Lie Methods for Nonlinear Dynamics with Applications to Accelerator Physics

Alex J. Dragt

University of Maryland, College Park

http://www.physics.umd.edu/dsat/

1 November 2024

Alex J. Dragt
Dynamical Systems and Accelerator Theory Group
Department of Physics
University of Maryland
College Park, Maryland 20742

http://www.physics.umd.edu/dsat

Work supported in part by U.S. Department of Energy Grant DE-FG02-96ER40949.

© 1991, 2014, 2018, and 2022 by Alex J. Dragt.

All rights reserved.

Contents

\boldsymbol{P}	reface			lxvii
1	Intro	ductor	y Concepts	1
	1.1	-	er Maps	1
		1.1.1	Maps and Dynamics	2
		1.1.2	Maps and Accelerator Physics	
		1.1.3	Maps and Geometry	
	1.2	Map It	eration and Other Background Material	
		1.2.1	Logistic Map	12
		1.2.2	Complex Logistic Map and the Mandelbrot Set	20
		1.2.3	Simplest Nonlinear Symplectic Map	26
		1.2.4	Goal for Use of Maps in Accelerator Physics	29
		1.2.5	Some Highlights of the N -Body Gravitational Problem	32
		1.2.6	Maps from Hamiltonian Differential Equations	39
	1.3		al Theorems for Differential Equations	
	1.4	Transfe	er Maps Produced by Differential Equations	
		1.4.1	Map for Simple Harmonic Oscillator	
		1.4.2	Maps for Monomial Hamiltonians	
		1.4.3	Stroboscopic Maps and Duffing Equation Example	63
	1.5	Lagran	gian and Hamiltonian Equations	
		1.5.1	The Nonsingular Case	
		1.5.2	A Common Singular Case	
	1.6		on's Equations with a Coordinate as an Independent Variable	
	1.7		stly Lorentz Invariant Formulation of Equations of Motion	95
		1.7.1	Relativistic Preliminaries	
		1.7.2	A Relativistic Lagrangian L_R and Associated Relativistic Hamil-	
			tonian H_R	
		1.7.3	Relation between L_R and H_R and L and H	
		1.7.4	An Alternate Relativistic Lagrangian L_A ?	
	1.8		ning About Riemannian Manifolds	
		1.8.1	Geodesics and Affine Geodesics	
		1.8.2	Affine Geodesics in Minkowski Space	
		1.8.3	Relation Between Infinitesimal Interval ds^2 and Net Interval I	
		1.8.4	Proof that Lorentz Transformations Must Be Linear	
		1.8.5	Vector and Tensor Transformation Properties	135

CONTENTS

	1.9	Definit	tion of Poisson Bracket
2	Num	erical	Integration 167
	2.1	The G	eneral Problem
		2.1.1	Integrating Forward in Time
		2.1.2	Integrating Backwards in Time
	2.2	A Cru	de Solution Due to Euler
		2.2.1	Procedure
		2.2.2	Numerical Example
	2.3	Runge	-Kutta Methods
		2.3.1	Introduction
		2.3.2	Procedure
		2.3.3	Numerical Example
		2.3.4	Nomenclature
	2.4		-Difference/Multistep/Multivalue Methods
	2.1	2.4.1	Background
		2.4.2	Adams' Method
		2.4.2 $2.4.3$	Numerical Example
		2.4.4	Derivation and Error Analysis
	2.5		matic) Choice and Change of Step Size and Order
	2.0	2.5.1	Adaptive Change of Step Size in Runge-Kutta
		2.5.1 $2.5.2$	Adaptive Change of Step Size in Runge-Rutta
		2.5.2 $2.5.3$	Jet Formulation
		2.5.3 $2.5.4$	
	0.6	2.5.5	Advice to the Novice
	2.6	_	polation Methods
		2.6.1	Overview
		2.6.2	Making a Meso Step
		2.6.3	Summary
	o =	2.6.4	Again, Advice to the Novice
	2.7		s Not Covered
		2.7.1	Størmer-Cowell and Nyström Methods
		2.7.2	Other Starting Procedures
		2.7.3	Stability
		2.7.4	Regularization, Etc
		2.7.5	Solutions with Few Derivatives
		2.7.6	Symplectic and Geometric/Structure-Preserving Integrators 248
		2.7.7	Error Analysis
		2.7.8	Backward Error Analysis
		2.7.9	Comparison of Methods
3	Sym	plectic	Matrices and Lie Algebras/Groups 259
	3.1	Definit	tions
	3.2	Varian	ts
	3.3	Simple	e Symplectic Restrictions and Symplectic Factorization

CONTENTS iii

	3.3.1	Large-Block Formulation	266
	3.3.2	Symplectic Block Factorization	267
	3.3.3	Symplectic Matrices Have Determinant +1	270
	3.3.4	Small-Block Formulation	270
3.4		lue Spectrum	277
	3.4.1	Background	278
	3.4.2	The 2×2 Case	279
	3.4.3	The 4×4 and Remaining $2n \times 2n$ Cases	280
	3.4.4	Further Symplectic Restrictions	284
	3.4.5	In Praise of and Gratitude for the Symplectic Condition	286
3.5		ector Structure, Normal Forms, and Stability	291
5.5	3.5.1	Eigenvector Basis	291
	3.5.1 $3.5.2$		$\frac{291}{291}$
	3.5.2 $3.5.3$	J-Based Angular Inner Product	291
		Use of Angular Inner Product	
	3.5.4	Definition and Use of Signature	293
	3.5.5	Definition of Phase Advances and Tunes	295
	3.5.6	The Krein-Moser Theorem and Krein Collisions	295
	3.5.7	Normal Forms	297
0.0	3.5.8	Stability	299
3.6	_	Properties, Dyadic and Gram Matrices, and Bases	304
	3.6.1	Group Properties	305
	3.6.2	Dyadic and Gram Matrices, Bases and Reciprocal Bases	307
	3.6.3	Orthonormal and Symplectic Bases	310
	3.6.4	Construction of Orthonormal Bases	313
	3.6.5	Construction of Symplectic Bases	319
3.7		ebraic Properties	333
	3.7.1	Matrix Exponential and Logarithm	333
	3.7.2	Application to Symplectic Matrices	336
	3.7.3	Matrix Lie Algebra and Lie Group: The The Baker-Campbell-	
		Hausdorff (BCH) Multiplication Theorem	338
	3.7.4	Abstract Definition of a Lie Algebra	341
	3.7.5	Abstract Definition of a Lie Group	342
	3.7.6	Classification of Lie Algebras	343
	3.7.7	Adjoint Representation of a Lie Algebra	348
3.8	Expone	ntial Representations of Group Elements	379
	3.8.1	Exponential Representation of Orthogonal and Unitary Matrices	380
	3.8.2	Exponential Representation of Symplectic Matrices	380
3.9	Unitary	Subgroup Structure	392
3.10		Subgroup Structure	403
3.11		Factorizations/Decompositions	406
3.12		Representation of Symplectic Matrices	407
3.13		Symplectic Forms, Darboux Transformations, Etc	415
0.10	3.13.1	General Symplectic Forms	415
	3.13.2	Darboux Transformations	419
	3.13.3	Symplectic Forms and Pfaffians	422

iv CONTENTS

		3.13.4	Variant Symplectic Groups?
4	Matı	rix Exp	onentiation, Polar Decompositions, and Symplectifications 43
	4.1		entiation by Scaling and Squaring
		4.1.1	The Ordinary Exponential Function
		4.1.2	The Matrix Exponential Function
	4.2	(Ortho	gonal and Unitary) Polar Decompositions
		$\dot{4}.2.1$	Real Matrix Case
		4.2.2	Application to the Symplectic Group
		4.2.3	Complex Matrix Case
	4.3	Matrix	Symplectification
		4.3.1	Properties of <i>J</i> -Symmetric Matrices
		4.3.2	Initial Result on Symplectic Polar Decomposition
		4.3.3	Extended Result on Symplectic Polar Decomposition 46
		4.3.4	Symplectic Polar Decomposition Not Globally Possible 46
		4.3.5	Uniqueness of Symplectic Polar Decomposition
		4.3.6	Concluding Summary
	4.4	Finding	g the Closest Symplectic Matrix
		4.4.1	Background
		4.4.2	Use of Euclidean Norm
		4.4.3	Geometric Interpretation of Symplectic Polar Decomposition 49
	4.5	Symple	ectification Using Symplectic Polar Decomposition
		4.5.1	Properties of Symplectification Using Symplectic Polar Decompo-
			sition $\dots \dots \dots$
		4.5.2	Iteration
	4.6	Modifie	ed Darboux Symplectification
	4.7		ential and Cayley Symplectifications
		4.7.1	Exponential Symplectification
		4.7.2	Cayley Symplectification
		4.7.3	Cayley Symplectification Near the Identity
	4.8	Genera	ting Function Symplectification
5		-	Lie Concepts for Classical Mechanics and Related Delights 52
	5.1	_	ties of the Poisson Bracket
	5.2	_	ons, Constants, and Integrals of Motion
	5.3	_	erators
	5.4		Insformations
		5.4.1	Definition and Some Properties
		5.4.2	Applications
	5.5		ation of the $sp(2n,\mathbb{R})$ Lie Algebra
	5.6		or $sp(2,\mathbb{R})$
	5.7		or $sp(4,\mathbb{R})$
	5.8		or $sp(6,\mathbb{R})$
		5.8.1	U(3) Preliminaries
		5.8.2	Polynomials for $u(3)$

CONTENTS v

	5.8.3	Plan for the Remaining Polynomials
	5.8.4	Cartan Basis for $su(3)$
	5.8.5	Representations of $su(3)$: Cartan's Approach
	5.8.6	Weight Diagrams for the First Few $su(3)$ Representations 56
	5.8.7	Weight Diagram for the General $su(3)$ Representation
	5.8.8	The Clebsch-Gordan Series for $su(3)$
	5.8.9	Representations of $su(3)$: the Approach of Schur and Weyl 57
	5.8.10	Remaining Polynomials
5.9	Some T	opological Questions
	5.9.1	Nature and Connectivity of $Sp(2n, \mathbb{R})$
	5.9.2	Where Are the Stable Elements?
	5.9.3	Covering/Circumnavigating $U(n)$
5.10	Notatio	nal Pitfalls and Quaternions
	5.10.1	The Lie Algebras $sp(2n,\mathbb{R})$ and $usp(2n)$
	5.10.2	USp(2n) and the Quaternion Field
	5.10.3	Quaternion Matrices
	5.10.4	Properties of Quaternion Matrices
	5.10.5	Quaternion Matrices and $USp(2n)$ 60
	5.10.6	Quaternion Inner Product and Its Preservation 60
	5.10.7	Discussion
5.11		Transformations
	5.11.1	Definition in the Context of Complex Variables
	5.11.2	Matrix Extension
	5.11.3	Invertibility Conditions
	5.11.4	Transitivity
5.12		ctic Transformations and Siegel Space
	5.12.1	Action of $Sp(2n, \mathbb{C})$ on the Space of Complex Symmetric Matrices 61
	5.12.2	Siegel Space and $Sp(2n,\mathbb{R})$
	5.12.3	Group Actions on Homogeneous Spaces 61
	5.12.4	Homogeneous Spaces and Cosets 61
	5.12.5	Group Action on Cosets Equals Group Action on a Homogeneous
		Space
	5.12.6	Application of Results to Action of $Sp(2n, \mathbb{R})$ on Siegel Space 62
	5.12.7	Action of $Sp(2n, \mathbb{R})$ on the Generalized Real Axis 62
	5.12.8	Symplectic Modular Groups
5.13		Transformations Relating Symplectic and Symmetric Matrices 62
	5.13.1	Overview
	5.13.2	The Cayley Möbius Transformation
	5.13.3	Two Symplectic Forms and Their Relation by a Darboux Trans-
	0.10.0	formation
	5.13.4	The Infinite Family of Darboux Transformations
	5.13.5	Isotropic Vectors and Lagrangian Planes
	5.13.6	Connection between Symplectic Matrices and Lagrangian Planes
	0.20.0	for the Symplectic Form \tilde{J}^{4n}

vi CONTENTS

		5.13.7	Connection between Symmetric Matrices and Lagrangian Planes for the Symplectic Form J^{4n}	625
		E 19 0	v 1	635
		5.13.8	Relation between Symplectic and Symmetric Matrices and the Role of Darboux Möbius Transformations	637
		5.13.9	Completion of Tasks	640
	5.14		eness of Cayley Möbius Transformation	648
	5.14 5.15		Symplectification Revisited	653
	0.10	Mania	Symplectification revisited	000
6	Sym	plectic	Maps	663
	6.1	Prelimi	inaries and Definitions	663
		6.1.1	Gradient Maps	664
		6.1.2	Symplectic Maps	665
	6.2	Group	Properties	670
		6.2.1	The General Case	670
		6.2.2	Various Subgroups and Their Names	671
	6.3		vation of General Poisson Brackets	684
	6.4	Relatio	on to Hamiltonian Flows	687
		6.4.1	Hamiltonian Flows Generate Symplectic Maps	687
		6.4.2	Any Family of Symplectic Maps Is Hamiltonian Generated	690
		6.4.3	Almost All Symplectic Maps Are Hamiltonian Generated	694
		6.4.4	Transformation of a Hamiltonian Under the Action of a Symplectic	00.4
		3.6: 1	Map	694
	6.5		Variable Generating Functions	703
		6.5.1	Generating Functions Produce Symplectic Maps	704
		6.5.2	Finding a Generating Function from a Map or a Generating Hamil-	710
		0 5 0	tonian	712
		6.5.3	Finding the Generating Hamiltonian from a Generating Function;	715
	c c		Hamilton-Jacobi Theory/Equations	717
	6.6		ating Functions Come from an Exact Differential	731
		6.6.1	Overview	731
		6.6.2	A Democratic Differential Form	732
		6.6.3	Information about \mathcal{M} Carried by the Democratic Form	734
	c 7	6.6.4	Breaking the Degeneracy	736
	6.7		ra of Generating Functions	741
		6.7.1	Derivation	741
		6.7.2	Discussion	748
		6.7.3	Relating Source Functions and Generating Hamiltonians, Transformation of Hamiltonians, and Hamiltonians, Theory (Equations	759
		671	formation of Hamiltonians, and Hamilton-Jacobi Theory/Equations What Kind of Congreting Function/Darboury Matrix Should We	753
		6.7.4	What Kind of Generating Function/Darboux Matrix Should We	761
	6 9	Cumple	Choose?	761
	6.8	6.8.1	ectic Invariants	788
				788
		6.8.2	Gromov's Nonsqueezing Theorem and the Symplectic Camel	790
		6.8.3	Poincaré Integral Invariants	795
		6.8.4	Connection between Surface and Line Integrals	797

CONTENTS vii

		6.8.5	Poincaré-Cartan Integral Invariant)1
	6.9	Poincar	ré Surface of Section and Poincaré Return Maps)7
		6.9.1	Poincaré Surface of Section Maps)8
		6.9.2	Poincaré Return Maps	10
	6.10	Overvie	ew and Preview	1
7	Lie T	ransfor	emations and Symplectic Maps 81	9
	7.1		tion of Symplectic Maps	
	7.2		tion of the Group $Sp(2n)$ and Its Subgroups	
	-	7.2.1	Realization of General Group Element	
		7.2.2	Realization of Various Subgroups	
		7.2.3	Another Proof of Transitive Action of $Sp(2n)$ on Phase Space 82	
	7.3		nt Scalar Product	
		7.3.1	Definition of Scalar Product	
		7.3.2	Definition of Hermitian Conjugate	
		7.3.3	Matrices Associated with Quadratic Lie Generators 83	
	7.4		ectic Map for Flow of Time-Independent Hamiltonian	
	7.5	-	Maps and Jets	
	7.6		zation Theorem	
	7.7		on of Translations	
	7.8		Factorizations	
	7.9	Coordin	nates and Connectivity	
	7.10		e Requirements	36
8	A Cs	deulue :	for Lie Transformations and Noncommuting Operators 87	72
O	8.1		Lie Operators and the Adjoint Lie Algebra 87	
	8.2		as Involving Adjoint Lie Operators	
	8.3		ons of Order and other Miscellaneous Mysteries	
	0.0	8.3.1	Questions of Order and Map Multiplication	
		8.3.2	Questions of Order in the Linear Case	
		8.3.3	Application to General Operators and General Monomials to Con-	JU
		0.0.0	struct Matrix Representations	₹⊿
		8.3.4	Application to Linear Transformations of Phase Space	
		8.3.5	Dual role of the Phase-Space Coordinates z_a	
		8.3.6	Extensions	
		8.3.7	Sign Differences	
	8.4		ncatenation Formulas	
	8.5		version and Reverse Factorization	
	8.6		and Hybrid Taylor-Lie Concatenation and Inversion	
	8.7		g with Exponents	
	~··	8.7.1	Formulas for Combining Exponents	
		8.7.2	Nature of Single Exponential Form	
	8.8		naus or Factorization Formulas	
	8.9		Quotients, and Gradings	
		,	· · · · · · · · · · · · · · · · · · ·	

viii CONTENTS

9	Inclu	sion of '	Translations in the Calculus	943
	9.1	Introduc	ction	943
	9.2	The Inh	nomogeneous Symplectic Group $ISp(2n,\mathbb{R})$	944
		9.2.1	Rearrangement Formula	944
		9.2.2	Factorization Formula	945
		9.2.3	Concatenation Formulas	948
	9.3	Lie Con	catenation in the General Nonlinear Case	953
	9.4	Canonic	eal Treatment of Translations	962
		9.4.1	Preliminaries	962
		9.4.2	Case of Maps with No Nonlinear Part	967
		9.4.3	Case of General Maps	971
	9.5	Map Inv	version and Reverse and Mixed Factorizations	982
	9.6	-	and Hybrid Taylor-Lie Concatenation and Inversion	985
	9.7		Algebra of the Group of all Symplectic Maps Is Simple	990
10	Com	outation	n of Transfer Maps	993
	10.1	Equatio	n of Motion	993
		10.1.1	Background and Derivation	993
		10.1.2	Perturbation/Splitting Theory and Reverse Factorization	994
		10.1.3	Perturbation/Splitting Theory and Forward Factorization	995
	10.2	Series (1	Dyson) Solution	995
	10.3	Exponer	ntial (Magnus) Solution	998
	10.4	Factored	d Product Solution: Powers of H Expansion	1001
	10.5		d Product Solution: Taylor Expansion about Design Orbit	1005
		10.5.1	Background	1005
		10.5.2	Term by Term Procedure	1008
		10.5.3	Summary and GENMAP Nomenclature	1014
	10.6	Forward	l Factorization and Lie Concatenation Revisited	1015
		10.6.1	Preliminary Discussion	1015
		10.6.2	Forward Factorization	1015
		10.6.3	Alternate Derivation of Lie Concatenation Formulas	1017
	10.7	Direct 7	Taylor Summation	1019
	10.8	Scaling,	Splitting, and Squaring	1025
	10.9		eal Treatment of Errors	1034
	10.10		rman and Fer Methods	1039
		10.10.1	Wei-Norman Equations	1039
			Accelerated Procedure: The Fer Expansion	1039
	10.11		ctic Integration	1039
	10.12		Methods and the Complete Variational Equations	1039
			Case of No or Ignored Parameter Dependence	1041
			Inclusion of Parameter Dependence	1042
		10.12.3	Solution of Complete Variational Equations Using Forward Inte-	
		-	gration	1044
		10.12.4	Application of Forward Integration to the Two-Variable Case	1045

CONTENTS ix

	10.12.5	Solution of Complete Variational Equations Using Backward Inte-	
		gration	1049
	10.12.6	The Two-Variable Case Revisited	1051
	10.12.7	Application to Duffing's Equation	1051
	10.12.8	Application to Duffing's Equation Including some Parameter Dependence	1054
	10.12.9		1060
11 Geor	netric/S	Structure-Preserving Integration: Integration on Manifolds	1067
11.1		cal Integration on Manifolds: Rigid-Body Motion	1068
	11.1.1	Angular Velocity and Rigid-Body Kinematics	1068
	11.1.2	Angular Velocity and Rigid-Body Dynamics	1070
	11.1.3	Problem of Integrating the Combined Kinematic and Dynamic	
		Equations	1070
	11.1.4	Solution by Projection	1071
	11.1.5	Solution by Parameterization: Euler Angles	1071
	11.1.6	Problem of Kinematic Singularities	1072
	11.1.7	Quaternions to the Rescue	1073
	11.1.8	Modification of the Quaternion Kinematic Equations of Motion .	1074
	11.1.9	Local Coordinate Patches	1075
	11.1.10	Canonical Coordinates of the Second Kind: Tait-Bryan Angles .	1076
	11.1.11	Canonical Coordinates of the First Kind: Angle-Axis Parameters	1076
	11.1.12	Cayley Parameters	1077
	11.1.13	Summary of Integration Using Local Coordinates	1078
	11.1.14	Integration in the Lie Algebra: Exponential Representation	1079
	11.1.15	Integration in the Lie Algebra: Cayley Representation	1081
	11.1.16	Parameterization of G and $\mathcal{L}(G)$	1083
	11.1.17	Quaternions Revisited	1083
11.2	Numeri	cal Integration on Manifolds: Spin and Qubits	1113
	11.2.1	Constrained Cartesian Coordinates Are Not Global	1114
	11.2.2	Polar-Angle Coordinates Are Not Global	1114
	11.2.3	Local Tangent-Space Coordinates	1115
	11.2.4	Exploiting Connection with Rigid-Body Kinematics	1117
	11.2.5	What Just Happened? Generalizations	1118
	11.2.6	Exploiting an Important Simplification: Lie Taylor Factorization	1110
	11 0 7	and Lie Taylor Runge Kutta	1119
	11.2.7	Factored Lie Runge Kutta	1125
	11.2.8	Magnus Lie Runge Kutta	1132
11.0	11.2.9	Integration in the Lie Algebra Revisited	1138
11.3		cal Integration on Manifolds: Charged Particle Motion in a Static ic Field	1162
	11.3.1	Exploitation of Previous Results	1162
		-	
	11.3.2	Splitting: Exploitation of Future Results	1164

 \mathbf{x} CONTENTS

12	Geon	netric/Structure-Preserving Integration: Symplectic Integration	1169
	12.1	Splitting, $T + V$ Splitting, and Zassenhaus Formulas	1170
	12.2	Explicit Symplectic Integrator for Polynomial Hamiltonians	1177
	12.3	Symplectic Runge-Kutta Methods for $T+V$ Split Hamiltonians: Parti-	
		tioned Runge Kutta and Nyström Runge Kutta	1177
		12.3.1 Partioned Runge-Kutta	1177
		12.3.2 Nyström Runge-Kutta	1177
	12.4	Symplectic Runge-Kutta Methods for General Hamiltonians	1177
		12.4.1 Background	1177
		12.4.2 Condition for Symplecticity	1179
		12.4.3 The Single-Stage Case	1179
		12.4.4 Two-, Three-, and More-Stage Methods	1182
	12.5	Study of Single-Stage Method	1183
	12.6	Study of Two-Stage Method	1189
	12.7	Numerical Examples for One- and Two-Stage Methods	1191
	12.8	How Much Iteration Is Required for Implicit Methods?	1191
	12.9	Proof of Condition for Runge-Kutta to be Symplectic	1192
	12.10	Symplectic Integration of General Hamiltonians Using Generating Function	s1193
	12.11	Explicit Symplectic Integrator for Motion in General Electromagnetic Field	s1193
	12.12	Zassenhaus Formulas and Map Computation	1199
		12.12.1 Case of $T+V$ or General Electromagnetic Field Hamiltonians $\ .$	1199
		12.12.2 Case of Hamiltonians Expanded in Homogeneous Polynomials	1200
	12.13	Other Zassenhaus Formulas and Their Use	1205
13		1	1217
	13.1	Background	1217
		13.1.1 Specification of Design Orbit	1217
		13.1.2 Deviation Variables	1218
		13.1.3 Deviation Variable Hamiltonian	1219
		13.1.4 Dimensionless Scaled Deviation Variables	1220
	40.0	13.1.5 Scaled Deviation-Variable Hamiltonian	1220
	13.2	Axial Rotation	1223
	13.3	Drift	1223
	13.4	Solenoid	1223
	13.5	Wiggler/Undulator	1223
	13.6	Quadrupole	1223
	13.7	Sextupole	1223
	13.8	Octupole	1223
	13.9	Higher-Order Multipoles	1223
	13.10	Thin Lens Multipoles	1223
	13.11	Combined Function Quadrupole	1223
	13.12	Radio Frequency Cavity	1223

CONTENTS xi

14	Tran	sfer Ma	aps for Idealized Curved Beam-Line Elements	1227
	14.1	Backgr	ound	1227
	14.2	Sector	Bend	1227
	14.3	Paralle	el Faced (Rectangular) Bend	1227
		14.3.1	Preliminaries	1227
		14.3.2	Determination of Trajectories	1229
		14.3.3	Specification of Design Orbit	1233
		14.3.4	Expansion About the Design Orbit	1236
		14.3.5	Scaled and Dimensionless Deviation Variables	1244
	14.4	Hard-E	Edge Fringe Fields	1245
	14.5	Pole Fa	ace Rotations	1245
	14.6	Genera	d Bend	1245
	14.7	Combin	ned Function Bend	1245
15	Taylo	or and	Spherical and Cylindrical Harmonic Expansions	1247
	15.1	Introdu	action	1247
	15.2	Spheric	cal Expansion	1249
		15.2.1	Harmonic Functions and Absolute and Expansion Coordinates .	1249
		15.2.2	Spherical and Cylindrical Coordinates	1250
		15.2.3	Harmonic Polynomials, Harmonic Polynomial Expansions, and Gen	
			eral Spherical Polynomials	1251
		15.2.4	Spherical Polynomial Vector Fields	1253
		15.2.5	Determination of Minimum Vector Potential: the Poincaré-Coulomb	b
			Gauge	1254
		15.2.6	Uniqueness of Poincaré-Coulomb Gauge	1260
		15.2.7	Direct Construction of Poincaré-Coulomb Gauge Vector Potential	1261
	15.3	Cylind	rical Harmonic Expansion	1269
		15.3.1	Complex Cylindrical Harmonic Expansion	1269
		15.3.2	Real Cylindrical Harmonic Expansion in terms of Real On-axis	
			Gradients	1272
		15.3.3	Some Simple Examples: $m = 0, 1, 2 \dots \dots \dots$	1276
		15.3.4	Magnetic Field Expansions for the General Case	1278
		15.3.5	Symmetry and Allowed and Forbidden Multipoles	1281
		15.3.6	Relation between Harmonic Polynomials in Spherical and Cylin-	
			drical Coordinates	1282
	15.4	Determ	nination of the Vector Potential: Azimuthal-Free Gauge	1287
		15.4.1	Derivation	1288
		15.4.2	Some Simple Examples: $m = 1, 2 \dots \dots \dots$	1290
	15.5	Determ	nination of the Vector Potential: Symmetric Coulomb Gauge	1294
		15.5.1	The $m = 0$ Case	1294
		15.5.2	The $m \ge 1$ Cases	1298
	15.6		iqueness of Coulomb Gauge	1309
		15.6.1	The General Case	1309
		15.6.2	Normal Dipole Example	1311
	15.7	Determ	nination of the Vector Potential: Poincaré-Coulomb Gauge	1316

xii CONTENTS

	15.7.1	The $m = 0$ Case	1317
	15.7.2	The $m \geq 1$ Cases	1318
15.8	Relation	ns Between Vector Potentials in Various Gauges and Associated	
		Functions	1323
	15.8.1	Transformation Between Azimuthal-Free Gauge and Symmetric	
		Coulomb Gauge	1324
	15.8.2	Transformation Between Symmetric Coulomb Gauge and Poincaré-	
		Coulomb Gauge	1325
	15.8.3	Transformation Between Azimuthal-Free Gauge and Poincaré-Coulo	mb
		Gauge	1328
15.9	Scalar F	Potentials from Sources	1329
	15.9.1	Preliminaries	1329
	15.9.2	Monopole Volume Distributions	1329
	15.9.3	Monopole Surface Distributions	1330
	15.9.4	Dipole Surface Distributions	1330
	15.9.5	Scalar Potential in Terms of Volume and Single and Double Layer	
		Source Distributions	1331
	15.9.6	Green's Theorem	1332
	15.9.7	Application of Green's Theorem	1332
15.10	Normal	Magnetic Monopole Doublet Example and Applications	1334
	15.10.1	Magnetic Scalar Potential and Magnetic Field	1334
	15.10.2	Analytic On-Axis Gradients for the Normal Monopole Doublet .	1341
15.11	Minimu	m Vector Potential for Normal Magnetic Monopole Doublet	1349
	15.11.1	Computation from the Scalar Potential and Associated Magnetic	
		Field	1350
	15.11.2	Computation from the On-Axis Gradients	1351
15.12	Scalar F	Potentials Produced by Single-Layer Multipole Ring Sources	1354
	15.12.1	Normal Multipole Case	1354
	15.12.2	Skew Multipole Case	1356
15.13	On-Axis	s Gradients for these Scalar Potentials	1357
15.14	Approxi	imating Delta, Signum, and Bump Functions	1360
	15.14.1	Approximating Delta Functions	1360
	15.14.2	Approximating Signum Functions	1364
	15.14.3	Approximating Bump Functions	1367
15.15	Relation	n between Potentials Produced by Analogous Single- and Double-	
	*	ing Sources	1371
		Double-Layer Ring Distributions	1371
		Explicit Formula Relating Potentials	1373
		Explicit Formula Relating On-Axis Gradients	1375
		Explicit Formula for Potential due to Double-Layer Ring Source	1375
15.16		als Produced by Single-Layer and Double-Layer Ring Sources Uni-	
		Distributed on a Cylindrical Surface	1376
		Use of Single-Layer Ring Source	1376
		Use of Double-Layer Ring Source	1376
15.17	Closing	Remarks	1376

CONTENTS xiii

	15.17.1	Caveat about Significance of Integrated Multipoles	1376
	15.17.2	Need for On-Axis Gradients and the Use of Surface Data	1378
	15.17.3	Limitations Imposed by Symmetry and Hamilton and Maxwell $$.	1379
16 Reali	stic Tra	unsfer Maps for Straight Iron-Free Beam-Line Elements	1385
16.1	Termina	ating End Fields	1385
	16.1.1	Preliminary Observations	1385
	16.1.2	Matching Conditions	1387
	16.1.3	Changing Gauge	1393
	16.1.4	Application to Fringe-Field Termination	1395
16.2	Solenoio	ds	1395
	16.2.1	Preliminaries	1396
	16.2.2	Simple Air-Core Solenoid	1398
	16.2.3	Opposing Simple Solenoid Doublet	1403
	16.2.4	More Complicated Air-Core Solenoids	1405
	16.2.5	Computation of Transfer Map	1406
	16.2.6	Solenoidal Fringe-Field Effects: Attempts to Hard-Edge Model	
		Them	1411
	16.2.7	Consequences of Terminating Solenoidal End Fields	1432
16.3		ommon Iron-Free Dipoles	1445
	16.3.1	Preliminaries	1445
	16.3.2	Current Windings for two Common Air-Core Dipoles	1446
16.4		i-Biscari Windings for Pure Multipoles	1451
	16.4.1	Winding Geometry	1452
	16.4.2	Specification of Currents for a Pure Dipole	1452
	16.4.3	Description of Resulting On-Axis Gradient and On-Axis Field	1454
	16.4.4	(Place Holder) Mathematical Model for a Pure Normal Dipole	
		Based on both Single Layer and Double Layer Monopole Distribu-	1.450
	10.45	tions	1456
	16.4.5	Specification of Currents for a Pure Quadrupole	1456
	16.4.6	Description of Resulting On-Axis Gradient and On-Axis Field	1457
	16.4.7	(Place Holder) Mathematical Model for a Pure Normal Quadrupole	
		Based on both Single Layer and Double Layer Monopole Distribu-	1.460
	10 40	tions	1460
10 5	16.4.8	Sextupoles and Beyond	1460
16.5		Function Windings for Pure Multipoles	1460
	16.5.1	General Current Ansatz	$1460 \\ 1461$
	16.5.2 16.5.3	Canonical Stream Function	1461 1464
	16.5.4	Execution of Plan for the Solenoidal $(m = 0)$ Case	1464 1466
	16.5.4 $16.5.5$	Preliminary Work for the Normal $m \geq 1$ Cases	1460 1469
	16.5.6	Normal Dipole $(m = 1)$ Case	1409 1470
	16.5.7	Normal Dipole ($m = 1$) Case	1470 1474
	16.5.8	Final Results for the General $m > 1$ Normal Cases	1474 1482
	16.5.9		1482 1492
	10.9.9	Use of Vector Potential as a Stepping Stone	1494

xiv CONTENTS

	16.6	Rare Ea	arth Cobalt (REC) Pure Multipoles	1507
		16.6.1	Description of Resulting On-Axis Gradient and On-Axis Field for	
			a REC Quadrupole	1507
		16.6.2	Overlapping Fringe Fields	1510
		16.6.3	Hard-Edge Quadrupoles	1510
		16.6.4	Terminating Quadrupole End Fields	1510
	16.7	Lamber	etson Windings	1516
	16.8		l Utility of Cylindrical Harmonic Expansions for Dipoles	1516
		16.8.1	Terminating Dipole End Fields	1518
		16.8.2	Limited Utility of Hard-Edge Models for Dipole Fringe Fields	1518
	16.9		re Wiggler/Undulator Models	1519
		16.9.1	Simple Air-Core Wiggler/Undulator Model	1519
		16.9.2	Iron-Free Rare Earth Cobalt (REC) Wiggler/Undulator	1520
		16.9.3	Terminating Wiggler/Undulator End Fields	1520
	16.10		n Lenses	1527
17	Surfa	ce Met	hods for General Straight Beam-Line Elements	1531
	17.1	Introdu	ection	1531
	17.2	Use of 1	Potential Data on Surface of Circular Cylinder	1536
	17.3	Use of 1	Field Data on Surface of Circular Cylinder	1539
	17.4	Use of 1	Field Data on Surface of Elliptical Cylinder	1541
		17.4.1	Background	1541
		17.4.2	Elliptic Coordinates	1543
		17.4.3	Mathieu Equations	1545
		17.4.4	Periodic Mathieu Functions and Separation Constants	1546
		17.4.5	Modified Mathieu Functions	1561
		17.4.6	Analyticity in x and y	1565
		17.4.7	Elliptic Cylinder Harmonic Expansion and On-Axis Gradients	1565
	17.5	Use of 1	Field Data on Surface of Rectangular Cylinder	1570
		17.5.1	Finding the Magnetic Scalar Potential $\psi(x,y,z)$	1570
		17.5.2	Finding the On-Axis Gradients	1576
		17.5.3	Fourier-Bessel Connection Coefficients	1578
	17.6	Attemp	oted Use of Nearly On-Axis and Midplane Field Data	1587
		17.6.1	Use of Nearly On-Axis Data	1587
		17.6.2	Use of Midplane Field Data	1589
	17.7	Termina	ating End Fields	1591
		17.7.1	Preliminary Observations	1591
		17.7.2	Changing Gauge	1593
		17.7.3	Finding the Minimal Vector Potential	1594
		17.7.4	The $m=0$ Case: Solenoid Example	1599
		17.7.5	The $m=1$ Case: Magnetic Monopole Doublet and Wiggler Ex-	
			amples	1602
		17.7.6	The $m=2$ Case	1605
		17.7.7	The $m=3$ Case	1606
		17.7.8	More Text	1606

CONTENTS

18	Tools	for Nu	ımerical Implementation	1613
	18.1	Third-0	Order Splines	1613
		18.1.1	Fitting Over an Interval	1613
		18.1.2	Periodic Splines	1616
		18.1.3	Error Estimate for Spline Approximation	1618
	18.2	Interpo	$\operatorname{slation} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	1620
		18.2.1	Bicubic Interpolation	1621
		18.2.2	Bicubic Spline Interpolation	1625
	18.3	Fourier	Transforms	1626
		18.3.1	Exact Fourier Transform and Its Large $ k $ Behavior	1626
		18.3.2	Inverse Fourier Transform	1627
		18.3.3	Discrete Fourier Transform	1631
		18.3.4	Discrete Inverse Fourier Transform	1635
		18.3.5	Spline-Based Fourier Transforms	1635
		18.3.6	Fast Spline-Based Fourier Transforms	1645
	18.4	Bessel 1	Functions	1646
	18.5		u Functions	1646
		18.5.1	Calculation of Separation Constants $a_n(q)$ and $b_n(q)$	1646
		18.5.2	Calculation of Mathieu Functions	1646
		18.5.3	Calculation of Fourier and Mathieu-Bessel Connection Coefficients	
19	Num	erical E	Benchmarks	1653
	19.1	Circula	r Cylinder Numerical Results for Monopole Doublet	1653
		19.1.1	Testing the Spline-Based Inverse $(k \to z)$ Fourier Transform	1653
		19.1.2	Testing the Forward $(z \to k)$ and $(\phi \to m)$ Fourier Transforms .	1660
		19.1.3	Test of Interpolation off a Grid	1664
		19.1.4	Reproduction of Interior Field Values	1666
	19.2	Elliptic	eal Cylinder Numerical Results for Monopole Doublet	1679
		19.2.1	Finding the Mathieu Coefficients	1679
		19.2.2	Behavior of Kernels	1688
		19.2.3	Truncation of Series	1689
		19.2.4	Approximation of Angular Integrals by Riemann Sums	1695
		19.2.5	Further Tests	1704
		19.2.6	Completion of Test	1704
	19.3	Rectang	gular Cylinder Numerical Results for Monopole Doublet	1716
20	Smoo	othing a	and Insensitivity to Errors	1719
	20.1	Introdu	action	1719
		20.1.1	Preliminary Considerations	1719
		20.1.2	Analyticity	1719
		20.1.3	Equivalent Spatial Kernel	1720
		20.1.4	What Work Lies Ahead	1726
	20.2	Circula	r Cylinders	1726
	20.3		Cylinders	1743
	20.4	Rectang	gular Cylinders	1767

xvi CONTENTS

21	Reali	istic Tra	ansfer Maps for General Straight Beam-Line Elements	1771
	21.1	Solenoi	ds	. 1771
		21.1.1	Preliminaries	. 1771
		21.1.2	Qualitatively Correct Iron-Dominated Solenoid Model	. 1772
		21.1.3	Improved Model for Iron-Dominated Solenoid	. 1774
		21.1.4	Quantitatively Correct Iron-dominated Solenoid	. 1778
	21.2	Realisti	c Wigglers/Undulators	. 1778
		21.2.1	An Iron-Dominated Superconducting Wiggler/Undulator	. 1778
	21.3	Quadru	poles	. 1778
		21.3.1	Validation of Circular Cylinder Surface Method	. 1778
		21.3.2	Final Focus Quadrupoles	. 1785
	21.4	Closely	Adjacent Quadrupoles and Sextupoles	. 1785
	21.5	Applica	ation to Radio-Frequency Cavities	. 1785
22	Reali	istic Tra	ansfer Maps for General Curved Beam-Line Elements: T	he-
	\mathbf{ory}			1791
	22.1	Introdu	action	. 1791
	22.2	Mathen	natical Tools	. 1793
		22.2.1	Electric Dirac Strings	. 1793
		22.2.2	Magnetic Dirac Strings	. 1797
		22.2.3	Helmholtz Decomposition	
	22.3	Constru	action of Kernels G^n and G^t	. 1812
		22.3.1	Background	. 1812
		22.3.2	Construction of G^n Using Half-Infinite String Monopoles	. 1812
		22.3.3	Discussion	
		22.3.4	Construction of \mathbf{G}^t	
		22.3.5	Final Discussion	. 1817
	22.4	Expans	ion of Kernels	. 1821
		22.4.1	Our Goal	. 1821
		22.4.2	Binomial Theorem	
		22.4.3	Expansion of $\mathbf{G}^t(\mathbf{r},\mathbf{r}')$. 1821
		22.4.4	Expansion of $\mathbf{G}^n(\mathbf{r}, \mathbf{r}')$. 1821
23	Roali	istic Tra	ansfer Maps for General Curved Beam-Line Elements: Ex	act
20			oublet Results	1825
	23.1	-	ic Monopole Doublet Vector Potential	
	23.2	0	on of Hamiltonian and Scaled Variables	
	23.3		Orbit and Fields	
	23.4	_	ating End Fields	
		23.4.1	Minimum Vector Potential for End Fields	
		23.4.2	Associated Termination Error	
		23.4.3	Taylor Expansion of String Vector Potential	
		23.4.4	Finding the Associated Gauge Function	
	23.5		Transformation Map	
	23.6	_	ce Rotation	

CONTENTS xvii

	23.7 23.8	Computation of Transfer Map	
24		stic Transfer Maps for General Curved Beam-Line Elements: Ben Monopole Doublet Results	$rac{ ext{t}}{1849}$
	24.1	Choice of Surrounding Bent Box	1849
	24.1	Comparison of Fields	1851
	24.2	24.2.1 Preliminaries	1851
		24.2.2 Evaluation of Surface Integrals	1854
		24.2.3 Resulting Vector Potential	1857
		24.2.4 Comparison of Fields	1857
	24.3	Comparison of Design Orbits	1863
	24.4	Terminating End Fields	1863
	24.5	Gauge Transformation Map	1866
	24.6	Pole Face Rotation	1866
	24.7	Comparison of Maps	1866
	24.8	Smoothing and Insensitivity to Errors	1866
25		stic Transfer Maps for General Curved Beam-Line Elements: Aption to a Storage-Ring Dipole	- 1869
26	The 1	Euclidean Group and Error Effects	1873
	26.1	The Euclidean Group	1873
27	Donn	esentations of $sp(2n)$ and Related Matters	1875
41	27.1	Structure of $sp(2,\mathbb{R})$	1876
	27.1	Representations of $sp(2,\mathbb{R})$	1878
	27.3	Symplectic Classification of Analytic Vector Fields in Two Variables \dots	1882
	27.4	Structure of $sp(4,\mathbb{R})$	1891
	27.5	Representations of $sp(4,\mathbb{R})$	1894
	27.6	Symplectic Classification of Analytic Vector Fields in Four Variables	1905
	27.7	Structure of $sp(6,\mathbb{R})$	1910
	27.8	Representations of $sp(6,\mathbb{R})$	1914
	27.9	Symplectic Classification of Analytic Vector Fields in Six Variables	1920
	27.10	Scalar Product and Projection Operators for Vector Fields	1925
	27.11	Products and Casimir Operators	1934
		27.11.1 The Quadratic Casimir Operator	1934
		27.11.2 Applications of the Quadratic Casimir Operator	1940
		27.11.3 Higher-Order Casimir Operators	1944
	27.12	The Killing Form	1949
	27.13	Enveloping Algebra	1951
	27.14	The Symplectic Lie Algebras $sp(8)$ and Beyond	1958
	27.15	Momentum Maps, Noether's Theorem, and Casimirs	1959
		27.15.1 Momentum Maps, Noether's Theorem, and Conservation Laws .	1959
		27.15.2 Use of Casimirs	1962

xviii *CONTENTS*

28	More lanea	e About Various Groups and their Interrelations and other Misce	l- 1971
29	Num	erical Study of Stroboscopic Duffing Map	2089
	29.1	Introduction	2089
	29.2	Review of Simple Harmonic Oscillator Behavior	2090
	29.3	Behavior for Small Driving when Nonlinearity is Included	2094
	29.4	What Happens Initially When the Driving Is Increased?	2096
		29.4.1 Saddle-Node (Blue-Sky) Bifurcations	2096
		29.4.2 Basins	2099
		29.4.3 Symmetry	2099
		29.4.4 Amplitude Jumps	2101
		29.4.5 Hysteresis	2102
	29.5	Pitchfork Bifurcations and Symmetry	2103
	29.6	Period Tripling Bifurcations and Fractal Basin Boundaries	2108
	29.7	Asymptotic ω Behavior	2114
	29.8	Period Doubling Cascade	2119
	29.9	Strange Attractor	2126
	29.10	Acknowledgment	2127
30	Gene	ral Maps	2131
	30.1	Lie Factorization of General Maps	2131
	30.2	Classification of General Two-Dimensional Quadratic Maps	2136
	30.3	Lie Factorization of General Two-Dimensional Quadratic Maps	2141
	30.4	Fixed Points	2150
		30.4.1 Attack a Map at its Fixed Points	2150
		30.4.2 Fixed Points are Generally Isolated	2150
		30.4.3 Finding Fixed Points with Contraction Maps	2151
		30.4.4 Persistence of Fixed Points	2153
		30.4.5 Application to Accelerator Physics	2156
	30.5	Poincaré Index	2161
	30.6	Manifolds, and Homoclinic Points and Tangles	2174
	30.7	The General Hénon Map	2185
	30.8	Preliminary Study of General Hénon Map	2193
		30.8.1 Location, Expansion About, and Nature of Fixed Points	2193
		30.8.2 Lie Factorization About the First (Hyperbolic) Fixed Point	2200
		30.8.3 Location and Nature of Second Fixed Point	2203
		30.8.4 Expansion and Lie Factorization About Second Fixed Point	2212
	30.9	Period Doubling and Strange Attractors	2218
	-	30.9.1 Behavior about Hyperbolic Fixed Point	2218
		30.9.2 Behavior about Second Fixed Point	2218
	30.10	Attempts at Integrals	2220
	30.11		2220
		Truncated Taylor Approximations to Stroboscopic Duffing Map	2220
		30.12.1 Saddle-Node Bifurcations	2220

CONTENTS xix

		30.12.2 Pitchfork Bifurcations	2234
		30.12.3 Infinite Period-Doubling Cascade and Strange Attractor	2242
		30.12.4 Undoing a Cascade by Successive Mergings	2256
		30.12.5 Convergence of Taylor Maps: Performance of Lower-Order Poly-	
		nomial Approximations	2263
		30.12.6 Concluding Summary and Discussion	2269
		30.12.7 Acknowledgment	2270
	30.13	Analytic Properties of Fixed Points and Eigenvalues	2270
	30.13	Analytic I toperties of Fixed I office and Eigenvalues	2210
31	Norm	nal Forms for Symplectic Maps and Their Applications	2277
	31.1	Equivalence Relations	2277
	31.2	Symplectic Conjugacy of Symplectic Maps	2278
	31.3	Normal Forms for Maps	2278
	31.4	Sample Normal Forms	2280
	31.5	Static Maps Without Translation Factor	2281
		31.5.1 Properties of Linear Part	2281
	31.6	Static Maps With Translation Factor	2287
	31.7	Tunes, Phase Advances and Slips, Momentum Compaction, Chromaticities,	
		and Anharmonicities	2287
	31.8	Courant-Snyder Invariants and Lattice Functions	2287
	31.9	Dynamic Maps Without Translation Factor	2287
	31.10	Dynamic Maps With Translation Factor	2287
	31.11	•	2287
32	Latti	ce Functions	2291
33	Solve	d and Unsolved Polynomial Orbit Problems: Invariant Theory	2293
	33.1	Introduction	2293
	33.2	Solved Polynomial Orbit Problems	2295
	33.2	33.2.1 First-Order Polynomials	2295
		33.2.2 Second-Order Polynomials	2296
	33.3	Mostly Unsolved Polynomial Orbit Problems	2324
	33.3	33.3.1 Cubic Polynomials	2325
		33.3.2 Quartic Polynomials	2325
	33.4	Application to Analytic Properties	2327
	30.1	inplication to initially the Properties 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	2021
34	Bean	Description and Moment Transport	2339
	34.1	Preliminaries	2339
	34.2	Moments and Moment Transport	2340
	34.3	Various Beam Distributions and Beam Matching	2341
	34.4	Some Properties of First-Order Moments	2341
		34.4.1 Transformation Properties	2341
		34.4.2 Normal Form	2343
	34.5	Kinematic Moment Invariants	2343
	34.6	Some Properties of Second-Order Moments	2345

XX CONTENTS

	34.6.1 Positive Definite Property	2345
	34.6.2 Transformation Properties	2345
	34.6.3 Williamson Normal Form	2347
	34.6.4 Eigen Emittances	2347
	34.6.5 Classical Uncertainty Principle	2350
	34.6.6 Minimum Emittance Theorem	2351
	34.6.7 Nonexistence of Maximum Emittances	2354
	34.6.8 Second-Order Moments about the Beam Centroid	2355
	34.6.9 Summary of What We Have Learned	2357
34.7	Construction of Initial Distributions with Small/Optimized Eigen Emittance	es2362
34.8	Realization of Eigen Emittances as Mean-Square Emittances	2362
35 Opti	mal Evaluation of Symplectic Maps	2365
35.1	Overview of Symplectic Map Approximation	2365
35.2	Symplectic Completion of Symplectic Jets	2371
	35.2.1 Criteria	2371
	35.2.2 Monomial Approximation	2371
	35.2.3 Generating Function Approximation	2371
	35.2.4 Cremona Maps	2371
35.3	Connection Between Mixed-Variable Generating Functions and Lie Gener-	
	ators	2371
	35.3.1 Method of Calculation	2372
	35.3.2 Computing g_2	2374
	35.3.3 Low Order Results: Computing g_3 and g_4	2375
	35.3.4 Two Examples	2378
	35.3.5 Exploration	2379
	35.3.6 Comments and Comparisons	2389
35.4	Use of Poincaré Generating Function	2393
	35.4.1 Determination of Poincaré Generating Function	2200
	in Terms of H	2393
	35.4.2 Application to Quadratic Hamiltonian	
05.5	35.4.3 Application to Symplectic Approximation	2395
35.5	Use of Other Generating Functions	2397
35.6	Cremona Approximation	2398
36 Orbi	t Stability, Long-Term Behavior, and Dynamic Aperture	2403
37 Reve	ersal Symmetry	2405
37.1	Reversal Operator	2405
37.2	Applications	2411
37.3	General Consequences for Straight and Circular Machines	2419
37.4	Consequences for some Special Cases	2424
37.5	Consequences for Closed Orbit in a Circular Machine	2425
37.6	Consequences for Courant-Snyder Functions in a Circular Machine	2430
37.7	Some Nonlinear Consequences	2436

CONTENTS xxi

38	Stand	dard First- and Higher-Order Optical Modules	2447
39	Anal	yticity and Convergence	2449
	39.1	Analyticity in One Complex Variable	2449
	39.2	Analyticity in Several Complex Variables	2453
	39.3	Convergence of Homogeneous Polynomial Series	2466
	39.4	Application to Potentials and Fields	2474
	39.5	Application to Taylor Maps: The Anharmonic Oscillator	2474
	39.6	Application to Taylor Maps: The Pendulum	2474
	39.7	Convergence of the BCH Series	2474
	39.8	Convergence of Lie Transformations and the Factored Product Representation	n2474
40	Trun	cated Power Series Algebra	2479
	40.1	Introduction	2479
	40.2	Monomial Indexing	2480
		40.2.1 An Obvious but Memory Intensive Method	2480
		40.2.2 Polynomial Grading	2481
		40.2.3 Monomial Ordering	2481
		40.2.4 Labeling Based on Ordering	2483
		40.2.5 Formulas for Lowest and Highest Indices	2484
		40.2.6 The Giorgilli Formula	2486
		40.2.7 Finding the Required Binomial Coefficients	2487
		40.2.8 Computation of the Index i Given the Exponent Array j	2489
		40.2.9 Preparing a Look-Up Table for the Exponent Array j Given the	2490
		Index i	2490
	40.3	Scalar Multiplication and Polynomial Addition	2493
	40.3	Polynomial Multiplication	2490
	40.4 40.5	Look-Up Tables	2499 2500
	40.6	Scripts	2500 2506
	40.0 40.7		2500 2513
	40.7	Look-Back Tables	2513 2521
	40.8	Poisson Bracketing	2521 2529
	40.9	•	2529 2532
		General Vector Fields	
	40.11	Expanding Functions of Polynomials	2534 2534
	40.12 40.13	Automatic Differentiation/Differential Algebra	2534 2534
A	Ct days	man Carvell and Negträn Intermetion Matheda	2537
A	A.1	ner-Cowell and Nyström Integration Methods Preliminary Derivation of Størmer-Cowell	∠ 557
		Method	2537
	A.2	Summed Formulation	2539
		A.2.1 Procedure	2539
		A.2.2 Derivation	2540
	A.3	Computation of First Derivative	2542

xxii CONTENTS

	A.4	Example Program and Numerical Results	2543
	A.5	Nyström Runge-Kutta Methods	2547
В	-	puter Programs for Numerical Integration	2553
	B.1	A 3^{rd} Order Runge-Kutta Routine	2554
		B.1.1 Butcher Tableau for $RK3$	
		B.1.2 The Routine $RK3$	
	B.2	A 4 th Order Runge-Kutta Routine	2555
		B.2.1 Butcher Tableau for $RK4$	2555
		B.2.2 The Routine $RK4$	2555
	B.3	A Subroutine to Compute f	2556
	B.4	A Partial Double-Precision Version of $RK3$	2557
	B.5	A 6 th Order 8 Stage Runge-Kutta Routine	
		B.5.1 Butcher Tableau for $RK6$	2559
		B.5.2 The Routine $RK6$	2559
	B.6	Embedded Runge-Kutta Pairs	2561
		B.6.1 Preliminaries	2561
		B.6.2 Fehlberg 4(5) Pair	2562
		B.6.3 Dormand-Prince 5(4) Pair	
	B.7	A 5 th Order PECEC Adams Routine	
	B.8	A 10 th Order PECEC Adams Routine	2568
\mathbf{C}	Bake	r-Campbell-Hausdorff and Zassenhaus Formulas, Bases, and Path	$\frac{1}{8}$ 2573
	C.1	Differentiating the Exponential Function	2573
	C.2	The Baker-Campbell-Hausdorff Formula	2573
	C.3	The Baker-Campbell-Hausdorff Series	2573
	C.4	Zassenhaus Formulas	2577
	C.5	Bases	2577
	C.6	Paths	2577
		C.6.1 Paths in the Group Yield Paths in the Lie Algebra	2577
		C.6.2 Paths in the Lie Algebra Yield Paths in the Group	2577
		C.6.3 Differential Equations	2577
D	Cano	onical Transformations	2581
\mathbf{E}	Math	nematica Notebooks	2583
\mathbf{F}	Prop	erties of Harmonic Functions, Analyticity, Aberration Expansion	ıs.
_	_	Smoothing	2585
	F.1	The Static Case	2585
	F.2	The Time Dependent Case	2597
	F.3	Smoothing Properties of the Laplacian Kernel	2599
\mathbf{G}	Speci	ification of $m \ge 1$ Current Filaments/Windings	2603

CONTENTS xxiii

Н	Harn	nonic Functions	2605
	H.1	Representation of Gradients	2605 2605 2607
	H.2	Range of Transverse Gradient Operators	2616 2616 2620
	Н.3	Harmonic Functions in x, z	2623 2624 2627
		tion Theory	2628
Ι	Poiss I.1 I.2 I.3	on Bracket Relations Poisson Brackets	2633 2633 2635 2636
J	Feige J.1 J.2 J.3	nbaum Cascade Denied/Achieved Simple Map and Its Initial Bifurcations	2639 2639 2640 2642
K	Supp K.1 K.2	lement to Chapter 17 Computation of On-Axis Gradients from Spinning Coil Data Computation of On-Axis Gradients from Coil Geometry and Current Data	2647 2649
${f L}$	Splin	e Routines	2653
\mathbf{M}	Rout	ines for Mathieu Separation Constants $a_n(q)$ and $b_n(q)$	2659
N	Math	nieu-Bessel Connection Coefficients	2667
O	Quad 0.1 0.2	Background	2669 2670
P	Parai P.1	meterization of the Coset Space $GL(2n,\mathbb{R})/Sp(2n,\mathbb{R})$ Introduction	2673 2673
	P.2 P.3 P.4	M Must Have Positive Determinant	2673 2674 2674
	P.5 P.6 P.7	Connection between Symmetries and Being J-Symmetric	2676 2677 2678
	P.8	Action of σ on $s\ell(2n,\mathbb{R})$	2678

xxiv CONTENTS

	P.9	Lie Triple System
	P.10	A Factorization Theorem (Theorem 1.1 of Goodman)
		P.10.1 A Particular Mapping from Real Symmetric Matrices to Positive-
		Definite Matrices
		P.10.2 The Map Is Real Analytic
		P.10.3 Trace and Determinant Properties
		P.10.4 Study of the Inverse of the Map
		P.10.5 Formula for S^a in terms of Z
		P.10.6 Uniqueness of Solution for S^a
		P.10.7 Verification of Expected Symmetry for S^a
		P.10.8 Formula for S^c in Terms of Z
		P.10.9 Verification of Expected Symmetry for S^c
		P.10.10 Conclusion
		P.10.11 Motivation for Mapping
	P.11	Theorem 1.2 of Goodman Due to Mostow
	P.12	Goodman's Work on Symplectic Polar Decomposition
		P.12.1 Some More Symmetry Operations
		P.12.2 Fixed-Point Subgroups Associated with Symmetry Operations . 269
	P.13	Decomposition of Lie Algebras
	P.14	Preparation for Lemma 2.1 of Goodman
	P.15	Lemma 2.1 of Goodman
	P.16	Preparation for Theorem 2.1 of Goodman
	P.17	Theorem 2.1 of Goodman
	P.18	Search for Counter Examples
		•
${f Q}$	Impr	oving Convergence of Fourier Representation 270°
	Q.1	Introduction
	Q.2	Application
_	A 1 .	
К	Abst	ract Lie Group Theory 2713
Q	Matk	nematica Realization of TPSA
J		Taylor Map Computation 271
	S.1	Background
	S.2	AD Tools
	0.2	S.2.1 Labeling Scheme
		S.2.2 Implementation of Labeling Scheme
		S.2.3 Pyramid Operations: General Procedure
		S.2.4 Pyramid Operations: Scalar Multiplication and Addition 272
		S.2.5 Pyramid Operations: Background for Polynomial Multiplication 272
		S.2.6 Pyramid Operations: Implementation of Multiplication 272
		S.2.7 Pyramid Operations: Implementation of Powers
		S.2.8 Replacement Rule and Automatic Differentiation
		S.2.9 Taylor Rule
	S.3	Numerical Integration and Replacement Rule
	$\mathbf{v}.\mathbf{v}$	rumeriem miegranen and riepiacement ruie

CONTENTS

		S.3.1	Numerical Integration	2742
		S.3.2	Replacement Rule, Single Equation/Variable Case	2743
		S.3.3	Multi Equation/Variable Case	2746
	S.4	Duffing	Equation Application	2749
	S.5	Relation	n to the Complete Variational Equations	2752
	S.6		vledgment	2755
\mathbf{T}	Quac	lrature	and Cubature Formulas	2759
	T.1	Quadra	ture Formulas	2759
		T.1.1	Introduction	2759
		T.1.2	Newton Cotes	2761
		T.1.3	Legendre Gauss	2762
		T.1.4	Clenshaw Curtis	2764
		T.1.5	Convergence	2765
		T.1.6	Quadrature on a Circle/One-Sphere	2766
	T.2	Cubatu	re Formulas	2771
		T.2.1	Introduction	2771
		T.2.2	Cubature on a Square	2771
		T.2.3	Cubature on a Rectangle	2776
		T.2.4	Cubature on the Two-Sphere	2780
	ъ.			
U			Classification and Properties of Polynomials and	0700
		,		2783
	U.1		ection	2783
	U.2		mials and Spherical Polynomials	2783
		U.2.1 U.2.2	Polynomials	2783 2784
		U.2.2 U.2.3	Spherical Polar Coordinates and Harmonic Polynomials	2104
		0.2.3	Examples of Harmonic Polynomials and Missing Homogeneous Polynomials	2705
		U.2.4	v	27852785
	U.3		Spherical Polynomials	2786 2786
	0.5	U.3.1	Vector Spherical Harmonics	
		U.3.1	Spherical Polynomial Vector Fields	2786 2788
		U.3.3		2788
	TT 4		Examples of and Counting Spherical Polynomial Vector Fields . ndence/Orthogonality/Integral Properties of Polynomials and Polynomials	2100
	U.4	_	Vector Fields	2792
		U.4.1	Polynomial Results	2792
		U.4.1 U.4.2	Polynomial Vector Field Results	2794
	TI E		·	2194
	U.5		ntial Properties of Spherical Polynomials and Spherical Polynomial Fields	2797
		U.5.1	Gradient Action on Spherical Polynomials	2797
		U.5.2	Divergence Action on Spherical Polynomial Vector Fields	2798
	II e	U.5.3	Curl Action on Spherical Polynomial Vector Fields	2798
	U.6	_	icative Properties of Spherical Polynomials and Spherical Polyno- ector Fields	2799
		- ппат ve	COOL PICIOS	4199

xxvi CONTENTS

		U.6.1	Ordinary Multiplication	2800
		U.6.2	Dot Product Multiplication	2800
		U.6.3	Cross Product Multiplication	2801
\mathbf{V}	PRO	T with	out and in the Presence of a Magnetic Field	2807
	V.1	The Ca	ase of No Magnetic Field	2807
	V.2	The Co	onstant Magnetic Field Case	2807
		V.2.1	Preliminaries	2807
		V.2.2	Dimensionless Variables and Limiting Hamiltonian	2808
		V.2.3	Design Trajectory	2809
		V.2.4	Deviation Variables	2810
		V.2.5	Deviation Variable Hamiltonian	2810
		V.2.6	Computation of Transfer Map	2810
	V.3	The In	homogeneous Field Case	2812
		V.3.1	Vector Potential for the General Inhomogeneous Field Case	2812
		V.3.2	Transition to Cylindrical Coordinates	2813
		V.3.3	Dimensionless Variables and Limiting Vector Potential	2814
		V.3.4	Computation of Limiting Hamiltonian in Dimensionless Variables	2815
		V.3.5	Deviation Variable Hamiltonian	2815
		V.3.6	Expansion of Deviation Variable Hamiltonian and Computation	
			of Transfer Map	2816
W	Smoo	othing	for Harmonic Functions	2819
	W.1	_	uction	2819
	W.2		ine in Two Space	2819
	W.3		lane in Three Space	2823
	W.4		ircle in Two Space	2828
	W.5		ircular Cylinder in Three Space	2833
	W.6	The El	llipse in Two Space	2840
	W.7	The El	lliptical Cylinder in Three Space	2848
	W.8	The Re	ectangle in Two Space	2848
	W.9	The Re	ectangular Cylinder in Three Space	2848
	W.10	The Sp	ohere in Three Space	2848
	W.11	The El	llipsoid in Three Space	2848
\mathbf{X}	Lie A	lgebra	ic Theory of Light Optics	2851
	X.1	Hamilt	conian Formulation	2851
	X.2		ption of Axial Symmetry and Lie-algebraic Consequences	2854
		X.2.1	Preliminaries	2854
		X.2.2	What Generators Can Occur and Their Relation to Aberrations .	2856
		X.2.3	Equivariance	2860
	X.3	Lie-Alg	gebraic Decomposition of Polynomials	2864
		X.3.1	Introduction of $sp(2,\mathbb{R})$	2864
		X.3.2	Fourth Degree Homogeneous Polynomials	2865
		X.3.3	Second Degree Homogeneous Polynomials	2868

CONTENTS xxvii

		X.3.4	Sixth and Eighth Degree Homogeneous Polynomials	2870
		X.3.5	Proof of Orthogonality and Definition/Use of the Quadratic Casimir	
			Operator	2871
	X.4	Applica	tions of Multiplet Decompositions	2877
	X.5	Wave A	berrations	2886
	X.6	Maps/I	ie Generators for Continuous Systems	2891
	X.7	Maps/I	ie Generators for Discontinuous Systems	2891
	X.8	Three S	Sample Designs	2893
		X.8.1	Aberration Corrected Spot-Forming System	2893
		X.8.2	Aberration Corrected Doublet Imaging System	2893
		X.8.3	Aberration Corrected Hubble and James Webb Telescopes	2910
	X.9	Inclusio	on of Chromatic Effects	2910
	X.10	Possibly	Complementary Approaches	2910
		X.10.1	The Constant Index Case	2910
		X.10.2	The Graded Index Case	2911
\mathbf{Y}	Relat	tion be	tween the Classical Poisson Bracket Lie Algebra and th	e
	Quan	ntum Co	ommutator-Based Lie Algebra	2917
	Y.1	Classica	al Polynomial Basis	2917
	Y.2	Quantu	m Polynomial Basis	2919
	Y.3	A Natu	ral Correspondence between Classical and Quantum Bases	2920
	Y.4	Relation	n between the Lie Algebras $\mathcal{L}_{\mathrm{cm}}$ and $\mathcal{L}_{\mathrm{qm}}$	2921
	Y.5	Historic	eal Comment	2923

List of Figures

0.0.1	The Ancient of Days. "If the doors of perception were cleansed, everything would appear to man as it is: Infinite." William Blake (1757-1827)	lxx
1.1.1	In Dynamics the future can be determined by performing a certain operation, called a mapping \mathcal{M} , on the present	4
1.2.1	The insect populations in two successive years are related by a map \mathcal{M} .	12
1.2.2	The values x_m as a function m for the case $\lambda = 2.8. \ldots \ldots$	14
1.2.3	The values x_m as a function m for the case $\lambda = 3.01.$	15
1.2.4	Feigenbaum diagram showing limiting values x_{∞} as a function of λ for the logistic map	17
1.2.5	An enlargement of Figure 2.4 exhibiting how sucessive bifurcations scale.	19
1.2.6	Douady's rabbit, the dynamic aperture in the mapping plane z for the case $\gamma = 2.55268 - 0.959456i$	22
1.2.7	The Mandelbrot set M in the control plane γ	22
1.2.8	Douady's rabbit in color. The white points lie in the basin of ∞ under the action of \mathcal{M} . The origin is a repelling fixed point of \mathcal{M} . The other repelling fixed point has the location $z_f = .656747129015i$. Under the action of \mathcal{M}^3 , red points lie in the basin of z^1 , green points lie in the	
	basin of z^2 , and yellow points lie in the basin of z^3	25
1.2.9	Schematic representation of the map (2.50)	28
1.2.10	The dynamic aperture of the Hénon map for the case $\theta/2\pi = 0.22.$	29
1.2.11	Stereographic view of the dynamic aperture of the Hénon map as a function of the parameter θ . The region shown is $q \in [8, .8], p \in [7.7],$	
1010	$\theta/2\pi \in [0,.5]. \dots $	30
1.2.12	The Mandelbrot set in the μ plane. The "plate" has been somewhat "overexposed" compared to Figure 2.7 to bring out the island chains.	47
1.2.13	The analog of Figure 2.4 for μ real and the variable w	47
1.3.1	An illustration of Theorem 3.1 in the case that " y " space is two dimensional. The solution y exists, is unique, and is continuous in t as long as it remains within the large cylinder of base R where f is continuous and the $\partial f/\partial y_j$ are continuous. If the point y^0 is varied slightly, the solution	F 77
1 / 1	also changes only slightly so that nearby solutions form a bundle	57
1.4.1	The transfer map $\mathcal M$ sends the initial conditions $\boldsymbol y^i$ to the final conditions $\boldsymbol y^f,\ldots,\ldots,\ldots,\ldots$	61
1.5.1	Illustration of the ρ , y , ϕ cylindrical coordinate system and a sample unit-	78
	vector pair e_{\diamond} and e_{\diamond}	78

XXX LIST OF FIGURES

1.6.1 1.6.2 1.6.3	Typical choice of a Cartesian coordinate system for the description of charged-particle trajectories in a magnet	88 89 89
2.1.1 2.3.1	The Time Axis	168
3.4.1 3.4.2	Possible cases for the eigenvalues of a 2×2 real symplectic matrix Possible eigenvalue configurations for a 4×4 real symplectic matrix. The mirror image of each configuration is also a possible configuration, and therefore is not shown in order to save space. Various authors have given these configurations various names. Notably, Case 1 is commonly called a <i>Krein quartet</i>	281 282
3.4.3	Eigenvalues of a 2×2 real symplectic matrix M as a function of $A = \operatorname{tr}(M)$.	285
3.4.4	Eigenvalues of a 4×4 real symplectic matrix M as a function of the coefficients A and B in its characteristic polynomial	287
3.5.1	Illustration of eigenvalues colliding and then leaving the unit circle to form what is called a Krein quartet	296
4.3.1	Schematic depiction of matrix space showing the zero matrix, the identity matrix I , the ray $N(\lambda M)$, and the unit ball around the identity matrix.	466
4.4.1	The matrices R and M are connected by a path that is both an affine geodesic and is perpendicular to the subspace of symplectic matrices at the point R	495
5.4.1	a) The summation points in m, n space for the sum (4.7) indicating that the inner sum is over m followed by a sum over n . b) The summation points for the sum (4.8) illustrating that the points are the same, but the	430
F 0 1	inner sum is now over n followed by a sum over m	540
5.8.1	Root diagram showing the root vectors for $su(3)$	562
5.8.2 5.8.3	Fundamental weights ϕ^1 and ϕ^2 for $su(3)$. The root vectors are also shown. Weight diagram for the representation $1 = \Gamma(0,0)$	564 566
5.8.4	Weight diagram for the representation $3 = \Gamma(1,0)$	567
5.8.5	Weight diagram for the representation $\overline{3} = \Gamma(1,0)$	567
5.8.6	Weight diagram for the representation $6 = \Gamma(0,1)$	568

LIST OF FIGURES xxxi

5.8.7	Weight diagram for the representation $\overline{6} = \Gamma(0,2)$	568
5.8.8	Weight diagram for the adjoint representation $8 = \Gamma(1,1)$. The 6 weights at the hexagonal vertices lie at the tips of the root vectors $\pm \alpha$, $\pm \beta$, $\pm \gamma$ shown in Figure 8.1. The highest weight lies at the tip of the vector α . There are two eigenvectors corresponding to the weight at the origin.	569
5.8.9	General form of the weight diagram for the representation $\Gamma(m,n)$. Shown here is the case $(m,n)=(7,3)$. All eigenvectors $ \boldsymbol{w}\rangle$ corresponding to weights \boldsymbol{w} on a given layer have the same multiplicity. Those corresponding to sites on the boundary have multiplicity 1. Those corresponding to sites on the next two layers have multiplicities 2 and 3, respectively. Those corresponding to sites on the two triangular layers have multiplicity $4,\ldots, 1$.	570
5.9.1	Stability diagram for $Sp(2,\mathbb{R})$ showing the quantity r_{max} as a function of β_0 . All elements with $r < r_{\text{max}}$ are stable, and all elements with $r > r_{\text{max}}$ are unstable. That is, the shaded regions are stable, and the unshaded regions are unstable. In accord with toroidal topology, corresponding points on the dashed lines at the top and bottom of the figure $(\beta_0 = \pm \pi)$ are to be identified	593
6.1.1	The map \mathcal{M} sends z to $\overline{z}(z,t)$	664
6.1.2	The action of a symplectic map \mathcal{M} on phase space. The general point z^0 is mapped to the point \overline{z}^0 , and the small vectors dz and δz are mapped to the small vectors $d\overline{z}$ and $\delta \overline{z}$. The figure is only schematic since in general phase space has a large number of dimensions	666
6.4.1	A trajectory in augmented phase space. Under the Hamiltonian flow specified by a Hamiltonian H , the general phase-space point z^i is mapped into the phase-space point z^f . The mapping \mathcal{M} is symplectic for any Hamiltonian	688
6.4.2	The symplectic map family $\mathcal{N}(t)$ in augmented symplectic map space	690
6.5.1	A trajectory of $H(\zeta,t)$ in the augmented ξ,η,t phase space having initial coordinates q and final momenta P	714
6.7.1	A trajectory of $H^g(\zeta, \tau)$ in the augmented $(\zeta, t) = (\xi, \eta; t)$ phase space. Given a Darboux matrix α , an initial time t^i , a final time t , and the $2n$ -vector u , the initial condition $\zeta(t^i) = z$ is to be selected such that $C^{\alpha}Z + D^{\alpha}z = u$ where $\zeta(t) = Z$	757
6.8.1	An <i>ordinary</i> camel and needle in \mathbb{R}^3	791
6.8.2	The domain Γ_2 in α, β space. Also shown is its subdivision into rectangles of sides $d\alpha$, $d\beta$ and its boundary Γ_1	795
6.8.3	The closed paths C^i and C^f in augmented phase space and the trajectories that join them	801

xxxii LIST OF FIGURES

6.8.4	The t, τ parameter space. The left and right boundaries are the curves $t^i(\tau)$ and $t^f(\tau)$, and their augmented phase-space images are the paths C^i and C^f . Also shown as dashed lines are pairs of parameter-space paths traversed in opposite directions whose images are augmented phase-space trajectories traversed in opposite directions. Note that the lines $\tau=0$	009
605	and $\tau = 1$ have the same image in augmented phase space	803
6.8.5 6.8.6	Two adjacent loops in parameter space	803
	and C^f	804
6.8.7	The integral over a loop is the sum of integrals over top and bottom halves.	804
6.8.8	The integral over a half loop is the integral over a trajectory of H or its	004
600	reverse plus the change in the integral resulting from deforming this path.	804
6.8.9 6.9.1	Initial phase-space distribution for Exercise 8.1	806 809
0.0.1		000
8.3.1 8.3.2	The composite action of two maps \mathcal{M}_f and \mathcal{M}_g	880
	condition \bar{z}	880
8.6.1	Various possibilities for the representation of maps in the operation of concatenation	901
8.6.2	Product of a map in Lie form with a map in Taylor form	903
9.4.1	Concatenation of origin-preserving maps in an enlarged phase space to find equivalent results for maps, including translations, in the original phase space. The concatenator depicted at the top of the figure works with the usual phase space. When translations are taken into account, it involves the use of complicated feed-down formulae as illustrated in Section 9.3. The concatenator at the bottom of the figure works in an enlarged phase space, and employs the far-simpler concatenation rules	
	for origin preserving maps	970
9.4.2	A recursive step that takes a map $r^{-1}\hat{\mathcal{N}}_{\hat{h}}$ and a pair of indices $\ell(r)$ and $m(r)$ as input, and produces a map $r\hat{\mathcal{N}}_{\hat{h}}$ and polynomial \tilde{h}_{ℓ}^m as output.	978
14.3.1	Top view of symmetric design orbit in a rectangular bend magnet showing local Cartesian coordinates attached to the design orbit. See also Figure 1.6.2 where global Cartesian coordinates are displayed	1235
15.10.1	A normal monopole doublet consisting of two magnetic monopoles of equal and opposite sign placed on the y axis and centered on the origin. Also shown, for future reference, is a cylinder with circular cross section placed in the interior field	1336
	-	

LIST OF FIGURES xxxiii

15.10.2	The interior field of a normal monopole doublet in the $z=0$ plane. Also	
	shown is an ellipse whose purpose will become clear in Sections 17.4 and	
	19.2.	1337
15.10.3	The on-axis field component $B_y(x=0,y=0,z)$ for the normal monopole	
	doublet in the case that $a=2.5$ cm and $g=1$ Tesla-(cm) ² . The coordi-	100
45.40.4	nate z is given in centimeters	1337
15.10.4	The field component B_x on the line $\rho = 1/2$ cm, $\phi = \pi/4$, $z \in [-\infty, \infty]$	
	for the normal monopole doublet in the case that $a = 2.5$ cm and $g = 1$	
	Tesla-(cm) ² . In Cartesian coordinates, this is the line $x = y \simeq .353$ cm,	1000
15 10 5	$z \in [-\infty, \infty]$. The coordinate z is given in centimeters	1338
15.10.5	The field component B_z on the line $\rho = 1/2$ cm, $\phi = \pi/4$, $z \in [-\infty, \infty]$	
	for the normal monopole doublet in the case that $a = 2.5$ cm and $g = 1$	
	Tesla-(cm) ² . In Cartesian coordinates, this is the line $x = y \simeq .353$ cm,	1990
15 10 6	$z \in [-\infty, \infty]$. The coordinate z is given in centimeters	1339
15.10.6	The quantity $B_{\rho}(R, \phi, z = 0)$ for the normal monopole doublet in the	1339
15 10 7	case that $R = 2$ cm, $a = 2.5$ cm, and $g = 1$ Tesla-(cm) ²	1559
15.10.7	The quantity $B_{\rho}(R, \phi = \pi/2, z)$ for the normal monopole doublet in the case that $R = 2$ cm, $a = 2.5$ cm, and $g = 1$ Tesla-(cm) ² . The coordinate	
	z is given in centimeters	1340
15.10.8	The on-axis gradient function $C_{1,s}^{[0]}$ for the normal monopole doublet in	1040
10.10.0	the case that $a=2.5$ cm and $g=1$ Tesla-(cm) ²	1345
15.10.9	- [6]	1010
10.10.5	the case that $a=2.5$ cm and $g=1$ Tesla-(cm) ²	1346
15.10.10	An enlargement of a portion of Figure 10.9 showing a zero hidden in a tail	
	The on-axis gradient function $C_{3,s}^{[0]}$ for the normal monopole doublet in	
	the case that $a=2.5$ cm and $g=1$ Tesla- $(cm)^2$	1347
15.10.12	The on-axis gradient function $C_{3,s}^{[4]}$ for the normal monopole doublet in	
	the case that $a=2.5$ cm and $g=1$ Tesla-(cm) ²	1347
15.10.13	The on-axis gradient function $C_{5,s}^{[0]}$ for the normal monopole doublet in	
	the case that $a=2.5$ cm and $g=1$ Tesla-(cm) ²	1348
15.10.14	The on-axis gradient function $C_{5,s}^{[2]}$ for the normal monopole doublet in	
	the case that $a=2.5$ cm and $g=1$ Tesla-(cm) ²	1348
15.10.15	The on-axis gradient function $C_{7,s}^{[0]}$ for the normal monopole doublet in	
	the case that $a=2.5$ cm and $g=1$ Tesla-(cm) ²	1349
15.14.1	The approximating delta function (14.10) when $a = .2. \ldots$	1362
15.14.2	The approximating delta function (14.10) when $a = .02$	1362
15.14.3	The approximating delta function (14.11) when $a = .2. \ldots$	1362
15.14.4	The approximating delta function (14.11) when $a = .02$	1363
15.14.5	The approximating signum function (14.36) when $a = .2. \ldots$	1366
15.14.6	The approximating signum function (14.36) when $a = .02$	1366
15.14.7	The approximating bump function (14.63) when $a=.2$ and $L=1$	1370
15.14.8	The approximating bump function (14.63) when $a=.02$ and $L=1$	1370
1691	Coordinate system for a solonoid	1907
16.2.1	Coordinate system for a solenoid	1397

xxxiv LIST OF FIGURES

16.2.2	The approximating signum function (2.26) when $a = .2$	1399
16.2.3	The approximating signum function (2.26) when $a = .02. \ldots$	1400
16.2.4	The soft-edge bump function (2.17) when $a = .2$ and $L = 1$	1401
16.2.5	The soft-edge bump function (2.17) when $a = .02$ and $L = 1$	1401
16.2.6	The function bump" when $a = .2$ and $L = 1$	1404
16.2.7	The function bump" when $a = .02$ and $L = 1$	1404
16.3.1	Coils and cylinders: Part c of this figure shows coils draped like saddles, above and below, over a circular cylinder. Apart from the coil ends, most of the winding runs along straight lines parallel to the cylinder axis	1447
16.3.2	Artist's illustration of coils for the two-in-one 15 meter long dipoles of the CERN Large Hadron Collider. Note that the fringe fields near the	
1000	dipole ends are <i>not</i> portrayed	1448
16.3.3	A winding composed of two oppositely tilted solenoids to form a canted	1 / / 0
1001	$\cos(\theta)$ dipole	1449
16.3.4	The individual and net $C_0^{[1]}(z)$ for a canted $\cos(\theta)$ dipole	1450
16.3.5	The on-axis gradient $C_{1,s}^{[0]}(z)$ in Tesla for a canted $\cos(\theta)$ dipole. Also shown is a hard-edge bump function approximation	1450
16.3.6	The on-axis gradient $C_{3,s}^{[0]}(z)$ (above) and on-axis gradient $C_{5,s}^{[0]}(z)$ (below) in dimensionless units for a canted $\cos(\theta)$ dipole. They are small for $z \simeq L/2$, but do not vanish everywhere. Nevertheless their integrated	
	strengths do vanish	1451
16.4.1	A net of n coils draped over a cylinder. The k th coil carries a current I_k .	1452
16.4.2	Top view of the right ends of the coils shown in Figure 3.7. The z axis comes out of the plane of the paper	1453
16.4.3	The approximating signum function (3.21) when $a = .2$	1454
16.4.4	The approximating signum function (3.21) when $a = .02. \ldots$	1455
16.4.5	The soft-edge bump function given by (3.20) and (3.21) when $a=0.2$ and $L=1,\ldots,\ldots,\ldots$	1455
16.4.6	The soft-edge bump function given by (3.20) and (3.21) when $a = 0.02$ and $L = 1, \ldots, \ldots$	1456
16.4.7	The approximating signum function (5.29) when $a = .2.$	1458
16.4.8	The approximating signum function (5.29) when $a = .02$	1458
16.4.9	The soft-edge bump function given by (5.28) and (5.29) when $a = .2$ and	1100
10.1.0	L=1.	1459
16.4.10	The soft-edge bump function given by (5.28) and (5.29) when $a=.02$	
16.6.1	and $L = 1$	1459
16.6.2		1508 1508
16.6.3	The approximating signum function (5.35) when $r_1 = .02$ and $r_2 = .5$. The soft-edge bump function (5.34) when $r_1 = .2$, $r_2 = .5$, and $L = 1$.	
16.6.4	The soft-edge bump function (5.34) when $r_1 = .2$, $r_2 = .5$, and $L = 1$. The soft-edge bump function (5.34) when $r_1 = .02$, $r_2 = .5$, and $L = 1$.	1509
16.6.5	The soft-edge bump function (5.34) when $\tau_1 = .02$, $\tau_2 = .5$, and $L = 1$. (Place Holder) Derivative of the soft-edge bump function given by (5.28)	1509
10.0.0	and (5.29) when $a = .2$ and $L = 1$, and shown in Figure 5.9	1513
16.6.6	(Place Holder) Derivative of the soft-edge bump function given by (5.28)	1010
10.0.0	and (5.29) when $a = .02$ and $L = 1$, and shown in Figure 5.10	1513
	, and a second and a	

LIST OF FIGURES xxxv

16.6.7	(Place Holder) Derivative of the soft-edge bump function (5.34) when $r_1 = .2$, $r_2 = .5$, and $L = 1$, and shown in Figure 5.13	1513
16.6.8	(Place Holder) Derivative of the soft-edge bump function (5.34) when $r_1 = .02, r_2 = .5$, and $L = 1$, and shown in Figure 5.14	1514
16.8.1	The ratio a/L as a function of θ	1517
16.9.1	The three-pole wiggler/undulator profile function (4.1) when $a=0.1$ and $L=0.5.$	1520
16.9.2	The five-pole wiggler/undulator profile function (4.4) when $a=0.1$ and $L=0.5.$	1520
16.9.3	(Place Holder) The three-pole wiggler/undulator profile function wig'(3, z , when $a=0.1$ and $L=0.5$	1524
17.1.1	Calculation of realistic design trajectory z^d and its associated realistic transfer map \mathcal{M} based on data provided on a 3-dimensional grid for a real beam-line element. Only a few points on the 3-dimensional grid are shown. In this illustration, data from the 3-dimensional grid is interpolated onto the surface of a cylinder with circular cross section, and this surface data is then processed to compute the design trajectory and the transfer map. The use of other surfaces is also possible, and may offer various advantages	1533
17.2.1	A circular cylinder of radius R , centered on the z -axis, fitting within the bore of a beam-line element, in this case a wiggler, and extending beyond the fringe-field regions at the ends of the beam-line element	1537
17.4.1	An elliptical cylinder, centered on the z-axis, fitting within the bore of a wiggler, and extending beyond the fringe-field regions at the ends of the wiggler.	1542
17.4.2	Elliptical coordinates showing contours of constant u and constant v	1543
17.4.3	A square or rectangular grid in the x,y plane for a fixed z value on the 3-dimensional grid. Values at data points near the ellipse are to be interpolated onto the ellipse	1544
17.4.4	The functions $a_0(q)$ through $a_2(q)$ and $b_1(q)$ and $b_2(q)$ for negative values of q	1547
17.4.5	An enlargement of a portion of Figure 4.4. For q fixed and slightly negative, the curves, in order of increasing value, are $a_0(q)$, $a_1(q)$, $b_1(q)$, $b_2(q)$, and $a_2(q)$. See (4.24) through (4.28). Note that the pair $a_0(q)$ and $a_1(q)$ tends to merge for large negative q , as does the pair $b_1(q)$ and $b_2(q)$. Similarly, although not shown in this figure, the pair $a_2(q)$ and $a_3(q)$ tends to merge as does the pair $b_3(q)$ and $b_4(q)$, etc. See (4.29) and (4.30)	1547

xxxvi LIST OF FIGURES

The effective potentials $\lambda(v,q)$ for the $ce_n(v,q)$ in the case $q=-2$. They are displayed as a function of v , over the interval $[-\pi,\pi]$, for various n values with $a=a_n(q)$. The top two curves, which very nearly coincide so as to almost look identical on the scale of the figure, are for the cases $n=0$ and $n=1$. According to Figure 4.5, the curve for $n=0$ lies just slightly above that for $n=1$. The bottom curve is that for $n=5$. The	15.40
The effective potentials $\lambda(v,q)$ for the $\text{se}_n(v,q)$ in the case $q=-2$. They are displayed as a function of v , over the interval $[-\pi,\pi]$, for various n values with $a=b_n(q)$. The top curve is that for $n=1$, and the bottom	1549
The function $ce_0(v,q)$ as a function of v , over the interval $[-\pi,\pi]$, for $q=-2$. High magnification of this figure would reveal that the graph of $ce_0(v,q)$ never touches or crosses, but always lies above, the v axis so	1550 1551
- (· · -/	1991
$q = -2. \dots \dots$	1551
The function $ce_2(v,q)$ as a function of v , over the interval $[-\pi,\pi]$, for $q=-2$	1551
The function $se_1(v,q)$ as a function of v , over the interval $[-\pi,\pi]$, for $q=-2$. The small dips at $v=\pm\pi/2$ arise from passage through forbidden regions	1552
The function $se_2(v,q)$ as a function of v , over the interval $[-\pi,\pi]$, for	1552
The effective potentials $\lambda(v,q)$ for the $ce_n(v,q)$ in the case $q=-300$. They are displayed as a function of v , over the interval $[-\pi,\pi]$, for the n values $n=0,1,2,3,4,5$ with $a=a_n(q)$. The top two curves, which very nearly coincide so as to almost look identical on the scale of the figure, are for the cases $n=0$ and $n=1$. The next two curves, which also nearly coincide, are for $n=2$ and $n=3$. Finally, the bottom two curves also nearly coincide and are for the cases $n=4$ and $n=5$. As in Figure	1553
The effective potentials $\lambda(v,q)$ for the $\mathrm{se}_n(v,q)$ in the case $q=-300$. They are displayed as a function of v , over the interval $[-\pi,\pi]$, for the n values $n=1,2,3,4,5,6$ with $a=b_n(q)$. The top two curves, which very nearly coincide so as to almost look identical on the scale of the figure, are for the cases $n=1$ and $n=2$. The next two curves, which also nearly coincide, are for $n=3$ and $n=4$. Finally, the bottom two curves also nearly coincide and are for the cases $n=5$ and $n=6$. As in Figure	1554
The function $ce_0(v,q)$ as a function of v , over the interval $[-\pi,\pi]$, for	1554
The function $ce_1(v, q)$ as a function of v , over the interval $[-\pi, \pi]$, for $q = -300$. Most of the v axis is forbidden.	1555
	are displayed as a function of v , over the interval $[-\pi,\pi]$, for various n values with $a=a_n(q)$. The top two curves, which very nearly coincide so as to almost look identical on the scale of the figure, are for the cases $n=0$ and $n=1$. According to Figure 4.5, the curve for $n=0$ lies just slightly above that for $n=1$. The bottom curve is that for $n=5$. The curves in between are for $n=2,3,4$ in that order. The effective potentials $\lambda(v,q)$ for the $\mathrm{se}_n(v,q)$ in the case $q=-2$. They are displayed as a function of v , over the interval $[-\pi,\pi]$, for various n values with $a=b_n(q)$. The top curve is that for $n=1$, and the bottom that for $n=5$. The curves in between are for $n=2,3,4$ in that order. The function $\mathrm{ce}_0(v,q)$ as a function of v , over the interval $[-\pi,\pi]$, for $q=-2$. High magnification of this figure would reveal that the graph of $\mathrm{ce}_0(v,q)$ never touches or crosses, but always lies above, the v axis so that $\mathrm{ce}_0(v,q)$ has no zeroes. The function $\mathrm{ce}_1(v,q)$ as a function of v , over the interval $[-\pi,\pi]$, for $q=-2$. The function $\mathrm{ce}_1(v,q)$ as a function of v , over the interval $[-\pi,\pi]$, for $q=-2$. The function $\mathrm{se}_1(v,q)$ as a function of v , over the interval $[-\pi,\pi]$, for $q=-2$. The small dips at $v=\pm\pi/2$ arise from passage through forbidden regions. The effective potentials $\lambda(v,q)$ for the $\mathrm{ce}_n(v,q)$ in the case $q=-300$. They are displayed as a function of v , over the interval $[-\pi,\pi]$, for the n values $n=0,1,2,3,4,5$ with $n=0$ and $n=1$. The next two curves, which very nearly coincide so as to almost look identical on the scale of the figure, are for the cases $n=0$ and $n=1$. The next two curves, which very nearly coincide, are for $n=2$ and $n=3$. Finally, the bottom two curves also nearly coincide and are for the cases $n=4$ and $n=5$. As in Figure 4.6, the higher the n value, the lower the curve. The effective potentials $\lambda(v,q)$ for the $\mathrm{se}_n(v,q)$ in the case $q=-300$. They are displayed as a function of v ,

LIST OF FIGURES xxxvii

17.4.17	The function $ce_2(v,q)$ as a function of v , over the interval $[-\pi,\pi]$, for $q=-300$. Most of the v axis is forbidden.	1555
17.4.18	The function $ce_{22}(v,q)$ as a function of v , over the interval $[-\pi,\pi]$, for $q=-300$. For these q and n values all of the v axis is allowed, and the function is fully oscillatory	1556
17.4.19	The function $se_1(v,q)$ as a function of v , over the interval $[-\pi,\pi]$, for $q=-300$. Most of the v axis is forbidden	1556
17.4.20	The function $se_2(v,q)$ as a function of v , over the interval $[-\pi,\pi]$, for $q=-300$. Most of the v axis is forbidden	1557
17.4.21	The function $\sec_{23}(v,q)$ as a function of v , over the interval $[-\pi,\pi]$, for $q=-300$. For these q and n values all of the v axis is allowed, and the function is fully oscillatory	1557
17.4.22	The function $\lambda_{\max}(q)$ for the n values 0 through 5 in the case $a=a_n(q)$. When $\lambda_{\max}(q)<0$, all of the v axis is allowed, and the function $\mathrm{ce}_n(v,q)$ is fully oscillatory. When $\lambda_{\max}(q)>0$, part of the v axis is forbidden. The higher the n value, the lower the curve. Note that the ' y ' intercepts have the values $-n^2$ in accord with (4.24) through (4.26) and (4.47). The ' x ' intercepts are the values $q_{\mathrm{cr}}(n)$. Note also that the values of $\lambda_{\max}(q)$ for $n=0$ and $n=1$ tend to merge for large negative q , as do the values for $n=2$ and $n=3$, etc. See Figure 4.5 and (4.48)	1559
17.4.23	The function $\lambda_{\max}(q)$ for the n values 1 through 6 in the case $a = b_n(q)$. When $\lambda_{\max}(q) < 0$, all of the v axis is allowed, and the function $\mathrm{se}_n(v,q)$ is fully oscillatory. When $\lambda_{\max}(q) > 0$, part of the v axis is forbidden. The higher the n value, the lower the curve. Note that the ' y ' intercepts have the values $-n^2$ in accord with (4.27), (4.28), and (4.47). The ' x ' intercepts are the values $q_{\mathrm{cr}}(n)$. Note also that the values of $\lambda_{\max}(q)$ for $n=1$ and $n=2$ tend to merge for large negative q , as do the values for $n=3$ and $n=4$, etc. See Figure 4.5 and (4.49)	1559
17.4.24	The effective potentials $\Lambda(u,q)$ for the $\operatorname{Ce}_n(v,q)$ in the case $q=-2$. They are displayed as a function of u for the n values $n=0,1,2,3,4,5$ with $a=a_n(q)$. As in Figure 4.6, the curves for $n=0$ and $n=1$ nearly coincide. Now, because of the difference in sign between (4.46) and (4.73), the higher the n value the higher the curve	1563
17.4.25	The quantities $\Lambda(0,q)$ with $a=a_n(q)$ and $n=0,1,2,3$. The higher the n value, the higher the curve. Note that the 'y' intercepts have the values n^2 in agreement with (4.24) through (4.26). Also, values of $\Lambda(0,q)$ for $n=0$ and $n=1$ tend to merge for large negative q , as do the values for $n=2$ and $n=3$, etc. See Figure 4.5 and (4.76)	1563
17.4.26	The quantities $\Lambda(0,q)$ with $a=b_n(q)$ and $n=1,2,3,4$. The higher the n value, the higher the curve. Note that the 'y' intercepts have the values n^2 in agreement with (4.27) and (4.28). Also, values of $\Lambda(0,q)$ for $n=1$ and $n=2$ tend to merge for large negative q , as do the values for $n=3$	1564
	and $n = 4$, etc. See Figure 4.5 and (4.77)	1564

xxxviii LIST OF FIGURES

17.4.27	-2. At $u=1$ they satisfy the inequalities $Ce_0(1,-2) < Ce_1(1,-2) <$	1564
17.4.28	$Ce_2(1,-2)$	1004
	$u = 1$ they satisfy the inequality $Se_1(1, -2) < Se_2(1, -2)$	1565
17.5.1	Hypothetical $B_y^t(x,z)$ data in the interval $x \in [-W/2, W/2]$ and its extension to the full x axis to facilitate Fourier analysis. In this example, $W=8$ so that $[-W/2, W/2]=[-4,4]$. The extension has period $2W=16$, is even about the points $x=\pm W/2=\pm 4$ and their periodic counterparts, and is continuous. Generally, the first derivative is discontinuous at the points $x=\pm W/2=\pm 4$ and their periodic counterparts.	1571
	tinuous at the points $x = \pm w/2 = \pm 4$ and their periodic counterparts.	1011
18.1.1	The 31-point spline fit associated with $y_{15} = 1$ and all other $y_j = 0$. Also, $f'(0)$ and $f'(3)$ are set to zero. Note that the fit falls rapidly to zero on either side of $x = 1.5$	1616
18.1.2	The spline fit associated with $f'(x_0) = 1$, all $y_j = 0$, and $f'(x_{30}) = 0$. Note that the fit falls rapidly to zero for x beyond $x_0 = 0$. Only the	
18.1.3		16171619
18.1.4	The difference between the function f and its spline fit f_{sa} for $h = .1$.	1013
10.1.1	Here error $= f(x) - f_{sa}(x)$. The spline f_{sa} is constructed using the exact	
		1619
18.1.5	The difference between the function f and its spline fit $f_{\rm sa}$ for $h=.1$. Here error $=f(x)-f_{\rm sa}(x)$. The spline $f_{\rm sa}$ is constructed using (1.24) to	
	•	1620
18.2.1	The point \bar{x}_i , \bar{y}_i and its 16 nearest-neighbor grid points. The coordinates	1.000
1001	• •	1622
18.3.1	v v /	1628
18.3.2 18.3.3	V ->	16291629
18.3.4	~ '	1630
18.3.5	~ `	1630
18.3.6	The exact, discrete, and spline-based Fourier transforms of $f_{-1,1}(z)$ for	1000
10.0.0	h = .10. On the scale of this figure the exact and spline-based Fourier	
	transforms are indistinguishable. They are both shown as a solid line.	
	The discrete Fourier transform is shown as a dashed line. Note that it	
	is quasi-periodic while the exact and spline-based Fourier transforms fall	
		1633
18.3.7		1634
18.3.8	Difference between the exact and spline-based Fourier transforms of $f_{-1,1}(z)$ for $h = .10$	1637
18.3.9	Reconstruction of $f_{-1,1} = 1 - z^4$ using forward and inverse discrete Fourier	1091
10.0.0		1639

LIST OF FIGURES xxxix

18.3.10	Error in reconstruction of $f_{-1,1} = 1 - z^4$ using forward and inverse discrete Fourier transforms	1640
18.3.11	The function $\tilde{f}_{sa}(k)$ (solid line) and its 21-point spline approximation $\tilde{f}_{sasa}(k)$ (dashed line) over the Nyquist band $k \in [-K_{Ny}, K_{Ny}]$	1641
18.3.12	The function $f_{-1,1}(z) = 1 - z^4$ and its reconstruction using the 21-point	1041
	spline approximation $\tilde{f}_{sasa}(k)$ in (3.41)	1642
18.3.13	The function $f_{-1,1}(z) = 1 - z^4$ and its reconstruction using, in (3.41), the 51-point spline approximation $\tilde{f}_{sasa}(k)$ over the interval $k \in [-50, 50]$.	1643
18.3.14	The difference between the exact function $f_{-1,1}(z) = 1 - z^4$ and its reconstruction using, in (3.41), the 51-point spline approximation $\tilde{f}_{sasa}(k)$ over the interval $k \in [-50, 50]$	1644
19.1.1	The real part of $\tilde{B}^s_{\rho}(R,1,k)$ as a function of k for the monopole doublet in the case that $R=2$ cm and $a=2.5$ cm. The imaginary part vanishes.	1656
19.1.2	The real part of $\Re \tilde{B}^s_{\rho}(R,7,k)$ as a function of k for the monopole doublet in the case that $R=2$ cm and $a=2.5$ cm. The imaginary part vanishes.	1656
19.1.3	The kernel $[k^{n+m-1}/I'_m(kR)]$ as a function of k in the case that $m=1$, $n=0$, and $R=2$ cm	1657
19.1.4	The kernel $[k^{n+m-1}/I'_m(kR)]$ as a function of k in the case that $m=1$, $n=6$, and $R=2$ cm	1657
19.1.5	The kernel $[k^{n+m-1}/I'_m(kR)]$ as a function of k in the case that $m=7$, $n=0$, and $R=2$ cm	1658
19.1.6	The integrand $(ik)^n \tilde{C}_{m,s}^{[0]}(k)$ for $m=1$ and $n=0$ as a function of k in the case that $R=2$ cm. It is required to compute $C_{1,s}^{[0]}(z)$	1659
19.1.7	The integrand $(ik)^n \tilde{C}_{m,s}^{[0]}(k)$ for $m=1$ and $n=6$ as a function of k in the case that $R=2$ cm. It is required to compute $C_{1,s}^{[6]}(z)$	1659
19.1.8	Exact and numerical results for $C_{1,s}^{[0]}(z)$. Exact results are shown as a solid line (see Figure 13.7.8), and numerical results are shown as dots.	1660
19.1.9	Exact and numerical results for $C_{1,s}^{[6]}(z)$. Exact results are shown as a solid line (see Figure 13.7.9), and numerical results are shown as dots.	1661
19.1.10	Difference between exact and spline-based numerical results for $C_{1,s}^{[0]}(z)$ using an exact integrand in (14.3.23)	1661
19.1.11	Difference between exact and spline-based numerical results for $C_{1,s}^{[6]}(z)$ using an exact integrand in (14.3.23)	1662
19.1.12	Difference between exact and numerical results for $C_{1,s}^{[0]}(z)$ using a spline-based integrand in (14.3.23) and exact values of $B_{\rho}(R, \phi, z)$ on the cylinder	.1664
19.1.13	Difference between exact and numerical results for $C_{1,s}^{[6]}(z)$ using a spline-based integrand in (14.3.23) and exact values of $B_{\rho}(R, \phi, z)$ on the cylinder	
19.1.14		1666

xl LIST OF FIGURES

19.1.15	Difference between exact and completely numerical results for $C_{1,s}^{[6]}(z)$ using a spline-based integrand in (14.3.23) and interpolated values of $B_{\rho}(R,\phi,z)$ on the cylinder based on field data provided on a grid	1667
19.1.16	Exact and completely numerical results for $C_{7,s}^{[0]}(z)$. Exact results are shown as a solid line (see Figure 13.7.15), and numerical results are shown	1667
19.1.17	as dots	1667
19.1.18	$B_{\rho}(R,\phi,z)$ on the cylinder based on field data provided on a grid The quantity $B_{\rho}^{\text{Tr}}(R=2,\phi,z=0)$ for the monopole doublet in the case	1668
19.1.19	that $a=2.5$ cm and $g=1$ Tesla- $(cm)^2$	1669
19.1.20	monopole doublet in the case that $a=2.5$ cm and $g=1$ Tesla-(cm) ² . The logarithm base 10 of the quantity $ \mathbf{B}^{TrA} - \mathbf{B}^{Exact} / \mathbf{B} ^{Max}$ as a function of ϕ for three ρ values and $z=0$, for the monopole doublet, in the case that $a=2.5$ cm and $g=1$ Tesla-(cm) ² . The solid line corresponds to $\rho=2$, the dashed line to $\rho=1$, and the dotted line to	1669
19.1.21	$\rho = 1/2$	1670
	corresponds to $\rho=2$, the dashed line to $\rho=1$, and the dotted line to $\rho=1/2$	1671
19.1.22	The logarithm base 10 of the quantity $ B^{IFA} - B^{Exact} / B ^{Max}$ as a function of ϕ for three ρ values and $z = 5$, for the monopole doublet, in the case that $a = 2.5$ cm and $g = 1$ Tesla-(cm) ² . The solid line corresponds to $\rho = 2$, the dashed line to $\rho = 1$, and the dotted line to	
19.1.23	$\rho = 1/2$	1672
	on a straight line having slope $\log_{10}(.8)$	1676
19.1.24	The real part of $\tilde{B}_{\rho}(R=2,\phi,k=0)$ for the monopole doublet in the case that $a=2.5$ cm and $g=1$ Tesla-(cm) ² . The imaginary part vanishes.	1677
19.1.25	The real part of $\tilde{B}_{\rho}(R=2,\phi,k=20)$ for the monopole doublet in the case that $a=2.5$ cm and $g=1$ Tesla-(cm) ² . The imaginary part vanishes	
19.1.26	The quantities $\log_{10}[\tilde{\tilde{B}}_{\rho}(R=2,n,k=0)]$ as a function of n . For large n the points fall on a straight line having slope $\log_{10}(.8)$	1678
19.1.27	The quantities $\log_{10}[\tilde{\tilde{B}}_{\rho}(R=2,n,k=20)]$ as a function of n . For large n the points fall on a straight line having slope $\log_{10}(.8)$	1678
19.2.1	The real part of $\tilde{F}(v, k=0)$ for the monopole doublet in the case that $x^{\max} = 4$ cm, $y^{\max} = 2$ cm, $a = 2.5$ cm, and $g = 1$ Tesla-(cm) ² . The	
19.2.2	imaginary part vanishes	1683
	imaginary part vanishes	1683

LIST OF FIGURES xli

19.2.3	The real part of $\tilde{F}(v=\pi/2,k)$ for the monopole doublet in the case that $x^{\max}=4$ cm, $y^{\max}=2$ cm, $a=2.5$ cm, and $g=1$ Tesla-(cm) ² . The imaginary part vanishes	1684
19.2.4	The real parts of the Mathieu coefficients $\tilde{F}_r^s(k)$ as a function of k , with $r=1,3,5,7,9,11$, for the monopole doublet in the case that $x^{\max}=4$ cm, $y^{\max}=2$ cm, $a=2.5$ cm, and $g=1$ Tesla-(cm) ² . The imaginary parts vanish. The solid curve, the one with the largest negative excursion at $k=0$, is that for $r=1$. The curves alternate in sign, and the magnitudes of their values at $k=0$ decrease, for each successive value of r . For example, the curve with the largest positive excursion at $k=0$ is that for $r=3,\ldots,\ldots$	1685
19.2.5	The real parts of the Mathieu coefficients $\tilde{F}_r^s(k)$ as a function of k , with $r=17,19,21,23,25$, for the monopole doublet in the case that $x^{\max}=4$ cm, $y^{\max}=2$ cm, $a=2.5$ cm, and $g=1$ Tesla-(cm) ² . The imaginary parts vanish. The solid curve, the one with the largest negative excursion at $k=0$, is that for $r=17$. The curves alternate in sign, and the magnitudes of their values at $k=0$ decrease for each successive value of r . For example, the curve with the largest positive excursion at $k=0$ is that for $r=19$	1686
19.2.6	The quantity $\sqrt{2} \tilde{F} $ as a function of k for the monopole doublet in the case that $x^{\max} = 4$ cm, $y^{\max} = 2$ cm, $a = 2.5$ cm, and $g = 1$ Tesla-(cm) ² .	1687
19.2.7	The kernels $k^m \beta_m^r(k)/\operatorname{Se}'_r(U,q)$ for the case $m=1$ and $r=1,3,5,7,9,11$, as a function of k , with q and k related by (2.24) and U given by (2.1). The kernel for $r=1$ is the one with the largest positive value at $k=0$. Kernels for successive values of r alternate in sign. Their absolute values at $k=0$ decrease monotonically with increasing r	1688
19.2.8	Absolute values of the kernels $k^m \beta_m^r(k) / \text{Se}'_r(U,q)$ evaluated at $k=0$ for the case $m=1$ and $r \in [1,15]$ with U given by (2.1)	1689
19.2.9	The kernels $k^m \beta_m^r(k)/\mathrm{Se}'_r(U,q)$ for the case $m=7$ and $r=1,3,5$, as a function of k , with q and k related by (2.24) and U given by (2.1). The kernel that has the largest positive value is that for $r=5$. The kernel with the next largest positive value is that for $r=3$. The remaining kernel is that for $r=1,\ldots,\ldots$	1690
19.2.10	The kernels $k^m \beta_m^r(k)/\mathrm{Se}_r'(U,q)$ for the case $m=7$ and $r=7,9,11$, as a function of k , with q and k related by (2.24) and U given by (2.1). The kernel for $r=7$ is the one with the smallest positive value at $k=0$. Kernels for successive values of r alternate in sign. Their magnitudes at $k=0$ increase monotonically with increasing r in the range $r \in [7,11]$.	1691
19.2.11	The kernels $k^m \beta_m^r(k)/\mathrm{Se}_r'(U,q)$ for the case $m=7$ and $r=13,15,17,19,21$, as a function of k , with q and k related by (2.24) and U given by (2.1). The kernel for $r=13$ is the one with the largest negative value at $k=0$. Kernels for successive values of r alternate in sign. Their magnitudes at	
	$k = 0$ decrease monotonically with increasing r in the range $r \in [13, 23]$.	1692

xlii LIST OF FIGURES

19.2.12	Absolute values of the kernels $k^{m}\beta_{m}^{\prime}(k)/\mathrm{Se}_{r}^{\prime}(U,q)$ evaluated at $k=0$ for	
	the case $m = 7$ and $r \in [7, 37]$ with U given by (2.1)	1692
19.2.13	The real parts of $(1/2)^m (1/m!) k^m G_{m,s}(k)$ for the monopole doublet when	
	m=1,3,5,7. The imaginary parts vanish. The quantities decrease in	
	magnitude with increasing m . For example, the curve with the largest	
	negative value at $k = 0$ is that for $m = 1, \ldots, \ldots$	1693
19.2.14	The real part of $(1/2)^m (1/m!) k^m G_{m,s}(k)$ for $m=3$	1694
19.2.15	The real part of $(1/2)^m (1/m!) k^m G_{m,s}(k)$ for $m = 5$	1694
19.2.16	The real part of $(1/2)^m (1/m!) k^m G_{m,s}(k)$ for $m = 0, \dots, \dots$.	1695
19.2.17		
19.2.17	The real part of the last retained term in the sum for $(1/2)^m (1/m!) k^m G_{m,s}(k)$	v)
	with $m=1$ based on truncating the series (14.4.84) beyond $r=r_{\text{max}}(1)=11$. The imaginary part transiches	1606
10 0 10	11. The imaginary part vanishes	1696
19.2.18	The real part of the last retained term in the sum for $(1/2)^m (1/m!) k^m G_{m,s}(k)$	€)
	with $m=3$ based on truncating the series (14.4.84) beyond $r=r_{\text{max}}(3)=$	1.007
10.0.10	19. The imaginary part vanishes	1697
19.2.19	The real part of the last retained term in the sum for $(1/2)^m (1/m!) k^m G_{m,s}(k)$	(\mathcal{E})
	with $m = 5$ based on truncating the series (14.4.84) beyond $r = r_{\text{max}}(5) =$	1.000
10.0.00	25. The imaginary part vanishes	1698
19.2.20	The real part of the last retained term in the sum for $(1/2)^m (1/m!) k^m G_{m,s}(k)$	(r)
	with $m=7$ based on truncating the series (14.4.84) beyond $r=r_{\text{max}}(7)=$	1 000
	29. The imaginary part vanishes	1699
19.2.21	Real part of actual truncation error in $(1/2)^m (1/m!) k^m G_{m,s}(k)$ for $m=1$	
	produced by truncating the series (14.4.84) beyond $r = r_{\text{max}}(1) = 11$.	
	The imaginary part vanishes	1700
19.2.22	Real part of actual truncation error in $(1/2)^m (1/m!) k^m G_{m,s}(k)$ for $m=3$	
	produced by truncating the series (14.4.84) beyond $r = r_{\text{max}}(3) = 19$.	
	The imaginary part vanishes	1701
19.2.23	Real part of actual truncation error in $(1/2)^m (1/m!) k^m G_{m,s}(k)$ for $m=5$	
	produced by truncating the series (14.4.84) beyond $r = r_{\text{max}}(5) = 25$.	
	The imaginary part vanishes	1702
19.2.24	()) () ()	
	produced by truncating the series (14.4.84) beyond $r = r_{\text{max}}(7) = 29$.	
	The imaginary part vanishes	1703
19.2.25	rol v 1	
	for $C_{1,s}^{[0]}(z)$ based on field data provided on a grid and interpolated onto	
	an elliptic cylinder with $x_{\text{max}} = 4 \text{ cm}$ and $y_{\text{max}} = 2 \text{ cm}$	1706
19.2.26	Difference between exact and completely numerically computed results	
	for $C_{1,s}^{[6]}(z)$ based on field data provided on a grid and interpolated onto	
	an elliptic cylinder with $x_{\text{max}} = 4 \text{ cm}$ and $y_{\text{max}} = 2 \text{ cm}$	1707
19.2.27	Difference between exact and completely numerically computed results	
	for $C_{7,s}^{[0]}(z)$ based on field data provided on a grid and interpolated onto	
	an elliptic cylinder with $x_{\text{max}} = 4 \text{ cm}$ and $y_{\text{max}} = 2 \text{ cm}$	1708
19.2.28	The quantity $F(U, v, z = 0)$ for the monopole doublet in the case that	
	$x^{\text{max}} = 4 \text{ cm}$ $y^{\text{max}} = 2 \text{ cm}$ $a = 2.5 \text{ cm}$ and $a = 1 \text{ Tesla-(cm)}^2$	1711

LIST OF FIGURES xliii

19.2.29 19.2.30	Real part of ${}^{\infty}\tilde{F}_{29}^{s}(k)$. The imaginary part vanishes	1714]
	bottom curve is $\log_{10}[-\infty \tilde{\tilde{F}}_{29}^s(k)]$. Together they illustrate the inequalities (2.32) and (2.35)	1714
19.2.31	Real part of the error quantity ${}^{N}\tilde{\tilde{F}}_{29}^{s}(k) - {}^{\infty}\tilde{\tilde{F}}_{29}^{s}(k)$ for $N=40$. The imaginary part vanishes	1715
19.2.32	Real part of the error quantity ${}^{N}\tilde{F}_{29}^{s}(k) - {}^{\infty}\tilde{F}_{29}^{s}(k)$ for $N = 80$. The imaginary part vanishes	1715
19.2.33	Real part of the error quantity ${}^{N}\tilde{\tilde{F}}_{29}^{s}(k) - {}^{\infty}\tilde{\tilde{F}}_{29}^{s}(k)$ for $N=120$. The imaginary part vanishes	1716
20.1.1	The spatial kernels $L_1^{[0]}(\Delta)$ through $L_3^{[0]}(\Delta)$. For $\Delta=0$, the kernels $L_m^{[0]}(\Delta)$ decrease with increasing m	1723
20.1.2	The spatial kernels $L_1^{[n]}(\Delta)$ for $n = 0, 2, 4$. Note that they satisfy (1.16). In particular, they have n zeroes.	1723
20.1.3	The scaled spatial kernels $L_1^{[0]}(\Delta)$ through $L_3^{[0]}(\Delta)$, all normalized to 1 at $\Delta = 0$. The scaled $L_m^{[0]}$ become ever narrower with increasing m	1724
20.1.4	The integrands $\tilde{L}_m^{[0]}(\lambda)$ for $m=1,2,3$. For $\lambda=0$, the integrands decrease with increasing m	1724
20.1.5	The scaled integrands $\tilde{L}_{m}^{[0]}(\lambda)$ for $m=1,2,3,$ all normalized to 1 at $\lambda=0$. The scaled integrands become ever broader with increasing m	1725
20.2.1	The function $B_{\rho}(R, \phi, z = 0)$ produced by a pure noise field	1727
20.2.2	The function $B_{\rho}(R, \phi, z = 0)$ produced by a pure noise field arising from	
	a second different random number seed	1728
20.2.3	The function $B_{\rho}(R, \phi = \pi/2, z)$ produced by a pure noise field	1729
20.2.4	The function $B_{\rho}(R, \phi = \pi/2, z)$ produced by a pure noise field arising	1500
20.2.5	from a second different random number seed	1730
20.2.6	nary part is comparable	1731
20.2.6	Real part of $\tilde{B}_{\rho}(R, m=1, k)$ produced by a pure noise field arising from a second different random number seed. The imaginary part is comparable.	1732
20.2.7	The product of $\Re \tilde{B}_{\rho}(R, m = 1, k)$ for the first random number seed and the kernel of Figure 16.1.3	1733
20.2.8	The product of $\Re \tilde{B}_{\rho}(R, m = 1, k)$ for the second different random number seed and the kernel of Figure 16.1.3	1734
20.2.9	The function $C_{1,s}^{[0]}(z)$ produced by a pure noise field	1734
20.2.10	The function $C_{1,s}^{[0]}(z)$ produced by a pure noise field arising from a second	
	different random number seed	1735
20.2.11	The function $C_{1,s}^{[6]}(z)$ produced by a pure noise field	1736
20.2.12	The function $C_{1,s}^{[6]}(z)$ produced by a pure noise field arising from a second	
	different random number seed	1736
20.2.13	The function $C_{7,s}^{[0]}(z)$ produced by a pure noise field	1737

xliv LIST OF FIGURES

20.2.14	The function $C_{7,s}^{[0]}(z)$ produced by a pure noise field arising from a second different random number seed	1737
20.2.15	The functions $C_{1,s}^{[0]}(z)$ produced by a pure noise field on circular cylinders having $R=1$ (solid line) and $R=2$ (dashed line)	1739
20.2.16	The functions $C_{1,s}^{[0]}(z)$ produced by a pure noise field on circular cylinders having $R=1$ (solid line) and $R=2$ (dashed line) and arising from a	1=00
20.2.17	second different random number seed	17391740
20.2.18	The functions $C_{1,s}^{[6]}(z)$ produced by a pure noise field on circular cylinders having $R=1$ (solid line) and $R=2$ (dashed line) and arising from a	1140
20.2.19	second different random number seed	1740
20.2.20	having $R = 1$ (solid line) and $R = 2$ (dashed line)	1741
00 0 01	having $R = 1$ (solid line) and $R = 2$ (dashed line) and arising from a second different random number seed	1741
20.2.21	The functions $C_{1,s}^{[0]}(z)$ produced by nearly the same pure noise fields on circular cylinders having $R=1$ (solid line) and $R=2$ (dashed line)	1742
20.3.1	The function $F(U, v, z = 0)$ produced by a pure noise field	1743
20.3.2	The function $F(U, v, z = 0)$ produced by a pure noise field arising from a second different random number seed	1744
20.3.3	The function $F(U, v = \pi/2, z)$ produced by a pure noise field	1745
20.3.4	The function $F(U, v = \pi/2, z)$ produced by a pure noise field arising from a second different random number seed	1746
20.3.5	Real part of $\tilde{F}(v=\pi/2,k)$ produced by a pure noise field. The imaginary part is comparable	1747
20.3.6	Real part of $\tilde{F}(v=\pi/2,k)$ produced by a pure noise field arising from a second different random number seed. The imaginary part is comparable.	
20.3.7	Real parts of the first few functions $\tilde{\tilde{F}}_r^s(k)$, those for $r=1,3,$ and 5, produced by a pure noise field. The imaginary parts are comparable	1749
20.3.8	Real parts of the first few functions $\tilde{\tilde{F}}_r^s(k)$, those for $r=1,3,$ and 5, produced by a pure noise field arising from a second different random	
	number seed. The imaginary parts are comparable	1750
20.3.9	Real part of $kG_{1,s}(k)$ computed from $\tilde{F}_r^s(k)$ associated with the first seed. The imaginary part is comparable.	1750
20.3.10	Real part of $kG_{1,s}(k)$ computed from $\tilde{\tilde{F}}_r^s(k)$ associated with the second seed. The imaginary part is comparable	1751
20.3.11	A comparison of the circular cylinder $m=1$ kernel $[1/I_1'(kR)]$, shown as a solid line, and the first few relevant elliptical cylinder $m=1$ kernels $[k\beta_1^r(k)/Se_r'(U,q)]$, namely those for $r=1,3,5,7,9$, and 11, shown as a	
	dashed lines. The elliptic kernels alternate in sign, and their magnitude at $k = 0$ decreases with increasing r . See Figure 16.2.7	1752

LIST OF FIGURES xlv

20.3.12	A comparison of the circular cylinder $m = 1$ kernel $[1/I'_1(kR)]$ and the first few elliptic cylinder $m = 1$ kernels $[k\beta_1^r(k)/Se'_r(U,q)]$, all normalized to 1 at $k = 0$	1753
20.3.13	Dashed line: The function $C_{1,s}^{[0]}(z)$ produced by a pure noise field and	1100
	using an elliptic cylinder. Solid line: The function $C_{1,s}^{[0]}(z)$ produced by a pure noise field and using a circular cylinder	1754
20.3.14	Results for the second random number seed. Dashed line: The function $C_{1,s}^{[0]}(z)$ produced by a pure noise field and using an elliptic cylinder. Solid line: The function $C_{1,s}^{[0]}(z)$ produced by a pure noise field and using	
	a circular cylinder	1754
20.3.15	The function $C_{1,s}^{[6]}(z)$ produced by a pure noise field. Dashed line: Elliptic cylinder result. Solid line: Circular cylinder result	1755
20.3.16	The function $C_{1,s}^{[6]}(z)$ produced by a pure noise field arising from a second different random number seed. Dashed line: Elliptic cylinder result. Solid	
20.2.17	line: Circular cylinder result	1755
20.3.17	The function $C_{7,s}^{[0]}(z)$ produced by a pure noise field. Dashed line: Elliptic cylinder result. Solid line: Circular cylinder result	1756
20.3.18	The function $C_{7,s}^{[0]}(z)$ produced by a pure noise field arising from a second different random number seed. Dashed line: Elliptic cylinder result. Solid	1100
	line: Circular cylinder result	1756
20.3.19	A comparison of the circular cylinder $m=1$ kernel $[1/I_1'(kR)]$, shown as a solid line, and the first few relevant elliptical cylinder $m=1$ kernels $[k\alpha_1^r(k)/Ce_r'(U,q)]$, namely those for $r=1,3,5,7,9$, and 11, shown as a dashed lines. The elliptic kernels alternate in sign, and their magnitude	
	at $k = 0$ decreases with increasing r	1757
20.3.20	A comparison of the circular cylinder $m=1$ kernel $[1/I_1'(kR)]$ and the first few elliptic cylinder $m=1$ kernels $[k\alpha_1^r(k)/Ce_r'(U,q)]$, all normalized	1550
00.0.01	to 1 at $k = 0$	1758
20.3.21	Dashed line: The function $C_{1,c}^{[0]}(z)$ produced by a pure noise field and using an elliptic cylinder. Solid line: The function $C_{1,c}^{[0]}(z)$ produced by a	
	pure noise field and using a circular cylinder	1758
20.3.22	Results for the second random number seed. Dashed line: The function $C_{1,c}^{[0]}(z)$ produced by a pure noise field and using an elliptic cylinder.	
	Solid line: The function $C_{1,c}^{[0]}(z)$ produced by a pure noise field and using a circular cylinder	1759
20.3.23	The function $C_{1,c}^{[6]}(z)$ produced by a pure noise field. Dashed line: Elliptic cylinder result. Solid line: Circular cylinder result	1759
20.3.24	The function $C_{1,c}^{[6]}(z)$ produced by a pure noise field arising from a second	
	different random number seed. Dashed line: Elliptic cylinder result. Solid line: Circular cylinder result	1760
20.3.25	The function $C_{7,c}^{[0]}(z)$ produced by a pure noise field. Dashed line: Elliptic cylinder result. Solid line: Circular cylinder result	1760

xlvi LIST OF FIGURES

20.3.26	The function $C_{7,c}^{[0]}(z)$ produced by a pure noise field arising from a second	
20.3.27	different random number seed. Dashed line: Elliptic cylinder result. Solid line: Circular cylinder result	1761
	using data on a circular cylinder. Broken lines: Results from individual seeds. Solid line: Averaged results.	1762
20.3.28	The functions $C_{1,c}^{[0]}(z)$ produced by pure noise fields generated by 12 seeds using data on an elliptical cylinder. Broken lines: Results from individual	1102
20.3.29	seeds. Solid line: Averaged results	1762
	using data on a circular cylinder. Broken lines: Results from individual seeds. Solid line: Averaged results.	1763
20.3.30	The functions $C_{1,c}^{[6]}(z)$ produced by pure noise fields generated by 6 seeds using data on an elliptical cylinder. Broken lines: Results from individual seeds. For clarity, in this graphic only results for 6 seeds are shown. Solid line: Averaged results. As in other related figures, results for 12 seeds	
	were used in computing the average	1763
20.3.31	The functions $C_{7,c}^{[0]}(z)$ produced by pure noise fields generated by 12 seeds using data on a circular cylinder. Broken lines: Results from individual	1,00
	seeds. Solid line: Averaged results.	1764
20.3.32	The functions $C_{7,c}^{[0]}(z)$ produced by pure noise fields generated by 12 seeds using data on an elliptical cylinder. Broken lines: Results from individual	1764
20.3.33	seeds. Solid line: Averaged results	1764
	a circular cylinder.	1765
20.3.34	The function $\{\langle [C_{1,c}^{[6]}(z)]^2 \rangle\}^{1/2}$ produced by 12 pure noise fields. Dashed line: Result from using an elliptic cylinder. Solid line: Result from using	1705
20.3.35	a circular cylinder	1765
20.3.36	a circular cylinder	1766 1766
21.1.1	Schematic of an iron-dominated solenoid with an inter-pole gap L sub-	
	stantially smaller than the bore radius R	1776
21.1.2	The profile function $F(z/R, L/R)$ as given by (2.14) in the cases $L/R = 0$ and $L/R = 1/2$, and the approximate profile function $G(z/R)$. The two curves that nearly agree are those for F , with the highest curve being	
01 0 1	that for F when $L/R = 0$. The third curve is that for G	1778
21.3.1	The angle integrated surface data $b_2(R, z)$. The magnet occupies the interval $z \in [-0.128 \mathrm{m}, 0.128 \mathrm{m}].$	1780
21.3.2	The angle integrated surface data $b_6(R, z)$	1780

LIST OF FIGURES xlvii

21.3.3	The function $C_{2,s}^{[0]}(z)$ as calculated numerically from surface data (dots) and analytically (solid line)	1781
21.3.4	The function $C_{6,s}^{[0]}(z)$ as calculated numerically from surface data (dots)	
21 2 5	and analytically (solid line)	1781
21.3.5	The function $C_{2,s}^{[4]}(z)$ as calculated numerically from surface data (dots) and analytically (solid line)	1782
21.3.6	The function $C_{2,s}^{[4]}(z)$ as calculated numerically from noisy (seed #2) sur-	
	face data (dots), and analytically (solid line)	1783
21.3.7	Difference between the solid line and dots of Figure 8.6	1783
21.3.8	Real part of the function $\tilde{b}_2(R,k)$. The imaginary part vanishes	1785
21.3.9	Real part of the function $\tilde{\epsilon}_2(k)$. The imaginary part has similar features.	1785
21.3.10	Real (solid line) and imaginary part (dashed line) of the Fourier transform of the function $b_2(R, z)\epsilon_2(z)$	1786
21.3.11	The factor $[k^5/I_2'(kR)]$ that appears in the calculation of $C_{2,s}^{[4]}$	1786
21.3.12	A plot of the real part of the product of the two functions of Figures 9.3	
	and 9.4. The imaginary part has similar features	1787
22.1.1	A bent box with straight end legs	1791
22.2.1	(Place Holder) A path L from the point A to the point B . Dipoles are	
	laid out and aligned along the path to form a string	1796
22.2.2	(Place holder.) A surface Σ spanning the two strings s and s'	1801
22.2.3	(Place holder.) A straight half-infinite string extending from r_A to infin-	
	ity in the direction m	1802
22.2.4	(Place holder.) A straight full infinite string extending from r_A to infinity	
	in the directions $\pm m$	1804
23.1.1	(Place holder) A monopole doublet consisting of two magnetic monopoles	
	of equal and opposite sign placed on the y axis and centered on the	
	origin. Also shown are half-infinite Dirac strings extending from the $+g$	
	monopole along the positive y axis and from the $-g$ monopole along the	
	negative y axis	1826
23.1.2	Behavior of A_x on the line $(0,0,z)$. The quantity z is in cm	1828
23.1.3	Behavior of A_z on the line $(-1/2, 0, z)$. The quantity z is in cm	1829
23.3.1	Design orbit $x(z) = \hat{x}(z)$. Also shown is a surrounding bent box with	
	straight end legs. It will be employed in Chapter 24. The center curve is	
	the design orbit. The outer curves are the boundary of the surrounding	
	bent box with with straight end legs. For ease of visualization, the seams	
	between the bent box and the straight end legs are also shown. The	1094
2222	quantities x and z are in cm	1834
23.3.2	(Place holder) The canonical momentum $\hat{p}_x(z)$ on the design orbit. The	1095
23.3.3	quantity z is in cm	1835
⊿⊍.⊍.⊍	quantity z is in cm	1836
23.3.4	The quantity $\hat{x}'(z)$ on the design orbit. The quantity z is in cm	1837
23.3.5	The quantity B_y on the design orbit. The quantity z is in cm	1838
	1 / g : O : : : 1 · · · · · · · · · · · · · · · ·	

xlviii LIST OF FIGURES

23.3.6	(Place holder) The quantity A_x on the design orbit. The quantity z is in cm	1839
23.3.7	(Place Holder?) The quantity A_z on the design orbit. The quantity z is	
	in cm.	1840
23.4.1	(Place Holder) The orthonormal triad e_{ξ} , e_{η} , e_{ζ} and associated local deviation variables ξ as ζ for the entry of the left log of the bent box with	
	deviation variables ξ, η, ζ for the entry of the left leg of the bent box with legs	1844
24.1.1	Design orbit $x(z)$ and best approximating circular arc with straight-line extensions. The solid line is the design orbit, and the dotted line is	
	the best approximating circular arc with straight-line extensions. The	
	quantities x and z are in cm	1850
24.2.1	The quantity $B_n = B_y$ on the upper face, $y = 2$ cm, and directly above	
	the design orbit. The quantity z is in cm	1852
24.2.2	The quantity ψ on the upper face, $y = 2$ cm, and directly above the	1059
24.2.3	design orbit. The quantity z is in cm	1853 1858
24.2.4	The quantity A_x on the design orbit. The quantity z is in cm The quantity A_x^{sd} on the design orbit. The quantity z is in cm	1859
24.2.5	The relative error Δ_y on the design orbit. The quantity z is in cm	1860
24.2.6	Place holder. The quantity $\Delta = \Delta $ as a function of ξ and z in the	
	vicinity of the design orbit and in the plane $y = 0$. The quantities ξ , y ,	
	and z are in cm	1861
24.2.7	Place holder. The quantity $\Delta = \Delta $ as a function of ξ and z in the vicinity of the design orbit and in the plane $y = 1$. The quantities ξ , y ,	
	and z are in cm	1862
27.1.1	Root vectors for $sp(2)$	1877
27.2.1 27.2.2	The fundamental weight ϕ^1 and the root vectors $\pm \alpha$ for $sp(2)$ Weight diagrams for the $sp(2)$ representations $\Gamma(0)$, $\Gamma(1)$, $\Gamma(2)$, and $\Gamma(3)$.	1878 1879
27.4.1	Root diagram showing the root vectors for $sp(4)$	1891
27.5.1	Fundamental weights ϕ^1 and ϕ^2 for $sp(4)$. The root vectors are also shown	
27.5.2	Weight diagram for the representation $1 = \Gamma(0,0)$	1896
27.5.3	Weight diagram for the fundamental representation $4 = \Gamma(1,0)$	1896
27.5.4	Weight diagram for the representation $5 = \Gamma(0,1)$	1897
27.5.5	Weight diagram for the adjoint representation $10 = \Gamma(2,0)$. The cir-	
	cled weight at the origin has multiplicity 2. The other eight weights are located at the tips of the $sp(4)$ root vectors	1898
27.5.6	Weight diagram for the representation $16 = \Gamma(1, 1)$. The circled weights	1000
	on the inner diamond have multiplicity 2	1899
27.5.7	Weight diagram for the representation $14 = \Gamma(0,2)$. The circled weight	
	at the origin has multiplicity 2	1899
27.7.1	Root diagram showing the root vectors for $sp(6)$. The 6 tips of the long	
	root vectors $\pm \alpha^1$, $\pm \beta^1$, $\pm \gamma^1$ form the vertices of a regular octahedron. These root vectors have length 2. The remaining 12 short root vectors \cdots	. 1911

LIST OF FIGURES xlix

27.7.2	Top view of $sp(6)$ root vectors of Figure 7.1 showing root vectors of an $sp(4)$ subgroup. Only the $sp(6)$ root vectors in the e^1 , e^2 plane are displayed. For clarity, all others are omitted. The vector e^3 is out of the plane of the paper	1912
27.7.3	View against the unit vector \boldsymbol{n} of the $sp(6)$ root vectors of Figure 7.1 showing root vectors of an $su(3)$ subgroup. Only the $sp(6)$ root vectors in the $\boldsymbol{\alpha}^3$, $\boldsymbol{\beta}^3$, $\boldsymbol{\gamma}^3$ plane and the \boldsymbol{e}^1 , \boldsymbol{e}^2 , \boldsymbol{e}^3 axes are displayed. For clarity, all others are omitted. The vector \boldsymbol{n} is out of the plane of the paper	1913
27.8.1	Fundamental weights ϕ^1 , ϕ^2 and ϕ^3 for $sp(6)$. The root vectors are also shown	1915
27.8.2	Weight diagram for the representation $1 = \Gamma(0, 0, 0) \dots \dots$	1916
27.8.3	Weight diagram for the fundamental representation $6 = \Gamma(1, 0, 0)$	1916
27.8.4	Weight diagram for the representation $14 = \Gamma(0, 1, 0)$. The circled weight at the origin has multiplicity 2. Observe from Figure 7.1 that the 12 other weights are located at the tips \cdots	1917
27.8.5	Weight diagram for the adjoint representation $21 = \Gamma(2,0,0)$. The doubly circled weight at the origin has multiplicity 3. The 18 other weights are located at the tips of the $sp(6)$ root vectors	1917
29.2.1	The quantity $A(\beta, \omega)$ as a function of ω (for the case $\beta = 0.1$)	2091
29.2.2	The quantity $\phi(\beta,\omega)$ as a function of ω (for the case $\beta=0.1$)	2092
29.2.3	Feigenbaum diagram showing limiting values q_{∞} as a function of ω (when $\beta = 0.1$ and $\epsilon = .15$) for the stroboscopic driven damped simple harmonic oscillator map	2092
29.2.4	Feigenbaum diagram showing limiting values p_{∞} as a function of ω (when $\beta = 0.1$ and $\epsilon = .15$) for the stroboscopic driven damped simple harmonic oscillator map	2093
29.2.5	Feigenbaum diagram showing both limiting values q_{∞} and p_{∞} as a function of ω (when $\beta=0.1$ and $\epsilon=.15$) for the stroboscopic driven damped simple harmonic oscillator map	2093
29.3.1	Feigenbaum diagram showing limiting values q_{∞} as a function of ω (when $\beta = 0.1$ and $\epsilon = .15$) for the stroboscopic Duffing map	2095
29.3.2	Feigenbaum diagram showing both limiting values q_{∞} and p_{∞} as a function of ω (when $\beta = 0.1$ and $\epsilon = .15$) for the stroboscopic Duffing map.	2095
29.4.1	Feigenbaum/bifurcation diagram showing limiting values q_{∞} as a function of ω (when $\beta=0.1$ and $\epsilon=1.5$) for the stroboscopic Duffing map. Also shown, in red, is the trail of the unstable fixed point. Finally, jumps in the steady-state amplitude are illustrated by vertical dashed lines at $\omega \simeq 1.8$ and $\omega \simeq 2.6$	2097

1 LIST OF FIGURES

29.4.2	Feigenbaum/bifurcation diagram showing limiting values of p_{∞} as a function of ω (when $\beta=0.1$ and $\epsilon=1.5$) for the stroboscopic Duffing map. Also shown, in red, is the trail of the unstable fixed point. Finally, a downward jump in the steady-state value p_{∞} at $\omega \simeq 1.8$ is illustrated by a vertical dashed line. There is also an upward jump between the two black curves at $\omega \simeq 2.6$, but this feature is too small to be easily	
00.40	indicated by a second vertical dashed line	2098
29.4.3	Basins of attraction for the two stable fixed points (when $\omega = 2.25$, $\beta = 0.1$, and $\epsilon = 1.5$) for the stroboscopic Duffing map. Green points are in the basin of the attracting fixed point w^1 and red points are in the basin of the attracting fixed point w^2 . There is also an unstable fixed point w^3 . See Figures 29.6.7 and 29.6.8	2100
29.4.4	Stable periodic orbits $q(\tau)$ (when $\omega = 2.25$, $\beta = 0.1$, and $\epsilon = 1.5$) for the	2100
	Duffing equation	2101
29.4.5	Unstable periodic orbit $q(\tau)$ (when $\omega = 2.25$, $\beta = 0.1$, and $\epsilon = 1.5$) for	2102
29.5.1	the Duffing equation	2102
	$\beta = 0.1$ and $\epsilon = 2.2$) for the stroboscopic Duffing map. It displays that	
00 7 0	a bubble has now formed at $\omega \approx .8.$	2103
29.5.2	Feigenbaum diagram showing limiting values q_{∞} as a function of ω (when $\beta = 0.1$ and $\epsilon = 5.5$) for the stroboscopic Duffing map. The first bubble has grown, a second smaller bubble has formed to its left, and the sub-	
	resonant peak between them has saddle-node bifurcated to become the second saddle-node bifurcation.	2104
29.5.3	Feigenbaum diagram showing both limiting values q_{∞} and p_{∞} as a function of ω (when $\beta = 0.1$ and $\epsilon = 5.5$) for the stroboscopic Duffing map.	2104
29.5.4	An enlargement of Figure 5.2 with the addition of red lines indicating the trails of unstable fixed points	2105
29.5.5	Transformation of a pitchfork bifurcation into a saddle-node bifurcation due to the inclusion of the symmetry breaking perturbation $0.02q^2$. Also shown as red lines are the trails of unstable fixed points. Note, however, that the stable-unstable pair of fixed points born at $\omega \approx 1$ self annihilates at $\omega \approx 1.3$ rather than the unstable fixed point annihilating the other	
00 5 6	stable fixed point as happens in Figure 4.1	2106
29.5.6	Stable periodic orbits $q(\tau)$ (when $\omega = 1.1$, $\beta = 0.1$, and $\epsilon = 5.5$) for the Duffing equation.	2107
29.5.7	Unstable periodic orbit $q(\tau)$ (when $\omega = 1.1$, $\beta = 0.1$, and $\epsilon = 5.5$) for	2101
	the Duffing equation	2108
29.6.1	An enlargement of Figure 5.2 showing, for \mathcal{M} , the period-one fixed points in red (two stable and one unstable) and the stable-unstable pairs of period-three fixed points in green	2109
29.6.2	A blue-sky bifurcation that produces, and then subsequently destroys, a	2108
	pair of stable (black) and unstable (red) period-three fixed points. These points correspond to the upper green feature shown in Figure 6.1	2110

LIST OF FIGURES

29.6.3	A blue-sky bifurcation that produces, and then subsequently destroys, a pair of stable (black) and unstable (red) period-three fixed points. These points correspond to the center green feature shown in Figure 6.1	2111
29.6.4	A blue-sky bifurcation that produces, and then subsequently destroys, a pair of stable (black) and unstable (red) period-three fixed points. These points correspond to the bottom green feature shown in Figure 6.1	2112
29.6.5	Basins, using the map \mathcal{M}^3 and with $\omega = 4.21$, for the period-one attracting fixed points w^1 (white) and w^2 (blue), and the period-three attracting fixed points z^1 (red), z^2 (green), and z^3 (yellow)	2113
29.6.6	An enlargement of a portion of Figure 6.5. The fixed points w^1 and z^1 , z^2 , and z^3 themselves are shown as small black dots. The small black dot at the center of the figure is the fixed point w^1 . Three small black dots near the ends of the red, green, and yellow filaments surround w^1 . These are the \mathcal{M}^3 fixed points z^1 , z^2 , and z^3 , respectively. The principal components of the period-three basins contain the fixed points z^1 , z^2 , and z^3 . Note the crowding of the red, green, and yellow pieces of the period-three basins against the blue basin of w^2 (but still separated by ever smaller white areas) thereby making this basin boundary structure fractal	2115
29.7.1	The quantity $[\ddot{q} + 2\beta \dot{q}]$ as a function of τ for the periodic solution when $\omega = .01$ (and $\beta = .1$ and $\epsilon = 5.5$)	2117
29.7.2	The quantity $[2\beta \dot{q} + q + q^3]$ as a function of τ for the periodic solution when $\omega = 15$ (and $\beta = .1$ and $\epsilon = 5.5$)	2118
29.8.1	Feigenbaum diagram showing limiting values q_{∞} as a function of ω (when $\beta=0.1$ and $\epsilon=22.125$) for the stroboscopic Duffing map	2120
29.8.2	Enlargement of a portion of Figure 8.1 displaying limiting values of q_{∞} as a function of ω (when $\beta=0.1$ and $\epsilon=22.125$) for the stroboscopic Duffing map. It shows part of the first bubble at the far right, the second bubble, and part of a third bubble at the far left. Examine the first and second bubbles. Each initially consists of two stable periodone fixed points. Each also contains the beginnings of period-doubling cascades. These cascades do not complete, but rather cease and then undo themselves by successive mergings to again result in a pair of stable period-one fixed points. There are also many higher-period fixed points and their associated cascades	2122
29.8.3	Feigenbaum diagram showing limiting values q_{∞} as a function of ω (when $\beta = 0.1$ and $\epsilon = 25$) for the stroboscopic Duffing map	2123
29.8.4	Enlargement of a portion Figure 8.3 showing the first, second, and third bubbles. The period-doubling cascades in each of the first and second bubbles now complete. Then they undo themselves as ω is further increased. There is no period doubling in the third bubble when $\epsilon=25$.	
		2124

lii LIST OF FIGURES

29.8.5	Detail of part of the first bubble in Figure 8.4 showing upper and lower infinite period-doubling cascades. Part of the trail of the stable fixed point associated with the second saddle-node bifurcation accidentally appears to overlay the upper period doubling bifurcation. Finally, associated with higher-period fixed points, there are numerous cascades and followed by	2125
29.8.6	successive mergings. Detail of part of the upper cascade in Figure 8.5 showing an infinite period-doubling cascade, followed by chaos, for what was initially a stable period-one fixed point.	2125
29.9.1	Limiting values of q_{∞}, p_{∞} for the stroboscopic Duffing map when $\omega = 1.2902$ (and $\beta = .1$ and $\epsilon = 25$). They appear to lie on a strange attractor	
29.9.2	Enlargement of boxed portion of Figure 9.1 illustrating the beginning of self-similar fractal structure.	2127
30.5.1	The isolated fixed point z^{α} surrounded by a small circle c and the associated vectors $v(z)$ drawn from the common origin $(0,0)$	2162
30.5.2	A closed curve C that surrounds several fixed points, and the curve C' formed by shrinking C	2164
30.5.3	The contours $C(E_1)$ (inner) and $C(E_2)$ (outer) for the values $E_1 = 25$ and $E_2 = 100$. Also shown are the vectors $v(z)$ for selected (and labeled) points z on $C(E_2)$. Observe that all vectors point inward and terminate on some lesser (inner) energy contour. The Duffing parameters have the	
30.5.4	values $\omega = 2.25$, $\beta = .1$, and $\epsilon = 1.5$	2166
30.5.5	cating that $C(E_2)$ has index +1	2167
20.6.1	origin by 120°	2173
30.6.1	Schematic illustration of the action of \mathcal{M} on points near z^{α} in the linear approximation. Points on $v_{<}$ are moved inward toward z^{α} , and points on $v_{>}$ are moved outward. Others are moved on hyperbolas	2174
30.6.2	The (transverse) intersection of the unstable and stable manifolds emanating from a hyperbolic fixed point resulting in a homoclinic point K . Also displayed is the elliptic fixed point and the behavior of points near	
30.6.3	the elliptic fixed point	2176
	the elliptic fixed point and the behavior of points near it	2177

LIST OF FIGURES

30.6.4	The regions \mathcal{R} and \mathcal{R} . Observe that, in the right panel, the unstable manifold "oscillates" about the stable manifold in the interval between K and $\mathcal{M}K$. When \mathcal{M} is symplectic, the two small regions produced by this oscillation must have equal areas.	2178
30.6.5	Successive oscillations of W_u about W_s and of W_s about W_u in the vicinity of the hyperbolic fixed point. The spacing between successive oscillations becomes exponentially finer, and the oscillation amplitude becomes exponentially larger	2179
30.6.6	A continuation of Figure 6.5 near the origin (the hyperbolic fixed point) showing the formation of a grid of intersecting lines. The spacing of the grid becomes finer and finer as it approaches the hyperbolic fixed point. Each grid intersection is a homoclinic point. The result of all these intersections is an ever denser cloud of homoclinic points that has the hyperbolic fixed point as a limit point.	2180
30.6.7	A blow up of part of Figure 23.4.3 illustrating the basins of attraction, the unstable fixed point (23.4.3), and the eigenvector v_1 (the one with eigenvalue less than 1) for the stroboscopic Duffing map. The unstable fixed point lies on, and the vector v_1 points along, the boundary between the two basins	2181
30.6.8	The stable (blue) and unstable (red) manifolds for the unstable fixed point (23.4.3) of the stroboscopic Duffing map. Note that the unstable manifold spirals into the stable fixed points (23.4.1) and (23.4.2), and the stable manifold lies along the basin boundaries. The stable and unstable manifolds do not intersect, so there are no homoclinic points	2182
30.7.1	Feigenbaum diagram showing limiting values q_{∞} as a function of a (and b held at $b=+.3$) for a non-orientation preserving case of the general Hénon map	2186
30.7.2	Enlargement of the boxed region in Figure 7.1. The upper cascade is that readily visible in the box in Figure 7.1. The lower cascade, which seems to appear out of nowhere and then terminate abruptly, corresponds to the small speck near the bottom of the box in Figure 7.1	2186
30.7.3	Successive enlargements of the attracting set q_{∞} , p_{∞} for a non-orientation preserving case of the general Hénon map $(a = 1.4, b = +.3)$. The attractor appears to be fractal, and therefore strange	2188
30.7.4	(Partial) Feigenbaum diagram showing limiting values q_{∞} as a function of a (and b held at $b =3$) for an orientation preserving case of the general Hénon map	2189
30.7.5	Full Feigenbaum diagram showing limiting values q_{∞} and p_{∞} as a function of a (and b held at $b=3$) for an orientation preserving case of the general Hénon map	2190
30.7.6	Successive enlargements of the attracting set q_{∞} , p_{∞} for an orientation preserving case of the general Hénon map $(a = 2.11, b =3)$. The attractor appears to be fractal, and therefore strange	2191

liv LIST OF FIGURES

30.8.1	Values of q_f^{\pm} , when $b =3$, as a function of a. A horizontal tic mark	
	indicates where q_f^+ and q_f^- meet when $a = a_{\min}$	2194
30.8.2	Values of q_f^{\pm} , when $b =9$, as a function of a. A horizontal tic mark	
	indicates where q_f^+ and q_f^- meet when $a = a_{\min}$	2194
30.8.3	Eigenvalues λ of R_h^* , when $b =3$ and $q_f = q_f^-$, as a function of a	2196
30.8.4	Eigenvalues λ of R_h^* , when $b =9$ and $q_f = q_f^-$, as a function of a	2197
30.8.5	Eigenvalues λ of R_h^* , when $b =3$ and $q_f = q_f^+$, as a function of a .	
	Note the small "line" of positive real eigenvalues for $a < 0$. Its endpoints	
	coincide with the edges of the gap in the curve shown in Figure 8.3	2198
30.8.6	Eigenvalues λ of R_h^* , when $b =9$ and $q_f = q_f^+$, as a function of a . Note	
	the barely visible line of positive real eigenvalues for $a < 0$. Its endpoints	2100
20.07	coincide with the edges of the tiny gap in the curve shown in Figure 8.4.	2198
30.8.7	The parameter a as a function of ν for various values of b	2202
30.8.8	The quantity q_f for the mobile fixed point as a function of ν in the symplectic case $b = -1, \ldots, \ldots$	2204
30.8.9	The quantity τ as a function of ν in the symplectic case $b=-1$	2204
30.8.10	The quantity τ as a function of ν in the symplectic case $b=-1$ The quantity τ as a function of ν in the nonsymplectic case $b=-3$	2204 2205
30.8.11	The quantity q_f for the mobile fixed point as a function of ν in the	2200
30.0.11	nonsymplectic case $b =3$	2205
30.8.12	· -	
	nonsymplectic case $b =3$	2206
30.8.13	Location of the mobile fixed point for the nonsymplectic case $b =3$	
	and ν varying over the range $[-20, 20]$	2206
	Value of \cdots in the symplectic case $b = -1$	2209
30.8.15	Spectrum of M_f (and of the linear part of \mathcal{M} about its second fixed	
	point) for ν varying over the range [0,3] in the symplectic case $b=-1$.	
	An identical picture is produced for ν varying in the range $[-3,0]$ as is evident from (8.97) and Figure 8.14. The eigenvalues leave the unit	
	circle at $\nu = \pm 1.763$ as is also evident from (8.97) and Figure 8.14. See	
	Exercise 8.18	2209
30.8.16	Phase advance of \tilde{M}_f (and of the linear part of \mathcal{M} about its second	
	fixed point) as a function of ν in the symplectic case $b=-1$. Only the	
	range $\nu \in [-1.763, 1.763]$ is shown because the eigenvalues leave the unit	
	circle outside this range.	2210
	Value of \cdots in the case $b = -3$	2210
30.8.18	<u> </u>	
20.0.10	point) for ν varying over the range [0, 3] in the nonsymplectic case $b =3$	3.2210
30.8.19	J z	
	Only the ranges $\nu \in [-1.886,839]$ and $\nu \in [.839, 1.886]$ are shown	
	because the eigenvalues of M'_f leave the unit circle for ν outside these ranges. See Figure 8.17 and Exercise 8.15	2211
30.8.20	Maximum value of λ_+ as a function of ru .	2211
30.9.1	Stable and unstable manifolds for \mathcal{M}_{-} and behavior of points near the	
	second fixed point for the case $\Lambda = 3. \dots \dots \dots$	2219

LIST OF FIGURES lv

30.9.2	Stable and unstable manifolds for \mathcal{M}_{-} and behavior of points near the second fixed point for the case $\Lambda = 4. \dots \dots \dots \dots$	2219
30.12.1	Bifurcation diagram showing limiting values q_{∞} as a function of ω (when	
	$\beta = 0.1$ and $\epsilon = 0.3$) for the stroboscopic Duffing map. The trail of the fixed point that is unique and stable for small values of ω is shown	
	in blue. A pair of fixed points, one stable and one unstable, is born at	
	$\omega = \omega_1 = 1.30305 \cdots$. The trail of the stable fixed point is shown in	
	green and the trail of the unstable fixed point is shown in red. The black	
	dot at the left end of the red trail is the value of $\omega = \omega_1$ at which the	
	pair is born. The blue stable fixed point and the red unstable fixed point	
	annihilate at $\omega = \omega_2 = 1.38386 \cdots$. This point is indicated by the black	
	dot at the right end of the red trail. For larger ω values only the green	
	fixed point remains. The black dot near the center of the red trail marks the expansion point to be used in preparing Figures 12.4 through 12.6.	2222
30.12.2	Eigenvalues of $L(2\pi)$, the linear part of the stroboscopic map (in the	2222
30.12.2	variables z_1 and z_2), about the fixed points shown in Figure 12.1. The	
	color coding is that same as in Figure 12.1	2223
30.12.3	Eigenvalues of $L(2\pi)$ shown from a different perspective	2224
30.12.4	The analog of Figure 12.1 computed using \mathcal{M}_8 , an eighth-order approx-	
	imation to $\mathcal M$ including parameter dependence. The black point near	
	the center of the red trail is the point about which the Taylor expansion	
	of the stroboscopic Duffing map is constructed. The black dots near the	
	ends of the red trail are the exact values of the fixed points for the exact	2227
30.12.5	values of ω_1 and ω_2	2221
30.12.0	imation to \mathcal{M} including parameter dependence	2228
30.12.6	Data of Figure 12.5 shown from a different perspective	2229
30.12.7	The analog of Figure 12.1 computed using two eighth-order polynomial	
	maps including parameter dependence. The black dots at the ends of the	
	red trail, located at ω_1 and ω_2 , are the points about which the Taylor expansions of the stroboscopic Duffing map are constructed	2231
30.12.8	The analog of Figure 12.2 computed using two eighth-order polynomial	2201
	maps including parameter dependence	2232
	Data of Figure 12.8 shown from a different perspective	2233
30.12.10	Bifurcation diagram for the Duffing stroboscopic map in the case $\epsilon=2.5$	
	(and $\beta = 0.1$) for ω in the vicinity of the first bubble. The trail of the	
	stable fixed point before the pitchfork bifurcation and after the pitchfork merger is shown in black. The trails of the two stable fixed points that	
	exist after the pitchfork bifurcation and before the pitchfork merger are	
	shown in blue and green. The trail of the associated unstable fixed point	
	is shown in red. The black dot at the left end of the red trail is located	
	at $\omega = \omega_1$. and the black dot at the right end of the red trail is located	
	at $\omega = \omega_2$. The black dot near the middle of the red trail indicates the	
	value $\omega = \omega_{\text{mid}}$ to be used as an expansion point	2235

lvi LIST OF FIGURES

30.12.11 Eigenvalues of $L(2\pi)$, the linear part of the stroboscopic map (in the variables z_1 and z_2), about the fixed points shown in Figure 12.10. The	
color coding is that same as in Figure 12.10. Note two of the curves are colored blue-green because, as explained in the text, there is overlap	
because of equivariance symmetry	2236
30.12.12 Data of Figure 12.11 shown from a different perspective	2237
30.12.13 The analog of Figure 12.10 computed using \mathcal{M}_8 , an eighth-order approx-	2201
imation to \mathcal{M} including parameter dependence. The black point near	
the center of the red trail is the point $\omega_{\rm mid} = .916349$ about which the	
Taylor expansion of the stroboscopic Duffing map was constructed. The	
other two black points are located at the exact values of ω_1 and ω_2	2239
30.12.14 The analog of Figure 12.11 computed using \mathcal{M}_8 , an eighth-order approx-	
imation to $\mathcal M$ including parameter dependence	2240
30.12.15 Data of Figure 12.14 shown from a different perspective	2241
30.12.16 Detail of part of the period doubling bifurcation shown in Figure 25.8.6.	
The map \mathcal{M} has one fixed point z_f before period doubling, it is stable,	
and its trail is shown in black. After period doubling \mathcal{M} still has one fixed point z_f , it is unstable, and its trail is shown in red. These fixed	
points are, of course, also fixed points of \mathcal{M}^2 . After period doubling, \mathcal{M}^2	
has two additional fixed points whose trails are shown in blue and green.	
These period-two fixed points are not fixed points of \mathcal{M} . Instead, they	
are sent into each other under the action of \mathcal{M}	2243
30.12.17 Eigenvalues of the linear part of \mathcal{M} in the vicinity of its period-doubling	
bifurcation	2244
$30.12.18$ Different perspective of the eigenvalues of the linear part of \mathcal{M} in the	
vicinity of its period-doubling bifurcation.	2245
30.12.19 Eigenvalues of the linear part of \mathcal{M}^2 in the vicinity of the period doubling	22.46
bifurcation of \mathcal{M}	2246
30.12.20 Different perspective of the eigenvalues of the linear part of \mathcal{M}^2 in the vicinity of the period doubling bifurcation of \mathcal{M}	2247
30.12.21 Bifurcation diagram for the map \mathcal{M}_3 , the third-order polynomial ap-	2241
proximation to \mathcal{M} (including parameter dependence) expanded about	
the period-doubling bifurcation point shown in black. The polynomial	
map has one fixed point z_f before period doubling. It is stable and its	
trail is shown in black. After period doubling \mathcal{M}_3 still has one fixed	
point z_f . It is unstable and its trail is shown in red. These fixed points	
are, of course, also fixed points of $(\mathcal{M}_3)^2$. After period doubling, $(\mathcal{M}_3)^2$	
has two additional fixed points whose trails are shown in blue and green.	
These period-two fixed points are not fixed points of \mathcal{M}_3 . Instead, they are sent into each other under the action of \mathcal{M}_3	2249
30.12.22 Eigenvalues of the linear part of $(\mathcal{M}_3)^2$ in the vicinity of the period	2245
doubling bifurcation of \mathcal{M}_3	2250
$30.12.23$ Different perspective of the eigenvalues of the linear part of $(\mathcal{M}_3)^2$ in the	_00
vicinity of the period doubling bifurcation of \mathcal{M}_3	2251

LIST OF FIGURES lvii

30.12.24	Partial Feigenbaum diagram for the map \mathcal{M}_8 . The black dot marks the	0050
	point about which \mathcal{M} is expanded to yield \mathcal{M}_8	2253
	Full Feigenbaum diagram for the map \mathcal{M}_8 . The black dot again marks the expansion point	2254
30.12.26	Limiting values of q_{∞}, p_{∞} for the map \mathcal{M}_8 when $\omega = 1.2902$. They appear	
	to lie on a strange attractor	2255
30.12.27	Enlargement of boxed portion of Figure 12.26 illustrating the beginning	
	of self-similar fractal structure	2256
30.12.28	Enlargement of boxed portion of Figure 12.27 illustrating the continuation of self-similar fractal structure.	2257
20 12 20	Enlargement of boxed portion of Figure 12.28 illustrating the further	2201
30.12.29	continuation of self-similar fractal structure	2258
30.12.30	Partial Feigenbaum diagram for the map \mathcal{M}_8 showing a full cascade followed by successive mergings. The black dot marks the point about	
	which \mathcal{M} is now expanded to yield \mathcal{M}_8	2260
30.12.31	Full Feigenbaum diagram for the map \mathcal{M}_8 showing a full cascade followed	
JU.12.01	by successive mergings. The black dot again marks the point about which	
	\mathcal{M} is expanded to yield \mathcal{M}_8	2261
30 19 39	Full Feigenbaum diagram for the exact map \mathcal{M} . See Figure 25.8.4 for	2201
50.12.52	a related partial Feigenbaum diagram. The black dot again marks the	
	expansion point used in Figures 12.30 and 12.31. There appears to be a	
	gap around $\omega \approx 1.33$ separating two chaotic regions. Within the right	
	side of the gap (to the right of $\omega \approx 1.335$) there are three yellow trails	
	corresponding to a period-three stable orbit. As ω is decreased, there are	
	pitchfork bifurcations so that each yellow trail splits into two yellow trails.	
	There are then six yellow trails corresponding to two period-three stable	
	orbits. Thus the gap, on the scale shown, is essentially a period-three	
	window	2262
20 10 22		2202
30.12.33	Partial Feigenbaum diagram for the map \mathcal{M}_3 . The black dot marks the	വെദ
20.10.24	point about which \mathcal{M} is expanded to yield \mathcal{M}_3	2263
30.12.34	Limiting values of q_{∞} , p_{∞} for the map \mathcal{M}_3 when $\omega = 1.2902$. They appear	0004
20.40.0	to lie on a strange attractor	2264
30.12.35	Enlargement of boxed portion of Figure 12.34 illustrating the beginning of self-similar fractal structure.	2265
30.12.36	Partial Feigenbaum diagram for the map \mathcal{M}_5 . The black dot marks the	
	point about which \mathcal{M} is expanded to yield \mathcal{M}_5	2266
30.12.37	Limiting values of q_{∞} , p_{∞} for the map \mathcal{M}_5 when $\omega = 1.2902$. They appear	
	to lie on a strange attractor	2267
30 12 38	Enlargement of boxed portion of Figure 12.37 illustrating the beginning	
90.12.90	of self-similar fractal structure	2268
31.1.1	Decomposition of a set X into disjoint equivalence classes, with a normal	
91.1.1	form element representative for each equivalence class	2278
21 / 1		2281
31.4.1	Four broad possibilities for general maps	440I

lviii LIST OF FIGURES

33.2.1	Normal forms g_2^N and eigenvalue spectrum of associated Hamiltonian matrices in the case of 2-dimensional phase space. The normal forms given in the three columns above are for the cases $\delta < 0$, $\delta = 0$, and $\delta > 0$, respectively	2301
33.2.2	Equivalence classes (orbits/leaves) for the space \mathcal{P}_2 of second-order polynomials in two variables. They are displayed in terms of the variables ξ, η, ζ . In this figure the ξ axis points upward, the η axis points out of the page, and the ζ axis points to the right. Case a , for which $\delta < 0$, shows a typical one-sheeted hyperboloid. The point on the equator given by (2.53) and (2.54) corresponds to the normal form $(-\delta)^{1/2}(q^2 - p^2)$ for that value of δ . Also shown on this diagram are the two cones for $\delta = 0$. The point on the front of the top cone given by ((2.60) and (2.61) corresponds to the normal form $+q^2$ and the point on the rear of the bottom cone given (2.62) and (2.63) by corresponds to the normal form $-q^2$. The origin where the cones meet is the single-element equivalence class $g_2 = 0$. Case b , for which $\delta > 0$, shows a typical two-sheeted hyperboloid. Also shown is the sphere (2.50) that just kisses the hyperboloid. The two kissing points (the points on the upper and lower sheets that are closest to the origin) correspond to the normal forms $\pm \delta^{1/2}(p^2 + q^2)$. For simplicity, cases a and b are shown separately. They should actually be superimposed along with many other such hyperboloids to show all the one-sheeted and two-sheeted hyperboloids for all values of δ	2304
33.2.3	Eigenvalues of a 4×4 real Hamiltonian matrix as a function of the coefficients C and D in its characteristic polynomial	2304
33.2.4	Eigenvalues of B as a function of ϵ when $\omega_1 = 1.5$ and $\omega_2 = -1.6$	2323
33.4.1	Curves of constant Λ/λ and flow directions for the equations of motion (4.13) and (4.14). These curves were made with $\lambda = 1$, which simply sets the scale for q and p , and $\Lambda = 0, \pm 5$	2328
33.4.2	(Place Holder) Curve on which the map $\mathcal{N}^{tr}(1)$ becomes singular. The map is well defined and analytic for phase-space points to the right of this curve. Points on the curve are sent to infinity. The possible action of the map on points to the left of the curve is unknown	2331
33.4.3	(Place Holder) Curves of constant Λ/λ and flow directions for the equations of motion (4.44) and (4.45). These curves were made with $\lambda = 1$, which simply sets the scale for q and p , and $\Lambda = 0, \pm 5, \ldots$.	2333
33.4.4	(Place Holder) Curve on which the map $\mathcal{N}^{tr}(1)$ becomes singular. The map is well defined and analytic for phase-space points to the right of this curve. Points on the curve are sent to infinity. The possible action of the map on points to the left of the curve is unknown	2336
35.1.1	Phase-space portrait, in the case $\theta/2\pi=0.22$, resulting from applying the map \mathcal{M} repeatedly (2000 times) to the seven initial conditions $(q,p)=(.01,0),\ (.1,0),\ (.15,0),\ (.25,0),\ (.3,0),\ and\ (.35,0)$ to find their orbits.	2367

LIST OF FIGURES

35.1.2	Phase-space portrait, in the case $\theta/2\pi = 0.22$, resulting from applying the map \mathcal{M}^{tr} repeatedly (2000 times) to the two initial conditions $(q, p) = (.01, 0)$ and $(.4, 0)$ to find their orbits. The orbits appear to spiral into the origin.	2368
35.1.3	Phase-space portrait, in the case $\theta/2\pi = 0.22$, resulting from applying the map \mathcal{M}^{tr3} repeatedly (2000 times) to the four initial conditions $(q, p) = (.01, 0), (.075, 0), (.1, 0),$ and $(.125, 0)$ to find their orbits. The orbits	2000
0F 0 1	appear to move away from origin.	2370
35.3.1	Phase-space portrait, in the case $\theta/2\pi = 0.22$, resulting from applying the map \mathcal{M}^{sc} repeatedly (2000 times) to the four initial conditions $(q, p) = (.01, 0), (.1, 0), (.15, 0),$ and $(.2, 0)$ to find their orbits	2384
35.3.2	Phase-space portrait, in the case $\theta/2\pi = 0.22$, resulting from applying the map \mathcal{M}^{isc} repeatedly (2000 times) to the seven initial conditions $(q, p) = (.01, 0), (.1, 0), (.15, 0), (.2, 0), (.25, 0), (.3, 0), \text{ and } (.35, 0)$ to find	
	their orbits	2386
35.3.3	Phase-space portrait, in the case $\theta/2\pi = 0.22$, resulting from applying the map \mathcal{M}^{psc} repeatedly (2000 times) to the to the seven initial conditions $(q, p) = (.01, 0), (.1, 0), (.15, 0), (.2, 0), (.25, 0), (.3, 0), \text{ and } (.35, 0)$ to find	
	their orbits	2388
35.3.4	Phase-space portrait, in the case $\theta/2\pi = 0.22$, resulting from applying the map $\mathcal{M}^{\text{ipsc}}$ repeatedly (2000 times) to the seven initial conditions $(q, p) = (.01, 0), (.1, 0), (.15, 0), (.2, 0), (.25, 0), (.3, 0), \text{ and } (.35, 0)$ to find	
	their orbits	2389
37.1.1 37.5.1	Actions of a map \mathcal{M} and its reversed counterpart \mathcal{M}^r Schematic drawing of a ring showing the locations (Poincaré surfaces of	2410
01.0.1	section) $0; 1, \tilde{1}; 2, \tilde{2}; 3, \tilde{3};$ etc	2429
37.7.1	The dynamic aperture of the Hénon map for the case $\phi/(2\pi) = 0.22$	2437
39.2.1 39.2.2	Two of many possible orderings for the terms in a double series Possible Reinhardt diagram for the case of two complex variables. The complete Reinhardt set consists of those points $z = (z_1, z_2)$ for which the pairs $ z_1 $, $ z_2 $ lie in the shaded area, or the darkened portions of the axes	2455
	representing possible thorns. The quantities R_1 , R_2 on the boundary of	
39.2.3	the shaded area are conjugate radii	2456
00.2.0	convex if any two points P, Q in the image can be joined by a straight	
20.0.4	line that is also in the image	2457
39.2.4	Determining the conjugate radii by fixing R_1 and searching for the closest singularity in z_2 as ϕ_1 varies to yield R_2	2459
39.2.5	Determining the conjugate radii by fixing R_2 and searching for the closest	
39.2.6	singularity in z_1 as ϕ_2 varies to yield R_1	2459
39.2.7	The Reinhardt diagram for the series (2.24) , which represents the func-	4400
	tion $f(z)$ given by (2.25), is a cone	2461

lx LIST OF FIGURES

39.2.8	Reinhardt diagrams, for three values of x_3 , of the series (2.30) that represents $f(z; x_3)$. Diagrams for negative values of x_3 are not shown since the diagrams for $\pm x_3$ are identical	2462
39.2.9	Analytic continuation along a path out of a domain \mathcal{D} in the complex w plane by making successive related Taylor expansions in overlapping disks along the path	2464
39.2.10	Reinhardt diagram for a complete Reinhardt domain that is not logarithmically convex. The dashed <i>curved</i> line segment is the inverse image of the dashed <i>straight</i> line segment in Figure 2.11. The domain becomes logarithmically convex if the region corresponding to the area below the dashed line is annexed to that corresponding to the shaded area	2464
39.2.11	The logarithmic image of the shaded region of Figure 2.10. Augmenting the image by adding the area below the dashed <i>straight</i> line segment makes the image convex	2465
39.3.1	Real x_1, x_2 convergence sets for the homogeneous polynomial series (3.51) for various values of x_3 . Together they form a hyperbola of revolution. Sets are not shown for negative values of x_3 since the sets for $\pm x_3$ are identical	2473
40.2.1	Sample extraction of a two-column array from a three-column array	2495
40.2.2	Path to the exponent $j=(1,0,2)$ down the modified glex sequence in 3 variables	2496
J.1.1	The curves $y = f(a, b; x)$ for $b = 11.5$ and various values of $a \in [-5, 0]$. Also shown is the line $y = x$. Intersections of the line and the curve correspond to fixed points	2640
J.1.2	Bifurcation diagram showing x_{∞} as a function of a for the map (1.1) with $b=11.5$ and $a\in[-5,5]$. For $a=-5$, there is only one fixed point, and it is stable. As a is increased from this value, a blue-sky bifurcation occurs at $x_{\infty}\simeq +1$ when $a=\simeq -4.8$. Here a pair of fixed points, one stable and one unstable, is born. Now there are three fixed points. The one that bifurcates to larger values of x_{∞} is stable, and the one that bifurcates to smaller values of x_{∞} is unstable. The original fixed point persists, and remains stable. At $x_{\infty}\simeq +1$ and $a=\simeq +4.8$ a blue-sky merger occurs where two fixed points, one stable and the other unstable, annihilate. For a values larger than this there is only one fixed point. In between the values $a\simeq -4.8$ and $a\simeq +4.8$ there are two incomplete period-doubling cascades.	2641
	cascades	Z04 L

LIST OF FIGURES lxi

J.3.1	A portion of the Feigenbaum diagram for the map (1.1) with $b = 11.7$. Also shown are the paths of all period-one fixed points, both stable and unstable. The full diagram is similar to that of Figure 1.2 except that both period-doubling cascades now run to completion. Specifically, for the upper cascade shown here, a blue-sky bifurcation again occurs and, as a is further increased, the stable fixed point begins a Feigenbaum perioding doubling cascade that now runs to completion followed by a region of chaos. But then, as a is increased still further, the cascades undoes itself until there is again only a single stable fixed point. The behavior for the lower cascade is analogous	2643
S.2.1	A grid of points representing the set Γ_3^4 . For future reference a subset of Γ_3^4 , called a <i>box</i> , is shown in blue	2721
T.2.1 T.2.2	Sampling points for ${}^*C^2$:5-1	2774 2774
W.2.1 W.2.2 W.3.1	The function $\psi^{\delta}(x,y)$ as a function of x for various values of y The function $\psi^{\delta}(x,y)$ as a function of y for various values of x The function $\psi^{\delta}(x,y,z) = \psi^{\delta}(\rho,z)$ as a function of ρ for various values	2821 2821
	of z	2826
W.3.2	The function $\psi^{\delta}(x,y,z) = \psi^{\delta}(\rho,z)$ as a function of z for various values of ρ	2826
W.4.1	(Place Holder) The function $\hat{\psi}^{\delta}(\lambda, \theta)$ as a function of θ for various values of λ	2831
W.5.1 W.5.2	The function $\eta(\tau)$. It appears to be monotonically increasing (Place Holder) The kernel $K(m, k; \rho, R)$ as function of m and k for the case $\rho = 2$ cm and $R = 2.5$ cm. The quantity k has units of inverse centimeters	2836 2837
W.5.3	(Place Holder) The function $\psi^{\delta}(\rho,\phi,z)$ as a function of ϕ and z when	
W.5.4	$\rho = 2$ cm and $R = 2.5$ cm	2838
W.5.5	$\rho=1$ cm and $R=2.5$ cm	2838
W.6.1	cm	2839 2844
X.1.1	Optical system consisting of an optical device preceded and followed by simple transit. A ray originates at P^i with <i>initial</i> location \mathbf{r}^i and <i>initial</i> direction $\hat{\mathbf{s}}^i$, and terminates at P^f with <i>final</i> location \mathbf{r}^f and <i>final</i> direction $\hat{\mathbf{s}}^f$	2852
X.8.1	Schematic layout of doublet imaging system that is free of all third-order aberrations and four fifth-order aberrations. The object plane is on the left and the image plane is on the right.	2894

lxii LIST OF FIGURES

X.8.2	Less schematic layout of imaging doublet system that is free of all third-
	order aberrations and four fifth-order aberrations. The object plane is
	on the far left and the image plane is on the far right (so that both are
	not visible), and only the shapes of the various lens surfaces and the lens
	thicknesses and spacings are illustrated. The reference plane RP_1 is at
	the beginning of the convex lens, and RP_2 is at the end of the concave
	lens. In the thin-lens approximation the convex and concave lenses have
	powers of $1/f = 10 \times 10^{-2}$ and $1/f = -10 \times 10^{-2}$, respectively 2896
X.10.1	Lie Algebraically Designed Magnetic Optical System for Fast Dynamic
	(Nanosecond) Imaging of Dense Objects Using High-Energy Proton Beams.2912
X.10.2	Ray Trace of Soft-Edge Lie Algebraically Designed Super Lens for 50
	GeV protons
Y.5.1	The gravestone of Max and Hedwig Born

List of Tables

2.3.1	Minimum Number of Stages s Required for Explicit Runge Kutta to Achieve Order m	185
2.4.1 2.4.2	Expansion Coefficients for F and G	212 216
2.4.3	The Adams' Predictor Coefficients \tilde{b}_k^N	216
3.7.1 3.7.2	Dimension of $sp(2n)$	341 347
4.1.1 4.1.2	$N=6$; scaling n values chosen to make $ [z/(2^n)] <(1/10)$ $N=9$; scaling n values chosen to make $ [z/(2^n)] <(1/10)$	441 443
5.8.1 5.8.2 5.8.3 5.8.4 5.8.5	Structure Constants of $su(3)$	559 559 565 577 578
6.7.1	Darboux Matrices α for the Generating Function types F_1 through F_4 and F_+	747
7.3.1 7.10.1	Number of monomials of degree m in various numbers of variables Number of monomials of degree 1 through m in various numbers of variables	837 868
7.10.2	Storage Requirements for Taylor and Lie Maps	869
8.9.1 8.9.2	Values of $\dim(L_2/L_D)$	928 936
9.4.1 9.4.2	Order in which the \tilde{h}_{ℓ}^m are to be extracted for the case L^0/L^3 Order in which the \tilde{h}_{ℓ}^m are to be extracted for the case L^0/L^7	978 979
10.12.1 10.12.2 10.12.3 10.12.4	A labeling scheme for monomials through degree three in two variables. Nonzero values of $C^r_{br'r''}$ for $r \in [1,5]$ in the two-variable case A labeling scheme for monomials through degree three in three variables. Nonzero values of $C^r_{br'r''}$ for $r \in [1,9]$ in the three-variable case	1045 1052 1055 1059

lxiv LIST OF TABLES

16.2.1 16.2.2 16.2.3 16.2.4	Numerical behavior of $f(84)$ for small values of a	1417 1426 1430 1444
17.4.1	The quantity $q_{\rm cr}(n)$ for various values of n	1560
19.1.1 19.2.1	The exact and discrete (with $N=49$) Fourier coefficients of $f(\phi)$ The coefficients $B_m^7(q)$	1675 1712
21.3.1 21.3.2	Relative difference between the surface-data-based map and the exact map. Relative error of the noisy surface data based map compared to the exact map.	.1782 1784
27.5.1 27.8.1	Dimensions of Representations of $sp(4)$	1895 1915
40.2.1 40.2.2 40.2.3 40.2.4 40.5.1 40.5.2 40.5.3 40.5.4 40.6.1 40.6.2 40.7.1 40.7.2 40.7.3	Multiplication look-up table size for polynomials of degree 1 through m in various numbers of variables when symmetry is not exploited Contents of the arrays $iftb\ell$, $igtb\ell$, and $ihtb\ell$ in the case $m=4$ and $d=2$. Contents of the array $icmin$ in the case $m=4$ and $d=2$ The result of rearranging Table 6.1 in order of increasing ih The arrays $ichot$ and $ictop$ in the case $m=4$ and $d=2$	2485 2486 2487 2494 2501 2502 2503 2504 2511 2515 2516 2521
40.8.1	Array sizes $maxic1$ and $maxic2$ (in the case of 6 phase-space variables) for various values of $maxdeg$	2527
S.2.1 S.2.2 S.2.3 S.2.4 S.2.5	A labeling scheme for monomials in three variables	2720 2727 2728 2734 2737
T.1.1 T.2.1	Maximum Order ℓ_{max} for k Newton-Cotes Sampling Points $S_0(2,d)$ as a Function of d	2762 2772
U.2.1 U.3.1	$N(n,3), S_0(n,3), 3N(n,3), 3S_0(n,3), $ and $S_B(n)$ as functions of n Allowed values of $n\ell J$	2784 2788

LIST OF TABLES

X.3.1	Some Values of $N(n, j)$	2874
X.4.1	Some values of $C(221; m, m', m + m')$ and $C(223; m, m', m + m')$	2882
X.4.2	Remaining values of $C(221; m, m', m + m')$ and $C(223; m, m', m + m')$.	2883

Preface

John Wallis (1616-1703), Savilian Professor of Geometry at Oxford, was a mathematician and predecessor of Isaac Newton. His most important book, published in 1656, was Arithmetica Infinitorum. It introduced, among others, the concepts of negative and fractional exponents, and considered the problem of finding the areas under curves described by functions involving such exponents. He also introduced the symbol ∞ . In 1685 he published Algebra.

His contemporary Thomas Hobbes (1588-1679), a philosopher and political theorist, read (or perhaps only paged through) this 1656 book, and described it as a "a scab of symbols as if a hen had been scraping there." Apparently taken by this simile, on another occasion he wrote of Wallis: "And for (your book) on *Conic Sections*, it is covered over with a scab of symbols that I had not the patience to examine whether it be well or ill demonstrated." He goes on to say: "Symbols, though they shorten the writing, yet do not make the reader understand it sooner than if it were written in words. … (with the use of symbols) there is a double labour of the mind, one to reduce your symbols to words, which are also symbols, another to attend to the ideas which they signify."

But, according to Leibniz (1646-1716), "In symbols one observes an advantage in discovery which is greatest when they express the exact nature of a thing briefly and, as it were, picture it; then indeed the labor of thought is wonderfully diminished." Laplace (1749-1827) was even more enthusiastic when he wrote "Such is the advantage of a well-constructed language that its simplified notation often becomes the source of profound theories." And, according to Whitehead (1861-1947), "Civilization advances by extending the number of

¹Leibniz invented much of modern calculus notation. He also introduced the term *dynamick* for what Newton (1642-1727) had previously called *rational mechanics*. But Newton objected to this name, not because of its "inadequacy to describe the subject matter", but rather because Leibniz had "set his mark upon the whole science of forces calling it Dynamick, as if he had invented it himself & is frequently setting his mark upon things by new names & new Notations". Leibniz was kinder to Newton when he wrote "Taking mathematics from the beginning of the world to the time of Newton, what he has done is much the better half." For a history of how Leibnizian notation came to be used in Great Britain, see the Web site https://en.wikipedia.org/wiki/Analytical_Society.

To Descartes (1596-1650) we owe the use of the symbols $a,b,c\cdots$ as constants, the symbols $x,y,z\cdots$ as variables, writing xx as x^2 etc., and, of course, honor for forging the connection between algebra and geometry (to create analytic geometry) by the use of Cartesian coordinates including making graphs of functions. To add to the list: Robert Recorde in 1540 introduced the + and - symbols for addition and subtraction and in 1557 introduced the equal sign =, William Oughtred in 1631 introduced the multiplication sign \times and the trigonometric function symbols sin and cos, Johann Rahn in 1659 introduced the division sign \div and the therefore sign \therefore , and William Jones in 1706 introduced use of the Greek letter π to denote the value that is the ratio of the circumference to the diameter for any circle and use of a dot above a letter to denote differentiation with respect to time.

lxviii LIST OF TABLES

important operations which we can perform without thinking of them."

The purpose of this book is to explore and illustrate how Lie-algebraic/map methods and Lie-algebraic concepts/symbols are broadly applicable to many areas of Nonlinear Dynamics including Accelerator Physics.

Reference

J. Mazur, Enlightening symbols: a short history of mathematical notation and its hidden power, Princeton University Press (2014).

Acknowledgments

Institutions: U.S. Department of Energy, University of California (Berkeley), Institute for Advanced Study, University of Maryland, Institut des Hautes Études Scientifiques (IHÉS, France), Institute for Theoretical Physics Santa Barbara, Los Alamos National Laboratory, SSC Central (Berkeley) Design Group, Lawrence Berkeley National Laboratory, Stanford Linear Accelerator Center.

Minds: New ideas often emerge through close interaction between minds. Accordingly, these ideas do not solely belong to any of these individual minds, but rather are the fruit of their mutual interaction - an emergent property of exchange and interaction. Many of these minds are from the past and are known only through their writings or influences passed down through our ancestors. They are too numerous to mention here, but some will be acknowledged in the text, and more will be referenced in the Bibliography. Others are those of our contemporaries or near contemporaries. They include John Horvath, Richard K. Cooper, Robert Gluckstern, David Sutter, Eyvind Wichmann, David Judd, Robert Karplus, Alex Dessler, J. David Jackson, V. Bargmann, Louis Michel, Maury Tigner, Karl L. Brown, Alex Chao, John Irwin, Miguel Furman, Leo Michelotti, Martin Berz, Klaus Halbach, K. B. Wolf, Desmond Barber, Dobrin Kaltchev, Sateesh Mane, Peter Walstrom, Paul Channell, C. Thomas Mottershead, Filippo Neri, John Finn, David Douglas, Étienne Forest, Liam Healy, Robert Ryne, Govindan Rangarajan, Dan Abell, Marco Venturini, Chad Mitchell.

I was like a boy playing on the sea-shore, and diverting myself now and then finding a smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth lay all undiscovered before me.

Isaac Newton

For in Him we live and move and have our being.

Acts 17:28

Assertion made by Saint Paul about the "unknown god" and attributed by Paul to an unnamed Greek poet, now thought to be Epimenides of Knossos because this line appears

lxx LIST OF TABLES

in his poem Cretica.

Figure 0.0.1: The Ancient of Days. "If the doors of perception were cleansed, everything would appear to man as it is: Infinite." William Blake (1757-1827)