Named Entity Recognition

Sequenzklassifikation mit Hidden Markov Models und dem Perzeptron-Algorithmus

Dustin Beyer

Web Technologie und Informationssysteme

04.08.2010

Gliederung

- Motivation
- 2 Problemstellung
- Methode
- 4 Implementierung
- 5 Experimente

Gliederung

- Motivation
- Problemstellung
- Methode
- 4 Implementierung
- Experimente

Gliederung

- Motivation
- Problemstellung
- Methode
- 4 Implementierung
- Experimente

Problemstellung

Beispiel

Offene Stadtinformationssysteme

VON Christiane Schulzki-Haddouti 28. MAI 2010 UM 11:53 UHR

Das im Herbst erst gegründete OpenData Network hat mit OpenBerlin.net ein kleines Projekt gestartet, das Keim eines offenen Stadtinformationssystems werden könnte. Es enthält im Moment Maßnahmen des Konjunkturpakets II sowie statische Karteninformationen zur Sozialstruktur Berlins. Die Daten bzw. Bilder stammen aus dem FIS-Broker der Stadt Berlin.

OpenBerlin.net basiert auf dem Projekt Mapnificent des Berliner Informatikers Stefan Wehrmeyer, der unter anderem auch die Daten des öffentlichen Nahverkehrs sowie Kriminalitätsdaten verwendet. [...] Wehrmeyer selbst ließ sich vom britischen Projekt Mapumental inspirieren, die noch in private beta ist.

Problemstellung

Beispiel

Offene Stadtinformationssysteme

VON Christiane Schulzki-Haddouti 28. MAI 2010 UM 11:53 UHR

Das im Herbst erst gegründete OpenData Network hat mit OpenBerlin.net ein kleines Projekt gestartet, das Keim eines offenen Stadtinformationssystems werden könnte. Es enthält im Moment Maßnahmen des Konjunkturpakets II sowie statische Karteninformationen zur Sozialstruktur Berlins. Die Daten bzw. Bilder stammen aus dem FIS-Broker der Stadt Berlin.

OpenBerlin.net basiert auf dem Projekt Mapnificent des Berliner Informatikers Stefan Wehrmeyer, der unter anderem auch die Daten des öffentlichen Nahverkehrs sowie Kriminalitätsdaten verwendet. [...] Wehrmeyer selbst ließ sich vom britischen Projekt Mapumental inspirieren, die noch in private beta ist.

Problemstellung

Beispiel

Offene Stadtinformationssysteme

VON Christiane Schulzki-Haddouti 28. MAI 2010 UM 11:53 UHR

Das im Herbst erst gegründete OpenData Network hat mit OpenBerlin.net ein kleines Projekt gestartet, das Keim eines offenen Stadtinformationssystems werden könnte. Es enthält im Moment Maßnahmen des Konjunkturpakets II sowie statische Karteninformationen zur Sozialstruktur Berlins. Die Daten bzw. Bilder stammen aus dem FIS-Broker der Stadt Berlin.

OpenBerlin.net basiert auf dem Projekt Mapnificent des Berliner Informatikers Stefan Wehrmeyer, der unter anderem auch die Daten des öffentlichen Nahverkehrs sowie Kriminalitätsdaten verwendet. [...] Wehrmeyer selbst ließ sich vom britischen Projekt Mapumental inspirieren, die noch in private beta ist.

Lösungsansatz

Lösungsansatz

Maschinelle Lernverfahren

Maschinelle Lernverfahren

- Eingangssequenz: $X = x_1 x_2 \dots x_{|X|}$
- Klassensequenz: $C = c_1 c_2 \dots c_{|X|}$
- Modellierung: $P(C|X) = P(c_1c_2...c_{|X|}|x_1x_2...x_{|X|})$

Maschinelle Lernverfahren

- Eingangssequenz: $X = x_1 x_2 \dots x_{|X|}$
- Klassensequenz: $C = c_1 c_2 \dots c_{|X|}$
- Modellierung: $P(C|X) = P(c_1c_2...c_{|X|}|x_1x_2...x_{|X|})$
- Dekodierung: $\underset{C}{\operatorname{arg max}} P(C|X)$

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

8 / 22

Gliederung

- Motivation
- 2 Problemstellung
- Methode
- 4 Implementierung
- Experimente

Hidden Markov Model

Perzeptron-Algorithmus

Modellierung:

$$P(C|X) \propto P(X,C)$$
 (Generativ)

$$P(C|X) \approx h(X)$$
 (Diskriminativ)

Hidden Markov Model

Perzeptron-Algorithmus

Modellierung:

$$P(C|X) \propto P(X,C)$$
 (Generativ)

$$P(C|X) \approx h(X)$$
 (Diskriminativ)

Hidden Markov Model	Perzeptron-Algorithmus
Nodellierung:	
$P(C X) \propto P(X,C)$ (Generativ)	$P(C X) \approx h(X)$ (Diskriminativ)
Vissensakkumulierung:	

Feature-Vektoren

Bedingte Wahrscheinlichkeiten

Hidden Markov Model	Perzeptron-Algorithmus	
Modellierung:		
$P(C X) \propto P(X,C)$ (Generativ)	$P(C X) \approx h(X)$ (Diskriminativ)	
Wissensakkumulierung:		
Bedingte Wahrscheinlichkeiten	Feature-Vektoren	
Dekodierung:		
Viterbi-Algorithmus (Global)	Greedy Search (Lokal)	

Hidden Markov Model	Perzeptron-Algorithmus	
Modellierung:		
$P(C X) \propto P(X,C)$ (Generativ)	$P(C X) \approx h(X)$ (Diskriminativ)	
Wissensakkumulierung:		
Bedingte Wahrscheinlichkeiten	Feature-Vektoren	
Dekodierung:		
Viterbi-Algorithmus (Global)	Greedy Search (Lokal)	

Starken:

Geringe Laufzeit beim Lernen, Abwägen der Entscheidungen beim Dekodieren, Kann viel Information aus Klassensequenz beachten

Hohe Wissensakkumulierung möglich, sehr flexibel in der Featurewahl, geringe Laufzeit beim Dekodieren

Hidden Markov Model	Perzeptron-Algorithmus	
Modellierung:		
$P(C X) \propto P(X,C)$ (Generativ)	$P(C X) \approx h(X)$ (Diskriminativ)	
Wissensakkumulierung:		
Bedingte Wahrscheinlichkeiten	Feature-Vektoren	
Dekodierung:		
Viterbi-Algorithmus (Global)	Greedy Search (Lokal)	
Stärken:		
Geringe Laufzeit beim Lernen, Abwägen der Entscheidungen beim Dekodieren, Kann viel Information aus Klassensequenz beachten	Hohe Wissensakkumulierung möglich, sehr flexibel in der Featurewahl, geringe Laufzeit beim Dekodieren	
Limitierungen:		

Keine Konvergenz des Trainingsfehlers,

10 / 22

wenn Daten nicht linear separierbar sind

Alles Wissen in bedingten Wahrscheinlich-

keiten, sehr unflexibel in Featurewahl

Gliederung

- Motivation
- 2 Problemstellung
- Methode
- 4 Implementierung
- Experimente

Framework

- Experimentierumgebung
- Datenstrukturen
- Klassifikationsalgorithmen:
 - Baseline
 - Unigram Hidden Markov Model
 - Bigram Hidden Markov Model
 - Perzeptron

Features im Perzeptron-Algorithmus

Features im Perzeptron-Algorithmus

Trainingsmenge

Sitz in Emden

Feature Template Windows

word(-1,0), part_of_speech(-1,0), is_title(0,0)

Features im Perzeptron-Algorithmus

Gliederung

- Motivation
- 2 Problemstellung
- Methode
- 4 Implementierung
- 5 Experimente

Setup

Setup

• Datensatz aus dem CoNLL-2003 Shared Task.

Deutsch	Sätze	Token
Training	12705	206931
Development	3068	51444
Test	3160	51943

Englisch	Sätze	Token
Training	14987	203621
Development	3466	51362
Test	3684	46435

Deutsch	LOC	MISC	ORG	PER
Training	4363	2288	2427	2773
Development	1181	1010	1241	1401
Test	1035	670	773	1195

Ergebnisse

Deutscher Datensatz

Englischer Datensatz

Einfluss der Features (Deutscher Datensatz)

Gesamtgewinn: **17,4** % **F**₁-**Measure**

Größe des Featurevokabulars

• Deutsch: 223617

• Englisch: 74964

Fazit

- Der Perzeptron-Algorithmus scheint sich besser für Named Entity Recognition zu eignen als Hidden Markov Models.
- Die Einbeziehung einer großen Menge an Features scheint eine Schlüsselqualifikation für Named Entity Recognition zu sein.
- Alle Algorithmen erzielen auf dem englischen Datensatz bessere Ergebnisse als auf dem deutschen.

Demonstration des Frameworks

Quellen

Speech and Language Processing

[Jurafsky, D. und Martin, J. H., Prentice Hall, 2008]

Information Extraction: Distilling Structured Data from Unstructured Text
IMcCallum, A., ACM, 2005

Markov Models for language-independent named entity recognition

[Malouf, R., CoNLL, 2002]

• Design challenges and misconceptions in named entity recognition

[Ratinov, L. und Roth, D., ACL, 2009]

 Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with Perceptron Algorithms

[Collins, M., NLP, 2002]

Danke für Ihre Aufmerksamkeit!