Problema:

Fie limbajul:

$$L = \{a^n b^n c^n \mid n \in N\}$$

Este independent de context?

Rezolvare:

- Facem observatia ca: $z \in L$ ddaca:
 - a. ordinea simb. este data de regulile:
 - i. simb. a apar inaintea simb. b si c
 - ii. simb. **b** apar inaintea simb. **c**
 - b. nr. simb. **a** este egal cu nr. simb. **b** este egal cu nr. simb. **c** (si notam: $nr_a(\mathbf{z}) = nr_b(\mathbf{z}) = nr_c(\mathbf{z})$)

Vom dem. ca nu este independent de context, prin reducere la absurd, folosind lema de pompare pentru limbaje independente de context.

• PP. ca este independent de context.

Atunci au loc conditiile din lema de pompare

De aici rezulta ca $\exists p \in \mathbb{N}^*$ astfel incat:

 \forall **z** \in L care satisfice

- |z| > = p
- \exists o descompunere $\mathbf{z} = \mathbf{u}\mathbf{v}\mathbf{w}\mathbf{x}\mathbf{y}$ astfel incat: $\mathbf{u}\mathbf{v}^{\mathbf{i}}\mathbf{w}\mathbf{x}^{\mathbf{i}}\mathbf{y} \in L$, \forall $\mathbf{i} \in N$ si $|\mathbf{v}\mathbf{x}|>=1$ si $|\mathbf{v}\mathbf{w}\mathbf{x}|<=\mathbf{p}$

Alegem \mathbf{z} cu $|\mathbf{z}| > = \mathbf{p}$ (satisface cond. de mai sus)

- $\exists \mathbf{n} \text{ a.i. } |a^n b^n c^n| >= \mathbf{p} ; z \in L => z = a^n b^n c^n \text{ si } |\mathbf{z}| >= \mathbf{p}$
- z = uvwxy descompunerea din lema de pompare ne aflam in unul din urmatoarele cazuri generale:
 - 1. cel putin unul dintre **v** si **x** contin cel putin 2 simboluri (dintre a,b,c) diferite; (cazul 1)
 - 2. **v** si **x** contin un acelasi simbol (a, sau b, sau c) eventual repetat _(>=1) sau secv. vida adica putem considera ca simb. se repeta de 0 sau mai multe ori (dar nu pot fi ambele vide)

(cazul 2)

3. **v** si **x** contin un simbol (a, sau b, sau c) eventual repetat (>=1), dar **v** si **x** nu contin acelasi simbol (cazul 3)

<u>cazul 1</u>: (vezi cazurile posibile pentru cazul 1; aleg unul dintre ele si dem. pt. el; pentru celelalte demonstratia se face analog)

fie:
$$v = a^{k1}b^{k2}$$
, $k1>0$, $k2>0$ (rel.1) (oricare x)
fie i =2
cf. Lemei de pompare: $uv^2wx^2y \in L$
adica:
 $uv^2wx^2y = u \ a^{k1} \ \underline{b^{k2} \ a^{k1}} \ b^{k2} \ wx^2y \in L$,
atunci cand $k1>0$ si $k2>0$ (cf. rel.1)

ar insemna ca simb. ${\bf b}$ pot sa apara inaintea simb. ${\bf a}$ ceea ce nu e adevarat pentru cuvintele din L

(observatia (a.)(i.))

=> contradictie

Se poate dem. in mod analog ca:

- pentru oricare doua (sau trei) simboluri distincte ar fi format v, v^2 nu va mai pastra ordinea simbolurilor care este necesara pt.ca $uv^2wx^2y \in L$
 - ... => <u>contradictie</u>
- pentru oricare doua (sau trei) simboluri distincte ar fi format x, x^2 nu va mai pastra ordinea simbolurilor care este necesara pt.ca $uv^2wx^2y \in L$

... => contradictie

cazul 2: (dintre cazurile posibile pentru cazul 2 aleg unul dintre ele si dem. pt. el)

fie:
$$v = a^{k1}$$
 $k1 \ge 0$
 $x = a^{k2}$ $k2 \ge 0$

$$\begin{array}{c} \text{Stim ca: } |\textbf{vx}|>=& 1\\ \Leftrightarrow |\textbf{a}^{k1}\textbf{a}^{k2}|>=& 1\\ \Leftrightarrow k1+k2>0 \qquad (\textit{rel.2})\\ & (k1,\,k2-\textit{nu sunt simultan 0})\\ \text{atunci: } \textbf{u}=\textbf{a}^{k3} \qquad , k3>=& 0\\ & \textbf{w}=\textbf{a}^{k4} \qquad , k4>=& 0\\ & \textbf{y}=\textbf{a}^{n-k1-k2-k3-k4}\textbf{b}^{n}\textbf{c}^{n} \qquad , n-k1-k2-k3-k4>=& 0\\ \text{fie } \textbf{i}=& 2\text{: } \textbf{cf. lemei: } \textbf{uv}^{2}\textbf{wx}^{2}\textbf{y} \in L\\ & \textbf{uv}^{2}\textbf{wx}^{2}\textbf{y}=\textbf{a}^{k3} \quad \textbf{a}^{2*k1} \quad \textbf{a}^{k4} \quad \textbf{a}^{2*k2} \quad \textbf{a}^{n-k1-k2-k3-k4}\textbf{b}^{n}\textbf{c}^{n}\\ \text{dar: } \textbf{uv}^{2}\textbf{wx}^{2}\textbf{y} \in L => n\textbf{r}_{a}(\textbf{z}')=& \textbf{n}\textbf{r}_{b}(\textbf{z}')=& \textbf{n}\textbf{r}_{c}(\textbf{z}')\\ & k3+2*k1+k4+2*k2+n-k1-k2-k3-k4=n=n\\ & => n+k1+k2=n\\ & => k1+k2=0\\ & \text{dar } (\textit{cf. rel.2}): k1+k2>0\\ & => \text{contradictie} \end{array}$$

Se dem. analog pt. orice alte combinatii posibile atunci cand si \mathbf{y} si \mathbf{u} contin un acelasi simbol (\mathbf{a} , sau \mathbf{b} , sau \mathbf{c}), ca in $\mathbf{z}' = \mathbf{u}\mathbf{v}^2\mathbf{w}\mathbf{x}^2\mathbf{y}$ nu are loc relatia $\mathbf{n}\mathbf{r}_a(\mathbf{z}') = \mathbf{n}\mathbf{r}_b(\mathbf{z}') = \mathbf{n}\mathbf{r}_c(\mathbf{z}')$ => contradictie

cazul 3: (dintre cazurile posibile pentru cazul 3 aleg unul dintre ele si dem. pt. el)

fie:
$$v = a^{k1}$$
, $k1>0$ (rel.4)
 $x = b^{k2}$, $k2>0$ (rel.5)
atunci: $u = a^{k3}$, $k3>=0$
 $y = b^{k4}c^n$, $k4>=0$
 $w = a^{n-k1-k3}b^{n-k2-k4}$, $n-k1-k2>=0$; $n-k2-k4>=0$

fie i =2; atunci $uv^2wx^2y \in L$

```
\begin{split} uv^2wx^2y &= a^{k3} \ a^{2^*k1} \ a^{n-k1-k2}b^{n-k2-k4} \ b^{2^*k2} \ b^{k4}c^n \\ z' &= uv^2wx^2y \in L => nr_a(z') = nr_b(z') = nr_c(z') \\ &\quad k3 + 2^*k1 + n-k1 - k3 = n-k2-k4 + 2^*k2 + k4 = n \\ &\quad => n+k1 = n+k2 = n \\ &\quad => k1 = 0 \ contrad \ cu \ (rel.4) \\ &\quad (=> k2 = 0, \ contrad. \ cu \ (rel.5)) \end{split}
```

Se dem. analog pt. orice alte combinatii posibile atunci cand si v si x contin cate un simbol (a, sau b, sau c), dar nu acelasi ca in $z'=uv^2wx^2y$ nu are loc relatia $nr_a(z')=nr_b(z')=nr_c(z')$

=> contradictie

cazurile posibile pt. cazul 1

```
cel putin unul dintre v si x contin cel putin 2 simboluri (dintre a,b,c) diferite; v = a^{k1}b^{k2} \qquad , k1>0, k2>0 \quad \text{si nu specificam ce poate contine x}  v = a^{k1}b^{k2}c^{k3} \qquad , k1>0, k2>0, k3>0 \qquad \text{si nu specificam ce poate contine x}  v = b^{k2}c^{k3} \qquad , k2>0, k3>0 \qquad \text{si nu specificam ce poate contine x}  daca v contine un singur acelasi simbol, ne situam in cazul 1 daca: x = a^{k1}b^{k2} \qquad , k1>0, k2>0  x = a^{k1}b^{k2}c^{k3} \qquad , k1>0, k2>0  x = a^{k1}b^{k2}c^{k3} \qquad , k1>0, k2>0, k3>0  x = b^{k2}c^{k3} \qquad , k1>0, k2>0, k3>0
```

analog se face dem. pt. fiecare dintre cazurile de mai sus (ajunge la o contradictie)

Exercitiu:

descrieti cazurile posibile pt. cazul 2 si cazul 3