Feuille d'exercices : Séquence 1

Exercice 1.

Effectuer, si possible, les opérations suivantes :

1)
$$(3,-4,5)+(1,1,-2),$$

3)
$$-3(4, -5, -6)$$
,

2)
$$(0,2,-3)+(4,-5),$$

4)
$$2(2,3,7,6) - 5(1,-2,4,-1)$$
.

Correction:

1)
$$(3, -4, 5) + (1, 1, -2) = (4, -3, 3).$$

2)
$$(0,2,-3)+(4,-5)$$
: impossible car les vecteurs n'ont pas le même nombre de composantes.

3)
$$-3(4, -5, -6) = (-12, 15, 18).$$

4)
$$2(2,3,7,6) - 5(1,-2,4,-1) = (-1,16,-6,17)$$
.

Exercice 2.

Soient x = (2,7,1), y = (-3,0,4) et z = (0,5,-8). Calculer

1)
$$3x - 4y$$
,

3)
$$x - 2iy + (1 - i)z$$
,

2)
$$2x + 3y - 5z$$
,

4)
$$\frac{1+\sqrt{2}i}{3}y-\frac{\sqrt{3}+2i}{4}z$$
.

Correction:

1)
$$3x - 4y = (6, 21, 3) - (-12, 0, 16) = (18, 21, -13),$$

2)
$$2x + 3y - 5z = (4, 14, 2) + (-9, 0, 12) - (0, 25, -40) = (-5, -11, 54),$$

4)
$$\frac{1+\sqrt{2}i}{3}y - \frac{\sqrt{3}+2i}{4}z = \text{OMG}.$$

Exercice 3.

Soient u = (3 - 2i, 4i, 1 + 6i) et v = (5 + i, 2 - 3i, 5). Calculer

1)
$$u + v$$
,

3)
$$(1+i)v$$
,

4)
$$(1-2i)u + (3+i)v$$
.

Correction:

1)
$$u + v = (3 - 2i, 4i, 1 + 6i) + (5 + i, 2 - 3i, 5) = (8 - i, 2 + i, 6 + 6i),$$

2)
$$4iu = 4i(3-2i, 4i, 1+6i) = (8-12i, -16, -24+4i),$$

3)
$$(1+i)v = (1+i)(5+i,2-3i,5) = (4+6i,5-i,5+5i),$$

4)
$$(1-2i)u+(3+i)v=(1-2i)(3-2i,4i,1+6i)+(3+i)(5+i,2-3i,5)=(13,17-3i,24+9i)$$

S Exercice 4.

Trouver $a, b, c \in \mathbb{R}$ tels que

1)
$$(a,3) = (2, a+b),$$

2)
$$(4,b) = a(2,3),$$

3)
$$(2, -3, 4) = a(1, 1, 1) + b(1, 1, 0) + c(1, 0, 0).$$

Correction:

1)
$$a = 2$$
 et $b = 1$,

2)
$$a = 2$$
 et $b = 6$.

3)
$$a = 3$$
, $b = -7$ et $c = 5$.

Exercice 5.

Déterminer, s'il existe, un vecteur $x \in \mathbb{R}^3$ solution de l'équation

$$2((1,1,0) - x) + 4(x + (0,1,-1)) = (2,-1,2).$$

Même chose pour l'équation 2((1,1,0)-x)+3(x+(0,1,-1))-x=(2,1,-2).

Correction : Pour la première équation on a $x = \left(0, -\frac{7}{2}, 3\right)$.

La deuxième équation est impossible.

Exercice 6.

Soit $n \in \mathbb{N}^*$. Montrer que tout vecteur de \mathbb{R}^n est un vecteur de \mathbb{C}^n , ce qui se note $\mathbb{R}^n \subset \mathbb{C}^n$.

Exercice 7.

Soient x = (2, 1, 0), y = (0, -1, 1) et $z = (1, -1, \frac{3}{2})$. Calculer

1)
$$2x + 6y - 4z$$
,

2)
$$\frac{1}{3}x + y - \frac{2}{3}z$$
,

En déduire que z est combinaison linéaire de x et y.

Correction:

1)
$$2x + 6y - 4z = (0, 0, 0)$$

2)
$$\frac{1}{3}x + y - \frac{2}{3}z = (0,0,0)$$

On a $2x + 6y - 4z = 0_{\mathbb{R}^3}$ donc $z = \frac{1}{2}x + \frac{3}{2}y$.

Exercice 8.

Montrer que (1,2) est combinaison linéaire de (1,-2) et (2,3).

Correction:

$$\begin{pmatrix} 1 \\ 2 \end{pmatrix} = -\frac{1}{7} \begin{pmatrix} 1 \\ -2 \end{pmatrix} + \frac{4}{7} \begin{pmatrix} 2 \\ 3 \end{pmatrix}.$$

Exercice 9.

Soient $v_1 = (2, -1, 1)$, $v_2 = (4, -2, 2)$, $v_3 = (1, 1, 0)$ et $v_4 = (0, -3, 1)$. Montrer que l'on a $v_4 = 3v_1 - v_2 - 2v_3$ et $v_4 = 5v_1 - 2v_2 - 2v_3$.

Exercice 10.

Soit $x = (1, -2, k) \in \mathbb{R}^3$, où $k \in \mathbb{R}$. Déterminer pour quelle valeur de k, x est combinaison linéaire de y = (3, 0, 2) et z = (2, -1, -5).

Correction: k = -12.

Exercice 11.

Soient x = (2, -3) et $y = \left(-1, \frac{3}{2}\right)$. Écrire le vecteur (0, 0) comme combinaison linéaire de x et y en deux façons différentes.

Notation

On écrit $k \in [1; n]$ pour signifier que k est un entier compris entre 1 et n.

Exercice 12.

Pour tout $k \in [1; n]$, on note e_k le vecteur de \mathbb{R}^n dont la k-ème coordonnée vaut 1 et toutes les autres sont nulles. On appelle base canonique de \mathbb{R}^n le n-uplet de vecteurs (e_1, \ldots, e_n) .

- 1) Donner les bases canoniques de \mathbb{R}^n pour n=2,3,4.
- 2) Montrer que tout vecteur de \mathbb{R}^n est combinaison linéaire des n vecteurs de la base canonique.
- 3) Même question dans \mathbb{C}^n .

Remarque

La base canonique de \mathbb{R}^2 est souvent notée (i,j) et celle de \mathbb{R}^3 est souvent notée (i,j,k).

Exercice 13.

Soient $u = (3, 7, 1, 0), u^{(1)} = (2, 0, 0, 0), u^{(2)} = (1, 1, 0, 0), u^{(3)} = (0, 3, 1, 0) \text{ et } u^{(4)} = (0, 0, 1, 1).$

- 1) Déterminer $a, b, c, d \in \mathbb{R}$ tels que $u = a u^{(1)} + b u^{(2)} + c u^{(3)} + d u^{(4)}$.
- 2) En déduire que u est combinaison linéaire de $u^{(1)}$, $u^{(2)}$ et $u^{(3)}$.

Correction:

1)

$$u = -\frac{1}{2} u^{(1)} + 4 u^{(2)} + 2 u^{(3)} + 0 u^{(4)}$$

2) Immédiat puisque d=0. Donc un vecteur de \mathbb{R}^4 peut être combinaison linéaire de seulement 3 vecteurs (et non 4 comme c'était le cas pour les vecteurs de la base canonique).

9

S Exercice 14.

Soient u = (1, 0, 0) et v = (1, 1, 0).

- 1) Montrer que (1,2,3) n'est pas combinaison linéaire de u et v.
- 2) Montrer que w = (3, 2, 0) est combinaison linéaire de u et v.
- 3) En déduire que (1,2,3) n'est pas combinaison linéaire de u,v et w.

Exercice 15.

Soient u = (1, 0, 0), v = (1, 1, 0) et w = (1, 1, 1).

- 1) Montrer que (1,2,3) est combinaison linéaire de u,v et w.
- 2) Plus généralement, montrer que tout vecteur (x, y, z) de \mathbb{R}^3 est combinaison linéaire de u, v et w
- 3) Que peut-on remarquer pour (x, y, z) = (0, 0, 0)?
- 4) En déduire qu'il est impossible d'écrire un des vecteurs u, v ou w comme combinaison linéaire des deux autres.

Lorsque trois vecteurs u, v, w vérifient les points 2) et 4) précédents, on dit que (u, v, w) est une base de \mathbb{R}^3 .

Exercice 16.

- Émile achète pour sa maman une bague contenant 2g d'or, 5g de cuivre et 4g d'argent. Il la paie 6200 euros.
- ▷ Pauline achète pour sa maman une bague contenant 3g d'or, 5g de cuivre et 1g d'argent. Il la paie 5300 euros.
- ⊳ Frédéric achète pour sa chérie une bague contenant 5g d'or, 12g de cuivre et 9g d'argent.

Combien Frédéric va-t-il payer?

Correction: 14700 euros.