Chennai Mathematical Institute Multivariate statistical Analysis

Mid Term Test

Time: 60 Minutes

Max marks: 20

Choose the Best possible answer

- An advantage of using an experimental multivariate design over separate univariate designs is that using the multivariate analysis is:
 - A. Allows you to look at more complex relationships than does univariate strategy
 - B. Provides a more powerful test of hypotheses
 - a) Both A and B holds <
 - b) A holds but not B
 - c) B holds but not A *
 - d) Both A and B do not hold⊁
- If X = (X1, ..., Xn) has a multivariate Normal distribution, then
 - Each component Xi has a Normal distribution.
 - B. Every subvector of X has a multivariate Normal distribution.
 - a) A is true but not B
 - b) B is true but not A +
 - c) Both A and B are true
 - d) Both of them are not true *
- 3. Let X and Y be independent standard normal random variables. Define the random variable Z

by (c)

$$Z = X \text{ if } XY > 0 \& Z = -X \text{ if } XY < 0$$

- A. Z is a standard normal random variable
- B. Random Vector (Z,Y) is not jointly normal
- a) A is true but not B
- b) B is true but not A
- c) Both A and B are true
- d) Both A and B are not true
- Let $X \sim N(0, \sigma^2 I)$ and let A_1 and A_2 be symmetric idempotent matrices, then $X'A_1 X$ and
- X'A2 X are independent, if A. $A_1 A_2 = A_2 A_1 = 0$.
- Cochran's

- B. $A_1 A_2 = A_2 A_1 = I$
- ab'+6c' = 0 bq+cb' = 0

- a) A is true
- b) B is true
- c) A and B are true
- d) A and B are not true ? (best)

66'+ cc' IE (XTA, X - tr(62A,)) (xTA, x-tr (02A,)) = 0

 Let X ~ N(0, In). Then X'AX ~ χ 2 (k), and A has rank k, if and only if. A. A is symmetric B. A is idempotent 	
 a) B holds but not A b) A holds but not B c) Both A and B holds d) A and B do not hold 	
 Examine the following statements A. If the components of MVN are not independent, then the vector may not be jointly Normal B. Uncorrelated jointly normal random variables are independent for equal to the control of the co	sider the bivariate density:
b) B holds but not A with $q = \frac{1}{1-p^2} \left[\left(\frac{1-p^2}{p^2} \right) \right]$	mi)2-28(2-4)(y-h2)+(y-h2)) write the above density as o normal densities) RVs are independent.
 7. If Y follows MVN with (μ,Σ) then the quadratic form Y'AY follows χ² (r,γ) where γ = and r(A) = r if and only if A. AΣA = Σ B. AΣ is idempotent) RVs are independent μ'Αμ
 a) A holds b) B holds c) A and B holds d) A and B does not hold 	
Examine the following properties on p variate MVN A. Invariant under linear transformation B. Uncorrelated sub vectors are independent	
 a) A and B holds b) A holds but not B c) B holds but not A d) A and B holds under certain other conditions 	
9. For $Y \sim N(\mu, \Sigma)$ the following result holds. (a) $E(Y'AY) = tr(A\Sigma)$ (b) $E(Y'AY) = \mu'A\mu$? (c) $E(Y'AY) = tr(A\Sigma) + \mu'A\mu$ (but) (d) $E(Y'AY) = tr(A\Sigma + \mu'A\mu)$ (e) $E(Y'Y) = tr(A\Sigma + \mu'A\mu)$ (f) $E(Y'Y) = tr(A\Sigma + \mu'A\mu)$ (g) $E(Y'Y) = tr(A\Sigma + \mu'A\mu)$	

10. The Mahalanobis distance between Y and μ in the metric of Σ is $D(Y,\mu) = [(Y - \mu) \Sigma^{-1}]^{1/2}$
 A. Invariant under appropriate linear transformations B. Adjusted Euclidean distance in the metric of reciprocal variance
 a) A holds and not B b) B holds and not A c) A and B holds together d) A and B do not hold
11. Let Y and Q be independent random variables where $Y \sim Np(\mu, \Sigma)$ and $Q \sim Wp(n, \Sigma)$, and $n > 0$ p. Then Hotelling's T ² statistic T ² = $nY'Q^{-1}Y$ has a distribution proportional to
 a) Hotelling Distribution b) Multivariate Normal Distribution c) Noncentral χ² distribution d) Noncentral F distribution
12. Let $X = [X1,X2]$ ' be a multivariate normal distribution with mean $\mu = [1\ 2]$ ' and $\Sigma = \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix}$
then the random variable $Y = X1 + X2$ is MVN with mean and variance respectively as
a) 2 and 5 b) 3 and 7 / c) 4 and 3 d) 5 and 2
13. Examine the following statements A. Independent => uncorrelated (always holds) B. Uncorrelated => Independent (for MVN)
 a) A is true but not B b) B is true but not A c) A and B are true d) A and B are not true
 14. Let X1,X2, Xn be a random sample from N_p [μ,Σ] then C A. Sample mean has a normal distribution and sample covariance matrix has Wishart distribution B. Both the sample distributions are independent
 a) A holds but not B b) B holds but not A c) A and B holds always d) A and B holds conditionally /
a) evaluating multivariate normality and outliers b) evaluating chi-square distribution and outliers c) evaluating Wishart distribution and outliers d) detecting outliers only

	-	univariate normal distributions	Simply	5 /2 (1-m)	suffices		-
	a)	Both A and B are true					
	b)	A alone is true ? ✓					
	c)	B alone is true					
		A and B are untrue					
12 F	Exam	nine the following statements in PC . PC's are invariant to linear transfo					
(c)	Α	. PC's are invariant to linear transfo	rmation	to the origin	al variables	If we	standardize the data,
	B.	PC's are not sensitive to the presen	nce of ou	tliers		PCC	change!

16. Examine the following statements in PCA

multivariate normal distribution.

(A)

resence of outliers Actually, PCA is Lensitive to outliers. MBD

a) Both A and B are true x

b) A alone is true >

c) B alone is true (best)

A and B are untrue

18. Let Yi be m independent MVN random p-vectors with mean μ and covariance Matrix Σ , Yi \sim INp (μ, Σ) . Define $X j = \sum^m {}_{i=1} \quad Y^2{}_{ij}$ for $j=1,2,\ldots,p$. Then the joint distribution of X=[X1, X2, ..., X p] is a

A. Construction of principal components do not require that the variables in Y have a

B. Statistical procedure for transforming a MVN distribution into a set of independent

Simply E 1/2 (7-11) suffices

a) Central chi square distribution with m df

b) Noncentral chi square distribution with m df -if 4.0, we can't choose this option

c) Central or Noncentral chi square distribution with m df (Best)

d) Central or Noncentral chi square distribution with m-1 df

19. Examine the following statements on Mahalanobis distance

A. MD is effectively a multivariate equivalent of Euclidean distance

B. MD could be used for classification and Outlier detection

C. MD is not possible for highly correlated variables As P-1, actually, E-1- singular (X-Y) = 1 (X-Y) -> problematic

a) A,B and C are true

b) A,B is true but not C /

c) A,C is true but not B

d) B,C is true but not A

Actually, MD Works well even when two or more Natiables are highly correlated. Am B

20. MD can be calculated using PCs obtained after PC analysis and need not be corrected for covariance as

- a) number of PCs are smaller
- b) as PCs are easy to calculate
- c) as PCs are orthogonal
- d) as PCs use the maximum variability

Y11-N(M.,..)