Série d'exercices n° 1

Exercice 1

Soit G =]-1;1[. On munit G de la loi suivante

$$\forall x, y \in G \qquad x * y = \frac{x+y}{1+xy}$$

Montrer que (G, *) est un groupe abélien.

Exercice 2

Soit (G, *) un groupe tel que $x * x = e, \forall x \in G$. Montrer que le groupe G est commutatif.

Exercice 3

Montrer que H est un sous-groupe de $(\mathbb{Z}, +)$ si et seulement si

$$\exists ! n \in \mathbb{N}$$
 $H = n\mathbb{Z}$

Exercice 4

On munit l'ensemble R de la loi de composition

$$x * y = \sqrt[3]{x^3 + y^3}$$

Montrer que $(\mathbb{R}, *)$ est un groupe isomorphe à $(\mathbb{R}, +)$.

Exercice 5

Soit (G,*) un groupe non-abélien. On note e son élément neutre, et x^{-1} le symétrique de x dans (G,*).

1. Pour tout $a \in G$, on définit l'application $f_a: (G, *) \to (G, *)$ par

$$f_a(x) = a * x * a^{-1}$$

Montrer que f_a est un morphisme de groupes. f_a est-il injectif? surjectif?

- 2. Soit $F = \{f_a \mid a \in G\}$, muni de la loi de composition \circ .
 - a. Montrer que $f_a \circ f_b = f_{a \bullet b}$, pour tout $(f_a, f_b) \in F^2$.
 - b. Montrer que (F, \circ) est un groupe.

Exercice 6

Soit (G,*) un groupe cyclique engendré par x, d'ordre $|G|=m\in\mathbb{N}^*$. On note e son élément neutre.

- 1. Montrer que l'ensemble $\{k \in \mathbb{N}^* : x^k = e\}$ est non-vide.
- 2. On note $p = \min\{k \in \mathbb{N}^* : x^k = e\}$, et on pose

$$A = \{x^k : 0 \le k \le p-1\}$$

Montrer que card(A) = p.

- 3. Montrer que A=G. En déduire que $m=\min\{k\in\mathbb{N}^*: x^k=e\}$.
- Soit k ∈ N. Montrer que x^k est générateur de G si et seulement si m et k sont premiers entre eux.

Exercice 7 (Groupe $\mathbb{Z}/n\mathbb{Z}$)

On se fixe un $n \in \mathbb{N}^*$. Soient $a, b \in \mathbb{Z}$. On dit que a est congru à b modulo n, et on écrit $a \equiv b[n]$, s'il existe $k \in \mathbb{Z}$ tel que b - a = kn.

- Montrer que la relation de congruence modulo n est une relation d'équivalence. Déterminer les classes d'équivalence associées.
- 2. On note $\mathbb{Z}/n\mathbb{Z}$ l'ensemble de ces classes d'équivalence. On munit $\mathbb{Z}/n\mathbb{Z}$ de la loi

$$\overline{a} + \overline{b} = \{x + y : x \in \overline{a} \text{ et } y \in \overline{b}\}$$

Montrer que $\overline{a} + \overline{b} = \overline{a+b}$, $\forall \overline{a}, \overline{b} \in \mathbb{Z}/n\mathbb{Z}$. En déduire que + est une loi de composition interne sur $\mathbb{Z}/n\mathbb{Z}$.

3. Montrer que $(\mathbb{Z}/n\mathbb{Z}, +)$ est un groupe cyclique et déterminer son générateur.

Remarque : $(\mathbb{Z}/n\mathbb{Z}, +)$ est appelé le groupe quotient de \mathbb{Z} par $n\mathbb{Z}$.

Exercice 8

Soit f un homomorphisme d'un groupe fini (G, *) dans un groupe (H, \bot) .

1. On définit la relation

$$x\Re y \Leftrightarrow \operatorname{sym}(x) * y \in \ker(f), \quad \forall x, y \in G.$$

Montrer que $x\Re y \Leftrightarrow f(x) = f(y)$. En déduire que \Re est une relation d'équivalence sur G.

Soient x̄₁,..., x̄_n les classes d'équivalence associées à R, où x₁,..., x_n ∈ G sont deux à deux distincts. Alors le quotient de l'ensemble G par la relation d'équivalence R s'écrit

$$G/\mathfrak{R} = \{\overline{x}_1, \ldots, \overline{x}_n\}$$

Soit l'application

$$\varphi: G/\mathfrak{R} \to \operatorname{Im}(f)$$
 $\overline{x}_i \mapsto f(x_i)$

Vérifier que φ est bijective.

On considère l'application

$$\psi: G/\mathfrak{R} \times \ker(f) \rightarrow G$$
 $(\overline{x}_i, y) \mapsto x_i * y$

Montrer que ψ est bijective.

4. En déduire que

$$\operatorname{card}(G) = \operatorname{card}(\ker(f)) \times \operatorname{card}(\operatorname{Im}(f))$$