Amplificatori

Simbolo circuitale dell'amplificatore

Caratteristica di trasferimento e guadagni

guadagno di tensione: $A_v " \frac{v_O}{v_I}$

guadagno di corrente: A_i " $\frac{i_O}{i_I}$

guadagno di potenza: A_p " potenza in uscita (P_L) = $\frac{v_O i_O}{v_I i_I} = A_v A_i$

Guadagno logaritmico

Guadagno di tensione in decibel = $20 \log |A_v|$ dB

Guadagno di corrente in decibel = $20 \log |A_i|$ dB

Guadagno di potenza in decibel = $10 \log |A_p| dB$

Alimentazione negli amplificatori

$$P_{dc} = V_1 I_1 + V_2 I_2$$

$$P_{dc} + P_I = P_L + P_{diss}$$

$$m{h}$$
 " $rac{P_L}{P_{dc}} \cdot 100$

potenza fornita all'amplificatore bilancio energetico del sistema

efficienza dell'amplificatore

Saturazione dell'amplificatore

Caratteristica di trasferimento non lineare e polarizzazione

$$v_I(t) = V_I + v_i(t)$$

$$v_O(t) = V_O + v_o(t)$$

$$v_O(t) = A_{v}v_i(t)$$

$$A_{v} = \frac{dv_{O}}{dv_{I}} \bigg|_{\text{in } O} \quad \text{pendenza in } Q$$

Amplificatore di tensione

$$v_o = A_{vo}v_i \frac{R_L}{R_L + R_o}$$

tensione di uscita dell'amplificatore

$$A_v$$
 " $\frac{v_o}{v_i} = A_{vo} \frac{R_L}{R_L + R_o}$ guadagno di tensione dell'amplificatore

$$v_i = v_s \frac{R_i}{R_i + R_s}$$

tensione di ingresso dell'amplificatore

$$\frac{v_o}{v_s} = A_{vo} \frac{R_i}{R_i + R_s} \frac{R_L}{R_L + R_o}$$
 guadagno di tensione complessivo

 A_{vo}

guadagno di tensione a circuito aperto

per avere un elevato guadagno di tensione, nel progetto si deve prevedere:

$$R_i >> R_s$$

$$R_o << R_L$$

Amplificatore di corrente

$$i_o = A_{is}i_i \frac{R_o}{R_o + R_L}$$

corrente di uscita dell'amplificatore

$$A_i$$
 " $\frac{i_o}{i_i} = A_{is} \frac{R_o}{R_o + R_L}$ guadagno di corrente dell'amplificatore

$$i_i = i_s \frac{R_s}{R_s + R_i}$$

corrente di ingresso dell'amplificatore

$$\frac{i_o}{i_s} = A_{is} \frac{R_s}{R_s + R_i} \frac{R_o}{R_o + R_L}$$
 guadagno di corrente complessivo

 A_{is}

guadagno di corrente di corto circuito

per avere un elevato guadagno di corrente, nel progetto si deve prevedere:

$$R_i << R_s$$

$$R_o >> R_L$$

I quattro tipi di amplificatori (1/2)

parametri di guadagno

caratteristiche ideali

amplificatore di tensione

guadagno di tensione a circuito aperto

$$A_{vo}$$
 " $\frac{v_o}{v_i}\Big|_{i_o=0}$ (V/V)

$$R_i = \mathbf{Y}$$

$$R_o = 0$$

amplificatore di corrente

guadagno di corrente in cortocircuito

$$A_{is}$$
 ", $\frac{i_o}{i_i}\Big|_{v_o=0}$ (A/A)

$$R_i = 0$$

$$R_o = \mathbf{Y}$$

I quattro tipi di amplificatori (2/2)

Amplificatore composto da stadi in cascata

(a) Amplificatore tre stadi

(b) Amplificatore di tensione equivalente

$$A_{vo} = A_{v1}A_{v2}A_{v3}$$

$$R_i = R_{i1}$$

$$R_i = R_{i2}$$

Risposta in frequenza dell'amplificatore

$$T(\mathbf{W}) = \frac{V_o(\mathbf{W})}{V_i(\mathbf{W})}$$

 $T(W) = \frac{V_o(W)}{V_i(W)}$ funzione di trasferimento dell'amplificatore

$$\left| T(\mathbf{W}) \right| = \frac{V_o}{V_i}$$

 $|T(W)| = \frac{V_o}{V_o}$ ampiezza della funzione di trasferimento

$$-T(W) = f$$

fase della funzione di trasferimento

Larghezza di banda di un amplificatore

 ω_2 - ω_1 larghezza di banda o banda passante dell'amplificatore $\omega_1,\,\omega_2$ frequenze a 3 dB

Classificazione degli amplificatori rispetto alla risposta in frequenza

o amplificatore in continua

amplificatore accoppiato in modo capacitivo o amplificatore in alternata

amplificatore passa-banda

capacità di accoppiamento tra due stadi di amplificazione

diminuzione del guadagno alle basse frequenze capacità di accoppiamento

Classificazione degli amplificatori rispetto alla risposta in frequenza

