EPILEPTIC SEIZURE RECOGNITION

Onur KARASOY onkarasoy@gmail.com

According to the World Health Organization (WHO), epilepsy is a common neurological disorder that affects people of all ages. It is estimated that about 50 million people worldwide have epilepsy.

Epilepsy is a condition where a person has seizures. Seizures happen when there is a sudden burst of electrical activity in the brain. It can make a person's body shake or make them lose consciousness.

Electroencephalogram (EEG)

EEG (Electroencephalogram)

EEG is a test that measures and records the electrical activity of the brain.

DATASET

*The Bonn dataset is collected under the supervision of the University of Bonn

	Set A	Set B	Set C	Set D	Set E
Individuals	Healthy	Healthy	Epileptic	Epileptic	Epileptic
Situation	Eyes Open	Eyes Closed	Interictal	Interictal	Ictal
Electrode Type	Surface	Surface	Intracranial	Intracranial	Intracranial
Electrode Placement	International 10-20 System	International 10-20 System	Opposite the Epileptogenic Zone	Epileptogenic Zone	Opposite the Epileptogenic Zone
Duration	23.6 sec	23.6 sec	23.6 sec	23.6 sec	23.6 sec

Intracranial Scheme of intracranial electrodes implanted for presurgical evaluation of epilepsy patients.

International 10-20 system

DATASET

Datas

> 🗎 N

> 🗎 0

> 🖿 S

Z

Z001.txt

Z009.txt

Z011.txt

DATASET

11500 rows 180 columns

	Unnamed	X1	Х2	Х3	Х4	X5	 X174	X175	X176	X177	X178	у
11495	X22.V1.114	-22	-22	-23	-26	-36	 -1	-18	-37	-47	-48	2
11496	X19.V1.354	-47	-11	28	77	141	 27	48	77	117	170	1
11497	X8.V1.28	14	6	-13	-16	10	 -67	-30	-2	-1	-8	5
11498	X10.V1.932	-40	-25	-9	-12	-2	 116	86	68	59	55	3
11499	X16.V1.210	29	41	57	72	74	 5	4	-2	2	20	4

Every category has 2300 rows

One line data from diffrent categories

Pre-Processing

- Checking Missing Data (No)
- Data cleaning. (Removed 1st column)
- Converting problem binary classification

```
X7 ... X173 X174
                        X6
                                               X175
                                                    X176
                                                         X177
      190
          229
               223
                   192
                        125
                             55
                                      -77 -103
                                               -127
                                                    -116
                                                          -83
                                                                -51 0
          356 331 320 315
                            307
                                           157
      382
                                     152
                                                156
                                                     154
                                                          143
                                                               129 1
  -32 -39 -47 -37 -32 -36 -57 ...
                                     19
                                           -12
                                                -30
                                                                -36 0
3 -105 -101
          -96 -92 -89 -95 -102
                                      -77
                                           -85 -77
                                                                -65 0
   -9 -65 -98 -102 -78 -48 -16 ... -32
                                           -41
                                                -65
                                                                -73 0
```

Classification

Classical Machine Learning Algorithm Classification Performance (PyCaret)

```
clf1 = setup(data = eeg_data, target = 'y', numeric_imputation = 'mean', silent = True)
best_model = compare_models()
```

	Model	Accuracy	AUC	Recall	Prec.	F1	Карра	MCC	TT (Sec)
lightgbm	Light Gradient Boosting Machine	0.9725	0.9954	0.9024	0.9579	0.9291	0.9121	0.9129	2.413
rf	Random Forest Classifier	0.9720	0.9945	0.9217	0.9380	0.9296	0.9122	0.9124	7.397
et	Extra Trees Classifier	0.9712	0.9953	0.8968	0.9565	0.9256	0.9077	0.9086	1.541
gbc	Gradient Boosting Classifier	0.9615	0.9925	0.8546	0.9479	0.8984	0.8748	0.8769	16.314
nb	Naive Bayes	0.9575	0.9839	0.8863	0.9001	0.8930	0.8665	0.8667	0.035
ada	Ada Boost Classifier	0.9437	0.9755	0.8223	0.8886	0.8537	0.8189	0.8202	3.289
dt	Decision Tree Classifier	0.9365	0.8953	0.8266	0.8518	0.8389	0.7994	0.7996	1.801
qda	Quadratic Discriminant Analysis	0.9214	0.9602	0.8440	0.7814	0.8111	0.7616	0.7628	0.158
knn	K Neighbors Classifier	0.9181	0.9031	0.5960	0.9903	0.7436	0.6985	0.7307	2.533
lda	Linear Discriminant Analysis	0.8206	0.5242	0.1181	0.8798	0.2071	0.1685	0.2805	0.399
lr	Logistic Regression	0.8201	0.5247	0.1168	0.8727	0.2050	0.1663	0.2773	1.618
ridge	Ridge Classifier	0.8150	0.0000	0.0826	0.9093	0.1506	0.1218	0.2388	0.036
dummy	Dummy Classifier	0.8001	0.5000	0.0000	0.0000	0.0000	0.0000	0.0000	0.025
svm	SVM - Linear Kernel	0.7041	0.0000	0.4636	0.3330	0.3860	0.1993	0.2044	0.189

Hyperparamteres

tune model(best_model)

₽		Accuracy	AUC	Recall	Prec.	F1	Карра	MCC
	Fold							
	0	0.9789	0.9980	0.9379	0.9557	0.9467	0.9335	0.9336
	1	0.9627	0.9866	0.8820	0.9281	0.9045	0.8813	0.8818
	2	0.9752	0.9967	0.9379	0.9379	0.9379	0.9224	0.9224
	3	0.9652	0.9954	0.8696	0.9524	0.9091	0.8876	0.8890
	4	0.9789	0.9938	0.9255	0.9675	0.9460	0.9329	0.9333
	5	0.9739	0.9949	0.8944	0.9730	0.9320	0.9159	0.9172
	6	0.9776	0.9953	0.9379	0.9497	0.9438	0.9298	0.9298
	7	0.9702	0.9960	0.8696	0.9790	0.9211	0.9028	0.9052
	8	0.9839	0.9969	0.9379	0.9805	0.9587	0.9487	0.9491
	9	0.9813	0.9966	0.9500	0.9560	0.9530	0.9413	0.9413
	Mean	0.9748	0.9950	0.9143	0.9580	0.9353	0.9196	0.9203
	Std	0.0065	0.0030	0.0301	0.0163	0.0174	0.0214	0.0210

CNN Model

Layer (type)	Output Shape	Param #				
		========				
conv1d (Conv1D)	(None, 178, 32)	128				
<pre>max_pooling1d (MaxPooling1D)</pre>	(None, 89, 32)	0				
dropout (Dropout)	(None, 89, 32)	0				
conv1d_1 (Conv1D)	(None, 89, 64)	10304				
<pre>max_pooling1d_1 (MaxPooling 1D)</pre>	(None, 44, 64)	0				
dropout_1 (Dropout)	(None, 44, 64)	0				
conv1d_2 (Conv1D)	(None, 44, 128)	57472				
<pre>max_pooling1d_2 (MaxPooling 1D)</pre>	(None, 22, 128)	0				
dropout_2 (Dropout)	(None, 22, 128)	0				
conv1d_3 (Conv1D)	(None, 22, 256)	295168				
<pre>max_pooling1d_3 (MaxPooling 1D)</pre>	(None, 11, 256)	0				
dropout_3 (Dropout)	(None, 11, 256)	0				
flatten (Flatten)	(None, 2816)	0				
dense (Dense)	(None, 50)	140850				
dense_1 (Dense)	(None, 1)	51				
Total params: 503 973						

Total params: 503,973

Trainable params: 503,973 Non-trainable params: 0

CNN Classification Report

	precision	recall	f1-score	support
0	0.98 0.99	1.00	0.99 0.97	2285 590
accuracy macro avg	0.99	0.97	0.99 0.98	2875 2875
weighted avg	0.99	0.99	0.99	2875

Confusion Matrix

THANKS

Onur KARASOY onkarasoy@gmail.com