Internediate Value Theorem

Applications of continuity

1) Bolzano's Theorn & the Intermediate Malve Theorns (IVT)

Intermediale Value Theorem of f: [a, b] - R is <u>continuous</u>

& KER strictly between fca, and f(b). Then Ice (a, b) such tohat fcc) = K

Bolzano's Theorem

(special case for k=0)

If $f: [a,b] \rightarrow \mathbb{R}$ continuous & f(a) + f(b) have different signs (i-e f(a) + f(b) < 0) Then $\exists c \in (a,b)$ such that f(c) = 0

 $IVT \iff \exists bolyano$ $let \ y(x) = foc, -k \qquad f, g: [a, b] - R$ $f cto \iff g cts$ $f(a) < k < f(b) \iff g(a) < o < g(b)$ $or \ f(b) < k < f(a) \iff g(b) < o < g(a)$ $\exists c \in (a,b) \ f(c) = k \iff \exists e \in (a,b) \ \ y(c) = 0$

Jefore we prove Johano's Theorm...

Lemma-small theory

<u>leuma</u> f:[a,b]-R

a b

- a) f continuous from above at a & fca>>0 then 35>0 such that fix positive on all of [a, a+5)
- b) f continuous from below at b & f(b)>0 then] 6>0 such that f(x)>0 &x & (b-&,b]
- c) frontinues at $\alpha \in (\alpha, b)$ b $f(\infty) > 0$ then $\exists \delta > 0$ such that f is strictly positive for all values in $(\alpha \delta, \alpha + \delta)$
- (a))
 (b) } same as (a), (b), (c) but with for, (o)
 (c)

Prioof (of (c) for example)

fake &= f(x) >0 continuous =>] 6>0

such that if $\alpha' \in (\alpha - \delta, \alpha + \delta)$

we have fox) - { < f(x') < fcx)+ E

0 (f(2)

Proof of Bolzono's Theorn

Suppose f: [a, b] -> R continuous & f(a)(0, f(b))0 (fia) >0, f(b) (a similar)

Let c = L.UB (s) where

 $S = \{x \in (a,b) \mid \text{ fis negative on all of } (a,x) \}$

(aim: prove fcc) =0!)

0 f(c) < 0 impossible, as the lumma would say fis negative on all of some interval (c-5, c+5) so negative on $[a, c-5] \cup [c-\frac{5}{2}, c+\frac{5}{2}]$ as c is least upper bound.

= [a, c+ %]

C+% es!

② $\{(x) > 0 \text{ impossible}; \text{ as the lemma would } f \text{ is positive on } (c-\delta, c+\delta)$ But f is negative on $[a, c-\delta_{i}]$

[so] c with fcc =0

Bounded Functions

function of whose image is a bounded nutret of R 3B such that 1f(x)/<B

I interval, f: I -> R rodinuous

 $(0, \infty)$

[-1, 1]

not bounded on open internal

f(x) = /(1-xc2) unbounded on open interval

lemma f: [a,b] → R

- © continuous from above at x= a ② continuous from below at x= b (3) continuous at all x= c ∈ (a, b)

Then I is a bounded function

Prove (take $\varepsilon=1$ in definition of continuity)

- 1 78,0: a + [a, a+o] =) f(or) & (fa)-1, feal+1)
- ① $\frac{1}{3}$ $\frac{$

founded on $[a,a+\frac{5}{2}]$, $[b+\frac{5}{4},b]$, $[c-\frac{5}{4},c+\frac{5}{2}]$ Let $s = \{c \in [a,b] \mid f \text{ is bounded on } [a,\infty]\}$ c tays $s \neq d$, $a+\frac{5}{4} \in S$

3 rays (= LUB(s) < b is impossible

it would mean bounded on

[a, (-52] v [c-52, c+52]

by defn of s @ > bounded

c+ 5/ = [a, c+ 5/]

So c= b & fis bounded on

[a, b- %] u[b- %, b] = [a, b]