Combining Classifiers

Applications

- Targetting similar people or objects
 - · Student tutorial groups
 - Hobby groups
 - Health support groups
 - Customer groups for marketing
 - Organizing e-mail
- Spatial clustering
 - Exam centres
 - · Locations for a business chain
 - · Planning a political strategy
- Two Types of algorithms
 - Hard Clustering: Each point is assigned to some cluster
 - Soft Clustering: Each point is assigned probabilities of being assigned to each cluster

Hierarchical Clustering

- Agglomerative (e.g. AGNES):
- Start: Each point in separate cluster
- Merge 2 closest clusters
- Repeat until all records are in a single cluster
- Computationally Expensive
- Better at handling outliers

- Divisive (e.g. DIANA)
- · Start: All points in 1 cluster
- · Find most extreme points in each cluster.
- Regroup points based on closest extreme point
- Repeat until each record is in its own cluster
- Outliers may disrupt the

These are called Connectivity-based Clustering

k-means

- Randomly select k points as centers
- Assign each point to the cluster closest to these centers
- Compute mean of all the points in the cluster
- Call these points as new centers of the cluster
- Continue still no further improvement

- Step 4

This technique falls under Centroid-based Clustering

DBSCAN

- Density-based spatial clustering of applications with noise (DBSCAN)
- By Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu in 1996... received Test of Time Award (ACM SIGKDD 2014)
- Key idea:
 - · Closely connected points are marked into one cluster
 - Loosely connected are called noise
 - Non-parametric Clustering Algorithm

Optimization of DBSCAN

• $C = \{c_1, c_2, \dots c_k\}$ be the clusters

• min kst. $d(p,q) \le \epsilon \forall p,q \in c_i \forall c_i$

- ullet A point p is a core point if at least minPts points with ϵ distance
- $^{\bullet}$ A point is directly reachable from a core point if it is within ϵ distance from a core point
 - · Note, we talk about reachability only from core point
- A point q is reachable from p if there is a path $pp_1p_2\dots p_nq$ such that p_{i+1} is directly reachable from p_i
 - what can we then say about p_i?

DBSCAN -- Algorithm

Find the points in the ϵ (eps) neighborhood of every point, and identify the core points with more than minPts neighbors.

Find the connected components of core points on the neighbor graph, ignoring all non-core points.

Assign each non-core point to a nearby cluster if the cluster is an ϵ (eps) neighbor, otherwise assign it to noise.

- · minPts 4
- · A and other red points are in the core
- . B and C are not in the core
 - · But reachable from A
 - All red points + B + C form a cluster
 - · N is noise

Which k? Which Algorithm?

- Project on 2D/3D and determine if they are visually nicely separated
- · Silhouette Score
 - S(i) = Based on average distance with points in the same cluster a(i) vs smallest distance to the points not in the cluster (b(i))
 - $S(i) = \frac{b(i)-a(i)}{\max\{a(i),b(i)\}}$
 - Average $S(i) \in [-1, 1]$, higher the better)
- Davies-Bouldin Index
 - Captures compactness of a cluster with its separation across clusters
 - $DB = \frac{1}{k} \sum_{i} \max_{j} \frac{\Delta X_{i} + \Delta X_{j}}{\delta(X_{i}, X_{j})}$ Δ : Intracluster distance δ : intercluster distance