## Лабораторная работа №3.6.1Б Спектральный анализ (цифровой осциллограф) Мещеряков Всеволод, Б02-001, 26.10.2021

## Исследование спектра периодической последовательности прямоугольных импульсов



Рис. 1 — Схема для исследования спектра периодической последовательности прямоугольных импульсов

На рисунке 1 представлена схема для исследования спектра периодической последовательности прямоугольных импульсов. Сигнал с выхода генератора прямоугольных импульсов Г5-54 подаётся на вход анализатора спектра и одновременно на вход У осциллографа. С генератора импульсов на осциллограф также подаётся сигнал синхронизации, запускающий ждущую развертку осциллографа. При этом на экране осциллографа можно наблюдать саму последовательность прямоугольных импульсов, а на экране анализатора спектра – распределение амплитуд спектральных составляющих этой последовательности.

В наблюдаемом спектре отсутствует информация об амплитуде нулевой гармоники, т.е. о величине постоянной составляющей; её положение (начало отсчёта шкалы частот) отмечено небольшим вертикальным выбросом.

Установим на анализаторе спектра режим работы с однократной разверткой и получим на экране спектр импульсов с параметрами  $f_{\text{повт}}=10^3\Gamma$ ц;  $\tau=25$ мкс; частотный масштаб  $m_x=5$ к $\Gamma$ ц/дел. Проведем измерения зависимости ширины спектра от длительности импульса  $\Delta\nu(\tau)$  при

 $M\Phi TH$ , 2021

увеличении  $\tau$  от 25 до 200 мкс. Результаты занесем в таблицу 1.

| $1/\tau, 10^{-3}$ c | $\Delta  u(	au)$ , к $\Gamma$ ц |
|---------------------|---------------------------------|
| 40                  | 36                              |
| 20                  | 18,5                            |
| 13,3                | 12                              |
| 10                  | 10                              |
| 8                   | 8                               |
| 6,7                 | 7                               |
| 5,7                 | 6                               |

Таблица 1 — Результаты измерения после пересчёта в единицы измерения,  $m_x=5 \mathrm{k} \Gamma \mathrm{ц}/\mathrm{дел}$ 

Видно, что соотношение неопределенности  $\Delta\nu(\tau)\tau=1$  выполняется с большой точностью и правая часть равна  $0.98\pm0.06$ .



Рис. 2 — График снятой зависимости  $\Delta \nu (1/ au)$ 

 $M\Phi$ ТИ, 2021 2

## Исследование спектра периодической последовательности цугов гармонических колебаний



Рис. 3— Схема для исследования спектра периодической последовательности цугов гармонических колебаний

Установим частоту несущей  $\nu_0 = 25 \kappa \Gamma$ ц. Посмотрим, как меняется вид спектра при увеличении длительности вдвое – рисунок 3. Видно, что с увеличением длительности импульса в два раза ширина спектра уменьшается в два раза, а амплитуды гармоник возрастают в два раза.



Рис. 4 — Спектры при длительности импульса 50мкс (левая фотография), 100мкс (правая фотография)

 $M\Phi$ ТИ, 2021 3

Теперь будем изменять несущую частоту  $\nu_0$  при фиксированных значениях  $f_{\text{повт}} = 1 \text{к} \Gamma \text{ц}, \tau = 100 \text{мкс}$  и частотном масштабе  $m_x = 5 \text{к} \Gamma \text{ц}/\text{дел}$ . Видно, что при её увеличении пик сдвигается от начала отсчёта вправо. Для нас это значит, что колебания проходят с теми же амплитудами, но уже на бОльших частотах (гармониках).



Рис. 5 — Спектры при несущей частоте  $\nu_0$  10 к $\Gamma$ ц (слева), 25 к $\Gamma$ ц (по центру), 40 к $\Gamma$ ц (справа)

Зафиксируем длительность импульсов  $\tau = 50$ мкс и изучим зависимость  $\delta \nu$  меэжу соседними спектральными компонентами от периода T (частоты повтореняия  $f_{\text{повт}}$  в диапазоне 1-8 к $\Gamma$ ц, подбирая удобный для измерения горизонтальный масштаб  $m_x$ . Результаты измерений нанесем на плоскость и получим график зависимости  $\delta \nu (f_{\text{повт}})$  – рисунок 6.



Рис. 6 —  $\delta \nu (f_{\text{повт}})$ 

 $M\Phi TH$ , 2021 4

## Исследование спектра гармонических сигналов, модулированных по амплитуде



Рис. 7 — Схема установки для исследования спектра гармонических сигналов, модулированных по амплитуде

Будем изменять глубину модуляции и снимать зависимость отношения амплитуды боковой линии спектра к амплитуде основной линии  $(a_{\text{бок}}/a_{\text{осн}})$ . На рисунке 8 отразим полученную зависимость. Из графика получаем угол наклона прямой f(m) равным  $0.58 \pm 0.05$ .



Рис. 8 — График зависимости  $\frac{a_{60\text{к}}}{a_{\text{осн}}}(m)$ 

Выставим глубину модуляции нулевой (m=0) и посмотрим, как меняется спектр при увеличении частоты модулирующего сигнала. На качественном уровне происходит расширение спектра, количество и высота гармоник остаются прежними. Боковые пики отдаляются от основного, который стоит на месте.

 $M\Phi$ ТИ, 2021 5