GSM Global System for Mobile Communication

Hany El-Ghaish

CONTENT

- -communication systems overview
- Introduction to Cellular Fundamentals
- Network Architecture
- GSM Air Interface
- Digital Mobile Elements
- GSM Network Protocols

Communication systems

- Deliver as much information as possible from the source to the destination (capacity issues).
- Deliver information in shortest time (delay issues).
- Reduce errors in delivery of information (error detection/correction issues).

Basic Communications System Elements

- Source
- Destination
- Transmission Medium

Source Transmission Medium

Destination

Transmission Medium

Long Distance Communications

Telecommunication is the process of long distance communications.

Early telecommunications involved smoke, flags, drums, and other such methods

to relay messages and information.

Telegraph

The first wire line communications was the telegraph. Invented in the mid 19th

century, it opened a new era in long-distance telecommunication.

Telephone

When we talk over the telephone, our voice is converted to a electronic signal by

the microphone in the handset. This signal is then transmitted over telephone wires.

Telephone Networks Early Switching Devices

Switches are devices that cause a connection between two transmitting/receiving devices.

Modern Switching Devices

Today many different types of automated switches are used which make it possible for fast placement of calls.

Wired VS Wireless

- Losses
- Mobility
- Security
- Bandwidth
- Cost

Wireless Telecommunications

Transition from analog to digital

Capacity

Compression in digital gives more channels

compatibility with other systems

As ISDN (Integrated service Digital Network)

- Cost
- Quality
- Security

- Some techniques used in wireless communication:
 - FDM
 - TDM
 - FDMA
 - TDMA

@ FDM

TDM

@ FDMA

 FDMA is the division of each bandwidth (RX,TX) into many frequency bands (channels)

TDMA

It allows several users to share the same radio frequency (RF) by dividing it into different timeslots

TDMA/FDMA

- Types of telephones
 - Fixed (PSTN) telephones
 - Cordless Telephones
 - Mobile Telephones

Modes OF Transmission in wireless

- Simplex communication system
 - Example:
 - Television, radio

- Half Duplex communication system
 - Example :
 - Police radio

- Full Duplex communication system
 - Example :
 - GSM mobile radio

Simple growth was the single transmitting/receiving station

- heavy, bulky and expensive

- no switching between regions

low quality

- limited capacity

rapid market saturation

- power hungry transceiver

- power level was not safe

- First generation cellular system
 - Introduction of analog cellular systems in the late 1970s and 1980s
 - analog system
 - incompatible systems
 - limited to voice service
 - no encryption
 - FM modulation
 - FDMA transmission technology
 - suffer from capacity saturation

16 Frequency Bands

Systems of first generation

System	Year of Introduction	Region	Access Mode/ Modulation
MCS-L2	1988 (1979)	Japan	FDMA/PM
NMT 450	1981	Scandinavia	FDMA/FM
NMT 900	1986	Scandinavia	FDMA/FM
AMPS	1983	North America	FDMA/FM
NAMPS	1991	North America	FDMA/FM
TACS	1985	United Kingdom	FDMA/FM
ETACS	1988	United Kingdom	FDMA/FM
JTACS	1989	Japan	FDMA/FM
NTACS	1991	Japan	FDMA/FM
C450	1985	Germany	FDMA/FM
RadioCom	1985	France	FDMA/FM

Second Generation cellular system

- Introduction of digital cellular systems (90's)
- development of unified international standard for mobile communications
- pan-national roaming
- digital encryption
- enhanced range of services (data + voice)
- low power consumption
- light weight, compact and pocket size terminals
- TDMA transmission technology
- huge capacity

- WORLDWIDE GSM NETWORKS IN SERVICE

- Third generation cellular system
 - Multimedia services
 - W-CDMA transmission technology
 - Large BW
 - Higher Bit Rate
 - More Services

The cellular structure

- area divided into small zones (cells)
- cells grouped into clusters
- this gives less power usage
- enable frequency reuse

· Cell shape

60° cells

CELL CELL
SITE
CELL
CELL
CELL

6 Cell Site Transmit/Receive Antenna 120° cells

3 Cell Site Transmit/Receive Antenna 0mni (360°) cell site

cell sectorization

- adaptive power control
 - as cellular mobile moves power seen at Bs changed
 - so we use adaptive power control to maintain it

cell types

- macrocell
- microcell
- picocell

Very small cells

Pico Cell

cell splitting

- as traffic load increases in a cell
- to increase channels designer tend to split cell into smaller cells
- R decrease Dc decrease so more capacity

cell splitting

- channel allocation techniques
 - Fixed channel assignment technique (less Ts)
 - dynamic channel assignment technique (largest Ts)
 - hybrid channel assignment technique (Improved)

cell splitting

Lecture 3 : Chapter1

- channel characteristics
 - Multipath fading

- -It gives a Rayleigh fading distribution
- Rayleigh fading is frequency selective

- To overcome multipath fading we use :
 - Microscopic diversity and combining techniques
 - Frequency hopping
 - Error correction
 - Interleaving technique
 - adaptive power control

-Microscopic diversity techniques :

1-Time diversity technique

2-Frequency diversity technique

3-Space diversity technique

-Space diversity technique

- Combining techniques:
 - 1-Selective technique
 - used in mobile due to simplicity
 - 2-Maximal ratio technique
 - Best fading reduction
 - 3-Equal gain technique

- Shadow fading

-The Solution of this problem by using Macroscopic Diversity By selecting a BS which is not shadowed when others are.

FUNDAMENTAL OF CELLULAR 3731EM

- Doppler shift
 - +ve if the mobile moves toward the BS
 - -ve if the mobile moves away from the BS
 - The Doppler frequency shift should be compensated so that a correct frequency synchronization is achieved.

- Co-channel interference

- Adjacent channel interference

Frequency (MHz)

- Delay Spread (Time dispersion)
 - Due to multipath fading
 - To overcome this we use delay equalizer

- Distance between MS and BS
 - This makes Time alignment Problem
 - To overcome this system should respond to this delay

- Combined signal loss

- Combined signal loss

Thanks