Algebra Qualifying Exam Fall 1991

All rings are assumed to have a multiplicative identity, denoted 1. The fields \mathbb{Q} , \mathbb{R} and \mathbb{C} are the fields of rational, real and complex numbers, respectively.

1. Let G be a group and let N_1, N_2 be normal subgroups of G with $N_1 \cong N_2$. Prove, or give a counterexample to the assertion

$$G/N_1 \cong G/N_2$$
.

- **2.** Let G be a finite group and let C be a conjugacy class of elements in G. If $|\mathcal{C}| = \frac{1}{2}|G|$, show that every element of C is an involution (i.e., an element of order 2).
- **3.** Let R be a commutative ring, and let $x \in R$. Define what it means for x to be an *irreducible* element, and define what it means for x to be *prime*. If R is a *unique factorization domain*, show that x is irreducible if and only if x is prime.
- **4.** Let R be a principal ideal domain, and let $0 \neq I \subset R$ be a prime ideal. Prove that I is a maximal ideal.
- **5.** Let R be a ring and let M be an irreducible left R-module. Prove that there exists a maximal left ideal I such that $R/I \cong M$ as left R-modules.
- **6.** Consider the map $T: \mathbb{C} \to \mathbb{C}$ defined by setting $T(\alpha) = (2+i)\alpha$. If we regard T as an \mathbb{R} -linear transformation of the 2-dimensional \mathbb{R} -vector space \mathbb{C} , compute $\det(T)$.
- 7. Let V be an n-dimensional vector space over a field F, and let $\mathcal{B} = \{x_1, x_2, \dots, x_n\}$ be a basis for V. Let V^* denote the dual space of V, that is, V^* is the vector space $Hom_F(V, F)$ of all linear transformations $\lambda: V \to F$. Define elements $\lambda_1, \dots, \lambda_n$ of V^* by setting

$$\lambda_i \left(\sum_{j=1}^n a_j x_j \right) = a_i,$$

 $1 \le i \le n, a_j \in F$, and put $\mathcal{B}^* = \{\lambda_1, \dots, \lambda_n\}$. Show that \mathcal{B}^* is a basis of V^* .

8. Consider the matrix of rational entries

$$A = \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix}.$$

If $R = \mathbb{Q}[A]$ is the ring of polynomials in A with rational coefficients, prove that R is a field. (Hint: Consider the homomorphism $\mathbb{Q}[x] \to \mathbb{Q}[A]$, where $x \mapsto A$.)

- **9.** Let $f(x) = x^5 2 \in \mathbb{Q}[x]$.
 - (a) Construct a splitting field $K \supseteq \mathbb{Q}$ for f(x) over \mathbb{Q} .
 - (b) Find an element $\alpha \in K$, $\alpha \notin \mathbb{Q}$, such that $\mathbb{Q}[\alpha]$ is a normal extension of \mathbb{Q} .