L3VPN Troubleshooting Guide

Step 1 – Identify the Service

Action:

- Ask for either Customer Name or Service-ID.
- Use one of the following lookups:
 - o If only Customer Name is given \rightarrow search in services **DB** for the Service-ID.
 - o If Service-ID is known \rightarrow query NSO service inventory for service details.

Expected Output:

- Service details retrieved: VRF name, PE nodes, CE nodes, loopback IPs, static routes, RTs, etc.
- If no service found \rightarrow stop (cannot continue).

Step 2 – Verify CE Loopback Connectivity (Ping Test)

Action:

• From each **PE node**, ping the **remote CE loopback** (not the CE directly connected to the same PE). You can get the remote CE loopback address from the static routes configured on the PE.

Command:

ping vrf <vrf-name> <CE-loopback-ip>

Evaluation:

- **Ping succeeds** \rightarrow Mark PE–CE connectivity as **OK**.
 - If all CEs are $OK \rightarrow STOP$ (connectivity verified).
- **X** Ping fails → Record PE–CE pair as problematic.
 - o Example: if ping from PE1 to CE2 fails \rightarrow mark **PE2–CE2** as suspect.
 - o Proceed to Step 3.

Step 3 – Verify CE-to-PE Interface Status

Action:

• On the PE connected to the failing CE, check interface status.

Command:

show interface <interface-to-CE>

Evaluation:

- Interface DOWN → Root cause identified → STOP (physical/Layer1 issue).
 Interface UP → Proceed to Step 4.

Step 4 – Verify VRF-to-Interface Binding

Action:

On the same **PE**, check whether the interface is assigned to the correct VRF.

Command:

show vrf <vrf-name>

Evaluation:

- X Interface not listed → Root cause identified (VRF not bound) → STOP.
 ✓ Interface is listed → Proceed to Step 5.

Step 5 – Check MP-BGP VPNv4 Routing (Overlay)

5.1 – BGP Session Status

Action:

On the **PE connected to failing CE**, verify MP-BGP sessions with Route Reflectors (RRs).

Command:

show bgp vpnv4 unicast summary

Evaluation:

- No Established sessions → Root cause is BGP session down between PE and RR → STOP.
- **Established** → Continue to **Step 5.2**.

5.2 – Route Target (RT) Consistency

Action:

• Compare RT import/export configuration on the PE against **NSO service attributes**.

Command:

```
show ip vrf detail <vrf-name>
```

Evaluation:

- \times RT mismatch \rightarrow Root cause identified (wrong RT) \rightarrow STOP.
- RTs match \rightarrow Continue to Step 5.3.

5.3 – Route Availability in BGP

Action:

• Check if the static routes of the service are present in the **BGP VPNv4 vrf table** on all the vrf PE. You should get all the static routes configured from the service parameters. Parse the network part of the static route and locate them on the bgp vpnv4 table. ALL the static routes should be present in BGP table on all the PE nodes. Perform this action on all the PE where the VRF is defined.

Command:

```
show bgp vpnv4 unicast vrf <name of the vrf>
```

Evaluation:

- **X** One or more routes missing → Problem in redistribution of CE routes into BGP.
- ALL static routes present in BGP \rightarrow Problem is not at PE level \rightarrow Escalate to Engineering Team.

General Rules

- Always log test results:
 - o Step#
 - o Node (PE/CE)
 - Command run
 - Output summary (OK / Suspect / Fail).
- Stop troubleshooting immediately once a root cause is identified.
- Escalate if all checks pass but the issue persists.