# Calcul symbolique et utilisation de SymPy Du concept mathématique à l'outil pratique

### Participants:

DONGMO TCHOUMENE ANITA BELVIANE 22W2184

DONFACK SYNTHIA CALORINE 22U2073

BOKOU-BOUNA-ANGE-LARISSA 22W2188

JIATSA ROMMEL JUNIOR 22T2906

Superviseur:

Pr Paulin MELATAGIA

Année académique : 2024 - 2025



### Plan de l'exposé

- Mise en situation et définition du calcul symbolique
- Importance et applications
- Outils de calcul symbolique
- Introduction à SymPy et philosophie
- Premiers pas : installation et exemples guidés
- Fonctionnalités clés : dérivation, intégration, résolution d'équations, systèmes, matrices, optimisation
- Passage du symbolique au numérique et workflow complet
- Bonnes pratiques et limitations
- Cas d'usage réel (ex. : Machine Learning)
- Récapitulatif et ressources pour aller plus loin
- Message final et conclusion
- Questions



Une question simple...

Quelle est la racine carrée de 8?

### Avec une calculatrice

En mathématiques

$$\sqrt{8} = 2.828427124...$$

$$\sqrt{8} = 2\sqrt{2}$$

Deux approches différentes : numérique vs symbolique

### Un problème plus concret

#### Situation

Vous devez résoudre :  $x^2 - 2 = 0$ 

#### Approche numérique :

- Essai-erreur :  $x \approx 1.414213562...$
- Résultat approximatif
- Erreur d'arrondi possible

#### Approche symbolique:

- Solution exacte :  $x = \pm \sqrt{2}$
- Pas d'approximation
- Forme mathématique pure
  - ⇒ Le calcul symbolique manipule des formules, pas des nombres!

Qu'est-ce que le calcul symbolique?

#### **Definition**

Le **calcul symbolique** (ou calcul formel) est la manipulation d'expressions mathématiques sans les évaluer numériquement.

### Principe

On travaille avec des **symboles** (lettres, formules) comme en algèbre classique :

- $(x + y)^2 = x^2 + 2xy + y^2$  (développement)
- $x^2 1 = (x 1)(x + 1)$  (factorisation)
- $\frac{d}{dx}(x^2) = 2x$  (dérivation)

### Opposé au calcul numérique

Le calcul numérique remplace immédiatement par des valeurs approchées (flottants)

### Analogie : l'architecte et le constructeur

### Calcul symbolique

- = L'architecte
  - Dessine les plans
  - Manipule des formules
  - Vision d'ensemble
  - Résultats exacts

### Calcul numérique

- = Le constructeur
  - Exécute les calculs
  - Utilise des mesures
  - Cas concrets
  - Résultats approchés

Les deux sont nécessaires et complémentaires!

### Pourquoi avons-nous besoin du calcul symbolique?

#### 1. Pour l'exactitude

• En mathématiques,  $\sqrt{2}$  est exactement  $\sqrt{2}$ , pas 1.414...

#### 2. Pour les démonstrations

- Prouver que  $(a + b)^2 = a^2 + 2ab + b^2$  pour tous a et b
- 3. Pour dériver des formules générales
  - Calculer  $\frac{d}{dx}(x^n) = nx^{n-1}$  une fois pour toutes
- 4. Pour l'optimisation et l'IA
  - Calculer des gradients de fonctions complexes automatiquement
  - Simplifier des modèles mathématiques

### Applications concrètes

- Enseignement : vérifier les calculs d'étudiants
- 2 Recherche : démonstrations automatisées, exploration mathématique
- Physique : résoudre des équations différentielles analytiquement
- Machine Learning : calculer les gradients de fonctions de coût
- 5 Ingénierie : conception de circuits, analyse de systèmes
- Finance : modèles d'évaluation d'options, calculs actuariels

### Les outils de calcul symbolique

### Systèmes de Calcul Formel (CAS)

Logiciels capables de manipuler des expressions mathématiques symboliques

#### Outils commerciaux:

- Mathematica (Wolfram)
- Maple (Maplesoft)
- MATLAB Symbolic Toolbox

#### Outils open-source:

- SymPy (Python) ← Notre sujet!
- Maxima
- SageMath

### Et SymPy dans tout ça?

#### Definition

SymPy = Bibliothèque Python pour le calcul symbolique

#### Pourquoi SymPy?

- Gratuit et open-source : accessible à tous
- **2** En Python : langage populaire en Data Science
- Léger : pure Python, pas de dépendances lourdes
- Intégré : fonctionne avec NumPy, Matplotlib, Jupyter...
- Extensible : on peut ajouter nos propres fonctions

### La philosophie de SymPy

### Apporter le calcul symbolique à tous, gratuitement, en Python

#### **Avantages**

- Syntaxe lisible
- Courbe d'apprentissage douce
- Communauté active
- Documentation riche

#### Limites

- Moins rapide que Mathematica
- Certains domaines moins développés
- Performance sur très gros calculs

⇒ Idéal pour l'apprentissage et la plupart des applications!

### Premiers pas: installation

### Installation simple

```
pip install sympy
```

### Premier programme

```
import sympy as sp

# Créer un symbole (une variable)
x = sp.symbols('x')

# Créer une expression
expr = x**2 + 2*x + 1

# Factoriser
resultat = sp.factor(expr)
print(resultat) # Affiche: (x + 1)**2
```

### Exemple guidé 1 : Développement et factorisation

**Problème**: Développer  $(x+3)^2$  puis factoriser le résultat

```
import sympy as sp
x = sp.symbols('x')
# Développer
development = sp.expand((x + 3)**2)
print(developpement)
# Résultat: x**2 + 6*x + 9
# Factoriser
factorisation = sp.factor(x**2 + 6*x + 9)
print(factorisation)
# Résultat: (x + 3)**2
```

#### Observation

SymPy retrouve la forme originale! Il manipule les structures mathématiques.

### Exemple guidé 2 : Simplification

### **Problème**: Simplifier $\frac{x^2-1}{x-1}$

```
x = sp.symbols('x')
expr = (x**2 - 1) / (x - 1)

# Simplifier
simplifie = sp.simplify(expr)
print(simplifie)
# Résultat: x + 1
```

#### **Explication:**

- SymPy reconnaît que  $x^2 1 = (x 1)(x + 1)$
- Il simplifie :  $\frac{(x-1)(x+1)}{x-1} = x+1$

Comme vous le feriez sur papier, mais automatiquement!

### La puissance du calcul symbolique : la dérivation

En cours de maths : Dériver  $f(x) = x^3 \sin(x)$ Vous appliquez la règle du produit, triez les termes...

#### Avec SymPy:

```
x = sp.symbols('x')
f = x**3 * sp.sin(x)

# Dériver
df = sp.diff(f, x)
print(df)
# Résultat: x**3*cos(x) + 3*x**2*sin(x)
```

#### Plus fort encore

```
Dérivée seconde? sp.diff(f, x, 2)
```

Dérivée n-ième? sp.diff(f, x, n)

### L'intégration symbolique

### **Problème** : Calculer $\int xe^x dx$

```
x = sp.symbols('x')
f = x * sp.exp(x)

# Intégrale indéfinie (primitive)
primitive = sp.integrate(f, x)
print(primitive)
# Résultat: (x - 1)*exp(x)
```

#### Vérification : Dérivons la primitive

```
verif = sp.diff(primitive, x)
print(verif)
# Résultat: x*exp(x) -> C'est bien f !
```

#### SymPy trouve la primitive quand elle existe en forme close

### Résoudre des équations

### **Problème**: Résoudre $x^2 - 5x + 6 = 0$

```
x = sp.symbols('x')
equation = sp.Eq(x**2 - 5*x + 6, 0)

# Résoudre
solutions = sp.solve(equation, x)
print(solutions)
# Résultat: [2, 3]
```

#### Équations plus complexes :

```
# Équation avec racines
eq = sp.Eq(x**2 - 2, 0)
sol = sp.solve(eq, x)
print(sol)
# Résultat: [-sqrt(2), sqrt(2)]
```

#### Forme exacte, pas d'approximation!

### Systèmes d'équations

Problème : Résoudre le système

$$\begin{cases} 2x + y = 5 \\ x - y = 1 \end{cases}$$

```
x, y = sp.symbols('x y')
eq1 = sp.Eq(2*x + y, 5)
eq2 = sp.Eq(x - y, 1)

# Résoudre le système
solution = sp.solve([eq1, eq2], [x, y])
print(solution)
# Résultat: {x: 2, y: 1}
```

### **Application**

Utile pour : intersection de courbes, systèmes dynamiques, optimisation sous contraintes...

### Algèbre linéaire symbolique

### Créer une matrice avec des symboles :

### Pourquoi c'est utile?

- Étudier la stabilité de systèmes (valeurs propres)
- Analyse paramétrique (selon x et y)
- Démonstrations théoriques

### Application : Optimisation

**Problème**: Minimiser  $f(x, y) = (x - 1)^2 + (y + 2)^2$ 

```
x, y = sp.symbols('x y')
f = (x - 1)**2 + (y + 2)**2

# Gradient (dérivées partielles)
grad_x = sp.diff(f, x) # 2*(x - 1)
grad_y = sp.diff(f, y) # 2*(y + 2)

# Point critique (gradient = 0)
point_critique = sp.solve([grad_x, grad_y], [x, y])
print(point_critique)
# Résultat: {x: 1, y: -2}
```

#### Interprétation

Le minimum est atteint en (1, -2) avec f(1, -2) = 0

### Pont entre symbolique et numérique : lambdify

Problème : J'ai une formule symbolique, je veux l'évaluer rapidement

```
import numpy as np
import matplotlib.pyplot as plt
x = sp.symbols('x')
f = sp.sin(x) * sp.exp(-x**2)
# Convertir en fonction numérique
f_num = sp.lambdify(x, f, 'numpy')
# Tracer la courbe
x_vals = np.linspace(-3, 3, 500)
y_vals = f_num(x_vals)
plt.plot(x_vals, y_vals)
plt.show()
```

Le meilleur des deux mondes : exactitude + vitesse!

### Workflow typique avec SymPy



### Exemple

 $\mathsf{Mod\grave{e}le} \to \mathsf{Gradient} \to \mathsf{Simplification} \to \mathsf{Optimisation} \ \mathsf{num\acute{e}rique} \to$ 

Calcul symbolique & SymPy

### Bonnes pratiques

- 1. Déclarer les propriétés des symboles
  - x = sp.symbols('x', real=True, positive=True)
  - Aide SymPy à mieux simplifier
- 2. Simplifier régulièrement
  - Les expressions peuvent devenir complexes
  - Utiliser simplify(), factor(), expand()
- 3. Utiliser lambdify pour l'évaluation intensive
  - Gain de vitesse  $\times$  100 à  $\times$  1000
- 4. Documenter avec LaTeX
  - sp.latex(expr) génère le code LaTeX
  - Parfait pour les rapports

#### Limitations à connaître

- 1. Certains problèmes n'ont pas de solution en forme close
  - Exemple :  $\int e^{x^2} dx$  (pas de primitive élémentaire)
- 2. Performance sur gros calculs
  - Expressions très complexes peuvent être lentes
  - Solution : simplifier ou passer au numérique
- 3. Moins complet que Mathematica/Maple
  - Certains domaines avancés moins développés
  - Mais suffisant pour 95% des cas!

#### Conseil

Comprendre quand utiliser symbolique vs numérique est une compétence clé

### Cas d'usage réel : Machine Learning

Contexte : Calculer le gradient d'une fonction de coût

#### Sans SymPy:

- Dériver à la main (erreurs possibles)
- Approximations numériques (imprécis)

#### Avec SymPy:

- Définir la fonction de coût symboliquement
- Calculer le gradient automatiquement
- Vérifier les formules avant implémentation
- Générer le code optimisé

#### Résultat

Gain de temps + réduction d'erreurs + meilleure compréhension

### Récapitulatif : Le parcours conceptuel

- Calcul symbolique = manipuler des formules, pas des nombres
- Pourquoi? Exactitude, démonstrations, formules générales
- **SymPy** = outil Python gratuit pour le calcul symbolique
- Applications : dérivation, intégration, équations, optimisation...
- Ont : lambdify relie symbolique et numérique
- **1** Workflow: modéliser  $\rightarrow$  simplifier  $\rightarrow$  évaluer

SymPy = le langage mathématique rencontre la programmation

### Pour aller plus loin

#### Documentation officielle:

- https://docs.sympy.org/latest/tutorial/
- Tutoriels interactifs

#### Pratiquer:

- Jupyter Notebooks + SymPy
- SymPy Live: https://live.sympy.org
- Exemples sur GitHub

#### Communauté:

- Forum : SymPy Google Group
- Stack Overflow (tag : sympy)
- GitHub : contributions bienvenues!



### Message final

Le calcul symbolique n'est pas réservé aux mathématiciens théoriciens.

C'est un outil pratique pour quiconque travaille avec des formules.

SymPy le rend accessible à tous!

#### Conclusion

#### Ce que vous devez retenir

- Le calcul symbolique manipule des structures mathématiques
- SymPy est un CAS gratuit en Python
- Applications : enseignement, recherche, Data Science, ingénierie
- ullet Workflow : symbolique o simplification o numérique
- lambdify est la clé pour la performance

Expérimentez! La meilleure façon d'apprendre est de pratiquer.

## Questions?

Merci pour votre attention!

Master I Data Science Université de Yaoundé I

Superviseur: Pr Paulin MELATAGIA