KOSHA GUIDE E - 13 - 2012

> 가스충전소 및 주유소에서의 정전기 재해방지에 관한 기술지침

> > 2012. 6.

한국산업안전보건공단

KOSHA GUIDE 만전보건기술지침의 개요 E - ?? - 2009

0 작성자 : 서울산업대학교 정 재희 교수

o 개정자 : 한국산업안전보건공단 산업안전보건연구원 안전연구실

o 제·개정 경과

- 2009년 11월 KOSHA CODE 전기안전분야 제정위원회 심의

- 2012년 4월 전기안전분야 제정위원회 심의(개정)

o 관련규격 및 자료

- KOSHA GUIDE E-89-2011(정전기 재해예방에 관한 기술지침)
- KOSHA GUIDE E-113-2011(정전기 위험성평가 및 대책에 관한 기술지침)
- NFPA 77: Recommended practice on static electricity
- NFPA 30A: Code for motor fuel dispensing facilities and repair garages
- o 관련법령·고시 등
 - 산업안전보건기준에 관한 규칙 제2편 제3장(전기로 인한 위험방지) 제4절(정전기 및 전자파로 인한 재해예방)
- 0 기술지침 적용 및 문의

이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈 페이지 안전보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자 : 2012년 6월 20일

제 정 자 : 한국산업안전보건공단 이사장

가스충전소 및 주유소에서의 재해방지에 관한 기술지침

1. 목적

이 가이드는 가스충전소 및 주유소에서의 충전(주유)작업시 정전기 재해방지에 필요한 사항에 대하여 기술함을 목적으로 한다.

2. 적용범위

이 가이드는 가스충전소 및 주유소에서 충전(주유)작업시 발생되는 인화성 및 가연성 가스(LP가스, 미스트, 유증기 등, 이하 "가연성 가스"라 한다)에 대하여 화재·폭발의 점화원이 될 수 있는 인체 및 충전(주유)설비의 정전기를 대상으로 한다.

3. 정의

- (1) 이 가이드에서 사용하는 용어의 뜻은 다음과 같다.
 - (가) "정전기(Electrostatic)"란 전계의 영향은 크나 자계의 영향이 상대적으로 미미한 전기를 말한다.
 - (나) "정전기 방전(Electrostatic discharge)"이란 대전체로 인한 방전, 불꽃방전, 브러 시방전 등의 형태로 정전기를 방출시키는 것을 말한다.
 - (다) "도전성(Conductive)"이란 전하의 흐름을 허용하는 정도를 말하며, 이 지침에서는 도전율 10^4 pS/m 이상(또는 저항률 10^8 $\Omega \cdot m$ 이하)을 의미한다.
 - (라) "본딩(Bonding)"이란 둘 또는 그 이상의 도전성 물질이 같은 전위를 갖도록 도 체로 접속하는 것을 말한다.
 - (마) "제전복(Anti-electrostatic wear)"이란 합성섬유 및 인조섬유에 정전기 축적을 방지하고 도전율을 높이기 위해 도전성 섬유를 혼입한 작업복을 말한다.

E - 13 - 2012

(2) 그 밖에 이 지침에서 사용하는 용어의 정의는 이 지침에서 특별히 규정하는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 같은 법 시행규칙 및 안전보건규칙에서 정하는 바에 따른다.

4. 가스충전소 및 주유소 작업시 요구사항

- (1) 가스충전소 및 주유소작업시의 일반 요구사항은 "정전기 재해예방에 관한 기술지 침(KOSHA Code E-6-2007)" 제1장(일반사항)을 준용한다.
- (2) 가스충전소 및 주유소작업시의 가연성 가스의 정전기특성(도전율, 완화시간, 최소 점화에너지 등)과 상세한 접지 및 본딩은 "정전기 위험성평가 및 대책에 관한 기술지침(KOSHA Code E-34-2007)"의 부록을 준용한다.
- (3) 가스충전소 및 주유소에서의 전하 축적 등의 정전기의 위험성 평가는 "정전기 위험성평가 및 대책에 관한 기술지침(KOSHA Code E-34-2007)" 제5항(정전기의 위험성평가 절차)을 준용한다.

5. 가스충전소 및 주유소의 위험

- (1) LP가스와 유류는 전기절연성이 높아 유동·여과·분무시 정전기를 발생하는 성 질이 있기 때문에 정전기 대전이 비교적 용이하다.
- (2) 작업공정상 정전기 방전이 발생할 수 있는 대전된 인체, 대전된 차량, 대전된 충전(주유) 설비가 가연성 가스에 근접하기 쉽다.
- (3) 정전기 방전이 인체에 발생할 경우 치명적인 감전재해를 유발할 수 없지만 추락, 전도 등의 2차 재해로 이어질 수 있으며, 작업자 및 고객에 작업능률 저하, 불쾌감 등을 유발할 수 있다

E - 13 - 2012

(4) 정전기 방전으로 인한 화재·폭발은 주로 가연성 가스나 분진을 취급하는 장소에서 대부분 발생하고 있으며, 특히 LP가스와 유증기는 폭발하한계와 인화점이 낮아 비교적 낮은 에너지의 점화원에 의해서도 화재·폭발의 위험성이 있다.

6. 가스충전소 및 주유소 작업시의 조치사항

6.1 일반사항

- (1) 사업주는 정전기로 인한 화재·폭발을 방지하기 위해 정전기발생 및 제거방법에 대하여 충전(주유) 작업의 안전수칙 및 체크리스트를 작성·활용하여야 한다.
- (2) 폭발위험장소(이하 '위험장소'라 한다)에 위치하는 모든 충전(주유) 설비는 접지 및 본딩을 하여야 한다.
 - (가) 노즐은 5 m 마다 접지 및 본딩을 실시하여야 한다.
 - (나) 정전기의 대전방지를 위한 접지저항은 10⁵ Ω 이하로 유지하여야 한다. 다만, 전기기 기 외함이 전기설비기준에 의하여 접지되어 있는 경우에는 이를 활용할 수 있다.

6.2 가스충전소 및 주유소 내 위험장소의 구분

- (1) 가연성 가스를 포함하는 모든 설비는 폭발분위기 조성의 가능성을 결정하기 위한 평가가 이루어져야 하며, 다음의 <그림 1> 및 <그림 2>와 같은 구역으로 구분하여 관리한다.
 - (가) 0종 장소 (Zone 0): 가연성 가스로 인한 폭발성 농도가 지속적 또는 장기간 존재하는 장소를 말한다.
 - (나) 1종 장소 (Zone 1): 가연성 가스와 공기의 혼합 가능성이 일반적인 상황에서 예상될 수 있는 공간
 - (다) 2종 장소 (Zone 2): 가연성 가스와 공기의 혼합 가능성을 일반적인 상황에서 예상할 수 없고, 단지 혼합이 발생하더라도 짧은 시간에 제거될 수 있는 공간

KOSHA GUIDE E - 13 - 2012

(2) 0종, 1종 및 2종 장소에 설치되는 전기설비는 각각의 환경에 고려하여 선택되어 야 한다. 단, 0종, 1종 및 2종 장소로 분류되지 않는 공간은 위험성이 존재하지 않는 것으로 간주한다.

(3) 위험장소의 구분 예시

<표 1> 가스충전소 및 주유소 내 위험장소의 구분

장소	세부내용	구역
가스 및 유류 저장탱크	(1) 저장탱크의 1.5 m 이내(2) 지면으로부터 1.5 m 까지(3) 밸브와 가스충전단자로부터 3 m 이내	1종 장소 2종 장소 2종 장소
압력방출밸브	 (1) 방출경로 (2) 방출지점으로부터 1.5 m 이내 (3) 방출지점으로부터 1.5~4.5 m 이내 	고정 전기설비 금지 1종 장소 2종 장소
가스 및 유류 저장차량	(1) 가스의 이동을 위한 연결부로부터 1.5 m 이내 (2) 연결부로부터 1.5~4.5 m 이내	1종 장소 2종 장소
충전(주유)기 (<그림 1>참조)	 (1) 지면으로부터 높이 250 mm 및 반경 4.5 m 이내의 원통형 구역 (2) 가스충전기의 최상단에서 1 m 위를 꼭지점으 	1종 장소 2종 장소
(〈二日 1/삼조)	로 한 반경 4.5 m의 원뿔형 구역	2중 경소

KOSHA GUIDE E - 13 - 2012

<그림 2> 가스충전소 및 주유소 내 위험장소의 구분

6.3 가스충전소 및 주유소 내 방전현상

(1) 충전(주유)기가 설치되어 있는 주변장소는 대부분 2종 장소로 간주한다. 자동차의 유류탱크 및 주유노즐(가스충전탱크 및 가스충전노즐)의 전부(前部)는 <그림 3> 과 같이 1종 장소로 여겨야 하며, 0종 장소와 1종 장소에서의 설비 및 동작은 정 상상태에서 정전기 방전을 피할 수 있도록 하여야 한다.

<그림 3> 위험장소 구분

E - 13 - 2012

- (2) 가스충전소 및 주유소 내 정전기 방전
- (가) 대전된 인체와 자동차 사이에 정전기 방전이 발생할 수 있다.
- (나) 접지되지 않은 금속체가 위험지역에 존재한다면 접지된 노즐 또는 저장탱크 주입구 사이에서 방전이 발생할 수 있다.
- (다) 접지 및 본딩시설 불량 등으로 인해 노즐이 대전되었다면 접지된 자동차 및 저장탱크 주입구 사이에서 정전기 방전이 발생할 수 있다.
- (라) 접지되지 않은 노즐, 탱크 및 자동차가 접지된 인체에 접근한다면 정전기 방전이 발생할 수 있다.
- (마) 대전된 인체가 접지된 노즐에 접근하면 정전기 방전이 발생할 수 있다.
- (바) 대전된 자동차와 접지된 노즐 사이에서 정전기 방전이 발생할 수 있다.

6.4 인체대전

6.4.1 축적

- (1) 축적된 인체대전에너지는 가연성 가스가 있는 장소에서 점화원으로 작용할 수 있으며, 인체대전은 다음과 같은 과정을 통하여 발생할 수 있다.
 - (가) 이동
 - (나) 의자와의 탈착
- (다) 벽, 자동차 등과의 마찰
- (라) 탈의 등
- (2) 주행 중 자동차의 움직임에 의한 마찰과 박리 등에 의하여 옷과 좌석 사이에서 인체대전이 발생하며, 신발이 충분한 절연성능을 보유하고 있고, 인체가 3,500 V 이상으로 대전되었다면 접지된 도전체 등에 접촉하는 순간 전격을 느낄 수 있다.
- (3) 가스충전소 및 주유소 바닥의 종류에 따라 인체대전이 발생할 수 있으며, 바닥재 가 비도전체라면 습도가 낮은 경우 높은 이동 중 대전전위가 인체에 인가될 수 있다.

E - 13 - 2012

6.4.2 완화

- (1) 가연성 가스가 존재하는 곳에 사람이 존재해야 한다면 시설적인 측면에서 정전 기를 제거할 수 있어야 한다.
 - (가) 작업자는 제전복과 정전화 착용
 - (나) 도전성 바닥을 유지(콘크리트, 도전성 도료 등)
- (다) 위험지역 내에 접근하기 전에 인체대전 제거(정전기방지패드 등)
- (라) 가습 등

6.5 차량대전

6.5.1 축적

자동차의 정전하 축적은 습도조건에 민감하며 건조한 날씨에는 주유(충전)기에 도착했을 때 차량의 크기와 타이어의 상태에 따라 변할 수 있지만 일반적으로 대전에너지는 최대 3 ml 에 도달할 수 있다.

6.5.2 완화

- (1) 대전된 차량의 정전하를 제거하기 위한 방법은 다음과 같이 이루어진다.
 - (가) 자동차 타이어와 지면을 통한 방류
 - (나) 위험장소 접근 전 접지체의 접촉을 통한 방전
 - (다) 위험장소 접근 전 인체와의 접촉을 통한 방전
- (2) 바닥 저항률이 $10^8 \, \Omega \cdot m$ 보다 낮다면 대전된 전하는 바닥을 통하여 안전하게 제거된다.

6.6 바닥저항

(1) 콘트리트 바닥은 약 $2 \times 10^6 \ \Omega \cdot m$ 의 저항률을 나타내며, 습도가 높은 경우 저항

E - 13 - 2012

값은 급속히 떨어진다.

- (2) 아스팔트 바닥은 일반적으로 10^8 Ω·m 이상으로 충분한 도전재료로 인식되지 않으나, 도전성 도료로 코팅된 아스팔트 바닥의 경우 10^6 Ω·m의 평균저항률을 나타내어 정전하를 분산시킬 수 있다.
- (3) 도전성 표면을 가진 바닥이라고 할지라도 오염 등으로 인한 변화가 발생한다면 저항은 급속히 높아질 수 있다.
- (4) 유류 등의 대지 침투를 방지하기 위하여 방수용 페인트를 도료로 사용하는 경우 도전성 도료를 사용한다.

6.7 이송 및 충전

- (1) 저장설비 및 충전설비에 이송 및 충전(주유)하거나 가연성 가스를 용기 등으로부 터 충전(주유)할 때에는 해당 설비에 대한 정전기 제거조치를 다음과 같이 한다.
 - (가) 충전(주유)용으로 사용하는 저장탱크 및 제조설비는 접지하여야 한다. 이 경우 접지접속선은 단면적 5.5 mm 이상의 것(단선은 제외한다)을 사용하고, 경납붙임, 용접, 접속금구 등을 사용하여 확실히 접속하여야 한다.
 - (나) 차량에 고정된 탱크 및 충전(주유)에 사용하는 배관은 반드시 충전(주유)하기 전에 위험장소 외의 장소까지 접지시설을 연장하여 확실하게 접지하여야 하며, 이때 접지선은 절연전선(비닐절연전선은 제외), 캡타이어케이블 또는 케이블 (통신케이블은 제외)로서 단면적 5.5 m² 이상의 것(단선은 제외)을 사용하고 접 속금구를 사용하여 확실하게 접속하여야 한다.
 - (다) 대전물체가 가연성 물질이면서 위험한 분위기를 조성하고 있거나, 그 가능성이 있는 경우에는 다음 <표 2>와 같이 정치시간을 고려하여야 한다.

<표 2> 용기에 따른 정치시간

용기의 종류 및 크기	시간
탱크 로울리	15분
탱크차	15분
500 kℓ 미만의 운송탱크(Carrier)	30분
500 kℓ 이상의 운송탱크	60분
1,000 kℓ 미만의 저장탱크	30분
1,000 ~ 5,000 kl 미만의 저장탱크	60분
5,000 kl 이상의 저장탱크	120분

6.8 충전(주유) 안전수칙

6.8.1 작업자가 배치된 가스충전소 및 주유소

- (1) 작업자는 충전(주유) 전 다음의 각 항목을 준수해야 한다.
- (가) 제전복 착용 전 손상 유무확인
- (나) 착용기간이 2년을 초과한 작업복 착용금지
- (다) 충전(주유)호스의 접지 및 본딩 설비의 손상방지 및 체결상태 확인
- (라) 정전기방지 패드의 이상유무 확인
- (마) 충전(주유)전 접근차량을 손으로 접촉하여 차량의 잔류 정전기 제거
- (바) 노즐을 잡기 전 반드시 정전기방지 패드에 맨손을 접촉하여 인체대전전위 제거
- (사) 충전(주유)기 주위에 충전(주유)을 위한 도구가 아닌 불필요한 절연체는 제거
- (2) 작업자는 충전(주유) 중 다음의 각 항목을 권장하여야 한다.
- (가) 제전복 및 정전화를 착용
- (나) 충전(주유) 중 이동 및 타인 접촉 등의 불필요한 행동금지
- (다) 충전(주유) 중 작업복 탈의금지
- (라) 주유(충전) 중 운전자 및 충전(주유)기에 접근금지

E - 13 - 2012

- (3) 작업자는 충전(주유) 후 다음의 각 항목을 준수해야 한다.
- (가) 노즐의 접지 및 본딩 설비의 손상방지 및 체결상태 확인
- (나) 정전기방지 패드의 이상유무 확인
- (다) 충전(주유)의 이유가 아니면 디스펜서 및 노즐의 접근 및 접촉 자제
- (라) 현장사무소 및 대기실은 가습을 하여 상대습도 65 % 이상을 유지
- (마) 제전복은 구김이나 손상이 가지 않도록 수납장에 보관

6.8.2 셀프 주유소

- (1) 운전자는 주유 작업시 다음의 각 항목을 준수해야 한다.
 - (가) 노즐에 접근 전 운전자의 축적된 정전기를 제거하기 위해 차량의 문이나 금속 부위와 접촉을 한다.
 - (나) 정전기방지 패드에 손바닥을 접촉하여 정전기를 제거한다.
 - (다) 차량의 주입구에 노즐을 투입하기 전에 한쪽 손에는 노즐을 잡고 다른 한쪽 손은 차량의 금속부에 접촉하여 차량과 노즐을 등전위로 유지한다.
 - (라) 주유 중 불필요한 행동을 삼가고, 주유구 옆에서 주유 완료까지 기다린다.
 - (마) 주유 중 차량 안으로 들어가지 말고, 부득이 차량으로 들어갈 수밖에 없는 경우에는 노즐을 빼기 위해 다시 나올 때 노즐과 멀리 떨어진 차량의 금속부에 손을 접촉하여 방전시킨다.
 - (사) 주유 중 차량에 의도하지 않은 화재가 발생할 경우 노즐을 제거하지 말고 차량 으로부터 멀리 떨어진다. 그리고 직원에게 즉시 통보하고 소방서에 알린다.

6.9 교육

가스충전소 및 주유소에서 충전(주유) 작업을 하는 사람은 정전기 위험요인과 안전 조치를 숙지하여야 하며, 해당 관리소장(안전관리자)은 당해 작업자에게 정전기 안 전조치에 대하여 교육을 실시해야 한다.

E - 13 - 2012

6.10 체크리스트 작성

가스충전소 및 주유소의 사업주 또는 관리소장은 다음의 각 항목을 포함하는 체크 리스트를 작성하여 안전점검을 실시해야 한다.

(1) 작업자 관련 점검

- (가) 제전복 및 정전화 착용 유무
- (나) 충전(주유) 안전수칙 숙지 유무
- (다) 화재관련 긴급대처법 숙지 유무
- (라) 정전기 관련 정기교육 유무

(2) 표지판 관련 점검

- (가) 출입구에 정전기 관련 경고 및 안내표지판 유무
- (나) 충전(주유)기에 정전기 관련 경고 및 안전수칙판 유무
- (다) 인체에 축적된 정전기 제거방법에 관한 표지판 유무

(3) 충전(주유)기 관련 점검

- (가) 주유기에 유증기 회수장치 유무
- (나) 정전기방지 패드의 충전(주유)기 주위 부착유무
- (다) 접지 및 본딩 유무

(4) 기타설비 관련 점검

- (가) 바닥저항률을 $10^6 \Omega \cdot m \sim 10^8 \Omega \cdot m$ 관리 유무
- (나) 노즐, 유증기 배출구, 주입구, 배관, 지하탱크, 저장용기 및 이동식 차량탱크 등 에 접지 및 본딩 유무
- (다) 이충전(주유)시 정치시간의 준수 유무