ชื่อ-นามสกุล: วรรธนัย สาธุพันธ์ เลขประจำตัว: 6010500117

204224 ปฏิบัติการวงจรตรรกะ

ปฏิบัต**ิการที่ 3** เข้าใจหลักการทำงานของ Encoder และ Decoder **ทฤษฎีที่ต้องเข้าใจ**

1) วงจรเข้ารหัส (Encoder) และ วงจรถอดรหัส (Decoder) encoders และ decoders กูกใช้งานเป็นหลักในโครงการ digital electronics โดย encoders และ decoders ใช้ในการ แปลงข้อมูลจากรูปแบบหนึ่งให้กลายเป็นรูปแบบอื่น ส่วนใหญ่ถูกใช้ใน communication system เช่น telecommunication networking และอื่นๆเป็นต้น หรือเป็การย้ายข้อมูลจากจุดหนึ่งไปอีกจุดหนึ่งการต้องมีการเข้า รหัส (encode) ก่อนจะส่งแล้วเมื่อฝ่ารับได้ข้อมูลก่อนจะนำไปใช้งานจริงก็ต้องถอดรหัส (decode) ข้อมูลออกมาก่อน หรือคล้ายๆกับระบบบความปลอดภัยของข้อมูลในระบบดิจิตอลที่ต้องนำข้อมาแทนด้วยรหัสต่างๆ (encryption) แล้วส่ง ไปในระบบสื่อสาร เมื่อฝ่ายรับข้อมูลก็จะต้องถอดรหัสก่อน (decryption) จึงจะได้ข้อมูลที่แท้จริง

ENCODERS AND DECODERS

รูปที่ 2 แสดงการทำงาน encoder และ decoder

Decoder

ในระบบดิจิทัล encoder วงจรหรืออุปกรณ์อิเล็กทรอนิกส์ที่ใช้แปลงสัญญาณแอนนาล็อกไปเป็นสัญญาดิจิทัล เช่น BCD และ encoder จะมีอินพุตหลายขา โดยในช่วงเวลาหนึ่งจะสัญญาเข้าปรากฏที่ขาเดียวเท่านั้นก็จะส่งผลลัพธ์ ออกมาเป็นรหัสBCD ที่ต่างกัน เช่น กรณีสัญญาขาเข้า 8 สัญญาณที่เราใช้ในเลขฐาน10 เช่นจำนวน 0-7 สามารถเข้า รหัสเป็นข้อมูล จิดิทัล BCD จำนวน 4 bit ดังนั้นสัญญาญขาเข้าจำนวน 2ⁿ จะสร้างรหัส BCD N bit เช่น 4-2 encoder จะขาสัญญาณเข้า 4 inputs และผลิต 2 outputs ดังรูปที่ 3

ฐปที่ 3 encoder

ตัวอย่าง

รูปที่ 4

ซึ่งจะแสดง Truth Table ดังนี้

	Inp	Output BCD						
A_3	A_2	A_1	A_0	F_1	F_0			
0	0	0	1	0	0			
0	0	1	0	0	1			
0	1	0	0	1	0			
1	0	0	0	1	1			

Decoder

.... คืออุปกรณ์อิเล็กทรอนิกส์ที่ทำงานตรงข้ามกับ Decode คือทำการถอดรหัสข้อมูล BCD กลายมาเป็นสัญญาณที่อาจะใช้ ควบคุมเปิด/ปิด อุปกรณ์อิเล็กทรอนิกส์อื่น โดยจำนวนสัญญาขาเข้า N สัญญาณจะแปลงเป็นสัญญาณขาออกจำนวน 2ⁿ สัญญาณ

ฐปที่ 5 decoder

ตัวอย่าง วงจรถอดรหัส Decoder ข้อมูล input BCD 2 bit จะได้ output 4 bit สร้างจาก and gate ตาม Truth Table

รูปที่ 6 BCD input Output D_3 D_2 D D_0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0

2) 7-Segment ใน Logisim

เป็นอุปกรณ์แสดงผลที่ใช้ LED วางเรียงต่อ 7 ดวง (อีกดวงเป็น จุด .)

รูปที่ 7 7-Segment ใน Logisim กับ LED ของจริงซึ่งในการต่อวงจรจริงต้องต่อ Ground ที่ต่อฟวงกันทุกดวงของ LED ทั้ง 7 ดวงเข้าด้วยกัน ใน logisim จะเป็น 7-segment แบบ common cathode

3.1 การทดลอง ออกแบบวงจร decode แสดงผลระดับความเร็วรถจักรยาน

ชื่อ-นามสกุล: วรรธนัย สาธุพันธ์ เลขประจำตัว: 6010500117

อุปกรณ์ที่ต้องใช้ โปรแกรม logicism ไม่ต้องต่อบอร์ดทดลองจริง ทฤษฎีที่ต้องเข้าใจ

การใช้ K-map กับกรณีลอจิก Don't care cells ใน K-map

การทดลอง

เมื่อนิสิตถูกกำหนดออกแบบวงจรแสดงผลความเร็วของรถจักรยานที่ใช้ปั่นตีน้ำให้ผสมอากาศเพื่อปรับปรุงคุณภาพน้ำ โดยที่ ล้อหลังของรถจักรยานมีเครื่องกำเนิดไฟฟ้ากระแสตรง(DC Generator) ติดตั้งอยู่ เครื่องกำหนดไฟฟ้านี้จะสร้างแรงดัน ไฟฟ้าสูงต่ำไปตามสัดส่วนความเร็วของการหมุนล้อรถจักรยาน โดยสัญญาแรงดันไฟฟ้าจะถูกแปลงจากสัญญาณแอนาลอกไป ดิจิทัล (Analog to Digital, AD) ผลิตเป็นข้อมูล 3 บิต BCD ซึ่งแทนระดับแรง (หรือความเร็วจักรยาน) ได้ 8 ระดับ (2³=8) เพื่อชวนเชิญเพื่อนิสิตมาออกกำลังกายและช่วยบำบัดน้ำเสีย อาจารย์ผู้ออกแบบจึงให้นิสิตช่วยพัฒนาดวงไฟแสดงถึงความเร็วใน การปั่นจักรยานเพิ่งเร่งให้ผู้ปั่นออกแรงมากทำรอบการหมุนให้เร็วขึ้น แต่ด้วยงบประมาณที่จำกัด อาจารย์ดูไฟมาได้แค่ 5 ดวง จึง กำหนดให้นิสิตออกแบบวงจรลอจิก ถอดรหัส BCD 3 บิต ควบคุมไฟให้สว่างสอดคล้องกับความเร็วล้อรถจักรยาน โดยสมมุตให้ ABC คือเลขฐาน 2 (A คือบิทที่ 2 สูงสุด และ C คือบิต ต่ำสุด) โดยเมื่อล้อไม่หมุน ABC=000 ดวงไฟจะไม่สว่าง และอีก 5 ค่า คือ 001 ถึง 101 ไฟสว่างเพิ่มขึ้นทีละดวงจากล่างขึ้นบนจนสว่างหมดตามรูป (001=ดวงล่างสว่าง, 010=ดวง 1 และ 2 สว่างม 011 = ดวง 1 2 และ 3 สว่าง เช่นไปเรื่อย) แต่ถ้าระดับความเร็วเกินจากนั้นไฟก็จะสว่างเพียงห้าดวง

รูปที่ แสดง การแสดงผลความเร็วรถจักรยาน

1) ให้นิสิตสร้างตาราง Truth Table

BCD (5 bits)					ดวงไฟระดับความเร็ว			
เลขฐานสิบ	A	В	C	L5	L4	L3	L2	L1
0	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	1
2	0	1	0	0	0	0	1	1
3	0	1	1	0	0	1	1	1
4	1	0	0	0	1	1	1	1
5	1	0	1	1	1	1	1	1
6	1	1	0(x)	1	1	1	1	1
7	1	1	1(x)	1	1	1	1	1

2) ใช้ K-map หาสมการลอจิก ของดวงไฟแต่ละดวง

	\overline{BC}	$\overline{B}C$	BC	$B\overline{C}$
	00	01	11	10
$\overline{A}(0)$	0	1	1	1
A(1)	1	1	1	1
L1= AB'	+ B'(C + B =	= A+B	+C

	\overline{BC}	$\overline{B}C$	BC	$B\overline{C}$			
	00	01	11	10			
$\overline{A}(0)$	0	0	1	1			
A(1)	1	1	1	1			
L2=A+A'B							

	\overline{BC}	$\overline{B}C$	BC	$B\overline{C}$				
	00	01	11	10				
$\overline{A}(0)$	0	0	1	0				
A(1)	1	1	1	1				
L3= A +	L3 = A + BC							

	\overline{BC}	$\overline{B}C$	BC	$B\overline{C}$
	00	01	11	10
$\overline{A}(0)$	0	0	0	0
A(1)	1	1	1	1
L4= A				

		$\overline{B}C$	BC	$B\overline{C}$			
	00	01	11	10			
$\overline{A}(0)$	0	0	0	0			
A(1)	0	1	1	1			
L5= AC	L5 = AC + AB = A(B+C)						

ในช่อง K-map ค่าที่เป็น Don't care นิสิตสามารถใช้เป็น 0 หรือ 1 ก็ได้ เพื่อจัดกลุ่มให้ใหญ่ขึ้น 3) นำสมการลอจิกที่มาสร้างวงจรใน Logisim แล้วทำการจำลองการทำงาน

ภาพไดอะแกรมวงจร

4) จงใช้ IC ต่อวงจรวงจรที่ออกแบบ บนบอร์ดทดลอง NX-4i สอบการทำงาน ให้ตรงกับ Truth Table ที่ได้จาก การจำลอง

ภาพถ่ายวงจรบนบอร์ดทดลอง NX-4i สอบ

ชื่อ-นามสกุล: วรรธนัย สาธุพันธ์ เลขประจำตัว: 6010500117

3.2 การทดลอง ออกแบบวงจร decode แสดงผล 7-Segment ให้ แสดงตัวเลขฐาน 16 วัตถุประสงค์

1) เพื่อให้นิสิตเรียนรู้เข้าใจหลักการของ decoder

2) รู้จักใช้งาน 7 Segment ในโปรแกรม Logisim อุ**ปกรณ์ที่ต้องใช้** จำลองการทำงานบนโปรแกรม logicism ไม่ต้องต่อบอร์ด NX-4i การทดลอง

1) สร้าง Truth table decoder จาก ค่าเลขฐานสอง BCD จำนวน 4 bit ไปเป็นสัญญาควบคุมให้ 7 Segment ให้แสดงผลตัวเลขฐาน 16 (HEX) ตั้งแต่ 0 ถึง F

			= × 1, 11 teen c					
00000(0)	00001(1)	00010(2)	00011(3)	00100(4)	00101(5)	00110(6)	00111(7)	01000(8)
F G B C O DP	F G B C C O DP	F G B E D C O DP	F G B C O DP	F G B C O DP	F G B E D C O DP	F G B C O DP	F G B C O DP	F G B C O DP
01001(9)	01010(10	01011(11)	01100(12)	01101(13)	01110(14)	01111(15)	10000(16)	1xxxx
F G B C O DP	F G B C O DP	A B C O DP	F G B E D C O DP	F G B C O DP	A B C O DP	A B C C O DP		

ตาราง Truth Table โดย A คือบิทสูงสุดเลขฐาน 2 และ D คือบิทต่ำสุด

BCD (5 bits))	-	~**		Output LED สว่าง						
เลขฐานสิบ	A	В	C	D	a	b	c	d	e	f	g
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	1	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	1	0	1	1
10	1	0	1	0	1	1	1	0	1	1	1
11	1	0	1	1	0	0	1	1	1	1	1
12	1	1	0	0	1	0	0	1	1	1	0
13	1	1	0	1	0	1	1	1	1	0	1
14	1	1	1	0	1	0	0	1	1	1	1
15	1	1	1	1	1	0	0	0	1	1	1

2) นิสิตใช้ K-map หา สมการลอจิกที่ลดรูป ของแต่ละดวงไป LED กับ BCD

	\overline{CD}	$\overline{C}D$	CD	$C\overline{D}$			
	00	01	11	10			
\overline{AB}	1	0	1	1			
(00)							
$\overline{\overline{A}}B$	0	1	1	1			
(01)							
AB	1	0	1	1			
(11)							
$A\overline{B}$	1	1	0	1			
(10)							
a= B'D' + A'C + BC + AD' +							
A'BD +	AB'C'						

			a 5			
	CD	CD	CD	CD		
	00	01	11	10		
\overline{AB}	1	1	1	1		
(00)						
$\overline{A}B$	1	0	1	0		
(01)						
AB	0	1	0	0		
(11)						
$A\overline{B}$	1	1	0	1		
(10)						
b= A'B' + B'D' + A'C'D' +						
AC'D +	A'CD					

	\overline{CD}	$\overline{C}D$	CD	$C\overline{D}$
	00	01	11	10
\overline{AB}	1	1	1	0
(00)				
$\overline{A}B$ (01)	1	1	1	1
<i>AB</i> (11)	0	1	0	0
\overline{AB} (10)	1	1	1	1
c= C'D +	A'B+	- AB' -	A'C'	+
A'D				

	\overline{CD}	\overline{CD}	CD	$C\overline{D}$		
	00	01	11	10		
\overline{AB}	1	0	1	1		
(00)						
$\overline{A}B$	0	1	0	1		
(01)						
AB	1	1	0	1		
(11)						
$A\overline{B}$	1	1	1	0		
(10)						
d = A'B'D' + AC' + B'CD +						
BC'D + BCD'						

	\overline{CD}	$\overline{C}D$	CD	$C\overline{D}$			
	00	01	11	10			
\overline{AB}	1	0	0	1			
(00)							
$\overline{A}B$	0	0	0	1			
(01)							
AB	1	1	1	1			
(11)							
$A\overline{B}$	1	0	1	1			
(10)							
e=B'D'+CD'+AB+AC+							
$\Lambda D' = (R' + C)D' + \Lambda (R + C + D')$							

	\overline{CD}	$\overline{C}D$	CD	$C\overline{D}$		
	00	01	11	10		
\overline{AB}	1	0	0	0		
(00)						
$\overline{\overline{A}}B$	1	1	0	1		
(01)						
AB	1	0	1	1		
(11)						
$A\overline{B}$	1	1	1	1		
(10)						
f= C'D' + AB' + AC + BD' +						
A'BC' = (B+C')D' + A(B'+C) +						
A'BC'						

	\overline{CD}	\overline{CD}	CD	$C\overline{D}$
	00	01	11	10
\overline{AB}	0	0	1	1
(00)				
$\overline{A}B$	1	1	0	1
(01)				
AB	0	1	1	1
(11)				
$A\overline{B}$	1	1	1	1
(10)				
AD?	CD?	D'C	i A.D.	1

3) นำสมการลอจิกที่มาสร้างวงจรใน Logisim แล้วทำการจำลองการทำงาน

3.3 การทดลอง ออกแบบวงจร decode แสดงผล 7-Segment ให้ แสดงชื่อย่อ ภาควิชา CPE อุปกรณ์ที่ต้องใช้ โปรแกรม logicism ไม่ต้องต่อบอร์ดทดลองจริง ทฤษฎีที่ต้องเข้าใจ

Subcircuit เรียนรู้จาก https://www.youtube.com/watch?v=kclyq2fiXtl การทดลอง

สร้างงาร decoder ค่าเลขฐานสอง BCD จำนวนบิตแล้วแต่นิสิตกำหนด ไปเป็นสัญญาควบคุม on/off ของไป แต่ละดวงในโครงสร้างของ 7-Segment 3 ตัว ให้แสดงผลอักขระ C P E

1) นิสิตจงสร้าง Truth table เพื่อถอดรหัส BCD เป็นสัญญาณลอจิกควบคุมไฟ LED แต่ดวงให้สว่างแสดงผลเป็นตัวเลข และอักชระตาม C P E ตามแต่จะกำหนดอินพต

Truth Table

BCD			Output ให้ดวงไฟสว่าง						
A	В	C	a	b	c	d	e	f	gg
X	0	0	0	0	0	0	0	0	0
X	0	1	1	0	0	1	1	1	0
X	1	0	1	1	0	0	1	1	1
X	1	1	1	0	0	1	1	1	1

a = B+C

b = BC'

c = 0

d = C

e = B+C

f = B + C

g = B

2) สร้างวงจรแสดงผลชื่ออักขระC P หรือ E บนตัวแสดงผล 7- Segment แล้วนำไปสร้างเป็น subcircuit

ภาพไดอะแกรมวงจร

3) ให้นำ 7- Segment 3 ตัว วางเรียงต่อกัน แล้วใช้วงจรในข้อ (2) ที่เป็น subcircuit 3 ชุดมาควบคุม 7-Segment 3 ตัวแสดงผลเป็น CPE ตามลำดับ จำลองการทำงาน

ชื่อ-นามสกุล: วรรธนัย สาธุพันธ์ เลขประจำตัว: 6010500117 ภาพไดอะแกรมวงจร