## 4.2. Исследование энергетического спектра $\beta$ -частици определение их максимальной энергии при помощи магнитного спектрометра

Хурсик Екатерина

3 декабря 2020 г.

## 1. Цель работы

С помощью магнитного спектрометра исследовать энергетический спектр  $\beta$  - частиц при распаде ядер  $^{137}$ Cs и определить их максимальную энергию.

## 2. Ход работы

Откачаем воздух из полости спектрометра, включим вакуумметр. Включим ПЭВМ, формирователь импульсов, питание магнитной линзы и уменьшим ток через неё до нуля.

Проведём измерение  $\beta$ -спектра, изменяя ток в магнитной линзе, при каждом значении тока будем измерять число попаданий частиц в детектор за 100 секунд. Далее в таблице будут сразу приведены значения  $N[\mathbf{c}^{-1}] = \frac{N'}{t_{100}}$  — число частиц в единицу времени. Результаты сведем в таблицу 1.

 $\Pi$ римечание: в таблице погрешности величин указаны в тех же размерностях, что и сами величины.

Измерим фон:

Таблица 2: Подсчет фона

| $N^{\underline{o}}$ | 1     | 2     | 3     | 4     |
|---------------------|-------|-------|-------|-------|
| $N_{\Phi}$          | 0,810 | 0,914 | 0,801 | 0,769 |
| $\sigma_{N_{\Phi}}$ | 0,089 | 0,078 | 0,101 | 0,077 |

По результатам измерений возьмем среднее, т.е.

Таблица 1: Результаты измерений

| $N_{ar{	ext{0}}}$                 | I, A | $\sigma_l$ , A | $N, c^{-1}$ | $N - N_{\Phi}, c^{-1}$ | $\sigma_{N-N_{\Phi}}$ | $p$ , кэ $\mathrm{B}/c$ , | $\sigma_p$ | Т, кэВ | $\sigma_T$ | $f, c/M^{3/2}$ | $\sigma_f$ |
|-----------------------------------|------|----------------|-------------|------------------------|-----------------------|---------------------------|------------|--------|------------|----------------|------------|
| 1                                 | 0    | 0.02           | 0.66        | -0.13                  | 0.14                  | _                         |            | -      | _          | -              | _          |
| $\frac{1}{2}$                     | 0.2  | 0.02           | 0.71        | -0.08                  | 0.14                  | 51                        | 5          | 3      | 0          | _              | _          |
| 3                                 | 0.4  | 0.02           | 0.91        | 0.12                   | 0.15                  | 103                       | 5          | 10     | 1          | 3.322          | 0.118      |
| $\begin{vmatrix} 4 \end{vmatrix}$ | 0.6  | 0.02           | 0.89        | 0.1                    | 0.14                  | 154                       | 5          | 23     | 1          | 1.651          | 0.118      |
| 5                                 | 0.8  | 0.02           | 0.96        | 0.17                   | 0.15                  | 206                       | 5          | 40     | 1          | 1.398          | 0.118      |
| 6                                 | 1    | 0.02           | 1.37        | 0.58                   | 0.16                  | 257                       | 5          | 61     | 1          | 1.848          | 0.118      |
| 7                                 | 1.2  | 0.02           | 1.78        | 0.99                   | 0.17                  | 309                       | 6          | 86     | 2          | 1.835          | 0.118      |
| 8                                 | 1.4  | 0.02           | 2.4         | 1.61                   | 0.19                  | 360                       | 6          | 114    | 2          | 1.858          | 0.118      |
| 9                                 | 1.7  | 0.02           | 3.52        | 2.73                   | 0.22                  | 437                       | 6          | 161    | 2          | 1.808          | 0.081      |
| 10                                | 2    | 0.02           | 3.96        | 3.17                   | 0.23                  | 514                       | 6          | 214    | 3          | 1.527          | 0.062      |
| 11                                | 2.3  | 0.02           | 3.97        | 3.18                   | 0.23                  | 591                       | 7          | 271    | 3          | 1.24           | 0.049      |
| 12                                | 2.6  | 0.02           | 4.05        | 3.26                   | 0.23                  | 668                       | 7          | 330    | 3          | 1.045          | 0.04       |
| 13                                | 2.9  | 0.02           | 3.56        | 2.77                   | 0.22                  | 746                       | 7          | 393    | 4          | 0.817          | 0.034      |
| 14                                | 3.2  | 0.02           | 2.57        | 1.78                   | 0.19                  | 823                       | 8          | 457    | 4          | 0.565          | 0.032      |
| 15                                | 3.3  | 0.02           | 2.27        | 1.48                   | 0.19                  | 848                       | 8          | 479    | 5          | 0.492          | 0.032      |
| 16                                | 3.4  | 0.02           | 1.42        | 0.63                   | 0.16                  | 874                       | 8          | 502    | 5          | 0.307          | 0.04       |
| 17                                | 3.6  | 0.02           | 1.3         | 0.51                   | 0.16                  | 926                       | 8          | 546    | 5          | 0.254          | 0.04       |
| 18                                | 3.7  | 0.02           | 1           | 0.21                   | 0.15                  | 951                       | 9          | 569    | 5          | 0.156          | 0.055      |
| 19                                | 3.8  | 0.02           | 1.14        | 0.35                   | 0.15                  | 977                       | 9          | 592    | 5          | 0.194          | 0.043      |
| 20                                | 3.85 | 0.02           | 1.71        | 0.92                   | 0.17                  | 990                       | 9          | 603    | 5          | 0.308          | 0.029      |
| 21                                | 3.9  | 0.02           | 2.89        | 2.1                    | 0.2                   | 1003                      | 9          | 614    | 5          | 0.456          | 0.023      |
| 22                                | 3.95 | 0.02           | 4.42        | 3.63                   | 0.24                  | 1015                      | 9          | 626    | 6          | 0.589          | 0.021      |
| 23                                | 4    | 0.02           | 5.23        | 4.44                   | 0.25                  | 1028                      | 9          | 637    | 6          | 0.639          | 0.02       |
| 24                                | 4.1  | 0.02           | 5.11        | 4.32                   | 0.25                  | 1054                      | 9          | 660    | 6          | 0.607          | 0.019      |
| 25                                | 4.2  | 0.02           | 4.58        | 3.79                   | 0.24                  | 1080                      | 9          | 684    | 6          | 0.549          | 0.019      |
| 26                                | 4.3  | 0.02           | 4.23        | 3.44                   | 0.23                  | 1105                      | 10         | 707    | 6          | 0.505          | 0.018      |
| 27                                | 4.33 | 0.02           | 3.38        | 2.59                   | 0.21                  | 1113                      | 10         | 714    | 6          | 0.433          | 0.019      |
| 28                                | 4.35 | 0.02           | 2.4         | 1.61                   | 0.19                  | 1118                      | 10         | 719    | 6          | 0.339          | 0.02       |
| 29                                | 4.4  | 0.02           | 2.12        | 1.33                   | 0.18                  | 1131                      | 10         | 730    | 6          | 0.303          | 0.021      |
| 30                                | 4.5  | 0.02           | 0.9         | 0.11                   | 0.15                  | 1157                      | 10         | 754    | 6          | 0.084          | 0.056      |
| 31                                | 4.6  | 0.02           | 0.56        | -0.23                  | 0.13                  | 1183                      | 10         | 777    | 7          | -              | -          |
| 32                                | 4.8  | 0.02           | 0.54        | -0.25                  | 0.13                  | 1234                      | 10         | 825    | 7          | -              | -          |
| 33                                | 5    | 0.02           | 0.32        | -0.47                  | 0.12                  | 1285                      | 11         | 872    | 7          | -              | -          |

$$N_{\Phi} = 0.79 \pm 0.09 \,\mathrm{c}^{-1}$$

Проведем вычет фона из числа частиц. Погрешность будет вычисляться как

$$\sigma_{N-N_{\Phi}} = \sqrt{\sigma_N^2 + \sigma_{N_{\Phi}}^2} = \sqrt{\left(rac{\sqrt{N'}}{t_{100}}
ight)^2 + \sigma_{N_{\Phi}}^2}$$

Погрешность  $\sigma_N$  вычисляется статистически.

Отложим на графике экспериментальные точки в осях  $I,\ N-N_{\Phi}$  и профитируем их функцией

$$y(x) = g + a \exp\left(\frac{(x-b)^2}{2c^2}\right) + d \cdot x^2 (f - \sqrt{x^2 + e})^2$$

Первый член вносит общую поправку значений по y (обусловленную вычетом фона), второй — функция Гаусса для конверсионного пика и третий — спектр  $\beta$ -распада. Результаты фита сведем в таблицу 3.

Важным результатом фита является параметр  $b = (4.122 \pm 0.015)$  A — он показывает, где находится конверсионный пик по оси абсцисс. С его помощью можно найти из (??)

$$k = \frac{p_c}{I} \approx 245/c$$
 кэ $\mathrm{B/A}$ 



Рис. 1: Измерение  $\beta$ -спектра

Параметр Ошибка Значение 5.430.36ab4.1220.0150.190.02cd7.83 196.6 17.82217.76e301.70 f 7766.480.27-0.63g3,1  $\chi_{\nu}$ 

Таблица 3: Результаты фита  $\beta$ -спектра

Зная конверсионный пик и соответствующие ему импульс  $p_c=1013~{\rm к}$  эВ/с и энергию  $T=634~{\rm к}$  эВ, мы можем откалибровать шкалу токов в шкалу импульсов и энергий. Это занесено в таблицу 1.

Теперь подставим в  $\frac{dN}{dE} \approx \sqrt{E}(E_e-E)^2$  формулу  $N=CW(p_e)p_e$ , сокращая обе части на  $\delta p_e$ , мы получаем

$$N(p) = \approx p^3 (E_e - E)^2 \Rightarrow \frac{\sqrt{N}}{p^{3/2}} \propto T_{max} - T$$

Отложив по оси y величину  $\frac{\sqrt{N}}{p^{3/2}}=f$  в таблице 1, а по x — кинетическую энергию, мы можем построить график, называемый графиком Ферми-Кюри, и определить по нему  $T_{max}$  — в этих осях спектр  $\beta$ -распада описывается прямой, который мы можем профитировать y=ax+b.



Рис. 2: График Ферми-Кюри

В результате фита мы получаем, что при y=0 мы можем найти  $T_{max}=\frac{b}{-a}\approx (610\pm 46)$  кэВ.

Таблица 4: Результаты фита Ферми-Кюри

| Параметр    | Значение | Ошибка |  |
|-------------|----------|--------|--|
| b           | 2.17     | 0.13   |  |
| a           | -0.0035  | 0.0003 |  |
| $\chi_{ u}$ | 2,1      |        |  |

## 3. Вывод

Таким образом, в работе мы изучили спектр  $\beta$ -распада  $^{136}Cs$ , экспериментальным путем наши конверсионный пик, оценили параметры установки и подсчитали максимальную возможную кинетическую энергию электрона в этом распаде.