Introduction to Artificial Intelligence

COMP307

Evolutionary Computing 3: Genetic Programming for Regression and Classification

Yi Mei *yi.mei@ecs.vuw.ac.nz*

Outline

- Statistical parameter regression
- Symbolic regression
- GP for symbolic regression
- GP for binary classification

House Price Prediction

How much to put in your tender?

Price	Floor space	Rooms	Lot size	Appartment	Row house	Corner house	Detached
250000	71	4	92	0	1	0	0
209500	98	5	123	0	1	0	0
349500	128	6	114	0	1	0	0
250000	86	4	98	0	1	0	0
419000	173	6	99	0	1	0	0
225000	83	4	67	0	1	0	0
549500	165	6	110	0	1	0	0
240000	71	4	78	0	1	0	0
340000	116	6	115	0	1	0	0

(Statistical) Regression Analysis

- In statistics, regression analysis examines the relation of a dependent variable (response variable) to specified independent variables (explanatory variables)
 - The mathematical model of their relationship is the regression equation (e.g. f(x, y) = 0)
 - estimates of one or more hypothesized regression parameters ("constants")

Examples

- Financial prediction
- Saving prediction
- Ad cost vs sales
- Natural law discovery

Regression

- Two main tasks
 - Regression equation: relationship between a dependent variable (response variable) to specified independent variables (explanatory variables)
 - Parameters/Coefficients
- Example: linear regression
 - Regression equation is a linear model: $y = \alpha \cdot x + \beta + \epsilon$
 - Coefficients: α and β
 - $-\alpha$ is the slope, β is the intercept
 - $-\epsilon$ is the error term (assume normally distributed)
 - Estimate α and β to minimise ϵ

Assume model structure, estimate model parameters

Symbolic regression

- · However, linear model is too simple for many real-world data
- Hard to find out the proper regression equation

Schmidt, Michael, and Hod Lipson. "Distilling free-form natural laws from experimental data." *Science* 324, no. 5923 (2009): 81-85.

Symbolic Regression Applications

- Symbolic regression has many real-world applications:
 - Economic prediction, e.g. stock market prediction, GDP prediction,
 - Industrial prediction, e.g. prediction of containers handling capacity at a particular sea port; short-term, medium-term and long-term prediction of power load at a region
 - Experiential formula modelling in Engineering, e.g. formulating the amount of Gas emitted from Coal surface
 - Time series projection, e.g. CPI projection for a country or a region
 - Selection/Choice of Equipments, e.g. equipment choice for work platform in mine industry
 - Fault diagnosis, e.g. find optimal strategy in fault isolation, fault analysis in combustion system for diesel engine
 - Robot self-adaptive behaviour
 - GIS systems, e.g. projection transformation

Symbolic regression

- Symbolic regression: to find a symbolic description of a model, not just a set of coefficients/parameters in a prespecified model.
- To find both:
 - the model structure, and
 - the corresponding coefficients/parameters

GP for Symbolic Regression (Example)

- Objective: Find a program/model that produces the correct value of the dependent variable y when given the value of an independent variable x
- Terminal Set: x, random number r
- Function Set: {+ , -, *, %}
- Fitness Cases: 50 cases of *x* and the corresponding *y* values (e.g. *50 instances/patterns/cases*)
- Fitness Measure: Sum of the absolute errors for the 50 cases
- Parameters: Population = 100, Generations = 51, MaxDepth = 17 reproduction rate: 5%, crossover rate: 90%, mutation rate: 5%
- Success: The fitness value is smaller than a pre-defined value, e.g. 0.01
- Termination criteria: satisfactory solutions found, or at generation 51.

GP for Symbolic Regression (Example)

- One GP run gave: $y = (x 0.9999) x^3$
- Successful? If the true model is

$$y = (x - 1) - x^3$$

Sometimes:

(% (% (* (* X 0.571) (* (- (* (+ (% 0.634094 0.68469) (+ (+ X X) -0.5992))(* (* (+ (% 0.634094 0.68469) (+ X -0.5992)) (* (% 0.354904 - 0.7549) (* X 0.571))) (- X 0.395493))) - 0.4665)another 15 lines)

- This example: one input variable (x), training set only
- Real-world applications: usually multiple variables, can have a separate test set, but use the same principle

GP for Symbolic Regression

- Compared with statistical parameter regression methods, GP method has the following properties:
- Does NOT need to assume any distribution of data set,
- Does NOT need to assume the independence of the input variables
- Does NOT need to use any statistical background knowledge to assume any model
- Can automatically learn/evolve both the model structure and the model parameters at the same time
- System input: just the data with a black box model/parameters
- System output: a white box model structure with appropriate parameters

Binary Classification

- Binary classification is the task of classifying the instances of a given set into two categories on the basis of whether they have some property or not
- Two target classes, e.g.
 - Disease vs non-disease
 - normal vs abnormal
 - grant loan or not
 - fault vs non-fault/normal
 - object vs non-object

GP for Binary Classification

- Compared with GP for symbolic regression problems, the terminal set and function set can be the same or very similar, but the fitness function is normally very different
- In fitness function, we can simply use classification accuracy or error rate, which need to determine which class a training example belongs to
- This is called Classification Strategy or Program Class Translation Rule
- For binary classification problems, this is quite easy: we can use the value "zero" in the real number space for the program output to separate the two classes

Program Class Translation Rule

Is zero the best threshold?

GP for Classification Example

- Task: Object classification: objects vs non-objects
- Objective: Find a program which can successfully split the instances into two classes
- Terminal Set: Object attributes: pixels, pixel statistics, or specific features, and random numbers.
- Function Set: {+, -, *, %, ABS, EXP, LOG, SIN, COS, RAND}
- Fitness Cases: Build a training set of patterns (feature vectors), some are objects, some not.
- Fitness Measure: classification accuracy/ error rate
- Classification strategy: ProgOut > 0 for objects, otherwise non-objects

Summary

- GP for symbolic regression
- Properties of GP for symbolic regression
- GP for binary classification
- How do you use GP for multi-class classification? Can we get better translation rules?