Mathematical Statistics I Recitation Session 6

Definition 1. Let X be a sample from an unknown population $P \in \mathcal{P}$ and ϑ be a real-valued parameter related to P. An unbiased estimator T(X) of ϑ is called the uniformly minimum variance unbiased estimator (UMVUE) if and only if $Var(T(X)) \leq Var(U(X))$ for any unbiased estimator U(X) of ϑ .

Theorem. (Rao-Blackwell). Let X_1, X_2, \ldots, X_n, n a fixed positive integer, denote a random sample from a distribution (continuous or discrete) that has pdf or pmf $f(x;\theta), \theta \in \Omega$. Let $Y_1 = u_1(X_1, X_2, \ldots, X_n)$ be a sufficient statistic for θ , and let $Y_2 = u_2(X_1, X_2, \ldots, X_n)$, not a function of Y_1 alone, be an unbiased estimator of θ . Then $E(Y_2 | y_1) = \varphi(y_1)$ defines a statistic $\varphi(Y_1)$. This statistic $\varphi(Y_1)$ is a function of the sufficient statistic for θ ; it is an unbiased estimator of θ ; and its variance is less than or equal to that of Y_2 .

Theorem. (Lehmann and Scheffé). Let X_1, X_2, \ldots, X_n, n a fixed positive integer, denote a random sample from a distribution that has pdf or pmf $f(x;\theta), \theta \in \Omega$, let $Y_1 = u_1(X_1, X_2, \ldots, X_n)$ be a sufficient statistic for θ , and let the family $\{f_{Y_1}(y_1;\theta): \theta \in \Omega\}$ be complete. If there is a function of Y_1 that is an unbiased estimator of θ , then this function of Y_1 is the unique MVUE of θ .

Exercise. Let X_1, \ldots, X_n be iid according to the Poisson distribution $P(\lambda)$. Find the UMVU estimator of (a) λ^k for any positive integer k and (b) $e^{-\lambda}$.

Exercise. Let X_1, \ldots, X_n be iid according to the uniform distribution $U(0, \theta)$. Find the UMVU estimator of θ^k for any integer k > -n.

Exercise. Let $(X_1, ..., X_n)$, n > 2, be a random sample from the uniform distribution on the interval $(\theta_1 - \theta_2, \theta_1 + \theta_2)$, where $\theta_1 \in \mathcal{R}$ and $\theta_2 > 0$. Find the UMVUE of θ_1/θ_2 .

Exercise. Let X_1, \ldots, X_n be a random sample from poisson distribution with parameter $\theta > 0$. Using completeness of $\sum_i X_i$, find $E(X_1^2 | \sum_i X_i)$.

Theorem. Let \mathcal{U} be the set of all unbiased estimators of 0 with finite variances and T be an unbiased estimator of ϑ with $E\left(T^2\right)<\infty$. A necessary and sufficient condition for T(X) to be a UMVUE of ϑ is that E[T(X)U(X)]=0 for any $U\in\mathcal{U}$ and any $P\in\mathcal{P}$.

As a consequence, we have the following useful result. Let T_j be a UMVUE of $\vartheta_j, j = 1, \ldots, k$, where k is a fixed positive integer. Then $\sum_{j=1}^k c_j T_j$ is a UMVUE of $\vartheta = \sum_{j=1}^k c_j \vartheta_j$ for any constants c_1, \ldots, c_k .

Exercise. Let (X_1, \ldots, X_n) be a sample of binary random variables with $P(X_i = 1) = p \in (0, 1)$.

- (i) Find the UMVUE of p^m , where m is a positive integer and $m \leq n$.
- (ii) Find the UMVUE of $P(X_1 + \cdots + X_m = k)$, where m and k are positive integers and $k \leq m \leq n$.
- (iii) Find the UMVUE of $P(X_1 + \cdots + X_{n-1} > X_n)$.