DPU 2 - Devoir Maison

May 10, 2021

Exercice 2.1

Application C_1

Soit l'application C_1 , défine dans le tableau ci-dessous :

$u \in \{0,1\}^3$	$C_1(u)$
000	0000000
001	0010110
010	0101000
011	0111110
100	1000101
101	1010011
110	1101101
111	1111011

Cette application est-elle un code?

D'après le tableau, à chaque ligne de $C_1(u)$, correspond une et une seule ligne de la colonne u. Ce qui veut dire que pour tout $w \in C_1(u)$, il existe un seul antécédent dans $\{0,1\}^3$. Cette application est injective, c'est donc un code.

Ce code est-il linéaire?

Vérifions que :

(i)
$$\forall \lambda \in \{0, 1\}, \forall u \in \{0, 1\}^3, \mathcal{C}_1(\lambda u) = \lambda \mathcal{C}_1(u)$$

(ii)
$$\forall u, v \in \{0, 1\}^3, C_1(u + v) = C_1(u) + C_1(v)$$

(i) est vraie pour $\lambda = 1$, évident.

Pour $\lambda = 0, C_1(0) = C_1(000) = 00000000 = 0 \times C_1(000).$

Donc (i) est vraie.

On a vérifié que $\forall u, v \in \{0, 1\}^3$, $C_1(u + v) = C_1(u) + C_1(v)$. On peut simplifier les calculs pour le cas u + 0 = u et C(0) = 0, le cas u où v = 0 conduit à l'égalité demandée. De même pour le cas u = v.

Donc (ii) est vraie, l'application C_1 est linéaire.

Matrice génératrice

On choisit comme base évidente

$$\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)$$

1

La matrice génératrice est obtenue par application de C_1 sur chacune des lignes de la base. On obtient la matrice G_1 suivante :

$$G_1 = \left(\begin{array}{cccccccc} 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \end{array}\right)$$

Calcul de la distance minimale

On calcule la distance H pour chaque image C_1 . Le résultat est dans le tableau ci-dessous :

$u \in \{0,1\}^3$	$w = \mathcal{C}_1(u)$	H(w)
000	0000000	0
001	0010110	3
010	0101000	2
011	0111110	5
100	1000101	3
101	1010011	4
110	1101101	5
111	1111011	6

La distance minimale $\delta(C_1) = 2$

Capacité de correction

$$k = \left\lfloor \frac{\delta(\mathcal{C}_1) - 1}{2} \right\rfloor$$
$$k = 0$$

Application C_2

En suivant le même raisonnement, C_2 est injective, c'est donc un code. Elle est linéaire. Sa matrice génératice est :

$$G_2 = \left(\begin{array}{ccccccc} 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{array}\right)$$

La distance minimale $\delta(C_2) = 4$ Capacité de correction k = 1.

Application C_3

En suivant le même raisonnement, C_3 est injective, c'est donc un code. Elle est linéaire. Sa matrice génératice est :

$$G_3 = \left(\begin{array}{ccccccc} 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \end{array}\right)$$

La distance minimale $\delta(C_3) = 3$ Capacité de correction k = 1. Identification des classes connues : C_3 est un code de répétition sur les 6 premiers bits. Le dernier bit est un bit de parité impair pour les 3 premiers bits du code.

Application C_4

En suivant le même raisonnement, C_4 est injective, c'est donc un code. Elle est linéaire. Sa matrice génératice est :

$$G_4 = \left(\begin{array}{ccccccccc} 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{array}\right)$$

La distance minimale $\delta(C_4) = 4$ Capacité de correction k = 1.

Exercice 2.3

On considère le code $\mathcal C$ de matrice génératrice Sa matrice génératice est :

$$G = \left(\begin{array}{cccccc} 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{array}\right)$$

Matrice de contrôle

G est une matrice génératice normalisée de la forme (I_3P) . La matrice de contrôle Y s'écrit :

$$Y = \left(\begin{array}{c} P \\ I_3 \end{array}\right)$$

Donc

$$Y = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Capacité de correction

On écrit le tableau donnant $Im(\mathcal{C})$ avec les poids correspondant

$u \in \{0,1\}^3$	$w = \mathcal{C}(u)$	H(w)
000	000000	0
001	001101	3
010	010011	3
011	011110	4
100	100111	4
101	101010	3
110	110100	3
111	111001	4

Ainsi
$$\delta(\mathcal{C}) = \min_{w \in \mathcal{C}\{0,1\}^6 \atop w \neq 0} H(w) = 3$$

Donc

$$k = \left\lfloor \frac{\delta(\mathcal{C}) - 1}{2} \right\rfloor$$
$$k = 1$$

Calculons le syndrome de $\tilde{w_1}=101111$ et $\tilde{w_2}=111111$.

$$S(\tilde{w}_1) = (101)$$

$$S(\tilde{w}_2) = (110)$$

On écrit le tableau standard au poids k=1

$e \in \bar{B_1}$	$S(e) \in \{0,1\}^3$	H(e)
000001	001	1
000010	010	1
000100	100	1
001000	101	1
010000	011	1
100000	111	1

D'après la table $\tilde{e_1}=001000$ on corrige $\tilde{w_1}$ par $\hat{w_1}=\tilde{w_1}+\tilde{e_1}$ $\hat{w_1}=101111+001000=100111$

Le syndrome $S(\tilde{w_2})$ n'est pas trouvé dans le tableau standard, le mot $\tilde{w_2}$ comporte donc plus de k=1 erreurs.