Es03B: Amplificatore a transistor

Gruppo 1G.BT Francesco Sacco, Lorenzo Cavuoti

30 ottobre 2018

- 2) Montaggio del circuito e verifica del punto di lavoro Usando il multimetro digitale abbiamo misurato i valori delle resistenze e condensatori staccati dal circuito
 - $R_1 = (178.5 \pm 1.4)k\Omega$
 - $R_2 = (17.65 \pm 0.14)k\Omega$
 - $R_C = (9.82 \pm 0.08) k\Omega$
 - $R_E = (1.014 \pm 0.008)k\Omega$
 - $C_{in} = (221 \pm 9)nF$
 - $C_{out} = (111 \pm 4)nF$
- a. Accendendo soltanto il generatore di ddp continua $V_{CC} = (19.9 \pm 0.1)$ abbiamo calcolato e misurato il punto di lavoro del transistor che risulta:
 - $V^Q_{CE,att} = (7.3 \pm 0.4) V$ $I^Q_{C,att} = (1.17 \pm 0.03) mA$
 - $V^Q_{CE,mis} = (9.00 \pm 0.05)V$ $I^Q_{C,mis} = (1.01 \pm 0.01)mA$

I due risultati non sono compatibili, tuttavia, come si vedrà anche in seguito, il circuito funziona correttamente, la discrepanza quindi si potrebbe attribuire a un errore nella presa dati o nei calcoli

- b. Usando il multimetro digitale abbiamo misurato le tensioni ai terminali del transistor che risultano:
- $V_{B,mis} = 1.647 \pm 0.008$ $V_{E,mis} = 1.034 \pm 0.005$ $V_{BE,mis} = 0.614 \pm 0.003$ $V_{C,mis} = 10.01 \pm 0.05$
- $V_{B,att} \approx 1.7$ $V_{E,att} \approx 1.1$ $V_{BE,att} = 0.6$ $V_{C,att} \approx 10$ Purtroppo è stato impossibile dare una stima accurata degli errori a causa dell'incognita su alcuni parametri del transistor
- c. Sfruttando l'effetto transistor con $h_{fe} \approx 100$ abbiamo $I_B = I_C/h_{fe} \approx 10.1 \mu A$ dove I_C è stata calcolata vedendo la ddp ai capi di R_C , inoltre sappiamo che $I_B = I_1 I_2 = (9 \pm 2) \mu A$ con I_1 , I_2 calcolate prendendo la ddp su R_1 , R_2 rispettivamente. L'errore risulta grande il quanto differenza di due misure simili, infatti $I_1 = 102.2 \pm 1.4 \mu A$ $I_2 = 93.1 \pm 1.3 \mu A$. Le due misure risultano quindi compatibili fra di loro.
- 3) Risposta a segnali sinusoidali a frequenza fissa In questo punto colleghiamo il generatore di funzioni al circuito con f = 6.24kHz e tutti i voltaggi sono misurati picco-picco
- i Vedendo V_{in} e V_{out} accoppiando l'oscilloscopio in AC notiamo che i due segnali sono in controfase con uno circa 10 volte l'altro (figura 1)
- ii Il guadagno atteso per piccoli segnali risulta $A_{V,att}=9.68\pm0.14$, per un onda sinusoidale con $V_{in}=(0.22\pm0.01)V$ si ha $V_{out}=(2.06\pm0.09)V$, $A_V=9.3\pm0.6$. Per verificare la linearità del sistema abbiamo preso un onda triangolare a diverse ampiezze. Con $V_{in}=(0.22\pm0.01)V$ si ha $V_{out}=(1.98\pm0.09V)$ $A_V=9.1\pm0.6$ e, con $V_{in}=1.51\pm0.06V$ triangolare si ha $V_{out}=13.7\pm0.6V$ $A_V=9.1\pm0.6$ i guadagni attesi risultano compatibili con quelli misurati.

Inoltre la forma d'onda è rimasta pressocchè inalterata, quindi tutte le armoniche dello spettro della triangolare hanno trasformato allo stesso modo, questo dimostra la linearità del circuito tra 1kHz e 10kHz.

Figura 1: Inversione di fase tra ingresso e uscita, si notino le diverse scale su CH1 e CH2

iii-iv Il circuito risulta lineare per V_{in} minore di circa 1.5V quindi $V_{out} \approx 18V$ oltre questa ddp si ha il clipping da entrambi i lati.

Il clipping della parte inferiore si ha perchè $V_{CC} = I(R_C + R_E) + V_{CE}$, essendo $V_{CE} > 0$ si ha che $V_{CC} > I(R_C + R_E)$. Quindi $V_{out} = V_{CC} - IR_C > V_{CC}[1 - R_C/(R_C + R_E)]$, quindi $V_{out} > V_{CC}R_E/(R_C + R_E) \approx 1.8$. D'altro canto $V_{out} < V_{CC} \approx 20V$, quindi l'ampiezza dell'oscillazione sarà di circa 18V che è in accordo con i dati sperimentali

4) Risposta in frequenza

- a Abbiamo valutato la risposta in frequenza del circuito per segnali sinusoidali di ampiezza $V_{in}=1V$ e frequenza compresa tra circa 10Hz e 1MHz, cercando di prendere abbastanza punti nelle zone dove il logaritmo del guadagno risulta lineare, così da poter fare 3 fit delle rette che approssimano il guadagno a bassa, media e alta frequenza. I dati raccolti sono riportati in tabella 1, l'errore su V_{in} e V_{out} è dato dall'incertezza di misura con i cursori dell'oscilloscopio mentre l'errore su $A_V = V_{out}/V_{in}$ è stato fatto propagando l'errore sul rapporto considerando le due misure indipendenti
- **b** Abbiamo riportato i dati in un diagramma di bode ed eseguito tre fit lineari con la funzione curve-fit del modulo scipy di python usando absolute-sigma=False, gli errori sulle frequenze si sono trascurati in quanto il loro prodotto per la derivata della funzione è molto minore degli errori sul guadagno (1% vs 5-6%). La funzione di fit utilizzata èf(x) = a * x + b, i tre fit presentano:
 - $a = 13.8 \pm 0.2, b = -7.01 \pm 0.3, \chi^2 = 0.029$ Per le basse frequenze
 - $a = 0.084 \pm 0.3$, $b = 19.12 \pm 0.08$, $\chi^2 = 0.019$ Per le medie frequenze
 - $a = -19.3 \pm 0.3$, $b = 114 \pm 2$, $\chi^2 = 0.19$ Per le alte frequenze

Il χ^2 risulta molto minore delle aspettative, probabilmente dovuto a una sovrastima dell'incertezza sulla misura delle tensioni con l'oscilloscopio

c Analizzando il circuito possiamo notare che C_{in} e $R_2//R_1$ compongono un filtro passa alto, inoltre il transistor ha una piccola capacità interna che con R_C forma un filtro passa basso, la frequenza si nota solo per frequenze elevate agendo da passa basso. Dal fit otteniamo $F_L = 81 \pm 2Hz$ e $F_H = 81 \pm 3kHz$

f[Hz]	$V_{in}[V]$	$\sigma V_{in}[V]$	$V_{out}[V]$	$\sigma V_{out}[V]$	A_V	σA_V
13.7	1.00	0.04	2.7	0.1	2.7	0.2
16.3	1.00	0.04	3.0	0.1	3.0	0.2
47.0	1.00	0.04	6.3	0.3	6.3	0.4
68.1	1.00	0.04	7.4	0.3	7.4	0.5
98.4	1.00	0.04	8.2	0.4	8.2	0.5
118	1.00	0.04	8.6	0.4	8.6	0.6
213	1.00	0.04	9.2	0.4	9.2	0.6
565	1.00	0.04	9.3	0.4	9.3	0.6
1.18 k	1.00	0.04	9.4	0.4	9.4	0.6
2.11 k	1.00	0.04	9.4	0.4	9.4	0.6
11.7 k	1.00	0.04	9.4	0.4	9.4	0.6
20.3 k	1.00	0.04	9.0	0.4	9.0	0.6
71.3 k	1.00	0.04	7.3	0.3	7.3	0.4
209 k	1.00	0.04	3.7	0.2	3.7	0.2
739 k	1.00	0.04	1.14	0.05	1.14	0.07
$2.10~\mathrm{M}$	1.00	0.04	0.40	0.02	0.40	0.03

Tabella 1: Dati della risposta in frequenza del circuito

Figura 2: Grafico di bode del circuito