# Intelligenza Artificiale e Laboratorio

Discussione laboratorio Prolog e Clingo

Matteo Brunello (mat. 858867)

Lorenzo Caresio (mat. 836021)

5 Luglio 2023

Università degli Studi di Torino - Dipartimento di Informatica

## **Outline**

- Prolog
  - Knowledge Representation
  - Strategie informate
    - Euristiche
    - A\*
    - IDA\*
- Clingo

# **Prolog**

# **Knowledge Representation**

■ Dominio: Trains for Europe<sup>a</sup>

- 104 stazioni
- 166 collegamenti



ahttps://trainsforeurope.eu/

## Knowledge Representation (II)

station(city name, lat, long)

```
...
station(wien, 48.2083537, 16.3725042).
station(linz, 48.3059078, 14.286198).
station(wels, 48.1565472, 14.0243752).
station(salzburg, 47.7981346, 13.0464806).
station(innsbruck, 47.2654296, 11.3927685).
...
```



## Knowledge Representation (III)

```
connected(nightjet_466, innsbruck, salzburg, 192).
connected(nightjet_466, salzburg, wels, 101).
connected(nightjet_466, wels, linz, 27).
connected(nightjet_466, linz, wien, 212).
connected(nightjet_465, zurich, innsbruck, 501).
connected(nightjet_465, innsbruck, graz, 732).
connected(nightjet_40466, linz, wien, 212).
connected(nightjet_40466, wels, linz, 27).
connected(nightjet_40466, salzburg, wels, 101).
connected(nightjet_40466, salzburg, munchen, 145).
connected(nightjet_40466, villach, salzburg, 181).
```

https://signal.eu.org/osm

# Knowledge Representation (IV)

- Azioni:
  - get\_on(Line)
  - stay\_on(City)
  - get\_off(City)
- Rappresentazione dello stato:
  - agent(AgentState, Position)
  - Dove AgentState:
    - moving(Line)
    - stop

```
get_on(ic_notte_799),stay_on(torino),get_off(milano),
get_on(ic_notte_795),stay_on(milano),stay_on(bologna),
get_off(roma),get_on(ic_notte_799),stay_on(roma),
get_off(salerno),get_on(ic_notte_1963),stay_on(salerno),
get_off(syracuse) % Pianificazione da Torino a Siracusa
```

### **Euristiche**

Distanza euclidea:

$$\sqrt{\Delta_{\textit{Lat}}^2 + \Delta_{\textit{Lon}}^2}$$

- La distanza da gradi va portata in chilometri
- Distanza Haversine (emisenoverso):

$$2r \sin(\sqrt{\sin^2(\frac{Lat_2-Lat_1}{2})+\cos(Lat_1)\cdot\cos(Lat_2)\cdot\sin^2(\frac{Lon_2-Lon_1}{2})})$$

- rè il raggio del pianeta Terra in chilometri
- I valori in gradi vanno portati in radianti
- Computazionalmente simili

# Euristiche (II)

#### Accuratezza:

- euclidean\_distance(roma, budapest) = 960.250 Km
- haversine\_distance(roma, budapest) = 810.083 Km (WA: 810.578 Km)
- Distanza calcolata con A\*: 1413 Km

#### Ammissibilità:

- euclidean\_distance(koln, amsterdam) = 280.143 Km
- haversine\_distance(koln, amsterdam) = 214.008 Km
- Distanza effettiva: 258 Km

**A**\*

- node(State, Path, GValue, FValue)
- expand\_node
- Frontiera rappresentata come lista ordinata di nodi (nessun utilizzo di code di priorità)

## IDA\*

- Iterative deepening
- Nuovo cutoff: il minore tra tutti gli f(n) che superano il cutoff precedente
- Memory efficient
  - Memorizza solo il cutoff tra una iterazione e l'altra
  - Eccessivamente memory efficient
- Nuovo dataset: trainsforeurope\_limited
  - Una sola linea tra una città e l'altra
  - Da 166 a 104 collegamenti

## **Performance**

- Amsterdam-München:
  - A\*: ≈ 0.003 secondi
  - IDA\*: ≈ 0.020 secondi
- Amsterdam-Siracusa:
  - A\*: ≈ 0.048 secondi
  - IDA\*: N.D.
  - A\* (limited):  $\approx 0.014$  secondi
  - IDA\* (limited):  $\approx$  15 secondi
- Amsterdam-Roma:
  - A\* (limited):  $\approx 0.008$  secondi
  - IDA\* (limited):  $\approx$  0.400 secondi

# Clingo

## **Predicati**

- squadra/1
- citta/1
- stadio/2
- giornata/1
- match/2
- assegna/2

## **Domini**

- **Tiny**: 5 squadre, 10 giornate
- **Medium**: 15 squadre, 30 giornate
- **Real**: 20 squadre, 38 giornate

## Risultati ottenuti

|                          | Tiny         | Medium      | Real      |
|--------------------------|--------------|-------------|-----------|
| Nessun vincolo opzionale | $\sim$ 4ms   | $\sim$ 0.4s | $\sim$ 6s |
| Un vincolo opzionale     | $\sim$ 6ms   | $\sim$ 4s   | ~30s      |
| Due vincoli opzionali    | $\sim$ 110ms | ∼4.2s       | N.D.      |