제 2회 신박해 스타이 크로

블루 라이프(숙명여대 / 강예원, 김예림, 김예지)

CONTENTS

- 1. 개묘
- 2. 데이터 전처리
- 3. 데이터 분석
- 4. 데이터 모델링 및 예측
- 5. 신사업 [청년 연금저축 보험]

1.개요

- 코로나19 이후 금융소비자들의 온라인 소비행태는 크게 늘었다. 보험에서도 편리함, 신속함을 갖춘 디지털화 기대가 커지고 있다.
- 따라서, 신한금융그룹의 데이터를 활용하여, 새로운 개인 맞춤형 보험과 서비스를 제공하는 것을 목표로 하였다.

1.개요 (전체 구성 요약)

- 1) 신한라이프 데이터를 전처리 해서, 주력으로 개인화 보험 서비스를 만들 연금/ 저축 상품 결정
- 2) 신한은행과 신한증권에서 보험 서비스에 가입할 확률이 높은 연령대로 20-30대 선정
- 3) 2-30대가 주로 쓰는 카드 소비 형태 파악 후, 그 내용을 신규 보험 상품 개발에 반영
- 4) 20-30대가 보험사에 신규 계약 고객이 될 동향 데이터 모델링
- 5) 기존 보험 상품과 2-30대의 소비 스타일을 반영한 신규 보험 서비스 소개

2.데이터 전체인

• 데이터를 불러와 모든 칼럼 값이 0이 되는 행이 없는 것을 확인 후, 신한라이프에 해당하는 칼럼 만 추출하였다.

life_razero_ro	ws = 1	_ ife_ra	w[(life	e_raw :	≔ 0).a	all(axi	s=1)]													
	la01r	la02r	la03r	la04r	la05r	la06r	la07r	lb01r	lb02r	lb03r	 le12r	le13r	le14r	lf01r	lf02r	lf03r	lf04r	lf05r	lf06r	lf07r
0	0.20	0.50	0.20	0.02	0.02	0.14	0.03	0.38	0.35	0.12	 0.27	0.14	0.04	0.75	0.71	0.24	0.15	0.19	0.48	0.19
1	0.21	0.45	0.34	0.00	0.01	0.07	0.00	0.41	0.33	0.12	 0.28	0.13	0.04	0.73	0.69	0.22	0.16	0.21	0.48	0.16
2	0.13	0.52	0.30	0.00	0.00	0.09	0.00	0.38	0.36	0.19	 0.20	0.12	0.03	0.73	0.74	0.15	0.15	0.18	0.55	0.11
3	0.27	0.53	0.21	0.00	0.00	0.10	0.00	0.40	0.39	0.13	 0.28	0.11	0.03	0.72	0.70	0.22	0.15	0.21	0.47	0.16
4	0.25	0.50	0.33	0.01	0.01	0.05	0.02	0.42	0.32	0.13	 0.28	0.13	0.04	0.73	0.71	0.22	0.16	0.19	0.47	0.18
114598	0.00	0.33	0.33	0.00	0.00	0.00	0.33	0.23	0.41	0.29	 0.21	0.09	0.41	0.38	0.62	0.03	0.32	0.32	0.35	0.00
114599	0.00	0.50	0.50	0.00	0.00	0.00	0.00	0.25	0.30	0.25	 0.15	0.15	0.50	0.60	0.60	0.10	0.20	0.35	0.40	0.05
114600	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.19	0.43	0.19	 0.33	0.22	0.26	0.33	0.52	0.07	0.37	0.37	0.24	0.02
114601	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.25	0.50	0.33	 0.42	0.17	0.25	0.58	0.58	0.00	0.33	0.17	0.50	0.00
114602	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.20	0.50	0.36	 0.17	0.07	0.47	0.33	0.37	0.07	0.47	0.33	0.17	0.03

114600 rows × 60 columns

• 신한라이프에 해당하는 데이터를 추출한 후, 그 데이터 프레임에도 모든 칼럼 값이 0이 되는 행이 없는 것을 확인 하였다.

```
zero_rows = life_raw[(life_raw == 0).all(axis=1)]
zero_rows

la01r la02r la03r la04r la05r la06r la07r lb01r lb02r lb03r ... le12r le13r le14r lf01r lf02r lf03r lf04r lf05r lf06r lf07r

0 rows × 60 columns
```

2.데이터 전처리

- 신한 라이프 상품군 7가지 (종신 보험, 건강 보험, 상해 보험, 어린이 보험, 연금/저축 보험, 변액보험, 기타) 중 어떤 상품군이 가장 보험계약고객 비율이 높고, 보험계약월납보험료가 높은지 등의 분포를 파악하고자 하였다.
- 따라서, 상품 군 7가지에 대한 데이터를 보유한 '최근1년보험계약고객', '보험계약월납보험료', '보험금지급경험고객비율', '보험금지급경험고객비율', '보험금지급경험고객비율', '보험금지급경험고객비율', '보험계약대출경험고객비율' 이라는 5개의 신한 라이프 중분류를 선택하여 전처리를 진행하였다.
- 예시로, '최근1년보험계약고객' 중분류에 해당하는 7가지의 상품군 칼럼을 불러모고, 모든 칼럼 값이 0인 행은 제외한 새로운 데이터 프레임을 만들었다.

```
life_recent_s = life_raw.iloc[:, :7]
life_recent_s_nozero = life_recent_s[(life_recent_s != 0).any(axis=1)]
life_recent_s_nozero
```

• 위와 같이 5개의 중분류에 대해 똑같은 작업을 수행하여 5개의 새로운 데이터 프레임을 만들었다.

5개의 새로운 데이터 프레임을 활용하여 다음과 같은 항목의 상품군별 비율을 시각화를 진행하였다.

- 최근 1년 신규 보험계약 고객 비율
- 보험계약 고객 비율
- 보험계약 평균 월납 보험료
- 보험금 지급경험 고객 비율
- 보험계약 대출경험 고객 비율

보험계약 평균 월납 보험료

상품군별 보험 계약 월납 보험료

'연금저축' 상품이 월납 보렴료 비율이 가장 높다.

보험금 지급 경험 고객 비율

상품군별 보험금 지급 경험 고객 비율

'연금저축' 보험금 지급 비율이 가장 낮다.

보험 계약 대출

'연금저축' 상품이 보험 계약 대출 비율은 높은 편이다.

- 앞에 세 개의 차트 시각화를 통해 월납 보험료 비율이 가장 높고, 보험금 지급 비율이 가장 낮으며, 보험 계약 대출 비율은 높은 '연금/저축' 상품이 가격면에서 효율이 높다고 판단하였다.
- 하지만, 뒤에 두 시각화 차트를 통해 실제 가입 고객은 하위 권이며 최근 1년 비율도 현저히 줄어드는 것을 발견 하였다.
- [[나라서 연금/저축 보험을 주력 상품으로 설정하기로 결정하였다.

보험 계약 고객 비율

상품군별 보험 계약 고객 비율

'연금저축' 상품이 보험 계약 고객 비율이 낮은 편이다.

최근 1년 신규 보험계약 고객 비율

건강: 54614.88

상해: 16850.03

종신: 14572.09

기타: 2501.61

연금저축: 2002.36

변액: 1727.60

어린미: 695.43

'연금저축' 상품이 최근 1년 신규 보험 계약 고객 비율이 <mark>현저히</mark> 낮다.

추가적으로, 신한은행과 신한투자증권 데이터 분석을 통해 연금/저축 상품을 들 가 능성이 높은 나이대를 선별

- '연금/저축' 상품에 들 법한 나이대를 추측하기 위해 나이대별 안전을 추구하는 비율을 산출하였다.
- 신한은행 데이터에서 유동성거래 중 '연금 관련 거래 비율' 컬럼과 신한투자증권의 투자 등급에서 '안전 형'과 '안전추구형' 비율 컬럼을 추출하여 막대 그래 프로 시각화하였다.
- 20-30대가 '연금/저축' 상품을 가입할 가능성이 높다고 판단하였다.

- '연금/저축' 상품의 나이대별 비율을 시각화 해본 결과 주력으로 하려는 20-30대 현황이 낮다는 것을 인지하였다.
- 상품을 개발할 때, 보험금 납부 비율과 보험료 납부 비율을 높일 수 있는 방안 모색 필요성을 인지하였다.
- 연금/저축 상품의 신규 보험계약 고객 비율을 높이기 위해서,20-30대를 연금/저축 보험 상품의 새로운 타켓 연령층으로 설정하였다.

- 20-30대의 카드 이용건수가 가장 높은 4개의 항목에서 신한 카드 이용 실적이 일정 기준을 넘어서면 자동으로 연금/저축에 쓸 수 있는 포인트를 적립하는 서비스를 개발하고자 하였다.
- 따라서, 신한 카드사 데이터를 활용하여 20-30대의 카드 이용건수가 가장 높은 4개의 항목 1위) 편의점, 2위) 제주여행, 3위) 식당, 4위) 배달앱 이라는 것을 파악하였다.

가장 큰 합계를 가지는 칼럼 이름 출력 및 순위 표시 for rank, idx in enumerate(max_columns, 1): column_idx = 4 + idx column_name = selected_rows.columns[column_idx] original_column_name = column_mapping.get(column_name, column_name) print(f"{rank}위 가장 큰 합계를 가지는 칼럼:", original_column_name)

1위 가장 큰 합계를 가지는 칼럼: 이용건수_편의점 2위 가장 큰 합계를 가지는 칼럼: 이용건수_제주여행 3위 가장 큰 합계를 가지는 칼럼: 이용건수_식당 4위 가장 큰 합계를 가지는 칼럼: 이용건수_배달앱

	pk1	pk3	la05r
0	2022-08-01	20e	4.13
1	2022-08-01	20s	4.08
2	2022-08-01	30e	6.19
3	2022-08-01	30s	4.43
4	2022-10-01	20e	6.57
5	2022-10-01	20s	3.11
6	2022-10-01	30e	4.59
7	2022-10-01	30s	5.03
8	2022-12-01	20e	8.63
9	2022-12-01	20s	5.79
10	2022-12-01	30e	7.90
11	2022-12-01	30s	9.61
12	2023-02-01	20e	10.30
13	2023-02-01	20s	7.61
14	2023-02-01	30e	11.92
15	2023-02-01	30s	9.20
16	2023-04-01	20e	13.35
17	2023-04-01	20s	9.11
18	2023-04-01	30e	14.33
19	2023-04-01	30s	10.75
20	2023-06-01	20e	14.84
21	2023-06-01	20s	10.61
22	2023-06-01	30e	13.37
23	2023-06-01	30s	9.16

• 향후 1년의 연금/저축 상품에 대한 계약 고객 비율 수치 예측하기 위해 왼쪽 그림과 같이 데이터 전처리를 하였다.

- 날짜: 기존의 표시된 날짜 밤식에서 datetime혐므로 수점하였다.
- 연령 : 필묘한 연령만 색출하였다. (20-30대)
- 수치 : 해당 날짜와 연령에 대한 비율 수치 값들의 합으로 구성하였다.
- 변수 : pk1 : 년-월 날짜 데이터, pk3 : 연령 데이터, laOSr : 최근 1년 연 금/저축 상품 계약 고객 비율

```
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
from datetime import datetime
data = merged_data_new
data['year'] = pd.to_datetime(data['pk1']).dt.year
data['month'] = pd.to_datetime(data['pk1']).dt.month
data_enconded = pd.get_dummies(data, columns=['pk3'], prefix=['age'])
features = ['year', 'month', 'age_20e', 'age_20s', 'age_30e', 'age_30s']
target = 'la05r'
X = data_enconded[features]
y= data_enconded[target]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = RandomForestRegressor(n_estimators=100, random_state=42)
model.fit(X_train, y_train)
predicted_values = []
prediction_dates = [datetime(2023, 8, 1), datetime(2023, 10, 1), datetime(2023, 12, 1), datetime(2024, 2, 1), datetime(2024, 4, 1), datetime(2024, 6, 1)]
for prediction_date in prediction_dates :
   future_year = prediction_date.year
    future_month = prediction_date.month
    future_data = pd.DataFrame([[future_year, future_month, 1, 0, 0, 0]], columns=features) # 1은 20대를 나타낼 / 2023년 8월 20대
    predicted_value = model.predict(future_data)
    predicted_values.append(predicted_value)
    print(f"{future_year}년 {future_month}월 예측 수치값: ", predicted_value)
```

- 앞에 전처리된 데이터로 모델링하여 향후 1년의 연금/저축 상품에 대한 계약 고객 비율 수치 예측하였다.
- 회귀에 RandomForestRegressor 모델을 사용하였다.
- -> 일반화 및 섬능이 무수하며 II라미터 조점이 용이하다.
- -> 사용한 데이터는 차원이 크지 않고 밀집된 데이터를 사용하므로 채택하였다.

2023년 8월 예측 수치값: [9.4608] 2023년 10월 예측 수치값: [9.2215] 2023년 12월 예측 수치값: [9.761] 2024년 2월 예측 수치값: [10.8895] 2024년 4월 예측 수치값: [11.245] 2024년 6월 예측 수치값: [13.0189]

```
import matplotlib.pyplot as plt
import matplotlib.dates as mdates

dates = ['2023-08', '2023-10', '2023-12', '2024-02', '2024-04', '2024-06']

y = [predicted_values]

dates = [datetime.strptime(date, "%Y-%m") for date in dates]

plt.plot(dates, predicted_values, marker='o', color='b', label='Predicted Values')

plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%y-%m'))

plt.gca().xaxis.set_major_locator(mdates.MonthLocator())

plt.gcf().autofmt_xdate()

plt.title('앞으로 1년에 대한 예측된 비율')

plt.xlabel('향후 1년 날짜')

plt.ylabel('예측된 비율 수치값')

plt.legend()

plt.show()
```


- 최근 1년 계약 고객 비율을 통해 향후 1년을 예측한 값의 경향성을 보기 위해서 matplotlib.pyplot으로 꺾은 선 그래프로 시각화 하였다.
- 20-30대 '연금/저축' 상품 가입 비율이 올라갈 거라고 예측하였다.

```
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean squared error
data = merged_data_new
data['year'] = pd.to_datetime(data['pk1']).dt.year
data['month'] = pd.to datetime(data['pk1']).dt.month
data_enconded = pd.get_dummies(data, columns=['pk3'], prefix=['age'])
features = ['year', 'month', 'age_20e', 'age_20s', 'age_30e', 'age_30s']
target = 'la05r'
X = data_enconded[features]
y= data enconded[target]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = LinearRegression()
model.fit(X_train, y_train)
predictions = model.predict(X_test)
mse = mean_squared_error(y_test, predictions)
print("Mean Squared Error : ", mse)
```

Mean Squared Error : 5.1913140738105215

- 예측 성능 평가에 MSE(평균제곱모차) 사용
- -> 이상치에 취약하지만, 전처리를 통해 이상치를 제거하였으므로 채택
- -> 예측 경향성이 아닌 얼마나 정확한지만 확인할 예정이므로 채택
- 결과 값은 5점 초반대로 낮아서 예측에 신빙성 을 더하였다.

5.신사업 개요

주 이용고객은 20대-30대

앞에 신한 라이프 데이터 시각화와 신한 증권 및 은행 데이터 분석을 통해서 '연금/저축' 상품을 중점으로 하는 신사업의 주묘 타깃은 20-30대로 확정지었다.

주 구매 동향 묘식업 및 여행

'타깃층의 주 소비 품목으로 편의점, 제주여행, 배달앱, 식당 등 묘식업 관련 소비 품목이 다수 였다. 이에 묘식업 관련 혜택을 제공하는 결합 상품을 신사업 아이템으로 채택하였다.

5.신사업 [청년 연금저축보험]

3新八川

건강 지키고 돈 지키고 혜택 지키자!

주 대상 2-30대

신한카드 전월 평균실적 이상& 편의점, 배달앱, 식당 결제 시

자동 연금저축보험 적립금 개시백 지급!

5.신사업 [청년 연급저축보험]

5.신사업 [청년 연금저축보험]

오늘까지 받은 적립금 503원!

@shinhanlife

SNS Event1. 인스타그램 스토리 @태그 이벤트

[신한 라이프] 청년연금저축 적립금 화면 캡쳐 후, 스토리 공유 시 랜덤으로 **더블 적립금 캐시백 지급!**

SNS Event2. 친구추천 이벤트

청년연금저축 보험 가입시 기 가입자 친구 이름 입력하면 추가 적립금 캐시백 지급!

5.[청년 연급저축보험] 기대효과

신한카드 전월 실적 평균 이상& 편의점, 배달앱, 식당 결제시

카드사와는 별도로 자동 연금저축보험 캐시백 지급!

→ 20-30대 고객 유입 증가

분기별 SNS 이벤트 시행 인스타그램 이벤트 친구추가 이벤트

→ 20-30대 고객 홍보기회 증대

사회초년생 및 안정형 고객 대상 금융상품 제공 & 신한라이프 유입 고객 확대

감사합니다 SHINHAN LIFE BLUE LIFE