Class15_RNAseq

San Luc (PID: A59010657)

11/17/2021

Import countData and colData

We need two things:

- 1. counts data
- 2. colData (the metadata that tells us the experimental design.)

```
counts <- read.csv("airway_scaledcounts.csv", row.names=1)
metadata <- read.csv("airway_metadata.csv")</pre>
```

Now we can take a look at each file (maybe don't print the whole counts so we can use head just to have a few of them)

head(counts)

##		SRR1039508	SRR1039509	SRR1039512	SRR1039513	SRR1039516
##	ENSG0000000003	723	486	904	445	1170
##	ENSG0000000005	0	0	0	0	0
##	ENSG00000000419	467	523	616	371	582
##	ENSG00000000457	347	258	364	237	318
##	ENSG00000000460	96	81	73	66	118
##	ENSG00000000938	0	0	1	0	2
##		SRR1039517	SRR1039520	SRR1039521		
##	ENSG0000000003	1097	806	604		
##	ENSG0000000005	0	0	0		
##	ENSG00000000419	781	417	509		
##	ENSG00000000457	447	330	324		
##	ENSG00000000460	94	102	74		
##	ENSG00000000938	0	0	0		

To know the experimental design, look at metadata file.

View(metadata)

Side note: let's check the correspondent of the metadata and the count data set up.

```
all(metadata$id == colnames(counts))
```

[1] TRUE

Q1. How many genes are in this dataset?

```
nrow(counts)
```

```
## [1] 38694
```

Q2. How many 'control' cell lines do we have? 4

Toy differential gene expression

Compare the control to the treated

Firt we need to access all the control columns in our counts data.

```
control.inds <- metadata$dex == "control"
control.ids <- metadata[control.inds,]$id</pre>
```

use these ids to access just the control column of our counts data.

```
head(counts[ ,control.ids])
```

```
##
                   SRR1039508 SRR1039512 SRR1039516 SRR1039520
## ENSG0000000003
                                      904
                                                            806
                          723
                                                1170
## ENSG0000000005
                            0
                                        0
                                                   0
                                                              0
## ENSG0000000419
                          467
                                      616
                                                 582
                                                            417
## ENSG0000000457
                          347
                                      364
                                                 318
                                                            330
## ENSG0000000460
                           96
                                       73
                                                 118
                                                            102
## ENSG0000000938
                            0
                                                   2
                                                              0
                                        1
```

To find the average value, we can use rowMeans

```
control.mean <- rowMeans(counts[ ,control.ids])
head(control.mean)</pre>
```

```
## ENSG0000000003 ENSG000000005 ENSG00000000419 ENSG00000000457 ENSG00000000460

## 900.75 0.00 520.50 339.75 97.25

## ENSG00000000938

## 0.75
```

Q4. Follow the same procedure for the treated samples (i.e. calculate the mean per gene across drug treated samples and assign to a labeled vector called treated.mean)

```
treated.inds <- metadata$dex == "treated"
treated.ids <- metadata[treated.inds,]$id
treated.mean <- rowMeans(counts[ ,treated.ids])
head(treated.mean)</pre>
```

```
## ENSG0000000003 ENSG0000000005 ENSG00000000419 ENSG00000000457 ENSG00000000460
## 658.00 0.00 546.00 316.50 78.75
## ENSG00000000938
## 0.00
```

To combine our mean count data and compare control to treated

```
meancounts <- data.frame(control.mean, treated.mean)</pre>
```

There are 38694 genes in this dataset.

Q5 (a). Create a scatter plot showing the mean of the treated samples against the mean of the control samples. Your plot should look something like the following.

plot(meancounts)

Q6. Try plotting both axes on a log scale. What is the argument to plot() that allows you to do this?

```
plot(meancounts, log="xy")

## Warning in xy.coords(x, y, xlabel, ylabel, log): 15032 x values <= 0 omitted
## from logarithmic plot

## Warning in xy.coords(x, y, xlabel, ylabel, log): 15281 y values <= 0 omitted
## from logarithmic plot</pre>
```


we can calculate the $\log 2$, since it is useful to visualize the fold change

900.75

520.50

339.75

97.25

0.75

0.00

ENSG0000000005

ENSG0000000419

ENSG0000000457

ENSG0000000460

ENSG0000000938

```
log2(20/20)
## [1] 0
log2(40/20)
## [1] 1
log2(10/20)
## [1] -1
meancounts$log2fc <- log2(meancounts[,"treated.mean"]/meancounts[,"control.mean"])</pre>
head(meancounts)
##
                                                    log2fc
                    control.mean treated.mean
                                       658.00 -0.45303916
## ENSG0000000003
```

546.00 0.06900279

316.50 -0.10226805

78.75 -0.30441833

-Inf

0.00

0.00

There are a couple of "weird" results: NaN ("not a number") and -Inf (negative infinity) results. We need to drop the zero counts. The which() function tells us the indices of TRUE entries in a logical vector However it is not too useful if we only use which without the arr.ind argument.

```
indices <- which(meancounts[,1:2] == 0, arr.ind=TRUE)
head(indices)</pre>
```

```
## ENSG0000000005 2 1
## ENSG00000004848 65 1
## ENSG00000004948 70 1
## ENSG00000005001 73 1
## ENSG00000006059 121 1
## ENSG00000006071 123 1
```

We only care about the rows here, so if there is a zero in any column I will exclude this row eventually.

```
to.rm <- unique(sort(indices[,"row"]))
mycounts <- (meancounts[-to.rm,])</pre>
```

We now have 21817 genes remaining.

```
nrow(mycounts)
```

[1] 21817

How many of these genes are up regulated at the $\log 2$ fold-chang threshold of +2 or greater?

Let's filter the dataset both ways to see how many genes are up or down-regulated

Upregulated

```
up.reg <- sum(mycounts$log2fc > 2)
up.reg
```

[1] 250

Percentage

```
round(up.reg/nrow(mycounts)*100,2)
```

[1] 1.15

Downregulated

```
down.reg <- sum(mycounts$log2fc < (-2))
down.reg</pre>
```

[1] 367

Percentage

```
round(down.reg/nrow(mycounts)*100,2)
```

[1] 1.68

DESeq2 analysis

```
library(DESeq2)
```

```
## Loading required package: S4Vectors
## Loading required package: stats4
## Loading required package: BiocGenerics
##
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:stats':
##
##
       IQR, mad, sd, var, xtabs
## The following objects are masked from 'package:base':
##
##
       anyDuplicated, append, as.data.frame, basename, cbind, colnames,
##
       dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
##
       grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
       order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
##
       rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
       union, unique, unsplit, which.max, which.min
##
##
## Attaching package: 'S4Vectors'
## The following objects are masked from 'package:base':
##
##
       expand.grid, I, unname
## Loading required package: IRanges
## Loading required package: GenomicRanges
## Loading required package: GenomeInfoDb
## Loading required package: SummarizedExperiment
## Loading required package: MatrixGenerics
```

```
## Loading required package: matrixStats
## Attaching package: 'MatrixGenerics'
## The following objects are masked from 'package:matrixStats':
##
##
       colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
       colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
##
##
       colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
       colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
##
##
       colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
##
       colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
##
       colWeightedMeans, colWeightedMedians, colWeightedSds,
       colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
##
##
       rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
##
       rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
##
       rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
       rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
##
##
       rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
##
       rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
       rowWeightedSds, rowWeightedVars
##
## Loading required package: Biobase
## Welcome to Bioconductor
##
##
       Vignettes contain introductory material; view with
##
       'browseVignettes()'. To cite Bioconductor, see
##
       'citation("Biobase")', and for packages 'citation("pkgname")'.
##
## Attaching package: 'Biobase'
## The following object is masked from 'package:MatrixGenerics':
##
##
       rowMedians
## The following objects are masked from 'package:matrixStats':
##
##
       anyMissing, rowMedians
dds <- DESeqDataSetFromMatrix(countData=counts,</pre>
                              colData=metadata.
                              design=~dex)
## converting counts to integer mode
## Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
## design formula are characters, converting to factors
```

dds

ENSG0000000938

NΑ

```
## class: DESeqDataSet
## dim: 38694 8
## metadata(1): version
## assays(1): counts
## rownames(38694): ENSG00000000003 ENSG00000000005 ... ENSG00000283120
    ENSG00000283123
## rowData names(0):
## colnames(8): SRR1039508 SRR1039509 ... SRR1039520 SRR1039521
## colData names(4): id dex celltype geo_id
Run the DESeq analysis pipeline
dds <- DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
res <- results(dds)</pre>
head(res)
## log2 fold change (MLE): dex treated vs control
## Wald test p-value: dex treated vs control
## DataFrame with 6 rows and 6 columns
##
                    baseMean log2FoldChange
                                               lfcSE
                                                          stat
                                                                  pvalue
                   <numeric> <numeric> <numeric> <numeric> <numeric>
## ENSG0000000000 747.194195
                                -0.3507030 0.168246 -2.084470 0.0371175
## ENSG0000000005
                    0.000000
                                        NA
                                                  NA
                                                            NA
                                                                     NA
## ENSG00000000419 520.134160
                                 ## ENSG0000000457 322.664844
                                 0.0245269 0.145145 0.168982 0.8658106
## ENSG00000000460 87.682625
                                -0.1471420 0.257007 -0.572521 0.5669691
## ENSG0000000938
                    0.319167
                                -1.7322890 3.493601 -0.495846 0.6200029
##
                       padj
##
                  <numeric>
## ENSG0000000000 0.163035
## ENSG0000000005
## ENSG00000000419 0.176032
## ENSG0000000457 0.961694
## ENSG0000000460 0.815849
```

#A volcano plot

this is a very common data visualization of this type of data that does not really look like a volcano

```
plot(res$log2FoldChange,-log(res$padj))
abline(v=c(-2, 2), col= "gray")
abline(h=-log(0.05), col="gray")
```


Let's finally save our results to date.

```
write.csv(res, file = "allmyresult.csv")
library("AnnotationDbi")
## Warning: package 'AnnotationDbi' was built under R version 4.1.2
library("org.Hs.eg.db")
```

##

```
columns(org.Hs.eg.db)
```

```
## [1] "ACCNUM" "ALIAS" "ENSEMBL" "ENSEMBLPROT" "ENSEMBLTRANS"
## [6] "ENTREZID" "ENZYME" "EVIDENCE" "EVIDENCEALL" "GENENAME"
```

```
## [11] "GENETYPE" "GO" "GOALL" "IPI" "MAP"
## [16] "OMIM" "ONTOLOGY" "ONTOLOGYALL" "PATH" "PFAM"
## [21] "PMID" "PROSITE" "REFSEQ" "SYMBOL" "UCSCKG"
## [26] "UNIPROT"
```

Pathway analysis

[49] "8824"

"8833"

"9"

let's try to bring some biology insight back into this work, for this we will start with KEGG

```
library(pathview)
library(gage)
library(gageData)
data(kegg.sets.hs)
# Examine the first 2 pathways in this kegg set for humans
head(kegg.sets.hs, 2)
## $'hsa00232 Caffeine metabolism'
## [1] "10" "1544" "1548" "1549" "1553" "7498" "9"
##
## $'hsa00983 Drug metabolism - other enzymes'
                                                                    "1551"
## [1] "10"
                "1066"
                        "10720" "10941" "151531" "1548"
                                                           "1549"
## [9] "1553" "1576" "1577" "1806"
                                          "1807"
                                                   "1890"
                                                           "221223" "2990"
## [17] "3251"
                "3614"
                         "3615"
                                 "3704"
                                          "51733"
                                                   "54490"
                                                           "54575"
                                                                    "54576"
## [25] "54577" "54578" "54579" "54600"
                                         "54657"
                                                   "54658"
                                                           "54659" "54963"
## [33] "574537" "64816" "7083"
                                                           "7364"
                                 "7084"
                                          "7172"
                                                   "7363"
                                                                    "7365"
                                                           "79799" "83549"
## [41] "7366"
                "7367"
                         "7371"
                                 "7372"
                                          "7378"
                                                   "7498"
```

Before we can use KEGG we need to get our gene identifier in the correct format for KEGG, which is ENTREZ format in this case.

"978"

```
res$entrez <- mapIds(org.Hs.eg.db,
    keys = row.names(res),
    keytype = "ENSEMBL",
    column = "ENTREZID",
    MultiVals = "First")</pre>
```

'select()' returned 1:many mapping between keys and columns

```
res$genenames <- mapIds(org.Hs.eg.db,
    keys = row.names(res),
    keytype = "ENSEMBL",
    column = "GENENAME",
    MultiVals = "First")</pre>
```

'select()' returned 1:many mapping between keys and columns

assign names to this vector that are the gene IDs that KEGG wants

```
foldchanges = res$log2FoldChange
names(foldchanges) <- res$entrez</pre>
head(foldchanges)
##
          7105
                     64102
                                   8813
                                              57147
                                                          55732
                                                                        2268
## -0.35070302
                        NA 0.20610777 0.02452695 -0.14714205 -1.73228897
Now we are ready for the gage() function
keggres = gage(foldchanges, gsets=kegg.sets.hs)
We can look at the attributes() of this or indeed any R pbject
attributes(keggres)
## $names
## [1] "greater" "less"
                            "stats"
head(keggres$less,3)
##
                                          p.geomean stat.mean
                                                                     p.val
## hsa05332 Graft-versus-host disease 0.0004250461 -3.473346 0.0004250461
## hsa04940 Type I diabetes mellitus 0.0017820293 -3.002352 0.0017820293
## hsa05310 Asthma
                                       0.0020045888 -3.009050 0.0020045888
##
                                            q.val set.size
## hsa05332 Graft-versus-host disease 0.09053483
                                                        40 0.0004250461
## hsa04940 Type I diabetes mellitus 0.14232581
                                                        42 0.0017820293
## hsa05310 Asthma
                                      0.14232581
                                                        29 0.0020045888
pathview(gene.data=foldchanges, pathway.id="hsa04940")
## 'select()' returned 1:1 mapping between keys and columns
## Info: Working in directory /Users/sanluc/Desktop/Fall2021/BGGN213/class7/bggn213/Class15
## Info: Writing image file hsa04940.pathview.png
```

