제 6 장

6.1

- (1) $1200 \times 32 \times 512$ Bytes = 19200Bytes = 19.2MBytes (= 18.75MBytes)
- (2) 1회전에 걸리는 시간 = 3600 / 60 = 60, 1/60sec ≒ 16.67ms 평균 회전지연시간 = 16.67 / 2 ≒ 8.34ms

6.2

- (1) $2400 \times 32 \times 512$ byte ≈ 38.4 MBytes (= 37.5 MBytes)
- $(2) \ 0.02 \text{ms} \times (980-250) = 14.6 \text{ ms}$
- (3) 한 바퀴 회전하는데 8.33ms이 걸리므로 정반대편이면 약 4.16ms가 걸린다.
- $(4) \quad \frac{0.5Kbyte}{4Mbyte/\sec} = 0.125ms$
- $(5) 14.6 \,\mathrm{ms} + 4.15 \,\mathrm{ms} + 0.125 = 18.875 \,\mathrm{ms}$

6.3

 $8 \times 32 \times 0.5$ KBytes = 128KBytes

6.4

장점: 트랙 당 저장되는 데이터 비트들의 수가 모두 같게 되므로 읽기/쓰기 장치(구동장치) 의 설계가 쉬워진다.

단점: 바깥쪽 트랙의 저장 밀도가 낮아지게 되므로 디스크의 저장 공간이 낭비된다.

6.5

디스크 배열의 MTTF

= 단일 디스크의 MTTF / 배열 내 디스크들의 수 = 10000시간 / 20 = 500시간

6.6

장점: 신뢰도가 높다 단점: 가격이 높다

6.7

RAID-3은 RAID-2의 오류가 발생한 비트의 위치를 검출하기 위해 많은 수의 검사 디스크를 사용하면서 발생하는 낭비를 줄이기 위해 한 개의 패리티 비트만을 추가하여 제안되었다.

6.8

RAID-5는 RAID-4의 어떤 디스크에든 데이터 블록을 쓸 때마다 패리티 디스크가 반드시두 번씩 액세스 되어야 하기 때문에 발생하는 디스크 병목현상(전체적으로 성능 저하)을 개선하기 위하여 패리티 블록이 여러 디스크에 라운드-로빈 방식으로 위치하는 형태로 제안되었다.

6.9

수정된 값과 새로운 패리티 블록의 값을 저장하기 위한 두 번의 액세스와 새로운 패리티 블록의 값을 구하기 위해 필요한 수정 전의 데이터 블록과 패리티 블록의 자료를 읽어 오는데 두 번의 액세스가 필요하므로 모두 네 번의 디스크 액세스 동작이 필요하게 된다.

6.10

결함이 발생한 디스크 블록의 비트는 나머지 디스크 비트들 간에 exclusive-OR 연산을 수 행하여 구할 수 있다.

6.11

6.12

 $0.85 \times 10 \text{ns} + (0.95 - 0.85) \times 200 \text{ns} + 0.05 \times 0.7 \times 100 \mu \text{s} + 0.05 \times 0.3 \times 20 \text{ms}$ = $8.5 \text{ns} + 20 \text{ns} + 3.5 \mu \text{s} + 300 \mu \text{s}$ = $303.5285 \mu \text{s}$

6.13

트랙은 하나의 나선형으로 모두 연결되어 있으며, 같은 크기의 섹터들로 분할되어 있다. 데이터는 트랙을 따라 순차적으로 저장된다. 그러나 액세스는 순차적이 아닌 임의 액세스 방식을 사용한다. 처음에 헤드를 그 섹터 근처의 영역으로 이동시키고, 그 다음에는 회전속도를 조정하여 섹터의 주소를 검사하면서 미세 조정을 통하여 원하는 섹터를 찾아서 데이터에서 읽고 전송한다.

6.14

특징 : CLV에서는 CAV 기술의 단점인 공간의 낭비를 보완하기 위해 트랙의 위치에 상관없이 저장밀도를 같게 하였다. 따라서 검색 할 때는 회전 속도를 조절하여 위치에 따라 속도를 다르게 해야 한다.

장점: 저장 용량이 크다.

단점 : 회전 구동장치가 복잡하다.

6.15

전송률을 높이기 위해서는 중심부 가까이 위치한 트랙 부분을 액세스 할 때에 회전 속도가 매우 높아져야 하기 때문에 소음과 열이 많이 발생하는 현상을 방지하기 위하여 CAV 방식을 사용.

6.16

쓰기 동작: 레이저 광선을 이용하여 염료층의 피트 부분을 태운다.

한번 태워진 염료는 복구가 불가능하므로, 한번만 기록 가능.

6.17

상태 변화를 통하여 정보의 반복 저장이 가능한 물질로 만들어진 기록층을 가지고 있기 때문에 녹이고 냉각하는 과정을 반복하여도 성질이 변화하지 않고 거의 무한정 재기록이 가능하다.

6.18

두 개의 원판들을 겹쳐 제작. 피트의 크기가 절반 트랙 폭이 절반.

6.19

DVD에 비해 현격히 짧은 파장의 레이저 사용 보호층 두께의 조정