B Viagens Aéreas

Time Limit: 2s

Representante de vendas de importantes marcas do gênero alimentício, Carlos viaja por todo o Brasil, seja por terra, ar ou mesmo mar. Sempre que possível, ele dá preferências às viagens aéreas, devido ao seu conforto e velocidade.

Contudo, o planejamento destas viagens tem tomado de Carlos um tempo significativo: após descobrir se há ou não rotas de sua origem até seu destino, ele tem que analisar todas as alternativas para encontrar um rota (sequência de voos) disponível com o menor número de escalas possíveis.

Dados os aeroportos e voos disponíveis, ajude Carlos a determinar se é possível atingir seu destino a partir de sua origem e, caso seja, determinar o número mínimo de escalas.

Entrada

A entrada consiste em uma série de casos de teste. A primeira linha de um caso de testes contém o número N ($2 \le N \le 1.000$) aeroportos disponíveis, numerados sequencialmente de 1 a N, e o número M de rotas ($0 \le M \le N(N-1)$) entre estes aeroportos.

Cada uma das M linhas contém uma rota representada por dois inteiros x e y ($1 \le x, y \le N, x \ne y$), separados por um espaço em branco, indicando que existe um voo que parte do aeroporto x para o aeroporto y.

Por fim, na última linha do caso de testes há dois inteiros P e C ($1 \le P, C \le N, P \ne C$), indicando o aeroporto de partida e o de chegada de Carlos.

Saída

Para cada caso de teste deve ser impressa uma das três mensagens a seguir, conforme for o caso:

- 1. "Nao ha rotas de P para C";
- 2. "Existe um voo direto de P para C"
- 3. "Rota minima: E escalas", onde E é o número mínimo de escalas (uma escala consiste em um pouso/partida em um aeroporto que não o de partida ou o de chegada).

Esta mensagem deve ser seguida de uma quebra de linha.

Exemplos de entradas	Exemplos de saídas
3 3	Nao ha rotas de 1 para 3
2 1	Existe um voo direto de 6 para 2
2 3	Rota minima: 2 escalas
3 2	
1 3	
4 6	
1 2	
2 3	
4 5	
3 6	
6 2	
1 5	
6 2	
4 7	
1 2	
2 1	
2 3	
3 2	
3 4	
1 4	
4 1	
4 3	

Este problema foi elaborado para ensino e docência. Quaisquer coincidências com problemas já existentes favor entrar em contato (edsonalves@unb.br) para que as devidas providências sejam tomadas.