ALGEBRA Chapter 3

Productos Notables II

HELICO MOTIVATING

MOTIVATING | STRATEGY

¿Puedes multiplicar mentalmente el siguiente polinomio y dar la respuesta en menos de 10 segundos?

$$(a+b)(a^2-ab+b^2)$$

Rpta. $a^3 + b^3$

HELICO THEORY CHAPTHER 03

¿QUÉ SON PRODUCTOS NOTABLES?

Son los resultados de ciertas multiplicaciones indicadas, que se obtienen en forma directa, sin efectuar la multiplicación.

1

IDENTIDAD DE STEVEN

$$(x + a)(x + b) = x^2 + (a + b)x + a.b$$

Ejemplo:

$$(x+5)(x+7) = x^2 + (5+7)x + 5.7$$

 $(x+5)(x+7) = x^2 + 12x + 35$

Ejemplo:

$$(x-6)(x+9) = x^2 + (9-6)x - 6.9$$

$$(x-6)(x+9) = x^2 + 3x - 54$$

SUMA Y DIFERENCIA DE CUBOS

$$(a+b)(a^2-ab+b^2)=a^3+b^3$$

$$(a-b)(a^2+ab+b^2)=a^3-b^3$$

Ejemplo:

$$(x+2)(x^2-2x+4)=x^3+2^3=x^3+8$$

Ejemplo:

$$(y-3)(y^2+3y+9)=y^3-3^3=y^3-27$$

IDENTIDADES CONDICIONALES

$$Si a + b + c = 0$$

$$a^2 + b^2 + c^2 = -2(ab + bc + ca)$$

$$a^3 + b^3 + c^3 = 3abc$$

CHAPTHER 03

1. Efectúe:

$$P = \sqrt[4]{2(3+1)(3^2+1)(3^4+1)(3^8+1)+1}$$

Resolución

Aplicando la Diferencia de Cuadrados

$$P = \sqrt[4]{(3-1)(3+1)(3^2+1)(3^4+1)(3^8+1)+1}$$

$$P = \sqrt[4]{(3^2-1)(3^2+1)(3^4+1)(3^8+1)+1}$$

$$P = \sqrt[4]{(3^4 - 1)(3^4 + 1)(3^8 + 1) + 1}$$

$$P = \sqrt[4]{(3^8 - 1)(3^8 + 1) + 1}$$

$$P = \sqrt[4]{3^{16} - 1 + 1}$$

Recordando Diferencia de Cuadrados

$$(a-b)(a+b) = a^2 - b^2$$

$$\Rightarrow P = \sqrt[4]{3^{16}}$$

$$P = 3^4 = 81$$

2.
$$Si: x^2 + 9x = -10,$$

 $reduzca$
 $M = (x + 5)(x + 2)(x + 4)(x + 7)$

Resolución

Desarrollando la expresión de M

$$M = (x+5)(x+2)(x+4)(x+7)$$

$$M = (x^2 + 9x + 20)(x^2 + 9x + 14)$$

$$M = (-10 + 20)(-10 + 14)$$

$$M = (10)(4)$$

$$M = 40$$

Recordar la Identidad de Steven

$$(x + a)(x + b) = x^2 + (a + b)x + ab$$

3. Dé el valor de:

$$E = (x+1)(x-1)(x^2-x+1)(x^2+x+1)+1$$
si: $x = \sqrt[6]{3}$

Resolución

Agrupando convenientemente en

$$E = (x+1)(x-1)(x^2-x+1)(x^2+x+1)+1$$

$$E = (x^3 + 1)(x^3 - 1) + 1$$

$$E = x^6$$

$$E = x^6$$

Recordar la Suma y Diferencia de cubos

$$(a+b)(a^2-ab+b^2)=a^3+b^3$$

$$(a-b)(a^2+ab+b^2) = a^3-b^3$$

Reemplazando $x = \sqrt[6]{3}$ en E:

$$E=\sqrt[6]{3}$$

$$E=3$$

4. *Sean*:

$$M = (\sqrt[3]{13} + 1)(\sqrt[3]{169} - \sqrt[3]{13} + 1)$$

$$N = (\sqrt[3]{7} - 1)(\sqrt[3]{49} + \sqrt[3]{7} + 1)$$

$$Efectúe K = \sqrt{M.N - 3}$$

Resolución

Aplicando suma y diferencia de cubos en M y N respectivamente

$$M = \sqrt[3]{13}^3 + 1^3 = 14$$

$$N = \sqrt[3]{7} - 1^3 = 6$$

Reemplazando M y N en K

$$K = \sqrt{14.6 - 3}$$

$$K = \sqrt{81}$$

$$K = 9$$

5.
$$Si: x + y + z = 0$$
 \land $xyz = 8$

Reduzca:

$$P = xy(x + y)^4 + yz(y + z)^4 + xz(x + z)^4$$

Resolución

Del dato x + y + z = 0, despejando

$$\Rightarrow x + y = -z$$

$$\Rightarrow x + z = -y$$

$$\Rightarrow$$
 $y + z = -x$

Reemplazando en P

$$\mathbf{P} = xy(-z)^4 + yz(-x)^4 + xz(-y)^4$$

$$\mathbf{P} = xyz^4 + yzx^4 + xzy^4$$

Recordar las Identidades Condicionales

Si:
$$a + b + c = 0$$

$$a^3 + b^3 + c^3 = 3abc$$

$$a^2 + b^2 + c^2 = -2(ab + bc + ac)$$

Transformando la expresión de P en

$$\mathbf{P} = xyz(z^3 + x^3 + y^3)$$

Aplicando Identidades Condicionales

$$\mathbf{P} = xyz(3xyz)$$

$$P = 8.(3.8)$$

$$P = 192$$

6. La entrada al parque de las leyendas por cada persona cuesta

$$S/.(x+3).Si$$
 en total asistieron (x^2-3x+9) personas y recaudó

S/. 1027, ¿ Cuántas personas fueron al Parque de las Leyendas?

Resolución

Datos:

Precio de Entrada: (x + 3) soles

Nº de asistentes: (x^2-3x+9)

Recaudación total en soles:

$$(x+3)(x^2-3x+9) = 1027$$

Por suma de cubos:

$$x^3 + 27 = 1027$$

 $x^3 = 1000 \rightarrow x = 10$

El Nº de Personas que fueron al parque:

$$x^{2} - 3x + 9 = (10)^{2} - 3(10) + 9$$
$$= 100 - 30 + 9$$
$$= 79$$

Rpta: Fueron 79 personas al parque

7. $Si: a = 2\sqrt{2} - 1$, $b = 1 - \sqrt{2}$, $c = -\sqrt{2}$ reduzca:

$$T = \left(\frac{a^3 + b^3 + c^3}{abc}\right) \left(\frac{a^2 + b^2 + c^2}{ab + ac + bc}\right)$$

Resolución

Sumando a, b y c

$$a+b+c=0$$

Por Identidades Condicionales en T

$$T = \left(\frac{3abc}{abc}\right) \left(\frac{-2(ab + ac + bc)}{ab + ac + bc}\right)$$

$$T = (3)(-2)$$

$$T=-6$$

Recordar las Identidades Condicionales

Si:
$$a + b + c = 0$$

$$a^3 + b^3 + c^3 = 3abc$$

$$a^2 + b^2 + c^2 = -2(ab + bc + ac)$$

Rpta: **−6**

8. *Si* a + b + c = 0, *reduzca*:

$$Q = \frac{(a+b)^3 + (b+c)^3 + (a+c)^3 + 18abc}{5abc}$$

Resolución

Del dato a + b + c = 0 despejando

$$\Rightarrow a + b = -c$$

$$\Rightarrow a + c = -b$$

$$\Rightarrow b + c = -a$$

Reemplazando en Q

$$Q = \frac{(-c)^3 + (-a)^3 + (-b)^3 + 18abc}{5abc}$$

$$Q = \frac{-c^3 - a^3 - b^3 + 18abc}{5abc}$$

$$Q = \frac{-(c^3 + a^3 + b^3) + 18abc}{5abc}$$

Aplicando Identidades Condicionales

$$Q = \frac{-(3abc) + 18abc}{5abc} = \frac{15abc}{5abe} = 3$$