Лабораторная работа 2.2.4

"Определение коэффициента теплопроводности твердых тел"

Колинько Кира, Б04-207

18 апреля 2023 г.

1 Введение

1.1 Цель работы

- 1. определение коэффициентов теплопроводност твердых тел путем сравнения с теплопроводностью эталонного материала
- 2. вычисление отнрсительных тепловых потерь через боковые поверхности по измеренным значениям температуры вдоль радиусов пластинок

1.2 Оборудование и материалы

Термостат, набор термопар, зеркальный гальванометр, тонкие резиновые прокладки, исследуемые тела, диск из эталлоного материала, штангенциркуль

2 Теоретические сведения

Количество теплоты, протекающее за единицу времени через однородную перегородку толщиной Δz и площадью S при разности температур ΔT , определяется формулой:

$$\Delta q = \chi S \frac{\Delta T}{\Delta z} \tag{1}$$

где χ - коэффициент, характеризующий свойства среды и называемый коэффициентом теплопроводности. Значение коэффициента теплопроводности может быть определено непосрественно из формулы (1). Однако точное определение коэффициента таким способом оказывается нелегкой задачей, из-за трудностей, возникающих при измерении количества теплоты В данной работе производится сравнение теплопроводности исследуемого материала с теплопроводностью некоторого другого эталонного материала с известным значением коэффициента χ . В этом случае:

$$\Delta q = \chi_1 S \frac{\Delta T_1}{\Delta z_1} = \chi_2 S \frac{\Delta T_2}{\Delta z_2} \tag{2}$$

Полагая, что $\Delta z_1 = d_1$ и $\Delta z_2 = d_2$, получим

$$\frac{\chi_1}{\chi_2} = \frac{d_1}{d_2} \frac{\Delta T_2}{\Delta T_1} \tag{3}$$

где ΔT_1 и ΔT_2 - перепады температур на пластинках. Зная теплопроводность материала одной из пластинок, легко определить на опыте теплопроводность другой пластинки.

Оценка потерь тепла

Полный радиальный поток, есть произведение q_r и площади боковой поверхности S_r , вычисленной на том же расстоянии от оси симметрии, на котором производилось измерение радиальной производной температуры:

$$q_r S_r = -\chi 2\pi r d \frac{\partial T}{\partial r} \tag{4}$$

здесь d - толщина пластины

Полный осевой поток определяется произведением производной температуры вдоль оси симмметрии z и площпди окружности, проходящей через точку измерения радиальной производной:

$$q_z S_z = -\chi \pi r^2 \frac{\partial T}{\partial z} \tag{5}$$

Отношение этих объектов обозначим δ :

$$\delta = \frac{2d\frac{\partial T}{\partial r}}{r\frac{\partial T}{\partial z}} \tag{6}$$

Этот параметр характеризует расширение теплового потока и его относительные потери, он не зависит от коэффициента теплопроводности

3 Экспериментальная установка

Рис. 1: Прибор для измерения коэффициента теплопроводности сравнительным методом

4 Ход работы

1. Оценим время установления равновесного теплового потока в системе. Для этого снимем зависимость напряжения на термопарах от времени. Полученные данные внесем в таблицу 1, и построим по ним график 1

t, c	0	5	10	15	25	35	45	55	75	95	135	240
U, мВ	1,63	1,74	1,78	1,80	1,82	1,84	1,85	1,86	1,87	1,88	1,89	1,92

Таблица 1: Зависимость напряжения от времени

Рис. 2: График 1

Из полученных данных видим, что время установления $\approx 240 \text{ c}$

Оценим время установления теплового потока в системе теоретически. Для этого, используем формулу, которая связывает распространение температуры в эбоните в зависимости от времени: $x^2 = t\chi$, для эбонита: $\chi = 6 \cdot 10^{-8} \text{m}^2/\text{c}$, $\chi = d = 3.8$ мм, таким образом $t \approx 240,7c$ Время установления теплового равновесия, оцененное теоретически с высокой точностью совпадает с результатом, полученным экспериментально. В процессе выполнения работы будем выжидать это время перед снятием показаний гальванометра

2. Откалибруем термопары. Для этого рабочие спаи всех термопар расположим в одной точке прибора, и зафиксируем значения показаний вольтметра для каждой из термопар. Полученные данные внесем в таблицу 2

номер термопары	1	2	3	4
а, мв	0,96	0,92	0,96	0,96

Таблица 2: Показания гальванометра для различных термопар

Так как показания гальванометра для различных термопар отличаются, то отношение температур, входящее в формулу (3) будем вычислять по формуле

$$\frac{\Delta T_2}{\Delta T_1} = \frac{\frac{U_3}{a_3} - \frac{U_4}{a_4}}{\frac{U_1}{a_1} - \frac{U_2}{a_2}} \tag{7}$$

3. Проверим на опыте, в какой мере выполняется предположение о независимости коэффициента эталонного материала от температуры. Для этого проведем измерения для двух пластинок эбонита. Данные, полученные при измерениях внесем в таблицу 3

d_1 , mm	d_2 , mm	σ_d , MM	U_1 , mb	U_2 , MB	U_3 , MB	U_4 , MB	σ_U , MB	$\frac{\Delta T_2}{\Delta T_1}$	$\frac{\chi_1}{\chi_2}$	$\sigma_{\frac{\chi_1}{\chi_2}}$
	3,7	0,1	2,06	0,85	0,98	0,06	0,01	1,27	1,24	0,17

Таблица 3: Измерения для двух эбонитовых пластинок

Отношение $\frac{\chi_1}{\chi_2}$ было получено по формуле 3. Погрешности были расчитаны следующим образом:

$$\sigma_{\frac{\chi_1}{\chi_2}} = \frac{\chi_1}{\chi_2} \sqrt{(\sigma_{\frac{d_1}{d_2}})^2 + (\sigma_{\frac{\Delta T_2}{\Delta T_1}})^2} \tag{8}$$

где
$$\sigma_{\frac{a}{b}} = \frac{a}{b} \sqrt{(\sigma_a)^2 + (\sigma_b)^2}$$

Таким образом, было получено: $\frac{\chi_1}{\chi_2} = (1, 24 \pm 0, 18)$. То есть, в данном случае предположение о независимости коэффициента теплопроводности эталонного материала от времени выполняется в пределах погрешности

4. Измерим толщину пластин, с которыми будем работать. Результаты измерений внесем в таблицу 3

N	материал	эбонит (эб)	гетинакс (ге)	текстолит (те)	плексиглас (пл)	стекло-текстолит (ст)
	d, мм	3,7	1,5	3,8	3,7	1,4

Таблица 4: Толщина исследуемых пластин

5. Далее проведем основные измерения. Будем собирать установку из двух пластин: одной пластины из эбонита, и одной пластины из другого материала. Полученные результаты внесем в таблицу 4

материал	U_1 , MB	U_2 , MB	U_3 , MB	U_4 , mb	σU , mb
эб-эб	2,06	0,85	0,98	0,06	0,01
эб-пл	2,04	0,90	0,93	0,02	0,01
пл-эб	1,99	0,96	1,09	0,03	0,01
эб-те	2,00	0,85	0,93	0,04	0,01
те-эб	1,81	1,09	1,05	0,05	0,01
эб-ге	1,68	0,56	0,62	0,04	0,01
ге-эб	1,61	1,06	1,06	0,02	0,01
эб-ст	1,92	0,67	0,72	0,08	0,01
ст-эб	1,87	1,28	1,20	0,05	0,01

Таблица 5: Данные для измерения коэффициентов теплопроводности различных материалов

Дадим некоторые комментарии к данным, указанным в таблице: материал, записанный первым в паре, находится ближе к нагревателю, материал, записанный вторым - ближе к холодильнику; напряжения $U_1,\,U_2,\,U_3,\,U_4$ соответствуют 1-4 термопарам соответственно; во всех экспериментах первая термопара находится ближе к нагревателю, 4 - ближе к холодильнику

6. Рассчитаем коэффициенты теплопроводности для разных материалов в разных положениях по формуле 3. Полученные данные занесем в таблицу 6

материал	положение	$\chi, \frac{B_T}{M \cdot K}$	$\sigma_{\chi}, \frac{\mathrm{B_T}}{\mathrm{M \cdot K}}$	$\langle \chi \rangle, \frac{B_T}{M \cdot K}$	$\sigma_{\langle\chi angle}, rac{\mathrm{B_T}}{\mathrm{M}\cdot\mathrm{JI}}$	
EOEMIO VO	холодильник	0,132	0,019	0,141	0,013	
гетинакс	нагреватель	0,149	0,021	0,141	0,013	
токото нит	холодильник	0,131	0,018	0,121	0,014	
текстолит	нагреватель	0,111	0,016	0,121	0,014	
н номониче	холодильник	0,034	0,012	0,033	0,010	
плексиглас	нагреватель	0,031	0,002	0,055	0,010	
от токото нит	холодильник	0,032	0,012	0,030	0,010	
сттекстолит	нагреватель	0,028	0,002	0,030	0,010	

Таблица 6: Коэффициенты теплопроводности для различных материалов

7. Оценим потери через боковые поверхности. Для этого закрепим рабочие спаи термопар на различных расстояниях от центра пластинки, и измерим показания гальванометра для каждой из них. Полученные данные занесем в таблицу 7

r, mm	U, мв	$\frac{U}{\alpha}$
50	1,77	1,84
62	1,67	1,82
73	1,64	1,71
86	1,47	1,53

Таблица 7: Оценка потерь через боковые поверхности

По полученным данным построим график:

Рис. 3: График зависимости температуры от расстояния до центра пластины

Уменьшение температуры при удалении от центра обусловлено тепловым потоком через боковые поверхности. Найдем производную температуры по радиусу. Заметим, что полученная зависимость близка к параболической. Из этого следует, что производная в точке r=86мм в два раза больше производной для прямой, соединяющей температуру в этой точке с температурой в центре пластины. Таким образом, получаем:

$$\frac{\partial T}{\partial r} = 2 \cdot (-0,008) = -0,016 \text{y.e/mm}$$
 (9)

Для стекло-текстолита из предыдущих опытов имеем

$$\frac{\partial T}{\partial z} \approx 0.328 \text{y.e/mm}$$
 (10)

Измерим радиус исследуемого образца штангенциркулем: r=50мм. Тогда по формуле 6 имеем: $\delta\approx 2,73\cdot 10^{-3}$

5 Выводы

- В ходе работы было экспериментально измерено время установления теплового равновесия в исследуемой системе. Это значение сошлось со значением, полученным теоретически, и составило 240с
- В ходе работы была экспериментально подтверждена гипотеза о независимости коэффициента теплопроводности эталонного материала от температуры
- В работе были измерены коэффициенты теплопроводности четырех различных материалов. Были получены следующие результаты:
 - гетинакс $\chi = (0.141 \pm 0.013) \frac{\text{Вт}}{\text{м·K}}$
 - текстолит $\chi = (0, 121 \pm 0, 014) \frac{\mathrm{Br}}{\mathrm{m \cdot K}}$
 - плексиглас $\chi = (0,033 \pm 0,010) \frac{\mathrm{Br}}{\mathrm{m\cdot K}}$
 - стекло-текстолит $\chi = (0.030 \pm 0.010) \frac{\text{Вт}}{\text{м·K}}$

Полученные результаты плохо сходятся с табличными. С чем это связано будет объяснено далее.

• В ходе работы была проведена оценка радиальных тепловых потерь. Их величина составила $\delta \approx 2,73\cdot 10^{-3}$. То есть потери через боковые стороны установки достаточно малы.

Перечислим основные причины возникновения ошибок в ходе работы. Во-первых, погрешность вносили тепловые потери через боковые стороны установки, также нельзя исключить наличие тепловых потерь через провода термопар. Во-вторых, свой вклад в погрешность внесли резиновые прокаладки, которые не являются идеально однородными и теплопроводящими. Для увеличения точности эксперимента можно было бы теплоизолировать установку, закрепить термопары, чтобы избежать их смещения в ходе проведения опытов

6 Дополнительные вопросы

6.1 Течение разреженного газа по прямолинейной трубке

Течение разреженного газа по прямолинейной трубе определяется только столкновениями его молекл со стенками трубы. Движение молекул газа, входящих в трубу с одного конца не зависит от движения молекул, поступающих в трубу с другого конца. Полный поток молекул через трубу можно представить как разность двух независимых потоков, проходящих в противоположных направлениях. Если это условие выполняется, то течение называют молекулярным, или течением Кнудсена.

6.2 Закон Эйнштейна-Смолуховского

6.3 Принципы действия форвакуумных насосов (пластинчато-роторные, поршневые

Принцип работы форвакуумного насоса заключается в изменении давления и разрежении в рабочем объеме до определенных показателей. Через впускные клапаны происходит всасывание воздуха в камеру насоса, затем внутренний механизм обеспечивает его сжимание. Когда достигается предельное давление, происходит выброс сжатого вещества через выпускной клапан.

6.3.1 Принцип работы пластинчато-роторных насосов

Пластинчатые насосы роторного типа действуют на принципе механического всасывания и выталкивания газа. Перемещение среды обеспечивается вращением цилиндрического ротора с пазами, в которых размещены металлические или графитовые лопатки. Пластины скользят в пазах и под действием центробежной силы прижимаются к корпусу, чем разделяют рабочую камеру на ячейки переменного объема. Газ поступает в такие полости через окно всасывания, когда размер ячеек увеличивается. После чего происходит его сжатие и удаление через патрубок нагнетания. Этот процесс происходит непрерывно, что практически исключает пульсации газа. В конструкцию лопастного вакуумного насоса входит электродвигатель и насосная часть, состоящая из корпуса и эксцентрично установленного ротора с свободно закрепленными лопатками.

Рис. 4: Пластинчато-роторный насос: принцип работы

6.3.2 Принцип работы поршневых насосов

Поршневые насосы - рабочим органом является поршень, который совершает возвратно-поступательное движение в цилиндре — одна из разновидностей 3-цилиндровые поршневые насосы. Когда поршень совершает всасывающее движение, давление падает, что приводит к закрытию нагнетательного клапана и открытию всасывающего клапана, через который газ поступает в камеру насоса. Затем поршень совершает нагнетательное движение в обратном направлении, в результате чего клапаны меняют положение.

Рис. 5: Поршневой насос: принцип работы