Outline

Introduction

Hard-Margin Support Vector Machine

Soft-Margin Support Vector Machine

Kernel Extension

Support Vector Regression

t₂ Loss Function

We start with a linear model for regression as

$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$$

and we have used the squared loss in ordinary linear regression

$$E_2^t(r^t, f(\mathbf{x}^t)) = |r^t - f(\mathbf{x}^t)|^2$$

► Total loss:

$$E_2 = \sum_t E_2^t(r^t, f(\mathbf{x}^t)) = \sum_t |r^t - f(\mathbf{x}^t)|^2$$

► Squared regression (or least squares regression):

$$\underset{\mathbf{w}, w_0}{\text{minimize}} \quad \frac{1}{N} \sum_{t=1}^{N} |r^t - f(\mathbf{x}^t)|^2$$

ϵ -Insensitive Loss Function – I

▶ In order for the sparseness property of support vectors in SVM for classification to carry over to regression, we do not use the squared loss but the ϵ -insensitive loss function:

$$E_{\epsilon}^t(r^t, f(\mathbf{x}^t)) = (|r^t - f(\mathbf{x}^t)| - \epsilon)_+ = \begin{cases} 0 & \text{if } |r^t - f(\mathbf{x}^t)| \le \epsilon \\ |r^t - f(\mathbf{x}^t)| - \epsilon & \text{otherwise} \end{cases}$$

- Two characteristics:
 - Errors are tolerated up to a threshold of ϵ , i.e., no loss for point lying inside an ϵ -tube around the prediction.
 - Errors beyond ϵ have a linear (rather than quadratic) effect so that the model is more more tolerant to noise and robust against noise.
- ► Total loss:

$$E_{\epsilon} = \sum_{t} E_{\epsilon}^{t}(r^{t}, f(\mathbf{x}^{t})) = \sum_{t} (|r^{t} - f(\mathbf{x}^{t})| - \epsilon)_{+}$$

► Tube regression:

$$\underset{\mathbf{w}, w_0}{\text{minimize}} \quad \frac{1}{N} \sum_{t=1}^{N} (|r^t - f(\mathbf{x}^t)| - \epsilon)_+$$

ϵ -Insensitive Loss Function — II

Support Vector Regression

► Support vector (machine) regression (SVR) is given as

$$\underset{\mathbf{w}, w_0}{\text{minimize}} \quad \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{t} (|r^t - f(\mathbf{x}^t)| - \epsilon)_+$$

where C trades off the model complexity (i.e., the flatness of the model) and data misfit.

- The value of ϵ determines the width of the tube (a smaller value indicates a lower tolerance for error) and also affects the number of support vectors and, consequently, the solution sparsity.
 - If ϵ is decreased, the boundary of the tube is shifted inward. Therefore, more datapoints are around the boundary indicating more support vectors.
 - Similarly, increasing ϵ will result in fewer points around the boundary.
- A convex problem, but not a standard QP.
- ▶ We will rewrite it to a form similar to SVM which can be QP-solvable.

Primal Optimization Problem

- ▶ We introduce slack variables ξ_t^+ and ξ_t^- to account for deviations out of the ϵ -zone.
- Primal optimization problem:

$$\begin{aligned} & \underset{\mathbf{w}, \ w_0, \ \{\xi_t^+\}, \ \{\xi_t^-\}}{\text{minimize}} & \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_t (\xi_t^+ + \xi_t^-) \\ & \text{subject to} & r^t - (\mathbf{w}^T \mathbf{x}^t + w_0) \leq \epsilon + \xi_t^+, \quad \forall t \\ & (\mathbf{w}^T \mathbf{x}^t + w_0) - r^t \leq \epsilon + \xi_t^-, \quad \forall t \\ & \xi_t^+, \xi_t^- \geq 0, \quad \forall t \end{aligned}$$

which is a standard QP.

- ► Two types of slack variables:
 - $-\xi_t^+$: for positive deviation such that $r^t (\mathbf{w}^T \mathbf{x}^t + w_0) > \epsilon$.
 - $-\xi_t^-$: for negative deviation such that $(\mathbf{w}^T\mathbf{x}^t + w_0) r^t > \epsilon$.
- ▶ If $r^t (\mathbf{w}^T \mathbf{x}^t + w_0) \le \epsilon$ and $(\mathbf{w}^T \mathbf{x}^t + w_0) r^t \le \epsilon$, then $\xi_t^+ = \xi_t^- = 0$, contributing no cost to the objective function.

Lagrangian

- Similar to SVM for classification, the optimization problem for SVR can also be rewritten in the dual form.
- ► Lagrangian:

$$\mathcal{L}(\mathbf{w}, w_0, \{\xi_t^+\}, \{\xi_t^-\}, \{\alpha_t^+\}, \{\alpha_t^-\}, \{\mu_t^+\}, \{\mu_t^-\})$$

$$= \frac{1}{2} ||\mathbf{w}||^2 + C \sum_t (\xi_t^+ + \xi_t^-)$$

$$- \sum_t \alpha_t^+ \left[\epsilon + \xi_t^+ - r^t + (\mathbf{w}^T \mathbf{x}^t + w_0) \right] - \sum_t \alpha_t^- \left[\epsilon + \xi_t^- + r^t - (\mathbf{w}^T \mathbf{x}^t + w_0) \right]$$

$$- \sum_t (\mu_t^+ \xi_t^+ + \mu_t^- \xi_t^-)$$

where
$$\alpha_t^+$$
, α_t^- , μ_t^+ , $\mu_t^- > 0$.

Eliminating Primal Variables

▶ Setting the gradients of \mathcal{L} w.r.t. **w**, w_0 , $\{\xi_t^+\}$, and $\{\xi_t^-\}$ to 0:

$$\frac{\partial \mathcal{L}}{\partial \mathbf{w}} = \mathbf{0} \quad \Rightarrow \quad \mathbf{w} = \sum_{t} (\alpha_{t}^{+} - \alpha_{t}^{-}) \mathbf{x}^{t}$$
 (10)

$$\frac{\partial \mathcal{L}}{\partial w_0} = 0 \quad \Rightarrow \quad \sum_t (\alpha_t^+ - \alpha_t^-) = 0 \tag{11}$$

$$\frac{\partial \mathcal{L}}{\partial \varepsilon_{t}^{+}} = 0 \quad \Rightarrow \quad \mu_{t}^{+} = C - \alpha_{t}^{+}, \quad \forall t$$
 (12)

$$\frac{\partial \mathcal{L}}{\partial \mathcal{E}_{t}^{-}} = 0 \quad \Rightarrow \quad \mu_{t}^{-} = C - \alpha_{t}^{-}, \quad \forall t$$
 (13)

▶ Plugging (9), (10), (11), and (12) into \mathcal{L} gives the objective function G for the dual problem:

$$G(\{\alpha_t^+\}, \{\alpha_t^-\}) = -\frac{1}{2} \sum_t \sum_{t'} (\alpha_t^+ - \alpha_t^-) (\alpha_{t'}^+ - \alpha_{t'}^-) (\mathbf{x}^t)^T \mathbf{x}^{(t')}$$

$$-\epsilon \sum_t (\alpha_t^+ + \alpha_t^-) + \sum_t r^t (\alpha_t^+ - \alpha_t^-)$$
gression

Dual Optimization Problem – I

Dual optimization problem:

$$\begin{aligned} & \underset{\{\alpha_t^+\}, \, \{\alpha_t^-\}}{\text{maximize}} & & -\frac{1}{2} \sum_t \sum_{t'} (\alpha_t^+ - \alpha_t^-) (\alpha_{t'}^+ - \alpha_{t'}^-) (\mathbf{x}^t)^T \mathbf{x}^{(t')} \\ & & -\epsilon \sum_t (\alpha_t^+ + \alpha_t^-) + \sum_t r^t (\alpha_t^+ - \alpha_t^-) \\ & \text{subject to} & & \sum_t (\alpha_t^+ - \alpha_t^-) = 0 \\ & & 0 \leq \alpha_t^+ \leq C, \; \forall t \\ & & 0 \leq \alpha_t^- \leq C, \; \forall t \end{aligned}$$

- Instances in the ϵ -tube ($\alpha_t^+ = \alpha_t^- = 0$) are instances fitted with enough precision.
- ▶ The support vectors satisfy either $\alpha_t^+ > 0$ or $\alpha_t^- > 0$ and are of two types.
 - instances on the boundary of the ϵ -tube (either 0 < α_t^+ < C or 0 < α_t^- < C), and we use these to calculate w_0
 - instances outside the ϵ -tube are instances for which we do not have a good fit (either $\alpha_t^+ = C$ or $\alpha_t^- = C$)

Dual Optimization Problem - II

We have the fitted line as a weighted sum of the support vectors:

$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0 = \sum_{\mathbf{x}^t \in \mathcal{SV}} (\alpha_t^+ - \alpha_t^-) (\mathbf{x}^t)^T \mathbf{x} + w_0$$

- Due to the sparseness property of the ϵ -insensitive loss function, only a small fraction of the training instances are support vectors which are used in defining the regression function (like the discriminant function for classification).
- Nonlinear (kernel) extension is possible by introducing appropriate kernel functions.

SVR

