank}(\hat{x})} = \frac{\mathrm{FD}(\hat{x}, x^\star)}{\mathrm{rank}(\hat{x})}.$$

Goal: maximize rank subject to false discovery control

Suitable similarity valuation: $\rho_{\text{meet}}(\hat{x}, x^*) \triangleq \max_{z \leq \hat{x}, z \leq x^*} \text{rank}(z).$

- FD in clustering:
- # groups in the coarsest common refinement minus # groups in \hat{x} Example I: common refinement = $\{a,b\}, \{c\} \Rightarrow \mathrm{FD}(\hat{x},x^*) = 1$
- FD in causal:

edges in \hat{x} minus #edges in a densest CPDAG that contains conditional dependencies encoded in both \hat{x}, x^*

Other appropriate similarity valuations in e.g. total ranking, subspace selection and blind source separation

Greedy approaches to model selection

Starting from least model, greedily grow model complexity
Key ingredients:

- data-driven function Ψ : measures statistical significance for moving between neighboring models
- ullet minimal set of neighboring models ${\mathcal S}$: accounting for invariances

Theorem: Ψ_{stable} : based on subsampling and stability of a base procedure, and Ψ_{test} : based on testing; used-specified $\alpha \in (0, 1)$

$$\Psi_{\text{stable}}: \quad \mathbb{E}[\text{FD}(\hat{x}, x^*)] \leq \sum_{k} \frac{q_k^2}{|\mathcal{S}_k|(1 - 2\alpha)},$$

$$\Psi_{\text{test}}: \quad \mathbb{P}\left(\text{FD}(\hat{x}, x^{\star}) > 0\right) \leq \alpha |\mathcal{S}|.$$

- S_k = restriction of S to a specific rank
- $q_k = \text{avg.}$ discoveries by base procedure w.r.t. specific rank

Experiments

Ranking educational systems: improving ranking of countries based on new PISA test scores: base ranking from 2015 scores

• new ranking from 2018 test scores using our algorithm with Ψ_{test} with family-wise-error control at level 0.05

Causal discovery from biological data: identifying causal relationships among proteins from Sachs dataset

• CPDAG estimated using our algorithm with desired FD level = 2

