Matrix Multiplication Assignment By Rachit Rawat

q0)

LOOP	А	В	С
k	N/4	N	1
TOTAL	N ³ /4	N ³	N ²

Cache miss analysis for innermost loop ${\bf k}$

LOOP	А	В	С
j	1	N/4	N/4
TOTAL	N ²	N ³ /4	N ³ /4

Cache miss analysis for innermost loop j

LOOP	А	В	С
i	N	1	N
TOTAL	N ³	N ²	N ³

Cache miss analysis for innermost loop i

Theoretical peak FLOP/s = Number of Cores X Average frequency X Operations per cycle For i5-5200U:

No. of cores = 2

Av. Freq = 2.20 GHz

Operations per cycle = 16

Therefore, peak FLOPS/s = 2 X 2.2 X 16 = 70.4 GFLOPS

- q1) Please refer graph.
- q2) yes. Please refer graph.

Loops with **j** as innermost loop are fastest because of lowest total cache misses.

- **q3)** yes. Please refer graph.
- q4) Please refer graph.

Note:

- * For n < 128 (non-tiled) and n < 256 (tiled), calculation of FLOPS was not possible since computational time tended to 0.
- * For n >= 2048, calculation of FLOPS was not possible due to high time complexity.