PKHF-05004US

AMENDMENTS TO THE CLAIMS

Please add claims 28 and 29 and amend claims 1, 19, 20, and 25 as follows:

1. (Currently Amended) A method of controlling a conductivity of a Ga₂O₃ system single

crystal, comprising:

adding an n-type dopant to the Ga₂O₃ system single crystal manufactured from bulk growth to

(HIR.228)

change a resistivity of said Ga₂O₃ system single crystal substantially linearly with an added amount

of the n-type dopant,

wherein said n-type dopant comprises an n-type dopant for controlling said conductivity of

the Ga₂O₃-system single crystal comprising one of Zr, Si, Hf, Ge, Sn, and Ti.

2. - 3. (Canceled).

4. (Previously Presented) The method of controlling a conductivity of a Ga₂O₃ system

single crystal according to claim 1, wherein a value of 2.0×10^{-3} to $8.0 \times 10^{2} \Omega$ cm is obtained as the

resistivity by said adding said n-type dopant.

5. (Previously Presented) The method of controlling a conductivity of a Ga₂O₃ system

single crystal according to claim 4, wherein a carrier concentration of the Ga₂O₃ system single crystal

is controlled to fall within a range of 5.5 X 10¹⁵ to 2.0 X 10¹⁹/cm³ as a range of the resistivity.

6. - 7. (Canceled).

2

Docket No. PKHF-05004US

8. (Previously Presented) The method of controlling a conductivity of a Ga₂O₃ system single crystal according to claim 1, wherein said Ga₂O₃ system single crystal is prepared with a Ga₂O₃ polycrystalline raw material, and

wherein the Ga₂O₃ polycrystalline raw material has a purity of 6N.

9. - 13. (Canceled).

14. (Withdrawn) A light emitting element, comprising:

an n-type β -AlGaO₃ cladding layer, an active layer, a p-type β -AlGaO₃ cladding layer, and a p-type β -Ga₂O₃ contact layer respectively laminated in order on an n-type β -Ga₂O₃ substrate, said p-type β -Ga₂O₃ contact layer and said n-type β -Ga₂O₃ substrate comprising a β -Ga₂O₃ single crystal;

a transparent electrode and a pad electrode respectively formed in order on said p-type β - Ga_2O_3 contact layer; and

an n-side electrode formed under a lower surface of said n-type $\beta\text{-}Ga_2O_3$ substrate,

wherein a resistivity of said β -Ga₂O₃ single crystal is in a range of 2.0 X 10⁻³ to 8.0 X 10² Ω cm,

wherein a carrier concentration of said β -Ga₂O₃ single crystal is within a range of 5.5 X 10¹⁵ to 2.0 X 10¹⁹/cm³.

wherein said n-type layers comprise a dopant including one of Si, Zr, Hf, Ge, Sn, and Ti, and wherein said p-type layers comprise a dopant including one of H, Li, Na, K, Rb, Cs, Fr, Be, Ca, Sr, Ba, Ra, Mn, Fe, Co, Ni, Pd, Cu, Ag, Au, Zn, Cd, Hg, Tl, Mg, and Pb.

Docket No. PKHF-05004US

15. (Withdrawn) The light emitting element of claim 14, wherein a carrier concentration of said p-type β-Ga₂O₃ contact layer is greater than that of said p-type β-AlGaO₃ cladding layer; and

wherein a carrier concentration of said n-type β -Ga₂O₃ substrate is greater than that of said n-type β -AlGaO₃ cladding layer.

16. (Previously Presented) A method of controlling a conductivity of a Ga₂O₃ system single crystal, comprising:

contacting a Ga_2O_3 polycrystalline raw material comprising a predetermined dopant to a Ga_2O_3 seed crystal; and

growing the Ga_2O_3 system single crystal on the Ga_2O_3 seed crystal such that said predetermined dopant is substituted for Ga in the Ga_2O_3 system single crystal to obtain a desired resistivity in the Ga_2O_3 system single crystal of 1 X 10^3 Ω cm or greater,

wherein said predetermined dopant comprises a p-type dopant for controlling said conductivity of the Ga₂O₃ system single crystal, said p-type dopant comprising one of H, Li, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Mn, Fe, Co, Ni, Pd, Cu, Ag, Au, Zn, Cd, Hg, Tl, and Pb.

- 17. (Withdrawn) The light emitting element according to claim 14, wherein the active layer comprises β-GaInO₃.
- 18. (Previously Presented) The method of controlling a conductivity of a Ga₂O₃ system single crystal according to claim 16, wherein said Ga₂O₃ polycrystalline raw material has a purity of 6N.

Docket No. PKHF-05004US

19. (Currently Amended) A method of manufacturing a Ga₂O₃ system single crystal, comprising: adding an n-type dopant to the Ga₂O₃ system single crystal, the n-type dopant comprising one of Zr, Si, Hf, Ge, Sn, and Ti; and

manufacturing the Ga_2O_3 system single crystal <u>from bulk growth</u> having a resistivity depending on an added amount of the n-type dopant by changing the resistivity of the Ga_2O_3 system single crystal <u>substantially</u> linearly with the added amount of the n-type dopant.

- 20. (Withdrawn Currently Amended) A Ga₂O₃ system single crystal comprising:

 an n-type dopant, said n-type dopant comprising one of Zr, Si, Hf, Ge, Sn, and Ti; and

 a resistivity that depends on an added amount of said n-type dopant such that the added

 amount of the n-type dopant changes the resistivity substantially linearly.
- 21. (Previously Presented) The method of controlling a conductivity of a Ga₂O₃ system single crystal according to claim 16, wherein said conductivity of the Ga₂O₃ system single crystal is exclusively dependent on an added amount of said p-type dopant.
- 22. (Withdrawn) A light emitting element, comprising:

an n-type β -Ga₂O₃ contact layer, an n-type β -AlGaO₃ cladding layer, an active layer, a p-type β -AlGaO₃ cladding layer, and a p-type β -Ga₂O₃ contact layer respectively laminated in order on an insulation type β -Ga₂O₃ substrate, said p-type β -Ga₂O₃ contact layer, said n-type β -Ga₂O₃ substrate, and said insulation type β -Ga₂O₃ substrate comprising a β -Ga₂O₃ single crystal;

a transparent electrode and a pad electrode respectively formed in order on said p-type β - Ga_2O_3 contact layer; and

Docket No. PKHF-05004US

an n-side electrode formed on said n-type β-Ga₂O₃ contact layer,

wherein said p-type layers comprise a dopant including one of H, Li, Na, K, Rb, Cs, Fr, Be,

Mg, Ca, Sr, Ba, Ra, Mn, Fe, Co, Ni, Pd, Cu, Ag, Au, Zn, Cd, Hg, Tl, and Rb,

wherein said n-type layers comprise a dopant including one of Si, Hf, Ge, Sn, Zr, and Ti, and

wherein a resistivity of said insulation type $\beta\text{-}Ga_2O_3$ substrate is 1 X $10^3~\Omega\text{cm}$ or greater.

23. (Withdrawn) The light emitting element according to claim 22, wherein a carrier

concentration of said p-type β-Ga₂O₃ contact layer is greater than that of said p-type β-AlGaO₃

cladding layer, and

wherein a carrier concentration of said n-type β-Ga₂O₃ contact layer is greater than that of

said n-type β-AlGaO₃ cladding layer.

24. (Withdrawn) The light emitting element according to claim 22, wherein said active layer

comprises β-GaInO₃.

25. (Currently Amended) The method of manufacturing a Ga₂O₃ system single crystal according

to claim 19, wherein adding said n-type dopant comprises one of Si, Hf, and Sn.

26. (Previously Presented) The method of controlling a conductivity of a Ga₂O₃ system

single crystal according to claim 1, wherein the n-type dopant comprises one of Si, Hf, and Sn.

27. (Withdrawn) The Ga₂O₃ system single crystal according to claim 20, wherein said n-type

dopant comprises one of Si, Hf, and Sn.

Docket No. PKHF-05004US

28. (New) The method of controlling a conductivity of a Ga₂O₃ system single crystal according to claim 1, wherein the n-type dopant comprises one of Si and Hf.

29. (New) The method of controlling a conductivity of a Ga₂O₃ system single crystal according to claim 1, wherein said adding said n-type dopant is performed at room temperature.