Statistical Learning and Data Mining CS 363D/ SSC 358

Lecture: Nearest Neighbor Classifiers

Prof. Pradeep Ravikumar pradeepr@cs.utexas.edu

Adapted From: Pang-Ning Tan, Steinbach, Kumar

Instance-Based Classifiers

Instance-Based Classifiers

- Examples:
 - Rote-learner
 - Memorizes entire training data and performs classification only if attributes of record match one of the training examples exactly

Instance-Based Classifiers

• Examples:

- Rote-learner
 - Memorizes entire training data and performs classification only if attributes of record match one of the training examples exactly
- Nearest neighbor
 - Uses k "closest" points (nearest neighbors) for performing classification

Basic idea:

 If it walks like a duck, quacks like a duck, then it's probably a duck

Basic idea:

Requires three things

- The set of stored records
- Distance Metric to compute distance between records
- The value of k, the number of nearest neighbors to retrieve

- Requires three things
 - The set of stored records
 - Distance Metric to compute distance between records
 - The value of k, the number of nearest neighbors to retrieve
- To classify an unknown record:

- Requires three things
 - The set of stored records
 - Distance Metric to compute distance between records
 - The value of k, the number of nearest neighbors to retrieve
- To classify an unknown record:
 - Compute distance to other training records

- Requires three things
 - The set of stored records
 - Distance Metric to compute distance between records
 - The value of k, the number of nearest neighbors to retrieve
- To classify an unknown record:
 - Compute distance to other training records
 - Identify k nearest neighbors

- Requires three things
 - The set of stored records
 - Distance Metric to compute distance between records
 - The value of k, the number of nearest neighbors to retrieve
- To classify an unknown record:
 - Compute distance to other training records
 - Identify k nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

Definition of Nearest Neighbor

(a) 1-nearest neighbor

K-nearest neighbors of a record x are data points that have the k smallest distance to x

Definition of Nearest Neighbor

- (a) 1-nearest neighbor
- (b) 2-nearest neighbor

K-nearest neighbors of a record x are data points that have the k smallest distance to x

Definition of Nearest Neighbor

K-nearest neighbors of a record x are data points that have the k smallest distance to x

1 Nearest-Neighbor

Voronoi Diagram

- Compute distance between two points:
 - Euclidean distance

$$d(p,q) = \sqrt{\sum_{i} (p_{i} - q_{i})^{2}}$$

Determine the class from nearest neighbor list

- Compute distance between two points:
 - Euclidean distance

$$d(p,q) = \sqrt{\sum_{i} (p_{i} - q_{i})^{2}}$$

- Determine the class from nearest neighbor list
 - take the majority vote of class labels among the k-nearest neighbors

- Compute distance between two points:
 - Euclidean distance

$$d(p,q) = \sqrt{\sum_{i} (p_{i} - q_{i})^{2}}$$

- Determine the class from nearest neighbor list
 - take the majority vote of class labels among the k-nearest neighbors
 - Weigh the vote according to distance
 - ◆ weight factor, w = 1/d²

- Choosing the value of k:
 - If k is too small,

- Choosing the value of k:
 - If k is too small, sensitive to noise points

- Choosing the value of k:
 - If k is too small, sensitive to noise points
 - If k is too large,

- Choosing the value of k:
 - If k is too small, sensitive to noise points
 - If k is too large, neighborhood may include points from other classes

Scaling issues

 Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes

– Example:

- height of a person may vary from 1.5m to 1.8m
- weight of a person may vary from 90lb to 300lb
- income of a person may vary from \$10K to \$1M

- Problem with Euclidean measure:
 - High dimensional data
 - curse of dimensionality

- Problem with Euclidean measure:
 - High dimensional data
 - curse of dimensionality
 - Can produce counter-intuitive results

- Problem with Euclidean measure:
 - High dimensional data
 - curse of dimensionality
 - Can produce counter-intuitive results

Solution: Normalize the vectors to unit length

- k-NN classifiers are lazy learners
 - It does not build models explicitly
 - Unlike eager learners such as decision tree induction and rule-based systems
 - Classifying unknown records are relatively expensive

Ensemble Methods

Ensemble Methods

 Construct a set of classifiers from the training data

 Predict class label of previously unseen records by aggregating predictions made by multiple classifiers

General Idea

Why does it work?

- Suppose there are 25 base classifiers
 - Each classifier has error rate, $\varepsilon = 0.35$
 - Assume classifiers are independent
 - Probability that the ensemble classifier makes a wrong prediction:

$$\sum_{i=13}^{25} {25 \choose i} \varepsilon^i (1-\varepsilon)^{25-i} = 0.06$$

Many Approaches to Step 1 (Creating Multiple Datasets)

- Copy the dataset multiple times
- Partitioning the dataset
- Bagging
- Boosting

Bagging

Sampling with replacement

Original Data	1	2	3	4	5	6	7	8	9	10
Bagging (Round 1)	7	8	10	8	2	5	10	10	5	9
Bagging (Round 2)	1	4	9	1	2	3	2	7	3	2
Bagging (Round 3)	1	8	5	10	5	5	9	6	3	7

Build classifier on each bootstrap sample