- 2 複素数平面において,
- (1) α を絶対値 1 の複素数とし,l を原点と α を通る直線とする. α を通り l に垂直な 直線 m 上の点 z は方程式

$$\overline{\alpha}z + \alpha \overline{z} = 2$$

を満たすことを示せ.

(2) α , β , γ を絶対値 1 の複素数とし, $\frac{\beta}{\alpha}$, $\frac{\gamma}{\beta}$, $\frac{\alpha}{\gamma}$ の偏角はすべて 0° より大きく 180° より小さいとする.このとき,3 つの直線

$$\overline{\alpha}z + \alpha \overline{z} = 2$$
, $\overline{\beta}z + \beta \overline{z} = 2$, $\overline{\gamma}z + \gamma \overline{z} = 2$

で囲まれる部分が原点を中心とする正三角形であれば、

$$\alpha + \beta + \gamma = 0$$

となることを示せ、