Лабораторная работа №1 Тема «РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ С ОДНОЙ НЕИЗВЕСТНОЙ».

Рассмотрим уравнение f(x) = 0, где функция f(x) определена и непрерывна в некотором конечном и бесконечном интервале a < x < b.

Корнем уравнения f(x) = 0 называется значение ξ , обращающее функцию f(x) в нуль, т.е. такое, что $f(\xi) = 0$.

Уравнение f(x) = 0 называется *алгебраическим*, если функция f(x) является многочленом $f(x) = P_n(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$, в противном случае уравнение f(x) = 0 называется *трансиендентным*.

Встречающиеся на практике уравнения часто не удается решить аналитическими методами. Для решения таких уравнений используется численные методы.

Алгоритм нахождения корня уравнений с помощью численного метода состоит из двух этапов:

- 1. *отделение* и *локализация* корня, т.е. установление промежутка [a,b], в котором содержится один корень;
- 2. уточнение значения корня, т.е. находят корни с заданной тонностью.

Для отделение корней удобно пользоваться двумя следующими теоремами (шаговым методом).

Теорема 1: Если функция f(x) непрерывна на отрезке [a,b], причем f(a)*f(b)<0, то на этом отрезке существует хотя бы один корень уравнения f(x)=0.

Теорема 2: Если непрерывная функция f(x) **мономонна** (если функция f(x) дифференцируема и ее производная сохраняет знак на отрезке c, то f(x) монотонна на этом отрезке) на отрезке [a,b], причем f(a)*f(b)<0, то на этом отрезке существует единственный корень уравнения f(x)=0.

Шаговый метод

Дано уравнение f(x) = 0. Задан интервал поиска $[x_0,x_1]$. Требуется найти интервал [a,b] длиной h, содержащий первый корень уравнения, начиная с левой границы интервала поиска.

Алгоритм метода:

- 1. Установить интервал [a,b] на начало интервала поиска $(a=x_0)$.
- 2. Определить координату точки b (b=a+h), а также значения функции в точках а u b: F(a) и F(b).

3. Проверить условие F(a)*F(b)<0. Если условие не выполнено - передвинуть интервал [a,b] на один шаг (a=b) и перейти к пункту 2. Если условие выполнено - закончить алгоритм.

Пример 1: Рассмотрим нелинейное уравнение $y = 2^x + 2x - 5$ отделим и локализуем корни, используя **шаговый метоо** на отрезке [1.25; 1.3] с шагом 0.01.

Решение

Ручной счет:

а	b	f(a)	f(b)	f(a)*f(b)<0
1.25	1.26	-0.12	-0.085	нет
1.26	1.27	-0.085	-0.048	нет
1.27	1.28	-0.048	-0.012	нет
1.28	1.29	-0.012	0.025	да
1.29	1.3	0.025	0.062	нет

Таким образом, на отрезке [1.28;1.29] существует единственный корень уравнения $y = 2^x + 2x - 5$ рассмотренного на интервале [1.25; 1.3].

Реализация в Microsoft Excel:

Шаговый метод			
Начальное значение	1,25		
Шаг табуляции	0,01		
X	f(x)		
1,25	-0,122		
1,26	-0,085		
1,27	-0,048		
1,28	-0,012		
1,29	0,025		
1,3	0,062		

Реализация в Mathcad:

1. Шаговый метод

```
#include "stdafx.h"
#include "stdio.h"
#include "iostream.h"
#include "math.h"
double f(double x)
       return pow(2,x)+2*x-5;
int main(int argc, char* argv[])
       double a,b,h;
       a=1.25;
       b=1.3;
       h=0.01;
       do
              b=a+h;
              if(f(a)*f(b)<0)
                     cout<<"koren nahoditsy v otrezke ["<<a<<";"<<b<<"]"<<endl;
              a=b;
       while(b \le 1.3);
       return 0;
```

```
F:\lab1shagoviy\Debug\lab1shagoviy.exe"
koren nahoditsy v otrezke [1.28;1.29]
Press any key to continue_
```

После того как найден интервал, содержащий корень, применяют итерационные методы уточнения корня с заданной точностью. Мы разберем следующие методы:

- 1. метод половинного деления
- 2. метод Ньютона (метод касательных)
- 3. метод итерации

Метод половинного деления

Метод основан на последовательном сужении интервала, содержащего единственный корень уравнения f(x) = 0 до тех пор, пока не будет достигнута заданная точность ε . Пусть задан отрезок [a,b], содержащий один корень уравнения. Этот отрезок может быть предварительно найден с помощью шагового метода.

Алгоритм метода (рис. 1):

- 1. Определить новое приближение корня x в середине отрезка [a,b]: x=(a+b)/2.
- 2. Найти значения функции в точках а и х: f(a) и f(x).
- 3. Проверить условие f(a)*f(x)<0. Если условие выполнено, то корень расположен на отрезке [a,x]. В этом случае необходимо точку b переместить в точку x (b=x). Если условие не выполнено, то корень расположен на отрезке [x,b]. В этом случае необходимо точку a переместить в точку x (a=x).
- 4. Перейти к пункту 1 и вновь поделить отрезок пополам. Алгоритм продолжить до тех пор, пока не будет выполнено условие $|f(x)| < \varepsilon$.

Рис. 1. Иллюстрация метода половинного деления

Пример 2: Рассмотрим нелинейное уравнение $y = 2^x + 2x - 5$ известно, что единственный корень находится на отрезке [1.28; 1.29]. Требуется уточнить значение корня методом половинного деления с точностью $\varepsilon = 0,001$.

Решение

Ручной счет

Построим таблицу в соответствии с алгоритмом метода.

a	X	b	f(a)	f(x)	f(a)*f(x)<0
1,28	1,285	1,29	-0,01161	0,00682	да
1,28	1,2825	1,285	-0,01161	-0,0024	нет
1,285	1,28375	1,285	0,002399	0,00221	да
1,2825	1,283125	1,28375	0,002399	-0,0001	нет
1,283125	1,283438	1,28375	-0,0001	0,00106	стоп

Алгоритм остановлен, поскольку |-0,00106|<0,001.

Ответ: уточненное значение корня x ≈ 1,283438.

Реализация в Microsoft Excel:

Метод половинного деления					
Начальное значение			1,28		
Шаг табуляции			нет		
Точность	0,001				
a	X	b	f(a)	f(x)	f(a)*f(x)<0

1,2800	1,2850	1,2900	-0,0116	0,0068	да
				-	
1,2800	1,2825	1,2850	-0,0116	0,0024	нет
1,2825	1,2838	1,2850	-0,0024	0,0022	да
				-	
1,2825	1,2831	1,2838	-0,0024	0,0001	нет
1,2831	1,2834	1,2838	-0,0001	0,0011	стоп

Реализация в Mathcad:

Метод половинного деления
$$a := 1.28 \qquad b := 1.29$$

$$f(x) := 2^X + 2 \cdot x - 5$$

$$f(a) f(b) = -2.935 \times 10^{-4}$$

$$xc(a,b) := \frac{a+b}{2}$$

$$int(a,b) := if \left[f(a) f(xc(a,b)) < 0, \begin{pmatrix} a \\ xc(a,b) \end{pmatrix}, \begin{pmatrix} xc(a,b) \\ b \end{pmatrix} \right]$$

```
#include "stdafx.h"
#include "stdio.h"
#include "iostream.h"
#include "math.h"
#define eps 0.001

double f(double x)
{
    return pow(2,x)+2*x-5;
}

int main(int argc, char* argv[]) {
    double a,b,c;
    a=1.28;
    b=1.29;
    while(fabs(f(c))>eps)
    {
        if(f(a)*f(c)<0)</pre>
```

Достоинство метода: более быстрая сходимость к заданной точности, чем у шагового. Недостаток: если на отрезке [a,b] содержится более одного корня, то метод не работает.

Метод Ньютона (метод касательных)

Задан отрезок [a,b], содержащий корень f(x) = 0. Уточнение значения корня производится путем использования уравнения касательной. В качестве начального приближения задается тот из концов отрезка [a,b], где значение функции и ее второй производной имеют одинаковые знаки (т.е. выполняется условие $f(x_0)*f''(x_0)>0$). В точке $f(x_0)$ строится касательная к кривой y=F(x) и ищется ее пересечение с осью х. Точка пересечения принимается за новую итерацию. Итерационная формула имеет вид:

$$x_{i+1} = x_i - \frac{f(x_i)}{f^1(x_i)}$$

Итерационный процесс продолжается до тех пор, пока не будет выполнено условие $|f(x)| < \varepsilon$, где ε - заданная точность.

Рис. 2. Иллюстрация метода Ньютона

Рис. 2. иллюстрирует работу метода Ньютона. В данном случае вторая производная функции положительна, поэтому в качестве начального приближения выбрана точка $x_0 = b$. Как видно из рисунка, метод имеет очень быструю сходимость: обычно заданная точность достигается за 2-3 итерации.

Пример 3: Дано нелинейное уравнение $y = 2^x + 2x - 5$. Известно, что корень находится на отрезке [1.28; 1.29]. Требуется уточнить значение корня методом Ньютона с точностью $\varepsilon = 0,001$.

Решение

Ручной счет

Найдем первую и вторую производную функции f(x). $f^1(x) = 2^x \ln(2) + 2$; $f^{11}(x) = 2^x \ln^2(2)$. f(1,28) = -0,116; f(1,29) = 0,025. Следовательно, в качестве начального приближения выбираем точку $x_0 = b = 1,29$. Построим таблицу в соответствии с алгоритмом метода.

i		Xi	f(x _i)	$f(x_i)$	$f(x_i) < 0.001$
0)	1,29	0,025	3,695	нет
1	-	1,2832	0,0002	3,6869	да

Ответ: уточненное значение корня $x \approx 1,2832$.

Реализация в Microsoft Excel:

T			
Метод Ньютона			
Начальное			
значение	1,29		
Шаг			
табуляции	нет		
Точность	0,001		
$x_{i+1} = x_i - \frac{2^{x_i} + 2 * x_i - 5}{2^{x_i} + 2^{x_i} + 2^{x_i}}$			
$\begin{bmatrix} x_{i+1} & x_i \\ 2^{x_i} \end{bmatrix}$	ln(2) + 2		
X_{i+1}	$f(x_{i+1})$		
1,2832	0,00003		
1,2832	0,000009		
1,2832	0,000003		

Реализация в Mathcad:


```
#include "stdafx.h"
#include "stdio.h"
#include "iostream.h"
#include "math.h"
#define eps 0.001

double f(double x)
{
    return pow(2,x)+2*x-5;
}

double f1(double x)
{
    return pow(2,x)*log(2)+2;
}

double f2(double x)
{
    return pow(2,x)*pow(log(2),2);
}
```

```
int main(int argc, char* argv[])
       double a=1.28, b=1.29, x, x1;
       int k=0;
       x=a;
       if(f(a)*f2(a)>0)
       {
              x=a;
       }
       else
              x=b;
       while(fabs(x1-x)>eps)
       {
              x=x1;
              x1=x-f(x)/f1(x);
              k++;
       cout << "kol-vo iteracii=" << k << endl;
       cout << "koren=" << x1 << endl;
       return 0;
}
                   "F:\lab1metodnutona\Debug\lab1metodnutona.exe"
                   ress any key to continue_
```

Достоинство метода: очень быстрая сходимость к заданной точности. Недостаток: громоздкий алгоритм: на каждой итерации необходимо вычислять значение функции и ее первой производной.

Метод простой итерации

Метод основан на замене исходного уравнения f(x)=0 на эквивалентное $x=\varphi(x)$. Функция $\varphi(x)$ выбирается таким образом, чтобы на обоих концах отрезка [a,b] выполнялось условие сходимости $|\varphi'(x)| < 1$. В этом случае в качестве начального приближения можно выбрать любой из концов отрезка. Итерационная формула имеет вид

$$x_{i+1} = \varphi(x_i)$$

Итерационный процесс продолжается до тех пор, пока не будет выполнено условие $|f(x)| < \varepsilon$, где ε - заданная точность.

Пример 4: Дано нелинейное уравнение $y = 2^x + 2x - 5$. Известно, что корень находится на отрезке [1.28; 1.29]. Требуется уточнить значение корня методом простой итерации с точностью $\varepsilon = 0{,}001$.

Решение

Ручной счет

На первом этапе нам необходимо выбрать функцию $\phi(x)$, удовлетворяющую условию сходимости.

Запишем исходное уравнение в виде $x = \frac{5 - 2^x}{2}$. Тогда $\varphi(x) = \frac{5 - 2^x}{2}$;

 $\varphi^1(x) = -\frac{2^x \ln(2)}{2}$; $\varphi'(1,28) = -0.842$; $\varphi'(1,29) = -0.847$. Условие сходимости выполнено, поскольку |-0.842| < 1 и |-0.847| < 1.

Следовательно, итерационная формула имеет вид:

$$x_{i+1} = \frac{5 - 2^{x_i}}{2}.$$

В качестве начального приближения можно выбрать любой из концов отрезка, например $x_0 = a = 1,28$. Построим таблицу в соответствии с алгоритмом метода.

i	Xi	f(x _i)	$ f(x_i) < 0.001$
0	1,28	-0,0116	нет
1	1,2858	0,009791	нет
2	1,2809	-0,00826	нет
3	1,285039	0,006966	нет
4	1,28156		нет
5	1,28449	·	нет
6	1,282		нет
7	1,284		нет
8	1,282	-0,00297	нет
9	1,28383	0,0025	нет
10	1,2826	-0,0021	нет
11	1,2836	0,00178	нет
12	1,2827	-0,0015	нет
13	1,2835	0,0013	нет
14	1,28286	-0,0012	нет
15	1,2834	0,0009	да

Ответ: уточненное значение корня x ≈ 1,2834.

Реализация в Microsoft Excel:

Метод простой итерации			
1,28			
нет			
0,001			
я формула			
-2^{x_i}			
$\frac{-2^{x_i}}{2}$			
f(x)			
0,0098			
-0,0083			
0,0070			
-0,0059			
0,0050			
-0,0042			
0,0035			
-0,0030			
0,0025			
-0,0021			
0,0018			
-0,0015			
0,0013			
-0,0011			
0,0009			

Реализация в Mathcad:

Метод простой итерации

$$f(x) := 2^x + 2 \cdot x - 5$$

$$\varphi(x) := \frac{5 - 2^x}{2}$$

$$a := 1.28 \qquad b := 1.29$$

$$i := 0...15$$

$$\varphi(x) := \frac{d}{dx} \varphi(x)$$
Условия сходимости:

$$\varphi 1(a) = -0.842$$

$$\varphi$$
1(b) = -0.847

выполнены, т.е. выбранная ф(х) нам подходит.

$$\mathbf{x}_{i+1} \coloneqq \varphi(\mathbf{x}_i)$$

i =	x ₁ =	$f(x_i) =$
0	1.29	0.025
1	1.277	-0.021
2	1.288	0.018
3	1.279	-0.015
4	1.287	0.013
5	1.28	-0.011
6	1.286	9.104·10 ⁻³
7	1.281	-7.68·10 ⁻³
8	1.285	6.477·10 ⁻³
9	1.282	-5.463·10 ⁻³
10	1.284	4.608·10 ⁻³
11	1.282	-3.887·10 ⁻³
12	1.284	3.278·10 ⁻³

```
#include "stdafx.h"
#include "iostream.h"
#include "math.h"
#define eps 0.001
double f(double x)
       return pow(2,x)+2*x-5;
}
double f1(double x)
{
       return pow(2,x)*log(2)+2;
}
int main(int argc, char* argv[])
       double a=1.28,b=1.29,x,x1,max;
       x1=b;
       if(f1(a)>f1(b))
              max=fl(a);
       }
```

```
else
{
    max=fl(b);
}
while(fabs(x1-x)>eps)
{
    x=x1;
    x1=x-f(x)/max;
}
cout<<"koren="<<x1<<endl;
return 0;
}

** "F:\lab1metodprostoiiteracii\Debug\lab1metodprostoiiteracii.exe"
koren=1.28315
Press any key to continue
```

Достоинство метода: простота алгоритма. Недостатки: возможные сложности с выбором функции $\phi(x)$; более медленное достижение заданной точности, чем у других методов уточнения.