# VEŽBE IZ ALGEBRE

## Arsić Dunja, Čolić Oravec Jelena, Erić Mirjana, Janjoš Aleksandar, Kiss Maria, Matić Zagorka, Prokić dr Ivan

### Katedra za matematiku Fakultet tehničkih nauka



Novi Sad 2020.

2 Relacije

### Relacije

**Definicija 1. Binarna relacija**  $\rho$  skupa A je bilo koji skup uređenih parova čije su koordinate iz A, tj. bilo koji podskup od  $A^2$ .

Neka je  $\rho \subseteq A^2$ . Relacija  $\rho$  je:

- (R) *refleksivna* ako i samo ako  $(\forall x \in A) (x,x) \in \rho$
- (S) *simetrična* ako i samo ako  $(\forall x, y \in A) \ (x, y) \in \rho \Rightarrow (y, x) \in \rho$
- (A) antisimetrična ako i samo ako  $(\forall x, y \in A) \Big( (x, y) \in \rho \land (y, x) \in \rho \Big) \Rightarrow x = y$  ako i samo ako  $(\forall x, y \in A) \Big( (x, y) \in \rho \land x \neq y \Big) \Rightarrow (y, x) \notin \rho$
- (T) *tranzitivna* ako i samo ako  $(\forall x, y, z \in A) \Big( (x, y) \in \rho \land (y, z) \in \rho \Big) \Rightarrow (x, z) \in \rho$
- (F) funkcija ako i samo ako  $(\forall x, y, z \in A) ((x, y) \in \rho \land (x, z) \in \rho) \Rightarrow y = z$

U geometrijskoj interpretaciji  $\rho \subseteq \mathbb{R}^2$  je:

- refleksivna ako i samo je prava y = x podskup grafika od  $\rho$ ;
- simetrična ako i samo ako je grafik od  $\rho$  osno simetričan u odnosu na pravu y = x;
- antisimetrična ako i samo ako ne postoji par tačaka koje pripadaju grafiku od  $\rho$  i simetrične su u odnosu na pravu y = x;
- funkcija ako i samo ako prave paralelne sa y-osom seku grafik od ρ u najviše jednoj tački.
- ★ Za tranzitivnost ne postoji geometrijska interpretacija što se tiče relacija na skupu realnih brojeva.

**Primer 1.** Za svaki neprazan skup A važi da su  $\emptyset \subseteq A^2$  i  $A^2 \subseteq A^2$  binarne relacije (prazna i puna relacija).

**Primer 2.** Poznate relacije u geomeriji su paralelnost, ortogonalnost, podudarnost, sličnost.

**Zadatak 1.** *Ispitati koje osobine imaju sledeće relacije skupa*  $A = \{1, 2, 3, 4, 5\}$  :

Rešenje: Podvučena slova označavaju svojstvo koje dotična relacija ima.

Relacija  $\rho_1$  nije refleksivna jer npr.  $(2,2) \notin \rho_1$ . Nije ni simetrična jer npr.  $(1,2) \in \rho_1$  i  $(2,1) \notin \rho_1$ . Jeste antisimetrična jer za sve  $(x,y) \in \rho_1$  sa  $x \neq y$  redom utvrđujemo da  $(y,x) \notin \rho_1$ . Nije tranzitivna jer npr.  $(1,2) \in \rho_1$ ,  $(2,3) \in \rho_1$  i  $(1,3) \notin \rho_1$ . Na kraju,  $\rho_1$  nije ni funkcija jer za 1 imamo  $(1,2) \in \rho_1$  i  $(1,1) \in \rho_1$ .

Relacija  $\rho_2$  nije refleksivna jer npr.  $(3,3) \notin \rho_2$ . Preostale četiri osobine sigurno ima jer u relaciji nema parova  $(x,y) \in \rho_2$  takvih da je  $x \neq y$ , te ne može da postoji ni jedna smetnja za te četiri osobine.

Relacija  $\rho_3$  nije refleksivna jer npr.  $(1,1) \notin \rho_3$ . Nije simetrična jer npr.  $(4,5) \in \rho_3$  i  $(5,4) \notin \rho_3$ , nije antisimetrična jer sadrži parove  $(4,3) \in \rho_3$  i  $(3,4) \in \rho_3$ , nije tranzitivna jer  $(3,4) \in \rho_3$ ,  $(4,5) \in \rho_3$ , ali  $(3,5) \notin \rho_3$ , a takođe nije ni funkcija jer imamo  $(4,5) \in \rho_3$  i  $(4,4) \in \rho_3$ 

Za relaciju  $\rho_4$  ne važi samo refleksivnost, pošto praznom skupu ne pripada niti jedan uređen par, pa ni parovi oblika (x,x). Činjenica da je iskaz  $(x,y) \in \emptyset$  uvek netačan nam u definicijama ostalih osobina daje tačne implikacije, pa  $\rho_4$  jeste simetrična, antisimetrična, tranzitivna i funkcija.

Relacija  $\rho_5$  jeste refleksivna jer sadrži sve uređene parove elemenata iz A, pa i sve parove oblika (x,x). Jeste i simetrična i tranzitivna, ali nije antisimetrična jer npr.  $(1,2) \in \rho_5$  i  $(2,1) \in \rho_5$ , a takođe nije ni funkcija jer npr. imamo  $(1,1) \in \rho_5$  i  $(1,2) \in \rho_5$ .

**Zadatak 2.** Ispitati koje osobine imaju sledeće relacije skupa  $\mathbb R$ :

```
\rho_1 = \{(x, x^2) | x \in \mathbb{R}\},\
                                                                                                                                     <u>S</u>
\rho_2 = \{(x, -x) | x \in \mathbb{R}\},\
                                                                                                                               R
                                                                                                                                            A T
                                                                                                                                    <u>S</u>
                                                                                                                                                           F
\rho_3 = \{(x,y) | \max\{x,y\} = 1, x,y \in \mathbb{R}\},\
                                                                                                                               R
                                                                                                                                           A T
                                                                                                                                     \overline{S}
                                                                                                                                          \underline{A} T
\rho_4 = \{(x, 2x) | x \in \mathbb{R}\},\
                                                                                                                               R
                                                                                                                                     \frac{S}{S}
                                                                                                                                          \overline{A} T
                                                                                                                               R
\rho_5 = \{(x, y) | x \cdot y > 0, x, y \in \mathbb{R} \},\
                                                                                                                              R
                                                                                                                                                   T
                                                                                                                                           \boldsymbol{A}
\rho_6 = \{(x, y) | x + y = 1, x, y \in \mathbb{R}\},\
                                                                                                                                      <u>S</u>
\rho_7 = \mathbb{N}^2
                                                                                                                               R
                                                                                                                                            \boldsymbol{A}
                                                                                                                                                   T
                                                                                                                                                            F
\rho_8 = \rho_5 \cup \{(0,0)\}.
                                                                                                                               R
```

**Rešenje:** Podvučena slova označavaju svojstvo koje dotična relacija ima. Osobine ovih relacija možemo ispitivati posmatrajući njihove grafike i geometrijske interpretacije. Isprekidanom linijom označavaćemo ključnu pravu x = y.

Relacija  $\rho_1$  predstavlja kvadratnu funkciju. Nije refleksivna, pošto vidimo da seče pravu x=y u samo dve tačke (0,0) i (1,1), što znači da beskonačno mnogo tačaka oblika (x,x),  $x\in\mathbb{R}$  ne pripada relaciji  $\rho_1$ , na primer  $(2,2)\not\in\rho_1$ . Na grafiku kvadratne funkcije vidimo da on nije simetričan u odnosu na pravu x=y, pa automatski zaključujemo da relacija nije simetrična, ali jeste antisimetrična. Osobina funkcije je zadovoljena, pošto iz definicije relacije vidimo da se radi o kvadratnoj funkciji, i nema pravih paralelnih y-osi koje seku grafik u više od jedne tačke. Što se tiče tranzitivnosti zbog uređenih parova (2,4),  $(4,16)\in\rho_1$  i par (2,16) bi trebalo da bude element relacije  $\rho_1$ , ali to nije slučaj, pa relacija nije tranzitivna.

Relacija  $\rho_2$  je prava y=-x. Ona nije refleksivna, pošto pravu x=y seče samo u tački (0,0). Dalje, grafik joj je u potpunosti simetričan u odnosu na pravu y=x (svaka tačka (x,-x) sa grafika  $\rho_2$  ima svog simetričnog para (-x,x) koji pripada  $\rho_2$ ), pa je simetričnost zadovoljena, a antisimetričnost nije. Tranzitivnost nije zadovoljena, jer imamo  $(1,-1),(-1,1)\in\rho_2$ , ali  $(1,1)\not\in\rho_2$ . Relacija  $\rho_2$  jeste funkcija, kao što smo istakli, radi se o pravoj, odnosno linearnoj funkciji, y=-x.



Relacija  $\rho_3$  sadrzi delove dve prave. Prvi deo jeste prava y=1 za sve  $x \in (-\infty, 1]$ , odnosno sve tačke oblika  $(x,1), x \in (-\infty, 1]$ , a njen drugi deo jeste prava x=1 za sve  $y \in (-\infty, 1]$ , odnosno sve tačke oblika  $(1,y), y \in (-\infty, 1]$ . Kako su ovi delovi pravih x=1 i y=1 simetrični jedan drugome (upravo, ako (x,y) pripada x=1, onda (y,x) pripada y=1 i obratno)  $\rho_3$  je simetrična, ali nije antisimetrična relacija. Jedina zajednička tačka sa pravom y=x je (1,1), pa nije refleksivna. Kako  $(0,1), (1,0) \in \rho_3$ , a  $(0,0) \notin \rho_3$  relacija nije tranzitivna. Relacija  $\rho_3$  nije ni funkcija, jer sadrži deo prave x=1, a to je prava paralelna y-osi.

Relacija  $\rho_4$  je linearna funkcija, prava y=2x. Pošto pravu y=x seče u samo jednoj tački nije refleksivna. Antisimetrična je, pošto je grafik svake linearne funkcije sa pozitivnim vodećim članom antisimetričan u odnosu na pravu y=x, ali  $\rho_4$  nije simetrična. Nije ni tranzitivna, jer  $(1,2),(2,4) \in \rho_4$ , ali  $(1,4) \notin \rho_4$ . Jasno,  $\rho_4$  jeste funkcija.



Relacija  $\rho_5$  obuhvata sve tačke prvog i trećeg kvadranta, kao što je pokazano na grafiku, pošto su to tačke sa koordinatama istog znaka, čiji je proizvod pozitivan. Prvi i treći kvadrant sadrže sve tačke prave y=x osim koordinatnog početka, pa  $\rho_5$  nije refleksivna. Kako prava y=x simetrično deli prvi i treći kvadrant, iz grafičkog prikaza vrlo jasno vidimo da je  $\rho_5$  simetrična, ali nije antisimetrična. Tranzitivnost trivijalno važi, jer ako  $(x,y), (y,z) \in \rho_5$  tada su x,y i z realni brojevi istog znaka, pa  $(x,z) \in \rho_5$ . Očigledno  $\rho_5$  nije funkcija, jer bilo koja prava paralelna y-osi, osim nje same, seče prvi ili treći kvadrant u beskonačno mnogo tačaka.

Relacija  $\rho_6$  je još jedna linearna funkcija, prava y = 1 - x, ali kao i  $\rho_2$  ima negativan vodeći član. Njen grafik ispunjava iste uslove, pa osobine refleksivnosti, simetričnosti, antisimetričnosti i funkcije nije potrebno detaljnije objašnjavati. Što se tranzitivnosti tiče,  $\rho_6$  je ne zadovoljava jer  $(1,0), (0,1) \in \rho_6$ , ali  $(1,1) \notin \rho_6$ .

Grafik relacije  $\rho_7$  obuhvata sve tačke čije su koordinate prirodni brojevi. Ipak, pošto radimo sa relacijama na skupu realnih brojeva,  $\rho_7$  ne sadrži celu pravu y=x, npr.  $(\sqrt{2},\sqrt{2}) \notin \rho_7$ . Grafik relacije  $\rho_7$  je u potpunosti simetričan u odnosu na pravu y=x, pa je relacija simetrična i nije antisimetrična. Nije funkcija jer bilo koja prava x=n za  $n \in \mathbb{N}$  sadrži beskonačno mnogo tačaka relacije  $\rho_7$ . Relacija  $\rho_7$  zadovoljava tranzitivnost jer ako  $(x,y), (y,z) \in \rho_7$  sledi da su x,y i z prirodni brojevi, pa je očigledno da  $(x,z) \in \rho_7$ .



Relacija  $\rho_8$  ima isti grafik kao i relacija  $\rho_5$  uz dodatak koordinatnog početka. Dodavanjem koordinatnog početka relaciji  $\rho_8$  cela prava y=x joj pripada, pa je  $\rho_8$  refleksivna. Pored toga, pošto je koordinatni početak tačka prave y=x njegovim dodavanjem ne narušavamo niti jednu preostalu osobinu relacije  $\rho_5$ , pa je  $\rho_8$  simetrična i tranzitivna, a nije antisimetrična i funkcija.

#### Relacija ekvivalencije

**Definicija 2.** Za relaciju  $\rho \subseteq A^2$  kažemo da je **relacija ekvivalencije** ako je refleksivna, simetrična i tranzitivna (RST).

 $\bigstar$  Relacija ekvivalencije ρ definisana na skupu A vrši particiju (razbijanje) skupa A, tj. jednoznačno određuje neke neprazne podskupove skupa A od kojih su svaka 2 disjunktna, a njihova unija je ceo skup A. Ovi podskupovi se nazivaju **klase ekvivalencije**, a jednoj klasi pripadaju svi oni elementi koji su međusobno u relaciji. Skup svih klasa ekvivalencije relacije ρ na skupu A naziva se **faktor skup** i označava se sa A/ρ.

**Zadatak 3.** *Dokazati da je*  $\rho = \{(1,1),(2,2),(3,3),(4,4),(5,5),(1,2),(2,1),(3,4),(4,3)\}$  *relacija ekvivalencije skupa A* =  $\{1,2,3,4,5\}$  *i napisati particiju koja joj odgovara.* 

**Rešenje:** Relacija  $\rho$  je refleksivna pošto imamo sve uređene parove oblika (x,x),  $x \in A$ . Simetričnost je zadovoljena je imamo dva para simetričnih uređenih parova (3,4),(4,3) i (1,2),(2,1). Tranzitivnost se jednostavno dokazuje direktnom proverom.

Ako sa  $C_x$  označimo klasu ekvivalencije koja sadrži  $x \in A$ , onda imamo

$$C_1 = C_2 = \{1, 2\}, \quad C_3 = C_4 = \{3, 4\} \quad i \quad C_5 = \{5\}.$$

Prema tome, particija koja odgovara relaciji p je

$$A/\rho = \{C_1, C_3, C_5\} = \{\{1, 2\}, \{3, 4\}, \{5\}\}.$$

**Zadatak 4.** *Za particiju*  $A_1 = \{1,2,3\}, A_2 = \{4,5\}, A_3 = \{6\}$  *skupa*  $A = \{1,2,3,4,5,6\}$  *napisati relaciju ekvivalencije*  $\rho \subseteq A$  *čiji je faktor skup*  $A/\rho = \{A_1,A_2,A_3\}.$ 

6 Relacije

**Rešenje:** Elementi koji pripadaju jednoj klasi ekvivalencije su svi međusobno u relaciji, te je stoga tražena relacija ekvivalencije

$$\rho = A_1^2 \cup A_2^2 \cup A_3^2,$$

odnosno

$$\rho = \{(1,1),(2,2),(3,3)(1,2),(2,1),(1,3),(3,1),(2,3),(3,2),(4,4),(5,5),(4,5),(5,4),(6,6)\}.$$

**Zadatak 5.** *Napisati sve relacije ekvivalencije na skupu A* =  $\{1,2,3\}$ .

**Rešenje:** Da bismo odredili sve relacije ekvivalencije na skupu A potrebno je naći sve particije ovog skupa, koje će predstavljati faktor skupove za tražene relacije.

Moguće particije skupa A su:

$$\Big\{\{1\},\{2\},\{3\}\Big\},\,\Big\{\{1,2\},\{3\}\Big\},\,\Big\{\{1,3\},\{2\}\Big\},\,\Big\{\{2,3\},\{1\}\Big\},\,\Big\{\{1,2,3\}\Big\},$$

a odgovarajuće relacije nalazimo kao u prethodnom zadatku.

#### Relacija poretka

**Definicija 3.** Za relaciju  $\rho \subseteq A^2$  kažemo da je **relacija poretka** ako je refleksivna, antisimetrična i tranzitivna (RAT). Uređeni par  $(A, \rho)$  naziva se **parcijalno uređen skup**.

**Zadatak 6.** Na skupu  $A = \{1, 2, 3, 4, 5\}$  data je binarna relacija

$$\rho = \{(1,1), (1,2), (1,3), (1,4), (1,5), (2,2), (3,3), (3,4), (3,5), (4,4), (5,5)\}.$$

Dokazati da je  $\rho$  relacija poretka, nacrtati Haseov dijagram uređenog skupa  $(A, \rho)$  i odrediti minimalni, maksimalni, najmanji i najveći element.

**Rešenje:** Jednostavno se direktnom proverom dokazuje da je  $\rho$  relacija poretka na skupu A.

MIN: 1

MAX: 2,4,5

Najmanji: 1

Najveći: /



- ★ Relacija ≤ (manje ili jednako) je relacija poretka na skupu prirodnih brojeva N jer
  - (R)  $(\forall a \in \mathbb{N}) \ a < a$
  - (A)  $(\forall a, b \in \mathbb{N})$   $a \le b \land b \le a \Rightarrow a = b$
  - (T)  $(\forall a, b, c \in \mathbb{N})$   $a \le b \land b \le c \Rightarrow a \le c$

**Zadatak 7.** *Nacrtati Haseov dijagram parcijalno uređenog skupa*  $(\mathbb{N}, \leq)$  *i naći minimalne, maksimalne, najmanji i najveći element.* 



★ Relacija | (deli) je takođe jedna relacija poretka na skupu N, definisana sa

$$m|n \Leftrightarrow (\exists k \in \mathbb{N}) \ n = k \cdot m.$$

Uzmimo proizvoljne  $a, b, c \in \mathbb{N}$ :

- (R) a|a jer je  $a \cdot 1 = a$
- (A) Neka a|b i b|a. Tada po definiciji relacije | postoje  $k,l \in \mathbb{N}$  takvi da  $b=k\cdot a$  i  $a=l\cdot b$ , odakle zaključujemo da je  $b=k\cdot l\cdot b$ , pa je iz  $k\cdot l=1$  jasno da kao prirodni brojevi i k i l moraju biti 1, što daje a=b.
- (T) Neka a|b i b|c. Tada po definiciji relacije | postoje  $k,l \in \mathbb{N}$  takvi da  $b=k\cdot a$  i  $c=l\cdot b$ , odakle je  $c=l\cdot k\cdot a$ , pa za  $n=k\cdot l$  imamo da  $c=n\cdot a$ , odnosno da a|c.

**Zadatak 8.** Nacrtati Haseov dijagram parcijalno uređenog skupa  $(\mathbb{N},|)$  i naći minimalne, maksimalne, najmanji i najveći element.



 $\bigstar$  Relacija  $\subseteq$  (podskup) je relacija poretka na partitivnom skupu nekog skupa  $A \neq \emptyset$  jer

(R) 
$$(\forall X \in P(A)) X \subseteq X$$

(A) 
$$(\forall X, Y \in P(A)) X \subseteq Y \land Y \subseteq X \Rightarrow X = Y$$

(T) 
$$(\forall X, Y, Z \in P(A)) X \subseteq Y \land Y \subseteq Z \Rightarrow X \subseteq Z$$

**Zadatak 9.** Za skup  $A = \{1, 2, 3\}$  odrediti minimalni, maksimalni, najmanji i najveći element, i nacrtati Haseov Dijagram sledećih parcijalno uređenih skupova

- a)  $(P(A), \subset)$
- b)  $(P(A) \setminus \{A\}, \subseteq)$
- c)  $(P(A) \setminus \{\emptyset, A, \{1,2\}, \{1,3\}\}, \subseteq)$

Rešenje:

a) Za troelementni skup A njegov partitivni skup je

$$P(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}.$$

MIN: 0

MAX:  $\{1,2,3\} = A$ 

Najmanji: 0

Najveći:  $\{1, 2, 3\} = A$ 



b) 
$$P(A) \setminus \{A\} = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}\}.$$

MIN: 0

Najveći: /



c) 
$$P(A) \setminus \{\emptyset, A, \{1,2\}, \{1,3\}\} = \{\{1\}, \{2\}, \{3\}, \{2,3\}\}.$$

MAX: {1}, {2,3}

Najmanji: /

Najveći: /



**Zadatak 10.** Za relaciju  $\mid$  i sledeće podskupove A skupa  $\mathbb N$  nacrtati Haseov dijagram i odrediti najveći, najmanji, maksimale i minimalne elemente:

a)  $A = \mathbb{N} \setminus \{1\}$ 

- *e*)  $A = \mathbb{N}_{100} = \{ n \in \mathbb{N} | n \le 100 \}$
- b)  $A = D_{42} = \{1, 2, 3, 6, 7, 14, 21, 42\}$  (delitelji broja 42)
- $f) A = \mathbb{N}_{100} \setminus \{1\}$

c)  $A = D_{42} \setminus \{1\}$ 

*g*)  $A = \mathbb{N}_{2^n} = \{2^n | n \in \mathbb{N}\}$ 

d)  $A = D_{42} \setminus \{1, 42\}$ 

*h*)  $A = \mathbb{N}_{2^n} \cup \{5, 10\}$ 

Rešenje:

a)  $(\mathbb{N} \setminus \{1\}, |)$ 

MIN: svi prosti brojevi

MAX: /

Najmanji: /

Najveći: /



b)  $(D_{42},|)$ 

MIN: 1

MAX: 42

Najmanji: 1

Najveći: 42



- c)  $(D_{42} \setminus \{1\}, |)$ 
  - MIN: 2,3,7

MAX: 42

Najmanji: /

Najveći: 42



d)  $(D_{42} \setminus \{1,42\}, |)$ 

MIN: 2,3,7

MAX: 6,7,21

Najmanji: /

Najveći: /



e)  $(\mathbb{N}_{100}, |)$ 

MIN: 1

MAX: 51,52,53,...,100

Najmanji: 1

Najveći: /



f)  $(\mathbb{N}_{100} \setminus \{1\}, |)$ 

MIN: svi prosti brojevi < 100.

MAX: 51,52,53,...,100

Najmanji: /

Najveći: /



g)  $(\mathbb{N}_{2^n}, |)$ 

MIN: 2

MAX: /

Najmanji: 2

Najveći: /



h)  $(\mathbb{N}_{2^n} \cup \{5,10\},|)$ 

MIN: 2,5

MAX: 10

Najmanji: /

Najveći: /

