慶應義塾大学試験問題用紙(日吉)										
						,	試験時間	験時間 50分		分
平成 9年 7月/8日(金) / 時限施行			学部	学科	年	組 番	採点	横	*	
担当者名	荒牧,茅,伊藤	发, 大場 学 下 中偏 学	籍番号]			
科目名		E	名							
指示事項	持込 回(電卓	10分可)	答案用紙 計算用紙	要 (B4天 要 (回収-		D) 不要 要) 不要				

以下の間に答えなさい。ただし次の数値を用いてよい。

プランク定数 $h=6.63\times10^{-34}$ Js、 電子の質量 $m_e=9.11\times10^{-31}$ kg、 光速度 $c=3.00\times10^8$ ms⁻¹、リュードベリ定数 $R=1.097\times10^7$ m⁻¹

問1. 次の文章の空欄①~④を埋めなさい。また、図1と図2のグラフの形を概略で示しなさい。 水素類似原子(1電子原子)の1s軌道の波動関数は次のように書ける。

$$\Psi(r) = \frac{1}{\sqrt{\pi}} (\frac{Z}{a_0})^{\frac{3}{2}} \exp(-\frac{Z}{a_0}r)$$

ここで、 a_0 は ① 半径と呼ばれる定数である。1 s 軌道の動径分布関数 D(r) は D(r) = ② $\exp(-\frac{2Z}{a}r)$ となり、図1 (たて軸 D(r)、よこ軸r) に示すように、

r = 2 で最大である。 一方、1 s の電子密度 $\rho(r)$ は図 2 (たて軸 $\rho(r)$ 、よこ軸 r)に示すように、原子核位置 で最大である。この 2 つのことがらは矛盾しない。その理由は、

s 軌道の D(r) は半径 r の球の 4 と ho(r) との積だからである。

- 間2. 原子番号1から10までの等核2原子分子について、以下の間いに答えなさい。
 - (1) 安定に存在しない等核2原子分子を元素記号で3つ答えなさい。
 - (2) 結合エネルギーの最も大きな等核2原子分子を元素記号で示し、その電子配置を 下の例にならって答えなさい。

例:
$$\text{Li}_2$$
では $(\sigma_{1s})^2(\sigma_{1s}^*)^2(\sigma_{2s}^*)^2$ ただし、 $(ls\sigma_g)^2(ls\sigma_u^*)^2(2s\sigma_g)^2$ と書いてもよい。

- 問3. 下の化合物Aは紫外部に吸収を持ち、その吸収極大波長 1 max は 227 nmである。
 - (1) 下の分子構造式を書き写し、それぞれの炭素原子の混成の種類を答えなさい。
 - (2) 化合物Aの π 電子を、1次元の箱(長さL)の中の粒子と近似することができる。 量子数をnとすると、n=1 の分子軌道 Ψ_i は下図のように模式的に書ける。 これにならい、 Ψ_i を図示しなさい。
 - (3) HOMO (最高被占軌道) と LUMO (最低空軌道) の量子数nをそれぞれ答えなさい。
 - (4) HOMOとLUMOのエネルギー差を、箱の長さしなどを用いて表しなさい。
 - (5) 化合物Aの紫外部の吸収はHOMOからLUMOへの電子遷移に対応する。 λ maxの値から 箱の長さLを求めなさい。 (単位は nm)

