

Ministério da Educação Secretaria de Educação Profissional e Tecnológica Instituto Federal Catarinense

Campus Videira

MARLON VALMÓRBIDA CENDRON

A CONTRIBUIÇÃO DAS FASES DO SONO NA CONSOLIDAÇÃO DE MEMÓRIAS EM REDES NEURAIS PULSADAS

MARLON VALMÓRBIDA CENDRON

A CONTRIBUIÇÃO DAS FASES DO SONO NA CONSOLIDAÇÃO DE MEMÓRIAS EM REDES NEURAIS PULSADAS

Trabalho de Curso apresentado ao Curso de graduação em Ciência da Computação do Instituto Federal Catarinense – *Campus* Videira para obtenção do título de bacharel em Ciência da Computação.

Orientador: Prof. Dr. Manassés Ribeiro

RESUMO

Este trabalho visa desenvolver e analisar uma simulação realista das diferentes fases do sono em uma Rede Neural Pulsada (RNP) e sua influência na consolidação e retenção de memórias. Busca-se entender melhor a natureza dos processos de aprendizado e memória no cérebro humano, e como esses processos são afetados pelas diferentes fases do sono. Para isso, as características e propriedades das diferentes fases do sono serão investigadas para fornecer uma base sólida para a simulação. Em seguida, um modelo apropriado de RNP será selecionado e utilizado para simular a atividade neural durante o sono. Finalmente, os resultados da simulação serão analisados para determinar como a consolidação e retenção de memórias são afetadas pelas diferentes fases do sono e pela atividade neural durante essas fases. Espera-se que essa pesquisa possa contribuir para a compreensão dos mecanismos subjacentes aos processos de aprendizado e memória no cérebro humano e possa ter implicações significativas para os campos da neurociência computacional e inteligência artificial.

Palavras-chave: Redes Neurais Pulsadas. Sono. Memória. Plasticidade. Neurociência Computacional.

ABSTRACT

This study aims to develop and analyze a realistic simulation of the different phases of sleep in a Spiking Neural Network (SNN) and their influence on the consolidation and retention of memories. The objective is to better understand the nature of learning and memory processes in the human brain, and how these processes are affected by the different phases of sleep. To this end, the characteristics and properties of the different phases of sleep will be investigated to provide a solid foundation for the simulation. Then, an appropriate SNN model will be selected and used to simulate neural activity during sleep. Finally, the results of the simulation will be analyzed to determine how consolidation and memory retention are affected by the different phases of sleep and by neural activity during these phases. It is hoped that this research can contribute to the understanding of the mechanisms underlying the processes of learning and memory in the human brain and may have significant implications for the fields of computational neuroscience and artificial intelligence.

Keywords: Spiking Neural Networks. Sleep. Memory. Plasticity. Computational Neuroscience.

LISTA DE ILUSTRAÇÕES

Figura 1 –	Neurônio piramidal neocortical humano. O axônio é claramente visível se	
	estendendo verticalmente a partir da soma, assim como os vários dendritos	
	que partem da base da soma.	14
Figura 2 –	Potencial de ação, linha vermelha, condutância da membrana, envelope	15
Figura 3 –	(A) O circuito elétrico de Lapicque: I é a corrente injetada, C a capacitância	
	da membrana, R a resistência da membrana, V o potencial de membrana e	
	V_{rest} o potencial de repouso. (B) A trajetória de tensão, quando um limiar é	
	atingido, um potencial de ação é disparado. (C) Um modelo IF com corrente	
	que varia pelo tempo	16
Figura 4 –	Diferentes tipos de neurônios simulados pelo modelo de Izhikevich	18
Figura 5 –	PDTD entre dois neurônios	23
Figura 6 –	Esquerda: Rede neural sem memórias. Direita: Rede neural com uma assem-	
	bleia neuronal formada pela experiência	24
Figura 7 –	Fases do sono	26
Figura 8 –	Visão geral da metodologia: passos para construção do modelo e simulação	
	e análise	28
Figura 9 –	Exemplo de estímulo apresentado à RNP.Aqui, um neurônio com seu campo	
	receptivo centralizado no X recebe conexões dos neurônios da retina conti-	
	dos dentro da grade verde	33
Figura 10 –	Os seis estímulos apresentados à RNP durante os experimentos	35
Figura 11 –	Matrizes contendo o número de neurônios pertecentes a cada assembleia	
	neuronal. Os elementos da diagonal principal da matriz indicam o número	
	total de neurônios em cada assembleia individual. Nos outros casos, o ele-	
	mento representa quantos neurônios de uma assembleia também são parte	
	de outra assembleia	37
Figura 12 –	Matrizes representando a ativação média em Hz de cada assembleia neuronal	
	para cada estímulo diferente	37

LISTA DE TABELAS

Tabela 1 – Cronograma de atividades.	 38

LISTA DE SIGLAS

DLP Depressão de Longo Prazo

GABA Ácido gama-aminobutírico

GLIF Generalized Leaky Integrate-and-Fire

IA Inteligência Artificial

IF Integrate-and-Fire

LIF Leaky Integrate-and-Fire

NREM Non-Rapid Eye Movement

PCP Plasticidade de Curto Prazo

PLP Potenciação de Longo Prazo

REM Rapid Eye Movement

RNA Rede Neural Artificial

RNB Rede Neural Biológica

RNP Rede Neural Pulsada

SNN Spiking Neural Network

PDTD Plasticidade Dependente do Tempo de Disparo

PDTD-E Plasticidade Dependente do Tempo de Disparo Estável

SUMÁRIO

1	Introdução	9
1.1	Objetivo geral	12
1.2	Objetivos específicos	12
2	Fundamentação teórica	14
2.1	Neurônios biológicos	14
2.2	Modelos de Neurônios	16
2.2.1	Modelos de Sinapses	18
2.3	Redes Neurais Pulsadas	19
2.4	Plasticidade	19
2.5	Modelos de Plasticidade	21
2.6	Assembleias Neuronais	23
2.7	Sono	25
2.8	Trabalhos correlatos	26
3	Metodologia	28
3.1	Modelo dos neurônios	28
3.2	Modelo das sinapses	29
3.3	Modelos de plasticidade	30
3.3.1	Plasticidade de curto-prazo	30
3.3.2	Plasticidade de longo-prazo	31
3.3.2.1	Plasticidade de longo-prazo em sinapses inibitórias	32
3.4	Arquitetura da rede	32
3.4.1	Modelo da retina	32
3.4.2	Simulação do sono	33
3.4.3	Análise de assembleias neuronais	34
3.4.4	Detalhes da simulação	34
3.5	Experimentos	34
3.5.1	Experimento 1: Formação de assembleias neuronais	35
3.5.2	Experimento 2: Formação de assembleias neuronais com sono	36
3.6	Análise dos resultados	36
4	Conclusão	38

	REFERÊNCIAS 40
4.3	Considerações finais
4.2	Cronograma
4.1	Resultados esperados

1 INTRODUÇÃO

A busca pela compreensão e reprodução das habilidades cognitivas e de aprendizado do cérebro humano tem sido um desafio constante nas áreas de neurociência computacional e Inteligência Artificial (IA). É possível argumentar que as Redes Neurais Artificiais (RNA) são o mais próximo que já chegamos dessa reprodução; entretanto, as RNAs deixaram de lado o realismo biológico em prol do aperfeiçoamento da IA (YAMAZAKI et al., 2022). As Redes Neurais Pulsadas (RNP)¹ representam um avanço significativo em direção ao objetivo de compreender o cérebro humano, uma vez que buscam emular o comportamento das Redes Neurais Biológicas (RNB) de forma mais realista do que as abordagens tradicionais.

As RNAs convencionais são inspiradas no cérebro: neurônios disparam em determinadas frequências conforme os sinais recebidos de conexões com outros neurônios através de sinapses plásticas, cuja força muda dinamicamente de acordo com o treinamento. Entretanto, as semelhanças com o cérebro estão limitadas a este ponto, uma vez que as RNAs tradicionais não capturam a dinâmica interna dos neurônios biológicos, que disparam de maneiras complexas e distintas, e não apenas em uma determinada frequência. Outra diferença entre as RNAs e os sistemas biológicos é que elas possuem um período de treinamento em que as sinapses são otimizadas, e um período em que não há mais treinamento e as sinapses se tornam estáticas; enquanto que nas RNBs as sinapses estão sempre se alterando conforme a experiência, salvo nos raros casos em que há um período crítico de aprendizado durante a infância, que é desativado quando o indivíduo se torna adulto (CREPEL, 1982).

As RNPs são modelos muito mais próximos das RNBs que se comunicam por meio de impulsos elétricos discretos, chamados de disparos² e que aprendem por métodos realistas, como a plasticidade das sinapses. O grau de realismo biológico de uma RNP depende de sua implementação, podendo empregar modelos de neurônios tão simples quanto uma única equação, que descreve a mudança de tensão elétrica de um neurônio (BURKITT, 2006), ou até modelos que simulam canais de íons (HODGKIN; HUXLEY, 1952), ramificações de dendritos (PAG-KALOS; CHAVLIS; POIRAZI, 2023), entre outros. As RNPs não só representam uma possível evolução das RNAs, como também são usadas para seu propósito original: compreender o cé-

Do inglês *Spiking Neural Networks*.

Também chamados de potenciais de ação, pulsos ou spikes, um disparo é um impulso elétrico propagado pelo axônio de um neurônio para transmitir um sinal pelas sinapses a outros neurônios. Um disparo é sempre igual independente do neurônio, a informação transmitida pelo neurônio é codificada no tempo e na frequência dos disparos (KANDEL et al., 2021).

rebro através da simulação.

A principal característica que torna as RNAs capazes de aprender é seu método de retropropagação de erro, um método de treinamento que até pode existir em alguns casos no cérebro (LILLICRAP et al., 2020; SONG et al., 2020), mas que é diferente da forma de aprendizado local por plasticidade das RNBs (YAMAZAKI et al., 2022).

No entanto, treinar RNPs continua sendo uma tarefa desafiadora, já que os algoritmos de aprendizado empregados nas RNAs, além de não serem biologicamente realistas, também não são diretamente aplicáveis às RNPs devido à natureza discreta dos disparos que as torna não diferenciáveis, impedindo o cálculo de gradientes, parte fundamental no treinamento de RNAs.

O principal método empregado para o aprendizado de RNPs é a plasticidade das sinapses. A plasticidade é a capacidade do cérebro de se adaptar e reorganizar suas conexões neurais em resposta a novas informações, experiências ou estímulos; é a principal propriedade por trás do aprendizado e da formação de memórias. Uma das principais formas de plasticidade neural foi primeiramente descrita por Hebb (1949), chamada de plasticidade hebbiana e influenciada pelas ideias de Santiago (1894), que pode resultar no fortalecimento ou enfraquecimento das sinapses com base na ativação simultânea de neurônios conectados: caso o neurônio póssináptico dispare logo após o neurônio pré-sináptico, significa que há uma correlação entre eles e a sinapse é fortalecida, caso contrário, a sinapse é enfraquecida.

A plasticidade hebbiana, resumida pela expressão "neurônios que disparam juntos, conectam-se juntos", descreve a formação de assembleias neuronais³ como resultado do fortalecimento das conexões entre neurônios ativados simultaneamente. Essas assembleias neuronais podem funcionar como mecanismos de memória associativa (SAKURAI et al., 2018). Tomando como exemplo a memória de uma viagem à praia: essa memória consiste em vários elementos, como o som das ondas, a sensação de areia sob os pés, o cheiro de água salgada, a visão do mar, entre outros. Cada um desses elementos sensoriais é processado em diferentes áreas do cérebro e ativa diferentes grupos de neurônios. A ativação síncrona dos neurônios responsáveis por esses elementos sensoriais leva à formação de uma assembleia neuronal. Algum tempo depois, ao sentir o cheiro do mar novamente, esse estímulo pode acabar ativando a assembleia neuronal, resultando na experiência da memória. Assembleias celulares não são estruturas estáticas, essas redes dinâmicas de neurônios que surgem a partir da experiência estão sujeitas a

³ Do inglês *Cell Assemblies*. Também traduzido como Assembleias Celulares.

modificações e reativações ao longo do tempo, sendo influenciadas pela falta de estímulos ou novas informações, o que pode levar à alteração ou esquecimento de partes da memória.

A plasticidade hebbiana, no entanto, não consegue gerar, por si só, assembleias neuronais estáveis quando simulada em uma RNP; isso ocorre pois a atividade neural continuamente modifica as sinapses, fazendo com que em pouco tempo quaisquer estímulos não relacionados com a informação codificada na assembleia neuronal acabem alterando as sinapses e desfazendo a assembleia (GERSTNER; KISTLER, 2002).

Mas a plasticidade hebbiana não descreve toda a gama de diferentes modos com que a plasticidade se manifesta no cérebro, como é o caso das plasticidades heterossináptica, em que a ativação de neurônios causa mudanças em neurônios inativos, e homeostática, um processo lento em que as sinapses se auto-regulam para garantir estabilidade. A plasticidade também depende do tipo de neurônio, do tipo da conexão, do tempo de efeito das alterações (curto ou longo-prazo), entre outros fatores. A natureza do efeito da plasticidade também varia muito, podendo depender da frequência de disparos, da diferença de potencial, do tempo dos disparos, entre outros. Nas RNPs, assim como ocorre com os modelos de neurônios, os modelos de plasticidade também possuem uma ampla variação em termos de plausibilidade biológica. Além disso, dependendo do modelo que se deseja utilizar, pode-se combinar múltiplos modelos de plasticidade simultaneamente. Uma RNP com plasticidade hebbiana junto de outras formas de plasticidade é capaz de formar assembleias neuronais estáveis por horas (ZENKE; AGNES; GERSTNER, 2015). Outra possibilidade para uma melhor estabilidade das assembleias neuronais e da consolidação das memórias, que será explorada neste trabalho, é a do sono.

O sono é um processo fisiológico crucial para a consolidação⁴ e manutenção das memórias (BLISSITT, 2001; WALKER; STICKGOLD, 2006; DIEKELMANN; BORN, 2010). Inicialmente, postulava-se que o sono desempenhava uma função passiva no processo de consolidação da memória (JENKINS; DALLENBACH, 1924); contudo, com a descoberta das distintas fases do sono, começaram-se a explorar as contribuições ativas do sono na consolidação mnemônica⁵ (ASERINSKY; KLEITMAN, 1953). Durante o sono, ocorrem diferentes fases caracterizadas por padrões distintos de atividade cerebral: sono REM (*Rapid Eye Movement*) e sono não REM (NREM, dividido entre as fases N1, N2 e N3) (SCHULZ, 2008). Durante a fase NREM, oscilações lentas, fusos e ondulações coordenam a reativação e redistribuição de me-

⁴ A consolidação de uma memória é entendida como o processo que transforma novas memórias frágeis criadas enquanto acordado para memórias mais estáveis e de longo prazo.

⁵ A consolidação de memórias.

mórias dependentes do hipocampo para o neocórtex (DIEKELMANN; BORN, 2010). Já quanto ao sono REM, a dificuldade em isolar a atividade neural dessa etapa específica, que ocorre após a fase NREM, torna a discussão sobre sua contribuição para a consolidação da memória ainda controversa. Contudo, pesquisas mais recentes oferecem evidências de que o sono REM desempenha um papel fundamental na consolidação da memória espacial e contextual (BOYCE; WILLIAMS; ADAMANTIDIS, 2017).

Neste contexto, o problema a ser abordado neste trabalho consiste em explorar a retenção de memórias em uma RNP. A principal hipótese a ser avaliada neste trabalho é de que abordagens baseadas em simulações de fases do sono podem melhorar a estabilidade de assembleias neuronais contribuindo para o processo de retenção de memórias.

1.1 OBJETIVO GERAL

O objetivo geral consiste em desenvolver simulações das diferentes fases do sono em RNPs, analisando como a consolidação e retenção de memórias da rede pode ser afetada, a fim de compreender melhor o papel biológico do sono na memória dos seres vivos.

1.2 OBJETIVOS ESPECÍFICOS

Para melhor entendimento do objetivo geral, os seguintes objetivos específicos são propostos:

- Investigar as características e propriedades das diferentes fases do sono para criar uma base sólida para a simulação das mesmas em uma RNP.
- Estudar e selecionar o modelo de RNP mais apropriado para a simulação das fases do sono, levando em consideração a capacidade de representar a atividade neural durante o sono e a flexibilidade para incorporar diferentes mecanismos de consolidação de memória.
- Sugerir e validar métodos para avaliar a consolidação e retenção de memórias na RNP a fim de comparar a performance da RNP com e sem a simulação do sono.
- Analisar os resultados da simulação para identificar como a consolidação e retenção de memórias são afetadas pelas diferentes fases do sono e pela atividade neural durante essas fases.

• Contribuir para o entendimento dos mecanismos subjacentes aos processos de aprendizado e memória no cérebro, assim como discutir possíveis implicações e aplicações nos campos de neurociência computacional e inteligência artificial.

2 FUNDAMENTAÇÃO TEÓRICA

2.1 NEURÔNIOS BIOLÓGICOS

Neurônios são células especializadas que atuam como unidades básicas de comunicação no cérebro, transmitindo informações através de impulsos elétricos e conexões químicas e elétricas, chamadas sinapses. Um neurônio possui três principais partes, como ilustra a Figura 1: dendritos, soma e axônio. Dendritos recebem sinais de outros neurônios e os conduzem à soma, onde são integrados. Se o sinal integrado atinge um limiar, um potencial de ação, ou disparo, é gerado no axônio, propagando-se até as terminações axonais através das sinapses, onde o sinal se propaga para os dendritos dos neurônios seguintes. A Figura 2 mostra a curva característica de um potencial de ação.

Figura 1 – Neurônio piramidal neocortical humano. O axônio é claramente visível se estendendo verticalmente a partir da soma, assim como os vários dendritos que partem da base da soma.

Fonte: Ieva et al. (2014).

O potencial de membrana é o potencial elétrico interior da célula em relação ao exterior. Em repouso, um neurônio possui um potencial de membrana negativo, de -40mV a -80mV, chamado potencial de repouso, que é mantido através da bomba de sódio-potássio e da permeabilidade seletiva da membrana. Em vários neurônios, uma despolarização de aproximadamente 10mV é o suficiente para atingir o limiar de excitação, que, uma vez atingido, desencadeia a abertura dos canais de sódio (Na+) voltagem-dependentes, permitindo a entrada de mais Na+ e causando uma maior despolarização. Quando o potencial de membrana atinge

seu pico, normalmente por volta de +40mV, os canais de Na+ se fecham, enquanto os canais de potássio (K+) voltagem-dependentes se abrem, permitindo a saída de K+ e causando a repolarização da membrana. Esse processo é seguido por uma hiperpolarização temporária, antes que o potencial de membrana retorne ao seu estado de repouso. Essa sequência de eventos constitui um potencial de ação, que se propaga ao longo do axônio até as sinapses, permitindo a comunicação entre os neurônios (KANDEL et al., 2021).

Figura 2 – Potencial de ação, linha vermelha, condutância da membrana, envelope.

Fonte: Adaptado de Cole e Curtis (1939).

As sinapses podem existir de duas maneiras distintas: por meio de transmissão química, utilizando neurotransmissores, ou por transmissão elétrica. Embora a transmissão química seja mais lenta, ela pode intensificar o sinal transmitido, enquanto a transmissão elétrica é mais rápida, mas não é capaz de modificar a amplitude do sinal. Esse trabalho irá focar apenas nas sinapses químicas, já que essas são muito mais abundantes no cérebro. As sinapses podem ter um efeito excitatório, resultando em despolarização da célula pós-sináptica, ou um efeito inibitório, resultando em hiperpolarização. Entre os neurotransmissores mais comuns que causam efeito excitatório estão o glutamato, a dopamina e a noradrenalina, enquanto o GABA¹, a glicina e a serotonina são exemplos de neurotransmissores que exercem efeito inibitório (KANDEL et al., 2021).

Quando um potencial de ação chega à terminação axonal do neurônio pré-sináptico, vesículas contendo neurotransmissores são liberadas na fenda sináptica. Os neurotransmissores se ligam a receptores específicos na membrana do neurônio pós-sináptico, ativando ou inibindo os canais iônicos. Se o neurotransmissor for excitatório, ele induz a abertura de canais iônicos

¹ Ácido gama-aminobutírico.

como os de Na+ e Ca2+, resultando em uma entrada líquida de íons positivos e uma despolarização da membrana pós-sináptica. Por outro lado, se o neurotransmissor for inibitório, ele geralmente causa a abertura de canais de K+ e/ou Cl-, levando à saída de íons K+ ou entrada de íons Cl-, o que resulta em uma hiperpolarização da membrana pós-sináptica (KANDEL et al., 2021).

2.2 MODELOS DE NEURÔNIOS

Em 1907, Lapicque desenvolveu um modelo de neurônio que descreve o neurônio como um circuito elétrico contendo um capacitor e um resistor em paralelo, como representado na Figura 3, representando a capacitância e a resistência de vazamento da membrana celular (LAPICQUE, 1907), chamado de modelo Integrate-and-Fire (IF). Mesmo sem entender os mecanismos por trás da geração de potenciais de ação, Lapicque postulou que, ao atingir um certo potencial limiar, um potencial de ação seria gerado e o capacitor descarregado, reiniciando o potencial da membrana. Isso mostra que, ao se tratar de modelagem de neurônios, estudos da função não necessariamente requerem conhecimento do mecanismo (ABBOTT, 1999). O modelo de neurônio de Lapicque foi a primeira tentativa de representar matematicamente um neurônio biológico.

Figura 3 – (A) O circuito elétrico de Lapicque: I é a corrente injetada, C a capacitância da membrana, R a resistência da membrana, V o potencial de membrana e V_{rest} o potencial de repouso. (B) A trajetória de tensão, quando um limiar é atingido, um potencial de ação é disparado. (C) Um modelo IF com corrente que varia pelo tempo.

Fonte: Abbott (1999).

O modelo de Hodgkin-Huxley (HODGKIN; HUXLEY, 1952), representou um avanço significativo na compreensão e na modelagem dos neurônios biológicos. Diferentemente do primeiro modelo criado por Lapicque, esse modelo buscou descrever a geração e propagação de potenciais de ação em neurônios levando em consideração os processos eletroquímicos subjacentes, como a dinâmica dos diferentes canais iônicos que controlam a corrente elétrica através da membrana celular.

O modelo de Hodgkin-Huxley é composto por um conjunto de equações diferenciais ordinárias que descrevem a variação do potencial de membrana em função do tempo e das correntes iônicas. Essas equações consideram o comportamento dinâmico dos canais iônicos de sódio e potássio, bem como a corrente de vazamento através da membrana. O modelo é capaz de capturar o comportamento típico dos neurônios, incluindo a resposta ao estímulo, a fase refratária e a propagação do sinal ao longo do axônio.

Baseados na ideia de Lapicque, hoje em dia são utilizados os modelos IF. Existem diversos modelos IF, com várias modificações da ideia original, como o modelo Leaky Integrate-and-Fire (LIF) (BURKITT, 2006). Os modelos IF são uma alternativa mais simples e computacionalmente eficiente em comparação ao modelo de Hodgkin-Huxley. Embora não sejam tão biologicamente precisos quanto o modelo de Hodgkin-Huxley, os modelos IF conseguem capturar algumas das características essenciais dos neurônios, como a integração temporal dos estímulos e a emissão de potenciais de ação quando um limiar é atingido. Outra vantagem dos modelos IF é que modelos simples são uma forma de reduzir a complexidade do cérebro para seus mecanismos mais fundamentais.

Devido a sua simplicidade, os modelos IF têm sido amplamente utilizados em RNP pela sua eficiência computacional e capacidade de reproduzir aspectos fundamentais do comportamento neuronal. Por exemplo, no trabalho de Teeter et al. (2018) o comportamento de 645 neurônios do neocórtex foi reproduzido utilizando modelos GLIF (Generalized Leaky Integrateand-Fire).

O modelo de neurônio LIF é descrito pela dinâmica do potencial de membrana do neurônio, v(t), que é dado pela Equação 2.1 e uma condição adicional para a geração de potenciais de ação, dada pela Equação 2.2:

$$C_m \frac{d}{dt} v(t) = -\frac{C_m}{\tau_m} [v(t) - V_0] + I(t)$$
(2.1)

se
$$v \ge v_{th}$$
 então $v \leftarrow v_{reset}$ (2.2)

onde C_m é a capacitância da membrana, V_0 é o potencial de repouso, τ_m é a constante de tempo passiva da membrana (relacionada à capacitância do neurônio e à resistência de vazamento do

potencial de membrana por $\tau_m = R_m C_m$), I(t) é a corrente elétrica injetada no neurônio (tanto a corrente causada pelas sinapses, como a por eletrodos) (BURKITT, 2006).

Quando o potencial de membrana atinge um limiar, V_{th} , um potencial de ação é disparado e o potencial de membrana retorna para V_{reset} , o potencial um pouco menor que o potencial de repouso, correspondente ao período refratário do neurônio.

Existem diversos outros modelos de neurônios, como o modelo de Izhikevich (IZHI-KEVICH, 2003), que é quase tão simples em termos computacionais quanto o modelo IF, mas que consegue capturar de forma muito mais realista um conjunto maior de comportamentos neurais dependendo dos parâmetros utilizados, como mostra a Figura 4.

Figura 4 – Diferentes tipos de neurônios simulados pelo modelo de Izhikevich.

O modelo de Izhikevich é especialmente útil quando se deseja estudar populações de neurônios específicos do cérebro. Já os modelos IF, como o modelo LIF escolhido para ser utilizado neste trabalho, são preferidos quando o objetivo é estudar o comportamento geral de neurônios por conta de sua simplicidade.

2.2.1 Modelos de Sinapses

Para modelar a comunicação entre neurônios, é necessário modelar as sinapses. Existem diversos modelos de sinapses, que variam em complexidade e precisão. O modelo mais simples e muito utilizado é o modelo de sinapse de condução, que é uma sinapse estática, que não possui plasticidade e não se adapta ao longo do tempo. A dinâmica de condutância² da sinapse é descrita pela Equação 2.3:

² A condutância é o inverso da resistência.

$$\frac{d}{dt}g_{syn}(t) = \bar{g}_{syn} \sum_{k} \delta(t - t_k) - g_{syn}(t) / \tau_{syn}$$
(2.3)

onde $g_{syn}(t)$ refere-se à condutância da sinapse, \bar{g}_{syn} é a condutância máxima da sinapse, ou o peso da sinapse, que determina o quão forte é a influência da sinapse no neurônio pós-sináptico, $\delta(x)$ é a função delta de Dirac, que vale 1 quando x=0 e 0 caso contrário, esse somatório resulta em 0 caso não tenha havido nenhum potencial de ação na sinapse no tempo t.

A lei de Ohm³ é utilizada para calcular a corrente elétrica a partir da condutância da sinapse, que é dada pela Equação 2.4:

$$I_{syn}(t) = g_{syn}(t)(V(t) - E_{syn})$$
(2.4)

onde V(t) é o potencial da membrana e E_{syn} corresponde ao potencial de reversão da sinapse, que determina se a sinapse é excitatória ou inibitória.

2.3 REDES NEURAIS PULSADAS

Juntando os modelos de neurônios e sinapses descritos nas Seções 2.2 e 2.2.1, podemos construir modelos de Redes Neurais Pulsadas (RNPs). As RNPs são modelos computacionais que buscam emular a forma como os neurônios biológicos interagem e se comunicam entre si no cérebro (YAMAZAKI et al., 2022).

Para alguns pesquisadores, as RNPs hoje são vistas como uma terceira geração de redes neurais artificiais (MAASS, 1997). Atualmente, existe um intenso estudo sobre a aplicação das RNPs para solucionar problemas típicos enfrentados pelas redes neurais artificiais, incluindo questões de visão computacional e classificação. A expectativa é de que o realismo biológico presente nestes modelos possa impulsionar o avanço no campo da inteligência artificial (YAMAZAKI et al., 2022).

Já em outras pesquisas, como é o caso desse trabalho, as RNPs são utilizadas como modelos para estudar o comportamento de neurônios biológicos.

2.4 PLASTICIDADE

Plasticidade refere-se à capacidade do sistema nervoso de se modificar em resposta a experiências, estímulos e mudanças ambientais. Esta adaptabilidade inerente é a base de vá-

Dada por V = IR, onde a tensão é igual à corrente elétrica multiplicada pela resistência.

rios processos cognitivos, incluindo a memória e a aprendizagem. No nível celular, a plasticidade manifesta-se como mudanças na força das sinapses. Estas mudanças são mediadas por uma variedade de processos moleculares e celulares que resultam na formação ou eliminação e fortalecimento ou enfraquecimento de sinapses.

A força de uma sinapse é definida como a influência que uma sinapse tem no potencial de membrana do neurônio pós-sináptico. Quanto maior a força, maior a influência da sinapse em gerar um potencial de ação. De forma mais rigorosa, a força sináptica pode ser definida como uma combinação de diversos fatores: a probabilidade de liberação de neurotransmissor ⁴ pré-sináptica, de quão relevante é a resposta pós-sináptica à liberação de uma única vesícula de neurotransmissor e ao número de locais de liberação de neurotransmissor (FATT; KATZ, 1952).

Existem várias formas de plasticidade, a primeira a ser observada, a Potenciação de Longo Prazo (PLP), foi descoberta por (BLISS; LØMO, 1973), quando a ativação repetitiva de sinapses excitatórias em neurônios do hipocampo de coelhos causou um aumento na força sináptica que durava por horas ou até dias. A PLP é específica para cada estímulo, ou seja, quando gerada em um conjunto de sinapses por ativação repetitiva, o aumento na força sináptica normalmente ocorre apenas em uma sinapse específica, e não em outras sinapses na mesma célula. Em oposição à PLP, a Depressão de Longo Prazo (DLP) é uma diminuição na força sináptica que ocorre quando a ativação repetitiva de sinapses falha em causar um potencial de ação no neurônio pós-sináptico consistentemente (DUDEK; BEAR, 1992). Tanto a PLP e a DLP são exemplos de plasticidade hebbiana, ou seja, dependem da coincidência temporal entre a ativação pré e pós-sináptica, e ambas são exemplos de Plasticidade Dependente do Tempo de Disparo (PDTP).

A Plasticidade de Curto Prazo (PCP) é outra forma de plasticidade que envolve mudanças rápidas, mas transitórias, na força sináptica em resposta a atividade neuronal. Ela pode se manifestar como facilitação ou depressão sináptica. A facilitação sináptica de curto prazo ocorre quando a ativação repetitiva de uma sinapse aumenta temporariamente a sua eficácia, normalmente dentro do intervalo de milissegundos a, no máximo, alguns minutos, como uma resposta ao aumento temporário na liberação de neurotransmissores da célula pré-sináptica. Já a depressão sináptica de curto prazo é uma diminuição transitória na eficácia sináptica, que ocorre quando a liberação de neurotransmissores é temporariamente reduzida em resposta a

⁴ Como mencionado na seção 2.1, esse trabalho foca apenas nas sinapses químicas.

uma ativação sináptica frequente ou sustentada (ZUCKER; REGEHR, 2002).

A plasticidade sináptica também pode ser classificada em dois tipos principais: heterossináptica e homossináptica. A plasticidade heterossináptica refere-se àquelas contribuições para a plasticidade sináptica que dependem apenas do estado do neurônio pós-sináptico, mas não do estado dos neurônios pré-sinápticos. Em contraste, a plasticidade homossináptica depende conjuntamente da atividade pré e pós-sináptica. Ambos os tipos de plasticidade são essenciais para a adaptabilidade do sistema nervoso e para a formação de memórias. No entanto, a plasticidade homossináptica é geralmente considerada a forma dominante de plasticidade no aprendizado e memória devido ao seu papel na codificação da atividade conjunta de neurônios pré e pós-sinápticos, o que é uma característica fundamental do processo de aprendizado (GRANGER; NICOLL, 2014; FELDMAN, 2009).

Por fim, a plasticidade é uma característica multifacetada e dinâmica do sistema nervoso. Há várias outras formas de plasticidade além das mencionadas, cada uma atuando de maneira distinta e sendo desencadeada por diferentes motivos, como a frequência de ativação, diferença de tensão, entre outros, dependendo do neurônio específico, da sinapse e dos mecanismos moleculares e celulares envolvidos.

2.5 MODELOS DE PLASTICIDADE

Como apresentado na Seção 2.4, a PDTD foi a primeira forma de plasticidade observada e tem sido amplamente utilizada como a principal regra de aprendizado em modelos computacionais de aprendizado, muito embora seu grau de importância com relação a outras formas de plasticidade no cérebro ainda não seja completamente compreendido (FELDMAN, 2020). A Equação 2.5 representa como o peso da sinapse, w, varia de acordo com a diferença do tempo de disparos dos neurônios pré- e pós-sináptico:

$$\frac{dw}{dt} = \begin{cases}
A_{+} \exp(\frac{t_{\text{pré}} - t_{\text{pós}}}{\tau_{+}}) & \text{se } t_{\text{pré}} \leq t_{\text{pós}} \\
-A_{-} \exp(-\frac{t_{\text{pré}} - t_{\text{pós}}}{\tau_{-}}) & \text{se } t_{\text{pré}} > t_{\text{pós}}
\end{cases}$$
(2.5)

onde τ_{\pm} são as constantes de tempo. Se o disparo pré-sináptico ocorre antes do disparo póssináptico ($t_{\rm pré} \leq t_{\rm pós}$), significa que há uma correlação entre os dois disparos, e a sinapse é potencializada de acordo com uma regra exponencial, quanto mais próximos em tempo forem os disparos, mais relevante é essa correlação. Caso o neurônio pós-sináptico dispare antes do pré-sináptico, então ele foi ativado por algum outro motivo e não há relação com o disparo pré-sináptico, portanto a sinapse é deprimida (YAMAZAKI et al., 2022).

A PDTD, como todas as formas de plasticidade hebbiana, é instável (GERSTNER; KISTLER, 2002). No trabalho de (ZENKE; AGNES; GERSTNER, 2015), dois tipos de plasticidade não hebbiana foram utilizados para estabilizar a rede: em baixas frequências de disparos, a potenciação induzida por transmissor vai contra a Depressão de Longo Prazo (LTD), evitando que a rede inteira caia em silêncio por constante diminuição da força das sinapses; em altas frequências de disparos, a depressão heterossináptica⁵ garante que algumas sinapses não se tornem absurdamente fortes e, por consequência, a única parte ativa da rede.

A Equação 2.5 também pode ser melhorada de forma a se tornar mais estável, como demonstra a Equação 2.6.

$$\begin{cases} A_{+}(x) = \eta_{+} \exp(-w) \\ A_{-}(x) = \eta_{-} \exp(w) \end{cases}$$
 (2.6)

Aqui, o termo A_{\pm} , que é responsável por escalar a mudança de peso, é tornado dependente do peso para que os valores do peso não aumentem demais ou diminuam demais. O termo η_\pm é um parâmetro que controla a taxa de aprendizado.

Outra inconsistência biológica desse modelo é que um neurônio não é capaz de memorizar todos os tempos de disparo. Para isso, é introduzido o conceito de um rastro do disparo x na Equação 2.7:

$$\frac{dw}{dt} = A_{+}x_{\text{pr\'e}}\delta_{\text{p\'os}} - A_{-}x_{\text{p\'os}}\delta_{\text{pr\'e}}$$
(2.7)

Caso haja um disparo no neurônio pós-sináptico (indicado por $\delta_{pós}$), o peso da sinapse é potencializado de acordo com o rastro do disparo do neurônio pré-sináptico $(x_{pré})$. Caso haja um disparo no neurônio pré-sináptico (indicado por $\delta_{\rm pré}$), o peso da sinapse é deprimido de acordo com o rastro do disparo do neurônio pós-sináptico $(x_{pós})$.

O rastro de disparo é atualizado de acordo com a Equação 2.8.

$$\frac{dx_{\text{pr\'e}}}{dt} = -\frac{x_{\text{pr\'e}}(t)}{\tau_{+}} + \delta(t)$$
 (2.8)

$$\frac{dx_{\text{pr\'e}}}{dt} = -\frac{x_{\text{pr\'e}}(t)}{\tau_{+}} + \delta(t)$$

$$\frac{dx_{\text{p\'es}}}{dt} = -\frac{x_{\text{p\'es}}(t)}{\tau_{-}} + \delta(t)$$
(2.8)

Tipo de plasticidade sináptica onde apenas o estado do neurônio pós-sináptico importa para as mudanças.

Aqui, $x_{\rm pré}$ e $x_{\rm pós}$ são os rastros de disparo dos neurônios pré- e pós-sináptico, respectivamente, e começa em zero. Caso haja um disparo no tempo t, o rastro de disparo é incrementado em um e decai exponencialmente com uma constante de tempo τ_{\pm} . Esse modelo de plasticidade é chamado de PDTD Estável (PDTD-E) (Paredes-Vallés; SCHEPER; de Croon, 2018) A Figura 5 ilustra o funcionamento da PDTD entre dois modelos de neurônio, em que é possível ver os disparos dos neurônios pré- e pós-sinápticos, assim como seus respectivos rastros de disparo, e o peso da sinapse w que aumenta gradativamente por conta da similaridade de tempo de disparo entre os dois neurônios.

Figura 5 – PDTD entre dois neurônios.

Fonte: Adaptado de Yamazaki et al. (2022)

2.6 ASSEMBLEIAS NEURONAIS

A plasticidade dá origem a um fenômeno emergente no cérebro chamado de assembleias neuronais, fenômeno em que grupos de neurônios relacionados a um mesmo estímulo ou processo acabam fortalecendo as conexões entre si e que podem servir diversas funções, como

pequenas unidades de processamento, memória associativa, entre outras. A Figura 6 ilustra o conceito de assembleia neuronal.

Figura 6 – Esquerda: Rede neural sem memórias. Direita: Rede neural com uma assembleia neuronal formada pela experiência.

Fonte: Zenke, Agnes e Gerstner (2015).

Considerando o exemplo inicialmente descrito na Introdução, sobre a memória de uma viagem à praia, cada um dos elementos sensoriais dessa memória é processado em diferentes áreas do cérebro e ativa diferentes grupos de neurônios. No momento da formação da memória, os neurônios ou grupos de neurônios responsáveis por esses elementos sensoriais disparam ao mesmo tempo, criando uma correlação entre eles. Essa correlação é o que desencadeia a plasticidade, esses neurônios terão então as conexões entre si fortalecidas. Com a memória formada, em um momento futuro em que o indivíduo com a memória ouça novamente o som das ondas, por exemplo, por conta da agora forte conexão dos neurônios do estímulo sonoro das ondas com as demais características da memória codificada na assembleia neuronal, é possível que os neurônios relacionados com a sensação da areia, com o cheiro da água etc. também sejam ativados, resultando então na experiência da memória.

O exemplo dado no parágrafo anterior é bem simplificado, servindo apenas para entender como funciona a formação de assembleias neuronais e a sua relação com as memórias. O cérebro humano é muito mais complexo e possui muito mais neurônios, não necessariamente vai haver uma conexão direta entre um neurônio que ativa para o conceito de ondas e um neurônio que ativa para o conceito de areia, por exemplo; muitas vezes nem existe um neurônio único ou um grupo de neurônios específicos que delimitam o conceito no cérebro; também, a formação de memórias no cérebro não ocorre apenas pelo simples funcionamento da plasticidade, embora esse seja o mecanismo por trás de tudo, no cérebro existem áreas específicas que mediam a formação de memórias, como o hipocampo, que possui como uma de suas funções conhecidas a de repetir diversas vezes estímulos no córtex de modo a fixar memórias de longo prazo (GUPTA et al., 2010).

2.7 **SONO**

O sono é um processo fisiológico crucial para a consolidação e manutenção das memórias (BLISSITT, 2001; WALKER; STICKGOLD, 2006; DIEKELMANN; BORN, 2010). Inicialmente, postulava-se que o sono desempenhava uma função passiva no processo de consolidação da memória (JENKINS; DALLENBACH, 1924); contudo, com a descoberta das distintas fases do sono, começaram-se a explorar as contribuições ativas do sono na consolidação mnemônica (ASERINSKY; KLEITMAN, 1953).

O sono possui 5 fases no total, ilustradas na Figura 7, diferenciadas por suas características distintas de atividade elétrica cerebral, conforme medido por eletroencefalogramas (EEG)(SILBER et al., 2007): vigília (acordado), N1, N2, N3 e *Rapid Eye Movement* (REM). As fases N1 a N3 são conhecidas como sono não-REM (NREM). Ao cair no sono, a fase N1 é a primeira a ser atingida, seguida por N2, N3, N2 novamente e, por fim, REM; esse ciclo se repete ao longo da noite, com cada ciclo durando aproximadamente de 90 a 110 minutos (PATEL et al., 2022).

Durante o sono NREM, as oscilações lentas geradas no córtex promovem uma comunicação bidirecional entre o córtex e o hipocampo, facilitando a transferência de memórias do hipocampo, onde são inicialmente codificadas, para locais de armazenamento de longo prazo no neocórtex (DIEKELMANN; BORN, 2010). Esta transferência de memórias é suportada pelos fusos do sono que ocorrem durante a fase N2, que estão associados à plasticidade sináptica e são cruciais para a estabilização das memórias durante o sono (RASCH; BORN, 2008; PEYRACHE; SEIBT, 2020).

O estágio REM é quando ocorre a maior parte dos sonhos. O sono REM é caracterizado por atividade elétrica cerebral rápida e de baixa amplitude, similar àquela observada durante o estado de vigília. A dificuldade em isolar a atividade neural dessa etapa específica, torna a discussão sobre sua contribuição para a consolidação da memória ainda controversa. Contudo, evidências recentes sugerem que o sono REM também pode facilitar a consolidação da memória espacial e contextual, bem como a regulação emocional (PAYNE; CHAMBERS; KENSINGER, 2012; BOYCE; WILLIAMS; ADAMANTIDIS, 2017).

A pesquisa sobre a neurobiologia do sono e da memória ainda está em andamento, e ainda não se sabe porque o sono é tão essencial para a vida em mamíferos e novas descobertas continuam a esclarecer a complexidade e a importância do sono para a cognição e a saúde geral.

Figura 7 – Fases do sono.

Fonte: Adaptado de Heuer (2021).

2.8 TRABALHOS CORRELATOS

A popularidade do uso de modelos computacionais de neurônios e RNPs para o estudo das funções cognitivas cerebrais reside em sua capacidade de proporcionar um controle completo e preciso sobre todas as características de cada neurônio simulado. Diferentemente dos neurônios biológicos em laboratório ou em seres humanos vivos, onde a manipulação precisa e a observação das variáveis são intrinsecamente limitadas devido a complexidade biológica e ética, as RNPs permitem controle total sobre todos os parâmetros da rede e de cada neurônio simulado, o que habilita a realização de experimentos teóricos detalhados, facilita o entendimento dos mecanismos neurais subjacentes às funções cognitivas e acelera o desenvolvimento de aplicações práticas, como a melhoria dos algoritmos de inteligência artificial.

No trabalho de Zenke, Agnes e Gerstner (2015), os autores criaram uma RNP composta de 4.096 neurônios excitatórios e 1.024 neurônios inibitórios para testar a hipótese de que diferentes formas de plasticidade, tanto hebbianas como não hebbianas, quando implementadas juntas poderiam levar à formação e à recordação de assembleias neuronais. O modelo criado pôde criar memórias dos quatro diferentes estímulos visuais que recebia e essas memórias eram estáveis e podiam ser recordadas até mesmo depois de horas de simulação sem que o modelo visse novamente os estímulos. Esse modelo de RNP serviu para demonstrar que é possível, pelo menos em teoria, ter a formação de assembleias neuronais, e consequentemente memória, apenas a partir de mecanismos de plasticidade orquestrados. Porém, algo que os autores não exploraram, ou pelo menos não tornaram explícito em seu trabalho, é a quantidade de estímulos que a RNP é capaz de memorizar; também no mesmo tema, não é explorado o que acontece com o modelo quando um novo estímulo é apresentado ao depois da memorização dos demais.

⁶ Em cada tarefa, o tipo de alimento que o agente deveria comer mudava de forma e ele deveria aprender a reconhecer essa forma no ambiente.

3 METODOLOGIA

Nesse capítulo serão apresentados os passos metodológicos para a realização do trabalho, que tem como objetivo principal estudar a formação e consolidação de memórias em RNPs, com foco em analisar o impacto do sono nesse processo. Para estudar a influência do sono na formação e recordação de assembleias neuronais foi simulado um modelo de RNP com diferentes formas de plasticidade. A Figura 8 apresenta uma visão geral da metodologia, contendo os passos para criação do modelo, que serão descritos nas seções subsequentes.

Figura 8 – Visão geral da metodologia: passos para construção do modelo e simulação e análise.

Fonte: Elaborado pelo autor (2023).

3.1 MODELO DOS NEURÔNIOS

A unidade básica de uma RNP é o neurônio, então o primeiro passo para o modelo é a modelagem do neurônio. O modelo de neurônio utilizado foi o *Leaky Integrate-and-Fire* (LIF) devido à sua simplicidade, que captura o comportamento geral de um neurônio enquanto permite simulações rápidas de larga escala, como apresentado na Seção 2.2.

O modelo LIF utilizado possui algumas diferenças do descrito na Seção 2.2, pois implementa adaptação por frequência de disparo¹ assim como o trabalho de (ZENKE; AGNES; GERSTNER, 2015), e segue a Equação 3.1.

$$\tau^{m} \frac{d}{dt} v_{i} = (v^{rest} - v_{i}) + g_{i}^{exc}(t)(v^{exc} - v_{i}) + (g_{i}^{gaba}(t) + g_{i}^{a}(t))(v^{ini} - v_{i})$$
(3.1)

onde $v_i(t)$, v^{rest} , v^{exc} , v^{ini} se referem, respectivamente, ao potencial de membrana do neurônio, potencial de repouso, potencial excitatório e potencial inibitório. As condutâncias são descritas por $g_i^{exc}(t)$, $g_i^{gaba}(t)$, $g_i^a(t)$, respectivamente excitatória, inibitória pelos neurônios pré-sinápticos GABAérgicos e inibitória pela adaptação por frequência de disparo.

3.2 MODELO DAS SINAPSES

Para simular como os neurônios interagem entre si, é preciso modelar as sinapses e como as condutâncias apresentadas na seção anterior evoluem com o tempo. Para isso, foi utilizado o modelo de sinapse de condução, apresentado na Seção 2.2.1, mas com algumas diferenças notáveis. O comportamento das condutâncias inibitórias está definido nas Equações 3.2 e 3.3:

$$\frac{d}{dt}g_i^{gaba} = -\frac{g_i^{gaba}}{\tau^{gaba}} + \sum_{j \in ini} w_{ij}S_j(t)$$
(3.2)

$$\frac{d}{dt}g_i^a = -\frac{g_i^a}{\tau^a} + \Delta^a S_i(t) \tag{3.3}$$

$$S_j(t) = \sum_k \delta(t - t_j^k) \tag{3.4}$$

onde w_{ij} refere-se ao peso da sinapse do neurônio i para o j. A Equação 3.4 representa a soma de disparos no momento t. Nessas equações, a condutância g tende a zero com o tempo, mas quando há um disparo dos neurônios pré-sinápticos essa condutância sobe, exceto no caso da condutância pela adaptação do neurônio, que aumenta seguindo um fator $\Delta^a S_i(t)$ quando o próprio neurônio dispara.

As sinapses excitatórias são modeladas com um componente rápido AMPA g_i^{ampa} e um componente NMDA g_i^{nmda} que aumenta e decai lentamente, como detalhado nas Equações 3.5, 3.6 e 3.7:

Comportamento de um neurônio que reduz sua frequência de disparo em resposta a um estímulo constante.

$$g_i^{exc}(t) = \alpha g_i^{ampa}(t) + (1 - \alpha)g_i^{nmda}(t)$$
(3.5)

$$\frac{d}{dt}g_i^{ampa} = -\frac{g_i^{ampa}}{\tau^{ampa}} + \sum_{j \in exc} w_{ij} \underbrace{u_j(t)x_j(t)}_{PCP} S_j(t)$$
(3.6)

$$\tau^{nmda} \frac{d}{dt} g_i^{nmda} = -g_i^{nmda} + g_i^{ampa} \tag{3.7}$$

As conexões excitatórias da RNP também têm a Plasticidade de Curto-Prazo (PCP) simulada pelas variáveis $u_j(t)$ e $x_j(t)$.

Quando v_i utlrapassa seu limiar ϑ_i , o potencial retorna para seu potencial de membrana v_i^{rest} . Quando há um disparo, o limiar aumenta $\vartheta_i \to \vartheta^{disparo}$ para implementar o período refratário do neurônio, mas na ausência de disparos, ele retorna lentamente a seu valor usual, como demonstra a Equação 3.8:

$$\tau^{th} \frac{d\vartheta_i}{dt} = \vartheta^{rest} - \vartheta_i \tag{3.8}$$

3.3 MODELOS DE PLASTICIDADE

As sinapses não são estáticas e têm diversas formas de plasticidade simuladas. As sinapses excitatórias implementam os seguintes modelos de plasticidade: PCP, PDTD, heterossináptica e a induzida por transmissor, como apresentados na Seção 2.5.

3.3.1 Plasticidade de curto-prazo

Como apresentado na seção anterior, as variáveis $u_j(t)$ e $x_j(t)$ controlam a PCP.A Equação 3.9 descreve a evolução da fração de recursos sinápticos disponíveis $x_j(t)$ ao longo do tempo, considerando tanto a liberação quanto a recuperação de neurotransmissores. A Equação 3.10 representa a variação na utilização desses recursos $u_j(t)$ com o tempo, refletindo a probabilidade de liberação de neurotransmissores em resposta a um estímulo. Novamente, $S_j(t)$ indica a presença de um disparo pré-sináptico, enquanto τ^d e τ^f são constantes de tempo que determinam a velocidade de recuperação e decaimento dos recursos e da sua utilização, respectivamente. O termo U representa a probabilidade básica de liberação de um neurotransmissor em resposta a um único disparo.

$$\frac{d}{dt}x_{j}(t) = \frac{1 - x_{j}(t)}{\tau^{d}} - u_{j}(t)x_{j}(t)S_{j}(t)$$
(3.9)

$$\frac{d}{dt}u_j(t) = \frac{U - u_j(t)}{\tau^f} + U(1 - u_j(t))S_j(t)$$
(3.10)

3.3.2 Plasticidade de longo-prazo

Três tipos de plasticidade de longo-prazo afetam as sinapses excitatórias: PDTD $\mathfrak{P}(t)$ e $\mathfrak{D}(t)$, heterossináptica $\mathfrak{H}(t)$ e induzida por transmissor $\mathfrak{T}(t)$. Essas formas de plasticidade afetam diretamente o peso da sinapse w_{ij} , como indica a Equação 3.11: e 3.15.

$$\frac{d}{dt}w_{ij}(t) = \mathfrak{P}(t) + \mathfrak{D}(t) + \mathfrak{T}(t)$$
(3.11)

$$\mathfrak{P}(t) = Az_j^+(t)z_i^{lento}(t - \epsilon)S_j(t) \qquad \text{PLP tripla}$$
(3.12)

$$\mathfrak{D}(t) = -B_i(t)z_i^-(t)S_i(t) \qquad \text{DLP dupla}$$
(3.13)

$$\mathfrak{H}(t) = -\beta (w_{ij} - \bar{w}_{ij}(t))(z_i^-(t - \epsilon))^3 S_i(t) \qquad \text{Heterossináptica}$$
(3.14)

$$\mathfrak{T}(t) = \delta S_i(t)$$
 Induzida por transmissor (3.15)

As Equações 3.12 e 3.13 representam a potenciação e a depressão de longo-prazo, respectivamente, usando uma regra tripla, ou seja, que leva em consideração 3 disparos (PFISTER; GERSTNER, 2006). Os parâmetros A, β e δ são apenas escalares fixos, assim como $B_i(t) = A$. A variável $z_k^x(t)$ representa os traços sinápticos dos neurônios pré- (índice j) e pós-sinápticos (índice i), e ela evolui de acordo com a Equação 3.16:

$$\frac{d}{dt}z_i^x(t) = -\frac{z^x}{\tau^x} + S_i(t) \tag{3.16}$$

em que x pode tomar diferentes valores representando diferentes traços sinápticos. As variáveis z^+ e z^- representam traços de atividade neuronal associados à potenciação e depressão sináptica, respectivamente. Quando um neurônio pré-sináptico dispara antes de um pós-sináptico, isso pode levar ao aumento da força sináptica, relacionado ao traço z^+ . Inversamente, se o neurônio pós-sináptico dispara antes, a força sináptica pode diminuir, associado ao traço z^+ . Já z^{lento} refere-se a um traço que decai lentamente, capturando a atividade neuronal ao longo de um período de tempo mais extenso.

3.3.2.1 Plasticidade de longo-prazo em sinapses inibitórias

Também seguindo o modelo de Zenke, Agnes e Gerstner (2015), as sinapses inibitórias são moduladas pela PDTD hipotética descrita na Equação 3.17, que basicamente tende a potencializar as sinapses inibitórias quando a atividade excitatória global da rede estiver muito alta:

$$\frac{d}{dt}w_{ij}(t) = \eta G(t)[(z_i(t) + 1)S_j(t) + z_j(t)S_i(t)]$$
(3.17)

onde η é uma constante, z_k representa os traços sinápticos e $G(t)=H(t)-\gamma$, em que H(t) é o fator global secretado, um valor que comprime toda a atividade do grupo excitatório e evolui segundo a Equação 3.18 :

$$\frac{d}{dt}H(t) = -\frac{H(t)}{\tau^H} + \sum_{i \in \text{exc}} S_i(t)$$
(3.18)

Quando a atividade global da população excitatória H(t) cai abaixo de um valoralvo γ , G(t) é menor que zero e a regra de aprendizagem da Equação 3.17 se torna uma regra unidirecional de "depressão". Se a atividade da rede for maior que γ , a regra de aprendizagem se torna hebbiana. Isso serve para estabilizar a dinâmica geral da rede.

3.4 ARQUITETURA DA REDE

A rede é estruturada com um total de 5.120 neurônios do tipo LIF, distribuídos em dois grupos principais. O primeiro grupo é formado por 4.096 neurônios excitatórios, enquanto o segundo grupo contém 1.024 neurônios inibitórios. Além disso, há grupos auxiliares como a retina (Detalhada na Seção 3.4.1) e o grupo responsável pelos padrões de sono (Detalhado na Seção 3.4.2). Para as conexões entre o grupo excitatório e inibitório, cada neurônio é conectado a 10% dos neurônios de outro grupo ou do seu próprio grupo, e essa conectividade é estabelecida de forma aleatória. As conexões excitatórias entre neurônios são moduladas pelo neurotransmissor glutamato, com receptores AMPA e NMDA, enquanto as conexões inibitórias são moduladas pelo neurotransmissor GABA.

3.4.1 Modelo da retina

De modo a simular a entrada de estímulos visuais, foi simulada uma retina. A retina é composta de 4.096 neurônios LIF, com cada neurônio representando um pixel em uma imagem

de 64×64 pixels. Cada neurônio excitatório da RNP recebe conexões dos neurônios da retina de uma área circular de raio 8, em que o centro do círculo é escolhido aleatoriamente para cada neurônio, como exemplifica a Figura 9. As conexões da retina com a RNP também são plásticas.

Figura 9 – Exemplo de estímulo apresentado à RNP.Aqui, um neurônio com seu campo receptivo centralizado no X recebe conexões dos neurônios da retina contidos dentro da grade verde.

Fonte: Elaborado pelo autor (2023).

Como explicado na Seção 3.5, são utilizados 6 estímulos diferentes, que são imagens simples de serem reconhecidas, como formas geométricas e símbolos. Essas imagens são binárias: apenas preto e branco; o neurônio da retina correspondente a um pixel preto irá disparar com frequência média de 10Hz, enquanto o neurônio correspondente a um pixel branco irá disparar com frequência média de 35Hz, ou seja, com uma maior ativação.

3.4.2 Simulação do sono

Para simular o sono, a rede funciona de dois modos diferentes intercalados: um modo de atividade ou vigília, em que a rede funciona normalmente enquanto recebe estímulos, e um modo de inatividade ou sono, em que será simulado o sono.

Durante o ciclo de sono, nenhum estímulo é apresentado à rede, contudo, ela continua sendo simulada normalmente. Essa etapa é subdividida em duas fases, correspondentes às fases do sono real: REM e NREM. Em um ciclo completo de sono, as fases REM e NREM se alternam, iniciando-se com a fase NREM, seguida pela REM, sendo que cada uma destas fases ocupa um oitavo da duração total do sono. Assim, o ciclo de NREM e REM se repete quatro vezes em um ciclo completo de sono, de maneira análoga ao que ocorre nos humanos, nos quais cada noite de sono compreende entre 4 a 6 ciclos (PATEL et al., 2023).

Para simular cada fase do sono, é utilizado um grupo de 256 neurônios excitatórios que se ativam de maneira sinusoidal e conectam-se a 20% dos neurônios do grupo de neurônios excitatórios. Durante a fase NREM, a frequência dessa onda de ativação sinusoidal é de 1Hz, enquanto na fase REM é de 16Hz, visando aproximar-se, de forma simplificada, das frequências observadas durante essas fases em humanos (GUO et al., 2022; COWDIN; KOBAYASHI; MELLMAN, 2014). Este método foi inspirado no trabalho de Bazhenov et al. (2002), que simulou o sono de maneira similar, utilizando um grupo de neurônios com 25% de conectividade com a rede, com um disparo médio de 25Hz modulados por uma função sinusoidal.

3.4.3 Análise de assembleias neuronais

A parte final do trabalho consiste em analisar as diferentes simulações realizadas e determinar se a simulação de sono teve algum efeito na formação de assembleias neuronais. Para isso, antes de tudo é necessário definir um modo de identificar as assembleias neuronais e quais neurônios pertencem a cada uma.

Para determinar quais neurônios pertencem à assembleia neuronal associada a um estímulo, o método consiste em analisar a frequência de disparos de cada neurônio no intervalo 3s < t < 3.5s após a apresentação do estímulo. Os neurônios que disparam com frequência maior que 20Hz nesse intervalo são considerados como pertencentes à assembleia neuronal associada a esse estímulo. No trabalho de Zenke, Agnes e Gerstner (2015) foram analisados os neurônios com frequência de disparos maior que 10Hz, mas nesse trabalho optou-se por considerar apenas os com frequência maior que 20Hz, pois com esse valor a soma total de todos os neurônios em assembleias neuronais chegou mais próximo do número total de neurônios da rede, incluindo neurônios repetidos em cada assembleia.

3.4.4 Detalhes da simulação

A simulação foi feita em C++ utilizando o framework Auryn (ZENKE; GERST-NER, 2014).

3.5 EXPERIMENTOS

Como forma de avaliar o modelo proposto serão conduzidos dois principais experimentos.

3.5.1 Experimento 1: Formação de assembleias neuronais

O primeiro experimento consiste em simular a RNP apresentando estímulos ao modelo de retina e analisar se a repetição dos estímulos leva à formação de assembleias neuronais associadas a cada estímulo a longo prazo, com o objetivo de ter uma base de comparação para o experimento 2, que terá o sono simulado. Os estímulos consistem em seis imagens simples de serem reconhecidas, exibidas na Figura 10, e são apresentados à rede de forma intercalada e aleatória. Quatro estímulos foram reaproveitados do trabalho de Zenke, Agnes e Gerstner (2015), enquanto as figuras de diamante e de cruz foram adicionadas com o intuito de colocar a RNP mais próxima do seu limite.

Figura 10 – Os seis estímulos apresentados à RNP durante os experimentos.

Fonte: Elaborado pelo autor (2023).

Houveram três fases da simulação da RNP:

- 1. Simulação da rede em seu estado inicial por 1800 segundos, com um tempo médio de aparição do estímulo de 2 segundos, e tempo médio entre estímulos de 1 segundo. O peso das sinapses entre a retina e a rede é de 0.05.
- 2. Simulação da rede também por 1800 segundos, mas com um tempo médio de aparição do estímulo de 0.2 segundo, e tempo médio entre estímulos de 5 segundos. O peso das sinapses entre a retina e a rede agora é de 0.1. A intenção aqui é fazer com que a rede tenha mais tempo entre um estímulo e outro para poder memorizá-los melhor.
- 3. A última simulação é de 2400 segundos e é de onde são tirados os resultados. O tempo médio de aparição do estímulo diminui para 0.1, enquanto o tempo médio entre estímulos

é de 10 segundos, com a intenção de ter uma janela maior de tempo entre os estímulos para analisar a capacidade de memorização da RNP.

3.5.2 Experimento 2: Formação de assembleias neuronais com sono

De forma similar ao experimento 1, o segundo experimento consiste em simular a RNP apresentando os mesmos estímulos, mas dessa vez com a simulação de sono. O objetivo desse experimento é analisar se a simulação de sono tem algum efeito na formação de assembleias neuronais.

Esse experimento seguiu as mesmas três fases do experimento anterior, mas com a simulação do sono. Nesse experimento, a RNP ficava em estado de vigília por 400s e dormia por 200s.

3.6 ANÁLISE DOS RESULTADOS

O número médio de neurônios por assembleia neuronal na RNP base foi de 787, enquanto na RNP com sono foi de 432.67; isso se deve principalmente ao fato de que as assembleias neuronais do círculo e do quadrado tiveram pouquíssimos neurônios, apenas 42 e 34 na RNP com sono. Ambas as RNPs tiveram dificuldades em manter uma assembleia neuronal única para o estímulo do círculo, havendo bastante sobreposição com os neurônios da assembleia neuronal do quadrado; isso provavelmente ocorre pela similaridade entre os dois estímulos e também a possibilidade da RNP ter alcançado um limite de memória. A matriz de sobreposição das assembleias neuronais está ilustrada nas Figura 11.

Outra forma de analisar o comportamento das RNPs é verificando a ativação média das assembleias neuronais para cada estímulo, como mostra a Figura 12. A diagonal principal claramente possui as maiores médias pois a assembleia neuronal de um determinado estímulo vai apresentar muito mais atividade para esse estímulo. Nota-se também que na RNP com sono houve mais atividade nas assembleias neuronais não relacionadas com o estímulo, indicando uma piora na performance.

Figura 11 – Matrizes contendo o número de neurônios pertecentes a cada assembleia neuronal. Os elementos da diagonal principal da matriz indicam o número total de neurônios em cada assembleia individual. Nos outros casos, o elemento representa quantos neurônios de uma assembleia também são parte de outra assembleia.

RNP base RNP com sono Assembleia neuronal Assembleia neuronal + + \Diamond \Diamond Assembleia neuronal Assembleia neuronal \Diamond \Diamond

Fonte: Elaborado pelo autor (2023).

Figura 12 – Matrizes representando a ativação média em Hz de cada assembleia neuronal para cada estímulo diferente.

Fonte: Elaborado pelo autor (2023).

4 CONCLUSÃO

4.1 RESULTADOS ESPERADOS

Espera-se que a análise do modelo de RNP implementado possa contribuir para o entendimento dos mecanismos subjacentes aos processos de aprendizado e memória no cérebro, principalmente a influência do sono sobre isso. Além disso, espera-se que a simulação das fases do sono possa melhorar a consolidação e retenção de memórias na RNP, possibilitando que a rede seja capaz de aprender mais estímulos, por mais tempo e até esquecer estímulos não mais relevantes.

4.2 CRONOGRAMA

Tabela 1 – Cronograma de atividades.

	JUL	AGO	SET	OUT	NOV	DEZ
Implementação do modelo proposto						
Análise do impacto da simulação do sono na memória						
Documentação da pesquisa						
Entrega final						

4.3 CONSIDERAÇÕES FINAIS

Ao longo deste trabalho, foram explorados os aspectos teóricos do desenvolvimento e da aplicação das Redes Neurais Pulsadas (RNPs) para entender melhor a formação e consolidação de memórias no cérebro humano. A principal questão abordada foi a possibilidade de simulações de fases do sono melhorarem a estabilidade e formação de assembleias neuronais, contribuindo para a retenção de memórias.

No entanto, este trabalho se concentrou na parte teórica dessas questões. O próximo passo, na continuação deste trabalho, será implementar e aplicar um modelo que empregue as ideias discutidas aqui e analisar as implicações de simulações do sono em tal modelo neural.

Por fim, vale salientar que este trabalho posiciona-se na intersecção crucial entre a neurociência computacional e a inteligência artificial. Ao iluminar os processos subjacentes à formação e consolidação da memória no cérebro humano e o papel do sono nisso, estamos expandindo a fronteira de nossa compreensão na neurociência. Além disso, ao melhorar nossa capacidade de simular esses processos em modelos de RNPs, também estamos avançando na área de inteligência artificial, aprofundando nossa compreensão de como a inteligência pode ser replicada e potencialmente aperfeiçoada.

REFERÊNCIAS

ABBOTT, L.F. Lapicque's introduction of the integrate-and-fire model neuron (1907). **Brain Research Bulletin**, v. 50, n. 5-6, p. 303–304, nov. 1999.

ASERINSKY, Eugene; KLEITMAN, Nathaniel. Regularly Occurring Periods of Eye Motility, and Concomitant Phenomena, During Sleep. **Science**, v. 118, n. 3062, p. 273–274, set. 1953.

BAZHENOV, Maxim et al. Model of Thalamocortical Slow-Wave Sleep Oscillations and Transitions to Activated States. **The Journal of Neuroscience**, v. 22, n. 19, p. 8691–8704, out. 2002. ISSN 0270-6474, 1529-2401.

BLISS, T. V. P.; LØMO, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. **The Journal of Physiology**, v. 232, n. 2, p. 331–356, jul. 1973.

BLISSITT, Patricia A. Sleep, Memory, and Learning:. **Journal of Neuroscience Nursing**, v. 33, n. 4, p. 208–215, ago. 2001.

BOYCE, Richard; WILLIAMS, Sylvain; ADAMANTIDIS, Antoine. REM sleep and memory. **Current Opinion in Neurobiology**, v. 44, p. 167–177, jun. 2017.

BURKITT, A. N. A review of the integrate-and-fire neuron model: II. Inhomogeneous synaptic input and network properties. **Biological Cybernetics**, v. 95, n. 2, p. 97–112, ago. 2006.

COLE, Kenneth S.; CURTIS, Howard J. ELECTRIC IMPEDANCE OF THE SQUID GIANT AXON DURING ACTIVITY. **Journal of General Physiology**, v. 22, n. 5, p. 649–670, maio 1939.

COWDIN, Nancy; KOBAYASHI, Ihori; MELLMAN, Thomas A. Theta frequency activity during rapid eye movement (REM) sleep is greater in people with resilience versus PTSD. **Experimental Brain Research**, v. 232, n. 5, p. 1479–1485, maio 2014. ISSN 0014-4819, 1432-1106.

CREPEL, Francis. Regression of functional synapses in the immature mammalian cerebellum. **Trends in Neurosciences**, v. 5, p. 266–269, jan. 1982.

DIEKELMANN, Susanne; BORN, Jan. The memory function of sleep. **Nature Reviews Neuroscience**, v. 11, n. 2, p. 114–126, fev. 2010.

DUDEK, S M; BEAR, M F. Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. **Proceedings of the National Academy of Sciences**, v. 89, n. 10, p. 4363–4367, maio 1992.

FATT, P.; KATZ, B. Spontaneous subthreshold activity at motor nerve endings. **The Journal of Physiology**, v. 117, n. 1, p. 109–128, maio 1952.

FELDMAN, Daniel E. Synaptic Mechanisms for Plasticity in Neocortex. **Annual Review of Neuroscience**, v. 32, n. 1, p. 33–55, jun. 2009.

_____. Spike timing—dependent plasticity. In: **Neural Circuit and Cognitive Development**. Berkeley: Elsevier, 2020. p. 127–141.

GERSTNER, Wulfram; KISTLER, Werner M. Spiking Neuron Models: Single Neurons, Populations, Plasticity. 1. ed. Cambridge: Cambridge University Press, 2002.

GOLDEN, Ryan et al. Sleep prevents catastrophic forgetting in spiking neural networks by forming a joint synaptic weight representation. **PLOS Computational Biology**, v. 18, n. 11, p. e1010628, nov. 2022.

GRANGER, Adam J.; NICOLL, Roger A. Expression mechanisms underlying long-term potentiation: A postsynaptic view, 10 years on. **Philosophical Transactions of the Royal Society B: Biological Sciences**, v. 369, n. 1633, p. 20130136, jan. 2014.

GUO, Dan et al. Slow wave synchronization and sleep state transitions. **Scientific Reports**, v. 12, n. 1, p. 7467, maio 2022. ISSN 2045-2322.

GUPTA, Anoopum S. et al. Hippocampal Replay Is Not a Simple Function of Experience. **Neuron**, v. 65, n. 5, p. 695–705, mar. 2010.

HEBB, D.O. **The Organization of Behavior**. 0. ed. New York: Wiley & Sons New York, 1949.

HEUER, Al. **Heuer/ Wilkins' Clinical Assessment in Respiratory Care**. 9. ed. Philadelphia: Elsevier, Inc, 2021.

HODGKIN, A. L.; HUXLEY, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. **The Journal of Physiology**, v. 117, n. 4, p. 500–544, ago. 1952.

IEVA, A. Di et al. Fractals in the Neurosciences, Part I: General Principles and Basic Neurosciences. **The Neuroscientist**, v. 20, n. 4, p. 403–417, ago. 2014.

IZHIKEVICH, E.M. Simple model of spiking neurons. **IEEE Transactions on Neural Networks**, v. 14, n. 6, p. 1569–1572, nov. 2003.

JENKINS, John G.; DALLENBACH, Karl M. Obliviscence during Sleep and Waking. **The American Journal of Psychology**, v. 35, n. 4, p. 605, out. 1924.

KANDEL, Eric R. et al. (Ed.). **Principles of Neural Science**. Sixth edition. New York: McGraw Hill, 2021.

LAPICQUE, Louis. Recherches quantitatives sur l'excitation electrique des nerfs traitee comme une polarization. v. 9, p. 620–635, jan. 1907.

LILLICRAP, Timothy P. et al. Backpropagation and the brain. **Nature Reviews Neuroscience**, v. 21, n. 6, p. 335–346, jun. 2020.

MAASS, Wolfgang. Networks of spiking neurons: The third generation of neural network models. **Neural Networks**, v. 10, n. 9, p. 1659–1671, dez. 1997.

PAGKALOS, Michalis; CHAVLIS, Spyridon; POIRAZI, Panayiota. Introducing the Dendrify framework for incorporating dendrites to spiking neural networks. **Nature Communications**, v. 14, n. 1, p. 131, jan. 2023.

Paredes-Vallés, Federico; SCHEPER, Kirk Y. W.; de Croon, Guido C. H. E. Unsupervised Learning of a Hierarchical Spiking Neural Network for Optical Flow Estimation: From Events to Global Motion Perception. 2018.

PATEL, Aakash K. et al. Physiology, Sleep Stages. 2022.

PATEL, Aakash K. et al. Physiology, Sleep Stages. In: **StatPearls**. Treasure Island (FL): StatPearls Publishing, 2023.

PAYNE, Jessica D.; CHAMBERS, Alexis M.; KENSINGER, Elizabeth A. Sleep promotes lasting changes in selective memory for emotional scenes. **Frontiers in Integrative Neuroscience**, v. 6, 2012.

PEYRACHE, Adrien; SEIBT, Julie. A mechanism for learning with sleep spindles. **Philosophical Transactions of the Royal Society B: Biological Sciences**, v. 375, n. 1799, p. 20190230, maio 2020.

PFISTER, Jean-Pascal; GERSTNER, Wulfram. Triplets of Spikes in a Model of Spike Timing-Dependent Plasticity. **The Journal of Neuroscience**, v. 26, n. 38, p. 9673–9682, set. 2006. ISSN 0270-6474, 1529-2401.

RASCH, Björn; BORN, Jan. Reactivation and Consolidation of Memory During Sleep. **Current Directions in Psychological Science**, v. 17, n. 3, p. 188–192, jun. 2008.

SAKURAI, Yoshio et al. Multiple Approaches to the Investigation of Cell Assembly in Memory Research—Present and Future. **Frontiers in Systems Neuroscience**, v. 12, p. 21, maio 2018.

SANTIAGO, Ramón y Cajal. The Croonian lecture.—La fine structure des centres nerveux. **Proceedings of the Royal Society of London**, v. 55, n. 331-335, p. 444–468, dez. 1894.

SCHULZ, Hartmut. Rethinking sleep analysis. **Journal of clinical sleep medicine: JCSM: official publication of the American Academy of Sleep Medicine**, v. 4, n. 2, p. 99–103, abr. 2008.

SILBER, Michael H. et al. The visual scoring of sleep in adults. **Journal of clinical sleep medicine: JCSM: official publication of the American Academy of Sleep Medicine**, v. 3, n. 2, p. 121–131, mar. 2007.

SONG, Yuhang et al. Can the Brain Do Backpropagation? -Exact Implementation of Backpropagation in Predictive Coding Networks. **Advances in Neural Information Processing Systems**, v. 33, p. 22566–22579, 2020.

TEETER, Corinne et al. Generalized leaky integrate-and-fire models classify multiple neuron types. **Nature Communications**, v. 9, n. 1, p. 709, fev. 2018.

WALKER, Matthew P.; STICKGOLD, Robert. Sleep, Memory, and Plasticity. **Annual Review of Psychology**, v. 57, n. 1, p. 139–166, jan. 2006.

YAMAZAKI, Kashu et al. Spiking Neural Networks and Their Applications: A Review. **Brain Sciences**, v. 12, n. 7, p. 863, jun. 2022.

ZENKE, Friedemann; AGNES, Everton J.; GERSTNER, Wulfram. Diverse synaptic plasticity mechanisms orchestrated to form and retrieve memories in spiking neural networks. **Nature Communications**, v. 6, n. 1, p. 6922, abr. 2015.

ZENKE, Friedemann; GERSTNER, Wulfram. Limits to high-speed simulations of spiking neural networks using general-purpose computers. **Frontiers in Neuroinformatics**, v. 8, set. 2014.

ZUCKER, Robert S.; REGEHR, Wade G. Short-Term Synaptic Plasticity. **Annual Review of Physiology**, v. 64, n. 1, p. 355–405, mar. 2002.