| Próf 2019                                                               | vera með fylkið M,M-1,,1,M+1,M+2,             | að skrifa en- durkvæma fallið compute-                               | þann fjölda í breytu í hverjum hnút, köl-                                         | tali? O(N)                                    |
|-------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------|
|                                                                         | , N og þá kostar innsetningin bara            | WeigthSum sem reiknar út rétt gildi fyrir                            | lum hana x.Upphafsstillum allar breytur                                           | Hver er keyrslutíminn á insert í forgangs-    |
|                                                                         | O(1) og tímaflækjan verður M+N.Í versta       | weightSum og geymir gildin í hnútunum.                               | með 0, nema í hnútnum t setjum við                                                | biðröð ef notuð eru óröðuð fylki? O(1)        |
|                                                                         | tilfelli (t.d. a minnkandi) er alltaf keyrt   | private void computeWeightSum(Node                                   | fjöldann sem x=1.Þar sem netið er DAG                                             | Hver er keyrslutíminn á insert í for-         |
|                                                                         | · · · · · · · · · · · · · · · · · · ·         | x)  if (x==null) return;                                             | byrjum við á að finna grannfræðilega                                              | gangsbiðröð ef notuð er kös (e. heap)?        |
|                                                                         | innsetningu, heildarkostnaður verður þá       | computeWeightSum(x.left);                                            | röðun á línulegum tíma. Síðan förum við                                           | $O(\log(N))$                                  |
|                                                                         | N*log(M)                                      | computeWeightSum(x.right);                                           | í gegnum þessa röð og fyrir hvern hnút v                                          | Hvað tekur langan tíma að búa til löglega     |
| Hver af eftirfarandi netareikniritum                                    |                                               | weightSum = weight;                                                  | þá bætum við v.x við x-gildið hjá öllum                                           | kös (heap) úr N stökum? O(N)                  |
|                                                                         | búið er að setja stökin 5,3,8,1,2,6,4,9,7     |                                                                      | hnútum sem v bendir á.Í lokin skoðum                                              | Hver er keyrslutíminn fyrir insert að-        |
| O I                                                                     | inn í þessari röð:                            | x.left.weightSum;                                                    | við s.x sem er þá fjöldi leiða frá t til s.                                       | gerðina í raðaðan lista af lengd n? O(n)      |
| eða ekki (Connected): Topological sort                                  | (a) Hrúgu (Max Heap). Hér þarf bara að        | if (x.right != null)weightSum +=                                     | Gefið er stefnt vigtað net (Directed                                              | Hvert er versti keyrslutími fyrir leit í      |
| Hvert af eftirfarandi röðunaraðferðum                                   |                                               | x.right.weightSum;                                                   | Weighted Graph) G, með vigtir w(e) 0 á                                            | BST? O(n)                                     |
| hefur sömu tímaflækju fyrir besta og                                    | og samsvarandi fylki:                         | Skrifið fall sem tekur inn hnút x og tölu                            | öllum leggjum og hnúta s og t í netinu.                                           | Hver er meðaltals tími fyrir leit í BST?      |
| versta tilfelli og er stöðug (stable): Mer-                             | ,                                             | w og skilar minnsta hnút y í hluttrénu                               | Lýsið reikniriti sem finnur stystu leið                                           | $O(\log(N))$                                  |
| gesort                                                                  |                                               | undir x sem hefur weightSum a.m.k                                    | með fæsta hnúta á milli s og t. Þ.e. af                                           | Hvert er versti keyrslutími fyrir leit í 2-3  |
| Reiknirit hefur tímaflækjuna T(n)<-                                     |                                               | w (hér er gert ráð fyrir að þegar hafi                               | öllum leiðum milli s og t sem eru jafnlan-                                        | tré? O(log(N))                                |
|                                                                         | (b)Tvíleitartré (Binary Search                | verið fyllt inn í weightSum með réttum                               | gar þegar vigtirnar eru lagðar saman þá                                           | Hvert er versti keyrslutími fyrir leit        |
|                                                                         | Tree).teikna lokaniðurstöðu:                  | gildum)                                                              | er þessi leið með minnsta fjölda hnúta.                                           | í hakkatöflu með open addressing og           |
| staðreynd:Tímaflækjan er n2 fyrir                                       |                                               | private Node find(Node x, double w)                                  | Hér þarf ekki að skrifa kóða, en lýsingin                                         | tengdum listum? O(N)                          |
| öll n.                                                                  |                                               | if (x==null) return;                                                 | þarf að vera nógu nákvæm til að hægt sé                                           | Hver er meðaltals keyrslutími fyrir leit í    |
| Hver er tímaflækja á eftirfarandi aðferð,                               |                                               | if (weightSum < w) return null;                                      | að breyta henni í kóða.                                                           | hakkatöflu með open addressing? O(1)          |
| sem fall af lengd strengsins N:                                         | (c) Vinstri hallandi rautt-svart-tvíleitartré | Node $y = find(x.left,w);$                                           | Leið 1. Höldum utan um nýja vigt sem er                                           | Hve lengi tekur að leggja saman N stafi       |
| public static String rev(String s)                                      |                                               | if $(y != null)   return y;    else    return x;$                    | par af double og int. Double hlutinn er                                           | 'a' í streng s í for lykkju?N <sup>2</sup>    |
| String $r = $ ;    int $N = $ s.length();                               | Tree). Þetta er sú útgáfa sem við fórum       | Þetta forrit tekur inn net G og ákvarðar                             | w, int hlutinn er fjöldi hnúta á leiðinni.                                        | Hve lengi tekur helmingunarleit að            |
| for (int $i = 0$ ; $i < N$ ; $i++$ )                                    | yfir í námskeiðinu. Teiknið gagnagrin-        | hvort netið sé tré (tree). Tré eru net                               | Útfærum samanburð sem ber saman                                                   | finna stak í N staka lista í versta tilfelli? |
| r = s[i] + r;    return r;                                              | dina eins og hún lítur út eftir hverja        | sem hafa enga hringi (cycles) og eru                                 | w fyrst og ef það er jafnt þá ber það                                             | $O(\log(N))$                                  |
| Eftir i umferðir er r með i+1 staf. Aðgerð                              | innsetningu, táknið rauða leggi með r.        |                                                                      | saman int hlutann.Breytum síðan relax                                             | Hve lengi tekur helmingunarleit að finna      |
| númer i kostar því O(i) aðgerðir því það                                | Til einföldunar eru fyrstu fjögur trén        | dfs fallið tekur inn auka hnút u sem er                              | fallinu í Dijkstra til að raða eftir þessari                                      | stak í N staka lista í besta tilfelli?O(1)    |
| þarf að leggja saman tvo strengi, af lengd                              | gefin:                                        | hnúturinn sem kallaði á v. Klárið forritið                           | tvennd og uppfæra með því að þegar                                                | Hve lengi tekur Find aðgerðin með quick       |
| i og 1. Heildarfjöldi aðgerða verður því                                |                                               | með því að fylla í reitina:                                          | nýjum legg er bætt við þá er bætt w                                               | union aðferðinni? O(N)                        |
| $1+2+3++N = N^2(O(N^2))$                                                |                                               | public class DepthFirstSearch                                        | við double töluna og 1 við leggjatöluna                                           | Hve lengi tekur Find aðgerðin með             |
| Gefið er eftirfarandi fall sem finnur M                                 |                                               | private boolean[] marked;                                            | sem samsvarar því að telja minnstu vigt                                           | weighted-quick union aðferðinni?              |
| stærstu gildi í fylki af stærð N:                                       |                                               | private boolean isTree;                                              | og af þeim sem er minnst, þá minnsta                                              | $O(\log(N))$                                  |
| public static Iterable <integer></integer>                              | TT 11 - G - C - X 40 - X 1 - 11 - C 11:       | public DepthFirstSearch(Graph G)                                     | fjölda leggja á leiðinni. Dijkstra með                                            | Hve lengi tekur Find aðgerðin með             |
| topM(int[] a, int M)                                                    | Hakkatafla af stærð 12 með hakkafallinu       | marked = new boolean[G.V()];                                         | þessari breytingu leysir vandamálið. Leið                                         | weighted-quick union aðferinni í besta        |
| 0 ,                                                                     | h(k) = 3k og árekstrar eru leystir með        | is Tree = true; $  $ dfs(G,0,0);                                     | 2. Finnum stystu leið með venjulegu                                               | tilfelli? O(1)                                |
| . 0 11                                                                  | Linear Probing. Hér þarf bara að teikna       | for (int $i = 0$ ; $i < G.V()$ ; $i++$ )                             | Dijkstra og finnum svo alla leggi sem eru                                         | Hve langan tíma tekur að leysa percolati-     |
| MinPQ <integer>(M+1);</integer>                                         | lokaniðurstöðu:                               | if (!marked[i]) isTree = false;                                      | í stystu leiðar trénu og alla þá sem gætu                                         | on vandamálið á NxN borði? $O(N^2)$           |
| for (int $i = 0$ ; $i < N$ ; $i++$ )                                    |                                               | public boolean isTree()  return isTree;                              | verið á einhverri stystu leið (þ.e. eru                                           | Hversu mikið auka minni notar merge           |
| if (pq.size() < M) pq.insert(a[i]);                                     |                                               | <pre>private void dfs(Graph G, int v, int u) marked[v] = true;</pre> | jafnir þegar við keyrum relax). Búum til<br>nýtt net með einungis þessum leggjum, | Hvaða röðunaraðferð er ekki stöðug?           |
| $if (pq.min() \le a[i])$                                                | Næstu tvær spurningar eru óháðar en           | for (int w : G.adj(v))  if (!marked[w])                              | látum allar vigtir á leggjum vera 1 og                                            | Selection sort                                |
| pq.insert(a[i]); pq.delMin();  return pq;                               | nota sömu skilgreiningu á Node klasa í        | dfs(G, w, v);  else                                                  | keyrum Dijkstra aftur.                                                            | Hvaða 3 röðunaraðferðir notar introsort?      |
| , ,                                                                     | tvíleitartré (BST):                           | if $(w != u)  $ is Tree = false;                                     | Spurningar                                                                        | Quicksort, Heapsort og Insertion sort         |
| , ,                                                                     | private class Node   private Key key;         | Gefið er DAG (Directed Acyclic Graph)                                | Hver er keyrslutími á insertion sort þegar                                        | Hvaða aðferð þurfa lyklar að hafa til að      |
| dæmi um eitt inntak sem nær bestu<br>tímaflækju og annað sem nær verstu |                                               | G og tveir hnútar s og t í netinu. Lýsið                             | fylkið er í öfugri röð? $O(N^2)$                                                  | vera notaðir í uppflettitöflu? compareTo      |
| , 0                                                                     | right;                                        | reikniriti sem finnur fjölda ólíkra leiða                            | Hver er keyrslutíminn fyrir merge að-                                             | eða hashCode                                  |
|                                                                         | private double weight;    private double      |                                                                      | gerðina ef listarnir eru af lengd n? O(N)                                         | Hver er meðaltals tími fyrir leit í BST?      |
| O                                                                       | weightSum;                                    | línulegur í stærð G. Hér þarf ekki að                                | Hver er keyrslutíminn fyrir partition                                             | $O(\log(N))$                                  |
| sinni) farið inn í seinni if setninguna,þ.e.                            |                                               | skrifa kóða, en lýsingin þarf að vera nógu                           | aðgerðina ef listarnir eru af lengd n?                                            | Hvaða röðunaraðferð líkist BST?               |
|                                                                         | byngd hnúts, weightSum er summan af           | , 0 1                                                                | O(N)                                                                              | Quicksort                                     |
|                                                                         | öllum weight gildum í hluttrénu.              | kóða.                                                                | Hver er keyrslutíminn á quick sort þegar                                          | Hver er versta dýpt á llrbt? O(log(N))        |
| gerð þar kostar $\log(i) \le \log(M)$ aðgerðir,                         |                                               | Hér þarf að halda utan um fjölda leiða                               | inntakið er slembið? O(Nlog(N))                                                   | (sama með N hnúta)                            |
| samtals $M \log(M) + N$ . Reyndar er hægt að                            | gefin en öll weightSum vantar. Klárið         | frá t til hvers hnúts v í netinu, geymum                             | Hver er keyrslutíminn á select að meðal-                                          | ,                                             |
| anitais ivi log(ivi) + iv. Keyndar et nægt ao                           | o in on weightoun vantar. Riano               | in the inverse initiates viriatina, geymum                           | 11. 51 61 Key1014tillillilli a befeet ab filebal                                  | 11.01 era tengomi a mini 2 5 tijaa og         |

```
hnúta tré með rauðan legg til vinstri
                                                                                  2); g.AddEdge(1, 2); g.AddEdge(2, 0);
Hver er fjöldi aðgerða sem þarf að
                                       Hvaða netareiknirit er notað til að
                                                                                  g.AddEdge(2, 3); g.AddEdge(3, 3); Con-
framkvæma fyrir vinstri snúning í BST
                                        finna út hvort brigðgeng stöðuvél
                                                                                  sole.WriteLine("Following is Depth First
tré með N hnútum? O(1)
                                         (NFA) sambykki streng?DFS, BFS eða
                                                                                  Traversal "+ "(starting from vertex 2)");
                                         reachability
Hve stór er in síða (page) á disk? 4k
                                                                                  g.DFS(2); Console.ReadKey();
                                       Hver er munurinn á löggengri stöðuvél
Hver er sóknartími til að sækja bæti úr
minni tölvu (RAM)? 100ns
                                         (DFA) og brigðgengri stöðuvél (NFA)?
                                                                                  public class DijkstraSP
Hvernig burfa equals og hashCode að-
                                        brigðgeng stöðuvél hefur margar leggi
                                                                                  private double[] distTo;
ferðirnar að passa saman? hashCode þarf
                                        með sömu tákn úr sama ástandi.
                                                                                  private DirectedEdge[] edgeTo;
að skila sama gildi fyrir tvo hluti ef þau
                                                                                  private IndexMinPQ<Double> pq;
                                        Dæmi
                                         4 3 2 1 0 9 8 7 6 5 push fyrstu 5 tölunum,
                                                                                  public DijkstraSP(EdgeWeightedDigraph
Hver er tíminn sem það tekur að reikna
                                        þá prentast 4 3 2 1 0. aftur fyrir seinni 5
                                                                                  G, int s)
út hashCode fyrir String hlut af lengd N?
                                        tölurnar og þá prentast út 9 8 7 6 5. Þessi
                                                                                  for (DirectedEdge e : G.edges())
O(N)
                                         röð er því möguleg.
                                                                                  if (e.weight() < 0)
Hver er meðaltalstími fyrir leit í hak- public class Quick public static throw new IllegalArgumentExcepti-
katöflu með tengdum listum? O(1)
                                         void sort(Comparable[] a) StdRan-
Hver er ókostur við að geyma netið sem
                                        dom.shuffle(a); sort(a, 0, a.length - 1);
tvívítt 0-1 fylki? O(N^2) minnisnotkun
                                         private static void sort(Comparable[]
Hvaða gagnagrind notar BFS við leit?
                                        a, int lo, int hi) if (hi \leq lo) return; int for (int v = 0; v \leq G.V(); v++)
Biðröð (FIFO, queue)(sama í stefndu
                                        j = partition(a, lo, hi); sort(a, lo, j-1);
                                         sort(a, j+1, hi); assert isSorted(a, lo, hi);
Hvaða gagnagrind notar DFS við leit?
                                        private static int partition(Comparable[]
Stafla eða fallaköll
                                        a, int lo, int hi) int i = lo; int j = hi + 1; (G.V());
Hve langan tíma tekur BFS að skoða allt
                                        Comparable v = a[lo]; while (true) while
netið? O(E+V)
                                         (less(a[++i], v))if (i == hi) break; while
Hvaða reiknirit er hægt að nota til að
                                        (less(v, a[-j]))if (j == lo) break; if (i >= j)
finna samhengisþætti neta?Union Find,
                                        break; exch(a, i, j); exch(a, lo, j); return j;
BFS, DFS
Hvaða reiknirit er hægt að nota til að
                                         public class int binarySearch(int arr[],
finna hvort net hafi hring? DFS og BFS
                                         int l, int r, int x) if (r \ge 1) int mid = l +
Hvaða grunnleitaraðferð notar grann-
                                        (r-1) / 2; if (arr[mid] == x) return mid; if
fræðileg röðun (topological sort)? DFS
                                         (arr[mid] > x) return binarySearch(arr, l,
Hvaða skilyrði eru fyrir því að hægt sé
                                        mid - 1, x); return binarySearch(arr, mid
að finna grannfræðilega röðun í stefndu
                                        + 1, r, x); return -1; int main(void) int
neti?Netið þarf að vera laust við stefnda
                                        arr[] = 2, 3, 4, 10, 40; int n = sizeof(arr)
hringi, þarf að vera DAG, Directed
                                        / sizeof(arr[0]); int x = 10; int result
Hvaða leitarreiknirit gefur stystu leið í = binarySearch(arr, 0, n - 1, x); (result
stefndum netum? BSF
                                         == -1) ? printf(Ëlement is not present
Hvað er spannandi tré (spanning tree)?
                                        in array"): printf(Element is present at
                                        index return 0;
Hlutnet sem er samanhangandi, án
hringja (tré) og inniheldur alla hnúta
netsins
                                         public class Graph private int V; private
Hvaða gagnagrind nota reiknirit Prims List<int>[] adj; Graph(int v) V = v; adj
til að halda utan um leggi sem gætu bæst = new List<int>[ v ]; for (int i = 0; i <
við MST? Forgangsbiðröð með vísi (e. v; ++i) adj[i] = new List<int>(); void
Indexed Priority Queue)
                                        AddEdge(int v, int w) adj[v].Add(w); void
Í hvaða röð eru hnútar skoðaðir DFSUtil(int v, bool[] visited) visited[v]
  reikniritinu fyrir stystu leið í = true; Console.Write(v + ); List<int>
DAG?grannfræðilegri röð (topologi- vList = adj[v]; foreach(var n in vList)
cal order)
                                        if (!visited[n]) DFSUtil(n, visited); void
Hvernig er lengsta leið fundin í DFS(int v) bool[] visited = new bool[V];
DAG?stysta leið notuð með neikvæðar DFSUtil(v, visited); public static void
```

vigtir

DAG?E+V

2-hnútar eru hnútar, 3-hnútar eru 3 Hver er tímakeyrslan á stystu leið í

vinstri hallandi rauð-svartra trjáa (llrbt)?

neti)

```
on(ëdge "+ e + "has negative weight");
distTo = new double[G.V()];
edgeTo = new DirectedEdge[G.V()];validateVertex(s);
distTo[v] = Double.POSITIVE_INFINITY; distTo[s] =
pq = newIndexMinPQ < Double >
pq.insert(s, distTo[s]); while(!pq.isEmpty())
intv = pq.delMin(); for(DirectedEdgee:
G.adi(v)
relax(e); assertcheck(G, s);
privatevoidrelax(DirectedEdgee)
intv = e.from(), w = e.to();
if(distTo[w] > distTo[v] + e.weight())
distTo[w] = distTo[v] + e.weight();
edgeTo[w] = e; if(pq.contains(w))
pq.decreaseKey(w,distTo[w]);
elsepq.insert(w, distTo[w]);
publicclassBST
KeyextendsComparable <
, Value >
privateNoderoot; privateclassNode;
privateKeykey; privateValueval;
privateNodeleft, right; privateintsize;
publicNode(Keykey, Valueval, intsize)
this.key = key;this.val = val;this.size =
publicBST()publicbooleanisEmpty()
returnsize() == 0; publicintsize()
returnsize(root); privateintsize(Nodex)
if(x == null)return0; elsereturnx.size;
publicbooleancontains(Keykey)
if(key == null)thrownew
IllegalArgumentException(ärgumentto
contains()isnull");
```

Main(String[] args) Graph g = new returnget(key)!

Graph(4); g.AddEdge(0, 1); g.AddEdge(0, null; public Valueget(Keykey)

```
Sort
               best
                           worst
             O(N^2)
                           O(N^2)
Selection
                           O(N^2)
insertion
              O(N)
                           O(N^2)
 quick
           O(Nlog(N))
           O(Nlog(N))
                         O(Nlog(N))
 merge
 heap
           O(Nlog(N))
                         O(Nlog(N))
Problem
           Algorithm
                            Time
```

returnget(root, key); privateV alueget

IllegalArgumentException("callsget()withanu

(Nodex, Keykey)

elsereturnx.val;

if(key == null)thrownew

if(x == null)returnnull;

intcmp = key.compareTo(x.key);

if(cmp < 0)returnget(x.left, key);

elseif(cmp > 0)returnget(x.right, key);



| Problem                       | Algorithm        | Time    | Space |
|-------------------------------|------------------|---------|-------|
| path                          | DFS              | E+V     | V     |
| Shortest path                 | BFS              | E+V     | V     |
| Cycle                         | DFS              | E+V     | V     |
| Directed path                 | DFS              | E+V     | V     |
| Directed Cycle                | DFS              | E+V     | V     |
| Topological sort              | DFS              | E+V     | V     |
| Connected components          | DFS              | E+V     | V     |
| Minnimum spanning tree        | Kruskal          | E log E | E + V |
| Minnimum spanning tree        | Prim             | E log V | V     |
| Shortest paths(nonneg weights | Dijkstra         | E log V | V     |
| Shortest paths(no cycles)     | Topological sort | E+V     | V     |