Universidad Monteávila Álgebra Lineal Ingenierías Mecatrónica y Telemática Primer examen parcial-A. Fecha:23-10-2025

Apellido(s):			Nombre(s):					
Cédula:								
Seleccionar cuatro (y solo cuatro) de las cinco preguntas. Preguntas seleccionadas:								
	1	2	3	4	5	TOTAL		

/5

/5

(1) Hallar la ecuación cartesiana de la recta que pasa por el punto (5,5) y que es perpendicular a la recta que pasa por los puntos (4,1) y (5,1).

/5

/5

/20

/5

Solución. La recta que pasa por los puntos (4,1) y (5,1) es una recta horizontal de ecuación y=1, por lo tanto, la ecuación de la recta perpendicular que pasa por el punto (5,5) es

$$x = 5.$$

(2) Hallar la ecuación de la circunferencia que tiene centro (0,1) y que pasa por el punto (0,0).
Solución. Como la circunferencia tiene centro (0,1) y pasa por el punto (0,0) tiene radio igual a 1, por lo tanto la ecuación es

$$x^2 + (y-1)^2 = 1^2$$
,

o lo que es equivalente

$$x^2 + (y-1)^2 = 1.$$

(3) Hallar una ecuación paramétrica de la recta que pasa por el punto (1,2) y es paralela a la recta y=3x.

Solución. La recta y=3x tiene la dirección del vector (1,3), por lo tanto, una posible ecuación paramétrica es

$$\begin{cases} x = 1 + t \\ y = 2 + 3t \end{cases}$$

donde el parámetro t varía en \mathbb{R} .

Observación: la solución de este problema no es única, ya que existen diferentes maneras de escoger un vector paralelo a la recta y=3x.

(4) Hallar las coordenadas del vector que forma un ángulo de $\frac{3\pi}{4}$ rad. con el eje x y que tiene norma 2.

Solución. El vector solicitado es

$$\left(2\cos\left(\frac{3\pi}{4}\right), 2\sin\left(\frac{3\pi}{4}\right)\right)$$

Como

$$\cos\left(\frac{3\pi}{4}\right) = -\frac{\sqrt{2}}{2}$$
 y $\operatorname{sen}\left(\frac{3\pi}{4}\right) = \frac{\sqrt{2}}{2}$

se tiene que el vector es

$$(-\sqrt{2},\sqrt{2}).$$

(5) Encontrar la magnitud (o módulo) del vector $(-\sqrt{3}, -1)$ y el ángulo que forma con el eje x.

Solución. La magnitud del vector es

$$\|(-\sqrt{3},-1)\| = \sqrt{(-\sqrt{3})^2 + (-1)^2} = \sqrt{3+1} = \sqrt{4} = 2.$$

Sea α el ángulo que forma el vector con el eje x, entonces se tiene que cumplir que

$$\cos \alpha = -\frac{\sqrt{3}}{2}$$
 y $\sin \alpha = -\frac{1}{2}$

Por lo tanto el ángulo es

$$\frac{7\pi}{6}$$

También sirve escoger como ángulo

$$-\frac{5\pi}{6}$$
.

Universidad Monteávila Álgebra Lineal Ingenierías Mecatrónica y Telemática Primer examen parcial-B. Fecha:23-10-2025

Apellido(s):			Nombi	re(s):			
Cédula:							
Seleccionar cuatro (y solo cuatro) de las cinco preguntas. Preguntas seleccionadas:							
	1	2	2	1		. 7	$\overline{\Gamma}$

Solución. Como la circunferencia tiene centro (1,0) y pasa por el punto (0,0) tiene radio igual a 1, por lo tanto la ecuación es

(1) Hallar la ecuación de la circunferencia que tiene centro (1,0) y que pasa por el punto (0,0).

$$(x-1)^2 + y^2 = 1^2,$$

o lo que es equivalente

$$(x-1)^2 + y^2 = 1.$$

(2) Hallar la ecuación cartesiana de la recta que pasa por el punto (5,5) y que es paralela a la recta que pasa por los puntos (4,1) y (5,1).

Solución. La recta que pasa por los puntos (4,1) y (5,1) es una recta horizontal de ecuación y = 1, por lo tanto, la ecuación de la recta paralela que pasa por el punto (5,5) es

$$y = 5$$
.

(3) Hallar una ecuación paramétrica de la recta que pasa por el punto (1,2) y es paralela a la recta $y = \frac{1}{3}x$.

Solución. La recta $y=\frac{1}{3}x$ tiene la dirección del vector (3,1), por lo tanto, una posible ecuación paramétrica es

$$\begin{cases} x = 1 + 3t \\ y = 2 + t \end{cases}$$

donde el parámetro t varía en \mathbb{R} .

Observación: la solución de este problema no es única, ya que existen diferentes maneras de escoger un vector paralelo a la recta $y=\frac{1}{3}x$.

(4) Hallar las coordenadas del vector que forma un ángulo de $-\frac{\pi}{4}$ rad. con el eje x y que tiene norma 2.

Solución. El vector solicitado es

$$\left(2\cos\left(-\frac{\pi}{4}\right),2\sin\left(-\frac{\pi}{4}\right)\right)$$

Como

$$\cos\left(-\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$
 y $\operatorname{sen}\left(-\frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2}$

se tiene que el vector es

$$(\sqrt{2}, -\sqrt{2}).$$

(5) Encontrar la magnitud (o módulo) del vector $(-\sqrt{3},1)$ y el ángulo que forma con el eje x.

Solución. La magnitud del vector es

$$\|(-\sqrt{3},-1)\| = \sqrt{(-\sqrt{3})^2 + (-1)^2} = \sqrt{3+1} = \sqrt{4} = 2.$$

Sea α el ángulo que forma el vector con el eje x, entonces se tiene que cumplir que

$$\cos \alpha = -\frac{\sqrt{3}}{2}$$
 y $\sin \alpha = \frac{1}{2}$

Por lo tanto el ángulo es

$$\frac{5\pi}{6}$$
.

También sirve escoger como ángulo

$$-\frac{7\pi}{6}$$
.