Дифференциальная геометрия. Неофициальный конспект

Лектор: Лебедева Нина Дмитриевна Конспектировал Леонид Данилевич

III семестр, осень 2023 г.

Оглавление

1	Алг	ебраическая топология
	1.1	Применения фундаментальной группы
	1.2	Теорема Жордана
	1.3	Ретракция. Гомотопическая эквивалентность
	1.4	Гомотопическая эквивалентность
	1.5	Пары Борсука
	1.6	Клеточная пара — пара Борсука
	1.7	Гомотопическая эквивалентность и фундаментальная группа
	1.8	Накрытия
		1.8.1 Морфизмы накрытий
		1.8.2 Иерархия накрытий с общей базой
	1.9	Фундаментальные группы клеточных пространств (СW-комплексов). Теорема Зей-
		ферта — ван Кампена
		1.9.1 План
		1.9.2 Фундаментальная группа конечного графа
		1.9.3 Теорема Зейферта — ван Кампена
		1.9.4 Фундаментальные группы основных поверхностей
	1.10	Построение универсального накрытия
_		
2		фференциальная геометрия 2
	2.1	Дифференциальная геометрия кривых
	0.0	2.1.1 Параметризация кривой длиной дуги
	2.2	Кривизна плоской кривой, базис Френе
		2.2.1 Формулы Френе
		2.2.2 Поворот кривой
		2.2.3 Замкнутые кривые
	0.0	2.2.4 Выпуклые кривые на плоскости
		Кривые в старших размерностях
	2.4	Кривые в \mathbb{R}^3 , кручение кривых
	2.5	2.4.1 Скорость ухода от соприкасающейся плоскости
	2.5	Базис Френе и кривизны в \mathbb{R}^n
	2.6	2 -мерные поверхности в \mathbb{R}^3
		2.6.1 Локальная параметризация
		2.6.2 Гладкие функции на поверхности
	0.7	2.6.3 Производная по направлению
	2.7	Первая квадратичная форма поверхности
		2.7.1 І форма при замене координат
	2.0	2.7.2 Изометрии
	2.8	Вторая квадратичная форма
		2.8.1 Специальные координаты. Соприкасающийся параболоид
		2.8.2 Гауссово отображение
		2.8.3 Оператор Вайнгартена
		2.8.4 Выражение нормальной кривизны через квадратичные формы
	2.9	Формулы типа Френе

2.10	Вычисление главных кривизн и направлений в координатах	4
2.11	Ковариантная производная	4
	2.11.1 Вычисления в координатах. Символы Кристоффеля	4
	2.11.2 Зачем нужны символы Кристоффеля	4
2.12	Выпуклые поверхности	4

Глава 1

Алгебраическая топология

Лекция I 4 сентября 2023 г.

1.1 Применения фундаментальной группы

Теорема 1.1.1 (Об инвариантности размерности). \mathbb{R}^n (при n > 2) не гомеоморфно никакому открытому подмножеству $U \subset \mathbb{R}^2$.

Доказательство. Рассмотрим произвольную точку $x \in U$.

Если её удалить, то фундаментальная группа $Uackslash \{x\}$ будет нетривиальной, а $\mathbb{R}^nackslash \{pt\}$ — односвязно.

Теорема 1.1.2 (Об инвариантности края). $\mathbb{R}_{\geq 0} \times \mathbb{R}$ не гомеоморфно никакому открытому $U \subset \mathbb{R}^2$.

Доказательство. У $\mathbb{R}_{\geqslant 0} \times \mathbb{R}$ можно выкинуть граничную точку, пространство останется односвязным.

Определение 1.1.1 (Ретракция топологического пространства $X\supset A$). $f:X\to A$, такое, что $f|_A=\mathrm{id}.$

Теорема 1.1.3 (Борсук). Не существует ретракции двумерного диска D^2 на свою границу $S^1 = \partial D^2$.

 \mathcal{A} оказательство. От противного: пусть нашлась ретракция $f:D^2\to S^1$. Рассмотрим композицию $S^1\stackrel{\text{in}}{\hookrightarrow} D^2\stackrel{f}{\to} S^1$. Композиция іп о $f=\mathrm{id}_{S^1}$.

Эта композиция индуцирует гомоморфизм фундаментальных групп $\pi_1(S^1) \xrightarrow{\text{in}_*} \pi_1(D^2) \xrightarrow{f_*} \pi_1(S^1)$, причём in $_* \circ f_* = \text{id}_* = \text{id}_*$ однако фундаментальная группа диска тривиальна.

Замечание. Все предыдущие теоремы можно обобщить на случай больших размерностей, но в доказательстве будет уже не фундаментальная группа.

Теорема 1.1.4 (Брауэр). Любое непрерывное отображение $f:D^2\to D^2$ имеет неподвижную точку.

Доказательство. От противного: $\exists f: D^2 \to D^2$ без неподвижных точек.

Тогда можно построить ретракцию из диска на окружность: $x \in D^2$ отобразим в пересечение луча $f(x) \to x$ с границей ∂D^2 . Назовём построенную функцию g.

 $g|_{S^1} = \mathrm{id}$ по определению. Для проверки непрерывности запишем g формулой:

$$g(x) = f(x) + t_x(x - f(x))$$

где t_x выбирается так, что $|f(x)+t_x(x-f(x))|=1$. Таким образом, t_x — положительный (больший) корень некоего квадратного уравнения с непрерывно меняющимися коэффициентами.

Теорема 1.1.5 (Основная теорема алгебры). $\forall f \in \mathbb{C}[x], \deg f \geqslant 1 : \exists z_0 \in \mathbb{C} : f(z_0) = 0.$

Доказательство (дама с собачкой). Запишем $f(z) = z^n + a_1 z^{n-1} + \dots + a_n$.

Обозначим $g(z)=a_1z^{n-1}+\cdots+a_n$. Выберем достаточно большое $R\in\mathbb{R}$, такое, что $|z|\geqslant R\Rightarrow |z^n|>|g(z)|$.

Если z пробегает все значения одного модуля $z=R\cdot e^{it}$ по $t\in [0,2\pi]$, то «дама» z^n обходит большой круг n раз, а «собачка на поводке» g(z) находится внутри достаточно малого круга, что $z^n+g(z)$ не задевает нуль. Таким образом, $f(z)=z^n+g(z)$ пробегает некую нетривиальную петлю в $l\subset\mathbb{C}\setminus\{0\}$ (n раз оборачивающуюся вокруг нуля — можно линейно прогомотопировать в петлю z^n).

Рассмотрим гомотопию петли $\{t\mapsto R\cdot e^{it}\big|t\in[0,2\pi]\}\subset\mathbb{C}$ в точку. Композиция f с этой гомотопией создаст гомотопию петли l в точку. Но в $\mathbb{C}\backslash\{0\}$ петля l не стягиваема, значит, применение f заденет где-то 0.

Теорема 1.1.6 (Улам-Борсук). У любого $f: S^2 \to \mathbb{R}^2$ найдётся $x \in S^2: f(x) = f(-x)$.

Доказательство. Предположим противное. Рассмотрим функцию g(x) := f(x) - f(-x). Это нечётная функция (g(x) = -g(-x)), мы предполагаем, что она не обнуляется.

Сузим g на экватор сферы. $g|_{S^1}$ — нечётная петля.

Лемма 1.1.1. Нечётная петля имеет нечётный индекс (индекс — количество раз, которое петля обмоталась вокруг 0 с учётом ориентации).

Доказательство леммы.

Рассмотрим $\alpha(x) = \frac{g(x)}{|g(x)|}$ — отображение $S^1 \to S^1$, по-прежнему нечётное.

Для определения индекса петли надо рассмотреть универсальное накрытие $\mathbb{R} \xrightarrow{p} S^1$. Обозначим за $\widetilde{\alpha}: [0,2\pi] \to \mathbb{R}$ поднятие петли α $(\widetilde{\alpha}(0)=\widetilde{\alpha}(2\pi))$.

Без потери общности можно считать, что $\widetilde{\alpha}(0)=0$. Так как α нечётная, то $\widetilde{\alpha}(\pi)=\pi(2k+1)$ для некоего $k\in\mathbb{Z}$. Дальше из нечётности α получаем $\widetilde{\alpha}(2\pi)=2\pi(2k+1)$, что и значит нечётность индекса.

Аналогично предыдущей теореме, стянем экватор S^1 в точку, петля стянется в точку, значит, где-то заденет 0.

1.2 Теорема Жордана

Теорема 1.2.1 (Детская версия теоремы Жордана). Рассмотрим диск D^2 , пусть N и S — северный и южный полюса диска соответственно.

Пусть $\gamma:[0,1]\to D^2$ — путь от S до N, причём пусть $\gamma(0,1)\cap S^1=\varnothing.$

Тогда существуют $p,q\in D^2$, «достаточно близкие к границе», такие, что p и q лежат в разных компонентах связности $D^2\setminus {\rm Im}(\alpha)$.

Доказательство. Выберем p_0 на дуге NS и q_0 на дуге SN. Выберем внутри диска достаточно близко к p_0 и q_0 , точки p и q соответственно (выберем так, чтобы отрезки pp_0 и qq_0 не пересекали $Im(\gamma)$). Так можно сделать, так как $p_0, q_0 \notin Im(\gamma)$, и $Im(\gamma)$ компактно, откуда дополнение открыто.

Теперь рассмотрим замкнутую кривую $\gamma \cdot \widehat{NS}$ (обход против часовой стрелки). Индекс точки p относительно неё равен индексу относительно кривой $SN \cdot \widehat{NS}$ (так как можно прогомотопировать, не задевая p), то есть 1. Аналогично, индекс точки q относительно этой кривой равен 0, значит, эти точки лежат в разных компонентах линейной связности $D^2 \setminus \operatorname{Im}(\gamma)$.

Интересный факт (Теорема Жордана). Рассмотрим инъективное $S^1 \stackrel{\alpha}{\hookrightarrow} \mathbb{R}^2$. Тогда число компонент связности $\#(\mathbb{R}^2 \setminus \operatorname{Im}(\alpha)) = 2$.

Интересный факт (Уточнение, теорема Шёнфлиса). Эти компоненты связности гомеоморфны компонентам связности $\mathbb{R}^2 \setminus S^1$.

1.3 Ретракция. Гомотопическая эквивалентность

Напомним определение ретракции.

Определение 1.3.1 (Ретракция топологического пространства $X\supset A$). $f:X\to A$, такое, что $f|_A=\mathrm{id}.$

Теорема 1.3.1. Пусть существует $r: X \to A$ — ретракция. Тогда для отображения in : $A \to X$ индуцированный гомоморфизм фундаментальных групп in_{*} инъективен.

Доказательство. Композиция $A \stackrel{\text{in}}{\to} X \stackrel{r}{\to} A$ тождественна, значит, индуцированный гомоморфизм фундаментальных групп тождественен, значит, никакие точки при in_* не склеились.

Определение 1.3.2 (Деформационная ретракция $X \supset A$). Гомотопия $H: X \times [0,1] \to X$, такая, что $\forall x \in X: H(x,0) = x$, и $\forall a \in A: H(a,_) = a$, причём $H(_,1) = A$.

Замечание. Условие $\forall a \in A: H(a,_) = a$ можно ослаблять: некоторые определения не такие сильные — требуют $H(a,t) \in A$ или даже только H(a,1) = a.

Лекция II 11 сентября 2023 г.

Предостережение (Проблемы с доказательством теоремы Жордана). Длина кривой может быть бесконечной. Кривая может бесконечно закручиваться, как спираль, внутрь себя (нет?) Легко заменить кривую на ломаную может не получиться, так как будут возникать самопересечения.

Лемма 1.3.1. Пусть p,q — концы пути γ , причём петля α не пересекается c носителем пути γ . Тогда $\operatorname{ind}_p(\alpha) = \operatorname{ind}_q(\alpha)$.

Доказательство. Рассмотрим гомотопию $H(x,t)=\alpha(x)-\gamma(t)$. Это непрерывная деформация α , которая не задевает 0, значит, индексы p и q равны.

Теорема 1.3.2 (Шёнфлис, для ломаных). Пусть α — замкнутая несамопересекающаяся ломаная с вершинами A_1, \ldots, A_n .

Тогда плоскость бьётся на две компоненты связности, одна гомеоморфна $B_1(0)$, другая — $\mathbb{R}^2 \setminus D_1(0)$.

Доказательство.

• Докажем, что компонент связности $\mathbb{R}^2 \setminus \text{Im}(\alpha)$ не больше 2. Зафиксируем точку p на границе, у неё есть окрестность, гомеоморфная B_2 без диаметра.

Любую другую точку q можно соединить с этой окрестностью путём, не пересекающим ${\rm Im}(\alpha)$ — подойдём достаточно близко к кривой, дальше будем идти вдоль неё.

Так как компонент связности B_2 без диаметра две, то и компонент связности $\mathbb{R}^2 \setminus \operatorname{Im}(\alpha)$ не больше 2.

• Пусть l — прямая, не параллельная $A_i A_{i+1}$ для всех пар соседних точек (индекс берётся по модулю $n, A_{n+1} = A_1$).

Пусть N — нормаль к l. Определим функцию высоты $h(p) = \langle N, p \rangle$. Все отрезки вида $A_i A_{i+1}$ не параллельны прямой l, их концы имеют разную высоту.

Зафиксируем высоту h, рассмотрим точки пересечения B_1, \ldots, B_k ломаной α с линией уровня h. Каждой вершине B_1, \ldots, B_k сопоставим чётность — 0, если в окрестности этой вершины уровни ломаной всегда не больше (или не меньше), чем уровень данной точки. Иначе — если уровень ломаной меняет знак в данной вершине — присвоим чётность 1.

Каждой точке на линии уровня h присвоим чётность, равную сумме (в $\mathbb{Z}/2\mathbb{Z}$) чётностей вершин левее. Точки с чётностями 0 лежат снаружи ломаной, с чётностями 1 — внутри.

По построению очевидно, что точки разных чётностей лежат в разных компонентах связности $\mathbb{R}^2 \setminus \operatorname{Im}(\alpha)$ (отображение $\mathbb{R}^2 \setminus \operatorname{Im}(\alpha) \to \{0,1\}$, сопоставляющее точке уровень непрерывно, что проверяется ручками), а так как компонент связности не больше 2, то их ровно 2.

• Докажем, что множество «нечётных точек» гомеоморфно B_2 . Для этого триангулируем их замыкание — «нечётные точки», объединённые с $\operatorname{Im}(\alpha)$.

Проведя все линии уровня для $h \in \{h(A_1), \dots, h(A_n)\}$, мы получим разбиение на множество треугольников и трапеций — трапеции несложно триангулировать.

Склейка множества треугольников по рёбрам, как известно, даёт сферу с ручками, дырками и плёнками.

Плёнки получиться не могут — они неориентируемы, а \mathbb{R}^2 ориентируема. Но и ручки получиться не могут — в предположении, что из плоскости получилось вырезать ручку, мы можем устроить (не деформационную) ретракцию из плоскости на окружность, что противоречит тому, что у окружности фундаментальная группа больше. Для этого представим ручку, как тор с дыркой — $S^1 \times S^1$ с дыркой. Ретракция на окружность устроена отбрасыванием второй координаты.

У каждой дырки есть компонента края. То, что дырок ровно одна, понятно из того, что край — как-раз-таки только та (связная) ломаная α .

1.4 Гомотопическая эквивалентность

Пусть X, Y — топологические пространства.

Определение 1.4.1 (Гомотопически обратные отображения). Отображения $f: X \to Y, g: Y \to X$, такие, что $f \circ g \sim \mathrm{id}_Y$ и $g \circ f \sim \mathrm{id}_X$.

Определение 1.4.2 (Гомотопически эквивалентные пространства). Такие X,Y, что $\exists f: X \to Y, g: Y \to X$ — гомотопически обратные отображения.

Обозначается $X \sim Y$.

Теорема 1.4.1. Пусть X — деформационный ретракт Y (достаточно самого слабого определения). Тогда $X \sim Y$.

Доказательство. Пусть $H(_,1) = \tau : Y \to X$ — ретракция, in : $X \to Y$ — включение.

Докажем, что τ и in — гомотопически обратные.

- $\tau \circ \text{in} = \text{id}_X$, поэтому и гомотопически эквивалентно X.
- in $\circ \tau \sim \mathrm{id}_Y$ по определению деформационной ретракции.

Примеры (Гомотопически эквивалентные пространства).

- $[0,1] \sim [0,1] \times [0,1]$ отрезок является деформационным ретрактом квадрата.
- ullet $S^1\sim$ лист Мёбиуса.
- Точка гомотопически эквивалентна дереву.
- Две разные (одномерные) восьмёрки гомотопически эквивалентны, потому что они ретракты третьей (двумерной) восьмёрки (1.1).

П

Рис. 1.1: Восьмёрки

Теорема 1.4.2. Гомотопическая эквивалентность — отношение эквивалентности.

Доказательство.

- Рефлексивность: $X \sim X$, так как id_X и id_X гомотопически обратные.
- Симметричность заложена в определение.

• Транзитивность: пусть $X \overset{f}{\underset{h}{\rightleftarrows}} Y \overset{g}{\underset{i}{\rightleftarrows}} Z$, где $g \circ i, i \circ g, f \circ h$ и $h \circ f$ гомотопны постоянным отображениям соответствующего пространства. Таким образом, так как $i \circ g \sim \mathrm{id}_Y$, то

$$h \circ (i \circ g) \circ f \sim h \circ f \sim \mathrm{id}_X$$

Аналогично $q \circ f \circ h \circ i \sim \mathrm{id}_Z$.

1.5 Пары Борсука

Определение 1.5.1 ((X,A) — пара Борсука). $A\subset X$, причём $\forall Y:\forall f:X\to Y:\forall H:A\times I\to Y:$ если $H(_,0)=f\big|_A(_)$, то гомотопию можно продолжить: $\exists \widetilde{H}:X\times I\to Y,$ такая что $\widetilde{H}\big|_{A\times I}=H,$ причём $\widetilde{H}(_,0)=f(_).$

Лекция III

18 сентября 2023 г.

В некотором смысле, практически все пары пространства-подпространства, которые естественно придумать, являются парой Борсука. Например, парами Борсука являются пары клеточного пространства и его клеточного подпространства (1.6.1)

Определение 1.5.2 (Локально компактное пространство X). $\forall x \in X : \exists U \ni x : \operatorname{Cl} U$ компактно.

Факт 1.5.1. Пусть $X \supset A$, причём B локально компактно. Тогда $(X/A) \times B \cong (X \times B)/_{\sim}$, где $\forall a_1, a_2 \in A, b \in B : (a_1, b) \sim (a_2, b)$.

Доказательство. Равенство множеств проверить несложно, но чтобы проверить гомеоморфизм топологических пространств, надо воспользоваться локальной компактностью.

Этот факт из общей топологии мы доказывать не будем.

Замечание. A — стягиваемо $\iff \exists a \in A \colon \{a\}$ — деформационный ретракт A в самом слабом смысле.

Теорема 1.5.1. Пусть (X, A) — пара Борсука. Если A стягиваемо, то $X \sim X/A$.

 \mathcal{Q} оказательство. Пусть $\mathcal{F}^*:A imes I o A$ — гомотопия, стягивающая A в точку $a\in A$ (таким образом $\mathcal{F}^*ig|_{A imes\{0\}}=\mathrm{id}_A$ и $\mathcal{F}^*ig|_{A imes\{1\}}=a$)

Положим в качестве $\mathcal{F}: X \times I \to X$ гомотопию, продолжающую \mathcal{F}^* так, что $\mathcal{F}\big|_{X \times \{0\}} = \mathrm{id}_X$ (такая найдётся по определению пары Борсука).

Так как $\forall t \in I : \mathcal{F}(A,t) \subset A$, то $(p \circ \mathcal{F})(A,t) = p(A)$ (p(A) — одноточечное множество), и $p \circ \mathcal{F}$ пропускается через фактор: $\exists !$ непрерывное $\widetilde{\mathcal{F}} : (X \times I)/_{\sim}$, делающее диаграмму коммутативной.

$$\begin{array}{ccc} X\times I & \stackrel{\mathcal{F}}{\longrightarrow} X \\ & \downarrow/_{\sim} & & \downarrow p \\ (X\times I)/_{\sim} & \stackrel{\widetilde{\mathcal{F}}}{\longrightarrow} X/A \end{array}$$

Отождествляя $(X \times I)/_{\sim} \cong (X/A) \times I$, получаем $\widetilde{\mathcal{F}}: (X/A) \times I \to X/A$, $\widetilde{\mathcal{F}}(_,0) = \mathrm{id}_{X/A}$.

Так как $\mathcal{F}(A,1)=a$, то можно пропуститься через фактор: $\exists q: X/A \to X: q \circ p = \mathcal{F}(\underline{\ },1).$

Таким образом, $q\circ p\sim \mathrm{id}_{X/A}$ (гомотопией является $\widetilde{\mathcal{F}}$) и $p\circ q\sim \mathrm{id}_X$ (гомотопией является \mathcal{F}). \square

1.6 Клеточная пара — пара Борсука

Факт 1.6.1. Пусть A замкнуто в X (необязательное условие, без которого сложнее, и без которого нужна хаусдорфовость X).

Рассмотрим пространство $X \times I$. $A \subset X$ — пара Борсука, если $(X \times \{0\}) \cup (A \times I)$ — ретракт $X \times I$.

Доказательство. Обозначим данную ретракцию за $\rho: X \times I \to (X \times \{0\} \cup A \times I)$. Чтобы показать, что (X,A) — пара Борсука, рассмотрим произвольное $f: X \to Y$, рассмотрим гомотопию $H: A \times I \to Y$, такую, что $H\big|_{A \times \{0\}} = f\big|_A$.

Необходимо показать существование продолжения гомотопии $\widetilde{H}: X imes I o Y$. Подойдёт

$$\widetilde{H}:(x,t)\mapsto \begin{cases} f(\widetilde{x}), & \rho(x)=(\widetilde{x},0)\in X\times\{0\}\\ H(a,t), & \rho(x)=(a,t)\in A\times I \end{cases}$$

Непрерывность \widetilde{H} следует из замкнутости A в X.

Замечание. В обратную сторону тоже верно.

Замечание. $(D^n, \partial D^n) = (D^n, S^{n-1})$ — пара Борсука.

Доказательство. Цилиндр $D^n \times I$ легко можно стянуть на «стакан» $(D^n \times \{0\}) \cup (S^{n-1} \times I)$.

Пусть y — центр шара D^n . Ретракция может быть устроена следующим образом:

$$H: D^n \times I \to (D^n \times \{0\}) \times (S^{n-1} \times I)$$

$$(x,t) \mapsto \begin{cases} \left(y + (x-y) \cdot \frac{1}{d(x,y)}, \frac{1}{d(x,y)}\right), & \frac{2-t}{d(x,y)} \leqslant 2\\ \left(y + (x-y) \cdot \frac{2}{2-t}, 0\right), & \frac{2-t}{d(x,y)} \geqslant 2 \end{cases}$$

Иначе говоря, берётся произведение диска $D^n \subset \mathbb{R}^n$ с отрезком [0,2], в качестве стакана выбирается $(D^n \times \{0\}) \cup (\partial D^n \times [0,1])$, после чего все точки $x \in D^n \times [0,1]$ переходят в пересечение луча $(y,2) \to x$ и стакана.

 $\it Замечание.$ Если (X,A) и (A,B) — пары Борсука, то (X,B) — пара Борсука.

Доказательство. Прямо из определения. Пусть $f: X \to Y, \ H: B \times I \to Y$ — отображение и гомотопия, которые надо продолжить $f|_B = H|_{B \times \{0\}}$.

Так как (A,B) — пара Борсука, то $\exists H_1: A\times I \to Y$, такая, что $H_1\big|_{B\times I} = H, H_1\big|_{A\times\{0\}} = f\big|_A$.

Так как (X,A) — пара Борсука, то $\exists H_2: X \times I \to Y$, такая, что $H_2\big|_{A \times I} = H_1, H_2\big|_{X \times \{0\}} = f.$

Факт 1.6.2. Приклеим n-мерную клетку D^n по её границе c помощью $f:\partial D^n\to X$. Назовём результат склейки $Y\coloneqq X\sqcup_f D^n$. Утверждается, что тогда (Y,X) — пара Борсука.

Доказательство. Докажем (1.6.1).

 $Y \times I = (X \sqcup_f D^n) \times I \underset{1.5.1}{=} ((X \sqcup D^n) \times I)/_{\sim}$, где \sim порождено $(x,t) \sim (f(x),t)$ $(x \in \partial D^n, t \in I)$. Совместив ретракцию $D^n \times I$ на стакан $D^n \times \{0\} \cup \partial D^n \times I$ и $\mathrm{id}_{X \times I}$, получим ретракцию

$$\phi: (X \sqcup D^n) \times I \to X \times I \sqcup \underbrace{(D^n \times \{0\} \cup \partial D^n \times I)}_{\mathsf{CTAKAH}}$$

9

 ϕ пропускается через фактор: \exists ретракция $\widetilde{\phi}: (X\sqcup_f D^n) \times I \to (X \times I \sqcup \underbrace{D^n \times \{0\} \cup \partial D^n \times I})/_{\sim}$. \Box

Пусть X — клеточное пространство, $A\subset X$ — замкнутое подпространство, состоящее из целого числа клеток.

Следствие 1.6.1. Клеточное пространство X с клеточным подпространством $A \subset X$ — пара Борсука.

 $\ensuremath{\mathcal{L}}$ оказательство. Индукция по построению клеточного пространства — приклеивая клетку к X, мы можем либо приклеить, либо не приклеить, эту клетку к A, в обоих случаях пара останется парой Борсука.

Согласно транзитивности пар Борсука на выходе получится пара Борсука.

1.7 Гомотопическая эквивалентность и фундаментальная группа

Пусть $\gamma:I\to X$ путь, такой, что $p\coloneqq\gamma(0), q\coloneqq\gamma(1).$

Тогда $T_{\gamma}: \pi_1(X,p) \to \pi_1(X,q); [\alpha] \mapsto [\gamma \alpha \gamma^{-1}]$ — изоморфизм фундаментальных групп.

Теорема 1.7.1. Фундаментальные группы гомотопически эквивалентных пространств изоморфны.

Доказательство. Пусть $f: X \to Y, g: Y \to X$ — отображения из определения гомотопических эквивалентностей.

Пусть $f(x_0) = y_0$. Тогда f индуцирует гомоморфизм прямого образа $f_* : \pi_1(X, x_0) \to \pi_1(Y, y_0)$.

Чтобы проверить, что f_* — изоморфизм групп, проверим, что это биекция. $g \circ f \sim \mathrm{id}_X$. Тогда соответствующие петли тоже получаются свободно гомотопными.

Проверим, что петли свободно гомотопны: рассмотрим петлю $\gamma(t)\coloneqq h_t(x_0)$, где h_t — гомотопия, соединяющая $g\circ f$ и id_X . $[\alpha]=(T_\gamma\circ g_*\circ f_*)([\alpha])$, откуда $T_\gamma\circ g_*\circ f_*=\mathrm{id}$.

Воспользуемся тем, что T_{γ} — биекция ($T_{\gamma} \circ T_{\gamma^{-1}} = \mathrm{id}$). Таким образом, у f_* имеется обратный слева, у g_* — обратный справа. Но аналогично у f_* имеется обратный справа, у g_* — обратный слева, значит, это биекции.

1.8 Накрытия

Определение 1.8.1 (Накрытие). Непрерывное отображение $p:Y\to X$, такое что $\forall x\in X:\exists U\ni x$ — правильная окрестность, такая, что $p^{-1}(U)=\bigcup_{\alpha\in\Lambda}V_\alpha$, причём $\forall \alpha\in\Lambda:p\big|_{V_\alpha}$ — гомеоморфизм на U.

Определение 1.8.2 (Поднятие отображения $f:Z\to X$ в накрытии). Такое $\widetilde{f}:Z\to Y$, что $f=p\circ\widetilde{f}$.

$$Z \xrightarrow{\widetilde{f}} X$$

$$X$$

Не у всякого отображения есть поднятие (например, при двулистном накрытии окружности собой нет поднятия у тождественного отображения окружности в себя). В прошлом семестре мы доказали, что если в X есть стягиваемая петля, то её поднятие — тоже стягиваемая петля.

Определение 1.8.3 (Петли, которые размыкаются при поднятии). Пути $\widetilde{\gamma}:[0,1]\to X$ (являющиеся петлями, то есть $\widetilde{\gamma}(0)=\widetilde{\gamma}(1)$), такие, что для поднятия $\gamma\colon\gamma(0)\neq\gamma(1)$.

Факт 1.8.1. Для любого накрытия $p:Y \to X$: p_* — инъекция.

Доказательство. Если $\exists \alpha: p_*([\alpha]) = 0$, то $p([\alpha])$ — стягиваемая петля, откуда α — тоже, то есть $[\alpha] = e$.

Определение 1.8.4 (Группа накрытия). Образ ${\rm Im}(p_*) \leqslant \pi_1(X,x_0)$. Группа накрытия может зависеть от отмеченной точки x_0 .

Определение 1.8.5 (Локально линейно связное пространство X). \forall точки и окрестности $x \in U \subset X$: \exists линейно связная подокрестность $V: x \in V \subset U$.

Контрпримеры (Локально линейно связные и линейно связные пространства).

- Конус над $\left\{\frac{1}{n}\right\}_{n=1}^{\infty} \cup \{0\}$ линейно связен, но не локально линейно связен.
- Любое несвязное многообразие связно локально, но несвязно.

Лекция IV 25 сентября 2023 г.

Пусть X,Y — линейно связны, Z — линейно связное и локально линейно связное пространство. Рассмотрим накрытие с базой X и накрывающим Y.

Теорема 1.8.1. Зафиксируем $z_0 \in Z$ и $y_0 \in p^{-1}(f(z_0))$. Следующие условия равносильны:

- У f найдётся единственное поднятие $\widetilde{f}:Z\to Y$, такое что $\widetilde{f}(z_0)=y_0.$
- $\operatorname{Im}(f_*) \subset \operatorname{Im}(p_*)$.

$$Z \xrightarrow{\widetilde{f}} X$$

$$X$$

Доказательство.

- \Rightarrow . $f_* = p_* \circ \widetilde{f}_*$.
- \Leftarrow . Пусть $\operatorname{Im} f_* \subset \operatorname{Im} p_*$.
 - Рассмотрим $z\in Z$, соединим с z_0 каким-то путём γ ($\gamma(0)=z_0,\gamma(1)=z$). Путь $f\circ\gamma:[0,1]\to X$ поднимается до какого-то пути $\alpha:[0,1]\to Y,\alpha(0)=y_0$ единственным образом, положим $\widetilde{f}(z)=\alpha(1)$.

Понятно, что из коммутативности диаграммы нельзя выбрать $\widetilde{f}(z)$ чем-нибудь другим, то есть поднятие можно определить так, и если определение корректно, то поднятие единственно.

- Проверим корректность определения: поднятие z не зависит от пути. Пусть z_0 и z соединяются двумя путями α и β . Тогда $f \circ (\alpha \beta^{-1})$ петля с началом в x_0 . Так как $[f \circ (\alpha \beta^{-1})] \in \operatorname{Im}(p_*)$, то эта петля не размыкается при поднятии.
- Пусть $z\mapsto \widetilde{f}(z)$. Рассмотрим любую $U\ni \widetilde{f}(z)$. Для проверки непрерывности \widetilde{f} надо проверить, что $\exists W\ni z:\widetilde{f}(W)\subset U.$

Пусть U' — правильно накрывающая окрестность, содержащая $\widetilde{f}(z)$, $p:U'\cong V$ — гомеоморфизм. Заменим U' на $U'\cap U$ и V на $V\cap p(U)$. Теперь $p:U'\cong V$ — гомеоморфизм подокрестности U и куска X. Берём прообраз $W_0:=f^{-1}(V)$, это открытое множество, из коммутативности диаграммы $p\circ \widetilde{f}(W_0)\subset V$. Выберем линейно связную подокрестность $W\subset W_0$, содержащую z. Из предыдущего равенства $p\circ \widetilde{f}(W)\subset V$, но так как V — правильно накрываемая окрестность, то $\widetilde{f}(W)$ бьёт в дизъюнктное объединение прообразов V при гомеоморфизмах, полученных из накрытия p.

При этом можно убедиться, что на самом деле $\widetilde{f}(W)\subset U'$: рассмотрим $w\in W$. Соединим z и w путём γ ($\gamma(0)=z$), так, что $\mathrm{Im}(\gamma)\subset W$. Этот путь поднимается до пути $\widetilde{f}\circ\gamma$ в Y, причём $\mathrm{Im}(\widetilde{f}\circ\gamma)\subset p^{-1}(V)$. Так как $\widetilde{f}\circ\gamma$ — путь, то его концы лежат в одной компоненте связности $p^{-1}(V)$, то есть на деле в U'.

Определение 1.8.6 (Микроодносвязное или полулокально односвязное пространство X). $\forall x \in X : \exists U \ni x$: все петли, лежащие в U, стягиваемы в X.

Ниже считаем, что все пространства «хорошие»: линейно связные, локально линейно связные, микроодносвязные.

1.8.1 Морфизмы накрытий

Рассмотрим два накрытия с общей базой, пусть у каждого из трёх пространств отмечена некоторая точка (и морфизмы отображают отмеченную точку в отмеченную точку).

$$(Y, y_0) \xrightarrow{f} (Z, z_0)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad$$

Определение 1.8.7 (Морфизм накрытий). Отображение f, делающее диаграмму выше коммутативной.

 $\it Замечание.$ Требование непрерывности $\it f$ можно опустить, так как оно следует из доказательства $\it 1.8.1.$

Теорема 1.8.2. $\exists !$ морфизм накрытий $f \iff \operatorname{Im}(p_*) \subset \operatorname{Im}(q_*)$.

$$\square$$
 Доказательство. 1.8.1

Следствие 1.8.1. Если p- универсальное накрытие, то \forall накрытия $q:\exists$ морфизм $f:p\to q$.

Теорема 1.8.3. Для хороших пространств универсальное накрытие существует и единственно с точностью до автоморфизма накрытий.

Доказательство. Вероятно, доказательство было не на этой лекции, а сильно позже.

Определение 1.8.8 (Автоморфизм накрытия $p:Y\to X$). Такой гомеоморфизм f, что диаграмма коммутативна.

$$(Y, y_1) \xrightarrow{f} (Y, y_2)$$

$$(X, x_0)$$

В данной категории объекты — накрытия $p:Y \to X$ без отмеченной точки.

Примеры (Автоморфизмы).

ullet Два накрытия $(\mathbb{R},0) o S^1$ и $(\mathbb{R},2\pi) o S^1$ изоморфны сдвигом

$$f: (\mathbb{R}, 0) \to (\mathbb{R}, 2\pi)$$

 $x \mapsto x + 2\pi$

• В накрытии букета окружностей диаграммой свободной группы на двух образующих можно отметить любую вершину графа валентности 4.

Определение 1.8.9 (Группа скольжения p). Группа автоморфизмов накрытия p. Обозначается $\operatorname{Aut}(p)$.

Теорема 1.8.4. Если накрытие $p:Y\to X$ универсально, то $\forall y_1,y_2\in p^{-1}(x_0):\exists!$ автоморфизм накрытия, такой, что $f:f(y_1)=y_2.$

Доказательство. 1.8.1.

Теорема 1.8.5. Пусть дано накрытие $p: Y \to X$. Следующие условия равносильны

- $\forall y_1, y_2 \in p^{-1}(x_0)$ существует автоморфизм $f: f(y_1) = y_2$
- $\operatorname{Im}(p_*) \leqslant \pi_1(X)$.

Доказательство. Образы фундаментальных групп $\pi_1(Y,y_1)$ и $\pi_1(Y,y_2)$ при действии p_* сопряжены. В самом деле, пусть γ — путь от y_2 до y_1 . Пусть α — петля с началом в y_1 . Петле $p(\alpha)$ поставим в соответствие петлю $p(\gamma\alpha\gamma^{-1})$.

Из теоремы о поднятии автоморфизм накрытий существует, если $\forall y_1, y_2 \in p^{-1}(x_0) : \operatorname{Im}_{y_1}(p_*) = \operatorname{Im}_{y_2}(p_*)$ (выполнено включение в обе стороны), а это верно, если подгруппа нормальна.

Если же подгруппа не нормальна, то найдётся петля, которой можно сопрячь образы так, чтобы они различались, тогда автоморфизма не будет существовать.

Определение 1.8.10 (Регулярное накрытие). Накрытие, $p: Y \to X$ о котором идёт речь в теореме 1.8.5, то есть $\mathrm{Im}(p_*) \leqslant \pi_1(X)$.

Примеры.

- Двулистное накрытие букета двух окружностей склейкой трёх окружностей регулярно 1.2.
- Трёхлистное накрытие букета двух окружностей склейкой четырёх окружностей нерегулярно (разные отмеченные точки неравноправны, нет автоморфизма, переводящего точку одного цвета в точку другого цвета) 1.3

Рис. 1.2: Двулистное накрытие

Рис. 1.3: Трёхлистное накрытие

Теорема 1.8.6.

- Если накрытие $p: Y \to X$ универсально, то группа автоморфизмов накрытия $\mathrm{Aut}(p)$ совпадает с фундаментальной группой пространства X.
- Для произвольного регулярного накрытия $\operatorname{Aut}(p) = \pi_1(X)/\operatorname{Im}(p_*)$ (факторгруппа существует, так как $\operatorname{Im}(p_*)$ нормальная подгруппа; это же влечёт, что $\operatorname{Im}(p_*)$ не зависит от выбранной точки).

Доказательство. Докажем второй пункт, первый из него следует. Зафиксируем $y_0 \in Y : p(y_0) = x_0$. Ниже определим гомоморфизм групп $\mathcal{F} : \pi_1(X) \to \operatorname{Aut}(p)$.

Рассмотрим произвольную петлю γ с концом в x_0 . Её поднятие — путь, соединяющий y_0 с некой точкой y. Так как $p(y)=x_0$, а накрытие регулярно, то найдётся автоморфизм накрытия τ , такой что $\tau(y_0)=y$. Положим $\mathcal{F}([\gamma])=\tau$.

Проверим, что

- 1. \mathcal{F} гомоморфизм. Рассмотрим петли γ, γ' образы путей $\widetilde{\gamma}$ и $\widetilde{\gamma}'$, соединяющих y_0 с y и y' соответственно. Точкам y и y' соответствуют автоморфизмы τ и τ' соответственно.
 - Рассмотрим путь $\tau \circ \widetilde{\gamma}'$, он соединяет точку y' с некой точкой, пусть это y''. Заметим, что $\mathcal{F}([\gamma] \cdot [\gamma'])$ это автоморфизм, переводящий y в y'', но он же равен $\mathcal{F}([\gamma]) \cdot \mathcal{F}([\gamma']) = \tau \circ \tau'$.
- 2. \mathcal{F} корректно определено и сюръективно, так как каждой точке $y \in p^{-1}(x_0)$ соответствует единственный морфизм $\tau : \tau(y_0) = y$.
- 3. $\operatorname{Ker}(\mathcal{F}) = \operatorname{Im}(p_*)$, так как $[\alpha] \in \operatorname{Ker}(\mathcal{F}) \iff$ при поднятии α не размыкается, а такие петли и составляют $\operatorname{Im}(p_*)$.

Определение 1.8.11 (Группа G действует на топологическом пространстве X). \exists гомоморфизм групп $G \to \operatorname{Homeo}(X)$, где $\operatorname{Homeo}(X)$ — группа гомеоморфизмов пространства X.

Назовём эквивалентными элементы $x_1, x_2 \in X$, если $\exists g \in G : g(x_1) = x_2$. Так как G — группа, то эквивалентными названы элементы одной орбиты, это действительно отношение эквивалентности. Примеры.

- $\mathbb{R} \curvearrowright S^1$ действие поворотами. Все точки S^1 эквивалентны.
- Действие целочисленными сдвигами $\mathbb{Z}^2 \curvearrowright \mathbb{R}^2$ порождает тор, как факторпространство: $\mathbb{R}^2/\mathbb{Z}^2 = T^2$.

$\prod_{2 \text{ октября } 2023 \text{ г.}} V$

Пусть имеется действие группы на топологическом пространстве $G \curvearrowright X$.

Определение 1.8.12 (Действие $G \curvearrowright X$ — накрывающее). $\forall x \in X : \exists U \ni x : \{gU\}_{g \in G}$ дизъюнктны. Примеры.

ullet Универсальное накрытие $\widetilde{X} o X$. Группа автоморфизмов накрытия действует накрывающе.

Теорема 1.8.7. Если $G \curvearrowright X$ — накрывающее, то $p: X \to X/G$ — накрытие.

Доказательство. Рассмотрим $x \in X$. Так как действие накрывающее, то $\exists U \ni x$, такая, что $\{gU\}_{g \in G}$ дизъюнктны. Тогда p(U) — правильно накрываемая окрестность $p(x) \in X/G$.

В самом деле, $p^{-1}(p(U)) = \coprod_{g \in G} gU$.

Осталось проверить, что p(U) открыто. Это общий факт про действие групп — образ открытого множества открыт. В самом деле, $p^{-1}(p(U)) = \bigcup_{g \in G} gU$, что открыто, откуда p(U) открыто (по определению V открыто в $X/_{\sim} \iff p^{-1}(V)$ открыто в X).

Следствие 1.8.2. Если G действует накрывающе, и X односвязно, то $G \sim \pi_1(X/G)$.

Доказательство. Накрытие $X \to X/G$ универсально, откуда группа автоморфизмов накрытия (G) совпадает с фундаментальной группой X/G (1.8.6).

Теорема 1.8.8. Пусть X — хорошее пространство (существует универсальное накрытие).

Тогда $\forall N \leqslant \pi_1(X): \exists !$ накрытие $p:Y \to X$, такое, что $p_*(\pi_1(Y)) = N$. Единственность накрытия предполагается, как и следует, с точностью до изоморфизмов.

Доказательство. Пусть $p_0: \widetilde{X} \to X$ — универсальное накрытие. $G \coloneqq \pi_1(X) = \operatorname{Aut}(p_0)$, имеется действие $G \curvearrowright \widetilde{X}, X = \widetilde{X}/G$.

Положим $Y\coloneqq \widetilde{X}/N$, тогда $Y\to X$ — накрытие с требуемой группой. p_0 пропускается через фактор.

$$\widetilde{X}$$
 p_0
 $Y := \widetilde{X}/N$
 $X = \widetilde{X}/G$

Чтобы проверить, что $N={
m Im}(p_*)$, посмотрим, что при поднятии не размыкаются как раз петли с нужными концами. \square

Пример. Букет двух окружностей имеет группу \mathcal{F}_2 . Накрытие с группой $\mathbb Z$ факторизует по одной образующей, оставляя другую. Выглядит это примерно так:

1.8.2 Иерархия накрытий с общей базой

Пусть $\pi_1(X)\geqslant N_1\geqslant N_2$ — цепочка вложений групп, пусть $Y\to X$ — универсальное накрытие. Тогда имеется цепочка морфизмов накрытий в обратном направлении.

$$Y/\{1\} = (Y, y_0)$$

$$\downarrow^{p_0}$$

$$Y/N_2 = (Y_2, y_2)$$

$$\downarrow^{p_2}$$

$$Y/N_1 = (Y_1, y_1)$$

$$\downarrow^{p_1}$$

$$Y/\pi_1(X) = (X, x_0)$$

Здесь, например, p_2 — морфизм накрытий $p_1 \circ p_2$ и p_1 . Он же является накрытием $p_2: (Y_2, y_2) \to (Y_1, y_1)$.

1.9 Фундаментальные группы клеточных пространств (СW-комплексов). Теорема Зейферта — ван Кампена

1.9.1 План

• Начинаем с одномерного остова (букета окружностей)

- Приклеиваем двумерные клетки, ищем соотношения
- Приклеиваем клетки размерности $\geqslant 3$, докажем, что ничего не будет меняться.

1.9.2 Фундаментальная группа конечного графа

Пусть X=(V,E) — связный граф с |V|=n, |E|=m.

Тогда $\pi_1(X)$ — свободная группа \mathcal{F}_{m-n+1} .

Доказательство. Выберем в графе остовное дерево $T=\left(V,\widetilde{E}\right)$. $\widetilde{E}=n-1$. Заметим, что (X,T) — пара Борсука (клеточное пространство и подпространство).

Стягивая T в точку, получаем букет из m-(n-1)=m-n+1 окружностей. \square

1.9.3 Теорема Зейферта — ван Кампена

Некоторые определения из теории групп

Мы будем рассматривать только конечнопорождённые конечнопредставленные группы.

Напомним, что свободное произведение групп $G=\langle g_1,\ldots,g_n|\alpha_1,\ldots,\alpha_k\rangle$ и $H=\langle h_1,\ldots,h_m|\beta_1,\ldots,\beta_l\rangle$ — это группа

$$G \star H = \langle g_1, \dots, g_n, h_1, \dots, h_m | \alpha_1, \dots, \alpha_k, \beta_1, \dots, \beta_l \rangle$$

Примеры.

- Свободное произведение $\mathbb{Z} \star \mathbb{Z} = \mathcal{F}_2$.
- «Несвободное произведение» $\mathbb{Z} \oplus \mathbb{Z} = \langle a, b | [a, b] = aba^{-1}b^{-1} = 1 \rangle$.

$$G = \langle g_1, \dots, g_n | \alpha_1, \dots, \alpha_k \rangle$$

Пусть $H = \langle h_1, \dots, h_m | \beta_1, \dots, \beta_l \rangle$ — группы, и зафиксированы гомоморфизмы $I: F \to G, J: F \to H$. $F = \langle f_1, \dots, f_s | \gamma_1, \dots, \gamma_r \rangle$

Определение 1.9.1 (Амальгамированное произведение). Группа

$$G \star H = \left\langle \begin{array}{ccc} g_1 & \cdots & g_n \\ h_1 & \cdots & h_m \end{array} \middle| \begin{array}{cccc} \alpha_1 & \cdots & \alpha_k \\ \beta_1 & \cdots & \beta_l \\ I(f_1) = J(f_1) & \cdots & I(f_s) = J(f_s) \end{array} \right\rangle$$

Формулировка теоремы Зейферта — ван Кампена и доказательство для клеточных пространств

Пусть $X = U \cup V$, где U, V — открыты и линейно связны, $U \cap V$ линейно связно тоже.

Выберем $x_0 \in U \cap V$, все фундаментальные группы будем рассматривать с этой отмеченной точкой.

Имеются вложения $i:U\cap V\to U, j:U\cap V\to V.$ Положим $I=i_*:\pi_1(U\cap V)\to\pi_1(U)$ и $J=j_*:\pi_1(U\cap V)\to\pi_1(V).$

Теорема 1.9.1 (Зейферт — ван Кампен). Тогда фундаментальная группа X — это

$$\pi_1(X) = \pi_1(U) \underset{\pi_1(U \cap V)}{\star} \pi_1(V)$$

амальгамированное произведение $\pi_1(U)$ и $\pi_1(V)$ по отношению к гомоморфизмам I и J.

Примеры (Примеры применения).

• При склейке по точке никаких новых соотношений не добавляется. Пусть X,Y — локально односвязны.

$$\pi_1(X \vee Y) = \pi_1(X) \star \pi_1(Y)$$

где ∨ — склейка по точке, букет.

Для доказательства надо рассмотреть некоторую окрестность точки склейки.

- Например, $\pi_1(S^1 \vee S^1) = \mathcal{F}_2$.
- При склейке сферы из двух дисков по границе получится тривиальная группа.
- 23 с практики. Для односвязных A и B и линейно связного $A \cap B$ верно, что $A \cup B$ односвязно.
- **24 с практики.** Для односвязных $A \cup B, A \cap B$ сами пространства A, B тоже односвязны.

Контример (Важность линейной связности $U \cap V$).

При склейке двух (односвязных) отрезков по концам получится окружность с нетривиальной фундаментальной группой.

Теорема 1.9.2 (О приклеивании двумерной клетки). Пусть Y — «хорошее», приклеим двумерную клетку D^2 по отображению $\alpha: \partial D^2 \to Y$. $X := Y \sqcup_{\alpha} D^2$. Тогда $\pi_1(X) = \pi_1(Y)/[\alpha]^{\pi_1(Y)}$ (где $[\alpha]^{\pi_1(Y)}$ — нормальное замыкание подгруппы $\langle [\alpha] \rangle \leqslant \pi_1(Y)$).

Доказательство из теоремы Зейферта — ван Кампена. Пусть $y \in D^2$ — центр диска. Рассмотрим $U = X \setminus \{y\}, V = B_{\frac{1}{2}}(y)$. Тогда пересечение $U \cap V$ гомотопически эквивалентно (внутри $U \cup V$) петле α , $\pi_1(V) = \{e\}$.

$$\pi_1(X) = \pi_1(Y) \underset{\langle [\alpha] \rangle}{\star} \{e\} = \pi_1(Y)/[\alpha]^{\pi_1(Y)}$$

Другое доказательство. Пусть $\alpha:S^1 \to Y, X=Y \sqcup_{\alpha} D^2, i:Y \to X, i_*:\pi_1(Y) \to \pi_1(X).$

Заметим, что i_* — эпиморфизм: используя лемму о свободной точке (появлялась при доказательстве того, что на D^n для $n\geqslant 2$ всякая петля гомотопически эквивалентна несюръективной) можно гомотопией любую петлю $\beta:S^1\to X$ привести к петле $\beta:S^1\to Y$. Для этого надо рассмотреть линейное «отталкивание» от данной свободной точки.

Теперь осталось проверить, что $\operatorname{Ker}(i_*) = [\alpha]^{\pi_1(Y)}$. Очевидно включение $[\alpha] \in \operatorname{Ker}(i_*)$, так как ядро нормально, то $[\alpha]^{\pi_1(Y)} \leqslant \operatorname{Ker}(i_*)$.

Рассмотрим накрытие $p_1:\widetilde{Y} \to Y$ с группой $\mathrm{Im}((p_1)_*) = [lpha]^{\pi_1(Y)}.$

Зафиксируем $w_0 \coloneqq \alpha(0) \in W$, и положим $W \coloneqq \operatorname{Im}(\alpha) \subset Y$, $\widetilde{W} \coloneqq p_1^{-1}(W)$. Из регулярности накрытия: $\forall \widetilde{w}_\gamma \in p_1^{-1}(w_0)$: группа накрытия с отмеченной точкой $\widetilde{w}_\gamma - \operatorname{это} \langle [\alpha] \rangle^{\pi_1(Y)}$. Так как эта группа содержит $\pi_1(W) = \langle \alpha \rangle$, то включение $W \hookrightarrow Y$ можно поднять, для точки $\widetilde{w}_\gamma \in p_1^{-1}(w_0)$ получится $\widetilde{w}_\gamma \in \widetilde{W}_\gamma \cong W$. Иными словами, \widetilde{W} состоит из нескольких компонент связности \widetilde{W}_γ , гомеоморфных W (гомеоморфизм $p_1\big|_{W_\gamma}$).

Приклеим к каждой такой компоненте связности \widetilde{W}_{γ} свой диск по отображению $\widetilde{\alpha}_{\gamma}:\partial D^2\to \widetilde{W}_{\gamma}$, и назовём склейку $\widetilde{X}\coloneqq \widetilde{Y}\sqcup_{\{\alpha_{\gamma}\}}\{D^2_{\gamma}\}$. Пусть $\widetilde{i}:\widetilde{Y}\hookrightarrow \widetilde{X}$ — включение.

Построим $p_2:\widetilde{X}\to X$, такое, что $p_2|_{\widetilde{Y}}=p_1$, и p_2 отображает тождественно $D_\gamma^2\to D^2$. Оно непрерывно, и, более того, это накрытие — в этом несложно убедиться руками, оно очень похоже на накрытие p_1 .

Теперь мы готовы доказать, что $\operatorname{Ker}(i_*) \leqslant [\alpha]^{\pi_1(Y)}$. Рассмотрим $[\beta] \notin [\alpha]^{\pi_1(Y)}$. Эту петлю можно поднять, получив разомкнутый путь $\widetilde{\beta}: [0,1] \to \widetilde{Y}$.

$$[0,1] \xrightarrow{\widetilde{\beta}} Y \xrightarrow{\widetilde{i}} \widetilde{X}$$

$$\downarrow^{p_1} \qquad \downarrow^{p_2}$$

$$\downarrow^{p_2}$$

Из коммутативности диаграммы петля $i\circ\beta$ в X при поднятии в \widetilde{X} размыкается точно так же. Значит, эта петля не стягиваема в $X, [\beta]\notin \mathrm{Ker}(i_*).$

Лекция VI 9 октября 2023 г.

Проверим, что при приклеивании клетки размерности хотя бы 3 фундаментальная группа не меняется.

Доказательство.

- Рассмотрим склейку $X = D^n \sqcup_{\phi} Y$, и в ней петлю $\alpha : [0,1] \to X$. Рассмотрим гомоморфизм вложения in : $Y \hookrightarrow X$, он индуцирует in $_* : \pi_1(Y) \to \pi_1(X)$.
- Применяя лемму о свободной точке, находим петле в X гомотопную петлю в Y, значит, in $_*$ сюръективен.
- Проверим инъективность: α стягиваема в $X\Rightarrow \alpha$ стягиваема в Y. \exists гомотопия H, стягивающая α внутри X. Найдём точку в образе D^n , не покрываемую H.

Представим $X=U\cup V$, где U — образ $B_{\frac{1}{2}}(0),\,V$ — весь X без образа $0.\,U\cap V\cong S^{n-1}\times (0,1).$

Разобьём квадрат гомотопии $[0,1] \times [0,1]$ по лемме Лебега на маленькие квадратики $K_{i,j}$, так что $H(K_{i,j}) \subset U$ или $H(K_{i,j}) \subset V$.

Обозначим $L\coloneqq\bigcup_{K_{i,j}\subset U}K_{i,j}$. Рассмотрим связные компоненты квадратиков из L, два квадратика будем считать связанными, если у них есть общая сторона. Тогда $L=\bigcup_i L_i$, где L_i объединение квадратиков, между любыми двумя из которых есть путь, в котором соседние квадратики имеют общую сторону. $\mathrm{Im}(\partial L_i)\subset U\cap V$.

Можно представить ∂L_i , как образ $\alpha_i:S^1\to [0,1]\times [0,1], \alpha_i(S^1)=\partial L_i$ (это правда только в том случае, если L_i «без дырок внутри»; если есть дырки, то их можно заклеить квадратиками, присоединив их к L_i). Так как $S^{n-1}\times (0,1)$ односвязно, то петля $H\circ \alpha$ стягиваема в $U\cap V$. Тогда внутрь петли можно вклеить диск D^2 .

Таким образом, гомотопия не задевает образ центра шара, дальше «линейным отталкиванием» выдуваем гомотопию в Y.

1.9.4 Фундаментальные группы основных поверхностей

 S_p — сфера с p ручками, S_q — сфера с q плёнками.

Склеим сферу с p ручками, как клеточное пространство.

$$\pi_1(S_p) = \langle a_1, \dots, a_p, b_1, \dots, b_p | a_1 b_1 a_1^{-1} b_1^{-1} \dots a_p b_p a_p^{-1} b_p^{-1} \rangle$$

Если посчитать абелианизацию $\pi_1(S_p)$, то есть фактор по коммутанту, то будет $\underbrace{\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}}_{2p}$.

$$\pi_1(S_q) = \langle a_1, \dots, a_q | a_1^2 \cdots a_q^2 \rangle$$

Если посчитать абелианизацию $\pi_1(S_q)$, то есть фактор по коммутанту, то будет $\mathbb{Z}/2\mathbb{Z} \oplus \underbrace{\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}}_{q-1}$.

 \mathcal{A} оказательство. В качестве системы образующих $\pi_1(S_q)^{\mathrm{ab}}$ можно взять $a_1 \cdot \ldots \cdot a_q$ и a_2, \ldots, a_q . \square

Следствие 1.9.1. Сферы с ручками и плёнками неэквивалентны друг другу.

Теорема 1.9.3. Для всякой конечнопредставленной группы $G \ni CW$ -комплекс $X : \pi_1(X) = G$.

Доказательство. Пусть $G = \langle a_1, \dots, a_n | \alpha_1, \dots, \alpha_k \rangle$.

Приклеиваем клетки к букету окружностей.

1.10 Построение универсального накрытия

Теорема 1.10.1. Для «хороших» пространств существует универсальное накрытие $p:\widetilde{X} o X$.

Доказательство. Пусть X — «хорошее», то есть линейно связное, локально линейно связное, полулокально односвязное 1.8.6.

• Построим \widetilde{X} , как множество. Зафиксируем $x_0 \in X$. Пусть $PX = \{\alpha: [0,1] \to X | \alpha(0) = x_0\}$. $\widetilde{X} = PX/_{\sim}$ — пути, профакторизованные по гомотопности, связанной на концах.

- Определим $p:\widetilde{X} \to X, p([\alpha]) = \alpha(1).$
- Введём на \widetilde{X} топологию. Назовём $U\subset X$ хорошим, если оно открыто, линейно связно, любая петля в U стягиваема в X.

Введём базу топологии для \widetilde{X} . Зафиксируем хорошее $U\subset X$.

Пусть $\alpha \in PX, \alpha(1) \in U$; обозначим через $U_{\alpha} \coloneqq \{ [\alpha s] | s$ — путь в U с началом в $\alpha(1) \} \subset \widetilde{X}.$

Лемма 1.10.1. Eсли $[\beta] \in U_{\alpha}$, то $U_{\beta} = U_{\alpha}$.

Доказательство леммы.

Пусть $\beta \sim \alpha s$. Проверим включение в обе стороны. $\forall [\gamma] \in U_{\alpha}, \gamma \sim \alpha s_1$, откуда $\gamma \sim \alpha s \cdot s^{-1} s_1$. Аналогично $U_{\beta} \subset U_{\alpha}$.

Проверим, что $\{U_{\alpha} | \alpha \in PX, U - \text{хорошее}\}$ образуют базу топологии, то есть $U_{\alpha} \cap V_{\beta} = \bigcup W_{\gamma}$ для неких W_{γ} . $\alpha(1) \in U, \beta(1) \in V$. Пусть некий $[\gamma] \in U_{\alpha} \cap V_{\beta}$, в частности, $\gamma(1) \in U \cap V$. Надо проверить, что $[\gamma]$ содержится в $U \cap V$ вместе с некой окрестностью.

В качестве W выберем хорошую окрестность $\gamma(1)$, содержащуюся в $U\cap V$ (достаточно выбрать линейно связную компоненту $U\cap V$). Достаточно проверить, что $W_{\gamma}\subset U_{\alpha}, V_{\beta}$, это правда.

• Докажем, что p — накрытие. Пусть $U \subset X$ — хорошее. $p^{-1}(U) = \bigsqcup U_{\alpha}$. В самом деле, если $U_{\alpha} \cap U_{\beta}$ непусто, то $U_{\alpha} = U_{\beta}$.

 $p^{-1}(U)$ — классы путей с концами в U. p непрерывно и открыто (проверяем на базе).

Проверим, что $p|_{U}$ — биекция. То, что это сюръекция — очевидно, почему p — инъекция?

Рассмотрим $[\gamma_1], [\gamma_2] \in U_{\alpha}$, предположим, что $p([\gamma_1]) = p([\gamma_2])$. Тогда $\gamma_1(1) = \gamma_2(1)$, и каждый из них представим в виде $\alpha \cdot s$. Тогда пути s_1 и s_2 гомотопны, потому что окрестность хорошая, и $s_1s_2^{-1}$ — петля.

• Докажем, что \widetilde{X} линейно связно. Для этого посмотрим на поднятие путей из X в \widetilde{X} . Зафиксируем в соответствии с $x_0 \in X$ постоянный путь $\widetilde{x}_0 = [\mathrm{const}_{x_0}] \eqqcolon \alpha_0 \in \widetilde{X}$.

Рассмотрим $\alpha \in PX$. У него имеется поднятие $\widetilde{\alpha}:[0,1] \to \widetilde{X}$, такое, что $\widetilde{\alpha}(0)=\alpha_0.$

Заметим, что $\widetilde{\alpha}(t)\sim lphaig|_{[0,t]}$. Таким образом, \widetilde{X} линейно связно: \widetilde{lpha} соединяет $lpha_0$ и [lpha].

• Проверим односвязность \widetilde{X} .

Пусть $\widetilde{\alpha}:[0,1] \to \widetilde{X}$ — петля. Спроецируем её: $\alpha \coloneqq p \circ \widetilde{\alpha}.$

Так как $\widetilde{\alpha}$ — петля, то $[\alpha_0]=\widetilde{\alpha}(0)=\widetilde{\alpha}(1)=[\alpha]$, то есть α — стягиваема. Но $\widetilde{\alpha}$ — поднятие α , а поднятие стягиваемой петли стягиваемо.

Кстати, мы уже доказали, что если накрытие существует, то оно единственно.

Глава 2

Дифференциальная геометрия

Лекция VII 16 октября 2023 г.

2.1 Дифференциальная геометрия кривых

Определение 2.1.1 (Гладкая функция f). Бесконечно дифференцируемая функция $f \in C^{\infty}(\mathbb{R}^n \to \mathbb{R}^m)$. Пусть (X,d) — метрическое пространство.

Определение 2.1.2 (Путь (кривая)). Непрерывное $\gamma:I\to X$, где I — выпуклое подмножество прямой. Чаще всего рассматривают I=[a,b].

Определение 2.1.3 (Гладкая кривая). Гладкое отображение $I \to \mathbb{R}^n$ (все координатные отображения гладкие).

Предостережение. Необязательно гладкое отображение выглядит гладким. График $|y|=x^{3/2}$ представим, как гладкая кривая $\gamma(t)=(t^2,t^3)$.

Определение 2.1.4 (Регулярная кривая). Гладкая кривая γ , такая, что $\forall t: |\gamma'(t)| \neq 0.$

Пусть γ_1, γ — две кривые.

Определение 2.1.5 (γ_1 — перепараметризация γ). \exists строго возрастающее ϕ : $\gamma_1 = \gamma \circ \phi$.

Для гладких кривых вводят гладкую перепараметризацию $\phi \in C^{\infty}$, $\phi' > 0$.

Определение 2.1.6 (Кривые γ_1, γ_2 эквивалентны). Существует перепараметризация ϕ . Пишут $\gamma_1 \sim \gamma_2$

Факт 2.1.1. Эквивалентность кривых — отношение эквивалентности. Аналогичный факт верен для эквивалентности гладких перепараметризаций гладких кривых.

Определение 2.1.7 (Разбиение отрезка [a,b]). Разбиение $a=t_0\leqslant \cdots \leqslant t_k=b$.

Определение 2.1.8 (Длина кривой
$$\gamma:[a,b] \to X$$
). $L(\gamma) \stackrel{def}{=} \sup_{a=t_0 \leqslant \dots \leqslant t_k=b} \sum_{i=0}^{k-1} d(\gamma(t_i),\gamma(t_{i+1}))$

Замечание. Согласно неравенству треугольника, при измельчении разбиения $\sum_{i=0}^{k-1} d(\gamma(t_i), \gamma(t_{i+1}))$ возрастает.

Определение 2.1.9 (Кривая спрямляемая). $L(\gamma) < \infty$

Пример. Неспрямляемую кривую придумать несложно. Например, соединим ломаной соседние точки в последовательности $(\alpha_n, (-1)^n \beta_n)$, где α_n, β_n — убывающие, стремящиеся к нулю, последовательности, причём $\sum_{n \geq 0} \beta_n = \infty$.

Предложение 2.1.1. $\gamma_1 \sim \gamma_2 \Rightarrow L(\gamma_1) = L(\gamma_2)$.

Утверждение 2.1.1. Если кривая γ гладкая, то $L(\gamma) = \int\limits_a^b |\gamma'(t)| \,\mathrm{d}t.$

Доказательство. Докажем неравенство в обе стороны.

• $\int_{a}^{b} |\gamma'(t)| dt \leqslant L(\gamma)$.

 γ' равномерно непрерывна. Таким образом, $\forall \varepsilon>0:\exists \delta>0:|t_1-t_2|\leqslant \delta\Rightarrow |\gamma'(t_1)-\gamma'(t_2)|<\varepsilon.$ Разобьём отрезок на $\left\lceil \frac{b-a}{\delta} \right\rceil$ частей равной длины (каждая часть имеет длины не больше δ) точками $a=t_0\leqslant \cdots\leqslant t_k=b.$

Обозначим $\phi_i(t) := \gamma'(t_i) - \gamma'(t)$. Из равномерной непрерывности $|\phi_i(t)| < \varepsilon$ на $[t_i, t_{i+1}]$.

$$\int_{t_{i}}^{t_{i+1}} (|\gamma'(t)| - \varepsilon) dt \leqslant \int_{t_{i}}^{t_{i+1}} |\gamma'(t_{i})| dt = \left| \int_{t_{i}}^{t_{i+1}} \gamma'(t_{i}) dt \right| = \left| \int_{t_{i}}^{t_{i+1}} (\gamma'(t) + \phi_{i}(t)) dt \right| \leqslant$$

$$\leqslant \left| \int_{t_{i}}^{t_{i+1}} \gamma'(t) dt \right| + \left| \int_{t_{i}}^{t_{i+1}} \phi_{i}(t) dt \right| \leqslant |\gamma(t_{i+1}) - \gamma(t_{i})| + \varepsilon |t_{i+1} - t_{i}|$$

Получаем $\int\limits_a^b |\gamma'(t)|\,\mathrm{d}t - 2\varepsilon |b-a|\leqslant L(\gamma).$ Устремим $\varepsilon \to 0.$

• $L(\gamma) \leqslant \int_{a}^{b} |\gamma'(t)| dt$.

Зафиксируем
$$a=t_0\leqslant \cdots \leqslant t_k=b$$
. Оценим $|\gamma(t_{i+1})-\gamma(t_i)|=\left|\int\limits_{t_i}^{t_{i+1}}\gamma'(t)\,\mathrm{d}t\right|\leqslant \int\limits_{t_i}^{t_{i+1}}|\gamma'(t)|\,\mathrm{d}t.$

Следствие 2.1.1. $\int\limits_{a}^{b}|\gamma'(t)|\,\mathrm{d}t$ не зависит от перепараметризации.

Теорема 2.1.1. Отрезки в \mathbb{R}^n кратчайшие. Иными словами, $\forall r,s\in\mathbb{R}^n$ отрезок

$$\alpha: [0,1] \to \mathbb{R}^n$$

$$t \mapsto r + t(s-r)$$

имеет наименьшую длину среди всех кривых (необязательно гладких), соединяющих r и s.

Доказательство. Рассмотрим путь γ , соединяющий r и s. Рассмотрим разбиение $a=t_0\leqslant t_1=b$. По определению $L(\gamma)\geqslant |\gamma(b)-\gamma(a)|$.

Теорема 2.1.2. Кратчайшие пути на сфере S^2 — дуги больших кругов.

Доказательство. Покажем, что $\forall \gamma: [a,b] \to S^2: L(\gamma) \geqslant \angle(\gamma(a),\gamma(b))$. Выберем $\varepsilon > 0$, из равномерной непрерывности γ найдётся $\delta > 0: |t_1 - t_2| \leqslant \delta \Rightarrow |\gamma(t_1) - \gamma(t_2)| < \varepsilon$.

Рассмотрим разбиение $a=t_0\leqslant \cdots \leqslant t_k=b$, такое, что $|t_{i+1}-t_i|\leqslant \varepsilon$.

$$L(\gamma) \geqslant \sum_{i=0}^{k-1} |\gamma(t_i) - \gamma(t_{i+1})| \geqslant \sum_{i=0}^{k-1} \angle(\gamma(t_i), \gamma(t_{i+1})) \cdot \frac{\varepsilon}{2 \arcsin(\varepsilon/2)} \geqslant \angle(\gamma(a), \gamma(b)) \cdot \frac{\varepsilon}{2 \arcsin(\varepsilon/2)}$$

Устремляем $\varepsilon \to 0$.

2.1.1 Параметризация кривой длиной дуги

Пусть $\gamma: [a, b] \to X$, где (X, d) — метрическое пространство.

Определение 2.1.10 (Натуральная параметризация). Такая параметризация γ , что $\forall t_1, t_2 \in [a,b]$: $L\left(\gamma\big|_{[t_1,t_2]}\right) = t_1 - t_2$.

Утверждение 2.1.2. Гладкая кривая параметризована натурально $\iff |\gamma'| \equiv 1.$

Доказательство.

- \Rightarrow . Если $\exists t_0: \gamma'(t_0)=1+\delta$, то $\exists \varepsilon>0: |t-t_0|<\varepsilon\Rightarrow |\gamma'(t)|-|\gamma'(t_0)|\leqslant \frac{\delta}{2}$. Тогда так как длина интеграл модуля производной, то в ε -окрестности t_0 не выполняется определение натуральной параметризации.
- ←. Длина интеграл модуля производной.

Теорема 2.1.3. Для любой регулярной кривой существует натуральная параметризация. Эта параметризация единственна с точностью до сдвига на константу: если $\gamma:[a,b]\to X$ — натуральная параметризация, то натуральной параметризацией является ещё и

$$\widetilde{\gamma}: [a+c,b+c] \to X$$

$$t+c \mapsto \gamma(t)$$

Доказательство. Пусть $\gamma:[a,b]\to\mathbb{R}^n$.

Предъявим натуральную параметризацию: $s:[a,b] \to [0,L(\gamma)]$ $s(t) = L\left(\gamma\big|_{[a,t]}\right) = \int\limits_a^t |\gamma'(t)| \,\mathrm{d}t.$

 $s'(t) = |\gamma'(t)| > 0$, поэтому s — валидная перепараметризация.

Положим $\gamma_1 = \gamma \circ s^{-1}$.

$$\gamma_1' = (\gamma \circ (s^{-1}))' = \gamma' \cdot \frac{1}{s'} \quad \Rightarrow \quad |\gamma_1'| = \frac{|\gamma'|}{|\gamma'|} = 1$$

Если же есть две перепараметризации $\gamma_1=\gamma_2\circ\phi$, то $|\gamma_1'|=|\gamma_2'|\cdot|\phi'|$, откуда $|\phi'|=1$. Используя $\phi'>0$, получаем, что ϕ — сдвиг на константу.

Утверждение 2.1.3 (Правило Лейбница). Пусть $A: I \to \mathbb{R}^n, B: I \to \mathbb{R}^m$; пусть $*: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^k$ — билинейно. Тогда у отображения $A*B: I \to \mathbb{R}^k$ производная считается по правилу

$$(A * B)' = A' * B + A * B'$$

Доказательство.

$$\lim_{t \to t_0} (A(t) * B(t) - A(t_0) * B(t_0)) = \lim_{t \to t_0} A(t) * (B(t) - B(t_0)) + \lim_{t \to t_0} (A(t) - A(t_0)) * B(t_0) = A(t_0)B'(t_0) + A'(t)B(t_0)$$

Примеры.

• В качестве * может выступать скалярное произведение, векторное произведение, умножение вектора на число (и вообще умножение матриц)...

2.2 Кривизна плоской кривой, базис Френе

Далее везде считаем, что кривая $\gamma:[a,b]\to\mathbb{R}^2$ параметризована натурально, то есть $|\gamma'|=1$. Будем обозначать $v=\overrightarrow{v}=\gamma'$ — вектор скорости.

Определение 2.2.1 (Базис Френе). Пара (v,n), такая, что $v \perp n$, причём (v,n) — правый ортонормированный базис. Данный вектор n — нормаль κ плоской κ ривой.

Так как $\langle v,v\rangle=1$, то $\langle v',v\rangle=0$, откуда $v'\perp v$ и $\exists!\kappa\in\mathbb{R}:v'=\kappa n.$

Определение 2.2.2 (Кривизна плоской кривой). Данное число κ (на самом деле это функция $\mathbb{R} \to \mathbb{R}$, причём гладкая: $\kappa = \langle v', n \rangle$).

Предостережение. κ — кривизна двумерной кривой (кривизна со знаком).

Если же работать в более, чем двумерном пространстве, то у кривизны не будет знака. Там

$$v \coloneqq \gamma' \quad N = \frac{\gamma''}{|\gamma''|}$$

Кривизна без знака обозначается $k := |\gamma''|$.

2.2.1 Формулы Френе

- По определению кривизны $v' = \kappa n$
- $\langle n,v\rangle=0$, откуда $\langle n',v\rangle+\langle n,v'\rangle=0$, откуда $n'=-\kappa v$.

Лекция VIII

23 октября 2023 г.

Утверждение 2.2.1. Длина полунепрерывна снизу. Пусть γ_n — последовательность кривых: $\gamma_n: [0,1] \to \mathbb{R}^2$, таких, что $\gamma_n(t) \underset{n \to \infty}{\longrightarrow} \gamma_\infty(t)$.

Тогда $l(\gamma_{\infty}) \leqslant \underline{\lim}_{n \to \infty} l(\gamma_n)$.

Доказательство. Рассмотрим $\varepsilon > 0$. Для него найдётся последовательность точек $0 = t_0 \leqslant \cdots \leqslant t_k = 1$: $\sum_{i=0}^{k-1} |\gamma_{\infty}(t_{i+1}) - \gamma_{\infty}(t_i)| \geqslant l(\gamma_{\infty}) - \varepsilon$.

Выберем настолько большой номер $M\in\mathbb{N}: \forall m\geqslant M: \forall i\in[1,k]: |\gamma_m(t_i)-\gamma_\infty(t_i)|<\frac{\varepsilon}{k}.$ Тогда $l(\gamma_m)\geqslant l(\gamma_\infty)-3\varepsilon.$

Устремляя $\varepsilon \to 0$, получаем искомое утверждение.

Пусть $\gamma:I o\mathbb{R}^n$ — регулярная кривая, $M\subset\mathbb{R}^n$ — множество.

Определение 2.2.3 (γ имеет порядок касания не меньше k со множеством M в точке t_0). $d(\gamma(t), M) = o((t-t_0)^k)$.

Утверждение 2.2.2. Если две регулярные кривые можно параметризовать так, что $\gamma_1^{(i)} = \gamma_2^{(i)}$ для $i \leqslant k$, то порядок касания одной кривой другой не меньше k.

Определение 2.2.4 (Касательная прямая к γ в точке t_0). Кривая, проходящая через $\gamma(t_0)$ с направляющим вектором $\gamma'(t_0)$.

Предложение 2.2.1. Порядок касания касательной и кривой не меньше 1.

Факт 2.2.1. Кривизна окружности радиуса R — это $\pm \frac{1}{R}$.

Пусть γ — регулярная кривая $\gamma(t_0) = \gamma_0$.

Определение 2.2.5 (Соприкасающаяся окружность к γ в точке t_0). Окружность радиуса $\left|\frac{1}{\kappa}\right|$ с центром $\gamma_0 + \frac{n}{\kappa}$.

Разложив в ряд Тейлора, можно показать, что порядок касания соприкасающейся окружности $\geqslant 2$.

Теорема 2.2.1. Пусть γ — регулярная кривая. Тогда кривизна считается по формуле $\kappa(t_0) = \frac{[\gamma'(t_0), \gamma''(t_0)]^3}{[\gamma'(t_0)]^3}$. Здесь [x,y] — смешанное или внешнее произведение x и y.

Доказательство. Перепараметризуем γ натуральной параметризацией $\gamma=\overline{\gamma}(\phi(t))$. Тогда $|\gamma'|=\phi',$ $\gamma'=\phi'v=\phi'\overline{\gamma}'$ и

$$\gamma'' = \phi'' \cdot \overline{\gamma}' + (\phi')^2 \cdot \overline{\gamma}'' = \phi'' \cdot \overline{\gamma}' + |\gamma'|^2 \cdot \kappa n$$

Отсюда получаем $[\gamma', \gamma''] = [|\gamma'|v, |\gamma'|^2 \kappa n] = |\gamma'|^3 \cdot \kappa$.

2.2.2 Поворот кривой

Всякое отображение $f:[a,b] \to S^1$ поднимается до отображения $\alpha:[a,b] \to \mathbb{R}$, такого, что $p \circ \alpha = f$.

Если f гладкое, то α гладкое — выражается где-то как арксинус, где-то — как арккосинус.

В дальнейшем мы часто будем поднимать вектор скорости γ' , если γ — кривая в натуральной параметризации ($|\gamma'|=1$).

Определение 2.2.6 (Поворот плоской кривой). $\int_a^b \kappa(t) dt$, где $\kappa(t)$ — кривизна в натуральной параметризации.

Теорема 2.2.2. Пусть γ — натуральная параметризация, v — вектор скорости. Пусть $\alpha(t)$ — непрерывный аргумент (полученный из поднятия), такой, что $v(t) = (\cos(\alpha(t)), \sin(\alpha(t)))$. Тогда $\alpha' = \kappa$ и, значит, $\int\limits_a^b \kappa(t) \, \mathrm{d}t = \alpha(b) - \alpha(a)$.

 \mathcal{A} оказательство. $\kappa n = v' = (-\sin(\alpha), \cos(\alpha)) \cdot \alpha'$. Можно убедиться, что $(\cos(\alpha), \sin(\alpha)) \perp (-\sin(\alpha), \cos(\alpha))$, причём векторы образуют правый базис.

Теорема 2.2.3. Для любой гладкой функции $\widetilde{\kappa}:I\to\mathbb{R}$: $\exists !\gamma:I\to\mathbb{R}^2$ — натурально параметризованная кривая, такая, что $\kappa_{\gamma}=\widetilde{\kappa}$. Единственность предполагается с точностью до движения, сохраняющего ориентацию.

Доказательство. Переформулируем: при заданном $\widetilde{\kappa}: I \to \mathbb{R}$: $\forall p_0, v_0 \in \mathbb{R}^2$: $|v_0| = 1 \Rightarrow \exists !$ натурально параметризованная кривая $\gamma: \gamma(a) = p_0, \gamma'(a) = v_0$.

Для любой пары ортогональных векторов одной длины, отложенных из одной точки, существует единственное движение, сохраняющее ориентацию, переводящее точку в точку, вектор в вектор.

Пусть γ — натурально параметризована, $v=(\cos\alpha,\sin\alpha)$. $\dot{\alpha}=\widetilde{\kappa}$, причём α определяется единственным образом с точностью до константы 2π .

$$\alpha = \alpha_0 + \int_a^b \widetilde{\kappa}(\tau) \, \mathrm{d}\tau$$

В качестве α_0 можно выбрать угол, который составляет v_0 с осью абсцисс.

$$\gamma(t)=\int\limits_a^tv(au)\,\mathrm{d} au+c_0$$
, где $c_0=p_0,v(au)=(\coslpha,\sinlpha).$

 \Im то построение одновременно показывает существование и единственность искомой кривой γ . \square

2.2.3 Замкнутые кривые

Пусть $\gamma: [a,b] \to \mathbb{R}^2$.

Определение 2.2.7 (Кривая γ замкнута). Функцию γ можно продолжить до периодической с периодом b-a. Иными словами, $\gamma^{(i)}(a)=\gamma^{(i)}(b)$ для $i\in\mathbb{N}_0$.

Определение 2.2.8 (Простая кривая γ). Кривая без самопересечений.

Поворот замкнутой кривой — $2\pi n$, $n \in \mathbb{Z}$.

Теорема 2.2.4. Поворот простой замкнутой кривой $-\pm 2\pi$.

Доказательство. Пусть $\gamma:[0,L]\to\mathbb{R}^2$ параметризована натурально. Выберем базис так, что $\gamma(0)=(0,0)$. Сдвинем аргумент так, что $\gamma(t)=(x,y)$, причём $y\geqslant 0$ для всех t.

Из гладкости сразу получается $\gamma'(0) = (1,0)$.

Пусть
$$T=\left\{(t,\tau)\subset\mathbb{R}^2\middle|0\leqslant t\leqslant \tau\leqslant L\right\}$$
. Устроим $\mathcal{F}: \begin{align*}{c} T&\to&S^1\\ \hline (t,\tau)&\mapsto&\frac{\gamma(\tau)-\gamma(t)}{|\gamma(\tau)-\gamma(t)|} \end{align*}.$ Если же $t=\tau$ (или $0=t,\tau=L$), то доопределим \mathcal{F} по непрерывности: $\mathcal{F}(t,t)=\gamma'(t)$.

T односвязно, поэтому существует поднятие — непрерывный аргумент $A: \mathcal{F}(t,\tau) = (\sin A(t,\tau), \cos A(t,\tau)).$

$$T \xrightarrow{A} S^{1}$$

$$T \xrightarrow{\mathcal{F}} S^{1}$$

Так как A(t,t) — непрерывный аргумент для $\gamma'(t)=\mathcal{F}(t,t)$, то поворот кривой γ — разность A(L,L)-A(0,0).

$$A(L,L) - A(0,0) = (A(L,L) - A(0,L)) + (A(0,L) - A(0,0))$$

Если посмотреть на $A\big|_{\{0\}\times[0,L]}$, то окажется, что это векторы с фиксированным началом, которые всегда смотрят в верхнюю полуплоскость. Из существования непрерывного аргумента $A(0,t)\in[0,\pi]$ и $A(0,L)-A(0,0)=\pi-0=\pi$

При подсчёте A(L,L)-A(0,L) будет то же, только аргумент меняется в пределах $[-\pi,0]$. Разность опять выйдет π , итого $A(L,L)-A(0,0)=2\pi$.

2.2.4 Выпуклые кривые на плоскости

Пусть $\gamma:[a,b] \to \mathbb{R}^2$ — замкнутая гладкая регулярная кривая.

Дадим два определения, и покажем их равносильность.

Определение 2.2.9 (Выпуклая кривая, 1). Простая кривая, обходящая границу выпуклого компакта K: $\operatorname{Im}(\gamma) = \partial(K)$.

Определение 2.2.10 (Выпуклая кривая, 2). Кривая, лежащая по одну сторону от любой своей касательной.

Факт 2.2.2. Эти определения равносильны.

Доказательство.

- \Rightarrow . Касательная к γ в точке t опорная прямая для компакта. Значит, она лежит только по ту сторону от своей касательной, в которой лежит компакт.
- \Leftarrow . Рассмотрим $K := \operatorname{conv}(\operatorname{Im}(\gamma))$. $\nexists t_0 : \gamma(t_0)$ внутренняя точка K.

Так как K гомеоморфно диску D^2 , то $\partial K\sim S^1$, ${\rm Im}(\gamma)\sim S^1$. При этом γ — простая кривая без самопересечений.

Несложно показать, что инъективное непрерывное отображение $S^1 o S^1$ — гомеоморфизм.

Лекция IX 30 октября 2023 г.

Теорема 2.2.5. Следующие условия (для замкнутой гладкой регулярной кривой $\gamma:[a,b]\to\mathbb{R}^2$) равносильны:

- $1. \ \gamma$ выпукла
- 2. κ_{γ} не меняет знак (всегда $\geqslant 0$ или всегда $\leqslant 0$).
- 3. Для любой прямой $L:\exists$ ровно две касательные к γ , параллельные L.

Доказательство. Считаем, что $\gamma:[0,L]\to\mathbb{R}^2$ в натуральной параметризации.

 $1\Rightarrow 2$ Выберем какую-то ориентацию, зафиксируем t_0 . Покажем, что если γ лежит слева от касательной в t_0 , то кривизна $\geqslant 0$, если γ лежит справа от касательной в t_0 , то кривизна $\leqslant 0$.

Пусть $\delta:[a,b] \to \{\pm 1\}$ — определяет, лежит кривая слева или справа от прямой. Покажем, что δ непрерывно, или — здесь эквивалентно — локально постоянно.

Выберем точку $q:\left\langle \overrightarrow{\gamma(t_0)q},n\right\rangle>0.$ Тогда в некоторой окрестности $t_0:\left\langle \overrightarrow{\gamma(t)q},n\right\rangle>0$ тоже.

Таким образом, γ всегда лежит по одну сторону (пусть по левую) от своей касательной. Расписав ряд Тейлора, получаем, что κ_{γ} всегда одного знака (неотрицательна).

- $2\Rightarrow 3$ Пусть α непрерывный аргумент: $v=\left(\cos(\alpha),\sin(\alpha)\right)$. Поворотом кривой добьёмся $\alpha(0)=0$. Так как $\alpha(L)=\int\limits_a^b\kappa\,\mathrm{d}t=2\pi$, и $\forall t_1,t_2\in[0,L]:t_1< t_2\Rightarrow\alpha(t_2)-\alpha(t_1)=\int\limits_{t_1}^{t_2}\kappa\,\mathrm{d}t\geqslant 0$, то α нестрого монотонна, причём $\forall x\in(0,2\pi):\gamma^{-1}(x)$ точка или отрезок. Таким образом, для каждого направления получается ровно две касательные (2.1).
- $3\Rightarrow 1$ От противного: пусть есть точка t_0 , такая, что кривая лежит по разные стороны от касательной в точке t_0 . $\mathrm{Im}(\gamma)$ компактно, зайдём с бесконечности, получим ещё два касательных направления, параллельных данному. Значит, нашлось хотя бы 3 касательных в одном направлении, противоречие (2.2).

Рис. 2.2: Три касательные

Рис. 2.1: Касательные в данном направлении

Кривые в старших размерностях 2.3

Пусть $\gamma:[0,L]\to\mathbb{R}^n$ — натурально параметризованная регулярная кривая, $\gamma'=v$.

Так как $\langle v,v \rangle = 1$, то $\langle v,v' \rangle = 0$, v'- вектор кривизны.

Определение 2.3.1 (Кривизна (без знака)). Модуль вектора кривизны $k \stackrel{def}{=} |v'| = |\gamma''|.$

Определение 2.3.2 ((Главная) нормаль). $N \stackrel{def}{=} \frac{\gamma''}{|\gamma''|}$

Если размерность объемлющего пространства на самом деле равна двум, то $N=\pm n$.

Определение 2.3.3 (Соприкасающаяся плоскость). $\operatorname{Lin}(\gamma', \gamma'') = \operatorname{Lin}(v, N)$.

Потом обоснуем, что от данной плоскости кривая отходит медленнее всего; при k=0 таких плоскостей много.

Свойства.

- $v \perp N, |v| = |N| = 1.$
- Кривизна k сохраняется при движении.

Пусть $\widetilde{\gamma}$ не натурально параметризована, $\widetilde{\gamma}=\gamma\circ\phi$, где γ уже параметризована натурально, здесь $\phi: \mathbb{R} \to \mathbb{R}$ — гладкая перепараметризация $(s:=\phi'>0)$.

$$\begin{cases} \widetilde{\gamma}'(t) = \gamma'(\phi(t)) \cdot \phi'(t) \\ \phi'(t) = |\widetilde{\gamma}'(t)| = s(t) \end{cases} \Rightarrow \widetilde{\gamma}'(t) = s(t)\gamma'(\phi(t)) \qquad \widetilde{\gamma}''(t) = s^2(t)\gamma''(\phi(t)) + s'(t)\gamma'(\phi(t)) = s^2kN + s'v$$

Таким образом, здесь тоже для соприкасающейся плоскости $\operatorname{Lin}(v,N) = \operatorname{Lin}(\gamma',\gamma'')$.

Таким образом, здесь тоже дель том В физике $\widetilde{\gamma}''$ — ускорение, и оно раскладывается в составляющие: $\overrightarrow{a} = \underbrace{\frac{|v|^2}{R} \overrightarrow{N}}_{\text{нормальная}} + \underbrace{|v|' \cdot \overrightarrow{v}}_{\text{тангенциальная}}$

Из $\widetilde{\gamma}'$ и $\widetilde{\gamma}''$ можно найти $N,k,v:v=\widetilde{\gamma}',$ и так как $\widetilde{\gamma}''=s^2kN+s'v,$ $k\geqslant 0,$ |N|=1, то N тоже находится однозначно.

Имеет место прежняя двумерная формула (но с модулем) $k=\frac{|\widetilde{\gamma}'\wedge\widetilde{\gamma}''|}{|\widetilde{\gamma}'|^3}$, здесь \wedge — внешнее произведение.

Пусть $\gamma:[0,L]\to\mathbb{R}^n$ — кривая в натуральной параметризации.

Определение 2.3.4 (Поворот кривой γ в старших размерностях на отрезке $[a,b]\subset [0,L]$). $\int\limits_{-b}^{b}k(\tau)\,\mathrm{d}\tau.$

Следовательно, в ненатуральной параметризации надо интегрировать $k|\widetilde{\gamma}'|$.

Предостережение. Определение совсем не совпадает с определением поворота плоской кривой! У такой кривой — плоский поворот нулевой, а поворот в старших размерностях больше нуля (так как у кривизны нет знака).

Утверждение 2.3.1. $\angle(v(b), v(a)) \leqslant \int_{a}^{b} k \, d\tau$.

Доказательство. |v'|=k, и $\left|\int\limits_a^b v'\,\mathrm{d} au\right|\leqslant\int\limits_a^b |v'|\,\mathrm{d} au$. Вообще, поворот — это длина кривой $v:[a,b]\to S^{n-1}$, а угол — расстояние на сфере от v(a) до v(b).

Теорема 2.3.1 (Фенхель). Пусть γ — регулярная замкнутая кривая. Тогда поворот γ составляет хотя бы 2π .

Доказательство.

Лемма 2.3.1. Пусть даны три точки
$$A,B,C\in S^m$$
, такие, что $\underbrace{\angle(A,C)}_{\beta}+\underbrace{\angle(C,B)}_{\alpha}<\pi$.

Тогда, понятное дело, $\angle(A,B) < \pi$, и есть кратчайшая дуга \widehat{AC} , отметим её середину M. Утверждается, что $\angle(C,M) < \frac{\pi}{2}$, то есть C лежит в открытой полусфере c центром в M.

Замечание. Если знаки нестрогие, то не выполнено: можно взять A, M, B, C на одной большой окружности: $M \stackrel{A}{\stackrel{}{\bigcap}} C$.

Доказательство леммы.

Пусть O — центр сферы, достаточно показать, что $\langle OC, \underbrace{OB + OA}_{\uparrow \uparrow OM} \rangle > 0$. Действительно, $\langle OC, OB \rangle + \langle OC, OA \rangle = \cos \alpha + \cos \beta > \cos (\pi - \beta) + \cos \beta = 0$.

Лемма 2.3.2. Пусть $\gamma:[a,b]\to S^m$ — кривая, и $L(\gamma)<2\pi$. Тогда ${\rm Im}(\gamma)$ лежит в некоторой открытой полусфере.

Доказательство леммы.

Поделим кривую пополам: выберем $t_0 \in (a,b): L\left(\gamma\big|_{[a,t_0]}\right), L\left(\gamma\big|_{[t_0,b]}\right) < \pi.$ Положим $A \coloneqq \gamma(a) = \gamma(b), B \coloneqq \gamma(t_0).$ Тогда $\forall C \in \operatorname{Im}(\gamma): \angle(A,C) + \angle(C,B) < \pi,$ и все такие точки лежат в полусфере с центром в M — середине дуги \widehat{AB} .

Лемма 2.3.3. Вектор скорости регулярной замкнутой кривой не лежит ни в какой открытой полусфере.

Доказательство леммы. От противного: пусть $\exists z \in S^{n-1}$, такой, что $\langle z,v \rangle > 0$. Тогда $\langle \gamma(b) - \gamma(a), z \rangle = \int\limits_a^b \langle v,z \rangle > 0$, то есть кривая не замкнута.

От противного: пусть поворот меньше 2π , или же длина кривой, которую заметает вектор скорости $v:[a,b]\to S^{n-1}$ меньше 2π . Но тогда согласно (2.3.2) вектор скорости лежит в одной открытой полусфере, получаем противоречие с (2.3.3).

2.4 Кривые в \mathbb{R}^3 , кручение кривых

Пусть $\gamma:[0,L]\to\mathbb{R}^3$ — кривая в натуральной параметризации, $k\neq 0$. Определения вектора скорости v, нормали N и кривизны k остались прежними.

Определение 2.4.1 (Бинормаль). $b \coloneqq v \times N$. Так как $v \perp N$, то (v, N, b) — правый ортонормированный базис, b — перпендикуляр к соприкасающейся плоскости.

$$\label{eq:3-2} \textit{Замечание.} \ \ 0 = \langle v,b \rangle \Rightarrow 0 = \langle kN,b \rangle + \langle v,b' \rangle \ \ \text{и} \ \ 1 = \langle b,b \rangle, \ \text{откуда} \ \begin{cases} \langle b',v \rangle = 0 \\ \langle b',b \rangle = 0 \end{cases} \ , \ \text{то есть } b' \parallel N.$$

Определение 2.4.2 (Кручение). Такое число τ , что $b' = -\tau N$ ($\tau = -\langle b', N \rangle$).

Для регулярной кривой γ с ненулевой кривизной k получаем *трёхмерный базис Френе*: гладкие v, N, b, *кривизна* k и *кручение* τ , такие, что выполняются формулы Френе:

$$\dot{v} = kN$$
 $\dot{b} = -\tau N$ $\dot{N} = -kv + \tau b$

Последняя формула берётся из $\begin{cases} \langle \dot{N},N\rangle=0\\ \langle \dot{N},v\rangle=-\langle \dot{v},N\rangle\\ \langle \dot{N},b\rangle=-\langle \dot{b},N\rangle \end{cases}.$

Теорема 2.4.1. Кручение нулевое $\tau = 0 \iff \gamma -$ плоская кривая, ${\rm Im}(\gamma)$ лежит в некоторой плоскости.

Доказательство.

- \Rightarrow . Из формул Френе: $\dot{b}=0$, то есть $b=b_0={
 m const.}$ Заметим, что $\langle \gamma,b_0 \rangle'=\langle v,b_0 \rangle=0$, то есть $\langle \gamma,b_0 \rangle={
 m const.}$
- \Leftarrow . Пусть $\mathrm{Im}(\gamma)\subset P\cong\mathbb{R}^2$. Тогда $v,N\parallel P$, и $b=v\times N=\mathrm{const}$ нормаль к P (из непрерывности она не меняет направление). Значит, $\dot{b}=0\Rightarrow \tau=0$.

2.4.1 Скорость ухода от соприкасающейся плоскости

Помимо соприкасающейся плоскости Lin(v, N), определяют также нормальную плоскость Lin(N, b) (вектор скорости перпендикулярен ей) и спрямляющую плоскость Lin(v, b) (кривизна в проекции на неё равна нулю).

Запишем $\gamma'' = kN$, и $\gamma''' = k(-kv + \tau b) + \dot{k}N$.

Теперь можно написать ряд Тейлора $\gamma(t)=\gamma(t_0)+v(t-t_0)+\frac{kN}{2}(t-t_0)^2+\frac{\gamma'''}{6}(t-t_0)^3+o((t-t_0)^3).$ Пусть P — соприкасающаяся плоскость, то есть плоскость, проходящая через $\gamma(t_0)$, и натянутая на (v,N).

Из ряда Тейлора получаем $\pm d(\gamma(t),P) = \frac{\left<\gamma''',b\right>}{6} \cdot (t-t_0)^3 + o((t-t_0)^3) = \frac{k\tau}{6}(t-t_0)^3 + o((t-t_0)^3) = \mathcal{O}((t-t_0)^3)$, то есть порядок касания соприкасающейся плоскости $\geqslant 2$.

Теорема 2.4.2. Пусть γ — кривая (необязательно в натуральной параметризации). Тогда $\tau = \frac{[\gamma', \gamma'', \gamma''']}{|\gamma' \times \gamma''|^2}$, где $[_,_,_]$ — смешанное произведение, то есть определитель матрицы, составленной из данных векторов (записанных в некотором ортонормированном базисе).

Доказательство. Натурально параметризуем: пусть $\gamma = \overline{\gamma}(\phi(t))$, где $|\overline{\gamma}'| = 1$, положим $s \coloneqq \phi'$.

Ниже все аргументы у s, γ и их производных — t, а у остальных функций $(\overline{\gamma}, k, N, \tau, \mu)$ их производных — $\phi(t)$.

$$\gamma' = \overline{\gamma}' \cdot s = v \cdot s$$

$$\gamma'' = v' \cdot s^2 + v \cdot s' = s^2 \cdot kN + vs'$$

$$\gamma''' = 2ss' \cdot kN + s^2 \cdot k' \cdot s \cdot N + s^2 k(-kv + \tau b) \cdot s + s''v + s' \cdot (kN) \cdot s$$

Используя антисимметричность смешанного произведения, получаем

$$[\gamma', \gamma'', \gamma'''] = [v \cdot s, s^2 \cdot kN, s^2k\tau bs] = s^6k^2\tau$$

С другой стороны, $|\gamma' \times \gamma''| = |v \cdot s \times s^2 k N| = s^3 k$, откуда получается искомая формула для τ . \square

Лекция X 6 ноября 2023 г.

2.5 Базис Френе и кривизны в \mathbb{R}^n

Определение 2.5.1 ($\gamma: I \to \mathbb{R}^n$ — невырожденная кривая). $\gamma', \dots, \gamma^{(n-1)}$ линейно независимы.

Теорема 2.5.1. Пусть γ — натурально параметризованная невырожденная кривая в \mathbb{R}^n . Тогда $\exists! v_1, \ldots, v_n: I \to \mathbb{R}^n$ — базис Френе, зависящий от времени, и $\exists!$ гладкие функции $k_1, \ldots, k_{n-1}: I \to \mathbb{R}^n$, такие, что $k_1, \ldots, k_{n-2} > 0, k_{n-1}$ имеет любой знак. При этом выполнены формулы Френе

1.
$$\gamma'(t) = v_1(t)$$

$$2. \begin{cases} v_1' = k_1 v_2 \\ v_i' = -k_{i-1} v_{i-1} + k_i v_{i+1} \text{ (при } 2 \leqslant i \leqslant n-1) \end{cases} . \text{ Это также можно записать в виде } v' = K v, \\ v_n' = -k_{n-1} v_{n-1} \\ \text{где } K - \text{двухдиагональная антисимметричная матрица из кривизн.} \end{cases}$$

тде п — двухдиагональная антисимметричная матрица из

3. Базис v_1, \ldots, v_n — правый ортонормированный.

Доказательство. Рассмотрим набор производных $\gamma', \dots, \gamma^{(n-1)}$, по ним строится v_1, \dots, v_{n-1} при помощи ортогонализации Грама — Шмидта. Алгоритм возвращает ортонормированный базис какогото гиперпространства коразмерности 1, оно единственным образом дополняется до ортонормированного правого базиса \mathbb{R}^n . По построению v_i — гладкие функции, причём $v_1 = \gamma_1$.

Дальше по данному базису раскладываются вектора производных. Проверим, что соответствующие коэффициенты получаются нужного знака, и много кто — нули: проверим соответствие (2).

$$v_i' = c_{i,1}v_1 + \dots + c_{i,n}v_n$$

Так как $\langle v_i, v_i \rangle = 1$, то $\langle v_i', v_i \rangle = 0$. Так как $\langle v_i, v_j \rangle = 0$, то $\langle v_i', v_j \rangle = -\langle v_i, v_j' \rangle$. Таким образом, матрица $(c_{i,j})$ кососимметричная. $v_i \in \operatorname{Lin}(\gamma^{(1)}, \dots, \gamma^{(i)})$, откуда $v_i' \in \operatorname{Lin}(\gamma^{(1)}, \dots, \gamma^{(i+1)}) = \operatorname{Lin}(v_1, \dots, v_{i+1})$. Отсюда получаем $c_{i,j} = 0$ для j > i+1, и из кососимметричности это значит, что $c_{i,j} = 0$ для |i-j| > 1.

Из ортогонализации Грама — Шмидта $v_i=k\gamma^{(i)}+r_i$, где $k>0, r_i\in \mathrm{Lin}(\gamma^{(1)},\ldots,\gamma^{(i-1)})$. Продифференцируем и скалярно домножим на v_{i+1} . Слева получится $k_i=\langle \dot{v}_i,v_{i+1}\rangle$, а справа $k\left\langle \gamma^{(i+1)},v_{i+1}\right\rangle > 0$, так как $v_{i+1}\perp \dot{r}_i+\dot{k}\gamma^{(i)}$. Отсюда кривизны действительно положительны.

Проверим однозначность определения базиса Френе. Пойдём индукцией: пусть v_1,\ldots,v_i однозначно определены. Почему v_{i+1} однозначно определён? Из формул $v_{i+1} \perp \operatorname{Lin}(v_1,\ldots,v_i),\ v_i' \in \operatorname{Lin}(v_1,\ldots,v_{i+1}).$ Производная v_i' определена однозначно, значит, $\operatorname{Lin}(v_1,\ldots,v_{i+1}).$ определена, как $\operatorname{Lin}(v_1,\ldots,v_i,v_i').$ Так как $k_i=\langle v_i',v_{i+1}\rangle>0$, то направление v_{i+1} определено однозначно. v_n же определяется однозначно из того, что базис — правый.

Теорема 2.5.2. Пусть даны гладкие функции $k_1, \dots, k_{n-1}: I \to \mathbb{R}$, такие, что $k_1, \dots, k_{n-2} > 0$. Тогда существует (и единственна с точностью до движения) кривая с такими кривизнами.

Доказательство. Отметим произвольную точку, произвольно выберем правый ортонормированный базис $v_0 = v(0), v_1, \ldots, v_{n-1}$. В матричной записи v' = Kv. Это линейное дифференциальное уравнение, имеет единственное решение при начальных данных v_0, \ldots, v_{n-1} .

Таким образом ищется функция v(t), тогда $\gamma=p_0+\int\limits_{t_0}^tv(\tau)\,\mathrm{d}\tau.$

Заметим, что $(v^tv)'=(v')^tv+v^tv'=v^tK^tv+v^tKv=v^t\underbrace{(K^t+K)}_0v=0$, откуда базис v — правый

ортонормированный в любой момент времени, а не только в нулевой.

2.6 2-мерные поверхности в \mathbb{R}^3

Далее всё происходит в \mathbb{R}^3 .

Определение 2.6.1 (Топологическая поверхность Σ). Подмножество $\Sigma \subset \mathbb{R}^3$, которое может быть получено, как образ топологического вложения связного двумерного многообразия $f: M \hookrightarrow \mathbb{R}^3$.

Топологичность вложения означает, что топология, индуцируемая с помощью f топологией \mathbb{R}^3 совпадает с собственной топологией M.

Определение 2.6.2 (Гладкая поверхность $\Sigma \subset \mathbb{R}^3$). Поверхность Σ , которая локально может быть представлена, как график гладкой функции: $\forall p \in M$: можно ввести координатные оси x,y,z с нулём в p, так, что $\exists U \subset \mathbb{R}^3: \exists f: (\Omega \subset \mathbb{R}^2_{x,y}) \underset{\text{гладко}}{\to} \mathbb{R}: \Sigma \cap U = \Gamma_f$ (здесь Γ_f — график f в $\mathbb{R}^3_{x,y,z}$).

Определение 2.6.3 (Регулярное отображение r). Дифференциал dr невырожден (то есть размерность образа линейного оператора максимально возможная).

Невырожденность гладкого $r: \mathbb{R}^2 \to \mathbb{R}^3$ при введении базиса (u,v) в \mathbb{R}^2 можно переформулировать так: $\frac{\partial r}{\partial u} \times \frac{\partial r}{\partial v} \neq 0$.

2.6.1 Локальная параметризация

В дальнейшем часто будут использоваться частные производные. Они будут обозначаться r_x' , или же $\frac{\partial r}{\partial x}$. Также часто используется обозначение r_x , но мне оно не нравится, и я стараюсь его избегать

Теорема 2.6.1. Пусть $\Omega \subset \mathbb{R}^2$, пусть $r:\Omega \to \mathbb{R}^3$ — регулярное (всегда подразумевается, что ещё и гладкое). Если $r:\Omega \to \mathbb{R}^3$ — вложение, то $r(\Omega) =: \Sigma$ — гладкая поверхность.

Доказательство. Рассмотрим r покоординатно:

$$\begin{pmatrix} u \\ v \end{pmatrix} \stackrel{r}{\mapsto} \begin{pmatrix} r_1(u,v) = x(u,v) \\ r_2(u,v) = y(u,v) \\ r_3(u,v) = z(u,v) \end{pmatrix}$$

Так как дифференциал невырожден, то найдётся минор с ненулевым определителем. Без потери общности $\begin{vmatrix} x'_u & y'_u \\ x'_v & y'_v \end{vmatrix} \neq 0$.

Пусть $p=r(x_0)$. Из невырожденности дифференциала $\exists W\subset \mathrm{Lin}(x,y), V\subset \mathrm{Lin}(u,v)$ и обратное отображение $s:W\to V$, такое, что $(r_1,r_2)\circ s=\mathrm{id}$. Тогда $(r\circ s)(x,y)=(x,y,(r_3\circ s)(x,y))$. Обозначим $f:=r_3\circ s$; заметим, что r(V) открыто в Σ , получаем, что r(V) переписывается в виде $\Sigma\cap U$ для некоторого открытого $U\subset\mathbb{R}^3$.

Определение 2.6.4 (Регулярная параметризация поверхности Σ). Отображение r, как в (2.6.1)

Замечание. Далеко не всякая поверхность в \mathbb{R}^3 гомеоморфна плоскости, например, у сферы $S^2 \subset \mathbb{R}^3$ нет регулярной параметризации.

Тем не менее, существует локальная регулярная параметризация, которая получается из тех же соображений, что в теореме.

Пусть r — регулярная параметризация, как в теореме. Тогда $\exists r^{-1} =: \phi: \Sigma \to \Omega$, оно называется κ артой.

Определение 2.6.5 (Две эквивалентные регулярные параметризации $r_1:\Omega_1\to \Sigma$ и $r_2:\Omega_2\to \Sigma$). \exists гладкое регулярное $s:\Omega_1\to \Omega_2$, такое, что s^{-1} — тоже гладкое регулярное, такое, что $r_1=r_2\circ s$.

$$\begin{array}{c}
\Sigma \\
\uparrow r_2 \\
\Omega_1 \xrightarrow{s} \Omega_2
\end{array}$$

Упражнение 2.6.1. Для гладкой поверхности локально любые две параметризации эквивалентны.

Пусть $r:\Omega\to\Sigma$ — регулярная параметризация.

Пусть $l:[0,1]\to \Omega, l(t)=(t,v_0)$ — путь с постоянной координатой v_0 . Можно ввести координатные линии $r\circ l$, отвечающее линиям $r(t,v_0)$ и аналогично $r(u_0,t)$.

Векторы скорости координатных линий $r'_u(t, v_0)$ и $r'_v(u_0, t)$.

Пусть $\widetilde{\gamma}=r\circ\gamma$. γ регулярна $\iff\widetilde{\gamma}$ регулярна. Обратно можно получить $\gamma=\phi\circ\widetilde{\gamma}$.

Утверждение 2.6.1. Пусть $f: \mathbb{R}^m \to \mathbb{R}^n$ — гладкое отображение.

Чтобы посчитать производную по направлению $v \in \mathbb{R}^m$ в $p_0 \in \text{Im}(f)$, можно взять произвольную гладкую кривую $\gamma: (-\varepsilon, +\varepsilon) \to \mathbb{R}^m$, такую, что $\gamma(0) = p_0, \gamma'(0) = v$, тогда $(f \circ \gamma)'(0) - u$ скомая.

Доказательство. $(f \circ \gamma)'(0) = \mathrm{d}f(\gamma(0)) \cdot \mathrm{d}\gamma(0) = \mathrm{d}f(p_0) \cdot v$. Это выражение не зависит от пути γ , и является фактически определением производной по направлению.

Определение 2.6.6 (Касательное пространство к Σ в точке p=r(x)). $T_p(\Sigma)=\mathrm{d}_x r(\mathbb{R}^2)$.

Касательное пространство можно рассматривать, как линейное пространство, или аффинное пространство в \mathbb{R}^3 .

Утверждение 2.6.2. Касательное пространство не зависит от параметризации.

Доказательство. Можно определить эквивалентным образом: касательное пространство $T_p(\Sigma) = \{$ векторы скорости гладких кривых, проходящих через точку $p\}$

Касательная плоскость — линейное пространство, натянутое на векторы $\frac{\partial r}{\partial u}$ и $\frac{\partial r}{\partial v}$ — стандартный базис в касательном пространстве. $\frac{\partial r}{\partial u}=r'_u=\mathrm{d}r(1,0), \frac{\partial r}{\partial v}=r'_v=\mathrm{d}r(0,1).$

Лекция XI 13 ноября 2023 г.

2.6.2 Гладкие функции на поверхности

Определим гладкую функцию $f:\Sigma\to\mathbb{R}$ из поверхности в прямую.

Определение 2.6.7 (Функция f гладкая). $\forall p \in \Sigma: \exists U \ni p$, и карта, такая, что f — гладкая в карте U, то есть $\exists r: \Omega \to U: f \circ r$ — гладкая.

Утверждение 2.6.3. Условие гладкости $f:\Sigma \to \mathbb{R}$ равносильно следующим:

- 1. f гладкая в любой карте.
- 2. $\exists F: (\subset \mathbb{R}^3) \to \mathbb{R}$ продолжение f, гладкое в окрестности любой точки.

Доказательство.

- 1. Отображение перехода между картами s регулярно, и s^{-1} тоже регулярно. Замечание. Из теоремы об обратном отображении s — регулярная биекция.
- 2. Если поверхность локально задаётся графиком $\Sigma = (x,y,h(x,y))$, то можно определить F(x,y,z) = f(x,y,h(x,y)). Обратно, если $F: (\subset \mathbb{R}^3) \to \mathbb{R}$ гладкое, то гладко и $F|_{\Sigma}$.

2.6.3 Производная по направлению

Пусть взяты точка в поверхности $p \in \Sigma$ и касательный вектор $X \in T_p(\Sigma)$.

Пусть $f:\Sigma\to\mathbb{R}$ — гладкая функция, пусть $\widetilde{\gamma}:(-\varepsilon,+\varepsilon)\to\Sigma$ — кривая на поверхности. Пусть $p\coloneqq\widetilde{\gamma}(0),\widetilde{\gamma}'(0)=X.$ Тогда

- 1. $f \circ \widetilde{\gamma}$ гладкая (скалярная) функция.
- 2. $(f \circ \widetilde{\gamma})'(0)$ не зависит от $\widetilde{\gamma}$.
- 3. Для всякой параметризации $r:\Omega\to\mathbb{R}^3$: $(f\circ\widetilde{\gamma})'(0)=X_1\frac{\partial f\circ r}{\partial u}+X_2\frac{\partial f\circ r}{\partial v}$, где X_1,X_2 координаты X в базисе r'_u,r'_v .

Доказательство.

- 1. Композиция гладких функций гладкая (можно продолжить f до $F: \mathbb{R}^3 \to \mathbb{R}$).
- 2. Следует из следующего.
- 3. Пусть $r:\Omega\to \Sigma$ параметризация, и $\widetilde{\gamma}=r\circ\gamma$, где $\gamma:(-\varepsilon,+\varepsilon)\to\Omega$.

Обозначим $\gamma(t)=\begin{pmatrix} u(t)\\v(t)\end{pmatrix}$, получим $(f\circ\widetilde{\gamma})'(0)=\left(f\circ r\circ \begin{pmatrix} u\\v\end{pmatrix}\right)'(0)=(f\circ r)'_u\cdot u'(0)+(f\circ r)'_v\cdot v'(0).$

При этом действительно $\widetilde{\gamma}'(0) = r' \begin{pmatrix} u \\ v \end{pmatrix} (0) \cdot \begin{pmatrix} u'(0) & v'(0) \end{pmatrix}$, то есть u'(0), v'(0) - координаты $X = \widetilde{\gamma}'(0)$ в базисе r'_u, r'_v .

 $X_1(f\circ r)'_u+X_2(f\circ r)'_v$ называется производной функции $f:\Sigma\to\mathbb{R}$ в точке $p\in\Sigma$ по направлению $X\in T_p(\Sigma)$, обозначается $X_p(f)$.

Определение 2.6.8 $(f: \Sigma \to \mathbb{R}^3 - \text{гладкая функция}).$ f - гладкая покоординатно.

Пусть теперь есть две поверхности Σ_1 и Σ_2 .

Если ${
m Im}(\widetilde f)\subset \Sigma_2$, то $\widetilde f$ — гладкая функция $\Sigma_1\to \Sigma_2$ из одной поверхности в другую.

Можно рассмотреть соответствующую $f:\Omega_1 \to \Omega_2$

$$\begin{array}{ccc} \Sigma_1 & \longrightarrow & \Sigma_2 \\ \uparrow^{r_1} & & r_2 \uparrow \\ \Omega_1 & \longrightarrow & \Omega_2 \end{array}$$

Утверждение 2.6.4. $\widetilde{f}-$ гладкая $\iff f$ гладкая в некоторой карте.

Доказательство. \Rightarrow Рассмотрим хорошую карту, в которой параметризации — графики (x,y,h(x,y)). В ней f действительно гладкая.

 \Leftarrow Из коммутативности диаграммы $\widetilde{f} = r_2 \circ f \circ r_1^{-1}.$

Пусть $\widetilde{f}: \Sigma_1 \to \Sigma_2$ — гладкая. Посчитаем производную по направлению, рассматривая \widetilde{f} , как функцию в \mathbb{R}^3 . Пусть $X \in T_p(\Sigma_1)$. Утверждается, что $X(\widetilde{f}) \in T_{\widetilde{f}(p)}(\Sigma_2)$.

Определение 2.6.9 (Дифференциал \widetilde{f} в точке p по направлению X). $\mathrm{d}_p\widetilde{f}(X) \stackrel{def}{=} X(\widetilde{f})$.

Дифференциал в точке p — линейное отображение $T_p(\Sigma_1) \to T_{\widetilde{f}(p)}(\Sigma_2)$.

$$\Sigma_1 \xrightarrow{\widetilde{f}} \Sigma_2 \xrightarrow{\widetilde{g}} \Sigma_3$$

Дифференциал композиции равен произведению дифференциалов $\mathrm{d}\widetilde{g}\circ\mathrm{d}\widetilde{f}=\mathrm{d}\widetilde{h}.$

$$\begin{array}{ccc} \Sigma_1 & \xrightarrow{\widetilde{f}} & \Sigma_2 \\ \uparrow^{r_1} & & r_2 \uparrow \\ \Omega_1 & \xrightarrow{f} & \Omega_2 \end{array}$$

Частным случаем этого утверждения является $\mathrm{d}\widetilde{f}\circ\mathrm{d}r_1=\mathrm{d}r_2\circ\mathrm{d}f.$

Определение 2.6.10 $(\widetilde{f}$ регулярно). $\mathrm{d}\widetilde{f}$ невырожден (здесь эквивалентно: f регулярно в любой карте).

2.7 Первая квадратичная форма поверхности

Имеется соответствие между квадратичными и билинейными симметричными формами: сужение билинейной формы на диагональ — квадратичная форма (B(x,x)=Q(x)), и билинейную форму можно восстановить по квадратичной. Поэтому в будущем мы будем использовать слова квадратичной и билинейной формы взаимозаменяемо.

После выбора базиса $(e_1,\ldots,e_n)\in V$ для билинейной формы можно записать матрицу $[B]=(b_{i,j})_{i,j}=(B(e_i,e_j))_{i,j}.$

I квадратичная форма определяется для параметризации $r:\Omega\to\Sigma$. Положим $I_x:\mathbb{R}^2\times\mathbb{R}^2\to\mathbb{R}$, $I_x(X,Y)\stackrel{def}{=}\langle\mathrm{d}_xr(X),\mathrm{d}_xr(Y)\rangle_{\mathbb{R}^3}$. Это билинейная симметричная форма.

Определение 2.7.1 (I квадратичная форма в $x \in \Omega$). Квадратичная форма, отвечающая сужению на диагональ: $I_x(X) \stackrel{def}{=} I_x(X,X)$.

Матрица квадратичной формы $[I_x]=(g_{i,j})_{i,j}=(\langle \mathrm{d} r(e_i),\mathrm{d} r(e_j) \rangle)_{i,j}$ — метрический тензор.

Имеются установленные буквенные обозначения $[I_x] = \begin{pmatrix} E & F \\ F & G \end{pmatrix}$. А именно,

$$E(u,v) \coloneqq \left\langle r_u'(u,v), r_u'(u,v) \right\rangle, F(u,v) \coloneqq \left\langle r_u'(u,v), r_v'(u,v) \right\rangle, G(u,v) \coloneqq \left\langle r_v'(u,v), r_v'(u,v) \right\rangle$$

Разложим в этом базисе $X=(X_1,X_2)$ и $Y=(Y_1,Y_2)$, получаем $I(X,Y)=X_1EY_1+(X_1FY_2+X_2FY_1)+X_2GY_2.$

Примеры (Вычисления, связанные первой с квадратичной формой).

- Длина вектора X это $\sqrt{I(X,X)}$, $\cos(\angle(X,Y)) = \frac{I(X,Y)}{\sqrt{I(X)}\sqrt{I(Y)}}$.
- ullet Пути на поверхности $\widetilde{\gamma}=r\circ\gamma$ сопоставляется его длина $L(\widetilde{\gamma})=\int\sqrt{I(\gamma',\gamma')}\,\mathrm{d}t$
- Ортонормированному базису (u,v) соответствует базис r'_u,r'_v . Площадь поверхности $r(\Omega)$ равна $\int\limits_{\Omega} \sqrt{EG-F^2} \,\mathrm{d}s$ (это было обосновано на матанализе, $EG-F^2=\det I$).

2.7.1 І форма при замене координат

Пусть $r:\Omega_1\to\Sigma, r^*:\Omega_2\to\Sigma$ — две параметризации Σ , отображение перехода между картами s.

$$\Omega_1 \xleftarrow{r} \qquad \qquad \Gamma^*$$

Обозначим за I квадратичную форму, отвечающую r, за I^* — отвечающую r^* .

При замене параметризации одна форма выражается через другую: $I^*(v,w) = I(\mathrm{d} s(v),\mathrm{d} s(w))$. В координатной форме (считая, что базисы согласованы: s переводит базис I^* в базис I)

$$[v]^{t}[I^{*}][w] = ([ds][v])^{t}[I] \cdot [ds][w] = [v^{t}]([ds]^{t}[I][ds])[w] \qquad [I^{*}] = [ds]^{t}[I][ds]$$

 Π ример. Рассмотрим две разные параметризации плоскости — в декартовых и полярных координатах.

- 1. В декартовых r(u,v) = (u,v,0). $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
- 2. В полярных $r(\rho,\phi)=(\rho\cos(\phi),\rho\sin(\phi),0)$. $\frac{\partial r}{\partial \rho}=(\cos\phi,\sin\phi), \frac{\partial r}{\partial \phi}=(-\rho\sin\phi,\rho\cos\phi)$.

Получаем
$$\mathrm{d}s = \begin{pmatrix} \cos\phi & -\rho\sin\phi \\ \sin\phi & \rho\cos\phi \end{pmatrix}$$
, и $[\mathrm{d}s]^t \cdot [\mathrm{d}s] = \begin{pmatrix} 1 & 0 \\ 0 & \rho^2 \end{pmatrix}$. Отсюда $[I^*] = \begin{pmatrix} 1 & 0 \\ 0 & \rho^2 \end{pmatrix}$.

2.7.2 Изометрии

$$\begin{array}{ccc} \Sigma_1 & \xrightarrow{\widetilde{f}} & \Sigma_2 \\ \uparrow^{r_1} & & r_2 \uparrow \\ \Omega_1 & \xrightarrow{f} & \Omega_2 \end{array}$$

Бывают такие поверхности, что их можно отобразить друг в друга, при этом длины соответствующих векторов не будут меняться. Например, квадрат скатать в цилиндр, или конус развернуть в кусок плоскости.

Определение 2.7.2 (Гладкое $\widetilde{f}: \Sigma_1 \to \Sigma_2$ — изометрия). $\mathrm{d}\widetilde{f}$ сохраняет скалярное произведение $\langle _, _ \rangle$: $\forall V, W \in T_p(\Sigma_1): \langle V, W \rangle = \left\langle \mathrm{d}_p \widetilde{f}(V), \mathrm{d}_p \widetilde{f}(W) \right\rangle$.

Если параметризации используют одну карту — например, вторая параметризация равна $r_2 = \widetilde{f} \circ r_1$ — то матрицы первых форм равны: $[I]^{r_1} = [I]^{r_2}$. В общем случае $[I]^{r_1} = [\mathrm{d} f]^t [I]^{r_2} [\mathrm{d} f]$.

Пример. Конус над любой кривой локально изометричен плоскости.

Доказательство. Пусть $\gamma_0:[0,1]\to\mathbb{R}^2\subset\mathbb{R}^3$ — некоторая (гладкая регулярная) кривая, $O\in\mathbb{R}^3$ — точка вне плоскости, содержащей $\mathrm{Im}(\gamma_0)$.

Конусом над γ_0 , по-видимому, называется подмножество \mathbb{R}^3 , состоящее из лучей $\{OX|X\in \mathrm{Im}(\gamma_0)\}$. В вершине конуса, очевидно, есть излом поэтому следует рассматривать открытые лучи, не включающие точку O.

Подвинем точки вдоль лучей, так, чтобы они все лежали на единичной сфере с центром в O; иначе говоря, пусть $\gamma(t) = O + \frac{\gamma_0(t) - O}{|\gamma_0(t) - O|}$. Конусы над γ и над γ_0 совпадают; можно считать, что γ натурально параметризована.

Теперь конус задаётся параметризацией $r(\rho,t) = O + \rho \cdot (\gamma(t) - O)$. $\frac{\partial r}{\partial \rho} = \gamma(t) - O, \frac{\partial r}{\partial t} = \rho \cdot \gamma'(t)$. В такой параметризации первая квадратичная форма оказывается такой же, как и у параметризации плоскости в полярных координатах $-\begin{pmatrix} 1 & 0 \\ 0 & \rho^2 \end{pmatrix}$. $\left\langle \frac{\partial r}{\partial \rho}, \frac{\partial r}{\partial t} \right\rangle = 0$, так как $\langle \gamma(t) - O, \gamma(t) - O \rangle = \text{const.}$

Пусть $p,q\in \Sigma$, тогда расстояние между точками $d(p,q)=\inf\{L(\widetilde{\gamma})|\widetilde{\gamma}:[0,1]\to \Sigma,\widetilde{\gamma}(0)=p,\widetilde{\gamma}(1)=q\}.$ Это внутренняя метрика поверхности.

Внутренняя метрика, вообще говоря, не совпадает с внешней — между диаметрально противоположными точками S^1 расстояние внешнее — 2, внутреннее — π .

2.8 Вторая квадратичная форма

Первая форма не менялась при изометриях, а вторая, наоборот, будет говорить, как поверхность изогнута в \mathbb{R}^3 — на какой параболоид она больше всего похожа.

Зафиксируем параметризацию $r:\Omega\to \Sigma$, определим единичную нормаль $n:=\frac{r'_u\times r'_v}{|r'_u\times r'_v|}$ в точке r(x), $x\in\Omega$

Определение 2.8.1 (Вторая квадратичная форма). $I_x(v,w) = \langle d_x^2 r(v,w), n \rangle$.

Коэффициенты матрицы второй формы обозначают так: $[I\!I] = \begin{pmatrix} L & M \\ M & N \end{pmatrix}$, где $L = \langle r''_{u,u}, n \rangle$, $M = \langle r''_{u,v}, n \rangle$, $N = \langle r''_{v,v}, n \rangle$.

Теорема 2.8.1. Можно рассмотреть нормаль, как гладкую функцию $\Omega \to (S^2 \subset \mathbb{R}^3)$. Утверждается, что $I\!\!I(v,w) = -\langle \mathrm{d} r(v), \mathrm{d} n(w) \rangle$.

Доказательство. $\mathrm{d} r(v)$ лежит в касательной плоскости, поэтому $\langle \mathrm{d} r(v), n \rangle = 0$. Дифференцируя по w, получаем $\langle \mathrm{d}^2 r(v,w), n \rangle + \langle \mathrm{d} r(v), \mathrm{d} n(w) \rangle = 0$.

Лекция XII

20 ноября 2023 г.

2.8.1 Специальные координаты. Соприкасающийся параболоид

Пусть Σ — поверхность, $p \in \Sigma$ — точка. Выберем ортонормированный базис $x = f_1, y = f_2$ в $T_p\Sigma$. Можно выбрать такую окрестность $U \ni p$, что $\Sigma \cap U$ — график (x,y,f(x,y)), причём третья ось направлена перпендикулярно $T_p\Sigma$.

Тогда $r_x'(0)=(1,0,f_x')\in T_p\Sigma$ и $r_y'(0)=(0,1,f_y')\in T_p\Sigma$, и так как $T_p\Sigma$ натянуто на первые две оси, то $f_x'=f_y'=0$.

Иными словами, $\mathrm{d}f=0$, и n(0)=(0,0,1). Дифференцируя далее, получаем

$$r''_{x,x}(0) = (0,0,f''_{x,x}) \qquad r''_{x,y}(0) = (0,0,f''_{x,y}) \qquad r''_{y,y}(0) = (0,0,f''_{y,y})$$

Записав коэффициенты $I\!\!I$ формы $L=\left\langle r''_{x,x},n\right\rangle =f''_{x,x};\; M=f''_{x,y};\; N=f''_{y,y},\;$ получаем матрицу Гессе $H=\begin{pmatrix} f''_{x,x}&f''_{x,y}\\f''_{x,y}&f''_{y,y}\end{pmatrix}$

Из формул Тейлора $f(x,y)=\frac{1}{2}(Lx^2+2Mxy+Ny^2)+o(x^2+y^2)$. Определим соприкасающийся параболоид $z=\frac{1}{2}(Lx^2+2Mxy+Ny^2)$, он касается поверхности (касание второго порядка).

Оси координат x,y можно так повернуть, чтобы смешанная производная $\frac{\partial}{\partial y} \frac{\partial}{\partial x} f = f_{x,y}''$ была равна нулю, тогда параболоид имеет вид $z = Ax^2 + By^2$. Гессиан в этих координатах имеет вид $\begin{pmatrix} L & 0 \\ 0 & N \end{pmatrix}$, и данные значения L,N называются k_1,k_2 — главные кривизны, а сами координаты, в которых гессиан имеет такой вид — специальные.

Если $k_1 \neq k_2$, то главные направления определены с точностью до перестановки осей, иначе матрица Гессе диагональна, и все направления главные.

Определение 2.8.2 (Гауссова кривизна). Произведение главных кривизн: $K \stackrel{def}{=} k_1 \cdot k_2$.

Определение 2.8.3 (Средняя кривизна). Полусумма главных кривизн, $\frac{k_1+k_2}{2}$.

В специальных координатах векторы r'_x, r'_y — *главные направления* — образуют ортонормированный базис в $T_p\Sigma$ (2.8.1).

Определение 2.8.4 (Эллиптическая точка). Кривизны в ней одного знака, и не равны нулю.

Определение 2.8.5 (Гиперболическая точка). Кривизны в ней разного знака. Ещё такую точку называют *седловая*.

Определение 2.8.6 (Омбилическая точка). Кривизны равны.

Определение 2.8.7 (Параболическая точка). Ровно одна из кривизн равна нулю.

Определение 2.8.8 (Точка уплощения). Обе кривизны равны нулю.

На пространстве $(V, \langle _, _ \rangle)$ билинейной форме B(x,y) по лемме Рисса соответствует линейный оператор $A: V \to V$, такой, что $B(x,y) = \langle x, Ay \rangle$.

Если базис e_1, \ldots, e_n ортонормирован, то матрицы [A] = [B] равны. Иначе [B] = [G][A], где [G] – матрица Грама ([G] симметрична).

 $[X]^t[B][Y] = [X]^t[G][AY].$

Факт 2.8.1. [B] — симметрическая матрица $(B-симметричная форма) \iff A-самосо-пряжена.$

Доказательство. $\langle x,Ay \rangle = [x]^t[G][A][y] = [x]^t[G][A][G]^{-1}[G][y] = \left\langle ([G][A][G]^{-1})^t[x],[y] \right\rangle,$ откуда [A] самосопряжена $\iff ([G][A][G]^{-1})^t = [A] \iff [G][A] = ([G][A])^t.$

Следствие 2.8.1. В ортонормированном базисе матрица самосопряжённого оператора симметрична.

Доказательство. В ортонормированном базисе [G] = E.

2.8.2 Гауссово отображение

Пусть $\Sigma \subset \mathbb{R}^3$ — поверхность.

Определение 2.8.9 (Гауссово отображение). Непрерывное $\widehat{n}: \Sigma \to S^2$, такое, что $\forall p \in \Sigma: \widehat{n}(p) \perp T_p\Sigma, \ |\widehat{n}(p)| = 1.$

Если поверхность ориентируема, то \widehat{n} можно задать на всей поверхности, но нас будет интересовать задание в карте.

Пусть $r:\Omega\to \Sigma$ — параметризация, тогда можно определить $n(u,v)\coloneqq \frac{r_u'\times r_v'}{|r_u'\times r_v'|}$.

2.8.3 Оператор Вайнгартена

Пусть $p \in \Sigma$. Посмотрим на $\mathrm{d}_p \widehat{n} : T_p \Sigma \to T_{\widehat{n}(p)} S^2$. Получается, в точке p касательные пространства к Σ и S^2 совпадают (как векторные пространства), так как у них общая нормаль $\widehat{n}(p)$.

Если их отождествить, то можно считать, что $d_p \hat{n} : T_p \Sigma \to T_p \Sigma$.

Определение 2.8.10 (Оператор Вайнгартена). $S \stackrel{def}{=} -\mathrm{d}_p \widehat{n} : T_p \Sigma \to T_p \Sigma.$

Определим билинейную форму $\widehat{I}: T_p\Sigma \times T_p\Sigma \to \mathbb{R}, \widehat{I}(v,w) = \langle v, S(w) \rangle = -\langle v, \mathrm{d}_p\widehat{n}(w) \rangle$. Определение не использует никакую конкретную параметризацию (\widehat{n} в каждой точке определяется с точностью до знака, и если ориентация фиксирована, то однозначно).

Теорема 2.8.2. Пусть $r:\Omega\to\Sigma$ — произвольная параметризация, пусть p=r(x). Тогда $\forall v,w\in\mathbb{R}^2: I\!\!I(v,w)=\widehat{I}\!\!I(\mathrm{d}_xr(v),\mathrm{d}_xr(w)).$

Доказательство. Используем $II(v,w) = -\langle \mathrm{d}r(v), \mathrm{d}n(w) \rangle$, и $n = \widehat{n} \circ r$. Получаем

$$II_x(v, w) = \langle d_x r(v), -d_p \widehat{n} \cdot d_x r(w) \rangle \qquad \Box$$

Следствие 2.8.2.

- 1. $\widehat{I\hspace{-.07cm}I\hspace{-.07cm}I}$ симметрична, поэтому оператор Вайнгартена самосопряжён.
- 2. $[II]_{u,v} = [\widehat{II}]_{r'_u,r'_v}$
- 3. По-прежнему в любой параметризации $[\widehat{II}]_{r'_u,r'_v} = [I]_{u,v} \cdot [S]_{r'_u,r'_v} -$ здесь используется, что $[I]_{u,v}$ матрица Грама для базиса r'_u и r'_v .
- 4. Пусть есть две параметризации

Тогда $r_2 = r_1 \circ s \ u \ [II^{r_2}] = [ds]^t [II^{r_1}][ds].$

Теорема 2.8.3. Пусть Ω — линейно связно, и есть параметризация $r:\Omega \to \mathbb{R}^3$.

$$I\!\!I \equiv 0 \iff r(\Omega)$$
— часть плоскости

Доказательство.

- \Leftarrow . Для плоскости $n \equiv \mathrm{const} \Rightarrow \mathrm{d}n \equiv 0 \Rightarrow I\!\!I \equiv 0$.
- \Rightarrow . Оператор Вайнгартена $S\equiv 0 \Rightarrow {
 m d}\widehat{n}\equiv 0 \Rightarrow n=n_0={
 m const.}$ Любая кривая $\gamma:[0,1]\to \Sigma$ на поверхности перпендикулярна этой нормали во всякой своей точке. Функция высоты $H=\langle _,n_0\rangle$ постоянна во всех точках кривой.

Предложение 2.8.1. Собственные числа оператора Вайнгартена — главные кривизны (и они отвечают собственным векторам — векторам, лежащим на главных направлениях).

Доказательство. Рассмотрим специальные координаты. В них
$$\binom{k_1}{0} \binom{0}{k_2} = [I\!I]_{u,v} = [\widehat{I\!I}]_{r'_u,r'_v}$$
, и так как r'_u, r'_v — ортонормированный базис, то $[S]_{r'_u,r'_v} = [I\!I]_{u,v} = \binom{k_1}{0} \binom{0}{k_2}$.

Из предложения следует, что так как оператор Вайнгартена самосопряжён, то у него существует ортонормированный базис из собственных векторов с вещественными собственными числами, а именно — если $k_1 \neq k_2$, то главные направления перпендикулярны (если $k_1 = k_2$, то все направления — главные).

Пусть $r: \Omega \to \Sigma, x \in \Omega, p = r(x)$.

Теорема 2.8.4 (Родриг).

- 1. Бескоординатная формулировка: $v \in T_p(\Sigma)$ на главном направлении \iff $\mathrm{d}\widehat{n}(v) \parallel v$, причём если это так, то $\mathrm{d}\widehat{n}(v) = -k_1 v$ или же $\mathrm{d}\widehat{n}(v) = -k_2 v$.
- 2. Для $\xi \in \mathbb{R}^2$: $dr(\xi)$ на главном направлении \iff $dr(\xi) \parallel dn(\xi)$, причём если это так, то $dn(\xi) = -k_1 \cdot dr(\xi)$ или $dn(\xi) = -k_2 \cdot dr(\xi)$.

Доказательство.

- 1. Это определение собственного вектора, а $S = -d\hat{n}$.
- 2. Из предыдущего $dr(\xi)$ на главном направлении \iff $d\widehat{n}(dr(\xi)) \parallel dr(\xi)$. Теперь заметим, что $dn(\xi) = d(\widehat{n} \circ r)(\xi) = d\widehat{n} dr(\xi)$.

Определение 2.8.11 (Нормальное сечение с началом в точке p и направлением $v \in T_p\Sigma$). Пересечение $\Sigma \cap P(p, n(p), v)$, здесь P(p, n(p), v) — плоскость, проходящая через p, и натянутая на векторы нормали n(p) и v.

В окрестности p нормальное сечение — кривая.

Далее в определениях считаем, что во всех точках непрерывно выбрана нормаль $\widehat{n}:\Sigma\to S^2$ (крышка иногда будет опускаться, если понятно из контекста).

Определение 2.8.12 (Кривизна поверхности в направлении вектора $v \in T_p\Sigma$). Кривизна нормального сечения — гладкой регулярной кривой γ_v — со знаком +, если нормаль к кривой γ_v сонаправлена с \widehat{n} , и — иначе. Обозначается $k_n(v)$

Иными словами, пусть γ_v — натурально параметризованная кривая, проходящая нормальное сечение: $\gamma_v' \uparrow \uparrow v, \ \gamma_v(0) = p.$ Тогда $k_n(v) \stackrel{def}{=} k_{\gamma_v}(0) \cdot \langle N_{\gamma_v}(0), \widehat{n}(p) \rangle = \langle \gamma''(0), \widehat{n}(p) \rangle.$

Теперь пусть $\widetilde{\gamma}:[a,b]\to \Sigma$ — натурально параметризованная кривая. Запишем $\widetilde{\gamma}''=k_{\widetilde{\gamma}}\cdot N_{\widetilde{\gamma}}.$

Определение 2.8.13 (Нормальная кривизна $\widetilde{\gamma}$). $k_n(\widetilde{\gamma}) \coloneqq \langle \widetilde{\gamma}'', \widehat{n} \rangle = k_{\widetilde{\gamma}} \cos(N, \widehat{n})$.

Определение 2.8.14 (Геодезическая кривизна $\tilde{\gamma}$). k_q — модуль проекции $\tilde{\gamma}''$ на $T_p\Sigma$.

Фактически, вектор кривизны был разложен на нормальную и касательную составляющие, только нормальная со знаком, и касательная — без. $k_g = |\widetilde{\gamma}'' - k_n \widehat{n}|$. По теореме Пифагора $k_{\widetilde{\gamma}} = \sqrt{k_n^2(\widetilde{\gamma}) + k_q^2(\widetilde{\gamma})}$.

Определение 2.8.15 (Геодезическая кривая γ). Такая кривая, что $k_q(\gamma) \equiv 0$.

2.8.4 Выражение нормальной кривизны через квадратичные формы

Пусть $\widetilde{\gamma}:[0,1]\to \Sigma$ — кривая на поверхности. Введём $\gamma:[0,1]\to \Omega$ так, что $\widetilde{\gamma}=r\circ \gamma$. Разложим покоординатно $\gamma(t)=(u(t),v(t)).$

Теперь посчитаем производные по t. $\widetilde{\gamma} = r(u,v) \Rightarrow \widetilde{\gamma}' = r'_u \cdot u' + r'_v \cdot v'$ и

$$\widetilde{\gamma}'' = r''_{u,u}(u')^2 + r''_{u,v} \cdot u'v' + r''_{v,u} \cdot v'u' + r''_{v,v}(v')^2 + r'_uu'' + r'_v \cdot v''$$

Домножим это скалярно на нормаль. $r'_u \perp \widehat{n}, r'_v \perp \widehat{n}$, поэтому

$$\left\langle \widetilde{\gamma}'', \widehat{n} \right\rangle = \left\langle r''_{u,u}, \widehat{n} \right\rangle (u')^2 + 2 \left\langle r''_{u,v}, \widehat{n} \right\rangle \cdot u'v' + \left\langle r''_{v,v}, \widehat{n} \right\rangle (v')^2$$

Видно, что правая часть получилась $\left\langle \mathrm{d}^2 r(\gamma',\gamma'),\widehat{n}\right\rangle=I\!\!I(\gamma')$:

$$\langle \widetilde{\gamma}'', \widehat{n} \rangle = I\!\!I(\gamma')$$

Теорема 2.8.5. Значение II на единичных векторах $\xi \in \mathbb{R}^2$ (те, для которых $I(\xi) = 1$ — единичные в касательной плоскости) — это кривизны поверхности по направлению вектора $\mathrm{d}_x r(\xi)$.

Доказательство. Применить предыдущую формулу к нормальному сечению с направляющим вектором $v = \mathrm{d}_x r(\xi)$. А именно, пусть $\widetilde{\gamma}$ — кривая, проходящая нормальное сечение, $\widetilde{\gamma}'(0) = v$. Тогда

$$k_n(\widetilde{\gamma}) = \widehat{I}(v,v) = II(\xi,\xi) = II(\gamma'(0),\gamma'(0)) = \langle \widetilde{\gamma}''(0),\widehat{n}(p) \rangle$$

Если же $|v| \neq 1$, то $k_n(v) = \frac{I\!\!I(\xi,\xi)}{I(\xi,\xi)}$, где $v = \mathrm{d}r(\xi)$.

Теорема 2.8.6 (Менье). Пусть $p \in \Sigma, v \in T_p\Sigma, |v| = 1$.

- 1. Пусть $\widetilde{\gamma}$ натурально параметризованная кривая, такая, что $\widetilde{\gamma}(0)=p,\widetilde{\gamma}'(0)=v.$ У всех таких $\widetilde{\gamma}$ нормальная кривизна одна и та же.
- 2. Кривизна кривой на поверхности с начальным вектором скорости v зависит только от угла $\angle(N_{\widetilde{\gamma}},\widehat{n})$, где $N_{\widetilde{\gamma}}$ главная нормаль к кривой. А именно, $k_{\widetilde{\gamma}}\cdot\langle N_{\widetilde{\gamma}},\widehat{n}\rangle=k(v)$.

Доказательство. Нормальная кривизна переписывается так: $k_n(\widetilde{\gamma}) = \langle \widetilde{\gamma}'', \widehat{n} \rangle = I\!\!I(\gamma', \gamma').$

Пример. В сфере единичного радиуса кривизны в любом направлении -1, тогда можно посчитать кривизну кривой, которая получается сечением сферы какой-то плоскости. Например, если плоскость под углом $\frac{\pi}{4}$ к касательному пространству, то кривизна равна $\sqrt{2}$.

Лекция XIII 27 ноября 2023 г.

2.9 Формулы типа Френе

Пусть Σ — поверхность, γ — кривая на поверхности.

Обозначим вектор скорости $\gamma' = v \ (|v| = 1).$

Пусть n — нормаль к $T_p\Sigma$ в точке $\gamma(t)$ $(n(t)=\widehat{n}(\gamma(t)))$, зафиксируем $t_0:\gamma(t_0)=p$, дополним (v,n) до ортонормированного базиса: $l\coloneqq v\times n$.

Запишем формулы, как в случае формул Френе:

$$\begin{cases} v' = \alpha_1(t)v(t) + \beta_1(t)n(t) + \delta_1(t)l(t) \\ n' = \alpha_2(t)v(t) + \beta_2(t)n(t) + \delta_2(t)l(t) \\ l' = \alpha_3(t)v(t) + \beta_3(t)n(t) + \delta_3(t)l(t) \end{cases} \qquad \frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} v \\ n \\ l \end{pmatrix} = \begin{pmatrix} \alpha_1 & \beta_1 & \delta_1 \\ \alpha_2 & \beta_2 & \delta_2 \\ \alpha_3 & \beta_3 & \delta_3 \end{pmatrix} \begin{pmatrix} v \\ n \\ l \end{pmatrix}$$

Из того, что вектора единичные, получаем $\langle v,v\rangle=1\Rightarrow \langle v',v\rangle=0\Rightarrow \alpha_1=0$. Аналогично $\beta_2=\gamma_3=0$. Далее, из того, что вектора ортогональны: $\langle v',n\rangle=-\langle v,n'\rangle$ получается, что матрица, как и ранее, кососимметрична. Итак, матрица имеет вид

$$\begin{pmatrix}
0 & -\alpha_2 & -\alpha_3 \\
\alpha_2 & 0 & -\beta_3 \\
\alpha_3 & \beta_3 & 0
\end{pmatrix}$$

Оказывается, что с первой парой коэффициентов мы уже знакомы. Это $k_n(\gamma) = \langle v', n \rangle = -\alpha_2$ — нормальная кривизна, $\pm k_g(\gamma) = \langle \gamma'', l \rangle = -\alpha_3$ — геодезическая кривизна со знаком. Иными словами, $\gamma'' = k_n(\gamma) \cdot n + k_g(\gamma) \cdot l$.

 $-eta_3$ назовём $\emph{геодезическим кручением } au_g,$ можно проверить, что $au_g = -\widehat{I\hspace{-.05cm}I}(l,v).$

Теорема 2.9.1. Для натурально параметризованной кривой γ на поверхности Σ выполняются

формулы типа Френе:
$$\begin{cases} v'=k_nn+k_gl\\ n'=-k_nv+\tau_gl\\ l'=-\tau_gn-k_gv \end{cases}.$$

Доказательство. Надо проверить только то, что коэффициент au_g — как раз $-\widehat{I\hspace{-.01in}I}(l,v)$.

$$\tau_g = \langle n', l \rangle = \left\langle \frac{\mathrm{d}}{\mathrm{d}t} \widehat{n}(\gamma(t)), l \right\rangle = \left\langle \mathrm{d}_{\gamma(t)} \widehat{n} \cdot v, l \right\rangle \langle -S(v), l \rangle = -\widehat{I}(v, l)$$

Определение 2.9.1 (Геодезическая кривая). Геодезическая кривизна $k_g = 0$, иначе говоря $\gamma'' \parallel n$.

Определение 2.9.2 (Асимптотическая кривая). Нормальная кривизна $k_n = 0$, иначе говоря $k_n(v) = 0$.

Пример (Асимптотическая линия). Через каждую точку гиперболического параболоида походит прямая.

Как мы скоро увидим, у любой поверхности с кривизной меньше нуля есть такое семейство прямых.

Определение 2.9.3 (Линия кривизны). Геодезическое кручение равно нулю.

Предложение 2.9.1. У линии кривизны γ : γ' — главное направление.

Доказательство. Формула вида Френе принимает вид $n' = -k_n v$; так как n' = -S(v), то v — собственный вектор оператора Вайнгартена.

Пример (Линия кривизны). Параллели и меридианы на торе.

Теорема 2.9.2 (Эйлер). Рассмотрим $v \in T_p\Sigma$ (|v|=1), пусть v_1, v_2 — лежат на главных направлениях, отнормируем их: $|v_1|=|v_2|=1$. Пусть им отвечают главные кривизны k_1, k_2 соответственно.

Так как $v_1 \perp v_2$ образуют базис $T_p(\Sigma)$, то можно записать $v = \cos(\phi)v_1 + \sin(\phi)v_2$ для некоего ϕ . Утверждается $k_n(v) = k_1\cos^2(\phi) + k_2\sin^2(\phi)$.

 \mathcal{A} оказательство. Выберем специальные координаты. Пусть $\mathbb{R}^2_{x,y}=T_p\Sigma$, причём оси координатx,y — главные направления. Пусть $r(x_0)=p$. Тогда $[I\!I]=\begin{pmatrix}k_1&0\\0&k_2\end{pmatrix}$ и $r_x'(x_0)=v_1,r_y'(x_0)=v_2$.

 $k_n(v)=rac{\widehat{I}(v)}{\widehat{I}(v)}$, здесь $\widehat{I}(v)=\langle v,v
angle$ (если $v=\mathrm{d}r(\xi)$, то $I(\xi)=\widehat{I}(v)$). Так как |v|=1, то

$$k_n(v) = \widehat{I}(v) = (\cos \phi - \sin \phi) \begin{pmatrix} k_1 & 0 \\ 0 & k_2 \end{pmatrix} \begin{pmatrix} \cos \phi \\ \sin \phi \end{pmatrix} = k_1 \cos^2 \phi + k_2 \sin^2 \phi$$

Следствие 2.9.1. k_1, k_2 — экстремальные значения (минимум и максимум) кривизн по направлению.

2.10 Вычисление главных кривизн и направлений в координатах

Вычислим при заданной параметризации $r:\Omega\to\Sigma$ главные кривизны.

Теорема 2.10.1. Пусть поверхность параметризована $r:\Omega\to\Sigma$, тогда главные кривизны — это корни уравнения

$$\det([I\!I] - \lambda[I]) = 0$$

(Иными словами, такие $\lambda \in \mathbb{R}$, что билинейная форма $I\!I - \lambda I$ вырождена, они не зависят от базиса)

У данного квадратного уравнения могут быть два равных корня, тогда точка — омбилическая, то есть все кривизны равны, и все векторы — главного направления.

Иначе векторы главного направления $\xi_{1,2}$ — такие, что $([II]-k_{1,2}[I])\xi_{1,2}=0$.

Доказательство. $[I\!I]_{u,v}=[I]_{u,v}\cdot[S]_{r'_u,r'_v}$. Отсюда $[S]=[I]^{-1}[I\!I]$. Вообще говоря, S — самосопряжён, но матрица не симметрична, так как базис r'_u,r'_v не ортонормирован. Найдём собственные числа [S], то есть решим уравнение $\det([S]-\lambda E)=0$. Но $\det([I])\neq 0$ (I — матрица Грама регулярной параметризации r), поэтому уравнение эквивалентно уравнению $\det([I]\cdot[S]-\lambda[I])=0$.

Про собственные векторы аналогично: если ξ — вектор главного направления, то $[S]\xi=k_{1,2}\xi$, домножая на первую форму, получаем, $[I]\cdot [S]\xi=k_{1,2}\cdot [I]\xi$.

Для конкретных коэффициентов $[I\!I]=egin{pmatrix} L & M \\ M & N \end{pmatrix},\ [I]=egin{pmatrix} E & F \\ F & G \end{pmatrix}$, получено уравнение

$$\det([\mathbf{I}\!\!I] - \lambda[I]) = \left| \begin{array}{cc} L - \lambda E & M - \lambda F \\ M - \lambda F & N - \lambda G \end{array} \right| = (L - \lambda E)(N - \lambda G) - (M - \lambda F)^2 = 0$$

$$\lambda^{2}(EG - F^{2}) - \lambda(EN + LG - 2FM) + (LN - M^{2}) = 0$$

Гауссова кривизна $K=k_1\cdot k_2=rac{LN-M^2}{EG-F^2}=rac{\det[I]}{\det[I]}$. Средняя кривизна — это $rac{k_1+k_2}{2}=rac{EN+LG-2FM}{2\det[I]}$.

2.11 Ковариантная производная

Определение 2.11.1 (Гладкое векторное поле вдоль поверхности Σ). Гладкое отображение $X:\Sigma\to\mathbb{R}^3$, такое, что $X_p=X(p)\in T_p\Sigma$ ($T_p\Sigma$ рассматривается, как векторное, а не аффинное, подпространство).

Рассмотрим параметризацию $r:\Omega \to \Sigma$. Разложим X по базису: $X=X_1r'_u+X_2r'_v$.

Утверждение 2.11.1. X — гладкое $\iff X_1, X_2$ — оба гладкие отображения $\Sigma \to \mathbb{R}$.

$$\mathcal{A}$$
оказательство. Обозначим $X^1 = \langle X, r'_u \rangle$, $X^2 = \langle X, r'_v \rangle$ — они гладкие. Тогда $\begin{pmatrix} X^1 \\ X^2 \end{pmatrix} = I \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$, и домножая слева на I^{-1} (I невырождена), получаем гладкое выражение $\begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$.

Пусть X — гладкое векторное поле, зафиксируем $p \in \Sigma$, выберем $v \in T_p\Sigma$.

Определение 2.11.2 (Ковариантная производная векторного поля вдоль вектора v). Производная ортогональной проекции X на $T_p\Sigma$ по направлению вектора v: $\nabla_v X = \Pr_{T_p\Sigma}(X)'_v \in T_p\Sigma$. Ещё ∇ называется *связность* (с чего бы это?).

Вообще говоря, производную можно брать только вдоль кривой, но можно выбрать любую кривую, проходящую через данную точку с данным вектором производной.

3амечание. Для двух функций $f,g:\mathbb{R}^n \to \mathbb{R}^n$ и регулярной кривой γ с производной $v=\gamma'(t_0)$: Если $f\big|_{\mathrm{Im}(\gamma)}=g\big|_{\mathrm{Im}(\gamma)}$, то $f_v'(t_0)=g_v'(t_0)$.

Замечание. Ковариантная производная $\nabla_v X$ в точке p зависит только от v, и от X в окрестности p.

Для двух векторных полей X,Y: $\nabla_Y X$ — тоже векторное поле, $(\nabla_Y X)(p) = \nabla_{Y_p} X$.

Предложение 2.11.1. Кривая γ в натуральной параметризации геодезическая $\iff \nabla_{\gamma'}(\gamma') = 0.$

Доказательство. Не до конца понятно, что имеется в виду, кривая не является отображением $\Sigma \to \mathbb{R}^3$.

Тем не менее, если
$$p=\gamma(t_0)$$
, то по-видимому $\nabla_{\gamma'}\gamma'(t_0)=\lim_{t\to 0} \frac{\Pr_{T_p\Sigma}\gamma'(t_0+t)}{t}=\Pr_{T_p\Sigma}\gamma''(t_0)$, и $\nabla_{\gamma'}\gamma'=0\iff \gamma''\perp T_p\Sigma$.

Свойства.

- Билинейность: для $\alpha, \beta \in \mathbb{R}: \nabla_v(\alpha X + \beta Y) = \alpha \nabla_v X + \beta \nabla_v Y$ и $\nabla_{\alpha v_1 + \beta v_2} X = \alpha \nabla_{v_1} X + \beta \nabla_{v_2} X$. Следует из того, что производная (и дифференциал) линейны.
- Пусть $f:\Sigma \to \mathbb{R}$. Тогда $\nabla_v(f\cdot X)=f'_v\cdot X+f\cdot \nabla_v X$ и $\nabla_{fv}(X)=f\nabla_v X.$
- Дифференцирование $\langle _, _ \rangle$. Пусть X, Y векторные поля, $v_p \in T_p\Sigma$. Тогда $\langle X, Y \rangle_v' = \langle \nabla_v X, Y \rangle + \langle X, \nabla_v Y \rangle$.

Доказательство. Мы знаем, что $\langle X,Y\rangle_v'=\langle X_v',Y\rangle+\langle X_v',Y\rangle.$

Достаточно проверить, что $\langle X_v',Y\rangle=\langle \nabla_vX,Y\rangle$. Это правда, так как $\Pr_{T_p\Sigma}(X_v')=\nabla_vX$, и $Y\in T_p\Sigma$. Таким образом, $X_v'=\nabla_vX+c\widehat{n}$.

2.11.1 Вычисления в координатах. Символы Кристоффеля

Пусть $r:\Omega \to \Sigma$ — параметризация.

В данном разделе будет удобно нумеровать координаты в виде x_1, \dots, x_n , хотя по сути мы будем рассматривать только случай n=2.

Рассмотрим производные r'_{x_i} . Пусть $\Gamma_{i,j} \stackrel{def}{=} \nabla_{r'_{x_i}} r'_{x_j} \in T_p \Sigma$. Так как $r''_{x_i x_j} = r''_{x_j x_i}$, то $\Gamma_{i,j} = \Gamma_{j,i}$.

Разложим $\Gamma_{i,j}$ в базисе r'_{x_1},\ldots,r'_{x_n} :

Определение 2.11.3 (Символ Кристоффеля первого рода). $\Gamma_{i,j;k} = \langle \Gamma_{i,j}, r'_{x_k} \rangle$.

Определение 2.11.4 (Символ Кристоффеля второго рода). Такие числа $\Gamma_{i,j}^k$, что $\Gamma_{i,j} = \sum\limits_{k=1}^n \Gamma_{i,j}^k r_{x_k}'$.

Удобнее использовать символы Кристоффеля второго рода, а символы первого рода нужны только, чтобы посчитать символы второго рода.

Утверждение 2.11.2. Пусть первая форма
$$I = \begin{pmatrix} E & F \\ F & G \end{pmatrix} = \begin{pmatrix} g_{1,1} & g_{1,2} \\ g_{2,1} & g_{2,2} \end{pmatrix}$$
. $\Gamma_{i,j;k} = \sum_{l=1}^n g_{k,l} \Gamma_{i,j}^l$.

Доказательство. Умножим разложение $\Gamma_{i,j} = \sum_{l=1}^n \Gamma_{i,j}^l r'_{x_l}$ скалярно на r'_{x_k} . $\Gamma_{i,j;k} = \left\langle \Gamma_{i,j}, r'_{x_k} \right\rangle = \left\langle \sum_{l=1}^n \Gamma_{i,j}^l r'_{x_l}, r'_{x_k} \right\rangle = g_{l,k}$, и по линейности получим нужную формулу.

Лекция XIV

4 декабря 2023 г.

Если при фиксированных i,j обозначить $\Gamma_{i,j;k}=(Y)=\begin{pmatrix}\Gamma_{i,j;1}\\ \vdots\\ \Gamma_{i,j,n}\end{pmatrix}$ и $\Gamma_{i,j}^l=(X)=\begin{pmatrix}\Gamma_{i,j}^1\\ \vdots\\ \Gamma_{i,j}^n\end{pmatrix}$, то окажется, что Y=GX и $G^{-1}Y=X$ (матрица Грама обратима).

2.11.2 Зачем нужны символы Кристоффеля

Символы Кристоффеля нужны для того, чтобы вычислять ковариантную производную в координатах.

Теорема 2.11.1. Пусть Σ — поверхность, V и W — два векторных поля, разложенных в координатах $V = \sum\limits_i \xi_i r'_{x_i}$ и $W = \sum\limits_i \eta_i r'_{x,i}$.

Тогда
$$\nabla_V W = \sum (\eta_i)_v' r_{x_i} + \sum_{i,j} \xi_i \eta_j \Gamma_{i,j}$$
.

Доказательство. Дифференцируя по правилу Лейбница, получаем

$$\nabla_V \left(\sum_i \eta_i r'_{x_i} \right) = \sum_i \eta_i r'_{x_i} + \sum_i \eta_i \nabla_V r'_{x_i}$$

Раскроем второе выражение по линейности: $\nabla_{\sum_j \xi_j r'_{x_j}} r'_{x_i} = \sum_j \xi_j \nabla_{r'_{x_j}} r'_{x_i} = \sum_{i,j} \xi_j \Gamma_{i,j}$.

Теорема 2.11.2. Символы Кристоффеля выражаются через коэффициенты первой формы $I=\begin{pmatrix}g_{1,1}&g_{1,2}\\g_{2,1}&g_{2,2}\end{pmatrix}$ и их производные: $\Gamma_{i,j;k}=\frac{(g_{i,k})'_{x_j}+(g_{j,k})'_{x_i}-(g_{i,j})'_{x_k}}{2}$.

Доказательство. Возьмём определение метрического тензора $\left\langle r'_{x_i}, r'_{x_j} \right\rangle = g_{i,j}$ и продифференцируем:

$$(g_{i,j})'_{x_k} = \left\langle r''_{x_i,x_k}, r'_{x_j} \right\rangle + \left\langle r'_{x_i}, r''_{x_j,x_k} \right\rangle \bigoplus \left\| \operatorname{Pr}_{T_p \Sigma} r_{x'_i,x'_j} = \nabla_{r'_{x_i}} r'_{x_j} = \Gamma_{i,j} \right\|$$

Так как если w — вектор плоскости S, то $\langle v, w \rangle = \langle \Pr_S v, w \rangle$, то

Из симметрии ($\Gamma_{i,j;*} = \Gamma_{j,i;*}$) получаем ($g_{i,k}$) $'_{x_i} = \Gamma_{i,j;k} + \Gamma_{j,k;i}$ и ($g_{k,j}$) $_{x_i} = \Gamma_{i,k;j} + \Gamma_{i,j;k}$.

Действительно
$$\Gamma_{i,j;k} = \frac{(g_{i,k})'_{x_j} + (g_{j,k})'_{x_i} - (g_{i,j})'_{x_k}}{2}.$$

Следствие 2.11.1. Символы Кристоффеля лежат во внутренней геометрии (сохраняется при изометриях, зависит только от внутренней метрики).

Следствие 2.11.2. Ковариантная производная принадлежит внутренней геометрии.

Теорема 2.11.3 (theorema egregium, Гаусс). Гауссова кривизна принадлежит внутренней геометрии поверхности. А именно, гауссова кривизна $K = \frac{\langle \nabla_X \nabla_Y Y - \nabla_Y \nabla_X Y, X \rangle}{\det I}$, где $X = r'_u, Y = r'_v$.

Доказательство.

Лемма 2.11.1. Пусть W,V- гладкие векторные поля. Тогда $W_V'=\nabla_V W+\widehat{I\!\!I}(V,W)\cdot \widehat{n}.$

Доказательство леммы.

По определению, проекция ковариантной производной на касательную плоскость — это $\nabla_V W$. Надо доказать, что $\langle W_V', \widehat{n} \rangle \stackrel{?}{=} \widehat{I\!\!I}(V,W)$

$$\langle W, \widehat{n} \rangle = 0 \Rightarrow \langle W_V', \widehat{n} \rangle + \langle W, \widehat{n}_V' \rangle = 0 \text{ m } \langle W_V, \widehat{n} \rangle = \langle W, -\widehat{n}_V' \rangle = \langle W, S(V) \rangle = \widehat{I\!\!I}(V, W). \qquad \Box$$

Посчитаем ковариантную производную: $\nabla_Y Y = r_{v,v}'' - \widehat{I\!\!I}(Y,Y) \cdot \widehat{n}$. Затем

$$\nabla_X(r_{v,v}'' - \widehat{I\!\!I}(Y,Y) \cdot n) = \Pr_{T_v \Sigma}(r_{v,v,u}''' - \widehat{I\!\!I}(Y,Y)_u' \cdot \widehat{n} - \widehat{I\!\!I}(Y,Y)\widehat{n}_u') = \Pr_{T_v \Sigma}(r_{v,v,u}''' - \widehat{I\!\!I}(Y,Y) \cdot S(X))$$

Аналогично $abla_X Y = r_{v,u}^{\prime\prime} - \widehat{I\!\!I}(X,Y) \cdot \widehat{n}$ и

$$\nabla_Y(r_{v,u}^{\prime\prime}-\widehat{I\hspace{-.01cm}I}(X,Y)\widehat{n})=\Pr{}_{T_p\Sigma}(r_{v,u,v}^{\prime\prime\prime}-\widehat{I\hspace{-.01cm}I}(X,Y)_v^\prime\cdot n-\widehat{I\hspace{-.01cm}I}(X,Y)\cdot\widehat{n}_v^\prime)=\Pr{}_{T_p\Sigma}(r_{v,u,v}^{\prime\prime\prime}-\widehat{I\hspace{-.01cm}I}(X,Y)\cdot S(Y))$$

Вычтем выражения друг из друга, и домножим скалярно на X. Получится

$$\left\langle \widehat{I\hspace{-.01in}I}(Y,Y)S(X) - \widehat{I\hspace{-.01in}I}(X,Y)S(Y),X \right\rangle = \widehat{I\hspace{-.01in}I}(Y,Y) \cdot \widehat{I\hspace{-.01in}I}(X,X) - (\widehat{I\hspace{-.01in}I}(X,Y))^2 = \det(I\hspace{-.01in}I\hspace{-.01in}I)$$

Далее используем $K = \frac{\det I\!\!I}{\det I}$.

Получается, в случае, когда пространство искривлено, имеет место неравенство $f''_{u,v} \neq f''_{v,u}$ (что такое f?), и мера некоммутативности ковариантной производной определяет гауссову кривизну.

Пример. Гауссова кривизна плоскости — ноль, плоскость можно как-то изгибать, в конус или цилиндр, но по-прежнему гауссова кривизна будет нулём (и цилиндр, и конус лежат по одну сторону от касательной плоскости, поэтому их гауссовы кривизны неотрицательны, но есть направления, в которых их кривизны равны нулю, поэтому гауссовы кривизны равны нулю).

Локально поверхность имеет уравнение $z=\frac{k_1x^2+k_2y^2}{2}$. Кривизны k_1 и k_2 могут быть одного знака, или разных.

Если кривизны разного знака, то из формулы $k(\phi) = k_1 \cos^2 \phi + k_2 \sin^2 \phi$ понятно, что найдётся направление, в котором кривизна равна нулю. В частности, в гиперболическом параболоиде эти направления выстраиваются в прямую.

2.12 Выпуклые поверхности

Определение 2.12.1 (Выпуклая поверхность). Она лежит по одну сторону от любой своей соприкасающейся плоскости.

Определение 2.12.2 (Локальный гомеоморфизм $f: X \to Y$). Отображение f, такое, что $\forall x \in X: \exists U \ni x: f\big|_U$ — гомеоморфизм на образ, причём f(U) открыто.

Теорема 2.12.1. Пусть Σ — гладкая компактная поверхность без края.

- 1. Если поверхность выпукла, то гауссова кривизна $K \geqslant 0$.
- 2. Если гауссова кривизна K > 0, то поверхность выпукла.

Доказательство.

- 1. Выберем специальные координаты, проверим, что в них $K\geqslant 0$. Пусть $p\in \Sigma$, некоторая окрестность p представима в виде графика (x,y,f(x,y)) при $f''_{x,y}=0$.
 - Главные кривизны равны $f''_{x,x}$ и $f''_{y,y}$, так как $f\geqslant 0$, и f(0,0)=0, то из разложения в ряд Тейлора получаем $f''_{x,x}\geqslant 0$ и $f''_{y,y}\geqslant 0$.
- 2. Выберем нормаль \widehat{n} во всех точках так, что главные кривизны во всех точках >0. Оно непрерывно, так как для каждой локальной параметризации имеет вид $\widehat{n}(r(x)) = \pm \frac{r_u'(x) \times r_v'(x)}{|r_u'(x) \times r_v'(x)|}$, где знак фиксирован.

Это показывает, что существует гауссово отображение $\widehat{n}:\Sigma\to S^2$, то есть гауссово отображение можно определить глобально. $\mathrm{d}\widehat{n}\neq 0$, так как главные кривизны невырождены, и если u,v — главные направления, то по теореме Родрига $n'_u=-k_1r_u\neq 0$ и $n'_v=-k_2r_v\neq 0$. По-другому можно сказать, что $S=-\mathrm{d}\widehat{n}$, собственные числа S не равны 0, поэтому $\mathrm{d}\widehat{n}$ невырожден.

Значит (по теореме об обратной функции), отображение $\widehat{n}: \Sigma \to S^2$ — локальный гомеоморфизм.

Лемма 2.12.1. Пусть X — компактное метризуемое пространство, $f: X \to Y$ — локальный гомеоморфизм. Тогда f — накрытие.

Доказательство леммы.

Из метризуемости следует хаусдорфовость, из компактности — секвенциальная компактность.

Проверим, что f — конечнолистное накрытие. От противного: $\exists y \in Y: f^{-1}(y) = \{x_1, x_2, \dots\}$ бесконечно. Выберем сходящуюся подпоследовательность $x_n \xrightarrow[n \to \infty]{} x$, где $x \in X$ — предельная точка $f^{-1}(y)$. Получим противоречие: в точке x нарушается условие того, что f — локальный гомеоморфизм.

Теперь у каждой точки $y \in Y$ конечное число прообразов $\{x_1, \dots, x_n\}$, и из хаусдорфовости можно выбрать им непересекающиеся окрестности V_{x_1}, \dots, V_{x_n} , а дальше заменить $V_{x_j} \leadsto V_{x_j} \cap U_{x_j}$ (U_{x_j} — такая окрестность x_j , что $f \big|_{U_{x_j}}$ — гомеоморфизм на образ).

Далее сфера односвязна, поэтому всякое накрытие однолистно, значит, $\Sigma \to S^2$ — гомеоморфизм. Получается, нашлось ровно два направления, в которых данная плоскость — касательна, и, значит, Σ действительно выпукла:

От противного, пусть Σ не выпукла, тогда существует касательная плоскость, такая, что Σ лежит по обе стороны от данной плоскости, но на $+\infty$ и $-\infty$ найдутся ещё две касательные плоскости, параллельные данной.

Интересный факт. На самом деле даже $K\geqslant 0$ влечёт выпуклость поверхности, но это доказывать сложнее.

Лекция XV 11 декабря 2023 г.

Лемма 2.12.2. Пусть $\Omega \subset \mathbb{R}^2$ — область (в размерности 3 неверно), и пусть в Ω заданы два гладких поля — V, W, причём в $x_0 \in \Omega : V_{x_0}, W_{x_0}$ линейно независимы.

Тогда $\exists U_{x_0} \ni x_0$, и \exists карта $\phi: U_{x_0} \to \Omega_0$, такая, что V, W — касательные к координатным

Обратно, если $r=\phi^{-1}$, то $\mathrm{d} r(1,0)\parallel V$ и $\mathrm{d} r(0,1)\parallel W.$

Доказательство. Позднее: (2.12.4).

Определение 2.12.3 (Развёртывающаяся поверхность). Поверхность, локально изометричная плоскости.

Утверждение 2.12.1. Из теоремы Гаусса следует, что гауссова кривизна развёртывающейся поверхности — нуль.

Интересный факт. Если гауссова кривизна поверхности $K \equiv 0$, то поверхность — развёртывающаяся.

Теорема 2.12.2. Пусть $\Sigma \subset \mathbb{R}^3$ — развёртывающаяся поверхность.

- 1. Тогда $\forall p \in \Sigma : \exists a, b \in \Sigma : p \in (a, b)$ и $[a, b] \subset \Sigma$. Здесь [a, b] и (a, b) отрезок и интервал в \mathbb{R}^3 с концами в этих точках.
- 1+. Если одна из главных кривизн не нуль, то отрезок можно продолжать на любой компакт $K \subset \Sigma$.
- 2. Все касательные плоскости, построенные в точках $[a,b] \subset \Sigma$, параллельны.
- 3. Интересный факт. Если Σ полная (в смысле топологического пространства: все фундаментальные последовательности имеют предел), то это — цилиндр (то есть восставлены перпендикуляры к некоторой кривой на плоскости).

Доказательство. Разобьём точки на омбилические Σ_0 (обе кривизны равны нулю) и остальные Σ_1 : $\Sigma = \Sigma_0 \sqcup \Sigma_1$.

Сначала рассмотрим точки из Σ_1 . Пусть в направлении v_1 кривизна $k_1=0$, а в направлении $v_2: k_2 \neq 0.$

Такие направления находятся единственным образом, значит, прямые $\langle v_i
angle$ гладко зависят от точки — чтобы их найти, надо решить соответствующее уравнение.

Тогда в окрестности каждой точки $x_0 \in \Sigma_1$ можно ввести параметризацию $r: \Omega \to \Sigma_1$, такую,

что координатные линии параллельны главным направлениям: $\begin{cases} \widehat{n}_x' = -k_1 r_x' = 0 \\ \widehat{n}_y' = -k_2 r_y' \end{cases}, \ r_x' \perp r_y'.$

Так как $\widehat{n}'_r = 0$, то при перемещении нормали вдоль координатной линии — образа вектора (1,0) — она локально остаётся постоянной: $\widehat{n}(_, \text{const}) = \text{const.}$

Запишем $0=\widehat{n}''_{x,y}=\widehat{n}''_{y,x}$, значит, $\widehat{n}'_y \neq 0$ тоже постоянен вдоль оси x: $\widehat{n}'_y(_,y_0)=\mathrm{const.}$

Так как $\widehat{n}_y' \parallel r_y'$, то $\widehat{n}, \widehat{n}_y'$ — линейно независимы. Так как $\widehat{n}, \widehat{n}_y' \perp r_x'$, то r_x' — координатная линия— является куском прямой, можно выбрать внутри маленький отрезок [a,b]. Доказали 1 для Σ_1 .

Понятно, что интервал (a,b) можно продолжить в точке b, это не получится только если $b \notin \Sigma_1$ (либо $b \in \Sigma_0$, либо пришли к краю поверхности). Покажем, что ситуация $b \in \Sigma_0$ невозможная.

Лемма 2.12.3. Заметим, что $\langle r'_x, r'_x \rangle'_y = 0$.

Доказательство леммы.

 $\left\langle r_x',r_y' \right
angle = 0 \Rightarrow \left\langle r_{x,x}'',r_y' \right
angle + \left\langle r_x',r_{x,y}' \right
angle = 0.$ Мы доказали, что $r_{x,x}' \parallel r_x'$ (так как координатная линия — отрезок прямой), откуда первое слагаемое — нуль. Но тогда $\left\langle r_x',r_x' \right
angle_y' = 2 \left\langle r_x',r_{x,y}'' \right
angle = 0.$

Можно перепараметризовать так, что $\langle r_x', r_x' \rangle = 1$ — взять натуральную параметризацию в направлении отрезка [a,b].

Теперь $r_{x,x}''=0$, то есть $r_{x,x,y}'''=0$, откуда $\left(r_y'\right)_{x,x}''=0$. Значит, $r_y'=(ax+b)w_0$, где w_0 — некий постоянный вектор, фиксированный при данном y.

Теперь вспомним, что $n_y' = -k_1 r_y'$. Получается, что $k_1 = \frac{1}{ax+b}$, при движении вдоль x. Значит, на данном отрезке кривизна никогда не станет нулём. Доказали 1+.

Посмотрим на Σ_0 . Если $p\in {\rm Int}\,\Sigma_0$, $\exists \underbrace{U}_{\ni p}\in \Sigma_0$. Дифференциал ${\rm d}\widehat{n}=0$ в данной окрестности, и U — часть плоскости. Иначе $\nexists\underbrace{U}_{\ni p}\in \Sigma_0$, то есть найдётся последовательность точек

 $p_1,\dots,p_n,\dots\in\Sigma_1:p_k\overset{\sim}{\longrightarrow}p$. Возьмём у каждой точке p_k интервал, проходящий через неё. Их длины не стремятся к нулю, так как интервалы могут заканчиваться только на краю поверхности, выберем сходящуюся подпоследовательность отрезков. Доказали 1 для Σ_0 . \square

Теорема 2.12.3 (О выпрямлении векторного поля). Пусть $\Omega \subset \mathbb{R}^2$ (хотя вообще это верно для любой размерности). Зафиксируем $x \in \Omega$, пусть V — гладкое векторное поле, $V_x \neq 0$.

Тогда \exists окрестность $U_x\ni x$, и карта $\phi:U_x\to\Omega_0$, такая, что V — векторное поле координатных линий: $\forall y\in U_x: \mathrm{d}_y\phi(V_y)=(1,0)$, или если $r=\phi^{-1}$ — параметризация, то $r_x'=V$.

Доказательство. Рассмотрим гладкую регулярную кривую $\alpha(0)=x,\alpha'(t)$ и $V'_{\alpha(t)}$ линейно независимы (например, можно выбрать так, чтобы было $\alpha'(0) \perp V'_x$, и продлить на ε , по непрерывности такой (достаточно короткий) путь α найдётся)

Построим параметризацию

$$r(t, au)=\gamma_{ au}(t)$$
, где $\gamma_{ au}$ определено так:
$$\begin{cases} \gamma_{ au}(0)=lpha(au) \\ \gamma_{ au}'(t)=V(\gamma_{ au}(t)) \end{cases}$$

Решая это дифференциальное уравнение (сначала решим при $\tau=0$, а потом воспользуемся теоремой об интегральной непрерывности) получаем карту $\gamma_{\tau}(t)$, гладко зависящую от начальных данных.

Осталось проверить, что $\mathrm{d} r(0,0) \neq 0$. $r_{\tau}'(0,0) = \alpha'(0), r_t'(t,\tau) = V_{r(t,\tau)}$ (в частности $r_t'(0,0) = V_x$), а V_x линейно независимо с $\alpha'(0)$.

Пусть $\phi = (\phi_1, \phi_2) = r^{-1}$ — расписали карту, обратную к параметризации, по координатам.

Теперь докажем лемму, анонсированную в начале лекции.

Лемма 2.12.4. Пусть $\Omega \subset \mathbb{R}^2$ — область (в размерности 3 неверно), и пусть в Ω заданы два гладких поля — V,W, причём в $x_0 \in \Omega: V_{x_0}, W_{x_0}$ линейно независимы.

Тогда $\exists U_{x_0} \ni x_0$, $u \; \exists \; карта \; \phi: U_{x_0} \to \Omega_0$, такая, что $V, W - \kappa$ асательные κ координатным линиям.

Обратно, если $r=\phi^{-1}$, то $\mathrm{d} r(1,0)\parallel V$ и $\mathrm{d} r(0,1)\parallel W$.

Доказательство. Применим к V,W теорему о выпрямлении векторного поля, назовём для V карту (ϕ_1,ϕ_2) , для $W-(\psi_1,\psi_2)$.

Возьмём в качестве карты $h:=(\phi_2,\psi_2)$. Оно подходит:

- $V \in \operatorname{Ker} \mathrm{d} \phi_2, W \in \operatorname{Ker} \mathrm{d} \psi_2$. Действительно, ϕ_2 постоянно вдоль главных координатных линий, значит, $\mathrm{d} \phi_2(V) = 0$
- $\mathrm{d}\phi$ невырожден, значит, $\mathrm{d}\phi_2$ невырожден, аналогично $\mathrm{d}\psi_2$ невырожден. При этом V_{x_0} и W_{x_0} линейно независимы, значит, $\mathrm{d}_{x_0}h$ невырожден.