

Improving Hardware Efficiency for DNN Applications

Hai (Helen) Li

Electrical and Computing Engineering Department

Duke Center for Evolutionary Intelligence

Technology Landscape

T. Hylton, "Perspectives on Neuromorphic Computing," 2016.

- Sensing
- Display
- Wireless communication & internet
- Computing at the edge

Mobile Phone

Dynamic Online Real world

- IoT
- Robotics
- Industrial internet
- Self-driving cars
- Smart Grid
- Secure autonomou networks
- Real-time data to decision

Intelligent Systems

Learn

Program

- Personal computing
- Wired internet

Desktop/Workstation

- Data integration
- Large-scale storage
- Large-scale computing

Static Offline Virtual world

Data Center / Cloud

Deep Neural Networks

ImageNet Challenge (ILSVRC)

- Dataset: 1.2M images in 1K categories
- Classification: make 5 guesses

Deeper Model

→ Lower Error Rate

→ Higher Requirement on Computation

Data Explosion & Hardware Development

- Every minute, we send over 200 million emails, click almost 2 million likes on Facebook, send almost 300K tweets and up-load 200K photos to Facebook as well as 100 hours of video to YouTube.
- "Data centers consumes up to 1.5% of all the world's electricity..."
- "Google's data centers draw almost 260 MW of power, which is more power than Salt Lake City uses..."

Google's "Council Bluffs" data center facilities in Iowa.

J. Glanz, "Google Details, and Defends, Its Use of Electricity"

2X transistor count, But only 40% faster, 50% more efficient...

Hardware Acceleration for DNNs

GPUs

- Fast, but high power consumption (~200W)
- Training DNNs in back-end GPU clusters

FPGAs

- Massively parallel + low-power $(\sim 25 \text{W})$ + reconfigurable
- Suitable for latency-sensitive real-time inference job

ASICs

- Fast + energy efficient
- Long development cycle
- Novel architectures and emerging devices

Mismatch: Software vs. Hardware

	Software	Hardware
Model/Component scale	Large	Small/Moderate
Reconfigurability	Easy	Hard
Accuracy vs. Power	Accuracy	Tradeoff
Training implementation	Easy	Hard
Precision vs. Limited programmability	Double (high) precision	Low precision (often a few bits)
Connectivity realization	Easy	Hard

Our work: Improve Efficiency for DNN Applications thorugh Software/Hardware Co-Design Framework

Outline

Our work: Improve Efficiency for DNN Applications Through Software/Hardware Co-Design

- Introduction
- Research Spotlights
 - Structured Sparsity Regularization (NIPS'16)
 - Local Distributed Mobile System for DNN
 - ApesNet for Image Segmentation
- Conclusion

Related Work

- State-of-the-art methods to reduce the number of parameters
 - Weight regularization (L1-norm)

AlexNet, B. Liu, et al., CVPR 2015

Layer	conv1	conv2	conv3	conv4	conv5
Sparsity	0.927	0.95	0.951	0.942	0.938
Theoretical speedup	2.61	7.14	16.12	12.42	10.77

Connection pruning

AlexNet, S. Han, et al., NIPS 2015

				Remained		
Layer	Weights	FLOP	Act%	Weights%	FLOP%	■ Remaining Parameters ■ Pruned Parameters
conv1	35K	211M	88%	84%	84%	60M
conv2	307K	448M	52%	38%	33%	4514
conv3	885K	299M	37%	35%	18%	45M
conv4	663K	224M	40%	37%	14%	30M
conv5	442K	150M	34%	37%	14%	
fc1	38M	75M	36%	9%	3%	15M
fc2	17M	34M	40%	9%	3%	and the same and t
fc3	4M	8M	100%	25%	10%	M
Total	61M	1.5B	54%	11%	30%	count char our count our, ie, ie, ie, ie, ies

Theoretical Speedup \neq Practical Speedup

- Forwarding speedups of AlexNet on GPU platforms and the sparsity.
- Baseline is GEMM of cuBLAS.
- The sparse matrixes are stored in the format of *compressed* sparse row (CSR) and accelerated by cuSPARSE.

B. Liu, et al., "Hardcoding nonzero weights in source code," CVPR'15 S. Han, et al., "Customizing an EIE chip accelerator for compressed DNN," ISCA'17

Computation-efficient Structured Sparsity

Example 1: Removing 2D filters in convolution (2D-filter-wise sparsity)

Example 2: Removing rows/columns in GEMM (row/column-wise sparsity)

Non-structured sparsity

conv2_1: weight sparsity (col:8.7% row:19.5% elem:94.6%)

Structured sparsity

conv2_1: weight sparsity (col:75.2% row:21.9% elem:91.5%)

5.17X speedup

Structured Sparsity Regularization

Group Lasso regularization in ML model

$$\underset{\mathbf{w}}{\operatorname{arg\,min}} \left\{ E\left(\mathbf{w}\right) \right\} = \underset{\mathbf{w}}{\operatorname{arg\,min}} \left\{ E_{D}\left(\mathbf{w}\right) + \lambda_{g} \cdot R_{g}\left(\mathbf{w}\right) \right\}$$

$$\underset{\mathbf{w}}{\operatorname{arg\,min}} \left\{ E(\mathbf{w}) \right\} = \underset{\mathbf{w}}{\operatorname{arg\,min}} \left\{ E_{D}(\mathbf{w}) \right\}$$
s.t. $R_{a}(\mathbf{w}) \le \eta_{a}$

Many groups will be zeros

$$R_g(\boldsymbol{w}) = \sum_{g=1}^{G} ||\boldsymbol{w}^{(g)}||_g,$$
$$||\boldsymbol{w}^{(g)}||_g = \sqrt{\sum_{i=1}^{|\boldsymbol{w}^{(g)}|} \left(w_i^{(g)}\right)^2}$$

Example:

$$R_g(w_0, w_1, w_2) = \sqrt{w_0^2 + w_1^2} + \sqrt{w_2^2} \le \eta_g$$

SSL: Structured Sparsity Learning

Group Lasso regularization in DNNs

$$E(\mathbf{W}) = E_D(\mathbf{W}) + \lambda \cdot R(\mathbf{W}) + \lambda_g \cdot \sum_{l=1}^{L} R_g \left(\mathbf{W}^{(l)} \right)$$
$$R_g(\mathbf{w}) = \sum_{g=1}^{G} ||\mathbf{w}^{(g)}||_g$$

• The learned structured sparsity is determined by the way of splitting groups

Learn the depth of layers

SSL: Structured Sparsity Learning

Group Lasso regularization in DNNs

$$E(\mathbf{W}) = E_D(\mathbf{W}) + \lambda_n \cdot \sum_{l=1}^{L} \left(\sum_{n_l=1}^{N_l} ||\mathbf{W}_{n_l,:,:,:}^{(l)}||_g \right) + \lambda_c \cdot \sum_{l=1}^{L} \left(\sum_{c_l=1}^{C_l} ||\mathbf{W}_{:,c_l,:,:}^{(l)}||_g \right).$$

$$E(\boldsymbol{W}) = E_D(\boldsymbol{W}) + \lambda_s \cdot \sum_{l=1}^{L} \left(\sum_{c_l=1}^{C_l} \sum_{m_l=1}^{M_l} \sum_{k_l=1}^{K_l} || \boldsymbol{W}_{:,c_l,m_l,k_l}^{(l)} ||_g \right).$$

$$E(\mathbf{W}) = E_D(\mathbf{W}) + \lambda_d \cdot \sum_{l=1}^L ||\mathbf{W}^{(l)}||_g.$$

filters and channels

Learn filter shapes

Learn the depth of layers

Penalizing Unimportant Filters and Channels

LeNet on MNIST

LeNet #	LeNet # Error Fi		Channel #	FLOP	Speedup
Baseline - 1	0.9%	20 - 50	1 - 20	100% - 100%	$1.00 \times -1.00 \times$
2	0.8%	5 - 19	1 - 4	25% - 7.6%	$1.64 \times -5.23 \times$
3	1.0%	3 - 12	1 – 3	15% - 3.6%	$1.99 \times -7.44 \times$

The data is represented in the order of conv1 - conv2.

Conv1 filters (gray level 128 represents zero)

SSL obtains FEWER but more natural patterns

Learning Smaller Filter Shapes

LeNet on MNIST

LeNet #	Error	Filter#	Channel #	FLOP	Speedup	
Baseline - 1	0.9%	25 - 500	1 - 20	100% - 100%	$1.00 \times -1.00 \times$	
4	0.8%	21 - 41	1 - 2	8.4% - 8.2%	$2.33 \times -6.93 \times$	
5	1.0%	7 - 14	1 – 1	1.4% - 2.8%	$5.19 \times -10.82 \times$	

The size of filters after removing zero shape fibers, in the order of conv1 - conv2.

Learned shapes of *conv1* filters:

Learned shape of conv2 filters @ LeNet 5 3D 20x5x5 filters is regularized to 2D filters!

Learning Smaller Dense Weight Matrix

ConvNet on CIFAR-10

ConvNet #	Error	Row Sparsity	Column Sparsity	Speedup
Baseline 1	17.9%	12.5%-0%-0%	0%-0%-0%	1.00×-1.00×-1.00×
4	17.9%	50.0%-28.1%-1.6%	0%-59.3%-35.1%	$1.43 \times -3.05 \times -1.57 \times$
5	16.9%	31.3%-0%-1.6%	0%-42.8%-9.8%	$1.25 \times -2.01 \times -1.18 \times$

Row/column sparsity is represented in the order of conv1-conv2-conv3.

The learned *conv1* filters

SSL can efficiently learn DNNs with smaller but dense weight matrix which has good locality

Regularizing The Depth of DNNs

Baseline, K. He, CVPR'16

Depth-wise SSL

ResNet on CIFAR-10

	# layers	Error	# layers	Error
ResNet	20	8.82%	32	7.51%
SSL-ResNet	14	8.54%	18	7.40%

Experiments – AlexNet@ImageNet

3D convolution = sum of **2D** convolutions:

$$\mathbf{F}_{c_{l+1},y_{l+1},x_{l+1}}^{(l+1)} = \sum_{c_{l}=1}^{C_{l}} \sum_{m_{l}=1}^{M_{l}} \sum_{k_{l}=1}^{K_{l}} \mathbf{F}_{c_{l},(y_{l+1}+m_{l}-1),(x_{l+1}+k_{l}-1)}^{(l)} \cdot \mathbf{W}_{n_{l},c_{l},m_{l},k_{l}}^{(l)}$$

Learning 2D-filter-wise sparsity

- SSL saves 30-40% (60-70%) FLOPs with 0 (<1.5%) accuracy loss by structurally removing 2D filters.
- Deeper layers have higher sparsity.

Experiments - AlexNet@ImageNet

Higher speedups than non-structured speedups

- 5.1X/3.1X layer-wise speedup on CPU/GPU with 2% accuracy loss
- 1.4X layer-wise speedup on both CPU and GPU w/o accuracy loss

	Method	Top1 Error	Statistics	conv1	conv2	conv3	conv4	conv5
			Sparsity	67.6%	92.4%	97.2%	96.6%	94.3%
1	L1	44.67%	CPU	$0.80 \times$	$2.91 \times$	$4.84\times$	$3.83 \times$	$2.76 \times$
	4.055		GPU	$0.25 \times$	$0.52 \times$	$1.38 \times$	1.04×	$1.36 \times$
0	01055		Col. Sparsity	0.0%	63.2%	76.9%	84.7%	80.7%
2	SSL	44.66%	Row Sparsity	9.4%	12.9%	40.6%	46.9%	0.0%
2	2 55L	44.00 /0	CPU	$1.05 \times$	$3.37 \times$	$6.27 \times$	$9.73 \times$	$4.93 \times$
			GPU	1.00×	$2.37 \times$	$4.94 \times$	$4.03 \times$	$3.05 \times$
3	Pruning*	42.80%	Sparsity	16.0%	62.0 %	65.0 %	63.0%	63.0%
			Sparsity	14.7%	76.2%	85.3%	81.5%	76.3%
4	L1	42.51%	CPU	$0.34 \times$	$0.99 \times$	1.30×	1.10×	$0.93 \times$
	free	tree	GPU	$0.08 \times$	$0.17 \times$	$0.42 \times$	$0.30 \times$	$0.32 \times$
O	oss free		Sparsity	0.00%	20.9%	39.7%	39.7%	24.6%
5	SSL	42.53%	CPU	1.00×	$1.27 \times$	$1.64 \times$	$1.68 \times$	$1.32 \times$
			GPU	1.00×	$1.25 \times$	1.63×	$1.72 \times$	1.36×

Open Source

- Source code in Github, and trained model in model zoo
- https://github.com/wenwei202/caffe/tree/scnn

Collaborated Work with Intel – ICLR 2017

- ✓ **Direct Sparse Convolution**: an efficient implementation of convolution with sparse filters
- ✓ **Performance Model**: A predictor of the speedup vs. sparsity level
- ✓ **Guided Sparsity Learning**: A performance-model-supervised pruning process that avoids pruning layers, which are unbeneficial for speedup but harmful for accuracy

Jongsoo Park, et al, "Faster CNNs with Direct Sparse Convolutions and Guided Pruning," ICLR 2017.

Outline

Our work: Improve Efficiency for DNN Applications Through Software/Hardware Co-Design

- Introduction
- Research Spotlights
 - Structured Sparsity Regularization
 - Local Distributed Mobile System for DNN (DATE'17)
 - ApesNet for Image Segmentation
- Conclusion

Neural Network on Mobile Platforms

Challenges and Preliminary Analysis

Challenges:

Security

Battery Capacity

Hardware Performance

Layer Analysis of DNNs on Smartphones:

Local Distributed Mobile System for DNN

System Overview of MoDNN:

Optimization of Convolutional Layers

Biased One-dimensional Partition (BODP)

Execution Time Reduction of 16 layers in VGG

Optimization of Fully-connected Layers

Schematic diagram of the partition scheme for fully-connected layers

Optimization of Sparse Fully-connected Layers

Modified Spectral Co-Clustering (MSCC)

Target: Higher Computing Efficiency & Lower Transmission Amount

- Apply spectral co-clustering to original sparse matrix
- Decide the execution method for each cluster
- Initialize the estimated time with the execution time of each cluster and their corresponding outliers.

Optimization of Sparse Fully-connected Layers

Fine-Grain Cross Partition (FGCP)

Target: Workload Balance & Lower Transmission Amount

- Choose the node of highest time
- Find the sparsest line
- Offload it to GO

Outline

Our work: Improve Efficiency for DNN Applications Through Software/Hardware Co-Design

- Introduction
- Research Spotlights
 - Structured Sparsity Regularization
 - Local Distributed Mobile System for DNN
 - ApesNet for Image Segmentation (ESWEEK'16)
- Conclusion

ApesNet Design Concept

- ConvBlock & ApesBlock
- Asymmetric encoder & decoder
- *Thin* ConvBlock w/large feature map
- *Thick* ApesBlock w/ small kernel

ConvBlock

16 feature maps 8 feature maps

	#Feature map	#Feature map
SegNet	64	64
Deconv-Net	64	64
AlexNet	96	-
VGG16	64	-

M: # Feature map

k: Kernel size

r: Dropout ratio

Preliminary Result on Running Time

VGG: arxiv 1409.1556; Deconv-Net: arxiv 1505.04366; SegNet: arxiv 1511.00561

ApesBlock

Two ApesBlock: 5x5 kernel, 64 feature maps

	# Parameters
64 Conv 8x8	0.4M
64 Conv 8x8	0.2M
4096 Full-connected	4.2M
Max-Pooling	-

M: # Feature map

k: Kernel size

r: Dropout ratio

Neuron Visualization of ApesNet

Feature response at each layer

(Neuron visualization)

Encoder: Convolution

Decoder: Up-sampling

Decoder: Convolution

Evaluation and Comparison

	SegNet- Basic	ApesNet
Model size	5.40MB	3.40MB
GTX 760M	181ms	73ms
GTX 860M	170ms	70ms
TITAN X (Kepler)	63ms	40ms
Tesla K40	58ms	39ms
GTX 1080	48ms	33ms

CamVid Dataset

	Class Avg.	Mean IoU	Bike	Tree	Sky	Car	Sign	Road	Pedestrian
SegNet-Basic	62.9%	46.2%	75.1%	83.1%	88.3%	80.2%	36.2%	91.4%	56.2%
ApesNet	69.3%	48.0%	76.0%	80.2%	95.7%	84.2%	52.3%	93.9%	59.9%

ApesNet: An Efficient DNN for Image Segmentation

Input

ApesNet Output

Outline

Our work: Improve Efficiency for DNN Applications Through Software/Hardware Co-Design

- Introduction
- Research Spotlights
 - Structured Sparsity Regularization
 - Local Distributed Mobile System for DNN
 - ApesNet for Image Segmentation
- Conclusion

Conclusion

- DNNs demonstrate great success and potentials in various types of applications;
- Many software optimization techniques cannot obtain the theoretical speedup in real implementations;
- The mismatch between the software requirement and hardware capability is more severe as problem scale increases;
- New approaches that coordinate the software and hardware co-design and optimization are necessary.
- New devices and novel architecture could play an important role too.

Thanks to Our Sponsors, Collaborators, & Students

We welcome industrial collaborators.

