Python for Data Science

Vue d'ensemble

marie.szafranski@ensiie.fr

Début: 09h20

Datascience in Real Life

Vue d'ensemble

marie.szafranski@ensiie.fr

Début: 09h20

De quoi parle-t-on?

Buzzwords en vrac

De quoi parle-t-on?

Une structure « académique »

2022-2023

De quoi parle-t-on?

Une structure « opérationelle »

2022-2023

Quelques ordres de grandeur

[Wikistat, 2016]

Quel	عما	de	nnó	ac 7
Quei	ies	uc	пше	: 65

N individus décrits par D variables

• kO 1970s Analyse de données

• MO 1980s

Apprentissage automatique \leadsto réseaux de neurones

• **GO**Exploration et fouille de données

Apprentissage statistique → SVM

[Vapnik, 1995]

• TO 2000s Bioinformatique $D \gg N$

• **PO** 2010s

Réseaux sociaux, e-commerce, etc. . . $N \gg D$

Des données à grande échelle

N ou/et D très grands

Évolutions technologiques dans les techniques d'acquisition

- + Augmentation des capacités de stockage
- --> Explosion de la quantité d'information disponible

Génomique

- N : quelques centaines de patients
- D : mesure de l'expression de plusieurs millions de variants génétiques

Des données à grande échelle

N ou/et D très grands

Évolutions technologiques dans les techniques d'acquisition

- + Augmentation des capacités de stockage
- --> Explosion de la quantité d'information disponible

Astronomie

- N : plusieurs millions de corps célestes
- D: quelques centaines de mesures (positions, vitesses, etc.)

Des données à grande échelle

N ou/et D très grands

Évolutions technologiques dans les techniques d'acquisition

- + Augmentation des capacités de stockage
- --> Explosion de la quantité d'information disponible

Web et text mining

- *N* : plusieurs millions de sites
- D : liens entrants et sortants, ancres, nom de domaine, hébergeur, etc.

Quelle finalité pour ces données?

Définir un modèle et réaliser l'algorithme associé dans une perspective prédictive et / ou explicative

Exemples

- Bioinformatique : identifier les gènes qui permettent de distinguer des patients sains de patients atteints d'une maladie
- Astronomie : étudier des relations liant des paramètres de positions et de vitesses de corps célestes à leur composition chimique
- Web mining: analyser le comportement d'internautes pour définir un algorithme de recherche sur les sites web (PageRank de Google)

Schéma global

À la croisée de l'informatique et des statistique

- 1. Phase de collecte et d'intégration
 - Architecture des données
 - Web et réseaux distribués

Schéma global

À la croisée de l'informatique et des statistique

2. Phase exploratoire

- Analyse de données
- Recherche d'information et de motifs

Schéma global

À la croisée de l'informatique et des statistique

- 3. Phase explicative ou décisionnelle
 - Machine Learning
 - IA interprétable

$$(\neq XAI)$$

Besoins et défis actuels

À la croisée de l'informatique et des statistique

3. Phase explicative ou décisionnelle

- Machine Learning
- IA interprétable

$$(\neq \mathsf{XAI})$$

Besoins et défis actuels

À la croisée de l'informatique et des statistique

2. Phase exploratoire

- Analyse de données
- Recherche d'information et de motifs

Environnement: partout

Concurrence: ++ (ingé. XP / doct.)

Besoins et défis actuels

À la croisée de l'informatique et des statistique

1. Phase de collecte et d'intégration

- Architectures des données
- Web et réseaux distribués

Environnement: partout

Concurrence : -/= (ingé. / doct.)

DataOps → MLOps

2022-2023

Contenu de l'UE

Aspects exploratoires, explicatifs et décisionnels

→ ensiie selon les parcours + M2 Datascale

- 11 Introduction
- J2. Apprentissage non supervisé
- J3. Apprentissage supervisé

Mise en situation

→ aperçu de l'ensemble des phases, avec un accent sur l'une d'elles

 Cas d'étude PAYPS

Projet PAYPS ou Criteo

> ensiie 2022-2023

10

Informations pratiques

Planning prévisionnel

Séances	Matin $\sim 3h30$	Après-midi $\sim 3h30$		
12/09	Présentation des projets Criteo	Cas d'étude PAYPS +		
		Travail sur le cas d'étude		
19/02	Travail sur le cas d'étude	Travail sur le cas d'étude		
26/09	Solution élèves sur le cas d'étude	Solution PAYPS sur le cas d'étude +		
		Présentation projets PAYPS		
03/10	J1. Méthodologie // projets	J1. Méthodologie // projets		
10/10	J2. Non supervisé // projets	J2. Non supervisé // projets		
17/10	Semaine entreprise // projets	Semaine entreprise // projets		
24/10	J3. Supervisé // projets	Soutenances projets PAYPS		
sem 31/10	Projets Criteo (immersion) et soutenances			

2022-2023 ensiie

11

Informations pratiques

Supports

```
https://pydio.pedago.ensiie.fr/public/pub/FISE PYDS35
```

Language pour les TP (Jx.)

libre...

Scikit-learn, R, ...

[Pedregosa et al., 2011][CRAN]

Ceci n'est pas un cours de Python (ni de R)

Modalités d'évaluation

Cas pratique : compte-rendu

 \rightsquigarrow 3 pages

participation (pitch, discussions, etc)

Projets: compte-rendu

 \sim 3 pages

soutenance avec les enreprises

Références I

- CRAN. The Comprehensive R Archive Network. URL https://cran.r-project.org.
- Usama M. Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. *Advances in Knowledge Discovery and Data Mining*. American Association for Artificial Intelligence, 1996.
- F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research*, 12:2825–2830, 2011. URL https://scikit-learn.org/stable/index.html.
- Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, 1995.
- Team Wikistat. Wikistat, 2016. URL http://wikistat.fr/.

2022-2023 ensiie