

(\*) Ax= 8 hr bosing for alle 8 = R5

Kan da 60 ha flere en & lasning? 2,3,20 AX = I losning for alle I = RS og f) That x → Ax er 1-1 (injekriv) Hris  $A\vec{x} = \vec{i}$  has mos en en losning, so finnes  $\vec{x}$  as  $\vec{y} (\vec{x} \pm \vec{y})$  med finnes  $A\vec{y} = A\vec{x} = \vec{i}$  interest Man dut better out (interest (=  $\vec{i}$ ))  $\vec{x} \mapsto A\vec{x}$  (=  $\vec{i}$ )  $\vec{x} \mapsto A\vec{x}$  interest interest interest interest interest in the series in the series

sep 10-14:29

3.22 2x2 matrice 
$$A = \begin{bmatrix} a & d \\ d & d \end{bmatrix}$$

$$A = \begin{bmatrix} a + kc & b + kd \\ c & d \end{bmatrix}$$

$$A = \begin{bmatrix} a + kc & b + kd \\ c & d \end{bmatrix}$$

$$A = \begin{bmatrix} a + kc \\ d \end{bmatrix} + \begin{bmatrix} b + kd \\ c \end{bmatrix} = \begin{bmatrix} a + kd \\ d \end{bmatrix}$$

$$A = \begin{bmatrix} a + kc \\ d \end{bmatrix} + \begin{bmatrix} a + kd \\ d \end{bmatrix} = \begin{bmatrix}$$

$$W = \begin{cases} pe R_n & pe R_n \\ pe R_n & pe R_n \\ \hline Pe R_n & pe R_n \\ \hline$$

sep 10-14:44

4.1.20
$$\begin{bmatrix} (a,b) = \begin{cases} f:[a,b] \rightarrow R & f \text{ konveinbely} \end{cases}$$
Ha må syklika for å visk och Clab v ett

verbxo(com?

The bing:

At summer and to kent funksjoned

On fa or kent, så v også  $g(t) = cf(t)$ 

On  $f(a)$  or kent, så v også  $g(t) = cf(t)$ 

On  $f(a)$  of kent, så v også  $g(t) = cf(t)$ 

On  $f(a)$  of  $f(a)$ 

9.2013.notebook

September 10, 2013

$$\frac{4.1.38}{f(x)} = \frac{1}{3} \sin^{2} t + \frac{1}{3}$$

sep 10-15:03



4.2.12 
$$W = \begin{cases} 3e^{-5}9 \\ 9+1 \end{cases}$$
  $P_{1} = 7$   $P_{2} = 7$   $P_{3} = 7$   $P_{4} = 7$   $P_{4} = 7$   $P_{4} = 7$   $P_{5} = 7$   $P_{6} =$ 

sep 10-15:37

4.2.36

T:V 
$$\rightarrow$$
 W  $\geq$  Z

Sych or U or or underrown.

Sych or U or or underrown.

Si  $\delta \in U$ :

T( $\delta = \delta \in Z$  forth  $\delta \in U$ .

3  $u, v \in U$ .

T( $u + v$ ) =  $T(u) + T(v)$ 

T( $u + v$ ) =  $T(u) + T(v)$ 

Si siden sum er med :  $\delta = \delta = 0$ .

Si siden sum er med :  $\delta = \delta = 0$ .

Si  $\delta = 0$ .

T( $\delta = 0$ ) =  $\delta = 0$ .

T( $\delta = 0$ ) =  $\delta = 0$  =  $\delta = 0$  underrown

T( $\delta = 0$ ) =  $\delta = 0$  =  $\delta = 0$  underrown

T( $\delta = 0$ ) =  $\delta = 0$  =  $\delta = 0$  =  $\delta = 0$  underrown

Si  $\delta = 0$  =  $\delta = 0$  =  $\delta = 0$  =  $\delta = 0$  underrown

T( $\delta = 0$ ) =  $\delta = 0$  =  $\delta = 0$  =  $\delta = 0$  underrown

T( $\delta = 0$ ) =  $\delta = 0$  =  $\delta = 0$  =  $\delta = 0$  underrown

T( $\delta = 0$ ) =  $\delta = 0$  =  $\delta = 0$  =  $\delta = 0$  underrown

T( $\delta = 0$ ) =  $\delta = 0$  =  $\delta = 0$  =  $\delta = 0$  underrown

T( $\delta = 0$ ) =  $\delta = 0$  =  $\delta = 0$  =  $\delta = 0$  underrown

T( $\delta = 0$ ) =  $\delta = 0$  =

4.240
$$\begin{aligned}
& \text{H} = \text{Span} \left\{ \begin{bmatrix} 5 \\ 2 \\ 1 \end{bmatrix} \right\} \begin{bmatrix} 2 \\ 4 \end{bmatrix} \right\} \quad \vec{V}_1 \quad \vec{V}_2 \\
& \text{H} \cap K \quad \text{so in fig. i. } \quad \vec{P}_2 \cdot \vec{V}_1 \quad \vec{V}_2 \cdot \vec{V}_3 \quad \vec{V}_4 \quad \vec{V}_4$$