

X4-Class **Power MOSFET™**

IXTP86N20X4

200V 86A $13m\Omega$

N-Channel Enhancement Mode Avalanche Rated

G = Gate	D	=	Drain
S = Source	Tab	=	Drain

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	T_J = 25°C to 175°C T_J = 25°C to 175°C, R_{GS} = 1M Ω	200 200	V	
V _{GS} V _{GSM}	Continuous Transient	±20 ±30	V	
I _{D25}	$T_{\rm c} = 25^{\circ}{\rm C}$ $T_{\rm c} = 25^{\circ}{\rm C}$, Pulse Width Limited by $T_{\rm JM}$	86 160	A A	
I _A E _{AS}	T _c = 25°C T _c = 25°C	43 500	A mJ	
dv/dt	$I_{S} \le I_{DM}, V_{DD} \le V_{DSS}, T_{J} \le 150^{\circ}C$	50	V/ns	
P_{D}	T _c = 25°C	300	W	
T _J T _{JM} T _{stg}		-55 +175 175 -55 +175	0° 0° 0°	
T _L	Maximum Lead Temperature for Soldering 1.6 mm (0.062 in.) from Case for 10s	300	°C	
M _d	Mounting Torque	1.13 / 10	Nm/lb.in	
Weight		3	g	

Features

- International Standard Package
- Low R_{DS(ON)} and Q_G
 Avalanche Rated
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode **Power Supplies**
- DC-DC Converters
- PFC Circuits
- · AC and DC Motor Drives
- Robotics and Servo Controls

SymbolTest ConditionsChara $(T_J = 25^{\circ}C, Unless Otherwise Specified)$ Min.			acteristic Values Typ. Max.		
BV _{DSS}	$V_{GS} = 0V, I_{D} = 250 \mu A$	200			V
$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.5		4.5	V
l _{gss}	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$ $T_{J} = 150^{\circ}C$			5 300	μ Α μ Α
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \cdot I_{D25}, \text{ Note 1}$		11	13	mΩ

DS101006B(12/20) © 2020 Littelfuse, Inc.

-		Chara Min.	racteristic Values			
g _{fs}	$V_{DS} = 10V, I_{D} = 0.5 \cdot I_{D25}, Note 1$	50	82	s		
R_{Gi}	Gate Input Resistance		4.75	Ω		
C _{iss}			2250	pF		
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		660	pF		
C _{rss}			185	pF		
t _{d(on)}	Paciativa Switching Times		27	ns		
t, (Resistive Switching Times		38	ns		
t _{d(off)}	$\begin{cases} V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25} \\ R_{G} = 10\Omega \text{ (External)} \end{cases}$		76	ns		
t,			35	ns		
$Q_{g(on)}$			70	nC		
Q_{gs}	$ V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25} $		20	nC		
\mathbf{Q}_{gd}			38	nC		
R _{thJC}			0.50	0.50 °C/W °C/W		

Source-Drain Diode

Symbol (T _J = 25°C,	Test Conditions Unless Otherwise Specified)	Charae Min.	cteristic \ Typ.	Values Max.	
I _s	V _{GS} = 0V			86	Α
I _{sm}	Repetitive, Pulse Width Limited by $T_{_{JM}}$			344	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.4	V
$\left\{ egin{array}{ll} \mathbf{t}_{rr} & \\ \mathbf{I}_{RM} & \\ \mathbf{Q}_{RM} & \end{array} ight\}$	$I_F = 43A$, -di/dt = 100A/ μ s, $V_R = 100V$		110 0.5 9.4		ns A µC

Note 1: Pulse test, $t \le 300 \mu s$, duty cycle, $d \le 2 \%$

Fig. 1. Output Characteristics @ $T_J = 25^{\circ}C$

Fig. 2. Extended Output Characteristics @ T_J = 25°C

Fig. 3. Output Characteristics @ $T_J = 150$ °C

Fig. 4. $R_{DS(on)}$ Normalized to I_D = 43A Value vs. Junction Temperature

Fig. 5. $R_{DS(on)}$ Normalized to I_D = 43A Value vs. Drain Current

Fig. 6. Normalized Breakdown & Threshold Voltages vs. Junction Temperature

Littelfuse reserves the right to change limits, test conditions and dimensions.

V_{DS} - Volts

Fig. 15. Maximum Transient Thermal Impedance

© 2020 Littelfuse, Inc.

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.