MACHINE LEARNING GT VEILLE OSMP - SCORING ET IA POUR LA LUTTE CONTRE LA FRAUDE

Théo Lopès-Quintas

BPCE Payment Services

24 avril 2024

2	Princi	paux algorithmes
	2.12.22.3	Régression logistique
3	Quels	challenges dans la lutte contre la fraude?
	3.1 3.2	Déséquilibre de classe .
4	Anne	xe : SMOTE

1	Introduction
2	Principaux algorithmes
	2.1Régression logistique2.2Arbre de décision2.3Boosting
3	Quels challenges dans la lutte contre la fraude? 12 3.1 Déséquilibre de classe 15
	3.2 Drifts : changements de distributions
4	Annexe: SMOTE1
5	Annexe : Fléau de la dimension

UN PEU D'HISTOIRE

Nous ne pouvons qu'avoir un aperçu du futur, mais cela suffit pour comprendre qu'il y a beaucoup à faire.

— Alan Turing (1950)

- Conférence de Dartmouth 1956 : Début des travaux dans l'objectif de créer des machines intelligentes
- ► Scikit-Learn 2007 : Création d'une librairie open-source pour faciliter la modélisation en Machine Learning
- ► AlexNet 2012 : avènement du Deep Learning avec un modèle de classification d'image révolutionnaire dans la compétition ImageNet

QU'EST-CE QUE l'Intelligence Artificielle?

- Algorithme : Ensemble hiérarchisé d'opérations logiques à exécuter dans le but de résoudre un problème ^a
- ► Intelligence artificielle : Ensemble d'algorithme résolvant des problèmes sans être explicitement programmé pour le faire
- ► Machine Learning : Sous-ensemble de l'IA où les algorithmes apprennent à partir d'une base de données
- ▶ Deep Learning : Sous-ensemble du ML où les algorithmes sont des variantes d'un algorithme de ML nommé réseau de neurones

a. Aurélie Jean, De l'autre côté de la Machine

FORMALISATION: DATASET

Pour chacun, on peut considérer plusieurs approches, entre autres :

- ▶ Supervisé : on cherche à reproduire une réponse à partir de données
- Non supervisé: on ne possède pas de réponse pré-définie, on peut vouloir réduire la dimension, regrouper les observations qui se ressemblent...
- ▶ **Par renforcement** : on apprend la meilleure action à réaliser dans un environnement sur lequel on agit, selon une politique fixée

Dans le cadre supervisé, nous avons accès à un dataset $\mathcal D$ défini comme :

 $\mathcal{D} = \left\{ (x_i, y_i) \mid \forall i \leqslant \underbrace{\mathbf{n}}_{}, \ x_i \in \mathbb{R}^{\underbrace{d'}_{}}, y_i \in \mathcal{Y} \right\}$ Nombre d'observations

Avec $\mathcal{Y} \subseteq \mathbb{R}$ pour un problème de régression et $\mathcal{Y} \subset \mathbb{N}$ dans le cadre d'une classification. Dans le cadre non supervisé nous n'avons pas de y.

Introduction

FORMALISATION: FONCTION DE PERTE

Les problèmes de Machine Learning supervisé peuvent souvent s'écrire sous la forme d'une optimisation d'une fonction de perte $\mathcal{L}: \mathbb{R}^d \times \mathcal{M}_{n,d'} \times \mathbb{R}^n \to \mathbb{R}_+$ comme :

Dans la suite, pour simplifier les notations, nous omettrons la dépendance de \mathcal{L} en X (matrice des informations) et y (vecteur réponse). Notons qu'en général, nous avons $d \neq d'$ et dans le cas du deep learning, très souvent d >> d'.

1	Introd	luction
2	Princi	paux algorithmes
	2.12.22.3	Régression logistique
3	3.1	challenges dans la lutte contre la fraude?
4	Anne	xe:SMOTE
5	Anne	xe : Fléau de la dimension

RÉGRESSION LOGISTIQUE

La régression logistique suppose un lien *linéaire* entre les features et la côte que l'observation soit de la classe d'intérêt. On modélise cela par la fonction f:

$$f(x) = \frac{1}{1 + e^{-(x_1w_1 + \dots + x_dw_d)}} = \frac{1}{1 + e^{-\langle x, w \rangle}}$$
 (Régression logistique)
$$f(x) \qquad \qquad w = (w_1, \dots, w_d) \in \mathbb{R}^d$$

$$1 \qquad \qquad 0.5$$

$$0.5$$
Figure $-f(x) = \frac{1}{1 + e^{-x}}$ et $f(x) = \frac{1}{1 + e^{-2x}}$

RÉGRESSION LOGISTIQUE

Pour apprendre $w \in \mathbb{R}^d$, on se propose la fonction de perte :

RÉGRESSION LOGISTIQUE : DESCENTE DE GRADIENT

La méthode la plus utilisée pour résoudre ce genre de problème est la descente de gradient :

$$w_{t+1} = w_t - \underbrace{\eta_t}_{\text{Learning rate}} \nabla \mathcal{L}(w_t)$$

Quand on travaille avec des grands datasets, le coût de calcul/temps est grand si l'on calcule $\nabla \mathcal{L}\left(w_{t}\right)$ pour la totalité de la base. On peut donc considérer d'autres approches :

- ► Stochastique (SGD) : on sélectionne au hasard une observation et on met à jour *w*
- ► Stochastique par batch : on sélectionne aléatoirement une partie de la base (batch) et on met à jour w à chaque batch

De nombreux travaux portent sur l'accélération de cette méthode et la caractérisation de la vitesse de convergence des différents schémas.

Figure – Exemple d'une descente de gradient pour $f(x) = x^2$

ARBRE DE DÉCISION

On cherche à présent une fonction sous la forme suivante, où l'on cherche les partitions *P* de l'espace :

Probabilité de la classe d'intérêt dans la partition P

$$f_{\theta}(x) = \sum_{\substack{P \in \theta \\ \uparrow}} \mathbb{1}_{\{x \in P\}}$$

 x_2 Séparation 3

Séparation 4

Séparation 2

Séparation 1

Figure – Exemple de partitionnement de l'espace

Figure – Arbre de décision associé au partitionnement

BOOSTING

Le principe du Boosting est de combiner plusieurs algorithmes les uns après les autres pour que chacun corrige les erreurs du précédent. Les fonctions h sont ce qu'on cherche à apprendre, et on prend très souvent des arbres. Les scalaires γ sont appris pendant l'entraînement

1	Introd	duction
2	Princi	ipaux algorithmes
	2.1 2.2 2.3	
3		s challenges dans la lutte contre la fraude?
	3.1	Déséquilibre de classe
4	Anne	xe : SMOTE
5	Anne	xe : Fléau de la dimension

Déséquilibre de classe : Sur-échantillonnage

Déséquilibre de classe : Sur-échantillonnage

Figure – Illustration du sur-échantillonnage
Machine Learning por la lutte contre la fraude - GT Veille OSMP

Déséquilibre de classe : Sur-échantillonnage

Figure – Illustration du sur-échantillonnage
Machine Learning pour la lutte contre la fraude - GT V

Déséquilibre de classe : Sur-échantillonnage

Figure – Illustration du sur-échantillonnage

Machine Learning pour la lutte contre l'fonction de la taille du dataset final en

Machine Learning pour la lutte contre l'fonction de la taille du dataset final en

Déséquilibre de classe : Sous-échantillonnage

Déséquilibre de classe : Sous-échantillonnage

Figure – Illustration du sous-échantillonnage
Machine Learning pour la lutte contre la fraude - GT Veille OSMP

Déséquilibre de classe : Sous-échantillonnage

Figure – Illustration du sous-échantillonnage Machine Learning pour la lutte contre la fraude - GT Veille OSMP

DÉSÉQUILIBRE DE CLASSE : SOUS-ÉCHANTILLONNAGE

Une deuxième méthode pour équilibrer le dataset est de supprimer aléatoirement des observations de la classe majoritaire, jusqu'à ce qu'on atteigne la proportion de la classe minoritaire voulue p_f .

Proportion de la classe minoritaire initiale Taille initiale du dataset (Under sampling) Taille finale du dataset p_f 1% 10% 0.5 Évolution de n_f (%) -80% (a) Situation initiale (b) Situation finale

Figure – Illustration du sous-échantillonnage

Machine Learning pour La Lutte contre Le fonction de la taille du dataset final en

Machine Learning pour La Lutte contre Le fonction de la taille du dataset final en

DRIFTS: CHANGEMENTS DE DISTRIBUTIONS

Le monde des paiements change, et les fraudeurs aussi. On peut noter deux manière principales dont les mouvements se font :

- ► Covariate shift : La distribution des features change
- ▶ Concept drift : La relation entre la cible et les features change

Figure – Covariate shift : changement de distribution d'une feature

Figure – Concept drift : changement de relation entre x et y

EN RÉSUMÉ

- ► L'hyper déséquilibre de classe induit des difficultés d'entraînement et nécessite des réponses mesurées
- Les drifts inhérent à l'activité de production accentuent le premier point et nécessite une création et un suivi minutieux des algorithmes
- ▶ Le fléau de la dimension peut survenir plus tôt que prévu, une réponse est de mettre l'accent sur le travail métier pour créer de la valeur

1	Introd	luction
2	Princi	ipaux algorithmes
	2.1	Régression logistique
	2.2	Arbre de décision
	2.3	Boosting
3	Quels	challenges dans la lutte contre la fraude?
	3.1	Déséquilibre de classe
	3.2	Drifts : changements de distributions
4	Anne	xe:SMOTE17
5	Anne	xe : Fléau de la dimension

FONCTIONNEMENT

Les deux précédentes approches dupliquent ou suppriment des observations du dataset. On peut explorer la possibilité de *créer* des observations synthétiques : c'est l'objet de SMOTE.

Figure – Fonctionnement de SMOTE

OBSERVATIONS SYNTHÉTIQUES AMBIGUËS

Soit \mathcal{D} un dataset comme défini dans l'introduction dont on reprend les notations, et \mathcal{D}^- le dataset contenant uniquement les observations de la classe majoritaire. On note $n^- = \#\mathcal{D}^-$.

Soit \widetilde{x} un point synthétique généré par l'algorithme SMOTE. On dit que \widetilde{x} est un **point ambigu** si $\min_{x \in \mathcal{D}^-} \|\widetilde{x} - x\| \le \delta$ pour $\delta \ge 0$ un paramètre fixé.

On peut montrer, sous l'hypothèse que $\mathcal{D} \sim \mathcal{N}(\mathbf{0}_d, I_d)$, que :

$$\mathbb{P}\left(\min_{x\in\mathcal{D}^{-}}\|\widetilde{x}-x\|\leqslant\delta\right)=1-\left(1-\int_{0}^{\frac{\delta^{2}}{2}}\frac{t^{\frac{d}{2}-1}e^{-\frac{t}{2}}}{2^{\frac{d}{2}}\Gamma\left(\frac{d}{2}\right)}\mathrm{d}t\right)^{n^{-}}$$

Ainsi, plus n^- est grand, plus la probabilité de créer des observations synthétiques ambiguës est importante. Il faut également noter que quand d tend vers l'infini, la probabilité tend vers 0: mais ce régime n'est pas souhaitable avec le fléau de la dimension.

OBSERVATIONS SYNTHÉTIQUES AMBIGUËS - OBSERVATION SUR UN DATASET RÉEL

Nous souhaitons appliquer cela à un dataset de 20 millions de lignes ayant 1% de déséquilibre.

Déséquilibre final (%)	Observation synthétique ambiguë (%)	Taille du dataset final (en millions)
1	0	20.000
2	39.29	20.204
5	62.86	20.842
10	70.72	22.000
20	74.65	24.750
30	75.96	28.285
40	76.61	33.000
50	77.01	39.600

Table – Évolution de la proportion d'observation synthétique ambiguë et de la taille du dataset final en fonction de la proportion de déséquilibre souhaité

Nous avons fixé la valeur de δ comme le quantile à 0.5% de la loi du χ^2 induite par le dataset.

ANNEXE: FLÉAU DE LA DIMENSION

1	Introd	luction
2	Princ	paux algorithmes
	2.1	Régression logistique
	2.2	Arbre de décision
	2.3	Boosting
3	Quels	challenges dans la lutte contre la fraude?
	3.1	Déséquilibre de classe
	3.2	Drifts : changements de distributions
4	Anne	xe:SMOTE17
5	Anne	xe : Fléau de la dimension

Annexe: Fléau de la dimension

VOLUME D'UNE HYPERSPHÈRE

Figure – Représentation et volume d'une hypersphère de rayon 1 dans 3 espaces de dimensions différentes

Figure – Représentation d'une hypersphère de rayon 1 en dimension 2 pour 3 normes différentes

ANNEXE: FLÉAU DE LA DIMENSION

VOLUME D'UNE HYPERSPHÈRE

On appelle boule ou hypersphère l'objet défini par :

$$B_n^p(R) = \{ u \in \mathbb{R}^n, ||u||_p^p \leqslant R^p \}$$

Et son volume par :

$$V_n^p(R) = \int_{B_n^p(R)} \bigotimes_{i=1}^n \mathrm{d}x_i$$

Proposition 1 (Volume d'une hypersphere)

Avec les notations précédentes, on a :

$$\forall R > 0, \forall n \geqslant 2, \forall p \geqslant 1, \quad V_n^p(R) = \frac{\left(2R\Gamma\left(\frac{1}{p}+1\right)\right)^n}{\Gamma\left(\frac{n}{p}+1\right)}$$

$$\sim \sqrt{\frac{p}{2\pi n}} \left[2R\Gamma\left(\frac{1}{p}+1\right)\left(\frac{pe}{n}\right)^{\frac{1}{p}}\right]^n$$

Avec la fonction Γ définie comme :

$$\Gamma(x) = \int_{0}^{+\infty} e^{-t} t^{x-1} dt$$

ANNEXE: FLÉAU DE LA DIMENSION

CONCENTRATION DANS UNE HYPERSPHÈRE

On rappelle que:

$$\forall R > 0, \forall n \geqslant 2, \forall p \geqslant 1, \quad V_n^p(R) = \frac{\left(2R\Gamma\left(\frac{1}{p}+1\right)\right)^n}{\Gamma\left(\frac{n}{p}+1\right)}$$

Exercice 1 (Concentration dans l'hypersphère)

Soit $\varepsilon > 0$. *On considère une hypersphère de rayon R. Montrer que :*

$$\frac{V_n^p(R-\varepsilon)}{V_n^p(R)} = \left(1 - \frac{\varepsilon}{R}\right)^n$$