Project Design Phase-II Data Flow Diagram & User Stories

Date	03 October 2022
Team ID	PNT2022TMID40634
Project Name	Project - Natural Disaster Intensity analysis and Classification using Artificial Intelligence
Maximum Marks	4 Marks

Data Flow Diagrams:

Disasters caused by natural hazards are receiving increasing attention globally. They cause enormous casualties and huge economic losses, and adversely affect social stability. Simultaneously, social media popularity for sudden major disasters has also surged. Many individuals employ social media as an effective channel for timely accessible information in emergencies.

Example:

FLOW

- 1. User start the app speech to text for disaster related issues.
- 2.User can make watson Natural language understanding for analysis.
- 3.Next user was watson knowledge studio for pandemic situations.

- 4.user natural language understanding knowledge studio.
- 5. Attend the first responders can solve the disaster problems and safe people.

User Stories

Use the below template to list all the user stories for the product.

Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Preparedness	USN-1	Proposed method can predict the short term spread of wildfire	I can accept the proposed method of wildfire	High	Sprint-1
Mitigation	USN-2	Develop a public platform to inform early tsunami prediction & information.	Public feedback is compulsory for prediction process	Low	Sprint-1
Random forest	USN-3	Evaluate the flood severity in terms of sensitivity, specificity and accuracy as 71.4% respectively	Particle swarm optimization and other deep learning techniques can be used framework	High	Sprint-2
Recovery	USN-4	Prediction occurs in the past dataset to recover the natural disaster issue.	Dynamic time series data required for clustering process	High	Sprint-1
Machine learning techniques	USN-5	The gradient boosting tree and CLIPER model used for cyclone prediction.	Model is still weak to produce velocity sensitivities	Low	Sprint-2
Artificial Neural network	USN-6	A fully connected neural network for segmentation which is used for multivariable pattern recognition at different levels.	It works on multivariable parameters rather than the pixel by pixel parameters	High	Sprint-1