

CSC380: Principles of Data Science

Statistics 5

Xinchen Yu

Review: Interval estimate

Review: Gaussian (Corrected)

Suppose $X_1, ..., X_n \sim \mathcal{N}(\mu, \sigma^2)$ with unknown μ & known σ^2 .

(Fact 1)
$$\hat{\mu} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right) \sqrt{n} \frac{\hat{\mu} - \mu}{\sigma} \sim N(0,1)$$
 T-disf

$$P(Z \in [-\mathbf{z}, \mathbf{z}]) = 1 - 2(1 - \Phi(\mathbf{z}))$$

where $\Phi(z) := P(Z \le z)$ is the CDF of Z.

z = 1.96: RHS $\approx .95$, 95% confident

z = 2.58: RHS $\approx .99$,

Let:
$$Z \longrightarrow \sqrt{n} \frac{\widehat{\mu} - \mu}{\sigma}$$

$$P\left(\widehat{\mu} \in \left[\mu - \frac{1.96\sigma}{\sqrt{n}}, \mu + \frac{1.96\sigma}{\sqrt{n}}\right]\right) \ge 0.95$$

$$P\left(\widehat{\mu} \in \left[\mu - \frac{2.58\sigma}{\sqrt{n}}, \mu + \frac{2.58\sigma}{\sqrt{n}}\right]\right) \ge 0.99$$

=> Compute
$$\left[\hat{\mu} - \frac{1.96\sigma}{\sqrt{n}}, \hat{\mu} + \frac{1.96\sigma}{\sqrt{n}}\right]$$
. Done!

Q: what if X from an arbitrary distribution?

Q: what if σ^2 is unknown and sample size is small (< 30)?

Review: Gaussian (Corrected)

Recall: Gaussian confidence interval with $\sqrt{n} \frac{\widehat{\mu}_n - \mu}{\sigma} \sim \mathcal{N}(0,1)$.

What if we use $\widehat{\sigma}$ instead of σ ?

(Theorem) $X_1, ..., X_n$ with unknown μ, σ^2 .

Let
$$\widehat{UVar}_n \coloneqq \frac{1}{n-1} \sum_{i=1}^n (X_i - \hat{\mu}_n)^2$$
 (unbiased version of sample variance). Then, $\sqrt{n} \frac{\widehat{\mu}_n - \mu}{\sqrt{UVar}_n} \sim \text{student-t(mean 0, scale 1, degrees of freedom = } n-1)$

As df approaches infinity, T distribution becomes gaussian

Review: T scores for different df

(recall: 1.96 for gaussian)

much larger number compensates for the inaccuracy of $\hat{\sigma}^2$

import scipy.stats as st alpha = 0.05 st.t.ppf(1-alpha/2,df=2) => 4.302652729911275

st.t.ppf(1-alpha/2,df=5) => 2.5705818366147395

st.t.ppf(1-alpha/2,df=10) => 2.2281388519649385

st.t.ppf(1-alpha/2,df=30) => 2.0422724563012373

st.t.ppf(1-alpha/2,df=100) => 1.9839715184496334

Review: Gaussian (Corrected)

With a similar derivation we have done before, With at least 95% confidence:

$$\left[\hat{\mu}-t_{\alpha/2,n-1}\frac{\hat{\sigma}}{\sqrt{n}},\hat{\mu}+t_{\alpha/2,n-1}\frac{\hat{\sigma}}{\sqrt{n}}\right]$$

Where $t_{\alpha/2,n-1}$ can be computed numerically.

Key take away: more conservative!
=> more likely to be correct.

<u>Common practice</u>: Apply this method even if we do not know whether true distribution is Gaussian.

(recall: 1.96 for gaussian)

much larger number compensates for the inaccuracy of $\hat{\sigma}^2$

import scipy.stats as st alpha = 0.05 st.t.ppf(1-alpha/2,df=2) => 4.302652729911275

st.t.ppf(1-alpha/2,df=5) => 2.5705818366147395

st.t.ppf(1-alpha/2,df=10) => 2.2281388519649385

st.t.ppf(1-alpha/2,df=30) => 2.0422724563012373

st.t.ppf(1-alpha/2,df=100) => 1.9839715184496334

Method 2: Bootstrap

Suppose $X_1, ..., X_n \sim \mathcal{N}(\mu, \sigma^2)$ with unknown μ & known σ^2 .

(Fact 1)
$$\hat{\mu} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right) \sqrt{n} \frac{\hat{\mu} - \mu}{\sigma} \sim \mathcal{N}(0, 1)$$

(Fact 2) If $Z \sim \mathcal{N}(0,1)$,

$$P(Z \in [-\mathbf{z}, \mathbf{z}]) = 1 - 2(1 - \Phi(\mathbf{z}))$$

where $\Phi(z) := P(Z \le z)$ is the CDF of Z.

z = 1.96: RHS $\approx .95$, 95% confident

z = 2.58: RHS $\approx .99$,

Let:
$$Z \longrightarrow \sqrt{n} \frac{\widehat{\mu} - \mu}{\sigma}$$

$$P\left(\hat{\mu} \in \left[\mu - \frac{1.96\sigma}{\sqrt{n}}, \mu + \frac{1.96\sigma}{\sqrt{n}}\right]\right) \ge 0.95$$

$$P\left(\hat{\mu} \in \left[\mu - \frac{2.58\sigma}{\sqrt{n}}, \mu + \frac{2.58\sigma}{\sqrt{n}}\right]\right) \ge 0.99$$

=> Compute
$$\left[\hat{\mu} - \frac{1.96\sigma}{\sqrt{n}}, \hat{\mu} + \frac{1.96\sigma}{\sqrt{n}}\right]$$
. Done!

Directly approximate distributions of $\widehat{\mu} - \mu$

- Key idea: approximate ν , the distribution of $\hat{\theta}_n \theta$
- Insight:

- Use empirical distribution of $\hat{\theta}_{n,b}-\hat{\theta}_{\rm n}$'s to approximate u, obtaining approximations of $v_{lpha/2}$ and $v_{1-lpha/2}$
- This empirical distribution can be obtained by drawing multiple S_b 's (bootstrap subsample)

Method 2: Bootstrap

Method 2: Bootstrap example

Sample data: 30, 37, 36, 43, 42, 43, 43, 46, 41, 42

Sample mean: $\overline{x} = 40.3$

We want to know the distribution of: $\delta = \overline{x} - \mu$

Can approximate the distribution: $\delta^* = \overline{x}^* - \overline{x}$

Let's resample data with same size and generate 20 bootstrap samples:

4	.3	36	46	30	43	43	43	37	42	42	43	37	36	42	43	43	42	43	42	43
4	3	41	37	37	43	43	46	36	41	43	43	42	41	43	46	36	43	43	43	42
4	2	43	37	43	46	37	36	41	36	43	41	36	37	30	46	46	42	36	36	43
3	37	42	43	41	41	42	36	42	42	43	42	43	41	43	36	43	43	41	42	46
4	2	36	43	43	42	37	42	42	42	46	30	43	36	43	43	42	37	36	42	30
3	86	36	42	42	36	36	43	41	30	42	37	43	41	41	43	43	42	46	43	37
4	3	37	41	43	41	42	43	46	46	36	43	42	43	30	41	46	43	46	30	43
4	1	42	30	42	37	43	43	42	43	43	46	43	30	42	30	42	30	43	43	42
4	6	42	42	43	41	42	30	37	30	42	43	42	43	37	37	37	42	43	43	46
4	2	43	43	41	42	36	43	30	37	43	42	43	41	36	37	41	43	42	43	43

Method 2: Bootstrap example

```
      43
      36
      46
      30
      43
      43
      43
      37
      42
      42
      43
      37
      36
      42
      43
      43
      42
      43
      42
      43
      42
      43
      43
      42
      43
      43
      42
      43
      42
      43
      43
      42
      43
      43
      43
      43
      42
      43
      42
      43
      46
      36
      43
      42
      41
      43
      46
      36
      43
      42
      41
      43
      46
      36
      43
      42
      42
      43
      41
      43
      46
      46
      42
      36
      36
      43
      41
      36
      43
      41
      36
      43
      41
      43
      36
      43
      43
      42
      46
      43
      41
      43
      36
      43
      41
      42
      46
      43
      41
      43
      36
      43
      41
      42
      46
      30
      43
      41
      43
      43
      42
      43
      30
      43
      41
      43
      43
      42
      43
      30
      41
      43
      <td
```

Calculate sample mean for each column (bootstrap sample), compute: $\delta^* = \overline{x}^* - \overline{x}$ Sort the 20 differences:

$$-1.6, -1.4, -1.4, -0.9, -0.5, -0.2, -0.1, 0.1, 0.2, 0.2, 0.4, 0.4, 0.7, 0.9, 1.1, 1.2, 1.2, 1.6, 1.6, 2.0$$

If confidence level is 80%, find out top 10% and bottom 10%:

$$-1.6$$
, -1.4 -1.4 , -0.9 , -0.5 , -0.2 , -0.1 , 0.1 , 0.2 , 0.2 , 0.4 , 0.4 , 0.7 , 0.9 , 1.1 , 1.2 , 1.2 , 1.6 , 1.6 , 2.0

The bootstrap confidence interval is:

$$[\overline{x} - \delta_{.1}^*, \ \overline{x} - \delta_{.9}^*] = [40.3 - 1.6, \ 40.3 + 1.4] = [38.7, \ 41.7]$$

Method 2: Bootstrap

Suppose we observe data $X_1, X_2, \dots, X_n \sim P(X; \theta)$:

- 1. Sample new "dataset" $X_1^*, ..., X_n^*$ uniformly from $X_1, ..., X_n$ with replacement
- 2. Compute estimate $\hat{\theta}_n(X_1^*, ..., X_n^*)$
- 3. Repeat B times to get the estimators $\hat{\theta}_{n,1}, ..., \hat{\theta}_{n,B}$
- 4. Consider the **empirical distribution** of $\left\{\widehat{\theta}_{n,b} \frac{1}{n}\sum_{i=1}^{n}X_i\right\}_{b=1}^{B}$ and find its top $\frac{\alpha}{2}$ quantile and bottom $\frac{\alpha}{2}$ quantile (denoted by Q_U and Q_L respectively).
- 5. (1- α) Confidence Interval: $\left[\frac{1}{n}\sum_{i=1}^{n}X_{i} |Q_{U}|, \frac{1}{n}\sum_{i=1}^{n}X_{i} + |Q_{L}|\right]$

counterintuitively, upper quantile for lower width, lower quantile for upper width. Why?

$$P\left(v_{\frac{\alpha}{2}} \le \hat{\theta}_n - \theta \le v_{1-\frac{\alpha}{2}}\right) \ge 1 - \alpha$$

Pseudocode

Input: $X_1, \dots, X_n, B, \alpha$

- Compute \bar{X}_n
- Bootstrapping B times to obtain $\{\hat{\theta}_{n,b} \bar{X}_n\}_{n=1}^B$; call this array S
- Sorted S in increasing order.
- $Q_U := \text{the top } \frac{\alpha}{2} \text{ quantile; i.e., S[int(np.ceil((1-alpha/2)*(B-1)))]}$
- $Q_L := \text{the bottom } \frac{\alpha}{2} \text{ quantile; i.e., } S[int(np.floor((alpha/2)*(B-1)))]$
- Return $[\bar{X}_n |Q_U|, \bar{X}_n + |Q_L|]$

Confidence Intervals Comparison

Classical Statistics Review

- •Statistical Estimation infers unknown parameters θ of a distribution $p(X;\theta)$ from observed data X_1,\ldots,X_n
- An estimator is a function of the data $\hat{\theta}(X_1, \dots, X_n)$, it is a **random** variable, so it has a distribution
- Confidence Intervals measure uncertainty of an estimator, e.g.

$$P(\theta \in (a(X), b(X))) \ge 0.95$$

Bootstrap A simple method for estimating confidence intervals

↑ Q: when is this good?

Caution

- Confidence intervals are often misinterpreted!
- Confidence intervals in practice may not be true for small n

Classical Statistics Review

- Estimator bias describes systematic error of an estimator
- Mean squared error (MSE) measures estimator quality / efficiency,

$$MSE(\hat{\theta}) = \mathbf{E}\left[(\hat{\theta} - \theta)^2\right] = bias^2(\hat{\theta}) + \mathbf{Var}(\hat{\theta})$$

- Law of Large Numbers (LLN) guarantees that sample mean approaches (piles up near) true mean in the limit of infinite data
- Central Limit Theorem (CLT) says sample mean approaches a Normal distribution with enough data. Also means $\frac{1}{\sqrt{n}}$ convergence.
- LLN and CLT are asymptotic statements and do not hold for small/medium data in general

- Probability
- Statistics

- Data Visualization
- Predictive modeling
- Linear models
- Nonlinear models
- Clustering

a) Let us numerically verify the law of large numbers. We will simulate m=100 sample mean trajectories of $X_1, \ldots, X_N \sim \text{Bernoulli}(\mu=0.2)$ and plot them altogether in one plot. Here, a sample mean trajectory means a sequence of $\bar{X}_1, \bar{X}_2, \ldots, \bar{X}_N$ where \bar{X}_i is the sample mean using samples X_1, \ldots, X_i . We will plot \bar{X}_n as a function of n, but do this multiple times. Take n from 1 to N=1000. An ideal plot would look like the following:

N = 1, 2, 3, 4, 5, 6, 1000

a) Let us numerically verify the law of large numbers. We will simulate m=100 sample mean trajectories of $X_1, \ldots, X_N \sim \text{Bernoulli}(\mu=0.2)$ and plot them altogether in one plot. Here, a sample mean trajectory means a sequence of $\bar{X}_1, \bar{X}_2, \ldots, \bar{X}_N$ where \bar{X}_i is the sample mean using samples X_1, \ldots, X_i . We will plot \bar{X}_n as a function of n, but do this multiple times. Take n from 1 to N=1000. An ideal plot would look like the following:

a) Let us numerically verify the law of large numbers. We will simulate m=100 sample mean trajectories of $X_1, \ldots, X_N \sim \text{Bernoulli}(\mu=0.2)$ and plot them altogether in one plot. Here, a sample mean trajectory means a sequence of $\bar{X}_1, \bar{X}_2, \ldots, \bar{X}_N$ where \bar{X}_i is the sample mean using samples X_1, \ldots, X_i . We will plot \bar{X}_n as a function of n, but do this multiple times. Take n from 1 to N=1000. An ideal plot would look like the following:

a) Let us numerically verify the law of large numbers. We will simulate m=100 sample mean trajectories of $X_1, \ldots, X_N \sim \text{Bernoulli}(\mu=0.2)$ and plot them altogether in one plot. Here, a sample mean trajectory means a sequence of $\bar{X}_1, \bar{X}_2, \ldots, \bar{X}_N$ where \bar{X}_i is the sample mean using samples X_1, \ldots, X_i . We will plot \bar{X}_n as a function of n, but do this multiple times. Take n from 1 to N=1000. An ideal plot would look like the following:

a) Let us numerically verify the law of large numbers. We will simulate m=100 sample mean trajectories of $X_1, \ldots, X_N \sim \text{Bernoulli}(\mu=0.2)$ and plot them altogether in one plot. Here, a sample mean trajectory means a sequence of $\bar{X}_1, \bar{X}_2, \ldots, \bar{X}_N$ where \bar{X}_i is the sample mean using samples X_1, \ldots, X_i . We will plot \bar{X}_n as a function of n, but do this multiple times. Take n from 1 to N=1000. An ideal plot would look like the following:

N = 1, 2, 3, 4, 5, 61000 1, 1, 0, 0, 0, 0, 0, 0.8 0, 0, 0, 0, 0, 0, 1, 0 0, 1, 0, 0, 0, 0, 0.6 1, 0, 1 m = 1000.4 0.2 0, 0, 0, 0, 0, 1, 0, 0, 0 200 600 400 800 1000

HW3: Problem 2

I would like to build a simple model to predict how many students are likely to come to my office hours this semester. Because this is an arrival process, I will model the number of arrivals during office hours as Poisson distributed. Recall that the Poisson is a discrete distribution over the number of arrivals (or events) in a fixed time-frame. The Poisson distribution has a probability mass function (PMF) of the form,

Poisson
$$(x; \lambda) = \frac{1}{x!} \lambda^x e^{-\lambda}$$
.

Likelihood function:
$$L_n(\lambda) = p(x_1, x_2, x_3, ..., x_n; \lambda) = \prod_{i=1}^n p(x_i; \lambda)$$

Take the log:
$$f(\lambda) = \log L_n(\lambda) = \log \left(\prod_{i=1}^n p(x_i)\right)$$

HW3: Problem 2

Take the log:
$$f(\lambda) = \log L_n(\lambda) = \log \left(\prod_{i=1}^n p(x_i)\right)$$

$$egin{aligned} h &= \log \Big(\prod_{i=1}^n p(x_i)\Big) \ &= \sum_{i=1}^n \log \Big(rac{1}{x_i!} \lambda^{x_i} e^{-\lambda}\Big) \ &= \sum_{i=1}^n \Big(\log(1) - \log(x_i!) + x_i \log \lambda + (-\lambda)\Big) \ &= -\sum_{i=1}^n \log(x_i!) + \log(\lambda) \sum_{i=1}^n x_i - n\lambda \end{aligned}$$

HW3: Problem 2

Take the log:
$$f(\lambda)=\log L_n(\lambda)=\log \Big(\prod_{i=1}^n p(x_i)\Big)$$

$$=-\sum_{i=1}^n \log(x_i!)+\log(\lambda)\sum_{i=1}^n x_i-n\lambda$$

$$\frac{df}{d\lambda} = \frac{\sum_{i=1}^{n} x_i}{\lambda} - n = 0$$

$$\Rightarrow \frac{\sum_{i=1}^{n} x_i}{\lambda} = n$$

$$\Rightarrow \lambda^{MLE} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

I have decided to get myself tested for COVID-19 antibodies. However, being comfortable with statistics, I am curious about what the test means for my actual status. Let's investigate these questions, showing all your work.

a) The antibody test I take has a sensitivity (a.k.a. true positive rate) of 97.5% and a specificity (a.k.a. true negative rate) of 99.1%. If you are not familiar with sensitivity vs specificity, please see Wikipedia. Assume that 4% of the population actually have COVID-19 antibodies. Write down the joint probability distribution P(S, R) with events for antibody state $S \in \{\text{true}, \text{false}\}$ and test result $R \in \{\text{true}, \text{false}\}$.

$$P(R=True \mid S=True) = 0.975$$

$$P(R=False \mid S=False) = 0.991$$
Sensitivity = Specificity = Specificity

False positive: test says antibody T when antibody is not T False negative: test says antibody F when antibody is not F

I have decided to get myself tested for COVID-19 antibodies. However, being comfortable with statistics, I am curious about what the test means for my actual status. Let's investigate these questions, showing all your work.

a) The antibody test I take has a sensitivity (a.k.a. true positive rate) of 97.5% and a specificity (a.k.a. true negative rate) of 99.1%. If you are not familiar with sensitivity vs specificity, please see Wikipedia. Assume that 4% of the population actually have COVID-19 antibodies. Write down the joint probability distribution P(S, R) with events for antibody state $S \in \{\text{true}, \text{false}\}$ and test result $R \in \{\text{true}, \text{false}\}$.

Law of total probability + Conditional probability:
$$P(A) = \sum_{i} P(A \cap B_i) = \sum_{i} P(B_i) P(A|B_i) = \sum_{i} P(A) P(B_i|A)$$

$$P(R=True \mid S=True) = 0.975$$

$$P(R=False \mid S=False) = 0.991$$

P(R S)	S = True	S = False
R = True	0.975	0.009
R = False	0.025	0.991

$$P(S = true) = 0.04$$

 $P(S = false) = 0.96$

P(R and S)	S = True	S = False
R = True	0.039	0.00864
R = False	0.001	0.95136

d) Assume I take the test twice, and receive a positive result in the first test and a negative result in the second test. Assume that the two test results are conditionally independent given the existence of the antibody. What is the probability that I have COVID-19 antibodies according to Bayes' rule?

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B|A)P(A)}{P(B)}$$

$$P(S = T | R_1 = T, R_2 = F) = \frac{P(R_1 = T, R_2 = F | S = T)P(S = T)}{P(R_1 = T, R_2 = F)}$$

$$= P(R_1 = T, R_2 = F)$$

$$= P(R_1 = T, R_2 = F, S = T) + P(R_1 = T, R_2 = F, S = F)$$

$$= P(R_1 = T, R_2 = F | S = T)P(S = T) + P(R_1 = T, R_2 = F | S = F)P(S = F)$$

$$= P(R_1 = T, R_2 = F | S = T)P(S = T) + P(R_1 = T, R_2 = F | S = F)P(S = F)$$

$$= P(R_1 = T | S = T)P(R_2 = F | S = T)P(S = T) + P(R_1 = T | S = F)P(R_2 = F | S = F)P(S = F)$$

d) Assume I take the test twice, and receive a positive result in the first test and a negative result in the second test. Assume that the two test results are conditionally independent given the existence of the antibody. What is the probability that I have COVID-19 antibodies according to Bayes' rule?

Let T=true and F=false.

$$\begin{split} P(S = T \mid R_1 = T, R_2 = F) \\ &= \frac{P(R_1 = T, R_2 = F \mid S = T)P(S = T)}{P(R_1 = T, R_2 = F \mid S = T)P(S = F)} \\ &= \frac{P(R_1 = T \mid S = T)P(S = T) + P(R_1 = T, R_2 = F \mid S = F)P(S = F)}{P(R_1 = T \mid S = T)P(R_1 = F \mid S = T)P(S = T)} \\ &= \frac{P(R_1 = T \mid S = T)P(R_2 = F \mid S = T)P(S = T) + P(R_1 = T \mid S = F)P(R_2 = F \mid S = F)P(S = F)}{0.975 \cdot 0.025 \cdot 0.04} \\ &= \frac{0.975 \cdot 0.025 \cdot 0.04 + 0.009 \cdot 0.991 \cdot 0.96}{0.975 \cdot 0.022} \\ &\approx 0.1022 \end{split}$$

Midterm

- Cheat sheet: US Letter size (1 page, 2-sided)
- Practice questions will release next Tuesday Oct 3rd
 - Solutions will release on Oct 8th

- Midterm review next Thursday
- How to prepare?
 - Slides
 - Examples
 - Homework questions