SOLUTIONS

Note: On the left side of the page the maximum number of points that may be awarded for every part of the solution is indicated in brackets.

Question 1. Suppose that $(a_1, a_2, ..., a_{1995})$ is a solution of the given system of inequalities. Then

$$\sum_{n=1}^{1995} 2\sqrt{a_n - (n-1)} \ge \sum_{n=1}^{1995} a_n - \sum_{n=1}^{1994} (n-1) + 1 = \sum_{n=1}^{1995} a_n - \sum_{n=1}^{1995} \{(n-1) + 1\}$$

i.e.

$$0 \ge \sum_{n=1}^{1995} \{a_n - (n-1) + 1 - 2\sqrt{a_n - (n-1)} .$$

[2 points]

Next, note that

$$\left[\sqrt{a_n - (n-1)} - 1\right]^2 = a_n - (n-1) - 2\sqrt{a_n - (n-1)} + 1$$

for n = 1, 2, ..., 1995.

[1 point]

Hence,

$$0 \ge \sum_{n=1}^{1995} \left[a_n - (n-1) - 2\sqrt{a_n - (n-1)} + 1 \right] = \sum_{n=1}^{1995} \left[\sqrt{a_n - (n-1)} - 1 \right]^2 \ge 0.$$

Therefore, $\sqrt{a_n - (n-1)} = 1$, for n = 1, 2, ..., 1995. It follows that $a_n = n$ for n = 1, 2, ..., 1995.

[2 points]

Conversely, if $\sqrt{a_n - (n-1)} = 1$, for n = 1, 2, ..., 1995, then

$$2\sqrt{n-(n-1)} = 2 = n+1-(n-1)$$
, for $n = 1, 2, ..., 1994$

and

$$2\sqrt{1995 - 1994} = 2 = 1 + 1,$$

which shows that $a_n = n$, for n = 1, 2, ..., 1995, is indeed a solution of the given system of inequalities.

[2 points]

Question 2. The answer is 14.

[1 point]

Denote the required number by M. We observe that the sequence 2.101, 3.97, 5.89, 7.83, 11.79, 13.73, 17.71, 19.67, 23.61 = 1403, 29.59 = 1711, 31.53 = 1643, 37.47 = 1739, 41.43 = 1763 satisfies conditions i) and ii) and contains no prime number. Hence, M > 13.

[3 points]

Now we show that a sequence with 14 elements that satisfies conditions i) and ii) will contain a prime number. We proceed by contradiction. Suppose the elements are a_1 , a_2 , ..., a_{14} . Since none of them is a prime number, each element will contain at least two prime factors. We take any two prime factors from each a_i , and list them in ascending order $p_1 < p_2 < ... < p_{26} < p_{27} < p_{28}$. As the 14th prime is 43, this means 43 $\leq p_{14}$, $47 \leq p_{15}$ and so on. Now 43.47 = 2021 > 1995. This means that p_{14} must pair up with one of the p_1 , $p_2 ... p_{13}$ to form a certain a_i . Likewise p_{15} must pair up with one of the p_1 , $p_2 ... p_{13}$ to form another a_i , and so on (without repetition). Hence there exist p_i , p_j , 13 < i < j, that must pair up together to form some a_i . But then $a_i \geq p_i p_j \geq 43.47 > 1995$, a contradiction.

[3 points]

Question 3. Let T be the intersection of PQ and RS, T lies outside C, the circle PQRS.

i) Clearly any point on C belongs to the set A.

ii) Let $r = \sqrt{TP \cdot TQ} = \sqrt{TR \cdot TS}$, and consider the circle with center T and radius r. Let V a point on this circle. Since $TV^2 = TP \cdot TQ = TR \cdot TS$, TV is tangent to the circles PQV and RSV. Therefore, PQV is tangent to RSV. That means, V is in the set A.

[4 points]

Conversely, assume V is in A, i.e. PQV is tangent to RSV. If the circles PQV and RSV are the same, then PQV = RSV = PQRS. Otherwise, let the line TV intersect PQV in V_1 , and RSV in V_2 . Then

 $TP \cdot TQ = TV \cdot TV_1$ $TR \cdot TS = TV \cdot TV_2$. Due to the fact that PQR and S are on a circle, we have $TP \cdot TQ = TR \cdot TS$, thus $TV \cdot TV_1 = TV \cdot TV_2$. Moreover, since T does not lie on C, $T \neq V$, which implies $TV_1 = TV_2$, i.e., $V_1 = V_2 = V$.

All this means that TV is tangent to the circles PQV and RSV, therefore V lies on the circle with center T and radius $r = \sqrt{TP \cdot TQ} = \sqrt{TR \cdot TS}$.

[3 points]

Question 4. First, we will show that MS is perpendicular to A'B'. Since SAMB, SBN'A', SA'M'B' and SB'NA are rectangles, it follows that MNM'N' is a rectangle with its sides parallel to AA' and BB'.

Moreover, the perpendicular bisectors of AA' and BB' pass through O, and they coincide with those of MN' and NM'. Therefore, O is the center of the rectangle. Let I and H be the intersections of MS with AB and A'B'. We then have

 \angle HSA' = \angle ASI,

 $\angle ASI = \angle SAI$,

 \angle SAI = \angle A'AB = \angle A'B'B.

In the triangle SA'B', \angle A'B'B or \angle A'B'S is the complementary angle of \angle SA'B'. The angles HSA' and SA'B are complementary angles and the triangle SA'H is a right-angled triangle with right angle at H. Therefore, MS \perp A'B'.

[1 point]

Next, we will show that $AB^2 + A'B'^2 = 4R^2$ and that $MN'^2 + N'M'^2$ is constant.

Let D be the second intersection of MN' with the circle, then A'D = AB, since they subtend equal angles. This implies

$$AB^2 + A'B'^2 = A'D^2 + A'B'^2$$
.

But, we know DA' || MH, since $\angle BDA' = \angle BAA' = \angle BMH$, that means $\angle DA'B' = 90^{\circ}$ and it is inscribed in the circle, therefore D and B' are diametrically opposed, what finally implies

$$AB^2 + A'B'^2 = A'D^2 + A'B'^2 = DB'^2 = (2R)^2 = 4R^2$$
,

i.e.

$$AB^2 + A'B'^2 = 4R^2$$
.

[2 points]

To see that $MN^{12} + N'M'^2$ is constant consider the following equalities

$$MN^{12} = (MB + BN')^2 = MB^2 + BN^{12} + 2MB \cdot BN'$$

$$= SA^2 + SA^{12} + 2SA \cdot SA^{12}$$

$$M'N^{12} = (N'A' + A'M')^2 = N'A'^2 + A'M'^2 + 2N'A' \cdot A'M'$$

$$= SB^2 + SB^{12} + 2SB \cdot SB'.$$

By Pythagoras, we have

$$AB^2 + A'B'^2 = (SA^2 + SB^2) + (SA'^2 + SB'^2)$$

This implies,

$$MN^{12} + M^{1}N^{12} = SA^{2} + SB^{2} + SA^{12} + SB^{12} + 2SA \cdot SA^{1} + 2SBSB^{1}$$

 $= AB^{2} + A^{1}B^{12} + 4SA \cdot SA^{1}$
 $= 8R^{2} - 4OS^{2}$.

Additionally we know that

$$MN'^2 + M'N'^2 = MM'^2 = 40M^2$$
.

[2 points]

But, $40M^2 = 8R^2 - 40S^2$.

Therefore,

$$MN^{12} + M'N^{12} = 40M^2$$

This last quantity is clearly a constant.

[1 point]

Finally, it is clear that the vertices of the rectangle MNM'N' lie on the circle with center O and radius $OM = \sqrt{2R^2 - OS^2}$. Therefore, the set of points consists of a circle.

[1 point]

Question 5. The minimum value of k is $k^* = 4$.

[1 point]

First, we define a function f from Z to $\{1, 2, 3, 4\}$ recursively as follows: f(0) = 1. For any positive integer i, f(i) is defined to be the minimum positive integer not in $A_i := \{f(j) : i - j \in \{5, 7, 12\} \text{ and } -i < j < i\}$, and f(-i) the minimum positive integer not in $B_i := \{f(j) : j + i \in \{5, 7, 12\} \text{ and } -i < j < i\}$. Note that $|A_i| \le 3$ and $|B_i| \le 3$ for any i. So, f is a function from Z to $\{1, 2, 3, 4\}$ such that $f(x) \ne f(y)$ whenever $|x - y| \in \{5, 7, 12\}$. This gives that $k^* \le 4$.

[3 points]

Next, we claim that $k^* \ge 4$. Suppose it is not the case. Then there exists a function f from Z to $\{1, 2, 3\}$ with the property that $f(x) \ne f(y)$ whenever $|x - y| \in \{5, 7, 12\}$. For any integer x, consider the values f(x), f(x - 5), and f(x + 7). These three values are different. Now consider f(x + 2). Since $f(x + 2) \notin \{f(x - 5), f(x + 7)\}$

f(x) = f(x + 2) for any integer x.

Hence,

$$f(x) = f(x + 2) = f(x + 4) = ... = f(x + 12),$$

which is impossible. Thus $k^* > 4$.

[3 points]