Agriplots Linear Programming Model

Parameters

- N Set of possible locations to install PV's
- p_i Energy production (10⁶ kWh/year) for installing PV at location $i \in N$
- a_i Area in dunam used for installing PV at location $i \in N$
- c_i influence on crops from installing PV at location $i \in N$
- r_i potential revenue before installing PV at location $i \in N$
- ullet A- Upper bound on the total area in dunam that can be used for installing PV's
- C Minimal loss of revenue in percentage allowed as a result of influence on crops
- ullet D- Set of Yeshuvim that contain locations
- d_i upper bound of energy production in yeshuv $j \in D$
- ullet E Set of Eshkolot that contain locations
- ullet e_{j} upper bound of percentage of energy production in eshkol $j \in \mathbf{E}$
- F Set of Machozot that contain locations
- f_j upper bound of energy production in county $j \in F$

Decision Variables

• x_i — Binary variable, equals to 1 if a PV is installed at location $i \in \mathbb{N}$, otherwise 0.

Objective Function

Maximize
$$\sum_{i \in N} (x_i \cdot P_i)$$

Constraints

$$1. \qquad \sum_{i \in N} x_i \cdot a_i \le A$$

2.
$$\frac{\sum_{i \in N} x_i \cdot c_i \cdot r_i}{\sum_{i \in N} x_i \cdot r_i} \ge C$$

3.
$$\sum_{i \in j} x_i \cdot p_i \le d_j, \quad \forall j \in D$$

4.
$$\sum_{i \in j} x_i \cdot P_i \leq e_j \cdot \sum_{k \in N} (x_k \cdot P_k), \quad \forall j \in E$$

5.
$$\sum_{i \in j} x_i \cdot p_i \le f_j, \quad \forall j \in F$$

6.
$$x_i \in \{0,1\} \ \forall i \in \mathbb{N}$$

Explanations

- The **objective function** maximizes the total energy production from the installed PV systems at various locations.
- **Constraint (1)** places an upper bound on the total area used for PV installations.
- **Constraint (2)** ensures that the change in revenue as a result of installing the PV's and influencing the crops remains above a certain threshold.
- **Constraint (3)** ensures that the total energy production for each Yeshuv does not exceed it's energy consumption limit.
- **Constraint (4)** limits the energy produced within each eshkol (group) to a certain percentage of the overall energy production.
- **Constraint (5)** ensures that the total energy production for each machoz does not exceed it's energy consumption limit.
- **Constraint (6)** requires that each decision variable x_i is binary, meaning that a PV system is either installed or not at each location.

Table of contents (need a better name)

Value/variable in the LP model	Value/variable in the data
N	OBJECTID (column from dataset)
p_i	Energy production (fix) mln kWh/year (column from dataset)

a_i	Dunam (column from dataset)
c_i	Average influence of PV on crops (modified column from dataset)
r_i	Potential revenue from crops before PV, mln NIS (column from dataset)
A	Parameter decided by user
С	Parameter decided by user
D	YeshuvName (column from dataset)
d_{j}	energy_consumption_by_yeshuv
E	yeshuvim_in_eshkolot
e_j	energy_division_between_eshkolot
F	Machoz (column from dataset)
f_j	energy_consumption_by_machoz