

DETERMINATION OF PEAK DISCHARGE AND DESIGN HYDROGRAPHS

FOR SMALL VATERSHEDS IN INDIANA

TO: K. B. Woods, Director

Joint Highway Research Project April 22. 1964

FROM: H. L. Michael, Associate Director Project: C-36-62A

Joint Highway Research Project File: 9-8-1

Attached is a Technical Paper entitled "Determination of Peak Discharge and Design Hydrographs for Small Watersheds in Indiana". The paper has been prepared by Mr. I. P. Wu and Professors J. W. Delleur and M. H. Diskin of our staff or formerly of our staff. The paper was presented at the last Annual Purdue Road School and is also intended to be a design manual. The manual has been prepared from research performed at Purdue and in cooperation with the Indiana State Highway Commission and the Indiana Flood Control and Water Resources Commission. Complete details of this cooperation are related in the Preface and Acknowledgment Section of the report.

The attached paper is presented for action as to publication. Since it is intended to be a design manual consideration should be given to separate publication in about the page size of the attached material.

Respectfully submitted,

Hawley & Merchant

Harold L. Michael, Secretary

HIM: bc

Attachment

Copy: 8

F. L. Ashbaucher

J. R. Cooper

W. L. Dolch

W. H. Goetz

F. F. Havey

F. S. Hill

G. A. Leonards

J. F. McLaughlin

R. D. Miles

R. E. Mills

M. B. Scott

J. V. Smythe

E. J. Yoder

Determination of Feat to hards

anci

Design Hydrographs for

Small Watersheds in Indiana

by

I. I. in Hydraulic Engineer Indiana Frood Control and Voter Resear. - Ic.

> J. W. Dellevi Professor of Hydravije Parimecking

Digitized by the Internet Archive in 2011 with funding from LYRASIS members and Sloan Foundation; Indiana Department of Transportation

H 2 -

1. F.

mojeut:

- 4. The same

Tefer :

http://www.archive.org/details/determinationofp00wuip

April 22, 195

TABLE OF CONTENUES

ABSTRACT

FRE	face .	AND ACKNOWLEDGMENTS	1
1.	1.1	CDUCTION Historical Background Available Methods for Peak Discharge Determination Available Methods for Hydrograph Synthesis	3 3 4 6
2.	2.1 2.2 2.3 2.4	FITIOTS AND TERMINOLOGY The Physical Characteristics of a Vater field The Patal Characteristics of a Vater field The Patal Characteristics and the Consensits The Patal Radufall Cyclograph and the Laboral Francischer Turation Unit Tydro pages of Short Duration Postinition of Statistical Terms	10 13 19 20
3.	3.1. 3.2. 3.4. 3.4.	REFIXON OF MASSO DOMA Votencheds Studied Materiheds and Records for Peak Receibing to determination Wateriheds and Records for Hydrograph E Raimista Pearly and Calmista County Server of the fall of a Soil Information of Taliana	23 23 28 28 28
).	4.3	OF FEW FIELDS SE FOR CLUM WHERE SEE Backing Pass Discourge for Cagod Wedersh is The Simple Ferral for Feak Discharge from Small Waterule a Working Charles of Act Discharge Daternan esten by M.C. Sin. to Form to The Firter of a see in for Peak Discharge from Small Waterule Working Charles in the U.S. Si-year Published of Small Waterule Feak Discharge from Sher Return for Lose An Potimish of the Losurucy of Discharge Date Date In the	3636
5.	12	OR MINAOU . I F F MAY TO MARKEHOLD The Use Larence of I question for CL. The S. The fide. This L. Anderson Estimation of the Time to Fork at of the L. Asside Ger Cust from Haysical Weber St. I Characteristics Worlding Charte for Determination of Upf Squall Cardinors Dariveting of Unit Hydrographs of Siter Devictions Design Fyllrographs from Design Reinfall To Corep. 2	17 55 59 59
5.	6.1 5.2	RELATIONS. IF ENTERED MAINFALL AND FUNCED Factors Affecting the Amount of Report Definition of Runoff Coefficient Evolution of Cotal Runoff and Runoff C efficient	67 67 67

	CEN EXAMPLES	
7.2	Determination of Peak Discharge (25 year) Procedures for Design Hydrograph Determination Comparison of Peak Discharge Determined from the Design Hydrograph with Results of Frequency Analysis.	7 Li
	SUMMARY AND CONCLUSIONS	. 83
APPENDIX	A. Results of frequency analysis of 32 watersheds studied with gaging station information	86
APPENDIX	B. Idst of Symbols	118
APPENDIX	C. Bibliography	120
APPENDIX	D. Design Chart No 1, Determination of Annual Peak Discharge Design Chart No 2, Determination of Hydrograph of Short Duration Design Chart No 3, Determination of Rainfell Excess	123
	nestau outre no 2, necessitation of using all excess	124

LIST OF FIGURES

Figure 1-1	Theoretical Model of a Watershed	9
Figure 2-1	Determination of Watershed Characteristics	11
Figure 2-2	A Typical Runoff Hydrograph	14
Figure 2-3	The Direct Runoff Hydrograph	16
Figure 2-4	The Total Rainfall Hyetograph	18
Figure 2-5	The Rainfall Excess Hyetograph	18
Figure 3-1	Location of Gaging Stations for Small Watershed Study	24
Figure 3-2	Period of Record of Instantaneous Annual Peak Discharge used	
	in Frequency Study	25
Figure 3-3	25-Year, Six Hour Rainfall in Inches for Indiana	29
Figure 3-4	50-Year, Six Hour Rainfall in Inches for Indiana	30
Figure 3-5	Soil Regions of Indiana	34
Figure 4-1	Working Chart for Peak Discharge Determination by Simple	
	Formula (Equ. 4-1)	39
Figure 4-2	Working Chart for Peak Discharge Determination by Extended	
	Formula (Equ. 1,-2)	40
Figure 4-3	Relationship Between the n-Year and the 25-Year Peak Discharge	43
Figure 4-4	Comparison of 25-Year Peak Discharge Estimated by Simple	
	Formula with Original Values	42
Figure 4-5	Comparison of 25-Year Peak Discharge Estimated by Extended	
	Formula with Original Values	43
Figure 5-1	Relationship Between Dimensionless Recession Constant and the	
	Hydrograph Parameter n	50
Figure 5-2	Dimensionless Instantaneous Unit Hydrograph	51
Figure 5-3	Relationship Between tp and the Basin Characteristics A, L, &S	56
Figure 5-4	Relationship between K1 and Watershed Characteristics A,L,&S	57
Figure 5-5	Relationship between Dimensionless Peak Discharge and	
	Hydrograph Parameter n	60

Figure	5-6	Working Chart for Regression Formula for t	61
Figure	5-7	Working Chart for Regardssice For all for K	62
Figure	5-8	Derivation of Unit Sylven - how Direct Tractice.	65
Figure	6-1	Storm Transferd it early a many a cortain is a second	68
Figure	~~I	Sequence of Conjust	
		Shall Weighted.	79
Figure	7.2	Derived 1. Figm 1 (19	
		Indianapolis	80
Design	Just	t No 2, Diversing the second second second	127
Design.	Car	t Mc 2, Burnda for the Late of the second	125
Destina	11 . 22 97	A Section of the Control of the Cont	21

Y. J.

-3:1

.

MS2 D' WEIL

"Ba & 34	រំព័ន្ធ ប្រជាធិប្រជាធិប្រជាធិប្រជាធិប្រជាធិប្រជាធិប្រជាធិប្រជាធិប្រជាធិប្រជាធិប្រជាធិប្រជាធិប្រជាធិប្រជាធិប្រ
-ā.	N vo:
- 19 <u>9</u> _	rude nun rudi i
8201-3-1	2 (20) For
=	Dail L
4.3e = ?	The state of the s
mae -	i J n -
	√ B
	TV TV
ý ==	
E	
* I, \$	
12.1	
174	

ADSTRACE

No cirone Tel les en . the comme. The second control of the control of the

בור ה ליו ולישומים

TARREST STATES

	The state of the s	7 400	
* ()	(a-a) = (** = (** = 2) ± (*))		
	(150 to 1)		
	- 1		
	- 44		


```
Framework onto
not be to be the
111 - 125
wa or vividade i
```

records user talls

1 IMPRODUCTION

1.1 Historical Ba seround

The determinance of the routh of well reay or a community selection of the was of a contrast of the reign of a subject of system require in a committee software out on peak difference of to pass through the imposine . The dealer of the many many structures, to eignize a mond of agon your distance of but also with the management of the second o so this the rain the drop in the second relemning to the law of the second the state of the s will 18 3563 mi 0 11 i indrographs in the land of a dischingo Patunia - Utvil do date unto dupurt to the runoff depend Wany of the symbotic appropriate to the second for specific loc. formaniant wit applicable in Inda. need for betts, i. of stim or home egy or roll a compact from the continue

A research program was initiated at Purdue University to obtain reliable methods, based on all the data available and on the concepts of modern hydrology, for the determination of peak discharges and of hydrographs for ungaged watersheds in Indiana. This report presents a summary of the results of this study, and their application to practical problems. The research included a frequency study of watersheds varying from 20 to 250 square miles; the development of a simple formula and an extended formula for peak discharges for watersheds varying from 50 to 250 square mile, and the development of design hydrographs for watersheds varying from 3 to 100 square miles. The size of the watersheds considered in this study is large enough so that the land use and cover do not affect the peak discharge and the runoff hydrograph in any significant way.

1.2 Available Methods for Peak Discharge Determination

Kinnison (1) in 1946 and Chow (2) in 1962 have given a complete list of empirical formulas which have been proposed in the past for peak discharge determination. The most frequently used formulas are those of Talbot (3) published in 1887, of Never (4) published in 1879 and the Rational formula originally derived by Mulvany (5) in 1857. Talbot's formula was originally intended for locations in Illinois. It estimates the waterway area from the watershed area. The formula is:

a = CA (1-1.)

where a is the required waterway area in square feet, A is the watershed area in acres, and C is a coefficient varying between 1/5 and 1 depending on the slope and character of the watershed. The selection of the coefficient depends, among other things, on the experience of the designer. Due to the various factors that affect the runoff other than the watershed area, the value of the coefficient C cannot be accurately determined to represent all the watershed characteristics. Talbot's formula is

ા . ં આ વ

rultiple correlation relating it to the vaterable area and the precipitation index. This discharge to represent the process of a rest of the rest and evolves between the error on the first section of the section of th

₩ ± 5 1812. Later to the second

and the process of the second

representate was the out of the terms.


```
uniformly over the wavershed and an a andone at an a man period of
                   time. Since two nation is a second of the se
                   ronsiderable a _____
                   POURS OF STATE OF THE
          tolary and a management of the management of the
     ್ಷಿದ್ದಾರ್. ೨) ಸಂಕ್ಷ್ಮಿಗ
జావి 10 కోజుల నిర్మామం
```


| Mare recention of the control of

2. DEFINITIONS AND TERMINOLOGY

2.1 The Physical Characteristics of a Watershei

The watershed, which forms the basic unit considered in this report, is defined with reference to the location of the gazding station or the structure under design. It includes the area within the top graphical divide from mich water could reach the gaging station or the survey re by overland flow. The watershed may be described by a number of properties but for practical purposes only a few of these are usually taken into consideration.

In the present study the folds ming six communications were used to describe the watersheds:

- (1) Watershed area, A
- (2) Main stream length,
- (3) Main stream (lope, S
- (4) Drainage density D
- '5 Mean relief, H
- (6) Wetershed shape fact r, F

Of these the first three was used for the Ly Ligran study, characteristics 1 and 3 were used for the simple formula for peak discharge as a characteristics 1 and 3 through 6 were used for the extended year discharge formula. The desination of the watershed characteristics as a be done with preference to Fig. 9-1.

- I. <u>Naturalish days (A)</u> is casticed as the static the water fivide, draining to the saging static, or the structure under design. It is measured from the topographic maps and expressed in square miles.
- 2. Main streem length (L) is defined as the length measured on a topographic map, along the main stream of the witershed, from the gaging station or from the structure under design upstream to the point where the full blue line on the map ends.

b) SECTION ALONG MAIN CHANNEL

FIG 2-1 DEFINITION OF WATERSHED CHARACTERISTICS

3. Main stream slope (S) is defined with the aid of a longitudinal profile of the main channel. The length L of the main stream is divided into N equal sections and the slope of each section is determined. The main stream slope is then determined by the equation:

$$S = \begin{bmatrix} & & & & & & & \\ & \frac{1}{2} & + & \frac{1}{2} & + & \frac{1}{2} & + & \ddots & + & \frac{1}{2} \\ \sqrt{S_1} & \sqrt{S_2} & \sqrt{S_3} & & & \sqrt{S_N} \end{bmatrix}$$
 (2-1)

where S_1 , S_2 , S_3 etc. are the slopes of the individual sections. The slope is expressed in feet per 10,000 feet.

- 4. <u>Drainage density (D)</u> is defined as the ratio of the total length of all streams in the watershed to the area of the watershed. The streams are measured from the drainage maps included in the "Atlas of County Drainage Maps, Indiana" published by Purdue University (20). The drainage density is expressed in miles per square mile.
- 5. Mean relief (H) is defined as the mean elevation of the watershed above the elevation of the gaging station. If the elevation of the gaging station is z_0 and the elevations of the next contour lines are z_1 , z_2 , z_3 , ... then the mean relief can be computed by measuring the area within the watershed enclosed by the contour z_1 , calling it z_1 , and also the areas between the contours z_1 and z_2 , between z_2 and z_3 and so on calling the areas z_2 , z_3 , etc. The mean relief is then given by

$$H = \frac{1}{A} (a_1 h_1 + a_2 h_2 + a_3 h_3 + \cdots + a_n h_n)$$
 (2-2)
where $h_1 = \frac{z_1 + z_0}{2} - z_0$; $h_2 = \frac{z_2 + z_1}{2} - z_0$; $h_3 = \frac{z_3 + z_2}{2} - z_0$ (2-3)

and n is the number of small areas into which the watershed is divided by the contours. The mean relief is expressed in feet.

		4.0	

6. Watershed shape factor (P) is defined in this study as the ratio of the main stream length to the diameter of a circle having the same area as the watershed. It can be computed by:

$$F = \frac{L}{\sqrt{\frac{hA}{T}}}$$
 (2.4)

2.2 The Total Runoff Hydrograph and Its Components

A runoff hydrograph is by definition a curve showing the discharge at the gaging station as a function of time. The term is used mainly for the portion of the curve obtained during and after a period of rainfall over the watershed. A typical runoff hydrograph for a small watershed is shown in Fig. 2-2. It shows that starting with some low flow in the stream (point A) the discharge rises rapidly to some peak value and then falls gradually to some low value. The two sides of the hydrograph are called the rising curve and the recession curve respectively. The portion of the curve near the peak flow is called the crest section of the hydrograph.

For purposes of analysis the runoff hydrograph is divided into two parts. One part, called the base flow, represents the flow of ground water into the channel system of the watershed; the second part is called the direct surface runoff hydrograph. There are several methods of separating the base flow, but for small watersheds the simplest method was adopted. This method consists of a horizontal line through the point A where the rising curve starts to rise. This horizontal line implies a base flow of constant magnitude $Q_{\rm B}$. The total discharge $Q_{\rm T}$ at any time is then equal to the sum of the base flow $Q_{\rm B}$ and the direct surface runoff $Q_{\rm B}$

$$Q_{T} = Q + Q_{B} \tag{2-5}$$

A curve showing the variation in direct surface runoff Q with time is called the

(sto)

DISCHARGE

direct surface runoff hydrograph (Fig. 2-3). It will be noted that the peak of the direct surface runoff hydrograph (Q_p) is in general smaller than the peak of the corresponding total hydrograph (Q_m) , the time to peak (t_p) is the same for the two curves.

The segment of the recession curve of the direct surface runoff hydrograph immediately following the crest section tends to give a straight line when plotted on semi-log paper (discharge on log scale). The equation of such a straight line is

$$\log \frac{Q_0}{Q_1} = \frac{t_1 - t_0}{K_1} \tag{2-6}$$

where Q_0 and Q_1 are the values of the discharge at times t_0 and t_1 , and K_1 is called the recession constant of the curve.

The area under the direct surface runoff hydrograph represents the total volume of runoff V which may be expressed in either cubic feet or in units of acre feet. The total volume of runoff is usually considered to be equal to the product of the area of the watershed A and an equivalent depth of water R

$$V = AR \tag{2-7}$$

The Quantity R is called the total runoff and is expressed in units of inches.

If the area A of the watershed is expressed in square miles and the volume V in acre-feet, equation 2-7 should be modified to include a conversion factor.

For the units specified the equation becomes

$$V = \frac{640}{12} AR$$
 (2-8)

2.3 The Total Rainfall Hyetograph and the Rainfall Excess Hyetograph

The rainfall occurring over a watershed is a variable quantity. It varies both with location and with time. For any short period of time (T) it is possible to calculate the mean rainfall over the watershed by standard methods such as the Thiessen polygon method. From the mean rainfall depth it is then possible to derive a mean rainfall intensity for the period under consideration. A

SURFACE RUNOFF HYDROGRAPH Time (hrs) DIRECT THE FIG. 2-3

diagram showing the mean rainfall intensity during successive time periods is called the total rainfall hyetograph for the watershed (Fig. 2-4). It has the shape of a bar diagram and the property that the area under each of the bars is equal to the rainfall depth during the corresponding time interval.

The total area under the hyetograph is equal to the (mann) total precipitation depth P over the watershed during the storm, it is expressed in units of inches. Comparing the value of P with the value of the total runoff R for the same storm, it is found that almost invariably the total rainfall P is larger than the total runoff R. For purposes of analysis it is usual to divide the total rainfall hyetograph into two parts. One part represents the portion of the rainfall that appears as runoff at the gaging station and the second represents the rainfall lost through infiltration, evapotranspiration, and other causes. A procedure for separating the two parts, suitable for small watersheds is the following:

(a) By examining the runoff hydrograph the time of beginning of direct surface runoff (point A in Fig.2-2) is found. All rainfall before this time is considered to be an initial loss. The depth of rainfall included in this initial loss is represented by area under the hyerograph up to this time. If the depth of initial loss is denoted by $P_{\rm L}$ and the depth of precipitation after the beginning of direct surface runoff by $P_{\rm R}$ then the total precipitation is given by

$$P = P_{I_1} + P_{\chi} \tag{2-9}$$

(b) For the portion of the total hyetograph after the beginning of direct surface runoff a horizontal line is found by trial and error such that the depth of rainfall represented by the portion of the diagram above the line is exactly equal to the total runoff R. The line is called the separation line for rainfall excess and the portion of the total hyetograph above the line is called the rainfall excess hyetograph (Fig. 2-5). The ratio of the total runoff R to the depth of precipitation P_R was defined in this report as the runoff

2.4 Unit Hydrographs of Short Duration

The unit hydrograph forms a convenient basis for comparison of the direct surface runoff hydrographs of a watershed. By definition, the unit hydrograph is a direct runoff hydrograph of unit total runoff, in this case one inch of direct runoff. The unit hydrograph is derived from the observed direct surface runoff hydrograph by dividing the ordinates of the latter curve by the total runoff R.

Each unit hydrograph is associated with the duration of the rainfall excess which produced it. Thus, a 3-hour unit hydrograph is one derived from a storm in which the duration of the rainfall excess was 3 hours. Using the assumption of linear relationship between rainfall and runoff, it as possible to derive a unit hydrograph of any one duration from a unit hydrograph of any other duration by superposition or by using the 5-curve technique.

The shape of the unit hydrograph depends on its duration at this duration becomes smaller the shape tends towards some limiting form. The instanteneous unit hydrograph, which is the limiting form of the unit hydrographs as the duration becomes infinitesimally small is useful in theoretical studies but its derivation requires special techniques. For practical purposes, a unit hydrograph derived from hydrographs due to rainfalls of short duration, of the order of 0.1 t_p, may be used as an approximation of the instantaneous unit hydrograph of the watersheds considered. Such a unit hydrograph can be derived from past records by selecting a number of hydrographs with high and sharp peaks, short time to peak, and smooth recession curves, reducing them to a dimensionless form and passing an average curve through the dimensionless curves plotted on a common basis.

The dimensionless form used in the report for the unit hydrograph of short duration is obtained by expressing the flow as a ratio of the peak flow (Q/Q_p) and the time as a ratio of the time to peak (t/t_p) .

Py essigning and the form through the second second

The second of th

4

Ex 3

ord we then who are the months of the continuous and the continuous according to their relative of the continuous and the conti

second largest and so on. The return period for each entry is then calculated by

$$\frac{n+1}{m} \tag{2-21}$$

where n is the total number of entries and as extreme land serves

The extreme value and this study point is readed by a far when the model study for the analytic of the manual point for the analytic of the manual point for the substitution of the analytic of the manual point for the substitution. The cutties in the extreme rates and the manual for this case, the instantaneous peak disclosure as a relation to particulation. The children relationships are related to particulation.

The multiple convolution is a second of a question to a second of the equation relating a versus of the variable value of the sum of the sum of the sum of the sum of the dependent value of the sum of the dependent value of the sum of the sum

in which we was, a teacher of the parent of the control of the control of the parent of the control of the cont

and then forming a term of this continues of the universe of the values of the universe has the universe had the universe had

the verms

deviations of the computed (log w walk room the or street log y salmes the smallest posses to with the same or

3. DESCRIPTION OF THE BASIC DATA

3.1 Watersheds Studied

Forty-two watersheds distributed throughout the office of Indians were selected for the studies of peak distances and for the studies of peak distances and for the studies of peak distance and for the studies of peak distance and for the studies are selected for the studies of the studies assign at the selected for the studies and for assign at the form the form the studies and for the studies and the studies are the studies and the studies are the studies and the selected for the studies and the selected for the studies and the studies are the studies

3.2 Watersan's and Records Seed a Livia de Seed of

in Table 3-2 with a law or a result of recording to the second of the se

sixing of the of this first for a discrete of the second form of the constant of the constant

the transfer to the fact

⁽³⁾ m : salief, d

⁽⁴⁾ whoshed shape form, .

- - 2 M L.E.

FIG.3-2 PERIOD OF RECORD OF INSTANTANEOÚS ANNUAL

PEAK DISCHARGE USED IN FREQUENCY STUDY

* N = Length of Record in Years

Table 3-1.

List of Watersheds, their Area and Assigned Number

Watershed Number	Caging Station	8	Č	C	Watershed Area, A (sq. mi.)
ecğ.	Lewrence Creek at Fort Banjarin Harrison			35	2,86
1 2	Bear Creek near Trevalac			25	7.0
	Brush Creek near Nebraska			45	11.7
3 4 5 6	Bean Blossom Creek at Bean Blossom			-8-	14.6
CT	Hinkle Creek near Cicero			15	16.3
É		S-			22,6
77		43			30-3
7	Buck Creek near Muncie			-6	36.7
9	Mud Creek at Indianapolis			-%-	42.5
10		35		12	44.7
11.	Carpenter Creek at Egypt				48.1
12	West Creek near Schneider	-5.7			54-3
13	Deer Creek near Putnamville			5	59.0
14	Little Calumet River at Porter	2.		32	62 9
15	Hart Ditch at Munster	3.			59.2
1.6	Graham Creek near Verpon				Tr. 6
17	Salt Creek near McCool	37		76	78.7
18	Big Slough Creek near Collegeville	4.			84.1
19	North Fork Vernon Fork near Butle ville	35		20%	87.3
20	Clifty Creek at Hartsville	4.5	-3	-75	88.8
21.	Cedar Creek at Auburn	-, -		*20%	93.0
22	Bean Blossom Creek at Dolan	30	÷.	1,7%	3.00%
23	Pigeon Creek at Hogback Lake Cutlet				
	near Angola	4	5.		1.02
24	Young Creek near Edinburg	8	*		1.09
25	Tippecanoe River at Oswego	\$1			215
26	North Fork Salt Greek near Baimon's	37	15.1		220
27	Singleton Ditch at Schneider	85			320
28	East Fork White Water River at Richard	76.70			1.23
29	Deep River at Lake George Outlet at Hobert	J., .	45		125
30	Big Indian Creek near Corydon	4.7	49		129

Continued

a Watersheds used for frequency study

b Watersheds used for peak discharge stuly

c Watersheds used for hydrograph study

Table 3-1 (Continued)
List of Watersheds, their area and assigned Number

Watershed Number	Gaging Station	Ę	b c	Watershed Area, A (sq. mi.)
31	Mississinewa River near Ridgeville	*%*		130
32	Cicero Creek near Arcadic			131
32 33 34	Kankakee River near North Liberty	2		152
34	Sand Creek near Brewersville	-22-	哥	156
35	Wildcat Creek at Greentown	200		7,62
36	Fall Creek near Forville	47		172
37	Regle Creek at Indianapolis	- 4	*	179
38	Blue River at Carthage	20		1.87
39	Silver Creek near Sellersburg	-\$2-	-4	3.88
40	Busseron Greek near Carlinle	25	-37	228
47.	Laughery Creek near Farmers Retreat	7.7		248
42	Patoka River at Jasper	44	- 12	257

a Watersheds used for frequency study

b Watersheds used for peak discharge study

c Watersheds used for hydrograph study

In addition, the drainage density (D) was measured for the same watersheds from the drainage maps. (20) The values determined are listed in Table 3-2. (For definition of the physical characteristics of the watersheds see Art. 2.1) 3.3 Watersheds and Records for Hydrograph Study

The seventeen watersheds selected for the hydrograph study are indicated in Table 3-1 with a star in column "c". Five to six hydrographs for each of the 17 watersheds were selected and used for the determination of the hydrograph parameters. The runoff hydrographs were obtained from the U.S.G.S. office in Indianapolis, Indiana.

For the watersheds used for the hydrograph study, the following characteristics were measured from the available topographic maps

- watershed area, A
 length of main stream, I
 slove of main stream, S

The values determined are listed in Table 3-3. (For definition of the physical characteristics of the watersheds see Art. 2.1)

3.4 Rainfall Records and Rainfall Characteristics for Indiana

The rainfall records used for the runoff coefficient study were obtained from the publication of the U.S. Weather Bureau, entitled "Climatological Data, Indiana".

Rainfall data for prediction of design storrs is available from the Weather Bureau. Recent (1961) data on rainfall-depth-duration-frequency relations 220 be found in Technical paper No. 40, (24) published by the Weither Bureau. Figures 3-3 and 3-4, which are based on this technical report, show the sixhour duration rainfall for return periods of 25 and 50 year

A list of ratios to convert the six-hour duration rainfall to rainfalls at other directions, which was prepared by the Soil Conservation Service, is given in Table 3-4.

FIG. 3-3 25-YEAR, SIX HOUR RAINFALL IN INCHES FOR INDIANA

FIG. 3-4 50-YEAR, SIX HOUR RAINFALL IN INCHES

Table 3-2
Watershed characteristics of 16 Watershei:
used for peak discharge study

ALCOHOLO SE					
Watershed number	Area A (sq. mi)	Mean Relief E. (2t)	Drainage Density D (mi. 3g. mi.)	Shape Factor	Moin Stream Slape S rt/ 1000 rt
14 17 20 21 22	62.9 78.7 -88.8 93.0 100	11.0 101. 270 79 216	8.00 5.57 7.33 5.10 30.65	1.12 1.75 3.00 1.47 2.63	21.3 ° 9.05 20.89 8.29 9.84
23 24 25 26 29	102 109 115 120 125	66.1. 86 65.3. 237 85.7	3.16 7.02 3.35 11.20 4.50	1.93 1.94 1.45 2.18 1.91	7.93 10.39 2.54 9.90 6.09
30 34 37 39 40 42	129 156 179 188 228 257	231 250 195,2 195,8 99,8 181,5	6.70 9.76 7.88 1.0.147 1.3.20	2.56 2.89 2.2 1.55 1.63 2.67	10.16 10.68 13.40 6.21 5.43 2.95

		•

Table 3-3
Watershed Characteristics of 17 Watershed used for hydrograph study

Watershed number	Area A (sq. mi)	Length of main stream L (mi.)	Sig.e of main stream S (ft/(00 ft.)	() - Etroppen can
1	2.86	1.82	103.00	PRI A CONCORD
2	7.0	4.29	63.50	
3	11.7	7.28	14.00	
4	14.6	7.05	52.60	
5	16.3	7.15	20.00	
8	36.7	12.25	16.00	
9	42.5	18.25	12.00	
10	44.7	16.76	12.00	
12	54.3	20.50	5 00	
13	59.0	17.00	25.50	
14	62.9	10.00	21 10	
16	77.6	31.50	16.00	
17	78.7	17.50	9.05	
19	87.3	27.30	18.40	
20	88.8	32.00	20.88	
21	93.0	16.00	8 .29	
22	100.0	28.00	9 .84	

Table 3-4
Factors for Jonversion of Six-Hour Rainfall
Duration to other Luration

Duration Hours	are reconstructed the transfer and the second section of the second section of the second section and the second section section and the second section secti
6	1.000
7	2.035
8	2.065
9	2.065
10	2.115
11	2.140
12	2.160
1.3	1.185
14	2.200
1.5	1.220
1.6	235
1.7	1.255
1.8	1.270
1.9	1.280
20	2.300
21	2.315
22	1.325
23	1.340
24	1.350
25	1.360
26 27 28 29 30 31 32 33 34 35 36	1.375 1.385 1.395 1.410 1.420 1.425 1.445 1.445 1.445

*From the Engineering Handbook, Hydrology, .Soil Conservation Service, U.S.D.A.

Note information on durations less then 6 hours may be found in US weather bureau technical paper No. 40.

3.5 Soil Information for Indiana

The soil classification used in the runoff coefficient study was taken from the "The Agronomy Handbook" (25) published in 1961 by Furdue University Agricultural Service. A map taken from this handbook indicating the different soil types is reproduced in Fig. 3-5.

A qualitative description of the permeabilities of the various soil types shown on the map in Fig. 3-5 was given in a report by I. J. Belcher, L. E. Gregg and K. B. Woods. (26) Table 3-5 gives a list of soil types and corresponding permeabilities based on the above report.

Table 3-5 Qualitative Permeabilities of Various Soil Types in Indiana

Soil type as	Qualitative
per soil map	gerneability
A, (E) D, E, O (B), C, E, G, N, P K, L, N B, F, I, J	very permeable mostly permeable moderately permeable slowly permeable very slowly permeable

Principal Soil Types of the Regions

Manmee, Granby, Newton & Runnymede samly loams; Plain-field & Tyner sands; mucks; Boor Tracy, Fox, Warsaw & Oshtemo loams & sandy loams.

Lenawer, Pewamo & Julian silty rlay loams; Hoytville silty clay: Rensselaer & Jasper loams & Strole silt loam.

Parr & Odell Silt loams & loams; Sldell, Rauh, Elliott & Flaua-gan silt loams; Chalmers & Romney Silty clay loams.

Miami, Crosby, Brookston, Bremen, Galena, Otis, Fox, Fox kame phase & Hillsdale loams & sandy loams; Coloma or Spinks loamy sands.

Crosby & Miami sllt loans; Brookston & Kokomo silty clay loams

Blount, Morley, Nappanee & St. Clair silt loams; Pewamo silty clay loam

Fineastle, Rossell & Cope silt loams; Brookston & Kokomo silty day loams.

Genesee, Eel. Huntington, Fox. Ockley, Warsaw, Bartle & Elk-insville silt loams & loams; Westland silty clay loam; Shar-

Cincinnati, Glhson, Vigo, Iva, Wilbur, Stendal & Philo silt

Claeinnati, Rossmoyne, Avon-burg, Clermont, Jennings, Gray-ford, Phllo, Stendal & Atkins silt loams.

Switzerland & Allensville silt loams; Fairmount & Huntington silty clay loams.

Muskingum stony loam, Zanes-ville, Wellston, Tilsit, Elkins-ville, Bartle, Otwell & Philo-silt loams.

Frederick Bewleyville; Bedford, Lawrence, Crider, Pembroke & Huntington silt loams.

Otwell, Haubstadt, Dubois, Rob-lisson; Markland, McGary, Hen-slaw & Parke slit loams; Zipp, Montgomery & Patton slity clay loams.

Bloomfield loamy sands; Princeton & Ayrshire sandy loams, loams & silt loams.

Alford, Muren, Iva, Hosmer, Adler & Ragsdale silt loams.

Fig. 3-5 Soil regions of Indiana.

4. DESIGN PEAK DISCHARGE FOR SMALL WATERSHEDS

4.1 Design Peak Discharge for Gaged Watersheds

Data from thirty—two watersheds were used for the frequency analysis of annual peak discharges, as mentioned in Art. 3-2. The results obtained by the method of extreme values shallysis are shown in appendix A in the form of plots of annual peak discharge vs. return period on probability paper. The predicted annual instantaneous peak discharges for return article of 21, 50, 75 and 100 years obtained from the figures of appendix A are listed in Table 4-1.

4.2 The Simple Formula for Peak Discharge from Smile Fateriness.

The 25-year annual gark discharge Q are found to be related to be watershed area A and the mean slope of man storem S by the industry

in which Q is in cubic feet per second, this in square miles with an feet per 10,000 feet. The above relationship was obtained by the morthod of multiple correlation

4.3 Working Chart for Paul Dischurge Jers a United y the Sir J. Foundam

A working chart based on the simple dormal kel is given to Fig. 1.

The 25-year peak discharge can be read directly from the right knowing the watershed area A and mean slope of the main stream 3. An example il naturating the use of these charts is given in Art. 7.1.

4.4 The Ertended houself for Peats Discharge from Said have from

The extended formula for the 25-year annual peak discharge expresses the discharge as a function of five measureable watershed characteristics. The equation was found to be:

where

- Q is the 25-year peak discherge, ir ofs-
- A is the watershed area, in square miles.
- H is the mean relief, in feet.
- D is the drainage density, in miles per square miles.
- F is the watershed shape factor, dimentionless.
- S is the main stream slope, in feet per 10,000 feet.

The above formula was also obtained by the method of rultiple correlation.

4.5 Working chart for the 25-year peak discharge by the extended formula

A working chart based on formula 4-2 is given in Fig. 1-2. The 25-year peak discharge may be read lirectly knowing the five water hed characteristics; A, H, D, S, F. An example illustrating the use of the working chart is given in Art. 7.1.

4.6 Peak Discharge for Other Return Periods

In the preceding paragraphs, the peak discharge from small vetersheds were obtained for a meturn period of 25 years. However, it may be desirable to estimate the peak discharge for other resum periods so that the design engineer may have a greater freedom of choice. The relationship between the peak discharge for other frequency and the 25-year peak discharge can be intained from Gunfel's extreme value theory. Fig. 4-3 sives the relationship between the 25-year peak fischarge and the values of peak discharge for frequencies of 10, 50, 75 and .00 years.

4. An Estimate of the Accuracy of Peak Discharge Determination.

We most accurate method of estimating the peak discharge for a given return period is by means of a frequency analysis of the flow records, if such records are available for the site under consideration. This may be called the direct method. If the duration of the flow records is sufficiently long (say 15 years

or more), the frequency analysis yields a good estimate of the peak discharge. This method is, of course, possible only for gaged watersheds. For ungaged watersheds indirect methods have to be used. The estimate of the peak discharge by correlation to watershed characteristics is always less accurate than the direct method, provided data for the latter exist.

The estimate of peak discharge by means of regression formulas based on a correlation analysis is subject to two kinds of errors. The first error is that resulting from the use of records of short duration in the frequency analysis. The source of the second error is the choice of the correlation variables and the size of the sample (number of waterchais) in which the correlation is based.

An estimate of the error due to the selection of variables can be obtained by comparing the original values of peak direlarge obtained by means of the frequency analysis and the corresponding values computed by the simple and gartended formulas. From this comparison about in Tables 4.2 and 4-3, the mean deviations were found to be about 4,900 of a for the simple formula and about 2,400 of a for the extended formula. Papares 4-4 and 4-5 show plots of the estimates of the 25-year peak discharge by means of the simple and of the extended formula respectively, versus the 25-year peak discharge obtained from the frequency smallysis. The reduction of the error of estimate of the peak discharge by means of the extended formula may be seen by comparison of the two figures.

These errors of estimate should be kept in mini by the lesigning engineer. The methods proposed should be used as an aid to engineering judgement rather than a replacement of engineering judgement.

PEAK DISCHARGE DETERMINATION BY SIMPLE FIG. 4-1 WORKING CHART FOR FORMULA (EQ. 4-1).

FIG. 4-2 WORKING CHART FOR PEAK DISCHARGE DETERMINATION BY EXTENDED FORMULA

(EQU 4-2)

FIG. 4-3 RELATIONSHIP BETWEEN THE n-YEAR
.
AND THE 25-YEAR PEAK DISCHARGE

FIG. 4-4 COMPARISON OF 25 YEAR PEAK DISCHARGE
ESTIMATED BY SIMPLE FORMULA WITH ORIGINAL VALUES

25-year peak discharge Q cfs (from frequency analysis)
FIG. 4-5 COMPARISON OF 25 YEAR PEAK DISCHARGE
ESTIMATED BY EXTENDED FORMULA WITH ORIGINAL
VALUES

Take the

The Striff tec Atmost librar of a little organization of the Stringer

ershed	72ed12t	ed Account That	Les de la Pe	ak. Discharge
nber	Prevent 4	50 greams	'5- 19373	200-7eans
	M.	TA.	0 (3)	ONE,
TOTAL SECTION SERVICES	PROFES OF THE WAY TO PERSON	to to compressing weareness our	THE STATE OF THE PROPERTY OF	der samtelde von mit enter Stängheiner im
5		r of		
7		i je		
1	4	· Č		
4 2				
		3 : 37		
<u> </u>	13	4:00		
		31757 34		:00
		587		- 63
		7.		
				: : 0.0
3				
				- 30
,				- 3
				. 3

				2710
	1			31 3
				_ ' _ 1
	·. y			1
		4,01		
	600			1
	N.	7		
	7.00	9 37	= 4	2000
	, y			9.73
	1			,
				-1 1 2
	4 %			
	. 3. 4			
	C. F.	C .		.)
				i .
		1.5 0		7

TABLE 4-2

Comparison of the Estimates of Peak Discharge by Means of the Frequency Analysis and by the Simple Formula (Eq 4-1)

Watershed No	Peak Discharge Frequency Analysis	Peak Discharge Eq 4-1	Deviation
14 .	3300	4706	1406
17	2950	2296	654
20	1.2900	11463	1437
21.	1630	3110	1480
22	11800	4903	6897
23	760	3702	2942
24	1.0500	5638	381.2
25	880	929	49
26	19000	7992	11008
29	4800	41.60	640
	22300	1.0060	12240
30 34	21.500	17907	3593
37	17000	36488	19488
39	13300	12611	639
40	8700	17088	8388
42	13500	9126	4374

Hean Deviation 4940 cfs

TABLE 4-3

Comparison of the Estimates of Peak Discharge by Means of the Frequency Analysis and by the Extended Formula (Eq. $16.9\,$

sterched No	Peck Discharge Prequency Audiyals	Wedt Dis harge Ly 4	Deviaduou
24	. Föö	143.4	818
3.7	(29.50)	3094	125
20	3229.00	465B	3575
21.	1.630	212	450
22	11.800	.33.65	1361
23	760	1.48 %	TEE
24	105 :0	4354	67.45
25	880	33 ×	
25 26	19600	∂ (\$)	3374
29	1,8 90	231	- 22 -
	22300	3020	
30 34 37 39	215.70	3030	800
37	M1630	~ 1751	600
39	200	2/6	8:1
ko	87.5	- - 36	
42	11.636	୫% <u>୫</u>	480 A

Mean Tevision RA com

5. DESIGN HYDROGRAPHS FOR SMALL WALTERSHEDS

5.1 The Two Parameters Esettion for the Sort Date for U. A. Hydrograph

Short duration hydrographs for small witersholds have a characteristic shape showing a quick miss to peak and a relatively of the mercase on An equation switches for the vibber of all decipies of said moves as that proposed by some investing or (5,7%) for the contaminate of this exact has proposed by some investing or (5,7%) for the contaminate of this exact has proposed by some investing or (5,7%) for the contaminate of this exact has a proposed by some investing or (5,7%) for the contaminate of this exact has a proposed by some investing or (5,7%) for the contaminate of the

That his equation Q is to desire a product of the control of the c

 $\sum_{i=1}^n \sum_{j=1}^n \sum_{i=1}^n \sum_{j=1}^n \sum_{j=1}^n \sum_{j=1}^n \sum_{i=1}^n \sum_{j=1}^n \sum_{i=1}^n \sum_{j=1}^n \sum_{i=1}^n \sum_{j=1}^n \sum_{i=1}^n \sum_{j=1}^n \sum_{i=1}^n \sum_{j=1}^n \sum_{i=1}^n \sum_{j=1}^n \sum_{j$

Values of the gar a mane? For the late of the gar a mane?

Explifficant described by the can be shown in the case of the case

Using the time to peak as a few direction of ratios a just on [el] may be rewritten as

showing that time to peak can be used inspeed of II as one of the permaeters of the equation.

Table 5-1

Values of the Gamma Function

	/ \		
12	(n)	n	[(n)
1.0 1.1 1.2 1.3 1.5 1.5 1.6 1.7 1.8 1.9 2.0 2.2 2.4	1.000 0.951 0.918 0.897 0.886 0.894 0.909 0.931 0.961	3,0 3,25 3,50 3,75 4,5 5,0 4,5 5,0 6,0 6,5 7,5 8,0	2.000 2.519 3.323 3.423 6.00 11.63 24.00 52.33 120.00 257.8 770.0
2.6 2.8	1.430 1.676	9.0	7320

The value of the second parameter (n) can be estimated by comparing the recession curves of the actual hydrograph and that given by Equation 5-4. Plotting the recession curve of the actual hydrograph on semi-logarithmic paper, with discharge plotted on the logarithmic scale, it is possible to fit a straight line to the part of the curve immediately following the crist section of the hydrograph. The dimensionless recession constant $(K_{\rm p}/t_{\rm p})$ is then estimated from this line by the equation

$$\frac{K_1}{t_0} = \frac{c_1 - t_2}{2.3 + (1)g + 2\sqrt{c_1}}$$
 (5-5)

In this equation, \mathbf{t}_p is the value to peak of the bydrograph \mathbf{Q}_0 and \mathbf{Q}_0 are two values of discharge and \mathbf{t}_1 and \mathbf{t}_2 are the corresponding two values of time, which are read from any two points on the sweedgit line in the samillogarithmic plot.

The above procedure was used also to determine the resession constants of the dimensionless hydrographs obtained from equation 5-1 as the value of n was varied. The values of the demonsionless recession constants obtained for various values of n were plotted on a diagram (Fig. 5-1) showing the relationship between the two quantities. Such a diagram can be used for estimating the value of the parameter n when the quantity E_{\parallel}/t_{\odot} is known.

An elternative method for estimating the value of n earlie be the comparison of the actual hydrographs, plotted dimensionlessly as (Q/Q_p) versus (t/t_p) , with a set of similar curves obtained from Equation 5-4 by assuming a set of various values of the parameter n. A set of such curves is given in Fig. 5-2 and a listing of the values of the variables from which the diagram has been plotted is given in Table 5-2.

FIG 5-1 RELATIONSHIP BETWEEN DIMENSIONLESS
RECESSION CONSTANT AND HYDROGRAPH
PARAMETER

Table 5-2 The Dimensionless Instantaneous Hydrograph

			6/6 ^b (4	3		
t/t _p	n = 1.4	16		2.0	2.2	4.5
0.0 0.1 0.2 0.3 0.4	0.0 57.1 72.3 81.7 88.1 92.6	0.0 45.1 61.5 78.9 88.7 89.1	0.0 32.6 52.3 66.8 77.6 85.7	0.0 24.6 44.5 60.1 72.9 82.1	0.0 18.6 37.9 54.6 68.4 70.3	0.0 14.0 :32.2 19.1 64.2 76.3
0.6 0.7 0.8 0.9	95.7 97.8 99.1 99.8 100.0	95.6 96.7 95.6 99.7 100.0	91.5 95.6 98.2 99.6 200.0	89.5 94.5 97.5 99.5 100.0	87.6 93.5 00.0	85.6 92.4 96.8 99.2 100.0
1.1 1.2 1.3 1.4	99.8 99.3 98.5 97.5 96.3	0.000 mm	996 98.6. 970 95.0 92.7	99.5 98.2 96.3 93.8 91.0	99.72 97.76 97.76 98.27 98.27	99.3 97.6 94.9 91.5 87.6
1.6 1.7 1.8 1.9	94.9 93.4 91.9 90.2 88.4	92,5 93,3 83,0 83,6 83,8	90.1 87.3 84.4 81.3 73.2	87.3 84.4 80.9 77.2 73.5	85 81.0 77.7 73.7 63.7	83.4 78.9 74.3 69.7 65.1
2.2 2.4 2.6 2.8 3.0	84.8 81.1 77.3 73.5 69.7	73.2 73.0 67.9 63.0 53.2	72.0 65.7 59.7 59.6 48.6	66 . 8 59 . 5 52 . 5 46 . 3 40 . 5		56.9 48.0 40.5 34.0 88.3
3.5 4.0 4.5 5.0 5.5	60.7 52.4 45.0 38.4 32.7	13.0 23.8 23.8 13.7	35.9 27.5 20.3 14.8 10.7	28.7 19.7 13.6 9.2 6.1	22.0 14.0 9.0 5.0 3.0	17.4 10.4 6.1 1.5 2.0
6.0 6.5 7.0 7.5	27.7 23.4 19.8 16.6	14.6 11.3 3.8 6.8	7.7 5.5 3.9 2.8	4.0 2.7 1.7 1.1	2.: 1.1 0.8 0.5	1.1 0.6 0.3 0.2

Table 5-2 (Continuel)

t/tp	n=2.6	2.3	3.)	3.5	4.0	4.5
0.0 0.0 0.2 0.3 0.4 0.5	0.0 10.6 27.4 44.6 60.3 73.4	0.0 8.0 23.3 40.4 56.5 70.5	0.1 (6.) 19.3 (6.7	0.0 3.0 13.2 28.4 45.4 67.7	0.550 2850 2807 560	0.0 0.7 5.9 17.1 33.0 50.9
0.6 0.7 0.3 0.9	83.8 91.3 96.4 99.2 100.0	\$1.9 90.3 95.0 99.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	74.8 34.8 94.5 98.0 200.0	71 84 1 26 6 93 £ 100 1	67.8 82.0 93.2 93.1 100.0
	99.2 97.2 94.2 90.3 86.0	99 - 3 96 - 7 93 - 4 39 - 3 84 - 3		93.8 95.0 33.0 11.0	90.13 94.13 99.14 3.1	58.4 04.6 87.7 80.1 7.8
1.6 1.7 1.8 1.9	81.2 70.3 77.2 66.2 61.2	19 13 13 13 13 13 13 13 13 13 13 13 13 13		0.02 0.05 0.05 0.05 0.05	50. 60. 32 86 33.8	63.4 55.3 47.6 40.5 34.2
2.2 2.4 2.6 2.8 3.0	51 .8 25 .7 25 .2 26	49.7 33.1 34.7 45.7	. of.	3 .	29 (1) 20 (1) 124 (1) 6 (1)	23.7 16.0 10.5 6.6
3.5 4.0 4.5 5.0 5.5	13.6 7.6 4.1 2.2 1.1	.0. 2. 3. 0.7) (4) (4) (4) (5)		8 8 8 8 8 9 8 9 8 9 8 9 8 9 8 9 9 8 9	0.1 0.0
6.0 6.5 7.0	0.6 0.3 0.2 0.1	0.,; 0.1. 0.1. 0.0),2 0,0	CUC		

Table 5-2 (Continued)

t/t _p	n = 5.0	6.0	7.0	0.8	9.0
0.0 0.1 0.2 0.3 0.4 0.5	0.0 0.4 3.9 13.3 28.2 46.2	0.0 0.1 1.8 8.0 20.6 58.1	0.0 0.8 4.9 15.0 51.4	0.0 0.4 2.9 10.9 25.9	0.0 0.0 0.2 1.6 8.0 21.5
0.6 0.7 0.8 0.9 1.0	64.2 79.7 91.2 97.9 100.0	57.5 15.3 89.1 87.4 100.0	51.4 71.2 87.0 96.8 200.0	46.0 67.2 85.0 96.3 100.0	13.8 63.6 63.4 95.8 100.6
1.1 1.2 1.3 1.4	98.1 93.2 86.0 77.6 68.5	97.5 91.5 82.8 12.8 62.3	91.2 89.9 77.8 63.3	96.8 88.4 76.8 64.1 51.6	96.4 86.0 74.0 80.0 46.9
1.6 1.7 1.8 1.9 2.0	59.4 50.8 42.8 35.6 29.3	52.9 12.9 24.5 21.6	25.8 25.0 23.0 24.0 27.09	40.2 30.6 22.6 15.9 11.7	18
2.2 2.4 2.6 2.8 3.0	19.3 12.3 7.6 4.6 2.7	12.8 1.3 4.0 2.4 1.1	3.5 4.3 2.1 2.0 5.4	5.6 2.5 1.1 0.4 0.2	3.1 0.6 0.8 0.1
3.5 4.0 5.5 5.0 5.5	0.T 0.2 0.2	3.2 3.0	L.C O.C	0.3	0.0

5.2 Estimation of the Time to Peak and of the Reversion Constant from Physical Characteristics

Records of total hydrographs for 5 to a states on each of the 17 materials listed in Table 3-1, Section 3.3, were obtained; the direct surface rainful hydrographs were derived from the costol hydrographs and release to a discussional less form (9/9, versus m/t,) as described in Section 2.1 comparing the dimensionless hydrographs consided from various and had for my one such table. It was found that the veloces of the fone to jeth to a growth lary equal and so the dimensionless convents which had a materials had a growth and approximately to a same characteristic happed labors follows the surface had a peak to be peak to the value of the recognism that if it and the prospection of the surface of the parameter in the same of the surface of the surface of the parameter in the same of the surface of the surface of the surface of the parameter in the same of the surface of the surfac

a multiple council for analysis is explosive to the the configuration of the same ship potween with of an quantities t, and $t_{\rm p}$, on the paper of the main street. So The values of the commonwealthis in given in Table 3-3

The equations charines from the multiple economitaes and in the State

$$S_{1} = \{1.3 \text{ A } \{0.9\} \text{ A } \{0.9\} \text{ S}^{-1.4} \}$$

$$S_{2} = \{2.3 \text{ A } \{0.9\} \text{ A } \{0.45\} \text{ B}^{-1.4} \}$$

The agreement setween the reserved quantities of r_i and R_i and the wearest of the first of r_i and R_i and those computed by Equation 5-5 was 2.5 halo.

RELATIONSHIP BETWEEN KI AND WATERSHED FIG 5-4

Nable 5-4 Hadroff Tarofffes

ntershed number	Time to test t (im) t	ind saces	Hydrograph Perancter
1 2 3 4 5 8 9 10 12 13 13 14 16 17 19 20 21 22	2 A 1 1 1 1 C 6 M A 1 1 3 8 A 1 5 8 B	1.15 1.01 2.05 2.00 2.00 2.00 2.00 2.00 2.00 2.00	100 m 9 3 3 2 5 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

5.3 Working Charts for Determine tion of He regreeth Per management

If the values of the area of a water and, the length of the main screen and the slope of the main stream are availed by an employ a struct from a tipoegraphic map, it is possible to duling the while of the entropy provides during from the given waterabed. The post time would be to be a reclaim sounds of the and K₁ trem Equation: 5-6 and 5- to the characters are the entropy and the first and the first and the first of the characters are the continued from the first of the first and the first and the first and the characters are the continued for a superessible case of the main tensor of the characters are the continued for the characters are the continued for the characters are the continued for the characters of the case of the characters are the continued from equations 5 and the continued of the continued of the continued from equations 5 and the continued of the continued

an anish R is taken to be I imported in the second of the hydrograph part of the hydrograph

The relationship between the financial stronger in the control graph parameter is given also in Fig. . 3

As an alternative to the next to or detail the form of Higher have been prepared from values of A, Lease 3. These clayers support to the best first 5-7.

5.40 Devination of Units Engineering of Mark 12.75 have

The equation used for the description of the used hydrograph in our report is one originally proposed for instantaneous used hydrographs in. It was taken to apply also for unit hydrographs of definite but short ours mone, of the order of O.ltp. If it is required to produce a usin hydrograph of langer furations, it is possible to use a graphical or singuration ratio of the required unit hydrograph. It is assumed in these methods what the duration of

60

Table 5-6 Values of the Dimensionless Pean Discharge for Various Values of n

ALCORD FOR STREET, STR	environmental entre entre service entre	raymoni granim majanjedana primita 👟 🧀 udovi utomi ni mito	A HELPERTED NOT THE WAY A SET THE PROPERTY OF	A NOVEMBER OF BELLEVI
11	0 3 640 AR	ij		
1.680 a 4680 555	0.230 0.271 0.523 0.538 0.438 0.445 0.445 0.511 0.510 0.57	3445505050500 45505050500	0.00k 0.00k 0.00k 0.00k 0.00k 0.00k 0.00k 0.00k	

the resulting unit hydrograph is an exact multiple of the duration of the original unit hydrograph of short duration.

In the graphical method (Fig. 5-8), a number of unit hydrographs are drawn vertically below each other in an offset position. The number of hydrographs drawn is equal to the ratio of the duration of the resulting hydrograph to the duration of the original hydrograph and the amount of horizontal offset of each hydrograph with respect to the one above it is equal to the duration of these unit hydrographs. The ordinates falling on any vertical line are then added for all the offset hydrographs to give the ordinate of the summation curve. Fiably the ordinates of the summation curve are divided by the number of unit hydrographs involved in the summation to give the required unit hydrograph of the required duration.

In the numerical procedure, the ordinates of the short duration unit hydrograph, corresponding to times T_1 , $2T_2$, $3T_1$, . . ., (where T_1 is the duration of the unit hydrograph) are denoted by U_1 , U_2 , U_3 , etc.; the ordinates of the unit hydrograph of longer duration at the same times are denoted by q_1 , q_2 , q_3 , etc. If the duration of the longer unit hydrograph is $T = NT_1$ where N is some integer number, then the relationship between the nth ordinates of the unit hydrograph of longer duration and the ordinates of the short duration unit hydrograph is given by $\frac{1}{2} = \frac{1}{N} =$

n=1+1 (5-9) i=1 where i is the variable of the summation; and k is taken as either k = n or k = 1

where i is the variable of the summation; and k is taken as either k = n or k = N whichever is the smaller of the two numbers

FIG 5-8 DERIVATION OF UNIT HYDROGRAPHS
OF LARGER DURATION

5.5 Design Hydrographs from Design Rainfall Eyetographs

The analysis of rainfall records leads to values of the Teplor of Lainfall that can be expected with a given fraction of various of the white information it is then possible and the state of the state

The derivation of the Assign hydrograph of research as sometimes assumption of linear relationship between testified and run in the construction of the hydrograph of dura is a longitude of the linear of the hydrograph of the construction of the construction of the construction of the construction of the hydrograph of the construction of the

where i is the varietie of the submarker and k . Taker n = n or k = N whichever is the submarker of the two quantitates.

6. THE RELATIONSHIP BETWEEN RAINFALL AND RUNOFF

6.1 Factors Affecting the Amount of Runo f

There is no definite relationship available for calculating the amount of direct surface runoff resulting from a given rainfall, so the factors affecting the total volume of runoff are numerous and difficult to evaluate. In the process of conversion of rainfall to runoff, infiltration into the ground appears to be the most important single factor affecting the volume of runoff produced by a given rainfall. Some of the factors affecting the infiltration rate are:

A - Climatological conditions:

Radinfall intensity, duration and distribution; initial existure condition; ground water elevation; and presence of snow or ice cover.

B - Watershed conditions:

Soil types and permeability; ground cover and land use; and physical. features of the watershed.

Some of the other factors affacting the volume of runtil are the depression storage, reservoir storage and interception loss and to a lesser extent also evapotranspiration.

6.2 Definition of Runoff Cueffict ant

The runoff coefficient r used in this study was defined as the ratio of total volume of runoff R to the volume of runoffall $P_{\rm x}$ cocuring after the beginning of runoff.

$$r = \frac{P_X}{R}$$

where both R and $P_{\mathbf{x}}$ are expressed in inches.

The runoff coefficient for any storm can be obtained from the analysis of runoff hydrograph and the rainfall hyetograph, as shown in fig. 6-1.

6.3 Evaluation of Total Runoff and Runoff Coefficient

The values of the runoff coefficient as described in the previous section were determined for the various storms on the untersheds studied. Since these watersheds studied were small and the rain gages used for estimating the rainfall were not closely and evenly distributed, the true hydrograph and average precipitation for a given storm over a given vetershed could not be determined accurately. Consequently, the derived values of runoff coefficients if were not taken as a fixed constant, but rather as calling within a mange, say 0.2 - 0.4 or 0.5 - 0.7, chosen so that it gives a imasonable estimate of the true value. Studying the general soil regions of Indiana and their subsoil permeability, it is found that the runoif coefficient is correlated to the permeability of the soil. The relation obtained between the runoff coefficient, type of soil and permeability is shown in Table 6-1. Since the relation was found to be logical and consistent, the runoff coefficient can be estimated from the knowledge of the soil type of the watershed. Hence, by locating a given watershed on the soil map, the runoff coefficient can be readily determined. Table 6-2 lists the recommended runoff coefficients for various types of soil for the runoff design of small watersheds in Indiana.

The design runoff can be computed by the formula:

$$R = r \cdot F_{x} \tag{6-2}$$

Where R is the design rumon, in inches

 $\mathbf{P}_{\mathbf{x}}$ is the rainfall depth that occurred after the beginning of runoff in inches

For design purposes it is usually assumed that the ground is saturated and that depression storage is filled at the beginning of rainfall. Under this assumption, the runoff starts at the same time as the rainfall and the rainfall P_{κ}

occurring after the start of runoff is the same as the total rainfall P. Values of the total rainfall P can be estimated from Figures 3-3 and 3-4.

1 3 1100

Table 6-1

The Rumoff Coefficient, Type of Soil, and
Degree of Perceability of Subsoil

Watershed number	Runoff Coefficient	Type of soil#	la _c tee of
Pur Sandari de Salania and Salanda (Salanda Salanda Assertation (Salanda Salanda Salan	eriteria eritaria esta esta esta esta esta esta esta est	BE A STATE OF THE	Terres de la companya
1	0.6 - 0.8	5.	Y and a second of
2	0.6 = 0.8	I,	Loderate's
3	0.8 = 1.0		SLOWIY
3 4	0.8 - 1.0	c ²)	Vary Liberary
		A*	Slowly
5 8	0.7 - 0.8	Æ.	Moderneky
0	0.5 - 11.6	E	Modera Living
9	0.5 - 0.7	Ŧ	to whately
10	0.6 - 4.7	F	1 oferable Jy
12	0.3 = 11 1.	A.z.	Very and warry allowly
1.3	J.4 = 1.6	G. 3	Med rabely and very
		- 7	
14	0.4 = (<i>L</i> . ÷	Cro. Vie.
3.6	0.8 = 1.6	Ap 3	Very and very slowly
17	0.2 = 0.5	9	Vermi starily
19	0.8 = 0.0	h_{j} B	ferry and year slowly
-		&	Very LOWING
20	0.5 - 0.7	C	Mod rately and slowly
21.	0.5 - 1.7	Tv.	Var Strawar
22	0.5 - 1.7	N. I.	is the weely and alouly
TO COT CHICAGO IN THE CONTRACT OF THE CONTRACT	The standard of the standard o		To the sleedy

^{**} Refer to Figure (8-5)
*** Refer to Teple 3-5

Table 6-2

Recommended Rundiff Schiffic Lends

for

Various Types of Indian . Skill

T	me of	Soil	'un . 'C 121	
ramounto	принципация (бол-того, г	on antidos de allique en 2000 de la constitució de la constitució de la constitució de la constitució d	PANIS . St. of PANISHER I THE W. Clarabille in	
A,	H		0.141	
	H, 6		0.90	
	E, G,	M P	5.00	
	L, N		0.30	
	I, i		(X	
35	- 9		2-36	

types A I, s.d I, take A Mark as the storage are quite during the storage and the passing abrough the outset a secret of

7. DESIGN EXAMPLES

7.1 Determination of Feak Discharge (25 year)

From the studies in chapter 4, the procedure for pull discharge determination is as follows:

1. Peak discharge determination by the simple formula.

The watershed is delineated on a topographic map from which the area (A) in square miles, and the slope (S) in feet per 10,000 feet are determined. The 25-year peak discharge is obtained by introducing the values of the watershed characteristics A and S into formula (4-1), or by means of the working chart of Fig. 4-1.

2. Peak discharge determination by the extended i mula.

The watershed is delineated on a topographic map is module the following qualitaties are determined: the watershed arm (A) in square miles, the mean relief (H) in feet, the main attream slope B in feet per 10,000 feet and the watershed shape factor (F). The outcomed is also delineated on the drainage map from which the drainage descrity A in miles per square miles is obtained. The 25-year peak discharge is obtained by introducing the values of the watershed characteristics A, H, L, S, and F into formula (4-2) or by means of the working chart of Fig. 4-2.

Two examples illustrating the use of formias (1-1) and (1-2) and the working charts. Figures (4-1) and (1-2), are as follows:

a. Simple formula for peak discharge determination.

Watershed No. 34

Natershed characteristics
Watershed area (A)
Main stream slope (S)

156 eq irre miles 10.68 ft/10000 ft

Using the simple formula, the 25-year peak discharge can be obtained from the worling chart, Fig. 4-1, following the dotted line,

Using the simple formula without the use of chart

$$Q = 0.000 783 \text{ A}^{2.63} \text{ s.3.5} = 10.900 \text{ c.1s}$$

b. Extended formula for peak discharge de emulando.

Watershed No. 29

Watershed disracteri tics				
Watershed ares.	(A)	7 E	. 53 0	
Mesn relief	(H		dee	
Drainage Density	(D)		132	
Main stream slope	(s)	6 €	36/	- 3
Watershed chane it rdor	F3	4		

Using the extended formula, the 25-very model discuss a fine successful from the working that ϵ_{x} Fig. 4-2, for which the continuous fields

Using the artsubul formus with mosth we a reachart,

$$0 = 0.0728 \times 0.934 \text{ if } 0.034 \times 0.035 \text{ for all the second of the$$

The ptak discharge of the dance of the second of the Fig. 4-3.

1.2 Procedures for Proise Authority De

From the study of the try ten 5, the continues to the decign by drograph determinant on the continues to the first of the continues to the con

1. Determination of watershed characteristics

The delineation of the watershed on a topographic magnature determination of the watershed area in equare miles (A), the Length of main stream in miles (L), and the slope of the main stream in st./10,000 for (3) are the first steps in the hydrograph disign.

2. Determination of the hydrograph parameters \boldsymbol{t}_{p} and \boldsymbol{K}_{p}

The time to peak t_p and the storage coefficient K_1 are determined from the multiple correlation diagrams, Figures 5-6 and 5-7 or calculated from the regression formulas. Eqs. 5-6 and 5-7.

3. Determination of the shape of the instantaneous sydrograph

The ratio K₁/t_p is calculated. Using this value, who hydrograph parameter n is found from Figure 5-1. The shape of hydrograph to then determined using this value of n and Figure 5-2 or Table 5-2. At measientless short duration hydrograph may then be placeted.

4. Determination of the runoff coefficient

The given watershed is located on the soul map, Figure 3-5 and the runoff coefficient is selected by reference to Tuble 6-2

5. Determination of design vainfall

As discussed in chapter 5 the short luration hydrograph is used as a good approximation of the design hydrograph. The duration of this hydrograph is of the order of 0.1 t_p and it was adopted as the design hydrograph because it gives higher peaks them hydrographs of longer duration. The correct application of this hydrograph to a design rainfall maprices the generation of a hydrograph of design rainfall hiving a time interval equal to the duration of the hydrograph. The summation of the runoff produced by each of the increments in the hydrograph yields the hydrograph corresponding to the design rainfall as discussed in section 5-4. Alternatively a unit hydrograph of longer duration may be derived from the short duration hydrograph and then the runoff hydrograph is obtained by multiplying the ordinates of the unit hydrograph by the amount of rainfall corresponding to the longer duration, as discussed in section 5-4.

Because of uncertainties in the values of t_p and K₁ and the resulting possible variations and the shape of the hydrograph, an advantative simple semi-empirical method was developed for the descrimation of design rainfull. In this method, the resign rainfall is faken as one rainfull obtained for a duration equal to the time to peak ap of the shape durat, a hydrograph or to six hours whichever is the larger. This design rainful is when taken to be applicable to the hydrograph despite the fact that its furnitum is only 0.1 t_p. This method tends to oversellimate the values of the roll fit and, in particular, the peak discharge; but in view of the universitated involved, it is considered to be a safe some value procedure.

The procedure is first to me liquation 5-1 to Fig. 5-6 we assume that value of t_p. Fig. 3-3 is turn us a to estimate the six hours raisfall experted with a return period of 15 years. Fig. 3-4 to a a count period of 65 years.

If the time to peak is larger bun 6 rours, Cable 3- in used to cottain a value of the design rainfall. If the time to peak is the them 5 hours, the value obtained from Fig. 3-(1) (* 3-(1) to been us the exact moral rainfall.

as discussed in section 6.7 the design rainfall as confidered for occur with a condition of submased group so that the solution desermed may be taken as equal to the quantity I to maid the country coefficient can be applied.

6. Determination or total runoif

The total renotifican be determined it on the design community by Equation 6-2

that is, the design rainfall times the runoff coefficient there both $P_{_{\rm K}}$ and R are expressed in inches.

7. Computation of meximum discharge

Using the known values of the and R We has have disclosed an become puted from Equation 5.3 or from and remarks I values give in Table 5.0 and plotted in Fig. 5.5. The value of \$\epsilon_{\text{constant}}\$ for all the values of \$\epsilon_{\text{constant}}\$ for

3. Plottage the sterm he is a in

From the discount calls a branch of the content of γ , with the monomial discount γ , which is a content of the formation of a second of the content of γ , which is a skill the first a second of the first and γ . The first are second of the first and γ , which is a skill the first a second of the first and γ .

An example of the application and only belong to the solling. Veterage I lead to the solling that the solution of the solution

Vaccusaes.

Characher, Gers: Dr. Grove, Ch. 1 1. The dr. William of the St. 1 1. The second

Principal new born as a

Hydrograph From Force 5

Fr will are

Eydrograph peremo as a. Since Kyrp = 0 37 Fig. for Sec. 1 1 5

From the Wille 5. a Ca from F. 7 7!

10 p = 0.781.

Design reinfall, Figure 5-1 25-year, 6-hour rainfall. $F_{\chi} = 3$; anches


```
Design runoil!:
   From Figure 3-5 and Table 5-2 Robott creft Let. No. 1
   Remarks R = 157 % 3/5 = 2 45 imposes
Mountain dische 38 5
Jerl - Tr L
```

The arrive design of a 10 form of a

FIG 7-1 SEQUENCE OF COMPUTATIONS TO DESIGN
STORM HYDROGRAPH FOR SMALL WATERSHED

FIG. 7-2 DERIVED DESIGN HYDROGRAPH, PLEASANT

RUN AT ARLINGTON AVENUE, INDIANAPOLIS

To Be the less of Esak Desieres Deland les from the less in Evèrence de visit lessits of Frements Analysis

well Terment in

The mean deviation of the peak discharges from the decay, hydrograms and strong the frequency analysis for the reverse All materials abunded is 1,970 cms. We is it was same on the little of the materials abunded is 1,970 cms. We exceeded from the same of the small little of the materials and the same of the same of the small little of the same of the s

SUMMARY AND CONCLUSIONS

- i. In the frequency analysis all available past observations of annual peak discharge were plotted on a probability paper using Cumbel's extreme value theory. A straight line of best fit was passed through the plotted point as predicted by the theory of extreme values. Expected floods with different frequencies were obtained by extending the straight line. Table 4-1 gives the predicted flood of 25, 50, 75 and 100 years of frequency for 32 gaged watersheds in Indiana.
- 2. The geomorphological characteristics of the small watersheds are considered to be the dominant factors which affect the peak discharge. The application of the multiple correlation technique to the study of the relationship between the 25 year peak discharge and the geomorpholical watershed characteristics resulted in two equations for the indirect determination of the 25 year peak discharge. The first equation is based on two watershed characteristics and was called the simple formula. The second equation is based on five watershed characteristics and was called the extended formula. These correlations are based on the assumption that the climatological and geological conditions are reasonably homogeneous throughout the state. The geomorphological factors considered significant are: the watershed area, the drainage density, the mean relief of watershed, the main stream slope, and the shape factor of the watershed. The extended formula uses these five geomorphological characteristics and the simple formula used only the area and the main stream slope.
- 3. A working chart (Fig. 4-2) was prepared to obtain the 25-year peak discharge directly from the five watershed characteristics, for areas from 50 up to 250 square miles. As shown in the example of article 7-1 the design engineers may use the design chart to estimate the 25-year peak

discharge with good accuracy. The peak discharge with other frequencies may be obtained from Fig. 4-3.

- 4. The simple formula contains only two geomorphological factors: A and S. It is suggested as a first approximation. A working chart for this formula is given in Fig. 4-1. It is less accurate than the extended formula, but is simple and rapid for the peak discharge determination.
- 5. Since the smell watersheds used in the peak discharge determination range in area from 50-250 square miles, the use of the formulas developed herein is recommended only for areas in this range.
- 6. The study of the hydrograph is based on fundamental concepts of hydrology. The parameters of the theoretical hydrograph of short duration are correlated statistically to three watershed characteristics. Equations were derived for the time to peak (t_p) and for the recession constant (K_1) of the short duration unit hydrograph in terms of the watershed area A, the main stream length L and slope S. From these two quantities t_p and K_1 , the value of the hydrograph parameter n can be determined. The value of n completely specifies the shape of the dimensionless hydrograph of short duration.
- 7. As mentioned in chapter 5, the use of the shape of the short duration hydrograph yields a good estimation of the runoff hydrograph for small watersheds. It is also a safe design since short duration hydrograph gives higher peak then the hydrograph with longer durations.
- 8. The indirect determination of t_p and K_1 by means of the watershed characteristics A, L and S in formulas (5-6) and (5-7) is only a statistical correlation indicating the relationship among them for the studied watersheds. Other methods may be used to determine t_p and K_1 .

- 9. As mentioned before, the design runoff is based on the design rounfall and the runoff coefficient corresponding to the watershed location.

 Obviously, the worth of the derived design hydrograph hinges in a large measure upon the estimates of the value of runoff. Since the runoff coefficient is not a fixed value, the estimate of the total runoff may well vary with the judgment of the individual. The suggested runoff coefficients in Eable 6-2 are considered to be conservable.
- 10. For convenient in provided engineering design, the hydrograph study has been directed outsided the design productive as simple as possible. Most of the required data can be obtained from appographic maps, and from the working charter and fables presented benefit.
- 11. Since the small watershads used in the hydrograph study range in area from 2.85 to 100 square miles, the use of the procedures developed developed developed is recommended only for watersheds setween 3 and 100 square miles.
- 12. With reference to the comparison of the peak discharge determined from the design hydrographs with the results of the frequency analysis (Art. 7-3), it should be remarked that the maximum annual flow Q_m determined by the frequency analysis includes the base flow, whereas the value of the peak discharge Q_p determined by the hydrograph method does not include base flow. However, on one hand, the base flow for small watersheds is usually very small, and, on the other hand, the instantaneous unit hydrograph method gives an upper limit of the peak discharge. Consequently, the two errors tend to compensate each other.
- 13. Strictly specking, the 25-year storm ites not necessarily result in the 25-year peak runoff, due to variations in antecedent moisture and other factors. However, for small watersheds, this variation is smaller then for large watersheds. In addition, the hydrograph method assumes that the soil is saturated at the beginning of the rainfall. It is thus justifiable to compare the 25-year peak flood obtained from the frequency analysis to the peak discharge resulting from the 25-year storm calculated by the hydrograph method.

(6) Rice dutch new Youth Harris, and

Location - Lit $40^{9}52$, long $57^{9}6$, on line between such 15 and 22, T. 24 N. . f. 6W. on left bank at upstream sufer of bridge on Jitus (ij)thway lc, 2 miles upstream from Big sloupt Treek. I muse southeast of South Larion, and 5 miles southeast of remseaher.

Drainage area -- 22 6 sq mi

Sage --konrelording gage Dec. 31, 1443, to dog. 4, 1935; recording gage thereafter Datum of gage is 553 30 ft above mean sea level, datum of 1929

Staze discharge relation. -- Defined by surrent-meter measurements

Peak Stages and Instantaneous Annual Feak Discharge

Water Year	Sate	Gaga Feight	Discharge ofs	Tater Year	Date	Gage Height	biecharge cfs
1949	Seb 15, 1949	9 09	110	19 5	'ure 11, 1955	10 16	353
1950	July 19 1950	10 06	490	1936	.pr :+, 1-5t	10 75	504
1951	July 9 1951	11 43	610	1957	uly 13, 1°57	10 36	458 *
1952	June 1. 1952	10 20	555	1958	Nume 13, 1958		790
1453	July 5, 1953	R 65	374	1919	eb 10, 1969		480
1954	June 22, 1954	9 12	- 3.19				

(7) Iroqueis diver at Rosebud, Ind

Location --Lat 41°02', long 27°11', in SW 1/L sec. 24, T 30 N., R 7 N., 100 ft downstream from bridge on county road, half a mile morth of hosebud, half a mile downstream from confluence of Swain and Lexter ditches 1.5 miles upstream from Davidson ditch, and 2 miles east of farm.

Drainage area -30 3 sq mi

Gage. --Nonrecording gage July .2, 1948, to sept 33, 1953; recording gage thereafter. Datum of gage is 661 47 ft above mean see level, datum of 1929.

Stage-discharge relation. -- Defined by current meter measurements below 330 ofs

Plood stage -- 10 ft

Peak Stages and Instantaneous Annual Feak Discharge

Water Year	Date	Page Peight	fischarge cfs	'/ater "ear	Date	Gage Height	· Discharge cfs
19:49	Feb 15, 1949	h 15	254	1953	Jin 6, 1055	4 84	126
1950	4pr L, 1950	4.3	1,72	1756	ri - 29, 1956	t 5.5	225
1951	July 9, 1951	7.2	235	1.57	tr 28, 1957	7 90	29C
1952	4pr 23, 1952	7 3	263	1 150	Ana 10, 1969		308
1953	Mar 15, 1953	5 75	. 25	1-59	*ne I., 1959		343
1464	Mar 25, 1954	1 59	120			-	

IROQUOIS RIVER AT ROSEBUD, INDIANA

(10) Gicero Creek near Accadia

Location --Lat $10^{\circ}11^{\circ}$, long $86^{\circ}00^{\circ}$, on line between tocs. 18 and 19, T. 70 M , R. 5E., on Left bank on downstream sade of sounty bridge, $1\frac{1}{2}$ miles east of Arcadia, familion Sounty, and 5 miles upstream from little linear Greek

Drainage urea -- 131 eq. mi

Gage - Water stage recorder - Datum of ease is 815.12 ft above mean aen level Datum of 1929 - Prior to Dec. 7, 1955, wire weight gage at same site and ditum

Peak Stages and Instantaneous Annual Peak Discharge

cfe cfe	Gage Height	Date	Vater Year	Discharge ofs	Gage Neight		Date	Water Year
,740		June 15, 1958	1958	1,280		1955	July 16,	1955
,170		Peb. 11, 1959	1959	1,540		1956	July 21,	1956
			-	6,720		1957	June 29,	1957
				6,720		, 1957	June 29,	1957

(||) Carpe der Loek at Leypu, Ind

Iocation -Lat $\Lambda^{00} > 2^{\circ}$, long $87^{0} 12^{\circ}$, on like between $3^{\circ} 4$ suc. 15 and NW sec. 22 $^{\circ}$ T 28 F, K, 7 k, on left bink in desintarisate of bridge on State Highway 16 2 3/k miles upstream from with, and A miles southwest of Collegewille

Drainage Area -- 48 1 sq mi

Gage Monrecording gage July 26, 1942, to Dec. 31, 1951, and Oct. 1, 1952, to Sept. 5, 1955; recording gage educe Sast. 6, 1955. Datum of game is 640-37 annive mean sea level, datum of 1929.

Stage discharge relation. -- Defined by current-meter measurements

Peak Stages and Instantaneous Annual Peak Discharge

Water Year	Date	Gage Height	Discharge ofs	kater Year	Date	Gage height	Distharge ofe
1949	Feb 15, 1949	10 14	1 160	Juge	June 8, 1.955	9 80	984
1950	Apr 4. 1950	10 3	1,30	11955	pr .7, 1956	9 93	1,040
1751	July 9, 2951	10 92	1,790	1977	July 13, 1057	9 42	8.0
1953	July 6, 1955	9 21	73>	1958	'ure 10, 1958		3,720
1954	June 42, 1954	8 95	6,55	1957	 10, 1959 		2,690

CARPENTER CREEK AT EGYPT, INDIANA

(12) Last Gree hour schneider, Ind

Eccation. - Lat 4101c-52 , long energy 64, in M. 1.4 to 1/4 sec 19, T 32 N , R 9 W , on left tank it downstream side of county 64,7 way bridge, 1.2 miles upstream transfered witch and 2 3/4 miles porther of Schmidter.

Drainice area - 4 : sq mi.

Sare chammanding game July 29, 100, 5, co Dec. 31, 1951, and Jan. 1, 1954, to June 10. 1976; he ording (size share June 11.100). Datum of gate is 527 So ft above near less level, catum of 1925 (levels by Soil Conservation Gervice).

State discrete relation --Defined by current meter measurements

Flood store 7 ft

herb Str., ea and Instantaneous Amount Feak Discharge

Vater. Your	Jale	Gare !eight	frischarge ufr	'ater Year	Date	Gage Feight	Discharge ofe
3476	Peh 1:, 1949	4 58	50.,	1956	Peb 25 1956	5 42	710
] c , c, ()	par 22, 1949	€ 56	1,950	1957	July 13, 1757	7 02	1,250
19*1	Fer 13, 1 51	5 52	~ 5.4	20,5	June 9, 1958		794
1954	Mnr .5, 1954	, 10	1,100	-410	Arr 24, 1959		1,200
1955	Oct 10, 1954	P 05	(R _{la} t)	1			

(14) Little Calumet River at Fortor, Ind.

Location --Lat 41°37'18", long 87°05'13", in NE 1/4 sec. 34, 7- 37 N., K. 6 W., near center of span of downstream side of highway bridge, three-quarters of a mile northwest of Pottor, and 4-5 miles upstream from Salt Creek.

Drainage area .-- 62.9 aq mi.

Gage --Nonrecording gage May 5, 1945, to June 25, 1952; recording gage thereafter. Datum of gage in 603.48 ft above mean sea level, datum of 1929.

Stege-diacharge relation. --Defined by current-meter measurements below 2,500 cfc. Rating subject to changes throughout range of stage

Flood stage .-- ? ft.

Feek Stages and Instantaneous Annual Peak Discharge

Water Year	Date	Gage Peight	Discharge cfs	Matar Year	Date	Gage Height	Discharge cfe
1945	June 28, 1945	9 88	2,440	1953	May 23, 1953	6 64	521
1946	June 13, 1946	6.99	715	1954	Apr 26, 1954	8.32	1,170
1947	Apr 5, 1947	9 42	2,140	1955	Oct. 10, 1954	11 66	3,110
1948	May 11, 1948	9 10	1,960	1956	Apr. 29, 1956	8 67	1,370
1949	Max 20, 1949	6.88	690	1957	Ap. 27, 1957	7.65	848
1950	Dec 22, 1949	8 72	1,720	1958	Peb. 28, 1958	-	490
1951	мау 11, 1951	8.11	1,360	1959	Apr. 28, 1959		1,420
1952	Nov 14, 1951	7.92	1,060				

(15) Hart ditch at Muneter, Ind.

Location. --Lat £1033'40", long 87028'50", in N 1/2 sec. 20, T. 36 N., R. 9 W., on left bank at city limits of Mumeter, a quarter of a mile downstream from U. S. Highway 41, and 0.4 mile upstream from mouth.

Drainage area, -- 69.2 sq mi.

Gage .-- Recording. Datum of gage is 591.21 ft above mean eea level, datum of 1929.

Stage discharge relation. --Defined by current-meter measurements. Dredging operations assumed to have occurred between April 1944 and April 1945, and subsequent filling have affected high-water rating. Backwater from Little Calumst River and possibly from overbank raturn effects stage at gage at times during periods of extremely high flow

Flood Stage . - 7 ft

Remarks.—Hart ditch is tributary to Little Calumet River. At this point low flow of Little Calumet River runs west into Calumet Sag Charmel or into Lake Michigan through Grand Calumet River; Rloodflow at timee runs east into charmel storage or through Burns ditch to Lake Michigan

Peek Stages and Instantaneous Annual Peak Discharge

Water Year	Date	Gage Height	Discharge ofs	Water Year	Date	Gage Height	Discharge of s
1943	Mar. 16, 1943	6.95	2,280	1952	June 14, 1952	4.39	1,190
1944	Mar. 15, 1944	7 23	2,420	1953	Mar 15, 1953	3 84	960
1945	May 8, 1945	3 73	_,270	1954	Mar 25, 1954	4 25	1,110
1946	Jan. 6, 1946	2.88	780	1955	Oct. 11, 1954	7.83	2,600
1947	Apr 6, 1947	6 17	2,490	1956	нау 11, 1956	5 27	1,550
1948	Me 11, 1948	5 60	1,450	1997	July 14, 1957	7 60	2,060
1949	Feb 1:, 1949	3 00	850	1958	June 10, 1958		960
1950	Du 22, 1949	L 83	1,570	1959	Apr 28, 1959		2,670
994	May 1 1941	5 01	1,430				

(17) Salt Greek near McGool, Ind

Longtion Lat 41°35°48", long 87°03°40", in SE2 sec 6, T 36 N , R 6 W on left bank on downstream side of highway bridge, 50 ft downstream from New York Central Asilroad bridge, 12 miles north of heCool, and 1 5 miles upstream from Little Calumot River

Drainage area -- 78 7 sq mi.

Oase "Monrecordin: gage May 5, 1945, to July 24, 1955; recording gage thereafter Datum of gare is 594 10 ft above rean sea level, datum of 1929 (levels by Indiana Flood Control and Vater Resources Commission).

Stage discharge mlation, --Defined by current-meter measurements below 2,300 cfs Flood stage - 10 ft

Feak Stages and Instantaneous Annual Peak Discharge

Water Year	Date	Cage Meight	Diacharge ofs	Vater Year	Date	Gage Height	Discharge ofs
1945	June 24, 1945	10 18	1990	1953	Mar 16, 1953	8 16	454
1946	June 13, 1946	11:7	1,280	1954	Mar 26, 1954	10 48	910
1947	Apr 5, 1947	11 83	1,580	1755	Oct 11, 195L	14, 12	3,180
1948	May 11, 1948	12 3	1,910	1936	Apr. 29, 1956	11.26	1,280
1949	Feb 14, 1949	4.28	525 -	1957	Apr. 27, 1957	9 81	725
1950	Lac 22, 1949	12 02	1,760	1008	Bo 15, 1957		456
1951	hay 11 1951	10 78	970	1959	Apr 28, 1959		1,200
1952	Nov 14, 1951	10 €3	912	1			

(18) Big Slough Creal near Collerevilla, Ind

Location - Lat 10°53', long 87°09', is Sk_ Nk} sec 7.7 28 N . R o W ; on right bank on downstream side of bridge on if the (i,thway 53, 1) miles south of College-ville, 21 miles upstream from mouth, and 2 3/4 miles downstream from Rice ditch

Drainage aras --84 1 sq mi

Gage - Nonrecording gara July 29, 1948 to Jec 31 1951, and fet 1, 1952, to Aug 4 1955; recording gare since Aug. 5, 1965 Patum of gage is 637 75 ft above mass see level, datum of 1929

Stare-discharge relation. -Defined by current mote: measuremente

Feak Stames and Instantaneous annual Peak Discharge

Water Water	"ate		Gake Height	Discharge	Yatar Year	Cate	Gage Height	Discharge cfs
19 3	March	1913	13 7		1954	. ne .2, 1954	8 84	390
14 17		1227	12.5		10+5	' ne 11, 1955	12,4	1,100
1949		1949	116	ردی	1 55	Lr 29, 1956	13 0	1,470
14.0	Apr /	1150	17.7	, 11	1961	1: "L, 1957	17 96	1,470
1451	Hely In	1951	٠'	1,45	1.758	nr 3, 1958		2,010
1953	vor 1	1953	rn	131	100	tr .3 1-59		1,030

(19) North Fork of Varnon Fork near Butlerville, Ind.

Location.—Lat 39°02'55", long 85°32'40", in SEL sec. 17, T. 7 N., R. 9 E., on left bank, 0.3 mile domatream from Phacatetuck State School dam, 12 miles domatream from Brush Creek, and 2 miles northwest of Butlerville.

Dreinage area .--87.3 sq mi

Gage.—Nonrecording gage Feb. 16, 1942, to Aug. 18, 1942; recording gage thereafter. Datum of gage is 669.40 ft above mean aca level, datum of 1929.

Stega-discharge relation .- Defined by current-meter measuremente.

Flood stage .-- 11 ft.

Peak Stages and Instanaous Annual Peak Discharge

Water Yaar	Data	Gage Feight	Discharga efs	Water Year	Date	Gage Height	Discharge ofe
1942	Apr 9, 1942	e 94	2,560	1951	Nov. 20, 1950	15.98	8,030
1943	Mar.16, 1943	17 79	9,910	1952	Jan 26, 1952	13.18	5,300
1944	Apr 11 1944	12 63	4,780	1953	Mar. 4, 1953	10 34	3,260
1945	Mar 6, 1945	18,72	10,900	1954	Jan. 1, 1954	5 58	840
1946	Feb 13, 1946	15 95	8,030	1955	Peb. 27, 1955	12.05	4,300
1947	June 2, 1917	14 30	6,330	1950	May 28, 1956	16.23	8,330
1948	Mar 27, 1948	15 12	7,130	1957	May 22, 1957	17 04	9,080
1949	Jan 2L, 1949	18 73	10,900	1958	July 22, 1958		7,730
1950	Jan 4, 1950	17 90	26 000	1950	Jan 21, 1959		26,200

(20) Clifty Creek at Harteville, Ind.

Location.—Lat 39°16'25", long 85°42'10", in KW, sec. 36, T. 10 N., k. 7 B , at downs.ream side of left abutment of highway bridge, a quarter of a mile morth of Harteville, and 5 miles upstrain from Luck Creek.

Drainage erea. -88.8 eq mi.

Gage. --Nonrecording gage Feb. 12, 1948, to Sept. 23, 1952; recording gape thereafter. Datum of gage is 677.34 ft above mean seallevel, datum of 1929.

Stage-discharge relation. -- Defined by current-meter measurements below 6,000 cfs.

Historical dats --Flood of 1913 on Clifty Greek reached a stage of about 3 ft higher than the McKinley (1897) flood according to a report in the Svening Republican of Columbue, Ind. dated Rer. 25, 1913. (The preceding eta

Feek Stages and Instantaneous Annual Feak Discherge

kater Year	Date	Gage Haight	Diacharge cfs	Water Year	Date	Gage Height	Discharge ofs
1913	Mar. 25, 1913	25.1		1954	May 27, 1954	4.17	635
1948	Mar. 27, 1948	8.48	3,710	1955	July 8, 1955	6.24	1,760
1949	Jan 5, 1949	13.4	8,100	1956	June 22, 1956	11.10	5,890
1950	Jar 4, 1950	11 8	6,520	1957	July 4, 1957	9.28	4,270
1951	Nov 20, 1950	8 9	3,910	1958	May 6, 1958		2,700
1952	Jan 26, 1952	11 5	6,250	1959	Jan. 21, 1959		11,300
1953	Mar. 4, 1953	5 57	1,370				

Location -- Lat APPR', long 85003', in SP 1/4 and CF, T 34 H at 17 , hear denter of span on upstream side of Minth Streat Brid a in Amount and 2 miles upstream from Problem t ditch

Drainage area 93 of mi., approximately.

Gage Nonrecording page July 30, 1927, to Tept 30, 1953; recording gage thereafter Distum of game in 847 UA It above mean sea level (city of Jubum bench mark).

Stage-discharge relation. -- Defined by current-seter measurements.

Flood state 4 ft

Peak Stayes and Instrutareous Annual Peak Discharge

Kaser Year	Date	Gape eight	Discharge of a	Tater Tear	Date	Gage Leight	Discharge
1943	Ma,/ 197.3	9.8	1,470	1952	ter 11, 1962	a 45	\$C#1
19:4	Apr 12, 2:44	9.0	1,730	1953	rur 4, 1953	5 RO	4.71
1945	May 18, 1945	9 13	1,150	19 4	1 (r 25, 1-54	7 57	707
1946	June 1:, 1946	8 59	c15	1955	Jan 6, 1995	7 61	707
19.17	Apr. 21 1947	9 02	483	17.5	1 - 5, 1956	9.85	1.050
1948	Feb 28, 1948	8 53	9()	1957	'ur - 6, 1957	6 99	651
1944	Fe. 16, 1949	, 21	995	1958	Dec 20, 1957		547
1950	\pr ', 1950	9.	1.5'0	1959	730 16, 1957		b9C
1991	5n1	2.0	4.5			,	

(22) Bean Blossom Creek at Dolan, Ind.

location.--Lat 39°L130", long 86°29'57", in 3W2 eec. 2, 7. 9 N., R. 1 W., on downstream eide of right pier of highway bridge at Dolan, 17.5 miles upstream from mouth.

Section Laboration

Drainage orea .-- 100 sq mi.

Cage .- Nonrecording gage Apr. 3, 1946, to Sept. 27, 1951; recording gage thereafter Unitum of gage is 576.41 ft above mean oea level, unadjusted.

age-discharge reletion.—Sefined by current-meter measurements. Discharge adjusted for rate of change of stage above 5 ft. Only annual maximums adjusted prior to installation of recording page.

Flood stage .-- 15 ft.

Remarks.—Flow regulated since April 1953 by Bloomington Reservoir (capacity, 4,040,000,000 pcloms) 72 miles upstream; peak discharges probably not materially affected.

Peak Stages and Instantaneous Annual Peak Discharge

Water Tear	Date	Gage Peight	Discharge cfs	Water Year	Date	Gage Height	Discharge ofe
1946	May 16, 1946	13.0	1,830	1953	Mar 4, 1953	11 07	1,320
1947	June 2, 1947	17-8	9,420	1954	Nay 2, 1954	5 45	361
1948	Mar.27, 1948	13.5	2,110	1955	Apr.13, 1955	11 63	1 390
1949	Jan. 5, 1949	17.9	9,060	1956	Eay 28, 1956	12.93	1,740
1950	Jan. 4, 1950	17.75	8,740	1957	Kay 22, 1957	15.78	4,270
1951	Jan. 21, 1951	15.50	3,700	1958	June 14, 1958		3,040
1952	May 24, 1952	16.12	5,100	1959	Jan. 21, 1959		5,480

BLOSSOM CREEK AT DOLAN , INDIANA BEAN

(23) Pigeon Creek at Hogback Lake Outlet, near Anpola, Ind.

Location.--Lat 41°37'21", long 9;°05'4.", in EE 1/L NW 1/L sec. 36, T. 37 N., H. 12 E., on right bank 200 ft north of lake outlet, 2 miles southeast of Flint, and 5.1 miles west of Angola.

Drainage area, -- 102 sq mi, 105 sq mi prior to October 1947.

Gage. --Konracording page Oct. 16, 19/5, to Aug. 3, 1953; recording page thereafter. Prior to Oct. 1, 19/7, at site 1 1/2 miles dometream at different datum. Oct. 1, 19/7, to Aug. 3, 1953, at site 600 ft downstream et present datum. Datum of present gage la 940.00 ft abova mean eea level, datum of 1929.

Stage-discharge relation.--Defined by current-meter measurements below 24,0 ofs at former site and by current-meter measurements at present site.

Peak Stapes and Instantaneous Annual Feak Discharge

Water Year	Date	Gago Height	Dlecharge cfs	Water Year	Date	Gage Feight	Disoharge cfs
1946	Feb. 19, 1946	-	220	1953	Mar 19, 1953	9.30	122
1947	Apr. 24, 1947	10.71	458	1954	Mar. 30, 1954	11.31	317
1948	Mar 2, 1948	11.79	355	1955	Oct. 17, 1954	11.54	339
1949	Feb. 19, 1949	11.93	366	1956	May 4, 1956	13.39	548
1950	Apr 8, 1950	14.95	744	1957	Apr. 14, 1957	11.29	317
1951	Feb. 24, 1951	12.50	448	1958	Sept.21, 1957		274
1952	Jan- 21, 1952	11.85	370	1959	Pab.17-19,1959		442

(24) Youngs risk hear Timburg, Ind

Location --Sat $39^925\cdot08^n$, long $86^900\cdot18^n$ is $86^12/4$ sec 5. 7 if N . 8 5 E , on left bank, on upstream adde of highway bride nelf a mile southwest of Amity, 2 miles upstream from mother and 5 miles northwest of admining

Drainage area - 109 eq mi

Gage --Monrecording maps Dec. 7, 1942, to June 29, 1955; recording gage thereafter Datum of gage is 670.2 If above mean sem level, datum of 1929.

Stage discharge relation - Diffined by current mater measurements below 7,000 cfe and by contracted-opening measurement at 10,700 cfs

Flood stage - 7 ft

Peal Stages and Instantaneous Annual Peak Diecharge

Weter Year	Date	Gage Height	Diacharge ofe	Water Year	Date	Gage Height	Diecharge cfs
1943	Mar 19, 1943	10 40	3,700	1952	Jan 27, 1952	13 4	10,700
1944	Apr 11, 1944	11 00	1,,290	1953	Mar 4, 1953	8 37	2,080
1945	Mar 6, 1945	11 00	L,290	1954	Jan 27, 1954	3 27	443
1946	May 16, 1946	9*0	.,510	1955	Fay 28, 1955	6 2	1,110
1947	June 2, 1947	11 12	4,390	1956	10v 16, 1955	12.20	7,790
1948	Mar 27, 1948	7.58	1,650	1957	July 5, 1957	11.62	6,510
1949	Jan 5, 1949	11 ?	5,190	1958	June 11, 1958		4,350
1950	Jen 4, 1950	10.4	/ 090	1959	Jan 21, 1959		6.270
1951	Jan. 16, 1.5			1			

(25) " ppersonne "..v + at Dawegs, Ind

Location ist $(L^01)^*\Pi_n^{\rm H}$, in R $85^{\rm C}$, $\Pi^{\rm H}$, in $(E_1)^*R^1$ sec $\Pi_n=33$ M , R ϵ E., on left and Π for downstrain from the square lake outlet in Obergo, 3 miles each of lecsivity

Drainege area -- 115 sq mi

ę~

Gags - Nonroto -Ving gate Oct. 1, 1949 - c. tag. 13, 1953; recording page thereafter fatum of $g_{\rm m}\simeq$ is 330.00 ft above mean see level datum of 1929

Stage-dischargs relation -- A-Final by current-met a measurements below 680 cfs and extended to 1,050 ofs by logarithmic plotting

Lemirks. Feel discharges affected by return, storing in numerous lakes upstream

Peak Stures and Instantaneous Annual Feak Discharge

Water Year		s; e			Discharge ofs	Water Voer	Date	Gage Feight	Pischarge cfs
1043	Łay	.n	1943	9 4	1,050	1955	7ct 17 195%	9 55	700
1950	agr	3 10	1950	3 62	9 iO	1956	"av 5 0, 1956	3 08	450
1951	reb	27 28,	1951	•	7.3C	i U257	pr 17 2:,1957	7 59	315
1952	.'an	3€,	1951		370	195P	ept.1: 3,195	7	383
1453	var	,2,13,	1953	5 1	1 79	1050	3 1459		5148
1954	5 jor	29,30	1053	^ J	• 3 '2				

(26) North For it. Trees near that to, End

Location (at 39°C9 CC) for 30°C1, in 10°C, as 5°C1.8°C, 2°C3 on right bunk 15°C4 downstream (right orders on Lette alchevy 46°100 ft bootream from Schoolee, lenck, 0°C7 mile in others of extract of 1/2 miles upstream from Schumet Oreek, and 20 miles upstream from Bouthe threek, and 20 miles upstream from Boots

ruinning rea 1.0 sq mi, include: that of Schooner Creek

sgr - Numrecording gage Apr 4, 2020, to let 8, 1951; recording gage themsefter Altitude of gage is 546 ft (from temperaphic cap)

Player-Gischunge relation --Defined Ly current meter measurements below 9,800 of a Discharge adjusted for rate of change of stage above 7 ft. Only amount maximums adjusted prior to installation of recording page.

Plocd stage -- 15 ft

Peak Stares and Instantaneous Annual Feak Discharge

Water Yeer	Date	Gare Height	Discharge cfs	Water Year	Date	Gage Reight	Discharge ofs
1913	March 1913	25 7		1953	Mar 4, 1953	17 76	2,780
1946	May 16, 1946	20 3	>,91(1954	Jan 27, 1954	9 38	825
1947	June 2, 1947	21 2	10,10	1355	Mar 21, 1955	15 91	2,220
1948	Mar 27, 1948	18 0	3,010	1956	May 28, 1956	18 12	3,030
1949	Jan 5, 1949	20 2	13,300	1957	Afr. 4, 1957	19 92	6,340
1950	Jan 4, 1950	21 7	11,600	1910	June 14 1958		5,920
1951	Feb 21, 1951	19 53	5.100	7959	Jan 11, 1959		_2,000
1952	Asy 24, 1992	22 55	15,200				

(27) Sincleton witch at Schneider, Ind.

Location.--Lat &1º12'&&", long 87º26'&,",", on line between 15 1/4 sec. 21 and NW 1/4 sec. 22, 7. 32 %., &. 9 W., on left bank 15 ft upstream from bridge on U. S Fighway &1, balf a mile upstream from Enuceditch, 1 1/2 miles downstream from Coder Greek, and 1 2/3 miles north of Uchneider.

Drainage area. -- 122 sq mi.

Gage → onrecording gage duly 28, 1943, to sug. 13, 1951; recording gare thereafter. Frior to Get. 1, 1943, at datum 2.60 ft higher — Datum of present gage is 623-67 ft above mean sea level, datum of 1929.

Stage discharge relation.—Defined by current-meter measurements. Dredging in 1950 and subsequent floods and channel deterioration have materially affected the stage-discharge relation.

Feak Stages and Listantaneous Annual Peak Discharge

Water Year	Date	Gage Height	Discharge ofs	Water Year	Date	Gape Height	Discharge cfs
1949	Feb 15, 1949		55C	1955	∩ct 11, 1954	10.10	953
1950	Apr 10, 1950	-	1,100	1956	Feb. 25, 1956	9 62	888
1951	Peb. 19, 1951	8.50	84.1	1957	Apr 28, 1957	10 27	979
1952	June 15, 1952	9.82	1,010	1953			714
1953		8,39	812	1959	Peo. 14, 1959		992
1954	Aar. 25, 1954	9.04	810				

SINGLETON DITCH AT SCHNEIDER, INDIANA

(28) East Fork Unitewster miver at Richmond, Ind.

location. -Lat 39°48'24", long 84°44'25", in SE 1/n sac. 7, T. 13 N., R. 1 M., on left bank 50 ft downstream from highway bridge, three-quarters of a mile south of Richmond, and 2 miles upstream from Short (reek.

Drainage area. -- 123 aq mi.

Gage. -- Honrecording gage Apr. 27, 1919, to duly 26, 1919; recording gage thereafter.

Batum of gage is 854, 01 ft above rear sen level, datum of 1929 (levels by Indiana Flood Control and Vater Resources Commission).

Stage-discharge relation. --Defined by surrent retar measurement; pelow 5,100 ofe and by alope-area measurement at 13,5 0 ofs.

Flood stage .-- 10 ft.

Historical data. Flood of September 13c6 Kis reported by the Indianaphia Journal to be higher than over before known flood of March 1913 is the maximum etage known according to information by local residents.

Peak Stages and Instantaneous Annual Feak Discharge

Water Year	Date	Gage Feight	Discharge cfs	Vater Year	Date	Gage Height	Discharge cfe
1913	March 1913	15 0	-	1955	Feb 21, 1955	6 07	2,540
1950	Jan 15, 1950	12 49	13,500	1956	Nov 16, 1955	10.70	8,200
1951	Nov 20, 1950	10.82	9,250	1957	June 28, 1957	10-54	7,600
1952	Jan. 26, 1952	10 66	9,250	1958	hug. 2, 1958		10,400
1953	May 22, 1953	6,53	3,60	1959	Ja™. 21, 1959		14,100
1954	Mar. 30, 1954	3.86	1,160				

Location. --Lat 11º32:10", long 87º15:25", in MW 1/4 sec. 32, T. 36 N., H. 7 W., on left bank at upstream side of hijmay bridge, 300 ft upstream from Duck Creek, and 400 ft domestream from Lake Teorge Dam.

Drainage area. -125 aq mi.

Gage. --Nonrecording gape Apr. L, 1947, to July 29, 1952; recording gape thereafter. Frior to July 21, 1955, at site 400 ft upstream at datum 11.80 ft higher than present datum. Datum of present gaps to 588.17 ft above mean ceal levil, datum of 1929 (levels by Indiana Flood Control and Mater Resources Commission).

Stage-discharge relation.--Defined by current-meter measurements below 3,300 cfs.

Peak Stages and Instentaneous Annual Peak Discharge

Water Year	Date	Gage Height	Discharge cfs	Water Year	Date	Gage Height	Diecharge
1947	Apr. 6, 1947	5.41	2,410	1954	Mar. 26, 1954	4.55	1,440
1948	May 11, 1948	5.86	2,740	195 5	Oct 11, 1954	7.68	3,880
1949	Feb 14, 1949	3.50	620	1956	May 11, 1956	11.15	1,320
1950	Dec. 22, 1949	5 35	2,390	1957	July 14, 1957	12,35	1,650
1951	May 11, 1951	4.52	1,440	1958	June 10, 1958		720
1952	Nov. 14, 1951	4.41	1,340	1959	July 24, 1959		1,970
1953	Mar. 16, 1953	3.86	912				

(30) Big Erd a .re- in Tycon, Ind

Location --Lat 38°16 35", lone 30°00 15", in 36°1/4 sec. 6. 3 3., 8°4 &., or unstreen side of order on stale lightway 35, 0.6 mile spatream from Tacobon Strands and A 1/5 miles sorth of increase.

Drainage erea. -- 12; so mi.

Days Conrecording mage Oct 12. 174 , to Doc 8, 1948; recording gage thereafter thum of gare 18 577.12 for above mean son level, datum of 1929.

Stage Cuscharge relation. -Lefthe - y communitarity measurements below 6,600 of and extended above g logarithms. pl sting.

furtomical data. Fired of the (10,1) 13, is the maximum known at Jorydon since Scotlining of smooledge in 18.5.

Performers and its a tamenum formal leaf Machango

						,	
Water Year	2113	Pane :	alre	1 the	Late	Gage height	Discharge ofs
19 1	* r 1° . "	- 1,	201	.9.2	etε : 11, 1452	12 75	10 400
191 li	, pr L., ., .	11 5	400	0.3	Har 3, 1453	14 57	5 400
1-15		19		36-7	Ja t 30, 1, ju	15 04	4,800
1996	rec in, 14	15 0	4 5 C	1000	nur 15, 1465	l. 98	3 900
1917		16.3	5-1-0		Feb. 18, 1786	10 25	7,180
1968	100 11000	19 "	0.15	- 7	F21. 2 , 1 17	10.52	7,300
191,	ar 1	. 20	~ 1 -	J11 1	dis. 1., 1.57		6,590
19.0	er (), 195	10 77 ,	7, 0 0	167	far. 11, 1959		25,800
1			1 7 1	1			

(31) Mississinewa niv - ear Ridge dila, ind

Location = La . C⁰17*, long 83°CO*, in La 1.6 sec 2°, T 19 %, E 16 E, or right
bank 10 it downstream from higher bridge, 0.8 mile downstream from Nud Creek,
and 2 miles east of lidgestife.

frainage srea - 130 sq mi

wage. Konruchilling gage aug. 20, 1546 to Oct. 3, 1950; recording gage thereafter Datum of some is 965-22 ft above mean sen level, datum of 1979.

Stage-discharge relation. - Defined by current mater measurements below 3,400 cfs

"Floor stage. 10 ft

Fistorical data. --Local resimmuts state : that the 1913 flood was secondary to a flood in the early 1930's when the liver reached an estimated stare of 15 0 ft

Peak Stages and Instantaneous Annual Peak Discharge

Water Year		Dete		Ga, He 1;		Discharge cfs	lister Vesr		Date	Gape Height	Discharge ofs
1947	Jan	30,	1947	11	16	2,490	1954	Mar	30, 1954	7 80	1,020
1943	Jan	1,	1948	12	2	3,480	1955	Jan.	6, 1955	11 16	2.490
1949	Jan	5,	1949	13	1	4,560	1955	. Hov	16, 1955	12 79	4 200
1950	Feb	14,	1950	13	1,	4,920	1957	June	28, 1957	14, 57	8,830
1951	Feb	21,	1951	12	75	4,200	1958	June	10, 1958		13,900
1952	,*.1.1	26,	1952	11	90	3,250	1955	.tan	21, 1959) 1.20
1953	Mar	ℓ_k	1953	17	CC.	3,250					

(33) hankakee lives nee forth 11 orty, 144

Location while /1º % 50°, long 05°20°,0°, or like botwoon sets. If and 29, T. 36 h , B. 1 V , or 10°h bank at downstrian side of bridge on 55. Joseph County highway mend ${\rm Size}$ hold, of at site north wave of forth tiberty.

britance area -- 150 eq mi.

Cage -Pobréco ming game Jan. 12, 1992, it June 25, i 50; recoming mage thereafter Deturn of rage is 600.02 ft story man rea level, datum of 1927 (levels by Indiana Float Johnson and "after Recourses Jose Stratch").

Stare-discharge relation. - Welation iffected by Varying actum. of backwater caused by return flow from ordering theorem current under measurements necessary to disting relationship during this period.

Peak Stages and historiansous innual leak Discharge

Water Year	Date	Gage Peignt	dsch rie	Vater Verr	Date	Gage Feight	Discharge cfs
1951	May 11, 195-	6,15	52/0	1956	Arr 30, 1956	6,92	660
1952	har. 14, 195.	1.47	51 C	1047	A 17, 1957	5,90	6 t 0
1953	Mar. N., 1953	4.42	2:0	19,8	024 20, 1)57		560
1954	ppr 26, 175.		30-0	1959	13" 27, 1959		560
1955	Cet 10, 1954	r 64	Exit.				

(34) Sand Creek near Brewersville, Ind.

Location --Lat 39°05'05'', long 85°39' 30", in EP() see 5, T 7 M , K 8 E , on left bank at downstream side of county highway bridge, 22 miles west of Brewersville, and 5 2 miles upstream from Bear Greek

Drainage area -156 eq mi; 163 eq mi prior to Oct 6, 1952.

Gage...-Mourecording game Feb. 11, 1948, to Oct. 5, 1952, at hridge 1.7 miles upstream at datum approximately 8 ft higher. Recording gage since Oct. 6, 1952, at present site. Altitude of present gars is 50 ft (by elimeter).

Stage-discharge relation, --Defined by current-meter measurements at former site and by gage-height relationship with former site at present location

Peak Stages and Instantaneous Annual Feak Discharge

Water Year		Date	Gage Height	Diacharge cfe	Water Yeer	Date	Gage Height	Diecharge ofe
1948	Mar	27, 1948	17 5	9,900	1954	June 1, 1954	5 75	1,240
1949	Jan	5. 1949	19 0	12,100	1955	Feb 27, 1955	11 42	4 300
1950	Jan	4, 1950	19 2	12,400	1956	May 28, 1956	15 45	7,560
1951	Nov	20, 1950	18 4	11,100	1957	Apr 4, 1957	16.33	8,480
1952	Jan	26, 1952	13 4	5,780	1958	July 22, 1958		7,150
1953	Mar	4. 1953	10 19	3,460	1959	Jin. 21, 1959		19,900

tion. Let $L^{*}(S^{*})$, M_{s} , $M^{*}(S^{*})$, so the solutions of and M_{s} and Location

Dwrinage area - 162 sq ma; 172 so ma prior to thum - , 1951

Case. -Monumentains make Pel. 20, 1015, to fund L., 251; morefulns gave thereafter Prior to June 5, 1954, at offsel 1 miles coundings, or later 5 th follower than present datum. Datum of present the is 20% 35 ft above mean sectional, datum of 1929.

Stage-discharge relation Define: by numbers meter measurements.

Flood stage 11 15 At both sites

crims note. The following miss by to open in ald newapagers for bokonol about 9 miles downstrum for them 1855. "Midwat Creek raydom: no train for 3 days." 1966: "Mirest to the 1855. "Midwat Creek raydom: no train Flood of Associative new research as she that of the 1913 flood at a bridge 1} miles downstream from present site according to information by local resident on the backs of resembered high water marks made on the about the same tree. Listorics mata

Peak Stages and Instantaneous Annual Peak Discharge

Water Year	Date	Gage Height	Discharge cfs	dater	Date	Gage Height	Discharge cfs
1943	tay, 1943	15 C	5 950	1952	Mar 11, 1952	11 52	2,580
1945	4pr 1, 1945	10 04	1,680	1953	"ar 4, 1953	10 34	1 810
1946	Oct 2 1945	9 94	1,640	1954	Nr. 12, 1954	5 03	450
1947	Apr 30, 1941	10 94	2,140	1955	. in 7, 1955	10 00	1 650
1948	Mar 22, 1948	11 63	2,670	1456	Hay 28, 1956	9 47	1,650
1949	Jan 19 1949	1 19	4.110	1-157	Tune .1 957	12 37	2,260
1950	Jan 4 1950	15 3	6,120	1,50	June 10, 1758		4.900
1951	Peb 21 1951	10.7	2,620	1959	ee: 10 1959		5,390

(36) Pall Gree is . Fortville, and

location Lat 39° 7 15", long 95°5. Dr., in and 5, T 17... 3 6 %, on right lank t downstwam side of triber on tate rights 20% 1 mile downstream from Lick treetung a make morthway of Controlle

Drainage area 172 an mi

Gage --Nonrecolding rage July 1, 1941 to tune 25, 1942; recolding gage thereafter Datum of tage in 767 43 ft above to an see level, datum of 1929 (levels by Indianapolis 5 ter Co)

Stage discharge relation -Lettree ty as rent mater measurements

Flood stage to ft

Ristorical daty.- Fined of 1913 reached a "tage o" about 12 feet according to information from local resident.

Peak Stares and Instantaneous Annual Peak Discharge

Water Year	Dats	Gag e Height	Diecharge ofs	Water Year	Date	Gage Height	fischarge ofs
1942	yur 17 1962	7 39	2,460	1951	Teb 22; 1951	8 36	4,250
194,3	ину 15, 1943	9 77	н,240	1952	Jan. 27, 1952	6,85	2 000
1944	Apr 11 1944	8 79	5,000	1953	July 6, 1953	9 14	3,850
1945	June 17, 1945	6 30	1,940	1 /54	Mar 30, 1954	5 50	1,140
1946	Oct 2 1945 x	5 87	1,840 .	1955	.an 6, 1955	5 76	1,260
1947	July 15, 1947	7 25	2,100	1956	Frb 28, 1956	7 93	3,130
1948	Mar 24, 1948	7 97	3,500	1957	June 29, 1957	6.12	3,430
1949	Jan 1+. 194	1 . 3	, 0	1995	June 14 1958		5,040
1956	Jrn . 1-5				1/5+		3,010

Location --Lat $30^{0} \mathrm{Loc}(40^{\circ}, 1 \mathrm{cg})^{\circ} 6^{\circ} 15$ UMT, in this sec $\nu_{e} = 15$ 1 . C.E., on right bank at downstream side of bridge on Pronounct Drive 3.0 miles upstream from Little Eagle Greek, 5.0 miles west of Homeson Circle in Indianayolis, and 6.7 miles upstream from mouth

Orainage area- 179 sq mi

Gage --Nonrecording gage Nov. 10, 1008, to the PP 1939; proording can theresiter Datum of gage is 706 at ft above when the PP 100 datum of 1029.

Stage discharge relation --Lecting the correct between managements tell w 9.000 cfs and extended above on basis of a condition bases the management and adoptioned measurement. High-water relations can seem a temporary which for the 1913 find is an approximate value broad on layer, those otherwise corrections of an early reting curve above firm of:

Historical data. The following information was obtained from a report on Larla breek at Indianapolis, Chancel Expresseries for Flood Instruct by Indiana Flood Control and Kater Resources Chemisteries, Intel Petrupy 1955. "Eventifications on past (Tooding by searching reasons of Flood, Interrogation of Cheal present examination of Old nurveys and reserval, infector of Tooding recorred at ag Eagle Cheek in 1875, 1906, 1913, 1917, 1926, 1913, 1973, and 1970. We supper accounts of flooding on other store in the Indianaction area in test back flooding probably also occurred in 1817, 1938, 1959, 1889, and 1983."

"It is protable that the Chemisteria of Pode on the account of the Arms. Newspaper accounts and real flower assume the research flood of ally 1835 was nearly as great as that of Recon 1915.

Peak Stages and Instantaneous Annual Feak Discharge

Water Year	Date	Gage Heintt	Discharge cfs	Vater Year	Date	Gage Heirht	Diecharge cfe
1913。	March 1913	16 0	19,000	1,4,7	Jan. 33, 1947	8 47	3,370
1938	April 1938	14 5	-	11 4.8	4r 6, 1948	12 26	9,550
1939	Nar 12, 1939	10.6	6,:10	1749	fon 19, 1749	11.86	7 250
1940	Mar 3, 1940	6 30	1.350	1750	J. n. 4, 1950	13 03	4,670
1941	June 12, 1941	5 - 77	1-470	1053	Feb 21 1941	8 57	950
1942	Feb 7, 1942	9 66	4,120	1952	.5 n 27 1952	9 88	4,500
1943	May 11, 1949	12.17	2,667	1.63	9 6 - 4, 1353	9 34	(, 9.39)
1944	Apr 11, 1944	16 #3	1./16	195,	pr o, 1954	t 41	7,250
1945	W:r 31, 1945	2 11	. 9	1.1	5 ly _ t 1455	6.4	.º 650
1946	Mrv 17, 2016	д ÇФ	3 84	1756 1757 1758 1759	1 y 23 1956 June 23 1957 Aug 8, 1958 Jun 2., 1959	13 62 16 38	9,920 8,830 8,550 6,290

(38) Blue liver at Carthige, Ind

location. Lie 19°46 , long 50° M , in sec. 18.7. 18.1 , κ 9.2 , on right bank 500 ft upath im from high way bridge, half a mile west of Carthage, and 2.2 miles debanking from Time Shie Greek.

Drainage area. - 18/ aq mi

Gage --Nonrocording gage Oct 11, 1950, to July 12, 1951; recording gage thereafter Frior to July 19, 1951, at bridge 500 ft downstream Datum of gage ie 859 33 ft above mean sea level, datum of 1929.

Stage-discharge relation. -- Defined by current meter measurements

- .

Flood stage -7 ft

Feak Stages and Instantaneous Annual Feak Discharge

Water Year	Date	Ga ge Height	Discharge ofs	Water Year	Date	Gage Height	Discharge cfs
- 191,9	Jan 5, 1949	10 6	5,750	1955	Jan 6, 1955	5 97	1,290
1951	Feb 21 1951	11 2	€,650	1956	Nov 16, 1955	11.52	5,800
1952	Jan. 27, 1752	11 02	5,350	1957	June 18, 1957	9 77	3,900
1953	Mar 4, 1953	9 17	3,500	1958	Jure 14, 1958		7,020
1954	4pr 5, 1954	10 02	4,850	1959	Jan 21, 1959		8,340

BLUE RIVER AT CARTHAGE , INDIANA

(39) Alger Disek rest el erabling

.oc/firm = LL' (8⁰2211), long 85 L' 51, in 100 lot 38, Learn Wilstery Trant, on upstream rise of Strass Will brit = in "s.om West, 0.3 at 10 downstress from Flame of ton, 2 u miles south not of Telefactory, and 1 th alles upstream from Booth

Dramara arec - 156 eq mi.

Gag .- - Wire-weight rage read twice duli.

Peak Stares and Instancaseous innus1 Reak Lischurge

Water fear	Date	Gage eight	tiesnar :	later (e)	Date	Gase Feight	Discharge c:s
1955	Fet 22, 1955		1., 127	2953	Pur 19, 1967		5,080
1956	feb 2, 1956		5, 250	1 459	Jan 22 1919		19,600
±95.7	Hay 2:, 1957		6,250	İ	-		

SILVER CREEK NEAR SELLERSBURG , INDIANA

Location.--Lat 38°58 30", long 87°25 35", in W2 sec 1°, f 6 N., R 9 W., on right bank 10 ft downstream from bridge on State Highway 58, 1½ miles northwest of Carlisle, and 6 3/4 miles upstream from mouth.

Drainage area .-- 228 eq mi.

Gage.--Nonrecording gage Oct. 15, .943, to Nov. 7, 1950; recording gage thereafter Catum of gage is 425.36 ft above rean sea level (State Highway Department of Indiana bench mark).

Stage-discharge relation, --Defined by current meter measurements below k_1500 cfm and extended above by logarithmic plotting.

Flood stage .-- 12 ft

Peak Stages and Instantaneous Annual Peak Diecharge

Water Year	Date	Gage Height	Diecharge cfs	kater Year	Date	Gage Feight	Diacharge cfs
1944	Apr 12, 1944	16 96	4,700	1952	Mar 11, 1952	16.17	4,070
1945	Apr 2, 1945	17 60	5,500	1953	Mar 4, 1953	16 04	3,890
1946	May 20, 1946	14 90	2,900	1954	Aug 4, 1954	6 31	430
1947	June 2, 1947	14 60	2,720	1955	Apr 13, 1955	13 13	2,040
1948	Jan. 3, 1948	15 15	3,100	1956	June 22, 1956	16.12	3,980
1949	Jan. 20, 1949	16.3	4,200	1957	Hay 23, 1957	17.61	5,200
1950	Jan 5, 1950	20 05	8,800	1958	Dec 21, 1957		5,400
1951	Feb 21, 1951	14.75	2,900	1959	Jan. 22, 1959		3,100

Location.—Lat 38°57'05", long 85°07, 22", in sec. 2, 7, 4 %, h. 3 %, on right bank 2 miles southeast of Firmers Jahreat and 3 5/4 miles downstream from Rear Creek.

Drainage area -- 248 sq mi.

Gage. --Honrecording gage Oct. 3, 1940, to A.r. 15, 1941; recording gage thereafter. Altitude of page is 526 ft (by Varonet r)

Stage-discharge relation. -- Defined by current-meter measurements below 11,000 cfs.

Flood stays. - 13 ft.

Bistorical data --Place of .397 resolved a stage of about 18 feet and is the highest known flood, from information by local residents

Peak Stages and Instantaneous Annual Peak Discharge

Water Year	Date	Gage Feight	Discharge cfs	hater Year	. Date	Gage Height	Discharge cfe
1941	June 9 or 10,1941	9 62	" , 960	1951	Jan. 3, 1951	13 50	9,660
1942	Apr 9, 1942	13.91	10,800	1952	Mar 10, 1952	13 46	9,660
1943	Mar. 19, 1943	14 50	12,900	1953	May 17, 1953	9 44	3,960
1944	Apr 11, 1965,	13.16	P,880	1954	Hay 3, 1954	3 99	640
1945	Mar 6, 1945	15 54	17,000	1955	dar 21, 1955	13 88	10,800
1946	Feb 13, 1946	12 7°	7,980	1956	Hay 28, 1956	14 45	12,500
1947	May 25, 1947	14 60	12,300	1957	July 5, 1957	16 15	20,200
1948	Apr 12, 1948	13 01	8,410	1958	July 22, 1958		17,000
1949	Jan 24, 1349	15 23	15,700	1951	ian 21, 19 5 9		47,800
1950	Pers 3 1950	20.03	1 200				

Reduced Variate

(Y)

(42) Patoka diver at Jasper Ind

Location. -Lnt 38°24'49", long 86°52 .o", in SEt sec 20, T 1 S . R 4 W , on left bank, 0 3 mile upstream from unnumed outlet of Jasper Lake, 1 0 mile downstream from Coon Seitz brunge, 1.2 miles cownetream from Beaver Creek, and 3 3 miles northeast of Jasper

Drainage area --257 an mi; 270 ag mi et former site

Gage --Nonrecording gage Nov 20, 1947, to Sept 17, 1956; recording gage thereafter Prior to Sept 18, 1955, at etc. 5 of miles downstream at datum 0.34, ft lower; datum of present pare is 426 19 ft above nean see level, datum of 1929

Stage-discharge relation.--Pefined by current meter measurements below 5,000 ofe at former site and below 1,100 o's for present site.

Flood stage -- 1/4 ft; 9 ft at former site.

Mistorical data. -Flood of Garch 1913 is makimum stage known. Maximum stage at present site for period 1925-57, 10 ft in 1925 (information from local resident).

Remarks.--Flow slightly regulated by Beaver Creek reservoir, whose outlet enters the Patoks River 1.2 miles upstream from the gare; peak discharges not materially affected --

Peak Stagee and Instantaneous Annual Feak Discharge

Water Year	Date	Gage Height	Diecharge ofs	Water Year	Date	Gage Height	Discharge cfe
1913	March 1913	15 9	16,000	1953	'far 8, 1953	7 90	1,640
1937	January 1937	14 8	12,100	1954	Mar 2, 1954	-	950
1948、	Apr 15, 1948	11 57	4,920	1955	Mar 3, 1955	9 80	2,940
1949	Jan. 28, 1949	11.13	4,220	1956	Feb 29, 1956	998	3,100
1950	Jan 7, 1950	12 37	6,300	1957	1 v 3°, 1957	17 87	6.900
1951	Mar 21, 1951	11 46	1,,760	1958	Dec 22, 1957		4,250
1952	Mar. 14, 1952	10 78	3,880	1959	Jan 24, 1959		9,150

Appendix B - List of Symbols

- A area of watershed (sq. miles unless otherwise noted)
- a waterway area of culvert (sq. ft.); portial area; a coefficient; an exponent
- b an exponent
- C a coefficient
- c a coefficient; an experient
- D drainage density (miles 'sq. mile,
- d a coefficient
- e base of matural land in, e. . . T
- F shape factor T = I/ () 1/2
- H mean relief of water the 1 (ft)
- h elevation chare guging ant. n (ft)
- i a variable integer in marion operation
- K parameter in equation for fusionishes as unit hydrograph (hours)
- k total number of entite : surrebit reperation
- K1- the recession constant : hydrogo (a Thoms)
- L Length of main stream , vace where pattles)
- m rank of entry in free. In analysis
- W = total number of entary in summerica operation
- n permeter of equation inclaims and relies unit hydrograph and for hydrographs of short duration; in integer appearing to numeration operation; total number of entries in extreme tiles serios.
- P total rainiall dept: on ting occum (in thes)
- Programmed depth occurring before story of runoff (inches)
- P rainfall depth occuring after start of runoff (inches)
- P. rainfell during ith time interval (inches)
- Q discharge; direct warface remoff (cfs)
- $Q_{\rm B}$ base flow (cfs)
- Q annual peak discharge (cfs), peak discharge of the total runoff hydrograph.
- Q peak discharge of the direct surface runoff hydrograph


```
entered discharge, total runoff, Que C + Que etc.

- ordinate of the mit hydrograph (eds incl

- not use of disect sourtage is no engo i tel

- not use he of the entered for
```

and the second second

-3175

FIRLTOGRAPHY

- Kinnison, H. B. "Flood Flow Formulas," Jour. Leaven Soc. Civil Engr. V. 33, pp. 1-19, Jan. 1946.
- 2. Show, V. T., "Hydrologic Tetermicrotion of Varcence Area for the Design of Drainege Structures in Smill Drainege Essing," Engineering Experiment Station Bulletin No. 1982 University of Illinois, 1982.
- Fallbot, A. N. "The Determination of Movement for Critique and Culverts," Redected Papers of the Firm I Represented Clab, Technograph No. 2, University of Lab. eds. 11 1988, pp. 14-22
- Meyer. The formula was first promulate in a pair real by Cleanan tenors the Engineers of the Failure pure to the Figure
 - Therman R. M. Realist Emphron Praise [Other stands]
 Formulas Tree modings, Engineers College (on the helpfall of the first left)
- To Maintany, the "Time of the Add Scale Tong them to the and thook Gauges in Mility Chearwating of the countries of Raint Time and of Figure W. Thanks of the Given to the countries of the Time of the Carlo Time
- Yalis, J. L. Trings With more head I will like to reliable. Indiana. J. L. Tag., Vol. 17, pp. 2007.
- 7. Lenson, II. A. Commet-Sage Packer: I bell the search of packer. Jenn Epide. Ten. AuSouth of the 2000.
- 3. Poster, W. D. Miles Andread in Important to the Community of Englanding Dr. 2. Season of Love the off sending as a public England of Proceedings of Miles against the Proceedings of Community for the original Miles again.
- 9. Stroman E. K., "Control with two for Dennish Linguistics and Code and Co
- 10. Sincer, P. J. Synamica Writington Stage, Electric A. Carolyna, Unicon Fel. 19, Darris, up. 447-498, 1933.
- 11. Pagion, A. R. on the Principle E. L. Tydroner Log as lead Thew Related to Busin Characteristics," Thems. A. G. U. - 1 33, pp. 235-245.
- 12. Edson, C. G. "Parameters for Helating Unit F. Crograph to Materaked Characteristics," Crans. Amor. Geogless. Union, Sol. 32, To. 4, 591.

- 13. Williams, M. H., Discussion of "Military Airfields", Trans ASCE, Vol. 110, p. 820.
- 14. Commons, G. G., "Flood Hydrographs", Civil Eng. Vol. 12, p. 571, 1942.
- 15. "Engineering Handbook", Hydrology; Soil Conservation Service, Dept. of Agriculture, Washington, D. C., 1961.
- 16. Wash, J. E. "Systematic Determination of Unit Hydrograph Parameters," Journal of Geophysical Research, Vol. 64, No. 1, Jan. 1959.
- 17. Dooge, J. C. I., "A General Theory of the Unit Hydrograph,"

 Journal of Geophysical Research, Vol. 64, No. 2, Feb. 1959.
- 18. Amorocho, J., and Orlob, G. T. "Nonlinear Analysis of Hydrologic Systems", Water Resources Center, Contribution No. 40, Univ. of California, Berkeley, California, Nov. 1961.
- 19. Diskin, M. H., "A Basic Study of Linearity of the Rainfall-Runoff Process in Watersheds", Ph.D. Thesis, Civil Engineering, Univ. of Illinois, Urbana, Illinois, 1964.
- 20. Purdue University, "Atlas of County Drainage Maps, Indiana,"

 Joint Highway Research Project, Engineering Bulletin Extension
 Series No. 97, July, 1959.
- 21. Cumbel, E. J., "Statistics of Extremes," New York, Columbia; University Press, 1958.
- 22. Powell, R. W. "A Simple Method of Estimating Flood Frequencies," Civil Engrg., 105-106, 1943.
- 23. Green, A. R. and Hoggatt, R. F.
- 24. Hershfield, D. M. "Rainfall Frequency Atlas of the United States,"
 Technical paper No. 40, U. S. Department of Commerce, Weather Bureau,
 Washington, D. C., May, 1961.
- 25. Purdue University "The Agronomy Handbook" Agricultural Extension Service, November, 1961.

DESIGN CHART NO I

DETERMINATION OF ANNUAL PEAK DISCHARGE

HYDROGRAPH PARAMETER, n

DESIGN CHART NO 2

DETERMINATION OF HYDROGRAPH OF SHORT DURATION

DESIGN CHART N

DETERMINATION

RUN OFF COEFFICIENT

0.30

0,50

0.70

0.80

1.00

0.5 - 0.8

25 YEAR SIX HOUR RAINFALL (in inches)

50 YEAR SIX HOUR RAINFALL (in inches)

DESIGN CHART NO 3

DETERMINATION OF RAINFALL EXCESS

Principal Soli Types of the Regions

Maumee, Granby, Newton & Bummymede sandy loams; Plainfield & Tyner sonds; mucks; Boor Tracy, Fox, Warsaw & Oditemo loams & sandy loams.

Lenawee, Penamo & Julian siliy elay luams; Hoytrille siliy elay; Rensselner & Jasper loams & Strole sili loam.

Parr & Odell silt loams & loams; Sidell, Raub, Elliott & Flana-gan silt loams; Chalmers & Romney silty clay loams,

Miami, Cresby, Brookston, Bremen, Galenn, Otls, Fox, Fox hame phase & Hillsdale loams & sandy learns; Coloma or Spinks loamy sands.

E 🔀

Croshy & Mlami silt loans; Brookston & Kokomo silty clay

F ///

Blount, Morley, Nappance & St. Clair silt loams; Pewamo silty clay loam.

G 💹

Fineastle, Russell & Cope silt loams; Brookston & Kokomo silty clay loams.

Genesee, Eel. Huntington, Fox, Ockley, Warsaw, Bartle & Elk-Insville silt loams & loams; Westland silty clay loam; Shar-

Cincinnati, Gibson, Vigo, Iva, Wilbur, Stendal & Philo sili loams,

Cincinnati. Rossmoyne, Avon-burg, Clermont, Jennings, Gray-ford, Philo, Stendal & Atkins silt loams.

Switzerland & Allensrille silt loams: Fairmount & Huntington silty clay loams.

Muskingum stony loam, Zanes-ville, Wellston, Tlisit, Elkins-ville, Bartle, Otwell & Philo-silt loams,

Frederick Benleyville; Bedford, Lawrence, Crider, Pembroke & Hunlington silt losms.

Bloomfield loamy sands; Prince-ton & Ayrshire sandy loams, loams & silt loams,

Alford, Muren, Iva, Hosmer, Adler & Ragsdale slit loams.

SOIL TYPE	RUN OFF
Α,	COEFFICIENT 0.30
D,H,O	0.50
C,E,G, M,P	0.70
K,L,N	0.80
В,1,Ј	1.00
F	0.5 - 0.8

