Information Science III

6. The Grammar of Graphics and ggplot2 (1)

Yuki Yanai

yanai.yuki@kochi-tech.ac.jp

Today's Goals

- Understand the (layered) grammar of graphics
- Review the basic usage of ggplot2 package

Grammar of Graphics

What is a graphic?

- Grammar of graphics
 - Grammatically defines a graphic
 - Makes clear the composition of complicated graphics
 - Reveals connections between seemingly unrelated graphics
- Grammar helps us understand what a well-formed graphic is

Grammar of Graphics

- Original idea can be found in Bertin (1983). Semiology of Graphics.
- Idea was clearly defined by Wilson, Anand, and Grossman (2005) (also see Wilkinson 2012)
- Modified for R and ggplot2 by Hadley Wickham (see https://had.co.nz/ggplot2/)

Simple Dataset

Α	В	С	D
2	3	4	a
1	2	1	a
4	5	15	b
9	10	80	b

- Draw a scatterplot of A vs C
 - Use the shape of point for D

Mapping

A	В	С	D
2	3	4	a
1	2	1	a
4	5	15	b
9	10	80	b

- A -> position on x-axis
- C -> position on y-axis
- D -> shape

Mapping

X	у	shape
2	4	a
1	1	а
4	15	b
9	80	b

 This mapping can be used not only for a scatterpolot but also for other geometric representations such as a line pilot or a bar chart

Metric Conversion

x	у	shape
2	4	a
1	1	а
4	15	b
9	80	b

- Data units -> Physical units (or aesthetic units) in a graphic
 - Choose a scale: linear transformation, log transformation, etc.
 - Choose a coordinate to use
 - We usually use a Cartesian coordinate system

Metric Conversion

floor
$$\left(\frac{x - \min(x)}{\operatorname{range}(x)} \cdot \text{screen width}\right)$$

x	у	shape
2	4	a
1	1	a
4	15	b
9	80	b

- Example: we will scale
 - x-position to [0, 200]
 - y-position to [0, 300]
 - Shape: "a" to circle, and "b" to triangle

Metric Conversion

floor
$$\left(\frac{x - \min(x)}{\operatorname{range}(x)} \cdot \text{screen width}\right)$$

x	У	shape
25	11	circle
0	0	circle
75	53	triangle
200	300	triangle

- Example: we will scale
 - x-position to [0, 200]
 - y-position to [0, 300]
 - Shape: "a" to circle, and "b" to triangle

Draw a graph

- Plot the transformed data onto a screen
- Add annotations to the plot
 - Background
 - Axis labels
 - ▶ Title
 - ► Etc.

Steps to create a plot

- Three sources for a graphic
 - Data
 - Point geom for scatterplots
 - Scales and coordinate system
 - Axes and legends
 - Plot annotations
 - Background, axis labels, plot title, etc.

ggplot2

Make Graphs with ggplot2

- R has some built-in functions for grraphics
 - Different functions for different types of graphics
 - Need to remember many functions
 - Difficult to tweak the details
- ggplot2 enables us to make beautiful graphics easily
- ggplot2 is the de-facto standard for R graphics
- ★ Let's learn about ggplot2 more!

ggplot2

- An R package for data visualization
- grammar of graphics
 - Once you master the grammar, you can make many different graphics in a consistent way

Get used to tidyverse

- tidy + universe
- A set of packages for data analysis
 - Includes: ggplot2, dplyr, tidyr, readr, purrr, tibble, etc.
- For more details: https://www.tidyverse.org/

Hadley Wickham

- Chief Scientist at RStudio
- Creator of many essential R packages including ggplot2
 - You can use the textbook of ggplot2 online for free:

https://ggplot2-book.org/

Website: https://hadley.nz/

How ggplot2 works

Pass data.frame to ggplot() to get a graphic output

data.frame?

- A most frequently used data format in R is data.frame
 - You get data.frame when you read a rectangular data set (tidy data) by read.csv() or readr::read_csv()
 - You can create a data frame by tibble::tibble() or data.frame()
 - You can transform a matrix into a data.frame by tibble::as_tibble() or as.data.frame()

How to make a data.frame

- n: sample size
- x : a random variable, $x_i \sim \text{Uniform}(0,1)$
- y: a random variable, $y_i \sim \text{Normal}(0.8x_i, \sigma^2 = 1)$
- Create a data.frame named myd containing 2 variables x and y

Run the following (assuming that tidyverse has been loaded)

```
n <- 100
x_vec <- runif(n, min = 0, max = 1)
y_vec <- rnorm(n, mean = 0.8 * x_vec, sd = 1)
myd <- tibble(x = x_vec, y = y_vec)
class(myd)</pre>
```

21

Use built-in data

- R provides a variety of data sets
- You can see the available data by data()
- E.g., mtcars; diamonds

```
data(mtcars)
glimpse(mtcars)
```

data(diamonds)
glimpse(diamonds)

Basic Usage of ggplot2

- 1. Pass a data.frame that you'd like to visualize to ggplot() function
- 2. Add a layer[s] of graphics you'd like to make
- 3. Customize labels, legends, etc.
- 4. Display the graphic by plot() or print()

1. ggplot()

- First argument is data: pass a data.frame
- Second argument is mapping: specify which variables represent what by aes (<u>aes</u>thetics)
- E.g., With the data.frame mtcars, map wt onto x-axis and mpg onto y-axis

p1_1 <- ggplot(mtcars, aes(x = wt, y = mpg)) plot(p1_1)</pre>

25

2. geom_xxx()

- Add a graphic layer by a function beginning with geom (geometry)
- xxx can be may different things
 - Histogram: geom_histogram()
 - Scatter plot: geom_point()
- Depending on which geom you use, what you should specify for aes might differ

Previously saved object

3. Other customizations

- E.g. Modify axis labels by labs()
 - Label should be surrounded by quotation marks
 - x-axis: x
 - y-axis: y
 - Title of the plot: title (for blank title, "" or just omit the argument)

```
p1_3 \leftarrow p1_2 + p1_3 \leftarrow p1_2 + p1_3 \leftarrow p1_3 \leftarrow p1_2 + p1_3 \leftarrow p1_3 \leftarrow
```


4. plot() or print()

- Save a ggplot output as an object. Then, display it by plot() or print()
 - ◆ Save a graphic as an object makes it easy to re-use the graphic
 - Re-examine the graphic
 - Layout multiple graphics in a single picture (using patchwork package)
 - Export graphics to other files (PDF, PNG, etc.)

Demonstrations

- http://htmlpreview.github.com/?https://
 github.com/yukiyanai/KUT_R/blob/master/htmls/
 yanai_kutR_001.html
- https://rstudio.cloud/project/762403

31

Some frequently used functions (1)

A vertical line at x = a

A horizontal line at y = b

Some frequently used functions (1)

• Visualize x in a range: $x \in [a, b]$

```
xlim(a, b)
```

• Visualize y in a range: $y \in [s, t]$

```
ylim(s, t)
```

• Zoom in to $x \in [a, b]$, $y \in [s, t]$

```
coord_cartesian(xlim = c(a, b), ylim = c(s, t))
```

Exchange x-axis and y-axis

The R Graph Gallery

Visualization examples using R

https://www.r-graph-gallery.com/

References

Wickham, Hadley. *ggplot2: Elegant Graphics for Data Analysis*, 3rd ed. (work in progress) https://ggplot2-book.org/

©2022 Yuki \

Next class

7. The Grammar of Graphics and ggplot2 (2)