画像処理実験 第3回

09430509 今田将也

2020年10月8日

1 1.jpg を 0.jpg に重ねる 3x3 行列 m10 の計算法の詳細の手順の確認

initialized

初期状態が以下の表を確認する.この動作は行列 $A^T(Q^T)$, R, ベクトル b^T , tmp^T という操作で,45 回 実行することで,4 組の対応点の座標から射影変換行列が計算される.

INITIALIZA							
256.000000	0.000000	347.000000	0.000000	263.000000	0.000000	413.000000	0.000000
218.000000	0.000000	220.000000	0.000000	367.000000	0.000000	315.000000	0.000000
1.000000	0.000000	1.000000	0.000000	1.000000	0.000000	1.000000	0.000000
0.000000	256.000000	0.000000	347.000000	0.000000	263.000000	0.000000	413.000000
0.000000	218.000000	0.000000	220.000000	0.000000	367.000000	0.000000	315.000000
0.000000	1.000000	0.000000	1.000000	0.000000	1.000000	0.000000	1.000000
-94976.000000	-58880.000000	-160661.000000	-79810.000000	-100729.000000	-99677.000000	-218890.000000	-135051.000000
-80878.000000	-50140.000000	-101860.000000	-50600.000000	-140561.000000	-139093.000000	-166950.000000	-103005.000000
00010100000	00110100000	101000100000	00000100000	110001100000	100000100000	100000100000	100000100000
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
371.000000	230.000000	463.000000	230.000000	383.000000	379.000000	530.000000	327.000000
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
done		が以下のよ [、]					
0.392371	0.000000	0.531847	0.000000	0.403100	0.000000	0.633005	0.000000
0.013540	0.000000	-0.437106	0.000000	0.876890	0.000000	-0.199546	0.000000
0.746709	0.000000	0.224407	0.000000	-0.041838	0.000000	-0.624754	0.000000
0.000000	0.392371	0.000000	0.531847	0.000000	0.403100	0.000000	0.633005
0.000000	0.013540	0.000000	-0.437106	0.000000	0.876890	0.000000	-0.199546
0.000000	0.746709	0.000000	0.224407	0.000000	-0.041838	0.000000	-0.624754
-0.295032	-0.448602	0.378993	0.576267	0.142043	0.215980	-0.226004	
-0.448602	0.295032	0.576267					
01110002	0.200002			0.215980			-0.343644
			-0.378993	0.215980	-0.142043	-0.226004	
652.443867	549.877189	1.960322		0.215980			-0.343644
			0.000000	0.000000	-0.142043 0.000000	-0.343644 -301875.042231	-0.343644 0.226004 -248248.300143
0.000000	165.750042	0.253778	0.000000	0.000000	-0.142043 0.000000 0.000000	-0.343644 -301875.042231 24290.303105	-0.343644 0.226004 -248248.300143 -46513.794686
0.000000 0.000000	165.750042 0.000000	0.253778 0.304524	0.000000 0.000000 0.000000	0.000000 0.000000 0.000000	-0.142043 0.000000 0.000000 0.000000	-0.343644 -301875.042231 24290.303105 33993.758735	-0.343644 0.226004 -248248.300143 -46513.794686 26933.037130
0.000000 0.000000 0.000000	165.750042 0.000000 0.000000	0.253778 0.304524 0.000000	0.000000 0.000000 0.000000 652.443867	0.000000 0.000000 0.000000 549.877189	-0.142043 0.000000 0.000000 0.000000 1.960322	-0.343644 -301875.042231 24290.303105 33993.758735 -191217.160969	-0.343644 0.226004 -248248.300143 -46513.794686 26933.037130 -167855.917552
0.000000 0.000000 0.000000 0.000000	165.750042 0.000000 0.000000 0.000000	0.253778 0.304524 0.000000 0.000000	0.000000 0.000000 0.000000 652.443867 0.000000	0.000000 0.000000 0.000000 549.877189 165.750042	-0.142043 0.000000 0.000000 0.000000 1.960322 0.253778	-0.343644 -301875.042231 24290.303105 33993.758735 -191217.160969 -26368.674762	-0.343644 0.226004 -248248.300143 -46513.794686 26933.037130 -167855.917552 -79976.364619
0.000000 0.000000 0.000000 0.000000 0.000000	165.750042 0.000000 0.000000 0.000000 0.000000	0.253778 0.304524 0.000000 0.000000 0.000000	0.000000 0.000000 0.000000 652.443867 0.000000 0.000000	0.000000 0.000000 0.000000 549.877189 165.750042 0.000000	-0.142043 0.000000 0.000000 0.000000 1.960322 0.253778 0.304524	-0.343644 -301875.042231 24290.303105 33993.758735 -191217.160969 -26368.674762 26667.777043	-0.343644 0.226004 -248248.300143 -46513.794686 26933.037130 -167855.917552 -79976.364619 21377.198091
0.000000 0.000000 0.000000 0.000000 0.000000	165.750042 0.000000 0.000000 0.000000 0.000000 0.000000	0.253778 0.304524 0.000000 0.000000 0.000000 0.000000	0.000000 0.000000 0.000000 652.443867 0.000000 0.000000	0.000000 0.000000 0.000000 549.877189 165.750042 0.000000 0.000000	-0.142043 0.000000 0.000000 0.000000 1.960322 0.253778 0.304524 0.000000	-0.343644 -301875.042231 24290.303105 33993.758735 -191217.160969 -26368.674762 26667.777043 7596.900540	-0.343644 0.226004 -248248.300143 -46513.794686 26933.037130 -167855.917552 -79976.364619 21377.198091 1712.683064
0.000000 0.000000 0.000000 0.000000 0.000000	165.750042 0.000000 0.000000 0.000000 0.000000	0.253778 0.304524 0.000000 0.000000 0.000000	0.000000 0.000000 0.000000 652.443867 0.000000 0.000000	0.000000 0.000000 0.000000 549.877189 165.750042 0.000000	-0.142043 0.000000 0.000000 0.000000 1.960322 0.253778 0.304524	-0.343644 -301875.042231 24290.303105 33993.758735 -191217.160969 -26368.674762 26667.777043	-0.343644 0.226004 -248248.300143 -46513.794686 26933.037130 -167855.917552 -79976.364619 21377.198091
0.000000 0.000000 0.000000 0.000000 0.000000	165.750042 0.000000 0.000000 0.000000 0.000000 0.000000	0.253778 0.304524 0.000000 0.000000 0.000000 0.000000	0.000000 0.000000 0.000000 652.443867 0.000000 0.000000	0.000000 0.000000 0.000000 549.877189 165.750042 0.000000 0.000000	-0.142043 0.000000 0.000000 0.000000 1.960322 0.253778 0.304524 0.000000	-0.343644 -301875.042231 24290.303105 33993.758735 -191217.160969 -26368.674762 26667.777043 7596.900540	-0.343644 0.226004 -248248.300143 -46513.794686 26933.037130 -167855.917552 -79976.364619 21377.198091 1712.683064

2 C言語による実装例

講義ページ内の C 言語による実装のファイルを編集した。具体的には,MatrixQRDecompColMajor 関数と MatrixSimeqLr 関数を書き換えた。この 2 つの関数には,8 行 8 列分の操作はなかったため,すでに記載してある手続きと,資料の PDF の 4 組の愛横転の場合の射影変換行列を参考に実装をした.

まず、MatrixQRDecompColMajor は、資料の PDF 内の式 (12) からの処理を行う. なお、実装例の配列 aT が 3 行分しか用意されいていないが、実際には 8 行分必要であることに注意して、以下のように 8 行分宣言を行った.

次のような A の各列を a_i と表した行列

$$A: = [a_0, a_1...], R: = (r_{ij}) \tag{1}$$

行列は、資料の PDF の式 (12) から式 (21) により Q に書き換えられ、積 QR はもとの A と等しくなる. 具体的な動作手順としては、 a_0 の場合、単位ベクトルへの変換。 a_1 の場合、1 回の直交化と単位ベクトルの変換。 a_2 の場合、2 回の直交化のための動作と単位ベクトルへの変換というように規則に沿ったものになっている。なお、この過程で、R の要素も得られており、式 (12)、式 (14)、式 (17) 等の分母が対角項 r_{ii} 、式 (13)、式 (15)、式 (16) 等の内積 $(a_i^T a_j)$ が非対角項 r_{ij} である。その実装のソースを一部抜粋したのを以下で示す。

```
Elem(mtR,0,0) = t = sqrt(VP(aT[0],aT[0],W));
VSS(aT[0], 1/t, W);

////////
Elem(mtR,0,1) = t = VP(aT[0], aT[1], W);
VSA(aT[1], aT[0], -t, W);

Elem(mtR,1,1) = t = sqrt(VP(aT[1],aT[1],W));
VSS(aT[1], 1/t, W);

////////
Elem(mtR,0,2) = t = VP(aT[0], aT[2], W);
VSA(aT[2], aT[0], -t, W);

Elem(mtR,1,2) = t = VP(aT[1], aT[2], W);
VSA(aT[2], aT[1], -t, W);

Elem(mtR,2,2) = t = sqrt(VP(aT[2],aT[2],W));
VSS(aT[2], 1/t, W);
```

次に、MatrixSimeqLr は PDF 内の式 (22) の後ろに書いてある後退代入を行う.上三角行列で有ること に注意する.

$$x_2 = t_2/r_{22} (2)$$

$$x_1 = (t_1 - x_2 r_1 2) / r_{11} (3)$$

$$x_1 = (t_1 - x_2 r_1 2) / r_{11}$$

$$x_0 = (t_0 - \sum_{i=1}^{2} x_i r_{0i}) / r_{00}$$
(4)

目的の解がi個なら、 x_i のiが小さくなるにつれ、引いていく要素が多くなる。3x3の例を参考に、8x8の実装したもののソースコードの一部を抜粋したものを示す.

B[7] = B[7] / Elem(mtR,7,7);

B[6] = (B[6]-B[7]*Elem(mtR,6,7)) / Elem(mtR,6,6);

B[5] = (B[5]-B[6]*Elem(mtR,5,6)-B[7]*Elem(mtR,5,7)) / Elem(mtR,5,5);

B[4] = (B[4]-B[5]*Elem(mtR,4,5)-B[6]*Elem(mtR,4,6)-B[7]*Elem(mtR,4,7)) / Elem(mtR,4,4);

これを実装し、実際に出力された画像を図1に示す.

図 1: 実際に出力された画像

どのような大きさの行列でも扱えるように、ループを用いて実装

まず、MatrixQRDecompColMajorの配列の個数を動的に確保することから始めた.

double **aT = (double **)malloc((sizeof (double *)) * mt->H);

配列の確保は malloc でポインタのポインタ aT と宣言することで、後の処理で配列のように扱える. double **aTという宣言は,ポインタ aT が示す先もポインタ*aT であり,そのポインタ*aTという宣言は,ポイ ンタ aT が示す先もポインタ**aT であるということである. その状態で、malloc により、double *ポイン

タを目的の要素分宣言することで,配列要素 aT[mt-;H] 分求めることができる.この配列 aT[0],aT[1]... はポインタであり,その示す先の*at[0],*aT[1]... は double 型であり,ポインタの配列を宣言することになる.その後,aT[0] から aT[mt-;H] までの各要素に Row を格納することで mt-;H がいくらであっても確保できる.

```
double **aT = (double **)malloc((sizeof (double *)) * mt->H);
//縦に伸びていく
for(int get=0; get<mt->H;get++){
   aT[get] = Row(mt,get);
}
```

そして、その後のシュミットの直交化手順だが、二重ループを用いた。確保した要素分 $(W \ Macole B)$ の aT[i] について手続きを施す。i が増えるに連れ、行う VSA (ベクトルのスカラ倍加算) の回数も増えることに注意すると、その回数はi を超えない回数行う事となる。そして、j とi が同じ時にベクトルを単位ベクトルにする動作をする。

以下がそのソースコードである.

```
for(int i=0; i < W; i++){
  for(int j=0; j <= i; j++){
     // printf("%d,%d\n",i,j);
     if(j == i){
        Elem(mtR,j,i) = t = sqrt(VP(aT[j],aT[i],W));
        VSS(aT[i], 1/t, W);
    }else{
        Elem(mtR,j,i) = t = VP(aT[j], aT[i], W);
        VSA(aT[i], aT[j], -t, W);
    }
}</pre>
```

もう一つ、MatrixSimeqLr について、要素数は、mtR-iW により可変的に行うことができる。ここで、8x8 の場合を考えてみる。配列の要素数は $0\sim7$ の8 個である。B[7] の場合、自身を Elem(mtR,7,7) で割る動作のみ、B[6] の場合、自身から B[7] に Elem(mtR,6,7) をかけたものを引き、Elem(mtR,6,6) で割る。B[5] の場合、自身から B[6] に Elem(mtR,5,6) をかけたものを引き、B[7] に Elem(mtR,5,7) をかけたものを引き、Elem(mtR,5,7) をかけたものを引き、Elem(mtR,6,6) で割るという手続きが続く。これを2 重ループに落とし込むと、大きいループの回数は、要素数個分繰り返す。今回は、i の大きい順から手続きを施した。一度初回を飛ばし、2 回目のループである i=6 のときについて考えると、i+1 = 7 で一つ大きい添字の要素を参照でき、 \sum と同等の処理を内部のループで行える。 \sum のくりかえし最大回数は、要素数個分であるから、mtR->W = 8 つまり、配列の添字 7 までである。その後、Elem で割るという動作を行えば良い。では初回のi=7 の時を見てみる。一つ添字の大きい要素は8 だが、内部の \sum にあたるループの上限 7 を超えているのでループは実行されず、自身を Elem で割るという動作のみ行われることになる。

以下そのソースコードである.

for(int i=mtR->W-1; 0<=i; i--){
 for(int j=i+1; j<mtR->W; j++){
 B[i] -= B[j]*Elem(mtR,i,j);

B[i] = B[i] / Elem(mtR,i,i);
}

実行したところ,図1と同じ結果が得られた.

4 合成画像の品質を改善

元々示されていた特徴点は,

256,218, 371,230, 347,220, 463,230, 263,367, 383,379, 413,315, 530,327,

だが,出力された画像は図1であり,あまり精度がよくない.それを以下のように変更し,なるべく特徴点同士が離れるようにした.

147,535,268,544, 116,209,235,224, 509,205,629,210, 432,517,550,530

それにより実行した結果が図2である.少し粗はあるものの、図1と比べると大きく改善しただろう.

5 自分で撮影した画像を合成

撮影した画像がとても大きいサイズだったため、実験同様 768x576 までサイズを落として実行した.合成に用いた画像は、図 3、図 4 である.正確に同じ視点を撮ることができなかったため、真横に 100px 分だけ移動した画像になっている特徴点は、以下のように設定した.

215,320, 315,319, 220,507, 320,506, 651,480, 751,479, 600,135, 700,134

プログラムを実行すると、図5のようなパノラマ画像が合成された.

図 2: 特徴点の改善後

6 感想

シュミットの直交化をループを使い動的に配列も確保し、8個以上に対応させる箇所について、for 文を回す条件の指定が難航し時間がかかったが、なんとか実装することができた。for 文よりも dowhile 文で条件を指定したほうが、わかりやすいプログラムになるとも思ったので、改善事項にしたい。

また、自分で撮影した画像のパノラマの、同じ視点というものに苦労した.最終的に一枚の画像を切り抜き、横に移動させたもので同一の視点ということにしたが、実際にそんな画像を人間の手で道具なしで撮るのは難しいため、スマホに搭載されているパノラマの機能は高度だと感じた.しかし、自分が撮った画像のパノラマが C により書き出された時は感動した.

なお, 4個以上の特徴点を用いた実装や, 3枚以上の画像の合成は取り組めなかったため, 今後の課題としたい.

図 3: 合成 1 枚目

図 4: 合成2枚目

図 5: 自分で撮影した画像のパノラマ