Technologie CMOS a FPGA

Jan Kořenek, Otto Fučík

Vysoké učení technické v Brně Fakulta informačních technologií Božetěchova 2, 612 66 Brno

Osnova

- Technologie výroby logických obvodů
- Charakteristika technologie CMOS
- Příkon v technologii CMOS
- Programovatelné struktury (PLD)
- Technologie FPGA

Přehled technologií výroby log. obvodů

		Zpoždění	Frekvence	Příkon/hradlo	Napájecí napětí		
Rodina	Popis	[ns]	[MHz]	[mW/MHz]	[V]	Rok	Poznámka
RTL	Resistor-	500	4	10	3.3	1963	První CPU z IO (použito pro
	transistor logic						řízení Apollo)
DTL	Diode-	25		10	5	1962	
	transistor logic						
CMOS	AC/ACT	3	125	0.5	3.3 nebo 5	1985	TTL kompatibilní úrovně
CMOS	HC/HCT	9	50	0.5	5	1982	TTL kompatibilní úrovně
CMOS	4000B/74C	30	5	1.2	10	1970	První CMOS
TTL		10	25	10	5	1964	Původní
TTL	L	33	3	1	5	1964	Low power
TTL	Н	6	43	22	5	1964	High speed
TTL	S	3	100	19	5		Schottky high speed
TTL	LS	10	40	2	5	1976	Low power Schottky high speed
TTL	ALS	4	50	1.3	5	1976	Advanced Low power Schottky
TTL	F	3.5	100	5.4	5	1979	Fast
TTL	AS	2	105	8	5	1980	Advanced Schottky
TTL	G	1.5	1125		1.65 - 3.6	2004	First GHz 7400 series logic
ECL	ECL III	1	500	60	-5.2	1968	Improved ECL
ECL	MECL I	8		31	-5.2	1962	První IO vyráběný komerčně
ECL	ECL 10K	2	125	25	-5.2	1971	Motorola
ECL	ECL 100K	0.75	350	40	-4.5	1981	
ECL	ECL 100KH	1	250	25	-5.2	1981	

Přehled technologií výroby log. obvodů

Technologie	Příkon	Rychlost
Resistor-Transistor Logic (RTL)	***	*
Diode-Transistor Logic (DTL)	***	*
Transistor-Transistor Logic (TTL)	**	**
Emitter-Coupled Logic (ECL)	***	***
Positive Metal Oxide Semiconductor (pMOS)	**	*
Negative Metal Oxide Semiconductor (nMOS)	**	**
Complementary Metal Oxide Semiconductor (CMOS)	*	**
Gallium Arsenide (GaAs)	***	***

Elektrické vlastnosti log. členů

Logické úrovně

 Log. členy jsou konstruovány tak, aby byly za normálních podmínek (teplota, napájecí napětí, rušení, atd.) schopny generovat log. úrovně v jistém intervalu hodnot a též rozlišovat log. úrovně v určitém rozmezí hodnot

Odolnost proti rušení (DC Noise Margins)

- Je zajištěna v určitém rozmezí tak, že log. člen je schopen akceptovat větší rozptyl
 vstupních hodnot log. úrovní, než jaký generuje na výstupu
- Rušení může být generováno např. kosmickým zářením, elektromagnetickým polem, kolísáním napájecího napětí apod.

Logický zisk (Fan-Out)

 Počet vstupů log. členů, které můžeme zapojit na výstup daného členu, při kterém jsou ještě zaručeny správné hodnoty log. úrovní pro celý rozsah pracovních podmínek (napájecí napětí, teplota)

Rychlost

- Doba, které je třeba k přechodu signálu ze vstupu na výstup
- Dána dobami přechodů mezi log. úrovněmi a dobou průchodu signálu
- Závisí na konstrukci log. členů, na počtu jiných log. členů zapojených na jeho výstup, na délce vodičů, na konstrukci desky s plošnými spoji atd.

Příkon

 Závisí na konstrukci log. členu, na počtu členů, frekvenci změn log. úrovní, parazitních atd.

Bipolární tranzistor: Použití při realizaci invertoru

- Náhradní schéma tranzistoru jako spínače
 - R přídavný rezistor (pull-up)
 - R_{CEsat} odpor tranzistoru mezi kolektorem a emitorem při jeho plném otevření (v saturaci)
 - V_{CEsat} zbytkové napětí tranzistoru mezi kolektorem a emitorem při jeho plném otevření (v saturaci)
- Schéma invertoru
 - V bázi musí být rezistor R1 omezující proud
 - Přenosová charakteristika

Osnova

- Technologie výroby logických obvodů
- Charakteristika technologie CMOS
- Příkon v technologii CMOS
- Programovatelné struktury (PLD)
- Technologie FPGA

Technologie CMOS

- Význam zkratek
 - MOSFET = MOS Field Effect Transistor
 - MOS = Metal-Oxide Semiconductor ... zkratka z MOSFET
 - CMOS = Complementary MOS
- Princip činnost
 - MOSFET tranzistor pracuje jako "rezistor řízený napětím"
- Logické úrovně typického CMOS obvodu

I Technologie CMOS

- "Gate" řídicí elektroda
 - Napětí mezi elektrodami gate a source ovládá činnost tranzistoru
- Tranzistor MOS s kanálem n
 - Elektroda drain je připojena na vyšší napětí než source
 - Pro Vgs=0 má přechodový odpor mezi drain a source (Rds) desítky MΩ
 - Pro Vgs vyšší než prahová úroveň má Rds jednotky Ω
- Tranzistor MOS s kanálem p
 - Elektroda source je na vyšším napětí než drain
 - Pro Vgs=0 má přechodový odpor mezi drain a source (Rds) desítky MΩ
 - Pro Vgs nižší než prahová úroveň má Rds jednotky Ω

Technologie CMOS: Invertor

CMOS Invertor

 Je sestaven ze dvou komplementárních tranzistorů MOSFET, z nichž vždy jeden je sepnut a druhý rozepnut

Technologie CMOS: Hradlo NAND

- Realizace pomocí komplementárních tranzistorů MOSFET
 - Schéma (a)
 - Pravdivostní tabulka (b)
 - Symbol (c)
- Ilustrace činnosti pomocí spínačů
 - Oba vstupy na úrovni
 L => výstup H (a)
 - Jeden vstup na úrovni L a druhý na H => výstup H (b)
 - Oba vstupy na úrovni
 H => výstup L (c)

	CONTRACTOR OF THE PARTY OF THE		manuscript of the same of	Partie Company			
(b)	Α	В	Q1	Q2	Q3	Q4	Z
	L	H L	off off on on	on off	on off	off on	H H
	MX						

Technologie CMOS: Hradlo NOR

- Realizace pomocí komplementárních tranzistorů MOSFET
 - Schéma (a)
 - Pravdivostní tabulka (b)
 - Symbol (c)

(b)	Α	В	QI	Q2	Q3	Q4	Z
	L H	H L	off off on on	on off	on off	off on	L L

- Vlastnosti
 - Hradlo CMOS NOR je pomalejší než hradlo CMOS NAND, neboť při stejných rozměrech mají tranzistory s p-kanálem větší přechodový odpor v otevřeném stavu
 - Pokud jsou tedy tranzistory s p-kanálem (Q2 a Q4) řazeny v sérii, budou mít pomalejší odezvu díky pomalejšímu nabíjení parazitních kapacit

I Technologie CMOS: Hradlo NAND s více vstupy

- Větší počet vstupů se realizuje přidáním dalších dvojic komplementárních tranzistorů
- Příklad tří-vstupového hradla NAND
 - Schéma (a)
 - Pravdivostní tabulka (b)
 - Symbol (c)

I Technologie CMOS: Počet vstupů hradel

- Anglicky "fan-in" počet vstupů, které může mít log. člen vyrobený danou technologií
- Technologie CMOS
 - Teoreticky je možno sestavovat log. členy s více vstupy pouhým řazením více tranzistorů MOSFET
 - Prakticky je však, z hlediska konečných přechodových odporů a potřebných rychlostí odezvy, tato možnost limitována
 - U hradel NAND typicky na 6
 - U hradel NOR typicky na 4

Větší množství vstupů se realizuje pomocí kaskády log. členů s méně vstupy

Technologie CMOS: Hradlo AND

- Hradlo AND lze nejjednodušeji sestavit zařazením invetoru za hradlo NAND
 - Složitější, dražší, větší zpoždění než NAND
 - Schéma (a)
 - Pravdivostní tabulka (b)
 - Symbol (c)

(b)	Α	В	Q1	Q2	QЗ	Q4	Q5	Q6	Z
	L	H	off off on on	on off	on off	off on	on on	off off	L L

=> častěji se vyrábějí invertující hradla (NAND a NOR)...

Technologie CMOS: AND-OR-INVERT / OR-AND-INVERT

- Příklad implementace logických forem
 - V praxi se často využívají log. struktury, které realizují jistou formu disjunktivní či konjunkivtní formy, a usnadňují tak implementaci kombinačních obvodů
 - Výhodou je skutečnost, že zpoždění těchto obvodů je podobné jako v případě členů NAND či NOR, i když realizují dvoustupňový logický obvod
- AND-OR-INVERT
 - Disjunktivní forma s invertorem

OR-AND-INVERT

 Konjunktivní forma s invertorem

Technologie CMOS: AND-OR-INVERT / OR-AND-INVERT

(a)

- AND-OR-INVERT
 - Schéma (a)
 - Pravdivostní tabulka (b)

- OR-AND-INVERT
 - Schéma (a)
 - Pravdivostní tabulka (b)

(b)

Technologie CMOS: Sledovač (buffer)

- Zařazením dvou invertorů za sebe vznikne tzv. buffer
 - Slouží pro distribuci signálu tam, kde je např. třeba obnovit integritu signálu, budit více vstupů následujících log. členů (hodinový signál), apod.
 - Schéma (a)
 - Pravdivostní tabulka (b)
 - Symbol (c)

I Technologie CMOS: Přenosový člen

- Přenosový člen (anglicky "transmission gate")
 - Funguje jako řízený spínač
 - Je sestaven z komplementárních tranzistorů
 - Oba jsou otevřeny člen přenáší signál (malá impedance mezi A a B)
 - Oba jsou zavřeny člen nepřenáší signál (velká impedance mezi A a B)
- Používá se v složitějších strukturách
 - Např. klopných obvodech
 - Multiplexorech (viz obr. vpravo)

Schmittův (klopný) obvod

- Využívá vnitřní zpětné vazby pro posun prahových úrovní podle toho, do které úrovně přechází
 - L do H ... větší hodnota (např. 2,9 V)
 - H do L ... menší hodnota (např. 2,1 V)
- Tento jev nazýváme hysterezí
 - Zlepšuje šumovou odolnost obvodů
- Přenosová charakteristika
- Symbol
- Časový diagram

Třístavový budič

- Anglicky "three-state buffer" nebo "tri-state buffer"
 - Umožňuje odpojit výstup obvodu
 - Tímto uvedeme obvod do tzv. třetího stavu či stavu vysoké impedance ("high impedance", Z)
 - Obvod má tedy tři stavy L, H a Z
 - Typicky se používá pro realizaci sběrnic
 - Schéma, pravdivostní tabulka a symbol

					· · · · · · · · · · · · · · · · · · ·		
ΕN	Α	В	С	D	Q1	<i>Q2</i>	OUT
L	L	Н	Н	L	off	off	Hi-Z
L	H	Н	Н	L	off	off	Hi-Z
H	L	L	Н	H	on	off	L
Н	Н	L	L	L	off	on	Н

Třístavový budič: Příklad použití

Sběrnice

- Jednotlivé subsystémy typického počítače jsou propojeny sběrnicí
- V jednom okamžiku se přenáší data z jednoho zdroje do jednoho cíle
 datové přenosy jsou multiplexovány v čase (pomalé)
- Výsledkem je zjednodušení propojovací infrastruktury

Sběrnice jednosměrná

- Třístavový budič slouží jako spínač
 - Může být ovládán signálem Enable aktivním v nule či v jedničce
- Třístavový budič slouží Příklad sběrnice se zdroji dat A a B
 - Signálem S se vybírá jeden z nich

Sběrnice obousměrná

- Často je třeba přenášet data oběma směry
 - Třístavové budiče je třeba zapojit antiparalelně
 - Vždy je aktivní jeden, nebo druhý

I Technologie CMOS: Elektrické vlastnosti

- Převodní charakteristika CMOS invertoru
 - 5V napájení
 - Vin vstupní napětí
 - Vout výstupní napětí

- Příklad CMOS HC logické úrovně a rozsah odolnosti proti rušení (noise margins)
 - V_{CC} napájecí napětí
 - V_{OHmin} min. výstupní napětí H = Vcc-0,1 V
 - V_{IHmin} min. vstupní napětí H = 70 % Vcc
 - V_{ILmax} max. vstupní napětí L = 30 % Vcc
 - V_{OLmax} max. výstupní napětí L = zem + 0,1 V

Napájecí napětí a logické úrovně

- Dnešním trendem je snižování příkonu a zvyšování rychlosti
- Napájecí napětí určuje řadu parametrů obvodů
 - Vyšší napájecí napětí = větší příkon a rychlost
 - Nižší napájení = menší odolnost proti rušení ("noise margin")
- Příklad technologií s různým napájecím napětím

Co s nevyužitými vstupy log. členů?

- Nevyužité vstupy
 - Je třeba "ošetřit" připojit na takové log. úrovně, které neovlivní chování obvodu a zajistí, že vstup nebude náchylný k rušení
- Způsob ošetření
 - Připojení k jiným vstupům (a)
 - Vstup hradla NAND na zdroj log. 1 napájecí napětí přes ochranný rezistor (b)
 - Vstup hradla NOR na zdroj log. 0 zem napájecího napětí přes rezistor, případně přímo (c)

Osnova

- Technologie výroby logických obvodů
- Charakteristika technologie CMOS
- Příkon v technologii CMOS
- Programovatelné struktury (PLD)
- Technologie FPGA

Příkon v technologii CMOS

- Dynamický / Aktivní příkon
 - Nabíjení a vybíjení parazitní kapacity
- Statický / Leakage příkon
 - Zbytkové proudy tranzistorů
- Příkon způsobený "zkraty"
 - Při přepnutí tranzistoru vzniká přímá cesta mezi VDD a GND

Dynamický/Aktivní příkon

- Náboj $Q = C \cdot U[C] = I \cdot t[As]$
- Energie $E = 1/2 \cdot Q \cdot U = 1/2 \cdot C \cdot U^2 [J = Ws]$
- Nabíjení $E_C = E_{RN} = 1/2 \cdot C \cdot U^2$
- Vybíjení $E_C = E_{RV} = 1/2 \cdot C \cdot U^2$
- Energie nabití/vybití

$$E_{0\to 1\to 0} = E_{RN} + E_{RV} = C \cdot U^2$$

• Příkon při periodickém nabíjení/vybíjení

$$P[W] = \frac{E[Ws]}{t[s]} = E[Ws] \cdot f[Hz] = C \cdot U^2 \cdot f \qquad \mathsf{R}_{\mathsf{V}} \Big[$$

• f... frekvence změn 0-1-0 (frekvence hodinového signálu)

Dynamický/Aktivní příkon

Dynamický příkon

$$P_{dynamic} = \alpha \cdot C \cdot V_{DD}^2 \cdot f_{clk}$$

Spotřeba energie

$$E_{dynamic} = \alpha \cdot C \cdot V_{DD}^2 \cdot S$$

Zpoždění

$$\tau_c(U) = k' \cdot C_L \cdot \frac{V_{DD}}{(V_{DD} - V_T)^2}$$

- α pravděpodobnost přepnutí logické úrovně hradla
- C_L zátěžová kapacita
- V_{DD}– napájecí napětí
- V_T prahové napětí
- f_{clk} frekvence hodin
- s počet taktů hodin

CMOS technologie: Faktor aktivity - příklad

- Jaký je průměrný ztrátový příkon hradla NAND při přepínání z nuly do jedničky?
 - Předpokládejme, že hodnoty vstupů se mění s frekvencí f_{CLK} s rovnoměrným rozložením

$$\alpha_{0\to 1} = 3/16$$

$$P = 3/16 \cdot f_{CLK} \cdot C_L \cdot V_{DD}^2$$

Current Input	Next Input	Output Transition
00	00	1 -> 1
00	01	1 -> 1
00	10	1 -> 1
00	11	1 -> 0
01	00	1 -> 1
01	01	1 -> 1
01	10	1 -> 1
01	11	1 -> 0
10	00	1 -> 1
10	01	1 -> 1
10	10	1 -> 1
10	11	1 -> 0
11	00	0 -> 1
11	01	0 -> 1
11	10	0 -> 1
11	11	0 -> 0

[Zdroj: MIT OpenSourceWare, 2006]

CMOS technologie: Napětí, příkon a zpoždění

- Příklad: snížení napájecího napětí na polovinu
 - Příkon klesne 4x

$$P_{(V_{DD}/2)} = \alpha \cdot f \cdot C \cdot (V_{DD}/2)^2 = 1/4 \cdot \alpha \cdot f \cdot C \cdot V_{DD}^2 = P/4$$

Zpoždění vzroste 2x

$$\tau_{(V_{DD}/2)} \approx \frac{1}{\frac{V_{DD}}{2}} = 2 \cdot \frac{1}{V_{DD}} = 2 \cdot \tau$$

CMOS technologie: Napětí, příkon a frekvence

- Příklad: Výpočet jednou výpočetní jednotkou
 - f=1 GHz, $V_{DD} = 2 \text{ V}$

$$P_1 = C \cdot 2^2 \cdot f = 4 \cdot C \cdot f$$

$$P_2 = 2 \cdot C \cdot 1^2 \cdot f / 2 = C \cdot f = P_1 / 4$$

- Příklad: Výpočet dvěma identickými jednotkami
 - $f=500 \text{ MHz}, V_{DD} = 1 \text{ V}$

Osnova

- Technologie výroby logických obvodů
- Charakteristika technologie CMOS
- Příkon v technologii CMOS
- Programovatelné struktury (PLD)
- Technologie FPGA

Programovatelné struktury: PLD

Programovatelný logický obvod

- Anglicky Programmable Logic Device (PLD)
- ROM, PLA, PAL, GAL, CPLD, FPGA
- Mají předdefinovanou strukturu, kterou lze různým způsobem programovat pro realizaci log. obvodů
- PLD mohou též obsahovat klopné obvody, třístavové budiče, paměti atd.
- Programování lze provést např.
 - Přepálením "pojistky" PAL, PLA
 - Naprogramováním paměťových buněk PROM GAL, CPLD
 - Naprogramováním paměti SRAM FPGA
 - Provádí se pomocí programátoru či přímo v zařízení pomocí specializovaného rozhraní

Výhody

- Uživatel si může realizovat složité log. obvody sám
- Obvody lze modifikovat
- Dnešní kapacity PLD obvodů jsou velmi velké (miliony ekvivalentních členů NAND)

Programovatelné struktury: Pole AND a OR

AND pole

Log. 0 na kterémkoliv ze vstupů $I_0..I_N$, generuje log. 0 na výstupu (montážní součin)

OR pole

Log. 1 na kterémkoliv ze vstupů $Y_0...Y_S$, generuje log. 1 na výstupu O (montážní součet)

- Programování
 - Se provádí přepálením (odpojením) spoje (pojistky) mezi voliči v rámci pole

Programovatelné pole OR

Popis

- Pole hradel OR s programovatelným propojením na vstupní proměnné v přímé i negované podobě (invertor není zakreslen)
- Realizuje konjunktní formu
- Příklad
 - Nenaprogramované pole OR (a)
 - Naprogramované pole OR (b)

Programovatelné pole AND

Popis

- Pole hradel AND s programovatelným propojením na vstupní proměnné v přímé i negované podobě (invertor není zakreslen)
- Realizuje disjunktní formu
- Příklad
 - Nenaprogramované pole AND (a)
 - Naprogramované pole AND (b)

Programovatelné struktury: Implementace ÚNDF

Duálně platí, že pole OR-AND implementuje součin sum (Úplná normální konjunktní forma, POS)

Programovatelné struktury: PLA

Programovatelné struktury: PLA

- Programmable Logic Array (PLA)
 - Obě pole jsou programovatelná
 - Výhodou je skutečnost, že jsou plně programovatelná
 - Nevýhodou je větší zpoždění kvůli programovacím propojkám ("pojistkám") v obou polích, které mají větší zpoždění než vodiče a log. členy díky přechodovému odporu a parazitním kapacitám
 - Pomalé, drahé

Programovatelné struktury: PAL

Programovatelné struktury: PAL

- Programmable Array Logic (PAL)
 - Pouze pole AND je programovatelné
 - Nemají omezení pamětí PROM (díky programovatelnému poli AND)
 - Jsou rychlejší díky fixnímu poli OR bez propojek
 - Jsou levnější než PLA
 - Realizuje disjunktní formu

PLD: Příklad použití PAL

Příklad implementace funkce tří proměnných pomocí PAL

Programovatelné logické obvody nevolatilní

- PAL (Programmable Array Logic)
 - Programovatelné AND pole (volba mintermu normální disjunktní formy se provádí pomocí destrukce propojek)
 - Pevné OR pole (logický součet vybraných mintermů), které jsou často doplněny o klopné obvody
- GAL (Generic Array Logic)
 - Obdobná architektura jako PAL
 - Propojky jsou však elektricky programovatelné (řízené pomocí paměťových buněk např. typu EEPROM)
- CPLD (Complex Programmable Logic Devices)
 - Skládají se z AND-OR polí a registrů s elektricky (typicky pomocí paměťových buněk typu FLASH) programovatelnými křížovými přepínači

Osnova

- Technologie výroby logických obvodů
- Charakteristika technologie CMOS
- Příkon v technologii CMOS
- Programovatelné struktury (PLD)
- Technologie FPGA

Technologie ASIC vs FPGA

- Běžné procesory nepokrývají výkonnostní požadavky řady aplikací
 - Počítačové sítě, počítačová grafika, vědecké výpočty a další
- Technologie FPGA a ASIC mohou být vhodnou alternativou

Kompromis mezi flexibilitou a výkonem

Flexibilita – v kolika aplikacích je vhodné danou technologii použít

Výkon – porovnání rychlosti aplikací na různých technologiích

Nové technologie zvyšují rychlost FPGA čipů. Snižuje se počet aplikací, které je nutné řešit pomocí ASIC

Technologie ASIC vs FPGA

- Cena návrhu masky u ASIC obvodů se pro nové technologie neustále zvyšuje
 - Cena = maska + návrh + verifikace + risk
- ASIC obvody jsou využívány zejména v extrémních aplikacích vyžadujících rychlost, malé rozměry, nízká spotřebu a vyráběných ve velkých sériích
- Výhody FPGA oproti ASIC:
 - Jednodušší návrh aplikace
 - Rychlejší vývoj, tj. rychlejší uvedení na trh
 - Možnost rekonfigurace
 - Oprava chyb
 - Nové vlastnosti aplikace

Architektura FPGA

- 2D Matice konfigurovatelných logických bloků (CLB)
- Obvody pro řízení hodinového signálu (DCM, PLL, apod.)
- Vestavěné komponenty: blokové paměti a násobičky, DSP bloky, GTX, PCIe, PowerPC apod.

Konfigurovatelný blok logiky (CLB)

Obsahuje

- Několik SLICE bloků (menší logické elementy)
- Nezávislé "carry řetězce" pro konstrukci rychlých sčítaček, násobiček, apod.
- Rychlé připojení k sousedním členům a připojení ke globální propojovací matici

Technologie

- Spartan3
 - 4 Slices / CLB
- Virtex UltraScale
 - 1 Slices / CLB

Architektura SLICE

Obsahuje

- Funkční generátory (FG)
 - LUT
 - RAM
 - SRL
- Registry/Latche
- Multiplexory MUXFx
- "Carry" logiku
- Pomocná logika pro aritmetiku

Technologie

- Spartan3
 - 2x FG, 2x FDD
 - 768 33,280 SLICEs
 - 1536 66,560 FGs a registrů
- Virtex UltraScale
 - 8x FG, 16x FDD
 - 44k 316k SILICEs
 - 358k 2,5M FGs, dvojnásobek registrů

FG jako Look-Up Table (LUT)

- Základní logické hradlo: N-bitový vstup, 1-bitový výstup
- Realizuje libovolnou binární funkci // proměnných
- Technologie
 - Spartan3: N=4
 - Virtex UltraScale: N=6
- Příklad:
 - 4-vstupé hradlo

$$F(A,B,C,D) = \overrightarrow{ABCD} \text{ or } \overrightarrow{ABCD} \text{ or } \overrightarrow{ABCD}$$

Α	В	С	D	Υ
0000000011111111	0000111100001111	001100110011	01010101010101	0100000001100001

FG jako Look-Up Table (LUT)

- Pomocí multiplexerů MUXFx lze jednoduše vytvářet složitější funkce
- MUXFx je potom označován jako MUXF5, MUXF6, ...
- Příklad:
 - 4-vstupé hradla LUT

FG jako paměťový prvek (RAM16)

Tvoření větších paměťových celků

- Pomocí MUXFx lze jednoduše tvořit paměti 32x1 bit, 64x1 bit, atd.
- Paměti lze paralelně řadit vedle sebe a tvořit paměti o libovolné šířce dat

FG jako posuvný registr (SRL)

- Synchronní zápis, data v registru se posunou o jednu pozici
- Asynchronní čtení ze zadané pozice, výstup se objeví na Q
- Jednoduché rozšíření pomocí multiplexorů MUXFx
- Vhodný například pro konstrukci zpožďovacích obvodů, generátorů náhodných čísel (LFSR), čítače libovolných sekvencí, apod.
- Velká úspora zdrojů oproti implementaci pomocí registrů umístěných ve SLICE

I "Carry" logika

- Používá se pro konstrukci rychlých sčítaček, čítačů, komparátorů apod.
- Carry logika je v každém SLICE tvořena z:
 - 2x multiplexor MUXCY
 - 2x hradlo xor XORCY
 - 1x hradlo or ORY
- Příklad: Komparátor

VHDL:

```
Y <= '1'
when (A = B)
else '0';
```

- LUTy porovnávají části operandů
- MUXCY vytváří logický AND

I DSP Bloky

- V některých technologiích zcela nahrazuje vestavěné násobičky
- Zpravidla obsahuje:
 - nasobičku NxM bitů
 - sčítačku/odčítačku K bitů
 - multiplexor
 - interní sběrnici
- Vhodné pro tvorbu DSP aplikací:
 - MAC FIR filtrů
 - paralelních FIR filtrů
 - vícekanálových filtrů
 - filtrů s proměnnou rychlostí
- Technologie Virtex UltraScale:
 - N=27, M=18, K=48
 - 600-2880 DSP bloků

FPGA: Block SelectRAM

- Vestavěný paměťový blok o velikosti jednotek kB
- Obvykle synchronní čtení i zápis (data jsou dostupná v následujícím hodinovém taktu)
- Jedno-portová i dvou-portová varianta, pro každý port lze dostupný paměťový prostor rozdělit do různých datových šířek
- Příklad (paměť 2kB):
 - 16k x 1 bit
 2k x 8 bits
 - 8k x 2 bits
 1k x 16 bits
 - 4k x 4 bits
 512 x 32 bits

Vestavěné IP bloky

- Vysokorychlostní transceivery s podporou rozhraní
 - PCI Express Endpoint (až do PCI gen.5)
 - Rozhraní Ethernet (od 1 Gb až do 400 Gb)
- Podpora velkokapacitních pamětí
 - DDR DRAM řadiče integrované na čipu
 - HBM (460 GB/s) paměť integrovaná přímo na čipu
- Procesor ARM 1 až 4 jádra A9, A53 nebo A72
- Systém monitoring čidla pro teplotu a napájení

FPGA:Propojovací síť

- Propojovací síť je tvořena horizontálními a vertikálními vodiči
- CLB bloky jsou na tuto síť připojeny skrze C-boxy (Connection)
- V místě průsečíku horizontálních a vertíkálních vodičů je umístěn S-Box (Switch)
- "Island Style" architektura
- Až 80% plochy FPGA tvoří propoje

Input/Output Block (IOB)

- Každý pin FPGA může být konfigurován jako vstup, výstup nebo obojí
- Jsou podporovány jednotlivé vodiče i diferenciální páry (pouze u dvou sousedních pinů)
- Je podporováno velké množství standardů:
 - LVTTL, LVCMOS, PCI33, PCI66, PCI-X, GTL, HSTL, STTL, AGP
 - LVDS, LDT, LVPECL
- Podpora DDR1,2,3,4,QDR
- Digitálně řízená impedance (DCI) redukuje nutnost velkého množství ukončovacích rezistorů na desce
- Technologie:
 - 124 784 IOB ve Spartan3
 - 520 624 IOB ve Virtex UltraScale

FPGA: Konfigurace

- Konfigurace FPGA zahrnuje nastavení:
 - jednotlivých FG, registrů, carry řetězců, ...
 - BRAM pamětí včetně jejich počátečního obsahu
 - I/O bloků (použitá technologie, režim, připojení)
 - veškerých dalších vestavěných bloků
 - propojovacích prvků C-boxů, S-boxů
- Konfigurace je obvykle na FPGA čipu uložena v paměti typu SRAM

 po vypnutí napájení se konfigurace ztrácí
- Některé typy konfigurovatelných obvodů (CPLD) používají paměť typu FLASH

 omezený počet programování

Způsoby konfigurace

- Režim Master
 - FPGA čip si sám po zapnutí nahraje konfiguraci z externí paměti
- Skrze sériové rozhraní
 - SPI
 - Nevýhodou může být delší doba pro načtení konfigurace
- Skrze paralelní rozhraní
 - BPI, SelectMAP
 - Použité vodiče obvykle nemohou být použity pro jiné účely a zvyšují cenu plošného spoje

L Částečná rekonfigurace

- Možnost rekonfigurovat za běhu pouze část FPGA čipu
- Řídit lze z venku nebo zevnitř FPGA přístup pomocí ICAP (Internal Configuration Access Port) komponenty.
- Rekonfigurace nabízí nové možnosti rozsáhlé aplikace lze rozdělit na několik částí a vykonávat je postupně, úspora zdrojů, energie.

Děkuji za pozornost