PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Ayudante: Nicholas Mc-Donnell

Email: namcdonnell@uc.cl

Solución Ayudantía 1

Álgebra I - MAT2227

Fecha: 2019/08/13

1) Dado p primo, demuestre que \sqrt{p} es irracional usando descenso infinito.

Demostración. Asumamos que \sqrt{p} es racional, o sea, existen $a, b \in \mathbb{N}^1$ tales que $\sqrt{p} = \frac{a}{b}$, se reescribe la ecuación de la siguiente forma:

$$b^2 p = a^2 \tag{1}$$

Se nota que $p \mid a^2$, por teorema visto en clase si $p \mid a \cdot a$ entonces $p \mid a$ o $p \mid a$, por lo que $a = pa_1$, donde $a_1 \in \mathbb{N}$ y $a_1 < a$. Volviendo a reescribir la ecuación se tiene lo siguiente:

$$b^2p = p^2a_1^2$$

$$\therefore b^2 = a_1^2 p$$

Con eso, se ve que se puede usar el mismo argumento anterior, y con esto se tiene que $p \mid b$, por lo que $b = pb_1$, con $b_1 \in \mathbb{N}$ y $b_1 < b$. Se reescribe la ecuación y se tiene lo siguiente:

$$b_1^2 p = a_1^2$$

Se puede ver que está es la misma ecuación que (1), pero con distintas variables, por lo que se puede repetir el proceso para generar $a_2, b_2 \in \mathbb{N}$ tales que $b_2^2 p = a_2^2$ y $0 < b_2 < b_1 < b, 0 < a_2 < a_1 < a$, como este proceso se puede repetir infinitamente, se tiene un cadena descendiente infinita de números enteros positivos, lo cual es una contradicción.

 $^{^1\}sqrt{p}$ es positivo, por lo que $\overline{a,b}$ también lo son

2) Dado (a, b) = 1 y (a, c) = 1, demuestre que (a, bc) = 1.

Demostración. Sea (a,bc) = k, si k > 1, existe p primo tal que $p \mid k^2$, luego se tiene que $p \mid a$ y $p \mid bc$, ya que $k \mid a$ y $k \mid bc$. Con esto se tiene que sea uno de los siguientes:

$$(p \mid a \land p \mid b) \qquad (p \mid a \land p \mid c)$$

Con el primero se tiene que $p \mid (a, b)$, por lo que (a, b) > 1, lo que es una contradicción, análogamente con el segundo.

3) Demuestre que $a^p + b^p$ es divisible por p ssi $(a + b)^p$ es divisible por p.

Demostración. Se comienza viendo que $p \mid \binom{p}{k}$ para 0 < k < p, se recuerda la definición de primo³ y se escribe lo siguiente

$$\binom{p}{k} = \frac{p!}{(p-k)!k!} = p\frac{(p-1)!}{(p-k)!k!}$$

Como p es primo, y k, p-k son menores a p se tiene que son coprimos, por lo que $\frac{(p-1)!}{(p-k)!k!}$ es un entero, y entonces $\binom{p}{k}$ es divisible por p. Usando propiedades de divisibilidad⁴, se tiene que

$$p \mid \sum_{k=1}^{p-1} \binom{p}{k} a^k b^{p-k}$$

Para $a, b \in \mathbb{N}$. Con esto, se ve que $(a+b)^p = a^p + b^p + \sum_{k=1}^{p-1} {p \choose k} a^k b^{p-k}$, con lo que si $p \mid a^p + b^p$ se tiene que $p \mid (a+b)^p$ y vice-versa.

4) Demuestre que dado p primo, $p \mid b^2$ ssi $p^2 \mid b^2$. (Demuéstrelo sin el teorema fundamental de la aritmética)(Generalice a $p \mid b^n$ ssi $p^n \mid b^n$)

Demostraci'on. \implies : Si $p\mid b^2,$ por una propiedad usada anteriormente se tiene que $p\mid b,$ con lo que $p^2\mid b^{25}.$

 $\stackrel{}{\underline{\longleftarrow}}$: Si $p^2 \mid b^2$, entonces $p \mid p^2$ y por transitividad $p \mid b^{26}$. Con lo que se tiene lo pedido.

²Se puede demostrar sin usar el Teorema Fundamental de la Aritmética, o usandolo directamente.

³i.e. es un número natural mayor a 1 que no es la multiplicación de dos números naturales menores a este.

⁴i.e. $a \mid b, a \mid c \implies a \mid b + c$

⁵Equivalentemente $p^n \mid b^n$

⁶Equivalentemente $p \mid b^n$