

Formale Systeme

Prof. Dr. Bernhard Beckert, WS 2018/2019

Termersetzungssysteme

Termersetzungssysteme

Definition

Termersetzungssysteme sind spezielle Reduktionssysteme. Ist E eine endliche Menge von Gleichungen über der Signatur Σ , dann nennen wir das Reduktionssystem

$$(\textit{Term}_{\Sigma}, \overset{1}{\rightarrow}_{\textit{E}})$$

ein Termersetzungssystem.

Da dieses durch Σ und E eindeutig bestimmt ist, sprechen wir kürzer vom *Termersetzungssystem* (Σ, E) .

Kanonisches Termersetzungssysteme

Theorem

- (Σ, E) sei ein kanonisches Termersetzungssystem.
 - 1. Zu jedem Term t gibt es genau einen irreduziblen Term irr(t) mit $t \rightarrow_E irr(t)$.
 - 2. Für beliebige Terme s, t gilt:

$$E \models s \doteq t \Leftrightarrow irr(s) = irr(t).$$

3. Die Gültigkeit einer Gleichung in der Theorie von E ist entscheidbar.

Spezialfall des Satzes über kanonische Reduktionssysteme.

Ein einfaches kanonisches Termersetzungssystem

 E_{GBT} :

$$0 \land x = 0 \quad 1 \land x = x$$

 $x \land 0 = 0 \quad x \land 1 = x$
 $0 \lor x = x \quad 1 \lor x = 1$
 $x \lor 0 = x \quad x \lor 1 = 1$

Für jeden variablenfreien Booleschen Term *t* gilt

$$t \rightarrow_{E_{GBT}} 0$$
oder
 $t \rightarrow_{E_{GBT}} 1.$

Definition

Ein Paar (t_1, t_2) von Termen heißt *kritisches Paar* von (Σ, E) , wenn existieren: Gleichungen $l_1 \doteq r_1$ und $l_2 \doteq r_2$, die Varianten von Gleichungen in E sind; ferner ein Term u und eine Substitution μ , so dass gilt:

 \triangleright *u* ist Unterterm von I_1 , *u* ist keine Variable

Definition

Ein Paar (t_1, t_2) von Termen heißt *kritisches Paar* von (Σ, E) , wenn existieren: Gleichungen $l_1 \doteq r_1$ und $l_2 \doteq r_2$, die Varianten von Gleichungen in E sind; ferner ein Term u und eine Substitution μ , so dass gilt:

- ightharpoonup u ist Unterterm von I_1 , u ist keine Variable
- ▶ u ist mit l_2 unifizierbar, und μ ist ein mgu (u, l_2)

Definition

Ein Paar (t_1, t_2) von Termen heißt *kritisches Paar* von (Σ, E) , wenn existieren: Gleichungen $l_1 \doteq r_1$ und $l_2 \doteq r_2$, die Varianten von Gleichungen in E sind; ferner ein Term u und eine Substitution μ , so dass gilt:

- \triangleright *u* ist Unterterm von I_1 , *u* ist keine Variable
- ▶ u ist mit l_2 unifizierbar, und μ ist ein mgu (u, l_2)
- ▶ $t_1 = \mu(r_1)$ (nach der Gleichung $t_1 \doteq r_1$)

Definition

Ein Paar (t_1, t_2) von Termen heißt *kritisches Paar* von (Σ, E) , wenn existieren: Gleichungen $l_1 \doteq r_1$ und $l_2 \doteq r_2$, die Varianten von Gleichungen in E sind; ferner ein Term u und eine Substitution μ , so dass gilt:

- ▶ u ist Unterterm von I_1 , u ist keine Variable
- ▶ u ist mit l_2 unifizierbar, und μ ist ein mgu (u, l_2)
- ▶ $t_1 = \mu(r_1)$ (nach der Gleichung $t_1 \doteq r_1$)
- ▶ t_2 entsteht aus $\mu(l_1)$, indem dort genau ein Vorkommen von $\mu(l_2)$ durch $\mu(r_2)$ ersetzt wird (nach der Gleichung $l_2 = r_2$).

Das zentrale Lemma

Theorem

Ein Termersetzungssystem (Σ, E) ist

lokal konfluent genau dann, wenn jedes kritische Paar (t_1,t_2) konfluent ist d.h. ein t existiert mit $t_1 \rightarrow_E t$, $t_2 \rightarrow_E t$.

Das zentrale Lemma

Theorem

Ein Termersetzungssystem (Σ, E) ist

lokal konfluent genau dann, wenn jedes kritische Paar (t_1,t_2) konfluent ist d.h. ein t existiert mit $t_1 \rightarrow_E t$, $t_2 \rightarrow_E t$.

Lemma

Ein endliches Termersetzungsststem (Σ, E) besitzt bis auf Variantenbildung nur endlich viele kritische Paare, und diese lassen sich algorithmisch aus (Σ, E) erhalten.

Gruppentheorie E_G

1
$$0+x = x$$

2 $(x+y)+z = x+(y+z)$
3 $i(x)+x = 0$

Gruppentheorie E_G

1
$$0+x = x$$

2 $(x+y)+z = x+(y+z)$
3 $i(x)+x = 0$

Ist E_G lokal konfluent?

Gruppentheorie E_G

1
$$0+x = x$$

2 $(x+y)+z = x+(y+z)$
3 $i(x)+x = 0$

Ist E_G lokal konfluent? Wir untersuchen die kritischen Paare.

1 in 2
$$(0+u)+z$$
 $(0+(u+z), u+z)$
2 in 2 $((u+v)+w)+z$ $((u+v)+(w+z), (u+(v+w))+z)$
3 in 2 $(i(u)+u)+z$ $(i(u)+(u+z), 0+z)$

1 in 2
$$(0+u)+z$$
 $(0+(u+z), u+z)$
2 in 2 $((u+v)+w)+z$ $((u+v)+(w+z), (u+(v+w))+z)$
3 in 2 $(i(u)+u)+z$ $(i(u)+(u+z), 0+z)$

Beide Seiten von 1) reduzieren zu u + z.

1 in 2
$$(0+u)+z$$
 $(0+(u+z), u+z)$
2 in 2 $((u+v)+w)+z$ $((u+v)+(w+z), (u+(v+w))+z)$
3 in 2 $(i(u)+u)+z$ $(i(u)+(u+z), 0+z)$

Beide Seiten von 1) reduzieren zu u + z.

Beide Seiten von 2) reduzieren zu ((u + v) + w) + z.

1 in 2
$$(0+u)+z$$
 $(0+(u+z), u+z)$
2 in 2 $((u+v)+w)+z$ $((u+v)+(w+z), (u+(v+w))+z)$
3 in 2 $(i(u)+u)+z$ $(i(u)+(u+z), 0+z)$

Beide Seiten von 1) reduzieren zu u + z.

Beide Seiten von 2) reduzieren zu ((u + v) + w) + z.

Reduktion von 3) führt zu dem Paar

$$i(u)+(u+z)$$
 z

1 in 2
$$(0+u)+z$$
 $(0+(u+z), u+z)$
2 in 2 $((u+v)+w)+z$ $((u+v)+(w+z), (u+(v+w))+z)$
3 in 2 $(i(u)+u)+z$ $(i(u)+(u+z), 0+z)$

Beide Seiten von 1) reduzieren zu u + z.

Beide Seiten von 2) reduzieren zu ((u + v) + w) + z.

Reduktion von 3) führt zu dem Paar

$$i(u) + (u+z) z$$

Es gilt

$$E_G \models z \doteq i(u) + (u+z)$$

1 in 2
$$(0+u)+z$$
 $(0+(u+z), u+z)$
2 in 2 $((u+v)+w)+z$ $((u+v)+(w+z), (u+(v+w))+z)$
3 in 2 $(i(u)+u)+z$ $(i(u)+(u+z), 0+z)$

Beide Seiten von 1) reduzieren zu u + z.

Beide Seiten von 2) reduzieren zu ((u + v) + w) + z.

Reduktion von 3) führt zu dem Paar

$$i(u) + (u+z) z$$

Es gilt

$$E_G \models z \doteq i(u) + (u+z)$$

Setze
$$E_G^1 = E_G \cup \{z = i(u) + (u + z)\}.$$

1 in 2
$$(0+u)+z$$
 $(0+(u+z), u+z)$
2 in 2 $((u+v)+w)+z$ $((u+v)+(w+z), (u+(v+w))+z)$
3 in 2 $(i(u)+u)+z$ $(i(u)+(u+z), 0+z)$

Beide Seiten von 1) reduzieren zu u + z.

Beide Seiten von 2) reduzieren zu ((u + v) + w) + z.

Reduktion von 3) führt zu dem Paar

$$i(u) + (u+z) z$$

Es gilt

$$E_G \models z \doteq i(u) + (u+z)$$

Setze $E_G^1 = E_G \cup \{z \doteq i(u) + (u+z)\}$. Ist E_G^1 lokal konfluent?

1 in 4
$$i(0) + (0 + u)$$
 $(i(0) + u, u)$
2 in 4 $i(u + v) + ((u + v) + w)$ $(i(u + v) + (u + (v + w)), w)$
3 in 4 $i(i(u)) + (i(u) + u)$ $(i(i(u)) + 0, u)$
4 in 2 $(i(x) + (x + y)) + w$ $(i(x) + ((x + y) + w), y + w)$
4 in 4 $i(i(u)) + (i(u) + (u + v))$ $(i(i(u)) + v, u + v)$

1 in 4
$$i(0) + (0 + u)$$
 $(i(0) + u, u)$
2 in 4 $i(u+v) + ((u+v)+w)$ $(i(u+v) + (u+(v+w)), w)$
3 in 4 $i(i(u)) + (i(u)+u)$ $(i(i(u)) + 0, u)$
4 in 2 $(i(x) + (x+y)) + w$ $(i(x) + ((x+y)+w), y+w)$
4 in 4 $i(i(u)) + (i(u) + (u+v))$ $(i(i(u)) + v, u+v)$

Reduktion der kritischen Paare ergibt:

$$\begin{array}{lll} (i(0)+u\;,\;u) & (i(0)+u\;,\;u) \\ (i(u+v)+(u+(v+w))\;,\;w) & (i(u+v)+(u+(v+w))\;,\;w) \\ (i(i(u))+0\;,\;u) & (i(i(u))+0\;,\;u) \\ (i(x)+((x+y)+w)\;,\;y+w) & (y+w\;,\;y+w) \\ (i(i(u))+v\;,\;u+v) & (i(i(u))+v\;,\;u+v) \end{array}$$

1 in 4
$$i(0) + (0 + u)$$
 $(i(0) + u, u)$
2 in 4 $i(u+v) + ((u+v)+w)$ $(i(u+v) + (u+(v+w)), w)$
3 in 4 $i(i(u)) + (i(u)+u)$ $(i(i(u)) + 0, u)$
4 in 2 $(i(x) + (x+y)) + w$ $(i(x) + ((x+y)+w), y+w)$
4 in 4 $i(i(u)) + (i(u) + (u+v))$ $(i(i(u)) + v, u+v)$

Reduktion der kritischen Paare ergibt:

$$\begin{array}{lll} (i(0)+u\;,\;u) & (i(0)+u\;,\;u) \\ (i(u+v)+(u+(v+w))\;,\;w) & (i(u+v)+(u+(v+w))\;,\;w) \\ (i(i(u))+0\;,\;u) & (i(i(u))+0\;,\;u) \\ (i(x)+((x+y)+w)\;,\;y+w) & (y+w\;,\;y+w) \\ (i(i(u))+v\;,\;u+v) & (i(i(u))+v\;,\;u+v) \end{array}$$

Nur das vorletzte Paar ist also konfluent.

$$E_G^2$$

$$E_{G}^{2}$$

$$1 \quad 0+x = x$$

$$2 \quad (x+y)+z = x+(y+z)$$

$$3 \quad i(x)+x = 0$$

$$4 \quad i(x)+(x+y) = y$$

$$5 \quad i(0)+x = x$$

$$6 \quad i(x+y)+(x+(y+z)) = z$$

$$7 \quad i(i(x))+y = x+y$$

Neue Gleichungen in blau.

1 in 6 (i(u) + (0 + (u + z)), z)1 in 6 (i(0+y)+(y+z), z)3 in 5 (0, 0) 3 in 6 (i(i(y+z)+y)+0, z)3 in 7 (x + i(x), 0)4 in 5 (0 + v, v)4 in 6 (i(i(u) + u) + v, v)4 in 7 ((x+(i(x)+v), v)5 in 2 (i(0) + (x + v), x + v)5 in 4 $(i(i(0)) + x \cdot x)$ 5 in 6 (i(i(0) + y) + (y + z), z)6 in 2 (i(x+y)+((x+(y+z))+w), z+w)6 in 6 (i(i(u+v)+u)+w, v+w)7 in 2 (i(i(x)) + (y+z), (x+y) + z)7 in 3 (x+i(x), 0)7 in 4 (x + (i(x) + u), u)7 in 6 (v + w, v + w)

Aus den nicht konfluenten kritischen Paare von E_G^2 ergeben sich die folgenden neuen Gleichungen:

$$i(i(y + z) + y) + 0 = z$$

 $x + i(x) = 0$
 $x + (i(x) + v) = v$
 $i(i(u + v) + u) + w = v + w$

Beobachtung

Im Knuth-Bendix Verfahren können auch Gleichungen wieder wegfallen.

Beobachtung

Im Knuth-Bendix Verfahren können auch Gleichungen wieder wegfallen.

Unter den kritischen Paaren von E_G^3 kommt die Überlagerung

$$i(i(u+v)+u)+0$$

von i(i(y+z)+y)+0=z und i(i(u+v)+u)+w=v+w vor, die zu dem nicht konfluenten kritischen Paar führt: (v+0, v).

Beobachtung

Im Knuth-Bendix Verfahren können auch Gleichungen wieder wegfallen.

Unter den kritischen Paaren von E_G^3 kommt die Überlagerung

$$i(i(u+v)+u)+0$$

von i(i(y+z)+y)+0=z und i(i(u+v)+u)+w=v+w vor, die zu dem nicht konfluenten kritischen Paar führt: (v+0, v).

Nimmt man die neue Regel (v + 0 = v) in E_G^4 dann sieht man, dass die Termersetzung i(i(y + z) + y) + 0 = z überflüssig wird: sie kann aus (v + 0 = v) und i(i(u + v) + u) + w = v + w abgeleitet werden.

Endergebnis

Ein kanonisches Termersetzungssystem für die Gruppentheorie

E_{Group} :