Introduction to Neurotranscriptomics

Umar Ahmad, Ph.D.

[ORCID: 0000-0002-3216-5171]

Faculty Member, Sa'adu Zungur University Senior Technical Officer Pathogen Genomics, Africa CDC

Central Dogma of Biology

Why should you study neurotranscriptomics?

Complexities of the brain

Complexities of the brain

Complexities of the brain

Dacey et al. Neuron. 2003

Dacey et al. Neuron. 2003 7

Neurons are also classified by receptors and transmitters

Paul et al. Cell. 2017 8

Gene expression underlies the diversity in neuronal structure, plasticity, and thus function

Paul et al. Cell. 2017

Why should you study neurotranscriptomics?

Why should you study neurotranscriptomics?

Cell type classification: Identify biomarkers of cell types

Development: Mature neurons are post mitotic, so they serve as a great study system

Behavior, Neuronal Plasticity/response: Inform molecular studies, identify immediate early response genes

Disease: identify genomic markers of brain disorders, find potential therapeutic strategies for neurological diseases

Transcriptomics can reveal subtypes of well characterized cells

Transcriptomics can reveal subtypes of well characterized cells

Neuronal biomarker genes tend to be

- 1.Cell adhesion molecules
- 2. Receptors for neurotransmitters
- 3. Vesicle release Ion
- 4. channel genes
- 5. Signaling
- 6. Transcription factors

Gene expression determines cell fate

Study system for development

Response genes can explain behavior and plasticity

Table 2A limited list of IEG mutant mice that exhibit abnormality in neuronal plasticity and cognitive functions.

Gene	Type of knockout	Phenotypes (impairments otherwise mentioned)	Reference	
Arc/arg3.1	Conventional full knock-out (KO)	Hippocampal late-LTP/LTD; spatial and fear memory; taste aversion	Plath et al. (2006)	
	GFP knock-in (KI) full KO	Orientation selectivity in visual cortex	Wang et al. (2006)	
	GFP-KI full KO	Ocular-dominance plasticity in visual cortex	McCurry et al. (2010)	
	Conventional full KO	Experience-dependent synaptic scaling in visual cortex	Gao et al. (2010b)	
bdnf	Promoter IV-specific mutation KI	Inhibitory circuit development in neocortex	Hong et al. (2008)	
	GFP-STOP KI in Exon IV	Aberrant spike-timing-dependent plasticity in prefrontal cortex	Sakata et al. (2009)	
c-fos	CNS-specific KO	Hippocampal LTP; spatial and contextual fear memory	Fleischmann et al. (2003)	
	D1R-expressing cell-specific KO	Cocaine-induced dendritic morphological and behavioral changes	Zhang et al. (2006)	
fosB	Conventional full KO	Enhanced cocaine sensitivity	Hiroi et al. (1997)	
homer1a/Vesl1s	IEG-subtype specific KO	Long-term fear memory formation; remote memory transition	Inoue et al. (2009)	
Tissue plasminogen activator (t-PA)	Conventional full KO	Hippocampal late-LTP with GABA-transmission inhibition	Frey et al. (1996)	
	Conventional full KO	Striatal LTD; hippocampal late-LTP; active avoidance task	Huang et al. (1996)	
zif268 (egr1, krox24, NGFI-A)	LacZ-KI full KO	In vivo dentate gyrus late-LTP; spatial memory; taste aversion	Jones et al. (2001)	
	LacZ-KI full KO	Reconsolidation of object recognition memory	Bozon et al. (2003)	

^{**}Plasticity is the ability for changes to brain function and structure to change given a stimulus

Okunu. NeurosciRes. 2011 16

BDNF –a regulator of plasticity in the brain

BDNF —a regulator of plasticity in the brain

- Immediate early gene
- Depolarize post synaptic neurons to elicit long-and short-term effects on lon channels
 - -NMDA receptors -

Neurotransmitters

- Neuropeptide synthesis
- Excitability
- Brain region specific effects

Gene mutations tend to underly the mechanisms of brain disorders

•Immediate early genes often responsible for learning, memory and development •Memory deficits □ Schizophrenia, autism, bipolar disorder,

obsessive-compulsive disorder, panic disorder, major depression, anxiety, PTSD

Examples IEGs and brain disorders

Examples IEGs and brain disorders

Brain Transcriptome Databases

Table 1. Highlighted brain transcriptome databases ^a

Analysis	Web Interface	Reference	Species	Age	Sample	Method	Isoform	Accession
Spatiotemporal	http://hbatlas.org	Johnson et al., 2009	Human	Lifespan	Multi, macrodissection	Microarray	-	GSE13344
		Kang et al., 2011						GSE25219
	http://hbatlas.org/mouseNCXtranscriptome	Fertuzinhos et al., 2014	Mouse	Postnatal	Ctx layer, microdissection	RNA-seq	-	SRP031888
	http://www.blueprintnhpatlas.org	Bakken et al., 2016	Macaque	Lifespan	Multi, macrodissection, and LMD	Microarray	-	At database
Spatial	http://human.brain-map.org	Hawrylycz et al., 2012	Human	Adult	Multi, macrodissection, and LMD	Microarray	-	At database
	http://genserv.anat.ox.ac.uk/layers	Belgard et al., 2011	Mouse	Adult	Ctx layer, microdissection	RNA-seq	+	GSE27243
	http://rakiclab.med.yale.edu/transcriptome	Ayoub et al., 2011	Mouse	Embryonic	Ctx embryonic layer, LMD	RNA-seq	+	GSE30765
	http://www.brainspan.org/lcm	Miller et al., 2014	Human	Midfetal	Multi, LMD	Microarray	-	At database
	https://www.gtexportal.org	GTEx Consortium, 2015	Human	Adult	Many tissues and cell lines	RNA-seq	+	At database
Temporal	http://braincloud.jhmi.edu	Colantuoni et al., 2011	Human	Lifespan	Prefrontal Ctx, macrodissection	Microarray	-	GSE30272
Cell type-specific	http://brainrnaseq.org	Zhang et al., 2014	Mouse	Adult	Ctx, genetic labeling, immunopanning	RNA-seq	+	GSE52564
		Zhang et al., 2016	Human	Fetal/adult	Ctx, Hp, immunopanning	RNA-seq	-	GSE73721
	http://genetics.wustl.edu/jdlab/csea-tool-2	Doyle et al., 2008	Mouse	Adult	Multi, genetic labeling, ribosome affinity purification	Microarray	_	GSE13379
		Xu et al., 2014						
	http://decon.fas.harvard.edu	Molyneaux et al., 2015	Mouse	Embryonic	Ctx, transcription factor FACS	RNA-seq	+	GSE63482
	http://hipposeq.janelia.org	Cembrowski et al., 2016	Mouse	Adult	Hp, genetic labeling, manual selection	RNA-seq	_	GSE74985
	http://neuroseq.janelia.org	Sugino et al., 2017	Mouse	Adult	Multi, genetic labeling, manual selection	RNA-seq	+	GSE79238
Single-cell	http://linnarssonlab.org/cortex	Zeisel et al., 2015	Mouse	Adult	Ctx, Fluidigm	RNA-seq	-	GSE60361
	http://genebrowser.unige.ch/science2016	Telley et al., 2016	Mouse	Embryonic	Ctx, ventricle dye, FACS, Fluidigm	RNA-seq	-	NA
	https://portals.broadinstitute.org/single_cell	Shekhar et al., 2016	Mouse	Adult	Retina, genetic labeling, Drop-seq	RNA-seq	-	GSE81905
	https://portals.broadinstitute.org/single_cell	Habib et al., 2016	Mouse	Adult	Hp, single nuclei, FACS, sNuc-seq	RNA-seq	_	GSE84371
	https://bit.ly/cortexSingleCell	Nowakowski et al., 2017	Human	Fetal	Ctx, ganglionic eminence, Fluidigm	RNA-seq		PRJNA295469
	http://gbmseq.org	Darmanis et al., 2017	Human	Adult	Ctx tumor, immunopanning, FACS	RNA-seq	_	GSE84465
Integrative	https://www.encodeproject.org	ENCODE Project Consortium, 2012	Many	Many	Many tissues and cell lines	Multiomics	+	Many
	http://celltypes.brain-map.org	Tasic et al., 2016	Mouse	Adult	Ctx, genetic labeling, FACS	RNA-seq	-	GSE71585

^aCtx, Cortex; Hp, hippocampus; multi, multiple brain regions. Isoform column indicates availability of isoform information via web interface.

Keil et al. J Neurosci. 2018 22

Preprocessing

Count matrix

mRNA splicing

How is transcription captured?

•Extract RNA from cell •RNA
preparation •Sequencing library
preparation • Sequencing •Data
capture •Data analysis

Questions?

Thank you for listening!