Nemdeterminisztikus Turing-gépek

Jelölés: $\mathcal{P}(X) = \{Y \mid Y \subseteq X\}$ az X halmaz hatványhalmaza.

Definíció

Az egyszalagos **nemdeterminisztikus Turing gép** (továbbiakban röviden NTG) egy $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ rendezett hetes, ahol

- Q az állapotok véges, nemüres halmaza,
- $q_0, q_i, q_n \in Q$, q_0 a kezdő- q_i az elfogadó- és q_n az elutasító állapot,
- Σ és Γ ábécék, a bemenő jelek illetve a szalagszimbólumok ábécéje úgy, hogy Σ ⊆ Γ és ⊔ ∈ Γ \ Σ,
- $\delta: (Q \setminus \{q_i, q_n\}) \times \Gamma \to \mathcal{P}(Q \times \Gamma \times \{L, S, R\}).$

Azaz míg a **determinisztikus** esetben a δ átmenetfüggvény minden egyes ($Q \setminus \{q_i, q_n\}$)× Γ -beli párhoz **pontosan egy**, addig egy **nemdeterminisztikus** TG **akárhány** (pl. 0,1,5,100) darab $Q \times \Gamma \times \{L, S, R\}$ -beli rendezett hármast rendelhet hozzá.

Vegyük észre, hogy $|Q \times \Gamma \times \{L, S, R\}|$ véges.

A konfiguráció fogalma azonos, jelölje most is C_M az M NTG lehetséges konfiguráció nak halmazát.

Definíció Egy $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ egyszalagos nemdeterminisztikus Turing gép $\vdash \subseteq C_M \times C_M$ **egylépéses konfigurációátmenet** relációját az alábbiak szerint definiáljuk.

Legyen *uqav* egy konfiguráció, ahol $a \in \Gamma$, $u, v \in \Gamma^*$.

- Ha $(r, b, R) \in \delta(q, a)$, akkor $uqav \vdash ubrv'$, ahol v' = v, ha $v \neq \varepsilon$, különben $v' = \sqcup$,
- ha $(r, b, S) \in \delta(q, a)$, akkor $uqav \vdash urbv$,
- ha $(r, b, L) \in \delta(q, a)$, akkor $uqav \vdash u'rcbv$, ahol $c \in \Gamma$ és u'c = u, ha $u \neq \varepsilon$, különben u' = u és $c = \sqcup$.

Példa: Tegyük fel, hogy $\delta(q_2, a) = \{(q_5, b, L), (q_1, d, R)\}$ Legyen továbbá $C_1 = bcq_2a \sqcup b, C_2 = bq_5cb \sqcup b, C_3 = bcdq_1 \sqcup b$. Ekkor $C_1 \vdash C_2$ és $C_1 \vdash C_3$.

Vegyük észre, hogy míg a **determinisztikus** esetben minden nem-megállási C konfigurációhoz **pontosan egy** C' konfiguráció létezett, melyre $C \vdash C'$, addig a **nemdeterminisztikus** esetben **több** ilyen is létezhet. Pl. 0,1,5,100 darab. Persze csak véges sok, hiszen $|Q \times \Gamma \times \{L, S, R\}|$ véges!

Többlépéses konfigurációátmenet: + reflexív, tranzitív lezártja, azaz:

Definíció A $\vdash^* \subseteq C_M \times C_M$ **többlépéses konfigurációátmenet** relációját a következőképpen definiáljuk: $C \vdash^* C' \Leftrightarrow$

- ha C = C' vagy
- ha $\exists n > 0 \land C_1, C_2, \dots C_n \in C_M$, hogy $\forall 1 \le i \le n-1$ -re $C_i \vdash C_{i+1}$ valamint $C_1 = C$ és $C_n = C'$.

Példa: Tegyük fel, hogy $C_1 \vdash C_2$, $C_1 \vdash C_3$, $C_2 \vdash C_4$. Ekkor $C_1 \vdash^* C_1$, $C_1 \vdash^* C_2$, $C_1 \vdash^* C_3$ és $C_1 \vdash^* C_4$ is teljesül.

Definíció

Az $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ nemdeterminisztikus Turing gép által **felismert nyelv** $L(M) = \{u \in \Sigma^* \mid q_0 u \sqcup \vdash^* x q_i y \text{ valamely } x, y \in \Gamma^*, y \neq \varepsilon \text{ -ra} \}.$

Bár a definíció formálisan megegyezik a determinisztikus TG által felismert nyelv definíciójával az egylépéses átmenet fogalmának módosulása miatt újra érdemes átgondolni mit jelent ez.

Determinisztikus esetben csupán egyetlen számítása létezik a gépnek adott kezdőkonfigurációból, így ha elfogadó konfigurációba jut, akkor nincs elutasító konfigurációba jutó számítása és viszont.

Egy NTG-nek azonban **több számítása is lehet ugyanarra a szóra**. Ezek között lehetnek elfogadó és elutasító (sőt nem termináló!) számítások is. Egy NTG akkor fogad el egy szót, ha az adott szóra **legalább egy számítása** q_i -ben ér véget (hiszen ekkor a kezdőkonfiguráció és ez az elfogadó konfiguráció \vdash * relációban áll).

Egy NTG lehetséges számításai egy u szón a számítási fájával szemléltethető.

Definíció Egy M TG egy $u \in \Sigma^*$ inputjához tartozó **nemdeterminisztikus számítási fa** egy gyökeres fa, melynek csúcsai M konfigurációival címkézettek. $q_0u \sqcup a$ gyökér címkéje. Ha C egy csúcs címkéje, akkor $|\{C' \mid C \vdash C'\}|$ gyereke van és ezek címkéi éppen $\{C' \mid C \vdash C'\}$ elemei.

Példa:

Tehát M elfogadja u-t, hiszen a $q_0u \sqcup \vdash C_3 \vdash C_{32} \vdash C_{321}$ számítása elfogadó konfigurációba visz. **Egyetlen** elfogadó számítás is elég!

Tehát adott inputra több számítás is lehetséges, ezek lehetnek elfogadóak, elutasítóak, **elakadóak** (ha olyan C-be jut, melyre $\{C' \mid C \vdash C'\} = \emptyset$), illetve végtelenek.

Észrevétel: $u \in L(M) \Leftrightarrow$ az u-hoz tartozó nemdeterminisztikus számítási fának van olyan levele, ami elfogadó konfiguráció.

Megjegyzés: a nemdeterminisztikus Turing gép definíciója értelemszerűen kiterjeszthető k-szalagos gépekre is, így beszélhetünk k-szalagos nemdeterminisztikus Turing gépekről is.

Definíció Az *M* NTG **felismeri** az $L \subseteq \Sigma^*$ nyelvet, ha L(M) = L.

Definíció Az M NTG **eldönti** az $L \subseteq \Sigma^*$ nyelvet, ha felismeri továbbá minden $u \in \Sigma^*$ input szóhoz tartozó nemdeterminisztikus számítási fa véges és a fa minden levele elfogadó vagy elutasító konfiguráció.

Definíció Az M NTG f(n) időkorlátos (időigényű), ha minden $u \in \Sigma^*$ n hosszú szóra u számítási fája legfeljebb f(n) magas.

Tehát, ha M f(n) időkorlátos, akkor nincs végtelen számítása és minden n-re a legfeljebb n méretű bemeneteken a számításai (nemcsak az elfogadó, hanem az elutasító és elakadó számításai is) legfeljebb f(n) lépésben véget érnek.

Tétel Minden $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ f(n) időkorlátos NTG-hez megadható egy ekvivalens, $2^{O(f(n))}$ időkorlátos M' determinisztikus TG.

Számoló Turing-gépek

Az eldöntési (igen/nem kimenetű) problémák általánosításai a (ki)számítási problémák. Ilyenkor a kimenet bármi lehet.

Feltehetjük (megfelelő kódolás alkalmazásával), hogy a kiszámítandó f értelmezési tartománya Σ^* , értékkészlete Δ^* valamely Σ , Δ ábécékre.

Definíció Azt mondjuk, hogy az $M = \langle Q, \Sigma, \Delta, \delta, q_0, q_i, (q_n) \rangle$ TG **kiszámítja** az $f : \Sigma^* \to \Delta^*$ szófüggvényt, ha minden $u \in \Sigma^*$ -beli szóra megáll, és ekkor $f(u) \in \Delta^*$ olvasható az utolsó szalagján.

Megjegyzés: A definíció értelmében nincs szükség q_i és q_n megkülönböztetésére, elég lenne egyetlen megállási állapot. [Ezért van q_n ()-ben.]

Feladatok

1. Feladat: Az $M = \langle \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_i, q_n\}, \{0\}, \{0, 1, \sqcup\}, \delta, q_0, q_i, q_n \rangle$ determinisztikus Turing-gép állapotátmenetei az alábbi átmenetdiagrammal vannak megadva. A hiányzó átmenetek q_n -be mennek.

Gondoljuk meg mi történik 0^{12} -re! Mi lesz a felismert nyelv? Becsüljük meg az időigényét!

Megoldás:

• 1. iteráció után: 010101010101

2. iteráció után: 110111011101

3. iteráció után: 110111111101

Ellenőrző fázis: >1 db. 0 maradt.

0¹²-t elutasítja

• $L(M) = \{0^{2^n} | n \ge 0\}.$

• $M(n+1)(\lceil \log_2 n \rceil + 1) + 1 = O(n \log n)$ időkorlátos. A 2-hatványokra lép is $\Omega(n \log n)$ -et,

2. Feladat: Futtassuk az alábbi TG-et ($\Sigma = \{X\}$) az X^4 és az X^5 inputokra! Melyik nyelvet ismeri fel? Milyen időigénnyel?

Megoldás:

$$(q_0, \varepsilon, XXXX, \varepsilon, \sqcup) \vdash (q_1, \varepsilon, XXX, \varepsilon, \sqcup X) \vdash (q_0, \varepsilon, XXX, \varepsilon, X) \vdash (q_0, \varepsilon, XX, X, \sqcup) \vdash (q_1, \varepsilon, X, \varepsilon, XX) \vdash (q_1, \varepsilon, \sqcup, \varepsilon, \sqcup XX) \vdash (q_i, \varepsilon, \sqcup, \varepsilon, \sqcup XX)$$

Az i. iterációban kezdetben i-1 darab X van a 2. szalagon és a M TG megpróbál 2i-1 darab jelet törölni az 1. szalagról (i-1-et q_0 -ban 1-et a $q_0 \rightarrow q_1$ átmenetnél, i-1-et q_1 -ben). Ha éppen elfogytak az X-ek akkor elfogad. Tehát olyan hosszú szavakat fogad el, amelyek előállnak az első néhány páratlan szám összegeként, vagyis éppen a négyzetszámokat.

$$L(M) = \{X^{n^2} \mid n \ge 1\}.$$

$$\le n + \lceil \sqrt{n} \rceil + 1 = O(n) \text{ időkorlátos.}$$

5. Feladat: Készítsünk egy M nemdeterminisztikus Turing gépet, melyre $L(M) = \{ww^{-1} \mid w \in \{a, b\}^*\}!$

 $(p,\varepsilon,abba,\varepsilon,\sqcup) \vdash (q,\varepsilon,bba,a,\sqcup) \vdash (r,\varepsilon,bba,\varepsilon,a) \vdash (\textcolor{red}{q_n},\varepsilon,bba,\varepsilon,a)$

 $\begin{array}{l} (p,\varepsilon,abba,\varepsilon,\sqcup) \vdash (q,\varepsilon,bba,a,\sqcup) \vdash (q,\varepsilon,ba,ab,\sqcup) \vdash (r,\varepsilon,ba,a,b) \vdash (r,b,a,\varepsilon,ab) \vdash (r,ba,\sqcup,\varepsilon,\sqcup ab) \vdash (q_i,ba,\sqcup,\varepsilon,\sqcup ab) \end{array}$

6. Feladat: Készítsünk egy M nemdeterminisztikus Turing gépet, amelyre $L(M) = \{ww \mid w \in \{a, b\}^*\}!$

 $(p, \varepsilon, abab, \varepsilon, \sqcup) \vdash (q, \varepsilon, bab, a, \sqcup) \vdash (r, \varepsilon, bab, \varepsilon, a) \vdash (r, \varepsilon, bab, \varepsilon, \sqcup a) \vdash (s, \varepsilon, bab, \varepsilon, a) \vdash (q_n, \varepsilon, bab, \varepsilon, a)$

 $(p,\varepsilon,abab,\varepsilon,\sqcup) \vdash (q,\varepsilon,bab,a,\sqcup) \vdash (q,\varepsilon,ab,ab,\sqcup) \vdash (r,\varepsilon,ab,a,b) \vdash (r,\varepsilon,ab,\varepsilon,ab) \vdash (r,\varepsilon,ab,\varepsilon,ab) \vdash (r,\varepsilon,ab,\varepsilon,ab) \vdash (s,a,b,a,b) \vdash (s,ab,\sqcup,ab,\sqcup) \vdash (q_i,ab,\sqcup,ab,\sqcup)$

7. Feladat: Egy szalagon valaki elrejtett egy kincset, melyet *X* jelöl. Keressük meg a kincset determinisztikus és nemdeterminisztikus módszerekkel, ha a kiinduló cella tetszőleges lehet.

Megoldás:

Ha a kincs a kezdőpozíciótól n távolságra van, akkor a determinisztikus gép futási ideje $\Theta(n^2)$.

8. Feladat: Készítsünk egy M Turing gépet, amely az f(u) = ub ($u \in \{a, b\}^*$) függvényt számítja ki!

Megoldás:

- **9. Feladat:** Készítsünk egy M Turing gépet, amely az $f: w \to ww$ függvényt számítja ki $(w \in \{a,b\}^*)$.
- **1. Megoldás:** Ötlet: 2 szalaggal. Lemásol, visszateker az 1. szalagon. Újra lemásol.

2. Megoldás:

10. Feladat:

Adjuk meg egy $f(X^n) = X^{n^2}$ függvényt kiszámító TG vázlatát! Hogyan lehet ezt felhasználni négyzetszámokat felismerő TG építéséhez?

Megoldás:

Készítsünk egy 3 szalagos TG-et.

- Másoljuk át az inputot a 2. szalagra és állítsuk a 2. szalag fejét a másolat végére.
- Amíg a 2. szalag tartalmának elejére nem érünk: másoljuk át az 1. szalag tartalmát a 3.-ra, majd lépjünk egyet a 2. szalag fejével balra.

n-szer másolunk át n darab X-et a 3. szalagra, így összesen n^2 darab X lesz a 3. szalagon.

Ennek a számító TG-nek a felhasználásával készíthetünk egy négyzetszámokat felismerő "rendes" 4 szalagos TG-et:

- az 1. szalagon lesz a bemenet, a másik 3 szalagon futtatjuk az előző számláló TG-et a következőképpen:
- inicializáljuk a 2. szalagot egyetlen X-szel,
- tegyük fel, hogy éppen k darab X van 2. szalagon,
- állítsunk elő a 4. szalagon (a 3. szalag segítségével) k^2 darab X-et,
- hasonlítsuk össze az 1. és a 4. szalag tartalmának (n darab X) hosszát
 - ha $n = k^2$, elfogadjuk az inputot
 - ha $n < k^2$, elutasítjuk az inputot
 - ha $n > k^2$, akkor k értékét eggyel növelve újabb iterációt kezdünk

Valójában ez a TG sorra kipróbálja a természetes számokat, hogy gyöke-e az input hosszának.

11. Feladat: Készítsünk TG-et, mely mindig megáll, és megálláskor az input szó olvasható a szalagon, de egy cellával jobbra tolva! $(\Sigma = \{0, 1\})$

Megoldás:

Ez egy f(n) = n + 1 időkorlátos TG.

12. Feladat: Készítsünk egy M Turing gépet, amely egy $x \in \{0, 1\}^*$ bemenetet bináris számként tekint és hozzáad 1-et!

Megoldás:

13. Feladat:

Adjunk meg egy az f(x#y) = x + y függvényt kiszámító 3 szalagos TG-et $(x, y \in \{0, 1\}^*)$, ahol + a bináris összeadás.

Megoldás:

Előfeldolgozásként *x*-et az 1., *y*-t a 2. szalagra másoljuk és a két bitsorozat végére állítjuk a fejeket (ha az input nem ilyen alakú, azaz 0 vagy 2-nél több #-t tartalmaz, akkor hibaüzenettel leállunk). Innen hátulról indulunk, az eredményt a 3. szalagra írjuk.

14. Feladat:

Adjuk meg egy $f(x\#y) = x \cdot y$ függvényt kiszámító 4 szalagos TG $(x, y \in \{0, 1\}^*)$ vázlatát, ahol · a bináris szorzás.

Megoldás:

- 1. szalag: x
- 2. szalag: y
- 3. szalag: segédszalag
- 4. szalag: eredményszalag

Legyen y' az y egy prefixe. Aktuálisan $x \cdot y'$ olvasható a 4. szalagon. Vegyük y következő b bitjét:

- ha b = 0, akkor írjunk a 4. szalag végére egy 0-t
- ha b = 1, akkor a következőt tesszük:
 - másoljuk át a 4. szalag tartalmát a 3. szalagra és közben töröljük a 4. szalagot.
 - írjunk egy 0-t a 3. szalag végére
 - hívjuk meg az előző feladat összeadó gépét az 1. és 3. szalagra, az eredményt a 4. szalagra írjuk ki, közben a 3. szalagot töröljük

Ezek után $x \cdot y'b$ lesz olvasható a 4. szalagon.