Различные формы задач линейного программирования и симплекс-метод их решения

Квашук І.О, Фордуй Н.С.

20 апреля 2021 г.

Задача линейного программирования

Различные формы задач линейного программирования и симплексметод их решения

Квашук І.О, Фордуй Н.С. Целевая функция и ограничения представляют собой линейные функции и линейные неравенства соответственно.

$$f(x) = \sum_{j=1}^{n} c_j x_j \to \min$$

$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_j \ge b_i, & i = 1, \dots, k \\ \sum_{j=1}^{n} a_{ij} x_j = b_i, & i = k+1, \dots, m \end{cases}$$

Основная форма

Различные формы задач линейного программирования и симплексметод их решения

Квашук І.О, Фордуй Н.С. ■ Условия - неравенства

$$f(x) = \sum_{j=1}^{n} c_j x_j \to \min$$

$$\sum_{i=1}^n a_{ij} x_j \geq b_i, i = 1, \dots, m$$

Стандартная форма

Различные формы задач линейного программирования и симплексметод их решения

- Ограничения исключительно неравенства
- Переменные положительные

$$f(x) = \sum_{j=1}^{n} c_j x_j o \min$$

$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_j \ge b_i, & i = 1, \dots, k \\ x_j \ge 0, & j = 1, \dots, n \end{cases}$$

Каноническая форма

Различные формы задач линейного программирования и симплексметод их решения

Квашук І.О, Φ ордуй Н.С.

- Ограничения равенства
- Переменные неотрицательные
- Правые части уравнений также неотрицательны

$$f(x) = \sum_{j=1}^{n} c_j x_j \to \min$$

$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_{j} = b_{i}, & i = 1, ..., m \\ x_{j} \geq 0, & j = 1, ..., n \\ b_{i} \geq 0, & i = 1, ..., m \end{cases}$$

Переход от Общей к Канонической

Различные формы задач линейного программирования и симплексметод их решения

Квашук І.О, Φ ордуй Н.С.

Задача:

$$-2x_1+4x_2+3x_3\to \max$$

$$\begin{cases} x_1 + 2x_2 + x_3 \le 1 \\ 2x_1 - 5x_2 + 4x_3 \ge 7 \\ x_1 \ge 0 \\ x_2 \ge 0 \end{cases}$$

Переход от Общей к Канонической

Различные формы задач линейного программирования и симплексметод их решения

Квашук І.О, Фордуй Н.С. Умножим первое уравнение на (-1):

$$2x_1 - 4x_2 + 3x_3 \rightarrow \min$$

Добавим к первому условию вспомогательну неотрицательную переменную u_1 :

$$x_1 + 2x_2 + x_3 + u_1 = 1$$

Вычтем из второго условия вспомогательную неотрицательную переменную u_2 :

$$2x_1 - 5x_2 + 4x_3 - u_2 = 7$$

Представим переменную x_3 как $x_3^1 - x_3^2$, $x_3^1 \ge 0$ $x_3^2 \ge 0$

Переход от Общей к Канонической

Различные формы задач линейного программирования и симплексметод их решения

$$2x_1 - 4x_2 + 3x_3^1 - 3x_3^2 \to \min$$

$$\begin{cases} x_1 + 2x_2 + x_3^1 - x_3^2 + u_1 = 1\\ 2x_1 - 5x_2 + 4x_3^1 - 4x_3^2 - u_2 = 7\\ x_1, x_2, x_3^1, x_3^2, u_1, u_2 \ge 0 \end{cases}$$

Наводящие размышления

Различные формы задач линейного программирования и симплексметод их решения

Квашук І.О, Φ ордуй Н.С.

Допустимая область таких задач - фигура многогранник или же полиэдр. Одно из свойств таких фигур наличие углов:

■ Точка v называется угловой точкой множества U, если представление $v = \alpha v_1 + (1 - \alpha)v_2$, при $u_1, u_2 \in U$ и $0 < \alpha < 1$ возможно лишь при $v_1 = v_2$

Общий алгоритм

Различные формы задач линейного программирования и симплексметод их решения

- 1 Начальное допустимое базисное решение.
- По условию оптимальности определяется вводимая переменная. Если таких нет алгоритм останавливается
- На основе условия допустимости выбирается исключаемая переменная
- **4** Методом Гаусса-Жордана вычисляется новое базисное решение.

Условия

Различные формы задач линейного программирования и симплексметод их решения

- Условие отпимальности. Вводимая переменная в задаче максимизации является небазисная переменная, имеющая наибольший отрицательный (положительный) коэффицеиент в z- строке
- Условия допустимости. Исключающая переменная является базисной, для которого значение правой части ограничения к положительному коэффициенту ведущего столбца минимально.

Симплекс-метод

Различные формы задач линейного программирования и симплексметод их решения

Квашук І.О, Фордуй Н.С.

Алгоритм неформально:

- Построение симплекс таблицы
- Замена переменных в базисном наборе

Пример. Условие

Различные формы задач линейного программирования и симплексметод их решения

Квашук І.О, Φ ордуй Н.С.

Задача:

$$z = 5x_1 + 4x_2 + 0s_1 + 0s_2 + 0s_3 + 0s_4$$

Ограничения:

$$\begin{cases} 6x_1 + 4x_2 + s_1 = 24 \\ x_1 + 2x_2 + s_2 = 6 \\ -x_1 + x_2 + s_3 = 1 \\ x_2 + s_4 = 2 \\ x_1, x_2, s_1, s_2, s_3, s_4 \ge 0 \end{cases}$$
 (1)

Таблица

Различные формы задач линейного программирования и симплексметод их решения

Квашук І.О, Φ ордуй Н.С.

Как базис: s_1, s_2, s_3, s_4

1) 2) 3) +										
Базис	Z	x_1	<i>x</i> ₂	s_1	s ₂	s ₃	<i>S</i> ₄	Решение		
Z	1	-5	-4	0	0	0	0	0		
<i>S</i> ₁	0	6	4	1	0	0	0	24		
<i>s</i> ₂	0	1	2	0	1	0	0	6		
<i>S</i> ₃	0	-1	1	0	0	1	0	1		
<i>S</i> ₄	0	0	1	0	0	0	1	2		

Базис получше

Различные формы задач линейного программирования и симплексметод их решения

Базис	<i>x</i> ₁	Решение	Отношение (точка перес.)
<i>s</i> ₁	6	24	24/6 = 4
<i>s</i> ₂	1	6	6/1 = 6
<i>s</i> ₃	-1	1	1/(-1) = -1
<i>S</i> ₄	0	2	$2/0=\infty$

Алгоритм Жордана-Гаусса

Различные формы задач линейного программирования и симплексметод их решения

- Вычисление элементов новой ведущей строки.
 Новая ведущая строка = Текущая ведущая строка / Ведущий элемент
- Вычисления элементов остальных строк, включая *z* строку. Новая строка=Текущая строка Её коэффициент в ведщем столбце × Новая ведущая строка.

Вторая Итерация Метода

Различные формы задач линейного программирования и симплексметод их решения

Квашук І.О, Φ ордуй Н.С.

Базис	Z	<i>x</i> ₁	<i>x</i> ₂	s_1	<i>s</i> ₂	<i>S</i> ₃	<i>S</i> ₄	Решение
Z	1	0	-2/3	5/6	0	0	0	20
<i>x</i> ₁	0	1	2/3	1/6	0	0	0	4
<i>s</i> ₂	0	0	2/3	-1/6	0	1	0	5
<i>s</i> ₃	0	0	5/3	1/6	0	1	0	5
<i>S</i> ₄	0	0	1	0	0	0	1	2

Третья Итерация Метода

Различные формы задач линейного программирования и симплексметод их решения

Квашук І.О, Φ ордуй Н.С.

Как базис x_1, x_2, s_3, s_4

1) 2) 3) 4										
Базис	Z	<i>x</i> ₁	<i>x</i> ₂	s_1	<i>S</i> ₂	s ₃	<i>S</i> ₄	Решение		
Z	1	0	0	3/4	1/2	0	0	21		
<i>x</i> ₁	0	1	0	1/4	-1/2	0	0	3		
<i>X</i> ₂	0	0	1	-1/8	3/4	0	0	3/2		
<i>S</i> ₃	0	0	0	3/8	-5/4	1	0	5/2		
<i>S</i> ₄	0	0	0	1/8	-3/4	0	1	1/2		