* * * Artificial Intelligence and Machine Learning * * *

Probabilistic Graphical Models (PGMs)

Daniel Wehner, M.Sc.

SAP SE / DHBW Mannheim

Summer term 2025

Find all slides on GitHub (DaWe1992/Applied_ML_Fundamentals)

Lecture Overview

I Machine Learning Introduction	on
---------------------------------	----

- II Optimization Techniques
- III Bayesian Decision Theory
- IV Non-parametric Density Estimation
- V Probabilistic Graphical Models
 - VI Linear Regression
 - VII Logistic Regression
 - VIII Deep Learning

- IX Evaluation
- X Decision Trees
- XI Support Vector Machines
- XII Clustering
- XIII Principal Component Analysis
- XIV Reinforcement Learning
- XV Advanced Regression

Agenda for this Unit

- Introduction
- 2 Bayesian Networks (BNs)

- Inference and Sampling in Graphical Models
- 4 Hidden Markov Models (HMMs)
- 6 Wrap-Up

Section:

Introduction

Refresher on important Concepts in Statistics Important Rules for Probabilities Introduction to graphical Models Wrap-Up

Important Concepts

• What is a random variable \mathfrak{X} ?

A random number whose value is subject to variations due to chance.

2 What is a distribution p(X = x)?

Describes the probability density that the random variable \mathcal{X} will be equal to a certain value x.

3 What is a joint distribution?

Given M random variables, the joint distribution specifies the probability for all pairs of outcomes.

Refresher on important Concepts in Statistics

Important Concepts (Ctd.)

What is a marginal distribution?

The marginal distribution of a subset of random variables describes the probability distribution of the variables in the subset.

6 What is a conditional distribution?

A conditional distribution describes the probability of an outcome given the occurrence of a particular event.

Introduction

Wrap-Up

Hidden MARKOV Models (HMMs)

Important Rules for Probabilities

Conditional probability:

$$p(\mathfrak{X}|\mathfrak{Y}) = \frac{p(\mathfrak{X} \cap \mathfrak{Y})}{p(\mathfrak{Y})} \iff p(\mathfrak{X} \cap \mathfrak{Y}) = p(\mathfrak{X}|\mathfrak{Y})p(\mathfrak{Y}) \tag{1}$$

BAYES' rule:

$$\rho(\mathcal{X}|\mathcal{Y}) = \frac{\rho(\mathcal{Y}|\mathcal{X})\rho(\mathcal{X})}{\rho(\mathcal{Y})}$$
 (2)

Important Rules for Probabilities (Ctd.)

Sum rule for probabilities: Given a joint probability distribution $p(X \cap Y)$, we can easily compute the marginal p(X) by summing out the variable Y which we are not interested in (marginalization):

Wrap-Up

$$\rho(\mathcal{X}) = \sum_{y \in \mathsf{dom}(\mathcal{Y})} \rho(\mathcal{X} \cap \mathcal{Y} = y) \tag{3}$$

For continuous variables we have to replace the sum by an integral!

Wrap-Up

Hidden MARKOV Models (HMMs)

Important Rules for Probabilities (Ctd.)

Chain rule (product rule) for probabilities:

$$\rho(\mathcal{X}_1 \cap \mathcal{X}_2 \cap \mathcal{X}_3) = \rho(\mathcal{X}_1 | \mathcal{X}_2 \cap \mathcal{X}_3) \rho(\mathcal{X}_2 \cap \mathcal{X}_3)$$

$$= \rho(\mathcal{X}_1 | \mathcal{X}_2 \cap \mathcal{X}_3) \rho(\mathcal{X}_2 | \mathcal{X}_3) \rho(\mathcal{X}_3)$$
(4)

In general the chain rule can be applied to an arbitrary number of random variables! Also note that we can choose a different order of the random variables.

Notation: In the following we will write p(X, Y) instead of $p(X \cap Y)$

What are graphical Models?

Probabilities play a central role in pattern recognition and machine learning

Wrap-Up

- We can represent probability distributions in graphical form
- Such representations are called probabilistic graphical models (PGMs)

Advantages:

- Simple way to visualize the structure of a probabilistic model
- Insights into the properties of the model, including conditional independence properties
- Inference can be expressed in terms of graphical manipulations

What are graphical Models? (Ctd.)

 A graph comprises nodes (also called vertices) connected by links (also known as edges or arcs)

Wrap-Up

- Each node represents a random variable
- Links express probabilistic relationships between the variables
- The graph describes the way in which the joint distribution can be decomposed into a product of factors
- A directed graphical model (i. e. links have arrows) is called a BAYESian network or BN for short
- An undirected graphical model is called MARKOV random field (MRF)

Section:

BAYESian Networks (BNs)

Motivation for the Use of Directed Graphical Models Representation of large Probability Distributions Independencies encoded in a BAYESian Network d-Separation Naïve BAYES as a BAYESian Network

Motivation

- Consider an arbitrary joint distribution p(X, Y, Z) of three random variables
- Please note:
 - We do not make any assumptions about the random variables
 - They can be discrete or continuous
 - Also, we do not specify the type of distribution (Multinomial, GAUSSian, etc.)
- According to the chain rule (4), this joint distributions factorizes into

$$\rho(\mathcal{X}, \mathcal{Y}, \mathcal{Z}) = \rho(\mathcal{X}|\mathcal{Y}, \mathcal{Z})\rho(\mathcal{Y}|\mathcal{Z})\rho(\mathcal{Z})$$
(5)

We now translate (5) into a directed graphical model, i. e. a Bayesian network

Inference and Sampling in Graphical Models Hidden MARKOV Models (HMMs) Wrap-Up

A simple BAYESian Network

Procedure:

- Draw a node for each random variable
- Associate each node with the corresponding conditional distribution on the right-hand side of equation (5)
- For each conditional distribution we add directed links from the variables in the conditioning set

Motivation for the Use of Directed Graphical Models

$$p(X, Y, Z) = p(X|Y, Z)p(Y|Z)p(Z)$$

BAYESian Networks (BNs)

Inference and Sampling in Graphical Models
Hidden MARKOV Models (HMMs)
Wrap-Up

Motivation for the Use of Directed Graphical Models Representation of large Probability Distributions Independencies encoded in a BAYESian Network

d-Separation
Naïve BAYES as a BAYESian Network

Some Remarks

- If there is a link going from node \mathcal{A} to node \mathcal{B} , we call \mathcal{A} a parent and \mathcal{B} a child
- Please note: We do not make any formal distinction between a node and the corresponding random variable
- The BAYESian network above is fully connected
 (each pair of nodes is connected by a link; we ignore the directionality here)

Please note: A BAYESian network has to be a directed acyclic graph (DAG), i. e. no directed cycles are allowed! (Note that the network above does not contain a directed cycle)

Representation of large Probability Distributions Independencies encoded in a BAYESian Network d-Separation

Let's add more Variables

- Let us now consider a joint distribution over *M* variables $p(X_1, X_2, \dots, X_M)$
- Repeatedly applying the chain rule yields:

$$p(\mathcal{X}_1, \mathcal{X}_2, \dots, \mathcal{X}_M) = p(\mathcal{X}_1 | \mathcal{X}_2, \dots, \mathcal{X}_M) \dots p(\mathcal{X}_{M-1} | \mathcal{X}_M) p(\mathcal{X}_M)$$
(6)

- Analogously to above we could construct a BAYESian network which represents this joint distribution
- This would again lead to a fully connected network

It is the **absence of links** which conveys interesting information!

Introduction BAYESian Networks (BNs)

Inference and Sampling in Graphical Models Hidden MARKOV Models (HMMs) Wrap-Up

Motivation for the Use of Directed Graphical Models

Representation of large Probability Distributions Independencies encoded in a BAYESian Network d-Separation

aïve Bayes as a Bayesian Network

Let's add more Variables (Ctd.)

$$p(\mathfrak{X}_1, \mathfrak{X}_2, \mathfrak{X}_3, \mathfrak{X}_4, \mathfrak{X}_5, \mathfrak{X}_6, \mathfrak{X}_7) = ? \tag{7}$$

Let's add more Variables (Ctd.)

- We write the joint distribution in terms of the product of a set of conditional probabilities (one for each node)
- Each conditional probability will be conditioned only on the parents of the corresponding node
- Therefore, the joint distribution $p(X_1, \ldots, X_7)$ factorizes according to

$$\rho(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}) =$$

$$\rho(X_{1})\rho(X_{2})\rho(X_{3})\rho(X_{4}|X_{1}, X_{2}, X_{3})\rho(X_{5}|X_{1}, X_{3})\rho(X_{6}|X_{4})\rho(X_{7}|X_{4}, X_{5})$$
(8)

BAYESian Networks (BNs) Inference and Sampling in Graphical Models

resian Networks (BNs)
ng in Graphical Models
ARKOV Models (HMMs)

Wrond In

Wrond In

Wrond In

Hidden MARKOV Models (HMMs)
Wrap-Up

Factorization of the Joint Probability Distribution in General

Factorization of the joint distribution in a BAYESian network:

$$\rho(\mathcal{X}_1,\ldots,\mathcal{X}_M) = \prod_{m=1}^M \rho(\mathcal{X}_m \mid pa(\mathcal{X}_m))$$
 (9)

Motivation for the Use of Directed Graphical Models

The joint distribution $p(X_1, \ldots, X_M)$ defined by the graph is given by the product, over all nodes of the graph, of a conditional distribution for each node X_m conditioned on the variables corresponding to the parents of that node in the graph $pa(X_m)$

(Very important!)

Inference and Sampling in Graphical Models
Hidden MARKOV Models (HMMs)
Wrap-Up

Motivation for the Use of Directed Graphical Model Representation of large Probability Distributions Independencies encoded in a BAYESIan Network d-Separation

Number of Parameters in General

Consider a discrete random variable $\mathcal X$ which can take ℓ possible states

Question: How many parameters are needed to specify the joint distribution?

Answer: $\ell - 1$ (why?)

Now consider M random variables each of which can take ℓ different states

Question: How many parameters does the joint distribution have now?

Answer: $M^{\ell} - 1 \Rightarrow$ exponentially many!

BAYESian Networks (BNs) Inference and Sampling in Graphical Models

Hidden Markov Models (HMMs) Wrap-Up Motivation for the Use of Directed Graphical Mode Representation of large Probability Distributions Independencies encoded in a BAYESian Network d-Separation Naïve BAYES as a BAYESian Network

Number of Parameters in Bayesian Networks

- BAYESian networks usually need much fewer parameters!
- Consider the following graph (no links at all):

- The joint distribution factorizes according to $p(X_1)p(X_2)\dots p(X_M)$
- In this extreme case we have $M(\ell-1) \ll M^{\ell}-1$ parameters

The number of parameters now grows linearly with the number of variables!

Wrap-Up

Motivation for the Use of Directed Graphical Mode Representation of large Probability Distributions Independencies encoded in a BAYESian Network d-Separation Naïve BAYES as a BAYESian Network

Number of Parameters in BAYESian Networks (Ctd.)

- Admittedly, the previous graph is not very practical
- Consider indested a linear chain.

• The joint distribution now factorizes according to $p(X_1)p(X_2|X_1)\dots p(X_M|X_{M-1})$

How many parameters do we have now? Answer: $\ell-1+(M-1)\ell(\ell-1)$ (which is quadratic in ℓ and linear in M)

Example: Number of Parameters

Let us consider a simple network: Grade \mathfrak{G} is influenced by intelligence \mathfrak{I} (this model comprises three free parameters)

Wrap-Up

	$\mathfrak{I}=high$	$\mathfrak{I}=low$
$p(\mathfrak{I})$	0.85	0.15

$p(\mathfrak{G} \mid \mathfrak{I})$	$\mathfrak{I}=high$	$\mathfrak{I}=low$
$\mathfrak{G}=a$	0.90	0.50
g = b	0.10	0.50

$$p(\mathcal{G} = b, \mathcal{I} = high) = p(\mathcal{G} = b|\mathcal{I} = high)p(\mathcal{I} = high) = 0.85 \cdot 0.1 = 0.085$$

Introduction BAYESian Networks (BNs) Inference and Sampling in Graphical Models Hidden MARKOV Models (HMMs)

Motivation for the Use of Directed Graphical Modi-Representation of large Probability Distributions Independencies encoded in a BAYESian Network d-Separation

Conditional Independence

- Important concept: conditional independence
- Consider three random variables A, B, and C for which the conditional distribution of A given B and C is such that it does not depend on the value of B, i.e.

$$p(A|B, C) = p(A|C)$$
 (10)

• Therefore, we can write: $p(A, B|C) \stackrel{(4)}{=} p(A|B, C)p(B|C) = p(A|C)p(B|C)$

Wrap-Up

 ${\mathcal A}$ and ${\mathcal B}$ are said to be **statistically independent** given ${\mathfrak C}$

Conditional Independence (Ctd.)

- We use the symbol ⊥⊥ to denote independence of random variables
- For equation (10) we would write

$$(A \perp\!\!\!\perp B) \mid \mathcal{C}$$
 (11)

Conditional independence properties play an important role in using probabilistic models for pattern recognition by simplifying both the structure of a model and the computations needed to perform inference and learning under that model

Introduction BAYESian Networks (BNs) ampling in Graphical Models

Inference and Sampling in Graphical Models Hidden MARKOV Models (HMMs) Wrap-Up Motivation for the Use of Directed Graphical Modi Representation of large Probability Distributions Independencies encoded in a BAYESian Network d-Separation Naïve BAYES as a BAYESian Network

Local Markov Assumption

How to read off the independencies from a BAYESian network?

Local Markov assumption:

From equation (9) we already know that a variable \mathcal{X}_m is independent of its non-descendants $\operatorname{nd}(\mathcal{X}_m)$ given its parents $\operatorname{pa}(\mathcal{X}_m)$:

$$\mathfrak{X}_m \perp \operatorname{Ind}(\mathfrak{X}_m) \mid \operatorname{pa}(\mathfrak{X}_m) \qquad \forall \ m = 1, 2, \dots, M$$
 (12)

BAYESian Networks (BNs)

Inference and Sampling in Graphical Models Hidden Markov Models (HMMs) Wrap-Up Motivation for the Use of Directed Graphical Mode Representation of large Probability Distributions Independencies encoded in a BAYESian Network d-Separation Naïve BAYES as a BAYESian Network

Portrait: ANDREY ANDREYEVICH MARKOV

ANDREY ANDREYEVICH MARKOV (14 June 1856 – 20 July 1922) was a Russian mathematician best known for his work on **stochastic processes**. A primary subject of his research later became known as the **MARKOV chain**. He was also a strong, close to master-level, chess player.

MARKOV and his younger brother VLADIMIR ANDREEVICH MARKOV (1871 – 1897) proved the MARKOV BROTHERS' INEQUALITY. His son, another Andrey Andreyevich Markov (1903 – 1979), was also a notable mathematician, making contributions to constructive mathematics and recursive function theory.

(Wikipedia)

Wrap-Up

Motivation for the Use of Directed Graphical Mode Representation of large Probability Distributions Independencies encoded in a BAYESian Network d-Separation

Representation Theorem

- We write $I_{LM}(\mathfrak{G})$ for the set of the conditional independencies implied by the local MARKOV assumption
- Question: Is \mathcal{G} an I-map (independence map) of p?

$$I_{LM}(\mathfrak{G})\stackrel{?}{\subseteq}I(p)$$

Representation theorem:

$$I_{LM}(\mathfrak{G}) \subseteq I(p) \iff p(\mathfrak{X}_1, \dots, \mathfrak{X}_M) = \prod_{m=1}^M p(\mathfrak{X}_m \mid pa(\mathfrak{X}_m))$$
 (13)

Introduction BAYESian Networks (BNs)

Inference and Sampling in Graphical Models
Hidden Markov Models (HMMs)
Wrap-Up

Motivation for the Use of Directed Graphical Models Representation of large Probability Distributions Independencies encoded in a BAYESIAN Network d-Separation

Independencies in real Problems

Real world

The true distribution p contains independency assertions I(p)

Model

The graph \mathcal{G} encodes local independency assumptions $I_{LM}(\mathcal{G})$

Inference and Sampling in Graphical Models Hidden MARKOV Models (HMMs) Wrap-Up Motivation for the Use of Directed Graphical Model Representation of large Probability Distributions Independencies encoded in a BAYESian Network d-Separation Naïve RAYES as a RAYESian Network

Example: Local Markov Assumption

Let us consider an example:

Let the five binary variables (yes, no)

 \mathcal{A} (allergy), \mathcal{F} (flu), \mathcal{S} (sinus infection), \mathcal{N} (runny nose), \mathcal{H} (headache).

and the BAYESian network depicted on the left-hand side be given

Wrap-Up

Example: Local Markov Assumption (Ctd.)

Node \mathcal{F} :

$$pa(\mathfrak{F}) = \emptyset$$
 $nd(\mathfrak{F}) = \{\mathcal{A}\}$

Independencies:

$$\mathcal{A} \perp \!\!\! \perp \mathcal{F}$$

Node N:

$$\begin{aligned} \mathrm{pa}(\mathcal{N}) &= \mathbb{S} \\ \mathrm{nd}(\mathcal{N}) &= \{\mathcal{A}, \mathcal{F}, \mathcal{H}\} \end{aligned}$$

Independencies:

$$\mathbb{N} \perp \!\!\! \perp \{ \mathcal{A}, \mathcal{F}, \mathcal{H} \} \mid \mathcal{S}$$

Node S:

$$\operatorname{pa}(\mathcal{S}) = \{\mathcal{A}, \mathcal{F}\}$$

 $\operatorname{nd}(\mathcal{S}) = \emptyset$

Independencies:

Example: Local Markov Assumption (Ctd.)

According to the chain rule, the joint probability distribution is given by:

Wrap-Up

$$p(\mathcal{A}, \mathcal{F}, \mathcal{S}, \mathcal{H}, \mathcal{N}) = p(\mathcal{F}) \cdot p(\mathcal{A}|\mathcal{F}) \cdot p(\mathcal{S}|\mathcal{F}, \mathcal{A}) \cdot p(\mathcal{H}|\mathcal{S}, \mathcal{F}, \mathcal{A}) \cdot p(\mathcal{N}|\mathcal{S}, \mathcal{F}, \mathcal{A}, \mathcal{H})$$

By applying the **local Markov assumption** we get:

$$p(\mathcal{A}, \mathcal{F}, \mathcal{S}, \mathcal{H}, \mathcal{N}) = p(\mathcal{A}) \cdot p(\mathcal{F}) \cdot p(\mathcal{S}|\mathcal{A}, \mathcal{F}) \cdot p(\mathcal{N}|\mathcal{S}) \cdot p(\mathcal{H}|\mathcal{S})$$

⇒ Much less parameters due to the local MARKOV assumption!

Wrap-Up

Independencies encoded in a BAYESian Network

Inference and Sampling in Graphical Models Hidden MARKOV Models (HMMs)

Explaining Away / BERKSON's Paradox

- From above we know $\mathcal{A} \parallel \mathcal{F}$
- Let us assume we observe S
- Two causes (\mathcal{A} and \mathcal{F}) *compete* to explain the observed data (S)
- It follows: $\neg (A \perp\!\!\!\perp \mathcal{F} \mid S)$, although $A \perp\!\!\!\perp \mathcal{F}$

 $\mathcal A$ and $\mathcal F$ become dependent when we observe S!

Motivation for the Use of Directed Graphical Mode Representation of large Probability Distributions Independencies encoded in a BAYESian Network d-Separation

Independencies encoded in a BAYESian Network

- A graph encodes more dependencies than are implied by the local MARKOV assumption
- Consider the following network:

- Using the local Markov assumption we get $\mathcal{D} \perp \!\!\! \perp \{\mathcal{A}, \mathcal{B}\} \mid \mathcal{C}$
- But we also have $\mathcal{D} \perp \!\!\! \perp \mathcal{A} \mid \mathcal{C}$ and $\mathcal{D} \perp \!\!\! \perp \mathcal{B} \mid \mathcal{C}$ (this is not covered by the local MARKOV assumption)

This leads us to the concept of d-separation (dependency separation)

Introduction

BAYESian Networks (BNs)
Inference and Sampling in Graphical Models

Hidden MARKOV Models (HMMs)
Wrap-Up

Motivation for the Use of Directed Graphical Mode Representation of large Probability Distributions Independencies encoded in a BAYESian Network d-Separation.

Four Example Graphs

Indirect causal effect:

Common cause:

Indirect evidential effect:

Common effect / v-structure:

Motivation for the Use of Directed Graphical Mod Representation of large Probability Distributions Independencies encoded in a BAYESian Network d-Separation Naïve BAYES as a BAYESian Network

Indirect causal Effect – No Variables observed

Wrap-Up

The joint distribution factorizes into

$$\rho(\mathcal{X}, \mathcal{Y}, \mathcal{Z}) = \rho(\mathcal{X})\rho(\mathcal{Z}|\mathcal{X})\rho(\mathcal{Y}|\mathcal{Z}) \tag{14}$$

• Question: Are X and Y independent?

$$p(\mathfrak{X}, \mathfrak{Y}) \stackrel{?}{=} p(\mathfrak{X})p(\mathfrak{Y})$$

Introduction BAYESian Networks (BNs) Sampling in Graphical Models

Inference and Sampling in Graphical Models Hidden Markov Models (HMMs) Wrap-Up Motivation for the Use of Directed Graphical Mode Representation of large Probability Distributions Independencies encoded in a BAYESian Network d-Separation Naïve BAYES as a BAYESian Network

Indirect causal Effect – No Variables observed (Ctd.)

$$p(\mathcal{X}, \mathcal{Y}) \stackrel{\text{(3)}}{=} \sum_{\mathcal{Z}} p(\mathcal{X}, \mathcal{Y}, \mathcal{Z}) \stackrel{\text{(14)}}{=} \sum_{\mathcal{Z}} p(\mathcal{X}) p(\mathcal{Z}|\mathcal{X}) p(\mathcal{Y}|\mathcal{Z})$$

$$= p(\mathcal{X}) \sum_{\mathcal{Z}} p(\mathcal{Z}|\mathcal{X}) p(\mathcal{Y}|\mathcal{Z}) = p(\mathcal{X}) \sum_{\mathcal{Z}} p(\mathcal{Y}, \mathcal{Z}|\mathcal{X})$$

$$= p(\mathcal{X}) p(\mathcal{Y}|\mathcal{X})$$

$$\neq p(\mathcal{X}) p(\mathcal{Y})$$

Answer: If \mathcal{Z} is **not observed**, then \mathcal{X} and \mathcal{Y} are **dependent**: $\neg(\mathcal{X} \perp \!\!\! \perp \mathcal{Y} \mid \emptyset)$

Introduction

BAYESian Networks (BNs)
Inference and Sampling in Graphical Models
Hidden MARKOV Models (HMMs)

Motivation for the Use of Directed Graphical Mod Representation of large Probability Distributions Independencies encoded in a BAYESian Network d-Separation Naïve BAYES as a BAYESian Network

Indirect causal Effect – Variabes observed

Wrap-Up

- Now suppose that we observe the value of $\mathcal Z$
- Question: Are \mathfrak{X} and \mathfrak{Y} independent given \mathfrak{Z} ?

$$p(\mathfrak{X}, \mathfrak{Y}|\mathfrak{Z}) \stackrel{?}{=} p(\mathfrak{X}|\mathfrak{Z})p(\mathfrak{Y}|\mathfrak{Z})$$

BAYESian Networks (BNs)

Inference and Sampling in Graphical Models
Hidden MARKOV Models (HMMs)
Wrap-Up

Motivation for the Use of Directed Graphical Mode Representation of large Probability Distributions Independencies encoded in a BAYESian Network d-Separation Naïve BAYES as a BAYESian Network

Indirect causal Effect – Variabes observed (Ctd.)

$$\rho(\mathcal{X}, \mathcal{Y}|\mathcal{Z}) \stackrel{\text{(1)}}{=} \frac{\rho(\mathcal{X}, \mathcal{Y}, \mathcal{Z})}{\rho(\mathcal{Z})} \stackrel{\text{(14)}}{=} \frac{\rho(\mathcal{X})\rho(\mathcal{Z}|\mathcal{X})\rho(\mathcal{Y}|\mathcal{Z})}{\rho(\mathcal{Z})}$$

$$= \frac{\rho(\mathcal{X})\rho(\mathcal{Z}|\mathcal{X})}{\rho(\mathcal{Z})}\rho(\mathcal{Y}|\mathcal{Z})$$

$$\stackrel{\text{(2)}}{=} \rho(\mathcal{X}|\mathcal{Z})\rho(\mathcal{Y}|\mathcal{Z})$$

Answer: If $\mathcal Z$ is observed, then $\mathcal X$ and $\mathcal Y$ are independent: $\mathcal X \perp\!\!\!\perp \mathcal Y \mid \mathcal Z$

Introduction BAYESian Networks (BNS) Inference and Sampling in Graphical Models Hidden MARKOV Models (HMMs) Wrap-Ub

Motivation for the Use of Directed Graphical Mode Representation of large Probability Distributions Independencies encoded in a BAYESian Network d-Separation Naïve BAYES as a BAYESian Network

Common Cause - No Variables observed

Factorization of the joint probability:

$$\rho(\mathcal{X}, \mathcal{Y}, \mathcal{Z}) = \rho(\mathcal{X}|\mathcal{Z})\rho(\mathcal{Y}|\mathcal{Z})\rho(\mathcal{Z})$$
(15)

• Question: Is X independent from Y?

$$p(\mathfrak{X}, \mathfrak{Y}) \stackrel{?}{=} p(\mathfrak{X})p(\mathfrak{Y})$$

BAYESian Networks (BNs) Inference and Sampling in Graphical Models

oduction Monvation for time use of Directed Graphical Models (Ref Selection of large Probability Distributions Independencies encoded in a BAYESian Network of Separation (Name Independencies on a BAYESian Network of Separation (Name Independencies)

Hidden MARKOV Models (HMMs) Wrap-Up

Common Cause – No Variables observed (Ctd.)

$$\rho(\mathcal{X}, \mathcal{Y}) \stackrel{\text{(3)}}{=} \sum_{\mathcal{Z}} \rho(\mathcal{X}, \mathcal{Y}, \mathcal{Z})$$

$$\stackrel{\text{(15)}}{=} \sum_{\mathcal{Z}} \rho(\mathcal{X}|\mathcal{Z}) \rho(\mathcal{Y}|\mathcal{Z}) \rho(\mathcal{Z})$$

$$\neq \rho(\mathcal{X}) \rho(\mathcal{Y})$$

Answer: If \mathcal{Z} is **not observed**, then \mathcal{X} and \mathcal{Y} are **dependent**: $\neg(\mathcal{X} \perp \!\!\! \perp \mathcal{Y} \mid \emptyset)$

Introduction BAYESian Networks (BNs) Inference and Sampling in Graphical Models Hidden MARKOV Models (HMMs)

Motivation for the Use of Directed Graphical Mode Representation of large Probability Distributions Independencies encoded in a BAYESian Network d-Separation

Common Cause - Variables observed

Wrap-Up

- Again, we observe the value of $\mathcal Z$
- Question: Are X and Y independent given Z?

$$p(X, Y|Z) \stackrel{?}{=} p(X|Z)p(Y|Z)$$

Introduction BAYESian Networks (BNs) Sampling in Graphical Models

Inference and Sampling in Graphical Models Hidden MARKOV Models (HMMs) Wrap-Up Motivation for the Use of Directed Graphical Mode Representation of large Probability Distributions Independencies encoded in a BAYESian Network d-Separation Naïve BAYES as a BAYESian Network

Common Cause – Variables observed (Ctd.)

$$\rho(\mathcal{X}, \mathcal{Y}|\mathcal{Z}) \stackrel{\text{(1)}}{=} \frac{\rho(\mathcal{X}, \mathcal{Y}, \mathcal{Z})}{\rho(\mathcal{Z})} \\
\stackrel{\text{(15)}}{=} \frac{\rho(\mathcal{X}|\mathcal{Z})\rho(\mathcal{Y}|\mathcal{Z})\rho(\mathcal{Z})}{\rho(\mathcal{Z})} \\
= \rho(\mathcal{X}|\mathcal{Z})\rho(\mathcal{Y}|\mathcal{Z})$$

Answer: If \mathcal{Z} is observed, then \mathcal{X} and \mathcal{Y} are independent: $\mathcal{X} \perp \!\!\! \perp \mathcal{Y} \mid \mathcal{Z}$

Introduction BAYESian Networks (BNs) Inference and Sampling in Graphical Models Hidden MARKOV Models (HMMs)

Motivation for the Use of Directed Graphical Mode Representation of large Probability Distributions Independencies encoded in a BAYESian Network d-Separation Naïve BAYES as a BAYESian Network

Common Effect - No Variables observed

Wrap-Up

Factorization of the joint probability:

$$\rho(\mathcal{X}, \mathcal{Y}, \mathcal{Z}) = \rho(\mathcal{X})\rho(\mathcal{Y})\rho(\mathcal{Z}|\mathcal{X}, \mathcal{Y}) \tag{16}$$

• Question: Is X independent from Y?

$$p(\mathfrak{X}, \mathfrak{Y}) \stackrel{?}{=} p(\mathfrak{X})p(\mathfrak{Y})$$

Introduction BAYESian Networks (BNs) mpling in Graphical Models

Inference and Sampling in Graphical Models Hidden MARKOV Models (HMMs) Wrap-Up Motivation for the Use of Directed Graphical Mode Representation of large Probability Distributions Independencies encoded in a BAYESian Network d-Separation Naive BAYES as a BAYESian Network

Common Effect – No Variables observed (Ctd.)

$$p(\mathcal{X}, \mathcal{Y}) \stackrel{\text{(3)}}{=} \sum_{\mathcal{Z}} p(\mathcal{X}, \mathcal{Y}, \mathcal{Z}) \stackrel{\text{(16)}}{=} \sum_{\mathcal{Z}} p(\mathcal{X}) p(\mathcal{Y}) p(\mathcal{Z}|\mathcal{X}, \mathcal{Y})$$
$$= p(\mathcal{X}) p(\mathcal{Y})$$

Answer: If \mathcal{Z} is **not observed**, then \mathcal{X} and \mathcal{Y} are **independent**: $\mathcal{X} \perp \!\!\! \perp \mathcal{Y} \mid \emptyset$

Note that this pattern behaves differently than the previous patterns!

Introduction BAYESian Networks (BNs) Inference and Sampling in Graphical Models

nce and Sampling in Graphical Models
Hidden Markov Models (HMMs)
Wrap-Up

Motivation for the Use of Directed Graphical Mode Representation of large Probability Distributions Independencies encoded in a BAYESian Network d-Separation Naïve BAYES as a BAYESian Network

Common Effect – Variables observed

- Let's see how this pattern behaves when observing the value of $\mathcal Z$
- Question: Are X and Y independent given Z?

$$p(X, Y|Z) \stackrel{?}{=} p(X|Z)p(Y|Z)$$

Introduction BAYESian Networks (BNs) mpling in Graphical Models

Inference and Sampling in Graphical Models Hidden MARKOV Models (HMMs) Wrap-Up Motivation for the Use of Directed Graphical Mode Representation of large Probability Distributions Independencies encoded in a BAYESian Network d-Separation Naïve BAYES as a BAYESian Network

Common Effect – Variables observed (Ctd.)

$$p(\mathcal{X}, \mathcal{Y}|\mathcal{Z}) \stackrel{\text{(1)}}{=} \frac{p(\mathcal{X}, \mathcal{Y}, \mathcal{Z})}{p(\mathcal{Z})} \stackrel{\text{(16)}}{=} \frac{p(\mathcal{X})p(\mathcal{Y})p(\mathcal{Z}|\mathcal{X}, \mathcal{Y})}{p(\mathcal{Z})} \neq p(\mathcal{X}|\mathcal{Z})p(\mathcal{Y}|\mathcal{Z})$$

Answer: If \mathcal{Z} is observed, then \mathcal{X} and \mathcal{Y} are dependent: $\neg(\mathcal{X} \parallel \mathcal{Y} \mid \mathcal{Z})$

Note that this pattern behaves again differently than the previous patterns!

 $\mathcal X$ and $\mathcal Y$ also become dependent if a descendant of $\mathcal Z$ is observed (but not $\mathcal Z$ itself)

BAYESian Networks (BNs)

Inference and Sampling in Graphical Models
Hidden Markov Models (HMMs)
Wrap-Up

Motivation for the Use of Directed Graphical Mode Representation of large Probability Distributions Independencies encoded in a BAYESian Network d-Separation Naïve BAYES as a BAYESian Network

Summary

Let \mathcal{X} and \mathcal{Y} be two random variables which are connected via a third node \mathcal{Z}

The arrows at node \mathcal{Z} meet either **head-to-tail** or **tail-to-tail**: \mathcal{X} and \mathcal{Y} are dependent if \mathcal{Z} is not observed, else they are independent.

Examples: Indirect causal effect, indirect evidential effect, common cause

The arrows at node \mathcal{Z} meet **head-to-head**: \mathcal{X} and \mathcal{Y} are independent if \mathcal{Z} is not observed, else they are dependent.

Example: Common effect / v-structure

Introduction BAYESian Networks (BNs) Inference and Sampling in Graphical Models Hidden MARKOV Models (HMMs)

Wrap-Up

Motivation for the Use of Directed Graphical Model Representation of large Probability Distributions Independencies encoded in a BAYESIan Network d-Separation Naïve BAYES as a BAYESIan Network

d-Separation [PEARL.1988]

- Consider a general directed graph in which A, B, and C are arbitrary
 nonintersecting sets of nodes (whose union may be smaller than the complete set
 of nodes in the graph)
- We wish to determine whether a particular conditional independence statement

$$A \perp \!\!\! \perp B \mid C$$

is implied by a given directed acyclic graph

To do so, we consider all possible paths from any node in A to any node in B

Inference and Sampling in Graphical Models

BAYESian Networks (BNs) Hidden MARKOV Models (HMMs) d-Separation Wrap-Up

d-Separation [PEARL.1988] (Ctd.)

- Any such path is said to be **blocked** if it includes a node such that either
 - the arrows on the path meet either head-to-tail or tail-to-tail at the node, and the node is in the set C, or
 - the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, is in the set C
- If all paths are blocked, then **A** is said to be **d-separated** from **B** by **C**
- The joint distribution over all of the variables in the graph will satisfy

$$A \perp \!\!\! \perp B \mid C$$

Example: d-Separation

• Question: 𝒯 Ⅱ 𝒢 ?

Have a look at all consecutive triplets:

 $\mathcal{F} - \mathcal{I} - \mathcal{K}$ Active

I - K - I Inactive (v-structure)

 $\mathcal{K} - \mathcal{J} - \mathcal{G}$ Active

This trail is not active

 Do the same with the other path (it is also inactive – why?)

• **Answer:** We have $\mathcal{F} \perp \!\!\! \perp \mathcal{G}$

Wrap-Up

Example: d-Separation (Ctd.)

- Question: ℱ⊥⊥ 乌 | Д?
- Have a look at all consecutive triplets:

- This trail is active!
- We have $\neg(\mathcal{F} \perp \!\!\!\perp \mathcal{G} \mid \mathcal{D})$

Soundness of d-Separation

We define $I(\mathcal{G})$ to be the set of **all** conditional independencies (including d-separation)

Wrap-Up

Soundness:

$$p$$
 factorizes according to $\mathcal{G} \Longrightarrow I(\mathcal{G}) \subseteq I(p)$ (17)

- Hence, d-separation captures only true independencies
- We have $I(\mathfrak{G}) \subseteq I(\mathfrak{p})$ and not only $I_{\mathsf{IM}}(\mathfrak{G}) \subseteq I(\mathfrak{p})$

Completeness of d-Separation

Completeness:

One can also show:

$$p$$
 factorizes according to $\mathcal{G} \Longrightarrow I(p) \subseteq I(\mathcal{G})$ (18)

for 'almost all' distributions p

- In this case p is called faithful (a faithful distribution does not declare extra independence assumptions that cannot be read off from §)
- \mathfrak{G} is called a perfect map, \mathbf{P} -map $\iff I(\mathfrak{G}) = I(p)$

Summary: D-Maps, I-Maps, and perfect Maps

A graph \mathcal{G} is said to be an I-map (independence map) of a specific distribution p, if every conditional independence statement implied by 9 is satisfied by p

 \mathcal{G} is said to be a **D-map** (dependency map) of a distribution p, if every conditional independence statement satisfied by p is reflected in 9

9 is called P-map (perfect map) if it is both, a D-map and an I-map

Introduction BAYESian Networks (BNs) Inference and Sampling in Graphical Models Hidden MARKOV Models (HMMs)

Motivation for the Use of Directed Graphical Models Representation of large Probability Distributions Independencies encoded in a BAYESIan Network d-Separation Naïve BAYES as a BAYESIan Network

Graphical Model for Naïve BAYES

The naïve Bayes model can be expressed as a graphical model ('common cause')

Wrap-Up

Assumption:

$$\mathbf{\textit{X}} \perp \!\!\!\perp \mathbf{\textit{Y}} \mid \mathcal{C} \qquad \forall \ \mathbf{\textit{X}}, \ \mathbf{\textit{Y}} \ \text{subsets of} \ \big\{ \mathcal{X}_1, \mathcal{X}_2, \ldots, \mathcal{X}_M \big\}$$

Section:

Inference and Sampling in Graphical Models

Complexity of Inference in BAYESian Networks Exact Inference in BAYESian Networks Approximate Inference in BAYESian Networks

Inference in BAYESian Networks

- We want to use a BAYESian network to answer queries, i. e. we have to compute the probability of certain events
- This is called inference

In general, inference in BAYESian networks is hopeless.

Inference in BAYESian networks (even approximate inference) is NP-hard!

- In practice we can exploit the **structure of the network** to be more efficient
- There are some effective approximation algorithms

Complexity of Inference

- Consider a reduction to 3-SAT (3-satisfiability)
 - We have groups (also called 'clauses') of three random variables
 - ullet The random variables are connected via logical ORs \lor
 - The clauses are connected via logical ANDs ∧
 - This problem is known to be NP-hard
- Suppose we have M boolean variables: Does a satisfying assignment exist?

$$\underbrace{\left(\neg \mathcal{X}_{1} \vee \mathcal{X}_{2} \vee \mathcal{X}_{3}\right)}_{=:\mathcal{C}_{1}} \wedge \underbrace{\left(\neg \mathcal{X}_{2} \vee \mathcal{X}_{3} \vee \neg \mathcal{X}_{4}\right)}_{=:\mathcal{C}_{2}} \wedge \dots$$

Complexity of Inference (Ctd.)

- There are 2^M possible assignments of the variables \mathcal{X}_m (1 $\leq m \leq M$)
- p(y = 1) = # satisfying assignments/2^M
- This problem is in #P

Exact Inference

- Suppose we have the **conditional probability query**: 'What is the probability of having an allergy given a runny nose?', i. e. p(A = t | N = t)
- We rewrite the expression using (1):

$$p(A = t | \mathcal{N} = t) = \frac{p(A = t, \mathcal{N} = t)}{p(\mathcal{N} = t)}$$

Exact Inference (Ctd.)

We know:

$$p(\mathcal{A}, \mathcal{F}, \mathcal{S}, \mathcal{H}, \mathcal{N}) = p(\mathcal{A}) \cdot p(\mathcal{F}) \cdot p(\mathcal{S}|\mathcal{A}, \mathcal{F}) \cdot p(\mathcal{N}|\mathcal{S}) \cdot p(\mathcal{H}|\mathcal{S})$$

• We compute p(A = t, N = t) by **summing out** all variables we are not interest in:

$$\begin{split} \rho(\mathcal{A} = t, \mathcal{N} = t) &\stackrel{\text{(3)}}{=} \sum_{\mathcal{F}} \sum_{\mathcal{S}} \sum_{\mathcal{H}} \rho(\mathcal{A} = t) \cdot \rho(\mathcal{F}) \cdot \rho(\mathcal{S}|\mathcal{A} = t, \mathcal{F}) \cdot \rho(\mathcal{N} = t|\mathcal{S}) \cdot \rho(\mathcal{H}|\mathcal{S}) \\ &= \rho(\mathcal{A} = t) \sum_{\mathcal{S}} \rho(\mathcal{N} = t|\mathcal{S}) \sum_{\mathcal{F}} \rho(\mathcal{F}) \cdot \rho(\mathcal{S}|\mathcal{A} = t, \mathcal{F}) \sum_{\mathcal{H}} \rho(\mathcal{H}|\mathcal{S}) \end{split}$$

• Do the same for $p(\mathcal{N}=t)$ and compute $p(\mathcal{A}=t|\mathcal{N}=t)$

Variable Elimination

Have: $p(\mathcal{A}, \mathcal{F}, \mathcal{S}, \mathcal{H}, \mathcal{N}) = p(\mathcal{A}) \cdot p(\mathcal{F}) \cdot p(\mathcal{S}|\mathcal{A}, \mathcal{F}) \cdot p(\mathcal{N}|\mathcal{S}) \cdot p(\mathcal{H}|\mathcal{S})$

Want: $p(\mathcal{H})$

Assume: Elimination order: A, F, N, S

Eliminate A: $\psi_{\mathcal{A}}(\mathcal{F}, \mathcal{S}) = \sum_{a \in \mathcal{A}} p(a) \cdot p(\mathcal{S}|a, \mathcal{F}) \Rightarrow \psi_{\mathcal{A}}(\mathcal{F}, \mathcal{S}) \cdot p(\mathcal{F}) \cdot p(\mathcal{N}|\mathcal{S}) \cdot p(\mathcal{H}|\mathcal{S})$

Eliminate \mathfrak{F} : $\psi_{\mathfrak{F}}(\mathbb{S}) = \sum_{f \in \mathfrak{F}} \psi_{\mathcal{A}}(f,\mathbb{S}) \cdot p(f)$ $\Rightarrow \psi_{\mathfrak{F}}(\mathbb{S}) \cdot p(\mathbb{N}|\mathbb{S}) \cdot p(\mathcal{H}|\mathbb{S})$

Eliminate \mathcal{N} : $\psi_{\mathcal{N}}(S) = \sum_{n \in \mathcal{N}} p(n|S)$ $\Rightarrow \psi_{\mathcal{F}}(S) \cdot \psi_{\mathcal{N}}(S) \cdot p(\mathcal{H}|S)$

Eliminate S: $\psi_{\mathcal{S}}(\mathcal{H}) = \sum_{s \in \mathcal{S}} \psi_{\mathcal{F}}(s) \cdot \psi_{\mathcal{N}}(s) \cdot \rho(\mathcal{H}|s) \Rightarrow \left| \psi_{\mathcal{S}}(\mathcal{H}) \right|$

Input: BAYESian network \mathcal{G} , query $p(\mathbf{X}|\mathbf{O})$

- Instantiate the evidence variables in O
- ² Choose an ordering of the variables to be eliminated $\{X_1, X_2, \dots, X_M\}$
- Initialize the factors

$$oldsymbol{\Psi} := ig\{\psi_1, \psi_2, \dots, \psi_M : \psi_m := oldsymbol{
ho}ig(\mathfrak{X}_m \mid \operatorname{pa}(\mathfrak{X}_m)ig)ig\}$$

```
4 foreach m \in \{1, 2, ..., M\} do
         if \mathfrak{X}_m \not\in \{X, O\} then
```

$$if X_m \notin \{X, O\}$$
 then

Remove the factors $\psi_1, \psi_2, \dots, \psi_L$ from $\boldsymbol{\Psi}$ that include \mathcal{X}_m 6

Generate a new factor $\widetilde{\psi}$ by eliminating \mathcal{X}_m from these factors: $\widetilde{\psi} := \sum_{\mathcal{X}_m} \prod_{\ell=1}^L \psi_\ell$ Add $\widetilde{\Psi}$ to the set of factors Ψ

end 9

end

- Normalize probabilities
- return answer to query p(X|O)

Approximate Inference

- We have seen already that exact inference is in NP-hard
- In the following we will introduce some methods for approximate inference
- Some common methods include:
 - Forward sampling (without evidence, i. e. observed variables)
 - Rejection sampling (with evidence, i. e. observed variables)
 - Gibbs sampling (MCMC Markov Chain Monte Carlo)
 - Likelihood weighting
- In this lecture we shall cover forward sampling, rejection sampling, and Gibbs sampling

Forward Sampling (without Evidence)

Input: BAYESian network \mathcal{G} , number of nodes M, number of samples N

Forward Sampling: Answering Queries

- Suppose we have collected several samples $\mathbf{S} := \left\{\mathbf{s}^1, \mathbf{s}^2, \dots, \mathbf{s}^N\right\}$
- Question: How can we do inference with these samples?
- **Answer:** Count the number of samples for which $\mathcal{X}_m = x_i$ holds true and divide by the total number of samples

$$\rho(\mathfrak{X}_m = x_i) \approx \frac{1}{N} \sum_{n=1}^N \mathbf{1} \left\{ \mathbf{s}_m^{(n)} = x_i \right\}$$

How about evidence, i. e. queries of the form $p(X_m|X_k)$?

Rejection Sampling (Forward Sampling with Evidence)

When we have evidence (i.e. some random variables are observed), then the sample has to be consistent with the evidence!

- A simple approach: Use forward sampling and ignore the evidence
- If the sample is not consistent: Reject the sample (⇒ rejection sampling)

Problem: What if the evidence has low probability? ⇒ **Most samples will be rejected!** Rejection sampling can be slow...

GIBBS Sampling

- We shall now consider the GIBBS sampling method
- It belongs to the family of MARKOV Chain Monte Carlo (MCMC) methods
- The samples are dependent and form a MARKOV chain

Sampling process:

- Fix the values of evidence / observed variables O
- Initialize the first sample s⁰ randomly
- Generate the next sample \mathbf{s}^{n+1} based on the current one \mathbf{s}^n

Ordered GIBBS Sampler

- Main idea: Generate the next sample s^{n+1} based on the current one s^n
- Sample variables in order:

$$egin{array}{lll} & \chi_1: & s_1^{(n+1)} \sim pig(s_1 \mid s_2^{(n)}, s_3^{(n)}, \ldots, s_m^{(n)}, oldsymbol{O}ig) \\ & \chi_2: & s_2^{(n+1)} \sim pig(s_2 \mid s_1^{(n+1)}, s_3^{(n)}, \ldots, s_m^{(n)}, oldsymbol{O}ig) \\ & \vdots & & & & & & & & & & \\ & \chi_m: & s_m^{(n+1)} \sim pig(s_m \mid s_1^{(n+1)}, s_2^{(n+1)}, \ldots, s_{m-1}^{(n+1)}, oldsymbol{O}ig) \end{array}$$

MARKOV Blanket

- We have to sample the value for \mathcal{X}_m given all of the other variables in the network
- The MARKOV blanket simplifies that
- The MARKOV blanket of a node consists of its parents, co-parents, and children

A node is independent of all other nodes in the network given its MARKOV blanket

Section:

Hidden Markov Models (HMMs)

Introduction

Formal Definition of Hidden MARKOV Models

Decoding in Hidden MARKOV Models

The VITERBI Algorithm

What is a hidden MARKOV Model?

- We shall now discuss the use of BAYESian networks for sequence classification
- Consider e. g. the task of part-of-speech tagging

Part-of-speech tagging (POS tagging) is the task of assigning **part-of-speech tags** (e. g. NN – noun, VB – verb, etc.) to a set of given words, e. g.

Task: Predict the most probable sequence of tags given the observed words

What is a hidden MARKOV Model? (Ctd.)

- We call the sequence of words **observed**
- The sequence of tags is **hidden** as we do not observe the tags in the real world

Can you imagine why this task is not as easy as it might seem?

In the following we will introduce **Hidden Markov Models (HMMs)** – a special kind of BAYESian network which allows us to compute the most probable sequence of hidden states given the observations

What does an HMM look like?

HIDDEN STATES

Wrap-Up

OBSERVATIONS

A running Example

To illustrate the concepts we will use the following scenario:

- Imagine you are a climatologist in the year 2799 studying the history of global warming
- Unfortunately, you cannot find any records for Mannheim for the summer of 2021
- But you do have Peter's diary who kept track of how much ice cream he ate every day that summer
- Our goal is to use these observations to infer the temperature every day
- We assume that there are only two kinds of days: Cold (C) and hot (H)

Wrap-Up

Formal Definition of HMMs

An HMM is specified by the following components:

$$Q = q_1, q_2, \ldots, q_N$$

$$\mathbf{A} = a_{11}, a_{12}, \ldots, a_{N1}, \ldots, a_{NN}$$

$$O = o_1, o_2, \ldots, o_T$$

A set of N possible (hidden) states

An $N \times N$ transition probability matrix, each a_{ij} representing the probability of moving from state i to state j, such that $\sum_{j=1}^{N} a_{ij} = 1$ for all states i = 1, 2, ..., N

A sequence of **observations**, each one drawn from a vocabulary $V = v_1, \ldots, v_K$

Formal Definition of HMMs (Ctd.)

An HMM is specified by the following components:

$$\mathbf{B} = b_i(o_t)$$

 q_0, q_F

A sequence of **emission probabilities**, each expressing the probability of an observation o_t being generated from state i

A special **start state** q_0 and **end state** q_F (not associated with observations)

Running Example: Definition of the Components

- Let the set of states $Q := \{ Hot, Cold \}$
- We use the start state <start>, but we do not use a dedicated end state, instead we allow both states. Hot and Cold to be final states
- Transition and emission probabilities are given in the tables below:

Transition probabilities A

$p(q_i q_{i-1})$	Hot	Cold
<start></start>	0.80	0.20
Hot	0.70	0.30
Cold	0.40	0.60

Emission probabilities B

$p(o_i q_i)$	1	2	3
Hot	0.20	0.40	0.40
Cold	0.50	0.40	0.10

Fundamental Problems

HMMs are characterized by three fundamental problems:

- Computation of the likelihood
 Compute the likelihood of an observation sequence o
- **Decoding** (we will focus on decoding in the lecture)
 Given a sequence of observations $\mathbf{o} = o_1, o_2, \dots, o_T$, find the most probable sequence of (hidden) states $\mathbf{q} = q_1, q_2, \dots, q_T$
- 6 Learning

Learn transition and emission probabilities from data

Decoding in Hidden Markov Models

• The most probable hidden state sequence $\widetilde{\boldsymbol{q}}$ given the observations \boldsymbol{o} is:

$$\widetilde{\boldsymbol{q}} := \operatorname{arg\,max}_{\boldsymbol{q}} p(\boldsymbol{q}|\boldsymbol{o})$$
 (19)

• This quantity is hard to compute. Let's apply BAYES' rule (2):

$$\widetilde{\boldsymbol{q}} = \operatorname{arg\,max}_{\boldsymbol{q}} \frac{p(\boldsymbol{o}|\boldsymbol{q})p(\boldsymbol{q})}{p(\boldsymbol{o})} \propto \operatorname{arg\,max}_{\boldsymbol{q}} p(\boldsymbol{o}|\boldsymbol{q})p(\boldsymbol{q})$$
 (20)

 Equation (20) is still not easy to compute, which is why we introduce two simplifying assumptions:

The Markov Assumption

Assumption 1 (MARKOV assumption): The probability of a specific state is dependent only on the previous state, i. e.

$$p(q_i|q_1,\ldots,q_{i-1}) = p(q_i|q_{i-1})$$
(21)

('The future is independent of the past given the present')

Therefore:

$$p(\mathbf{q}) \stackrel{(4)}{=} p(q_T | q_1, \dots, q_{T-1}) \cdots p(q_1) \stackrel{(21)}{=} \prod_{i=1}^{T} p(q_i | q_{i-1})$$
 (22)

The Output Independence Assumption

Assumption 2 (Output independence assumption): The probability of an observation o_i is dependent only on the state q_i that produced the observation, and not on any other states or observations, i. e.

$$p(o_i|q_1,\ldots,q_T,o_1,\ldots,o_i,\ldots,o_T) = p(o_i|q_i)$$
 (23)

Therefore:

$$p(\mathbf{o}|\mathbf{q}) = \prod_{i=1}^{T} p(o_i|q_i)$$
 (24)

Wrap-Up

Putting everything together...

• Plugging equations (22) and (24) into (20) we obtain:

$$\widetilde{\boldsymbol{q}} = \operatorname{arg\,max}_{\boldsymbol{q}} p(\boldsymbol{o}|\boldsymbol{q})p(\boldsymbol{q}) = \operatorname{arg\,max}_{\boldsymbol{q}} \prod_{i=1}^{T} p(o_i|q_i)p(q_i|q_{i-1})$$
 (25)

- This equation contains two types of probabilities:
 - Transition probabilities:

$$p(q_i|q_{i-1})$$

Emission probabilities:

$$p(o_i|q_i)$$

Efficient Computation

- To find \tilde{q} we could enumerate all possible sequences of hidden states q, evaluate equation (25), and pick the one which maximizes p(o|q)
- This brute-force approach has computational complexity $O(N^T)$ (why?)

The complexity is exponential in the length T of the sequence!

We shall now discuss how to improve on the computational complexity, leading to the VITERBI algorithm

The VITERBI Algorithm

- The VITERBI algorithm is a dynamic programming method which is able to compute \widetilde{q} efficiently
- It is named after ANDREW J. VITERBI
- We will introduce the algorithm by example first and formalize it afterwards

Coming back to our running example:

Suppose we observe the sequence o := (3, 1, 3). Our goal is to find the most probable sequence of hidden states \tilde{q}

Running Example: VITERBI Algorithm

VITERBI Algorithm: Initialization Phase

Input: $o = o_1, o_2, \dots, o_T$, state graph of length N

- Create a path probability matrix $oldsymbol{v} := \left[v_{ij}
 ight]_{i=1,\ldots,T}^{i=1,\ldots,N}$
- ² Create a matrix of backpointers $\mathbf{P} := \left[p_{ij} \right]_{i=1}^{i=1,\dots,N+1}$
- 3 foreach state $q \in \{1, 2, \ldots, N\}$ do

4
$$v_{q1} = a_{0q} \cdot b_q(o_1)$$

$$p_{q1} = 0$$

6 end

Remarks:

 The value v_{qt} represents the probability of being in state q after seeing the first t observations and passing through the most probable state sequence

$$q_0, q_1, \ldots, q_{t-1}$$

 We need the backpointers to retrieve the most probable state sequence

VITERBI Algorithm: Main Phase

```
1 foreach time step t \in \{2,3,\ldots,T\} do

2 foreach state q \in \{1,2,\ldots,N\} do

3 Compute: v_{qt} = \max_{q'=1,\ldots,N} v_{q',t-1} \cdot a_{q',q} \cdot b_q(o_t)
p_{qt} = \arg\max_{q'=1,\ldots,N} v_{q',t-1} \cdot a_{q',q} \cdot b_q(o_t)
4 end
```

Remarks:

- Compute the path through the VITERBI trellis
- By taking the max we discontinue paths which cannot be optimal

Wrap-Up

VITERBI Algorithm: Termination Phase

1 Compute:

$$v_{N+1,T} = \max_{q=1,...,N} v_{qT} \cdot a_{q,N+1}$$

$$p_{N+1,T} = \operatorname{arg\,max}_{q=1,\dots,N} v_{qT} \cdot a_{q,N+1}$$

2 return backtrace path in reverse order

Remarks:

- The element v_{N+1,T} represents the probability of the most probable
 sequence of hidden states
- The backtrace has to be returned in reverse order!

Complexity of the VITERBI Algorithm

- The VITERBI trellis consists of *T* layers (one for each observation)
- At each node in the VITERBI trellis we only have to consider the N nodes in the preceding layer
- Each layer in the VITERBI trellis comprises N nodes
- The overall complexity of the VITERBI algorithm therefore is

$$\mathcal{O}(TN^2)$$

The VITERBI algorithm is much more efficient than brute-force!

Section:

Wrap-Up

Summary
Recommended Literature
Self-Test Questions
Lecture Outlook

Summary: BAYESian Networks (BNs)

- BAYESian networks are directed acyclic graphs which represent exponentially large probability distributions
- Local Markov assumption: A variable is independent of its non-descendants given its parents (and only its parents)
- Representation theorem
- The concept of d-separation can be used to find more independencies
- Inference (even approximate) is NP-hard
 - Exact inference: Variable elimination
 - Approximate inference: Forward sampling, rejection sampling, GIBBS sampling

Summary: Hidden MARKOV Models (HMMs)

- An HMM is a sequence classifier (as such it takes the context into account)
- This is useful e.g. in part-of-speech (POS) tagging
- Two simplifying assumptions:
 - **1 Markov assumption:** The probability of a state q_i is dependent only on the previous state q_{i-1}
 - **Output independence assumption:** The probability of an observation o_i depends only on the hidden state q_i
- Find the most probable hidden sequence (decoding) by applying the VITERBI algorithm (dynamic programming)

Recommended Literature

- 1 [BISHOP.2006], chapter 8
- [KOLLER.2009], chapter 3
- (3) [KOLLER.2009], chapter 9
- 4 [JURAFSKY.2006], chapter 6 (HMMs)

(For free PDF versions, see list in GitHub readme!)

Self-Test Questions

- 1 What is a marginal / conditional distribution?
- 2 Write down the sum rule / chain rule for probabilities!
- What is a Bayesian network?
- 4 How does a joint probability distribution factorize in a BAYESian network?
- 6 What is the local MARKOV assumption / the representation theorem?
- What is d-separation?
- Explain how inference can be made in BAYESian networks?
- What are the simplifying assumptions a hidden MARKOV model makes?
- Second in the State of the S

What's next...?

	ı	l 1	∕lacl	hine	Learn	ing	Intr	od	uct	ion
--	---	-----	-------	------	-------	-----	------	----	-----	-----

- II Optimization Techniques
- III Bayesian Decision Theory
- IV Non-parametric Density Estimation
- V Probabilistic Graphical Models
- VI Linear Regression
 - VII Logistic Regression
 - VIII Deep Learning

IX	Evaluation

- X Decision Trees
- XI Support Vector Machines
- XII Clustering
- XIII Principal Component Analysis
- XIV Reinforcement Learning
- XV Advanced Regression

Thank you very much for the attention!

* * * Artificial Intelligence and Machine Learning * * *

Topic: Probabilistic Graphical Models (PGMs)

Term: Summer term 2025

Contact:

Daniel Wehner, M.Sc.

SAPSE / DHBW Mannheim

daniel.wehner@sap.com

Do you have any questions?