KVS: A Tool for Knowledge-Driven Vulnerability Searching

Xingqi Cheng Xiaobing Sun Lili Bo Ying Wei

Yangzhou University

November 16, 2022

Outline

- Introduction
- 2 Approach
- 3 Usage Example
- 4 Conclusion

Introduction

•0

- Introduction

Objective

Introduction

How do we connect those vulnerabilities?

- 1 Introduction
- 2 Approach
- 3 Usage Example
- 4 Conclusion

Overview of construction process

We divide the construction of KVS into three parts, namely the vulnerability named entity recognition (VulNER) part, the vulnerability knowledge graph (VulKG) storage part, and the VulKG visualization part.

VulNER

Data set preparation

We manually annotated 1017 CVE summaries, of which 915 were the training set and 102 were the test set. The prediction set is 4114.

VulNER

We perform the VulNER task based on two models, BERT-Softmax model and BERT-BiLSTM-CRF model.

Figure: BERT-BiLSTM-CRF model

VuINER

Experiment result of two models.

Entities	BERT-Softmax			BERT-BiLSTM-CRF		
Entities	P	R	F1	P	R	F1
version	0.90	0.91	0.90	0.93	0.93	0.93
consequence	0.81	0.79	0.80	0.85	0.85	0.85
attacker	0.93	0.92	0.93	0.94	0.93	0.93
triggering operation	0.82	0.86	0.84	0.88	0.89	0.89
location	0.90	0.94	0.92	0.93	0.95	0.94
cause	0.80	0.79	0.79	0.83	0.83	0.83
occurrence scenario	0.86	0.67	0.75	0.75	0.67	0.71
related issue	0.33	0.11	0.17	0.45	0.56	0.50
Overall Result	0.86	0.85	0.85	0.88	0.89	0.88

Because the BERT-BiLSTM-CRF model has better performance, we use it to predict entities.

VulKG Storage and Visualization

After the entity prediction, we have the corresponding entity tables and relation tables, which we further store as nodes and relations in Neo4j (a total of **20,631 nodes** and **50,961 relations**). In this work, we define 15 relation types and 16 node types. For the visualization of VulKG, we combined D3.js to realize the front-end visualization.

	nodes	relationships			
	cause	1877	cve: cause	3398	
Extracted Info (yellow)	consequence	1567	cve: consequence	4264	
	version	1955	cve: version	4052	
	location	2530	cve: location	3160	
	attacker	153	cve: attacker	3349	
	triggering	1896	cve: triggering	3359	
	operation	1090	operation		
	occurrence	224	cve: occurrence	267	
	scenario	224	scenario		
	related issue	107	cve: related issue	126	
	publish date	838	cve: publish date	4114	
	score	51	cve: score	4114	
Keys	project	348	eve: project	4114	
(green)	vulnerability	54	cve: vulnerability	4114	
	classification	94	classification	4114	
	commit id	4390	cve: commit id	4114	
	update date	688	cve: update date	4114	
IDs	CWE ID (blue)	92	cve: cwe id	4114	
1108	CVE ID (red)	3755			
Total		20631		50961	

Introduction

- Usage Example

KVS Usage

KVS is available at https://cinnqi.github.io/Neo4j-D3-VKG/.

KVS Usage

Introduction

Outline

- 1 Introduction
- 2 Approach
- 3 Usage Example
- 4 Conclusion

 Introduction
 Approach
 Usage Example
 Conclusion

 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○

Conclusion

The main contributions of this work are:

- Constructing fine-grained NER datasets for vulnerability domain.
- The Bert-Softmax model and Bert-BiLSTM-CRF model are fine-tuned and applied to NER in the vulnerability domain to improve the accuracy of vulnerability entity recognition.
- Build a vulnerability knowledge graph based on dedicated defined entities and relations.

Future work includes:

- Pipeline the construction process, e.g. automatically build the knowledge graph.
- Further increase the data scale while ensuring the recognition accuracy.
- Explore more possibilities for practical usage.

Questions

Thank you for your attention! Questions?