1 Recall

A first order language L is a set of formal symbols consisting of:

- Logical symbols:
 - $-\neg, \lor, \land, \rightarrow, \leftrightarrow, \forall, \exists$
 - Parathesis: (,)
 - Equality: =
- Variables: x, y, z, \cdots
- k-ary relation symbols: R, S, \cdots
- k-ary function symbols: f, g, h, \cdots
- Constant symbols: c, c'

First order language can be uncountable, but we can usually take L to be countable.

An L-structure \mathcal{M} is a nonempty M together with

- \bullet a k-ary relation $R^{\mathcal{M}}$ on M for every k-ary relation symbol
- ullet a k-ary function $f^{\mathcal{M}}$ on M for every k-ary function symbol
- an element $c^{\mathcal{M}}$ for each constant symbol c

 \mathcal{M} is the structure.

M is the underlying set (domain) of \mathcal{M} .

We also write

$$\mathcal{M} = (M; R^{\mathcal{M}})$$

Ex. If $M = \mathbb{R}$ and $R^{\mathcal{M}} = \leq$, then we write $(\mathbb{R}; \leq)$

Definition 1.0.1 \mathcal{M} is a symmetric L-structure if $xR^{\mathcal{M}}y$ iff $yR^{\mathcal{M}}x$ for all $x, y \in M$.

Definition 1.0.2 A partial order is a L-structure satisfying

•

$$\forall x(xRx)$$

•

$$\forall x \forall y [(xRy) \land (yRx)] \rightarrow (x=y)$$

•

$$\forall x \forall y \forall z [(xRy) \land (yRz)] \rightarrow (xRz)$$

Definition 1.0.3 $R^{\mathcal{M}}$ is total order if

$$\forall x \forall y (x \le y) \lor (y \le x)$$

.

Definition 1.0.4 (homomorphism) Fix a first order language L. Let A and B be L-structure with underlying sets A, B. A map $h : A \rightarrow B$ is a homomorphism.

Definition 1.0.5 (automorphism) Let \mathcal{M} be an L-structure, an automorphism of \mathcal{M} is an isomorphism from M to M.