Conventions, Accuracy Metrics, Classification, Regression

Nipun Batra and teaching staff

IIT Gandhinagar

August 24, 2025

Outline

- 1. Introduction and Demos
- 2. Machine Learning Fundamentals
- 3. First ML Example: Tomato Quality Prediction
- 4. Classification vs Regression
- 5. Classification Metrics
- 6. Regression Metrics
- 7. Summary and Key Takeaways

Introduction and Demos

Demo

Comet browser and automation of tasks

"Field of study that gives computers the ability to learn without being explicitly programmed" - Arthur Samuel [1959]

"Field of study that gives computers the ability to learn without being explicitly programmed" - Arthur Samuel [1959] Let us work on the digit recognition problem.

• How would you program to recognise digits? Start with 4.

- How would you program to recognise digits? Start with 4.
- Maybe 4 can be thought of as: |+--+| + another vertically down |

- How would you program to recognise digits? Start with 4.
- Maybe 4 can be thought of as: |+--+| + another vertically down |
- The heights of each of the | need to be similar within tolerance

- How would you program to recognise digits? Start with 4.
- Maybe 4 can be thought of as: |+--+| + another vertically down |
- The heights of each of the | need to be similar within tolerance
- Each of the | can be slightly slanted. Similarly the horizontal line can be slanted.

- How would you program to recognise digits? Start with 4.
- Maybe 4 can be thought of as: |+--+| + another vertically down |
- The heights of each of the | need to be similar within tolerance
- Each of the | can be slightly slanted. Similarly the horizontal line can be slanted.
- There can be some cases of 4 where the first | is at 45 degrees

- How would you program to recognise digits? Start with 4.
- Maybe 4 can be thought of as: |+--+| + another vertically down |
- The heights of each of the | need to be similar within tolerance
- Each of the | can be slightly slanted. Similarly the horizontal line can be slanted.
- There can be some cases of 4 where the first | is at 45 degrees
- There can be some cases of 4 where the width of each stroke is different

Machine Learning Fundamentals

Traditional Programming vs Machine Learning

Traditional Programming

Machine Learning

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E." - Tom Mitchell

First ML Task: Grocery Store Tomato Quality Prediction

Problem statement: You want to predict the quality of a tomato given its visual features.

Imagine you have some past data on the quality of tomatoes. What visual features do you think will be useful?

Imagine you have some past data on the quality of tomatoes. What visual features do you think will be useful?

Size

Imagine you have some past data on the quality of tomatoes. What visual features do you think will be useful?

- Size
- Colour

Imagine you have some past data on the quality of tomatoes. What visual features do you think will be useful?

- Size
- Colour
- Texture

Sample Dataset

Here is our example dataset with tomato features:

Sample	Colour	Size	Texture	Condition
1	Orange	Small	Smooth	Good
2	Red	Small	Rough	Good
3	Orange	Medium	Smooth	Bad
4	Yellow	Large	Smooth	Bad

First ML Example: Tomato Quality Prediction

Answer this!

Is the sample number a useful feature for predicting quality of a tomato?

Answer this!

Is the sample number a useful feature for predicting quality of a tomato?

Answer: Usually no! Sample numbers are typically arbitrary identifiers and not meaningful features. Let us remove it.

Answer this!

When could sample number be useful?

Answer this!

When could sample number be useful?

Answer: In some cases, the sample number might be useful for tracking or auditing purposes.

E.g. if some trucks are delayed during delivery, the sample number could help identify which batch of tomatoes was affected.

Useful Features

Let us modify our data table for now.

Colour	Size	Texture	Condition
Orange	Small	Smooth	Good
Red	Small	Rough	Good
Orange	Medium	Smooth	Bad
Yellow	Large	Smooth	Bad

Colour	Size	Texture	Condition
Orange	Small	Smooth	Good
Red	Small	Rough	Good
Orange	Medium	Smooth	Bad
Yellow	Large	Smooth	Bad

Colour	Size	Texture	Condition
Orange	Small	Smooth	Good
Red	Small	Rough	Good
Orange	Medium	Smooth	Bad
Yellow	Large	Smooth	Bad

The training set consists of two parts:

Colour	Size	Texture	Condition
Orange	Small	Smooth	Good
Red	Small	Rough	Good
Orange	Medium	Smooth	Bad
Yellow	Large	Smooth	Bad

The training set consists of two parts:

1. Features (Input Variables)

Colour	Size	Texture	Condition
Orange	Small	Smooth	Good
Red	Small	Rough	Good
Orange	Medium	Smooth	Bad
Yellow	Large	Smooth	Bad

The training set consists of two parts:

- 1. Features (Input Variables)
- 2. Output or Response Variable

Colour	Size	Texture	Condition
Orange	Small	Smooth	Good
Red	Small	Rough	Good
Orange	Medium	Smooth	Bad
Yellow	Large	Smooth	Bad

Colour	Size	Texture	Condition
Orange	Small	Smooth	Good
Red	Small	Rough	Good
Orange	Medium	Smooth	Bad
Yellow	Large	Smooth	Bad

Computers work with numbers!

We need to encode categorical data numerically (one-hot encoding):

C0	C1	S 0	S1	T0	T1	Good?
0	0	1	0	1	0	1
0	1	1	0	0	1	1
0	0	0	1	1	0	0
1	0	0	0	1	0	0

Colour	Size	Texture	Condition
Orange	Small	Smooth	Good
Red	Small	Rough	Good
Orange	Medium	Smooth	Bad
Yellow	Large	Smooth	Bad

Computers work with numbers!

We need to encode categorical data numerically (one-hot encoding):

C0	C1	S 0	S1	T0	T1	Good?
0	0	1	0	1	0	1
0	1	1	0	0	1	1
0	0	0	1	1	0	0
1	0	0	0	1	0	0

Orange=00, Red=01, Yellow=10; Small=10, Medium=01, Large=00; Smooth=10, Rough=01; Good=1, Bad=0 More details on encoding later!

C0	C 1	S 0	S1	T0	T1	Good?
0	0	1	0	1	0	1
0	1	1	0	0	1	1
0	0	0	1	1	0	0
1	0	0	0	1	0	0

C0	C 1	S0	S1	T0	T1	Good?
0	0	1	0	1	0	1
0	1	1	0	0	1	1
0	0	0	1	1	0	0
1	0	0	0	1	0	0

We call this data matrix X, and the complete dataset \mathcal{D} :

C0	C 1	S0	S1	T0	T1	Good?
0	0	1	0	1	0	1
0	1	1	0	0	1	1
0	0	0	1	1	0	0
1	0	0	0	1	0	0

We call this data matrix X, and the complete dataset \mathcal{D} :

1. Feature matrix $(X \in \mathbb{R}^{n \times d})$ containing data of n samples each of which is d dimensional.

C0	C 1	S0	S1	T0	T1	Good?
0	0	1	0	1	0	1
0	1	1	0	0	1	1
0	0	0	1	1	0	0
1	0	0	0	1	0	0

We call this data matrix X, and the complete dataset \mathcal{D} :

- 1. Feature matrix $(X \in \mathbb{R}^{n \times d})$ containing data of n samples each of which is d dimensional.
- 2. Output vector $(\mathbf{y} \in \mathbb{R}^n)$ containing output variable for n samples.

C0	C 1	S0	S1	T0	T1	Good?
0	0	1	0	1	0	1
0	1	1	0	0	1	1
0	0	0	1	1	0	0
1	0	0	0	1	0	0

We call this data matrix X, and the complete dataset \mathcal{D} :

- 1. Feature matrix $(X \in \mathbb{R}^{n \times d})$ containing data of n samples each of which is d dimensional.
- 2. Output vector $(\mathbf{y} \in \mathbb{R}^n)$ containing output variable for n samples.
- 3. Complete dataset: $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$ (set of sample-label pairs)

C0	C 1	S0	S1	T0	T1	Good?
0	0	1	0	1	0	1
0	1	1	0	0	1	1
0	0	0	1	1	0	0
1	0	0	0	1	0	0

We call this data matrix X, and the complete dataset \mathcal{D} :

- 1. Feature matrix $(X \in \mathbb{R}^{n \times d})$ containing data of n samples each of which is d dimensional.
- 2. Output vector $(\mathbf{y} \in \mathbb{R}^n)$ containing output variable for n samples.
- 3. Complete dataset: $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$ (set of sample-label pairs)

For this example: n=4 (samples), d=6 (features after one-hot encoding)

Important: Mathematical Notation Convention

Matrices use **bold uppercase** (X), vectors use **bold lowercase** (y), scalars use regular letters (n, d)

Important: Mathematical Notation Convention

Matrices use **bold uppercase** (X), vectors use **bold lowercase** (y), scalars use regular letters (n, d)

Example: Examples from Our Tomato Dataset

• Scalars: n = 4 (samples), d = 6 (features), $y_1 = 1$

Important: Mathematical Notation Convention

Matrices use **bold uppercase** (X), vectors use **bold lowercase** (y), scalars use regular letters (n, d)

Example: Examples from Our Tomato Dataset

- Scalars: n = 4 (samples), d = 6 (features), $y_1 = 1$
- Vectors: $\mathbf{y} = [1, 1, 0, 0]^T$, $\mathbf{x}_1 = [0, 0, 1, 0, 1, 0]^T$

Important: Mathematical Notation Convention

Matrices use **bold uppercase** (X), vectors use **bold lowercase** (y), scalars use regular letters (n, d)

Example: Examples from Our Tomato Dataset

- Scalars: n = 4 (samples), d = 6 (features), $y_1 = 1$
- Vectors: $\mathbf{y} = [1, 1, 0, 0]^T$, $\mathbf{x}_1 = [0, 0, 1, 0, 1, 0]^T$
- Matrices: $\mathbf{X} \in \mathbb{R}^{4 \times 6}$ (feature matrix)

Important: Mathematical Notation Convention

Matrices use **bold uppercase** (X), vectors use **bold lowercase** (y), scalars use regular letters (n, d)

Example: Examples from Our Tomato Dataset

- Scalars: n = 4 (samples), d = 6 (features), $y_1 = 1$
- Vectors: $\mathbf{y} = [1, 1, 0, 0]^T$, $\mathbf{x}_1 = [0, 0, 1, 0, 1, 0]^T$
- Matrices: $\mathbf{X} \in \mathbb{R}^{4 \times 6}$ (feature matrix)

Convention: We write $[a, b, c]^T$ instead of $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$ to save space

• Feature matrix:
$$m{X} = egin{bmatrix} m{x}_1^T \\ m{x}_2^T \\ \vdots \\ m{x}_n^T \end{bmatrix}$$
 where $m{x}_i \in \mathbb{R}^d$

• Feature matrix:
$$m{X} = egin{bmatrix} m{x}_1^T \\ m{x}_2^T \\ \vdots \\ m{x}_n^T \end{bmatrix}$$
 where $m{x}_i \in \mathbb{R}^d$

• Example: $\mathbf{x}_1 = [0, 0, 1, 0, 1, 0]^T$ (Orange=00, Small=10, Smooth=10)

• Feature matrix:
$$m{X} = \begin{bmatrix} m{x}_1' \\ m{x}_2^T \\ \vdots \\ m{x}_n^T \end{bmatrix}$$
 where $m{x}_i \in \mathbb{R}^d$

- Example: $\mathbf{x}_1 = [0, 0, 1, 0, 1, 0]^T$ (Orange=00, Small=10, Smooth=10)
- Complete dataset: $\mathcal{D} = \{(\mathbf{x}_i^T, y_i)\}_{i=1}^n$

• Feature matrix:
$$m{X} = egin{bmatrix} m{x}_1^T \\ m{x}_2^T \\ \vdots \\ m{x}_n^T \end{bmatrix}$$
 where $m{x}_i \in \mathbb{R}^d$

- Example: $\mathbf{x}_1 = [0, 0, 1, 0, 1, 0]^T$ (Orange=00, Small=10, Smooth=10)
- Complete dataset: $\mathcal{D} = \{(\mathbf{x}_i^T, y_i)\}_{i=1}^n$

For this example: n = 4, d = 6, so $\mathbf{X} \in \mathbb{R}^{4 \times 6}$ and $\mathbf{y} \in \mathbb{R}^4$

Estimate condition for unseen tomatoes (#5, 6) based on data set.

Colour	Size	Texture	Condition
Orange	Small	Smooth	Good
Red	Small	Rough	Good
Orange	Medium	Smooth	Bad
Yellow	Large	Smooth	Bad
Red	Large	Rough	?
Orange	Large	Rough	?

Testing Set

Testing set is similar to training set, but does not contain labels for the output variable.

Colour	Size	Texture	Condition
Orange	Small	Smooth	Good
Red	Small	Rough	Good
Orange	Medium	Smooth	Bad
Yellow	Large	Smooth	Bad
Red	Large	Rough	?
Orange	Large	Rough	?

We hope to:

1. Learn function f: y = f(x) where x represents features

We hope to:

- 1. Learn function f: y = f(x) where x represents features
- 2. From training dataset $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$

We hope to:

- 1. Learn function f: y = f(x) where x represents features
- 2. From training dataset $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$
- 3. Predict condition for new test samples

We hope to:

- 1. Learn function f: y = f(x) where x represents features
- 2. From training dataset $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$
- 3. Predict condition for new test samples

Colour	Size	Texture	Condition
Orange	Small	Smooth	Good
Red	Small	Rough	Good
Orange	Medium	Smooth	Bad
Yellow	Large	Smooth	Bad
Red	Large	Rough	?
Orange	Large	Rough	?

We hope to:

- 1. Learn function f: y = f(x) where x represents features
- 2. From training dataset $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$
- 3. Predict condition for new test samples

Colour	Size	Texture	Condition
Orange	Small	Smooth	Good
Red	Small	Rough	Good
Orange	Medium	Smooth	Bad
Yellow	Large	Smooth	Bad
Red	Large	Rough	?
Orange	Large	Rough	?

Training set used to learn f
Test set for predictions

Important: Key Question

Important: Key Question

Is predicting well on our test set enough to say our model generalizes?

• Answer: Ideally, no!

Important: Key Question

- Answer: Ideally, no!
- Goal: We want to predict well on all possible future inputs

Important: Key Question

- Answer: Ideally, no!
- Goal: We want to predict well on all possible future inputs
- Reality: Test set is only a sample from all possible inputs

Important: Key Question

- Answer: Ideally, no!
- Goal: We want to predict well on all possible future inputs
- Reality: Test set is only a sample from all possible inputs
- Assumption: Test set is representative of the true data distribution

Important: Key Question

Is predicting well on our test set enough to say our model generalizes?

- Answer: Ideally, no!
- Goal: We want to predict well on all possible future inputs
- Reality: Test set is only a sample from all possible inputs
- Assumption: Test set is representative of the true data distribution

Key Points: In General

Generalization = Performance on **unseen data** from the same distribution as training data

Example: Tomato Farm: 10,000 tomatoes ready for harvest

• Population: All 10,000 tomatoes

Example: Tomato Farm: 10,000 tomatoes ready for harvest

• Population: All 10,000 tomatoes

• **Sample**: You inspect 100 random tomatoes

Example: Tomato Farm: 10,000 tomatoes ready for harvest

- Population: All 10,000 tomatoes
- **Sample**: You inspect 100 random tomatoes
- Goal: Make decisions about all 10,000 based on your 100

Example: Tomato Farm: 10,000 tomatoes ready for harvest

- Population: All 10,000 tomatoes
- Sample: You inspect 100 random tomatoes
- Goal: Make decisions about all 10,000 based on your 100

Key Challenge: Will your 100 tomatoes represent all 10,000? What if you only picked from one corner?

Example: Tomato Farm: 10,000 tomatoes ready for harvest

- Population: All 10,000 tomatoes
- Sample: You inspect 100 random tomatoes
- Goal: Make decisions about all 10,000 based on your 100

Key Challenge: Will your 100 tomatoes represent all 10,000?

What if you only picked from one corner?

ML Connection: Training/test sets are samples from a larger population of all possible data

From Tomatoes to Machine Learning

Image courtesy Google ML crash course

From Tomatoes to Machine Learning

Image courtesy Google ML crash course

The ML Connection:

Population: All possible tomato data (past, present, future)

From Tomatoes to Machine Learning

Image courtesy Google ML crash course

The ML Connection:

- Population: All possible tomato data (past, present, future)
- Training set: Our 4 tomato samples (like picking from one area)

From Tomatoes to Machine Learning

Image courtesy Google ML crash course

The ML Connection:

- Population: All possible tomato data (past, present, future)
- Training set: Our 4 tomato samples (like picking from one area)
- Test set: 2 new samples (like picking from another area)

From Tomatoes to Machine Learning

Image courtesy Google ML crash course

The ML Connection:

- Population: All possible tomato data (past, present, future)
- Training set: Our 4 tomato samples (like picking from one area)
- Test set: 2 new samples (like picking from another area)

Generalization goal: Will our model work on *all future tomatoes*, not just our small samples?

Second ML Task: Campus Energy Prediction

Regression Problem: Predicting continuous energy

consumption (kWh)

Key factors: # People, Temperature

# People	Temp (°C)	Energy (kWh)
4000	30	30
4200	30	32
4200	35	40
3000	20	?
1000	45	?

Second ML Task: Campus Energy Prediction

Regression Problem: Predicting continuous energy

consumption (kWh)

Key factors: # People, Temperature

# People	Temp (°C)	Energy (kWh)
4000	30	30
4200	30	32
4200	35	40
3000	20	?
1000	45	?

Difference from tomatoes: Energy is *continuous*, not categories

- Classification
 - Output variable is discrete

- Output variable is discrete
- i.e. $y_i \in \{1, 2, \dots, k\}$ where k is number of classes

- Output variable is discrete
- i.e. $y_i \in \{1, 2, \dots, k\}$ where k is number of classes
- Examples Predicting:

- Output variable is discrete
- i.e. $y_i \in \{1, 2, \dots, k\}$ where k is number of classes
- Examples Predicting:
 - Will I get a loan? (Yes, No)

- Output variable is discrete
- i.e. $y_i \in \{1, 2, \dots, k\}$ where k is number of classes
- Examples Predicting:
 - Will I get a loan? (Yes, No)
 - What is the quality of fruit? (Good, Bad)

Classification

- Output variable is discrete
- i.e. $y_i \in \{1, 2, \dots, k\}$ where k is number of classes
- Examples Predicting:
 - Will I get a loan? (Yes, No)
 - What is the quality of fruit? (Good, Bad)

Classification

- Output variable is discrete
- i.e. $y_i \in \{1, 2, \dots, k\}$ where k is number of classes
- Examples Predicting:
 - Will I get a loan? (Yes, No)
 - What is the quality of fruit? (Good, Bad)

Regression

Output variable is continuous

Classification

- Output variable is discrete
- i.e. $y_i \in \{1, 2, \dots, k\}$ where k is number of classes
- Examples Predicting:
 - Will I get a loan? (Yes, No)
 - What is the quality of fruit? (Good, Bad)

- Output variable is continuous
- i.e. $y_i \in \mathbb{R}$

Classification

- Output variable is discrete
- i.e. $y_i \in \{1, 2, \dots, k\}$ where k is number of classes
- Examples Predicting:
 - Will I get a loan? (Yes, No)
 - What is the quality of fruit? (Good, Bad)

- Output variable is continuous
- i.e. $y_i \in \mathbb{R}$
- Examples Predicting:

Classification

- Output variable is discrete
- i.e. $y_i \in \{1, 2, \dots, k\}$ where k is number of classes
- Examples Predicting:
 - Will I get a loan? (Yes, No)
 - What is the quality of fruit? (Good, Bad)

- Output variable is continuous
- i.e. $y_i \in \mathbb{R}$
- Examples Predicting:
 - How much energy will campus consume?

Classification

- Output variable is discrete
- i.e. $y_i \in \{1, 2, \dots, k\}$ where k is number of classes
- Examples Predicting:
 - Will I get a loan? (Yes, No)
 - What is the quality of fruit? (Good, Bad)

- Output variable is continuous
- i.e. $y_i \in \mathbb{R}$
- Examples Predicting:
 - How much energy will campus consume?
 - How much rainfall will fall?

Pop Quiz #3

Answer this!

Which of these is a regression problem?

- A) Predicting if an email is spam or not
- B) Classifying images as cat, dog, or bird
- C) Predicting house prices
- D) Determining if a tumor is malignant or benign

Pop Quiz #3

Answer this!

Which of these is a regression problem?

- A) Predicting if an email is spam or not
- B) Classifying images as cat, dog, or bird
- C) Predicting house prices
- D) Determining if a tumor is malignant or benign

Answer: C) Predicting house pricesHouse prices are continuous values - that's regression!

We've learned to predict tomato quality (classification)

- We've learned to predict tomato quality (classification)
- We've learned to predict energy consumption (regression)

- We've learned to predict tomato quality (classification)
- We've learned to predict energy consumption (regression)
- Key question: How do we measure if our predictions are good?

- We've learned to predict tomato quality (classification)
- We've learned to predict energy consumption (regression)
- Key question: How do we measure if our predictions are good?

Example: The Challenge

If our model predicts 5 tomatoes correctly and 3 incorrectly, is that good or bad? We need metrics!

- We've learned to predict tomato quality (classification)
- We've learned to predict energy consumption (regression)
- Key question: How do we measure if our predictions are good?

Example: The Challenge

If our model predicts 5 tomatoes correctly and 3 incorrectly, is that good or bad? We need metrics!

Coming up: Different metrics for classification vs regression problems

Classification Metrics

Back to Our Tomato Example: How Did We Do?

Let's say we trained our model and tested it on 5 new tomatoes:

#	Actual	Predicted
1	Good	Good
2	Good	Good
3	Bad	Good
4	Bad	Good
5	Bad	Bad

Back to Our Tomato Example: How Did We Do?

Let's say we trained our model and tested it on 5 new tomatoes:

#	Actual	Predicted
1	Good	Good
2	Good	Good
3	Bad	Good
4	Bad	Good
5	Bad	Bad

Questions:

- How many did we get right? How many wrong?
- Is 3 out of 5 correct "good enough"?
- What if getting a bad tomato wrong is worse than getting a good tomato wrong?

Organizing Our Results

Let's organize the predictions in a simpler way:

Organizing Our Results

Let's organize the predictions in a simpler way:

$$\begin{pmatrix} \mathsf{Good} & \mathsf{Good} \\ \mathsf{Good} & \mathsf{Good} \\ \mathsf{Good} & \mathsf{Good} \\ \mathsf{Good} & \mathsf{Good} \\ \mathsf{Good} & \mathsf{Bad} \\ \mathsf{Bad} & \mathsf{Bad} \end{pmatrix}$$

Each row = one tomato's result

Goal: Create systematic ways to measure performance from these comparisons

Converting to Numbers for Computation

Remember: Computers work with numbers! Let's encode our categories:

Example: Binary Encoding

$$Bad = 0$$
, $Good = 1$

Now our results become:

Ground Truth = The correct answers (what actually happened)

Accuracy: Measuring Overall Performance

How many predictions did we get exactly right?

Predicted $(\hat{\mathbf{y}})$		Ground Truth (y)	
/	/ 1 \	(1	
/	1	1	
	1	0	
	1	0	
/	\ 0 /	(0	

Accuracy: Measuring Overall Performance

How many predictions did we get exactly right?

Predicted
$$(\hat{\mathbf{y}})$$
 Ground Truth (\mathbf{y})

$$\begin{pmatrix}
1 \\
1 \\
1 \\
0 \\
0
\end{pmatrix}$$

Definition: Accuracy Formula

$$Accuracy = \frac{Number of Correct Predictions}{Total Predictions}$$

Accuracy: Measuring Overall Performance

How many predictions did we get exactly right?

Predicted
$$(\hat{\mathbf{y}})$$
 Ground Truth (\mathbf{y})

$$\begin{pmatrix}
1 \\
1 \\
1 \\
0 \\
0
\end{pmatrix}$$

Definition: Accuracy Formula

$$\mbox{Accuracy} = \frac{\mbox{Number of Correct Predictions}}{\mbox{Total Predictions}}$$

For our example: Accuracy $=\frac{3}{5}=0.6$ or 60%

Mathematical Notation: Two Ways to Count Correct Predictions

• Set cardinality notation: $|\{i: y_i = \hat{y}_i\}|$

Mathematical Notation: Two Ways to Count Correct Predictions

- Set cardinality notation: $|\{i: y_i = \hat{y}_i\}|$
 - Reads as: "Number of indices i such that $y_i = \hat{y}_i$ "

Mathematical Notation: Two Ways to Count Correct Predictions

- Set cardinality notation: $|\{i: y_i = \hat{y}_i\}|$
 - Reads as: "Number of indices *i* such that $y_i = \hat{y}_i$ "
 - Counts how many samples satisfy the condition

Mathematical Notation: Two Ways to Count Correct Predictions

- Set cardinality notation: $|\{i: y_i = \hat{y}_i\}|$
 - Reads as: "Number of indices *i* such that $y_i = \hat{y}_i$ "
 - Counts how many samples satisfy the condition
- Alternative: Indicator function notation

Accuracy =
$$\frac{\sum_{i=1}^{n} \mathbb{1}[y_i = \hat{y}_i]}{n}$$

where
$$\mathbb{1}[\text{condition}] = \begin{cases} 1 & \text{if condition is true} \\ 0 & \text{if condition is false} \end{cases}$$

Mathematical Notation: Two Ways to Count Correct Predictions

- Set cardinality notation: $|\{i: y_i = \hat{y}_i\}|$
 - Reads as: "Number of indices *i* such that $y_i = \hat{y}_i$ "
 - Counts how many samples satisfy the condition
- Alternative: Indicator function notation

Accuracy =
$$\frac{\sum_{i=1}^{n} \mathbb{1}[y_i = \hat{y}_i]}{n}$$

where
$$\mathbb{1}[\text{condition}] = \begin{cases} 1 & \text{if condition is true} \\ 0 & \text{if condition is false} \end{cases}$$

 Both notations are mathematically equivalent and commonly used in ML literature

Two Views: Predictions vs Confusion Matrix

Model Predictions

#	Actual	Predicted
1	Good	Good
2	Good	Good
3	Bad	Good
4	Bad	Good
5	Bad	Bad

Confusion Matrix

		Bad	Good
red	Bad	1	0
Pr	Good	2	2

Confusion Matrix: Understanding the Four Outcomes

Confusion Matrix		Ground Truth	
		Positive	Negative
redicted	Positive	TP	FP
redi	Negative	FN	TN

Definition: Four Outcomes

- TP (True Positive): Correctly predicted positive
- TN (True Negative): Correctly predicted negative
- FP (False Positive): Wrong! Said positive but actually negative
- FN (False Negative): Wrong! Said negative but actually positive

Confusion Matrix: Precision Focus

Confusion Matrix		Ground Truth		Row Totals
		Positive	Negative	
cted	Positive	TP	FP	TP + FP
Predicted	Negative	FN	TN	FN + TN
_		TP + FN	FP + TN	Total

Example: Focus: Predicted Positives

$$Precision = \frac{TP}{TP + FP}$$

"Of all predicted positives, how many were actually positive?"

Confusion Matrix: Recall Focus

Confusion Matrix		Ground Truth		Row Totals
		Positive	Negative	
cted	Positive	TP	FP	TP + FP
Predicted	Negative	FN	TN	FN + TN
ш.		TP + FN	FP + TN	Total

Example: Focus: Actual Positives

$$\mathsf{Recall} = \frac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FN}}$$

"Of all actual positives, how many did I catch?"

Many datasets have unequal class distributions!

Example: Example: Medical Screening

Out of 1000 patients tested:

• 990 patients are healthy (negative class)

Many datasets have unequal class distributions!

Example: Example: Medical Screening

Out of 1000 patients tested:

- 990 patients are healthy (negative class)
- 10 patients have the disease (positive class)

Many datasets have unequal class distributions!

Example: Example: Medical Screening

Out of 1000 patients tested:

- 990 patients are healthy (negative class)
- 10 patients have the disease (positive class)

Key Points: Why is this a problem?

 A "lazy" classifier that always predicts "healthy" gets 99% accuracy!

Many datasets have unequal class distributions!

Example: Example: Medical Screening

Out of 1000 patients tested:

- 990 patients are healthy (negative class)
- 10 patients have the disease (positive class)

Key Points: Why is this a problem?

- A "lazy" classifier that always predicts "healthy" gets 99% accuracy!
- · But it completely misses all disease cases

Many datasets have unequal class distributions!

Example: Example: Medical Screening

Out of 1000 patients tested:

- 990 patients are healthy (negative class)
- 10 patients have the disease (positive class)

Key Points: Why is this a problem?

- A "lazy" classifier that always predicts "healthy" gets 99% accuracy!
- · But it completely misses all disease cases
- · Accuracy alone becomes misleading

Many datasets have unequal class distributions!

Example: Medical Screening

Out of 1000 patients tested:

- 990 patients are healthy (negative class)
- 10 patients have the disease (positive class)

Key Points: Why is this a problem?

- A "lazy" classifier that always predicts "healthy" gets 99% accuracy!
- · But it completely misses all disease cases
- · Accuracy alone becomes misleading

Cancer Detection: Comparing Two Classifiers

Dummy Classifier

Confusion Matrix		Ground	Truth
		Pos	Neg
ed	Pos	0	0
Pre	Neg	10	990

• Precision: N/A

• Recall: 0%

Accuracy: 99%

Smart Classifier

Confusion Matrix		Groun	d Truth
		Pos	Neg
Pred	Pos	8	40
P	Neg	2	950

• Precision: $\frac{8}{48} \approx 16.7\%$

• Recall: $\frac{8}{10} = 80\%$

• Accuracy: $\frac{8+950}{1000} = 95.8\%$

Pop Quiz #4

Answer this!

In a dataset of 1000 samples where only 10 are positive cases, what's the accuracy of a classifier that always predicts "negative"?

- 1. 1%
- 2. 50%
- 3. 90%
- 4. 99%

Pop Quiz #4

Answer this!

In a dataset of 1000 samples where only 10 are positive cases, what's the accuracy of a classifier that always predicts "negative"?

- 1. 1%
- 2. 50%
- 3. 90%
- 4. 99%

Answer: D) 99% - but this classifier is useless! This shows why accuracy can be misleading.

Precision vs Recall: The Trade-off

You often can't have both high precision and high recall - improving one may reduce the other.

Definition: High Precision

- Predicts positive only when confident
- Low false alarms (↓ FP)
- May miss positives (↑ FN)
- Useful when FP is costly

Definition: High Recall

- Captures most positives
- Few misses (↓ FN)
- More false alarms (↑ FP)
- Useful when FN is costly

Precision vs Recall: The Trade-off

You often can't have both high precision and high recall - improving one may reduce the other.

Definition: High Precision

- Predicts positive only when confident
- Low false alarms (↓ FP)
- May miss positives (↑ FN)
- Useful when FP is costly

Definition: High Recall

- Captures most positives
- Few misses (↓ FN)
- More false alarms (↑ FP)
- Useful when FN is costly

Example: Which to prefer?

Spam Filter: Prefer precision **Cancer Test:** Prefer recall

Accuracy Metric: F1-Score

Con	fusion Matrix	x Ground Truth	
		Positive	Negative
cted	Positive	TP	FP
redicted	Negative	FN	TN
Δ			

Example: F1-Score: Balancing Precision and Recall

$$\mathsf{F1} = \frac{2 \times \mathsf{Precision} \times \mathsf{Recall}}{\mathsf{Precision} + \mathsf{Recall}}$$

Accuracy Metric: Matthews Correlation Coefficient (MCC)

Confusion Matrix		Ground Truth	
		Positive	Negative
redicted	Positive	TP	FP
redio	Negative	FN	TN
Ο.			

Example: MCC: Balanced Performance Measure

$$\mathsf{MCC} = \frac{\mathit{TP} \cdot \mathit{TN} - \mathit{FP} \cdot \mathit{FN}}{\sqrt{(\mathit{TP} + \mathit{FP})(\mathit{TP} + \mathit{FN})(\mathit{TN} + \mathit{FP})(\mathit{TN} + \mathit{FN})}}$$

MCC Comparison: Dummy vs Smart Classifier

Dummy Classifier

Confusion Matrix		Ground	Truth
		Pos	Neg
ed	Pos	0	0
P	Neg	10	990

$$MCC = 0$$

(denominator undefined; treat as 0)

Smart Classifier

Confusion Matrix		Ground	Truth
		Pos	Neg
red	Pos	8	40
P	Neg	2	950

$$\mathsf{MCC} = \frac{7600}{\sqrt{(48)(10)(990)(952)}} \approx \mathbf{0.26}$$

Confusion Matrix for multi-class classification

Learning a Complicated Neural Network for Classification

Challenge: How do we measure if this complex model's predictions are good?

ightarrow Same metrics: Accuracy, Precision, Recall, F1-score, Confusion Matrix!

Regression Metrics

Metrics for Regression: MSE & MAE

Prediction
$$(\hat{y})$$
 Ground Truth (\mathbf{y})

$$\begin{pmatrix} 10 \\ 20 \\ 30 \\ 40 \\ 50 \end{pmatrix} \qquad \begin{pmatrix} 20 \\ 30 \\ 40 \\ 50 \\ 60 \end{pmatrix}$$

Mean Squared Error (MSE) =
$$\frac{\sum_{i=1}^{n} (\hat{y}_i - y_i)^2}{n}$$
 Root Mean Square Error (RMSE) = $\sqrt{\text{MSE}}$

Accuracy Metrics: MAE & ME

Prediction
$$(\hat{y})$$
 Ground Truth
$$\begin{pmatrix} 10 \\ 20 \\ 30 \\ 40 \\ 50 \end{pmatrix} \begin{pmatrix} 20 \\ 30 \\ 40 \\ 50 \\ 60 \end{pmatrix}$$

Mean Absolute Error (MAE) =
$$\frac{\sum_{i=1}^{n} |\hat{y}_i - y_i|}{n}$$
 Mean Error =
$$\frac{\sum_{i=1}^{n} (\hat{y}_i - y_i)}{n}$$

Accuracy Metrics: MAE & ME

Mean Absolute Error (MAE) =
$$\frac{\sum_{i=1}^{n} |\hat{y}_i - y_i|}{n}$$
 Mean Error =
$$\frac{\sum_{i=1}^{n} (\hat{y}_i - y_i)}{n}$$

Is there any downside with using mean error?

Accuracy Metrics: MAE & ME

$$\begin{pmatrix} 10 \\ 20 \\ 30 \\ 40 \\ 50 \end{pmatrix} \qquad \begin{pmatrix} 30 \\ 40 \\ 60 \end{pmatrix}$$
 Ground Truth
$$\begin{pmatrix} 20 \\ 30 \\ 40 \\ 50 \\ 60 \end{pmatrix}$$

Mean Absolute Error (MAE) =
$$\frac{\sum_{i=1}^{n} |\hat{y}_i - y_i|}{n}$$
 Mean Error =
$$\frac{\sum_{i=1}^{n} (\hat{y}_i - y_i)}{n}$$

Is there any downside with using mean error? Errors can get cancelled out

Pop Quiz #5

Answer this!

Why might Mean Absolute Error (MAE) be preferred over Mean Squared Error (MSE)?

- A) MAE is always smaller
- B) MAE is less sensitive to outliers
- C) MAE is easier to compute
- D) MAE works only for classification

Pop Quiz #5

Answer this!

Why might Mean Absolute Error (MAE) be preferred over Mean Squared Error (MSE)?

- A) MAE is always smaller
- B) MAE is less sensitive to outliers
- C) MAE is easier to compute
- D) MAE works only for classification

Answer: B) MAE is less sensitive to outliers since it doesn't square the errors!

Summary and Key Takeaways

Pop Quiz #6

Answer this!

For imbalanced datasets, which metrics should you prioritize over accuracy?

- A) Only precision
- B) Only recall
- C) Precision, recall, and F1-score
- D) Only confusion matrix

Pop Quiz #6

Answer this!

For imbalanced datasets, which metrics should you prioritize over accuracy?

- A) Only precision
- B) Only recall
- C) Precision, recall, and F1-score
- D) Only confusion matrix

Answer: C) Precision, recall, and F1-score give a more complete picture!

Key Takeaways

Key Points: Takeaways

- ML vs Traditional Programming: ML learns rules from data, traditional programming uses predefined rules
- Features matter: Choose meaningful features, avoid arbitrary identifiers
- Classification vs Regression: Discrete outputs vs continuous outputs
- Accuracy isn't everything: For imbalanced data, use precision, recall, F1-score

Summary: Evaluation Metrics

Task	Common Metrics	When to Use
Classification	Accuracy, Precision, Recall, F1, Confusion Matrix	- Balanced vs. imbalanced data - Multi-class settings
Regression	MSE, RMSE, MAE, Mean Error	- Continuous output - Check for bias and variance

Reminder: Pick metrics that align with your problem and what matters in practice.