

ENGINEERING & MANAGEMENT EXAMINATIONS, JUNE - 2009

MATHEMATICS

SEMESTER - 2

Time: 3 Hours]

[Full Marks: 70

GROUP - A

(Multiple Choice Type Questions)

Choose the correct alternatives for any ten of the following: 1.

 $10 \times 1 = 10$

i) If
$$A = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$$
, then A^{100} is

a)
$$\begin{bmatrix} 1 & 0 \\ -150 & 1 \end{bmatrix}$$
 b)
$$\begin{bmatrix} 1 & 0 \\ -50 & 1 \end{bmatrix}$$

$$\mathbf{c}_{\mathbf{i}} = \left[\begin{array}{ccc} \mathbf{1} & \mathbf{0} \\ -\mathbf{100} & \mathbf{1} \end{array} \right]$$

d) None of these.

- The set of vectors $\{(2, 1, 1), (1, 2, 2), (1, 1, 1)\}$ in \mathbb{R}^3 is ıi)
 - linearly dependent a)
- b) linearly independent

basis of R3 c)

d) none of these.

iii) The matrix
$$A = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$
 is

- (يَعَ an orthogonal matrix
- b) a symmetric matrix
- c) an idempotent matrix
- d) a null matrix.

The value o

			7 ,55
		0.2	
Paradiserrocare		65	
And the first was taked to be seen all devaluations		4,75	۲,

$$\eta^{\prime}=(2\pi + 8^{-1})^{\prime}$$
 . The second distance $\eta^{\prime}=(2\pi + 8^{-1})^{\prime}$.

- ix) $\Delta^2 e^x$ is equal to (h = 1)
 - a) $(e-1)^2 e^x$
- b) $(e-1)e^{x}$

(c) $e^{2x}(e-1)$

d) e^{2x}

- x) The value of $\int_{0}^{\infty} \frac{\sin t}{t} dt$ is equal to
 - a) $\frac{\pi}{3}$

b) $\frac{\pi}{6}$

c) $\frac{\pi}{4}$

- d) $\frac{\pi}{2}$
- xi) If S and T are two subspaces of a vector space V, then which one of the following is a subspace of V also?
 - a) $S \cup T$

b) $S \cap T$

c) S-T

- d) T-S
- xii) If $\lambda^3 6\lambda^2 + 9\lambda 4$ is the characteristic equation of a square matrix A, then A^{-1} is equal to
 - a) $A^2 6A + 9I$
- b) $\frac{1}{4}A^2 \frac{3}{2}A + \frac{9}{4}I$
- c) $\frac{1}{4}A^2 \frac{3}{2}A + \frac{9}{4}$
- d) $A^2 6A + 9$.
- xiii) Co-factor of -3 in the determinant $\begin{vmatrix} -2 & -3 & 4 \\ 1 & 0 & 1 \\ 0 & -1 & 4 \end{vmatrix}$ is
 - a) 4

b) - 4

c) 0

d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 1$

- 2. If A be a skew symmetric and (I+A) be a non-singular matrix, then show that $B=(I-A)(I+A)^{-1}$ is orthogonal.
- 3. Evaluate $L^{-1}\left\{\frac{1}{(s-1)^2(s-2)^3}\right\}$.
- 4. Solve the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} \div y = y^3 \left(\cos x - \sin x \right).$$

5. Evaluate the definite integral $\int_{1}^{7} (x + x^3) dx$ by using Trapezoidal rule, taking five

ordinates and calculate the error.

6. If
$$A(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
, then show that

$$A(\theta)A(\phi)=A(\phi).A(\theta)=A(\theta+\phi).$$

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

3 x 15 = 5

7. a) If
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & -4 & 1 \\ 3 & 0 & -3 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 1 & 1 \\ 1 & -1 & 0 \\ 2 & 1 & -1 \end{bmatrix}$ show that $AB = 6I_{3}$.

Utilise this result to solve the following system of equations:

$$3x + y + z = 5$$

$$x - y = 0$$

$$2x + y - z = 1$$

2241 (05/06)

- b) Solve: (y px)(p-1) = p and obtain the singular solution. Here $p = \frac{dy}{dx}$.
- c) Construct the interpolation polynomial for the function $y = \sin \pi x$, taking the points $x_0 = 0$, $x_1 = \frac{1}{6}$, $x_2 = \frac{1}{2}$.

Hence find $f\left(\frac{1}{3}\right)$ where y = f(x).

8. a) Solve the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d} x^2} - \delta \frac{\mathrm{d} y}{\mathrm{d} x} + 6y = x^2 e^{3x}.$$

b) Apply suitable interpolation formula to calculate f(9) correct up to two significant figures from the following data:

<i>:</i> ::	2	4	6	8	10
f(x):	5	10	17	29	49

c) Determine the conditions under which the system of equations

$$x + 2y - z = b$$

$$6x + 7y + az = b^2$$

admits of

- l) only one solution
- ii) no solution
- iii) . many colutions.

2241 (05/08)

- 9. a) Prove that P^TAP is a symmetric or a skew-symmetric matrix according as A is symmetric or skew-symmetric.
 - b) Find the eigenvalues and the eigenvectors of the matrix $\begin{bmatrix} 4 & 6 \\ 2 & 9 \end{bmatrix}$
 - c) Solve by Cramer's rule the following system of equations:

$$3x + y + z = 4$$

$$x - y + 2z = 6$$

$$x + 2y - z = -3.$$

- 10. a) What is meant by linear independence of a set of n-vectors?
 - b) Solve by the method of variation of parameters the equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d} x^2} + 9y = \sec 3x.$$

c) Prove that
$$\Delta = \begin{vmatrix} (b+c)^2 & a^2 & a^2 \\ b^2 & (c+a)^2 & b^2 \\ c^2 & c^2 & (a+b)^2 \end{vmatrix} = 2abc(a+b+c)^3$$

END