Podatkovne strukture in algoritmi

Andrej Brodnik UP FAMNIT

Številska drevesa osnove, PATRICIA, LC Trie

Osnove

- rekurzivna podatkovna struktura
- ključi so tako veliki, da ne moremo na enkrat primerjati dveh ključev (npr. nizi črk ali nizi bitov)
- zato organiziramo podatkovno strukturo tako, da rekurzivnost ni definirana na podlagi celotnih ključev, ampak na osnovi ene črke ključa
- primerjave nas vodijo od korena do lista, le da so sedaj primerjave narejene po bitih
- elemente shranimo v liste, medtem ko notranja vozlišča uporabimo samo za usmerjanje poti (za razdelitev na podmnožice)
- velikost črke ključa je poljubna: črka abecede (A..Ž), nukleotid v
 DNK (A, C, G, T), en bit (bitno/binarno primerjanje) v splošnem imamo abecedo Σ
- takšni strukturi rečemo trie, ker je uporabna za iskanje retrieval (E. Fredkin)
- šteli bomo število poizvedovanj po črki ključa (dostopov) in ne primerjav

Primer

▶ imamo binarne (bitne) črke abecede {0,1} in imejmo bitno predstavitev naslednjih ključev:

črka	bitna predstavitev	črka	bitna predstavitev
Α	00001	С	00011
Ε	00101	G	00111
Н	01000	I	01001
J	01010	K	01011
L	01100	М	01101
Ν	01110	Ο	01111
Р	10000	R	10010
S	10011	X	11000
Z	11010		

► Imejmo ključe

$${A, C, E, G, H, I, L, M, R, S}$$

Gradnja

- črke jemljemo po vrsti od prve naprej
- ightharpoonup ob vsaki črki razdelimo množico na dva ($|\Sigma|$) podmnožic, dokler ni v podmnožici samo še en element

Definirali smo invarianco podatkovne strukture.

Imamo ključe:

$$\{\mathtt{A},\mathtt{C},\mathtt{E},\mathtt{G},\mathtt{H},\mathtt{I},\mathtt{L},\mathtt{M},\mathtt{R},\mathtt{S}\}$$

Iskanje

- ▶ iščimo L = 01100:
 - pogledamo prvi bit in je 0, zato gremo v levo podstrukturo (pod-trie)
 - pri naslednjih dveh bitih gremo obakrat desno, kjer je njuna vrednost 1
 - na koncu še dvakrat levo in smo našli L
- ▶ iščimo J = 01010:
 - pogledamo prve tri bite in gremo levo, desno in levo
 - pri četrtem bitu ne moremo desno, ker tam ni poddrevesa, torej J ni v strukturi

Iskanje malce drugače

- če nadaljujemo z iskanjem po obstoječi poti levo, pridemo do ključa
 I
- ključ I je sosed ključa J; celo najbljižji sosed
- ▶ toda, če iščemo ključ K = 01011 tudi najdemo ključ I, ki pa ni več najbližji sosed

Iskanje soseda

- takšnemu iskanju rečemo tudi iskanje najboljšega ujemanja ali najboljšega odgovora
- v obeh primerih smo našli levega soseda
- kako v splošnem najdemo levega soseda
- ightharpoonup poiščimo še: P = 10000, O = 01111 in I = 01001

Iskanje levega, desnega in najbližjega soseda

iskanje desnega soseda, ali najmanjšega elementa v strukturi, ki je že večji od iskanega elementa:

> Zadnjič, ko sem šel v strukturi levo, pojdi desno in potem kar se dâ levo.

Je to vedno prav? Robni primeri? ...

- in iskanje levega soseda največjega elementa v strukturi, ki je še manjši od iskanega elementa
- kaj pa iskanje najbližjega soseda?

Operacije

- običajne operacije: Najdi, Dodaj in Izloci
- ▶ dodatne operacije: NajdiManj, NajdiVec in
- posplošena operacija: Najdi, ki sedaj najde najbolj podobni element v strukturi

Vstavljanje

Invarianca:

- črke jemljemo po vrsti od prve naprej
- ob vsaki črki razdelimo množico na dva (|Σ|) podmnožic, dokler ni v podmnožici samo še en element
- ▶ vstavljanje J = 01010 je preprosto
- vstavljanje 0 = 01111: namesto N dodamo notranje vozlišče, ki ima lista N in 0
- ▶ vstavljanje Z = 11010:
 - pri iskanju mesta naletimo na X
 - namesto X dodajamo nova notranja vozlišča, dokler ne dobimo vozlišča, kjer se X in Z razlikujeta

Brisanje

- postopek je obraten postopku vstavljanja
- brišemo C:
 - brišemo C
 - ker je notranje vozlišče nepotrebno, ga nadomestimo s preostalim listom A
- brišemo X, Z, S:
 - brišemo vse predhodnike S, ki imajo samo en element v poddrevesu
 - preostali element je lahko samo brat (zakaj?)

Analiza

recimo, da je naš ključ velik m črk – v našem primeru je dolg 5 bitnih črk in od tu bomo analizirali primer, ko imamo samo binarno abecedo

Časovna analiza:

ightharpoonup v vsakem primeru potrebujemo m=O(m) dostopov (primerjav), da se sprehodimo do lista;

Pri običajnem iskanju, kaj pa pri posplošenem iskanju?

Prostorska analiza:

velikost strukture je v najslabšem primeru

$$2n-1+n(m-\lg n)=O(nm)$$

vozlišč. Zakaj?

Analiza – povzetek

- ightharpoonup vse operacije imajo enak čas O(m)
- prostor je

$$2n-1+n(m-\lg n)=O(nm)$$

kaj je najbolj motečega v naši strukturi (prostorsko)? Kakšne ideje za izboljšave?

Primer – poglejmo podrobneje

črka		biti	črka	biti
	Α	00001	С	00011
	Ε	00101	G	00111
	Н	01000	I	01001
	L	01100	M	01101
	R	10010	S	10011

- ▶ POZOR: dostop do vsakega vozlišča stane eno enoto!
- ▶ koliko je: a) zunanjih vozlišč, b) notranjih vozlišč z enim naslednikom in c) notranjaih vozlišč z 2 naslednikoma.
- čemu potrebujemo vozlišča b) in čemu vozlišča c)? kakšna je razlika v uporabi enih in drugih?

Stiskanje poti – path compression

- na poti od korena do lista:
 - izpustimo vsa vozlišča, ki imajo samo enega naslednika
 - v preostala vozlišča dodamo informacijo, kateri bit po vrsti naj primerjamo ali koliko bitov naj preskočimo

OPAŽANJE: če smo izločili notranja vozlišča *v*, imajo vsi nasledniki tega vozlišča *poljubno vrednost* bita, ki ga je predstavljalo opuščeno vozlišče. Zato, ko pridemo do lista, smo našli *samo kandidata* in moramo še preveriti, ali smo našli iskani ključ ali katerega drugega.

Stiskanje poti – analiza

čas: nespremenjen ali boljši

prostor: O(n)

Vstavljanje

- OPAŽANJE: za vsak list velja, da indeksi bitov naraščajo po poti od korena do lista
- ko pridemo do lista, ki ne vsebuje vstavljanega elementa, se lahko zgodi:
 - da se ključa elementov razlikujeta v bitu, ki je kasneje (nižje) od lista

 tedaj samo vstavimo novo notranje vozlišče
 - 2. sicer je potrebno:
 - 2.1 poiskati prvi bit, na katerem se ključa razlikujeta (zakaj vozlišča za ta bit zagotovo še ni v strukturi?)
 - 2.2 na to mesto dodati novo notranje vozlišče (prim. zgornje opažanje)
 - 2.3 kot poddrevesi novega vozlišča nastopata staro poddrevo in list, ki predstavlja vstavljani element
- \triangleright časovna zahtevnost ostaja O(m)

Vstavljanje – poenostavitev

Vedno nadomestimo list z notranjim vozliščem in indeksom bita, kjer se elementa razlikujeta ter stari in novi element postaneta nova lista.

Dodajmo: X = 11000. Pri tem sta: R = 10010 in S = 10011:

Kaj bo posledica? Je takšen pristop pravilen?

Vstavljanje – sprememba invariance

Stara invarianca:

- črke jemljemo po vrsti od prve naprej (za vsak list velja, da indeksi bitov padajo po poti od korena do lista)
- ob vsaki črki razdelimo množico na dva (|Σ|) podmnožic, dokler ni v podmnožici samo še en element

Nova invarianca (šibkejša):

- za vsak list velja, da so indeksi bitov po poti od korena do lista različni
- ob vsaki črki razdelimo množico na dva (|Σ|) podmnožic, dokler ni v podmnožici samo še en element

Brisanje ter iskanje soseda

- brisanje je obratna operacija vstavljanju, le da sedaj pobrišemo poleg lista še eno od notranjih vozlišč in sicer tisto, ki je prvi starš brisanemu listu
- \triangleright časovna zahtevnost ostaja O(m)
- ► kaj v primeru *poenostavitve*?
- iskanje sosedov poteka na enak način kot pri običajnem trie
- kaj pa v primeru poenostavitve?

Polja in drevesa

- ▶ polja so implicitne podatkovne strukture, kjer do posameznih elementov dostopamo s pomočjo indeksa, ki je izračunljiv iz vrednosti ključa v času O(1) – HITRO!!!;
- drevesa so eksplicitne podatkovne strukture, kjer do posameznih elementov dostopamo s pomočjo referenc – POČASI!!!;
- ightharpoonup velikost drevesnih struktur je O(n), oziroma toliko, da se shranijo vsi elementi in reference, ki jih pa ni (bistveno) več kot elementov;
- prostor, ki zaseda polje, načeloma ni odvisen od trenutnega števila elementov v strukturi n, ampak od števila vseh možnih elementov M
 velikosti univerzalne množice.

Kako se temu izogniti? – NAMIG: amortizacijske podatkovne strukture.

Najboljše od obeh

- ko je n = O(M) (gosta množica), je smiselneje uporabiti polje in ko je n zelo majhen (redka množica), je smiselneje uporabiti drevo
- opažanje velja tudi za majhne delčke univerzalne množice IDEJA: uporabili bomo hkrati dve strukturi: polje in drevo, pač glede na lokalno gostoto

Primer

črka	biti	črka	biti
Α	00001	I	01001
Р	10000	Χ	11000
Z	11010		

Zgornji nivoja predstavljata gosto množico in ju lahko nadomestimo s poljem ter dobimo:

Nivojsko stisnjena drevesa – LC tries

- definirajmo gostoto α in če je na nekem nivoju gostota elementov večja od α , drevo stisnemo še po nivoju
- postopek:
 - 1. pričnemo s drevesom PATRICIA
 - 2. od korena proti listom se spuščamo po nivojih (plasteh) I, dokler je v plasti več kot $|\alpha \cdot 2^I|$ elementov
 - ko ni več, prejšnje plasti stisnemo in ponovimo korak 2 z novim korenom

Iskanje vzorca v besedilu

- ▶ imamo besedilo *T* = abracadabra.
- ightharpoonup V njem iščemo vzorec $P_1 = \mathtt{abrac} o \mathtt{preprosto}$, ker je na začetku T.
- ▶ Kaj pa vzorec $P_2 = \text{dab}? \rightarrow \text{Ker ni na začetku, ne izgled tako preprosto.}$
- ▶ Je pa preprosto v besedilu $T_7 = \text{dabra}$.

- $ightharpoonup T_7$ je sedma *pripona* besedila T.
- ▶ Če bi imeli vse pripone $T_1 = T, T_2, T_3, ... T_{11}, T_{12} = \epsilon$, bi lahko poiskali katerikoli vzorec P v T tako, da bi našli pripono (ali pripone), na katere (katerih) začetku je P.
- Potrebujemo učinkovito podatkovno strukturo, ki hrani pripone in omogoča iskanje.

Številsko drevo in pripone

Tvorimo vse pripone:

 $T = T_1 = abracadabra$

 $T_2 = bracadabra$

 $T_3 = racadabra$

 $T_4 = acadabra$

 $T_5 = cadabra$

 $T_6 = adabra$

 $T_7 = \mathtt{dabra}$

 $T_8 = \mathtt{abra}$

 $T_9 = \mathtt{bra}$

 $T_{10}=\mathtt{ra}$

 $T_{11} = a$

 $T_{12} = \epsilon$

in jih vstavimo v številsko drevo

ightarrow priponsko drevo.

Priponsko drevo – analiza

časovna zahtevnost:

O(|P| + occ), kjer je occ število pojavitev vzorca P v besedilu T.

prostorska zahtevnost: podatki: n, reference 3n

Razširitev, da učinkovito najdemo vsa mesta P v T.

Drevesa in polja

