Большое О

Вычислительная сложность

Числа Фибоначчи

- Рекурсия наивный алгоритм
- Массив / список
- Два последних значения
- Кэширование вызовов
- Большие числа
- Дерево вызовов

Числа Фибоначчи

- https://ru.wikipedia.org/wiki/Числа Фибоначчи
- $F_0 = 0$
- $F_1 = 1$
- $F_n = F_{n-1} + F_{n-2}$

• https://www.cs.usfca.edu/~galles/visualization/DPFib.html

Оценка времени исполнения программы

- Асимптотический анализ
 - Число строк кода
 - Число операций
 - Число вызовов

- Экспериментальное измерение
 - Cell magic (Jupyter Notebook): %%timeit
 - Системное время
 - Многократный прогон

Пример

- \bullet T₀ =
- T₁ =
- T₂ =
- $T_3 =$

Понятие сложности алгоритма

- Computational complexity of an algorithm
- Вычислительная сложность алгоритма
 - Скорость возрастания необходимых ресурсов
 - Временная время исполнения
 - Пространственная объём памяти
- Зависимость от размера входных данных
 - Асимптотическая (на бесконечности)
 - Наилучшая, наихудшая, средняя...
 - Worst-case, best-case, average-case performance of an algorithm

О-нотация

- Big O notation нотация «О большое»
 - Ordnung / Order of approximation порядок аппроксимации
- f(x) = O(g(x))
 - $f(x) \le C \cdot g(x)$ функция ограничена сверху
 - $x \ge x_0$ начиная с некоторого значения x_0
 - С > 0 положительный коэффициент (константа)
 - Оценка «сверху»
 - Function f(n) is upper-bounded by constant times g(n), for all large n
- Нарисовать график
 - https://en.wikipedia.org/wiki/Big O notation
 - https://ru.wikipedia.org/wiki/«О» большое и «о» малое

Порядок сложности: график + названия

- O(1)
- O(log n)
- O(√n)
- O(n)
- O(n log n)
- O(n²)
- O(2ⁿ)
- O(n!)

О-нотации

- О большое
- О малое
- Омега большая
- Омега малая
- Тэта большая
 - Tight bound

Что такое «вычислительная сложность»?

- а) Время, необходимое для написания алгоритма
- b) Количество строк кода в алгоритме
- с) Скорость изменения времени выполнения алгоритма при увеличении размера задачи
- d) Объем памяти, занимаемый программой

Что такое «асимптотическая сложность алгоритма»?

- а) Оценка производительности алгоритма на маленьких значениях входных данных
- b) Приблизительный порядок роста времени выполнения алгоритма при стремлении размера задачи к бесконечности
- с) Максимальная возможная сложность алгоритма
- d) Минимальная возможная сложность алгоритма

Что описывает О-нотация (Big-O)?

- а) Нижнюю границу сложности алгоритма
- b) Верхнюю границу сложности алгоритма
- с) Среднюю сложность алгоритма
- d) Временную сложность алгоритма

Какие из перечисленных функций имеют наибольшую сложность?

- a) O(2ⁿ)
- b) O(n log n)
- c) O(n^2)
- d) O(n!)

Как соотносятся между собой О-нотация и Ω-нотация?

- а) О-нотация описывает верхнюю границу сложности, а Ω-нотация
 — нижнюю
- b) Обе нотации равнозначны и взаимозаменяемы
- c) О-нотация описывает нижнюю границу сложности, а Ω-нотация верхнюю
- d) О-нотация всегда меньше или равна Ω-нотации