Classificação de Imagens de Frutas utilizando Redes Neurais Convolucionais: Uma Comparação entre Modelos Autorais, VGG16 e ResNet

Daiane Babicz e Matheus Antunes Bacca

Abstract

As redes neurais convolucionais (CNNs) têm sido amplamente utilizadas para a classificação de imagens em diversas áreas, incluindo a classificação de frutas. Neste estudo, exploramos três diferentes arquiteturas de CNNs para a classificação de um conjunto de dados de imagens de frutas contendo 10 classes. Desenvolvemos um modelo autoral simples, além de modelos baseados na arquitetura do VGG16 e ResNet. Os modelos foram treinados e avaliados em relação à acurácia e perda, e os resultados obtidos foram comparados. Os experimentos mostraram que todos os modelos apresentaram bom desempenho, com os modelos baseados no VGG16 e ResNet superando o modelo autoral simples em termos de acurácia. Além disso, observamos que a acurácia e a perda foram proporcionalmente relacionadas durante o treinamento. Esses resultados destacam a eficácia das CNNs na classificação de imagens de frutas e fornecem insights valiosos para futuras pesquisas nessa área.

1. Introdução

A classificação de imagens é uma tarefa desafiadora que tem sido aprimorada significativamente com o avanço das redes neurais convolucionais (CNNs). As CNNs têm a capacidade de aprender representações hierárquicas de características das imagens, permitindo a extração de padrões complexos e a realização de classificações precisas. A aplicação de CNNs na classificação de frutas tem ganhado destaque devido à sua relevância em setores como agricultura, alimentação e controle de qualidade.

Neste estudo, exploramos três diferentes arquiteturas de CNNs para a classificação de um conjunto de dados de imagens de frutas. Inicialmente, desenvolvemos um modelo autoral simples, que serve como referência para comparação com os modelos baseados em arquiteturas consagradas, como o VGG16 e o ResNet. O objetivo é avaliar o desempenho dos diferentes modelos e fornecer insights sobre a eficácia das diferentes arquiteturas na classificação de imagens de frutas.

2. Metodologia

2.1 Conjunto de Dados

Para realizar os experimentos, utilizamos um conjunto de dados de imagens de frutas contendo 10 classes diferentes. Cada classe possui pelo menos 200 imagens para treinamento. O conjunto de dados foi devidamente preparado e dividido em conjuntos de treinamento e teste, garantindo a representatividade e generalização dos resultados.

2.2 Arquitetura do Modelo Autoral

Desenvolvemos um modelo autoral simples para a classificação de imagens de frutas. A arquitetura do modelo é composta por camadas convolucionais, camadas de pooling e camadas totalmente conectadas. A seguir, apresentamos a descrição detalhada da arquitetura:

```
Modelo Autoral Simples:
Input (32, 32, 3)
Conv2D 32 filters, 3×3
ReLU
MaxPooling2D 2×2
Conv2D 64 filters, 3×3
ReLU
MaxPooling2D 2×2
Conv2D 64 filters, 3×3
ReLU

Flatten
Dense 64 units
ReLU
Dense 10 units (classes de frutas)
```

2.3 Arquitetura do Modelo VGG16

Além do modelo autoral, também utilizamos a arquitetura do VGG16, uma das arquiteturas de CNN mais populares e eficazes. O VGG16 é conhecido por sua profundidade e capacidade de aprendizado de características complexas. A arquitetura do modelo VGG16 é composta por camadas convolucionais, camadas de pooling e camadas totalmente conectadas. A seguir, apresentamos a descrição detalhada da arquitetura:

```
Modelo VGG16:
Input
        (32, 32, 3)
Conv2D 64 filters, 3×3
ReLU
Conv2D 64 filters, 3×3
ReLU
MaxPooling2D 2×2
Conv2D 128 filters, 3×3
ReLU
Conv2D 128 filters, 3×3
MaxPooling2D 2×2
Dense 256 units
ReLU
Dense
        256 units
Dense 10 units (classes de frutas)
```

2.4 Arquitetura do Modelo ResNet

O terceiro modelo utilizado é baseado na arquitetura do ResNet, que se destaca por sua capacidade de lidar com o desafio do desvanecimento do gradiente em redes profundas. A

arquitetura do modelo ResNet é composta por blocos de identidade e camadas totalmente conectadas. A seguir, apresentamos a descrição detalhada da arquitetura:

```
Modelo ResNet:
Input (32, 32, 3)
Conv2D 64 filters, 7×7, strides (2, 2)
BatchNormalization
ReLU
MaxPooling2D 3×3, strides (2, 2)
Identity Block:
Conv2D 64 filters, 3×3
BatchNormalization
ReLU
Conv2D 64 filters, 3×3
BatchNormalization
ReLU
Conv2D 256 filters, 1×1
BatchNormalization
Add (skip connection)
Identity Block:
Conv2D 64 filters, 3×3
BatchNormalization
ReLU
Conv2D 64 filters, 3×3
BatchNormalization
Conv2D 256 filters, 1×1
BatchNormalization
Add (skip connection)
ReLU
          10 units (classes de frutas)
```

2.5 Treinamento e Avaliação

Os modelos foram compilados com a função de perda "Sparse Categorical Crossentropy" e otimizador "Adam". O treinamento foi realizado em um ambiente Colab, usando os conjuntos de treinamento e teste preparados. Durante o treinamento, monitoramos a acurácia e a perda em ambos os conjuntos. Ao final de cada época, avaliamos o desempenho dos modelos no conjunto de teste.

3. Resultados

Apresentamos a seguir os resultados obtidos durante o treinamento e avaliação dos modelos. Os gráficos de acurácia e perda foram gerados para fornecer insights sobre o desempenho dos modelos em cada etapa do treinamento.

3.1 Modelo Autoral

No modelo autoral, observamos um progresso constante na acurácia e uma redução na perda durante as épocas de treinamento. Ao final das 10 épocas, a acurácia no conjunto de treinamento atingiu aproximadamente 0.9, enquanto a acurácia no conjunto de teste ficou em torno de 0.8. Observamos uma relação proporcional entre a acurácia e a perda, onde uma maior acurácia estava associada a uma menor perda.

Gráfico de Acurácia do Modelo Autoral Figura 1: Gráfico de Acurácia do Modelo Autoral

Gráfico de Perda do Modelo Autoral Figura 2: Gráfico de Perda do Modelo Autoral

3.2 Modelo VGG16

No modelo baseado na arquitetura do VGG16, observamos um desempenho superior em relação ao modelo autoral. A acurácia no conjunto de treinamento aumentou significativamente ao longo das épocas, chegando a aproximadamente 0.95. A acurácia no conjunto de teste também apresentou um crescimento consistente, atingindo cerca de 0.9. Mais uma vez, notamos uma relação proporcional entre a acurácia e a perda, com uma perda menor associada a uma maior acurácia.

Gráfico de Acurácia do Modelo VGG16 Figura 3: Gráfico de Acurácia do Modelo VGG16

Acurácia do Modelo

Gráfico de Perda do Modelo VGG16 Figura 4: Gráfico de Perda do Modelo VGG16

3.3 Modelo ResNet

O modelo baseado na arquitetura do ResNet também apresentou resultados promissores. A acurácia no conjunto de treinamento aumentou rapidamente nas primeiras

épocas, chegando a aproximadamente 0.9. A acurácia no conjunto de teste atingiu valores próximos a 0.85. Mais uma vez, observamos uma relação proporcional entre a acurácia e a perda, onde uma menor perda estava associada a uma maior acurácia.

Gráfico de Acurácia do Modelo ResNet Figura 5: Gráfico de Acurácia do Modelo ResNet

Gráfico de Perda do Modelo ResNet Figura 6: Gráfico de Perda do Modelo ResNet

4. Discussão

Os resultados obtidos neste estudo demonstram a eficácia das redes neurais convolucionais na classificação de imagens de frutas. Observamos que as arquiteturas baseadas no VGG16 e ResNet superaram o modelo autoral simples em termos de acurácia, alcançando valores acima de 0.9. Além disso, a relação proporcional entre a acurácia e a perda destaca a capacidade dos modelos de aprender representações precisas das características das frutas.

A utilização de CNNs para a classificação de frutas oferece diversas vantagens, como a capacidade de lidar com a variabilidade nas formas e cores das frutas, além de possibilitar a identificação de características sutis que são relevantes para a classificação correta. Os resultados obtidos neste estudo fornecem insights valiosos para futuras pesquisas no campo da classificação de frutas, incentivando o uso de arquiteturas mais complexas e a exploração de conjuntos de dados mais abrangentes.

5. Conclusão

Neste estudo, exploramos três diferentes arquiteturas de redes neurais convolucionais para a classificação de imagens de frutas. Os experimentos demonstraram que os modelos baseados no VGG16 e ResNet superaram o modelo autoral simples em termos de acurácia. Além disso, observamos uma relação proporcional entre a acurácia e a perda durante o treinamento, indicando um aprendizado consistente das características das frutas.

Esses resultados destacam a eficácia das redes neurais convolucionais na classificação de imagens de frutas e fornecem uma base sólida para futuras pesquisas nessa área. Recomenda-se a exploração de conjuntos de dados mais abrangentes e o aprimoramento das

arquiteturas de CNNs para obter resultados ainda mais precisos e confiáveis na classificação de frutas.

Referências:

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).