In Search of the Perfect Fluid

Thomas Schaefer, North Carolina State University

See T. Schäfer, D. Teaney, "Perfect Fluidity" [arXiv:0904.3107]

The bottom-line

Remarkably, the best fluids that have been observed are the coldest and the hottest fluid ever created in the laboratory, cold atomic gases $(10^{-6} \rm K)$ and the quark gluon plasma $(10^{12} \rm K)$ at RHIC.

Both of these fluids come close to a bound on the shear viscosity that was first proposed based on calculations in string theory, involving nonequilibrium evolution of back holes in 5 (and more) dimensions.

Measures of Perfection

Viscosity determines shear stress ("friction") in fluid flow

$$F = A \eta \frac{\partial v_x}{\partial y}$$

Dimensionless measure of shear stress: Reynolds number

- $[\eta/n] = \hbar$
- Relativistic systems $Re = \frac{s}{\eta} \times \tau T$

Other sources of dissipation (thermal conductivity, bulk viscosity, ...) vanish for certain fluids, but shear viscosity is always non-zero.

There are reasons to believe that η is bounded from below by a constant times $\hbar s/k_B$. In a large class of theories $\eta/s \geq \hbar/(4\pi k_B)$.

A fluid that saturates the bound is a "perfect fluid".

Fluids: Gases, Liquids, Plasmas, ...

Hydrodynamics: Long-wavelength, low-frequency dynamics of conserved or spontaneously broken symmetry variables.

 $\tau \sim \tau_{micro}$

$$\tau \sim \lambda^{-1}$$

Example: Simple Fluid

Conservation laws: mass, energy, momentum

$$\frac{\partial \rho}{\partial t} + \vec{\nabla}(\rho \vec{v}) = 0$$

$$\frac{\partial \epsilon}{\partial t} + \vec{\nabla} \vec{\jmath}^{\,\epsilon} = 0$$

$$\frac{\partial}{\partial t}(\rho v_i) + \frac{\partial}{\partial x_j} \Pi_{ij} = 0$$

[Euler/Navier-Stokes equation]

Constitutive relations: Energy momentum tensor

$$\Pi_{ij} = P\delta_{ij} + \rho v_i v_j + \eta \left(\partial_i v_j + \partial_j v_i - \frac{2}{3} \delta_{ij} \partial_k v_k \right) + O(\partial^2)$$

reactive

dissipative

2nd order

Kinetic Theory

Kinetic theory: conserved quantities carried by quasi-particles

$$\frac{\partial f_p}{\partial t} + \vec{v} \cdot \vec{\nabla}_x f_p + \vec{F} \cdot \vec{\nabla}_p f_p = C[f_p]$$

$$\eta \sim \frac{1}{3} n \, \bar{p} \, l_{mfp}$$

Normalize to density. Uncertainty relation suggests

$$\frac{\eta}{n} \sim \bar{p} \, l_{mfp} \ge \hbar$$

Also: $s \sim k_B n$ and $\eta/s \geq \hbar/k_B$

Validity of kinetic theory as $\bar{p} \, l_{mfp} \sim \hbar$?

Effective Theories for Fluids (Here: Weak Coupling QCD)

$$\mathcal{L} = \bar{q}_f (iD\!\!/ - m_f) q_f - \frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu}$$

$$\frac{\partial f_p}{\partial t} + \vec{v} \cdot \vec{\nabla}_x f_p = C[f_p] \qquad (\omega < T)$$

$$\frac{\partial}{\partial t}(\rho v_i) + \frac{\partial}{\partial x_j} \Pi_{ij} = 0 \qquad (\omega < g^4 T)$$

Holographic Duals: Transport Properties

Thermal (conformal) field theory $\equiv AdS_5$ black hole

CFT entropy

shear viscosity

 \Leftrightarrow

 \Leftrightarrow

 \sim area of event horizon

Hawking-Bekenstein entropy

Graviton absorption cross section

 \sim area of event horizon

$$T_{\mu\nu} = \frac{\delta S}{\delta g_{\mu\nu}}$$

$$T_{\mu\nu} = \frac{\delta S}{\delta g_{\mu\nu}} \qquad g_{\mu\nu} = g_{\mu\nu}^0 + \gamma_{\mu\nu}$$

Holographic Duals: Transport Properties

Thermal (conformal) field theory $\equiv AdS_5$ black hole

CFT entropy

 \Leftrightarrow

shear viscosity

 \Leftrightarrow

Strong coupling limit

$$\frac{\eta}{s} = \frac{\hbar}{4\pi k_B}$$

Son and Starinets (2001)

Hawking-Bekenstein entropy

 \sim area of event horizon Graviton absorption cross section

 \sim area of event horizon

Strong coupling limit universal? Provides lower bound for all theories?

Effective Theories (Strong coupling)

$$\mathcal{L} = \bar{\lambda}(i\sigma \cdot D)\lambda - \frac{1}{4}G^a_{\mu\nu}G^a_{\mu\nu} + \dots \iff S = \frac{1}{2\kappa_5^2} \int d^5x \sqrt{-g}\mathcal{R} + \dots$$

$$\frac{\partial}{\partial t}(\rho v_i) + \frac{\partial}{\partial x_j} \Pi_{ij} = 0 \ (\omega < T)$$

Kinetics vs No-Kinetics

Spectral function $\rho(\omega) = \text{Im}G_R(\omega,0)$ associated with T_{xy}

weak coupling QCD

strong coupling AdS/CFT

transport peak vs no transport peak

Perfect Fluids: How to be a contender?

Bound is quantum mechanical

need quantum fluids

Bound is incompatible with weak coupling and kinetic theory

strong interactions, no quasi-particles

Model system has conformal invariance (essential?)

(Almost) scale invariant systems

Perfect Fluids: The contenders

QGP (T=180 MeV)

Liquid Helium (T=0.1 meV)

Perfect Fluids: The contenders

$$\mathsf{QGP}\ \eta = 5\cdot 10^{11} Pa \cdot s$$

Trapped Atoms

$$\eta = 1.7 \cdot 10^{-15} Pa \cdot s$$

Liquid Helium

$$\eta = 1.7 \cdot 10^{-6} Pa \cdot s$$

Consider ratios

$$\eta/s$$

Kinetic Theory: Quasiparticles

low temperature

high temperature

<u>helium</u>

phonons, rotons

atoms

unitary gas

phonons

atoms

QCD

pions

quarks, gluons

Low T: Phonons Goldstone boson $\psi\psi = e^{2i\varphi} \langle \psi\psi \rangle$

$$\mathcal{L} = c_0 m^{3/2} \left(\mu - \dot{\varphi} - \frac{(\vec{\nabla}\varphi)^2}{2m} \right)^{5/2} + \dots$$

Viscosity dominated by $\varphi + \varphi \rightarrow \varphi + \varphi$

$$\eta = A \frac{\xi^5}{c_s^3} \frac{T_F^8}{T^5}$$

High T: Atoms Cross section regularized by thermal momentum

$$\eta = \frac{15}{32\sqrt{2}}(mT)^{3/2}$$
Bruun (2005)

Low T: Phonons and Rotons Effective lagrangian

$$\mathcal{L} = \varphi^* (\partial_0^2 - v^2) \varphi + i \lambda \dot{\varphi} (\vec{\nabla} \varphi)^2 + \dots$$
$$+ \varphi_{R,v}^* (i \partial_0 - \Delta) \varphi_{R,v} + c_0 (\varphi_{R,v}^* \varphi_{R,v})^2 + \dots$$

Shear viscosity

$$\eta = \eta_R + \frac{c_{Rph}}{\sqrt{T}} e^{\Delta/T} + \frac{c_{ph}}{T^5} + \dots$$

Landau & Khalatnikov

High T: Atoms Viscosity governed by hard core $(V \sim 1/r^{12})$

$$\eta = \eta_0 (T/T_0)^{2/3}$$

Low T: Pions Chiral perturbation theory

$$\mathcal{L} = \frac{f_{\pi}^2}{4} \text{Tr}[\partial_{\mu} U \partial^{\mu} U^{\dagger}] + (B \text{Tr}[MU] + h.c.) + \dots$$

Viscosity dominated by $\pi\pi$ scattering

$$\eta = A \frac{f_{\pi}^4}{T}$$

High T: Quasi-Particles HTL theory (screening, damping, ...)

$$\mathcal{L}_{HTL} = \int d\Omega \ G^{a}_{\mu\alpha} \frac{v^{\alpha}v_{\beta}}{(v \cdot D)^{2}} G^{a,\mu\beta}$$

quasi-particle width

$$\gamma \sim g^2 T$$

Viscosity dominated by t-channel gluon exchange

$$\eta = rac{27.13T^3}{g^4 \log(2.7/g)}$$

Theory Summary

I. Experiment (Liquid Helium)

Fig. 1. The viscosity of liquid helium II measured by flow through a $10^{-4} \ \rm cm$ channel.

Hollis-Hallett (1955)
roton minimum, phonon rise
rotation viscometer

$$\eta/s \simeq 0.8 \, \hbar/k_B$$

II. Scaling Flows (Cold Gases)

transverse expansion

expansion (rotating trap)

collective modes

$$\frac{\partial n}{\partial t} + \vec{\nabla} \cdot (n\vec{v}) = 0$$

$$mn\frac{\partial \vec{v}}{\partial t} + mn\left(\vec{v} \cdot \vec{\nabla}\right)\vec{v} = -\vec{\nabla}P - n\vec{\nabla}V$$

Scaling Flows

Universal equation of state
$$P = \frac{n^{5/3}}{m} f\left(\frac{mT}{n^{2/3}}\right)$$

Equilibrium density profile

$$n_0(x) = n(\mu(x), T)$$
 $\mu(x) = \mu_0 \left(1 - \frac{x^2}{R_x^2} - \frac{y^2}{R_y^2} - \frac{z^2}{R_z^2} \right)$

Scaling Flow: Stretch and rotate profile

$$\mu_0 \to \mu_0(t), \quad T \to T_0(\mu_0(t)/\mu_0), \quad R_x \to R_x(t), \dots$$

Linear velocity profile

$$\vec{v}(x,t) = (\alpha_x x + (\alpha - \omega)y, \alpha_y y + (\alpha + \omega)y, \alpha_z z)$$
 "Hubble flow"

Dissipation (Scaling Flows)

Energy dissipation (η, ζ, κ) : shear, bulk viscosity, heat conductivity)

$$\dot{E} = -\frac{1}{2} \int d^3x \, \eta(x) \left(\partial_i v_j + \partial_j v_i - \frac{2}{3} \delta_{ij} \partial_k v_k \right)^2$$
$$- \int d^3x \, \zeta(x) \left(\partial_i v_i \right)^2 - \frac{1}{T} \int d^3x \, \kappa(x) \left(\partial_i T \right)^2$$

Have $\zeta = 0$ and T(x) = const. Universality implies

$$\eta(x) = s(x) \alpha_s \left(\frac{T}{\mu(x)}\right)$$
$$\int d^3x \, \eta(x) = S\langle \alpha_s \rangle$$

Dissipation

Dissipation

 t_0 : "Crossing time" $(b_{\perp} = b_z, \theta = 45^{\circ})$

a: amplitude

Time Scales

dissipative

hydro/free streaming

Collective modes: Small viscous correction exponentiates

$$a(t) = a_0 \cos(\omega t) \exp(-\Gamma t)$$

$$\frac{\eta}{s} = \frac{3}{4} (3N\lambda)^{1/3} \left(\frac{\Gamma}{\omega_{\perp}}\right) \left(\frac{E_0}{E_F}\right) \left(\frac{N}{S}\right)$$

Limitations of Scaling Flows

Simple model for $\eta(n,T)$ [where $P=(n^{5/3}/m)f(mT/n^{2/3})$]

$$\eta(n,T) = \eta_0(mT)^{3/2} + \eta_1 \frac{n^{5/3}}{mT} f\left(\frac{mT}{n^{2/3}}\right),$$

Find exact scaling solutions of the Navier Stokes equation

But: η_0 completely unconstrained by data

$$\nabla_j [\eta_0(mT)^{3/2}(\nabla_i v_j + \ldots)] = 0$$

Relaxation Time Model

In real systems stress tensor does not relax to Navier-Stokes form instantaneously. Consider

$$\tau_R \left(\frac{\partial}{\partial t} - \vec{v} \cdot \vec{\nabla} \right) \delta \Pi_{ij} = \delta \Pi_{ij} - \eta \left(\partial_i v_j + \partial_j v_i - \frac{2}{3} \delta_{ij} \partial \cdot v \right)$$

In kinetic theory $\tau_R \simeq (\eta/n) T^{-1}$

- disspiation from $\eta \sim (mT)^{3/2}$
- modified T dependence
- ullet modifed N scaling
- expansion ↔ coll oscillations

III. Elliptic Flow (QGP)

Hydrodynamic expansion converts coordinate space anisotropy

to momentum space anisotropy

source: U. Heinz (2005)

Viscosity and Elliptic Flow

Consistency condition $T_{\mu\nu} \gg \delta T_{\mu\nu}$ (applicability of Navier-Stokes)

$$\frac{\eta + \frac{4}{3}\zeta}{s} \ll \frac{3}{4}(\tau T)$$

Danielewicz, Gyulassy (1985)

Very restrictive for $\tau < 1$ fm

Romatschke (2007), Teaney (2003)

Many questions: Dependence on initial conditions, freeze out, etc.

<u>Outlook</u>

Too early to declare a winner.

$$\eta/s \simeq 0.8$$
 (He), $\eta/s \leq 0.5$ (CA), $\eta/s \leq 0.5$ (QGP)

Other experimental constraints, more analysis needed.

Kinetic theory: o.k. in He (all T), o.k. close to T_c in CA, QGP?

New theory tools: AdS/Cold Atom correspondence? Field theory approaches in cross over regime (large N, epsilon expansions, . . .)