Проективная геометрия 1. Проективные преобразования.

11-й "Д" КЛАСС 2012 г

Определение 1. Пусть в пространстве заданы две плоскости π и π' , параллельные или непараллельные между собой. Пусть O — точка, не лежащая ни на π , ни на π' . Центральной проекцией π на π' с центром O называется отображение, сопоставляющее каждой точке $P \in \pi$ точку $P' \in \pi'$ пересечения прямой OP с плоскостью π' . Пусть l — прямая, не параллельная ни π , ни π' . Параллельной проекцией π на π' вдоль l называется отображение, сопоставляющее каждой точке $P \in \pi$ такую точку $P' \in \pi'$, что прямая PP' параллельна прямой l.

Задача 1. Опишите область определения и область значений центральной проекции; параллельной проекции.

Определение 2. Пусть π — плоскость. Добавим к каждой прямой на ней *«бесконечно удалённую» точку*, причём будем считать, что «бесконечно удалённые» точки у параллельных прямых совпадают, а у непараллельных — различны. Скажем также, что «бесконечно удалённые» точки всех прямых составляют *«бесконечно удалённую» прямую*. То, что получилось, называется *проективной плоскостью* $\bar{\pi}$.

Задача 2. Докажите, что любые две различные прямые на проективной плоскости имеют единственную общую точку, а через любые две различные точки на проективной плоскости проходит единственная прямая.

Задача 3. Докажите, что центральная проекция π на π' с центром O продолжается до взаимно однозначного отображения $\bar{\pi}$ на $\bar{\pi}'$, переводящего прямые в прямые (оно называется *центральной проекцией* $\bar{\pi}$ на $\bar{\pi}'$ с *центром* O). Аналогично для параллельной проекции.

Определение 3. Любое отображение $\bar{\pi}$ на себя, которое можно представить в виде композиции центральных и параллельных проекций, называется *проективным преобразованием*.

Задача 4. Докажите, что с помощью проективного преобразования $\bar{\pi}$ можно перевести любые две точки в «бесконечно удалённые».

Задача 5. Докажите, что с помощью проективного преобразования $\bar{\pi}$ на $\bar{\pi}$ можно перевести любые три различные *коллинеарные* (лежащие на одной прямой) точки в любые другие три различные коллинеарные точки.

Задача 6. Докажите, что отрезок нельзя разделить пополам с помощью одной линейки.

Задача 7. Докажите, что с помощью проективного преобразования $\bar{\pi}$ можно перевести любую четвёрку точек, никакие три из которых не коллинеарны, в любую другую четвёрку точек с тем же условием, причём такое проективное преобразование единственно.

Задача 8.** Докажите, что любое взаимно однозначное преобразование проективной плоскости в себя, переводящее прямые в прямые, проективно.

Задача 9. ($Teopema\ \Pi anna$) Пусть вершины шестиугольника ABCDEF лежат попеременно на двух прямых. Докажите, что точки пересечения противоположных сторон этого шестиугольника коллинеарны.

Задача 10. (*Теорема Дезарга*) Пусть заданы два треугольника ABC и A'B'C', причём прямые AA', BB' и CC' конкурентны (пересекаются в одной точке). Докажите, что точки пересечения соответственных сторон треугольников ABC и A'B'C' коллинеарны.

Задача 11. Верна ли теорема, обратная теореме Дезарга?

1	2	3	4	5	6	7	8	9	10	11