Foundations of Representation Theory

Lecture Notes in the Winter Term 2018/19

CONTENTS

1	Algebras and modules	1
	1.1 Algebras - Basics	 1
	1.2 Quivers - Basics	 2
	1.3 Modules - Basics	
	1.4 Representation of quivers	 9
	1.5 Bimodules and tensor products	 14
A	Insights from the exercise sheets	17
	A.1 Sheet 1	 17
Bi	Sibliography	21
In	ndex	23

INTRODUCTION

These are my personal lecture notes for the lecture Foundations of Representation Theory held by Dr. Hans Franzen at the University of Bonn in the winter term 2018/19.

I try to update them on my website, https://pankratius.github.io. The authors labels his own comments and additions in purple.

The book [Alu09] is used by the author for further references, and highly recommended.

Conventions: In this lecture, rings will always be unital, and ring homomorphisms f always fulfill f(1) = 1. Rings do not have to be commutative.

1.1 Algebras - Basics

Let k be a commutative ring.

Definition 1.1.1. A k-algebra A is a ring A, together with a structure of a k-module on A, such that

for all
$$a, b \in A, \lambda \in K : (\lambda a)b = a(\lambda b) = \lambda(ab)$$
 (*)

Definition 1.1.2. Let A, B be k-algebras. A **homomorphism of algebras** is a map $f: A \to B$ that is both k-linear and a ring homomorphism.

Remark 1.1.3. Let A be a ring. Define

$$Z(A) := \{ a \in A \mid \forall b \in A : ab = ba \},\$$

which is a commutative subring and is called the **center** of A.

Remark 1.1.4. Let A be a ring. Giving a k-algebra structure on A is the same as giving a ring homomorphism $k \to Z(A)$. More precisely:

- i) If A is a k-algebra, then $p: k \to A$, $\lambda \mapsto \lambda 1$ satisfies $\operatorname{Im} p \subseteq Z(A)$ and is a ring homomorphism. (the first statement follows from (*) and the second one from the fact that A has a k-module structure).
- ii) Let $\varphi: k \to Z(A)$ be a ring homomorphism. Define

$$\lambda a := \varphi(\lambda)a$$
,

for all $\lambda \in k$. This defines a k-algebra structure on A ((*) holds since $\operatorname{Im}(\varphi) \subseteq Z(A)$).

iii) Let A, B be k-algebras and $f: A \to B$ a homomorphism of rings. Then f is a homomorphism of k-algebras if and only if the following diagram commutes:

Example 1.1.5. i) Let V be a k-module. Then $\operatorname{End}_k(V)$ has a ring structure given by

$$\operatorname{End}_k(V) \times \operatorname{End}_k(V) \to \operatorname{End}_k(V), \ (\phi, \psi) \mapsto \varphi \circ \psi.$$

Then $\operatorname{End}_k(V)$ is both a ring and a k-module, and becomes a k-algebra via

$$\varphi: k \to \operatorname{End}_k(V), \ \lambda \mapsto \lambda \operatorname{id}.$$

Note that $\operatorname{Im} \varphi \subseteq Z(A)$. If k is a field, then $Z(\operatorname{End}_k(V)) = \{\lambda \operatorname{id} \mid \lambda \in k\}$.

ii) Take $V = k^n$ (free module of rank n). Then $\operatorname{End}_k(V) \cong \operatorname{M}_n(k)$. Define

$$T_u := \{ \varphi \in \mathcal{M}_n(k) \mid \varphi \text{ is upper triangular} \},$$

i.e. T_u presevers flags in k^n . Then T_u is a **subalgebra** of $M_n(k)$, i.e. is both a subring and a k-submodule of the original algebra.

- iii) Let G be a group. Define the **group algebra** k[G] of G as follows:
 - As k-module, is defined as the free module on G,

$$k[G] := k^{(G)} = \{ \sum_{g \in G} \lambda_g g \mid \lambda_g \in k, \ \lambda_g \neq 0 \text{ for only finitely many } g \in G \}.$$

• Multiplication: Let $a:=\sum \lambda_g g, \ b=\sum \mu_g g$ and define:

$$ab := \sum_{g \in G, h \in G} \lambda_g \mu_h(gh) = \sum_{j \in G} \left(\sum_{gh=j} \lambda_g \mu_h \right) j.$$

This multiplication is associative, k-bilinear, distributive and $1|_{k[G]} = e$. In addition, (*) is satisfied.

1.2 Quivers - Basics

Definition 1.2.1. A quiver is a "directed graph". Formally, a quiver is a quadruple (Q_0, Q_1, s, t) consiting of sets Q_0 (vertices) and Q_1 (arrows) and maps $s: Q_1 \to Q_0, t: Q_1 \to Q_0$. For $\alpha \in Q_1$, we call $s(\alpha)$ the source of α and $t(\alpha)$ the target of α :

$$s(\alpha) \xrightarrow{\alpha} t(\alpha).$$

Example 1.2.2. i) $Q = (\{1\}, \emptyset, ...)$ is visualized as: 1

ii)
$$Q = (\{1\}, \{\alpha\}, ...)$$
 is visualized as $\stackrel{\frown}{1}$

iii)
$$Q = (\{1,2\}, \{\alpha, \beta\}, s(\alpha) = s(\beta) = 1, t(\alpha) = t(\beta) = 2)$$
 is visualized as $1 \xrightarrow{\alpha \atop \beta} 2$

Definition 1.2.3. Let Q be a quiver such that both Q_0 and Q_1 are finite.

i) Let $\ell \in \mathbb{Z}_{\geq 1}$. A **path** of length ℓ is a sequence $\alpha_{\ell}...,\alpha_1$ of arrows, such that $t(\alpha_i) = s(\alpha_{i+1})$ for $1 \leq i \leq \ell - 1$,

$$\circ \xrightarrow{\alpha_1} \circ \xrightarrow{\alpha_2} \circ \dots \xrightarrow{\alpha_\ell} \circ$$

Define Q_{ℓ} to be the set of all paths of length ℓ .

Let $p: \alpha_{\ell}...\alpha_1$ be a path. Define $s(p) := s(\alpha_1)$ and $t(p) := s(\alpha_{\ell})$.

Formally define Q_0 to be the set of all paths of length zero. Denote by ε_i for $i \in Q_0$ the constant path at i. ε_i is called a **lazy path**. We set $s(\varepsilon_i) = t(\varepsilon_i) := i$.

- ii) Let $p = \alpha_{\ell}...\alpha_{i}$ and $q = \beta_{m}...\beta_{1}$ be paths of length ℓ and m respectively, with $\ell, m \geq 1$. If t(p) = s(q), then set $q \circ p := \beta_{m}....\beta_{1}\alpha_{\ell}...\alpha_{1}$. This is a path of length $\ell + m$. For p a path of length ≥ 0 and ε_{i} a lazy path:
 - if t(p) = i, set $\varepsilon_i \circ p := p$,
 - if s(p) = i, set $p \circ \varepsilon_i := p$.

In all others cases, the composition is not defined.

iii) Define

$$Q_* := \bigcup_{\ell > 0} Q_\ell,$$

the set of all paths. Define the **path-algebra** kQ:

- As a k-module, $kQ := k^{(Q_*)}$.
- Multiplication: Let $a = \sum \lambda_p p$, $b = \sum \mu_p p$. Define

$$ab := \sum_{p,q \in Q_*} \lambda_p \mu_q(p \cdot q),$$

where

$$p \cdot q := \begin{cases} p \circ q, & \text{if it is defined, i.e } t(q) = s(p) \\ 0, & \text{else} \end{cases}.$$

The multiplication is associative (due to the associativity of the composition of paths) and k-bilinear by definition. In addition, distributivity and (*) are fulfilled.

• The identity is given by $\sum \varepsilon_i$.

Example 1.2.4. i) Q = 1, then kQ = k.

ii)
$$Q = 1 \leftarrow$$
 , then $Q_* = \{\alpha^n \mid n \geq 0\}$ and $kQ = k[t]$.

iii)
$$Q = 1 \xrightarrow{\alpha \atop \beta} 2$$
. Then $Q_* = \{\varepsilon_1, \varepsilon_2, \alpha^n, \beta^n \mid n \geq 0\}$ and

$$kQ = k\varepsilon_1 \oplus k\varepsilon_2 \oplus k\alpha \oplus k\beta.$$

A multiplication table is given by

	ε_1	ε_2	α	β
ε_1	ε_1	0	0	0
$arepsilon_2$	0	ε_2	α	β
α	α	0	0	0
β	β	0	0	0

Lemma 1.2.5. Let Q be a finite quiver, k a field. Then the following are equivalent:

- i) Q contains no cycles.
- $ii) \dim_k kQ < \infty.$

Lemma 1.2.6. Let k be a field, A a k-algebra and $n := \dim(A) < \infty$. Then there exists an injective homomorphism of k-algebras $\varphi : A \to M_n(k)$.

Proof. By choosing a basis of A, we get an isomorphism $\operatorname{End}_k(A) \cong \operatorname{M}_n(k)$. So it suffices to find an injective homomorphism of k-algebras $\varphi : A \to \operatorname{End}_k(A)$. Consider

$$\varphi: A \to \operatorname{End}_k(A), \ \varphi(a): A \to A, b \mapsto ab.$$

- $\varphi(a)$ is k-linear for all a by the distributivity in A and the condition (*).
- φ is k-linear by the distributivity in A and the condition (*).
- Let $a, a' \in A$. Then

$$\varphi(aa')(b) = (aa')(b) = a(a'b) = (\varphi(a) \circ \varphi(a'))(b).$$

Hence φ is indeed a homomorphism of k-algebras.

To show that φ is injective, let $a \in \ker \varphi$, hence ab = 0 for all $b \in A$. But in particular, 0 = a1 = a.

End of Lecture 1

Definition 1.2.7. Let A be a k-algebra. Then the **opposite algebra** A^{op} is A (as a k-module), and the multiplication is defined as

$$a \cdot_{A^{\mathrm{op}}} b = b \cdot_A b.$$

Example 1.2.8. Let Q be a quiver, and define $Q^{\text{op}} := (Q_0, Q_1, s^{\text{op}}, t^{\text{op}})$, where $s^{\text{op}}(\alpha) := t(\alpha)$ and $t^{\text{op}}(\alpha) := s(\alpha)$. Then $kQ^{\text{op}} = k(Q^{\text{op}})$

1.3 Modules - Basics

Definition 1.3.1. Let A be a k-algebra. A **left** A-module M is a k-module M together with a map $A \times M \to M$, $(a, x) \mapsto ax$, such that:

$$a(x+y) = ax + ay (L1)$$

$$(a+b)x = ax + bx (L2)$$

$$a(bx) = (ab)x \tag{L3}$$

$$1_A x = x \tag{L4}$$

$$(\lambda a)x = \lambda(ax) = a(\lambda x),\tag{L5}$$

for all $a, b \in A$, $x, y \in M$ and $\lambda \in k$. If A is a left A-module, we denote this as ${}_AM$. A **right** A-module is defined analogous, where (L3) becomes (xa)b = x(ab). If A is a right A-module, we denote this by A_M .

Remark 1.3.2. A right A-module is the same as a left A^{op} -module.

Definition 1.3.3. Let A be a k-algebra, and M, N left A-modules. A **homomorphism of left** A-modules $f: M \to N$ is a k-linear map such that

$$f(ax) = af(x)$$

for all $a \in A$ and $x \in M$.

Define the set of all left A-algebra homomorphisms as

 $hom_A(M, N) := hom_A({}_AM, {}_AM) := \{f : M \to N \mid f \text{ is a homomorphism of left } A\text{-modules}\}.$

A homomorphism of left A-modules is an **isomorphism** if it is a bijective homomorphism of left A-modules.

Homomorphism of right A-modules are defined analogous.

Remark 1.3.4. Let M, N be left A-modules. Then

i) $hom_A(M, N)$ has a k-module structure given by

$$\lambda f: M \to N, \ x \mapsto \lambda f(x) = f(\lambda x).$$

This is well defined, as k lies in the center of A.

- ii) In general, $hom_A(M, N)$ has neither a left nor a right A-module structure.
- iii) f is an isomorphism if and only if there is a homomorphism of left A-modules $g: N \to M$ such that

$$g \circ f = \mathrm{id}_M$$
 and $f \circ g = \mathrm{id}_N$.

iv) Let $f:M\to M'$ and $g:N\to N'$ be homomorphisms of left A-modules. Then we obtain k-linear maps

$$f^*: \hom_A(M', N) \to \hom_A(M, N), \ h \mapsto h \circ f$$

 $g_*: \hom_A(M, N) \to \hom_A(M, N'), \ h \mapsto g \circ h.$

Remark 1.3.5. Let A be a k-algebra and M, N left A-modules.

- i) A subset $M' \subseteq M$ is called a **submodule** if
- (SM1) $0 \in M'$
- (SM2) $x, x' \in M' \implies x + x' \in M'$
- (SM3) $a \in A, x \in M' \implies ax \in M'$.

In particular, submodules of A-modules are submodules of the underlying k-module, as follows using (L4)

ii) Let M be a submodule. Then the **quotient** has a left A-module structure in the obvious way. The projection

$$\pi:M\to M'$$

is a homomorphism of left A-modules.

- iii) A **left ideal** is left A-submodule of ${}_AA$. Similar, a **right ideal** is right A-submodule of A_A . For a left ideal $I \subseteq A$, the quotient A/I is a left A-module, but in general not an algebra.
- iv) A two-sided ideal $I \subset A$ is both a left- and a right-ideal of A. Then A/I has an algebra structure, by setting

$$(x+I)(y+I) := (xy) + I.$$

In general, this is only well-defined if I is a two-sided ideal of A.

v) Let $f: M \to N$ be a homomorphism of left A-modules. Then we obtain left A-modules:

$$\ker f$$
, $\operatorname{Im} f$, $\operatorname{coker} f := N/\operatorname{Im} f$, $\operatorname{coim} f := M/\ker f$.

In particular, f factors uniquely as

$$M \xrightarrow{f} \operatorname{coim} f \xrightarrow{\exists !} \operatorname{Im} f \xrightarrow{} N . \tag{F}$$

vi) Let $\{M_i \subset M \mid i \in I\}$ be a family of left A-submodules, for some index set I. Then

$$\bigcap_{i \in I} M_i$$
 and $\sum_{i \in I} M_i$

are left A-modules.

vii) Let $x \in M$. Define

$$Ax := \{ax \mid a \in A\},\$$

which is a left A-submodule. Similar, for $x \in M_A$, define $xA := \{xa \mid a \in A\}$, which is a right A-submodule. For a subset $E \subset M$,

$$\sum_{x \in E} Ax = \bigcap_{\substack{E \subseteq M' \subseteq M \\ M' \text{ submodule}}} M'.$$

M is called **finitely generated**, if there are $x_1, ..., x_n \in M$, such that

$$M = \sum_{i=1}^{n} Ax_i.$$

viii) Let $\{M_i \mid i \in I\}$ be a family of left A-modules. Then

$$\prod_{i \in I} M_i := \{ (x_i)_{i \in I} \mid x_i \in M_i \}$$

is called the **product**, and

$$\bigoplus_{i \in I} M_i := \{(x_i)_{i \in I} \mid x_i \in M_i, \ x_i \neq 0 \text{ for only finitely many } i\}$$

is called the **coproduct** .They are both left A-modules. The **projection**

$$\pi_j: \prod_{i\in I} M_i \to M_j, \ (x_i)_{i\in I} \mapsto x_j$$

and the inclusion

$$\iota_j: \bigoplus_{i\in I} x_i \mapsto (\delta_{ij}x_j)_{i\in I}$$

are morphism of left A-modules.

ix) A left A-module M is finitely generated if and only if there is a surjective homomorphism of left A-modules

$$A^n := \bigoplus_{i=1}^n A \longrightarrow M$$

for some $n \geq 1$. A is called **finitely presented**, if there is an exact sequence of left A-modules

$$A^m \longrightarrow A^n \longrightarrow M \longrightarrow 0$$

for some $m, n \geq 1$.

Proposition 1.3.6. Let

$$M_1 \xrightarrow{f_1} M_2 \xrightarrow{f_2} M_3 \longrightarrow 0$$
 (*)

and

$$0 \longrightarrow N_1 \xrightarrow{g_1} N_2 \xrightarrow{g_2} N_3 \tag{**}$$

be sequences of left A-modules.

- i) The following are equivalent:
 - a) (*) is exact.
 - b) For all left A-modules N, the sequence

$$0 \longrightarrow \hom_A(M_3, N) \xrightarrow{f_2^*} \hom_A(M_2, N) \xrightarrow{f_1^*} \hom_A(M, N)$$

is exact.

- ii) The following are equivalent:
 - a) (**) is exact.
 - b) For all left A-modules M, the sequence

$$0 \longrightarrow \hom_A(M, N_1) \xrightarrow{g_{1,*}} \hom_A(M, N_2) \xrightarrow{g_{2,*}} \hom_A(M, N_3)$$

is exact.

Proof. We will only prove $a) \Longrightarrow b$ of ii).

Lemma 1.3.7. Let K, M, N be left A-modules, and $\zeta : K \to M$, $\varphi : M \to N$ be homomorphisms of left A-modules, such that $\varphi \circ \zeta = 0$. Then there is a unique homomorphism $\overline{\zeta}$, such that

commutes.

• $g_{1,*}$ injective: Let $h \in \ker(g_{1,*})$. Then

$$g_1 \circ h: M \xrightarrow{h} N_1 \xrightarrow{g_1} N_2$$

and since g_1 is injective, it follows h = 0.

- Im $g_{1,*} \subseteq \ker g_{2,*}$: Since ** is exact, it follows that $g_2 \circ g_1 = 0$. For $h \in \operatorname{Im} g_{1,*}$ there exists an $h' : M \to N_1$ such that $h = g_1 \circ h'$, and hence $g_2 \circ h = g_2 \circ g_1 \circ h' = 0$.
- $\ker g_{2,*} \subseteq \operatorname{Im} g_{1,*}$: As (**) is exact, $\ker g_2 = \operatorname{Im} g_1$ holds. Let $h: M \to N_2 \in \ker g_{2,*}$, i.e. $g_2 \circ h = 0$:

$$0 \longrightarrow N_1 \stackrel{g_1}{\longrightarrow} N_2 \stackrel{g_2}{\longrightarrow} N_3$$

By lemma 1.3.7, h factors uniquely through ker $g_2 = \text{Im } g_1$:

But since g_1 is injective, (F) implies that there is a uniquely determined isomorphism $\tilde{g}_1: N_1 \longrightarrow \operatorname{Im} g_1$.

Putting everything together, we obtain the following commutative diagram:

Setting $h' := \tilde{g}_1^{-1} \circ h'$, we obtain

$$g_1 \circ h' = \iota \circ \tilde{g}_1 \circ \tilde{g}_1^{-1} \circ \tilde{h} = \iota \circ \tilde{h} = h.$$

Proposition 1.3.8. Let A be a k-algebra. To give a left A-module structur is the same as to give a k-module structure V together with a homomorphism $\varphi: A \to \operatorname{End}_k(V)$ of k-algebras. To give a right A-module structure is the same as giving a k-module structure V together with a homomorphism $\varphi: A \to \operatorname{End}_k(V)^{\operatorname{op}}$.

1.4 Representation of quivers

Let k be a field and Q be a quiver.

Definition 1.4.1. A representation X of Q over k consists of

- a k-vector space X_i for all $i \in Q_0$,
- \bullet a k-linear map

$$X_{\alpha}: X_{s(\alpha)} \to X_{t(\alpha)}$$

for each $\alpha \in Q_1$

Example 1.4.2 (Continue example 1.2.4). i) Let $Q = \cdot$. Then a representation of Q is simply a k-vector space.

ii) Let Q = 1. Then a representation of Q is a k-vector space V together with an endomorphism $\varphi \in \operatorname{End}_k(V)$:

$$Q = V \stackrel{f}{\longleftarrow}$$

iii) Let $Q = 1 \xrightarrow{\alpha \atop \beta} 2$, the **Kronecker Quiver**. Then a representation of Q is a pair of vector spaces V, W and two linear maps $f, g \in \text{hom}_K(V, W)$:

$$Q = V \xrightarrow{f \atop q} W$$

Definition 1.4.3. Take X, Y to be two representations of Q over k. A **homomorphism of representations** $f: X \to Y$ is a tupel $(f_i)_{i \in Q_0}$ of linear maps $f_i: X_i \to Y_i$, such that for all $\alpha \in Q_1$ the diagram

$$\begin{array}{ccc} X_{s(\alpha)} & \xrightarrow{f_{s(\alpha)}} & Y_{s(\alpha)} \\ X_{\alpha} \downarrow & & \downarrow Y_{\alpha} \\ X_{t(\alpha)} & \xrightarrow{f_{t(\alpha)}} & Y_{t(\alpha)} \end{array}$$

commutes.

Example 1.4.4 (Continue example 1.4.2). i) Homomorphisms of representations are k-linear maps $X \to Y$.

ii) Homomorphisms of representations (V, φ) and (W, ψ) are k-linear maps $f: V \to W$, such that

$$\begin{array}{ccc} V & \stackrel{f}{\longrightarrow} & W \\ \varphi \Big\downarrow & & \Big\downarrow \psi \\ V & \stackrel{f}{\longrightarrow} & W \end{array}$$

commutes

iii) Homomorphisms of representations (V_1, V_2, A, B) and (W_1, W_2, C, D) are pairs (f_1, f_2) of linear maps $f_1: V_1 \to W_1$ and $f_2: V_2 \to W_2$, such that $A \circ f_1 = f_2 \circ A$ and $B \circ f_1 = f_2 \circ B$.

Definition 1.4.5. An **isomorphism of representations** $f: X \to Y$ is a homomorphism of representations, such that there exists $g: Y \to X$ homomorphism of representations satisfying

$$g \circ f = \mathrm{id}_X$$
 and $f \circ g = \mathrm{id}_y$.

An isomorphism of representations is a homomorphism of representations such that each map f_i is bijective.

End of Lecture 2

Let Q be a quiver over a field k.

Remark 1.4.6. i) Let X be a representation of Q over k. Associate a left kQ-module M = F(X) as follows:

• As k-vector space, let

$$M := \bigoplus_{i \in Q_0} X_i.$$

• Define the action of kQ on M by an action of paths. Let p be a path of length ≥ 1 . Define

$$X_p: X_{s(p)} \to X_{t(p)}$$
 given by $X_p = X_{\alpha_\ell} \circ \ldots \circ X_{\alpha_i}$,

with $X_p \in \text{hom}_k(X_{s(p)}, X_{t(p)})$. Use this to define a k-linear map $\tilde{X}_p : M \to M$ as composition:

$$\tilde{X}_p: M = \bigoplus_{i \in Q_0} X_i \xrightarrow{\pi_{s(p)}} X_{s(p)} \xrightarrow{X_p} X_{t(p)} \xrightarrow{\iota_{t(p)}} \bigoplus_{i \in Q_0} X_i$$

If the length of p = 0, then p is a lazy part at some $i \in Q_0$, and we set

$$X_{\varepsilon_i} := \mathrm{id}_{X_i},$$

and $\tilde{X}_{\varepsilon_i}$ like \tilde{X}_p .

Now these k-linear endomorphisms define a kQ-module structure on M, given by:

$$kQ \times M \to M, \quad \left(a := \sum_{p \in Q_*} \lambda_p \cdot p, (x_i)_i =: x \right) \mapsto a.x := \sum_{p \in Q_*} \lambda_p \cdot \tilde{X}_p(x)$$
$$= \sum_{p \in Q_*} \lambda_p \cdot (\iota_{t(p)} X_p(x_{s(p)})),$$

where we denote an element in M by a sequence $(x_i)_i$ with $x_i \in X_i$.

- We check that this actually defines a kQ-module structure:
 - (L3): Assume that $a, b \in kQ$. By the bilinearity of the multiplication, we can assume that a = p and b = q are both paths in Q_* . Then

$$a.(b.x) = \tilde{X}_p \left(\tilde{X}_q(x) \right)$$
$$= \iota_{t(p)} X_p \underbrace{\pi_{s(p)} \iota_{t(q)}}_{X_q(x_{s(q)})} X_q(x_{s(q)}),$$

where

$$\pi_{s(p)}\iota_{t(q)} = \begin{cases} id_{X_q}, & \text{if } t(q) = s(p) \\ 0, & \text{otherwise} \end{cases}.$$

This gives

$$a.(b.x) = \begin{cases} \iota_{t(p)} X_p X_q(x_{s(q)}), & \text{if } t(q) = s(p) \\ 0 & \text{otherwise} \end{cases}.$$

Additionally,

$$(a.b).x = \begin{cases} \tilde{X}_{p \circ q} & \text{if } f(q) = s(p), \\ 0 & \text{otherwise} \end{cases}.$$

But in the case f(q) = s(p),

$$\tilde{X}_{p \circ q}(x) = \iota_{t(p)} \circ X_p X_q(x_{s(q)}).$$

The construction F is factorial, i.e. for $f: X \to Y$ a homomorphism of representations, F induces a homomorphism of kQ-algebras

$$Ff: F(X) \to F(Y)$$
 by $(Ff)((x_i)_i) := (f_i(x_i))_i$.

- ii) Let M be a left kQ-module. Define a representation X := G(M) as follows
 - As k-vector spaces, set

$$X_i := \varepsilon_i M$$
.

• For $\alpha \in Q_*$, set

$$X_{\alpha}: X_{s(\alpha)} \to X_{t(\alpha)}, \ \varepsilon_{s(\alpha)}x \mapsto \alpha \varepsilon_{s(\alpha)}x = \alpha x = \varepsilon_{t(\alpha)}\alpha x \in X_{t(\alpha)},$$

as $\varepsilon_{t(\alpha)}\alpha = \alpha\varepsilon_{s(\alpha)}$.

So $X := ((X_i)_{i \in Q_0}, (X_\alpha)_{\alpha \in Q_*})$ is a representation of Q.

• This construction is also functorial: take $g: M \to N$ a homomorphism of left kQ-modules. Define $G(g): X \to Y$, with X:=G(M) and Y:=G(N). Set

$$(Gg)_i := X_i \to Y_i, \ \varepsilon_i x \mapsto g(\varepsilon_i x) = \varepsilon_i g(x) \text{ with } X_i := \varepsilon_i M \text{ and } Y_i := \varepsilon_i N.$$

This is indeed a homomorphism of representations: Let $\alpha \in Q_1$ be arbitrary, and consider

$$X_{s(\alpha)} \xrightarrow{(Gg)_{s(\alpha)}} Y_{s(\alpha)}$$

$$X_{\alpha} \downarrow \qquad \qquad \downarrow Y_{\alpha} \cdot$$

$$X_{t(\alpha)} \xrightarrow{(Gg)_{t(\alpha)}} Y_{t(\alpha)}$$

Then

$$y_{\alpha}(Gg)_{\varepsilon_{s(\alpha)}}x = Y_{\alpha}(g(\varepsilon_{s(\alpha)}x)) = \alpha g(\varepsilon_{s(\alpha)}x)$$

and

$$(Gg)_{\varepsilon_{t(\alpha)}}(X_{\alpha}(\varepsilon_{s(\alpha)}x)) = g(\alpha(\varepsilon_{s(\alpha)}x)) = \alpha g(\varepsilon_{s(\alpha)}x),$$

hence the diagram commutes.

Theorem 1.4.7. i) Let M be a left kQ-module. Then $FG(M) \cong M$ as left kQ-modules.

ii) Let X be a representation of Q over k. Then $GF(X) \cong X$ as representations of Q.

Proof. i) Denote X := G(M). Then

$$F(X) = \bigoplus_{i \in Q_0} X_i = \bigoplus_{i \in Q_0} \varepsilon_i M$$

as a k-vector space. Observe

• The identity in kQ is given by

$$\mathrm{id}_{kQ} = \sum \varepsilon_i.$$

Hence, for all x in X:

$$x = \mathrm{id}_{kQ} x = \left(\sum \varepsilon_i\right) x = \sum \left(\varepsilon_i x_i\right) \in \sum \varepsilon_i M.$$

• For all $i \neq j$, $\varepsilon_i \varepsilon_j = 0$ holds. So for

$$x \in X_i = \varepsilon_i M \bigcap \sum_{j \neq i} \varepsilon_j M_j \implies x = \sum_{j \neq i} \varepsilon_j x_j \text{ for some } x_j \in M.$$

But as $x \in \varepsilon_i M$, $\varepsilon_i x = x$. So

$$x = \varepsilon_i x = \varepsilon_i \left(\sum_{j \neq i} \varepsilon_j x_j \right) = \sum_{j \neq i} \varepsilon_i \varepsilon_j x_j = 0.$$

These observations show that

$$\varphi: F(X) = \bigoplus_{i \in Q_0} \varepsilon_i M \longrightarrow M , \ (\varepsilon_i x_i)_{i \in Q_0} \mapsto \sum \varepsilon_i x_i$$

is an isomorphism of k-vector spaces.

Show that φ is isomorphism of left kQ-modules:

Without loss generaly, assume that a = p is a path in Q (regarded as element of kQ), and let $x \in M$. Then

$$\varphi(a.x) = \varphi\left(\iota_{t(p)}X_p(x_{s(p)})\right) = \varphi\left(\iota_{t(p)}(px_{s(p)})\right)$$
$$= px_{s(p)},$$

and

$$a.\varphi(x) = a.\sum x_i = a.\sum \epsilon_i x_i = px_{s(p)}.$$

ii) Let M := F(X) be the left kQ-module associated with X. Then

$$G(M)_i = \varepsilon_i M = \varepsilon_i \bigoplus_{j \in Q_0} X_j = X_i,$$

and

$$(G(M))_{\alpha}(x_{s(\alpha)}) = \alpha.x_{s(\alpha)} = X_{\alpha}(x_{s(\alpha)}).$$

Remark 1.4.8. Let M be a left kQ-module, with Q finite and k a field.

i) $\dim_k M = \sum_{i \in Q_0} \dim_k X_i$ where X = G(M), where G is the functor from remark 1.4.6

- ii) $\dim_K kQ < \infty \iff Q$ contains no **oriented cycles** (a path p of length ≥ 1 , such that s(p) = t(p))
- iii) If Q has no oriented cycle, then the following are equivalent:
 - (a) M is a finitely generated kQ-module.
 - (b) $\dim_k X_i < \infty$.

Proof. (a) \Longrightarrow (b):(b) implies in particular, that M is finitely generated as a k-module. But as $k \subset kQ$, (a) follows immediately.

(b) \implies (a): Set A := kQ, and let $x_1, ..., x_n \in kQ$ generate M as a left kQ-module. Then there is a kQ-linear surjection

given by $e_i \mapsto x_i$, where the $(e_i)_{1 \le i \le n}$ are a basis of A^n . As this is in particular k-linear, we have that

$$\dim_k M \le \dim_k(A^n) = n \dim_k A < \infty,$$

as Q contains no cycle.

- iv) Under G, the notion of a "left submodule" corresponds to **subrepresentations** of Q, i.e. a tupel of subspaces $Y_i \subset X_i$ for all $i \in Q_0$ such that $X_{\alpha}(Y_{s(\alpha)}) \subset Y_{t(\alpha)}$ for all $\alpha \in Q_1$.
- v) Under G, a direct sum of modules corresponds to **direct sum of representations**: Given X, Y two representations of Q, define a new representation $X \oplus Y$ where the vector spaces are given by

$$(X \oplus Y)_i := (X \oplus Y)_i$$

and the k-linear maps

$$(X \oplus Y)_{\alpha} : X_{s(\alpha)} \oplus Y_{s(\alpha)} \longrightarrow X_{t(\alpha)} \oplus Y_{t(\alpha)}$$

given by

$$\begin{pmatrix} X_{\alpha} & & \\ & Y_{\alpha} \end{pmatrix}$$
.

1.5 Bimodules and tensor products

Definition 1.5.1. Let A, B be k-algebras. A A-B-bimodule M is a set M, together with maps:

$$A \times M \longrightarrow M, (a, x) \longmapsto ax$$

$$M \times B \longrightarrow M, (x, b) \longmapsto xb,$$

such that

i) M is a left A-module

- ii) M is a right B-module
- iii) for all $a \in A, b \in B$ and $x \in M$, the relation

$$(ax)b = a(xb)$$

holds.

We denote a A-B-bimodule by

$$_{A}M_{B}.$$

Lemma 1.5.2. Let A, B, C be k-algebras, and consider ${}_AM_B$ and ${}_AN_C$, a A-B-bimodule and a A-C-bimodule respectively. Then $\hom_A(M, N)$ becomes a B-C-bimodule via

- $B \times \text{hom}_A(M, B) \longrightarrow \text{hom}_A(M, N),$ $(b, f) \longmapsto bf : M \to N, x \mapsto f(xb)$
- $\hom_A(M, N) \times C \longrightarrow \hom_A(M, N), \qquad (f, c) \longmapsto fc : M \to N, x \mapsto f(cx)$

Proof. • well-defined:

$$bf(ax) = f((ax)b) = f(a(xb)) = af(xb) = a(bf)(x)$$

• $hom_A(M, N)$ is a left B-module: Show e.g. (L3):

$$((bb')f)(x) = (x(bb')) = f((xb)b')$$
$$= b'(f(xb))$$
$$= b((b'f)(x))$$

• compatibility:

$$((af)b)(x) = f((ax)b) = f(a(xb)) = (a(fb))(x).$$

End of Lecture 3

2018-10-17,15:53:13

A.1 Sheet 1

Solution A.1.1. i) φ_m is k-linear:

• $\varphi(a+b)x = (a+b)x \stackrel{(L1)}{=} ax + bx = \varphi(a)x + \varphi(b)x$

•
$$\varphi(\lambda a) = (\lambda a)x \stackrel{(L5)}{=} \lambda(ax) = \lambda \varphi(a)x.$$

 φ is ring homomorphism:

• $\varphi(ab) = (ab)x \stackrel{(L3)}{=} a(bx) = \varphi(a)\varphi(b)x$

•
$$\varphi(1_A) \stackrel{(L4)}{=} (1_A)x = x$$
.

As these relations hold for all x, the assertion follows.

- ii) V_{φ} is already a k-module.
 - (L1) $a(x+y) = (\varphi(a))(x+y) \stackrel{\varphi \in \operatorname{End}_k(V)}{=} (\varphi(a))(x) + (\varphi(a))(y) = ax + ay$
 - (L2) $(a+b)x = (\varphi(a+b))x$ $\stackrel{\varphi \text{ homo of }k-\text{algebras}}{=} (\varphi(a)+\varphi(b))x = \varphi(a)x+\varphi(b)x = ax+bx$
 - (L3) $(ab)x = (\varphi(ab))x \stackrel{\varphi \text{ homo of } k-\text{algebras}}{=} (\varphi(a)\varphi(b))x = a(bx)$
 - (L4) $1_a x = (\varphi(1_a)) x \stackrel{\varphi \text{ homo of } k-\text{algebras}}{=} \operatorname{id} x = x$
 - (L5) $(\lambda a)(x) = ((\varphi(\lambda a))x \stackrel{\varphi \text{ homo of } k-\text{algebras}}{=} (\lambda \varphi(a))x = \lambda(ax)$ and $a(\lambda x) = (\varphi(a)(\lambda x)) \stackrel{\varphi(a) \text{ endo of } k-\text{module}}{=} \lambda(\varphi(a))x = \lambda(ax),$

for all $a, b \in A, x, y \in V$ and $\lambda \in k$.

iii) We regard V and W as A-modules in the sense of part ii). Assume that $\psi(a) \circ f = f \circ \varphi(a)$ (*) for all $a \in A$. Then

$$f(ax) = f((\varphi(a))x) \stackrel{*}{=} (\psi(a))(f(x)) = af(x),$$

for all $x \in X$. Hence f is an A-module homomorphism.

Assume that f is a a-module homomorphism, then

$$(\psi(a))(f(x)) = a(f(x)) = f(ax) = f((\varphi(a))x)$$

for all $x \in V$. Hence $\psi(a) \circ f - f \circ \varphi(a) = 0$ and so (*) holds.

Solution A.1.2. i) Assume that I is a non-zero ideal of A. Let $a = (a)_{ij} \neq 0$ be an arbitrary matrix in I. Then there exist elementary matrixes, such that $a_{11} \neq 0$. Define

$$b \in \mathcal{M}_n(k), (b)_{ij} := \begin{cases} 1 & \text{if } i = j = 1 \\ 0 & \text{else} \end{cases}$$

and E_n as the identity matrix. Then we get

$$\left(\frac{1}{a_{11}}E_n\right)\cdot b\cdot a\cdot b=b.$$

By repeatetly using permutation matrixes, it is possible to write any matrix as sum of products of a with permutation matrix on the left- and right. Hence a generates all of A, and I = A.

ii) As k is a field, $M_n(k) \cong \operatorname{End}_k(k^n)$ holds for a choosen basis of k^n , and $\dim \operatorname{End}_k(k^n) = n^2$. Hence $\dim M_n(k) = n^2$ as a k-vector space. In addition, $\dim \operatorname{End}_k(M) = m^2$, where $m := \dim M$ is the dimension of M as a k-vector space. Consider now the map

$$\varphi: \mathcal{M}_n(k) \to \operatorname{End}_k(M), \ a \mapsto : a: (x \mapsto ax),$$

which maps a matrix a to the linear map induced by the $M_n(K)$ -algebra structure on M. This is a homomorphism of k-algebras, and in particular, the kernel of φ is a two-sided ideal of $M_n(k)$, as

$$a0x = 0ax = 0$$

holds for any $a \in M_n(k)$. Now i) implies that either $\ker \varphi = 0$ or $\ker \varphi = M_n(k)$. But since $\varphi(E_n) = \mathrm{id}_M$, where E_n is the $n \times n$ identity matrix, the latter one is not possible. Hence $\ker \varphi = 0$, and φ is an injective map of k-vector spaces. But this implies $\dim A \leq \dim \mathrm{End}_K(V)$, so $m \geq n$.

Proposition A.1.1. Let k be a field, k[X] the polynomial ring and $p \in k[X]$ a polynomial with deg p = n. Then

is a n-dimensional k vector space, and a basis is given by

$$\{1, x, ..., x^{n-1}\}.$$

The following propositions are taken from [Alu09]. Let R be any commutative ring.

Proposition A.1.2. Let $I_1, ..., I_k$ be ideals of R such that $I_i + I_j = (1)$ for all $i \neq j$. Then the natural homomorphism

$$\varphi: R \to R/I_1 \times \ldots \times R/I_k$$

is surjective and induces an isomorphism

$$\frac{R}{I_1 \dots I_k} \to R/I_1 \times \dots \times R/I_k$$

Corollary A.1.3 (Chinese remainder theorem). Let R be a PID and $a_1, ..., a_k \in R$ be elements such that $gcd(a_i, a_j) = 1$ for all $i \neq j$. Let $a = a_1 ... a_k$. Then the function

$$\varphi: R/(a) \to R/(a_1) \times \ldots \times R/(a_k).$$

Proposition A.1.4 (Yoneda Lemma). Let C be a category, X an object of C and consider the contravariant functor

$$h_X := \hom_{\mathsf{C}}(-, X).$$

Then for every contravariant functor $\mathcal{F}: \mathsf{C} \to \mathsf{Set}$, there is a bijection between the set of natural transformations $h_x \leadsto \mathcal{F}$ and (X).

Definition A.1.5 ([ASS06]). The (Jacobson) radical rad A of a K-algebra A is the intersection of all maximal right ideals in A. It is the same as the intersection of all left-sided maximal right ideals in A. Furthermore, rad A is a two-sided ideal.

Definition A.1.6. Let $f,g:X\to Y$ be morphisms in a category C . Then a morphism $e:E\to X$ is called **equalizer** of f and g if $f\circ e=g\circ e$ and for all other morphisms $o:O\to X$, such that $f\circ o=g\circ o$, there is a unique morphis $O\to E$, such that the following diagram commutes:

$$E \xrightarrow{e} X \longrightarrow X$$

$$O \qquad .$$

Proposition A.1.7. Equalizers exists in abelian categories.

BIBLIOGRAPHY

- [ASS06] I. Assem, D. Simson, and A. Skowronski. Elements of the Representation Theory of Associative Algebras: Volume 1: Techniques of Representation Theory. Elements of the Representation Theory of Associative Algebras. Cambridge University Press, 2006.
- [Alu09] Paolo Aluffi. Algebra: chapter 0. Vol. 104. American Mathematical Soc., 2009.

INDEX

algebra, 1 opposite, 4 arrows, 2 bimodule, 14	source, 2 sub -representation, 14 subalgebra, 2 submodule of A-module, 6
center, 1 coproduct of A-modules, 7 cycle:oriented, 14	target, 2 vertices, 2
direct sum of representations, 14	
finitely generated, 7 finitely presented, 7	
group algebra, 2	
homomorphism of A -algebras, 5 of k -algebras, 1 of representations, 10	
ideal, 6	
Lemma Yoneda, 19	
$\begin{array}{c} \text{module} \\ \text{over an algebra, 5} \end{array}$	
opposite algebra, 4	
path, 3 lazy, 3 path-algebra, 3 product of A -modules, 7	
$\begin{array}{c} \text{quiver, 2} \\ \text{representation, 9} \\ \text{quotient} \\ \text{of an A-module, 6} \end{array}$	
representation direct sum of, 14 quiver, 9 sub-, 14	