Mel-Frequency Cepstral Coefficients

Cepstrum Spectrum

Cepstrum

Spectrum

Quefrency

Frequency

Liftering

Filtering

Rhamonic

Harmonic

An historical note on Cepstrum

- Developed while studying echoes in seismic signals (1960s)
- Audio feature of choice for speech recognition / identification (1970s)
- Music processing (2000s)

Computing the cepstrum

$$C(x(t)) = F^{-1}[log(F[x(t)])]$$

Computing the cepstrum

Cepstrum

The vocal tract

Vocal tract acts as a filter

Speech generation

Glottal pulses

Vocal tract

Speech signal

Formants = Carry identity of sound

Speech

Convolution of vocal tract frequency response with glottal pulse

$$x(t) = e(t) \cdot h(t)$$

$$log(X(t)) = log(E(t) \cdot H(t))$$

$$X(t) = E(t) \cdot H(t)$$

$$log(X(t)) = log(E(t) \cdot H(t))$$

$$log(X(t)) = log(E(t)) + log(H(t))$$

$$log(X(t)) = log(E(t)) + log(H(t))$$

4000

Hz

1000

2000 3000

5000 6000 7000

$$log(X(t)) = log(E(t)) + log(H(t))$$
 Speech
$$d = \frac{1}{2} \frac{1}{$$

The goal: Separating components

The goal: Separating components

$$log(X(t)) = log(E(t)) + log(H(t))$$

Separating components

Separating components

Computing Mel-Frequency Cepstral Coefficients

Computing Mel-Frequency Cepstral Coefficients

Computing Mel-Frequency Cepstral Coefficients

- Simplified version of Fourier Transform
- Get real-valued coefficient

- Simplified version of Fourier Transform
- Get real-valued coefficient

- Simplified version of Fourier Transform
- Get real-valued coefficient
- Decorrelate energy in different mel bands

- Simplified version of Fourier Transform
- Get real-valued coefficient
- Decorrelate energy in different mel bands
- Reduce # dimensions to represent spectrum

How many coefficients?

- Traditionally: first 12 13 coefficients
- First coefficients keep most information (e.g., formants, spectral envelope)
- Use Δ and ΔΔ MFCCs
- Total 39 coefficients per frame

Visualising MFCCs

MFCCs advantages

- Describe the "large" structures of the spectrum
- Ignore fine spectral structures
- Work well in speech and music processing

MFCCs disadvantages

- Not robust to noise
- Extensive knowledge engineering
- Not efficient for synthesis

MFCCs applications

Speech processing

- Speech recognition
- Speaker recognition
- 0 ...

Music processing

- Music genre classification
- Mood classification
- Automatic tagging
- O ...

What's up next?

- Extract MFCCs with Python and Librosa
- Visualise MFCCs