Introdução ao software R

OBJETIVOS

- 1. Entender a linguagem de programação do R;
- 2. Visão geral da estrutura do RStudio;
- 3. Funções básicas do R.
- 4. Leitura de uma base de dados no formato .csv
- 5. Realizar algumas análises, construir gráficos e tabelas

Introdução ao software R

Sobre o "R" e "RStudio"

- R é um ambiente de software livre para análise gráfica e estatística. É de código aberto e, portanto, disponível gratuitamente.
- O RStudio pode ser instalado no Windows, Mac e Linux.

RStudio

Pasta de Trabalho do RStudio

Instalação de Pacotes

Limpar Arquivos

Ajuda das Funções

R como calculadora

1+2+3	
2+3*4	
3/2+1	
3**3	
sqrt(2)	
abs(-2*2)

Nome	Operação
sqrt	raiz quadrada
abs	valor absoluto (positivo)
sin cos tan	funções trigonométricas
asin acos atan	funções trigonométricas inversas
sinh cosh tanh	funções hiperbólicas
asinh acosh atanh	funções hiperbólicas inversas
exp log	exponencial e logarítmo natural
log10	logarítimo base-10
gamma lgamma	função gamma function e seu logarítmo natural

Operadores Lógicos

Variáveis (Objetos)

Estrutura de Dados

➤ Vetores: Podemos definir os vetores como uma sequência de valores alfanuméricos.

idade <- c(25, 32, 27, 33, 42, 21, 35, 45, 33, 25)

➤ Fatores: Podemos definir os fatores como uma sequência de valores, definido por níveis.

```
sexo <- c("Masc", "Fem", "Fem", "Fem", "Masc", "Fem", "Masc", "Fem", "Fem")
```

Estrutura de Dados

➤ **Dataframe**: A forma como os dados estão estruturados pode ser determinante para se conseguir realizar determinada análise. O objeto do tipo *dataframe* pode ser a melhor forma de armazenar os dados, pois ele pode conter vetores alfanuméricos e fatores.

df <- data.frame(idade, sexo)</pre>

Estrutura de Dados

➤ **Listas**: Objetos da classe lista são muito úteis, pois são estruturas capazes de conter objetos de diversos tipos de classes.

lista <- list(idade, sexo, df)

Leitura de uma base de dados

- Base de dados no formato "csv"
- Instalar o pacote "data.table"
- Carregar o pacote
- Leitura da base

Exemplo: BASE SALÁRIO DE FUNCIONÁRIOS QUE TRABALHAM COM DATA SCIENCE

DADOS

Α	В	С	D	Е	F	G	Н	1
ano	experienci	emprego	cargo	salario_US	pais_empr	trab_remo	pais_empr	tam_empres
2020	MI	FT	Data Scien	79833	DE	0	DE	L
2020	SE	FT	Machine L	260000	JP	0	JP	S
2020	SE	FT	Big Data E	109024	GB	50	GB	M
2020	MI	FT	Product Da	20000	HN	0	HN	S
2020	SE	FT	Machine L	150000	US	50	US	L
2020	EN	FT	Data Analy	72000	US	100	US	L
2020	SE	FT	Lead Data	190000	US	100	US	S
2020	MI	FT	Data Scien	35735	HU	50	HU	L
2020	MI	FT	Business D	135000	US	100	US	L
2020	SE	FT	Lead Data	125000	NZ	50	NZ	S
2020	EN	FT	Data Scien	51321	FR	0	FR	S
2020	MI	FT	Data Scien	40481	IN	0	IN	L
2020	EN	FT	Data Scien	39916	FR	0	FR	M
2020	MI	FT	Lead Data	87000	US	100	US	L
2020	MI	FT	Data Analy	85000	US	100	US	L
2020	MI	FT	Data Analy	8000	PK	50	PK	L
2020	EN	FT	Data Engin	41689	JP	100	JP	S

salarios.csv

https://www.kaggle.com/datasets/ruchi798/data-science-job-salaries

Exemplo: BASE SALÁRIO DE FUNCIONÁRIOS QUE TRABALHAM COM DATA SCIENCE

Descrição dos Dados

Variável	Descrição
ano	O ano em que o salário foi pago.
experiencia	O nível de experiência no cargo durante o ano com os seguintes valores
	possíveis: EN (Nível básico / Junior), MI (Nível médio / Intermediário),
	SE (Nível sênior / Expert), EX (Nível executivo / Diretor)
emprego	O tipo de emprego para a função: PT (Part-time), FT (Full-time),
	CT (Contract), FL (Freelance)
cargo	A função exercida durante o ano
	O salário em USD (taxa de câmbio dividida pela taxa média em USD
salario_USD	para o respectivo ano via fxdata.foorilla.com).
pais_empreg	O país de residência do funcionário durante o ano de trabalho como um
	código de país ISO 3166.
	O tempo total de trabalho feito remotamente, os valores possíveis são
	os seguintes: 0 Nenhum trabalho remoto (menos de 20%), 50
trab_remoto	Parcialmente remoto, 100 Totalmente remoto (mais de 80%)
pais_empresa	O país da sede do empregador ou da filial contratante como um código
	de país ISO 3166.
tam_empresa	O número médio de pessoas que trabalharam para a empresa durante o
	ano: S menos de 50 funcionários (pequeno), M 50 a 250 funcionários
	(médio), L mais de 250 funcionários (grande)

SINTAXE PARA LEITURA DA BASE

```
# INSTALAR O PACOTE data.table
install.packages("data.table")

# CARREGAR O PACOTE
library(data.table)

# LEITURA DA BASE
dados <- fread(input = "salarios.csv", header = T, na.strings = "NA", data.table = FALSE, dec=",")</pre>
```

SINTAXE DE VERIFICAÇÃO DA LEITURA DOS DADOS

```
class(dados)
dim(dados)
names(dados)
str(dados)
head(dados)
tail(dados)
sapply(dados, function(x)(sum(is.na(x)))) # contagem de dados faltantes
mean(dados$salario USD)
                            # salário médio da população N = 607
sd(dados$salario USD)
                            # desvio padrão
```

CRIANDO UM SUBCONJUNTO DE DADOS

Exemplo 1: Selecionar os salários do ano de pagamento 2000

dados1 <- dados[dados\$ano==2020,]

Exemplo 2: Selecionar os funcionários com contrato de tempo integral

dados2 <- dados[dados\$emprego=="FT",]

Tamanho da amostra para estimar uma média no R

Exemplo para o cálculo do tamanho de uma amostra para estimar o salário médio dos profissionais de Data Science

$$n_0 = \frac{z^2 \, \sigma^2}{d^2}$$

$$n = \frac{n_0}{1 + \frac{n_0}{N}}$$

install.packages("samplingbook")
library(samplingbook)

o pacote samplingbook utiliza as fórmulas de tamanho de amostra apresentadas na aula 2

tamanho da amostra para média sample.size.mean(e=10000, S = 71000, N = 607, level = 0.95)

o "e" equivale ao "d" das fórmulas apresentadas na aula 2

Sample size needed: 147

Extraindo uma amostra para estimar uma média no R

```
# AMOSTRA SIMPLES AO ACASO
asa147 <- dados[sample(nrow(dados), size=147),]
mean(asa147$salario USD) # salário médio da amostra n =147
mean(dados$salario USD) # salário médio da população N = 607
                               Salário médio da
                                                        Salário médio da
                               população: $ 112.297,90 amostra: $ 111.066,20
# intervalo de confiança
a = mean(asa147$salario_USD)
b = mean(dados$salario USD)
a
e = 10000 # erro definido pelo pesquisador
                                              Intervalo de confiança de
li = a - e # limite inferior do IC
                                              95% para o verdadeiro
Is = a + e # limite superior do IC
                                              salário médio
                                              [101.066,20 ; 121.066,20]
ls
```

b # verdadeiro salário médio

Variáveis Qualitativas (uma variável qualitativa)

Construção de tabela para uma variável qualitativa

```
# carregando pacotes
rm(list=ls(all=TRUE))
library(data.table)
library(RcmdrMisc) ## Para usar as funções do Rcmdr (ex. Recode)
library(dplyr)
# leitura da base
base <- fread(input = "salarios.csv", header = T, na.strings = "NA", data.table = FALSE,
dec = ",")
str(base$trab remoto)
base$trab_remoto <- as.character(base$trab_remoto)
str(base$trab_remoto)
```

Variáveis Qualitativas (uma variável qualitativa)

Construção de tabela para uma variável qualitativa

```
# Alterando a base de dados
# Recodifiar a variável trab_remoto com a função ifelse
base$trab_remoto <-
ifelse(base$trab_remoto=="0","1:Não",ifelse(base$trab_remoto=="50","2:Parcial","3:T
otal"))
table(base$trab_remoto)
str(base$experiencia)
table(base$experiencia)
# Recodifiar a variável experiencia sem usar função
base$experiencia[base$experiencia == "EN"] = "1:EN"
base$experiencia[base$experiencia == "MI"] = "2:MI"
base$experiencia[base$experiencia == "SE"] = "3:SE"
base$experiencia[base$experiencia == "EX"] = "4:EX"
table(base$experiencia)
write.csv2(base,"base_modif.csv", row.names=FALSE)
```

Variáveis Qualitativas (uma variável qualitativa)

```
# Construção de tabela para uma variável qualitativa
#TABELAS
# UMA VARIAVEL QUALITATIVA: Tabela para trabalho remoto
local({
 .Table <- with(base, table(trab_remoto))
 cat("\ncounts:\n")
 print(.Table)
 cat("\npercentages:\n")
 print(round(100*.Table/sum(.Table), 2))
})
```

Tabela para variável trab_remoto

```
trab_remoto
   1:Não 2:Parcial 3:Total
     127
                        381
                99
percentages:
trab_remoto
   1:Não 2:Parcial 3:Total
   20.92 16.31 62.77
```

Gráficos

Variável Qualitativa – gráfico para trabalho remoto

```
library(ggplot2)
library(stringr)
format.args = list(decimal.mark = ",", big.mark = ".")
Freq = data.frame(table(base$trab_remoto))
Freq$Percentual=round(100*Freq[,2]/sum(Freq[,2]),1)
names(Freq)=c("Resposta","Frequência","Porcentagem")
Graf1 = ggplot(Freq, aes(y = Porcentagem, x = Resposta, ymax=65)) + # Ajustar ymax=65
 geom_bar(stat="identity", position="dodge", fill="bisque1") +
 geom_text(aes(label=scales::percent(Porcentagem/100, decimal.mark = ",",
accuracy=0.1)), vjust=-1.0, hjust=0.2,
     size=5.0, position = position_dodge(0.9), angle=45, colour="white") +
 xlab("") +
 theme_dark() +
 theme(legend.text = element_text(size=12), axis.text=element_text(size=12),
legend.position="bottom") +
 scale_y_continuous(breaks = c(0,10,20,30,40,50,60)) #Corrigido em função do tamanho das
colunas
print(Graf1)
```

Gráfico para variável trab_remoto

Gráficos

Variável Qualitativa – gráfico para experiência

install.packages("vcd")
library(vcd)
counts <- table(base\$experiencia)
counts
barplot(counts,
 main = "nível de experiência no cargo",</pre>

xlab = "nível", ylab = "frequencia")

Gráfico para experiência

Gráfico para variável experiência no cargo

Variáveis: Qualitativa vs Qualitativa (tabela cruzada)

Construção de tabela para duas variáveis qualitativas

.Table <- xtabs(~experiencia+trab_remoto, data=base) rowPercents(.Table)

```
trab_remoto
experiencia 1:Não 2:Parcial 3:Total Total Count
1:EN 15.9 28.4 55.7 100.0 88
2:MI 26.3 19.7 54.0 100.0 213
3:SE 19.3 9.6 71.1 100.0 280
4:EX 11.5 19.2 69.2 99.9 26
```

Gráficos

Duas Variáveis Qualitativas (experiência x trabalho remoto) OPÇÃO 1

```
freq.tabela <- table(base$experiencia,base$trab_remoto, useNA = "ifany")
freq.tabela
porc.tabelaL <- round(prop.table(freq.tabela,1)*100,1)
porc.tabelaL
tabela <- data.frame(table(base$experiencia,base$trab_remoto))
colnames(tabela) <- c("Experiencia","Trab_Remoto","Freq")

ggplot(tabela, aes(fill=Trab_Remoto, y=Freq, x=Experiencia)) +
    geom_bar(position="fill", stat="identity") +
    ylab("Porcentagem")
```

Gráfico para variáveis experiência x trab_remoto

Duas Variáveis Qualitativas

OPÇÃO 1

Gráficos

Duas Variáveis Qualitativas (experiência x trabalho remoto) OPÇÃO 2

```
library(vcd)
counts <- table(base$experiencia, base$trab_remoto)
counts
barplot(counts,
    main = "Colunas agrupadas",
    xlab = "trabalho remoto", ylab = "frequência",
    col = c("red", "yellow", "green", "gray"),
    legend=rownames(counts), beside=TRUE)</pre>
```

Gráfico para variáveis experiência x trab_remoto

Duas Variáveis Qualitativas

OPÇÃO 2

Gráficos

Duas Variáveis Qualitativas (experiência x trabalho remoto) OPÇÃO 3

```
# opção 3
counts <- table(base$trab_remoto,base$experiencia)
counts
barplot(counts,
    main = "Colunas agrupadas",
    xlab = "experiência", ylab = "frequência",
    col = c("red", "yellow","green"),
    legend=rownames(counts), beside=TRUE)</pre>
```

Gráfico para variáveis experiência x trab_remoto

Duas Variáveis Qualitativas

experiência

Sugestão para estudar o R

Capítulos 1 a 7

brief contents

PART 1	Getting started
	1 - Introduction to R 3
	2 • Creating a dataset 20
	3 - Getting started with graphs 46
	4 * Basic data management 71
	5 • Advanced data management 89
Part 2	Basic methods 115
	6 - Basic graphs 117
	7 - Basic statistics 137

https://drive.google.com/file/d/1uXjKdm3 Vo3h_54h22byOe5K9P1ATBdeV/view?u sp=drive_link