Lista 5

1. Dada uma amostra aleatória X_1, \ldots, X_n , definimos as estatísticas de ordem como sendo $X_{(j:n)}$ igual a j-ésimo valor na amostra, em ordem ascendente, para $j=1,\ldots,n$. Se X_i tem distribuição F a.c. com densidade f, então

$$f_{X_{(j:n)}}(x) = \frac{n!}{(j-1)!(n-j)!} f(x)(F(x))^{j-1} (1 - F(x))^{n-j}.$$

Considere o caso de uma amostra aleatória com distribuição uniforme em [0, a].

- (a) Para n ímpar, fixando j = n + 1/2 temos que $M = X_{((n+1)/2:n)}$ é a mediana amostral. Mostre que E[2M] = a. (Dica: Você pode fazer um argumento que depende apenas de f(x) ser simétrica em torno de a/2.)
- (b) Calcule a esperança e a variância de $X_{(n:n)}$. Argumente que $X_{(n:n)}$ converge em probabilidade para a.
- (c) Que estatística você usaria para estimar $a: 2M, 2\bar{X}, X_{(n:n)}$ ou $\frac{n+1}{n}X_{(n:n)}$? Justifique sua resposta.
- 2. Na questão anterior, estudamos estatísticas de ordem de uma amostra aleatória com distribuição uniforme em [0, a].
 - (a) Mostre que $X_{(j:n)}$ é uma estatística suficiente para a se e somente se j=n.
 - (b) $R = X_{(n:n)} X_{(1:n)}$ é ancilar? É suficiente?
 - (c) Mostre que $X_{(j:n)}/\bar{X}$ é uma estatística ancilar para a (mesmo com j=n). Como sempre, \bar{X} é a média amostral.
- 3. Você observa uma amostra X com distribuição parametrizada por θ , um número real. Você computa o valor de T(X), uma estatística suficiente de θ e de S(X), uma estatística mínima suficiente de θ . Seu orientador observa o valor realizado de T, e o membro externo da banca o valor

realizado de S. Para fazer previsão sobre θ , você utiliza uma estatística U(X) que tem a propriedade de ser não viesada, ou seja, $E_{\theta}[U] = \theta$, para todo θ . Como o orientador e o membro externo não conhecem X, eles não podem usar U. Eles utilizam, respectivamente, $U_T = E_{\theta}[U|T]$ e $U_S = E_{\theta}[U|S]$.

- (a) Explique por que U_T e U_S nesse caso são estatísticas, isso é, podem ser calculadas mesmo por alguém que não conhece o valor de θ .
- (b) Mostre que U_T e U_S são não viesados: $E_{\theta}[U_T] = E_{\theta}[U_S] = \theta$, para todo θ .
- (c) Mostre que o membro externo acredita que em média o orientador vai concordar com a sua previsão: $E_{\theta}[U_T|S] = U_S$.
- (d) Mostre que $Var(U) \ge Var(U_T) \ge Var(U_S)$.
- 4. Sejam Y_1, \ldots, Y_n independentes, com $Y_i \sim N(\beta x_i, 1)$, onde x_1, \ldots, x_n são números fixos conhecidos.
 - (a) Com base em \bar{Y} , proponha um estimador de método dos momentos para β .
 - (b) Qual é o MLE para β? Qual a sua distribuição?
 - (c) Se definimos $U_i = Y_i \beta x_i$, temos que $E(x_i U_i) = 0$. Proponha um estimador de método dos momentos baseado nessa relação.
 - (d) Examine a densidade da amostra e verifique que $\sum x_i y_i$ é uma estatística suficiente para β , desde que $\sum_i x_i^2$ seja conhecido. Com base nesse fato, qual dos três estimadores para β acima parece ser preferível?
- 5. Sejam X_1,X_2,\ldots,X_n i.i.d. com $EX_i=\mu,\ \mathrm{Var}X_i=\sigma^2.$ Seja $S^2=\frac{1}{n-1}\sum_i(X_i-\bar{X})^2.$
 - (a) Mostre que

$$Var(S^{2}) = \frac{1}{n} \left(\kappa - \frac{n-3}{n-1} \right) \sigma^{4}$$

onde $\kappa = E[(X - \mu)^4]/\sigma^4$ é a curtose da distribuição de X_i .

(b) Usando o resultado acima, prove que o valor de a que faz com que o erro quadrático médio de aS^2 seja mínimo é

$$a = \frac{n-1}{n+1 + (\kappa - 3)(n-1)/n}$$

- (c) Sabendo que $\kappa=3$ na caso da distribuição normal, você agora pode verificar o resultado mencionado em classe, de que o estimador da forma aS^2 que minimiza o MSE é $\frac{1}{n+1}\sum_i (X_i \bar{X})^2$.
- 6. Vimos em aula que o número que minimiza o MSE para a esperança é a média amostral: isto é, $a^* = \arg\min_a \sum (x_i a)^2 = \bar{x}$. Nesse exercício vamos procurar estatística que minimizam o MSE de transformações de x_i .
 - (a) Para h estritamente monótona e contínua, considere o problema $\min_a \sum_i (h(x_i) h(a))^2$. Mostre que a solução desse problema é $a = h^{-1}(h(x)) = h^{-1}(\sum_i h(x_i)/n)$. Dica: trabalhe com b = h(a).
 - (b) Descubra a transformação h que faça com que média harmônica minimize o MSE de $h(x_i)$.
 - (c) Descubra a transformação h que faça com que média geométrica minimize o MSE de $h(x_i)$.
 - (d) Mostre que se temos uma amostra aleatória lognormal (μ, σ^2) , o MLE de μ é baseado na média geométrica. O estimador obtido depende do fato de σ^2 ser conhecido ou não?
 - (e) Qual é o estimador de método dos momentos de μ ? Sua resposta depende do fato de σ^2 ser conhecido ou não?