Теоретические домашние задания

Математическая логика, ИТМО, М3232-М3239, осень 2023 года

Задание №1. Знакомство с исчислением высказываний.

Справочное изложение теории, частично разобранной на лекции.

Определение 1. Аксиомой является любая формула исчисления высказываний, которая может быть получена из следующих схем аксиом:

- $\alpha \to \beta \to \alpha$
- $(\alpha \to \beta) \to (\alpha \to \beta \to \gamma) \to (\alpha \to \gamma)$ (2)
- (3) $\alpha \to \beta \to \alpha \& \beta$
- (4) $\alpha \& \beta \to \alpha$
- $\alpha \& \beta \to \beta$ (5)
- (6) $\alpha \to \alpha \vee \beta$
- (7) $\beta \to \alpha \vee \beta$
- $(\alpha \to \gamma) \to (\beta \to \gamma) \to (\alpha \lor \beta \to \gamma)$ $(\alpha \to \beta) \to (\alpha \to \neg \beta) \to \neg \alpha$ $\neg \neg \alpha \to \alpha$ (8)
- (9)
- (10)

Определение 2. Выводом из гипотез $\gamma_1, \ldots, \gamma_n$ назовём конечную непустую последовательность высказываний, для каждого из которых выполнено хотя бы что-то из списка:

- 1. высказывание является аксиомой;
- 2. высказывание получается из предыдущих по правилу Modus Ponens (то есть, для высказывания δ_i найдутся такие δ_j и δ_k , что j, k < i и $\delta_k \equiv \delta_j \rightarrow \delta_i$);
- 3. высказывание является гипотезой (то есть, является одной из формул γ_1,\ldots,γ_n).

Определение 3. Будем говорить, что формула α выводится (доказывается) из гипотез $\gamma_1, \dots, \gamma_n$ (и записывать это как $\gamma_1, \ldots, \gamma_n \vdash \alpha$), если существует такой вывод из гипотез $\gamma_1, \ldots, \gamma_n$, что последней формулой которого является формула α .

Заметим, что доказательство формулы α — это вывод формулы α из пустого множества гипотез. При решении заданий вам может потребоваться теорема о дедукции (будет доказана на второй лекции):

Теорема 1. $\gamma_1, \ldots, \gamma_n, \alpha \vdash \beta$ тогда и только тогда, когда $\gamma_1, \ldots, \gamma_n \vdash \alpha \rightarrow \beta$.

Пример использования: пусть необходимо доказать $\vdash A \to A$ — то есть доказать существование вывода формулы $A \to A$ (заметьте, так поставленное условие не требует этот вывод предъявлять, только доказать его существование). Тогда заметим, что последовательность из одной формулы A доказывает $A \vdash A$. Далее, по теореме о дедукции, отсюда следует и $\vdash A \to A$ (то есть, вывода формулы $A \to A$, не использующего гипотезы).

- 1. Докажите:
 - (a) $\vdash (A \rightarrow A \rightarrow B) \rightarrow (A \rightarrow B)$
 - (b) $\vdash \neg (A \& \neg A)$
 - (c) $\vdash A \& B \rightarrow B \& A$
 - (d) $\vdash A \lor B \to B \lor A$
 - (e) $A \& \neg A \vdash B$
- 2. Докажите:
 - (a) $\vdash A \rightarrow \neg \neg A$
 - (b) $\neg A, B \vdash \neg (A \& B)$
 - (c) $\neg A, \neg B \vdash \neg (A \lor B)$
 - (d) $A, \neg B \vdash \neg (A \rightarrow B)$
 - (e) $\neg A, B \vdash A \rightarrow B$
- 3. Докажите:

- (a) $\vdash (A \to B) \to (B \to C) \to (C \to A)$
- (b) $\vdash (A \to B) \to (\neg B \to \neg A)$ (правило контрапозиции)
- (c) $\vdash \neg (\neg A \& \neg B) \rightarrow (A \lor B)$ (вариант I закона де Моргана)
- (d) $\vdash (\neg A \lor \neg B) \to \neg (A \& B)$ (II закон де Моргана)
- (e) $\vdash (A \rightarrow B) \rightarrow (\neg A \lor B)$
- (f) $\vdash A \& B \rightarrow A \lor B$
- $(g) \vdash ((A \rightarrow B) \rightarrow A) \rightarrow A$ (закон Пирса)
- (h) $\vdash A \lor \neg A$
- $(i) \vdash (A \& B \to C) \to (A \to B \to C)$
- $(j) \vdash (A \rightarrow B \rightarrow C) \rightarrow (A \& B \rightarrow C)$
- 4. Даны высказывания α и β , причём $\vdash \alpha \to \beta$ и $\not\vdash \beta \to \alpha$. Укажите способ построения высказывания γ , такого, что $\vdash \alpha \to \gamma$ и $\vdash \gamma \to \beta$, причём $\not\vdash \gamma \to \alpha$ и $\not\vdash \beta \to \gamma$.
- 5. Покажите, что если $\alpha \vdash \beta$ и $\neg \alpha \vdash \beta$, то $\vdash \beta$.