PENTESTER ACADEMYTOOL BOX PENTESTING

OF THE PENTESTER ACADEMYTOOL BOX PENTESTING

OF THE PENTESTING HACKER PENTESTER

TEAM LABSPENTES TO THE PENTESTER

TEAM LABSPENTES TO THE PENTESTER

OF THE PENTESTING HACKER

THE PENTESTING HACKER

TOOL BOX

OF THE PENTESTING

Name	Volatility: Binary II
URL	https://attackdefense.com/challengedetails?cid=1131
Туре	Forensics: Memory Forensics

Important Note: This document illustrates all the important steps required to complete this lab. This is by no means a comprehensive step-by-step solution for this exercise. This is only provided as a reference to various commands needed to complete this exercise and for your further research on this topic. Also, note that the IP addresses and domain names might be different in your lab.

A program "authenticator" was executed on a Windows machine. This program contains a token which is encrypted using the local user's password. The program fetches the name of the encryption scheme from the environment variables.

Objective: Recover the plaintext token.

Answer: this_is_plaintext_token

Solution:

Step 1: Check process list to get the PID of the authenticator program

Command: vol.py -f memory_dump.mem --profile=Win81U1x64 pslist

0xffffe001d8b3d080 conhost.exe	3408	3444	2	0	1	0 2019-07-13 07:03:19 UTC+0000
0xffffe001d8a04080 authenticator.	3532	3444	1	0	1	0 2019-07-13 07:03:20 UTC+0000
0xffffe001d8bfa080 audiodg.exe	3356	848	6	0	0	0 2019-07-13 07:03:23 UTC+0000

Step 2: Dump the process memory using PID and extract strings from it

Commands:

 $vol.py -f \ memory_dump.mem --profile=Win81U1x64 \ memdump -p \ 3532 \ --dump-dir \ . \\ strings \ 3532.dmp > strings_file$

```
root@attackdefense:~#
root@attackdefense:~# strings 3532.dmp > strings_file
root@attackdefense:~#
```

Step 3: Look for "token" keyword in strings_file and locate the token

```
{=^%1
'token' : 'QlHLOtEYzgYRsRLLWh4ujMcM9h2Fw/54Hmkyueu2w2A='}
@=^%1
>Y%1
```

Step 4: Use Isadump to dump the logged in user's password

Command: vol.py -f memory_dump.mem --profile=Win81U1x64 Isadump

Step 5: Get the encryption method/mode information from environment variables available to process

Command: vol.py -f memory dump.mem --profile=Win81U1x64 envars -p 3532

```
root@attackdefense:~# vol.py -f memory_dump.mem --profile=Win81U1x64 envars -p 3532

Volatility Foundation Volatility Framework 2.6.1

Pid Process Block Variable Value

3532 authenticator. 0x0000006c25230860 ALLUSERSPROFILE C:\ProgramData
3532 authenticator. 0x0000006c25230860 APPDATA C:\Users\IEUser\AppData\Roaming
3532 authenticator. 0x0000006c25230860 ChocolateyInstall C:\ProgramData\chocolatey
3532 authenticator. 0x0000006c25230860 ChocolateyLastPathUpdate Wed Jan 10 14:19:36 2018
3532 authenticator. 0x0000006c25230860 CommonProgramFiles C:\Program Files\Common Files
3532 authenticator. 0x0000006c25230860 CommonProgramFiles(x86) C:\Program Files\Common Files
3532 authenticator. 0x0000006c25230860 CommonProgramW6432 C:\Program Files\Common Files
3532 authenticator. 0x0000006c25230860 COMPUTERNAME IE11WIN8_1
3532 authenticator. 0x0000006c25230860 COMSpec C:\Windows\system32\cmd.exe
3532 authenticator. 0x0000006c25230860 CYGWIN mintty
3532 authenticator. 0x0000006c25230860 ENC_METHOD aes-256-cbc
```

Step 6: Use OpenSSL to decrypt the token

Command: echo 'QIHLOtEYzgYRsRLLWh4ujMcM9h2Fw/54Hmkyueu2w2A=' | openssl enc -base64 -d -aes-256-cbc -nosalt -pass pass:Passw0rd!

```
root@attackdefense:~#
root@attackdefense:~# echo 'QlHLOtEYzgYRsRLLWh4ujMcM9h2Fw/54Hmkyueu2w2A=' | openssl enc -base64 -d -aes-256-cbc -n
osalt -pass pass:Passw0rd!
this_is_plaintext_token
root@attackdefense:~#
```

Decrypted token: this_is_plaintext_token

References:

1. Volatility (https://github.com/volatilityfoundation/volatility)