Modul 3

Time Series Forecasting

Data Science Program

Outline

What is Time Series Data?

Time Series Forecasting

- Univariate
- Multivariate

Time Series Model with Exogenous Variable

Time Series Model Feature Engineering

Time Series Model Evaluation

What Is Time Series Data?

Time Series Data

- Time series is a sequence of observations recorded at a regular time
- The frequency could be Yearly, Monthly, Daily or even milliseconds
- Not necessarily within the same interval
- The data analysis for time series is inherently different compared to the other data because:
 - It is time dependent
 - Time series could contain trend, cycle and seasonality

Time Series Data Example: Univariate

	Month	Sales
0	1-01	266.0
1	1-02	145.9
2	1-03	183.1
3	1-04	119.3
4	1-05	180.3
31	3-08	407.6
32	3-09	682.0
33	3-10	475.3
34	3-11	581.3
35	3-12	646.9

This dataset describes the **monthly number of sales** of shampoo over a 3 year period.

The units are a sales count and there are 36 observations. The original dataset is credited to Makridakis, Wheelwright and Hyndman (1998)

Only one variable

Time Series Data Example: Multivariate

Day	Average Temperature	Ice Cream Sales
1	25	2600
2	20	2100
3	44	8000
4	35	5100

This dataset describes the daily number of sales of ice cream.

besides number of sales, the dataset also provide daily average temperature.

More than one variables (two variables)

Why Is Time Series Data?

Can provide massive business advantages:

- imagine you already know the number of sales of shampoo for several month ahead
- you can prepare the stock accordingly (not too much nor too little)
- same goes with the ice cream sales

Time Series Forecasting

Time Series Forecasting

Forecasting: Predicting the value (e.g shampo sales, ice cream sales) for several period ahead

Univariate Time Series Forecasting: predicting using their own value

- shampo sales

Time Series Forecasting with Exogenous Variable : predicting using their own value and another variable

- ice cream sales (with the help of average temperature)

Must Know Term

These term will be very helpful to understand forecasting method in time series :

- Time series data pattern
- Stationarity

Time Series Pattern

Plotting time at x-axis and the data or variable of interest at y-axis

Random Pattern

TRENDS: increasing or decreasing slope observed in the time series

Time Series Pattern

Plotting time at x-axis and the data or variable of interest at y-axis

SEASONAL: a distinct repeated pattern at fixed period of time. Can be affected by seasonal factors such as

- weekly
- daily
- etc

CYCLICAL: a distinct repeated pattern at unpredicted period of time and extend beyond a year

Stationarity

- Stationarity may has an important role in forecasting.
- Stationarity mirrors the behaviour of the process that happen in the data.
- There is some forecasting method that require stationarity for good performance
- There is also some method that able to achieve good performance regardless stationarity
- Stationarity:
 - Mean
 - Variance

Stationarity - Mean

The mean is constant, not be a function of time

Stationarity - Variance

The variance is constant, not be a function of time

Time Series Plot for Shampoo Sales

Differencing Level 1

	Month	Sales
1	1-01	266.0
2	1-02	145.9
3	1-03	183.1
4	1-04	119.3
5	1-05	180.3
6	1-06	168.5
7	1-07	231.8
8	1-08	224.5
9	1-09	192.8
10	1-10	122.9

	Month	Sales	Sales Stationary
1	1-01	266.0	NaN
2	1-02	145.9	-120.1
3	1-03	183.1	37.2
4	1-04	119.3	-63.8
5	1-05	180.3	61.0
6	1-06	168.5	-11.8
7	1-07	231.8	63.3
8	1-08	224.5	-7.3
9	1-09	192.8	-31.7
10	1-10	122.9	-69.9

Due to the needs of stationarity, we often can't directly analyze the data. As a solution we can transform the data using differencing method to achieve stationarity.

transform the data : $Yt \rightarrow Zt = Yt - Yt - 1$ (first differencing)

: e.g Z3 = Y3 - Y2 = 183.1 - 145.9 = 37.2, and so on

Differencing Level 2

transform the data : $Zt \rightarrow Wt = Zt - Zt-1$ (second differencing)

: Wt = (Yt - Yt-1) - (Yt-1 - Yt-2)

e.g W2 = Z2 - Z1 = 37.2 - (-120.1) = -82.9, and so on

	Month	Sales
1	1-01	266.0
2	1-02	145.9
3	1-03	183.1
4	1-04	119.3
5	1-05	180.3
6	1-06	168.5
7	1-07	231.8
8	1-08	224.5
9	1-09	192.8
10	1-10	122.9

	Month	Sales	Sales Stationary
1	1-01	266.0	NaN
2	1-02	145.9	-120.1
3	1-03	183.1	37.2
4	1-04	119.3	-63.8
5	1-05	180.3	61.0
6	1-06	168.5	-11.8
7	1-07	231.8	63.3
8	1-08	224.5	-7.3
9	1-09	192.8	-31.7
10	1-10	122.9	-69.9

	Month	Sales	Sales Stationary	Sales Stationary 2
1	1-01	266.0	NaN	NaN
2	1-02	145.9	-120.1	NaN
3	1-03	183.1	37.2	-82.9
4	1-04	119.3	-63.8	-26.6
5	1-05	180.3	61.0	-2.8
6	1-06	168.5	-11.8	49.2
7	1-07	231.8	63.3	51.5
8	1-08	224.5	-7.3	56.0
9	1-09	192.8	-31.7	-39.0
10	1-10	122.9	-69.9	-101.6

Time Series Plot for Shampoo Sales After Stationarity

transform the data : Yt \rightarrow Zt = Yt - Yt-1

ARIMA

Univariate Time Series Forecasting: ARIMA

ARIMA: use older observation as features to predict future value

ARIMA = Autoregressive Integrated Moving Average

hyperparameter ARIMA(p,d,q): p, d, q

p(Autoregressive) : how many previous observation used

d(Integrated) : adjust stationarity

q(Moving Average): avoid correlated error (autocorrelation)

ARIMA Models

ARIMA = Autoregressive Integrated Moving Average

e.g.:

ARIMA(1,0,0) or AR(1) : Yt = a + b*Yt-1 + et

ARIMA(2,0,0) or AR(1) : Yt = a + b*Yt-1 + c*Yt-2 + et

ARIMA(1,1,0) or ARI(1,1) : Zt = a + b*Zt-1 + et

: (Yt - Yt-1) = a + b*(Yt-1 - Yt-2) + et

: Yt = a + (1+b) Yt-1 - b*Yt-2 + et

ARIMA(0,0,1) or MA(1) : Yt = a + et + r*et-1

ARIMA(1,0,1) or ARMA(1,1) : Yt = a + b*Yt-1 + et + r*et-1

Autoregressive (AR): p

ARIMA(1,0,0) : Yt = a + b*Yt-1 + et

ARIMA(2,0,0) : Yt = a + b*Yt-1+ c*Yt-2 + et

Uses 1 previous period (Yt-1) as feature

	Month	Sales	
0	1-01	266.0	
1	1-02	145.9	
2	1-03	183.1	
3	1-04	119.3	
4	1-05	180.3	
5	1-06	168.5	
6	1-07	231.8	
7	1-08	224.5	
8	1-09	192.8	
9	1-10	122.9	

	Month	Sales	lag1 Sales
0	1-01	266.0	NaN
1	1-02	145.9	266.0
2	1-03	183.1	145.9
3	1-04	119.3	183.1
4	1-05	180.3	119.3
5	1-06	168.5	180.3
6	1-07	231.8	168.5
7	1-08	224.5	231.8
8	1-09	192.8	Yt-15
9	1-10	122.9	192.8

Uses 2 previous period (Yt-1 and Yt-2) as feature

	Month	Sales	lag1 Sales	lag2 Sales
0	1-01	266.0	NaN	NaN
1	1-02	145.9	266.0	NaN
2	1-03	183.1	145.9	266.0
3	1-04	119.3	183.1	145.9
4	1-05	180.3	119.3	183.1
5	1-06	168.5	180.3	119.3
6	1-07	231.8	168.5	180.3
7	1-08	224.5	231.8	168.5
8	1-09	192.8	Y 12 45	Yf-2328
9	1-10	122.9	192.8	224.5

Integrated (I): d

ARIMA(1,1,0) : Zt = a + b*Zt-1 + et

: (Yt - Yt-1) = a + b*(Yt-1 - Yt-2) + et

: Yt = a + (1+b) Yt-1 - b*Yt-2 + et

	Month	Sales	lag1 Sales	Sales Stationary	lag1 Sales Stationary
0	1-01	266.0	NaN	NaN	NaN
1	1-02	145.9	266.0	-120.1	NaN
2	1-03	183.1	145.9	37.2	-120.1
3	1-04	119.3	183.1	-63.8	37.2
4	1-05	180.3	119.3	61.0	-63.8
5	1-06	168.5	180.3	-11.8	61.0
6	1-07	231.8	168.5	63.3	-11.8
7	1-08	224.5	231.8	-7.3	63.3
8	1-09	192.8	224.5	-31.7	7 -7.3
9	1-10	122.9	192.8	-69.9	∠ . _{31.} }

Uses Zt as target variable and Zt-1 as feature

Moving Average (MA): q

ARIMA(0,0,1): Yt = a + et + r*et-1

ARIMA(1,0,1) : Yt = a + b)*Yt-1 + et + r*et-1	
---------------------------	----------------------	--

	Month	Sales	<pre>lag1 et = sales - mean(sales)</pre>
0	1-01	266.0	NaN
1	1-02	145.9	-46.6
2	1-03	183.1	-166.7
3	1-04	119.3	-129.5
4	1-05	180.3	-193.3
5	1-06	168.5	-132.3
6	1-07	231.8	-144.1
7	1-08	224.5	-80.8
8	1-09	192.8	et-1 ^{88.1}
9	1-10	122.9	-119.8

	Month	Sales	lag1 Sales	et-1
0	1-01	266.0	NaN	NaN
1	1-02	145.9	266.0	-139.193703
2	1-03	183.1	145.9	-8.510723
3	1-04	119.3	183.1	-101.266317
4	1-05	180.3	119.3	9.394083
5	1-06	168.5	180.3	-49.886864
6	1-07	231.8	168.5	22.597975
7	1-08	224.5	231.8	-33.973237
8	1-09	192.8	Yt-1	-59.991091 et -
9	1-10	122.9	192.8	-105.216566

ACF-PACF

- We can use ACF-PACF to determine the best combination of p d and q
- ACF is a measured of the correlation between the time series and their own lags
- PACF measures the correlation between the time series with their own lags but after eliminating the variations such as Trend and Seasonality

Correlation PACF

rules

- ACF Tails off
- PACF Cut Off at lag?
- Model AR

example:

- ACF Tails off
- PACF Cut Off at lag 2
- Model ARIMA(2,d,0)
- with d the order of differencing needed until reach stationarity

Correlation

PACF

rules

- ACF Cut Off at lag?
- PACF tails off
- Model MA

example:

- ACF Cut Off at lag 2
- PACF tails off
- Model ARIMA(0,d,2)
- with d the order of differencing needed until reach stationarity

rules

- Both ACF and PACF tails off
- Model ARIMA
- choose all possible combination
 - ARIMA(1,d,0), ARIMA(1,d,1), ARIMA(2,d,0),
 ARIMA(0,d,1), ARIMA(1,d,1).
 - with d the order of differencing needed until reach stationarity

Correlation

rules

- Both ACF and PACF cut off at certain leg
- Model AR or MA
- choose between
 - AR(3) or MA(2)
 - with d the order of differencing needed until reach stationarity

ACF-PACF Shampoo Dataset

Identification

- needs first difference
- ACF cut off at 2
- PACF cut off at 2

We need to choose between ARIMA(2,1,0) or ARIMA(0,1,2)

Python Exercise: Time Series ARIMA

Analyze data shampoo sales.csv

- identified data pattern
- build ACF PACF plot until second differencing
- identified the most suitable model based on ACF PACF plot
- build ARIMA(2,1,0) model
- forecast for 6 periods ahead

Time Series Model with Exogenous Variable

Time Series Model with Exogenous Variable

- In ARIMA, we utilize its own data as feature to predict future value/forecast
- You can develop machine learning method to predict future value with the help of exogenous variable
- The only requirement to use an exogenous variable is we need to know the value of the variable during the forecast period as well, such as Date.

	Date	Consumption	
0	2006-01-01	1069.18400	
1	2006-01-02	1380.52100	
2	2006-01-03	1442.53300	
3	2006-01-04	1457.21700	
4	2006-01-05	1477.13100	

4378	2017-12-27	1263.94091	3
4379	2017-12-28	1299.86398	5
4380	2017-12-29	1295.08753	5
4381	2017-12-30	1215.44897	7
4382	2017-12-31	1 107. 1 1488	7

Model

Recommended Model:

- Linear Regression
- Support Vector Regression
- Any model with ability to extrapolate

Tree based model such as Decision Tree and Random Forest are not recommended because they can't extrapolate:

https://neptune.ai/blog/random-forest-regression-when-does-it-fail-and-wh

While time series forecasting method is an extrapolation

Time Series Feature Engineering

- date
- lag variable
- differencing

Date

Features that may be created from Date:

- Day of month
- Day of week
- Day of year
- Weekend or weekday
- Payday
- Holiday
- Quarter
- Start of Quarter
- End of Quarter
- Days to month-end
- Days to month start
- Days to holiday
- Season of year
- Certain Event

Example:

	Date	year	month	day	weekday
0	2006-01-01	2006	1	1	6
1	2006-01-02	2006	1	2	0
2	2006-01-03	2006	1	3	1
3	2006-01-04	2006	1	4	2
4	2006-01-05	2006	1	5	3
		17(2)	***		
4378	2017-12-27	2017	12	27	2
4379	2017-12-28	2017	12	28	3
4380	2017-12-29	2017	12	29	4
4381	2017-12-30	2017	12	30	5
4382	2017-12-31	2017	12	31	6

Lag Variable

Uses 1 previous period (Yt-1) as feature

Month	Sales
1-01	266.0
1-02	145.9
1-03	183.1
1-04	119.3
1-05	180.3
1-06	168.5
1-07	231.8
1-08	224.5
1-09	192.8
1-10	122.9
	1-01 1-02 1-03 1-04 1-05 1-06 1-07 1-08 1-09

	Month	Sales	lag1 Sales
0	1-01	266.0	NaN
1	1-02	145.9	266.0
2	1-03	183.1	145.9
3	1-04	119.3	183.1
4	1-05	180.3	119.3
5	1-06	168.5	180.3
6	1-07	231.8	168.5
7	1-08	224.5	231.8
8	1-09	192.8	Yf-245
9	1-10	122.9	192.8

Uses 2 previous period (Yt-1 and Yt-2) as feature

	Month	Sales	lag1 Sales	lag2 Sales
0	1-01	266.0	NaN	NaN
1	1-02	145.9	266.0	NaN
2	1-03	183.1	145.9	266.0
3	1-04	119.3	183.1	145.9
4	1-05	180.3	119.3	183.1
5	1-06	168.5	180.3	119.3
6	1-07	231.8	168.5	180.3
7	1-08	224.5	231.8	168.5
8	1-09	192.8	Y 12 45	Y_{t}^{23} ²⁸
9	1-10	122.9	192.8	224.5

Differencing

transform the data : $Zt \rightarrow Wt = Zt - Zt-1$ (second differencing)

: Wt = (Yt - Yt-1) - (Yt-1 - Yt-2)

: e.g W2 = Z2 - Z1 = 37.2 - (-120.1) = -82.9, and so on

	Month	Sales
0	1-01	266.0
1	1-02	145.9
2	1-03	183.1
3	1-04	119.3
4	1-05	180.3
5	1-06	168.5
6	1-07	231.8
7	1-08	224.5
8	1-09	192.8
9	1-10	122.9

	Month	Sales	Sales Stationary	
0	1-01	266.0	NaN	
1	1-02	145.9	-120.1	
2	1-03	183.1	37.2	
3	1-04	119.3	-63.8	
4	1-05	180.3	61.0	
5	1-06	168.5	-11.8	
6	1-07	231.8	63.3	
7	1-08	224.5	-7.3	
8	1-09	192.8	-31.7	
9	1-10	122.9	-69.9	

	Month	Sales	Sales Stationary	Sales Stationary 2
0	1-01	266.0	NaN	NaN
1	1-02	145.9	-120.1	NaN
2	1-03	183.1	37.2	-82.9
3	1-04	119.3	-63.8	-26.6
4	1-05	180.3	61.0	-2.8
5	1-06	168.5	-11.8	49.2
6	1-07	231.8	63.3	51.5
7	1-08	224.5	-7.3	56.0
8	1-09	192.8	-31.7	-39.0
9	1-10	122.9	-69.9	-101.6

Time Series Model Evaluation

Metrics

Same as regression metrics:

- R-square
- MSE
- MAE
- MSPE
- MAPE
- MSLE
- etc

Data Splitting

Forward Chaining Strategy

Training Fold:

Model Training

Validation Fold: Generalization

Simulating Model Usage

Some kind of cross validation in time series

Python Exercise: Time Series with Feature Engineering

Analyze data opsd_germany_daily.csv

- build a time series model using linear regression
 - target : Consumption
 - feature : Date
 - FE Date 1 : year, month, day, weekday
 - FE Date 2 : year, month, day, weekday, year 2009, year > 2014, christmas, winter
- Split data
 - training: 2006 2015
 - testing : 2016 end
- Compare the result (FE1,FE2) using following evaluation metrics :
 - explained variance
 - mean square log error
 - r2
 - MAE
 - MSE
 - RMSE
- plot test data, FE Date 1 forecasting result, FE Date 2 forecasting result

Python Exercise : Time Series Evaluation Method

Continue Analyze data opsd_germany_daily.csv

- With FE Date 2, try several models and find the best model based on R-square in forward chaining strategy (5 splits)
- those models are : ridge, lasso, elastic net, SVR
- optimize the best model based on R-square using hyperparameter tuning
- check the final performance : explained variance, mean square log error, r2,
 MAE, MSE, RMSE
- plot test data, FE Date 1 forecasting result, FE Date 2 forecasting result, FE Date 2 (Tuned Model) forecasting result

References

https://machinelearningmastery.com/time-series-datasets-for-machine-learning/

https://medium.com/@ODSC/machine-learning-for-time-series-data-e3971d38005b

https://www.stat.ipb.ac.id/en/uploads/STK352/STK352_10.pdf

https://towardsdatascience.com/time-series-modeling-using-scikit-pandas-and-numpy-68 2e3b8db8d1

https://neptune.ai/blog/random-forest-regression-when-does-it-fail-and-why

https://www.ethanrosenthal.com/2018/03/22/time-series-for-scikit-learn-people-part2/

https://otexts.com/fpp2/case-studies.html

https://www.slideshare.net/ElegantJ-BusinessIntelligence/what-are-data-trends-and-patterns-and-how-do-they-impact-business-decisions

