

Eingriffe am Thorax, Lunge und Mediastinum

PD. Dr. med. Sven Hillinger Klinik für Thoraxchirurgie

Klinik für Thoraxchirurgie- Spektrum

- Lunge
- Pleura
- Mediastinum
- Brustwand
- Lungenarterien
- Transplantation

Thoraxchirurgie

Forschung

- Grundlagen
- Klinik
- Translational

Training

- Studenten
- Kollegenschaft
- Krankenpfleger
- Schüler

Patientenpflege

- ambulant
- stationär

Internationale Kollaborationen

- Shanghai Chest Hospital
- Toronto General Hospital
- Tokyo Chiba University
- Juntendo University

Kollaborationen der Thoraxchirurgie

Klinik für Thoraxchirurgie – Fakten 2019

 Ambulante Patienten 	3'286
 Stationäre Patienten 	697
 Anatomische Resektionen 	179
 Offen 	68
VATS	60
 RATS 	51

Anatomische Lungenresektionen 2019 - 2021

	Total			Open		
	2021	2020	2019	2021	2020	2019
Anatomische Resektionen	122	131	139	25 (20%)	45 (34%)	73 (53%)
Pneumonektomie	4 (3%)	9 (7%)	5 (4%)	4 (100%)	9 (100%)	5 (100%)
Sleeve	4 (3%)	5 (4%)	21 (15%)	4 (100%)	5 (100%)	21 (100%)
Bilobektomie	3 (2%)	7 (5%)	4 (9%)	3 (100%)	7 (100%)	4 (100%)
Lobektomie	82 (67%)	87 (66%)	94 (68%)	13 (16%)	23 (26%)	39 (41%)
Segmentektomie	29 (24%)	23 (18%)	15 (11%)	1 (3%)	1 (4%)	4 (27%)

	VATS			RATS		
	2021	2020	2019	2021	2020	2019
Anatomische Resektionen	55 (45%)	45 (34%)	27 (19%)	42 (34%)	41 (31%)	39 (28%)
Pneumonektomie	0	0	0	0	0	0
Sleeve	0	0	0	0	0	0
Bilobektomie	0	0	0	0	0	0
Lobektomie	38 (46%)	31 (36%)	23 (24%)	31 (38%)	33 (38%)	32 (34%)
Segmentektomie	17 (59%)	14 (61%)	4 (27%)	11 (38%)	8 (35%)	7 (47%)

NSCLC anatomische Resektionen 2023 – neoT

2023 cases: Neoadjuvant therapy /clinical stage

2023 cases: Neoadjuvant therapy / anatomical resection

NSCLC anatomische Resektionen 2023 - neoT

	CTX	10	IO + CTX	CTX + IO + RT	targetedT	CTX + targetedT	Total
Open	4 (66.7%)	0	1 (11.1%)	3 (75%)	0	0	8 (36.4%)
VATS	1 (16.7%)	1 (100%)	3 (33.3%)	0	1 (100%)	0	6 (27.3%)
RATS	1 (16.7%)	0	5 (55.6%)	1 (25%)	0	1 (100%)	8 (36.4%)
Mi	2 (33.3%)	1 (100%)	8 (88.9%)	1 (25%)	1 (100%)	1 (100%)	14 (63.6%)

% of cases open, VATS, RATS, Mi over total of cases with same neoadjuvant Therapy

Zugang zum Brustraum

- Video-assisted thoracoscopic surgery VATS
 - Robotic assisted surgery RATS
- Mediane Sternotomie
- Thorakotomie
 - anterior
 - posterior
- Andere (Clamshell, Hemi-Clamshell, zervikal)

Belüftung eines Lungenflügels

VATS = Video-assisted thoracic surgery

VATS

- Vorgehen:
 - Lungen-Keilresektion, Pleurektomie
 - Lobektomie, Sympathektomie
 - Thymektomie, perikardiale Fenestration
- Vorteile:
 - Kleine Einschnitte, weniger Schmerzen
 - Kleine Narben (schönes kosmetisches Resultat)
- Nachteile:
 - Begrenzte Freilegung
 - Begrenzte Palpation

Anterolaterale Thorakotomie

Anterolaterale Thorakotomie

- Vorgehen:
 - Lungenresektion, Trachea Resektion
 - Thorakale Ösophagektomie
 - Herzchirurgie (limitiert)
- Vorteile:
 - Weniger schmerzhaft als posterolateral
 - Kosmetisch zufriedenstellende Narbe
- Nachteile:
 - Limitierte Freilegung des posterioren Mediastinum

NSCLC Stadium II

• 70-jähriger Raucher (20 py)

Follow-up

- 1. Tag postoperativ
 - Drainage entfernt
- 5. Tag postoperativ
 - Entlassung
- pT2, pN1(23), cM0

Röntgenbild bei Entlassung

Adhäsion

Mediane Sternotomie

Mediane Sternotomie

- Vorgehen:
 - Operation am offenen Herzen
 - Tumoren des anterioren Mediastinum
 - Trachea Chirurgie
 - Bilaterale Lungenchirurgie
- Vorteile:
 - exzellente Offenlegung des Herzens
 - anteriores Mediastinum
 - Reduzierte Schmerzen
 - Schnell und einfach zu lehren
- Nachteile:
 - Limitierte Offenlegung der Lunge und des Hilum

Hemiclamshell

Hemiclamshell Zugang

Hemiclamshell Zugang

Hemiclamshell Zugang

Clamshell

Malignes Thymom

Operation für Stadium II Thymom

 Minimal invasive Chirurgie (= key hole surgery / Schlüsselloch Chirurgie)

- 3 Komponenten:
 - Master/ Steuer Konsole
 - Robotikeinheit
 - Bildschirm

- 3 Komponenten:
 - Master/ Steuer Konsole
 - Robotikeinheit
 - Bildschirm

- 3 Komponenten:
 - Master/ Steuer Konsole
 - Robotikeinheit
 - Bildschirm

Geschichte RATS

- Autonome Roboter
 - ROBODOC (Integrated Surgical Systems, Sacramento, CA, USA), für die Orthopädie 1992
 - PROBOT f
 ür die Urologie

1989 prototype of ROBODOC

PROBOT, 1992

Geschichte RATS

- Master-Slave Systeme
 - Abhängig von den Bewegungen des Chirurgen
 - Entwickelt durch NASA in Zusammenarbeit mit Stanford
 - Erste FDA anerkannte Plattformen:
 - AESOP (Computer Motion, Inc., Goleta, CA, USA)
 - Zeus
 - da Vinci System (Intuitive Surgical, Sunnyvale, CA, USA)

AESOP (Schneider, 2017)

Zeus (Otero, 2007)

Da Vinci (Otero, 2007)

Da Vinci System

- 2014
- Da Vinci Xi (3rd generation)
 - Architektur
 - Kleinere Endoskope (8mm)
 - Einfacheres Docking
 - Stapler (2016)

Da Vinci

- In 2003 fusionierten Computer Motion und Intuitive Surgical, danach war "da Vinci" der einzige chirurgische Roboter
- Bestehend aus 3 Komponenten:
 - Bildschirm
 - Masterkonsole / Steuerkonsole: von hier bedient der Chirurg die Instrumente
 - Robotikeinheit: hier befinden sich die Roboterarme mit den chirugischen Instrumenten
- Charakteristika:
 - Dreidimensionale hochauflösende Optik mit bis zu 10-facher Vergrösserung
 - 7 Freiheitsgrade der Instrumente
 - Filtration des physiologischen Handtremors

RATS - Vorteile

3D Ansicht

- Intuitive Bewegungen
- Tremor Filtration
- Stabile Kamera Plattform

5 cm

- Erhöhte Freiheitsgrade
- Skalierung der Bewegung
- Äquivalenz zwischen dominanter und nicht-dominanter Hand
- Augen-Hand-Ziel Ausrichtung

© 2009 Intuitive Surgical, Inc.

Da Vinci Opertionsroboter

Da Vinci Opertionsroboter

Mediastinale Pathologie für die roboterassistierte Chirurgie

- Thymus Pathologie
- Aberrante Nebenschilddrüsen Tumore
- Zysten (thymisch, bronchogen, perikardiale Darmrohr-Zysten)
- Neurogenie Tumore
- Keimzell Tumore (hybrides Verfahren)

Ästhetik

Hybrid

The future looks bright

Intuitive – Da Vinci SP

Medtronic Einstein

VR-supported operation guidance

Shutterstock / Pop Paul-Catalin

Mehrwert für den Patienten

- Besseres Staging
 - Bessere Lymphknotendissektion
- Erhöhte Sicherheit
 - Geringere Blutung
 - Geringere Konversionsrate
- Inzision in einem einzigen Interkostalraum
 - Kosmetisch schöner
 - Weniger Schmerzen

Mehrwert für den Chirurgen

- Verbesserte Ergonomie!
 - Bessere Sicht
 - Bessere Dissektion
 - Bessere Position
- Verbesserte Lehre
 - Doppelkonsole
 - Näher an einer offenen Operation
- Sofort auf Plan als Innovator

Roboter-assistierte Segmentektomie mit infrarot Licht und grüner Indiocianin e.v. Injektion

Pardolesi und Veronesi JTCVS 2014

Fire Fly Visualisierung

Zusammenfassung

- Die roboter-assistierte Chirurgie bietet viele Vorteile für Patienten und Chirurgen
- Integration der Bildgebung ins Blickfeld des Chirurgen wird die Präzision erhöhen
- Neue Systeme welche sich in den Markt drängen werden die Technologie weiter verbessern
- Adäquates Training an «high-volume» Zentren wird in der Zukunft entscheidend

Hybrid-Operationssaal als 'one stop shop' zur Diagnose und Behandlung des Lungenkrebs

Vorbereitung des Patienten

Malignomverdächtiger Herd im rechten Oberlappen

Drahtmarkierung in Narkose

Segmentektomie

Minimalinvasive Wedgeresektion und Schnellschnitt

Synapse 3D - Segmentdarstellung

Tumor im Segment mit Sicherheitsabstand

Fallvorstellung

Anamnese:

- Initiale Vorstellung beim Hausarzt aufgrund thorakalen Engegefühls
- Kein Husten
- Kein Fieber
- Gelegentlich starkes Schwitzen nachts, seit ca. 3-4 Monaten
- Kein relevanter Gewichtsverlust in den vergangenen Monaten
- Persistierender Nikotinabusus, kumulativ 35py
- Kann problemlos 2 3 Stockwerke Treppen steigen

CT Thorax

Rundherd: 15 x 15mm

PET-CT

Spirometrie

	Einheit	Soll	LLN	Vor	%Soll	Z Score	Nach BD	%Soll
FVCEx	4	3,67	2,80	3,92	107%	0,47	4,05	110%
SVC	1	3,23	2,54	3,17	98%	-0,13		
FEV1	1	2,88	2,19	2,70	94%	-0,43	2,81	97%
FEV1/FVC	%	79	67	69	87%	-1,46	69	88%
PEF	I/s	6,61	5,13	6,99	106%	0,43	6,94	105%
MEF75	l/s	5,69	3,47	5,68	100%	-0,01	5,94	104%
MEF50	I/s	3,92	2,11	2,08	53%	-1,68	2,27	58%
MEF25	I/s	0,78	0,32	0,48	62%	-0,88	0,52	67%
MEF25-75	l/s	2,56	1,34	1,52	60%	-1,35	1,66	65%
MEF50/MIF50				0,59			0,49	
IVC	1	3,23	2,54	2,03	63%	-2,84		
FEV1/VC	%	78	67	69	88%	-1,42	69	89%
ERV	t	0,87		3,91	450%		1,57	180%
IC	1	2,42	- 1	0,01	0%		2,49	103%

Invasive Diagnostik

1. Bronchoskopie und EBUS:

Diagnose

R Z 2020.1751: BAL (RB 7) mit geringer Vermehrung von Lymphozyten (11.5 %) und ansonsten unauffälligem Differentialzellbild. Kein Nachweis maligner Zellen.

Diagnose

B 2020.12225 - 26: Biopsien (Rundherd Oberlappen rechts): Infiltrate eines

Adenokarzinoms, morphologisch und immunhistochemisch passend zu einem primären Adenokarzinom der Lunge.

Spezialuntersuchungen

B 2020.12225 - 26: Immunhistochemie: Positivität der Tumorzellen für CK7, TTF1 und NapsinA sowie Negativität für CK20, Synaptophysin, ChromograninA, PAX8 und p40 bei jeweils positiver On Slide Kontrolle.

Tumorboard Thorax

- Klinisches TNM-Stadium (8. Auflage, 2017): cT1b cN0 cM0
- Empfehlung gemäss ESMO-Guidelines?

A: Neoadjuvante Radiatio gefolgt von anatomischer Resektion

B: Neoadjuvante Chemotherapie (Cisplatin, Etoposid) gefolgt von anatomischer Resektion

C: Anatomische Resektion

D: Immuntherapie mit Durvalumab

Antworten

Tumorboard Thorax

- Klinisches TNM-Stadium (8. Auflage, 2017): cT1b cN0 cM0
- Empfehlung gemäss ESMO-Guidelines?

A: Neoadjuvante Radiatio gefolgt von anatomischer Resektion

B: Neoadjuvante Chemotherapie (Cisplatin, Etoposid) gefolgt von anatomischer Resektion

C: Anatomische Resektion

D: Immuntherapie mit Durvalumab

Roboterassistierte, thorakoskopische Unterlappenresektion rechts mit systematischer Lymphadenektomie:

Roboterassistierte, thorakoskopische Unterlappenresektion rechts mit systematischer Lymphadenektomie:

Roboterassistierte, thorakoskopische Unterlappenresektion rechts mit systematischer Lymphadenektomie:

Roboterassistierte, thorakoskopische Unterlappenresektion rechts mit systematischer Lymphadenektomie:

Diagnose

B 2020.16816-17: Lobektomiepräparat (Unterlappen rechts):

Mässig differenziertes Adenokarzinom der Lunge mit azinärem und papillären Wachstum.

Maximaler Tumordurchmesser 1.4 cm.

Kein Nachweis eines Pleuradurchbruches.

Kein Nachweis von Gefässeinbrüchen.

Tumorfreie Gefäss- und Bronchusabsetzungsränder (Abstand > 3 cm).

Zusammen mit B2020.16836-42:

TNM-Klassifikation (8. Auflage, 2017): pT1b pN0(0/14) G2 L0 V0 R0

Diagnose

B 2020.16836; Exzisat (LK Nr. 8 rechts): Ein tumorfreier Lymphknoten (0/1).

B 2020.16837: Exzisat (LK Nr. 9 rechts): Fibroses Weichgewebe ohne Lymphknoten.

B 2020.16838: Exzisate (LK Nr. 10 rechts): Drei tumorfreie Lymphknoten (0/3).

B 2020.16839: Exzisate (LK Nr. 7): Ein tumorfreier Lymphknoten (0/1).

B 2020.16840: Exzisate (LK Nr. 12 rechts): Zwei tumorfreie Lymphknoten (0/2).

B 2020.16841: Exzisat (LK Nr. 2 rechts): Ein tumorfreier Lymphknoten (0/1).

B 2020,16842: Exzisat (LK Nr. 4 rechts): Sechs tumorfreie Lymphknoten (0/6).

Interdisziplinärer Tumorboard-Beschluss

Verlaufskontrollen

Nachsorgeschema bei NSCLC

Gemäss internen Richtlinien und Richtlinien des National Comprehensive Cancer Network/NCCN (Version 3.2020):

- 1. postoperative Nachkontrolle 3 Monate postoperativ mit CT Thorax (i.v. KM)
- 1.-3. Jahr postoperativ: CT Thorax mit KM iv alle 6 Monate
- Ab dem 3.Jahr nur noch jährliche Kontrollen mit CT Thorax i.v. KM

RATS Oberlappenresektion - Bergebeutel

