Лит. обзор на методы обучения на графах

Расширение для PyTorch специально для работы с графами: <u>PyTorch</u> Geometric

(Там же есть обширный список реализованных модулей со ссылками на статьи)

Так же стоит обратить внимание на датасет MNIST superpixel - очень близкая нам тема, за исключением того, что наши графы будут меньше. По ней написано много работ и сделано много сеток.

Идея похожая на предположения Ильи про семантические задачи на графах - https://arxiv.org/abs/1511.06739 (только тут суперпиксели).

Замечание: некоторые работы, основанные на спектральном подходе (ChebNet, etc.), могут оказаться неприменимыми к рассматриваемой задаче, поскольку граф скелетного представления в общем случае имеет произвольную структуру.

<u>Бакалаврская работа</u> (2017г.) студентки МГУ под руководством Местецкого по аналогичной задаче (применялся кастомный случайный лес). Видимо, про эту работу говорил Стрижов, когда хотел прикрутить сетку к графу скелетного представления.

Релевантные статьи:

Название (Репозиторий)	Год	Идея подхода	Архитект ура	Датасет	Результат ы + метрика	С чем сравнива ют	Кто разбирает статью
SplineCNN	2018	Новый оператор свертки, основанный на В-сплайнах.	SplineNet	Grid Superpixe Is	Accuracy: 99.22% 95.22%	LeNet MoNet	Лукоянов
Robust Spatial Filtering with Graph Convolutional Neural Networks (git)	2017	Переписаны слои свертки и пуллинга. Ядро свертки выпуклая комбинация матриц смежности. Пуллинг на основе эмбеддинга и функции softmax.	RSF	NCI1 D&D	Accuracy: 84.62% 81.88%	GK WL PSCN Deep GK	
Learning Convolutional Neural Networks for	2016	По выбранной последовательности вершин строятся окрестности каждой из них. Граф, образующий	PSCN (PATCHY_ SAN)	MUTAG PCT NCI1	Accuracy: 92.63% 62.29% 78.59%	SP RW GK WL	Григорьев

Graphs		окрестность,		PROTEINS	75.89%		
(<u>git</u>)		нормализуется и его векторное представление подается на вход CNN.		D&D	77.12%		
An End-to-End Deep Learning Architecture for Graph Classification (git)	2018	Предложен новый оператор свертки. Построен новый слой, сортирующий вершины для их передачи на вход классической CNN.	DGCNN	NCI1 PROTEIN S D&D COLLAB IMDB-M IMDB-B	Accuracy: 74.44% 75.54% 79.37% 73.76% 70.03% 47.83%	PSCN DGK ECC DCNN SP RW GK WL	Григорьев
Hierarchical Graph Representatio n Learning with Differentiable Pooling (git)	2018	Построен модуль дифференцируемого графового пуллинга, генерирующий иерархическое представление графа. Модуль может применяться с различными архитектурами графовых нейронных сетей.	DiffPool-	ENZYME S D&D REDDIT- -MULTI-1 2K COLLAB PROTEIN S Gain	Accuracy: 62.53% 80.64% 47.08% 82.13% 76.25% 6.27%	GNN+ {PATCHYSAN GRAPHSAGE ECC SET2SET SORTPOOL} GRAPHLE TSHORTE STPATH 1-WL WL-OA	
Dynamic Edge-Conditio ned Filters in Convolutional Neural Networks on Graphs (git)	2017	Предложена пространственная свертка на основе построения окрестностей, для которой веса фильтра определяются по признаковому описанию ребер, принадлежащих окрестности.	ECC	NCI1 NCI109 MUTAG ENZYME S D&D	Accuracy: 83.80% 81.87% 89.44% 50.00% 73.65%	DCNN PSCN WL Deep WL structure2ve c	
Adaptive Graph Convolutional Neural Networks	2018	Развит классический спектральный подход GNN через обобщение лапласиана графа, что позволило решить проблему применимости спектрального подхода для произвольных по структуре графов.	AGCN	Tox21 ClinTox Sider Toxcast	ROC-AUC : 0.8016 0.8678 0.5921 0.7033	graphconv NFP GCN	
Relational inductive biases, deep learning, and graph networks (git)	2018	Предложен подход к построению Graph NN от DeepMind. Предложенная архитектура позволяет предсказывать edge, node и внешние атрибуты для графа.	GN (MPNN + NLNN)	нет	нет	нет	
Simplifying Graph Convolutional Networks	2019	Предложена оптимизация сверточных графовых сетей, на основе предположения, что нелинейность между	Simple Graph Convolutio n (SGC)	Cora Citeseer Pubmed 20NG	Accuracy 81 71.9 78.9	GCN GAT FastGCN GIN	

		нодами в сети не вносит вклад в финальное предсказани. Получено ускорение времени работы в 28 раз относительно GIN. Требования по памяти так же меньше по сравнению с другими архитектурами.		R8 R52 Ohsumed MR GEOTEXT TWITTER- US TWITTER- WORLD	88.5 97.2 94 68.5 75.9 64.1 62.5	LNet AdaLNet DGI	
Neural Message Passing for Quantum Chemistry (git) Learning Graph Distances with Message Passing Neural Networks (git) Использован ие для классификац ии символов (git) Попробовали и объединили методы из: Convolutional Networks for Learning Molecular Fin-gerprints Gated Graph Neural Networks (GG-NN) Interaction Networks, Molecular Graph Convolutions, Deep Tensor	2017	Предсказание атрибутов нода с помощью метода передачи сообщения сквозь сетку. 1. Атрибуты двух соседей конкатятся. умножаются на матрицы и пропускаются через нелинейность. (они попробовали несколько методов) 2. Веса обновляются так же по какому-то правилу.(они попробовали несколько) 3. Затем геаdout фаза в которой каким-то образом предсказываются значения скрытого представления конкрутного нода основываясь на информации со всего графа. Однако с помощью геаdout можно получить вектор и пропустить его через логсофтмакс и получить классификацию. Во второй статье с помощью подхода МРNN и сиамских сетей решают задачу классификации графа.	MPNN Siamese MPNN	Qm9 LETTERS DATASET	Разные скоры для разных таргетов, но все лучше чем другие архитекту ры Ассигасу 98.08	GC GG-NN DTNN MPNN BP HEAD	Коробов

Neural Networks							
Inductive Representatio n Learning on Large Graphs (git)	2018		GraphSA GE	Citation Reddit PPI	Micro-aver aged F1 0.839 0.954 0.612	DeepWalk	Коробов
Diffusion-Con volutional Neural Networks (git)	2016		DCNN				Куцевол
Geometric deep learning on graphs and manifolds using mixture model CNNs	2016		MoNet				Куцевол
Ниже представлен ы статьи НЕ по обучению на графах, но связанные с конструирова нием графов							
ICFHR 2016 Handwritten Document Image Binarization Contest (H-DIBCO 2016)	2016	Обзор решений контеста по бинаризации изображений с конференции ICFHR 2016					
Skeletons to graph (git)		Код для чьего-то бакалаврского диплома, реализованы различные алгоритмы построения графов из скелета, pruning графа не нашлось статьи (или диплома под это дело)					
Graph Structuring of Skeleton Object for Its High-LevelEx ploitation		Статья с ICDAR 2015. Предложен метод эффективной упаковки скелета в граф добавляя в каждую вершину среднее значение пикселя с серой картинки. Предложен					

	алгоритм прунинга основываясь не только на длине ребра, но и на данных из изображения. (каждый пиксель рассматривается как нод). Скелет строится без ограничений на "перекрестки любого размера", "стыки" и т.д.		
DeepSkeleton : Learning Multi-task Scale-associa tedDeep Side Outputs for Object Skeleton Extractionin Natural Images	Предложен подход генерации скелетов на изображении с помощью сверточных сетей. Рассмотрены различные подходы к локализации и предложен подход к поиску scale в каждой точке скелета.		

https://arxiv.org/pdf/1901.00596.pdf - survey