wfomi

Release 0.1

korecki

CONTENTS:

1	parser	1
2	term	3
3	circuit	5
Python Module Index		7
In	dex	9

CHAPTER

ONE

PARSER

class parser.Parser

the parser for the default circuit and weight files defined by the author. The files descriptions can be found in the docs

adjustConstNodes (constCorrection)

adjusts the circuit by moving the constant nodes down when they are above a univesal quantifier over the same domain

ancestorIsForAll(node)

a helper function used in adjustConstNodes to check if the node has a universal quantifier as an ancestor

connectNodes()

connects the nodes in self.nodes dictionary based on data in self.connections

nextMatchingForAll (node, domain)

a helper function used in adjustConstNodes to detect the next universal quantifier of a given node with matching domain

parseCircuit (name, weights, domains)

parses a circuit file with the given name and creates nodes using data on the weight functions and domains

parseConnections (content)

parses the link lines of a circuit file with the given name and stores the connections between nodes in self.connections, and self.reverseConnections

$\verb"parseConst" (line, domains, weights, constCorrection, node)$

parses a line contianing a constant node

parseNodes (content, constCorrection, weights, domains)

parses the node lines of a circuit file with the given name, creates and stores the nodes in the nodes dictionary

parseQuantifier (line, domains)

parses a line contianing a universal or existential quantifier

parseWeights(name)

parses the weight file

2 Chapter 1. parser

CHAPTER

TWO

TERM

class term.Term(weights=None, bounds=None, const=None)

The Term object represent the smallest computational unit over the circuit representation. The Term is used to store the weight functions in symbolic form, the associated bounds and the constant multiplier. The term implements multiplication and addition as well as integration. The weights, bounds and constants are all lists and their elements corresponding to elements of a sum.

integrate()

Implements efficient integation of a term.

term.integrateFromDict(wf, bounds)

helper function for the integration

term.symbolicToNumeric(wf, bounds)

helper function for the integration

4 Chapter 2. term

CHAPTER

THREE

CIRCUIT

each node has a compute class which follows the computation step of the algorithm for the given node the maxDomainSize is used to compute the maximum domain size for the existential node .. moduleauthor:: Marcin Korecki

class circuit.AndNode(left=None, right=None)

compute (domSize=None, removed=None)

computes the symbolic value at the and node by multiplying two terms at its child nodes. the domSize and removed are passed for potential existential and universals that may be the node's descendants

maxDomainSize()

used to compute the maximum domain size for the existential node

class circuit.ConstNode (data=None, nodeName=None, varList=None, domData=None)

compute (domSize=None, removed=None)

Computes the symbolic value at the constant node depending on its type

maxDomainSize()

used to compute the maximum domain size for the existential node

class circuit.ExistsNode(var=None, domData=None)

compute (domSize=None, removed=None)

computes the symbolic value at the existential node based on the size of the domain it quantifies over and taking into account the objects removed from it

maxDomainSize()

used to compute the maximum domain size for the existential node

class circuit.ForAllNode(var=None, domData=None)

compute (domSize=None, removed=None)

computes the numerical value at the universal node based on the size of the domain it quantifies over taking into account the objects that have been removed from it

maxDomainSize()

used to compute the maximum domain size for the existential node

class circuit.LeafNode(data=None, weights=None)

compute (domSize=None, removed=None)

computes the symbolic value at the leaves depending on weather the corresponding weight is a float or a function

maxDomainSize()

used to compute the maximum domain size for the existential node

class circuit.Node(left=None, right=None)

The base class defining a node, all other nodes inherit from it

maxDomainSize()

used to compute the maximum domain size for the existential node

class circuit.OrNode(left=None, right=None)

compute (domSize=None, removed=None)

computes the symbolic value at the or node by adding two terms at its child nodes, the setsize and removed are passed for potential existential and universals that may be the node's descendants

maxDomainSize()

used to compute the maximum domain size for the existential node

6 Chapter 3. circuit

PYTHON MODULE INDEX

C circuit,5 p parser,1 t term,3

INDEX

A	term, 3
<pre>adjustConstNodes() (parser.Parser method), 1 ancestorIsForAll() (parser.Parser method), 1 AndNode (class in circuit), 5</pre>	N nextMatchingForAll() (parser.Parser method), 1 Node (class in circuit), 6
<pre>circuit module, 5 compute() (circuit.AndNode method), 5 compute() (circuit.ConstNode method), 5 compute() (circuit.ExistsNode method), 5 compute() (circuit.ForAllNode method), 5</pre>	O OrNode (class in circuit), 6 P parseCircuit() (parser.Parser method), 1 parseConnections() (parser.Parser method), 1
compute () (circuit. Por Aut vode method), 5 compute () (circuit. Or Node method), 6 connectNodes () (parser. Parser method), 1 ConstNode (class in circuit), 5	<pre>parseConst() (parser.Parser method), 1 parseNodes() (parser.Parser method), 1 parseQuantifier() (parser.Parser method), 1 parser</pre>
ExistsNode (class in circuit), 5	module, 1 Parser (class in parser), 1 parseWeights() (parser.Parser method), 1
ForAllNode (class in circuit), 5	S symbolicToNumeric() (in module term), 3
1	T
<pre>integrate() (term.Term method), 3 integrateFromDict() (in module term), 3</pre>	term module, 3 Term (class in term), 3
LeafNode (class in circuit), 5	
M	
<pre>maxDomainSize() (circuit.AndNode method), 5 maxDomainSize() (circuit.ConstNode method), 5 maxDomainSize() (circuit.ExistsNode method), 5 maxDomainSize() (circuit.ForAllNode method), 5 maxDomainSize() (circuit.LeafNode method), 6 maxDomainSize() (circuit.Node method), 6 maxDomainSize() (circuit.OrNode method), 6 module</pre>	