ПРОСТЕЙШИЕ ЗАДАЧИ

ласти. Тогда можно воспользоваться формулой Остроградского...

$$\iint_{S} \mathbf{W}_{n} d\sigma = \iiint_{V} \operatorname{div} \mathbf{W} dV$$

и преобразовать уравнение баланса к виду

$$\iint_{V} c p[u(P, t_2) - u(P, t_1)] dV_p =$$

$$= - \iint_{t_1} \iint_{V} W dV_p dt + \iint_{t_1} \iint_{V} F(P, t) dV_p dt.$$

(Будем предполагать, что F(P,t) непрерывная функция своих аргументов.)

Применяя теорему о среднем и теорему о конечных приращениях для функций многих переменных, получим:

$$c\rho \frac{\partial u}{\partial t} \Big|_{\substack{t=t_3 \\ P=P_1}} \Delta t \cdot V = -\operatorname{div} \mathbf{W} \Big|_{\substack{t=t_4 \\ P=P_2}} \Delta t \cdot V + F \Big|_{\substack{t=t_5 \\ P=P_3}} \Delta t \cdot V,$$

где $t_3,\,t_4,\,t_5$ - промежуточные точки на интервале Δ t, а $P_1,\,P_2,\,P_3$ - точки в объеме V. Фиксируем некоторую точку M(x, y, z) внутри V и будем стягивать V в эту точку, а Δ t стремить к нулю. После сокращения на Δ tV и указанного предельного перехода получим:

$$c\rho \frac{\partial u}{\partial t}(x, y, z, t) = -\operatorname{div} \mathbf{W}(x, y, z, t) + F(x, y, z, t).$$

Заменяя \mathbf{W} по формуле $\mathbf{W} = -\mathbf{k}$ grad \mathbf{u} , получим дифференциальное уравнение теплопроводности

$$c\rho u_t = \operatorname{div}(k\operatorname{grad} u) + F$$

ИЛИ

$$c\rho u_t = \frac{\partial}{\partial x}(k\frac{\partial u}{\partial x}) + \frac{\partial}{\partial y}(k\frac{\partial u}{\partial y}) + \frac{\partial}{\partial z}(k\frac{\partial u}{\partial z}) + F$$

Если среда неоднородна, то это уравнение обычно записывают в виде *F*

 $u_t = a^2(u_{xx} + u_{yy} + z_{zz}) + \frac{F}{cp},$

где $a^2 = \mathrm{k/c} \rho$ - коэффицент температурапроводности, или

$$u_t = a^2 \Delta u + f(f = \frac{F}{c\rho}),$$

где $\Delta=\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial y^2}$ — оператор Лапласа.

УРАВНЕНИЕ ПАРАБОЛИЧЕСКОГО ТИПА

4.Постановка краевых задач.Для выполнения единственного решения уравнения теплопроводности необходимо к уравнению присоединить начальные и граничные условия.

Начальное условие в отличие от уравнения гиперболического типа состоит лишь в задании значений функции $\mathbf{u}(\mathbf{x},\,\mathbf{t})$ в начальный момент t_0 .

Граничные условия могут быть различны в зависимости от температурного режима на границах. Рассматривают три основных типа граничных условий.

1. На конце стержня x=0 задана температура

$$u(0,t) = \mu(t),$$

где μ (t) - функция, заданная в некотором промежутке $t_0 \leqslant \leqslant t \leqslant T$, причем T есть промежуток времени,в течении которого изучается процесс.

На конце x = 1 задано значение производной

$$\frac{\partial u}{\partial x}(l,t) = \nu(t).$$

K этому условию мы приходим, если задана величина теплового потока $\mathrm{Q}(l,t)$, протекающего через торцевое сечение стержня,

$$Q(l,t) = -k \frac{\partial u}{\partial x}(l,t),$$

откуда $\frac{\partial u}{\partial x}(l,t),=\mu(t),$ где μt - известная функция, выражающаяся через заданный поток $\mathrm{Q}(\mathrm{l},\mathrm{t})$ по формуле

$$\mu(t) = -\frac{Q(l,t)}{k}.$$

3. На конце $\mathbf{x}=\mathbf{l}$ задано линейное соотношение между производной и функцией

$$\frac{\partial u}{\partial x}(l,t) = -\lambda [u(l,t) - \theta(t)].$$

Это граничное условие соответствует теплообмену по закону Ньютона на поверхности тела с окружающей средой, температура которой θ известна. Пользуясь двумя выражениями для теплового потока, вытекающего через сечение x=1,

$$Q = h(u - \theta)$$

$$Q = -k \frac{\partial u}{\partial x}$$

получаем математическую формулировку третьего граничного условия в виде

$$\frac{\partial u}{\partial x}(l, t = -\lambda [u(l, t) - \theta(t)],$$