Einführung in die Künstliche Intelligenz Angewandte Informatik SS 2025

Prof. Dr.-Ing. Michael Blaich

Aufgabenblatt 3

Aufgabe 1 (10 %)

python_constraint ist sehr kleines Python-Modul, um CSPs (constraint sastisfaction problems) zu lösen:

https://github.com/python-constraint/python-constraint

Machen Sie sich mit dem Modul vertraut, indem Sie folgende in der github vorhandenen Programm-Beispiele durchgehen und ausführen:

- Sodoku
- Kryptogramm SEND + MORE = MONEY
- Zebrarätsel (im github *Einstein* genannt); siehe auch https://de.wikipedia.org/wiki/Zebrarätsel

Aufgabe 2 (20 %)

Lösen Sie das in der Vorlesung besprochene Beispiel *Timetabling* mit python_constraint.

Aufgabe 3 (30 %)

Formulieren Sie die Kartenfärbung der 16 deutschen Bundesländer als CSP und suchen Sie eine Färbung mit python_constraint. Genügen 3 Farben oder werden 4 Farben benötigt?

Einführung in die Künstliche Intelligenz Angewandte Informatik SS 2025

Prof. Dr.-Ing. Michael Blaich

Aufgabe 4 (Packungsproblem)

(40 %)

Ein Packungsproblem (hier 2-dimensional) besteht in der Aufgabe N kleinere Rechtecke in ein großes Rechteck überschneidungsfrei zu platzieren. Ein Rechteck ist dabei ein n*m großes Quadratgitter. Die Rechtecke werden entweder horizontal oder vertikal am Gitter ausgerichtet platziert.

Wie lässt sich das Packungsproblem ganz allgemein als CSP formulieren?

Lösen Sie das hier abgebildete Packungsproblem mit python_constraint.

Die N = 6 grünen Rechtecke (6*4, 8*1, 4*1, 5*2, 2*2 und 3*2) sollen in das blaue Rechteck (7*8) überschneidungsfrei platziert werden.