

手机淘宝无线网关的演进优化之路与高可用性实践

阿里巴巴一无线事业部 洪海(孤星)

weibo:孤星_T

手机淘宝2013双11

手机淘宝无线网关

网关 —— 云与端的桥梁

• 统一的接入形式,为客户端开发提速

• 服务端快速向客户端输出业务能力

· 集中的API治理与基础设施能力

网关的演化—统一接入

统一接入

统一接入

- 统一的协议与标准化的SDK
- 集中的会话管理
- 集中的安全策略
- 统一的监控告警与报表
- 通用缓存服务
- 流控与过载保护
- 网络优化

网关的演化—api动态发布

API动态发布 ---传统rpc的调用

• 对服务端的类型的直接依赖或间接依赖

API动态发布 ----传统RPC接入API方式的困境

1. 依赖复杂

大量的接口包,打包越来 越复杂

2. 多分支与发布频率

同时存在的大量的发布分支, 网关频繁发布,稳定性受到挑战

Map结构的启发

```
Map:
{
    "uid": 123,
    "name": "张三",
    "gender": "male"
}

com.taobao.User:

{
    "uid": 123,
    "name": "张三",
    "gender": "male"
}
```

Map的Key--→ 对象属性

API接入动态化

• 无类型调用代替stub的依赖

• 映射配置文件的动态发布

解决方式 - 类型解耦

API的发布流程

网关的演化一网关优化

- 创建PDPContext
- 数据通过无线信号传到接入网(AN)
- 数据从接入网通过核心网(CN)到达数据网关 GGSN(GTP)
- 在GGSN数据网关,GTP被转换为TCP/IP协议 通过internet传递给应用网关
- 应用网关将请求转发给业务服务器

服务端优化 - - 挑战

- 流量增长的挑战随着手淘流量的加速增长,集群不断扩大。
- 高延时服务对网关的吞吐量的影响,无法合理的评估网关容量 业务延时差异从10ms-10s

继续加机器?还是应用优化?

性能:服务端异步

问题:

• HSF同步调用,等待结果时线程资源浪费

servlet-thread

解决方案:空间换时间(同时支持更多的连接)

- RPC的异步调用(callback)
- SERVLET 3.0异步

线程模型对比

• 原架构

• 新架构

性能:服务端异步—时序图

性能:服务端异步--优化结果

 在HSF 400ms延时时qps提升2.3倍,rt降低70%(请求 堆积)

• 在HSF 15ms下提升qps提升7%, load降低40%、cpu使用率降低16百分点

TCP/IP优化

TCP/IP优化一参数调整

- TCP拥塞控制
 - 调大初始窗口到10
 - tcp_slow_start_after_idle
- 积极主动的重传策略

MSS调整

TCP/IP优化一减少握手损耗

- spdy协议与长连接
 - 减少TCP连接创建,提高tcp连接的利用率

- slight-SSL
 - 优化的ssl握手过程,ssl握手0耗时

运营商网络优化一PCC优化

运营商网络优化一PCC优化

QCI	Resource T ype	Priority	Packet Del ay Budget (NOTE 1)	Packet Error Loss Rate (NOTE 2)	Example Services
1 (NOTE 3)		2	100 ms	10-2	Conversational Voice
2 (NOTE 3)	GBR	4	150 ms	10-3	Conversational Video (Live Streaming)
3 (NOTE 3)		3	50 ms	10-3	Real Time Gaming
4 (NOTE 3)		5	300 ms	10-6	Non-Conversational Video (Buffered Streaming)
5 (NOTE 3)		1	100 ms	10-6	IMS Signalling
6 (NOTE 4)		6	300 ms	10-6	Video (Buffered Streaming) TCP-based (e.g., www, e-mail, chat, ftp, p2p file sharing, progressive video, etc.)
7 (NOTE 3)	Non-GBR	7	100 ms	10-3	Voice, Video (Live Streaming) Interactive Gaming
8 (NOTE 5)		8	300 ms	10-6	Video (Buffered Streaming) TCP-based (e.g., www, e-mail, chat, ftp, p2p file
9 (NOTE 6)		9			sharing, progressive video, etc.)

运营商网络优化一PCC优化

客户端的优化

- 预加载
 - wifi下的数据预加载

- 本地缓存
 - 业务数据的本地缓存
 - 缓存优先展示和二次重绘

无线高可用性的延伸

App的可用性不只是云端

• 云上的可用性

• 管道的可用性

• 端的可用性

云上的可用性 - 隔离

- 隔离
 - 按业务分级形成物理隔离的集群
- 堵截
 - 软件防火墙(TMD)系统的防恶意攻击保护
 - 应用上的并发流控,保护后端应用的稳定性

管道的可用性

- HTTP DNS与IP直连
 - 防止DNS劫持
 - 加速DNS解析
- 自适应协与端口适配
 - sdpy优先 , failover到http(代理无法穿透或端口问题)
 - 端口由云端控制动态调整,端口不可用时的动态切换
- 自适应MSS

端的可用性

客户端的动态更新和patch技术

- Hotpatch
 - wax
 - Xposed

atlas

Q&A

