IDS 572 Case- Loan default prediction and investment strategies in online lending

Assignment 1A – data exploration

Assignment 1B – decision tree based models and performance evaluation

Due date: Feb 16 (Parts A, B)

In this assignment, we will consider data from an online lending platform, Lending Club. Your team's ultimate goal is to help a client determine whether s/he should invest in p2p loans, and how to go about doing this. We will analyze, explore and process the data, develop models to predict which loans are at risk of default. The end goal is to use these models to devise suitable investment strategies.

Background

P2P lending platforms - like Lending Club (LC), Prosper, Peerform, Upstart, etc - provide an online environment for matching borrowers seeking loans and lenders looking to make an investment. With lower operational costs than traditional lenders (banks), such online lending platforms leverage technology, data and analytics to bring quicker and more convenient financing for individual and small business borrowers from investors looking for attractive investment yields. With increasing volumes, what started as peer-to-peer platforms for connecting individual borrowers and individual investors has today evolved to include institutional investors, hedge funds, etc. Also called marketplace lending or alternate lending, such fintech platforms have seen significant growth in recent years. It is estimated that in 2018, 38% of all personal loans in the US were issued through fintech firms, growing from 5% in 2013 ¹¹. Some estimate the global online lending market to grow from ~\$42B in 2018 to ~\$460B in 2022 2². Lending Club, a pioneer in fintech, is one of the largest online lending platforms, with over \$50B in total loans issued till date 3³. (See a comparison at

https://www.investopedia.com/articles/investing/092315/7-best-peertopeer-lending-websites.asp)

"LendingClub uses technology to operate its online credit marketplace at a lower cost than traditional lending programs, passing the savings on to borrowers in the form of lower rates, and offering investors the potential for competitive returns" Further information is detailed in their website, which you should examine to understand how borrowers apply for loans and the information available for investors to decide on loans to finance.

Lending Club recently (Jan 2021) received approval for acquiring the digital bank, Raduis, and stopped operations in its current P2P platform. As reported in Jan 19, 2021:

"This is a transformative acquisition for the company and a watershed moment for the industry as we become the only full-spectrum fintech marketplace bank in the U.S.," said Scott Sanborn, CEO of LendingClub. "The customer benefits of this acquisition are even clearer now that COVID has accelerated Americans' move to digital banking. As the only full-spectrum fintech marketplace bank, LendingClub will be able to use our technology and data-driven platform to provide new products and services to our millions of members that will help them both pay less when borrowing and earn more when saving. By combining with Radius, we will create a category-defining experience that will also

¹ https://www.cnbc.com/2019/02/21/personal-loans-surge-to-a-record-138-billion-in-us-as-fintechs-lead-new-lending-charge.html

² https://www.alliedmarketresearch.com/peer-to-peer-lending-market

³ https://www.lendingclub.com/info/statistics.action

⁴ https://www.lendingclub.com/public/how-peer-lending-works.action

dramatically enhance the resilience and earnings trajectory of our business." (https://www.prnewswire.com/news-releases/lendingclub-receives-regulatory-approvals-to-acquire-radius-bancorp-301210498.html)

This assignment is based on data from Lending Club (LC). Similar data is available from other P2P lending platforms, to help investors assess riskiness of loans and make investment decisions. LC issues personal loans between \$1000 and \$40,000 for 36 to 60 month durations. Interest rates on these loans are determined based on a variety of information, including credit rating, credit history, income, etc. Based on this, LC assigns a grade for each loan, ranging from A for safest loans to G for highest risk; subgrades are also assigned within each grade. Loans are split into \$25 notes, which investors can purchase. Interested investors can browse different loans the LC website, which shows the assigned loan grade and other information.

The online lending business model and how Lending Club operates is described in various web resources. Having an understanding of this is important, to appreciate the role of data and analytics, and the future potential of this rapidly developing area of fintech.

An introduction to alternative lending. Morgan Stanley Investment Insights, May, 2019 https://www.morganstanley.com/im/en-us/financial-advisor/insights/investment-insights/an-introduction-to-alternative-lending.html

https://en.wikipedia.org/wiki/LendingClub

A Trillion Dollar Market By the People, For the People – How Marketplace Lending Will Remake Banking As We Know https://foundationcapital.com/wp-content/uploads/2020/04/FC CharlesMoldow TrillionDollarMarket.pdf
You may find this interesting - "Theorem uses data science and machine learning to invest in marketplace lending loans" https://www.theoremlp.com/

"LendingClub (A): Data Analytic Thinking" Harvard Business School Case, 2018. Our work in this assignment, though sharing some aspects of this case, takes a different approach in analyses.

To facilitate investment, P2P lenders provides access to their data. Large sets of data are provided in different files. For the purpose of this assignment, we will use a sample of loans issued during 2012-2015. The data carries information on 36 month loans, which will all have completed their term by 2018 (the data is for a period ending 2018). Some loans are active, some fully paid back, while others were "charged off"

Assignment

The data on loans is in the file lcDataSample.csv and the LCDataDictionalry.xls file describes the variables.

In the first phase of this assignment, we will explore the data on loans, to develop an understanding of loan grades and subgrades and how they may relate to default and returns performance, loan purpose and any relation to performance, analyses of returns from loans, etc. We also need to look into outliers, missing data, and how to address this. While the data carries information on over 100 variables, we need to determine which data will be available when looking to invest in a loan — since our goal is to develop a model to predict loan default and then decide which loans to invest in; such a model will thus be only able to consider variables available before a loan is issued.

In the second phase of the assignment, the subsequent task is to develop models to identify good/bad loans ('fully paid' or 'charged off', and evaluate these. We will also consider how these models can be used for investment decisions, and determine investment performance corresponding to the models.

Questions:

Part A:

- Describe the business model for online lending platforms like Lending Club. Consider the stakeholders and their roles, and what advantages Lending Club offers. What is the attraction for investors? How does the platform make money? (Not more than 1.5 pages, single spaced, 11 pt font. <u>Please cite your sources</u>).
- 2. Your team's ultimate goal is to help a client determine whether s/he should invest in p2p loans. What is the final decision that you will help the client make? What is the objective, and how will you evaluate 'better' vs 'worse' decisions?

 What is the goal of predictive models for this? What will be the potential target variables?

3. Data exploration

- (a) Take a look at the data attributes. How would you categorize these attributes, in broad terms, considering what they pertain to?
- What are attribute types which are numeric, categorical, and date variables? What do you think will be the important attributes to consider for your decision task? Which attributes do you think will help determined performance?
- (b) How will you calculate performance (returns) from a loan? There are multiple ways for calculating this. Outline two ways to calculate returns based on the data attributes; what are their advantages and disadvantages.
- (c) Examine the attributes which you think will be useful in your analyses and modeling. Obtain data descriptions, and develop some plots to visualize the data. Summarize your observations (you answer should be more than just the figures and plots what is the 'story' from your initial observations)
- (d) Some questions to consider:
- (i) What are the values for loan_status? Are there values other than "fully paid", "charged off"? We want to restrict attention to "fully paid" and "charged off" loans, so, other values should be removed.

What is the proportion of defaults ('charged off' vs 'fully paid' loans) in the data? How does default rate vary with loan grade? Does it vary with sub-grade? And is this what you would expect, and why?

- (ii) How many loans are there in each grade? And do loan amounts vary by grade? Does interest rate for loans vary with grade, subgrade? Look at the average, standard-deviation, min and max of interest rate by grade and subgrade. Is this what you expect, and why?
- (iii) For loans which are fully paid back, how does the time-to-full-payoff vary? For this, calculate the 'actual term' (issue-date to last-payment-date) for all loans. How does this actual-term vary by loan grade (a box-plot can help visualize this).
- (iv) What is 'recoveries'? Can we assume that recoveries are only for Charged_off loans? The data has multiple attributes on recoveries what is the total amount of recoveries? For charged-off loans, does total_pymnt include recoveries?
- (v) Calculate the annual return. Show how you calculate the percentage annual return. Is there any return from loans which are 'charged off'? Explain.

How does return from charged -off loans vary by loan grade?

Compare the average return values with the average interest_rate on loans – do you notice any differences, and how do you explain this?

How do returns vary by grade, and by sub-grade.

If you wanted to invest in loans based on this data exploration, which loans would you invest in?

- (vi)What are people borrowing money for (purpose)? Examine how many loans, average amounts, etc. by purpose? Do loan amounts vary by purpose? Do defaults vary by purpose? Does loan-grade assigned by Lending Club vary by purpose?
- (vii) Consider some borrower characteristics like employment-length, annual-income, fico-scores (low, high). How do these relate to loan attribute like, for example, loan_amout, loan_status, grade, purpose, actual return, etc.
- (viii) Generate some (at least 3) new derived attributes which you think may be useful for predicting default., and explain what these are. For these, do an analyses as in the questions above (as reasonable based on the derived variables).
- (d2) Summarize your conclusions and main themes from your analyses above.
- (e) Are there missing values? What is the proportion of missing values in different variables? Explain how you will handle missing values for different variables. You should consider what he variable is about, and what missing values may arise from for example, a variable monthsSinceLastDeliquency may have no value for someone who has not yet had a delinquency; what is a sensible value to replace the missing values in this case? Are there some variables you will exclude from your model due to missing values?
- (f) Consider potential outliers. Explain how you identify outliers i.e. what specific analyses you use (eg. summary(), histograms, boxplots,...).

Describe how a boxplot identifies outliers. Would you use this approach here (or, should outliers be determined based on data specifics and application context --leading question ©

If you do choose to remove outliers, explain what you do, and how this affects your data.

- 4. Consider the potential for data leakage. You do not want to include variables in your model which may not be available when applying the model; that is, some data may not be available for new loans before they are funded. Leakage may also arise from variables in the data which may have been updated during the loan period (ie., after the loan is funded). Identify and explain which variables will you exclude from the model for leakage considerations, and explain why.
- 5. Do a univariate analyses to determine which variables (from amongst those you decide to consider for the next stage prediction task) will be individually useful for predicting the dependent variable (loan_status). For this, you need a measure of relationship between the dependent variable and each of the potential predictor variables. Given loan-status as a binary dependent variable, which measure will you use? From your analyses using this measure, which variables do you think will be useful for predicting loan_status? (Note if certain variables on their own are highly predictive of the outcome, it is good to ask if this variable has a leakage issue).

Part B: we will next develop predictive models for loan_status.

- 6. Develop decision tree models to predict default.
 - (a) Split the data into training and validation sets. What proportions do you consider, why?
 - (b) Train decision tree models (use both rpart, c50)

 Remember if the model performance looks "too" good, it may be due to leakage make sure you check to ensure that none of the variables used in modeling have leakage problems. Look at variable importance in the models any leakage causing variables will typically be among the most important,

In building decision tree models, what parameters do you experiment with, and what performance do you obtain (on training and validation sets)? Clearly tabulate performance for different parameter settings, and briefly describe your findings.

For evaluation of models, you should include confusion matrix related measures, as well as ROC analyses and lifts. Explain which performance measures you focus on, and why.

(c) Identify the best tree model. Why do you consider it best?

Describe this model – in terms of complexity (size).

Examine variable importance. How does this relate to your uni-variate analyses in Question

5 above?

Briefly *describe* how variable importance is obtained (the process used in your best decision tree – note that the approach is not the same for rpart and C50).

7. Develop a random forest model. (Note the 'ranger' library can give faster computations) What parameters do you experiment with, and does this affect performance? Describe the best model in terms of number of trees, performance, variable importance. Compare the performance of random forest and best decision tree model from the prevoious question.

Do you find the importance of variables to be similar/different? Which model would you prefer, and why?

8. The purpose of the model is to help make investment decisions on loans. How will you evaluate the models on this business objective? Consider a simplified scenario - for example, that you have \$100 to invest in each loan, based on the model's prediction. So, you will invest in all loans that are predicted to be 'Fully Paid'. Key questions here are: how much, on average, can you expect to earn after 3 years from a loan that is paid off, and what is your potential loss from a loan that has to be charged off?

One can consider the average interest rate on loans for expected profit - is this a good estimate of your profit from a loan? For example, suppose the average int_rate in the data is 12%; so after 3 years, the \$100 will be worth (100 + 3*12) = 136, i.e a profit of \$36. Now, is 12% a reasonable value to expect - what is the return you calculate from the data? Explain what *value of profit* you use.

For a loan that is charged off, will the loss be the entire invested amount of \$100? The data shows that such loans have do show some partial returned amount. Looking at the returned amount for charged off loans, what proportion of invested amount can you expect to recover? Is this overly optimistic? Explain which *value of loss* you use.

You should also consider the alternate option of investing in, say in bank CDs (certificate of deposit); let's assume that this provides an interest rate of 2%. Then, if you invest \$100, you will receive \$106 after 3 years (not considering reinvestments, etc), for a profit of \$6. Considering a confusion matrix, we can then have profit/loss amounts with each cell, as follows:

Predicted

Actual

	<u>FullyPaid</u>	ChargedOff
FullyPaid	profitValue	\$6
ChargedOff	lossValue	\$6

(a) Compare the performance of your models from Questions 6, 7 above based on this. Note that the confusion matrix depends on the classification threshold/cutoff you use. Evaluate

- different thresholds and analyze performance. Which model do you think will be best, and why.
- (b) Another approach to determining the optimal threshold for implementing the model is to directly consider how the model will be used you can order the loans in descending order of prob(fully-paid). Then, you can consider starting with the loans which are most likely to be fully-paid and go down this list till the point where overall profits begin to decline (as discussed in class). Conduct an analyses to determine what threshold/cutoff value of prob(fully-paid) you will use and what is the total profit from different models. Also compare the total profits from using a model to that from investing in the safe CDs. Explain your analyses and calculations.
 - Which model do you find to be best and why. And how does this compare with what you found to be best in part (a) above.