Feature Engineering For Categorical Data

Data Science Applications

Ahmed Basha | Joseph Francis

CATEGORICAL FEATURES DETECTION

CATEGORICAL FEATURES ENCODING

CONCLUSION

"Automatic Detection For Categorical Features.

(Nominal / Ordinal)"

NOMINAL DATA

Determination of equality. (qualitative)

- ★ Permutation group. means any one-to-one substitution.
- **★** Mode

ORDINAL DATA

Determination of greater of less.

- ★ Isotonic group.
 means any monotonic increasing function.
- ★ Median

NUMERIC DATA

Numerical data is information that is measurable. (quantitative)

★ Any mathematical operations can be applied on numerical data.

[Stevens, Stanley Smith. "On the theory of scales of measurement." (1946): 677-680.]

Why this mission is not trivial?

Column	Values Type	
City	Berlin, London, Paris ???	
Review	Perfect, Good, Bad ????	
Student_ID	1, 2, 3, 4	
Player_Num	12, 8, 23 ???	
Temperature	36.5, 32, 28.2, 26.6	???

FIRST PHASE WORKFLOW EXAMPLE

Input Dataset		
Name	Age	Size
John	67	Large
Mark	12	Medium
Chris	22	Small

Labeling G	Labeling Ground Truth	
Columns Label		
Name	Nominal	
Age	Numerical	
Size	Ordinal	

Data Imputation		
Categorical	Numerical	
Most Frequent	Mean Value	
	1	

Classification		
New Columns	Predicted Type	
Color	Nominal	
Weight	Numerical	
Grade	Ordinal	

		Features (Generation	1	
	Dist.	Freq.	W.2vec	Binary	D.type
Name	0.25	0.34	86	0	Obj.
Size	0.33	0.77	36	1	Obj.
Age	0.67	0.39	65	0	Int.

Input Data			Set of Features
11	# of Datasets	Distribution	Is the number of occurrences for each data value.
127	# of Instances	Frequency	Is the number of unique values to the total number of records.
61	# of Nominal Columns	Word2vec	Vectorizing values, then calculate the distance between values, then take the mean and standard deviation values.
18	# of Ordinal Columns	Binary	The attribute has binary values or not.
48	# of Numeric Columns	Data Type	Feature to represent the data type for each attribute.

Decision Tree Classifier Grid Search Hyperparameters		
• Criterion: Gini	Max_features: None	
● Max-depth: 4	Min_samples_split: 2	
• Splitter: random	Min_samples_leaf: 2	

Leave-One-Out Dataset Cross-Validation

- Training Set: 10 Datasets
- Testing Set: 1 Dataset
- Training Model: Decision Tree Classifier

FIRST PHASE RESULTS

FIRST PHASE RESULTS

FIRST PHASE EVALUATION

FIRST PHASE EVALUATION

	Examples For False Negatives Predictions			
True Labels	Dataset	Column	Predicted Labels	Unique Values
	Titanic	Passengerld	Numerical	1, 2, 3, 4, 890, 891
Nominal	Adult	Race	Ordinal	Black, White, Indian
	Nursery	Form	Ordinal	Complete, Incomplete, Foster
	Titanic	Pclass	Nominal	1, 2, 3
	Car	Price	Nominal	Low, Medium, High
Ordinal	Nursery	Housing	Nominal	Convenient, Less_conv, Critical
	Adult	Education	Nominal	11th,HS-grad, Some-College, 10th, Prof-School,

"Find The Best Feature Representation For Categorical Data That Yield High Model Accuracy."

1	Encoding Columns Separately Against Target.	
2	Encoding All Categorical Columns Together By One Encoder.	
3	Encoding One Column With Another Encoder For All Other Columns.	
4	Encoding Nominal And Ordinal Columns By Different Encoders.	

Dataset	# of Columns	# of Cat. Columns	More Information
Titanic	12	8	Unique Values Range: [2:891]# of Instances: 891
Car	23	10	Unique Values Range: [2:8]# of Instances: 203
Car1	7	5	Unique Values Range: [3:4]# of Instances: 1927
Bridges	13	9	Unique Values Range: [2:106]# of Instances: 107
Adult	15	10	Unique Values Range: [2:41]# of Instances: 45222

1	What will happen if we encode each feature alone without even consider any other features in the model?
2	What will happen if we encode all categorical features together by the exact same encoder?
3	What will happen if we encode only one feature by one encoder while encoding all other features by another encoder at the same time?
4	What will happen if we encode all nominal features by one encoder while encoding all ordinal features by another encoder at the same time?

★ Encoding Categorical Columns Separately Against Target.

Brand	Country	Review	Cylinders	Price
BMW	Germany	Perfect	10	72.000\$
KIA	Korea	Bad	8	38.000\$
Ford	USA	Good	6	57.000\$

Categorical Column

Numeric Column

Target

Encoders List

- ★ Label Encoder
- ★ Helmert Encoder
- ★ JamesStein Encoder
- ★ Hashing Encoder
- ★ Frequency Encoder
- ★ Binary Encoder
- **★** Target Encoder
- ★ OneHot Encoder
- ★ Sum Encoder
- ★ BaseN Encoder

What happens if we encode each feature alone without even consider any other features in the model?

- ★ JamesStein encoder achieved high score & low dimensionality.
- ★ Helmert encoder produced the highest dimensionality.
- ★ Most encoders produced low dimensionality.

★ Encoding All Categorical Columns Together By One Encoder.

Brand	Country	Review	Cylinders	Price
BMW	Germany	Perfect	10	72.000\$
KIA	Korea	Bad	8	38.000\$
Ford	USA	Good	6	57.000\$

Categorical Columns

Numeric Column

Target

Encoders List

- **★** Label Encoder
- ★ Helmert Encoder
- ★ JamesStein Encoder
- ★ Hashing Encoder
- ★ Frequency Encoder
- ★ Binary Encoder
- **★** Target Encoder
- ★ OneHot Encoder
- ★ Sum Encoder
- ★ BaseN Encoder

What happens if we encode all categorical features together by the exact same encoder?

- ★ Hashing encoder performed extremely bad while JamesStein encoder performed extremely well.
- ★ The rest encoders have approximately the same performance.

★ Encoding One Column With Another Encoder For All Other Columns.

Brand	Country	Review	Cylinders	Price
BMW	Germany	Perfect	10	72.000\$
KIA	Korea	Bad	8	38.000\$
Ford	USA	Good	6	57.000\$

Categorical Column

Other Columns

Numeric Column

Target

What happens if we encode only one feature by one encoder while encoding all other features by another encoder?

- ★ Hashing encoder performs extremely bad with nominal columns.
- ★ JamesStein encoder performs extremely well with nominal columns.
- ★ Binary and Frequency encoders seems to be not applicable for nominal columns.

★ Encoding Nominal And Ordinal Columns By Different Encoders.

Brand	Country	Review	Cylinders	Price
BMW	Germany	Perfect	10	72.000\$
KIA	Korea	Bad	8	38.000\$
Ford	USA	Good	6	57.000\$
Nominal Columns Ordinal Columns Numeric Column Target				

What happens if we encode all nominal features by one encoder while encoding all ordinal features by another encoder?

★ Choosing a feature encoder does not depend on the feature type whether it's nominal or ordinal.

★ Carefully choosing the most suitable encoder for each feature leads to low dimensionality and high accuracy.

References

- □ Katz, Gilad, Eui Chul Richard Shin, and Dawn Song. "Explorekit: Automatic feature generation and selection." 2016 IEEE 16th International Conference on Data Mining (ICDM). IEEE, 2016.
- □ Kaul, Ambika, Saket Maheshwary, and Vikram Pudi. "Autolearn—Automated feature generation and selection." 2017 IEEE International Conference on Data Mining (ICDM). IEEE, 2017.
- □ Stevens, Stanley Smith. "On the theory of scales of measurement." (1946): 677-680.
- O'Reilly Introduction to Machine Learning with Python by Sarah Guido, Andreas
 C. Müller Chapter 4. Representing Data and Engineering Features
- □ Categorical Features and Encoding in Decision Trees medium.com
- Potdar, K., Pardawala, T.S. and Pai, C.D., 2017. A comparative study of categorical variable encoding techniques for neural network classifiers. International Journal of Computer Applications, 175(4), pp.7-9.
- ☐ Beyond One-Hot: an exploration of categorical variables. kdnuggets.com

Highly Recommended

- ★ JamesStein Encoder
- ★ Target Encoder

Neutral

- ★ Sum Encoder
- ★ Label Encoder
- ★ BaseN Encoder

Recommended

- ★ OneHot Encoder
- ★ Helmert Encoder
- ★ Binary Encoder

Not Recommended

- ★ Hashing Encoder
- ★ Frequency Encoder

The Best Feature
Representation For
Categorical Data
That Yield High
Model Accuracy

FIRST PHASE (Backup) EVALUATION

List of False Negative columns				
True Labels	Data Set Name	Column Name	Prediceted Labels	Unique Values
	Titanic	PassengerId	Numrical	1,2,3
	Adult	race	Ordinal	Black, White, Other, Amer-Indian-Eskimo, Asian-Pac-Islander
	Bridges	RIVER	Ordinal	M, A, O, Y
	Nursery	form	Ordinal	complete, incomplete, completed, foster
Nominal	New_dataset	color	Ordinal	
	Heart	sex	Numrical	0,1
	Heart	target	Numrical	0,1
	Books	author_id	Numrical	1,2,3,4,5
	Books	score	Numrical	0,1,2,3
	Titanic	Pclass	Nominal	1,2,3
	Car	price	Nominal	low,medium,larg
	Adult	education	Nominal	11th, HS-grad, Some-college, 10th, Prof-school,etc
	Adult	education-num	Numrical	1,2,3,4,5,6,7
**********	Audiology	air	Nominal	moderate, severe, normal
	Audiology	speech	Nominal	normal, good, perfect, bad, poor, unmeasured
	Random	Size	Nominal	Small,Large
	Nursery	housing	Nominal	convenient,less_conv, critical
	Nursery	social	Nominal	nonprob,slightly_prob, problematic

SECOND PHASE (Backup) ENCODERS

Encoder	Description
Helmert Encoder	The mean of the dependent variable for a level is compared to the mean of the dependent variable over all previous levels.
Sum Encoder	The mean of the dependent variable for a given level to the overall mean of the dependent variable over all the levels.
JamesStein Encoder	Is a biased estimator of the mean of Gaussian random vectors. It can be shown that the James-Stein estimator dominates the "ordinary" least square approach.
Hashing Encoder	Generating a hash value for each data-value. Some info loss due to collisions.
Frequency Encoder	Replacing each data-value by its frequency.
Binary Encoder	Converting each data-value to binary digits. Each binary digit gets one column. Some info loss but fewer dimensions.
Target Encoder	Is the process of replacing a data-value by the mean of the target variable.
BaseN Encoder	Base-N encoder encodes the categories into arrays of their base-N representation.

FIRST PHASE(BACKUP) RESULTS

What will happen if we encode all categorical features together by the exact same encoder? (Backup)

- ★ JamesStein encoder achieved high score & low dimensionality.
- ★ Sum encoder, One hot encoder and Helmert encoder produced high dimensionality.
- ★ The rest encoders produced low dimensionality.

