OM-M20-09: Solving Ax=b

C. V. Jawahar

IIIT Hyderabad

http://tiny.cc/i9lhjz

04 Feb 2020

Problems of Interest

- Solving Ax = b;
 - When A is non singular square matrix.
 - When A has some special properties.
 - Avoid direct inversion
 - Problems of the form: $Ax_i = b_i$ for i = 1, 2,
- Least square problem when A has more rows than columns.
 - A solution that fits "best" all the equations
- Least norm problem when A has more columns than rows.
 - Among the many, a unique one such as with least norm.

Special Simple Cases

- **Identity Matrix:** A = I; $x = A^{-1}b = b$
- **Permutation Matrix:** A is a permutation matrix: exactly one entry is 1 in each row and each column and 0s elsewhere
- Diagonal Matrix: A is diagonal matrix
- Triangular Matrix A is a triangular matrix
- Time Complexities:

Class	Complexity
I	O(1)
Р	O(1)
D	O(n)
U/L Tr.	$O(n^2)$

Cholesky And LU Decomposition

Cholesky Every PD matrix A can be factorized as

$$A = LL^T$$

where L is a lower triangular matrix

$$\begin{bmatrix} a_{11} & A_{21}^T \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} I_{11} & 0 \\ I_{21} & I_{22} \end{bmatrix} \begin{bmatrix} I_{11} & I_{21}^T \\ 0 & I_{22}^T \end{bmatrix}$$

• **LU** A need not be PD; only needs to be non-singular.

$$\begin{bmatrix} a_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} I_{11} & 0 \\ I_{21} & I_{22} \end{bmatrix} \begin{bmatrix} u_{11} & U_{12} \\ 0 & U_{22} \end{bmatrix}$$

Note: A light read on PD matrices:

https://www.math.utah.edu/~zwick/Classes/Fall2012_2270/

Lectures/Lecture33_with_Examples.pdf

Computation

Cholesky:

- $I_{11} = \sqrt{a_{11}}$ and $L_{21} = \frac{A_{21}}{I_{11}}$
- $L_{22}L_{22}^T = A_{22} L_{21}L_{21}^T$; which can again be solved by Cholesky decomposition.
- $\frac{1}{3}n^3$ flops

LU

- $l_{11} = 1$ as L is a unit lower triangular matrix
- $u_{11} = a_{11}$
- $L_{21} = \frac{A_{21}}{a_{11}}$
- $U_{12} = A_{12}$
- $L_{22}U_{22} = A_{22} \frac{1}{a_{11}}A_{21}A_{12}$; which can again be solved by LU decomposition.
- $\frac{2}{3}n^3$ flops.

Time Complexity of solving Ax=b by Cholesky/LU

- Factorization step Cholesky: $(1/3)n^3$, LU: $(2/3)n^3$
- Forward Substitution(n^2 flops): Solve Lw = b for z
- Backward Substitution(n^2 flops): Solve Ux = w for x