Chemical Mechanism of MECCA

KPP version: 2.2.3_rs3

MECCA version: 4.4.2

Date: 2020-11-09

MECCA config (*.ini) file: latex.ini

Integrator: rosenbrock_posdef

Gas equation file: gas.eqn

Replacement file:

Selected reactions:

"True"

Number of aerosol phases: 1

Number of species in selected mechanism:

Gas phase: 708

Aqueous phase: 482

All species: 1190

Number of reactions in selected mechanism: Gas phase (Gnnn): 1815

Aqueous phase (Annn): Henry (Hnnn): 402 735

Aqueous phase photolysis (PHnnn): Heterogeneous (HETnnn): 21 27

Photolysis (Jnnn):

385

Tagging equations (TAGnnn): Isotope exchange (IEXnnn): Equilibria (EQnn): 138

All equations: Dummy (Dnn): 3524

Table 1: Gas phase reactions

#	labels	reaction	rate coefficient	reference
G1000	$\operatorname{UpStTrG}$	$O_2 + O(^1D) \to O(^3P) + O_2$	3.3E-11*EXP(55./temp)	Burkholder et al. (2015)
G1001	$\operatorname{UpStTrG}$	$\mathrm{O_2} + \mathrm{O(^3P)} \rightarrow \mathrm{O_3}$	6.0E-34*((temp/300.)**(-2.4))	Burkholder et al. (2015)
			*cair	
G1002a	UpStG	$\mathrm{O_3} + \mathrm{O(^1D)} \rightarrow 2 \; \mathrm{O_2}$	1.2E-10	Burkholder et al. $(2015)^*$
G1002b	UpG	$O_3 + O(^1D) \rightarrow O_2 + 2 O(^3P)$	1.2E-10	Burkholder et al. (2015)
G1003	UpStG	$\mathrm{O_3} + \mathrm{O(^3P)} ightarrow 2 \mathrm{O_2}$	8.0E-12*EXP(-2060./temp)	Burkholder et al. (2015)
G1004	UpG	$O_2 + O^+ \rightarrow O_2^+ + O(^3P)$	k_Op_O2(temp,temp_ion)	Fuller-Rowell (1993)
G1101	UpG	$O_2^+ + e^- \to 2 O(^3P)$	2.7E-7*(300./temp_elec)**(.7)	Fuller-Rowell (1993)
G2100	UpStTrG	$\mathrm{H} + \mathrm{O}_2 \to \mathrm{HO}_2$	k_3rd(temp,cair,4.4E-32,1.3,	Burkholder et al. (2015)
			7.5E-11,-0.2,0.6)	
G2101	UpStG	$\mathrm{H} + \mathrm{O}_3 \rightarrow \mathrm{OH} + \mathrm{O}_2$	1.4E-10*EXP(-470./temp)	Burkholder et al. (2015)
G2102	UpStG	$\mathrm{H_2} + \mathrm{O(^1D)} \rightarrow \mathrm{H} + \mathrm{OH}$	1.2E-10	Burkholder et al. (2015)
G2103	UpStG	$\mathrm{OH} + \mathrm{O}(^{3}\mathrm{P}) \rightarrow \mathrm{H} + \mathrm{O}_{2}$	1.8E-11*EXP(180./temp)	Burkholder et al. (2015)
G2104	$\operatorname{UpStTrG}$	$\mathrm{OH} + \mathrm{O}_3 \to \mathrm{HO}_2 + \mathrm{O}_2$	1.7E-12*EXP(-940./temp)	Burkholder et al. (2015)
G2105	$\operatorname{UpStTrG}$	$\mathrm{OH} + \mathrm{H_2} o \mathrm{H_2O} + \mathrm{H}$	2.8E-12*EXP(-1800./temp)	Burkholder et al. (2015)
G2106	UpStG	$\mathrm{HO_2} + \mathrm{O(^3P)} \rightarrow \mathrm{OH} + \mathrm{O_2}$	3.E-11*EXP(200./temp)	Burkholder et al. (2015)
G2107	$\operatorname{UpStTrG}$	$\mathrm{HO_2} + \mathrm{O_3} \rightarrow \mathrm{OH} + 2 \mathrm{O_2}$	1.E-14*EXP(-490./temp)	Burkholder et al. (2015)
G2108a	UpStG	$\mathrm{HO_2} + \mathrm{H} \rightarrow 2 \mathrm{OH}$	7.2E-11	Burkholder et al. (2015)
G2108b	UpStG	$\mathrm{HO_2} + \mathrm{H} ightarrow \mathrm{H_2} + \mathrm{O_2}$	6.9E-12	Burkholder et al. (2015)
G2108c	UpStG	$\mathrm{HO_2} + \mathrm{H} \rightarrow \mathrm{O(^3P)} + \mathrm{H_2O}$	1.6E-12	Burkholder et al. (2015)
G2109	UpStTrG	$\mathrm{HO_2} + \mathrm{OH} \rightarrow \mathrm{H_2O} + \mathrm{O_2}$	4.8E-11*EXP(250./temp)	Burkholder et al. (2015)
G2110	UpStTrG	$\mathrm{HO_2} + \mathrm{HO_2} ightarrow \mathrm{H_2O_2} + \mathrm{O_2}$	k_H02_H02	Burkholder et al. $(2015)^*$
G2111	UpStTrG	$\mathrm{H_2O} + \mathrm{O(^1D)} \rightarrow 2 \mathrm{OH}$	1.63E-10*EXP(60./temp)	Burkholder et al. (2015)
G2112	UpStTrG	$\mathrm{H_2O_2} + \mathrm{OH} \rightarrow \mathrm{H_2O} + \mathrm{HO_2}$	1.8E-12	Burkholder et al. (2015)
G2113	UpG	$\mathrm{H_2} + \mathrm{O(^3P)} \rightarrow \mathrm{H} + \mathrm{OH}$	1.60E-11*EXP(-4570./temp)	Roble (1995)
G2114a	UpG	$OH + OH \rightarrow H_2O + O(^3P)$	4.20E-12*EXP(-240./temp)	Sander et al. (2003)
G2114b	UpG	$\mathrm{OH} + \mathrm{OH} o \mathrm{H}_2\mathrm{O}_2$	$k_3rd(temp, cair, 6.9E-31, 1.0,$	Burkholder et al. (2015)
			2.6E-11,0.,0.6)	
G2115	UpG	$\mathrm{H} + \mathrm{H} ightarrow \mathrm{H}_2$	5.7E-32*(300./temp)**(1.6)*cair	Roble (1995)
G2116	UpG	$\mathrm{H_2O_2} + \mathrm{O(^3P)} \rightarrow \mathrm{OH} + \mathrm{HO_2}$	1.40E-12*EXP(-2000./temp)	Sander et al. (2003)
G2117	UpStTrG	$\mathrm{H_2O} + \mathrm{H_2O} ightarrow (\mathrm{H_2O})_2$	6.521E-26*temp*EXP(1851.09/temp)	Scribano et al. $(2006)^*$
			*EXP(-5.10485E-3*temp)	
G2118	UpStTrG	$(\mathrm{H_2O})_2 ightarrow \mathrm{H_2O} + \mathrm{H_2O}$	1.E0	see note*
G3001	UpGN	$NO^{+} + e^{-} \rightarrow .15 N + .85 N(^{2}D) + O(^{3}P)$	4.2E-7*(300./temp_elec)**(0.85)	Bailey et al. (2002)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G3002	UpGN	$N_2^+ + e^- \rightarrow .88 \text{ N} + 1.12 \text{ N}(^2\text{D})$	1.8E-7*(temp_elec/300.)**(-0.39)	Swaminathan et al. (1998)
G3003	UpGN	$N(^{2}D) + e^{-} \rightarrow N + e^{-}$	3.8E-12*(temp_elec)**(.81)	Swaminathan et al. (1998)
G3100	UpStGN	$N + O_2 \rightarrow NO + O(^3P)$	1.5E-11*EXP(-3600./temp)	Burkholder et al. (2015)
G3101	$\operatorname{UpStTrGN}$	$N_2 + O(^1D) \to O(^3P) + N_2$	2.15E-11*EXP(110./temp)	Burkholder et al. (2015)
G3102a	UpStGN	$N_2O + O(^1D) \rightarrow 2 NO$	7.259E-11*EXP(20./temp)	Burkholder et al. (2015)
G3102b	StGN	$N_2O + O(^1D) \rightarrow N_2 + O_2$	4.641E-11*EXP(20./temp)	Burkholder et al. (2015)
G3103	$\operatorname{UpStTrGN}$	$NO + O_3 \rightarrow NO_2 + O_2$	3.0E-12*EXP(-1500./temp)	Burkholder et al. (2015)
G3104	UpStGN	$NO + N \rightarrow O(^{3}P) + N_{2}$	2.1E-11*EXP(100./temp)	Burkholder et al. (2015)
G3105	UpStGN	$NO_2 + O(^3P) \rightarrow NO + O_2$	5.1E-12*EXP(210./temp)	Burkholder et al. (2015)
G3106	StTrGN	$NO_2 + O_3 \rightarrow NO_3 + O_2$	1.2E-13*EXP(-2450./temp)	Burkholder et al. (2015)
G3107	UpStGN	$NO_2 + N \rightarrow N_2O + O(^3P)$	5.8E-12*EXP(220./temp)	Burkholder et al. (2015)
G3108	StTrGN	$NO_3 + NO \rightarrow 2 NO_2$	1.5E-11*EXP(170./temp)	Burkholder et al. (2015)
G3109	$\operatorname{UpStTrGN}$	$NO_3 + NO_2 \rightarrow N_2O_5$	k_N03_N02	Burkholder et al. $(2015)^*$
G3110	StTrGN	$N_2O_5 \rightarrow NO_2 + NO_3$	k_N03_N02/(5.8E-27*EXP(10840./ temp))	Burkholder et al. $(2015)^*$
G3111	UpGN	$N(^{2}D) + NO \rightarrow N_{2} + O(^{3}P)$	6.70E-11	Fuller-Rowell (1993)
G3112	UpGN	$N(^{2}D) + O_{2} \rightarrow NO + O(^{3}P)$	6.20E-12*(temp/300.)	Duff et al. (2003)
G3113	UpGN	$N(^{2}D) + O(^{3}P) \rightarrow N + O(^{3}P)$	6.90E-13	Fell et al. (1990)
G3114	UpGN	$N(^{2}D) + O_{3} \rightarrow NO + O_{2}$	0.80E-16	Sander et al. (2003)
G3115	UpGN	$NO + O(^{3}P) \rightarrow NO_{2}$	k_3rd(temp,cair,9.0E-32,1.5, 3.0E-11,0.0,0.6)	Burkholder et al. (2015)
G3116	UpGN	$NO_2 + O(^3P) \rightarrow NO_3$	k_3rd(temp,cair,2.5E-31,1.8, 2.2E-11,0.7,0.6)	Burkholder et al. (2015)
G3117	UpGN	$N(^2D) \to N$	10.6	Fuller-Rowell (1993)
3118	UpGN	$N^+ + O_2 \rightarrow NO + O^+$	3.66E-11	Barth (1992)
G3119	UpGN	$N_2^+ + O(^3P) \to NO^+ + N(^2D)$	k_N2_0(temp,temp_ion)	Fuller-Rowell (1993)
G3120a	UpGN	$N^{+} + O_{2} \rightarrow NO^{+} + O(^{3}P)$	2.60E-10	Fuller-Rowell (1993)
G3120b	UpGN	$N^+ + O_2 \rightarrow O_2^+ + N$	3.10E-10	Swaminathan et al. (1998)
G3121	UpGN	$N^+ + O(^3P) \rightarrow O^+ + N$	1.00E-12	Fuller-Rowell (1993)
3122	UpGN	$O_2^+ + N \rightarrow NO^+ + O(^3P)$	1.20E-10	Fuller-Rowell (1993)
3123	UpGN	$O_2^+ + NO \rightarrow NO^+ + O_2$	4.40E-10	Fuller-Rowell (1993)
G3124	UpGN	$O^+ + N_2 \rightarrow NO^+ + N$	k_Op_N2(temp,temp_ion)	Fuller-Rowell (1993)
G3125	UpGN	$N_2^+ + O_2^- \to N_2 + O_2^+$	5.10E-11*(temp/300.)**(-0.8)	Fuller-Rowell (1993)
G3200	TrGN	$NO + OH \rightarrow HONO$	k_3rd(temp,cair,7.0E-31,2.6, 3.6E-11,0.1,0.6)	Burkholder et al. (2015)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G3201	UpStTrGN	$NO + HO_2 \rightarrow NO_2 + OH$	3.3E-12*EXP(270./temp)	Burkholder et al. (2015)
G3202a	UpStTrGN	$NO_2 + OH \rightarrow HNO_3$	(1alpha_HOONO) * k_NO2_OH	Amedro et al. (2020)
G3202b	UpStTrGN	$NO_2 + OH \rightarrow HOONO$	alpha_HOONO * k_NO2_OH	Amedro et al. (2020)
G3203	StTrGN	$NO_2 + HO_2 \rightarrow HNO_4$	k_N02_H02	Burkholder et al. (2015)*
G3204	TrGN	$NO_3 + HO_2 \rightarrow NO_2 + OH + O_2$	3.5E-12	Burkholder et al. (2015)
G3205	TrGN	$\mathrm{HONO} + \mathrm{OH} \rightarrow \mathrm{NO}_2 + \mathrm{H}_2\mathrm{O}$	1.8E-11*EXP(-390./temp)	Burkholder et al. (2015)
G3206	StTrGN	$HNO_3 + OH \rightarrow H_2O + NO_3$	k_HNO3_OH	Dulitz et al. (2018)*
G3207	StTrGN	$HNO_4 \rightarrow NO_2 + HO_2$	k_N02_H02/(2.1E-27*EXP(10900./ temp))	Burkholder et al. $(2015)^*$
G3208	StTrGN	$HNO_4 + OH \rightarrow NO_2 + H_2O$	1.3E-12*EXP(380./temp)	Burkholder et al. (2015)
G3209	TrGN	$NH_3 + OH \rightarrow NH_2 + H_2O$	1.7E-12*EXP(-710./temp)	Kohlmann and Poppe (1999)
G3210	TrGN	$NH_2 + O_3 \rightarrow NH_2O + O_2$	4.3E-12*EXP(-930./temp)	Kohlmann and Poppe (1999)
G3211	TrGN	$NH_2 + HO_2 \rightarrow NH_2O + OH$	4.8E-07*EXP(-628./temp)*(temp) **(-1.32)	Kohlmann and Poppe (1999)
G3212	TrGN	$\mathrm{NH_2} + \mathrm{HO_2} \rightarrow \mathrm{HNO} + \mathrm{H_2O}$	9.4E-09*EXP(-356./temp)*(temp) **(-1.12)	Kohlmann and Poppe (1999)
G3213	TrGN	$NH_2 + NO \rightarrow HO_2 + OH + N_2$	1.92E-12*((temp/298.)**(-1.5))	Kohlmann and Poppe (1999)
G3214	TrGN	$\mathrm{NH_2} + \mathrm{NO} \rightarrow \mathrm{N_2} + \mathrm{H_2O}$	1.41E-11*((temp/298.)**(-1.5))	Kohlmann and Poppe (1999)
G3215	TrGN	$\mathrm{NH_2} + \mathrm{NO_2} ightarrow \mathrm{N_2O} + \mathrm{H_2O}$	1.2E-11*((temp/298.)**(-2.0))	Kohlmann and Poppe (1999)
G3216	TrGN	$NH_2 + NO_2 \rightarrow NH_2O + NO$	0.8E-11*((temp/298.)**(-2.0))	Kohlmann and Poppe (1999)
G3217	TrGN	$NH_2O + O_3 \rightarrow NH_2 + O_2$	1.2E-14	Kohlmann and Poppe (1999)
G3218	TrGN	$\mathrm{NH_2O} ightarrow \mathrm{NHOH}$	1.3E3	Kohlmann and Poppe (1999)
G3219	TrGN	$\mathrm{HNO} + \mathrm{OH} \rightarrow \mathrm{NO} + \mathrm{H}_2\mathrm{O}$	8.0E-11*EXP(-500./temp)	Kohlmann and Poppe (1999)
G3220	TrGN	$\mathrm{HNO} + \mathrm{NHOH} \rightarrow \mathrm{NH_2OH} + \mathrm{NO}$	1.66E-12*EXP(-1500./temp)	Kohlmann and Poppe (1999)
G3221	TrGN	$\mathrm{HNO} + \mathrm{NO}_2 \rightarrow \mathrm{HONO} + \mathrm{NO}$	1.0E-12*EXP(-1000./temp)	Kohlmann and Poppe (1999)
G3222	TrGN	$NHOH + OH \rightarrow HNO + H_2O$	1.66E-12	Kohlmann and Poppe (1999)
G3223	TrGN	$NH_2OH + OH \rightarrow NHOH + H_2O$	4.13E-11*EXP(-2138./temp)	Kohlmann and Poppe (1999)
G3224	TrGN	$\mathrm{HNO} + \mathrm{O}_2 \to \mathrm{HO}_2 + \mathrm{NO}$	3.65E-14*EXP(-4600./temp)	Kohlmann and Poppe (1999)
G3225	UpGN	$N + OH \rightarrow NO + H$	5.00E-11	Roble (1995)
G3226	UpGN	$NO_2 + H \rightarrow NO + OH$	4.00E-10*EXP(-340./temp)	Sander et al. (2003)
G3227	UpStTrGN	$\mathrm{HOONO} \rightarrow \mathrm{NO}_2 + \mathrm{OH}$	(alpha_H00N0*k_N02_0H) /(3.5E-27*EXP(10135./temp))	see note*
G3228	$\operatorname{UpStTrGN}$	$\mathrm{HOONO} + \mathrm{OH} \rightarrow \mathrm{H_2O} + \mathrm{NO_3}$	1.3E-12*EXP(380./temp)	Burkholder et al. $(2015)^*$
G4100	UpStG	${\rm CH_4 + O(^1D) \rightarrow .75~CH_3 + .75~OH + .25~HCHO + .4~H} \ + .05~H_2$	1.75E-10	Burkholder et al. (2015)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G4101	StTrG	$CH_4 + OH \rightarrow CH_3 + H_2O$	1.85E-20*EXP(2.82*LOG(temp) -987./temp)	Atkinson (2003)
G4102	TrG	$\mathrm{CH_3OH} + \mathrm{OH} \rightarrow .85 \; \mathrm{HCHO} + .85 \; \mathrm{HO_2} + .15 \; \mathrm{CH_3O} + \mathrm{H_2O}$	6.38E-18*((temp)**2)*EXP(144./ temp)	Atkinson et al. (2006)
G4103a	StTrG	$\mathrm{CH_3O_2} + \mathrm{HO_2} \rightarrow \mathrm{CH_3OOH} + \mathrm{O_2}$	3.8E-13*EXP(780./temp)/(1.+1./ 498.*EXP(1160./temp))	Atkinson et al. (2006)
G4103b	StTrG	$CH_3O_2 + HO_2 \rightarrow HCHO + H_2O + O_2$	3.8E-13*EXP(780./temp)/(1.+ 498.*EXP(-1160./temp))	Atkinson et al. (2006)
G4104a	StTrGN	$CH_3O_2 + NO \rightarrow CH_3O + NO_2$	2.3E-12*EXP(360./temp)*(1beta_ CH3NO3)	Atkinson et al. (2006), Butkovskaya et al. (2012), Flocke et al. (1998)
G4104b	StTrGN	$\mathrm{CH_3O_2} + \mathrm{NO} \rightarrow \mathrm{CH_3ONO_2}$	2.3E-12*EXP(360./temp)*beta_ CH3NO3	Atkinson et al. (2006), Butkovskaya et al. (2012), Flocke et al. (1998)*
G4105	TrGN	$CH_3O_2 + NO_3 \rightarrow CH_3O + NO_2 + O_2$	1.2E-12	Atkinson et al. (2006)
G4106a	StTrG	$CH_3O_2 \rightarrow CH_3O + .5 O_2$	7.4E-13*EXP(-520./temp)*R02*2.	Atkinson et al. (2006)
G4106b	StTrG	$\mathrm{CH_3O_2} \rightarrow .5~\mathrm{HCHO} + .5~\mathrm{CH_3OH} + .5~\mathrm{O_2}$	(k_CH302-7.4E-13*EXP(-520./temp)) *R02*2.	Atkinson et al. (2006)
G4107	StTrG	$\text{CH}_3\text{OOH} + \text{OH} \rightarrow .6 \text{ CH}_3\text{O}_2 + .4 \text{ HCHO} + .4 \text{ OH} + \text{H}_2\text{O}$	k_CH300H_0H	Wallington et al. (2018)
G4108	StTrG	$\mathrm{HCHO} + \mathrm{OH} \rightarrow \mathrm{CO} + \mathrm{H}_2\mathrm{O} + \mathrm{HO}_2$	9.52E-18*EXP(2.03*LOG(temp) +636./temp)	Sivakumaran et al. (2003)
G4109	TrGN	$\mathrm{HCHO} + \mathrm{NO}_3 \rightarrow \mathrm{HNO}_3 + \mathrm{CO} + \mathrm{HO}_2$	3.4E-13*EXP(-1900./temp)	Burkholder et al. (2015)*
G4110	$\operatorname{UpStTrG}$	$CO + OH \rightarrow H + CO_2$	(1.57E-13+cair*3.54E-33)	McCabe et al. (2001)
G4111	TrG	$\mathrm{HCOOH} + \mathrm{OH} \rightarrow \mathrm{CO}_2 + \mathrm{HO}_2 + \mathrm{H}_2\mathrm{O}$	2.94E-14*exp(786./temp) +9.85E-13*EXP(-1036./temp)	Paulot et al. (2011)
G4112	UpStG	$\mathrm{CO} + \mathrm{O}(^{3}\mathrm{P}) \to \mathrm{CO}_{2}$	6.60E-33*EXP(-1103./temp)	Roble (1995)
G4113	UpStG	$CH_4 + O(^3P) \rightarrow .51 CH_3 + .51 OH + .49 CH_3O + .49 H$	6.03E-18*(temp)**(2.17) *EXP(-3619./temp)	Roble (1995), Garton et al. (2003), Espinosa-Garcia and Garcia-Bernáldez (2000)
G4114	StTrGN	$\mathrm{CH_3O_2} + \mathrm{NO_2} \to \mathrm{CH_3O_2NO_2}$	k_NO2_CH3O2	Burkholder et al. (2015)
G4115	StTrGN	$\mathrm{CH_3O_2NO_2} \rightarrow \mathrm{CH_3O_2} + \mathrm{NO_2}$	k_NO2_CH302/(9.5E-29*EXP(11234./ temp))	Burkholder et al. (2015)*
G4116	StTrGN	$\mathrm{CH_3O_2NO_2} + \mathrm{OH} \rightarrow \mathrm{HCHO} + \mathrm{NO_3} + \mathrm{H_2O}$	3.00E-14	see note*
G4117	StTrGN	$CH_3ONO_2 + OH \rightarrow H_2O + HCHO + NO_2$	4.0E-13*EXP(-845./temp)	Atkinson et al. (2006)
G4118	StTrG	$\mathrm{CH_{3}O} \rightarrow \mathrm{HO_{2}} + \mathrm{HCHO}$	1.3E-14*exp(-663./temp)*c(ind_02)	Chai et al. (2014)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G4119a	StTrGN	$\mathrm{CH_3O} + \mathrm{NO_2} \to \mathrm{CH_3ONO_2}$	k_3rd_iupac(temp,cair,8.1E-29, 4.5,2.1E-11,0.,0.44)	Atkinson et al. (2006)
G4119b	StTrGN	$CH_3O + NO_2 \rightarrow HCHO + HONO$	9.6E-12*EXP(-1150./temp)	Atkinson et al. (2006)
G4120a	StTrGN	$\mathrm{CH_3O} + \mathrm{NO} \rightarrow \mathrm{CH_3ONO}$	<pre>k_3rd_iupac(temp,cair,2.6E-29, 2.8,3.3E-11,0.6,REAL(EXP(-temp/ 900.),SP))</pre>	Atkinson et al. (2006)
G4120b	StTrGN	$\mathrm{CH_{3}O} + \mathrm{NO} \rightarrow \mathrm{HCHO} + \mathrm{HNO}$	2.3E-12*(temp/300.)**(0.7)	Atkinson et al. (2006)
G4121	StTrG	$CH_3O_2 + O_3 \rightarrow CH_3O + 2 O_2$	2.9E-16*exp(-1000./temp)	Burkholder et al. (2015)
G4122	StTrGN	$CH_3ONO + OH \rightarrow H_2O + HCHO + NO$	1.E-10*exp(-1764./temp)	Nielsen et al. (1991)
G4123	StTrG	$\mathrm{HCHO} + \mathrm{HO}_2 \rightarrow \mathrm{HOCH}_2\mathrm{O}_2$	9.7E-15*EXP(625./temp)	Atkinson et al. (2006)
G4124	StTrG	$\mathrm{HOCH_2O_2} \rightarrow \mathrm{HCHO} + \mathrm{HO_2}$	2.4E12*EXP(-7000./temp)	Atkinson et al. (2006)
G4125	StTrG	$HOCH_2O_2 + HO_2 \rightarrow .5 \ HOCH_2OOH + .5 \ HCOOH + .2 \ OH + .2 \ HO_2 + .3 \ H_2O + .8 \ O_2$	5.6E-15*EXP(2300./temp)	Atkinson et al. (2006)
G4126	StTrGN	$HOCH_2O_2 + NO \rightarrow NO_2 + HO_2 + HCOOH$	0.7275*2.3E-12*EXP(360./temp)	Atkinson et al. $(2006)^*$
G4127	StTrGN	$HOCH_2O_2 + NO_3 \rightarrow NO_2 + HO_2 + HCOOH$	1.2E-12	see note*
G4129a	StTrG	$HOCH_2O_2 \rightarrow HCOOH + HO_2$	(k_CH302*5.5E-12)**(0.5)*R02*2.	Atkinson et al. (2006)
G4129b	StTrG	$\text{HOCH}_2\text{O}_2 \rightarrow .5 \text{ HCOOH} + .5 \text{ HOCH}_2\text{OH} + .5 \text{ O}_2$	(k_CH302*5.7E-14*EXP(750./temp)) **(0.5)*R02*2.	Atkinson et al. (2006)
G4130a	StTrG	$\mathrm{HOCH_2OOH} + \mathrm{OH} \rightarrow \mathrm{HOCH_2O_2} + \mathrm{H_2O}$	k_ROOHRO	Taraborrelli (2010)*
G4130b	StTrG	$\mathrm{HOCH_2OOH} + \mathrm{OH} \rightarrow \mathrm{HCOOH} + \mathrm{H_2O} + \mathrm{OH}$	k_ROHRO + k_s*f_sOOH*f_sOH	Taraborrelli (2010)*
G4132	StTrG	$HOCH_2OH + OH \rightarrow HO_2 + HCOOH + H_2O$	2.*k_ROHRO + k_s*f_sOH*f_sOH	Taraborrelli (2010)*
G4133	StTrG	$\mathrm{CH_3O_2} + \mathrm{OH} \rightarrow \mathrm{CH_3O} + \mathrm{HO_2}$	1.4E-10	Bossolasco et al. $(2014)^*$
G4134	StTrG	$\mathrm{CH_2OO} \rightarrow \mathrm{CO} + \mathrm{HO_2} + \mathrm{OH}$	1.124E+14*EXP(-10000./temp)	see note*
G4135	StTrG	$\mathrm{CH_2OO} + \mathrm{H_2O} \rightarrow \mathrm{HOCH_2OOH}$	k_CH200_N02*3.6E-6	Ouyang et al. $(2013)^*$
G4136	StTrG	$CH_2OO + (H_2O)_2 \rightarrow HOCH_2OOH + H_2O$	5.2E-12	Chao et al. (2015), Lewis et al. $(2015)^*$
G4137	StTrGN	$\mathrm{CH_2OO} + \mathrm{NO} \rightarrow \mathrm{HCHO} + \mathrm{NO_2}$	6.E-14	Welz et al. $(2012)^*$
G4138	StTrGN	$CH_2OO + NO_2 \rightarrow HCHO + NO_3$	k_CH200_N02	Welz et al. (2012), Stone et al. $(2014)^*$
G4140	StTrG	$\mathrm{CH_2OO} + \mathrm{CO} \to \mathrm{HCHO} + \mathrm{CO_2}$	3.6E-14	Vereecken et al. (2012)
G4141	StTrG	$\mathrm{CH_2OO} + \mathrm{HCOOH} \rightarrow 2 \; \mathrm{HCOOH}$	1.E-10	Welz et al. (2014)*
G4142	StTrG	$\mathrm{CH_2OO} + \mathrm{HCHO} \rightarrow 2 \; \mathrm{LCARBON}$	1.7E-12	Stone et al. (2014)*
G4143	StTrG	$\mathrm{CH_2OO} + \mathrm{CH_3OH} \rightarrow 2 \; \mathrm{LCARBON}$	5.E-12	Vereecken et al. (2012)*
G4144	StTrG	$\mathrm{CH_2OO} + \mathrm{CH_3O_2} \rightarrow 2 \; \mathrm{LCARBON}$	5.E-12	Vereecken et al. (2012)*
G4145	StTrG	$\mathrm{CH_2OO} + \mathrm{HO_2} \rightarrow \mathrm{LCARBON}$	5.E-12	Vereecken et al. (2012)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G4146	StTrG	$CH_2OO + O_3 \rightarrow HCHO + 2 O_2$	1.E-12	Vereecken et al. (2014)
G4147	StTrG	$\mathrm{CH_2OO} + \mathrm{CH_2OO} \rightarrow 2 \; \mathrm{HCHO} + \mathrm{O_2}$	6.E-11	Buras et al. (2014)
G4148	StTrGN	$\mathrm{HOCH_2O_2} + \mathrm{NO_2} \rightarrow \mathrm{HOCH_2O_2NO_2}$	k_NO2_CH3O2	see note*
G4149	StTrGN	$HOCH_2O_2NO_2 \rightarrow HOCH_2O_2 + NO_2$	k_NO2_CH3O2/(9.5E-29*EXP(11234./ temp))	Barnes et al. (1985)*
G4150	StTrGN	$\mathrm{HOCH_2O_2NO_2} + \mathrm{OH} \rightarrow \mathrm{HCOOH} + \mathrm{NO_3} + \mathrm{H_2O}$	9.50E-13*EXP(-650./temp)*f_sOH	see note*
G4151	StTrG	$\mathrm{CH_3} + \mathrm{O_2} \to \mathrm{CH_3O_2}$	k_3rd_iupac(temp,cair,7.0E-31, 3.,1.8E-12,-1.1,0.33)	Atkinson et al. (2006)
G4152	StTrG	$CH_3 + O_3 \rightarrow .956 \text{ HCHO} + .956 \text{ H} + .044 \text{ CH}_3\text{O} + O_2$	5.1E-12*exp(-210./temp)	Albaladejo et al. (2002), Ogryzlo et al. (1981)
G4153	StTrG	${ m CH_3 + O(^3P)} \rightarrow .83~{ m HCHO} + .83~{ m H} + .17~{ m CO} + .17~{ m H_2} + .17~{ m H}$	1.3E-10	Atkinson et al. (2006)
G4154	StTrG	$\mathrm{CH_3O} + \mathrm{O_3} \rightarrow \mathrm{CH_3O_2} + \mathrm{O_2}$	2.53E-14	Albaladejo et al. $(2002)^*$
G4155	StTrG	${\rm CH_3O} + {\rm O(^3P)} \rightarrow .75 {\rm ~CH_3} + .75 {\rm ~O_2} + .25 {\rm ~HCHO} + .25 {\rm ~OH}$	2.5E-11	Baulch et al. (2005)
G4156	StTrG	$\mathrm{CH_3O_2} + \mathrm{O(^3P)} \rightarrow \mathrm{CH_3O} + \mathrm{O_2}$	4.3E-11	Zellner et al. (1988)
G4157	StTrG	${\rm HCHO} + {\rm O(^3P)} \rightarrow .7~{\rm OH} + .7~{\rm CO} + .3~{\rm H} + .3~{\rm CO_2} + {\rm HO_2}$	3.4E-11*EXP(-1600./temp)	Burkholder et al. (2015)
G4158	$\operatorname{Tr} G$	${\rm CH_2OO^*} \rightarrow .37~{\rm CH_2OO} + .47~{\rm CO} + .47~{\rm H_2O} + .16~{\rm HO_2} + .16~{\rm CO} + .16~{\rm OH}$	KDEC	Atkinson et al. (2006)
G4159	TrGN	$HCN + OH \rightarrow H_2O + CN$	<pre>k_3rd(temp, cair, 4.28E-33, 1.0, REAL(4.25E-13*EXP(-1150./temp) ,SP), 1.0, 0.8)</pre>	Kleinböhl et al. (2006)
G4160a	TrGN	$HCN + O(^{1}D) \rightarrow O(^{3}P) + HCN$	1.08E-10*EXP(105./temp) *0.15*EXP(200./temp)	Strekowski et al. (2010)
G4160b	TrGN	$\mathrm{HCN} + \mathrm{O}(^{1}\mathrm{D}) \to \mathrm{H} + \mathrm{NCO}$	1.08E-10*EXP(105./temp)*0.68/2.	Strekowski et al. (2010)*
G4160c	TrGN	$HCN + O(^{1}D) \rightarrow OH + CN$	1.08E-10*EXP(105./temp)*(1(0.68/ 2.+0.15*EXP(200./temp)))	Strekowski et al. (2010)*
G4161	TrGN	$HCN + O(^{3}P) \rightarrow H + NCO$	1.0E-11*EXP(-4000./temp)	Burkholder et al. (2015)*
G4162	TrGN	$CN + O_2 \rightarrow NCO + O(^3P)$	1.2E-11*EXP(210./temp)*0.75	Baulch et al. (2005)
G4163	TrGN	$\mathrm{CN} + \mathrm{O}_2 \to \mathrm{CO} + \mathrm{NO}$	1.2E-11*EXP(210./temp)*0.25	Baulch et al. (2005)
G4164	TrGN	$NCO + O_2 \rightarrow CO_2 + NO$	7.E-15	Becker et al. (2000)*
G42000	TrGC	$C_2H_6 + OH \rightarrow C_2H_5O_2 + H_2O$	1.49E-17*temp*temp*EXP(-499./ temp)	Atkinson et al. (2006)
G42001	TrGC	$C_2H_4 + O_3 \rightarrow HCHO + CH_2OO^*$	9.1E-15*EXP(-2580./temp)	Atkinson et al. $(2006)^*$

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G42002	TrGC	$C_2H_4 + OH \rightarrow HOCH_2CH_2O_2$	k_3rd_iupac(temp,cair,8.6E-29,	Atkinson et al. (2006), Rickard
			3.1,9.E-12,0.85,0.48)	and Pascoe (2009)
G42003	TrGC	$\mathrm{C_2H_5O_2} + \mathrm{HO_2} \rightarrow \mathrm{C_2H_5OOH}$	7.5E-13*EXP(700./temp)	Burkholder et al. (2015)
G42004a	TrGCN	$C_2H_5O_2 + NO \rightarrow CH_3CHO + HO_2 + NO_2$	2.55E-12*EXP(380./temp)*(1beta_ C2H5NO3)	Atkinson et al. (2006), Butkovskaya et al. (2010)
G42004b	TrGCN	$C_2H_5O_2 + NO \rightarrow C_2H_5ONO_2$	2.55E-12*EXP(380./temp)*beta_ C2H5NO3	Atkinson et al. (2006), Butkovskaya et al. (2010)
G42005	TrGCN	$C_2H_5O_2 + NO_3 \rightarrow CH_3CHO + HO_2 + NO_2$	2.3E-12	Wallington et al. (2018)
G42006	TrGC	$C_2H_5O_2 \rightarrow .8 CH_3CHO + .6 HO_2 + .2 C_2H_5OH$	2.*(7.6E-14*k_CH302)**(.5)*R02	Sander et al. (2019), Atkinson et al. (2006)
G42007a	TrGC	$\mathrm{C_2H_5OOH} + \mathrm{OH} \rightarrow \mathrm{C_2H_5O_2} + \mathrm{H_2O}$	k_ROOHRO	Sander et al. (2019)
G42007b	TrGC	$C_2H_5OOH + OH \rightarrow CH_3CHO + OH$	k_s*f_s00H	Sander et al. (2019)
G42008a	TrGC	$\mathrm{CH_3CHO} + \mathrm{OH} \rightarrow \mathrm{CH_3C(O)} + \mathrm{H_2O}$	4.4E-12*EXP(365./temp)*0.95	Atkinson et al. (2006)
G42008b	TrGC	$\mathrm{CH_{3}CHO} + \mathrm{OH} \rightarrow \mathrm{HCOCH_{2}O_{2}} + \mathrm{H_{2}O}$	4.4E-12*EXP(365./temp)*0.05	Atkinson et al. (2006)
G42009	TrGCN	$\mathrm{CH_3CHO} + \mathrm{NO_3} \rightarrow \mathrm{CH_3C(O)} + \mathrm{HNO_3}$	KNO3AL	Rickard and Pascoe (2009)
G42010	TrGC	$\mathrm{CH_{3}COOH} + \mathrm{OH} \rightarrow \mathrm{CH_{3}} + \mathrm{CO_{2}} + \mathrm{H_{2}O}$	k_CH3CO2H_OH	Atkinson et al. $(2006)^*$
G42011a	TrGC	$\mathrm{CH_3C}(\mathrm{O})\mathrm{OO} + \mathrm{HO_2} \rightarrow \mathrm{OH} + \mathrm{CH_3} + \mathrm{CO_2}$	5.20E-13*EXP(980./temp)*1.507*0.61	Groß et al. (2014)
G42011b	TrGC	$CH_3C(O)OO + HO_2 \rightarrow CH_3C(O)OOH$	5.20E-13*EXP(980./temp)*1.507*0.23	Groß et al. (2014)
G42011c	TrGC	$CH_3C(O)OO + HO_2 \rightarrow CH_3COOH + O_3$	5.20E-13*EXP(980./temp)*1.507*0.16	Groß et al. (2014)
G42012	TrGCN	$CH_3C(O)OO + NO \rightarrow CH_3 + CO_2 + NO_2$	8.1E-12*EXP(270./temp)	Tyndall et al. (2001a)
G42013	TrGCN	$\mathrm{CH_3C(O)OO} + \mathrm{NO_2} \to \mathrm{PAN}$	k_CH3CO3_NO2	Burkholder et al. $(2015)^*$
G42014	TrGCN	$\mathrm{CH_3C(O)OO} + \mathrm{NO_3} \rightarrow \mathrm{CH_3} + \mathrm{NO_2} + \mathrm{CO_2}$	4.E-12	Canosa-Mas et al. (1996)
G42017a	TrGC	$\mathrm{CH_3C(O)OO} \to \mathrm{CH_3} + \mathrm{CO_2}$	k1_R02RC03*0.9	Sander et al. (2019)
G42017b	TrGC	$\mathrm{CH_{3}C(O)OO} \to \mathrm{CH_{3}COOH}$	k1_R02RC03*0.1	Sander et al. (2019)
G42018	TrGC	$\mathrm{CH_3C}(\mathrm{O})\mathrm{OOH} + \mathrm{OH} \rightarrow \mathrm{CH_3C}(\mathrm{O})\mathrm{OO} + \mathrm{H_2O}$	k_ROOHRO	Rickard and Pascoe (2009)*
G42020	TrGCN	$PAN + OH \rightarrow HCHO + CO + NO_2 + H_2O$	3.00E-14	Rickard and Pascoe (2009)
G42021	TrGCN	$PAN \rightarrow CH_3C(O)OO + NO_2$	k_PAN_M	Burkholder et al. $(2015)^*$
G42022a	TrGC	$C_2H_2 + OH \rightarrow GLYOX + OH$	k_3rd(temp,cair,5.5e-30,0.0, 8.3e-13,-2.,0.6)*0.71	Burkholder et al. (2015)*
G42022b	TrGC	$C_2H_2 + OH \rightarrow HCOOH + CO + HO_2$	k_3rd(temp,cair,5.5e-30,0.0, 8.3e-13,-2.,0.6)*0.29	Burkholder et al. $(2015)^*$
G42023a	TrGC	$HOCH_2CHO + OH \rightarrow HOCH2CO + H_2O$	8.00E-12*0.80	Atkinson et al. (2006)
G42023b	TrGC	$HOCH_2CHO + OH \rightarrow HOCHCHO + H_2O$	8.00E-12*0.20	Atkinson et al. (2006)
G42024a	TrGC	$\text{HOCH2CO} + \text{O}_2 \rightarrow \text{HOCH}_2\text{CO}_3$	5.1E-12*(11./(1+1.85E-18*cair))	Atkinson et al. (2006), Beyersdorf et al. (2010)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G42024b	TrGC	$\text{HOCH2CO} + \text{O}_2 \rightarrow \text{OH} + \text{HCHO} + \text{CO}_2$	5.1E-12*1./(1+1.85E-18*cair)	Atkinson et al. (2006), Beyers-
				dorf et al. $(2010)^*$
G42025	TrGC	$\mathrm{HOCHCHO} ightarrow \mathrm{GLYOX} + \mathrm{HO}_2$	KDEC	Sander et al. (2019)
G42026	TrGCN	$HOCH_2CHO + NO_3 \rightarrow HOCH2CO + HNO_3$	KNO3AL	Rickard and Pascoe (2009)
G42027a	TrGC	$HOCH_2CO_3 \rightarrow HCHO + CO_2 + HO_2$	k1_R02RC03*0.9	Sander et al. (2019)
G42027b	TrGC	$\mathrm{HOCH_{2}CO_{3}} \rightarrow \mathrm{HOCH_{2}CO_{2}H}$	k1_R02RC03*0.1	Sander et al. (2019)
G42028a	TrGC	$HOCH_2CO_3 + HO_2 \rightarrow HCHO + HO_2 + OH + CO_2$	KAPH02*r_C03_OH	Sander et al. (2019), Groß et al. (2014)
G42028b	TrGC	$HOCH_2CO_3 + HO_2 \rightarrow HOCH_2CO_3H$	KAPH02*r_C03_00H	Sander et al. (2019), Groß et al. (2014)
G42028c	TrGC	$HOCH_2CO_3 + HO_2 \rightarrow HOCH_2CO_2H + O_3$	KAPH02*r_C03_03	Sander et al. (2019), Groß et al. (2014)
G42029	TrGCN	$HOCH_2CO_3 + NO \rightarrow NO_2 + HO_2 + HCHO + CO_2$	KAPNO	Rickard and Pascoe (2009)
G42030	TrGCN	$HOCH_2CO_3 + NO_2 \rightarrow PHAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G42031	TrGCN	$HOCH_2CO_3 + NO_3 \rightarrow NO_2 + HO_2 + HCHO + CO_2$	KR02N03*1.74	Rickard and Pascoe (2009)
G42032	TrGC	$\mathrm{HOCH_2CO_2H} + \mathrm{OH} \rightarrow .09 \ \mathrm{HCHO} + .09 \ \mathrm{CO_2} + .91$ $\mathrm{HCOCO_2H} + \mathrm{HO_2} + \mathrm{H_2O}$	k_CO2H+k_s*f_sOH*f_CO2H	Sander et al. (2019)
G42033a	TrGC	$\mathrm{HOCH_{2}CO_{3}H} + \mathrm{OH} \rightarrow \mathrm{HOCH_{2}CO_{3}} + \mathrm{H_{2}O}$	k_ROOHRO	Sander et al. (2019)
G42033b	TrGC	$\mathrm{HOCH_{2}CO_{3}H} + \mathrm{OH} \rightarrow \mathrm{HCOCO_{3}H} + \mathrm{HO_{2}}$	k_s*f_sOH*f_CO2H	Sander et al. (2019)
G42034	TrGCN	$PHAN \rightarrow HOCH_2CO_3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G42035	TrGCN	$PHAN + OH \rightarrow HCHO + CO + NO_2 + H_2O$	k_s*f_sOH*f_cpan+k_ROHRO	Sander et al. (2019)
G42036	TrGC	$\rm GLYOX + OH \rightarrow HCOCO + H_2O$	3.1E-12*EXP(340./temp)	Atkinson et al. (2006), Orlando and Tyndall (2001), Lockhart et al. (2013)
G42037	TrGCN	$GLYOX + NO_3 \rightarrow HCOCO + HNO_3$	KNO3AL	Rickard and Pascoe (2009)
G42038a	TrGC	$\mathrm{HCOCO} \rightarrow \mathrm{CO} + \mathrm{CO} + \mathrm{HO}_2$	7.E11*EXP(-3160./temp) +5.E-12*c(ind_02)	Orlando and Tyndall (2001), Lockhart et al. (2013), Rickard and Pascoe (2009)
G42037b	TrGC	$HCOCO \rightarrow HCOCO_3$	5.E-12*c(ind_02)*3.2*exp(-550./ temp)	Lockhart et al. (2013), Rickard and Pascoe (2009)
G42037c	TrGC	$HCOCO \rightarrow OH + CO + CO_2$	5.E-12*c(ind_02)	Lockhart et al. (2013), Rickard
			*(13.2*exp(-550./temp))	and Pascoe (2009)
G42039a	TrGC	$HCOCO_3 \rightarrow CO + HO_2 + CO_2$	k1_R02RC03*0.9	Sander et al. (2019)
G42039b	TrGC	$\mathrm{HCOCO_3} \rightarrow \mathrm{HCOCO_2H}$	k1_R02RC03*0.1	Sander et al. (2019)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G42040	TrGC	$\mathrm{HCOCO_3} + \mathrm{HO_2} \rightarrow \mathrm{HO_2} + \mathrm{CO} + \mathrm{CO_2} + \mathrm{OH}$	KAPHO2	Feierabend et al. (2008), Sander
040041	TrGCN	$\mathrm{HCOCO_3} + \mathrm{NO} \rightarrow \mathrm{HO_2} + \mathrm{CO} + \mathrm{NO_2} + \mathrm{CO_2}$	KAPNO	et al. (2019) Rickard and Pascoe (2009)
G42041	TrGCN			· /
G42042		$HCOCO_3 + NO_3 \rightarrow HO_2 + CO + NO_2 + CO_2$	KR02N03*1.74	Rickard and Pascoe (2009)
G42043	TrGCN	$HCOCO_3 + NO_2 \rightarrow HO_2 + CO + NO_3 + CO_2$	k_CH3CO3_NO2	Orlando and Tyndall (2001), Sander et al. (2019)
G42044	TrGC	$\mathrm{HCOCO_2H} + \mathrm{OH} \rightarrow \mathrm{CO} + \mathrm{HO_2} + \mathrm{CO_2} + \mathrm{H_2O}$	k_CO2H+k_t*f_O*f_CO2H	Sander et al. (2019)
G42045a	TrGC	$HCOCO_3H + OH \rightarrow HCOCO_3 + H_2O$	k_ROOHRO	Sander et al. (2019)
G42045b	TrGC	$HCOCO_3H + OH \rightarrow CO + CO_2 + H_2O + OH$	k_t*f_0*f_C02H	Sander et al. (2019)
G42046	TrGC	$\text{HOCH}_2\text{CH}_2\text{O}_2 \rightarrow .6 \text{ HOCH}_2\text{CH}_2\text{O} + .2 \text{ HOCH}_2\text{CHO} + .2$ ETHGLY	2.*(7.8E-14*EXP(1000./temp) *k_CH302)**(.5)*R02	Atkinson et al. (2006), Rickard and Pascoe (2009)
G42047	TrGCN	$\mathrm{HOCH_2CH_2O_2} + \mathrm{NO} \rightarrow .25 \ \mathrm{HO_2} + .5 \ \mathrm{HCHO} + .75 \ \mathrm{HOCH_2CH_2O} + \mathrm{NO_2}$	<pre>KRO2NO*(1alpha_AN(3,1,0,0,0, temp,cair))</pre>	Rickard and Pascoe (2009)*
G42048	TrGCN	$HOCH_2CH_2O_2 + NO \rightarrow ETHOHNO3$	<pre>KRO2NO*alpha_AN(3,1,0,0,0,temp, cair)</pre>	Sander et al. (2019)
G42049a	TrGC	$HOCH_2CH_2O_2 + HO_2 \rightarrow HYETHO2H$	1.53E-13*EXP(1300./temp) *(1r_CHOHCH202_0H)	Rickard and Pascoe (2009)
G42049b	TrGC	$\mathrm{HOCH_2CH_2O_2} + \mathrm{HO_2} \rightarrow \mathrm{HOCH_2CH_2O} + \mathrm{OH}$	1.53E-13*EXP(1300./temp) *r_CHOHCH202_OH	Rickard and Pascoe (2009)
G42050	TrGCN	ETHOHNO3 + OH \rightarrow .93 NO ₃ CH2CHO + .93 HO ₂ + .07 HOCH ₂ CHO + .07 NO ₂ + H ₂ O	k_s*(f_sOH*f_CH2ONO2+f_ONO2*f_ pCH2OH)+k_ROHRO	Sander et al. (2019)
G42051a	TrGC	$HYETHO2H + OH \rightarrow HOCH_2CH_2O_2 + H_2O$	k_ROOHRO	Rickard and Pascoe (2009)*
G42051b	TrGC	$HYETHO2H + OH \rightarrow HOCH_2CHO + OH + H_2O$	k_s*f_sOOH*f_pCH2OH	Sander et al. (2019)
G42051c	TrGC	$HYETHO2H + OH \rightarrow HOOCH2CHO + HO_2 + H_2O$	k_s*f_sOH*f_pCH2OH+k_ROHRO	Sander et al. (2019)
G42052a	TrGC	$HOCH_2CH_2O \rightarrow HO_2 + HOCH_2CHO$	6.00E-14*EXP(-550./temp) *C(ind_02)	Rickard and Pascoe (2009)
G42052b	TrGC	$HOCH_2CH_2O \rightarrow HO_2 + HCHO + HCHO$	9.50E13*EXP(-5988./temp)	Rickard and Pascoe (2009)
G42053	TrGC	$ETHGLY + OH \rightarrow HOCH_2CHO + HO_2 + H_2O$	2.*k_s*f_sOH*f_pCH2OH+2.*k_ROHRO	Sander et al. (2019)
G42054	TrGC	$\mathrm{HCOCH_2O_2} \rightarrow .6~\mathrm{HCHO} + .6~\mathrm{CO} + .6~\mathrm{HO_2} + .2~\mathrm{GLYOX} + .2~\mathrm{HOCH_2CHO}$	k1_R02p0R02	Sander et al. (2019)
G42055a	TrGC	$\text{HCOCH}_2\text{O}_2 + \text{HO}_2 \rightarrow \text{HOOCH2CHO}$	k_RO2_HO2(temp,2)*r_COCH2O2_OOH	Sander et al. (2019)
G42055b	TrGC	$HCOCH_2O_2 + HO_2 \rightarrow HCHO + CO + HO_2 + OH$	k_RO2_HO2(temp,2)*r_COCH2O2_OH	Sander et al. (2019)
G42056a	TrGCN	$\mathrm{HCOCH_2O_2} + \mathrm{NO} \rightarrow \mathrm{NO_2} + \mathrm{HCHO} + \mathrm{CO} + \mathrm{HO_2}$	KRO2NO*(1alpha_AN(3,1,1,0,0, temp,cair))	Sander et al. (2019)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G42056b	TrGCN	$\mathrm{HCOCH_2O_2} + \mathrm{NO} \rightarrow \mathrm{NO_3CH2CHO}$	KRO2NO*alpha_AN(3,1,1,0,0,temp,	Sander et al. (2019)
			cair)	
G42057	TrGCN	$\mathrm{HCOCH_2O_2} + \mathrm{NO_3} \rightarrow \mathrm{HCHO} + \mathrm{CO} + \mathrm{HO_2} + \mathrm{NO_2}$	KR02N03	Sander et al. (2019)
G42058a	TrGC	$\mathrm{HOOCH2CHO} + \mathrm{OH} \rightarrow \mathrm{HCOCH_2O_2}$	k_ROOHRO	Sander et al. (2019)
G42058b	TrGC	$HOOCH2CHO + OH \rightarrow HCHO + CO + OH$	0.8*8.E-12	Sander et al. (2019)*
G42058c	TrGC	$HOOCH2CHO + OH \rightarrow GLYOX + OH$	k_s*f_s00H*f_CH0	Sander et al. (2019)
G42059	TrGCN	$HOOCH2CHO + NO_3 \rightarrow OH + HCHO + CO + HNO_3$	KNO3AL	Rickard and Pascoe (2009)
G42060	TrGCN	$HOOCH_2CO_3 + NO \rightarrow NO_2 + OH + HCHO + CO_2$	KAPNO	Sander et al. (2019)
G42061	TrGCN	$HOOCH_2CO_3 + NO_3 \rightarrow NO_2 + OH + HCHO + CO_2$	KR02N03*1.74	Sander et al. (2019)
G42062a	TrGC	$\mathrm{HOOCH_2CO_3} + \mathrm{HO_2} \rightarrow 2 \mathrm{~OH} + \mathrm{HCHO} + \mathrm{CO_2}$	KAPHO2*r_CO3_OH	Sander et al. (2019)
G42062b	TrGC	$HOOCH_2CO_3 + HO_2 \rightarrow HOOCH2CO3H$	KAPH02*r_C03_00H	Sander et al. (2019)
G42062c	TrGC	$HOOCH_2CO_3 + HO_2 \rightarrow HOOCH2CO2H + O_3$	KAPH02*r_C03_03	Sander et al. (2019)
G42063a	TrGC	$HOOCH_2CO_3 \rightarrow OH + HCHO + CO_2$	k1_R02RC03*0.9	Sander et al. (2019)
G42063b	TrGC	$HOOCH_2CO_3 \rightarrow HOOCH2CO2H$	k1_R02RC03*0.1	Sander et al. (2019)
G42064a	TrGC	$HOOCH2CO3H + OH \rightarrow HOOCH_2CO_3 + H_2O$	2.*k_ROOHRO	Sander et al. (2019)
G42064b	TrGC	$HOOCH2CO3H + OH \rightarrow HCOCO_3H + OH + H_2O$	k_s*f_s00H*f_C02H	Sander et al. (2019)
G42065	TrGC	$HOOCH2CO2H + OH \rightarrow HCOCO_2H + OH + H_2O$	k_s*f_sOOH*f_CO2H+k_CO2H	Sander et al. (2019)
G42066	TrGC	CH2CO + OH \rightarrow .6 HCHO + .6 HO ₂ + .6 CO + .4 HOOCH2CO2H	2.8E-12*exp(510./temp)	Baulch et al. (2005), Sander et al. (2019)
G42067a	TrGC	$\text{CH3CHOHOOH} + \text{OH} \rightarrow \text{CH}_3\text{COOH} + \text{OH}$	(k_t*f_t00H*f_t0H + k_R0HR0)	Sander et al. (2019)
G42067b	TrGC	$\text{CH3CHOHOOH} + \text{OH} \rightarrow \text{CH3CHOHO2}$	k_ROOHRO	Sander et al. (2019)
G42068	TrGC	$\mathrm{CH3CHOHO2} \rightarrow \mathrm{CH_3CHO} + \mathrm{HO_2}$	3.46E12*EXP(-12500./(1.98*temp))	Hermans et al. (2005), Sander et al. (2019)
G42069	TrGC	$\mathrm{CH_{3}CHO} + \mathrm{HO_{2}} \rightarrow \mathrm{CH3CHOHO2}$	3.46E12*EXP(-12500./(1.98*temp)) /(6.34E26*EXP(-14700./ (1.98*temp)))	Hermans et al. (2005), Sander et al. (2019)
G42070	TrGC	CH3CHOHO2 + HO ₂ \rightarrow .5 CH3CHOHOOH + .3 CH ₃ COOH + .2 CH ₃ + .2 HCOOH + .2 OH	5.6E-15*EXP(2300./temp)	Sander et al. (2019)
G42071	TrGC	$CH3CHOHO2 \rightarrow CH_3 + HCOOH + OH$	k1_R02s0R02	Sander et al. (2019)
G42072	TrGCN	$\text{CH3CHOHO2} + \text{NO} \rightarrow \text{CH}_3 + \text{HCOOH} + \text{OH} + \text{NO}_2$	KRO2NO	Sander et al. (2019)
G42073	TrGCN	$C_2H_5ONO_2 + OH \rightarrow CH_3CHO + H_2O + NO_2$	6.7E-13*EXP(-395./temp)	Atkinson et al. (2006)
G42074a	TrGCN	$NO_3CH2CHO + OH \rightarrow GLYOX + NO_2 + H_2O$	k_s*f_CH2ONO2*f_CHO	Paulot et al. (2009a), Sander et al. (2019)*
G42074b	TrGCN	$NO_3CH2CHO + OH \rightarrow NO_3CH2CO_3 + H_2O$	k_t*f_0*f_CH20N02*3.	Paulot et al. (2009a), Sander et al. (2019)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G42075	TrGCN	$NO_3CH2CO_3 + HO_2 \rightarrow HCHO + NO_2 + CO_2 + OH$	KAPHO2	Rickard and Pascoe (2009)*
G42076	TrGCN	$NO_3CH2CO_3 + NO \rightarrow HCHO + NO_2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G42077	TrGCN	$NO_3CH2CO_3 + NO_2 \rightarrow NO_3CH2CHO$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G42078	TrGCN	$NO_3CH2CO_3 \rightarrow HCHO + NO_2 + CO_2$	k1_RO2RCO3	Rickard and Pascoe (2009)*
G42079	TrGCN	$NO_3CH2CHO \rightarrow NO_3CH2CO_3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G42080	StTrGCN	$C_2H_5O_2 + NO_2 \rightarrow C_2H_5O_2NO_2$	k_3rd_iupac(temp,cair,1.3E-29, 6.2,8.8E-12,0.0,0.31)	Atkinson et al. (2006)
G42081	StTrGCN	$C_2H_5O_2NO_2 \rightarrow C_2H_5O_2 + NO_2$	<pre>k_3rd_iupac(temp,cair, REAL(4.8E-4*EXP(-9285./temp) ,SP),0.0,REAL(8.8E15*EXP(-10440./ temp),SP),0.0,0.31)</pre>	Atkinson et al. (2006)
G42082	StTrGCN	$C_2H_5O_2NO_2 + OH \rightarrow CH_3CHO + NO_3 + H_2O$	9.50E-13*EXP(-650./temp)	Sander et al. $(2019)^*$
G42083a	TrGC	$\mathrm{CH_3C}(\mathrm{O}) + \mathrm{O_2} \to \mathrm{CH_3C}(\mathrm{O})\mathrm{OO}$	5.1E-12*(1 1./(1.+ 9.4E-18*cair))	Atkinson et al. (2006), Beyersdorf et al. (2010)*
G42083b	TrGC	$\mathrm{CH_3C}(\mathrm{O}) + \mathrm{O_2} \to \mathrm{OH} + \mathrm{HCHO} + \mathrm{CO}$	5.1E-12*1./(1.+9.4E-18*cair)	Atkinson et al. (2006), Beyersdorf et al. (2010)*
G42084	TrGC	$C_2H_5OH + OH \rightarrow .95 C_2H_5O_2 + .95 HO_2 + .05 HOCH_2CH_2O_2 + H_2O$	3.0E-12*EXP(20./temp)	Sander et al. (2019), Atkinson et al. (2006)
G42085a	TrGCN	$CH_3CN + OH \rightarrow NCCH_2O_2 + H_2O$	8.1E-13*EXP(-1080./temp)*0.40	Atkinson et al. (2006), Tyndall et al. (2001b)*
G42085b	TrGCN	$CH_3CN + OH \rightarrow OH + CH_3C(O) + NO$	8.1E-13*EXP(-1080./temp)*(10.40)	Atkinson et al. (2006), Tyndall et al. (2001b)*
G42086a	TrGCN	$\mathrm{CH_3CN} + \mathrm{O(^1D)} \rightarrow \mathrm{O(^3P)} + \mathrm{CH_3CN}$	2.54E-10*EXP(-24./temp) *0.0269*EXP(137./temp)	Strekowski et al. (2010)
G42086b	TrGCN	$\mathrm{CH_3CN} + \mathrm{O(^1D)} \rightarrow 2~\mathrm{H} + \mathrm{CO} + \mathrm{HCN}$	2.54E-10*EXP(-24./temp)*0.16	Strekowski et al. (2010)*
G42086c	TrGCN	${\rm CH_3CN} + {\rm O(^1D)} \rightarrow .5 {\rm \ CH_3} + .5 {\rm \ NCO} + .5 {\rm \ NCCH_2O_2} + .5 {\rm \ OH}$	2.54E-10*EXP(-24./temp)*(1(0.16+ 0.0269*EXP(137./temp)))	Strekowski et al. (2010)*
G42087	TrGCN	$NCCH_2O_2 + NO \rightarrow HCN + CO_2 + HO_2 + NO_2$	KRO2NO	see note*
G42088	TrGCN	$NCCH_2O_2 + HO_2 \rightarrow HCN + CO_2 + HO_2$	k_R02_H02(temp,2)	see note*
G42089a	TrGC	$\mathrm{CH_{2}CHOH} + \mathrm{OH} \rightarrow \mathrm{HCOOH} + \mathrm{OH} + \mathrm{HCHO}$	k_CH2CHOH_OH_HCOOH	Sander et al. (2019), So et al. $(2014)^*$
G42089b	TrGC	$\mathrm{CH_{2}CHOH} + \mathrm{OH} \rightarrow \mathrm{HOCH_{2}CHO} + \mathrm{HO_{2}}$	k_CH2CHOH_OH_ALD	Sander et al. (2019), So et al. (2014)
G42090	TrGC	$\mathrm{CH_{2}CHOH} + \mathrm{HCOOH} \rightarrow \mathrm{CH_{3}CHO} + \mathrm{HCOOH}$	k_CH2CH0H_HC00H	Sander et al. (2019), da Silva (2010)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G42091	TrGC	$\mathrm{CH_{3}CHO} + \mathrm{HCOOH} \rightarrow \mathrm{CH_{2}CHOH} + \mathrm{HCOOH}$	k_ALD_HCOOH	Sander et al. (2019), da Silva (2010)*
G42092	TrGC	$\mathrm{HOOCCOOH} + \mathrm{OH} \rightarrow 2 \ \mathrm{CO}_2 + \mathrm{HO}_2 + \mathrm{H}_2\mathrm{O}$	2.0 *k_co2h	see note*
G42093a	TrGC	$HOCH_2CHOHOH + OH \rightarrow HOCH_2CO_2H + HO_2 + H_2O$	k_t*f_toh*f_toh	see note*
G42093b	TrGC	$HOCH_2CHOHOH + OH \rightarrow CHOCHOHOH + HO_2 + H_2O$	k_s*f_soh*f_pch2oh	see note*
G42093c	TrGC	$\mathrm{HOCH_2CHOHOH} + \mathrm{OH} \rightarrow \mathrm{HCOOH} + \mathrm{HOCH_2O_2} + \mathrm{H_2O}$	2.0 * k_rohro	see note*
G42093d	TrGC	$\mathrm{HOCH_2CHOHOH} + \mathrm{OH} \rightarrow \mathrm{HCHO} + \mathrm{HCOOH} + \mathrm{HO_2} + \mathrm{H_2O}$	k_rohro	see note*
G42094a	TrGC	$\mathrm{CH_{3}CHOHOH} + \mathrm{OH} \rightarrow \mathrm{CH_{3}COOH} + \mathrm{HO_{2}} + \mathrm{H_{2}O}$	k_t*f_toh*f_toh	see note*
G42094b	TrGC	$\mathrm{CH_{3}CHOHOH} + \mathrm{OH} \rightarrow \mathrm{CH_{3}} + \mathrm{HCOOH} + \mathrm{H_{2}O}$	2.0 * k_rohro	see note*
G42095a	TrGC	$CHOHOHCOOH + OH \rightarrow HOOCCOOH + HO_2 + H_2O$	k_t*f_toh*f_toh*f_co2h	see note*
G42095b	TrGC	$CHOHOHCOOH + OH \rightarrow HCOOH + CO_2 + HO_2 + H_2O$	2.0 * k_rohro + k_co2h	see note*
G42096a	TrGC	CHOHOHCHOHOH + OH \rightarrow 2 HCOOH + HO ₂ + H ₂ O	4.0 * k_rohro	see note*
G42096b	TrGC	СНОНОНСНОНОН + ОН \rightarrow СНОНОНСООН + НО ₂ + Н ₂ О	2.0 * k_t*f_toh*f_toh*f_pch2oh	see note*
G42097a	TrGC	$CHOCHOHOH + OH \rightarrow HCOOH + CO + HO_2 + H_2O$	2.0 * k_rohro + k_t*f_o*f_pch2oh	see note*
G42097b	TrGC	$CHOCHOHOH + OH \rightarrow HCOCO_2H + HO_2 + H_2O$	k_t*f_toh*f_toh*f_cho	see note*
G42098a	TrGC	$\mathrm{HOOCH_2CHOHOH} + \mathrm{OH} \rightarrow \mathrm{HOOCH2CO2H} + \mathrm{HO_2} + \mathrm{H_2O}$	k_t*f_toh*f_toh*f_pch2oh	see note*
G42098b	TrGC	$\mathrm{HOOCH_2CHOHOH} + \mathrm{OH} \rightarrow \mathrm{HCOOH} + \mathrm{HCHO} + \mathrm{OH} + \mathrm{H_2O}$	2.0 * k_rohro	see note*
G42098c	TrGC	$\mathrm{HOOCH_2CHOHOH} + \mathrm{OH} \rightarrow \mathrm{CHOCHOHOH} + \mathrm{OH} + \mathrm{H_2O}$	k_s*f_pch2oh*f_sooh	see note*
G43000a	TrGC	$C_3H_8 + OH \rightarrow iC_3H_7O_2 + H_2O$	k_s	Sander et al. (2019)
G43000b	TrGC	$C_3H_8 + OH \rightarrow C_3H_7O_2 + H_2O$	2.*k_p	Sander et al. (2019)
G43001a	TrGC	$C_3H_6 + O_3 \rightarrow HCHO + .16 CH3CHOHOOH + .50 OH + .50 HCOCH_2O_2 + .05 CH2CO + .09 CH_3OH + .09 CO + .2 CH_4 + .2 CO_2$	5.5E-15*EXP(-1880./temp)*.57	Atkinson et al. $(2006)^*$
G43001b	TrGC	$C_3H_6 + O_3 \rightarrow CH_3CHO + CH_2OO^*$	5.5E-15*EXP(-1880./temp)*.43	Atkinson et al. $(2006)^*$
G43002	TrGC	$C_3H_6 + OH \rightarrow HYPROPO2$	k_3rd_iupac(temp,cair,8.6E-27, 3.5,3.E-11,1.,0.5)	Atkinson et al. (2006), Rickard and Pascoe (2009)
G43003	TrGCN	$C_3H_6 + NO_3 \rightarrow PRONO3BO2$	4.6E-13*EXP(-1155./temp)	Wallington et al. (2018)
G43004	TrGC	$iC_3H_7O_2 + HO_2 \rightarrow iC_3H_7OOH$	1.9E-13*EXP(1300./temp)	Atkinson (1997)*
G43005a	TrGCN	$iC_3H_7O_2 + NO \rightarrow CH_3COCH_3 + HO_2 + NO_2$	2.7E-12*EXP(360./temp)*(1alpha_AN(3,2,0,0,0,temp,cair))	Wallington et al. (2018)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G43005b	TrGCN	$iC_3H_7O_2 + NO \rightarrow iC_3H_7ONO_2$	2.7E-12*EXP(360./temp)*alpha_	Wallington et al. (2018)
			AN(3,2,0,0,0,temp,cair)	
G43006	TrGC	$iC_3H_7O_2 \rightarrow .8 CH_3COCH_3 + .2 IPROPOL + .6 HO_2$	2.*(1.6E-12*EXP(-2200./temp)	Rickard and Pascoe (2009),
			*k_CH302)**(.5)*R02	Atkinson et al. (2006)
G43007a	TrGC	$iC_3H_7OOH + OH \rightarrow iC_3H_7O_2 + H_2O$	k_ROOHRO	Sander et al. (2019)
G43007b	TrGC	$iC_3H_7OOH + OH \rightarrow CH_3COCH_3 + H_2O + OH$	k_t*f_t00H	Sander et al. (2019)
G43008	TrGC	$C_3H_7O_2 + HO_2 \rightarrow C_3H_7OOH$	1.9E-13*EXP(1300./temp)	Atkinson $(1997)^*$
G43009a	TrGCN	$C_3H_7O_2 + NO \rightarrow C_2H_5CHO + HO_2 + NO_2$	2.7E-12*EXP(360./temp)*(1alpha_AN(3,1,0,0,0,temp,cair))	Wallington et al. (2018)
G43009b	TrGCN	$\mathrm{C_3H_7O_2} + \mathrm{NO} \rightarrow \mathrm{C_3H_7ONO_2}$	2.7E-12*EXP(360./temp)*alpha_	Wallington et al. (2018)
			AN(3,1,0,0,0,temp,cair)	
G43010	TrGC	$C_3H_7O_2 \rightarrow .8 CH_3COCH_3 + .2 NPROPOL + .6 HO_2$	2.*(k_CH302*3.E-13)**(.5)*R02	Rickard and Pascoe (2009),
				Atkinson et al. (2006)
G43011	TrGC	$CH_3COCH_3 + OH \rightarrow CH_3COCH_2O_2 + H_2O$	(8.8E-12*EXP(-1320./temp) +1.7E-14*EXP(423./temp))	Atkinson et al. $(2006)^*$
G43012a	TrGC	$CH_3COCH_2O_2 + HO_2 \rightarrow CH_3COCH_2O_2H$	8.6E-13*EXP(700./temp)*r_COCH202_	Tyndall et al. (2001a), Sander
			ООН	et al. (2019)
G43012b	TrGC	$CH_3COCH_2O_2 + HO_2 \rightarrow OH + CH_3C(O) + HCHO$	8.6E-13*EXP(700./temp)*r_COCH202_ OH	Tyndall et al. (2001a), Sander et al. (2019)
G43013a	TrGCN	$CH_3COCH_2O_2 + NO \rightarrow CH_3C(O) + HCHO + NO_2$	2.9E-12*EXP(300./temp)*(1alpha_AN(4,1,1,0,0,temp,cair))	Burkholder et al. (2015)
G43013b	TrGCN	$CH_3COCH_2O_2 + NO \rightarrow NOA$	2.9E-12*EXP(300./temp)*alpha_	Burkholder et al. (2015)
	_ ~ ~	8 80 8 0 - 8 8/8 V	AN(4,1,1,0,0,temp,cair)	
G43014	TrGC	$\mathrm{CH_3COCH_2O_2} \rightarrow .3~\mathrm{CH_3C(O)} + .3~\mathrm{HCHO} + .5~\mathrm{MGLYOX} + .2~\mathrm{CH_3COCH_2OH}$	k1_R02p0R02	Orlando and Tyndall (2012)
G43015a	TrGC	$CH_3COCH_2O_2H + OH \rightarrow CH_3COCH_2O_2 + H_2O$	k_ROOHRO	see note*
G43015b	TrGC	$CH_3COCH_2O_2H + OH \rightarrow MGLYOX + OH + H_2O$	$k_s*f_s00H*f_C0$	Sander et al. (2019)
G43016	TrGC	$CH_3COCH_2OH + OH \rightarrow MGLYOX + HO_2 + H_2O$	1.6E-12*EXP(305./temp)	Atkinson et al. (2006)
G43017	TrGC	$\begin{array}{l} \mathrm{MGLYOX} + \mathrm{OH} \rightarrow .4 \ \mathrm{CH_3} + .6 \ \mathrm{CH_3C(O)} + 1.4 \ \mathrm{CO} + \\ \mathrm{H_2O} \end{array}$	1.9E-12*EXP(575./temp)	Baeza-Romero et al. (2007), Atkinson et al. (2006)
G43020	TrGCN	$iC_3H_7ONO_2 + OH \rightarrow CH_3COCH_3 + NO_2$	6.2E-13*EXP(-230./temp)	Wallington et al. (2018)
G43021	TrGCN	$CH_3COCH_2O_2 + NO_3 \rightarrow CH_3C(O) + HCHO + NO_2$	KRO2NO3	Rickard and Pascoe (2009)
G43022	TrGC	$\mathrm{HYPROPO2} ightarrow \mathrm{CH_3CHO} + \mathrm{HCHO} + \mathrm{HO_2}$	k1_R02s0R02	Rickard and Pascoe (2009)
G43023a	TrGC	$\rm HYPROPO2 + HO_2 \rightarrow HYPROPO2H$	k_R02_H02(temp,3)*(1r_ CHOHCH202_OH)	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G43023b	TrGC	$\mathrm{HYPROPO2} + \mathrm{HO}_2 \rightarrow \mathrm{CH}_3\mathrm{CHO} + \mathrm{HCHO} + \mathrm{HO}_2 + \mathrm{OH}$	k_RO2_HO2(temp,3)*r_CHOHCH2O2_OH	Rickard and Pascoe (2009)
G43024a	TrGCN	${\rm HYPROPO2} + {\rm NO} \rightarrow {\rm CH_3CHO} + {\rm HCHO} + {\rm HO_2} + {\rm NO_2}$	<pre>KRO2NO*(1alpha_AN(4,1,0,0,0,</pre>	Rickard and Pascoe (2009)
			temp,cair))	
G43024b	TrGCN	$HYPROPO2 + NO \rightarrow PROPOLNO3$	$KRO2NO*alpha_AN(4,1,0,0,0,temp,$	Rickard and Pascoe (2009)
			cair)	
G43025	TrGCN	$\mathrm{HYPROPO2} + \mathrm{NO_3} \rightarrow \mathrm{CH_3CHO} + \mathrm{HCHO} + \mathrm{HO_2} + \mathrm{NO_2}$	KRO2NO3	Rickard and Pascoe (2009)
G43026a	TrGC	$\rm HYPROPO2H + OH \rightarrow HYPROPO2$	k_ROOHRO	Rickard and Pascoe (2009)
G43026b	TrGC	$\mathrm{HYPROPO2H} + \mathrm{OH} \rightarrow \mathrm{CH_3COCH_2OH} + \mathrm{OH}$	(k_s*f_sOH*f_pCH2OH+k_t*f_ tOOH*f_pCH2OH)	Sander et al. (2019)
G43027	TrGCN	$PRONO3BO2 + HO_2 \rightarrow PR2O2HNO3$	k_RO2_HO2(temp,3)	Rickard and Pascoe (2009)
G43028	TrGCN	$PRONO3BO2 + NO \rightarrow NOA + HO_2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G43029	TrGCN	$PRONO3BO2 + NO_3 \rightarrow NOA + HO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)
G43030a	TrGCN	$PR2O2HNO3 + OH \rightarrow PRONO3BO2$	k_ROOHRO	Rickard and Pascoe (2009)
G43030b	TrGCN	$PR2O2HNO3 + OH \rightarrow NOA + OH$	k_t*f_t00H*f_CH20N02	Sander et al. (2019)
G43031	TrGCN	$MGLYOX + NO_3 \rightarrow CH_3C(O) + CO + HNO_3$	KNO3AL*2.4	Rickard and Pascoe (2009)
G43032	TrGCN	$NOA + OH \rightarrow MGLYOX + NO_2$	(k_s*f_C0*f_0N02+k_p*f_C0)	Sander et al. (2019)
G43033	TrGC	$\rm HOCH2COCHO + OH \rightarrow .8609~HOCH2CO + .8609~CO$ + .1391 $\rm HCOCOCHO + .1391~HO_2$	(1.9E-12*EXP(575./temp)+k_s*f_ sOH*f_CO)	Sander et al. (2019)
G43034	TrGCN	$HOCH2COCHO + NO_3 \rightarrow HOCH2CO + CO + HNO_3$	KNO3AL*2.4	Sander et al. (2019)
G43035	TrGC	$\mathrm{CH_3COCO_2H} + \mathrm{OH} \rightarrow \mathrm{CH_3C(O)} + \mathrm{H_2O} + \mathrm{CO_2}$	4.9E-14*EXP(276./temp)	Mellouki and Mu (2003), Sander et al. (2019)
G43036	TrGC	$\mathrm{HCOCOCH_2O_2} \rightarrow .6 \ \mathrm{HCOCO} + .6 \ \mathrm{HCHO} + .2 \ \mathrm{HCOCOCHO} + .2 \ \mathrm{HCOCOCHO}$	k1_R02p0R02	Sander et al. (2019)
G43037	TrGCN	$HCOCOCH_2O_2 + NO \rightarrow HCOCO + HCHO + NO_2$	KRO2NO	Sander et al. (2019)*
G43038a	TrGC	$HCOCOCH_2O_2 + HO_2 \rightarrow HCOCOCH_2OOH$	k_RO2_HO2(temp,3)*r_COCH2O2_OOH	Sander et al. (2019)
G43038b	TrGC	$HCOCOCH_2O_2 + HO_2 \rightarrow HCOCO + HCHO + OH$	k_RO2_HO2(temp,3)*r_COCH2O2_OH	Sander et al. (2019)
G43039	TrGCN	$HCOCOCH_2O_2 + NO_3 \rightarrow HCOCO + HCHO + NO_2$	KRO2NO3	Sander et al. (2019)
G43040a	TrGC	$\text{HCOCOCH}_2\text{OOH} + \text{OH} \rightarrow \text{HOOCH}_2\text{CO}_3 + \text{CO} + \text{H}_2\text{O}$	k_t*f_C0*f_0	Sander et al. (2019)*
G43040b	TrGC	$\text{HCOCOCH}_2\text{OOH} + \text{OH} \rightarrow \text{HCOCOCHO} + \text{H}_2\text{O} + \text{OH}$	k_s*f_s00H*f_C0	Sander et al. $(2019)^*$
G43040c	TrGC	$\text{HCOCOCH}_2\text{OOH} + \text{OH} \rightarrow \text{HCOCOCH}_2\text{O}_2 + \text{H}_2\text{O}$	k_ROOHRO	Sander et al. (2019)
G43041	TrGCN	$\text{HCOCOCH}_2\text{OOH} + \text{NO}_3 \rightarrow \text{HOOCH}_2\text{CO}_3 + \text{CO} + \text{HNO}_3$	KNO3AL*2.4	Sander et al. (2019)
G43042	TrGC	$HOCH2COCH2O2 \rightarrow HCHO + HOCH2CO$	k1_R02p0R02	Sander et al. (2019)
G43043a	TrGC	$\mathrm{HOCH2COCH2O2} + \mathrm{HO}_2 \rightarrow \mathrm{HOCH2COCH2OOH}$	k_RO2_HO2(temp,3)*r_COCH2O2_OOH	Sander et al. (2019)
G43043b	TrGC	$\text{HOCH2COCH2O2} + \text{HO}_2 \rightarrow \text{HCHO} + \text{HOCH2CO} + \text{OH}$	k_RO2_HO2(temp,3)*r_COCH2O2_OH	Sander et al. (2019)
G43044	TrGCN	$\mbox{HOCH2COCH2O2} + \mbox{NO} \rightarrow \mbox{HCHO} + \mbox{HOCH2CO} + \mbox{NO}_2$	KRO2NO	Sander et al. (2019)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G43045a	TrGC	$\text{HOCH2COCH2OOH} + \text{OH} \rightarrow \text{HOCH2COCHO} + \text{OH}$	k_s*f_s00H*f_C0	Sander et al. (2019)
G43045b	TrGC	$HOCH2COCH2OOH + OH \rightarrow HOCH2COCH2O2$	k_ROOHRO	Sander et al. (2019)
G43045c	TrGC	$HOCH2COCH2OOH + OH \rightarrow HCOCOCH_2OOH + HO_2$	1.60E-12*EXP(305./temp)	Sander et al. $(2019)^*$
G43046	TrGC	$\mathrm{CH3CHCO} + \mathrm{OH} \rightarrow .72\ \mathrm{CO} + .72\ \mathrm{CH_3CHO} + .72\ \mathrm{HO_2} + \\$	7.6E-11	Hatakeyama et al. (1985),
		$.21 \text{ CH}_3\text{COCO}_2\text{H} + .07 \text{ CH}_3\text{CHO} + .07 \text{ HO}_2 + .07 \text{ CO}_2$		Sander et al. (2019)
G43047	TrGCN	$PROPOLNO3 + OH \rightarrow CH_3COCH_2OH + NO_2$	k_t*f_0N02*f_pCH20H+k_s*f_s0H*f_ CH20N02	Sander et al. (2019)
G43048	TrGCN	$\mathrm{CH_3COCH_2O_2} + \mathrm{NO_2} \rightarrow \mathrm{CH_3COCH_2OONO_2}$	2.3E-12*EXP(300./temp)	Tyndall et al. $(2001a)^*$
G43049	TrGCN	$\mathrm{CH_{3}COCH_{2}OONO_{2}} \rightarrow \mathrm{CH_{3}COCH_{2}O_{2}} + \mathrm{NO_{2}}$	1.9E16*EXP(-10830./temp)	Sehested et al. (1998)*
G43050	TrGCN	$CH_3COCH_2OONO_2 + OH \rightarrow MGLYOX + NO_3 + H_2O$	9.50E-13*EXP(-650./temp)*f_C0	Sander et al. $(2019)^*$
G43051a	TrGC	$C_3H_7OOH + OH \rightarrow C_3H_7O_2 + H_2O$	k_ROOHRO	Sander et al. (2019)
G43051b	TrGC	$C_3H_7OOH + OH \rightarrow C_2H_5CHO + H_2O + OH$	k_s*f_s00H	Sander et al. (2019)
G43051c	TrGC	$C_3H_7OOH + OH \rightarrow C_2H_5CHO + HO_2 + H_2O$	k_s*f_pCH2OH	Sander et al. $(2019)^*$
G43052	TrGC	$C_2H_5CHO + OH \rightarrow C_2H_5CO_3 + H_2O$	4.9E-12*EXP(405./temp)	Atkinson et al. $(2006)^*$
G43053	TrGCN	$C_2H_5CHO + NO_3 \rightarrow C_2H_5CO_3 + HNO_3$	6.3E-15	Atkinson et al. (2006)
G43054a	TrGC	$C_2H_5CO_3 \rightarrow C_2H_5O_2 + CO_2$	k1_R02RC03*0.9	Sander et al. (2019)
G43054b	TrGC	$C_2H_5CO_3 \rightarrow C_2H_5CO_2H$	k1_R02RC03*0.1	Sander et al. (2019)
G43055a	TrGC	$C_2H_5CO_3 + HO_2 \rightarrow C_2H_5O_2 + CO_2 + OH$	KAPH02*r_C03_OH	Sander et al. (2019), Groß et al. (2014)
G43055b	TrGC	$C_2H_5CO_3 + HO_2 \rightarrow C_2H_5CO_3H$	KAPH02*r_C03_00H	Sander et al. (2019), Groß et al. (2014)
G43055c	TrGC	$C_2H_5CO_3 + HO_2 \rightarrow C_2H_5CO_2H + O_3$	KAPH02*r_C03_03	Sander et al. (2019), Groß et al. (2014)
G43056	TrGCN	$C_2H_5CO_3 + NO \rightarrow NO_2 + C_2H_5O_2 + CO_2$	KAPNO	Rickard and Pascoe (2009)
G43057	TrGCN	$C_2H_5CO_3 + NO_2 \rightarrow PPN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G43058	TrGCN	$PPN \rightarrow C_2H_5CO_3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G43059	TrGC	$C_2H_5CO_2H + OH \rightarrow CH_3CHO + CO_2 + H_2O$	k_CO2H+k_p+k_s*f_CO2H	Sander et al. $(2019)^*$
G43060a	TrGC	$C_2H_5CO_3H + OH \rightarrow C_2H_5CO_3 + H_2O$	k_ROOHRO	Sander et al. (2019)
G43060b	TrGC	$C_2H_5CO_3H + OH \rightarrow CH_3CHO + CO_2 + H_2O$	k_s*f_CO2H+k_p	Sander et al. $(2019)^*$
G43061	TrGCN	$PPN + OH \rightarrow CH_3CHO + CO_2 + NO_2 + H_2O$	k_s*f_cpan+k_p	Sander et al. $(2019)^*$
G43062	TrGC	$CH_3COCO_3H + OH \rightarrow CH_3COCO_3 + H_2O$	k_ROOHRO	Sander et al. (2019)
G43063a	TrGC	$\mathrm{CH_3COCO_3} + \mathrm{HO_2} \rightarrow \mathrm{CH_3C(O)} + \mathrm{CO_2} + \mathrm{OH}$	KAPHO2*r_CO3_OH	Sander et al. (2019)
G43063b	TrGC	$\mathrm{CH_{3}COCO_{3}} + \mathrm{HO_{2}} \rightarrow \mathrm{CH_{3}COCO_{3}H}$	KAPHO2*(r_CO3_OOH+r_CO3_O3)	Sander et al. (2019)
G43064	TrGCN	$CH_3COCO_3 + NO \rightarrow CH_3C(O) + CO_2 + NO_2$	KAPNO	Sander et al. (2019)
G43065	TrGCN	$CH_3COCO_3 + NO_2 \rightarrow CH_3C(O) + CO_2 + NO_3$	k_CH3CO3_NO2	Sander et al. (2019)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G43066	TrGCN	$\text{CH}_3\text{COCO}_3 + \text{NO}_3 \rightarrow \text{CH}_3\text{C}(\text{O})\text{OO} + \text{CO}_2 + \text{NO}_2$	KRO2NO3*1.74	Sander et al. (2019)
G43067	TrGC	$CH_3COCO_3 \rightarrow CH_3C(O)OO + CO_2$	k1_RO2RCO3	Sander et al. (2019)
G43068	TrGC	$\mathrm{HCOCOCHO} + \mathrm{OH} \rightarrow 3~\mathrm{CO} + \mathrm{HO}_2$	2.*k_t*f_CO*f_O	Sander et al. (2019)
G43069	TrGC	$IPROPOL + OH \rightarrow CH_3COCH_3 + HO_2 + H_2O$	2.6E-12*EXP(200./temp)	Atkinson et al. (2006)
G43070a	TrGC	$NPROPOL + OH \rightarrow C_2H_5CHO + HO_2 + H_2O$	4.6E-12*EXP(70./temp)*(k_s*f_sOH/(k_p+k_s*f_pCH2OH+k_s*f_sOH))	Atkinson et al. (2006), Sander et al. (2019)*
G43070b	TrGC	NPROPOL + OH \rightarrow HYPROPO2 + H ₂ O	4.6E-12*EXP(70./temp)*((k_p+k_ s*f_pCH2OH)/(k_p+k_s*f_pCH2OH+k_ s*f_sOH))	Atkinson et al. (2006), Sander et al. (2019)*
G43071a	TrGC	$\mathrm{CH_2CHCH_2OH} + \mathrm{OH} \rightarrow \mathrm{HCOOH} + \mathrm{OH} + \mathrm{CH_3CHO}$	k_CH2CHOH_OH_HCOOH	Sander et al. (2019), So et al. $(2014)^*$
G43072	TrGC	$\mathrm{CH_2CHCH_2OH} + \mathrm{HCOOH} \rightarrow \mathrm{C_2H_5CHO} + \mathrm{HCOOH}$	k_CH2CHOH_HCOOH	Sander et al. (2019), da Silva (2010)*
G43073	TrGC	$C_2H_5CHO + HCOOH \rightarrow CH_2CHCH_2OH + HCOOH$	k_ALD_HCOOH	Sander et al. (2019), da Silva (2010)*
G43074	TrGC	$HCOCOCH_2OOH + OH \rightarrow HCOCO + CO + HO_2 + OH$	k_s*f_s00H*f_CO+k_ROOHRO	Sander et al. $(2019)^*$
G43075a	TrGC	$CH_3COCHOHOH + OH \rightarrow CH_3C(O) + HCOOH + H_2O$	2.0 * k_rohro	see note*
G43075b	TrGC	$\mathrm{CH_{3}COCHOHOH} + \mathrm{OH} \rightarrow \mathrm{CH_{3}COCO_{2}H} + \mathrm{H_{2}O}$	k_t*f_toh*f_toh*f_co	see note*
G43202	TrGTerC	$\text{HCOCH2CHO} + \text{OH} \rightarrow \text{HCOCH2CO3}$	4.29E-11	Rickard and Pascoe (2009)
G43203	TrGTerCN	$\text{HCOCH2CHO} + \text{NO}_3 \rightarrow \text{HCOCH2CO3} + \text{HNO}_3$	2.*KN03AL*2.4	Rickard and Pascoe (2009)
G43204a	TrGTerC	$HCOCH2CO3 \rightarrow HCOCH_2O_2 + CO_2$	k1_R02RC03*0.9	Sander et al. (2019)
G43204b	TrGTerC	$HCOCH2CO3 \rightarrow HCOCH2CO2H$	k1_R02RC03*0.1	Sander et al. (2019)
G43205	TrGTerCN	$\text{HCOCH2CO3} + \text{NO} \rightarrow \text{HCOCH}_2\text{O}_2 + \text{CO}_2 + \text{NO}_2$	KAPNO	Rickard and Pascoe (2009)
G43206	TrGTerCN	$HCOCH2CO3 + NO_2 \rightarrow C_3PAN2$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G43207a	TrGTerC	$\text{HCOCH2CO3} + \text{HO}_2 \rightarrow \text{HCOCH2CO3H}$	KAPHO2*r_CO3_OOH	Rickard and Pascoe (2009)
G43207b	TrGTerC	$\text{HCOCH2CO3} + \text{HO}_2 \rightarrow \text{HCOCH2CO2H} + \text{O}_3$	KAPHO2*r_CO3_O3	Rickard and Pascoe (2009)
G43207c	TrGTerC	$HCOCH2CO3 + HO_2 \rightarrow HCOCH_2O_2 + CO_2 + OH$	KAPHO2*r_CO3_OH	Rickard and Pascoe (2009)
G43210	TrGTerCN	$C_3PAN2 \rightarrow HCOCH2CO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G43211	TrGTerCN	$C_3PAN2 + OH \rightarrow GLYOX + CO + NO_2$	2.10E-11	Rickard and Pascoe (2009)
G43212	TrGTerC	$\text{HCOCH2CO2H} + \text{OH} \rightarrow \text{HCOCH}_2\text{O}_2 + \text{CO}_2$	2.14E-11	Rickard and Pascoe (2009)
G43213a	TrGTerC	$HOC_2H_4CO_3 \rightarrow HOCH_2CH_2O_2 + CO_2$	k1_R02RC03*0.9	Sander et al. (2019)
G43213b	TrGTerC	$HOC_2H_4CO_3 \rightarrow HOC2H4CO2H$	k1_R02RC03*0.1	Sander et al. (2019)
G43214	TrGTerCN	$HOC_2H_4CO_3 + NO \rightarrow HOCH_2CH_2O_2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G43215a	TrGTerC	$HOC_2H_4CO_3 + HO_2 \rightarrow HOC2H4CO3H$	KAPH02*r_C03_00H	Rickard and Pascoe (2009)
G43215b	TrGTerC	$HOC_2H_4CO_3 + HO_2 \rightarrow HOCH_2CH_2O_2 + CO_2 + OH$	KAPHO2*r_CO3_OH	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G43215c	TrGTerC	$HOC_2H_4CO_3 + HO_2 \rightarrow HOC2H4CO2H + O_3$	KAPH02*r_C03_03	Rickard and Pascoe (2009)
G43218	TrGTerCN	$\mathrm{HOC_2H_4CO_3} + \mathrm{NO_2} \rightarrow \mathrm{C_3PAN1}$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G43219	TrGTerC	$HOC2H4CO2H + OH \rightarrow HOCH_2CH_2O_2 + CO_2$	1.39E-11	Rickard and Pascoe (2009)
G43220	TrGTerC	$HOC2H4CO3H + OH \rightarrow HOC_2H_4CO_3$	1.73E-11	Rickard and Pascoe (2009)
G43221	TrGTerCN	$C_3PAN1 \rightarrow HOC_2H_4CO_3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G43222	TrGTerCN	$C_3PAN1 + OH \rightarrow HOCH_2CHO + CO + NO_2$	4.51E-12	Rickard and Pascoe (2009)
G43223	TrGTerC	$\text{HCOCH2CO3H} + \text{OH} \rightarrow \text{HCOCH}_2\text{O}_2 + \text{CO}_2 + \text{H}_2\text{O}$	2.49E-11	Rickard and Pascoe (2009)*
G43415	TrGAroC	$C3DIALOOH + OH \rightarrow HCOCOCHO + OH$	1.44E-10	Rickard and Pascoe (2009)
G43418a	TrGAroC	$C3DIALO2 + HO_2 \rightarrow C3DIALOOH$	k_R02_H02(temp,3)*(r_C03_00H+r_ C03_03)	Rickard and Pascoe (2009)
G43418b	TrGAroC	$C3DIALO2 + HO_2 \rightarrow GLYOX + CO + HO_2 + OH$	k_RO2_HO2(temp,3)*r_CO3_OH	Rickard and Pascoe (2009)
G43419	TrGAroCN	$C3DIALO2 + NO \rightarrow GLYOX + CO + HO_2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G43420	TrGAroCN	$C3DIALO2 + NO_3 \rightarrow GLYOX + CO + HO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
G43421	TrGAroC	$C3DIALO2 \rightarrow GLYOX + CO + HO_2$	k1_R02s0R02	Rickard and Pascoe (2009)*
G43422a	TrGAroC	$\text{HCOCOHCO3} + \text{HO}_2 \rightarrow \text{GLYOX} + \text{CO}_2 + \text{HO}_2 + \text{OH}$	KAPHO2*r_CO3_OH	Rickard and Pascoe (2009)
G43422b	TrGAroC	$\text{HCOCOHCO3} + \text{HO}_2 \rightarrow \text{HCOCOHCO3H}$	KAPHO2*(r_CO3_OOH+r_CO3_O3)	Rickard and Pascoe (2009)
G43424	TrGAroCN	$\text{HCOCOHCO3} + \text{NO} \rightarrow \text{GLYOX} + \text{CO}_2 + \text{HO}_2 + \text{NO}_2$	KAPNO	Rickard and Pascoe (2009)
G43425	TrGAroCN	$\text{HCOCOHCO3} + \text{NO}_2 \rightarrow \text{HCOCOHPAN}$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G43426	TrGAroCN	$\text{HCOCOHCO3} + \text{NO}_3 \rightarrow \text{GLYOX} + \text{CO}_2 + \text{HO}_2 + \text{NO}_2$	KR02N03*1.74	Rickard and Pascoe (2009)
G43427	TrGAroC	$\text{HCOCOHCO3} \rightarrow \text{GLYOX} + \text{CO}_2 + \text{HO}_2$	k1_R02RC03	Rickard and Pascoe (2009)
G43428	TrGAroC	$METACETHO + OH \rightarrow CH_3C(O) + CO_2$	9.82E-11	Rickard and Pascoe (2009)
G43442	TrGAroCN	$\text{HCOCOHPAN} + \text{OH} \rightarrow \text{GLYOX} + \text{CO} + \text{NO}_2$	6.97E-11	Rickard and Pascoe (2009)
G43443	TrGAroCN	$\text{HCOCOHPAN} \rightarrow \text{HCOCOHCO3} + \text{NO}_2$	k_PAN_M	Rickard and Pascoe (2009)
G43444	TrGAroC	$C32OH13CO + OH \rightarrow HCOCOHCO3$	1.36E-10	Rickard and Pascoe (2009)
G43446	TrGAroC	$\text{HCOCOHCO3H} + \text{OH} \rightarrow \text{HCOCOHCO3}$	7.33E-11	Rickard and Pascoe (2009)
G44000	TrGC	$C_4H_{10} + OH \rightarrow LC_4H_9O_2 + H_2O$	2.03E-17*temp*temp*EXP(78./temp)	Atkinson et al. $(2006)^*$
G44001a	TrGC	$LC_4H_9O_2 \rightarrow C_3H_7CHO + HO_2$	(k1_RO2pRO2*0.1273+k1_ RO2sRO2*0.8727)*0.1273	Rickard and Pascoe (2009), Sander et al. (2019)
G44001b	TrGC	$LC_4H_9O_2 \rightarrow .636 \text{ MEK} + .636 \text{ HO}_2 + .364 \text{ CH}_3\text{CHO} + .364 \text{ C}_2H_5O_2$	(k1_R02pR02*0.1273+k1_ R02sR02*0.8727)*0.8727	Rickard and Pascoe (2009), Sander et al. (2019)*
G44002	TrGC	$LC_4H_9O_2 + HO_2 \rightarrow LC_4H_9OOH$	k_R02_H02(temp,4)	Rickard and Pascoe (2009)
G44003a	TrGCN	$LC_4H_9O_2 + NO \rightarrow NO_2 + C_3H_7CHO + HO_2$	KRO2NO*(1(0.1273*alpha_AN(4,1,0,0,0,0,temp,cair)+0.8727*alpha_AN(4,2,0,0,0,temp,cair)))*0.1273	Rickard and Pascoe (2009), Sander et al. (2019)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G44003b	TrGCN	$LC_4H_9O_2 + NO \rightarrow NO_2 + .636 \text{ MEK} + .636 \text{ HO}_2 + .364$	KRO2NO*(1(0.1273*alpha_AN(4,1,	Rickard and Pascoe (2009),
		$CH_3CHO + .364 C_2H_5O_2$	0,0,0,temp,cair)+0.8727*alpha_ AN(4,2,0,0,0,temp,cair)))*0.8727	Sander et al. (2019)
G44003c	TrGCN	$LC_4H_9O_2 + NO \rightarrow LC4H9NO3$	<pre>KRO2NO*(0.1273*alpha_AN(4,1,0,0, 0,temp,cair)+0.8727*alpha_AN(4, 2,0,0,0,temp,cair))</pre>	Rickard and Pascoe (2009)*
G44004a	TrGCN	$LC_4H_9O_2 + NO_3 \rightarrow NO_2 + C_3H_7CHO + HO_2$	KR02N03*0.1273	Rickard and Pascoe (2009), Sander et al. (2019)
G44004b	TrGCN	$LC_4H_9O_2 + NO_3 \rightarrow NO_2 + .636 \text{ MEK} + .636 \text{ HO}_2 + .364$ $CH_3CHO + .364 C_2H_5O_2$	KR02N03*0.8727	Rickard and Pascoe (2009), Sander et al. (2019)
G44005a	TrGC	$LC_4H_9OOH + OH \rightarrow LC_4H_9O_2 + H_2O$	k_ROOHRO	Sander et al. (2019)
G44005b	TrGC	$LC_4H_9OOH + OH \rightarrow C_3H_7CHO + H_2O + OH$	k_s*f_t00H*f_alk*(k_p/(k_p+k_s))	Sander et al. (2019)
G44005c	TrGC	$LC_4H_9OOH + OH \rightarrow MEK + H_2O + OH$	$k_t*f_t00H*f_alk*(k_s/(k_p+k_s))$	Sander et al. (2019)
G44006a	TrGC	$iC_4H_{10} + OH \rightarrow TC_4H_9O_2 + H_2O$	1.17E-17*temp*temp*EXP(213./temp) *k_t/(3.*k_p+k_t)	Atkinson (2003)
G44006b	TrGC	$iC_4H_{10} + OH \rightarrow IC_4H_9O_2 + H_2O$	1.17E-17*temp*temp*EXP(213./temp) *3.*k_p/(3.*k_p+k_t)	Atkinson (2003)
G44007	TrGC	$TC_4H_9O_2 \rightarrow CH_3COCH_3 + CH_3$	k1_R02tR02	Rickard and Pascoe (2009), Sander et al. (2019)
G44008	TrGC	$\mathrm{TC_4H_9O_2} + \mathrm{HO_2} \rightarrow \mathrm{TC_4H_9OOH}$	k_R02_H02(temp,4)	Rickard and Pascoe (2009)
G44009a	TrGCN	$TC_4H_9O_2 + NO \rightarrow NO_2 + CH_3COCH_3 + CH_3$	<pre>KRO2NO*(1alpha_AN(4,3,0,0,0, temp,cair))</pre>	Rickard and Pascoe (2009), Sander et al. (2019)
G44009b	TrGCN	$TC_4H_9O_2 + NO \rightarrow TC4H9NO3$	<pre>KRO2NO*alpha_AN(4,3,0,0,0,temp, cair)</pre>	Rickard and Pascoe (2009)
G44010a	TrGC	$TC_4H_9OOH + OH \rightarrow TC_4H_9O_2 + H_2O$	k_ROOHRO	Sander et al. (2019)
G44010b	TrGC	$TC_4H_9OOH + OH \rightarrow CH_3COCH_3 + HCHO + OH + H_2O$	3.*k_p*f_tCH2OH	Sander et al. (2019)*
G44011	TrGCN	$TC4H9NO3 + OH \rightarrow CH_3COCH_3 + HCHO + NO_2 + H_2O$	3.*k_p*f_CH20N02	Sander et al. $(2019)^*$
G44012	TrGC	$IC_4H_9O_2 \rightarrow IPRCHO$	k1_R02sR02	Rickard and Pascoe (2009), Sander et al. (2019)
G44013	TrGC	$IC_4H_9O_2 + HO_2 \rightarrow IC_4H_9OOH$	k_R02_H02(temp,4)	Rickard and Pascoe (2009)
G44014a	TrGCN	$IC_4H_9O_2 + NO \rightarrow NO_2 + IPRCHO$	<pre>KRO2NO*(1alpha_AN(4,2,0,0,0, temp,cair))</pre>	Rickard and Pascoe (2009), Sander et al. (2019)
G44014b	TrGCN	$IC_4H_9O_2 + NO \rightarrow IC4H9NO3$	<pre>KRO2NO*alpha_AN(4,2,0,0,0,temp, cair)</pre>	Rickard and Pascoe (2009)
G44015a	TrGC	$IC_4H_9OOH + OH \rightarrow IC_4H_9O_2 + H_2O$	k_ROOHRO	Sander et al. (2019)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G44015b	TrGC	$IC_4H_9OOH + OH \rightarrow IPRCHO + OH + H_2O$	k_s*f_s00H+2.*k_s+k_t*f_pCH2OH	Sander et al. (2019)*
G44016	TrGCN	$IC4H9NO3 + OH \rightarrow IPRCHO + NO_2 + H_2O$	k_s*f_0N02+2.*k_p+k_t*f_CH20N02	Sander et al. $(2019)^*$
G44017	TrGC	$\begin{array}{l} {\rm MVK}+{\rm O}_3\rightarrow.87{\rm MGLYOX}+.5481{\rm CO}+.1392{\rm HO}_2\\ +.1392{\rm OH}+.3219{\rm CH}_2{\rm OO}+.13{\rm HCHO}+.04680{\rm OH}\\ +.04680{\rm CO}+.07280{\rm CH}_3{\rm C(O)}+.026{\rm CH}_3{\rm CHO}+.026\\ {\rm CO}_2+.026{\rm HCHO}+.026{\rm HO}_2+.02402{\rm MGLYOX}+.02402{\rm H}_2{\rm O}_2+.00718{\rm CH}_3{\rm COCO}_2{\rm H} \end{array}$	8.5E-16*EXP(-1520./temp)	Sander et al. (2019)
G44018	TrGC	$MVK + OH \rightarrow LHMVKABO2$	2.6E-12*EXP(610./temp)	Sander et al. (2019), Atkinson et al. (2006)*
G44019	TrGC	$\text{MEK} + \text{OH} \rightarrow \text{LMEKO2} + \text{H}_2\text{O}$	1.5E-12*EXP(-90./temp)	Atkinson et al. (2006), Sander et al. (2019)*
G44020	TrGC	$LMEKO2 + HO_2 \rightarrow LMEKOOH$	k_R02_H02(temp,4)	Sander et al. (2019)
G44021a	TrGCN	LMEKO2 + NO \rightarrow .62 CH ₃ CHO + .62 CH ₃ C(O) + .38 HCHO + .38 CO ₂ + .38 HOCH ₂ CH ₂ O ₂ + NO ₂	<pre>KRO2NO*(1(.62*alpha_AN(4,2,1, 0,0,temp,cair)+.38*alpha_AN(4,1, 0,1,0,temp,cair)))</pre>	Sander et al. (2019)*
G44021b	TrGCN	$LMEKO2 + NO \rightarrow LMEKNO3$	<pre>KRO2NO*(.62*alpha_AN(4,2,1,0,0, temp,cair)+.38*alpha_AN(4,1,0,1, 0,temp,cair))</pre>	Sander et al. (2019)
G44022a	TrGC	$LMEKOOH + OH \rightarrow LMEKO2 + H_2O$	k_ROOHRO	Sander et al. (2019)
G44022b	TrGC	LMEKOOH + OH \rightarrow .62 BIACET + .38 HCHO + .38 CO ₂ + .38 HOCH ₂ CH ₂ O ₂ + H ₂ O + OH	(.62*k_t*f_t00H*f_C0+.38*k_s*f_ s00H)	Sander et al. (2019)
G44023a	TrGCN	$LC4H9NO3 + OH \rightarrow MEK + NO_2 + H_2O$	(k_t*f_0N02*f_alk+k_p*f_alk+k_ s*f_CH20N02+k_p)*(k_s/(k_p+k_s))	Sander et al. (2019)*
G44023b	TrGCN	$LC4H9NO3 + OH \rightarrow C_3H_7CHO + NO_2 + H_2O$	(k_p+k_s*(1.+f_CH20N02+f_0N02) *f_alk)*(k_p/(k_p+k_s))	Sander et al. $(2019)^*$
G44024	TrGCN	$MPAN + OH \rightarrow CH_3COCH_2OH + CO + NO_2$	3.2E-11	Orlando et al. (2002)
G44025	TrGCN	$MPAN \rightarrow MACO3 + NO_2$	k_PAN_M	see note*
G44026	TrGC	LMEKO2 \rightarrow .538 HCHO + .538 CO ₂ + .459 HOCH ₂ CH ₂ O ₂ + .079 C ₂ H ₅ O ₂ + .462 CH ₃ C(O) + .462 CH ₃ CHO	(.62*k1_R02s0R02+.38*k1_R02p0R02)	Rickard and Pascoe (2009)*
G44027	TrGC	$\mathrm{MACR} + \mathrm{OH} \rightarrow .45 \; \mathrm{MACO3} + .55 \; \mathrm{MACRO2}$	8.E-12*EXP(380./temp)	Orlando et al. (1999b), Sander et al. (2019)
G44028	TrGC	$\begin{array}{l} {\rm MACR} + {\rm O}_3 \rightarrow .5481~{\rm CO} + .1392~{\rm HO}_2 + .1392~{\rm OH} + \\ .3219~{\rm CH}_2{\rm OO} + .87~{\rm MGLYOX} + .13~{\rm HCHO} + .13~{\rm OH} + \\ .065~{\rm HCOCOCH}_2{\rm O}_2 + .065~{\rm CO} + .065~{\rm CH}_3{\rm C(O)} \end{array}$	1.36E-15*EXP(-2112./temp)	Sander et al. (2019)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G44029	TrGCN	$MACR + NO_3 \rightarrow MACO_3 + HNO_3$	KNO3AL*2.0	Rickard and Pascoe (2009)
G44030a	TrGC	$MACO3 \rightarrow CH_3C(O) + HCHO + CO_2$	k1_R02RC03*0.9	Sander et al. (2019)
G44030b	TrGC	$MACO3 \rightarrow MACO2H$	k1_R02RC03*0.1	Sander et al. (2019)
G44031a	TrGC	$MACO3 + HO_2 \rightarrow MACO2 + OH$	KAPHO2*r_CO3_OH	Sander et al. (2019)
G44031b	TrGC	$MACO3 + HO_2 \rightarrow MACO3H$	KAPH02*r_C03_00H	Sander et al. (2019)
G44031c	TrGC	$MACO3 + HO_2 \rightarrow MACO2H + O_3$	KAPH02*r_C03_03	Sander et al. (2019)
G44032	TrGCN	$MACO3 + NO \rightarrow MACO2 + NO_2$	8.70E-12*EXP(290./temp)	Sander et al. (2019)
G44033	TrGCN	$MACO3 + NO_2 \rightarrow MPAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G44034	TrGCN	$MACO3 + NO_3 \rightarrow MACO2 + NO_2$	KR02N03*1.74	Sander et al. (2019)
G44035	TrGC	$\rm MACRO2 \rightarrow .7~CH_3COCH_2OH + .7~HCHO + .7~HO_2 + .3~MACROH$	k1_R02t0R02	Rickard and Pascoe (2009)*
G44036a	TrGC	$MACRO2 + HO_2 \rightarrow MACRO + OH$	k_R02_H02(temp,4)*r_COCH202_OH	Sander et al. (2019)
G44036b	TrGC	$MACRO2 + HO_2 \rightarrow MACROOH$	k_R02_H02(temp,4)*r_COCH202_00H	Sander et al. (2019)
G44037a	TrGCN	$MACRO2 + NO \rightarrow MACRO + NO_2$	<pre>KRO2NO*(1alpha_AN(6,3,1,0,0, temp,cair))</pre>	Sander et al. (2019)
G44037b	TrGCN	$MACRO2 + NO \rightarrow MACRNO3$	<pre>KRO2NO*alpha_AN(6,3,1,0,0,temp, cair)</pre>	Sander et al. (2019)
G44038	TrGCN	$MACRO2 + NO_3 \rightarrow MACRO + NO_2$	KRO2NO3	Sander et al. (2019)
G44039a	TrGC	$MACROOH + OH \rightarrow MACRO2$	k_ROOHRO	Sander et al. (2019)
G44039b	TrGC	$MACROOH + OH \rightarrow CO + CH_3COCH_2OH + OH$	$k_t*f_0*f_tCH20H*f_alk$	Sander et al. (2019)
G44039c	TrGC	$MACROOH + OH \rightarrow CO + MGLYOX + HO_2$	(k_s*f_sOH*f_pCH2OH + k_ROHRO)	Sander et al. (2019)
G44040	TrGC	$MACROH + OH \rightarrow CH_3COCH_2OH + CO + HO_2$	k_t*f_0*f_tCH20H*f_alk	Sander et al. (2019)
G44041	TrGC	$\begin{array}{llllllllllllllllllllllllllllllllllll$	KDEC	Sander et al. (2019)
G44042	TrGC	$MACO2H + OH \rightarrow CH_3COCH_2OH + HO_2 + CO_2$	$((k_adt+k_adp)*a_CO2H+k_CO2H)$	Sander et al. (2019)
G44043a	TrGC	$MACO3H + OH \rightarrow CH_3COCH_2OH + CO_2 + OH$	(k_adt+k_adp)*a_CO2H	Sander et al. (2019)
G44043b	TrGC	$MACO3H + OH \rightarrow MACO3$	k_ROOHRO	Sander et al. (2019)
G44044	TrGC	LHMVKABO2 \rightarrow .024 CO2H3CHO + .072 MGLYOX + .072 HO ₂ + .072 HCHO + .5280 CH ₃ C(O) + .5280 HOCH ₂ CHO + .176 BIACETOH + .2 HO12CO3C4	(.12*k1_R02p0R02+.88*k1_R02s0R02)	Sander et al. (2019)
G44045a	TrGC	$LHMVKABO2 + HO_2 \rightarrow OH + HOCH_2CHO + CH_3C(O)$	k_R02_H02(temp,4)*.88*r_COCH202_ OH	Sander et al. (2019)
G44045b	TrGC	${\rm LHMVKABO2 + HO_2 \rightarrow LHMVKABOOH}$	k_R02_H02(temp,4)*(.12+.88*r_ COCH202_00H)	Sander et al. (2019)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G44046a	TrGCN	$LHMVKABO2 + NO \rightarrow .12 MGLYOX + .12 HO_2 + .88$	KRO2NO*(1(.12*alpha_AN(6,1,0,	Sander et al. (2019)
		$HOCH_2CHO + .88 CH_3C(O) + .12 HCHO + NO_2$	1,0,temp,cair)+.88*alpha_AN(6,2,	
			1,0,0,temp,cair)))	
G44046b	TrGCN	$LHMVKABO2 + NO \rightarrow MVKNO3$	<pre>KRO2NO*(.12*alpha_AN(6,1,0,1,0,</pre>	Sander et al. $(2019)^*$
			temp, cair) $+.88*$ alpha_AN(6,2,1,0,	
			0,temp,cair))	
G44047	TrGCN	$LHMVKABO2 + NO_3 \rightarrow .12 MGLYOX + .12 HO_2 + .88$	KR02N03	Sander et al. (2019)
		$HOCH_2CHO + .88 CH_3C(O) + .12 HCHO + .12 HO_2 +$		
		NO_2		
G44048a	TrGC	$LHMVKABOOH + OH \rightarrow LHMVKABO2$	k_ROOHRO	Sander et al. (2019)
G44048b	TrGC	LHMVKABOOH + OH \rightarrow .12 CO2H3CHO + .88	(.12*k_s*f_s00H*f_pCH20H+.88*k_	Sander et al. (2019)
		BIACETOH + OH	t*f_t00H*f_pCH2OH*f_C0)	
G44049a	TrGC	$CO2H3CHO + OH \rightarrow CO2H3CO3$	$k_t*f_0*f_alk$	Sander et al. (2019)
G44049b	TrGC	$CO2H3CHO + OH \rightarrow CH_3COCOCHO + HO_2 + H_2O$	k_t*f_CO*f_tOH*f_CHO	Sander et al. (2019)
G44050	TrGCN	$CO2H3CHO + NO_3 \rightarrow CO2H3CO3 + HNO_3$	KNO3AL*4.0	Rickard and Pascoe (2009)
G44051	TrGC	$CO2H3CO3 \rightarrow MGLYOX + HO_2 + CO_2$	k1_R02RC03	Sander et al. (2019)
G44052a	TrGC	$CO2H3CO3 + HO_2 \rightarrow OH + MGLYOX + HO_2 + CO_2$	KAPHO2*r_CO3_OH	Sander et al. (2019)
G44052b	TrGC	$CO2H3CO3 + HO_2 \rightarrow CO2H3CO2H + O_3$	KAPH02*r_C03_03	Sander et al. (2019)
G44052c	TrGC	$CO2H3CO3 + HO_2 \rightarrow CO2H3CO3H$	KAPH02*r_C03_00H	Sander et al. (2019)
G44053	TrGCN	$CO2H3CO3 + NO \rightarrow MGLYOX + HO_2 + NO_2 + CO_2$	KAPNO	Sander et al. (2019)
G44054	TrGCN	$CO2H3CO3 + NO_3 \rightarrow MGLYOX + HO_2 + NO_2 + CO_2$	KR02N03*1.74	Sander et al. (2019)
G44055a	TrGC	$CO2H3CO3H + OH \rightarrow CO2H3CO3$	k_ROOHRO	Sander et al. (2019)
G44055b	TrGC	$CO2H3CO3H + OH \rightarrow CH_3C(O) + CO + CO_2 + OH$	(k_t*f_CO2H*f_CO*f_tOH)	Sander et al. (2019)
G44056	TrGC	$CO2H3CO2H + OH \rightarrow CH3COCOCO2H + HO_2$	k_t*f_CO2H*f_CO*f_tOH+k_CO2H	Sander et al. (2019)
G44057a	TrGC	$HO12CO3C4 + OH \rightarrow BIACETOH + HO_2$	k_t*f_tOH*f_alk*f_CO	Sander et al. (2019)
G44057b	TrGC	$HO12CO3C4 + OH \rightarrow CO2H3CHO + HO_2$	k_s*f_sOH*f_alk	Sander et al. (2019)
G44058	TrGC	$\mathrm{MACO2} \rightarrow .65~\mathrm{CH_3} + .65~\mathrm{CO} + .65~\mathrm{HCHO} + .35~\mathrm{OH} +$	KDEC	Sander et al. (2019)
		$.35 \text{ CH}_3 \text{COCH}_2 \text{O}_2 + \text{CO}_2$		
G44059	TrGC	$LHMVKABO2 \rightarrow .88 \ MGLYOX + .88 \ HCHO + .12$	k_hsd	Sander et al. (2019)
		$HOOCH2CHO + .12 CH_3C(O) + OH$		
G44060	TrGC	$MACRO2 \rightarrow MGLYOX + HCHO + OH$	k_hsb	Sander et al. (2019)
G44061a	TrGCN	$MVKNO3 + OH \rightarrow MGLYOX + CO_2 + HO_2 + NO_2 +$	k_s*f_s00H*f_CH20N02+k_ROHRO	Sander et al. $(2019)^*$
		$\mathrm{H}_2\mathrm{O}$		
G44061b	TrGCN	$MVKNO3 + OH \rightarrow BIACETOH + NO_2 + H_2O$	k_t*f_0N02*f_C0*f_pCH20H	Sander et al. (2019)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G44062a	TrGCN	$MACRNO3 + OH \rightarrow CH_3COCH_2OH + CO_2 + NO_2 +$	k_t*f_0*f_CH20N02	Sander et al. (2019)*
		$\mathrm{H}_2\mathrm{O}$		
G44062b	TrGCN	$MACRNO3 + OH \rightarrow MGLYOX + CO + NO_2 + H_2O$	k_ROHRO+k_s*f_sOOH*f_CH2ONO2	Sander et al. $(2019)^*$
G44063	TrGC	$MACRO2 \rightarrow CH_3COCH_2OH + OH + CO$	k_14hsal	Sander et al. (2019)
G44064	TrGC	$EZCH3CO2CHCHO \rightarrow .9 CH_3COCHCO + .1 CH_3C(O) +$	k_15hs24vynal	Sander et al. (2019)
		$.01 \text{ GLYOX} + .18 \text{ CO} + .09 \text{ HO}_2 + \text{OH}$		
G44065	TrGC	EZCH3CO2CHCHO + $HO_2 \rightarrow CH_3COOHCHCHO$	k_RO2_HO2(temp,4)	Sander et al. (2019)
G44066	TrGCN	$EZCH3CO2CHCHO + NO \rightarrow CH_3COCHO_2CHO + NO_2$	KRO2NO	Sander et al. $(2019)^*$
G44067	TrGCN	$EZCH3CO2CHCHO + NO_3 \rightarrow CH_3COCHO_2CHO + NO_2$	KR02N03	Sander et al. (2019)
G44068	TrGC	$EZCH3CO2CHCHO \rightarrow CH_3COCHO_2CHO$	k1_R02s0R02	Sander et al. (2019)
G44069	TrGC	$EZCHOCCH3CHO2 \rightarrow HCOCCH_3CO + OH$	k_15hs24vynal	Sander et al. (2019)
G44070	TrGCN	$EZCHOCCH3CHO2 + NO \rightarrow HCOCO_2CH_3CHO + NO_2$	KRO2NO	Sander et al. $(2019)^*$
G44071	TrGC	$EZCHOCCH3CHO2 + HO_2 \rightarrow HCOCCH_3CHOOH$	k_RO2_HO2(temp,4)	Sander et al. (2019)
G44072	TrGCN	$EZCHOCCH3CHO2 + NO_3 \rightarrow HCOCO_2CH_3CHO + NO_2$	KR02N03	Sander et al. (2019)
G44073	TrGC	$EZCHOCCH3CHO2 \rightarrow HCOCO_2CH_3CHO$	k1_R02p0R02	Sander et al. (2019)
G44074	TrGC	$CH_3COOHCHCHO \rightarrow CH_3COCHO_2CHO + OH$	k_hydec	Sander et al. (2019)
G44075	TrGC	$HCOCCH_3CHOOH \rightarrow HCOCO_2CH_3CHO + OH$	k_hydec	Sander et al. (2019)
G44076	TrGCN	$CH_3COCHO_2CHO + NO \rightarrow CH_3C(O) + GLYOX + NO_2$	KRO2NO	Sander et al. $(2019)^*$
G44077	TrGCN	$CH_3COCHO_2CHO + NO_3 \rightarrow CH_3C(O) + GLYOX + NO_2$	KR02N03	Sander et al. (2019)
G44078	TrGC	$CH_3COCHO_2CHO + HO_2 \rightarrow CH_3C(O) + GLYOX + OH$	k_RO2_HO2(temp,4)	Sander et al. $(2019)^*$
G44079	TrGC	$CH_3COCHO_2CHO \rightarrow CH_3C(O) + GLYOX$	k1_R02s0R02	Sander et al. (2019)
G44080	TrGC	$HCOCO_2CH_3CHO \rightarrow MGLYOX + CO + HO_2$	k1_R02t0R02	Sander et al. (2019)
G44081	TrGCN	$\mathrm{HCOCO_2CH_3CHO} + \mathrm{NO} \rightarrow \mathrm{MGLYOX} + \mathrm{CO} + \mathrm{HO_2} + \mathrm{NO_2}$	KRO2NO	Sander et al. $(2019)^*$
G44082	TrGC	$HCOCO_2CH_3CHO + HO_2 \rightarrow MGLYOX + CO + HO_2 +$	k RO2 HO2(temp.4)	Sander et al. (2019)*
		OH		(22)
G44083	TrGCN	$HCOCO_2CH_3CHO + NO_3 \rightarrow MGLYOX + CO + HO_2 +$	KRO2NO3	Sander et al. (2019)
		NO_2		,
G44084	TrGC	$HCOCCH_3CO + OH \rightarrow CO + MGLYOX + HO_2$	1E-10*a_CHO	Hatakeyama et al. (1985),
		<u> </u>		Sander et al. (2019)
G44085	TrGC	$CH_3COCHCO + OH \rightarrow CO + MGLYOX + HO_2$	7.6E-11*a_COCH3	Hatakeyama et al. (1985),
		-		Sander et al. (2019)*
G44086	TrGCN	$LMEKNO3 + OH \rightarrow .62 MGLYOX + .62 HCHO + .62$.62*(k_p*(f_CO+f_CH2ONO2))	Sander et al. (2019)*
		$HO_2 + .62 NO_2 + .38 CH_3C(O) + .38 NO_3CH2CHO$	+.38*(k_s*f_CH20N02*f_CO)	,
G44087	TrGC	$\text{MEPROPENE} + \text{OH} \rightarrow \text{IBUTOLBO2}$	9.4E-12*EXP(505./temp)	Atkinson et al. (2006)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G44088a	TrGC	$MEPROPENE + O_3 \rightarrow CH_3COCH_3 + CH_2OO^*$	2.7E-15*EXP(-1630./temp)*0.33	Atkinson et al. (2006), Sander et al. (2019)
G44088b	TrGC	$MEPROPENE + O_3 \rightarrow CH_3COCH_2O_2 + OH + HCHO$	2.7E-15*EXP(-1630./temp)*0.67	Atkinson et al. (2006), Sander et al. (2019)
G44089	TrGCN	$MEPROPENE + NO_3 \rightarrow CH_3COCH_3 + HCHO + NO_2$	3.4E-13	Atkinson et al. (2006), Sander et al. (2019)*
G44090	TrGC	$IBUTOLBO2 \rightarrow CH_3COCH_3 + HCHO + HO_2$	k1_R02t0R02	Sander et al. (2019)
G44091a	TrGC	$\mathrm{IBUTOLBO2} + \mathrm{HO}_2 \rightarrow \mathrm{IBUTOLBOOH}$	k_R02_H02(temp,4)*r_COCH202_00H	Sander et al. (2019)
G44091b	TrGC	$\begin{array}{l} \mathrm{IBUTOLBO2} + \mathrm{HO_2} \rightarrow \mathrm{CH_3COCH_3} + \mathrm{HCHO} + \mathrm{HO_2} + \\ \mathrm{OH} \end{array}$	k_R02_H02(temp,4)*r_COCH202_OH	Sander et al. (2019)
G44092a	TrGCN	$\begin{array}{l} \mathrm{IBUTOLBO2} + \mathrm{NO} \rightarrow \mathrm{CH_3COCH_3} + \mathrm{HCHO} + \mathrm{HO_2} + \\ \mathrm{NO_2} \end{array}$	<pre>KRO2NO*(1alpha_AN(5,3,0,0,0, temp,cair))</pre>	Sander et al. (2019)
G44092b	TrGCN	$IBUTOLBO2 + NO \rightarrow IBUTOLBNO3$	<pre>KRO2NO*alpha_AN(5,3,0,0,0,temp, cair)</pre>	Sander et al. (2019)
G44093	TrGCN	$\begin{array}{c} \mathrm{IBUTOLBO2} + \mathrm{NO_3} \rightarrow \mathrm{CH_3COCH_3} + \mathrm{HCHO} + \mathrm{HO_2} + \\ \mathrm{NO_2} \end{array}$	KR02N03	Sander et al. (2019)
G44094a	TrGC	$\mathrm{IBUTOLBOOH} + \mathrm{OH} \rightarrow \mathrm{IBUTOLBO2}$	k_ROOHRO	Sander et al. (2019)
G44094b	TrGC	$IBUTOLBOOH + OH \rightarrow CH_3COCH_3 + HCHO + HO_2$	k_s*f_sOOH*f_pCH2OH	Sander et al. (2019)
G44095	TrGCN	$\begin{array}{l} \mathrm{IBUTOLBNO3} + \mathrm{OH} \rightarrow \mathrm{CH_3COCH_3} + \mathrm{HCHO} + \mathrm{HO_2} + \\ \mathrm{NO_2} \end{array}$	3.*k_p	Sander et al. (2019)
G44096	TrGC	$BUT1ENE + OH \rightarrow LBUT1ENO2$	6.6E-12*EXP(465./temp)	Atkinson et al. $(2006)^*$
G44097a	TrGC	BUT1ENE + O ₃ \rightarrow HCHO + .5 C ₂ H ₅ CHO + .5 H ₂ O ₂ + .5 CH ₃ CHO + .5 CO + .5 HO ₂	3.35E-15*EXP(-1745./temp)*.57	Atkinson et al. (2006), Sander et al. (2019)*
G44097b	TrGC	$BUT1ENE + O_3 \rightarrow C_2H_5CHO + CH_2OO^*$	3.35E-15*EXP(-1745./temp)*.43	Atkinson et al. (2006), Sander et al. (2019)*
G44098	TrGCN	$BUT1ENE + NO_3 \rightarrow C_2H_5CHO + HCHO + NO_2$	3.2E-13*EXP(-950./temp)	Atkinson et al. (2006), Sander et al. (2019)*
G44099	TrGC	$LBUT1ENO2 \rightarrow C_2H_5CHO + HCHO + HO_2$	k1_R02s0R02	Sander et al. (2019)
G44100a	TrGC	$\text{LBUT1ENO2} + \text{HO}_2 \rightarrow \text{LBUT1ENOOH}$	k_RO2_HO2(temp,4)*r_COCH2O2_OOH	Sander et al. (2019)
G44100b	TrGC	LBUT1ENO2 + $\mathrm{HO_2} \rightarrow \mathrm{C_2H_5CHO} + \mathrm{HCHO} + \mathrm{HO_2} + \mathrm{OH}$	k_R02_H02(temp,4)*r_COCH202_OH	Sander et al. (2019)
G44101a	TrGCN	$LBUT1ENO2 + NO \rightarrow C_2H_5CHO + HCHO + HO_2 + NO_2$	<pre>KRO2NO*(1alpha_AN(5,2,0,0,0, temp,cair))</pre>	Sander et al. (2019)
G44101b	TrGCN	$LBUT1ENO2 + NO \rightarrow LBUT1ENNO3$	<pre>KRO2NO*alpha_AN(5,2,0,0,0,temp, cair)</pre>	Sander et al. (2019)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G44102	TrGCN	LBUT1ENO2 + NO $_3 \rightarrow C_2H_5CHO + HCHO + HO_2 +$	KR02N03	Sander et al. (2019)
		NO_2		,
G44103a	TrGC	$LBUT1ENOOH + OH \rightarrow LBUT1ENO2$	k_ROOHRO	Sander et al. (2019)
G44103b	TrGC	$LBUT1ENOOH + OH \rightarrow C_2H_5CO_3 + HCHO + HO_2$	k_t*f_t00H*f_pCH2OH	Sander et al. $(2019)^*$
G44104	TrGCN	$LBUT1ENNO3 + OH \rightarrow C_2H_5CHO + CO + HO_2 + NO_2$	k_s*f_sOH*f_CH2ONO2	Sander et al. (2019)*
G44105	TrGC	$CBUT2ENE + OH \rightarrow BUT2OLO2$	1.1E-11*EXP(485./temp)	Atkinson et al. (2006)
G44106	TrGC	CBUT2ENE $+ O_3 \rightarrow CH_3CHO + .16 CH3CHOHOOH +$	3.2E-15*EXP(-965./temp)	Atkinson et al. (2006), Sander
		$.50 \text{ OH} + .50 \text{ HCOCH}_2\text{O}_2 + .05 \text{ CH2CO} + .09 \text{ CH}_3\text{OH} +$		et al. $(2019)^*$
		$.09 \text{ CO} + .2 \text{ CH}_4 + .2 \text{ CO}_2$		
G44107	TrGCN	$CBUT2ENE + NO_3 \rightarrow 2 CH_3CHO + NO_2$	3.5E-13	Atkinson et al. (2006), Sander
				et al. $(2019)^*$
G44108	TrGC	$\mathrm{TBUT2ENE} + \mathrm{OH} \rightarrow \mathrm{BUT2OLO2}$	1.0E-11*EXP(553./temp)	Atkinson et al. (2006)
G44109	TrGC	TBUT2ENE $+ O_3 \rightarrow CH_3CHO + .16 CH3CHOHOOH +$	6.6E-15*EXP(-1060./temp)	Atkinson et al. (2006), Sander
		$.50 \text{ OH} + .50 \text{ HCOCH}_2\text{O}_2 + .05 \text{ CH2CO} + .09 \text{ CH}_3\text{OH} +$		et al. (2019)
		$.09 \text{ CO} + .2 \text{ CH}_4 + .2 \text{ CO}_2$		
G44110	TrGCN	$TBUT2ENE + NO_3 \rightarrow 2 CH_3CHO + NO_2$	1.78E-12*EXP(-530./temp)	Atkinson et al. (2006), Sander
			+1.28E-14*EXP(570./temp)	et al. $(2019)^*$
G44111	TrGC	$BUT2OLO2 \rightarrow C_2H_5CHO + HCHO + HO_2$	k1_R02s0R02	Sander et al. (2019)
G44112a	TrGC	$BUT2OLO2 + HO_2 \rightarrow BUT2OLOOH$	k_R02_H02(temp,4)*r_C0CH202_00H	Sander et al. (2019)
G44112b	TrGC	$BUT2OLO2 + HO_2 \rightarrow 2 CH_3CHO + HO_2 + OH$	$k_R02_H02(temp,4)*r_COCH202_OH$	Sander et al. (2019)
G44113a	TrGCN	$BUT2OLO2 + NO \rightarrow 2 CH_3CHO + HO_2 + NO_2$	$KR02N0*(1alpha_AN(5,2,0,0,0,$	Sander et al. (2019)
			temp,cair))	
G44113b	TrGCN	$BUT2OLO2 + NO \rightarrow BUT2OLNO3$	$KRO2NO*alpha_AN(5,2,0,0,0,temp,$	Sander et al. (2019)
			cair)	
G44114	TrGCN	$BUT2OLO2 + NO_3 \rightarrow 2 CH_3CHO + HO_2 + NO_2$	KR02N03	Sander et al. (2019)
G44115a	TrGC	$BUT2OLOOH + OH \rightarrow BUT2OLO2$	k_ROOHRO	Sander et al. (2019)
G44115b	TrGC	$BUT2OLOOH + OH \rightarrow LMEKOOH + HO_2$	k_t*f_tOH*f_pCH2OH	Sander et al. (2019)
G44115c	TrGC	$BUT2OLOOH + OH \rightarrow BUT2OLO + OH$	k_t*f_t00H*f_pCH2OH	Sander et al. (2019)
G44116	TrGCN	$BUT2OLNO3 + OH \rightarrow LMEKNO3 + HO_2$	k_t*f_tOH*f_CH2ONO2	Sander et al. (2019)
G44117	TrGC	$BUT2OLO + OH \rightarrow BIACET + HO_2$	k_t*f_tOH*f_CO	Sander et al. (2019)
G44118	TrGC	$IPRCHO + OH \rightarrow IPRCO3 + H_2O$	6.8E-12*EXP(410./temp)	Atkinson et al. (2006)
G44119	TrGCN	$IPRCHO + NO_3 \rightarrow IPRCO3 + HNO_3$	1.67E-12*EXP(-1460./temp)	Atkinson et al. (2006)
G44120	TrGC	$IPRCO3 \rightarrow iC_3H_7O_2 + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)
G44121a	TrGC	$IPRCO3 + HO_2 \rightarrow PERIBUACID$	KAPH02*r_C03_00H	Rickard and Pascoe (2009),
				Sander et al. (2019)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G44121b	TrGC	$IPRCO3 + HO_2 \rightarrow iC_3H_7O_2 + CO_2 + OH$	KAPHO2*(1r_CO3_OOH)	Rickard and Pascoe (2009), Sander et al. (2019)
G44122	TrGCN	$IPRCO3 + NO_2 \rightarrow PIPN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G44123	TrGCN	$IPRCO3 + NO \rightarrow iC_3H_7O_2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G44124a	TrGC	$PERIBUACID + OH \rightarrow IPRCO3 + H_2O$	k_ROOHRO	Rickard and Pascoe (2009)
G44124b	TrGC	$PERIBUACID + OH \rightarrow CH_3COCH_3 + H_2O + CO_2$	k_s*f_CO2H	Sander et al. $(2019)^*$
G44125	TrGCN	$PIPN \rightarrow IPRCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G44126	TrGCN	$PIPN + OH \rightarrow CH_3COCH_3 + CO_2 + NO_2$	k_s*f_cpan	Sander et al. $(2019)^*$
G44127	TrGC	$MPROPENOL + OH \rightarrow HCOOH + OH + CH_3COCH_3$	k_CH2CHOH_OH_HCOOH	Sander et al. (2019), So et al. $(2014)^*$
G44128	TrGC	$\mathrm{MPROPENOL} + \mathrm{HCOOH} \rightarrow \mathrm{IPRCHO} + \mathrm{HCOOH}$	k_CH2CHOH_HCOOH	Sander et al. (2019), da Silva (2010)*
G44129	TrGC	$\mathrm{IPRCHO} + \mathrm{HCOOH} \rightarrow \mathrm{MPROPENOL} + \mathrm{HCOOH}$	k_ALD_HCOOH	Sander et al. (2019), da Silva (2010)*
G44130	TrGC	$\mathrm{BUTENOL} + \mathrm{OH} \rightarrow \mathrm{HCOOH} + \mathrm{OH} + \mathrm{C}_2\mathrm{H}_5\mathrm{CHO}$	k_CH2CHOH_OH_HCOOH	Sander et al. (2019), So et al. $(2014)^*$
G44131	TrGC	${\rm BUTENOL} + {\rm HCOOH} \rightarrow {\rm C_3H_7CHO} + {\rm HCOOH}$	k_CH2CHOH_HCOOH	Sander et al. (2019), da Silva (2010)*
G44132	TrGC	$C_3H_7CHO + HCOOH \rightarrow BUTENOL + HCOOH$	k_ALD_HCOOH	Sander et al. (2019), da Silva (2010)*
G44133	TrGC	$\mathrm{HVMK} + \mathrm{OH} \rightarrow \mathrm{HCOOH} + \mathrm{OH} + \mathrm{MGLYOX}$	8.8E-11	Sander et al. (2019), So et al. (2014), Messaadia et al. (2015)*
G44134	TrGC	$\mathrm{HVMK} + \mathrm{HCOOH} \rightarrow \mathrm{CO2C3CHO} + \mathrm{HCOOH}$	k_CH2CHOH_HCOOH	Sander et al. (2019), da Silva (2010)*
G44135	TrGC	${\rm CO2C3CHO} + {\rm HCOOH} \rightarrow {\rm HVMK} + {\rm HCOOH}$	k_ALD_HCOOH	Sander et al. (2019), da Silva (2010)*
G44136	TrGC	$\mathrm{HMAC} + \mathrm{OH} \rightarrow \mathrm{HCOOH} + \mathrm{OH} + \mathrm{MGLYOX}$	8.8E-11	Sander et al. (2019), So et al. (2014), Messaadia et al. (2015)*
G44137	TrGC	$\mathrm{HMAC} + \mathrm{HCOOH} \rightarrow \mathrm{IBUTDIAL} + \mathrm{HCOOH}$	k_CH2CHOH_HCOOH	Sander et al. (2019), da Silva (2010)*
G44138	TrGC	$\mathrm{IBUTDIAL} + \mathrm{HCOOH} \rightarrow \mathrm{HMAC} + \mathrm{HCOOH}$	k_ALD_HCOOH	Sander et al. (2019), da Silva (2010)*
G44139	TrGC	$CO2C3CHO + OH \rightarrow CH_3COCH_2O_2 + CO_2 + H_2O$	k_t*f_0*f_alk+k_s*f_CH0*f_C0	Sander et al. (2019)*
G44140	TrGCN	$CO2C3CHO + NO_3 \rightarrow CH_3COCH_2O_2 + CO_2 + HNO_3$	KNO3AL*4.0	Sander et al. (2019)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G44141	TrGC	$IBUTDIAL + OH \rightarrow CH_3CHO + CO + HO_2 + CO_2 +$	2.*k_t*f_0*f_alk+k_t*f_CH0*f_CH0	Sander et al. (2019)*
		${ m H_2O}$,
G44142	TrGCN	$IBUTDIAL + NO_3 \rightarrow CH_3CHO + CO + HO_2 + CO_2 +$	2.*KNO3AL*4.0	Sander et al. $(2019)^*$
		HNO_3		
G44200	TrGTerC	$CH_3COCOCH_2O_2 \rightarrow CH_3C(O) + HCHO + CO$	k1_R02p0R02	Rickard and Pascoe (2009)
G44201	TrGTerC	$\mathrm{CH_{3}COCOCH_{2}O_{2}} + \mathrm{HO_{2}} \rightarrow \mathrm{CH_{3}COCOCH_{2}OOH}$	k_RO2_HO2(temp,4)	Rickard and Pascoe (2009)
G44202	TrGTerCN	$CH_3COCOCH_2O_2 + NO \rightarrow CH_3C(O) + HCHO + CO +$	KRO2NO	Rickard and Pascoe (2009)*
		NO_2		
G44203a	TrGTerC	$CH_3COCOCH_2OOH + OH \rightarrow CH_3COCOCHO + OH$	k_s*f_CO*f_sOOH	Rickard and Pascoe (2009)*
G44203b	TrGTerC	$\mathrm{CH_{3}COCOCH_{2}OOH} + \mathrm{OH} \rightarrow \mathrm{CH_{3}COCOCH_{2}O_{2}}$	k_ROOHRO	Rickard and Pascoe (2009)
G44204	TrGTerC	$C44O2 + HO_2 \rightarrow C44OOH$	k_R02_H02(temp,4)	Rickard and Pascoe (2009)
G44205	TrGTerCN	$C44O2 + NO \rightarrow HCOCH2CHO + CO_2 + HO_2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G44206	TrGTerC	$C44O2 \rightarrow HCOCH2CHO + CO_2 + HO_2$	k1_R02s0R02	Rickard and Pascoe (2009)
G44207	TrGTerC	$C44OOH + OH \rightarrow C44O2$	7.46E-11	Rickard and Pascoe (2009)
G44208	TrGTerC	$CHOC3COO2 \rightarrow HCOCH2CO3 + HCHO$	k1_R02p0R02	Rickard and Pascoe (2009)
G44209	TrGTerC	$CHOC3COO2 + HO_2 \rightarrow C413COOOH$	k_RO2_HO2(temp,4)	Rickard and Pascoe (2009)
G44210	TrGTerCN	$CHOC3COO2 + NO \rightarrow HCOCH2CO3 + HCHO + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G44211	TrGTerC	$C413COOOH + OH \rightarrow CHOC3COO2$	8.33E-11	Rickard and Pascoe (2009)
G44212	TrGTerC	$C4CODIAL + OH \rightarrow C312COCO3$	3.39E-11	Rickard and Pascoe (2009)
G44213	TrGTerCN	$C4CODIAL + NO_3 \rightarrow C312COCO3 + HNO_3$	2.*KNO3AL*4.0	Rickard and Pascoe (2009)
G44214	TrGTerC	$C312COCO3 \rightarrow HCOCOCH_2O_2 + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)
G44215a	TrGTerC	$C312COCO3 + HO_2 \rightarrow C312COCO3H$	KAPH02*r_C03_00H	Rickard and Pascoe (2009)
G44215b	TrGTerC	$C312COCO3 + HO_2 \rightarrow HCOCOCH_2O_2 + CO_2 + OH$	KAPHO2*(1r_CO3_OOH)	Rickard and Pascoe (2009)
G44216	TrGTerCN	$C312COCO3 + NO_2 \rightarrow C312COPAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G44217	TrGTerCN	$C312COCO3 + NO \rightarrow HCOCOCH_2O_2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G44218	TrGTerC	$C312COCO3H + OH \rightarrow C312COCO3$	1.63E-11	Rickard and Pascoe (2009)
G44219	TrGTerCN	$C312COPAN \rightarrow C312COCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G44220	TrGTerCN	$C312COPAN + OH \rightarrow HCOCOCHO + CO + NO_2$	1.27E-11	Rickard and Pascoe (2009)
G44221	TrGTerC	$\mathrm{CH_3COCOCHO} + \mathrm{OH} \rightarrow \mathrm{CH_3C(O)} + 2 \mathrm{CO}$	8.4E-13*EXP(830./temp)	Sander et al. (2019)*
G44222	TrGTerCN	$CH_3COCOCHO + NO_3 \rightarrow CH_3C(O) + 2 CO + HNO_3$	KNO3AL*4.0	Rickard and Pascoe (2009)
G44223	TrGTerC	$IBUTALOH + OH \rightarrow IPRHOCO3$	1.4E-11	Rickard and Pascoe (2009)
G44224a	$\operatorname{TrGTerC}$	$IPRHOCO3 + HO_2 \rightarrow CH_3COCH_3 + CO_2 + HO_2 + OH$	KAPHO2*r_CO3_OH	Rickard and Pascoe (2009),
				Sander et al. (2019)
G44224b	TrGTerC	$IPRHOCO3 + HO_2 \rightarrow IPRHOCO2H + O_3$	KAPH02*r_C03_03	Rickard and Pascoe (2009),
				Sander et al. (2019)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G44224c	TrGTerC	$IPRHOCO3 + HO_2 \rightarrow IPRHOCO3H$	KAPH02*r_C03_00H	Rickard and Pascoe (2009),
				Sander et al. (2019)
G44225	TrGTerCN	$IPRHOCO3 + NO \rightarrow CH_3COCH_3 + CO_2 + HO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G44226	TrGTerCN	$IPRHOCO3 + NO_2 \rightarrow C4PAN5$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G44227	TrGTerCN	$IPRHOCO3 + NO_3 \rightarrow CH_3COCH_3 + CO_2 + HO_2 + NO_2$	KR02N03*1.74	Rickard and Pascoe (2009)
G44228a	TrGTerC	$IPRHOCO3 \rightarrow CH_3COCH_3 + CO_2 + HO_2$	k1_R02RC03*0.7	Rickard and Pascoe (2009)
G44228b	TrGTerC	$IPRHOCO3 \rightarrow IPRHOCO2H$	k1_R02RC03*0.3	Rickard and Pascoe (2009)
G44229	TrGTerC	$IPRHOCO2H + OH \rightarrow CH_3COCH_3 + CO_2 + HO_2 + H_2O$	1.72E-12	Rickard and Pascoe (2009)
G44230	TrGTerC	$OH + IPRHOCO3H \rightarrow IPRHOCO3$	4.80E-12	Rickard and Pascoe (2009)
G44231	TrGTerCN	$C4PAN5 \rightarrow IPRHOCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G44232	TrGTerCN	$C4PAN5 + OH \rightarrow CH_3COCH_3 + CO + NO_2$	4.75E-13	Rickard and Pascoe (2009)
G44233a	TrGTerC	$MBOOO \rightarrow IPRHOCO2H$	$1.60E-17*C(ind_H20)*(0.08+0.15)$	Rickard and Pascoe (2009),
				Sander et al. (2019)
G44233b	TrGTerC	$MBOOO \rightarrow IBUTALOH + H_2O_2$	1.60E-17*C(ind_H20)*0.77	Rickard and Pascoe (2009),
				Sander et al. (2019)
G44234	TrGTerC	$MBOOO + CO \rightarrow IBUTALOH + CO_2$	1.20E-15	Rickard and Pascoe (2009)
G44235	TrGTerCN	$MBOOO + NO \rightarrow IBUTALOH + NO_2$	1.00E-14	Rickard and Pascoe (2009)
G44236	TrGTerCN	$MBOOO + NO_2 \rightarrow IBUTALOH + NO_3$	1.00E-15	Rickard and Pascoe (2009)
G44400	TrGAroC	$MALANHY + OH \rightarrow MALANHYO2$	1.4E-12	Rickard and Pascoe (2009)
G44401a	TrGAroC	$MALDIALOOH + OH \rightarrow HOCOC4DIAL + OH$	1.22E-10	Rickard and Pascoe (2009)
G44401b	TrGAroC	${\rm MALDIALOOH} + {\rm OH} \rightarrow {\rm MALDIALO2}$	k_ROOHRO	Rickard and Pascoe (2009)
G44402	TrGAroCN	$NC4DCO2H + OH \rightarrow MALANHY + NO_2$	k_ROOHRO	Rickard and Pascoe (2009)*
G44403	TrGAroC	$CO14O3CO2H + OH \rightarrow HCOCH_2O_2 + 2 CO_2$	2.19E-11	Rickard and Pascoe (2009)
G44404	TrGAroC	$BZFUOOH + OH \rightarrow BZFUO2$	3.68E-11	Rickard and Pascoe (2009)
G44405	TrGAroC	$HOCOC4DIAL + OH \rightarrow CO2C4DIAL + HO_2$	3.67E-11	Rickard and Pascoe (2009)
G44406a	TrGAroC	$MALDIALCO3 + HO_2 \rightarrow MALDALCO2H + O_3$	KAPH02*r_C03_03	Rickard and Pascoe (2009)
G44406b	TrGAroC	${\rm MALDIALCO3 + HO_2 \rightarrow MALDALCO3H}$	KAPH02*r_C03_00H	Rickard and Pascoe (2009)
G44406c	TrGAroC	$MALDIALCO3 + HO_2 \rightarrow .6 MALANHY + HO_2 + .4$	KAPHO2*r_CO3_OH	Rickard and Pascoe (2009)*
		$GLYOX + .4 CO + .4 CO_2 + OH$,
G44407	TrGAroCN	MALDIALCO3 + NO \rightarrow .6 MALANHY + HO ₂ + .4	KAPNO	Rickard and Pascoe (2009)*
		GLYOX + .4 CO + .4 CO2 + NO2		
G44408	TrGAroCN	$MALDIALCO3 + NO_2 \rightarrow MALDIALPAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G44409	TrGAroCN	MALDIALCO3 + $NO_3 \rightarrow .6$ MALANHY + $HO_2 + .4$	KR02N03*1.74	Rickard and Pascoe (2009)*
		GLYOX + .4 CO + .4 CO2 + NO2		, ,

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G44410	TrGAroC	$MALDIALCO3 \rightarrow .6 MALANHY + HO_2 + .4 GLYOX +$	k1_RO2RCO3	Rickard and Pascoe (2009)*
		$.4 \text{ CO} + .4 \text{ CO}_2$		
G44411	TrGAroCN	$BZFUONE + NO_3 \rightarrow NBZFUO2$	3.00E-13	Rickard and Pascoe (2009)
G44412	TrGAroC	BZFUONE + $O_3 \rightarrow .3125 \text{ CO14O3CO2H} + .1875$	2.20E-19	see note*
		$CO14O3CHO + .1875 H_2O_2 + .5 CO + .5 CO_2 + .5$		
		$HCOCH_2O_2 + .5 OH$		
G44413	TrGAroC	$BZFUONE + OH \rightarrow BZFUO2$	4.45E-11	Rickard and Pascoe (2009)
G44414	TrGAroCN	$NBZFUOOH + OH \rightarrow NBZFUO2$	6.18E-12	Rickard and Pascoe (2009)
G44415	TrGAroC	$MALDALCO3H + OH \rightarrow MALDIALCO3$	4.00E-11	Rickard and Pascoe (2009)
G44416	TrGAroC	$EPXDLCO2H + OH \rightarrow C3DIALO2 + CO_2$	2.31E-11	Rickard and Pascoe (2009)
G44417a	TrGAroC	$EPXDLCO3 + HO_2 \rightarrow C3DIALO2 + CO_2 + OH$	KAPHO2*r_CO3_OH	Rickard and Pascoe (2009)
G44417b	TrGAroC	$EPXDLCO3 + HO_2 \rightarrow EPXDLCO2H + O_3$	KAPH02*r_C03_03	Rickard and Pascoe (2009)
G44417c	TrGAroC	$EPXDLCO3 + HO_2 \rightarrow EPXDLCO3H$	KAPH02*r_C03_00H	Rickard and Pascoe (2009)
G44418	TrGAroCN	$EPXDLCO3 + NO \rightarrow C3DIALO2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G44419	TrGAroCN	$EPXDLCO3 + NO_2 \rightarrow EPXDLPAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G44420	TrGAroCN	$EPXDLCO3 + NO_3 \rightarrow C3DIALO2 + CO_2 + NO_2$	KR02N03*1.74	Rickard and Pascoe (2009)
G44421	TrGAroC	$EPXDLCO3 \rightarrow C3DIALO2 + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)*
G44422	TrGAroC	$MALNHYOHCO + OH \rightarrow CO + CO + CO + CO_2 + HO_2$	5.68E-12	Rickard and Pascoe (2009)
G44423	TrGAroCN	$MALDIAL + NO_3 \rightarrow MALDIALCO3 + HNO_3$	2.*KNO3AL*2.0	Rickard and Pascoe (2009)
G44424	TrGAroC	$MALDIAL + O_3 \rightarrow 1.0675 GLYOX + .125 HCHO + .1125$	2.00E-18	Rickard and Pascoe (2009)*
		$HCOCO_2H + .0675 H_2O_2 + .82 HO_2 + .57 OH + 1.265$		
	_ ~	$CO + .25 CO_2$		
G44425	TrGAroC	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.20E-11	Rickard and Pascoe (2009)*
	_ ~	MALDIALO2		
G44426	TrGAroC	$MALANHYOOH + OH \rightarrow MALNHYOHCO + OH$	4.66E-11	Rickard and Pascoe (2009)
G44427	TrGAroCN	$MALDIALPAN + OH \rightarrow GLYOX + CO + CO + NO_2$	3.70E-11	Rickard and Pascoe (2009)
G44428	TrGAroCN	$MALDIALPAN \rightarrow MALDIALCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G44429a	TrGAroC	$\mathrm{MALANHYO2} + \mathrm{HO_2} \rightarrow \mathrm{MALANHYOOH}$	k_R02_H02(temp,4)*(1r_COCH202_	Rickard and Pascoe (2009),
	m a 4 a	ALL ANTINOS AND MOROGORIOS AND AND	OH-r_CHOHCH2O2_OH)	Sander et al. (2019)
G44429b	TrGAroC	$MALANHYO2 + HO_2 \rightarrow HCOCOHCO3 + CO_2 + OH$	k_R02_H02(temp,4)*(r_COCH202_OH+	Rickard and Pascoe (2009),
	TO A CONT	ALL ANTHON AND THOUGHTON AND AND	r_CHOHCH202_OH)	Sander et al. (2019)
G44430	TrGAroCN	$MALANHYO2 + NO \rightarrow HCOCOHCO3 + CO_2 + NO_2$	KR02N0	Rickard and Pascoe (2009)*
G44431	TrGAroCN	$MALANHYO2 + NO_3 \rightarrow HCOCOHCO3 + CO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
G44432	TrGAroC	$MALANHYO2 \rightarrow HCOCOHCO3 + CO_2$	k1_R02s0R02	Rickard and Pascoe (2009)*
G44433	TrGAroC	$EPXDLCO3H + OH \rightarrow EPXDLCO3$	2.62E-11	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G44434	TrGAroC	$CO2C4DIAL + OH \rightarrow CO + CO + CO + CO + HO_2$	2.45E-11	Rickard and Pascoe (2009)
G44435a	TrGAroCN	$NBZFUO2 + HO_2 \rightarrow NBZFUOOH$	k_R02_H02(temp,4)*(1r_COCH202_	Rickard and Pascoe (2009),
			OH)	Sander et al. (2019)
G44435b	TrGAroCN	$NBZFUO2 + HO_2 \rightarrow .5 CO14O3CHO + .5 NO_2 + .5$	k_R02_H02(temp,4)*r_COCH202_OH	Rickard and Pascoe (2009),
		$NBZFUONE + .5 HO_2 + OH$		Sander et al. (2019)
G44436	TrGAroCN	NBZFUO2 + NO \rightarrow .5 CO14O3CHO + .5 NO ₂ + .5 NBZFUONE + .5 HO ₂ + NO ₂	KRO2NO	Rickard and Pascoe (2009)*
G44437	TrGAroCN	NBZFUO2 + NO $_3 \rightarrow .5$ CO14O3CHO + $.5$ NO $_2$ + $.5$ NBZFUONE + $.5$ HO $_2$ + NO $_2$	KRO2NO3	Rickard and Pascoe (2009)*
G44438	TrGAroCN	NBZFUONE $+ .5 \text{ HO}_2 + \text{NO}_2$ NBZFUO2 $\rightarrow .5 \text{ CO14O3CHO} + .5 \text{ NO}_2 + .5 \text{ NBZFUONE}$	k1 RO2sORO2	Rickard and Pascoe (2009)*
		$+.5~\mathrm{HO_2}$	<u>-</u>	, ,
G44439	TrGAroC	MALDALCO2H + OH \rightarrow .6 MALANHY + HO ₂ + .4 GLYOX + .4 CO + .4 CO ₂	3.70E-11	Rickard and Pascoe (2009)*
G44440	TrGAroCN	$EPXC4DIAL + NO_3 \rightarrow EPXDLCO3 + HNO_3$	2.*KNO3AL*4.0	Rickard and Pascoe (2009)
G44441	TrGAroC	$EPXC4DIAL + OH \rightarrow EPXDLCO3$	4.32E-11	Rickard and Pascoe (2009)
G44442a	TrGAroC	$\text{MECOACETO2} + \text{HO}_2 \rightarrow \text{MECOACEOOH}$	k_RO2_HO2(temp,4)*(1r_COCH2O2_ OH)	Rickard and Pascoe (2009), Sander et al. (2019)
G44442b	TrGAroC	$\begin{array}{l} \text{MECOACETO2} + \text{HO}_2 \rightarrow \text{CH}_3\text{C(O)OO} + \text{HCHO} + \text{CO}_2 \\ + \text{OH} \end{array}$	k_R02_H02(temp,4)*r_C0CH202_0H	Rickard and Pascoe (2009), Sander et al. (2019)
G44443	TrGAroCN	$ \begin{array}{l} \text{MECOACETO2} + \text{NO} \rightarrow \text{CH}_3\text{C(O)OO} + \text{HCHO} + \text{CO}_2 \\ + \text{NO}_2 \end{array} $	KRO2NO	Rickard and Pascoe (2009)*
G44444	TrGAroCN	$\begin{array}{l} \text{MECOACETO2} + \text{NO}_3 \rightarrow \text{CH}_3\text{C(O)OO} + \text{HCHO} + \text{CO}_2 \\ + \text{NO}_2 \end{array}$	KR02N03	Rickard and Pascoe (2009)*
G44445	TrGAroC	$MECOACETO2 \rightarrow CH_3C(O)OO + HCHO + CO_2$	k1_R02p0R02	Rickard and Pascoe (2009)*
G44446	TrGAroCN	$CO14O3CHO + NO_3 \rightarrow CO + HCOCH_2O_2 + CO_2 +$	KNO3AL*8.0	Rickard and Pascoe (2009)
		HNO_3		
G44447	TrGAroC	$CO14O3CHO + OH \rightarrow CO + HCOCH_2O_2 + CO_2$	3.44E-11	Rickard and Pascoe (2009)
G44448	TrGAroCN	$NBZFUONE + OH \rightarrow BZFUCO + NO_2$	1.16E-12	Rickard and Pascoe (2009)
G44449a	TrGAroC	$\mathrm{BZFUO2} + \mathrm{HO}_2 \to \mathrm{BZFUOOH}$	k_R02_H02(temp,4)*(1r_COCH202_ OH-r_CHOHCH202_OH)	Rickard and Pascoe (2009), Sander et al. (2019)
G44449b	TrGAroC	$\mathrm{BZFUO2} + \mathrm{HO_2} \rightarrow \mathrm{CO14O3CHO} + \mathrm{HO_2} + \mathrm{OH}$	k_RO2_HO2(temp,4)*(r_COCH2O2_OH+ r_CHOHCH2O2_OH)	Rickard and Pascoe (2009), Sander et al. (2019)
G44450	TrGAroCN	$BZFUO2 + NO \rightarrow CO14O3CHO + HO_2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G44451	TrGAroCN	$BZFUO2 + NO_3 \rightarrow CO14O3CHO + HO_2 + NO_2$	KRO2NO3	Rickard and Pascoe (2009)*
G44452	TrGAroC	$\rm BZFUO2 \rightarrow CO14O3CHO + HO_2$	k1_R02s0R02	Rickard and Pascoe (2009)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G44453	TrGAroC	$BZFUCO + OH \rightarrow CO14O3CHO + HO_2$	1.78E-11	Rickard and Pascoe (2009)
G44456a	TrGAroC	$\mathrm{MALDIALO2} + \mathrm{HO_2} \rightarrow \mathrm{MALDIALOOH}$	k_RO2_HO2(temp,4)*(1r_COCH2O2_ OH-r_CHOHCH2O2_OH)	Rickard and Pascoe (2009)
G44456b	TrGAroC	$MALDIALO2 + HO_2 \rightarrow GLYOX + GLYOX + HO_2 + OH$	k_RO2_HO2(temp,4)*(r_COCH2O2_OH+ r_CHOHCH2O2_OH)	Rickard and Pascoe (2009)
G44457	TrGAroCN	$MALDIALO2 + NO \rightarrow GLYOX + GLYOX + HO_2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G44458	TrGAroCN	$\begin{array}{c} \text{MALDIALO2} + \text{NO}_3 \rightarrow \text{GLYOX} + \text{GLYOX} + \text{HO}_2 + \\ \text{NO}_2 \end{array}$	KR02N03	Rickard and Pascoe (2009)*
G44459	TrGAroC	$MALDIALO2 \rightarrow GLYOX + GLYOX + HO_2$	k1_R02s0R02	Rickard and Pascoe (2009)*
G44460	TrGAroCN	$EPXDLPAN + OH \rightarrow HCOCOCHO + CO + NO_2$	2.29E-11	Rickard and Pascoe (2009)
G44461	TrGAroCN	$EPXDLPAN \rightarrow EPXDLCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)*
G44462	TrGAroC	$\mbox{MECOACEOOH} + \mbox{OH} \rightarrow \mbox{MECOACETO2}$	3.59E-12	Rickard and Pascoe (2009)
G45000	TrGC	$C_5H_8 + O_3 \rightarrow .3508 \text{ MACR} + .01518 \text{ MACO2H} + .2440 \text{ MVK} + .7085 \text{ HCHO} + .11 \text{ CH}_2\text{OO} + .1275 \text{ C}_3\text{H}_6 + .1575 \text{ CH}_3\text{C}(\text{O}) + .0510 \text{ CH}_3 + .2625 \text{ HO}_2 + .27 \text{ OH} + .09482 \text{ H}_2\text{O}_2 + .255 \text{ CO}_2 + .522 \text{ CO} + .07182 \text{ HCHO} + .03618 \text{ HCOCH}_2\text{O}_2 + .01782 \text{ CO} + 0.05408 \text{ LCARBON}$	1.03E-14*EXP(-1995./temp)	Atkinson et al. (2006), Sander et al. (2019)
G45001	TrGC	$C_5H_8 + OH \rightarrow .63 \text{ LISOPAB} + .30 \text{ LISOPCD} + .07 \text{ LISOPEFO2}$	2.7E-11*EXP(390./temp)	Atkinson et al. (2006), Sander et al. (2019)
G45002	TrGCN	$C_5H_8 + NO_3 \rightarrow NISOPO2$	3.0E-12*EXP(-450./temp)	Atkinson et al. (2006)
G45003a	TrGC	LISOPAB + $O_2 \rightarrow LISOPACO2$	5.530E-13	Sander et al. (2019)
G45003b	TrGC	$LISOPAB + O_2 \rightarrow ISOPBO2$	3.E-12	Sander et al. (2019)
G45004a	TrGC	$LISOPCD + O_2 \rightarrow LDISOPACO2$	6.780E-13	Sander et al. (2019)
G45004b	TrGC	$LISOPCD + O_2 \rightarrow ISOPDO2$	3.E-12	Sander et al. (2019)
G45005	TrGC	$LISOPACO2 \rightarrow LISOPAB + O_2$	3.1E12*exp(-7900./temp)*.6+ 7.8E13*exp(-8600./temp)*.4	Sander et al. (2019)
G45006	TrGC	$ISOPBO2 \rightarrow LISOPAB + O_2$	3.7E14*exp(-9570./temp) +4.2E14*exp(-9970./temp)	Sander et al. (2019)
G45007	TrGC	$LDISOPACO2 \rightarrow LISOPCD + O_2$	5.65E12*exp(-8410./temp) *.42+1.4E14*exp(-9110./temp)*.58	Sander et al. (2019)
G45008	TrGC	$ISOPDO2 \rightarrow LISOPCD + O_2$	5.0E14*exp(-10120./temp) +8.25E14*exp(-10220./temp)	Sander et al. (2019)
G45009a	TrGC	$LISOPACO2 \rightarrow C1ODC2O2C4OOH$	k_16hsz14 * 2./3.*(1f_HPAL)	Sander et al. (2019)
G45009b	TrGC	${\rm LISOPACO2} \rightarrow {\rm LZCODC23DBCOOH} + {\rm HO}_2$	k_16hsz14 * (2./3.*f_HPAL + 1./3.)	Sander et al. (2019)
G45010a	TrGC	${\rm LDISOPACO2} \rightarrow {\rm C1OOHC3O2C4OD}$	k_16hsz41 * 2./3.*(1f_HPAL)	Sander et al. (2019)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45010b	TrGC	$LDISOPACO2 \rightarrow LZCODC23DBCOOH + HO_2$	k_16hsz41 * (2./3.*f_HPAL + 1./3.)	Sander et al. (2019)
G45011	TrGC	$LISOPACO2 \rightarrow .9 \ LISOPACO + .1 \ ISOPAOH$	k1_RO2LISOPACO2	Rickard and Pascoe (2009), Sander et al. (2019)
G45012	TrGC	$LISOPACO2 + HO_2 \rightarrow LISOPACOOH$	k_RO2_HO2(temp,5)	Rickard and Pascoe (2009)
G45013a	TrGCN	$LISOPACO2 + NO \rightarrow LISOPACO + NO_2$	<pre>KRO2NO*(1alpha_AN(6,1,0,0,0, temp,cair))</pre>	Lockwood et al. (2010), Paulot et al. (2009a), Sander et al. (2019)
G45013b	TrGCN	${\rm LISOPACO2} + {\rm NO} \rightarrow {\rm LISOPACNO3}$	<pre>KR02N0*alpha_AN(6,1,0,0,0,temp, cair)</pre>	Lockwood et al. (2010), Paulot et al. (2009a), Sander et al. (2019)
G45014	TrGCN	$LISOPACO2 + NO_3 \rightarrow LISOPACO + NO_2$	KR02N03	Rickard and Pascoe (2009)
G45015	TrGC	LDISOPACO2 \rightarrow .9 LISOPACO + .1 ISOPAOH	k1_RO2LISOPACO2	Rickard and Pascoe (2009), Sander et al. (2019)
G45016	TrGC	$LDISOPACO2 + HO_2 \rightarrow LISOPACOOH$	k_RO2_HO2(temp,5)	Rickard and Pascoe (2009)
G45017a	TrGCN	$LDISOPACO2 + NO \rightarrow LISOPACO + NO_2$	<pre>KR02N0*(1alpha_AN(6,1,0,0,0, temp,cair))</pre>	Lockwood et al. (2010), Paulot et al. (2009a), Sander et al. (2019)
G45017b	TrGCN	$LDISOPACO2 + NO \rightarrow LISOPACNO3$	<pre>KR02N0*alpha_AN(6,1,0,0,0,temp, cair)</pre>	Lockwood et al. (2010), Paulot et al. (2009a), Sander et al. (2019)
G45018	TrGCN	$LDISOPACO2 + NO_3 \rightarrow LISOPACO + NO_2$	KR02N03	Rickard and Pascoe (2009)
G45019a	TrGC	$LISOPACOOH + OH \rightarrow LISOPACO2$	k_ROOHRO	Sander et al. (2019)
G45019b	TrGC	$LISOPACOOH + OH \rightarrow LZCODC23DBCOOH + HO_2$	k_s*f_allyl*f_sOH	Sander et al. (2019)
G45019c	TrGC	$LISOPACOOH + OH \rightarrow LHC4ACCHO + OH$	(k_s*f_s00H*f_allyl+ k_R0HR0)	Sander et al. (2019)
G45019d	TrGC	$LISOPACOOH + OH \rightarrow LIEPOX + OH$	(k_adt+k_ads)*a_CH2OH*a_CH2OOH	Sander et al. $(2019)^*$
G45020	TrGC	$ISOPAOH + OH \rightarrow LHC4ACCHO + HO_2$	(k_adt+k_ads)*a_CH2OH*a_CH2OH+k_ s*f_sOH*f_allyl+k_ROHRO	Sander et al. (2019)
G45021	TrGCN	$LISOPACNO3 + OH \rightarrow LISOPACNO3O2$	(k_adt+k_ads)*a_CH20N02*a_CH20H	Sander et al. (2019)*
G45022	TrGC	$ISOPBO2 \rightarrow .8 \text{ MVK} + .8 \text{ HCHO} + .8 \text{ HO}_2 + .2 \text{ ISOPBOH}$	k1_RO2ISOPBO2	Rickard and Pascoe (2009)
G45023a	TrGC	$ISOPBO2 + HO_2 \rightarrow ISOPBOOH$	k_R02_H02(temp,5)*(1r_ CHOHCH202_OH)	Sander et al. (2019)
G45023b	TrGC	$ISOPBO2 + HO_2 \rightarrow MVK + HCHO + HO_2 + OH$	k_R02_H02(temp,5)*r_CH0HCH202_OH	Sander et al. (2019)
G45024a	TrGCN	$ISOPBO2 + NO \rightarrow MVK + HCHO + HO_2 + NO_2$	<pre>KRO2NO*(1alpha_AN(6,3,0,0,0, temp,cair))</pre>	Lockwood et al. (2010), Sander et al. (2019)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45024b	TrGCN	$ISOPBO2 + NO \rightarrow ISOPBNO3$	<pre>KRO2NO*alpha_AN(6,3,0,0,0,temp,</pre>	Lockwood et al. (2010), Sander
			cair)	et al. (2019)
G45025	TrGCN	ISOPBO2 + NO ₃ \rightarrow MVK + .75 HCHO + .75 HO ₂ + .25 CH ₃ + NO ₂	KR02N03	Rickard and Pascoe (2009)
G45026a	TrGC	$ISOPBOOH + OH \rightarrow LIEPOX + OH$	(k_ads+k_adp)*a_CH2OOH	Paulot et al. (2009b), Sander et al. (2019)
G45026b	TrGC	$ISOPBOOH + OH \rightarrow ISOPBO2$	k_ROOHRO	Sander et al. (2019)
G45026c	TrGC	$ISOPBOOH + OH \rightarrow MGLYOX + HOCH_2CHO$	k_ROHRO+k_s*f_alk*f_sOH	Sander et al. (2019)
G45027	TrGC	$\begin{array}{l} {\rm ISOPBOOH} + {\rm O_3} \rightarrow .1368 \; {\rm MACROOH} + .1368 \; {\rm H_2O_2} + \\ .2280 \; {\rm HO_2} + .4332 \; {\rm CH_3COCH_2OH} + .2280 \; {\rm CO_2} + .6384 \\ {\rm OH} + .2052 \; {\rm CO} + .57 \; {\rm HCHO} + .43 \; {\rm MACROOH} + .06880 \\ {\rm HO_2} + .06880 \; {\rm OH} + .2709 \; {\rm CO} + .1591 \; {\rm CH_2OO} \end{array}$	1.E-17	Sander et al. (2019)
G45028	TrGC	ISOPBOH + OH \rightarrow MVK + .75 HCHO + .75 HO ₂ + .25 CH ₃	k_s*f_alk*f_sOH+(k_adp+k_ads) *a_CH2OH	Sander et al. (2019)
G45029	TrGCN	$ISOPBNO3 + OH \rightarrow ISOPBDNO3O2$	(k_adt+k_adp)*f_CH20N02	Sander et al. (2019)
G45030	TrGC	$\begin{split} & \text{ISOPDO2} \rightarrow .8 \text{ MACR} + .8 \text{ HCHO} + .8 \text{ HO}_2 + .1 \text{ HCOC5} \\ & + .1 \text{ ISOPDOH} \end{split}$	k1_R02ISOPD02	Rickard and Pascoe (2009)
G45031a	TrGC	$\mathrm{ISOPDO2} + \mathrm{HO}_2 \rightarrow \mathrm{ISOPDOOH}$	k_R02_H02(temp,5)*(1r_ CHOHCH202_OH)	Sander et al. (2019)
G45031b	TrGC	$ISOPDO2 + HO_2 \rightarrow MACR + HCHO + HO_2 + OH$	k_RO2_HO2(temp,5)*r_CHOHCH2O2_OH	Sander et al. (2019)
G45032a	TrGCN	$ISOPDO2 + NO \rightarrow MACR + HCHO + HO_2 + NO_2$	<pre>KRO2NO*(1alpha_AN(6,2,0,0,0, temp,cair))</pre>	Lockwood et al. (2010), Sander et al. (2019)
G45032b	TrGCN	$ISOPDO2 + NO \rightarrow ISOPDNO3$	<pre>KRO2NO*alpha_AN(6,2,0,0,0,temp, cair)</pre>	Lockwood et al. (2010), Sander et al. (2019)
G45033	TrGCN	$ISOPDO2 + NO_3 \rightarrow MACR + HCHO + HO_2 + NO_2$	KRO2NO3	Rickard and Pascoe (2009)
G45034a	TrGC	$ISOPDOOH + OH \rightarrow LIEPOX + OH$	(k_adt+k_adp)*a_CH2OOH	Paulot et al. (2009b), Sander et al. (2019)
G45034b	TrGC	$ISOPDOOH + OH \rightarrow ISOPDO2$	k_ROOHRO	Sander et al. (2019)
G45034c	TrGC	$ISOPDOOH + OH \rightarrow HCOC5 + OH$	k_t*f_t00H*f_allyl*f_pCH2OH	Sander et al. (2019)
G45034d	TrGC	$ISOPDOOH + OH \rightarrow CH_3COCH_2OH + GLYOX + OH$	k_s*f_pCH2OH*f_sOH	Sander et al. (2019)
G45035	TrGC		1.E-17	Sander et al. (2019)
G45036	TrGC	ISOPDOH + OH \rightarrow HCOC5 + HO ₂	2.*k_ROHRO+(k_t*f_tOH*f_allyl+k_ s*f_sOH)*f_pCH2OH+(k_adt+k_adp) *a_CH2OH	Sander et al. (2019)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45037	TrGCN	$ISOPDNO3 + OH \rightarrow ISOPBDNO3O2$	(k_adp+k_ads)*a_CH20N02	Sander et al. (2019)*
G45038	TrGCN	$NISOPO2 \rightarrow .8 NC4CHO + .6 HO_2 + .2 LISOPACNO3$	k1_RO2LISOPACO2	Rickard and Pascoe (2009)
G45039	TrGCN	$NISOPO2 + HO_2 \rightarrow NISOPOOH$	k_R02_H02(temp,5)	Rickard and Pascoe (2009)
G45040	TrGCN	$NISOPO2 + NO \rightarrow NC4CHO + HO_2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G45041	TrGCN	$NISOPO2 + NO_3 \rightarrow NC4CHO + HO_2 + NO_2$	KRO2NO3	Rickard and Pascoe (2009)
G45042	TrGCN	$NISOPOOH + OH \rightarrow NC4CHO + OH$	1.03E-10	Rickard and Pascoe (2009)
G45043	TrGCN	$NC4CHO + OH \rightarrow LNISO3$	(k_adt+k_ads)*a_CHO*a_CH20NO2	Sander et al. $(2019)^*$
G45044	TrGCN	${ m NC4CHO} + { m O_3} \rightarrow .27 { m NOA} + .027 { m HCOCO_2H} + .0162 { m GLYOX} + .0162 { m H_2O_2} + .1458 { m HCOCO} + .0405 { m HCOOH} + .0405 { m CO} + .8758 { m OH} + .365 { m MGLYOX} + .73 { m NO_2} + 0.7705 { m HCHO} + .4055 { m CO_2} + .73 { m GLYOX}$	2.40E-17	Sander et al. (2019)
G45045	TrGCN	$NC4CHO + NO_3 \rightarrow LNISO3 + HNO_3$	KN03AL*4.25	Rickard and Pascoe (2009)
G45046	TrGCN	$LNISO3 + HO_2 \rightarrow LNISOOH$	0.5*k_RO2_HO2(temp,5)+0.5*KAPHO2	Rickard and Pascoe (2009)
G45047	TrGCN	LNISO3 + NO \rightarrow NOA + .5 HOCHCHO + .5 CO + .5 HO ₂ + NO ₂ + .5 CO ₂	0.5*KAPN0+0.5*KR02N0	Rickard and Pascoe (2009)*
G45048	TrGCN	LNISO3 + NO ₃ \rightarrow NOA + .5 HOCHCHO + .5 CO + .5 HO ₂ + NO ₂ + .5 CO ₂	KR02N03*1.37	Rickard and Pascoe (2009)
G45049	TrGCN	$LNISOOH + OH \rightarrow LNISO3$	2.65E-11	Rickard and Pascoe (2009)
G45050a	TrGC	$LHC4ACCHO + OH \rightarrow LC578O2$	(k_adtertprim+k_ads)*a_CHO*a_ CH2OH	Sander et al. (2019)
G45050b	TrGC	$LHC4ACCHO + OH \rightarrow LHC4ACCO3$	k_t*f_0	Sander et al. (2019)
G45050c	TrGC	$LHC4ACCHO + OH \rightarrow C4MDIAL + HO_2$	k_s*f_sOH*f_allyl	Sander et al. (2019)
G45051	TrGC	LHC4ACCHO + $O_3 \rightarrow .2225$ CH ₃ C(O) + .89 CO + .0171875 HOCH ₂ CO ₂ H + .075625 H ₂ O ₂ + .0171875 HCOCO ₂ H + .2775 CH ₃ COCH ₂ OH + .6675 HO ₂ + .2603125 GLYOX + .2225 HCHO + .89 OH + .2603125 HOCH ₂ CHO + .5 MGLYOX	2.40E-17	Rickard and Pascoe (2009)
G45052	TrGCN	$LHC4ACCHO + NO_3 \rightarrow LHC4ACCO3 + HNO_3$	KNO3AL*4.25	Rickard and Pascoe (2009)
G45053	TrGC	$LC578O2 \rightarrow .25 \text{ CH}_3\text{COCH}_2\text{OH} + .75 \text{ MGLYOX} + .25$ $HOCHCHO + .75 \text{ HOCH}_2\text{CHO} + .75 \text{ HO}_2$	k1_R02t0R02	Rickard and Pascoe (2009)
G45054a	TrGC	$LC578O2 + HO_2 \rightarrow MGLYOX + HOCH_2CHO + OH$	k_RO2_HO2(temp,5)*r_COCH2O2_OH	Rickard and Pascoe (2009)
G45054b	TrGC	$LC578O2 + HO_2 \rightarrow LC578OOH$	k_RO2_HO2(temp,5)*r_COCH2O2_OOH	Rickard and Pascoe (2009)
G45055	TrGCN	$ \begin{array}{l} {\rm LC578O2+NO} \rightarrow .25~{\rm CH_3COCH_2OH} + .75~{\rm MGLYOX} + \\ .25~{\rm HOCHCHO} + .75~{\rm HOCH_2CHO} + .75~{\rm HO_2} + {\rm NO_2} \end{array} $	KRO2NO	Rickard and Pascoe (2009)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45056	TrGCN	$LC578O2 + NO_3 \rightarrow .25 CH_3COCH_2OH + .75 MGLYOX$	KRO2NO3	Rickard and Pascoe (2009)
		+ .25 HOCHCHO $+$.75 HOCH ₂ CHO $+$.75 HO ₂ $+$ NO ₂		
G45057	TrGC	$LC578O2 \rightarrow .25 CH_3COCH_2OH + .75 MGLYOX + .25$	k_hsb	Sander et al. (2019)
		$HOCH_2CHO + .75 HOCH_2CHO + HO_2 + OH$		
G45058a	TrGC	$LC578OOH + OH \rightarrow LC578O2$	k_ROOHRO	Sander et al. (2019)
G45058b	TrGC	$LC578OOH + OH \rightarrow C1ODC2OOHC4OD + HO_2$	<pre>k_t*f_0*f_tCH2OH*f_alk+k_t*f_ tOH*f_pCH2OH*f_pCH2OH+k_s*f_ sOH*f_pCH2OH</pre>	Sander et al. (2019)
G45059a	TrGC	$ \begin{array}{l} LHC4ACCO3 \rightarrow OH + .5 \ MACRO2 + .5 \ LHMVKABO2 \\ + CO_2 \end{array} $	k1_R02RC03*0.9	Sander et al. (2019)
G45059b	TrGC	$LHC4ACCO3 \rightarrow LHC4ACCO2H$	k1_R02RC03*0.1	Sander et al. (2019)
G45060a	TrGC	LHC4ACCO3 + HO $_2$ \rightarrow 2 OH + .5 MACRO2 + .5 LHMVKABO2 + CO $_2$	KAPHO2*r_CO3_OH	Sander et al. (2019)
G45060b	TrGC	$LHC4ACCO3 + HO_2 \rightarrow LHC4ACCO3H$	KAPHO2*r_CO3_OOH	Sander et al. (2019)
G45060c	TrGC	$LHC4ACCO3 + HO_2 \rightarrow LHC4ACCO2H + O_3$	KAPH02*r_C03_03	Sander et al. (2019)
G45061	TrGCN	$ \begin{array}{l} \text{LHC4ACCO3} + \text{NO} \rightarrow .5 \text{ MACRO2} + .5 \text{ LHMVKABO2} \\ + \text{NO}_2 + \text{CO}_2 \end{array} $	KAPNO	Sander et al. (2019)
G45062	TrGCN	$LHC4ACCO3 + NO_2 \rightarrow LC5PAN1719$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G45063	TrGCN	$ \begin{array}{l} {\rm LHC4ACCO3 + NO_3 \rightarrow .5~MACRO2 + .5~LHMVKABO2} \\ {\rm + NO_2 + CO_2} \end{array} $	KR02N03*1.74	Sander et al. (2019)
G45064a	TrGC	LHC4ACCO2H + OH \rightarrow OH + .5 MACRO2 + .5 LHMVKABO2 + CO ₂	2.52E-11	Sander et al. (2019)
G45064b	TrGC	$LHC4ACCO3H + OH \rightarrow LHC4ACCO3$	2.88E-11	Rickard and Pascoe (2009)
G45065	TrGCN	$LC5PAN1719 \rightarrow LHC4ACCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G45066	TrGCN	LC5PAN1719 + OH \rightarrow .5 MACROH + .5 HO12CO3C4 + CO + NO ₂	2.52E-11	Rickard and Pascoe (2009)
G45067	TrGC	$HCOC5 + OH \rightarrow C59O2$	3.81E-11	Rickard and Pascoe (2009)
G45068	TrGC	${\rm HCOC5} + {\rm O_3} \rightarrow {\rm BIACETOH} + .335 \; {\rm H_2O_2} + .67 \; {\rm HCHO} + .2079 \; {\rm CO} + .1221 \; {\rm CH_2OO} + .05280 \; {\rm OH}$	7.51E-16*EXP(-1521./temp)	Sander et al. (2019)
G45069	TrGC	$C59O2 \rightarrow CH_3COCH_2OH + HOCH2CO$	k1_R02t0R02	Sander et al. (2019)
G45070a	TrGC	$C59O2 + HO_2 \rightarrow OH + CH_3COCH_2OH + HOCH2CO$	$k_R02_H02(temp,5)*r_COCH202_OH$	Sander et al. (2019)
G45070b	TrGC	$C59O2 + HO_2 \rightarrow C59OOH$	k_R02_H02(temp,5)*r_COCH202_00H	Sander et al. (2019)
G45071	TrGCN	$C59O2 + NO \rightarrow CH_3COCH_2OH + HOCH2CO + NO_2$	KRO2NO	Sander et al. $(2019)^*$
G45072	TrGCN	$C59O2 + NO_3 \rightarrow CH_3COCH_2OH + HOCH2CO + NO_2$	KRO2NO3	Sander et al. (2019)
G45073	TrGC	$C59OOH + OH \rightarrow C59O2$	9.7E-12	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45074	TrGC	$LIEPOX + OH \rightarrow DB1O2 + H_2O$	5.78E-11*EXP(-400./temp)	Paulot et al. (2009b), Bates et al.
			*(1.52/3.+0.98*2./3.)/1.51	(2014) , Sander et al. $(2019)^*$
G45075	TrGC	$ISOPBO2 \rightarrow MVK + HCHO + OH$	k_hsb	Sander et al. (2019)
G45076	TrGC	$ISOPDO2 \rightarrow MACR + HCHO + OH$	k_hsd	Sander et al. (2019)
G45077a	TrGC	LZCODC23DBCOOH + OH \rightarrow .6 C1ODC2O2C4OOH + .4 C1OOHC2O2C4OD	k_adt*a_CHO*a_CH2OOH	Sander et al. (2019)
G45077b	TrGC	LZCODC23DBCOOH + OH \rightarrow .6 C1ODC3O2C4OOH + .4 C1OOHC3O2C4OD	k_ads*a_CHO*a_CH2OOH	Sander et al. (2019)
G45077c	TrGC	$LZCODC23DBCOOH + OH \rightarrow LZCO3HC23DBCOD$	k_t*f_0*f_alk+k_ROOHRO	Sander et al. (2019)
G45077d	TrGC	$LZCODC23DBCOOH + OH \rightarrow C4MDIAL + OH$	k_s*f_s00H*f_allyl	Sander et al. (2019)
G45078	TrGC	$\begin{array}{l} {\rm LZCODC23DBCOOH} \ + \ {\rm O_3} \ \rightarrow \ .4672 \ {\rm OH} \ + \ .2336 \\ {\rm HCOCOCH_2O_2} \ + \ .2336 \ {\rm CO} \ + \ .2336 \ {\rm CH_3C(O)} \ + \ .4672 \\ {\rm HOOCH2CHO} \ + \ .1728 \ {\rm MGLYOX} \ + \ .1901 \ {\rm OH} \ + \ .0864 \\ {\rm GLYOX} \ + \ .02765 \ {\rm HOOCH2CHO} \ + \ .02765 \ {\rm H_2O_2} \ + \ .02592 \\ {\rm CH_3OOH} \ + \ .02592 \ {\rm CO_2} \ + \ .01037 \ {\rm HCOCO} \ + \ .01555 \\ {\rm CH_2OO} \ + \ .01555 \ {\rm CO} \ + \ .006908 \ {\rm HOOCH_2CO_3} \ + \ .2628 \ {\rm OH} \\ + \ .1314 \ {\rm MGLYOX} \ + \ .1314 \ {\rm OH} \ + \ .1314 \ {\rm HCOCOCH_2OOH} \\ + \ .2628 \ {\rm GLYOX} \ + \ .0972 \ {\rm CH_3COCH_2O_2H} \ + \ .00972 \\ {\rm HCOCO_2H} \ + \ .005832 \ {\rm GLYOX} \ + \ .005832 \ {\rm H_2O_2} \ + \ .05249 \\ {\rm OH} \ + \ .05249 \ {\rm HCOCO} \ + \ .01458 \ {\rm HCHO} \ + \ .01458 \ {\rm CO_2} \ + \ .01458 \ {\rm HCOOH} \ + \ .01458 \ {\rm CO_2} \ + \ .01458 \ {\rm HCOOH} \ + \ .01458 \ {\rm CO_2} \ + \ .01458 \ {\rm HCOOH} \ + \ .01458 \ {\rm CO_2} \ + \ .01458 \ {\rm HCOOH} \ + \ .01458 \ {\rm CO_2} \ + \ .01458 \ {\rm HCOOH} \ + \ .01458 \ {\rm CO_2} \ + \ .01458 \ {\rm HCOOH} \ + \ .01458 \ {\rm CO_2} \ + \ .01458 \ {\rm HCOOH} \ + \ .01458 \ {\rm CO_2} \ + \ .01458 \ {\rm HCOOH} \ + \ .01458 \ {\rm HCOOH} \ + \ .01458 \ {\rm CO_2} \ + \ .01458 \ {\rm HCOOH} \ + \ .01458 \ {\rm HCOOH}$	2.4E-17	Sander et al. (2019)
G45079	TrGC	$C1OOHC2O2C4OD \rightarrow .78 CH_3COCH_2O_2H + .78$ HOCHCHO + .22 CO2H3CHO + .22 HCHO + .22 OH	k1_R02t0R02	Sander et al. (2019)
G45080	TrGCN	C1OOHC2O2C4OD + NO \rightarrow .78 CH ₃ COCH ₂ O ₂ H + .78 HOCHCHO + .22 CO2H3CHO + .22 HCHO + .22 OH + NO ₂	KRO2NO	Sander et al. (2019)*
G45081a	TrGC	$C1OOHC2O2C4OD + HO_2 \rightarrow C1OOHC2OOHC4OD$	k_R02_H02(temp,5)*r_C0CH202_00H	Sander et al. (2019)
G45081b	TrGC	${ m C1OOHC2O2C4OD + HO_2 \rightarrow .78~CH_3COCH_2O_2H + .78} \ { m HOCHCHO} + .22~{ m CO2H3CHO} + .22~{ m HCHO} + 1.22~{ m OH}$	k_R02_H02(temp,5)*r_COCH202_OH	Sander et al. (2019)
G45082	TrGC	$C1OOHC2O2C4OD \rightarrow CH_3COCH_2O_2H + GLYOX + OH$	k_hsb	Sander et al. (2019)
G45083	TrGC	$C1ODC2O2C4OOH \rightarrow OH + C1ODC2OOHC4OD$	k_15hsdhb	Sander et al. (2019)
G45084a	TrGC	C1OOHC2OOHC4OD + OH \rightarrow C1ODC2OOHC4OD + OH	2.*k_s*f_s00H*f_tCH20H	Sander et al. (2019)
G45084b	TrGC	C1OOHC2OOHC4OD + OH \rightarrow CH ₃ COCH ₂ O ₂ H + 2 CO + 2 HO ₂ + OH	k_t*f_tOH*f_pCH2OH*f_pCH2OH	Sander et al. (2019)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45084c	TrGC	$C1OOHC2OOHC4OD + OH \rightarrow C1OOHC2O2C4OD$	k_ROOHRO	Sander et al. (2019)
G45085	TrGC	$C1ODC2OOHC4OD + OH \rightarrow CO2H3CHO + CO + H_2O + OH$	k_t*f_0*f_tCH2OH+k_t*f_tOH*f_ tOH*f_CHO	Sander et al. (2019)
G45086	TrGC	C1ODC3O2C4OOH \rightarrow MGLYOX + HOOCH2CHO + HO ₂	k1_R02s0R02	Sander et al. (2019)
G45087	TrGCN	C1ODC3O2C4OOH + NO \rightarrow MGLYOX + HOOCH2CHO + HO ₂ + NO ₂	KRO2NO	Sander et al. (2019)
G45088	TrGC	C1ODC3O2C4OOH + $HO_2 \rightarrow .5 CH_3C(O) + .5 CO + .5$ MGLYOX + $.5 HO_2 + HOOCH_2CO_3$	k_R02_H02(temp,5)	Sander et al. (2019)
G45089	TrGC	$C1ODC3O2C4OOH \rightarrow MGLYOX + OH + HOOCH2CHO$	k_hsd	Sander et al. (2019)
G45090	TrGC	$C1OOHC3O2C4OD \rightarrow .625 MGLYOX + 2 CO + 1.625 HO_2 + .375 CH_3C(O) + .375 CO_2 + OH$	k_15hsdhb	Sander et al. (2019)
G45091	TrGC	$LHC4ACCO3 \rightarrow LZCO3HC23DBCOD + HO_2$	k_16hs	Sander et al. (2019)
G45092a	TrGC	$C4MDIAL + OH \rightarrow C1ODC2O2C4OD$	(k_adt+k_ads)*a_CHO*a_CHO	Sander et al. (2019)*
G45092b	TrGC	$C4MDIAL + OH \rightarrow LZCO3C23DBCOD$	2.*k_t*f_0*f_alk	Sander et al. (2019)*
G45093	TrGCN	$C4MDIAL + NO_3 \rightarrow LZCO3C23DBCOD + HNO_3$	KNO3AL*4.25*2.	Sander et al. (2019)*
G45094a	TrGC	C1ODC2O2C4OD + $\mathrm{HO}_2 \rightarrow \mathrm{OH} + \mathrm{MGLYOX} + \mathrm{HOCHCHO}$	k_R02_H02(temp,5)*r_COCH202_OH	Sander et al. (2019)
G45094b	TrGC	$C1ODC2O2C4OD + HO_2 \rightarrow C1ODC2OOHC4OD$	k_R02_H02(temp,5)*r_C0CH202_00H	Sander et al. (2019)
G45095	TrGCN	C1ODC2O2C4OD + NO \rightarrow NO ₂ + MGLYOX + HOCHCHO	KRO2NO	Sander et al. (2019)*
G45096	TrGC	$C1ODC2O2C4OD \rightarrow MGLYOX + HOCHCHO$	k1_R02t0R02	Sander et al. (2019)
G45097a	TrGC	C1ODC2OOHC4OD + OH \rightarrow MGLYOX + 2 CO	(2.*k_t*f_0*f_tCH20H*f_alk+k_ t*f_tOH*f_CH0*f_pCH20H)*.5	Sander et al. (2019)
G45097b	TrGC	$C1ODC2OOHC4OD + OH \rightarrow MGLYOX + 2 CO + OH$	(2.*k_t*f_0*f_tCH20H*f_alk+k_ t*f_tOH*f_CH0*f_pCH20H)*.5	Sander et al. (2019)
G45098	TrGCN	LISOPACNO3O2 + NO \rightarrow .21 NOA + .21 HOCH ₂ CHO + .21 HO ₂ + .49 HO12CO3C4 + .49 HCHO + .49 NO ₂ + .045 MVKNO3 + .045 HCHO + .255 CH ₃ COCH ₂ OH + .255 NO ₃ CH ₂ CHO + .225 H ₂ O ₂ + NO ₂	KRO2NO	Sander et al. (2019)*
G45099	TrGCN	LISOPACNO3O2 \rightarrow .21 NOA + .21 HOCH ₂ CHO + .21 HO ₂ + .49 HO12CO3C4 + .49 HCHO + .49 NO ₂ + .045 MVKNO3 + .045 HCHO + .255 CH ₃ COCH ₂ OH + .255 NO ₃ CH ₂ CHO + .225 H ₂ O ₂		Sander et al. (2019)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45100	TrGCN	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	KRO2NO	Sander et al. (2019)*
G45101	TrGCN	$\begin{split} & \text{ISOPBDNO3O2} \rightarrow .6 \text{ CH}_3\text{COCH}_2\text{OH} + .6 \text{ HOCH}_2\text{CHO} \\ & + .26 \text{ MACRNO3} + .14 \text{ MVKNO3} + .4 \text{ HCHO} + .4 \text{ HO}_2 \\ & + .6 \text{ NO}_2 \end{split}$	<pre>k1_R02s0R02+k_R02_H02(temp,5) *c(ind_H02)</pre>	Sander et al. (2019)
G45102	TrGCN	LISOPACNO3 + O ₃ \rightarrow .8704 OH + .365 HO ₂ + .73 MGLYOX + .4325 NO ₃ CH2CHO + .135 CH ₃ COCH ₂ OH + .0675 GLYOX + .4325 NO ₂ + .0891 H ₂ O ₂ + .135 NOA + .0675 HOCHCHO + .3866 HOCH ₂ CHO + .0405 CH ₃ OH + .0405 CO + .0054 HOCH2CO	2.8E-17	Feierabend et al. (2008), Sander et al. (2019)
G45103	TrGC	$DB1O2 \rightarrow DB1O2$	k1_R02s0R02	Sander et al. (2019)
G45104a	TrGC	$DB1O2 + HO_2 \rightarrow DB1OOH$	k_RO2_HO2(temp,5)*(1r_ CHOHCH2O2_OH)	Sander et al. (2019)*
G45104b	TrGC	$DB1O2 + HO_2 \rightarrow DB1O2 + OH$	k_RO2_HO2(temp,5)*r_CHOHCH2O2_OH	Sander et al. (2019)
G45105a	TrGCN	$DB1O2 + NO \rightarrow DB1O2 + NO_2$	<pre>KRO2NO*(1alpha_AN(7,2,0,0,0, temp,cair))</pre>	Sander et al. (2019)
G45105b	TrGCN	$DB1O2 + NO \rightarrow DB1NO3$	<pre>KRO2NO*alpha_AN(7,2,0,0,0,temp, cair)</pre>	Sander et al. (2019)
G45106	TrGCN	$DB1O2 + NO_3 \rightarrow DB1O2 + NO_2$	KR02N03	Sander et al. (2019)
G45107	TrGC	$DB1O2 \rightarrow DB1O2 + OH$	1.E4	Peeters and Nguyen (2012)*
G45108a	TrGC	$DB1O2 \rightarrow DB1O2$	KDEC*0.72	see note*
G45108b	TrGC	$DB1O2 \rightarrow .5 \text{ HVMK} + .5 \text{ HMAC} + \text{HCHO} + \text{HO}_2$	KDEC*0.28	see note*
G45109	TrGC	$DB1O2 \rightarrow .48 CH_3COCH_2OH + .52 HOCH_2CHO + .52 MGLYOX + .48 GLYOX + HO_2$	k1_R02s0R02	Sander et al. (2019)
G45110a	TrGC	$DB1O2 + HO_2 \rightarrow DB2OOH$	k_R02_H02(temp,5)*(1r_ CHOHCH202_OH)	Sander et al. (2019)
G45110b	TrGC	DB1O2 + HO ₂ \rightarrow .48 CH ₃ COCH ₂ OH + .52 HOCH ₂ CHO + .52 MGLYOX + .48 GLYOX + HO ₂ + OH	k_R02_H02(temp,5)*r_CH0HCH202_OH	Sander et al. (2019)
G45111	TrGCN	DB1O2 + NO \rightarrow .48 CH ₃ COCH ₂ OH + .52 HOCH ₂ CHO + .52 MGLYOX + .48 GLYOX + HO ₂ + NO ₂	KRO2NO	see note*
G45112	TrGCN	DB1O2 + NO ₃ \rightarrow .48 CH ₃ COCH ₂ OH + .52 HOCH ₂ CHO + .52 MGLYOX + .48 GLYOX + HO ₂ + NO ₂	KR02N03	Sander et al. (2019)
G45113	TrGC	DB1O2 \rightarrow .48 MACROOH + .52 LHMVKABOOH + CO + OH	k_14hsal	Sander et al. (2019)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45114a	TrGC	$DB1OOH + OH \rightarrow DB1O2$	k_ROOHRO	Sander et al. (2019)
G45114b	TrGC	$DB1OOH + OH \rightarrow HCOOH + HO_2 + CH_3COCHO_2CHO$	k_adt	Sander et al. (2019)*
G45115	TrGC	$DB1OOH + HCOOH \rightarrow C1ODC2OOHC4OD + HCOOH$	4.67E-26*(temp)**(3.286) *EXP(4509./(1.987*temp))	Sander et al. (2019) , da Silva $(2010)^*$
G45116	TrGCN	$DB1NO3 + OH \rightarrow HCOOH + NO_2 + CH_3COCHO_2CHO$	k_adt	Sander et al. (2019)*
G45117	TrGC	$DB2OOH + OH \rightarrow DB1O2$	k_ROOHRO	Sander et al. (2019)*
G45118	TrGC	LISOPACOOH + $O_3 \rightarrow 1.3272$ OH + $.36986$ HO ₂ + $.0432$ H ₂ O ₂ + $.08422$ CO + $.2025$ CH ₃ OOH + $.01215$ CH ₂ OO + $.3704$ HCHO + $.00405$ CH ₃ OH + $.0405$ CO ₂ + $.1825$ HOCH2COCH2O2 + $.365$ MGLYOX + $.3866$ HOOCH2CHO + $.135$ CH ₃ COCH ₂ OH + $.0675$ GLYOX + $.00324$ HCOCO + $.3866$ HOCH ₂ CHO + $.135$ CH ₃ COCH ₂ O ₂ H + $.0675$ HOCHCHO + $.0054$ HOCH2CO	4.829E-16	Sander et al. (2019)
G45119a	TrGC	LZCO3HC23DBCOD + OH \rightarrow .62 CO2H3CHO + .62 OH + .62 CO ₂ + .38 MGLYOX + .38 HCOCO ₃ H + .38 HO ₂	k_adt*a_CHO*a_CO2H	Sander et al. (2019)
G45119b	TrGC	LZCO3HC23DBCOD + OH \rightarrow .62 CH ₃ COCO ₃ H + 1.24 CO + 1.24 HO ₂ + .38 MGLYOX + .38 HO ₂ + .38 CO + .38 HO ₂ + .38 OH + .38 CO ₂	k_ads*a_CHO*a_CO2H	Sander et al. (2019)
G45120	TrGC	$LISOPEFO2 \rightarrow LISOPEFO$	k1_R02p0R02	Sander et al. (2019)
G45121a	TrGCN	$LISOPEFO2 + NO \rightarrow LISOPEFO + NO_2$	<pre>KRO2NO*(1alpha_AN(6,1,0,0,0, temp,cair))</pre>	Sander et al. (2019)
G45121b	TrGCN	$LISOPEFO2 + NO \rightarrow ISOPDNO3$	<pre>KRO2NO*alpha_AN(6,1,0,0,0,temp, cair)</pre>	Sander et al. (2019)*
G45122a	TrGC	LISOPEFO2 + $\text{HO}_2 \rightarrow .7143$ ISOPDOOH + .2857 ISOPBOOH	k_R02_H02(temp,5)*(1r_ CHOHCH202_OH)	Sander et al. (2019)
G45122b	TrGC	$LISOPEFO2 + HO_2 \rightarrow LISOPEFO + OH$	k_R02_H02(temp,5)*r_CHOHCH202_OH	Sander et al. (2019)
G45123	TrGCN	$LISOPEFO2 + NO_3 \rightarrow LISOPEFO + NO_2$	KRO2NO3	Sander et al. (2019)
G45124	TrGC	LISOPEFO2 \rightarrow .7143 MACR + .2857 MVK + HCHO + OH	0.7143*k_hsd+.2857*k_hsb	Sander et al. (2019)
G45125	TrGC	LISOPEFO \rightarrow .7143 MACR + .2857 MVK + HCHO + HO ₂	KDEC	Sander et al. (2019)
G45126a	TrGC	LISOPACO \rightarrow 3METHYLFURAN + HO ₂	KDEC*0.37	Sander et al. (2019), Paulot et al. (2009a), Francisco-Marquez et al. (2003)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45126b	TrGC	$LISOPACO \rightarrow .65\ LHC4ACCHO + .65\ HO_2 + .35\ DB1O2$	KDEC*(10.37)	Sander et al. (2019), Paulot et al.
				(2009a), Francisco-Marquez
				et al. (2003)
G45127a	TrGC	LISOPACO \rightarrow 3METHYLFURAN + HO ₂	KDEC*0.37	Sander et al. (2019), Paulot et al.
				(2009a), Francisco-Marquez
				et al. (2003)
G45127b	TrGC	LISOPACO \rightarrow .65 LHC4ACCHO + .65 HO ₂ + .35 DB1O2	KDEC*(10.37)	Sander et al. (2019), Paulot et al.
				(2009a), Francisco-Marquez
				et al. (2003)
G45128	TrGC	$3METHYLFURAN + OH \rightarrow L3METHYLFURANO2$	3.2E-11*EXP(310./temp)	Sander et al. (2019)*
G45129	TrGCN	$3METHYLFURAN + NO_3 \rightarrow L3METHYLFURANO2 +$	1.9E-11	Sander et al. (2019), Atkinson
	T. C.C	NO ₂		et al. (2006)*
G45130	TrGC	L3METHYLFURANO2 \rightarrow C4MDIAL $+$ HO ₂	k1_R02s0R02	Sander et al. (2019)
G45131	TrGCN	L3METHYLFURANO2 + NO \rightarrow C4MDIAL + HO ₂ +	KR02N0	Sander et al. $(2019)^*$
G45400	TT CC	NO ₂	1. 700 1100 (1	0 1 4 1 (2010)*
G45132	TrGC	L3METHYLFURANO2 + $HO_2 \rightarrow C4MDIAL + HO_2$	k_R02_H02(temp,5)	Sander et al. (2019)*
G45133	TrGC	LZCO3C23DBCOD \rightarrow .62 EZCH3CO2CHCHO $+$.38 EZCHOCCH3CHO2 $+$ CO ₂	k1_R02RC03	Sander et al. (2019)
C4E1246	TrGC	EZCHOCCH3CHO2 + CO_2 LZCO3C23DBCOD + $HO_2 \rightarrow .62$ EZCH3CO2CHCHO +	MADUOTE COS OU	Sandar et al. (2010)
G45134a	IIGC	$.38 \text{ EZCHOCCH3CHO2} + \text{CO}_2 + \text{OH}$	KAPHO2*r_CO3_OH	Sander et al. (2019)
G45134b	TrGC	LZCO3C23DBCOD + $HO_2 \rightarrow LZCO3HC23DBCOD$	KAPH02*(r_C03_00H+r_C03_03)	Sander et al. $(2019)^*$
G45134b	TrGCN	$LZCO3C23DBCOD + NO \rightarrow .62 EZCH3CO2CHCHO +$	KAPNO	Sander et al. (2019) Sander et al. (2019)
440100	mach	$.38 \text{ EZCHOCCH3CHO2} + \text{CO}_2 + \text{NO}_2$	IAI INO	bander et al. (2019)
G45136	TrGCN	$LZCO3C23DBCOD + NO_2 \rightarrow LZCPANC23DBCOD$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G45137	TrGCN	LZCO3C23DBCOD + NO ₃ \rightarrow .62 EZCH3CO2CHCHO +	KR02N03*1.74	Sander et al. (2019)
410101	110011	$.38 \text{ EZCHOCCH3CHO2} + \text{CO}_2 + \text{NO}_2$	111021100 - 1.11	Sander et al. (2019)
G45138	TrGCN	$LZCPANC23DBCOD \rightarrow LZCO3C23DBCOD + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G45139	TrGCN	LZCPANC23DBCOD + OH \rightarrow .62 EZCH3CO2CHCHO +	2.52E-11	Sander et al. (2019)*
		.38 EZCHOCCH3CHO2 + CO_2 + NO_2		(1)
G45200	TrGTerC	$C511O2 \rightarrow CH_3C(O) + HCOCH2CHO$	k1_R02s0R02	Rickard and Pascoe (2009)
G45201	TrGTerCN	$C511O2 + NO \rightarrow CH_3C(O) + HCOCH2CHO + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G45202a	TrGTerC	$C511O2 + HO_2 \rightarrow C511OOH$	k_R02_H02(temp,5)*r_COCH202_00H	Rickard and Pascoe (2009),
			-	Sander et al. (2019)
G45202b	TrGTerC	$C511O2 + HO_2 \rightarrow CH_3C(O) + HCOCH2CHO + OH$	k_R02_H02(temp,5)*r_COCH202_OH	Rickard and Pascoe (2009),
				Sander et al. (2019)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45203	TrGTerC	$C511OOH + OH \rightarrow C511O2$	7.49E-11	Rickard and Pascoe (2009)
G45204	TrGTerC	$CO23C4CHO + OH \rightarrow CO23C4CO3$	6.65E-11	Rickard and Pascoe (2009)
G45205	TrGTerCN	$CO23C4CHO + NO_3 \rightarrow CO23C4CO3 + HNO_3$	KNO3AL*5.5	Rickard and Pascoe (2009)
G45206	TrGTerC	$CO23C4CO3 \rightarrow CH_3COCOCH_2O_2 + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)
G45207	TrGTerCN	$CO23C4CO3 + NO \rightarrow CH_3COCOCH_2O_2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)*
G45208	TrGTerCN	$CO23C4CO3 + NO_2 \rightarrow C5PAN9$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G45209a	TrGTerC	$CO23C4CO3 + HO_2 \rightarrow CO23C4CO3H$	KAPHO2*(r_CO3_OOH+r_CO3_O3)	Rickard and Pascoe (2009)
G45209b	TrGTerC	$CO23C4CO3 + HO_2 \rightarrow CH_3COCOCH_2O_2 + CO_2 + OH$	KAPHO2*r_CO3_OH	Rickard and Pascoe (2009)
G45210	TrGTerCN	$C5PAN9 \rightarrow CO23C4CO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G45211	TrGTerCN	$C5PAN9 + OH \rightarrow CH_3COCOCHO + CO + NO_2$	3.12E-13	Rickard and Pascoe (2009)
G45212	TrGTerC	$C512O2 \rightarrow C513O2$	k1_R02pR02	Rickard and Pascoe (2009)
G45213	TrGTerC	$C512O2 + HO_2 \rightarrow C512OOH$	k_R02_H02(temp,5)	Rickard and Pascoe (2009)
G45214	TrGTerCN	$C512O2 + NO \rightarrow C513O2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G45215	TrGTerC	$C512OOH + OH \rightarrow CO13C4CHO + OH$	1.01E-10	Rickard and Pascoe (2009)
G45216	TrGTerC	$C513O2 \rightarrow GLYOX + HOC_2H_4CO_3$	k1_R02s0R02	Rickard and Pascoe (2009)
G45217	TrGTerCN	$C513O2 + NO \rightarrow GLYOX + HOC_2H_4CO_3 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G45218a	TrGTerC	$C513O2 + HO_2 \rightarrow C513OOH$	k_R02_H02(temp,5)*r_COCH202_00H	Rickard and Pascoe (2009), Sander et al. (2019)
G45218b	TrGTerC	$C513O2 + HO_2 \rightarrow GLYOX + HOC_2H_4CO_3 + OH$	k_R02_H02(temp,5)*r_COCH202_OH	Rickard and Pascoe (2009), Sander et al. (2019)
G45219	TrGTerC	$CO13C4CHO + OH \rightarrow CHOC3COCO3$	1.33E-10	Rickard and Pascoe (2009)
G45220	TrGTerCN	$CO13C4CHO + NO_3 \rightarrow CHOC3COCO3 + HNO_3$	2.*KNO3AL*5.5	Rickard and Pascoe (2009)
G45221	TrGTerC	$C513OOH + OH \rightarrow C513CO + OH$	9.23E-11	Rickard and Pascoe (2009)
G45222	TrGTerC	$CHOC3COCO3 \rightarrow CHOC3COO2 + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)
G45223	TrGTerC	$CHOC3COCO3 + HO_2 \rightarrow CHOC3COOOH$	KAPHO2	Rickard and Pascoe (2009)
G45224	TrGTerCN	$CHOC3COCO3 + NO_2 \rightarrow CHOC3COPAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G45225	TrGTerCN	$CHOC3COCO3 + NO \rightarrow CHOC3COO2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)*
G45226	TrGTerC	$C513CO + OH \rightarrow HOC_2H_4CO_3 + CO + CO$	2.64E-11	Rickard and Pascoe (2009)
G45227	TrGTerC	$C514O2 + HO_2 \rightarrow C514OOH$	k_R02_H02(temp,5)	Rickard and Pascoe (2009)
G45228a	$\operatorname{TrGTerCN}$	$C514O2 + NO \rightarrow CO13C4CHO + HO_2 + NO_2$	KRO2NO*(1alpha_AN(7,2,0,1,0,	Rickard and Pascoe (2009),
			temp,cair))	Sander et al. (2019)
G45228b	$\operatorname{TrGTerCN}$	$C514O2 + NO \rightarrow C514NO3$	KRO2NO*alpha_AN(7,2,0,1,0,temp,	Rickard and Pascoe (2009),
			cair)	Sander et al. (2019)
G45229	$\operatorname{TrGTerCN}$	$C514O2 + NO_3 \rightarrow CO13C4CHO + HO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)
G45230	TrGTerC	$C514O2 \rightarrow CO13C4CHO + HO_2$	k1_R02sR02	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45231	TrGTerC	$C514OOH + OH \rightarrow CO13C4CHO + OH$	1.10E-10	Rickard and Pascoe (2009)
G45232	TrGTerCN	$C514NO3 + OH \rightarrow CO13C4CHO + NO_2$	4.33E-11	Rickard and Pascoe (2009)
G45233	TrGTerC	$\mathrm{CHOC3COOOH} + \mathrm{OH} \rightarrow \mathrm{CHOC3COCO3}$	7.55E-11	Rickard and Pascoe (2009)
G45234	TrGTerCN	$CHOC3COPAN \rightarrow CHOC3COCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G45235	TrGTerCN	$CHOC3COPAN + OH \rightarrow C4CODIAL + CO + NO_2$	7.19E-11	Rickard and Pascoe (2009)
G45236	TrGTerC	$MBO + OH \rightarrow LMBOABO2$	8.1E-12*EXP(610./temp)	Rickard and Pascoe (2009), Sander et al. (2019)*
G45237a	TrGTerC	MBO + O ₃ \rightarrow HCHO + .16 CH ₃ COCH ₃ + .16 HO ₂ + .16 CO + .16 OH + .84 MBOOO	1.0E-17*0.57	Rickard and Pascoe (2009), Sander et al. (2019)
G45237b	TrGTerC	MBO + O ₃ \rightarrow IBUTALOH + .63 CO + .37 HOCH ₂ OOH + .16 OH + .16 HO ₂	1.0E-17*0.43	Rickard and Pascoe (2009), Sander et al. (2019)
G45238	TrGTerCN	$MBO + NO_3 \rightarrow LNMBOABO2$	4.6E-14*EXP(-400./temp)	Rickard and Pascoe (2009), Sander et al. (2019)
G45239	TrGTerC	$LMBOABO2 + HO_2 \rightarrow LMBOABOOH$	k_R02_H02(temp,5)	Rickard and Pascoe (2009), Sander et al. (2019)
G45240a	TrGTerCN	$LMBOABO2 + NO \rightarrow LMBOABNO3$	<pre>KRO2NO*(.67*alpha_AN(7,2,0,0,0, temp,cair)+.33*alpha_AN(7,1,0,0, 0,temp,cair))</pre>	Rickard and Pascoe (2009), Sander et al. (2019)
G45240b	TrGTerCN	$\label{eq:localization} \begin{split} \mathrm{LMBOABO2} + \mathrm{NO} &\rightarrow \mathrm{HOCH_2CHO} + \mathrm{CH_3COCH_3} + \mathrm{HO_2} \\ + \mathrm{NO_2} \end{split}$	<pre>KRO2NO*(1(.67*alpha_AN(7,2,0, 0,0,temp,cair)+.33*alpha_AN(7,1, 0,0,0,temp,cair)))*.67</pre>	Rickard and Pascoe (2009), Sander et al. (2019)
G45240c	TrGTerCN	LMBOABO2 + NO \rightarrow IBUTALOH + HCHO + HO ₂ + NO ₂	<pre>KRO2NO*(1(.67*alpha_AN(7,2,0, 0,0,temp,cair)+.33*alpha_AN(7,1, 0,0,0,temp,cair)))*.33</pre>	Rickard and Pascoe (2009), Sander et al. (2019)
G45241a	TrGTerC	$LMBOABO2 \rightarrow HOCH_2CHO + CH_3COCH_3 + HO_2$	k1_R02s0R02*.67	Rickard and Pascoe (2009), Sander et al. (2019)
G45241b	TrGTerC	$LMBOABO2 \rightarrow IBUTALOH + HCHO + HO_2$	k1_R02p0R02*.33	Rickard and Pascoe (2009), Sander et al. (2019)
G45242a	TrGTerC	${\rm LMBOABOOH} + {\rm OH} \rightarrow {\rm MBOACO}$	0.67*2.93E-11+.33*2.05E-12	Rickard and Pascoe (2009), Sander et al. (2019)
G45242b	TrGTerC	$LMBOABOOH + OH \rightarrow LMBOABO2$	k_ROOHRO	Rickard and Pascoe (2009), Sander et al. (2019)
G45243	TrGTerCN	$LMBOABNO3 + OH \rightarrow MBOACO + NO_2$	0.67*1.75E-12+.33*2.69E-12	Rickard and Pascoe (2009), Sander et al. (2019)
G45244	TrGTerC	$\mathrm{MBOACO} + \mathrm{OH} \rightarrow \mathrm{MBOCOCO} + \mathrm{HO}_2$	3.79E-12	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45245	TrGTerC	$MBOCOCO + OH \rightarrow CO + IPRHOCO3$	1.38E-11	Rickard and Pascoe (2009)
G45246	TrGTerCN	${\rm LNMBOABO2} + {\rm HO_2} \rightarrow {\rm LNMBOABOOH}$	k_R02_H02(temp,5)	Rickard and Pascoe (2009), Sander et al. (2019)
G45247	TrGTerCN	LNMBOABO2 + NO \rightarrow .65 NO ₃ CH2CHO + .65 CH ₃ COCH ₃ + .65 HO ₂ + .35 IBUTALOH + .35 HCHO + .35 NO ₂ + NO ₂	KRO2NO	Rickard and Pascoe (2009), Sander et al. (2019)*
G45248	TrGTerCN	LNMBOABO2 + NO $_3$ \rightarrow .65 NO $_3$ CH2CHO + .65 CH $_3$ COCH $_3$ + .65 HO $_2$ + .35 IBUTALOH + .35 HCHO + .35 NO $_2$ + NO $_2$	KR02N03	Rickard and Pascoe (2009), Sander et al. (2019)
G45249	TrGTerCN	LNMBOABO2 \rightarrow .65 NO ₃ CH2CHO + .65 CH ₃ COCH ₃ + .65 HO ₂ + .35 IBUTALOH + .35 HCHO + .35 NO ₂	k1_R02s0R02	Rickard and Pascoe (2009), Sander et al. (2019)
G45250a	TrGTerCN	LNMBOABOOH + OH \rightarrow .65 C4MCONO3OH + .35 NMBOBCO	0.65*4.89E-12+.35*2.52E-12	Rickard and Pascoe (2009), Sander et al. (2019)
G45250b	TrGTerCN	${\rm LNMBOABOOH} + {\rm OH} \rightarrow {\rm LNMBOABO2}$	k_ROOHRO	Rickard and Pascoe (2009), Sander et al. (2019)
G45251	TrGTerCN	$NMBOBCO + OH \rightarrow NC4OHCO3$	4.26E-12	Rickard and Pascoe (2009)
G45252a	TrGTerCN	$NC4OHCO3 + HO_2 \rightarrow IBUTALOH + CO_2 + NO_2 + OH$	KAPH02*r_C03_OH	Rickard and Pascoe (2009), Sander et al. (2019)
G45252b	TrGTerCN	$NC4OHCO3 + HO_2 \rightarrow NC4OHCO3H$	KAPHO2*(r_CO3_O3+r_CO3_OOH)	Rickard and Pascoe (2009), Sander et al. (2019)
G45253	TrGTerCN	$NC4OHCO3 + NO \rightarrow IBUTALOH + CO_2 + NO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G45254	TrGTerCN	$NC4OHCO3 + NO_2 \rightarrow NC4OHCPAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G45255	TrGTerCN	$NC4OHCO3 + NO_3 \rightarrow IBUTALOH + CO_2 + NO_2 + NO_2$	KR02N03*1.74	Rickard and Pascoe (2009)
G45256	TrGTerCN	$NC4OHCO3 \rightarrow IBUTALOH + CO_2 + NO_2$	k1_R02RC03	Rickard and Pascoe (2009)
G45257	TrGTerCN	$NC4OHCO3H + OH \rightarrow NC4OHCO3$	4.50E-12	Rickard and Pascoe (2009)
G45258	TrGTerCN	$NC4OHCPAN + OH \rightarrow IBUTALOH + CO + NO_2 + NO_2$	1.27E-12	Rickard and Pascoe (2009)
G45259	TrGTerCN	$NC4OHCPAN \rightarrow NC4OHCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G45260	TrGTerCN	$C4MCONO3OH + OH \rightarrow CH_3COCH_3 + HCHO + CO_2 + NO_2$	1.23E-12	Rickard and Pascoe (2009), Sander et al. (2019)
G45400	TrGAroCN	$NC4MDCO2HN + OH \rightarrow MMALANHY + NO_2$	k_ROOHRO	Rickard and Pascoe (2009)*
G45401	TrGAroCN	$C54CO + NO_3 \rightarrow 3 CO + CH_3C(O)OO + HNO_3$	KNO3AL*5.5	Rickard and Pascoe (2009)
G45402	TrGAroC	$C54CO + OH \rightarrow 3 CO + CH_3C(O)OO$	1.72E-11	Rickard and Pascoe (2009)
G45403a	TrGAroCN	$\mathrm{NTLFUO2} + \mathrm{HO_2} \rightarrow \mathrm{NTLFUOOH}$	k_RO2_HO2(temp,5)*(1r_COCH2O2_ OH)	Rickard and Pascoe (2009)
G45403b	TrGAroCN	$NTLFUO2 + HO_2 \rightarrow ACCOMECHO + NO_2 + OH$	k_R02_H02(temp,5)*r_COCH202_OH	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45404	TrGAroCN	$NTLFUO2 + NO \rightarrow ACCOMECHO + NO_2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G45405	TrGAroCN	$NTLFUO2 + NO_3 \rightarrow ACCOMECHO + NO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
G45406	TrGAroCN	$NTLFUO2 \rightarrow ACCOMECHO + NO_2$	k1_R02t0R02	Rickard and Pascoe (2009)*
G45407	TrGAroC	$C5134CO2OH + OH \rightarrow C54CO + HO_2$	7.48E-11	Rickard and Pascoe (2009)
G45408	TrGAroCN	$C5COO2NO2 + OH \rightarrow MGLYOX + CO + CO + NO_2$	5.43E-11	Rickard and Pascoe (2009)
G45409	TrGAroCN	$C5COO2NO2 \rightarrow C5CO14O2 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)*
G45410	TrGAroC	$C5DIALOOH + OH \rightarrow C5DIALCO + OH$	7.52E-11	Rickard and Pascoe (2009)
G45411a	TrGAroC	$C4CO2DBCO3 + HO_2 \rightarrow C4CO2DCO3H$	KAPHO2*(r_CO3_OOH+r_CO3_O3)	Rickard and Pascoe (2009)
G45411b	TrGAroC	$C4CO2DBCO3 + HO_2 \rightarrow HO_2 + CO + HCOCOCHO + CO_2 + OH$	KAPHO2*r_CO3_OH	Rickard and Pascoe (2009), Sander et al. (2019)
G45412	TrGAroCN	$C4CO2DBCO3 + NO \rightarrow HO_2 + CO + HCOCOCHO + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G45413	TrGAroCN	$C4CO2DBCO3 + NO_2 \rightarrow C4CO2DBPAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)*
G45414	TrGAroCN	$C4CO2DBCO3 + NO_3 \rightarrow HO_2 + CO + HCOCOCHO + CO_2 + NO_2$	KR02N03*1.74	Rickard and Pascoe (2009)
G45415	TrGAroC	$CO_2 + NO_2$ $C4CO2DBCO3 \rightarrow HO_2 + CO + HCOCOCHO + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)
G45416	TrGAroC	$C4CO2DBCO3 \rightarrow HO_2 + CO + HCOCOCHO + CO_2$ $MMALANHY + OH \rightarrow MMALANHYO2$	1.50E-12	Rickard and Pascoe (2009)
G45421a	TrGAroC	$MMALANHYO2 + HO_2 \rightarrow MMALNHYOOH$	k_RO2_HO2(temp,5)*(1r_COCH2O2_	Rickard and Pascoe (2009),
040421a	IIGAIOC	MMALANITO2 + 1102 - MMALNITOOII	OH-r_CHOHCH2O2_OH)	Sander et al. (2019)
G45421b	TrGAroC	$MMALANHYO2 + HO_2 \rightarrow CO2H3CO3 + CO_2 + OH$	k_R02_H02(temp,5)*(r_C0CH202_0H+ r_CH0HCH202_0H)	Rickard and Pascoe (2009), Sander et al. (2019)
G45422	TrGAroCN	$MMALANHYO2 + NO \rightarrow CO2H3CO3 + CO_2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G45423	TrGAroCN	$MMALANHYO2 + NO_3 \rightarrow CO2H3CO3 + CO_2 + NO_2$	KRO2NO3	Rickard and Pascoe (2009)*
G45424	TrGAroC	$MMALANHYO2 \rightarrow CO2H3CO3 + CO_2$	k1_R02t0R02	Rickard and Pascoe (2009)*
G45428	TrGAroCN	$C4CO2DBPAN + OH \rightarrow HCOCOCHO + CO_2 + CO + NO_2$	2.74E-11	Rickard and Pascoe (2009)
G45429	TrGAroCN	$C4CO2DBPAN \rightarrow C4CO2DBCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)*
G45430a	TrGAroC	$C5CO14O2 + HO_2 \rightarrow .83 \text{ MALANHY} + .83 \text{ CH}_3 + .17 \text{ MGLYOX} + .17 \text{ HO}_2 + .17 \text{ CO}_1 + .17 \text{ CO}_2 + \text{ OH}$	KAPHO2*r_CO3_OH	Rickard and Pascoe (2009)*
G45430b	TrGAroC	$C5CO14O2 + HO_2 \rightarrow C5CO14OH + O_3$	KAPH02*r_C03_03	Rickard and Pascoe (2009)
G45430c	TrGAroC	$C5CO14O2 + HO_2 \rightarrow C5CO14OOH$	KAPHO2*r_CO3_OOH	Rickard and Pascoe (2009)
G45431	$\operatorname{TrGAroCN}$	$C5CO14O2 + NO \rightarrow .83 \text{ MALANHY} + .83 \text{ CH}_3 + .17 \text{ MGLYOX} + .17 \text{ HO}_2 + .17 \text{ CO} + .17 \text{ CO}_2 + \text{NO}_2$	KAPNO	Rickard and Pascoe (2009)*
G45432	$\operatorname{TrGAroCN}$	$C5CO14O2 + NO_2 \rightarrow C5COO2NO2$	k_CH3CO3_NO2	Rickard and Pascoe (2009)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45433	TrGAroCN	$C5CO14O2 + NO_3 \rightarrow .83 \text{ MALANHY} + .83 \text{ CH}_3 + .17$	KR02N03*1.74	Rickard and Pascoe (2009)*
		$MGLYOX + .17 HO_2 + .17 CO + .17 CO_2 + NO_2$		` ,
G45434	TrGAroC	$C5CO14O2 \rightarrow .83 \text{ MALANHY} + .83 \text{ CH}_3 + .17 \text{ MGLYOX}$	k1_RO2RCO3	Rickard and Pascoe (2009)*
		$+ .17 \text{ HO}_2 + .17 \text{ CO} + .17 \text{ CO}_2$, ,
G45436	TrGAroC	$C5CO14OH + OH \rightarrow .83 MALANHY + .83 CH_3 + .17$	5.44E-11	Rickard and Pascoe (2009)*
		$MGLYOX + .17 HO_2 + .17 CO + .17 CO_2$		
G45441	TrGAroCN	$C5DICARB + NO_3 \rightarrow C5CO14O2 + HNO_3$	KNO3AL*2.75	Rickard and Pascoe (2009)
G45442	TrGAroC	C5DICARB $+$ O ₃ \rightarrow .5338 GLYOX $+$.063 CH ₃ CHO $+$	2.00E-18	Rickard and Pascoe (2009)
		$.348 \text{ CH}_3\text{C(O)OO} + .918 \text{ CO} + .57 \text{ OH} + .473 \text{ HO}_2 + .473 \text{ CO}_2 + .473 $		
		$.0563 \text{ CH}_3\text{COCO}_2\text{H} + .5338 \text{ MGLYOX} + .676 \text{ H}_2\text{O}_2 +$		
		$.063 \text{ HCHO} + .0563 \text{ HCOCO}_2\text{H} + .2465 \text{ CO}_2$		
G45443	TrGAroC	$C5DICARB + OH \rightarrow .48 C5CO14O2 + .52 C5DICARBO2$	6.2E-11	Rickard and Pascoe (2009)
G45444	TrGAroC	$MC3ODBCO2H + OH \rightarrow .35 GLYOX + .35 CH_3 + .35$	4.38E-11	Rickard and Pascoe (2009)*
		$CO + .35 CO_2 + .65 MMALANHY + .65 HO_2$		
G45451	TrGAroCN	$TLFUONE + NO_3 \rightarrow NTLFUO2$	1.00E-12	Rickard and Pascoe (2009)
G45452	TrGAroC	TLFUONE + $O_3 \rightarrow .5 \text{ CO} + .5 \text{ OH} + .5 \text{ MECOACETO2}$	8.00E-19	see note*
		+ .3125 C24O3CCO2H + .1875 ACCOMECHO + .1875		
		$\mathrm{H_{2}O_{2}}$		D. 1 1 1 D (0000)
G45453	TrGAroC	$TLFUONE + OH \rightarrow TLFUO2$	6.90E-11	Rickard and Pascoe (2009)
G45454a	TrGAroC	$ACCOMECO3 + HO_2 \rightarrow ACCOMECO3H$	KAPH02*(r_C03_00H+r_C03_03)	Rickard and Pascoe (2009)
G45454b	TrGAroC	$ACCOMECO3 + HO_2 \rightarrow MECOACETO2 + CO_2 + OH$	KAPHO2*r_CO3_OH	Rickard and Pascoe (2009)
G45455	TrGAroCN	$ACCOMECO3 + NO \rightarrow MECOACETO2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G45456	TrGAroCN	$ACCOMECO3 + NO_2 \rightarrow ACCOMEPAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)*
G45457	TrGAroCN	$ACCOMECO3 + NO_3 \rightarrow MECOACETO2 + CO_2 + NO_2$	KR02N03*1.74	Rickard and Pascoe (2009)
G45458	TrGAroC	$ACCOMECO3 \rightarrow MECOACETO2 + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)
G45459	TrGAroC	$C4CO2DCO3H + OH \rightarrow C4CO2DBCO3$	3.06E-11	Rickard and Pascoe (2009)
G45464	TrGAroCN	$ACCOMECHO + NO_3 \rightarrow ACCOMECO_3 + HNO_3$	KNO3AL*5.5	Rickard and Pascoe (2009)
G45465	TrGAroC	$ACCOMECHO + OH \rightarrow ACCOMECO3$	7.09E-11	Rickard and Pascoe (2009)
G45466	TrGAroC	$MMALNHYOOH + OH \rightarrow MMALANHYO2$ $CFDICAPOOH + OH \rightarrow CF124CO2OH + OH$	1.69E-11	Rickard and Pascoe (2009)
G45467a	TrGAroC	$C5DICAROOH + OH \rightarrow C5134CO2OH + OH$	1.21E-10	Rickard and Pascoe (2009)
G45467b	TrGAroC	$C5DICAROOH + OH \rightarrow C5DICARBO2$ $C24O2CCO2H + OH \rightarrow MECOACETO2 + CO$	k_ROOHRO	Rickard and Pascoe (2009)
G45468	TrGAroC	$C24O3CCO2H + OH \rightarrow MECOACETO2 + CO_2$	8.76E-13	Rickard and Pascoe (2009)
G45469	TrGAroCN	$NTLFUOOH + OH \rightarrow NTLFUO2$	4.44E-12	Rickard and Pascoe (2009)
G45470	TrGAroCN	$ACCOMEPAN + OH \rightarrow METACETHO + CO + CO +$	1.00E-14	Rickard and Pascoe (2009)
		NO_2		

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45471	TrGAroCN	$ACCOMEPAN \rightarrow ACCOMECO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G45476a	TrGAroC	$\mathrm{TLFUO2} + \mathrm{HO_2} \rightarrow \mathrm{TLFUOOH}$	k_RO2_HO2(temp,5)*(1r_COCH2O2_ OH-r_CHOHCH2O2_OH)	Rickard and Pascoe (2009)
G45476b	TrGAroC	$TLFUO2 + HO_2 \rightarrow ACCOMECHO + HO_2 + OH$	k_RO2_HO2(temp,5)*(r_COCH2O2_OH+ r_CHOHCH2O2_OH)	Rickard and Pascoe (2009)*
G45477	TrGAroCN	$TLFUO2 + NO \rightarrow ACCOMECHO + HO_2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G45478	TrGAroCN	$TLFUO2 + NO_3 \rightarrow ACCOMECHO + HO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
G45479	TrGAroC	$TLFUO2 \rightarrow ACCOMECHO + HO_2$	k1_R02t0R02	Rickard and Pascoe (2009)*
G45480	TrGAroC	$C5CO14OOH + OH \rightarrow C5CO14O2$	3.59E-12	Rickard and Pascoe (2009)
G45483	TrGAroC	$TLFUOOH + OH \rightarrow TLFUO2$	2.53E-11	Rickard and Pascoe (2009)
G45485	TrGAroC	$ACCOMECO3H + OH \rightarrow ACCOMECO3$	3.59E-12	Rickard and Pascoe (2009)
G45486a	TrGAroC	$C5DIALO2 + HO_2 \rightarrow C5DIALOOH$	k_RO2_HO2(temp,5)*(1r_COCH2O2_ OH)	Rickard and Pascoe (2009)
G45486b	TrGAroC	$C5DIALO2 + HO_2 \rightarrow MALDIAL + CO + HO_2 + OH$	k_R02_H02(temp,5)*r_C0CH202_OH	Rickard and Pascoe (2009)*
G45487	TrGAroCN	$C5DIALO2 + NO \rightarrow MALDIAL + CO + HO_2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G45488	TrGAroCN	$C5DIALO2 + NO_3 \rightarrow MALDIAL + CO + HO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
G45489	TrGAroC	$C5DIALO2 \rightarrow MALDIAL + CO + HO_2$	k1_R02s0R02	Rickard and Pascoe (2009)*
G45490a	TrGAroC	$C5DICARBO2 + HO_2 \rightarrow C5DICAROOH$	k_R02_H02(temp,5)*(r_C03_00H+r_ C03_03)	Rickard and Pascoe (2009)
G45491b	$\operatorname{TrGAroC}$	C5DICARBO2 + $HO_2 \rightarrow MGLYOX + GLYOX + HO_2 + OH$	k_R02_H02(temp,5)*r_C03_OH	Rickard and Pascoe (2009)*
G45492	TrGAroCN	$C5DICARBO2 + NO \rightarrow MGLYOX + GLYOX + HO_2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G45493	$\operatorname{TrGAroCN}$	C5DICARBO2 + $NO_3 \rightarrow MGLYOX + GLYOX + HO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
G45494	TrGAroC	$C5DICARBO2 \rightarrow MGLYOX + GLYOX + HO_2$	k1_R02s0R02	Rickard and Pascoe (2009)*
G46200a	TrGTerC	$\text{CO235C6O2} + \text{HO}_2 \rightarrow \text{CO235C6OOH}$	k_R02_H02(temp,6)*r_COCH202_00H	Rickard and Pascoe (2009), Sander et al. (2019)
G46200b	TrGTerC	$\mathrm{CO235C6O2} + \mathrm{HO}_2 \rightarrow \mathrm{CO23C4CO3} + \mathrm{HCHO} + \mathrm{OH}$	k_R02_H02(temp,6)*r_COCH202_OH	Rickard and Pascoe (2009), Sander et al. (2019)
G46201	TrGTerCN	$CO235C6O2 + NO \rightarrow CO23C4CO3 + HCHO + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G46202	TrGTerC	$CO235C6O2 \rightarrow CO23C4CO3 + HCHO$	k1_R02p0R02	Rickard and Pascoe (2009)
G46203	TrGTerC	$CO235C6OOH + OH \rightarrow CO235C6O2$	1.01E-11	Rickard and Pascoe (2009)
G46204	TrGTerC	$C614O2 \rightarrow CO23C4CHO + HCHO + HO_2$	k1_R02s0R02	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G46205a	TrGTerCN	$C614O2 + NO \rightarrow CO23C4CHO + HCHO + HO_2 + NO_2$	KRO2NO*(1alpha_AN(9,2,0,1,0,	Rickard and Pascoe (2009)
			temp,cair))	
G46205b	TrGTerCN	$C614O2 + NO \rightarrow C614NO3$	$KRO2NO*alpha_AN(9,2,0,1,0,temp,$	Rickard and Pascoe (2009)
			cair)	
G46206a	TrGTerC	$C614O2 + HO_2 \rightarrow C614OOH$	$k_R02_H02(temp,6)*(1r_$	Rickard and Pascoe (2009),
			CHOHCH2O2_OH)	Sander et al. (2019)
G46206b	TrGTerC	$C614O2 + HO_2 \rightarrow CO23C4CHO + HCHO + HO_2 + OH$	k_R02_H02(temp,6)*r_CH0HCH202_OH	Rickard and Pascoe (2009),
				Sander et al. (2019)
G46207	TrGTerCN	$C614NO3 + OH \rightarrow C614CO + NO_2$	7.11E-12	Rickard and Pascoe (2009)
G46208	TrGTerC	$C614OOH + OH \rightarrow C614CO + OH$	8.69E-11	Rickard and Pascoe (2009)
G46209	TrGTerC	$C614CO + OH \rightarrow CO235C5CHO + HO_2$	3.22E-12	Rickard and Pascoe (2009)
G46210	TrGTerC	$CO235C5CHO + OH \rightarrow CO23C4CO3 + CO$	1.33E-11	Rickard and Pascoe (2009)
G46211	TrGTerCN	$CO235C5CHO + NO_3 \rightarrow CO23C4CO3 + CO + HNO_3$	KNO3AL*5.5	Rickard and Pascoe (2009)
G46400	TrGAroC	$PHENOOH + OH \rightarrow PHENO2$	1.16E-10	Rickard and Pascoe (2009)
G46401	TrGAroC	$C6CO4DB + OH \rightarrow CO + CO + HO_2 + CO +$	7.70E-11	Rickard and Pascoe (2009)
		НСОСОСНО		
G46402	TrGAroC	$C5CO2DCO3H + OH \rightarrow C5CO2DBCO3$	3.60E-11	Rickard and Pascoe (2009)
G46403	TrGAroCN	$NDNPHENOOH + OH \rightarrow NDNPHENO2$	k_ROOHRO	Rickard and Pascoe (2009)
G46404a	TrGAroC	$C615CO2O2 + HO_2 \rightarrow C615CO2OOH$	$k_{R02}H02(temp,6)*(1r_{COCH202}$	Rickard and Pascoe (2009)
			OH)	
G46404b	TrGAroC	$C615CO2O2 + HO_2 \rightarrow C5DICARB + CO + HO_2 + OH$	k_R02_H02(temp,6)*r_COCH202_OH	Rickard and Pascoe (2009)*
G46405	TrGAroCN	$C615CO2O2 + NO \rightarrow C5DICARB + CO + HO_2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G46406	TrGAroCN	$C615CO2O2 + NO_3 \rightarrow C5DICARB + CO + HO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
G46407	TrGAroC	$C615CO2O2 \rightarrow C5DICARB + CO + HO_2$	k1_R02s0R02	Rickard and Pascoe (2009)*
G46408	TrGAroCN	$BZEMUCPAN + OH \rightarrow MALDIAL + CO + CO_2 + NO_2$	4.05E-11	Rickard and Pascoe (2009)
G46409	TrGAroCN	$BZEMUCPAN \rightarrow BZEMUCCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G46410	TrGAroCN	$BZBIPERNO3 + OH \rightarrow BZOBIPEROH + NO_2$	7.30E-11	Rickard and Pascoe (2009)
G46411	TrGAroCN	$HOC6H4NO2 + NO_3 \rightarrow NPHEN1O + HNO_3$	9.00E-14	Rickard and Pascoe (2009)
G46412	TrGAroCN	$HOC6H4NO2 + OH \rightarrow NPHEN1O$	9.00E-13	Rickard and Pascoe (2009)
G46413a	TrGAroCN	${\rm NDNPHENO2} + {\rm HO_2} \rightarrow {\rm NDNPHENOOH}$	k_R02_H02(temp,6)*(1r_ CHOHCH202_OH)	Rickard and Pascoe (2009)
G46413b	TrGAroCN	$NDNPHENO2 + HO_2 \rightarrow NC4DCO2H + HNO_3 + CO +$	k_RO2_HO2(temp,6)*r_CHOHCH2O2_OH	Rickard and Pascoe (2009)*
		$CO + NO_2 + OH$		
G46414	TrGAroCN	$NDNPHENO2 + NO \rightarrow NC4DCO2H + HNO_3 + CO +$	KRO2NO	Rickard and Pascoe (2009)*
		$CO + NO_2 + NO_2$		()

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G46415	TrGAroCN	$NDNPHENO2 + NO_3 \rightarrow NC4DCO2H + HNO_3 + CO +$	KR02N03	Rickard and Pascoe (2009)*
		$\mathrm{CO} + \mathrm{NO}_2 + \mathrm{NO}_2$		
G46416	TrGAroCN	$NDNPHENO2 \rightarrow NC4DCO2H + HNO_3 + CO + CO +$	k1_RO2ISOPDO2	Rickard and Pascoe (2009)*
		NO_2		
G46417	TrGAroC	$PBZQCO + OH \rightarrow C5CO2OHCO3$	6.07E-11	Rickard and Pascoe (2009)
G46418	TrGAroCN	$CATECHOL + NO_3 \rightarrow CATEC1O + HNO_3$	9.9E-11	Rickard and Pascoe (2009)*
G46419	TrGAroC	$CATECHOL + O_3 \rightarrow MALDALCO2H + HCOCO_2H +$	9.2E-18	Rickard and Pascoe (2009)
		$\mathrm{HO}_2 + \mathrm{OH}$		
G46420	TrGAroC	$CATECHOL + OH \rightarrow CATEC1O$	1.0E-10	Rickard and Pascoe (2009)
G46421	TrGAroC	$C5COOHCO3H + OH \rightarrow C5CO2OHCO3$	8.01E-11	Rickard and Pascoe (2009)
G46422	TrGAroCN	$NCATECHOL + NO_3 \rightarrow NNCATECO2$	2.60E-12	Rickard and Pascoe (2009)
G46423	TrGAroCN	$NCATECHOL + OH \rightarrow NCATECO2$	3.47E-12	Rickard and Pascoe (2009)
G46424a	TrGAroC	$C5CO2OHCO3 + HO_2 \rightarrow C5COOHCO3H$	KAPH02*(r_C03_00H+r_C03_03)	Rickard and Pascoe (2009)
G46424b	TrGAroC	$C5CO2OHCO3 + HO_2 \rightarrow HOCOC4DIAL + HO_2 + CO +$	KAPHO2*r_CO3_OH	Rickard and Pascoe (2009)
		$CO_2 + OH$		
G46425	TrGAroCN	$C5CO2OHCO3 + NO \rightarrow HOCOC4DIAL + HO_2 + CO +$	KAPNO	Rickard and Pascoe (2009)
		$CO_2 + NO_2$		
G46426	TrGAroCN	$C5CO2OHCO3 + NO_2 \rightarrow C5CO2OHPAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)*
G46427	TrGAroCN	$C5CO2OHCO3 + NO_3 \rightarrow HOCOC4DIAL + HO_2 + CO +$	KR02N03*1.74	Rickard and Pascoe (2009)
		$\mathrm{CO}_2 + \mathrm{NO}_2$		
G46428	TrGAroC	$C5CO2OHCO3 \rightarrow HOCOC4DIAL + HO_2 + CO + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)
G46429	TrGAroCN	$BZEPOXMUC + NO_3 \rightarrow BZEMUCCO3 + HNO_3$	2.*KN03AL*2.75	Rickard and Pascoe (2009)
G46430	TrGAroC	$BZEPOXMUC + O_3 \rightarrow EPXC4DIAL + .125 HCHO +$	2.00E-18	Rickard and Pascoe (2009)*
		$.1125 \text{ HCOCO}_2\text{H} + .0675 \text{ GLYOX} + .0675 \text{ H}_2\text{O}_2 + .82$		
		$HO_2 + .57 OH + 1.265 CO + .25 CO_2$		
G46431	TrGAroC	BZEPOXMUC + OH \rightarrow .31 BZEMUCCO3 + .69	6.08E-11	Rickard and Pascoe (2009)
		BZEMUCO2		
G46432a	TrGAroCN	$NCATECO2 + HO_2 \rightarrow NCATECOOH$	k_R02_H02(temp,6)*(1r_	Rickard and Pascoe (2009)
			CHOHCH2O2_OH)	
G46432b	TrGAroCN	$NCATECO2 + HO_2 \rightarrow NC4DCO2H + HCOCO_2H + HO_2$	k_R02_H02(temp,6)*r_CHOHCH202_OH	Rickard and Pascoe (2009)*
		+ OH		
G46433	TrGAroCN	$NCATECO2 + NO \rightarrow NC4DCO2H + HCOCO_2H + HO_2$	KRO2NO	Rickard and Pascoe (2009)*
		$+ NO_2$		
G46434	TrGAroCN	$NCATECO2 + NO_3 \rightarrow NC4DCO2H + HCOCO_2H + HO_2$	KR02N03	Rickard and Pascoe (2009)*
		$+ NO_2$		

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G46435	TrGAroCN	$NCATECO2 \rightarrow NC4DCO2H + HCOCO_2H + HO_2$	k1_RO2ISOPDO2	Rickard and Pascoe (2009)*
G46436	TrGAroCN	$NPHEN1OOH + OH \rightarrow NPHEN1O2$	9.00E-13	Rickard and Pascoe (2009)
G46437a	TrGAroCN	$NPHENO2 + HO_2 \rightarrow NPHENOOH$	k_RO2_HO2(temp,6)*(1r_ CHOHCH2O2_OH)	Rickard and Pascoe (2009)
G46437b	TrGAroCN	$\begin{array}{l} \text{NPHENO2} + \text{HO}_2 \rightarrow \text{MALDALCO2H} + \text{GLYOX} + \text{NO}_2 \\ + \text{OH} \end{array}$	k_RO2_HO2(temp,6)*r_CHOHCH2O2_OH	Rickard and Pascoe (2009)*
G46438	$\operatorname{TrGAroCN}$	$\begin{array}{l} \text{NPHENO2} + \text{NO} \rightarrow \text{MALDALCO2H} + \text{GLYOX} + \text{NO}_2 \\ + \text{NO}_2 \end{array}$	KRO2NO	Rickard and Pascoe (2009)*
G46439	TrGAroCN	$\begin{array}{l} \text{NPHENO2} + \text{NO}_3 \rightarrow \text{MALDALCO2H} + \text{GLYOX} + \text{NO}_2 \\ + \text{NO}_2 \end{array}$	KR02N03	Rickard and Pascoe (2009)*
G46440	TrGAroCN	$NPHENO2 \rightarrow MALDALCO2H + GLYOX + NO_2$	k1_RO2ISOPDO2	Rickard and Pascoe (2009)*
G46441	TrGAroC	BENZENE + OH \rightarrow .352 BZBIPERO2 + .118 BZEPOXMUC + .118 HO ₂ + .53 PHENOL + .53 HO ₂	2.3E-12*EXP(-190./temp)	Rickard and Pascoe (2009)*
G46442	TrGAroCN	$C5CO2OHPAN + OH \rightarrow HOCOC4DIAL + CO + CO + NO_2$	7.66E-11	Rickard and Pascoe (2009)
G46443	TrGAroCN	$C5CO2OHPAN \rightarrow C5CO2OHCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G46444	TrGAroCN	${\rm CATEC1O} + {\rm NO_2} \rightarrow {\rm NCATECHOL}$	k_C6H5O_NO2	Rickard and Pascoe (2009), Platz et al. (1998)
G46445	TrGAroC	$CATEC1O + O_3 \rightarrow CATEC1O2$	k_C6H5O_O3	Rickard and Pascoe (2009), Tao and Li (1999)
G46446	TrGAroC	$BZEMUCCO + OH \rightarrow EPXDLCO3 + GLYOX$	9.20E-11	Rickard and Pascoe (2009)
G46447a	TrGAroCN	$NNCATECO2 + HO_2 \rightarrow NNCATECOOH$	k_RO2_HO2(temp,6)*(1r_ CHOHCH2O2_OH)	Rickard and Pascoe (2009)
G46447b	$\operatorname{TrGAroCN}$	NNCATECO2 + HO $_2$ \rightarrow NC4DCO2H + HCOCO $_2$ H + NO $_2$ + OH	k_R02_H02(temp,6)*r_CH0HCH202_OH	Rickard and Pascoe (2009)*
G46448	TrGAroCN	$ \begin{aligned} & \text{NNCATECO2} + \text{NO} \rightarrow \text{NC4DCO2H} + \text{HCOCO}_2\text{H} + \text{NO}_2 \\ & + \text{NO}_2 \end{aligned} $	KRO2NO	Rickard and Pascoe (2009)*
G46449	$\operatorname{TrGAroCN}$	$NNCATECO2 + NO_3 \rightarrow NC4DCO2H + HCOCO_2H + NO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
G46450	TrGAroCN	$NNCATECO2 \rightarrow NC4DCO2H + HCOCO_2H + NO_2$	k1_RO2ISOPDO2	Rickard and Pascoe (2009)*
G46451	TrGAroC	$BZEMUCCO2H + OH \rightarrow C5DIALO2 + CO_2$	4.06E-11	Rickard and Pascoe (2009)
G46452	TrGAroCN	$NNCATECOOH + OH \rightarrow NNCATECO2$	k_ROOHRO	Rickard and Pascoe (2009)
G46453	TrGAroCN	$\mathrm{NPHEN1O} + \mathrm{NO_2} \rightarrow \mathrm{DNPHEN}$	k_C6H50_N02	Rickard and Pascoe (2009), Platz et al. (1998)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G46454	TrGAroCN	$NPHEN1O + O_3 \rightarrow NPHEN1O2$	k_C6H5O_O3	Rickard and Pascoe (2009), Tao
				and Li (1999)
G46455	TrGAroCN	$\text{DNPHEN} + \text{NO}_3 \rightarrow \text{NDNPHENO2}$	2.25E-15	Rickard and Pascoe (2009)
G46456	TrGAroCN	$\text{DNPHEN} + \text{OH} \rightarrow \text{DNPHENO2}$	3.00E-14	Rickard and Pascoe (2009)
G46457	TrGAroCN	PHENOL + NO $_3 \rightarrow .742$ C6H5O + .742 HNO $_3$ + .258 NPHENO2	3.8E-12	Rickard and Pascoe (2009)*
G46458	TrGAroC	PHENOL + OH \rightarrow .06 C6H5O + .8 CATECHOL + .8 HO ₂ + .14 PHENO2	4.7E-13*EXP(1220./temp)	Rickard and Pascoe (2009)*
G46459	TrGAroCN	$PBZQONE + NO_3 \rightarrow NBZQO2$	3.00E-13	Rickard and Pascoe (2009)
G46460	TrGAroC	$PBZQONE + OH \rightarrow PBZQO2$	4.6E-12	Rickard and Pascoe (2009)
G46461a	TrGAroC	$PHENO2 + HO_2 \rightarrow PHENOOH$	k_R02_H02(temp,6)*(1r_ CHOHCH202_OH)	Rickard and Pascoe (2009)
G46461b	TrGAroC	PHENO2 + HO ₂ \rightarrow .71 MALDALCO2H + .71 GLYOX + .29 PBZQONE + HO ₂ + OH	k_R02_H02(temp,6)*r_CH0HCH202_OH	Rickard and Pascoe (2009)*
G46462	TrGAroCN	PHENO2 + NO \rightarrow .71 MALDALCO2H + .71 GLYOX + .29 PBZQONE + HO ₂ + NO ₂	KRO2NO	Rickard and Pascoe (2009)*
G46463	TrGAroCN	PHENO2 + NO ₃ \rightarrow .71 MALDALCO2H + .71 GLYOX + .29 PBZQONE + HO ₂ + NO ₂	KR02N03	Rickard and Pascoe (2009)*
G46464	$\operatorname{TrGAroC}$	$PHENO2 \rightarrow .71 MALDALCO2H + .71 GLYOX + .29$ $PBZQONE + HO_2$	k1_R02ISOPD02	Rickard and Pascoe (2009)*
G46465	TrGAroC	$C615CO2OOH + OH \rightarrow C6125CO + OH$	9.42E-11	Rickard and Pascoe (2009)
G46466a	TrGAroC	$C5CO2DBCO3 + HO_2 \rightarrow C5CO2DCO3H$	KAPHO2*(r_CO3_OOH+r_CO3_O3)	Rickard and Pascoe (2009)
G46466b	TrGAroC	$C5CO2DBCO3 + HO_2 \rightarrow CH_3C(O) + HCOCOCHO + CO_2 + OH$	KAPHO2*r_CO3_OH	Rickard and Pascoe (2009)
G46467	TrGAroCN	$C5CO2DBCO3 + NO \rightarrow CH_3C(O) + HCOCOCHO + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G46468	TrGAroCN	$C5CO2DBCO3 + NO_2 \rightarrow C5CO2DBPAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)*
G46469	TrGAroCN	$C5CO2DBCO3 + NO_3 \rightarrow CH_3C(O) + HCOCOCHO + CO_2 + NO_2$	KR02N03*1.74	Rickard and Pascoe (2009)
G46470	TrGAroC	$C5CO2DBCO3 \rightarrow CH_3C(O) + HCOCOCHO + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)
G46471	TrGAroCN	$NPHEN1O2 + HO_2 \rightarrow NPHEN1OOH$	k_RO2_HO2(temp,6)	Rickard and Pascoe (2009)
G46472a	TrGAroCN	$NPHEN1O2 + NO \rightarrow NPHEN1O + NO_2$	KRO2NO	Rickard and Pascoe (2009)
G46472b	TrGAroCN	$NPHEN1O2 + NO_2 \rightarrow NPHEN1O + NO_3$	k_C6H5O2_NO2	Jagiella and Zabel (2007)*
G46473	TrGAroCN	$NPHEN1O2 + NO_3 \rightarrow NPHEN1O + NO_2$	KRO2NO3	Rickard and Pascoe (2009)
G46474	TrGAroCN	$NPHEN1O2 \rightarrow NPHEN1O$	k1_R02sR02	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G46475	TrGAroCN	$NPHENOOH + OH \rightarrow NPHENO2$	1.07E-10	Rickard and Pascoe (2009)
G46476	TrGAroCN	$C6H5O + NO_2 \rightarrow HOC6H4NO2$	k_C6H5O_NO2	Rickard and Pascoe (2009), Platz et al. (1998)*
G46477	TrGAroC	$C6H5O + O_3 \rightarrow C6H5O2$	k_C6H5O_O3	Rickard and Pascoe (2009), Tao and Li (1999)
G46478	TrGAroCN	$NCATECOOH + OH \rightarrow NCATECO2$	k_ROOHRO	Rickard and Pascoe (2009)
G46479	TrGAroC	$PBZQOOH + OH \rightarrow PBZQCO + OH$	1.23E-10	Rickard and Pascoe (2009)
G46480a	TrGAroC	$PBZQO2 + HO_2 \rightarrow PBZQOOH$	k_R02_H02(temp,6)*(1r_ CHOHCH202_OH-r_COCH202_OH)	Rickard and Pascoe (2009)
G46480b	TrGAroC	$PBZQO2 + HO_2 \rightarrow C5CO2OHCO3 + OH$	k_R02_H02(temp,6)*(r_CH0HCH202_ OH+r_C0CH202_OH)	Rickard and Pascoe (2009)*
G46481	TrGAroCN	$PBZQO2 + NO \rightarrow C5CO2OHCO3 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G46482	TrGAroCN	$PBZQO2 + NO_3 \rightarrow C5CO2OHCO3 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
G46483	TrGAroC	$PBZQO2 \rightarrow C5CO2OHCO3$	k1_R02s0R02	Rickard and Pascoe (2009)*
G46484	TrGAroC	$BZOBIPEROH + OH \rightarrow MALDIALCO3 + GLYOX$	8.16E-11	Rickard and Pascoe (2009)
G46485a	TrGAroCN	${\rm DNPHENO2} + {\rm HO_2} \rightarrow {\rm DNPHENOOH}$	k_RO2_HO2(temp,6)*(1r_ CHOHCH2O2_OH)	Rickard and Pascoe (2009)
G46485b	TrGAroCN	$\begin{array}{l} {\rm DNPHENO2 + HO_2 \rightarrow NC4DCO2H + HCOCO_2H + NO_2} \\ {\rm + OH} \end{array}$	k_RO2_HO2(temp,6)*r_CHOHCH2O2_OH	Rickard and Pascoe (2009)*
G46486	TrGAroCN	$\begin{array}{l} {\rm DNPHENO2 + NO \rightarrow NC4DCO2H + HCOCO_2H + NO_2} \\ {\rm + NO_2} \end{array}$	KRO2NO	Rickard and Pascoe (2009)*
G46487	TrGAroCN	$\begin{array}{l} {\rm DNPHENO2 + NO_3 \rightarrow NC4DCO2H + HCOCO_2H + NO_2} \\ {\rm + NO_2} \end{array}$	KR02N03	Rickard and Pascoe (2009)*
G46488	TrGAroCN	$DNPHENO2 \rightarrow NC4DCO2H + HCOCO_2H + NO_2$	k1_RO2ISOPDO2	Rickard and Pascoe (2009)*
G46489	TrGAroC	$BZBIPEROOH + OH \rightarrow BZOBIPEROH + OH$	9.77E-11	Rickard and Pascoe (2009)
G46490a	TrGAroC	$BZEMUCO2 + HO_2 \rightarrow BZEMUCOOH$	k_R02_H02(temp,6)	Rickard and Pascoe (2009)
G46490b	TrGAroC	BZEMUCO2 + HO ₂ \rightarrow .5 EPXC4DIAL + .5 GLYOX + .5 HO ₂ + .5 C3DIALO2 + .5 C32OH13CO + OH	k_R02_H02(temp,6)	Rickard and Pascoe (2009)*
G46491a	TrGAroCN	$BZEMUCO2 + NO \rightarrow BZEMUCNO3$	<pre>KRO2NO*alpha_AN(10,2,0,1,0, temp,cair)</pre>	Rickard and Pascoe (2009)
G46491b	TrGAroCN	BZEMUCO2 + NO \rightarrow .5 EPXC4DIAL + .5 GLYOX + .5 HO ₂ + .5 C3DIALO2 + .5 C32OH13CO + NO ₂	<pre>KRO2NO*(1alpha_AN(10,2,0,1,0, temp,cair))</pre>	Rickard and Pascoe (2009)*
G46492	TrGAroCN	$\begin{aligned} \text{BZEMUCO2} + \text{NO}_3 &\rightarrow .5 \text{ EPXC4DIAL} + .5 \text{ GLYOX} + .5 \\ \text{HO}_2 + .5 \text{ C3DIALO2} + .5 \text{ C32OH13CO} + \text{NO}_2 \end{aligned}$	KRO2NO3	Rickard and Pascoe (2009)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G46493	TrGAroC	BZEMUCO2 \rightarrow .5 EPXC4DIAL + .5 GLYOX + .5 HO ₂ + .5 C3DIALO2 + .5 C32OH13CO	k1_R02s0R02	Rickard and Pascoe (2009)*
G46494	TrGAroCN	C5CO2DBPAN + OH \rightarrow HCOCOCHO + CH ₃ CHO + CO ₂ + NO ₂	3.28E-11	Rickard and Pascoe (2009)
G46495	TrGAroCN	$C5CO2DBPAN \rightarrow C5CO2DBCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G46496	TrGAroCN	$NBZQOOH + OH \rightarrow NBZQO2$	6.68E-11	Rickard and Pascoe (2009)
G46497	TrGAroC	$CATEC1OOH + OH \rightarrow CATEC1O2$	k_ROOHRO	Rickard and Pascoe (2009)
G46498	TrGAroC	$C6125CO + OH \rightarrow C5CO14O2 + CO$	6.45E-11	Rickard and Pascoe (2009)
G46499a	TrGAroCN	$NBZQO2 + HO_2 \rightarrow NBZQOOH$	k_RO2_HO2(temp,6)*(1r_COCH2O2_ OH)	Rickard and Pascoe (2009)
G46499b	TrGAroCN	$NBZQO2 + HO_2 \rightarrow C6CO4DB + NO_2 + OH$	k_RO2_HO2(temp,6)*r_COCH2O2_OH	Rickard and Pascoe (2009)*
G46500	TrGAroCN	$NBZQO2 + NO \rightarrow C6CO4DB + NO_2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G46501	TrGAroCN	$NBZQO2 + NO_3 \rightarrow C6CO4DB + NO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
G46502	TrGAroCN	$NBZQO2 \rightarrow C6CO4DB + NO_2$	k1_R02s0R02	Rickard and Pascoe (2009)*
G46503	TrGAroCN	$\text{DNPHENOOH} + \text{OH} \rightarrow \text{DNPHENO2}$	k_ROOHRO	Rickard and Pascoe (2009)
G46504	TrGAroC	$CATEC1O2 + HO_2 \rightarrow CATEC1OOH$	k_R02_H02(temp,6)	Rickard and Pascoe (2009)
G46505a	TrGAroCN	$CATEC1O2 + NO \rightarrow CATEC1O + NO_2$	KRO2NO	Rickard and Pascoe (2009)
G46505b	TrGAroCN	$CATEC1O2 + NO_2 \rightarrow CATEC1O + NO_3$	k_C6H5O2_NO2	Jagiella and Zabel $(2007)^*$
G46506	TrGAroCN	$CATEC1O2 + NO_3 \rightarrow CATEC1O + NO_2$	KR02N03	Rickard and Pascoe (2009)
G46507	TrGAroC	$CATEC1O2 \rightarrow CATEC1O$	k1_R02s0R02	Rickard and Pascoe (2009)
G46508	TrGAroC	$BZEMUCCO3H + OH \rightarrow BZEMUCCO3$	4.37E-11	Rickard and Pascoe (2009)
G46509	TrGAroC	$C6H5OOH + OH \rightarrow C6H5O2$	3.60E-12	Rickard and Pascoe (2009)
G46510	TrGAroC	$BZEMUCOOH + OH \rightarrow BZEMUCCO + OH$	1.31E-10	Rickard and Pascoe (2009)
G46511a	TrGAroC	$BZEMUCCO3 + HO_2 \rightarrow BZEMUCCO2H + O_3$	KAPH02*r_C03_03	Rickard and Pascoe (2009)
G46511b	TrGAroC	$BZEMUCCO3 + HO_2 \rightarrow BZEMUCCO3H$	KAPH02*r_C03_00H	Rickard and Pascoe (2009)
G46511c	TrGAroC	$BZEMUCCO3 + HO_2 \rightarrow C5DIALO2 + CO_2 + OH$	KAPHO2*r_CO3_OH	Rickard and Pascoe (2009)
G46512	TrGAroCN	$BZEMUCCO3 + NO \rightarrow C5DIALO2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G46513	TrGAroCN	$BZEMUCCO3 + NO_2 \rightarrow BZEMUCPAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G46514	TrGAroCN	$BZEMUCCO3 + NO_3 \rightarrow C5DIALO2 + CO_2 + NO_2$	KR02N03*1.74	Rickard and Pascoe (2009)
G46515	TrGAroC	$BZEMUCCO3 \rightarrow C5DIALO2 + CO_2$	k1_RO2RCO3	Rickard and Pascoe (2009)*
G46516	TrGAroC	$C6H5O2 + HO_2 \rightarrow C6H5OOH$	k_R02_H02(temp,6)	Rickard and Pascoe (2009)
G46517	TrGAroCN	$C6H5O2 + NO \rightarrow C6H5O + NO_2$	KRO2NO	Rickard and Pascoe (2009)
G46518	$\operatorname{TrGAroCN}$	$C6H5O2 + NO_3 \rightarrow C6H5O + NO_2$	KR02N03	Rickard and Pascoe (2009)
G46519	TrGAroC	$C6H5O2 \rightarrow C6H5O$	k1_R02sR02	Rickard and Pascoe (2009)
G46520	$\operatorname{TrGAroCN}$	$C6H5O2 + NO_2 \rightarrow C6H5O + NO_3$	k_C6H5O2_NO2	Jagiella and Zabel (2007)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G46521	TrGAroCN	$BZEMUCNO3 + OH \rightarrow BZEMUCCO + NO_2$	4.38E-11	Rickard and Pascoe (2009)
G46522a	TrGAroC	${\rm BZBIPERO2} + {\rm HO_2} \rightarrow {\rm BZBIPEROOH}$	k_RO2_HO2(temp,6)*(1r_BIPERO2_ OH)	Rickard and Pascoe (2009)
G46522b	TrGAroC	BZBIPERO2 + $HO_2 \rightarrow OH + GLYOX + HO_2 + .5$ BZFUONE + $.5$ BZFUONE	k_RO2_HO2(temp,6)*r_BIPERO2_OH	Rickard and Pascoe (2009), Birdsall et al. $(2010)^*$
G46523a	TrGAroCN	$BZBIPERO2 + NO \rightarrow BZBIPERNO3$	<pre>KRO2NO*alpha_AN(9,2,0,0,1,temp, cair)</pre>	Rickard and Pascoe (2009)
G46523b	TrGAroCN	BZBIPERO2 + NO \rightarrow NO ₂ + GLYOX + HO ₂ + .5 BZFUONE + .5 BZFUONE	<pre>KRO2NO*(1alpha_AN(9,2,0,0,1, temp,cair))</pre>	Rickard and Pascoe (2009)*
G46524	TrGAroCN	BZBIPERO2 + NO $_3 \rightarrow$ NO $_2$ + GLYOX + HO $_2$ + .5 BZFUONE + .5 BZFUONE	KR02N03	Rickard and Pascoe (2009)*
G46525	TrGAroC	$BZBIPERO2 \rightarrow GLYOX + HO_2 + BZFUONE$	k1_R02s0R02	Rickard and Pascoe (2009)*
G47200	TrGTerCN	$CO235C6CHO + NO_3 \rightarrow CO235C6CO3 + HNO_3$	KNO3AL*5.5	Rickard and Pascoe (2009)
G47201	TrGTerC	$CO235C6CHO + OH \rightarrow CO235C6CO3$	6.70E-11	Rickard and Pascoe (2009)
G47202a	TrGTerC	$CO235C6CO3 + HO_2 \rightarrow C235C6CO3H$	KAPH02*(r_C03_00H+r_C03_03)	Rickard and Pascoe (2009)
G47202b	TrGTerC	$CO235C6CO3 + HO_2 \rightarrow CO235C6O2 + CO_2 + OH$	KAPHO2*r_CO3_OH	Rickard and Pascoe (2009)
G47203	TrGTerCN	$CO235C6CO3 + NO \rightarrow CO235C6O2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G47204	TrGTerCN	$CO235C6CO3 + NO_2 \rightarrow C7PAN3$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G47205	TrGTerC	$CO235C6CO3 \rightarrow CO235C6O2 + CO_2$	k1_RO2RCO3	Rickard and Pascoe (2009)
G47206	TrGTerC	$C235C6CO3H + OH \rightarrow CO235C6CO3$	4.75E-12	Rickard and Pascoe (2009)
G47207	TrGTerCN	$C7PAN3 + OH \rightarrow CO235C5CHO + CO + NO_2$	8.83E-13	Rickard and Pascoe (2009)
G47208	TrGTerCN	$C7PAN3 \rightarrow CO235C6CO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G47209a	TrGTerC	$C716O2 + HO_2 \rightarrow C716OOH$	k_R02_H02(temp,7)*r_COCH202_00H	Rickard and Pascoe (2009), Sander et al. (2019)
G47209b	TrGTerC	$C716O2 + HO_2 \rightarrow CO13C4CHO + CH_3C(O) + OH$	k_R02_H02(temp,7)*r_C0CH202_OH	Rickard and Pascoe (2009), Sander et al. (2019)
G47210	TrGTerCN	$C716O2 + NO \rightarrow CO13C4CHO + CH_3C(O) + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G47211	TrGTerC	$C716O2 \rightarrow CO13C4CHO + CH_3C(O)$	k1_R02s0R02	Rickard and Pascoe (2009)
G47212	TrGTerC	$C716OOH + OH \rightarrow CO235C6CHO + OH$	1.20E-10	Rickard and Pascoe (2009)
G47213	TrGTerC	$C721O2 + HO_2 \rightarrow C721OOH$	k_R02_H02(temp,7)	Rickard and Pascoe (2009)
G47214	TrGTerCN	$C721O2 + NO \rightarrow C722O2 + NO_2$	KR02N0	Rickard and Pascoe (2009)*
G47215	TrGTerC	$C721O2 \rightarrow C722O2$	k1_R02pR02	Rickard and Pascoe (2009)
G47216	TrGTerC	$C721OOH + OH \rightarrow C721O2$	1.27E-11	Rickard and Pascoe (2009)
G47217	TrGTerC	$C722O2 + HO_2 \rightarrow C722OOH$	k_R02_H02(temp,7)	Rickard and Pascoe (2009)
G47218	TrGTerCN	$C722O2 + NO \rightarrow CH_3COCH_3 + C44O2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G47219	TrGTerC	$C722O2 \rightarrow CH_3COCH_3 + C44O2$	k1_R02tR02	Rickard and Pascoe (2009)
G47220	TrGTerC	$C722OOH + OH \rightarrow C722O2$	3.31E-11	Rickard and Pascoe (2009)
G47221	TrGTerC	$ROO6R3O2 \rightarrow ROO6R5O2$	5.68E10*EXP(-8745./temp)	Vereecken and Peeters (2012)
G47222	TrGTerCN	$ROO6R3O2 + NO \rightarrow ROO6R3O + NO_2$	KRO2NO	Vereecken and Peeters (2012)*
G47223	TrGTerC	$ROO6R3O2 + HO_2 \rightarrow 7 LCARBON$	k_R02_H02(temp,7)	Vereecken and Peeters (2012)*
G47224	TrGTerC	$ROO6R3O2 \rightarrow ROO6R3O$	k1_R02sR02	Vereecken and Peeters (2012)
G47225	TrGTerC	$ROO6R3O \rightarrow 7 LCARBON + HO_2$	5.7E10*EXP(-2949./temp)	Vereecken and Peeters (2012)*
G47226	TrGTerC	$ROO6R5O2 \rightarrow 7 LCARBON + OH$	9.17E10*EXP(-8706./temp)	Vereecken and Peeters (2012)*
G47400	TrGAroC	TOLUENE + OH \rightarrow .07 C6H5CH2O2 + .18 CRESOL + .18 HO ₂ + .65 TLBIPERO2 + .10 TLEPOXMUC + .10 HO ₂	1.8E-12*EXP(340./temp)	Rickard and Pascoe (2009)*
G47401	TrGAroC	$C6H5CH2O2 + HO_2 \rightarrow C6H5CH2OOH$	1.5E-13*EXP(1310./temp)	Rickard and Pascoe (2009)
G47402a	TrGAroCN	$C6H5CH2O2 + NO \rightarrow C6H5CH2NO3$	<pre>KRO2NO*alpha_AN(7,1,0,0,0,temp, cair)</pre>	Rickard and Pascoe (2009)*
G47402b	TrGAroCN	$C6H5CH2O2 + NO \rightarrow BENZAL + HO_2 + NO_2$	<pre>KRO2NO*(1alpha_AN(7,1,0,0,0, temp,cair))</pre>	Rickard and Pascoe (2009)*
G47403	TrGAroCN	$C6H5CH2O2 + NO_3 \rightarrow BENZAL + HO_2 + NO_2$	KRO2NO3	Rickard and Pascoe (2009)*
G47404	TrGAroC	$C6H5CH2O2 \rightarrow BENZAL + HO_2$	2.*(k_CH302*2.4E-14*EXP(1620./ temp))**(0.5)*R02	Rickard and Pascoe (2009)*
G47405	TrGAroCN	CRESOL + NO ₃ \rightarrow .103 CRESO2 + .103 HNO ₃ + .506 NCRESO2 + .391 TOL1O + .391 HNO ₃	1.4E-11	Rickard and Pascoe (2009)*
G47406	$\operatorname{TrGAroC}$	CRESOL + OH \rightarrow .2 CRESO2 + .727 MCATECHOL + .727 HO ₂ + .073 TOL1O	4.65E-11	Rickard and Pascoe (2009)*
G47407a	$\operatorname{TrGAroC}$	$TLBIPERO2 + HO_2 \rightarrow TLBIPEROOH$	k_R02_H02(temp,7)*(1r_BIPER02_ OH)	Rickard and Pascoe (2009)
G47407b	TrGAroC	TLBIPERO2 + $\text{HO}_2 \rightarrow \text{OH}$ + .6 GLYOX + .4 MGLYOX + HO_2 + .2 C4MDIAL + .2 C5DICARB + .2 TLFUONE + .2 BZFUONE + .2 MALDIAL	k_R02_H02(temp,7)*r_BIPER02_OH	Rickard and Pascoe (2009), Birdsall et al. (2010)*
G47408a	TrGAroCN	TLBIPERO2 + NO \rightarrow NO ₂ + .6 GLYOX + .4 MGLYOX + HO ₂ + .2 C4MDIAL + .2 C5DICARB + .2 TLFUONE + .2 BZFUONE + .2 MALDIAL	<pre>KRO2NO*(1alpha_AN(11,2,0,0,1, temp,cair))</pre>	Rickard and Pascoe (2009)*
G47408b	TrGAroCN	TLBIPERO2 + NO \rightarrow TLBIPERNO3	<pre>KRO2NO*alpha_AN(11,2,0,0,1, temp,cair)</pre>	Rickard and Pascoe (2009)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G47409	TrGAroCN	TLBIPERO2 + $NO_3 \rightarrow NO_2 + .6 \text{ GLYOX} + .4 \text{ MGLYOX}$	KRO2NO3	Rickard and Pascoe (2009)*
		$+ HO_2 + .2 C4MDIAL + .2 C5DICARB + .2 TLFUONE$		
		+ .2 BZFUONE + .2 MALDIAL		
G47410	TrGAroC	TLBIPERO2 \rightarrow .6 GLYOX + .4 MGLYOX + HO ₂ +	k1_R02s0R02	Rickard and Pascoe (2009)*
		.2 C4MDIAL + .2 C5DICARB + .2 TLFUONE + .2 BZFUONE + .2 MALDIAL		
G47411	TrGAroCN	TLEPOXMUC + NO ₃ \rightarrow TLEMUCCO3 + HNO ₃	KNO3AL*2.75	Rickard and Pascoe (2009)
G47411 G47412	TrGAroC	TLEPOXMUC + $O_3 \rightarrow EPXC4DIAL + .125 CH_3CHO +$	5.00E-18	Rickard and Pascoe (2009)*
Q 1 /112	110/1100	$.695 \text{ CH}_3\text{C(O)} + .57 \text{ CO} + .57 \text{ OH} + .125 \text{ HO}_2 + .1125$	0.00L 10	Tilekard and Lascoc (2003)
		$CH_3COCO_2H + .0675 MGLYOX + .0675 H_2O_2 + .25 CO_2$		
G47413	TrGAroC	TLEPOXMUC + OH \rightarrow .31 TLEMUCCO3 + .69	7.99E-11	Rickard and Pascoe (2009)*
		TLEMUCO2		,
G47414	TrGAroC	$C6H5CH2OOH + OH \rightarrow BENZAL + OH$	2.05E-11	Rickard and Pascoe (2009)
G47415	TrGAroCN	$C6H5CH2NO3 + OH \rightarrow BENZAL + NO_2$	6.03E-12	Rickard and Pascoe (2009)
G47416	TrGAroCN	$BENZAL + NO_3 \rightarrow C6H5CO_3 + HNO_3$	2.40E-15	Rickard and Pascoe (2009)
G47417	TrGAroC	$BENZAL + OH \rightarrow C6H5CO3$	5.9E-12*EXP(225./temp)	Rickard and Pascoe (2009)
G47418a	TrGAroC	$CRESO2 + HO_2 \rightarrow CRESOOH$	k_R02_H02(temp,7)*(1r_ CHOHCH202_OH)	Rickard and Pascoe (2009)
G47418b	TrGAroC	CRESO2 + $HO_2 \rightarrow .68 C5CO14OH + .68 GLYOX + HO_2 + .32 PTLQONE + OH$	k_RO2_HO2(temp,7)*r_CHOHCH2O2_OH	Rickard and Pascoe (2009)*
G47419	TrGAroCN	$CRESO2 + NO \rightarrow .68 C5CO14OH + .68 GLYOX + HO_2 + .32 PTLQONE + NO_2$	KR02N0	Rickard and Pascoe (2009)*
G47420	TrGAroCN	CRESO2 + $NO_3 \rightarrow .68 C5CO14OH + .68 GLYOX + HO_2$ + .32 PTLQONE + NO_2	KR02N03	Rickard and Pascoe (2009)*
G47421	TrGAroC	$+ .52 \text{ FILGONE} + \text{NO}_2$ CRESO2 $\rightarrow .68 \text{ C5CO14OH} + .68 \text{ GLYOX} + \text{HO}_2 + .32$	№1 ROSTSOPDOS	Rickard and Pascoe (2009)*
GT/ TZI	11071100	PTLQONE	K1_1021501 002	rickard and rascoc (2003)
G47422a	TrGAroCN	$NCRESO2 + HO_2 \rightarrow NCRESOOH$	k_R02_H02(temp,7)*(1r_ CHOHCH202_OH)	Rickard and Pascoe (2009)
G47422b	TrGAroCN	NCRESO2 + HO $_2$ \rightarrow C5CO14OH + GLYOX + NO $_2$ + OH	k_R02_H02(temp,7)*r_CH0HCH202_OH	Rickard and Pascoe (2009)*
G47423	TrGAroCN	$NCRESO2 + NO \rightarrow C5CO14OH + GLYOX + NO_2 + NO_2$	KR02N0	Rickard and Pascoe (2009)*
G47424	TrGAroCN	$NCRESO2 + NO_3 \rightarrow C5CO14OH + GLYOX + NO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
G47425	TrGAroCN	$NCRESO2 \rightarrow C5CO14OH + GLYOX + NO_2$	k1_R02ISOPD02	Rickard and Pascoe (2009)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G47426	TrGAroCN	$TOL1O + NO_2 \rightarrow TOL1OHNO2$	k_C6H5O_NO2	Rickard and Pascoe (2009), Platz et al. (1998)*
G47427	TrGAroC	$TOL1O + O_3 \rightarrow OXYL1O2$	k_C6H5O_O3	Rickard and Pascoe (2009), Tao and Li (1999)
G47428	TrGAroCN	$MCATECHOL + NO_3 \rightarrow MCATEC1O + HNO_3$	1.7E-10*1.0	Rickard and Pascoe (2009)
G47429	TrGAroC	$MCATECHOL + O_3 \rightarrow MC3ODBCO2H + HCOCO_2H + HO_2 + OH$	2.8E-17	Rickard and Pascoe (2009)*
G47430	TrGAroC	$MCATECHOL + OH \rightarrow MCATEC1O$	2.0E-10*1.0	Rickard and Pascoe (2009)
G47431	TrGAroC	$TLBIPEROOH + OH \rightarrow TLOBIPEROH + OH$	9.64E-11	Rickard and Pascoe (2009)
G47432	TrGAroCN	$TLBIPERNO3 + OH \rightarrow TLOBIPEROH + NO_2$	7.16E-11	Rickard and Pascoe (2009)
G47433	TrGAroC	TLOBIPEROH + OH \rightarrow C5CO14O2 + GLYOX	7.99E-11	Rickard and Pascoe (2009)
G47434a	TrGAroC	$TLEMUCCO3 + HO_2 \rightarrow C615CO2O2 + CO_2 + OH$	KAPHO2*r_CO3_OH	Rickard and Pascoe (2009)
G47434b	TrGAroC	$TLEMUCCO3 + HO_2 \rightarrow TLEMUCCO2H + O_3$	KAPH02*r_C03_03	Rickard and Pascoe (2009)
G47434c	TrGAroC	$TLEMUCCO3 + HO_2 \rightarrow TLEMUCCO3H$	KAPH02*r_C03_00H	Rickard and Pascoe (2009)
G47435	TrGAroCN	$TLEMUCCO3 + NO \rightarrow C615CO2O2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G47436	TrGAroCN	$TLEMUCCO3 + NO_2 \rightarrow TLEMUCPAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)*
G47437	TrGAroCN	$TLEMUCCO3 + NO_3 \rightarrow C615CO2O2 + CO_2 + NO_2$	KR02N03*1.74	Rickard and Pascoe (2009)
G47438	TrGAroC	$TLEMUCCO3 \rightarrow C615CO2O2 + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)*
G47439a	TrGAroC	$TLEMUCO2 + HO_2 \rightarrow TLEMUCOOH$	k_R02_H02(temp,7)*(1r_ CH0HCH202_OH-r_COCH202_OH)	Rickard and Pascoe (2009)
G47439b	TrGAroC	TLEMUCO2 + HO $_2 \rightarrow .5$ C3DIALO2 + $.5$ CO2H3CHO + $.5$ EPXC4DIAL + $.5$ MGLYOX + $.5$ HO $_2$ + OH	k_R02_H02(temp,7)*(r_CH0HCH202_ OH+r_COCH202_OH)	Rickard and Pascoe (2009)*
G47440a	TrGAroCN	$TLEMUCO2 + NO \rightarrow TLEMUCNO3$	<pre>KRO2NO*alpha_AN(11,2,1,0,0, temp,cair)</pre>	Rickard and Pascoe (2009)
G47440b	TrGAroCN	TLEMUCO2 + NO \rightarrow .5 C3DIALO2 + .5 CO2H3CHO + .5 EPXC4DIAL + .5 MGLYOX + .5 HO ₂ + NO ₂	<pre>KRO2NO*(1alpha_AN(11,2,1,0,0, temp,cair))</pre>	Rickard and Pascoe (2009)*
G47441	TrGAroCN	TLEMUCO2 + NO ₃ \rightarrow .5 C3DIALO2 + .5 CO2H3CHO + .5 EPXC4DIAL + .5 MGLYOX + .5 HO ₂ + NO ₂	KRO2NO3	Rickard and Pascoe (2009)*
G47442	TrGAroC	TLEMUCO2 \rightarrow .5 C3DIALO2 + .5 CO2H3CHO + .5 EPXC4DIAL + .5 MGLYOX + .5 HO ₂	k1_R02s0R02	Rickard and Pascoe (2009)*
G47443a	TrGAroC	$C6H5CO3 + HO_2 \rightarrow C6H5CO3H$	1.1E-11*EXP(364./temp)*0.65	Roth et al. (2010)
G47443b	TrGAroC	$C6H5CO3 + HO_2 \rightarrow C6H5O2 + CO_2 + OH$	1.1E-11*EXP(364./temp)*0.20	Roth et al. (2010)
G47443c	TrGAroC	$C6H5CO3 + HO_2 \rightarrow PHCOOH + O_3$	1.1E-11*EXP(364./temp)*0.15	Roth et al. (2010)
G47444	TrGAroCN	$C6H5CO3 + NO \rightarrow C6H5O2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G47445	TrGAroCN	$C6H5CO3 + NO_2 \rightarrow PBZN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G47446	TrGAroCN	$C6H5CO3 + NO_3 \rightarrow C6H5O2 + CO_2 + NO_2$	KR02N03*1.74	Rickard and Pascoe (2009)
G47447	TrGAroC	$C6H5CO3 \rightarrow C6H5O2 + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)*
G47448	TrGAroC	$CRESOOH + OH \rightarrow CRESO2$	1.15E-10	Rickard and Pascoe (2009)
G47449	TrGAroCN	$NCRESOOH + OH \rightarrow NCRESO2$	1.07E-10	Rickard and Pascoe (2009)
G47450	TrGAroCN	$TOL1OHNO2 + NO_3 \rightarrow NCRES1O + HNO_3$	3.13E-13*1.0	Rickard and Pascoe (2009)
G47451	TrGAroCN	$TOL1OHNO2 + OH \rightarrow NCRES1O$	2.8E-12	Rickard and Pascoe (2009)
G47452	TrGAroC	$OXYL1O2 + HO_2 \rightarrow OXYL1OOH$	k_R02_H02(temp,7)	Rickard and Pascoe (2009)
G47453	TrGAroCN	$OXYL1O2 + NO \rightarrow TOL1O + NO_2$	KRO2NO	Rickard and Pascoe (2009)
G47454	TrGAroCN	$OXYL1O2 + NO_2 \rightarrow TOL1O + NO_3$	k_C6H502_N02	Jagiella and Zabel $(2007)^*$
G47455	TrGAroCN	$OXYL1O2 + NO_3 \rightarrow TOL1O + NO_2$	KR02N03	Rickard and Pascoe (2009)
G47456	TrGAroC	$OXYL1O2 \rightarrow TOL1O$	k1_R02sR02	Rickard and Pascoe (2009)
G47457	TrGAroCN	$MCATEC1O + NO_2 \rightarrow MNCATECH$	k_C6H50_N02	Rickard and Pascoe (2009), Platz et al. (1998)
G47458	TrGAroC	$MCATEC1O + O_3 \rightarrow MCATEC1O2$	k_C6H5O_O3	Rickard and Pascoe (2009), Tao and Li (1999)
G47459	TrGAroC	$TLEMUCCO2H + OH \rightarrow C615CO2O2 + CO_2$	5.98E-11	Rickard and Pascoe (2009)
G47460	TrGAroC	$TLEMUCCO3H + OH \rightarrow TLEMUCCO3$	6.29E-11	Rickard and Pascoe (2009)
G47461	TrGAroCN	$TLEMUCPAN + OH \rightarrow C5DICARB + CO + CO_2 + NO_2$	5.96E-11	Rickard and Pascoe (2009)
G47462	TrGAroCN	$TLEMUCPAN \rightarrow TLEMUCCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G47463	TrGAroC	$TLEMUCOOH + OH \rightarrow TLEMUCCO + OH$	7.04E-11	Rickard and Pascoe (2009)
G47464	TrGAroCN	$TLEMUCNO3 + OH \rightarrow TLEMUCCO + NO_2$	3.06E-11	Rickard and Pascoe (2009)
G47465	TrGAroC	$TLEMUCCO + OH \rightarrow CH_3C(O) + EPXC4DIAL + CO$	4.06E-11	Rickard and Pascoe (2009)
G47466	TrGAroC	$C6H5CO3H + OH \rightarrow C6H5CO3$	4.66E-12	Rickard and Pascoe (2009)
G47467	TrGAroC	$PHCOOH + OH \rightarrow C6H5O2 + CO_2$	1.10E-12	Rickard and Pascoe (2009)
G47468	TrGAroCN	$PBZN + OH \rightarrow C6H5OOH + CO + NO_2$	1.06E-12	Rickard and Pascoe (2009)
G47469	TrGAroCN	$PBZN \rightarrow C6H5CO3 + NO_2$	k_PAN_M*0.67	Rickard and Pascoe (2009)
G47470	TrGAroCN	$PTLQONE + NO_3 \rightarrow NPTLQO2$	1.00E-12	Rickard and Pascoe (2009)
G47471	TrGAroC	$PTLQONE + OH \rightarrow PTLQO2$	2.3E-11	Rickard and Pascoe (2009)
G47472	TrGAroCN	$NCRES1O + NO_2 \rightarrow DNCRES$	k_C6H5O_NO2	Rickard and Pascoe (2009), Platz et al. (1998)
G47473	TrGAroCN	$NCRES1O + O_3 \rightarrow NCRES1O2$	k_C6H5O_O3	Rickard and Pascoe (2009), Tao and Li (1999)
G47474	TrGAroC	$OXYL1OOH + OH \rightarrow OXYL1O2$	4.65E-11	Rickard and Pascoe (2009)
G47475	TrGAroCN	$MNCATECH + NO_3 \rightarrow MNNCATECO_2$	5.03E-12	Rickard and Pascoe (2009)
G47476	$\operatorname{TrGAroCN}$	$MNCATECH + OH \rightarrow MNCATECO2$	6.83E-12	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G47477	TrGAroC	$MCATEC1O2 + HO_2 \rightarrow MCATEC1OOH$	k_RO2_HO2(temp,7)	Rickard and Pascoe (2009)
G47478	TrGAroCN	$MCATEC1O2 + NO \rightarrow MCATEC1O + NO_2$	KRO2NO	Rickard and Pascoe (2009)
G47479	TrGAroCN	$MCATEC1O2 + NO_2 \rightarrow MCATEC1O + NO_3$	k_C6H5O2_NO2	Jagiella and Zabel (2007)*
G47480	TrGAroCN	$MCATEC1O2 + NO_3 \rightarrow MCATEC1O + NO_2$	KR02N03	Rickard and Pascoe (2009)
G47481	TrGAroC	$MCATEC1O2 \rightarrow MCATEC1O$	k1_R02s0R02	Rickard and Pascoe (2009)
G47482a	TrGAroCN	$\mathrm{NPTLQO2} + \mathrm{HO_2} \rightarrow \mathrm{NPTLQOOH}$	k_R02_H02(temp,7)*(1r_C0CH202_ OH)	Rickard and Pascoe (2009)
G47482b	TrGAroCN	$NPTLQO2 + HO_2 \rightarrow C7CO4DB + NO_2 + OH$	k_RO2_HO2(temp,7)*r_COCH2O2_OH	Rickard and Pascoe (2009)*
G47483	TrGAroCN	$NPTLQO2 + NO \rightarrow C7CO4DB + NO_2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G47484	TrGAroCN	$NPTLQO2 + NO_3 \rightarrow C7CO4DB + NO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
G47485	TrGAroCN	$NPTLQO2 \rightarrow C7CO4DB + NO_2$	k1_R02s0R02	Rickard and Pascoe (2009)*
G47486a	TrGAroC	$PTLQO2 + HO_2 \rightarrow PTLQOOH$	k_R02_H02(temp,7)*(1r_ CHOHCH202_OH-r_COCH202_OH)	Rickard and Pascoe (2009)
G47486b	TrGAroC	$PTLQO2 + HO_2 \rightarrow C6CO2OHCO3 + OH$	k_R02_H02(temp,7)*(r_CH0HCH202_ OH+r_C0CH202_OH)	Rickard and Pascoe (2009)*
G47487	TrGAroCN	$PTLQO2 + NO \rightarrow C6CO2OHCO3 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G47488	TrGAroCN	$PTLQO2 + NO_3 \rightarrow C6CO2OHCO3 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
G47489	TrGAroC	$PTLQO2 \rightarrow C6CO2OHCO3$	k1_R02s0R02	Rickard and Pascoe (2009)*
G47490	TrGAroCN	$DNCRES + NO_3 \rightarrow NDNCRESO2$	7.83E-15	Rickard and Pascoe (2009)
G47491	TrGAroCN	$\text{DNCRES} + \text{OH} \rightarrow \text{DNCRESO2}$	5.10E-14	Rickard and Pascoe (2009)
G47492	TrGAroCN	$NCRES1O2 + HO_2 \rightarrow NCRES1OOH$	k_R02_H02(temp,7)	Rickard and Pascoe (2009)
G47493	TrGAroCN	$NCRES1O2 + NO \rightarrow NCRES1O + NO_2$	KRO2NO	Rickard and Pascoe (2009)
G47494	TrGAroCN	$NCRES1O2 + NO_2 \rightarrow NCRES1O + NO_3$	k_C6H5O2_NO2	Jagiella and Zabel (2007)*
G47495	TrGAroCN	$NCRES1O2 + NO_3 \rightarrow NCRES1O + NO_2$	KR02N03	Rickard and Pascoe (2009)
G47496	TrGAroCN	$NCRES1O2 \rightarrow NCRES1O$	k1_R02sR02	Rickard and Pascoe (2009)
G47497a	TrGAroCN	$\mathrm{MNNCATECO2} + \mathrm{HO_2} \rightarrow \mathrm{MNNCATCOOH}$	k_R02_H02(temp,7)*(1r_ CHOHCH202_OH)	Rickard and Pascoe (2009)
G47497b	TrGAroCN	$\begin{array}{l} \text{MNNCATECO2} + \text{HO}_2 \rightarrow \text{NC4MDCO2HN} + \text{HCOCO}_2\text{H} \\ + \text{NO}_2 + \text{OH} \end{array}$	k_R02_H02(temp,7)*r_CHOHCH202_OH	Rickard and Pascoe (2009)*
G47498	TrGAroCN	$MNNCATECO2 + NO \rightarrow NC4MDCO2HN + HCOCO_2H + NO_2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G47499	$\operatorname{TrGAroCN}$	$\begin{array}{l} \text{MNNCATECO2} + \text{NO}_3 \rightarrow \text{NC4MDCO2HN} + \text{HCOCO}_2\text{H} \\ + \text{NO}_2 + \text{NO}_2 \end{array}$	KR02N03	Rickard and Pascoe (2009)*
G47500	TrGAroCN	$MNNCATECO2 \rightarrow NC4MDCO2HN + HCOCO_2H + NO_2$	k1_RO2ISOPDO2	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G47501a	TrGAroCN	$MNCATECO2 + HO_2 \rightarrow MNCATECOOH$	k_R02_H02(temp,7)*(1r_	Rickard and Pascoe (2009)
			CHOHCH2O2_OH)	
G47501b	TrGAroCN	$MNCATECO2 + HO_2 \rightarrow NC4MDCO2HN + HCOCO_2H$	k_R02_H02(temp,7)*r_CH0HCH202_OH	Rickard and Pascoe (2009)*
		$+ HO_2 + OH$		
G47502	TrGAroCN	$MNCATECO2 + NO \rightarrow NC4MDCO2HN + HCOCO_2H +$	KRO2NO	Rickard and Pascoe $(2009)^*$
		$\mathrm{HO_2} + \mathrm{NO_2}$		
G47503	TrGAroCN	$MNCATECO2 + NO_3 \rightarrow NC4MDCO2HN + HCOCO_2H$	KRO2NO3	Rickard and Pascoe (2009)*
		$+ HO_2 + NO_2$		
G47504	TrGAroCN	$MNCATECO2 \rightarrow NC4MDCO2HN + HCOCO_2H + HO_2$	k1_RO2ISOPDO2	Rickard and Pascoe (2009)*
G47505	TrGAroC	$MCATEC1OOH + OH \rightarrow MCATEC1O2$	2.05E-10	Rickard and Pascoe (2009)
G47506	TrGAroCN	$NPTLQOOH + OH \rightarrow NPTLQO2$	8.56E-11	Rickard and Pascoe (2009)
G47507	TrGAroC	$PTLQOOH + OH \rightarrow PTLQCO + OH$	1.42E-10	Rickard and Pascoe (2009)
G47508	TrGAroC	$PTLQCO + OH \rightarrow C6CO2OHCO3$	7.95E-11	Rickard and Pascoe (2009)
G47509a	TrGAroCN	${\rm NDNCRESO2} + {\rm HO_2} \rightarrow {\rm NDNCRESOOH}$	k_RO2_HO2(temp,7)*(1r_ CHOHCH2O2_OH)	Rickard and Pascoe (2009)
G47509b	TrGAroCN	$NDNCRESO2 + HO_2 \rightarrow NC4MDCO2HN + HNO_3 + 2$		Rickard and Pascoe (2009)*
		$CO + NO_2 + OH$,
G47510	TrGAroCN	$NDNCRESO2 + NO \rightarrow NC4MDCO2HN + HNO_3 + 2 CO$	KRO2NO	Rickard and Pascoe (2009)*
		$+ NO_2 + NO_2$,
G47511	TrGAroCN	$NDNCRESO2 + NO_3 \rightarrow NC4MDCO2HN + HNO_3 + 2$	KR02N03	Rickard and Pascoe (2009)*
		$CO + NO_2 + NO_2$,
G47512	TrGAroCN	$NDNCRESO2 \rightarrow NC4MDCO2HN + HNO_3 + 2 CO + NO_2$	k1_RO2ISOPDO2	Rickard and Pascoe (2009)*
G47513a	TrGAroCN	$DNCRESO2 + HO_2 \rightarrow DNCRESOOH$	k_R02_H02(temp,7)*(1r_	Rickard and Pascoe (2009)
			CHOHCH2O2_OH)	
G47513b	TrGAroCN	$DNCRESO2 + HO_2 \rightarrow NC4MDCO2HN + HCOCO_2H +$	k_R02_H02(temp,7)*r_CH0HCH202_OH	Rickard and Pascoe (2009)*
		$NO_2 + OH$		
G47514	TrGAroCN	$DNCRESO2 + NO \rightarrow NC4MDCO2HN + HCOCO_2H +$	KRO2NO	Rickard and Pascoe (2009)*
		$NO_2 + NO_2$		
G47515	TrGAroCN	$DNCRESO2 + NO_3 \rightarrow NC4MDCO2HN + HCOCO_2H +$	KR02N03	Rickard and Pascoe (2009)*
		$\mathrm{NO}_2 + \mathrm{NO}_2$		
G47516	TrGAroCN	$DNCRESO2 \rightarrow NC4MDCO2HN + HCOCO_2H + NO_2$	k1_RO2ISOPDO2	Rickard and Pascoe (2009)*
G47517	TrGAroCN	$NCRES1OOH + OH \rightarrow NCRES1O2$	1.53E-12	Rickard and Pascoe (2009)
G47518	TrGAroCN	${\rm MNNCATCOOH} + {\rm OH} \rightarrow {\rm MNNCATECO2}$	k_ROOHRO	Rickard and Pascoe (2009)
G47519	TrGAroCN	$MNCATECOOH + OH \rightarrow MNCATECO2$	k_ROOHRO	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G47520	TrGAroC	$C7CO4DB + OH \rightarrow CO + CO + CH_3C(O) + HCOCOCHO$	9.58E-11	Rickard and Pascoe (2009)
G47521a	TrGAroC	$C6CO2OHCO3 + HO_2 \rightarrow C5134CO2OH + HO_2 + CO + CO_2 + OH$	KAPHO2*r_CO3_OH	Rickard and Pascoe (2009)
G47521b	TrGAroC	$C6CO2OHCO3 + HO_2 \rightarrow C6COOHCO3H$	KAPHO2*(r_CO3_OOH+r_CO3_O3)	Rickard and Pascoe (2009)
G47522	TrGAroCN	$C6CO2OHCO3 + NO \rightarrow C5134CO2OH + HO_2 + CO + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G47523	TrGAroCN	$C6CO2OHCO3 + NO_2 \rightarrow C6CO2OHPAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G47524	TrGAroCN	$C6CO2OHCO3 + NO_3 \rightarrow C5134CO2OH + HO_2 + CO + CO_2 + NO_2$	KRO2NO3*1.74	Rickard and Pascoe (2009)
G47525	TrGAroC	$C6CO2OHCO3 \rightarrow C5134CO2OH + HO_2 + CO + CO_2$	k1_RO2RCO3	Rickard and Pascoe (2009)
G47526	TrGAroCN	$NDNCRESOOH + OH \rightarrow NDNCRESO2$	k_ROOHRO	Rickard and Pascoe (2009)
G47527	TrGAroCN	$DNCRESOOH + OH \rightarrow DNCRESO2$	k_ROOHRO	Rickard and Pascoe (2009)
G47528	TrGAroC	$C6COOHCO3H + OH \rightarrow C6CO2OHCO3$	9.29E-11	Rickard and Pascoe (2009)
G47529	TrGAroCN	C6CO2OHPAN + OH \rightarrow C5134CO2OH + CO + CO + NO ₂	8.96E-11	Rickard and Pascoe (2009)
G47530	TrGAroCN	$C6CO2OHPAN \rightarrow C6CO2OHCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G48200	TrGTerC	$C85O2 \rightarrow C86O2$	k1_R02tR02	Rickard and Pascoe (2009)
G48201	TrGTerC	$C85O2 + HO_2 \rightarrow C85OOH$	k_R02_H02(temp,8)	Rickard and Pascoe (2009)
G48202	TrGTerCN	$C85O2 + NO \rightarrow C86O2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G48203	TrGTerC	$C85OOH + OH \rightarrow C85O2$	1.29E-11	Rickard and Pascoe (2009)
G48204	TrGTerC	$C86O2 \rightarrow C511O2 + CH_3COCH_3$	k1_R02tR02	Rickard and Pascoe (2009)
G48205	TrGTerCN	$C86O2 + NO \rightarrow C511O2 + CH_3COCH_3 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G48206	TrGTerC	$C86O2 + HO_2 \rightarrow C86OOH$	k_RO2_HO2(temp,8)	Rickard and Pascoe (2009)
G48207	TrGTerC	$C86OOH + OH \rightarrow C86O2$	3.45E-11	Rickard and Pascoe (2009)
G48208	TrGTerC	$C811O2 \rightarrow C812O2$	k1_R02pR02	Rickard and Pascoe (2009)
G48209	TrGTerC	$C811O2 + HO_2 \rightarrow 8 LCARBON$	k_RO2_HO2(temp,8)	Rickard and Pascoe (2009)
G48210	TrGTerCN	$C811O2 + NO \rightarrow C812O2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G48211	TrGTerC	$C812O2 \rightarrow C813O2$	k1_R02t0R02	Rickard and Pascoe (2009)
G48212	TrGTerCN	$C812O2 + NO \rightarrow C813O2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G48213	TrGTerC	$C812O2 + HO_2 \rightarrow C812OOH$	k_R02_H02(temp,8)	Rickard and Pascoe (2009)
G48214	TrGTerC	$C812OOH + OH \rightarrow C812O2$	1.09E-11	Rickard and Pascoe (2009)
G48215	TrGTerC	$C813O2 \rightarrow CH_3COCH_3 + C512O2$	k1_R02tR02	Rickard and Pascoe (2009)
G48216	TrGTerCN	$C813O2 + NO \rightarrow CH_3COCH_3 + C512O2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G48217	TrGTerC	$C813O2 + HO_2 \rightarrow C813OOH$	k_RO2_HO2(temp,8)	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G48218	TrGTerC	$C813OOH + OH \rightarrow C813O2$	1.86E-11	Rickard and Pascoe (2009)
G48219	TrGTerCN	$C721CHO + NO_3 \rightarrow C721CO3 + HNO_3$	KNO3AL*8.5	Rickard and Pascoe (2009)
G48220	TrGTerC	$C721CHO + OH \rightarrow C721CO3$	2.63E-11	Rickard and Pascoe (2009)
G48221a	TrGTerC	$C721CO3 + HO_2 \rightarrow C721CO3H$	KAPH02*r_C03_00H	Rickard and Pascoe (2009)
G48221b	TrGTerC	$C721CO3 + HO_2 \rightarrow C721O2 + CO_2 + OH$	KAPHO2*r_CO3_OH	Rickard and Pascoe (2009)
G48221c	TrGTerC	$C721CO3 + HO_2 \rightarrow NORPINIC + O_3$	KAPH02*r_C03_03	Rickard and Pascoe (2009)
G48222	TrGTerCN	$C721CO3 + NO \rightarrow C721O2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)*
G48223	TrGTerCN	$C721CO3 + NO_2 \rightarrow C721PAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G48224	TrGTerCN	$C721CO3 + NO_3 \rightarrow C721O2 + CO_2 + NO_2$	KR02N03*1.74	Rickard and Pascoe (2009)
G48225	TrGTerC	$C721CO3 \rightarrow C721O2 + CO_2$	k1_R02RC03*0.9	Sander et al. (2019)
G48226	TrGTerC	$C721CO3 \rightarrow NORPINIC$	k1_R02RC03*0.1	Sander et al. (2019)
G48227	TrGTerC	$C721CO3H + OH \rightarrow C721CO3$	9.65E-12	Rickard and Pascoe (2009)
G48228	TrGTerC	$NORPINIC + OH \rightarrow C721O2 + CO_2$	6.57E-12	Rickard and Pascoe (2009)
G48229	TrGTerCN	$C721PAN + OH \rightarrow C721OOH + CO + NO_2$	2.96E-12	Rickard and Pascoe (2009)
G48230	TrGTerCN	$C721PAN \rightarrow C721CO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G48231	TrGTerC	$C8BC + OH \rightarrow C8BCO2$	3.04E-12	Rickard and Pascoe (2009)
G48232	TrGTerC	$C8BCO2 + HO_2 \rightarrow C8BCOOH$	k_R02_H02(temp,8)	Rickard and Pascoe (2009)
G48233a	TrGTerCN	$C8BCO2 + NO \rightarrow C89O2 + NO_2$	<pre>KRO2NO*(1alpha_AN(8,2,0,0,0, temp,cair))</pre>	Rickard and Pascoe (2009)
G48233b	TrGTerCN	$C8BCO2 + NO \rightarrow C8BCNO3$	<pre>KRO2NO*alpha_AN(8,2,0,0,0,temp, cair)</pre>	Rickard and Pascoe (2009)
G48234	TrGTerC	$C8BCO2 \rightarrow C89O2$	k1_R02sR02	Rickard and Pascoe (2009)
G48235	TrGTerC	$C8BCOOH + OH \rightarrow C8BCCO + OH$	1.62E-11	Rickard and Pascoe (2009)
G48236	TrGTerCN	$C8BCNO3 + OH \rightarrow C8BCCO + NO_2$	1.84E-12	Rickard and Pascoe (2009)
G48237	TrGTerC	$C8BCCO + OH \rightarrow C89O2$	3.94E-12	Rickard and Pascoe (2009)
G48238	TrGTerC	$C89O2 + HO_2 \rightarrow C89OOH$	k_R02_H02(temp,8)	Rickard and Pascoe (2009)
G48239a	TrGTerCN	$C89O2 + NO \rightarrow C810O2 + NO_2$	<pre>KRO2NO*(1alpha_AN(7,2,0,0,0, temp,cair))</pre>	Rickard and Pascoe (2009)
G48239b	TrGTerCN	$C89O2 + NO \rightarrow C89NO3$	<pre>KRO2NO*alpha_AN(7,2,0,0,0,temp, cair)</pre>	Rickard and Pascoe (2009)
G48240	$\operatorname{TrGTerCN}$	$C89O2 + NO_3 \rightarrow C810O2 + NO_2$	KRO2NO3	Rickard and Pascoe (2009)
G48241	TrGTerC	$C89O2 \rightarrow C810O2$	k1_R02tR02	Rickard and Pascoe (2009)
G48242	$\operatorname{TrGTerC}$	$C89OOH + OH \rightarrow C89O2$	3.61E-11	Rickard and Pascoe (2009)
G48243	TrGTerCN	$C89NO3 + OH \rightarrow CH_3COCH_3 + CO13C4CHO + NO_2$	2.56E-11	Rickard and Pascoe (2009)
G48244	$\operatorname{TrGTerC}$	$C810O2 + HO_2 \rightarrow C810OOH$	k_R02_H02(temp,8)	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G48245a	TrGTerCN	$C810O2 + NO \rightarrow CH_3COCH_3 + C514O2 + NO_2$	KRO2NO*(1alpha_AN(10,3,0,0,0,	Rickard and Pascoe (2009)
			temp,cair))	` ,
G48245b	TrGTerCN	$C810O2 + NO \rightarrow C810NO3$	<pre>KRO2NO*alpha_AN(10,3,0,0,0,</pre>	Rickard and Pascoe (2009)
			temp,cair)	
G48246	TrGTerCN	$C810O2 + NO_3 \rightarrow CH_3COCH_3 + C514O2 + NO_2$	KRO2NO3	Rickard and Pascoe (2009)
G48247	TrGTerC	$C810O2 \rightarrow CH_3COCH_3 + C514O2$	k1_R02tR02	Rickard and Pascoe (2009)
G48248	TrGTerC	$C810OOH + OH \rightarrow C810O2$	8.35E-11	Rickard and Pascoe (2009)
G48249	TrGTerCN	$C810NO3 + OH \rightarrow CH_3COCH_3 + CO13C4CHO + NO_2$	4.96E-11	Rickard and Pascoe (2009)
G48400a	TrGAroC	$LXYL + OH \rightarrow TLEPOXMUC + HO_2 + LCARBON$	0.401E-11	Rickard and Pascoe (2009)*
G48400b	TrGAroC	$LXYL + OH \rightarrow C6H5CH2O2 + LCARBON$	0.101E-11	Rickard and Pascoe (2009)*
G48400c	TrGAroC	$LXYL + OH \rightarrow CRESOL + LCARBON$	0.261E-11	Rickard and Pascoe (2009)*
G48400d	TrGAroC	$LXYL + OH \rightarrow TLBIPERO2 + HO_2 + LCARBON$	0.932E-11	Rickard and Pascoe (2009)*
G48401	TrGAroCN	$LXYL + NO_3 \rightarrow C6H5CH2O2 + HNO_3 + LCARBON$	3.9E-16	Rickard and Pascoe (2009)*
G48402	TrGAroC	EBENZ + OH \rightarrow .10 TLEPOXMUC + .07 C6H5CH2O2 +	7.00E-12	Rickard and Pascoe (2009)*
		$.18 \text{ CRESOL} + .65 \text{ TLBIPERO2} + .28 \text{ HO}_2 + \text{LCARBON}$		
G48403	TrGAroCN	$EBENZ + NO_3 \rightarrow C6H5CH2O2 + HNO_3 + LCARBON$	1.20E-16	Rickard and Pascoe (2009)*
G48404	TrGAroCN	$STYRENE + NO_3 \rightarrow NSTYRENO2$	1.50E-12	Rickard and Pascoe (2009)
G48405	TrGAroC	STYRENE + $O_3 \rightarrow .545 \text{ HCHO} + .1 \text{ BENZENE} + .28$	1.70E-17	Rickard and Pascoe (2009)*
		$C6H5O2 + .56 CO + .36 OH + .28 HO_2 + .075 PHCOOH$		
		$+ .545 \text{ BENZAL} + .09 \text{ H}_2\text{O}_2 + .075 \text{ HCOOH} + .2 \text{ CO}_2$		
G48406	TrGAroC	$STYRENE + OH \rightarrow STYRENO2$	5.80E-11	Rickard and Pascoe (2009)
G48407	TrGAroCN	$NSTYRENO2 + HO_2 \rightarrow NSTYRENOOH$	k_R02_H02(temp,8)	Rickard and Pascoe (2009)
G48408	TrGAroCN	$NSTYRENO2 + NO \rightarrow NO_2 + NO_2 + HCHO + BENZAL$	KRO2NO	Rickard and Pascoe (2009)*
G48409	TrGAroCN	$NSTYRENO2 + NO_3 \rightarrow NO_2 + NO_2 + HCHO +$	KR02N03	Rickard and Pascoe (2009)*
	T C 1 CN	BENZAL		D. 1 1 1 D (2000)*
G48410	TrGAroCN	$NSTYRENO2 \rightarrow NO_2 + HCHO + BENZAL$	k1_R02sR02	Rickard and Pascoe (2009)*
G48411	TrGAroCN	$NSTYRENOOH + OH \rightarrow NSTYRENO2$	6.16E-11	Rickard and Pascoe (2009)
G48412a	TrGAroC	$STYRENO2 + HO_2 \rightarrow STYRENOOH$	k_RO2_HO2(temp,8)*(1r_ CHOHCH2O2_OH)	Rickard and Pascoe (2009)
G48412b	TrGAroC	$STYRENO2 + HO_2 \rightarrow HO_2 + OH + HCHO + BENZAL$	k_R02_H02(temp,8)*r_CHOHCH202_OH	Rickard and Pascoe (2009)*
G48413	TrGAroCN	$STYRENO2 + NO \rightarrow NO_2 + HO_2 + HCHO + BENZAL$	KRO2NO	Rickard and Pascoe (2009)*
G48414	TrGAroCN	$STYRENO2 + NO_3 \rightarrow NO_2 + HO_2 + HCHO + BENZAL$	KRO2NO3	Rickard and Pascoe (2009)*
G48415	TrGAroC	$STYRENO2 \rightarrow HO_2 + HCHO + BENZAL$	k1_R02sR02	Rickard and Pascoe (2009)*
G48416	TrGAroC	$STYRENOOH + OH \rightarrow STYRENO2$	6.16E-11	Rickard and Pascoe (2009)
G49200	TrGTerC	$C96O2 \rightarrow C97O2$	k1_R02pR02	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G49201	TrGTerC	$C96O2 + HO_2 \rightarrow C96OOH$	k_R02_H02(temp,9)	Rickard and Pascoe (2009)
G49202a	TrGTerCN	$C96O2 + NO \rightarrow C97O2 + NO_2$	<pre>KR02N0*(1alpha_AN(10,1,0,0,0, temp,cair))</pre>	Rickard and Pascoe (2009)
G49202b	TrGTerCN	$C96O2 + NO \rightarrow C96NO3$	<pre>KRO2NO*alpha_AN(10,1,0,0,0, temp,cair)</pre>	Rickard and Pascoe (2009)
G49203	TrGTerCN	$C96NO3 + OH \rightarrow NORPINAL + NO_2$	2.88E-12	Rickard and Pascoe (2009)
G49204a	TrGTerC	$C96OOH + OH \rightarrow C96O2$	k_ROOHRO	Rickard and Pascoe (2009)
G49205b	TrGTerC	$C96OOH + OH \rightarrow NORPINAL + OH$	1.30E-11	Rickard and Pascoe (2009)
G49206	TrGTerC	$C97O2 \rightarrow C98O2$	k1_R02tR02	Rickard and Pascoe (2009)
G49207	TrGTerCN	$C97O2 + NO \rightarrow C98O2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G49208a	TrGTerC	$C97O2 + HO_2 \rightarrow C97OOH$	k_R02_H02(temp,9)*r_C0CH202_00H	Rickard and Pascoe (2009), Sander et al. (2019)
G49208b	TrGTerC	$C97O2 + HO_2 \rightarrow C98O2 + OH$	k_R02_H02(temp,9)*r_C0CH202_0H	Rickard and Pascoe (2009), Sander et al. (2019)
G49209	TrGTerC	$C97OOH + OH \rightarrow C97O2$	1.05E-11	Rickard and Pascoe (2009)
G49210	TrGTerC	$C98O2 \rightarrow C614O2 + CH_3COCH_3$	k1_R02tR02	Rickard and Pascoe (2009)
G49211a	TrGTerCN	$C98O2 + NO \rightarrow C614O2 + CH_3COCH_3 + NO_2$	<pre>KRO2NO*(1alpha_AN(12,3,0,0,0, temp,cair))</pre>	Rickard and Pascoe (2009)
G49211b	TrGTerCN	$C98O2 + NO \rightarrow 9 LCARBON + LNITROGEN$	<pre>KRO2NO*alpha_AN(12,3,0,0,0, temp,cair)</pre>	Rickard and Pascoe (2009)
G49212	TrGTerC	$C98O2 + HO_2 \rightarrow C98OOH$	k_RO2_HO2(temp,9)	Rickard and Pascoe (2009)
G49213	TrGTerC	$C98OOH + OH \rightarrow C98O2$	2.05E-11	Rickard and Pascoe (2009)
G49214	TrGTerC	$NORPINAL + OH \rightarrow C85CO3$	2.64E-11	Rickard and Pascoe (2009)
G49215	TrGTerCN	$NORPINAL + NO_3 \rightarrow C85CO3 + HNO_3$	KNO3AL*8.5	Rickard and Pascoe (2009)
G49216	TrGTerC	$C85CO3 \rightarrow C85O2 + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)
G49217	TrGTerCN	$C85CO3 + NO \rightarrow C85O2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G49218	TrGTerCN	$C85CO3 + NO_2 \rightarrow C9PAN2$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G49219a	TrGTerC	$C85CO3 + HO_2 \rightarrow C85CO3H$	KAPHO2*(r_CO3_OOH+r_CO3_O3)	Rickard and Pascoe (2009)
G49219b	TrGTerC	$C85CO3 + HO_2 \rightarrow C85O2 + CO_2 + OH$	KAPHO2*r_CO3_OH	Rickard and Pascoe (2009)
G49220	TrGTerCN	$C9PAN2 \rightarrow C85CO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G49221	TrGTerCN	$C9PAN2 + OH \rightarrow C85OOH + CO + NO_2$	6.60E-12	Rickard and Pascoe (2009)
G49222	TrGTerC	$C85CO3H + OH \rightarrow C85CO3$	1.02E-11	Rickard and Pascoe (2009)
G49223a	TrGTerC	$C89CO3 \rightarrow .8 \ C811CO3 + .2 \ C89O2 + .2 \ CO_2$	k1_R02RC03*0.9	Sander et al. (2019)
G49223b	TrGTerC	$C89CO3 \rightarrow C89CO2H$	k1_R02RC03*0.1	Sander et al. (2019)
G49224a	TrGTerC	$C89CO3 + HO_2 \rightarrow C89CO3H$	KAPH02*r_C03_00H	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G49224b	TrGTerC	$C89CO3 + HO_2 \rightarrow C89CO2H + O_3$	KAPH02*r_C03_03	Rickard and Pascoe (2009)
G49224c	TrGTerC	C89CO3 + HO ₂ → .80 C811CO3 + .20 C89O2 + .2 CO ₂ + OH	KAPHO2*r_CO3_OH	Rickard and Pascoe (2009)
G49225	TrGTerCN	$C89CO3 + NO_2 \rightarrow C89PAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G49226	TrGTerCN	$C89CO3 + NO \rightarrow .8 C811CO3 + .2 C89O2 + .2 CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G49227	TrGTerC	$C89CO2H + OH \rightarrow .8 C811CO3 + .2 C89O2 + .2 CO_2$	2.69E-11	Rickard and Pascoe (2009)
G49228	TrGTerC	$C89CO3H + OH \rightarrow C89CO3$	3.00E-11	Rickard and Pascoe (2009)
G49229	TrGTerCN	$C89PAN \rightarrow C89CO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G49230	TrGTerCN	$C89PAN + OH \rightarrow CH_3COCH_3 + CO13C4CHO + CO + NO_2$	2.52E-11	Rickard and Pascoe (2009)
G49231a	TrGTerC	$C811CO3 \rightarrow C811O2 + CO_2$	k1_R02RC03*0.9	Sander et al. (2019)
G49231b	TrGTerC	$C811CO3 \rightarrow PINIC$	k1_R02RC03*0.1	Sander et al. (2019)
G49232a	TrGTerC	$C811CO3 + HO_2 \rightarrow C811CO3H$	KAPH02*r_C03_00H	Rickard and Pascoe (2009)
G49232b	TrGTerC	$C811CO3 + HO_2 \rightarrow PINIC + O_3$	KAPH02*r_C03_03	Rickard and Pascoe (2009)
G49232c	TrGTerC	$C811CO3 + HO_2 \rightarrow C811O2 + CO_2 + OH$	KAPHO2*r_CO3_OH	Rickard and Pascoe (2009)
G49233	TrGTerCN	$C811CO3 + NO \rightarrow C811O2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G49234	TrGTerCN	$C811CO3 + NO_2 \rightarrow C811PAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G49235	TrGTerC	$PINIC + OH \rightarrow C811O2 + CO_2$	7.29E-12	Rickard and Pascoe (2009)
G49236	TrGTerC	$NOPINONE + OH \rightarrow NOPINDO2$	1.55E-11	Capouet et al. (2008), Rickard and Pascoe (2009)
G49237a	TrGTerC	${\rm NOPINDO2} + {\rm HO_2} \rightarrow {\rm NOPINDOOH}$	k_R02_H02(temp,9)*r_COCH202_00H	Rickard and Pascoe (2009), Sander et al. (2019)
G49237b	TrGTerC	$NOPINDO2 + HO_2 \rightarrow C89CO3 + OH$	k_R02_H02(temp,9)*r_COCH202_OH	Rickard and Pascoe (2009), Sander et al. (2019)
G49238	TrGTerCN	$NOPINDO2 + NO \rightarrow C89CO3 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G49239	TrGTerC	$NOPINDO2 \rightarrow C89CO3$	k1_R02p0R02	Rickard and Pascoe (2009)
G49240	TrGTerC	$NOPINDOOH \rightarrow NOPINDCO$	2.63E-11	Rickard and Pascoe (2009)
G49241	TrGTerC	$NOPINDCO + OH \rightarrow C89CO3$	3.07E-12	Rickard and Pascoe (2009)
G49242	TrGTerC	$NOPINOO \rightarrow NOPINONE + H_2O_2$	6.00E-18*c(ind_H20)	Rickard and Pascoe (2009)
G49243	TrGTerC	$NOPINOO + CO \rightarrow NOPINONE + CO_2$	1.2E-15	Rickard and Pascoe (2009)
G49244	TrGTerCN	$NOPINOO + NO \rightarrow NOPINONE + NO_2$	1.E-14	Rickard and Pascoe (2009)
G49245	TrGTerCN	$NOPINOO + NO_2 \rightarrow NOPINONE + NO_3$	1.E-15	Rickard and Pascoe (2009)
G49246	TrGTerC	$NORPINENOL + OH \rightarrow HCOOH + OH + C86O2$	k_CH2CHOH_OH_HCOOH	Sander et al. (2019) , So et al. $(2014)^*$

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G49247	TrGTerC	$NORPINENOL + HCOOH \rightarrow NORPINAL + HCOOH$	k_CH2CHOH_HCOOH	Sander et al. (2019), da Silva (2010)*
G49248	TrGTerC	$NORPINAL + HCOOH \rightarrow NORPINENOL + HCOOH$	k_ALD_HCOOH	Sander et al. (2019), da Silva (2010)*
G49249	TrGTerC	$C811CO3H + OH \rightarrow C811CO3$	1.04E-11	Rickard and Pascoe (2009)
G49250	TrGTerCN	$C811PAN \rightarrow C811CO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G49251	TrGTerCN	$C811PAN + OH \rightarrow C721CHO + CO + NO_2$	6.77E-12	Rickard and Pascoe (2009)
G49400a	TrGAroC	$LTMB + OH \rightarrow TLEPOXMUC + HO_2 + 2 LCARBON$	0.827E-11	Rickard and Pascoe (2009)*
G49400b	TrGAroC	$LTMB + OH \rightarrow C6H5CH2O2 + 2 LCARBON$	0.189E-11	Rickard and Pascoe (2009)*
G49400c	TrGAroC	$LTMB + OH \rightarrow CRESOL + 2 LCARBON$	0.141E-11	Rickard and Pascoe (2009)*
G49400d	TrGAroC	$LTMB + OH \rightarrow TLBIPERO2 + HO_2 + 2 LCARBON$	2.917E-11	Rickard and Pascoe (2009)*
G49401	TrGAroCN	$LTMB + NO_3 \rightarrow C6H5CH2O2 + HNO_3 + 2 LCARBON$	1.52E-15	Rickard and Pascoe (2009)*
G40200	TrGTerC	APINENE + OH \rightarrow .75 LAPINABO2 + .15 MENTHEN6ONE + .15 HO ₂ + .10 ROO6R1O2	1.2E-11*EXP(440./temp)	Atkinson et al. $(2006)^*$
G40201a	TrGTerCN	$LAPINABO2 + NO \rightarrow PINAL + HO_2 + NO_2$	<pre>KRO2NO*(1(.65*alpha_AN(11,3,0,0,0,temp,cair)+.35*alpha_AN(11,2,0,0,0,temp,cair)))</pre>	Rickard and Pascoe (2009), Sander et al. (2019)
G40201b	TrGTerCN	${\rm LAPINABO2} + {\rm NO} \rightarrow {\rm LAPINABNO3}$	<pre>KRO2NO*(.65*alpha_AN(11,3,0,0,0, temp,cair)+.35*alpha_AN(11,2,0, 0,0,temp,cair))</pre>	Rickard and Pascoe (2009), Sander et al. (2019)
G40202a	TrGTerC	${\rm LAPINABO2} + {\rm HO_2} \rightarrow {\rm LAPINABOOH}$	k_RO2_HO2(temp,10)*(1r_ CHOHCH2O2_OH)	Rickard and Pascoe (2009), Sander et al. (2019)
G40202b	TrGTerC	${\rm LAPINABO2} + {\rm HO_2} \rightarrow {\rm PINAL} + {\rm HO_2} + {\rm OH}$	k_RO2_HO2(temp,10)*r_CHOHCH2O2_ OH	Rickard and Pascoe (2009), Sander et al. (2019)
G40203	TrGTerC	$LAPINABO2 \rightarrow PINAL + HO_2$	RO2*(0.65*k1_RO2tORO2+.35*k1_ RO2sORO2)	Rickard and Pascoe (2009)*
G40204	TrGTerC	${\rm LAPINABOOH+OH} \rightarrow .35\;{\rm LAPINABO2} + .65\;{\rm C96CO3}$	2.77E-11	Rickard and Pascoe (2009)*
G40205	TrGTerCN	$LAPINABNO3 + OH \rightarrow .35 PINAL + .65 C96CO3 + NO_2$	4.29E-12	Rickard and Pascoe (2009)*
G40206	TrGTerC	$MENTHEN6ONE + OH \rightarrow OHMENTHEN6ONEO2$	6.46E-11	Vereecken et al. $(2007)^*$
G40207	TrGTerCN	OHMENTHEN6ONEO2 + NO \rightarrow 2OHMENTHEN6ONE + HO ₂ + NO ₂	KRO2NO	Vereecken et al. $(2007)^*$
G40208	TrGTerC	OHMENTHEN6ONEO2 + $HO_2 \rightarrow 2OHMENTHEN6ONE$	k_R02_H02(temp,10)	Vereecken et al. (2007)
G40209	TrGTerC	OHMENTHEN6ONEO2 \rightarrow 2OHMENTHEN6ONE + HO ₂	k1_R02t0R02	Vereecken et al. (2007)
G40210	TrGTerC	$2OHMENTHEN6ONE + OH \rightarrow 10 LCARBON$	1E-11	Vereecken et al. (2007)
G40211	TrGTerC	$PINAL + OH \rightarrow .772 C96CO3 + .228 PINALO2$	5.2E-12*EXP(600./temp)	Wallington et al. $(2018)^*$

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G40212	TrGTerCN	$PINAL + NO_3 \rightarrow C96CO3 + HNO_3$	2.0E-14	Wallington et al. (2018)*
G40213a	TrGTerC	$C96CO3 \rightarrow C96O2 + CO_2$	k1_R02RC03*0.9	Rickard and Pascoe (2009)
G40213b	TrGTerC	$C96CO3 \rightarrow PINONIC$	k1_R02RC03*0.1	Rickard and Pascoe (2009)
G40214a	TrGTerC	$C96CO3 + HO_2 \rightarrow PERPINONIC$	KAPH02*r_C03_00H	Rickard and Pascoe (2009)
G40214b	TrGTerC	$C96CO3 + HO_2 \rightarrow PINONIC + O_3$	KAPH02*r_C03_03	Rickard and Pascoe (2009)
G40214c	TrGTerC	$C96CO3 + HO_2 \rightarrow C96O2 + OH + CO_2$	KAPHO2*r_CO3_OH	Rickard and Pascoe (2009)
G40215	TrGTerCN	$C96CO3 + NO_2 \rightarrow C10PAN2$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G40216	TrGTerCN	$C96CO3 + NO \rightarrow C96O2 + NO_2 + CO_2$	KAPNO	Rickard and Pascoe (2009)
G40217	TrGTerCN	$C96CO3 + NO_3 \rightarrow C96O2 + NO_2 + CO_2$	KRO2NO3*1.74	Rickard and Pascoe (2009)
G40218	TrGTerCN	$C10PAN2 \rightarrow C96CO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G40219	TrGTerCN	$C10PAN2 + OH \rightarrow NORPINAL + CO + NO_2$	3.66E-12	Rickard and Pascoe (2009)
G40220	TrGTerC	$PINONIC + OH \rightarrow C96O2 + CO_2$	6.65E-12	Rickard and Pascoe (2009)
G40221	TrGTerC	$PERPINONIC + OH \rightarrow C96CO3$	9.73E-12	Rickard and Pascoe (2009)
G40222	TrGTerC	$PINALO2 + HO_2 \rightarrow PINALOOH$	k_RO2_HO2(temp,10)	Rickard and Pascoe (2009)
G40223a	TrGTerCN	$PINALO2 + NO \rightarrow C106O2 + NO_2$	$KRO2NO*(1alpha_AN(12,3,0,1,0,$	Rickard and Pascoe (2009),
			temp,cair))	Sander et al. (2019)
G40223b	TrGTerCN	$PINALO2 + NO \rightarrow PINALNO3$	$KRO2NO*alpha_AN(12,3,0,1,0,$	Rickard and Pascoe (2009),
			temp,cair)	Sander et al. (2019)
G40224	TrGTerC	$PINALO2 \rightarrow C106O2$	k1_R02tR02	Rickard and Pascoe (2009)
G40225	TrGTerC	$PINALOOH + OH \rightarrow PINALO2$	2.75E-11	Rickard and Pascoe (2009)
G40226	TrGTerCN	$\begin{array}{l} \text{PINALNO3} \ + \ \text{OH} \ \rightarrow \ \text{CO235C6CHO} \ + \ \text{CH}_{3}\text{COCH}_{3} \ + \\ \text{NO}_{2} \end{array}$	2.25E-11	Rickard and Pascoe (2009)
G40227	TrGTerC	$C106O2 + HO_2 \rightarrow C106OOH$	k_RO2_HO2(temp,10)	Rickard and Pascoe (2009)
G40228a	TrGTerCN	$C106O2 + NO \rightarrow C716O2 + CH_3COCH_3 + NO_2$	KRO2NO*0.875*(1alpha_AN(13,3,0,	Rickard and Pascoe (2009),
			0,0,temp,cair))	Sander et al. (2019)
G40228b	TrGTerCN	$C106O2 + NO \rightarrow C106NO3$	KRO2NO*0.875*alpha_AN(13,3,0,0,	Rickard and Pascoe (2009),
			0,temp,cair)	Sander et al. (2019)
G40229	TrGTerC	$C106O2 \rightarrow C716O2 + CH_3COCH_3$	k1_R02tR02	Rickard and Pascoe (2009)
G40230	TrGTerC	$C106OOH + OH \rightarrow C106O2$	8.01E-11	Rickard and Pascoe (2009)
G40231	TrGTerCN	$C106NO3 + OH \rightarrow CO235C6CHO + CH_3COCH_3 + NO_2$	7.03E-11	Rickard and Pascoe (2009)
G40232	TrGTerC	APINENE + $O_3 \rightarrow .09$ APINBOO + .08 PINONIC +	8.05E-16*EXP(-640./temp)	Wallington et al. $(2018)^*$
		$.77 \text{ OH} + .33 \text{ NORPINAL} + .33 \text{ CO} + .33 \text{ HO}_2 + .06$		
		APINAOO + .44 C109O2		
G40233	TrGTerC	$APINAOO \rightarrow PINAL + H_2O_2$	1.00E-17*c(ind_H20)	Rickard and Pascoe (2009)
G40234	TrGTerC	$APINAOO + CO \rightarrow PINAL + CO_2$	1.20E-15	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G40235	TrGTerCN	$APINAOO + NO \rightarrow PINAL + NO_2$	1.00E-14	Rickard and Pascoe (2009)
G40236	TrGTerCN	$APINAOO + NO_2 \rightarrow PINAL + NO_3$	1.00E-15	Rickard and Pascoe (2009)
G40237a	TrGTerC	$APINBOO \rightarrow PINONIC$	$1.00E-17*c(ind_H20)*(0.08+0.15)$	Rickard and Pascoe (2009)
G40237b	TrGTerC	$APINBOO \rightarrow PINAL + H_2O_2$	1.00E-17*c(ind_H20)*0.77	Rickard and Pascoe (2009)
G40238	TrGTerC	$APINBOO + CO \rightarrow PINAL + CO_2$	1.20E-15	Rickard and Pascoe (2009)
G40239	TrGTerCN	$APINBOO + NO \rightarrow PINAL + NO_2$	1.00E-14	Rickard and Pascoe (2009)
G40240	TrGTerCN	$APINBOO + NO_2 \rightarrow PINAL + NO_3$	1.00E-15	Rickard and Pascoe (2009)
G40241	TrGTerC	$C109O2 \rightarrow C89CO3 + HCHO$	k1_R02p0R02	Rickard and Pascoe (2009)
G40242	TrGTerCN	$C109O2 + NO \rightarrow C89CO3 + HCHO + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G40243a	TrGTerC	$C109O2 + HO_2 \rightarrow C109OOH$	k_R02_H02(temp,10)*r_COCH202_00H	Rickard and Pascoe (2009), Sander et al. (2019)
G40243b	TrGTerC	$C109O2 + HO_2 \rightarrow C89CO3 + HCHO + OH$	k_R02_H02(temp,10)*r_COCH202_OH	Rickard and Pascoe (2009), Sander et al. (2019)
G40244	TrGTerC	$C109OOH + OH \rightarrow C109CO + OH$	5.47E-11	Rickard and Pascoe (2009)
G40245	TrGTerC	$C109CO + OH \rightarrow C89CO3 + CO$	5.47E-11	Rickard and Pascoe (2009)
G40246	TrGTerCN	$APINENE + NO_3 \rightarrow LNAPINABO2$	1.2E-12*EXP(490./temp)	Wallington et al. $(2018)^*$
G40247	TrGTerCN	$LNAPINABO2 \rightarrow PINAL + NO_2$	(0.65*k1_RO2tRO2 + 0.35*k1_ RO2sRO2)	Rickard and Pascoe (2009)
G40248	TrGTerCN	$LNAPINABO2 + NO \rightarrow PINAL + NO_2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G40249	TrGTerCN	$\text{LNAPINABO2} + \text{HO}_2 \rightarrow \text{LNAPINABOOH}$	k_R02_H02(temp,10)	Rickard and Pascoe (2009)
G40250	TrGTerCN	$LNAPINABO2 + NO_3 \rightarrow PINAL + NO_2 + NO_2$	KRO2NO3	Rickard and Pascoe (2009)
G40251	TrGTerCN	$LNAPINABOOH + OH \rightarrow LNAPINABO2$	(.65*6.87E-12+.35*1.23E-11)	Rickard and Pascoe (2009)
G40252a	TrGTerC	$BPINENE + OH \rightarrow BPINAO2$	1.47E-11*EXP(467./temp) *(0.8326*0.3+0.068)/(0.8326+0.068)	Gill and Hites (2002)*
G40252b	TrGTerC	BPINENE + OH \rightarrow ROO6R1O2	1.47E-11*EXP(467./temp) *0.8326*0.7/(0.8326+0.068)	Gill and Hites (2002)*
G40253a	TrGTerC	$\rm BPINAO2 + HO_2 \rightarrow BPINAOOH$	k_R02_H02(temp,10)*r_COCH202_00H	Rickard and Pascoe (2009), Sander et al. (2019)
G40253b	TrGTerC	${\rm BPINAO2} + {\rm HO_2} \rightarrow {\rm NOPINONE} + {\rm HCHO} + {\rm HO_2} + {\rm OH}$	k_R02_H02(temp,10)*r_COCH202_OH	Rickard and Pascoe (2009), Sander et al. (2019)
G40254a	TrGTerCN	${\rm BPINAO2} + {\rm NO} \rightarrow {\rm NOPINONE} + {\rm HCHO} + {\rm HO_2} + {\rm NO_2}$	<pre>KRO2NO*(1alpha_AN(11,3,0,0,0, temp,cair))</pre>	Rickard and Pascoe (2009), Sander et al. (2019)
G40254b	TrGTerCN	$BPINAO2 + NO \rightarrow BPINANO3$	KRO2NO*alpha_AN(11,3,0,0,0, temp,cair)	Rickard and Pascoe (2009), Sander et al. (2019)
G40255	TrGTerC	$\mathrm{BPINAO2} \rightarrow \mathrm{NOPINONE} + \mathrm{HCHO} + \mathrm{HO}_2$	k1_R02t0R02	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G40256	TrGTerC	$BPINAOOH + OH \rightarrow BPINAO2$	1.33E-11	Rickard and Pascoe (2009)
G40257	TrGTerCN	$BPINANO3 + OH \rightarrow NOPINONE + HCHO + NO_2$	4.70E-12	Rickard and Pascoe (2009)
G40258a	TrGTerCN	$ROO6R1O2 + NO \rightarrow ROO6R3O2 + CH_3COCH_3 + NO_2$	<pre>KRO2NO*(1alpha_AN(13,3,0,0,0, temp,cair))</pre>	Vereecken and Peeters (2012)
G40258b	TrGTerCN	$ROO6R1O2 + NO \rightarrow ROO6R1NO3$	<pre>KRO2NO*alpha_AN(13,3,0,0,0, temp,cair)</pre>	Vereecken and Peeters (2012)
G40259	TrGTerC	$ROO6R1O2 + HO_2 \rightarrow 10 LCARBON$	k_R02_H02(temp,10)	Vereecken and Peeters (2012)*
G40260	TrGTerC	$ROO6R1O2 \rightarrow ROO6R3O2 + CH_3COCH_3$	k1_R02t0R02	Vereecken and Peeters (2012)
G40261a	TrGTerCN	$RO6R1O2 + NO \rightarrow RO6R3O2 + NO_2$	<pre>KRO2NO*(1alpha_AN(12,3,0,0,0, temp,cair))</pre>	Vereecken and Peeters (2012)
G40261b	TrGTerCN	$RO6R1O2 + NO \rightarrow RO6R1NO3$	<pre>KRO2NO*alpha_AN(12,3,0,0,0, temp,cair)</pre>	Vereecken and Peeters (2012)
G40262	TrGTerC	$RO6R1O2 + HO_2 \rightarrow 10 LCARBON$	k_RO2_HO2(temp, 10)	Vereecken and Peeters (2012)*
G40263	TrGTerC	$RO6R1O2 \rightarrow RO6R3O2$	k1_R02s0R02	Vereecken and Peeters (2012)
G40264a	TrGTerCN	$RO6R3O2 + NO \rightarrow 9 LCARBON + HCHO + HO_2 + NO_2$	<pre>KRO2NO*(1alpha_AN(12,3,0,0,0, temp,cair))</pre>	Vereecken and Peeters (2012)
G40264b	TrGTerCN	$RO6R3O2 + NO \rightarrow 10 LCARBON + LNITROGEN$	<pre>KRO2NO*alpha_AN(12,3,0,0,0, temp,cair)</pre>	Vereecken and Peeters (2012)
G40265	TrGTerC	$RO6R3O2 + HO_2 \rightarrow 10 LCARBON$	k_R02_H02(temp, 10)	Vereecken and Peeters (2012)
G40266	TrGTerC	$RO6R3O2 \rightarrow 9 LCARBON + HCHO + HO_2$	k1_R02sR02	Vereecken and Peeters (2012)*
G40267a	TrGTerC	BPINENE + $O_3 \rightarrow NOPINONE + .63 CO + .37 CH_2OO + .16 OH + .16 HO_2$	1.35E-15*EXP(-1270./temp) *.051/(1027)	Wallington et al. (2018)*
G40267b	TrGTerC	$BPINENE + O_3 \rightarrow NOPINOO + CO_2$	1.35E-15*EXP(-1270./temp) *.368/(1027)	Nguyen et al. (2009), Wallington et al. (2018)
G40267c	TrGTerC	$BPINENE + O_3 \rightarrow NOPINDO2 + CO_2 + OH$	1.35E-15*EXP(-1270./temp) *.283/(1027)	Nguyen et al. (2009), Wallington et al. (2018)
G40267d	TrGTerC	BPINENE + $O_3 \rightarrow C8BC + 2 CO_2$	1.35E-15*EXP(-1270./temp) *(.104+.167)/(1027)	Nguyen et al. (2009), Wallington et al. (2018)
G40268	TrGTerCN	$BPINENE + NO_3 \rightarrow LNBPINABO2$	2.51E-12	Wallington et al. (2018)*
G40269	TrGTerCN	$LNBPINABO2 + HO_2 \rightarrow LNBPINABOOH$	k_RO2_HO2(temp, 10)	Rickard and Pascoe (2009)
G40270	TrGTerCN	LNBPINABO2 + NO \rightarrow NOPINONE + HCHO + NO ₂ + NO ₂	KRO2NO	Rickard and Pascoe (2009)*
G40271	TrGTerCN	LNBPINABO2 + NO ₃ \rightarrow NOPINONE + HCHO + NO ₂ + NO ₂	KR02N03	Rickard and Pascoe (2009)
G40272a	$\operatorname{TrGTerCN}$	$LNBPINABO2 \rightarrow NOPINONE + HCHO + NO_2$	k1_R02tR02*0.7	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G40272b	TrGTerCN	$LNBPINABO2 \rightarrow BPINANO3$	k1_R02tR02*0.3	Rickard and Pascoe (2009)
G40273	TrGTerCN	$LNBPINABOOH + OH \rightarrow LNBPINABO2$	9.58E-12	Rickard and Pascoe (2009)
G40274	TrGTerCN	$ROO6R1NO3 + OH \rightarrow ROO6R3O2 + CH_3COCH_3 + NO_2$	9.16E-13	Vereecken and Peeters (2012), Gill and Hites (2002)*
G40275	TrGTerCN	$RO6R1NO3 + OH \rightarrow 9 LCARBON + HCHO + HO_2 + NO_2$	9.16E-13	Vereecken and Peeters (2012), Gill and Hites (2002)
G40276	TrGTerC	$PINEOL + OH \rightarrow HCOOH + OH + NORPINAL$	k_CH2CHOH_OH_HCOOH	Sander et al. (2019) , So et al. $(2014)^*$
G40277	TrGTerC	$PINEOL + HCOOH \rightarrow PINAL + HCOOH$	k_CH2CHOH_HCOOH	Sander et al. (2019), da Silva (2010)*
G40278	TrGTerC	$PINAL + HCOOH \rightarrow PINEOL + HCOOH$	k_ALD_HCOOH	Sander et al. (2019), da Silva (2010)*
G40279a	TrGC	$CARENE + OH \rightarrow LAPINABO2$	8.8E-11*(.50+.25)	Atkinson and Arey (2003)
G40279b	TrGC	$CARENE + OH \rightarrow MENTHEN6ONE + HO_2$	8.8E-11*.25*.60	Atkinson and Arey (2003)
G40279c	TrGC	$CARENE + OH \rightarrow ROO6R1O2$	8.8E-11*.25*.40	Atkinson and Arey (2003)
G40280a	TrGC	$CARENE + O_3 \rightarrow APINBOO$	3.7E-17*.50*.18	Atkinson and Arey (2003)
G40280b	TrGC	$CARENE + O_3 \rightarrow PINONIC$	3.7E-17*.50*.16	Atkinson and Arey (2003)
G40280c	TrGC	$CARENE + O_3 \rightarrow OH + NORPINAL + CO + HO_2$	3.7E-17*.50*.66	Atkinson and Arey (2003)
G40280d	TrGC	$CARENE + O_3 \rightarrow APINAOO$	3.7E-17*.50*.12	Atkinson and Arey (2003)
G40280e	TrGC	$CARENE + O_3 \rightarrow OH + C109O2$	3.7E-17*.50*(.22+.66)	Atkinson and Arey (2003)
G40281	TrGCN	$CARENE + NO_3 \rightarrow LNAPINABO2$	9.1E-12	Atkinson and Arey (2003)
G40282a	TrGTerC	$SABINENE + OH \rightarrow BPINAO2$	1.47E-11*EXP(467./temp) *(0.8326*0.3+0.068)/(0.8326+0.068)	Gill and Hites (2002)*
G40282b	TrGTerC	SABINENE + OH \rightarrow ROO6R1O2	1.47E-11*EXP(467./temp) *0.8326*0.7/(0.8326+0.068)	Vereecken and Peeters (2012), Gill and Hites (2002)*
G40283a	TrGTerC	SABINENE + $O_3 \rightarrow NOPINONE + .63 CO + .37$ HOCH ₂ OOH + .16 OH + .16 HO ₂	1.35E-15*EXP(-1270./temp) *.051/(1027)	Wallington et al. (2018)*
G40283b	TrGTerC	SABINENE + $O_3 \rightarrow NOPINOO + CO_2$	1.35E-15*EXP(-1270./temp) *.368/(1027)	Nguyen et al. (2009), Wallington et al. (2018)
G40283c	TrGTerC	SABINENE + $O_3 \rightarrow NOPINDO2 + CO_2 + OH$	1.35E-15*EXP(-1270./temp) *.283/(1027)	Nguyen et al. (2009), Wallington et al. (2018)
G40283d	TrGTerC	SABINENE + $O_3 \rightarrow C8BC + 2 CO_2$	1.35E-15*EXP(-1270./temp) *(.104+.167)/(1027)	Nguyen et al. (2009), Wallington et al. (2018)
G40284	$\operatorname{TrGTerCN}$	SABINENE + $NO_3 \rightarrow LNBPINABO2$	2.51E-12	Wallington et al. (2018)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G40285a	TrGTerC	$CAMPHENE + OH \rightarrow BPINAO2$	1.47E-11*EXP(467./temp)	Gill and Hites (2002)*
			*(0.8326*0.3+0.068)/(0.8326+0.068)	
G40285b	TrGTerC	$CAMPHENE + OH \rightarrow ROO6R1O2$	1.47E-11*EXP(467./temp)	Vereecken and Peeters (2012),
			*0.8326*0.7/(0.8326+0.068)	Gill and Hites (2002)*
G40286a	TrGTerC	CAMPHENE $+$ O ₃ \rightarrow NOPINONE $+$.63 CO $+$.37	1.35E-15*EXP(-1270./temp)	Wallington et al. $(2018)^*$
		$HOCH_2OOH + .16 OH + .16 HO_2$	*.051/(1027)	
G40286b	TrGTerC	$CAMPHENE + O_3 \rightarrow NOPINOO + CO_2$	1.35E-15*EXP(-1270./temp)	Nguyen et al. (2009), Wallington
			*.368/(1027)	et al. (2018)
G40286c	TrGTerC	$CAMPHENE + O_3 \rightarrow NOPINDO2 + CO_2 + OH$	1.35E-15*EXP(-1270./temp)	Nguyen et al. (2009), Wallington
			*.283/(1027)	et al. (2018)
G40286d	TrGTerC	$CAMPHENE + O_3 \rightarrow C8BC + 2 CO_2$	1.35E-15*EXP(-1270./temp)	Nguyen et al. (2009), Wallington
			*(.104+.167)/(1027)	et al. (2018)
G40287	TrGTerCN	$CAMPHENE + NO_3 \rightarrow LNBPINABO2$	2.51E-12	Wallington et al. $(2018)^*$
G40400	TrGAroC	$LHAROM + OH \rightarrow .14 TLEPOXMUC + .03 C6H5CH2O2$	5.67E-11	Rickard and Pascoe (2009)*
		+ .04 CRESOL $+$.79 TLBIPERO2 $+$.18 HO ₂ $+$ 4		
		LCARBON		
G40401	TrGAroCN	$LHAROM + NO_3 \rightarrow C6H5CH2O2 + HNO_3 + 4$	2.60E-15	Rickard and Pascoe (2009)*
		LCARBON		
G6100	UpStTrGCl	$Cl + O_3 \rightarrow ClO + O_2$	2.8E-11*EXP(-250./temp)	Atkinson et al. (2007)
G6101	UpStGCl	$ClO + O(^{3}P) \rightarrow Cl + O_{2}$	2.5E-11*EXP(110./temp)	Atkinson et al. (2007)
G6102a	StTrGCl	$ClO + ClO \rightarrow Cl_2 + O_2$	1.0E-12*EXP(-1590./temp)	Atkinson et al. (2007)
G6102b	StTrGCl	$ClO + ClO \rightarrow 2 Cl + O_2$	3.0E-11*EXP(-2450./temp)	Atkinson et al. (2007)
G6102c	StTrGCl	$ClO + ClO \rightarrow Cl + OClO$	3.5E-13*EXP(-1370./temp)	Atkinson et al. (2007)
G6102d	StTrGCl	$ClO + ClO \rightarrow Cl_2O_2$	k_C10_C10	Burkholder et al. (2015)
G6103	StTrGCl	$Cl_2O_2 \rightarrow ClO + ClO$	k_C10_C10/(2.16E-27*EXP(8537./	Burkholder et al. $(2015)^*$
			temp))	
G6200	StGCl	$Cl + H_2 \rightarrow HCl + H$	3.9E-11*EXP(-2310./temp)	Atkinson et al. (2007)
G6201a	StGCl	$Cl + HO_2 \rightarrow HCl + O_2$	4.4E-11-7.5E-11*EXP(-620./temp)	Atkinson et al. (2007)
G6201b	StGCl	$Cl + HO_2 \rightarrow ClO + OH$	7.5E-11*EXP(-620./temp)	Atkinson et al. (2007)
G6202	StTrGCl	$Cl + H_2O_2 \rightarrow HCl + HO_2$	1.1E-11*EXP(-980./temp)	Atkinson et al. (2007)
G6203	StGCl	$ClO + OH \rightarrow .94 Cl + .94 HO_2 + .06 HCl + .06 O_2$	7.3E-12*EXP(300./temp)	Atkinson et al. (2007)
G6204	StTrGCl	$ClO + HO_2 \rightarrow HOCl + O_2$	2.2E-12*EXP(340./temp)	Atkinson et al. $(2007)^*$
G6205	StTrGCl	$HCl + OH \rightarrow Cl + H_2O$	1.7E-12*EXP(-230./temp)	Atkinson et al. (2007)
G6206	StGCl	$HOCl + OH \rightarrow ClO + H_2O$	3.0E-12*EXP(-500./temp)	Burkholder et al. (2015)
G6300	UpStTrGClN	$ClO + NO \rightarrow NO_2 + Cl$	6.2E-12*EXP(295./temp)	Atkinson et al. (2007)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G6301	StTrGClN	$ClO + NO_2 \rightarrow ClNO_3$	k_3rd_iupac(temp,cair,1.6E-31,	Atkinson et al. (2007)
			3.4,7.E-11,0.,0.4)	
G6302	TrGClN	$CINO_3 \rightarrow CIO + NO_2$	6.918E-7*EXP(-10909./temp)*cair	Anderson and Fahey (1990)
G6303	StGCIN	$CINO_3 + O(^3P) \rightarrow CIO + NO_3$	4.5E-12*EXP(-900./temp)	Atkinson et al. (2007)
G6304	StTrGClN	$\text{ClNO}_3 + \text{Cl} \rightarrow \text{Cl}_2 + \text{NO}_3$	6.2E-12*EXP(145./temp)	Atkinson et al. (2007)
G6400	StTrGCl	$Cl + CH_4 \rightarrow HCl + CH_3$	6.6E-12*EXP(-1240./temp)	Atkinson et al. (2006)
G6401	StTrGCl	$Cl + HCHO \rightarrow HCl + CO + HO_2$	8.1E-11*EXP(-34./temp)	Atkinson et al. (2006)
G6402	StTrGCl	$Cl + CH_3OOH \rightarrow HCHO + HCl + OH$	5.9E-11	Atkinson et al. $(2006)^*$
G6403	StTrGCl	$ClO + CH_3O_2 \rightarrow HO_2 + Cl + HCHO$	1.8E-12*EXP(-600./temp)	Burkholder et al. (2015)
G6404	StGCl	$CCl_4 + O(^1D) \rightarrow LCARBON + ClO + 3 Cl$	3.3E-10	Burkholder et al. (2015)
G6405	StGCl	$CH_3Cl + O(^1D) \rightarrow 0.1 CH_3Cl + 0.1 O(^3P) + 0.46 ClO +$	1.65E-10	Burkholder et al. (2015)
		0.35 Cl + 0.09 H + 0.9 LCARBON + 0.09 LCHLORINE		
G6406	StGCl	$CH_3Cl + OH \rightarrow LCARBON + H_2O + Cl$	1.96E-12*EXP(-1200./temp)	Burkholder et al. (2015)
G6407	StGCCl	$CH_3CCl_3 + O(^1D) \rightarrow 2 LCARBON + OH + 3 Cl$	3.25E-10	Burkholder et al. (2015)
G6408	StTrGCCl	$CH_3CCl_3 + OH \rightarrow 2 LCARBON + H_2O + 3 Cl$	1.64E-12*EXP(-1520./temp)	Burkholder et al. (2015)
G6409	TrGCCl	$Cl + C_2H_4 \rightarrow HOCH_2CH_2O_2 + HCl$	k_3rd_iupac(temp,cair,1.85E-29,	Atkinson et al. $(2006)^*$
			3.3,6.0E-10,0.0,0.4)	
G6410	TrGCCl	$Cl + CH_3CHO \rightarrow HCl + CH_3C(O)$	8.0e-11	Atkinson et al. (2006)
G6411	TrGCCl	$C_2H_2 + Cl \rightarrow LCARBON + CH_3 + HCl$	k_3rd_iupac(temp,cair,6.1e-30,	Atkinson et al. (2006)
			3.0,2.0e-10,0.,0.6)	
G6412	TrGCCl	$C_2H_6 + Cl \rightarrow C_2H_5O_2 + HCl$	8.3E-11*EXP(-100./temp)	Atkinson et al. (2006)
G6413	StTrGClN	$Cl + CH_3ONO_2 \rightarrow HCl + HCHO + NO_2$	1.3E-11*EXP(-1200./temp)	Burkholder et al. (2015)
G6414	StTrGClN	$Cl + CH_3ONO \rightarrow HCl + HCHO + NO$	2.1E-12	Sokolov et al. (1999)
G6415	StTrGCl	$Cl + CH_3O_2 \rightarrow .5 ClO + .5 CH_3O + .5 HCl + .5 CH_2OO$	1.6E-10	Burkholder et al. (2015)
G6416	TrGCClN	$Cl + CH_3CN \rightarrow NCCH_2O_2 + HCl$	1.6E-11*EXP(-2104./temp)	Tyndall et al. (1996), Tyndall
				et al. (2001b), Sander et al.
				(2019)
G6500	StGClF	$CF_2Cl_2 + O(^1D) \rightarrow LCARBON + 2 LFLUORINE + ClO$	1.4E-10	Burkholder et al. (2015)
		+ Cl		
G6501	StGClF	$CFCl_3 + O(^1D) \rightarrow LCARBON + LFLUORINE + ClO +$	2.3E-10	Burkholder et al. (2015)
		2 Cl		
G7100	StTrGBr	$Br + O_3 \rightarrow BrO + O_2$	1.7E-11*EXP(-800./temp)	Atkinson et al. (2007)
G7101	StGBr	$BrO + O(^3P) \rightarrow Br + O_2$	1.9E-11*EXP(230./temp)	Atkinson et al. (2007)
G7102a	StTrGBr	$BrO + BrO \rightarrow 2 Br + O_2$	2.7E-12	Atkinson et al. (2007)
G7102b	StTrGBr	$BrO + BrO \rightarrow Br_2 + O_2$	2.9E-14*EXP(840./temp)	Atkinson et al. (2007)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G7200	StTrGBr	$Br + HO_2 \rightarrow HBr + O_2$	7.7E-12*EXP(-450./temp)	Atkinson et al. (2007)
G7201	StTrGBr	$\mathrm{BrO} + \mathrm{HO}_2 \to \mathrm{HOBr} + \mathrm{O}_2$	4.5E-12*EXP(500./temp)	Atkinson et al. (2007)
G7202	StTrGBr	$\mathrm{HBr} + \mathrm{OH} \rightarrow \mathrm{Br} + \mathrm{H}_2\mathrm{O}$	6.7E-12*EXP(155./temp)	Atkinson et al. (2007)
G7203	StGBr	$HOBr + O(^{3}P) \rightarrow OH + BrO$	1.2E-10*EXP(-430./temp)	Atkinson et al. (2007)
G7204	StTrGBr	$Br_2 + OH \rightarrow HOBr + Br$	2.0E-11*EXP(240./temp)	Atkinson et al. (2007)
G7300	TrGBrN	$Br + BrNO_3 \rightarrow Br_2 + NO_3$	4.9E-11	Orlando and Tyndall (1996)
G7301	StTrGBrN	$\mathrm{BrO} + \mathrm{NO} \to \mathrm{Br} + \mathrm{NO}_2$	8.7E-12*EXP(260./temp)	Atkinson et al. (2007)
G7302	StTrGBrN	$BrO + NO_2 \rightarrow BrNO_3$	k_BrO_NO2	Atkinson et al. $(2007)^*$
G7303	TrGBrN	$BrNO_3 \rightarrow BrO + NO_2$	k_BrO_NO2/(5.44E-9*EXP(14192./	Orlando and Tyndall (1996),
			<pre>temp)*1.E6*R_gas*temp/(atm2Pa*N_ A))</pre>	Atkinson et al. $(2007)^*$
G7400	StTrGBr	$Br + HCHO \rightarrow HBr + CO + HO_2$	7.7E-12*EXP(-580./temp)	Atkinson et al. (2006)
G7401	TrGBr	$Br + CH_3OOH \rightarrow CH_3O_2 + HBr$	2.6E-12*EXP(-1600./temp)	Kondo and Benson (1984)
G7402	TrGBr	$BrO + CH_3O_2 \rightarrow HOBr + CH_2OO$	2.42E-14*EXP(1617./temp)	Shallcross et al. (2015)
G7403	StTrGBr	$CH_3Br + OH \rightarrow LCARBON + H_2O + Br$	1.42E-12*EXP(-1150./temp)	Burkholder et al. (2015)
G7404	TrGBrC	$\mathrm{Br} + \mathrm{C_2H_4} \to \mathrm{HOCH_2CH_2O_2} + \mathrm{HBr}$	2.8E-13*EXP(224./temp)/(1.+	Atkinson et al. $(2006)^*$
			1.13E24*EXP(-3200./temp)	
			/C(ind_02))	
G7405	TrGBrC	$Br + CH_3CHO \rightarrow HBr + CH_3C(O)$	1.8e-11*EXP(-460./temp)	Atkinson et al. (2006)
G7406	TrGBrC	$Br + C_2H_2 \rightarrow LCARBON + CH_3O_2 + HBr$	6.35e-15*EXP(440./temp)	Atkinson et al. (2006)
G7407	TrGBr	$CHBr_3 + OH \rightarrow LCARBON + H_2O + 3 Br$	9.0E-13*EXP(-360./temp)	Burkholder et al. $(2015)^*$
G7408	TrGBr	$CH_2Br_2 + OH \rightarrow LCARBON + H_2O + 2 Br$	2.0E-12*EXP(-840./temp)	Burkholder et al. $(2015)^*$
G7600	TrGBrCl	$Br + BrCl \rightarrow Br_2 + Cl$	3.32E-15	Manion et al. (2015)
G7601	TrGBrCl	$Br + Cl_2 \rightarrow BrCl + Cl$	1.10E-15	Dolson and Leone (1987)
G7602	TrGBrCl	$Br_2 + Cl \rightarrow BrCl + Br$	2.3E-10*EXP(135./temp)	Bedjanian et al. (1998)
G7603a	StTrGBrCl	$BrO + ClO \rightarrow Br + OClO$	1.6E-12*EXP(430./temp)	Atkinson et al. (2007)
G7603b	StTrGBrCl	$BrO + ClO \rightarrow Br + Cl + O_2$	2.9E-12*EXP(220./temp)	Atkinson et al. (2007)
G7603c	StTrGBrCl	$BrO + ClO \rightarrow BrCl + O_2$	5.8E-13*EXP(170./temp)	Atkinson et al. (2007)
G7604	TrGBrCl	$BrCl + Cl \rightarrow Br + Cl_2$	1.45E-11	Clyne and Cruse (1972)
G7605	TrGBrCl	$CHCl_2Br + OH \rightarrow LCARBON + 2 Cl + H_2O + Br$	2.0E-12*EXP(-840./temp)	see note*
G7606	TrGBrCl	$CHClBr_2 + OH \rightarrow LCARBON + Cl + H_2O + 2 Br$	2.0E-12*EXP(-840./temp)	see note*
G7607	TrGBrCl	$CH_2ClBr + OH \rightarrow LCARBON + Cl + H_2O + Br$	2.1E-12*EXP(-880./temp)	Burkholder et al. $(2015)^*$
G8100	TrGI	$I + O_3 \rightarrow IO + O_2$	2.1E-11*EXP(-830./temp)	Atkinson et al. (2007)
G8102	TrGI	$OIO + OIO \rightarrow I(part)$	5.E-11	von Glasow et al. $(2002)^*$
G8103	TrGI	$IO + IO \rightarrow .38 OIO + 1.62 I + .62 O_2$	5.4E-11*EXP(180./temp)	Atkinson et al. $(2007)^*$

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G8200	TrGI	$I + HO_2 \rightarrow HI + O_2$	1.5E-11*EXP(-1090./temp)	Atkinson et al. (2007)
G8201	TrGI	$\mathrm{IO} + \mathrm{HO}_2 o \mathrm{HOI} + \mathrm{O}_2$	1.4E-11*EXP(540./temp)	Atkinson et al. (2007)
G8202	TrGI	$\mathrm{HI} + \mathrm{OH} ightarrow \mathrm{I} + \mathrm{H}_2\mathrm{O}$	1.6E-11*EXP(440./temp)	Atkinson et al. (2007)
G8203	TrGI	$OIO + OH \rightarrow HIO_3$	2.2E-10*EXP(243./temp)	Plane et al. (2006)
G8204	TrGI	$I_2 + OH \rightarrow HOI + I$	2.1E-10	Atkinson et al. (2007)
G8205	TrGI	$\mathrm{HOI} + \mathrm{OH} \rightarrow \mathrm{IO} + \mathrm{H_2O}$	5.0E-12	Riffault et al. (2005)
G8300	TrGIN	$\mathrm{I} + \mathrm{NO}_2 ightarrow \mathrm{INO}_2$	k_I_N02	Atkinson et al. $(2007)^*$
G8301	TrGIN	$I + NO_3 \rightarrow IO + NO_2$	1.E-10	Dillon et al. (2008)
G8302	TrGIN	${ m IO} + { m NO} ightarrow { m I} + { m NO}_2$	7.15E-12*EXP(300./temp)	Atkinson et al. (2007)
G8303	TrGIN	$IO + NO_2 \rightarrow INO_3$	k_3rd_iupac(temp,cair,7.7E-31, 5.,1.6E-11,0.,0.4)	Atkinson et al. (2007)
G8304	TrGIN	$OIO + NO \rightarrow NO_2 + IO$	1.1E-12*EXP(542./temp)	Atkinson et al. (2007)
G8305	TrGIN	$INO_2 \rightarrow I + NO_2$	k_I_NO2/(3.7E-7*EXP(9568./temp)	van den Bergh and Troe (1976),
		-	*1.E6*R_gas*temp/(atm2Pa*N_A))	Atkinson et al. (2007)*
G8306	TrGIN	$INO_3 \rightarrow IO + NO_2$	2.1e15*EXP(-13670./temp)	Kaltsoyannis and Plane (2008)
G8307	TrGIN	$I_2 + NO_3 \rightarrow I + INO_3$	1.5E-12	Atkinson et al. (2007)
G8308	TrGIN	$IO + NO_3 \rightarrow OIO + NO_2$	9.E-12	Dillon et al. (2008)
G8309	TrGIN	$\mathrm{I} + \mathrm{INO}_3 ightarrow \mathrm{I}_2 + \mathrm{NO}_3$	9.1E-11*EXP(-146./temp)	Kaltsoyannis and Plane (2008)
G8400	TrGCI	$\text{CH}_3\text{CHICH}_3 + \text{OH} \rightarrow 2 \text{ LCARBON} + \text{CH}_3\text{O}_2 + \text{I}$	1.22E-12	Carl and Crowley (2001)
G8401	TrGI	$CH_3O_2 + IO \rightarrow .4 I + .6 OIO + HCHO + HO_2$	2.E-12	Dillon et al. (2006b), Bale et al. (2005)*
G8402	TrGIN	$CH_3I + NO_3 \rightarrow HNO_3 + HCHO + IO$	3.4E-17	Wayne et al. (1991)*
G8600	TrGClI	$IO + ClO \rightarrow .2 ICl + .25 Cl + .55 OClO + .8 I + .45 O_2$	4.7E-12*EXP(280./temp)	Atkinson et al. (2007)
G8700	TrGBrI	$I + BrO \rightarrow IO + Br$	1.2E-11	Burkholder et al. (2015)
G8701	TrGBrI	$IO + BrO \rightarrow Br + .8 OIO + .2 I + .2 O_2$	1.5E-11*EXP(510./temp)	Atkinson et al. (2007)*
G8702	TrGBrI	$\mathrm{IBr} + \mathrm{OH} \rightarrow .84\ \mathrm{HOI} + .84\ \mathrm{Br} + .16\ \mathrm{HOBr} + .16\ \mathrm{I}$	1.4E-10	Riffault et al. (2005)
G8703	TrGBrI	${ m IO} + { m Br} ightarrow { m I} + { m BrO}$	2.3E-11	Bedjanian et al. (1997)
G8704	TrGBrI	$I_2 + Br \rightarrow IBr + I$	1.2E-10	Bedjanian et al. (1997)
G9200	StTrGS	$SO_2 + OH \rightarrow H_2SO_4 + HO_2$	k_3rd(temp,cair,3.3E-31,4.3, 1.6E-12,0.,0.6)	Burkholder et al. (2015)
G9400a	TrGCS	$DMS + OH \rightarrow CH_3SO_2 + HCHO$	1.13E-11*EXP(-253./temp)	Atkinson et al. $(2004)^*$
G9400b	TrGCS	$DMS + OH \rightarrow DMSO + HO_2$	k_DMS_OH	Atkinson et al. (2004)*
G9401	TrGCNS	$DMS + NO_3 \rightarrow CH_3SO_2 + HNO_3 + HCHO$	1.9E-13*EXP(520./temp)	Atkinson et al. (2004)
G9402	TrGCS	DMSO + OH \rightarrow .6 SO ₂ + HCHO + .6 CH ₃ + .4 HO ₂ + .4 CH ₃ SO ₃ H	1.E-10	Hynes and Wine (1996)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G9403	TrGS	$CH_3SO_2 \rightarrow SO_2 + CH_3$	1.8E13*EXP(-8661./temp)	Barone et al. (1995)
G9404	TrGS	$\mathrm{CH_3SO_2} + \mathrm{O_3} \to \mathrm{CH_3SO_3}$	3.E-13	Barone et al. (1995)
G9405	TrGS	$\mathrm{CH_3SO_3} + \mathrm{HO_2} \rightarrow \mathrm{CH_3SO_3H}$	5.E-11	Barone et al. (1995)
G9408	StTrGS	$\mathrm{CH_2OO} + \mathrm{SO_2} \rightarrow \mathrm{H_2SO_4} + \mathrm{HCHO}$	k_CH200_S02	Welz et al. (2012), Stone et al. $(2014)^*$
G9409	TrGTerCS	$NOPINOO + SO_2 \rightarrow NOPINONE + H_2SO_4$	7.E-14	Rickard and Pascoe (2009)
G9410	TrGTerCS	$APINAOO + SO_2 \rightarrow PINAL + H_2SO_4$	7.00E-14	Rickard and Pascoe (2009)
G9411	TrGTerCS	$APINBOO + SO_2 \rightarrow PINAL + H_2SO_4$	7.00E-14	Rickard and Pascoe (2009)
G9412	TrGTerCS	$MBOOO + SO_2 \rightarrow IBUTALOH + H_2SO_4$	7.00E-14	Rickard and Pascoe (2009)
G9600	TrGCClS	$DMS + Cl \rightarrow CH_3SO_2 + HCl + HCHO$	3.3E-10	Atkinson et al. (2004)
G9700	TrGBrCS	$DMS + Br \rightarrow CH_3SO_2 + HBr + HCHO$	9.E-11*EXP(-2386./temp)	Jefferson et al. (1994)
G9701	TrGBrCS	$DMS + BrO \rightarrow DMSO + Br$	4.4E-13	Ingham et al. (1999)
G9800	TrGCIS	$DMS + IO \rightarrow DMSO + I$	3.2E-13*EXP(-925./temp)	Dillon et al. (2006a)
G10100	TrGHg	$Hg + O_3 \rightarrow HgO + O_2$	3.0E-20	Hall (1995)
G10200	TrGHg	$\mathrm{Hg} + \mathrm{OH} \rightarrow \mathrm{HgO} + \mathrm{H}$	3.55E-14*EXP(294./temp)	Pal and Ariya (2004)
G10201	TrGHg	$\mathrm{Hg} + \mathrm{H_2O_2} \rightarrow \mathrm{HgO} + \mathrm{H_2O}$	8.5E-19	Tokos et al. $(1998)^*$
G10600	TrGClHg	$\mathrm{Hg} + \mathrm{Cl} \to \mathrm{HgCl}$	1.0E-11	Ariya et al. (2002)
G10601	TrGClHg	$\mathrm{Hg} + \mathrm{Cl}_2 \to \mathrm{HgCl}_2$	2.6E-18	Ariya et al. (2002)
G10700	TrGBrHg	$Hg + Br \rightarrow HgBr$	3.0E-13	Donohoue et al. (2006)
G10701	TrGBrHg	$HgBr + Br \rightarrow HgBr_2$	2.5E-10*(temp/298.)**(-0.57)	Goodsite et al. (2004)
G10702	TrGBrHg	$\mathrm{Hg} + \mathrm{Br}_2 \to \mathrm{HgBr}_2$	9.0E-17	Ariya et al. (2002)
G10703	$\operatorname{TrGBrHg}$	$\mathrm{Hg} + \mathrm{BrO} \to \mathrm{HgO} + \mathrm{Br}$	1.0E-15	Raofie and Ariya (2003)
G10704	TrGBrHg	$HgBr + BrO \rightarrow BrHgOBr$	3.0E-12	Calvert and Lindberg (2003)
G10705	TrGBrClHg	$HgCl + BrO \rightarrow ClHgOBr$	3.0E-12	Calvert and Lindberg (2003)
G10706	TrGBrClHg	$HgBr + Cl \rightarrow ClHgBr$	3.0E-12	Calvert and Lindberg (2003)
G10707	TrGBrClHg	$HgCl + Br \rightarrow ClHgBr$	3.0E-12	Calvert and Lindberg (2003)

General notes

Three-body reactions

Rate coefficients for three-body reactions are defined via the function $k_3rd(T, M, k_0^{300}, n, k_{\inf}^{300}, m, f_c)$. In the code, the temperature T is called temp and the concentration of "air molecules" M is called cair. Using the auxiliary variables $k_0(T)$, $k_{\inf}(T)$, and k_{ratio} , k_3rd is defined as:

$$k_0(T) = k_0^{300} \times \left(\frac{300 \text{K}}{T}\right)^n \tag{1}$$

$$k_{\rm inf}(T) = k_{\rm inf}^{300} \times \left(\frac{300 \text{K}}{T}\right)^m$$
 (2)

$$k_{\text{ratio}} = \frac{k_0(T)M}{k_{\text{inf}}(T)} \tag{3}$$

k_3rd =
$$\frac{k_0(T)M}{1 + k_{\text{ratio}}} \times f_c^{\left(\frac{1}{1 + (\log_{10}(k_{\text{ratio}}))^2}\right)}$$
(4)

A similar function, called k_3rd_iupac here, is used by Wallington et al. (2018) for three-body reactions. It has the same function parameters as k_3rd and it is defined as:

$$k_0(T) = k_0^{300} \times \left(\frac{300 \text{K}}{T}\right)^n$$
 (5)

$$k_{\rm inf}(T) = k_{\rm inf}^{300} \times \left(\frac{300 \text{K}}{T}\right)^m$$
 (6)

$$k_{\text{ratio}} = \frac{k_0(T)M}{k_{\text{inf}}(T)} \tag{7}$$

$$N = 0.75 - 1.27 \times \log_{10}(f_{\rm c}) \tag{8}$$

$$\texttt{k_3rd_iupac} = \frac{k_0(T)M}{1 + k_{\mathrm{ratio}}} \times f_{\mathrm{c}}^{\left(\frac{1}{1 + (\log_{10}(k_{\mathrm{ratio}})/N)^2}\right)}(9)$$

Structure-Activity Relationships (SAR)

Some unmeasured rate coefficients are estimated with structure-activity relationships, using the following parameters and substituent factors:

k for H-abstraction by OH in cm ⁻³ s ⁻¹			
k_p	$4.49 \times 10^{-18} \times (T/K)^2 \exp(-320 K/T)$		
k_s	$4.50 \times 10^{-18} \times (T/K)^2 \exp(253 K/T)$		
k_t	$2.12 \times 10^{-18} \times (T/\mathrm{K})^2 \exp(696\mathrm{K}/T)$		
k_ROHRO	$2.1 \times 10^{-18} \times (T/\mathrm{K})^2 \exp(-85\mathrm{K}/T)$		
k_CO2H	$0.7 \times k_{\mathrm{CH_3CO_2H+OH}}$		
k_ROOHRO	$0.6 \times k_{\mathrm{CH_3OOH+OH}}$		
f_alk	1.23		
f_sOH	3.44		
f_tOH	2.68		
f_sOOH	8.		
f_t00H	8.		
f_0N02	0.04		
f_CH2ONO2	0.20		
f_cpan	0.25		
f_allyl	3.6		
f_CHO	0.55		
f_CO2H	1.67		
f_CO	0.73		
f_0	8.15		
f_pCH2OH	1.29		
f_tCH2OH	0.53		

k for OH-ad	k for OH-addition to double bonds in ${\rm cm^{-3}s^{-1}}$				
k_adp	$4.5 \times 10^{-12} \times (T/300 \mathrm{K})^{-0.85}$				
k_ads	$1/4 \times (1.1 \times 10^{-11} \times \exp(485 \mathrm{K}/T) +$				
	$1.0 \times 10^{-11} \times \exp(553 \mathrm{K}/T))$				
k_adt	$1.922 \times 10^{-11} \times \exp(450 \mathrm{K/T}) - k_{\mathrm{ads}}$				
k_adsecprim	3.0×10^{-11}				
$k_adtertprim$	5.7×10^{-11}				
a_PAN	0.56				
a_CHO	0.31				
a_COCH3	0.76				
a_CH2OH	1.7				
a_CH200H	1.7				
a_COH	2.2				
a_COOH	2.2				
a_CO2H	0.25				
a_CH20N02	0.64				

RO₂ self and cross reactions

The self and cross reactions of organic peroxy radicals are treated according to the permutation reaction formalism as implemented in the MCM (Rickard and Pascoe, 2009), as decribed by Jenkin et al. (1997). Every organic peroxy radical reacts in a pseudo-first-order reaction with a rate constant that is expressed as $k^{\rm 1st} = 2 \times \sqrt{k_{\rm self} \times k_{\rm CH302}} \times [{\rm RO_2}]$ where $k_{\rm self} =$ second-order rate coefficient of the self reaction of the organic peroxy radical, k_CH302 = second-order rate coefficient of the self reaction of CH₃O₂, and [RO₂] = sum of the concentrations of all organic peroxy radicals.

Specific notes

G1002a: The path leading to $2 O(^{3}P) + O_{2}$ results in a null cycle regarding odd oxygen and is neglected.

The rate coefficient is: $k_H02_H02 =$ (3.0E-13*EXP(460./temp)+2.1E-33*EXP(920./temp)*cair)*(1.+1.4E-21*EXP(2200./temp)*C(ind_H20)).

G2117: Converted to Kc [molec-1 cm3] = Kp*R*T/NA, where R is 82.05736 [cm3atmK1mol1].

G2118: Assuming fast equilibrium.

G3109: The rate coefficient is: $k_N03_N02 = k_$ 3rd(temp, cair, 2.4E-30, 3.0, 1.6E-12, -0.1, 0.6).

G3110: The rate coefficient is defined as backward reaction divided by equilibrium constant.

G3203: The rate coefficient is: $k_N02_H02 = k_$ 3rd(temp, cair, 1.9E-31, 3.4, 4.0E-12, 0.3, 0.6).

The rate coefficient is: k_HNO3_OH = 1.32E-14 * EXP(527/temp) + 1 / (1 / EXP(527/temp)) + 1 / (1 / EXP(52(7.39E-32 * EXP(453/temp)*cair) + 1 /(9.73E-17 * EXP(1910/temp)))

G3207: The rate coefficient is defined as backward reaction divided by equilibrium constant.

G3227: Backward reaction divided by equilibrium constant from Burkholder et al. (2015).

G3228: Same as for $OH + HNO_4$.

G4104b: Methyl nitrate yield according to Banic et al. (2003) but reduced by a factor of 10 according to the upper limit derived from measurements by Munger et al. (1999).

G4109: $CH_3CHO+NO_3$ assumed.

G4115: The rate coefficient is defined as backward reaction divided by equilibrium constant.

G4116: Same value as for PAN + OH.

G4126: Same as for G4104 but scaled to match the recommeded value at 298K.

G4127: Same as for CH3O2 + NO3 in G4105.

G4130a: SAR for H-abstraction by OH.

G4130b: SAR for H-abstraction by OH.

G4132: SAR for H-abstraction by OH.

G4133: Lower limit of the rate constant. Products uncertain but CH₃OH can be excluded because of a likely high energy barrier (L. Vereecken, pers. comm.). CH₂OO production cannot be excluded.

G4134: Estimate based on the decomposition lifetime of 3 s (Olzmann et al., 1997) and a 20 kcal/mol energy barrier (Vereecken and Francisco, 2012).

G4135: Rate constant for $CH_2OO + NO_2$ (G4138) multiplied by the factor from Ouvang et al. (2013).

G4136: Average of two measurements.

G4137: Upper limit.

G4138: Average of 7.E-12 and 1.5E-12.

G4141: HOOCH₂OCHO forms and then decomposes to formic anhydride (Gruzdev et al., 1993) which hydrolyses in the humid atmosphere (Conn et al., 1942).

G4142: High-pressure limit.

G4143: Generic estimate for reaction with alcohols.

G4144: Generic estimate for reaction with RO₂.

G4148: Same value as for $NO_2+CH_3O_2$.

G4149: Barnes et al. (1985) estimated a decomposition rate equal to that of $CH_3O_2NO_2$.

Same temperature dependence as for G4150: Value for CH₃O₂NO₂ + OH, H-abstraction enhanced by the HO-group by f_sOH.

> G4154: Products assumed to be $CH_3O_2 + O_2$ (could also be $HCHO + O_2 + OH$).

G4160b: Half of the H-vield is attributed to fast secondary chemistry.

G4160c: The NH + CO channel is also significant but neglected here.

G4161: No studies below 450 K and only the major channel is considered.

G4164: Upper limit. Dominant pathway under atmospheric conditions.

G42001: The product distribution is from Rickard and Pascoe (2009), after substitution of the energized Criegee intermediate, CH₂OO, by its decomposition products and reaction of the stabilized CI with the water dimer.

G42010: Only major channel considered as the end products are essentially the same.

G42013: The rate coefficient is: $k_CH3CO3_NO2 = k_C$ 3rd(temp, cair, 9.7E-29, 5.6, 9.3E-12, 1.5, 0.6).

G42018: The rate coefficient is the same as for the CH₃ channel in G4107 (CH₃OOH+OH).

G42021: The rate coefficient is $k_PAN_M = k_CH3CO3_$ NO2/9.0E-29*EXP(-14000./temp), i.e. the rate coefficient is defined as backward reaction divided by equilibrium constant.

G42022a: Quantum yields and products are from Glowacki et al. (2012).

G42022b: Quantum yields and products are from Glowacki et al. (2012).

G42024a: Rate constant is the high-pressure limit as recommended by Atkinson et al. (2006).

G42024b: Rate constant is the high-pressure limit as recommended by Atkinson et al. (2006).

G42047: Orlando et al. (1998) estimated that about 25% of the HOCH₂CH₂O in this reaction is produced with sufficient excess energy that it decomposes promptly. The decomposition products are 2 HCHO + 642088: $NCCH_2OOH$ is produced but replaced here by HO_2 . its likely oxidation products $(HCN + CO_2)$ as studied

 ${\tt G42051a:}$ Same as for the ${\tt CH_3O_2}$ channel in G4107: ${\tt CH_3OOH+OH.}$

G42058b: The aldehydic H is assumed to be like the analogous H of $HOCH_2CHO$.

G42074a: Factor of 3 to match the estimate of k = 1.E-11 molec/cm3/s by Paulot et al. (2009a).

G42074b: Factor of 3 to match the estimate of k = 1.E-11 molec/cm3/s by Paulot et al. (2009a).

G42075: $NO_3CH_2CO_2H$ and $NO_3CH_2CO_3H$ neglected.

G42078: NO₃CH₂CO₂H neglected.

G42082: Same rate constant as for PAN + OH.

G42083a: Rate constant is the high-pressure limit as recommended by Atkinson et al. (2006).

G42083b: Rate constant is the high-pressure limit as recommended by Atkinson et al. (2006).

 ${\tt G42085a:}$ Uncertainties on the kinetics at pressures < 0.1 bar.

G42085b: Channel proposed by Hynes and Wine 1991, OH + HCHO + HOCN, could not be confirmed by Tyndall et al. (2001b). There is no alternative mechanism at the moment. Products assumed to be OH + CH3CO3 + NO

G42086b: Assuming HCN is from channel 2h, HCO + H + HCN. HCO is replaced by H + CO.

 ${\tt G42086c}\colon$ Assuming exothermic channels 2b and 2d are equally important.

G42087: HCOCN is produced but replaced here by its likely oxidation products (HCN + $\rm CO_2$) as studied by Tyndall et al. (2001b). The rate constant for a typical $\rm RO_2$ + NO reaction is used.

G42088: NCCH₂OOH is produced but replaced here by its likely oxidation products (HCN + CO₂) as studied by Tyndall et al. (2001b). The rate constant for a typical RO_2 + HO_2 reaction is used.

G42089a: The minor channel with k=5.2E-12 is combined with the major one producing HCOOH.

G42090: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

G42091: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

G42092: approximated OH reaction for oxalic acid

G42093a: SAR for H-abstraction by OH

G42093b: SAR for H-abstraction by OH, assuming that -CHOHOH has an effect like -CH2OH

G42093c: SAR for H-abstraction by OH

G42093d: SAR for H-abstraction by OH

 ${\tt G42094a:}$ SAR for H-abstraction by OH

 ${\tt G42094b:~SAR}$ for H-abstraction by OH

 ${\tt G42095a:~SAR}$ for H-abstraction by OH

 $\tt G42095b: SAR$ for H-abstraction by OH

G42096a: SAR for H-abstraction by OH

G42096b: SAR for H-abstraction by OH $\,$

G42097a: SAR for H-abstraction by OH

 ${\tt G42097b:~SAR}$ for H-abstraction by OH

G42098a: SAR for H-abstraction by OH, assuming that -CH2OOH has the same effect as -CH2OH

 ${\tt G42098b:~SAR}$ for H-abstraction by OH

G42098c: SAR for H-abstraction by OH

G43001a: Branching ratios according to Rickard et al. (1999).

G43001b: Branching ratios according to Rickard et al. (1999).

G43004: The value for the generic $RO_2 + HO_2$ reaction from Atkinson (1997) is used here.

G43008: The value for the generic $RO_2 + HO_2$ reaction from Atkinson (1997) is used here.

G43011: Strong positive deviation of k below 240 K compared to the expression recommended by JPL (Burkholder et al., 2015).

G43015a: The same value as for G4107 (CH₃OOH + OH) is used, multiplied by the branching ratio of the CH₃O₂ channel.

G43028: Alkyl nitrate formation neglected. (also not considered in MCM).

G43037: Alkyl nitrate formation neglected. (also not considered in MCM).

G43040a: Rate coefficient estimated with SAR (Taraborrelli, 2010).

G43040b: Rate coefficient estimated with SAR (Taraborrelli, 2010).

G43044: Alkyl nitrate formation neglected.

G43045c: Rate coefficient assumed to equal to the one of hydroxyacetone (ACETOL) for this channel.

G43048: Using the high-pressure limit.

 $\tt G43049:$ The pressure fall-off between 1000 and 100 mbar is only 3% (Kirchner et al., 1999).

G43050: Value for $CH_3O_2NO_2 + OH$, H-abstraction enhanced by the CH_3CO -group by f_CO.

G43051c: Products approximated with $C_2H_5CHO + HO_2$.

G43052: Only major H-abstraction channel considered.

G43059: Products approximated with the major end-product CH_3CHO .

G43060b: Products approximated with the major endproduct CH₃CHO.

G43061: Products approximated with the likely end-product CH₃CHO.

G43065: As for $HCOCO_3$.

G43070a: Branching ratios estimated with SAR for Habstraction rate constants by OH.

G43070b: Branching ratios estimated with SAR for H-abstraction rate constants by OH.

 $\tt G43071a$: Only this channel considered as the intermediate radical is likely more stable than $\tt CHCH(OH)_2$.

G43072: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

G43073: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

G43074: HCOCOCHO would be produced but undergoes fast photolysis (faster than MGLYOX) and is substituted with its products.

G43075a: Same value as for methanediol.

G43075b: Same value as for methanediol.

G43223: Products simplified

G43419: KDEC C3DIALO \rightarrow GLYOX + CO + HO2

G43420: KDEC C3DIALO \rightarrow GLYOX + CO + HO2

G43421: Permutation reaction (minor channels removed).

G44000: The $LC_4H_9O_2$ composition ($nC_4H_9O_2$:s $C_4H_9O_2$ ratio) is assumed to be equal to the ratio of the production rates at 298K: $k_p/(k_p+k_s) = 0.1273$ and $k_s/(k_p+k_s) = 0.8727$.

<code>G44001b:</code> $sC_4H_9O_2$ products are substituted with 0.636 MEK + HO $_2$ and 0.364 CH $_3$ CHO + $C_2H_5O_2$ at 1 bar and 298 K.

G44003c: The alkyl nitrate yield is the weighted average yield for the two isomers forming from $nC_4H_9O_2$ and $sC_4H_9O_2$.

G44010b: H-abstraction from primary C and substitution of the resulting peroxy radical with its products from the reaction with NO.

G44011: H-abstraction from primary C and substitution of the resulting peroxy radical with its products from the reaction with NO.

G44015b: Products assumed to be only from H-abstraction from a secondary C bearing the -OOH group.

 $\tt G44016:$ Products assumed to be only from H-abstraction from a secondary C bearing the -ONO $_2$ group.

G44018: LHMVKABO2 is 0.12 HMVKAO2 + 0.88 HMVKBO2.

G44019: LMEKO2 represents 0.62 MEKBO2 + 0.38 MEKAO2.

G44021a: The products of MEKAO are substituted with HCHO + $\rm CO_2$ + HOCH₂CH₂O₂.

G44023a: Products from H-abstraction from the tertiary carbon bearing the ONO_2 group.

G44023b: Products from H-abstraction from the secondary carbon bearing the ONO_2 group.

G44025: Same value as for PAN.

G44026: Products as in G4415. Only the main channels for each isomer are considered. Weighted average for the isomers.

G44035: Rate constant replaced with the one of beta hydroxy RO_2 .

G44046b: Using value for secondary nitrate (88% of total).

G44061a: Using value for secondary nitrate (88% of total).

G44061b: Using value for secondary nitrate (88% of total).

G44062a: Simplified products.

G44062b: Simplified products.

G44066: Alkyl nitrate formation neglected.

G44070: Alkyl nitrate formation neglected.

G44076: Alkyl nitrate formation neglected.

G44078: Other channel neglected.

G44081: Alkyl nitrate formation neglected.

G44082: Other channel neglected.

G44085: k for CH_3CHCO from Hatakeyama et al. (1985) adjusted.

G44086: Simplified product distribution.

G44089: The nitrated RO_2 is replaced by its products upon reaction with NO.

G44096: Both LBUT1ENO2 isomers mostly C_2H_5CHO .

G44097a: Branching ratios according to Rickard et al. (1999). CH_3CHO_2CHO is replaced with its major products $CH_3CHO + CO + HO_2$.

G44097b: Branching ratios according to Rickard et al. (1999).

G44098: The nitrated RO_2 is replaced by its products upon reaction with NO.

G44103b: MEKCOH replaced by its major oxidation products.

G44104: Carbonyl nitrate replaced by its major oxidation products.

G44106: CH3CHOOA products as from $C_3H_6 + O_3$ reaction.

G44107: The nitrated RO_2 is replaced by its products G44140: Simplified oxidation. upon reaction with NO.

G44110: The nitrated RO_2 is replaced by its products upon reaction with NO.

G44124b: Skipping intermediate steps mostly leading to acetone.

G44126: Skipping intermediate steps mostly leading to acetone.

G44127: Only this channel considered as the intermediate radical is likely more stable than $CHCH(OH)_2$.

G44128: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

G44129: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

G44130: Only this channel considered as the intermediate radical is likely more stable than $CHCH(OH)_2$.

G44131: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

G44132: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

G44133: Only this channel considered as the intermediate radical is likely more stable than CHCH(OH)₂.

G44134: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

G44135: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

G44136: Only this channel considered as the intermediate radical is likely more stable than CHCH(OH)₂.

G44137: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

G44138: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

G44139: Simplified oxidation.

G44141: Simplified oxidation.

G44142: Simplified oxidation.

G44202: Alkyl nitrate formation neglected.

G44203a: Rate coefficient estimated with SAR (Taraborrelli, 2010).

G44205: Alkyl nitrate formation neglected.

G44210: Alkyl nitrate formation neglected.

G44221: Same k as for MGLYOX + OH (Tyndall et al., 1995).

G44402: KDEC NC4DCO2 \rightarrow MALANHY + NO2

G44406c: KDEC MALDIALCO2 \rightarrow 0.6 MALANHY + HO2 + 0.4 GLYOX + 0.4 CO + 0.4 CO2

G44407: KDEC MALDIALCO2 \rightarrow 0.6 MALANHY + HO2 + 0.4 GLYOX + 0.4 CO + 0.4 CO2

G44409: KDEC MALDIALCO2 \rightarrow 0.6 MALANHY + HO2 + 0.4 GLYOX + 0.4 CO + 0.4 CO2

G44410: KDEC MALDIALCO2 \rightarrow 0.6 MALANHY + HO2 + 0.4 GLYOX + 0.4 CO + 0.4 CO2

G44412: KDEC BZFUONOOA \rightarrow 0.5 BZFUONOO + 0.5 CO + 0.5 CO2 + 0.5 HCOCH2O2 + 0.5 OHand BZFUONOO $\rightarrow 0.625$ CO14O3CO2H + 0.375 CO14O3CHO + 0.375 H2O2

G44421: Only major channel.

G44424: KDEC: GLYOOA $\rightarrow 0.125$ HCHO + 0.18GLYOO + 0.82 HO2 + 0.57 OH + 1.265 CO + $0.25~\mathrm{CO2}$ and H2O substitution GLYOO $\rightarrow 0.625$ HCOCO2H + 0.375 GLYOX + 0.375 H2O2

G44425: Merged equations.

G44430: KDEC MALANHYO \rightarrow HCOCOHCO3

G44431: KDEC MALANHYO → HCOCOHCO3

G44432: Only major channel. KDEC MALANHYO \rightarrow HCOCOHCO3

G44436: KDEC NBZFUO $\rightarrow 0.5$ CO14O3CHO + 0.5NO2 + 0.5 NBZFUONE + 0.5 HO2

G44437: KDEC NBZFUO $\rightarrow 0.5$ CO14O3CHO + 0.5NO2 + 0.5 NBZFUONE + 0.5 HO2

G44438: KDEC NBZFUO $\rightarrow 0.5$ CO14O3CHO + 0.5NO2 + 0.5 NBZFUONE + 0.5 HO2 and RO2 Only major channel.

G44439: KDEC MALDIALCO2 \rightarrow 0.6 MALANHY + HO2 + 0.4 GLYOX + 0.4 CO + 0.4 CO2

G44443: KDEC MECOACETO \rightarrow CH3CO3 + HCHO

G44444: KDEC MECOACETO → CH3CO3 + HCHO

G44445: KDEC MECOACETO → CH3CO3 + HCHO

G44450: KDEC BZFUO \rightarrow CO14O3CHO + HO2

G44451: KDEC BZFUO \rightarrow CO14O3CHO + HO2

G44452: KDEC BZFUO \rightarrow CO14O3CHO + HO2. Only major channel.

G44457: KDEC MALDIALO \rightarrow GLYOX + GLYOX +

G44458: KDEC MALDIALO \rightarrow GLYOX + GLYOX +

G44459: KDEC MALDIALO \rightarrow GLYOX + GLYOX + HO2. Only major channel.

G44461: KBPAN \rightarrow k_PAN_M

G45019d: Delta-1 and delta-2 LIEPOX are not considered and replaced by beta-LIEPOX formed by ISOP-BOOH and ISOPDOOH.

G45021: SAR estimate within uncertainty range of the experimentally determined rate constant by Solberg et al. (1997), 1.1E-11.

G45037: SAR estimate within uncertainty range of the experimentally determined rate constant by Solberg et al. (1997), 4.2E-11.

G45040: Alkyl nitrate formation neglected.

 ${\tt G45043:\ Old\ MCM\ rate\ constant\ 4.16E-11.}$

G45047: Alkyl nitrate formation neglected.

G45055: Alkyl nitrate formation neglected.

G45071: Alkyl nitrate formation neglected.

G45074: Formic acid production consistent with results of Bates et al. (2014). Here, the high yields of formic acid and hydroxycarbonyls at low NO from oxidation of cis-beta-LIEPOX (the most abundant isomer) are approximated with the production of DB1O which undergo both the Dibble double H-transfer to DB2O2 and HOCH2 elimination yielding HVMK and HMAC (ketovinyl alcohol potentially arising from decomposition of the alkoxy radical resulting from the ring opening after H-abstraction). The rate constant is from Paulot et al. (2009b) and adjusted based on Bates et al. (2014) that determined the single rate constants for the cis- and trans- beta isomer.

G45080: Alkyl nitrate formation neglected.

 ${\tt G45092a: C4MDIAL = CM4DIAL}$ in MCM only from aromatics.

 ${\tt G45092b} :$ Only one acyl peroxy radical considered.

G45093: Two aldehydic sites reacting with NO_3 but only one isomer product considered.

G45095: Alkyl nitrate formation neglected.

G45098: Alkyl nitrate formation neglected.

G45100: Alkyl nitrate formation neglected.

G45104a: DB1OOH is a hydroperoxide bearing a vinyl alcohol moiety that upon reaction with OH yields HCOOH (Davis et al., 1998).

G45107: OH production here is to take into account the hydroperoxidic function formed by the shift of the enolic hydrogen and not present in DB2O2. This approximation leads to spurious HO₂ production.

 ${\tt G45108a:}$ Consistent with the results of Bates et al. (2014).

G45108b: Consistent with the results of Bates et al. (2014). Assuming that the enol alkoxy radical partly decomposes yielding a substitute vinyl alcohol.

G45111: Alkyl nitrate formation neglected.

G45114b: Here, formic acid is mechanistically produced by the OH-addition to the vinyl alcohol which, upon RO₂-to-RO conversion (skipped here), yields the HOCHOH fragment which in turn reacts with O₂ forming HCOOH + HO₂. Along CH₃COCHOOHCHO should be produced but not in the mechanism. Only CH₃COCHO₂CHO. The rate constant is consistent with predictions by Ganzeveld et al. (2006) for ENOL. OH-addition to the OH-bearing carbon is considered the dominant channel as it is already for the ENOL (Ganzeveld et al., 2006).

G45115: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006). The product should be C1ODC3OOHC4OD but it is neglected in the mechanism.

G45116: As for DB1OOH + OH.

G45117: Additional sinks for DB2OOH are neglected.

G45121b: Nitrate assumed to be major isomer that is mostly similar to products of ISOPDO2-chemistry.

G45128: Rate constant by Liljegren and Stevens (2013). A lumped RO_2 that upon conversion to RO yields 100% 2-methyl-butenedial (C4MDIAL) although Aschmann et al. (2014) quantified a 38% yield of the Z/E mixture. G45129: As for 3METHYLFURAN + OH but with additional NO_2 production for mass conservation.

G45131: Alkyl nitrate formation neglected.

G45132: Hydroperoxide formation neglected.

G45134b: ZCO2HC23DBCOD formation is neglected. However, it is produced in MCM and in aromatic-related reactions under the name of MC3ODBCO2H.

G45139: LZCPANC23DBCOD is assumed to react like LC5PAN1719.

G45201: Alkyl nitrate formation neglected.

G45207: Alkyl nitrate formation neglected.

G45214: Alkyl nitrate formation neglected.

 ${\tt G45217} :$ Alkyl nitrate formation neglected.

G45225: Alkyl nitrate formation neglected.

G45236: LMBOABO2 = 0.67 MBOAO2 + 0.33 MBOBO2

G45247: Alkyl nitrate formation neglected.

G45400: KDEC NC4MDCO2 \rightarrow MMALANHY + NO2

G45404: KDEC NTLFUO \rightarrow ACCOMECHO + NO2

G45405: KDEC NTLFUO \rightarrow ACCOMECHO + NO2

G45406: KDEC NTLFUO \rightarrow ACCOMECHO

G45409: KBPAN \rightarrow k_PAN_M(renaming)

G45413: KFPAN \rightarrow k_CH3CO3_NO2 (renaming)

G45422: KDEC MMALANHYO \rightarrow CO2H3CO3

G45423: KDEC MMALANHYO→CO2H3CO3

G45424: KDEC MMALANHYO \rightarrow CO2H3CO3 and Only major channel.

G45429: KBPAN \rightarrow k_PAN_M (renamed)

G45430a: KDEC C5CO14CO2 \rightarrow 0.83 MALANHY + 0.83 CH3 + 0.17 MGLYOX + 0.17 HO2 + 0.17 CO + 0.17 CO2

G45431: KDEC C5CO14CO2 \rightarrow 0.83 MALANHY + 0.83 CH3 + 0.17 MGLYOX + 0.17 HO2 + 0.17 CO + 0.17 CO2

G45432: KFPAN \rightarrow k_CH3CO3_NO2 (renaming)

G45433: KDEC C5CO14CO2 → 0.83 MALANHY + G45494: Permutation reaction (minor channels re- G46437b: Reactions with KRO2HO2 and KDEC 0.83 CH3 + 0.17 MGLYOX + 0.17 HO2 + 0.17 CO + moved. 0.17 CO_{2}

G45434: KDEC C5CO14CO2 \rightarrow 0.83 MALANHY + 0.83 CH3 + 0.17 MGLYOX + 0.17 HO2 + 0.17 CO +0.17 CO2 and only major channel.

G45436: KDEC C5CO14CO2 \rightarrow 0.83 MALANHY + 0.83 CH3 + 0.17 MGLYOX + 0.17 HO2 + 0.17 CO + $0.17~\mathrm{CO}2$

G45444: KDEC MC3CODBCO2 \rightarrow 0.35 GLYOX + 0.35 CH3 + 0.35 CO + 0.35 CO2 + 0.65 MMALANHY $+ 0.65 \text{ HO}_{2}$

G45452: KDEC TLFUONOOA \rightarrow 0.5 CO + 0.5 OH + 0.5 MECOACETO2 + 0.5 TLFUONOO and H2O subs TLFUONOO \rightarrow 0.625 C24O3CCO2H + 0.375 AC-COMECHO + 0.375 H2O2

G45456: KFPAN \rightarrow k_CH3CO3_NO2 (renaming)

G45476b: KDEC NTLFUO \rightarrow ACCOMECHO + NO2 and reactions with KRO2HO2.

G45477: KDEC NTLFUO \rightarrow ACCOMECHO + NO2

G45478: KDEC NTLFUO \rightarrow ACCOMECHO + NO2

G45479: KDEC NTLFUO \rightarrow ACCOMECHO + NO2

G45486b: KDEC C5DIALO \rightarrow MALDIAL + CO + HO2 and reactions with KRO2HO2.

G45487: KDEC C5DIALO →MALDIAL

G45488: KDEC C5DIALO →MALDIAL

G45489: KDEC C5DIALO →MALDIAL

G45491b: Reactions with KRO2HO2.

G45492: MGLYOX + GLYOX + HO2 from KDEC sub- G46434: stitution

G45493: MGLYOX + GLYOX + HO2 from KDEC sub- G46435: stitution

G46201: Alkyl nitrate formation neglected.

G46404b: Reactions with KRO2HO2 and KDEC $C615CO2O \rightarrow C5DICARB + CO + HO2.$

G46405: KDEC C615CO2O \rightarrow C5DICARB + CO + HO2

G46406: KDEC C615CO2O \rightarrow C5DICARB + CO + HO2

G46407: Only major channel.

G46413b: Reactions with KRO2HO2 and KDEC ND- $NPHENO \rightarrow NC4DCO2H + HNO3 + CO + CO +$ NO2.

G46414: KDEC NDNPHENO \rightarrow NC4DCO2H + HNO3 + CO + CO + NO2

G46415: KDEC NDNPHENO \rightarrow NC4DCO2H + HNO3 + CO + CO + NO2

G46416: KDEC NDNPHENO \rightarrow NC4DCO2H + HNO3 + CO + CO + NO2

G46418: KDEC CATECOOA \rightarrow MALDALCO2H + HCOCO2H + HO2 + OH

G46426: KFPAN \rightarrow k_CH3CO3_NO2

G46430: KDEC GLYOOA \rightarrow .125 HCHO + .18 GLYOO + .82 HO2 + .57 OH + 1.265 CO

G46432b: Reactions with KRO2HO2 and KDEC $NCATECO \rightarrow NC4DCO2H + HCOCO2H + HO2$

G46433: $KDEC NCATECO \rightarrow NC4DCO2H +$ HCOCO2H + HO2

 $KDEC NCATECO \rightarrow NC4DCO2H +$ HCOCO2H + HO2

 $KDEC NCATECO \rightarrow NC4DCO2H +$ HCOCO2H + HO2

 $NPHENO \rightarrow MALDALCO2H + GLYOX + NO2$

G46438: KDEC NPHENO \rightarrow MALDALCO2H + GLYOX + NO2

G46439: KDEC NPHENO \rightarrow MALDALCO2H + GLYOX + NO2

G46440: KDEC NPHENO \rightarrow MALDALCO2H + GLYOX + NO2

G46441: Merged equations.

G46447b: reactions with KRO2HO2 and KDEC $NNCATECO \rightarrow NC4DCO2H + HCOCO2H + NO2$

G46448: KDEC NNCATECO \rightarrow NC4DCO2H + HCOCO2H + NO2

G46449: KDEC NNCATECO \rightarrow NC4DCO2H + HCOCO2H + NO2

G46450: KDEC NNCATECO \rightarrow NC4DCO2H +HCOCO2H + NO2

G46457: Merged equations.

G46458: Merged equations.

G46461b: Reactions with KRO2HO2 and KDEC PHENO $\rightarrow 0.71$ MALDALCO2H + 0.71 GLYOX + 0.29 PBZQONE + HO2

G46462: KDEC PHENO \rightarrow 0.71 MALDALCO2H + 0.71 GLYOX + 0.29 PBZQONE + HO2

G46463: KDEC PHENO \rightarrow 0.71 MALDALCO2H + 0.71 GLYOX + 0.29 PBZQONE + HO2

G46464: KDEC PHENO \rightarrow 0.71 MALDALCO2H + 0.71 GLYOX + 0.29 PBZQONE + HO2 and Only major channel.

G46468: KFPAN \rightarrow k_CH3CO3_NO2

G46472b: new channel

G46476: HOC6H4NO2 is a nitro-phenol

G46480b: Reactions with KRO2HO2 and KDEC G46515: Only major channel. PBZQO →C5CO2OHCO3

G46481: KDEC PBZQO →C5CO2OHCO3

G46482: KDEC PBZQO →C5CO2OHCO3

G46483: KDEC PBZQO \rightarrow C5CO2OHCO3 and Only major channel.

G46485b: Reactions with KRO2HO2 and KDEC $DNPHENO \rightarrow NC4DCO2H + HCOCO2H + NO2$

G46486: KDEC DNPHENO \rightarrow NC4DCO2H +HCOCO2H + NO2

G46487: KDEC DNPHENO \rightarrow NC4DCO2H + HCOCO2H + NO2

G46488: KDEC DNPHENO \rightarrow NC4DCO2H + HCOCO2H + NO2

G46490b: Reactions with KRO2HO2 and KDEC BZE- $MUCO \rightarrow 0.5 EPXC4DIAL + 0.5 GLYOX + 0.5 HO2$ + 0.5 C3DIALO2 + 0.5 C32OH13CO.

G46491b: KDEC BZEMUCO $\rightarrow 0.5$ EPXC4DIAL + 0.5 GLYOX + 0.5 HO2 + 0.5 C3DIALO2 + 0.5C32OH13CO.

G46492: KDEC BZEMUCO \rightarrow 0.5 EPXC4DIAL + 0.5 GLYOX + 0.5 HO2 + 0.5 C3DIALO2 + 0.5C32OH13CO

G46493: KDEC BZEMUCO \rightarrow 0.5 EPXC4DIAL + 0.5 GLYOX + 0.5 HO2 + 0.5 C3DIALO2 + 0.5C32OH13CO and Only major channel.

G46499b: Reactions with KRO2HO2 and KDEC $NBZOO \rightarrow C6CO4DB + NO2$.

G46500: KDEC NBZQO \rightarrow C6CO4DB + NO2

G46501: KDEC NBZQO \rightarrow C6CO4DB + NO2

G46502: KDEC NBZQO \rightarrow C6CO4DB + NO2

G46505b: New channel.

G46522b: In analogy to TLBIPERO2 from toluene (Birdsall et al., 2010).

G46523b: KDEC BZBIPERO \rightarrow GLYOX + HO2 + 0.5 BZFUONE + 0.5 BZFUONE

G46524: KDEC BZBIPERO \rightarrow GLYOX + HO2 + 0.5 BZFUONE + 0.5 BZFUONE

G46525: KDEC BZBIPERO \rightarrow GLYOX + HO2 + 0.5 BZFUONE + 0.5 BZFUONE and Only major channel.

G47210: Alkyl nitrate formation neglected.

G47214: Alkyl nitrate formation neglected.

G47218: Alkyl nitrate formation neglected.

G47222: Alkyl nitrate formation neglected.

G47223: ROO6R3OOH produced but no sink for it.

G47225: ROO6R4P produced but no sink for it.

G47226: ROO6R5P produced but no sink for it

G47400: Merged.

G47402a: KROPRIM*O2 fast reaction C6H5CH2O = BENZAL + HO2.

G47402b: KROPRIM*O2 fast reaction C6H5CH2O = BENZAL + HO2.

G47403: KROPRIM*O2 fast reaction C6H5CH2O = BENZAL + HO2.

G47404: KROPRIM*O2 fast reaction C6H5CH2O = BENZAL + HO2. C6H5CH2OH replaced by its oxidation product BENZAL.

G47405: Merged.

G47406: Merged.

G47407b: According to Birdsall et al. (2010), the branching ratio rbipero2_oh is set to 0.4 in order to take into account the OH-recycling and summed yield of butendial and methylbutendial.

G47408a: KDEC TLBIPERO $\rightarrow 0.6$ GLYOX + 0.4 MGLYOX + HO2 + 0.2 C4MDIAL + 0.2 C5DICARB+ 0.2 TLFUONE + 0.2 BZFUONE + 0.2 MALDIAL

G47408b: KDEC TLBIPERO $\rightarrow 0.6$ GLYOX + 0.4 MGLYOX + HO2 + 0.2 ZCODC23DB COD + 0.2C5DICARB + 0.2 TLFUONE + 0.2 BZFUONE + 0.2MALDIAL

G47409: KDEC TLBIPERO $\rightarrow 0.6$ GLYOX + 0.4 MGLYOX + HO2 + 0.2 ZCODC23DB COD + 0.2C5DICARB + 0.2 TLFUONE + 0.2 BZFUONE + 0.2MALDIAL

G47410: Only major channel and KDEC TLBIPERO \rightarrow 0.6 GLYOX + 0.4 MGLYOX + HO2 + 0.2 ZCODC23DB COD + 0.2 C5DICARB + 0.2 TL-FUONE + 0.2 BZFUONE + 0.2 MALDIAL

G47412: KDEC MGLOOB $\rightarrow 0.125$ CH3CHO + 0.695CH3CO + 0.57 CO + 0.57 OH + 0.125 HO2 + 0.18MGLOO + 0.25 CO2

G47413: Merged.

G47418b: Reactions with KRO2HO2 and KDEC $CRESO \rightarrow 0.68 C5CO14OH + 0.68 GLYOX + HO2$ + 0.32 PTLQONE.

G47419: KDEC CRESO $\rightarrow 0.68$ C5CO14OH + 0.68 GLYOX + HO2 + 0.32 PTLQONE

G47420: KDEC CRESO $\rightarrow 0.68$ C5CO14OH + 0.68 GLYOX + HO2 + 0.32 PTLQONE

G47421: KDEC CRESO $\rightarrow 0.68$ C5CO14OH + 0.68 GLYOX + HO2 + 0.32 PTLQONE and Only major channel.

G47422b: Reactions with KRO2HO2 and KDEC $NCRESO \rightarrow C5CO14OH + GLYOX + NO2$

G47423: KDEC NCRESO \rightarrow C5CO14OH + GLYOX + NO2

G47424: KDEC NCRESO \rightarrow C5CO14OH + GLYOX + NO2

+ NO2 and Only major channel.

G47426: TOL1OHNO2 is a nitro-phenol

G47429: KDEC MCATECOOA \rightarrow MC3ODBCO2H + HCOCO2H + HO2 + OH

G47436: KFPAN \rightarrow k_CH3CO3_NO2

G47438: Only major channel.

TLEMUCO $\rightarrow 0.5$ C3DIALO2 + 0.5 CO2H3CHO + 0.5 EPXC4DIAL + 0.5 MGLYOX + 0.5 HO2

G47440b: KDEC TLEMUCO \rightarrow 0.5 C3DIALO2 + 0.5 CO2H3CHO + 0.5 EPXC4DIAL + 0.5 MGLYOX + 0.5HO2

G47441: KDEC TLEMUCO $\rightarrow 0.5$ C3DIALO2 + 0.5 ${\rm CO2H3CHO}~+~0.5~{\rm EPXC4DIAL}~+~0.5~{\rm MGLYOX}~+$ $0.5~\mathrm{HO2}$

G47442: KDEC TLEMUCO \rightarrow 0.5 C3DIALO2 + 0.5 CO2H3CHO + 0.5 EPXC4DIAL + 0.5 MGLYOX +0.5 HO2 and Only major channel.

G47445: KFPAN \rightarrow k_CH3CO3_NO2

G47447: Only major channel.

G47454: New channel.

G47479: New channel.

G47482b: Reactions with KRO2HO2 and KDEC $NPTLQO \rightarrow C7CO4DB + NO2$

G47483: KDEC NPTLQO \rightarrow C7CO4DB + NO2

G47484: KDEC NPTLQO \rightarrow C7CO4DB + NO2

G47485: KDEC NPTLQO \rightarrow C7CO4DB + NO2

G47486b: Reactions with KRO2HO2 and KDEC $PTLQO \rightarrow C6CO2OHCO3$

G47487: KDEC PTLQO \rightarrow C6CO2OHCO3

G47488: KDEC PTLQO \rightarrow C6CO2OHCO3

C6CO2OHCO3.

G47494: New channel.

G47497b: Reactions with KRO2HO2 and KDEC MN- $NCATECO \rightarrow NC4MDCO2H + HCOCO2H + NO2$

G47498: KDEC MNNCATECO \rightarrow NC4MDCO2H + HCOCO2H + NO2

G47439b: Reactions with KRO2HO2 and KDEC G47499: KDEC MNNCATECO \rightarrow NC4MDCO2H +HCOCO2H + NO2

> G47501b: Reactions with KRO2HO2 and KDEC MN- $CATECO \rightarrow NC4MDCO2H + HCOCO2H + HO2$

> G47502: KDEC MNCATECO \rightarrow NC4MDCO2H + HCOCO2H + HO2

> G47503: KDEC MNCATECO \rightarrow NC4MDCO2H + HCOCO2H + HO2

> G47504: KDEC MNCATECO \rightarrow NC4MDCO2H +HCOCO2H + HO2

> G47509b: Reactions with KRO2HO2 and KDEC ND- $NCRESO \rightarrow NC4MDCO2H + HNO3 + CO + CO +$ NO2

> G47510: KDEC NDNCRESO \rightarrow NC4MDCO2H +HNO3 + CO + CO + NO2

> G47511: KDEC NDNCRESO \rightarrow NC4MDCO2H +HNO3 + CO + CO + NO2

> G47512: KDEC NDNCRESO \rightarrow NC4MDCO2H +HNO3 + CO + CO + NO2

> G47513b: Reactions with KRO2HO2 and KDEC $DNCRESO \rightarrow NC4MDCO2H + HCOCO2H + NO2$

> G47514: KDEC DNCRESO \rightarrow NC4MDCO2H + HCOCO2H + NO2

> G47515: KDEC DNCRESO \rightarrow NC4MDCO2H +HCOCO2H + NO2

 $\mathsf{G47425}$: KDEC NCRESO \to C5CO14OH + GLYOX G47489: Only major channel. KDEC PTLQO \to G47516: KDEC DNCRESO \to NC4MDCO2H + HCOCO2H + NO2

G48202: Alkyl nitrate formation neglected.

G48205: Alkyl nitrate formation neglected.

G48210: Alkyl nitrate formation neglected.

G48212: Alkyl nitrate formation neglected.

G48216: Alkyl nitrate formation neglected.

G48222: Alkyl nitrate formation neglected.

G48400a: Same products as for toluene. Assuming a 1:1:1 proportion in xylenes emissions the analogous toluene product is produced with a rate constant equal to (1.36E-11*0.24 + 2.31E-11*0.29 + 1.43E-11*0.155)/3, where k and coefficients are for the single isomers ortho, meta and para from MCM.

G48400b: Same products as for toluene. Assuming a 1:1:1 proportion in xylenes emissions the analogous toluene product is produced with a rate constant equal to (1.36E-11*0.05 + 2.31E-11*0.04 + 1.43E-11*0.10)/3, where k and coefficients are for the single isomers ortho, meta and para from MCM.

G48400c: Same products as for toluene. Assuming a 1:1:1 proportion in xylenes emissions the analogous toluene product is produced with a rate constant equal to (1.36E-11*0.16 + 2.31E-11*0.17 + 1.43E-11*0.12)/3, where k and coefficients are for the single isomers ortho, meta and para from MCM.

G48400d: Same products as for toluene. Assuming a 1:1:1 proportion in xylenes emissions the analogous toluene product is produced with a rate constant equal to (1.36E-11*0.55 + 2.31E-11*0.50 + 1.43E-11*0.625)/3, where k and coefficients are for the single isomers ortho, meta and para from MCM.

G48401: Same products as for toluene. The rate constant is the average of m, p, o k=(4.10E-16+2.60E-16+5.00E-16)/3 = 3.9E-16.

G48402: merged under same rate constant

G48403: Same products as for toluene

G48405: KDEC CH2OOB $\rightarrow 0.24$ CH2OO + 0.40 CO + 0.36 HO2 + 0.36 CO + 0.36 OH and H2O + PH $CHOO \rightarrow 0.625 \ PHCOOH + 0.375 \ BENZAL + 0.375$ H2O2 + 0.2 CO2

G48408: KDEC NSTYRENEO \rightarrow NO2 + HCHO + BENZAL

G48409: KDEC NSTYRENEO \rightarrow NO2 + HCHO + BENZAL

G48410: KDEC NSTYRENEO \rightarrow NO2 + HCHO + BENZAL

G48412b: KDEC STYRENO \rightarrow HO2 + HCHO + BEN-ZAL and reactions with KRO2HO2.

G48413: KDEC STYRENO \rightarrow HO2 + HCHO + BEN-ZAL

G48414: KDEC STYRENO \rightarrow HO2 + HCHO + BEN-ZAL

G48415: KDEC STYRENO \rightarrow HO2 + HCHO + BEN-ZAL

G49207: Alkyl nitrate formation neglected.

G49238: Alkyl nitrate formation neglected.

G49246: Only this channel considered as the intermediate radical is likely more stable than CHCH(OH)₂.Instead of the (lacking) carbonyl a product of further degradation is assumed.

G49247: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

alyzed by formic acid (Grenfell et al., 2006).

G49400a: Same products as for toluene. Assuming G40206: a 1:1:1 proportion in xylenes emissions the analogous kadt)*acoch3 = 6.46E-11 where kads = 3.0E-11, toluene product is produced with a rate constant equal kadt = 5.5E-11, acoch3 = 0.76

to (3.27E-11*0.21 + 3.25E-11*0.30 + 5.67E-11*0.14)/3, where k and coefficients are for the single isomers 1,2,3-, 1.3.4- and 1.3.5- from MCM.

G49400b: Same products as for toluene. Assuming a 1:1:1 proportion in xylenes emissions the analogous toluene product is produced with a rate constant equal to (3.27E-11*0.06 + 3.25E-11*0.06 + 5.67E-11*0.03)/3, where k and coefficients are for the single isomers 1,2,3-, 1,3,4- and 1,3,5- from MCM.

G49400c: Same products as for toluene. Assuming a 1:1:1 proportion in xylenes emissions the analogous toluene product is produced with a rate constant equal to (3.27E-11*0.03 + 3.25E-11*0.03 + 5.67E-11*.04)/3, where k and coefficients are for the single isomers 1,2,3-, 1.3.4- and 1.3.5- from MCM.

G49400d: Same products as for toluene. Assuming a 1:1:1 proportion in xylenes emissions the analogous toluene product is produced with a rate constant equal to (3.27E-11*0.70 + 3.25E-11*0.61 + 5.67E-11*0.79)/3, where k and coefficients are for the single isomers 1,2,3-, 1.3.4- and 1.3.5- from MCM.

G49401: Same products as for toluene. The rate constant is the average of m, p, o k=(1.90+1.80+0.88)E-15/3 = 1.52 E-15.

G40200: Products from Vereecken et al. (2007). LAP-INABO2 = 0.65 APINAO2 + 0.35 APINBO2

G40203: Weighted average for isomers A and B, k = 0.33*9.20E-14+0.67*8.80E-13.

G40204: Weighted average for isomers A and B, k = 0.35*1.83E-11+0.65*3.28E-11.

G49248: Theoretical keto-enol tautomerization cat- G40205: Weighted average for isomers A and B, k = 0.35*5.50E-12+0.65*3.64E-12.

> SAR-estimated rate constant. (kads+

G40207: Alkyl nitrate formation neglected.

G40211: Products from Rickard and Pascoe (2009).

G40212: Products from Rickard and Pascoe (2009).

G40232: Products from Capouet et al. (2008).

G40242: Alkyl nitrate formation neglected.

G40246: Products from Rickard and Pascoe (2009).

G40248: Alkyl nitrate formation neglected.

G40252a: Products from Vereecken and Peeters (2012).

G40252b: Products from Vereecken and Peeters (2012).

G40259: ROO6R1OOH is produced but no sink for it.

G40262: RO6R1OOH is produced but no sink for it.

G40266: Rate constant modified according to MCM protocol.

G40267a: Products from Nguyen et al. (2009).

G40268: Products from Rickard and Pascoe (2009).

G40270: Alkyl nitrate neglected.

G40274: As for RO6R1NO3 in G4085.

G40276: Only this channel considered as the intermediate radical is likely more stable than CHCH(OH)₂.

G40277: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

G40278: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

G40282a: Products from Vereecken and Peeters (2012).

G40282b: Products from Vereecken and Peeters (2012).

G40283a: Products from Nguyen et al. (2009).

G40284: Products from Rickard and Pascoe (2009).

G40285a: Products from Vereecken and Peeters (2012).

G40285b: Products from Vereecken and Peeters (2012).

G40286a: Products from Nguven et al. (2009).

G40287: Products from Rickard and Pascoe (2009).

higher aromatics

G40401: Same products as for toluene.

G6103: The rate coefficient is defined as backward reaction divided by equilibrium constant.

G6204: At low temperatures, there may be a minor reaction channel leading to O₃+HCl. See Finkbeiner et al. (1995) for details. It is neglected here.

G6402: The initial products are probably HCl and CH₂OOH (Atkinson et al., 2006). It is assumed that CH₂OOH dissociates into HCHO and OH.

G6409: It is assumed that the reaction liberates all Cl atoms in the form of HCl.

G7302: The rate coefficient is: $k_Br0_N02 = k_$ 3rd(temp, cair, 5.2E-31, 3.2, 6.9E-12, 2.9, 0.6).

G7303: The rate coefficient is defined as backward reaction (Atkinson et al., 2007) divided by equilibrium constant (Orlando and Tyndall, 1996).

G7404: It is assumed that the reaction liberates all Br atoms in the form of HBr.

G7407: It is assumed that the reaction liberates all Br atoms. The fate of the carbon atom is currently not considered.

G7408: It is assumed that the reaction liberates all Br atoms. The fate of the carbon atom is currently not considered.

G40400: DIET35TOL (from MCM) as representative of G7605: Same value as for G7408: CH₂Br₂+OH as G9400a: For the abstraction path, the assumed reaction sumed. It is assumed that the reaction liberates all Br and Cl atoms. The fate of the carbon atom is currently not considered.

> G7606: Same value as for G7408: CH_2Br_2+OH assumed. It is assumed that the reaction liberates all Br and Cl atoms. The fate of the carbon atom is currently not considered.

> G7607: It is assumed that the reaction liberates all Br and Cl atoms. The fate of the carbon atom is currently not considered.

> G8102: Consistent with O'Dowd and Hoffmann (2005), it is assumed that the reaction produces new particles. G8103: The yield of 38 % OIO is from Atkinson et al. (2007). It is assumed here that the remaining 62 %produce $2 I + O_2$.

> G8300: The rate coefficient is: $k_I_N02 = k_3rd$ iupac(temp, cair, 3.E-31, 1., 6.6E-11, 0., 0.63).

G8305: The rate coefficient is defined as backward reaction (Atkinson et al., 2007) divided by equilibrium constant (van den Bergh and Troe, 1976).

G8401: The rate coefficient is from Dillon et al. (2006b), the yield of I atoms is a lower limit given on page 2170 of Bale et al. (2005).

G8402: The products are from Nakano et al. (2005).

G8701: 80% Br + OIO production is from Atkinson et al. (2007). The remaining channels are assumed to produce $Br + I + O_2$.

sequence (omitting H_2O and O_2 as products) according to Yin et al. (1990) is:

$$\begin{array}{cccc} DMS + OH & \rightarrow & CH_3SCH_2 \\ CH_3SCH_2 + O_2 & \rightarrow & CH_3SCH_2OO \\ CH_3SCH_2OO + NO & \rightarrow & CH_3SCH_2O + NO_2 \\ CH_3SCH_2O & \rightarrow & CH_3S + HCHO \\ CH_3S + O_3 & \rightarrow & CH_3SO \\ CH_3SO + O_3 & \rightarrow & CH_3SO_2 \\ DMS + OH + NO + 2O_3 & \rightarrow & CH_3SO_2 + HCHO + NO_2 \end{array}$$

Neglecting the effect on O_3 and NO_x , the remaining reaction is:

$$DMS + OH + O_3 \rightarrow CH_3SO_2 + HCHO$$

G9400b: For the addition path, the rate coefficient is: $k_DMS_OH = 1.0E-39*EXP(5820./temp)*C(ind_02)$ $/ (1.+5.0E-30*EXP(6280./temp)*C(ind_02)).$

G9402: Products and yields are not from Hynes and Wine (1996).

G9408: Average of 3.9E-11 and 3.42E-11.

G10201: Upper limit.

Table 2: Photolysis reactions

#	labels	reaction	rate coefficient	reference
J (gas)				
J0001	UpGJ	$O(^{3}P) \to O^{+} + e^{-}$	<pre>jx(ip_Op_em) +jx(ip_se_Op_em)</pre>	Fuller-Rowell (1993)
J0002a	UpGJ	${ m O_2} ightarrow { m O_2^+} + { m e^-}$	<pre>jx(ip_02p_em) +jx(ip_se_02_b1)</pre>	Fuller-Rowell (1993)
J0002b	UpGJ	$O_2 \to O^+ + O(^3P) + e^-$	<pre>jx(ip_Op_O_em) +jx(ip_se_O2_b2)</pre>	Fuller-Rowell (1993)
J0003a	UpGJN	$N_2 \rightarrow N_2^+ + e^-$	$jx(ip_N2p_em) + jx(ip_se_N2_b1)$	Fuller-Rowell (1993)
J0003b	UpGJN	$N_2 \rightarrow N^+ + N + e^-$	<pre>jx(ip_Np_N_em) +jx(ip_se_N2_b2)</pre>	Fuller-Rowell (1993)
J0003c	UpGJN	$N_2 \to N^+ + N(^2D) + e^-$	<pre>jx(ip_Np_N2D_em)+jx(ip_se_N2_b3)</pre>	Fuller-Rowell (1993)
J0003d	UpGJN	$N_2 \rightarrow N + N(^2D)$	$jx(ip_N_N2D_em) + jx(ip_se_N2_b4)$	Fuller-Rowell (1993)
J1000a	UpStTrGJ	$O_2 + h\nu \to O(^3P) + O(^3P)$	jx(ip_02)	Sander et al. (2014)
J1000b	UpGJ	$O_2 + h\nu \rightarrow O(^3P) + O(^1D)$	jx(ip_03P01D)	Sander et al. (2014)
J1000c	UpGJ	$O_2 + h\nu \rightarrow O_2^+ + e^-$	jx(ip_02_b1)	Sander et al. (2014)
J1000d	UpGJ	$O_2 + h\nu \to O^{+} + O(^3P) + e^{-}$	jx(ip_02_b2)	Sander et al. (2014)
J1001a	$\operatorname{UpStTrGJ}$	$O_3 + h\nu \rightarrow O(^1D) + O_2$	jx(ip_O1D)	Sander et al. (2014)
J1001b	$\operatorname{UpStTrGJ}$	$O_3 + h\nu \rightarrow O(^3P) + O_2$	jx(ip_O3P)	Sander et al. (2014)
J1002	UpGJ	$O(^{3}P) + h\nu \rightarrow O^{+} + e^{-}$	jx(ip_03Pp)	Sander et al. (2014)
J2100a	UpStGJ	$\mathrm{H_2O} + \mathrm{h}\nu \rightarrow \mathrm{H} + \mathrm{OH}$	jx(ip_H2O)	Sander et al. (2014)
J2100b	UpGJ	$\mathrm{H_2O} + \mathrm{h}\nu \to \mathrm{H_2} + \mathrm{O}(^1\mathrm{D})$	jx(ip_H2O1D)	Sander et al. (2014)
J2101	UpStTrGJ	$\mathrm{H_2O_2} + \mathrm{h}\nu \rightarrow 2~\mathrm{OH}$	jx(ip_H2O2)	Sander et al. (2014)
J3000a	UpGJN	$N_2 + h\nu \rightarrow N_2^+ + e^-$	jx(ip_N2_b1)	Sander et al. (2014)
Ј3000Ъ	UpGJN	$N_2 + h\nu \rightarrow N^+ + N + e^-$	jx(ip_N2_b2)	Sander et al. (2014)
J3000c	UpGJN	$N_2 + h\nu \to N^+ + N(^2D) + e^-$	jx(ip_N2_b3)	Sander et al. (2014)
J3000d	UpGJN	$N_2 + h\nu \rightarrow N + N(^2D)$	jx(ip_NN2D)	Sander et al. (2014)
J3100	UpStGJN	$ m N_2O + h u ightarrow O(^1D) + N_2$	jx(ip_N2O)	Sander et al. (2014)
J3101	UpStTrGJN	$NO_2 + h\nu \rightarrow NO + O(^3P)$	jx(ip_NO2)	Sander et al. (2014)
J3102a	UpStGJN	$ m NO + h u ightarrow N + O(^3P)$	jx(ip_NO)	Sander et al. (2014)
J3102b	UpGJN	$NO + h\nu \rightarrow NO^+ + e^-$	jx(ip_NOp)	Sander et al. (2014)
J3103a	UpStTrGJN	$NO_3 + h\nu \rightarrow NO_2 + O(^3P)$	jx(ip_N020)	Sander et al. (2014)
J3103b	UpStTrGJN	$NO_3 + h\nu \rightarrow NO + O_2$	jx(ip_N002)	Sander et al. (2014)
J3104	$\operatorname{StTrGJN}$	$N_2O_5 + h\nu \rightarrow NO_2 + NO_3$	jx(ip_N2O5)	Sander et al. (2014)
J3200	TrGJN	$\mathrm{HONO} + \mathrm{h}\nu \rightarrow \mathrm{NO} + \mathrm{OH}$	jx(ip_HONO)	Sander et al. (2014)
J3201	StTrGJN	$HNO_3 + h\nu \rightarrow NO_2 + OH$	jx(ip_HNO3)	Sander et al. (2014)
J3202	StTrGJN	${\rm HNO_4 + h}\nu \rightarrow .667~{\rm NO_2 + .667~HO_2 + .333~NO_3 + .333~OH}$	jx(ip_HNO4)	Sander et al. (2014)
J41000	StTrGJ	$\mathrm{CH_3OOH} + \mathrm{h}\nu \rightarrow \mathrm{CH_3O} + \mathrm{OH}$	jx(ip_CH300H)	Sander et al. (2014)
J41001a	StTrGJ	$\mathrm{HCHO} + \mathrm{h}\nu \rightarrow \mathrm{H}_2 + \mathrm{CO}$	jx(ip_COH2)	Sander et al. (2014)

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J41001b	StTrGJ	$\mathrm{HCHO} + \mathrm{h}\nu \rightarrow \mathrm{H} + \mathrm{CO} + \mathrm{HO}_2$	jx(ip_CHOH)	Sander et al. (2014)
J41002	StGJ	$\mathrm{CO}_2 + \mathrm{h}\nu \to \mathrm{CO} + \mathrm{O}(^3\mathrm{P})$	jx(ip_CO2)	Sander et al. (2014)
J41003	StGJ	CH ₄ + h $\nu \rightarrow$.42 CH ₃ + .42 H + .6912 H ₂ + .0864 HCHO + .0864 O(³ P) + .1584 OH + .1584 HO ₂ + .2112 CO ₂ + .1824 CO + .024 H ₂ O + .10 LCARBON	<pre>jx(ip_CH4)</pre>	Sander et al. $(2014)^*$
J41004	StTrGJN	$\mathrm{CH_3ONO} + \mathrm{h}\nu \rightarrow \mathrm{CH_3O} + \mathrm{NO}$	jx(ip_CH30NO)	Sander et al. (2014)
J41005	StTrGJN	$\mathrm{CH_3ONO_2} + \mathrm{h}\nu \rightarrow \mathrm{CH_3O} + \mathrm{NO_2}$	jx(ip_CH3NO3)	Sander et al. (2014)
J41006	$\operatorname{StTrGJN}$	${\rm CH_3O_2NO_2} + {\rm h}\nu \rightarrow .667~{\rm NO_2} + .667~{\rm CH_3O_2} + .333~{\rm NO_3} + .333~{\rm CH_3O}$	jx(ip_CH302N02)	Sander et al. $(2014)^*$
J41007	StTrGJ	$\mathrm{HOCH_2OOH} + \mathrm{h}\nu \rightarrow \mathrm{HCOOH} + \mathrm{OH} + \mathrm{HO_2}$	jx(ip_CH300H)	Sander et al. (2014)
J41008	StTrGJ	$CH_3O_2 + h\nu \rightarrow HCHO + OH$	jx(ip_CH3O2)	Sander et al. (2014)
J41009	StTrGJ	$\text{HCOOH} + \text{h}\nu \rightarrow \text{CO} + \text{HO}_2 + \text{OH}$	jx(ip_HCOOH)	Sander et al. (2014)
J41010	$\operatorname{StTrGJN}$	$\rm HOCH_2O_2NO_2 + h\nu \rightarrow .667~NO_2 + .667~HOCH_2O_2 + .333~NO_3 + .333~HCOOH + .333~HO_2$	jx(ip_CH302N02)	Sander et al. (2014)
J42000	TrGJC	$C_2H_5OOH + h\nu \rightarrow CH_3CHO + HO_2 + OH$	jx(ip_CH300H)	von Kuhlmann (2001)
J42001a	TrGJC	$\mathrm{CH_3CHO} + \mathrm{h}\nu \rightarrow \mathrm{CH_3} + \mathrm{HO_2} + \mathrm{CO}$	jx(ip_CH3CHO)	Sander et al. (2014)
J42001b	TrGJC	$\mathrm{CH_{3}CHO} + \mathrm{h}\nu \rightarrow \mathrm{CH_{2}CHOH}$	jx(ip_CH3CHO2VINY)	Clubb et al. (2012)
J42002	TrGJC	$\mathrm{CH_3C}(\mathrm{O})\mathrm{OOH} + \mathrm{h}\nu \to \mathrm{CH_3} + \mathrm{OH} + \mathrm{CO_2}$	jx(ip_CH3CO3H)	Sander et al. (2014)
J42004	TrGJCN	PAN + h ν → .7 CH ₃ C(O) + .7 NO ₂ + .3 CH ₃ + .3 CO ₂ + .3 NO ₃	jx(ip_PAN)	Sander et al. $(2014)^*$
J42005a	TrGJC	$HOCH_2CHO + h\nu \rightarrow HCHO + 2 HO_2 + CO$	jx(ip_HOCH2CHO)*0.83	Sander et al. $(2014)^*$
J42005b	TrGJC	$HOCH_2CHO + h\nu \rightarrow OH + HCOCH_2O_2$	jx(ip_HOCH2CH0)*0.07	Sander et al. $(2014)^*$
J42005c	TrGJC	$HOCH_2CHO + h\nu \rightarrow CH_3OH + CO$	jx(ip_HOCH2CH0)*0.10	Sander et al. $(2014)^*$
J42006	TrGJC	$HOCH_2CO_3H + h\nu \rightarrow HCHO + HO_2 + OH + CO_2$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J42007	TrGJCN	PHAN + h $\nu \rightarrow$.7 HOCH2CO + .7 NO ₂ + .3 HCHO + .3 HO ₂ + .3 CO ₂ + .3 NO ₃	jx(ip_PAN)	see note*
J42008	TrGJC	$\mathrm{GLYOX} + \mathrm{h}\nu \rightarrow 2~\mathrm{CO} + 2~\mathrm{HO}_2$	<pre>jx(ip_GLYOX)</pre>	Sander et al. (2014)
J42009	TrGJC	$\mathrm{HCOCO_2H} + \mathrm{h}\nu \rightarrow 2\ \mathrm{HO_2} + \mathrm{CO} + \mathrm{CO_2}$	jx(ip_MGLYOX)	Rickard and Pascoe (2009)
J42010	TrGJC	$HCOCO_3H + h\nu \rightarrow HO_2 + CO + OH + CO_2$	jx(ip_CH300H)+jx(ip_H0CH2CH0)	Rickard and Pascoe (2009)
J42011	TrGJC	$HYETHO2H + h\nu \rightarrow HOCH_2CH_2O + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J42012	TrGJCN	ETHOHNO3 + $h\nu \rightarrow HO_2 + 2 \text{ HCHO} + NO_2$	j_IC3H7NO3	Rickard and Pascoe (2009)
J42013	TrGJC	$\text{HOOCH2CO3H} + \text{h}\nu \rightarrow \text{OH} + \text{HCHO} + \text{CO}_2 + \text{OH}$	2.*jx(ip_CH300H)	Sander et al. (2019)
J42014	TrGC	$\text{HOOCH2CO2H} + \text{h}\nu \rightarrow \text{OH} + \text{HCHO} + \text{HO}_2 + \text{CO}_2$	jx(ip_CH300H)	Sander et al. (2019)
J42015	TrGC	CH2CO + $h\nu \rightarrow .4$ CO ₂ + .8 H + .34 CO + .34 OH + .34 HO ₂ + .16 HCHO + .16 O(³ P) + .1 HCOOH + CO	j_ketene*0.36	Sander et al. (2019)

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J42016	TrGC	$\text{CH3CHOHOOH} + \text{h}\nu \rightarrow \text{CH}_3 + \text{HCOOH} + \text{OH}$	jx(ip_CH300H)	Sander et al. (2019)
J42017	TrGJCN	$NO_3CH2CHO + h\nu \rightarrow HO_2 + CO + HCHO + NO_2$	(jx(ip_C2H5NO3)+jx(ip_CH3CHO))	Sander et al. $(2019)^*$
			*(jx(ip_NOA)+1E-10)/(0.59*j_	
			IC3H7NO3+jx(ip_CH3COCH3)+1E-10)	
J42018	TrGJC	$\text{HOOCH2CHO} + \text{h}\nu \rightarrow \text{OH} + \text{HCHO} + \text{CO} + \text{HO}_2$	<pre>jx(ip_CH300H)+jx(ip_H0CH2CH0)</pre>	Sander et al. (2019)
J42019	TrGJCN	$C_2H_5ONO_2 + h\nu \rightarrow CH_3CHO + HO_2 + NO_2$	jx(ip_C2H5NO3)	Sander et al. (2019)
J42020	TrGJCN	$NO_3CH2CHO + h\nu \rightarrow .7 NO_3CH2CO_3 + .7 NO_2 + .3 HCHO + .3 NO_2 + .3 CO_2 + .3 NO_3$	<pre>jx(ip_PAN)</pre>	Sander et al. $(2019)^*$
J42021	StTrGJCN	$C_2H_5O_2NO_2 + h\nu \rightarrow .667 NO_2 + .667 C_2H_5O_2 + .333 NO_3 + .333 CH_3CHO + .333 HO_2$	jx(ip_CH302N02)	Sander et al. (2019)*
J42022	TrGJC	HOOCCOOH + h $\nu \rightarrow \mathrm{CO_2}$ + .72 HCOOH + .28 CO + .28 H ₂ O	jx(ip_HOOCCOOH)	Yamamoto and Back (1985)
J43000	TrGJC	$iC_3H_7OOH + h\nu \rightarrow CH_3COCH_3 + HO_2 + OH$	jx(ip_CH300H)	von Kuhlmann (2001)
J43001	TrGJC	$\mathrm{CH_3COCH_3} + \mathrm{h}\nu \rightarrow \mathrm{CH_3C(O)} + \mathrm{CH_3}$	jx(ip_CH3COCH3)	Sander et al. (2014)
J43002	TrGJC	CH ₃ COCH ₂ OH + h $\nu \rightarrow$.5 CH ₃ C(O) + .5 HCHO + .5 HO ₂ + .5 HOCH2CO + .5 CH ₃	j_ACETOL	Sander et al. (2014)*
J43003	TrGJC	$MGLYOX + h\nu \rightarrow CH_3C(O) + CO + HO_2$	<pre>jx(ip_MGLYOX)</pre>	Sander et al. (2014)
J43004	TrGJC	$CH_3COCH_2O_2H + h\nu \rightarrow CH_3C(O) + HCHO + OH$	jx(ip_CH300H)+j_ACETOL	Rickard and Pascoe (2009)
J43005	TrGJC	$\text{HOCH2COCH2OOH} + \text{h}\nu \rightarrow \text{HOCH2CO} + \text{HCHO} + \text{OH}$	jx(ip_CH300H)+j_ACETOL	Sander et al. (2019)
J43006	TrGJCN	$iC_3H_7ONO_2 + h\nu \rightarrow CH_3COCH_3 + NO_2 + HO_2$	j_IC3H7NO3	von Kuhlmann et al. (2003)*
J43007	TrGJCN	$NOA + h\nu \rightarrow CH_3C(O) + HCHO + NO_2$	jx(ip_NOA)	Barnes et al. (1993)
J43009	TrGJC	$HYPROPO2H + h\nu \rightarrow CH_3CHO + HCHO + HO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J43010	TrGJCN	$PR2O2HNO3 + h\nu \rightarrow NOA + HO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J43011	TrGJC	$\text{HOCH2COCHO} + \text{h}\nu \rightarrow \text{HOCH2CO} + \text{CO} + \text{HO}_2$	<pre>jx(ip_MGLYOX)</pre>	Rickard and Pascoe (2009)
J43012	TrGJC	$\mathrm{HCOCOCH_{2}OOH} + \mathrm{h}\nu \rightarrow \mathrm{HCOCO} + \mathrm{HCHO} + \mathrm{OH}$	jx(ip_CH300H)+j_ACETOL	Sander et al. (2019)
J43013	TrGJC	$\mathrm{HCOCOCH_2OOH} + \mathrm{h}\nu \rightarrow \mathrm{HOOCH_2CO_3} + \mathrm{CO} + \mathrm{HO_2}$	<pre>jx(ip_MGLYOX)</pre>	Sander et al. (2019)
J43014	TrGJTerC	$\text{HCOCH2CHO} + \text{h}\nu \rightarrow \text{HCOCH}_2\text{O}_2 + \text{HO}_2 + \text{CO}$	jx(ip_HOCH2CHO)*2.	Rickard and Pascoe (2009)
J43015	TrGJTerC	$\text{HCOCH2CO2H} + \text{h}\nu \rightarrow \text{HCOCH}_2\text{O}_2 + \text{CO}_2 + \text{HO}_2$	jx(ip_HOCH2CHO)	Rickard and Pascoe (2009)
J43016	TrGJTerC	$HOC2H4CO3H + h\nu \rightarrow HOCH_2CH_2O_2 + CO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J43017	TrGJC	$\text{HCOCOCHO} + \text{h}\nu \rightarrow \text{HCOCO} + \text{HO}_2 + \text{CO}$	2.*jx(ip_MGLYOX)	Sander et al. (2019)
J43018	TrGJC	$\text{CH}_3\text{COCO}_2\text{H} + \text{h}\nu \rightarrow .32 \text{ CH}_3\text{CHO} + .16 \text{ CH}_2\text{CHOH} + .54 \text{ CO}_2 + .38 \text{ CH}_3\text{C(O)} + .38 \text{ HO}_2 + .38 \text{ CO}_2 + .07 \text{ CH}_3\text{COOH} + .07 \text{ CH}_$	jx(ip_CH3COCO2H)	Sander et al. (2019)*
142040	T-00	$CO + .05 CH_3C(O) + .05 CO + .05 OH$:(: MGI VOV) ::(: GUOCCU)	C1+ -1 (2010)
J43019	TrGC	$CH_3COCO_3H + h\nu \rightarrow CH_3C(O) + OH + CO_2$	<pre>jx(ip_MGLYOX)+jx(ip_CH300H)</pre>	Sander et al. (2019)

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J43020	TrGC	$CH3CHCO + h\nu \rightarrow C_2H_4 + CO$	j_ketene*0.36*2.	Sander et al. (2019)
J43021	TrGCN	$PROPOLNO3 + h\nu \rightarrow HOCH_2CHO + HCHO + HO_2 + NO_2$	j_IC3H7NO3	Sander et al. (2019)
J43022	TrGCN	$CH_3COCH_2OONO_2 + h\nu \rightarrow CH_3C(O) + HCHO + NO_3$	<pre>jx(ip_CH302N02)+jx(ip_CH3COCH3)</pre>	Sander et al. (2019)
J43023	TrGJC	$C_3H_7OOH + h\nu \rightarrow C_2H_5CHO + HO_2 + OH$	jx(ip_CH300H)	von Kuhlmann (2001)
J43024	TrGJCN	$C_3H_7ONO_2 + h\nu \rightarrow C_2H_5CHO + NO_2 + HO_2$	0.59*j_IC3H7NO3	see note*
J43025a	TrGJC	$C_2H_5CHO + h\nu \rightarrow C_2H_5O_2 + HO_2 + CO$	jx(ip_C2H5CHO2HCO)	see note*
J43025b	TrGJC	$C_2H_5CHO + h\nu \rightarrow CH_2CHCH_2OH$	<pre>jx(ip_C2H5CH02EN0L)</pre>	Andrews et al. (2012), Sander et al. (2019)*
J43026	TrGJCN	PPN + h $\nu \rightarrow$.7 C ₂ H ₅ CO ₃ + .7 NO ₂ + .3 C ₂ H ₅ O ₂ + .3 CO ₂ + .3 NO ₃	<pre>jx(ip_PAN)</pre>	Sander et al. (2014)
J43027	TrGJC	$C_2H_5CO_3H + h\nu \rightarrow C_2H_5O_2 + CO_2 + OH$	jx(ip_CH300H)	von Kuhlmann (2001)
J43028a	TrGJC	$\text{HCOCOCH}_2\text{OOH} + \text{h}\nu \rightarrow \text{HOOCH}_2\text{CO}_3 + \text{CO} + \text{HO}_2$	jx(ip_MGLYOX)	Sander et al. (2019)
J43028b	TrGJC	$\text{HCOCOCH}_2\text{OOH} + \text{h}\nu \rightarrow \text{HCOCO} + \text{HCHO} + \text{OH}$	jx(ip_HOCH2CHO)+jx(ip_CH3OOH)	Sander et al. (2019)
J43200	TrGJTerC	$\text{HCOCH2CO3H} + \text{h}\nu \rightarrow \text{HCOCH}_2\text{O}_2 + \text{CO}_2 + \text{OH}$	<pre>jx(ip_HOCH2CH0)+jx(ip_CH300H)</pre>	Rickard and Pascoe (2009)
J43400	TrGJAroC	C3DIALOOH + $h\nu \rightarrow GLYOX + CO + HO_2 + OH$	<pre>jx(ip_HOCH2CH0)*2.+jx(ip_CH300H)</pre>	Rickard and Pascoe (2009)*
J43401	TrGJAroC	$C32OH13CO + h\nu \rightarrow GLYOX + HO_2 + HO_2 + CO$	jx(ip_HOCH2CH0)*2.	Rickard and Pascoe (2009)
J43402	TrGJAroC	$\text{HCOCOHCO3H} + \text{h}\nu \rightarrow \text{GLYOX} + \text{HO}_2 + \text{CO}_2 + \text{OH}$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J44000a	TrGJC	$LC_4H_9OOH + h\nu \rightarrow OH + C_3H_7CHO + HO_2$	jx(ip_CH300H)*(k_p/(k_p+k_s))	Rickard and Pascoe (2009), Sander et al. (2019)
J44000b	TrGJC	$LC_4H_9OOH + h\nu \rightarrow OH + .636 \text{ MEK} + .636 \text{ HO}_2 + .364 $ $CH_3CHO + .364 \text{ C}_2H_5O_2$	jx(ip_CH300H)*(k_s/(k_p+k_s))	Rickard and Pascoe (2009), Sander et al. (2019)
J44001	TrGJC	MVK + h $\nu \rightarrow .5 \text{ C}_3\text{H}_6 + .5 \text{ CH}_3\text{C}(\text{O}) + .5 \text{ HCHO} + \text{CO} + .5 \text{ HO}_2$	<pre>jx(ip_MVK)</pre>	Sander et al. (2014)
J44002	TrGJC	$MEK + h\nu \rightarrow CH_3C(O) + C_2H_5O_2$	0.42*jx(ip_CHOH)	von Kuhlmann et al. (2003)
J44003	TrGJC	LMEKOOH + $h\nu \rightarrow .62 \text{ CH}_3\text{C(O)} + .62 \text{ CH}_3\text{CHO} + .38 \text{ HCHO} + .38 \text{ CO}_2 + .38 \text{ HOCH}_2\text{CH}_2\text{O}_2 + \text{OH}$	jx(ip_CH300H)+0.42*jx(ip_CH0H)	Sander et al. (2019)
J44004	TrGJC	$BIACET + h\nu \rightarrow 2 CH_3C(O)$	2.15*jx(ip_MGLYOX)	see note*
J44005a	TrGJCN	$LC4H9NO3 + h\nu \rightarrow NO_2 + C_3H_7CHO + HO_2$	j_IC3H7NO3*(k_p/(k_p+k_s))	see note*
J44005b	TrGJCN	$LC4H9NO3 + h\nu \rightarrow NO_2 + MEK + HO_2$	j_IC3H7NO3*(k_s/(k_p+k_s))	see note*
J44006	TrGJCN	$MPAN + h\nu \rightarrow .7 MACO3 + .7 NO2 + .3 MACO2 + .3 NO3$	jx(ip_PAN)	see note*
J44007a	TrGJC	$CO2H3CO3H + h\nu \rightarrow MGLYOX + HO_2 + OH + CO_2$	jx(ip_CH300H)	Rickard and Pascoe (2009)

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J44007b	TrGJC	$CO2H3CO3H + h\nu \rightarrow CH_3C(O) + HO_2 + HCOCO_3H$	j_ACETOL	Rickard and Pascoe (2009)
J44008	TrGJC	MACR + h $\nu \rightarrow$.5 MACO3 + .5 CH ₃ C(O) + .5 HCHO + .5 CO + HO ₂	<pre>jx(ip_MACR)</pre>	Sander et al. (2014)
J44009	TrGJC	$MACROOH + h\nu \rightarrow MACRO + OH$	jx(ip_CH300H)+2.77*jx(ip_ HOCH2CHO)	Sander et al. $(2019)^*$
J44010	TrGJC	$MACROH + h\nu \rightarrow CH_3COCH_2OH + CO + HO_2 + HO_2$	2.77*jx(ip_HOCH2CH0)	see note*
J44011	TrGJC	$MACO3H + h\nu \rightarrow MACO2 + OH$	jx(ip_CH300H)	Sander et al. (2019)
J44012	TrGJC	LHMVKABOOH + h $\nu \rightarrow$.12 MGLYOX + .12 HO ₂ + .88 CH ₃ C(O) + .88 HOCH ₂ CHO + .12 HCHO + OH	jx(ip_CH3OOH)+j_ACETOL	Sander et al. (2019)
J44013	TrGJC	$CO2H3CHO + h\nu \rightarrow MGLYOX + CO + HO_2 + HO_2$	jx(ip_HOCH2CHO)+j_ACETOL	Sander et al. (2019)
J44014	TrGJC	$\text{HO}12\text{CO}3\text{C}4 + \text{h}\nu \rightarrow \text{CH}_3\text{C}(\text{O}) + \text{HOCH}_2\text{CHO} + \text{HO}_2$	j_ACETOL	Rickard and Pascoe (2009)
J44015	TrGJC	$BIACETOH + h\nu \rightarrow CH_3C(O) + HOCH2CO$	2.15*jx(ip_MGLYOX)	see note*
J44016	TrGC	HCOCCH ₃ CO + h ν \rightarrow .5 OH + .5 CH ₃ CHO + CO + .5 CH ₃ CHCO + .5 CO	j_ketene	Sander et al. (2019)
J44017a	TrGC	CH ₃ COCHCO + h $\nu \rightarrow$.0192 CH ₃ COCO ₂ H + .1848 H ₂ O ₂ + .2208 MGLYOX + .36 OH + .36 CO + .56 CH ₃ C(O) + .2 CH ₃ CHO + .2 CO ₂ + .2 HCHO + .2 HO ₂ + CO	j_ketene*0.5	Sander et al. (2019),Rickard and Pascoe (2009)*
J44017b	TrGC	$CH_3COCHCO + h\nu \rightarrow CH3CHCO + CO$	j_ketene*0.5	Sander et al. (2019)
J44018a	TrGJC	$CH_3COCOCHO + h\nu \rightarrow CH_3C(O) + 2 CO + HO_2$	jx(ip_MGLYOX)	Sander et al. (2019)
J44018b	TrGJC	$CH_3COCOCHO + h\nu \rightarrow HCOCO + CH_3C(O)$	2.15*jx(ip_MGLYOX)	Sander et al. (2019)
J44019	TrGJC	$CH3COCOCO2H + h\nu \rightarrow CH_3C(O) + CO + CO_2 + HO_2$	3.15*jx(ip_MGLYOX)	Sander et al. (2019)
J44020a	TrGJTerC	$CH_3COCOCH_2OOH + h\nu \rightarrow CH_3C(O) + OH + HCHO + CO$	jx(ip_CH300H)+j_ACETOL	Rickard and Pascoe (2009)
J44020b	TrGJTerC	$CH_3COCOCH_2OOH + h\nu \rightarrow CH_3C(O) + HCOCO$	2.15*jx(ip_MGLYOX)	Rickard and Pascoe (2009)
J44021	TrGJTerC	$C44OOH + h\nu \rightarrow HCOCH2CHO + CO_2 + HO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J44022	TrGJTerC	C413COOOH + $h\nu \rightarrow HCOCH2CO3 + HCHO + OH$	<pre>jx(ip_CH300H)+jx(ip_H0CH2CH0) +j_ACETOL</pre>	Rickard and Pascoe (2009)
J44023a	TrGJTerC	$C4CODIAL + h\nu \rightarrow HCOCOCH_2O_2 + HO_2 + CO$	jx(ip_HOCH2CHO)	Rickard and Pascoe (2009)
J44023b	TrGJTerC	$C4CODIAL + h\nu \rightarrow HCOCH2CO3 + HO_2 + CO$	jx(ip_MGLYOX)	Rickard and Pascoe (2009)
J44024	TrGJTerC	$C312COCO3H + h\nu \rightarrow HCOCOCH_2O_2 + CO_2 + OH$	jx(ip_CH300H)+jx(ip_MGLYOX)	Rickard and Pascoe (2009)
J44025	TrGJCN	LMEKNO3 + h $\nu \rightarrow$.62 CH ₃ C(O) + .62 CH ₃ CHO + .38 HCHO + .38 CO ₂ + .38 HOCH ₂ CH ₂ O ₂ + NO ₂	jx(ip_MEKNO3)	Barnes et al. (1993), Sander et al. (2019)*
J44026	TrGJCN	$\text{MVKNO3} + \text{h}\nu \rightarrow \text{CH}_3\text{C(O)} + \text{HOCH}_2\text{CHO} + \text{NO}_2$	jx(ip_MEKNO3)	Barnes et al. (1993), Sander et al. (2019)*

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J44027	TrGJCN	$MACRNO3 + h\nu \rightarrow CH_3COCH_2OH + CO + HO_2 + NO_2$	(2.84*j_IC3H7NO3+jx(ip_CH3CHO))	Müller et al. (2014),
			(jx(ip_MEKNO3)+1E-10)/(j_	Sander et al. $(2019)^$
			IC3H7NO3+0.42*jx(ip_CHOH)+1E-10)	
J44028	TrGJCN	$TC4H9NO3 + h\nu \rightarrow CH_3COCH_3 + CH_3 + NO_2$	2.84*j_IC3H7NO3	Sander et al. (2019)
J44029	TrGJC	$TC_4H_9OOH + h\nu \rightarrow CH_3COCH_3 + CH_3 + OH$	jx(ip_CH300H)	Sander et al. (2019)
J44030	TrGJCN	$IBUTOLBNO3 + h\nu \rightarrow CH_3COCH_3 + HCHO + HO_2 + NO_2$	2.84*j_IC3H7NO3	Sander et al. (2019)
J44031	TrGJC	$IBUTOLBOOH + h\nu \rightarrow CH_3COCH_3 + HCHO + HO_2 + OH$	jx(ip_CH300H)	Sander et al. (2019)
J44032	TrGJC	$LBUT1ENOOH + h\nu \rightarrow C_2H_5CHO + HCHO + HO_2 + OH$	jx(ip_CH300H)	Sander et al. (2019)
J44033	TrGJCN	$LBUT1ENNO3 + h\nu \rightarrow C_2H_5CHO + HCHO + HO_2 + NO_2$	j_IC3H7NO3	Sander et al. (2019)
J44034	TrGJC	$BUT2OLOOH + h\nu \rightarrow 2 CH_3CHO + HO_2 + OH$	jx(ip_CH300H)	Sander et al. (2019)
J44035	TrGJCN	$BUT2OLNO3 + h\nu \rightarrow 2 CH_3CHO + HO_2 + NO_2$	j_IC3H7NO3	Sander et al. (2019)
J44036	TrGJC	$BUT2OLO + h\nu \rightarrow CH_3C(O) + HOCH2CO$	j_ACETOL	Sander et al. (2019)
J44037a	TrGJC	$C_3H_7CHO + h\nu \rightarrow C_3H_7O_2 + CO + HO_2$	jx(ip_C3H7CHO2HCO)	Sander et al. (2019)
J44037b	TrGJC	$C_3H_7CHO + h\nu \rightarrow C_2H_4 + CH_2CHOH$	jx(ip_C3H7CHO2VINY)	Sander et al. $(2019)^*$
J44038	TrGJC	$IPRCHO + h\nu \rightarrow iC_3H_7O_2 + CO + HO_2$	jx(ip_IPRCHO2HCO)	Sander et al. (2019)
J44039	TrGJCN	$IC4H9NO3 + h\nu \rightarrow IPRCHO + NO_2$	j_IC3H7NO3	Sander et al. (2019)
J44040	TrGJC	$IC_4H_9OOH + h\nu \rightarrow IPRCHO + HO_2 + OH$	jx(ip_CH300H)	Sander et al. (2019)
J44041	TrGJC	$PERIBUACID + h\nu \rightarrow iC_3H_7O_2 + CO_2 + OH$	jx(ip_CH300H)	Sander et al. (2019)
J44042	TrGJCN	$PIPN + h\nu \rightarrow .7 IPRCO3 + .7 NO_2 + .3 iC_3H_7O_2 + .3 CO_2 +$	jx(ip_PAN)	Sander et al. (2019) ,
		$.3~\mathrm{NO_3}$		Sander et al. (2014)
J44043	TrGJC	$HVMK + h\nu \rightarrow MGLYOX + CO + 2 OH$	jx(ip_PeDIONE24)	Sander et al. (2019) ,
				Nakanishi et al. (1977),
				Messaadia et al. (2015),
				Yoon et al. (1999)*
J44044	TrGJC	$\mathrm{HMAC} + \mathrm{h}\nu \rightarrow \mathrm{HCOCCH_3CO} + 2 \mathrm{OH}$	jx(ip_PeDIONE24)	Sander et al. (2019),
				Nakanishi et al. (1977),
				Messaadia et al. (2015),
				Yoon et al. (1999)*
J44045a	TrGJC	$CO2C3CHO + h\nu \rightarrow CH_3COCH_2O_2 + HO_2 + CO$	jx(ip_C2H5CHO2HCO)	Rickard and Pascoe (2009)
J44045b	TrGJC	$CO2C3CHO + h\nu \rightarrow HVMK$	jx(ip_C2H5CHO2ENOL)	Andrews et al. (2012),
				Sander et al. (2019)
J44046a	TrGJC	$IBUTDIAL + h\nu \rightarrow CH_3CHO + CO + HO_2 + CO_2 + H_2O$	jx(ip_C2H5CHO2HCO)*2.	see note*
J44046b	TrGJC	$IBUTDIAL + h\nu \rightarrow HMAC$	jx(ip_C2H5CHO2ENOL)*2.	Andrews et al. (2012),
				Sander et al. (2019)
J44200	TrGJTerC	$IBUTALOH + h\nu \rightarrow CH_3COCH_3 + HO_2 + HO_2 + CO$	j_ACETOL	Rickard and Pascoe (2009)

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J44201	TrGJTerC	$IPRHOCO3H + h\nu \rightarrow CH_3COCH_3 + HO_2 + CO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J44400a	TrGJAroC	$MALDIALOOH + h\nu \rightarrow C32OH13CO + CO + OH + HO_2$	jx(ip_HOCH2CH0)*2.	Rickard and Pascoe (2009)
J44400b	TrGJAroC	$MALDIALOOH + h\nu \rightarrow GLYOX + GLYOX + HO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J44401	TrGJAroC	$\rm BZFUOOH + h\nu \rightarrow CO14O3CHO + HO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J44402	TrGJAroC	$HOCOC4DIAL + h\nu \rightarrow HCOCOHCO3 + HO_2 + CO$	<pre>jx(ip_MGLYOX)+jx(ip_HOCH2CH0)</pre>	Rickard and Pascoe (2009)
J44403	TrGJAroCN	NBZFUOOH + h ν \rightarrow .5 CO14O3CHO + .5 NO ₂ + .5 NBZFUONE + .5 HO ₂ + OH	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J44404a	TrGJAroC	$MALDALCO3H + h\nu \rightarrow HCOCO_3H + HO_2 + CO + HO_2 + CO$	jx(ip_MACR)	Rickard and Pascoe (2009)
J44404b	$\operatorname{TrGJAroC}$	MALDALCO3H + $h\nu \rightarrow .6$ MALANHY + HO_2 + $.4$ GLYOX + $.4$ CO + $.4$ CO ₂ + OH	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J44405	TrGJAroC	$EPXDLCO2H + h\nu \rightarrow C3DIALO2 + CO_2 + HO_2$	2.77*jx(ip_HOCH2CH0)	Rickard and Pascoe (2009)
J44406	TrGJAroC	$MALDIAL + h\nu \rightarrow .4 BZFUONE + .6 MALDIALCO3 + .6 HO_2$	jx(ip_N02)*0.14	Rickard and Pascoe (2009)
J44407	TrGJAroC	${\rm MALANHYOOH} + {\rm h}\nu \rightarrow {\rm HCOCOHCO3} + {\rm CO}_2 + {\rm OH}$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J44408	TrGJAroC	EPXDLCO3H + $h\nu \rightarrow C3DIALO2 + OH + CO_2$	jx(ip_CH300H)+2.77*jx(ip_ HOCH2CHO)	Rickard and Pascoe (2009)
J44409	TrGJAroC	$CO2C4DIAL + h\nu \rightarrow CO + CO + HO_2 + HO_2 + CO + CO$	jx(ip_MGLYOX)*2.	Rickard and Pascoe (2009)
J44410	TrGJAroC	$MALDALCO2H + h\nu \rightarrow HCOCO_2H + HO_2 + CO + HO_2 + CO$	jx(ip_MACR)	Rickard and Pascoe (2009)
J44411	TrGJAroC	$EPXC4DIAL + h\nu \rightarrow C3DIALO2 + CO + HO_2$	2.77*jx(ip_HOCH2CH0)*2.	Rickard and Pascoe (2009)
J44412	TrGJAroC	$CO14O3CHO + h\nu \rightarrow HO_2 + CO + HCOCH_2O_2 + CO_2$	jx(ip_MGLYOX)	Rickard and Pascoe (2009)
J44414	TrGJAroC	$MECOACEOOH + h\nu \rightarrow CH_3C(O) + HCHO + CO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J45002	TrGJC	$LISOPACOOH + h\nu \rightarrow LISOPACO + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J45003	TrGJCN	$LISOPACNO3 + h\nu \rightarrow LISOPACO + NO_2$	0.59*j_IC3H7NO3	see note*
J45004	TrGJC	$ISOPBOOH + h\nu \rightarrow MVK + HCHO + HO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J45005	TrGJCN	$ISOPBNO3 + h\nu \rightarrow MVK + HCHO + HO_2 + NO_2$	2.84*j_IC3H7NO3	see note*
J45006	TrGJC	$ISOPDOOH + h\nu \rightarrow MACR + HCHO + HO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J45007	TrGJCN	$ISOPDNO3 + h\nu \rightarrow MACR + HCHO + HO_2 + NO_2$	j_IC3H7NO3	see note*
J45008	TrGJCN	$NISOPOOH + h\nu \rightarrow NC4CHO + HO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J45009	TrGJCN	$NC4CHO + h\nu \rightarrow LHC4ACCO3 + NO_2$	(.59*j_IC3H7NO3+jx(ip_MACR)) *(jx(ip_MEKNO3)+1E-10)/(j_ IC3H7NO3+0.42*jx(ip_CHOH)+1E-10)	Müller et al. (2014), Sander et al. (2019)*

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J45010	TrGJCN	LNISOOH + $h\nu \rightarrow NOA + OH + .5 HOCHCHO + .5 CO + .5$	jx(ip_CH300H)	Taraborrelli et al. (2009),
		$\mathrm{HO_2} + .5 \mathrm{CO_2}$		Sander et al. (2019)
J45011	TrGJC	$LHC4ACCHO + h\nu \rightarrow .5 \ LHC4ACCO3 + .5 \ HO_2 + .5 \ CO + .5$	jx(ip_MACR)	Sander et al. (2019)
		$\mathrm{OH} + .25\ \mathrm{MACRO2} + .25\ \mathrm{LHMVKABO2}$		
J45012	TrGJC	$LC578OOH + h\nu \rightarrow .25 CH_3COCH_2OH + .75 MGLYOX + .25$	jx(ip_CH300H)+ 2.77*jx(ip_	Sander et al. (2019)
		$HOCHCHO + .75 HOCH_2CHO + .75 HO_2 + OH$	HOCH2CHO)	
J45013	TrGJC	$LHC4ACCO3H + h\nu \rightarrow OH + .5 MACRO2 + .5 LHMVKABO2$	j_HPALD	Sander et al. (2019)
		$+ OH + CO_2$		
J45014	TrGJCN	$LC5PAN1719 + h\nu \rightarrow .7 LHC4ACCO3 + .7 NO_2 + .15 MACRO2$	<pre>jx(ip_PAN)</pre>	Sander et al. (2019)
		$+ .15 \text{ LHMVKABO2} + .3 \text{ CO}_2 + .3 \text{ NO}_3$		
J45015	TrGJC	$\mathrm{HCOC5} + \mathrm{h}\nu \rightarrow .65~\mathrm{CH_3} + .65~\mathrm{CO} + .65~\mathrm{HCHO} + .35~\mathrm{OH} +$	0.5*jx(ip_MVK)	Sander et al. $(2019)^*$
		$.35 \text{ CH}_3\text{COCH}_2\text{O}_2 + \text{HOCH}2\text{CO}$		
J45016	TrGJC	$C59OOH + h\nu \rightarrow CH_3COCH_2OH + HOCH2CO + OH$	j_ACETOL+jx(ip_CH3OOH)	Sander et al. (2019)
J45017	TrGJTerC	$C511OOH + h\nu \rightarrow CH_3C(O) + HCOCH2CHO + OH$	<pre>jx(ip_CH300H)+jx(ip_HOCH2CH0)</pre>	Rickard and Pascoe (2009)
J45018a	TrGJTerC	$CO23C4CHO + h\nu \rightarrow CH_3COCOCH_2O_2 + HO_2 + CO$	jx(ip_HOCH2CH0)	Rickard and Pascoe (2009)
J45018b	TrGJTerC	$CO23C4CHO + h\nu \rightarrow CH_3C(O) + HCOCH2CO3$	2.15*jx(ip_MGLYOX)	Rickard and Pascoe (2009)
J45019	TrGJTerC	$CO23C4CO3H + h\nu \rightarrow CH_3COCOCH_2O_2 + CO_2 + OH$	<pre>jx(ip_CH300H)+jx(ip_HOCH2CH0)</pre>	Rickard and Pascoe (2009)
J45020	TrGJTerC	$C512OOH + h\nu \rightarrow C513O2 + OH$	<pre>jx(ip_CH300H)+jx(ip_H0CH2CH0)</pre>	Rickard and Pascoe (2009)
J45021	TrGJTerC	$CO13C4CHO + h\nu \rightarrow CHOC3COO2 + CO + HO_2$	jx(ip_HOCH2CH0)*2.	Rickard and Pascoe (2009)
J45022	TrGJTerC	$C513OOH + h\nu \rightarrow GLYOX + HOC_2H_4CO_3 + OH$	<pre>jx(ip_CH300H)+jx(ip_H0CH2CH0)</pre>	Rickard and Pascoe (2009)
J45023	TrGJTerC	$C513CO + h\nu \rightarrow HOC_2H_4CO_3 + HO_2 + CO + CO$	<pre>jx(ip_MGLYOX)+2.15*jx(ip_MGLYOX)</pre>	Rickard and Pascoe (2009)
J45024	TrGJTerC	$C514OOH + h\nu \rightarrow CO13C4CHO + HO_2 + OH$	$jx(ip_CH300H)+jx(ip_H0CH2CH0)*2.$	Rickard and Pascoe (2009)
J45025	TrGJTerCN	$C514NO3 + h\nu \rightarrow CO13C4CHO + HO_2 + NO_2$	j_IC3H7NO3+jx(ip_HOCH2CHO)*2.	Rickard and Pascoe (2009)
J45026a	TrGJC	LZCODC23DBCOOH + $h\nu \rightarrow OH + CO + HVMK + OH$	j_HPALD*0.6*0.5	Sander et al. (2019) ,
				Jenkin et al. (2015) ,
				Peeters et al. (2014)
J45026b	TrGJC	LZCODC23DBCOOH + $h\nu \rightarrow OH + CO + CH_3C(O) +$	j_HPALD*0.6*0.5	Sander et al. (2019) ,
		$HOCH_2CHO$		Jenkin et al. (2015),
	E 676			Peeters et al. (2014)
J45026c	TrGJC	LZCODC23DBCOOH + $h\nu \rightarrow OH + CO + HMAC + OH$	j_HPALD*0.4*0.5	Sander et al. (2019),
				Jenkin et al. (2015),
	F 676			Peeters et al. (2014)
J45026d	TrGJC	LZCODC23DBCOOH + $h\nu \rightarrow OH + CO + CO +$	j_HPALD*0.4*0.5	Sander et al. (2019),
		$\mathrm{CH_{3}COCH_{2}OH} + \mathrm{HO_{2}}$		Jenkin et al. (2015),
				Peeters et al. (2014)

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J45027	TrGJC	LZCO3HC23DBCOD + h $\nu \rightarrow$.62 EZCH3CO2CHCHO + .38 EZCHOCCH3CHO2 + OH + CO ₂	j_HPALD	Sander et al. (2019)
J45028a	TrGJC	C1OOHC2OOHC4OD + $h\nu \rightarrow CH_3COCH_2O_2H + OH + 2 CO + HO_2$	2.77*jx(ip_HOCH2CHO)	Sander et al. (2019)
J45028b	TrGJC	C1OOHC2OOHC4OD + h $\nu \rightarrow$.5 CH3COCH2O2H + .5 HOCHCHO + .5 CO2H3CHO + .5 HCHO + 1.5 OH	2.*jx(ip_CH300H)	Sander et al. (2019)
J45029	TrGC	$DB1OOH + h\nu \rightarrow DB1O2 + OH$	jx(ip_CH300H)	Sander et al. (2019)
J45030	TrGC	DB2OOH + h $\nu \rightarrow$.48 CH3COCH2OH + .52 HOCH2CHO + .52 MGLYOX + .48 GLYOX + HO2 + OH	jx(ip_CH300H)	Sander et al. (2019)
J45031a	TrGJC	C1ODC2OOHC4OD + $h\nu \rightarrow MGLYOX + HOCHCHO + OH$	jx(ip_CH300H)	Sander et al. (2019)
J45031b	TrGJC	$C1ODC2OOHC4OD + h\nu \rightarrow CO2H3CHO + CO + HO_2 + OH$	2.*2.77*jx(ip_HOCH2CH0)	Sander et al. (2019)
J45032	TrGJC	C4MDIAL + h $\nu \rightarrow$.5 CH ₃ COCHCO + .5 HCOCCH ₃ CO + CO + HO ₂ + OH	jx(ip_NO2)*0.1*0.5	Sander et al. (2019)*
J45033	TrGCN	$\mathrm{DB1NO3} + \mathrm{h}\nu \rightarrow \mathrm{DB1O2} + \mathrm{NO}_2$	j_IC3H7NO3	Sander et al. (2019)
J45034	TrGJTerC	$CHOC3COOOH + h\nu \rightarrow CHOC3COO2 + CO_2 + OH$	<pre>jx(ip_CH300H)+jx(ip_H0CH2CH0) +j_ACETOL</pre>	Rickard and Pascoe (2009)
J45200a	TrGJTerC	LMBOABOOH + h $\nu \rightarrow$ HOCH ₂ CHO + CH ₃ COCH ₃ + HO ₂ + OH	jx(ip_CH300H)*.67	Rickard and Pascoe (2009), Sander et al. (2019)
J45200b	TrGJTerC	LMBOABOOH + h $\nu \rightarrow$ IBUTALOH + HCHO + HO ₂ + OH	jx(ip_CH300H)*.33	Rickard and Pascoe (2009), Sander et al. (2019)
J45201	TrGJTerC	$MBOACO + h\nu \rightarrow HCHO + HO_2 + IPRHOCO3$	j_ACETOL	Rickard and Pascoe (2009)
J45202	TrGJTerC	$MBOCOCO + h\nu \rightarrow CO + HO_2 + IPRHOCO3$	jx(ip_MGLYOX)	Rickard and Pascoe (2009)
J45203a	TrGJTerCN	LNMBOABOOH + $h\nu \rightarrow NO_3CH2CHO + CH_3COCH_3 + HO_2 + OH$	jx(ip_CH300H)*.65	Rickard and Pascoe (2009), Sander et al. (2019)
J45203b	TrGJTerCN	LNMBOABOOH + $h\nu \rightarrow IBUTALOH + HCHO + NO_2 + OH$	jx(ip_CH300H)*.35	Rickard and Pascoe (2009), Sander et al. (2019)
J45204	TrGJTerCN	$NC4OHCO3H + h\nu \rightarrow IBUTALOH + CO_2 + NO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J45400	TrGJAroC	$C54CO + h\nu \rightarrow HO_2 + CO + CO + CO + CH_3C(O)$	<pre>jx(ip_MGLYOX)+2.15*jx(ip_MGLYOX) *2.</pre>	Rickard and Pascoe (2009)
J45401	TrGJAroC	C5134CO2OH + $h\nu \rightarrow CH_3COCOCHO + HO_2 + CO + HO_2$	jx(ip_HOCH2CH0)+2.15*jx(ip_ MGLYOX)	Rickard and Pascoe (2009)

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J45402	TrGJAroC	C5DIALOOH + $h\nu \rightarrow MALDIAL + CO + HO_2 + OH$	<pre>jx(ip_CH300H)+jx(ip_MACR)</pre>	Rickard and Pascoe (2009)*
J45406	TrGJAroC	$C5CO14OH + h\nu \rightarrow CH_3C(O) + HCOCO_2H + HO_2 + CO$	<pre>jx(ip_MVK)</pre>	Rickard and Pascoe (2009)
J45407	TrGJAroC	C5DICARB + $h\nu \rightarrow .6$ C5CO14O2 + $.6$ HO ₂ + $.4$ TLFUONE	jx(ip_NO2)*0.2	Rickard and Pascoe (2009)*
J45408	TrGJAroC	MC3ODBCO2H + $h\nu \rightarrow CH_3COCO_2H + HO_2 + CO + HO_2 + CO$	<pre>jx(ip_MACR)</pre>	Rickard and Pascoe (2009)
J45409	TrGJAroC	$ACCOMECHO + h\nu \rightarrow MECOACETO2 + HO_2 + CO$	jx(ip_HOCH2CHO)	Rickard and Pascoe (2009)
J45410	TrGJAroC	$\mathrm{MMALNHYOOH} + \mathrm{h}\nu \rightarrow \mathrm{CO2H3CO3} + \mathrm{CO_2} + \mathrm{OH}$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J45411	TrGJAroC	C5DICAROOH + $h\nu \rightarrow MGLYOX + GLYOX + HO_2 + OH$	<pre>jx(ip_CH300H)+jx(ip_H0CH2CH0) +j_ACETOL</pre>	Rickard and Pascoe (2009)*
J45412	TrGJAroCN	$NTLFUOOH + h\nu \rightarrow ACCOMECHO + NO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J45414	TrGJAroC	C5CO14OOH + h $\nu \to .83$ MALANHY + .83 CH ₃ + .17 MGLYOX + .17 HO ₂ + .17 CO + .17 CO ₂ + OH	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J45415	TrGJAroC	TLFUOOH + $h\nu \rightarrow ACCOMECHO + HO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J45417	TrGJAroC	$ACCOMECO3H + h\nu \rightarrow MECOACETO2 + CO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J45418	TrGJAroC	$C5DIALCO + h\nu \rightarrow MALDIALCO3 + CO + HO_2$	<pre>jx(ip_MGLYOX)+jx(ip_MACR)</pre>	Rickard and Pascoe (2009)
J46200	TrGJTerCN	$C614NO3 + h\nu \rightarrow CO23C4CHO + HCHO + HO_2 + NO_2$	2.15*jx(ip_MGLYOX)	Rickard and Pascoe (2009)
J46201	TrGJTerC	$C614OOH + h\nu \rightarrow CO23C4CHO + HCHO + HO_2 + OH$	jx(ip_CH300H)+2.15*jx(ip_MGLYOX)	Rickard and Pascoe (2009)
J46202	TrGJTerC	$CO235C5CHO + h\nu \rightarrow CO23C4CO3 + CO + HO_2$	jx(ip_MGLYOX)	Rickard and Pascoe (2009)
J46203	TrGJTerC	$CO235C6OOH + h\nu \rightarrow CO23C4CO3 + HCHO + OH$	jx(ip_CH300H)+2.15*jx(ip_MGLYOX)	Rickard and Pascoe (2009)
J46400	TrGJAroC	PHENOOH + h $\nu \rightarrow$.71 MALDALCO2H + .71 GLYOX + .29 PBZQONE + HO ₂ + OH	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J46401	TrGJAroC	$C6CO4DB + h\nu \rightarrow C4CO2DBCO3 + HO_2 + CO$	jx(ip_MGLYOX)*2.	Rickard and Pascoe (2009)
J46402	TrGJAroC	$C5CO2DCO3H + h\nu \rightarrow CH_3C(O) + HCOCOCHO + CO_2 + OH$	<pre>jx(ip_CH300H)+jx(ip_MGLYOX)</pre>	Rickard and Pascoe (2009)
J46403	TrGJAroCN	NDNPHENOOH + $h\nu \rightarrow NC4DCO2H + HNO_3 + CO + CO + NO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J46404	TrGJAroCN	BZBIPERNO3 + $h\nu \rightarrow GLYOX + HO_2 + .5$ BZFUONE + $.5$ BZFUONE + NO_2	j_IC3H7NO3	Rickard and Pascoe (2009)*
J46405	TrGJAroCN	$HOC6H4NO2 + h\nu \rightarrow HONO + CPDKETENE$	jx(ip_HOC6H4NO2)	Chen et al. (2011)*
J46406	TrGJAroC	CPDKETENE + $h\nu \rightarrow CO_2 + CO + 2 HO_2 + MALDIAL$	j_ketene	see note*

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J46407	TrGJAroC	C5COOHCO3H + h ν \rightarrow HOCOC4DIAL + HO ₂ + CO + CO ₂ + OH	jx(ip_CH300H)	Rickard and Pascoe (2009)
J46408	TrGJAroC	BZEPOXMUC + h $\nu \rightarrow .5$ C5DIALO2 + 1.5 HO2 + 1.5 CO + .5 MALDIAL	4.E3*jx(ip_MVK)*0.1	Rickard and Pascoe (2009)
J46409	TrGJAroCN	$NPHEN1OOH + h\nu \rightarrow NPHEN1O + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J46410	TrGJAroC	$BZEMUCCO + h\nu \rightarrow HCOCOHCO3 + C3DIALO2$	<pre>jx(ip_HOCH2CH0)*2.+j_ACETOL</pre>	Rickard and Pascoe (2009)
J46411	TrGJAroC	$BZEMUCCO2H + h\nu \rightarrow C5DIALO2 + CO_2 + HO_2$	<pre>jx(ip_MACR)</pre>	Rickard and Pascoe (2009)
J46412	TrGJAroCN	NNCATECOOH + h $\nu \rightarrow$ NC4DCO2H + HCOCO ₂ H + NO ₂ + OH	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J46413	TrGJAroC	$C615CO2OOH + h\nu \rightarrow C5DICARB + CO + HO_2 + OH$	<pre>jx(ip_MVK)+jx(ip_CH300H)</pre>	Rickard and Pascoe (2009)
J46414	TrGJAroCN	$NPHENOOH + h\nu \rightarrow MALDALCO2H + GLYOX + OH + NO_2$	j_IC3H7NO3 + jx(ip_CH3OOH)	Rickard and Pascoe (2009)
J46415	TrGJAroCN	$NCATECOOH + h\nu \rightarrow NC4DCO2H + HCOCO_2H + HO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J46416	TrGJAroC	$PBZQOOH + h\nu \rightarrow C5CO2OHCO3 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J46417	TrGJAroC	$BZOBIPEROH + h\nu \rightarrow MALDIALCO3 + GLYOX + HO_2$	j_ACETOL	Rickard and Pascoe (2009)
J46418	TrGJAroC	BZBIPEROOH + h $\nu \rightarrow$ GLYOX + HO ₂ + .5 BZFUONE + .5 BZFUONE + OH	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J46419	TrGJAroCN	$NBZQOOH + h\nu \rightarrow C6CO4DB + NO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J46420	TrGJAroC	$CATEC1OOH + h\nu \rightarrow CATEC1O + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J46421	TrGJAroC	$C6125CO + h\nu \rightarrow C5CO14O2 + CO + HO_2$	<pre>jx(ip_MGLYOX)+jx(ip_MVK)</pre>	Rickard and Pascoe (2009)
J46422	TrGJAroCN	DNPHENOOH + $h\nu \rightarrow NC4DCO2H + HCOCO_2H + NO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J46423	TrGJAroC	$BZEMUCCO3H + h\nu \rightarrow C5DIALO2 + CO_2 + OH$	<pre>jx(ip_CH300H)+jx(ip_MACR)</pre>	Rickard and Pascoe (2009)
J46424	TrGJAroC	$C6H5OOH + h\nu \rightarrow C6H5O + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J46425	TrGJAroC	BZEMUCOOH + h $\nu \rightarrow$.5 EPXC4DIAL + .5 GLYOX + .5 HO ₂ + .5 C3DIALO2 + .5 C32OH13CO + OH	<pre>jx(ip_CH300H)+jx(ip_H0CH2CH0)*2.</pre>	Rickard and Pascoe (2009)*
J46427	TrGJAroCN	$BZEMUCNO3 + h\nu \rightarrow EPXC4DIAL + NO_2 + GLYOX + HO_2$	2.77*jx(ip_HOCH2CHO)	Rickard and Pascoe (2009)
J46428	TrGJAroCN	$\text{DNPHEN} + \text{h}\nu \rightarrow \text{HONO} + \text{NCPDKETENE}$	jx(ip_HOC6H4NO2)	Sander et al. (2019)
J46429	TrGJAroCN	$\text{NCPDKETENE} + \text{h}\nu \rightarrow \text{CO}_2 + \text{CO} + 2 \text{ HO}_2 + \text{NC4DCO2H}$	j_ketene	see note*
J47200	TrGJTerC	$CO235C6CHO + h\nu \rightarrow CHOC3COCO3 + CH_3C(O)$	2.15*jx(ip_MGLYOX)	Rickard and Pascoe (2009)
J47201	TrGJTerC	$C235C6CO3H + h\nu \rightarrow CO235C6O2 + CO_2 + OH$	<pre>jx(ip_CH300H)+2.15*jx(ip_MGLYOX)</pre>	Rickard and Pascoe (2009)
J47202	TrGJTerC	$C716OOH + h\nu \rightarrow CO13C4CHO + CH_3C(O) + OH$	jx(ip_CH300H)+jx(ip_HOCH2CH0)	Rickard and Pascoe (2009)
J47203	TrGJTerC	$C721OOH + h\nu \rightarrow C722O2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J47204	TrGJTerC	$C722OOH + h\nu \rightarrow CH_3COCH_3 + C44O2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J47400	TrGJAroC	TLEPOXMUC + $h\nu \rightarrow .5$ C615CO2O2 + HO_2 + CO + $.5$ EPXC4DIAL + $.5$ CH ₃ C(O)	4.E3*jx(ip_MVK)*0.1	Rickard and Pascoe (2009)
J47401	TrGJAroC	$C6H5CH2OOH + h\nu \rightarrow BENZAL + HO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J47402	TrGJAroCN	$C6H5CH2NO3 + h\nu \rightarrow BENZAL + HO_2 + NO_2$	0.59*j_IC3H7NO3	Rickard and Pascoe (2009)*
J47403	TrGJAroC	$BENZAL + h\nu \rightarrow HO_2 + CO + C6H5O2$	jx(ip_BENZAL)	Wallington et al. (2018)
J47404	TrGJAroC	TLBIPEROOH + h $\nu \rightarrow$.6 GLYOX + .4 MGLYOX + HO ₂ + .2 C4MDIAL + .2 C5DICARB + .2 TLFUONE + .2 BZFUONE + .2 MALDIAL + OH	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J47405	TrGJAroCN	TLBIPERNO3 + h $\nu \rightarrow$.6 GLYOX + .4 MGLYOX + HO ₂ + .2 C4MDIAL + .2 C5DICARB + .2 TLFUONE + .2 BZFUONE + .2 MALDIAL + NO ₂	j_IC3H7NO3	Rickard and Pascoe (2009)*
J47406	TrGJAroC	TLOBIPEROH + $h\nu \rightarrow C5CO14O2 + GLYOX + HO_2$	j_ACETOL	Rickard and Pascoe (2009)
J47407	TrGJAroC	CRESOOH + h $\nu \rightarrow$.68 C5CO14OH + .68 GLYOX + HO ₂ + .32 PTLQONE + OH	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J47408a	TrGJAroCN	NCRESOOH + h $\nu \rightarrow$.68 C5CO14OH + .68 GLYOX + HO ₂ + .32 PTLQONE + OH + NO ₂	j_IC3H7NO3	Rickard and Pascoe (2009)*
J47408b	TrGJAroCN	NCRESOOH + $h\nu \rightarrow C5CO14OH + GLYOX + NO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J47409	TrGJAroCN	$TOL1OHNO2 + h\nu \rightarrow HONO + MCPDKETENE$	jx(ip_HOPh3Me2NO2)	see note*
J47410	TrGJAroC	TLEMUCCO2H + $h\nu \rightarrow C615CO2O2 + CO_2 + HO_2$	jx(ip_MACR)	Rickard and Pascoe (2009)
J47411	TrGJAroC	TLEMUCCO3H + $h\nu \rightarrow C615CO2O2 + CO_2 + OH$	jx(ip_CH300H)+jx(ip_MACR)	Rickard and Pascoe (2009)
J47412	TrGJAroC	TLEMUCOOH + h $\nu \rightarrow$.5 C3DIALO2 + .5 CO2H3CHO + .5 EPXC4DIAL + .5 MGLYOX + .5 HO ₂ + OH	<pre>jx(ip_CH300H)+2.77*jx(ip_ HOCH2CH0)+j_ACETOL</pre>	Rickard and Pascoe (2009)*
J47413	TrGJAroCN	TLEMUCNO3 + $h\nu \rightarrow EPXC4DIAL + NO_2 + CH_3C(O) + CO + HO_2$	2.77*jx(ip_HOCH2CH0)+j_ACETOL	Rickard and Pascoe (2009)
J47414	TrGJAroC	TLEMUCCO + $h\nu \rightarrow CH_3C(O)$ + EPXC4DIAL + $CO + HO_2$	2.77*jx(ip_HOCH2CH0)+2.15*jx(ip_ MGLYOX)	Rickard and Pascoe (2009)
J47415	TrGJAroC	$C6H5CO3H + h\nu \rightarrow C6H5O2 + CO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J47416	TrGJAroC	$OXYL1OOH + h\nu \rightarrow TOL1O + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J47417	TrGJAroCN	$MNCATECH + h\nu \rightarrow HONO + MCPDKETENE$	jx(ip_HOPh3Me2NO2)	see note*
J47418	TrGJAroC	$MCPDKETENE + h\nu \rightarrow CO_2 + CO + 2 HO_2 + C4MDIAL$	j_ketene	see note*
J47419	TrGJAroCN	$DNCRES + h\nu \rightarrow HONO + MNCPDKETENE$	jx(ip_HOPh3Me2NO2)	see note*

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J47420	TrGJAroCN	MNCPDKETENE + h ν \rightarrow CO $_2$ + CO + 2 HO $_2$ + NC4MDCO2HN	j_ketene	see note*
J47421	TrGJAroC	$MCATEC1OOH + h\nu \rightarrow MCATEC1O + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J47422	TrGJAroCN	$NPTLQOOH + h\nu \rightarrow C7CO4DB + NO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J47423	TrGJAroC	$PTLQOOH + h\nu \rightarrow C6CO2OHCO3 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J47424	TrGJAroCN	$NCRES1OOH + h\nu \rightarrow NCRES1O + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J47425	TrGJAroCN	MNNCATCOOH + h $\nu \rightarrow$ NC4MDCO2HN + HCOCO ₂ H + NO ₂ + OH	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J47426	TrGJAroCN	MNCATECOOH + $h\nu \rightarrow NC4MDCO2HN + HCOCO_2H + HO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J47427	TrGJAroC	$C7CO4DB + h\nu \rightarrow C5CO2DBCO3 + HO_2 + CO$	<pre>jx(ip_MGLYOX)*2.</pre>	Rickard and Pascoe (2009)
J47428	TrGJAroCN	NDNCRESOOH + $h\nu \rightarrow NC4MDCO2HN + HNO_3 + CO + CO + NO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J47429	TrGJAroCN	DNCRESOOH + h ν \rightarrow NC4MDCO2HN + HCOCO ₂ H + NO ₂ + OH	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J47430	TrGJAroC	C6COOHCO3H + h ν \rightarrow C5134CO2OH + HO ₂ + CO + CO ₂ + OH	jx(ip_CH300H)	Rickard and Pascoe (2009)
J48200	TrGJTerC	$C86OOH + h\nu \rightarrow C511O2 + CH_3COCH_3 + OH$	<pre>jx(ip_CH300H)+ jx(ip_H0CH2CH0)</pre>	Rickard and Pascoe (2009)
J48201	TrGJTerC	$C812OOH + h\nu \rightarrow C813O2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J48202	TrGJTerC	$C813OOH + h\nu \rightarrow CH_3COCH_3 + C512O2 + OH$	<pre>jx(ip_CH300H)+jx(ip_MGLYOX)</pre>	Rickard and Pascoe (2009)
J48203	TrGJTerC	$C721CHO + h\nu \rightarrow C721O2 + CO + HO_2$	jx(ip_HOCH2CHO)	Rickard and Pascoe (2009)
J48204	TrGJTerC	$C721CO3H + h\nu \rightarrow C721O2 + CO_2 + OH$	<pre>jx(ip_CH300H)</pre>	Rickard and Pascoe (2009)
J48205	TrGJTerC	$C8BCOOH + h\nu \rightarrow C89O2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J48206	TrGJTerC	$C89OOH + h\nu \rightarrow C810O2 + OH$	<pre>jx(ip_CH300H)+jx(ip_HOCH2CH0)</pre>	Rickard and Pascoe (2009)
J48207	TrGJTerCN	$C89NO3 + h\nu \rightarrow C810O2 + NO_2$	<pre>jx(ip_CH300H)+jx(ip_H0CH2CH0)</pre>	Rickard and Pascoe (2009)
J48208	TrGJTerC	$C810OOH + h\nu \rightarrow CH_3COCH_3 + C514O2 + OH$	<pre>jx(ip_CH300H)+jx(ip_HOCH2CH0)</pre>	Rickard and Pascoe (2009)
J48209	TrGJTerCN	$C810NO3 + h\nu \rightarrow CH_3COCH_3 + C514O2 + NO_2$	2.84*j_IC3H7NO3+jx(ip_HOCH2CHO)	Rickard and Pascoe (2009)
J48210	TrGJTerCN	$C8BCNO3 + h\nu \rightarrow C89O2 + NO_2$	j_IC3H7NO3	Rickard and Pascoe (2009)
J48211	TrGJTerC	$C85OOH + h\nu \rightarrow C86O2 + OH$	jx(ip_CH300H)+j_ACETOL	Rickard and Pascoe (2009)
J48400	TrGJAroC	$STYRENOOH + h\nu \rightarrow HO_2 + HCHO + BENZAL + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J49200	TrGJTerC	$C96OOH + h\nu \rightarrow C97O2 + OH$	jx(ip_CH300H)+j_ACETOL	Rickard and Pascoe (2009)
J49201	TrGJTerC	$C97OOH + h\nu \rightarrow C98O2 + OH$	jx(ip_CH300H)+j_ACETOL	Rickard and Pascoe (2009)

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J49202	TrGJTerC	$C98OOH + h\nu \rightarrow C614O2 + CH_3COCH_3 + OH$	(jx(ip_CH300H)+2.15*jx(ip_ MGLYOX))	Rickard and Pascoe (2009)
J49203a	TrGJTerC	$NORPINAL + h\nu \rightarrow C85O2 + CO + HO_2$	<pre>jx(ip_PINAL2HCO)</pre>	Rickard and Pascoe (2009), Sander et al. (2019)
J49203b	TrGJTerC	$NORPINAL + h\nu \rightarrow NORPINENOL$	jx(ip_PINAL2ENOL)	Sander et al. (2019), Andrews et al. (2012)
J49204	TrGJTerC	$C85CO3H + h\nu \rightarrow C85O2 + CO_2 + OH$	jx(ip_CH300H)+j_ACETOL	Rickard and Pascoe (2009)
J49205	TrGJTerC	$C89CO2H + h\nu \rightarrow .8 \ C811CO3 + .2 \ C89O2 + .2 \ CO_2 + HO_2$	jx(ip_HOCH2CHO)	Rickard and Pascoe (2009)
J49206	TrGJTerC	$C89CO3H + h\nu \rightarrow .8 C811CO3 + .2 C89O2 + .2 CO_2 + OH$	<pre>jx(ip_CH300H)+jx(ip_H0CH2CH0)</pre>	Rickard and Pascoe (2009)
J49207	TrGJTerC	$C811CO3H + h\nu \rightarrow C811O2 + CO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J49208	TrGJTerC	$NOPINDOOH + h\nu \rightarrow C89CO3 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J40200	TrGJTerC	$LAPINABOOH + h\nu \rightarrow PINAL + HO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J40201	TrGJTerC	MENTHEN6ONE + $h\nu \rightarrow RO6R1O2 + OH$	jx(ip_CH300H)	Vereecken et al. (2007)
J40202	TrGJTerC	$2OHMENTHEN6ONE + h\nu \rightarrow 10 LCARBON + OH$	jx(ip_CH300H)	Vereecken et al. (2007)
J40203a	TrGJTerC	$PINAL + h\nu \rightarrow C96O2 + CO + HO_2$	jx(ip_PINAL2HCO)	Rickard and Pascoe (2009)
J40203b	TrGJTerC	$PINAL + h\nu \rightarrow PINEOL$	jx(ip_PINAL2ENOL)	Sander et al. (2019), Andrews et al. (2012)*
J40204	TrGJTerC	PERPINONIC + $h\nu \rightarrow C96O2 + CO_2 + OH$	jx(ip_CH300H)+j_ACETOL	Rickard and Pascoe (2009)
J40205	TrGJTerC	$PINALOOH + h\nu \rightarrow C106O2 + OH$	<pre>jx(ip_CH300H)+jx(ip_H0CH2CH0)</pre>	Rickard and Pascoe (2009)
J40206	TrGJTerCN	$PINALNO3 + h\nu \rightarrow C106O2 + NO_2$	j_IC3H7NO3+jx(ip_HOCH2CHO)	Rickard and Pascoe (2009)
J40207	TrGJTerC	$C106OOH + h\nu \rightarrow C716O2 + CH_3COCH_3 + OH$	<pre>jx(ip_CH300H)+jx(ip_H0CH2CH0)</pre>	Rickard and Pascoe (2009)
J40208	TrGJTerCN	$C106NO3 + h\nu \rightarrow C716O2 + CH_3COCH_3 + NO_2$	j_IC3H7NO3+ jx(ip_HOCH2CHO)	Rickard and Pascoe (2009)
J40209	TrGJTerC	$C109OOH + h\nu \rightarrow C89CO3 + HCHO + OH$	<pre>jx(ip_CH300H)+jx(ip_H0CH2CH0)</pre>	Rickard and Pascoe (2009)
J40210	TrGJTerC	$C109CO + h\nu \rightarrow C89CO3 + CO + HO_2$	<pre>jx(ip_MGLYOX)+jx(ip_HOCH2CH0)</pre>	Rickard and Pascoe (2009)
J40211	TrGJTerCN	$LNAPINABOOH + h\nu \rightarrow PINAL + NO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J40212	TrGJTerC	$BPINAOOH + h\nu \rightarrow NOPINONE + HCHO + HO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J40213	TrGJTerCN	LNBPINABOOH + $h\nu \rightarrow NOPINONE + HCHO + NO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J40214	TrGJTerCN	$ROO6R1NO3 + h\nu \rightarrow ROO6R3O2 + CH_3COCH_3 + NO_2$	2.84*j_IC3H7NO3+jx(ip_CH3OOH)	Sander et al. (2019)
J40215	TrGJTerCN	$RO6R1NO3 + h\nu \rightarrow 9 LCARBON + HCHO + HO_2 + NO_2$	2.84*j_IC3H7NO3	Sander et al. (2019)
J6000	StTrGJCl	$Cl_2 + h\nu \rightarrow Cl + Cl$	jx(ip_Cl2)	Sander et al. (2014)
J6100	StTrGJCl	$\text{Cl}_2\text{O}_2 + \text{h}\nu \to 2 \text{ Cl}$	jx(ip_C1202)	Sander et al. (2014)
J6101	StTrGJCl	$OClO + h\nu \rightarrow ClO + O(^{3}P)$	jx(ip_OC10)	Sander et al. (2014)
J6200	StGJCl	$\mathrm{HCl} + \mathrm{h}\nu \to \mathrm{Cl} + \mathrm{H}$	jx(ip_HCl)	Sander et al. (2014)
J6201	StTrGJCl	$HOCl + h\nu \rightarrow OH + Cl$	jx(ip_HOC1)	Sander et al. (2014)

Table 2: Photolysis reactions $(\dots continued)$

#	labels	reaction	rate coefficient	reference
J6300	TrGJClN	$\text{ClNO}_2 + \text{h}\nu \rightarrow \text{Cl} + \text{NO}_2$	<pre>jx(ip_C1N02)</pre>	Sander et al. (2014)
J6301a	StTrGJClN	$\text{ClNO}_3 + \text{h}\nu \rightarrow \text{Cl} + \text{NO}_3$	<pre>jx(ip_C1NO3)</pre>	Sander et al. (2014)
J6301b	StTrGJClN	$\text{ClNO}_3 + \text{h}\nu \rightarrow \text{ClO} + \text{NO}_2$	<pre>jx(ip_C10N02)</pre>	Sander et al. (2014)
J6400	StGJCl	$\mathrm{CH_3Cl} + \mathrm{h}\nu \to \mathrm{Cl} + \mathrm{CH_3}$	jx(ip_CH3Cl)	Sander et al. (2014)
J6401	StGJCl	$CCl_4 + h\nu \rightarrow LCARBON + 4 Cl$	<pre>jx(ip_CC14)</pre>	Sander et al. (2014)
J6402	StGJCCl	$CH_3CCl_3 + h\nu \rightarrow 2 LCARBON + 3 Cl$	jx(ip_CH3CCl3)	Sander et al. (2014)
J6500	StGJClF	$CFCl_3 + h\nu \rightarrow LCARBON + LFLUORINE + 3 Cl$	jx(ip_CFCl3)	Sander et al. $(2014)^*$
J6501	StGJClF	$CF_2Cl_2 + h\nu \rightarrow LCARBON + 2 LFLUORINE + 2 Cl$	<pre>jx(ip_CF2C12)</pre>	Sander et al. $(2014)^*$
J7000	StTrGJBr	$Br_2 + h\nu \rightarrow Br + Br$	jx(ip_Br2)	Sander et al. (2014)
J7100	StTrGJBr	$BrO + h\nu \rightarrow Br + O(^3P)$	jx(ip_Br0)	Sander et al. (2014)
J7200	StTrGJBr	$HOBr + h\nu \rightarrow Br + OH$	jx(ip_HOBr)	Sander et al. (2014)
J7300	TrGJBrN	$BrNO_2 + h\nu \rightarrow Br + NO_2$	jx(ip_BrNO2)	Sander et al. (2014)
J7301	StTrGJBrN	$BrNO_3 + h\nu \rightarrow .85 Br + .85 NO_3 + .15 BrO + .15 NO_2$	jx(ip_BrNO3)	Sander et al. (2014)*
J7400	StGJBr	$\mathrm{CH_3Br} + \mathrm{h}\nu \to \mathrm{Br} + \mathrm{CH_3}$	jx(ip_CH3Br)	Sander et al. (2014)
J7401	TrGJBr	$CH_2Br_2 + h\nu \rightarrow LCARBON + 2 Br$	jx(ip_CH2Br2)	Sander et al. (2014)
J7402	TrGJBr	$CHBr_3 + h\nu \rightarrow LCARBON + 3 Br$	jx(ip_CHBr3)	Sander et al. (2014)
J7500	StGJBrF	$CF_3Br + h\nu \rightarrow LCARBON + 3 LFLUORINE + Br$	jx(ip_CF3Br)	Sander et al. (2014)
J7600	StTrGJBrCl	$BrCl + h\nu \rightarrow Br + Cl$	jx(ip_BrCl)	Sander et al. (2014)
J7601	StGJBrClF	$CF_2ClBr + h\nu \rightarrow LCARBON + 2 LFLUORINE + Br + Cl$	jx(ip_CF2ClBr)	Sander et al. (2014)
J7602	TrGJBrCl	$CH_2ClBr + h\nu \rightarrow LCARBON + Br + Cl$	jx(ip_CH2ClBr)	Sander et al. (2014)
J7603	TrGJBrCl	$CHCl_2Br + h\nu \rightarrow LCARBON + Br + 2 Cl$	jx(ip_CHCl2Br)	Sander et al. (2014)
J7604	TrGJBrCl	$CHClBr_2 + h\nu \rightarrow LCARBON + 2 Br + Cl$	<pre>jx(ip_CHClBr2)</pre>	Sander et al. (2014)
J8000	TrGJI	$I_2 + h\nu \rightarrow I + I$	jx(ip_I2)	Sander et al. (2014)
J8100	TrGJI	$IO + h\nu \rightarrow I + O(^{3}P)$	jx(ip_IO)	Sander et al. (2014)
J8200	TrGJI	$\mathrm{HOI} + \mathrm{h} u ightarrow \mathrm{I} + \mathrm{OH}$	jx(ip_HOI)	Sander et al. (2014)
J8300	TrGJIN	$INO_2 + h\nu \rightarrow I + NO_2$	jx(ip_INO2)	Sander et al. (2014)
J8301	TrGJIN	$INO_3 + h\nu \rightarrow I + NO_3$	jx(ip_INO3)	Sander et al. (2014)
J8400	TrGJI	$\mathrm{CH_2I_2} + \mathrm{h}\nu \rightarrow 2\ \mathrm{I} + 2\ \mathrm{HO_2} + \mathrm{CO}$	jx(ip_CH2I2)	Sander et al. (2014)
J8401	TrGJI	$\mathrm{CH_3I} + \mathrm{h}\nu \to \mathrm{I} + \mathrm{CH_3}$	jx(ip_CH3I)	Sander et al. (2014)
J8402	TrGJCI	$\text{CH}_3\text{CHICH}_3 + \text{h}\nu \rightarrow 2 \text{ LCARBON} + \text{I} + \text{CH}_3$	jx(ip_C3H7I)	Sander et al. (2014)
J8403	TrGJClI	$\mathrm{CH_2ClI} + \mathrm{h}\nu \rightarrow \mathrm{I} + \mathrm{Cl} + 2\ \mathrm{HO_2} + \mathrm{CO}$	jx(ip_CH2C1I)	Sander et al. (2014)
J8600	TrGJClI	$ICl + h\nu \rightarrow I + Cl$	jx(ip_ICl)	Sander et al. (2014)
J8700	TrGJBrI	$IBr + h\nu \rightarrow I + Br$	jx(ip_IBr)	Sander et al. (2014)
PH (aqueous)				

Table 2: Photolysis reactions $(\dots continued)$

#	labels	reaction	rate coefficient	reference
PH2100_a01	TrAa01ScJ	$H_2O_2(aq) + h\nu \rightarrow 2 OH(aq)$	2.33*xaer(01)*jx(ip_H202)	see note*
PH3200_a01	TrAa01JN	$NO_3^-(aq) + h\nu \rightarrow NO_2(aq) + OH(aq) + OH^-(aq)$	xaer(01)*jx(ip_NO2) * 1.4E-4	see note*
PH4100_a01	TrAa01ScJ	$HOCH_2OOH(aq) + h\nu \rightarrow HCOOH(aq) + OH(aq) + HO_2(aq)$	2.33*xaer(01)*jx(ip_CH300H)	Sander et al. (2014)
PH4101_a01	TrAa01ScJ	$CH_3OOH(aq) + h\nu \rightarrow HCHO(aq) + OH(aq) + HO_2(aq)$	2.33*xaer(01)*jx(ip_CH300H)	Sander et al. (2014)
PH4200_a01	TrAa01ScJC	$C2H5OOH(aq) + h\nu \rightarrow CH_3CHO(aq) + HO_2(aq) + OH(aq)$	2.33*xaer(01)*jx(ip_CH300H)	von Kuhlmann $(2001)^*$
PH4201_a01	TrAa01ScJC	$HOOCH2CO2H(aq) + h\nu \rightarrow HCHO(aq) + CO_2(aq) + HO_2(aq) + OH(aq)$	2.33*xaer(01)*jx(ip_CH300H)	Rickard and Pascoe (2009)*
PH4202_a01	TrAa01ScJC	$\text{CH}_2\text{OOHCO}_2^-(\text{aq}) + \text{h}\nu \rightarrow \text{CHOHOOCOO}_2^-(\text{aq}) + \text{OH(aq)}$	2.33*xaer(01)*jx(ip_CH300H)	see note*
PH4203_a01	TrAa01ScJC	$CH_3C(O)OOH(aq) + h\nu \rightarrow CH_3OO(aq) + CO_2(aq) + OH(aq)$	2.33*xaer(01)*jx(ip_CH3CO3H)	Sander et al. (2014)
PH4204_a01	TrAa01ScJC	$\mathrm{HOCH_2CO_3H(aq)} + \mathrm{h}\nu \rightarrow \mathrm{HCHO(aq)} + \mathrm{OH(aq)} + \mathrm{HO_2(aq)} + \mathrm{CO_2(aq)}$	2.33*xaer(01)*jx(ip_CH300H)	Rickard and Pascoe (2009)
PH4205_a01	TrAa01ScJC	$\mathrm{CH_3CHO}(\mathrm{aq}) + \mathrm{h}\nu \rightarrow \mathrm{CH_3OO}(\mathrm{aq}) + \mathrm{HO_2}(\mathrm{aq}) + \mathrm{CO}(\mathrm{aq})$	2.33*xaer(01)*jx(ip_CH3CH0)	Sander et al. (2014)
PH4206_a01	TrAa01ScJC	$\mathrm{CH_2OOHCHO}(\mathrm{aq}) + \mathrm{h}\nu \rightarrow \mathrm{OH}(\mathrm{aq}) + \mathrm{HCHO}(\mathrm{aq}) + \mathrm{CO}(\mathrm{aq}) + \mathrm{HO}_2(\mathrm{aq})$	2.33*xaer(01)*(jx(ip_CH300H) +jx(ip_H0CH2CH0))	Sander et al. (2019)
PH4207a_a01	TrAa01ScJC	$\mathrm{CH_2OHCHO}(\mathrm{aq}) + \mathrm{h}\nu \rightarrow \mathrm{HCHO}(\mathrm{aq}) + 2 \; \mathrm{HO_2}(\mathrm{aq}) + \mathrm{CO}(\mathrm{aq})$	2.33*xaer(01)*jx(ip_HOCH2CH0) *0.83	Sander et al. $(2014)^*$
PH4207b_a01	TrAa01ScJC	$\mathrm{CH_2OHCHO}(\mathrm{aq}) + \mathrm{h}\nu \rightarrow \mathrm{OH}(\mathrm{aq}) + .6~\mathrm{HCHO}(\mathrm{aq}) + .6~\mathrm{CO}(\mathrm{aq}) + .6~\mathrm{HO_2}(\mathrm{aq}) + .2~\mathrm{GLYOX}(\mathrm{aq}) + .2~\mathrm{CH_2OHCHO}(\mathrm{aq})$	2.33*xaer(01)*jx(ip_HOCH2CH0) *0.07	Sander et al. (2014)*
PH4207c_a01	TrAa01ScJC	$CH_2OHCHO(aq) + h\nu \rightarrow CH_3OH(aq) + CO(aq)$	2.33*xaer(01)*jx(ip_HOCH2CH0) *0.10	Sander et al. $(2014)^*$
PH4208_a01	TrAa01ScJC	$CHOCOOH(aq) + h\nu \rightarrow 2 HO_2(aq) + CO(aq) + CO_2(aq)$	2.33*xaer(01)*jx(ip_MGLY0X)	Rickard and Pascoe (2009)
PH4209_a01	TrAa01ScJC	$GLYOX(aq) + h\nu \rightarrow 2 CO(aq) + 2 HO_2(aq)$	2.33*xaer(01)*jx(ip_GLYOX)	Sander et al. (2014)
PH4210a_a01	TrAa01ScJC	$HOOCCOOH(aq) + h\nu \rightarrow CO_2(aq) + HCOOH(aq)$	2.33*xaer(01)*0.72*jx(ip_ HOOCCOOH)	Yamamoto and Back (1985)
PH4210b_a01	TrAa01ScJC	$HOOCCOOH(aq) + h\nu \rightarrow CO_2(aq) + CO(aq) + H_2O(aq)$	2.33*xaer(01)*0.28*jx(ip_ HOOCCOOH)	Yamamoto and Back (1985)
PH4211_a01	TrAa01ScJC	$CHOCHOHOH(aq) + h\nu \rightarrow HCOOH(aq) + 2 HO_2(aq) + CO(aq)$	2.33*xaer(01)*jx(ip_HOCH2CH0)	Sander et al. (2014)*
PH4300_a01	TrAa01ScJC	$\mathrm{CH_3COCH_2O_2H(aq)} + \mathrm{h}\nu \rightarrow \mathrm{CH_3COOO(aq)} + \mathrm{HCHO(aq)} + \mathrm{OH(aq)}$	2.33*xaer(01)*(jx(ip_CH300H) +0.65*0.11*jx(ip_CH0H))	see note*
PH4301_a01	TrAa01ScJC	$iC_3H_7OOH(aq) + h\nu \rightarrow CH_3COCH_3(aq) + HO_2(aq) + OH(aq)$	2.33*xaer(01)*jx(ip_CH300H)	see note*
PH4302_a01	TrAa01ScJC	CH ₃ COCH ₂ OH(aq) + h $\nu \rightarrow$.5 OH(aq) + .5 HCHO(aq) + .5 CO(aq) + .5 HCHO(aq) + .5 HO ₂ (aq) + .5 CH ₂ OHCO3(aq) + .5 CH ₃ OO(aq)	2.33*xaer(01)*0.65*0.11*jx(ip_ CHOH)	Sander et al. (2014)*

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
PH4303_a01	TrAa01ScJC	$\mathrm{CH_3C(O)CHO(aq)} + \mathrm{h}\nu \rightarrow \mathrm{OH(aq)} + \mathrm{HCHO(aq)} + \mathrm{CO(aq)} +$	2.33*xaer(01)*jx(ip_MGLYOX)	Sander et al. (2014)*
		$CO(aq) + HO_2(aq)$		
PH10200_a01	TrAa01JHg	$Hg(OH)_2(aq) + h\nu \rightarrow Hg(aq)$	xaer(01)*6E-5*jx(ip_N02)	see note*
PH11200_a01	TrAa01JFe	$\text{FeOH}^{2+}(\text{aq}) + \text{h}\nu \rightarrow \text{Fe}^{2+}(\text{aq}) + \text{OH}(\text{aq})$	xaer(01)*4.51E-3*0.312	Herrmann et al. (2000)
PH11201_a01	TrAa01JFe	$Fe(OH)_{2}^{+}(aq) + h\nu \rightarrow Fe^{2+}(aq) + OH(aq) + OH^{-}(aq)$	xaer(01)*5.77E-3*0.255	Herrmann et al. (2000)
PH11800_a01	TrAa01JFeS	$FeSO_4^+(aq) + h\nu \rightarrow Fe^{2+}(aq) + SO_4^-(aq)$	xaer(01)*6.43E-3*7.9E-3	Herrmann et al. (2000)

General notes

j-values are calculated with an external module (e.g., JVAL) and then supplied to the MECCA chemistry.

Values that originate from the Master Chemical Mechanism (MCM) by Rickard and Pascoe (2009) are translated according in the following way:

 $j(11) \rightarrow jx(ip_COH2)$

 $j(12) \rightarrow jx(ip_CHOH)$

 $j(15) \rightarrow jx(ip_HOCH2CHO)$

 $j(18) \rightarrow jx(ip_MACR)$

 $j(22) \rightarrow jx(ip_ACETOL)$

 $j(23)+j(24) \rightarrow jx(ip_MVK)$

 $j(31)+j(32)+j(33) \rightarrow jx(ip_GLYOX)$

 $j(34) \rightarrow jx(ip_MGLYOX)$

 $j(41) \rightarrow jx(ip_CH300H)$

 $j(53) \rightarrow j(isopropyl nitrate)$

 $j(54) \rightarrow j(isopropyl nitrate)$

 $j(55) \rightarrow j(isopropyl nitrate)$

 $j(56)+j(57) \rightarrow jx(ip_NOA)$

Specific notes

J41003: CH₃- and CH₂-channels are considered only and with their branching ratios being 0.42 and 0.48,

respectively (Gans et al., 2011). CH-production is neglected. CH₂ is assumed to react only with O2 yielding $1.44~\mathrm{H_2} + 0.18~\mathrm{HCHO} + 0.18~\mathrm{O(^3P)} + 0.33~\mathrm{OH} + 0.33~\mathrm{HO_2} + 0.44~\mathrm{CO_2} + 0.38~\mathrm{CO} + 0.05~\mathrm{H_2O}$ as assumed in the WACCM model by J. Orlando (Doug Kinnison, pers. comm. with D. Taraborrelli).

J41006: product distribution as for HNO4

J42004: Quantum yields from Burkholder et al. (2015). J42005a: Quantum yields from Burkholder et al. (2015).

J42005b: Quantum yields from Burkholder et al. (2015).

J42005c: Quantum yields from Burkholder et al. (2015).

J42007: It is assumed that J(PHAN) is the same as J(PAN).

J42017: Enhancement of j according to Müller et al. (2014).

J42020: It is assumed that $j(NO_3CH2CHO)$ is the same as j(PAN).

J42021: In analogy to what is assumed for $\mathrm{CH_3O_2NO_2}$ photolysis as in (Sander et al., 2014).

J43002: Following von Kuhlmann et al. (2003), we use $j(CH_3COCH_2OH) = 0.11*jx(ip_CHOH)$. As an additional factor, the quantum yield of 0.65 is taken from Orlando et al. (1999a).

J43006: Following von Kuhlmann et al. (2003), we use $J(iC_3H_7ONO_2) = 3.7*jx(ip_PAN)$.

J43018: One third of the acetaldehyde channel is considered to be CH2CHOH according to Hjorth (2002) EUPHORE Report.

J43024: Assuming $J(C_3H_7ONO_2) = 0.59 \times J(iC_3H_7ONO_2)$, consistent with the photolysis rate coefficients used in the MCM (Rickard and Pascoe, 2009).

J43025a: Photolysis frequencies very similar to the ones of CH₃CHO.

J43025b: Photolysis frequencies very similar to the ones of $\mathrm{CH_3CHO}$.

J43400: KDEC C3DIALO \rightarrow GLYOX + CO + HO2

J44004: It is assumed that J(BIACET) is 2.15 times larger than J(MGLYOX), consistent with the photolysis rate coefficients used in the MCM (Rickard and Pascoe, 2009).

J44005a: It is assumed that J(LC4H9NO3) is the same as $J(iC_3H_7ONO_2)$.

J44005b: It is assumed that J(LC4H9NO3) is the same as $J(iC_3H_7ONO_2)$.

J44006: It is assumed that J(MPAN) is the same as J(PAN).

J44009: It is assumed that J(MACROOH) is 2.77 times larger than $J(HOCH_2CHO)$, consistent with the photolysis rate coefficients used in the MCM (Rickard and Pascoe, 2009).

J44010: It is assumed that J(MACROH) is 2.77 times larger than $J(HOCH_2CHO)$, consistent with the photolysis rate coefficients used in the MCM (Rickard and Pascoe, 2009).

J44015: It is assumed that J(BIACETOH) is 2.15 times larger than J(MGLYOX), consistent with the photolysis rate coefficients used in the MCM (Rickard and Pascoe, 2009).

J44017a: CO-channel yielding $\mathrm{CH_3COCH}$ which upon reaction with $\mathrm{O_2}$ produces an excited Criegee Intermediate assumed to be similar to MGLOOA in MCM. MGLOOA is produced also in other reactions and is substituted by its decomposition products. Furthermore, the stabilized Criegge Intermediate is assumed to solely react with water.

J44025: J values only for the secondary nitrate.

J44026: Like for LMEKNO3 photolysis

J44027: 2.84*J_IC3H7NO3 like for other tertiary alkyl nitrates (see J4505). Enhancement of J according to Müller et al. (2014).

J44037b: Channel which produces just vinyl alcohol and not a larger enol via keto-enol phototautomerization.

J44043: The resulting vinyl peroxy radical is assumed to mostly form with HO_2 a labile hydroperoxide (see ketene formation). The products are further simplified.

J44044: 1,5-H-shift for the resulting vinyl peroxy radical assumed to be dominant.

J44046a: Simplified oxidation.

J44400b: KDEC MALDIALO \rightarrow GLYOX + GLYOX + HO2

J44401: KDEC BZFUO \rightarrow CO14O3CHO + HO2

J44403: KDEC NBZFUO \rightarrow 0.5 CO14O3CHO + 0.5 NO2 + 0.5 NBZFUONE + 0.5 HO2

J44404b: KDEC MALDIALCO2 $\rightarrow 0.6$ MALANHY + HO2 + 0.4 GLYOX + 0.4 CO

J44407: KDEC MALANHYO → HCOCOHCO3

J44414: KDEC MECOACETO \rightarrow CH3CO3 + HCHO

J45003: It is assumed that J(LISOPACNO3) = $0.59 \times J(iC_3H_7ONO_2)$, consistent with the photolysis rate coefficients used in the MCM (Rickard and Pascoe, 2009).

J45005: It is assumed that $J(ISOPBNO3) = 2.84 \times J(iC_3H_7ONO_2)$, consistent with the photolysis rate coefficients used in the MCM (Rickard and Pascoe, 2009).

J45007: It is assumed that J(ISOPDNO3) is the same as $J(iC_3H_7ONO_2)$.

J45009: 0.59*J_IC3H7NO3 like for other primary alkyl nitrates (see J4503). Enhancement of J according to Müller et al. (2014).

J45015: Consistent with the MCM (Rickard and Pascoe, 2009), we assume that J(HCOC5) is half as large as J(MVK). With exeption of HOCH2CO the products of MACO2 decomposition without CO_2 .

J45032: approximation with 4-oxo-pentenal photolysis combining results of Thner et al(2004) and Xiang et al(2007)

J45402: KDEC C5DIALO \rightarrow MALDIAL + CO + HO2

J45407: KDEC TLFUONE \rightarrow 0.6 C5CO14O2 + 0.6 HO2 + 0.4 TLFUONE

J45410: KDEC MMALANHYO \rightarrow CO2H3CO3

J45411: KDEC C5DICARBO \rightarrow MGLYOX + GLYOX + HO2

J45412: KDEC NTLFUO \rightarrow ACCOMECHO + NO2

J45414: KDEC C5CO14CO2 \rightarrow 0.83 MALANHY + 0.83 CH3 + .17 MGLYOX + .17 HO2 + .17 CO + .17 CO2

J45415: KDEC TLFUO \rightarrow ACCOMECHO + HO2

J46400: KDEC PHENO \rightarrow 0.71 MALDALCO2H + 0.71 GLYOX + 0.29 PBZQONE + HO2

J46403: KDEC NDNPHENO \rightarrow NC4DCO2H + HNO3 + CO + CO + NO2

J46404: KDEC BZBIPERO \rightarrow GLYOX + HO2 + 0.5 BZFUONE + 0.5 BZFUONE

 ${\sf J46405}$: new channel created for nitrophenol decomposition

J46406: new channel created for nitrophenol decomposition

J46412: KDEC NNCATECO \rightarrow NC4DCO2H + HCOCO2H + NO2

J46415: KDEC NCATECO \rightarrow NC4DCO2H + HCOCO2H + HO2

J46416: KDEC PBZQO \rightarrow C5CO2OHCO3

J46418: KDEC BZBIPERO \rightarrow GLYOX + HO2 + 0.5 BZFUONE + 0.5 BZFUONE

J46419: KDEC NBZQO \rightarrow C6CO4DB + NO2

J46422: KDEC DNPHENO \rightarrow NC4DCO2H + HCOCO2H + NO2

J46425: KDEC BZEMUCO \rightarrow 0.5 EPXC4DIAL + .5 GLYOX + .5 HO2 + .5 C3DIALO2 + .5 C32OH13CO

J46429: new channel

J47401: KROPRIM*O2 fast reaction C6H5CH2O = BENZAL + HO2

J47402: KROPRIM*O2 fast reaction C6H5CH2O = BENZAL + HO2

J47404: KDEC TLBIPERO \rightarrow 0.6 GLYOX + 0.4 MG-LYOX + HO2 + 0.2 C4MDIAL + 0.2 C5DICARB + 0.2 TLFUONE + 0.2 BZFUONE + 0.2 MALDIAL

J47405: KDEC TLBIPERO $\rightarrow 0.6$ GLYOX + 0.4 MG-LYOX + HO2 + 0.2 C4MDIAL + 0.2 C5DICARB +0.2 TLFUONE + 0.2 BZFUONE + 0.2 MALDIAL

J47407: KDEC CRESO \rightarrow 0.68 C5CO14OH + 0.68 GLYOX + HO2 + 0.32 PTLQONE

J47408a: KDEC CRESO $\rightarrow 0.68$ C5CO14OH + 0.68 GLYOX + HO2 + 0.32 PTLQONE

J47408b: KDEC NCRESO \rightarrow C5CO14OH + GLYOX + NO2

J47409: Using J for 3-methyl-2-nitrophenol.

J47412: KDEC TLEMUCO $\rightarrow 0.5$ C3DIALO2 + 0.5 CO2H3CHO + 0.5 EPXC4DIAL + 0.5 MGLYOX + 0.5HO2

J47417: Using J for 3-methyl-2-nitrophenol.

J47418: new channel

J47419: Using J for 3-methyl-2-nitrophenol.

J47420: new channel

J47422: KDEC NPTLOO \rightarrow C7CO4DB + NO2

J47423: KDEC PTLQO \rightarrow C6CO2OHCO3

J47425: KDEC MNNCATECO \rightarrow NC4MDCO2H +

HCOCO2H + NO2

J47426: KDEC MNCATECO \rightarrow NC4MDCO2H +

HCOCO2H + HO2

J47428: KDEC NDNCRESO \rightarrow NC4MDCO2H + PH4202_a01: assumed to be the same as C2H5OOH + HNO3 + CO + CO + NO2

J47429: KDEC DNCRESO \rightarrow NC4MDCO2H +HCOCO2H + NO2

J48400: KDEC STYRENO \rightarrow HO2 + HCHO + BEN-ZAL

J40203b: Substituted vinyl alcohol in analogy to CH₃CHO photolysis.

J6500: Even though the elementary reaction produces only 1 Cl atom (Felder and Demuth, 1993), it is assumed here that eventually all Cl atoms are released in secondary reactions.

J6501: Even though the elementary reaction probably produces only 1 Cl atom (as for CFCl₃), it is assumed here that eventually all Cl atoms are released in secondary reactions.

J7301: The quantum yields are recommended by Burkholder et al. (2015) for $\lambda > 300$ nm and used here for the entire spectrum.

PH2100_a01: 2.33 times the gas-phase value

PH3200_a01: Scaled to $J(NO_2)$ so that its lifetime is about 10.5 days, as suggested by Zellner et al. (1990).

PH4200_a01: CH3CHOHO2 is assumed to directly decompose into CH3CHO + HO2

PH4201_a01: COOHOO is not formed but directly dissociates into CO2 + HO2

hv

PH4207a_a01: Quantum yields from Burkholder et al. (2015).

PH4207b_a01: Quantum yields from Burkholder et al. (2015). HCOCH2O2 decomposes directly to .6 HCHO + .6 CO + .6 HO2 + .2 GLYOX + .2 HOCH2CHO

PH4207c_a01: Quantum yields from Burkholder et al. (2015).

PH4211_a01: Assumed in analogy to the main channel for j(HOCH2CHO).

PH4300_a01: 2.33* k from the gas-phase reaction, CH3CO directly reacts with O2 to form CH3CO3

PH4301_a01: 2.33 * k from the gas-phase reaction,

PH4302_a01: Following von Kuhlmann et al. (2003), we use $j(CH_3COCH_2OH) = 0.11*jx(ip_CHOH)$. As an additional factor, the quantum yield of 0.65 is taken from Orlando et al. (1999a). CH3CO reacts with O2 to form OH + HCHO + CO. HOCH2CO reacts with O2 to form HOCH2CO3

PH4303_a01: CH3CO reacts with O2 to form OH + HCHO + CO

PH10200_a01: Scaled to J(NO₂) so that it produces about 3.0×10^{-7} .

Table 3: Reversible (Henry's law) equilibria and irreversible ("heterogenous") uptake

#	labels	reaction	rate coefficient	reference
H10000f_a01	TrAa01Sc	${ m O_2} ightarrow { m O_2(aq)}$	k_exf(01,ind_02)	see general notes*
H10000b_a01	TrAa01Sc	$\mathrm{O}_2(\mathrm{aq}) \to \mathrm{O}_2$	k_exb(01,ind_02)	see general notes*
H10001f_a01	TrAa01MblScScm	$O_3 \to O_3(aq)$	k_exf(01,ind_03)	see general notes*
H10001b_a01	TrAa01MblScScm	$O_3(aq) \rightarrow O_3$	k_exb(01,ind_03)	see general notes*
H21000f_a01	TrAa01Sc	$OH \rightarrow OH(aq)$	k_exf(01,ind_OH)	see general notes*
H21000b_a01	TrAa01Sc	$OH(aq) \rightarrow OH$	k_exb(01,ind_OH)	see general notes*
H21001f_a01	TrAa01Sc	$\mathrm{HO}_2 \to \mathrm{HO}_2(\mathrm{aq})$	k_exf(01,ind_H02)	see general notes*
H21001b_a01	TrAa01Sc	$\mathrm{HO}_2(\mathrm{aq}) \to \mathrm{HO}_2$	k_exb(01,ind_H02)	see general notes*
H21002f_a01	TrAa01MblScScm	$\mathrm{H_2O_2} \to \mathrm{H_2O_2(aq)}$	k_exf(01,ind_H2O2)	see general notes*
H21002b_a01	TrAa01MblScScm	$\mathrm{H_2O_2(aq)} \rightarrow \mathrm{H_2O_2}$	k_exb(01,ind_H2O2)	see general notes*
H31000f_a01	TrAa01ScN	$NO \rightarrow NO(aq)$	k_exf(01,ind_NO)	see general notes*
H31000b_a01	TrAa01ScN	$NO(aq) \rightarrow NO$	k_exb(01,ind_NO)	see general notes*
H31001f_a01	TrAa01ScN	$NO_2 \rightarrow NO_2(aq)$	k_exf(01,ind_NO2)	see general notes*
H31001b_a01	TrAa01ScN	$NO_2(aq) \rightarrow NO_2$	k_exb(01,ind_NO2)	see general notes*
H31002f_a01	TrAa01ScN	$NO_3 \rightarrow NO_3(aq)$	k_exf(01,ind_N03)	see general notes*
H31002b_a01	TrAa01ScN	$NO_3(aq) \rightarrow NO_3$	k_exb(01,ind_N03)	see general notes*
H32000f_a01	TrAa01MblScScmN	$NH_3 \rightarrow NH_3(aq)$	k_exf(01,ind_NH3)	see general notes*
H32000b_a01	TrAa01MblScScmN	$NH_3(aq) \rightarrow NH_3$	k_exb(01,ind_NH3)	see general notes*
H32001_a01	TrAa01MblScScmN	$N_2O_5 \to HNO_3(aq) + HNO_3(aq)$	k_exf_N2O5(01)*C(ind_H2O_a01)	Behnke et al. (1994), Behnke et al. (1997)
H32002f_a01	TrAa01ScN	$HONO \rightarrow HONO(aq)$	k_exf(01,ind_HONO)	see general notes*
H32002b_a01	TrAa01ScN	$HONO(aq) \rightarrow HONO$	k_exb(01,ind_HONO)	see general notes*
H32003f_a01	TrAa01MblScScmN	$HNO_3 \rightarrow HNO_3(aq)$	k_exf(01,ind_HNO3)	see general notes*
H32003b_a01	TrAa01MblScScmN	$HNO_3(aq) \rightarrow HNO_3$	k_exb(01,ind_HNO3)	see general notes*
H32004f_a01	TrAa01ScN	$HNO_4 \rightarrow HNO_4(aq)$	k_exf(01,ind_HNO4)	see general notes*
H32004b_a01	TrAa01ScN	$HNO_4(aq) \rightarrow HNO_4$	k_exb(01,ind_HNO4)	see general notes*
H41000f_a01	TrAa01MblScScm	$CO_2 \to CO_2(aq)$	k_exf(01,ind_C02)	see general notes*
H41000b_a01	TrAa01MblScScm	$\mathrm{CO}_2(\mathrm{aq}) \to \mathrm{CO}_2$	$k_{exb}(01, ind_{c02})$	see general notes*
H41001f_a01	TrAa01ScScm	$HCHO \rightarrow HCHO(aq)$	k_exf(01,ind_HCHO)	see general notes*
H41001b_a01	TrAa01ScScm	$\mathrm{HCHO}(\mathrm{aq}) \to \mathrm{HCHO}$	k_exb(01,ind_HCHO)	see general notes*
H41002f_a01	TrAa01Sc	$CH_3O_2 \rightarrow CH_3OO(aq)$	$k_{exf}(01, ind_{CH302})$	see general notes*
H41002b_a01	TrAa01Sc	$CH_3OO(aq) \rightarrow CH_3O_2$	$k_{exb}(01, ind_{CH302})$	see general notes*
H41003f_a01	TrAa01ScScm	$HCOOH \rightarrow HCOOH(aq)$	k_exf(01,ind_HCOOH)	see general notes*
H41003b_a01	TrAa01ScScm	$HCOOH(aq) \rightarrow HCOOH$	k_exb(01,ind_HCOOH)	see general notes*

Table 3: Reversible (Henry's law) equilibria and irreversible ("heterogenous") uptake

#	labels	reaction	rate coefficient	reference
H41004f_a01	TrAa01ScScm	$CH_3OOH \rightarrow CH_3OOH(aq)$	k_exf(01,ind_CH300H)	see general notes*
H41004b_a01	TrAa01ScScm	$CH_3OOH(aq) \rightarrow CH_3OOH$	k_exb(01,ind_CH300H)	see general notes*
H41005f_a01	TrAa01Sc	$CH_3OH \rightarrow CH_3OH(aq)$	k_exf(01,ind_CH30H)	see general notes*
H41005b_a01	TrAa01Sc	$CH_3OH(aq) \rightarrow CH_3OH$	k_exb(01,ind_CH3OH)	see general notes*
H41006f_a01	TrAa01Sc	$HOCH_2OH \rightarrow HOCH_2OH(aq)$	k_exf(01,ind_HOCH2OH)	see general notes*
H41006b_a01	TrAa01Sc	$HOCH_2OH(aq) \rightarrow HOCH_2OH$	k_exb(01,ind_HOCH2OH)	see general notes*
H41007f_a01	TrAa01Sc	$HOCH_2OOH \rightarrow HOCH_2OOH(aq)$	k_exf(01,ind_HOCH200H)	see general notes*
H41007b_a01	TrAa01Sc	$HOCH_2OOH(aq) \rightarrow HOCH_2OOH$	k_exb(01,ind_HOCH200H)	see general notes*
H41008f_a01	TrAa01Sc	$CO \to CO(aq)$	k_exf(01,ind_CO)	see general notes*
H41008b_a01	TrAa01Sc	$CO(aq) \to CO$	k_exb(01,ind_CO)	see general notes*
H42000f_a01	TrAa01ScScmC	$CH_3COOH \rightarrow CH_3COOH(aq)$	k_exf(01,ind_CH3CO2H)	see general notes*
H42000b_a01	TrAa01ScScmC	$CH_3COOH(aq) \rightarrow CH_3COOH$	k_exb(01,ind_CH3CO2H)	see general notes*
H42001f_a01	TrAa01ScC	$CH_3CHO \rightarrow CH_3CHO(aq)$	k_exf(01,ind_CH3CH0)	see general notes*
H42001b_a01	TrAa01ScC	$CH_3CHO(aq) \rightarrow CH_3CHO$	k_exb(01,ind_CH3CH0)	see general notes*
H42002f_a01	TrAa01ScCN	$PAN \rightarrow PAN(aq)$	<pre>k_exf(01,ind_PAN)</pre>	see general notes*
H42002b_a01	TrAa01ScCN	$PAN(aq) \rightarrow PAN$	k_exb(01,ind_PAN)	see general notes*
H42003f_a01	TrAa01ScC	$C_2H_5OH \rightarrow CH_3CH_2OH(aq)$	k_exf(01,ind_C2H5OH)	see general notes*
H42003b_a01	TrAa01ScC	$\mathrm{CH_3CH_2OH(aq)} \rightarrow \mathrm{C_2H_5OH}$	k_exb(01,ind_C2H5OH)	see general notes*
H42004f_a01	TrAa01ScC	$ETHGLY \rightarrow ETHGLY(aq)$	<pre>k_exf(01,ind_ETHGLY)</pre>	see general notes*
H42004b_a01	TrAa01ScC	$ETHGLY(aq) \rightarrow ETHGLY$	<pre>k_exb(01,ind_ETHGLY)</pre>	see general notes*
H42006f_a01	TrAa01ScC	$CH_3C(O)OO \rightarrow CH_3COOO(aq)$	k_exf(01,ind_CH3CO3)	see general notes*
H42006b_a01	TrAa01ScC	$CH_3COOO(aq) \rightarrow CH_3C(O)OO$	k_exb(01,ind_CH3CO3)	see general notes*
H42007f_a01	TrAa01ScC	$HOCH_2CHO \rightarrow CH_2OHCHO(aq)$	k_exf(01,ind_HOCH2CH0)	see general notes*
H42007b_a01	TrAa01ScC	$CH_2OHCHO(aq) \rightarrow HOCH_2CHO$	k_exb(01,ind_HOCH2CH0)	see general notes*
H42008f_a01	TrAa01ScC	$GLYOX \rightarrow GLYOX(aq)$	<pre>k_exf(01,ind_GLYOX)</pre>	see general notes*
H42008b_a01	TrAa01ScC	$GLYOX(aq) \rightarrow GLYOX$	<pre>k_exb(01,ind_GLYOX)</pre>	see general notes*
H42009f_a01	TrAa01ScC	$CH_3C(O)OOH \rightarrow CH_3C(O)OOH(aq)$	k_exf(01,ind_CH3CO3H)	see general notes*
H42009b_a01	TrAa01ScC	$CH_3C(O)OOH(aq) \rightarrow CH_3C(O)OOH$	k_exb(01,ind_CH3CO3H)	see general notes*
H42010f_a01	TrAa01ScC	$HOCH_2CO_3H \rightarrow HOCH_2CO_3H(aq)$	k_exf(01,ind_HOCH2CO3H)	see general notes*
H42010b_a01	TrAa01ScC	$HOCH_2CO_3H(aq) \rightarrow HOCH_2CO_3H$	k_exb(01,ind_HOCH2CO3H)	see general notes*
H42011f_a01	TrAa01ScC	$C_2H_5OOH \rightarrow C2H5OOH(aq)$	k_exf(01,ind_C2H500H)	see general notes*
H42011b_a01	TrAa01ScC	$C2H5OOH(aq) \rightarrow C_2H_5OOH$	$k_{exb}(01, ind_{C2H500H})$	see general notes*
H42012f_a01	TrAa01ScC	$HOOCCOOH \rightarrow HOOCCOOH(aq)$	k_exf(01,ind_HOOCCOOH)	see general notes*
H42012b_a01	TrAa01ScC	$HOOCCOOH(aq) \rightarrow HOOCCOOH$	k_exb(01,ind_HOOCCOOH)	see general notes*
H42013f_a01	TrAa01ScC	$HOOCH2CO2H \rightarrow HOOCH2CO2H(aq)$	k_exf(01,ind_HOOCH2CO2H)	see general notes*

Table 3: Reversible (Henry's law) equilibria and irreversible ("heterogenous") uptake

#	labels	reaction	rate coefficient	reference
H42013b_a01	TrAa01ScC	$HOOCH2CO2H(aq) \rightarrow HOOCH2CO2H$	k_exb(01,ind_HOOCH2CO2H)	see general notes*
H42014f_a01	TrAa01ScC	$HOCH_2CO_2H \rightarrow HOCH_2CO_2H(aq)$	k_exf(01,ind_HOCH2CO2H)	see general notes*
H42014b_a01	TrAa01ScC	$HOCH_2CO_2H(aq) \rightarrow HOCH_2CO_2H$	k_exb(01,ind_HOCH2CO2H)	see general notes*
H42015f_a01	TrAa01ScC	$HCOCO_2H \rightarrow CHOCOOH(aq)$	k_exf(01,ind_HCOCO2H)	see general notes*
H42015b_a01	TrAa01ScC	$CHOCOOH(aq) \rightarrow HCOCO_2H$	k_exb(01,ind_HCOCO2H)	see general notes*
H42017f_a01	TrAa01ScCN	$C_2H_5ONO_2 \rightarrow C_2H_5ONO_2(aq)$	k_exf(01,ind_C2H5N03)	see general notes*
H42017b_a01	TrAa01ScCN	$C_2H_5ONO_2(aq) \rightarrow C_2H_5ONO_2$	$k_{exb}(01, ind_{C2H5N03})$	see general notes*
H42018f_a01	TrAa01ScCN	$CH_3CN \rightarrow CH_3CN(aq)$	k_exf(01,ind_CH3CN)	see general notes*
H42018b_a01	TrAa01ScCN	$CH_3CN(aq) \rightarrow CH_3CN$	k_exb(01,ind_CH3CN)	see general notes*
H42019f_a01	TrAa01ScC	$HOCH_2CHOHOH \rightarrow CH_2OHCHOHOH(aq)$	k_exf(01,ind_HOCH2CHOHOH)	see general notes*
H42019b_a01	TrAa01ScC	$CH_2OHCHOHOH(aq) \rightarrow HOCH_2CHOHOH$	k_exb(01,ind_HOCH2CHOHOH)	see general notes*
H42020f_a01	TrAa01ScC	$CH_3CHOHOH \rightarrow CH_3CHOHOH(aq)$	k_exf(01,ind_CH3CH0H0H)	see general notes*
H42020b_a01	TrAa01ScC	$CH_3CHOHOH(aq) \rightarrow CH_3CHOHOH$	k_exb(01,ind_CH3CH0H0H)	see general notes*
H42021f_a01	TrAa01ScC	$CHOHOHCOOH \rightarrow CHOOHOHCOOH(aq)$	k_exf(01,ind_CHOHOHCOOH)	see general notes*
H42021b_a01	TrAa01ScC	$CHOOHOHCOOH(aq) \rightarrow CHOHOHCOOH$	k_exb(01,ind_CHOHOHCOOH)	see general notes*
H42022f_a01	TrAa01ScC	CHOHOHCHOHOH \rightarrow CHOHOHCHOHOH(aq)	k_exf(01,ind_CHOHOHCHOHOH)	see general notes*
H42022b_a01	TrAa01ScC	СНОНОНСНОНОН (aq) \rightarrow СНОНОНСНОНОН	k_exb(01,ind_CHOHOHCHOHOH)	see general notes*
H42023f_a01	TrAa01ScC	$HOOCH2CHO \rightarrow CH_2OOHCHO(aq)$	k_exf(01,ind_HOOCH2CHO)	see general notes*
H42023b_a01	TrAa01ScC	$CH_2OOHCHO(aq) \rightarrow HOOCH2CHO$	k_exb(01,ind_HOOCH2CHO)	see general notes*
H42024f_a01	TrAa01ScC	$CHOCHOHOH \rightarrow CHOCHOHOH(aq)$	k_exf(01,ind_CHOCHOHOH)	see general notes*
H42024b_a01	TrAa01ScC	$CHOCHOHOH(aq) \rightarrow CHOCHOHOH$	k_exb(01,ind_CHOCHOHOH)	see general notes*
H42025f_a01	TrAa01ScC	$HOOCH_2CHOHOH$ $HOOCH_2CHOHOH(aq)$	k_exf(01,ind_HOOCH2CHOHOH)	see general notes*
H42025b_a01	TrAa01ScC	$HOOCH_2CHOHOH(aq)$ \rightarrow $HOOCH_2CHOHOH$	k_exb(01,ind_HOOCH2CHOHOH)	see general notes*
H42026f_a01	TrAa01ScC	$CH2CO \rightarrow CH2CO(aq)$	k_exf(01,ind_CH2CO)	see general notes*
H42026b_a01	TrAa01ScC	$CH2CO(aq) \rightarrow CH2CO$	k_exb(01,ind_CH2CO)	see general notes*
H42027f_a01	TrAa01ScC	$CH3CHOHOOH \rightarrow CH3CHOHOOH(aq)$	k_exf(01,ind_CH3CH0H00H)	see general notes*
H42027b_a01	TrAa01ScC	$CH3CHOHOOH(aq) \rightarrow CH3CHOHOOH$	k_exb(01,ind_CH3CH0H0OH)	see general notes*
H42028f_a01	TrAa01ScCN	$ETHOHNO3 \rightarrow ETHOHNO3(aq)$	k_exf(01,ind_ETHOHNO3)	see general notes*
H42028b_a01	TrAa01ScCN	$ETHOHNO3(aq) \rightarrow ETHOHNO3$	k_exb(01,ind_ETHOHNO3)	see general notes*
H42029f_a01	TrAa01ScC	$HCOCO_3H \rightarrow HCOCO_3H(aq)$	k_exf(01,ind_HCOCO3H)	see general notes*
H42029b_a01	TrAa01ScC	$\mathrm{HCOCO_3H(aq)} \rightarrow \mathrm{HCOCO_3H}$	k_exb(01,ind_HCOCO3H)	see general notes*

Table 3: Reversible (Henry's law) equilibria and irreversible ("heterogenous") uptake

#	labels	reaction	rate coefficient	reference
H42030f_a01	TrAa01ScC	$HOOCH2CO3H \rightarrow HOOCH2CO3H(aq)$	k_exf(01,ind_HOOCH2CO3H)	see general notes*
H42030b_a01	TrAa01ScC	$HOOCH2CO3H(aq) \rightarrow HOOCH2CO3H$	k_exb(01,ind_HOOCH2CO3H)	see general notes*
H42031f_a01	TrAa01ScC	$HYETHO2H \rightarrow HYETHO2H(aq)$	k_exf(01,ind_HYETHO2H)	see general notes*
H42031b_a01	TrAa01ScC	$HYETHO2H(aq) \rightarrow HYETHO2H$	k_exb(01,ind_HYETHO2H)	see general notes*
H42032f_a01	TrAa01ScCN	$PHAN \rightarrow PHAN(aq)$	<pre>k_exf(01,ind_PHAN)</pre>	see general notes*
H42032b_a01	TrAa01ScCN	$PHAN(aq) \rightarrow PHAN$	k_exb(01,ind_PHAN)	see general notes*
H43000f_a01	TrAa01ScC	$CH_3COCH_3 \rightarrow CH_3COCH_3(aq)$	k_exf(01,ind_CH3COCH3)	see general notes*
H43000b_a01	TrAa01ScC	$CH_3COCH_3(aq) \rightarrow CH_3COCH_3$	k_exb(01,ind_CH3COCH3)	see general notes*
H43001f_a01	TrAa01ScC	$MGLYOX \rightarrow CH_3C(O)CHO(aq)$	<pre>k_exf(01,ind_MGLYOX)</pre>	see general notes*
H43001b_a01	TrAa01ScC	$CH_3C(O)CHO(aq) \rightarrow MGLYOX$	<pre>k_exb(01,ind_MGLYOX)</pre>	see general notes*
H43002f_a01	TrAa01ScC	$CH_3COCO_2H \rightarrow CH_3COCOOH(aq)$	k_exf(01,ind_CH3COCO2H)	see general notes*
H43002b_a01	TrAa01ScC	$CH_3COCOOH(aq) \rightarrow CH_3COCO_2H$	k_exb(01,ind_CH3COCO2H)	see general notes*
H43003f_a01	TrAa01ScC	$CH_3COCHOHOH \rightarrow CH_3COCHOHOH(aq)$	k_exf(01,ind_CH3COCH0H0H)	see general notes*
H43003b_a01	TrAa01ScC	$CH_3COCHOHOH(aq) \rightarrow CH_3COCHOHOH$	k_exb(01,ind_CH3COCH0H0H)	see general notes*
H43005f_a01	TrAa01ScC	$IPROPOL \rightarrow IPROPOL(aq)$	<pre>k_exf(01,ind_IPROPOL)</pre>	see general notes*
H43005b_a01	TrAa01ScC	$IPROPOL(aq) \rightarrow IPROPOL$	k_exb(01,ind_IPROPOL)	see general notes*
H43006f_a01	TrAa01ScC	$CH_3COCH_2O_2H \rightarrow CH_3COCH_2O_2H(aq)$	<pre>k_exf(01,ind_HYPERACET)</pre>	see general notes*
H43006b_a01	TrAa01ScC	$CH_3COCH_2O_2H(aq) \rightarrow CH_3COCH_2O_2H$	<pre>k_exb(01,ind_HYPERACET)</pre>	see general notes*
H43007f_a01	TrAa01ScC	$iC_3H_7OOH \rightarrow iC_3H_7OOH(aq)$	k_exf(01,ind_IC3H700H)	see general notes*
H43007b_a01	TrAa01ScC	$iC_3H_7OOH(aq) \rightarrow iC_3H_7OOH$	k_exb(01,ind_IC3H700H)	see general notes*
H43008f_a01	TrAa01ScC	$HCOCOCH_2OOH \rightarrow HCOCOCH_2OOH(aq)$	k_exf(01,ind_ALCOCH200H)	see general notes*
H43008b_a01	TrAa01ScC	$HCOCOCH_2OOH(aq) \rightarrow HCOCOCH_2OOH$	k_exb(01,ind_ALCOCH200H)	see general notes*
H43009f_a01	TrAa01ScC	$C32OH13CO \rightarrow C32OH13CO(aq)$	k_exf(01,ind_C320H13C0)	see general notes*
H43009b_a01	TrAa01ScC	$C32OH13CO(aq) \rightarrow C32OH13CO$	k_exb(01,ind_C320H13C0)	see general notes*
H43010f_a01	TrAa01ScC	$HCOCOCHO \rightarrow HCOCOCHO(aq)$	$k_{exf}(01, ind_{c33C0})$	see general notes*
H43010b_a01	TrAa01ScC	$HCOCOCHO(aq) \rightarrow HCOCOCHO$	k_exb(01,ind_C33CO)	see general notes*
H43011f_a01	TrAa01ScC	$C3DIALOOH \rightarrow C3DIALOOH(aq)$	k_exf(01,ind_C3DIAL00H)	see general notes*
H43011b_a01	TrAa01ScC	$C3DIALOOH(aq) \rightarrow C3DIALOOH$	k_exb(01,ind_C3DIAL00H)	see general notes*
H43012f_a01	TrAa01ScCN	$C_3PAN1 \rightarrow C_3PAN1(aq)$	k_exf(01,ind_C3PAN1)	see general notes*
H43012b_a01	TrAa01ScCN	$C_3PAN1(aq) \rightarrow C_3PAN1$	k_exb(01,ind_C3PAN1)	see general notes*
H43013f_a01	TrAa01ScCN	$C_3PAN2 \rightarrow C_3PAN2(aq)$	k_exf(01,ind_C3PAN2)	see general notes*
H43013b_a01	TrAa01ScCN	$C_3PAN2(aq) \rightarrow C_3PAN2$	k_exb(01,ind_C3PAN2)	see general notes*
H43014f_a01	TrAa01ScC	$\text{CH3CHCO} \rightarrow \text{CH3CHCO(aq)}$	k_exf(01,ind_CH3CHCO)	see general notes*
H43014b_a01	TrAa01ScC	$\text{CH3CHCO(aq)} \rightarrow \text{CH3CHCO}$	k_exb(01,ind_CH3CHCO)	see general notes*

Table 3: Reversible (Henry's law) equilibria and irreversible ("heterogenous") uptake

#	labels	reaction		rate coefficient	reference
H43015f_a01	TrAa01ScCN	$\mathrm{CH_{3}COCH_{2}OONO_{2}}$	\rightarrow	k_exf(01,ind_CH3COCH202N02)	see general notes*
		$CH_3COCH_2OONO_2(aq)$			
H43015b_a01	TrAa01ScCN	$CH_3COCH_2OONO_2(aq)$	\rightarrow	k_exb(01,ind_CH3COCH2O2NO2)	see general notes*
		$\mathrm{CH_{3}COCH_{2}OONO_{2}}$			
H43016f_a01	TrAa01ScC	$CH_3COCO_3H \rightarrow CH_3COCO_3H(aq)$		k_exf(01,ind_CH3COCO3H)	see general notes*
H43016b_a01	TrAa01ScC	$CH_3COCO_3H(aq) \rightarrow CH_3COCO_3H$		k_exb(01,ind_CH3COCO3H)	see general notes*
H43017f_a01	TrAa01ScC	$HCOCH2CHO \rightarrow HCOCH2CHO(aq)$		k_exf(01,ind_HCOCH2CH0)	see general notes*
H43017b_a01	TrAa01ScC	$HCOCH2CHO(aq) \rightarrow HCOCH2CHO$		k_exb(01,ind_HCOCH2CH0)	see general notes*
H43018f_a01	TrAa01ScC	$HCOCH2CO2H \rightarrow HCOCH2CO2H(aq)$		k_exf(01,ind_HCOCH2CO2H)	see general notes*
H43018b_a01	TrAa01ScC	$HCOCH2CO2H(aq) \rightarrow HCOCH2CO2H$		k_exb(01,ind_HCOCH2CO2H)	see general notes*
H43019f_a01	TrAa01ScC	$HCOCH2CO3H \rightarrow HCOCH2CO3H(aq)$		k_exf(01,ind_HCOCH2CO3H)	see general notes*
H43019b_a01	TrAa01ScC	$HCOCH2CO3H(aq) \rightarrow HCOCH2CO3H$		k_exb(01,ind_HCOCH2CO3H)	see general notes*
H43020f_a01	TrAa01ScC	$\mathrm{HCOCOCH_2OOH} \rightarrow \mathrm{HCOCOCH_2OOH}(\epsilon)$	aq)	k_exf(01,ind_HCOCOCH200H)	see general notes*
H43020b_a01	TrAa01ScC	$HCOCOCH_2OOH(aq) \rightarrow HCOCOCH_2OO$	ЭН	k_exb(01,ind_HCOCOCH200H)	see general notes*
H43021f_a01	TrAa01ScC	$HCOCOHCO3H \rightarrow HCOCOHCO3H(aq)$		k_exf(01,ind_HCOCOHCO3H)	see general notes*
H43021b_a01	TrAa01ScC	$HCOCOHCO3H(aq) \rightarrow HCOCOHCO3H$		k_exb(01,ind_HCOCOHCO3H)	see general notes*
H43022f_a01	TrAa01ScCN	$HCOCOHPAN \rightarrow HCOCOHPAN(aq)$		k_exf(01,ind_HCOCOHPAN)	see general notes*
H43022b_a01	TrAa01ScCN	$HCOCOHPAN(aq) \rightarrow HCOCOHPAN$		k_exb(01,ind_HCOCOHPAN)	see general notes*
H43023f_a01	TrAa01ScC	$HOC2H4CO2H \rightarrow HOC2H4CO2H(aq)$		k_exf(01,ind_HOC2H4CO2H)	see general notes*
H43023b_a01	TrAa01ScC	$HOC2H4CO2H(aq) \rightarrow HOC2H4CO2H$		k_exb(01,ind_HOC2H4CO2H)	see general notes*
H43024f_a01	TrAa01ScC	$HOC2H4CO3H \rightarrow HOC2H4CO3H(aq)$		k_exf(01,ind_HOC2H4CO3H)	see general notes*
H43024b_a01	TrAa01ScC	$HOC2H4CO3H(aq) \rightarrow HOC2H4CO3H$		k_exb(01,ind_HOC2H4CO3H)	see general notes*
H43025f_a01	TrAa01ScC	HOCH2COCH2OOH	\rightarrow	k_exf(01,ind_HOCH2COCH2OOH)	see general notes*
		HOCH2COCH2OOH(aq)			
H43025b_a01	TrAa01ScC	HOCH2COCH2OOH(aq)	\rightarrow	k_exb(01,ind_HOCH2COCH2OOH)	see general notes*
		HOCH2COCH2OOH			
H43026f_a01	TrAa01ScC	$HOCH2COCHO \rightarrow HOCH2COCHO(aq)$		k_exf(01,ind_HOCH2COCHO)	see general notes*
H43026b_a01	TrAa01ScC	$HOCH2COCHO(aq) \rightarrow HOCH2COCHO$		k_exb(01,ind_HOCH2COCHO)	see general notes*
H43027f_a01	TrAa01ScC	$HYPROPO2H \rightarrow HYPROPO2H(aq)$		k_exf(01,ind_HYPROPO2H)	see general notes*
H43027b_a01	TrAa01ScC	$HYPROPO2H(aq) \rightarrow HYPROPO2H$		k_exb(01,ind_HYPROPO2H)	see general notes*
H43028f_a01	TrAa01ScC	$METACETHO \rightarrow METACETHO(aq)$		k_exf(01,ind_METACETHO)	see general notes*
H43028b_a01	TrAa01ScC	$METACETHO(aq) \rightarrow METACETHO$		k_exb(01,ind_METACETHO)	see general notes*
H43029f_a01	TrAa01ScCN	$NOA \rightarrow NOA(aq)$		k_exf(01,ind_NOA)	see general notes*
H43029b_a01	TrAa01ScCN	$NOA(aq) \rightarrow NOA$		k_exb(01,ind_NOA)	see general notes*
H43030f_a01	TrAa01ScCN	$PR2O2HNO3 \rightarrow PR2O2HNO3(aq)$		k_exf(01,ind_PR202HN03)	see general notes*

Table 3: Reversible (Henry's law) equilibria and irreversible ("heterogenous") uptake

#	labels	reaction	rate coefficient	reference
H43030b_a01	TrAa01ScCN	$PR2O2HNO3(aq) \rightarrow PR2O2HNO3$	k_exb(01,ind_PR202HN03)	see general notes*
H43031f_a01	TrAa01ScCN	$PROPOLNO3 \rightarrow PROPOLNO3(aq)$	k_exf(01,ind_PROPOLNO3)	see general notes*
H43031b_a01	TrAa01ScCN	$PROPOLNO3(aq) \rightarrow PROPOLNO3$	k_exb(01,ind_PROPOLNO3)	see general notes*
H43032f_a01	TrAa01ScC	$CH_3COCH_2OH \rightarrow CH_3COCH_2OH(aq)$	k_exf(01,ind_ACETOL)	see general notes*
H43032b_a01	TrAa01ScC	$CH_3COCH_2OH(aq) \rightarrow CH_3COCH_2OH$	k_exb(01,ind_ACETOL)	see general notes*
H44000f_a01	TrAa01ScC	$MACR \rightarrow MACR(aq)$	k_exf(01,ind_MACR)	see general notes*
H44000b_a01	TrAa01ScC	$MACR(aq) \rightarrow MACR$	k_exb(01,ind_MACR)	see general notes*
H44001f_a01	TrAa01ScC	$MVK \to MVK(aq)$	<pre>k_exf(01,ind_MVK)</pre>	see general notes*
H44001b_a01	TrAa01ScC	$MVK(aq) \rightarrow MVK$	<pre>k_exb(01,ind_MVK)</pre>	see general notes*
H44002f_a01	TrAa01ScC	$CH_3COCOCH_2O_2 \rightarrow CH_3COCOCH_2O_2(aq)$	<pre>k_exf(01,ind_BIACET02)</pre>	see general notes*
H44002b_a01	TrAa01ScC	$CH_3COCOCH_2O_2(aq) \rightarrow CH_3COCOCH_2O_2$	<pre>k_exb(01,ind_BIACET02)</pre>	see general notes*
H44003f_a01	TrAa01ScC	$BIACETOH \rightarrow BIACETOH(aq)$	<pre>k_exf(01,ind_BIACETOH)</pre>	see general notes*
H44003b_a01	TrAa01ScC	$BIACETOH(aq) \rightarrow BIACETOH$	<pre>k_exb(01,ind_BIACETOH)</pre>	see general notes*
H44004f_a01	TrAa01ScC	$\text{CH}_{3}\text{COCOCH}_{2}\text{OOH}$ \rightarrow	<pre>k_exf(01,ind_BIACETOOH)</pre>	see general notes*
		$CH_3COCOCH_2OOH(aq)$		
H44004b_a01	TrAa01ScC	$CH_3COCOCH_2OOH(aq) \rightarrow$	k_exb(01,ind_BIACETOOH)	see general notes*
		$\mathrm{CH_{3}COCOCH_{2}OOH}$		
H44005f_a01	TrAa01ScC	$BUT2OLO \rightarrow BUT2OLO(aq)$	k_exf(01,ind_BUT20L0)	see general notes*
H44005b_a01	TrAa01ScC	$BUT2OLO(aq) \rightarrow BUT2OLO$	k_exb(01,ind_BUT20L0)	see general notes*
H44006f_a01	TrAa01ScC	$BUT2OLOOH \rightarrow BUT2OLOOH(aq)$	k_exf(01,ind_BUT20L00H)	see general notes*
H44006b_a01	TrAa01ScC	$BUT2OLOOH(aq) \rightarrow BUT2OLOOH$	k_exb(01,ind_BUT20L00H)	see general notes*
H44007f_a01	TrAa01ScC	$BZFUCO \rightarrow BZFUCO(aq)$	k_exf(01,ind_BZFUCO)	see general notes*
H44007b_a01	TrAa01ScC	$BZFUCO(aq) \rightarrow BZFUCO$	k_exb(01,ind_BZFUCO)	see general notes*
H44008f_a01	TrAa01ScC	$BZFUOOH \rightarrow BZFUOOH(aq)$	k_exf(01,ind_BZFUOOH)	see general notes*
H44008b_a01	TrAa01ScC	$BZFUOOH(aq) \rightarrow BZFUOOH$	k_exb(01,ind_BZFUOOH)	see general notes*
H44009f_a01	TrAa01ScC	$C312COCO3H \rightarrow C312COCO3H(aq)$	k_exf(01,ind_C312C0C03H)	see general notes*
H44009b_a01	TrAa01ScC	$C312COCO3H(aq) \rightarrow C312COCO3H$	k_exb(01,ind_C312C0C03H)	see general notes*
H44010f_a01	TrAa01ScCN	$C312COPAN \rightarrow C312COPAN(aq)$	k_exf(01,ind_C312COPAN)	see general notes*
H44010b_a01	TrAa01ScCN	$C312COPAN(aq) \rightarrow C312COPAN$	k_exb(01,ind_C312COPAN)	see general notes*
H44011f_a01	TrAa01ScC	$C413COOOH \rightarrow C413COOOH(aq)$	k_exf(01,ind_C413C000H)	see general notes*
H44011b_a01	TrAa01ScC	$C413COOOH(aq) \rightarrow C413COOOH$	k_exb(01,ind_C413C000H)	see general notes*
H44012f_a01	TrAa01ScC	$C44OOH \rightarrow C44OOH(aq)$	k_exf(01,ind_C4400H)	see general notes*
H44012b_a01	TrAa01ScC	$C44OOH(aq) \rightarrow C44OOH$	k_exb(01,ind_C4400H)	see general notes*
H44013f_a01	TrAa01ScC	$C4CODIAL \rightarrow C4CODIAL(aq)$	k_exf(01,ind_C4CODIAL)	see general notes*
H44013b_a01	TrAa01ScC	$C4CODIAL(aq) \rightarrow C4CODIAL$	k_exb(01,ind_C4CODIAL)	see general notes*

Table 3: Reversible (Henry's law) equilibria and irreversible ("heterogenous") uptake

#	labels	reaction	rate coefficient	reference
H44014f_a01	TrAa01ScCN	$C4PAN5 \rightarrow C4PAN5(aq)$	k_exf(01,ind_C4PAN5)	see general notes*
H44014b_a01	TrAa01ScCN	$C4PAN5(aq) \rightarrow C4PAN5$	k_exb(01,ind_C4PAN5)	see general notes*
H44015f_a01	TrAa01ScC	$CH_3COCHCO \rightarrow CH_3COCHCO(aq)$	k_exf(01,ind_CH3COCHCO)	see general notes*
H44015b_a01	TrAa01ScC	$CH_3COCHCO(aq) \rightarrow CH_3COCHCO$	k_exb(01,ind_CH3COCHCO)	see general notes*
H44016f_a01	TrAa01ScC	$CH3COCOCO2H \rightarrow CH3COCOCO2H(aq)$	k_exf(01,ind_CH3COCOCO2H)	see general notes*
H44016b_a01	TrAa01ScC	$CH3COCOCO2H(aq) \rightarrow CH3COCOCO2H$	k_exb(01,ind_CH3COCOCO2H)	see general notes*
H44017f_a01	TrAa01ScC	$\begin{array}{c} {\rm CH_3COOHCHCHO} \\ {\rm CH_3COOHCHCHO(aq)} \end{array} \rightarrow$	k_exf(01,ind_CH3C00HCHCH0)	see general notes*
H44017b_a01	TrAa01ScC	$\begin{array}{c} \mathrm{CH_{3}COOHCHCHO(aq)} & \rightarrow \\ \mathrm{CH_{3}COOHCHCHO} \end{array}$	k_exb(01,ind_CH3C00HCHCH0)	see general notes*
H44018f_a01	TrAa01ScC	$CHOC3COO2 \rightarrow CHOC3COO2(aq)$	k_exf(01,ind_CHOC3C002)	see general notes*
H44018b_a01	TrAa01ScC	$CHOC3COO2(aq) \rightarrow CHOC3COO2$	k_exb(01,ind_CHOC3C002)	see general notes*
H44019f_a01	TrAa01ScC	$CO14O3CHO \rightarrow CO14O3CHO(aq)$	k_exf(01,ind_C01403CH0)	see general notes*
H44019b_a01	TrAa01ScC	$CO14O3CHO(aq) \rightarrow CO14O3CHO$	k_exb(01,ind_C01403CH0)	see general notes*
H44020f_a01	TrAa01ScC	$CO14O3CO2H \rightarrow CO14O3CO2H(aq)$	k_exf(01,ind_C01403C02H)	see general notes*
H44020b_a01	TrAa01ScC	$CO14O3CO2H(aq) \rightarrow CO14O3CO2H$	k_exb(01,ind_C01403C02H)	see general notes*
H44021f_a01	TrAa01ScC	$CH_3COCOCHO \rightarrow CH_3COCOCHO(aq)$	$k_{exf}(01, ind_{C023C3CH0})$	see general notes*
H44021b_a01	TrAa01ScC	$CH_3COCOCHO(aq) \rightarrow CH_3COCOCHO$	k_exb(01,ind_C023C3CHO)	see general notes*
H44022f_a01	TrAa01ScC	$CO2C3CHO \rightarrow CO2C3CHO(aq)$	k_exf(01,ind_CO2C3CHO)	see general notes*
H44022b_a01	TrAa01ScC	$CO2C3CHO(aq) \rightarrow CO2C3CHO$	k_exb(01,ind_CO2C3CHO)	see general notes*
H44023f_a01	TrAa01ScC	$CO2C4DIAL \rightarrow CO2C4DIAL(aq)$	k_exf(01,ind_CO2C4DIAL)	see general notes*
H44023b_a01	TrAa01ScC	$CO2C4DIAL(aq) \rightarrow CO2C4DIAL$	k_exb(01,ind_CO2C4DIAL)	see general notes*
H44024f_a01	TrAa01ScC	$CO2H3CHO \rightarrow CO2H3CHO(aq)$	k_exf(01,ind_CO2H3CHO)	see general notes*
H44024b_a01	TrAa01ScC	$CO2H3CHO(aq) \rightarrow CO2H3CHO$	k_exb(01,ind_CO2H3CHO)	see general notes*
H44025f_a01	TrAa01ScC	$CO2H3CO2H \rightarrow CO2H3CO2H(aq)$	k_exf(01,ind_CO2H3CO2H)	see general notes*
H44025b_a01	TrAa01ScC	$CO2H3CO2H(aq) \rightarrow CO2H3CO2H$	k_exb(01,ind_CO2H3CO2H)	see general notes*
H44026f_a01	TrAa01ScC	$CO2H3CO3H \rightarrow CO2H3CO3H(aq)$	k_exf(01,ind_CO2H3CO3H)	see general notes*
H44026b_a01	TrAa01ScC	$CO2H3CO3H(aq) \rightarrow CO2H3CO3H$	k_exb(01,ind_CO2H3CO3H)	see general notes*
H44027f_a01	TrAa01ScC	$EPXC4DIAL \rightarrow EPXC4DIAL(aq)$	k_exf(01,ind_EPXC4DIAL)	see general notes*
H44027b_a01	TrAa01ScC	$EPXC4DIAL(aq) \rightarrow EPXC4DIAL$	k_exb(01,ind_EPXC4DIAL)	see general notes*
H44028f_a01	TrAa01ScC	$EPXDLCO2H \rightarrow EPXDLCO2H(aq)$	<pre>k_exf(01,ind_EPXDLCO2H)</pre>	see general notes*
H44028b_a01	TrAa01ScC	$EPXDLCO2H(aq) \rightarrow EPXDLCO2H$	k_exb(01,ind_EPXDLCO2H)	see general notes*
H44029f_a01	TrAa01ScC	$EPXDLCO3H \rightarrow EPXDLCO3H(aq)$	k_exf(01,ind_EPXDLCO3H)	see general notes*
H44029b_a01	TrAa01ScC	$EPXDLCO3H(aq) \rightarrow EPXDLCO3H$	k_exb(01,ind_EPXDLCO3H)	see general notes*

Table 3: Reversible (Henry's law) equilibria and irreversible ("heterogenous") uptake

#	labels	reaction		rate coefficient	reference
H44030f_a01	TrAa01ScC	$HCOCCH_3CHOOH$	\rightarrow	k_exf(01,ind_HCOCCH3CHOOH)	see general notes*
		$HCOCCH_3CHOOH(aq)$			
H44030b_a01	TrAa01ScC	$HCOCCH_3CHOOH(aq)$	\rightarrow	k_exb(01,ind_HCOCCH3CHOOH)	see general notes*
		$HCOCCH_3CHOOH$			
H44031f_a01	TrAa01ScC	$HCOCCH_3CO \rightarrow HCOCCH_3CO(aq)$		k_exf(01,ind_HCOCCH3CO)	see general notes*
H44031b_a01	TrAa01ScC	$HCOCCH_3CO(aq) \rightarrow HCOCCH_3CO$		k_exb(01,ind_HCOCCH3CO)	see general notes*
H44032f_a01	TrAa01ScC	$\mathrm{HMAC} \to \mathrm{HMAC}(\mathrm{aq})$		k_exf(01,ind_HMAC)	see general notes*
H44032b_a01	TrAa01ScC	$\mathrm{HMAC}(\mathrm{aq}) \to \mathrm{HMAC}$		k_exb(01,ind_HMAC)	see general notes*
H44033f_a01	TrAa01ScC	$HO12CO3C4 \rightarrow HO12CO3C4(aq)$		k_exf(01,ind_H012C03C4)	see general notes*
H44033b_a01	TrAa01ScC	$HO12CO3C4(aq) \rightarrow HO12CO3C4$		k_exb(01,ind_H012C03C4)	see general notes*
H44034f_a01	TrAa01ScC	$HOCOC4DIAL \rightarrow HOCOC4DIAL(aq)$		k_exf(01,ind_HOCOC4DIAL)	see general notes*
H44034b_a01	TrAa01ScC	$HOCOC4DIAL(aq) \rightarrow HOCOC4DIAL$		k_exb(01,ind_HOCOC4DIAL)	see general notes*
H44035f_a01	TrAa01ScC	$HVMK \rightarrow HVMK(aq)$		<pre>k_exf(01,ind_HVMK)</pre>	see general notes*
H44035b_a01	TrAa01ScC	$HVMK(aq) \rightarrow HVMK$		k_exb(01,ind_HVMK)	see general notes*
H44036f_a01	TrAa01ScC	$IBUTALOH \rightarrow IBUTALOH(aq)$		<pre>k_exf(01,ind_IBUTALOH)</pre>	see general notes*
H44036b_a01	TrAa01ScC	$IBUTALOH(aq) \rightarrow IBUTALOH$		k_exb(01,ind_IBUTALOH)	see general notes*
H44037f_a01	TrAa01ScC	$IBUTDIAL \rightarrow IBUTDIAL(aq)$		<pre>k_exf(01,ind_IBUTDIAL)</pre>	see general notes*
H44037b_a01	TrAa01ScC	$IBUTDIAL(aq) \rightarrow IBUTDIAL$		k_exb(01,ind_IBUTDIAL)	see general notes*
H44038f_a01	TrAa01ScC	$IBUTOLBOOH \rightarrow IBUTOLBOOH(aq)$		<pre>k_exf(01,ind_IBUTOLBOOH)</pre>	see general notes*
H44038b_a01	TrAa01ScC	$IBUTOLBOOH(aq) \rightarrow IBUTOLBOOH$		k_exb(01,ind_IBUTOLBOOH)	see general notes*
H44039f_a01	TrAa01ScC	$IPRHOCO2H \rightarrow IPRHOCO2H(aq)$		k_exf(01,ind_IPRHOCO2H)	see general notes*
H44039b_a01	TrAa01ScC	$IPRHOCO2H(aq) \rightarrow IPRHOCO2H$		k_exb(01,ind_IPRHOCO2H)	see general notes*
H44040f_a01	TrAa01ScC	$IPRHOCO3H \rightarrow IPRHOCO3H(aq)$		<pre>k_exf(01,ind_IPRH0C03H)</pre>	see general notes*
H44040b_a01	TrAa01ScC	$IPRHOCO3H(aq) \rightarrow IPRHOCO3H$		k_exb(01,ind_IPRHOCO3H)	see general notes*
H44041f_a01	TrAa01ScC	$LBUT1ENOOH \rightarrow LBUT1ENOOH(aq)$		<pre>k_exf(01,ind_LBUT1ENOOH)</pre>	see general notes*
H44041b_a01	TrAa01ScC	$LBUT1ENOOH(aq) \rightarrow LBUT1ENOOH$		k_exb(01,ind_LBUT1ENOOH)	see general notes*
H44042f_a01	TrAa01ScC	$LHMVKABOOH \rightarrow LHMVKABOOH(aq)$,	<pre>k_exf(01,ind_LHMVKABOOH)</pre>	see general notes*
H44042b_a01	TrAa01ScC	$LHMVKABOOH(aq) \rightarrow LHMVKABOOH$	I	k_exb(01,ind_LHMVKABOOH)	see general notes*
H44043f_a01	TrAa01ScC	$LMEKOOH \rightarrow LMEKOOH(aq)$		k_exf(01,ind_LMEKOOH)	see general notes*
H44043b_a01	TrAa01ScC	$LMEKOOH(aq) \rightarrow LMEKOOH$		k_exb(01,ind_LMEKOOH)	see general notes*
H44044f_a01	TrAa01ScC	$MACO2H \rightarrow MACO2H(aq)$		k_exf(01,ind_MACO2H)	see general notes*
H44044b_a01	TrAa01ScC	$MACO2H(aq) \rightarrow MACO2H$		k_exb(01,ind_MACO2H)	see general notes*
H44045f_a01	TrAa01ScC	$MACO3H \rightarrow MACO3H(aq)$		k_exf(01,ind_MACO3H)	see general notes*
H44045b_a01	TrAa01ScC	$MACO3H(aq) \rightarrow MACO3H$		k_exb(01,ind_MACO3H)	see general notes*
H44046f_a01	TrAa01ScC	$MACROH \rightarrow MACROH(aq)$		k_exf(01,ind_MACROH)	see general notes*

Table 3: Reversible (Henry's law) equilibria and irreversible ("heterogenous") uptake

#	labels	reaction	rate coefficient	reference
H44046b_a01	TrAa01ScC	$MACROH(aq) \rightarrow MACROH$	k_exb(01,ind_MACROH)	see general notes*
H44047f_a01	TrAa01ScC	$MACROOH \rightarrow MACROOH(aq)$	k_exf(01,ind_MACROOH)	see general notes*
H44047b_a01	TrAa01ScC	$MACROOH(aq) \rightarrow MACROOH$	k_exb(01,ind_MACROOH)	see general notes*
H44048f_a01	TrAa01ScC	$\mathrm{MALANHYOOH} \rightarrow \mathrm{MALANHYOOH(aq)}$	<pre>k_exf(01,ind_MALANHY00H)</pre>	see general notes*
H44048b_a01	TrAa01ScC	$MALANHYOOH(aq) \rightarrow MALANHYOOH$	k_exb(01,ind_MALANHYOOH)	see general notes*
H44049f_a01	TrAa01ScC	$MALDALCO2H \rightarrow MALDALCO2H(aq)$	<pre>k_exf(01,ind_MALDALCO2H)</pre>	see general notes*
H44049b_a01	TrAa01ScC	$MALDALCO2H(aq) \rightarrow MALDALCO2H$	k_exb(01,ind_MALDALCO2H)	see general notes*
H44050f_a01	TrAa01ScC	$MALDALCO3H \rightarrow MALDALCO3H(aq)$	<pre>k_exf(01,ind_MALDALCO3H)</pre>	see general notes*
H44050b_a01	TrAa01ScC	$MALDALCO3H(aq) \rightarrow MALDALCO3H$	<pre>k_exb(01,ind_MALDALCO3H)</pre>	see general notes*
H44051f_a01	TrAa01ScC	$MALDIAL \rightarrow MALDIAL(aq)$	<pre>k_exf(01,ind_MALDIAL)</pre>	see general notes*
H44051b_a01	TrAa01ScC	$MALDIAL(aq) \rightarrow MALDIAL$	<pre>k_exb(01,ind_MALDIAL)</pre>	see general notes*
H44052f_a01	TrAa01ScC	$MALDIALOOH \rightarrow MALDIALOOH(aq)$	<pre>k_exf(01,ind_MALDIALOOH)</pre>	see general notes*
H44052b_a01	TrAa01ScC	$MALDIALOOH(aq) \rightarrow MALDIALOOH$	<pre>k_exb(01,ind_MALDIALOOH)</pre>	see general notes*
H44053f_a01	TrAa01ScC	$MALNHYOHCO \rightarrow MALNHYOHCO(aq)$	<pre>k_exf(01,ind_MALNHYOHCO)</pre>	see general notes*
H44053b_a01	TrAa01ScC	$MALNHYOHCO(aq) \rightarrow MALNHYOHCO$	<pre>k_exb(01,ind_MALNHYOHCO)</pre>	see general notes*
H44054f_a01	TrAa01ScC	$MECOACEOOH \rightarrow MECOACEOOH(aq)$	<pre>k_exf(01,ind_MECOACEOOH)</pre>	see general notes*
H44054b_a01	TrAa01ScC	$MECOACEOOH(aq) \rightarrow MECOACEOOH$	<pre>k_exb(01,ind_MECOACEOOH)</pre>	see general notes*
H44055f_a01	TrAa01ScCN	$MVKNO3 \rightarrow MVKNO3(aq)$	<pre>k_exf(01,ind_MVKN03)</pre>	see general notes*
H44055b_a01	TrAa01ScCN	$MVKNO3(aq) \rightarrow MVKNO3$	<pre>k_exb(01,ind_MVKNO3)</pre>	see general notes*
H44056f_a01	TrAa01ScCN	$NBZFUOOH \rightarrow NBZFUOOH(aq)$	<pre>k_exf(01,ind_NBZFU00H)</pre>	see general notes*
H44056b_a01	TrAa01ScCN	$NBZFUOOH(aq) \rightarrow NBZFUOOH$	k_exb(01,ind_NBZFU00H)	see general notes*
H44057f_a01	TrAa01ScCN	$NC4DCO2H \rightarrow NC4DCO2H(aq)$	<pre>k_exf(01,ind_NC4DC02H)</pre>	see general notes*
H44057b_a01	TrAa01ScCN	$NC4DCO2H(aq) \rightarrow NC4DCO2H$	k_exb(01,ind_NC4DC02H)	see general notes*
H45000f_a01	TrAa01ScC	$ACCOMECHO \rightarrow ACCOMECHO(aq)$	<pre>k_exf(01,ind_ACCOMECHO)</pre>	see general notes*
H45000b_a01	TrAa01ScC	$ACCOMECHO(aq) \rightarrow ACCOMECHO$	<pre>k_exb(01,ind_ACCOMECHO)</pre>	see general notes*
H45001f_a01	TrAa01ScC	$ACCOMECO3H \rightarrow ACCOMECO3H(aq)$	<pre>k_exf(01,ind_ACCOMECO3H)</pre>	see general notes*
H45001b_a01	TrAa01ScC	$ACCOMECO3H(aq) \rightarrow ACCOMECO3H$	<pre>k_exb(01,ind_ACCOMECO3H)</pre>	see general notes*
H45002f_a01	TrAa01ScC	C1ODC2O2C4OOH -	k_exf(01,ind_C10DC202C400H)	see general notes*
		C1ODC2O2C4OOH(aq)		
H45002b_a01	TrAa01ScC	C1ODC2O2C4OOH(aq) – C1ODC2O2C4OOH	k_exb(01,ind_C10DC202C400H)	see general notes*
H45003f_a01	TrAa01ScC	C1ODC2OOHC4OD –	k_exf(01,ind_C10DC200HC40D)	see general notes*
1140001_401	1111401500	C1ODC2OOHC4OD = C1ODC2OOHC4OD(aq)		see general notes
H45003b_a01	TrAa01ScC	C1ODC2OOHC4OD(aq) – C1ODC2OOHC4OD	k_exb(01,ind_C10DC200HC40D)	see general notes*

Table 3: Reversible (Henry's law) equilibria and irreversible ("heterogenous") uptake

#	labels	reaction		rate coefficient	reference
H45004f_a01	TrAa01ScC	C1ODC3O2C4OOH	\rightarrow	k_exf(01,ind_C10DC302C400H)	see general notes*
		C1ODC3O2C4OOH(aq)			
H45004b_a01	TrAa01ScC	C1ODC3O2C4OOH(aq)	\rightarrow	k_exb(01,ind_C10DC302C400H)	see general notes*
		C1ODC3O2C4OOH			
H45005f_a01	TrAa01ScC	C1OOHC2OOHC4OD	\rightarrow	k_exf(01,ind_C100HC200HC40D)	see general notes*
		C1OOHC2OOHC4OD(aq)			
H45005b_a01	TrAa01ScC	C1OOHC2OOHC4OD(aq)	\rightarrow	k_exb(01,ind_C100HC200HC40D)	see general notes*
		C1OOHC2OOHC4OD			
H45006f_a01	TrAa01ScC	$C24O3CCO2H \rightarrow C24O3CCO2H(aq)$		$k_{exf}(01, ind_{C2403CC02H})$	see general notes*
H45006b_a01	TrAa01ScC	$C24O3CCO2H(aq) \rightarrow C24O3CCO2H$		k_exb(01,ind_C2403CC02H)	see general notes*
H45007f_a01	TrAa01ScC	$C4CO2DBCO3 \rightarrow C4CO2DBCO3(aq)$		k_exf(01,ind_C4C02DBC03)	see general notes*
H45007b_a01	TrAa01ScC	$C4CO2DBCO3(aq) \rightarrow C4CO2DBCO3$		k_exb(01,ind_C4C02DBC03)	see general notes*
H45008f_a01	TrAa01ScCN	$C4CO2DBPAN \rightarrow C4CO2DBPAN(aq)$		<pre>k_exf(01,ind_C4C02DBPAN)</pre>	see general notes*
H45008b_a01	TrAa01ScCN	$C4CO2DBPAN(aq) \rightarrow C4CO2DBPAN$		k_exb(01,ind_C4CO2DBPAN)	see general notes*
H45009f_a01	TrAa01ScC	$C4CO2DCO3H \rightarrow C4CO2DCO3H(aq)$		k_exf(01,ind_C4CO2DCO3H)	see general notes*
H45009b_a01	TrAa01ScC	$C4CO2DCO3H(aq) \rightarrow C4CO2DCO3H$		k_exb(01,ind_C4CO2DCO3H)	see general notes*
H45010f_a01	TrAa01ScCN	$C4MCONO3OH \rightarrow C4MCONO3OH(aq)$		k_exf(01,ind_C4MCON030H)	see general notes*
H45010b_a01	TrAa01ScCN	$C4MCONO3OH(aq) \rightarrow C4MCONO3OH$		k_exb(01,ind_C4MCON030H)	see general notes*
H45011f_a01	TrAa01ScC	$C511OOH \rightarrow C511OOH(aq)$		k_exf(01,ind_C51100H)	see general notes*
H45011b_a01	TrAa01ScC	$C511OOH(aq) \rightarrow C511OOH$		k_exb(01,ind_C51100H)	see general notes*
H45012f_a01	TrAa01ScC	$C512OOH \rightarrow C512OOH(aq)$		k_exf(01,ind_C51200H)	see general notes*
H45012b_a01	TrAa01ScC	$C512OOH(aq) \rightarrow C512OOH$		k_exb(01,ind_C51200H)	see general notes*
H45013f_a01	TrAa01ScC	$C5134CO2OH \rightarrow C5134CO2OH(aq)$		k_exf(01,ind_C5134C020H)	see general notes*
H45013b_a01	TrAa01ScC	$C5134CO2OH(aq) \rightarrow C5134CO2OH$		k_exb(01,ind_C5134C020H)	see general notes*
H45014f_a01	TrAa01ScC	$C513CO \rightarrow C513CO(aq)$		k_exf(01,ind_C513C0)	see general notes*
H45014b_a01	TrAa01ScC	$C513CO(aq) \rightarrow C513CO$		k_exb(01,ind_C513C0)	see general notes*
H45015f_a01	TrAa01ScC	$C513OOH \rightarrow C513OOH(aq)$		k_exf(01,ind_C51300H)	see general notes*
H45015b_a01	TrAa01ScC	$C513OOH(aq) \rightarrow C513OOH$		k_exb(01,ind_C51300H)	see general notes*
H45016f_a01	TrAa01ScCN	$C514NO3 \rightarrow C514NO3(aq)$		k_exf(01,ind_C514N03)	see general notes*
H45016b_a01	TrAa01ScCN	$C514NO3(aq) \rightarrow C514NO3$		k_exb(01,ind_C514N03)	see general notes*
H45017f_a01	TrAa01ScC	$C514OOH \rightarrow C514OOH(aq)$		k_exf(01,ind_C51400H)	see general notes*
H45017b_a01	TrAa01ScC	$C514OOH(aq) \rightarrow C514OOH$		k_exb(01,ind_C51400H)	see general notes*
H45018f_a01	TrAa01ScC	$C54CO \rightarrow C54CO(aq)$		k_exf(01,ind_C54C0)	see general notes*
H45018b_a01	TrAa01ScC	$C54CO(aq) \rightarrow C54CO$		k_exb(01,ind_C54C0)	see general notes*
H45019f_a01	TrAa01ScC	$C59OOH \rightarrow C59OOH(aq)$		k_exf(01,ind_C5900H)	see general notes*

Table 3: Reversible (Henry's law) equilibria and irreversible ("heterogenous") uptake

#	labels	reaction	rate coefficient	reference
H45019b_a01	TrAa01ScC	$C59OOH(aq) \rightarrow C59OOH$	k_exb(01,ind_C5900H)	see general notes*
H45020f_a01	TrAa01ScC	$C5CO14OH \rightarrow C5CO14OH(aq)$	k_exf(01,ind_C5C0140H)	see general notes*
H45020b_a01	TrAa01ScC	$C5CO14OH(aq) \rightarrow C5CO14OH$	k_exb(01,ind_C5C0140H)	see general notes*
H45021f_a01	TrAa01ScC	$C5CO14OOH \rightarrow C5CO14OOH(aq)$	k_exf(01,ind_C5C01400H)	see general notes*
H45021b_a01	TrAa01ScC	$C5CO14OOH(aq) \rightarrow C5CO14OOH$	k_exb(01,ind_C5C01400H)	see general notes*
H45022f_a01	TrAa01ScC	$C5DIALCO \rightarrow C5DIALCO(aq)$	k_exf(01,ind_C5DIALC0)	see general notes*
H45022b_a01	TrAa01ScC	$C5DIALCO(aq) \rightarrow C5DIALCO$	k_exb(01,ind_C5DIALCO)	see general notes*
H45023f_a01	TrAa01ScC	$C5DIALOOH \rightarrow C5DIALOOH(aq)$	k_exf(01,ind_C5DIAL00H)	see general notes*
H45023b_a01	TrAa01ScC	$C5DIALOOH(aq) \rightarrow C5DIALOOH$	k_exb(01,ind_C5DIAL00H)	see general notes*
H45024f_a01	TrAa01ScC	$C5DICARB \rightarrow C5DICARB(aq)$	<pre>k_exf(01,ind_C5DICARB)</pre>	see general notes*
H45024b_a01	TrAa01ScC	$C5DICARB(aq) \rightarrow C5DICARB$	<pre>k_exb(01,ind_C5DICARB)</pre>	see general notes*
H45025f_a01	TrAa01ScC	$C5DICAROOH \rightarrow C5DICAROOH(aq)$	<pre>k_exf(01,ind_C5DICAROOH)</pre>	see general notes*
H45025b_a01	TrAa01ScC	$C5DICAROOH(aq) \rightarrow C5DICAROOH$	<pre>k_exb(01,ind_C5DICAROOH)</pre>	see general notes*
H45026f_a01	TrAa01ScCN	$C5PAN9 \rightarrow C5PAN9(aq)$	<pre>k_exf(01,ind_C5PAN9)</pre>	see general notes*
H45026b_a01	TrAa01ScCN	$C5PAN9(aq) \rightarrow C5PAN9$	<pre>k_exb(01,ind_C5PAN9)</pre>	see general notes*
H45027f_a01	TrAa01ScC	$CHOC3COOOH \rightarrow CHOC3COOOH(aq)$	k_exf(01,ind_CHOC3C000H)	see general notes*
H45027b_a01	TrAa01ScC	$CHOC3COOOH(aq) \rightarrow CHOC3COOOH$	k_exb(01,ind_CHOC3C000H)	see general notes*
H45028f_a01	TrAa01ScCN	$CHOC3COPAN \rightarrow CHOC3COPAN(aq)$	<pre>k_exf(01,ind_CHOC3COPAN)</pre>	see general notes*
H45028b_a01	TrAa01ScCN	$CHOC3COPAN(aq) \rightarrow CHOC3COPAN$	k_exb(01,ind_CHOC3COPAN)	see general notes*
H45029f_a01	TrAa01ScC	$CO13C4CHO \rightarrow CO13C4CHO(aq)$	$k_{exf}(01, ind_{C013C4CH0})$	see general notes*
H45029b_a01	TrAa01ScC	$CO13C4CHO(aq) \rightarrow CO13C4CHO$	k_exb(01,ind_C013C4CH0)	see general notes*
H45030f_a01	TrAa01ScC	$CO23C4CHO \rightarrow CO23C4CHO(aq)$	$k_{exf}(01, ind_{CO23C4CHO})$	see general notes*
H45030b_a01	TrAa01ScC	$CO23C4CHO(aq) \rightarrow CO23C4CHO$	k_exb(01,ind_CO23C4CHO)	see general notes*
H45031f_a01	TrAa01ScC	$CO23C4CO3H \rightarrow CO23C4CO3H(aq)$	k_exf(01,ind_C023C4C03H)	see general notes*
H45031b_a01	TrAa01ScC	$CO23C4CO3H(aq) \rightarrow CO23C4CO3H$	k_exb(01,ind_C023C4C03H)	see general notes*
H45032f_a01	TrAa01ScCN	$DB1NO3 \rightarrow DB1NO3(aq)$	k_exf(01,ind_DB1N03)	see general notes*
H45032b_a01	TrAa01ScCN	$DB1NO3(aq) \rightarrow DB1NO3$	k_exb(01,ind_DB1NO3)	see general notes*
H45033f_a01	TrAa01ScC	$DB1OOH \rightarrow DB1OOH(aq)$	k_exf(01,ind_DB100H)	see general notes*
H45033b_a01	TrAa01ScC	$DB1OOH(aq) \rightarrow DB1OOH$	k_exb(01,ind_DB100H)	see general notes*
H45034f_a01	TrAa01ScC	$DB2OOH \rightarrow DB2OOH(aq)$	k_exf(01,ind_DB200H)	see general notes*
H45034b_a01	TrAa01ScC	$DB2OOH(aq) \rightarrow DB2OOH$	k_exb(01,ind_DB200H)	see general notes*
H45035f_a01	TrAa01ScC	$ISOPAOH \rightarrow ISOPAOH(aq)$	k_exf(01,ind_ISOPAOH)	see general notes*
H45035b_a01	TrAa01ScC	$ISOPAOH(aq) \rightarrow ISOPAOH$	k_exb(01,ind_ISOPAOH)	see general notes*
H45036f_a01	TrAa01ScCN	$ISOPBNO3 \rightarrow ISOPBNO3(aq)$	k_exf(01,ind_ISOPBN03)	see general notes*
H45036b_a01	TrAa01ScCN	$ISOPBNO3(aq) \rightarrow ISOPBNO3$	<pre>k_exb(01,ind_ISOPBN03)</pre>	see general notes*

Table 3: Reversible (Henry's law) equilibria and irreversible ("heterogenous") uptake

#	labels	reaction	rate coefficient	reference
H45037f_a01	TrAa01ScC	$ISOPBOH \rightarrow ISOPBOH(aq)$	k_exf(01,ind_ISOPBOH)	see general notes*
H45037b_a01	TrAa01ScC	$ISOPBOH(aq) \rightarrow ISOPBOH$	k_exb(01,ind_ISOPBOH)	see general notes*
H45038f_a01	TrAa01ScC	$ISOPBOOH \rightarrow ISOPBOOH(aq)$	<pre>k_exf(01,ind_ISOPBOOH)</pre>	see general notes*
H45038b_a01	TrAa01ScC	$ISOPBOOH(aq) \rightarrow ISOPBOOH$	k_exb(01,ind_ISOPBOOH)	see general notes*
H45039f_a01	TrAa01ScCN	$ISOPDNO3 \rightarrow ISOPDNO3(aq)$	k_exf(01,ind_ISOPDN03)	see general notes*
H45039b_a01	TrAa01ScCN	$ISOPDNO3(aq) \rightarrow ISOPDNO3$	k_exb(01,ind_ISOPDN03)	see general notes*
H45040f_a01	TrAa01ScC	$ISOPDOH \rightarrow ISOPDOH(aq)$	<pre>k_exf(01,ind_ISOPDOH)</pre>	see general notes*
H45040b_a01	TrAa01ScC	$ISOPDOH(aq) \rightarrow ISOPDOH$	k_exb(01,ind_ISOPDOH)	see general notes*
H45041f_a01	TrAa01ScC	$ISOPDOOH \rightarrow ISOPDOOH(aq)$	<pre>k_exf(01,ind_ISOPDOOH)</pre>	see general notes*
H45041b_a01	TrAa01ScC	$ISOPDOOH(aq) \rightarrow ISOPDOOH$	k_exb(01,ind_ISOPD00H)	see general notes*
H45042f_a01	TrAa01ScC	$LC578OOH \rightarrow LC578OOH(aq)$	$k_{exf}(01, ind_{LC57800H})$	see general notes*
H45042b_a01	TrAa01ScC	$LC578OOH(aq) \rightarrow LC578OOH$	k_exb(01,ind_LC57800H)	see general notes*
H45043f_a01	TrAa01ScCN	$LC5PAN1719 \rightarrow LC5PAN1719(aq)$	$k_{exf}(01, ind_{LC5PAN1719})$	see general notes*
H45043b_a01	TrAa01ScCN	$LC5PAN1719(aq) \rightarrow LC5PAN1719$	k_exb(01,ind_LC5PAN1719)	see general notes*
H45044f_a01	TrAa01ScC	$LHC4ACCHO \rightarrow LHC4ACCHO(aq)$	<pre>k_exf(01,ind_LHC4ACCH0)</pre>	see general notes*
H45044b_a01	TrAa01ScC	$LHC4ACCHO(aq) \rightarrow LHC4ACCHO$	k_exb(01,ind_LHC4ACCH0)	see general notes*
H45045f_a01	TrAa01ScC	$LHC4ACCO2H \rightarrow LHC4ACCO2H(aq)$	<pre>k_exf(01,ind_LHC4ACC02H)</pre>	see general notes*
H45045b_a01	TrAa01ScC	$LHC4ACCO2H(aq) \rightarrow LHC4ACCO2H$	k_exb(01,ind_LHC4ACCO2H)	see general notes*
H45046f_a01	TrAa01ScC	$LHC4ACCO3H \rightarrow LHC4ACCO3H(aq)$	<pre>k_exf(01,ind_LHC4ACCO3H)</pre>	see general notes*
H45046b_a01	TrAa01ScC	$LHC4ACCO3H(aq) \rightarrow LHC4ACCO3H$	k_exb(01,ind_LHC4ACCO3H)	see general notes*
H45047f_a01	TrAa01ScC	$LIEPOX \rightarrow LIEPOX(aq)$	<pre>k_exf(01,ind_LIEPOX)</pre>	see general notes*
H45047b_a01	TrAa01ScC	$LIEPOX(aq) \rightarrow LIEPOX$	<pre>k_exb(01,ind_LIEPOX)</pre>	see general notes*
H45048f_a01	TrAa01ScCN	$LISOPACNO3 \rightarrow LISOPACNO3(aq)$	<pre>k_exf(01,ind_LISOPACNO3)</pre>	see general notes*
H45048b_a01	TrAa01ScCN	$LISOPACNO3(aq) \rightarrow LISOPACNO3$	<pre>k_exb(01,ind_LISOPACNO3)</pre>	see general notes*
H45049f_a01	TrAa01ScC	$LISOPACOOH \rightarrow LISOPACOOH(aq)$	<pre>k_exf(01,ind_LISOPACOOH)</pre>	see general notes*
H45049b_a01	TrAa01ScC	$LISOPACOOH(aq) \rightarrow LISOPACOOH$	k_exb(01,ind_LISOPACOOH)	see general notes*
H45050f_a01	TrAa01ScCN	$LMBOABNO3 \rightarrow LMBOABNO3(aq)$	<pre>k_exf(01,ind_LMBOABN03)</pre>	see general notes*
H45050b_a01	TrAa01ScCN	$LMBOABNO3(aq) \rightarrow LMBOABNO3$	k_exb(01,ind_LMBOABNO3)	see general notes*
H45051f_a01	TrAa01ScC	$LMBOABOOH \rightarrow LMBOABOOH(aq)$	k_exf(01,ind_LMBOABOOH)	see general notes*
H45051b_a01	TrAa01ScC	$LMBOABOOH(aq) \rightarrow LMBOABOOH$	k_exb(01,ind_LMBOABOOH)	see general notes*
H45052f_a01	TrAa01ScCN	$LNMBOABOOH \rightarrow LNMBOABOOH(aq)$	k_exf(01,ind_LNMBOABOOH)	see general notes*
H45052b_a01	TrAa01ScCN	$LNMBOABOOH(aq) \rightarrow LNMBOABOOH$	k_exb(01,ind_LNMBOABOOH)	see general notes*
H45053f_a01	TrAa01ScC	$MBO \rightarrow MBO(aq)$	k_exf(01,ind_MBO)	see general notes*
H45053b_a01	TrAa01ScC	$MBO(aq) \rightarrow MBO$	k_exb(01,ind_MBO)	see general notes*
H45054f_a01	TrAa01ScC	$MBOACO \rightarrow MBOACO(aq)$	k_exf(01,ind_MBOACO)	see general notes*

Table 3: Reversible (Henry's law) equilibria and irreversible ("heterogenous") uptake

	labels	reaction	rate coefficient	reference
# H45054b_a01	TrAa01ScC	$\frac{\text{MBOACO(aq)} \rightarrow \text{MBOACO}}{\text{MBOACO}}$	k_exb(01,ind_MBOACO)	see general notes*
H45055f_a01	TrAa01ScC	$MBOCOCO \rightarrow MBOCOCO(aq)$	k_exf(01,ind_MB0C0C0)	see general notes see general notes*
	TrAa01ScC	$MBOCOCO \rightarrow MBOCOCO(aq)$ $MBOCOCO(aq) \rightarrow MBOCOCO$	k_exb(01,ind_MB0C0C0)	<u> </u>
H45055b_a01 H45056f_a01	TrAa01ScC	$MC3ODBCO2H \rightarrow MC3ODBCO2H(aq)$	k_exf(01,ind_MC30DBC02H)	see general notes* see general notes*
H45056b_a01	TrAa01ScC	$MC3ODBCO2H \rightarrow MC3ODBCO2H(aq)$ $MC3ODBCO2H(aq) \rightarrow MC3ODBCO2H$	k_ext(01,ind_MC30DBC02H) k_exb(01,ind_MC30DBC02H)	see general notes see general notes*
H45057f_a01	TrAa01ScC			see general notes see general notes*
н4505/1_a01		3METHYLFURAN(aq)	k_exi(U1,ind_MESFURAN)	
H45057b_a01	TrAa01ScC	$\begin{array}{ccc} {\rm 3METHYLFURAN(aq)} & \rightarrow \\ {\rm 3METHYLFURAN} \end{array}$	k_exb(01,ind_ME3FURAN)	see general notes*
II4E0E0£ -01	TrAa01ScC	$MMALNHYOOH \rightarrow MMALNHYOOH(aq)$	1 (O1 in 1 MMAI NIIVOOII)	see general notes*
H45058f_a01			k_exf(01,ind_MMALNHY00H)	<u> </u>
H45058b_a01	TrAa01ScC TrAa01ScCN	$MMALNHYOOH(aq) \rightarrow MMALNHYOOH$	k_exb(01,ind_MMALNHY00H)	see general notes*
H45059f_a01	TrAa01ScCN	$NC4MDCO2HN \rightarrow NC4MDCO2HN(aq)$ $NC4MDCO2HN(aq) \rightarrow NC4MDCO2HN$	k_exf(01,ind_NC4MDC02H)	see general notes* see general notes*
H45059b_a01	TrAa01ScCN	$NC4OHCO3H \rightarrow NC4OHCO3H(aq)$	k_exb(01,ind_NC4MDC02H)	© .
H45060f_a01		(1/	k_exf(01,ind_NC40HC03H)	see general notes*
H45060b_a01	TrAa01ScCN	$NC4OHCO3H(aq) \rightarrow NC4OHCO3H$	k_exb(01,ind_NC40HC03H)	see general notes*
H45061f_a01	TrAa01ScCN	$NC4OHCPAN \rightarrow NC4OHCPAN(aq)$	k_exf(01,ind_NC40HCPAN)	see general notes*
H45061b_a01	TrAa01ScCN	$NC4OHCPAN(aq) \rightarrow NC4OHCPAN$	k_exb(01,ind_NC40HCPAN)	see general notes*
H45062f_a01	TrAa01ScCN	$NISOPOOH \rightarrow NISOPOOH(aq)$	k_exf(01,ind_NISOPOOH)	see general notes*
H45062b_a01	TrAa01ScCN	$NISOPOOH(aq) \rightarrow NISOPOOH$	k_exb(01,ind_NISOPOOH)	see general notes*
H45063f_a01	TrAa01ScCN	$NMBOBCO \rightarrow NMBOBCO(aq)$ $NMBOBCO(ar) \rightarrow NMBOBCO$	k_exf(01,ind_NMBOBCO)	see general notes*
H45063b_a01	TrAa01ScCN	NMBOBCO(aq) → NMBOBCO	k_exb(01,ind_NMBOBCO)	see general notes*
H45064f_a01	TrAa01ScCN	$NTLFUOOH \rightarrow NTLFUOOH(aq)$	k_exf(01,ind_NTLFU00H)	see general notes*
H45064b_a01	TrAa01ScCN	$NTLFUOOH(aq) \rightarrow NTLFUOOH$	k_exb(01,ind_NTLFU00H)	see general notes*
H45065f_a01	TrAa01ScC	$TLFUOOH \rightarrow TLFUOOH(aq)$	k_exf(01,ind_TLFU00H)	see general notes*
H45065b_a01	TrAa01ScC	$TLFUOOH(aq) \rightarrow TLFUOOH$	k_exb(01,ind_TLFU00H)	see general notes*
H45066f_a01	TrAa01ScC	$\begin{array}{c} LZCO3HC23DBCOD \\ LZCO3HC23DBCOD(aq) \end{array} \rightarrow$	k_exf(01,ind_LZCO3HC23DBCOD)	see general notes*
H45066b_a01	TrAa01ScC	$\begin{array}{c} LZCO3HC23DBCOD(aq) & \rightarrow \\ LZCO3HC23DBCOD & \end{array}$	k_exb(01,ind_LZCO3HC23DBCOD)	see general notes*
H45067f_a01	TrAa01ScC	$C4MDIAL \rightarrow C4MDIAL(aq)$	k_exf(01,ind_C4MDIAL)	see general notes*
H45067b_a01	TrAa01ScC	$C4MDIAL(aq) \rightarrow C4MDIAL$	k_exb(01,ind_C4MDIAL)	see general notes*
H46000f_a01	TrAa01ScCN	$BZBIPERNO3 \rightarrow BZBIPERNO3(aq)$	k_exf(01,ind_BZBIPERNO3)	see general notes*
H46000b_a01	TrAa01ScCN	$BZBIPERNO3(aq) \rightarrow BZBIPERNO3$	k_exb(01,ind_BZBIPERNO3)	see general notes*
H46001f_a01	TrAa01ScC	$BZBIPEROOH \rightarrow BZBIPEROOH(aq)$	k_exf(01,ind_BZBIPEROOH)	see general notes*
H46001b_a01	TrAa01ScC	$BZBIPEROOH(aq) \rightarrow BZBIPEROOH$	k_exb(01,ind_BZBIPEROOH)	see general notes*

Table 3: Reversible (Henry's law) equilibria and irreversible ("heterogenous") uptake

#	labels	reaction	rate coefficient	reference
H46002f_a01	TrAa01ScC	$BZEMUCCO \rightarrow BZEMUCCO(aq)$	k_exf(01,ind_BZEMUCCO)	see general notes*
H46002b_a01	TrAa01ScC	$BZEMUCCO(aq) \rightarrow BZEMUCCO$	<pre>k_exb(01,ind_BZEMUCCO)</pre>	see general notes*
H46003f_a01	TrAa01ScC	$BZEMUCCO2H \rightarrow BZEMUCCO2H(aq)$	<pre>k_exf(01,ind_BZEMUCCO2H)</pre>	see general notes*
H46003b_a01	TrAa01ScC	$BZEMUCCO2H(aq) \rightarrow BZEMUCCO2H$	k_exb(01,ind_BZEMUCCO2H)	see general notes*
H46004f_a01	TrAa01ScC	$BZEMUCCO3H \rightarrow BZEMUCCO3H(aq)$	<pre>k_exf(01,ind_BZEMUCCO3H)</pre>	see general notes*
H46004b_a01	TrAa01ScC	$BZEMUCCO3H(aq) \rightarrow BZEMUCCO3H$	k_exb(01,ind_BZEMUCCO3H)	see general notes*
H46005f_a01	TrAa01ScCN	$BZEMUCNO3 \rightarrow BZEMUCNO3(aq)$	<pre>k_exf(01,ind_BZEMUCN03)</pre>	see general notes*
H46005b_a01	TrAa01ScCN	$BZEMUCNO3(aq) \rightarrow BZEMUCNO3$	<pre>k_exb(01,ind_BZEMUCN03)</pre>	see general notes*
H46006f_a01	TrAa01ScC	$BZEMUCOOH \rightarrow BZEMUCOOH(aq)$	<pre>k_exf(01,ind_BZEMUCOOH)</pre>	see general notes*
H46006b_a01	TrAa01ScC	$BZEMUCOOH(aq) \rightarrow BZEMUCOOH$	k_exb(01,ind_BZEMUCOOH)	see general notes*
H46007f_a01	TrAa01ScC	$BZEPOXMUC \rightarrow BZEPOXMUC(aq)$	<pre>k_exf(01,ind_BZEPOXMUC)</pre>	see general notes*
H46007b_a01	TrAa01ScC	$BZEPOXMUC(aq) \rightarrow BZEPOXMUC$	<pre>k_exb(01,ind_BZEPOXMUC)</pre>	see general notes*
H46008f_a01	TrAa01ScC	$BZOBIPEROH \rightarrow BZOBIPEROH(aq)$	<pre>k_exf(01,ind_BZOBIPEROH)</pre>	see general notes*
H46008b_a01	TrAa01ScC	$BZOBIPEROH(aq) \rightarrow BZOBIPEROH$	<pre>k_exb(01,ind_BZOBIPEROH)</pre>	see general notes*
H46009f_a01	TrAa01ScCN	$C5CO2DBPAN \rightarrow C5CO2DBPAN(aq)$	<pre>k_exf(01,ind_C5C02DBPAN)</pre>	see general notes*
H46009b_a01	TrAa01ScCN	$C5CO2DBPAN(aq) \rightarrow C5CO2DBPAN$	<pre>k_exb(01,ind_C5C02DBPAN)</pre>	see general notes*
H46010f_a01	TrAa01ScC	$C5CO2DCO3H \rightarrow C5CO2DCO3H(aq)$	k_exf(01,ind_C5C02DC03H)	see general notes*
H46010b_a01	TrAa01ScC	$C5CO2DCO3H(aq) \rightarrow C5CO2DCO3H$	k_exb(01,ind_C5CO2DCO3H)	see general notes*
H46011f_a01	TrAa01ScCN	$C5CO2OHPAN \rightarrow C5CO2OHPAN(aq)$	k_exf(01,ind_C5C020HPAN)	see general notes*
H46011b_a01	TrAa01ScCN	$C5CO2OHPAN(aq) \rightarrow C5CO2OHPAN$	k_exb(01,ind_C5C020HPAN)	see general notes*
H46012f_a01	TrAa01ScC	$C5COOHCO3H \rightarrow C5COOHCO3H(aq)$	k_exf(01,ind_C5C00HC03H)	see general notes*
H46012b_a01	TrAa01ScC	$C5COOHCO3H(aq) \rightarrow C5COOHCO3H$	k_exb(01,ind_C5C00HC03H)	see general notes*
H46013f_a01	TrAa01ScC	$C6125CO \rightarrow C6125CO(aq)$	k_exf(01,ind_C6125CO)	see general notes*
H46013b_a01	TrAa01ScC	$C6125CO(aq) \rightarrow C6125CO$	$k_{exb}(01, ind_{c6125c0})$	see general notes*
H46014f_a01	TrAa01ScC	$C614CO \rightarrow C614CO(aq)$	k_exf(01,ind_C614C0)	see general notes*
H46014b_a01	TrAa01ScC	$C614CO(aq) \rightarrow C614CO$	$k_{exb}(01, ind_{c614c0})$	see general notes*
H46015f_a01	TrAa01ScCN	$C614NO3 \rightarrow C614NO3(aq)$	k_exf(01,ind_C614N03)	see general notes*
H46015b_a01	TrAa01ScCN	$C614NO3(aq) \rightarrow C614NO3$	$k_{exb}(01, ind_{c614N03})$	see general notes*
H46016f_a01	TrAa01ScC	$C614OOH \rightarrow C614OOH(aq)$	k_exf(01,ind_C61400H)	see general notes*
H46016b_a01	TrAa01ScC	$C614OOH(aq) \rightarrow C614OOH$	k_exb(01,ind_C61400H)	see general notes*
H46017f_a01	TrAa01ScC	$C615CO2OOH \rightarrow C615CO2OOH(aq)$	k_exf(01,ind_C615C0200H)	see general notes*
H46017b_a01	TrAa01ScC	$C615CO2OOH(aq) \rightarrow C615CO2OOH$	k_exb(01,ind_C615C0200H)	see general notes*
H46018f_a01	TrAa01ScC	$C6CO4DB \rightarrow C6CO4DB(aq)$	k_exf(01,ind_C6C04DB)	see general notes*
H46018b_a01	TrAa01ScC	$C6CO4DB(aq) \rightarrow C6CO4DB$	k_exb(01,ind_C6C04DB)	see general notes*
H46019f_a01	TrAa01ScC	$C6H5O \rightarrow C6H5O(aq)$	$k_{exf}(01, ind_{c6H50})$	see general notes*

Table 3: Reversible (Henry's law) equilibria and irreversible ("heterogenous") uptake

#	labels	reaction	rate coefficient	reference
H46019b_a01	TrAa01ScC	$C6H5O(aq) \rightarrow C6H5O$	k_exb(01,ind_C6H5O)	see general notes*
H46020f_a01	TrAa01ScC	$C6H5OOH \rightarrow C6H5OOH(aq)$	k_exf(01,ind_C6H500H)	see general notes*
H46020b_a01	TrAa01ScC	$C6H5OOH(aq) \rightarrow C6H5OOH$	k_exb(01,ind_C6H500H)	see general notes*
H46021f_a01	TrAa01ScC	$CATEC1O \rightarrow CATEC1O(aq)$	k_exf(01,ind_CATEC10)	see general notes*
H46021b_a01	TrAa01ScC	$CATEC1O(aq) \rightarrow CATEC1O$	k_exb(01,ind_CATEC10)	see general notes*
H46022f_a01	TrAa01ScC	$CATEC1OOH \rightarrow CATEC1OOH(aq)$	k_exf(01,ind_CATEC100H)	see general notes*
H46022b_a01	TrAa01ScC	$CATEC1OOH(aq) \rightarrow CATEC1OOH$	k_exb(01,ind_CATEC100H)	see general notes*
H46023f_a01	TrAa01ScC	$CATECHOL \rightarrow CATECHOL(aq)$	k_exf(01,ind_CATECHOL)	see general notes*
H46023b_a01	TrAa01ScC	$CATECHOL(aq) \rightarrow CATECHOL$	k_exb(01,ind_CATECHOL)	see general notes*
H46024f_a01	TrAa01ScC	$CO235C5CHO \rightarrow CO235C5CHO(aq)$	k_exf(01,ind_C0235C5CH0)	see general notes*
H46024b_a01	TrAa01ScC	$CO235C5CHO(aq) \rightarrow CO235C5CHO$	k_exb(01,ind_C0235C5CH0)	see general notes*
H46025f_a01	TrAa01ScC	$CO235C6OOH \rightarrow CO235C6OOH(aq)$	k_exf(01,ind_C0235C600H)	see general notes*
H46025b_a01	TrAa01ScC	$CO235C6OOH(aq) \rightarrow CO235C6OOH$	k_exb(01,ind_C0235C600H)	see general notes*
H46026f_a01	TrAa01ScCN	$DNPHEN \rightarrow DNPHEN(aq)$	<pre>k_exf(01,ind_DNPHEN)</pre>	see general notes*
H46026b_a01	TrAa01ScCN	$\text{DNPHEN}(\text{aq}) \to \text{DNPHEN}$	<pre>k_exb(01,ind_DNPHEN)</pre>	see general notes*
H46027f_a01	TrAa01ScCN	$DNPHENOOH \rightarrow DNPHENOOH(aq)$	<pre>k_exf(01,ind_DNPHENOOH)</pre>	see general notes*
H46027b_a01	TrAa01ScCN	$DNPHENOOH(aq) \rightarrow DNPHENOOH$	<pre>k_exb(01,ind_DNPHENOOH)</pre>	see general notes*
H46028f_a01	TrAa01ScCN	$NBZQOOH \rightarrow NBZQOOH(aq)$	k_exf(01,ind_NBZQOOH)	see general notes*
H46028b_a01	TrAa01ScCN	$NBZQOOH(aq) \rightarrow NBZQOOH$	k_exb(01,ind_NBZQOOH)	see general notes*
H46029f_a01	TrAa01ScCN	$NCATECHOL \rightarrow NCATECHOL(aq)$	<pre>k_exf(01,ind_NCATECHOL)</pre>	see general notes*
H46029b_a01	TrAa01ScCN	$NCATECHOL(aq) \rightarrow NCATECHOL$	<pre>k_exb(01,ind_NCATECHOL)</pre>	see general notes*
H46030f_a01	TrAa01ScCN	$NCATECOOH \rightarrow NCATECOOH(aq)$	<pre>k_exf(01,ind_NCATECOOH)</pre>	see general notes*
H46030b_a01	TrAa01ScCN	$NCATECOOH(aq) \rightarrow NCATECOOH$	<pre>k_exb(01,ind_NCATECOOH)</pre>	see general notes*
H46031f_a01	TrAa01ScCN	$NDNPHENOOH \rightarrow NDNPHENOOH(aq)$	<pre>k_exf(01,ind_NDNPHENOOH)</pre>	see general notes*
H46031b_a01	TrAa01ScCN	$NDNPHENOOH(aq) \rightarrow NDNPHENOOH$	<pre>k_exb(01,ind_NDNPHENOOH)</pre>	see general notes*
H46032f_a01	TrAa01ScCN	$NNCATECOOH \rightarrow NNCATECOOH(aq)$	<pre>k_exf(01,ind_NNCATECOOH)</pre>	see general notes*
H46032b_a01	TrAa01ScCN	$NNCATECOOH(aq) \rightarrow NNCATECOOH$	<pre>k_exb(01,ind_NNCATECOOH)</pre>	see general notes*
H46033f_a01	TrAa01ScCN	$NPHENOOH \rightarrow NPHENOOH(aq)$	<pre>k_exf(01,ind_NPHENOOH)</pre>	see general notes*
H46033b_a01	TrAa01ScCN	$NPHENOOH(aq) \rightarrow NPHENOOH$	<pre>k_exb(01,ind_NPHENOOH)</pre>	see general notes*
H46034f_a01	TrAa01ScC	$PBZQCO \rightarrow PBZQCO(aq)$	k_exf(01,ind_PBZQCO)	see general notes*
H46034b_a01	TrAa01ScC	$PBZQCO(aq) \rightarrow PBZQCO$	k_exb(01,ind_PBZQCO)	see general notes*
H46035f_a01	TrAa01ScC	$PBZQOOH \rightarrow PBZQOOH(aq)$	k_exf(01,ind_PBZQOOH)	see general notes*
H46035b_a01	TrAa01ScC	$PBZQOOH(aq) \rightarrow PBZQOOH$	k_exb(01,ind_PBZQOOH)	see general notes*
H46036f_a01	TrAa01ScC	$PHENOL \rightarrow PHENOL(aq)$	<pre>k_exf(01,ind_PHENOL)</pre>	see general notes*
H46036b_a01	TrAa01ScC	$PHENOL(aq) \rightarrow PHENOL$	<pre>k_exb(01,ind_PHENOL)</pre>	see general notes*

Table 3: Reversible (Henry's law) equilibria and irreversible ("heterogenous") uptake

#	labels	reaction	rate coefficient	reference
H46037f_a01	TrAa01ScC	$PHENOOH \rightarrow PHENOOH(aq)$	k_exf(01,ind_PHENOOH)	see general notes*
H46037b_a01	TrAa01ScC	$PHENOOH(aq) \rightarrow PHENOOH$	k_exb(01,ind_PHENOOH)	see general notes*
H47000f_a01	TrAa01ScC	$C235C6CO3H \rightarrow C235C6CO3H(aq)$	k_exf(01,ind_C235C6C03H)	see general notes*
H47000b_a01	TrAa01ScC	$C235C6CO3H(aq) \rightarrow C235C6CO3H$	k_exb(01,ind_C235C6C03H)	see general notes*
H47001f_a01	TrAa01ScCN	$C6CO2OHPAN \rightarrow C6CO2OHPAN(aq)$	k_exf(01,ind_C6C020HPAN)	see general notes*
H47001b_a01	TrAa01ScCN	$C6CO2OHPAN(aq) \rightarrow C6CO2OHPAN$	k_exb(01,ind_C6C020HPAN)	see general notes*
H47002f_a01	TrAa01ScC	$C6COOHCO3H \rightarrow C6COOHCO3H(aq)$	k_exf(01,ind_C6C00HC03H)	see general notes*
H47002b_a01	TrAa01ScC	$C6COOHCO3H(aq) \rightarrow C6COOHCO3H$	k_exb(01,ind_C6C00HC03H)	see general notes*
H47003f_a01	TrAa01ScC	$C6H5CH2OOH \rightarrow C6H5CH2OOH(aq)$	k_exf(01,ind_C6H5CH2OOH)	see general notes*
H47003b_a01	TrAa01ScC	$C6H5CH2OOH(aq) \rightarrow C6H5CH2OOH$	k_exb(01,ind_C6H5CH2OOH)	see general notes*
H47004f_a01	TrAa01ScC	$C6H5CO3H \rightarrow C6H5CO3H(aq)$	k_exf(01,ind_C6H5CO3H)	see general notes*
H47004b_a01	TrAa01ScC	$C6H5CO3H(aq) \rightarrow C6H5CO3H$	k_exb(01,ind_C6H5CO3H)	see general notes*
H47005f_a01	TrAa01ScC	$C716OOH \rightarrow C716OOH(aq)$	$k_{exf}(01, ind_{C71600H})$	see general notes*
H47005b_a01	TrAa01ScC	$C716OOH(aq) \rightarrow C716OOH$	k_exb(01,ind_C71600H)	see general notes*
H47006f_a01	TrAa01ScC	$C721OOH \rightarrow C721OOH(aq)$	$k_{exf}(01, ind_{C72100H})$	see general notes*
H47006b_a01	TrAa01ScC	$C721OOH(aq) \rightarrow C721OOH$	k_exb(01,ind_C72100H)	see general notes*
H47007f_a01	TrAa01ScC	$C722OOH \rightarrow C722OOH(aq)$	k_exf(01,ind_C72200H)	see general notes*
H47007b_a01	TrAa01ScC	$C722OOH(aq) \rightarrow C722OOH$	k_exb(01,ind_C72200H)	see general notes*
H47008f_a01	TrAa01ScC	$C7CO4DB \rightarrow C7CO4DB(aq)$	k_exf(01,ind_C7CO4DB)	see general notes*
H47008b_a01	TrAa01ScC	$C7CO4DB(aq) \rightarrow C7CO4DB$	k_exb(01,ind_C7CO4DB)	see general notes*
H47009f_a01	TrAa01ScCN	$C7PAN3 \rightarrow C7PAN3(aq)$	k_exf(01,ind_C7PAN3)	see general notes*
H47009b_a01	TrAa01ScCN	$C7PAN3(aq) \rightarrow C7PAN3$	k_exb(01,ind_C7PAN3)	see general notes*
H47010f_a01	TrAa01ScC	$CO235C6CHO \rightarrow CO235C6CHO(aq)$	k_exf(01,ind_C0235C6CH0)	see general notes*
H47010b_a01	TrAa01ScC	$CO235C6CHO(aq) \rightarrow CO235C6CHO$	k_exb(01,ind_C0235C6CH0)	see general notes*
H47011f_a01	TrAa01ScC	$CRESOL \rightarrow CRESOL(aq)$	k_exf(01,ind_CRESOL)	see general notes*
H47011b_a01	TrAa01ScC	$CRESOL(aq) \rightarrow CRESOL$	k_exb(01,ind_CRESOL)	see general notes*
H47012f_a01	TrAa01ScC	$CRESOOH \rightarrow CRESOOH(aq)$	k_exf(01,ind_CRESOOH)	see general notes*
H47012b_a01	TrAa01ScC	$CRESOOH(aq) \rightarrow CRESOOH$	k_exb(01,ind_CRESOOH)	see general notes*
H47013f_a01	TrAa01ScCN	$\mathrm{DNCRES} \to \mathrm{DNCRES}(\mathrm{aq})$	k_exf(01,ind_DNCRES)	see general notes*
H47013b_a01	TrAa01ScCN	$DNCRES(aq) \rightarrow DNCRES$	k_exb(01,ind_DNCRES)	see general notes*
H47014f_a01	TrAa01ScCN	$DNCRESOOH \rightarrow DNCRESOOH(aq)$	k_exf(01,ind_DNCRESOOH)	see general notes*
H47014b_a01	TrAa01ScCN	$DNCRESOOH(aq) \rightarrow DNCRESOOH$	k_exb(01,ind_DNCRESOOH)	see general notes*
H47015f_a01	TrAa01ScC	$MCATEC1O \rightarrow MCATEC1O(aq)$	k_exf(01,ind_MCATEC10)	see general notes*
H47015b_a01	TrAa01ScC	$MCATEC1O(aq) \rightarrow MCATEC1O$	k_exb(01,ind_MCATEC10)	see general notes*
H47016f_a01	TrAa01ScC	$MCATEC1OOH \rightarrow MCATEC1OOH(aq)$	k_exf(01,ind_MCATEC100H)	see general notes*

Table 3: Reversible (Henry's law) equilibria and irreversible ("heterogenous") uptake

#	labels	reaction	rate coefficient	reference
H47016b_a01	TrAa01ScC	$MCATEC1OOH(aq) \rightarrow MCATEC1OOH$	k_exb(01,ind_MCATEC100H)	see general notes*
H47017f_a01	TrAa01ScC	$MCATECHOL \rightarrow MCATECHOL(aq)$	k_exf(01,ind_MCATECHOL)	see general notes*
H47017b_a01	TrAa01ScC	$MCATECHOL(aq) \rightarrow MCATECHOL$	k_exb(01,ind_MCATECHOL)	see general notes*
H47018f_a01	TrAa01ScCN	$MNCATECH \rightarrow MNCATECH(aq)$	k_exf(01,ind_MNCATECH)	see general notes*
H47018b_a01	TrAa01ScCN	$MNCATECH(aq) \rightarrow MNCATECH$	k_exb(01,ind_MNCATECH)	see general notes*
H47019f_a01	TrAa01ScCN	$MNCATECOOH \rightarrow MNCATECOOH(aq)$	k_exf(01,ind_MNCATECOOH)	see general notes*
H47019b_a01	TrAa01ScCN	$MNCATECOOH(aq) \rightarrow MNCATECOOH$	k_exb(01,ind_MNCATECOOH)	see general notes*
H47020f_a01	TrAa01ScCN	$MNNCATCOOH \rightarrow MNNCATCOOH(aq)$	k_exf(01,ind_MNNCATCOOH)	see general notes*
H47020b_a01	TrAa01ScCN	$MNNCATCOOH(aq) \rightarrow MNNCATCOOH$	k_exb(01,ind_MNNCATCOOH)	see general notes*
H47021f_a01	TrAa01ScCN	$NCRESOOH \rightarrow NCRESOOH(aq)$	k_exf(01,ind_NCRESOOH)	see general notes*
H47021b_a01	TrAa01ScCN	$NCRESOOH(aq) \rightarrow NCRESOOH$	k_exb(01,ind_NCRESOOH)	see general notes*
H47022f_a01	TrAa01ScCN	$NDNCRESOOH \rightarrow NDNCRESOOH(aq)$	k_exf(01,ind_NDNCRESOOH)	see general notes*
H47022b_a01	TrAa01ScCN	$NDNCRESOOH(aq) \rightarrow NDNCRESOOH$	k_exb(01,ind_NDNCRESOOH)	see general notes*
H47023f_a01	TrAa01ScC	$OXYL1OOH \rightarrow OXYL1OOH(aq)$	k_exf(01,ind_OXYL100H)	see general notes*
H47023b_a01	TrAa01ScC	$OXYL1OOH(aq) \rightarrow OXYL1OOH$	k_exb(01,ind_OXYL100H)	see general notes*
H47024f_a01	TrAa01ScC	$PHCOOH \rightarrow PHCOOH(aq)$	k_exf(01,ind_PHCOOH)	see general notes*
H47024b_a01	TrAa01ScC	$PHCOOH(aq) \rightarrow PHCOOH$	k_exb(01,ind_PHCOOH)	see general notes*
H47025f_a01	TrAa01ScC	$TLBIPEROOH \rightarrow TLBIPEROOH(aq)$	<pre>k_exf(01,ind_TLBIPEROOH)</pre>	see general notes*
H47025b_a01	TrAa01ScC	$TLBIPEROOH(aq) \rightarrow TLBIPEROOH$	k_exb(01,ind_TLBIPEROOH)	see general notes*
H47026f_a01	TrAa01ScC	$TLEMUCCO \rightarrow TLEMUCCO(aq)$	k_exf(01,ind_TLEMUCCO)	see general notes*
H47026b_a01	TrAa01ScC	$TLEMUCCO(aq) \rightarrow TLEMUCCO$	k_exb(01,ind_TLEMUCCO)	see general notes*
H47027f_a01	TrAa01ScC	$TLEMUCCO2H \rightarrow TLEMUCCO2H(aq)$	k_exf(01,ind_TLEMUCCO2H)	see general notes*
H47027b_a01	TrAa01ScC	$TLEMUCCO2H(aq) \rightarrow TLEMUCCO2H$	k_exb(01,ind_TLEMUCCO2H)	see general notes*
H47028f_a01	TrAa01ScC	$TLEMUCCO3H \rightarrow TLEMUCCO3H(aq)$	k_exf(01,ind_TLEMUCCO3H)	see general notes*
H47028b_a01	TrAa01ScC	$TLEMUCCO3H(aq) \rightarrow TLEMUCCO3H$	k_exb(01,ind_TLEMUCCO3H)	see general notes*
H47029f_a01	TrAa01ScCN	$TLEMUCNO3 \rightarrow TLEMUCNO3(aq)$	k_exf(01,ind_TLEMUCN03)	see general notes*
H47029b_a01	TrAa01ScCN	$TLEMUCNO3(aq) \rightarrow TLEMUCNO3$	k_exb(01,ind_TLEMUCN03)	see general notes*
H47030f_a01	TrAa01ScC	$TLEMUCOOH \rightarrow TLEMUCOOH(aq)$	k_exf(01,ind_TLEMUCOOH)	see general notes*
H47030b_a01	TrAa01ScC	$TLEMUCOOH(aq) \rightarrow TLEMUCOOH$	k_exb(01,ind_TLEMUCOOH)	see general notes*
H47031f_a01	TrAa01ScC	$TLOBIPEROH \rightarrow TLOBIPEROH(aq)$	<pre>k_exf(01,ind_TLOBIPEROH)</pre>	see general notes*
H47031b_a01	TrAa01ScC	$TLOBIPEROH(aq) \rightarrow TLOBIPEROH$	k_exb(01,ind_TLOBIPEROH)	see general notes*
H47032f_a01	TrAa01ScC	$TOL1O \rightarrow TOL1O(aq)$	k_exf(01,ind_TOL10)	see general notes*
H47032b_a01	TrAa01ScC	$TOL1O(aq) \rightarrow TOL1O$	k_exb(01,ind_TOL10)	see general notes*
H48000f_a01	TrAa01ScC	$C721CHO \rightarrow C721CHO(aq)$	k_exf(01,ind_C721CHO)	see general notes*
H48000b_a01	TrAa01ScC	$C721CHO(aq) \rightarrow C721CHO$	k_exb(01,ind_C721CHO)	see general notes*

Table 3: Reversible (Henry's law) equilibria and irreversible ("heterogenous") uptake

#	labels	reaction	rate coefficient	reference
H48001f_a01	TrAa01ScC	$C721CO3H \rightarrow C721CO3H(aq)$	k_exf(01,ind_C721C03H)	see general notes*
H48001b_a01	TrAa01ScC	$C721CO3H(aq) \rightarrow C721CO3H$	k_exb(01,ind_C721C03H)	see general notes*
H48002f_a01	TrAa01ScCN	$C721PAN \rightarrow C721PAN(aq)$	k_exf(01,ind_C721PAN)	see general notes*
H48002b_a01	TrAa01ScCN	$C721PAN(aq) \rightarrow C721PAN$	k_exb(01,ind_C721PAN)	see general notes*
H48003f_a01	TrAa01ScCN	$C810NO3 \rightarrow C810NO3(aq)$	k_exf(01,ind_C810N03)	see general notes*
H48003b_a01	TrAa01ScCN	$C810NO3(aq) \rightarrow C810NO3$	k_exb(01,ind_C810N03)	see general notes*
H48004f_a01	TrAa01ScC	$C810OOH \rightarrow C810OOH(aq)$	k_exf(01,ind_C81000H)	see general notes*
H48004b_a01	TrAa01ScC	$C810OOH(aq) \rightarrow C810OOH$	k_exb(01,ind_C81000H)	see general notes*
H48005f_a01	TrAa01ScC	$C812OOH \rightarrow C812OOH(aq)$	k_exf(01,ind_C81200H)	see general notes*
H48005b_a01	TrAa01ScC	$C812OOH(aq) \rightarrow C812OOH$	k_exb(01,ind_C81200H)	see general notes*
H48006f_a01	TrAa01ScC	$C813OOH \rightarrow C813OOH(aq)$	k_exf(01,ind_C81300H)	see general notes*
H48006b_a01	TrAa01ScC	$C813OOH(aq) \rightarrow C813OOH$	k_exb(01,ind_C81300H)	see general notes*
H48007f_a01	TrAa01ScC	$C85OOH \rightarrow C85OOH(aq)$	$k_{exf}(01, ind_{C8500H})$	see general notes*
H48007b_a01	TrAa01ScC	$C85OOH(aq) \rightarrow C85OOH$	$k_{exb}(01, ind_{C8500H})$	see general notes*
H48008f_a01	TrAa01ScC	$C86OOH \rightarrow C86OOH(aq)$	$k_{exf}(01, ind_{C8600H})$	see general notes*
H48008b_a01	TrAa01ScC	$C86OOH(aq) \rightarrow C86OOH$	$k_{exb}(01, ind_{C8600H})$	see general notes*
H48009f_a01	TrAa01ScCN	$C89NO3 \rightarrow C89NO3(aq)$	k_exf(01,ind_C89N03)	see general notes*
H48009b_a01	TrAa01ScCN	$C89NO3(aq) \rightarrow C89NO3$	$k_{exb}(01, ind_{C89N03})$	see general notes*
H48010f_a01	TrAa01ScC	$C89OOH \rightarrow C89OOH(aq)$	k_exf(01,ind_C8900H)	see general notes*
H48010b_a01	TrAa01ScC	$C89OOH(aq) \rightarrow C89OOH$	$k_{exb}(01, ind_{C8900H})$	see general notes*
H48011f_a01	TrAa01ScC	$C8BC \rightarrow C8BC(aq)$	k_exf(01,ind_C8BC)	see general notes*
H48011b_a01	TrAa01ScC	$C8BC(aq) \rightarrow C8BC$	k_exb(01,ind_C8BC)	see general notes*
H48012f_a01	TrAa01ScC	$C8BCCO \rightarrow C8BCCO(aq)$	<pre>k_exf(01,ind_C8BCC0)</pre>	see general notes*
H48012b_a01	TrAa01ScC	$C8BCCO(aq) \rightarrow C8BCCO$	k_exb(01,ind_C8BCC0)	see general notes*
H48013f_a01	TrAa01ScCN	$C8BCNO3 \rightarrow C8BCNO3(aq)$	<pre>k_exf(01,ind_C8BCN03)</pre>	see general notes*
H48013b_a01	TrAa01ScCN	$C8BCNO3(aq) \rightarrow C8BCNO3$	k_exb(01,ind_C8BCN03)	see general notes*
H48014f_a01	TrAa01ScC	$C8BCOOH \rightarrow C8BCOOH(aq)$	k_exf(01,ind_C8BC00H)	see general notes*
H48014b_a01	TrAa01ScC	$C8BCOOH(aq) \rightarrow C8BCOOH$	k_exb(01,ind_C8BC00H)	see general notes*
H48015f_a01	TrAa01ScC	$NORPINIC \rightarrow NORPINIC(aq)$	<pre>k_exf(01,ind_NORPINIC)</pre>	see general notes*
H48015b_a01	TrAa01ScC	$NORPINIC(aq) \rightarrow NORPINIC$	<pre>k_exb(01,ind_NORPINIC)</pre>	see general notes*
H48016f_a01	TrAa01ScC	$STYRENOOH \rightarrow STYRENOOH(aq)$	<pre>k_exf(01,ind_STYRENOOH)</pre>	see general notes*
H48016b_a01	TrAa01ScC	$STYRENOOH(aq) \rightarrow STYRENOOH$	<pre>k_exb(01,ind_STYRENOOH)</pre>	see general notes*
H49000f_a01	TrAa01ScC	$C811CO3H \rightarrow C811CO3H(aq)$	k_exf(01,ind_C811C03H)	see general notes*
H49000b_a01	TrAa01ScC	$C811CO3H(aq) \rightarrow C811CO3H$	k_exb(01,ind_C811CO3H)	see general notes*
H49001f_a01	TrAa01ScCN	$C811PAN \rightarrow C811PAN(aq)$	$k_{exf}(01, ind_{C811PAN})$	see general notes*

Table 3: Reversible (Henry's law) equilibria and irreversible ("heterogenous") uptake

#	labels	reaction	rate coefficient	reference
H49001b_a01	TrAa01ScCN	$C811PAN(aq) \rightarrow C811PAN$	k_exb(01,ind_C811PAN)	see general notes*
H49002f_a01	TrAa01ScC	$C85CO3H \rightarrow C85CO3H(aq)$	k_exf(01,ind_C85CO3H)	see general notes*
H49002b_a01	TrAa01ScC	$C85CO3H(aq) \rightarrow C85CO3H$	k_exb(01,ind_C85C03H)	see general notes*
H49003f_a01	TrAa01ScC	$C89CO2H \rightarrow C89CO2H(aq)$	k_exf(01,ind_C89CO2H)	see general notes*
H49003b_a01	TrAa01ScC	$C89CO2H(aq) \rightarrow C89CO2H$	k_exb(01,ind_C89C02H)	see general notes*
H49004f_a01	TrAa01ScC	$C89CO3H \rightarrow C89CO3H(aq)$	k_exf(01,ind_C89C03H)	see general notes*
H49004b_a01	TrAa01ScC	$C89CO3H(aq) \rightarrow C89CO3H$	k_exb(01,ind_C89C03H)	see general notes*
H49005f_a01	TrAa01ScCN	$C89PAN \rightarrow C89PAN(aq)$	k_exf(01,ind_C89PAN)	see general notes*
H49005b_a01	TrAa01ScCN	$C89PAN(aq) \rightarrow C89PAN$	k_exb(01,ind_C89PAN)	see general notes*
H49006f_a01	TrAa01ScCN	$C96NO3 \rightarrow C96NO3(aq)$	k_exf(01,ind_C96NO3)	see general notes*
H49006b_a01	TrAa01ScCN	$C96NO3(aq) \rightarrow C96NO3$	k_exb(01,ind_C96NO3)	see general notes*
H49007f_a01	TrAa01ScC	$C96OOH \rightarrow C96OOH(aq)$	k_exf(01,ind_C9600H)	see general notes*
H49007b_a01	TrAa01ScC	$C96OOH(aq) \rightarrow C96OOH$	k_exb(01,ind_C9600H)	see general notes*
H49008f_a01	TrAa01ScC	$C97OOH \rightarrow C97OOH(aq)$	k_exf(01,ind_C9700H)	see general notes*
H49008b_a01	TrAa01ScC	$C97OOH(aq) \rightarrow C97OOH$	k_exb(01,ind_C9700H)	see general notes*
H49009f_a01	TrAa01ScC	$C98OOH \rightarrow C98OOH(aq)$	k_exf(01,ind_C9800H)	see general notes*
H49009b_a01	TrAa01ScC	$C98OOH(aq) \rightarrow C98OOH$	k_exb(01,ind_C9800H)	see general notes*
H49010f_a01	TrAa01ScCN	$C9PAN2 \rightarrow C9PAN2(aq)$	k_exf(01,ind_C9PAN2)	see general notes*
H49010b_a01	TrAa01ScCN	$C9PAN2(aq) \rightarrow C9PAN2$	k_exb(01,ind_C9PAN2)	see general notes*
H49011f_a01	TrAa01ScC	$NOPINDCO \rightarrow NOPINDCO(aq)$	<pre>k_exf(01,ind_NOPINDCO)</pre>	see general notes*
H49011b_a01	TrAa01ScC	$NOPINDCO(aq) \rightarrow NOPINDCO$	<pre>k_exb(01,ind_NOPINDCO)</pre>	see general notes*
H49012f_a01	TrAa01ScC	$NOPINDOOH \rightarrow NOPINDOOH(aq)$	<pre>k_exf(01,ind_NOPINDOOH)</pre>	see general notes*
H49012b_a01	TrAa01ScC	$NOPINDOOH(aq) \rightarrow NOPINDOOH$	<pre>k_exb(01,ind_NOPINDOOH)</pre>	see general notes*
H49013f_a01	TrAa01ScC	$NOPINONE \rightarrow NOPINONE(aq)$	<pre>k_exf(01,ind_NOPINONE)</pre>	see general notes*
H49013b_a01	TrAa01ScC	$NOPINONE(aq) \rightarrow NOPINONE$	k_exb(01,ind_NOPINONE)	see general notes*
H49014f_a01	TrAa01ScC	$NOPINOO \rightarrow NOPINOO(aq)$	k_exf(01,ind_NOPINOO)	see general notes*
H49014b_a01	TrAa01ScC	$NOPINOO(aq) \rightarrow NOPINOO$	k_exb(01,ind_NOPINOO)	see general notes*
H49015f_a01	TrAa01ScC	$NORPINAL \rightarrow NORPINAL(aq)$	<pre>k_exf(01,ind_NORPINAL)</pre>	see general notes*
H49015b_a01	TrAa01ScC	$NORPINAL(aq) \rightarrow NORPINAL$	<pre>k_exb(01,ind_NORPINAL)</pre>	see general notes*
H49016f_a01	TrAa01ScC	$NORPINENOL \rightarrow NORPINENOL(aq)$	<pre>k_exf(01,ind_NORPINENOL)</pre>	see general notes*
H49016b_a01	TrAa01ScC	$NORPINENOL(aq) \rightarrow NORPINENOL$	k_exb(01,ind_NORPINENOL)	see general notes*
H49017f_a01	TrAa01ScC	$PINIC \rightarrow PINIC(aq)$	k_exf(01,ind_PINIC)	see general notes*
H49017b_a01	TrAa01ScC	$PINIC(aq) \rightarrow PINIC$	k_exb(01,ind_PINIC)	see general notes*
H410000f_a01	TrAa01ScCN	$BPINANO3 \rightarrow BPINANO3(aq)$	k_exf(01,ind_BPINANO3)	see general notes*
H410000b_a01	TrAa01ScCN	$BPINANO3(aq) \rightarrow BPINANO3$	<pre>k_exb(01,ind_BPINANO3)</pre>	see general notes*

Table 3: Reversible (Henry's law) equilibria and irreversible ("heterogenous") uptake

#	labels	reaction	rate coefficient	reference
H410001f_a01	TrAa01ScC	$BPINAOOH \rightarrow BPINAOOH(aq)$	k_exf(01,ind_BPINAOOH)	see general notes*
H410001b_a01	TrAa01ScC	$BPINAOOH(aq) \rightarrow BPINAOOH$	k_exb(01,ind_BPINAOOH)	see general notes*
H410002f_a01	TrAa01ScCN	$C106NO3 \rightarrow C106NO3(aq)$	k_exf(01,ind_C106N03)	see general notes*
H410002b_a01	TrAa01ScCN	$C106NO3(aq) \rightarrow C106NO3$	k_exb(01,ind_C106N03)	see general notes*
H410003f_a01	TrAa01ScC	$C106OOH \rightarrow C106OOH(aq)$	k_exf(01,ind_C10600H)	see general notes*
H410003b_a01	TrAa01ScC	$C106OOH(aq) \rightarrow C106OOH$	k_exb(01,ind_C10600H)	see general notes*
H410004f_a01	TrAa01ScC	$C109CO \rightarrow C109CO(aq)$	k_exf(01,ind_C109C0)	see general notes*
H410004b_a01	TrAa01ScC	$C109CO(aq) \rightarrow C109CO$	k_exb(01,ind_C109C0)	see general notes*
H410005f_a01	TrAa01ScC	$C109OOH \rightarrow C109OOH(aq)$	k_exf(01,ind_C10900H)	see general notes*
H410005b_a01	TrAa01ScC	$C109OOH(aq) \rightarrow C109OOH$	k_exb(01,ind_C10900H)	see general notes*
H410006f_a01	TrAa01ScCN	$C10PAN2 \rightarrow C10PAN2(aq)$	k_exf(01,ind_C10PAN2)	see general notes*
H410006b_a01	TrAa01ScCN	$C10PAN2(aq) \rightarrow C10PAN2$	k_exb(01,ind_C10PAN2)	see general notes*
H410007f_a01	TrAa01ScCN	$LAPINABNO3 \rightarrow LAPINABNO3(aq)$	<pre>k_exf(01,ind_LAPINABN03)</pre>	see general notes*
H410007b_a01	TrAa01ScCN	$LAPINABNO3(aq) \rightarrow LAPINABNO3$	<pre>k_exb(01,ind_LAPINABNO3)</pre>	see general notes*
H410008f_a01	TrAa01ScC	$LAPINABOOH \rightarrow LAPINABOOH(aq)$	<pre>k_exf(01,ind_LAPINABOOH)</pre>	see general notes*
H410008b_a01	TrAa01ScC	$LAPINABOOH(aq) \rightarrow LAPINABOOH$	k_exb(01,ind_LAPINABOOH)	see general notes*
H410009f_a01	TrAa01ScCN	$LNAPINABOOH \rightarrow LNAPINABOOH(aq)$	<pre>k_exf(01,ind_LNAPINABOOH)</pre>	see general notes*
H410009b_a01	TrAa01ScCN	$LNAPINABOOH(aq) \rightarrow LNAPINABOOH$	k_exb(01,ind_LNAPINABOOH)	see general notes*
H410010f_a01	TrAa01ScCN	$LNBPINABOOH \rightarrow LNBPINABOOH(aq)$	<pre>k_exf(01,ind_LNBPINABOOH)</pre>	see general notes*
H410010b_a01	TrAa01ScCN	$LNBPINABOOH(aq) \rightarrow LNBPINABOOH$	k_exb(01,ind_LNBPINABOOH)	see general notes*
H410011f_a01	TrAa01ScC	$MENTHEN6ONE \rightarrow MENTHEN6ONE(aq)$	<pre>k_exf(01,ind_MENTHEN60NE)</pre>	see general notes*
H410011b_a01	TrAa01ScC	$MENTHEN6ONE(aq) \rightarrow MENTHEN6ONE$	k_exb(01,ind_MENTHEN6ONE)	see general notes*
H410012f_a01	TrAa01ScC	$\begin{array}{ccc} \text{2OHMENTHEN6ONE} & \rightarrow \\ \text{2OHMENTHEN6ONE(aq)} & \end{array}$	k_exf(01,ind_OH2MENTHEN6ONE)	see general notes*
H410012b_a01	TrAa01ScC	$\begin{array}{ccc} \text{2OHMENTHEN6ONE(aq)} & \rightarrow \\ \text{2OHMENTHEN6ONE} & \end{array}$	k_exb(01,ind_OH2MENTHEN6ONE)	see general notes*
H410013f_a01	TrAa01ScC	$PERPINONIC \rightarrow PERPINONIC(aq)$	<pre>k_exf(01,ind_PERPINONIC)</pre>	see general notes*
H410013b_a01	TrAa01ScC	$PERPINONIC(aq) \rightarrow PERPINONIC$	<pre>k_exb(01,ind_PERPINONIC)</pre>	see general notes*
H410014f_a01	TrAa01ScC	$PINAL \rightarrow PINAL(aq)$	k_exf(01,ind_PINAL)	see general notes*
H410014b_a01	TrAa01ScC	$PINAL(aq) \rightarrow PINAL$	k_exb(01,ind_PINAL)	see general notes*
H410015f_a01	TrAa01ScCN	$PINALNO3 \rightarrow PINALNO3(aq)$	k_exf(01,ind_PINALN03)	see general notes*
H410015b_a01	TrAa01ScCN	$PINALNO3(aq) \rightarrow PINALNO3$	k_exb(01,ind_PINALN03)	see general notes*
H410016f_a01	TrAa01ScC	$PINALOOH \rightarrow PINALOOH(aq)$	k_exf(01,ind_PINALOOH)	see general notes*
H410016b_a01	TrAa01ScC	$PINALOOH(aq) \rightarrow PINALOOH$	k_exb(01,ind_PINALOOH)	see general notes*
H410017f_a01	TrAa01ScC	$PINEOL \rightarrow PINEOL(aq)$	k_exf(01,ind_PINENOL)	see general notes*

Table 3: Reversible (Henry's law) equilibria and irreversible ("heterogenous") uptake

#	labels	reaction	rate coefficient	reference
H410017b_a01	TrAa01ScC	$PINEOL(aq) \rightarrow PINEOL$	k_exb(01,ind_PINENOL)	see general notes*
H410018f_a01	TrAa01ScC	$PINONIC \rightarrow PINONIC(aq)$	<pre>k_exf(01,ind_PINONIC)</pre>	see general notes*
H410018b_a01	TrAa01ScC	$PINONIC(aq) \rightarrow PINONIC$	k_exb(01,ind_PINONIC)	see general notes*
H410019f_a01	TrAa01ScCN	$RO6R1NO3 \rightarrow RO6R1NO3(aq)$	k_exf(01,ind_R06R1N03)	see general notes*
H410019b_a01	TrAa01ScCN	$RO6R1NO3(aq) \rightarrow RO6R1NO3$	k_exb(01,ind_R06R1N03)	see general notes*
H410020f_a01	TrAa01ScCN	$ROO6R1NO3 \rightarrow ROO6R1NO3(aq)$	k_exf(01,ind_R006R1N03)	see general notes*
H410020b_a01	TrAa01ScCN	$ROO6R1NO3(aq) \rightarrow ROO6R1NO3$	k_exb(01,ind_R006R1N03)	see general notes*
H60000f_a01	TrAa01MblScCl	$\text{Cl}_2 \to \text{Cl}_2(\text{aq})$	k_exf(01,ind_Cl2)	see general notes*
H60000b_a01	TrAa01MblScCl	$\mathrm{Cl}_2(\mathrm{aq}) \to \mathrm{Cl}_2$	k_exb(01,ind_Cl2)	see general notes*
H62000f_a01	TrAa01MblScScmCl	$HCl \rightarrow HCl(aq)$	k_exf(01,ind_HCl)	see general notes*
H62000b_a01	Tr Aa 01 Mbl Sc Scm Cl	$HCl(aq) \to HCl$	k_exb(01,ind_HCl)	see general notes*
H62001f_a01	TrAa01MblScCl	$HOCl \rightarrow HOCl(aq)$	k_exf(01,ind_HOC1)	see general notes*
H62001b_a01	TrAa01MblScCl	$HOCl(aq) \rightarrow HOCl$	k_exb(01,ind_HOC1)	see general notes*
H63000_a01	TrAa01MblClN	$N_2O_5 + Cl^-(aq) \rightarrow ClNO_2 + NO_3^-(aq)$	$k_exf_N205(01) * 5.E2$	Behnke et al. (1994), Behnke et al.
				(1997)
H63001_a01	TrAa01MblClN	$CINO_3 \rightarrow HOCl(aq) + HNO_3(aq)$	k_exf_ClN03(01) * C(ind_H20_a01)	see general notes*
H63002_a01	TrAa01MblClN	$\text{ClNO}_3 + \text{Cl}^-(\text{aq}) \rightarrow \text{Cl}_2(\text{aq}) + \text{NO}_3^-(\text{aq})$	$k_exf_ClN03(01) * 5.E2$	see general notes*
H70000f_a01	TrAa01MblScBr	$\operatorname{Br}_2 \to \operatorname{Br}_2(\operatorname{aq})$	k_exf(01,ind_Br2)	see general notes*
H70000b_a01	TrAa01MblScBr	$\mathrm{Br}_2(\mathrm{aq}) \to \mathrm{Br}_2$	k_exb(01,ind_Br2)	see general notes*
H72000f_a01	Tr Aa 01 Mbl Sc Scm Br	$HBr \to HBr(aq)$	k_exf(01,ind_HBr)	see general notes*
H72000b_a01	Tr Aa 01 Mbl Sc Scm Br	$\mathrm{HBr}(\mathrm{aq}) \to \mathrm{HBr}$	k_exb(01,ind_HBr)	see general notes*
H72001f_a01	TrAa01MblScBr	$HOBr \rightarrow HOBr(aq)$	k_exf(01,ind_HOBr)	see general notes*
H72001b_a01	TrAa01MblScBr	$HOBr(aq) \rightarrow HOBr$	k_exb(01,ind_HOBr)	see general notes*
H73000_a01	TrAa01MblBrN	$N_2O_5 + Br^-(aq) \rightarrow BrNO_2 + NO_3^-(aq)$	k_exf_N2O5(01) * 3.E5	Behnke et al. (1994), Behnke et al.
				(1997)
H73001_a01	TrAa01MblBrN	$BrNO_3 \rightarrow HOBr(aq) + HNO_3(aq)$	k_exf_BrN03(01) * C(ind_H20_a01)	see general notes*
H73002_a01	TrAa01MblBrN	$BrNO_3 + Br^-(aq) \rightarrow Br_2(aq) + NO_3^-(aq)$	k_exf_BrN03(01) * 3.E5	see general notes*
H76000f_a01	TrAa01MblScBrCl	$BrCl \to BrCl(aq)$	k_exf(01,ind_BrCl)	see general notes*
H76000b_a01	TrAa01MblScBrCl	$BrCl(aq) \to BrCl$	k_exb(01,ind_BrCl)	see general notes*
H76001_a01	TrAa01MblBrClN	$ClNO_3 + Br^-(aq) \rightarrow BrCl(aq) + NO_3^-(aq)$	k_exf_ClNO3(01) * 3.E5	see general notes*
H76002_a01	TrAa01MblBrClN	$BrNO_3 + Cl^-(aq) \rightarrow BrCl(aq) + NO_3^-(aq)$	k_exf_BrN03(01) * 5.E2	see general notes*
H80000f_a01	TrAa01ScI	$I_2 o I_2(aq)$	k_exf(01,ind_I2)	see general notes*
H80000b_a01	TrAa01ScI	$I_2(aq) \rightarrow I_2$	k_exb(01,ind_I2)	see general notes*
H81000f_a01	TrAa01MblScI	${ m IO} ightarrow { m IO(aq)}$	$k_{exf}(01, ind_{I0})$	see general notes*

Table 3: Reversible (Henry's law) equilibria and irreversible ("heterogenous") uptake

#	labels	reaction	rate coefficient	reference
H81000b_a01	TrAa01MblScI	$IO(aq) \rightarrow IO$	k_exb(01,ind_I0)	see general notes*
H81001_a01	TrAa01I	$OIO \rightarrow HOI(aq) + HO_2(aq)$	k_exf(01,ind_0I0)	see general notes*
H81002_a01	TrAa01I	$I_2O_2 \rightarrow HOI(aq) + H^+(aq) + IO_2^-(aq)$	k_exf(01,ind_I202)	see general notes*
H82000f_a01	TrAa01MblScI	$HOI \rightarrow HOI(aq)$	k_exf(01,ind_HOI)	see general notes*
H82000b_a01	TrAa01MblScI	$HOI(aq) \rightarrow HOI$	k_exb(01,ind_HOI)	see general notes*
H82001_a01	TrAa01MblScI	$HI \rightarrow H^{+}(aq) + I^{-}(aq)$	$k_{ m mt}({ m HI}) \cdot lwc$	see general notes*
H82002_a01	TrAa01ScI	$HIO_3 \rightarrow IO_3^-(aq) + H^+(aq)$	$k_{\mathrm{mt}}(\mathrm{HIO_3}) \cdot lwc$	see general notes*
H83000_a01	TrAa01IN	$INO_2 \rightarrow HOI(aq) + HONO(aq)$	k_exf(01,ind_INO2)	see general notes*
H83001_a01	TrAa01MblIN	$INO_3 \rightarrow HOI(aq) + HNO_3(aq)$	k_exf(01,ind_INO3)	see general notes*
H86000f_a01	TrAa01MblScClI	$ICl \rightarrow ICl(aq)$	k_exf(01,ind_IC1)	see general notes*
H86000b_a01	TrAa01MblScClI	$ICl(aq) \to ICl$	k_exb(01,ind_IC1)	see general notes*
H87000f_a01	TrAa01MblScBrI	$\operatorname{IBr} \to \operatorname{IBr}(\operatorname{aq})$	k_exf(01,ind_IBr)	see general notes*
H87000b_a01	TrAa01MblScBrI	$\operatorname{IBr}(\operatorname{aq}) \to \operatorname{IBr}$	k_exb(01,ind_IBr)	see general notes*
H91000f_a01	TrAa01MblScScmS	$SO_2 \to SO_2(aq)$	k_exf(01,ind_S02)	see general notes*
H91000b_a01	TrAa01MblScScmS	$SO_2(aq) \to SO_2$	k_exb(01,ind_S02)	see general notes*
H92000_a01	TrAa01MblScScmS	$H_2SO_4 \rightarrow H_2SO_4(aq)$	<pre>xnom7sulf*k_exf(01,ind_H2S04)</pre>	see general notes*
H94000f_a01	TrAa01CS	$DMSO \rightarrow DMSO(aq)$	k_exf(01,ind_DMSO)	see general notes*
H94000b_a01	TrAa01CS	$DMSO(aq) \rightarrow DMSO$	k_exb(01,ind_DMSO)	see general notes*
H94001_a01	TrAa01MblS	$CH_3SO_3H \rightarrow CH_3SO_3^-(aq) + H^+(aq)$	k_exf(01,ind_CH3SO3H)	see general notes*
H94002f_a01	TrAa01CS	$\mathrm{DMS} \to \mathrm{DMS}(\mathrm{aq})$	k_exf(01,ind_DMS)	see general notes*
H94002b_a01	TrAa01CS	$\mathrm{DMS}(\mathrm{aq}) \to \mathrm{DMS}$	k_exb(01,ind_DMS)	see general notes*
H100000f_a01	TrAa01Hg	$Hg \to Hg(aq)$	k_exf(01,ind_Hg)	see general notes*
H100000b_a01	TrAa01Hg	$Hg(aq) \to Hg$	k_exb(01,ind_Hg)	see general notes*
H100100f_a01	TrAa01Hg	$\mathrm{HgO} \to \mathrm{HgO}(\mathrm{aq})$	k_exf(01,ind_Hg0)	see general notes*
H100100b_a01	TrAa01Hg	$\mathrm{HgO}(\mathrm{aq}) \to \mathrm{HgO}$	k_exb(01,ind_HgO)	see general notes*
H100600f_a01	TrAa01ClHg	$HgCl_2 \to HgCl_2(aq)$	k_exf(01,ind_HgCl2)	see general notes*
H100600b_a01	TrAa01ClHg	$\mathrm{HgCl_2(aq)} \to \mathrm{HgCl_2}$	k_exb(01,ind_HgCl2)	see general notes*
H100700f_a01	TrAa01BrHg	$HgBr_2 \to HgBr_2(aq)$	k_exf(01,ind_HgBr2)	see general notes*
H100700b_a01	TrAa01BrHg	$\mathrm{HgBr}_2(\mathrm{aq}) \to \mathrm{HgBr}_2$	k_exb(01,ind_HgBr2)	see general notes*
H100701f_a01	TrAa01BrClHg	$ClHgBr \rightarrow ClHgBr(aq)$	<pre>k_exf(01,ind_ClHgBr)</pre>	see general notes*
H100701b_a01	TrAa01BrClHg	$ClHgBr(aq) \rightarrow ClHgBr$	k_exb(01,ind_ClHgBr)	see general notes*
H100702f_a01	TrAa01BrHg	$BrHgOBr \rightarrow BrHgOBr(aq)$	<pre>k_exf(01,ind_BrHgOBr)</pre>	see general notes*
H100702b_a01	TrAa01BrHg	$BrHgOBr(aq) \rightarrow BrHgOBr$	k_exb(01,ind_BrHgOBr)	see general notes*
H100703f_a01	TrAa01BrClHg	$ClHgOBr \rightarrow ClHgOBr(aq)$	<pre>k_exf(01,ind_ClHgOBr)</pre>	see general notes*
H100703b_a01	TrAa01BrClHg	$ClHgOBr(aq) \rightarrow ClHgOBr$	k_exb(01,ind_ClHgOBr)	see general notes*

General notes

forward (k_exf) backward (k_exb) The and coefficients calculated inrate are submecca_aero_calc_k_ex inthe file routine messy_mecca_aero.f90 using accommodation coefficients and Henry's law constants from chemprop (see chemprop.pdf).

subsequent reaction with H₂O, Cl⁻, and Br⁻ in H3201, H6300, H6301, H6302, H7300, H7301, H7302, H7601, and H7602, we define:

$$k_{\rm exf}({\rm X}) = \frac{k_{\rm mt}({\rm X}) \times {\rm LWC}}{[{\rm H_2O}] + 5 \times 10^2 [{\rm Cl^-}] + 3 \times 10^5 [{\rm Br^-}]}$$

Here, $k_{\rm mt} = {\rm mass}$ transfer coefficient, and LWC = liquid water content of the aerosol. The total uptake rate For uptake of X (X = N_2O_5 , ClNO₃, or BrNO₃) and of X is only determined by $k_{\rm mt}$. The factors only affect

the branching between hydrolysis and the halide reactions. The factor 5×10^2 was chosen such that the chloride reaction dominates over hydrolysis at about [Cl⁻] > 0.1 M (see Fig. 3 in Behnke et al. (1997)), i.e. when the ratio $[H_2O]/[Cl^-]$ is less than 5×10^2 . The ratio $5\times10^2/3\times10^5$ was chosen such that the reactions with chloride and bromide are roughly equal for sea water composition (Behnke et al., 1994). These ratios were measured for uptake of N_2O_5 . Here, they are also used for $ClNO_3$ and $BrNO_3$.

Table 4: Heterogeneous reactions

#	labels	reaction	rate coefficient	reference
HET300	StHetN	$N_2O_5 + H_2O \rightarrow 2 \text{ HNO}_3$	khet_St(ihs_N2O5_H2O)	see general notes*
HET301	TrHetN	$N_2O_5 \to 2 NO_3^-(cs) + 2 H^+(cs)$	khet_Tr(iht_N2O5)	see general notes*
HET610	StHetCl	$HOCl + HCl \rightarrow Cl_2 + H_2O$	khet_St(ihs_HOC1_HC1)	see general notes*
HET620	StHetClN	$\text{ClNO}_3 + \text{HCl} \rightarrow \text{Cl}_2 + \text{HNO}_3$	khet_St(ihs_C1NO3_HC1)	see general notes*
HET621	StHetClN	$ClNO_3 + H_2O \rightarrow HOCl + HNO_3$	khet_St(ihs_C1N03_H20)	see general notes*
HET622	StHetClN	$N_2O_5 + HCl \rightarrow ClNO_2 + HNO_3$	khet_St(ihs_N2O5_HC1)	see general notes*
HET710	StHetBr	$HOBr + HBr \rightarrow Br_2 + H_2O$	khet_St(ihs_HOBr_HBr)	see general notes*
HET720	StHetBrN	$BrNO_3 + H_2O \rightarrow HOBr + HNO_3$	khet_St(ihs_BrN03_H20)	see general notes*
HET740	StHetBrClN	$ClNO_3 + HBr \rightarrow BrCl + HNO_3$	khet_St(ihs_C1NO3_HBr)	see general notes*
HET741	StHetBrClN	$BrNO_3 + HCl \rightarrow BrCl + HNO_3$	khet_St(ihs_BrNO3_HC1)	see general notes*
HET742	StHetBrCl	$HOCl + HBr \rightarrow BrCl + H_2O$	khet_St(ihs_HOC1_HBr)	see general notes*
HET743	StHetBrCl	$\mathrm{HOBr} + \mathrm{HCl} \to \mathrm{BrCl} + \mathrm{H_2O}$	khet_St(ihs_HOBr_HC1)	see general notes*
HET1001	StTrHetHg	$\mathrm{Hg} \to \mathrm{Hg}(\mathrm{cs})$	<pre>khet_Tr(iht_Hg) + khet_St(ihs_Hg)</pre>	see general notes*
HET1002	StTrHetHg	$HgO \to Hg(cs)$	<pre>khet_Tr(iht_RGM) + khet_St(ihs_RGM)</pre>	see general notes*
HET1003	StTrHetClHg	$HgCl \rightarrow Hg(cs) + LCHLORINE$	<pre>khet_Tr(iht_RGM) + khet_St(ihs_RGM)</pre>	see general notes*
HET1004	StTrHetClHg	$HgCl_2 \rightarrow Hg(cs) + 2 LCHLORINE$	<pre>khet_Tr(iht_RGM) + khet_St(ihs_RGM)</pre>	see general notes*
HET1005	StTrHetBrHg	$HgBr \rightarrow Hg(cs) + LBROMINE$	<pre>khet_Tr(iht_RGM) + khet_St(ihs_RGM)</pre>	see general notes*
HET1006	StTrHetBrHg	$HgBr_2 \rightarrow Hg(cs) + 2 LBROMINE$	<pre>khet_Tr(iht_RGM) + khet_St(ihs_RGM)</pre>	see general notes*
HET1007	StTrHetBrClHg	$ClHgBr \rightarrow Hg(cs) + LCHLORINE + LBROMINE$	<pre>khet_Tr(iht_RGM) + khet_St(ihs_RGM)</pre>	see general notes*
HET1008	StTrHetBrHg	$BrHgOBr \rightarrow Hg(cs) + 2 LBROMINE$	<pre>khet_Tr(iht_RGM) + khet_St(ihs_RGM)</pre>	see general notes*
HET1009	StTrHetBrClHg	$ClHgOBr \rightarrow Hg(cs) + LCHLORINE + LBROMINE$	<pre>khet_Tr(iht_RGM) + khet_St(ihs_RGM)</pre>	see general notes*

General notes

Heterogeneous reaction rates are calculated with an external module (e.g., MECCA_KHET) and then supplied to the MECCA chemistry (see www.messy-interface.org for details)

Table 5: Acid-base and other equilibria

#	labels	reaction	$K_0[M^{m-n}]$	$-\Delta H/R[K]$	reference
EQ2100_a01	TrAa01Sc	$HO_2 \rightleftharpoons O_2^- + H^+$	1.6E-5		Weinstein-Lloyd and Schwartz (1991)
EQ2101_a01	TrAa01MblScScm	$H_2O \rightleftharpoons H^+ + OH^-$	1.0E-16	-6716	Chameides (1984)
EQ2102_a01	TrAa01Sc	$HO_3 \rightleftharpoons O_3^- + H^+$	4.4E-9		Staehelin et al. (1984)
EQ3200_a01	TrAa01MblScScmN	$NH_4^+ \rightleftharpoons H^+ + NH_3$	5.88E-10	-2391	Chameides (1984)
EQ3201_a01	TrAa01ScN	$HONO \rightleftharpoons H^+ + NO_2^-$	5.1E-4	-1260	Schwartz and White (1981)
EQ3202_a01	TrAa01MblScScmN	$HNO_3 \rightleftharpoons H^+ + NO_3^-$	15	8700	Davis and de Bruin (1964)
EQ3203_a01	TrAa01ScN	$HNO_4 \rightleftharpoons NO_4^- + H^+$	1.E-5		Warneck (1999)
EQ4100_a01	TrAa01MblScScm	$CO_2 \rightleftharpoons H^+ + HCO_3^-$	4.3E-7	-913	Chameides (1984)*
EQ4101_a01	TrAa01ScScm	$HCOOH \rightleftharpoons H^+ + HCOO^-$	1.8E-4		Weast (1980)
EQ4150_a01	TrAa01Sc	$HCHO \rightleftharpoons HOCH_2OH$	4.11E-3	-3769	see note*
EQ4151_a01	TrAa01Sc	$HCO_3 \rightleftharpoons HCOHOHO_2$	1.08E1	-2936	see note*
EQ4200_a01	TrAraScScmC	$CH_3COOH \rightleftharpoons H^+ + CH_3COO^-$	1.754E-5		Fisher and Barnes $(1972)^*$
EQ4201_a01	TrAa01ScC	$CH_3C(O)OOH \rightleftharpoons CH_3COOO^- + H^+$	6.3E-9		Schuchmann and von Sonntag (1988)
EQ4202_a01	TrAa01ScC	$HOCH_2CO_3H \rightleftharpoons CH_2OHCO_2O^- + H^+$	6.3E-9		Schuchmann and von Sonntag (1988)*
EQ4203_a01	TrAa01ScC	$HOOCCOOH \rightleftharpoons H^+ + HOOCCOO^-$	5.6E-2		Martell (1977)
EQ4204_a01	TrAa01ScC	$HOOCCOO^- \rightleftharpoons H^+ + C_2O_4^{2-}$	5.4E-5		Martell (1977)
EQ4205_a01	TrAa01ScC	$HOOCH2CO2H \rightleftharpoons H^+ + CH_2OOHCO_2^-$	1.754E-5		Fisher and Barnes $(1972)^*$
EQ4206_a01	TrAa01ScC	$CH_2OOCOOH \rightleftharpoons H^+ + CH_2OOCO_2^-$	1.754E-5		Fisher and Barnes $(1972)^*$
EQ4207_a01	TrAa01ScC	$\begin{array}{ccc} \text{CHOOHOOCOOH} & \rightleftharpoons & \text{H}^+ & + \\ \text{CHOOHOOCO}_2^- & & & \end{array}$	1.754E-5		Fisher and Barnes (1972)*
EQ4208_a01	TrAa01ScC	$HOCH_2CO_2H \stackrel{\sim}{\rightleftharpoons} H^+ + CH_2OHCO_2^-$	1.5E-4		Rumble (2020)
EQ4209_a01	TrAa01ScC	$CHOHOOCOOH \rightleftharpoons H^+ + CHOHOOCOO_2^-$	1.5E-4		Rumble (2020)*
EQ4210_a01	TrAa01ScC	$CHOCOOH \rightleftharpoons H^+ + CHOCOO^-$	1.754E-5		Fisher and Barnes (1972)
EQ4211_a01	TrAa01ScC	$COOHCO_3 \rightleftharpoons H^+ + CO_2^-CO_3$	1.754E-5		Fisher and Barnes (1972)
EQ4250_a01	TrAa01ScC	$CH_3CHO \rightleftharpoons CH_3CHOHOH$	1.22		Tur'yan (2000)
EQ4251_a01	TrAa01ScC	СНОНООСНО ⇌ СНОНООСНОНОН	1.57E1		see note*
EQ4252_a01	TrAa01ScC	$CH_2OHCHO \rightleftharpoons CH_2OHCHOHOH$	1.56E1		Doussin and Monod (2013)
EQ4253_a01	TrAa01ScC	$GLYOX \rightleftharpoons CHOCHOHOH$	3.5E2		Ervens and Volkamer (2010)
EQ4254_a01	TrAa01ScC	$CHOCHOHOH \rightleftharpoons CHOHOHCHOHOH$	2.0E2		Ervens and Volkamer (2010)
EQ4255_a01	TrAa01ScC	$CHOCOOH \rightleftharpoons CHOOHOHCOOH$	1.1E3		Doussin and Monod (2013)
EQ4256_a01	TrAa01ScC	$CHOCOO^- \rightleftharpoons CHOHOHCO_2^-$	6.6E1		Doussin and Monod (2013)
EQ4257_a01	TrAa01ScC	$CO_2^-CO_3 \rightleftharpoons CO2^-COHOHO_2$	6.6E1		see note*
EQ4258_a01	TrAa01ScC	$CH_2OOHCHO \rightleftharpoons HOOCH_2CHOHOH$	1.56E1		see note*
EQ4300_a01	TrAa01ScScmC	$CH_3COCOOH \rightleftharpoons H^+ + CH_3COCO2^-$	4.1E-3		Rumble (2020)

Table 5: Acid-base and other equilibria

#	labels	reaction	$K_0[M^{m-n}]$	$-\Delta H/R[K]$	reference
EQ4350_a01	TrAa01ScC	$CH_3C(O)CHO \rightleftharpoons CH_3COCHOHOH$	1.98E3		Doussin and Monod (2013)
EQ6000_a01	TrAa01Cl	$Cl_2^- \rightleftharpoons Cl + Cl^-$	7.3E-6		Yu (2004)
EQ6200_a01	TrAa01MblScScmCl	$HCl \rightleftharpoons H^+ + Cl^-$	1.7E6	6896	Marsh and McElroy (1985)
EQ6201_a01	TrAa01ScCl	$HOCl \rightleftharpoons H^+ + ClO^-$	3.2E-8		Lax (1969)
EQ7000_a01	TrAa01Br	$Br_2^- \rightleftharpoons Br + Br^-$	2.54E-6	-2256	Liu et al. (2002)
EQ7200_a01	Tr Aa 01 Mbl Sc Scm Br	$HBr \rightleftharpoons H^+ + Br^-$	1.0E9		Lax (1969)
EQ7201_a01	TrAa01ScBr	$HOBr \rightleftharpoons H^+ + BrO^-$	2.3E-9	-3091	Kelley and Tartar (1956)*
EQ7600_a01	TrAa01MblBrCl	$BrCl + Cl^- \rightleftharpoons BrCl_2^-$	3.8	1191	Wang et al. (1994)
EQ7601_a01	TrAa01MblBrCl	$BrCl + Br^- \rightleftharpoons Br_2Cl^-$	1.8E4	7457	Wang et al. (1994)
EQ7602_a01	TrAa01MblBrCl	$Br_2 + Cl^- \rightleftharpoons Br_2Cl^-$	1.3	0	Wang et al. (1994)
EQ7603_a01	TrAa01MblBrCl	$Br^- + Cl_2 \rightleftharpoons BrCl_2^-$	4.2E6	14072	Wang et al. (1994)
EQ8600_a01	TrAa01MblScClI	$ICl + Cl^- \rightleftharpoons ICl_2^-$	7.7E1		Wang et al. (1989)
EQ8700_a01	TrAa01MblScBrI	$IBr + Br^- \rightleftharpoons IBr_2^-$	2.9E2		Troy and Margerum (1991)
EQ8701_a01	TrAa01MblScBrClI	$ICl + Br^- \rightleftharpoons IBr + Cl^-$	3.3E2		see note*
EQ9200_a01	TrAa01MblScScmS	$SO_2 \rightleftharpoons H^+ + HSO_3^-$	1.7E-2	2090	Chameides (1984)
EQ9201_a01	TrAa01MblScScmS	$HSO_3^- \rightleftharpoons H^+ + SO_3^{2-}$	6.0E-8	1120	Chameides (1984)
EQ9202_a01	${\bf TrAa01MblScScmS}$	$HSO_4^- \rightleftharpoons H^+ + SO_4^{2-}$	1.2E-2	2720	Seinfeld and Pandis (1998)
EQ9203_a01	${\bf TrAa01MblScScmS}$	$H_2SO_4 \rightleftharpoons H^+ + HSO_4^-$	1.0E3		Seinfeld and Pandis (1998)
EQ10200_a01	TrAa01Hg	$\mathrm{Hg^{2+} + OH^{-}} \rightleftharpoons \mathrm{HgOH^{+}}$	4.0E10		Ammann and Pöschl (2007)
EQ10201_a01	TrAa01Hg	$HgOH^+ + OH^- \rightleftharpoons Hg(OH)_2$	1.58E11		Ammann and Pöschl (2007)
EQ10600_a01	TrAa01ClHg	$\mathrm{Hg}^{2+} + \mathrm{Cl}^{-} \rightleftharpoons \mathrm{Hg}\mathrm{Cl}^{+}$	5.8E6		Ammann and Pöschl (2007)
EQ10601_a01	TrAa01ClHg	$\mathrm{HgCl^+} + \mathrm{Cl^-} \rightleftharpoons \mathrm{HgCl_2}$	2.5E6		Ammann and Pöschl (2007)
EQ10602_a01	TrAa01ClHg	$HgOH^+ + Cl^- \rightleftharpoons Hg(OH)Cl$	2.69E7		Ammann and Pöschl (2007)
EQ10700_a01	TrAa01BrHg	$\mathrm{Hg^{2+}} + \mathrm{Br^{-}} \rightleftharpoons \mathrm{HgBr^{+}}$	1.1E9		Raofie and Ariya (2004)
EQ10701_a01	TrAa01BrHg	$HgBr^{+} + Br^{-} \rightleftharpoons HgBr_{2}$	2.5E8		Raofie and Ariya (2004)
EQ10800_a01	TrAa01HgS	$\mathrm{Hg}^{2+} + \mathrm{SO}_3^{2-} \rightleftharpoons \mathrm{HgSO}_3$	2.E13		van Loon et al. (2001)
EQ10801_a01	TrAa01HgS	$HgSO_3 + SO_3^{2-} \rightleftharpoons Hg(SO_3)_2^{2-}$	1.E10		van Loon et al. (2001)
EQ11200_a01	TrAa01Fe	$Fe^{3+} \rightleftharpoons FeOH^{2+} + H^{+}$	2.34E-3		de Laat and Le (2006)*
EQ11201_a01	TrAa01Fe	$FeOH^{2+} \rightleftharpoons Fe(OH)_2^+ + H^+$	2E-4		de Laat and Le $(2006)^*$
EQ11202_a01	TrAa01Fe	$Fe^{3+} + H_2O_2 \rightleftharpoons FeHO_2^{2+} + H^+$	3.1E-3		de Laat and Le (2006)
EQ11203_a01	TrAa01Fe	$\text{FeOH}^{2+} + \text{H}_2\text{O}_2 \rightleftharpoons \text{Fe(OH)(HO}_2)^+ + \text{H}^+$	2E-4		de Laat and Le (2006)
EQ11600_a01	TrAa01ClFe	$Fe^{3+} + Cl^{-} \rightleftharpoons FeCl^{2+}$	6.61		de Laat and Le (2006)*
EQ11601_a01	TrAa01ClFe	$FeCl^{2+} + Cl^{-} \rightleftharpoons FeCl_{2}^{+}$	1.6		de Laat and Le (2006)*
EQ11800_a01	TrAa01FeS	$Fe^{3+} + SO_4^{2-} \rightleftharpoons FeSO_4^+$	120		Brand and van Eldik $(1995)^*$

Table 5: Acid-base and other equilibria

#	labels	reaction	$K_0[M^{m-n}]$	$-\Delta H/R[K]$	reference
EQ11801_a01	TrAa01FeS	$FeOH^{2+} + HSO_3^- \rightleftharpoons FeSO_3^+$	8.25E2		Warneck (2018)*
EQ11802_a01	TrAa01FeS	$Fe^{2+} + SO_3^- \rightleftharpoons FeSO_3^+$	1.6E7		Warneck (2018)

Specific notes

EQ4100_a01: For $pK_a(CO_2)$, see also Dickson and Millero (1987).

EQ4150_a01: Hydration from Winkelman et al. (2000) and dehydration from Winkelman et al. (2002). Bell and Evans (1966) found that acid catalysis is negligible.

EQ4151_a01: Assumed to be the same as for HCHO.

EQ4200_a01: The p $K_{\rm A}$ has a minimum near 298 K, the temperature dependence is therefore small.

EQ4202_a01: Same as for CH3CO3H.

EQ4205_a01: Same as for CH3CO2H.

EQ4206_a01: Same as for CH3CO2H.

 $EQ4207_a01$: Same as for CH3CO2H.

EQ4209_a01: Same as HOCH2CO2H.

EQ4251_a01: Calculated as $K_{\rm eq}$ * $k({\rm dehydration})$ where dehydration is assumed to be the same as for acetaldehyde.

EQ4257_a01: Assumed to be equal to CHOCO2m.

EQ4258_a01: Same as for $HOCH_2CHO$.

EQ7201_a01: For $pK_a(HOBr)$, see also Keller-Rudek et al. (1992).

EQ8701_a01: Thermodynamic calculations on the IBr/ICl equilibrium according to the data tables from Wagman et al. (1982):

$$ICl + Br^{-} \rightleftharpoons IBr + Cl^{-}$$

-17.1 -103.96 = -4.2 -131.228

$$\frac{\Delta G}{[\text{kJ/mol}]} = -4.2 - 131.228 - (-17.1 - 103.96) = -14.368$$

$$K = \frac{[\mathrm{IBr}] \times [\mathrm{Cl}^{-}]}{[\mathrm{ICl}] \times [\mathrm{Br}^{-}]} = \exp\left(\frac{-\Delta G}{RT}\right) = \exp\left(\frac{14368}{8.314 \times 298}\right) = 330$$

This means we have equal amounts of IBr and ICl when the [Cl⁻]/[Br⁻] ratio equals 330.

EQ11200_a01: See also K values listed in Tab. 2.5 of Brand and van Eldik (1995).

EQ11201_a01: Equilibrium calculated from K_1 and K_2 in Tab. 1 of de Laat and Le (2006). k for back reaction assumed. See also K values listed in Tab. 2.5 of Brand and van Eldik (1995).

EQ11600_a01: See also K values listed in Tab. 2.5 of Brand and van Eldik (1995).

EQ11601_a01: Equilibrium calculated from K_{29} and K_{30} in Tab. 2 of de Laat and Le (2006). k for forward reaction assumed. See also K values listed in Tab. 2.5 of Brand and van Eldik (1995).

EQ11800_a01: Equilibrium at I = 1 M. k for back reaction assumed.

EQ11801_a01: Rate of equilibration assumed.

Table 6: Aqueous phase reactions

#	labels	reaction	$k_0 [M^{1-n}s^{-1}]$	$-E_a/R[K]$	reference
A10000_a01	TrAa01Sc	$O_3 + O_2^- \to O_3^- + O_2$	1.50E9		Staehelin et al. (1984)
A21000_a01	TrAa01Sc	$OH + O_2^- \rightarrow OH^-$	1.0E10		Sehested et al. (1968)
A21001_a01	TrAa01Sc	$\mathrm{OH} + \mathrm{OH} o \mathrm{H}_2\mathrm{O}_2$	5.5E9		Buxton et al. (1988)
A21002_a01	TrAa01Sc	$HO_2 + O_2^- \to H_2O_2 + OH^-$	1.0E8	-900	Christensen and Sehested (1988)
A21003_a01	TrAa01Sc	$\mathrm{HO_2} + \mathrm{OH} o \mathrm{H_2O}$	7.1E9		Sehested et al. (1968)
A21004_a01	TrAa01Sc	$\mathrm{HO_2} + \mathrm{HO_2} ightarrow \mathrm{H_2O_2}$	9.7E5	-2500	Christensen and Sehested (1988)
A21005_a01	TrAa01Sc	$\mathrm{H_2O_2} + \mathrm{OH} \rightarrow \mathrm{HO_2}$	2.7E7	-1684	Christensen et al. (1982)
A21006_a01	TrAa01Sc	$\mathrm{O_3} + \mathrm{OH} o \mathrm{HO_4}$	1.10E8		Staehelin et al. (1984)
A21007_a01	TrAa01Sc	$\mathrm{O_3} + \mathrm{OH^-} \rightarrow \mathrm{HO_2} + \mathrm{O_2^-}$	7.00 E1		Staehelin et al. (1984)
A21008_a01	TrAa01Sc	$\mathrm{HO_3} ightarrow \mathrm{OH} + \mathrm{O_2}$	1.10E5		Staehelin et al. (1984)
A21009_a01	TrAa01Sc	$\mathrm{HO_4} ightarrow \mathrm{HO_2} + \mathrm{O_2}$	2.80E4		Staehelin et al. (1984)
A21010_a01	TrAa01Sc	$\mathrm{HO_4} + \mathrm{HO_4} \rightarrow \mathrm{H_2O_2} + 2 \mathrm{~O_3}$	5.00E9		Staehelin et al. (1984)
A21011_a01	TrAa01Sc	$\mathrm{HO_4} + \mathrm{HO_3} \to \mathrm{H_2O_2} + \mathrm{O_3} + \mathrm{O_2}$	5.00E9		Staehelin et al. (1984)
A31000_a01	TrAa01ScN	$NO_2^- + O_3 \rightarrow NO_3^-$	5.0 E5	-6950	Damschen and Martin (1983)
A31001_a01	TrAa01ScN	$NO_2 + NO_2 \rightarrow HNO_3 + HONO$	1.0E8		Lee and Schwartz (1981)
A31002_a01	TrAa01ScN	$NO_4^- \rightarrow NO_2^-$	8.0E1		Warneck (1999)
A32000_a01	TrAa01ScN	$NO_2 + HO_2 \rightarrow HNO_4$	1.8E9		Warneck (1999)
A32001_a01	TrAa01ScN	$NO_2^- + OH \rightarrow NO_2 + OH^-$	1.0E10		Wingenter et al. (1999)
A32002_a01	TrAa01ScN	$NO_3^- + OH^- \rightarrow NO_3^- + OH$	8.2E7	-2700	Exner et al. (1992)
A32003_a01	TrAa01ScN	$\mathrm{HONO} + \mathrm{OH} \rightarrow \mathrm{NO}_2$	1.0E10		Barker et al. (1970)
A32004_a01	TrAa01ScN	$\mathrm{HONO} + \mathrm{H_2O_2} + \mathrm{H^+} \rightarrow \mathrm{HNO_3} + \mathrm{H^+}$	4.6E3	-6800	Damschen and Martin (1983)
A41000_a01	TrAa01Sc	$CO_3^- + O_2^- \to HCO_3^- + OH^-$	6.5E8		Ross et al. (1992)
A41001_a01	TrAa01Sc	$\mathrm{CO_3^-} + \mathrm{H_2O_2} \rightarrow \mathrm{HCO_3^-} + \mathrm{HO_2}$	4.3E5		Ross et al. (1992)
A41002_a01	TrAa01Sc	$\mathrm{HCOO^-} + \mathrm{CO_3^-} \rightarrow 2~\mathrm{HCO_3^-} + \mathrm{HO_2}$	1.5 E5		Ross et al. (1992)
A41003_a01	TrAa01Sc	$\mathrm{HCOO^-} + \mathrm{OH} \rightarrow \mathrm{O_2^-} + \mathrm{H_2O} + \mathrm{CO_2}$	3.1E9	-1240	Chin and Wine (1994)
A41004_a01	TrAa01ScN	$HCOO^- + NO_3 \rightarrow NO_3^- + H^+ + O_2^- + CO_2$	5.119E+07	-2200	Exner et al. (1994)
A41005_a01	TrAa01Sc	$HCOO^- + O_3 \rightarrow OH + O_2^- + CO_2$	1.00E2		Hoigné and Bader (1983)
A41006_a01	TrAa01Sc	$\mathrm{HCO_3^-} + \mathrm{OH} \rightarrow \mathrm{CO_3^-}$	8.5 E 6		Ross et al. (1992)
A41007_a01	TrAa01Sc	$HCHO + OH \rightarrow HCOOH + HO_2$	7.7E8	-1020	Chin and Wine (1994)
A41008_a01	TrAa01Sc	$\mathrm{HCOOH} + \mathrm{OH} \rightarrow \mathrm{HO}_2 + \mathrm{CO}_2$	1.1E8	-991	Chin and Wine (1994)
A41009_a01	TrAa01ScN	$\text{HCOOH} + \text{NO}_3 \rightarrow \text{NO}_3^- + \text{H}^+ + \text{HO}_2 + \text{CO}_2$	3.8E5	-3400	Exner et al. (1994)
A41010_a01	TrAa01Sc	$\text{CH}_3\text{OO} + \text{HO}_2 \rightarrow \text{CH}_3\text{OOH}$	4.3E5		Jacob (1986)
A41011_a01	TrAa01Sc	$\text{CH}_3\text{OO} + \text{O}_2^- \rightarrow \text{CH}_3\text{OOH} + \text{OH}^-$	5.0E7		Jacob (1986)
A41012a_a01	TrAa01Sc	$\text{CH}_3\text{OO} + \text{CH}_3\text{OO} \rightarrow 2 \text{ HCHO} + \text{H}_2\text{O}_2$	$0.20 \times 2.145E + 08$	-2139	Herrmann et al. (1999b)

Table 6: Aqueous phase reactions (...continued)

#	labels	reaction	$k_0 [M^{1-n}s^{-1}]$	$-E_a/R[K]$	reference
A41012b_a01	TrAa01Sc	$\mathrm{CH_3OO} + \mathrm{CH_3OO} \rightarrow 2 \; \mathrm{HOCH_2O_2}$	$0.80 \times 2.145E + 08$	-2139	Herrmann et al. (1999b)
A41013a_a01	TrAa01Sc	$\mathrm{CH_3OH} + \mathrm{OH} \rightarrow \mathrm{HOCH_2O_2} + \mathrm{H_2O}$	$0.93 \times 9.70 E8$	-600	Elliot and McCracken (1989)*
A41013b_a01	TrAa01Sc	$\mathrm{CH_3OH} + \mathrm{OH} \rightarrow \mathrm{HCHO} + \mathrm{HO_2} + \mathrm{H_2O}$	$0.07 \times 9.70 \text{E}8$	-600	Elliot and McCracken (1989)
A41014_a01	TrAa01ScN	$\mathrm{CH_3OH} + \mathrm{NO_3} \rightarrow \mathrm{HOCH_2O_2} + \mathrm{NO_3}^- + \mathrm{H}^+$	5.40E5	-4300	Herrmann and Zellner (1998)
A41015_a01	TrAa01Sc	$\text{CH}_3\text{OH} + \text{CO}_3^- \rightarrow \text{HOCH}_2\text{O}_2 + \text{HCO}_3^-$	5.431E+03	-3100	Clifton and Huie (1993)
A41016a_a01	TrAa01Sc	$\mathrm{CH_{3}OOH} + \mathrm{OH} \rightarrow \mathrm{CH_{3}OO} + \mathrm{H_{2}O}$	$0.25 \times 6.30 E8$		Monod et al. (2007)*
A41016b_a01	TrAa01Sc	$CH_3OOH + OH \rightarrow HCHO + OH + H_2O$	$0.75 \times 6.30 E8$		Monod et al. $(2007)^*$
A41017a_a01	TrAa01ScN	$\mathrm{CH_3OOH} + \mathrm{NO_3} \rightarrow \mathrm{CH_3OO} + \mathrm{NO_3}^- + \mathrm{H}^+$	$0.25 \times 4.90 \text{E}6$	-2000	see note*
A41017b_a01	TrAa01ScN	$\text{CH}_3\text{OOH} + \text{NO}_3 \rightarrow \text{HCHO} + \text{HO}_2 + \text{NO}_3^- + \text{H}^+$	$0.75 \times 4.90 \text{E}6$	-2000	see note*
A41018a_a01	TrAa01Sc	$\text{CH}_3\text{OOH} + \text{CO}_3^- \rightarrow \text{CH}_3\text{OO} + \text{HCO}_3^-$	$0.25 \times 4.30 E5$		see note*
A41018b_a01	TrAa01Sc	$\text{CH}_3\text{OOH} + \text{CO}_3^- \rightarrow \text{HCHO} + \text{HO}_2 + \text{HCO}_3^-$	$0.75 \times 4.30 E5$		see note*
A41019a_a01	TrAa01Sc	$HOCH_2OOH + OH \rightarrow HOCH_2O_2 + H_2O$	$0.25 \times 6.30 E8$		see note*
A41019b_a01	TrAa01Sc	$HOCH_2OOH + OH \rightarrow CHOOOH + HO_2 + H_2O$	$0.75 \times 6.30 E8$		see note*
A41020a_a01	TrAa01ScN	$HOCH_2OOH + NO_3 \rightarrow HOCH_2O_2 + NO_3^- + H^+$	$0.25 \times 4.90 \text{E}6$	-2000	see note*
A41020b_a01	TrAa01ScN	$HOCH_2OOH + NO_3 \rightarrow CHOOOH + HO_2 + NO_3^-$	$0.75 \times 4.90 \text{E}6$	-2000	see note*
		$+ H^+$			
A41021_a01	TrAa01Sc	$HOCH_2O_2 \rightarrow HCHO + HO_2$	1.00E1		see note*
A41022_a01	TrAa01Sc	$HOCH_2O_2 + HO_2 \rightarrow HOCH_2OOH + O_2$	9.7E5	-2500	see note*
A41023_a01	TrAa01Sc	$HOCH_2O_2 + O_2^- \rightarrow HOCH_2OOH + O_2 + OH^-$	1.0E8	-900	see note*
A41024_a01	TrAa01Sc	$HOCH_2O_2 + HOCH_2O_2 \rightarrow 2 HCOOH + H_2O_2$	7.367E + 08	-1395	Huie and Clifton (1993)
A41025_a01	TrAa01Sc	$\text{HCOOH} + \text{H}_2\text{O}_2 + \text{H}^+ \rightarrow \text{CHOOOH} + \text{H}_2\text{O} + \text{H}^+$	3.080E-04	-5235	De Filippis et al. (2009)
A41026a_a01	TrAa01Sc	$CHOOOH + H^{+} \rightarrow HCOOH + H_{2}O_{2} + H^{+}$	3.790E-04	-5235	De Filippis et al. (2009)
A41026b_a01	TrAa01Sc	$CHOOOH + H^{+} \rightarrow CO_{2} + H_{2}O + H^{+}$	1.219E-03	-8735	De Filippis et al. (2009)
A41027_a01	TrAa01Sc	$HOCH_2OH + OH \rightarrow HCOHOHO_2 + H_2O$	7.70E8	-1000	Chin and Wine (1994)
A41028_a01	TrAa01Sc	$HOCH_2OH + CO_3^- \rightarrow HCO_3^- + HCOHOHO_2$	1.30E4		Zellner et al. (1996)
A41029_a01	TrAa01ScN	$HOCH_2OH + NO_3 \rightarrow NO_3^- + H^+ + HCOHOHO_2$	1.003E+06	-4500	Exner et al. (1993)
A41030_a01	TrAa01Sc	$\mathrm{HCOHOHO}_2 \rightarrow \mathrm{HCOOH} + \mathrm{HO}_2$	1.00E6		see note*
A42000a_a01	TrAa01ScC	$CH_3CH_2OH + OH \rightarrow CH_3CHO + HO_2 + H_2O$	$0.90 \times 2.002E+09$	-830	Monod et al. $(2005)^*$
A42000b_a01	TrAa01ScC	$CH_3CH_2OH + OH \rightarrow CH_2OHCH_2OO + H_2O$	$0.10 \times 2.002E+09$	-830	Monod et al. (2005)
A42001a_a01	TrAa01ScCN	$\mathrm{CH_3CH_2OH} + \mathrm{NO_3} \rightarrow \mathrm{CH_3CHO} + \mathrm{HO_2} + \mathrm{NO_3}^- + \mathrm{H^+}$	$0.90 \times 2.184E + 06$	-3300	Herrmann and Zellner (1998)*
A42001b_a01	TrAa01ScCN	$\mathrm{CH_3CH_2OH} + \mathrm{NO_3} \rightarrow \mathrm{CH_2OHCH_2OO} + \mathrm{NO_3^-} + \mathrm{H^+}$	$0.10 \times 2.184E + 06$	-3300	Herrmann and Zellner (1998)
A42002a_a01	TrAa01ScC	$\mathrm{CH_2OHCH_2OO} + \mathrm{CH_2OHCH_2OO} \rightarrow \mathrm{CH_2OHCHO} + \mathrm{CH_2OHCHO} + \mathrm{H_2O_2}$	$0.50 \times 1.00 E8$		Piesiak et al. (1984)

Table 6: Aqueous phase reactions (...continued)

#	labels	reaction	$k_0 [M^{1-n}s^{-1}]$	$-E_a/R[K]$	reference
A42002b_a01	TrAa01ScC	$\mathrm{CH_2OHCH_2OO} + \mathrm{CH_2OHCH_2OO} \to \mathrm{CH_2OHCHO} + \mathrm{ETHGLY}$	$0.33 \times 1.00 \text{E8}$		Piesiak et al. (1984)
A42002c_a01	TrAa01ScC	CH ₂ OHCH ₂ OO + CH ₂ OHCH ₂ OO → 2 HOCH ₂ O ₂ + 2 HCHO	$0.17 \times 1.00E8$		Piesiak et al. (1984)
A42003_a01	TrAa01ScC	$CH_2OHCH_2OO + O_2^- \rightarrow HYETHO2H + OH^-$	1.0E8	-900	see note*
A42004_a01	TrAa01ScC	$CH_2OHCH_2OO + HO_2 \rightarrow HYETHO2H$	9.7E5	-2500	see note*
A42005_a01	TrAa01ScC	$HYETHO2H + OH \rightarrow CH_2OHCHO$	1.10E9		see note*
A42006_a01	TrAa01ScC	$ETHGLY + OH \rightarrow CH_2OHCHO + HO_2 + H_2O$	1.657E + 09	-1191	Hoffmann et al. $(2009)^*$
A42007_a01	TrAa01ScCN	$\begin{array}{l} \mathrm{ETHGLY} + \mathrm{NO_3} \rightarrow \mathrm{CH_2OHCHO} + \mathrm{HO_2} + \mathrm{NO_3^-} + \\ \mathrm{H^+} \end{array}$	5.856E + 06	-2117	Hoffmann et al. $(2009)^*$
A42008_a01	TrAa01ScC	$\mathrm{CH_{3}CHO} + \mathrm{OH} \rightarrow \mathrm{CH_{3}COOO} + \mathrm{H_{2}O}$	3.60E9		Schuchmann and von Sonntag (1988)
A42009_a01	TrAa01ScCN	$\mathrm{CH_{3}CHO} + \mathrm{NO_{3}} \rightarrow \mathrm{CH_{3}COOO} + \mathrm{NO_{3}^{-}} + \mathrm{H^{+}}$	3.10E6		Rousse and George (2004)
A42010_a01	TrAa01ScC	$\mathrm{CH_3COOO} + \mathrm{CH_3COOO} \rightarrow \mathrm{CH_3OO} + \mathrm{CH_3OO} + \mathrm{CO_2} + \mathrm{CO_2}$	1.891E + 08	1563	see note*
A42011_a01	TrAa01ScC	$\mathrm{CH_3COOO} + \mathrm{O_2^-} \rightarrow \mathrm{CH_3COOO^-} + \mathrm{O_2}$	1.00E9		Schuchmann and von Sonntag (1988)
A42012_a01	TrAa01ScC	$\mathrm{CH_{3}CHOHOH} + \mathrm{OH} \rightarrow \mathrm{CH_{3}COHOHOO} + \mathrm{H_{2}O}$	1.20E9		Schuchmann and von Sonntag (1988)
A42013_a01	TrAa01ScCN	$\mathrm{CH_3CHOHOH} + \mathrm{NO_3} \rightarrow \mathrm{CH_3COHOHOO} + \mathrm{NO_3^-} + \mathrm{H^+}$	1.10E6		Rousse and George (2004)
A42014_a01	TrAa01ScC	$CH_3COHOHOO \rightarrow CH_3COOH + HO_2$	1.00E6		see note*
A42015a_a01	TrAa01ScC	$\mathrm{CH_2OHCHO} + \mathrm{OH} \rightarrow \mathrm{CH_2OHCO3} + \mathrm{H_2O}$	0.77×1.40 E9		Doussin and Monod (2013)
A42015b_a01	TrAa01ScC	$\mathrm{CH_2OHCHO} + \mathrm{OH} \rightarrow \mathrm{CHOHOOCHO} + \mathrm{H_2O}$	$0.23 \times 1.40 \text{E}9$		Doussin and Monod (2013)
A42016a_a01	TrAa01ScCN	$\mathrm{CH_2OHCHO} + \mathrm{NO_3} \rightarrow \mathrm{CH_2OHCO3} + \mathrm{NO_3^-} + \mathrm{H^+}$	$0.77 \times 3.10 \text{E}6$		see note*
A42016b_a01	TrAa01ScCN	$\mathrm{CH_2OHCHO} + \mathrm{NO_3} \rightarrow \mathrm{CHOHOOCHO} + \mathrm{NO_3}^- + \mathrm{H^+}$	$0.23 \times 3.10 \text{E}6$		see note*
A42017_a01	TrAa01ScC	$\mathrm{CH_2OHCO3} + \mathrm{O_2^-} \rightarrow \mathrm{CH_2OHCO_2O^-}$	1.00E9		see note*
A42018_a01	TrAa01ScC	$\text{CH}_2\text{OHCOHOHO}_2 \rightarrow \text{HOCH}_2\text{CO}_2\text{H} + \text{HO}_2$	1.00 E6		see note*
A42019_a01	TrAa01ScC	$\mathrm{CHOHOOCHO} o \mathrm{GLYOX} + \mathrm{HO}_2$	1.90E2		see note*
A42020_a01	TrAa01ScC	$CHOHOOCHOHOH → CHOCHOHOH + HO_2$	1.90E2		see note*
A42021a_a01	TrAa01ScC	$\mathrm{CH_2OHCHOHOH} + \mathrm{OH} \rightarrow \mathrm{CH_2OHCOHOHO_2} + \mathrm{H_2O}$	0.33×1.10 E9		Doussin and Monod (2013)
A42021b_a01	TrAa01ScC	$\mathrm{CH_2OHCHOHOH} + \mathrm{OH} \rightarrow \mathrm{CHOHOOCHOHOH} + \mathrm{H_2O}$	0.28×1.10 E9		Doussin and Monod (2013)

Table 6: Aqueous phase reactions (...continued)

#	labels	reaction	$k_0 [M^{1-n}s^{-1}]$	$-E_a/R[K]$	reference
A42021c_a01	TrAa01ScC	$\mathrm{CH_2OHCHOHOH} + \mathrm{OH} \rightarrow \mathrm{HCOOH} + \mathrm{HOCH_2O_2} + \mathrm{H_2O}$	0.39×1.10 E9		Doussin and Monod (2013)
A42022a_a01	TrAa01ScCN	$\mathrm{CH_2OHCHOHOH} + \mathrm{NO_3} \rightarrow \mathrm{CH_2OHCOHOHO_2} + \mathrm{NO_3^-} + \mathrm{H^+}$	$0.33 \times 1.10 \text{E}6$		see note*
A42022b_a01	TrAa01ScCN	$CH_2OHCHOHOH + NO_3 \rightarrow CHOHOOCHOHOH + NO_3^- + H^+$	$0.28 \times 1.10 \text{E}6$		see note*
A42022c_a01	TrAa01ScCN	$CH_2OHCHOHOH + NO_3 \rightarrow HCOOH + HOCH_2O_2 + NO_3^- + H^+$	$0.39 \times 1.10 \text{E}6$		see note*
A42023a_a01	TrAa01ScC	CHOHOHCHOHOH + OH \rightarrow CHOHOHCOHOHO $_2$ + $\rm H_2O$	$0.27 \times 1.114E + 09$	-1516	Buxton et al. (1997)
A42023b_a01	TrAa01ScC	CHOHOHCHOHOH + OH \rightarrow HCOOH + HCOHOHO $_2$ + HO $_2$ + H $_2$ O	$0.73 \times 1.114E + 09$	-1516	Buxton et al. (1997)*
A42024a_a01	TrAa01ScCN	CHOHOHCHOHOH + $NO_3 \rightarrow CHOHOHCOHOHO_2 + NO_3^- + H^+$	$0.27 \times 1.00 \text{E}6$		see note*
A42024b_a01	TrAa01ScCN	CHOHOHCHOHOH + $NO_3 \rightarrow HCOOH + HCOHOHO_2 + HO_2 + NO_3^- + H^+$	$0.73 \times 1.00 \text{E}6$		see note*
A42025_a01	TrAa01ScC	$CHOHOHCOHOHO_2 \rightarrow CHOOHOHCOOH + HO_2$	$0.77 \times 1.00 \text{E}6$		see note*
A42026_a01	TrAa01ScC	$CH_3COOH + OH \rightarrow CH_2OOCOOH + H_2O$	1.50E7	-1330	Chin and Wine (1994)
A42027_a01	TrAa01ScCN	$\text{CH}_3\text{COOH} + \text{NO}_3 \rightarrow \text{CH}_2\text{OOCOOH} + \text{NO}_3^- + \text{H}^+$	1.429E + 04	-3800	Exner et al. (1994)
A42028_a01	TrAa01ScC	$\mathrm{CH_{3}COO^{-}} + \mathrm{OH} \rightarrow \mathrm{CH_{2}OOCO_{2}^{-}} + \mathrm{H_{2}O}$	1.00 E8	-1800	Fisher and Hamill (1973)
A42029_a01	TrAa01ScCN	$\text{CH}_3\text{COO}^- + \text{NO}_3 \rightarrow \text{CH}_2\text{OOCO}_2^- + \text{NO}_3^- + \text{H}^+$	2.916E + 06	-3800	Exner et al. (1994)
A42030a_a01	TrAa01ScC	$C2H5OOH + OH \rightarrow C2H5OO + H_2O$	$0.80 \times 5.80 E8$		Monod et al. (2007)
A42030b_a01	TrAa01ScC	$C2H5OOH + OH \rightarrow CH_3COOH + HO_2 + H_2O$	$0.20 \times 5.80 \text{E8}$		Monod et al. $(2007)^*$
A42031a_a01	TrAa01ScC	$C2H5OO + C2H5OO \rightarrow CH_3CHO + CH_3CHO + H_2O_2$	$0.20 \times 1.891E + 08$	1563	Herrmann et al. (1999b)
A42031b_a01	TrAa01ScC	$C2H5OO + C2H5OO \rightarrow 2 CH_3CHO + 2 HO_2$	$0.80 \times 1.891E + 08$	1563	Herrmann et al. $(1999b)^*$
A42032_a01	TrAa01ScC	$C2H5OO + O_2^- \rightarrow C2H5OOH + OH^-$	1.0E8	-900	see note*
A42033_a01	TrAa01ScC	$C2H5OO + HO_2 \rightarrow C2H5OOH$	9.7E5	-2500	see note*
A42034_a01	TrAa01ScC	$\mathrm{CH_{2}OOCOOH} + \mathrm{HO_{2}} \rightarrow \mathrm{HOOCH2CO2H}$	9.7E5	-2500	see note*
A42035_a01	TrAa01ScC	$CH_2OOCOOH + O_2^- + H^+ \rightarrow HOOCH2CO2H$	1.0E8	-900	see note*
A42036a_a01	TrAa01ScC	$\mathrm{CH_2OOCOOH} + \mathrm{CH_2OOCOOH} \rightarrow \mathrm{CHOCOOH} + \mathrm{CHOCOOH} + \mathrm{H_2O_2}$	0.30×7.50 E7		Schuchmann et al. (1985)
A42036b_a01	TrAa01ScC	$\mathrm{CH_2OOCOOH} + \mathrm{CH_2OOCOOH} \rightarrow 2 \ \mathrm{HCHO} + 2 \ \mathrm{CO_2} + \mathrm{H_2O_2}$	0.30×7.50 E7		Schuchmann et al. (1985)

Table 6: Aqueous phase reactions (...continued)

#	labels	reaction	$k_0 [M^{1-n}s^{-1}]$	$-E_a/R[K]$	reference
A42036c_a01	TrAa01ScC	$\mathrm{CH_2OOCOOH} + \mathrm{CH_2OOCOOH} \rightarrow \mathrm{CHOCOOH} + \mathrm{HOCH_2CO_2H}$	0.30×7.50 E7		Schuchmann et al. (1985)
A42036d_a01	TrAa01ScC	$\mathrm{CH_{2}OOCOOH}$ + $\mathrm{CH_{2}OOCOOH}$ \rightarrow $\mathrm{CHOHOOCOOH}$ + $\mathrm{CHOHOOCOOH}$	0.10×7.50 E7		Schuchmann et al. (1985)
A42037_a01	TrAa01ScC	$\mathrm{CH_2OOCO_2^-} + \mathrm{HO_2} \rightarrow \mathrm{CH_2OOHCO_2^-} + \mathrm{O_2}$	9.7E5	-2500	see note*
A42038_a01	TrAa01ScC	$\mathrm{CH_2OOCO_2^-} + \mathrm{O_2^-} + \mathrm{H^+} \rightarrow \mathrm{CH_2OOHCO_2^-}$	1.0E8	-900	see note*
A42039a_a01	TrAa01ScC	$\mathrm{CH_2OOCO_2^-} + \mathrm{CH_2OOCO_2^-} \rightarrow \mathrm{CHOCOO^-} + \mathrm{CHOCOO^-} + \mathrm{H_2O_2}$	0.30×7.50 E7		Schuchmann et al. (1985)
A42039b_a01	TrAa01ScC	$\mathrm{CH_2OOCO_2^-} + \mathrm{CH_2OOCO_2^-} \rightarrow 2 \ \mathrm{HCHO} + 2 \ \mathrm{CO_2} + \mathrm{H_2O_2} + 2 \ \mathrm{OH^-}$	0.30×7.50 E7		Schuchmann et al. (1985)
A42039c_a01	TrAa01ScC	$\mathrm{CH_2OOCO_2^-} + \mathrm{CH_2OOCO_2^-} \rightarrow \mathrm{CHOCOO^-} + \mathrm{CH_2OHCO_2^-}$	0.30×7.50 E7		Schuchmann et al. (1985)
A42039d_a01	TrAa01ScC	$\text{CH}_2\text{OOCO}_2^- + \text{CH}_2\text{OOCO}_2^- \rightarrow 2 \text{ CHOHOOCOO}_2^-$	0.10×7.50 E7		Schuchmann et al. (1985)
A42040_a01	TrAa01ScC	$CH_2OOCO_2^- + O_3 \rightarrow O_3^- + HOCH_2OOH + CO_2$	2.00E9		Sehested et al. (1984)
A42141_a01	TrAa01ScC	$\mathrm{HOOCCOO^-} + \mathrm{OH} \rightarrow \mathrm{C_2O_4^-} + \mathrm{H_2O}$	2.086E + 08	-2800	Ervens et al. (2003)
A42142_a01	TrAa01ScC	$C_2O_4^{2-} + OH \rightarrow C_2O_4^{-} + OH^{-}$	2.508E + 08	-4300	Ervens et al. (2003)
A42143_a01	TrAa01ScC	$C_2O_4^- + O_2 \to 2 CO_2 + O_2^-$	2.40E9		Hislop and Bolton (1999)
A42144a_a01	TrAa01ScC	$HOOCH2CO2H + OH \rightarrow CH_2OOCOOH + H_2O$	$0.80 \times 5.80 E8$		see note*
A42144b_a01	TrAa01ScC	HOOCH2CO2H + OH \rightarrow CHOOHOOCOOH + $\mathrm{H_2O}$	$0.20 \times 5.80 \text{E8}$		see note*
A42145a_a01	TrAa01ScCN	$\mathrm{HOOCH2CO2H} + \mathrm{NO_3} \rightarrow \mathrm{CH_2OOCOOH} + \mathrm{NO_3^-} + \mathrm{H^+}$	$0.80 \times 1.70 \text{E}6$		Herrmann and Zellner (1998)
A42145b_a01	TrAa01ScCN	$\text{HOOCH2CO2H} + \text{NO}_3 \rightarrow \text{CHOOHOOCOOH} + \text{NO}_3^- + \text{H}^+$	$0.20\times1.70\mathrm{E}6$		Herrmann and Zellner (1998)
A42146a_a01	TrAa01ScC	$\text{CH}_2\text{OOHCO}_2^- + \text{OH} \rightarrow \text{CH}_2\text{OOCO}_2^- + \text{H}_2\text{O}$	$0.80 \times 5.80 E8$		see note*
A42146b_a01	TrAa01ScC	$\text{CH}_2\text{OOHCO}_2^- + \text{OH} \rightarrow \text{CHOOHOOCO}_2^- + \text{H}_2\text{O}$	$0.20 \times 5.80 \text{E8}$		see note*
A42147a_a01	TrAa01ScCN	$\mathrm{CH_2OOHCO_2^-} + \mathrm{NO_3} \rightarrow \mathrm{CH_2OOCO_2^-} + \mathrm{NO_3^-} + \mathrm{H^+}$	$0.80 \times 7.10 \text{E}6$		Herrmann and Zellner (1998)
A42147b_a01	TrAa01ScCN	$\mathrm{CH_2OOHCO_2^-} + \mathrm{NO_3} \rightarrow \mathrm{CHOOHOOCO_2^-} + \mathrm{NO_3^-} + \mathrm{H^+}$	$0.20\times7.10\mathrm{E}6$		Herrmann and Zellner (1998)
A42148_a01	TrAa01ScC	$CHOOHOOCOOH \to HOOCCOOH + HO_2$	1.90E2		see note*
A42149_a01	TrAa01ScC	$CHOOHOOCO_2^- \rightarrow HOOCCOO^- + HO_2$	1.90E2		see note*
A42150a_a01	TrAa01ScC	$\text{HOCH}_2\text{CO}_2\text{H} + \text{OH} \rightarrow \text{CHOHOOCOOH} + \text{H}_2\text{O}$	$0.62 \times 6.00 E8$		see note*
A42150b_a01	TrAa01ScC	$\mathrm{HOCH_2CO_2H} + \mathrm{OH} \rightarrow \mathrm{HCHO} + \mathrm{CO_2} + \mathrm{HO_2} + \mathrm{H_2O}$	$0.38 \times 6.00 E8$		see note*

Table 6: Aqueous phase reactions (...continued)

#	labels	reaction	$k_0 [M^{1-n}s^{-1}]$	$-E_a/R[K]$	reference
A42151a_a01	TrAa01ScCN	$\text{HOCH}_2\text{CO}_2\text{H} + \text{NO}_3 \rightarrow \text{CHOHOOCOOH} + \text{NO}_3^- + \text{H}^+$	$0.62 \times 7.445E + 05$	-3969	see note*
A42151b_a01	TrAa01ScCN	$\text{HOCH}_2\text{CO}_2\text{H} + \text{NO}_3 \rightarrow \text{HCHO} + \text{CO}_2 + \text{HO}_2 + \text{NO}_3^- + \text{H}^+$	$0.38 \times 7.445E + 05$	-3969	see note*
A42152_a01	TrAa01ScC	$CHOHOOCOOH \rightarrow CHOCOOH + HO_2$	1.90E2		von Sonntag (1987)
A42153a_a01	TrAa01ScC	$\mathrm{CH_2OHCO_2^-} + \mathrm{OH} \rightarrow \mathrm{CHOHOOCOO_2^-} + \mathrm{H_2O}$	$0.60 \times 8.60 E8$		Buxton et al. (1988)
A42153b_a01	TrAa01ScC	$\mathrm{CH_2OHCO_2^-} + \mathrm{OH} \rightarrow \mathrm{HCHO} + \mathrm{CO_2} + \mathrm{O_2^-} + \mathrm{H_2O}$	$0.19 \times 8.60 \text{E8}$		Buxton et al. (1988)
A42153c_a01	TrAa01ScC	$\mathrm{CH_2OHCO_2^-} + \mathrm{OH} \rightarrow \mathrm{HOCH_2O_2} + \mathrm{CO_2} + \mathrm{OH^-}$	$0.21 \times 8.60 \text{E8}$		Buxton et al. (1988)
A42154a_a01	TrAa01ScCN	$\mathrm{CH_2OHCO_2^-} + \mathrm{NO_3} \rightarrow \mathrm{CHOHOOCOO_2^-} + \mathrm{NO_3^-} + \mathrm{H^+}$	$0.76 \times 7.502E + 06$	-3007	Gaillard de Sémainville et al. (2007)
A42154b_a01	TrAa01ScCN	$\mathrm{CH_2OHCO_2^-} + \mathrm{NO_3} \rightarrow \mathrm{HCHO} + \mathrm{CO_2} + \mathrm{O_2^-} + \mathrm{NO_3^-} + \mathrm{H^+}$	$0.24 \times 7.502E + 06$	-3007	Gaillard de Sémainville et al. (2007)
A42155_a01	TrAa01ScC	$CHOHOOCOO_2^- \rightarrow CHOCOO^- + HO_2$	1.90E2		von Sonntag (1987)
A42156a_a01	TrAa01ScC	CHOOHOHCOOH + OH \rightarrow COOHCOHOHO $_2$ + H_2O	$0.15 \times 2.830E + 08$	-1000	Ervens et al. (2003)
A42156b_a01	TrAa01ScC	CHOOHOHCOOH + OH \rightarrow HCOOH + CO ₂ + HO ₂ + H ₂ O	$0.85 \times 2.830E + 08$	-1000	Ervens et al. (2003)*
A42157a_a01	TrAa01ScCN	CHOOHOHCOOH + $NO_3 \rightarrow COOHCOHOHO_2 + NO_3^- + H^+$	$0.15 \times 1.00 \text{E}6$		see note*
A42157b_a01	TrAa01ScCN	CHOOHOHCOOH + $NO_3 \rightarrow HCOOH + CO_2 + HO_2 + NO_3^- + H^+$	$0.85 \times 1.00 \text{E}6$		see note*
A42158a_a01	TrAa01ScC	$\text{CHOHOHCO}_2^- + \text{OH} \rightarrow \text{CO2-COHOHO}_2 + \text{H}_2\text{O}$	$0.26 \times 3.271E + 09$	-4300	Ervens et al. (2003)
A42158b_a01	TrAa01ScC	CHOHOHCO $_2^-$ + OH \rightarrow HCOOH + CO $_2$ + O $_2^-$ + H $_2$ O	$0.74 \times 3.271E + 09$	-4300	Ervens et al. (2003)
A42159a_a01	TrAa01ScCN	CHOHOHCO $_2^-$ + NO $_3$ → CO2 $^-$ COHOHO $_2$ + NO $_3^-$ + H $^+$	$0.26\times1.80\mathrm{E}5$		Herrmann and Zellner (1998)
A42159b_a01	TrAa01ScCN	$\begin{array}{c} \mathrm{CHOHOHCO_2^-} + \mathrm{NO_3} \rightarrow \mathrm{HCOOH} + \mathrm{CO_2} + \mathrm{O_2^-} + \\ \mathrm{NO_3^-} + \mathrm{H^+} \end{array}$	$0.74 \times 1.80 E5$		Herrmann and Zellner (1998)
A42160_a01	TrAa01ScC	CHOHOHCO $_2^-$ + H ₂ O ₂ \rightarrow HCOO $^-$ + CO ₂ + H ₂ O + H ₂ O	1.10E-1		Schöne and Herrmann (2014)
A42161_a01	TrAa01ScC	$COOHCOHOHO_2 \rightarrow HOOCCOOH + HO_2$	1.00 E6		see note*
A42162_a01	TrAa01ScC	$CO2^-COHOHO_2 \rightarrow HOOCCOO^- + HO_2$	1.00 E6		see note*
A42163a_a01	TrAa01ScC	$\mathrm{CH_2OOHCHO} + \mathrm{OH} \rightarrow \mathrm{HCHO} + \mathrm{CO} + \mathrm{OH} + \mathrm{H_2O}$	$0.77 \times 1.40 E9$		see note*
A42163b_a01	TrAa01ScC	$\mathrm{CH_2OOHCHO} + \mathrm{OH} \rightarrow \mathrm{GLYOX} + \mathrm{HO_2} + \mathrm{H_2O}$	$0.23 \times 1.40 \text{E}9$		see note*

Table 6: Aqueous phase reactions (...continued)

#	labels	reaction	$k_0 [M^{1-n}s^{-1}]$	$-E_a/R[K]$	reference
A42164a_a01	TrAa01ScCN	$\mathrm{CH_{2}OOHCHO} + \mathrm{NO_{3}} \rightarrow \mathrm{HCHO} + \mathrm{CO} + \mathrm{NO_{3}} +$	$0.77 \times 3.10 \text{E}6$		see note*
		$\mathrm{H}_2\mathrm{O}$			
A42164b_a01	TrAa01ScCN	$\text{CH}_2\text{OOHCHO} + \text{NO}_3 \rightarrow \text{GLYOX} + \text{NO}_3^- + \text{H}_2\text{O}$	$0.23 \times 3.10 \text{E}6$		see note*
1.101.05	TD A 010 C	+ H ⁺	0.00 1.1000		. *
A42165a_a01	TrAa01ScC	$\mathrm{HOOCH_2CHOHOH} + \mathrm{OH} \rightarrow \mathrm{HOOCH2CO2H} + \mathrm{HO_2} + \mathrm{H_2O}$	0.33 × 1.10E9		see note*
A42165b_a01	TrAa01ScC	$HOOCH_2CHOHOH + OH \rightarrow CHOCHOHOH + OH$	0.28 × 1.10F0		see note*
A421030_a01	ITAOUSCO	$+ H_2O$	0.26 × 1.10£3		see note
A42165c_a01	TrAa01ScC	$HOOCH_2CHOHOH + OH \rightarrow HCOOH + HCHO +$	0.39×1.10 E9		see note*
_		$OH + H_2O$			
A42166a_a01	TrAa01ScCN	$\mathrm{HOOCH_2CHOHOH} + \mathrm{NO_3} \rightarrow \mathrm{HOOCH2CO2H} +$	$0.33 \times 1.10 \text{E}6$		see note*
		$NO_3^- + H_2O + H^+$			
A42166b_a01	TrAa01ScCN	$HOOCH_2CHOHOH + NO_3 \rightarrow CHOCHOHOH +$	$0.28 \times 1.10 \text{E}6$		see note*
		$NO_3 + H_2O$			
A42166c_a01	TrAa01ScCN	$HOOCH_2CHOHOH + NO_3 \rightarrow HCOOH + HCHO +$	$0.39 \times 1.10 \text{E}6$		see note*
110107 01	TD A 010 C	$NO_3 + H_2O$			II 1 (100F)*
A42167_a01	TrAa01ScC	$HOCH_2OH + HOCH_2OH \rightarrow MG2 + H_2O$	see note	see note	Hahnenstein et al. (1995)*
A42168_a01	TrAa01ScC	$MG2 + H_2O \rightarrow HOCH_2OH + HOCH_2OH$	see note	see note	Hahnenstein et al. (1995)
A42169_a01	TrAa01ScC	$MG2 + OH \rightarrow HMF + HO_2$	1.54E9	-1020	see note*
A42470_a01	TrAa01ScC	$\text{CH}_3\text{COOO} + \text{H}_2\text{O} \rightarrow \text{CH}_3\text{COOH} + \text{HO}_2$	7.0E5		Villalta et al. (1996)
A42471_a01	TrAa01ScC	$CH_2OHCO3 + H_2O \rightarrow HOCH_2CO_2H + HO_2$	7.0E5		see note*
A42472_a01	TrAa01ScC	$CHOCO_3 + H_2O \rightarrow CHOCOOH + HO_2$	7.0E5		see note*
A42473_a01	TrAa01ScC	$COOHCO_3 + H_2O \rightarrow HOOCCOOH + HO_2$	7.0E5		see note*
A43000a_a01	TrAa01ScC	$CH_3COCHOHOH + OH \rightarrow CH_3COCOOH + HO_2$	$0.29 \times 9.215E + 08$	-1235	Schaefer et al. $(2015)^*$
A43000b_a01	TrAa01ScC	$CH_3COCHOHOH + OH \rightarrow HCOOH + CH_3COOO$	$0.71 \times 9.215E + 08$	-1235	Schaefer et al. (2015)
A43001_a01	TrAa01ScCN	$CH_3COCHOHOH + NO_3 \rightarrow CH_3COCOOH + NO_3^- + H^+$	4.539E + 06	-4213	Schaefer et al. (2015)*
A43002_a01	TrAa01ScC	$CH_3COCOOH + OH \rightarrow CH_3COOH + HO_2 + CO_2$	2.592E + 08	-1804	Schaefer et al. (2012)*
A43003_a01	TrAa01ScCN	$\mathrm{CH_3COCOOH} + \mathrm{NO_3} \rightarrow \mathrm{CH_3COOH} + \mathrm{NO_3}^- + \mathrm{CO_2}$	2.828E + 06	-1804	Gaillard de Sémainville et al.
		$+ H^+$			(2007)
A43004_a01	TrAa01ScC	$\text{CH}_3\text{COCO2}^- + \text{OH} \rightarrow \text{CH}_3\text{COO}^- + \text{HO}_2 + \text{CO}_2$	6.252E + 08	-3007	Schaefer et al. $(2012)^*$
A43005_a01	TrAa01ScCN	$\mathrm{CH_3COCO2^-} + \mathrm{NO_3} \rightarrow \mathrm{CH_3COO^-} + \mathrm{NO_3^-} + \mathrm{CO_2} + \mathrm{H^+}$	2.306E+07	-2887	Gaillard de Sémainville et al. (2007)
A43006_a01	TrAa01ScC	$\text{CH}_3\text{COCH}_3 + \text{OH} \rightarrow \text{CH}_3\text{COCH}_2\text{O}_2$	1.80E8		Gligorovski et al. (2009)
A43007_a01	TrAa01ScCN	$\text{CH}_3\text{COCH}_3 + \text{NO}_3 \rightarrow \text{CH}_3\text{COCH}_2\text{O}_2 + \text{NO}_3^- + \text{H}^+$	3.721E+03	-4332	Herrmann and Zellner (1998)

Table 6: Aqueous phase reactions (...continued)

#	labels	reaction	$k_0 [M^{1-n}s^{-1}]$	$-E_a/R[K]$	reference
A43008a_a01	TrAa01ScC	$\mathrm{CH_3COCH_2O_2} + \mathrm{CH_3COCH_2O_2} \rightarrow \mathrm{CH_3COCH_2OH} + \mathrm{CH_3C(O)CHO}$	$0.20 \times 4.00 E8$		Zegota et al. (1986)
A43008b_a01	TrAa01ScC	$\mathrm{CH_3COCH_2O_2} + \mathrm{CH_3COCH_2O_2} \rightarrow 2.0$ $\mathrm{CH_3C(O)CHO} + \mathrm{H_2O_2}$	0.45×4.00 E8		Zegota et al. (1986)
A43009c_a01	TrAa01ScC	$\mathrm{CH_3COCH_2O_2} + \mathrm{CH_3COCH_2O_2} \rightarrow 2.0 \ \mathrm{HCHO} + 2.0 \ \mathrm{CH_3COOO}$	$0.15 \times 4.00 E8$		Zegota et al. (1986)
A43009d_a01	TrAa01ScC	$\mathrm{CH_3COCH_2O_2} + \mathrm{CH_3COCH_2O_2} \rightarrow 2.0$ $\mathrm{CH_3C(O)CHO} + 2.0 \ \mathrm{HO_2}$	$0.20 \times 4.00 E8$		Zegota et al. (1986)
A43010a_a01	TrAa01ScC	$\text{CH}_3\text{COCH}_2\text{OH} + \text{OH} \rightarrow \text{CH}_3\text{COCHOHO}_2$	$0.85 \times 5.10 \text{E8}$		Doussin and Monod (2013)*
A43010b_a01	TrAa01ScC	$CH_3COCH_2OH + OH \rightarrow HCHO + CH_3COOO$	$0.15 \times 5.10 E8$		Doussin and Monod (2013)
A43011_a01	TrAa01ScCN	$\mathrm{CH_3COCH_2OH} + \mathrm{NO_3} \rightarrow \mathrm{CH_3COCHOHO_2} + \mathrm{NO_3^-} + \mathrm{H^+}$	2.108E+07	-1564	Gaillard de Sémainville et al (2007)
A43012_a01	TrAa01ScC	$CH_3COCHOHO_2 \rightarrow CH_3C(O)CHO + HO_2$	1.90E2		von Sonntag (1987)
A43013_a01	TrAa01ScC	$IPROPOL + OH \rightarrow CH_3COCH_3 + HO_2$	1.90E9		see note*
A43014_a01	TrAa01ScCN	$\begin{array}{c} \mathrm{IPROPOL} + \mathrm{NO_3} \rightarrow \mathrm{CH_3COCH_3} + \mathrm{NO_3^-} + \mathrm{H^+} + \\ \mathrm{HO_2} \end{array}$	3.70E6		see note*
A43015a_a01	TrAa01ScC	$CH_3COCH_2O_2H + OH \rightarrow CH_3C(O)CHO + OH$	1.80E8		see note*
A43015b_a01	TrAa01ScC	$CH_3COCH_2O_2H + OH \rightarrow CH_3COCH_2O_2$	4.70 E8		see note*
A43016_a01	TrAa01ScCN	$\mathrm{CH_3COCH_2O_2H} + \mathrm{NO_3} \rightarrow \mathrm{CH_3COCH_2O_2} + \mathrm{NO_3^-} + \mathrm{H^+}$	4.50E6		see note*
A43017_a01	TrAa01ScC	$\mathrm{CH_{3}COCH_{2}O_{2}} + \mathrm{HO_{2}} \rightarrow \mathrm{CH_{3}COCH_{2}O_{2}H}$	4.30E5		see note*
A43018_a01	TrAa01ScC	$\mathrm{CH_3COCH_2O_2} + \mathrm{O_2^-} \rightarrow \mathrm{CH_3COCH_2O_2H} + \mathrm{O_2} + \mathrm{OH^-}$	5.00E7		see note*
A43019a_a01	TrAa01ScC	$iC_3H_7OOH + OH \rightarrow CH_3COCH_3 + OH$	9.90 E8		see note*
A43019b_a01	TrAa01ScC	$iC_3H_7OOH + OH \rightarrow iC_3H_7O_2$	1.80E8		see note*
A43020_a01	TrAa01ScCN	$iC_3H_7OOH + NO_3 \rightarrow iC_3H_7O_2 + NO_3^- + H^+$	4.50E6		see note*
A43021_a01	TrAa01ScC	$\mathrm{iC_3H_7O_2} + \mathrm{HO_2} \rightarrow \mathrm{iC_3H_7OOH}$	4.30 E5		see note*
A43022_a01	TrAa01ScC	$iC_3H_7O_2 + O_2^- \rightarrow iC_3H_7OOH + O_2 + OH^-$	5.00E7		see note*
A43023_a01	TrAa01ScC	$HOCH_2OH + MG2 \rightarrow MG3 + H_2O$	see note	see note	Hahnenstein et al. $(1995)^*$
A43024_a01	TrAa01ScC	$MG3 + H_2O \rightarrow HOCH_2OH + MG2$	see note	see note	Hahnenstein et al. (1995)
A43025_a01	TrAa01ScC	$MG3 + OH \rightarrow HM2F + HO_2$	1.54E9	-1020	see note*
A44000_a01	TrAa01ScC	$MACR + OH \rightarrow CH_2OHCO_2CH_3CHO$	9.905E+09	-1203	Schöne and Herrmann (2014)
A44001_a01	TrAa01ScC	CH ₂ OHCO ₂ CH ₃ CHO + CH ₂ OHCO ₂ CH ₃ CHO → CH ₃ C(O)CHO + CH ₃ COCH ₂ OH + HOCH ₂ O ₂ + HCOHOHO ₂	4.00E8		Schöne and Herrmann (2014)

Table 6: Aqueous phase reactions (...continued)

#	labels	reaction	$k_0 [M^{1-n}s^{-1}]$	$-E_a/R[K]$	reference
A44002_a01	TrAa01ScC	$MVK + OH \rightarrow CH_3COCHO_2CH_2OH$	7.117E+09	-1443	Schöne and Herrmann (2014)
A44003_a01	TrAa01ScC	CH ₃ COCHO ₂ CH ₂ OH + CH ₃ COCHO ₂ CH ₂ OH → $1.1 \text{ CH}_2\text{COCOCH}_2\text{OH} + .2 \text{ CH}_2\text{OHCHOOHCOCH}_3$ + .35 CH ₂ OHCHO + .35 CH ₃ C(O)CHO + .35 HOCH ₂ O ₂ + .35 CH ₃ COOO + .45 H ₂ O ₂	4.00E8		Schöne and Herrmann (2014)
A44004_a01	TrAa01ScC	$GLYOX + CHOCHOHOH \rightarrow GOLIG1 + H_2O$	1.00E2		Ervens and Volkamer (2010)
A44005_a01	TrAa01ScC	$GOLIG1 + H_2O \rightarrow GLYOX + CHOCHOHOH$	1.00E-1		Ervens and Volkamer (2010)
A44006_a01	TrAa01ScC	СНОСНОНОН + СНОСНОНОН \rightarrow GOLIG2 + $\mathrm{H}_2\mathrm{O}$	1.00E2		Ervens and Volkamer (2010)
A44007_a01	TrAa01ScC	GOLIG2 + $H_2O \rightarrow CHOCHOHOH + CHOCHOHOH$	1.00E-1		Ervens and Volkamer (2010)
A44008_a01	TrAa01ScC	СНОНОНСНОНОН + CHOCHOHOH \rightarrow GOLIG3 + $\mathrm{H_2O}$			Ervens and Volkamer (2010)
A44009_a01	TrAa01ScC	GOLIG3 + $H_2O \rightarrow CHOHOHCHOHOH + CHOCHOHOH$	1.00E-1		Ervens and Volkamer (2010)
A44010_a01	TrAa01ScC	$GOLIG1 + OH \rightarrow GOLIGO1 + HO_2$	1.610E + 09	-1516	see note*
A44011_a01	TrAa01ScC	$GOLIG2 + OH \rightarrow GOLIGO2 + HO_2$	1.610E+09	-1516	see note*
A44012_a01	TrAa01ScC	$GOLIG3 + OH \rightarrow GOLIGO3 + HO_2$	1.610E+09	-1516	see note*
A46000_a01	TrAa01ScC	$\mathrm{CH_3C}(\mathrm{O})\mathrm{CHO} + \mathrm{CH_3COCHOHOH} \to \mathrm{CH_3COCHOHOCHOHCOCH_3} + \mathrm{H_2O}$	1.00E2		Ervens and Volkamer (2010)*
A46001_a01	TrAa01ScC	$\mathrm{CH_3COCHOHOCHOHCOCH_3} + \mathrm{H_2O} \rightarrow \mathrm{CH_3COCHOHOH} + \mathrm{CH_3C(O)CHO}$	1.00E-1		Ervens and Volkamer $(2010)^*$
A46002_a01	TrAa01ScC	$\mathrm{CH_{3}COCHOHOCHOHCOCH_{3}}$ + OH \rightarrow $\mathrm{CH_{3}COCOHOCOHCOCH_{3}}$ + $\mathrm{HO_{2}}$	1.303E+09	-1235	see note*
A46003_a01	TrAa01ScC		1.00E2		Ervens and Volkamer $(2010)^*$
A46004_a01	TrAa01ScC	CH ₃ COCHOHOCOHC ₃ CHOHOH + H ₂ O \rightarrow 2 CH ₃ COCHOHOH	1.00E-1		Ervens and Volkamer $(2010)^*$
A46005_a01	TrAa01ScC	CH ₃ COCHOHOCOHC ₃ CHOHOH + OH → CH ₃ COCOHOCOHC ₃ COHOH + HO ₂	1.303E+09	-1235	see note*
A60000_a01	TrAa01Cl	$Cl + Cl \rightarrow Cl_2$	8.8E7		Wu et al. (1980)
A60001_a01	TrAa01Cl	$\mathrm{Cl}_2^- + \mathrm{Cl}_2^- \to \mathrm{Cl}_2 + 2 \ \mathrm{Cl}^-$	3.5E9		Yu (2004)
A61000_a01	TrAa01Cl	$\text{Cl}^- + \text{O}_3 \to \text{ClO}^-$	3.0E-3		Hoigné et al. (1985)
A61001_a01	TrAa01Cl	$\mathrm{Cl}_2 + \mathrm{O}_2^- \to \mathrm{Cl}_2^-$	1.0E9		Bjergbakke et al. (1981)
A61002_a01	TrAa01Cl	$\text{Cl}_2^- + \text{O}_2^- \rightarrow 2 \text{ Cl}^-$	1.0E9		Jacobi (1996)*

Table 6: Aqueous phase reactions (...continued)

#	labels	reaction	$k_0 [M^{1-n}s^{-1}]$	$-E_a/R[K]$	reference
A62000_a01	TrAa01Cl	$Cl \rightarrow H^+ + ClOH^-$	1.8E5		Yu (2004)
A62001_a01	TrAa01Cl	$Cl + H_2O_2 \to HO_2 + Cl^- + H^+$	$2.7\mathrm{E}7$	-1684	Christensen et al. (1982)
A62002_a01	TrAa01Cl	$\mathrm{Cl}^- + \mathrm{OH} \to \mathrm{ClOH}^-$	4.2E9		Yu (2004)
A62003_a01	TrAa01Cl	$\mathrm{Cl}_2 + \mathrm{HO}_2 \to \mathrm{Cl}_2^- + \mathrm{H}^+$	1.0E9		Bjergbakke et al. (1981)
A62004_a01	TrAa01MblCl	$\text{Cl}_2 \to \text{Cl}^- + \text{HOCl} + \text{H}^+$	21.8	-8012	Wang and Margerum (1994)
A62005_a01	TrAa01Cl	$\mathrm{Cl}_2^- + \mathrm{HO}_2 \rightarrow 2 \; \mathrm{Cl}^- + \mathrm{H}^+$	1.3E10		Jacobi (1996)
A62006_a01	TrAa01Cl	$HOCl + O_2^- \rightarrow Cl + OH^-$	7.5 E6		Long and Bielski (1980)
A62007_a01	TrAa01Cl	$HOCl + HO_2 \rightarrow Cl$	7.5 E6		Long and Bielski (1980)
A62008_a01	TrAa01MblCl	$HOCl + Cl^- + H^+ \rightarrow Cl_2$	2.2E4	-3508	Wang and Margerum (1994)
A62009_a01	TrAa01Cl	$ClOH^- \rightarrow Cl^- + OH$	6.0 E9		Yu (2004)
A62010_a01	TrAa01Cl	$ClOH^- + H^+ \rightarrow Cl$	2.4E10		Yu (2004)
A63000_a01	TrAa01ClN	$Cl + NO_3^- \rightarrow NO_3 + Cl^-$	1.0E8		Buxton et al. (1999b)
A63001_a01	TrAa01ClN	$\text{Cl}^- + \text{NO}_3 \rightarrow \text{NO}_3^- + \text{Cl}$	3.4 E8		Buxton et al. (1999b)*
A63002_a01	TrAa01ClN	$\text{Cl}_2^- + \text{NO}_2^- \rightarrow 2 \text{ Cl}^- + \text{NO}_2$	6.0E7		Jacobi et al. (1996)
A64000_a01	TrAa01ScCl	$\text{Cl}_2^- + \text{CH}_3\text{OOH} \rightarrow 2 \text{ Cl}^- + \text{H}^+ + \text{CH}_3\text{OO}$	6.20 E5		see note*
A70000_a01	TrAa01Br	$Br_2^- + Br_2^- \to 2 Br^- + Br_2$	1.9E9		Ross et al. (1992)
A71000_a01	TrAa01Br	$Br^- + O_3 \rightarrow BrO^-$	2.1E2	-4450	Haag and Hoigné (1983)
A71001_a01	TrAa01Br	$Br_2 + O_2^- \rightarrow Br_2^-$	5.6E9		Sutton and Downes (1972)
A71002_a01	TrAa01Br	${\rm Br}_2^- + {\rm O}_2^- \to 2 \ {\rm Br}^-$	1.7E8		Wagner and Strehlow (1987)
A72000_a01	TrAa01Br	$\mathrm{Br}^- + \mathrm{OH} \to \mathrm{BrOH}^-$	1.1E10		Zehavi and Rabani (1972)
A72001_a01	TrAa01Br	$\mathrm{Br}_2 + \mathrm{HO}_2 \to \mathrm{Br}_2^- + \mathrm{H}^+$	1.1E8		Sutton and Downes (1972)
A72002_a01	TrAa01MblBr	$\mathrm{Br_2} \to \mathrm{Br}^- + \mathrm{HOBr} + \mathrm{H}^+$	9.7E1	-7457	Beckwith et al. (1996)
A72003_a01	TrAa01Br	${\rm Br}_2^- + {\rm HO}_2 \to {\rm Br}_2 + {\rm H}_2{\rm O}_2 + {\rm OH}^-$	$4.4 ext{E}9$		Matthew et al. (2003)
A72004_a01	TrAa01Br	${\rm Br}_2^- + {\rm H}_2{\rm O}_2 \to 2~{\rm Br}^- + {\rm H}^+ + {\rm HO}_2$	1.0E5		Jacobi (1996)
A72005_a01	TrAa01Br	$HOBr + O_2^- \rightarrow Br + OH^-$	3.5E9		Schwarz and Bielski (1986)
A72006_a01	TrAa01Br	$\mathrm{HOBr} + \mathrm{HO}_2 o \mathrm{Br}$	1.0E9		Herrmann et al. (1999a)
A72007_a01	TrAa01Br	$HOBr + H_2O_2 \rightarrow Br^- + H^+$	1.2E6		Bichsel and von Gunten (1999)
A72008_a01	TrAa01MblBr	$\mathrm{HOBr} + \mathrm{Br}^- + \mathrm{H}^+ \to \mathrm{Br}_2$	1.6E10		Beckwith et al. (1996)
A72009a_a01	TrAa01Br	$BrOH^- \to Br^- + OH$	3.3E7		Zehavi and Rabani (1972)
A72009b_a01	TrAa01Br	$BrOH^- \rightarrow Br + OH^-$	4.2 E6		Zehavi and Rabani (1972)
A72010_a01	TrAa01Br	${\rm BrOH^-} + {\rm H^+} \rightarrow {\rm Br}$	4.4E10		Zehavi and Rabani (1972)
A73000_a01	TrAa01BrN	$\mathrm{Br}^- + \mathrm{NO}_3 \to \mathrm{Br} + \mathrm{NO}_3^-$	4.0E9		Neta and Huie (1986)
A73001_a01	TrAa01BrN	$\mathrm{Br}_2^- + \mathrm{NO}_2^- \rightarrow 2~\mathrm{Br}^- + \mathrm{NO}_2$	1.7E7	-1720	Shoute et al. (1991)
A74000_a01	TrAa01Br	$Br_2^- + CH_3OOH \rightarrow 2 Br^- + H^+ + CH_3OO$	1.0E5		Jacobi (1996)*

Table 6: Aqueous phase reactions (...continued)

#	labels	reaction	$k_0 [M^{1-n}s^{-1}]$	$-E_a/R[K]$	reference
A76001_a01	TrAa01BrCl	$\mathrm{Br}^- + \mathrm{ClO}^- + \mathrm{H}^+ \to \mathrm{BrCl} + \mathrm{OH}^-$	3.7E10		Kumar and Margerum (1987)
A76002_a01	TrAa01MblBrCl	$\mathrm{Br}^- + \mathrm{HOCl} + \mathrm{H}^+ \to \mathrm{BrCl}$	1.32E6		Kumar and Margerum (1987)
A76003_a01	TrAa01MblBrCl	$HOBr + Cl^- + H^+ \rightarrow BrCl$	2.3E10		Liu and Margerum $(2001)^*$
A76004_a01	TrAa01MblBrCl	$BrCl \rightarrow Cl^- + HOBr + H^+$	3.0E6		Liu and Margerum (2001)
A81000_a01	TrAa01MblI	$I^- + O_3 \rightarrow HOI + OH^-$	4.2E9	-9311	Magi et al. (1997)
A81001_a01	TrAa01MblI	$IO + IO \rightarrow HOI + IO_2^- + H^+$	1.5E9		Buxton et al. (1986)
A82000_a01	TrAa01MblI	$\mathrm{IO}_2^- + \mathrm{H}_2\mathrm{O}_2 o \mathrm{IO}_3^-$	$6.0\mathrm{E}1$		Furrow (1987)
A82001_a01	TrAa01I	$HOI + IO_2^- \to IO_3^- + I^- + H^+$	6.0E2		Chinake and Simoyi (1996)
A82002_a01	TrAa01MblI	$\mathrm{HOI} + \mathrm{I}^- + \mathrm{H}^+ \rightarrow \mathrm{I}_2$	4.4E12		Eigen and Kustin (1962)
A82003_a01	TrAa01MblI	$\mathrm{IO_2^-} + \mathrm{I^-} + \mathrm{H^+} \rightarrow 2 \; \mathrm{HOI} + \mathrm{OH^-}$	2.0E10		Edblom et al. (1987)
A86000_a01	TrAa01MblClI	$ICl \rightarrow HOI + Cl^- + H^+$	2.4E6		Wang et al. (1989)
A86001_a01	TrAa01MblClI	$I^- + HOCl + H^+ \rightarrow ICl$	3.5E11		Nagy et al. (1988)
A86002_a01	TrAa01ClI	$\mathrm{IO}_2^- + \mathrm{HOCl} \rightarrow \mathrm{IO}_3^- + \mathrm{Cl}^- + \mathrm{H}^+$	1.5E3		Lengyel et al. (1996)
A86003_a01	TrAa01MblClI	$HOI + Cl^- + H^+ \rightarrow ICl$	2.9E10		Wang et al. (1989)
A86004_a01	TrAa01ClI	$HOI + Cl_2 \rightarrow IO_2^- + 2 Cl^- + 3H^+$	1.0E6		Lengyel et al. (1996)
A86005_a01	TrAa01ClI	$\mathrm{HOI} + \mathrm{HOCl} \rightarrow \mathrm{IO}_2^- + \mathrm{Cl}^- + 2 \; \mathrm{H}^+$	5.0E5		Citri and Epstein (1988)
A86006_a01	TrAa01ClI	$ICl + I^- \rightarrow I_2 + Cl^-$	1.1E9		Margerum et al. (1986)
A87000_a01	TrAa01MblBrI	$IBr \rightarrow HOI + H^+ + Br^-$	8.0 E5		Troy et al. (1991)
A87001_a01	TrAa01MblBrI	$I^- + HOBr \rightarrow IBr + OH^-$	5.0E9		Troy and Margerum (1991)
A87002_a01	TrAa01BrI	$\mathrm{IO_2^-} + \mathrm{HOBr} \rightarrow \mathrm{IO_3^-} + \mathrm{Br^-} + \mathrm{H^+}$	1.0E6		Chinake and Simoyi (1996)
A87003_a01	TrAa01MblBrI	$HOI + Br^- + H^+ \rightarrow IBr$	3.3E12		Troy et al. (1991)
A87004_a01	TrAa01BrI	$\mathrm{HOI} + \mathrm{HOBr} \rightarrow \mathrm{IO_2^-} + \mathrm{Br^-} + 2 \mathrm{H^+}$	1.0E6		Chinake and Simoyi (1996)
A87005_a01	TrAa01BrI	$\mathrm{IBr} + \mathrm{I}^- \to \mathrm{I}_2 + \mathrm{Br}^-$	2.0E9		Faria et al. (1993)
A91000_a01	TrAa01ScS	$\mathrm{SO}_3^- + \mathrm{O}_2 o \mathrm{SO}_5^-$	1.5E9		Huie and Neta (1987)
A91001_a01	${\bf TrAa01MblScScmS}$	$SO_3^{2-} + O_3 \to SO_4^{2-}$	1.5E9	-5300	Hoffmann (1986)
A91002_a01	TrAa01ScS	$SO_4^- + O_2^- \to SO_4^{2-}$	3.5E9		Jiang et al. (1992)
A91003_a01	TrAa01ScS	$SO_4^- + SO_3^{2-} \to SO_3^- + SO_4^{2-}$	4.6E8		Huie and Neta (1987)
A91004_a01	TrAa01ScS	$SO_5^- + O_2^- \rightarrow HSO_5^- + OH^-$	2.3E8		Buxton et al. (1996)
A91005_a01	TrAa01S	$SO_5^- + SO_3^{2-} \rightarrow .72 SO_4^- + .72 SO_4^{2-} + .28 SO_3^- +$	1.3E7		Huie and Neta (1987), Deister
		$.28~\mathrm{HSO_5^-} + .28~\mathrm{OH^-}$			and Warneck (1990)*
A91006_a01	TrAa01S	$SO_5^- + \overrightarrow{SO}_5^- \rightarrow O_2 + SO_4^{2-} + LSULFUR$	1.0E8		Ross et al. (1992)*
A92000_a01	TrAa01ScS	$SO_3^{2-} + OH \rightarrow SO_3^{-} + OH^{-}$	5.5E9		Buxton et al. (1988)
A92001_a01	TrAa01ScS	$SO_4^- + OH \rightarrow HSO_5^-$	1.0E9		Jiang et al. (1992)
A92002_a01	TrAa01ScS	$SO_4^- + HO_2 \rightarrow SO_4^{2-} + H^+$	3.5E9		Jiang et al. (1992)

Table 6: Aqueous phase reactions (...continued)

#	labels	reaction	$k_0 [M^{1-n}s^{-1}]$	$-E_a/R[K]$	reference
A92003_a01	TrAa01ScS	$SO_4^- + H_2O \rightarrow SO_4^{2-} + H^+ + OH$	1.1E1	-1110	Herrmann et al. (1995)
A92004_a01	TrAa01ScS	$SO_4^- + H_2O_2 \rightarrow SO_4^{2-} + H^+ + HO_2$	1.2E7		Wine et al. (1989)
A92005_a01	TrAa01ScS	$HSO_3^- + O_2^- \rightarrow SO_4^{2-} + OH$	3.0E3		see note*
A92006_a01	${\bf TrAa01MblScScmS}$	$HSO_3^- + O_3^- \to SO_4^{2-} + H^+$	3.7E5	-5500	Hoffmann (1986)
A92007_a01	TrAa01ScS	$HSO_3^- + OH \rightarrow SO_3^-$	4.5E9		Buxton et al. (1988)
A92008_a01	TrAa01ScS	$HSO_3^- + HO_2 \to SO_4^{2-} + OH + H^+$	3.0E3		see note*
A92009_a01	${\bf TrAa01MblScScmS}$	$HSO_3^- + H_2O_2 \to SO_4^{2-} + H^+$	5.2E6	-3650	Martin and Damschen (1981)
A92010_a01	TrAa01ScS	$HSO_3^- + SO_4^- \to SO_3^- + SO_4^{2-} + H^+$	8.0E8		Huie and Neta (1987)
A92011_a01	TrAa01S	$\mathrm{HSO_3^-} + \mathrm{SO_5^-} \to .75 \mathrm{SO_4^-} + .75 \mathrm{SO_4^{2-}} + .75 \mathrm{H^+} + .25 \mathrm{SO_3^-} + .25 \mathrm{HSO_5^-}$	1.0E5		Huie and Neta (1987)
A92012_a01	TrAa01ScS	$HSO_3^- + HSO_5^- + H^+ \rightarrow 2 HSO_4^- + H^+$	7.1E6		Betterton and Hoffmann (1988)
A93001_a01	TrAa01ScNS	$SO_4^- + NO_3^- \rightarrow SO_4^{2-} + NO_3$	5.0E4		Exner et al. (1992)
A93002_a01	TrAa01ScNS	$SO_4^{2-} + NO_3 \rightarrow NO_3^{-} + SO_4^{-}$	1.0E5		Løgager et al. (1993)
A93004_a01	TrAa01ScNS	$HSO_3^- + NO_3 \to SO_3^- + NO_3^- + H^+$	1.4E9	-2000	Exner et al. (1992)
A93005_a01	TrAa01ScNS	$\mathrm{HSO_3^-} + \mathrm{HNO_4} \rightarrow \mathrm{HSO_4^-} + \mathrm{NO_3^-} + \mathrm{H^+}$	3.1E5		Warneck (1999)
A94100_a01	TrAa01ScS	$SO_3^{2-} + HCHO \rightarrow CH_2OHSO_3^- + OH^-$	$1.4\mathrm{E}4$		Boyce and Hoffmann (1984)*
A94101_a01	TrAa01ScS	$SO_3^{2-} + CH_3OOH + H^+ \rightarrow SO_4^{2-} + H^+ + CH_3OH$	1.6E7	-3800	Lind et al. (1987)
A94102_a01	TrAa01ScS	$HSO_3^- + HCHO \rightarrow CH_2OHSO_3^-$	4.3E-1		Boyce and Hoffmann (1984)*
A94103_a01	TrAa01ScS	$HSO_3^- + CH_3OOH + H^+ \rightarrow HSO_4^- + H^+ + CH_3OH$	1.6E7	-3800	Lind et al. (1987)
A94104_a01	TrAa01ScS	$HSO_3^- + CH_3OO \rightarrow SO_3^- + CH_3OOH$	5.00 E5		Herrmann et al. (1999b)
A94105_a01	TrAa01ScS	$SO_4^- + HCOO^- \rightarrow SO_4^{2-} + CO_2 + HO_2$	1.7E8	-1500	Jacob (1986)
A94106_a01	TrAa01ScS	$SO_4^- + HCOOH \rightarrow SO_4^{2-} + CO_2 + H^+ + HO_2$	1.7E8	-1500	Jacob (1986)
A94107_a01	TrAa01ScS	$\mathrm{SO_4^-} + \mathrm{CH_3OH} \rightarrow \mathrm{SO_4^{2-}} + \mathrm{HOCH_2O_2} + \mathrm{H^+}$	9.039E+06	-2190	Clifton and Huie (1989)
A94108a_a01	TrAa01ScS	$SO_4^- + CH_3OOH \rightarrow SO_4^{2-} + CH_3OO + H^+$	$0.25 \times 1.20 \text{E}7$		see note*
A94108b_a01	TrAa01ScS	$SO_4^- + CH_3OOH \rightarrow SO_4^{2-} + HCHO + HO_2 + H^+$	0.75×1.20 E7		see note*
A94109_a01	TrAa01ScS	$SO_4^- + HOCH_2OH \rightarrow SO_4^{2-} + HCOHOHO_2 + H^+$	1.40E7	-1300	Buxton et al. (1990)
A94110_a01	TrAa01ScS	$\mathrm{SO}_5^- + \mathrm{HCOO}^- \to \mathrm{HSO}_5^- + \mathrm{CO}_2 + \mathrm{O}_2^-$	$1.4\mathrm{E}4$	-4000	Jacob (1986)
A94111_a01	TrAa01ScS	$\mathrm{CH_2OHSO_3^-} + \mathrm{OH^-} \rightarrow \mathrm{SO_3^{2-}} + \mathrm{HCHO}$	3.6E3		Seinfeld and Pandis (1998)
A94200_a01	TrAa01ScCS	$HSO_3^- + CH_2OOCOOH \rightarrow SO_3^- + HOOCH2CO2H$	5.00 E5		see note*
A94201_a01	TrAa01ScCS	$\mathrm{HSO}_3^- + \mathrm{CH}_2\mathrm{OOCO}_2^- \to \mathrm{SO}_3^- + \mathrm{CH}_2\mathrm{OOHCO}_2^-$	5.00 E5		see note*
A94202a_a01	TrAa01ScCS	$SO_4^- + CH_3CH_2OH \rightarrow SO_4^{2-} + CH_3CHO + HO_2 + H^+$	$0.90 \times 4.236E + 07$	-1750	Clifton and Huie (1989)*
A94202b_a01	TrAa01ScCS	$SO_4^- + CH_3CH_2OH \rightarrow SO_4^{2-} + CH_2OHCH_2OO + H^+$	$0.10 \times 4.236E + 07$	-1750	Clifton and Huie (1989)

Table 6: Aqueous phase reactions (...continued)

#	labels	reaction	$k_0 [M^{1-n}s^{-1}]$	$-E_a/R[K]$	reference
A94203a_a01	TrAa01ScCS	SO_4^- + CHOHOHCHOHOH \rightarrow SO_4^{2-} +	$0.27 \times 2.40 \text{E}7$		George et al. (2001)
		$CHOHOHCOHOHO_2 + H^+$			
A94203b_a01	TrAa01ScCS	$SO_4^- + CHOHOHCHOHOH \rightarrow SO_4^{2-} +$	$0.73 \times 2.40 E7$		George et al. $(2001)^*$
		$HCOHOHO_2 + HCOOH + HO_2 + H^+$			- , ,
A94204_a01	TrAa01ScCS	$\mathrm{SO_4^-} + \mathrm{CH_3COO^-} \rightarrow \mathrm{SO_4^{2-}} + \mathrm{CH_2OOCO_2^-} + \mathrm{H^+}$	5.10E6		Huie and Clifton (1990)
A94205_a01	TrAa01ScCS	$SO_4^- + HOOCCOO^- \rightarrow SO_4^{2-} + C_2O_4^- + H^+$	1.70E6		Grgić et al. (2007)
A94206_a01	TrAa01ScCS	$SO_4^- + C_2O_4^{2-} \to SO_4^{2-} + C_2O_4^-$	1.30E7		Grgić et al. (2007)
A96000_a01	TrAa01ClS	$SO_3^{2-} + Cl_2^- \to SO_3^- + 2 Cl^-$	6.2E7		Jacobi et al. (1996)
A96001_a01	TrAa01MblClS	$SO_3^{2-} + HOCl \rightarrow Cl^- + HSO_4^-$	7.6E8		Fogelman et al. (1989)
A96002_a01	TrAa01ClS	$SO_4^- + Cl^- \rightarrow SO_4^{2-} + Cl$	2.5E8		Buxton et al. (1999a)
A96003_a01	TrAa01ClS	$SO_4^{2-} + Cl \rightarrow SO_4^{-} + Cl^{-}$	2.1E8		Buxton et al. (1999a)
A96004_a01	TrAa01ClS	$HSO_3^- + Cl_2^- \to SO_3^- + 2 Cl^- + H^+$	4.7E8	-1082	Shoute et al. (1991)
A96005_a01	TrAa01MblClS	$HSO_3^- + HOCl \rightarrow Cl^- + HSO_4^- + H^+$	7.6E8		see note*
A96006_a01	TrAa01ClS	$HSO_5^- + Cl^- \rightarrow HOCl + SO_4^{2-}$	1.8E-3	-7352	Fortnum et al. (1960)
A97000_a01	TrAa01BrS	$SO_3^{2-} + Br_2^- \rightarrow 2 Br^- + SO_3^{\frac{1}{2}}$	2.2E8	-649	Shoute et al. (1991)
A97001_a01	TrAa01BrS	$SO_3^{2-} + BrO^{-} \to Br^{-} + SO_4^{2-}$	1.0E8		Troy and Margerum (1991)
A97002_a01	TrAa01MblBrS	$SO_3^{2-} + HOBr \rightarrow Br^- + HSO_4^-$	5.0E9		Troy and Margerum (1991)
A97003_a01	TrAa01BrS	$SO_4^- + Br^- \rightarrow Br + SO_4^{2-}$	2.1E9		Jacobi (1996)
A97004_a01	TrAa01BrS	$HSO_3^- + Br_2^- \to 2 Br^- + H^+ + SO_3^-$	6.3E7	-782	Shoute et al. (1991)
A97005_a01	TrAa01MblBrS	$HSO_3^- + HOBr \rightarrow Br^- + HSO_4^- + H^+$	5.0E9		see note*
A97006_a01	TrAa01BrS	$HSO_5^- + Br^- \rightarrow HOBr + SO_4^{2-}$	1.0E0	-5338	Fogelman et al. (1989)
A98000_a01	TrAa01IS	$HSO_3^- + I_2 \rightarrow 2 I^- + HSO_4^- + 2 H^+$	1.7E9		Yiin and Margerum (1990)
A101000_a01	TrAa01Hg	$\text{Hg} + \text{O}_3 \rightarrow \text{HgO} + \text{O}_2$	4.7E7		Munthe (1992)
A102000_a01	TrAa01Hg	$\mathrm{HgO} + \mathrm{H}^+ \to \mathrm{Hg}^{2+} + \mathrm{OH}^-$	1.0E10		Pleijel and Munthe (1995)
A102001_a01	TrAa01Hg	$\mathrm{Hg} + \mathrm{OH} \to \mathrm{Hg}^+ + \mathrm{OH}^-$	2.0E9		Lin and Pehkonen (1997)
A102002_a01	TrAa01Hg	$\mathrm{Hg^+} + \mathrm{OH} \rightarrow \mathrm{Hg^{2+}} + \mathrm{OH^-}$	1.0E10		Lin and Pehkonen (1997)
A102003_a01	TrAa01Hg	${\rm Hg^{2+} + HO_2 \to Hg^+ + O_2 + H^+}$	$1.7\mathrm{E}4$		Enami et al. (2007)
A102004_a01	TrAa01Hg	$\mathrm{Hg^+} + \mathrm{HO_2} \rightarrow \mathrm{Hg} + \mathrm{O_2} + \mathrm{H^+}$	1.0E10		Lin and Pehkonen (1997)
A106000_a01	TrAa01ClHg	$\mathrm{Hg} + \mathrm{HOCl} \rightarrow \mathrm{Hg}^{2+} + \mathrm{Cl}^{-} + \mathrm{OH}^{-}$	2.09E6		Lin and Pehkonen (1998)
A106001_a01	TrAa01ClHg	$\mathrm{Hg} + \mathrm{ClO}^- \rightarrow \mathrm{Hg}^{2+} + \mathrm{Cl}^- + 2 \mathrm{OH}^-$	1.99E6		Lin and Pehkonen (1998)
A107000_a01	TrAa01BrHg	$Hg + HOBr \rightarrow Hg^{2+} + Br^{-} + OH^{-}$	0.279		Wang and Pehkonen (2004)
A107001_a01	TrAa01BrHg	$Hg + BrO^{-} \rightarrow Hg^{2+} + Br^{-} + 2 OH^{-}$	0.273		Wang and Pehkonen (2004)
A107002_a01	TrAa01BrHg	$\mathrm{Hg} + \mathrm{Br}_2 \to \mathrm{Hg}^{2+} + 2 \; \mathrm{Br}^{-}$	0.196		Wang and Pehkonen (2004)
A109000_a01	TrAa01HgS	$HgSO_3 \rightarrow Hg + HSO_4^- + H^+$	0.0106		van Loon et al. (2000)

Table 6: Aqueous phase reactions (...continued)

#	labels	reaction	$k_0 [M^{1-n}s^{-1}] -E_a/R[K]$	reference
A111001_a01	TrAa01Fe	$Fe^{2+} + O_2^- \to Fe^{3+} + HO2^- + OH^-$	1E7	de Laat and Le (2006)
A111002_a01	TrAa01Fe	$Fe^{3+} + O_2^- \to O_2 + Fe^{2+}$	5E7	de Laat and Le (2006)
A111003_a01	TrAa01Fe	$Fe^{2+} + O_3 \rightarrow FeO^{2+} + O_2$	$8.2 ext{E}5$	Løgager et al. (1992)
A112001a_a01	TrAa01Fe	$\mathrm{Fe^{2+}} + \mathrm{OH} \rightarrow \mathrm{Fe^{3+}} + \mathrm{OH^{-}}$	2.7E8	de Laat and Le (2006)
A112001b_a01	TrAa01Fe	$\text{FeOH}^+ + \text{OH} \rightarrow \text{Fe}^{3+} + 2 \text{ OH}^-$	2.7E8	de Laat and Le (2006)
A112002a_a01	TrAa01Fe	${\rm Fe^{2+} + H_2O_2 \to Fe^{3+} + OH + OH^-}$	5.5E1	de Laat and Le (2006)
A112002b_a01	TrAa01Fe	$\text{FeOH}^+ + \text{H}_2\text{O}_2 \rightarrow \text{Fe}^{3+} + \text{OH} + 2 \text{ OH}^-$	5.9E6	de Laat and Le (2006)
A112003_a01	TrAa01Fe	$\text{FeHO}_2^{2+} \rightarrow \text{Fe}^{2+} + \text{HO}_2$	2.3E-3	de Laat and Le (2006)
A112004_a01	TrAa01Fe	$Fe(OH)(HO_2)^+ \rightarrow Fe^{2+} + HO_2 + OH^-$	2.3E-3	de Laat and Le (2006)
A112006_a01	TrAa01Fe	$\mathrm{Fe^{2+} + HO_2} \rightarrow \mathrm{Fe^{3+} + HO2^{-}}$	1.2E6	de Laat and Le (2006)
A112008a_a01	TrAa01Fe	$\text{FeOH}^{2+} + \text{O}_2^- \to \text{Fe}^{2+} + \text{O}_2 + \text{OH}^-$	1.5E8	Rush and Bielski (1985)
A112008b_a01	TrAa01Fe	$Fe(OH)_{2}^{+} + O_{2}^{-} \rightarrow Fe^{2+} + O_{2} + 2 OH^{-}$	1.5E8	Rush and Bielski (1985)
A112009_a01	TrAa01Fe	$Fe^{2+} + O_2^- \rightarrow Fe^{3+} + H_2O_2 + 2 OH^-$	1.0E7	Rush and Bielski (1985)
A112010_a01	TrAa01Fe	$\text{Fe}^{2+} + \text{OH} \rightarrow \text{FeOH}^{2+}$	4.3E8	Christensen and Sehested (1981)
A112011_a01	TrAa01Fe	$\text{FeO}^{2+} + \text{H}_2\text{O}_2 \rightarrow \text{Fe}^{3+} + \text{HO}_2 + \text{OH}^-$	9.5E3	Løgager et al. (1992)
A112012_a01	TrAa01Fe	$\text{FeO}^{2+} \rightarrow \text{Fe}^{3+} + \text{OH} + \text{OH}^{-}$	1.3E-2	Løgager et al. (1992)
A112013_a01	TrAa01Fe	${\rm FeO^{2+} + HO_2 \to Fe^{3+} + O_2 + OH^-}$	2.0 E6	Løgager et al. (1992)
A112014_a01	TrAa01Fe	$\text{FeO}^{2+} + \text{OH} \rightarrow \text{Fe}^{3+} + \text{HO2}^{-}$	1.0E7	Løgager et al. (1992)
A112015_a01	TrAa01Fe	${\rm FeO^{2+} + Fe^{2+} \rightarrow 2 \ Fe^{3+} + 2 \ OH^{-}}$	1.4E5	Løgager et al. (1992)
A112016_a01	TrAa01Fe	$\text{FeO}^{2+} + \text{Fe}^{2+} \rightarrow \text{Fe(OH)}_2 \text{Fe}^{4+}$	1.8E4	Jacobsen et al. (1997)
A112017_a01	TrAa01Fe	$Fe(OH)_2Fe^{4+} + H^+ \rightarrow 2 Fe^{3+} + OH^-$	2.0	Jacobsen et al. (1997)
A112018_a01	TrAa01Fe	$Fe(OH)_2Fe^{4+} \to 2 Fe^{3+} + 2 OH^-$	0.49	Jacobsen et al. (1997)
A113001_a01	TrAa01FeN	$\text{FeO}^{2+} + \text{HONO} \rightarrow \text{Fe}^{3+} + \text{NO}_2 + \text{OH}^-$	$1.1\mathrm{E}4$	Jacobsen et al. (1998)
A113002_a01	TrAa01FeN	$Fe^{2+} + NO_3 \to Fe^{3+} + NO_3^-$	8.0 E6	Herrmann et al. (2000)
A116001_a01	TrAa01ClFe	$Fe^{2+} + Cl \rightarrow Fe^{3+} + Cl^{-}$	5.9E9	Jayson et al. (1973)
A116002a_a01	TrAa01ClFe	$Fe^{2+} + Cl_2^- \to Fe^{3+} + 2 Cl^-$	1E7	Thornton and Laurence (1973)
A116002b_a01	TrAa01ClFe	$\mathrm{Fe^{2+}} + \mathrm{Cl_2^-} \rightarrow \mathrm{FeCl^{2+}} + \mathrm{Cl^-}$	4E6	Thornton and Laurence (1973)
A116003a_a01	TrAa01ClFe	$\mathrm{FeCl^{+} + HO_{2} \rightarrow Fe^{3+} + Cl^{-} + HO2^{-}}$	1.2E6	de Laat and Le (2006)
A116003b_a01	TrAa01ClFe	$FeCl^{+} + O_{2}^{-} \rightarrow Fe^{3+} + Cl^{-} + HO2^{-} + OH^{-}$	1E7	de Laat and Le (2006)
A116004a_a01	TrAa01ClFe	$FeCl^{2+} + \tilde{HO}_2 \rightarrow Fe^{2+} + Cl^{-} + O_2 + H^{+}$	2E4	de Laat and Le (2006)
A116004b_a01	TrAa01ClFe	$FeCl_2^+ + HO_2 \rightarrow Fe^{2+} + 2 Cl^- + O_2 + H^+$	2E4	de Laat and Le (2006)
A116004c_a01	TrAa01ClFe	$FeCl^{\bar{2}+} + O_2^- \to Fe^{2+} + Cl^- + O_2$	5E7	de Laat and Le (2006)
A116004d_a01	TrAa01ClFe	$FeCl_2^+ + O_2^- \to Fe^{2+} + 2 Cl^- + O_2$	5E7	de Laat and Le (2006)
A116005_a01	TrAa01ClFe	$\text{FeO}^{2+} + \text{Cl}^- \rightarrow \text{Fe}^{3+} + \text{Cl} + 2 \text{ OH}^-$	1E2	Jacobsen et al. (1998)*

Table 6: Aqueous phase reactions (...continued)

#	labels	reaction	$k_0 [M^{1-n}s^{-1}] -E_a/R[K]$	reference
A117001_a01	TrAa01BrFe	${\rm Fe^{2+} + Br_2^- \to Fe^{3+} + 2 \ Br^-}$	3.6E6	Thornton and Laurence (1973)
A119001_a01	TrAa01FeS	$FeO^{2+} + SO_2 \rightarrow Fe^{3+} + SO_3^-$	4.5 E5	Jacobsen et al. $(1998)^*$
A119002_a01	TrAa01FeS	$\text{FeO}^{2+} + \text{HSO}_3^- \to \text{Fe}^{3+} + \text{SO}_3^- + \text{OH}^-$	2.5 E5	Jacobsen et al. $(1998)^*$
A119003_a01	TrAa01FeS	$FeOH^{2+} + HSO_3^- \to Fe^{2+} + SO_3^- + H_2O$	30	Ziajka et al. (1994)
A119004_a01	TrAa01FeS	$\mathrm{Fe^{2+} + SO_5^-} \rightarrow \mathrm{FeOH^{2+} + HSO_5^-}$	8E5	Ziajka et al. (1994)*
A119005_a01	TrAa01FeS	$\mathrm{Fe^{2+} + HSO_5^-} \rightarrow \mathrm{FeOH^{2+} + SO_4^-}$	3.0 E4	Gilbert and Stell (1990)
A119006_a01	TrAa01FeS	$Fe^{2+} + SO_4^- \rightarrow FeSO_4^+$	3.6E7	McElroy and Waygood (1990)*
A119007_a01	TrAa01FeS	$\text{FeOH}^{2+} + \text{SO}_3^- \rightarrow \text{Fe}^{2+} + \text{HSO}_4^-$	3E7	Warneck (2018)
A119008_a01	TrAa01FeS	$FeSO_3^+ + SO_3^- \to Fe^{2+} + SO_4^{2-} + SO_2$	2.16E6	Warneck $(2018)^*$

Specific notes

A41013a_a01: Branching ratios taken from Asmus et al. (1973)

A41016a_a01: Branching ratio explaining the HCOOHyield by Monod et al. (2007) who originally assigned it to the channel for the methylic H-abstraction. However, Monod et al. (2007), differently from Herrmann et al. (1999b), assumed that the self-reaction of CH₃O₂ would only produce 2 CH₃O radicals and thus HCHO + HO₂. Instead, the latter reaction has a 0.8 yield of HOCH₂O₂, which is a precursor of hydroxymethyl hydroperoxide and thus HCOOH.

A41016b_a01: The CH₂OOH radical has a lifetime of 10^{-9} s in the gas phase decomposing to HCHO and OH. O_2 -addition in the aqueous-phase seems unlikely. It is hard to imagine how the HOOHCH₂O₂ radical would decompose into HCOOH and HO_2 .

A41017a_a01: $k(H_2O_2+NO_3)$, branching ratio as for $CH_3OOH + OH$

A41017b a01: See branch a.

A41018a_a01: $k(H_2O_2+CO_3^-)$, branching ratio as for A42005_a01: k approximated from $(k(CH_3OOH+OH))$ $CH_3OOH + OH$

A41018b_a01: See branch a.

A41019a_a01: Branching ratio as for CH₃OOH + OH

A41019b_a01: HOCHOOHO2 is assumed to directly decompose into CHOOOH and HO₂

A41020a_a01: $k(H_2O_2+NO_3)$, branching ratio as for $CH_3OOH + OH$

A41020b_a01: HOCHOOHO2 is assumed to directly decompose into CHOOOH and HO₂

A41021_a01: HO₂ elimination

A41022_a01: $k(HO_2+HO_2)$

A41023_a01: $k(HO_2+O_2^-)$

A41030_a01: HO₂ elimination

A42000a_a01: CH₃CHOHO₂ is assumed to directly decompose into $CH_3CHO + HO_2$

A42001a_a01: CH₃CHOHO₂ is assumed to directly decompose into $CH_3CHO + HO_2$

A42003_a01: $k(HO_2+O_2^-)$

A42004_a01: $k(HO_2+HO_2)$

 $/k(CH_3OH+OH)$

A42006_a01: CH₂OHCHOHO₂ is assumed to directly decompose into $HOCH_2CHO + HO_2$

A42007_a01: CH₂OHCHOHO₂ is assumed to directly decompose into $HOCH_2CHO + HO_2$

A42010 a01: k based on Monod et al. (2005): k=k(2) $CH_3CH_2(OO)$

A42014_a01: HO₂ elimination

A42016a_a01: k assumed to be the same as for $CH_3CHO + NO_3$

A42016b_a01: See branch a.

A42017_a01: $k(CH_3CHOHOH+O_2^-)$

A42018_a01: HO₂ elimination

A42019_a01: k based on von Sonntag (1987)

A42020_a01: k based on von Sonntag (1987)

A42022a_a01: $k(CH_3CHOHOH+NO_3)$

A42022b_a01: See branch a.

A42022c_a01: See branch a.

A42023b_a01: CHOHOHO₂ directly decomposes into

 $HCOOH + HO_2$

 $A42024a_a01$: k based on Neta and Huie (1986)

A42024b_a01: CHOHOHO₂ directly decomposes into $HCOOH + HO_2$

A43013_a01: There is an intermediate reaction with A42025_a01: HO₂ elimination A42157b_a01: COOHOO is not formed but directly dissociates into $CO_2 + HO_2$ branching ratio 0.87 and 0.13, the minor compound is A42030b_a01: CH₃CHOOHO₂ is assumed to directly neglected (Monod et al., 2005) decompose into CH₃CO₂H and HO₂ A42161_a01: HO₂ elimination A43014_a01: There is an intermediate reaction with A42162_a01: HO₂ elimination A42031b_a01: CH₃CHOHO₂ is assumed to directly debranching ratio 0.87 and 0.13, the minor compound is compose into $CH_3CHO + HO_2$ A42163a_a01: $k(HOCH_2CHO + OH)$ neglected (Herrmann et al., 1994) A42032_a01: $k(HO_2+O_2^-)$ A42163b_a01: See branch a. A43015a_a01: k calculated comparing the rates $(CH_3OH + OH/CH_3OOH + OH)$ and A42033_a01: $k(HO_2+HO_2)$ A42164a_a01: $k(HOCH_2CHO+NO_3)$ (ACETOL + OH/HYPERACET + OH)A42164b_a01: See branch a. A42034_a01: $k(HO_2+HO_2)$ A43015b_a01: $k \text{ from CH}_3\text{OOH} + \text{OH} \rightarrow \text{HCHO}$. A42165a_a01: $k(HOCH_2CHOHOH+OH)$ A42035_a01: $k(HO_2+O_2^-)$ A43016_a01: k taked from the reaction of the hydrated A42165b_a01: See branch a. form of MGLYOX and NO₃ A42037_a01: $k(HO_2+HO_2)$ A42165c_a01: See branch a. A43017_a01: $k \text{ from } CH_3O_2 + HO_2$ A42038_a01: $k(HO_2+O_2^-)$ A43018_a01: $k \text{ from } CH_3O_2 + O_2^-$ A42166a_a01: $k(HOCH_2CHOHOH+NO_3)$ A42144a_a01: k assumed to be the same as C_2H_5OOH A43019a_a01: k calculated comparing $CH_3OH + OH$ A42166b_a01: See branch a. + OH based on Monod et al. (2007) $CH_3OOH + OH$ with IPROPL + OHA42166c_a01: See branch a. A42144b_a01: See branch a. A43019b_a01: k calculated comparing CH3OH + OH A42167_a01: pH-dependent A42146a_a01: k assumed to be the same as C_2H_5OOH CH3OOH + OHwith ACETOL + OH+ OH based on Monod et al. (2007) A42169_a01: $k = 2 \times k(HOCH_2OH + OH)$ HYPERCET + OHA43020_a01: k taken from the reaction of the hydrated A42146b_a01: See branch a. A42471_a01: Assumed to be the same as CH3CO3 + form of MGLYOX and NO₃ H2O, following Villalta et al. (1996) A42148_a01: HO₂ elimination A43021_a01: $k \text{ from } CH_3O_2 + HO_2$ A42472_a01: Assumed to be the same as CH3CO3 \pm A42149_a01: HO₂ elimination A43022_a01: $k \text{ from } CH_3O_2 + O_2^-$ H2O, following Villalta et al. (1996) A42150a_a01: COOHOO is not formed but directly dis-A43023_a01: pH-dependent A42473_a01: Assumed to be the same as CH3CO3 + sociates into $CO_2 + HO_2$. Rate coefficient based on H2O, following Villalta et al. (1996) A43025_a01: $k = 2 \times k(HOCH_2OH + OH)$ Buxton et al. (1988) A44010_a01: $k = 2 \times k(CHOHOHCHOHOH+OH)$ A43000a_a01: Intermidate reaction with O_2^- and A42150b_a01: See branch a. A44011_a01: $k = 2 \times k(CHOHOHCHOHOH+OH)$ CH(OH)₂COCH₂O₂ neglected A42151a_a01: COOHOO is not formed but directly dis-A44012_a01: $k = 2 \times k(CHOHOHCHOHOH+OH)$ A43001_a01: CH(OH)₂COCH₂O₂ neglected sociates into CO₂ + HO₂. Rate coefficient based on A46000_a01: Assumed to be the same as for glyoxal A43002_a01: CO₂ added for mass balance intermediate Gaillard de Sémainville et al. (2007) A46001_a01: Assumed to be the same as for glyoxal reactions neglected A42151b_a01: See branch a. A46002_a01: $k = 2 \times k(\text{CH}_3\text{COCHOHOH+OH})$ A43004_a01: CO₂ added for mass balance intermediate A42156b_a01: COOHOO is not formed but directly dis-A46003_a01: Assumed to be the same as for glyoxal reactions neglected sociates into $CO_2 + HO_2$. A46004_a01: Assumed to be the same as for glyoxal A43010a_a01: CH₂(OH)COCH₂O₂ was negected with a branching ratio 0.16 added to CH₃COCHOHO₂ A46005_a01: $k = 2 \times k(CH_3COCHOHOH+OH)$

A42157a_a01: $k(CHOHOHCHOHOH+NO_3)$

A61002_a01: Jacobi (1996) found an upper limit of 6E9 and cite an upper limit from another study of 2E9. Here, we set the rate coefficient to 1E9.

A63001_a01: There is also an earlier study by Exner et al. (1992) which found a smaller rate coefficient but did not consider the back reaction.

A64000_a01: k taken from $H_2O_2+Cl_2^-$ (Yu, 2004).

A74000_a01: Assumed to be the same as for $\rm Br_2^- + H_2O_2.$

A76003_a01: The rate coefficient is defined as backward reaction divided by equilibrium constant.

A91005_a01: The rate coefficient for the sum of the paths (leading to either ${\rm HSO}_5^-$ or ${\rm SO}_4^{2-}$) is from Huie and Neta (1987), the ratio 0.28/0.72 is from Deister and Warneck (1990).

A91006_a01: See also: (Huie and Neta, 1987; Warneck, 1991). If this reaction produces a lot of SO_4^- , it will have an effect. However, we currently assume only the stable

 $S_2O_8^{2-}$ as product. Since $S_2O_8^{2-}$ is not treated explicitly in the mechanism, SO_4^{2-} is used as a proxy and the second sulfur atom is put into the lumped LSULFUR.

A92005_a01: D. Sedlak, pers. comm. (1993).

A92008_a01: D. Sedlak, pers. comm. (1993).

A94100_a01: $2.48 \times 10^7 \times 5.5 \times 10^{-4}$, considering the hydrated form of HCHO.

A94102_a01: $790 \times 5.5 \times 10^{-4}$, considering the hydrated form of HCHO.

A94108a_a01: $k(H_2O_2+SO_4^-)$, branching ratio as for $CH_3OOH+OH$

A94108b_a01: See branch a.

A94200_a01: $k(CH_3OO + HSO_3^-)$

A94201_a01: $k(CH_3OO + HSO_3^-)$

 $\tt A94202a_a01: CH_3CHOHO_2$ is assumed to directly decompose into $CH_3CHO + HO_2$

A94203b_a01: CHOHOHO $_2$ directly decomposes into HCOOH + HO $_2$

A96005_a01: Assumed to be the same as for SO_3^{2-} + HOCl.

A97005_a01: Assumed to be the same as for SO_3^{2-} + HOBr.

A116005_a01: products assumed

A119001_a01: products assumed

A119002_a01: products assumed

A119004_a01: Assumed. Note that CAPRAM 2.4 lists k=4.3E7 from Herrmann Air Pollution Research Report 57 and it also lists k=2.65E7 from Williams PhD 1996 http://lib.leeds.ac.uk/record=b1835184~S5. Brand and van Eldik (1995) also list k=3.56E4 from Waygood EUROTRAC 1992 report.

A119006_a01: 3E8*6500/(48000+6500)

A119008_a01: Assuming that the intermediate $S_2O_6^{2-}$ dissociates quickly.

References

- Albaladejo, J., Jiménez, E., Notario, A., Cabañas, B., and Martínez, E.: CH_3O yield in the $CH_3 + O_3$ reaction using the LP/LIF technique at room temperature, J. Phys. Chem. A, 106, 2512–2519, doi: 10.1021/jp012249o, 2002.
- Amedro, D., Berasategui, M., Bunkan, A. J. C., Pozzer, A., Lelieveld, J., and Crowley, J. N.: Kinetics of the OH + NO₂ reaction: effect of water vapour and new parameterization for global modelling, Atmos. Chem. Phys., 20, 3091–3105, doi:10.5194/acp-20-3091-2020, 2020.
- Ammann, M. and Pöschl, U.: Kinetic model framework for aerosol and cloud surface chemistry and gasparticle interactions Part 2: exemplary practical applications and numerical simulations, Atmos. Chem. Phys., 7, 6025–6045, doi:10.5194/ACP-7-6025-2007, 2007.
- Anderson, L. C. and Fahey, D. W.: Studies with ClONO₂: Thermal dissociation rate and catalytic conversion to NO using an NO/O_3 chemiluminescence detector, J. Phys. Chem., 94, 644–652, doi: 10.1021/J100365A027, 1990.
- Andrews, D. U., Heazlewood, B. R., Maccarone, A. T., Conroy, T., Payne, R. J., Jordan, M. J. T., and Kable, S. H.: Photo-tautomerization of acetaldehyde to vinyl alcohol: a potential route to tropospheric acids, Science, 337, 1203–1206, doi:10.1126/science. 1220712, 2012.
- Ariya, P. A., Khalizov, A., and Gidas, A.: Reactions of gaseous mercury with atomic and molecular halogens: Kinetics, product studies, and atmospheric implications, J. Phys. Chem. A, 106, 7310–7320, doi: 10.1021/JP020719O, 2002.

- Aschmann, S. M., Nishino, N., Arey, J., and Atkinson, R.: Products of the OH radical-initiated reactions of furan, 2- and 3-methylfuran, and 2,3- and 2,5-dimethylfuran in the presence of NO, J. Phys. Chem. A, 118, 457–466, doi:10.1021/jp410345k, 2014.
- Asmus, K. D., Moeckel, H., and Henglein, A.: Pulse radiolytic study of the site of hydroxyl radical attack on aliphatic alcohols in aqueous solution, J. Phys. Chem., 77, 1218–1221, doi:10.1021/j100629a007, 1973.
- Atkinson, R.: Gas-phase tropospheric chemistry of volatile organic compounds: 1. Alkanes and alkenes, J. Phys. Chem. Ref. Data, 26, 215–290, doi:10.1063/ 1.556012, 1997.
- Atkinson, R.: Kinetics of the gas-phase reactions of OH radicals with alkanes and cycloalkanes, Atmos. Chem. Phys., 3, 2233–2307, doi:10.5194/ACP-3-2233-2003, 2003.
- Atkinson, R. and Arey, J.: Atmospheric degradation of volatile organic compounds, Chem. Rev., 103, 4605–4638, doi:10.1021/cr0206420, 2003.
- Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I gas phase reactions of O_x , HO_x , NO_x and SO_x species, Atmos. Chem. Phys., 4, 1461–1738, doi: 10.5194/ACP-4-1461-2004, 2004.
- Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and IUPAC Subcommittee: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625–4055, doi:10.5194/ACP-6-3625-2006, 2006.

- Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III gas phase reactions of inorganic halogens, Atmos. Chem. Phys., 7, 981–1191, doi:10.5194/ACP-7-981-2007, 2007.
- Baeza-Romero, M. T., Glowacki, D. R., Blitz, M. A., Heard, D., Pilling, M. J., Rickard, A. R., and Seakins, P. W.: A combined experimental and theoretical study of the reaction between methylglyoxal and OH/OD radical: OH regeneration, Phys. Chem. Chem. Phys., 9, 4114–4128, doi:10.1039/b702916k, 2007.
- Bailey, S. M., Barth, C. A., and Solomon, S. C.: A model of nitric oxide in the lower thermosphere, J. Geophys. Res., 107, doi:10.1029/2001JA000258, 2002.
- Bale, C. S. E., Canosa-Mas, C. E., Shallcross, D. E., and Wayne, R. P.: A discharge-flow study of the kinetics of the reactions of IO with CH₃O₂ and CF₃O₂, Phys. Chem. Chem. Phys., 7, 2164–2172, doi: 10.1039/B501903F, 2005.
- Banic, C. M., Beauchamp, S. T., Tordon, R. J., Schroeder, W. H., Steffen, A., Anlauf, K. A., and Wong, H. K. T.: Vertical distribution of gaseous elemental mercury in Canada, J. Geophys. Res., 108D, 4264, doi:10.1029/2002JD002116, 2003.
- Barker, G. C., Fowles, P., and Stringer, B.: Pulse radiolytic induced transient electrical conductance in liquid solutions, Trans. Faraday Soc., 66, 1509–1519, doi:10.1039/TF9706601509, 1970.

- Barnes, I., Becker, K. H., Fink, E. H., Reimer, A., Zabel, F., and Niki, H.: FTIR spectroscopic study of the gas-phase reaction of HO₂ with H₂CO, Chem. Phys. Lett., 115, 1–8, doi:10.1016/0009-2614(85) 80091-9, 1985.
- Barnes, I., Becker, K. H., and Zhu, T.: Near UV absorption-spectra and photolysis products of difunctional organic nitrates possible importance as $\rm NO_x$ reservoirs, J. Atmos. Chem., 17, 353–373, doi: $10.1007/\rm BF00696854$, 1993.
- Barone, S. B., Turnipseed, A. A., and Ravishankara, A. R.: Role of adducts in the atmospheric oxidation of dimethyl sulfide, Faraday Discuss., 100, 39–54, doi: 10.1039/FD9950000039, 1995.
- Barth, C. A.: Nitric oxide in the lower thermosphere, Planet. Space Sci., 40, 315–336, doi:10.1016/0032-0633(92)90067-X, 1992.
- Bates, K. H., Crounse, J. D., St. Clair, J. M., Bennett, N. B., Nguyen, T. B., Seinfeld, J. H., Stoltz, B. M., and Wennberg, P. O.: Gas phase production and loss of isoprene epoxydiols, J. Phys. Chem. A, 118, 1237– 1246, doi:10.1021/jp4107958, 2014.
- Baulch, D. L., Bowman, C. T., Cobos, C. J., Cox, R. A., Just, T., Kerr, J. A., Pilling, M. J., Stocker, D., Troe, J., Tsang, W., Walker, R. W., and Warnatz, J.: Evaluated kinetic data for combustion modeling: Supplement II, J. Phys. Chem. Ref. Data, 34, 757–1397, doi:10.1063/1.1748524, 2005.
- Becker, K. H., Kurtenbach, R., Schmidt, F., and Wiesen, P.: Kinetics of the NCO radical reacting with atoms and selected molecules, Combust. Flame, 120, 570–577, doi:10.1016/S0010-2180(99)00108-X, 2000.

- Beckwith, R. C., Wang, T. X., and Margerum, D. W.: Equilibrium and kinetics of bromine hydrolysis, Inorg. Chem., 35, 995–1000, doi:10.1021/IC950909W, 1996.
- Bedjanian, Y., Le Bras, G., and Poulet, G.: Kinetic study of the Br + IO, I + BrO and Br + I₂ reactions. Heat of formation of the BrO radical, Chem. Phys. Lett., 266, 233–238, doi:10.1016/S0009-2614(97)01530-3, 1997.
- Bedjanian, Y., Laverdet, G., and Le Bras, G.: Low-pressure study of the reaction of Cl atoms with iso-prene, J. Phys. Chem. A, 102, 953–959, doi:10.1021/JP973336C, 1998.
- Behnke, W., Scheer, V., and Zetzsch, C.: Production of BrNO₂, Br₂ and ClNO₂ from the reaction between sea spray aerosol and N₂O₅, J. Aerosol Sci., 25, S277–S278, doi:10.1016/0021-8502(94)90369-7, 1994.
- Behnke, W., George, C., Scheer, V., and Zetzsch, C.: Production and decay of $ClNO_2$ from the reaction of gaseous N_2O_5 with NaCl solution: Bulk and aerosol experiments, J. Geophys. Res., 102D, 3795–3804, doi: 10.1029/96JD03057, 1997.
- Bell, R. P. and Evans, P. G.: Kinetics of the dehydration of methylene glycol in aqueous solution, Proc. R. Soc. Lond. A, 291, 297–323, doi:10.1098/rspa.1966. 0097, 1966.
- Betterton, E. A. and Hoffmann, M. R.: Oxidation of aqueous SO₂ by peroxymonosulfate, J. Phys. Chem., 92, 5962–5965, doi:10.1021/J100332A025, 1988.
- Beyersdorf, A. J., Blake, D. R., Swanson, A., Meinardi, S., Rowland, F. S., and Davis, D.: Abundances and variability of tropospheric volatile organic compounds at the South Pole and other Antarctic loca-

- tions, Atmos. Environ., 44, 4565–4574, doi:10.1016/j.atmosenv.2010.08.025, 2010.
- Bichsel, Y. and von Gunten, U.: Oxidation of iodide and hypoiodous acid in the disinfection of natural waters, Environ. Sci. Technol., 33, 4040–4045, doi: 10.1021/ES990336C, 1999.
- Birdsall, A. W., Andreoni, J. F., and Elrod, M. J.: Investigation of the role of bicyclic peroxy radicals in the oxidation mechanism of toluene, J. Phys. Chem. A, 114, 10655–10663, doi:10.1021/jp105467e, 2010.
- Bjergbakke, E., Navartnam, S., Parsons, B. J., and Swallow, A. J.: Reaction between HO₂· and chlorine in aqueous solution, J. Am. Chem. Soc., 103, 5926– 5928, doi:10.1021/JA00409A059, 1981.
- Bossolasco, A., Faragó, E. P., Schoemaecker, C., and Fittschen, C.: Rate constant of the reaction between CH₃O₂ and OH radicals, Chem. Phys. Lett., 593, 7–13, doi:10.1016/j.cplett.2013.12.052, 2014.
- Boyce, S. D. and Hoffmann, M. R.: Kinetics and mechanism of the formation of hydroxymethanesulfonic acid at low pH, J. Phys. Chem., 88, 4740–4746, doi: 10.1021/j150664a059, 1984.
- Brand, C. and van Eldik, R.: Transition metalcatalyzed oxidation of sulfur(IV)oxides. Atmospheric relevant processes and mechanisms, Chem. Rev., 95, 119–190, doi:10.1021/cr00033a006, 1995.
- Buras, Z. J., Elsamra, R. M. I., and Green, W. H.: Direct determination of the simplest Criegee intermediate (CH₂OO) self reaction rate, J. Phys. Chem. Lett., 5, 2224–2228, doi:10.1021/jz5008406, 2014.
- Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin,

- V. L., Wilmouth, D. M., and Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 18, JPL Publication 15-10, Jet Propulsion Laboratory, Pasadena, http://jpldataeval.jpl.nasa.gov, 2015.
- Butkovskaya, N., Kukui, A., and Le Bras, G.: Pressure and temperature dependence of ethyl nitrate formation in the $C_2H_5O_2$ + NO reaction, J. Phys. Chem. A, 114, 956–964, doi:10.1021/jp910003a, 2010.
- Butkovskaya, N., Kukui, A., and Le Bras, G.: Pressure and temperature dependence of methyl nitrate formation in the $\rm CH_3O_2 + NO$ reaction, J. Phys. Chem. A, 116, 5972–5980, doi:10.1021/jp210710d, 2012.
- Buxton, G. V., Kilner, C., and Sellers, R. M.: Pulse radiolysis of HOI and IO⁻ in aqueous solution. Formation and characterization of I(II), Proc. Tihany Symp. Radiat. Chem., 6, 155–159, 1986.
- Buxton, G. V., Greenstock, C. L., Helman, W. P., and Ross, A. B.: Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O⁻) in aqueous solution, J. Phys. Chem. Ref. Data, 17, 513–886, doi: 10.1063/1.555805, 1988.
- Buxton, G. V., Salmon, G. A., and Wood, N. D.: A pulse radiolysis study of the chemistry of oxysulphur radicals in aqueous solution, in: Physico-Chemical Behaviour of Atmospheric Pollutants, pp. 245–250, Springer, 1990.
- Buxton, G. V., McGowan, S., Salmon, G. A., Williams, J. E., and Wood, N. D.: A study of the spectra and reactivity of oxysulphur-radical anions involved in the chain oxidation of S(IV): A pulse and γ -radiolysis study, Atmos. Environ., 30, 2483–2493, doi: 10.1016/1352-2310(95)00473-4, 1996.

- Buxton, G. V., Malone, T. N., and Salmon, G. A.: Oxidation of glyoxal initiated by OH in oxygenated aqueous solution, J. Chem. Soc. Faraday Trans., 93, 2889–2891, doi:10.1039/A701468F, 1997.
- Buxton, G. V., Bydder, M., and Salmon, G. A.: The reactivity of chlorine atoms in aqueous solution: Part II. The equilibrium $SO_4^- + Cl^- \rightleftharpoons Cl^- + SO_4^{2-}$, Phys. Chem. Chem. Phys., 1, 269–273, doi:10.1039/A807808D, 1999a.
- Buxton, G. V., Salmon, G. A., and Wang, J. Q.: The equilibrium $NO_3 + Cl^- \rightleftharpoons NO_3^- + Cl^-$: A laser flash photolysis and pulse radiolysis study of the reactivity of NO_3 with chloride ion in aqueous solution, Phys. Chem. Chem. Phys., 1, 3589–3593, doi: 10.1039/A903286J, 1999b.
- Calvert, J. G. and Lindberg, S. E.: A modeling study of the mechanism of the halogen-ozone-mercury homogeneous reactions in the troposphere during the polar spring, Atmos. Environ., 37, 4467–4481, doi: 10.1016/J.ATMOSENV.2003.07.001, 2003.
- Canosa-Mas, C. E., King, M. D., Lopez, R., Percival, C. J., Wayne, R. P., Shallcross, D. E., Pyle, J. A., and Daele, V.: Is the reaction between CH₃(O)O₂ and NO₃ important in the night-time troposphere?, J. Chem. Soc. Faraday Trans., 92, 2211–2222, doi: 10.1039/FT9969202211, 1996.
- Capouet, M., Müller, J.-F., Ceulemans, K., Compernolle, S., Vereecken, L., and Peeters, J.: Modeling aerosol formation in alpha-pinene photo-oxidation experiments, J. Geophys. Res., 113D, doi:10.1029/2007JD008995, 2008.
- Carl, S. A. and Crowley, J. N.: 298 K rate coefficients for the reaction of OH with $i-C_3H_7I$, $n-C_3H_7I$

- and C_3H_8 , Atmos. Chem. Phys., 1, 1–7, doi:10.5194/acp-1-1-2001, 2001.
- Chai, J., Hu, H., Dibble, T. S., Tyndall, G. S., and Orlando, J. J.: Rate constants and kinetic isotope effects for methoxy radical reacting with NO₂ and O₂, J. Phys. Chem. A, 118, 3552–3563, doi:10.1021/jp501205d, 2014.
- Chameides, W. L.: The photochemistry of a remote marine stratiform cloud, J. Geophys. Res., 89D, 4739–4755, doi:10.1029/JD089ID03P04739, 1984.
- Chao, W., Hsieh, J.-T., Chang, C.-H., and Lin, J. J.-M.: Direct kinetic measurement of the reaction of the simplest Criegee intermediate with water vapor, Science, 347, 751–754, doi:10.1126/science.1261549, 2015.
- Chen, J., Wenger, J. C., and Venables, D. S.: Near-ultraviolet absorption cross sections of nitrophenols and their potential influence on tropospheric oxidation capacity, J. Phys. Chem. A, 115, 12235–12242, doi:10.1021/jp206929r, 2011.
- Chin, M. and Wine, P. H.: A temperature-dependent competitive kinetics study of the aqueous-phase reactions of OH radicals with formate, formic acid, acetate, acetic acid, and hydrated formaldehyde, in: Aquatic and Surface Photochemistry, edited by Helz, G. R., Zepp, R. G., and Crosby, D. G., pp. 85–96, A. F. Lewis, NY, 1994.
- Chinake, C. R. and Simoyi, R. H.: Kinetics and mechanism of the complex bromate-iodine reaction, J. Phys. Chem., 100, 1643–1656, doi:10.1021/ JP951956C, 1996.
- Christensen, H. and Sehested, K.: Pulse radiolysis at high temperatures and high pressures,

- Radiat. Phys. Chem., 18, 723–231, doi:10.1016/ 0146-5724(81)90195-3, 1981.
- Christensen, H. and Sehested, K.: HO_2 and O_2^- radicals at elevated temperatures, J. Phys. Chem., 92, 3007-3011, doi:10.1021/J100321A060, 1988.
- Christensen, H., Sehested, K., and Corfitzen, H.: Reactions of hydroxyl radicals with hydrogen peroxide at ambient and elevated temperatures, J. Phys. Chem., 86, 1588–1590, doi:10.1021/J100206A023, 1982.
- Citri, O. and Epstein, I. R.: Mechanistic study of a coupled chemical oscillator: the bromate-chloriteiodide reaction, J. Phys. Chem., 92, 1865–1871, doi: 10.1021/J100318A034, 1988.
- Clifton, C. L. and Huie, R. E.: Rate constants for hydrogen abstraction reactions of the sulfate radical, SO₄⁻. Alcohols, Int. J. Chem. Kinet., 21, 677–687, doi:10.1002/kin.550210807, 1989.
- Clifton, C. L. and Huie, R. E.: Rate constants for some hydrogen abstraction reactions of the carbonate radical, Int. J. Chem. Kinet., 25, 199–203, doi: 10.1002/kin.550250308, 1993.
- Clubb, A. E., Jordan, M. J. T., Kable, S. H., and Osborn, D. L.: Phototautomerization of acetaldehyde to vinyl alcohol: a primary process in UV-irradiated acetaldehyde from 295 to 335 nm, J. Phys. Chem. Lett., 3, 3522–3526, doi:10.1021/jz301701x, 2012.
- Clyne, M. A. A. and Cruse, H. W.: Atomic resonance fluorescence spectrometry for the rate constants of rapid bimolecular reactions. Part 2. Reactions Cl + BrCl, Cl + Br₂, Cl + ICl, Br + IBr, Br + ICl, J. Chem. Soc. Faraday Trans. 2, 68, 1377–1387, doi: 10.1039/F29726801377, 1972.

- Conn, J. B., Kistiakowsky, G. B., Roberts, R. M., and Smith, E. A.: Heats of organic reactions. XIII. Heats of hydrolysis of some acid anhydrides, Journal of the American Chemical Society, 64, 1747–1752, doi: 10.1021/ja01260a001, 1942.
- da Silva, G.: Carboxylic acid catalyzed keto-enol tautomerizations in the gas phase, Angew. Chem., 122, 7685–7687, doi:10.1002/ange.201003530, 2010.
- Damschen, D. E. and Martin, L. R.: Aqueous aerosol oxidation of nitrous acid by O_2 , O_3 and H_2O_2 , Atmos. Environ., 17, 2005–2011, doi:10.1016/0004-6981(83) 90357-8, 1983.
- Davis, D., Chen, G., Kasibhatla, P., Jefferson, A., Tanner, D., Eisele, F., Lenschow, D., Neff, W., and Berresheim, H.: DMS oxidation in the Antarctic marine boundary layer: Comparison of model simulations and field observations of DMS, DMSO, DMSO₂, H₂SO₄(g), MSA(g), and MSA(p), J. Geophys. Res., 103D, 1657–1678, doi:10.1029/97JD03452, 1998.
- Davis, Jr., W. and de Bruin, H. J.: New activity coefficients of 0-100 per cent aqueous nitric acid, J. Inorg. Nucl. Chem., 26, 1069–1083, doi:10.1016/0022-1902(64)80268-2, 1964.
- De Filippis, P., Scarsella, M., and Verdone, N.: Peroxyformic acid formation: a kinetic study, Ind. Eng. Chem. Res., 48, 1372–1375, doi:10.1021/ie801163j, 2009.
- de Laat, J. and Le, T. G.: Effects of chloride ions on the iron(III)-catalyzed decomposition of hydrogen peroxide and on the efficiency of the Fenton-like oxidation process, Appl. Catal. B: Environ., 66, 137–146, doi: 10.1016/j.apcatb.2006.03.008, 2006.

- Deister, U. and Warneck, P.: Photooxidation of SO₃²⁻ in aqueous solution, J. Phys. Chem., 94, 2191–2198, doi:10.1021/J100368A084, 1990.
- Dickson, A. G. and Millero, F. J.: A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media, Deep-Sea Res. A, 34, 1733– 1743, 1987.
- Dillon, T. J., Karunanandan, R., and Crowley, J. N.: The reaction of IO with CH₃SCH₃: Products and temperature dependent rate coefficients by laser induced fluorescence, Phys. Chem. Chem. Phys., 8, 847–855, doi:10.1039/B514718B, 2006a.
- Dillon, T. J., Tucceri, M. E., and Crowley, J. N.: Laser induced fluorescence studies of iodine oxide chemistry. Part II. The reactions of IO with CH₃O₂, CF₃O₂ and O₃, Phys. Chem. Chem. Phys., 8, 5185–5198, doi:10.1039/B611116E, 2006b.
- Dillon, T. J., Tucceri, M. E., Sander, R., and Crowley, J. N.: LIF studies of iodine oxide chemistry, part 3. Reactions IO + NO₃ → OIO + NO₂, I + NO₃ → IO + NO₂, and CH₂I + O₂ → (products): Implications for the chemistry of the marine atmosphere at night., Phys. Chem. Chem. Phys., 10, 1540–1554, doi:10.1039/B717386E, 2008.
- Dolson, D. A. and Leone, S. R.: A reinvestigation of the laser-initiated chlorine/hydrogen bromide chain reaction: absolute rate constants and the v=2/v=1 ratio from chlorine atom + hydrogen bromide \rightarrow hydrogen chloride(v) + bromine atom, J. Phys. Chem., 91, 3543–3550, doi:10.1021/J100297A016, 1987.
- Donohoue, D. L., Bauer, D., Cossairt, B., and Hynes, A. J.: Temperature and pressure dependent rate coefficients for the reaction of Hg with Br and the reaction of Br with Br: a pulsed laser photolysis-pulsed

- laser induced fluorescence study, J. Phys. Chem. A, 110, 6623–6632, doi:10.1021/JP054688J, 2006.
- Doussin, J.-F. and Monod, A.: Structure-activity relationship for the estimation of OH-oxidation rate constants of carbonyl compounds in the aqueous phase, Atmos. Chem. Phys., 13, 11625–11641, doi: 10.5194/acp-13-11625-2013, 2013.
- Duff, J. W., Dothe, H., and Sharma, R. D.: On the rate coefficient of the $N(^2D)+O_2 \rightarrow NO+O$ reaction in the terrestrial thermosphere, Geophys. Res. Lett., 30, 1259–1263, 2003.
- Dulitz, K., Amedro, D., Dillon, T. J., Pozzer, A., and Crowley, J. N.: Temperature (208–318 K) and pressure (18–696 Torr) dependent rate coefficients for the reaction between OH and HNO₃, Atmos. Chem. Phys., 18, 2381–2394, doi:10.5194/acp-18-2381-2018, 2018.
- Edblom, E. C., Györgyi, L., Orbán, M., and Epstein, I. R.: A mechanism for dynamical behavior in the Landolt reaction with ferrocyanide, J. Am. Chem. Soc., 109, 4876–4880, doi:10.1021/JA00250A020, 1987.
- Eigen, M. and Kustin, K.: The kinetics of halogen hydrolysis, J. Am. Chem. Soc., 84, 1355–1361, doi: 10.1021/JA00867A005, 1962.
- Elliot, A. J. and McCracken, D. R.: Effect of temperature on OH reactions and equilibria: a pulse radiolysis study, Int. J. Radiat. Appl. Instrum. C, 33, 69–74, doi:10.1016/1359-0197(89)90096-9, 1989.
- Enami, S., Hoshino, Y., and Kawasaki, M.: A kinetic study of the gas-phase reactions of OIO with NO, NO₂, and Cl₂, Int. J. Chem. Kinet., 39, 688–693, doi:10.1002/KIN.20283, 2007.

- Ervens, B. and Volkamer, R.: Glyoxal processing by aerosol multiphase chemistry: towards a kinetic modeling framework of secondary organic aerosol formation in aqueous particles, Atmos. Chem. Phys., 10, 8219–8244, doi:10.5194/acp-10-8219-2010, 2010.
- Ervens, B., Gligorovski, S., and Herrmann, H.: Temperature-dependent rate constants for hydroxyl radical reactions with organic compounds in aqueous solutions, Phys. Chem. Chem. Phys., 5, 1811–1824, doi:10.1039/B300072A, 2003.
- Espinosa-Garcia, J. and Garcia-Bernáldez, J. C.: Analytical potential energy surface for the $CH_4 + O(^3P) \rightarrow CH_3 + OH$ reaction. Thermal rate constants and kinetic isotope effects, Phys. Chem. Chem. Phys., 2, 2345–2351, doi:10.1039/b001038n, 2000.
- Exner, M., Herrmann, H., and Zellner, R.: Laser-based studies of reactions of the nitrate radical in aqueous solution, Ber. Bunsenges. Phys. Chem., 96, 470–477, doi:10.1002/BBPC.19920960347, 1992.
- Exner, M., Herrmann, H., Michel, J. W., and Zellner, R.: Laser pulse initiated measurements of NO₃ reactions with S(IV) and organic compounds in aqueous solutions, in: Proceedings of EUROTRAC Symposium '92, edited by Borrell, P. M., Borrell, P., Cvitaš, T., and Seiler, W., pp. 615–618, SPB Academic Publishing by, The Hague, 1993.
- Exner, M., Herrmann, H., and Zellner, R.: Rate constants for the reactions of the NO₃ radical with HCOOH/HCOO⁻ and CH₃COOH/CH₃COO⁻ in aqueous solution between 278 and 328 K, J. Atmos. Chem., 18, 359–378, doi:10.1007/BF00712451, 1994.
- Faria, R. B., Lengyel, I., Epstein, I. R., and Kustin, K.: Combined mechanism explaining nonlinear dynamics in bromine(III) and bromine(V) oxidations

- of iodide ion, J. Phys. Chem., 97, 1164–1171, doi: 10.1021/J100108A011, 1993.
- Feierabend, K. J., Zhu, L., Talukdar, R. K., and Burkholder, J. B.: Rate coefficients for the OH + HC(O)C(O)H (glyoxal) raction between 210 and 390 K, J. Phys. Chem. A, 112, 73–82, doi:10.1021/ JP0768571, 2008.
- Felder, P. and Demuth, C.: Photodissociation of CFCl₃ at 193 nm investigated by photofragment translational spectroscopy, Chem. Phys. Lett., 208, 21–26, doi:10.1016/0009-2614(93)80070-6, 1993.
- Fell, C., Steinfeld, J. I., and Miller, S.: Quenching of N(²D) by O(³P), J. Chem. Phys., 92, 4768–4777, doi: 10.1063/1.457694, 1990.
- Finkbeiner, M., Crowley, J. N., Horie, O., Müller, R., Moortgat, G. K., and Crutzen, P. J.: Reaction between HO₂ and ClO: Product formation between 210 and 300 K, J. Phys. Chem., 99, 16264–16275, doi: 10.1021/J100044A011, 1995.
- Fisher, J. R. and Barnes, H. L.: The ion-product constant of water to 350°, J. Phys. Chem., 76, 90–99, doi:10.1021/J100645A016, 1972.
- Fisher, M. M. and Hamill, W. H.: Electronic processes in pulse-irradiated aqueous and alcoholic systems, J. Phys. Chem., 77, 171–177, doi:10.1021/j100621a006, 1973.
- Flocke, F., Atlas, E., Madronich, S., Schauffler, S. M., Aikin, K., Margitan, J. J., and Bui, T. P.: Observations of methyl nitrate in the lower stratosphere during STRAT: implications for its gas phase production mechanisms, Geophys. Res. Lett., 25, 1891–1894, doi: 10.1029/98GL01417, 1998.

- Fogelman, K. D., Walker, D. M., and Margerum, D. W.: Non-metal redox kinetics: Hypochlorite and hypochlorous acid reactions with sulfite, Inorg. Chem., 28, 986–993, doi:10.1021/IC00305A002, 1989.
- Fortnum, D. H., Battaglia, C. J., Cohen, S. R., and Edwards, J. O.: The kinetics of the oxidation of halide ions by monosubstituted peroxides, J. Am. Chem. Soc., 82, 778–782, doi:10.1021/JA01489A004, 1960.
- Francisco-Marquez, M., Alvarez-Idaboy, J. R., Galano, A., and Vivier-Bunge, A.: Theoretical study of the initial reaction between OH and isoprene in tropospheric conditions, Phys. Chem. Chem. Phys., 5, 1392–1399, doi:10.1039/B211185C, 2003.
- Fuller-Rowell, T. J.: Modeling the solar cycle change in nitric oxide in the thermosphere and upper mesosphere, J. Geophys. Res., 98A, 1559–1570, doi:10. 1029/92JA02201, 1993.
- Furrow, S.: Reactions of iodine intermediates in iodate-hydrogen peroxide oscillators, J. Phys. Chem., 91, 2129–2135, doi:10.1021/J100292A031, 1987.
- Gaillard de Sémainville, P., Hoffmann, D., George, C., and Herrmann, H.: Study of nitrate radical (NO₃) reactions with carbonyls and acids in aqueous solution as a function of temperature, Phys. Chem. Chem. Phys., 9, 958–968, doi:10.1039/B613956F, 2007.
- Gans, B., Boyé-Peronne, S., Broquier, M., Delsaut, M., Douin, S., Fellows, C. E., Halvick, P., Loison, J.-C., Lucchese, R. R., and Gauyacq, D.: Photolysis of methane revisited at 121.6 nm and at 118.2 nm: quantum yields of the primary products, measured by mass spectrometry, Phys. Chem. Chem. Phys., 13, 8140–8152, doi:10.1039/c0cp02627a, 2011.
- Ganzeveld, L., Klemm, O., Rappenglück, B., and Valverde-Canossa, J.: Evaluation of meteorological

- parameters over a coniferous forest in a single-column chemistry-climate model, Atmos. Environ., 40, S21-S27, doi:10.1016/J.ATMOSENV.2006.01.061, 2006.
- Garton, D. J., Minton, T. K., Troya, D., Pascual, R., and Schatz, G. C.: Hyperthermal reactions of O(³P) with alkanes: Observations of novel reaction pathways in crossed-beams and theoretical studies, J. Phys. Chem. A, 107, 4583–4587, doi:10.1021/jp0226026, 2003.
- George, C., El Rassy, H., and Chovelon, J.-M.: Reactivity of selected volatile organic compounds (VOCs) toward the sulfate radical (SO₄⁻), Int. J. Chem. Kinet., 33, 539–547, doi:10.1002/kin.1049, 2001.
- Gilbert, B. C. and Stell, J. K.: Mechanisms of peroxide decomposition. An ESR study of the reactions of the peroxomonosulphate anion (HOOSO3⁻) with TiIII, FeII, and α -oxygen-substituted radicals, J. Chem. Soc. Perkin Trans. 2, pp. 1281–1288, doi: 10.1039/P29900001281, 1990.
- Gill, K. J. and Hites, R. A.: Rate constants for the gas-phase reactions of the hydroxyl radical with isoprene, α and β -pinene, and limonene as a function of temperature, J. Phys. Chem. A, 106, 2538–2544, doi:10.1021/jp013532q, 2002.
- Gligorovski, S., Rousse, D., George, C. H., and Herrmann, H.: Rate constants for the OH reactions with oxygenated organic compounds in aqueous solution, Int. J. Chem. Kinet., 41, 309–326, doi:10.1002/kin. 20405, 2009.
- Glowacki, D. R., Lockhart, J., Blitz, M. A., Klippenstein, S. J., Pilling, M. J., Robertson, S. H., and Seakins, P. W.: Interception of excited vibrational quantum states by O₂ in atmospheric association reactions, Science, 337, 1066–1069, doi:10.1126/science. 1224106, 2012.

- Goodsite, M., Plane, J. M. C., and Skov, H.: A theoretical study of the oxidation of Hg⁰ to HgBr₂ in the troposphere, Environ. Sci. Technol., 38, 1772–1776, doi:10.1021/ES034680S, 2004.
- Grenfell, J. L., Lehmann, R., Mieth, P., Langematz, U., and Steil, B.: Chemical reaction pathways affecting stratospheric and mesospheric ozone, J. Geophys. Res., 111D, doi:10.1029/2004JD005713, 2006.
- Grgić, I., Podkrajšek, B., Barzaghi, P., and Herrmann, H.: Scavenging of SO₄⁻ radical anions by mono-and dicarboxylic acids in the Mn(II)-catalyzed S(IV) oxidation in aqueous solution, Atmos. Environ., 41, 9187–9194, doi:10.1016/j.atmosenv.2007.07.051, 2007.
- Groß, C. B. M., Dillon, T. J., Schuster, G., Lelieveld, J., and Crowley, J. N.: Direct kinetic study of OH and O₃ formation in the reaction of CH₃C(O)O₂ with HO₂, J. Phys. Chem. A, 1, 974–985, doi:10.1021/ jp412380z, 2014.
- Gruzdev, A. N., Elokhov, A. S., Makarov, O. V., and Mokhov, I. I.: Some recent results of Russian measurements of surface ozone in Antarctica. A meteorological interpretation, Tellus, 45B, 99–105, doi: 10.3402/TELLUSB.V45I2.15584, 1993.
- Haag, W. R. and Hoigné, J.: Ozonation of bromidecontaining waters: Kinetics of formation of hypobromous acid and bromate, Environ. Sci. Technol., 17, 261–267, doi:10.1021/ES00111A004, 1983.
- Hahnenstein, I., Albert, M., Hasse, H., Kreiter, C. G., and Maurer, G.: NMR spectroscopic and densimetric study of reaction kinetics of formaldehyde polymer formation in water, deuterium oxide, and methanol, Ind. Eng. Chem. Res., 34, 440–450, doi: 10.1021/ie00041a003, 1995.

- Hall, B.: The gas phase oxidation of elemental mercury by ozone, Water Air Soil Pollut., 80, 301–315, doi:10.1007/BF01189680, 1995.
- Hatakeyama, S., Honda, S., and Akimoto, H.: Rate constants and mechanism for reactions of ketenes with OH radicals in air at 299 ± 2 K, Bull. Chem. Soc. Jpn., $58,\,2157-2162,\,$ doi: $10.1246/BCSJ.58.2157,\,$ 1985.
- Hermans, I., Müller, J.-F., Nguyen, T. L., Jacobs, P. A., and Peeters, J.: Kinetics of α-hydroxy-alkylperoxyl radicals in oxidation processes. HO₂--initiated oxidation of ketones/aldehydes near the tropopause, J. Phys. Chem. A, 109, 4303–4311, doi:10.1021/ jp044080v, 2005.
- Herrmann, H. and Zellner, R.: Reactions of NO₃-radicals in aqueous solution, in: The Chemistry of Free Radicals: N-Centered Radicals, edited by Alfassi, Z. B., pp. 291–343, John Wiley, New York, NY, 1998.
- Herrmann, H., Exner, M., and Zellner, R.: Reactivity trends in reactions of the nitrate radical (NO_3) with inorganic and organic cloudwater constituents, Geochim. Cosmochim. Acta, 58, 3239–3244, doi:10. 1016/0016-7037(94)90051-5, 1994.
- Herrmann, H., Reese, A., and Zellner, R.: Time resolved UV/VIS diode array absorption spectroscopy of SO_x^- (x=3, 4, 5) radical anions in aqueous solution, J. Mol. Struct., 348, 183–186, doi:10.1016/0022-2860(95)08619-7, 1995.
- Herrmann, H., Ervens, B., Nowacki, P., Wolke, R., and Zellner, R.: A chemical aqueous phase radical mechanism for tropospheric chemistry, Chemosphere, 38, 1223–1232, doi:10.1016/S0045-6535(98)00520-7, 1999a.

- Herrmann, H., Reese, A., Ervens, B., Wicktor, F., and Zellner, R.: Laboratory and modelling studies of tropospheric multiphase conversions involving some C₁ and C₂ peroxyl radicals, Phys. Chem. Earth B, 24, 287–290, doi:10.1016/S1464-1909(98)00052-5, 1999b.
- Herrmann, H., Ervens, B., Jacobi, H.-W., Wolke, R., Nowacki, P., and Zellner, R.: CAPRAM2.3: A chemical aqueous phase radical mechanism for tropospheric chemistry, J. Atmos. Chem., 36, 231–284, doi:10.1023/A:1006318622743, 2000.
- Hislop, K. A. and Bolton, J. R.: The photochemical generation of hydroxyl radicals in the UV-vis/ferrioxalate/H₂O₂ system, Environ. Sci. Technol., 33, 3119–3126, doi:10.1021/es9810134, 1999.
- Hoffmann, D., Weigert, B., Barzaghi, P., and Herrmann, H.: Reactivity of poly-alcohols towards OH, NO_3 and SO_4^- in aqueous solution, Phys. Chem. Chem. Phys., 11, 9351–9363, doi:10.1039/B908459B, 2009.
- Hoffmann, M. R.: On the kinetics and mechanism of oxidation of aquated sulfur dioxide by ozone, Atmos. Environ., 20, 1145–1154, doi:10.1016/0004-6981(86) 90147-2, 1986.
- Hoigné, J. and Bader, H.: Rate constants of reactions of ozone with organic and inorganic compounds in water-I: Non-dissociating organic compounds, Wat. Res., 17, 173–183, doi:10.1016/0043-1354(83) 90098-2, 1983.
- Hoigné, J., Bader, H., Haag, W. R., and Staehelin, J.: Rate constants of reactions of ozone with organic and inorganic compounds in water – III Inorganic compounds and radicals, Wat. Res., 19, 993–1004, doi: 10.1016/0043-1354(85)90368-9, 1985.

- Huie, R. E. and Clifton, C. L.: Temperature dependence of the rate constants for reactions of the sulfate radical, SO₄⁻, with anions, J. Phys. Chem., 94, 8561–8567, doi:10.1021/j100386a015, 1990.
- Huie, R. E. and Clifton, C. L.: Kinetics of the self-reaction of hydroxymethylperoxyl radicals, Chem. Phys. Lett., 205, 163–167, doi:10.1016/0009-2614(93) 89222-4, 1993.
- Huie, R. E. and Neta, P.: Rate constants for some oxidations of S(IV) by radicals in aqueous solutions, Atmos. Environ., 21, 1743–1747, doi:10.1016/ 0004-6981(87)90113-2, 1987.
- Hynes, A. J. and Wine, P. H.: The atmospheric chemistry of dimethylsulfoxide (DMSO) kinetics and mechanism of the OH + DMSO reaction, J. Atmos. Chem., 24, 23–37, doi:10.1007/BF00053821, 1996.
- Ingham, T., Bauer, D., Sander, R., Crutzen, P. J., and Crowley, J. N.: Kinetics and products of the reactions BrO + DMS and Br + DMS at 298 K, J. Phys. Chem. A, 103, 7199–7209, doi:10.1021/JP9905979, 1999.
- Jacob, D. J.: Chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulfate, J. Geophys. Res., 91D, 9807–9826, doi: 10.1029/JD091ID09P09807, 1986.
- Jacobi, H.-W.: Kinetische Untersuchungen und Modellrechnungen zur troposphärischen Chemie von Radikalanionen und Ozon in wäßriger Phase, Ph.D. thesis, Universität GH Essen, Germany, 1996.
- Jacobi, H.-W., Herrmann, H., and Zellner, R.: Kinetic investigation of the Cl₂ radical in the aqueous phase, in: Air Pollution Research Report 57: Homogeneous and heterogeneous chemical Processes in the Troposphere, edited by Mirabel, P., pp. 172–176, Office for

- official Publications of the European Communities, Luxembourg, 1996.
- Jacobsen, F., Holcman, J., and Sehested, K.: Activation parameters of ferryl ion reactions in aqueous acid solutions, Int. J. Chem. Kinet., 29, 17–24, doi:10.1002/(SICI)1097-4601(1997)29:1\(\lambda\)17:: AID-KIN3\(\rangle\)3.0.CO;2-O, 1997.
- Jacobsen, F., Holcman, J., and Sehested, K.: Reactions of the ferryl ion with some compounds found in cloud water, Int. J. Chem. Kinet., 30, 215–221, doi:10.1002/(SICI)1097-4601(1998)30: $3\langle 215::AID-KIN7\rangle 3.0.CO; 2-V, 1998.$
- Jagiella, S. and Zabel, F.: Reaction of phenylperoxy radicals with NO₂ at 298 K, Phys. Chem. Chem. Phys., 9, 5036–5051, doi:10.1039/B705193J, 2007.
- Jayson, G. G., Parsons, B. J., and Swallow, A. J.: Some simple, highly reactive, inorganic chlorine derivatives in aqueous solution, J. Chem. Soc. Faraday Trans. 1, 69, 1597–1607, doi:10.1039/F19736901597, 1973.
- Jefferson, A., Nicovich, J. M., and Wine, P. H.: Temperature-dependent kinetics studies of the reactions $Br(^2P_{3/2}) + CH_3SCH_3 \leftrightarrow CH_3SCH_2 + HBr$. Heat of formation of the CH_3SCH_2 radical, J. Phys. Chem., 98, 7128–7135, doi:10.1021/J100080A006, 1994.
- Jenkin, M., Saunders, S. M., and Pilling, M. J.: The tropospheric degradation of volatile organic compounds: A protocol for mechanism development, Atmos. Environ., 31, 81–104, doi:10.1016/ S1352-2310(96)00105-7, 1997.
- Jenkin, M. E., Young, J. C., and Rickard, A. R.: The MCM v3.3.1 degradation scheme for isoprene, Atmos. Chem. Phys., 15, 11433-11459, doi:10.5194/ acp-15-11433-2015, 2015.

- Jiang, P.-Y., Katsumura, Y., Nagaishi, R., Domae, M., Ishikawa, K., Ishigure, K., and Yoshida, Y.: Pulse radiolysis study of concentrated sulfuric acid solutions. Formation mechanism, yield and reactivity of sulfate radicals, J. Chem. Soc. Faraday Trans., 88, 1653– 1658, doi:10.1039/FT9928801653, 1992.
- Kaltsoyannis, N. and Plane, J. M. C.: Quantum chemical calculations on a selection of iodine-containing species (IO, OIO, INO₃, (IO)₂, I₂O₃, I₂O₄ and I₂O₅) of importance in the atmosphere, Phys. Chem. Chem. Phys., 10, 1723–1733, doi:10.1039/B715687C, 2008.
- Keller-Rudek, H., Koschel, D., Merlet, P., Ohms-Bredemann, U., Wagner, J., and Wietelmann, A.:
 Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th Edition, Br, Bromine, Supplement Volume B2, Compounds with Oxygen and Nitrogen, Springer Verlag, Berlin, 1992.
- Kelley, C. M. and Tartar, H. V.: On the system: bromine-water, J. Am. Chem. Soc., 78, 5752–5756, doi:10.1021/JA01603A010, 1956.
- Kirchner, F., Mayer-Figge, A., Zabel, F., and Becker, K. H.: Thermal stability of peroxynitrates, Int. J. Chem. Kinet., 31, 127–144, doi:10.1002/(SICI)1097-4601(1999)31:2 \langle 127:: AID-KIN6 \rangle 3.0.CO;2-L, 1999.
- Kleinböhl, A., Toon, G. C., Sen, B., Blavier, J.-F. L., Weisenstein, D. K., Strekowski, R. S., Nicovich, J. M., Wine, P. H., and Wennberg, P. O.: On the stratospheric chemistry of hydrogen cyanide, Geophys. Res. Lett., 33, doi:10.1029/2006GL026015, 2006.
- Kohlmann, J.-P. and Poppe, D.: The tropospheric gasphase degradation of NH₃ and its impact on the formation of N₂O and NO_x, J. Atmos. Chem., 32, 397–415, doi:10.1023/A:1006162910279, 1999.

- Kondo, O. and Benson, S. W.: Kinetics and equilibria in the system $Br + CH_3OOH \rightleftharpoons HBr + CH_3OO$. An upper limit for the heat of formation of the methylperoxy radical, J. Phys. Chem., 88, 6675–6680, doi: 10.1021/J150670A034, 1984.
- Kumar, K. and Margerum, D. W.: Kinetics and mechanism of general-acid-assisted oxidation of bromide by hypochlorite and hypochlorous acid, Inorg. Chem., 26, 2706–2711, doi:10.1021/IC00263A030, 1987.
- Lax, E.: Taschenbuch für Chemiker und Physiker, Springer Verlag, Berlin, 1969.
- Lee, Y.-N. and Schwartz, S. E.: Reaction kinetics of nitrogen dioxide with liquid water at low partial pressure, J. Phys. Chem., 85, 840–848, doi: 10.1021/J150607A022, 1981.
- Lengyel, I., Li, J., Kustin, K., and Epstein, I. R.: Rate constants for reactions between iodine- and chlorinecontaining species: A detailed mechanism of the chlorine dioxine/chlorite reaction, J. Am. Chem. Soc., 118, 3708–3719, doi:10.1021/JA953938E, 1996.
- Lewis, T. R., Blitz, M. A., Heard, D. E., and Seakins, P. W.: Direct evidence for a substantive reaction between the Criegee intermediate, CH₂OO, and the water vapour dimer, Phys. Chem. Chem. Phys., 17, 4859–4863, doi:10.1039/C4CP04750H, 2015.
- Liljegren, J. A. and Stevens, P. S.: Measurements of the kinetics of the reaction of OH radicals with 3methylfuran at low pressure, Int. J. Chem. Kinet., 45, 787–794, doi:10.1002/KIN.20814, 2013.
- Lin, C.-J. and Pehkonen, S. O.: Aqueous free radical chemistry of mercury in the presence of iron oxides and ambient aerosol, Atmos. Environ., 31, 4125–4137, doi:10.1016/S1352-2310(97)00269-0, 1997.

- Lin, C.-J. and Pehkonen, S. O.: Oxidation of elemental mercury by aqueous chlorine (HOCl/OCl⁻): Implications for tropospheric mercury chemistry, J. Geophys. Res., 103D, 28093–28102, doi:10.1029/98JD02304, 1998.
- Lind, J. A., Lazrus, A. L., and Kok, G. L.: Aqueous phase oxidation of sulfur(IV) by hydrogen peroxide, methylhydroperoxide, and peroxyacetic acid, J. Geophys. Res., 92D, 4171–4177, doi:10.1029/ JD092ID04P04171, 1987.
- Liu, Q. and Margerum, D. W.: Equilibrium and kinetics of bromine chloride hydrolysis, Environ. Sci. Technol., 35, 1127-1133, doi:10.1021/ES001380R, 2001.
- Liu, Y., Pimentel, A. S., Antoku, Y., Giles, B. J., and Barker, J. R.: Temperature-dependent rate and equilibrium constants for $Br \cdot (aq) + Br^{-}(aq) \rightleftharpoons$ $Br_2^- \cdot (aq)$, J. Phys. Chem. A, 106, 11075–11082, doi: 10.1021/JP0255536, 2002.
- Lockhart, J., Blitz, M., Heard, D., Seakins, P., and Shannon, R.: Kinetic study of the OH + glyoxal reaction: experimental evidence and quantification of direct OH recycling, J. Phys. Chem. A, 117, 11027-11 037, doi:10.1021/jp4076806, 2013.
- Lockwood, A. L., Shepson, P. B., Fiddler, M. N., and Alaghmand, M.: Isoprene nitrates: preparation, separation, identification, yields, and atmospheric chemistry, Atmos. Chem. Phys., 10, 6169–6178, doi: 10.5194/acp-10-6169-2010, 2010.
- Løgager, T., Holcman, J., Sehested, K., and Pedersen, T.: Oxidation of ferrous ions by ozone in acidic solutions, Inorg. Chem., 31, 3523–3529, doi: 10.1021/ic00043a009, 1992.
- Løgager, T., Sehested, K., and Holcman, J.: Rate con-Martin, L. R. and Damschen, D. E.: Aqueous oxidastants of the equilibrium reactions $SO_4 + HNO_3$

- $\rightleftharpoons HSO_4^- + NO_3$ and $SO_4 + NO_3 \rightleftharpoons SO_4^{2-} +$ NO₃, Radiat. Phys. Chem., 41, 539–543, doi:10.1016/ 0969-806X(93)90017-O, 1993.
- Long, C. A. and Bielski, B. H. J.: Rate of reaction of superoxide radical with chloride-containing species, J. Phys. Chem., 84, 555–557, doi:10.1021/J100442A023, 1980.
- Magi, L., Schweitzer, F., Pallares, C., Cherif, S., Mirabel, P., and George, C.: Investigation of the uptake rate of ozone and methyl hydroperoxide by water surfaces, J. Phys. Chem. A, 101, 4943–4949, doi:10.1021/JP970646M, 1997.
- Manion, J. A., Huie, R. E., Levin, R. D., Burgess, Jr., D. R., Orkin, V. L., Tsang, W., McGivern, W. S., Hudgens, J. W., Knyazev, V. D., Atkinson, D. B., Chai, E., Tereza, A. M., Lin, C.-Y., Allison, T. C., Mallard, W. G., Westley, F., Herron, J. T., Hampson, R. F., and Frizzell, D. H.: NIST Chemical Kinetics Database, NIST Standard Reference Database 17 (Web Version), http://kinetics.nist.gov, 2015.
- Margerum, D. W., Dickson, P. N., Nagy, J. C., Kumar, K., Bowers, C. P., and Fogelman, K. D.: Kinetics of the iodine monochloride reaction with iodide measured by the pulsed-accelerated-flow method, Inorg. Chem., 25, 4900–4904, doi:10.1021/IC00247A025, 1986.
- Marsh, A. R. W. and McElroy, W. J.: The dissociation constant and Henry's law constant of HCl in aqueous solution, Atmos. Environ., 19, 1075–1080, doi:10.1016/0004-6981(85)90192-1, 1985.
- Martell, A. E.: Other organic ligands, in: Critical Stability Constants, Springer, 1977.
- tion of sulfur dioxide by hydrogen peroxide at low

- pH, Atmos. Environ., 15, 1615–1621, doi:10.1016/ 0004-6981(81)90146-3, 1981.
- Matthew, B. M., George, I., and Anastasio, C.: Hydroperoxyl radical (HO2·) oxidizes dibromide radical anion $(\cdot Br_2^-)$ to bromine (Br_2) in aqueous solution: Implications for the formation of Br₂ in the marine boundary layer, Geophys. Res. Lett., 30, doi: 10.1029/2003GL018572, 2003.
- McCabe, D. C., Gierczak, T., Talukdar, R. K., and Ravishankara, A. R.: Kinetics of the reaction OH + CO under atmospheric conditions, Geophys. Res. Lett., 28, 3135–3138, doi:10.1029/2000GL012719, 2001.
- McElroy, W. J. and Waygood, S. J.: Kinetics of the reactions of the SO_4^- radical with SO_4^- , $S_2O_8^{2-}$, $H_2O_8^{2-}$ and Fe²⁺, J. Chem. Soc. Faraday Trans., 86, 2557-2564, doi:10.1039/FT9908602557, 1990.
- Mellouki, A. and Mu, Y.: On the atmospheric degradation of pyruvic acid in the gas phase, J. Photochem. Photobiol. A: Chem., 157, doi:10.1016/ S1010-6030(03)00070-4, 2003.
- Messaadia, L., Dib, G. E., Ferhati, A., and Chakir, A.: UV-visible spectra and gas-phase rate coefficients for the reaction of 2,3-pentanedione and 2,4pentanedione with OH radicals, Chem. Phys. Lett., 626, 73–79, doi:10.1016/j.cplett.2015.02.032, 2015.
- Monod, A., Poulain, L., Grubert, S., Voisin, D., and Wortham, H.: Kinetics of OH-initiated oxidation of oxygenated organic compounds in the aqueous phase: new rate constants, structure-activity relationships and atmospheric implications, Atmos. Environ., 39, 7667–7688, doi:10.1016/j.atmosenv.2005. 03.019, 2005.

- Monod, A., Chevallier, E., Durand Jolibois, R., Doussin, J. F., Picquet-Varrault, B., and Carlier, P.: Photooxidation of methylhydroperoxide and ethylhydroperoxide in the aqueous phase under simulated cloud droplet conditions, Atmos. Environ., 41, 2412—2426, doi:10.1016/j.atmosenv.2006.10.006, 2007.
- Müller, J.-F., Peeters, J., and Stavrakou, T.: Fast photolysis of carbonyl nitrates from isoprene, Atmos. Chem. Phys., 14, 2497–2508, doi:10.5194/acp-14-2497-2014, 2014.
- Munger, J. W., Jacob, D. J., Fan, S.-M., Colman, A. S., and Dibb, J. E.: Concentrations and snowatmosphere fluxes of reactive nitrogen at Summit, Greenland, J. Geophys. Res., 104D, 13721–13734, doi:10.1029/1999JD900192, 1999.
- Munthe, J.: The aqueous oxidation of elemental mercury by ozone, Atmos. Environ., 26A, 1461–1468, doi: 10.1016/0960-1686(92)90131-4, 1992.
- Nagy, J. C., Kumar, K., and Margerum, D. W.: Non-metal redox kinetics: Oxidation of iodide by hypochlorous acid and by nitrogen trichloride measured by the pulsed-accelerated-flow method, Inorg. Chem., 27, 2773–2780, doi:10.1021/IC00289A007, 1988.
- Nakanishi, H., Morita, H., and Nagakura, S.: Electronic structures and spectra of the keto and enol forms of acetylacetone, Bull. Chem. Soc. Jpn., 50, 2255–2261, doi:10.1246/bcsj.50.2255, 1977.
- Nakano, Y., Ishiwata, T., and Kawasaki, M.: Rate constants of the reaction of NO_3 with CH_3I measured with use of cavity ring-down spectroscopy, J. Phys. Chem. A, 109, 6527–6531, doi:10.1021/JP051817N, 2005.

- Neta, P. and Huie, R. E.: Rate constants for reactions of NO₃ radicals in aqueous solutions, J. Phys. Chem., 90, 4644–4648, doi:10.1021/J100410A035, 1986.
- Nguyen, T. L., Peeters, J., and Vereecken, L.: Theoretical study of the gas-phase ozonolysis of β -pinene (C₁₀H₁₆), Phys. Chem. Chem. Phys., 11, 5643–5656, doi:10.1039/b822984h, 2009.
- Nielsen, O. J., Sidebottom, H. W., Donlon, M., and Treacy, J.: Rate constants for the gas-phase reactions of OH radicals and Cl atoms with *n*-alkyl nitrites at atmospheric pressure and 298 K, Int. J. Chem. Kinet., 23, 1095–1109, doi:10.1002/kin.550231204, 1991.
- O'Dowd, C. D. and Hoffmann, T.: Coastal new particle formation: a review of the current state-of-the-art, Environ. Chem., 2, 245–255, doi:10.1071/EN05077, 2005.
- Ogryzlo, E. A., Paltenghi, R., and Bayes, K. D.: The rate of reaction of methyl radicals with ozone, Int. J. Chem. Kinet., 13, 667–675, doi:10.1002/kin. 550130707, 1981.
- Olzmann, M., Kraka, E., Cremer, D., Gutbrod, R., and Andersson, S.: Energetics, kinetics, and product distributions of the reactions of ozone with ethene and 2,3-dimethyl-2-butene, J. Phys. Chem. A, 101, 9421–9429, doi:10.1021/JP971663E, 1997.
- Orlando, J. J. and Tyndall, G. S.: Rate coefficients for the thermal decomposition of BrONO₂ and the heat of formation of BrONO₂, J. Phys. Chem., 100, 19 398–19 405, doi:10.1021/JP9620274, 1996.
- Orlando, J. J. and Tyndall, G. S.: The atmospheric chemistry of the HC(O)CO radical, Int. J. Chem. Kinet., 33, 149–156, doi:10.1002/1097-4601(200103) 33:3 $\langle 149::AID-KIN1008 \rangle 3.0.CO; 2-1, 2001.$

- Orlando, J. J. and Tyndall, G. S.: Laboratory studies of organic peroxy radical chemistry: an overview with emphasis on recent issues of atmospheric significance, Chem. Soc. Rev., 41, 6294–6317, doi:10.1039/C2CS35166H, 2012.
- Orlando, J. J., Tyndall, G. S., Bilde, M., Ferronato, C., Wallington, T. J., Vereecken, L., and Peeters, J.: Laboratory and theoretical study of the oxy radicals in the OH- and Cl-initiated oxidation of ethene, J. Phys. Chem. A, 102, 8116–8123, doi: 10.1021/JP981937D, 1998.
- Orlando, J. J., Tyndall, G. S., Fracheboud, J. M., Estupinan, E. G., Haberkorn, S., and Zimmer, A.: The rate and mechanism of the gas-phase oxidation of hydroxyacetone, Atmos. Environ., 33, 1621–1629, doi: 10.1016/S1352-2310(98)00386-0, 1999a.
- Orlando, J. J., Tyndall, G. S., and Paulson, S. E.: Mechanism of the OH-initiated oxidation of methacrolein, Geophys. Res. Lett., 26, 2191–2194, doi:10.1029/1999GL900453, 1999b.
- Orlando, J. J., Tyndall, G. S., Bertman, S. B., Chen, W., and Burkholder, J. B.: Rate coefficient for the reaction of OH with CH₂=C(CH₃)C(O)OONO₂ (MPAN), Atmos. Environ., 36, 1895–1900, doi:10. 1016/S1352-2310(02)00090-0, 2002.
- Ouyang, B., McLeod, M. W., Jones, R. L., and Bloss, W. J.: NO₃ radical production from the reaction between the Criegee intermediate CH₂OO and NO₂, Phys. Chem. Chem. Phys., 15, 17070–17075, doi: 10.1039/c3cp53024h, 2013.
- Pal, B. and Ariya, P. A.: Gas-phase HO-initiated reactions of elemental mercury: Kinetics, product studies, and atmospheric implications, Environ. Sci. Technol., 38, 5555–5566, doi:10.1021/ES0494353, 2004.

- Paulot, F., Crounse, J. D., Kjaergaard, H. G., Kroll, J. H., Seinfeld, J. H., and Wennberg, P. O.: Isoprene photooxidation: new insights into the production of acids and organic nitrates, Atmos. Chem. Phys., 9, 1479–1501, doi:10.5194/ACP-9-1479-2009, 2009a.
- Paulot, F., Crounse, J. D., Kjaergaard, H. G., Kürten,
 A., St. Clair, J. M., Seinfeld, J. H., and Wennberg,
 P. O.: Unexpected epoxide formation in the gasphase photooxidation of isoprene, Science, 325, 730–733, doi:10.1126/science.1172910, 2009b.
- Paulot, F., Wunch, D., Crounse, J. D., Toon, G. C., Millet, D. B., DeCarlo, P. F., Vigouroux, C., Deutscher, N. M., González Abad, G., Notholt, J., Warneke, T., Hannigan, J. W., Warneke, C., de Gouw, J. A., Dunlea, E. J., De Mazière, M., Griffith, D. W. T., Bernath, P., Jimenez, J. L., and Wennberg, P. O.: Importance of secondary sources in the atmospheric budgets of formic and acetic acids, Atmos. Chem. Phys., 11, 1989–2013, doi:10.5194/acp-11-1989-2011, 2011.
- Peeters, J. and Nguyen, T. L.: Unusually fast 1,6-H shifts of enolic hydrogens in peroxy radicals: formation of the first-generation C₂ and C₃ carbonyls in the oxidation of isoprene, J. Phys. Chem. A, 116, 6134–6141, doi:10.1021/jp211447q, 2012.
- Peeters, J., Müller, J.-F., Stavrakou, T., and Nguyen, V. S.: Hydroxyl radical recycling in isoprene oxidation driven by hydrogen bonding and hydrogen tunneling: the upgraded LIM1 mechanism, J. Phys. Chem. A, 118, 8625–8643, doi:10.1021/jp5033146, 2014.
- Piesiak, A., Schuchmann, M. N., Zegota, H., and von Sonntag, C.: β -Hydroxyethylperoxyl radicals: a study of the γ -radiolysis and pulse radiolysis of ethy-

- lene in oxygenated aqueous solutions, Z. Naturforsch. B, 39, 1262–1267, doi:10.1515/znb-1984-0920, 1984.
- Plane, J. M. C., Joseph, D. M., Allan, B. J., Ashworth, S. H., and Francisco, J. S.: An experimental and theoretical study of the reactions OIO + NO and OIO + OH, J. Phys. Chem. A, 110, 93–100, doi: 10.1021/JP055364Y, 2006.
- Platz, J., Nielsen, O. J., Wallington, T. J., Ball, J. C., Hurley, M. D., Straccia, A. M., Schneider, W. F., and Sehested, J.: Atmospheric chemistry of the phenoxy radical, C₆H₅O(·): UV spectrum and kinetics of its reaction with NO, NO₂, and O₂, J. Phys. Chem. A, 102, 7964−7974, doi:10.1021/jp9822211, 1998.
- Pleijel, K. and Munthe, J.: Modelling the atmospheric mercury cycle Chemistry in fog droplets, Atmos. Environ., 29, 1441–1457, doi:10.1016/1352-2310(94) 00323-D, 1995.
- Raofie, F. and Ariya, P. A.: Kinetics and products study of the reaction of BrO radicals with gaseous mercury, J. Phys. IV France, 107, 1119–1121, doi: 10.1051/JP4:20030497, 2003.
- Raofie, F. and Ariya, P. A.: Product study of the gasphase BrO-initiated oxidation of Hg⁰: Evidence for stable Hg¹⁺ compounds, Environ. Sci. Technol., 38, 4319–4326, doi:10.1021/ES035339A, 2004.
- Rickard, A. and Pascoe, S.: The Master Chemical Mechanism (MCM), http://mcm.leeds.ac.uk, 2009.
- Rickard, A. R., Johnson, D., McGill, C. D., and Marston, G.: OH yields in the gas-phase reactions of ozone with alkenes, J. Phys. Chem. A, 103, 7656–7664, doi:10.1021/JP9916992, 1999.

- Riffault, V., Bedjanian, Y., and Poulet, G.: Kinetic and mechanistic study of the reactions of OH with IBr and HOI, J. Photochem. Photobiol. A: Chem., 176, 155–161, doi:10.1016/j.jphotochem.2005.09.002, 2005.
- Roble, R. G.: Energetics of the mesosphere and thermosphere, in: The upper Mesosphere and Lower Thermosphere: A Review of Experiment and Theory, Geophysical Monograph 87, edited by Johnson, R. M. and Killeen, T. L., pp. 1–23, American Geophysical Union, Washington, DC, USA, 1995.
- Ross, A. B., Mallard, W. G., Helman, W. P., Bielski,
 B. H. J., Buxton, G. V., Cabelli, D. E., Greenstock,
 C. L., Huie, R. E., and Neta, P.: NDRL-NIST Solution Kinetics Database: Ver. 1, National Institute of Standards and Technology, Gaithersburg, MD, 1992.
- Roth, E., Chakir, A., and Ferhati, A.: Study of a benzoylperoxy radical in the gas phase: ultraviolet spectrum and C₆H₅C(O)O₂ + HO₂ reaction between 295 and 357 K, J. Phys. Chem. A, 114, 10367–10379, doi:10.1021/jp1021467, 2010.
- Rousse, D. and George, C.: A novel long path photolysis cell-application to the reactivity of selected organic compounds toward the nitrate radical (NO₃), Phys. Chem. Chem. Phys., 6, 3408–3414, doi:10.1039/B400175C, 2004.
- Rumble, J. R., ed.: CRC Handbook of Chemistry and Physics, 101st Edition, CRC Press, Boca Raton, FL, 2020.
- Rush, J. D. and Bielski, B. H. J.: Pulse radiolytic studies of the reaction of $\mathrm{HO_2/O_2^-}$ with $\mathrm{Fe(II)/Fe(III)}$ ions. The reactivity of $\mathrm{HO_2/O_2^-}$ with ferric ions and its implication on the occurrence of the Haber-Weiss reaction, J. Phys. Chem., 89, 5062–5066, doi: $10.1021/\mathrm{j}100269a035$, 1985.

- Sander, R., Jöckel, P., Kirner, O., Kunert, A. T., Landgraf, J., and Pozzer, A.: The photolysis module JVAL-14, compatible with the MESSy standard, and the JVal PreProcessor (JVPP), Geosci. Model Dev., 7, 2653–2662, doi:10.5194/GMD-7-2653-2014, 2014.
- Sander, R., Baumgaertner, A., Cabrera-Perez, D., Frank, F., Gromov, S., Grooß, J.-U., Harder, H., Huijnen, V., Jöckel, P., Karydis, V. A., Niemeyer, K. E., Pozzer, A., Riede, H., Schultz, M. G., Taraborrelli, D., and Tauer, S.: The community atmospheric chemistry box model CAABA/MECCA-4.0, Geosci. Model Dev., 12, 1365–1385, doi:10.5194/ gmd-12-1365-2019, 2019.
- Sander, S. P., Finlayson-Pitts, B. J., Friedl, R. R., Golden, D. M., Huie, R. E., Kolb, C. E., Kurylo, M. J., Molina, M. J., Moortgat, G. K., Orkin, V. L., and Ravishankara, A. R.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 14, JPL Publication 02-25, Jet Propulsion Laboratory, Pasadena, CA, 2003.
- Schaefer, T., Schindelka, J., Hoffmann, D., and Herrmann, H.: Laboratory kinetic and mechanistic studies on the OH-initiated oxidation of acetone in aqueous solution, J. Phys. Chem. A, 116, 6317–6326, doi: 10.1021/jp2120753, 2012.
- Schaefer, T., van Pinxteren, D., and Herrmann, H.: Multiphase chemistry of glyoxal: revised kinetics of the alkyl radical reaction with molecular oxygen and the reaction of glyoxal with OH, $\rm NO_3$, and $\rm SO_4^-$ in aqueous solution, Environ. Sci. Technol., 49, 343–350, doi:10.1021/es505860s, 2015.
- Schöne, L. and Herrmann, H.: Kinetic measurements of the reactivity of hydrogen peroxide and ozone towards small atmospherically relevant aldehydes, ketones and organic acids in aqueous so-

- lutions, Atmos. Chem. Phys., 14, 4503–4514, doi: Sehested, K., Rasmussen, O. L., and Fricke, H.: Rate 10.5194/acp-14-4503-2014, 2014. constants of OH with HO₂, O₂⁻, and H₂O₂⁺ from hy-
- Schuchmann, M. N. and von Sonntag, C.: The rapid hydration of the acetyl radical. A pulse radiolysis study of acetaldehyde in aqueous solution., J. Am. Chem. Soc., 110, 5698–5701, doi:10.1021/ja00225a019, 1988.
- Schuchmann, M. N., Zegota, H., and von Sonntag, C.: Acetate peroxyl radicals, ·O₂CH₂CO₂⁻: a study on the γ-radiolysis and pulse radiolysis of acetate in oxygenated aqueous solutions, Z. Naturforsch. B, 40, 215–221, doi:10.1515/znb-1985-0212, 1985.
- Schwartz, S. E. and White, W. H.: Solubility equilibria of the nitrogen oxides and oxyacids in dilute aqueous solution, in: Advances in Environmental Science and Engineering, edited by Pfafflin, J. R. and Ziegler, E. N., vol. 4, pp. 1–45, Gordon and Breach Science Publishers, NY, 1981.
- Schwarz, H. A. and Bielski, B. H. J.: Reactions of $\rm HO_2$ and $\rm O_2^-$ with iodine and bromine and the $\rm I_2^-$ and I atom reduction potentials, J. Phys. Chem., 90, 1445–1448, doi:10.1021/J100398A045, 1986.
- Scribano, Y., Goldman, N., Saykally, R. J., and Leforestier, C.: Water dimers in the atmosphere III: Equilibrium constant from a flexible potential, J. Phys. Chem. A, 110, 5411–5419, doi:10.1021/jp056759k, 2006.
- Sehested, J., Christensen, L. K., Nielsen, O. J., Bilde, M., Wallington, T. J., Schneider, W. F., Orlando, J. J., and Tyndall, G. S.: Atmospheric chemistry of acetone: Kinetic study of the $\mathrm{CH_3C}(\mathrm{O})\mathrm{CH_2O_2} + \mathrm{NO/NO_2}$ reactions and decomposition of $\mathrm{CH_3C}(\mathrm{O})\mathrm{CH_2O_2}\mathrm{NO_2}$, Int. J. Chem. Kinet., 30, 475–489, doi:10.1002/(SICI)1097-4601(1998)30: $7\langle 475::\mathrm{AID\text{-}KIN4}\rangle 3.0.\mathrm{CO}; 2-\mathrm{P}, 1998.$

- Sehested, K., Rasmussen, O. L., and Fricke, H.: Rate constants of OH with HO₂, O₂⁻, and H₂O₂⁺ from hydrogen peroxide formation in pulse-irradiated oxygenated water, J. Phys. Chem., 72, 626–631, doi: 10.1021/J100848A040, 1968.
- Sehested, K., Holcman, J., Bjergbakke, E., and Hart, E. J.: A pulse radiolytic study of the reaction OH + O₃ in aqueous medium, J. Phys. Chem., 88, 4144–4147, doi:10.1021/J150662A058, 1984.
- Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics, John Wiley & Sons, Inc., 1998.
- Shallcross, D. E., Leather, K. E., Bacak, A., Xiao, P., Lee, E. P. F., Ng, M., Mok, D. K. W., Dyke, J. M., Hossaini, R., Chipperfield, M. P., Khan, M. A. H., and Percival, C. J.: Reaction between CH₃O₂ and BrO radicals: a new source of upper troposphere lower stratosphere hydroxyl radicals, J. Phys. Chem. A, 119, 4618–4632, doi:10.1021/JP5108203, 2015.
- Shoute, L. C. T., Alfassi, Z. B., Neta, P., and Huie, R. E.: Temperature dependence of the rate constants for reaction of dihalide and azide radicals with inorganic reductants, J. Phys. Chem., 95, 3238–3242, doi:10.1021/J100161A050, 1991.
- Sivakumaran, V., Hölscher, D., Dillon, T. J., and Crowley, J. N.: Reaction between OH and HCHO: temperature dependent rate coefficients (202-399 K) and product pathways (298 K), Phys. Chem. Chem. Phys., 5, 4821–4827, doi:10.1039/B306859E, 2003.
- So, S., Wille, U., and da Silva, G.: Atmospheric chemistry of enols: a theoretical study of the vinyl alcohol + OH + O₂ reaction mechanism, Environ. Sci. Technol., 48, 6694–6701, doi:10.1021/es500319q, 2014.

- Sokolov, O., Hurley, M. D., Ball, J. C., Wallington, T. J., Nelsen, W., Barnes, I., and Becker, K. H.: Kinetics of the reactions of chlorine atoms with CH₃ONO and CH₃ONO₂, Int. J. Chem. Kinet., 31, 357–359, doi:10.1002/(SICI)1097-4601(1999)31: 5\(357::AID-KIN5\)\(33.0.CO; 2-6, 1999.
- Solberg, S., Stordal, F., and Hov, Ø.: Tropospheric ozone at high latitudes in clean and polluted air masses, a climatological study, J. Atmos. Chem., 28, 111–123, doi:10.1023/A:1005766612853, 1997.
- Staehelin, J., Buehler, R. E., and Hoigné, J.: Ozone decomposition in water studied by pulse radiolysis.
 Hydroxyl and hydrogen tetroxide (HO₄) as chain intermediates, J. Phys. Chem., 88, 5999–6004, doi: 10.1021/j150668a051, 1984.
- Stone, D., Blitz, M., Daubney, L., Howes, N. U. M., and Seakins, P.: Kinetics of CH₂OO reactions with SO₂, NO₂, NO, H₂O and CH₃CHO as a function of pressure, Phys. Chem. Chem. Phys., 16, 1139–1149, doi:10.1039/c3cp54391a, 2014.
- Strekowski, R. S., Nicovich, J. M., and Wine, P. H.: Kinetic and mechanistic study of the Reactions of $O(^1D_2)$ with HCN and CH₃CN, Chem. Phys. Chem., 11, 3942–3955, doi:10.1002/cphc.201000550, 2010.
- Sutton, H. C. and Downes, M. T.: Reactions of the HO₂ radical in aqueous solution with bromine and related compounds, J. Chem. Soc. Faraday Trans. 1, 68, 1498–1507, doi:10.1039/F19726801498, 1972.
- Swaminathan, P. K., Strobel, D. F., Kupperman, D. G., Acton, L., DeMajistre, R., Yee, J.-H., Paxton, L., Anderson, D. E., Strickland, D. J., and Duff, J. W.: Nitric oxide abundance in the mesosphere/lower thermosphere region: Roles of solar

- soft X rays, suprathermal N(⁴S) atoms, and vertical transport, J. Geophys. Res., 103A, 11579–11594, doi:10.1029/97JA03249, 1998.
- Tao, Z. and Li, Z.: A kinetics study on reactions of C_6H_5O with C_6H_5O and O_3 at 298 K, Int. J. Chem. Kinet., 31, 65–72, doi:10.1002/(SICI)1097-4601(1999)31:1 $\langle 65::$ AID-KIN8 $\rangle 3.0.CO$;2-J, 1999.
- Taraborrelli, D.: Isoprene oxidation and its impacts on the atmospheric composition, Ph.D. thesis, Johannes Gutenberg-Universität, Mainz, Germany, http:// d-nb.info/1003538770/34, 2010.
- Taraborrelli, D., Lawrence, M. G., Butler, T. M., Sander, R., and Lelieveld, J.: Mainz Isoprene Mechanism 2 (MIM2): an isoprene oxidation mechanism for regional and global atmospheric modelling, Atmos. Chem. Phys., 9, 2751–2777, doi:10.5194/ACP-9-2751-2009, 2009.
- Thornton, A. T. and Laurence, G. S.: Kinetics of oxidation of transition-metal ions by halogen radical anions. Part I. The oxidation of iron(II) by dibromide and dichloride ions generated by flash photolysis, J. Chem. Soc. Dalton Trans., pp. 804–813, doi: 10.1039/DT9730000804, 1973.
- Tokos, J. J. S., Hall, B., Calhoun, J. A., and Prestbo, E. M.: Homogeneous gas-phase reaction of Hg⁰ with H₂O₂, O₃, CH₃I, and (CH₃)₂S: Implications for atmospheric Hg cycling, Atmos. Environ., 32, 823–827, doi:10.1016/S1352-2310(97)00171-4, 1998.
- Troy, R. C. and Margerum, D. W.: Non-metal redox kinetics: Hypobromite and hypobromous acid reactions with iodide and with sulfite and the hydrolysis of bromosulfate, Inorg. Chem., 30, 3538–3543, doi: 10.1021/IC00018A028, 1991.

- Troy, R. C., Kelley, M. D., Nagy, J. C., and Margerum, D. W.: Non-metal redox kinetics: Iodine monobromide reaction with iodide ion and the hydrolysis of IBr, Inorg. Chem., 30, 4838–4845, doi:10.1021/IC00025A030, 1991.
- Tur'yan, Y. I.: Studying kinetics of the dehydration reaction of acetaldehyde in aqueous solutions using polarographic kinetic currents, Croatica Chem. Acta, 73, 657–666, https://hrcak.srce.hr/132008, 2000.
- Tyndall, G. S., Staffelbach, T. A., Orlando, J. J., and Calvert, J. G.: Rate coefficients for the reactions of OH radicals with methylglyoxal and acetaldehyde, Int. J. Chem. Kinet., 27, 1009–1020, doi: 10.1002/KIN.550271006, 1995.
- Tyndall, G. S., Orlando, J. J., Wallington, T. J., Sehested, J., and Nielsen, O. J.: Kinetics of the reactions of acetonitrile with chlorine and fluorine atoms, J. Phys. Chem., 100, 660–668, doi:10.1021/jp9521417, 1996.
- Tyndall, G. S., Cox, R. A., Granier, C., Lesclaux, R., Moortgat, G. K., Pilling, M. J., Ravishankara, A. R., and Wallington, T. J.: The atmospheric chemistry of small organic peroxy radicals, J. Geophys. Res., 106D, 12157–12182, doi:10.1029/ 2000JD900746, 2001a.
- Tyndall, G. S., Orlando, J. J., Wallington, T. J., and Hurley, M. D.: Products of the chlorine-atomand hydroxyl-radical-initiated oxidation of CH₃CN, J. Phys. Chem. A, 105, 5380–5384, doi:10.1021/ jp004318p, 2001b.
- van den Bergh, H. and Troe, J.: Kinetic and thermodynamic properties of INO and INO₂ intermediate complexes in iodine recombination, J. Chem. Phys., 64, 736-742, doi:10.1063/1.432220, 1976.

- van Loon, L., Mader, E., and Scott, S. L.: Reduction of the aqueous mercuric ion by sulfite: UV spectrum of ${\rm HgSO_3}$ and its intramolecular redox reaction, J. Phys. Chem. A, 104, 1621–1626, doi:10.1021/JP994268S, 2000.
- van Loon, L. L., Mader, E. A., and Scott, S. L.: Sulfite stabilization and reduction of the aqueous mercuric ion: Kinetic determination of sequential formation constants, J. Phys. Chem. A, 105, 3190–3195, doi: 10.1021/JP003803H, 2001.
- Vereecken, L. and Francisco, J. S.: Theoretical studies of atmospheric reaction mechanisms in the troposphere, Chem. Soc. Rev., 41, 6259–6293, doi:10.1039/c2cs35070j, 2012.
- Vereecken, L. and Peeters, J.: A theoretical study of the OH-initiated gas-phase oxidation mechanism of β -pinene (C₁₀H₁₆): first generation products, Phys. Chem. Chem. Phys., 14, 3802–3815, doi:10.1039/c2cp23711c, 2012.
- Vereecken, L., Müller, J.-F., and Peeters, J.: Low-volatility poly-oxygenates in the OH-initiated atmospheric oxidation of α -pinene: impact of non-traditional peroxyl radical chemistry, Phys. Chem. Chem. Phys., 9, 5241–5248, doi:10.1039/b708023a, 2007.
- Vereecken, L., Harder, H., and Novelli, A.: The reaction of Criegee intermediates with NO, RO₂, and SO₂, and their fate in the atmosphere, Phys. Chem. Chem. Phys., 14, 14682–14695, doi:10.1039/c2cp42300f, 2012.
- Vereecken, L., Harder, H., and Novelli, A.: The reactions of Criegee intermediates with alkenes, ozone, and carbonyl oxides, Phys. Chem. Chem. Phys., 16, 4039–4049, doi:10.1039/c3cp54514h, 2014.

- Villalta, P. W., Lovejoy, E. R., and Hanson, D. R.: Reaction probability of peroxyacetyl radical on aqueous surfaces, Geophys. Res. Lett., 23, 1765–1768, doi: 10.1029/96GL01286, 1996.
- von Glasow, R., Sander, R., Bott, A., and Crutzen, P. J.: Modeling halogen chemistry in the marine boundary layer, 1. Cloud-free MBL, J. Geophys. Res., 107D, 4341, doi:10.1029/2001JD000942, 2002.
- von Kuhlmann, R.: Tropospheric photochemistry of ozone, its precursors and the hydroxyl radical: A 3D-modeling study considering non-methane hydrocarbons, Ph.D. thesis, Johannes Gutenberg-Universität, Mainz, Germany, 2001.
- von Kuhlmann, R., Lawrence, M. G., Crutzen, P. J., and Rasch, P. J.: A model for studies of tropospheric ozone and nonmethane hydrocarbons: Model description and ozone results, J. Geophys. Res., 108D, 4294, doi:10.1029/2002JD002893, 2003.
- von Sonntag, C.: The chemical basis of radiation biology, Taylor & Francis London, 1987.
- Wagman, D. D., Evans, W. H., Parker, V. B., Schumm,
 R. H., Halow, I., Bailey, S. M., Churney, K. L., and
 Nuttall, R. L.: The NBS tables of chemical thermodynamic properties; Selected values for inorganic and
 C₁ and C₂ organic substances in SI units, J. Phys.
 Chem. Ref. Data, 11, suppl. 2, 1982.
- Wagner, I. and Strehlow, H.: On the flash photolysis of bromide ions in aqueous solution, Ber. Bunsenges. Phys. Chem., 91, 1317–1321, doi:10.1002/BBPC. 19870911203, 1987.
- Wallington, T. J., Ammann, M., Cox, R. A., Crowley, J. N., Herrmann, H., Jenkin, M. E., McNeill, V., Mellouki, A., Rossi, M. J., and Troe, J.: IUPAC

- Task group on atmospheric chemical kinetic data evaluation: Evaluated kinetic data, http://iupac.pole-ether.fr, 2018.
- Wang, T. X. and Margerum, D. W.: Kinetics of reversible chlorine hydrolysis: Temperature dependence and general-acid/base-assisted mechanisms, Inorg. Chem., 33, 1050–1055, doi:10.1021/IC00084A014, 1994.
- Wang, T. X., Kelley, M. D., Cooper, J. N., Beckwith, R. C., and Margerum, D. W.: Equilibrium, kinetic, and UV-spectral characteristics of aqueous bromine chloride, bromine, and chlorine species, Inorg. Chem., 33, 5872–5878, doi:10.1021/IC00103A040, 1994.
- Wang, Y. L., Nagy, J. C., and Margerum, D. W.: Kinetics of hydrolysis of iodine monochloride measured by the pulsed-accelerated-flow method, J. Am. Chem. Soc., 111, 7838–7844, doi:10.1021/JA00202A026, 1989.
- Wang, Z. and Pehkonen, S. O.: Oxidation of elemental mercury by aqueous bromine: atmospheric implications, Atmos. Environ., 38, 3675–3688, doi: 10.1016/J.ATMOSENV.2004.02.059, 2004.
- Warneck, P.: Chemical reactions in clouds, Fresenius J. Anal. Chem., 340, 585–590, doi:10.1007/BF00322434, 1991.
- Warneck, P.: The relative importance of various pathways for the oxidation of sulfur dioxide and nitrogen dioxide in sunlit continental fair weather clouds, Phys. Chem. Chem. Phys., 1, 5471–5483, doi:10.1039/A906558J, 1999.
- Warneck, P.: The oxidation of sulfur(IV) by reaction with iron(III): a critical review and data analysis, Phys. Chem. Chem. Phys., 20, 4020–4037, doi: 10.1039/c7cp07584g, 2018.

- Wayne, R. P., Barnes, I., Biggs, P., Burrows, J. P., Canosa-Mas, C. E., Hjorth, J., Le Bras, G., Moortgat, G. K., Perner, D., Poulet, G., Restelli, G., and Sidebottom, H.: The nitrate radical: Physics, chemistry, and the atmosphere, Atmos. Environ., 25A, 1–203, doi:10.1016/0960-1686(91)90192-A, 1991.
- Weast, R. C., ed.: CRC Handbook of Chemistry and Physics, 61st Edition, CRC Press, Inc., Boca Raton, FL, 1980.
- Weinstein-Lloyd, J. and Schwartz, S. E.: Low-intensity radiolysis study of free-radical reactions in cloudwater: $\rm H_2O_2$ production and destruction, Environ. Sci. Technol., 25, 791–800, doi:10.1021/ES00016A027, 1991.
- Welz, O., Savee, J. D., Osborn, D. L., Vasu, S. S., Percival, C. J., Shallcross, D. E., and Taatjes, C. A.: Direct kinetic measurements of Criegee intermediate (CH₂OO) formed by reaction of CH₂I with O₂, Science, 335, 204–207, doi:10.1126/science.1213229, 2012.
- Welz, O., Eskola, A. J., Sheps, L., Rotavera, B., Savee, J. D., Scheer, A. M., Osborn, D. L., Lowe, D., Booth, A. M., Xiao, P., Khan, M. A. H., Percival, C. J., Shallcross, D. E., and Taatjes, C. A.: Rate coefficients of C1 and C2 Criegee intermediate reactions with formic and acetic acid near the collision limit: Direct kinetics measurements and atmospheric implications, Angew. Chem., 126, 4635–4638, doi:10.1002/ange.201400964, 2014.
- Wine, P. H., Tang, Y., Thorn, R. P., Wells, J. R., and Davis, D. D.: Kinetics of aqueous phase reactions of the SO₄⁻ radical with potential importance in cloud chemistry, J. Geophys. Res., 94D, 1085–1094, doi: 10.1029/JD094ID01P01085, 1989.

- Wingenter, O. W., Sive, B. C., Blake, N. J., and Rowland, F. S.: Atomic chlorine concentrations determined from ethane and hydroxyl measurements made over the Central Pacific Ocean, Eos, Trans. AGU (Abstract Supplement), 80, F149–F150, 1999.
- Winkelman, J. G. M., Ottens, M., and Beenackers, A. A. C. M.: The kinetics of the dehydration of methylene glycol, Chem. Eng. Sci., 55, 2065–2071, doi: 10.1016/S0009-2509(99)00498-4, 2000.
- Winkelman, J. G. M., Voorwinde, O. K., Ottens, M., Beenackers, A. A. C. M., and Janssen, L. P. B. M.: Kinetics and chemical equilibrium of the hydration of formaldehyde, Chem. Eng. Sci., 57, 4067–4076, doi: 10.1016/S0009-2509(02)00358-5, 2002.
- Wu, D., Wong, D., and Di Bartolo, B.: Evolution of Cl₂⁻ in aqueous NaCl solutions, J. Photochem., 14, 303–310, doi:10.1016/0047-2670(80)85102-1, 1980.
- Yamamoto, S. and Back, R. A.: The gas-phase photochemistry of oxalic acid, J. Phys. Chem., 89, 622–625, doi:10.1021/j100250a014, 1985.
- Yiin, B. S. and Margerum, D. W.: Nonmetal redox kinetics: reactions of iodine and triiodide with sulfite and hydrogen sulfite and the hydrolysis of iodosulfate, Inorg. Chem., 29, 1559–1564, doi:10.1021/IC00333A023, 1990.
- Yin, F., Grosjean, D., and Seinfeld, J. H.: Photooxidation of dimethyl sulfide and dimethyl disulfide. I: Mechanism development, J. Atmos. Chem., 11, 309—364, doi:10.1007/BF00053780, 1990.
- Yoon, M.-C., Choi, Y. S., and Kim, S. K.: The OH production from the $\pi \pi^*$ transition of acetylacetone, Chem. Phys. Lett., 300, 207–212, doi:10.1016/S0009-2614(98)01373-6, 1999.

- Yu, X.-Y.: Critical evaluation of rate constants and equilibrium constants of hydrogen peroxide photolysis in acidic aqueous solutions containing chloride ions, J. Phys. Chem. Ref. Data, 33, 747–763, doi: 10.1063/1.1695414, 2004.
- Zegota, H., Schuchmann, M. N., Schulz, D., and von Sonntag, C.: Acetonylperoxyl radicals, $CH_3COCH_2O_2$: a study on the γ -radiolysis and pulse radiolysis of acetone in oxygenated aqueous solutions, Z. Naturforsch. B, 41, 1015–1022, doi: 10.1515/znb-1986-0815, 1986.
- Zehavi, D. and Rabani, J.: The oxidation of aqueous bromide by hydroxyl radicals. A pulse radiolytic investigation, J. Phys. Chem., 76, 312–319, doi: 10.1021/J100647A006, 1972.
- Zellner, R., Hartmann, D., Karthäuser, J., Rhäsa, D., and Weibring, G.: A laser photolysis/LIF study of the reactions of O(³P) atoms with CH₃ and CH₃O₂ radicals, J. Chem. Soc. Faraday Trans. 2, 84, 549–568, doi:10.1039/f29888400549, 1988.
- Zellner, R., Exner, M., and Herrmann, H.: Absolute OH quantum yield in the laser photolysis of nitrate, nitrite and dissolved $\rm H_2O_2$ at 308 and 351 nm in the temperature range 278-353 K, J. Atmos. Chem., 10, 411–425, doi:10.1007/BF00115783, 1990.
- Zellner, R., Herrmann, H., Exner, M., Jacobi, H.-W., Raabe, G., and Reese, A.: Formation and reactions of oxidants in the aqueous phase, in: Heterogeneous and Liquid-Phase Processes, edited by Warneck, P., pp. 146–152, Springer Verlag, Berlin, 1996.
- Ziajka, J., Beer, F., and Warneck, P.: Iron-catalysed oxidation of bisulphit aqueous solution: evidence for free radical chain mechanism, Atmos. Environ., 28, 2549–2552, doi:10.1016/1352-2310(94)90405-7, 1994.