

Introdução à Engenharia e Ciência de Dados

Meta 1 - Ciência de Dados

Jorge Henriques, Mauro Pinto

jh@dei.uc.pt, mauropinto@dei.uc.pt

Departamento de Engenharia Informática *Faculdade de Ciências e Tecnologia*

UNIVERSIDADE DE COIMBRA

Trabalho - Etapas

Avaliação

(jh, mauropinto}@dei.uc.pt ■ IECD

▲ Objectivo

Implementar e analisar alguns dos métodos estudados em IECD relativos à analise de dados, na classificação do tipo de transmissão de um automóvel: manual / automática

(jh, mauropinto}@dei.uc.pt ■ IECD

✓ Classificação do tipo de transmissão de um automóvel

- Para o efeito conhece-se um conjunto de variáveis/características relativas a um automóvel.
- O desafio é, com base nessas variáveis, desenvolver um sistema que seja capaz de decidir se o automóvel tem mudanças manuais ou automáticas.

Objetivo

Trabalho - Etapas

Avaliação

▲ Trabalho - Etapas

- 1 | Aquisição de dados
- 2 | Pré processamento de dados
- 3 | Transformação de Dados
- 4 | Modelização & Validação

1, mauropinto}@dei.uc.pt ■ IECD

▲ 1 | Aquisição de dados

 Para cada automóvel admite-se que são conhecidas as seguintes características

Motor

X1	Height	Altura			
• X2	Length	Comprimento			
• X3	Width	Largura	MILL OF		
• X4	Horsepower	Potencia			
• X5	Torque	Torque	CAR ENGINE		
• X6	Hybrid	Se motor elétrico ou	ı combustão interna		

Objectivo

▲ 1 | Aquisição de dados

Transmissão

X7 Transmission

Se transmissão automática ou manual

Outras

X8 Driveline

x9 nb_gears

x10 Make

x11 city_mpg

x12 highway_mpg

x13 year

x14 fuel_type

Tração (4 rodas, à frente, atrás)

Número de mudanças

Fabricante

Consumo em cidade (milhas por galão)

Consumo em autoestrada (milhas por galão)

Ano de fabrico

Tipo de combustível

h. mauropinto}@dei.uc.pt ■ IECD

▲ 1 Aquisição de dados

- OS dados são disponibilizados num tabela, de dimensão (N,M)
 - N=5076 (numero de carros)
 - M=14 (número de características)

X1	X2	X2	Х4	X5	Х6	Х7	Х8	Х9	X10	X11	X12	X13	X14
••	••	:		:	:	:	:						

Objectivo

▲ 1 | Aquisição de dados

•	x1	Height	Continua [1, 255]
•	x2	Length	Continua [2, 255]
٠	х3	Width	Continua [1, 254]
•	х4	Horsepower	Continua [100, 638]
•	х5	Torque	Continua [98, 774]
٠	х6	Hybrid	{0,1}= Um motor híbrido tem uma parte elétrica e outra a combustão

•	х7	Transmission	{0,1}= {Manual, automática }
	х8	Driveline	{0,1,2}={Quatro, Frente, Trás}
•	x9	nb_gears	{4,5,6,7,8}
٠	x10	Make	{0,1,2,3,4,5,6,7,8} ={BMW, Hyundai, Mazda, MINI, Mercedes, Mazda, Volvo, Saab, Kia}
•	x11	city_mpg	Continua [8, 38]
٠	x12	highway_mpg	Continua [8, 223]
•	x13	year	{2009, 2010, 2011, 2012}
٠	x14	fuel_type	{0,1}={Diesel, Gasolina}

Objectivo

Etapas

- 1 | Aquisição de dados
- 2 | Pré processamento de dados
- 3 | Transformação de Dados
- 4 | Modelização & Validação

(jh, mauropinto}@dei.uc.pt ■ IECD

2 | Pré − processamento de dados

2.1 | Valores em falta

- Alguma das características do motor são desconhecidas.
- Assim, as variáveis de altura, largura e comprimento do motor têm, cada uma, 20 valores com valor 0 (valor em falta).

2.2 | Outliers

- Alguns dos valores são "estranhos"
- Em concreto, o consumo em cidade tem cerca de 20 valores com valores na gama 90-100.

, mauropinto}@dei.uc.pt ■ IECD

2 Pré-processamento de dados

Trabalho a fazer

Missing data: substituir valores em Falta

- Media dos existentes (?)
- Valores similares vizinho mais próximo (?)
- Modelo regressivo (?)

Outliers

- Detecção
- Substituição

- 2.1 | Valores em falta
 - Deve substituir os valores em falta (caracteríticas do motor)
 - Método: o que achar mais adequado

2.2 Outliers

- Deve identificar e substituir os valores anómalos (consumo em cidade)
- Método: o que achar mais adequado

Etapas

- 1| Aquisição de dados
- 2 | Pré processamento de dados

- 3 | Transformação de Dados
- 4 | Modelização & Validação

(jh, mauropinto}@dei.uc.pt ■ IECD

▲ 3 | Transformação dos dados

3.1 | Seleção de variáveis

 Eventualmente algumas das variáveis não tem muito sentido ser adquiridas (ou tidas em conta para a decisão), uma vez que pouco contribuem para a decisão final

3.2 | Resumir os dados / extração de caracteristicas

- Seria interessante perceber qual a relação entre alguns parâmetros, obtidos das variáveis de entrada e a decisão final
- Em concreto, pretende-se determinar a média de cada uma das variáveis relativamente aos carros com mudanças manuais e automáticas
 - Exemplo: para a potencia do motor, seria possível concluir algo do género?
 - Média potência motor (transmissão automática) = 545
 - Média potência motor (transmissão manual) = 175

▲ 3 | Transformação dos dados

Trabalho a fazer

Seleção variáveis

- Com base na correlação
- Forward (começar com uma variável e ir acrescentando)

Médias

 Media/desvio padrão de cada classe (manual/automático)

- 3.1 | Seleção de variáveis
 - Selecionar apenas as variáveis mais relevantes (4 ou 5 ?)
 - Método: o que achar mais adequado.
- 3.2 | Resumir os dados / extração de características
 - Determinar a média e desvio padrão para cada variável, em função da decisão
 - Ex. PotênciaMédia (manual)=175
 - Ex. Potência Média (automatico) = 545

Etapas

- 1 | Aquisição de dados
- 2 | Pré processamento de dados
- 3 | Transformação de Dados

4 | Modelização & Validação

▲ 4 | Modelização & Validação

4.1 | Modelo de classificação

 Tendo em conta as variáveis selecionadas e os parâmetros extraídos (médias), deve construir um/vários modelos de classificação

4.2 | Validação

 De forma a avaliar a qualidade do(s) classificador(es), os resultados obtidos pelos modelos devem ser quantificados usando métricas adequadas

▲ 4 | Modelização & Validação

Trabalho a fazer

- 1 Deve implementar um modelo regressivo
- 2 Deve implementar o método KNN
- 3 | Deve implementar um método que use regras individuas (ou a sua combinação)
 - Exemplo : Seja PT a potência de um motor
 - Se a potência *PT* estiver mais perto da *potênciaMédia* (manual) *manual*
 - Se a potência PT estiver mais perto da potênciaMédia (automatico) → automático

4.2 | Validação

- Deve quantificar os resultados de cada um dos três modelo usando
 - SE Sensibilidade, SP Especificidade, Fscore

Classificação: modelos

- Regressivo
- KNN
- Regras individuais (usando as variáveis selecionadas)

Validação

-Sensibilidade, especificidade. Fscore

Trabalho a fazer

Adicional Extras

Extras

- Valoriza-se a aplicação de outras técnicas em qualquer uma das fases!
 - Dados de treino/validação (?)
 - Valores em falta: uso do Kmeans (?)
 - Uso de várias variáveis em simultâneo na geração de regras para a classificação (?)
 - Outros métodos (?)
 - • •

Objetivo

Trabalho - Etapas

Avaliação

✓ Elementos de avaliação

- Entrega 12 MAio
- Realizados em grupos de 2 alunos
- A defesa é individual
- Avaliação: 50% (relatório + código) + 50% defesa (individual)

Deve submeter ficheiro zip

- Nome | numeroAluno1_numeroAluno2 Ex. 201234124_ 20144233.zip
- Incluir | código + relatório

Código

- IMPORTANTE: É apenas permitido o uso das bibliotecas numpy e matplotlib
- Soluções que façam uso de outras bibliotecas não serão consideradas na avaliação

▲ Elementos de avaliação

Relatório

- Documento pdf resumindo o trabalho apresentado desenvolvido
- Sugestão: 4/5 páginas
 - Não se espera código no relatório nem a sua explicação
 - Deve explicar que métodos implementou em cada fase e o porquê da sua escolha
 - Deve apresentar e discutir/comentar os resultados obtidos

Defesa

- Em data a combinar
- Haverá defesa presencial, individual e obrigatória do trabalho.