Roadmap

- ☐ Definition of semantic-security in COA attack model
- ☐ Equivalent indistinguishability based definition
- ☐ Introduction to reduction-based proofs

Semantic-security Definition in COA Model

- ☐ Intuitively Enc is semantically secure, if the ciphertext does not reveal any additional information about the underlying plaintext
 - Should hold even if the adversary have any kind of prior external information about the underlying plaintext, leaked through other means
 - Extremely challenging to formalize the above intuition

Semantic-security Definition in COA Model

- \square Apart from the ciphertext c, adversary has access to an abstract function h(m)
 - Models any kind of prior external information about the underlying plaintext that might be leaked to the adversary through other means
- \Box Goal of the adversary is to compute some function f(m) of the underlying plaintext --- models the additional information that adversary wants to learn about m
- Semantic security: chances that the adversary could compute f(m) using c and h(m) is almost the same with which adversary could compute f(m), just using h(m)
 - \diamond Ciphertext is of no help for the attacker in computing f(m)

Semantic-security Definition in COA Model

- $oldsymbol{\square}$ Semantic security: Probability of ${\mathcal A}$ and ${\mathcal A}'$ computing f(m) are almost the same
- Enc is semantically-secure (in the COA model) if the following holds:

$$\Pr[\mathcal{A}(\operatorname{Enc}_k(m)(h(m)) = f(m)] - \Pr[\mathcal{A}'(h(m)) = f(m)] | \leq \operatorname{negl}(n)$$

Prob. of \mathcal{A} computing f(m), with the aid of c and h(m)

Prob. of \mathcal{A}' computing f(m), with the aid of just h(m)

Semantic Security in COA Model: Indistinguishability Based Definition

☐ An encryption scheme is semantically-secure (in the COA model) if the following holds:

$$\Pr[\mathcal{A}\big(\mathsf{Enc}_k(m),h(m)\big)=f(m)] \quad - \quad \Pr[\mathcal{A}'\big(h(m)\big)=f(m)] \quad | \leq \mathsf{negl}(n)$$

- ☐ Slightly complicated to prove semantic security as per the above definition
- ☐ Instead, we use an equivalent, indistinguishability based definition
 - Computationally-secure variant of indistinguishability based definition of perfect security

Indistinguishability Based Definition of Semantic Security in the COA Model

☐ Recall the indistinguishability based definition of perfect security

 \blacksquare Π is computationally indistinguishable if for every $\mathcal A$:

$$\Pr\left(PrivK_{\mathcal{A},\Pi}^{coa}(n)=1\right) \leq \frac{1}{2} + \operatorname{negl}(n)$$

Indistinguishability Based Definition of Semantic Security in the COA Model

 \square Π = (Gen, Enc, Dec) is semantically-secure (in the COA model) if the following holds:

$$\Pr[\mathcal{A}\big(\mathsf{Enc}_k(m),h(m)\big) = f(m)] - \Pr[\mathcal{A}'\big(h(m)\big) = f(m)] \mid \leq \mathsf{negl'}(n)$$

 \approx

 Π = (Gen, Enc, Dec) is computationally indistinguishable (in the COA model) if for every \mathcal{A} :

 $\Pr\left(PrivK_{\mathcal{A},\Pi}^{coa}(n)=1\right) \leq \frac{1}{2} + \operatorname{negl}(n)$

- ☐ The above equivalence holds in other models as well (CPA, CCA)
 - For the rest of the course, we will follow indistinguishability based security definitions

Indistinguishability Based Definition: An Equivalent Formulation

 \square Alternate definition : output of $\mathcal A$ should be the same, irrespective of b

$$\Pr[\mathcal{A} \text{ outputs b'}=1 \mid b=0]$$
 - $\Pr[\mathcal{A} \text{ outputs b'}=1 \mid b=1]$ | $\leq \operatorname{negl'}(n)$

Indistinguishability Based Definition: An Equivalent Formulation

 \square A scheme Π = (Gen, Enc, Dec) over \mathcal{M} is computationally indistinguishable if for every \mathcal{A} :

$$\Pr\left(\operatorname{Priv}K_{\mathcal{A},\Pi}^{coa}(n)=1\right) \leq \frac{1}{2} + \operatorname{negl}'(n) \qquad \dots (1)$$

 \square A scheme Π = (Gen, Enc, Dec) over \mathcal{M} is computationally indistinguishable if for every \mathcal{A} :

```
| \Pr[\mathcal{A} \text{ outputs b'}=1 \mid b=0]  - \Pr[\mathcal{A} \text{ outputs b'}=1 \mid b=1] \mid \leq \operatorname{negl}(n) ... (2)
```

$$\Pr\left(PrivK_{\mathcal{A},\Pi}^{coa}(n) = 1\right) = \frac{1}{2} \cdot \left\{\Pr[\mathcal{A} \text{ outputs b'=0} \mid b = 0] + \Pr[\mathcal{A} \text{ outputs b'=1} \mid b = 1]\right\}$$

$$= \frac{1}{2} \cdot \left\{1 - \Pr[\mathcal{A} \text{ outputs b'=1} \mid b = 0] + \Pr[\mathcal{A} \text{ outputs b'=1} \mid b = 1]\right\}$$

$$= \frac{1}{2} + \frac{1}{2} \cdot \left\{\Pr[\mathcal{A} \text{ outputs b'=1} \mid b = 1] - \Pr[\mathcal{A} \text{ outputs b'=1} \mid b = 0]\right\}$$

$$\leq \frac{1}{2} + \operatorname{negl'}(n)$$

A scheme Π = (Gen, Enc, Dec) over \mathcal{M} is computationally indistinguishable if for every \mathcal{A} : $\Pr\left(PrivK_{\mathcal{A},\Pi}^{coa}(n)=1\right) \leq \frac{1}{2} + \operatorname{negl}(n)$

 \approx

- \blacksquare Π = (Gen, Enc, Dec) is semantically-secure (in the COA model) if the following holds:
 - $|\Pr[\mathcal{A}(\mathsf{Enc}_k(m), h(m)) = f(m)] \Pr[\mathcal{A}'(h(m)) = f(m)]| \le \mathsf{negl}(n)$
- Example: we will show that if a scheme is computationally indistinguishable, then ciphertext reveals no information about the individual bits of the underlying plaintext, if $\mathcal{M} = \{0,1\}^{\ell}$ and the plaintext is selected uniformly random
 - Will introduce reduction based proofs

☐ Claim: If Enc is computationally indistinguishable, then infeasible for the adversary to compute the ith bit of the plaintext with probability significantly better than ½

❖ For each $i = 1, ..., \ell$:

$$\Pr[\mathcal{A}(\operatorname{Enc}_k(m)) = m^{(i)}] \le \frac{1}{2} + \operatorname{negl}(n)$$

- □ Intuition: An adversary who can compute the ith bit of the plaintext with probability significantly better than ½, can significantly distinguish between encryptions of two random messages, whose ith bits are different
 - The above intuition will be formalized through a reduction based proof
 - Reduction based proofs are central to cryptography

```
□ If \Pi = (Gen, Enc, Dec) over \mathcal{M} = \{0,1\} is computationally indistinguishable when the \Rightarrow \Pr[\mathcal{A}(\operatorname{Enc}_k(m)) = \underline{m^{(i)}}] \leq \frac{1}{2} + \operatorname{negl}(n) plaintext is randomly chosen from \mathcal{M}
```

Proof by contrapositive

If
$$\Pi$$
 = (Gen, Enc, Dec) over $\mathcal{M} = \{0,1\}^{\ell}$ is computationally indistinguishable when the plaintext is randomly chosen from \mathcal{M} $\Rightarrow \frac{\Pr[\mathcal{M}(\mathsf{Enc}_k(m)) = m^{(i)}] \leq \frac{1}{2} + \operatorname{negl}(n)}{\Pr[\mathcal{M}(\mathsf{Enc}_k(m)) = m^{(i)}]} \leq \frac{1}{2} + \operatorname{negl}(n)$

Proof by contrapositive

- Let there exist an adversary \mathcal{A} , who can compute the ith bit of a random plaintext by seeing the ciphertext with probability significantly better than ½
- \square Consider the following adversary \mathcal{A}' , for the COA-indistinguishability game

$$\frac{c \leftarrow \operatorname{Enc}_{k}(m) :}{m \in_{r} \{0,1\}^{\ell}} \mathcal{A}$$

$$\Pr[\mathcal{A}(\operatorname{Enc}_{k}(m)) = m^{(i)}] > \frac{1}{2} + \operatorname{non-negl}(n)$$

Prob. that \mathcal{A}' outputs b'=b in the COA indistinguishability game is the same as Prob. that \mathcal{A} correctly outputs $m^{(i)}$ after seeing the challenge ciphertext c

- Let there exist an adversary \mathcal{A} , who can compute the ith bit of a random plaintext by seeing the ciphertext with probability significantly better than ½
- \square Consider the following adversary \mathcal{A}' , for the COA-indistinguishability game

$$\Pr\left(\operatorname{Priv}K_{\mathcal{A}',\Pi}^{coa}(n)=1\right) = \Pr\left[\mathcal{A}\left(\operatorname{Enc}_k(m)\right)=m^{(i)}\right]$$

- Let there exist an adversary \mathcal{A} , who can compute the ith bit of a random plaintext by seeing the ciphertext with probability significantly better than ½
- \square Consider the following adversary \mathcal{A}' , for the COA-indistinguishability game

$$\frac{c \leftarrow \operatorname{Enc}_{k}(m) :}{m \in_{r} \{0,1\}^{\ell}} \mathcal{A}$$

$$\Pr[\mathcal{A}(\operatorname{Enc}_{k}(m)) = m^{(i)}] > \frac{1}{2} + \operatorname{non-negl}(n)$$

$$\Pr\left(\operatorname{PrivK}_{\mathcal{A}',\Pi}^{coa}(n)=1\right) = \Pr\left[\mathcal{A}\left(\operatorname{Enc}_k(m)\right) = m^{(i)}\right] > \frac{1}{2} + \operatorname{non-negl}(n)$$

The Reduction Based Proof: Important Details

The Reduction Based Proof: Important Details

- lacksquare Running time of \mathcal{A}' is the same as that of \mathcal{A}
 - \clubsuit If $\mathcal A$ runs in polynomial time, then so does $\mathcal A'$
- \square Algorithm \mathcal{A}' invokes algorithm \mathcal{A} in a black-box fashion
 - riangledown knows nothing about the internal working of $\mathcal A$
 - \clubsuit Interaction with \mathcal{A} handled via input/output interface
 - A' provides A with a view which is exactly the same that A expects at its input interface to launch its attack --- encryption of a random ℓ -bit string, with ith bit being either 0 or 1