Context free grammar

S ::= E EOF

E ::=
$$\lambda$$
 id I . E | A R

I ::= id I | ϵ

A ::= id | (E)

R ::= A R | ϵ

Non-Terminals: S, E, I, A, R Terminals: λ , id, (,), EOF

LL(1) Parsing Algorithm

```
var stack = List(startSymbol)
while (stack.nonEmpty & hasNextToken()) {
 val token = peekToken()
  val symbol = stack.head
  stack = stack.tail
  if (isTerminal(symbol)) {
    if (token = symbol) skipToken()
    else return false
  else {
    chooseRule(symbol, token) match {
      case None ⇒ return false
      case Some(rule) ⇒ stack = rule ++ stack
if (stack.nonEmpty || hasNextToken()) {
  return false
return true
```

```
S ::= E EOF

E ::= \lambda id I . E | A R

I ::= id I | \epsilon

A ::= id | (E)

R ::= A R | \epsilon
```

Input: λ id . id EOF

S

E EOF

λ id I . E EOF

λ id . E EOF

λ id . A R EOF

λ id . id R EOF

λ id . id EOF

Deciding which rule to take

A rule is chosen if:

 The rule can start with the next token

 The rule is nullable, and is followed by something that can start with the next token

NULLABLE

ε is nullable

Non-terminal A is nullable if there is a rule $A := X_1 ... X_n$ where X_i is nullable for all i

```
S ::= E EOF

E ::= \lambda id I . E | A R

I ::= id I | \epsilon

A ::= id | (E)

R ::= A R | \epsilon
```

FIRST

For terminal $x, x \in FIRST(x)$

For non-terminal A, $x \in FIRST(A)$ if there exists a rule A ::= Pre B Post for some (possibly empty) sequence of symbols Pre and Post where $x \in FIRST(B)$ and all symbols in Pre are nullable

FIRST

```
S ::= E EOF

E ::= \lambda id I . E | A R

I ::= id I | \epsilon

A ::= id | (E)

R ::= A R | \epsilon
```

FOLLOW

For non-terminal A, $x \in FOLLOW(A)$ if there exists a rule B ::= $Pre \land Mid \land C Post$ for some (possibly empty) sequences of symbols Pre, $Mid \land C Post$ where $x \in FIRST(C)$ and all symbols in $Mid \land C C C C$ are nullable

For non-terminal A, $\mathbf{x} \in \mathbf{FOLLOW(A)}$ if there exists a rule $\mathbf{B} := \mathbf{Pre} \ \mathbf{A} \ \mathbf{Post}$ for some (possibly empty) sequences of symbols \mathbf{Pre} and \mathbf{Post} where $\mathbf{x} \in \mathbf{FOLLOW(B)}$ and all symbols in \mathbf{Post} are nullable

FOLLOW

```
S ::= E EOF

E ::= \lambda id I . E | A R

I ::= id I | \epsilon

A ::= id | (E)

R ::= A R | \epsilon
```

Computing NULLABLE, FIRST, FOLLOW

Gather contraints

Iteratively ensure constraints are satisfied until **fixpoint** is reached

LL(1) Parsing Table

LL(1) Parsing Table

	λ	id	•	()	EOF
S	1	1		1		
E	1	2		2		
		1	2			
A		1		2		
R		1		1	2	2

LL(1) Conflicts

Sometimes, LL(1) parsing table will contain multiple entries in the same cell.

Algorithm doesn't know which rule to apply simply looking at the next token.

Fixing LL(1) Conflicts

Not always possible, there are languages with context-free grammars but no LL(1) grammars.

Fixing LL(1) Conflicts

Left-factoring

Fixing LL(1) Conflicts

Removing Left-recursion

$$X ::= X + A \mid B$$

$$X ::= B R$$

$$R := + A R \mid \epsilon$$

Now, onto exercises!