Week 5

Differentiation

5.1 Vector Calculus Operations

4/27:

- Announcements.
 - No class this Friday, next Monday.
 - Midterm next Friday.
 - Up through Chapter 2.
 - The exam will likely be computationally heavy.
 - Compute d, pullbacks, interior products, Lie derivatives, etc.
 - Emphasis on Chapter 2 as opposed to Chapter 1 even though it all builds on itself.
 - He'll probably cook up a few problems too.
 - There is a recorded lecture for us.
 - On Chapter 3 content.
 - We'll cover Chapter 3 in kind of an impressionistic way as it is.
 - There are also some notes on the physics stuff.
- Vector calculus operations.
 - In one dimension, you have functions, and you take derivatives.
 - The derivative operation does essentially map $\Omega^0 \to \Omega^1$ or $C^\infty(\mathbb{R}) \to C^\infty(\mathbb{R})$.
 - In two dimensions, ...
 - \blacksquare d² = 0 reflects the fact that gradient vector fields are curl-free.
 - If you want to understand the 2D-curl business...
 - \blacksquare curl $(v): \mathbb{R}^2 \to \mathbb{R}$ is intuitively about balls spinning around in a vector field.
 - There's also a nice formula to compute it.
 - And then there's a connection with $d: \Omega^1 \to \Omega^2$.
 - In 3D, you can take top-dimensional forms (which are just functions) and bottom-dimensional forms (which are by definition functions) and you can work out an identification between them.
 - Note that curl: $\mathfrak{X}(\mathbb{R}^2) \to C^{\infty}(\mathbb{R}^2)$, where $\mathfrak{X}(\mathbb{R}^2)$ is the space of vector fields.
- The musical operator \sharp identifies forms with vector fields, i.e., $\sharp:\Omega^1\to\mathfrak{X}(\mathbb{R}^2)$.
- Properties of exterior derivatives $d: \Omega^k(U) \to \Omega^{k+1}(U)$.
 - 1. $d(\omega_1 + \omega_2) = d\omega_1 + d\omega_2$ and $d(\lambda \omega) = \lambda d\omega$.
 - 2. Product rule $d(\omega_1 \wedge \omega_2) = d\omega_1 \wedge \omega_2 + (-1)^k \omega_1 \wedge d\omega_2$.

– Special case $k = \ell = 0$. Then

$$d(fq) = q df + f dq$$

which is the usual product rule for gradient.

- Claim:

$$d\left(\sum_{I} f_{I} dx_{I}\right) = \sum_{I} df_{I} \wedge dx_{I}$$

■ Let $\omega_1 \in \Omega^k$ and $\omega_2 \in \Omega^\ell$ be defined by

$$\omega_1 = \sum_I f_I \, \mathrm{d}x_I \qquad \qquad \omega_2 = \sum_I g_J \, \mathrm{d}x_J$$

where we're summing over all I such that |I| = k and all J such that $|J| = \ell$. Then

$$\omega_1 \wedge \omega_2 = \sum_{I,J} f_I g_J \, \mathrm{d} x_I \wedge \mathrm{d} x_J \, \mathrm{d} (\omega_1 \wedge \omega_2) \qquad = \sum_{I,J} \mathrm{d} (f_I g_J) \wedge \mathrm{d} x_I \wedge \mathrm{d} x_J$$

■ Note that

$$d(f_I g_J) = g_J df_I + f_I dg_J$$

and

$$\mathrm{d}g_J \wedge \mathrm{d}x_I = (-1)^k \, \mathrm{d}x_I \wedge \mathrm{d}g_J$$

■ These identities allow us to take the previous equation to

$$d(\omega_1 \wedge \omega_2) = \sum_{I,J} g_J \, df_I \wedge dx_I \wedge dx_J + (-1)^k f_I \, dx_I \wedge dg_J \wedge dx_J$$
$$= \sum_{I,J} (df_I \wedge dx_I) \wedge (g_J \, dx_J) + \sum_{I,J} (f_I \, dx_I) \wedge (ddg_J \wedge dx_J)$$
$$= d\omega_1 \wedge \omega_2 + (-1)^k \omega_1 \, d\omega_2$$

3.
$$d^2 = 0$$
.

- Let $\omega = \sum_{I} f_{I} dx_{I}$.
- Then

$$d^{2}(\omega) = d(d\omega)$$

$$= d\left(\sum_{I} df_{I} \wedge dx_{I}\right)$$

$$= \sum_{I} d(df_{I} \wedge dx_{I}) \qquad \text{Property 1}$$

$$= \sum_{I} d(df_{I}) \wedge dx_{I} \qquad \text{Property 2}$$

so it suffices to just show that $d^2f = 0$ for all $f \in \Omega^0$.

– We know that $df = \sum_{i=1}^{n} \partial f / \partial x_i dx_i$. Thus,

$$d(df) = \sum_{i} d\left(\frac{\partial f}{\partial x_{i}}\right) \wedge dx_{i}$$
$$= \sum_{i,j} \frac{\partial^{2} f}{\partial x_{j} \partial x_{i}} dx_{j} \wedge dx_{i}$$
$$= 0$$

- The last equality holds because of commuting partial derivatives for smooth f, and the fact that changing order introduces a negative sign by some property.
- In fact, if we fix $d^0: \Omega^0(U) \to \Omega^1(U)$ to be the "gradient," then these properties characterize the function d on its domain and codomain. In particular, d is the unique function on its domain and codomain that satisfies these properties.
 - We define it by

$$d\left(\sum_{I} f_{I} \, \mathrm{d}x_{I}\right) = \sum_{I} \mathrm{d}f_{I} \wedge \mathrm{d}x_{I}$$

- The above properties characterize it axiomatically.
- We can prove this uniqueness theorem.
- Closed (form): A form $\omega \in \Omega^k(U)$ such that $d\omega = 0$.
- Exact (form): A form $\omega \in \Omega^k(U)$ such that $\omega = d\eta$ for some $\eta \in \Omega^{k-1}(U)$.
- $d^2 = 0$ implies closed and exact implies closed.
- Poincaré lemma: Locally closed forms are exact.

5.2 Chapter 2: Differential Forms

From Guillemin and Haine (2018).

5/5:

- As we formed the k^{th} exterior powers $\Lambda^k(V^*)$, we can form the k^{th} exterior powers $\Lambda^k(T_n^*\mathbb{R}^n)$.
 - Since $\Lambda^1(T_p^*\mathbb{R}^n) = T_p^*\mathbb{R}^n$, we can think of a one-form as a function which takes its value at p in the space $\Lambda^1(T_p^*\mathbb{R}^n)$.
- **k-form** (on U): A function which assigns to each point $p \in U$ an element $\omega_p \in \Lambda^k(T_p^*\mathbb{R}^n)$, where $U \subset \mathbb{R}^n$ is open.
- \bullet We can use the wedge product to construct k-forms.
 - Let $\omega_1, \ldots, \omega_k$ be one-forms. Then $\omega_1 \wedge \cdots \wedge \omega_k$ is the k-form whose value at p is the wedge product

$$(\omega_1 \wedge \cdots \wedge \omega_k)_p = (\omega_1)_p \wedge \cdots \wedge (\omega_k)_p$$

– Let f_1, \ldots, f_k be real-valued functions in $C^{\infty}(U)$. Suppose $\omega_i = \mathrm{d} f_i$. Then we may obtain the k-form whose value at p is

$$(\mathrm{d}f_1 \wedge \cdots \wedge \mathrm{d}f_k)_p = (\mathrm{d}f_1)_p \wedge \cdots \wedge (\mathrm{d}f_k)_p$$

• Since $(dx_1)_p, \ldots, (dx_n)_p$ are a basis of $T_p^* \mathbb{R}^n$, the wedge products

$$(\mathrm{d}x_I)_p = (\mathrm{d}x_{i_1})_p \wedge \cdots \wedge (\mathrm{d}x_{i_k})_p$$

where $I = (i_1, \ldots, i_k)$ is a strictly increasing multi-index of n of length k form a basis of $\Lambda^k(T_n^*\mathbb{R}^n)$.

• Thus, every $\omega_p \in \Lambda^k(T_p^*\mathbb{R}^n)$ has a unique decomposition

$$\omega_p = \sum_I c_I (\mathrm{d}x_I)_p$$

where every $c_I \in \mathbb{R}$.

• Similarly, every k-form ω on U has a unique decomposition

$$\omega = \sum_{I} f_{I} \, \mathrm{d}x_{I}$$

where every $f_I: U \to \mathbb{R}$.

- Class C^r (k-form): A k-form ω for which every f_I in its decomposition is in $C^r(U)$.
- From here on out, we assume unless otherwise stated that all k-forms we consider are of class C^{∞} .
- $\Omega^k(U)$: The set of k-forms of class C^{∞} on U.
- $f\omega$: The k-form defined as follows, where $f\in C^{\infty}(U)$ and $\omega\in\Omega^k(U)$. Given by

$$p \mapsto f(p)\omega_p$$

• Sum (of ω_1, ω_2): The k-form defined as follows, where $\omega_1, \omega_2 \in \Omega^k(U)$. Denoted by $\omega_1 + \omega_2$. Given by

$$p \mapsto (\omega_1)_p + (\omega_2)_p$$

• Wedge product (of ω_1, ω_2): The $(k_1 + k_2)$ -form defined as follows, where $\omega_1 \in \Omega^{k_1}(U)$ and $\omega_2 \in \Omega^{k_2}(U)$. Denoted by $\omega_1 \wedge \omega_2$. Given by

$$p \mapsto (\omega_1)_p \wedge (\omega_2)_p$$

- **Zero-form**: A function which assigns to each $p \in U$ an element of $\Lambda^0(T_p^*\mathbb{R}^n) = \mathbb{R}$. Also known as real-valued function.
- It follows from the definition of zero-forms that

$$\Omega^0(U) = C^{\infty}(U)$$

- Exterior differentiation operation: The operator from $\Omega^0(U) \to \Omega^1(U)$ which associates to a function $f \in C^{\infty}(U)$ the 1-form df. Denoted by d.
- We now seek to define a generalized version of the exterior differentiation operation; in particular, we would like to define an analogous function $d: \Omega^k(U) \to \Omega^{k+1}(U)$.
- Desired properties of exterior differentiation.
 - 1. If $\omega_1, \omega_2 \in \Omega^k(U)$, then

$$d(\omega_1 + \omega_2) = d\omega_1 + d\omega_2$$

2. If $\omega_1 \in \Omega^k(U)$ and $\omega_2 \in \Omega^\ell(U)$, then

$$d(\omega_1 \wedge \omega_2) = d\omega_1 \wedge \omega_2 + (-1)^k \omega_1 \wedge d\omega_2$$

3. If $\omega \in \Omega^k(U)$, then

$$d(d\omega) = 0$$

- Consequences of these properties.
- Lemma 2.4.5: Let $U \subset \mathbb{R}^n$ open. If $f_1, \ldots, f_k \in C^{\infty}(U)$, then

$$d(df_1 \wedge \cdots \wedge df_k) = 0$$

Proof. We induct on k. For the base case k=1, we have that $d(df_1)=0$ by Property 3. Now suppose inductively that we have proven the claim for k-1 functions; we now seek to prove it for k functions. Let $\mu = df_1 \wedge \cdots \wedge df_{k-1}$. Then by the induction hypothesis, $d\mu = 0$. Therefore,

$$d(df_1 \wedge \cdots \wedge df_k) = d(\mu \wedge df_k)$$

$$= d\mu \wedge df_k + (-1)^{k-1}\mu \wedge d(df_k)$$
Property 2
$$= 0$$

as desired. \Box

• A special case of Lemma 2.4.5 is that

$$d(\mathrm{d}x_I) = 0$$

• Now since every k-form $\omega \in \Omega^k(U)$ has a unique decomposition in terms of the $\mathrm{d}x_I$, Property 2 and the above equation reveal that

$$\mathrm{d}\omega = \sum_{I} \mathrm{d}f_{I} \wedge \mathrm{d}x_{I}$$

- Therefore, if there exists an operator d satisfying Properties 1-3, then d necessarily has the above form. All that's left is to show that the operator defined above has these properties.
- Proposition 2.4.10: Let $U \subset \mathbb{R}^n$ be open. There is a unique operator $d: \Omega^*(U) \to \Omega^{*+1}(U)$ satisfying Properties 1-3.

$$Proof.$$
 ...

- Closed (k-form): A k-form $\omega \in \Omega^k(U)$ for which $d\omega = 0$.
- Exact (k-form): A k-form $\omega \in \Omega^k(U)$ such that $\omega = d\mu$ for some $\mu \in \Omega^{k-1}(U)$.
- Property 3 implies that every exact k-form is closed.
 - The converse is not true even for 1-forms (see Exercise 2.1.iii).
 - "It is a very interesting (and hard) question to determine if an open set U has the following property: For k > 0, every closed k-form is exact" (Guillemin & Haine, 2018, p. 49).
 - Note that we do not consider zero-forms since there are no (-1)-forms for which to define exactness.
- If $f \in C^{\infty}(U)$ and df = 0, then f is constant on connected components of U (see Exercise 2.2.iii).
- Lemma 2.4.16 (Poincaré lemma): If ω is a closed form on U of degree k > 0, then for every point $p \in U$, there exists a neighborhood of p on which ω is exact.

Proof. See Exercises 2.4.v and 2.4.vi. \Box