

POLYTECHNIQUE MONTRÉAL

TRAVAUX PRATIQUE 3

INTRODUCTION

/ INTRODUCTION

Le but de ces travaux pratiques est de mettre en pratique les différentes notions abordées lors des différents modules de cours théorique.

Les travaux doivent être réalisés à l'aide du cadriciel fourni basé sur le Unreal Engine. Le fil conducteur est le développement d'agents intelligents pour un jeu de style Pac-Man.

Un certain nombre d'ingrédients vous sont fournis afin de vous concentrer pleinement sur les différentes tâches demandées (cf section Éléments Fournis).

Les différentes tâches demandées demanderont de mettre en pratique les différentes techniques de prise de décision avancée ainsi que d'optimisation.

1. Utilisation d'un behavior tree

La sélection du comportement courant de l'agent doit être effectué à l'aide des fonctionnalités de behavior tree fournis par Unreal.

Éléments obligatoires	Points
Définition d'un Behavior Tree représentant les états des agents (poursuite,	5 pts
fuite, collection de pickup)	
Transitions fonctionnelles entre les états	5 pts

2. Création de groupe de poursuite

Lorsque un agent exécute son comportement de poursuite, il doit alors être incorporé dans le groupe de poursuite du joueur. Les différents membres du groupe doivent pouvoir être visualisés à l'aide des fonctions de debug d'Unreal.

Éléments obligatoires	Points	
Création du groupe de poursuite du joueur	4 pts	
Ajout / retrait des agents au groupe	4 pts	
Affichage des membres du groupe	2 pts	

3. Comportement de poursuite en groupe

Les agents inclus dans le groupe de poursuite du joueur doivent se repartir de manière intelligente autour du joueur afin de le bloquer.

Éléments obligatoires	Points	
Calcul des positions autour du joueur	5 pts	
Assignation des positions à chaque agent membre du groupe	5 pts	

4. Profiling du temps CPU utilisé par chaque agent

Un résumé doit afficher à l'écran le temps CPU utilisé pour l'update de chaque agent ainsi que le temps total consacré à des modules spécifiques de l'AI.

Éléments obligatoires	Points
Affichage debug indiquant le temps CPU utilisé par chaque agent pour la	2 pts
détection du joueur	
Affichage debug indiquant le temps CPU utilisé pour le choix de location de	2 pts
fuite	
Affichage debug indiquant le temps CPU utilisé pour le choix des	2 pts
collectibles	

5. Attribution d'un budget fixe pour la mise à jour des agents

Un temps fixe doit être consacré à la mise à jour des agents. Les agents ne pouvant pas être mise à jour pendant le frame courant, devront l'être le frame suivant.

Éléments obligatoires	Points	
Pris en compte d'un budget fixe pour la mise à jour des agents	6 pts	
Segmentation de la mis à jour des agents sur plusieurs frames	8 pts	

ÉLÉMENTS FOURNIS

/ ÉLÉMENTS FOURNIS

Blueprints Unreal

BP DeathFloor

- Ingredient gameplay de type obstacle dont la fonction est de provoquer la téléportation au point de départ de l'entité ayant collisionné avec
- StaticMeshActor avec une collision de type "DeathObject"

BP_SDTCollectible

• Ingredient gameplay de type pickup dont la fonction est de disparaitre lorsqu'une entité rentre en contact avec. Si l'entité est le joueur, le pickup confère alors l'état « PowerUp » pendant un certain temps au joueur

BP SDTAICharacter

• Classe de base devant être utilisé pour implémenter le code du pawn de l'agent

BP SDTAIController

• Classe de base devant être utilisé pour implémenter le code du controller de l'agent

BP_SDTMainCharacter

- Entité joueur qui doit être contrôlé par un humain.
- Utilise une collision de type « Player »

Document

ToolBox-Polytechnique

• Liste de fonctions Unreal documentées à utiliser pour la réalisation du TP.

ÉVALUATION

/ ÉVALUATION 1/2

Tra	vail à accomplir	Env. fourni
1.	Utilisation d'un behavior tree	10 pts
2.	Envoie de stimuli	10 pts
3.	Comportement de poursuite en coopération	10 pts
4.	Profiling du temps CPU utilisé par chaque agent	6 pts
5.	Attribution d'un budget fixe pour la mise à jour des agents	14 pts
	Soin apporté au code**	-10 pts

Total: 50 points

*Le soin apporté au code appréciera les éléments suivants :

- Taille des fonctions
- Factorisation du code

REMISE

/ REMISE

La remise du TP consiste en la livraison du projet Unreal complet comprenant les modifications de l'étudiant

POLYTECHNIQUE MONTRÉAL