Experiment No:06 Date: 29-08-2024

#### **DFT AND IDFT**

#### Aim

To perform DFT and IDFT with and without twiddle factor and to plot the magnitude and phase plot of DFT sequence.

#### **Theory**

Discrete Fourier Transform is the transformation used to represent the finite duration frequencies. DFT of a discrete sequence x(n) is obtained by performing sampling operations in both time domain and frequency domain. It is the frequency domain representation of a discrete digital signal.

The DFT of a sequence x (n) of length N is given by the following equation,

$$X(k) = \{\sum_{n=0}^{N-1} x(n) e^{\frac{-j2\pi kn}{N}}; 0 \le k \le N-1 \}$$

IDFT performs the reverse operation of DFT, to obtain the time domain sequence x(n) from frequency domain sequence X(k). IDFT of the sequence is given as,

$$x(n) = \frac{1}{N}$$

#### **Program**

```
a)
i)DFT
clc;
clear all;
close all;
x=[1 1 0 0];
N=length(x);
X=zeros(4,1);
for k=0:N-1
    for n =0:N-1
        X(k+1)=X(k+1)+x(n+1)*exp(-i*2*pi*n*k/N);
```

```
end
end
disp(round(X));
%using built in function
disp("Using built in function:");
disp(fft(x));
ii)IDFT
clc;
clear all;
close all;
X=[2 1-i 0 1+i];
N=length(X);
x=zeros(4,1);
for n=0:N-1
    for k = 0:N-1
        x(n+1)=(x(n+1)+X(k+1)*exp(i*2*pi*n*k/N));
    end
end
x=x/N;
disp(round(x));
%using built in function
disp("Using built in function:");
disp(ifft(X));
b)
i) DFT using twiddle factor
clc;
clear all;
close all;
```

```
x = [1 \ 2 \ 3 \ 4];
N = length(x);
X = zeros(N, 1);
twiddle_factors = zeros(N, N);
for k = 0:N-1
    for n = 0:N-1
        twiddle = exp(-2*pi*1i*k*n/N);
        twiddle_factors(k+1, n+1) = twiddle;
        X(k+1) = X(k+1) + x(n+1) * twiddle;
    end
end
disp("DFT:");
disp(X);
ii)IDFT using twiddle factor
clc;
clear all;
close all;
X=[2,1-i,0,1+i];
N=length(X);
x=zeros(N,1);
twiddle_factors=zeros(N,N);
for n=0:N-1
    for k=0:N-1
        twiddle =exp(2*i*pi*k*n/N);
        twiddle_factors(n+1,k+1)=twiddle;
        x(n+1)=x(n+1)+X(k+1)*twiddle
    end
end
x=x/N;
```

```
disp("IDFT:");
c) Magnitude and phase plot of dft
clc;
clear all;
close all;
xn=[1 1 1];
 N=4;
 L=length(xn);
 if(N<L)
    error('N must be greater than or equal to L')
 end
x=[xn,zeros(1,N-L)];
 N=length(x);
Xk=zeros(N,1);
 for k=0:N-1
    for n = 0:N-1
        Xk(k+1)=Xk(k+1)+x(n+1)*exp(-i*2*pi*n*k/N);
    end
 end
 mgXk=abs(Xk);
 phaseXk=angle(Xk);
 k=0:N-1;
 subplot(2,1,1);
 stem(k,mgXk);
 hold on
 plot(k,mgXk);
title('DFT sequence');
 xlabel('Frequency');
 ylabel('Magnitude');
 subplot(2,1,2);
```

```
stem(k,phaseXk);
hold on
plot(k,phaseXk);
title('Phase of the DFT sequence');
xlabel('Frequency');
ylabel('Phase');
```

### Result

Performed DFT and IDFT with and without twiddle factor and plotted the magnitude and phase plot of dft sequence.

## Observation

a)

## i)DFT

```
2.0000 + 0.0000i
```

1.0000 - 1.0000i

0.0000 + 0.0000i

1.0000 + 1.0000i

Using built in function:

 $2.0000 \pm 0.0000i$ 

1.0000 - 1.0000i

0.0000 + 0.0000i

1.0000 + 1.0000i

## ii)IDFT

1

1

0

0

Using built in function:

1

1

0

0

b)

# i)DFT using twiddle factor

DFT:

- 10.0000 + 0.0000i
- -2.0000 + 2.0000i
- -2.0000 0.0000i
- -2.0000 2.0000i

## ii)IDFT using twiddle factor

IDFT:

- 1.0000 + 0.0000i
- 1.0000 0.0000i
- -0.0000 + 0.0000i
- 0.0000 + 0.0000i

## c) Magnitude and phase plot of dft

### N=4



### N=8



## N=16

