Def. (Assioni di Munerabilità):

Dota (X, T) sparie topologice si ha che:

1) CONDIZIONE PUNTUALE:

(X, T) rispetta il 1º Assimo di Numerabilità se VX EX X ammette un sistema fondamentale di intorni NUMERABILE.

2) CONDIZIONE GLOBALE:

(X, T) rispetta il 1º Assimo di Numeralileta se passiede una base di aperti NUMERABILE

Proposizione

Ogui spasio metrico soddisfo il 1º assisma di munolilità. Dim.

Doctor \times EX, prender come sistema di interni By (x) con n EM

Tessema:

Se (X,T) sispetto il 2^{σ} ossismo, allora sispetto anche il 1^{σ} ossismo.

Dim.

 (x, τ) annette B base di aperti umerabile. Sufinisca $\forall x \in X$ $B_X = \{B \in B \mid x \in B\} \Rightarrow B_X$ è numerabile ed è un sistema fondamentale di intorni $\Rightarrow (x, \tau)$ rispetto il 1° assiano di numerabilità. $g \cdot e \cdot d$

Non vole il vicuersa!!!

CONTROESEMPIO (sparier topologier che sispetta il 1º assiona MA NON il 2º assiona):

 \Rightarrow Sio (X, Tdiscreta) cm X infinitor NON murolile (es. X = 1R). Allowa X sispetta il 1° assicura: conve sistema di intomi murolile prendo $\{x\}$ $\forall x \in X$ ($\{x\}$ \in Tdiscreta $\forall x \in X$)

⇒ X NON sispetta il 2° assiona:

Qualuque box di aperti di (X, Toliscreta) deve contenere tutti gli {X} XXEX, ma questi sono gió m'infinità von muerable, quindi \$\ bose di aperti muerable per (X, Tdiscreta)