Definition 1. Predicate is a statement that its truth value depends on one or more variables. The set of values that can assign to the variables are called the domain(or universe) of the variable.

Example 1.

$$p(x) \equiv x \text{ is odd. } x \in \mathbb{N}$$
 (1)

$$q(x,y) \equiv x < y \ x, y \in \mathbb{R}$$
 (2)

$$r(x, y, z) \equiv x + y = z \ x, y, z \in \mathbb{Z}$$
 (3)

These are all predicates since their truth values are all depend on the variables.

Definition 2. The universal quantifier, \forall , means: for all, every, any, etc...

Example 2.

$$\forall x \in \mathbb{N}, x \text{ is an integer.} \tag{4}$$

$$\forall x \in \mathbb{R}, x^2 + 1 > 0 \tag{5}$$

Definition 3. The existential quantifier, \exists , means: for some, there is, exists, at least one, etc...

Example 3.

$$\exists x \in \mathbb{Z} \text{ such that } x \text{ is even}$$
 (6)

$$\exists x \in \mathbb{N} \ such \ that \ x > 5 \tag{7}$$

Property 1.

$$\neg(\forall x, p(x)) \Leftrightarrow \exists x \ s.t. \ \neg p(x)$$

$$\neg(\exists x \ s.t. \ p(x)) \Leftrightarrow \forall x, \neg p(x)$$