Particle spectrograph

Wave operator and propagator

	$\sigma_{1^{+}lphaeta}^{\sharp1}$	$\sigma_{1^+lphaeta}^{\#2}$	$ au_1^{\#1}_{+\alpha\beta}$	$\sigma_{1^-\alpha}^{\#1}$	$\sigma_{1}^{\#2}{}_{\alpha}$	$\tau_{1}^{\#1}{}_{\alpha}$	$\tau_{1-\alpha}^{\#2}$
$\sigma_{1}^{\sharp 1} \dagger^{lphaeta}$	$\frac{2(t_1+t_2)}{3t_1t_2+2k^2(2r_1+r_5)(t_1+t_2)}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{(1+k^2) (3t_1t_2 + 2k^2 (2r_1 + r_5) (t_1 + t_2))}$	$\frac{i\sqrt{2}k(t_1-2t_2)}{(1+k^2)(3t_1t_2+2k^2(2r_1+r_5)(t_1+t_2))}$	0	0	0	0
$\sigma_{1}^{\#2}\dagger^{lphaeta}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{(1 + k^2) (3t_1t_2 + 2k^2 (2r_1 + r_5)(t_1 + t_2))}$	$\frac{6k^2(2r_1+r_5)+t_1+4t_2}{(1+k^2)^2(3t_1t_2+2k^2(2r_1+r_5)(t_1+t_2))}$	$\frac{i k (6 k^2 (2 r_1 + r_5) + t_1 + 4 t_2)}{(1 + k^2)^2 (3 t_1 t_2 + 2 k^2 (2 r_1 + r_5) (t_1 + t_2))}$	0	0	0	0
$ au_{1}^{\#1}\dagger^{lphaeta}$	$-\frac{i\sqrt{2} k(t_1-2t_2)}{(1+k^2)(3t_1t_2+2k^2(2r_1+r_5)(t_1+t_2))}$	$-\frac{i k (6 k^2 (2 r_1 + r_5) + t_1 + 4 t_2)}{(1 + k^2)^2 (3 t_1 t_2 + 2 k^2 (2 r_1 + r_5) (t_1 + t_2))}$	$\frac{k^2 \left(6 k^2 (2 r_1 + r_5) + t_1 + 4 t_2\right)}{\left(1 + k^2\right)^2 \left(3 t_1 t_2 + 2 k^2 (2 r_1 + r_5) (t_1 + t_2)\right)}$	0	0	0	0
$\sigma_{1}^{\sharp 1}\dagger^{lpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1+2k^2t_1}$	0	$\frac{2ik}{t_1+2k^2t_1}$
$\sigma_1^{\#2} \dagger^{\alpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	$\frac{-2 k^2 (r_1 + r_5) + t_1}{(t_1 + 2 k^2 t_1)^2}$	0	$-\frac{i\sqrt{2}k(2k^2(r_1+r_5)-t_1)}{(t_1+2k^2t_1)^2}$
$\tau_1^{\#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$\tau_1^{\#2} \uparrow^{\alpha}$	0	0	0	$-\frac{2ik}{t_1+2k^2t_1}$	$\frac{i\sqrt{2}k(2k^2(r_1+r_5)\cdot t_1)}{(t_1+2k^2t_1)^2}$	0	$\frac{-4 k^4 (r_1 + r_5) + 2 k^2 t_1}{(t_1 + 2 k^2 t_1)^2}$

0	0	$k^2 r_1 + \frac{t_1}{2}$
$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0
<u>t1</u> 2	$\frac{ikt_1}{\sqrt{2}}$	0

Source constraints	Eundamontal fields	Multiplicitios
SO(3) irreps	Fundamental fields	Multiplicities
$\tau_{0+}^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\tau_{0}^{\#1} - 2 i k \sigma_{0}^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}_{\alpha}$	1
$\tau_1^{\#2\alpha} + 2ik \sigma_1^{\#2\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	3
$\tau_1^{\#1\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} +$	3
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = $	
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	
$\tau_{2+}^{\#1\alpha\beta} - 2ik\sigma_{2+}^{\#1\alpha\beta} = 0$	$-i \left(4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi}_{\chi} - \right)$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} -$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$	
	$4 i k^{X} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta \epsilon}_{\delta} -$	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} -$	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \delta \alpha} -$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau^{\chi}_{\chi} -$	
	$4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta\epsilon}) == 0$	
 Total constraints/gau	ine generators:	16

											$\omega_{0^{+}}^{\#1}$	j	c#1 0 ⁺
α				਼ੁਜ				$\omega_{0^+}^{\#1}$			-t ₁		$\frac{1}{2} kt_1$
$f_{1}^{#2}$	0	0	0	īkt ₁	0	0	0	$f_{0+}^{#1}$	_	-Ī 1	$\sqrt{2} kt_1$	2	$k^2 t_1$
$f_{1^-}^{\#1}$	0	0	0	0	0	0	0	$f_{0+}^{#2}$			0		0
$\omega_{1^{-}}^{\#2}{}_{\alpha}\ f_{1^{-}}^{\#1}{}_{\alpha}\ f_{1^{-}}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0	$\omega_0^{\#1}$	†		0		0
$\omega_{1}^{\#1}{}_{lpha}$ (0	0	0	$k^2 (r_1 + r_5) - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$-i k t_1$	$\sigma_{2}^{\#1}_{\alpha\beta\chi}$	-		0	$\frac{2}{2 k^2 r_1 + t_1}$	7
,				k^2 $(r_1$			'	$ au_2^{\#1}$	2 i √2 k	$(1+2k^2)^2t_1$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0	
αeta	$\frac{2t_2)}{7}$	$i k (t_1 + t_2)$	+ t ₂)					$ au_2^{\#}$	2,	(1+)	(1+2		
$f_{1}^{\#1}$	$-\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	$\frac{1}{3}\bar{l}k(t_1$	$\frac{1}{3}k^2(t_1+t_2)$	0	0	0	0	$\sigma_{2}^{\#1}{}_{lphaeta}$	2	$(1+2k^2)^2t_1$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	
$\omega_1^{\#_+^2}$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{t_1+t_2}{3}$	$-\frac{1}{3}\bar{l}k(t_1+t_2)$	0	0	0	0		-4π			$\sigma_{2}^{#1} + ^{\alpha eta \chi}$	
	4 t ₂)							$\sigma_{0}^{\#1}$	C		0	0	$\frac{1}{t_2}$
	$t_1 + 4 t_2$							$\tau_{0}^{\#2}$	C		0	0	0
$\omega_1^{\#1}\!$	$\omega_{1}^{\#1} + \alpha \beta = \frac{1}{6} (6 k^2 (2 r_1 + r_5) +$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{i k (t_1 - 2t_2)}{3 \sqrt{2}}$	0	0	0	0	${\mathfrak r}_0^{\#1}$	i √2 k	$(1+2k^2)^2t_1$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
	$a\beta \frac{1}{6} (6 k^2)$	ав	αβ	ŀα	Ļα	t _α	Ļα	$\sigma_{0}^{\#1}$	1	$(1+2k^2)^2t_1$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	0
	$\omega_1^{\#1} +$	$\omega_1^{\#2} + \alpha^{\beta}$	$f_1^{#1} + ^{\alpha \beta}$	$\omega_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\omega_{1}^{\#2} +^{\alpha}$	$f_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$f_1^{\#2} + \alpha$		O#1+	- - 0	$\tau_{0}^{\#1} + -$	$\tau_0^{#2} +$	$\sigma_{0}^{\#1}\dagger$

Quadratic (free) action
S==
$\iiint (\frac{1}{6} (6t_1 \omega_{\alpha}^{\alpha i} \omega_{i\theta}^{\theta} + 6 f^{\alpha \beta} \tau_{\alpha \beta} + 6 \omega^{\alpha \beta \chi} \sigma_{\alpha \beta \chi} - 12t_1 \omega_{\alpha\theta}^{\theta} \partial_i f^{\alpha i} + 12t_1)$
$\omega_{l\theta}^{\theta} \partial_{\alpha}^{l} f_{\alpha}^{\alpha} - 6 t_{1} \partial_{l} f_{\theta}^{\theta} \partial_{\alpha}^{l} f_{\alpha}^{\alpha} - 6 t_{1} \partial_{l} f_{\alpha}^{\alpha l} \partial_{\theta} f_{\alpha}^{\theta} +$
$12 t_1 \partial' f^{\alpha}_{\alpha} \partial_{\theta} f_{i}^{\theta} + 4 t_1 \omega_{i\theta\alpha} \partial^{\theta} f^{\alpha i} + 4 t_2 \omega_{i\theta\alpha} \partial^{\theta} f^{\alpha i} -$
$4t_1\partial_\alpha f_{_{l}\theta}\partial^\theta f^{\alpha l}+2t_2\partial_\alpha f_{_{l}\theta}\partial^\theta f^{\alpha l}-4t_1\partial_\alpha f_{_{\theta l}}\partial^\theta f^{\alpha l}-$
$t_2\partial_\alpha f_{\theta_i}\partial^\theta f^{\alpha_i} + 2t_1\partial_\imath f_{\alpha\theta}\partial^\theta f^{\alpha_i} - t_2\partial_\imath f_{\alpha\theta}\partial^\theta f^{\alpha_i} +$
$4 t_1 \partial_{\theta} f_{\alpha i} \partial^{\theta} f^{\alpha i} + t_2 \partial_{\theta} f_{\alpha i} \partial^{\theta} f^{\alpha i} + 2 t_1 \partial_{\theta} f_{i \alpha} \partial^{\theta} f^{\alpha i} -$
$t_2 \partial_{\theta} f_{i\alpha} \partial^{\theta} f^{\alpha i} + 2 (t_1 + t_2) \omega_{\alpha i \theta} (\omega^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i}) +$
$2 \omega_{\alpha\theta i} ((t_1 - 2t_2) \omega^{\alpha i\theta} + 2(2t_1 - t_2) \partial^{\theta} f^{\alpha i}) -$
$8 r_1 \partial_{\beta} \omega_{\alpha i \theta} \partial^{\theta} \omega^{\alpha \beta i} + 4 r_1 \partial_{\beta} \omega_{\alpha \theta i} \partial^{\theta} \omega^{\alpha \beta i} -$
$16r_1\partial_\beta\omega_{\iota\theta\alpha}\partial^\theta\omega^{\alpha\beta\iota}-4r_1\partial_\iota\omega_{\alpha\beta\theta}\partial^\theta\omega^{\alpha\beta\iota}+$
$4r_1\partial_\theta\omega_{\alpha\beta\iota}\partial^\theta\omega^{\alpha\beta\iota} + 4r_1\partial_\theta\omega_{\alpha\iota\beta}\partial^\theta\omega^{\alpha\beta\iota} +$
$6r_5\partial_i\omega_{\theta}^{\ \kappa}\partial^{\theta}\omega_{\alpha}^{\alpha_i}$ $-6r_5\partial_{\theta}\omega_{i\ \kappa}^{\ \kappa}\partial^{\theta}\omega_{\alpha}^{\alpha_i}$ $-6r_5\partial_{\alpha}\omega_{\alpha}^{\alpha_i\theta}$
$\partial_{\kappa}\omega_{i\theta}^{\kappa} + 12r_{5}\partial^{\theta}\omega_{\alpha}^{\alpha i}\partial_{\kappa}\omega_{i\theta}^{\kappa} + 6r_{5}\partial_{\alpha}\omega_{\theta}^{\alpha i\theta}\partial_{\kappa}\omega_{\theta}^{\kappa}$
$12r_5\partial^{\theta}\omega_{\alpha}^{\alpha_l}\partial_{\kappa}\omega_{\theta_l}^{\kappa}))[t,x,y,z]dzdydxdt$

Massive and massless spectra

Massive particle					
Pole residue:	$\frac{-3t_1t_2(t_1+t_2)+6r_1(t_1^2+2t_2^2)+3r_5(t_1^2+2t_2^2)}{(2r_1+r_5)(t_1+t_2)(-3t_1t_2+4r_1(t_1+t_2)+2r_5(t_1+t_2))}>0$				
Polarisations:	3				
Square mass:	$-\frac{3t_1t_2}{2(2r_1+r_5)(t_1+t_2)} > 0$				
Spin:	1				
Parity:	Even				

Massive particle					
Pole residue:	$-\frac{1}{r_1} > 0$				
Polarisations:	5				
Square mass:	$-\frac{t_1}{2r_1} > 0$				
Spin:	2				
Parity:	Odd				

(No massless particles)

Unitarity conditions

 $r_1 < 0 \&\& r_5 > -2 r_1 \&\& t_1 > 0 \&\& -t_1 < t_2 < 0$