EAIiIB	Autor 1 Autor 2		Rok II	Grupa 5	Zespół 6
Temat:			Numer éwiczenia:		
Fale podłużne w ciałach stałych			29		
Data wykonania	Data oddania Zwrot do poprawki		Data oddania	Data zaliczenia	Ocena

1 Cel ćwiczenia

Wyznaczenie modułu Younga dla różnych materiałów na podstawie pomiaru prędkości rozchodzenia się fali dźwiękowej w pręcie.

2 Wstęp teoretyczny

Fala podłużna w pręcie powstaje na skutek chwilowego wychylenia się fragment pręta z położenia równowagi i następujących po nim drgań. Drgania te, dzięki sprężystości ośrodka, mogą być przekazywane dalej i mogą rozchodzić się po całym ośrodku. Szybkość rozchodzenia się fali zależy od bezwładności i sprężystości ośrodka, w którym się rozchodzi. Po przekształceniach prędkość wynosi $v=\sqrt{\frac{E}{\rho}}$. Moduł Younga z powyższego równania jest równy $E=\rho v^2$. Falę dźwiękową w pręcie można przybliżyć jako złożenie drgań harmonicznych sinusoidalnych. Częstotliwości harmoniczne są wielokrotnością częstotliwości podstawowej. Długość fali z tego wynosi $\lambda=\frac{2l}{n}$. Mając częstotliwość fali oraz λ można obliczyć prędkość ze wzoru: $v=f\lambda$. Podstawiając do wzoru na moduł Younga wychodzi $E=\rho f^2\lambda^2$

3 Układ pomiarowy

Zestaw ćwiczeniowy stanowi:

- 1. Komputer stacjonarny z zainstalowanym oprogramowaniem Zelscope i podpiętym mikrofonem.
- 2. Zestaw 7 prętów.
- 3. Młotek.
- 4. Przyrządy miernicze suwmiarka, miarka oraz waga.

4 Wykonanie ćwiczenia

- 1. Pomiar wymiarów prętów lub próbek materiałów z których zostały wykonane pręty.
- 2. Zważenie prętów lub odpowiadającym im próbkom, w celu wyliczenia gęstości materiału, z którego zostały wykonane.
- 3. Zarejestrowanie częstotliwości drgań harmonicznych dla prętów, przy pomocy programu Zelscope i mikrofonu przystawionego przy pręcie, przy uprzednio uderzeniu w ten pręt młotkiem.
- 4. Powtórzenie rejestracji częstotliwości dla wszystkich prętów.

5 Wyniki pomiarów

Materiał	Masa pręta [g]	Długość próbki [mm]	Objętość $[cm^3]$	Gęstość
Miedź	66	382	7,49	8811,75
Stal (1)	31	20	3,92	7908,16
Stal (2)	12	20	1,57	7643,31
Stal (3)	5	20	0,72	6944,44
Mosiądz	74	311	8,91	8788,86
Aluminium	24	440	8,63	2780,99
Szkło kwarcowe	-	-	-	2203

Nr pręta 1 (miedź) $l = 1, 8[m]$			
Nr harmonicznej	Częstotliwość f	Długość fali λ	Prędkość fali υ
Ni narmonicznej	[HZ]	[m]	[m/s]
1	990,89	3,6	3567,21
2	1976,59	1,8	3557,86
3	2982,95	1,2	3579,54
4	3956,61	0,9	3560,98
5	4948,17	0,72	3562,68
6	5924,12	0,6	3554,47

$$v = 3563, 79 \left[\frac{m}{s}\right]$$
$$E = 115, 6 \left[GPa\right]$$

Nr pręta 2 (stal 1)	l = 1, 8[m]		
Na hammaniamai	Częstotliwość f	Długość fali λ	Prędkość fali v
Nr harmonicznej	[HZ]	[m]	[m/s]
1	1441,63	3,6	5189,87
2	2903,7	1,8	5226,66
3	4345,79	1,2	5214,95
4	5782,57	0,9	5204,31
5	7218,80	0,72	5197,54
6	8743,78	0,6	5246,27

$$v = 5213, 27 \left[\frac{m}{s} \right]$$

$$E = 213 \left[GPa \right]$$

Nr pręta 3 (stal 2) $l = 1, 8[m]$			
Nr harmonicznej	Częstotliwość f	Długość fali λ	Prędkość fali \boldsymbol{v}
Ni narmonicznej	[HZ]	[m]	[m/s]
1	1432,65	3,6	5157,54
2	2889,74	1,8	5201,52
3	4290,51	1,2	5148,61
4	5766,34	0,9	5189,71
5	7142,19	0,72	5142,38
6	8526,08	0,6	5115,65

$$v = 5159, 24 \left[\frac{m}{s} \right]$$

$$E=203,31\,[GPa]$$

Nr pręta 4 (stal 3) $l = 1, 8[m]$			
Nr harmonicznej	Częstotliwość f	Długość fali λ	Prędkość fali v
Ni narmonicznej	[HZ]	[m]	[m/s]
1	1538,47	3,6	5538,51
2	3101,527	1,8	5582,73
3	4663,85	1,2	5596,62
4	6267,98	0,9	5641,18
5	7659,5	0,72	5514,84
6	9247,7	0,6	5548,72

$$v = 5570, 43 \left[\frac{m}{s}\right]$$

$$E = 213, 02 \left[GPa\right]$$

Nr pręta 5 (mosiądz) $l = 1[m]$			
NT 1 · ·	Częstotliwość f	Długość fali λ	Prędkość fali \boldsymbol{v}
Nr harmonicznej	[HZ]	[m]	[m/s]
1	1810,98	2	3621,97
2	3687,84	1	3687,84
3	5370,8	0,67	3598,44
4	7384,42	0,5	3692,21
5	9281,92	0,4	3712,77
6	10731,41	0,34	3648,68

$$v = 3660, 32 \left[\frac{m}{s}\right]$$
$$E = 106, 95 \left[GPa\right]$$

Nr pręta 6 (aluminium) $l = 1[m]$			
Na hammaniamai	Częstotliwość f	Długość fali λ	Prędkość fali v
Nr harmonicznej	[HZ]	[m]	[m/s]
1	2530,72	2	5061,45
2	5068,76	1	5068,76
3	7510,1	0,67	5031,77
4	10188,78	0,5	5094,39
5	12680,3	0,4	5072,12
6	14940,35	0,34	5079,72

$$v = 5068, 04 \left[\frac{m}{s} \right]$$
$$E = 71, 24 \left[GPa \right]$$

Nr pręta 7 (szkło k	warcowe) $l = 1[m]$		
N T 1	Częstotliwość f	Długość fali λ	Prędkość fali \boldsymbol{v}
Nr harmonicznej	[HZ]	[m]	[m/s]
1	2809,61	2	5619,23
2	5654,63	1	5654,63
3	8445,62	0,67	5658,56
4	11277,9	0,5	5638,95
5	14261,52	0,4	5704,61
6	16646,21	0,34	5659,71

$$v = 5655, 95 \left[\frac{m}{s}\right]$$
$$E = 69, 56 \left[GPa\right]$$

6 Opracowanie wyników

Dla obliczeń błędów pomiaru przyjęto następujące niepewności:

Dla długości pręta: u(l) = 1[mm]

Dla promienia: u(r) = 0, 1[mm]

Dla masy próbki:u(m) = 1[g]

Dla częstotliwości:u(f) = 25[Hz]

Niepewność gęstości:

$$u(\rho) = \sqrt{\left(\frac{\partial \rho}{\partial m} u(m)\right)^2 + \left(\frac{\partial \rho}{\partial l} u(l)\right)^2 + \left(\frac{\partial \rho}{\partial r} u(r)\right)^2} = \sqrt{\left(\frac{1}{l \Pi r^2} u(m)\right)^2 + \left(\frac{-m}{l^2 \Pi r^2} u(l)\right)^2 + \left(\frac{-2m}{l \Pi r^3} u(r)\right)^2}$$

Niepewność długości fali:

$$u(\lambda) = \sqrt{\left(\frac{2}{n}u(l)\right)^2}$$

Niepewność prędkości fali:

$$u(v) = \sqrt{\left(\frac{\partial v}{\partial f}u(f)\right)^2 + \left(\frac{\partial v}{\partial \lambda}u(\lambda)\right)^2} = \sqrt{\left(\lambda u(f)\right)^2 + \left(fu(\lambda)\right)^2}$$

Niepewność modułu Younga:

$$u(E) = \sqrt{\left(\frac{\partial E}{\partial \rho} u(\rho)\right)^2 + \left(\frac{\partial E}{\partial v} u(v)\right)^2} = \sqrt{\left(v^2 u(\rho)\right)^2 + \left(2\rho v u(v)\right)^2}$$

Materiał	Niepewność gęstości $u(\rho) \left\lceil \frac{kg}{m^3} \right\rceil$	Niepewność prędkość fali $u(\upsilon)\left[\frac{m}{s}\right]$	Niepewność modułu Younga $u(E) [Gpa]$
Miedź	67,98	90,02	5,71
Stal (1)	471,25	90,05	14,8
Stal (2)	377,63	90,04	12,31
Stal (3)	57,9	90,05	7,19
Mosiądz	58,25	50,13	3,32
Aluminium	1444,15	50,25	37,38
Szkło kwarcowe	0 (wartość tabelaryczna)	50,31	1,25

Materiał	Wartość tabelaryczna	Wartość wyznaczona	Zgodność
Materiai	[Gpa]	[Gpa]	niepewność rozszerzona $k=2$
Miedź	110-130	115,6	TAK
Stal (1)	205-210	213	TAK
Stal (2)	205-210	203,31	TAK
Stal (3)	205-210	213,02	TAK
Mosiądz	100	106,95	TAK
Aluminium	69	71,24	TAK
Szkło kwarcowe	70	69,56	TAK

7 Wnioski

Na podstawie wymiarów pręta oraz pomiaru częstotliwości przy pomocy programu Zelscope wyznaczyliśmy gęstość materiału oraz prędkość rozchodzenia się w nim fali. Dzięki temu obliczyliśmy wartość modułu Younga. Następnie obliczyliśmy niepewność standardową wartości modułu Younga dla każdego z materiałów oraz niepewność rozszerzoną. Wszystkie wyznaczone wartości modułu Younga zgadzają się z wartościami tabelarycznymi.