

Math 1300-010 - Fall 2016

Indeterminate Forms and l'Hospital's Rule - 10/31/16

Guidelines: Please work in groups of two or three. This will not be handed in, but is a study resource for Midterm 3.

The purpose of this activity is to explore the various indeterminate form limits and how to use l'Hospital's Rule to solve them.

A. Recall l'Hospital's Rule, which says that if

$$\lim_{x \to a} \frac{f(x)}{g(x)}$$

is indeterminate of form 0/0 or ∞/∞ , then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)},$$

provided the limit on the right hand side exists. Note the limit on the right hand side has nothing to do with the quotient rule; we simply take the ratio of derivatives and then compute the limit. This only works for the 0/0 or ∞/∞ indeterminate forms.

Let us practice using l'Hospital's rule by computing the following limits:

Sometimes after applying l'Hospital's rule, the limit is still indeterminate of form 0/0 or ∞/∞ . In this case apply l'Hospital's rule again. This can be repeated indefinitely so long as the resulting limit is still indeterminate. Give this a try below:

3.
$$\lim_{t \to 0} \frac{e^t - 1 - t}{t^2} \to \text{form } \frac{0}{0}$$

$$\lim_{t \to 0} \frac{e^t - 1 - t}{t^2} \to \text{form } \frac{0}{0}$$

$$\lim_{t \to 0} \frac{e^t - 1}{t^2} \to \text{form } \frac{0}{0}$$

$$\lim_{t \to 0} \frac{e^t - 1 - t}{t^2} \to \text{form } \frac{0}{0}$$

$$\lim_{t \to 0} \frac{e^t - 1 - t}{t^2} \to \text{form } \frac{0}{0}$$

There are several more indeterminate forms aside from 0/0 and ∞/∞ . l'Hospital's rule is not directly applicable to these other indeterminate forms, but they can be manipulated using various tricks so that a 0/0 or ∞/∞ type limit appears.

B. The Indeterminate Form $0 \cdot \infty$

If $\lim_{x\to a} f(x) = 0$ and $\lim_{x\to a} g(x) = \infty$, then it is not clear what happens with

$$\lim_{x \to a} f(x)g(x).$$

There is a struggle as the function f wants trys to pull the limit to 0 whereas the function g trys to pull the limit to infinity.

l'Hospital's Rule does not apply to this indeterminate form directly, but if we rewrite the product f(x)g(x) as either

$$fg = \frac{f}{1/g}$$
 or $fg = \frac{g}{1/f}$,

then we notice that $\lim_{x\to a} f(x)g(x)$ has been converted into a limit of the form 0/0 or ∞/∞ , respectively.

Let's see how this works with an example. Consider

$$\lim_{x \to \infty} e^{-x} \ln(x),$$

which is indeterminate of form $0 \cdot \infty$. Then

$$\lim_{x \to \infty} e^{-x} \ln(x) = \lim_{x \to \infty} \frac{\ln(x)}{1/e^{-x}} = \lim_{x \to \infty} \frac{\ln(x)}{e^x} \stackrel{\text{l'H}}{=} \lim_{x \to \infty} \frac{1/x}{e^x} = \lim_{x \to \infty} \frac{1}{xe^x} = 0,$$

where l'Hospital's rule was performed at the step with the "l'H" over the equal sign.

Give this a try below:
$$\lim_{x\to 0^+} x^3 \ln(x) \Rightarrow \lim_{x\to 0^+} x^3 \ln(x)$$

$$= \lim_{x \to 0^+} \frac{\ln(x)}{1/x^3} = \lim_{x \to 0^+} \frac{\sqrt{x}}{-3/x^4} = \lim_{x \to 0^-} \frac{x^3}{-3} = \boxed{0}$$

2.
$$\lim_{x\to-\infty} x^2 e^x \to f_{orm}$$
 00.0

Shad: $\lim_{x\to-\infty} \frac{e^x}{1/x^2} \to \text{only gets work as you do } l'H$

C. Indeterminate Powers

If we consider

$$\lim_{x \to a} [f(x)]^{g(x)}$$

then several indeterminate forms can arise:

- If $\lim_{x\to a} f(x) = 0$ and $\lim_{x\to a} g(x) = 0$ form 0^0 . Here f is trying to make the limit 0, whereas g is trying to make the limit 1, since any nonzero number raised to the power 0 is equal to 1.
- If $\lim_{x\to a} f(x) = \infty$ and $\lim_{x\to a} g(x) = 0$ form ∞^0 . Here f is trying to make the limit infinite, whereas g is trying to make the limit 1.
- If $\lim_{x\to a} f(x) = 1$ and $\lim_{x\to a} g(x) = \infty$ form 1^{∞} . Here f is trying to make the limit equal to 1, whereas g is trying to make the limit infinite.

In each case, we solve the limit using a method quite similar to what we used in taking the derivative of functions of the form $[f(x)]^{g(x)}$, and that is to use the inverse relationship of e^x and $\ln(x)$ as well as properties of logarithms to write

Thus we are led to the product

 $[f(x)]^{g(x)} = e^{g(x)\ln(f(x))}.$ $\int_{-\infty}^{\infty} g(x)\ln(f(x)) dx = \int_{-\infty}^{\infty} g(x) dx = \int_{-\infty}^{\infty} g(x)\ln(f(x)) dx = \int_{-\infty}^{\infty} g(x)\ln(f(x)) dx =$

which is indeterminate of form $0 \cdot \infty$. Briefly think about and discuss why each of the three cases above leads to this limit being indeterminate of form $0 \cdot \infty$.

To see how this works, consider

$$\lim_{x \to 0^+} x^{(x^2)}$$

which is indeterminate of form 0°. Applying the trick discussed above,

$$x^{(x^2)} = e^{x^2 \ln(x)}$$

Since $\lim_{x\to 0^+} x^2 \ln(x)$ is of form $0\cdot\infty$, we have

$$\lim_{x \to 0^+} x^2 \ln(x) = \lim_{x \to 0^+} \frac{\ln(x)}{1/x^2} = \lim_{x \to 0^+} \frac{\ln(x)}{x^{-2}} \stackrel{\text{l'H}}{=} \lim_{x \to 0^+} \frac{1/x}{-2/x^3} = \lim_{x \to 0^+} \frac{x^2}{-2} = 0.$$

Therefore,

$$\lim_{x \to 0^+} x^{(x^2)} = \lim_{x \to 0^+} e^{x^2 \ln(x)} = e^0 = 1.$$

Try this for yourself on this next page.

1.
$$\lim_{x \to 0^+} (2x)^{(x^3)}$$

Rewrite
$$(3x)^{x^3} = e^{x^3 \ln(3x)}$$
 Now, Thus

$$\lim_{x \to 0^+} x^3 \ln(3x) \to f_{\text{arm}} \quad 0 \to \infty, \text{ so}$$

$$\lim_{x \to 0^+} \frac{1}{1/x^3} = \lim_{x \to 0^+} \frac{1}{1/$$

2.
$$\lim_{x \to \infty} x^{(1/x)}$$
 Rewrite $x' = e^{(1/x) \cdot \ln(x)}$ Now, $\lim_{x \to \infty} (1/x) \ln(x) = \lim_{x \to \infty} \frac{\ln(x)}{x} \frac{\ln x}{\ln x} = 0$.

This
$$\lim_{x \to \infty} x^{(1/x)} = \lim_{x \to \infty} e^{(4/x) \cdot \ln(x)} = e^{\circ} = \boxed{1}$$

3.
$$\lim_{x\to 0^{+}} (4x+1)^{(\cot(x))}$$
 Rewrite $(4x+1)^{(\cot(x))} = e^{\cot(x)} \ln(4x+1)$. Now

$$\lim_{x\to 0^{+}} \cot(x) \ln(4x+1) \longrightarrow \text{form } \infty \cdot 0$$

$$= \lim_{x\to 0^{+}} \frac{\ln(4x+1)}{\ln(4x+1)} = \lim_{x\to 0^{+}} \frac{\ln(4x+1)}{\ln(4x+1)} \longrightarrow \text{form } 0$$

$$= \lim_{x\to 0^{+}} \frac{\ln(4x+1)}{\ln(4x+1)} = \lim_{x\to 0^{+}} \frac{\ln(4x+1)}{\ln(4x+1)} \longrightarrow \lim_{x\to 0$$