0.1 Homework 1

0.1.1 Hermitian operators

- 1. Prove theorem 1: If A is Hermitian operator, then all its eigenvalues are real numbers, and the eigenvectors corresponding to different eigenvalues are orthogonal.
 - (a) Since A is Hermitian, we have $A^{\dagger} = A$. Let λ be an eigenvalue of A and v the corresponding eigenvector, so

$$Av = \lambda v$$
.

Consider the inner product

$$\langle v, Av \rangle = \langle v, \lambda v \rangle = \lambda \langle v, v \rangle = \lambda ||v||^2.$$

 $\langle Av, v \rangle = \langle \lambda v, v \rangle = \lambda^* \langle v, v \rangle = \lambda^* ||v||^2.$

So we have $\lambda ||v||^2 = \lambda^* ||v||^2$, which implies $\lambda = \lambda^*$, so λ is real(since $||v||^2$ is not zero, as $v \neq 0$).

(b) Let λ_1 and λ_2 be two different eigenvalues of A, and v_1 and v_2 the corresponding eigenvectors, so we have

$$Av_1 = \lambda_1 v_1, \quad Av_2 = \lambda_2 v_2.$$

Consider the inner product

$$\langle v_1, Av_2 \rangle = \langle v_1, \lambda_2 v_2 \rangle = \lambda_2 \langle v_1, v_2 \rangle, \langle Av_1, v_2 \rangle = \langle \lambda_1 v_1, v_2 \rangle = \lambda_1 \langle v_1, v_2 \rangle.$$

Since A is Hermitian, we have $\langle v_1, Av_2 \rangle = \langle Av_1, v_2 \rangle$, so we have $(\lambda_1 - \lambda_2) \langle v_1, v_2 \rangle = 0$, which implies $\langle v_1, v_2 \rangle = 0$ (since $\lambda_1 \neq \lambda_2$). \square

- 2. Prove theorem 2: If A is Hermitian operator, then it can be always diagonalized by unitary transformation.
 - (a) Non-degenerate.

Let $\{\lambda_1, \lambda_2, \cdots, \lambda_n\}$ be the eigenvalues of A, and $\{v_1, v_2, \cdots, v_n\}$ the corresponding eigenvectors.

By theorem 1, we have $\langle v_1, v_2 \rangle = \delta_{ij}$.

We define the unitary matrix as $U = [v_1, v_2, \dots, v_n]$, so we have $U^{\dagger}U = \mathbb{I}$. Now we compute $U^{\dagger}AU$. Since $Av_i = \lambda_i v_i$, we have

$$U^{\dagger}AU = \begin{pmatrix} v_1^{\dagger} \\ v_2^{\dagger} \\ \vdots \\ v_n^{\dagger} \end{pmatrix} A \begin{pmatrix} v_1 & v_2 & \cdots & v_n \end{pmatrix} = \begin{pmatrix} v_1^{\dagger}Av_1 & v_1^{\dagger}Av_2 & \cdots & v_1^{\dagger}Av_n \\ v_2^{\dagger}Av_1 & v_2^{\dagger}Av_2 & \cdots & v_2^{\dagger}Av_n \\ \vdots & \vdots & \ddots & \vdots \\ v_n^{\dagger}Av_1 & v_n^{\dagger}Av_2 & \cdots & v_n^{\dagger}Av_n \end{pmatrix}$$

$$= \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} = \Lambda.$$

(b) 简并.

令 m 重简并 λ_1 的本征矢为 $\{v_1^{(1)}, v_1^{(2)}, \cdots, v_1^{(m)}\}$. 那么新的 U 矩阵将为 $U = \left[v_1^{(1)}, v_1^{(2)}, \cdots, v_1^{(m)}, v_{m+1}, \cdots, v_n\right]$. 那

么计算

$$\begin{split} U^{\dagger}AU &= \begin{pmatrix} v_1^{(1)\dagger} \\ v_1^{(2)\dagger} \\ \vdots \\ v_n^{(m)\dagger} \\ v_{m+1}^{\dagger} \\ \vdots \\ v_n^{\dagger} \end{pmatrix} A \begin{pmatrix} v_1^{(1)} & v_1^{(2)} & \cdots & v_1^{(m)} & v_{m+1} & \cdots & v_n \end{pmatrix} \\ &= \begin{pmatrix} v_1^{(1)\dagger} \\ v_1^{(2)\dagger} \\ \vdots \\ v_n^{\dagger} \end{pmatrix} \begin{pmatrix} \lambda_1 v_1^{(1)} & \lambda_1 v_1^{(2)} & \cdots & \lambda_1 v_1^{(m)} & \lambda_{m+1} v_{m+1} & \cdots & \lambda_n v_n \end{pmatrix} \\ &= \begin{pmatrix} \lambda_1 & v_1^{(1)\dagger} v_1^{(2)} & \cdots & v_1^{(1)\dagger} v_1^{(m)} & \lambda_1^{(1)\dagger} v_{m+1} & \cdots & v_1^{(1)\dagger} v_n \\ v_1^{(2)\dagger} v_1^{(1)} & \lambda_1 & \cdots & v_1^{(2)\dagger} v_1^{(m)} & v_1^{(1)\dagger} v_{m+1} & \cdots & v_1^{(2)\dagger} v_n \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ v_1^{(m)\dagger} v_1^{(1)} & v_1^{(m)\dagger} v_1^{(2)} & \cdots & \lambda_1 & v_1^{(m)\dagger} v_{m+1} & \cdots & v_1^{(m)\dagger} v_n \\ v_{m+1}^{\dagger} v_1^{(1)} & v_{m+1}^{\dagger} v_1^{(2)} & \cdots & v_{m+1}^{\dagger} v_1^{(m)} & \lambda_{m+1} & \cdots & v_{m+1}^{\dagger} v_n \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ v_n^{\dagger} v_1^{(1)} & v_n^{\dagger} v_1^{(2)} & \cdots & v_n^{\dagger} v_1^{(m)} & \lambda_{m+1} & \cdots & v_{m+1}^{\dagger} v_n \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ v_n^{\dagger} v_1^{(1)} & v_n^{\dagger} v_1^{(2)} & \cdots & v_n^{\dagger} v_1^{(m)} & v_n^{\dagger} v_{m+1} & \cdots & \lambda_n \end{pmatrix} \end{split}$$

我们并不清楚 λ_1 简并子空间内各基矢是否相互正交, 但是可确定的是 $v_1^{(j)\dagger}v_k$, k>m 和 $v_j^{\dagger}v_k$, j,k>m 是必定为 0 的. 那么上述矩阵将化为

$$U^{\dagger}AU = \begin{pmatrix} \lambda_1 & v_1^{(1)\dagger}v_1^{(2)} & \cdots & v_1^{(1)\dagger}v_1^{(m)} \\ v_1^{(2)\dagger}v_1^{(1)} & \lambda_1 & \cdots & v_1^{(2)\dagger}v_1^{(m)} \\ \vdots & \vdots & \ddots & \vdots \\ v_1^{(m)\dagger}v_1^{(1)} & v_1^{(m)\dagger}v_1^{(2)} & \cdots & \lambda_1 \\ & & & & \lambda_{m+1} \\ & & & & & \lambda_n \end{pmatrix}$$

使用 Gram-Schmidt 正交化方法, 使得 $\{v_1^{(1)}, v_1^{(2)}, \cdots, v_1^{(m)}\}$ 化为正交归一的基矢 $\{\phi_1, \phi_2, \cdots, \phi_m\}$:

$$\begin{split} v_1^{(1)\prime} &= v_1^{(1)}, \quad \phi_1 = \frac{v_1^{(1)\prime}}{||v_1^{(1)\prime}||}, \\ v_1^{(2)\prime} &= v_1^{(2)} - \langle v_1^{(2)}, \phi_1 \rangle \phi_1, \quad \phi_2 = \frac{v_1^{(2)\prime}}{||v_1^{(2)\prime}||}, \\ v_1^{(3)\prime} &= v_1^{(3)} - \langle v_1^{(3)}, \phi_1 \rangle \phi_1 - \langle v_1^{(3)}, \phi_2 \rangle \phi_2, \quad \phi_3 = \frac{v_1^{(3)\prime}}{||v_1^{(3)\prime}||}, \cdots \end{split}$$

以此类推, 我们可以得到 $\{\phi_1, \phi_2, \cdots, \phi_m\}$, 那么我们可以构造新的 $U = \left[\phi_1, \phi_2, \cdots, \phi_m, v_{m+1}, \cdots, v_n\right]$, 并且存在关系 $\phi_i^{\dagger} A \phi_j = \lambda_1 \delta_{ij}$, 使得 $U^{\dagger} A U$ 为对角矩阵 Λ . \square

3. Prove theorem 3: Two diagonalizable operators A and B can be simultaneously diagonalized if, and only if, [A, B] = 0.

(a) Let's say

$$A|v\rangle = \lambda |v\rangle, \quad B|v\rangle = \mu |v\rangle.$$

where $|v\rangle$ is the eigenvector of A and B, λ and μ are the corresponding eigenvalues. So

$$[A,B]|v\rangle = (AB-BA)|v\rangle = (AB|v\rangle - BA|v\rangle) = (\lambda\mu - \mu\lambda)|v\rangle = 0.$$

for all $|v\rangle$, which means [A, B] = 0.

(b) Let's say [A, B] = 0.

$$A|v\rangle = \lambda|v\rangle,$$

 $AB|v\rangle = BA|v\rangle = B\lambda|v\rangle = \lambda (B|v\rangle),$

- i. 非简并. 那么 $B|v_i\rangle = \mu_i|v_i\rangle$.
- ii. 简并. 假设 A 的本征值 λ_1 存在 m 重简并, 对应的本征矢为 $\{|v_1^{(1)}\rangle, |v_1^{(2)}\rangle, \cdots, |v_1^{(m)}\rangle\}$. 设 $B|v_1^{(i)}\rangle = \sum_j b_{ij}|v_1^{(j)}\rangle$. 而其余本征矢则维持非简并形式 $B|v_j\rangle = \mu_j|v_j\rangle$. 令幺正矩阵 $U = \left[|v_1^{(1)}\rangle, |v_1^{(2)}\rangle, \cdots, |v_1^{(m)}\rangle, |v_{m+1}\rangle, \cdots, |v_n\rangle\right]$ 尝 试使 B 对角化:

B 对角化:
$$U^{\dagger}BU = \begin{pmatrix} \langle v_{1}^{(1)}| \\ \langle v_{1}^{(2)}| \\ \vdots \\ \langle v_{1}^{(m)}| \\ \langle v_{m+1}| \\ \vdots \\ \langle v_{n}| \end{pmatrix} B \left(|v_{1}^{(1)}\rangle | |v_{1}^{(2)}\rangle | \cdots |v_{1}^{(m)}\rangle | |v_{m+1}\rangle | \cdots |v_{n}\rangle \right)$$

$$= \begin{pmatrix} \langle v_{1}^{(1)}| \\ \langle v_{1}^{(2)}| \\ \vdots \\ \langle v_{1}^{(m)}| \\ \langle v_{m+1}| \\ \vdots \\ \langle v_{n}| \end{pmatrix} \left(\sum_{j} b_{1j} |v_{1}^{(j)}\rangle | \sum_{j} b_{2j} |v_{1}^{(j)}\rangle | \cdots |v_{n}\rangle \right)$$

$$= \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1m} \\ b_{21} & b_{22} & \cdots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mm} \end{pmatrix} = \begin{pmatrix} b & 0 \\ 0 & \Lambda_{\mu} \end{pmatrix}$$

$$= \begin{pmatrix} b & 0 \\ 0 & \Lambda_{\mu} \end{pmatrix}$$

所以问题就在于要使分块矩阵
$$b = \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1m} \\ b_{21} & b_{22} & \cdots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mm} \end{pmatrix}$$
 对角化. 构造 $b = U_b^\dagger \Lambda_b U_b$,于是
$$U^\dagger B U = \begin{pmatrix} U_b^\dagger \Lambda_b U_b & \\ & & & \\ & & & \\ & & & \\ \end{pmatrix} = \begin{pmatrix} U_b^\dagger & \\ & & \\ \end{pmatrix} \begin{pmatrix} \Lambda_b & \\ & & \\ & & \\ \end{pmatrix} \begin{pmatrix} U_b & \\ & & \\ \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} U_b^\dagger & \\ & & \\ \end{pmatrix}^{-1} U^\dagger B \underbrace{U \begin{pmatrix} U_b & \\ & \\ & \\ \end{pmatrix}^{-1}} = \begin{pmatrix} \Lambda_b & \\ & & \\ & & \\ \end{pmatrix} = \Lambda.$$

于是通过构造 U' 和 U'^{\dagger} , 我们可以将 B 对角化. \square

0.1.2 Matrix diagonalization and unitary transformation

1. Diagonalizing a matrix L corresponds to finding a unitary transformation V such that $L = V\Lambda V^\dagger$, where Λ is a diagonal matrix whose diagonal elements are eigenvalues, V is an unitary matrix whose column vectors are the corresponding eigenstates. Find a unitary matrix V that can diagonalize the Pauli matrix $\sigma^x_{(z)} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, and find the eigenvalues of $\sigma^x_{(z)}$.

Find the eigenvalues of $\sigma^x_{(z)}$ by solving the characteristic equation

$$\det(\sigma_{(z)}^x - \lambda I) = \det\begin{pmatrix} -\lambda & 1\\ 1 & -\lambda \end{pmatrix} = \lambda^2 - 1 = 0,$$

So we have $\lambda = \pm 1$. For $\lambda_+ = 1$, we have

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = 1 \cdot \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \Rightarrow v_1 = v_2.$$

So the eigenvector corresponding to λ_+ is $|+\rangle_{(z)}^x=\frac{1}{\sqrt{2}}\begin{pmatrix}1\\1\end{pmatrix}$. For $\lambda_-=-1$, we have

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = -1 \cdot \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \Rightarrow v_1 = -v_2.$$

So the eigenvector corresponding to λ_- is $|-\rangle_{(z)}^x = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$. The eigenvectors have been normalized, so the unitary matrix V is $[|+\rangle_{(z)}^x, |-\rangle_{(z)}^x] = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$. The diagonal matrix Λ contains the eigenvalues on the diagonal, which means

$$\Lambda = \operatorname{diag}\{\lambda_+, \lambda_-\} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \sigma^z_{(z)}$$

Thus we diagonalized the Pauli matrix $\sigma_{(z)}^x$ by the unitary transformation V:

$$\sigma_{(z)}^x = V^{\dagger} \Lambda V = V^{\dagger} \sigma_{(z)}^z V$$

We notice that the diagnosed matrix Λ is just the Pauli matrix $\sigma_{(z)}^z$, which means we can transform the representation of the Pauli matrix σ^z to the σ^x representation by the unitary transformation V:

$$\sigma_{(z)}^x = V^\dagger \sigma_{(z)}^z V = V^\dagger \sigma_{(x)}^x V \Rightarrow \sigma_{(x)}^x = (V^\dagger)^{-1} \sigma_{(z)}^x (V)^{-1}$$

 $\sigma^x_{(z)}$ is the matrix of σ^x in the σ^z representation. Noticed that $V=V^\dagger=V^{-1}$, so

$$\sigma_{(x)}^x = V \sigma_{(z)}^x V$$

2. The three components of the spin angular momentum operator \vec{S} for spin-1/2 are S^x , S^y , and S^z . If we use the S^z representation, their matrix representations are given by $\vec{S} = \frac{\hbar}{2} \vec{\sigma}$, where the three components of $\vec{\sigma}$ are the Pauli matrices σ^x , σ^y , and σ^z .

Now consider using the S^x representation. Please list the order of basis vectors you have chosen in the S^x representation, and calculate the matrix representations of the three components of the operator \vec{S} in this representation.

Within S^z representation, we have

$$S_{(z)}^x = \frac{\hbar}{2}\sigma_{(z)}^x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}$$

From the previous question, we have found the eigenvalues and corresponding eigenvectors:

$$|+\rangle_x = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}, \quad |-\rangle_x = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-1 \end{pmatrix}.$$

The matrix V that transforms the S^z representation to the S^x representation is

$$V = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$$

In the S^z representation, we have

$$S_{(z)}^{x} = \frac{\hbar}{2}\sigma^{x} = \frac{\hbar}{2}\begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}, \quad S_{(z)}^{y} = \frac{\hbar}{2}\sigma^{y} = \frac{\hbar}{2}\begin{pmatrix} 0 & -i\\ i & 0 \end{pmatrix}, \quad S_{(z)}^{z} = \frac{\hbar}{2}\sigma^{z} = \frac{\hbar}{2}\begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}.$$

So

$$\begin{split} S_{(x)}^x &= V S_{(z)}^x V = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \\ S_{(x)}^y &= V S_{(z)}^y V = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \frac{\hbar}{2} \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}, \\ S_{(x)}^z &= V S_{(z)}^z V = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}. \end{split}$$

So the basis vectors in the S^x representation are

$$|+\rangle_{(x)}^x = \begin{pmatrix} 1\\0 \end{pmatrix}, \quad |-\rangle_{(x)}^x = \begin{pmatrix} 0\\1 \end{pmatrix}.$$