Convolutional Neural Network

How it "understand" Image and Text

Before CNN

Computers See Image

Think about MNIST Dataset

The above model requires the digit should be in the center of the image and it had to be the only thing in the image.

Intro to CNN

https://www.youtube.com/watch?v=FwFduRA_L6Q

Convolutional Neural Network

Extracting useful features of data

Perform a ML task (like classification based on the vectorized data)

Filter Operation

Current Pixel Value is 203

New Pixel Value

Filter (3 by 3)

Convolutional Operation

- Apply the same filter for every pixel in the original image
- Filter Size is the shape of the filter matrix (yellow one)

1,	1,0	1,	0	0
0,0	1,	1,0	1	0
0,,1	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

Feature Map

Convolved Feature

Stride

- Controls how the filter move around the image
- It is the amount by which the filter shifts

Zero Padding

- Pads the image with zeros around the border
- Make the input image and feature map have the same spatial dimensions

0	0	0	0	0	0	0
0	60	113	56	139	85	0
0	73	121	54	84	128	0
0	131	99	70	129	127	0
0	80	57	115	69	134	0
0	104	126	123	95	130	0
0	0	0	0	0	0	0

Stride: 1 Size of zero padding: (k-1)/2

https://stackoverflow.com/questions/52067833/ how-to-plot-an-animated-matrix-in-matplotlib

Convolutional Operation

• Filter Size: K

• Stride Size: S

Padding Size: P

1,	1,0	1,	0	0
0,0	1,1	1,0	1	0
0,,1	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

4

Image

Convolved Feature

Stanford UFLDL

Multi-Channel CNN

- A color image is a 3-D tensor
- 400 (height) 630 (width) 3 (R,G,B channels)

network

```
from matplotlib.image import imread
import numpy as np
img = imread('pikka_3.jpg')
print(img.shape)
(400, 630, 3)
plt.imshow(img, interpolation='nearest')
<matplotlib.image.AxesImage at 0x11b404278>
150
200
250
 300
 350
```

How Filter Works

Only Keep Vertical Lines

How Filter Works

Only Keep Horizontal Lines

Image

Edge Detection

Convolved Features

print(kernel)

[[-1 -1 -1] [-1 8 -1] [-1 -1 -1]]

Image

Edge Detection

Convolved Features

Image

Sharpen

Convolved Features

Image

Identity

Convolved Features

Non-linear Activation

- In nature, filter operation is dot product.
- In deep learning, we need to have non-linear transformation.
- Add non-linear activation

Image

The First Task in Assignment II

Pooling Operation

Pooling Size: the box size. Here is 2 * 2

• Stride Size: how much pixel the window move

What is stride size here?

Filter then Pool

- 1. The size is **one quarter** the original size
- 2. The **vertical line** features are **enhanced**.

Conv-Pool

Where are these filters from?

- Filters, in nature, are model parameters, which can be learned by backpropagation.
- These filters weights are firstly randomly initialized, and then updated during training process.
- End-to-End optimization: Backpropagation.
- More details:

https://towardsdatascience.com/training-a-convolutional-neural-network-from-scratch-2235c2 a25754

CNN Can be Deep

- Convolution-Pooling can be followed by another Convolution-Pooling
- At the end, after flatten operation, fully connected layers are used to map the outputs.

Why CNN is Suitable for Images

Local Features Matter

- Discriminative patterns are much smaller than the whole image
- A neuron does not have to see the whole image
- Less parameters required

Location Insensitive

- The same patterns appear in different regions
- A neuron should be location insensitive.

Subsampling Works

- Subsampling the pixels will not change the object
- We can subsample the pixels to make images smaller -> less parameters required

Crocodile

Limits of CNN

CNN is different human vision

- CNN can handle translations. But they can not cope with the effects of changing viewpoints such as rotation and scaling
- Human is able to generalize knowledge.

From: objectnet.dev

CNN is different human vision

Adversarial examples can cause neural networks to misclassify images while appearing unchanged to the human eye

Solutions

- Use 4D or 6D maps to train machine learning model
 - Too expensive
- Get huge-size training data that cover all positions of objects.
 - Data augmentation: flip the image or rotate it by some angle. Then, CNN will be trained on multiple copies of every image, each being slightly different.
 - o It will never cover all of corner cases.

Enlarge your Dataset

https://www.kdnuggets.com/2018/05/data-augmentation-deep-learning-limited-data.html

CNN is different human vision

- CNN may get confused by seeing this bizarre teapot, since they can not understand images in terms of objects and their parts.
- Human is able to decompose an object into parts and then we can understand its nature.

CNN for Text

CNN works for Text

Images

Local Features Matter

Locations Insensitive

Subsampling Works

Texts

• Key n-grams define semantics

Pulp fiction's director is Quentin. I am obsessed of it.

Locations of key n-grams Insensitive?

I am obsessed of Pulp fiction, whose director is Quentin.

Pulp fiction's director is Quentin. I am obsessed of it.

I owe you ten dollars
You owe me ten dollars.

Doc. Summarization

Combinations

E.g., I hate this movie

- Compute vectors for every possible phrase
 - I hate this movie ----> I hate; hate this; this movie
- Compute these vectors for these phrases

Convolution Operation

Word Vectors

l 0.6 0.5 0.2 -0.1 0.4 0.2 0.1 0.2 0.1 like 0.8 0.9 0.1 0.5 0.1 0.1 0.1 0.1 0.4 0.1

this movie very much

Filters updated during training

like this movie very much

Feature Maps

Toy Example

- This convolution provides high activations for 2-grams with certain meaning
- Can be extended to 3-grams,
 4-grams, etc.
- Can have various filters, need to track many n-grams.
- They are called 1D since we only slice the windows only in one direction

Why is it better than BoW?

CNN Framework

Multiple Channels

- Like image, CNN is applied on R-G-B channels
- For NLP, different word embeddings can be regarded as different channels

CNN for NLP

- 1. n-grams features are important (window size)
- 2. Location of key n-grams are trivial (pooling)
- Stack of Convolutional layer or large window size can also capture long-range information