Lista Espaços Métricos

Denotamos $\mathbb{R}_0^+ = [0, +\infty)$, $R_+ = (0, \infty)$, $Q_+ = \mathbb{R}_+ \cap \mathbb{Q}$ e $Z_+ = \mathbb{Z} \cap \mathbb{R}_+$. Seja (\mathcal{X}, d) um espaco métrico.

Exercício 1 Prove os exercícios dados em sala de aula.

Exercício 2 Dados $x, y, z \in \mathcal{X}$, prove que

$$d(x,z) \ge |d(x,y) - d(y,z)|.$$

E que se d(x, z) > d(z, y), então $x \neq y$.

Exercício 3 Dados n pontos x_1, \ldots, x_n em \mathcal{X} , prove que

$$d(x_1, x_n) \le d(x_1, x_2) + \dots + d(x_{n-1}, x_n).$$

Exercício 4 Prove que (\mathcal{X}, d) é um espaço métrico para os seguintes casos:

(a)
$$\mathcal{X} = \mathbb{R}^n$$
 e $d(x, y) = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}$ para todo $x, y \in \mathcal{X}$.

(b) $\mathcal{X} = C[a, b]$ (conjunto das funções contínuas $f : [a, b] \to \mathbb{R}$) e

$$d(f,g) = \max_{x \in [a,b]} |f(x) - g(x)|$$

para $f, g \in \mathcal{X}$.

(c) \mathcal{X} é um conjunto qualquer e

$$d(x,y) = \begin{cases} 1 & \text{se } x \neq y \\ 0 & \text{se } x = y \end{cases}$$

(d) $\mathcal{X} = l_2$ é o espaço das sequências $\mathbf{x} = (x_1, x_2, \dots, x_n, \dots)$ de números reais que satisfazem $\sum_{n=1}^{+\infty} x_n < +\infty$ e a distância é dada pela fórmula $d(x, y) = \left(\sum_{i=1}^{+\infty} (x_i - y_i)^2\right)^{1/2}$.

Exercício 5 Mostre que se d é uma métrica, as funções 2d e d/(1+d) também são métricas. Além do mais, d^2 é uma métrica?

Exercício 6 Seja $\varphi: \mathbb{R}_0^+ \longrightarrow \mathbb{R}_0^+$ uma função crescente com $\varphi(0) = 0$ e subaditiva, isto é, para todo $t, s \in \mathbb{R}_0^+$, vale que $\varphi(t+s) \leq \varphi(t) + \varphi(s)$. Se (M,d) é um espaço métrico, mostre que

$$d': M \times M \to \mathbb{R}^+$$

 $(x,y) \mapsto d'(x,y) = \varphi(d(x,y))$

é uma métrica sobre M.

Exercício 7 Determine se as seguintes funções são métricas em \mathbb{R} , para $s, t \in \mathbb{R}$,

(a)
$$\varphi_1(t,s) = \sqrt{|t-s|}$$

(b)
$$\varphi_2(t,s) = |t^2 - s^2|$$

(c)
$$\varphi_3(t,s) = |t - 2s|$$

Exercício 8 Mostre que um conjunto $A \subseteq \mathbb{R}$ é aberto se, e somente se, pode ser escrito como a união enumerável de intervalos abertos disjuntos. *Dica: que conjunto é denso nos reais e enumerável?*

Exercício 9 Mostre que em todo espaço métrico, um conjunto finito de pontos é fechado.

Exercício 10 O conjunto de Cantor é um conjunto na reta descoberto por Henry Smith em 1874 e introduzido por Georg Cantor em 1883 que apresenta uma série de propriedades contra-intuitivas¹. Para construí-lo, inicie com o intervalo [0,1]. Reparta-o em três segmentos iguais e remova o intervalo aberto do meio (1/3,2/3), restando o conjunto $[0,1/3] \cup [2/3,1]$. Remova o intervalo aberto do meio de cada segmento, restando $[0,1/9] \cup [2/9,1/3] \cup [2/3,7/9] \cup [8/9,1]$. Continue esse processo indefinidamente e obtemos o conjunto \mathcal{C} . Mostre que \mathcal{C} é fechado.

Exercício 11 Tome $\mathcal{X} = C[a, b]$ e fixe L > 0. Mostre que o conjunto

$$A = \{ f \in \mathcal{X} | |f(x)| < L, \forall x \in [a, b] \}$$

é aberto em \mathcal{X} com a métrica máximo introduzida no Exercício 4.

Exercício 12 Definimos a relação no espaços dos subconjuntos de um espaço métrico como $A \leq B \iff A \subseteq B$. Note que essa relação é uma ordem parcial² nos subconjuntos, mas não estabelece uma ordem total (verifique!). Prove que \bar{A} é o menor conjunto fechado que contém A, isto é, \bar{A} é fechado que contém A e se F é fechado que contém A, então $\bar{A} \subseteq F$. Além disso, \mathring{A} é o maior conjunto aberto que está contido em A, isto é, \mathring{A} é aberto contido em A e se O é fechado que está contido em A, então $\mathring{A} \subseteq O$.

¹https://en.wikipedia.org/wiki/Cantor_set

²https://en.wikipedia.org/wiki/Partially_ordered_set

Exercício 13 Dê um exemplo de um espaço métrico e uma família de conjuntos $(A_n)_{n\in\mathbb{N}}$ tais que

$$\overline{\bigcup_{n\in\mathbb{N}} A_n} \neq \bigcup_{n\in\mathbb{N}} \overline{A_n}.$$

Exercício 14 Considere $\mathcal{X} = \mathbb{R}$ e d(x,y) = |x-y|. Mostre que um ponto interior de um subconjunto A é um ponto limite. O mesmo vale para $\mathcal{X} = \mathbb{Q}$?

Exercício 15 Num espaço métrico, defina a noção de distância de um ponto a um conjunto como

$$d(x, A) = \inf_{a \in A} d(x, a).$$

Mostre que $x \in \overline{A}$ se, e somente se, d(x, A) = 0.

Exercício 16 Um ponto $x \in A^c$ é dito ponto exterior de A se existe r > 0 tal que $B_r(x) \subseteq A^c$. Mostre que A^c tem a mesma fronteira que A e que seu interior coincide com o exterior de A, ou seja, $(\overline{A})^c = (\mathring{A}^c)$. Conclua que $\partial A = \overline{A} \cap \overline{A^c}$.

Exercício 17 Sejam (\mathcal{X}, d_X) e (\mathcal{Y}, d_Y) espaços métricos. Mostre que $(\mathcal{X} \times \mathcal{Y}, d)$ com $d((x_1, y_1), (x_2, y_2)) = d_X(x_1, x_2) + d_Y(y_1, y_2)$ é um espaço métrico. Além disso, mostre que uma sequência $\{(x_n, y_n)\}$ converge em $\mathcal{X} \times \mathcal{Y}$ se, e somente se, $\{x_n\}$ e $\{y_n\}$ são convergentes em seus respectivos espaços.

Exercício 18 Mostre que \mathbb{Q} é denso em \mathbb{R} .

Exercício 19 Seja $\mathcal{X} = C[a, b]$ munido da métrica máximo introduzida no Exercício 4 e A o conjunto dos polinômios definidos em [a, b]. Mostre que A é denso em \mathcal{X} .

Exercício 20 Mostre que $f: \mathbb{N} \to \mathbb{N}$ é contínua para qualquer função f.

Exercício 21 Mostre que a intersecção de dois conjuntos densos e abertos em \mathcal{X} é densa e aberta em \mathcal{X} .

Exercício 22 Todo homeomorfismo é uma isometria?

Exercício 23 Se $x_n \to x$, mostre que $(x_n)_{n \in \mathbb{N}}$ é uma sequência de Cauchy e que toda subsequência de $(x_n)_{n \in \mathbb{N}}$ converge para x.

Exercício 24 Mostre que se uma sequência de Cauchy possui uma subsequência convergente, então ela também converge.

Exercício 25 Se $d(x_{n+1}, x_n) \leq ac^n$ para algum c < 1 e a > 0, então $\{x_n\}$ é Cauchy.

Exercício 26 Seja (\mathcal{X}, d) um espaço métrico completo e A um subconjunto fechado de \mathcal{X} . Mostre que o espaço métrico (A, d) é completo.

Exercício 27 (Teorema da Contração de Banach) Um mapeamento $f: \mathcal{X} \to \mathcal{X}$ é uma contração se existe $a \in (0,1)$ tal que

$$d(f(x), f(y)) \le a \cdot d(x, y), \forall x, y \in \mathcal{X}.$$

Suponha que \mathcal{X} é completo. Mostre que toda contração possui um único ponto fixo, isto é, existe um único $x \in \mathcal{X}$ tal que f(x) = x. Dica: Defina uma sequência $x_{n+1} = f(x_n)$ com $x_1 \in \mathcal{X}$ arbitrário.

Exercício 28 Sejam $(\mathcal{X}_1, d_1), \dots, (\mathcal{X}_n, d_n)$ espaços métricos completos e defina o espaço produto como $\mathcal{X} := \mathcal{X}_1 \times \dots \times \mathcal{X}_n$. Sejam $x = (x_1, \dots, x_n)$ e $y = (y_1, \dots, y_n)$ de \mathcal{X} . Prove que \mathcal{X} é completo quando a ele são atribuídas as seguintes métricas

- (a) $d(x,y) = d_1(x_1,y_1) + \cdots + d_n(x_n,y_n);$
- (b) $d(x, y) = \max_{1 \le i \le n} d_i(x_i, y_i);$
- (c) $d(x,y) = \left(\sum_{i=1}^{n} d_i(x_i, y_i)^2\right)^{1/2}$.

Exercício 29 Mostre que o espaço $\mathcal{X} = C[a,b]$ munido da métrica máximo é completo.

Exercício 30 Sejam (\mathcal{X}, d_X) e (\mathcal{Y}, d_Y) espaços métricos. Uma função $f: \mathcal{X} \to \mathcal{Y}$ é uniformemente contínua em \mathcal{X} se para todo $\epsilon > 0$, existe $\delta > 0$ tal que $d_X(x_1, x_2) < \delta$ implique que $d_Y(f(x_1), f(x_2)) < \epsilon$.

Prove que se (\mathcal{Y}, d_Y) é completo e $f: A \to \mathcal{Y}$ é uniformemente contínua em A com $\bar{A} = \mathcal{X}$, então f tem uma única extensão contínua $g: \mathcal{X} \to \mathcal{Y}$ e esta extensão g é uniformemente contínua em \mathcal{X} .

Exercício 31 (Completando os números racionais) Provamos que todo espaço métrico (\mathcal{X}, d) tem um completamento (\mathcal{X}^*, d^*) e que, além disso, ele é único a menos de uma isometria. Considere o espaço métrico (\mathbb{Q}, d) com d(x, y) = |x - y|.

- (a) Mostre que (\mathbb{Q}, d) não é completo, isto é, mostre uma sequência de Cauchy não convergente. Sabemos que existe um completamento (\mathbb{Q}^*, d^*) . A ideia desse exercício é construí-lo e mostrar que ele satisfaz os axiomas que definem os números reais.
- (b) Sejam $s_x = \{x_n\}$ e $s_y = \{y_n\}$ sequências de Cauchy definidas em \mathbb{Q} . Defina a relação R de forma que $s_x R s_y$ se, e somente se, $\lim_{n\to\infty} d(x_n, y_n) = 0$. Mostre que R é uma relação de equivalência. Denote R por \sim .
- (c) Defina \mathbb{R} como o conjunto quociente \mathbb{Q}/\sim , o conjunto das classes de equivalência de \mathbb{Q} , e denote seus elementos por $x=[x_n]$. Mostre que soma e produto de elementos de \mathbb{R} estão bem definidos com

$$x + y := [x_n + y_n] e xy := [x_n y_n].$$

e que \mathbb{R} é um corpo com essas operações.

(d) Dizemos que $x = [x_n] > [0]$ se existem $\epsilon \in Q_+$ e $N \in \mathbb{N}$, tal que $x_n \ge \epsilon$ para todo $n \ge N$. Defina a relação de ordem em \mathbb{R} como $x \ge y$ se x - y > 0 ou $x \sim y$. Mostre que ela define uma ordem total sobre \mathbb{R} .

- (e) Defina $d^*(x,y) = \lim_{n\to\infty} |x_n y_n|$, em que $\{x_n\}$ e $\{y_n\}$ são representantes das suas respectivas classes de equivalência. Mostre que d^* está bem definido e que (\mathbb{R}, d^*) é um espaço métrico. Para isso, basta mostrar que $|x| := [|x_n|]$ está bem definido e que é, de fato, o valor absoluto como conhecemos $|x| = \max\{x, -x\}$.
- (f) Note que \mathbb{Q} é isométrico ao conjunto $\mathbb{Q}_0 = \{[a, a, \dots,] : a \in \mathbb{Q}\} \subseteq \mathbb{R}$ e que Q_0 é denso em \mathbb{R} .
- (g) Mostre que o *axioma da completude* é satisfeito, isto é, que todo conjunto não vazio limitado superiormente tem supremo.
- (h) Mostre que \mathbb{R} é completo.

Exercício 32 Seja (\mathbb{N}, d) espaço métrico com d(x, y) = |x - y|. Prove que $\{x\}$ é conjunto aberto de \mathbb{N} . Prove que esse resultado vale para uma métrica arbitrária ou encontre um contra-exemplo, isto é, uma métrica d e um ponto $x \in \mathbb{N}$ de forma que $\{x\}$ não seja aberto considerando essa métrica.

Exercício 33 Mostre que o teorema da sequência dos conjuntos fechados encaixados deixa de valer se retirarmos a hipótese de que os diâmetros tendem a zero.

Exercício 34 Prove que sequências de Cauchy são limitadas. Conclua que sequências ilimitadas não podem convergir.

Exercício 35 Sejam (\mathcal{X}, d) um espaço métrico e $A \subseteq \mathcal{X}$. Mostre que $d(A) = d(\bar{A})$.

Exercício 36 Sejam (\mathcal{X}, d_X) e (\mathcal{Y}, d_y) espaços métricos. Uma função $f : \mathcal{X} \to \mathcal{Y}$ é dita função Lipschitz se existe L > 0 tal que $\forall x, y \in \mathcal{X}$, vale que

$$d_Y(f(x), f(y)) \le Ld_X(x, y).$$

Seja f função Lipschitz. Mostre que para todo conjunto $A \subseteq \mathcal{X}$ limitado, sua imagem $f(A) \subseteq \mathcal{Y}$ é limitada.

Exercício 37 Considere o espaço l_2 definido no Exercício 4. Defina Π o conjunto dos pontos $x \in l_2$ que satisfazem $|x_n| \leq 2^{-n-1}, n \geq 1$. Prove que Π é totalmente limitado.

Exercício 38 Mostre que $[0,1] \cap \mathbb{Q}$ é fechado e totalmente limitado em \mathbb{Q} , mas não é compacto.

Exercício 39 Sejam A e B subconjuntos compactos de um espaço métrico (\mathcal{X}, d) tais que $A \cap B = \emptyset$. Prove que d(A, B) > 0. E se A e B forem subconjuntos fechados, essa afirmação é válida? Encontre um contra-exemplo.

Exercício 40 Em \mathbb{R}^n , um conjunto A é limitado se, e somente é, é totalmente limitado. Pode considerar métrica derivada da norma 1, norma 2 ou norma máximo. Futuramente, vamos verificar que elas são equivalentes.

Exercício 41 Uma função contínua $f: \mathcal{X} \to \mathcal{Y}$, com (\mathcal{X}, d_X) e (\mathcal{Y}, d_Y) sendo espaços métricos completos, mapeia conjuntos totalmente limitados de \mathcal{X} a conjuntos totalmente limitados de \mathcal{Y} .

Exercício 42 Seja um mapeamento contínuo $f: \mathcal{X} \to \mathbb{R}$. Mostre que vale a generalização do Teorema de Weierstrass, isto é, dado um compacto $K \subseteq \mathcal{X}$, existem pontos $x_0, y_0 \in K$ tais que

$$f(x_0) = \inf_{x \in A} f(x)$$
 e $f(y_0) = \sup_{x \in A} f(x)$.

Exercício 43 Seja A um subconjunto de um espaço métrico (\mathcal{X}, d) . Prove que o completamento A^* de A é compacto se, e somente se, A é totalmente limitado.

Exercício 44 Seja (\mathcal{X}, d) um espaço métrico compacto. Prove que a isometria $f : \mathcal{X} \to \mathcal{X}$ é função bijetiva.

Exercício 45 Seja S o espaço das sequências de números reais. Dados dois pontos $x = (x_n)_{n \in \mathbb{N}}$ e $y = (y_n)_{n \in \mathbb{N}}$, defina

$$d(x,y) = \sum_{n \in \mathbb{N}} \frac{1}{2^n} \frac{|x_n - y_n|}{1 + |x_n - y_n|}.$$

Mostre que (S, d) é espaço métrico separável e completo.

Exercício 46 (Teorema de Dini) Se K é compacto e $(f_n) \subseteq C(K, \mathbb{R})$ é uma sequência crescente, convergindo pontualmente para $f \in C(K, \mathbb{R})$, então f_n converge para f em $C(K, \mathbb{R})$. Dica: Considere a cobertura de K por bolas $B_{\delta}(x)$ tal que $f - \epsilon < f_n < f$ para n suficientemente grande.

Exercício 47 Uma família de funções $F \subseteq C([a,b])$ é uniformemente limitada se existe M>0 tal que |f(x)|< M para toda $f\in F$ e $x\in [a,b]$. Verifique a seguinte versão do Teorema de Arzelà: $F\subseteq C([a,b])$ é relativamente compacto em C[a,b] se, e somente se, F é uniformemente limitado e equicontínuo.

Exercício 48 Seja (\mathcal{X}, d) um espaço métrico. Se (\mathcal{X}, d) é totalmente limitado, então ele é separável. Em contrapartida, se existe uma quantidade não enumerável de bolas disjuntas, então o espaço não é separável.

Exercício 49 Mostre que C[a,b] é separável (usando funções lineares com bicos nos números racionais). Também mostre que $C(\mathbb{R}_+)$ não é separável.

Exercício 50 Nesse exercício, provaremos o Teorema de Cauchy-Peano de existência de soluções de equações diferenciais ordinárias. Considere a EDO

$$\dot{x}(t) = f(t, x(t)), \quad x(t_0) = x_0$$

onde $f: \Omega \to \mathbb{R}^n$ é uma função contínua e $\Omega = [t_0, t_0 + a] \times \bar{B}_b(x_0)$, para $a, b \in \mathbb{R}$. Considere a métrica $d_{\infty}(x, y) = \max\{|x_i - y_i|\}$ para $x, y \in \mathbb{R}^n$. (a) Para constantes $c, L \in \mathbb{R}$, defina o conjunto

$$\mathcal{A} := \{ \gamma : [t_0, t_0 + c] \to \mathbb{R}^n : ||\gamma(t) - \gamma(s)|| \le L|t - s|, \ \forall t, s \in [t_0, t_0 + c] \}.$$

Dados a, b, que escolha de constantes c, L nos garante que uma solução da EDO está em \mathcal{A} e é tal que $(t, \gamma(t)) \in \Omega$?

(b) Defina o funcional sobre \mathcal{A}

$$F(\gamma) = \max_{t \in [t_0, t_0 + c]} \left\| \gamma(t) - x_0 - \int_{t_0}^t f(s, \gamma(s)) ds \right\|.$$

Prove que F assume um mínimo em A.

(c) Defina a sequências de funções

$$\gamma_n(t) := \begin{cases} x_0, & \text{se } t \in [t_0, t_0 + c/n] \\ x_0 + \int_{t_0}^{t - c/n} f(s, \gamma_n(s)) \, ds, & \text{se } t \in (t_0 + c/n, t_0 + c] \end{cases}$$

Verifique que $F(\gamma_n) \to 0$ e conclua que a EDO admite ao menos uma solução \mathcal{C}^1 .