Le successioni

- 1. Se $\{a_n\}_{n\in\mathbb{N}}$ è una successione tale che $\lim_{n\to+\infty}a_n=+\infty$, tra i seguenti enunciati si indichino quelli sicuramente veri.
 - $\sqrt{\text{ Per ogni } M \in \mathbb{R}, \ a_n \geq M \text{ definitivamente}}$
 - \square Per ogni $n \in \mathbb{N}$ si ha $a_n < 0$
 - $\sqrt{a_n} > 0$ definitivamente
 - $\square \{a_n\}_{n\in\mathbb{N}}$ è limitata
- 2. Si dica quali tra le seguenti implicazioni risultano vere.
 - \square Se $a_n \to 3$ allora $a_n > 3$ definitivamente
 - $\sqrt{\text{Se } a_n} \rightarrow 3 \text{ allora } a_n > 0 \text{ definitivamente}$
 - $\sqrt{\text{Se } a_n} \rightarrow 3 \text{ allora } a_n \geq 2 \text{ definitivamente}$
 - $\sqrt{\text{Se } a_n} \rightarrow 3 \text{ allora } a_n \leq 4 \text{ definitivamente}$
- 3. Se $\{a_n\}_{n\in\mathbb{N}}$ è una successione tale che $\lim_{n\to+\infty}a_n=-1$, tra i seguenti enunciati si indichino quelli sicuramente veri.
 - \square Per ogni $n \in \mathbb{N}$, $a_n > -1$
 - $\sqrt{\text{ Per ogni }\epsilon} > 0, |a_n + 1| \le \epsilon \text{ definitivamente}$
 - $\sqrt{a_n} < 0$ definitivamente
 - $\sqrt{\{a_n\}_{n\in\mathbb{N}}}$ è limitata
- 4. Siano $\{a_n\}_{n\in\mathbb{N}}$, $\{b_n\}_{n\in\mathbb{N}}$, $\{c_n\}_{n\in\mathbb{N}}$ tre successioni tali che

$$\lim_{n\to+\infty}a_n=-1\qquad\lim_{n\to+\infty}c_n=1\qquad a_n\leq b_n\leq c_n \text{ per ogni }n\in\mathbb{N}.$$

Tra i seguenti enunciati si indichino quelli sicuramente veri.

- $\sqrt{\{b_n\}_{n\in\mathbb{N}}}$ è limitata
- \square $\{b_n\}_{n\in\mathbb{N}}$ è convergente
- $\sqrt{\text{Se }\{b_n\}_{n\in\mathbb{N}}}$ converge a b allora $-1\leq b\leq 1$
- $\square \{b_n\}_{n\in\mathbb{N}}$ converge a 0
- 5. Si indichi quali tra le seguenti proprietà sono sicuramente verificate da una successione $\{a_n\}_{n\in\mathbb{N}}$ strettamente crescente
 - \square Per ogni $n \in \mathbb{N}$ si ha $a_{n+1} \leq a_n$
 - \square Per ogni $n \in \mathbb{N}$ si ha $a_n \leq a_n + 1$
 - $\sqrt{\text{ Per ogni } n \in \mathbb{N} \text{ si ha } a_n \leq a_{n+1}}$
 - $\sqrt{\ }$ Per ogni $n\in\mathbb{N}$ si ha $a_n< a_{n+1}$

6.	Si indichi quali tra le seguenti proprietà sicuramente verificate da una successione $\{a_n\}_{n\in\mathbb{N}}$ decrescente
	\square Per ogni $n \in \mathbb{N}$ si ha $a_{n+1} > a_n$
	\square Per ogni $n \in \mathbb{N}$ si ha $a_n < a_{n+1}$
	\square Per ogni $n \in \mathbb{N}$ si ha $a_n < a_n + 1$
	$\sqrt{\ }$ Per ogni $n\in \mathbb{N}$ si ha $a_n\leq a_{n+1}$
7.	Tra i seguenti enunciati si indichino quelli veri.
	$\sqrt{}$ Ogni successione monotona non è irregolare
	☐ Ogni successione limitata è convergente
	☐ Ogni successione infinitesima è definitivamente positiva
	$\sqrt{}$ Ogni successione divergente positivamente è definitivamente positiva
8.	Se esiste (in caso contrario spiegare perché non ne esiste nessuna), determinare una successione $\{a_n\}_{n\in\mathbb{N}}$ che verifica la proprietà indicata.
	(a) a_n è crescente e limitata $\underline{a_n} = \operatorname{arctg} n$
	(b) a_n è decrescente e non limitata $\underline{a_n = -n}$
	(c) a_n è crescente, limitata e non convergente <u>non esiste</u>
	(d) a_n è crescente, convergente e non limitata <u>non esiste</u>
	(e) a_n è limitata, convergente e non monotona $\underline{a_n} = (-1)^n/n$
	(f) a_n è limitata, non convergente e non monotona $\underline{a_n = (-1)^n}$
9.	Esibire due successioni $a_n \to +\infty$ e $b_n \to -\infty$ che verifichino la proprietà indicata.
	(a) $a_n + b_n$ è convergente $a_n = n$, $b_n = -n + 1$
	(b) $a_n + b_n$ è divergente $a + \infty$ $a_n = n^2$, $b_n = -n$
	(c) $a_n + b_n$ è divergente a $-\infty$ $\underline{a_n = n, b_n = -n^2}$
	(d) $a_n + b_n$ è irregolare $\underline{a_n = n + (-1)^n}$, $b_n = -n$
10.	Tra i seguenti enunciati si indichino quelli veri.
	$\sqrt{}$ Ogni successione crescente e limitata superiormente è convergente
	\square Ogni successione divergente a $+\infty$ è crescente
	\square Ogni successione divergente a $-\infty$ è decrescente
	$\sqrt{}$ Ogni successione decrescente e limitata inferiormente è convergente