Introduction to Knock-off Filters

"Controlling False Discovery Rates via Knock-offs"
Authors: Rina Barber and Emmanuel Candes

Nandana Sengupta

March 7, 2016

Introduction

"All models are wrong, but some models are useful" – George Box

Consider the simple linear regession model:

$$y = X\beta + \varepsilon;$$
 $y \in \mathbb{R}^{n},$ $X \in \mathbb{R}^{n \times p},$ $\varepsilon \sim N(0, \sigma^{2})$
 $\Rightarrow \hat{\beta}_{ols} = \underset{\beta}{\operatorname{argmin}} (y - X\beta)' (y - X\beta)$

- ► Large number of X: low bias but larger variance
- ▶ Small number of X: higher bias but small variance
- ▶ Ideal: Small set of X truly associated with y
- Motivating example from genetics:
 - ▶ y: phenotype (observable traits eg: eye color, height)
 - ► X: genes

Introduction

"All models are wrong, but some models are useful" – George Box

Consider the simple linear regession model:

$$y = X\beta + \varepsilon;$$
 $y \in \mathbb{R}^{n}, X \in \mathbb{R}^{n \times p}, \varepsilon \sim N(0, \sigma^{2})$
 $\Rightarrow \hat{\beta}_{ols} = \operatorname*{argmin}_{\beta} (y - X\beta)' (y - X\beta)$

- ▶ Large number of X: low bias but larger variance
- ► Small number of X: higher bias but small variance
- ▶ Ideal: Small set of X truly associated with y ⇐
- Motivating example from genetics:
 - ▶ y: phenotype (observable traits eg: eye color, height)
 - ► X: genes

Preliminary Concept 1: Variable Selection Techniques

"Selecting a Small Subset of Variables"

- ► Forward Stepwise Regression
- Backward Stepwise Regression
- ► ⇒LASSO

$$\hat{\beta}_{\lambda} = \underset{\beta}{\operatorname{argmin}} (y - X\beta)' (y - X\beta) + \lambda \sum_{j=1}^{p} |\beta_{j}|$$

Preliminary Concept 1: Variable Selection Techniques

"Selecting a Small Subset of Variables"

Preliminary Concept 2: False Discovery Rate

"Selecting Variables truly associated with y."

- ▶ Null hypothesis \mathcal{H}_0 : $\beta_j = 0$
- Set of selected covariates: S

Want to control the proportion of Type I error

$$\begin{aligned} & \text{FDR} = \mathbb{E}\left[\underbrace{\frac{\text{\# false positives}}{\text{total \# of features selected}}}\right] = \mathbb{E}\left[\frac{|S \cap \mathcal{H}_0|}{|S|}\right] \;. \end{aligned}$$
 False discovery proportion

Work by Benjamini-Hochberg (1995, 2000)

Knock-off Filters: Algorithm

- ▶ Step 1: Construct Knock-offs \tilde{X} such that
 - ▶ Correlation Structure: $\tilde{X}'\tilde{X} = X'X = \Sigma$
 - ▶ Correlation Structure: $X'\tilde{X} = \Sigma diag(s)$
 - How? $\tilde{X} = X(I \Sigma^{-1} diag(s)) + \tilde{U}C$
 - ► Augmented Matrix: [X X]
- ► Step 2: Compute Lasso with Augmented Matrix

$$eta_{\lambda} = rg \min_{eta \in \mathbb{R}^{2p}} \left\{ rac{1}{2} \left\| y - \left[X \mid \widetilde{X}
ight] \cdot eta
ight\|_2^2 + \lambda \left\| eta
ight\|_1
ight\}$$

► Step 3: For each pair of knock-off and original variables, calculate

$$\lambda_j = \sup \left\{ \lambda : \beta_j^{\lambda} \neq 0 \right\} = \text{ first time } X_j \text{ enters Lasso path }$$

$$\widetilde{\lambda}_j = \sup \left\{ \lambda : \widetilde{\beta}_j^{\lambda} \neq 0 \right\} = \text{ first time } \widetilde{X}_j \text{ enters Lasso path }$$

$$W_j = \max\{\lambda_j, \widetilde{\lambda}_j\} \cdot \operatorname{sign}(\lambda_j - \widetilde{\lambda}_j)$$

Knock-off Filters: Algorithm

▶ Step 4: For each λ value calculate

$$\begin{array}{ll} S_{\lambda} = \{j: W_j \geq +\lambda\} \\ \widetilde{S}_{\lambda} = \{j: W_j \leq -\lambda\} \end{array} \quad \leadsto \quad \widehat{\mathsf{FDP}}(S_{\lambda}) := \frac{\left|\widetilde{S}_{\lambda}\right|}{\left|S_{\lambda}\right|} \end{array}$$

- ► Step 5: Choose threshold level *q*
- Step 6: Select the variables based on

$$\Lambda = \min\{\lambda : \widehat{FDP}(S_{\lambda}) \le q\}$$
$$S_{\Lambda} = \{j : W_j \ge \Lambda\}$$

► Knock-off+ filter:

$$\widehat{\mathsf{FDP}}(S_{\lambda}) := \frac{|\widetilde{S}_{\lambda}| + 1}{|S_{\lambda}|}$$

Knock-off Filters: Intuition

- null variables
- non-null variables
- □ selected variables S_{λ} □ control group \widetilde{S}_{λ}

Rest of the paper

- Theoretical Guarantees
 - ► Theorem 1: $\mathbb{E}[mFDP(S_{\Lambda})] \leq q$; $mFDP(S) = \frac{|S \cap \mathcal{H}_0|}{|S| + q^{-1}}$
 - ▶ Theorem 2: $\mathbb{E}[FDP(S_{\Lambda_+})] \leq q$
- ► Simulation Results
 - Compare knock-off, knock-off+ & Benjamini-Hochberg
 - ▶ All three techniques lead to FDR below threshold *q*
 - ▶ knock-off, knock-off+ perform better in terms of power
 - ▶ Power: 1 Pr(Type II Error)
- ► Empirical Application
 - ▶ model drug resistance of HIV-1 (y) on genetic mutations (X)

Going Further: Issues and Possible Applications

- Paper makes very few assumptions:
 - ▶ Don't need to know σ^2
 - ▶ Don't need any information on β
- ▶ But those that it makes may be critical:
 - ▶ Full rank $X'X = \Sigma$
 - ▶ n > p
 - Most practical applications of LASSO not suitable
 - Ongoing work on these aspects
- ▶ General issue with LASSO: Confidence interval estimation
- Possible Applications:
 - Useful when we don't have any model of the response.
 - ► Worthwhile to think about 2 − *step* methods (?)
 - ► Effect of a particular covariate on response but not sure about others covariates (?)

