Stochastische Signale und Systeme

Zusammenfassung Formeln

Autor: Daniel Thiem - studium@daniel-thiem.de

Version 0.9.6 - 24.09.2012

Inhaltsverzeichnis

1	Kon	Kombinatorik & reine Stochastik					
	1.1	Wahrs	scheinlichkeitsdichtefunktion	6			
		1.1.1	Eigenschaften der Wahrscheinlichkeitsdichtefunktion	6			
		1.1.2	Berechnung bei Abhängigkeit zu anderer Zufallsvariablen	6			
	1.2	Verteilungsfunktion					
		1.2.1	Eigenschaften der Verteilungsfunktion	7			
		1.2.2	Wahrscheinlichkeitsrechnung mittels der Verteilungsfunktion	7			
	1.3	Verteilungen		7			
		1.3.1	Normalverteilung	7			
		1.3.2	Rechteckverteilung	8			
		1.3.3	Exponentialverteilung	8			
	1.4						
	1.5	Erwar	tungswerte	8			
		1.5.1	Erwartungswertberechnung	8			
		1.5.2	Rechenregeln für Erwartungswerte	9			
	1.6	Varian	ız	9			
		1.6.1	Berechnung der Varianz	9			
		1.6.2	Rechenregeln für Varianzen	9			
	1.7	Konve	rgenz	10			
		1.7.1	Konvergenz mit Wahrscheinlichkeit eins (Convergence with				
			probability one)	10			
		1.7.2	Konvergenz im "Mean Square Sense"	10			
		1.7.3	Convergence in Pobability	10			
		1.7.4	Convergence in Distribution	10			
		1.7.5	Gewichtung der Konvergenzen	10			
2	Disc	rete-Ti	me-Fourier-Transformation	11			
	2.1	2.1 Abtastung					
		2.1.1	Im Zeitbereich	11			
		2.1.2	Im Frequenzbereich	11			
	2.2	Transf	Formation	11			
		2.2.1	Rücktransformation	11			
		2.2.2	Zusammenhang Ω und n	12			

		2.2.3	Dirac-Kamm	12
		2.2.4	Berechnen einer Übertragungsfunktion im zeitdiskreten Fall $.$	12
3	Proz	zesse		13
_	3.1		e Stationarität	13
	3.2		d order moment function(SOMF)	13
		3.2.1	Stationär im weiteren Sinne	13
		3.2.2	Eigenschaften der SOMF	13
	3.3	Cross-	SOMF	13
		3.3.1	Gemeinsame Statonarität (joint stationary)	14
		3.3.2	Eigenschaften der Cross-SOMF	14
		3.3.3	Unkorreliertheit (uncorrelated) anhand der Cross-SOMF	14
		3.3.4	Orthogonalität	14
	3.4	0		14
		3.4.1	Eigenschaften der Kovarianz	15
		3.4.2	Kovarianz einer zusammengesetzten Funktion	15
		3.4.3	Überführung der Central-SOMF in die Varianz	15
	3.5	Kreuz-	-Kovarianz (Cross-covariance)	15
		3.5.1	Eigenschaften der Kreuzkovarianz	15
		3.5.2	Unkorreliertheit (uncorrelated) anhand der Kreuzkovarianz.	16
	3.6	Komp	exe Prozesse	16
		3.6.1	Erwartungswert eines Komplexen Zufallsprozess	16
		3.6.2	SOMF eines Komplexen Zufallsprozess	16
		3.6.3	cross-SOMF komplexer Zufallsprozesse	16
		3.6.4	Kovarianz (Covariance) eines komplexen Zufallsprozess	17
		3.6.5	Kreuzkovarianz(cross-covariance) komplexer Zufallsprozesse	17
		3.6.6	Eigenschaften komplexer Zufallsprozesse	17
4	Spe	ktraldi	chten (Power Spectral Density)	18
	4.1		ngsdichte	18
		4.1.1	Leistungsspektraldichte (Power Spectral Density, PSD)	18
		4.1.2	Durchschnittliche Leistung eines Zufallsprozesses	19
		4.1.3	Kreuzleistungsdichte (cross-power density)	19
		4.1.4	Durchschnittliche Kreuzleistung zweier Zufallsprozesse	19
		4.1.5	Wiener-Khinchine theorem	20
		4.1.6	Kreuzleistungsdichte durch Cross-SOMF	20
	4.2		enz (coherence)	20
		4.2.1	Eigenschaften der Kohärenz	20
	4.3	Root N	Mean Square (RMS) und Gleichsstrom (DC) Werte	21
			DC-Values	21

		4.3.2	Normalisierte DC-Leistung	21	
		4.3.3	RMS-Value	21	
	4.4	4 Spektrum			
		4.4.1	Spektrum eines stationären Zufallsprozesses	21	
		4.4.2	Kreuzspektrum zweier gemeinsam stationärer Zufallsprozesse	22	
_				23	
5	Filte				
	5.1		e Filter	23	
		5.1.1	Stabilität	23	
		5.1.2	Eigenschaften eines Linearen Filters	23	
		5.1.3	Instabiler linearer Filter	23	
		5.1.4	Leistungsdichtespektrum des Ausgangs eines Filters	24	
		5.1.5	Spektrum/Kovarianz des Ausgangs eines Filters	24	
		5.1.6	Kreukovarianz des Ausgangs des Filters	24	
		5.1.7	Kreukovarianz des Ausgangs zweier paralleler Filter	24	
	- 0	5.1.8	Kaskade linearer Filter	25	
	5.2		ed Filter	25	
		5.2.1	Annahmen des Matched Filters	25	
		5.2.2	Ziel des Matched Filters	25	
		5.2.3	Übertragungsfunktion des Matched Filters	26	
	- 0	5.2.4	Matched Filter für Weißes Rauschen	26	
	5.3	5.3 Wiener Filter		26	
		5.3.1	Ziel des Wiener Filters	26	
		5.3.2	Annahmen des Wiener Filters	27	
		5.3.3	Die Übertragungsfunktion des Wiener Filters	27	
		5.3.4	Mean Square Error des Wiener Filters	28	
		5.3.5	Orthogonalitätsprinzip (Herleitung des Wiener Filters)	28	
		5.3.6	Der Wiener Filter mit additivem Rasuchen	28	
6	Son	stiges		29	
	6.1	-	lle Funktionen	29	
		6.1.1	Gaussian white noise process	29	
		6.1.2	Kronecker delta function	29	
	6.2	Mathe	matische nützliche Formeln	29	
		6.2.1	Ungleichung von Schwarz	29	
		6.2.2	Orthogonalitäts- und Normierungsbeziehungen	30	
		6.2.3	Betragsquadrat komplexer Funktionen	30	
		6.2.4	Doppelte Faltungssumme	30	

Vorwort

Fehler und Verbesserungen bitte an studium@daniel-thiem.de senden oder als Issue bei https://github.com/Tyde/stosigsysfs/issues melden. Der Quelltext dieser Formelsammlung ist auf https://github.com/Tyde/stosigsysfs und darf gerne erweitert werden.

5

1 Kombinatorik & reine Stochastik

1.1 Wahrscheinlichkeitsdichtefunktion

Sei $F_X(x)$ die Verteilungsfunktion der Zufallsvariablen X

$$f(x) = \frac{dF_X(x)}{dx} \tag{1.1}$$

1.1.1 Eigenschaften der Wahrscheinlichkeitsdichtefunktion

$$f_X(x) \ge 0 \tag{1.2a}$$

$$f_X(x) = P(X = x) \tag{1.2b}$$

1.1.2 Berechnung bei Abhängigkeit zu anderer Zufallsvariablen

Sei Y = g(X) und die Wahrscheinlichkeitsdichtefunktion von Y, $f_y(t)$, sei gesucht, während die Wahrscheinlichkeitsdichtefunktion $f_x(t)$ gegeben ist,

$$f_y(t) = f_x(g^{-1}(t)) \left| \frac{d}{dt} g^{-1}(t) \right|$$
 (1.3)

1.2 Verteilungsfunktion

f(t) sei die Wahrscheinlichkeitsdichte
funktion der Zufallsvariablen X

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt$$
 (1.4)

1.2.1 Eigenschaften der Verteilungsfunktion

$$0 \le F_X(x) \le 1 \tag{1.5a}$$

$$F_X(\infty) = 1 \tag{1.5b}$$

$$F_X(-\infty) = 0 \tag{1.5c}$$

 $F_X(x)$ ist rechtsstetig, d.h.

$$\lim_{\epsilon \to 0} F_X(x + \epsilon) = F_X(x) \tag{1.5d}$$

1.2.2 Wahrscheinlichkeitsrechnung mittels der Verteilungsfunktion

$$F(a-) = \lim_{\epsilon \to 0} F_X(x - \epsilon)$$
 (1.6a)

$$P(X = a) = F(a) - F(a-)$$
 (1.6b)

$$P(a < X \le b) = F(b) - F(a)$$
 (1.6c)

$$P(a \le X < b) = F(b-) - F(a-) \tag{1.6d}$$

$$P(a \le X \le b) = F(b) - F(a-)$$
 (1.6e)

$$P(X > a) = 1 - F(a)$$
 (1.6f)

1.3 Verteilungen

1.3.1 Normalverteilung

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{t-\mu}{\sigma}\right)^2}$$
(1.7)

1.3.2 Rechteckverteilung

$$f(t) = \begin{cases} \frac{1}{b-a} & a < t < b \\ 0 & \text{sonst} \end{cases}$$
 (1.8)

$$F(x) = \begin{cases} 0 & x \le a \\ \frac{x-a}{b-a} & x \in (a,b] \\ 1 & x > b \end{cases}$$
 (1.9)

1.3.3 Exponentialverteilung

$$f(t) = \begin{cases} 0 & t < 0 \\ \lambda e^{-\lambda t} & t \ge 0 \end{cases} \tag{1.10}$$

$$F(x) = \begin{cases} 0 & x < 0 \\ 1 - e^{-\lambda t} & x \ge 0 \end{cases}$$
 (1.11)

1.4 Formel von Bayes

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \Rightarrow P(A_k|B) = \frac{P(A_k \cdot P(B|A_k))}{\sum_{i=1}^{n} P(B|A_i) \cdot P(A_i)}$$
(1.12)

1.5 Erwartungswerte

1.5.1 Erwartungswertberechnung

Allgemein

Sei f(x) die Wahrscheinlichkeitsdichtefunktion von X

$$E(X) = \int_{-\infty}^{\infty} x \cdot f(x) dx$$
 (1.13)

Erweitert

Sei Y = g(X) und f(x) die Wahrscheinlichkeitsdichtefunktion von X

$$E[Y] = E[g(X)] = \int_{-\infty}^{\infty} g(x) \cdot f(x) dx$$
 (1.14)

1.5.2 Rechenregeln für Erwartungswerte

Sei A eine von B unabhängige Zufallsvariable

$$E[A \cdot B] = E[A] \cdot E[B] \tag{1.15}$$

Sei X eine Zufallsvariable und a, b jeweils Konstanten

$$E[aX + b] = aE[X] + b \tag{1.16}$$

Seien X_i Zufallsvariablen

$$E\left[\sum_{i=0}^{n} X_i\right] = \sum_{i=0}^{n} E\left[X_i\right]$$
(1.17)

1.6 Varianz

1.6.1 Berechnung der Varianz

$$Var(X) = E(X^{2}) - E(X)^{2}$$
(1.18)

1.6.2 Rechenregeln für Varianzen

$$Var(aX + b) = a^{2}Var(x)$$
(1.19)

Seien X_i Zufallsvariablen

$$\operatorname{Var}\left[\sum_{i=0}^{n} X_{i}\right] = \sum_{i=0}^{n} \operatorname{Var}\left[X_{i}\right]$$
(1.20)

1.7 Konvergenz

Es wird eine Konvergenz von Zufallsvariablen X_k mit k = 0, 1, 2... betrachtet:

1.7.1 Konvergenz mit Wahrscheinlichkeit eins (Convergence with probability one)

$$P\left(\lim_{k\to\infty}|X_k - X| = 0\right) = 1\tag{1.21}$$

1.7.2 Konvergenz im "Mean Square Sense"

$$\lim_{k \to \infty} \mathbb{E}\left[|X_k - X|^2\right] = 0 \tag{1.22}$$

1.7.3 Convergence in Pobability

$$\lim_{k \to \infty} P\left(|X_k - X| > \epsilon\right) = 0 \tag{1.23}$$

1.7.4 Convergence in Distribution

$$\lim_{k \to \infty} F_{X_k}(x) = F_X(x) \quad \text{Für alle stetigen punkte } x \text{ aus } F_X \tag{1.24}$$

1.7.5 Gewichtung der Konvergenzen

- Convergence with probability 1 (1.7.1) implies convergence in probability (1.7.3)
- Convergence with probability 1 (1.7.1) implies convergence in the MSS (1.7.2), provided second order moments exist.
- Convergence in the MSS (1.7.2) implies convergence in probability (1.7.3).
- Convergence in probability (1.7.3) implies convergence in distribution (1.7.4).

2 Discrete-Time-Fourier-Transformation

2.1 Abtastung

2.1.1 Im Zeitbereich

Sei $x_c(t)$ das zu abtastende Signal und $T_s=\frac{1}{f_s}$ die Abtastdauer bzw. Abtastfrequenz

$$x_s(t) = \sum_{n=-\infty}^{\infty} x_c(nT_s)\delta(t - nT_s)$$
 (2.1)

2.1.2 Im Frequenzbereich

$$X_{s}(j\Omega) = \frac{1}{T_{s}} \sum_{k=-\infty}^{\infty} X_{c}(j(\Omega - \frac{2\pi k}{T_{s}}))$$

$$= \frac{1}{T_{s}} \sum_{k=-\infty}^{\infty} X_{c}(j\Omega - kj\Omega_{s}) \quad \text{mit} \quad \Omega_{s} = \frac{2\pi}{T_{s}}$$
(2.2)

(2.3)

2.2 Transformation

2.2.1 Rücktransformation

$$x[n] = \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$
 (2.4)

2.2.2 Zusammenhang Ω und n

ACHTUNG: Dieser zusammenhang ist in SSS etwas anders im gegensatz zu dem Hilfsblatt von DSS

$$\omega = \Omega T_{\rm s} \tag{2.5}$$

2.2.3 Dirac-Kamm

$$\eta(\omega) = \sum_{l=-\infty}^{\infty} \delta(\omega + 2\pi l)$$
 (2.6)

2.2.4 Berechnen einer Übertragungsfunktion im zeitdiskreten Fall

- 1. Zeitkontinuierliches $H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})}$ berechnen
- 2. Formel aus (2.2.2) einsetzen, um $H(j\Omega)$ zu erreichen

3 Prozesse

3.1 Strikte Stationarität

$$F_x(x_1, \dots, x_N; n_1, \dots, n_N) = F_x(x_1, \dots, x_N; n_1 + n_0, \dots, n_N + n_0) \quad \text{mit } N \to \infty$$
 (3.1)

3.2 Second order moment function(SOMF)

$$r_{XX}(n_1, n_2) = \mathbb{E}[X(n_1)X(n_2)]$$
 (3.2)

3.2.1 Stationär im weiteren Sinne

$$E[X(n)] = const. (3.3a)$$

$$r_{XX}(n_1, n_2) = r_{XX}(\kappa) = \mathbb{E}[X(n+\kappa) \cdot X(n)] \quad \text{mit} \quad \kappa = |n_2 - n_1|$$
 (3.3b)

3.2.2 Eigenschaften der SOMF

$$r_{XX}(0) = E[X(n)^2] = \sigma_X^2 + \mu_Y^2$$
 (3.4a)

$$r_{XX}(\kappa) = r_{XX}(-\kappa) \tag{3.4b}$$

$$r_{XX}(0) \ge |r_{XX}(\kappa)|$$
 , $|\kappa| > 0$ (3.4c)

3.3 Cross-SOMF

$$r_{XY}(n_1, n_2) = \mathbb{E}[X(n_1) \cdot Y(n_2)]$$
 (3.5)

3.3.1 Gemeinsame Statonarität (joint stationary)

Sei X(n) und Y(n) nach (3.2.1) *stationär*, dann sind die Prozesse gemeinsam stationär, wenn gilt:

$$r_{XY} = r_{XY}(n_1 - n_2) = r_{XY}(\kappa) \quad \text{mit} \quad \kappa = n_1 - n_2$$
 (3.6)

3.3.2 Eigenschaften der Cross-SOMF

$$r_{XY}(-\kappa) = r_{YX}(\kappa) \tag{3.7a}$$

$$|r_{XY}(\kappa)| \le \sqrt{r_{XX}(0) \cdot r_{YY}(0)} \tag{3.7b}$$

$$|r_{XY}(\kappa)| \le \frac{1}{2}(r_{XX}(0) + r_{YY}(0))$$
 (3.7c)

3.3.3 Unkorreliertheit (uncorrelated) anhand der Cross-SOMF

$$r_{XY}(\kappa) = \mu_{X} \cdot \mu_{Y} = \mathbb{E}\left[X(n+\kappa)\right] \mathbb{E}\left[Y(n)\right]$$
 (3.8)

3.3.4 Orthogonalität

$$r_{XY}(\kappa) = 0 \tag{3.9}$$

3.4 Kovarianz (Covariance, Central-SOMF)

$$c_{XX}(n+\kappa,n) = \mathbb{E}\left[\left(X(n+\kappa) - \mathbb{E}\left[X(n+\kappa)\right]\right) \cdot \left(X(n) - \mathbb{E}\left[X(n)\right]\right)\right] \tag{3.10a}$$

$$c_{XX}(n+\kappa,n) = r_{XX}(n+\kappa,n) - \mathbb{E}[X(n+k)]\mathbb{E}[X(n)]$$
(3.10b)

3.4.1 Eigenschaften der Kovarianz

Falls X zumindest stationär im weiteren Sinne(3.2.1) ist, gilt

$$c_{XX}(\kappa) = r_{XX}(\kappa) - (\mathbb{E}[X(n)])^2 \tag{3.11}$$

3.4.2 Kovarianz einer zusammengesetzten Funktion

Falls Y(n) = X(n) + V(n) und X(n) ist von V(n) statistisch unabhängig und einer der beiden Prozesse mittelwertfrei, dann gilt:

$$c_{YY}(\kappa) = C_{XX}(\kappa) + C_{VV}(\kappa) \tag{3.12a}$$

Ist X(n) jedoch abhängig von V(n), so gilt:

$$c_{YY}(\kappa) = C_{XX}(\kappa) + C_{VV}(\kappa) + C_{XV}(\kappa) + C_{VX}(\kappa)$$
(3.12b)

3.4.3 Überführung der Central-SOMF in die Varianz

$$c_{XX}(0) = \operatorname{Var}(X) \tag{3.13}$$

3.5 Kreuz-Kovarianz (Cross-covariance)

$$c_{XY}(n+\kappa,n) = \mathbb{E}\left[\left(X(n+\kappa) - \mathbb{E}\left[X(n+\kappa)\right]\right) \cdot \left(Y(n) - \mathbb{E}\left[Y(n)\right]\right)\right] \tag{3.14a}$$

$$c_{XY}(n+\kappa,n) = r_{XY}(n+\kappa,n) - \mathbb{E}[X(n+k)]\mathbb{E}[Y(n)]$$
(3.14b)

3.5.1 Eigenschaften der Kreuzkovarianz

Falls X und Y zumindest gemeinsam stationär im weiteren Sinne (3.3.1) sind, gilt:

$$c_{XY}(\kappa) = r_{XY}(\kappa) - \mathbb{E}[X(n)]\mathbb{E}[Y(n)]$$
(3.15)

3.5.2 Unkorreliertheit (uncorrelated) anhand der Kreuzkovarianz

$$c_{YY}(\kappa) = 0 \tag{3.16}$$

3.6 Komplexe Prozesse

Seien X(n) und Y(n) reale Zufallsprozesse, so ist

$$Z(n) = X(n) + jY(n) \tag{3.17}$$

ein Komplexer Zufallsprozess

3.6.1 Erwartungswert eines Komplexen Zufallsprozess

$$E[Z(n)] = E[X(n)] + jE[Y(n)]$$
 (3.18)

3.6.2 SOMF eines Komplexen Zufallsprozess

$$r_{ZZ}(n_1, n_2) = \mathbb{E}\left[Z(n_1) \cdot Z(n_2)^*\right]$$
 (3.19)

Besondere Eigenschaften

Für einen komplexen Zufallsprozess, welcher stationär im weiteren Sinne (3.2.1) ist, gilt

$$r_{ZZ}(-\kappa) = r_{ZZ}(\kappa)^* \tag{3.20}$$

3.6.3 cross-SOMF komplexer Zufallsprozesse

$$r_{Z_1Z_2}(n_1, n_2) = \mathbb{E}\left[Z_1(n_1) \cdot Z_2(n_2)^*\right]$$
 (3.21)

3.6.4 Kovarianz (Covariance) eines komplexen Zufallsprozess

$$c_{ZZ}(n+\kappa,n) = \mathbb{E}\left[\left(Z(n+\kappa) - \mathbb{E}\left[Z(n+\kappa)\right]\right) \cdot \left(Z(n) - \mathbb{E}\left[Z(n)\right]\right)^*\right]$$
(3.22)

3.6.5 Kreuzkovarianz(cross-covariance) komplexer Zufallsprozesse

$$c_{Z_1 Z_2}(n + \kappa, n) = \mathbb{E}\left[\left(Z_1(n + \kappa) - \mathbb{E}\left[Z_1(n + \kappa)\right]\right) \cdot \left(Z_2(n) - \mathbb{E}\left[Z_2(n)\right]\right)^*\right]$$
(3.23)

3.6.6 Eigenschaften komplexer Zufallsprozesse

Unkorreliertheit verhält sich wie (3.5.2), genauso wie Orthogonalität (3.3.4)

4 Spektraldichten (Power Spectral Density)

4.1 Leistungsdichte

4.1.1 Leistungsspektraldichte (Power Spectral Density, PSD)

$$S_{XX}(e^{j\omega},\xi) = \lim_{M \to \infty} \frac{\mathbb{E}\left[\left|X_N\left(e^{j\omega},\xi\right)\right|^2\right]}{2M+1}$$
(4.1)

mit

$$X_N(e^{j\omega},\xi) = \sum_{n=-M}^M x_N(n,\xi)e^{-j\omega n}$$
(4.2)

Eigenschaften der Leistungsspektraldichte

$$S_{XX}(e^{j\omega})^* = S_{XX}(e^{j\omega}) \quad \text{mit} \quad X(n) \in \mathbb{C}$$
 (4.3a)

$$S_{XX}(e^{j\omega}) \ge 0$$
 mit $X(n) \in \mathbb{C}$ (4.3b)

$$S_{XX}(e^{-j\omega}) = S_{XX}(e^{j\omega}) \quad \text{mit} \quad X(n) \in \mathbb{R}$$
 (4.3c)

18

4.1.2 Durchschnittliche Leistung eines Zufallsprozesses

$$P_{XX} = \int_{-\pi}^{\pi} S_{XX}(e^{j\omega}) \frac{d\omega}{2\pi} = r_{XX}(0)$$
 (4.4a)

$$= \lim_{M \to \infty} \int_{-\pi}^{\pi} \frac{\mathbb{E}\left[\left|X_N\left(e^{j\omega}, \xi\right)\right|^2\right]}{2M + 1} \frac{d\omega}{2\pi}$$
 (4.4b)

4.1.3 Kreuzleistungsdichte (cross-power density)

$$S_{XY}(e^{j\omega},\xi) = \lim_{M \to \infty} \frac{\mathbb{E}\left[X_N\left(e^{j\omega},\xi\right)Y_N\left(e^{j\omega},\xi\right)^*\right]}{2M+1}$$
(4.5)

Eigenschaften der Kreuzleistungsdichte

$$S_{XY}(e^{j\omega})^* = S_{YX}(e^{j\omega})$$
 mit $X(n), Y(n) \in \mathbb{C}$ (4.6a)

$$S_{XY}(e^{j\omega})^* = S_{YX}(-e^{j\omega}) \qquad \text{mit} \quad X(n), Y(n) \in \mathbb{R} \quad (4.6b)$$

$$\mathfrak{Re}\{S_{XY}(e^{j\omega})\}\ \text{und}\ \mathfrak{Re}\{S_{YX}(e^{j\omega})\}\$$
 sind gerade, wenn $X(n),Y(n)\in\mathbb{R}$ (4.6c)

$$\mathfrak{Im}\{S_{XY}(e^{j\omega})\}\ \text{und}\ \mathfrak{Im}\{S_{YX}(e^{j\omega})\}$$
 sind ungerade, wenn $X(n),Y(n)\in\mathbb{R}$ (4.6d)

$$S_{XY}(e^{j\omega}) = S_{YX}(e^{j\omega}) = 0$$
 wenn $X(n)$ und $Y(n)$ orthogonal (3.3.4) (4.6e)

4.1.4 Durchschnittliche Kreuzleistung zweier Zufallsprozesse

$$P_{XY} = \int_{-\pi}^{\pi} S_{XY}(e^{j\omega}) \frac{d\omega}{2\pi}$$
 (4.7)

4.1.5 Wiener-Khinchine theorem

Ist X(n) ein im weiteren Sinne stationärer (3.2.1) Zufallsprozess, do kann die Leistungsspektraldichte (4.1.1) aus der Fourier-Transformation der Momentenfunktion zweiter Ordnung (SOMF) (3.2) gewonnen werden:

$$S_{XX}(e^{j\omega}) = \mathscr{F}\{r_{XX}(\kappa)\} = \sum_{k=-\infty}^{\infty} r_{XX}(\kappa)e^{-k\omega\kappa}$$
 (4.8a)

und invers

$$r_{XX}(\kappa) = \mathcal{F}^{-1}\{S_{XX}(e^{j\omega})\} = \int_{-\pi}^{\pi} S_{XX}(e^{j\omega})(e^{j\omega\kappa}) \frac{d\omega}{2\pi}$$
(4.8b)

4.1.6 Kreuzleistungsdichte durch Cross-SOMF

$$S_{XY}(e^{j\omega}) = \mathscr{F}\{r_{XY}(\kappa)\} = \sum_{k=-\infty}^{\infty} r_{XY}(\kappa)e^{-k\omega\kappa}$$
(4.9)

4.2 Kohärenz (coherence)

$$Coh_{XY}(e^{j\omega}) = \frac{\left|S_{XY}(e^{j\omega})\right|^2}{S_{XX}(e^{j\omega})S_{YY}(e^{j\omega})}$$
(4.10)

4.2.1 Eigenschaften der Kohärenz

Die Kohärenz zwischen den Zufallsprozessen X(n) und Y(n) besagt, wie gut X zu Y bei einer gegebenen Frequenz ω korrespondiert.

$$0 \le \operatorname{Coh}_{XY}(e^{j\omega}) \le 1 \tag{4.11}$$

4.3 Root Mean Square (RMS) und Gleichsstrom (DC) Werte

4.3.1 DC-Values

$$X_{dc} = \lim_{M \to \infty} \frac{1}{2M+1} \sum_{n=-M}^{M} X(n) = E[X(n)] = \mu_X$$
 (4.12)

4.3.2 Normalisierte DC-Leistung

$$P_{dc} = \left[\lim_{M \to \infty} \frac{1}{2M+1} \sum_{n=-M}^{M} X(n)\right]^2 = \mathbb{E}[X(n)]^2 = X_{dc}^2$$
 (4.13)

4.3.3 RMS-Value

$$X_{RMS} = \sqrt{\lim_{M \to \infty} \frac{1}{2M + 1} \sum_{n = -M}^{M} X(n)^2} = \sqrt{r_{XX}(0)} = \sqrt{\int_{-\pi}^{\pi} S_{XX}(e^{j\omega}) \frac{d\omega}{2\pi}}$$
(4.14)

4.4 Spektrum

4.4.1 Spektrum eines stationären Zufallsprozesses

Ist X(n) ein stationärer (3.1) Zufallsprozess, so ist sein Spektrum die Fouriertransformierte der Kovarianzfunktion (3.4)

$$C_{XX}(e^{j\omega}) = \sum_{n=-\infty}^{\infty} c_{xx}(n)e^{-j\omega n}$$
(4.15)

Eigenschaften des Spektrums

- 1. Wenn $\sum_{n} |c_{XX}(n)| < \infty$, dann existiert C_{XX} und ist begrenzt und stetig
- 2. C_{XX} ist Real, 2π -Periodisch und $C_{XX} \ge 0$

3.

$$c_{XX}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} C_{XX}(e^{j\omega}) e^{j\omega n} d\omega$$
 (4.16)

4.4.2 Kreuzspektrum zweier gemeinsam stationärer Zufallsprozesse

Ist X(n) und Y(n) gemeinsam stationär (3.3.1), dann ist das Kreuzspektrum definiert durch

$$C_{XY}(e^{j\omega}) = \sum_{n=-\infty}^{\infty} c_{XY}(n)e^{-j\omega n}$$
(4.17)

Eigenschaften der Kreuzspektrums

Das Spektrum eines Realen Zufallsprozesses ist komplett im Intervall $[0,\pi]$ bestimmt

$$C_{XY}(e^{j\omega}) = C_{YX}(e^{j\omega})^* \tag{4.18a}$$

$$c_{XY}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} C_{XY}(e^{j\omega})e^{j\omega n}d\omega \qquad (4.18b)$$

Wenn $X(n), Y(n) \in \mathbb{R}$ dann

$$C_{XX}(e^{j\omega}) = C_{XX}(e^{-j\omega}) \tag{4.18c}$$

$$C_{XY}(e^{j\omega}) = C_{XY}(e^{-j\omega})^* = C_{YX}(e^{-j\omega}) = C_{YX}(e^{j\omega})^*$$
 (4.18d)

5 Filter

5.1 Lineare Filter

Wenn X(n) und Y(n) stationär (3.1) sind, h(n) eine Impulsantwort eines LTI-Systems ist und das Filter stabil (5.1.1) ist, existiert mit Wahrscheinlichkeit eins (1.7.1) das lineare Filter mit:

$$Y(n) = \sum_{k=-\infty}^{\infty} h(k)X(n-k) = \sum_{k=-\infty}^{\infty} h(n-k)X(k)$$
 (5.1)

5.1.1 Stabilität

Die Stabilität eines Filters ist gegeben, wenn:

$$\sum |h(n)| < \infty \tag{5.2}$$

Alternativ: Sei H(z) die z-Transformation des Filters h(n). Dann ist das Filter stabil, falls die Polstellen von H(z) innerhalb des Einheitskreises liegen

5.1.2 Eigenschaften eines Linearen Filters

Die folgenden Eigenschaften gelten nur, wenn das Filter stabil (5.1.1) ist

- Ist X(n) stationär (3.1) und $E[|X(n)|] < \infty$, dann ist Y(n) stationär
- Y(n) wird linearer Prozess genannt (linear process)

5.1.3 Instabiler linearer Filter

Ist das Filter nicht *stabil* (5.1.1), aber $\int |H(e^{j\omega}|d\omega < \infty)$ trifft zu und für X(n) $\sum |c_{XX}(n)| < \infty$, sodann existiert im *Mean-Square-Sense* (1.7.2) die Formel (5.1) und Y(n) ist *stationär im weiteren Sinne* (3.2.1) mit

$$\mu_Y = \mathbb{E}[Y(n)] = \sum_{k=-\infty}^{\infty} h(k) \mathbb{E}[X(n-k)] = \mu_X H(e^{j0})$$
 (5.3)

5.1.4 Leistungsdichtespektrum des Ausgangs eines Filters

Sei die Übertragungsfunktion des Filters $H(e^{j\omega})=\frac{Y(e^{j\omega})}{X(e^{j\omega})}$, und das Leistungsdichtspektrum von X(n) sei $S_{XX}(e^{j\omega})$, dann gilt:

$$S_{YY}(e^{j\omega}) = |H(e^{j\omega})|^2 S_{XX}(e^{j\omega})$$
(5.4)

5.1.5 Spektrum/Kovarianz des Ausgangs eines Filters

Sei die Übertragungsfunktion des Filters $H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})}$, und das Sepektrum von X(n) sei $C_{XX}(e^{j\omega})$, dann gilt:

$$C_{YY}(e^{j\omega}) = |H(e^{j\omega})|^2 C_{XX}(e^{j\omega})$$
(5.5a)

$$c_{YY}(\kappa) = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} h(k)h(l) \cdot c_{XX}(\kappa - k + 1)$$
 (5.5b)

5.1.6 Kreukovarianz des Ausgangs des Filters

Sei X(n) das Eingangssignal und Y(n) das Ausgangssignal

$$c_{YX} = \sum_{k=-\infty}^{\infty} h(k)c_{XX}(\kappa - k)$$
 (5.6a)

$$C_{YX}(e^{j\omega}) = H(e^{j\omega})C_{XX}(e^{j\omega})$$
(5.6b)

$$c_{YX} = \int_{-\pi}^{\pi} H(e^{j\omega}) C_{XX}(e^{j\omega}) e^{-j\omega\kappa} \frac{d\omega}{2\pi}$$
 (5.6c)

5.1.7 Kreukovarianz des Ausgangs zweier paralleler Filter

$$c_{Y_1Y_2}(\kappa) = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} h_1(k)h_2(l) \cdot c_{X_1X_2}(\kappa - k + l)$$
 (5.7a)

$$c_{Y_1Y_2}(\kappa) = h_1(\kappa) \star h_2(\kappa)^* \star c_{X_1X_2}(\kappa)$$
 (5.7b)

$$C_{Y_1Y_2}(e^{j\omega}) = H_1(e^{j\omega})H_2(e^{j\omega})^*C_{X_1X_2}(e^{j\omega})$$
 (5.7c)

5.1.8 Kaskade linearer Filter

$$H(e^{j\omega}) = \prod_{i=1}^{L} H_i(e^{j\omega})$$
 (5.8a)

$$C_{YY}(e^{j\omega}) = C_{XX}(e^{j\omega}) \prod_{i=1}^{L} |H_i(e^{j\omega})|^2$$
 (5.8b)

$$C_{YX}(e^{j\omega}) = C_{XX}(e^{j\omega}) \prod_{i=1}^{L} H_i(e^{j\omega})$$
(5.8c)

5.2 Matched Filter

5.2.1 Annahmen des Matched Filters

Das eingehende Signal X(n) besteht entweder aus einem Signal mit Rauschen oder nur Rauschen:

$$X(n) = \begin{cases} s(n) + V(n) \\ V(n) \end{cases}$$
 (5.9)

- Dabei ist s(n) reelwertig, deterministisch und betrachtet in $n \in [0, N)$
- E[V(n)] = 0 und $C_{VV}(e^{j\omega})$ bekannt

5.2.2 Ziel des Matched Filters

Maximierung des Signal-Rausch-Verhältnis:

$$\left(\frac{S}{N}\right) = \max \frac{|s_0(n_0)|^2}{E[V_0(n_0)^2]}$$
 (5.10)

5.2.3 Übertragungsfunktion des Matched Filters

Sei $S(e^{j\omega}) = \mathcal{F}\{s(n)\}, C_{VV}$ das Spektrum des Rauschens, n_0 die Abtastungszeit, bei welcher (S/N) berechnet wird, und k eine reele Konstante

$$H(e^{j\omega}) = k \frac{S(e^{j\omega})^*}{C_{VV}(e^{j\omega})} e^{-j\omega n_0}$$
(5.11)

Dabei geht der Signalverlauf am Ende des Filters verloren und der Filter kann zur Signaldetektion genutzt werden

5.2.4 Matched Filter für Weißes Rauschen

Bei weißem Rauschen wird die Impulsantwort des Filters zu

$$h(n) \equiv c \cdot s(n_0 - n) \tag{5.12}$$

 \Rightarrow Die Impulsantwort des Filters ist das bekannte Signal "rückwärts gespielt" und um n_0 verschoben

Der Signal zu Rausch Abstand ergibt sich dann zu:

$$\left(\frac{S}{N}\right)_{out} = \frac{E_s}{\sigma_V^2} \tag{5.13}$$

5.3 Wiener Filter

5.3.1 Ziel des Wiener Filters

Der Wiener Filter versucht die optimale Schätzung (nach (1.7.2)) eines Zufallsprozesses durch die Beobachtung eines anderen Prozesses

5.3.2 Annahmen des Wiener Filters

Not Observable

- X(n) ist der zu schätzende Zufallsprozess
- *Y*(*n*) ist der betrachtete Zufallsprozess
- $\epsilon(n)$ ist der Fehlerprozess
- *X*(*n*) und *Y*(*n*) sind reelwertig, mittelwertfrei und *gemeinsam stationär im weiteren Sinne* (3.3.1)
- Aufgrund der *gemeinsamen Stationarität im weiteren Sinne* (3.3.1) der beiden Prozesse ist die Impulsantwort h(n) stabil und der Fehlerprozess $\epsilon(n)$ stationär im weiteren Sinne (3.2.1)

5.3.3 Die Übertragungsfunktion des Wiener Filters

Enstehend aus den Wiener-Hopf-Gleichungen

$$c_{XY}(\kappa) = h_{opt}(\kappa) \star C_{YY}(\kappa) \qquad \kappa \in \mathbb{Z}$$
 (5.14a)

$$C_{XY}(e^{j\omega}) = H_{opt}(e^{j\omega}) C_{YY}(e^{j\omega}) \quad \omega \in \mathbb{R}$$
 (5.14b)

erlangt man die optimale Übertragungsfunktion:

$$H_{opt}(e^{j\omega}) = \frac{C_{XY}(e^{j\omega})}{C_{YY}(e^{j\omega})}$$
 (5.15)

5.3.4 Mean Square Error des Wiener Filters

Der Mean Square Error ist als der Erwartungswert des quadrates der Fehlerfunktion definiert

$$q(h) = \mathbb{E}\left[\epsilon_{x}^{2}(n)\right] \tag{5.16}$$

$$h_{opt} = \arg\min_{h} q(h), n \in \mathbb{Z}$$
 (5.17)

Daraus folgt:

$$q_{min} = C_{XX}(0) - \sum_{m = -\infty}^{\infty} h_{opt}(m)C_{XY}(m)$$
 (5.18a)

$$q_{min} = p(0)$$
 mit $p(\kappa) = C_{XX}(\kappa) - h_{opt}(\kappa) \star c_{YX}(\kappa)$ (5.18b)

5.3.5 Orthogonalitätsprinzip (Herleitung des Wiener Filters)

Zur minimierung des MSE setzt man das Fehlersignal $\epsilon_X(n)$ als unkorreliert mit dem beobachteten Eingangsignal Y(n)

$$C_{\epsilon_X Y}(\kappa) = \mathbb{E}\left[\epsilon_X(n+\kappa)Y(n)\right] = 0 \tag{5.19}$$

5.3.6 Der Wiener Filter mit additivem Rasuchen

$$H_{opt}(e^{j\omega}) = \frac{C_{XX}(e^{j\omega})}{C_{XX}(e^{j\omega}) + C_{VV}(e^{j\omega})}$$
(5.20)

6 Sonstiges

6.1 Spezielle Funktionen

6.1.1 Gaussian white noise process

GauSSsches weißes Rauschen ist immer stationär (3.1)

$$E[W(n)] = 0 ag{6.1a}$$

$$r_{WW}(\kappa) = c_{WW}(\kappa) = \sigma_W^2 \delta(\kappa)$$
 (6.1b)

$$S_{WW}(e^{j\omega}) = \sigma_W^2 \tag{6.1c}$$

6.1.2 Kronecker delta function

$$\delta(\kappa) = \begin{cases} 1 & \kappa = 0 \\ 0 & \kappa \neq 0 \end{cases} \tag{6.2}$$

6.2 Mathematische nützliche Formeln

6.2.1 Ungleichung von Schwarz

$$\left| \int_{a}^{b} \varphi_{1}(\omega) \varphi_{2}(\omega) d\omega \right|^{2} \leq \left(\int_{a}^{b} |\varphi_{1}(\omega)|^{2} d\omega \right) \cdot \left(\int_{a}^{b} |\varphi_{2}(\omega)|^{2} d\omega \right)$$
(6.3)

6.2.2 Orthogonalitäts- und Normierungsbeziehungen

$$\int_{0}^{2\pi} \cos(mt)\cos(nt)dt = 0 \qquad \text{für } m \neq n$$
 (6.4a)

$$\int_{0}^{2\pi} \sin(mt)\sin(nt)dt = 0 \qquad \text{für } m \neq n$$
 (6.4b)

$$\int_{0}^{2\pi} \cos(mt)\sin(nt)dt = 0$$
(6.4c)

$$\int_{0}^{2\pi} \cos^{2}(nt) = \begin{cases} \pi & \text{für } n \ge 1\\ 2\pi & \text{für } n = 0 \end{cases}$$

$$(6.4d)$$

$$\int_{0}^{2\pi} \cos^{2}(nt) = \begin{cases} \pi & \text{für } n \ge 1\\ 2\pi & \text{für } n = 0 \end{cases}$$

$$\int_{0}^{2\pi} \sin^{2}(nt) = \begin{cases} \pi & \text{für } n \ge 1\\ 0 & \text{für } n = 0 \end{cases}$$
(6.4e)

$$\int_{0}^{2\pi} \cos(k+t)dt = 0 \qquad \text{mit } k = const$$
 (6.4f)

$$\int_{0}^{2\pi} \cos(k+t)dt = 0 \qquad \text{mit } k = const \qquad (6.4f)$$

$$\int_{0}^{2\pi} \sin(k+t)dt = 0 \qquad \text{mit } k = const \qquad (6.4g)$$

6.2.3 Betragsquadrat komplexer Funktionen

$$|H(e^{j\omega})|^2 = H(e^{j\omega})H(e^{-j\omega})$$
(6.5)

6.2.4 Doppelte Faltungssumme

$$\sum_{m=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} h(m)h(k)f(k-m) = h(n) \star f(0) \star h(-n)$$
(6.6)