FedALA: Adaptive Local Aggregation for Personalized Federated Learning

Jianqing Zhang¹ Ya

Yang Hua²

Hao Wang³

Tao Song¹

Zhengui Xue¹

Ruhui Ma¹

Haibing Guan¹

Federated Learning (FL)

• Protect privacy without uploading local data to the central server

Federated Learning (FL)

• Learn an **AI model** among clients by sharing models with the server.

Federated Learning (FL)

• Learn an **AI model** among clients by sharing models with the server.

Issues in Federated Learning

• Statistical heterogeneity, such as non-IID and unbalanced data (colorful)

Issues in Federated Learning

• Poor generalization ability (blurred) of the single global model on each client

Personalized Federated Learning (pFL)

- Tackle the **statistical heterogeneity** issue
- Achieve **personalized requirements**

Personalized Federated Learning (pFL)

- Tackle the statistical heterogeneity issue
- Achieve personalized requirements

- Original workflow in FL
 - Overwrite local model with the entire global model for local initialization in each iteration

- Original workflow in FL
 - However, only the desired information that improves the quality of the local model is beneficial for the client

- Original workflow in FL
 - Both the desired and undesired information exist in the global model, resulting in poor generalization ability

- Original workflow in FL
 - Both the desired and undesired information exist in the global model, resulting in poor generalization ability

- Original workflow in FL
 - Both the desired and undesired information exist in the global model, resulting in poor generalization ability

• ALA: adaptively aggregate the global model and local model for initialization

Workflow on the client in one iteration

- ALA: adaptively aggregate the global model and local model for initialization
- Train: train the local model on the local data

Workflow on the client in one iteration

• Learning trajectory on one client: FedAvg vs. FedALA

- Learning trajectory on one client: FedAvg vs. FedALA
- <u>Deactivate</u> **ALA** for **FedALA** in early iterations

- Learning trajectory on one client: FedAvg vs. FedALA
- Activate **ALA** in the subsequent iterations

- Learning trajectory on one client: FedAvg vs. FedALA
- Activate ALA in the subsequent iterations

- ALA: adaptively aggregate the global model and local model for initialization
- Train: train the local model based on the initialized local model

Workflow on the client in one iteration

$$\hat{\Theta}_i^t := \Theta_i^{t-1} \odot W_{i,1} + \Theta^{t-1} \odot W_{i,2},$$
s.t. $w_1^q + w_2^q = 1, \forall \text{ valid } q$

$$\hat{\Theta}_i^t:=\Theta_i^{t-1}\odot W_{i,1}+\Theta^{t-1}\odot W_{i,2},$$
 Trainable weights $s.t.$ $w_1^q+w_2^q=1, orall$ valid q

Element-wisely aggregate the global model and local model in an adaptive way

remove constraints

Element-wisely aggregate the global model and local model in an adaptive way

- remove constraints
- with weight clipping[1]

ALA covers the entire model

How to reduce computation overhead?

$$\sigma(w) = \max(0, \min(1, w))$$
$$w \in [0, 1], \forall w \in W_i$$

• The lower layers in the DNN learn more general information than the higher layers[2]

The lower layers in the DNN learn more general information than the higher layers[2]

• Only apply ALA on p higher layers ullet $\hat{\Theta}_i^t := \Theta_i^{t-1} + (\Theta^{t-1} - \Theta_i^{t-1}) \odot [\mathbf{1}^{|\Theta_i|-p}; W_i^p]$

• The lower layers in the DNN learn more general information than the higher layers[2]

- Only apply ALA on p higher layers
- Still overwrite the lower layers with global parameters

$$\hat{\Theta}_i^t := \Theta_i^{t-1} + (\Theta^{t-1} - \Theta_i^{t-1}) \odot [\mathbf{1}^{|\Theta_i| - p}; W_i^p]$$

The lower layers in the DNN learn more general information than the higher layers[2]

- Only apply ALA on p higher layers
- Still overwrite the lower layers with global parameters

$$\hat{\Theta}_i^t := \Theta_i^{t-1} + (\Theta^{t-1} - \Theta_i^{t-1}) \odot [\mathbf{1}^{|\Theta_i| - p}; W_i^p]$$

Fewer weights to train in ALA

Less computation overhead

- Only apply ALA on p higher layers ◄
- Still overwrite the lower layers with global parameters

$$\hat{\Theta}_i^t := \Theta_i^{t-1} + (\Theta^{t-1} - \Theta_i^{t-1}) \odot [\mathbf{1}^{|\Theta_i| - p}; W_i^p]$$

Local aggregation (LA)

- Only apply ALA on p higher layers ◄
- Still overwrite the lower layers with global parameters

$$\hat{\Theta}_i^t := \Theta_i^{t-1} + (\Theta^{t-1} - \Theta_i^{t-1}) \odot [\mathbf{1}^{|\Theta_i| - p}; W_i^p]$$

Local aggregation (LA)

• Train weights to reduce local loss $\mathcal{L}(\hat{\Theta}_i^t, D_i; \Theta^{t-1})$ to find client desired information

$$W_i^p \leftarrow W_i^p - \eta \nabla_{W_i^p} \mathcal{L}(\hat{\Theta}_i^t, D_i^t; \Theta^{t-1})$$

• Train weights to reduce local loss $\mathcal{L}(\hat{\Theta}_i^t, D_i; \Theta^{t-1})$ to find client desired information

$$W_i^p \leftarrow W_i^p - \eta \nabla_{W_i^p} \mathcal{L}(\hat{\Theta}_i^t, D_i^t; \Theta^{t-1})$$

How to further reduce computation overhead?

• Train weights to reduce local loss $\mathcal{L}(\hat{\Theta}_i^t, D_i; \Theta^{t-1})$ to find client desired information

$$W_i^p \leftarrow W_i^p - \eta \nabla_{W_i^p} \mathcal{L}(\hat{\Theta}_i^t, D_i^t; \Theta^{t-1})$$

How to further reduce computation overhead?

• Randomly sample s% data from local dataset D_i^t to form a sub-dataset $D_i^{s,t}$

$$W_i^p \leftarrow W_i^p - \eta \nabla_{W_i^p} \mathcal{L}(\hat{\Theta}_i^t, D_i^{s,t}; \Theta^{t-1})$$

• Train weights to reduce local loss $\mathcal{L}(\hat{\Theta}_i^t, D_i; \Theta^{t-1})$ to find client desired information

$$W_i^p \leftarrow W_i^p - \eta \nabla_{W_i^p} \mathcal{L}(\hat{\Theta}_i^t, D_i^t; \Theta^{t-1})$$

How to further reduce computation overhead?

• Randomly sample s% data from local dataset D_i^t to form a sub-dataset $D_i^{s,t}$

$$W_i^p \leftarrow W_i^p - \eta \nabla_{W_i^p} \mathcal{L}(\hat{\Theta}_i^t, \underline{D_i^{s,t}}; \Theta^{t-1})$$

Covers all the data when t accumulates from 1 to T

• Randomly sample s% data from local dataset D_i^t to form a sub-dataset $D_i^{s,t}$

$$W_i^p \leftarrow W_i^p - \eta \nabla_{W_i^p} \mathcal{L}(\hat{\Theta}_i^t, D_i^{s,t}; \Theta^{t-1})$$

Adaptive local aggregation (ALA)

• Finally, obtain the initialized local model with new weights

$$\hat{\Theta}_{i}^{t} := \Theta_{i}^{t-1} + (\Theta^{t-1} - \Theta_{i}^{t-1}) \odot [\mathbf{1}^{|\Theta_{i}|-p}; W_{i}^{p}]$$

Local aggregation (LA)

FedALA: observations

$$W_i^p \leftarrow W_i^p - \eta \nabla_{W_i^p} \mathcal{L}(\hat{\Theta}_i^t, D_i^{s,t}; \Theta^{t-1})$$

Once we train the weights to converge in the first time,

The local loss on client #8 regarding weight learning epochs in ALA on MNIST and Cifar10.

FedALA: observations

$$W_i^p \leftarrow W_i^p - \eta \nabla_{W_i^p} \mathcal{L}(\hat{\Theta}_i^t, D_i^{s,t}; \Theta^{t-1})$$

• Once we train the weights to converge in the first time, the weights hardly change in the subsequent iterations

The local loss on client #8 regarding weight learning epochs in ALA on MNIST and Cifar10.

FedALA: observations

$$W_i^p \leftarrow W_i^p - \eta \nabla_{W_i^p} \mathcal{L}(\hat{\Theta}_i^t, D_i^{s,t}; \Theta^{t-1})$$

• The weights can be **reused** or just require few steps of fine-tuning for adaptation

The local loss on client #8 regarding weight learning epochs in ALA on MNIST and Cifar10.

```
Algorithm 1: FedALA
Input: N clients, \rho: client joining ratio, \mathcal{L}: loss function,
      \Theta^0: initial global model, \alpha: local learning rate, \eta: the
     learning rate in ALA, s\%: the percent of local data in
     ALA, p: the range of ALA, \sigma(\cdot): clip function.
Output: Reasonable local models \hat{\Theta}_1, \dots, \hat{\Theta}_N
 1: Server sends \Theta^0 to all clients to initialize local models.
 2: Clients initialize W_i^p, \forall i \in [N] to ones.
 3: for iteration t = 1, \dots, T do
           Server samples a subset \mathcal{I}^t of clients according to \rho.
           Server sends \Theta^{t-1} to |\mathcal{I}^t| clients.
 5:
          for Client i \in \mathcal{I}^t in parallel do
                Client i samples s\% of local data.
 7:
                                                                           \triangleright ALA

    Start stage

                if t=2 then
 8:
                      while W_i^p does not converge do
                           Client i trains W_i^p by Equation (5).
Client i clips W_i^p using \sigma(\cdot).
10:
11:
12:
                else if t > 2 then
                      Client i trains W_i^p by Equation (5).
13:
                      Client i clips W_i^p using \sigma(\cdot).
14:
                Client i obtains \hat{\Theta}_{i}^{t} by Equation (4).
15:
                Client i obtains \Theta_i^i by \triangleright Local model training
16:
                     \Theta_i^t \leftarrow \hat{\Theta}_i^t - \alpha \nabla_{\hat{\Theta}_i} \mathcal{L}(\hat{\Theta}_i^t, D_i; \Theta^{t-1}).
                Client i sends \Theta_i^t to the server. \triangleright Uploading
17:
           Server obtains \Theta^t by \Theta^t \leftarrow \sum_{i \in \mathcal{I}^t} \frac{k_i}{\sum_{i \in \mathcal{I}^t} k_i} \Theta_i^t.
18:
19: return \hat{\Theta}_1, \ldots, \hat{\Theta}_N
```

Only train weights to converge in the start stage

```
Algorithm 1: FedALA
```

17:

18:

19: **return** $\hat{\Theta}_1, \ldots, \hat{\Theta}_N$

Input: N clients, ρ : client joining ratio, \mathcal{L} : loss function, Θ^0 : initial global model, α : local learning rate, η : the learning rate in ALA, s%: the percent of local data in ALA, p: the range of ALA, $\sigma(\cdot)$: clip function.

```
Output: Reasonable local models \hat{\Theta}_1, \dots, \hat{\Theta}_N
 1: Server sends \Theta^0 to all clients to initialize local models.
 2: Clients initialize W_i^p, \forall i \in [N] to ones.
 3: for iteration t = 1, \dots, T do
           Server samples a subset \mathcal{I}^t of clients according to \rho.
           Server sends \Theta^{t-1} to |\mathcal{I}^t| clients.
  5:
           for Client i \in \mathcal{I}^t in parallel do
                Client i samples s\% of local data.
 7:
                                                                           \triangleright ALA
                if t=2 then
 8:

    Start stage

                      while W_i^p does not converge do
                           Client i trains W_i^p by Equation (5).
Client i clips W_i^p using \sigma(\cdot).
10:
11:
12:
                else if t > 2 then
                      Client i trains W_i^p by Equation (5).
13:
                      Client i clips W_i^p using \sigma(\cdot).
14:
                Client i obtains \hat{\Theta}_i^t by Equation (4).
15:
                Client i obtains \Theta_i^t by \triangleright Local model training
16:
                      \Theta_i^t \leftarrow \hat{\Theta}_i^t - \alpha \nabla_{\hat{\Theta}_i} \mathcal{L}(\hat{\Theta}_i^t, D_i; \Theta^{t-1}).
```

Client *i* sends Θ_i^t to the server. \triangleright **Uploading**

Server obtains Θ^t by $\Theta^t \leftarrow \sum_{i \in \mathcal{I}^t} \frac{k_i}{\sum_{i \in \mathcal{I}^t} k_i} \Theta_i^t$.

Fine-tune weights with only one step for adaptation

```
Algorithm 1: FedALA
Input: N clients, \rho: client joining ratio, \mathcal{L}: loss function,
      \Theta^0: initial global model, \alpha: local learning rate, \eta: the
     learning rate in ALA, s\%: the percent of local data in
     ALA, p: the range of ALA, \sigma(\cdot): clip function.
Output: Reasonable local models \hat{\Theta}_1, \dots, \hat{\Theta}_N
 1: Server sends \Theta^0 to all clients to initialize local models.
 2: Clients initialize W_i^p, \forall i \in [N] to ones.
 3: for iteration t = 1, \dots, T do
           Server samples a subset \mathcal{I}^t of clients according to \rho.
           Server sends \Theta^{t-1} to |\mathcal{I}^t| clients.
  5:
          for Client i \in \mathcal{I}^t in parallel do
                Client i samples s\% of local data.
 7:
                                                                          ▷ ALA
                if t=2 then

    Start stage

 8:
                     while W_i^p does not converge do
                          Client i trains W_i^p by Equation (5).
Client i clips W_i^p using \sigma(\cdot).
10:
11:
                else if t > 2 then
12:
                     Client i trains W_i^p by Equation (5).
13:
                     Client i clips W_i^p using \sigma(\cdot).
14:
                Client i obtains \hat{\Theta}_i^t by Equation (4).
15:
                Client i obtains \Theta_i^t by \triangleright Local model training
16:
                     \Theta_i^t \leftarrow \hat{\Theta}_i^t - \alpha \nabla_{\hat{\Theta}_i} \mathcal{L}(\hat{\Theta}_i^t, D_i; \Theta^{t-1}).
                Client i sends \Theta_i^t to the server. \triangleright Uploading
17:
           Server obtains \Theta^t by \Theta^t \leftarrow \sum_{i \in \mathcal{I}^t} \frac{k_i}{\sum_{i \in \mathcal{I}^t} k_i} \Theta_i^t.
18:
19: return \hat{\Theta}_1, \ldots, \hat{\Theta}_N
```

```
Algorithm 1: FedALA
```

Input: N clients, ρ : client joining ratio, \mathcal{L} : loss function, Θ^0 : initial global model, α : local learning rate, η : the learning rate in ALA, s%: the percent of local data in ALA, p: the range of ALA, $\sigma(\cdot)$: clip function.

```
Output: Reasonable local models \hat{\Theta}_1, \dots, \hat{\Theta}_N
```

- 1: Server sends Θ^0 to all clients to initialize local models.
- 2: Clients initialize $W_i^p, \forall i \in [N]$ to ones.
- 3: **for** iteration t = 1, ..., T **do**
- Server samples a subset \mathcal{I}^t of clients according to ρ .
- Server sends Θ^{t-1} to $|\mathcal{I}^t|$ clients. 5:
- for Client $i \in \mathcal{I}^t$ in parallel do
- Client i samples s% of local data. > ALA 7:
- if t=2 then Start stage
- while W_i^p does not converge do
- Client i trains W_i^p by Equation (5). Client i clips W_i^p using $\sigma(\cdot)$. 10:
- 11:
- 12: else if t > 2 then
- Client i trains W_i^p by Equation (5). 13:
- Client i clips W_i^p using $\sigma(\cdot)$. 14:
- Client *i* obtains $\hat{\Theta}_i^t$ by Equation (4). 15:
- Client i obtains Θ_i^t by \triangleright Local model training 16: $\Theta_i^t \leftarrow \hat{\Theta}_i^t - \alpha \nabla_{\hat{\Theta}_i} \mathcal{L}(\hat{\Theta}_i^t, D_i; \Theta^{t-1}).$
- Client *i* sends Θ_i^t to the server. \triangleright **Uploading** 17:
- Server obtains Θ^t by $\Theta^t \leftarrow \sum_{i \in \mathcal{I}^t} \frac{k_i}{\sum_{i \in \mathcal{I}^t} k_i} \Theta_i^t$. 18:
- 19: **return** $\hat{\Theta}_1, \ldots, \hat{\Theta}_N$

- * Capture desired information in global model without modifying other FL process
- * Reduce computation overhead with reused adaptive weights small *p* (applying ALA on *p* higher layers) small s (training weights with s% local data)

Reduce computation overhead with small p (applying ALA on p higher layers)

The test accuracy (%) and the number of trainable parameters (in millions) of FedALA on Tiny-ImageNet using ResNet-18 (s=80)

	p = 6	p = 5	p=4	p = 3	p=2	p = 1
Acc.	41.71	41.54	41.62	41.86	42.47	41.94
Param.	11.182	11.172	11.024	10.499	8.399	0.005

Accuracy hardly changes with different *p*

Reduce computation overhead with small p (applying ALA on p higher layers)

The test accuracy (%) and the number of trainable parameters (in millions) of FedALA on Tiny-ImageNet using ResNet-18 (s=80)

	p = 6	p = 5	p=4	p = 3	p=2	p = 1
Acc.	41.71	41.54	41.62	41.86	42.47	41.94
Param.	11.182	11.172	11.024	10.499	8.399	0.005

Accuracy hardly changes with different *p*

Parameter amount decreases greatly with small *p*

Reduce computation overhead with small p (applying ALA on p higher layers)

The test accuracy (%) and the number of trainable parameters (in millions) of FedALA on Tiny-ImageNet using ResNet-18 (s=80)

	p = 6	p = 5	p=4	p = 3	p=2	p=1
	41.71					
Param.	11.182	11.172	11.024	10.499	8.399	0.005

Accuracy hardly changes with different *p*

Parameter amount decreases greatly with small p

Set p = 1 to greatly reduce computation overhead

Reduce computation overhead with small s (training weights with s local data)

The test accuracy (%) of FedALA on Tiny-ImageNet using ResNet-18 (p=1)

s=5	s = 10	s = 20	s = 40	s = 60	s = 80	s = 100
Acc. 39.53	40.62	40.02	40.23	41.11	41.94	42.11

Accuracy decreases with smaller s

Reduce computation overhead with small s (training weights with s local data)

The test accuracy (%) of FedALA on Tiny-ImageNet using ResNet-18 (p=1)

Set s = 80 to reduce computation overhead

Reduce computation overhead with small s (training weights with s local data)

The test accuracy (%) of FedALA on Tiny-ImageNet using ResNet-18 (p=1)

s=5	s = 10	s = 20	s = 40	s = 60	s = 80	s = 100
	40.62					

Accuracy decreases with smaller s

Set s = 80 to reduce computation overhead

FedALA performs well with only 5% local data for ALA

• Two main equations (omitting *p*):

$$\hat{\Theta}_i^t := \Theta_i^{t-1} + (\Theta^{t-1} - \Theta_i^{t-1}) \odot W_i$$

$$W_i^p \leftarrow W_i^p - \eta \nabla_{W_i^p} \mathcal{L}(\hat{\Theta}_i^t, D_i^{s,t}; \Theta^{t-1})$$

Two main equations (omitting p):

$$\hat{\Theta}_i^t := \Theta_i^{t-1} + (\Theta^{t-1} - \Theta_i^{t-1}) \odot W_i$$

$$W_i^p \leftarrow W_i^p - \eta \nabla_{W_i^p} \mathcal{L}(\hat{\Theta}_i^t, D_i^{s,t}; \Theta^{t-1})$$

• Rewrite the **gradient term** as $\nabla_{W_i} \mathcal{L}_i^t = \eta(\Theta^{t-1} - \Theta_i^{t-1}) \odot \nabla_{\hat{\Theta}_i} \mathcal{L}_i^t$

Two main equations (omitting p):

$$\hat{\Theta}_i^t := \Theta_i^{t-1} + (\Theta^{t-1} - \Theta_i^{t-1}) \odot W_i$$

$$W_i^p \leftarrow W_i^p - \eta \nabla_{W_i^p} \mathcal{L}(\hat{\Theta}_i^t, D_i^{s,t}; \Theta^{t-1})$$

$$W_i^p \leftarrow W_i^p - \eta \nabla_{W_i^p} \mathcal{L}(\hat{\Theta}_i^t, D_i^{s,t}; \Theta^{t-1})$$

- Rewrite the gradient term as $\nabla_{W_i} \mathcal{L}_i^t = \eta(\Theta^{t-1} - \Theta_i^{t-1}) \odot \nabla_{\hat{\Theta}_i} \mathcal{L}_i^t$
- We view updating W_i as updating $\hat{\Theta}_i^t$

$$\hat{\Theta}_i^t \leftarrow \hat{\Theta}_i^t - \eta(\Theta^{t-1} - \Theta_i^{t-1}) \odot (\Theta^{t-1} - \Theta_i^{t-1}) \odot \nabla_{\hat{\Theta}_i} \mathcal{L}_i^t$$

Two main equations (omitting p):

$$\begin{split} \hat{\Theta}_i^t &:= \Theta_i^{t-1} + (\Theta^{t-1} - \Theta_i^{t-1}) \odot W_i \\ W_i^p \leftarrow W_i^p - \eta \nabla_{W_i^p} \mathcal{L}(\hat{\Theta}_i^t, D_i^{s,t}; \Theta^{t-1}) \end{split}$$
 Denote $\mathcal{L}(\hat{\Theta}_i^t, D_i^{s,t}; \Theta^{t-1})$ as \mathcal{L}_i^t

- Rewrite the gradient term as $\nabla_{W_i} \mathcal{L}_i^t = \eta(\Theta^{t-1} \Theta_i^{t-1}) \odot \nabla_{\hat{\Theta}_i} \mathcal{L}_i^t$
- We view updating W_i as updating $\hat{\Theta}_i^t$

FedALA: overview (recall)

- Learning trajectory on one client: FedAvg vs. FedALA
- Activate ALA in the subsequent iterations

FedALA: applicability of ALA module

• Applying **ALA** to other FL methods

FedALA: applicability of ALA module

- Applying ALA to other FL methods
 - only modifies the local initialization process

FedALA: applicability of ALA module

- Applying ALA to other FL methods
 - only modifies the local initialization process

The test accuracy (%) and improvement (%)

	Datasets	Tiny-Imag	eNet	Cifar100	
	Methods	Acc.	Imps.	Acc.	Imps.
Traditional FL	FedAvg+ALA FedProx+ALA	40.54±0.17 40.53±0.26	21.08 21.16	55.92±0.15 56.18±0.65	24.03 24.19
	Per-FedAvg+ALA	30.90±0.28	5.83	48.68±0.36	4.40
	FedRep+ALA	37.89 ± 0.31	0.62	53.02 ± 0.11	0.63
	pFedMe +ALA	27.30 ± 0.24	0.37	47.91 ± 0.21	0.57
Personalized FL	Ditto+ALA	40.75 ± 0.06	8.60	56.33 ± 0.07	3.46
	FedAMP+ALA	28.18 ± 0.20	0.19	48.03 ± 0.23	0.34
	FedPHP+ALA	40.16 ± 0.24	4.47	54.28 ± 0.21	3.76
	PartialFed+ALA	35.40 ± 0.02	0.14	48.99 ± 0.05	0.18

• FedALA requires **less computation** than most FL methods

	Compu	ıtation	Communication
	Total time	Time/iter.	Param./iter.
FedAvg	365 min	1.59 min	$2*\Sigma$
FedProx	325 min	1.99 min	$2*\Sigma$
FedAvg-C	607 min	24.28 min	$2*\Sigma$
FedProx-C	711 min	28.44 min	$2*\Sigma$
Per-FedAvg	121 min	3.56 min	$2*\Sigma$
FedRep	471 min	4.09 min	$2*\alpha_f*\Sigma$
pFedMe	1157 min	10.24 min	$2*\Sigma$
Ditto	318 min	11.78 min	$2 * \Sigma$
FedAMP	92 min	1.53 min	$2 * \Sigma$
FedPHP	264 min	4.06 min	$2 * \Sigma$
FedFomo	193 min	2.72 min	$(1+M)*\Sigma$
APPLE	132 min	2.93 min	$(1+M)*\Sigma$
PartialFed	693 min	2.13 min	$2*\dot{\Sigma}$
FedALA	7+116 min	1.93 min	$2 * \Sigma$

• Compared to FedAvg, FedALA does not introduce additional communication per iteration

	Compu	ıtation	Communication
	Total time	Time/iter.	Param./iter.
FedAvg	365 min	1.59 min	$2*\Sigma$
FedProx	325 min	1.99 min	$2 * \Sigma$
FedAvg-C	607 min	24.28 min	$2*\Sigma$
FedProx-C	711 min	28.44 min	$2*\Sigma$
Per-FedAvg	121 min	3.56 min	$2*\Sigma$
FedRep	471 min	4.09 min	$2 * \alpha_f * \Sigma$
pFedMe	1157 min	10.24 min	$2*\Sigma$
Ditto	318 min	11.78 min	$2*\Sigma$
FedAMP	92 min	1.53 min	$2 * \Sigma$
FedPHP	264 min	4.06 min	$2 * \Sigma$
FedFomo	193 min	2.72 min	$(1+M)*\Sigma$
APPLE	132 min	2.93 min	$(1+M)*\Sigma$
PartialFed	693 min	2.13 min	$2*\dot{\Sigma}$
FedALA	7+116 min	1.93 min	$2*\Sigma$

- Compared to FedAvg, FedALA does not introduce additional communication per iteration
 - but costs fewer iterations to converge

	Compu	ıtation	Communication
	Total time	Time/iter.	Param./iter.
FedAvg	365 min	1.59 min	$2*\Sigma$
FedProx	325 min	1.99 min	$2 * \Sigma$
FedAvg-C	607 min	24.28 min	$2*\Sigma$
FedProx-C	711 min	28.44 min	$2*\Sigma$
Per-FedAvg	121 min	3.56 min	$2*\Sigma$
FedRep	471 min	4.09 min	$2*\alpha_f*\Sigma$
pFedMe	1157 min	10.24 min	$2*\Sigma$
Ditto	318 min	11.78 min	$2 * \Sigma$
FedAMP	92 min	1.53 min	$2 * \Sigma$
FedPHP	264 min	4.06 min	$2 * \Sigma$
FedFomo	193 min	2.72 min	$(1+M)*\Sigma$
APPLE	132 min	2.93 min	$(1+M)*\Sigma$
PartialFed	693 min	2.13 min	$2*\dot{\Sigma}$
FedALA	7+116 min	1.93 min	$2 * \Sigma$

• Compared to FedFomo and APPLE, FedALA requires less communication per iteration

	Compu	ıtation	Communication
	Total time	Time/iter.	Param./iter.
FedAvg	365 min	1.59 min	$2*\Sigma$
FedProx	325 min	1.99 min	$2*\Sigma$
FedAvg-C	607 min	24.28 min	$2*\Sigma$
FedProx-C	711 min	28.44 min	$2 * \Sigma$
Per-FedAvg	121 min	3.56 min	$2*\Sigma$
FedRep	471 min	4.09 min	$2*\alpha_f*\Sigma$
pFedMe	1157 min	10.24 min	$2*\Sigma$
Ditto	318 min	11.78 min	$2 * \Sigma$
FedAMP	92 min	1.53 min	$2 * \Sigma$
FedPHP	264 min	4.06 min	$2 * \Sigma$
FedFomo	193 min	2.72 min	$(1+M)*\Sigma$
APPLE	132 min	2.93 min	$(1+M)*\Sigma$
PartialFed	693 min	2.13 min	$2*\Sigma$
FedALA	7+116 min	1.93 min	$2*\Sigma$

• FedALA outperforms **11** SOTA traditional FL and pFL methods

Settings	Pathologie	cal heterogened	ous setting		Practica	l heterogeneou	s setting	
Methods	MNIST	Cifar10	Cifar100	Cifar10	Cifar100	TINY	TINY*	AG News
FedAvg FedProx	97.93±0.05 98.01±0.09	55.09±0.83 55.06±0.75	25.98 ± 0.13 25.94 ± 0.16	59.16±0.47 59.21±0.40	31.89 ± 0.47 31.99 ± 0.41	19.46±0.20 19.37±0.22	19.45±0.13 19.27±0.23	79.57 ± 0.17 79.35 ± 0.23
FedAvg-C FedProx-C	99.79±0.00 99.80±0.04	92.13±0.03 92.12±0.03	66.17±0.03 66.07±0.08	90.34±0.01 90.33±0.01	51.80±0.02 51.84±0.07	30.67±0.08 30.77±0.13	36.94±0.10 38.78±0.52	95.89±0.25 96.10±0.22
Per-FedAvg FedRep pFedMe Ditto FedAMP FedPHP FedFomo APPLE PartialFed	99.63±0.02 99.77±0.03 99.75±0.02 99.81±0.00 99.76±0.02 99.73±0.00 99.83±0.00 99.75±0.01 99.86±0.01	89.63 ± 0.23 91.93 ± 0.14 90.11 ± 0.10 92.39 ± 0.06 90.79 ± 0.16 90.01 ± 0.00 91.85 ± 0.02 90.97 ± 0.05 89.60 ± 0.13	56.80 ± 0.26 67.56 ± 0.31 58.20 ± 0.14 67.23 ± 0.07 64.34 ± 0.37 63.09 ± 0.04 62.49 ± 0.22 65.80 ± 0.08 61.39 ± 0.12	$ \begin{vmatrix} 87.74 \pm 0.19 \\ 90.40 \pm 0.24 \\ 88.09 \pm 0.32 \\ 90.59 \pm 0.01 \\ 88.70 \pm 0.18 \\ 88.92 \pm 0.02 \\ 88.06 \pm 0.02 \\ 89.37 \pm 0.11 \\ 87.38 \pm 0.08 \end{vmatrix} $	44.28 ± 0.33 52.39 ± 0.35 47.34 ± 0.46 52.87 ± 0.64 47.69 ± 0.49 50.52 ± 0.16 45.39 ± 0.45 53.22 ± 0.20 48.81 ± 0.20	25.07 ± 0.07 37.27 ± 0.20 26.93 ± 0.19 32.15 ± 0.04 27.99 ± 0.11 35.69 ± 3.26 26.33 ± 0.22 35.04 ± 0.47 35.26 ± 0.18	21.81 ± 0.54 39.95 ± 0.61 33.44 ± 0.33 35.92 ± 0.43 29.11 ± 0.15 29.90 ± 0.51 26.84 ± 0.11 39.93 ± 0.52 37.50 ± 0.16	93.27 ± 0.25 96.28 ± 0.14 91.41 ± 0.22 95.45 ± 0.17 94.18 ± 0.09 94.38 ± 0.12 95.84 ± 0.15 95.63 ± 0.21 85.20 ± 0.16
FedALA	99.88±0.01	92.44±0.02	67.83±0.06	90.67±0.03	55.92±0.03	40.54±0.02	41.94±0.05	96.52±0.08

• FedALA outperforms **2** fine-tuning-based pFL methods

Settings	Pathologie	cal heterogened	ous setting		Practica	l heterogeneou	s setting	
Methods	MNIST	Cifar10	Cifar100	Cifar10	Cifar100	TINY	TINY*	AG News
FedAvg FedProx	97.93±0.05 98.01±0.09	55.09 ± 0.83 55.06 ± 0.75	25.98 ± 0.13 25.94 ± 0.16	59.16±0.47 59.21±0.40	31.89 ± 0.47 31.99 ± 0.41	$19.46 {\pm} 0.20 \\ 19.37 {\pm} 0.22$	19.45±0.13 19.27±0.23	79.57 ± 0.17 79.35 ± 0.23
FedAvg-C FedProx-C	99.79±0.00 99.80±0.04	92.13±0.03 92.12±0.03	66.17±0.03 66.07±0.08	90.34±0.01 90.33±0.01	51.80 ± 0.02 51.84 ± 0.07	30.67 ± 0.08 30.77 ± 0.13	36.94 ± 0.10 38.78 ± 0.52	95.89 ± 0.25 96.10 ± 0.22
Per-FedAvg FedRep pFedMe Ditto FedAMP FedPHP FedFomo APPLE PartialFed	$\begin{array}{c} 99.63 \pm 0.02 \\ 99.77 \pm 0.03 \\ 99.75 \pm 0.02 \\ 99.81 \pm 0.00 \\ 99.76 \pm 0.02 \\ 99.73 \pm 0.00 \\ 99.83 \pm 0.00 \\ 99.75 \pm 0.01 \\ 99.86 \pm 0.01 \\ \end{array}$	89.63 ± 0.23 91.93 ± 0.14 90.11 ± 0.10 92.39 ± 0.06 90.79 ± 0.16 90.01 ± 0.00 91.85 ± 0.02 90.97 ± 0.05 89.60 ± 0.13	56.80 ± 0.26 67.56 ± 0.31 58.20 ± 0.14 67.23 ± 0.07 64.34 ± 0.37 63.09 ± 0.04 62.49 ± 0.22 65.80 ± 0.08 61.39 ± 0.12	$ \begin{vmatrix} 87.74 \pm 0.19 \\ 90.40 \pm 0.24 \\ 88.09 \pm 0.32 \\ 90.59 \pm 0.01 \\ 88.70 \pm 0.18 \\ 88.92 \pm 0.02 \\ 88.06 \pm 0.02 \\ 89.37 \pm 0.11 \\ 87.38 \pm 0.08 \end{vmatrix} $	44.28 ± 0.33 52.39 ± 0.35 47.34 ± 0.46 52.87 ± 0.64 47.69 ± 0.49 50.52 ± 0.16 45.39 ± 0.45 53.22 ± 0.20 48.81 ± 0.20	25.07 ± 0.07 37.27 ± 0.20 26.93 ± 0.19 32.15 ± 0.04 27.99 ± 0.11 35.69 ± 3.26 26.33 ± 0.22 35.04 ± 0.47 35.26 ± 0.18	21.81 ± 0.54 39.95 ± 0.61 33.44 ± 0.33 35.92 ± 0.43 29.11 ± 0.15 29.90 ± 0.51 26.84 ± 0.11 39.93 ± 0.52 37.50 ± 0.16	93.27 ± 0.25 96.28 ± 0.14 91.41 ± 0.22 95.45 ± 0.17 94.18 ± 0.09 94.38 ± 0.12 95.84 ± 0.15 95.63 ± 0.21 85.20 ± 0.16
FedALA	99.88±0.01	92.44±0.02	67.83±0.06	90.67±0.03	55.92±0.03	40.54±0.02	41.94±0.05	96.52±0.08

- FedALA outperforms 13 traditional FL and pFL methods
 - in various settings

Settings	Pathological heterogeneous setting			Practical heterogeneous setting				
Methods	MNIST	Cifar10	Cifar100	Cifar10	Cifar100	TINY	TINY*	AG News
FedAvg FedProx	97.93±0.05 98.01±0.09	55.09±0.83 55.06±0.75	25.98 ± 0.13 25.94 ± 0.16	59.16±0.47 59.21±0.40	31.89 ± 0.47 31.99 ± 0.41	19.46±0.20 19.37±0.22	19.45±0.13 19.27±0.23	79.57 ± 0.17 79.35 ± 0.23
FedAvg-C FedProx-C	99.79±0.00 99.80±0.04	92.13±0.03 92.12±0.03	66.17±0.03 66.07±0.08	90.34±0.01 90.33±0.01	51.80 ± 0.02 51.84 ± 0.07	30.67 ± 0.08 30.77 ± 0.13	36.94±0.10 38.78±0.52	95.89 ± 0.25 96.10 ± 0.22
Per-FedAvg FedRep pFedMe Ditto FedAMP FedPHP FedFomo APPLE PartialFed	$\begin{array}{c} 99.63 \pm 0.02 \\ 99.77 \pm 0.03 \\ 99.75 \pm 0.02 \\ 99.81 \pm 0.00 \\ 99.76 \pm 0.02 \\ 99.73 \pm 0.00 \\ 99.83 \pm 0.00 \\ 99.75 \pm 0.01 \\ 99.86 \pm 0.01 \\ \end{array}$	89.63 ± 0.23 91.93 ± 0.14 90.11 ± 0.10 92.39 ± 0.06 90.79 ± 0.16 90.01 ± 0.00 91.85 ± 0.02 90.97 ± 0.05 89.60 ± 0.13	56.80 ± 0.26 67.56 ± 0.31 58.20 ± 0.14 67.23 ± 0.07 64.34 ± 0.37 63.09 ± 0.04 62.49 ± 0.22 65.80 ± 0.08 61.39 ± 0.12	$ \begin{array}{c} 87.74 \pm 0.19 \\ 90.40 \pm 0.24 \\ 88.09 \pm 0.32 \\ 90.59 \pm 0.01 \\ 88.70 \pm 0.18 \\ 88.92 \pm 0.02 \\ 88.06 \pm 0.02 \\ 89.37 \pm 0.11 \\ 87.38 \pm 0.08 \\ \end{array} $	44.28 ± 0.33 52.39 ± 0.35 47.34 ± 0.46 52.87 ± 0.64 47.69 ± 0.49 50.52 ± 0.16 45.39 ± 0.45 53.22 ± 0.20 48.81 ± 0.20	25.07 ± 0.07 37.27 ± 0.20 26.93 ± 0.19 32.15 ± 0.04 27.99 ± 0.11 35.69 ± 3.26 26.33 ± 0.22 35.04 ± 0.47 35.26 ± 0.18	21.81 ± 0.54 39.95 ± 0.61 33.44 ± 0.33 35.92 ± 0.43 29.11 ± 0.15 29.90 ± 0.51 26.84 ± 0.11 39.93 ± 0.52 37.50 ± 0.16	93.27 ± 0.25 96.28 ± 0.14 91.41 ± 0.22 95.45 ± 0.17 94.18 ± 0.09 94.38 ± 0.12 95.84 ± 0.15 95.63 ± 0.21 85.20 ± 0.16
FedALA	99.88±0.01	92.44±0.02	67.83±0.06	90.67±0.03	55.92±0.03	40.54±0.02	41.94±0.05	96.52±0.08

- FedALA outperforms 13 traditional FL and pFL methods
 - in various settings and various datasets (CV and NLP domains)

Settings	Pathological heterogeneous setting			Practical heterogeneous setting				
Methods	MNIST	Cifar10	Cifar100	Cifar10	Cifar100	TINY	TINY*	AG News
FedAvg FedProx	97.93±0.05 98.01±0.09	55.09 ± 0.83 55.06 ± 0.75	25.98 ± 0.13 25.94 ± 0.16	59.16±0.47 59.21±0.40	31.89 ± 0.47 31.99 ± 0.41	$19.46 {\pm} 0.20 \\ 19.37 {\pm} 0.22$	19.45±0.13 19.27±0.23	79.57 ± 0.17 79.35 ± 0.23
FedAvg-C FedProx-C	99.79±0.00 99.80±0.04	92.13±0.03 92.12±0.03	66.17±0.03 66.07±0.08	90.34±0.01 90.33±0.01	51.80±0.02 51.84±0.07	30.67 ± 0.08 30.77 ± 0.13	36.94±0.10 38.78±0.52	95.89 ± 0.25 96.10 ± 0.22
Per-FedAvg FedRep pFedMe Ditto FedAMP FedPHP FedFomo APPLE PartialFed	$\begin{array}{c} 99.63 \pm 0.02 \\ 99.77 \pm 0.03 \\ 99.75 \pm 0.02 \\ 99.81 \pm 0.00 \\ 99.76 \pm 0.02 \\ 99.73 \pm 0.00 \\ 99.83 \pm 0.00 \\ 99.75 \pm 0.01 \\ 99.86 \pm 0.01 \\ \end{array}$	89.63 ± 0.23 91.93 ± 0.14 90.11 ± 0.10 92.39 ± 0.06 90.79 ± 0.16 90.01 ± 0.00 91.85 ± 0.02 90.97 ± 0.05 89.60 ± 0.13	56.80 ± 0.26 67.56 ± 0.31 58.20 ± 0.14 67.23 ± 0.07 64.34 ± 0.37 63.09 ± 0.04 62.49 ± 0.22 65.80 ± 0.08 61.39 ± 0.12	87.74 ± 0.19 90.40 ± 0.24 88.09 ± 0.32 90.59 ± 0.01 88.70 ± 0.18 88.92 ± 0.02 88.06 ± 0.02 89.37 ± 0.11 87.38 ± 0.08	44.28 ± 0.33 52.39 ± 0.35 47.34 ± 0.46 52.87 ± 0.64 47.69 ± 0.49 50.52 ± 0.16 45.39 ± 0.45 53.22 ± 0.20 48.81 ± 0.20	25.07 ± 0.07 37.27 ± 0.20 26.93 ± 0.19 32.15 ± 0.04 27.99 ± 0.11 35.69 ± 3.26 26.33 ± 0.22 35.04 ± 0.47 35.26 ± 0.18	21.81 ± 0.54 39.95 ± 0.61 33.44 ± 0.33 35.92 ± 0.43 29.11 ± 0.15 29.90 ± 0.51 26.84 ± 0.11 39.93 ± 0.52 37.50 ± 0.16	93.27 ± 0.25 96.28 ± 0.14 91.41 ± 0.22 95.45 ± 0.17 94.18 ± 0.09 94.38 ± 0.12 95.84 ± 0.15 95.63 ± 0.21 85.20 ± 0.16
FedALA	99.88±0.01	92.44±0.02	67.83±0.06	90.67±0.03	55.92±0.03	40.54±0.02	41.94±0.05	96.52±0.08

• FedALA outperforms 13 traditional FL and pFL methods by up to 3.27%

Settings	Pathological heterogeneous setting			Practical heterogeneous setting				
Methods	MNIST	Cifar10	Cifar100	Cifar10	Cifar100	TINY	TINY*	AG News
FedAvg FedProx	97.93±0.05 98.01±0.09	55.09 ± 0.83 55.06 ± 0.75	25.98 ± 0.13 25.94 ± 0.16	59.16±0.47 59.21±0.40	31.89 ± 0.47 31.99 ± 0.41	$19.46 {\pm} 0.20$ $19.37 {\pm} 0.22$	19.45±0.13 19.27±0.23	79.57 ± 0.17 79.35 ± 0.23
FedAvg-C FedProx-C	99.79±0.00 99.80±0.04	92.13±0.03 92.12±0.03	66.17±0.03 66.07±0.08	90.34±0.01 90.33±0.01	51.80±0.02 51.84±0.07	30.67 ± 0.08 30.77 ± 0.13	36.94±0.10 38.78±0.52	95.89 ± 0.25 96.10 ± 0.22
Per-FedAvg FedRep pFedMe Ditto FedAMP FedPHP FedFomo APPLE PartialFed	99.63±0.02 99.77±0.03 99.75±0.02 99.81±0.00 99.76±0.02 99.73±0.00 99.83±0.00 99.75±0.01 99.86±0.01	89.63 ± 0.23 91.93 ± 0.14 90.11 ± 0.10 92.39 ± 0.06 90.79 ± 0.16 90.01 ± 0.00 91.85 ± 0.02 90.97 ± 0.05 89.60 ± 0.13	56.80 ± 0.26 67.56 ± 0.31 58.20 ± 0.14 67.23 ± 0.07 64.34 ± 0.37 63.09 ± 0.04 62.49 ± 0.22 65.80 ± 0.08 61.39 ± 0.12	$ \begin{vmatrix} 87.74 \pm 0.19 \\ 90.40 \pm 0.24 \\ 88.09 \pm 0.32 \\ 90.59 \pm 0.01 \\ 88.70 \pm 0.18 \\ 88.92 \pm 0.02 \\ 88.06 \pm 0.02 \\ 89.37 \pm 0.11 \\ 87.38 \pm 0.08 \end{vmatrix} $	44.28 ± 0.33 52.39 ± 0.35 47.34 ± 0.46 52.87 ± 0.64 47.69 ± 0.49 50.52 ± 0.16 45.39 ± 0.45 53.22 ± 0.20 48.81 ± 0.20	25.07 ± 0.07 37.27 ± 0.20 26.93 ± 0.19 32.15 ± 0.04 27.99 ± 0.11 35.69 ± 3.26 26.33 ± 0.22 35.04 ± 0.47 35.26 ± 0.18	21.81 ± 0.54 39.95 ± 0.61 33.44 ± 0.33 35.92 ± 0.43 29.11 ± 0.15 29.90 ± 0.51 26.84 ± 0.11 39.93 ± 0.52 37.50 ± 0.16	93.27 ± 0.25 96.28 ± 0.14 91.41 ± 0.22 95.45 ± 0.17 94.18 ± 0.09 94.38 ± 0.12 95.84 ± 0.15 95.63 ± 0.21 85.20 ± 0.16
FedALA	99.88±0.01	92.44±0.02	67.83±0.06	90.67±0.03	55.92±0.03	40.54±0.02	41.94±0.05	96.52±0.08

- FedALA outperforms 13 traditional FL and pFL methods by up to 3.27%
 - For more results, please refer to our paper

Settings	Pathological heterogeneous setting			Practical heterogeneous setting				
Methods	MNIST	Cifar10	Cifar100	Cifar10	Cifar100	TINY	TINY*	AG News
FedAvg FedProx	97.93±0.05 98.01±0.09	55.09±0.83 55.06±0.75	25.98 ± 0.13 25.94 ± 0.16	59.16±0.47 59.21±0.40	31.89 ± 0.47 31.99 ± 0.41	19.46±0.20 19.37±0.22	19.45±0.13 19.27±0.23	79.57 ± 0.17 79.35 ± 0.23
FedAvg-C FedProx-C	99.79±0.00 99.80±0.04	92.13±0.03 92.12±0.03	66.17±0.03 66.07±0.08	90.34±0.01 90.33±0.01	51.80 ± 0.02 51.84 ± 0.07	30.67 ± 0.08 30.77 ± 0.13	36.94±0.10 38.78±0.52	95.89 ± 0.25 96.10 ± 0.22
Per-FedAvg FedRep pFedMe Ditto FedAMP FedPHP FedFomo APPLE PartialFed	99.63±0.02 99.77±0.03 99.75±0.02 99.81±0.00 99.76±0.02 99.73±0.00 99.83±0.00 99.75±0.01 99.86±0.01	89.63 ± 0.23 91.93 ± 0.14 90.11 ± 0.10 92.39 ± 0.06 90.79 ± 0.16 90.01 ± 0.00 91.85 ± 0.02 90.97 ± 0.05 89.60 ± 0.13	56.80 ± 0.26 67.56 ± 0.31 58.20 ± 0.14 67.23 ± 0.07 64.34 ± 0.37 63.09 ± 0.04 62.49 ± 0.22 65.80 ± 0.08 61.39 ± 0.12	$ \begin{vmatrix} 87.74 \pm 0.19 \\ 90.40 \pm 0.24 \\ 88.09 \pm 0.32 \\ 90.59 \pm 0.01 \\ 88.70 \pm 0.18 \\ 88.92 \pm 0.02 \\ 88.06 \pm 0.02 \\ 89.37 \pm 0.11 \\ 87.38 \pm 0.08 \\ \end{vmatrix} $	44.28 ± 0.33 52.39 ± 0.35 47.34 ± 0.46 52.87 ± 0.64 47.69 ± 0.49 50.52 ± 0.16 45.39 ± 0.45 53.22 ± 0.20 48.81 ± 0.20	25.07 ± 0.07 37.27 ± 0.20 26.93 ± 0.19 32.15 ± 0.04 27.99 ± 0.11 35.69 ± 3.26 26.33 ± 0.22 35.04 ± 0.47 35.26 ± 0.18	21.81 ± 0.54 39.95 ± 0.61 33.44 ± 0.33 35.92 ± 0.43 29.11 ± 0.15 29.90 ± 0.51 26.84 ± 0.11 39.93 ± 0.52 37.50 ± 0.16	93.27 ± 0.25 96.28 ± 0.14 91.41 ± 0.22 95.45 ± 0.17 94.18 ± 0.09 94.38 ± 0.12 95.84 ± 0.15 95.63 ± 0.21 85.20 ± 0.16
FedALA	99.88±0.01	92.44±0.02	67.83±0.06	90.67±0.03	55.92±0.03	40.54±0.02	41.94±0.05	96.52±0.08

Summary

- **Contributions** of FedAl A:
 - Adaptively aggregates the global model and local model towards the local objective to capture the desired information from the global model
 - Outperforms 11 SOTA methods by up to 3.27% in test accuracy without additional communication overhead in each iteration
 - The ALA module in FedALA can be directly applied to existing FL methods to enhance their performance by up to 24.19%

Resources:

- Full paper: https://arxiv.org/abs/2212.01197
- Code: https://github.com/TsingZ0/FedALA

FedALA: Adaptive Local Aggregation for Personalized Federated Learning

Full paper: https://arxiv.org/abs/2212.01197

Code: https://github.com/TsingZ0/FedALA

Thanks!