# Расчетное задание 1

Идентификация сообщений, передаваемых по зашумленному каналу связи.

## Дано

По каналу связи передаются буквы  $[x_1;x_2;...;x_n]$  в двоичном коде. Последовательность переданных букв образует сообщение. Канал симметричный, вероятность искажения каждого отдельного символа (бита) равна q. В результате однократной передачи сообщения  $X = [x^{(1)},x^{(2)}...,x^{(k)}]$  на приемной стороне принято сообщение  $Y_1 = [y_1^{(1)}y_1^{(2)}...y_1^{(k)}]$ . В результате повторной передачи того же слова на приемной стороне принято слово  $Y_2 = [y_2^{(1)}y_2^{(2)}...y_2^{(k)}]$ . В результате последней (m-й) передачи того же слова на приемной стороне принято слово  $Y_m = [y_m^{(1)}y_m^{(2)}...y_m^{(k)}]$ .

## Варианты

Передаваемые буквы (алфавит) и их код приведен в табл. 1 приложения. Для каждого студента есть свой вариант в виде текстового файла, названного по фамилии и имени студента. В файле задается число букв в сообщении, разрядность кода (количество бит, используемых при передаче одной буквы), шум (вероятность искажения q), число посылок m и набор из m посылок (принятых сообщений  $Y^{(i)}$ ).

### Задание

## Часть 1. Последовательная передача одинаковых сообщений

### 1.1. Определение переданного сообщения

- вычислите априорное распределение вероятностей исходных букв алфавита p(xi), рассмотрите два случая (все дальнейшие расчеты в п. 1.1 и 1.2 необходимо будет проделать для этих двух вариантов):
  - о все символы равновероятны;
  - о вероятности букв задаются исходя из известной информации о частоте букв в русском алфавите (таблица 2);
- вычислите апостериорное распределение вероятностей после 1-й, 2-й и m-й передач для каждой s буквы сообщения  $P(x_i/y_1^{(s)})$ ,  $P(x_i/y_1^{(s)}y_2^{(s)})$ ,  $P(x_i/y_1^{(s)}y_2^{(s)})$ , ...,  $P(x_i/y_1^{(s)}y_2^{(s)}...,y_m^{(s)})$ ; при расчете используются формулы (3), (4) и (6); следует учитывать, что для повторных посылок априорные вероятности будут совпадать с апостериорными для предыдущей посылки (см. формулу (6)).
- постройте график изменения апостериорного распределения вероятностей на примере любой 1-ой передаваемой буквы сообщения (п передач => п графиков друг под другом, на графике по оси X номер символа, по оси Y вероятность)
- по максимуму апостериорной вероятности определите наиболее вероятные буквы и составьте вариант исходного переданного сообщения для 1-й, 2-й и m-й посылок;
- проанализируйте, как повторные передачи сказались на принятии решения.

## 1.2. Расчет энтропии и количества информации

- Выберите в посылаемом сообщении произвольную букву (под номером s), далее все вычисления будут относиться к этой букве;
- Определите апостериорные вероятности, рассматривая каждую передачу независимо от другой; схема вычислений следующая  $P(x_i) \to P(y_j/x_i) \to P(y_j) \to P(x_i/y_j)$ ; при расчете используйте формулы (3), (4) и (5).
- Определите условные энтропии  $H(X/y_j)$  на сообщения  $y_j$  по формуле (2), среднее количество информации  $I(X,y_j)$  об X, содержащееся в  $y_j$  по формуле (8).
- Определите среднюю условную энтропию H(X/Y) по формуле (7) и среднюю взаимную информацию I(X,Y) по формуле (9).
- Постройте графики изменения условной энтропии  $H(X/y_j)$  и количества информации  $I(X,y_j)$  от номера посылки.

# 1.3. Сравните результаты п. 1.1 и 1.2 при различных заданиях изначальных априорных вероятностей.

## Часть 2 Передача сообщения путем многократного дублирования

Рассмотрите m передач сообщений как передачу одного большого сообщения, в котором каждый символ многократно (m-кратно) дублируется

На входе 
$$X_{new} = [x_{new}^{(1)}; x_{new}^{(2)}; ..., x_{new}^{(k)}] = [x_{new}^{(1)}; x_{new}^{(1)}; ..., x_{new}^{(1)};$$

На выходе 
$$Y_{new} = [y_{new}^{(1)}; y_{new}^{(2)}; ...; y_{new}^{(k)}] = [y_1^{(1)}y_2^{(1)}...y_m^{(1)}y_1^{(2)}y_2^{(2)}...y_m^{(2)}...y_1^{(k)}y_2^{(k)}...y_m^{(k)}]$$
.

При этом новый алфавит по сути — m-кратное дублирование старого алфавита:  $[x_{new1};x_{new2};...;x_{newn}] = [x_1x_1...x_1;x_2x_2...x_2;...;x_nx_n...x_n]$ 

### 2.1. Определение переданного сообщения

- вычислите априорное распределение вероятностей исходных букв алфавита p(xi) рассмотрите два случая (по аналогии с п.1. все дальнейшие расчеты в п. 2.1 и 2.2 необходимо выполнить для этих двух вариантов):
  - о все символы равновероятны;
  - о вероятности букв задаются исходя из известной информации о частоте букв в русском алфавите (таблица 2);
- вычислите апостериорное распределение вероятностей для каждой 1 буквы сообщения  $P(x_{newi}/y_{new}^{(l)})$ ; при расчете используются формулы (3), (4);
- постройте график апостериорного распределения вероятностей на примере l-ой передаваемой буквы сообщения
- по максимуму апостериорной вероятности определите наиболее вероятные буквы и составьте вариант исходного переданного сообщения сравните его со случаем передачи сообщений последовательно

### 2.2. Расчет энтропии и количества информации

- Выберите в посылаемом сообщении ту же букву, что и использовалась в п. 1.2, далее все вычисления будут относиться к этой букве;
- Определите апостериорные вероятности; схема вычислений следующая  $P(x_{newi}) \to P(y_{new} / x_{newi}) \to P(y_{new}) \to P(x_{newi} / y_{new})$ ; при расчете используйте формулы (3), (4) и (5).
- Определите условную энтропию  $H(X_{new}/y_{new})$  на сообщения  $y_{new}$  по формуле (2), среднее количество информации  $I(X,y_{new})$  об X, содержащееся в  $y_{new}$  по формуле (8).
- Определите среднюю условную энтропию  $H(X_{new}/Y_{new})$  по формуле (7) и среднюю взаимную информацию  $I(X,Y_{new})$  по формуле (9).
- Сравните результаты (энтропия, количество информации) с п.1.2 и объясните их.

## Приложение 1 Теоретические основы

Пусть X - ансамбль возможных сообщений, которые могут быть переданы по каналам связи. Априорные вероятности, с которыми на передающей стороне может появиться  $\mathbf{i}$  - ое сообщение, обозначим через  $p_i = p(x_i)$ .

В качестве характеристики априорной неопределенности генерации того или иного сообщения на передающей стороне Шеннон предложил применить следующий функционал энтропии:

$$H(X) = -\sum_{i=1}^{n} p(x_i) \log_2 p(x_i)$$
 (1)

В этом функционале используется логарифм по основанию 2 в связи с тем, что в цифровых каналах связи информация обычно представляется в двоичных кодах, и энтропия измеряется в  $\mathit{битax}$ .

Энтропия является характеристикой неопределенности состояния ансамбля X в отличие от характеристики возможности наступления того или иного события, то есть вероятности. Энтропия не зависит от значений, которые может принимать тот или иной элемент ансамбля и от способа его представления. В частности, элементами ансамбля могут быть словесные описания или фотографические изображения. Энтропия характеризует степень хаотичности ансамбля и принимает максимальное значение, когда вероятности  $p(x_i)$  одинаковы.

Инструментарий теории информации, выдвинутой К.Шенноном, эффективно используется в теории и практике передачи информации и кодирования. В этих применениях ансамбль X - ансамбль возможных сообщений. Основные результаты теории информации относятся к передаче информации в двоичном коде и к каналам, ориентированным на передачу двоичных кодов. Передача такой информации осуществляется двоичными кодовыми словами, и при каждой такой передаче искажение отдельного символа в передаваемом слове заключается в том, что вместо  $\mathbf{1}$  получатель принимает  $\mathbf{0}$ , или вместо нуля получатель принимает  $\mathbf{1}$ . При таких условиях канал передачи двоичной информации характеризуется вероятностью искажения символа. Схематическое представление простейшего канала связи, а именно , двоичного симметричного канала представлено на рис  $\mathbf{5}$ .

Симметричным этот канал называется потому, что вероятности искажения символов '0' и '1' одинаковы и равны  $\mathbf{q}$ , как это показано на рисунке. Вероятность  $\mathbf{p}$  - вероятность неискаженной передачи символа.



Рис.5. Двоичный симметричный канал



Рис.6. Передача сообщений по каналу с искажениями

Поскольку каждое сообщение  $\mathbf{x}_i \in X$  передается кодовым словом, которое может состоять из нескольких символов '0' или '1', возможностей искажения слова при передаче по такому каналу гораздо больше (см. рис. 6, где принимаемые сообщения обозначены через  $\mathbf{y}_1, \mathbf{y}_2, \dots \mathbf{y}_j, \dots \in Y$ ). Вероятность искажения слова в общем случае отличается от вероятности искажения отдельного символа.

Понятно, что при передаче по каналам связи сообщения (слова)  $\mathbf{x_i} \in X$  и при получении сообщения  $\mathbf{y_j} \in Y$ , несмотря на искажения в каналах энтропия ансамбля X, несомненно, уменьшится и будет исчисляться условной энтропией на сообщение

$$H(X/y_j) = -\sum_{i=1}^n p(x_i/y_j) \cdot \log_2 p(x_i/y_j).$$
(2)

Прим. Вероятности  $p(x_i / y_j)$  называются апостериорными. Для их расчета необходимо использовать формулу Байеса

$$p(x_i/y_j) = \frac{p(y_j/x_i)p(x_i)}{p(y_j)} = \frac{p(y_j/x_i)p(x_i)}{\sum_{k} p(y_j/x_k)p(x_k)}$$
(3)

 $p(x_i)$  - априорные вероятности, вначале они могут быть выбраны произвольно и как правило они принимаются одинаковыми и равными 1/N, где N – общее количество слов xi.

 $p(y_j/x_i)$  - условная вероятность приема  $y_j$  при условии, что было послано  $x_i$ . Данную вероятность легко найти следующим образом. Если общее количество разрядов в слове k, в t разрядах произошла ошибка (они проинвертировались), то вероятность очевидно равна

$$p(y_i / x_i) = p^{k-t} q^t \tag{4}$$

Здесь по-прежнему p — вероятность правильной передачи одного бита, q=1-p — вероятность ошибки.

$$p(y_j) = \sum_k p(y_j / x_k) p(x_k)$$
(5)

- вероятность приема  $y_j$  в данной задаче несет вспомогательный характер — она потребуется в том числе в дальнейших расчетах.

В случае, если при приеме одной и той же буквы несколько раз информация накапливается, для расчета апостериорных вероятностей последующих приемов в качестве априорных вероятностей необходимо использовать апостериорные вероятности после предыдущего принятого сообщения, т.е.:

$$p(x_i / y_1 y_2 ... y_j) = \frac{p(y_j / x_i) p(x_i / y_1 y_2 ... y_{j-1})}{p(y_j)} = \frac{p(y_j / x_i) p(x_i / y_1 y_2 ... y_{j-1})}{\sum_{k} p(y_j / x_k) p(x_k / y_1 y_2 ... y_{j-1})}$$
(6)

Для того, чтобы характеризовать всю систему приема - передачи, используют среднюю условную энтропию:

$$H(X/Y) = \sum_{i=1}^{n} p(y_i) \cdot H(X/y_i) = H(X,Y) - H(Y)$$
(7)

где 
$$H(Y) = \sum_{i=1}^{n} p(y_i) \cdot \log_2 p(y_i)$$
,  $H(X,Y) = -\sum_{i=1}^{n} \sum_{i=1}^{n} p(x_i, y_i) \cdot \log_2 p(x_i, y_i)$ 

H(X,Y) - совместная энтропия двух ансамблей, равная

$$H(X,Y) = H(X/Y) + H(Y) = H(Y/X) + H(X)$$

Количество информации об  $\mathbf{x_i}$ , полученное в одном сообщении  $\mathbf{y_j}$ :

$$I(x_i : y_j) = \log \frac{p(x_i, y_j)}{p(x_i)p(y_j)}.$$

Среднее количество информации об X, полученное в сообщении  $\mathbf{y}_{\mathbf{i}}$ 

$$I(X:y_j) = -\sum_{i=1}^{n} p(x_i / y_j) \log p(x_i) - H(X / y_j)$$
(8)

Количество информации измеряется в тех же единицах, что и энтропия - в битах. Средняя взаимная информация, содержащаяся в Y об X или в X об Y:

$$I(X:Y) = \sum_{i=1}^{n} p(y_{i})I(X:y_{i}) = H(X) - H(X/Y)$$
(9)

то есть это количество информации численно равно количеству неопределенности, устраненной при получении одного сообщения.

# Приложение 2 Вспомогательные материалы и таблицы

### Используемый набор букв и символов:

 $^{\circ}$ 0123456789АБВГДЕЁЖЗЙЙКЛМНОПРСТУФХЦЧШЩЬЫЪЭЮЯабвгдеёжзийклмнопрстуфхцчшщьыъэюя.,!:?-\_ $\mathbb{N}$ () '

Каждая буква кодируется своим номером в наборе, представленным в двоичном коде (см. табл.). При передаче без ошибки буквы с кодом x7x6x5x4x3x2x1x0 на принимающей стороне будет получен такой же код x7x6x5x4x3x2x1x0.

Табл. 1 Символы и их коды

| Символ | Код     |
|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|
| 0      | 0000000 | Й      | 0010100 | Э      | 0101000 | p      | 0111100 | ?      | 1010000 |
| 1      | 0000001 | К      | 0010101 | Ю      | 0101001 | С      | 0111101 | -      | 1010001 |
| 2      | 0000010 | Л      | 0010110 | Я      | 0101010 | T      | 0111110 | _      | 1010010 |
| 3      | 0000011 | M      | 0010111 | a      | 0101011 | у      | 0111111 | №      | 1010011 |
| 4      | 0000100 | Н      | 0011000 | б      | 0101100 | ф      | 1000000 | (      | 1010100 |
| 5      | 0000101 | О      | 0011001 | В      | 0101101 | X      | 1000001 | )      | 1010101 |
| 6      | 0000110 | П      | 0011010 | Γ      | 0101110 | Ц      | 1000010 | Пробел | 1010110 |
| 7      | 0000111 | P      | 0011011 | Д      | 0101111 | Ч      | 1000011 |        |         |
| 8      | 0001000 | C      | 0011100 | e      | 0110000 | Ш      | 1000100 |        |         |
| 9      | 0001001 | T      | 0011101 | ë      | 0110001 | Щ      | 1000101 |        |         |
| A      | 0001010 | У      | 0011110 | Ж      | 0110010 | Ь      | 1000110 |        |         |
| Б      | 0001011 | Φ      | 0011111 | 3      | 0110011 | Ы      | 1000111 |        |         |
| В      | 0001100 | X      | 0100000 | И      | 0110100 | Ъ      | 1001000 |        |         |
| Γ      | 0001101 | Ц      | 0100001 | й      | 0110101 | Э      | 1001001 |        |         |
| Д      | 0001110 | Ч      | 0100010 | К      | 0110110 | Ю      | 1001010 |        |         |
| Е      | 0001111 | Ш      | 0100011 | Л      | 0110111 | Я      | 1001011 |        |         |
| Ë      | 0010000 | Щ      | 0100100 | M      | 0111000 | •      | 1001100 |        |         |
| Ж      | 0010001 | Ь      | 0100101 | Н      | 0111001 | ,      | 1001101 |        |         |
| 3      | 0010010 | Ы      | 0100110 | 0      | 0111010 | !      | 1001110 |        |         |
| И      | 0010011 | Ъ      | 0100111 | П      | 0111011 | :      | 1001111 |        |         |

Табл. 2 Частота букв в русском языке

| Буква | Частота | Буква | Частота | Буква | Частота |
|-------|---------|-------|---------|-------|---------|
| a     | 8.66    | Л     | 4.32    | Ц     | 0.52    |
| б     | 1.51    | M     | 3.29    | Ч     | 1.27    |
| В     | 4.19    | Н     | 6.35    | Ш     | 0.77    |
| Γ     | 1.41    | 0     | 9.28    | Щ     | 0.49    |
| Д     | 2.56    | П     | 3.35    | Ъ     | 0.04    |
| e     | 8.10    | p     | 5.53    | Ы     | 2.11    |
| Ж     | 0.78    | c     | 5.45    | Ь     | 1.90    |
| 3     | 1.81    | Т     | 6.30    | Э     | 0.17    |
| И     | 7.45    | у     | 2.90    | Ю     | 1.03    |
| й     | 1.31    | ф     | 0.40    | Я     | 2.22    |
| К     | 3.47    | X     | 0.92    |       |         |