PROGRAM INDEX OF VOLUME 12

Astrophysics					
ACTECHNOLOGICA		-4-	1		
	-	SIT	mm.	11.7	

	D .	0-1
Issue	Page	Cat.no.

2 205 AAID COLLRAD (Fortran). COLLRAD: a code for calculating the quasi-steady state population densities of excited states of hydrogen—like ions. G.J. Tallents.

Atomic Physics

- 2 199 ACWU TANGO (Fortran). Multistate molecular treatment of atomic collisions in the impact parameter approximation. III Integration of coupled equations and calculation of transition amplitudes for Coulomb trajectories. R.D. Piacentini, A. Salin.
- 2 205 AAID COLLRAD (Fortran). COLLRAD: a code for calculating the quasi-steady state population densities of excited states of hydrogen—like ions. G.J. Tallents.

Crystallography

3 305 AAQD FIREBIRD 2 (Fortran). A program for the calculation of the positions of X—ray powder reflections. I.F. Ferguson, R.S. Fox, T.E. Hughes.

General Purpose

- 2 147 ABUO FOURGEN (PL/1). FOURGEN: a fast Fourier transform program generator. J.A. Maruhn.
- 2 163 ACIE SRNG (Fortran). Sequential random integer generator. C.T.K. Kuo, T.W. Cadman, R.J. Arsenault.
- 2 173 ACXB RENYIF, RENYIT, TESKAC (Fortran). Algorithms for the Kac and Renyi tests. J.M.F. Chamayou.

Laser Physics

3 323 ACXC PULSAMP (Fortran). PULSAMP: a program to predict the amplification of nano—second CO2 laser light pulses. S.A. Roberts, K. Smith.

Molecular Physics

2 199 ACWU TANGO (Fortran). Multistate molecular treatment of atomic collisions in the impact parameter approximation. III — Integration of coupled equations and calculation of transition amplitudes for Coulomb trajectories. R.D. Piacentini, A. Salin.

Nuclear Physics

2 237 ABIH PIPIT (Fortran). PIPIT: a momentum space optical potential code for pions. R.A. Eisenstein, F. Tabakin.

Nuclear Physics (cont.)

Nu	clear Pl	nysics (con	it.)
Iss	ue Page	Cat.no.	
3	277	AAUR	ONCPLT (Fortran). A program for calculating the observables for single—particle—inclusive production reactions. K.J.M. Moriarty, J.H. Tabor. Subroutine required by this program is AAUN 9(1975)85.
3	293	ABMU	SATTNT—FOR—EFR—MICRO—DWBA (Fortran). Exact—finite—range microscopic calculations for heavy—ion induced two—nucleon transfer reactions. D.H. Feng, B.T. Kim, T. Udagawa, T. Tamura, K.S. Low.
3	335	ACIB	0001 CALCULATE LATERAL RANGES (Fortran). Adaptation of a program for depth distribution of energy deposition by ion bombardment: calculation of ion lateral ranges. I. Manning, M. Rosen, J.E. Westmoreland.
3	339	ACIB	000ACORRECTION 21/09/75 (Fortran). Depth distribution of energy deposition by ion bombardment. I. Manning, G.P. Mueller.
3	339	ACIB	000BCORRECTION 5/03/75 (Fortran). Depth distribution of energy deposition by ion bombardment. I. Manning, G.P. Mueller.
Plas	ma Phy	sics	
2	205	AAID	COLLRAD (Fortran). COLLRAD: a code for calculating the quasi—steady state population densities of excited states of hydrogen—like ions. G.J. Tallents.
2	213	ABUP	GLOWCODE (Fortran). GLOWCODE: a one—dimensional code for the simulation of plasma afterglows. J.W. Long, A.A. Newton, M.C. Sexton. Subroutine required by this program is ABUF 7(1974)245.
2	231	ACXA	AFER (Fortran). Calculation of the energy response of a spectrometer. J. Lotrian, M. Leriche, J. Cariou.
Rad	iation P	hysics	
3	335	ACIB	0001 CALCULATE LATERAL RANGES (Fortran). Adaptation of a program for depth distribution of energy deposition by ion bombardment: calculation of ion lateral ranges. I. Manning, M. Rosen, J.E. Westmoreland.
3	339	ACIB	000ACORRECTION 21/09/75 (Fortran). Depth distribution of energy deposition by ion bombardment. I. Manning, G.P. Mueller.
3	339	ACIB	000BCORRECTION 5/03/75 (Fortran). Depth distribution of energy deposition by ion bombardment. I. Manning, G.P. Mueller.
Rad	lative T	ransfer	
2	231	ACXA	AFER (Fortran). Calculation of the energy response of a spectrometer. J. Lotrian, M. Leriche, J. Cariou.
C-H.	C4-4-	Dhaataa	
2	State	ACWY	KCOUL1 (Algol). Coulomb coefficients for complex ionic crystals. D.C. Sutherland,
-	1//	ACWI	W.G. Ferrier.
3	335	ACIB	0001 CALCULATE LATERAL RANGES (Fortran). Adaptation of a program for depth distribution of energy deposition by ion bombardment: calculation of ion lateral ranges. I. Manning, M. Rosen, J.E. Westmoreland.
3	339	ACIB	000ACORRECTION 21/09/75 (Fortran). Depth distribution of energy deposition by ion bombardment. I. Manning, G.P. Mueller.
3	339	ACIB	000BCORRECTION 5/03/75 (Fortran). Depth distribution of energy deposition by ion bombardment. I. Manning, G.P. Mueller.

AUTHOR INDEX OF VOLUME 12

Issu	e Pag	e	
3	261	I.H. Aldeen	The calculation of eigenvalues and eigenfunctions in an asymptotically Coulomb potential.
3	261	A.C. Allison	The calculation of eigenvalues and eigenfunctions in an asymptotically Coulomb potential.
2	135	K. Appert	Finite element approximation for the wave—particle interaction in weakly turbulent plasmas.
2	163	R.J. Arsenault	Sequential random integer generator.
3	267	R.Ch. Baas	Computer analysis of experimental results on differential scattering of electrons by gases.
1	81	A. Bers	Symbolic computation of nonlinear wave interactions on MACSYMA.
1	vi i	D. Biskamp	Preface.
1	67	J.P. Boris	Numerical solution of continuity equations.
1	109	J.P. Boujot	Computation of Tokamak transport.
1	21	O. Buneman	The advance from 2D electrostatic to 3D electromagnetic particle simulation.
2	163	T.W. Cadman	Sequential random integer generator.
2	231	J. Cariou	Calculation of the energy response of a spectrometer.
2	173	J.M.F. Chamayou	Algorithms for the Kac and Renyi tests.
2	237	R.A. Eisenstein	PIPIT: a momentum space optical potential code for pions.
3	293	D.H. Feng	Exact—finite—range microscopic calculations for heavy—ion induced two—nucleon transfer reactions.
3	305	I.F. Ferguson	A program for the calculation of the positions of X—ray powder reflections.
2	179	W.G. Ferrier	Coulomb coefficients for complex ionic crystals.
3	305	R.S. Fox	A program for the calculation of the positions of X—ray powder reflections.
1	121	E. Graham	Convection in stars.
1	45	R.C. Grimm	Recent developments in the computational aspects of MHD stability.
3	305	T.E. Hughes	A program for the calculation of the positions of X—ray powder reflections.
3	261	M.J. Jamieson	The calculation of eigenvalues and eigenfunctions in an asymptotically Coulomb potential.
3	267	R.H.J. Jansen	Computer analysis of experimental results on differential scattering of electrons by gases.
1	45	J.L. Johnson	Recent developments in the computational aspects of MHD stability.
1	81	C.F.F. Karney	Symbolic computation of nonlinear wave interactions on MACSYMA.
3	293	B.T. Kim	Exact—finite—range microscopic calculations for heavy—ion induced two—nucleon transfer reactions.

Issue Page

1	81	J.L. Kulp	Symbolic computation of nonlinear wave interactions on MACSYMA.
2	163	C.T.K. Kuo	Sequential random integer generator.
1	33	K. Lackner	Computation of ideal MHD equilibria.
2	231	M. Leriche	Calculation of the energy response of a spectrometer.
2	213	J.W. Long	GLOWCODE: a one—dimensional code for the simulation of plasma afterglows.
2	231	J. Lotrian	Calculation of the energy response of a spectrometer.
3	293	K.S. Low	Exact—finite—range microscopic calculations for heavy—ion induced two—nucleon transfer reactions.
3	335	I. Manning	Adaptation of a program for depth distribution of energy deposition by ion bombardment: calculation of ion lateral ranges.
3	339	I. Manning	Erratum notice. Depth distribution of energy deposition by ion bombardment.
2	147	J.A. Maruhn	FOURGEN: a fast Fourier transform program generator.
1	109	C. Mercier	Computation of Tokamak transport.
3	277	K.J.M. Moriarty	A program for calculating the observables for single—particle—inclusive production reactions.
1	99	K.W. Morton	Finite difference and finite element methods.
3	339	G.P. Mueller	Erratum notice. Depth distribution of energy deposition by ion bombardment.
2	213	A.A. Newton	GLOWCODE: a one—dimensional code for the simulation of plasma afterglows.
2	145	A.D. Payne	Comment on the use of FORMAC73 in general relativity.
1	. 9	M. Petravic	Numerical modelling of pulsar magnetospheres.
2	199	R.D. Piacentini	Multistate molecular treatment of atomic collisions in the impact parameter approximation. III — Integration of coupled equations and calculation of transition amplitudes for Coulomb trajectories.
3	323	S.A. Roberts	PULSAMP: a program to predict the amplification of nano—second CO2 laser light pulses.
3	335	M. Rosen	Adaptation of a program for depth distribution of energy deposition by ion bombardment: calculation of ion lateral ranges.
2	199	A. Salin	Multistate molecular treatment of atomic collisions in the impact parameter approximation. III — Integration of coupled equations and calculation of transition amplitudes for Coulomb trajectories.
2	213	M.C. Sexton	GLOWCODE: a one—dimensional code for the simulation of plasma afterglows.
2	125	V.B. Sheorey	Double Chebyshev expansions for wave functions.
3	323	K. Smith	PULSAMP: a program to predict the amplification of nano—second CO2 laser light pulses.
2	179	D.C. Sutherland	Coulomb coefficients for complex ionic crystals.
2	237	F. Tabakin	PIPIT: a momentum space optical potential code for pions.
3	277	J.H. Tabor	À program for calculating the observables for single—particle—inclusive production reactions.
2	205	G.J. Tallents	COLLRAD: a code for calculating the quasi—steady state population densities of excited states of hydrogen—like ions.

Issue Page

3	293	T. Tamura	Exact—finite—range microscopic calculations for heavy—ion induced two—nucleon transfer reactions.
2	135	T.M. Tran	Finite element approximation for the wave—particle interaction in weakly turbulent plasmas.
1	1	W. Tscharnuter	The formation of protostars.
3	293	T. Udagawa	Exact—finite—range microscopic calculations for heavy—ion induced two—nucleon transfer reactions.
2	135	J. Vaclavik	Finite element approximation for the wave—particle interaction in weakly turbulent plasmas.
1	109	F. Werkoff	Computation of Tokamak transport.
1	53	J.A. Wesson	Non—linear behaviour of hydromagnetic instabilities.
3	335	J.E. Westmoreland	Adaptation of a program for depth distribution of energy deposition by ion bombardment: calculation of ion lateral ranges.