

# Background: Key Points



- Al is a civil rights issue! The neutralizing language of algorithmic fairness focuses attention on the tech, but civil rights invokes the harm to human communities and a tradition of powerful change.
- Percentage magnitude of error higher in majority-Black neighborhoods.
- Appraisal can calcify past patterns of discrimination.
  - Closely tailoring comparables advantages sellers in majority-white neighborhoods.
- White purchasers benefit in majority-Black communities, not vice versa.
  - AVM lag in detecting property value increase due to gentrification.
- Below-market appraisals more common in Black and Latino markets.
- AVM bias < human bias.</li>
- Collateral benefits of AVM-first approach: democratizing and diversifying appraisal industry.
- Both intent and impact are actionable; impact is more relevant to AVM challenges.

# Problem #1: Test an AVM for racially biased outcomes.

#### Given:

- > log-error data for 2016 CA home appraisals calculated by automated valuation model (AVM)
- > census tract aggregate demographic data

#### **Analyze:**

- > Does the AVM generate error that disproportionately harms communities of color?
- ➤ Magnitude and direction of any detected bias with respect to protected classes

#### **Strategy:**

- Data preprocessing
- > Exploratory data analysis and statistical testing
- Build a classifier to mimic the AVM
- > Predict the log errors within protected and control group for 2017 test data
- > Evaluate classifier performance
- > Rank importance and relative magnitude of model's input features

#### Fair Housing Act 55th Anniversary Event

**Tech Equity Hackathon 2023** 



# **Preprocessing**

- Analysis of missingness
- > Address null values
- > Transform categorical variables
- Minimize cardinality
- Dimensionality reduction

# **Joining**

- > Property specs with training and testing data
- Census demographics with preprocessed data



#### **Properties in communities of color**



#### **Properties in majority-white communities**





# **Exploratory Data Analysis**

- > Skewness for majority-white: 4.774
- > Skewness for communities of color: 1.364
- Majority-white has much more extreme right-tailed distribution. Values asymmetric about the mean with a higher proportion of scores above than below the mean.

# Problem #2: Quantify the size of the bias.

Median log-error favors properties sold in white neighborhoods.



|                    | Majority White | Communities of Color |
|--------------------|----------------|----------------------|
| Count              | 48264.0        | 65399.0              |
| Mean               | 0.010618       | 0.014172             |
| Standard Deviation | 0.159759       | 0.154437             |
| Minimum            | -3.737018      | -4.65542             |
| 25%                | -0.0233        | -0.0263              |
| Median             | 0.007          | 0.004                |
| 75%                | 0.0392         | 0.0363               |
| Maximum            | 5.262999       | 3.443                |

<sup>\*</sup> p-value = 0.00017 for  $H_0$ :  $\bar{x}_w = \bar{x}_{coc}$ , but fails independence test (but that's also the point!)

# Problem #2: Quantify the size of the bias.

Median log-error favors properties sold in white neighborhoods.



|                    | najorrej miree | Majorrey Brack |
|--------------------|----------------|----------------|
| Count              | 41841.0        | 1176.0         |
| Mean               | 0.011515       | 0.008474       |
| Standard Deviation | 0.157885       | 0.202334       |
| Minimum            | -2.406257      | -0.62716       |
| 25%                | -0.0243        | -0.0513        |
| Median             | 0.007          | -0.007         |
| 75%                | 0.040278       | 0.0344         |
| Maximum            | 5.262999       | 3.16           |

Majority White Majority Black

<sup>\*</sup> p-value = 0.609 for  $H_0$ :  $\bar{x}_w = \bar{x}_{coc}$ not statistically significant

#### What does bias look like?

Median log-error greater for overappraised properties in majority-white neighborhoods, equal for undervalued properties.



|                    | Overvalued Majority White | Overvalued Communities of Color | Undervalued Majority White | Undervalued Communities of Color |
|--------------------|---------------------------|---------------------------------|----------------------------|----------------------------------|
| Count              | 27355.0                   | 35361.0                         | 20641.0                    | 29645.0                          |
| Mean               | 0.06778                   | 0.074075                        | -0.064998                  | -0.057093                        |
| Standard Deviation | 0.153748                  | 0.154276                        | 0.135287                   | 0.121922                         |
| Minimum            | 0.000003                  | 0.000007                        | -3.737018                  | -4.65542                         |
| 25%                | 0.0149                    | 0.0139                          | -0.067242                  | -0.0619                          |
| Median             | 0.0334                    | 0.032591                        | -0.0305                    | -0.0305                          |
| 75%                | 0.0686                    | 0.0714                          | -0.012563                  | -0.0131                          |
| Maximum            | 5.262999                  | 3.443                           | -0.000002                  | -0.000007                        |

<sup>\*</sup> p-value = 0.00000 for  $H_0$ :  $\bar{x}_w = \bar{x}_{coc}$  both for undervalued and overvalued

# Does appraisal differ by home size across communities?

- Dataset is noisy, so we segmented the market into quartiles by square footage.
- For the largest houses, median log-error overvalues properties in majority white houses more than in communities of color.
- For smallest houses, houses in communities of color are more undervalued.

... see caveats: sample size sensitivity, lack of data on buyer/seller rate

| a   |
|-----|
| .≝  |
| nt  |
|     |
| rce |
| Ō   |
| Q   |
| ð   |
| 2   |

|                    | Majority White | Communities of Color |
|--------------------|----------------|----------------------|
| Count              | 30511.0        | 26265.0              |
| Mean               | 0.012893       | 0.020559             |
| Standard Deviation | 0.163023       | 0.149315             |
| Minimum            | -3.737018      | -4.605               |
| 25%                | -0.021831      | -0.019843            |
| Median             | 0.009          | 0.008                |
| 75%                | 0.0431         | 0.04013              |
| Maximum            | 5.262999       | 3.443                |

# **Bottom percentile**

|                    | Majority White | Communities of Color |
|--------------------|----------------|----------------------|
| Count              | 8130.0         | 20224.0              |
| Mean               | 0.007297       | 0.010192             |
| Standard Deviation | 0.159965       | 0.158988             |
| Minimum            | -2.323         | -4.605               |
| 25%                | -0.0263        | -0.032266            |
| Median             | 0.004          | 0.002                |
| 75%                | 0.032983       | 0.0354               |
| Maximum            | 2.56           | 3.123634             |







## **Error Scaling**

- Exponentiated the appraisal error score to get a measure of appraisal as a proportion of contract price.
- > + 2.1% increase in appraisal as percent of contract price per finished square foot for overvalued white communities.
- > + 0.15% increase in appraisal as percent of contract price per finished square foot for overvalued communities of color.

## Model selection



- CatBoost Open Source Gradient Boosting
  - Gradient Boosting combines weak models with strong ones for competitive modelling
  - applies target encoding with random permutation to handle categorical features
  - very efficient for high cardinality columns creates just a new feature to account for the category encoding
  - Uses ordered boosting, a permutation-driven approach to train the model on a subset of data while calculating residuals on another subset prevents target leakage and overfitting

# Building the model

- Separate out categorical features vs. Numerical
- Select parameters: 150 iterations (max trees), RMSE (training metric), 6 tree depth, .21 learning rate (default .1)
- Grid Search for parameter optimization, results by feature importance
- Evaluation using RMSE, best performing model performed had a RMSE of ~0.15

# Problem #3: Identify feature importance.



# Problem #4: Describe potential societal harm.



- ➤ Disparity in wealth generation through home sales due to disparate impact of property tax reform
- Legacy effect of discriminatory zoning
- Impact on appraisal of older home ownership by Black communities

#### **RESEARCH AND POLICY**

Potential Impact of SB 478 on Local FAR and Minimum Lot Size Requirements

David Garcia, Julian Tucker
PUBLISHED ON
April 5, 2021

# Problem #5: Mitigate bias, retain AVM performance.

- > Disentangle property appraisal from tax assessments
- > Tune AVM to increase reliance on construction, size, and other features of value to homeowners
- Incentivize more complete data collection and reporting to drive appraisals based on a fuller picture, stronger multivariate analysis
- Build stronger real-time detection algorithm to boost sales price for sellers in gentrifying majority-Black neighborhoods
- Annual audit of semi-random sample of AVM appraisals of homes reflecting community demographics
  - Overseen by multidisciplinary Advisory Committee: community members, human appraisers, industry experts

### Fair Housing Act 55th Anniversary Event Tech Equity Hackathon 2023

NFHA ALLANGE 55

# **Broader Policy Recommendations**

- Nonprofit, nonpartisan industry oversight, accreditation, and arbitration partnerships to provide alternatives to costly litigation before an underinformed judiciary
- More project-based learning and community-building events to support the BIPOC tech/AI community



- Public education campaigns to raise awareness of AVM risk and available remedies
- Make public funding available to increase risk tolerance for lenders to counterbalance AVM bias
- Fund small community businesses, especially in property rehab, to minimize default and distressedproperty sales

