TD3: Fonction d'Onde - Equation de Schrödinger

Ex1: Fonction d'onde - Probabilité de présence

On étudie une particule dont la fonction d'onde, définie pour $x \in [0; +\infty[$, vaut :

$$\psi(\mathbf{x}) = \psi_0 e^{-\frac{x}{x_0}}$$
; où x_0 est une constante fixée, et ψ_0 une constante à déterminer.

- 1. Donner la fonction de répartition de probabilité de présence de la particule pour $x \in [0; +\infty[$ en fonction de ψ_0 , x_0 et x.
- 2. En utilisant la condition de normalisation de la fonction d'onde, déterminer la valeur de la constante ψ_0 .
- 3. Quelle est la probabilité de trouver la particule dans l'intervalle [0; A]?
- 4. Que doit valoir A pour que cette probabilité soit au minimum de 95 % ? On donnera en fonction de x_0 un résultat approché en prenant $\ln(0.05) \approx -3$

Ex2: Particule dans un puits de potentiel infini

On étudie une particule de masse m dans le puits de potentiel infini suivant :

$$V(x) = \begin{cases} 0 \text{ si } x \in [0; L] \\ +\infty \text{ sinon} \end{cases}$$

On veut connaître les états d'énergie accessibles la particule, ainsi que l'allure des fonctions d'onde associées à chaque niveau d'énergie.

Fig. 1: Puits de potentiel infini de largeur L

- 1. Pour $x \in [0; L]$, donner l'équation de Schrödinger vérifiée par la fonction d'onde ψ de la particule dans le puits de potentiel infini, en fonction de la constante de Planck réduite \hbar , de m et de l'énergie E de la particule.
 - 2. Donner la forme générale des solutions $\psi(x)$ de l'équation de Schrödinger sur ce domaine.
- 3. Quelles sont les conditions aux limites $\psi(0)$ et $\psi(L)$? Utiliser ces conditions pour déterminer certaines des constantes de la solution générale $\psi(x)$.
- 4. Que vaut $\int_0^L |\psi(x)|^2 dx$? Utiliser ce résultat pour déterminer complètement l'expression de $\psi(x)$.
- 5. Reporter ce résultat dans l'équation de Schrödinger pour déterminer les valeurs d'énergie accessibles à la particule. Comment interprétez-vous ce résultat ? Quel facteur de l'expression peut être qualifié de « nombre quantique » associé au niveau d'énergie ?
- 6. Schématiser le diagramme d'énergie en traçant sur chaque niveau l'allure de la fonction de probabilité de présence $|\psi(x)|^2$ pour $x \in [0; L]$.

Ex3: Boîte quantique

On s'intéresse maintenant au puits quantique 3D : la boîte quantique. La fonction d'onde $\psi(x,y,z)$ associée à une particule de masse m présente dans la boîte est alors fonction des trois variables de l'espace. Le potentiel V(x,y,z) est nul dans la boîte, infini en-dehors :

$$V(x,y,z) = \begin{cases} 0 \text{ si } (x,y,z) \in [0;a] \times [0;b] \times [0;c] \\ +\infty \text{ sinon} \end{cases}$$

Fig. 2: Boîte quantique de dimensions a x b x c

1. Rappeler l'équation de Schrödinger appliquée à ψ en fonction de \hbar , m, de l'énergie E de la particule et des dérivées partielles secondes spatiales de ψ .

De manière analogue au cas 1D, on montre que :

$$\psi(x,y,z) = \sqrt{\frac{8}{abc}} \sin\left(\frac{n\pi}{a}x\right) \sin\left(\frac{p\pi}{b}y\right) \sin\left(\frac{q\pi}{c}z\right)$$

- 2. Identifier les facteurs pouvant être qualifiés de nombres quantiques associés à chaque niveau d'énergie.
- 3. Utiliser l'équation de Schrödinger pour déterminer les niveaux d'énergie accessibles en fonction notamment des nombres quantiques.
- 4. Pour le cas particulier a = b = c, donner l'expression du plus petit niveau d'énergie E_f en fonction de \hbar , m et a. Pour quelles valeurs des nombres quantiques ce niveau est-il atteint ?
- 5. Lorsque N jeux de nombres quantiques permettent d'atteindre un même niveau d'énergie, l'on dit ce niveau d'énergie est de degré de dégénérescence N. Compléter le tableau suivant pour les trois premiers niveaux d'énergie. Donner leur énergie en fonction de E_f .

Niveau	Nombres quantiques	Energie	Degré de
			dégénérescence N
1			
2			
3			

Rappel : Opérateur laplacien scalaire en coordonnées cartésiennes

$$1D:\Delta=\frac{d^2}{dx^2}$$
; $3D:\Delta=\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2}$