Calculus for Engineers

LAPLACE TRANSFORM

INTRODUCTION

- Introduced by a french mathematician "Pierre Simmon Marquis De Laplace (1749-1827)".
- Laplace Transformations is a powerful Technique; it replaces operations of calculus by operations of Algebra.
- > Suppose an Ordinary (or) Partial Differential Equation together with Initial conditions is reduced to a problem of solving an Algebraic Equation.
- The Laplace transform takes a function of time f(t) and transforms it to a function of a complex variable F(s).

Idea

the Laplace transform converts integral and differential equations into algebraic equations

this is like phasors, but

- applies to general signals, not just sinusoids
- handles non-steady-state conditions

allows us to analyze

- LCCODEs
- complicated circuits with sources, Ls, Rs, and Cs
- complicated systems with integrators, differentiators, gains

- Let f be a function. Its Laplace transform (function) is denoted by the corresponding capitol letter F. Another notation is $\mathcal{L}(f)$.
- Input to the given function f is denoted by t; input to its Laplace transform F is denoted by s.
- By default, the domain of the function f=f(t) is the set of all non-negative real numbers. The domain of its Laplace transform depends on f and can vary from a function to a function.

Definition of the Laplace Transform

The Laplace transform F=F(s) of a function f=f
 (t) is defined by

$$\mathcal{L}(f)(s) = F(s) = \int_0^\infty e^{-ts} f(t) dt.$$

 The integral is evaluated with respect to t, hence once the limits are substituted, what is left are in terms of s.

PROCEDURE

Not all functions f(t), where t is any variable, are Laplace transformable. For a function f(t) to be Laplace transformable, it must satisfy the Dirichlet conditions — a set of sufficient but not necessary conditions. These are

- 1. f(t) must be piecewise continuous; that is, it must be single valued but can have a finite number of finite isolated discontinuities for t > 0.
- 2. f(t) must be of exponential order; that is, f(t) must remain less than Me^{-a_0t} as t approaches ∞ , where M is a positive constant and a_0 is a real positive number.

For example, such functions as: $\tan \beta t$, $\cot \beta t$, e^{t^2} are not Laplace transformable. Given a function f(t) that satisfies the Dirichlet conditions, then

$$F(s) = \int_0^\infty f(t)e^{-st}dt \quad \text{written } \mathcal{L}\{f(t)\}$$
 (1.1)

is called the Laplace transformation of f(t). Here s can be either a real variable or a complex quantity. Observe the shorthand notation $\mathcal{L}\{f(t)\}$ to denote the Laplace transformation of f(t). Observe also that only ordinary integration is involved in this integral.

IMPROPER-INTEGRAL

Because the Upper limit in the Integral is Infinite,

the domain of Integration is Infinite. Thus the

Integral is an example of an Improper Integral.

$$\int_{0}^{\infty} e^{-st} f(t) dt = \lim_{T \to \infty} \int_{0}^{T} e^{-st} f(t) dt$$

The Laplace Transformation of f(t) is said to exist if the Integral $\int_0^\infty e^{-st} f(t) dt$ Converges for some values of s, Otherwise it does not exist.

THINGS TO REMEMBER

The Laplace transform is defined in the following way. Let f(t) be defined for $t \geq 0$. Then the **Laplace transform** of f, which is denoted by $\mathcal{L}[f(t)]$ or by F(s), is defined by the following equation

$$\mathcal{L}[f(t)] = F(s) = \lim_{T \to \infty} \int_0^T f(t)e^{-st}dt = \int_0^\infty f(t)e^{-st}dt$$

The integral which defined a Laplace transform is an improper integral. An improper integral may **converge** or **diverge**, depending on the integrand. When the improper integral in convergent then we say that the function f(t) possesses a Laplace transform. So what types of functions possess Laplace transforms, that is, what type of functions guarantees a convergent improper integral.

PROBLEMS

Find the Laplace transform, if it exists, of each of the following functions

(a)
$$f(t) = e^{at}$$
 (b) $f(t) = 1$ (c) $f(t) = t$ (d) $f(t) = e^{t^2}$

Example: Find the Laplace transform of the constant function

$$f(t) = 1, \ 0 \le t < \infty.$$

Solution:

$$F(s) = \int_0^\infty e^{-ts} f(t) dt = \int_0^\infty e^{-ts} (1) dt$$

$$= \lim_{b \to +\infty} \int_0^b e^{-ts} dt$$

$$= \lim_{b \to +\infty} \left[\frac{e^{-ts}}{-s} \right]_0^b \text{ provided } s \neq 0.$$

$$= \lim_{b \to +\infty} \left[\frac{e^{-bs}}{-s} - \frac{e^0}{-s} \right]$$

$$= \lim_{b \to +\infty} \left[\frac{e^{-bs}}{-s} - \frac{1}{-s} \right]$$

At this stage we need to recall a limit from Cal 1:

$$e^{-x} \to \begin{cases} 0 & \text{if } x \to +\infty \\ +\infty & \text{if } x \to -\infty \end{cases}$$

Hence,

$$\lim_{b \to +\infty} \frac{e^{-bs}}{-s} = \begin{cases} 0 & \text{if } s > 0 \\ +\infty & \text{if } s < 0 \end{cases}.$$

Thus,

$$F(s) = \frac{1}{s}, \ s > 0.$$

In this case the domain of the transform is the set of all positive real numbers.

Example 2. $f(t) = e^t$.

$$F(s) = \mathcal{L}\{f(t)\} = \lim_{A \to \infty} \int_0^A e^{-st} e^{at} dt = \lim_{A \to \infty} \int_0^A e^{-(s-a)t} dt = \lim_{A \to \infty} -\frac{1}{s-a} e^{-(s-a)t} \Big|_0^A$$

$$= \lim_{A \to \infty} -\frac{1}{s-a} \left(e^{-(s-a)A} - 1 \right) = \frac{1}{s-a}, \quad (s > a)$$

Example 3. $f(t) = t^n$, for $n \ge 1$ integer.

$$F(s) = \lim_{A \to \infty} \int_0^A e^{-st} t^n dt = \lim_{A \to \infty} \left\{ t^n \frac{e^{-st}}{-s} \Big|_0^A - \int_0^A \frac{nt^{n-1}e^{-st}}{-s} dt \right\}$$
$$= 0 + \frac{n}{s} \lim_{A \to \infty} \int_0^A e^{-st} t^{n-1} dt = \frac{n}{s} \mathcal{L}\{t^{n-1}\}.$$

So we get a recursive relation

$$\mathcal{L}\{t^n\} = \frac{n}{s}\mathcal{L}\{t^{n-1}\}, \quad \forall n,$$

which means

$$\mathcal{L}\{t^{n-1}\} = \frac{n-1}{s} \mathcal{L}\{t^{n-2}\}, \quad \mathcal{L}\{t^{n-2}\} = \frac{n-2}{s} \mathcal{L}\{t^{n-3}\}, \cdots$$

By induction, we get

$$\mathcal{L}\{t^{n}\} = \frac{n}{s}\mathcal{L}\{t^{n-1}\} = \frac{n}{s}\frac{(n-1)}{s}\mathcal{L}\{t^{n-2}\} = \frac{n}{s}\frac{(n-1)}{s}\frac{(n-2)}{s}\mathcal{L}\{t^{n-3}\}$$
$$= \cdots = \frac{n}{s}\frac{(n-1)}{s}\frac{(n-2)}{s}\cdots\frac{1}{s}\mathcal{L}\{1\} = \frac{n!}{s^{n}}\frac{1}{s} = \frac{n!}{s^{n+1}}, \quad (s > 0)$$

Example 4. Find the Laplace transform of $\sin at$ and $\cos at$.

Method 1. Compute by definition, with integration-by-parts, twice. (lots of work...)

Method 2. Use the Euler's formula

$$e^{iat} = \cos at + i\sin at$$
, \Rightarrow $\mathcal{L}\{e^{iat}\} = \mathcal{L}\{\cos at\} + i\mathcal{L}\{\sin at\}$.

By Example 2 we have

$$\mathcal{L}\{e^{iat}\} = \frac{1}{s - ia} = \frac{1(s + ia)}{(s - ia)(s + ia)} = \frac{s + ia}{s^2 + a^2} = \frac{s}{s^2 + a^2} + i\frac{a}{s^2 + a^2}.$$

Comparing the real and imaginary parts, we get

$$\mathcal{L}\{\cos at\} = \frac{s}{s^2 + a^2}, \qquad \mathcal{L}\{\sin at\} = \frac{a}{s^2 + a^2}, \quad (s > 0).$$

Remark: Now we will use \int_0^∞ instead of $\lim_{A\to\infty}\int_0^A$, without causing confusion.

For piecewise continuous functions, Laplace transform can be computed by integrating each integral and add up at the end.

EXAMPLE FOR PIECEWISE CONTINUOUS FUNCTIONS

Example 5. Find the Laplace transform of

$$f(t) = \begin{cases} 1, & 0 \le t < 2, \\ t - 2, & 2 \le t. \end{cases}$$

We do this by definition:

$$F(s) = \int_0^\infty e^{-st} f(t) dt = \int_0^2 e^{-st} dt + \int_2^\infty (t-2)e^{-st} dt$$

$$= \frac{1}{-s} e^{-st} \Big|_{t=0}^2 + (t-2) \frac{1}{-s} e^{-st} \Big|_{t=2}^\infty - \int_2^A \frac{1}{-s} e^{-st} dt$$

$$= \frac{1}{-s} (e^{-2s} - 1) + (0 - 0) + \frac{1}{s} \frac{1}{-s} e^{-st} \Big|_{t=2}^\infty = \frac{1}{-s} (e^{-2s} - 1) + \frac{1}{s^2} e^{-2s}$$

CONTRADICTORY EXAMPLE- $f(t) = e^{t^2}$

$$\mathcal{L}[e^{t^2}] = \int_0^\infty e^{t^2 - st} dt.$$

If $s \leq 0$ then $t^2 - st \geq 0$ so that $e^{t^2 - st} \geq 1$ and this implies that $\int_0^\infty e^{t^2 - st} dt \geq \int_0^\infty$. Since the integral on the right is divergent, by the comparison theorem of improper integrals (see Theorem 43.1 below) the integral on the left is also divergent. Now, if s > 0 then $\int_0^\infty e^{t(t-s)} dt \geq \int_s^\infty dt$. By the same reasoning the integral on the left is divergent. This shows that the function $f(t) = e^{t^2}$ does not possess a Laplace transform \blacksquare

TABLE OF TRANSFORMS

$f(t) = 1, \ t \ge 0$	$F(s) = \frac{1}{s}, \ s \ge 0$
$f(t) = t^n, \ t \ge 0$	$F(s) = \frac{n!}{s^{n+1}}, \ s \ge 0$
$f(t) = e^{at}, \ t \ge 0$	$F(s) = \frac{1}{s-a}, \ s > a$
$f(t) = \sin(kt), \ t \ge 0$	$F(s) = \frac{k}{s^2 + k^2}$
$f(t) = \cos(kt), \ t \ge 0$	$F(s) = \frac{s}{s^2 + k^2}$
$f(t) = \sinh(kt), \ t \ge 0$	$F(s) = \frac{k}{s^2 - k^2}, \ s > k $
$f(t) = \cosh(kt), \ t \ge 0$	$F(s) = \frac{s}{s^2 - k^2}, \ s > k $

DEFINITION OF GAMMA FUNCTION

Definition of Gama Function

$$\Gamma(n) = \int_{0}^{\infty} e^{-t} t^{n-1} dt, n \ge 0$$

$$(OR)$$

$$\Gamma(n) = \int_{0}^{\infty} e^{-x} x^{n-1} dt, n \ge 0.$$

Note: i)
$$\Gamma(n+1) = n\Gamma(n) = n!$$

ii)
$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

USING GAMMA FUNCTION

The Laplace Transformation of t^n , where n is a non-negative Real number.

Sol: We know that
$$L\{f(t)\} = \int_0^\infty e^{-st} f(t) dt = F(s)$$

$$\Rightarrow L\{f(t)\} = \int_{0}^{\infty} e^{-st} t^{n} dt$$

$$Put st = x \Rightarrow t = \frac{x}{s}$$

$$dt = \frac{1}{s} dx$$

$$As \ t \to 0 \ to \ \infty \quad \Longrightarrow \ x \to 0 \ to \ \infty$$

$$\Rightarrow L\{t^n\} = \int_{x=0}^{\infty} e^{-x} \left(\frac{x}{s}\right)^n \frac{1}{s} dx$$

$$\Rightarrow L\{t^n\} = \frac{1}{s^{n+1}} \int_{0}^{\infty} e^{-x} x^n dx$$

$$= \frac{1}{s^{n+1}} \Gamma(n+1) \qquad \left[\because \Gamma(n) = \int_{0}^{\infty} e^{-x} x^{n-1} dt , n \ge 0 \right]$$

$$\Rightarrow L\{t^n\} = \frac{n!}{s^{n+1}} \qquad [\because \Gamma(n+1) = n!]$$

Example 3. $f(t) = t^n$, for $n \ge 1$ integer.

$$F(s) = \lim_{A \to \infty} \int_0^A e^{-st} t^n dt = \lim_{A \to \infty} \left\{ t^n \frac{e^{-st}}{-s} \Big|_0^A - \int_0^A \frac{nt^{n-1}e^{-st}}{-s} dt \right\}$$
$$= 0 + \frac{n}{s} \lim_{A \to \infty} \int_0^A e^{-st} t^{n-1} dt = \frac{n}{s} \mathcal{L}\{t^{n-1}\}.$$

So we get a recursive relation

$$\mathcal{L}\{t^n\} = \frac{n}{s}\mathcal{L}\{t^{n-1}\}, \quad \forall n,$$

which means

$$\mathcal{L}\{t^{n-1}\} = \frac{n-1}{s}\mathcal{L}\{t^{n-2}\}, \quad \mathcal{L}\{t^{n-2}\} = \frac{n-2}{s}\mathcal{L}\{t^{n-3}\}, \cdots$$

By induction, we get

$$\mathcal{L}\{t^{n}\} = \frac{n}{s}\mathcal{L}\{t^{n-1}\} = \frac{n}{s}\frac{(n-1)}{s}\mathcal{L}\{t^{n-2}\} = \frac{n}{s}\frac{(n-1)}{s}\frac{(n-2)}{s}\mathcal{L}\{t^{n-3}\}$$
$$= \cdots = \frac{n}{s}\frac{(n-1)}{s}\frac{(n-2)}{s}\cdots\frac{1}{s}\mathcal{L}\{1\} = \frac{n!}{s^{n}}\frac{1}{s} = \frac{n!}{s^{n+1}}, \quad (s>0)$$

The Laplace Transformation of t^n , where n is a non-negative Real number

Sol: We know that $L\{f(t)\} = \int_0^\infty e^{-st} f(t) dt = F(s)$

We know that
$$L\{f(t)\} = \int_0^\infty e^{-st} f(t) dt = F(s)$$

$$\Rightarrow L\{f(t)\} = \int_0^\infty e^{-st} t^n dt$$

$$Put st = x \Rightarrow t = \frac{x}{s}$$

$$dt = \frac{1}{s} dx$$

$$As t \to 0 to \infty \Rightarrow x \to 0 to \infty$$

$$\Rightarrow L\{t^n\} = \int_{x=0}^\infty e^{-x} \left(\frac{x}{s}\right)^n \frac{1}{s} dx$$

$$\Rightarrow L\{t^n\} = \frac{1}{s^{n+1}} \int_0^\infty e^{-x} x^n dx$$

$$= \frac{1}{s^{n+1}} \Gamma(n+1) \qquad \left[\because \Gamma(n) = \int_0^\infty e^{-x} x^{n-1} dx\right]$$

$$= \frac{1}{s^{n+1}} \Gamma(n+1) \qquad \left[\because \Gamma(n) = \int_{0}^{\infty} e^{-x} x^{n-1} dt , n \ge 0 \right]$$

$$\Rightarrow L\{t^n\} = \frac{n!}{s^{n+1}} \qquad [\because \Gamma(n+1) = n!]$$

Find the Laplace transform of $t^{1/2}$

Sol:
$$f(t) = t^{1/2}$$
 and by formula

Sol:
$$f(t) = t^{1/2}$$
 and by formula
$$\mathcal{L}(f(t)) = \int_0^\infty e^{-st} f(t) dt = F(s)$$

Substitute f(t) in the above formula
$$\mathcal{L}(t^{1/2}) = \int_0^\infty e^{-st} t^{1/2} dt = F(s)$$

Here
$$n = \frac{1}{2}$$
 and by formula $\mathcal{L}(t^n) = \frac{n!}{s^{n+1}}$.

$$\mathcal{L}(t^{\frac{1}{2}}) = \frac{\frac{1}{2}!}{\frac{s^{1/2+1}}{s^{1/2+1}}} \quad Note: n! = \Gamma(n+1) \text{ or } n\Gamma(n) = n!.$$
So $\frac{1}{2}! = \frac{1}{2}\Gamma(\frac{1}{2})$ and also $\Gamma(1/2) = \sqrt{(\pi)}$

So
$$\frac{1}{2}! = \frac{1}{2}\Gamma(\frac{1}{2})$$
 and also $\Gamma(1/2) = \sqrt{(\pi)}$

Finally

We are having
$$\mathcal{L}(t^{\frac{1}{2}}) = \frac{1/2 * \sqrt{(\pi)}}{s^{1/2+1}}$$

After Simplification

$$\mathcal{L}(t^{\frac{1}{2}}) = \frac{\sqrt{(\pi)}}{2s^{3/2}}$$

Find the Laplace transform of $t^{-1/2}$

Sol:
$$f(t) = t^{-1/2}$$
 and by formula
$$\mathcal{L}(f(t)) = \int_0^\infty e^{-st} f(t) dt = F(s)$$

Substitute f(t) in the above formula

$$\mathscr{L}(t^{1/2}) = \int_0^\infty e^{-st} t^{-1/2} dt = F(s)$$

Here
$$n = \frac{1}{2}$$
 and by formula $\mathcal{L}(t^n) = \frac{n!}{s^{n+1}}$.

$$\mathcal{L}(t^{\frac{-1}{2}}) = \frac{\frac{-1}{2}!}{s^{-1/2+1}} \quad Note: n! = \Gamma(n+1) \text{ or } n\Gamma(n) = n!.$$
So $\frac{-1}{2}! = \Gamma(\frac{-1}{2}+1)$ and also $\Gamma(1/2) = \sqrt{(\pi)}$

So
$$\frac{-1}{2}! = \Gamma(\frac{-1}{2} + 1)$$
 and also $\Gamma(1/2) = \sqrt{(\pi)}$

We are having $\mathcal{L}(t^{\frac{-1}{2}}) = \frac{\sqrt{(\pi)}}{\epsilon^{1/2}}$

After Simplification

$$\mathscr{L}(t^{\frac{-1}{2}}) = \frac{\sqrt{\pi}}{\sqrt{s}}$$

Finally

PROPERTY-1

The Laplace Transform is Linear

If a is a constant and f and g are functions, then

$$\mathcal{L}(af) = a\mathcal{L}(f) \tag{1}$$

$$\mathcal{L}(f+g) = \mathcal{L}(f) + \mathcal{L}(g) \tag{2}$$

For example, by the above property (1)

$$\mathcal{L}(3t^5) = 3\mathcal{L}(t^5) = 3\left(\frac{5!}{s^6}\right) = \frac{360}{s^6}, \ s > 0.$$

As an another example, by property (2)

$$\mathcal{L}(e^{5t} + \cos(3t)) = \mathcal{L}(e^{5t}) + \mathcal{L}(\cos(3t)) = \frac{1}{s-5} + \frac{s}{s^2+9}, \ s > 5.$$

An example where both (1) and (2) are used,

$$\mathcal{L}(3t^7 + 8) = \mathcal{L}(3t^7) + \mathcal{L}(8) = 3\mathcal{L}(t^7) + 8\mathcal{L}(1) = 3\left(\frac{7!}{s^8}\right) + 8\left(\frac{1}{s}\right), \ s > 0.$$

The Laplace transform of the product of two functions

$$\mathcal{L}(fg) \neq \mathcal{L}(f)\mathcal{L}(g)$$
.

As an example, we determine

$$\mathcal{L}(3 + e^{6t})^2 = \mathcal{L}(3 + e^{6t})(3 + e^{6t}) = \mathcal{L}(9 + 6e^{6t} + e^{12t})$$

$$= \mathcal{L}(9) + \mathcal{L}(6e^{6t} + \mathcal{L}(e^{12t})$$

$$= 9\mathcal{L}(1) + 6\mathcal{L}(e^{6t}) + \mathcal{L}(e^{12t})$$

$$= \frac{9}{s} + \frac{6}{s - 6} + \frac{1}{s - 12}$$

Properties of Laplace transform:

- 1. Linearity: $\mathcal{L}\{c_1f(t) + c_2g(t)\} = c_1\mathcal{L}\{f(t)\} + c_2\mathcal{L}\{g(t)\}.$
- 2. First derivative: $\mathcal{L}\{f'(t)\} = s\mathcal{L}\{f(t)\} f(0)$.
- 3. Second derivative: $\mathcal{L}\lbrace f''(t)\rbrace = s^2\mathcal{L}\lbrace f(t)\rbrace sf(0) f'(0)$.
- 4. Higher order derivative:

$$\mathcal{L}\lbrace f^{(n)}(t)\rbrace = s^n \mathcal{L}\lbrace f(t)\rbrace - s^{n-1}f(0) - s^{n-2}f'(0) - \dots - sf^{(n-2)}(0) - f^{(n-1)}(0).$$

- 5. $\mathcal{L}\lbrace -tf(t)\rbrace = F'(s)$ where $F(s) = \mathcal{L}\lbrace f(t)\rbrace$. This also implies $\mathcal{L}\lbrace tf(t)\rbrace = -F'(s)$.
- 6. $\mathcal{L}\lbrace e^{at}f(t)\rbrace = F(s-a)$ where $F(s) = \mathcal{L}\lbrace f(t)\rbrace$. This implies $e^{at}f(t) = \mathcal{L}^{-1}\lbrace F(s-a)\rbrace$.

Example 1.

From
$$\mathcal{L}\{t^n\} = \frac{n!}{s^{n+1}}$$
, we get $\mathcal{L}\{e^{at}t^n\} = \frac{n!}{(s-a)^{n+1}}$.

Example 2.

From
$$\mathcal{L}\{\sin bt\} = \frac{b}{s^2 + b^2}$$
, we get $\mathcal{L}\{e^{at}\sin bt\} = \frac{b}{(s-a)^2 + b^2}$.

Example 3.

From
$$\mathcal{L}\{\cos bt\} = \frac{s}{s^2 + b^2}$$
, we get $\mathcal{L}\{e^{at}\cos bt\} = \frac{s - a}{(s - a)^2 + b^2}$.

Example 4.

$$\mathcal{L}\{t^3 + 5t - 2\} = \mathcal{L}\{t^3\} + 5\mathcal{L}\{t\} - 2\mathcal{L}\{1\} = \frac{3!}{s^4} + 5\frac{1}{s^2} - 2\frac{1}{s}.$$

EXAMPLES-CONT..

Example 5.

$$\mathcal{L}\left\{e^{2t}(t^3+5t-2)\right\} = \frac{3!}{(s-2)^4} + 5\frac{1}{(s-2)^2} - 2\frac{1}{s-2}.$$

Example 6.

$$\mathcal{L}\{(t^2+4)e^{2t}-e^{-t}\cos t\} = \frac{2}{(s-2)^3} + \frac{4}{s-2} - \frac{s+1}{(s+1)^2+1},$$

because

$$\mathcal{L}\{t^2+4\} = \frac{2}{s^3} + \frac{4}{s}, \qquad \Rightarrow \mathcal{L}\{(t^2+4)e^{2t}\} = \frac{2}{(s-2)^3} + \frac{4}{s-2}.$$

PROPERTY-5

Next are a few examples for Property 5.

Example 7.

Given
$$\mathcal{L}\lbrace e^{at}\rbrace = \frac{1}{s-a}$$
, we get $\mathcal{L}\lbrace te^{at}\rbrace = -\left(\frac{1}{s-a}\right)' = \frac{1}{(s-a)^2}$

Example 8.

$$\mathcal{L}\{t\sin bt\} = -\left(\frac{b}{s^2 + b^2}\right)' = \frac{-2bs}{(s^2 + b^2)^2}.$$

Example 9.

$$\mathcal{L}\{t\cos bt\} = -\left(\frac{s}{s^2+b^2}\right)' = \dots = \frac{s^2-b^2}{(s^2+b^2)^2}.$$

$$\mathcal{L}(tf(t);s) = -F'(s)$$

$$\mathcal{L}(t^n f(t);s) = (-1)^n F^{(n)}(s)$$

$$\begin{split} \int_0^\infty (1)e^{-st}dt &= -(1/s)e^{-st}\big|_{t=0}^{t=\infty} & \text{Laplace integral of } g(t) = 1. \\ &= 1/s & \text{Assumed } s > 0. \\ \int_0^\infty (t)e^{-st}dt &= \int_0^\infty -\frac{d}{ds}(e^{-st})dt & \text{Laplace integral of } g(t) = t. \\ &= -\frac{d}{ds}\int_0^\infty (1)e^{-st}dt & \text{Use } \int \frac{d}{ds}F(t,s)dt = \frac{d}{ds}\int F(t,s)dt. \\ &= -\frac{d}{ds}(1/s) & \text{Use } \mathcal{L}(1) = 1/s. \\ &= 1/s^2 & \text{Differentiate.} \\ \int_0^\infty (t^2)e^{-st}dt &= \int_0^\infty -\frac{d}{ds}(te^{-st})dt & \text{Laplace integral of } g(t) = t^2. \\ &= -\frac{d}{ds}\int_0^\infty (t)e^{-st}dt \\ &= -\frac{d}{ds}(1/s^2) & \text{Use } \mathcal{L}(t) = 1/s^2. \end{split}$$

 $= 2/s^3$

INVERSE LAPLACE

Inverse Laplace transform. Definition:

$$\mathcal{L}^{-1}{F(s)} = f(t), \quad \text{if} \quad F(s) = \mathcal{L}{f(t)}.$$

Technique: find the way back.

Some simple examples:

Example 10.

$$\mathcal{L}^{-1}\left\{\frac{3}{s^2+4}\right\} = \mathcal{L}^{-1}\left\{\frac{3}{2} \cdot \frac{2}{s^2+2^2}\right\} = \frac{3}{2}\mathcal{L}^{-1}\left\{\frac{2}{s^2+2^2}\right\} = \frac{3}{2}\sin 2t.$$

Example 11.

$$\mathcal{L}^{-1}\left\{\frac{2}{(s+5)^4}\right\} = \mathcal{L}^{-1}\left\{\frac{1}{3} \cdot \frac{6}{(s+5)^4}\right\} = \frac{1}{3}\mathcal{L}^{-1}\left\{\frac{3!}{(s+5)^4}\right\} = \frac{1}{3}e^{-5t}\mathcal{L}^{-1}\left\{\frac{3!}{s^4}\right\} = \frac{1}{3}e^{-5t}t^3.$$

Example 12.

$$\mathcal{L}^{-1}\left\{\frac{s+1}{s^2+4}\right\} = \mathcal{L}^{-1}\left\{\frac{s}{s^2+4}\right\} + \frac{1}{2}\mathcal{L}^{-1}\left\{\frac{2}{s^2+4}\right\} = \cos 2t \frac{1}{2}\sin 2t.$$