

Universidade do Minho

Modelos Determinísticos de Investigação Operacional

MIEI - 3° ano - 1° semestre Universidade do Minho

Trabalho Prático 2

Grupo 3

Dinis Peixoto A75353

Ricardo Pereira A74185

Marcelo Lima A75210

Ricardo Certo A75315

16 de Novembro de 2017

Conte'udo

1 Introdução						
2	Parte I					
	2.1	Formu	ılação do problema	4		
		2.1.1	Variáveis de decisão	4		
		2.1.2	Função Objetivo	4		
		2.1.3	Restrições	4		
		2.1.4	Diagrama	5		
	2.2	Fichei	ro de Input	5		
	2.3		ro de Output	7		
	2.4		detalhado de produção	9		
	2.5		ıção do plano detalhado de produção	9		
		2.5.1	validação da conservação de fluxo das quantidades em cada			
			nó da rede	g		
		2.5.2	validação das restrições de capacidade	10		
	2.6	-	ıção da solução ótima	10		
	$\frac{2.5}{2.7}$		aração com o Trabalho 1	10		
	,	2.7.1	Ficheiro de Input	10		
		2.7.2	Ficheiro de Output	13		
		2.7.3	Conclusão	14		
		2.1.9	Conorada			
3	Par	te II		15		
3.1 Formulação do problema		ılação do problema	15			
		3.1.1	Variáveis de decisão adicionais	15		
		3.1.2	Função Objetivo	15		
		3.1.3	Restrições adicionais	15		
		3.1.4	Diagrama	16		
	3.2	Fichei	ro de Input	16		
		ro de Output	19			
	3.4			20		
	3.5		ıção do plano detalhado de produção	21		
		3.5.1	validação da conservação de fluxo das quantidades em cada			
			nó da rede	21		
		3.5.2	validação das restrições de capacidade			
		ação da solução ótima				

4	Parte III			
	4.1	Formulação do problema		
		4.1.1 Variáveis de decisão	23	
		4.1.2 Função Objetivo	23	
		4.1.3 Restrições	23	
		4.1.4 Diagrama do Modelo Original	24	
		4.1.5 Diagrama do Modelo Transformado	25	
4.2 Ficheiro de Input				
	4.3 Ficheiro de Output			
	4.4			
	4.5	Validação do plano detalhado de produção		
		4.5.1 validação da conservação de fluxo das quantidades em cada		
		nó da rede	29	
		4.5.2 validação das restrições de capacidade	30	
	4.6	Validação da solução ótima	30	
	4.7	Plano detalhado de produção do modelo real	31	
	4.8	Custo do plano de produção REAL	31	
5	Cor	nclusão	32	

1. Introdução

Este segundo relatório pretende expor a solução ao problema apresentado no âmbito da unidade curricular Modelos Determinísticos e Investigação Operacional, unidade curricular constituinte do curso Mestrado Integrado em Engenharia Informática.

O problema que nos foi proposto aborda um cenário de uma empresa responsável por produzir sumo de laranja, á base de concentrado. A produção desta empresa vai consisir em misturar a matéria prima, concentrado de sumo de laranja, água e açucar, e encher os pacotes de sumo numa única linha de engarrafamento. O tempo de produção de um dado sumo corresponde ao tempo de engarrafamento, dado que a mistura das matérias primas é feito em tempo negligenciável. É importante fazer referência ao facto desta empresa possuir dois armazéns, o de matérias primas, onde são guardados os tambores do concentrado de sumo, e o de produtos finais, que guarda as paletes com os pacotes de sumo.

Depois de referidas todas as indicações necessárias para a realização deste trabalho, pretendemos elaborar um modelo de transportes em rede que permita determinar as quantidades a comprar, a produzir e a armazenar, em cada período, de modo a conseguirmos satisfazer os pedidos dos clientes num horizonte de planeamento de doze meses, com o objetivo de realizarmos esta tarefa de modo a obtermos o custo mínimo para a empresa.

As quantidades de concentrado vão ser expressas na forma de Unidades Equivalentes (U.E). Durante a realização deste trabalho prático utilizamos como ferramenta auxiliar o *Relax*4, tendo em conta que este nos ajuda a resolver problemas de transportes de grande dimensão, uma vez que tanto o número de váriaveis de decisão e restrições utilizados eram demasiados para uma resolução manual.

2. Parte I

2.1 Formulação do problema

2.1.1 Variáveis de decisão

U.E.: Uma U.E de concentrado de laranja é o peso de concentrado necessário para produzir uma tonelada de produto final (que equivale a uma U.E de produto final).

 X_{ij} : representa o fluxo no arco orientado (i,j).

2.1.2 Função Objetivo

Função que tem como objectivo minimizar o custo

$$min: \sum_{(i,j)\in A} C_{i,j} * X_{i,j}$$

2.1.3 Restrições

• Restrição que garante a conservação do fluxo:

$$-\sum_{(i,j)\in A} X_{i,j} + \sum_{(j,i)\in A} X_{j,i} = B_j,$$

para todo,

$$j \in V$$

Esta restrição serve para garantirmos a conservação do fluxo presnete em cada nodo, ou seja vai verificar a igualdade de tudo o que entra no nodo (i,j) vai ser igual a tudo o que sai nesse nodo (i,j).

• Restrição que verifica a capacidade de cada arco:

$$0 \le X_{i,j} \le U_{ij}$$

para todo,

$$j \in A$$

Esta restrição serve para delimitarmos a capacidade superior e inferior de cada arco ij.

Onde:

- V corresponde ao número de vértices
- A corresponde ao número de arcos
- $X_{i,j}$ representa o fluxo no arco orientado (i,j)
- $C_{i,j}$ corresponde ao custo unitário de transporte no arco orientado (i,j).
- $U_{i,j}$ representa a capacidade do arco oirentado (i,j).
- B_j corresponde á oferta ou procura no vértice j. Sendo que quando temos uma valor positvo vai corresponder á oferta e se for negativo vai corresponder á procura.

2.1.4 Diagrama

2.2 Ficheiro de Input

25 58

1 2 180 1000

1 3 160 1000

1 4 180 1000

1 5 160 1000

1 6 180 1000

1 7 160 1000

1 8 180 1000

1 9 160 1000

1 10 180 1000

- 1 11 160 1000
- 1 12 180 1000
- 1 13 160 1000
- 2 3 1 30
- 2 14 10 10
- 2 14 15 6
- 3 4 1 30
- 3 15 10 10
- 3 15 15 6
- 4 5 1 30
- 4 16 10 10
- 4 16 15 6
- 5 6 1 30
- 5 17 10 10
- 5 17 15 6
- 6 7 1 30
- 6 18 10 10
- 6 18 15 6
- 7 8 1 30
- 7 19 10 10
- 7 19 15 6
- 8 9 1 30
- 8 20 10 10
- 8 20 15 6
- 9 10 1 30
- 9 21 12 10
- 9 21 18 6
- 10 11 1 30
- 10 22 10 10
- 10 22 15 6
- 11 12 1 30
- 11 23 10 10
- 11 23 15 6
- 12 13 1 30
- 12 24 10 10
- 12 24 15 6
- 13 25 10 10
- 13 25 15 6
- 14 15 3 40
- 15 16 3 40
- 16 17 3 40
- 17 18 3 40
- 18 19 3 40
- 19 20 3 40
- 20 21 3 40
- 21 22 3 40
- 22 23 3 40

```
23 24 3 40
24 25 3 40
157
16
0
0
0
0
0
0
0
0
0
0
-16
11
-9
-9
-12
-16
-17
-19
-19
-16
-12
-10
-29
```

2.3 Ficheiro de Output

```
END OF READING
NUMBER OF NODES = 25, NUMBER OF ARCS = 58
CONSTRUCT LINKED LISTS FOR THE PROBLEM
CALLING RELAX4 TO SOLVE THE PROBLEM
***********
TOTAL SOLUTION TIME = 0. SECS.
TIME IN INITIALIZATION = 0. SECS.
 1 5 29.
 1 7 32.
 1 9 32.
 1 11 32.
 1 13 32.
 2 3 16.
 3 4 10.
 3 15 6.
 4 16 10.
 5 6 16.
```

```
5 17 10.
```

- 5 17 3.
- 6 18 10.
- 6 18 6.
- 7 8 16.
- 7 19 10.
- 7 19 6.
- 8 20 10.
- 8 20 6.
- 9 10 16.
- 9 21 10.
- 9 21 6.
- 10 22 10.
- 10 22 6.
- 11 12 16.
- 11 23 10.
- 11 23 6.
- 12 24 10.
- 12 24 6.
- 13 25 10.
- 13 25 6.
- 14 15 11.
- 15 16 8.
- 16 17 9.
- 17 18 10.
- 18 19 10.
- 19 20 9.
- 20 21 6.
- 21 22 3.
- 22 23 3.
- 23 24 7.
- 24 25 13.

OPTIMAL COST = 27340.

NUMBER OF AUCTION/SHORTEST PATH ITERATIONS = 78

NUMBER OF ITERATIONS = 82

NUMBER OF MULTINODE ITERATIONS = 18

NUMBER OF MULTINODE ASCENT STEPS = 6

NUMBER OF REGULAR AUGMENTATIONS = 14

2.4 Plano detalhado de produção

2.5 Validação do plano detalhado de produção

2.5.1 validação da conservação de fluxo das quantidades em cada nó da rede

```
VALIDAÇÃO DO MODELO PELAS RESTRIÇÕES:
NÓ 1: 157 = 29 + 32 + 32 + 32 + 32 <=> 157 = 157 VERDADEIRO
NO 2: 16 + 0 = 16 + 0 + 0 <=> 16 = 16 VERDADEIRO
NO 3: 0 + 16 = 10 + 6 + 0 <=> 16 = 16 VERDADEIRO
NO 4: O + 1O = O + 1O + O \iff 1O = 1O VERDADEIRO
NOS = 29 + 0 = 16 + 10 + 3 \iff 29 = 29 \text{ VERDADEIRO}
NO 6: O + 16 = 10 + 6 + 0 \iff 16 = 16 VERDADEIRO
NO 7: 32 + 0 = 10 + 6 + 16 \iff 32 = 32 \text{ VERDADEIRO}
NÓ 8: 0 + 16 = 10 + 6 <=> 16 = 16 VERDADEIRO
NO 9: 32 + 0 = 16 + 10 + 6 \iff 32 = 32 \text{ VERDADEIRO}
NÓ 10: 0 + 16 = 0 + 10 + 6 <=> 16 = 16 VERDADEIRO
NO 11: 32 + 0 = 16 + 10 + 6 <=> 32 = 32 VERDADEIRO
NÓ 12: 0 + 16 = 0 + 10 + 6 <=> 16 = 16 VERDADEIRO
NO 13: 32 + 0 = 16 + 10 + 6 <=> 32 = 32 VERDADEIRO
NÓ 14: 0 + 0 + 20 = 11 + 9 <=> 20 = 20 VERDADEIRO
NÓ 15: 6 + 0 + 11 = 8 + 9 <=> 17 = 17 VERDADEIRO
NÓ 16: 10 + 0 + 8 = 9 + 9 <=> 18 = 18 VERDADEIRO
NO 17: 10 + 3 + 9 = 10 + 12 <=> 22 = 22 VERDADEIRO
NÓ 18: 10 + 6 + 10 = 10 + 16 <=> 26 = 26 VERDADEIRO
NO 19: 10 + 6 + 10 = 9 + 17 <=> 26 = 26 VERDADEIRO
NO(20: 10 + 6 + 9 = 6 + 19 \iff 25 = 25 \text{ VERDADEIRO}
NO 21: 10 + 6 + 6 = 3 + 19 <=> 22 = 22 VERDADEIRO
NO(22: 10 + 6 + 3 = 3 + 16 \iff 19 = 19 \text{ VERDADEIRO}
NO 23: 10 + 6 + 3 = 7 + 12 <=> 19 = 19 VERDADEIRO
```

```
NÓ 24: 10 + 6 + 7 = 13 + 10 \iff 23 = 23 VERDADEIRO
NÓ 25: 10 + 6 + 13 = 20 + 9 \iff 29 = 29 VERDADEIRO
```

2.5.2 validação das restrições de capacidade

Pela análise das figuras apresentadas em 2.1.4 e 2.4, verificamos, facilmente, que as restrições de capacidade foram respeitadas.

2.6 Validação da solução ótima

```
CUSTOS DE COMPRA DE CONCENTRADO:

160 * (29 + 32 + 32 + 32 + 32) + 180 * (0) = 25120

CUSTOS DE PRODUÇÃO:

10*6 + 10*10 + 10*10 + 15*3 + 10*10 + 15*6 + 10*10 + 15*6 + 10*10 + 15*6 + 10*10 + 15*6 + 10*10 + 15*6 + 10*10 + 15*6 + 10*10 + 15*6 + 10*10 + 15*6 = 1863

CUSTO DE ARMAZENAMENTO CONCENTRADO:

16*1 + 10*1 + 16*1 + 16*1 + 16*1 + 16*1 = 90

CUSTO DE ARMAZENAMENTO PRODUTO FINAL:

3*(11 + 8 + 9 + 10 + 10 + 9 + 6 + 3 + 3 + 7 + 13) = 267

SOMATÓRIO DOS CUSTOS:

25120 + 1863 + 90 + 267 = 27340
```

Como podemos verificar, o custo calculado é igual ao resultado da solução ótima.

2.7 Comparação com o Trabalho 1

2.7.1 Ficheiro de Input

```
/* Função Objetivo */
min:

10 p11 + 3 a11 + 1 b11 + 180 c11 +
10 p12 + 3 a12 + 1 b12 + 160 c12 +
10 p13 + 3 a13 + 1 b13 + 180 c13 +
10 p14 + 3 a14 + 1 b14 + 160 c14 +
10 p15 + 3 a15 + 1 b15 + 180 c15 +
10 p16 + 3 a16 + 1 b16 + 160 c16 +
10 p17 + 3 a17 + 1 b17 + 180 c17 +
12 p18 + 3 a18 + 1 b18 + 160 c18 +
10 p19 + 3 a19 + 1 b19 + 180 c19 +
```

```
10 p110 + 3 a110 + 1 b110 + 160 c110 +
10 p111 + 3 a111 + 1 b111 + 180 c111 +
10 p112 + 160 c112 +
15 e11 + 15 e12 + 15 e13 + 15 e14 +
15 e15 + 15 e16 + 15 e17 + 18 e18 +
15 e19 + 15 e110 + 15 e111 + 15 e112;
/* RESTRIÇÕES */
/* Restringir a produção para o armazém de produto final */
p11 + e11 + 20 - a11 = 9;
p12 + e12 + a11 - a12 = 9;
p13 + e13 + a12 - a13 = 9;
p14 + e14 + a13 - a14 = 12;
p15 + e15 + a14 - a15 = 16;
p16 + e16 + a15 - a16 = 17;
p17 + e17 + a16 - a17 = 19;
p18 + e18 + a17 - a18 = 19;
p19 + e19 + a18 - a19 = 16;
p110 + e110 + a19 - a110 = 12;
p111 + e111 + a110 - a111 = 10;
p112 + e112 + a111 - a112 = 9;
/* Restringir a compra para o armazém de matéria-prima */
c11 + 16 - b11 = p11 + e11;
c12 + b11 - b12 = p12 + e12;
c13 + b12 - b13 = p13 + e13;
c14 + b13 - b14 = p14 + e14;
c15 + b14 - b15 = p15 + e15;
c16 + b15 - b16 = p16 + e16;
c17 + b16 - b17 = p17 + e17;
c18 + b17 - b18 = p18 + e18;
c19 + b18 - b19 = p19 + e19;
c110 + b19 - b110 = p110 + e110;
c111 + b110 - b111 = p111 + e111;
c112 + b111 - b112 = p112 + e112;
/* Restringir a produção no mês */
p11 <= 10;
p12 <= 10;
p13 <= 10;
p14 <= 10;
p15 <= 10;
p16 <= 10;
```

```
p17 <= 10;
p18 <= 10;
p19 <= 10;
p110 <= 10;
p111 <= 10;
p112 <= 10;
/* Restringir a produção extra no mês */
e11 <= 6;
e12 <= 6;
e13 <= 6;
e14 <= 6;
e15 <= 6;
e16 <= 6;
e17 <= 6;
e18 <= 6;
e19 <= 6;
e110 <= 6;
e111 <= 6;
e112 \le 6;
/* Restringir o armazenamento de produto final no mês */
a11 \le 40;
a12 \le 40;
a13 \le 40;
a14 \le 40;
a15 <= 40;
a16 \le 40;
a17 <= 40;
a18 \le 40;
a19 \le 40;
a110 \le 40;
a111 \le 40;
a112 \le 40;
/* Restringir o armazenamento de matéria-prima no mês */
b11 <= 30;
b12 \le 30;
b13 <= 30;
b14 \le 30;
b15 <= 30;
b16 <= 30;
b17 <= 30;
b18 <= 30;
```

```
b19 <= 30;
b110 <= 30;
b111 <= 30;
b112 <= 30;
/* Restringir armazenamento final */
a112 = 20;
b112 = 16;
```

2.7.2 Ficheiro de Output

Value of objective function: 27340.00000000

Actual values of the variables:

moduar	varaos	01	0110	variabrob.
p11				0
a11				11
b11				16
c11				0
p12				6
a12				8
b12				10
c12				0
p13				10
a13				9
b13				0
c13				0
p14				10
a14				10
b14				16
c14				29
p15				10
a15				10
b15				0
c15				0
p16				10
a16				9
b16				16
c16				32
p17				10
a17				6
b17				0
c17				0
p18				10
a18				3

b18

16

c18	32
p19	10
a19	3
b19	0
c19	0
p110	10
a110	7
b110	16
c110	32
p111	10
a111	13
b111	0
c111	0
p112	10
c112	32
e11	0
e12	0
e13	0
e14	3
e15	6
e16	6
e17	6
e18	6
e19	6
e110	6
e111	6
e112	6
a112	20
b112	16

2.7.3 Conclusão

O valor da solução óptima obtido num modelo modificado do Trabalho 1, em LPSolve é de 27430, o mesmo que é obtido no modelo de transportes em rede, em Relax4. Desta forma podemos concluir que com dois algoritmos diferentes, obtemos a mesma solução para o problema em questão.

3. Parte II

3.1 Formulação do problema

3.1.1 Variáveis de decisão adicionais

U.E.: Uma U.E de concentrado de laranja é o peso de concentrado necessário para produzir uma tonelada de produto final (que equivale a uma U.E de produto final).

 $X_{i,j}$: representa o fluxo no arco orientado (i,j).

Para resolver o problema do atraso, adicionou-se dois arcos, em cada vértice onde sai a procura, expecto o primeiro (vértice 14). O sentido dos arcos, é do mês actual para o mês anterior. Um dos arcos corresponde ao atraso de 1 U.E. com custo de 1 U.M., e o outro arco com o mesmo sentido, corresponde as restantes U.E., com um custo de 10 U.M. por cada unidade. Desta forma garantimos que é possivel aceitar atrasos na entrega do produto, pois caso um mês não produza o suficiente para completar a procura, o mês seguinte pode produzir a quantidade em falta, completando a procura. As variáveis de decisão adicionais correspondem ao fluxo existente nestes novos arcos.

3.1.2 Função Objetivo

Função que tem como objectivo minimizar o custo

$$min: \sum_{(i,j)\in A} C_{i,j} * X_{i,j}$$

3.1.3 Restrições adicionais

Restrição que garante a conservação do fluxo:

$$-\sum_{(i,j)\in A} X_{i,j} + \sum_{(j,i)\in A} X_{j,i} = B_j,$$

para todo,

$$j \in V$$

Com esta restrição garantimos a conservação de fluxo, isto é, a quantidade que sai no vértice j (somatório dos arcos com sentido de j para i) menos a quantidade que

entre no vértice (somatório dos arcos com sentido de i para j) é igual ao valor de B_j (vértice j).

Restrição que verifica a capacidade de cada arco:

$$0 \leq X_{i,j} \leq U_{i,j}$$

para todo,

$$j \in A$$

Com esta restrição garantimos que a capacidade em cada arco, está limitada pelo valor $U_{i,j}$ (capacidade máxima), isto é, o fluxo num arco $(X_{i,j})$ é inferior ou igual a capacidade máxima desse arco $(U_{i,j})$.

Onde:

- V corresponde ao número de vértices.
- A corresponde ao número de arcos.
- $X_{i,j}$ representa o fluxo no arco orientado (i,j).
- $C_{i,j}$ corresponde ao custo unitário de transporte no arco orientado (i,j).
- $U_{i,j}$ representa a capacidade máxima do arco orientado (i,j).
- B_j representa a oferta (valor positivo) ou procura (valor negativo) para o vértice j. Caso o B_j seja 0, significa que a quantidade que entre é igual a que sai.

3.1.4 Diagrama

3.2 Ficheiro de Input

25

80

1 2 180 1000

1 3 160 1000

1 4 180 1000

1 5 160 1000

1 6 180 1000

1 7 160 1000

1 8 180 1000

1 9 160 1000

1 10 180 1000

1 11 160 1000

1 12 180 1000

1 13 160 1000

2 3 1 30

2 14 10 10

2 14 15 6

3 4 1 30

3 15 10 10

3 15 15 6

4 5 1 30

4 16 10 10

4 16 15 6

5 6 1 30

5 17 10 10

5 17 15 6

6 7 1 30

6 18 10 10

6 18 15 6

7 8 1 30

7 19 10 10

7 19 15 6

8 9 1 30

8 20 10 10

8 20 15 6

9 10 1 30

9 21 12 10

9 21 18 6

10 11 1 30

10 22 10 10

10 22 15 6

11 12 1 30

11 23 10 10

11 23 15 6

12 13 1 30

12 24 10 10

12 24 15 6

13 25 10 10

- 13 25 15 6
- 14 15 3 40
- 15 16 3 40
- 15 14 1 1
- 15 14 10 1000
- 16 17 3 40
- 16 15 1 1
- 16 15 10 1000
- 17 18 3 40
- 17 16 1 1
- 17 16 10 1000
- 18 19 3 40
- 18 17 1 1
- 18 17 10 1000
- 19 20 3 40
- 19 18 1 1
- 19 18 10 1000
- 20 21 3 40
- 20 19 1 1
- 20 19 10 1000
- 21 22 3 40
- 21 20 1 1
- 21 20 10 1000
- 22 23 3 40
- 22 21 1 1
- 22 21 10 1000
- 23 24 3 40
- 23 22 1 1
- 23 22 10 1000
- 24 25 3 40
- 24 23 1 1
- 24 23 10 1000
- 25 24 1 1
- 25 24 10 1000
- 157
- 16
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- U
- -16

```
11

-9

-9

-12

-16

-17

-19

-19

-16

-12

-10
```

-29

3.3 Ficheiro de Output

```
END OF READING
NUMBER OF NODES = 25, NUMBER OF ARCS = 80
CONSTRUCT LINKED LISTS FOR THE PROBLEM
CALLING RELAX4 TO SOLVE THE PROBLEM
**********
TOTAL SOLUTION TIME = 0. SECS.
TIME IN INITIALIZATION = 0. SECS.
 1 5 29.
 1 7
      32.
 1 9 32.
  1 11 32.
 1 13 32.
 2 3 16.
 3 4 10.
 3 15 6.
 4 16
      10.
 5 6 16.
 5 17
       10.
 5 17
       3.
 6 18
       10.
 6 18
      6.
 7 8 16.
 7 19
       10.
 7 19
       6.
 8 20
       10.
 8 20
       6.
 9 10
       16.
 9 21
       10.
 9 21
       6.
 10 22 10.
  10 22
       6.
  11 12 16.
```

```
11 23
        10.
  11 23
        6.
        10.
  12 24
  12 24
         6.
  13 25
         10.
  13 25
         6.
  14 15
  15 16
        8.
  16 17
         9.
  17 18
         10.
  18 19
         10.
  19 20
         9.
 20 21
         6.
  21 22
         3.
 22 23
        3.
  23 24
        7.
 24 25
         13.
                27340.
OPTIMAL COST =
NUMBER OF AUCTION/SHORTEST PATH ITERATIONS = 85
NUMBER OF ITERATIONS =
NUMBER OF MULTINODE ITERATIONS =
NUMBER OF MULTINODE ASCENT STEPS =
NUMBER OF REGULAR AUGMENTATIONS =
**********
```

3.4 Plano detalhado de produção

O plano detalhado de produção nesta situação é o mesmo que na situação da $\bf Parte$ $\bf I$, uma vez que nenhum dos arcos de atraso é utilizado.

3.5 Validação do plano detalhado de produção

3.5.1 validação da conservação de fluxo das quantidades em cada nó da rede

```
VALIDAÇÃO DO MODELO PELAS RESTRIÇÕES:
NÓ 1: 157 = 29 + 32 + 32 + 32 + 32 <=> 157 = 157 VERDADEIRO
NO 2: 16 + 0 = 16 + 0 + 0 <=> 16 = 16 VERDADEIRO
NO 3: 0 + 16 = 10 + 6 + 0 <=> 16 = 16 VERDADEIRO
NO 4: O + 1O = O + 1O + O \iff 1O = 1O VERDADEIRO
NOS = 29 + 0 = 16 + 10 + 3 \iff 29 = 29 \text{ VERDADEIRO}
NO 6: O + 16 = 10 + 6 + 0 \iff 16 = 16 VERDADEIRO
NO 7: 32 + 0 = 10 + 6 + 16 \iff 32 = 32 \text{ VERDADEIRO}
NÓ 8: 0 + 16 = 10 + 6 <=> 16 = 16 VERDADEIRO
NO 9: 32 + 0 = 16 + 10 + 6 \iff 32 = 32 \text{ VERDADEIRO}
NÓ 10: 0 + 16 = 0 + 10 + 6 <=> 16 = 16 VERDADEIRO
NO 11: 32 + 0 = 16 + 10 + 6 <=> 32 = 32 VERDADEIRO
NÓ 12: 0 + 16 = 0 + 10 + 6 <=> 16 = 16 VERDADEIRO
NO 13: 32 + 0 = 16 + 10 + 6 <=> 32 = 32 VERDADEIRO
NÓ 14: 0 + 0 + 20 = 11 + 9 <=> 20 = 20 VERDADEIRO
NÓ 15: 6 + 0 + 11 = 8 + 9 <=> 17 = 17 VERDADEIRO
NO 16: 10 + 0 + 8 = 9 + 9 \iff 18 = 18 \text{ VERDADEIRO}
NÓ 17: 10 + 3 + 9 = 10 + 12 <=> 22 = 22 VERDADEIRO
NÓ 18: 10 + 6 + 10 = 10 + 16 <=> 26 = 26 VERDADEIRO
NÓ 19: 10 + 6 + 10 = 9 + 17 <=> 26 = 26 VERDADEIRO
NO(20: 10 + 6 + 9 = 6 + 19 \iff 25 = 25 \text{ VERDADEIRO}
NÓ 21: 10 + 6 + 6 = 3 + 19 \iff 22 = 22 \text{ VERDADEIRO}
NO 22: 10 + 6 + 3 = 3 + 16 <=> 19 = 19 VERDADEIRO
NO(23: 10 + 6 + 3 = 7 + 12 \iff 19 = 19 \text{ VERDADEIRO}
NÓ 24: 10 + 6 + 7 = 13 + 10 <=> 23 = 23 VERDADEIRO
NO 25: 10 + 6 + 13 = 20 + 9 <=> 29 = 29 VERDADEIRO
```

3.5.2 validação das restrições de capacidade

Pela análise das figuras apresentadas em 3.1.4 e 3.4, verificamos que as restrições de capacidade foram respeitadas.

3.6 Validação da solução ótima

```
CUSTOS DE COMPRA DE CONCENTRADO:

160 * (29 + 32 + 32 + 32 + 32) + 180 * (0) = 25120

CUSTOS DE PRODUÇÃO:

10*6 + 10*10 + 10*10 + 15*3 + 10*10 + 15*6 + 10*10 + 15*6 + 10*10 + 15*6 + 10*10 + 15*6 + 10*10 + 15*6 + 10*10 + 15*6 + 10*10 + 15*6 + 10*10 + 15*6 + 10*10 + 15*6 = 1863
```

CUSTO DE ARMAZENAMENTO CONCENTRADO:

16*1 + 10*1 + 16*1 + 16*1 + 16*1 + 16*1 = 90

CUSTO DE ARMAZENAMENTO PRODUTO FINAL:

3*(11 + 8 + 9 + 10 + 10 + 9 + 6 + 3 + 3 + 7 + 13) = 267

SOMATÓRIO DOS CUSTOS:

25120 + 1863 + 90 + 267 = 27340

Como podemos verificar, o custo calculado é igual ao resultado da solução ótima.

4. Parte III

4.1 Formulação do problema

4.1.1 Variáveis de decisão

U.E.: Uma U.E de concentrado de laranja é o peso de concentrado necessário para produzir uma tonelada de produto final (que equivale a uma U.E de produto final).

 $X_{i,j}$: representa o fluxo no arco orientado (i,j).

4.1.2 Função Objetivo

Função que tem como objectivo minimizar o custo.

- Modelo Real

$$min: \sum_{(i,j)\in A} C_{i,j} * X_{i,j}$$

- Modelo Transformado

$$min: \sum_{(i,j)\in A} C_{i,j} * X'_{i,j}$$

4.1.3 Restrições

• Restrição que garante a conservação do fluxo:

$$-\sum_{(i,j)\in A} X_{i,j} + \sum_{(j,i)\in A} X_{j,i} = B_j,$$

para todo,

$$j \in V$$

Com esta restrição garantimos a conservação de fluxo, isto é, a quantidade que sai no vértice j (somatorio dos arcos com sentido de j para i) menos a quantidade que entre no vértice (somatorio dos arcos com sentido de i para j) é igual ao valor de B_j (vértice j).

• Restrições que verificam a capacidade de cada arco:

$$L_{i,j} \leq X_{i,j} \leq U_{i,j}$$
, para qualquer, $(i,j) \in A \equiv 0 \leq X_{i,j} - L_{i,j} \leq U_{i,j}$, para qualquer, $(i,j) \in A \equiv 0 \leq X'_{i,j} \leq U_{i,j}$, para qualquer, $(i,j) \in A$

Todas estas três restrições tem como função garantir que a capacidade máxima não seja excedida. Os valores da oferta (ou procura) nos vértices i e j devem ser reajustados: a procura do vértice i é aumentada de $L_{i,j}$ unidades e a oferta do vértice j é aumentada de $L_{i,j}$ unidades. Esta transformação é equivalente a efectuar uma mudança de variável $X'_{i,j} = X_{i,j} - L_{i,j}$ no modelo de programação linear apresentado, ficando com um modelo transformado.

Onde:

- V corresponde ao número de vértices.
- A corresponde ao número de arcos.
- $X_{i,j}$ representa o fluxo no arco orientado (i,j).
- $C_{i,j}$ corresponde ao custo unitário de transporte no arco orientado (i,j).
- $U_{i,j}$ representa a capacidade máxima do arco orientado (i,j).
- B_j representa a oferta (valor positivo) ou procura (valor negativo) para o vértice j. Caso o B_j seja 0, significa que a quantidade que entre é igual a que sai.
- $L_{i,j}$ corresponde ao limite inferior do arco orientado (i,j).
- $X'_{i,j}$ corresponde a uma mudança de variável de $X_{i,j}$ para $L_{i,j}$.

4.1.4 Diagrama do Modelo Original

Tal como é dito no enunciado, agora passa a haver um inventário de segurança de 4 unidades, isto é, passa a ser obrigatório o armazenamento de 4 unidades de produto final ao fim de cada mês. Para isso basta adicionar a cada arco relativo ao armazenamento de produto final um limite inferior, que neste caso seria de 4.

4.1.5 Diagrama do Modelo Transformado

Visto que o Relax4 não aceita limites inferiores nos arcos, é necessário fazer um modelo transformado que torne possível o seu uso. A maneira mais simples de criar este novo modelo é adicionar a cada vértice de produção final duas arestas com sentidos opostos e com valores fixos 4, exceto a primeira e última aresta (primeiro e último mês). Ao mesmo tempo, é necessário diminuir o limite superior em 4 unidades das arestas de armazenamento, uma vez que já estamos a supor que existem sempre 4 unidades no inventário.

4.2 Ficheiro de Input

- 1 13 160 1000
- 2 3 1 30
- 2 14 10 10
- 2 14 15 6
- 3 4 1 30
- 3 15 10 10
- 3 15 15 6
- 4 5 1 30
- 4 16 10 10
- 4 16 15 6
- 5 6 1 30
- 5 17 10 10
- 5 17 15 6
- 6 7 1 30
- 6 18 10 10
- 6 18 15 6
- 7 8 1 30
- 7 19 10 10
- 7 19 15 6
- 8 9 1 30
- 8 20 10 10
- 8 20 15 6
- 9 10 1 30
- 9 21 12 10
- 9 21 18 6
- 10 11 1 30 10 22 10 10
- 10 22 15 6
- 11 12 1 30
- 11 23 10 10
- 11 23 15 6
- 12 13 1 30
- 12 24 10 10
- 12 24 15 6
- 13 25 10 10
- 13 25 15 6
- 14 15 3 36
- 15 16 3 36
- 16 17 3 36
- 17 18 3 36
- 18 19 3 36
- 19 20 3 36
- 20 21 3 36
- 21 22 3 36
- 22 23 3 36
- 23 24 3 36
- 24 25 3 36

```
157
16
0
0
0
0
0
0
0
0
0
0
-16
7
-9
-9
-12
-16
-17
-19
-19
-16
-12
-10
-25
```

4.3 Ficheiro de Output

```
END OF READING
NUMBER OF NODES = 25, NUMBER OF ARCS = 58
CONSTRUCT LINKED LISTS FOR THE PROBLEM
CALLING RELAX4 TO SOLVE THE PROBLEM
**********
TOTAL SOLUTION TIME = 0. SECS.
TIME IN INITIALIZATION = 0. SECS.
 1 5 30.
 1 7 32.
 1 9 32.
 1 11 31.
 1 13 32.
 2 3 16.
 3 4 10.
 3 15 6.
 4 16 10.
 5 6 16.
 5 17 10.
 5 17 4.
```

- 6 18 10.
- 6 18 6.
- 7 8 16.
- 7 19 10.
- 7 19 6.
- 8 20 10.
- 8 20 6.
- 9 10 16.
- 9 21 10.
- 9 21 6.
- 10 22 10.
- 10 22 6.
- 11 12 16.
- 11 23 10.
- 11 23 5.
- 12 24 10.
- 12 24 6.
- 13 25 10.
- 13 25 6.
- 14 15 7.
- 15 16 4.
- 16 17 5.
- 17 18 7.
- 18 19 7.
- 19 20 6.
- 20 21 3.
- 23 24 3.
- 24 25 9.

OPTIMAL COST = 27226.

NUMBER OF AUCTION/SHORTEST PATH ITERATIONS = 66

NUMBER OF ITERATIONS = 132

NUMBER OF MULTINODE ITERATIONS = 38

NUMBER OF MULTINODE ASCENT STEPS = 17

NUMBER OF REGULAR AUGMENTATIONS = 23

4.4 Plano detalhado de produção do modelo transformado

4.5 Validação do plano detalhado de produção

4.5.1 validação da conservação de fluxo das quantidades em cada nó da rede

VALIDAÇÃO DA CONSERVAÇÃO DO FLUXO

```
NO 1: 157 = 0 + 0 + 0 + 30 + 0 + 32 + 0 + 32 + 0 +
31 + 0 + 32 <=> 157 = 157 VERDADEIRO
NO 2: 16 + 0 = 16 + 0 + 0 <=> 16 = 16 VERDADEIRO
NO 3: 0 + 16 = 10 + 6 + 0 <=> 16 = 16 VERDADEIRO
NO 4: O + 1O = O + 1O + O \iff 1O = 1O VERDADEIRO
NOS 5: 30 + 0 = 16 + 10 + 4 \iff 29 = 29 \text{ VERDADEIRO}
NO 6: 0 + 16 = 0 + 10 + 6 \iff 16 = 16 \text{ VERDADEIRO}
NO 7: 32 + 0 = 16 + 10 + 6 \iff 32 = 32 \text{ VERDADEIRO}
NOS = 0 + 16 = 0 + 10 + 6 \iff 16 = 16 VERDADEIRO
NO 9: 32 + 0 = 16 + 10 + 6 \iff 32 = 32 \text{ VERDADEIRO}
NÓ 10: 0 + 16 = 0 + 10 + 6 <=> 16 = 16 VERDADEIRO
NO 11: 31 + 0 = 16 + 10 + 5 <=> 32 = 32 VERDADEIRO
NO 12: 0 + 16 = 0 + 10 + 6 <=> 16 = 16 VERDADEIRO
NÓ 13: 32 + 0 = 16 + 10 + 6 \iff 32 = 32 \text{ VERDADEIRO}
NO 14: 0 + 0 + 20 + 0 = 7 + 4 + 9 <=> 20 = 20 VERDADEIRO
NÓ 15: 6 + 0 + 7 + 4 = 4 + 4 + 9 \iff 17 = 17 \text{ VERDADEIRO}
NÓ 16: 10 + 0 + 4 + 4 = 5 + 4 + 9 \iff 18 = 18 \text{ VERDADEIRO}
NÓ 17: 10 + 4 + 5 + 4 = 7 + 4 + 12 <=> 23 = 23 VERDADEIRO
NÓ 18: 10 + 6 + 7 + 4 = 7 + 4 + 16 \iff 27 = 27 \text{ VERDADEIRO}
```

```
NÓ 19: 10 + 6 + 7 + 4 = 6 + 4 + 17 <=> 27 = 27 VERDADEIRO

NÓ 20: 10 + 6 + 6 + 4 = 3 + 4 + 19 <=> 26 = 26 VERDADEIRO

NÓ 21: 10 + 6 + 3 + 4 = 0 + 4 + 19 <=> 23 = 23 VERDADEIRO

NÓ 22: 10 + 6 + 4 = 0 + 4 + 16 <=> 20 = 20 VERDADEIRO

NÓ 23: 10 + 5 + 0 + 4 = 3 + 4 + 12 <=> 19 = 19 VERDADEIRO

NÓ 24: 10 + 6 + 3 + 4 = 9 + 4 + 10 <=> 23 = 23 VERDADEIRO

NÓ 25: 10 + 6 + 9 + 4 = 20 + 9 <=> 29 = 29 VERDADEIRO
```

4.5.2 validação das restrições de capacidade

Pela análise das figuras apresentadas em 4.1.4, 4.1.5 e 4.4, verificamos, que as restrições de capacidade foram respeitadas.

4.6 Validação da solução ótima

```
CUSTOS DE COMPRA DE CONCENTRADO:

160 * (30 + 32 + 32 + 31 + 32) + 160 * (0) = 25120

CUSTOS DE PRODUÇÃO:

10*6 + 10*10 + 10*10 + 15*4 + 10*10 + 15*6 + 10*10 + 15*6 + 10*10 + 15*6 + 10*10 + 15*6 + 10*10 + 15*6 + 10*10 + 15*6 + 10*10 + 15*6 = 1863

CUSTO DE ARMAZENAMENTO CONCENTRADO:

16*1 + 10*1 + 16*1 + 16*1 + 16*1 + 16*1 = 90

CUSTO DE ARMAZENAMENTO PRODUTO FINAL:

3*(7 + 4 + 5 + 7 + 7 + 6 + 3 + 3 + 9) = 153

SOMATÓRIO DOS CUSTOS:

25120 + 1863 + 90 + 153 = 27266
```

Como podemos verificar, o custo calculado é igual ao resultado da solução ótima.

4.7 Plano detalhado de produção do modelo real

4.8 Custo do plano de produção REAL

Para calcular o custo do plano de produção real, basta adicionar os custos do armazenamento de 4 unidades de produto final em cada mês ao custo total do modelo transformado.

CUSTO TOTAL =
$$3*(11*4) + 27226 = 132 + 27226 = 27358$$

Como podemos verificar, o valor da solução obtido é superior ao valor da solução obtido na questão 1. Isto acontece porque na versão sem inventário de segurança, o fluxo nos arcos (21,22) e (22,23) é inferior a 4 U.E. Quando passamos para a versão com inventário de segurança, ao limitar inferiormente os arcos em 4 U.E., a solução anterior torna-se impossível de obter. Logo obtemos uma solução com custos maiores.

5. Conclusão

Este trabalho tinha como principal objetivo aplicar os conceitos associados aos transportes em redes com limite superior e inferior, que foram lecionados durante as aulas.

Á medida que avançamos entre as várias partes do trabalho tivemos de ir alterando os diagramas de transportes em redes de modo a conseguirmos dar resposta aos novos cenários que iam surgindo, mantendo de certa forma grande parte do cenário anterior. Entre os 3 cenários apresentados, foi no cenário I que obtivemos o melhor resultado (menor custo).

Verificamos assim que para o nosso caso a possibilidade de atrasar a entrega para o mês seguinte em nada vai influenciar os resultados, visto que não vai haver alteração da solução óptima. Já a introdução do inventário de segurança (Parte 3) vai aumentar ligeiramente o custo associado à solução ótima, uma vez que estamos a impor um limite mínimo no armazenamento do produto final.

Concluindo, podemos afirmar que este trabalho foi bastante enriquecedor no que toca ao aprofundamento dos conhecimentos e melhor assimilação de alguns temas abordados até ao momento na U.C., permitindo-nos relacionar vários conceitos e estratégias de resolução de problemas. Para além disso, a ajuda do programa Relax4 foi essencial, tanto na obtenção de resultados, como na aplicação dos conceitos adquiridos.