RSA°Conference2015 Singapore | 22-24 July | Marina Bay Sands

SESSION ID: SFC-F01

Unlocking the Safeguards of Keeping Keys Private

Jono Bergquist

Solutions Engineering Lead -

APJ

CloudFlare

Outline

- Why application-level TLS is important
- Key management is the hardest part of TLS
- How to use trusted computing for cryptography
- Solving TLS key management with TPMs

The perimeter is porous

Traditional Network Security Topology

Internet VPN

Traditional Network Security Topology

- Multiple internal services
 - Databases with customer data
 - Employee portals
- Cross-datacenter communication across Internet via VPN
 - All or nothing access

The perimeter is porous - VULCANDEATHGRIP

Traditional network topology

VPN compromise makes application-to-application data readable

Web Application Security Topology

Edge Network

Mobile network

The modern corporate network

- Components
 - Website hosted on a SaaS/laaS platform
 - Core business services
 - Loosely affiliated group of services hosted by third parties

The modern corporate network

- Access control
 - Third-party services
 - Federated identity (SAML, OAuth, etc.)
 - Single sign-on
 - Service-to-service authentication
 - Implicit via VPN
 - Token-based

Examples of application-to-application data

- Data breaches
 - User passwords
 - Customer data
 - HR Data
 - Customer lists
 - Proprietary intellectual property

All from applications inside the network

The modern corporate network

- The perimeter is fuzzily defined
- Move security to a higher level in the stack?

Application-layer Encryption

Encryption

Corporate data should be encrypted

Encryption

- ...at rest
- ...in transit
- ...with authentication

Layer 3 Encryption

- IPsec tunnel/VPN
 - Expensive hardware
 - Does not scale to edge networks
 - Trust everyone

Layer 5/6 Encryption

- Kerberos
 - Web applications do not use it
- Transport Layer Security
 - Widely supported among a range of applications

Transport Layer Security (TLS)

- The protocol formerly known as SSL
- Provides server-to-server encryption
- Authentication via certificate validation

- Advantages
 - Cheap in software on modern processors (AES-NI)
 - Widely supported in service oriented software

Transport Layer Security (TLS)

- Challenges for application-to-application TLS
 - Building a system of trust
 - Key management

Building trust in applications

TLS without certificate validation

Traditional man-in-the-middle attack

Trust Models for TLS

- Public Key Infrastructure model
- Each application has:
 - Public X.509 certificate
 - Corresponding private key

X.509 Public Key Infrastructure

The anatomy of a certificate

Trust Models for TLS

- Session key used to encrypt connection
- Private key used to
 - Prove ownership of certificate
 - Authenticate session establishment
- Validate certificates with a chain of trust

Certificate chain of trust

PKI-enabled applications

- Database access
- Business services
- Mobile applications

Private PKI

- Run your own internal Certificate Authority
- Generate keys locally on endpoints
- Use internal CA to create certificates

Different CAs for different domains

Service to service communication

With TLS mutual authentication

Tools

- OpenSSL
- CFSSL
 - CloudFlare's open source CA software
- pki.io
- EJBCA
- Commercial options

Advantages

- Application data is encrypted in transit
- Requests are authenticated
- VPN failure is no longer catastrophic

The bootstrap problem

- Enrolling new servers
- Authenticating requests for certificates

Dangers

- Keys live in memory and on disk
- Can be stolen and applications impersonated

Trusting trusted computing

Protecting keys on servers

Keep keys in hardware instead of software

- Each machine needs its own hardware
 - HSMs are prohibitively expensive
 - TPMs fit the bill (\$15-\$30 each)

Trusted Platform Module

Trusted Platform Module

Most commonly used for Windows trusted boot

- List of features of TPM 1.2
 - Measured Boot
 - Random number generation
 - RSA 2048 private keys

Machine provisioning

Certificate issuance

Benefits

- Keys do not live in software
 - Safe from memory access (Heartbleed, DMA)
 - Safe from theft (TPM locked)
 - Safe from impersonation

Drawbacks

- Not all software supports TPM crypto
- It is slooooow

Simple guide

How to set up secure application transport

- Create your own CA on a trusted machine or HSM
- Create a key on your device TPM
- Use TPM to create a certificate signing request (CSR)
- Create certificate from CSR with CA

- Configure web server to use certificate and TPM for private key operation
- Go for it!

Action

What you can do right now

- Do your applications speak TLS?
- If so, are they doing certificate validation?
- Where are the private keys stored and managed?

What you can do in the next months

- Consider your attacker is an insider
 - Which backend applications accept connections?
- Suppose there is a firewall or VPN misconfiguration
 - Is any data is exposed?
 - What authentication is your database using?

What you can do in the next months

- Once TLS is activated, make sure it is configured properly
 - Certificate validation
 - TLS 1.2

Start using C or Go services built on open source tools

