Logik

Propositionslogik

- Formalisme til at beskrive sprogklasser
- BNF
- Indfør \models og \vdash

Naturlig deduktion

- Introduktion og eleminering af operatorer
- Bevis sekvent
- Sundhed og komplethed
- Hvorfor både ⊨ og ⊢

Udtrykskraft for prop. logik

- Kan udtrykke rekursive sprog
- Bevis: kan ikke have 4 egenskaber
 - 1. Sundhed
 - 2. Komplethed
 - 3. Beviselighed er afgørbart
 - 4. (Φ, \models) kan beskrive ikke-rekursive sprog

1. ordens prædikatlogik

- Udvid BNF termer, prædikater, kvantorer
- Indfør modeller

1 Prop. Logik

- Formalisme til at beskrive sprogklasser
- BNF: $\phi ::= p \mid \phi \land \phi \mid \phi \lor \phi \mid \phi \rightarrow \phi \mid \neg \phi$
- Indfør ⊨ (logisk konsekvens)
 - \circ $\phi_1,...,\phi_n \models \psi$ (hvis det holder, så er ψ true når alle ϕ_i er true)
 - Lav sandhedstabel: p v q
 - p,q ⊨ p v q (vis på sandhedstabellen)
- Indfør ⊢ (beviselighed)
 - \circ $\phi_1,...,\phi_n \vdash \psi$ (hvis det holder, så kan ψ udledes fra $\phi_1,...,\phi_n$)
 - o En formel kan bevises vha. et bevissystem (natural deduction)

2 Natural Deduction

- Der er regler for introduktion og eliminering af hver logisk operator
 - ∘ Vis ∧i
 - Bevis sekventen $\neg p \lor \neg q \vdash \neg (p \land q)$
- Er alt der kan bevises sandt (sundhed) (⊢ ⊆ ⊨)
- Kan alt der er sandt bevises (komplethed) (⊨ ⊆ ⊢)
- Prop. logik er både sund og komplet (⊨ = ⊢)
 - Ofte er én af de to metoder lettere at bruge
 - ⊢ er god til mange propositioner (fordi sandhedstabeller bliver for store)
 - ⊨ er god til at vise at noget *ikke* kan bevises

3 Prop. Udtrykskraft

- Prop. logik kan udtrykke rekursive sprog
- Forklar theorem, opskriv punkter
 - 1. (Φ, \models, \vdash) er sund
 - 2. (Φ, \models, \vdash) er komplet
 - 3. Beviselighed er afgørbar
 - 4. (Φ, ⊨) kan beskrive et ikke-rekursivt sprog
 - (Φ, ⊨) beskriver et ikke-rekursivt sprog ⇒ ⊨ er ikke-rekursiv
 - ⊨ = ⊢ ⇒ ⊢ er ikke-rekursiv
 - (3) \Rightarrow \vdash er rekursiv
 - 1
- Prop. logik opfylder (1), (2) og (3) → Prop. logik opfylder ikke (4)
- 1. ordens prædikatlogik kan udtrykke ikke-rekursive sprog opfylder (4), men ikke (3)

4 1. Ordens Prædikatlogik

- Indfør prædikater og kvantorer

 - o Natural deduction udvides med regler for kvantorer
 - Eksempel ($\forall x (C(x) \rightarrow age(x) < 18)$)
- Sandhedstabeller ikke tilstrækkelige (grundet kvantorer)
 - o Benyt modeller

1	¬р∨¬q	præmis
2 3 4	p ^ q	antag ∧e, 2 ∧e, 2
5 6	¬p ⊥	antag ¬i, 3, 6
7 8	¬q ⊥	antag ¬i, 4, 8
9	1	ve, 1, 5-6, 7-8
10	¬(p ∧ q)	PBC, 2-9