Herbst 15 Themennummer 2 Aufgabe 5 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Auf dem Gebiet

$$\Omega := \{ z \in \mathbb{C} : |\text{Re } z| < \pi \}$$

betrachten wir die meromorphe Funktion

$$f(z) := \frac{1}{(z + \frac{\pi}{2}) \cdot \cos z}.$$

- a) Bestimmen Sie alle Singularitäten von f in Ω und geben Sie jeweils den Typ an.
- b) Berechnen Sie die Residuen von f in allen Polstellen.
- c) Hat die Funktion f eine Stammfunktion?
- d) Bestimmen Sie $c \in \mathbb{C}$, so dass die Funktion $f(z) + c \frac{1}{z \frac{\pi}{2}}$ auf Ω eine Stammfunktion besitzt

Begründen Sie jeweils alle Antworten auf die Teilaufgaben.

Lösungsvorschlag:

a) Die Singularitäten von f sind genau die Nullstellen des Nenners. Weil der Zähler keine Nullstelle hat, ist jede Singularität ein Pol, dessen Ordnung mit der Vielfachheit der Nullstelle übereinstimmt. Mit $\cos(x+iy) = \cos x \cosh y - i \sin x \sinh y$ folgt

$$\cos(x+iy) = 0 \iff \cos x = 0, \sinh y = 0 \iff x \in \frac{\pi}{2} + \pi \mathbb{Z}, y = 0.$$

Dabei wurde verwendet, dass $x+iy=0 \iff x=0=y$, der Kosinus Hyperbolicus keine reelle Nullstelle besitzt, weshalb $\cos x=0$ sein muss und damit $\sin x=\pm 1$ und, dass 0 die einzige reelle Nullstelle des Sinus Hyperbolicus ist.

Demnach sind die Nullstellen gerade die (reellen) Zahlen $z_k = \frac{\pi}{2} + k\pi$ für $k \in \mathbb{Z}$. Für k = -1 ist die Nullstelle sogar doppelt, da $z + \frac{\pi}{2} = 0 \iff z = -\frac{\pi}{2} = z_{-1}$, sonst sind die Nullstellen einfach. Die einzigen Nullstellen in Ω sind $z_{\pm} = \pm \frac{\pi}{2}, z_{+}$ ist ein Pol erster Ordnung und z_{-} ein Pol zweiter Ordnung.

b) Wir nutzen die Formel $\operatorname{Res}_{\frac{g}{h}}(z_0) = \frac{g(z_0)}{h'(z_0)}$ für $g,h:B_{\varepsilon}(z_0)\backslash\{z_0\}\to\mathbb{C}$ holomorph mit $g(z_0)\neq 0\neq h'(z_0), h(z_0)=0$. Für z_+ ist dann $\operatorname{Res}_f(z_+)=\frac{1}{\cos(z_+)-2z_+\sin(z_+)}=-\frac{1}{\pi}$. Für z_- berechnen wir das Residuum mit der Formel $\operatorname{Res}_f(z_0)=\lim_{z\to z_0}((z-z_0)^2f(z))'$. Es gilt mit der Quotientenregel dann $\operatorname{Res}_f(z_-)=\lim_{z\to z_-}\frac{\cos(z)+(z-z_-)\sin(z)}{\cos(z)^2}$, Zähler und Nenner sind holomorph auf $B_1(z_-)$ und haben eine doppelte Nullstelle bei z_- , wir können also den Limes mit l'Hospital ausrechnen (oder um z_- entwickeln, den Term $(z-z_-)^2$ ausklammern und kürzen, mit demselben Ergebnis). Es gilt daher $\operatorname{Res}_f(z_-)=\lim_{z\to z_-}\frac{(\cos(z)+(z-z_-)\sin(z))^{(2)}}{(\cos(z)^2)^{(2)}}=\lim_{z\to z_-}\frac{-(z-z_-)\sin(z)+\cos(z)}{2\cos(z)^2-2\sin(z)^2}=\frac{0}{-2}=0$, wobei im vorletzten Schritt die Stetigkeit der auftretenden Funktionen genutzt wurde.

- c) Nein, f besitzt keine Stammfunktion, sonst würde nämlich das Integral über jeden geschlossenen Weg verschwinden. Mit dem Residuensatz erhalten wir aber für den Weg $\gamma:[0,2\pi], t\mapsto z_++\frac{1}{2}e^{it}$, der sich einmal positiv um z_+ und sonst um keine Singularitäten windet, dass $\int_{\gamma} f(z) \, \mathrm{d}z = -2i$. Dabei durfte der Residuensatz angewendet werden, weil f auf der konvexen, offenen Menge $B_1(z_+)$ nur die Singularität z_+ besitzt und sonst holomorph ist und der Weg γ glatt und geschlossen ist, völlig in $B_1(z_+)$ verläuft, aber z_+ nicht auf der Spur liegt.
- d) Wir wählen $c=\frac{1}{\pi}$, dann gilt $\operatorname{Res}_{\frac{c}{z-\frac{\pi}{2}}}(z_+)=\lim_{z\to z_+}c=\frac{1}{\pi}$ und folglich gilt (wegen $\operatorname{Res}_{f+g}(z_0)=\operatorname{Res}_f(z_0)+\operatorname{Res}_g(z_0)$), dass die Funktion $f(z)+c\frac{1}{z-\frac{\pi}{2}}$ holomorph auf der offenen, konvexen Menge Ω ist mit Ausnahme der beiden Singularitäten z_\pm . Die Residuen beider Singularitäten sind 0 und nach dem Residuensatz verschwindet das Pfadintegral über jeden geschlossenen, stückweise stetig differenzierbaren Weg in $\Omega\setminus\{z_+,z_-\}$. Dies ist äquivalent zur Existenz einer Stammfunktion.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$