Sergiu Iliev | Bayesian ML Course | Final | Problem 2 - continued

clc, clear

Load dataset to continue from Python

```
T = readtable('DF.csv'); % Create a temporary table to import the data
```

Define a forecast range and dataset select dataset subsections for traning and testing (forecasting) solar power levels

(d)-continued: Constructing a Bayesian Linear Regression Model with a LASSO prior

(d) Better implementation of the part above

```
p = size(X,2); % Number of predictors

PriorMdl = bayeslm(p,'ModelType','lasso','VarNames',predictornames);
table(PriorMdl.Lambda,'RowNames',PriorMdl.VarNames)
```

ans = 6×1 table

	Var1
1 Intercept	0.0100
2 PM25	1.0000
3 PM10	1.0000
4 NO2	1.0000
5 maxT	1.0000
6 minT	1.0000

PriorMdl is a lassoblm model object. lassoblm attributes a shrinkage of 1 for each coefficient except the intercept, which has a shrinkage of 0.01

plot(PriorMdl)

The plot above is the Prior Distribution, now we will determine the Posterior

(e) Constructing and Plotting the Posterior

[EstMdl,Summary] = estimate(PriorMdl,X,y,'Display',true)

Method: lasso MCMC sampling with 10000 draws

Number of observations: 76 Number of predictors: 6

	Mean	Std	CI95	Positive	Distribution
Intercept	-2579 . 5929	4596.5734	[-11695.474, 6339.483]	0.287	Empirical
PM25	-0.0011	0.1605	[-0.341, 0.340]	0.491	Empirical
PM10	-27.7022	10.2465	[-47.636, -7.502]	0.004	Empirical
NO2	35.5817	27.4746	[-18.926, 89.730]	0.908	Empirical
maxT	323.1037	54.2471	[217.678, 430.160]	1.000	Empirical
minT	-222.3267	51.7202	[-324.413, -120.520]	0.000	Empirical
Sigma2	1.3505e+06	2.1813e+05	[989107.013, 1841377.775]	1.000	Empirical

EstMdl =

empiricalblm with properties:

NumPredictors: 5 Intercept: 1

VarNames: {6×1 cell}
BetaDraws: [6×10000 double]
Sigma2Draws: [1×10000 double]

	Mean	Std	CI95	Positive	Distribution
Intercept	-2579.5929	4596.5734	[-11695.474, 6339.483]	0.287	Empirical
PM25	-0.0011	0.1605	[-0.341, 0.340]	0.491	Empirical
PM10	-27.7022	10.2465	[-47.636, -7.502]	0.004	Empirical
NO2	35.5817	27.4746	[-18.926, 89.730]	0.908	Empirical
maxT	323.1037	54.2471	[217.678, 430.160]	1.000	Empirical
minT	-222.3267	51.7202	[-324.413, -120.520]	0.000	Empirical
Sigma2	1.3505e+06	2.1813e+05	[989107.013, 1841377.775]	1.000	Empirical

Summary = 7×6 table

CI95 Mean Std Positive Distribution 1 Intercept 4.5966e+03 -1.1695e+04 -2.5796e+03 6.3395e+03 0.2875 'Empirical' 2 PM25 -0.0011 0.1605 -0.3411 0.3400 0.4909 'Empirical' 3 PM10 -27.7022 10.2465 -47.6363 -7.5023 0.0040 'Empirical' 4 NO2 35.5817 27.4746 -18.9264 89.7304 0.9085 'Empirical' 5 maxT 323.1037 54.2471 217.6779 430.1599 1.0000 'Empirical' 6 minT -222.3267 51.7202 -324.4127 -120.5203 'Empirical' 7 Sigma2 1.3505e+06 2.1813e+05 9.8911e+05 1.8414e+06 1.0000 'Empirical'

plot(EstMdl)

The plot above is the Posterior distribution for Lambda = 1

Evaluating the model FMSE

```
% Fit a lasso regression model to the data. Use the default regularization path. lasso standard
[LassoBetaEstimates,FitInfo] = lasso(X,y,'Standardize',false,...
    'PredictorNames',predictornames);
% Compute the FMSE of each model returned by lasso.
yFLasso = FitInfo.Intercept + XF*LassoBetaEstimates;
fmseLasso = sqrt(mean((yF - yFLasso).^2,1)); fmseLasso(2)

ans = 2.7914e+03

yFBayesLasso = forecast(EstMdl,XF);
fmseBayesLasso = sqrt(mean((yF - yFBayesLasso).^2));
mean(fmseBayesLasso)
```

ans = 2.7867e+03

f) PM25 Prior Alteration and effects on Posterior and RMSE

Changing the Lambda for PM25 from 1 to 100 and recalculating posterior

NumPredictors: 5 Intercept: 1

VarNames: {6×1 cell}
 Lambda: [6×1 double]

A: 3 B: 1

		Mean	Std	CI	95	Positive	Distribution
Intercept PM25 PM10 NO2 maxT minT	 	0 0 0 0 0	100 0.0100 1 1 1	[-200.000, [-0.020, [-2.000, [-2.000, [-2.000,	0.020] 2.000] 2.000] 2.000] 2.000]	0.500 0.500 0.500 0.500 0.500	Scale mixture Scale mixture Scale mixture Scale mixture Scale mixture Scale mixture
Sigma2		0.5000	0.5000	[0.138,	1.616]	1.000	IG(3.00, 1)

[EstMdl,Summary] = estimate(PriorMdl,X,y,'Display',true)

Method: lasso MCMC sampling with 10000 draws

Number of observations: 76 Number of predictors: 6

	Mean	Std	CI95	Positive	Distribution
Intercept	-1793.1094	4751.3242	[-11063.464, 7565.865]	0.344	Empirical
PM25	-3.6371	6.6841	[-17.798, 8.953]	0.297	Empirical
PM10	-25.0113	11.3359	[-47.363, -2.808]	0.014	Empirical
NO2	33.9925	27.2863	[-19.555, 86.685]	0.895	Empirical
maxT	315.4981	54.9623	[209.924, 423.502]	1.000	Empirical
minT	-220.8353	51.9689	[-323.503, -119.161]	0.000	Empirical
Sigma2	1.3400e+06	2.1341e+05	[986048.351, 1819575.345]	1.000	Empirical

EstMdl =

empiricalblm with properties:

NumPredictors: 5 Intercept: 1

VarNames: {6×1 cell}
BetaDraws: [6×10000 double]
Sigma2Draws: [1×10000 double]

	Mean	Std	CI95	Positive	Distribution
Intercept	-1793.1094	4751.3242	[-11063.464, 7565.865]	0.344	Empirical
PM25	-3.6371	6.6841	[-17.798, 8.953]	0.297	Empirical
PM10	-25.0113	11.3359	[-47.363, -2.808]	0.014	Empirical
NO2	33.9925	27.2863	[-19.555, 86.685]	0.895	Empirical
maxT	315.4981	54.9623	[209.924, 423.502]	1.000	Empirical
minT	-220.8353	51.9689	[-323.503, -119.161]	0.000	Empirical
Sigma2	1.3400e+06	2.1341e+05	[986048.351, 1819575.345]	1.000	Empirical

Summary = 7×6 table

CI95 Distribution Mean Std Positive 1 Intercept -1.7931e+03 4.7513e+03 -1.1063e+04 7.5659e+03 0.3439 'Empirical' 2 PM25 -3.6371 6.6841 -17.7981 8.9531 0.2966 'Empirical' 3 PM10 11.3359 -47.3629 -2.8084 'Empirical' -25.0113 0.0139

	Mean	Std	CI95		Positive	Distribution
4 NO2	33.9925	27.2863	-19.5547	86.6846	0.8955	'Empirical'
5 maxT	315.4981	54.9623	209.9237	423.5022	1.0000	'Empirical'
6 minT	-220.8353	51.9689	-323.5032	-119.1612	0	'Empirical'
7 Sigma2	1.3400e+06	2.1341e+05	9.8605e+05	1.8196e+06	1.0000	'Empirical'

plot(EstMdl)

The plot above is the Posterior distribution for PM25 Lambda = 100

Evaluating the model FMSE

```
yFBayesLasso = forecast(EstMdl,XF);
fmseBayesLasso = sqrt(mean((yF - yFBayesLasso).^2));
mean(fmseBayesLasso)
```

ans = 2.7896e+03

Changing the Lambda for PM25 from 1 to 10000 and recalculating posterior

```
PriorMdl.Lambda(2) = 100
```

PriorMdl =
 lassoblm with properties:

NumPredictors: 5 Intercept: 1

VarNames: {6×1 cell}
 Lambda: [6×1 double]

A: 3 B: 1

		Mean	Std	CI	95	Positive	Distribution
Intercept PM25 PM10 NO2 maxT minT	 	0 0 0 0 0	100 0.0100 1 1 1	[-200.000, [-0.020, [-2.000, [-2.000, [-2.000,	0.020] 2.000] 2.000] 2.000] 2.000]	0.500 0.500 0.500 0.500 0.500	Scale mixture Scale mixture Scale mixture Scale mixture Scale mixture Scale mixture
Sigma2		0.5000	0.5000	[0.138,	1.616]	1.000	IG(3.00, 1)

[EstMdl,Summary] = estimate(PriorMdl,X,y,'Display',true)

Method: lasso MCMC sampling with 10000 draws

Number of observations: 76 Number of predictors: 6

	Mean	Std	CI95	Positive	Distribution
Intercept	-1795.7640	4772.0365	[-11321.199, 7611.227]	0.357	Empirical
PM25	-3.6639	6.7034	[-17.508, 9.243]	0.294	Empirical
PM10	-24.8351	11.3127	[-47.103, -2.439]	0.015	Empirical
NO2	33.6236	27.6746	[-20.369, 87.994]	0.890	Empirical
maxT	315.8333	55.6313	[206.498, 425.390]	1.000	Empirical
minT	-221.3632	51.8956	[-322.985, -120.247]	0.000	Empirical
Sigma2	1.3427e+06	2.1519e+05	[989487.917, 1834540.023]	1.000	Empirical

EstMdl =

empiricalblm with properties:

NumPredictors: 5 Intercept: 1

VarNames: {6×1 cell}
BetaDraws: [6×10000 double]
Sigma2Draws: [1×10000 double]

	Mean	Std	CI95	Positive	Distribution
Intercept	-1795.7640	4772.0365	[-11321.199, 7611.227]	0.357	Empirical
PM25	-3.6639	6.7034	[-17.508, 9.243]	0.294	Empirical
PM10	-24.8351	11.3127	[-47.103, -2.439]	0.015	Empirical
NO2	33.6236	27.6746	[-20.369, 87.994]	0.890	Empirical
maxT	315.8333	55.6313	[206.498, 425.390]	1.000	Empirical
minT	-221.3632	51.8956	[-322.985, -120.247]	0.000	Empirical
Sigma2	1.3427e+06	2.1519e+05	[989487.917, 1834540.023]	1.000	Empirical

Summary = 7×6 table

CI95 Distribution Mean Std Positive 1 Intercept -1.7958e+03 4.7720e+03 -1.1321e+04 7.6112e+03 0.3567 'Empirical' 2 PM25 -3.6639 6.7034 -17.5078 9.2431 0.2945 'Empirical' 3 PM10 -24.8351 -47.1034 -2.4391 'Empirical' 11.3127 0.0146

	Mean	Std	CI95		Positive	Distribution
4 NO2	33.6236	27.6746	-20.3695	87.9940	0.8896	'Empirical'
5 maxT	315.8333	55.6313	206.4975	425.3900	1.0000	'Empirical'
6 minT	-221.3632	51.8956	-322.9846	-120.2473	0.0001	'Empirical'
7 Sigma2	1.3427e+06	2.1519e+05	9.8949e+05	1.8345e+06	1.0000	'Empirical'

SLRMdlFull = fitlm(X,y,'VarNames',T.Properties.VariableNames(2:end))

SLRMdlFull =

Linear regression model:

 $minT \sim 1 + Energy + PM25 + PM10 + NO2 + maxT$

Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	-1556.8	5290.7	-0.29425	0.76944
Energy	-5.9438	8.9961	-0.66071	0.51097
PM25	-23.458	12.639	-1.856	0.067664
PM10	33.406	29.454	1.1342	0.26059
NO2	315.44	60.54	5.2104	1.8132e-06
maxT	-222.42	55.435	-4.0123	0.0001487

Number of observations: 76, Error degrees of freedom: 70

Root Mean Squared Error: 1.23e+03

R-squared: 0.39, Adjusted R-Squared: 0.347

F-statistic vs. constant model: 8.96, p-value = 1.29e-06

plot(EstMdl)

The plot above is the Posterior distribution for PM25 Lambda = 10000

Evaluating the model FMSE

```
yFBayesLasso = forecast(EstMdl,XF);
fmseBayesLasso = sqrt(mean((yF - yFBayesLasso).^2));
mean(fmseBayesLasso)
```

ans = 2.7880e+03

Forecasting

Fit a Linear Model for Comparison

```
SLRMdlFull = fitlm(X,y,'VarNames',T.Properties.VariableNames(2:end))
```

```
SLRMdlFull =
Linear regression model:
    minT ~ 1 + Energy + PM25 + PM10 + NO2 + maxT
```

Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	-1556.8	5290.7	-0.29425	0.76944
Energy	-5.9438	8.9961	-0.66071	0.51097
PM25	-23.458	12.639	-1.856	0.067664
PM10	33.406	29.454	1.1342	0.26059
NO2	315.44	60.54	5.2104	1.8132e-06
maxT	-222.42	55.435	-4.0123	0.0001487

```
Number of observations: 76, Error degrees of freedom: 70 Root Mean Squared Error: 1.23e+03 R-squared: 0.39, Adjusted R-Squared: 0.347 F-statistic vs. constant model: 8.96, p-value = 1.29e-06
```

Results Interpretation:

Increasing the value of the Lasso shrinkage parameter Lambda, reduces the influence of the predictor variable. In the case of PM25:

- when Lambda = 1, FRMSE = 2787
- when Lambda = 100, FRMSE = 2790
- when Lambda = 10000, FRMSE = 2788

These results suggest that PM25 has a minor contribution to the prediction capacity of the model. As we approach turning off this parameter by increasing Lambda to 10000 the RMSE does not change.

Therefore PM25 is an unimportant predictor variable.

g) PM10 Prior Alterationa and effects on Posterior and RMSE

Changing the Lambda for PM25 from 1 to 100 and recalculating posterior

PriorMdl.Lambda(3) = 100

```
PriorMdl =
  lassoblm with properties:

NumPredictors: 5
    Intercept: 1
    VarNames: {6×1 cell}
    Lambda: [6×1 double]
    A: 3
    B: 1
```

	Mean	Std	CI	95	Positive	Distribution
Intercept PM25 PM10 NO2	0 0 0 0	100 0.0100 0.0100 1	[-200.000, [-0.020, [-0.020, [-2.000,	0.020] 0.020] 2.000]	0.500 0.500 0.500 0.500	Scale mixture Scale mixture Scale mixture Scale mixture
maxT minT Sigma2	0 0 0.5000	1 1 0.5000	[-2.000, [-2.000, [0.138,	2.000]	0.500 0.500 1.000	Scale mixture Scale mixture IG(3.00, 1)

[EstMdl,Summary] = estimate(PriorMdl,X,y,'Display',true)

Method: lasso MCMC sampling with 10000 draws

Number of observations: 76 Number of predictors: 6

	Mean	Std	CI95	Positive	Distribution
Intercept	-1819.1573	4880.1771	[-11314.392, 7638.331]	0.352	Empirical
PM25	-5.9489	6.8705	[-20.311, 6.502]	0.188	Empirical
PM10	-15.4871	10.3390	[-36.715, 2.806]	0.058	Empirical

NO2	24.7916	27.4699	[-28.991, 78.964]	0.817	Empirical
maxT	314.2101	56.1702	[205.218, 424.424]	1.000	Empirical
minT	-223.0117	52.4490	[-328.343, -120.366]	0.000	Empirical
Sigma2	1.3752e+06	2.1991e+05	[1007242.185, 1872316.897]	1.000	Empirical

EstMdl =

empiricalblm with properties:

NumPredictors: 5 Intercept: 1

VarNames: {6×1 cell}
BetaDraws: [6×10000 double]
Sigma2Draws: [1×10000 double]

	Mean	Std	CI95	Positive	Distribution
Intercept	-1819.1573	4880.1771	[-11314.392, 7638.331]	0.352	Empirical
PM25	-5.9489	6.8705	[-20.311, 6.502]	0.188	Empirical
PM10	-15.4871	10.3390	[-36.715, 2.806]	0.058	Empirical
NO2	24.7916	27.4699	[-28.991, 78.964]	0.817	Empirical
maxT	314.2101	56.1702	[205.218, 424.424]	1.000	Empirical
minT	-223.0117	52.4490	[-328.343, -120.366]	0.000	Empirical
Sigma2	1.3752e+06	2.1991e+05	[1007242.185, 1872316.897]	1.000	Empirical

Summary = 7×6 table

CI95 Distribution Mean Std Positive 1 Intercept -1.8192e+03 4.8802e+03 -1.1314e+04 7.6383e+03 0.3520 'Empirical' 2 PM25 -5.9489 6.8705 -20.3105 6.5022 0.1878 'Empirical' 3 PM10 -15.4871 10.3390 -36.7152 2.8062 0.0581 'Empirical' 4 NO2 24.7916 27.4699 -28.9912 78.9638 0.8169 'Empirical' 5 maxT 314.2101 56.1702 205.2180 424.4239 1.0000 'Empirical' 6 minT -223.0117 52.4490 -328.3427 -120.3662 'Empirical' 7 Sigma2 1.3752e+06 2.1991e+05 1.0072e+06 1.0000 1.8723e+06 'Empirical'

plot(EstMdl)

The plot above is the Posterior distribution for PM10 Lambda = 100

Evaluating the model FMSE

```
yFBayesLasso = forecast(EstMdl,XF);
fmseBayesLasso = sqrt(mean((yF - yFBayesLasso).^2));
mean(fmseBayesLasso)
```

ans = 2.7612e+03

Changing the Lambda for PM25 from 1 to 10000 and recalculating posterior

PriorMdl.Lambda(3) = 10000

```
PriorMdl =
  lassoblm with properties:

NumPredictors: 5
    Intercept: 1
    VarNames: {6×1 cell}
    Lambda: [6×1 double]
    A: 3
    B: 1
```

I	Mean	Std	CI95	Positive	Distribution
Intercept	0	100	[-200.000, 200.000]	0.500	Scale mixture
PM25	0	1	[-2.000, 2.000]	0.500	Scale mixture

PM10	0	0.0001	[-0.000,	0.000]	0.500	Scale mixture	
NO2	0	1	[-2.000,	2.000]	0.500	Scale mixture	!
maxT	0	1	[-2.000,	2.000]	0.500	Scale mixture	!
minT	0	1	[-2.000,	2.000]	0.500	Scale mixture	!
Sigma2	0.5000	0.5000	[0.138,	1.616]	1.000	IG(3.00, 1	.)

[EstMdl,Summary] = estimate(PriorMdl,X,y,'Display',true)

Method: lasso MCMC sampling with 10000 draws

Number of observations: 76 Number of predictors: 6

	Mean	Std	CI95	Positive	Distribution
Intercept	-672 . 0733	4966.0646	[-10391.819, 9118.265]	0.447	Empirical
PM25	-14.1946	7.4351	[-28.728, 0.546]	0.030	Empirical
PM10	-0.0056	0.1682	[-0.364, 0.337]	0.487	Empirical
NO2	12.4457	25.8196	[-37.996, 63.150]	0.687	Empirical
maxT	300.2241	57.3047	[186.429, 412.692]	1.000	Empirical
minT	-221.9849	52.9240	[-325.395, -119.192]	0.000	Empirical
Sigma2	1.4036e+06	2.2660e+05	[1034611.768, 1920640.068]	1.000	Empirical

EstMdl =

empiricalblm with properties:

NumPredictors: 5 Intercept: 1

VarNames: {6×1 cell}
BetaDraws: [6×10000 double]
Sigma2Draws: [1×10000 double]

I	Mean	Std	CI95	Positive	Distribution
Intercept	-672.0733	4966.0646	[-10391.819, 9118.265]	0.447	Empirical
PM25	-14.1946	7.4351	[-28.728, 0.546]	0.030	Empirical
PM10	-0.0056	0.1682	[-0.364, 0.337]	0.487	Empirical
NO2	12.4457	25.8196	[-37.996, 63.150]	0.687	Empirical
maxT	300.2241	57.3047	[186.429, 412.692]	1.000	Empirical
minT	-221.9849	52.9240	[-325.395, -119.192]	0.000	Empirical
Sigma2	1.4036e+06	2.2660e+05	[1034611.768, 1920640.068]	1.000	Empirical

Summary = 7×6 table

Mean Std CI95 Positive Distribution 1 Intercept -672.0733 4.9661e+03 -1.0392e+04 9.1183e+03 'Empirical' 0.4469 2 PM25 -14.1946 7.4351 -28.7278 0.5461 0.0298 'Empirical' 3 PM10 -0.0056 0.1682 -0.3636 0.3368 0.4872 'Empirical' 4 NO2 12.4457 25.8196 -37.9963 63.1495 0.6868 'Empirical' 5 maxT 300.2241 57.3047 186.4290 412.6916 1.0000 'Empirical' 6 minT -221.9849 -325.3946 -119.1923 52.9240 0.0001 'Empirical' 7 Sigma2 1.4036e+06 2.2660e+05 1.0346e+06 1.9206e+06 1.0000 'Empirical'

SLRMdlFull = fitlm(X,y,'VarNames',T.Properties.VariableNames(2:end))

SLRMdlFull =

```
Linear regression model: minT \sim 1 + Energy + PM25 + PM10 + NO2 + maxT
```

Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	-1556.8	5290.7	-0.29425	0.76944
Energy	-5.9438	8.9961	-0.66071	0.51097
PM25	-23.458	12.639	-1.856	0.067664
PM10	33.406	29.454	1.1342	0.26059
NO2	315.44	60.54	5.2104	1.8132e-06
maxT	-222.42	55.435	-4.0123	0.0001487

```
Root Mean Squared Error: 1.23e+03
R-squared: 0.39, Adjusted R-Squared: 0.347
F-statistic vs. constant model: 8.96, p-value = 1.29e-06

plot(EstMdl)
```

The plot above is the Posterior distribution for PM10 Lambda = 10000

Number of observations: 76, Error degrees of freedom: 70

Evaluating the model FMSE

```
yFBayesLasso = forecast(EstMdl,XF);
fmseBayesLasso = sqrt(mean((yF - yFBayesLasso).^2));
mean(fmseBayesLasso)
```

ans = 2.7361e+03

Forecasting & Results Interpretation:

Increasing the value of the Lasso shrinkage parameter Lambda, reduces the influence of the predictor variable. In the case of PM10:

- when Lambda = 1, FRMSE = 2787
- when Lambda = 100, FRMSE = 27612
- when Lambda = 10000, FRMSE = 2723

These results suggest that PM10 has a minor contribution to the prediction capacity of the model. As we approach turning off this parameter by increasing Lambda to 10000 the RMSE does not change.

Similarly these results sugges PM10 is an unimportant predictor variable.

e) Model Forecasting Plot

Selecting the PM10 model with lambda = 1 and PM25 model with lambda = 100

```
PriorMdl.Lambda(3) = 1;
PriorMdl.Lambda(1) = 100;
[EstMdl,Summary] = estimate(PriorMdl,X,y,'Display',true);
```

Method: lasso MCMC sampling with 10000 draws

Number of observations: 76 Number of predictors: 6

	Mean	Std	CI95	Positive	Distribution
Intercept PM25 PM10 NO2 maxT minT Sigma2	0.0871 -7.0128 -22.9849 29.8274 299.7063 -222.7302 1.3438e+06	16.3853 7.8197 11.8176 24.9835 37.4389 50.6031 2.1964e+05	[-33.088, 34.285] [-22.375, 8.084] [-46.186, 0.135] [-17.871, 79.596] [226.176, 374.317] [-321.986, -123.126] [982034.146, 1843525.581]	0.502 0.182 0.026 0.885 1.000 0.000	Empirical Empirical Empirical Empirical Empirical Empirical Empirical Empirical

```
yFBayesLasso = forecast(EstMdl,XF);
plot(yFBayesLasso,'color','red');
hold on
plot(yF,'color','blue')
```

extra) Hyperparameter Sweep and Best Model Selection

The previous approach only considered the fluctuation of PM10 and PM25, the Lasso method can allow us to adjust the shrinkage valua automatically to turn of predictor variables that do not have an impact on the model's predictive power. This section considers a Hyprparameter sweep and selects the best model

```
% Fit a lasso regression model to the data.
[LassoBetaEstimates,FitInfo] = lasso(X,y,'PredictorNames',predictornames);

% Compute the FMSE of each model returned by lasso.
yFLasso = FitInfo.Intercept + XF*LassoBetaEstimates;
fmseLasso = sqrt(mean((yF - yFLasso).^2,1)); fmseLasso(1)
```

ans = 2.7914e+03

```
% Plot the magnitude of the regression coefficients with respect to the shrinkage value.
hax = lassoPlot(LassoBetaEstimates,FitInfo);
L1Vals = hax.Children.XData;
yyaxis right
h = plot(L1Vals,fmseLasso,'LineWidth',2,'LineStyle','--');
legend(h,'FMSE','Location','SW');
ylabel('FMSE');
title('Frequentist Lasso')
```

```
%% Determine the Best Lasso Model -- the plot above suggests the best results (FMSE around 2726
fmsebestlasso = min(fmseLasso(FitInfo.DF == 1));
idx = fmseLasso == fmsebestlasso;
bestLasso = [FitInfo.Intercept(idx); LassoBetaEstimates(:,idx)];
```

table(bestLasso, 'RowNames',["Intercept" predictornames])

ans = 6×1 table

	bestLasso
1 Intercept	1.0491e+04
2 PM25	0
3 PM10	0
4 NO2	0
5 maxT	3.7000e-14
6 minT	0

The frequentist lasso analysis suggests that the variables maxT predictor has the strongest predictive power.

To see how the other variables combare let us compute the shrinkage parameter for each of the 5:

```
fmsebestlasso = min(fmseLasso(FitInfo.DF == 5));
idx = fmseLasso == fmsebestlasso;
bestLasso = [FitInfo.Intercept(idx); LassoBetaEstimates(:,idx)];
table(bestLasso,'RowNames',["Intercept" predictornames])
```

ans = 6×1 table

	bestLasso
1 Intercept	2.4510e+03
2 PM25	-6.6516
3 PM10	-10.0156
4 NO2	2.6471
5 maxT	220.4625
6 minT	-161.6840

This suggest minT has the strongest predictive power after maxT (negatively correlated). Then PM25 and PM10 are either insignificant or redundant, compared to them PM10 has a stronger predictive power.