Chap. V : Capteurs de débit

Cours 2006-2007

Table des matières

1	Gén	néralités 3
	1.1	Le débit (en anglais flow)
	1.2	Régime laminaire et régime turbulent
	1.3	La vitesse (en anglais speed)
2	Déb	pitmètres volumiques 4
	2.1	Présentation
	2.2	Débitmètre à tube de Pitot
	2.3	Débitmètres à organe déprimogène
		2.3.1 Présentation
		2.3.2 Caractéristiques métrologiques
		2.3.3 Montage du transmetteur de pression différentielle
	2.4	Rotamètre - Débitmètre à ludion
	2.1	2.4.1 Présentation
		2.4.2 Caractéristiques métrologiques
	2.5	Débitmètre à coupelle, à hélice ou à turbine
	2.0	2.5.1 Présentation
		2.5.2 Montage de mesure
		2.5.3 Domaine d'utilisation
	2.6	Débitmètre à palette
	2.0	2.6.1 Présentation
	2.7	Débitmètre ionique
	2.1	2.7.1 Présentation
		2.7.1 Presentation
	2.8	
	2.0	<u> </u>
	0.0	2.8.2 Caractéristiques métrologiques
	2.9	Débitmètre à tourbillons de Karman ou effet vortex
		2.9.1 Présentation
		2.9.2 Caractéristiques métrologiques
3	Cap	oteur de débit massique 11
	3.1	Débitmètre à fil ou film chaud
		3.1.1 Présentation
		3.1.2 Montages de mesures
		3.1.3 Domaine d'utilisation
	3.2	Débitmètre électromagnétique
		3.2.1 Rappel de physique
		3.2.2 Présentation
		3.2.3 Montage de mesure
		3.2.4 Caractéristiques métrologiques
		3.2.5 Étendue de la mesure
	3.3	Débitmètre massiques thermiques
		3.3.1 Présentation

3.4	3.3.2 Caractéristiques métrologiques	14 15 15
	3.4.1 Rappel de physique	15 15
	3.4.3 Caractéristiques	16
	3.4.4 Domaines d'application	16
Exer	rices	17
	Mesure de débit par organe déprimogène	17
	Capteur de débit SwingWirl II	17
	Mesure de débit corrigé	19
Annex	re 1	20
Évalı	nation - Année précédente	21
Tabl	e des figures	
1	Influence de la viscosité sur la vitesse du fluide	3
2	Ecoulement laminaire ou turbulent	3
3	Tube de Pitot	4
4	Les différents organes déprimogène	5
5	Pertes de charge d'un diaphragme et d'un venturi	6
6	Montage du transmetteur de pression différentielle	7
7	Relation entre les grandeurs physiques d'une mesure de débit par organe déprimogène	7
8	Débitmètre à ludion	7
9	Débitmètre à turbine	8
10	Débitmètre à palette	9
11	Shéma de principe et électrique d'un débitmètre ionique	9
12	Débitmètre ultrasonique	10
13	Tourbillons de karman	11
14	Film chaud	11
15	Induction électromagnétique	12
16	Capteur de débit électromagnétique	12
17	Débitmètre massique thermique	13
18	Fonctionnement d'un capteur de débit thermique	14
19	Capteur de débit à effet Coriolis	15
20	Effet Coriolis	15
21	Fonctionnement d'un capteur de débit à effet Coriolis	16
22	Caractéristiques techniques du capteur de débit SwingWirl II	18
23	Pertes de charges pour vapeur gaz et liquides	18
24	Schéma TI	19
25	Schéma TI de l'installation étudiée	22
26	Pertes de Charge - Diaphragme et Venturi	23
27	Câlla	22

1 Généralités

1.1 Le débit (en anglais flow)

Le débit, c'est la quantité de fluide qui s'écoule ou qui est fournie par unité de temps.

Exemple: Le débit d'un cours d'eau, d'une pompe...

Il existe deux types de débits, le **débit massique** et le **débit volumique**.

Le débit massique (Qm) et le débit volumique (Qv) sont liés par la relation :

$$Qm(kg/s) = \rho(kg/m^3) \times Qv(m^3/s) \tag{1}$$

1.2 Régime laminaire et régime turbulent

La Viscosité : C'est la résistance d'un fluide à son écoulement uniforme et sans turbulence. En fonction de la viscosité du fluide, la répartition de la vitesse du fluide n'est pas la même sur toute la surface (fig. 1) .

Figure 1 – Influence de la viscosité sur la vitesse du fluide

Le régime laminaire d'un fluide s'effectue par glissement des couches de fluide les unes sur les autres sans échange de particules entre elles, par opposition au régime turbulent. Dans le cas d'un écoulement

Figure 2 – Ecoulement laminaire ou turbulent

incompressible et isotherme, le nombre de Reynolds suffit pour déterminer le type d'écoulement :

$$Re = \frac{V(m/s) \times \mathcal{O}(m)}{\nu(m^2/s)} \tag{2}$$

Avec : V vitesse du fluide, Ø diamètre de la canalisation et ν la viscosité cinématique du fluide. Rappel : La viscosité cinématique est égale à la viscosité dynamique divisée par la masse volumique. Un écoulement est **turbulent** pour Re > 2200. Dans le cas contraire, l'écoulement et laminaire (fig. 2).

1.3 La vitesse (en anglais speed)

Dans le cas d'un écoulement laminaire (fig. 2), on peut déterminer le débit d'un fluide à partir de sa vitesse :

$$Q(m^3/s) = V(m/s) \times S(m^2) \tag{3}$$

Avec Q le débit du fluide, V la vitesse du fluide et S la section de la canalisation.

2 Débitmètres volumiques

2.1 Présentation

Pour un écoulement laminaire (fig. 2), la connaissance de la vitesse du fluide et de la section de la canalisation suffit pour déterminer le débit du fluide (egalité 3).

Lors de la mise en place de ces capteurs, on s'attachera à les placer dans des parties droites de canalisation et à distance respectable (en général plusieurs fois le diamètre de la canalisation) de dispositif générant des pertes de charges importantes (coude, restriction, vannes, etc...).

2.2 Débitmètre à tube de Pitot

Figure 3 – Tube de Pitot

Dans un tube de Pitot (fig. 3), la mesure des pressions statique et totale permet de connaître la vitesse du fluide.

$$V(m/s) = \sqrt{\frac{2(Ptotal(Pa) - Pstatique(Pa))}{\rho(kg/m^3)}}$$
(4)

2.3 Débitmètres à organe déprimogène

2.3.1 Présentation

Un resserrement de la conduite ou un changement de direction créent entre amont et aval une différence de pression ΔP liée au débit par une relation de la forme :

$$Qv(m^3/s) = k(m^2)\sqrt{\frac{\Delta P(Pa)}{\rho(kg/m^3)}}$$
(5)

Avec ρ la masse volumique du fluide et k une constante fonction de l'organe. Cette équation est vérifiée dans une certaine gamme du nombre de Reynolds. Les principaux organes déprimogènes sont représentés sur la figure 4. Le diaphragme est l'organe déprimogène le plus utilisé.

2.3.2 Caractéristiques métrologiques

Ces dispositifs permettent des mesures dans une très large gamme de mesure; d'une fraction de m^3/h à $10^5 m^3/h$. Les mesures sont approximativement de classe 1. Ils entraı̂nent des pertes de charges non négligeables, elles sont fonction du $\beta = \frac{d}{D}$, le rapport entre le petit et le grand diamètre de l'organe utilisé (fig. 5).

Figure 4 – Les différents organes déprimogène

2.3.3 Montage du transmetteur de pression différentielle

Pour mesurer le débit à l'aide d'un organe déprimogène, on utilise un transmetteur de pression différentielle (voir montage fig. 6). En réglant le transmetteur de pression conformément au tableau 1, on réalise alors les relations entre les grandeurs physiques représentées sur la fig. 7.

Unité physique primaire						
Valeur basse étendue de mesure en unité physique primaire						
Valeur haute étendue de mesure en unité physique primaire	50					
Unité physique secondaire						
Valeur basse étendue de mesure en unité physique secondaire						
Valeur haute étendue de mesure en unité physique secondaire	20					
Type de sortie						
Fonction de sortie	racine					

Tableau 1 – Exemple de réglage d'un transmetteur de pression intelligent

2.4 Rotamètre - Débitmètre à ludion

2.4.1 Présentation

Un flotteur tiens en équilibre dans une canalisation conique (fig. 8). Quand le flotteur est en équilibre on peut écrire (équation d'équilibre) :

$$Mg = \rho Vg + \rho \frac{SCxU^2}{2} \implies U = \sqrt{\frac{2g}{\rho SCx}(M - \rho V)}$$
 (6)

Avec:

- $-\rho$: la masse volumique du fluide en Kg/m^3 ;
- g : l'accélération de la pesanteur en kg/m^3 ;
- Cx : coefficient de traînée du flotteur selon l'axe x, sans unité;
- S: le maître couple du flotteur (sa surface projetée sur le plan yz) en m^2 ;
- U : la vitesse du fluide en m/s;
- M: la masse du flotteur en kg.

 ${\bf Figure}~{\bf 5}~-{\bf Pertes}~{\bf de}~{\bf charge}~{\bf d'un}~{\bf diaphragme}~{\bf et}~{\bf d'un}~{\bf venturi}$

 ${\bf Figure} \ {\bf 6} \ - {\bf Montage} \ {\bf du} \ {\bf transmetteur} \ {\bf de} \ {\bf pression} \ {\bf diff\'erentielle}$

Figure 7 – Relation entre les grandeurs physiques d'une mesure de débit par organe déprimogène

Figure 8 – Débitmètre à ludion

Le diamètre du conduit varie linéairement en fonction de la hauteur z : D = Do + azLe débit Q vérifie : $Q = \frac{\pi}{4}((Do + az)^2 - Do^2)U$ Si $S = \frac{Do^2}{4}$ et az << Do, on a :

$$Q = az\sqrt{\frac{2g\pi(M - \rho V)}{\rho Cx}}\tag{7}$$

2.4.2 Caractéristiques métrologiques

La gamme de mesure va :

- de 0,5 litre/h à 200 000 litres/h pour les gaz;
- de 0,2 litre/h à 20 000 litres/h pour les liquides.

La précision est de 3 à 10% de l'étendue de la mesure. La température du fluide peut approcher 400 °C sous 25 bars. Le rotamètre introduit des pertes de charge.

2.5 Débitmètre à coupelle, à hélice ou à turbine

Figure 9 – Débitmètre à turbine

2.5.1 Présentation

Ce type d'anémomètre, désigné aussi comme moulinet, comprend un corps d'épreuve formé d'un ensemble de coupelle ou d'une hélice qui est mise en rotation par le fluide en mouvement (fig. 9). La vitesse de rotation est mesurée par un dispositif tachymètrique.

2.5.2 Montage de mesure

On utilise les capteurs classiques de vitesse de rotation :

- La dynamo-tachymètrique;
- Le capteur optique;
- Le capteur inductif.

La dynamo-tachymètrique:

C'est une machine à courant continu qui fournit une tension proportionnelle à la vitesse de rotation de son rotor. L'inconvénient de ce type de mesure est que la dynamo-tachymètrique diminue la sensibilité de notre capteur.

Le capteur optique et le capteur inductif :

On transforme la vitesse de rotation en une suite d'impulsions électriques dont la fréquence est proportionnelle à cette vitesse. On utilise un procédé optique ou inductif.

2.5.3 Domaine d'utilisation

Des précisions de l'ordre de 1% peuvent être atteintes. Cependant, la réponse peut être faussée par de fortes turbulences et par des variations de vitesses importantes. Leur domaine d'utilisation est de 0,1 à 30 m/s pour les gaz et de 0,05 à 10 m/s pour les liquides.

2.6 Débitmètre à palette

Figure 10 – Débitmètre à palette

2.6.1 Présentation

Une palette est soumise à la force aèro ou hydrodynamique de l'écoulement, à son poids, et éventuellement à l'action d'un ressort de rappel (fig. 10). La position d'équilibre est mesurée à l'aide d'un montage potentiomètrique. L'intérêt de ce type de débitmètre est sa simplicité. Il entraîne des pertes de charges.

2.7 Débitmètre ionique

Figure 11 – Shéma de principe et électrique d'un débitmètre ionique

2.7.1 Présentation

Trois fils sont placés perpendiculairement au déplacement du fluide. Le fils central est placé à un potentiel élevé, les deux autres sont reliés à la masse. Ce champs électrique crée une ionisation du fluide, et deux courants électriques I1 et I2, du fils central à chacun des autres fils. Si la vitesse du fluide est nulle, les courants I1 et I2 sont identiques. Si le fluide est en mouvement, à la vitesse V, le système devient asymétrique. La différence des intensités I2-I1 est proportionnelle à V, alors que la somme I1+I2 est sensiblement constante (fig. 11).

2.7.2 Domaine d'utilisation

Ce type d'anémomètre est bien adapté aux vitesses faibles (0 - 10 m/s). U est de l'ordre de 6 kV et les courants sont voisins de 1,5 mA. Ce type de capteur permet la mesure du sens de l'écoulement.

2.8 Débitmètres ultrasoniques

2.8.1 Présentation

Figure 12 – Débitmètre ultrasonique

Un émetteur ultrasonique émet des trains d'ondes (fig. 12). La mesure du temps mis par le signal pour parcourir la distance L entre l'emetteur et le récepteur nous permet de connaître la vitesse du fluide. Le temps mis par l'onde ultrasonore pour aller de l'émetteur vers le récepteur est :

$$t = \frac{L}{c + U\cos\alpha} \tag{8}$$

avec:

- t : temps en s;
- c : vitesse de propagation du son dans le fluide en m/s;
- U : vitesse du fluide en m/s;
- $-\alpha$: angle entre U est la direction définie par le couple émetteur / récepteur.

2.8.2 Caractéristiques métrologiques

L'intérêt de ce dispositif est qu'il est intrusif; l'ensemble du dispositif est à l'extérieur de la canalisation. Il est donc insensible à l'agressivité du fluide et n'entraîne aucune perte de charge. Il permet des mesures de débit compris entre $0, 1m^3/h$ et $10^5m^3/h$, selon le diamètre de la conduite qui peut être compris entre quelques millimètres et plusieurs mètres. Ce débitmètre est utilisé par exemple pour mesurer le débits des hydrocarbures. Il existe des systèmes semblables utilisant l'effet Doppler à partir d'une source lumineuse (laser) dans les gaz.

2.9 Débitmètre à tourbillons de Karman ou effet vortex

2.9.1 Présentation

Figure 13 – Tourbillons de karman

On place un barreau normalement à l'écoulement, des tourbillons alternés sont produits dans le sillage de ce barreau, à partir d'une certaine valeur du nombre de Reynolds (fig. 13). La fréquence f de ces tourbillons mise sous forme adimentionnelle définit le nombre de Strouhal S :

$$S = \frac{fD}{U} = F(Re) \tag{9}$$

Avec D le diamètre de la conduite et U la vitesse de l'écoulement.

2.9.2 Caractéristiques métrologiques

L'avantage de ce dispositif est sa gamme de mesure qui, en principe, s'étend sur trois décades et sa bonne linéarité. Par contre son utilisation n'est pas recommandée pour la mesure des faibles débits.

3 Capteur de débit massique

3.1 Débitmètre à fil ou film chaud

3.1.1 Présentation

Figure 14 - Film chaud

On place dans un écoulement un fil ou un film porté par effet Joule à une température supérieure à la température de cet écoulement (fig. 14). Il se produit alors un échange de chaleur par convection. La température d'équilibre du fil ou du film est déterminée par la mesure de sa résistance, elle est fonction de la puissance Joule dissipée, de la vitesse, la température et la masse volumique du fluide.

3.1.2 Montages de mesures

Montage à intensité constante : La résistance est alimentée par un courant constant. La tension mesurée Um est alors directement proportionnelle à R. La température du fil ne restant pas constante, ce

type de mesure s'applique surtout aux variations lentes de vitesse de fluide.

Montage à température constante : La température (et donc la résistance) est maintenue constante à l'aide d'une contre réaction. La tension Um est alors liée au débit du fluide. L'inertie thermique intervenant très peu dans ce montage (la température du fil est constante, principe du capteur à équilibre de forces), le temps de réponse du système est proche du temps de réponse de l'électronique.

3.1.3 Domaine d'utilisation

Les différents circuits de compensation permettent d'obtenir des bandes passantes pouvant atteindre 100 kHz. On divise l'utilisation des capteurs de vitesse à film chaud en deux catégories :

- Les capteurs subsoniques de 0 à 0,8 Ma, soit 280 m/s à 300 K;
- Les capteurs supersoniques, de 1,1 Ma à 2,2 Ma environ.

Vitesse du son (Ma):

– Dans l'air: 331 m/s à 0 °C; dans l'eau: 1435 m/s à 8 °C; dans l'acier: 5000 m/s.

3.2 Débitmètre électromagnétique

3.2.1 Rappel de physique

On considère un conducteur ab se déplaçant dans un champs magnétique uniforme B (fig. 15). On peut alors écrire :

 $\overrightarrow{E}m = \overrightarrow{V} \wedge \overrightarrow{B} \tag{10}$

Figure 15 – Induction électromagnétique

3.2.2 Présentation

Figure 16 – Capteur de débit électromagnétique

L'induction magnétique, de l'ordre de 10^{-3} à $10^{-2}T$, est produite par deux bobines placées de part et d'autre de la conduite de mesure (fig. 16). La conduite est en matériaux amagnétique et est revêtue sur

sa surface intérieure d'une couche isolante. Deux électrodes de mesure sont placées aux extrémités du diamètre perpendiculaire au champs B. Les bobines sont alimentées par une tension alternative (30 Hz par exemple), afin d'éviter une polarisation des électrodes.

3.2.3 Montage de mesure

On utilise les montages classique de démodulation, comme par exemple le redressement mono-alternance.

3.2.4 Caractéristiques métrologiques

Les liquides doivent avoir une conductivité minimale de l'ordre de quelques S/cm (l'eau potable a une conductivité comprise entre 200 et 1000 ?S/cm), pour que la résistance interne du générateur soit inférieure à la résistance d'entrée de l'appareillage électronique.

- acides, bases, pâtes, bouillies, pulpes;
- eau potable, eaux usées, boue de clarification;
- lait, bière, vin, eau minérale, yaourt, melasse.

3.2.5 Étendue de la mesure

L'étendue de mesure est fonction du diamètre de la conduite, la vitesse d'écoulement pouvant varier de 1 à 10 m/s; Précision : Classe 1; Constante de temps : De l'ordre de 1 s.

3.3 Débitmètre massiques thermiques

Figure 17 – Débitmètre massique thermique

3.3.1 Présentation

Deux capteurs de température sont placés aux points A et B, de part et d'autre d'un élément chauffant (fig. 18). La différence de température, Tb - Ta est proportionnelle au débit massique. Le capteur fonctionne correctement dans un intervalle de débit. Si le débit réel dépasse le débit maximal, on peut utiliser un circuit dérivateur, prenant en charge une partie du débit.

Figure 18 – Fonctionnement d'un capteur de débit thermique

3.3.2 Caractéristiques métrologiques

- Précision : Classe 0,5 à 1,5;

- Constante de temps : De l'ordre de 2,5 s à 150 s.

- Perte de charge : De l'ordre de 2 Pa.

3.4 Débitmètre à effet Coriolis

Figure 19 – Capteur de débit à effet Coriolis

3.4.1 Rappel de physique

La mesure repose sur la force de Coriolis. La force de Coriolis, $\overrightarrow{Fc} = 2m(\overrightarrow{\omega} \wedge \overrightarrow{V})$, est générée lorsqu'une masse est simultanément soumise à un mouvement de translation et de rotation (fig. 20). Si le corps s'éloigne de l'axe de rotation, \overrightarrow{Fc} s'exerce dans le sens contraire de la rotation. Si le corps se rapproche de l'axe de rotation, \overrightarrow{Fc} s'exerce dans le même sens que la rotation.

Figure 20 - Effet Coriolis

3.4.2 Présentation

On utilise comme capteur une portion de canalisation horizontale en forme de U (fig. 21). Un champ électromagnétique alternatif induit une rotation alternative selon l'axe de la conduite. Le fluide s'écoulant dans le tube est contraint de suivre cette rotation. Il se produit un phénomène alternatif de résistance ou d'aide à la rotation, entraînant deux vibrations en amont et en aval du coude. Ces vibrations sont en déphasage, déphasage dont l'amplitude est proportionnelle au débit massique du fluide.

Figure 21 – Fonctionnement d'un capteur de débit à effet Coriolis

3.4.3 Caractéristiques

Précision de mesure pour liquide :

- débit massique $\pm 0,15\%$;
- débit volumique : $\pm 0,3\%$;

Précision de mesure pour gaz : débit massique : $\pm 0,5\%$. Dynamique de mesure 1000 :1. Excellente reproductibilité. Grande immunité aux parasites électromagnétiques (CEM).

3.4.4 Domaines d'application

Ce type de capteur mesure le débit massique et volumique de fluides très divers :

- chocolat, lait concentré, sirops;
- huiles, graisses, acides, bases;
- peintures, vernis, produits pharmaceutiques;
- gaz et mélanges gazeux.

EXERCICES

Exercice 1 Mesure de débit par organe déprimogène

On mesure un débit de 0 à $250 \text{ } m^3/h$. Le transmetteur de pression différentielle a une échelle de 0 - 500 mbar.

- a) Représenter la relation entre le débit Q_v en m^3/h et la différence de pression ΔP en mbar.
- b) Quelle est la ΔP pour un débit Q_v de 125 m^3/h ?
- c) Quel est la valeur du débit Q_v pour une ΔP de 365 mbar?
- d) Quelles sont les ΔP pour :
- $Q_v = 0\%;$ $- Q_v = 25\%;$
- $-Q_v = 50\%;$ $-Q_v = 75\%;$
- $-Q_v = 100\%$;
- e) Le diaphragme utilisé a un $\beta = 0, 6$. A l'aide de l'annexe 1 page 20, donner la valeur de la perte de charge, pour un débit de 250 m^3/h ?
- f) Même question si on utilise un Venturi à la place du diaphragme.

Exercice 2 Capteur de débit SwingWirl II

- a) SwingWirl est un débimètre Vortex (ou à tourbillon de Karman). Rappelez son principe de fonctionnement.
- b) On désire mesurer un débit Q_m compris entre 1 000 et 10 000 kg/h de vapeur saturée sous 4 bars. A l'aide des caractéristiques techniques fournies (fig. 22, page 18), donnez la référence (DN15 par exemple) du capteur de débit choisi.
- c) Quelle est sa gamme de mesure?
- d) Quelle est la température de saturation de la vapeur dans ces conditions?
- e) Quelle est la masse volumique de la vapeur dans les conditions de fonctionnement?
- f) Encadrez la valeur du débit volumique Q_v à mesurer.
- g) Le capteur fournit un signal de sortie compris entre 4 et 20 mA. Calculez sa sensibilité m en $mA \times h \times kq^{-1}$.
- h) Même question mais pour une sensibilité m' en $mA \times h \times m^{-3}$.
- i) En vous aidant de la figure 23 (page 18), calculer la valeur du courant fournie pour un débit de 1000 kg/h?
- j) Même question pour un débit de 10 000 kg/h.
- k) Quelle est la perte de charge pour un débit de 1 000 kg/h?
- 1) Même question pour un débit de 10 000 kg/h.

∖ P				•	•					ba	r abs.								
DN	0.5	1	1.5	2	3	4	5	6	7	8	10	12	15	25	30	35	40	45	
15 min	2,6	3,6	4,3	4,9	6	7	7,5	8	9	9,5	10,5	11	13	16	18	19	20	22	
max	8,2	15	22	29	42	55	68	81	95	105	130	155	195	320	385	450	510	580	
25 min	8	11	13	15	18	20	23	25	27	29	32	35	39	50	58	65	72	80	
max	48	89	130	170	250	325	400	475	550	625	770	920	1140	1880	2250	2630	2835	3000	
40 min	21	28	34	39	47	54	60	66	71	75	83	91	102	130	143	154	165	205	
max	120	230	340	445	650	850	1050	1250	1445	1640	2030	2440	2990	4900	5900	6920	7450	7900	
50 min	33	45	55	65	75	85	96	105	115	120	135	145	165	210	230	245	265	330	
max	195	370	545	710	1040	1360	1680	1995	2310	2620	3240	3860	4780	7870	9430	11070	11900	12650	
80 min	75	105	125	145	175	200	220	240	260	275	305	335	370	480	520	565	605	750	kg/h
max	450	850	1245	1630	2380	3120	3850	4570	5290	6000	7420	8830	10900	18000	21600	25400	27300	29000	
100 min	127	175	210	240	290	335	370	405	435	465	515	560	625	800	880	950	1020	1270	. ≭
max	755	1430	2100	2750	4010	5260	6500	7700	8920	10100	12500	14900	18500	30400	36400	42700	46000	48800	
150 min	280	385	465	535	645	740	820	895	960	1020	1140	1240	1390	1780	1940	2100	2250	2800	
max	1670	3180	4640	6070	8870	11600	14300	17100	19700	22400	27700	32900	40900	67300	80600	94600	102000	108000	
200 min max		640 5270	775 7700	885 10100	1070 14700	1220 19300	1360 23800	1480 28300	1590 32700	1700 37100	1890 45900	2060 54600	2290 67700	2980 111500	3400 134000	3830 157000	4250 169000	4650 179000	
250 min max		1020 8400	1230 12300	1400 16100	1700 23450	1950 30800	2170 37900	2360 45100	2540 52100	2700 59200	3010 73200	3290 87000	3650 108000	4750 178000	5430 213000	6120 250000	6800 269000	7100 272000	
300 min max		1440 11900	1740 17300	1990 22700	2400 33100	2760 43400	3100 53600	3340 63700	3590 73700	3820 83600	4250 103400	4640 123000	5200 152500	6700 251000	7700 301000	8650 353000	9600 380000	10200 393000	
T sat.	81.3	99.6	111.4	120	133	144	152	159	165	170	180	188	198	224	234	242	250	264	°C
	0.3	0.6	0.86	1.13	1.65	2.16	2.67	3.17	3.67	4.16	5.15	6.13	7.6	12.5	15	17.5	20	25	kg/m3

Figure 22 – Caractéristiques techniques du capteur de débit SwingWirl II

Perte de charge (mbar = coefficient C x masse volumique $\frac{Q}{(kg/m^3)}$

Figure 23 – Pertes de charges pour vapeur gaz et liquides

Exercice 3 Mesure de débit corrigé

Le débit de vapeur en sortie d'une chaudière est mesuré par un diaphragme associé à un transmetteur de pression différentielle. Le débit volumique dans un organe déprimogène est donné par la relation :

$$Q_v = \alpha \frac{\pi d^2}{4} \sqrt{\frac{2\Delta P}{\rho}} \tag{11}$$

Le diaphragme étant donné, on peut simplifier :

$$Q_v = k\sqrt{\frac{2\Delta P}{\rho}}\tag{12}$$

avec:

- k : coefficient de proportionnalité;
- $-\Delta P$: pression différentielle mesurée;
- $-\rho$: masse volumique du fluide

Les conditions de température et de pression pouvant être variables, on dispose également d'un transmetteur de pression et d'un transmetteur de température sur la même canalisation afin d'obtenir un signal proportionnel au débit massique. Les echelles des transmetteurs sont données dans le tableau 2. Chacun

Tableau 2 - Transmetteurs

PTDT3	0-0,25 kPa	pression différentielle			
PT3	0-50 bars	pression relative			
TT3	0-500 °C	température en degrés Celcius			

de ces transmetteurs est raccordé à une entrée analogique d'un système numérique. En sortie de ces coupleurs d'entrée on dispose d'un signal numérique entre 0 et 1. Le SNCC permettant d'effectuer toutes les opérations voulues, la configuration peut être faite à partir d'un schéma TI.

- a) La vapeur étant considérée comme un gaz parfait, établir une relation permettant d'obtenir à un facteur de proportionnalité près, le débit massique en fonction de la pression différentielle, de la pression et de la température. On rappelle que pour un gaz parfait : $P \times V = n \times R \times T$.
- b) Compléter le schéma TI (fig. 24) en faisant apparaître les blocs opérateurs élémentaires et les liaisons pour obtenir en sortie un signal proportionnel au débit massique de vapeur. Fournir toutes les informations nécessaires à la compréhension.

Figure 24 – Schéma TI

Annexe 1

ÉVALUATION - ANNÉE PRÉCÉDENTE

D'après le sujet de BTS 2002.

La chaîne de régulation qui permet de contrôler le débit de recyclage q_4 de la lessive est donnée sur le schéma figure 25 page 22.

1) Quel est le rôle de FY4?

Le débitmètre FT4 a une étendue de mesure de 0-6 kg/h, on mesure ce débit à l'aide d'un diaphragme.

2) Rappeler le principe de fonctionnement de ce type de mesure.

Pour un débit de 4 kg/h, la différence de pression mesurée est de 100 mbar.

- 3) Représenter la relation entre le débit q_4 en kg/h et la différence de pression ΔP_4 mesurée en mbar.
- 4) Quelle est la valeur de la pression différentielle mesurée pour un débit de 6 kg/h?
- 5) Quelle est la valeur du débit massique pour une différence de pression de 30 mbar?
- 6) Donner la configuration de votre transmetteur en remplissant le tableau 3, page 22.

Ce diaphrame a un rapport de diamètre $\beta = 0,4$. On fera apparaître toutes les constructions nécessaires à la compréhension des réponses.

- 7) A l'aide de la figure 26, page 23, calculer la perte de charge résiduelle provoquée par ce diaphragme pour une pression différentielle mesurée de 100 mbar.
- 8) Calculer la puissance hydraulique en W absorbée par le diaphragme, pour un débit de 6 kg/h (masse volumique de la lessive : $\rho = 1100~kg/m^3$).
- 9) Quelle est la perte de puissance engendrée par l'utilisation d'un diaphragme au lieu d'un Venturi de même β ?

Le débitmètre FT5 une étendue de mesure de 0-10 kg/h. L'équation de l'opérateur FY4 est de la forme; S=a.E1+b.E2 où S, E1 et E2 sont les signaux réduits (variations entre 0 et 1). S, grandeur réduite, représente le débit de sortie q_s , avec une étendue de mesure de 0-20 kg/h.

- 10) Représenter la relation entre q_4 et E1.
- 11) Représenter la relation entre q_5 et E2.
- 12) Représenter la relation entre q_s et S.
- 13) En déduire les constantes a et b.
- 14) Préciser le sens d'action du régulateur utilisé si la vanne V4 est OMA, justifier votre choix.
- 15) Réaliser sur la figure 27, page 23, le schéma de câblage complet de la chaîne proposée. Les transmetteurs de débit sont passifs et le sommateur fournit son courant de sortie.

 ${\bf Figure} \ {\bf 25} \ - {\bf Sch\'ema} \ {\bf TI} \ {\bf de} \ {\bf l'installation} \ {\bf \acute{e}tudi\'ee}$

Tableau 3 – Réglage du transmetteur

Type de sortie	4-20 mA
Type d'action	
Temps de réponse	5s
Unité physique primaire	kPa
Valeur basse de l'étendue de mesure	
Valeur haute de l'étendue de mesure	
Unité physique secondaire	kg/h
Valeur secondaire basse	
Valeur secondaire haute	
Fonction de sortie du transmetteur	

Figure 26 – Pertes de Charge - Diaphragme et Venturi

SCHÉMA DE CÂBLAGE À COMPLÉTER ET À RENDRE AVEC LA COPIE

TRANSMETTEUR	Alimentation	TRANSMETTEUR	POSITIONNEUR		
FT 4	24 V =	FT 5	V 4		
+ 💿 💿 -	+ 💿 💿 -	+ 💿 💿 -	+ 💿 💿 -		

Tous les signaux sont au format 4-20 mA

Figure 27 – Câblage