UNIDAD 8. PRINCIPIOS DE LA TERMODINÁMICA. EJERCICIOS.

- **8.1.-** Calcula la variación de energía interna sufrida por un sistema en los casos siguientes:
 - a) El sistema absorbe 1000 calorías y realiza un trabajo de 200 J (éste sería el caso genérico de un motor térmico).
 - **b)** El sistema recibe un trabajo de 200 J (éste sería el caso al agitar un recipiente que contiene un fluido).
 - c) El sistema cede 500 cal en forma de calor y recibe un trabajo de 200 J (este sería el caso genérico de un compresor de aire).

8.2.- El cilindro de un motor de gasolina contiene 125 cm³ de mezcla de aire-gasolina comprimido a 6 kp/cm² cuando se produce la chispa en la bujía y, por tanto la explosión instantánea de la mezcla a volumen constante. Sabiendo que al finalizar la combustión la mezcla se encuentra a 25 kp/cm² y a 1200 K, determina el calor absorbido, el trabajo realizado y la variación de energía interna sufrida por la mezcla durante la combustión. Tómese para la mezcla aire-gasolina R = 2 cal/(K·mol) y γ = 1,4.

Solución: Q= 136,8 cal,
$$W = 0$$
, $\Delta U = 136,8$ cal

8.3.- El cilindro de un motor diesel contiene 50 cm³ de aire comprimido a 40 atm y 650 °C cuando se produce la inyección del combustible. Suponiendo que durante la combustión la presión permanece constante y que, al finalizar ésta, el aire ocupa 85 cm³, determina el calor absorbido, el trabajo realizado y la variación de energía interna sufrida por la mezcla durante la combustión. Tómese para la mezcla aire-diesel $C_V = 3$ cal/(K·mol).

Solución: Q = 351,09 J, W = 141,82 J,
$$\Delta U$$
 = 210,65 J

8.4.- Un cilindro de 300 l de capacidad contiene un gas inicialmente a 15 °C y presión atmosférica. Se comprime isotérmicamente hasta alcanzar una presión 10 veces mayor. Calcula el trabajo realizado por el gas, el calor absorbido y la variación de energía interna.

Solución:
$$Q = W = -69975,5 J$$
, $\Delta U = 0$

8.5.- Un cilindro de 300 l de capacidad contiene un gas inicialmente a 15 °C y presión atmosférica. Se comprime adiabáticamente hasta conseguir un volumen final de 60 dm³. Calcula el trabajo realizado por el gas, el calor absorbido y la variación de energía interna. Considerar γ = 1,4.

Solución: Q = 0, W =
$$-68654,5 \text{ J}$$
, $\Delta U = 68654,5 \text{ J}$

8.6.- Un motor térmico de 100 CV consume 200.000 kcal/h. Determina el rendimiento del motor y el calor suministrado al foco frío.

Solución:
$$\eta = 31,69\%$$
, $Q_{foco frío} = 137049,6 kcal$

8.7.- Una máquina de Carnot toma 1000 kcal del foco caliente a 650 K y cede 480 kcal al foco frío. Determina el rendimiento de la máquina, la temperatura del foco frío y el rendimiento que se obtiene cuando el foco frío está a -5° C

Solución:
$$\eta = 52\%$$
, $T_{Frio} = 39$ °C, $\eta = 58,77\%$

8.8.- Un motor térmico funciona según el ciclo ideal de Carnot, partiendo de la siguiente situación inicial: $p_1 = 100 \text{ Pa}$, $V_1 = 0.1 \text{ m}^3 \text{ y T}_1 = 600 \text{ K}$. Sabiendo que el volumen máximo alcanzado es de 0.5 m^3 , que en la primera transformación la presión final es de 80 Pa y que $\gamma = 1.4$, determina:

- a) Presión, volumen y temperatura en cada punto.
- **b)** Calor absorbido, trabajo realizado y variación de la energía interna en cada transformación.
- c) Trabajo neto y rendimiento

Solución: a)
$$p_2 = 80 \text{ Pa}$$
, $V_2 = 0.125 \text{ m}^3$, $T_2 = 600 \text{ K}$; $p_3 = 11.48 \text{ Pa}$, $V_3 = 0.5 \text{ m}3$, $T_3 = 344.6 \text{ K}$; $p_4 = 14.358 \text{ Pa}$, $V_4 = 0.4 \text{ m}3$, $T_4 = 344.6 \text{ K}$

b)
$$W_{1-2}=Q_{1-2}=2,23$$
 J, $\Delta U_{1-2}=0$; $W_{2-3}=-\Delta U_{2-3}=10,65$ J, $Q_{2-3}=0$; $W_{3-4}=Q_{3-4}=-1,28$ J, $\Delta U_{3-4}=0$; $W_{4-1}=-\Delta U_{4-1}=-10,65$ J, $Q_{4-1}=0$

c)
$$W_{neto} = 0.95 \text{ J}$$
, $Q_{neto} = 0.95 \text{ J}$, $\Delta U_{neto} = 0 \text{ J}$, $\eta = 42.6\%$