# Neural Language Models

Sargur N. Srihari srihari@cedar.buffalo.edu

This is part of lecture slides on <a href="Deep Learning">Deep Learning</a>: http://www.cedar.buffalo.edu/~srihari/CSE676

# **Topics**

- 1. N-gram Models
- 2. Neural Language Models
- 3. High-dimensional Outputs
- 4. Combining Neural Language Models with n-grams
- 5. Neural Machine Translation
- 6. Other Applications

# Neural Language Models (NLMs)

- Overcome the curse of dimensionality of ngram modes
  - By using a distributed representation of words
- Unlike class-based n-gram models
  - NLMs are able to recognize that two words are similar
  - without losing the ability to encode each word as distinct from others

### Strength of NLMs

- Share statistical strength between one word (and its context) and other similar words and contexts
- Distributed representation allows model to treat words that have features in common similarly
- Curse of dimensionality handled by relating each training sentence to an exponential number of similar sentences

#### Word-to-Vec

- Training Data
- Word-to-vec
  - One-hot vector mapped to vector of 300
- Word embedding
  - Similar words are close together



Σ

Σ

0

10,000



#### Word-to-vec:

#### Represent noun by co-occurrences with 25 verbs\*

```
Semantic feature values:
"celery"
0.8368, eat
0.3461, taste
0.3153, fill
0.2430, see
0.1145, clean
0.0600, open
0.0586, smell
0.0286, touch
0.0000, drive
0.0000, wear
0.0000, lift
0.0000, break
0.0000, ride
```

```
Semantic feature values:
"airplane"
0.8673, ride
0.2891, see
0.2851, say
0.1689, near
0.1228, open
0.0883, hear
0.0771, run
0.0749, lift
0.0049, smell
0.0010, wear
0.0000, taste
0.0000, rub
0.0000, manipulate
```

<sup>\*</sup> in a trillion word text collection

### Neural model of language

[Mitchell et al., Science, 2008]



### Word Vectors and Embedding

- View raw symbols as points in a space whose dimensionality is vocabulary size
- Embed those points in a space of lower dimension
- In original space every word is at distance  $\sqrt{2}$  from every other word
- In embedding space words that appear frequently appear in similar contexts are close to each other

### Word embedding

- 2-D visualization of word embeddings from a machine translation model
  - Zoom in where semantically related words have embeddings close to each other (countries, dates)



#### Word to Vec

- https://www.quora.com/How-doesword2vec-work
- From corpus to co-occurrence matrix
- SVD converts word to a fixed-length vector

# Importance of Word Embedding

- Neural networks in other domains also define embeddings
  - E.g., convolutional neural network provides an image embedding
- Embedding in NLP is more interesting since natural language does not originally lie in a real-valued vector space

## Word Embedding

A word embedding W: words → R<sup>n</sup> is a
 parameterized function mapping words in some
 language to high dimensional vectors (perhaps
 200 to 300 dimensions), e.g.,

$$W(\text{`cat'})=(0.2, -0.4, 0.7,...) W(\text{`mat'})=(0.0,0.6,-0.1,...)$$

• Typically the function is a lookuptable, parameterized by a matrix  $\theta$ , with a row for each word:  $W_{\theta}(w_n) = \theta_n$ 

# Learning Word Embeddings

- W initialized with random vectors for each word
- It learns to have meaningful vectors in order to perform some task
  - Task: train network to tell whether 5-gram is valid
  - Training data: legal 5-grams, e.g., cat sat on the mat)
- Make half of them nonsensical by switching with a random word (cat sat song the mat)

# Network to determine valid 5-grams

the mat

cat sat song

Model runs each word in 5-gram through W to

get vector representing it

Feed those into

R which predicts if

5-gram is valid or broken.

#### We would like

- R(W(cat),W(sat),W(on)W(the)W(mat))=1
- R(W(cat),W(sat),W(song)W(the)W(mat))=1
- Need to learn parameters for W and R
  - -R is not as interesting as W
  - Entire point of task is to learn W

**►**S

R

# Visualizing word embedding

 t-SNE: a sophisticated technique for visualizing highdimensional data



 Map makes a lot of intuitive sense to us. Similar words are close together

# Words closest in the embedding

 Which words have embeddings closest to a given word?

| FRANCE      | JESUS   | XBOX        | REDDISH   | SCRATCHED | MEGABITS              |
|-------------|---------|-------------|-----------|-----------|-----------------------|
| AUSTRIA     | GOD     | AMIGA       | GREENISH  | NAILED    | OCTETS                |
| BELGIUM     | SATI    | PLAYSTATION | BLUISH    | SMASHED   | $_{ m MB/S}$          |
| GERMANY     | CHRIST  | MSX         | PINKISH   | PUNCHED   | $_{ m BIT/S}$         |
| ITALY       | SATAN   | IPOD        | PURPLISH  | POPPED    | $\operatorname{BAUD}$ |
| GREECE      | KALI    | SEGA        | BROWNISH  | CRIMPED   | CARATS                |
| SWEDEN      | INDRA   | PSNUMBER    | GREYISH   | SCRAPED   | KBIT/S                |
| NORWAY      | VISHNU  | HD          | GRAYISH   | SCREWED   | MEGAHERTZ             |
| EUROPE      | ANANDA  | DREAMCAST   | WHITISH   | SECTIONED | MEGAPIXELS            |
| HUNGARY     | PARVATI | GEFORCE     | SILVERY   | SLASHED   | $_{ m GBIT/S}$        |
| SWITZERLAND | GRACE   | CAPCOM      | YELLOWISH | RIPPED    | AMPERES               |

### Power of Word Embeddings

- Similar words being close together allows us to generalize from one sentence to a class of similar sentences
- Not just word for synonym but switching a word for a word in a similar class
- E.g., wall is blue → wall is red
  wall is blue → ceiling is red

## Word embeddings and analogies

- Analogies between words are encoded in difference vectors between words
  - E.g., constant male-female difference vector
    - W(woman)-W(man) $\approx$ W(aunt)-W(uncle)
    - W(woman)-W(man) $\approx$ W(queen)-W(king)
- Not surprising, since
  - we write "she is the aunt" but "he is the uncle"



#### Word embeddings & relationship pairs

#### More sophisticated relationships are encoded

| Relationship         | Example 1           | Example 2         | Example 3            |
|----------------------|---------------------|-------------------|----------------------|
| France - Paris       | Italy: Rome         | Japan: Tokyo      | Florida: Tallahassee |
| big - bigger         | small: larger       | cold: colder      | quick: quicker       |
| Miami - Florida      | Baltimore: Maryland | Dallas: Texas     | Kona: Hawaii         |
| Einstein - scientist | Messi: midfielder   | Mozart: violinist | Picasso: painter     |
| Sarkozy - France     | Berlusconi: Italy   | Merkel: Germany   | Koizumi: Japan       |
| copper - Cu          | zinc: Zn            | gold: Au          | uranium: plutonium   |
| Berlusconi - Silvio  | Sarkozy: Nicolas    | Putin: Medvedev   | Obama: Barack        |
| Microsoft - Windows  | Google: Android     | IBM: Linux        | Apple: iPhone        |
| Microsoft - Ballmer  | Google: Yahoo       | IBM: McNealy      | Apple: Jobs          |
| Japan - sushi        | Germany: bratwurst  | France: tapas     | USA: pizza           |

#### All these are side-effects

- All these properties of W are side-effects
  - We didn't try to have similar words close together
  - We didn't try to have analogies encoded with difference vectors
- All we tried to do was a simple task, whether a sentence was valid
  - These properties popped out of optimization process
- Neural networks learn better ways to represent data automatically

## Importance of Word Embedding

- Neural networks in other domains also define embeddings
  - E.g., convolutional neural network provides an image embedding
- Embedding is NLP is more interesting since natural language does not originally lie in a real-valued vector space
- Using distributed representations is also used with PGM hidden variables