

Al5090/EE5817: PROBABILITY AND STOCHASTIC PROCESSES

QUIZ 02

DATE: 26 AUGUST 2025

Question	1	2	Total
Marks Scored			

1. (3 Marks)

Fix a sample space Ω and an associated σ -algebra \mathscr{F} . Fix a non-empty set $A \in \mathscr{F}$, and consider the collection

$$\mathscr{F}_A := \Big\{ B \subseteq A: \ B \in \mathscr{F} \Big\}.$$

Show that \mathscr{F}_A is a σ -algebra of subsets of A. Justify every point clearly.

Solution to Q1.

Let (Ω, \mathscr{F}) be a measurable space and let $A \in \mathscr{F} \setminus \{\emptyset\}$. Define

$$\mathscr{F}_A := \{ B \subseteq A : B \in \mathscr{F} \}.$$

We need to show that \mathscr{F}_A is a σ -algebra on the base set A. That is, we need to show the following three properties:

- $A \in \mathscr{F}_A$.
- If $E \in \mathscr{F}_A$, then $A \setminus E \in \mathscr{F}_A$ (closure under complements).
- If $E_1, E_2, \ldots \in \mathscr{F}_A$, then $\bigcup_{n \in \mathbb{N}} E_n \in \mathscr{F}_A$ (closure under countable unions).

(i) Containment of A:

Because $A \in \mathscr{F}$ and $A \subseteq A$, it follows immediately that $A \in \mathscr{F}_A$.

(ii) Closure under complements:

Let $E \in \mathscr{F}_A$. Then, by definition, $E \subseteq A$ and $E \in \mathscr{F}$.

Because \mathscr{F} is a σ -algebra of subsets of Ω , it follows that $E^{\complement}=\Omega\setminus E\in\mathscr{F}.$

The result then follows by noting that $A \setminus E = A \cap (\Omega \setminus E) \subseteq A$..

(iii) Closure under countable unions.

For each $n \in \mathbb{N}$, let $E_n \in \mathscr{F}_A$. By definition, Then $E_n \subseteq A$ and $E_n \in \mathscr{F}$. Because \mathscr{F} is a σ -algebra,

$$\bigcup_{n\in\mathbb{N}} E_n \in \mathscr{F}.$$

Moreover, because $E_n \subseteq A$ for all $n \in \mathbb{N}$, we have

$$\bigcup_{n\in\mathbb{N}} E_n \subseteq A.$$

Thus
$$\bigcup_{n\in\mathbb{N}}E_n\in\mathscr{F}_A$$
.

Having verified (i), (ii), and (iii), we conclude that \mathscr{F}_A is a σ -algebra of subsets of A.

2. Consider the collection

$$\mathscr{D} \coloneqq \bigg\{ [-b, -a) \cup (a, b]: \ a, b \in \mathbb{R}, \ a \leq b \bigg\}.$$

(a) **(1 Mark)**

Give an example of a set that belongs to $\sigma(\mathcal{D}) \setminus \mathcal{D}$.

(b) (1 Mark)

Give an example of a set belongs to $\mathscr{B}(\mathbb{R}) \setminus \sigma(\mathscr{D})$.

Solution: We examine the structure of the generator class

$$\mathscr{D} = \{ [-b, -a) \cup (a, b] : a, b \in \mathbb{R}, \ a \le b \}.$$

Every set in \mathscr{D} is symmetric with respect to the origin: for any $E \in \mathscr{D}$, if $x \in E$, then $-x \in E$.

Symmetric closed intervals. Take a < 0 and b > 0 with |a| < |b|. Then

$$[-b, -a) \cup (a, b] = [-b, b].$$

Hence all symmetric closed intervals of the form $[-b, b], b \in \mathbb{R}$, are present in \mathcal{D} .

Symmetric open intervals. Let a < 0 and b > 0 with |a| > |b|. Then

$$[-b, -a) \cup (a, b] = (a, -a).$$

Thus all symmetric open intervals of the form $(-a, a), a \in \mathbb{R}$, are present in \mathcal{D} .

Valid examples of sets in $\sigma(\mathscr{D}) \setminus \mathscr{D}$.

1) For any $a, b \in \mathbb{R}$ with ab > 0, the set $A = (-b, -a) \cup (a, b) \in \sigma(\mathcal{D})$. Indeed, A can be expressed as

$$A = \bigcup_{n \in \mathbb{N}} \left[-b + \frac{1}{n}, \ -a \right) \cup \left(a, \ b - \frac{1}{n} \right].$$

2) For any $a,b\in\mathbb{R}$ with ab>0, the set $B=[-b,-a]\cup[a,b]\in\sigma(\mathscr{D})$. Indeed, B can be expressed as

$$B = \bigcap_{n \in \mathbb{N}} \left[-b, -a + \frac{1}{n} \right) \cup \left(a - \frac{1}{n}, b \right],$$

3) For any $x \in \mathbb{R}$, the set $C = \{-x, x\} \in \sigma(\mathscr{D})$. Indeed, using the result of part 2) above, C can be expressed as

$$C = \bigcap_{n \in \mathbb{N}} \left[-x - \frac{1}{n}, -x + \frac{1}{n} \right] \cup \left[x - \frac{1}{n}, x + \frac{1}{n} \right].$$

4) For any $a, b \in \mathbb{R}$, the set $D = (-\infty, -b) \cup [-a, a] \cup (b, +\infty) \in \sigma(\mathscr{D})$. Indeed, the set D can be expressed as

$$D = ([-b, -a) \cup (a, b])^{\mathbf{C}}.$$

(b) An example of a set in $\mathscr{B}(\mathbb{R})\setminus\sigma(\mathscr{D})$.

If $E \in \mathscr{D}$ and $x \in E$, then by construction $-x \in E$; thus all sets in \mathscr{D} are symmetric.

The class of symmetric sets is closed under complements and under countable unions (hence also countable intersections), so $\sigma(\mathcal{D})$ consists entirely of *symmetric* Borel sets.

Consequently, any Borel set that is not symmetric cannot lie in $\sigma(\mathcal{D})$.

A simple choice is the interval (0,1), which is Borel but not symmetric.