Propiedad de la matriz de chequeo H

Probar que si H es matriz de chequeo de C, entonces

$$\delta(C) = Min \{j : \exists \text{ un conjunto de } j \text{ columnas LD de } H\}$$

(LD es "linealmente dependiente")

Para probarlo, vamos a hacer las siguientes consideraciones:

- $s = Min \{j : \exists \text{ un conjunto de } j \text{ columnas LD de } H\}$
- La j-ésima columna de H se va a denotar como H^j

Por definición de s, existe un conjunto LD de columnas de H: $\{H^{j_1}, H^{j_2}, \dots, H^{j_s}\}$. Por definición de LD, esto quiere decir que $\exists c_1, \dots, c_s$ no todos nulos tales que $\sum_{i=1}^s c_i H^{j_i} = 0$.

Luego, la prueba se va a dividir en los dos casos a demostrar: $\delta(C) \leq s$ y $s \leq \delta(C)$.

$$\delta(C) \leq s$$

Sea $w=\sum_{i=1}^s c_i e_{j_i}$, como no todos los c_j son nulos, entonces $w\neq 0$. Ahora, veamos que

$$egin{aligned} Hw^t &= H(\sum_{i=1}^s c_i e_{j_i})^t \ &= \sum_{i=1}^s c_i H e_{j_i}^t \ &= \sum_{i=1}^s c_i H^{j_i} \ &= 0 ext{ por lo visto antes} \end{aligned}$$

Luego, esto quiere decir que $w \in C$ ya que C = Nu(H).

Ahora, como tenemos que $w \in C$ y |w| = s, entonces como

$$\delta(C) = Min\{|v| : v \in C, v \neq 0\}$$

se cumple que $\delta(C) \leq |w| = s$ quedando probada esta parte.

$$s \leq \delta(C)$$

Sea $v\in C$ tal que $\delta(C)=|v|$, entonces $\exists a_1,\ldots,a_{\delta(C)}:v=\sum_{i=1}^{\delta(C)}e_{a_i}.$ Como $v\in C$, entonces $Hv^t=0$

Por el mismo cálculo que hicimos en la sección anterior, llegamos a que $\sum_{i=1}^{\delta(C)}H^{a_i}=Hv^t=0$, con lo cual significa que $\{H^{a_i}\}_{i=1}^{\delta(C)}$ es un conjunto LD de columnas de H

Por ello mismo, entonces, $s=Min\ \{j:\exists \ \mathrm{un\ conjunto}\ \mathrm{de}\ j\ \mathrm{columnas\ LD}\ \mathrm{de}\ H\leq \delta(C)$

Conclusión

Como $\delta(C) \leq s$ y $s \leq \delta(C)$, entonces $s = \delta(C)$. Luego, por definición de s, tenemos que:

$$\delta(C) = Min \; \{j: \exists \; \text{un conjunto de} \; j \; \text{columnas LD de} \; H\}$$

con lo cual queda demostrado.