Q02 - Lecture 3

Transitions between discrete levels by time-dependent interaction

Let's review perturbation theory! A with eigenstates In, eigenvalues Start with a Hamiltonian Ho, with eigenstates In, eigenvalues En. Then we can write any state:

14(+=0)>=5,8,10>

And after some time t, he have:

14(1) = 5, on e i Ent/h (n)

Now we add a time-dependent interaction!

Ĥ = Ho + Ĥ(t)

We can treat this as a perturbation if its matrix elements are small compared to the spacing between levels:

(<n | f,(t) | m) << | En - Em |)

The perturbation will cause transitions between eigenstates.

The probability of making a transition to state ID> after time

t is given by - | Prosp(t) = | < \$12(t) >12

Example I: Interaction of atom with FM Redd:

È(+)= È cos(w+++)

We will see later that: H,(t)=-D-E(t) where D=qr

Notice that \vec{D} is an operator, but \vec{E} is just a number!

This is called the "semi-classical treatment"

Example II: Collision processes If V is an interaction potential that depends on R, the distance between A+B, then if R depends on time. For a collision, V-0 @ t= -10, +00 of the collision causes a change in internal state, it is called inelastic - b is called the "impact parameter" · Pertubation Theory The SE gins: it d 14(1) = (Ho+H,(1)) 14(1) We will solve this by making use of the fact that Hi(t) is "small" Re-scale it: H, (t) = 1 H, (t) where now <n/H(H)(m) m/En-Em), + 1< This approach does not always nork! Example I: É must be small. Danple I! b must be small. Now no have: it d 17(11) = (Ho +)H'(t)) 19(1) Recall that we can express every solution as an expansion of the eigenstates of the original Hamiltonian Ho: $|Y(t)\rangle = \sum Y_n(t) e^{-iknt/\hbar} |n\rangle$

but now, the 8's are a function of time!
- is constitution by the
Remembering: Holn>= Enln> 4/11/2011
Then we get:
Then we get: # (it of rich) = 12 (k) Hill) n) e (the En) th rult) # (it of rich) = 12 (k) Hill) n) e
C I de le exact.
a could define
$\gamma_{i}(t) = \delta_{i}(t) + \Lambda_{i}(t)$
This is useful because, since It is small, most of the
behaviour of and be constructed of the same order
Substitute This in and contes
at 1.
(Ocales 0) (it of 2(0)(4) = 0)
In other words, $\gamma_{k}^{(\omega)} = constant$ and just given by the initial condition of the problem. [(Ek-En)t/th 1, (a) 1)
the initial condition of the problem.
The initial condition of the problem. (Order 1) [ith d 7(1)(t) = 5 (k H,(t) e 1/h y (o) (t)) (Grafe) //h
i(Ek-En) /h
Order r) $\int_{-\infty}^{\infty} \frac{d}{dt} \mathcal{F}_{k}^{(r)}(t) = \sum_{n}^{\infty} (k \hat{H}_{i}'(t) _{n}) \mathcal{E} \mathcal{F}_{n}^{(r+1)}(t)$
n

Please Notice -each order (r) depends only on the solution to the (r-1)the order => CAN SOLVE ITERATIVELY -2 itself has disappeared! First Order Theory Let's work out the probability of making a transition from State (i) to state (h) using first order PT. Zeroth order: $\gamma_{k}^{(6)} = \delta_{ki}$ Than the first order is simply:

it of the first order is simply:

the first order is = < k1 H/(t) 11 Q But recall that the transition amplitude is: $\gamma_{k}(t) = \gamma_{k}^{(0)}(t) + \gamma_{k}^{(0)}(t) + \cdots$ So: $S_{ki} = 10^{(i)}(t)$, but also recall $2H_1(t) = H_1(t)$ then: $S_{ki} = \frac{1}{i\hbar} \int_{t_0}^{t} d\tau \langle k|H_1(t)|i\rangle e^{-\frac{i}{\hbar}(t)} d\tau \langle k|H_1(t)|i\rangle e^{-\frac{i}{\hbar}(t)}$

And Pi+k = |Skil2 = 1 | St dc<k|H,(4)|i) e = 12

Now imagine a perturbation of the type: A.W = W f(1) operator acting function on atomic varieties if Wki = <kIW li>, then we have (for to=-00, t=0) (Sk. = Wkif of f(E) e But this is just the Fourier transform of f(t) F(E) = 1 (def(t) e 1Et/t Then (Pink=15ki)2 = 21 |Wki|2 | f(Ek-Ei) |2 Example: Collision taking place in time Dt then f(t) looks like gaussian with width Dt: fet) where DE ~ Dt Thus a collisional interaction for Dt duration will only significantly populate levels for which

IEK-EILK TOL)

Next example, consider a perturbation suddenly tweed on: We know the Fourier transform of a square pulse; So, $S_{ki} = \frac{W_{ki}}{h} \frac{e^{i(E_k - E_i)T/h} - 1}{i(E_k - E_i)/h}$ $P_{i\rightarrow k}(t) = \frac{|W_{ki}|^2}{\hbar^2} g_{\dagger}(E_k - E_i)$ where $g_{\dagger}(E) = \frac{\sin^2(E_k - E_i)}{(E_k - E_i)} + \frac{1}{2} then$ $\frac{(E_k - E_i)}{(E_k - E_i)} = \frac{1}{2} then$ # St(E)= 37(E) J Pink(+)= T= WE128(E)= when lim f(c) = o(E) So, as before, we have an estimate for the efficiently populated 三世人时人时十二 The energy is conserved to a precision 2 mt "energy-time uncertainty principle"?!

Final example, a sinusoidal perturbation? $f(t) = cos(wt + \phi)$ Taking the fourier transform! Ski= -Wki (e (wki-w)t-ip i(wki-w)to-ip wki-w + e -e Whith which is the time of time of the time of time where thuk; = Ex-E; , This has two terms, with denom. Wki-w and wki+w. Since Wkinw (quasi-resonant condition), the second term is MUCH smaller (so let's ignore it!) -> QUASI-RESONANT APPROXIMAT And: Proi = TIWKIZ(2T) ST(FK-F-tw) J+4 of it the same as before! Comparing this to the pulsed excitation, we have two differences: 1) A factor of 4 2) Ex-Ei - tw The first term is because half the amplitude is lost in the off-resonant term (the one with wkith in the denom). This is also called the "ROTATING WAVE APPROXIMATION" We can construct a similar constraint on the efficiently populated states as before:

For long T, the only states efficiently populated are those with |Ex-Ei|=thw. THE CHANGE IN THE ATTOMIC with |Ex-Ei|=thw. THE ABSORPTION ON EMISSION OF ENERGY thwo.

A QUANTUM OF ENERGY thwo.

We could call this a photon, but this is not necessary.

Exact Solution of the Problem

Now consider a much simpler case: a two-level atom.

$$\hat{H} = \hat{H}_0 + \hat{W}$$
 as before

and W gives transitions between these levels:

This system can be solved exactly!

$$H = \begin{pmatrix} E_a & W \\ W & E_b \end{pmatrix}$$

Diagonalize it!

You will find: $S(\phi_1) = \cos\theta(a) + \sin\theta(b)$ where $S(\phi_2) = -\sin\theta(a) + \cos\theta(b)$ tan20= $S(\phi_2) = -\sin\theta(a) + \cos\theta(b)$

- 1) These are called "Rabi Oscillations"
- 2) RR = 2W is the "Rati frequency" by convention and does not depend on anything but the transition the matrix element.
- 3) SL = [(E_E_5]+4W2 is the "generalized Rusi frequency" The "strength" of the oscillation

Te sin2 (WT)

So P=1 when WT= 1/2 or SeT=TT

However, when Eo × Eb, you never god 100% population