Business Intelligence

TICS-423 Universidad Adolfo Ibáñez

Week 06: 05 September - 09 September, 2016

Claudio Diaz Sebastián Moreno Gonzalo Ruz Predictive modelling Decision trees

Predictive modeling

- Task Specification: Predictive Modeling
- Data Representation: Homogeneous IID data
- Knowledge representation: Decision tree
- Learning technique
 - Search + Scoring
- Prediction and/or interpretation

Predictive modeling, decision tree

- A decision tree is a flowchart-like structure in which each internal node represents a "test" on an attribute, each branch represents the outcome of the test, and each leaf node represents a class label.
- Given a data point x, the output of the model is the probability of x belonging to a specific class, or the class without any other information

Day	outlook	Temp	Humidity	Windy	Play
1	sunny	85	85	no	NO
2	sunny	80	90	yes	NO
3	overcast	83	86	no	YES
4	rainy	70	96	no	YES
5	rainy	68	80	no	YES
6	rainy	65	70	yes	NO
7	overcast	64	65	yes	YES
8	sunny	72	95	no	NO

Dependent variable: PLAY overcast Play Don't Play 2 Don't Play 0 Don't Play 3 WINDY HUMIDITY FALSE > 70 Play Play Play Play Don't Play 2 Don't Play 0 Don't Play 3 Don't Play 0

Predictive modeling, decision tree

Visually, a decision tree segments the input data.

Predictive modeling, decision tree

Given a dataset, there are multiple decision tree that can classify the data.

Test Data

Refund	Marital Status		Cheat
No	Married	80K	?

- Top-down recursive divide and conquer algorithm
 - Start with all examples at root

refund	status	income	affair
yes	single	125K	no
no	married	100K	no
no	single	70K	no
yes	married	120K	no
no	divorced	95K	ves
no	married	60K	no
yes	divorced	220K	no
no	single	85K	yes
no	married	75K	no
no	single	90K	ves

- Top-down recursive divide and conquer algorithm
 - Start with all examples at root
 - Select best attribute/feature (refund, marital status, taxable income?)

refund	status	income	affair
yes	single	125K	no
no	married	100K	no
no	single	70K	no
yes	married	120K	no
no	divorced	95K	ves
no	married	60K	no
yes	divorced	220K	no
no	single	85K	yes
no	married	75K	no
no	single	90K	ves

Refund

- Top-down recursive divide and conquer algorithm
 - Start with all examples at root
 - Select best attribute/feature
 - Partition examples by selected attribute

refund	status	income	affair
yes	single	125K	no
yes	married	120K	no
yes	divorced	220K	no

refund	status	income	affair
no	married	100K	no
no	sinale	70K	no
no	divorced	95K	ves
no	married	60K	no
no	sinale	85K	ves
no	married	75K	no
no	sinale	90K	ves

- Top-down recursive divide and conquer algorithm
 - Start with all examples at root
 - Select best attribute/feature
 - Partition examples by selected attribute

Recurse and repeat

Yes No

refund	status	income	affair
yes	single	125K	no
yes	married	120K	no
yes	divorced	220K	no

refund	status	income	affair
no	married	100K	no
no	sinale	70K	no
no	divorced	95K	ves
no	married	60K	no
no	sinale	85K	ves
no	married	75K	no
no	sinale	90K	ves

- Top-down recursive divide and conquer algorithm
 - Start with all examples at root
 - Select best attribute/feature
 - Partition examples by selected attribute
 - Recurse and repeat

sinale

no

90K

ves

- Top-down recursive divide and conquer algorithm
 - Start with all examples at root
 - Select best attribute/feature
 - Partition examples by selected attribute
 - Recurse and repeat

affair	income	status	refund
no	70K	single	no
yes	95K	divorced	no
yes	85K	single	no
ves	90K	single	no

refund	status	income	affair
no	married	100K	no
no	married	60K	no
no	married	75K	no

- Top-down recursive divide and conquer algorithm
 - Start with all examples at root
 - Select best attribute/feature
 - Partition examples by selected attribute
 - Recurse and repeat

- Top-down recursive divide and conquer algorithm
 - Start with all examples at root
 - Select best attribute/feature
 - Partition examples by selected attribute
 - Recurse and repeat
- Issues
 - How to construct features
 - When to stop growing
 - Pruning irrelevant parts of the tree

- There are several method to construct features, the most popular are:
 - Hunt's Algorithm (one of the earliest)
 - CART
 - ID3, C4.5
 - SLIQ, SPRINT

PM, decision tree, learning, Hunt's algorithm

 Let D_t be the set of training records that reach a node t

General Procedure:

- If D_t contains records that belong the same class y_t, then t is a leaf node labeled as y_t
- If D_t is an empty set, then t is a leaf node labeled by the default class, y_d
- If D_t contains records that belong to more than one class, use an attribute test to split the data into smaller subsets.
 Recursively apply the procedure to each subset.

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

PM, decision tree, learning, Hunt's algorithm

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

- How to specify the attributes test conditions?
- Number of ways to split
 - 2-way split
 - Multi-way split
- Attribute types
 - Nominal
 - Ordinal
 - Continuous

Multi-way split: Use as many partitions as distinct values.

 Binary split: Divides values into two subsets. Need to find optimal partitioning.

- Partitioning continuous attribute: There are different ways to partition an attribute
 - Binary decision: Single rule splitting the attribute in two subsets (X_j>v)
 It could be computationally expensive, because it must consider all possible splits and finds the best cut.

- Partitioning continuous attribute: There are different ways to partition an attribute
 - Binary decision: Single rule splitting the attribute in two subsets (X_j>v)
 It could be computationally expensive, because it must consider all possible splits and finds the best cut.

- Discretization decision: Form an ordinal categorical attribute
 - Static discretize once at the beginning (age<30, 30<age<40, 40<age)
 - Dynamic ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering.

PM, decision tree, learning, scoring function

 To determine the best we need to pick a good feature, which splits the examples into subsets that distinguish among the class labels as much as possible... ideally into pure sets of "all positive" or "all negative"

Before Splitting: 10 records of class 0, 10 records of class 1

 We need a scoring function to determine the quality of a split given by a feature.

PM, decision tree, learning, scoring function

There are multiple scoring function:

$$Gini(X) = 1 - \sum_{x} p(x)^2$$

$$H(X) = -\sum_{x} p(x) \log_2 p(x)$$

· Classification error:
$$Error(X) = 1 - \max_i P(x)$$

$$\chi^{2}(X) = \sum_{i=1}^{k} \frac{(o_{i} - e_{i})^{2}}{e_{i}}$$

The Gini index for a given node is:

$$Gini(X) = 1 - \sum_{x} p(x)^{2}$$

p(x) is the probability of each class inside that node

Its value varies between 0 and 1-1/|C|
 0 => all points of the node belong to a single class
 1-1/|C| => points of the node are equally distributed among all classes.

The Gini index for a given node is:

$$Gini(X) = 1 - \sum_{x} p(x)^{2}$$

p(x) is the probability of each class inside that node

Its value varies between 0 and 1-1/|C|
 0 => all points of the node belong to a single class
 1-1/|C| => points of the node are equally distributed among all classes.

refund	status	income	affair				
yes	single	125K	no				
no	married	100K	no				
no	single	70K	no				
yes	married	120K	no				
no	divorced	95K	ves				
no	married	60K	no				
yes	divorced	220K	no				
no	single	85K	yes				
no	married	75K	no				
no	single	90K	ves				

$$Gini(Tree) = 1 - \left(\frac{7}{10}\right)^2 - \left(\frac{3}{10}\right)^2 = 0.42$$

- How much does a feature split decrease the Gini index?
- When a node p is split, based on the attribute X, into k partitions (children), the quality of split is computed as k

olit is computed as
$$Gini_{split}(X) = \sum_{i=1}^k \frac{n_i}{n} Gini(i)$$

where n and n_i is the number of points at node p and child i, respectively

- How much does a feature split decrease the Gini index?
- When a node p is split, based on the attribute X, into k partitions (children), the quality of split is computed as k

$$Gini_{split}(X) = \sum_{i=1}^{n} \frac{n_i}{n} Gini(i)$$

where n and n_i is the number of points at node p and child i, respectively

refund	status	income	affair
yes	single	125K	no
yes	married	120K	no
yes	divorced	220K	no
refund	status	income	affair
no	married	100K	no
no	single	70K	no
no	divorced	95K	yes
no	married	60K	no
no	single	85K	yes
no	married	75K	no
no	single	90K	ves

$$\begin{array}{c} \text{Yes} \\ \text{No} \\ Gini(R=yes) = 1 - \left(\frac{0}{3}\right)^2 - \left(\frac{3}{3}\right)^2 = 0 \\ Gini(R=no) = 1 - \left(\frac{3}{7}\right)^2 - \left(\frac{4}{7}\right)^2 \approx 0.49 \\ Gini_{split}(R) = \frac{3}{10} \times 0 + \frac{7}{10} \times 0.49 \approx 0.34 \\ \end{array}$$

- How much does a feature split decrease the Gini index?
- When a node p is split, based on the attribute X, into k partitions (children), the quality of split is computed as

Ginisplit (X) =
$$\sum_{i=1}^{k} \frac{n_i}{n}$$
Gini(i)

where n and n_i is the number of points at node p and child i, respectively

status

	reiuria	Status	INCOM	allall	· ·
ĺ	yes	divorced	220K	no	Divorced single
	no	divorced	95K	yes	
	refund	status	income	affair	$Gini(S = divorced) \qquad Gini(S = married, single)$
	no	married	100K	no	$= 1 - \left(\frac{1}{2}\right)^2 - \left(\frac{1}{2}\right)^2 = 0.5 = 1 - \left(\frac{2}{8}\right)^2 - \left(\frac{4}{8}\right)^2 = 0.38$
	no	single	70K	no	$1 = 1 - (\frac{1}{2}) - (\frac{1}{2}) = 0.5 = 1 - (\frac{1}{2}) - (\frac{1}{2}) = 0.38$
	yes	single	125K	no	
	no	married	60K	no	
	no	single	85K	ves	2 8 0.20
	no	married	75K	no	$Gini_{split}(S) = \frac{2}{10} \times 0.5 + \frac{8}{10} \times 0.38 \approx 0.40$
	no	sinale	90K	ves	10 10
	ves	married	120K	no	

affair

etatus lincom

- How much does a feature split decrease the Gini index?
- When a node p is split, based on the attribute X, into k partitions (children), the quality of split is computed as

$$Gini_{split}(X) = \sum_{i=1}^k \frac{n_i}{n} Gini(i)$$
 where n and n_i is the number of points at node p and child i, respectively

The best partition is given by the lower Ginisplit

Why are these weights important? Pure and larger partitions are sought

- To calculate Gini_{split} for continuous variables:
 - 1) Sort the attribute on values.
 - 2) Linearly scan these values, each time updating the count matrix and computing Gini_{split} index.
 - 3) Choose the split position that has the least Ginisplit index.

$$Gini_{split}(X) = \sum_{i=1}^{\kappa} \frac{n_i}{n} Gini(i)$$

	Cheat	No No			N	No Ye		S	Yes		Ye	Yes		No		0	No		No				
•		Taxable Income																					
Sorted Values Split Positions		60 70			75		85		90	90 9		5 10		00 12		20 12		25		220			
		55 65		5	7	72		0	87		9	92		7 1		10 1		22 17		72 230			
,		<=	>	<=	>	<=	>	<=	>	<=	>	\=	>	<=	>	<=	^	<=	^	<=	>	<=	\
	Yes	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0
	No	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0
	Gini _{split} 0.420		0.4	100	0.375		0.343		0.417		0.400		<u>0.300</u>		0.343		0.375		0.400		0.420		

PM, DT, learning, scoring function, Gini index

A similar measures corresponds to the Gini gain

$$Gini_{gain}(S, X) = Gini(S) - Gini_{split}(X)$$

where S is the original node, and X is the attribute used for the separation

- The best partition is given by the higher Ginigain
- Example:

$$Gini_{gain}(Tree, Status) = 0.42 - 0.40 = 0.02$$

 $Gini_{gain}(Tree, Refund) = 0.42 - 0.34 = 0.08$
 $Gini_{gain}(Tree, Income) = 0.42 - 0.30 = 0.12$

- The entropy is used to quantify the amount of randomness of a probability distribution.
- The entropy H(X) of a discrete random variable X (or a node) is defined by:

$$H(X) = -\sum_{x} p(x) \log_2 p(x)$$

p(x) is the probability of each class inside that node

Its value varies between 0 and log₂(|C|)
 0 => all points of the node belong to a single class
 log₂(|C|) => points of the node are equally distributed among all classes.

The entropy H(X) of a discrete random variable X (or a node) is defined by:

$$H(X) = -\sum_{x} p(x) \log_2 p(x)$$

p(x) is the probability of each class inside that node

refund	status	income	affair
yes	single	125K	no
no	married	100K	no
no	single	70K	no
yes	married	120K	no
no	divorced	95K	ves
no	married	60K	no
yes	divorced	220K	no
no	single	85K	ves
no	married	75K	no
no	single	90K	ves

$$H(\text{Tree}) = -\left(\frac{7}{10}\right)\log_2\left(\frac{7}{10}\right)$$
$$-\left(\frac{3}{10}\right)\log_2\left(\frac{3}{10}\right) = 0.88$$

- How much does a feature split decrease the entropy?
- When a node p is split, based on the attribute x, into k partitions (children), the quality of split is computed as k

$$H_{split}(X) = \sum_{i=1}^{n} \frac{n_i}{n} H(i)$$

where n and n_i is the number of points at node p and child i, respectively

	affair	income	status	refund
	no	125K	single	yes
	no	120K	married	yes
	no	220K	divorce	yes
]	affair	income	status	refund
	no	100K	married	no
	no	70K	single	no
	yes	95K	divorced	no
	no	60K	married	no
] -	yes	85K	single	no
	no	75K	married	no
	ves	90K	single	no

Yes No
$$H(R=yes) = -\left(\frac{0}{3}\right)\log_2\left(\frac{0}{3}\right) \qquad H(R=no) = -\left(\frac{3}{7}\right)\log_2\left(\frac{3}{7}\right) \\ -\left(\frac{3}{3}\right)\log_2\left(\frac{3}{3}\right) = 0 \qquad -\left(\frac{4}{7}\right)\log_2\left(\frac{4}{7}\right) = 0.99$$

$$H_{split}(R) = \frac{3}{10} \times 0 + \frac{7}{10} \times 0.99 \approx 0.69$$

 To compare the attributes we can use the information gain (entropy gain), which measures reduction in entropy achieved because of the split.

$$Information_{gain}(S,X) \equiv H_{gain}(S,X) = H(S) - H_{split}(X)$$

where S is the original node, and X is the attribute used for the separation

- The best partition is given by the higher H_{gain}
- Disadvantage: Tends to prefer splits that result in large number of partitions, each being small but pure

PM, DT, learning, scoring function, classification error

The classification error of an attribute X is

$$Error(X) = 1 - \max_{i} P(x)$$

p(x) is the probability of each class inside that node

Its value varies between 0 and 1-1/|C|
0 => all points of the node belong to a single class
1-1/|C| => points of the node are equally distributed among all classes.

refund	status	income	affair
yes	single	125K	no
no	married	100K	no
no	single	70K	no
yes	married	120K	no
no	divorced	95K	ves
no	married	60K	no
yes	divorced	220K	no
no	single	85K	ves
no	married	75K	no
no	single	90K	ves

$$Error(Tree) = 1 - \frac{7}{10} = \frac{3}{10}$$

PM, DT, learning, scoring function, classification error

The classification error of an attribute X is

$$Error(X) = 1 - \max_{i} P(x)$$

p(x) is the probability of each class inside that node

• When a node p is split, based on the attribute x, into k partitions (children), the quality of split is computed as k

$$Error_{split}(X) = \sum_{i=1}^{n} \frac{n_i}{n} Error(i)$$

where n and ni is the number of points at node p and child i, respectively

· To compare the attributes we can use the Error gain

$$Error_{gain}(S, X) = Error(S) - Error_{split}(X)$$

PM, DT, learning, scoring function

For a 2 class clarification problem

- χ^2 score: Widely used to test independence between two categorical attributes (e.g., feature and class label)
- Considers counts in a contingency table and calculates the normalized squared deviation of observed (predicted) values from expected (actual) values

Contingency table for X ₁				
	C ₁	C_2		Ск
$X_1=V_1$	011	012		01K
$X_1=V_2$	O ₂₁	O ₂₂		O ₂ K
X ₁ =V _m	O _{m1}	O _{m2}		OmK

$$\chi^2 = \sum_{i=1}^k \frac{(o_i - e_i)^2}{e_i}$$

- Sampling distribution is known to be chi-square distributed
- Low values could imply independence between feature and class label.

- χ^2 score: Widely used to test independence between two categorical attributes (e.g., feature and class label)
- Assuming independence we create the expected table for the attribute

	Contingency table for X₁				
	C ₁	C ₂		Ск	
$X_1=V_1$	011	012		01K	O1.
$X_1=V_2$	021	O ₂₂		O ₂ K	02.
$X_1=V_m$	O _{m1}	O _{m2}		OmK	Om.
	O _• 1	O . 2		O.K	Ν

Expected table for X ₁				
	C ₁	C_2		Ск
$X_1=V_1$	e 11	e 12		e _{1K}
X ₁ =V ₂	0 21	C 22		e _{2K}
X ₁ =V _m	e _{m1}	e _{m2}		e mK

$$e_{ij} = P(X_1 = V_i, C = C_j)N = P(X_1 = V_i)P(C = C_j)N = \frac{o_{i.}o_{.j}}{N}$$

	_		T	***************************************
age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Observed				
	Buy No buy			
High	2	2		
Medium	4	2		
Low	3	1		
Expected				
	Expected			
	Expected Buy	No buy		
High	'	No buy 1,43		
High Medium	Buy			

$$\chi^{2} = \sum_{i=1}^{k} \frac{\left(o_{i} - e_{i}\right)^{2}}{e_{i}} = \left(\frac{(2 - 2.57)^{2}}{2.57}\right) + \left(\frac{(4 - 3.86)^{2}}{3.86}\right) + \left(\frac{(3 - 2.57)^{2}}{2.57}\right) + \left(\frac{(2 - 1.43)^{2}}{1.43}\right) + \left(\frac{(2 - 2.14)^{2}}{2.14}\right) + \left(\frac{(1 - 1.43)^{2}}{1.43}\right) = 0.57$$

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Observed			
	Buy No buy		
<=30	2	3	
3140	4	0	
>40	3	2	
Expected			
	Expected		
	Expected Buy	No buy	
<=30	'	No buy 1,79	
<=30 3140	Buy		

$$\chi^2 = \sum_{i=1}^k \frac{(o_i - e_i)^2}{e_i} = 3.55$$

age has a higher χ2 score than income
 age is a better attribute (less independent with respect to the class label)

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Observed				
Buy No buy				
fair	6	2		
excellent 3 3				

Expected								
	Buy No buy							
fair	5,14	2,86						
excellent	3,86	2,14						

$$\chi^2 = \sum_{i=1}^k \frac{(o_i - e_i)^2}{e_i} = 0.93$$

- We can not directly compare credit rating with respect to age or income because we have different degrees of freedom.
- We need to compare the probability of obtaining these χ^2 score in each distribution

- χ^2 distribution:
- Degree of freedom:
 df=(|C|-1)*(m-1)
 m => number of values for attribute

 The p value, or calculated probability, is the probability of finding the observed, or more extreme, value

				•
age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

$$\chi^{2}(income) = \sum_{i=1}^{k} \frac{(o_{i} - e_{i})^{2}}{e_{i}} = 0.57 \text{ df} = 2$$

$$\chi^{2}(age) = \sum_{i=1}^{k} \frac{(o_{i} - e_{i})^{2}}{e_{i}} = 3.55 \text{ df} = 2$$

$$\chi^{2}(credit) = \sum_{i=1}^{k} \frac{(o_{i} - e_{i})^{2}}{e_{i}} = 0.93 \text{ df} = 1$$

•
$$\chi^2$$
(income)=0.57 => df=2 => p_{value}(income)=0.75 χ^2 (age)=3.55 => df=2 => p_{value}(age)=0.17 χ^2 (credit)=0.93 => df=1 => p_{value}(credit)=0.33

The best attribute is age.

PM, decision tree, learning, search

- Consider a space of possible models M={M₁, M₂, ..., M_k} given by the structure of the tree.
- What is the tree structure that minimizes the error on the training data?
- Exhaustive search: Create and evaluate all possible models, and select the best model.
- Typically, there is an exponential number of models in the (discrete) search space, making it intractable to exhaustively search the space.
- It **guarantees** to find the best model among all possible models.

PM, decision tree, learning, search, example

- Refund => A single binary separation
- Status => $\binom{3}{2} + \binom{3}{3}$ possible separations
- income => 11 possible binary separation.
- In the worst case scenario, for a specific order of variables (refund, status, income) there are 1*4*11=44 possible trees
- There are 6 possible order of variables => 44*6=264 possible trees

refund	status	income	affair
yes	single	125K	no
no	married	100K	no
no	single	70K	no
yes	married	120K	no
no	divorced	95K	yes
no	married	60K	no
yes	divorced	220K	no
no	single	85K	yes
no	married	75K	no
no	single	90K	yes

Che	at		No		No)	N	0	Ye	Yes Yes				es	s No		No		No		No			
							Taxable Income																	
			60		70)	7	5	85 90 95 100 120 125						25	220								
		5	5	6	5	7	2	8	0	8	87 92		9	97		110		122		172		230		
	╝	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	
Yes	s	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0	
No)	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0	
Gini		0.4	20	0.4	100	0.3	375	0.3	343	0.4	0.417 0.4		0.400		<u>0.300</u>		0.343		43 0.3		0.4	400 0.		120

PM, decision tree, learning, search

- Heuristic search: at each branching step evaluates the direct alternatives based on the available information and makes a decision.
- An heuristic search does not realize an exhaustive search of the model space.
- The selected model is a local optimum.

PM, decision tree, learning, search

- Heuristic search: at each branching step evaluates the direct alternatives based on the available information and makes a decision.
- An heuristic search does not realize an exhaustive search of the model space.
- The selected model is a local optimum.
- Greedy search: select the best model at each branching step.

Predictive modeling, decision tree, learning

- Top-down recursive divide and conquer algorithm
 - Start with all examples at root
 - Select best attribute/feature
 - Partition examples by selected attribute
 - Recurse and repeat
- Issues
 - How to construct features
 - When to stop growing
 - Pruning irrelevant parts of the tree

Predictive modeling, decision tree, learning

Full growth methods

- All samples for at a node belong to the same class
- There are no attributes left for further splits
- There are no samples left
- What impact does this have on the quality of the learned trees?
 - Trees overfit the data and accuracy decreases.
 The model learns the training data but does not generalize to new data.
 - Pruning is used to avoid overfitting.

Predictive modeling, decision tree, learning

- Top-down recursive divide and conquer algorithm
 - Start with all examples at root
 - Select best attribute/feature
 - Partition examples by selected attribute
 - Recurse and repeat
- Issues
 - How to construct features
 - When to stop growing
 - Pruning irrelevant parts of the tree

PM, decision tree, learning, pruning

Prepruning

- Apply a statistical test to decide whether to expand a node
- Use an explicit measure of complexity to penalize large trees (e.g., Minimum Description Length)

Postpruning

 Use a separate set of examples to evaluate the utility of pruning nodes from the tree (after tree is fully grown)

PM, decision tree, learning, prepruning

- Prepruning (early stopping rule): Stop the algorithm before it becomes a fully-grown tree.
 - Stop if number of instances in a node is less than some user-specified threshold.
 - Stop if expanding the current node does not improve impurity measures (e.g., Gini or information gain).
 - Stop if class distribution of instances are independent of the available features
 - Example: χ^2 test, if p-values>0.05 for all attributes stop the algorithm.

PM, decision tree, learning, postpruning

- Postpruning: after tree is fully grown, trim the nodes of the decision tree in a bottom-up fashion
 - First, before training, separate a set of examples X_{prune} to evaluate the utility of pruning nodes from the tree.
 - Second, evaluate X_{prune} using the entire classification tree.
 - Third, trim a node and replace the sub-tree by a leaf node (Class label of leaf node is determined from majority class of instances in the sub-tree).
 - Forth, re evaluate X_{prune} , if the performance improves accept the prune.

PM, decision tree, learning, postpruning

Performance metrics and approaches:

• Let \mathbf{X} be the a datasets, with N data points. The error over the dataset is

$$e(X,M) = \frac{1}{N} \sum_{i=1}^{N} I[f(x(i);M), y(i)] \text{ where } I(a,b) = \begin{cases} 1 & a \neq b \\ 0 & \text{otherwise} \end{cases}$$

- Optimistic approach: e(X_{prune}, M)=e(X_{train}, M)
- Pessimistic approach: $e(X_{prune}, M) = e(X_{train}, M) + (0.5*N_{leaf})/N$ where N_{leaf} is the number of leaf nodes
- Reduced error pruning (REP): e(X_{prune},M)
 X_{prune} is not the same than X_{train}

PM, decision tree, learning, postpruning

Class = Yes	20
Class = No	10

Optimistic approach e(X,M)=(4+3+1+1)/30=0.30

Pessimistic approach e(X,M)=(4+3+1+1)/30+4*0.5/30=0.37

Optimistic approach e(X,M)=10/30=0.33

Pessimistic approach e(X,M)=10/30+0.5/30=0.35

Predictive modeling, decision trees, summary

- Task Specification: Predictive Modeling
- Data Representation: Homogeneous IID data
- Knowledge representation: decision tree
 Model space: structural model
- Learning
 - Search algorithm: greedy search (heuristic does not assure the global optimum)
 - Scoring function: Gini, Entropy, Classification error, χ^2 score
- Prediction: The class of the leaf.