EE 560 – Electric Machines and Drives

Prof. N.J. Nagel, Autumn 2020 – Lecture 5

Introduction to AC Induction Machines:

with the same frame (sizes 71 to 100).

ABB Induction Motor

Loose feet with consequent possibility of side mounted terminal box and IM B3 - B5 (B14) mounting arrangement,

Modular-mounting concept

Induction Motor Stator Induction Motor Rotor Stator and Rotor Laminations from Tempel Steel Company

Page 1

EE 560 – Electric Machines and Drives

Prof. N.J. Nagel, Autumn 2020 – Lecture 5

Basic Theory of Squirrel Cage Induction Machines:

 ω_e = excitation frequency ω_r = rotor electrical speed

$$\omega_{em}\,=\,\frac{\omega_e}{P/2}$$

$$\omega_{rm} \; = \; \frac{\omega_r}{P/2}$$

Per Phase Equivalent Schematic of Induction Motor

Circuit Model of Induction Motor

stator: $\overline{V}_s =$

rotor: 0 =

multiply rotor equation by

Per Phase Equivalent Schematic of Induction Motor Reflected to Stator

multiply rotor equation by $a \neq 0$ and introduce a new rotor current $=\frac{\bar{l}_r}{a}$

$$0 =$$

Per Phase Equivalent Schematic of Induction Motor Reflected to Stator

Conventional Per Phase Equivalent Circuit:

Per Phase Equivalent Schematic of Induction Motor Reflected to Stator

$$a = R_2 =$$

 $X_1 & X_2$ are called "Leakage" Inductances

$$X_1 =$$

$$X_2 =$$

$$X_m = \omega_e \frac{N_S}{N_r} L_m$$

Airgap Power:

$$P_{ag} = \frac{3I_2^2 R_2}{s} \quad \rightarrow \quad 3I_2^2 R_2 = sP_{ag}$$

Rotor Loss = sP_{ag}

$$P_{out} = \frac{3I_2^2 R_2}{s} (1 - s) = P_{ag} (1 - s)$$

A good (efficient) induction motor must run with low slip.

Prof. N.J. Nagel, Autumn 2020 – Lecture 5

Electromagnetic Torque:

$$T_{em} = \frac{P_{out}}{\omega_{rm}} = \frac{P}{2} \frac{P_{out}}{\omega_r} = \frac{P}{2} \frac{P_{ag}(1-s)}{\omega_r} = \frac{P}{2} \frac{P_{ag}(1-s)}{\omega_e(1-s)} = \frac{P}{2} \frac{P_{ag}}{\omega_e}$$

Power Flow in an Induction Motor

Conventional Per Phase Equivalent Circuit:

Per Phase Equivalent Schematic of Induction Motor Reflected to Stator

$$T_{em} = \frac{P}{2} \frac{P_{ag}}{\omega_e} \qquad P_{ag} = \frac{3I_2^2 R_2}{s}$$

$$T_{em} = \frac{3P}{2} \frac{I_2^2 R_2}{s\omega_e}$$

Prof. N.J. Nagel, Autumn 2020 – Lecture 5

For a "good" motor

for sure:

$$R_1 \to 0$$
 economics only (amount of wire)
 $X_m \to \infty$ economics only (small air gap, good magnetic steel)

$$\begin{array}{c} \textit{probably:} \\ R_2 \rightarrow 0 \\ X_1, X_2 \rightarrow 0 \end{array} \left\{ \begin{array}{c} \text{Large T_{max} (good)} \\ \text{Large Current at T_{max} (bad)} \\ \text{Large Starting Currents (bad)} \end{array} \right.$$

Controlling the speed of an induction motor:

Reduced Voltage Operation:

$$T_{em} \propto V^2$$

Reduced Voltage Operation of Induction Motor

Constant Volts/Hz operation:

$$Z_{in} = R_1 + j\omega_e L_{ls} + j\omega_e L_m / \left(\frac{R_2}{s} + j\omega_e L_{lr} \right)$$

Induction Motor Per Phase Equivalent Circuit

Neglecting R₁:

$$Z_{in}(\omega_e) = j\omega_e L_{ls} + j\omega_e L_m / \left(\frac{R_2}{s\omega_e} \omega_e + j\omega_e L_{lr} \right)$$

$$T_{em} = \frac{3P}{2} \frac{I_2^2 R_2}{S\omega_e}$$

Maintain constant V/f:

- Maintains circuit (machine) impedance
- Maintains stator current
- Maintains rotor current (and thus torque)
- Maintains magnetizing current (and thus flux)

Induction Motor Speed Torque Curves with Constant V/Hz

Stator resistance causes deviation from ideal → use voltage boost to (partially) compensate

Typical Voltage Boost Strategy for V/Hz Drives

Torque [pu]

Induction Motor Speed Torque Curves with Constant V/Hz with Boost

Recap - Constant Volts/Hz operation:

$$Z_{in} = R_1 + j\omega_e L_{ls} + j\omega_e L_m / \left(\frac{R_2}{s} + j\omega_e L_{lr} \right)$$

Neglecting R₁

$$Z_{in}(\omega_e) = j\omega_e L_{ls} + j\omega_e L_m / \left(\frac{R_2}{s\omega_e} \omega_e + j\omega_e L_{lr} \right)$$

$$T_{em} = \frac{3P}{2} \frac{I_2^2 R_2}{s\omega_e}$$
 $s\omega_e = \omega_e - \omega_r = constant$

Induction Motor Speed Torque Curves with Constant V/Hz