

Especialização Desenvolvimento de Aplicações Web e Móveis Escaláveis

Turma 2021-2022

Big Data com Python

André Morais

andre.morais@luizalabs.com

Especialização Desenvolvimento de Aplicações Web e Móveis Escaláveis

Módulo: BIG DATA COM PYTHON - Professor: André Morais

Turma 2021-2022

http://hadoop.apache.org/

Apache Hadoop é um framework Open Source, construído em Java, para armazenamento e processamento paralelo e distribuído e altamente confiável de grandes volumes de dados através de clusters em hardware de baixo custo e Cloud Computing.

Um breve histórico

- 2003-2004: Google lança Map Reduce e GFS
- 2005: MR e DFS implementados por <u>Doug Cutting</u> (Nutch)
- 2006: Hadoop se torna um projeto Apache <u>https://www.apache.org/</u>
- 2011: Apache disponibiliza Hadoop 1.x (HDFS + MR)
- 2013: Apache lança Hadoop 2.x (HDFS + MR + YARN)
- Atualmente está na versão 3.0.3

Por que o Apache Hadoop está se tornando padrão em projetos de Big Data?

"Um das principais características do Apache Hadoop é a confiabilidade e sua capacidade de se recuperar de falhas automaticamente"

Pesquisas mostram o Crescimento do Hadoop

Principais distribuições do Hadoop

Soluções em cloud computing

Players x Implementadores:

·IBM → InfoSphere → Cloudera

Oracle → Oracle Big Data → Cloudera

•EMC → GreenPlun → MapR

Teradata → Hortonworks

Microsoft → HDInsight → Hortonworks

Empresas que utilizam Hadoop

O projeto Apache hadoop é composto de 3 módulos principais:

- Hadoop Distributed File System (HDFS)
- Hadoop Yarn
- Hadoop MapReduce

http://hadoop.apache.org

<u>Hadoop Common</u> - Conjunto de utilitários que contém a base do hadoop. É usado por toda aplicação. Bibliotecas como para paralelização de dados e manipulação de arquivos.

<u>Hadoop HDFS</u> - Sistema de arquivos distribuídos nativo do hadoop. Permite armazenamento e transmissão de grande volume de dados em máquinas de baixo custo.

<u>Hadoop MapReduce</u> - Modelo de programação especializado em processamento de conjuntos de dados distribuídos em cluster. Funções paralelas Map e Reduce.

<u>Hadoop Yarn</u> – Gerenciador de jobs do Hadoop. O Yarn faz a gestão do MapReduce através dos processos: Resource manager e o Application Master.

Componentes do Hadoop

Master - Nó Mestre

- NameNode
- SecundaryNameNode
- JobTracker

Slaves - Nós Escravos

- DataNode
- TaskTracker

Arquitetura HDFS e Componentes

Namenode

Gerencia a estrutura do file system, e dos metadados do cluster, assim como todos os arquivos e diretórios.

Slave

Datanode

Armazena os blocos de dados e responde à aplicação cliente ou Namenode que solicitado. Reporta frequentemente para o Namenode seu status e lista de blocos armazenados.

SecundaryNamenode

É o Nó auxiliar do HDFS. Realiza os checkpoints (pontos de montagem) em intervalos predefinidos e ajuda no nível de desempenho do Namenode

Arquitetura MapReduce e Componentes

Hadoop Arquitetura Visão Geral

Hadoop Processamento MapReduce

Map

Trabalha em um conjunto de dados de entrada dos blocos produzindo uma lista de chaves e valores

Shuffle

O processamento intermediário é feito com persistência em disco no Hadoop

Reduce

Trabalha em um conjunto de entrada de dados dos blocos, produzindo uma lista de chaves e valores.

Hadoop Ecossistema

Zookeeper - Criado pelo Yahoo em 2007 para coordenar aplicações distribuídas de alto desempenho. Possui recursos como Configuração de nodes do cluster, sincronização de processos distribuídos, e grupos de serviço.

Hive - Desenvolvido pela equipe de funcionários do facebook. Tornou-se código aberto em 2008. Possui uma infraestrutura que permite utilizar o HSQL ou HiveQL similar ao SQL e conceito de bases relacionais visando análise complexas em dados não relacionais.

Hbase - Banco NoSql criado pela Power7 em 2007. Posteriormente incorporado a Apache. Considerado uma versão de código aberto do Big Table criado pela Google. Distribuído e escalável para armazenamento estruturado para grandes tabelas.

Pig - Linguagem de alto nível orientada a fluxo de dados e de execução de computação paralela. Modo Client side, não altera a configuração do Hadoop. Usa a linguagem Pig Latim e é compilada para utilizar as funcionalidades da programação Map Reduce.

Sqoop - Ferramenta de transferência de dados. Importar dados para HDFS, Hive ou Hbase. E exportar para outras bases de dados externas. Paraleliza transferência de dados otimizando desempenho, fazendo melhor uso de recursos e redes. Usa a linguagem SQL para as bases relacionais e importação no Hadoop. Possui conectores para MySql, PostgreSQL, Oracle, MS SQL Server, IBM DB2.

Mahout - Primeira versão em 2009. Utilizar o MapReduce aplicando algoritmos complexos de machine learning para grandes volumes de dados.

Flume - Criado em 2011 pela Cloudera. Sistema distribuído, confiável e disponível para coletar, agregar e mover grandes quantidades de dados de várias fontes diferentes. Uso para coleta de logs, mas também para transportar grandes volumes de dados de outras fontes como dados de redes sociais, e-mails, dados de streaming e outros.

Oozie - É um sistema de fluxo de trabalho e coordenação que gerencia jobs do hadoop, é integrado à pilha do hadoop. Suporte ao MapReduce, Pig, Hive ou Sqoop. Pode ser usado para agendar jobs específicos para o sistema, como escritos em Java, Python e Shell Scripts.

Especialização Desenvolvimento de Aplicações Web e Móveis Escaláveis

Módulo: BIG DATA COM PYTHON - Professor: André Morais

Turma 2019-2020

É um framework para processamento de Big Data construído com foco em velocidade, facilidade de uso e análises sofisticadas.

https://spark.apache.org/docs/latest/api/python/index.html

Spark Algumas características

- Foi desenvolvido na UC Berkeley em 2009. A mesma equipe fundou a Databricks em 2013: https://databricks.com/spark/about
- Desenvolvido em Scala. Porém fornece APIs de alto nível em Java,
 Scala, Python, SQL e na linguagem R.
- Possui um ecossistema de bibliotecas que permitem trabalhar de forma integrada em uma mesma aplicação, usando linguagem SQL, streaming e análises complexas para lidar com uma variedade de situações de processamento de dados.
- Realiza processamento em memória, suprindo a deficiência do Hadoop MapReduce, processando 100x mais rápido em memória e 10x mais rápido em disco.
- Não possui armazenamento próprio e trabalha muito bem com Hadoop e outras tecnologias.

Spark Componentes da Arquitetura

Armazenamento

Utiliza sistema de arquivos distribuídos como HDFS, e outros em Cloud como GCS e S3. Funciona com outras fontes de dados como HBase, Cassandra, etc.

Gerenciamento (recursos)

Sua arquitetura pode ser implantada em servidor autônomo ou em uma estrutura de computação distribuída como o Mesos ou o YARN (Hadoop)

Spark Ecossistema

Existem três interfaces principais do Apache Spark: Os RDDs - Resilient Distributed Dataset, os DataFrames e os Datasets.

Spark Interfaces RDD - Resilient Distributed Datasets RDDs - Functional Programming - Type-Safe

- RDD é a primeira abstração, a estrutura original e fundamental do Apache Spark. São a API de "nível mais baixo".
- É a infraestrutura que permite que o Spark seja executado com rapidez e forneça a linhagem de dados.
- Como uma tabela em um banco de dados, ele pode conter qualquer tipo de dados.
- O armazenamento de dados em RDD é feito em diferentes partições.
- São tolerantes e resilientes a falhas.
- São imutáveis.
- O RDD suporta dois tipos de operações: Transformação e Ação.

Spark INTERFACESDataFrames

DataFrames

- Relacional
- Catalyst query optimization
- Tungsten direct/packed RAM
- JIT code generation
- Sorting/shuffling without deserializing

- DataFrame é um superconjunto da funcionalidade RDD. Os
 Dataframes estão disponíveis nas linguagens Java, Python e Scala.
- Um DataFrame possui metadados adicionais devido ao seu formato tabular, o que permite ao Spark executar certas otimizações na consulta finalizada.
- São semelhantes ao conceito utilizado nas bibliotecas pandas no Python e na linguagem R.
- Em geral é aconselhado a utilização do DataFrame, especialmente com as otimizações de desempenho incorporadas no mesmo.

Spark INTERFACESDatasets

Pops

Functional
Programming
Type-safe

Dataframes

Relational
Catalyst query optimization
Tungsten direct/packed RAM
JIT code generation
Sorting/suffling without deserializing

- DataSet é uma combinação do Dataframe e RDD.
- Fornece a interface que está disponível em RDDs e ao mesmo tempo a conveniência do Dataframe.
- A API Dataset está disponível apenas nas linguagens Java e Scala.

Spark Arquitetura e funcionalidade Core

- O Driver Program é a aplicação principal que gerencia a criação e quem executará o processamento;
- 2. O **Cluster Manager** é um componente opcional que só é necessário se o Spark for executado de forma distribuída, responsável por administrar os workers;
- 3. Os **Workers** ou **Executores**, que são as máquinas que realmente executarão as tarefas que são enviadas pelo Driver Program.

Bibliotecas do Ecossistema Spark

O Spark SQL utiliza SQL na realização de consultas e processamento sobre os dados no Spark. Utiliza a interface de DataFrame para manipulação de dados, possibilitando a construção de ETLs e análises complexas sobre grandes volumes.

Bibliotecas do Ecossistema Spark

O Spark Streaming possibilita o processamento de fluxos em tempo real. Se baseia na arquitetura de processamento em micro-batch. O intervalo é configurável na aplicação. Utiliza o DStream, que é basicamente uma série de RDDs, para processar os dados em tempo real.

Bibliotecas do Ecossistema Spark

A MLlib é a biblioteca de aprendizado de máquina, com diversos algoritmos para as mais diversas atividades, incluindo classificação, regressão, clustering, filtragem colaborativa, redução de dimensionalidade, bem como primitivas de otimização subjacentes.

Bibliotecas do Ecossistema Spark

O GraphX realiza o processamento sobre grafos. Ele estende as funcionalidades do RDD em alto nível, e inclui uma coleção crescente de algoritmos e construtores de grafos para simplificar as tarefas de análises.

Spark Integração com outras Tecnologias

O Spark substitui o Hadoop?

Como vimos, o Apache Spark pode ser utilizado independentemente do Hadoop, mas se complementam através do Yarn e HDFS. Além disso, o ecossistema Hadoop é muito rico, sendo viável em muitas arquiteturas de Big Data. O Spark roda em kubernetes a partir da versão 2.3, e com as arquiteturas em nuvem, viabiliza uma "carreira solo" para o Spark.

PySpark é uma API Python para Spark. Foi construído em cima da API Java, e é apenas uma fina camada de software Python que repassa as chamadas de funções para o core Java. Foi lançado a fim de apoiar a colaboração do Apache Spark e Python.

https://spark.apache.org/docs/latest/ https://spark.apache.org/docs/latest/api/python/index.html#

Apache Parquet é um formato de armazenamento colunar disponível para qualquer projeto no ecossistema Hadoop e Spark. Independe da escolha da estrutura de processamento de dados, modelo de dados ou linguagem de programação. É o formato padrão para o Spark.

*.parquet

https://parquet.apache.org/

Trabalhando com PySpark