Программно-аппаратные платформы Интернета вещей и встраиваемые системы

Лекция 7

Мини-проекты

- Учитываются в итоговой оценке с весом 0,2 (+2 балла на экзамене)
- Решается «реальная» задача (или хотя бы похожая на реальную)
- Обязательно использование радио (LoRa, IEEE 802.15.4, BLE, WiFi; последние **не в виде внешних модулей**, управляемых АТ-командами)
- Минимум два пункта из списка:
 - Датчик, подключенный по I2C, SPI или аналогичному интерфейсу;
 - GPS-модуль;
 - АЦП;
 - ШИМ;
 - ЖК-дисплей (можно текстовый);
 - Нетривиальный backend (просто положить данные в БД и показать в Grafana не выйдет)

Доклады

- 10-15 минут
- Темы, не затронутые в лекциях:
 - RISC-V особенности архитектуры, порт RIOT, основные отличия от Cortex-M;
 - 6LoWPAN over BLE;
 - ZigBee;
 - Нейросети на микроконтроллерах, CMSIS-NN;
 - Электрофизиологические измерения;
 - **—** ...
- Можно рассказать о «проектной работе», если она укладывается в тематику курса

БЕЗОПАСНОСТЬ БЕСПРОВОДНЫХ СЕТЕЙ – ОБЩИЕ ВОПРОСЫ

Модель угроз в радиосети

- Любой желающий может слушать эфир на любой частоте
- В лицензируемом диапазоне любой желающий может передавать в эфир что угодно, пока не придет Роскомнадзор
- В безлицензионном диапазоне любой желающий может передавать в эфир что угодно сколько угодно
- Большинство IoT-систем работает в безлицензионных диапазонах
 - 433 МГц, 868 МГц, 2450 МГц

Модель угроз в радиосети

- Перехват данных
- Передача фальсифицированных данных
- Косвенное определение состояния передающего устройства

«Наивный» протокол

Адрес Адрес отправителя получателя	Служебные поля	Данные	CRC
---------------------------------------	-------------------	--------	-----

- Целостность пакета проверяется контрольной суммой (CRC)
- Данные не зашифрованы
- Любой может прочитать данные
- Любой может сфальсифицировать данные

«Наивный» протокол

Адрес Адре отправителя получат		Данные (AES-128)	CRC
-----------------------------------	--	------------------	-----

- Целостность пакета проверяется контрольной суммой (CRC)
- Данные зашифрованы, например, AES-128
- Посторонний не может прочитать данные
- Посторонний не может сфальсифицировать данные

Подмена данных МАС-уровня

Подмена Подмена Подмена отправителя получателя данных	Данные (AES-128)	CRC'
---	------------------	------

- Принимаем из эфира чужой пакет
- Меняем что угодно, кроме данных (мы не знаем ключа AES-128)
- Пересчитываем контрольную сумму
- Те же данные, но от другого отправителя или к другому получателю, или с другими командами МАС-уровня

Защита от фальсификации МАС-уровня

0.

- Шифрование всего пакета слишком ресурсоемко
- Вместо контрольной суммы используем MIC (Message Integrity Code, *имитовставка*) зависящую от ключа однонаправленную хеш-функцию
- AES-CMAC и другие подобные алгоритмы

Определение состояния устройства

Адрес Ад отправителя полу

- Шифрование AES-ECB: каждый раз один и тот же ключ
- Зашифрованный блок меняется, только если меняются исходные данные
- Не расшифровывая блок, можно понять, изменились ли входные данные
 - Пример водосчетчик; если данные не меняются в течение недели в квартире никого нет

Добавляем «соль»

Адрес отправителя п	Адрес получателя	Служебные поля	Данные (AES-128)	Соль	MIC
------------------------	---------------------	-------------------	------------------	------	-----

- Добавляем к данным «соль» (salt) 16- или 32- битное случайное число, каждый раз разное
- При приеме и расшифровке «соль» отбрасывается
- Одни и те же данные, но разная «соль» различные зашифрованные блоки

Атака повтором

- Прослушиваем эфир, записывая нужный пакет
- В нужный нам момент времени воспроизводим этот пакет
- Например: датчик вскрытия окна
 - записываем пакет «окно закрыто», передаваемый раз в минуту
 - вскрываем окно, глуша радиоэфир
 - выключаем датчик, продолжаем передавать пакет «окно закрыто» сами

Защита от атаки повтором

Адрес отправителя Служебные получателя Служебные поля Счетчик Данные (AES-CTR) МІС

- Добавляем к МАС-уровню счетчик пакетов
- Счетчик должен только возрастать!
- Сброс счетчика в ноль отдельная и редкая процедура (Join в LoRaWAN)
- Блочный шифр для данных используется в режиме «со счетчиком» (AES-CTR)

Активная атака повтором

Адрес отправителя Адрес получателя Служебные поля Счетчик Данные (AES-CTR) МІС

- Записываем пакет с номером n, одновременно поставив помеху приемнику
- При повторной передаче данных записываем пакет с номером n+1, ставим помеху приемнику и тут же передаем записанный пакет с номером n
- Передаем записанный пакет с номером n+1, открываем машину, уезжаем...

БЕЗОПАСНОСТЬ БЕСПРОВОДНЫХ СЕТЕЙ НА ПРИМЕРЕ LORAWAN

LoRaWAN – архитектура сети

Пакеты в LoRaWAN

- Преамбула 12 «чирпов»
- PHDR заголовок PHY с параметрами модуляции
- Контрольная сумма (CRC) только для uplink
- MHDR MAC Header, 1 байт с типом сообщения и версией протокола
- MIC Message Integrity Code, вычисляется по алгоритму AES-CMAC с использованием ключа сети (Network Session Key)
- Payload зашифровано с помощью ключа приложения (Application Session Key)
- FCnt счетчик кадров

LoRaWAN - безопасность

- Есть шифрование данных приложения (ключ приложения неизвестен серверу сети)
- Есть защита от подмены служебных полей (AES-CMAC с использованием ключа сети)
- Есть защита от атак повтором (счетчик и AES-CTR)
- В ПНСТ LoRaWAN предлагалось использовать шифрование ГОСТ на уровне приложений; текущая версия ПНСТ 516-2021 не предъявляет требований к алгоритмам шифрования (кодирования?)

LoRaWAN - безопасность

- Активация обнуление счетчика и выработка двух ключей (Network Session Key, Application Session Key)
 - ABP Activation by Personalisation
 - Сессионные ключи «зашиты» в устройство, счетчик никогда не обнуляется
 - Невозможно сменить сессионные ключи при их компрометации
 - Проблема: 16- или 32-битный счетчик
 - OTAA Over-the-air activation
 - Для получения сессионных ключей нужен обмен кадрами Join-Request и Join-Response, при этом обнуляются счетчики кадров
 - Нужен один «зашитый» в устройство ключ (Application Key)
 - При компрометации сессионных ключей их можно сменить

Процедура Join в сети LoRaWAN

НЕКОТОРЫЕ ПРАКТИЧЕСКИЕ ВОПРОСЫ

Три главных правила криптографии

- 1. Не изобретайте свой алгоритм
- 2. Если вам кажется, что авторы известных алгоритмов что-то сделали неправильно, но про это не написано у Брюса Шнайера вам кажется
- Ни при каких обстоятельствах не изобретайте свой алгоритм

Foot-Shooting Prevention Agreement

I, Your Name , promise that once

I see how simple AES really is, I will not implement it in production code even though it would be really fun.

This agreement shall be in effect until the undersigned creates a meaningful interpretive dance that compares and contrasts cache-based, timing, and other side channel attacks and their countermeasures.

Средства операционной системы

- sys/crypto криптографические алгоритмы
- sys/hashes хеши, в т.ч. криптографические
- sys/random генератор псевдослучайных чисел

True Random Number Generator

Настоящий генератор случайных чисел может быть только аппаратным:

- подбрасывание монеты
- вращение рулетки
- физические процессы, корнями уходящие в квантовую механику
 - дробовой шум
 - туннелирование электронов

(Pseudo) Random Number Generator

- Сложная числовая функция, выдающая почти непредсказуемую последовательность чисел с очень большим периодом
- Если не сказано иного всегда предполагайте псевдослучайность
- Последовательность определяется одним числом seed
- При одном и том же seed одна и та же последовательность
- Seed должен быть настоящим случайным числом!

Инициализация PRNG

- Источники «настоящих» случайных чисел обычно медленные
- Удобно получить одно случайное число и использовать его, как seed для PRNG
- Источники случайности приемлемого качества:
 - действия пользователя в интерактивной системе
 - потребление ресурсов в многозадачной системе
 - микрошум на «висящем в воздухе» входе АЦП
 - шум в радиоэфире
 - "Jitter" двух тактовых генераторов
- Источники случайности **неприемлемого** качества:
 - время, прошедшее с включения микроконтроллера
- Улучшение качества случайного числа:
 - собрать много приемлемых случайных чисел
 - посчитать для них криптографический хеш (например, SHA-256)