Homework #3

1. Evaluate
$$\frac{\partial y}{\partial w}\Big|_{w=0}$$
 when $y = \frac{1}{v+x}$, $v = \sin(w)$, $x = e^w$, $w = 0$

2. Given input-target pairs and output of NN. Evaluate E(w)

$$\begin{split} D_1 &= (x_{11}, x_{12}, x_{13}, t_{11}, t_{12}, t_{13}), D_{1\,output} = (o_{11}, o_{12}, o_{13}) \\ D_2 &= (x_{21}, x_{22}, x_{23}, t_{21}, t_{22}, t_{23}), D_{2\,output} = (o_{21}, o_{22}, o_{23}) \\ D_3 &= (x_{31}, x_{32}, x_{33}, t_{31}, t_{32}, t_{33}), D_{3\,output} = (o_{31}, o_{32}, o_{33}) \\ \text{And } t_{11} &= 0.4, t_{12} = 0.6, t_{13} = 0.9, o_{11} = 0.5, o_{12} = 0.3, o_{13} = 0.4 \\ t_{21} &= 0.5, t_{22} = 0.5, t_{23} = 0.7, o_{21} = 0.5, o_{22} = 0.4, o_{23} = 0.5 \\ t_{31} &= 0.7, t_{32} = 0.8, t_{33} = 0.1, o_{31} = 0.7, o_{32} = 0.8, o_{33} = 0.1 \\ \end{split}$$

$$E(w) = \sum_{n=1}^{N} E_n(w), \quad where \quad E_n(w) = \frac{1}{2} \sum_{n=1}^{M} (t_{nk} - o_{nk})^2$$

3. Describe $\frac{\partial E}{\partial w_{kj}}$, $\frac{\partial E}{\partial w_{ji}}$, $\frac{\partial E}{\partial w_{ji}}$ when $D_n = (x_{n1}, x_{n2}, \dots, x_{nd}, t_{n1}, t_{n2}, \dots, t_{nn})$

4. An input is given x = 1, y = 1. The initial connection weights are $w_1 = 1$, $w_2 = 1$. The learning rate is $\eta = 0.1$. Update the connection weights once by EBP.

