1 Thema 1

1.1 Aufgabe 1

Aufgabe 1:

- (a) Gegeben sei eine reelle Zahlenfolge $(a_n)_{n\in\mathbb{N}}$, die gegen 2 konvergiert. Zeigen Sie folgende zwei Aussagen anhand der Definition für die Konvergenz einer reellen Zahlenfolge:
 - (i) $\exists n_0 \in \mathbb{N} \forall n \geq n_0 : a_n > 1$.
 - (ii) Die Folge $\left(\frac{1}{a_n}\right)_{n\geq n_0}$ ist konvergent.
- (b) In dieser Teilaufgabe heißt eine Funktion $f: \mathbb{R} \to \mathbb{R}$ cool im Punkt $a \in \mathbb{R}$:

$$\forall \epsilon > 0 \, \forall x \in \mathbb{R} : (|x - a| < \epsilon \Longrightarrow |f(x) - f(a)| < \epsilon).$$

Beweisen oder widerlegen Sie:

- (i) f cool im Punkt $a \implies f$ stetig im Punkt a.
- (ii) f stetig im Punkt $a \implies f$ cool im Punkt a.

(3+3 Punkte)

Zu (a)

Die Konvergenz ist folgendermaßen definiert

$$\lim_{n \to \infty} a_n = 2 : \iff \forall \epsilon : \exists n_0 \in \mathbb{N} : \forall n \in \mathbb{N}, n \geqslant n_0 : |a_n - 2| < \epsilon$$

Zu (i)

Wählt man $\epsilon = 1$, so existiert ein n_0 , so dass für jedes $n \in \mathbb{N}$ mit $n \ge n_0$ gilt

$$|a_n - 2| < 1 \iff -1 < a_n - 2 < 1 \iff 1 < a_n < 3$$

Somit wurde insbesondere die Behauptung gezeigt.

Zu (ii)

Nach (i) ist die Folge $(\frac{1}{a_n})_{n \geqslant n_0}$ wohldefiniert, da der Nenner nicht null wird. Wir behaupten, dass gilt

$$\lim_{n \to \infty} \frac{1}{a_n} = \frac{1}{2}$$

Beweis:

$$\left|\frac{1}{a_n} - \frac{1}{2}\right| = \left|\frac{2 - a_n}{2a_n}\right| = \frac{|2 - a_n|}{2a_n} \stackrel{(i)}{\leqslant} \frac{|2 - a_n|}{2}$$

Sei nun ϵ beliebig vorgegeben, dann existiert ein $N(\epsilon) \in \mathbb{N}$, so dass für $n \geq N(\epsilon)$ gilt

$$|2-a_n|<\epsilon$$

Somit gilt auch

$$\left| \frac{1}{a_n} - \frac{1}{2} \right| \leqslant \frac{|2 - a_n|}{2} < \frac{\epsilon}{2} < \epsilon$$

2

Zu (b)

Zu (i)

Nach dem ϵ - δ -Kriterium ist f in einem Punkt a genau dann stetig, wenn gilt

$$\forall \epsilon > 0 : \exists \delta > 0 : \forall x \in \mathbb{R} : |x - a| < \delta \implies |f(x) - f(a)| < \epsilon$$

Die Aussage ist wahr: Man sieht, dass eine coole Funktion auch stetig ist, indem man $\delta = \epsilon$ setzt.

Zu (ii)

Diese Aussage ist falsch. Betrachtet man die stetige Funktion

$$f: \mathbb{R} \to \mathbb{R} \; ; \; x \mapsto 2x$$

dann sieht man, dass sie nicht cool in 0 ist: Sei $\epsilon > 0$ beliebig gegeben, dann gilt für alle $x \in \mathbb{R}$

$$\frac{\epsilon}{2} < |x - 0| < \epsilon \implies \epsilon < 2|x| = |2x| = |f(x) - f(0)|$$