

- 1 Background
- 2 Hardware Implementation
- 3 Deep learning Algorithm
- 4 Summary of this work

Background

□ Background and Significance

Maritime shipping connecting the global economy

Ports and Trade White the state of the stat

Gas leak detection is essential for ensuring the maritime shipping safety!

□ Common Existing Gas Detection Devices

> Fixed Gas Detector

Advantages: 24H real-time

monitoring

Disadvantages: Fixed location,

poor mobility

Mobile Gas Detector

Advantages: Portable gas detection

Disadvantages: Poor mobility,

high power consumption

> GCMS

Advantages: Exceptional detection performance

Disadvantages: Complex structure,

lack of mobility

The portable electronic nose system has broad application prospects in ship gas detection!

☐ Existing Issues with Electronic Noses

Poor selectivity for detecting multiple gases

Low accuracy in detecting single gases

Current electronic nose systems generally suffer from poor selectivity and low accuracy!

Design Strategies and Concepts Response **Data Analysis Data Collecting** Convolutional neural network Sensor responses Time Data Gas A processing Time window Gas X Gas Concent. detection system

Design of a sensor array-based circuit and training of a deep learning model for precise identification of leaked gases

Model

training

Gas Sensor Array Module

Signal

acquirition

□ Portable Electronic Nose System Design Route

☐ System Working Principle

□ Sensor Array Board

> Schematic diagram

Size of whole board 60mm*50mm

Physical diagram

Gas MEMS sensors:

Temperature and humidity MEMS sensors:

Detecting gas types: NO₂, VOCs, H₂, NH₃, etc.

Detection range: Temperature 5°C-60°C Humidity 0%-80%

■ Main Control Board

> Schematic diagram

Size of the whole board 90cm*50cm

> Front and back physical diagram

Main Control Board

Main control board PCB (4-layer board)

> Top layer

> GND layer

> VCC layer

> Baseboard

GND layer: Separate analog GND and digital GND | VCC layer: Isolate analog VCC and digital VCC |

□ Power Management and Button Board

Schematic diagram

Size of the whole board 90cm*50cm

> Front and back physical diagram

■ Modeling and Physical Diagram of Shell and Internal Structure

□ Experimental Procedure

1	Sensor data			
	0.181	0.092	0.009	
 -	0.182	0.092	0.009	i I
 	0.177	0.091	0.009	
'				

v ′ —	$X_i - \mu$	$X_i - Xmean$
Λ_i –	σ	$\overline{X_{std}}$

Standardization

Pre-processed data

Achieve high accuracy detection by combining deep learning!

□ Algorithmic Model

□ Experimental Results

How to achieve real-time detection?

☐ Sliding Window

Sliding window sampling enables real-time detection!

☐ Summary of this work

- Designed and developed a portable electronic nose system capable of real-time detection.
- The combination of gas sensor arrays and deep learning algorithms can improve selectivity and accuracy.

