Limit Failures

Definition

To say that $L \in \mathbb{R}$ is not the limit of a function f(x) at x = a means that $f(x) \not\to L$ as $x \to a$:

$$\exists \, \epsilon > 0, \forall \, \delta > 0, \exists \, x \in \mathbb{R}, 0 < |x - a| < \delta \text{ and } |f(x) - L| \geq 0$$

Find an ϵ such that for every δ , there is at least one x in the δ -neighborhood of a at which the function value is outside the bounding $\epsilon - \delta$ box.

There are three possibilities:

- 1. Gaps
- 2. Arbitrarily Large
- 3. Oscillations

Gaps

Example: The Heaviside Function

Define H(x) as follows:

$$H(x) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$$

$$\lim_{x\to 0} H(x) = 1?$$

Let $\epsilon=\frac{1}{2}$. Note that for any δ , the part of the function for x<0 will always be outside the bounding box.

In fact, for any L, an ϵ can be selected such that no suitable bounding box can be drawn.

Thus, $\lim_{x\to 0} H(x)$ does not exist (DNE).

Note that this does not prohibit limits at other values of x. For example:

$$\lim_{x \to 1} H(x) = 1$$

In fact, for any a>0:

$$\lim_{x \to a} H(x) = 1$$

and for any a < 0:

$$\lim_{x \to a} H(x) = 0$$

Example

$$f(x) = \begin{cases} x, & x \le 1\\ (x-1)^2 + 2, & x > 1 \end{cases}$$

$$\lim_{x\to 1} f(x) \; \mathsf{DNE}$$

$$f(x) = \begin{cases} x, & x \le 1\\ (x-1)^2 + 1, & x > 1 \end{cases}$$

$$\lim_{x \to 1} f(x) = 1$$

$$f(x) = \begin{cases} x, & x < 1 \\ 2, & x = 1 \\ (x-1)^2 + 1, & x > 1 \end{cases}$$

$$\lim_{x \to 1} f(x) = 1$$

Arbitrarily Large

Definition: Arbitrarily Large

To say that $x \in \mathbb{R}$ is *arbitrarily large*, denoted by $x \to \infty$ or $x \to +\infty$, means that:

$$\forall y \in \mathbb{R}, x > y$$

To say that $x \in \mathbb{R}$ is arbitrarily large negative, denoted by $x \to -\infty$, means that:

$$\forall y \in \mathbb{R}, x < y$$

Similar to arbitrarily small, arbitrarily large is an infinite no-win game: given any $y \in \mathbb{R}$, x is larger (greater) than y.

Definition: Infinite Limit

To say that $\lim_{x\to a} f(x) = \infty$ means that for every M>0, there exists $\delta>0$ such that if $0<|x-a|<\delta$ then f(x)>M.

To say that $\lim_{x\to a} f(x) = -\infty$ means that for every M>0, there exists $\delta>0$ such that if $0<|x-a|<\delta$ then f(x)<-M.

Example

Let
$$f(x) = \frac{1}{x^2}$$
.

Does $\lim_{x\to 0} f(x)$ exist?

No matter how the bounding box is drawn, there will be a portion of the function outside of the box since $f(x) \to \infty$ as $x \to 0$. In fact, for every M > 0, a suitable δ can be found:

Likewise: $\lim_{x\to 0} \left(-\frac{1}{x^2}\right) = -\infty$

Saying that $f(x) \to \infty$ or $f(x) \to -\infty$ as $x \to a$ is preferred to saying that the limit DNE.

Example

Let
$$f(x) = \frac{1}{x}$$
.

Does $\lim_{x\to 0} f(x)$ exist?

No matter what the choice of M, part of the graph will always be below (less than) M and part of the graph will be above (greater than) -M. Thus the limit DNE.

Oscillations

Example

Let
$$f(x) = \sin \frac{1}{x}$$
.

Does $\lim_{x\to 0} f(x)$ exist?

For small ϵ , no matter how small d is, f(x) will oscillate outside the bounding box. Thus, the limit DNE.

Example

Define f(x) as follows:

$$f(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ 0, & x \in \mathbb{R} - Q \end{cases}$$

Does $\lim_{x\to 2} f(x)$ exist?

Due to the density of the reals, in any δ -neighborhood there will be irrational numbers that pull f(x) out of the bounding box. Thus, the limit DNE.