Colles - Semaine 2

Planche 1

Question de cours

Espérance d'une v.a.r. suivant une loi géométrique

Exercice

Soit $n \ge 2$ un entier et $p \in]0,1[$. On considère une pièce \mathcal{P}_1 qui, après avoir été lancée, atterrit sur pile avec probabilité p et sur face avec probabilité 1-p. Soit $1 \le k \le n-1$ un entier.

- 1. Quelle est la probabilité que la pièce atterrisse k fois sur pile (et donc n-k fois sur face) après avoir fait n lancers (indépendants)?
- 2. On lance maintenant la pièce jusqu'à ce qu'elle ait atterri k fois sur pile. Quelle est la probabilité qu'on ait dû le faire exactement n fois?
- 3. Soient B_1, \ldots, B_m des événements de probabilité non nulle, deux à deux disjoints, et telle que leur union soit égale à l'univers. Montrer que tout événement A de probabilité non nulle vérifie :

$$\forall 1 \leqslant i \leqslant m, \qquad \mathbb{P}(B_i|A) = \frac{\mathbb{P}(A|B_i)\mathbb{P}(B_i)}{\sum\limits_{j=1}^{m} \mathbb{P}(A|B_j)\mathbb{P}(B_j)}$$

On considère maintenant une nouvelle pièce \mathcal{P}_2 qui atterrit sur pile avec probabilité $\frac{1}{2}$ et sur face avec probabilité $\frac{1}{2}$. On choisit au hasard soit la première pièce \mathcal{P}_1 soit la nouvelle pièce \mathcal{P}_2 (avec égales probabilités).

- 4. On lance la pièce choisie n fois. Sachant que la pièce a atterri k fois sur pile, quelle est la probabilité que la pièce choisie soit la première pièce?
- 5. On lance la pièce choisie jusqu'à ce qu'elle ait atterri k fois sur pile. Sachant qu'on a dû effectuer n lancers pour cela, quelle est la probabilité que la pièce choisie soit la première pièce?

Planche 2

Question de cours

Espérance d'une v.a.r. suivant une loi de Poisson

Exercice

Chaque nuit, le prince choisit au hasard de dormir sur 6, 7 ou bien 8 matelas (avec des probabilités égales). Chaque nuit, indépendamment, la princesse place sous les matelas un petit pois avec probabilité $\frac{1}{2}$. Par ailleurs :

- si le prince dort sur 6 matelas et qu'un petit pois se trouve en-dessous, celui-ci dort mal;
- si le prince dort sur 7 matelas et qu'un petit pois se trouve en-dessous, celui-ci dort bien avec probabilité $\frac{1}{5}$ (sinon il dort mal);
- si le prince dort sur 8 matelas et qu'un petit pois se trouve en-dessous, celui-ci dort bien avec probabilité $\frac{2}{5}$ (sinon il dort mal).

(s'il n'y a pas de petit pois, le prince dort toujours bien)

1. Soient B_1, \ldots, B_n des événements de probabilités non nulles, deux à deux disjointes, et telle que leur union soit égale à l'univers. Montrer que tout événement A vérifie :

$$\mathbb{P}(A) = \sum_{i=1}^{n} \mathbb{P}(A|B_i) \mathbb{P}(B_i)$$

- 2. Quelle est la probabilité que le prince annonce avoir bien dormi au réveil?
- 3. Si A et B sont deux événements de probabilité non nulles, montrer que :

$$\mathbb{P}(A|B) = \mathbb{P}(B|A) \frac{\mathbb{P}(A)}{\mathbb{P}(B)}$$

- 4. Sachant que le prince a bien dormi, quelle est la probabilité qu'il ait dormi sur 7 matelas?
- 5. Le matin du 17 juin, le prince annonce avoir bien dormi. Sur combien de matelas a-t-il dormi en moyenne?

Planche 3

Question de cours

Stabilité de la somme pour la loi de Poisson en cas d'indépendance

Exercice

On dispose d'une pièce truquée qui renvoie « pile » avec une probabilité $p \in]0,1[$ et on souhaite s'en servir pour générer un pile ou face équilibré. John von Neumann a imaginé l'algorithme suivant (où les lancers successifs de la pièce truquée se font indépendamment) :

On note $T \in \{2, 4, 6, ...\}$ la variable aléatoire donnée par le nombre de lancers nécessaires pour que l'alorithme se termine, et $R \in \{P, F\}$ le résultat de l'algorithme (où on note P pour « pile » et F pour « face »).

- 1. Que valent T et R si on obtient comme premiers tirages PPPFFPPFFP?
- 2. Démontrer que pour tout $k \geqslant 1$:

$$\mathbb{P}([T=2k]) = (p^2 + (1-p)^2)^{k-1} 2 p (1-p)$$

En déduire que l'algorithme se termine presque-sûrement, c'est-à-dre : $\mathbb{P}([T<+\infty])=1$.

- 3. Démontrer que l'algorithme renvoie bien « pile » ou « face » avec même probabilité, c'est-à-dire : $\mathbb{P}([R=\text{« pile »}]) = \frac{1}{2}.$
- 4. Calculer $\mathbb{E}(T)$.