Cox PH Model Model Diagnosis
 Introduction So far, we have learned, for a given Cox PH model, Estimation of β, and baseline h₀(t) or S₀(t). Inference: testing effect of predictors. Outstanding question: Is Cox PH model appropriate? An inappropriate model can lead to biased estimation and misleading conclusions.
Introduction • Similar to other statistical models, Cox PH model is valid under certain assumptions. • It is important to check the validity of these assumptions and identify ways in which they might be violated.

Cox PH model

- Recall the Cox's proportional hazard model $h(t \mid \mathbf{Z}) = h_0(t) \exp(\mathbf{Z}^T \boldsymbol{\beta}).$
- Two key model assumptions
 - Proportional hazard assumption
 - The linear form $\mathbf{Z}^T \boldsymbol{\beta}$
- · Also interested in diagnosis of
 - Outliers: any observation that are not well captured by the model

Residuals for Cox model

- Hypothesis testing can be used to address some of the model diagnosis questions.
- We are interested in residuals plots, a graphical way to address these questions.
- In particular, we will introduce
 - Cox-Snell residuals
 - Martingale residuals
 - Deviance residuals
 - Schoenfeld residuals

Cox-Snell residuals

- We have seen it in parametric regression model diagnosis.
- The Cox-snell residuals are defined as the estimated cumulative hazard,

$$r_{CS,i} = \widehat{H}(t_i \mid \mathbf{Z}_i) = \widehat{H}_0(t_i) \exp(\mathbf{Z}_i^T \widehat{\boldsymbol{\beta}})$$

- If model is correctly specified, $H(T_i^0 \mid \mathbf{Z}_i) \sim \text{Exp}(1)$.
 - ObtainK-M estimator $\hat{S}_{KM}(t)$ based on $\left\{r_{CS,i}\right\}_{i=1}^{n}$.
 - Plot $\log \hat{S}_{KM}(t)$ against t
 - If Cox model provides a good fit, then expect a straight line.

An example Data generated from Lognormal regression Out of period and the control of the contr

Cox-Snell residuals

- Cox-snell residuals can be used to assess the overall fit of the model.
- But does not provide additional information on the type of departure from the model when the plot is not linear.
- Although $H\left(T_i^0\mid Z_i\right)\sim Exp(1)$ but we are using estimated $\hat{H}\left(T_i^0\mid Z_i\right)$.
- Closeness of the distribution of the residuals to Exp(1) depends on sample size n.

Summary

- Model diagnosis for Cox PH model
- · Cox-snell residuals
- More residuals will be introduced.