Package 'betaDelta'

April 14, 2024

```
Title Confidence Intervals for Standardized Regression Coefficients
```

Version 1.0.5

```
Description Generates confidence intervals for standardized regression coefficients using delta method standard errors for models fitted by lm() as described in Yuan and Chan (2011) <doi:10.1007/s11336-011-9224-6> and Jones and Waller (2015) <doi:10.1007/s11336-013-9380-y>.

The package can also be used to generate confidence intervals for differences of standardized regression coefficients and as a general approach to performing the delta method.

A description of the package and code examples are presented in Pesigan, Sun, and Cheung (2023) <doi:10.1080/00273171.2023.2201277>.
```

```
URL https://github.com/jeksterslab/betaDelta,
   https://jeksterslab.github.io/betaDelta/
```

```
BugReports https://github.com/jeksterslab/betaDelta/issues
```

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Depends R (>= 3.5.0)

Imports numDeriv

Suggests knitr, rmarkdown, testthat, betaSandwich

RoxygenNote 7.3.1

NeedsCompilation no

Author Ivan Jacob Agaloos Pesigan [aut, cre, cph] (https://orcid.org/0000-0003-4818-8420)

Maintainer Ivan Jacob Agaloos Pesigan < r. jeksterslab@gmail.com>

Repository CRAN

Date/Publication 2024-04-14 17:50:08 UTC

2 BetaDelta

R topics documented:

Beta	Delta	Estimo Sampl				_		on	Co	eff	icie	ents	aı	ıd	the	? C	Cor	res	spc	nc	lin	g
Index																						22
	veov.umbetauetta .		 •	 •	• •		•		•	• •	•	• •	•		•	•		•	•		•	۷(
	vcov.deftaffettadelta .																					
	vcov.deltamethod .																					
	summary.diffbetadel vcov.betadelta																					
	summary.deltameth																					
	summary.betadelta																					
	print.diffbetadelta .																					
	print.deltamethod .																					
	print.betadelta																					
	nas1982																					
	DiffBetaDelta																					
	DeltaGeneric																					
	Delta																					
	confint.diffbetadelta		 	 •																		
	confint.deltamethod																					
confint.betadelta.			 																			
	coef.diffbetadelta .		 																			
	coef.deltamethod .		 																			4
	coef.betadelta		 																			4
	BetaDelta		 															•				- 2

Description

Estimate Standardized Regression Coefficients and the Corresponding Sampling Covariance Matrix

Usage

```
BetaDelta(object, type = "mvn", alpha = c(0.05, 0.01, 0.001))
```

Arguments

object	Object of class 1m.
type	Character string. If type = "mvn", use the multivariate normal-theory approach. If type = "adf", use the asymptotic distribution-free approach.
alpha	Numeric vector. Significance level α .

BetaDelta 3

Value

Returns an object of class betadelta which is a list with the following elements:

call Function call.

args Function arguments.

lm_process Processed 1m object.

gamma Asymptotic covariance matrix of the sample covariance matrix.

acov Asymptotic covariance matrix of the standardized slopes.

vcov Sampling covariance matrix of the standardized slopes.

est Vector of standardized slopes.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Jones, J. A., & Waller, N. G. (2015). The normal-theory and asymptotic distribution-free (ADF) covariance matrix of standardized regression coefficients: Theoretical extensions and finite sample behavior. *Psychometrika*, 80(2), 365–378. doi:10.1007/s113360139380y

Pesigan, I. J. A., Sun, R. W., & Cheung, S. F. (2023). betaDelta and betaSandwich: Confidence intervals for standardized regression coefficients in R. *Multivariate Behavioral Research*. doi:10.1080/00273171.2023.2201277

Yuan, K.-H., & Chan, W. (2011). Biases and standard errors of standardized regression coefficients. *Psychometrika*, 76(4), 670–690. doi:10.1007/s1133601192246

See Also

Other Beta Delta Functions: DiffBetaDelta()

```
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
std <- BetaDelta(object)
# Methods ------
print(std)
summary(std)
coef(std)
vcov(std)
confint(std, level = 0.95)</pre>
```

4 coef.deltamethod

coef.betadelta

Standardized Regression Slopes

Description

Standardized Regression Slopes

Usage

```
## S3 method for class 'betadelta'
coef(object, ...)
```

Arguments

```
object Object of class betadelta. ... additional arguments.
```

Value

Returns a vector of standardized regression slopes.

Author(s)

Ivan Jacob Agaloos Pesigan

Examples

```
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
std <- BetaDelta(object)
coef(std)</pre>
```

coef.deltamethod

Estimates

Description

Estimates

Usage

```
## S3 method for class 'deltamethod'
coef(object, ...)
```

coef.diffbetadelta 5

Arguments

```
object Object of class deltamethod.
... additional arguments.
```

Value

Returns a vector of estimates.

Author(s)

Ivan Jacob Agaloos Pesigan

Examples

```
object <- glm(
  formula = vs ~ wt + disp,
  family = "binomial",
  data = mtcars
)
def <- list("exp(wt)", "exp(disp)")
out <- DeltaGeneric(
  object = object,
  def = def,
  alpha = 0.05
)
coef(out)</pre>
```

coef.diffbetadelta

Differences of Standardized Regression Slopes

Description

Differences of Standardized Regression Slopes

Usage

```
## S3 method for class 'diffbetadelta'
coef(object, ...)
```

Arguments

```
object Object of class diffbetadelta. ... additional arguments.
```

Value

Returns a vector of differences of standardized regression slopes.

6 confint.betadelta

Author(s)

Ivan Jacob Agaloos Pesigan

Examples

```
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
std <- BetaDelta(object)
diff <- DiffBetaDelta(std)
coef(diff)</pre>
```

confint.betadelta

Confidence Intervals for Standardized Regression Slopes

Description

Confidence Intervals for Standardized Regression Slopes

Usage

```
## S3 method for class 'betadelta'
confint(object, parm = NULL, level = 0.95, ...)
```

Arguments

object Object of class betadelta.

parm a specification of which parameters are to be given confidence intervals, either

a vector of numbers or a vector of names. If missing, all parameters are consid-

ered.

level the confidence level required.

... additional arguments.

Value

Returns a matrix of confidence intervals.

Author(s)

Ivan Jacob Agaloos Pesigan

```
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
std <- BetaDelta(object)
confint(std, level = 0.95)</pre>
```

confint.deltamethod 7

confint.deltamethod Con

Confidence Intervals

Description

Confidence Intervals

Usage

```
## S3 method for class 'deltamethod'
confint(object, parm = NULL, level = 0.95, ...)
```

Arguments

object Object of class deltamethod.

parm a specification of which parameters are to be given confidence intervals, either

a vector of numbers or a vector of names. If missing, all parameters are consid-

ered.

level the confidence level required.

... additional arguments.

Value

Returns a matrix of confidence intervals.

Author(s)

Ivan Jacob Agaloos Pesigan

```
object <- glm(
  formula = vs ~ wt + disp,
  family = "binomial",
  data = mtcars
)
def <- list("exp(wt)", "exp(disp)")
out <- DeltaGeneric(
  object = object,
  def = def,
  alpha = 0.05
)
confint(out, level = 0.95)</pre>
```

8 confint.diffbetadelta

 ${\it confint.diffbetadelta} \ \ {\it Confidence\ Intervals\ for\ Differences\ of\ Standardized\ Regression} \\ Slopes$

Description

Confidence Intervals for Differences of Standardized Regression Slopes

Usage

```
## S3 method for class 'diffbetadelta'
confint(object, parm = NULL, level = 0.95, ...)
```

Arguments

object Object of class diffbetadelta.

parm a specification of which parameters are to be given confidence intervals, either

a vector of numbers or a vector of names. If missing, all parameters are consid-

ered.

level the confidence level required.

... additional arguments.

Value

Returns a matrix of confidence intervals.

Author(s)

Ivan Jacob Agaloos Pesigan

```
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
std <- BetaDelta(object)
diff <- DiffBetaDelta(std)
confint(diff)</pre>
```

Delta 9

Delta Delta Method	
--------------------	--

Description

Calculates delta method sampling variance-covariance matrix for a function of parameters using a numerical Jacobian.

Usage

```
Delta(
    coef,
    vcov,
    func,
    ...,
    theta = 0,
    alpha = c(0.05, 0.01, 0.001),
    z = TRUE,
    df = NULL
)
```

Arguments

Numeric matrix. Matrix of sampling variance-covariance matrix of parameters. R function. 1. The first argument x is the argument coef. 2. The function algebraically manipulates coef to return at a new numeric vector. It is best to have a named vector as an output. 3. The function can take additional named arguments passed using Additional arguments to pass to func. theta Numeric vector. Parameter values when the null hypothesis is true. Numeric vector. Significance level/s. Z Logical. If z = TRUE, use the standard normal distribution. If z = FALSE, use the t distribution. df Numeric. Degrees of freedom if z = FALSE.	coef	Numeric vector. Vector of parameters.
 The first argument x is the argument coef. The function algebraically manipulates coef to return at a new numeric vector. It is best to have a named vector as an output. The function can take additional named arguments passed using Additional arguments to pass to func. Numeric vector. Parameter values when the null hypothesis is true. Numeric vector. Significance level/s. Logical. If z = TRUE, use the standard normal distribution. If z = FALSE, use the t distribution. 	vcov	Numeric matrix. Matrix of sampling variance-covariance matrix of parameters.
 The function algebraically manipulates coef to return at a new numeric vector. It is best to have a named vector as an output. The function can take additional named arguments passed using Additional arguments to pass to func. Numeric vector. Parameter values when the null hypothesis is true. Numeric vector. Significance level/s. Logical. If z = TRUE, use the standard normal distribution. If z = FALSE, use the t distribution. 	func	R function.
vector. It is best to have a named vector as an output. 3. The function can take additional named arguments passed using Additional arguments to pass to func. Theta Numeric vector. Parameter values when the null hypothesis is true. Numeric vector. Significance level/s. Z Logical. If z = TRUE, use the standard normal distribution. If z = FALSE, use the t distribution.		1. The first argument x is the argument coef.
Additional arguments to pass to func. The Numeric vector. Parameter values when the null hypothesis is true. Numeric vector. Significance level/s. Z Logical. If z = TRUE, use the standard normal distribution. If z = FALSE, use the t distribution.		
theta Numeric vector. Parameter values when the null hypothesis is true. alpha Numeric vector. Significance level/s. z Logical. If z = TRUE, use the standard normal distribution. If z = FALSE, use the t distribution.		3. The function can take additional named arguments passed using
alpha Numeric vector. Significance level/s. z Logical. If z = TRUE, use the standard normal distribution. If z = FALSE, use the t distribution.		Additional arguments to pass to func.
z Logical. If z = TRUE, use the standard normal distribution. If z = FALSE, use the t distribution.	theta	Numeric vector. Parameter values when the null hypothesis is true.
t distribution.	alpha	Numeric vector. Significance level/s.
df Numeric. Degrees of freedom if z = FALSE.	Z	,
	df	Numeric. Degrees of freedom if $z = FALSE$.

Value

Returns an object of class deltamethod which is a list with the following elements:

```
call Function call.args Function arguments.coef Estimates.
```

10 DeltaGeneric

```
vcov Sampling variance-covariance matrix.jacobian Jacobian matrix.fun Function used ("Delta").
```

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

Other Delta Method Functions: DeltaGeneric()

Examples

```
object <- glm(
  formula = vs ~ wt + disp,
  family = "binomial",
  data = mtcars
)
func <- function(x) {
  y <- exp(x)
  names(y) <- paste0("exp", "(", names(x), ")")
  return(y[-1])
}
Delta(
  coef = coef(object),
  vcov = vcov(object),
  func = func,
  alpha = 0.05
)</pre>
```

DeltaGeneric

Delta Method (Generic Object Input)

Description

Calculates delta method sampling variance-covariance matrix for a function of parameters using a numerical Jacobian.

Usage

```
DeltaGeneric(
   object,
   def,
   theta = 0,
   alpha = c(0.05, 0.01, 0.001),
   z = TRUE,
   df = NULL
)
```

DeltaGeneric 11

Arguments

object	R object. Fitted model object with coef and vcov methods that return a named vector of estimated parameters and sampling variance-covariance matrix, respectively.
def	List of character strings. A list of defined functions of parameters. The string should be a valid R expression when parsed and should result a single value when evaluated.
theta	Numeric vector. Parameter values when the null hypothesis is true.
alpha	Numeric vector. Significance level/s.
z	Logical. If z = TRUE, use the standard normal distribution. If z = FALSE, use the t distribution.
df	Numeric. Degrees of freedom if z = FALSE.

Value

Returns an object of class deltamethod which is a list with the following elements:

```
call Function call.
args Function arguments.
coef Estimates.
vcov Sampling variance-covariance matrix.
jacobian Jacobian matrix.
fun Function used ("DeltaGeneric").
```

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

Other Delta Method Functions: Delta()

```
object <- glm(
  formula = vs ~ wt + disp,
  family = "binomial",
  data = mtcars
)
def <- list("exp(wt)", "exp(disp)")
DeltaGeneric(
  object = object,
  def = def,
  alpha = 0.05
)</pre>
```

12 DiffBetaDelta

DiffBetaDelta	Estimate Differences of Standardized Slopes and the Corresponding Sampling Covariance Matrix
---------------	--

Description

Estimate Differences of Standardized Slopes and the Corresponding Sampling Covariance Matrix

Usage

```
DiffBetaDelta(object, alpha = c(0.05, 0.01, 0.001))
```

Arguments

Object of class betadelta, that is, the output of the BetaDelta() function.

alpha Numeric vector. Significance level α .

Value

Returns an object of class diffbetadelta which is a list with the following elements:

call Function call.

fit The argument object.

args Function arguments.

vcov Sampling covariance matrix of differences of standardized slopes.

est Vector of differences of standardized slopes.

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

```
Other Beta Delta Functions: BetaDelta()
```

```
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
std <- BetaDelta(object)
diff <- DiffBetaDelta(std)
# Methods -------
print(diff)
summary(diff)
coef(diff)
vcov(diff)
confint(diff, level = 0.95)</pre>
```

nas1982

nas1982

1982 National Academy of Sciences Doctoral Programs Data

Description

1982 National Academy of Sciences Doctoral Programs Data

Usage

nas1982

Format

Ratings of 46 doctoral programs in psychology in the USA with the following variables:

QUALITY Program quality ratings.

NFACUL Number of faculty members in the program.

NGRADS Number of program graduates.

PCTSUPP Percentage of program graduates who received support.

PCTGRT Percent of faculty members holding research grants.

NARTIC Number of published articles attributed to program faculty member.

PCTPUB Percent of faculty with one or more published article.

References

National Research Council. (1982). An assessment of research-doctorate programs in the United States: Social and behavioral sciences. doi:10.17226/9781. Reproduced with permission from the National Academy of Sciences, Courtesy of the National Academies Press, Washington, D.C.

print.betadelta

Print Method for an Object of Class betadelta

Description

Print Method for an Object of Class betadelta

Usage

```
## S3 method for class 'betadelta'
print(x, alpha = NULL, digits = 4, ...)
```

14 print.deltamethod

Arguments

Χ	Object of class betadelta.
alpha	Numeric vector. Significance level α . If alpha = NULL, use the argument alpha used in x.
digits	Digits to print.
	additional arguments.

Value

Returns a matrix of standardized regression slopes, standard errors, test statistics, degrees of freedom, p-values, and confidence intervals.

Author(s)

Ivan Jacob Agaloos Pesigan

Examples

```
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
std <- BetaDelta(object)
print(std)</pre>
```

print.deltamethod

Print Method for an Object of Class deltamethod

Description

Print Method for an Object of Class deltamethod

Usage

```
## S3 method for class 'deltamethod'
print(x, alpha = NULL, digits = 4, ...)
```

Arguments

X	Object of class deltamethod.
alpha	Numeric vector. Significance level α . If alpha = NULL, use the argument alpha used in x.
digits	Digits to print.
	additional arguments.

Value

Returns a matrix of coefficients, standard errors, test statistics, degrees of freedom (if z = FALSE), p-values, and confidence intervals.

print.diffbetadelta 15

Author(s)

Ivan Jacob Agaloos Pesigan

Examples

```
object <- glm(
  formula = vs ~ wt + disp,
  family = "binomial",
  data = mtcars
)
def <- list("exp(wt)", "exp(disp)")
out <- DeltaGeneric(
  object = object,
  def = def,
  alpha = 0.05
)
print(out)</pre>
```

print.diffbetadelta

Print Method for an Object of Class diffbetadelta

Description

Print Method for an Object of Class diffbetadelta

Usage

```
## S3 method for class 'diffbetadelta'
print(x, alpha = NULL, digits = 4, ...)
```

Arguments

X	Object of class diffbetadelta.
alpha	Numeric vector. Significance level α . If alpha = NULL, use the argument alpha used in x.
digits	Digits to print.
	additional arguments.

Value

Returns a matrix of standardized regression slopes, standard errors, test statistics, degrees of freedom, p-values, and confidence intervals.

Author(s)

Ivan Jacob Agaloos Pesigan

summary.betadelta

Examples

```
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
std <- BetaDelta(object)
diff <- DiffBetaDelta(std)
print(diff)</pre>
```

summary.betadelta

Summary Method for an Object of Class betadelta

Description

Summary Method for an Object of Class betadelta

Usage

```
## S3 method for class 'betadelta'
summary(object, alpha = NULL, digits = 4, ...)
```

Arguments

object Object of class betadelta.
alpha Numeric vector. Significance level α . If alpha = NULL, use the argument alpha used in object.
digits Digits to print.

digits to pint.

... additional arguments.

Value

Returns a matrix of standardized regression slopes, standard errors, test statistics, degrees of freedom, p-values, and confidence intervals.

Author(s)

Ivan Jacob Agaloos Pesigan

```
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
std <- BetaDelta(object)
summary(std)</pre>
```

summary.deltamethod 17

summary.deltamethod

Summary Method for an Object of Class deltamethod

Description

Summary Method for an Object of Class deltamethod

Usage

```
## S3 method for class 'deltamethod'
summary(object, alpha = NULL, digits = 4, ...)
```

Arguments

object	Object of class deltamethod.
alpha	Numeric vector. Significance level α . If alpha = NULL, use the argument alpha used in object.
digits	Digits to print.
	additional arguments.

Value

Returns a matrix of standardized regression slopes, standard errors, test statistics, degrees of freedom, p-values, and confidence intervals.

Author(s)

Ivan Jacob Agaloos Pesigan

```
object <- glm(
  formula = vs ~ wt + disp,
  family = "binomial",
  data = mtcars
)
def <- list("exp(wt)", "exp(disp)")
out <- DeltaGeneric(
  object = object,
  def = def,
  alpha = 0.05
)
summary(out)</pre>
```

summary.diffbetadelta

summary.diffbetadelta Summary Method for an Object of Class diffbetadelta

Description

Summary Method for an Object of Class diffbetadelta

Usage

```
## S3 method for class 'diffbetadelta'
summary(object, alpha = NULL, digits = 4, ...)
```

Arguments

object	Object of class diffbetadelta.
alpha	Numeric vector. Significance level $\alpha.$ If alpha = NULL, use the argument alpha used in object.
digits	Digits to print.
	additional arguments.

Value

Returns a matrix of standardized regression slopes, standard errors, test statistics, degrees of freedom, p-values, and confidence intervals.

Author(s)

Ivan Jacob Agaloos Pesigan

```
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)</pre>
std <- BetaDelta(object)</pre>
diff <- DiffBetaDelta(std)</pre>
summary(diff)
```

vcov.betadelta 19

vcov.betadelta

Sampling Covariance Matrix of the Standardized Regression Slopes

Description

Sampling Covariance Matrix of the Standardized Regression Slopes

Usage

```
## S3 method for class 'betadelta'
vcov(object, ...)
```

Arguments

```
object Object of class betadelta.
... additional arguments.
```

Value

Returns a matrix of the variance-covariance matrix of standardized slopes.

Author(s)

Ivan Jacob Agaloos Pesigan

Examples

```
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
std <- BetaDelta(object)
vcov(std)</pre>
```

vcov.deltamethod

Sampling Covariance Matrix

Description

Sampling Covariance Matrix

Usage

```
## S3 method for class 'deltamethod'
vcov(object, ...)
```

20 vcov.diffbetadelta

Arguments

```
object Object of class deltamethod.
... additional arguments.
```

Value

Returns a matrix of the variance-covariance matrix.

Author(s)

Ivan Jacob Agaloos Pesigan

Examples

```
object <- glm(
  formula = vs ~ wt + disp,
  family = "binomial",
  data = mtcars
)
def <- list("exp(wt)", "exp(disp)")
out <- DeltaGeneric(
  object = object,
  def = def,
  alpha = 0.05
)
vcov(out)</pre>
```

vcov.diffbetadelta

Sampling Covariance Matrix of Differences of Standardized Regression Slopes

Description

Sampling Covariance Matrix of Differences of Standardized Regression Slopes

Usage

```
## S3 method for class 'diffbetadelta'
vcov(object, ...)
```

Arguments

object Object of class diffbetadelta. ... additional arguments.

Value

Returns a matrix of the variance-covariance matrix of differences of standardized regression slopes.

vcov.diffbetadelta 21

Author(s)

Ivan Jacob Agaloos Pesigan

```
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
std <- BetaDelta(object)
diff <- DiffBetaDelta(std)
vcov(diff)</pre>
```

Index

* Beta Delta Functions BetaDelta, 2 DiffBetaDelta, 12 * Delta Method Functions Delta, 9 DeltaGeneric, 10	coef.diffbetadelta, 5 confint.betadelta, 6 confint.deltamethod, 7 confint.diffbetadelta, 8 Delta, 9, 11 DeltaGeneric, 10, 10
* betaDelta BetaDelta, 2 DiffBetaDelta, 12	DiffBetaDelta, 3, 12
* data	nas1982, 13
nas1982, 13 * deltaMethod Delta, 9	<pre>print.betadelta, 13 print.deltamethod, 14</pre>
DeltaGeneric, 10	print.diffbetadelta, 15
* diff DiffBetaDelta, 12 * methods	summary.betadelta, 16 summary.deltamethod, 17 summary.diffbetadelta, 18
coef.betadelta, 4 coef.deltamethod, 4 coef.diffbetadelta, 5 confint.betadelta, 6 confint.deltamethod, 7 confint.diffbetadelta, 8 print.betadelta, 13 print.deltamethod, 14 print.diffbetadelta, 15 summary.betadelta, 16 summary.deltamethod, 17 summary.diffbetadelta, 18 vcov.betadelta, 19 vcov.deltamethod, 19 vcov.diffbetadelta, 20 * std BetaDelta, 2	vcov.betadelta, 19 vcov.deltamethod, 19 vcov.diffbetadelta, 20
BetaDelta, 2, 12 BetaDelta(), 12	
<pre>coef.betadelta, 4 coef.deltamethod, 4</pre>	