AD8302 Calculations

Initial Equations:

Reflection Coefficient
$$\Gamma = \frac{Z_L - Z_S}{Z_L + Z_S}$$
 $Z_L = load impedance$ $Z_S = source impedance$

Magnitude of Reflection Coefficient $\rho = |\Gamma|$

Return Loss
$$(dB) = -20 \log_{10} \rho$$

$$SWR = \frac{1+\rho}{1-\rho}$$

Mismatch Loss (dB)=
$$-10 \log_{10}(1-\rho^2)$$

The AD8302 outputs phase (ϕ) and return loss (RL), therefore:

$$\rho = 10^{\frac{RL}{-20}}$$

We now have a magnitude and phase for the reflection coefficient. We can calculate its real and imaginary parts where $a = \Gamma(real)$ and $b = \Gamma(imaginary)$:

$$\mathbf{a} = \rho \cos(\varphi)$$
 and $\mathbf{b} = \rho \sin(\varphi)$

To calculate the complex load impedance (Z_L) we use the following:

$$\mathbf{Z}_{L} = \left(\frac{1+\Gamma}{1-\Gamma}\right) \mathbf{Z}_{S}$$

Setting $\Gamma = a + ib$ we get:

$$\mathbf{Z}_{L} = \left(\frac{1+a+jb}{1-a-jb}\right)\mathbf{Z}_{S}$$

Now multiply by its complex conjugate to enable the separation of the real and imaginary parts:

$$Z_L \!\!=\!\! \left(\frac{1\!+\!a\!+\!jb}{1\!-\!a\!-\!jb} \right) \!\! \left(\frac{1\!-\!a\!+\!jb}{1\!-\!a\!+\!jb} \right) \! Z_S \quad \text{then} \quad Z_L \!\!=\!\! \left(\frac{1\!-\!a^2\!-\!b^2\!+\!j2\,b}{(1\!-\!a)^2\!+\!b^2} \right) \! Z_S$$

Using $R = Z_L(real)$ and $X = Z_L(imaginary)$:

$$R = \left(\frac{1 - a^2 - b^2}{(1 - a)^2 + b^2}\right) Z_s$$
 and $X = \left(\frac{2b}{(1 - a)^2 + b^2}\right) Z_s$

The magnitude of the complex load impedance is calculated using:

$$|\mathbf{Z}| = \sqrt{((\mathbf{Z}_{L}(\text{real}))^2 + (\mathbf{Z}_{L}(\text{imaginary}))^2)}$$