

CONTENTS

/01 Project Analysis

Product Analysis

Real pain

 When you are watching a fantasy show with fry chicken, it's INCONVENIENT to press the pause.

Key Market

- Fried chicken lovers
- TV series fans
- Phyzait
- Geek

Contribution

 A wireless interactive system with Sokoban game demo

Distinction

- No extra device required
 - Geeky appearance
 - Cost-effective

Product Description

Game Controller

Sokoban demo is realized using this system.

PPT Clicker

Never forget to take the clicker any more.

And More

Waiting you to explore...

Time line

System Architecture

/02Technology Analysis

Technology

Doppler Effect

Source frequency f_0 , received frequency f

$$f = \frac{c \pm v_r}{c \pm v_t} f_0$$

When $c \gg v$

$$\Delta f = f - f_0 = \frac{c + v}{c - v} f_0 - f_0 \approx \frac{2v}{c} f_0$$

Source frequency: 18KHz, 19KHz

What's new

Doppler Effect

Source frequency f_0 , received frequency f

$$f = \frac{c \pm v_r}{c \pm v_t} f_0$$

When $c \gg v$

$$\Delta f = f - f_0 = \frac{c + v}{c - v} f_0 - f_0 \approx \frac{2v}{c} f_0$$

The FFT number N_{FFT} , spectral resolution Δn , sample rate F_{S}

$$\Delta n = \frac{F_S}{N_{FFT}}$$

To get an accuracy result, we set

$$\Delta n \sim \Delta f / 100$$

Source frequency: 18KHz, 19KHz

Design specifications: Spectral resolution 2Hz

Down Sampling

The Baseband sampling rate $f_{SB} = 48 \text{KHz}$, down sample rate k

$$\frac{2f_H}{k} \le f_S \le \frac{2f_L}{k-1}$$

k	$f_{S}=f_{SB}/k$	(f_L, f_H)	N_{FFT}	Δn
1	48K	(0, 24K)	4096	11.7
5	9.6K	(14.4K, 19.2K)	4096	2.3
6	8K	(16K, 20K)	4096	2
7	6.9K	(17.2K, 20.7K)	4096	1.7
8	6K	(18K, 21K)	4096	1.5

Anti-aliasing Filter Design

Butterworth IIR filter, order:18

$$F_{pass1}=18 {\rm KHz}$$
 , $F_{pass2}=19 {\rm KHz}$, $F_{stop1}=16 {\rm KHz}$, $F_{stop2}=20 {\rm KHz}$, $A_{pass}=0 {\rm dB}$, $A_{stop}=-80 {\rm dB}$

STFT

The define of short time Fourier transform is

$$STFT(e^{j\omega}, n) = \sum_{m=-\infty}^{\infty} x[n-m]w[m]e^{-j\omega m}$$

We choose the Hamming window.

$$w_{Hamming}[n] = 0.54 + 0.46 \cos\left(\frac{2\pi n}{N_w}\right) - N_w/2 < n \le N_w/2$$

We set the window interception length $\delta_t = 85 \, \mathrm{ms}$, overleap = 75%

$$N_w = \delta_t \cdot f_s = 680$$

Secondary Peak Searching

Algorithm Secondary Peak Searching

- 1: **Input:** spectrum *S* of FFT length 4096
- 2: **Output:** Variable d indicating the direction with respect to the speaker. Value +1 for forward, -1 for backward and 0 for stationary.
- 3: $N \leftarrow$ the FFT point w.r.t. the frequency of the speaker.
- $\Delta n \leftarrow$ spectrum resolution.

4:
$$L \leftarrow \{k \mid S[k] \ge \beta, N - \frac{100}{4n} \le k < N\}$$

$$l \leftarrow \max_{k \in L} S[k]$$

$$R \leftarrow \{k \mid S[k] \ge \beta, N < k \le N + \frac{100}{\Delta n}\}$$

$$r \leftarrow \max_{k \in R} S[k]$$

5: if l > r then

$$d \leftarrow -1$$

6: if l < r then

$$d \leftarrow 1$$

7: else

$$d \leftarrow 0$$

Feature Extraction

Gesture	Feature	Label
push	[(1,1)+]	1
pull	[(-1,-1)+]	2
swipe left	$[(1,1)^+,(1,0)^+,(1,-1)^+,(0,-1)^+,(-1,-1)^+]$	3
swipe right	$[(1,1)^+,(0,1)^+,(-1,1)^+,(-1,0)^+,(-1,-1)^+]$	4
•••	•••	•••

k-NN Classifier

k-NN is a simple classification algorithm containing two steps:

- Compute the distances between test example and all train examples.
- Given these distances, for each test example find the k nearest examples and have them vote for the label

Question:

How to calculate the "distance"?

Is it reasonable to use L1 or L2 metrics?

Dynamic Time Warping

Euclidean

Dynamic Time Warping

Dynamic Time Warping

<u>Time-normalized distance</u> between

A and **B** :

$$D(A, B) = \begin{bmatrix} \sum_{s=1}^k d(p_s) \cdot w_s \\ \sum_{s=1}^k w_s \end{bmatrix}$$

 $d(p_s)$: distance between i_s and j_s $w_s > 0$: weighting coefficient.

Best alignment path between **A** and **B**:

$$P_0 = \underset{P}{\operatorname{arg\,min}} (D(A, B)).$$

The Choice of the Weighting Coefficient

Time-normalized distance between A

Seeking a weighting coefficient function which guarantees that:

$$C = \sum_{s=1}^{k} w_s$$

is independent of the warping function.

Thus

$$D(A, B) = \frac{1}{C} \min_{P} \left[\sum_{s=1}^{k} d(p_s) \cdot w_s \right]$$

can be solved by use of dynamic programming.

Weighting Coefficient Definitions

• Symmetric form

$$w_{s} = (\mathbf{i}_{s} - \mathbf{i}_{s-1}) + (\mathbf{j}_{s} - \mathbf{j}_{s-1}),$$

then
$$C = n + m$$
.

• Asymmetric form

$$w_{s}=(\boldsymbol{i}_{s}-\boldsymbol{i}_{s-1}),$$

then
$$C = n$$
.

Or equivalently,

$$W_{s}=(\boldsymbol{j}_{s}-\boldsymbol{j}_{s-1}),$$

then
$$C = m$$
.

Symmetric DTW Algorithm

Initial condition: g(1,1) = 2d(1,1).

DP-equation:

$$g(i, j) = \min \begin{cases} g(i, j-1) + d(i, j) \\ g(i-1, j-1) + 2d(i, j) \\ g(i-1, j) + d(i, j) \end{cases}$$

Warping window: $j - r \le i \le j + r$.

<u>Time-normalized distance</u>:

$$D(A, B) = g(n, m) / C$$

 $C = n + m$.

DTW Algorithm at Work

Start with the calculation of g(1,1) = d(1,1).

Calculate the first row $g(\mathbf{i}, 1) = g(\mathbf{i}-1, 1) + d(\mathbf{i}, 1)$.

Calculate the first column g(1, j) = g(1, j) + d(1, j).

Move to the second row g(i, 2) = min(g(i, 1), g(i-1, 1), g(i-1, 2)) + d(i, 2). Book keep for each cell the index of this neighboring cell, which contributes the minimum score (red arrows).

Carry on from left to right and from bottom to top with the rest of the grid g(i, j) = min(g(i, j-1), g(i-1, j-1), g(i-1, j)) + d(i, j).

Trace back the best path through the grid starting from $g(\mathbf{n}, \mathbf{m})$ and moving towards g(1,1) by following the red arrows.

Result

Classified Gestures									
push	0.99	0.00	0.00	0.01	0.01	0.01			
pull	0.00	0.98	0.00	0.00	0.01	0.02			
swipe left	0.00	0.00	0.94	0.03	0.04	0.02			
swipe right	0.00	0.00	0.05	0.95	0.03	0.01			
single loop	0.01	0.01	0.01	0.01	0.89	0.02			
triple loop	0.00	0.01	0.00	0.00	0.02	0.92			
	push	pull	swipe left	swipe right	single loop	triple loop			

/03 Live Demo

Live Demo

Sokoban

Gestures:

- Left/Right/Forward/Backward
- Circle(s)

Recognition Time:

2s (When pressing keyboard 'z')

Fruit Ninja

Gestures:

- Left/Right Recognition Time:
- All the time (2s delay)

/04 Q&A

