Schemat oceniania arkusza II

Uwaga: Za prawidłowe rozwiązanie każdego z zadań inną metodą niż przedstawiona w schemacie należy przyznać maksymalną liczbę punktów.

Nr zadania	Nr czynności	Etapy rozwiązania zadania	Liczba punktów
11	11.1.	Zapisanie, że warunki zadania zostaną spełnione wtedy, gdy wyróżnik danego trójmianu będzie ujemny.	1
	11.2.	Obliczenie wyróżnika trójmianu: $\Delta = 2^{2k} - 4 \cdot 2^k - 5$.	1
	11.3.	Wprowadzenie pomocniczej niewiadomej, np.: $t = 2^k$ i $t > 0$.	1
	11.4.	Rozwiązanie nierówności $t^2 - 4t - 5 < 0$: $t \in (-1, 5)$.	1
	11.5.	Zapisanie nierówności $0 < 2^k < 5$.	1
	11.6.	Zapisanie zbioru liczb k spełniających warunki zadania: $\{k \in C : k \le 2\}$.	1
	12.1.	Zapisanie wielomianu w postaci $W(x) = a(x+2)(x-1)^2$, gdzie $a \ne 0$.	1
12	12.2.	 Obliczenie współczynnika a, w tym: 1 punkt, za obliczenie pochodnej W'(x)=a·(x-1)²+2a·(x-1)·(x+2), 1 punkt, za rozwiązanie równania W'(-2)=18 z niewiadomą a: a = 2. 	2
	12.3.	 Wyznaczenie równania szukanej stycznej: y = 48x-104, w tym: 1 punkt, za obliczenie W (3) = 40, 1 punkt, za obliczenie W'(3) = 48 i zapisanie równania stycznej. 	2
13	13.1.	Sporządzenie wykresu funkcji $g(x) = \frac{x-4}{x-2}$.	2
	13.2.	Sporządzenie wykresu funkcji $f(x) = g(x) $.	1
	13.3.	Odczytanie z wykresu funkcji f szukanych wartości k : $k \in (1,2)$, w tym: • 1 punkt za obliczenie wartości $f(0) = 2$	2
14	14.1.	Wykorzystanie własności $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ i zapisanie, że $P(A \cap B) = \frac{139}{132} - P(A \cup B)$.	1
	14.2.	Zauważenie i zapisanie, że $P(A \cup B) \le 1$.	1
	14.3.	Wywnioskowanie z powyższych warunków, że $P(A \cap B) > 0$.	1

	14.4.	Zapisanie odpowiedzi: zdarzenia A i B nie są rozłączne ($A \cap B \neq \emptyset$).	1
	Inna metoda	1. Użycie wzoru $P(A \cup B) = P(A) + P(B)$, gdy $A \cap B = \emptyset$ 1pkt 2. Stwierdzenie, że $P(A) + P(B) > 1$ 1pkt 3. Stwierdzenie sprzeczności (np. z warunku $P(A \cup B) \le 1$) i wniosek $A \cap B \ne \emptyset$ 2 pkt	4
15	15.1.	Zapisanie warunku zbieżności danego ciągu do liczby 0: $\left \frac{1}{p-1}\right < 1$ i $p \ne 1$.	1
	15.2.	 Rozwiązanie nierówności 1/(p-1) <1: p∈(-∞;0)∪(2;∞), w tym: 1 punkt za metodę rozwiązania 1 punkt za napisanie rozwiązania nierówności 	2
	15.3.	Zapisanie warunku zbieżności ciągu do liczby 2: $\frac{1}{p-1} = 1$	1
	15.4	Rozwiązanie równania $\frac{1}{p-1} = 1$ i podanie wartości parametru $p: p=2$	1
	16.1.	Podstawienie wartości $p = -1$ do danego równania i zapisanie alternatywy: $\cos x = 0$ lub $\cos x = 1$.	1
	16.2.	Wypisanie rozwiązań powyższych równań elementarnych należących do przedziału $\langle 0;5 \rangle$: $x \in \left\{0, \frac{\pi}{2}, \frac{3}{2}\pi\right\}$. <i>Uwaga: Jeżeli zdający rozwiąże równania $\cos x = 0$ oraz $\cos x = 1$ w zbiorze liczb rzeczywistych, to otrzymuje 1 punkt.</i>	1
16	16.3.	Zapisanie alternatywy: $\cos x = 1$ lub $\cos x = -p - 1$.	1
	16.4.	Zapisanie, że $x=0$ jest jednym z szukanych rozwiązań (niezależnie od wartości parametru p).	1
	16.5	Zapisanie układu równań nierówności $-1 \le -p-1 < 1$	1
	16.6.	Rozwiązanie powyższego układu nierówności: $p \in (-2,0)$ i stwierdzenie, że każda wartość $p \in (-2,0)$ spełnia warunek określony w zadaniu.	2

	17.1.	Sporządzenie rysunku uwzględniającego oznaczenia podane w treści zadania.	1
17	17.2.	Zapisanie równości pola danego trójkąta i sumy pól trójkątów powstałych z podziału tego trójkąta odcinkiem CD , którego długość $ CD = d: \frac{1}{2}a \cdot d \cdot \sin 45^\circ + \frac{1}{2}b \cdot d \cdot \sin 45^\circ = \frac{1}{2}a \cdot b$.	1
	17.3.	Podstawienie do powyższego równania $sin 45^{\circ} = \frac{\sqrt{2}}{2}$ oraz wyłączenie niewiadomej d przed nawias.	1
	17.4.	Zapisanie rozwiązania powyższego równania w postaci opisanej w tezie twierdzenia.	1
	Inna metoda	 1 punkt, za sporządzenie rysunku uwzględniającego oznaczenia poda w treści zadania, 1 punkt, za zauważenie i zapisanie, że szukany odcinek <i>CD</i>, o długo <i>CD</i> = <i>d</i>, jest przekątną kwadratu o boku długości np.: <i>c</i>, wpisanego trójkąt (<i>d</i> = <i>c</i>√2), 1 punkt, za wykorzystanie podobieństwa odpowiednich trójkątów (lu wykorzystanie tw. Talesa) i zapisanie równania z niewiadomą <i>c</i>, np.	ści, np.: w dany
18	18.1.	Sporządzenie pomocniczego rysunku lub wprowadzenie precyzyjnie opisanych oznaczeń, np.: $\prec DAB = \alpha$, $\prec ABC = \beta$, $\prec BCD = \gamma$, $\prec CDA = \delta$.	1
	18.2.	Zastosowanie własności miar kątów czworokąta wpisanego w okrąg i zapisanie, że np.: $\gamma = 180^{\circ} - \alpha \ \left(\delta = 180^{\circ} - \beta\right)$.	1
	18.3.	Wyznaczenie miary kąta α : $\alpha = 45^{\circ}$ (lub $\alpha = 135^{\circ}$) - w tym 1 punkt za skorzystanie z twierdzenia sinusów (lub twierdzenia cosinusów i twierdzenia o kącie wpisanym i środkowym w kole).	2
	Inna metoda	Zamiast czynności 18.2 i 18.3: Przekątna tworzy wraz z dwoma promieniami trójkąt prostokątny, ponieważ $\left(10\right)^2 = \left(5\sqrt{2}\right)^2 + \left(5\sqrt{2}\right)^2$. Wyznaczenie miar kątów z twierdzenia o kącie wpisanym i środkowym.	3
	18.4.	Wykorzystanie wzorów redukcyjnych i zapisanie, że $sin^2 \beta = \frac{3}{4}$.	2
	18.5.	Wyznaczenie miary kąta β : $\beta = 60^{\circ}$ (lub $\beta = 120^{\circ}$).	1

	18.6.	Zapisanie odpowiedzi: miary kątów czworokąta <i>ABCD</i> to: 45°, 60°, 120°, 135°. <i>Uwaga: nie jest oceniana kolejność podawanych miar kątów czworokąta z rozważanej rodziny.</i>	1
	19.1.	Sprawdzenie, że nierówność zachodzi dla $n = 5$.	1
19	19.2.	Sformułowanie założenia i tezy indukcyjnej, np.: należy wykazać, że dla każdej liczby naturalnej $k \ge 5$ zachodzi implikacja: jeżeli $2^k > k^2 + k - 1$, to $2^{k+1} > (k+1)^2 + (k+1) - 1$.	1
	19.3.	 Udowodnienie tezy indukcyjnej, w tym: 1 punkt, za wykorzystanie założenia indukcyjnego, 1 punkt, za doprowadzenie do nierówności k² - k - 3 > 0, 2 punkty, za rozwiązanie powyższej nierówności w zbiorze liczb rzeczywistych oraz za zapisanie, że każda liczba naturalna k≥5 spełnia nierówność k² - k - 3 > 0. Uwaga: Jeżeli uczeń zauważy i zapisze, że dla k≥5 iloczyn dwóch kolejnych liczb naturalnych k·(k-1) jest liczbą większą niż 3, to otrzymuje obydwa punkty. 	4