第一章 实数系的基本定理

定义 1.1. 开覆盖

设有 $[a,b] \subset \bigcup_{\alpha} \mathcal{O}_{\alpha}$, 其中每个 \mathcal{O}_{α} 是开区间, 则称 $\{\mathcal{O}_{\alpha}\}$ 是区间 [a,b] 的一个开覆盖.

4

定理 1.1. 覆盖定理

如果 $\{\mathcal{O}_{\alpha}\}$ 是区间 [a,b] 的一个开覆盖,则存在 $\{\mathcal{O}_{\alpha}\}$ 的一个有限子集 $\{\mathcal{O}_{1},\mathcal{O}_{2},\cdots,\mathcal{O}_{n}\}$,它 是区间 [a,b] 的一个开覆盖,也就是说有 $[a,b]\subset\bigcup_{i=1}^{n}\mathcal{O}_{i}$.

 \Diamond

1.1 覆盖定理

1.1.1 思考题

例 1.1.1 如果将定理中的" 每个开区间" 改为闭区间, 举出不成立的反例. 解 例如 $\{\mathcal{O}_i\}$ 是这样的: $\left\{\mathcal{O} \middle| \left[\frac{1}{i+1}, \frac{1}{i}\right], i \in \mathbb{N}_+\right\} \bigcup \{[-1, 0]\}, 很明显 \{\mathcal{O}_i\}$ 覆盖 [0, 1], 但是 $\{\mathcal{O}_i\}$ 的任意有限子集都无法覆盖 [0, 1].

1.1.2 练习题

- **练习 1.1.1** 对开区间 (0,1) 构造一个开覆盖, 使得它的每一个有限子集都不能覆盖 (0,1). 解 这样的开覆盖可以是 $\left\{\mathcal{O} \middle| \left(\frac{1}{i},1\right), i \in \mathbb{N}_+\right\}$.
- ▲ 练习 1.1.2 用闭区间套定理证明覆盖定理

解反证.

如果不存在有限子覆盖,那么将区间分为两半,至少其中一边不存在有限子覆盖;如果都不存在则取其中之一.将操作进行无限次,可以得到一个闭区间套,其长度都是前一个的一半.由闭区间套定理知最终闭区间套的两端会收敛到 [a,b] 中的一个数 ε . 但是根据题设条件,[a,b] 存在开覆盖,对于其中的某一点至少存在一个开区间覆盖它,也即对于单个点一定存在有限子覆盖.矛盾.

- 🕏 笔记 参照《微积分学教程第一卷》P148.
- △ 练习 1.1.3 用覆盖定理证明闭区间套定理

解 闭区间套定理的叙述是: 如果存在一组闭区间 $\{I_n\},I_{n+1}\subset I_n$, 则