Kursus: Tilbagekoblingsteori I

Kursets formål:

At I skal blive i stand til at kunne anvende og analysere tilbagekobling i analoge elektroniske kredsløb.

PE-kursus:

Kursusholder: Palle Andersen

Opgavehjælp: Tom S. Pedersen, Palle Andersen

Kursets indhold

- Egenskaber ved tilbagekobling:
 - Påvirkning af ind- og udgangsimpedans
 - Følsomhed overfor komponentvariationer
 - Ændring af frekvensrespons
 - Linearisering, undertrykkelse af støj, etc.
- De fire tilbagekoblings-kombinationer. Den ideelle envejs tilbagekobling. Håndtering af tilbagekoblingens-, belastningens- og kildens impedanser. Toportmodeller til idealisering.
- Stabilitetsanalyse, polers vandring afhængig af forstærkning, stabilitetsmarginer
- Stabilisering ved frekvenskompensering
- Beregning, simulering eller måling af sløjfens frekvenskarakteristik. Induktanser, kapacitanser,

OpAmp med spændingstilbagekobling

Idealiseret operationsforstærker med uendelig forstærkning

$$V_{i} = 0 \implies$$

$$V_{o} * \frac{Z_{1}}{Z_{1} + Z_{2}} = V_{s} \implies$$

$$V_{o} = \frac{Z_{1} + Z_{2}}{Z_{1}} * V_{s}$$

- n 3/

OpAmp med endelig forstærkning:

$$Z_i \approx \infty$$
, $Z_o \approx 0$, $V_o = AV_i = A(V_s - V_f)$,
$$V_f = \frac{Z_1}{Z_1 + Z_2} V_o = \beta V_o$$

$$V_o = A(V_s - \beta V_o) \Rightarrow V_o = \frac{A}{1 + \beta A} V_s = A_f V_s$$

$$\beta A \gg 1 \Rightarrow A_f = \frac{A}{1+\beta A} \simeq \frac{1}{\beta} = \frac{Z_1 + Z_2}{Z_1}$$

– p. 4

Blokdiagramfremstilling

- Linier med pilretning, som repræsenterer signaler.
- Summationspunkter repræsenteret ved boller med fortegnsangivelse
- Multiplikationsblokke, forstærkningen angivet i blokken
- Afgreninger hvor samme signal føres flere steder hen

Blokdiagram omformning

Blokdiagram sløjferegel

$$V_o = A(V_s - \beta V_o) \leftrightarrow V_o = \frac{A}{1 + \beta A} V_s$$

$$A_f = \frac{A}{1 + \beta A}$$

Sløjfereglen for negativ tilbagekobling: Lukket sløjfe = (gren frem)/(1 + sløjfeforstærkning)

Terminologi

- A: Åben sløjfe forstærkning: fra indgang til udgang uden tilbagekobling, råforstærkning
- β: Tilbagekoblingsfaktor
- βA: Sløjfeforstærkning
- $\frac{A}{1+\beta A}$: Lukket sløjfe forstærkning
- $1 + \beta A$: Fejlreduktionsfaktor,
- $\frac{1}{1+\beta A}$: Følsomhed

Følsomhed mod variationer i A

Hvordan påvirkes lukket sløjfe forstærkninger hvis A ændres ?

$$\frac{dA_f}{dA} = \frac{1 * (1 + \beta * A) - A\beta}{(1 + \beta A)^2} = \frac{1}{(1 + \beta A)^2}$$

Ved at regne med relative afvigelser får vi et mere sigende udtryk: Følsomheden af A_f med hensyn til A

$$S_A^{A_f} = \frac{dA_f}{dA} \frac{A}{A_f} = \frac{1}{1 + \beta A}$$

Hvis $1 + \beta A = 100 \Rightarrow S_A{}^{A_f} = 0.01$ vil 10 % variation i A-forstærkning give

$$\frac{\Delta A_f}{A_f} \simeq S_A^{A_f} \frac{\Delta A}{A} = 0.01 * 0.1 = 0.001 \sim 0.1\%$$

– p. 9/

Følsomhed mod variationer i β

Hvordan påvirkes forstærkningen i lukket sløjfe hvis β ændres ?

Differentialkvotienten mht. β

$$\frac{dA_f}{d\beta} = \frac{0 - A * A}{(1 + \beta A)^2} = \frac{-A^2}{(1 + \beta A)^2}$$

Følsomheden af A_f med hensyn til β

$$S_{\beta}^{A_f} = \frac{dA_f}{d\beta} \frac{\beta}{A_f} = -\frac{\beta A}{1 + \beta A}$$

Hvis $\beta A >> 1$ er

$$S_{\beta}^{A_f} \simeq -1$$

Variationer i eta slår altså fuldt igennem med negativt fortegn

Tilbagekobling modvirker ulinearitet

Et eksempel på forvrængning fra ulinearitet forekommer i effekttrin

Effekttrin med ulinearitet

Tilbagekobling modvirker ulinearitet

Med tilbagekobling kan dette reduceres drastisk

Vi har her en opkobling med

- ullet Åbensløjfeforstærkning $\simeq A$ og
- Tilbagekoblingsfaktor $\beta = 1$

Tilbagekobling modvirker ulinearitet

Effekttrinnet uden tilbagekobling og med 5 og 1000 ganges forstærkning

Støj reduktion

$$V_o = A_1 V_s + A_1 V_n$$

Uden tilbagekobling er signal/støj forholdet

$$S/N = \frac{V_s}{V_n}$$

Støjen i et effekttrin, som trækker stor strøm fra forsyningen kan undertrykkes med forstærkning i separat trin med mindre belastet strømforsyning.

Støj reduktion

$$V_o = \frac{A_1 A_2}{1 + \beta A_1 A_2} V_s + \frac{A_1}{1 + \beta A_1 A_2} V_n$$

Med tilbagekobling er signal/støj forholdet

$$S/N = A_2 \frac{V_s}{V_n}$$

altså en forbedring med faktoren A_2 , hvis forforstærkeren \pm ikke tilfører støj

Tilbagekobling flytter knækfrekvenser

Vi ser på et system med een knækfrekvens

$$A(s) = \frac{A_0}{s/\omega_k + 1}$$

kobles der tilbage med β fås overføringsfunktionen

$$A_f(s) = \frac{\frac{A_o}{s/\omega_k + 1}}{1 + \beta \frac{A_o}{s/\omega_k + 1}} = \frac{A_0}{s/\omega_k + 1 + \beta A_0}$$

$$A_f(s) = \frac{\frac{A_0}{1+\beta A_0}}{\frac{s}{\omega_k(1+\beta A_0)} + 1}$$

Ny knækfrekvens

$$\omega_{kf} = \omega_k (1 + \beta A_0)$$

Tilbagekobling flytter knækfrekvenser

Ideel serie-shunt tilbagekobling

A-Forstærker og β er unilateral. β netværk trækker ingen strøm fra udgangssiden og V_f er uafhængig af I_i Kildemodstand er nul og belastningsmodstand er ∞ Kaldes også spænding-spænding: på indgangen trækkes V_f fra V_s (serie) og på udgangen 'måles' V_o ved at tilkoble β som en shunt over udgangen

Ideel serie-shunt, Indgangsmodstand

Indgangsmodstand R_{if} i lukket søjfe beregnes af

$$V_f = \beta V_o = \beta A V_i \implies V_s = V_i + \beta A V_i$$

$$\Rightarrow R_{if} = \frac{V_s}{I_i} = \frac{V_i + \beta A V_i}{V_i / R_i} = (1 + \beta A) R_i$$

- n 20/2

Ideel serie-shunt, udgangsmodstand

Udgangsmodstand R_{of} i lukket søjfe beregnes ved at kortslutte indgangen og beregne I_o med V_t på udgangen

$$V_i = -V_f = -\beta V_t \implies I_o = \frac{V_t - AV_i}{R_o} = \frac{V_t + A\beta V_t}{R_o}$$

$$\Rightarrow R_{of} = \frac{V_t}{I_o} = \frac{R_o}{1 + \beta A}$$

- p. 21/

Hvad opnås med tilbagekobling

- Følsomhed af A_f overfor variationer i forstærkning A er lille.
- Reducerer virkning af ulinearitet.
- Frekvensrespons ændres så båndbredden øges.
- Kan bruges til undertrykkelse af støj.
- Har gunstig påvirkning af ind- og udgangsimpedans.

Hvad kan tilbagekobling koste

Ulemper ved tilbagekobling

- Det koster forstærkning
- Der kan være problemer med stabilitet