Unsupervised Task Discovery in Multi-Task Acoustic Modeling Initial Findings

Josh Meyer*

* University of Arizona

Abstract

- ► Multi-Task Learning works (esp. in low-resource)
- ► However, tasks are hard to make
- Better to discover tasks automatically
- Experiment with k-means on MFCCs
- Initial results

Figure 1: Multi-Task Learning Architecture

1. Background

- Multi-Task Learning in Acoustic Modeling
 - Multilingual
 - new language == new task
 - Monolingual
 - new linguistic encoding == new task
 - Monophones vs. Triphones

Figure 2: Label Correspondance of Decision Tree / DNN

2. Alignment

- Feature Extraction
 - ▶ 13 PLP features, 25ms Hamming windows, 10ms shift, 16 frame left-context & 12 frame right-context, CMVN
- GMM Alignment
 - Monophones: 1,000 Gaussians, 25 iterations EM // Triphones: 2,000 leaves & 5,000 Gaussians, 25 iterations EM

Figure 3: GMM-aligned training examples

3. Clustering

- k-means Clustering
 - ▶ A set number of clusters is discovered via TensorFlow's standard k-means clustering.

Figure 4: k-means clustered training examples

4. Mapping Triphone States → **Clusters**

- ightharpoonup Mapping triphone states ightharpoonup k-means clusters
 - ▶ All training examples aligned to triphone state are mapped to most common k-means cluster.

Figure 5: GMM-aligned training examples

5. DNN Training

- DNN Acoustic model training
- ▶ 11 hidden layers, *ReLU* activations
- ▷ 5-epochs
- $\triangleright \ \alpha_{initial} = 0.0015 \rightarrow \alpha_{final} = 0.00015$
- ▶ Each task has penultimate + ultimate output layer

7. Results Discussion

Figure 6: A figure with two subfigures

8. Cluster Contents: A Qualitative Discussion

- ► 1024 clusters in TF

► 672 leaves in Kaldi

- ► 185 new labels after mapping
 - ▶ 123 / 185 are interpretable
- ▶ 101 of new labels contain mixed phonemes
 - ▶ 39 / 101 contained either only vowels or only consonants
- ▶ 84 of new labels contain one phoneme
 - ▶ 9 / 84 contained more than one triphone of phoneme

Table 2: Discovered intelligible Phoneme Clusters

Vowels		Consonants	
a j	a u	k r	g n m
a o	a ih	kр	s sh ch
e j	e ih	r ng	tksp
e y	o u	d ch	m ng
u ih y	u ih	t k	t k h
i e y	o ih	d z	t k s
a e oe j ih	j ih	Ιz	t ch d
a ih o u y		n p	t k zh b
			t g b s sh z zh

9. Acknowledgements

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. (DGE-1746060). Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors(s) and do not necessarily reflect the views of the National Science Foundation.