A题:增益可控射频放大器

一、任务

设计并制作一个增益可控射频放大器。

二、要求

1. 基本要求

- (1) 放大器的电压增益 $A_{\rm V} \ge 40{\rm dB}$,输入电压有效值 $V_{\rm i} \le 20{\rm mV}$,其输入阻抗、输出阻抗均为 50Ω ,负载电阻 50Ω ,且输出电压有效值 $V_{\rm o} \ge 2{\rm V}$,波形无明显失真;
- (2) 在 75MHz~108MHz 频率范围内增益波动不大于 2dB;
- (3) -3dB 的通频带不窄于 $60MHz \sim 130MHz$,即 $f_L \leq 60MHz \setminus f_H \geq 130MHz$;
- (4) 实现 A_V 增益步进控制,增益控制范围为 $12dB\sim 40dB$,增益控制步长为 4dB,增益绝对误差不大于 2dB,并能显示设定的增益值。

2. 发挥部分

- (1) 放大器的电压增益 $A_{\rm V} \ge 52 {\rm dB}$,增益控制扩展至 $52 {\rm dB}$,增益控制步长不变,输入电压有效值 $V_{\rm i} \le 5 {\rm mV}$,其输入阻抗、输出阻抗均为 50Ω ,负载电阻 50Ω ,且输出电压有效值 $V_{\rm o} \ge 2 {\rm V}$,波形无明显失真:
- (2) 在 50MHz~160MHz 频率范围内增益波动不大于 2dB;
- (3) -3dB 的通频带不窄于 40MHz \sim 200MHz,即 ft \leq 40MHz 和 fH \geq 200MHz;
- (4) 电压增益 $A_V \ge 52 dB$,当输入信号频率 $f \le 20 MHz$ 或输入信号频率 $f \ge 270 MHz$ 时,实测电压增益 A_V 均不大于 20 dB:
- (5) 其他。

- 1. 基本要求(2)和发挥部分(2)用点频法测量电压增益,计算增益波动,测量频率点测评时公布。
- 2. 基本要求(3)和发挥部分(3)用点频法测量电压增益,分析是否满足通频带要求,测量频率点测评时公布。
 - 3. 放大器采用+12V 单电源供电,所需其它电源电压自行转换。

四、评分标准

	项目	主要内容	分数
	系统方案	比较与选择	2
	一	方案描述	
	在此月刊刊日昇	频带内增益起伏控制	
		射频放大器稳定性	8
设计		增益调整	
报告		电路设计与程序设计	4
	测试方案与测试结果	测试方案及测试条件	
			4
	沿江扣件外拉刀扣营州		
	以 以 似 百	1 " * * *	2
	小计		20
	完成第(1)项		18
基本	完成第(2)项		6
	完成第(3)项	频带内增益起伏控制 射频放大器稳定性 增益调整 电路设计与程序设计 则试方案及测试条件 测试结果完整性 测试结果分析 计报告结构及规范性 商要 设计报告正文的结构 图表的规范性 述成第(1)项 运成第(2)项 运成第(3)项 运成第(1)项 运成第(1)项 运成第(1)项 运成第(2)项 运成第(1)项 运成第(2)项 运成第(3)项 运成第(3)项 运成第(4)项	16
	日本 日本 日本 日本 日本 日本 日本 日本	10	
			50
			14
47-14E			3
1 -2 -1 -1			12
HP7J	7 = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	, <u> </u>		
	* ',	<u> </u>	120
1.2 41 /	完成第 (4) 项 (5) 其他 小计	•	16 5 5

B 题: 手写绘图板

一、任务

利用普通 PCB 覆铜板设计和制作手写绘图输入设备。系统构成框图如图 1 所示。普通覆铜板尺寸为 15cm×10cm, 其四角用导线连接到电路,同时,一根带导线的普通表笔连接到电路。表笔可与覆铜板表面任意位置接触,电路应能检测表笔与铜箔的接触,并测量触点位置,进而实现手写绘图功能。覆铜板表面由参赛者自行绘制纵横坐标以及 6cm×4cm(高精度区 A) 和 12 cm×8cm(一般精度区 B) 如图中两个虚线框所示。

二、要求

1. 基本要求:

- (1) 指示功能: 表笔接触铜箔表面时, 能给出明确显示。
- (2) 能正确显示触点位于纵坐标左右位置。
- (3) 能正确显示触点四象限位置。
- (4) 能正确显示坐标值。
- (5) 显示坐标值的分辨率为 10mm, 绝对误差不大于 5mm。

2. 发挥部分:

- (1) 进一步提高坐标分辨率至 8mm 和 6mm; 要求分辨率为 8mm 时,绝对误差不大于 4mm; 分辨率为 6mm 时,绝对误差不大于 3mm。
- (2) 绘图功能。能跟踪表笔动作,并显示绘图轨迹。在 A 区内画三个直径分别为 20mm, 12mm 和 8mm 不同直径的圆,并显示该圆; 20mm 的圆要 求能在 10s 内完成,其它圆不要求完成时间。
- (3) 低功耗设计。功耗为总电流乘 12V; 功耗越低得分越高。要求功耗等于或小于 1.5W。
- (4) 其他。如显示文字,提高坐标分辨率等。

- 1. 必须使用普通的覆铜板
- (1) 不得更换其它高电阻率的材料。
- (2) 不得对铜箔表面进行改变电阻率的特殊镀层处理。
- (3) 覆铜板表面的刻度自行绘制,测试时以该刻度为准。
- (4) 考虑到绘制刻度影响测量,不要求表笔接触刻度线条时也具有正确检测能力。
- 2. 覆铜板到电路的连接应满足以下条件
- (1) 只有铜箔四角可连接到电路,除此之外不应有其它连接点(表笔触点除外)。
- (2) 不得使用任何额外传感装置。
- 3. 表笔可选用一般的万用表表笔。
- 4. 电源供电必须为单 12V 供电。
- 5. 基本要求除(5)外均在 B 区测,测分辨率和圆均在 A 区内测。

C 题: 光伏并网发电模拟装置

一、任务

设计并制作一个光伏并网发电模拟装置,其结构框图如图 1 所示。用直流稳压电源 $U_{\rm S}$ 和电阻 $R_{\rm S}$ 模拟光伏电池, $U_{\rm S}$ =12V-24V, $R_{\rm S}$ =10 Ω ; $u_{\rm REF}$ 为交流正弦参考电压信号,频率 $f_{\rm REF}$ 为 45Hz~55Hz; $R_{\rm L}$ =1 Ω ~2 Ω 。

图 1 并网发电模拟装置框图

二、要求

1. 基本要求

- (1)具有最大功率点跟踪(MPPT)功能: $U_{\rm S}$ 和 $R_{\rm L}$ 在给定范围内变化时,使 $U_{\rm d} = \frac{1}{2}U_{\rm S}$,
 - 相对偏差的绝对值不大于10%。
- (2) 具有频率跟踪功能: 当 f_{REF} 在给定范围内变化时,使 u_F 的频率 $f_F = f_{REF}$,相对偏差绝对值不大于 1%。
- (3) 当 R_S = 10 Ω , R_L =2 Ω 时,DC-AC 变换器的效率 $\eta \ge 80\%$ 。
- (4) 当 R_S =10 Ω , R_L =2 Ω 时,输出电压 u_o 的失真度 $THD \le 5\%$ 。
- (5) 具有输入欠压保护功能,动作电压 $U_{d(th)} = (4\pm0.5)$ V。
- (6) 具有输出过流保护功能,动作电流 I_{0} (th) = (3±0.2) A。

2. 发挥部分

- (1) 提高 DC-AC 变换器的效率,使 $\eta \ge 90\%$ ($R_S = 10\Omega$, $R_L = 2\Omega$ 时)。
- (2) 降低输出电压失真度,使 THD<1% ($R_S=6\Omega$, $R_L=2\Omega$ 时)。
- (3) 实现相位跟踪功能: 当 f_{REF} 在给定范围内变化以及加非阻性负载时,均能保证 u_F 与 u_{REF} 同相,相位偏差的绝对值 \leq 5°。
- (4) 过流、欠压故障排除后,装置能自动恢复为正常状态。
- (5) 其他。

- 1. 本题中所有交流量除特别说明外均为有效值。
- **2.** $U_{\rm S}$ 采用实验室可调直流稳压电源,不需自制。由于 $U_{\rm S}$ 和电阻 $R_{\rm S}$ 模拟光伏电池,因此不可直接测量 $U_{\rm S}$
- 3. 控制电路允许另加辅助电源,但应尽量减少路数和损耗。
- 4. DC-AC 变换器效率 $\eta = \frac{P_{\rm o}}{P_{\rm d}}$,其中 $P_{\rm o} = U_{\rm ol} \cdot I_{\rm ol}$, $P_{\rm d} = U_{\rm d} \cdot I_{\rm d}$ 。
- **5.** 基本要求 (1)、(2) 和发挥部分 (3) 要求从给定或条件发生变化到电路达到稳态的时间不大于 1s。
- 6. 装置应能连续安全工作足够长时间,测试期间不能出现过热等故障。
- 7. 制作时应合理设置测试点(参考图1),以方便测试。
- **8.** 设计报告正文中应包括系统总体框图、核心电路原理图、主要流程图、主要的测试 结果。完整的电路原理图、重要的源程序和完整的测试结果用附件给出。

2022 年 TI 杯 XX 省大学生电子设计竞赛 **小车跟随行驶系统(D 题)**

一、任务

设计一套小车跟随行驶系统,采用 TI 的 MCU,由一辆领头小车和一辆跟随小车组成,要求小车具有循迹功能,且速度在 0.3~1m/s 可调,能在指定路径上完成行驶操作,行驶场地的路径如图 1 所示。其中,路径上的 A 点为领头小车每次行驶的起始点和终点。当小车完成一次行驶到达终点,领头小车和跟随小车要发出声音提示。领头小车和跟随小车既可以沿着 ABFDE 圆角矩形(简称为内圈)路径行驶,也可以沿着 ABCDE 的圆角矩形(简称为外圈)路径行驶。当行驶在内圈 BFD 段时,小车要发出灯光指示。此外,在测试过程中,可以在路径上 E 点所在边的直线区域,由测试专家指定位置放上"等停指示"标识(见图 1 左侧),指示领头小车在此处须停车,等待 5 秒后再继续行驶。

二、要求

- 1. 将领头小车放在路径的起始位置 A 点,跟随小车放在其后 20cm 处,设定领头小车速度为 0.3m/s,沿着外圈路径行驶一圈停止,要求:(20 分)
 - (1) 领头小车的平均速度误差不大于 10%;
 - (2) 跟随小车能跟随领头小车行驶,全程不能发生小车碰撞;
- (3) 完成一圈行驶后领头小车到达 A 点处停车,跟随小车应及时停止,停止时间差不超过 1s, 且与领头小车的间距为 20cm,误差不大于 6cm。

- 2. 将领小车放在路径轨迹的起始位置 A 点,跟随小车放在路径上 E 点所在边的直线区域,由测试专家指定的位置,设定领头小车速度为 0.5m/s,沿着外圈路径行驶两圈停止,要求:(20 分)
 - (1) 领头小车的平均速度误差不大于 10%;
- (2) 跟随小车能快速追上领头小车,然后按 20cm 间距跟随领头小车行驶, 全程不能发生小车碰撞:
- (3) 完成两圈行驶后领头小车达到 A 点停止,跟随小车应及时停止,两车停止的时间差不超过 1s,且与领头小车的间距为 20cm,误差不大于 6cm。
- 3. 将领头小车放在路径的起始位置 A 点,跟随小车放在其后 20cm 处,领 头小车和跟随小车连续完成三圈路径的行驶。第一圈领头小车和跟随小车都沿着 外圈路径行驶。第二圈领头小车沿着外圈路径行驶,跟随小车沿着内圈路径行驶, 实现超车领跑。第三圈跟随小车沿着外圈路径行驶,领头小车沿着内圈路径行驶, 实现反超和再次领跑。要求: (30 分)
 - (1) 全程两个小车行驶平稳,顺利完成两次超车,且不能发生小车碰撞;
- (2) 完成三圈行驶后领头小车到达 A 点停止,跟随小车应及时停止,两车停止的时间差不超过 1s,且与领头小车的间距为 20cm,误差不大于 6cm;
- (3) 小车行驶速度可自主设定,但不得低于 0.3m/s, 且完成所规定的三圈轨迹行驶所需时间越短越好。
- 4. 由测试专家在路径的 E 点所在边的直线区域指定位置,放上"等停指示"标识。然后,将领头小车放在路径的起始位置 A 点,跟随小车放在其后 20cm 处,设定领头小车速度为 1m/s,沿着外圈路径行驶一圈,行驶中两小车不得发生碰 闯。要求: (20 分)
 - (1) 领头小车的平均速度误差不大于 10%;
 - (2) 领头小车达到"等停指示"点停车,停车位置准确,误差不大于 5cm;
 - (3) 在"等停指示"处停车时间为 5s, 误差不超过 1s。
 - 5. 其他。(10分)
 - 6. 设计报告。(20分)

	项目	主要内容	满分
设计报告	系统方案	小车跟随行驶的设计方案	3

理论分析	小车间通信模式分析 小车运控设计 小车间距离控制	5
电路与程序设计	小车循迹电路 小车间通信电路 小车防撞设计电路	5
测试方案与测试 结果	测试方法与仪器 测试数据完成性 测试结果分析	4
设计报告结构及规范性	摘要 设计报告正文的结构 图标的规范性	3
总分		20

- 1. 作品中的小车中尺寸不大于 15cm (宽) × 25cm (长)。小车尺寸包括小车本体、以及小车所安装的传感器等总体的尺寸大小。
- 2. 行驶场地上铺设白纸, 行驶路径用 1cm 宽的黑色引导线来标志,可以印刷或打印在白纸上,也可以用黑色胶带纸直接粘贴在白纸上。轨迹上的起始点 A,用垂直贴在路径引导线的黑色标志线来标记,标志线为 2cm 宽、5cm 长。"等停指示"用间隔 5cm 的两条 2cm 宽、10cm 长的黑色平行标志线来标记,可以事先在一张小的纸片上打印好,测试时对接粘贴在行驶路径的引导线上即可。除题目要求的标记之外,行驶场地上不得有其他任何指示标记。
- 3. 跟随小车的行驶完全由领头小车指挥控制,领头小车上有启动按键和设置按键,而跟随小车只有一个上电开关,不得有其他启动和操作按键。每一次行驶发车时,领头小车和跟随小车按照题目要求摆放在行驶路径的指定位置,跟随小车上电,处于等待接收领头小车指令的状态。领头小车一键启动行驶,直到整个行驶过程结束。
- 4. 在两个小车跟随行驶过程中,除了两个小车间的相互通信外,不得有车外遥控和其他通信指令辅助。
- 5. 在本题目要求 4 中,领头小车遇到"等停指示"需立即停车,停车后车身应在"等停指示"第二条横线以内,车头超出第二条横线的距离为停车位置误差。

6. 为了便于测试,允许在制作行驶场地时,在路径的 E 点和 A 点的旁边画上刻度尺,如图 2 所示。

E 题: 单工无线呼叫系统

一、任务

设计并制作一个单工无线呼叫系统,实现主站至从站间的单工语音及数据传输业务。

二、要求

1、基本要求

- (1)设计并制作一个主站,传送一路语音信号,其发射频率在30MHz~40MHz之间自行选择,发射峰值功率不大于20mW(50W假负载电阻上测定),射频信号带宽及调制方式自定,主站传送信号的输入采用话筒和线路输入两种方式;
- (2)设计并制作一个从站,其接收频率与主站相对应,从站必须采用电池组供电,用 耳机收听语音信号;
- (3)当传送信号为 300Hz~3400Hz 的正弦波时,去掉收、发天线,用一个功率衰减 20dB 左右的衰减器连接主、从站天线端子,通过示波器观察从站耳机两端的接收波形,波形应无明显失真;
- (4) 主、从站室内通信距离不小于 5 米,题目中的通信距离是指主、从站两设备(含天线)间的最近距离:
 - (5) 主、从站收发天线采用拉杆天线或导线,长度小于等于1米。

2、发挥部分

- (1)从站数量扩展至8个(实际制作1个从站),构成一点对多点的单工无线呼叫系统。要求从站号码可任意改变,主站具有拨号选呼和群呼功能;
- (2)增加英文短信的数据传输业务,实现主站英文短信的输入发送和从站英文短信的 接收显示功能;
 - (3) 当发射峰值功率不大于 20mW 时,尽可能地加大主、从站间的通信距离。
 - (4) 其他。

三、评分标准

	项 目	满分
基本要求	设计与总结报告:方案比较、设计与论证,理论分析与计	
	算,电路图及有关设计文件,测试方法与仪器,测试数据及测	50
	试结果分析。	
	实际制作完成情况	50
	完成第(1)项	15
发挥部分	完成第(2)项	15
	完成第(3)项	15

	其他	5
--	----	---

四、说明

- 1、主站需留出末级功率放大器发射功率的测量端,用于接入 50W 假负载电阻,以测试发射功率;
 - 2、为测试方便,作品中使用的衰减器(可以自制),应与作品一起封装上交。