## Final-project

## March 28, 2021

```
In [1]: # BTC Price Analysis
        #
        # Steps:
        # 1. Get BTC prices from Yahoo Finance
        # 2. Get the frequency of searches by the key word 'Bitcoin' from Google Trends
        # 3. Run a linear regression to finde the correlation between the BTC price and the fr
        # 4. Summerize the results of regression
In [27]: import numpy as np
        import pandas as pd
         #python3 -m pip install pandas-datareader
        import pandas_datareader.data as pdr
        import matplotlib.pyplot as plt
         #pip3 install statsmodels
        import statsmodels.api as sm
        from datetime import datetime
In [3]: #Let's take end date to be today
       end = datetime.today()
        #Get cryptocurrency data from yahoo finance
       BTC = pdr.get_data_yahoo('BTC-USD',start = "2015-1-1",end = datetime.today(),interval=
In [4]: #BTC price
       BTC
Out[4]:
                           High
                                          Low
                                                       Open
                                                                    Close \
       Date
                     320.434998
                                   171.509995
                                                 320.434998
                                                               217.464005
       2015-01-01
                                                               254.263000
       2015-02-01
                     265.610992
                                   212.014999
                                                 216.867004
       2015-03-01
                     300.044006
                                   236.514999
                                                 254.283005
                                                               244.223999
       2015-03-31
                     261.798004
                                   214.873993
                                                 244.223007
                                                               236.145004
       2015-04-30
                     247.804001
                                   228.572998
                                                 235.938995
                                                               230.190002
```

```
2020-12-01 29244.876953 17619.533203 19633.769531 29001.720703
2021-01-01 41946.738281 28722.755859 28994.009766 33114.359375
2021-02-01 58330.570312 32384.228516 33114.578125 45137.769531
2021-03-01 61683.863281 45115.093750 45159.503906 55137.312500
2021-03-28 56605.703125 55667.890625 56278.683594
                                                    55788.871094
                  Volume
                            Adj Close
Date
2015-01-01
              1098811912
                           217.464005
                           254.263000
2015-02-01
               711518700
2015-03-01
                         244.223999
               959098300
                          236.145004
2015-03-31
               672338700
2015-04-30
               568122600
                            230.190002
2020-12-01 1212259707946 29001.720703
2021-01-01 2155904438233 33114.359375
2021-02-01 2267152936675 45137.769531
2021-03-01 1408670611852 55137.312500
2021-03-28
             48896380928 55788.871094
[76 rows x 6 columns]
```

- In [5]: #Set the figure sizes
   plt.rcParams['figure.figsize'] = (10,8)
- In [6]: #Bitcoin price movements from 2015-1-1 till today
  BTC['Adj Close'].plot(legend = True);





In [9]: #Downloaded Bitcoin Google Seraches from Google Trends BTC\_searches= pd.read\_csv('./multiTimeline.csv',skiprows=1) In [10]: BTC\_searches.columns = ['Date', 'Bitcoin'] In [11]: BTC\_searches Out[11]: Date Bitcoin 0 2015-01 3 3 1 2015-02 2 2015-03 2 3 2015-04 2 4 2015-05 2 70 2020-11 17 71 2020-12 25 72 2021-01 48 73 2021-02 50 2021-03 36 [75 rows x 2 columns]

```
In [12]: #Combine Two Dataframes
        BTC_prices = BTC['Adj Close'].iloc[:-1]
        BTC_prices
Out[12]: Date
                        217.464005
        2015-01-01
        2015-02-01
                        254.263000
        2015-03-01
                        244.223999
        2015-03-31
                        236.145004
        2015-04-30
                        230.190002
                          . . .
        2020-11-01
                     19625.835938
        2020-12-01
                      29001.720703
        2021-01-01
                      33114.359375
        2021-02-01 45137.769531
        2021-03-01
                      55137.312500
        Name: Adj Close, Length: 75, dtype: float64
In [13]: df = pd.concat([BTC_searches.reset_index(drop=True),BTC_prices.reset_index(drop=True)]
In [14]: df.head(5)
Out[14]:
              Date Bitcoin Adj Close
                          3 217.464005
        0 2015-01
        1 2015-02
                          3 254.263000
        2 2015-03
                         2 244.223999
        3 2015-04
                         2 236.145004
                          2 230.190002
        4 2015-05
In [15]: df.tail(5)
Out[15]:
               Date Bitcoin
                                 Adj Close
        70 2020-11
                          17 19625.835938
        71 2020-12
                          25 29001.720703
        72 2021-01
                          48 33114.359375
        73 2021-02
                          50 45137.769531
        74 2021-03
                          36 55137.312500
In [19]: # Linear Regression Statistics with 1 variable
        # Scaterplot where Price(Y) is a dependant on number of searches for 'Bitcoin' (X)
        X = df['Bitcoin']
        Y = df['Adj Close']
        plt.scatter(X,Y)
        plt.axis([0,120,0,70000])
        #Draw the trend line
```

```
z = np.polyfit(X,Y,1)
p = np.poly1d(z)
plt.plot(X,p(X),"r")
plt.show()
```

/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/matplotlib/cbookx x[:, None]

/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/matplotlib/axes/x = x[:, np.newaxis]



| Dep. Variable:    | Adj Close        | R-squared:          | 0.381    |
|-------------------|------------------|---------------------|----------|
| Model:            | OLS              | Adj. R-squared:     | 0.372    |
| Method:           | Least Squares    | F-statistic:        | 44.89    |
| Date:             | Sun, 28 Mar 2021 | Prob (F-statistic): | 3.74e-09 |
| Time:             | 22:52:10         | Log-Likelihood:     | -774.70  |
| No. Observations: | 75               | AIC:                | 1553.    |
| Df Residuals:     | 73               | BIC:                | 1558.    |
| Df Model:         | 1                |                     |          |

Df Model: 1
Covariance Type: nonrobust

| =======    | ========  |          | =======   | ========    | -======= | =======  |  |
|------------|-----------|----------|-----------|-------------|----------|----------|--|
|            | coef      | std err  | t         | P> t        | [0.025   | 0.975]   |  |
| const      | 2307.0079 | 1106.216 | 2.085     | 0.041       | 102.323  | 4511.693 |  |
| Bitcoin    | 389.0915  | 58.076   | 6.700     | 0.000       | 273.346  | 504.837  |  |
| =======    |           |          | ========  | ========    |          |          |  |
| Omnibus:   |           | 54.7     | 14 Durbin | -Watson:    |          | 0.300    |  |
| Prob(Omnib | us):      | 0.0      | 00 Jarque | -Bera (JB): |          | 450.565  |  |
| Skew:      |           | 1.8      | 89 Prob(J | B):         |          | 1.45e-98 |  |
| Kurtosis:  |           | 14.3     | 97 Cond.  | Cond. No.   |          | 24.3     |  |
| ========   | ========  |          | ========  | ========    |          | ======== |  |

## Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spec """

## In [29]: # Summery:

#p-values for the slope is smaller than 0.01.
#That means that the number of Google searches for 'Bitcoin' significantly predict th