○ Start Slide

Real time Adaptive Estimation

Sasanka Kuruppu Arachchige, Nicklas Fienda

Mentor: Gökhan Alcan, Azwirman Gusrialdi

Problem

Prior knowledge of the system dynamics

Difficulty to accurately model dynamics of complex systems

Adaptability to system changes

Proposal

Temporal Predictive Coding (tPC)

- Learns system dynamics and perform state estimation.
- Similar performance to Kalman filter.

Hypothesis

Will adapt to changes in system dynamics

Goals

- To implement a tPC based adaptive estimator
- Deploy the system in Simulator and Real world hardware

Objectives

Phase 1: Simulation

- Set up simulator in NVIDIA IsaacSIM #Sasa
- Replicate state estimation results of the paper.
 - KL as the baseline #Sasa
 - tPC #Nick
- Off the shelf control. PID, LQR etc. #Sasa , #Nick
- Evaluate systems adaptability with #Sasa , #Nick
 - Changes in the physical parameters (e.g. gravity).
 - Changes in the system dynamics (mass of pendulum).
 - Unseen external disturbances.
 - Novel sensing methods.

Phase 2: Real world

- Construct the physical device #Sasa , #Nick
- Evaluate the adaptability to sim2real gap for both KF and tPC. #Sasa
 , #Nick

○ SWOT

Strengths

- Technical know-how
 - Electronics and hardware design
 - Robotics
 - Real time control system design
 - Learning based system expertise

Weaknesses

- tPC is a cutting edge learning based method which is yet to be established
- Time management

Opportunities

- Enables learning dynamics of complex systems
- Enables a plug and play estimation algorithms with minor/self tuning

Threats

- Sim-to-real gap
- Uncertainty of scaling to bigger systems

Thank you

Questions?