ELEC 341: Systems and Control

Lecture 8

Time-domain specifications and steady-state error

Water tank level control

• Requirement: Maintain the level of Tank B at a desired level by controlling the control valve.

Single tank case

Two tank case

Water tank level control (Block diagram)

Proportional control (P-control)

- Set value (desired level)
- Controller gain K_P (design parameter)
- Command voltage V(t) (e(t) is an error)

$$V(t) = \begin{cases} V_{max} & \text{if } K_Pe(t) > V_{max} \\ K_Pe(t) & \text{if } K_Pe(t) \in [V_{min}, V_{max}] \\ V_{min} & \text{if } K_Pe(t) < V_{min} \end{cases}$$

Note that there is a steady state error.

Course roadmap

Modeling

Analysis

Transfer function

Models for systems

- Electrical
- Electromechanical
- Mechanical
- Linearization, delay

- Routh-Hurwitz
- Nyquist

- Transient
- Steady state

Frequency response

Bode plot

Root locus

Frequency domain

PID & Lead-lag

Design examples

Matlab simulations

Review and next topics

- We have learned about stability.
 - Definition in time domain
 - Condition in s-domain
 - Routh-Hurwitz criterion to check the condition
- Stability is a necessary requirement, but not sufficient in most control systems. (next slide)
- Specifications other than stability
 - How to evaluate a system quantitatively in t-domain?
 - How to give design specifications in t-domain?
 - What are the corresponding conditions in s-domain?

Temperature control example

 We want to change the room temperature from 10 °C to 20 °C.

Time response

- We would like to analyze our stable system's property by applying a *test input* r(t) and observing its time response y(t).
- Time response is divided into two components as below:

$$y(t) = y_t(t) + y_{ss}(t)$$

Transient (natural) response

$$\lim_{t\to\infty}y_t(t)=0$$

Steady-state (forced) response (after y_t dies out)

Example:

Transient & steady-state responses

Transient response

$$y_t(t) = -0.8e^{-\frac{t}{2}}$$

Steady-state response

$$y_{ss}(t) = 0.8$$

Usage of time responses

Modeling

 Some parameters in the system may be estimated by time responses.

Analysis

 A system can be evaluated by seeing transient and steady-state responses. (Satisfactory or not?)

Design

 Given design specs in terms of transient and steadystate responses, controllers are designed to satisfy all the design specs.

Typical test inputs

Sinusoidal input will be dealt with later.

Typical step response

Steady-state value for step input

- Suppose that G(s) is stable.
- By the final value theorem:

$$\lim_{t \to \infty} y(t) = \lim_{s \to 0} s \cdot Y(s) = \lim_{s \to 0} s \cdot G(s) \cdot R(s) = \lim_{s \to 0} s \cdot G(s) \cdot U(s) = \lim_{s \to 0} s \cdot G(s) \cdot \frac{R}{s}$$

$$\lim_{t \to \infty} y(t) = \lim_{s \to 0} sG(s) \frac{R}{s} = RG(0)$$

• Step response converges to some finite value, called steady-state value y_{ss} .

Steady-state error for input *u*(*t*)

Peak value (y_{max}), peak time (T_p), and percent overshoot (PO)

Delay, rise, and settling times

An example revisited

- For the previous example shown here again:
 - Steady-state error: 1 0.8 = 0.2
 - Delay time around 1.4 sec
 - Rise time around 5 sec
 - Settling time around 8 sec
- Remark: There is no peak in this case, so the following are undefined:
 - peak value
 - peak time
 - percent overshoot

Remarks on time responses

- Speed of response is measured by
 - Rise time, delay time, peak time, and settling time
- Relative stability is measured by
 - Percent overshoot
- Typically ...
 - Fast response (short rise time, short peak time)
 - → Large percent overshoot → Small stability margin
- In controller design, we normally face a trade-off between response speed and stability.

("No-free-lunch theorem" in Control Engineering!)

Performance measures

- Transient response
 - Peak value
 - Peak time
 - Percent overshoot
 - Delay time
 - Rise time
 - Settling time
- Steady state response
 - Steady state error

(Next lecture)

(Today's lecture)

Next, we will connect these performance measures with s-domain.

Course roadmap

Modeling

Laplace transform

Transfer function

Models for systems

- Electrical
- Electromechanical
- Mechanical

Linearization, delay

Analysis

- Routh-Hurwitz
- Nyquist

- Transient
- Steady state

Frequency response

Bode plot

Design

Design specs

Root locus

Frequency domain

PID & Lead-lag

Design examples

Matlab simulations

Steady-state error of feedback system

Assumptions

- $L(s) = Controller(s) \times Plant(s)$
- Unity feedback (no block on feedback path)
- CL system is stable

$$L(s) = K.G(s)$$

- Suppose that we want output y(t) to track r(t).
- Error e(t) = r(t) y(t)
- Steady-state error

$$e_{ss} = \lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} s \frac{1}{1 + L(s)} R(s)$$

Final value theorem (Suppose CL system is stable!)

Error constants

- CL system's ability to reduce steady-state error e_{ss}
 - "Large error constant" means "large ability".
- Three error constants (also called static error constants) are:
 - Step-error (position-error) constant

$$K_p = \lim_{s \to 0} L(s)$$

• Ramp-error (velocity-error) constant

$$K_v = \lim_{s \to 0} sL(s)$$

Parabolic-error (acceleration-error) constant

$$K_a = \lim_{s \to 0} s^2 L(s)$$

Steady-state error for step r(t)

$$r(t) = Ru(t) \Rightarrow e_{ss} = \frac{R}{1 + K_p}$$

Steady-state error for ramp r(t)

$$r(t) = Rtu(t) \Rightarrow e_{ss} = \frac{R}{K_v}$$

Steady-state error for parabolic r(t)

$$r(t) = \frac{Rt^2}{2}u(t) \Rightarrow e_{ss} = \frac{R}{K_a}$$

Zero steady-state error

- When does steady-state error become zero? (i.e., accurate tracking!)
- Infinite error constant!
 - For step r(t) $K_p = \lim_{s \to 0} L(s) = \infty$
 - → *L*(*s*) must have at least 1-integrator. (Type 1 system)
 - For ramp r(t) $K_v = \lim_{s \to 0} sL(s) = \infty$
 - \rightarrow L(s) must have at least 2-integrators. (Type 2 system)
 - For parabolic r(t) $K_a = \lim_{s \to 0} s^2 L(s) = \infty$
 - \rightarrow L(s) must have at least 3-integrators. (Type 3 system)

System Type

Feedback control system for defining system type

We define system type to be the value of n in the denominator or, equivalently, the number of pure integrations in the forward path. Therefore, a system with n = 0 is a Type 0 system. If n = 1 or n = 2, the corresponding system is a Type 1 or Type 2 system, respectively.

Characteristic Equation (review)

• The following figure shows a negative feedback control system. Here, two blocks having transfer functions G(s) and H(s) form a closed loop.

1 + G(s)H(s) = 0 is called the **Characteristic Equation**.

Example 1

• *L*(*s*) has 2-integrators.

$$L(s) = \frac{K}{s^2(s+12)}$$

Characteristic equation:

$$1+L(s) = 0 \Leftrightarrow s^2(s+12) + K = 0 \Leftrightarrow s^3 + 12s^2 + K = 0$$

- CL system is NOT stable for any K.
- *e*(*t*) will not converge. (Do not use today's results if CL system is not stable!)

a place of mind

Example 2

• *L*(*s*) has 1-integrator.

$$L(s) = \frac{K(s+3.15)}{s(s+1.5)(s+0.5)}$$

- By Routh-Hurwitz criterion, CL is stable if 0 < K < 1.304
- Step r(t) $K_p = \lim_{s \to 0} L(s) = \infty \longrightarrow e_{ss} = \frac{R}{1 + K_p} = 0$
- Ramp r(t) $K_v = \lim_{s \to 0} sL(s) = \frac{3.15K}{0.75} = 4.2K \longrightarrow e_{ss} = \frac{R}{K_v} = \frac{R}{4.2K}$
- Parabolic r(t) $K_a = \lim_{s \to 0} s^2 L(s) = 0$ \Longrightarrow $e_{ss} = \frac{R}{K_a} = \infty$

Example 3

• *L*(*s*) has 2-integrators.

$$L(s) = \frac{5(s+1)}{s^2(s+12)(s+5)}$$

- By Routh-Hurwitz criterion, we can show that CL system is stable.
- Step r(t) $K_p = \lim_{s \to 0} L(s) = \infty$ $\Longrightarrow e_{ss} = \frac{R}{1 + K_p} = 0$
- Ramp r(t) $K_v = \lim_{s \to 0} sL(s) = \infty$ $\Longrightarrow e_{ss} = \frac{R}{K_v} = 0$
- Parabolic r(t) $K_a = \lim_{s \to 0} s^2 L(s) = \frac{1}{12} \implies e_{ss} = \frac{R}{K_a} = 12R$

Integrators in *L*(*s*)

- Integrators in L(s) (i.e., plant and controller) are very powerful to eliminate the steady-state errors.
 - Examples 2 & 3
- However, integrators in L(s) try to destabilize the feedback system.
 - Example 1
 - To be explained later in "Nyquist stability criterion".

("No-free-lunch theorem" again.)

Summary

- Time response and time domain specifications.
- Steady-state error
 - For stable unity feedback systems and for a specific type of input (step, ramp, parabolic, etc.), the number of integrators determines if the steady-state error is zero.
 - The key tool is the final value theorem.
- Next
 - Step responses of 1st and 2nd order systems.