

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problems Mailbox.**

Abstract (Basic): WO 9602576 A

New chimeric human/mouse antibody (Ab) against human interleukin-8 (IL-8) contains variable (V) regions of both the L and H chains derived from a mouse anti-human IL-8 monoclonal Ab (MAb), and constant (C) regions of both the L and H chains derived from human Ab. Also claimed are: (1) the L and H chain V regions of the mouse anti-human IL-8 MAb; (2) DNA coding for all the above; (3) expression vectors containing the DNA of (2); and (4) transformant host organisms contg. the expression vectors of (3), and which express the Ab or its constituent parts on culture.

USE - The chimeric Ab is used in the treatment of inflammatory diseases mediated by IL-8.

ADVANTAGE - As the major part of the reconstituted Ab derives from a human Ab and only the CDR regions (which are of low antigenicity) are of mouse origin the chimeric antibody has a low antigenicity against the human body when used therapeutically.

Dwg.0/8

Title Terms: RECONSTITUTED; HUMAN; ANTIBODY; RECOGNISE; HUMAN; INTERLEUKIN; CONTAIN; MOUSE; ANTI; ANTIBODY; VARIABLE; REGION; SEQUENCE; LOW; ANTIGEN; HUMAN

Derwent Class: B04; D16

International Patent Class (Main): C07K-016/24; C12N-000/00; C12N-015/13

International Patent Class (Additional): A61K-039/395; C07H-021/04; C07K-016/46; C12N-001/21; C12N-005/10; C12N-015/02; C12N-015/09; C12N-015/62; C12P-021/02; C12P-021/08; C12R-001-19; C12R-001-91

File Segment: CPI

Manual Codes (CPI/A-N): B04-E02; B04-E08; B04-F0100E; B04-G01; B04-G0200E; B14-C03; B14-L07; D05-H11A2; D05-H12C; D05-H12E; D05-H14; D05-H17C1

Chemical Fragment Codes (M1):

01 M423 M710 M903 N135 P420 P617 Q233 V600 V611

PCT

特許協力条約に基づい

WO 96/02576

1996年2月1日(01.02.96)

(51) 国際特許分類6 C07K 16/24, C12N 15/13, 15/62, C12P 21/02, 21/08, C12N 1/21 // (C12P 21/02, C12R 1:19)		A1	(43) 国際公開日 PCT/JP95/01396 1995年7月12日(12.07.95)
<p>(21) 国際出願番号 特願平6/161481 1994年7月13日(13.07.94)</p> <p>(22) 国際出願日 特願平6/289951 1994年11月24日(24.11.94)</p> <p>(23) 優先権データ 特願平6/310785 1994年12月14日(14.12.94)</p> <p>(71) 出願人 (米国を除くすべての指定国について) 中外製薬株式会社 (CHUGAI SEIYAKU KABUSHIKI KAISHA)(JP/JP) 〒115 東京都北区浮間5丁目5番1号 Tokyo, (JP)</p> <p>(72) 発明者 : および (73) 発明者／出願人 (米国についてのみ) 松島綱治(MATSUSHIMA, Kouji)(JP/JP) 〒921 石川県金沢市つづじが丘210-9 Ishikawa, (JP)</p> <p>松本義弘(MATSUMOTO, Yoshihiro)(JP/JP) 山田良樹(YAMADA, Yoshiki)(JP/JP) 佐藤 功(SATO, Koh)(JP/JP) 土屋政幸(TSUCHIYA, Masayuki)(JP/JP)</p>		<p>山崎達美(YAMAZAKI, Tatsumi)(JP/JP) 〒412 静岡県御殿場市駒門1丁目135番地 中外製薬株式会社内 Shizuoka, (JP)</p> <p>(74) 代理人 弁理士 石田 敏, 外(ISHIDA, Takashi et al.) 〒105 東京都港区虎ノ門三丁目5番1号 虎ノ門37森ビル 青和特許法律事務所 Tokyo, (JP)</p> <p>(81) 指定国 AM, AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, KE, KG, KR, KZ, LK, LR, LT, LU, LV, MD, MG, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TT, UA, US, UZ, VN, 歐州特許(AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特許(BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO特許(KE, MW, SD, SZ, UG).</p>	
		添付公開書類	国際調査報告書

(54) Title : RECONSTITUTED HUMAN ANTIBODY AGAINST HUMAN INTERLEUKIN-8

(54) 発明の名称 ヒトインターロイキン-8に対する再構成ヒト抗体

(57) Abstract

A reconstituted human antibody against human interleukin-8 (IL-8), comprising (A) L chains comprising: (1) the human L-chain C region, and (2) the L-chain V region containing the human L-chain FR and the L-chain CDR of a mouse monoclonal antibody against IL-8; and (B) H chains comprising: (1) the human H-chain C region, and (2) the H-chain V region containing the human H-chain FR and the H-chain CDR of a mouse monoclonal antibody against IL-8. As the major part of the reconstituted antibody derives from a human antibody and antigenicity of the CDR is low, this antibody has a low antigenicity against the human body, thus being expected to be applicable for medical therapy.

(57) 要約

(A) (1) ヒトL鎖C領域、及び

(2) ヒトL鎖F R、及びヒトI L - 8に対するマウスモノクローナル抗体のL鎖C D Rを含んでなるL鎖V領域、を含んで成るL鎖；並びに

(B) (1) ヒトH鎖C領域、及び

(2) ヒトH鎖F R、及びヒトI L - 8に対するマウスモノクローナル抗体のH鎖C D Rを含んで成るH鎖V領域を含んで成るH鎖

を含んで成るヒトI L - 8に対する再構成された抗体。

この再構成ヒト抗体の大部分がヒト抗体に由来し、そして C D R は抗原性が低いことから、本発明の再構成ヒト抗体はヒトに対する抗原性が低く、そしてそれ故に医学療法用として期待される。

情報としての用途のみ

PCTに基づいて公開される国際出願をパンフレット第一頁にPCT加盟国を同定するために使用されるコード	
AL アルハニア	DK デンマーク
AM アルメニア	ES エストニア
AT オーストリア	ES スペイン
AU オーストラリア	FI フィンランド
AZ アゼルバイジャン	FR フランス
BB バルバドス	GA ガボン
BE ベルギー	GBE イギリス
BF ブルキナ・ファソ	GR ギルギア
BG ブルガリア	GRU ギリシャ
BR ベナン	HUE ハンガリー
BY ブラジル	IEST アイスランド
CA ベラルーシ	ITP 日本
CG 中央アフリカ共和国	ITA イタリー
CH スイス	KEG ケニア
CI コート・ジボアール	KGP ケネギスタン
CM カメルーン	KRP 朝鮮民主主義人民共和国
CN 中国	KR 大韓民国
DE ドイツ	KZ カザフスタン
	L1 リヒテンシュタイン
	LK スリランカ
	LR リベリア
	LS レソト
	LT リトアニア
	LU ルクセンブルグ
	LV ラトヴィア
	MC モナコ
	MD モルドバ
	MG マダガスカル
	MK マケドニア旧ユーゴスラビア共和国
	ML マリ
	MN モンゴル
	MR モーリタニア
	MW マラウイ
	MX メキシコ
	NE ニジェール
	NL オランダ
	NZ ニュージーランド
	PL ポーランド
	PT ポルトガル
	RO ルーマニア
	RU ロシア連邦
	SDE スーダン
	SGG シンガポール
	SIK スロヴェニア
	SKN スロヴァキア共和国
	SSZ セネガル
	TGJ スウェーデン
	TMJ タジキスタン
	TRM トルクメニスタン
	TTT トリニダード・トバゴ
	TTAGS トガ
	UUU ウガンダ
	UUSZ 中国
	VNV ウズベキスタン共和国
	VVN ヴィエトナム

明 紹 書

ヒトインターロイキン-8に対する再構成ヒト抗体

技術分野

本発明は、ヒトインターロイキン-8 (IL-8) に対するマウスモノクローナル抗体の相補性決定領域 (CDR) 及び可変領域 (V領域)、並びにヒトIL-8に対するヒト/マウスキメラ抗体、ヒト軽鎖 (L鎖) 可変領域及びヒト重鎖 (H鎖) 可変領域の相補性決定領域 (CDR) がヒトIL-8に対するマウスモノクローナル抗体のCDRにより置き換えられている再構成 (reshaped) ヒト抗体に関する。本発明はさらに、上記の抗体又はその部分をコードするDNAを提供する。本発明はさらに、前記DNAを含んで成るベクター、特に発現ベクター、並びに該ベクターにより形質転換された宿主に関する。本発明はさらに、ヒトIL-8に対するキメラ抗体の製造方法、及びヒトIL-8に対する再構成ヒト抗体の製造方法を提供する。

背景技術

インターロイキン-8 (IL-8) は、リボ多糖 (LPS) で刺激した単球の培養上清より見いだされ、monocyte-derived neutrophil chemotactic factor (MDNCF) あるいはneutrophil activating protein-1 (NAP-1) 等と称されていた遊走性サイトカイン (chemokine) である。IL-8は様々な細胞により産生され、多形核白血球およびリンパ球に作用して、その濃度勾配に沿って遊走 (chemotaxis) させる活

性を有している。また、好中球に対してはその遊走を誘導するばかりでなく、脱颗粒、活性酸素の放出、内皮細胞への接着亢進などの好中球の機能をも活性化させる作用を有している。

炎症性疾患、より詳しくは、臺灣性肺線維症、特発性肺線維症、成人呼吸促迫症候群、サルコイドーシス、化膿性胸膜炎などの呼吸器疾患、並びに乾癬などの皮膚疾患、並びに慢性リウマチ関節炎、クローン病、潰瘍性大腸炎などの疾患においては、それらの病巣部位に白血球浸潤が病理学的に認められている。また、これら疾患の患者由来の被検物質に、IL-8が検出されており、炎症において中心的役割を果たしていると考えられている。

(McElvaney, N. G. ら、J. Clin. Invest., 90, 1296-1301, 1992, Lynch III, J. P. ら、Am. Rev. Respir. Dis., 145, 1433-1439, 1992, Donnelly, S. C. ら、Lancet, 341, 643-647, 1993, Carr, B. D. ら、Am. J. Respir. Crit. Care Med., 149, 655-659, 1994, Antony, V. B. ら、J. Immunol., 151, 7216-7223, 1993, Takematsu, H. ら、Arch. Dermatol., 129, 74-80, 1993, Brennan, F. M. ら、Eur. J. Immunol., 20, 2141-2144, 1990, Izzo, R. S. ら、Scand. J. Gastroenterol., 28, 296-300, 1993, Izzo, R. S. ら、Am. J. Gastroenterol., 87, 1447-1452, 1992)。

Ko, Y-C. らは、ヒトIL-8を抗原としてマウスに免疫することにより、ヒトIL-8に結合し、かつ、その結合によってヒ

ト IL-8 が好中球に結合することを阻害する、すなわちヒト IL-8 が有する生物学的活性を中和するマウスモノクローナル抗体 WS-4 を調製した。マウスモノクローナル抗体 WS-4 のアイソタイプは、 α 型 I 鎮及び C γ 1 型 H 鎮であることが明らかになっている (J. Immunol. Methods, 149, 227-235, 1992)。

WS-4 以外の抗ヒト IL-8 抗体としては、A. 5. 12. 14 (Boylan, A. M. ら、J. Clin. Invest., 89, 1257-1267, 1992)、国際特許出願 WO 92-04372 に開示されている抗 Pep-1 抗体または抗 Pep-3 抗体あるいは DM/C γ (Mulligan, M. S. ら、J. Immunol., 150, 5585-5595, 1993) 等が知られている。

家兎を用いた実験系に於て、マウスモノクローナル抗体 WS-4 を投与することによって、肺虚血・再灌流障害 (Sekido, N. ら、Nature, 365, 654-657, 1993)、LPS 誘導の皮膚炎 (Harada, A. ら、International Immunol., 5, 681-690, 1993)、LPS あるいはインターロイキン-1 (IL-1) 誘導の関節炎 (Akahoshi, T. ら、Lymphokine and Cytokine Res., 13, 113-116, 1994) における好中球浸潤が抑制されたことが見いだされた。

家兎にもヒト IL-8 の相同体 (homologue) が存在し、ウサギ IL-8 と称されている。マウスモノクローナル抗体 WS-4 はウサギ IL-8 に対して交差反応し、ウサギ IL-8 がウサギ好中球に結合するのを阻害することが明らかになっている (Harada, A. ら、International Immunol., 5,

681-690, 1993) のて、これらのことは、ヒトにおける炎症性疾患の治療のための療法剤として抗ヒトIL-8抗体が有用であることを示唆している。

ヒト以外の哺乳類由来のモノクローナル抗体はヒトにおいて高度に免疫原性（「抗原性」という場合もある）があり、そしてこの理由のため、ヒトにおけるそれらの医学療法的価値は制限される。例えば、マウス抗体をヒトに投与しても異物として代謝されうるので、ヒトにおけるマウス抗体の半減期は比較的短く、期待された効果を充分に発揮できない。さらに、投与したマウス抗体に対して発生するヒト抗マウス抗体は、血清病あるいは他のアレルギー反応など、患者にとって不都合で危険な免疫応答を惹起する。そしてこの理由のため、ヒトにマウス抗体を頻回投与することはできない。

これらの問題を解決するため、ヒト型化 (humanized) 抗体の製造方法が開発された。マウス抗体は2つの方法でヒト型化することができる。より簡単な方法としては、可変領域 (V領域) はもとのマウスモノクローナル抗体に由来し、定常領域 (C領域) は適当なヒト抗体に由来するキメラ抗体を作製する方法がある。得られるキメラ抗体はもとのマウス抗体の可変領域を完全なかたちで含有するので、もとのマウス抗体と同一の特異性をもって抗原に結合することが期待できる。

さらに、キメラ抗体ではもとのマウス抗体に比べヒト以外の動物に由来する蛋白質配列の比率が実質的に減少しているためもとのマウス抗体に比べて免疫原性が低いと予想される。キメラ抗体は抗原によく結合しそして免疫原性が低いが、それでもなおマウス可変領域に対する免疫応答が生ずる可能性がある (LoBuglio, A. F. ら, Proc. Natl. Acad. Sci. U.S.A., 86, 4220-4224, 1989)。

マウス抗体をヒト型化するための第二の方法は一層複雑であるが、しかしマウス抗体が有する潜在的な免疫原性を大幅に低下させるものである。この方法においては、マウス抗体の可変領域から相補性決定領域 (complementarity determining region; CDR) のみをヒト可変領域に移植して「再構成」 (reshaped) ヒト可変領域を作製する。ただし必要によっては、再構成ヒト可変領域の CDR の構造をより一層もとのマウス抗体の構造に近づけるために、CDR を支持しているフレームワーク領域 (FR) の一部の蛋白質配列をマウス抗体の可変領域からヒト可変領域に移植する場合がある。

次に、これらの再構成ヒト可変領域をヒト定常領域に連結する。最終的に再構成されたヒト型抗体のヒト以外の蛋白質配列に由来する部分は CDR、および、極く一部の FR のみである。CDR は超可変蛋白質配列により構成されており、これらは種特異的配列を示さない。この理由のため、マウス CDR を担持する再構成ヒト抗体はもはやヒト CDR を含有する天然ヒト抗体より強い免疫原性を有しないはずである。

再構成ヒト抗体についてはさらに、Riechmann, L. ら、Nature, 332, 323-327, 1988; Verheyen, M. ら、Science, 239, 1534-1536, 1988; Kettleborough, C. A. ら、Protein Eng., 4, 773-783, 1991; Maeda, H. ら、Hum. Antibodies Hybridomas, 2, 124-134, 1991; Gorman, S. D. ら、Proc. Natl. Acad. Sci. USA, 88, 4181-4185, 1991; Tempst, P. R. ら、Bio/Technology, 9, 266-271, 1991; Co, M. S.

ら、Proc. Natl. Acad. Sci. USA, 88, 2569-2873, 1991; Carter, P. ら、Proc. Natl. Acad. Sci. USA, 89, 4285-4289, 1992; Co, M. S. ら、J. Immunol., 148, 1149-1154, 1992; および Sato, K. ら、Cancer Res., 53, 851-856, 1993 を参照のこと。

発明の開示

前記のごとく、再構成ヒト抗体は療法目的のために有用であると予想されるが、ヒトIL-8に対する再構成ヒト抗体は知られていない。さらに、再構成ヒト抗体の製造方法において任意の抗体に普遍的に適用し得る画一的な方法は存在しない。従って、特定の抗原に対して十分な結合活性あるいは／ならびに中和活性を示す再構成ヒト抗体を作製するためには種々の工夫が必要である（例えば、Sato, K. ら、Cancer Res., 53, 851-856, 1993）。従って、本発明はヒトIL-8に対する、免疫原性の低い抗体を提供するものである。

本発明はヒトIL-8に対する再構成ヒト抗体を提供する。本発明はまた、該再構成ヒト抗体の作製の過程で有用であるヒト／マウスキメラ抗体を提供する。本発明はさらに、再構成ヒト抗体の断片を提供する。並びに本発明はキメラ抗体、再構成ヒト抗体およびそれらの断片の製造のための発現系を提供する。本発明はさらにまた、ヒトIL-8に対するキメラ抗体およびそれらの断片の製造方法、及びヒトIL-8に対する再構成ヒト抗体およびそれらの断片の製造方法を提供する。

さらに具体的には、本発明は、

(1) ヒトIL-8に対するマウスモノクローナル抗体のL鎖V領域

域；並びに

(2) ヒトIL-8に対するマウスモノクローナル抗体のH鎖V領域；

を提供する。

本発明はさらに、

(1) ヒトL鎖C領域、及びヒトIL-8に対するマウスモノクローナル抗体のL鎖V領域を含んで成るL鎖；並びに

(2) ヒトH鎖C領域、及びヒトIL-8に対するマウスモノクローナル抗体のH鎖V領域を含んで成るH鎖；

を提供する。

本発明はさらにまた、

(1) ヒトL鎖C領域、及びヒトIL-8に対するマウスモノクローナル抗体のL鎖V領域を含んで成るL鎖；並びに

(2) ヒトH鎖C領域、及びヒトIL-8に対するマウスモノクローナル抗体のH鎖V領域を含んで成るH鎖；

を含んで成る、ヒトIL-8に対するキメラ抗体を提供する。

本発明はさらに、

(1) ヒトIL-8に対するマウスモノクローナル抗体WS-4のL鎖V領域；並びに

(2) ヒトIL-8に対するマウスモノクローナル抗体WS-4のH鎖V領域；を提供する。

本発明はさらに、

(1) ヒトL鎖C領域、及びヒトIL-8に対するマウスモノクローナル抗体WS-4のL鎖V領域を含んで成るL鎖；並びに

(2) ヒトH鎖C領域、及びヒトIL-8に対するマウスモノクローナル抗体WS-4のH鎖V領域を含んで成るH鎖；

を提供する。

本発明はさらによつて、

- (1) ヒトL鎖C領域、及びヒトIL-8に対するマウスモノクローナル抗体WS-4のL鎖V領域を含んで成るL鎖；並びに
- (2) ヒトH鎖C領域、及びヒトIL-8に対するマウスモノクローナル抗体WS-4のH鎖V領域を含んで成るH鎖；
を含んで成る、ヒトIL-8に対するキメラ抗体を提供する。

本発明はさらに、

- (1) ヒトIL-8に対するモノクローナル抗体のL鎖V領域のCDR；並びに
- (2) ヒトIL-8に対するモノクローナル抗体のH鎖V領域のCDR；を提供する。

本発明はさらに、

- (1) ヒトIL-8に対するマウスモノクローナル抗体のL鎖V領域のCDR；並びに
- (2) ヒトIL-8に対するマウスモノクローナル抗体のH鎖V領域のCDR；を提供する。

本発明はさらに、

- (1) ヒトL鎖V領域のフレームワーク領域(FR)；並びに
- (2) ヒトIL-8に対するマウスモノクローナル抗体のL鎖V領域のCDR；を含んで成る、ヒトIL-8に対する抗体の再構成ヒトL鎖V領域；並びに
- (1) ヒトH鎖V領域のFR；並びに
- (2) ヒトIL-8に対するマウスモノクローナル抗体のH鎖V領域のCDR；を含んで成る、ヒトIL-8に対する抗体の再構成ヒトH鎖V領域を提供する。

本発明はさらに、

- (1) ヒトL鎖C領域；並びに

(2) ヒトL鎖FR、及びヒトIL-8に対するマウスモノクローナル抗体のL鎖CDRを含んで成るL鎖V領域；を含んで成る、ヒトIL-8に対する抗体の再構成ヒトL鎖；並びに

(1) ヒトH鎖C領域；並びに

(2) ヒトH鎖FR、及びヒトIL-8に対するマウスモノクローナル抗体のH鎖CDRを含んで成るH鎖V領域；を含んで成る、ヒトIL-8に対する抗体の再構成ヒトH鎖を提供する。

本発明はさらにまた、

(A) (1) ヒトL鎖C領域、並びに

(2) ヒトL鎖FR、及びヒトIL-8に対するマウスモノクローナル抗体のL鎖CDRを含んで成るL鎖；並びに

(B) (1) ヒトH鎖C領域、並びに

(2) ヒトH鎖FR、及びヒトIL-8に対するマウスモノクローナル抗体のH鎖CDRを含んで成るH鎖；

を含んで成る、ヒトIL-8に対する再構成ヒト抗体を提供する。

本発明はさらに詳しく述べて

(1) 以下の配列に示す又はその一部を有する、ヒトIL-8に対するマウスモノクローナル抗体WS-4のL鎖V領域のCDR、

CDR 1 ; Arg Ala Ser Glu Ile Ile Tyr Ser Tyr Leu Ala

CDR 2 ; Asn Ala Lys Thr Leu Ala Asp

CDR 3 ; Gln His His Phe Gly Phe Pro Arg Thr

並びに

(2) 以下の配列に示す又はその一部を有する、ヒトIL-8に対するマウスモノクローナル抗体WS-4のH鎖V領域のCDR、

CDR 1 ; Asp Tyr Tyr Leu Ser

CDR 2 ; Leu Ile Arg Asn Lys Ala Asn Gly Tyr Thr Arg Glu Tyr Ser Ala Ser Val Lys Gly

CDR3 : Glu Asn Tyr Arg Tyr Asp Val Glu Leu Ala Tyr

を提供する。

本発明はさらに、

(1) ヒトL鎖V領域のフレームワーク領域(FR)；並びに
(2) ヒトIL-8に対するマウスモノクローナル抗体WS-4の
L鎖V領域のCDR；を含んで成る、ヒトIL-8に対する抗体の
再構成ヒトL鎖V領域；並びに

(1) ヒトH鎖V領域のFR；並びに
(2) ヒトIL-8に対するマウスモノクローナル抗体WS-4の
H鎖V領域のCDR；を含んで成る、ヒトIL-8に対する抗体の
再構成ヒトH鎖V領域

を提供する。

本発明はさらに、

(1) ヒトL鎖C領域；並びに
(2) ヒトL鎖FR、及びヒトIL-8に対するマウスモノクロー
ナル抗体WS-4のL鎖CDRを含んで成るL鎖V領域；
を含んで成る、ヒトIL-8に対する抗体の再構成ヒトL鎖；並び
に

(1) ヒトH鎖C領域；並びに
(2) ヒトH鎖FR、及びヒトIL-8に対するマウスモノクロー
ナル抗体WS-4のH鎖CDRを含んで成るH鎖V領域；
を含んで成る、ヒトIL-8に対する抗体の再構成ヒトH鎖を提供
する。

本発明はさらにまた、

(A) (1) ヒトL鎖C領域、並びに
(2) ヒトL鎖FR、及びヒトIL-8に対するマウスモノ
クローナル抗体WS-4のL鎖CDRを含んで成るL鎖；並びに

(B) (1) ヒトH鎖C領域、並びに
(2) ヒトH鎖FR、及びヒトIL-8に対するマウスモノ
クローナル抗体WS-4のH鎖CDRを含んで成るH鎖；
を含んで成る、ヒトIL-8に対する再構成ヒト抗体を提供する。
前記ヒトL鎖FRは下記のアミノ酸配列を有するものが挙げられ
る。

FR1: Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser
Val Gly Asp Arg Val Thr Ile Thr Cys

FR2: Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
Tyr

FR3: Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp
Phe Thr Phe Thr Ile Ser Ser Leu Gln Pro Glu Asp Ile Ala
Thr Tyr Tyr Cys

FR4: Phe Gly Gln Gly Thr Lys Val Glu Ile Lys
または、

FR1: Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser
Val Gly Asp Arg Val Thr Ile Thr Cys

FR2: Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
Tyr

FR3: Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp
Tyr Thr Phe Thr Ile Ser Ser Leu Gln Pro Glu Asp Ile Ala
Thr Tyr Tyr Cys

FR4: Phe Gly Gln Gly Thr Lys Val Glu Ile Lys

前記ヒトH鎖FRは下記のアミノ酸配列を有するものが挙げられ
る。

FR1: Glu Val Gln Leu Leu Glu Ser Gly Gly Leu Val Gln Pro
Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr

Phe Ser

FR2: Trp Val Arg Gln Ala Gln Gly Lys Glu Leu Leu Val Gly

FR3: Arg Leu Thr Ile Ser Arg Glu Asp Ser Lys Asn Thr Leu Tyr

Leu Gln Met Ser Ser Leu Lys Thr Glu Asp Leu Ala Val Tyr

Tyr Cys Ala Arg

FR4: Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser ;

FR1: Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro

Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr

Phe Ser

FR2: Trp Val Arg Gln Ala Gln Gly Lys Glu Leu Glu Trp Val Gly

FR3: Arg Leu Thr Ile Ser Arg Glu Asp Ser Lys Asn Thr Leu Tyr

Leu Gln Met Ser Ser Leu Lys Thr Glu Asp Leu Ala Val Tyr

Tyr Cys Ala Arg

FR4: Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser ;

FR1: Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro

Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr

Phe Ser

FR2: Trp Val Arg Gln Ala Pro Gly Lys Glu Leu Leu Val Gly

FR3: Arg Leu Thr Ile Ser Arg Glu Asp Ser Lys Asn Thr Leu Tyr

Leu Gln Met Ser Ser Leu Lys Thr Glu Asp Leu Ala Val Tyr

Tyr Cys Ala Arg

FR4: Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser ;

FR1: Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro

Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr

Phe Ser

FR2: Trp Val Arg Gln Ala Pro Gly Lys Glu Leu Glu Trp Val Gly

FR3: Arg Leu Thr Ile Ser Arg Glu Asp Ser Lys Asn Thr Leu Tyr

Leu Gln Met Ser Ser Leu Lys Thr Glu Asp Leu Ala Val Tyr
Tyr Cys Ala Arg

FR4: Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser ;

FR1: Glu Val Gln Leu Leu Glu Ser Gly Gly Leu Val Gln Pro
Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr
Phe Ser

FR2: Trp Val Arg Gln Pro Pro Gly Lys Gly Leu Glu Trp Val Gly

FR3: Arg Leu Thr Ile Ser Arg Glu Asp Ser Lys Asn Thr Leu Tyr
Leu Gln Met Ser Ser Leu Lys Thr Glu Asp Leu Ala Val Tyr
Tyr Cys Ala Arg

FR4: Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser ;

FR1: Glu Val Gln Leu Leu Glu Ser Gly Gly Leu Val Gln Pro
Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr
Phe Ser

FR2: Trp Val Arg Gln Ala Pro Gly Lys Ala Leu Glu Trp Val Gly

FR3: Arg Leu Thr Ile Ser Arg Glu Asp Ser Lys Asn Thr Leu Tyr
Leu Gln Met Ser Ser Leu Lys Thr Glu Asp Leu Ala Val Tyr
Tyr Cys Ala Arg

FR4: Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser

または、

FR1: Glu Val Gln Leu Leu Glu Ser Gly Glu Leu Val Gln Pro

Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr

Phe Ser

FR2: Trp Val Arg Gln Ala Gln Gly Lys Gly Leu Glu Trp Val Gly

FR3: Arg Phe Thr Ile Ser Arg Glu Asp Ser Lys Asn Thr Leu Tyr

Leu Gln Met Ser Ser Leu Lys Thr Glu Asp Leu Ala Val Tyr

Tyr Cys Ala Arg

FR4: Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser

本発明はまた、前記種々の抗体を構成するポリペプチド、又はその断片をコードするDNAに関する。本発明はまた、上記DNAを含んで成るベクター、例えば発現ベクターに関する。本発明はさらに、上記ベクターにより形質転換された宿主を提供する。

本発明はさらにまた、ヒトIL-8に対するキメラ抗体およびその断片の製造方法、及びヒトIL-8に対する再構成ヒト抗体およびその断片の製造方法を提供する。

図面の簡単な説明

図1は、それぞれ本発明の抗体のL鎖およびH鎖の発現のために有用な、ヒト・エロンゲーション・ファクター-1 α (HEF-1 α) プロモーター／エンハンサー系を含んで成る発現ベクターHEF-VL-g α およびHEF-VH-g α を示す。

図2は、COS細胞の培養上清中に產生された本発明のキメラWS-4抗体(chL/chH)のヒトIL-8に対する結合能の確認のためのELISAの結果を示すグラフである。

図3は、本発明の再構成ヒトWS-4抗体のH鎖V領域の第一バージョン「a」(RVH α) (A)、および再構成ヒトWS-4抗

体のL鎖V領域の第一バージョン「a」(RVLa) (B) の各アミノ酸配列をコードするDNAを構築するためのダイヤグラムである。

図4は、本発明の再構成ヒトWS-4抗体のL鎖V領域(RVLa)ならびにH鎖V領域(RVHa)を、それぞれキメラWS-4抗体H鎖V領域(chH)ならびにキメラWS-4抗体L鎖V領域(chL)とCOS細胞に発現させ、ヒトIL-8に対する結合能と産生量を、COS細胞の培養上清中に產生された本発明のキメラWS-4抗体(chL/chH)と比較するためのELISAの結果を示すグラフである。

図5は、COS細胞の培養上清中に产生された本発明のRVLaを含んでなる8種の再構成ヒトWS-4抗体(RVLa/RVHa, RVLa/RVHb, RVLa/RVHc, RVLa/RVHd, RVLa/RVHe, RVLa/RVHf, RVLa/RVHg, RVLa/RVHh)のヒトIL-8に対する結合能と産生量を、COS細胞の培養上清中に产生された本発明のキメラWS-4抗体(chL/chH)と比較するためのELISAの結果を示すグラフである。

図6は、COS細胞の培養上清中に产生された本発明のRVLbを含んでなる8種の再構成ヒトWS-4抗体(RVLb/RVHa, RVLb/RVHb, RVLb/RVHc, RVLb/RVHd, RVLb/RVHe, RVLb/RVHf, RVLb/RVHg, RVLb/RVHh)のヒトIL-8に対する結合能と産生量を、COS細胞の培養上清中に产生された本発明のキメラWS-4抗体(chL/chH)と比較するためのELISAの結果を示すグラフである。

図7は、精製した本発明の再構成ヒトWS-4抗体RVLa/R

VHg並びにRVLb/RVHgのヒトIL-8に対する結合能を、精製した本発明のキメラWS-4抗体(chL/chH)と比較するためのELISAの結果を示すグラフである。

図8は、精製した本発明の再構成ヒト抗体RVLa/RVHgならびにRVLb/RVHgのIL-8レセプターに対するIL-8の結合阻害活性をマウスWS-4抗体ならびに本発明のキメラWS-4抗体(chL/chH)と比較するための、リガンドレセプター結合阻害アッセイの結果を示すグラフである。

発明を実施するための具体的な形態

マウスV領域をコードするDNAのクローニング

ヒトIL-8に対するマウスモノクローナル抗体のV領域をコードする遺伝子をクローニングするためには、該遺伝子の取得源として、ヒトIL-8に対するマウスモノクローナル抗体を生産するハイブリドーマを作製することが必要である。ハイブリドーマからmRNAを抽出した後、既知の方法により一本鎖cDNAに変換し、ポリメラーゼ連鎖反応(PCR)法を用いて目的とするDNAを増幅することで得られる。この遺伝子の取得源として、Ko, Y-Cらが作製した、ヒトIL-8に対するマウスモノクローナル抗体を産生するハイブリドーマWS-4があげられる。このハイブリドーマの作製方法はJ. Immunol. Methods, 149, 227-235, 1992に記載されており、これを参考例1に後記する。

(1) 全RNAの採取

マウスモノクローナル抗体のV領域をコードする目的のDNAをクローン化するため、グアニジンチオシアネート処理によりハイブリドーマ細胞を破壊し、塩化セシウム密度勾配遠心(Chirgiv

in, J. M. ら、*Biochemistry*, 18, 5294 - 5299, 1979)をおこなって全RNAを得ることができる。なお、他の蛋白質の遺伝子をクローニングする際に用いられたすでに報告されている方法、例えばバナジウム複合体などのリボヌクレアーゼ(RNase)インヒビター存在下で、界面活性剤処理、フェノール処理をおこなう方法(Berger, S. L. ら、*Biochemistry*, 18, 5143 - 5149, 1979)を用いることもできる。

(2) cDNAの合成

次に、mRNAの3'末端に局在するpoly A鎖に相補的なオリゴヌクレオチドであるオリゴ(dT)をプライマーとして、上記のごとくして得た全RNAに含まれているmRNAを雰型に、逆転写酵素で処理してmRNAに相補的な一本鎖cDNAを合成することができる(Lerrick, J. W. ら、*Bio/Technolgy*, 7, 934 - 938, 1989)。また、その時にランダムプライマーを用いても良い。なお、mRNAだけを取得する場合は、全RNAをオリゴdTセルロースカラムにかけpoly A鎖を有するmRNAだけを分離することができる。

(3) ポリメラーゼ連鎖反応によるV領域をコードするDNAの増幅

次に、ポリメラーゼ連鎖反応(PCR)法を用いて前記V領域をコードするcDNAを特異的に増幅する。マウスモノクローナル抗体のカッパ(κ)型L鎖V領域の増幅のため、配列番号：1～11に示す11種のオリゴヌクレオチドプライマー(Mouse Kappa Variable; MKV)及び配列番号：12に示すオリゴヌクレオチドプライマー(Mouse Kappa Constant; MKC)をそれぞれ5'末端プライマー及び3'末端ブ

ライマーとして使用する。前記 MK V プライマーはマウスカバ型 L 鎮リーダー配列をコードする DNA 配列とハイブリダイズし、そして前記 M K C プライマーはマウスカッパ型 L 鎮 C 領域をコードする DNA 配列とハイブリダイズする。

マウスモノクローナル抗体の H 鎮 V 領域の増幅のため、配列番号 : 13 ~ 24 に示す 12 種のオリゴヌクレオチドプライマー (Mouse Heavy Variable; MHV) 及び配列番号 : 25 に示すオリゴヌクレオチドプライマー (Mouse Heavy Constant; MHC) をそれぞれ 5' 末端プライマー及び 3' 末端プライマーとして使用する。前記 MHV プライマーはマウス H 鎮リーダー配列をコードする DNA 配列とハイブリダイズし、そして前記 MHC プライマーはマウス H 鎮 C 領域をコードする DNA 配列とハイブリダイズする。

なお、全ての 5' 末端プライマー (MKV 及び MHV) はその 5' 末端近傍に制限酵素 S a l I 切断部位を提供する配列 G T C G A C を含有し、そして、全ての 3' 末端プライマー (M K C 及び M H C) はその 5' 末端近傍に制限酵素 X m a I 切断部位を提供するヌクレオチド配列 C C C G G G を含有する。これらの制限酵素切断部位は両 V 領域をコードする目的の DNA 断片をそれぞれのクローニングベクターにサブクローニングするために用いられる。これらの制限酵素切断部位が、両 V 領域をコードする目的の DNA 配列中にても存在する場合、それぞれのクローニングベクターにサブクローニングするために用いられる限り、他の制限酵素切断部位でも良い。

(4) V 領域をコードする DNA の単離

次に、目的とするマウスモノクローナル抗体の V 領域をコードする DNA 断片を得るために、PCR 増幅生成物を低融点アガロースゲルあるいはカラム (PCR 産物精製用キット (QIAGEN) ゲルあるいはカラム (PCR 産物精製用キット (QIAGEN)

C R Purification Spin Kit : QIA GE
N社製)、DNA精製用キット(GENE CLEAN II : BIO
101社製)]等により、分離、精製をおこなう。その精製物を制
限酵素Sal I及びXma Iで酵素処理して、マウスモノクローナ
ル抗体の目的とするV領域をコードするDNA断片を得る。

他方、プラスミドpUC19のごとき適当なクローニングベクタ
ーと同じ制限酵素Sal I及びXma Iにより切断させ、このpU
C19に前記DNA断片を酵素的に連結することにより、マウスモ
ノクローナル抗体の目的とするV領域をコードするDNA断片を含
むプラスミドを得る。クローニングされたDNAの配列決定は任
意の常法に従って行うことができ、例えば、自動DNAシークエン
サー(Applied Biosystems Inc. 製)が挙
げられる。目的とするDNAのクローニング及びその配列決定を実
施例1及び実施例2に具体的に記載する。

相補性決定領域(CDR)

本発明はさらに、ヒトIL-8に対するマウスモノクローナル抗
体のV領域の超V領域又は相補性決定領域(CDR)を提供する。
抗体のL鎖及びH鎖の両V領域は抗原結合部位を形成する。L鎖及
びH鎖上のこの領域は類似する基本的構造を有する。両鎖のV領域
は配列が比較的保存された4個のフレームワーク領域を含み、それ
らは3個の超V領域又はCDRにより連結されている(Kabat
. E. A. ら、「Sequences of Proteins
of Immunological Interest」, US
Dept. Health and Human Services
1991)。

前記4個のフレームワーク領域(FR)の多くの部分は β -シ
ト構造をとり、3個のCDRはループを形成する。CDRはある場

合にはフェニルト構造の一部分を形成することもある。FRによって3個のCDRは相互に立体的に非常に近い位置に保持され、そして、対をなす3個のCDRと共に抗原結合部位の形成に寄与する。本発明は、ヒト型化抗体の素材として有用なこれらのCDR、及びそれをコードするDNAをも提供する。これらのCDR領域は、V領域の既知アミノ酸配列と照合することによって、Kabat, E. A. ら、「Sequences of Proteins of Immunological Interest」の経験則から決定することができ、実施例3において具体的に説明する。

キメラ抗体の作製

ヒトIL-8に対する抗体の再構成ヒトV領域を設計するに先立って、使用するCDRが実際に抗原結合領域を形成することを確かめる必要がある。この目的のため、キメラ抗体を作製した。キメラ抗体を作製するためにキメラ抗体のL鎖並びにH鎖をコードするDNAを構築する必要がある。両DNAを構築する基本的な方法は、PCR-クローニング化cDNAに見られるマウスリーダー配列及びマウスV領域配列のそれぞれのDNA配列を、哺乳類細胞発現ベクター中にすでに存在するヒトC領域をコードするDNA配列に連結することである。

前記ヒト抗体C領域は、任意のヒトL鎖C領域および任意のヒトH鎖C領域であることができ、例えば、L鎖についてはヒトL鎖CあるいはC₁、H鎖についてはIgGであればC_r1, C_r2, C_r3あるいはC_r4 (Ellison, J. ら、DNA, 1, 1-18 (1981), Takahashi, N. ら、Cell, 29, 671-679 (1982), Krawinkel, J. ら、EMBO J., 1, 403-407 (1982)) あるいは他のアイソタイプをそれぞれ挙げができる。

キメラ抗体の製造のためには2種類の発現ベクターを作製する。即ち、エンハンサー／プロモーター系のような発現制御領域による制御のもとで、マウスL鎖V領域ならびにヒトL鎖C領域をコードするDNAを含んでなる発現ベクター、およびエンハンサー／プロモーター系のような発現制御領域による制御のもとで、マウスH鎖V領域ならびにヒトH鎖C領域をコードするDNAを含んでなる発現ベクターを作製する。次に、これらの両発現ベクターにより哺乳類細胞などの宿主細胞を同時形質転換し、そして形質転換された細胞をインシビトロまたはインシビボで培養してキメラ抗体を製造する（例えば、WO 91-16928）。

あるいは、マウスL鎖V領域ならびにヒトL鎖C領域をコードするDNAおよびマウスH鎖V領域ならびにヒトH鎖C領域をコードするDNAを単一の発現ベクターに導入し、そして、該ベクターを用いて宿主細胞を形質転換し、そして形質転換された細胞をインシビトロまたはインシビボで培養してキメラ抗体を製造することもできる。

モノクローナル抗体WS-4からのキメラ抗体の作製を実施例4に記載する。

マウスWS-4κ型L鎖リーダー領域及びV領域をコードするcDNAをPCR法を用いてクローニングし、ヒトL鎖C κ 領域をコードするヒトゲノムDNAを含有する発現ベクターに連結する。同様にマウスWS-4抗体のH鎖リーダー領域及びV領域をコードするcDNAをPCR法を用いてクローニングし、ヒトC γ 1領域をコードするゲノムDNAを含有する発現ベクターに連結する。

より詳しくは、特に設計されたPCRプライマーを用いて、マウスWS-4抗体のV領域をコードするcDNAをそれらの5'及び3'末端において適当な塩基配列を導入して（1）それらが発現ベ

クターに容易に挿入されるように、且つ(2)それらが該発現ベクター中で適切に機能するようにした(例えば、本発明ではKozak配列を導入することにより転写効率を上げるよう工夫してある)。

次に、これらのプライマーを用いてPCRにより増幅して得たマウスWS-4抗体のV領域をコードするDNAを、所望のヒトC領域をすでに含有するHEF発現ベクター(図1参照)に挿入した。これらのベクターは、種々の哺乳類細胞系における遺伝子操作された抗体の一過性(transient)発現又は安定な発現のために適当である。

このように作製したキメラWS-4抗体の結合活性を試験したところ、キメラWS-4抗体はヒトIL-8に結合する活性を示した(図2参照)。従って、正しいマウスV領域がクローニングされ、そして正しく配列が決定されていたことが示された。

再構成ヒトWS-4抗体の設計

マウスモノクローナル抗体のCDRがヒト抗体に移植されている再構成ヒト抗体を作製するためには、移植するCDRを有するマウスモノクローナル抗体のFRのアミノ酸配列と、CDRが移植されるヒトモノクローナル抗体のFRのアミノ酸配列との間に高い同一性が存在することが望ましい。

この目的のためには、マウスモノクローナル抗体のFRのアミノ酸配列とヒトモノクローナル抗体のFRのアミノ酸配列とを比較することにより、再構成ヒトWS-4抗体のV領域の設計の基礎となるヒトV領域を選択することが可能になる。具体的には遺伝子解析ソフトGENETX (Software Development Co., Ltd.) を用いてマウスWS-4抗体のL鎖及びH鎖のV領域を、National Biomedical Rese

arch Foundation (NBRF) のデータベースに見出されるすべての既知のヒトの V 領域と比較した。

マウス WS - 4 抗体の L鎖 V 領域は、既知のヒト抗体 L鎖 V 領域との比較においてヒト抗体 HAU (Watana be, S. ら、H o p p e - Sey ler's Z. Physiol. Chem., 3 5 1, 1 2 9 1 - 1 2 9 5, 1 9 7 0) の L鎖 V 領域に最も類似しており、69.2%の同一性が存在する。一方、WS - 4 抗体の H鎖 V 領域は、既知のヒト抗体 H鎖 V 領域との比較においてヒト抗体 VDH26 (Buluwela, L. ら、EMBO J., 7, 2 0 0 3 - 2 0 1 0, 1 9 8 8) に最も類似しており、71.4%の同一性が存在する。

一般的に、マウス V 領域のアミノ酸配列のヒト V 領域のアミノ酸配列に対する同一性は、マウス V 領域のアミノ酸配列に対する同一性よりも低い。これはマウス WS - 4 抗体の V 領域がヒト V 領域に完全には類似していないこと示し、そして同時に、ヒト患者における免疫原性の問題を解決するためにマウス WS - 4 の V 領域をヒト型化する (humanize) ことが最善であることを示している。

マウス WS - 4 抗体の V 領域をさらに、Kabat, E. A. ら、(1991) Sequences of Proteins of Immunological Interest. Fifth Edition, U. S. Department of Health and Human Services, U. S. Government Printing Officeにより定義されるヒト V 領域サブグループのコンセンサス配列と比較し、V 領域の FR 間で対比された。その結果を表 1 に示す。

表 1 マウス WS - 4 の V 領域の FR と、種々のサブグループの

ヒト V 領域のコンセンサス配列の FR との間の同一性 (%)

A. L鎖 V 領域における FR

HSG I	HSG II	HSG III	HSG IV
64. 4	51. 3	57. 3	57. 5

B. H鎖 V 領域における FR

HSG I	HSG II	HSG III
46. 9	40. 9	62. 3

マウス WS - 4 抗体の L鎖 V 領域の FR はヒト L鎖 V 領域のサブグループ I (HSG I) の FR のコンセンサス配列に最も類似しており、 64. 4 % の同一性が存在する。一方、マウス WS - 4 の H鎖 V 領域の FR はヒト H鎖 V 領域のサブグループ III (HSG III) の FR のコンセンサス配列に最も類似しており、 62. 3 % の同一性が存在する。

これらの結果は、既知のヒト抗体との比較から得られた結果を支持しており、ヒト抗体 HAU 中の L鎖 V 領域はヒト L鎖 V 領域のサブグループ I に属し、そしてヒト抗体 VDH26 中の H鎖 V 領域はヒト H鎖 V 領域のサブグループ III に属する。再構成ヒト WS - 4 抗体 L鎖 V 領域の設計のためにはサブグループ I (HSG I) に属するヒト L鎖 V 領域を使用し、そして再構成ヒト WS - 4 抗体 H鎖 V 領域の設計のためにはサブグループ III (HSG III) に属するヒト抗体 H鎖 V 領域を用いるのが最善であろう。

既知ヒト抗体 L鎖 V 領域との比較において、マウス WS - 4 抗体の L鎖 V 領域はヒト L鎖 V 領域のサブグループ I の 1 員であるヒト抗体 REI の L鎖 V 領域にも類似していた。従って、再構成ヒト WS - 4 抗体 L鎖 V 領域の設計において REI の FR を使用した。REI に基くこれらのヒト FR 中には、原著のヒト REI (Pa

In. W. Hoppe-Seyler's Z. Physiol.
Chem., 356, 167-191, 1975; Epp, O.
ら、Biochemistry, 14, 4943-4952, 19
75) に比較して 5 個のアミノ酸 (位置 39, 71, 104, 10
5 及び 107; 表 2 を参照) の相違が存在する。

なお、表におけるアミノ酸番号は Kabat, E. A. ら (19
91) の経験に基づいている。位置 39 及び 71 における 2 個のア
ミノ酸の変化はラット CAMPATH-1H 抗体の L 鎮 V 領域の F
R 中に存在するアミノ酸にもどる変化であった (Riechmann
ら、1988)。Kabat ら (1991) によれば、FR4
中の 3 個のアミノ酸の変化 (位置 104, 105 及び 107) は他
のヒト κ L 鎮からの J 領域に基いており、ヒトから逸脱するもので
はない。

再構成ヒト WS-4 抗体 L 鎮 V 領域の 2 つのバージョンを設計し
た。第一のバージョン RVL_aにおいては、FR は再構成ヒト CAM
PATH-1H 抗体中に存在する REI に基く FR (Riech
mann ら、1988) と同一であり、そして CDR はマウス WS
-4 抗体の L 鎮 V 領域中の CDR と同一にした。第二のバージョン
RVL_bは RVL_aに基き、ヒト FR3 中の位置 71 におけるアミ
ノ酸 1 個のみを異にする。Chothia, C. ら、J. Mol.
Biol. 196: 901-917, 1987 により定義されるご
とく、残基 71 は L 鎮 V 領域の CDR1 の標準的 (canonical)
構造の部分である。

この位置のアミノ酸は L 鎮 V 領域の CDR1 ループの構造に直接
影響すると予想され、それ故に抗体結合に大きく影響すると考えら
れている。再構成ヒト WS-4 抗体 L 鎮 V 領域の RVL_bにおいて
は、位置 71 のフェニルアラニンがチロシンに変えられている。表

2はマウスWS-4抗体のL鎖V領域、再構成ヒトCAMFAT H-1H抗体中での使用のために修飾されたRE1のFR (Riechmannら、1988) 及び再構成ヒトWS-4抗体のL鎖V領域の2種類のバージョンの、それぞれのアミノ酸配列を示す。

表2 再構成ヒトWS-4L鎖V領域の設計

	1	2	3	4
	12345678901234567890123	45678901234	567890123456789	
WS-4L	DIQMTQSPASLSASVGGETVTITC	RASEIIYSYLA	WYQQKQGKSPQLLVY	
REI	DIQMTQSPSSLSASVGDRVITTC		WYQQ <u>KPGKAPKL</u> IY	
RVL _a	DIQMTQSPSSLSASVGDRVITTC	RASEIIYSYLA	WYQQKPGKAPKL	IY
RVL _b	-----	-----	-----	-----
FR1		CDR1	FR2	
5	6	7	8	9
WS-4L	0123456	78901234567890123456789012345678	901234567	
REI	NAKTLAD	GVSSRFSGSGSCTQFSLRISSLQPEDFGSYYC	QHHFGFPRT	
RVL _a	NAKTLAD	GVPSRFSGSGSGTD <u>F</u> TISSLQPEDIATYYC	QHHFGFPRT	
RVL _b	-----	-----Y-----	-----	-----
CDR2		FR3	CDR3	
10				
WS-4L	8901234567			
REI	FGGGT KLELK			
RVL _a	FGQQ TKVEIK			
RVL _b	-----			
FR4				

注：REIのFRは再構成ヒトCAMPATH-1H抗体中に見出されるものである（Riechmannら、1988）。REIのFR中の5個の下線を付したアミノ酸はヒトREIのアミノ酸配

列と異なるアミノ酸である。なお、アミノ酸は一文字表記による。
アミノ酸番号は Kabat らの定義によるものである。

マウス WS - 4 抗体の H 鎮 V 領域中の FR はサブグループ III に
属するヒト H 鎮 V 領域に最も類似している(表 1)。

マウス WS - 4 抗体の H 鎮 V 領域は、既知のヒト H 鎮 V 領域との
比較において、FR 1 から FR 3 までは、ヒト H 鎮 V 領域のサブグ
ループ III の 1 種成員であるヒト抗体 VDH 2 6 の H 鎮 V 領域(B
uluwela, L. ら、EMBO J., 7, 2003-201
0, 1988) に最も類似していた。FR 4 については、VDH 2
6 の FR 4 の配列が明らかになっていなかったため、サブグループ
III に属するヒト抗体 4B4 (Sanz, I. ら、J. Immun
ol., 142, 883-887, 1989) の FR 4 のアミノ酸
配列を用いることとした。これらのヒト H 鎮 V 領域を、再構成ヒト
WS - 4 抗体の H 鎮 V 領域の設計のための基礎として用いた。

再構成ヒト WS - 4 抗体 H 鎮 V 領域の 8 種類のバージョンを設計
した。8 種類のバージョンのすべてにおいて、ヒト FR 1, 2 及び
3 はヒト抗体 VDH 2 6 の FR 1, 2 及び 3 に、FR 4 はヒト抗体
4B4 の FR 4 に基いており、そして、マウス CDR はマウス WS
- 4 抗体 H 鎮 V 領域の CDR と同一である。

表 3 および 4 に、マウス WS - 4 抗体の H 鎮 V 領域、構型のヒト
抗体 VDH 2 6 の FR 1 ~ 3、ヒト抗体 4B4 の FR 4 および再構
成ヒト WS - 4 抗体の H 鎮 V 領域の 8 種類のバージョンの、それぞ
れのアミノ酸配列を示す。

表3 再構成ヒトWS-4H鎖V領域の設計（表4につづく）

	1	2	3
	123456789012345678901234567890	12345	
WS-4H	EVKLVESGGGLIQPQGDSLRLSCVTSGFTFS	DYYLS	
VDH26	EVQLLESGGGLVQPQGDSLRLSCAASGFTFS		
RVHa~h	EVQLLESGGGLVQPQGDSLRLSCAASGFTFS	DYYLS	
	FR1		CDR1
	4	5	6
	67890123456789	012ABC3456789012345	
WS-4H	WVRQPPGKALEWVG	LIRNKANGYTREYSASVKG	
VDH26	WVRQAQGKGLELVG		
RVHa	WVRQAQGKGLELVG	LIRNKANGYTREYSASVKG	
RVHb	-----W--	-----	
RVHc	----P----	-----	
RVHd	----P----W--	-----	
RVHe	----PP----W--	-----	
RVHf	----P-A-W--	-----	
RVHg	----P----W--	-----	
RVHh	-----W--	-----	
	FR2		CDR2

表 1 再構成ヒト WS - 4 H鎖 V 領域の設計 (表 3 のつづき)

	7	8	9	100
	67890123456789012ABC345678901234		567890ABC12	
WS-4H	RFTISRDDSQSILYLQMNTLRGEDSATYYCAR		ENYRYDVELAY	
VDH26	RLTISRDESKNTLYLQMSSLKTEDLAVYYCAR			
RVHa	RLTISRDESKNTLYLQMSSLKTEDLAVYYCAR		ENYRYDVELAY	
RVHb	-----		-----	
RVHc	-----		-----	
RVHd	-----		-----	
RVHe	-----		-----	
RVHf	-----		-----	
RVHg	-F-----		-----	
RVHh	-F-----		-----	
		FR3		CDR3
	110			
	34567890123	注 : RVHa～h は RVHa, RVHb, RVHc,		
WS-4H	WGQGTTLVTVSA	RVHd, RVHe, RVHf, RVHg 及び		
4B4	WGQGTTLVTVSS	RVHh を示す。		
RVHa～h	WGQGTTLVTVSS	なお、アミノ酸は一文字表記		
	FR4	による。アミノ酸番号は Kabat らの定義によるものである。		

再構成ヒト WS - 4 抗体 V 領域をコードする DNA の作製

再構成ヒト WS - 4 抗体 V 領域の作製を実施例 5 に具体的に記載する。

再構成ヒト WS - 4 抗体 L鎖及び H鎖 V 領域のそれぞれの第一バージョンをコードする DNA を合成した。そして配列決定して、再

構成ヒト WS - 4 抗体 L鎖及び H鎖 V 領域のバージョン「a」の全體 DNA 配列が正しいアミノ酸配列をコードしていることを確認した。再構成ヒト WS - 4 抗体 L鎖 V 領域バージョン「a」の配列を配列番号：62に、再構成ヒト WS - 4 抗体 H鎖 V 領域バージョン「a」の配列を配列番号：38に示す。

再構成ヒト WS - 4 抗体 V 領域の他のバージョンをコードするDNAは、第一バージョン「a」を鑄型に、公表されているPCR変異誘発法 (Kammann, Mら、Nucleic Acids Res., 17, 5404, 1989) にわずかな変更を加えた方法を用いて作製した。再構成ヒト WS - 4 抗体 V 領域の設計に関して記載したように、再構成ヒト WS - 4 抗体 L鎖 V 領域の1つの追加のバージョン (バージョン「b」) をコードするDNAを作製し、そして再構成ヒト WS - 4 抗体 H鎖 V 領域の7種類の追加のバージョン (バージョン「b」, 「c」, 「d」, 「e」, 「f」, 「g」及び「h」) をコードするDNAを作製した。

これらの追加のバージョンは、第一バージョンからのアミノ酸配列の一連の微細な変化を含み、アミノ酸配列のこれらの微細な変化はPCR変異誘発を用いてDNA配列の微細な変更を行うことにより達成された。DNA配列に必要な変化を導入するPCRプライマーが設計された。一連のPCR反応に続き、PCR生成物をクローニ化し、そして配列決定してDNA配列中の変化が計画通りに起っていることを確認した。再構成ヒト WS - 4 抗体 L鎖 V 領域バージョン「b」の配列を配列番号：65に、再構成ヒト WS - 4 抗体 H鎖 V 領域バージョン「b」, 「c」, 「d」, 「e」, 「f」, 「g」, 「h」のそれぞれの配列を配列番号41, 44, 45, 48, 51, 54, 55に示す。

再構成ヒト WS - 4 抗体 V 領域の種々のバージョンのDNA配列

を配列決定により確認した後、再構成ヒトWS-4抗体V領域をコードするDNAを、ヒトC領域をコードするDNAをすでに含有する哺乳類細胞発現ベクターにサブクローニングした。即ち、再構成ヒトWS-4抗体V鎖L領域をコードするDNAをヒトI鎖C領域をコードするDNA配列に、再構成ヒトWS-4抗体H鎖V領域をコードするDNAをヒトC_τ1領域をコードするDNA配列にそれぞれ連結した。

次に再構成ヒトI鎖V領域バージョン「a」あるいは「b」と、H鎖V領域バージョン「a」～「h」のすべての組合せをヒトIL-8への結合について試験し、そしてその結果、図7に記載するように、L鎖バージョン「a」または「b」とH鎖バージョン「g」とを含んで成る両再構成ヒト抗体(RVL_a/RVH_g及びRVL_b/RVH_g)がキメラWS-4抗体と同じレベルでIL-8に結合する能力を示した。

ヒトIL-8に対する本発明のキメラ抗体又は再構成ヒト抗体の製造のために任意の発現系、例えば真核細胞、例えば動物細胞、例えば樹立された哺乳類細胞系、真糸状菌細胞、及び酵母細胞、並びに原核細胞、例えば細菌細胞、例えば大腸菌細胞等を使用することができます。好ましくは、本発明のキメラ抗体又は再構成抗体は哺乳類細胞、例えばCOS細胞又はCHO細胞中で発現される。

これらの場合、哺乳類細胞での発現のために有用な常用のプロモーターを用いることができる。例えば、ヒト・サイトメガロウィルス前期(human cytomegalovirus immediate early; HCMV)プロモーターを使用するのか好ましい。HCMVプロモーターを含有する発現ベクターの例には、HCMV-VH-HC_τ1、HCMV-VL-HC_κ等があり、pSV2neoに由来するもの(国際公開出願WO 92-1975

9を参照)が含まれる。

また、その他に本発明に用いることのできる哺乳動物細胞に於ける遺伝子発現のプロモーターとしては、レトロウィルス、ポリオーマウィルス、アデノウィルス、シミアンウィルス40(SV40)等のウィルスプロモーター、あるいは、ヒト・ポリペプチド・チューン・エロンゲーション・ファクター-1 α (HEF-1 α)等の哺乳動物細胞由来のプロモーターを用いればよい。例えば、SV40のプロモーターを使用する場合は、Mulligan, R. C. らの方法(Nature, 277, 108-114, 1979)、また、HEF-1 α プロモーターを使用する場合は、Mizushima, S. らの方法(Nucleic Acids Res., 18, 5322, 1990)に従えば実施することができる。

本発明のために有用なプロモーターの他の具体例はHEF-1 α プロモーターである。このプロモーターを含有する発現ベクターにはHEF-VH-g τ 1及びHEF-VL-g κ (図1)が含まれる。複製起点としては、ポリオーマウィルス、アデノウィルス、SV40、牛バビローマウィルス(BPV)等の由来のDNA配列を用いることができ、さらに、宿主細胞系中での遺伝子コピー数増幅のため、選択マーカーとして、アミノグルコシド3'一ホスホトランスクフェラーゼあるいはneo耐性遺伝子、チミジンキナーゼ(TK)遺伝子、大腸菌キサンチンーグアニンホスホリボシルトランスクフェラーゼ(XGprt)遺伝子、ジヒドロ葉酸還元酵素(dhfr)遺伝子を用いることができる。

要約すれば、本発明はまず、ヒトIL-8に対するマウスモノクローナル抗体のL鎖V領域及びH鎖V領域、並びに該L鎖V領域をコードするDNA及び該H鎖V領域をコードするDNAを提供する。これらは、ヒトIL-8に対するヒト/マウスキメラ抗体及び再

構成ヒト抗体の作製のために有用である、モノクローナル抗体としては、例えば WS - 4 があげられる。L鎖 V 領域は例えば配列番号 : 26 に示すアミノ酸配列を有し、そして H鎖 V 領域は例えば配列番号 : 27 に示すアミノ酸配列を有する。これらのアミノ酸配列は例えばそれぞれ配列番号 : 26, 27 に示すヌクレオチド配列によりコードされている。

本発明のヒト IL-8 に対するキメラ抗体は、

(1) ヒト L鎖 C 領域及びマウス L鎖 V 領域；並びに

(2) ヒト H鎖 C 領域及びマウス H鎖 V 領域；

から構成される。

マウス L鎖 V 領域及びマウス H鎖 V 領域並びにこれらをコードする DNA は前記の通りである。前記ヒト L鎖 C 領域は任意のヒト L鎖 C 領域であることができ、そして例えばヒト C_αあるいは C_λ領域である。前記ヒト H鎖 C 領域は任意のヒト H鎖 C 領域であることができ、そして例えばヒト Cr1, Cr2, Cr3あるいはCr4 領域 (Ellison, J. ら、DNA, 1, 11-18 (1981), Takahashi, N. ら、Cell, 29, 671-679 (1982), Krawinkel, U ら、EMBO J., 1, 403-407 (1982)) である。

キメラ抗体の製造のためには 2 種類の発現ベクター、すなわちエンハンサー／プロモーター系のごとき発現制御領域による制御のもとでマウス L鎖 V 領域及びヒト L鎖 C 領域をコードする DNA を含んで成る発現ベクター、並びにエンハンサー／プロモーター系のごとき発現制御領域のもとでマウス H鎖 V 領域及びヒト H鎖 C 領域をコードする DNA を含んで成る発現ベクターを作製する。次に、これらの発現ベクターにより哺乳類細胞のごとき宿主細胞を同時形質転換し、そして形質転換された細胞をインヒビトロ又はインヒボ

で培養してキメラ抗体を製造する。

あるいは、マウスL鎖V領域及びヒトL鎖C領域をコードするDNA並びにマウスH鎖V領域及びヒトH鎖C領域をコードするDNAを単一の発現ベクターに導入し、そして該ベクターを用いて宿主細胞を形質転換し、次にこの形質転換された宿主をインービボ又はインービトロで培養して目的とするキメラ抗体を生産させる。

本発明の再構成ヒトWS-4抗体は、

(A) (1) ヒトL鎖C領域、及び

(2) ヒトL鎖FR、及びヒトIL-8に対するマウスモノクローナル抗体WS-4のL鎖CDRを含んで成るL鎖V領域、を含んで成るL鎖；並びに

(B) (1) ヒトH鎖C領域、及び

(2) ヒトH鎖FR、及びヒトIL-8に対するマウスモノクローナル抗体WS-4のH鎖CDRを含んで成るH鎖V領域、を含んで成るH鎖；

から構成される。

好ましい態様においては、前記L鎖CDRは配列番号：26に示されるアミノ酸配列であって、該アミノ酸配列の範囲が表5において定義されるアミノ酸配列を有し、前記H鎖CDRは配列番号：27に示されるアミノ酸配列であって該アミノ酸配列の範囲が表5において定義されるアミノ酸配列を有し；前記ヒトL鎖FRがREIに由来するものであり；前記ヒトH鎖FR1、2および3はVDH26に、FR4は4B4に由来するものであり；前記ヒトL鎖C領域はヒトCx領域であり；そして前記ヒトH鎖C領域はヒトCt1領域である。また、前記ヒトH鎖C領域はヒトCt4領域であってもよく、あるいは前記ヒトL鎖C領域および／またはヒトH鎖C領域のかわりにラジオアイソトープを結合させてもよい。

特定の抗原に対して十分に活性がある再構成ヒト抗体を作製するためには、前記ヒトFRのアミノ酸配列の一部を置換することが望ましい。

好ましい態様においては、L鎖V領域は表2においてRVLaあるいはRVLbとして示されるアミノ酸配列を有し、H鎖V領域は表3および表4にRVHa、RVHb、RVHc、RVHd、RVHe、RVHf、RVHg又はRVHhとして示されるアミノ酸配列を有する。さらに、H鎖V領域FR2中の41位のアミノ酸がプロリンであること、同47位のアミノ酸がトリプトファンであること、および／または同FR3中の67位のアミノ酸がフェニルアラニンであることがよく、RVHb、RVHd、RVHe、RVHf、RVHg又はRVHhとして示されるアミノ酸配列を有するものがより好ましい。このうち、RVHgがH鎖V領域として最も好ましい。

再構成抗体の製造のためには、2種類の発現ベクター、すなわちエンハンサー／プロモーター系のごとき発現制御領域による制御のもとに前に定義した再構成ヒトL鎖をコードするDNAを含んで成る発現ベクター、及びエンハンサー／プロモーター系のごとき発現制御領域のもとに前に定義した再構成ヒトH鎖をコードするDNAを含んで成るもう一つの発現ベクターを作製する。次に、これらの発現ベクターを用いて哺乳類細胞のごとき宿主細胞を同時形質転換し、そしてこの形質転換された細胞をインービボ又はインービトロで培養して再構成ヒト抗体を生産せしめる。

あるいは、再構成ヒトL鎖をコードするDNA及び再構成ヒトH鎖をコードするDNAを单一の発現ベクターに導入し、そしてこのベクターを用いて宿主を形質転換し、次にこの形質転換された宿主細胞をインービボ又はインービトロで培養して目的とする再構成ヒ

ト抗体を生産せしめる。

こうして生産されたキメラ抗体又は再構成ヒト抗体は、常法に従って、例えばプロテインAアフィニティクロマトグラフィー、イオン交換クロマトグラフィー、ゲル濾過等により単離、精製することができる。

本発明のキメラL鎖又は再構成ヒトL鎖はH鎖と組合わせることにより完全な抗体を作製するために使用することができる。同様に本発明のキメラH鎖又は再構成ヒトH鎖はL鎖と組合わせることにより完全な抗体を作製するために用いることができる。

本発明のマウスL鎖V領域、再構成ヒトL鎖V領域、マウスH鎖V領域、及び再構成ヒトH鎖V領域は、本来、抗原であるヒトIL-8と結合する領域であり、それ自体として、又は他の蛋白質との融合蛋白質として医薬、診断薬等として有用であると考えられる。

また、本発明のL鎖V領域CDR及びH鎖V領域CDRも、本来、抗原であるヒトIL-8と結合する部分であり、それ自体として又は他の蛋白質との融合蛋白質として医薬、診断薬等として有用であると考えられる。

本発明のマウスL鎖V領域をコードするDNAはキメラL鎖をコードするDNA又は再構成ヒトL鎖をコードするDNAの作製のために有用である。同様にマウスH鎖V領域をコードするDNAはキメラH鎖をコードするDNA又は再構成ヒトH鎖をコードするDNAの作製のために有用である。また、本発明のL鎖V領域CDRをコードするDNAは再構成ヒトL鎖V領域をコードするDNA及び再構成ヒトL鎖をコードするDNAの作製のために有用である。

同様に本発明のH鎖V領域CDRをコードするDNAは再構成ヒトH鎖V領域をコードするDNA及び再構成ヒトH鎖をコードするDNA作製のために有用である。さらには、再構成ヒト抗体のF(

ab')；FabあるいはFvを、又は、H鎖及びL鎖の両Fvを連結させたシングルチェーンFvを適當な宿主で產生させ、前述の目的に使用することができる（例えば、Bird, R. E. ら、TIBTECH, 9, 132-137, 1991を参照）。

シングルチェインFvは、ヒトIL-8に対する再構成ヒト抗体のH鎖V領域とL鎖V領域を連結してなる。このシングルチェインFvにおいて、H鎖V領域とL鎖V領域はリンクー、好ましくは、ペプチドリンクーを介して連結されている（Huston, J. S. ら、Proc. Natl. Acad. Sci. U. S. A., 85, 5879-5883, 1988）。

シングルチェインFvにおけるH鎖V領域およびL鎖V領域は、再構成ヒト抗体のH鎖およびL鎖V領域として前記記載されたもののいずれであってもよい。具体例として、配列番号38, 41, 44, 45, 48, 51, 54, 55のいずれかに記載のアミノ酸配列からなるH鎖V領域と、配列番号62, 65のいずれかに記載のアミノ酸配列からなるL鎖V領域を含んでなるシングルチェインFvが挙げられる（WO 88-01649を参照）。

これらのV領域は、好ましくは、ペプチドリンクーによって連結されている。ペプチドリンクーとしては、例えばアミノ酸12~19残基からなる任意の一本鎖ペプチドが用いられる（WO 88-09344を参照）。

シングルチェインFvをコードするDNAは、前記記載の再構成ヒト抗体のH鎖または、H鎖V領域をコードするDNA、およびL鎖または、L鎖V領域をコードするDNAを雛型とし、それらの配列のうちの所望のアミノ酸配列をコードするDNA部分を、その両端を規定するプライマー対を用いて、PCR法により増幅し、次いで、さらにペプチドリンクー部分をコードするDNAおよびその両

端を各々 H鎖、L鎖と連結されるように規定するプライマー対を組み合せて増幅することにより得られる。

また、一旦シングルチェイン Fv をコードする DNA が作成されれば、それらを含有する発現ベクター、および該発現ベクターにより形質転換された宿主を常法に従って得ることができ、また、その宿主を用いて常法に従って、シングルチェイン Fv を得ることができる。

シングルチェイン Fv は、抗体分子に比べ、組織への移行性が優れており、ラジオアイソトープ標識によるイメージングへの利用、および再構成ヒト抗体と同様の機能を有する治療剤としての利用が期待される。

本発明のヒト IL-8 に対するキメラ抗体、再構成ヒト抗体およびその $F(ab') , F(ab) , Fv あるいはシングルチェーン Fv の結合活性を確認する方法として、ELISA (酵素結合免疫吸着検定法)、EIA (酵素免疫測定法)、RIA (放射免疫測定法) あるいは蛍光抗体法を用いることができる。例えば、キメラ抗体、再構成ヒト抗体について、酵素免疫測定法を用いる場合、抗ヒト IL-8 ポリクローナル抗体をコートしたプレートにヒト IL-8 を添加し、ここにヒト IL-8 に対するキメラ抗体、再構成ヒト抗体を産生する細胞の培養上清あるいは精製サンプルを加え、アルカリフォスファターゼ等の酵素で標識した適切な二次抗体を添加する。プレートのインキュベーションおよび洗浄の後、p-ニトロフェニル磷酸などの酵素基質を加えて吸光度を測定することで抗原結合活性を評価することができる。$

本発明のヒト IL-8 に対するキメラ抗体、再構成ヒト抗体およびその $F(ab') , F(ab) , Fv あるいはシングルチェーン Fv の IL-8 レセプターに対する IL-8 結合阻害活性は、通常の$

リカヒドレセプター結合阻害アッセイにより評価される。例えば、好中球上のIL-8レセプターに対するIL-8の結合阻害アッセイには、ヘパリン採血などにより得られる好中球を遠心分離等の手段で分離した後、上記アッセイに好適な数の細胞懸濁液となるよう調製して用いることができる。

¹²⁵Iなどで適当に標識したIL-8と非標識のIL-8を含む溶液と適当な濃度に調製した本発明の抗体またはその断片を含む溶液を混合し、次いでこれを上記好中球懸濁液に添加する。一定時間の後、好中球を分離し、好中球上の標識された活性を測定すればよい。

本発明の抗体またはその断片による好中球遊走作用（ケモタキシス；chemotaxis）の阻害能を評価するには通常知られた方法、例えばGrob, P. M. らJ. Biol. Chem., 265, 8311-8316, 1990に記載された方法を用いることができる。

市販のケモタキシスチャンバーを用いる場合、本発明の抗体またはその断片を適当な培養液で希釈した後、IL-8を加え、これをチャンバーに分注する。ついで、調製した好中球懸濁液をチャンバーに添加し、一定時間放置する。遊走する好中球は、チャンバーに装着されたフィルターに付着するので、その好中球の数を染色液あるいは蛍光抗体等の通常の方法で測定すればよい。また、顕微鏡下での肉眼による判定や機械を用いる自動測定も可能である。

本発明のヒトIL-8に対するキメラ抗体、再構成ヒト抗体およびそのF(ab')₂、Fab、FvあるいはシングルチェーンFvは、メンブレンフィルターによる滤過滅菌の後、好ましくは非経口的に、例えば、静脈内注射、筋肉内注射、腹腔内注射、皮下注射等により、あるいは経気道的に、例えば、ネブライザー(nebulizer)

により、医薬療法剤として投与することができる。ヒトに対する投与量は、患者の状態、年齢等により異なるがおよそ1～1000mg/bodyであり、1～10mg/kg/週の分割用量を選択することができる。

本発明のヒトIL-8に対するキメラ抗体、再構成ヒト抗体およびそのF(ab')₂、Fab、FvあるいはシングルチェーンFvは、精製され結合活性を評価された後に、生理活性タンパク質の製剤化に通常用いられる方法により、医薬療法剤として製剤化される。たとえば、注射用製剤は精製されたヒトIL-8に対するキメラ抗体、再構成ヒト抗体およびそのF(ab')₂、Fab、FvあるいはシングルチェーンFvを、溶剤、例えば、生理食塩水、緩衝液などに溶解し、それに吸着防止剤、例えば、Tween 80、ゼラチン、ヒト血清アルブミン(HSA)などを加えたものであり、または使用前に溶解再構成するために凍結乾燥したものであってもよい。凍結乾燥のための賦形剤としては、糖アルコール又は糖、例えばマンニトール、ブドウ糖などをもちいることができる。

実施例

次に、本発明を下記の実施例により具体的に説明するが、これにより本発明の範囲が限定されるものではない。

実施例1. ヒトIL-8に対するマウスモノクローナル抗体のV領域をコードするDNAのクローニング

ヒトIL-8に対するマウスモノクローナル抗体の可変領域をコードするDNAを次の様にしてクローニングした。

1. 全RNAの調製

ハイブリドーマW.S-4からの全RNAを、Chirgwin, J. M. ら、Biochemistry, 18, 5294-529

9. 1979により記載されている塩化セシウム密度勾配遠心法を修飾して調製した。

すなわち、 1×10^7 個のハイブリドーマ WS-4 の細胞を 25 ml の 4 M グアニジンチオシアネート (F u l k a 社製) 中で完全にホモジナイズさせた。ホモジネートを遠心管中の 5. 7 M 塩化セシウム溶液層上に重層し、次にこれを Beckman SW40ローター中で 31, 000 rpm にて 20°C で 14 時間遠心分離することにより RNA を沈殿させた。

RNA 沈殿物を 80% エタノールにより洗浄し、そして 10 mM EDTA 及び 0. 5% N-ラウロイルサルコシン酸ナトリウムを含有する 20 mM Tris-HCl (pH 7. 5) 200 μl 中に溶解し、そしてそれに Proteinase (Boehringer 社製) を 0. 5 mg/ml となるように添加した後、37°C にて 30 分間温浴中でインキュベートした。混合物をフェノール及びクロロホルムで抽出し、そして RNA をエタノールで沈殿させた。次に、RNA 沈殿物を 1 mM EDTA を含有する 10 mM Tris-HCl (pH 7. 5) 200 μl に溶解した。

2. メッセンジャー RNA (mRNA) の抽出

マウスモノクローナル抗体 WS-4 H 鎮をコードする mRNA を抽出するため、Fast Track mRNA Isolation Kit Version 3. 2 (Invitrogen 社製) を用いて、その指示書に記載の方法に従い、上記 1. で得られた全 RNA から poly (A) ポジティブな mRNA を抽出した。

3. 一本鎖 cDNA の合成

cDNA Cycle Kit (Invitrogen 社製) を用いて、その指示書に記載の方法に従い、上記 2. で得られた約 40 ng の mRNA より一本鎖 cDNA を合成し、マウス H 鎮 V 領域

をコードする c DNA の増幅に用いた。尚、マウス L 鎮 V 領域をコードする c DNA を増幅するために、約 10 μg の上記全 RNA より一本鎮 c DNA を合成した。

4. 抗体可変領域をコードする遺伝子の PCR 法による増幅

(1) マウス H 鎮 V 領域をコードする c DNA の増幅

PCR のためのプライマーは、配列番号： 13～24 に示す MHV (Mouse Heavy Variable) プライマー 1～12、及び配列番号： 25 に示す MHC (Mouse Heavy Constant) プライマー (Jones, S. T. ら、Bio / Technology, 9, 88-89, 1991 を使用した。

PCR 溶液 100 μl は、 10 mM Tris-HCl (pH 8.3) , 50 mM KCl, 0.1 mM dNTPs (dATP, dGTP, dCTP, dTTP) , 1.5 mM MgCl₂ , 0.001% (W/V) ゼラチン、5 ユニットの DNA ポリメラーゼ AmpliTaq (Perkin Elmer Cetus 社) 、0.25 μM の配列番号： 13～24 に示す MHV プライマーのうち一つと 1.75 μM の配列番号： 25 に示す MHC プライマー及び上記 3. 得られた一本鎮 c DNA 溶液 1.5 μl を含有し、MHV 1～12 プライマーの各々について別々に用意した。これを 50 μl の鉛油で冠った後、94 °C の初期温度にて 3 分間そして次に 94 °C にて 1 分間、55 °C にて 1 分間及び 72 °C にて 1 分間、この順序で加熱した。この温度サイクルを 30 回反復した後、反応混合物をさらに 72 °C にて 10 分間インキュベートした。

(2) マウス L 鎮 V 領域をコードする c DNA の増幅

PCR のためのプライマーとして配列番号： 1～11 に示す MKV (Mouse Kappa Variable) プライマー 1～11、及び配列番号： 12 に示す MKC (Mouse Kappa

Concise: プライマー (Jones, S. T. ら, B.; o / Technology, 9, 88-89, 1991) を使用した。

cDNAの増幅は、それぞれ 0.25 μM の MKV プライマー混合物と 3.0 μM の MKC プライマーを用いて増幅した点を除いて、前記 4. (1) において H 鎖 V 領域遺伝子の増幅について記載したのと同じ方法により上記 3. で得られた一本鎖 cDNA 溶液 2.0 μl から増幅を行なった。

5. PCR 生成物の精製および断片化

前記のようにして PCR 法により増幅した H 鎖 V 領域および L 鎖 V 領域それぞれの DNA 断片を 1.5% 低融点アガロース (Sigma 社製) を用いるアガロースゲル電気泳動により分離した。約 450 bp 長の H 鎖 DNA 断片と約 400 bp 長の L 鎖 DNA 断片を含有するアガロース片をそれぞれ切り取り、そして 65°C にて 5 分間溶融せしめ、そしてこれと同容積の 2 mM EDTA 及び 300 mM NaCl を含有する 20 mM Tris-HCl (pH 7.5) を加えた。

この混合物をフェノール及びクロロホルムにより抽出し、そして DNA 断片をエタノール沈殿により回収し、そして 1 mM EDTA を含有する 10 mM Tris-HCl (pH 7.5) に溶解した。次に、10 mM MgCl₂ 及び 1 mM ジチオスレイトールを含有する 10 mM Tris-HCl (pH 7.9) 中で 5 ユニットの制限酵素 Xma I (New England Biolabs 社製) を用いて 37°C にて 3 時間消化した。次に、40 ユニットの制限酵素 Sal I (宝酒造社製) により 37°C にて 2 時間消化し、そして生ずる DNA 断片を、1.5% 低融点アガロース (Sigma 社製) を用いるアガロースゲル電気泳動により分離した。

DNA断片を含有するアガロース片を切り取りそして65°Cにて5分間溶融せしめ、そしてこれと同容積の2 mM EDTA及び30 mM NaClを含有する20 mM Tris-HCl (pH 7.5) を加えた。この混合物をフェノール及びクロロホルムにより抽出し、そしてDNA断片をエタノール沈殿により回収し、そして1 mM EDTAを含有する10 mM Tris-HCl (pH 7.5) に溶解した。

こうして、マウスκ型L鎖V領域をコードする遺伝子を含んで成るDNA断片、及びマウスH鎖V領域をコードする遺伝子を含んで成るDNA断片を各々得た。上記DNA断片はいずれもその5'末端にSal I接着末端を有し、そしてその3'末端にXma I接着末端を有する。

6. 連結及び形質転換

上記のようにして調製したマウスカッパ型L鎖V領域をコードする遺伝子を含んで成るSal I-Xma I DNA断片約0.3 μgを、Sal I、Xma I及び大腸菌由来のアルカリリフォスファターゼ (BAP; 宝酒造社製) で消化することにより調製したpUC 19ベクター (宝酒造社製) 約0.1 μgと、1ユニットT4 DNAリガーゼ (GIBCO BRL社製) 及び添付のバッファーを含有する反応混液中で、16°Cにて4時間反応させ連結した。

次に、5 μlの上記連結混合物を大腸菌DH5αのコンビテント細胞 (GIBCO BRL社製) 50 μlに加え、そしてこの細胞を氷上で30分間、42°Cにて1分間そして再び氷上で1分間静置した。次いで400 μlの2×YT培地 (Molecular Cloning: A Laboratory Manual, Sambrookら、Cold Spring Harbor Laboratory Press, (1989)) を加え、37°Cにて1

時間インキュベートした後、 $50\mu\text{g}/\text{ml}$ のアンビシリン（明治製薬社製）を含有する $2 \times \text{YT}$ 寒天培地（Molecular Cloning: A Laboratory Manual, Sambrookら、Cold Spring Harbor Laboratory Press, (1989)）上にこの大腸菌をまき、 37°C にて一夜インキュベートして大腸菌形質転換体を得た。

尚、この際選択マーカーとしてX-Gal ($5\text{-bromo-4-chloro-3-indolyl-\beta-D-galactoside}$, 宝酒造社製) $50\mu\text{g}$ を塗布した。

この形質転換体を、 $50\mu\text{g}/\text{ml}$ のアンビシリンを含有する $2 \times \text{YT}$ 培地 10ml 中で 37°C にて一夜培養し、そしてこの培養物から、QIAGEN plasmid mini kit (QIAGEN社製) を用いて、その指示書に記載の方法に従ってプラスミドDNAを調製した。

こうして得られた、ハイブリドーマWS-4に由来するマウスκ型L鎖V領域をコードする遺伝子を含有するプラスミドをpUC-WS4-VLと命名した。

大腸菌コンピテント細胞をJM109を用いた点を除いて、上記の同じ方法に従って、ハイブリドーマWS-4に由来するマウスH鎖V領域をコードする遺伝子を含有するプラスミドをSal I-Xma I DNA断片から作成し、そしてpUC-WS4-VHと命名した。

実施例2. DNAの塩基配列の決定

前記のプラスミド中のcDNAコード領域の塩基配列を、シークエンスプライマーとしてM13 Primer RVおよびM13 Primer M4 (两者とも宝酒造社製)、自動DNAシークエンサー (Applied Biosystem Inc製) およ

び T a s e D y e D e o x y T e r m i n a t o r C y c l e S e q u e n c i n g K i t (A p p l i e d B i o s y s t e m I n c 製) を用いて、メーカー指定のプロトコールに従って塩基配列を決定した。プラスミド p U C - W S 4 - V L に含まれるマウス W S - 4 抗体の L 鎖 V 領域をコードする遺伝子の塩基配列を配列番号 : 2 6 に示す。また、プラスミド p U C - W S 4 - V H に含まれるマウス W S - 4 抗体の H 鎖 V 領域をコードする遺伝子の塩基配列を配列番号 : 2 7 に示す。

実施例 3. C D R の決定

L 鎖及び H 鎖の V 領域の基本的構造は、互いに類似性を有しており、それぞれ 4 つのフレームワーク領域が 3 つの超可変領域、即ち相補性決定領域 (C D R) により連結されている。フレームワークのアミノ酸配列は、比較的良好く保存されているが、一方、 C D R 領域のアミノ酸配列の変異性は極めて高い (Kabat, E. A. ら、「Sequences of Proteins of Immunological Interest」 U S Dept. Health and Human Services, 1991) 。

この様な事実に基づき、ヒト I L - 8 に対するマウスモノクローナル抗体の可変領域のアミノ酸配列を Kabat らにより作成された抗体のアミノ酸配列のデータベースにあてはめて、相同性を調べることにより C D R 領域を表 5 に示す如く決定した。

表 5 マウス W S - 4 抗体の L 鎖 V 領域ならびに H 鎖 V 領域中の C D R

プラスミド	配列番号	CDR1	CDR2	CDR3
p U C - W S 4 - V L	26	24 - 34	50 - 56	89 - 97
p U C - W S 4 - V H	27	31 - 35	50 - 68	101 - 111

実施例 2 クローン化 c DNA の発現の確認（キメラ WS - 4
抗体の作製）

発現ベクターの作製

キメラ WS - 4 抗体を発現するベクターを作製するため、それぞれマウス WS - 4 L鎖及びH鎖V領域をコードするc DNAクローン pUC - WS4 - VL 及び pUC - WS4 - VH を PCR 法により修飾した。そして HEF 発現ベクター（前記、 WO 92 - 19759 及び図 1 を参照のこと）に導入した。

L鎖 V 領域のための後方プライマー（配列番号： 28 ）及び H 鎖 V 領域のための後方プライマー（配列番号： 29 ）は、各々の V 領域のリーダー配列の最初をコードする DNA にハイブリダイズし且つ Kozak コンセンサス配列（ Kozak, M. ら、 J. Mol. Biol. 196, 947 - 950, 1987 ）及び Hind III 制限部位を有するように設計した。 L 鎖 V 領域のための前方プライマー（配列番号： 30 ）及び H 鎖 V 領域のための前方プライマー（配列番号： 31 ）は、 J 領域の末端をコードする DNA 配列にハイブリダイズし、且つ、スプライスドナー配列及び Bam HI 制限部位を付加するように設計した。

20 mM Tris - HC1 (pH 8.2) 、 10 mM KC1 、 6 mM (NH₄)₂ SO₄ 、 1% Triton X - 100 100 μM dNTPs 、 1.5 mM MgCl₂ 、 100 pmole ずつの各プライマー、 100 ng の酵型 DNA (pUC - VL 又は pUC - VH) 、及び 2.5 μl の Ampli Taq 酵素を含有する 100 μl の PCR 反応混合物を 50 μl の鉛油で覆い、 94 °C にて 3 分間最初の変性の後、 94 °C にて 1 分間、 55 °C にて 1 分間、 72 °C にて 1 分間のサイクルを 30 回行い、最後に 72 °C にて 10 分間インキュベートした。

PCP生成物を1.5%低融点アガロースゲルを用いて精製し、
HindIII及びBamHIで消化し、そしてL鎖V領域については、HEF発現ベクターHEF-VL-gκに、H鎖V領域についてはHEF発現ベクターHEF-VH-gτ1にそれぞれクローニングした。DNA配列決定の後、正しいDNA配列を有するDNA断片を含むプラスミドをそれぞれHEF-chWS4L-gκ, HEF-chWS4H-gτ1と命名した。

COS細胞へのトランスフェクション

キメラWS-4抗体の一過性発現を観察するため、前記発現ベクターをCOS細胞において試験した。HEF-chWS4L-gκならびにHEF-chWS4H-gτ1をGene Pulser装置(BioRad社製)を用いてエレクトロポレーションによりCOS細胞に同時形質転換した。各DNA(10μg)を、PBS中1×10⁷細胞/mlの0.8mlのアリコートに加え、1.5kV、25μFの容量にてパルスを与えた。

室温にて10分間の回復期間の後、エレクトロポレーション処理された細胞を、5%のターグロブリンフリーウシ胎児血清を含有するD MEM培養液(GIBCO社製)15mlに懸濁し、組織培養シャーレに添加した。96時間のインキュベーションの後、培養上清を集め、遠心分離により細胞破片を除去し、直径0.45μmのディスクフィルター(Gelman Science社製)にて通過した。

ELISA

抗原結合測定および抗体濃度測定のためのELISAプレートを次のようにして調整した。抗原結合活性測定のためのELISAプレートは次の様にして調製した。96穴プレート(Nunc社製)の各ウェルを、濃度2μg/mlで固層化バッファー(0.1M

炭酸水素ナトリウム、0.02% アジ化ナトリウム)に溶解した
ヤギ抗ヒトIL-8ポリクローナル抗体 (R & D systems
社製) 100 μlで固層化し、希釈バッファー (50 mM Tris-
HCl, pH 7.2, 1% ウシ血清アルブミン (BSA), 1
mM MgCl₂, 0.15 M NaCl, 0.05% Tween 20, 0.02% アジ化ナトリウム) 200 μlでブロッキン
グの後、濃度 5 ng/ml 組換えヒトIL-8 (Amersham
社製) 100 μlを添加した。

キメラ抗体の粗製サンプル、あるいはこれらを発現させた COS
細胞の培養上清を順次希釈して、各ウェルに加え、次に濃度 1 μg/
ml のアルカリホスファターゼ標識ヤギ抗ヒト IgG 抗体 (TAGO
社製) 100 μlを加えた。インキュベーション及び洗浄の後
、基質溶液 (1 mg/ml p-ニトロフェニル磷酸) を加え、次
に 405 nm での吸光度を測定した。

抗体濃度測定には、96穴プレートを濃度 1 μg/ml ヤギ抗-
ヒト IgG 抗体 (TAGO 社製) 100 μl で固層化し、ブロッキン
グの後、キメラ抗体の粗製サンプル、あるいはこれらを発現させ
た COS 細胞の培養上清を順次希釈して、各ウェルに加え、次に濃
度 1 μg/ml のアルカリホスファターゼ結合ヤギ抗-ヒト IgG
抗体 (TAGO 社製) 100 μlを加えた。インキュベーション及
び洗浄の後、基質溶液 (1 mg/ml p-ニトロフェニル磷酸、
Sigma 社製) を加え、次に 405 nm での吸光度を測定した。

その結果、キメラ抗体 WS-4 が IL-8 に特異的に結合したこと
により、このキメラ抗体がマウスモノクローナル抗体 WS-4 の
V 領域の正しい構造を有することが示唆された (図 2 を参照のこと
)。

なお、前記プラスミド HEF-chWS4L-gk を有する大腸

菌はEscherichia coli DH5α (HEF-c) WS4L-gk）、および前記プラスミドHEF-chWS4H-gt、を有する大腸菌はEscherichia coli JM109 (HEF-chWS4H-gt,) として工業技術院生命工学工業技術研究所（茨城県つくば市東1丁目1番3号）に、平成6年7月12日に各々、FERM BP-4739、およびFERM BP-4740としてブタベスト条約に基づき国際寄託された。

実施例5. 再構成ヒトWS-4抗体の作製

再構成ヒトWS-4抗体H鎖V領域の作製

再構成ヒトWS-4抗体H鎖V領域をコードするDNAを次の様にして設計した。ヒト抗体VDH26のFR1～3およびヒト抗体4B4のFR4をコードするそれぞれ既知のDNA配列をマウスWS-4抗体H鎖V領域のCDRをコードするDNA配列が連結されるように再構成ヒトWS-4抗体H鎖V領域をコードする全長DNAを設計した。

次に、このDNA配列のそれぞれ5'側及び3'側にHindII I認識部位/KOZAKコンセンサス配列及びBamHI認識部位/スプライスドナー配列をそれぞれ付加して、HEF発現ベクターに挿入できるようにした。こうして設計したDNA配列をほぼ均等な4本のオリゴヌクレオチドに分け、そして次に、これらのオリゴヌクレオチドのアセンブリーを妨害する可能性のあるオリゴヌクレオチド中の二次構造についてコンピューター解析した。

4本のオリゴヌクレオチド配列を配列番号：32～35に示す。これらのオリゴヌクレオチドは113～143塩基の長さを有し、隣接する2本のオリゴヌクレオチドは互いに20塩基のオーバラップ領域を有する。4本のオリゴヌクレオチドの内HF1（配列番号：32）、HF3（配列番号：34）はセンスDNA配列を有し、

そして他の H F 2 (配列番号 : 3 3) , H F 1 (配列番号 : 3 5) はアンチセンス DNA 配列を有する。これらのオリゴヌクレオチドを自動 DNA 合成装置 (Applied Biosystems 社) によって合成した。

また、これら 4 本のオリゴヌクレオチドの PCR 法によるアンブリーの方法を図 3 に記す。約 1 0 0 ng ずつの H F 1 と H F 2 、 H F 3 と H F 4 を組み合わせて、 2. 5 u の P fu DNA ポリメラーゼを含有する最終容量 9 8 u l の PCR 反応液に添加した。 9 4 °C にて 3 分間の最初の変性の後、 9 4 °C にて 2 分間、 5 5 °C にて 2 分間及び 7 2 °C にて 2 分間を 1 サイクルとし、これを 2 サイクル行った。

PCR 反応液の半量を相互に交換したのち、さらに 2 サイクルのインキュベーションを行った。 1 0 0 pmole ずつの R V H 5' プライマー (配列番号 : 3 6) 及び R V H 3' プライマー (配列番号 : 3 7) を外部プライマーとして添加した後、 PCR 反応液を 5 0 u l の鉛油で覆い、そして 9 4 °C にて 3 分間の最初の変性の後、 9 4 °C にて 1 分間、 5 5 °C にて 1 分間及び 7 2 °C にて 1 分間の 4 5 サイクルを行い、そして次に 7 2 °C にて 1 0 分間インキュベートした。

約 4 5 0 塩基対の DNA 断片を 1. 5 % 低融点アガロースゲルを用いて精製し、 H ind III 及び B am H I により消化し、そして次に H E F 発現ベクター H E F - V H - g r 1 にクローニングした。 E F - 1 プライマー (配列番号 : 6 6) および H I P プライマー (配列番号 : 6 7) を用いて、 DNA 配列決定の後、正しい H 鎮 V 領域のアミノ酸配列をコードする DNA 断片を含むプラスミドを H E F - R V H a - g r 1 と命名した。本プラスミド H E F - R V H a - g r 1 に含まれる H 鎮 V 領域のアミノ酸配列および塩基配列を配列番号 : 3 8 に示す。

再構成ヒト WS - 4 抗体 H鎖 V 領域の各バージョン「b」、「c」、「d」、「e」、「f」、「g」、「h」を以下のようにして作製した。

バージョン「b」(RVHb)は、47位のロイシンがトリプトファンに変異するように設計した変異原プライマー LTW1 (配列番号: 39) および LTW-2 (配列番号: 40) を用い、両端を規定するプライマーとしては RVH5' (配列番号: 36) および RVH3' (配列番号: 37) を用いて、プラスミドHEF-RVHa-g_r1を錆型DNAとして、PCR法により増幅し、プラスミドHEF-RVHb-g_r1を得た。本プラスミドHEF-RVHb-g_r1に含まれるH鎖V領域のアミノ酸配列および塩基配列を配列番号: 41に示す。

バージョン「c」は、41位のグルタミンがプロリンに変異するように設計した変異原プライマーQTP1 (配列番号: 42) およびQTP2 (配列番号: 43) を用い、プラスミドHEF-RVHa-g_r1を錆型DNAとして、PCR法により増幅し、プラスミドHEF-RVHc-g_r1を得た。本プラスミドHEF-RVHc-g_r1に含まれるH鎖V領域のアミノ酸配列および塩基配列を配列番号: 44に示す。

バージョン「d」は、変異原プライマーとしてQTP1およびQTP2を用い、プラスミドHEF-RVHb-g_r1を錆型DNAとしてプラスミドHEF-RVHd-g_r1を得た。本プラスミドHEF-RVHd-g_r1に含まれるH鎖V領域のアミノ酸配列および塩基配列を配列番号: 45に示す。

バージョン「e」は、40位のアラニンがプロリンに変異するように設計した変異原プライマーATP1 (配列番号: 46) およびATP2 (配列番号: 47) を用い、プラスミドHEF-RVHd

- g₇] を錆型 DNA として増幅し、プラスミド H E F - R V H_d - g₇ 1を得た。本プラスミド H E F - R V H_d - g₇ 1に含まれる H鎖 V 領域に含まれるアミノ酸配列および塩基配列を配列番号：48に示す。

バージョン「f」は、44位のグリシンがアラニンに変異するよう設計した変異原プライマー G T A 1（配列番号：49）および G T A 2（配列番号：50）を用い、プラスミド H E F - R V H_d - g₇ 1を錆型DNAとして増幅し、プラスミド H E F - R V H_f - g₇ 1を得た。本プラスミド H E F - R V H_f - g₇ 1に含まれる H鎖 V 領域のアミノ酸配列および塩基配列を配列番号：51に示す。

バージョン「g」は、67位のロイシンがフェニルアラニンに変異するよう設計した変異原プライマー L T F 1（配列番号：52）および L T F 2（配列番号：53）を用い、プラスミド H E F - R V H_d - g₇ 1を錆型DNAとして増幅し、プラスミド H E F - R V H_g - g₇ 1を得た。本プラスミド H E F - R V H_g - g₇ 1に含まれる H鎖 V 領域のアミノ酸配列および塩基配列を配列番号：54に示す。

バージョン「h」は、変異原プライマーとして L T F 1 および L T F 2を用い、プラスミド H E F - R V H_b - g₇ 1を錆型DNAとして増幅し、プラスミド H E F - R V H_h - g₇ 1を得た。本プラスミド H E F - R V H_h - g₇ 1に含まれる H鎖 V 領域のアミノ酸配列および塩基配列を配列番号：55に示す。

再構成ヒト W S - 4 抗体 L鎖 V 領域の作製

再構成ヒト W S - 4 抗体 L鎖 V 領域をコードするDNAを次の様にして設計した。ヒト抗体 R E I の F RをコードするDNA配列とマウス W S - 4 抗体 L鎖 V 領域の C D RをコードするDNA配列が

連結されるように再構成ヒトW5-4抗体IgM領域をコードする全長DNAを設計した。

次に、このDNA配列のそれぞれ5'側及び3'側にHindIII認識部位/Kozakコンセンサス配列及びBamHI認識部位/スプライスドナー配列をそれぞれ付加して、HEF発現ベクターに挿入できるようにした。こうして設計したDNA配列をほぼ均等な長さの4本のオリゴヌクレオチドに分け、そして次に、これらのオリゴヌクレオチドのアセンブリーを妨害する可能性のあるオリゴヌクレオチド中の二次構造についてコンピューター解析した。

4本のオリゴヌクレオチド配列を配列番号：56～59に示す。これらのオリゴヌクレオチドは106～124塩基の長さを有し、隣接する2本のオリゴヌクレオチドは互いに19～23塩基のオーバラップ領域を有する。4本のオリゴヌクレオチドの内LF1（配列番号：56）、LF3（配列番号：58）はセンスDNA配列を有し、そして他のLF2（配列番号：57）、LF4（配列番号：59）はアンチセンスDNA配列を有する。これらオリゴヌクレオチドを前記のHF1～4と同様の方法で合成した。

アッセンブリーは、100ngずつの4種のオリゴヌクレオチド及び5μlのAmp1i Taqを含有する98μlのPCR混合物を、94℃にて3分間の最初の変性の後、94℃にて2分間、55℃にて2分間及び72℃にて3分間を1サイクルとし、これを2サイクル行った。100pmoleずつのRVL5'プライマー（配列番号：60）及びRVL3'プライマー（配列番号：61）を外部プライマーとして添加した後、PCR反応液を50μlの鉛油で覆い、そして94℃にて3分間の最初の変性の後、94℃にて1分間、55℃にて1分間及び72℃にて1分間を1サイクルとしてこれを30サイクルを行い、そして次に72℃にて10分間インキュベート

した（図3参照）。

約400塩基対のDNA断片を1.5%低融点アガロースゲルを用いて精製し、HindIII及びBamHIにより消化し、そして次にHEF発現ベクターHEF-VL-g_kにクローニングした。EF-1プライマー（配列番号：66）およびKIPプライマー（配列番号：68）を用いてDNA配列決定の後、正しいL鎖V領域のアミノ酸配列をコードするDNA断片を含むプラスミドをHEF-RVL_a-g_kと命名した。本プラスミドHEF-RVL_a-g_kに含まれるH鎖V領域のアミノ酸配列および塩基配列を配列番号：62に示す。

バージョン「b」（RVL_b）は、71位のフェニルアラニンがチロシンに変異するように設計した変異原プライマーFTY1（配列番号：63）およびFTY2（配列番号：64）を用い、両端を規定するプライマーとしてはRVL5'（配列番号：60）およびRVL3'（配列番号：61）を用いて、プラスミドHEF-RVL_a-g_kを錆型DNAとして、PCR法により増幅し、プラスミドHEF-RVL_b-g_kを得た。本プラスミドHEF-RVL_b-g_kに含まれるL鎖V領域のアミノ酸配列および塩基配列を配列番号：65に示す。

再構成ヒトWS-4抗体の各鎖の抗原結合活性を評価するため、まず、再構成ヒトWS-4抗体L鎖の「a」バージョンための発現ベクターHEF-RVL_a-g_kとキメラWS-4抗体H鎖のための発現ベクターHEF-chWS4H-gT1とによりCOS細胞を前記のようにして同時トランスフェクションし、前記のようにして培養上清を回収した後、前記実施例4ELISAに記載のとおりの方法を用いて、產生された抗体について產生抗体量および抗原結合活性を測定した。この結果を図4に示す。図4に示すように陽性

対照としてのキメラ抗体 (c h L / c h H) および再構成し鎖とキメラH鎖とからなる抗体 (R V L a / c h H) との間には抗原結合性に差がないことが確認された。

同時に、キメラWS-4抗体し鎖のための発現ベクターHEF-c h WS 4 L - g κと再構成ヒトWS-4抗体H鎖の「a」バージョンとの組み合せを評価するため、両者をCOS細胞に同時トランスフェクションし、前記実施例4ELISAに記載のとおりの方法を用いて、得られた抗体について産生抗体量および抗原結合活性を測定した。その結果、この抗体 (c h L / R V H a) には抗原結合活性が見られなかった（図4を参照のこと）。

前記のごとく、再構成ヒトWS-4抗体し鎖の「a」バージョン (R V L a) はキメラWS-4抗体し鎖と同等の結合活性を示したので、これ以後の再構成H鎖各バージョンの評価には、再構成H鎖各バージョンと再構成ヒトWS-4抗体し鎖の「a」バージョン (R V L a) をCOS細胞に同時トランスフェクションすることにより行なった。

その結果、「b」、「d」、「e」、「f」、「g」、「h」の各再構成H鎖バージョンを有する抗体は、陽性対照であるキメラWS-4抗体 (c h L / c h H) に匹敵する程度の抗原結合性を示し、この組み合せがヒト抗体における機能的抗原結合部位を形成することが示唆された。しかし、産生量については、「g」バージョン (R V H g) 以外はいずれもキメラWS-4抗体 (c h L / c h H) より低かった。なお、H鎖バージョン「c」を有する抗体には抗原結合活性が見られなかった（図5を参照のこと）。

このことから、再構成ヒトWS-4抗体し鎖の「a」バージョン (R V L a) ならびに再構成ヒトWS-4抗体H鎖の「g」バージョン (R V H g) を有する抗体は、良好な抗原結合性を示す機能的

抗原結合部位を再形成し、COS細胞に同時トランスフェクションすることによりキメラWS-4抗体(chL/chH)に匹敵する程度の產生量を示すことが示唆された。

次に、再構成ヒトWS-4抗体L鎖の「b」バージョン(RVLb)を用いて、H鎖各バージョンとCOS細胞に同時トランスフェクションし、再構成ヒトWS-4抗体L鎖の「b」バージョン(RVLb)の評価をおこなった。その結果、再構成ヒトWS-4抗体H鎖「g」バージョンを有する抗体(RVLb/RVHg)だけが、陽性対照であるキメラWS-4抗体(chL/chH)に匹敵する程度の抗原結合性を示し、この組み合せがヒト抗体における機能的抗原結合部位を形成することが示唆された。また、產生量についても、「g」バージョン(RVHg)以外はいずれもキメラWS-4抗体(chL/chH)より低かった(図6を参照のこと)。

前記の評価において、キメラWS-4抗体(chL/chH)に匹敵する產生量とIL-8に対する結合活性を示した2種の再構成ヒト抗体(RVLa/RVHgとRVLb/RVHg)をそれぞれプロテインAカラムで精製して、実施例4ELISAに記載の方法で結合活性をより正確に評価した。その結果、キメラWS-4抗体(chL/chH)、RVLa/RVHg抗体並びにRVLb/RVHg抗体のいずれも同程度の結合活性を示した(図7参照のこと)。

このことから、再構成ヒトWS-4抗体L鎖の「a」バージョン(RVLa)あるいは「b」バージョン(RVLb)と、再構成ヒトWS-4抗体H鎖の「g」バージョン(RVHg)を有する抗体は、良好な抗原結合性を示す機能的抗原結合部位を再形成し、COS細胞に同時トランスフェクションすることによりキメラWS-4抗体(chL/chH)に匹敵する程度の產生量を示すことが示唆

された。

再構成ヒトWS-4抗体のL鎖「a」バージョン(RVL_a)と同H鎖「g」バージョン(RVH_g)、または同L鎖「b」バージョン(RVL_b)と同H鎖「g」バージョン(RVH_g)からなる再構成ヒト抗体のIL-8レセプターに対するIL-8結合阻害活性を、リガンドレセプター結合阻害アッセイにより評価した。

健常人よりヘパリン採血した約100mlの血液を、15mlのMono-Poly分離溶液(ICN Biomedicals社製)に35mlずつ重層し、添付の指示書に従い遠心分離をおこなってヒト好中球層を単離した。この細胞を1%BSA添加RPMI-1640培地にて洗浄した後、混入した赤血球を150mMの塩化アンモニウム溶液にて除去した。これを遠心分離した後、細胞を1%BSA添加RPMI-1640培地にて洗浄し、2×10⁷ Cells/mlの細胞濃度になるように再懸濁した。この細胞懸濁液の好中球の含有率は、サイトスピノン(Shandon社)による塗抹標本をDiff-Quik(ミドリ十字社製)染色して測定した結果95%以上であった。

上記好中球懸濁液を遠心分離し、結合バッファー(1%BSA及び0.1%アジ化ナトリウムを含むD-PBS)にて細胞濃度2×10⁷ Cells/mlになるように再懸濁した。この時、好中球上のFcレセプターをあらかじめ飽和する目的で、本発明のヒト抗体と同一のFc部分を有するSK2キメラ抗体(国際特許出願出願番号PCT/JP94/00859参照)とその抗原であるヒトIL-6をそれぞれ濃度約50μg/mlおよび約40ng/mlになるように添加し、氷温中で30分間インキュベートした。

¹²⁵Iで放射標識したIL-8(74TBq/mmol, Amersham社製)と未標識IL-8(Amersham社製)を各

濃度が 4 ng/ml になるように結合バッファーにて混合し調製した。キメラ WS - 4 抗体 (chL/chH)、再構成ヒト抗体 (RVLa/RVHg および RVLb/RVHg)、陰性対照のヒト抗体 (PAESEL-LOREI 社製) あるいは陽性対照のマウス WS - 4 抗体のそれぞれを結合バッファーにて濃度 200 ng/ml から約 8 ng/ml まで 2 倍段階希釈した。IL - 8 溶液ならびに各抗体溶液をそれぞれ 50 μl ずつ混合し氷温中で 30 分間インキュベートした。その後、上記好中球懸濁液 100 μl を添加し、更に 15 分毎に攪拌しながら氷温中で 1 時間インキュベートした。インキュベート後、この細胞懸濁液を 200 μl の 20% サッカロース溶液に重層し、遠心、凍結させた。細胞に結合した IL - 8 を測定するため、細胞沈渣を切断し、ターカウンター (アロカ社製) で放射活性を測定した。その結果を図 8 に示す。

再構成ヒト WS - 4 抗体の L鎖「a」バージョン (RVLa) と同 H鎖「g」バージョン (RVHg)、または同 L鎖「b」バージョン (RVLb) と同 H鎖「g」バージョン (RVHg) を有する抗体は、IL - 8 レセプターに対する IL - 8 の結合に対して、キメラ抗体 (chL/chH) と同程度の結合阻害活性を有することが明らかになった。

なお、前記プラスミド HEF - RVLa - g α を有する大腸菌は Escherichia coli DH5 α (HEF - RVLa - g α)、およびプラスミド HEF - RVHg - g γ 1 を含有する大腸菌は Escherichia coli JM109 (HEF - RVHg - g γ 1) として工業技術院生命工学工業技術研究所 (茨城県つくば市東 1 丁目 1 番 3 号) に、平成 6 年 7 月 12 日に、各々 FERM BP - 4738 および、FERM BP - 4741 としてブタベスト条約に基づき国際寄託された。

参考例】 ハイブリドーマ WS-4 の作製

抗ヒトIL-8モノクローナル抗体を産生するハイブリドーマは、ヒトIL-8で免疫したBALB/cマウスの脾臓細胞とマウス骨髄腫細胞P3X63-Ag8.653をポリエチレンギリコールを用いた常法により融合して作製した。ヒトIL-8と結合する活性を指標としたスクリーニングを行い、ハイブリドーマWS-4を樹立した(Ko, Y-C.ら、J. Immunol. Method s, 149, 227-235, 1992)。

産業上の利用可能性

本発明はヒトIL-8に対する再構成ヒト抗体を提供し、この抗体においてはヒト抗体のV領域のCDRがヒトIL-8に対するマウスモノクローナル抗体のCDRにより置き換えられている。この再構成ヒト抗体の大部分がヒト抗体に由来し、そしてCDRは元来、抗原性が低いことから、本発明の再構成ヒト抗体はヒトに対する抗原性が低く、そしてそれ故に医学療法用として期待される。

特許協力条約に基く規則13規則の2の寄託された微生物への言及

国際寄託当局

名 称：工業技術院生命工学工業技術研究所

あて名：日本国茨城県つくば市東1丁目1番1号

受託番号及び寄託日

(1) *Escherichia coli* DH5 α (HEF-RVLa-g κ)

受託番号：FERM BP-4738

寄 託 日 : 1994年7月12日

(2) *Escherichia coli* DH5 α (HEF-chWS4L-g κ)

受託番号：FERM BP-4739

寄託日 : 1994年7月12日

(3) Escherichia coli JM109 (HEF-chWS4H-cr1)

受託番号 : FERM BP-4740

寄託日 : 1994年7月12日

(4) Escherichia coli JM109 (HEF-RVHg-cr1)

受託番号 : FERM BP-4741

寄託日 : 1994年7月12日

配列表

配列番号 : 1

配列の長さ : 40

配列の型 : 核酸

鎖の数 : 一本鎖

トポロジー : 直鎖状

配列の種類 : 合成DNA

配列の名称 : MKV1

配列

ACTAGTCGAC ATGAAGTTGC CTGTTAGGCT GTTGGTGCTG

40

配列番号 : 2

配列の長さ : 39

配列の型 : 核酸

鎖の数 : 一本鎖

トポロジー : 直鎖状

配列の種類 : 合成DNA

配列の名称 : MKV2

配列

ACTAGTCGAC ATGGAGWCAG ACACACTCCT GYTATGGCT

39

配列番号 : 3

配列の長さ : 40

配列の型 : 核酸

鎖の数 : 一本鎖

トポロジー : 直鎖状

配列の種類 : 合成DNA

配列の名称 : MKV3

配列

ACTAGTCGAC ATGAGTGTGC TCACTCAGGT CCTGGSGTTG

40

配列番号 : 4

配列の長さ : 43

配列の型 : 核酸

鎖の数 : 一本鎖

トポロジー : 直鎖状

配列の種類 : 合成DNA

配列の名称 : MKV4

配列

ACTAGTCGAC ATGAGGRCCC CTGCTCAGWT TYTTCCMWTC TTG

43

配列番号 : 5

配列の長さ : 40

配列の型 : 核酸

鎖の数 : 一本鎖

トポロジー : 直鎖状

配列の種類 : 合成DNA

配列の名称 : MKV5

配列

ACTAGTCGAC ATGGATTWTC AGCTGCAGAT TWTCAAGCTTC

40

配列番号：6

配列の長さ：37

配列の型：核酸

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：合成DNA

配列の名称：MKV6

配列

ACTAGTCGAC ATGAGGTCKY YTGYTSAGYT YCTGRGG

37

配列番号：7

配列の長さ：41

配列の型：核酸

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：合成DNA

配列の名称：MKV7

配列

ACTAGTCGAC ATGGGCWTCA AGATGGAGTC ACAKWYYCWG G

41

配列番号：8

配列の長さ：41

配列の型：核酸

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：合成DNA

配列の名称：MKV8

配列

ACTAGTCGAC ATGTGGGAY CTKTTTYCMM TTTTCAATT G

41

配列番号 : 9

配列の長さ : 35

配列の型 : 核酸

鎖の数 : 一本鎖

トポロジー : 直鎖状

配列の種類 : 合成 DNA

配列の名称 : MKV9

配列

ACTAGTCGAC ATGGTGTCCW CASCTCAGTT CCTTG

35

配列番号 : 10

配列の長さ : 37

配列の型 : 核酸

鎖の数 : 一本鎖

トポロジー : 直鎖状

配列の種類 : 合成 DNA

配列の名称 : MKV10

配列

ACTAGTCGAC ATGTATATAT GTTTGTGTC TATTCT

37

配列番号 : 11

配列の長さ : 38

配列の型 : 核酸

鎖の数 : 一本鎖

トポロジー : 直鎖状

配列の種類 : 合成 DNA

配列の名称 : MKV11

配列

ACTAGTCGAC ATGGAAGCCC CAGCTCAGCT TCTCTTCC

38

配列番号： 1 2

配列の長さ： 2 7

配列の型： 核酸

鎖の数： 一本鎖

トポロジー： 直鎖状

配列の種類： 合成 D N A

配列の名称： M K C

配列

GGATCCGGG TGCATGCTGG GAAGATG

27

配列番号： 1 3

配列の長さ： 3 7

配列の型： 核酸

鎖の数： 一本鎖

トポロジー： 直鎖状

配列の種類： 合成 D N A

配列の名称： M H V 1

配列

ACTAGTCGAC ATGAAATGCA GCTGGGTCA STTCTTC

37

配列番号： 1 4

配列の長さ： 3 6

配列の型： 核酸

鎖の数： 一本鎖

トポロジー： 直鎖状

配列の種類： 合成 D N A

配列の名称： M H V 2

配列

ACTAGTCGAC ATGGGATGGA GCTRTATCAT SYTCTT

36

配列番号： 1 5

配列の長さ： 3 7

配列の型： 核酸

鎖の数： 一本鎖

トポロジー： 直鎖状

配列の種類： 合成 D N A

配列の名称： M H V 3

配列

ACTAGTCGAC ATGAAGWTGT GGTTAAACTG CGTTTTT 37

配列番号： 1 6

配列の長さ： 3 5

配列の型： 核酸

鎖の数： 一本鎖

トポロジー： 直鎖状

配列の種類： 合成 D N A

配列の名称： M H V 4

配列

ACTAGTCGAC ATGRACTTTG GGYTCAGCTT GRTTT 35

配列番号： 1 7

配列の長さ： 4 0

配列の型： 核酸

鎖の数： 一本鎖

トポロジー： 直鎖状

配列の種類： 合成 D N A

配列の名称： M H V 5

配列

ACTAGTCGAC ATGGACTCCA GGCTCAATT AGTTTTCCCTT 40

配列番号 : 1 8

配列の長さ : 3 7

配列の型 : 核酸

鎖の数 : 一本鎖

トポロジー : 直鎖状

配列の種類 : 合成 D N A

配列の名称 : M H V 6

配列

ACTAGTCGAC ATGGCTGTCTY TRGSGCTRCT CTTCTGC

37

配列番号 : 1 9

配列の長さ : 3 6

配列の型 : 核酸

鎖の数 : 一本鎖

トポロジー : 直鎖状

配列の種類 : 合成 D N A

配列の名称 : M H V 7

配列

ACTAGTCGAC ATGGRATGGA GCKGGRTCTT TMTCTT

36

配列番号 : 2 0

配列の長さ : 3 3

配列の型 : 核酸

鎖の数 : 一本鎖

トポロジー : 直鎖状

配列の種類 : 合成 D N A

配列の名称 : M H V 8

配列

ACTAGTCGAC ATGAGAGTGC TGATTCTTT GTG

33

配列番号：21

配列の長さ：40

配列の型：核酸

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：合成DNA

配列の名称：MHV9

配列

ACTAGTCGAC ATGGMTTGGG TGTGGAMCTT GCTATTCCCTG

40

配列番号：22

配列の長さ：37

配列の型：核酸

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：合成DNA

配列の名称：MHV10

配列

ACTAGTCGAC ATGGGCAGAC TTACATTCTC ATTCCCTG

37

配列番号：23

配列の長さ：38

配列の型：核酸

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：合成DNA

配列の名称：MHV11

配列

ACTAGTCGAC ATGGATTTG GGCTGATTTT TTTTATTG

38

配列番号 : 2 4

配列の長さ : 3 7

配列の型 : 核酸

鎖の数 : 一本鎖

トポロジー : 直鎖状

配列の種類 : 合成 D N A

配列の名称 : M H V 1 2

配列

ACTAGTCGAC ATGATGGTGT TAAGTCTTCT GTACCTG

37

配列番号 : 2 5

配列の長さ : 2 8

配列の型 : 核酸

鎖の数 : 一本鎖

トポロジー : 直鎖状

配列の種類 : 合成 D N A

配列の名称 : M H C

配列

GGATCCCGGG CCAGTGGATA GACAGATG

28

配列番号 : 2 6

配列の長さ : 3 8 2

配列の型 : 核酸

鎖の数 : 二本鎖

トポロジー : 直鎖状

配列の種類 : c D N A

配列の名称 : W S 4 V L

起源

生物名 : マウス

直接の起源

クローン: p U C - W S 4 - V L

特徴: 1.. 60 sig peptide
 61.. 382 mat peptide

配列

ATG AGT GTG CTC ACT CAG GTC CTG GGG TTG CTG CTG CTG TGG CTT ACA	48		
Met Ser Val Leu Thr Gln Val Leu Gly Leu Leu Leu Leu Trp Leu Thr			
-20	-15	-10	-5
GGT GCC AGA TGT GAC ATC CAG ATG ACT CAG TCT CCA GCC TCC CTA TCT	96		
Gly Ala Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ala Ser Leu Ser			
-1	1	5	10
GCA TCT GTG GGA GAA ACT GTC ACC ATC ACA TGT CGA GCA ACT GAG ATT	144		
Ala Ser Val Gly Glu Thr Val Thr Ile Thr Cys Arg Ala Ser Glu Ile			
15	20	25	
ATT TAC ACT TAT TTA GCA TGG TAT CAG CAG AAA CAG GGA AAA TCT CCT	192		
Ile Tyr Ser Tyr Leu Ala Trp Tyr Gln Gln Lys Gln Gly Lys Ser Pro			
30	35	40	
CAG CTC CTG GTC TAT AAT GCA AAA ACC TTA GCA GAT GGT GTG TCA TCA	240		
Gln Leu Leu Val Tyr Asn Ala Lys Thr Leu Ala Asp Gly Val Ser Ser			
45	50	55	60
AGG TTC AGT GGC AGT GGA TCA GGC ACA CAG TTT TCT CTG CGG ATC AGC	288		
Arg Phe Ser Gly Ser Gly Thr Gln Phe Ser Leu Arg Ile Ser			
65	70	75	
AGC CTG CAG CCT GAA GAT TTT GGG ACT TAT TAC TGT CAA CAT CAT TTT	336		
Ser Leu Gln Pro Glu Asp Phe Gly Ser Tyr Tyr Cys Gln His His Phe			
80	85	90	

GCT TTT CCT CGG ACG TTC CGT GGA GGC ACC AAG CTG GAA CTC AAA C 382
 Gly Phe Pro Arg Thr Phe Gly Gly Gly Thr Lys Leu Glu Leu Lys
 95 100 105

配列番号： 2 7

配列の長さ： 4 2 4

配列の型： 核酸

鎖の数： 二本鎖

トポロジー： 直鎖状

配列の種類： c D N A

配列の名称： W S 4 V H

起源

生物名： マウス

直接の起源

クローン： p U C - W S 4 - V H

特徴： 1 . . 5 7 s i g p e p t i d e
 5 8 . . 4 2 4 m a t p e p t i d e

配列

ATG AAG TTG TGG TTA AAC TCG GTT TTT CTT GTG ACA CTT TTA AAT GGT	48
Met Lys Leu Trp Leu Asn Trp Val Phe Leu Val Thr Leu Leu Asn Gly	
-19 -15 -10 -5	
ATC CAG TGT GAG CTG AAA CTG CTG GAG TCT GGA GGA GGC TTG ATA CAG	96
Ile Gln Cys Glu Val Lys Leu Val Glu Ser Gly Gly Leu Ile Gln	
-1 1 5 10	
CCT GGG GAT TCT CTG AGA CTC TCC TCT GTA ACC TCT GGG TTC ACC TTC	144
Pro Gly Asp Ser Leu Arg Leu Ser Cys Val Thr Ser Gly Phe Thr Phe	
15 20 25	

AGT GAT TAC TAC CTG AGC TGG GTC CGC CAG CCT CCA GGA AAG GCA CTT		192
Ser Asp Tyr Tyr Leu Ser Trp Val Arg Gin Pro Pro Gly Lys Ala Leu		
30	35	40
GAG TGG GTG GGT CTC ATT AGA AAC AAA GCC AAT GGT TAC ACA AGA GAG		240
Glu Trp Val Gly Leu Ile Arg Asn Lys Ala Asn Gly Tyr Thr Arg Glu		
50	55	60
TAC AGT GCA TCT GTG AAG GGT CGG TTC ACC ATC TCC AGA GAT GAT TCC		288
Tyr Ser Ala Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser		
65	70	75
CAA AGC ATC CTC TAT CTT CAA ATG AAC ACC CTG AGA GGT GAG GAC AGT		336
Gln Ser Ile Leu Tyr Leu Gin Met Asn Thr Leu Arg Gly Glu Asp Ser		
80	85	90
GCC ACT TAT TAC TGT GCA CGA GAG AAC TAT AGG TAC GAC GTA GAG CTT		384
Ala Thr Tyr Tyr Cys Ala Arg Glu Asn Tyr Arg Tyr Asp Val Glu Leu		
95	100	105
GCT TAC TGG CGC CAA GGG ACT CTG GTC ACT GTC TCT GCA C		424
Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ala		
110	115	120

配列番号： 2 8

配列の長さ： 3 4

配列の型： 核酸

鎖の数： 一本鎖

トポロジー： 直鎖状

配列の種類： 合成 D N A

配列の名称： c h V L 後方プライマー

配列

ACAAAGCTTC CACCATGACT GTGCTCACTC AGGT

34

配列番号：29

配列の長さ：37

配列の型：核酸

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：合成DNA

配列の名称：c h V H 後方プライマー

配列

GATAAGCTTC CACCATGAAG TTGTGGTTAA ACTGGGT

37

配列番号：30

配列の長さ：37

配列の型：核酸

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：合成DNA

配列の名称：c h V L 前方プライマー

配列

CTTGGATCCA CTCACGTTTG AGTTCCAGCT TGGTGCC

37

配列番号：31

配列の長さ：37

配列の型：核酸

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：合成DNA

配列の名称：c h V H 前方プライマー

配列

GTCGGATCCA CTCACCTGCA GAGACAGTGA CCAGAGT

37

配列番号：3 2

配列の長さ：137

配列の型：核酸

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：合成DNA

配列の名称：HF1

配列

TAAGCTTCCA CCATGGAGTT TGGGCTGAGC TGGGTTTCC TTGTTGCTAT TTTAAAGGGT 60

GTCCAGTGTG AAGTGCAGCT CTTGGAGTCT GCGGGGAGGCT TGGTCCAGCC TGGGGGTCT 120

CTGAGACTCT CATGTGC 137

配列番号：3 3

配列の長さ：143

配列の型：核酸

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：合成DNA

配列の名称：HF2

配列

GCACTGTACT CTCTTGTTA ACCATTGGCT TIGTTTCTAA TGAGACCCAC CAACTCTAGC 60

CCTTTCCCTT GAGCTTGGCG GACCCAGCTC AGGTAGTAAT CACTGAAGGT GAATCCAGAG 120

GCAGCACATG AGAGTCTCAG AGA 143

配列番号：3 4

配列の長さ：113

配列の型：核酸

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：合成DNA

配列の名称：HF3

配列

TACACAAGAG ACTACAGTGC ATCTGTGAAG GGCA GACTTA CCATCTCAAG AGAAGATTCA 60
AAGAACACGC TGTATCTGCA AATGAGCCAGC CTGAAAACCG AAGACTTGGC CGT 113

配列番号：35

配列の長さ：117

配列の型：核酸

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：合成DNA

配列の名称：HF4

配列

TCCGGATCCAC TCACCTGAGG AGACGGTGAC CAGGGTTCCC TGGCCCCAGT AAGCAAGCTC 60
TACGTCGTAG CGATAAGTTCT CTCTACCACA GTAATACACG GCCAAGTCTT CGGTTTT 117

配列番号：36

配列の長さ：37

配列の型：核酸

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：合成DNA

配列の名称：RVH5'プライマー

配列

GATAAGCTTC CACCATGGAG TTTGGGCTGA GCTGGGT 37

配列番号：37

配列の長さ：31

配列の型：核酸

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：合成DNA

配列の名称：RVH3'プライマー

配列

GTCGGATCCA CTCACCTGAG GAGACCGTGA C

31

配列番号：38

配列の長さ：424

配列の型：核酸

鎖の数：二本鎖

トポロジー：直鎖状

配列の種類：合成DNA

配列の名称：RVHa

起源

生物名：マウス及びヒト

直接の起源

クローン：HEF-RVHa-g71

アミノ酸 -19---1 : leader

アミノ酸 1-30 : FR1

アミノ酸 31-35 : CDR1

アミノ酸 36-49 : FR2

アミノ酸 50-68 : CDR2

アミノ酸 69-100 : FR3

アミノ酸 101-111 : CDR3

アミノ酸 112-122 : FR4

配列

ATG GAG TTT GGG CTG AGC TCG GTT TTC CTT CTT CCT ATT TTA AAC GGT		48	
Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Ile Leu Lys Gly			
-19	-15	-10	-5
GTC CAG TGT GAA GTG CAG CTG TTG GAG TCT GGG GGA GGC TTG GTC CAG		96	
Val Gln Cys Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln			
-1	1	5	10
CCT GGG GGT TCT CTG AGA CTC TCA TGT GCT GCC TCT GGA TTC ACC TTC		144	
Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe			
15	20	25	
AGT GAT TAC TAC CTG AGC TCG GTC CGC CAA GCT CAA GGG AAA GGG CTA		192	
Ser Asp Tyr Tyr Leu Ser Trp Val Arg Gln Ala Gln Gly Lys Gly Leu			
30	35	40	45
GAG TTG GTG GGT CTC ATT AGA AAC AAA GCC AAT GGT TAC ACA AGA GAC		240	
Glu Leu Val Gly Leu Ile Arg Asn Lys Ala Asn Gly Tyr Thr Arg Glu			
50	55	60	
TAC AGT GCA TCT GTG AAG GGC AGA CTT ACC ATC TCA AGA GAA GAT TCA		288	
Tyr Ser Ala Ser Val Lys Gly Arg Leu Thr Ile Ser Arg Glu Asp Ser			
65	70	75	
AAG AAC ACC CTG TAT CTG CAA ATG AGC AGC CTG AAA ACC GAA GAC TTG		336	
Lys Asn Thr Leu Tyr Leu Gln Met Ser Ser Leu Lys Thr Glu Asp Leu			
80	85	90	
GCC GTG TAT TAC TGT GCT AGA GAC AAC TAT CGC TAC GAC CTA GAG CTT		384	
Ala Val Tyr Tyr Cys Ala Arg Glu Asn Tyr Arg Tyr Asp Val Glu Leu			
95	100	105	
GCT TAC TGG GGC CAG GGA ACC CTG CTC ACC GTC TCC TCA G		424	
Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser			
110	115	120	

配列番号 : 3 9

配列の長さ : 3 4

配列の型 : 核酸

鎖の数 : 一本鎖

トポロジー : 直鎖状

配列の種類 : 合成 D N A

配列の名称 : L T W 1

配列

GGCTAGAGTG GGTGGTCTC ATTAGAAACA AAGC

34

配列番号 : 4 0

配列の長さ : 3 6

配列の型 : 核酸

鎖の数 : 一本鎖

トポロジー : 直鎖状

配列の種類 : 合成 D N A

配列の名称 : L T W 2

配列

GAGACCCACC CACTCTAGCC CTTCCCTTG AGCTTG

36

配列番号 : 4 1

配列の長さ : 4 2 4

配列の型 : 核酸

鎖の数 : 二本鎖

トポロジー : 直鎖状

配列の種類 : 合成 D N A

配列の名称 : R V H b

起源

生物名 : マウス及びヒト

直接の起源

クローン : H E F - R V H b - g r I
 アミノ酸 - 1 9 - - 1 : leader
 アミノ酸 1 - 3 0 : F R 1
 アミノ酸 3 1 - 3 5 : C D R 1
 アミノ酸 3 6 - 4 9 : F R 2
 アミノ酸 5 0 - 6 8 : C D R 2
 アミノ酸 6 9 - 1 0 0 : F R 3
 アミノ酸 1 0 1 - 1 1 1 : C D R 3
 アミノ酸 1 1 2 - 1 2 2 : F R 4

配列

ATG GAG TTT GGG CTG AGC TGG GTT TTC CTT GTT GCT ATT TTA AAG GGT	48		
Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Ile Leu Lys Gly			
-19	-15	-10	-5
GTC CAG TGT GAA GTG CAG CTG TTG GAG TCT GGG GGA GGC TTG GTC CAG	96		
Val Gln Cys Glu Val Gln Leu Leu Glu Ser Gly Gly Leu Val Gln			
-1 1	5	10	
CCT GGG GGT TCT CTG AGA CTC TCA TGT GCT GCC TCT GGA TTC ACC TTC	144		
Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe			
15	20	25	
AGT GAT TAC TAC CTG AGC TGG GTC CGC CAA CCT CAA GGG AAA GGG CTA	192		
Ser Asp Tyr Tyr Leu Ser Trp Val Arg Gln Ala Gln Gly Lys Gly Leu			
30	35	40	45
GAG TGG GTG GGT CTC ATT AGA AAC AAA GCC AAT GGT TAC ACA AGA GAG	240		
Glu Trp Val Gly Leu Ile Arg Asn Lys Ala Asn Gly Tyr Thr Arg Glu			
50	55	60	

TAC AGT GCA TCT GTG AAG GGC AGA CTT ACC ATC TCA AGA GAA GAT TCA	288	
Tyr Ser Ala Ser Val Lys Gly Arg Leu Thr Ile Ser Arg Glu Asp Ser		
65	70	75
AAG AAC ACG CTG TAT CTG CAA ATG AGC AGC CTG AAA ACC GAA GAC TTG	336	
Lys Asn Thr Leu Tyr Leu Gin Met Ser Ser Leu Lys Thr Glu Asp Leu		
80	85	90
GCC GTG TAT TAC TGT GCT AGA GAG AAC TAT CGC TAC GAC GTA GAG CTT	384	
Ala Val Tyr Tyr Cys Ala Arg Glu Asn Tyr Arg Tyr Asp Val Glu Leu		
95	100	105
GCT TAC TGG GGC CAG GGA ACC CTG GTC ACC GTC TCC TCA G	424	
Ala Tyr Trp Gly Gin Gly Thr Leu Val Thr Val Ser Ser		
110	115	120

配列番号 : 4 2

配列の長さ : 3 2

配列の型 : 核酸

鎖の数 : 一本鎖

トポロジー : 直鎖状

配列の種類 : 合成 D N A

配列の名称 : Q T P 1

配列

TGGGTCCCCC AAGCTCCAGG GAAAGGGCTA GA	32
-------------------------------------	----

配列番号 : 4 3

配列の長さ : 3 2

配列の型 : 核酸

鎖の数 : 一本鎖

トポロジー : 直鎖状

配列の種類 : 合成 D N A

配列の名称 : Q T P 2

配列

TCTAGCCCTT TCCCTGGAGC TTGGCGGACC CA

32

配列番号 : 4 4

配列の長さ : 4 2 4

配列の型 : 核酸

鎖の数 : 二本鎖

トポロジー : 直鎖状

配列の種類 : 合成 D N A

配列の名称 : R V H c

起源

生物名 : マウス及びヒト

直接の起源

クローン : H E F - R V H c - g r 1

アミノ酸 - 1 9 - - 1 : l e a d e r

アミノ酸 1 - 3 0 : F R 1

アミノ酸 3 1 - 3 5 : C D R 1

アミノ酸 3 6 - 4 9 : F R 2

アミノ酸 5 0 - 6 8 : C D R 2

アミノ酸 6 9 - 1 0 0 : F R 3

アミノ酸 1 0 1 - 1 1 1 : C D R 3

アミノ酸 1 1 2 - 1 2 2 : F R 4

配列

ATG GAG TTT GGG CTG ACC TGG GTT TTC CTT GTT GCT ATT TTA AAG CGT 48

Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Ile Leu Lys Gly

-19

-15

-10

-5

GTC CAG TGT GAA GTG CAG CTG TTG GAG TCT GGG GCA GGC TTG GTC CAG 96
 Val Gln Cys Glu Val Gln Leu Leu Glu Ser Gly Gly Leu Val Gln
 -1 1 5 10
 CCT GGG GGT TCT CTG AGA CTC TCA TCT GCT GCC TCT GGA TTC ACC TTC 144
 Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe
 15 20 25
 ACT GAT TAC TAC CTG AGC TGG GTC CGC CAA GCT CCA GGG AAA GGG CTA 192
 Ser Asp Tyr Tyr Leu Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu
 30 35 40 45
 GAG TTG GTG GGT CTC ATT AGA AAC AAA GCC AAT GGT TAC ACA AGA GAG 240
 Glu Leu Val Gly Leu Ile Arg Asn Lys Ala Asn Gly Tyr Thr Arg Glu
 50 55 60
 TAC AGT GCA TCT GTG AAG GGC AGA CTT ACC ATC TCA AGA GAA GAT TCA 288
 Tyr Ser Ala Ser Val Lys Gly Arg Leu Thr Ile Ser Arg Glu Asp Ser
 65 70 75
 AAG AAC ACG CTG TAT CTG CAA ATG AGC AGC CTG AAA ACC GAA GAC TTG 336
 Lys Asn Thr Leu Tyr Leu Gln Met Ser Ser Leu Lys Thr Glu Asp Leu
 80 85 90
 GCC CTG TAT TAC TGT GCT AGA GAG AAC TAT CGC TAC GAC GIA GAG CTT 384
 Ala Val Tyr Tyr Cys Ala Arg Glu Asn Tyr Arg Tyr Asp Val Glu Leu
 95 100 105
 GCT TAC TGG GGC CAG GGA ACC CTG GTC ACC GTC TCC TCA G 424
 Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
 110 115 120

配列番号： 4 5

配列の長さ： 4 2 4

配列の型： 核酸

鎖の数：二本鎖

トポロジー：直鎖状

配列の種類：合成DNA

配列の名称：R VH d

起源

生物名：マウス及びヒト

直接の起源

クローン：H E F - R V H d - g r 1

アミノ酸 - 1 9 - - 1 : leader

アミノ酸 1 - 3 0 : F R 1

アミノ酸 3 1 - 3 5 : C D R 1

アミノ酸 3 6 - 4 9 : F R 2

アミノ酸 5 0 - 6 8 : C D R 2

アミノ酸 6 9 - 1 0 0 : F R 3

アミノ酸 1 0 1 - 1 1 1 : C D R 3

アミノ酸 1 1 2 - 1 2 2 : F R 4

配列

ATG GAG TTT GGG CTG AGC TCG GTT TTC CTT GTT GCT ATT TTA AAG GGT	48		
Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Ile Leu Lys Gly			
-19	-15	-10	-5
GTC CAG TCT GAA GTG CAG CTG TTG GAG TCT GGG GCA GGC TTG GTC CAG	96		
Val Gln Cys Glu Val Gln Leu Leu Glu Ser Gly Gly Leu Val Gln			
-1 1	5	10	
CCT GGG GGT TCT CTG AGA CTC TCA TGT GCT GCC TCT GGA TTC ACC TTC	144		
Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe			
15	20	25	

ACT GAT TAC TAC CTG AGC TGG GTC CGC CAA GCT CCA GGG AAA GGG CTA		192
Ser Asp Tyr Tyr Leu Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu		
30	35	40
GAG TCG CTG GGT CTC ATT AGA AAC AAA GCC AAT GGT TAC ACA AGA GAG		240
Glu Trp Val Gly Leu Ile Arg Asn Lys Ala Asn Gly Tyr Thr Arg Glu		
50	55	60
TAC AGT GCA TCT GTG AAG GGC AGA CTT ACC ATC TCA AGA GAA GAT TCA		288
Tyr Ser Ala Ser Val Lys Gly Arg Leu Thr Ile Ser Arg Glu Asp Ser		
65	70	75
AAG AAC ACG CTG TAT CTG CAA ATG AGC AGC CTG AAA ACC GAA GAC TTG		336
Lys Asn Thr Leu Tyr Leu Gln Met Ser Ser Leu Lys Thr Glu Asp Leu		
80	85	90
GCC GTG TAT TAC TGT GCT AGA GAG AAC TAT CGC TAC GAC GTA GAG CTT		384
Ala Val Tyr Tyr Cys Ala Arg Glu Asn Tyr Arg Tyr Asp Val Glu Leu		
95	100	105
GCT TAC TGG GGC CAG GGA ACC CTG GTC ACC GTC TCC TCA G		424
Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser		
110	115	120

配列番号：46

配列の長さ：26

配列の型：核酸

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：合成DNA

配列の名称：ATP1

配列

TGGGTCCGCC AACCTCCAGG GAAAGG

26

配列番号：47

配列の長さ：26

配列の型：核酸

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：合成DNA

配列の名称：ATP2

配列

CCTTCCCTG GAGGTTGGCG GACCCA

26

配列番号：48

配列の長さ：424

配列の型：核酸

鎖の数：二本鎖

トポロジー：直鎖状

配列の種類：合成DNA

配列の名称：RVHe

起源

生物名：マウス及びヒト

直接の起源

クローン：HEF-RVHe-g71

アミノ酸 - 19--1 : leader

アミノ酸 1-30 : FR1

アミノ酸 31-35 : CDR1

アミノ酸 36-49 : FR2

アミノ酸 50-68 : CDR2

アミノ酸 69-100 : FR3

アミノ酸 101-111 : CDR3

アミノ酸 1 1 2 - 1 2 2 : F R 4

配列

ATG GAG TTT GGG CTG AGC TCG CTT TTC CTT GCT ATT TTA AAG GGT	48
Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Ile Leu Lys Gly	
-19 -15 -10 -5	
GTC CAG TGT GAA CTG CAG CTG TTG GAG TCT GGG GGA GGC TTG GTC CAG	96
Val Gln Cys Glu Val Gln Leu Leu Glu Ser Gly Gly Leu Val Gln	
-1 1 5 10	
CCT GGG GGT TCT CTG AGA CTC TCA TGT GCT GCC TCT GGA TTC ACC TTC	144
Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe	
15 20 25	
AGT GAT TAC TAC CTG AGC TGG GTC CGC CAA CCT CCA GGG AAA CGG CTA	192
Ser Asp Tyr Tyr Leu Ser Trp Val Arg Gln Pro Pro Gly Lys Gly Leu	
30 35 40 45	
GAG TGG GTG GGT CTC ATT AGA AAC AAA GCC AAT GGT TAC ACA AGA GAG	240
Glu Trp Val Gly Leu Ile Arg Asn Lys Ala Asn Gly Tyr Thr Arg Glu	
50 55 60	
TAC AGT GCA TCT GTG AAG GCC AGA CTT ACC ATC TCA AGA GAA GAT TCA	288
Tyr Ser Ala Ser Val Lys Gly Arg Leu Thr Ile Ser Arg Glu Asp Ser	
65 70 75	
AAG AAC ACG CTG TAT CTG CAA ATG AGC AGC CTG AAA ACC GAA GAC TTG	336
Lys Asn Thr Leu Tyr Leu Gln Met Ser Ser Leu Lys Thr Glu Asp Leu	
80 85 90	
GCC GTG TAT TAC TGT CCT AGA GAG AAC TAT CGC TAC GAC GTA GAG CTT	384
Ala Val Tyr Tyr Cys Ala Arg Glu Asn Tyr Arg Tyr Asp Val Glu Leu	
95 100 105	

GCT TAC TGG GGC CAG GGA ACC CTG GTC ACC GTC TCC TCA G 424

Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser

110 115 120

配列番号：49

配列の長さ：29

配列の型：核酸

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：合成DNA

配列の名称：GTA1

配列

CAAGCTCCAG GGAAAGCGCT AGAGTGGGT

29

配列番号：50

配列の長さ：29

配列の型：核酸

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：合成DNA

配列の名称：GTA2

配列

ACCCCACTCTA GCGCTTTCCC TGGAGCTTG

29

配列番号：51

配列の長さ：424

配列の型：核酸

鎖の数：二本鎖

トポロジー：直鎖状

配列の種類：合成DNA

配列の名称 : R V H f

起源

生物名 : マウス及びヒト

直接の起源

クローン : H E F - R V H f - g r 1

アミノ酸 - 1 9 - - 1 : l e a d e r

アミノ酸 1 - 3 0 : F R 1

アミノ酸 3 1 - 3 5 : C D R 1

アミノ酸 3 6 - 4 9 : F R 2

アミノ酸 5 0 - 6 8 : C D R 2

アミノ酸 6 9 - 1 0 0 : F R 3

アミノ酸 1 0 1 - 1 1 1 : C D R 3

アミノ酸 1 1 2 - 1 2 2 : F R 4

配列

ATG GAG TTT GGG CTG AGC TGG GTT TTC CTT GTT GCT ATT TTA AAG GGT	48		
Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Ile Leu Lys Gly			
-19	-15	-10	-5
GTC CAG TGT GAA GTG CAG CTG TTG GAG TCT GGG CGA GGC TTG GTC CAG	96		
Val Gln Cys Glu Val Gln Leu Leu Glu Ser Gly Gly Leu Val Gln			
-1 1	5	10	
CCT GGG GGT TCT CTG AGA CTC TCA TGT GCT GCC TCT GGA TTC ACC TTC	144		
Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe			
15 20 25			
AGT GAT TAC TAC CTG AGC TGG GTC CGC CAA GCT CCA GGG AAA GCG CTA	192		
Ser Asp Tyr Tyr Leu Ser Trp Val Arg Gln Ala Pro Gly Lys Ala Leu			
30 35 40 45			

GAG TGG CTG GGT CTC ATT AGA AAC AAA GCC AAT GGT TAC ACA AGA GAG 240
 Glu Trp Val Gly Leu Ile Arg Asn Lys Ala Asn Gly Tyr Thr Arg Glu
 50 55 60
 TAC AGT GCA TCT CTG AAC GCC AGA CTT ACC ATC TCA AGA GAA GAT TCA 288
 Tyr Ser Ala Ser Val Lys Gly Arg Leu Thr Ile Ser Arg Glu Asp Ser
 65 70 75
 AAG AAC ACG CTG TAT CTG CAA ATG AGC AGC CTG AAA ACC GAA GAC TTG 336
 Lys Asn Thr Leu Tyr Leu Gln Met Ser Ser Leu Lys Thr Glu Asp Leu
 80 85 90
 GCC CTG TAT TAC TGT GCT AGA GAG AAC TAT CGC TAC GAC GTA GAG CTT 384
 Ala Val Tyr Tyr Cys Ala Arg Glu Asn Tyr Arg Tyr Asp Val Glu Leu
 95 100 105
 GCT TAC TGG GCC CAG GGA ACC CTG GTC ACC GTC TCC TCA G 424
 Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
 110 115 120

配列番号 : 5 2

配列の長さ : 23

配列の型 : 核酸

鎖の数 : 一本鎖

トポロジー : 直鎖状

配列の種類 : 合成 D N A

配列の名称 : L T F 1

配列

GTGAAGGGCA GATTTACCAT CTC 23

配列番号 : 5 3

配列の長さ : 23

配列の型 : 核酸

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：合成DNA

配列の名称：LTF2

配列

GAGATGGTAA ATCTGCCCTT CAC

23

配列番号：54

配列の長さ：424

配列の型：核酸

鎖の数：二本鎖

トポロジー：直鎖状

配列の種類：合成DNA

配列の名称：RVHg

起源

生物名：マウス及びヒト

直接の起源

クローン：HEF-RVHg-gr1

アミノ酸 -19--1 : leader

アミノ酸 1-30 : FR1

アミノ酸 31-35 : CDR1

アミノ酸 36-49 : FR2

アミノ酸 50-68 : CDR2

アミノ酸 69-100 : FR3

アミノ酸 101-111 : CDR3

アミノ酸 112-122 : FR4

配列

ATG CAG TTT CGG CTG AGC TGG GTT TTC CTT GCT ATT TTA AAG GGT	48		
Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Ile Leu Lys Gly			
-19	-15	-10	-5
GTC CAG TGT GAA GTG CAG CTG TTG GAG TCT GGG GGA GGC TTG GTC CAG	96		
Val Gln Cys Glu Val Gln Leu Leu Glu Ser Gly Gly Leu Val Gln			
-1 1	5	10	
CCT GGG GGT TCT CTG AGA CTC TCA TGT GCT GCC TCT GGA TTC ACC TTC	144		
Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe			
15	20	25	
AGT GAT TAC TAC CTG AGC TGG GTC CGC CAA GCT CCA GGG AAA GGG CTA	192		
Ser Asp Tyr Tyr Leu Ser Trp Val Arg Gln Ala Pro Gly Lys Leu			
30	35	40	45
GAG TGG GTG GCT CTC ATT AGA AAC AAA GCC AAT GGT TAC ACA AGA GAG	240		
Glu Trp Val Gly Leu Ile Arg Asn Lys Ala Asn Gly Tyr Thr Arg Glu			
50	55	60	
TAC ACT GCA TCT GTG AAG GGC AGA TTT ACC ATC TCA AGA CAA GAT TCA	288		
Tyr Ser Ala Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Glu Asp Ser			
65	70	75	
AAC AAC ACC CTG TAT CTG CAA ATG AGC AGC CTG AAA ACC GAA GAC TTG	336		
Lys Asn Thr Leu Tyr Leu Gln Met Ser Ser Leu Lys Thr Glu Asp Leu			
80	85	90	
GCC GTG TAT TAC TGT GCT AGA GAG AAC TAT CGC TAC GAC GTC GAG CTT	384		
Ala Val Tyr Tyr Cys Ala Arg Glu Asn Tyr Arg Tyr Asp Val Glu Leu			
95	100	105	
GCT TAC TGG GGC CAG GGA ACC CTG GTC ACC GTC TCC TCA G	424		
Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser			
110	115	120	

配列番号 : 55

配列の長さ : 424

配列の型 : 核酸

鎖の数 : 二本鎖

トポロジー : 直鎖状

配列の種類 : 合成DNA

配列の名称 : RVHh

起源

生物名 : マウス及びヒト

直接の起源

クローン : HEF-RVHh-gtr1

アミノ酸 -19---1 : leader

アミノ酸 1-30 : FR1

アミノ酸 31-35 : CDR1

アミノ酸 36-49 : FR2

アミノ酸 50-68 : CDR2

アミノ酸 69-100 : FR3

アミノ酸 101-111 : CDR3

アミノ酸 112-122 : FR4

配列

ATG GAG TTT GGG CTG AGC TCG GTT TTC CTT GTT GCT ATT TTA AAG GGT 48

Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Ile Leu Lys Gly

-19 -15 -10 -5

GTC CAG TGT GAA GTG CAG CTG TTG GAG TCT GGG GGA GGC TTG GTC CAG 96

Val Gln Cys Glu Val Gln Leu Leu Glu Ser Gly Gly Leu Val Gln

-1 1 5 10

CCT GGG GGT TCT CTG AGA CTC TCA TGT GCT CCC TCT GGA TTC ACC TTC		144	
Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe			
15	20	25	
AGT GAT TAC TAC CTG ACC TGG GTC CCC CAA GCT CAA GGG AAA GGG CTA		192	
Ser Asp Tyr Tyr Leu Ser Trp Val Arg Gln Ala Gln Gly Lys Gly Leu			
30	35	40	45
GAG TGG GTG GGT CTC ATT AGA AAC AAA GCC AAT GGT TAC ACA AGA GAG		240	
Glu Trp Val Gly Leu Ile Arg Asn Lys Ala Asn Gly Tyr Thr Arg Glu			
50	55	60	
TAC AGT GCA TCT GTG AAG GCC AGA TTT ACC ATC TCA AGA GAA GAT TCA		288	
Tyr Ser Ala Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Glu Asp Ser			
65	70	75	
AAG AAC ACG CTG TAT CTG CAA ATG AGC AGC CTG AAA ACC GAA GAC TTG		336	
Lys Asn Thr Leu Tyr Leu Gln Met Ser Ser Leu Lys Thr Glu Asp Leu			
80	85	90	
GCC CTG TAT TAC TGT GCT AGA GAG AAC TAT CGC TAC GAC GTA GAC CTT		384	
Ala Val Tyr Tyr Cys Ala Arg Glu Asn Tyr Arg Tyr Asp Val Glu Leu			
95	100	105	
GCT TAC TGG GGC CAG GGA ACC CTG GTC ACC GTC TCC TCA G		424	
Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser			
110	115	120	

配列番号：56

配列の長さ : 1 2 4

配列の型：核酸

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：合成DNA

配列の名称 : L F 1

配列

TGAAAGCTTC CACCATGGGA TGGAGCTGTA TCATCCTCTT CTTGGTAGCA ACAGCTACAG 60
GTGTCCACTC CGACATCCAG ATGACCCAGA CCCCAAGCAG CCTGAGGCC AGCGTAGGTG 120
ACAG 124

配列番号 : 5 7

配列の長さ : 122

配列の型 : 核酸

鎖の数 : 一本鎖

トポロジー : 直鎖状

配列の種類 : 合成 DNA

配列の名称 : L F 2

配列

GCATTTGAGA TCAGCAGCTT TGGAGCCTTT CCTGGCTTCT GCTGGTACCA TGCTAAATAA 60
CTGTAAATAA TCTCGCTTGC TCGACAGGTG ATGGTCACTC TGTCACCTAC GCTGGCGCTC 120
AG 122

配列番号 : 5 8

配列の長さ : 121

配列の型 : 核酸

鎖の数 : 一本鎖

トポロジー : 直鎖状

配列の種類 : 合成 DNA

配列の名称 : L F 3

配列

AGCTGCTGAT CTACAATGCA AAAACCTTAG CAGATGGAGT GCCAAGCAGA TTCACCGGTA 60
GGGGTAGCCG TACCGACTTC ACCTTCACCA TCAGCAGCCT CCACCCAGAG GACATCGCTA 120
C 121

配列番号：59

配列の長さ：106

配列の型：核酸

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：合成DNA

配列の名称 : L F 4

配列

GTTAGGATCCA CTCACGTTG ATTTGCACCT TGGTCCCTTG GCCGAACGTC CGAGGAAAAC 60

CAAAATGATC TTGGCACTAG TAGGTAGCGA TGTCCCTCTGG CTGGAC 106

配列番号：60

配列の長さ : 20

配列の型：核酸

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：合成DNA

配列の名称 : R V L 5'

配列

TTGAAGCTTC CACCA^TGGGA

20

配列番号：61

配列の長さ : 20

配列の型：核酸

銷の數：一本銷

トポロジー：直鎖状

配列の種類：合成DNA

配列の名前: R V L 3 "

配列

GTAGGATCCA CTCACGTTTG

20

配列番号 : 6 2

配列の長さ : 3 7 9

配列の型 : 核酸

鎖の数 : 二本鎖

トポロジー : 直鎖状

配列の種類 : 合成 DNA

配列の名称 : R V L a

起源

生物名 : マウス及びヒト

直接の起源

クローン : H E F - R V L a - g κ

アミノ酸 - 1 9 - - 1 : leader

アミノ酸 1 - 2 3 : F R 1

アミノ酸 2 4 - 3 4 : C D R 1

アミノ酸 3 5 - 4 9 : F R 2

アミノ酸 5 0 - 5 6 : C D R 2

アミノ酸 5 7 - 8 8 : F R 3

アミノ酸 8 9 - 9 7 : C D R 3

アミノ酸 9 8 - 1 0 7 : F R 4

配列

ATG GGA TGG AGC TGT ATC ATC CTC TTC TTG GTA GCA ACA GCT ACA CGT 48

Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr Gly

-19 -15 -10 -5

GTC CAC TCC GAC ATC CAG ATG ACC CAG AGC CCA AGC AGC CTG AGC GCC 96

Val His Ser Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala

-1 1 5 10

AGC GTC GGT GAC AGA GTG ACC ATC ACC TCT CGA GCA AGC GAG ATT ATT		144	
Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Glu Ile Ile			
15	20	25	
TAC ACT TAT TTA GCA TGG TAC CAG CAG AAG CCA GGA AAG GCT CCA AAG		192	
Tyr Ser Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys			
30	35	40	45
CTG CTG ATC TAC AAT GCA AAA ACC TTA GCA GAT GGA GTG CCA AGC AGA		240	
Leu Leu Ile Tyr Asn Ala Lys Thr Leu Ala Asp Gly Val Pro Ser Arg			
50	55	60	
TTC AGC GGT AGC GGT AGC GGT ACC GAC TTC ACC TTC ACC ATC AGC AGC		288	
Phe Ser Gly Ser Gly Thr Asp Phe Thr Phe Thr Ile Ser Ser			
65	70	75	
CTC CAG CCA GAG GAC ATC GCT ACC TAC TAC TGC CAA CAT CAT TTT GGT		336	
Leu Gln Pro Glu Asp Ile Ala Thr Tyr Tyr Cys Gln His His Phe Gly			
80	85	90	
TTT CCT CGG ACG TTC GGC CAA GGG ACC AAG GTC GAA ATC AAA C		379	
Phe Pro Arg Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys			
95	100	105	

配列番号 : 6 3

配列の長さ : 3 8

配列の型 : 核酸

鎖の数 : 一本鎖

トポロジー : 直鎖状

配列の種類 : 合成 D N A

配列の名称 : F T Y 1

配列

ACCGGTAGCG GTACCGACTA CACCTTCACC ATCAGCAG

38

配列番号 : 6 4

配列の長さ : 3 8

配列の型 : 核酸

鎖の数 : 一本鎖

トポロジー : 直鎖状

配列の種類 : 合成 D N A

配列の名称 : F T Y 2

配列

CTGCTGATGG TGAAGGTGTA GTCGGTACCG CTACCGCT 38

配列番号 : 6 5

配列の長さ : 3 7 9

配列の型 : 核酸

鎖の数 : 二本鎖

トポロジー : 直鎖状

配列の種類 : 合成 D N A

配列の名称 : R V L b

起源

生物名 : マウス及びヒト

直接の起源

クローン : H E F - R V L b - g κ

アミノ酸 - 1 9 - - 1 : l e a d e r

アミノ酸 1 - 2 3 : F R 1

アミノ酸 2 4 - 3 4 : C D R 1

アミノ酸 3 5 - 4 9 : F R 2

アミノ酸 5 0 - 5 6 : C D R 2

アミノ酸 5 7 - 8 8 : F R 3

アミノ酸 8 9 - 9 7 : C D R 3

アミノ酸 9 8 - 1 0 7 : F R 4

配列

ATG GGA TGG AGC TGT ATC ATC CTC TTC TTG GTA GCA ACA GCA GCT ACA GGT 48
 Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr Gly
 -19 -15 -10 -5
 GTC CAC TCC GAC ATC CAG ATG ACC CAG AGC CCA AGC AGC CTG AGC GCC 96
 Val His Ser Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala
 -1 1 5 10
 AGC CTA GGT GAC AGA GTG ACC ATC ACC TGT CGA GCA AGC GAG ATT ATT 144
 Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Glu Ile Ile
 15 20 25
 TAC ACT TAT TTA GCA TCG TAC CAG CAG AAG CCA GGA AAG GCT CCA AAG 192
 Tyr Ser Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys
 30 35 40 45
 CTG CTG ATC TAC AAT GCA AAA ACC TTA GCA GAT GGA GTG CCA AGC ACA 240
 Leu Leu Ile Tyr Asn Ala Lys Thr Leu Ala Asp Gly Val Pro Ser Arg
 50 55 60
 TTC AGC GGT ACC GGT AGC GGT ACC GAC TAC ACC TTC ACC ATC AGC AGC 288
 Phe Ser Gly Ser Gly Ser Gly Thr Asp Tyr Thr Phe Thr Ile Ser Ser
 65 70 75
 CTC CAG CCA GAC GAC ATC GCT ACC TAC TAC TGC CAA CAT CAT TTT GGT 336
 Leu Gln Pro Glu Asp Ile Ala Thr Tyr Tyr Cys Gln His His Phe Gly
 80 85 90
 TTT CCT CGG ACG TTC GCC CAA GGG ACC AAG GTC GAA ATC AAA C 379
 Phe Pro Arg Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys
 95 100 105

配列番号： 6 6

配列の長さ： 1 8

配列の型： 核酸

鎖の数： 一本鎖

トポロジー： 直鎖状

配列の種類： 合成 D N A

配列の名称： E F 1

配列

CAGACAGTGG TTCAAAGT

18

配列番号： 6 7

配列の長さ： 1 7

配列の型： 核酸

鎖の数： 一本鎖

トポロジー： 直鎖状

配列の種類： 合成 D N A

配列の名称： H I P

配列

GCCCCAAAGC CAAGGTC

17

配列番号： 6 8

配列の長さ： 2 0

配列の型： 核酸

鎖の数： 一本鎖

トポロジー： 直鎖状

配列の種類： 合成 D N A

配列の名称： K I P

配列

AACTCAATGC TTTAGGCCAA

20

請求項四

1. ヒトインターロイキン-8 (IL-8) に対するマウスモノクローナル抗体の軽鎖 (L鎖) 可変領域 (V領域)。
2. 配列番号 : 26 に示されるアミノ酸配列またはその一部を有する請求項1に記載のL鎖V領域。
3. ヒトIL-8に対するマウスモノクローナル抗体の重鎖 (H鎖) V領域。
4. 配列番号 : 27 に示されるアミノ酸配列またはその一部を有する請求項3に記載のH鎖V領域。
5. ヒトL鎖定常領域 (C領域)、及びヒトIL-8に対するマウスモノクローナル抗体のL鎖V領域を含んで成るキメラL鎖。
6. 前記マウスL鎖V領域が配列番号 : 26 に示されるアミノ酸配列またはその一部を有する請求項5に記載のキメラL鎖。
7. ヒトH鎖C領域、及びヒトIL-8に対するマウスモノクローナル抗体のH鎖V領域を含んで成るキメラH鎖。
8. 前記マウスH鎖V領域が配列番号 : 27 に示されるアミノ酸配列またはその一部を有する請求項7に記載のキメラH鎖。
9. (1) ヒトL鎖定常領域 (C領域)、及びヒトIL-8に対するマウスモノクローナル抗体のL鎖V領域を含んで成るL鎖；並びに
(2) ヒトH鎖C領域、及びヒトIL-8に対するマウスモノクローナル抗体のH鎖V領域を含んで成るH鎖；
を含んで成るキメラ抗体。
10. 前記マウスL鎖V領域が配列番号 : 26 に示されるアミノ酸配列またはその一部を有し、そして前記マウスH鎖V領域が配列番号 : 27 に示されるアミノ酸配列またはその一部を有する、請求項

9に記載のキメラ抗体。

11. ヒトIL-8に対するマウスモノクローナル抗体のL鎖V領域の相補性決定領域(CDR)。

12. 下記並びに配列番号:26に示されるアミノ酸配列またはその一部を有する、請求項11に記載のCDR。

CDR1: Arg Ala Ser Glu Ile Ile Tyr Ser Tyr Leu Ala

CDR2: Asn Ala Lys Thr Leu Ala Asp

CDR3: Gln His His Phe Gly Phe Pro Arg Thr

13. ヒトIL-8に対するマウスモノクローナル抗体のH鎖V領域のCDR。

14. 下記並びに配列番号:27に示されるアミノ酸配列またはその一部を有する、請求項13に記載のCDR。

CDR1: Asp Tyr Tyr Leu Ser

CDR2: Leu Ile Arg Asn Lys Ala Asn Gly Tyr Thr Arg Glu Tyr Ser Ala Ser Val Lys Gly

CDR3: Glu Asn Tyr Arg Tyr Asp Val Glu Leu Ala Tyr

15. (1)ヒトL鎖V領域のフレームワーク領域(FR)、及び

(2)ヒトIL-8に対するマウスモノクローナル抗体のL鎖V領域のCDR、を含んで成るヒトIL-8に対する抗体の再構成(reshaped)ヒトL鎖V領域。

16. 前記CDRが請求項12に示されるアミノ酸配列またはその一部を有する、請求項15に記載の再構成ヒトL鎖V領域。

17. 前記FRがヒト抗体RE1に由来する、請求項15及び16に記載の再構成ヒトL鎖V領域。

18. 前記L鎖V領域が、表2においてRVLa又はRVLbとして示されるアミノ酸配列またはその一部を有する請求項15に記載の再構成ヒトL鎖V領域。

21. (1) ヒト H鎖 V 領域の F E , 及び

(2) ヒト I L - 8 に対するマウスモノクローナル抗体の H鎖 V 領域の C D R 、を含んで成る、ヒト I L - 8 に対する抗体の再構成ヒト H鎖 V 領域。

20. 前記 C D R が請求項 1 4 に示されるアミノ酸配列またはその一部を有する、請求項 1 9 に記載の再構成ヒト H鎖 V 領域。

21. 前記 F R 1 , 2 , 3 がヒト抗体 V D H 2 6 に、および F R 4 が 4 B 4 に由来する、請求項 1 9 及び 2 0 に記載の再構成ヒト H鎖 V 領域。

22. 前記 H鎖 V 領域が、表 3 および表 4 における R V H a , R V H b , R V H c , R V H d , R V H e , R V H f , R V H g 、又は R V H h として示されるアミノ酸配列またはその一部を有する、請求項 1 9 に記載の再構成ヒト H鎖 V 領域。

23. (1) ヒト L鎖 C 領域、並びに

(2) ヒト L鎖 F R 、及びヒト I L - 8 に対するマウスモノクローナル抗体の L鎖 C D R を含んで成る L鎖 V 領域、を含んで成るヒト I L - 8 に対する再構成ヒト抗体の L鎖。

24. 前記ヒト L鎖 C 領域がヒト C κ 領域であり、ヒト L鎖 F R が R E 1 に由来し、前記 L鎖 C D R が請求項 1 2 に示されるアミノ酸配列またはその一部を有する、請求項 2 3 に記載の再構成ヒト抗体 L鎖。

25. 前記 L鎖 V 領域が表 2 において R V L a 又は R V L b として示されるアミノ酸配列またはその一部を有する、請求項 2 3 に記載の再構成ヒト抗体 L鎖。

26. (1) ヒト H鎖 C 領域、並びに

(2) ヒト H鎖 F R 、及びヒト I L - 8 に対するマウスモノクローナル抗体の H鎖 C D R を含んで成る H鎖 V 領域、を含んで成るヒ

!! - 8に対する再構成ヒト抗体のH鎖。

27. 前記ヒトH鎖C領域がヒトC γ 1領域であり、前記ヒトH鎖FR1, 2, 3がヒト抗体VDH26に、ヒト抗体FR4が4B4に由来し、前記H鎖CDRが請求項14に示されるアミノ酸配列またはその一部を有する、請求項26に記載の再構成ヒト抗体H鎖。

28. 前記H鎖V領域が表3および表4におけるRVHa, RVHb, RVHc, RVHd, RVHe, RVHf, RVHg及びRVHhとして示されるアミノ酸配列またはその一部を有する、請求項26に記載の再構成ヒト抗体H鎖。

29. (A) (1) ヒトL鎖C領域、及び

(2) ヒトL鎖FR、及びヒトIL-8に対するマウスモノクローナル抗体のL鎖CDRを含んで成るL鎖V領域、を含んで成るL鎖；並びに

(B) (1) ヒトH鎖C領域、並びに

(2) ヒトH鎖FR、及びヒトIL-8に対するマウスモノクローナル抗体のH鎖CDRを含んで成るH鎖V領域、を含んで成るH鎖；

を含んで成るヒトIL-8に対する再構成ヒト抗体。

30. 前記L鎖CDRが請求項12に示されるアミノ酸配列またはその一部を有し、前記H鎖CDRが請求項14に示されるアミノ酸配列またはその一部を有する、請求項29に記載の再構成ヒト抗体。

31. 前記L鎖CDRが請求項12に示されるアミノ酸配列またはその一部を有し、前記H鎖CDRが請求項14に示されるアミノ酸配列またはその一部を有し；前記ヒトL鎖FRがヒト抗体RE1に由来し；前記ヒトH鎖FR1, 2, 3がヒト抗体VDH26に、FR4がヒト抗体4B4に由来し、前記ヒトL鎖C領域はヒトC κ 鎖

域である；そして前記ヒトH鎖C領域はヒトC₇1領域である。請求項29に記載の再構成ヒト抗体。

32. 前記L鎖CDRが請求項12に示されるアミノ酸配列またはその一部を有し、前記H鎖CDRが請求項14に示されるアミノ酸配列またはその一部を有し；前記ヒトL鎖FRがヒト抗体REIに由来し；前記ヒトH鎖FR1, 2, 3がヒト抗体VDH26に、FR4がヒト抗体4B4に由来し、前記ヒトL鎖C領域はC₄領域であり；そして前記ヒトH鎖C領域はC₇4である、請求項29に記載の再構成ヒト抗体。

33. 前記L鎖V領域が表2においてRVLa又はRVLbとして示されるアミノ酸配列またはその一部を有する、請求項29に記載の再構成ヒト抗体。

34. 前記H鎖V領域が表3および表4におけるRVHa, RVHb, RVHc, RVHd, RVHe, RVHf, RVHg、又はRVHhとして示されるアミノ酸配列またはその一部を有する、請求項29に記載の再構成ヒト抗体。

35. (1) ヒトL鎖C領域；及び

(2) ヒトIL-8に対するマウスモノクローナル抗体のL鎖V領域；

を含んで成る、ヒトIL-8に対する抗体のキメラL鎖をコードするDNA。

36. 前記L鎖V領域が配列番号：26に示されるアミノ酸配列またはその一部をコードする、請求項35に記載のDNA。

37. 前記L鎖V領域が配列番号：26に示されるヌクレオチド配列またはその一部を有する請求項35に記載のDNA。

38. (1) ヒトH鎖C領域；及び

(2) ヒトIL-8に対するマウスモノクローナル抗体のH鎖V

領域

を含んで成る、ヒト I L - 8 に対する抗体のキメラ H鎖をコードする DNA。

39. 前記 H鎖 V 領域が配列番号：27に示されるアミノ酸配列またはその一部をコードする、請求項38に記載のDNA。

40. 前記 H鎖 V 領域が配列番号：27に示されるヌクレオチド配列またはその一部を有する請求項38に記載のDNA。

41. ヒト I L - 8 に対するマウスモノクローナル抗体の L鎖 V 領域をコードするDNA。

42. 前記 L鎖 V 領域が配列番号：26に示されるアミノ酸配列またはその一部をコードする、請求項41に記載のDNA。

43. 前記 L鎖 V 領域をコードするDNAが配列番号：26に示されるヌクレオチド配列またはその一部を有する、請求項41に記載のDNA。

44. ヒト I L - 8 に対するマウスモノクローナル抗体の H鎖 V 領域をコードするDNA。

45. 前記 H鎖 V 領域が配列番号：27に示されるアミノ酸配列またはその一部をコードする、請求項44に記載のDNA。

46. 前記 H鎖 V 領域をコードするDNAが配列番号：27に示されるヌクレオチド配列またはその一部を有する、請求項44に記載のDNA。

47. ヒト I L - 8 に対するマウスモノクローナル抗体の L鎖 V 領域の CDR をコードするDNA。

48. 前記 CDR が請求項12に示されるアミノ酸配列またはその一部をコードする、請求項47に記載のCDRをコードするDNA

•

49. 前記 CDR が配列番号：26に示されるヌクレオチド配列ま

たはその一部を有する、請求項 17 に記載の CDR をコードする DNA。

50. ヒト IL-8 に対するマウスモノクローナル抗体の H 鎮 V 領域の CDR をコードする DNA。

51. 前記 CDR が請求項 14 に示されるアミノ酸配列またはその一部を有する、請求項 16 に記載の CDR をコードする DNA。

52. 前記 CDR が配列番号： 27 に示されるヌクレオチド配列またはその一部を有する、請求項 50 に記載の CDR をコードする DNA。

53. (1) ヒト L 鎮 V 領域の FR、及び

(2) ヒト IL-8 に対するマウスモノクローナル抗体の L 鎮 V 領域の CDR、を含んで成る、ヒト IL-8 に対する抗体の再構成ヒト L 鎮 V 領域をコードする DNA。

54. 前記 CDR が請求項 12 に示されるアミノ酸配列またはその一部を有する、請求項 53 に記載の再構成ヒト L 鎮 V 領域をコードする DNA。

55. 前記 FR がヒト抗体 REI に由来する、請求項 53 及び 54 に記載の再構成ヒト L 鎮 V 領域をコードする DNA。

56. 前記 L 鎮 V 領域が表 2 における RVLa 又は RVLb として示されるアミノ酸配列またはその一部をコードする、請求項 53 に記載の DNA。

57. 配列番号： 62 又は配列番号： 65 に示されるヌクレオチド配列またはその一部を有する請求項 53 に記載の DNA。

58. (1) ヒト H 鎮 V 領域の FR、及び

(2) ヒト IL-8 に対するマウスモノクローナル抗体の H 鎮 V 領域の CDR、を含んで成る、ヒト IL-8 に対する抗体の再構成ヒト H 鎮 V 領域をコードする DNA。

59. 前記 C D R が請求項 1 4 に示されるアミノ酸配列またはその一部を有する、請求項 5 8 に記載の再構成ヒト H 鎮 V 領域をコードする DNA。

60. 前記 F R 1, 2, 3 がヒト抗体 V D H 2 6 に、並びに F R 4 がヒト抗体 4 B 4 に由来する、請求項 5 8 及び 5 9 に記載の再構成ヒト H 鎮 V 領域をコードする DNA。

61. H 鎮 V 領域が表 3 および表 4 における R V H a, R V H b, R V H c, R V H d, R V H e, R V H f, R V H g、又は R V H h として示されるアミノ酸配列またはその一部をコードする、請求項 5 8 に記載の再構成ヒト H 鎮 V 領域をコードする DNA。

62. 配列番号： 3 8, 4 1, 4 4, 4 5, 4 8, 5 1, 5 4、又は、 5 5 に示されるヌクレオチド配列またはその一部を有する、請求項 4 8 に記載の DNA。

63. (1) ヒト L 鎮 C 領域；並びに
(2) ヒト F R、及びヒト I L - 8 に対するマウスモノクローナル抗体の C D R を含んで成る L 鎮 V 領域；
を含んで成るヒト I L - 8 に対する抗体の再構成ヒト L 鎮をコードする DNA。

64. 前記 L 鎮 V 領域が表 2 における R V L a 又は R V L b として示されるアミノ酸配列またはその一部をコードする、請求項 6 3 に記載の DNA。

65. 前記 L 鎮 V 領域が配列番号： 6 2 又は配列番号： 6 5 に示されるヌクレオチド配列またはその一部を有する請求項 6 3 に記載の DNA。

66. 前記ヒト L 鎮 C 領域がヒト L 鎮 C κ 領域である請求項 6 3, 6 4, 6 5 に記載の DNA。

67. (1) ヒト H 鎮 C 領域；並びに

(2) ヒト Fc、及びヒト IL-8に対するマウスモノクローナル抗体のCDRを含んで成るH鎖V領域：
を含んで成るヒト IL-8に対する抗体の再構成ヒト H鎖をコードするDNA。

68. H鎖V領域が表3および表4におけるRVHa, RVHb,
RVHc, RVHd, RVHe, RVHi, RVHg、又はRVH
hとして示されるアミノ酸配列またはその一部をコードする、請求項67に記載の再構成ヒト H鎖をコードするDNA。

69. 前記H鎖V領域が配列番号：38, 41, 44, 45, 48
, 51, 54、又は、55に示されるヌクレオチド配列またはその一部を有する請求項67に記載のDNA。

70. 前記ヒト H鎖C領域がヒト H鎖C_T1領域である請求項67
, 68, 69に記載のDNA。

71. 前記ヒト H鎖C領域がヒト H鎖C_T4領域である請求項67
, 68, 69に記載のDNA。

72. 請求項35, 36, 37, 38, 39, 40, 63, 64,
65, 66, 67, 68, 69, 70及び71のいずれか1項に記載のDNAを含んで成るベクター。

73. 請求項72に記載のベクターにより形質転換された宿主細胞
。

74. ヒト IL-8に対するキメラ抗体の製造方法であって、請求項35, 36, 37のいずれか1項に記載のDNAを含んで成る発現ベクター及び請求項38, 39, 40のいずれか1項に記載のDNAを含んで成る発現ベクターにより同時形質転換された宿主細胞を培養し、そして目的とする抗体を回収する、段階を含んで成る方法。

75. ヒト IL-8に対するキメラ抗体の製造方法であって、請求

項 3 5, 3 6 及び 3 7 のいずれか 1 項に記載の DNA 及び請求項 3 8, 3 9, 4 0 のいずれか 1 項に記載の DNA を含んでなる発現ベクターにより形質転換された宿主細胞を培養し、そして目的とする抗体を回収する、段階を含んで成る方法。

76. ヒト IL - 8 に対する再構成ヒト抗体の製造方法であって、請求項 6 3, 6 4, 6 5, 6 6 のいずれか 1 項に記載の DNA を含んで成る発現ベクター及び請求項 6 7, 6 8, 6 9, 7 0 及び 7 1 のいずれか 1 項に記載の DNA を含んで成る発現ベクターにより同時形質転換された宿主細胞を培養し、そして目的とする抗体を回収する、段階を含んで成る方法。

77. ヒト IL - 8 に対する再構成ヒト抗体の製造方法であって、請求項 6 3, 6 4, 6 5 及び 6 6 のいずれか 1 項に記載の DNA 及び請求項 6 7, 6 8, 6 9, 7 0, 7 1 のいずれか 1 項に記載の DNA を含んで成る発現ベクターにより形質転換された宿主細胞を培養し、そして目的とする抗体を回収する、段階を含んで成る方法。

Fig. 1

Fig.2

Fig.3

A

オリゴヌクレオチドの合成

B

オリゴヌクレオチドの合成

Fig.4

Fig.5

Fig.6

Fig.7

Fig.8

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP95/01396

A. CLASSIFICATION OF SUBJECT MATTER

Int. Cl⁶ C07K16/24, C12N15/13, 15/62, C12P21/02, 21/08,
C12N1/21// (C12P21/02, C12R1:19)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int. Cl⁶ C12N15/02-15/90, C12P21/00, 21/02, 21/08

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

BIOSIS PREVIEWS, WPI

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	KO, Yue-chau, et al. "A sensitive enzyme-linked immunosorbent assay for human interleukin-8", J. Immunol. Methods, 1992, Vol. 149, p. 227-235	1-20, 23-26, 29, 30, 33, 35-59, 62-67, 70-77
Y	Osamu Kanemitsu, "Antibody Engineering" 1st edit. (Tokyo), Chijin Shokan K.K. (25. 01. 1995), p. 195-234	1-20, 23-26, 29, 30, 33, 35-59, 62-67, 70-77
Y	RIECHMANN, L., et al. "Reshaping human antibodies for therapy", Nature, 1988, Vol. 332, p. 323-327	1-20, 23-26, 29, 30, 33, 35-59, 62-67, 70-77
A	BULUWELA, L., et al. "The use of chromosomal translocations to study human immunoglobulin gene organization : mapping D _H segments within 35kb of the Cu gene and identification of a new D _H locus", The EMBO Journal, 1988, Vol. 7, No. 7, p. 2003-2010	21, 22, 27, 28, 31, 32, 34, 60, 61, 68, 69

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reasons (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document: member of the same patent family

Date of the actual completion of the international search
October 9, 1995 (09. 10. 95)Date of mailing of the international search report
October 31, 1995 (31. 10. 95)Name and mailing address of the ISA/
Japanese Patent Office
Facsimile No.Authorized officer
Telephone No.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP95/01396

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	SANZ, I., et al. "V _H sequence of a human anti-Sm autoantibody", J. Immunol., 1989, Vol. 142, No. 3, p. 883-887	21, 22, 27, 28, 31, 32, 34, 60, 61, 68, 69

国際調査報告

国際出願番号 PCT/JP 95/01396

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. CL⁸ C07K 16/24, C12N 15/13, 15/62, C12P 21/02
21/08, C12N 1/21/(C12P 21/02, C12R 1/19)

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. CL⁹ C12N 15/02-15/90, C12P 21/00, 21/02,
21/08

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

BIOSIS PREVIEWS, WPI

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	KO, Yue-chau, et al. "A sensitive enzyme-linked immunosorbent assay for human interleukin-8", J. Immunol. Methods, 1992, 第149巻, p. 227-235	1-20, 23-26, 29, 30, 33, 35-59, 62-67, 70-77
Y	金先, 修, 「抗体工学入門」初版(東京都), 株式会社 地人書館(25.01.1995), p. 195-234	1-20, 23-26,

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する調査を参照。

- * 引用文献のカテゴリー
 - 「A」特に関連のある文献ではなく、一般的技術水準を示すもの
 - 「E」先行文献ではあるが、国際出願日以後に公表されたもの
 - 「L」優先権主張に影響を及ぼす文献又は他の文献の発行日
詳しくは他の特別の理由を確立するために引用する文献
(理由を付す)
 - 「O」口頭による開示、使用、展示等に言及する文献
 - 「P」国際出願日以前で、かつ優先権の主張の基礎となる出願の日
の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって出願と
矛盾するものではなく、発明の原理又は理論の理解のため
に引用するもの
「X」特に関連のある文献であって、当該文献のみで発明の新規
性又は進歩性がないと考えられるもの
「Y」特に関連のある文献であって、当該文献と他の1以上の文
献との、当該書にとって自明である組合せによって進歩性
がないと考えられるもの
「&」同一パテントファミリー文献

国際調査を完了した日 09.10.95	国際調査報告の発送日 31.10.95
名前及びあて先 日本国特許庁 (ISA/JP) 郵便番号100 東京都千代田区霞が関三丁目4番3号	特許庁審査官(権限のある職員) 佐伯裕子 電話番号 03-3581-1101 内線 3449

C(続き) 関連すると認められる文献		
引用文献の カテゴリー	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
		29, 30, 33, 35-59, 62-67, 70-77
Y	RIECHMANN, L., et al. "Reshaping human antibodies for therapy", Nature, 1988, 第332巻, p. 323-327	1-26, 23-26, 29, 30, 33, 35-59, 62-67, 70-77
A	BULUWELA, L., et al. "The use of chromosomal translocations to study human immunoglobulin gene organization: mapping D _n segments within 3.5 kb of the C _n gene and identification of a new D _n locus", The EMBO Journal, 1988, 第7巻, 第7号, p. 2003-2010	21, 22, 27, 28, 31, 32, 34, 60, 61, 68, 69
A	SANZ, I., et al. "V _n sequence of a human anti-Sm autoantibody", J. Immunol., 1989, 第142巻, 第3号, p. 883-887	21, 22, 27, 28, 31, 32, 34, 60, 61, 68, 69