Lecture 23: Boosting

Wenbin Lu

Department of Statistics North Carolina State University

Fall 2019

Outlines

- Adaboost
 - Strong learners vs Weak Learners
 - Motivations
 - Algorithms
- Additive Models
- Adaboost and Additive Logistic Regression
- L₂-Boost
- Boosting Trees
- XGBoost

Boosting Methods

Motivation: Model Averaging

They are methods for improving the performance of weak learners.

- strong learners: Given a large enough dataset, the classifier can arbitrarily accurately learn the target function with probability $1-\tau$ (where $\tau>0$ can be arbitrarily small)
- weak learners: Given a large enough dataset, the classifier can barely learn the target function with probability $\frac{1}{2}+\tau$
 - The error rate is only slightly better than a random guessing

Can we construct a strong learner from weak learners and how?

Boosting

Motivation: combines the outputs of many weak classifiers to produce a powerful "committee".

- Similar to bagging and other committee-based approaches
- Originally designed for classification problems, but can also be extended to regression problem.

Consider the two-class problem

• $Y \in \{-1,1\}$, the classifier $G(\mathbf{x})$ has training error

$$err = \frac{1}{n} \sum_{i=1}^{n} I(y_i \neq G(\mathbf{x}_i))$$

• The expected error rate on future predictions is $E_{\mathbf{X},Y}I(Y \neq G(\mathbf{X}))$.

Classification Trees

Classifications trees can be simple, but often produce noise or weak classifiers.

- Bagging (Breiman 1996): Fit many large trees to bootstrap-resampled versions of the training data, and classify by a majority vote.
- Boosting (Freund & Shapire 1996): Fit many large or small trees to re-weighted versions of the training data. Classify by a weighted majority vote.

In general, Boosting > Bagging > Single Tree

• Breiman's comment "AdaBoost best off-the-shelf classifier in the world". (1996, NIPS workshop)

AdaBoost (Discrete Boost)

Adaptively resampling the data (Freund & Shapire 1997; winners of the 2003 Godel Prize)

- sequentially apply the weak classification algorithm to repeatedly modified versions of the data (re-weighted data)
- produces a sequence of weak classifiers

$$G_m(\mathbf{x}), \quad m = 1, 2, ..., M.$$

3 The predictions from G_m 's are then combined through a weighted majority vote to produce the final prediction

$$G(\mathbf{x}) = \operatorname{sign}\left(\sum_{m=1}^{M} \alpha_m G_m(\mathbf{x})\right).$$

Here $\alpha_1, ..., \alpha_M \geq 0$ are computed by the boosting algorithm.

AdaBoost Algorithm

- Initially the observation weights $w_i = 1/n, i = 1, ..., n$.
- For m=1 to M
 - (a) Fit a classifier $G_m(\mathbf{x})$ to the training data using weights w_i .
 - (b) Compute the weighted error

$$\operatorname{err}_m = \frac{\sum_{i=1}^n w_i I(y_i \neq G_m(\mathbf{x}_i))}{\sum_{i=1}^n w_i}.$$

(c) Compute the importance of G_m as

$$\alpha_m = \log\left(\frac{1 - \mathsf{err}_m}{\mathsf{err}_m}\right)$$

- (d) Update $w_i \leftarrow w_i \cdot \exp[\alpha_m \cdot I(y_i \neq G_m(\mathbf{x}_i))], i = 1, ..., n$.
- **3** Output $G(\mathbf{x}) = \operatorname{sign}\left(\sum_{m=1}^{M} \alpha_m G_m(\mathbf{x})\right)$.

Weights of Individual Weak Learners

In the final rule, the weight of G_m

$$\alpha_m = \log\left(\frac{1 - \operatorname{err}_m}{\operatorname{err}_m}\right),\,$$

where err_m is the weight error of G_m .

- The weights α_m 's weigh the contribution of each G_m .
- The higher (lower) err_m, the smaller (larger) α_m .
 - The principle is to give higher influence (larger weights) to more accurate classifiers in the sequence.

Data Re-weighting (Modification) Scheme

At each boosting, we impose the updated weights $w_1, ..., w_n$ to samples $(\mathbf{x}_i, y_i), i = 1, ..., n.$

- Initially, all weights are set to $w_i = 1/n$. The usual classifier.
- At step m = 2, ..., M, we modify weights for observations individually: increasing weights for those observations misclassified by $G_{m-1}(\mathbf{x})$ and decreasing weights for observations classified correctly by $G_{m-1}(\mathbf{x})$.
 - Samples difficult to correctly classify receive ever increasing influence
 - Each successive classifier is forced to concentrate on those training observations that are missed by previous ones in sequence
- The classification algorithm is re-applied to the weighted observations

Figure 10.1: Schematic of AdaBoost. Classifiers are trained on weighted versions of the dataset, and then combined to produce a final prediction.

Power of Boosting

- Ten features $X_1,...,X_{10} \sim N(0,1)$
- two-classes: $Y = 2 \cdot I(\sum_{i=1}^{10} X_i^2 > \chi_{10}^2(0.5)) 1$
- sample size n = 2000, test size 10,000
- weak classifier: stump (a two-terminal node classification tree)
- performance of boosting and comparison with other methods:
 - stump has 46% misclassification rate
 - 400-node tree has 26% misclassification rate
 - boosting has 12.2% error rate

Figure 10.2: Simulated data (10.2): test error rate for boosting with stumps, as a function of the number of iterations. Also shown are the test error rate for a single stump, and a 400 node classification tree.

Boosting And Additive Models

The success of boosting is not very mysterious. The key lies in

$$G(\mathbf{x}) = \operatorname{sign}\left(\sum_{m=1}^{M} \alpha_m G_m(\mathbf{x})\right).$$

- Adaboost is equivalent to fitting an additive model using the exponential loss function (a very recent discovery by Friedman et al. (2000)).
- AdaBoost was originally motivated from a very different perspective

Introduction on Additive Models

An additive model typically assumes a function form

$$f(\mathbf{x}) = \sum_{m=1}^{M} \beta_m b(\mathbf{x}; \gamma_m),$$

• β_m 's are coefficients. $b(\mathbf{x}, \gamma_m)$ are basis functions of \mathbf{x} characterized by γ_m .

The model \hat{f} is obtained by minimizing a loss averaged over the training data

$$\min_{\{\beta_m, \gamma_m\}_1^M} \sum_{i=1}^n L\left(y_i, \sum_{m=1}^M \beta_m b(\mathbf{x}_i; \gamma_m)\right). \tag{1}$$

It is feasible to rapidly solve the sub-problem of fitting just a single basis.

Forward Stagewise Fitting for Additive Models

Forward stagewise modeling approximate the solution to (1) by

- sequentially adding new basis functions to the expansion without adjusting the parameters and coef. of those that have been added.
- At iteration m, one solves for the optimal basis function $b(\mathbf{x}, \hat{\gamma}_m)$ and corresponding coefficient $\hat{\beta}_m$, which is added to the current expansion $f_{m-1}(\mathbf{x})$.
 - Previously added terms are not modified.
- This process is repeated.

Squared-Error Loss Example

Consider the squared-error loss

$$L(y, f(\mathbf{x})) = [y - f(\mathbf{x})]^2$$

At the *m*th step, given the current fit $f_{m-1}(\mathbf{x})$, we solve

$$\min_{\beta,\gamma} \qquad \sum_{i} L(y_{i}, f_{m-1}(\mathbf{x}_{i}) + \beta b(\mathbf{x}, \gamma)) \iff \\
\min_{\beta,\gamma} \qquad \sum_{i} [y_{i} - f_{m-1}(\mathbf{x}_{i}) - \beta b(\mathbf{x}_{i}; \gamma)]^{2} = \sum_{i} [r_{im} - \beta b(\mathbf{x}_{i}, \gamma)]^{2}.$$

The term $\hat{\beta}_m b(\mathbf{x}; \hat{\gamma}_m)$ is the best fit to the current residual. This produces the updated fit

$$f_m(\mathbf{x}) = f_{m-1}(\mathbf{x}) + \hat{\beta}_m b(\mathbf{x}; \hat{\gamma}_m).$$

Forward Stagewise Additive Modeling

- Initialize $f_0(\mathbf{x}) = 0$.
- ② For m = 1 to M:
 - (a) Compute

$$(\hat{\beta}_m, \hat{\gamma}_m) = \arg\min_{\beta, \gamma} \sum_{i=1}^n L(y_i, f_{m-1}(\mathbf{x}_i) + \beta b(\mathbf{x}_i; \gamma)).$$

(b) Set
$$f_m(\mathbf{x}) = f_{m-1}(\mathbf{x}) + \hat{\beta}_m b(\mathbf{x}; \hat{\gamma}_m)$$

Additive Logistic Models and AdaBoost

Friedman et al. (2001) showed that AdaBoost is equivalent to forward stagewise additive modeling

using the exponential loss function

$$L(y, f(\mathbf{x})) = \exp\{-yf(\mathbf{x})\},\$$

• using individual classifiers $G_m(\mathbf{x}) \in \{-1, 1\}$ as basis functions The (population) minimizer of the exponential loss function is

$$\begin{split} f^*(\mathbf{x}) &= & \arg\min_{f} E_{Y|\mathbf{x}}[e^{-Yf(\mathbf{x})}] \\ &= & \frac{1}{2} \log \frac{\Pr(Y=1|\mathbf{x})}{\Pr(Y=-1|\mathbf{x})}, \end{split}$$

which is equal to one half of the log-odds. So, AdaBoost can be regarded as an additive logistic regression model.

Forward Stagewise Additive Modeling with Exponential Loss

For exponential loss, the minimization at mth step in forward stagewise modeling becomes

$$(\beta_m, \gamma_m) = \arg\min_{\beta, \gamma} \sum_{i=1}^n \exp\{-y_i[f_{m-1}(x_i) + \beta b(x_i, \gamma)]\}$$

In the context of a weak learner G, this is

$$(\beta_m, G_m) = \arg\min_{\beta, G} \sum_{i=1}^n \exp\{-y_i[f_{m-1}(x_i) + \beta G(x_i)]\},$$

or equivalently,
$$(\beta_m, G_m) = \arg\min_{\beta, G} \sum_{i=1}^n w_i^{(m)} \exp\{-y_i \beta G(x_i)\},$$

where $w_i^{(m)} = \exp\{-y_i f_{m-1}(\mathbf{x}_i)\}.$

Iterative Optimization

In order to solve

$$\min_{\beta,G} \sum_{i=1}^{n} w_i^{(m)} \exp\{-y_i \beta G(x_i)\},\,$$

we take the two-step (profile) approach

- first, fix $\beta > 0$ and solve for \hat{G} .
- second, solve for β with $G = \hat{G}$.

Recall that both Y and $G(\mathbf{x})$ take only two values +1 and -1. So

$$y_i G(\mathbf{x}_i) = +1 \Longleftrightarrow y_i = G(\mathbf{x}_i),$$

$$y_i G(\mathbf{x}_i) = -1 \iff y_i \neq G(\mathbf{x}_i).$$

Solving for \hat{G}_m

$$(\beta_{m}, G_{m}) = \arg \min_{\beta, G} \sum_{i=1}^{n} w_{i}^{(m)} \exp\{-y_{i}\beta G(x_{i})\}$$

$$= \arg \min_{\beta, G} e^{\beta} \sum_{y_{i} \neq G(x_{i})} w_{i}^{(m)} + e^{-\beta} \sum_{y_{i} = G(x_{i})} w_{i}^{(m)}$$

$$= \arg \min_{\beta, G} (e^{\beta} - e^{-\beta}) \sum_{y_{i} \neq G(x_{i})} w_{i}^{(m)} + e^{-\beta} \sum_{i=1}^{n} w_{i}^{(m)}$$

For any $\beta>0$, the minimizer \hat{G}_m is a $\{-1,1\}$ -valued function

$$\hat{G}_m = \arg\min_{G} \sum_{i=1}^n w_i^{(m)} I[y_i \neq G(x_i)],$$

the classifier that minimizes training error for the weighted data.

Solving for $\hat{\beta}_m$

Define

$$err_{m} = \frac{\sum_{i=1}^{n} w_{i}^{(m)} I(y_{i} \neq \hat{G}_{m}(\mathbf{x}_{i}))}{\sum_{i=1}^{n} w_{i}^{(m)}}$$

Plugging \hat{G}_m in the objective gives

$$\beta_m = \operatorname{argmin}_{\beta} \{ e^{-\beta} + (e^{\beta} - e^{-\beta}) \operatorname{err}_m \} \sum_{i=1}^n w_i^{(m)}$$

The solution is

$$\hat{\beta}_m = \frac{1}{2} \log \left(\frac{1 - \mathsf{err}_m}{\mathsf{err}_m} \right).$$

Connection to Adaboost

Since

$$-yG_m(x) = 2(I(y \neq G_m(x)) - 1,$$

we have

$$w_i^{(m+1)} = w_i^{(m)} \exp\{-\beta_m y_i G_m(\mathbf{x}_i)\}$$

=
$$w_i^{(m)} \exp\{\alpha_m I(y_i \neq G(\mathbf{x}_i))\} \exp\{-\beta_m\}$$

where $\alpha_m=2\beta_m$ and $\exp\{-\beta_m\}$ is constant across the data points. Therefore

- the weight update is equivalent to line 2(d) of the AdaBoost
- line 2(a) of the Adaboost is equivalent to solving the minimization problem

Weights and Their Update

At the mth step, the weight for the ith observation is

$$w_i^{(m)} = \exp\{-y_i f_{m-1}(\mathbf{x}_i)\},\$$

which depends only on $f_{m-1}(\mathbf{x}_i)$ but not on β or $G(\mathbf{x})$.

• At the (m+1)th step, we update the weight using the fact

$$f_m(\mathbf{x}) = f_{m-1}(\mathbf{x}_i) + \beta_m G_m(\mathbf{x}_i).$$

It leads to the following update formula

$$w_i^{(m+1)} = \exp\{-y_i f_m(\mathbf{x}_i)\}$$

$$= \exp\{-y_i (f_{m-1}(\mathbf{x}_i) + \beta_m G_m(\mathbf{x}_i))\}$$

$$= w_i^{(m)} \exp\{-\beta_m y_i G_m(\mathbf{x}_i)\}.$$

Why Exponential Loss?

- Principal virtue is computational
- Exponential loss concentrates much more influence on observations with large negative margins yf(x). It is especially sensitive to misspecification of class labels.
- More robust losses: computation is not as easy (Use Gradient Boosting).

Exponential Loss and Cross Entropy

Define $Y' = (Y+1)/2 \in \{0,1\}.$

The binomial negative log-likelihood loss function is

$$-I(Y, p(\mathbf{x})) = -[Y' \log p(\mathbf{x}) + (1 - Y') \log(1 - p(\mathbf{x}))]$$

= \log (1 + \exp{-2Yf(\mathbf{x})}) \equiv -I(Y, f(\mathbf{x})),

where $p(\mathbf{x}) = [1 + e^{-2f(\mathbf{x})}]^{-1}$.

- The population minimizers of the deviance $E_{Y|x}[-I(Y, f(x))]$ and $E_{Y|x}[e^{-Yf(x)}]$ are the same.
- The population minimizer is given by

$$f^*(\mathbf{x}) = \frac{1}{2} \log \frac{\Pr(Y = 1|\mathbf{x})}{\Pr(Y = -1|\mathbf{x})}.$$

Loss Functions for Classification

Choice of loss functions matters for finite data sets.

The *Margin* of $f(\mathbf{x})$ is defined as $yf(\mathbf{x})$.

The classification rule is $G(\mathbf{x}) = \text{sign}[f(\mathbf{x})]$

The decision boundary is $f(\mathbf{x}) = 0$

- Observations with positive margin $y_i f(\mathbf{x}_i) > 0$ are correctly classified
- Observations with negative margin $y_i f(\mathbf{x}_i) < 0$ are incorrectly classified

The goal of a classification algorithm is to produce positive margins as frequently as possible

 Any loss function should penalize negative margins more heavily than positive margins, since positive margin are already correctly classified

Various Loss Functions

Monotone decreasing loss functions of the margin

- Misclassification loss: $I(sign(f(\mathbf{x})) \neq y)$
- Exponential loss: exp(-yf) (not robust against mislabeled samples)
- Binomial deviance: $\log\{1 + \exp(-2yf)\}$ (more robust against influential points)
- SVM loss: $[1 yf]_+$

Other loss functions

• Squared error: $(y - f)^2 = (1 - yf)^2$ (penalize positive margins heavily)

Elements of Statistical Learning © Hastie, Tibshirani & Friedman 2001 Chapter 10

Figure 10.4: Loss functions for two-class classification. The response is $y=\pm 1$; the prediction is f, with class prediction $\operatorname{sign}(f)$. The losses are misclassification: $I(\operatorname{sign}(f) \neq y)$; exponential: $\exp(-yf)$; binomial deviance: $\log(1+\exp(-2yf))$; squared error: $(y-f)^2$; and support vector: $(1-yf) \cdot I(yf>1)$ (see Section 12.3). Each function has been scaled so that it passes through the point (0,1).

Brief Summary on AdaBoost

- AdaBoost fits an additive model, where the basis functions $G_m(x)$ stage-wise optimize exponential loss
- The population minimizer of exponential loss is the log odds
- There are loss functions more robust than squared error loss (for regression problems) or exponential loss (for classification problems)

L₂ Boosting

- Proposed by Buhlmann & Yu (2003).
- Adopt the general framework of the gradient boosting machine developed by Friedman (2001).
- Data: (Y_i, X_i) , $i = 1, \dots, n$, where Y_i is the response and X_i are p-dimensional features.
- Problem: find $F: \mathbb{R}^p \to \mathbb{R}$ to minimize the expected loss $E[L\{Y_i, F(X_i)\}].$
- Define empirical loss: $L_n(F) = \sum_{i=1}^n L\{Y_i, F(X_i)\}.$
- Estimate F nonparametrically using functional gradient descent.
- The procedure includes: initiation, evaluation of negative gradient of the loss function, projection of the gradient to a base learner, line search, update, and iterations.
- Common choice: component-wise cubic smoothing splines as the base learner.

Algorithm

- Step 1. Set m=0 and $\widehat{F}_m(\cdot)=0$.
- Step 2. Compute the negative gradient as

$$U_i^{(m)} = -\frac{\partial L(Y_i, F)}{\partial F}|F = \widehat{F}_m(X_i), i = 1, \cdots, n.$$

• Step 3. Projection: regress $U_i^{(m)}$ on $X_{i,k}$ using univariate cubic smoothing spline as the base learner, and choose the predictor $X_{k^{(m)}}$ such that

$$k^{(m)} = \arg\min_{1 \le k \le p} \sum_{i=1}^{n} \left(U_i^{(m)} - g_k(X_{i,k}) \right)^2,$$

where $g_k(\cdot)$ is the conventional univariate cubic smoothing spline fit.

Algorithm

• Step 4. Line search: find w_m to minimize

$$\sum_{i=1}^{n} L\{Y_{i}, \widehat{F}_{m}(X_{i}) + wg_{k}(X_{i,k^{(m)}})\}$$

w.r.t. w.

• Step 5. Update: set

$$\widehat{F}_{m+1}(X_i) = \widehat{F}_m(X_i) + \rho w^{(m)} g_k(X_{i,k^{(m)}}),$$

and increase m by one. Here, ρ is a small learning rate, usually chosen as $\rho=0.05$ or 0.01.

• Step 6. Iteration: repeat Steps 2 to 5.

Discussions

- ullet Tuning parameters: learning rate ho and total number of iterations.
- Both can be tuned via cross-validation.
- Empirical findings: a smaller learning rate would often lead to a better predictive performance of the boosting algorithm; the predictive performance is not overly sensitive to the choice of ρ .
- Stopping rule: stop the iteration when the loss function flattens. This gives almost the same performance as cross-validation.
- Variable importance measure (Friedman, 2001):

$$I_j = \left[E_X \left\{ \frac{\partial \widehat{F}(X)}{\partial X_j} \right\}^2 \operatorname{Var}(X_j) \right]^{1/2}, \ j = 1, \dots, p,$$

where the expectation with respect to the marginal distribution of X and can be computed through sample average.

Boosting Trees

A tree can be expressed as

$$T(x;\Theta) = \sum_{j=1}^{J} \gamma_j I(x \in R_j),$$

with parameters $\Theta = (\gamma_j, R_j)_1^J$.

• The parameters are found by minimizing the empirical risk

$$\widehat{\Theta} = \arg\min_{\Theta} \sum_{j=1}^{J} \sum_{x_i \in R_i} L(y_i, \gamma_j) = \arg\min_{\Theta} \sum_{i=1}^{N} L(y_i, T(x_i, \Theta)).$$

- Finding γ_i given R_i : it can be trivially done.
- Finding R_j : this is the difficult part. A typical strategy is to use a greedy, top-down recursive partitioning algorithm. A smooth function may be used to approximate L.

Boosted Tree Model

The boosted tree model

$$f_M(x) = \sum_{m=1}^M T(x, \Theta_m),$$

induced in a forward stagewise manner.

• At each step, we solve

$$\widehat{\Theta}_m = \arg\min_{\Theta_m} \sum_{i=1}^N L(y_i, f_{m-1}(x_i) + T(x_i, \Theta_m)),$$

where $\Theta_m = (\gamma_{im}, R_{im}), j = 1, \cdots, J_m$.

Gradient Boosting

Consider the numerical optimization

$$\arg\min_{f\in\{f_M\}}L(f)\equiv\sum_{i=1}^NL(y_i,f(x_i)).$$

The solution is written as a sum of component vectors

$$f_M = \sum_{m=0}^M h_m, \qquad h_m \in R^N,$$

where $f_M = (f_M(x_1), \dots, f_M(x_N))^T$ and h_m is the increment vector at the mth step.

• Steepest descent: choose $h_m = -\rho_m g_m$, where ρ_m is a scalar and the *i*th component of g_m is given by

$$g_{im} = \left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f(x_i) = f_{m-1}(x_i)}.$$

Gradient Boosting

• The step length ρ_m is the solution to

$$\rho_m = \arg\min_{\rho} \sum_{i=1}^{N} L(y_i, f_{m-1}(x_i) - \rho g_m(x_i)).$$

- Solution update: $f_m(x_i) = f_{m-1}(x_i) \rho_m g_m(x_i)$.
- Gradient boosting based on least squares:

$$\widetilde{\Theta}_m = \arg\min_{\Theta} \sum_{i=1}^N (-g_{im} - T(x_i, \Theta))^2.$$

Gradient Tree Boosting Algorithm

- 1. Initialize $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} L(y_i, \gamma)$.
- 2. For m = 1 to M:
 - a. For $i = 1, \dots, N$, compute $r_{im} = -g_{im}$.
 - b. Fit a regression tree to the targets r_{im} giving terminal regions R_{jm} , $j = 1, 2, ..., J_m$.
 - c. For $j = 1, 2, ..., J_m$, compute

$$\gamma_{jm} = \arg\min_{\gamma} \sum_{x_i \in R_{im}} L(y_i, f_{m-1}(x_i) + \gamma).$$

- d. Update $f_m(x) = f_{m-1}(x) + \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm})$.
- 3. Output $\hat{f}(x) = f_M(x)$.

XGBoost

- eXtreme Gradient Boosting (XGBoost): a scalable tree boosting system. Capable to handle large data sets.
- a variant of gradient tree boosting, also known as gradient boosting machine (GBM) or gradient boosted regression tree (GBRT).
 - Builds an ensemble of weak learners in stage-wise manner.
 - Combines gradient descent with CART.
- successfully used in many machine learning and data mining challenges, such as Kaggle.
 - Among the 29 challenge winning solutions published at Kaggle's blog during 2015, 17 solutions used XGBoost.
 - In addition, eight solely used XGBoost to train the model, while most others combined XGBoost with neural nets in ensembles.

Gradient Tree Boosting

- Data with n samples and m features: $\mathcal{D} = \{(x_i, y_i) : i = 1, \dots, n\}, x_i \in \mathbb{R}^m$ and $y_i \in \mathbb{R}$.
- A tree ensemble model uses K additive functions:

$$\hat{y}_i = \phi(x_i) = \sum_{k=1}^K f_k(x_i), \quad f_k \in \mathcal{F},$$

where $\mathcal{F} = \{f(x) = w_{q(x)} : q : R^m \to T, w \in R^T\}$ is the space of regression trees (CART).

- q: represents the structure of each tree;
- T: number of leaves of each tree;
- w: leaf weights (the score of each leaf).

Gradient Tree Boosting

Minimize the following objective function:

$$L(\phi) = \sum_{i} I(y_i, \hat{y}_i) + \sum_{k} \Omega(f_k),$$

where $\Omega(f) = \gamma T + (\lambda/2)||w||^2$.

• Consider $\hat{y}_{i}^{(t)} = \hat{y}_{i}^{(t-1)} + f_{t}(x_{i})$ and

$$L^{(t)}(\phi) = \sum_{i} I(y_i, \hat{y}_i^{(t-1)} + f_t(x_i)) + \Omega(f_t).$$

Consider second-order approximation:

$$\tilde{L}^{(t)}(\phi) = \sum_{i} [I(y_{i}, \hat{y}_{i}^{(t-1)}) + g_{i}f_{t}(x_{i}) + \frac{1}{2}h_{i}f_{t}^{2}(x_{i})] + \Omega(f_{t})$$

$$= \sum_{i} [g_{i}f_{t}(x_{i}) + \frac{1}{2}h_{i}f_{t}^{2}(x_{i})] + \Omega(f_{t}) + \text{constant},$$

where g_i and h_i are the first and second order derivatives of l w.r.t $\hat{v}^{(t-1)}$.

Recap of XGBoost

Algorithm:

- 1. Initialize $\hat{y}^{(0)}(x) = \hat{f}_0(x) = \arg\min_{f_0} \sum_{i=1}^n I(y_i, f_0(x_i)) + \Omega(f_0)$.
- 2. For $t = 1, \dots, K$, do
 - Calculate g_i and h_i , $i = 1, \dots, n$;
 - Fit a new tree $\hat{f}_t = \arg\min_{f_t} \sum_i [g_i f_t(x_i) + \frac{1}{2} h_i f_t^2(x_i)] + \Omega(f_t);$ (*)
 - Update $\hat{y}_{i}^{(t)} = \hat{y}_{i}^{(t-1)} + \hat{f}_{t}(x_{i})$.
- Output $\hat{y}^{(K)}$.

Combination of Gradient Boosting with CART

To optimize (*):

- Define the instance set in leaf j as $I_j = \{i : q(x_i) = j\}$.
- Rewrite $\tilde{\mathcal{L}}^{(t)}(\phi)$ as

$$\tilde{L}^{(t)}(\phi) = \sum_{i} [g_{i}w_{q(x_{i})} + \frac{1}{2}h_{i}w_{q(x_{i})}^{2}] + \gamma T + \frac{\lambda}{2} \sum_{j=1}^{I} w_{j}^{2}$$

$$= \sum_{j=1}^{T} \left[(\sum_{i \in I_{j}} g_{i})w_{j} + \frac{1}{2} (\sum_{i \in I_{j}} h_{i} + \lambda)w_{j}^{2} \right] + \gamma T.$$

• For a fixed structure q, the optimal weight w_i^* of leaf j is given by

$$w_j^* = -\frac{\sum_{i \in I_j} g_i}{\sum_{i \in I_j} h_i + \lambda}.$$

Splitting Trees

Define the optimal value of a given tree structure q

$$\tilde{L}^{(t)}(q) = -\frac{1}{2} \sum_{j=1}^{T} \frac{\left(\sum_{i \in I_{j}} g_{i}\right)^{2}}{\sum_{i \in I_{j}} h_{i} + \lambda} + \gamma T.$$

- The optimal value is like the impurity score for evaluating decision trees. A greedy algorithm can be used to build the tree (a single node is added at each step).
- Let I_L and I_R denote the instance set of left and right nodes after the split. Letting $I = I_L \cup I_R$. The loss reduction after the split is given by

$$L_{split} = \frac{1}{2} \left[\frac{(\sum_{i \in I_L} g_i)^2}{\sum_{i \in I_I} h_i + \lambda} + \frac{(\sum_{i \in I_R} g_i)^2}{\sum_{i \in I_R} h_i + \lambda} - \frac{(\sum_{i \in I} g_i)^2}{\sum_{i \in I} h_i + \lambda} \right] - \gamma.$$

• The above is usually used for evaluating the split candidates.

←□▶ ←□▶ ← 필 ▶ ← 필 → りへ○

Splitting Algorithms

- Exact greedy algorithm: potentially time-consuming for continuous variables.
- Approximate greedy algorithm:
 - Proposes candidate splitting points according to percentiles of feature distribution.
 - Maps the continuous features into buckets split by these candidate points.
 - Aggregates the statistics and finds the best solution among proposals based on the aggregated statistics.
- Sparsity-aware split finding: features are sparse
 - presence of missing values in the data.
 - frequent zero entries in the statistics.

Refine Prediction

- Pruning
 - The gain of the split L_{split} can be negative.
 - Grow a tree to maximum depth, recursively prune all the leaf splits with negative gain.
- Shrinkage: $\hat{y}_i^{(t)} = \hat{y}_i^{(t-1)} + \epsilon \hat{f}_t(x_i)$, ϵ is the learning rate usually set at around 0.1.
- Feature subsampling: as used in random forests.
- XGBoost can be implemented in R ("xgboost" package), Python, and Julia.

