MATH 46 WORKSHEET: Image (le)convolution in 1d

Consider symm blurring operator $Kf(x) = \int_{\pi}^{\pi} K(x-y) f(y) dy$, K(s) = even symm(aperture func.)

5/7/08 Barnett.

A) Show that $\varphi_0(x) = 1$ is an eigenfunction of K, and find its eigenvalue λ_0 [Hint: why is $K\varphi_0(x)$ indep. of x? why is λ_0 indep. of x?]

- B) Show that $\phi_n(x) = \cos nx$, $n=1,2,\cdots$ is eigenfunc. of K, find its eigenvalue λ_n : [Hint: allitim formula, kevon]
- C) How do λ_n relate to Former cos coeffs k_n of aperture func k(s)?

 You could check that sinnx is also eigenfunc. w same eigenal. λ_n .

 Assume image is $f(x) = \frac{x_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos nx + b_n \sin nx\right]$

k efter blurning $Kf(x) = g(x) = A_0 + \sum_{n=1}^{\infty} [A_n \cos_n x + B_n \sin_n x]$ D) How are g's Formier coeffs related to those of f?

Such is the nature of convolution kernels. How would you invert g - f , ie deconvolve?

9/7/08 Barnett. MATH 46 WORKSHEET: Image (Le)convolution in 1d · SOLUTIONS a Consider symm blurring operator $Kf(x) = \int_{-\pi}^{\pi} k(x-y) f(y) dy$, k(s) = even symm(aperture func.) A) Show that $\phi_0(x) = 1$ is an eigenfunction of K, [Hint: why is $K\phi_0(x)$ indep. of x? why is λ_0 indep. of x?] s = y - xand find its eigenvalue 2. $(K1)(x) = \int_{-\pi}^{\pi} k(x-y) \cdot 1 \cdot dy = \int_{-\pi-x}^{\pi-x} k(-s) ds = \int_{-\pi}^{\pi} k(s) ds \cdot const$ wit: x periodicity & even-symm so do = this const = 5th k(s) ds B) Show that $\phi_n(x) = \cos nx$, n = 1/2, is eigenfunc. of K, find its eigenvalue λ_n :

[Hint: allitim formula, kevon]

[K(ϕ_n)(x) = $\int_{-\pi}^{\pi} k(x-y) \cos ny \, dy = \int_{-\pi-x}^{\pi\pi-x} k(-s) \cos n(s+x) \, ds$ bring ont

[In this is allitim formula, kevon]

bring ont

bring ont $\int_{-\pi}^{\pi} k(s) \cos ns \cos nx \, ds - \int_{-\pi}^{\pi} k(s) \sin ns \sin nx \, ds = \cos nx \cdot \int_{-\pi}^{\pi} k(s) \cos ns \, ds$ C) How do λ_n relate to formier cos coeffs k_n of aperture func k(s)? $\lambda_n = \pi k_n$ $\lambda_n = \pi k_n$ You could check that sinnx is also eigenfune. W sume eigenal. In. Since $k_n = \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} k_p^2 |\cos nsdn$. Euler-Forrier, Assume image is $f(x) = \frac{10}{2} + \sum_{n=1}^{\infty} \left[a_n \cos nx + b_n \sin nx \right]^{n-pr}$ k after blurring Kf(x) = g(x) = Ao + S [An cosux + Bn sinnx] D) How are g's Formier coeffs related to those of f? Formier basis = eigenbasis for K, so action of K is multiplication in this basis: $A_0 = \lambda_0 a_0 = \pi k_0 a_0$ 7 so Formier coeffs get multiplied by

for n=1,2,... $A_n = \lambda_n a_n = \pi k_n a_n$ $B_n = \lambda_n b_n = \pi k_n b_n$ divide formier coeffs by πk_n . Such is the nature of convolution kernels. How would you invert g of the deconvolve?