METODE INTELIGENTE DE REZOLVARE A PROBLEMELOR REALE

Laura Dioşan Vision Transformers

Istoric al modelelor de CV

Procesarea unei secvente

Recurrent Neural Network

Works on Ordered Sequences

- (+) Good at long sequences: After one RNN layer, h_T "sees" the whole sequence
- (-) Not parallelizable: need to compute hidden states sequentially

1D Convolution

Works on Multidimensional Grids

- (-) Bad at long sequences: Need to stack many conv layers for outputs to "see" the whole sequence
- (+) Highly parallel: Each output can be computed in parallel

Self-Attention

Works on Sets of Vectors

- (-) Good at long sequences: after one self-attention layer, each output "sees" all inputs!
- (+) Highly parallel: Each output can be computed in parallel
- (-) Very memory intensive

Transformer*

- Blocurile unui transformer au
 - Input vectori (multimi de vectori)
 - Output vectori (multimi de vectori)
 - Hyper-parametrii:
 - # bloks
 - # heads / block
 - width

- Unui singur head de procesare
- A mai multor head-uri de procesare

- Remember embeddings
 - Imagini / patch-uri izolate precum:
 - Presupunem 2 atribute:
 - caracterul tehnologic
 - nivelul de delicatete

- Attention
 - Contextul e ca un magnet!
 - Atrage elementele care se potrivesc!

Similaritatea între patch-uri

Cuvântul	caracterul tehnologic	nivelul de delicatete		
) 🎮	3	0		
	4	1		
	0	4		

- sim ($\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$) = 12 sim([4,1], [3,0]) = 4*3 + 1*0 = 12
- sim(,) = 4sim([4,1],[0,4]) = 4*0 + 1*4 = 4
- sim($\begin{bmatrix} 2 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$) = 0 sim($\begin{bmatrix} 3 & 1 \\ 1 & 1 \end{bmatrix}$, $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$) = 0 3*0 + 0*4 = 0

Contextul patch-urilor – matricea de afinitate

- $\square sim() ,) = 1 / \sqrt{2} = 0.7$
- □ sim([2,2], [0,4]) = sim([2,2], [0,4]) = $(2*0 + 2*4) / \sqrt{2} =$ $8 / \sqrt{2} = 5.65$

Contextul patch-urilor – matricea de afinitate

200000	*	*
***	0.70	5.65
*	5.65	0.70

- \square sim(\searrow , \searrow) = 1 / $\sqrt{2}$ = 0.7

□ Contextul patch-urilor – matricea de afinitate

$$= 0.7 * -1.65 *$$

Contextul patch-urilor – matricea de

afinitate

		Č y
	0.70	8.48
Č y	8.48	0.70

Contextul patch-urilor – matricea de afinitate

$$= 0.7 * + 5.65 *$$

Contextul patch-urilor – matricea de afinitate

$$= 0.7$$

$$| = 0.7$$

Contextul patch-urilor – matricea de afinitate

Contextul patch-urilor – matricea de afinitate

a) reprez1

b) reprez2

Q1: reprez1 = f(reprez2) = g(reprez3) ???
Da!!! Tranformare liniară!!!

Reprezentarea 1 sau 3!

19

Mecanismul de "atentie" (a

□ Sim(,) = sim(,) = □

Mecanismul de "atentie" (at

Contextul patch-urilor – matricea de afinitate

Contextul patch-urilor – matricea de afinitate

$$= 0.7$$

$$=0.0004 *[2,2] + 0.9958 * [3,3] = [0.0008, 3.9840]$$

Contextul patch-urilor – matricea de afinitate

- □ Input x vectori de dimensiune (N, #patches x #patches + 1, De)
- Output vectori de dimensiune (N, #patches x #patches + 1, D)

$$\operatorname{softmax} \left(\begin{array}{c|c} \mathbf{Q} & \mathbf{K^T} & \mathbf{V} \\ \hline & \times & \hline & \mathbf{V} \\ \hline & \sqrt{d_k} & \end{array} \right)$$

Input		apper of the second)。典	
represent ation	X1								
Queries	q ₁								
Keys	k ₁								
Values	V ₁								
Similariti es	q ₁ • k ₁	q ₁ • k ₂	q ₁ • k ₃	q ₁ • k ₄	q ₁ • k ₅	q ₁ • k ₆	q ₁ • k ₇	q ₁ • k ₈	q ₁ • k ₉
Scores s= [s1, s2,, s9]	q ₁ • k ₁ / √ D	q ₁ • k ₂ / √D	q ₁ • k ₃ / √ D	q₁ • k₄ / √ D	q ₁ • k ₅ / √ D	q ₁ • k ₆ / √ D	q ₁ • k ₇ / √ D	q ₁ • k ₈ / √ D	q ₁ • k ₉ / √ D
	w = Softmax(s)								
Weighten ing the values	z ₁ = w ₁ * v ₁ + w ₂ * v ₂ + + w ₉ * v ₉								

- V1: Integrarea atentiei intr-o CNN de ex ResNet¹
 - Cum?
 - Straturi suplimentare
 - Pro
 - Integrare facila
 - Contra
 - Modelul (arhitectura) e dominate de convolutii

- V2: Inlocuirea convolutiei cu o "atentie locala" ("local relation")
 - Cum?
 - Convolutia = produs scalar intre filtru si patch
 - Local attention
 - Centrul patch-ului -> query (vector cu D elemente)
 - Fiecare element din patch ->
 - Keys (vector R x R x D)
 - Values (vector R x R x C')
 - Outputul e calculate cu ajutorul mecanismului de atentie
 - Pro
 - Numar mai mic de parametrii (in Hu et al.: ResNet-50 are 25.5x10⁶ param, iar LR-Net-50 are 23.3x10⁶ params)
 - Contra
 - Implementare dificila (multe detalii tricky)
 - Doar putin mai buna ca ResNet

- V3: transformer aplicat direct pe pixeli
 - Cum?
 - Input-ul pt transformer este imaginea (redimensionata) si aplatizata

Treat an image as a set of pixel values

- Pro
 - Simplu (conceptual)
- Contra
 - O imagine de dimensiune n x n necesita n⁴ elemente in fiecare matrice de atentie -> multa memorie

V4: transformer aplicat pe patchuri

Cum?

Linear projection to C-dim vector

- Pro
 - Mai putine convolutii
- Contra
 - Numar mare de parametrii
 - Nevoie de multe date de antrenament

Cum se poate imbunatati performanta unui ViT?

- Regularizare
 - Weight decay, stochastic depth, dropout
- Data augmentation
 - MixUp, RandAugment

Cum se poate imbunatati performanta unui ViT?

Distillation

Cum se poate imbunatati performanta unui ViT?

ViT vs CNN

Stage 3:

256 x 14 x 14

Stage 2:

128 x 28 x 28

Stage 1:

64 x 56 x 56

Input:

3 x 224 x 224

In most CNNs (including ResNets), **decrease** resolution and **increase** channels as you go deeper in the network (Hierarchical architecture)

Useful since objects in images can occur at various scales

In a ViT, all blocks have same resolution and number of channels (Isotropic architecture)

More details

- https://github.com/googleresearch/vision_transformer
- https://huggingface.co/docs/transformers /model_doc/vit