- 1 Краткие теоретические вопросы по теме "Ряды Фурье"
- 1.1 Как найти коэффициенты равномерно сходящегося тригонометрического ряда по его сумме?

Для функции f с периодом 2π представимой в виде суммы тригонометрического ряда

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx$$

коэффициенты a_n и b_n находятся по формулам

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \ (n = 0, 1, 2...)$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \ (n = 1, 2...)$$

1.2 Что такое коэффициенты Фурье по ортонормированной системе в абстрактном векторном пространстве со скалярным произведением? Опишите проекционное свойство частичной суммы ряда Фурье.

Пусть $\vec{a} \in V$, где V унитарное пространство и $\{\vec{e}_n\}_{n=1}^{\infty}$ ортонормированная система.

Тогда коэффициентами Фурье по ортонормированной системе $\{\vec{e}_n\}$ называются числа

$$c_n(\vec{a}) = (\vec{a}, \vec{e_n})$$

Рассмотрим $b_n = \sum_{k=1}^n c_k(\vec{a}) \vec{e_k}$. Тогда $\vec{a} - \vec{b} \perp \vec{b}$. Это и есть про-екционное свойство.

1.3 Что такое равенство Парсеваля? Объясните, почему коэффициенты Фурье обязаны убывать.

Из неравенства Бернулли

$$\sum_{i=1}^{\infty} |c_i(\vec{a})|^2 \le ||\vec{a_n}||^2$$

по необходимому признаку сходимости ряда следует, что $c_i(\vec{a}) \to 0$ при $n \to 0$. Равенство

$$\sum_{i=1}^{\infty} |c_i(\vec{a})|^2 = ||\vec{a_n}||^2$$

называется уравнением замкнутости или равенством Парсеваля

1.4 В чем состоит минимизирующее свойство коэффициентов Фурье?

Пусть $a \in V$ и $\{\vec{e}_n\}_{n=1}^n$ — произвольная ортонормированная система. Тогда

$$\min_{\lambda_1,...,\lambda_n} \Delta(\lambda_1,...,\lambda_n) = \Delta(c_1,...,c_n),$$

где $\Delta(\lambda_1,...,\lambda_n) = ||\vec{a} - \sum_{k=1}^n \lambda_k \vec{e_k}||$ и $c_k = c_k(\vec{a})$ — коэффициенты Фурье относительно ортонормированной системы $\{\vec{e_n}\}_{n=1}^n$

1.5 Что такое ряд Фурье на пространстве 2l-периодических функций

Зададим в пространстве непрерывных 2l-периодических функций скалярное произведение

$$(f,g) = \frac{1}{2l} \int_0^{2l} f(x) \overline{g(x)} dx,$$

тем самым превратив его в унитарное. Обозначим его как C_{2l} .

 $e_n: x \mapsto e^{inx}, n \in \mathbb{Z}, \ e_n$ образуют ортонормированную систему Коэффициенты фурье относительно этой ортонормираванной системы

$$c_n(f) = 1/2l \int_0^{2l} f(x)e^{-inx} dx$$

Ряд Фурье

$$f(x) = \sum_{n \in \mathbb{Z}} c_n(f) e^{inx}$$

В предыдущем выражении равенство в смысле среднеквадратичной нормы.

- 1.6 Как разложить функцию, заданную на интервале (0, l), в ряд по косинусам кратных дуг? по синусам? (Пустой)
- 1.7 Дайте определение свертки периодических функций. Как найти коэффициенты Фурье свертки?

Пусть f и g непрерывные 2l-периодические функции. Св Ёрткой f*g называется

$$f * g(x) = \frac{1}{2l} \int_0^{2l} f(t)g(x-t)dt$$

Свойства f * g

- \bullet f*g непрерывная 2l-периодическая функция
- ullet если g дополнительно ${\bf k}$ раз непрерывно дифференцируема, то f*q тоже и

$$(f * g)^{(k)} = f * g^{(k)}$$

• f * g билинейна, комутативна, ассоциативна

Коэффициенты Фурье свертки находятся как произведение коэффициентов Фурье каждой из функций, то есть

$$c_n(f * g) = c_n(f)c_n(g)$$

1.8 Как найти производную свертки, если один из сверточных сомножителей дифференцируем? Как это свойство можно использовать для сглаживания функции?(Не полный)

Пусть f и g непрерывные 2l-периодические функции. Св Ёрткой f*g называется

$$f * g(x) = \frac{1}{2l} \int_0^{2l} f(t)g(x-t)dt$$

Если g дополнительно k раз непрерывно дифференцируема, то f * g — тоже и

$$(f * g)^{(k)} = f * g^{(k)}$$

1.9 Что такое фильтр и передаточная функция в теории обработки радиосигналов? Объясните, почему не существует идеального фильтра.

Отображение $f \to f * g$ описывает прохождение сигнала f через фильтр g. В результате амплитуда $c_n(f)$ п-ой гармоники f умножается на $c_n(g)$ В силу леммы Римана-Лебега $c_n(g) \to 0, n \to \infty$, значит $\nexists g: f * g = f$ (не существует фильтра не искажающего сигнал).

1.10 Что утверждает лемма Римана-Лебега? Какова ее связь со стремлением коэффициентов Фурье к нулю?

Лемма Римана-Лебега состоит в том, что если $f(x) \in C[a,b]$, то

$$\int_{a}^{b} f(x)e^{ikx}dx \to 0, k \to 0$$

Заметим, что при $a=0,\,b=2l,\,k=-n,n\in\mathbb{Z}$ и $f(x)\in C_{2l}$

$$\int_{a}^{b} f(x)e^{ikx}dx \to 0 = 2l\frac{1}{2l}\int_{0}^{2l} f(x)e^{-inx}dx = 2lc_{n}(f) \to 0, k \to 0$$

Значит $c_n(f) \to 0, k \to 0$, где c_n — коэффициенты Фурье относительно ортонормированной системы $e_n, e_n: x \mapsto e^{inx}, n \in \mathbb{Z}$