Greedy Algorithms

- Optimization problems
 - Dynamic programming, but overkill sometime.
 - Greedy algorithm:
 - Being greedy for local optimization with the hope it will lead to a global optimal solution, not always, but in many situations, it works.

An Activity-Selection Problem

- Suppose A set of activities $S=\{a_1, a_2, ..., a_n\}$
 - They use resources, such as lecture hall, one lecture at a time
 - Each a_i , has a start time s_i , and finish time f_i , with $0 \le s_i < f_i < \infty$.
 - a_i and a_j are compatible if $[s_i, f_i)$ and $[s_j, f_j)$ do not overlap
- Goal: select maximum-size subset of mutually compatible activities.
- Start from dynamic programming, then greedy algorithm, see the relation between the two.

DP solution –step 1

- Optimal substructure of activity-selection problem.
 - Furthermore, assume that $f_1 \leq ... \leq f_n$.
 - Define $S_{ij} = \{a_k : f_i \le s_k < f_k \le s_j\}$, i.e., all activities starting after a_i finished and ending before a_i begins.
 - Define two fictitious activities a_0 with f_0 =0 and a_{n+1} with s_{n+1} =∞
 - So $f_0 \le f_1 \le ... \le f_{n+1}$.
 - Then an optimal solution including a_k to S_{ij} contains within it the optimal solution to S_{ik} and S_{kj} .

DP solution –step 2

- A recursive solution
- Assume c[n+1,n+1] with c[i,j] is the number of activities in a maximum-size subset of mutually compatible activities in S_{ij} . So the solution is $c[0,n+1]=S_{0,n+1}$.

$$\begin{array}{l} \bullet \quad C[i,j] = 0 \qquad \qquad \text{if } S_{ij} = \varnothing \\ \max \left\{ c[i,k] + c[k,j] + 1 \right\} \text{ if } S_{ij} \neq \varnothing \\ \text{i} < k < j \text{ and } a_k \in S_{ij} \end{array}$$

Converting DP Solution to Greedy Solution

- Theorem 16.1: consider any nonempty subproblem S_{ij} , and let a_m be the activity in S_{ij} with earliest finish time: $f_m = \min\{f_k : a_k \in S_{ij}\}$, then
- 1. Activity a_m is used in some maximum-size subset of mutually compatible activities of S_{ij} .
- 2. The subproblem S_{im} is empty, so that choosing a_m leaves S_{mi} as the only one that may be nonempty.
- Proof of the theorem:

Top-Down Rather Than Bottom-Up

- To solve S_{ij} , choose a_m in S_{ij} with the earliest finish time, then solve S_{mj} , (S_{im} is empty)
- It is certain that optimal solution to S_{mj} is in optimal solution to S_{ij} .
- No need to solve S_{mj} ahead of S_{ij} .
- Subproblem pattern: $S_{i,n+1}$.

Optimal Solution Properties

- In DP, optimal solution depends:
 - How many subproblems to divide. (2 subproblems)
 - How many choices to determine which subproblem to use. (*j-i-1* choices)
- However, the above theorem (16.1) reduces both significantly
 - One subproblem (the other is sure to be empty).
 - One choice, i.e., the one with earliest finish time in S_{ij} .
 - Moreover, top-down solving, rather than bottom-up in DP.
 - Pattern to the subproblems that we solve, $S_{m,n+1}$ from S_{ij} .
 - Pattern to the activities that we choose. The activity with earliest finish time.
 - With this local optimal, it is in fact the global optimal.

Elements of greedy strategy

- Determine the optimal substructure
- Develop the recursive solution
- Prove one of the optimal choices is the greedy choice yet safe
- Show that all but one of subproblems are empty after greedy choice
- Develop a recursive algorithm that implements the greedy strategy
- Convert the recursive algorithm to an iterative one.

Greedy vs. DP

- Knapsack problem
 - I1 (v1,w1), I2(v2,w2),...,In(vn,wn).
 - Given a weight W at most he can carry,
 - Find the items which maximize the values
- Fractional knapsack,
 - Greed algorithm, O(nlogn)
- 0/1 knapsack.
 - DP, O(nW).
 - Questions: 0/1 knapsack is an NP-complete problem, why O(nW) algorithm?

Figure 16.2 The greedy strategy does not work for the 0-1 knapsack problem. (a) The thief must select a subset of the three items shown whose weight must not exceed 50 pounds. (b) The optimal subset includes items 2 and 3. Any solution with item 1 is suboptimal, even though item 1 has the greatest value per pound. (c) For the fractional knapsack problem, taking the items in order of greatest value per pound yields an optimal solution.

Typical tradition problem with greedy solutions

- Coin changes
 - -25, 10, 5, 1
 - How about 7, 5, 1
- Minimum Spanning Tree
 - Prim's algorithm
 - Begin from any node, each time add a new node which is closest to the existing subtree.
 - Kruskal's algorithm
 - Sorting the edges by their weights
 - Each time, add the next edge which will not create cycle after added.
- Single source shortest pathes
 - Dijkstra's algorithm
- Huffman coding
- Optimal merge