Macro

Introduction

- A macro instruction (abbreviated to macro) is simply a notational convenience for the programmer.
- Represents a commonly used group of statements in the source programming language
- Expanding a macro
 - Replace each macro instruction with the corresponding group of source language statements
- We will follow SIC (Simplified Instructional Computer) architecture and then
- NASM assembler (x86 arch)

Introduction

• SIC:

- 24 bit registers
- A, X, L (0,1,2)
- PC
- SW (Status Word) (8,9)
- GPR:
 - B, S, T, F (3,4,5,6)

Introduction

- For example:
- On SIC/XE (Extra Equipment), requires a sequence of seven instructions to save the contents of all registers

 A macro processor is not directly related to the architecture of the computer on which it is to run

 Macro processors can also be used with high-level programming languages, OS command languages, etc.

Basic Macro Processor Functions

Basic Macro Processor Functions

Macro Definition:

- 1. Two new assembler directives
 - MACRO
 - MEND
- 2. A pattern or **prototype** for the macro instruction
- 3. Macro name and parameters

Basic Macro Processor Functions

- Macro invocation
 - Often referred to as a macro call
 - Need:
 - a) name of the macro instruction being invoked
 - b) arguments to be used in expanding the macro
- Expanded program
 - No macro instruction definitions
 - Each macro invocation statement has been expanded with
 - a) Macro body
 - b) Arguments substituted with the parameters in the prototype

Macro Definition

- 1. Copy code
- 2. Parameter substitution
- 3. Conditional macro expansion
- 4. Macro instruction defining macros

1. Copy Code

```
Source
STRG
        MACRO
        STA
                DATA1
        STB
                DATA2
        STX
                DATA3
        MEND
STRG
STRG
```

```
Expanded source
       STA
              DATA1
       STB
              DATA2
              DATA3
       STX
       STA
              DATA1
       STB
              DATA2
       STX
              DATA3
```

2. Parameter Substitution

Source			
STRG	MACRO	&a1, &a2, &a3	
	STA	&a1	
	STB	&a2	
	STX	&a3	
	MEND		
STRG	DATA1, D	ATA2, DATA3	
STRG	DATA4, DATA5, DATA6		

```
Expanded source
              DATA1
              DATA2
              DATA3
       STA
              DATA4
       STB
              DATA5
              DATA6
```

2. Parameter Substitution

- Dummy arguments
 - Positional argument

```
STRG DATA1, DATA2, DATA3
GENER ,,DIRECT,,,,,3
```

Keyword argument

```
STRG &a3=DATA1, &a2=DATA2, &a1=DATA3
GENER TYPE=DIRECT, CHANNEL=3
```

Example

Line Source statement

5	COPY	START	0	COPY FILE FROM INPUT TO OUTPUT
10	RDBUFF	MACRO	&INDEV, &BUFA	ADR, &RECLTH
15				
20		MACRO '	TO READ RECORD	INTO BUFFER
25	34			
30		CLEAR	х	CLEAR LOOP COUNTER
35		CLEAR	A	
40		CLEAR	S	
45		+LDT	#4096	SET MAXIMUM RECORD LENGTH
50		TD	=X'&INDEV'	TEST INPUT DEVICE
55		JEQ	*-3	LOOP UNTIL READY
60		RD	=X'&INDEV'	READ CHARACTER INTO REG A
65		COMPR	A,S	TEST FOR END OF RECORD
70	-	JEQ	*+11	EXIT LOOP IF EOR
75		STCH	&BUFADR, X	STORE CHARACTER IN BUFFER
80		TIXR	T	LOOP UNLESS MAXIMUM LENGTH
85		JLT	*-19	HAS BEEN REACHED
90		STX	&RECLTH	SAVE RECORD LENGTH
95		MEND		

Example

100	WRBUFF	MACRO	&OUTDEV, &BUF	ADR, &RECLTH
105				
110		MACRO 7	NO WRITE RECORD	FROM BUFFER
115				
120		CLEAR	X	CLEAR LOOP COUNTER
125		LDT	&RECLTH	
130		LDCH	&BUFADR, X	GET CHARACTER FROM BUFFER
135		TD	=X'&OUTDEV'	TEST OUTPUT DEVICE
140		JEQ	*-3	LOOP UNTIL READY
145		WD	=X'&OUTDEV'	WRITE CHARACTER
150		TIXR	T	LOOP UNTIL ALL CHARACTERS
155		JLT	*-14	HAVE BEEN WRITTEN
160		MEND		

One Pass Macro Processor

- Prerequisite
 - every macro must be defined before it is called
- Sub-procedures
 - macro definition: DEFINE
 - macro invocation: EXPAND

NAMTAB

Data Structures

- Because of the one-pass structure, the definition of a macro must appear in the source program before any statements that invoke that macro
- Three main data structures involved in an one-pass macro processor
 - DEFTAB,
 - NAMTAB,
 - ARGTAB


```
begin {macro processor}
    EXPANDING := FALSE
   while OPCODE ≠ 'END' do
       begin
          GETLINE
           PROCESSLINE
       end {while}
end {macro processor}
procedure PROCESSLINE
   begin
       search NAMTAB for OPCODE
       if found then
          EXPAND
       else if OPCODE = 'MACRO' then
          DEFINE
       else write source line to expanded file
    end {PROCESSLINE}
```

Figure 4.5 Algorithm for a one-pass macro processor.

4. Nested Macro

2 RDBUFF MACRO &INDEV,&BUFADR,&RECLTH	1 MACROS	MACRO	{Defines SIC standard version macros}
MEND {End of RDBUFF} WRBUFF MACRO &OUTDEV, &BUFADR, &RECLTH	2 RDBUFF	MACRO	&INDEV, &BUFADR, &RECLTH
MEND {End of RDBUFF} WRBUFF MACRO &OUTDEV, &BUFADR, &RECLTH		(v) (c)	5)1
4 WRBUFF MACRO &OUTDEV, &BUFADR, &RECLTH		8 ∓	{SIC standard version}
4 WRBUFF MACRO &OUTDEV, &BUFADR, &RECLTH		%	
* *** *** *** *** *** *** *** *** ***	3	MEND	{End of RDBUFF}
	4 WRBUFF	MACRO	&OUTDEV, &BUFADR, &RECLTH
. (SIC standard version)			
		3. *	(SIC standard version)
		S 4	
5 MEND {End of WRBUFF}	5	MEND	{End of WRBUFF}
		•	
		•	
6 MEND {End of MACROS}	6	MEND	{End of MACROS}
(a)			(a)

Nested Macro

```
MACROX
                          {Defines SIC/XE macros}
             MACRO
   RDBUFF
             MACRO
                          &INDEV, &BUFADR, &RECLTH
                          {SIC/XE version}
             MEND
                          {End of RDBUFF}
   WRBUFF
             MACRO
                          &OUTDEV, &BUFADR, &RECLTH
                          {SIC/XE version}
                          {End of WRBUFF}
             MEND
6
                          {End of MACROX}
             MEND
```

One Pass Macro Processor: for nested macro

- Sub-procedures
 - macro definition: DEFINE
 - macro invocation: EXPAND
- EXPAND may invoke DEFINE when encounter macro definition


```
procedure DEFINE
   begin
       enter macro name into NAMTAB
       enter macro prototype into DEFTAB
       LEVEL :- 1
       while LEVEL > 0 do
          begin
              GETLINE
              if this is not a comment like then
                 begin
                    substitute positional notation for parameters
                    enter line inLo DEFTAB
                    if OPCODE = 'MACRO' then
                        LEVEL := LEVEL + 1
                    else if OPCODE - 'MEND' then
                        LEVEL := LEVEL - 1
                 end (il not comment)
          end (while)
       store in NAMFAB pointers to beginning and end of definition
   end {DEFINE}
```

```
procedure EXPAND
   begin
       EXPANDING := TRUE
       get first line of macro definition (prototype) from DEFTAR
       set up arguments from macro invocation in ARGTAB
       write macro invocation to expanded file as a comment
       while not end of macro definition do
          begin
              GETLINE
              PROCESSLINE
          end (while)
       EXPANDING := FALSE
   end (EXPAND)
                       procedure GETLINE
                           begin
                              if EXPANDING then
                                 begin
                                     get next line of macro definition from DEFTAB
                                     substitute arguments from ARGTAB for positional notation
                                 end {if}
                              else
                                  read next line from input file
                           end {GETLINE}
                        Figure 4.5 (cont'd)
```

One Pass Macro Processor


```
Algo.
               procedure DEFINE
                   begin
                      enter macro name into NAMTAB
                       enter macro prototype into DEFTAB
                      LEVEL := 1
                      while LEVEL > 0 do
                          begin
                             GETLINE
                             if this is not a comment line then
                                 begin
                                    substitute positional notation for parameters
                                    enter line into DEFTAB
                                    if OPCODE = 'MACRO' then
                                        LEVEL := LEVEL + 1
                                    else if OPCODE = 'MEND' then
                                        LEVEL := LEVEL - 1
                                 end {if not comment}
                          end {while}
                       store in NAMTAB pointers to beginning and end of definition
```

end {DEFINE}

```
procedure EXPAND
   begin
       EXPANDING := TRUE
       get first line of macro definition (prototype) from DEFTAB
       set up arguments from macro invocation in ARGTAB
       write macro invocation to expanded file as a comment
       while not end of macro definition do
          begin
              GETLINE
              PROCESSLINE
          end {while}
       EXPANDING := FALSE
    end {EXPAND}
procedure GETLINE
   begin
       if EXPANDING then
          begin
              get next line of macro definition from DEFTAB
              substitute arguments from ARGTAB for positional notation
          end {if}
       else
          read next line from input file
    end {GETLINE}
```

Macro Expansion Types

Lexical Substitution:

- Replacement of a character string by another character string during program generation
- Replacement of Formal Parameters with Actual Parameters
- Formal Parameter => Macro name and/or parameter list
 - E.g. for the macro **STRG** MACRO **&a1, &a2, &a3**
 - The call STRG DATA1, DATA2, DATA3
- Actual Parameter => Macro body that replaces the formal parameters
 - E.g. After replacement, the macro body
 - STA DATA1
 - STB DATA2
 - STX DATA3

Macro Expansion Types

Semantic Expansion:

• Generation of instructions tailored to the requirements of a specific usage.

• Characteristics:

 Different uses of a macro can lead to codes which differ in the number, sequence and opcodes of instructions.

• Eg: Generation of type specific instructions for manipulation of byte and word operands.

Example

- The following sequence of instructions is used to increment the value in a memory word by a constant.
- 1. Move the value (A) from the memory word into a machine register.
- 2. Increment the value in the machine register.
- 3. Move the new value into the memory word.

 Since the instruction sequence MOVE-ADD-MOVE may be used a number of times in a program, it is convenient to define a macro named INCR.

Example

- Using Lexical expansion the macro call INCR A, B, AREG can lead to the generation of a MOVE-ADD-MOVE instruction sequence
- Increments A by the value of B using AREG (register) to perform the arithmetic.
- Use of **Semantic expansion** can enable the instruction sequence to be adapted to the **types** of **A** and **B**.
- For example: an **INC** instruction (in Intel **8088**) could be generated if **A** is a **byte** operand and **B** has the value "1".

Macro vs. Subroutine

- Use of a macro name in the mnemonic field of an assembly statement leads to its expansion,
- Whereas, use of subroutine name in a call instruction leads to its execution.
- So there is difference in
 - Size
 - Execution Efficiency
- Macros can be said to trade program size for execution efficiency.

Machine-Independent Macro Processor Feature

Concatenation of Macro Parameters

2. Generation of Unique Labels

3. Conditional Macro Expansion

4. Keyword Macro Parameters

1. Concatenation of Macro Parameters

- Most macro processors allow parameters to be concatenated with other character strings
- The need of a special catenation operator
 - LDA **X&ID1**
 - LDA **X&ID**

- The catenation operator
 - LDA X&ID -> 1

1. Example

1	SUM	MACRO	&ID
2		LDA	X&ID→1
3		ADD	X&ID→2
4		ADD	X&ID→3
5		STA	X&ID→S
6		MEND	

2. Generation of Unique Labels

• It is, in general, **not possible** for the body of a macro instruction to contain labels of the usual kind

- Leads to the use of relative addressing at the source statement level
 - Only be acceptable for short jumps

- Solution:
 - Allowing the creation of special types of labels within macro instructions

2. Generation of Unique Labels

Solution:

 Allowing the creation of special types of labels within macro instructions

• Labels used within he macro body begin with the special character \$

Programmers are instructed no to use \$ in their source programs

2. Example

25	RDBUFF	MACRO	&INDEV,&BUE	FADR, &RECLTH
30	- 12	CLEAR	X	CLEAR LOOP COUNTER
35		CLEAR	A	
40		CLEAR	S	
45		+LDT	#4096	SET MAXIMUM RECORD LENGTH
50	\$LOOP	TD	=X'&INDEV'	TEST INPUT DEVICE
55		JEQ	\$LOOP	LOOP UNTIL READY
60		RD	=X'&INDEV'	READ CHARACTER INTO REG A
65		COMPR	A,S	TEST FOR END OF RECORD
70		JEQ	\$EXIT	EXIT LOOP IF EOR
75		STCH	&BUFADR,X	STORE CHARACTER IN BUFFER
80		TIXR	${f T}$	LOOP UNLESS MAXIMUM LENGTH
85		JLT	\$LOOP	HAS BEEN REACHED
90	\$EXIT	STX	&RECLTH	SAVE RECORD LENGTH
95		MEND		

2. Example

		RDBUFF	F1, BUFFER, LENGTH	
30		CLEAR	X	CLEAR LOOP COUNTER
35		CLEAR	A	
40		CLEAR	S	
45	a <u>ncuranal b</u> a	+LDT	#4096	SET MAXIMUM RECORD LENGTH
50	\$AALOOP	TD	=X'F1'	TEST INPUT DEVICE
55		JEQ	\$AALOOP	LOOP UNTIL READY
60		RD	=X'F1'	READ CHARACTER INTO REG A
65		COMPR	A,S	TEST FOR END OF RECORD
70		JEQ	\$AAEXIT	EXIT LOOP IF EOR
75		STCH	BUFFER,X	STORE CHARACTER IN BUFFER
80		TIXR	T	LOOP UNLESS MAXIMUM LENGTH
85		JLT	\$AALOOP	HAS BEEN REACHED
90	\$AAEXIT	STX	LENGTH	SAVE RECORD LENGTH

3. Conditional Macro Expansion

Most macro processors can:

- Modify the sequence of statements generated for a macro expansion
- Depending on the arguments supplied in the macro invocation
- Macro processor directive
 - IF, ELSE, ENDIF
 - SET
 - Macro-time variable (set symbol)
 - WHILE-ENDW

3. Example IF-ELSE-**ENDIF**

				▼
	(. •)	RDBUFF	F3, BUF, RECL, 04	4,2048
30		CLEAR	X	CLEAR LOOP COUNTER
35		CLEAR	A	
40		LDCH	=X'04'	SET EOR CHARACTER
42		RMO	A,S	The second secon
47		+LDT	#2048	SET MAXIMUM RECORD LENGTH
50	\$AALOOP	TD	=X'F3'	TEST INPUT DEVICE
55		JEQ	\$AALOOP	LOOP UNTIL READY
60		RD	=X'F3'	READ CHARACTER INTO REG A
65		COMPR	A,S	TEST FOR END OF RECORD
70		JEQ	\$AAEXIT	EXIT LOOP IF EOR
75		STCH	BUF,X	STORE CHARACTER IN BUFFER
80		TIXR	T	LOOP UNLESS MAXIMUM LENGTH
85		JLT	\$AALOOP	HAS BEEN REACHED
90	\$AAEXIT	STX	RECL	SAVE RECORD LENGTH

RDBUFF 0E, BUFFER, LENGTH, , 80

30		CLEAR	X	CLEAR LOOP COUNTER
35	,	CLEAR	A	0
47		+LDT	#80	SET MAXIMUM RECORD LENGTH
50	\$ABLOOP	TD	=X'0E'	TEST INPUT DEVICE
55		JEQ	\$ABLOOP	LOOP UNTIL READY
60		RD	=X'0E'	READ CHARACTER INTO REG A
75		STCH	BUFFER,X	STORE CHARACTER IN BUFFER
80		TIXR	${f T}$	LOOP UNLESS MAXIMUM LENGTH
87		JLT	\$ABLOOP	HAS BEEN REACHED
90	\$ABEXIT	STX	LENGTH	SAVE RECORD LENGTH

RDBUFF F1, BUFF, RLENG, 04

30		CLEAR	X	CLEAR LOOP COUNTER
35		CLEAR	A	
40		LDCH	=X'04'	SET EOR CHARACTER
42		RMO	A,S	
45		$+ \mathrm{LDT}$	#4096	SET MAX LENGTH = 4096
50	\$ACLOOP	$ ext{TD}$	=X'F1'	TEST INPUT DEVICE
55		JEQ	\$ACLOOP	LOOP UNTIL READY
60		RD	=X'F1'	READ CHARACTER INTO REG A
65		COMPR	A,S	TEST FOR END OF RECORD
70		JEQ	\$ACEXIT	EXIT LOOP IF EOR
75		STCH	BUFF,X	STORE CHARACTER IN BUFFER
80		TIXR	${f T}$	LOOP UNLESS MAXIMUM LENGTH
85		JLT	\$ACLOOP	HAS BEEN REACHED
90	\$ACEXIT	STX	RLENG	SAVE RECORD LENGTH

3. Example for WHILE-ENDW

25	RDBUFF	MACRO	&INDEV,&BUFAL	OR, &RECLTH, &EOR
27	&EORCT	SET	%NITEMS(&EOR)	
30		CLEAR	X	CLEAR LOOP COUNTER
35		CLEAR	A	
45		+LDT	#4096	SET MAX LENGTH = 4096
50	\$LOOP	TD	=X'&INDEV'	TEST INPUT DEVICE
55		JEQ	\$LOOP	LOOP UNTIL READY
60		RD	=X'&INDEV'	READ CHARACTER INTO REG A
63	&CTR	SET	1	
64		WHILE	(&CTR LE &EO	RCT)
65		COMP	=X'0000&EOR[&0	CTR] '
70		JEQ	\$EXIT	
71	&CTR	SET	&CTR+1	
73		ENDW		
75		STCH	&BUFADR,X	STORE CHARACTER IN BUFFER
80		TIXR	${f T}$	LOOP UNLESS MAXIMUM LENGTH
85		JLT	\$LOOP	HAS BEEN REACHED
90	\$EXIT	STX	&RECLTH	SAVE RECORD LENGTH
100		MEND		

RDBUFF F2, BUFFER, LENGTH, (00,03,04)

30		CLEAR	X	CLEAR LOOP COUNTER
35		CLEAR	A	
45		+LDT	#4096	SET MAX LENGTH = 4096
50	\$AALOOP	TD	=X'F2'	TEST INPUT DEVICE
55		JEQ	\$AALOOP	LOOP UNTIL READY
60		RD	=X'F2'	READ CHARACTER INTO REG A
65		COMP	=X'000000'	
70		JEQ	\$AAEXIT	
65		COMP	=X'000003'	
70		JEQ	\$AAEXIT	
65		COMP	=X'000004'	
70		JEQ	\$AAEXIT	
75		STCH	BUFFER, X	STORE CHARACTER IN BUFFER
80		TIXR	${f T}$	LOOP UNLESS MAXIMUM LENGTH
85		JLT	\$AALOOP	HAS BEEN REACHED
90	\$AAEXIT	STX	LENGTH	SAVE RECORD LENGTH

4. Keyword Macro Parameters

Positional Parameters

Keyword Parameters

As discussed earlier

Previous Design Approach

Type of Macro processors

- Macro Preprocessors
 - Independent Macro processor.
 - To be invoked separately before the Assembler
- Macro Assemblers
 - Part of the Assembler
 - Assembler runs this module by default before assembling

Pass Structure

- Two-pass macro processors
 - Goes through the program twice
 - Once to find the definitions
 - Second pass to expand the Macros

- One-pass macro processors
 - Single scan on the source program
 - Defines and Expands macro in single go
 - We have discussed this type

Two-pass Macro Processors

Assumptions:

- Functionally independent of the Assembler
- Nested Macros are not permitted
- Macro call occurs within a macro definition

Pass I — Create Database

- 1. Check each input line for Keyword MACRO
- 2. If found,
 - a) Copy the entire code block, including corresponding MEND
 - b) Insert this code block into next available location in DEFTAB
 - c) Insert Macro name into next available location in NAMTAB
 - d) Insert Start and End address from DEFTAB into corresponding NAMTAB entry
 - e) Remove the entire the entire code block from the source program
- 3. Stop if no more lines in the source program

Pass II – Process Macro Call

1. Check each WORD in the source program and match with NAMTAB entries

2. If found

- a) From DEFTAB, find the number of parameters required
- b) Search for the Arguments (if any) from the source code
- c) Put the Arguments in the corresponding location of the ARGTAB
- d) Remove the Formal Parameters from Source program
- e) Take next line of Macro body from DEFTAB
- f) Replace Formal Parameters with Actual Parameters using ARGTAB
- g) Put line in source program's current location
- h) Go back to Step (e) till MEND is encountered
- 3. Stop if no more lines in the source program

Advantages

- Simple, well defined algorithm
- Modest space requirement
 - Pass 1 requires memory for NAMTAB and DEFTAB
- Forward references are permitted
 - Macro call can precede the associated Macro definition
- A Macro can be defined anywhere in the program

Disadvantages

- Source program is read twice
 - Execution overhead
- A macro can not be redefined
- Macro conditional statements are not permitted
- Intermediate file need to be stored between Pass1 and Pass2

One-pass Macro Properties

Advantages

- Single-pass: Less overhead
- Nested Macro permitted
- Conditional statements permitted
- Macro can be redefined
- No intermediate file required

Disadvantages

- A Macro definition must precede any call to that macro
- Primary Memory requirement is more

• In spite of the advantages noted, there are still relatively few generalpurpose macro processors.

- In a typical programming language, there are several situations in which normal macro parameter substitution should not occur
 - E.g. comments should usually be ignored by a macro processor

 Another difference between programming languages is related to their facilities for grouping together terms, expressions, or statements

• E.g. Some languages use keywords such as begin and end for grouping statements. Others use special characters such as { and }

 A more general problem involves the tokens of the programming language

- – E.g. identifiers, constants, operators, and keywords
- – E.g. blanks

- Another potential problem with general purpose macro processors involves the syntax used for macro definitions and macro invocation statements.
- With most special purpose macro processors, macro invocations are very similar in form to statements in the source programming language

Hygienic macro

 If a Macro expansion is guaranteed not to cause the accidental capture of Identifiers

This problem is well known in LISP

A Macro Specific identifier may overshadow a source program's identifier

Example

NASM preprocessor

Preprocessor directives all begin with a % sign.

• The preprocessor collapses all lines which end with a backslash (\) character into a single line. Thus:

```
%define THIS_VERY_LONG_MACRO_IS_DEFINED_TO \
THIS_VALUE
```

 will work like a single-line macro without the backslash-newline sequence.

Single-line macros

• **%define** – defines single-line macro (c-style).

```
* %define ctrl 0x1F &
    %define param (a, b) ((a)+(a)*(b))
```

```
mov byte [param(2,ebx)], ctrl 'D'
expands to

mov byte [(2)+(2)*(ebx)], 0x1F & 'D'
```

 When the expansion of a single-line macro contains tokens which invoke another macro, the expansion is performed at invocation time, not at definition time.

will evaluate in the expected way to

mov
$$ax, 1+2*8$$

- Macros defined with %define are case sensitive.
- You can use %idefine to define all the case variants of a macro at once.

 There is a mechanism which detects when a macro call has occurred as a result of a previous expansion of the same macro, to guard against circular references and infinite loops. You can overload single-line macros:

• The preprocessor will be able to handle both types of macro call, by counting the parameters you pass.

%undef— undefines defined single-line macro

```
%define foo go
%undef foo
mov ax, foo
```

- will expand to the instruction mov eax, foo
 - since after **%undef** the macro foo is no longer defined.

• %assign

- used to define single-line macros which take no parameters and have a numeric value.
- The value can be specified in the form of an expression, and it will be evaluated once, when the %assign directive is processed.
- Like %define, macros defined using %assign can be **re-defined** later, so you can do things like:

%assign i i+1

multiple-line macros

• Works with **%macro** ... **%endmacro** mechanism.

```
%macro prologue 1

push ebp
mov ebp,esp
sub esp,%1

means: the first parameter of the macro

my_func: prologue 12

my_func:
push ebp
```

mov ebp,esp

sub esp,12

• With a macro taking more than one parameter, subsequent parameters would be referred to as %2, %3 and so on .

- Multi-line macros, like single-line macros, are case-sensitive, unless you define them using the alternative directive %imacro.
- If you need to pass a comma as part of a parameter to a multi-line macro, you can do that by enclosing the entire parameter in braces.

• As with single-line macros, multi-line macros can be overloaded by defining the same macro name several times with different numbers of parameters.

Conditional Assembly

- Similarly to the C preprocessor, NASM allows sections of a source file to be assembled only if certain conditions are met.
- General syntax:

%if<condition>

; some code which only appears if <condition> is met

%elif<condition2>

; only appears if <condition> is not met but <condition2> is

%else

- ; this appears if neither <condition> nor <condition2> was met %endif
- The **%else** clause is **optional**, as is the **%elif** clause.
- You can have more than one %elif clause as well.

Preprocessor Loops

- %rep and %endrep enclose a chunk of code, which is then replicated as many times as specified by the preprocessor
- Example:

```
%assign i 0
%rep 64
    inc word [table+2*i]
    %assign i i+1
%endrep
```

• To break out of a repeat loop part way along, you can use the **%exitrep** directive to terminate the loop

Example:

```
fibonacci:
%assign i
%assign j
%rep 100
         %exitrep
    %endif
    dw j
    %assign k
    %assign
    %assign
%endrep
```