# Analysis of Covid-19 Case and Social Venue in the San Francisco Bay Area Cities

Yi Hong August 9, 2020

### 1. Introduction: Business Problem

The San Francisco Bay Area is a metropolitan region surrounding the San Francisco Bay. According to the 2010 United States Census, the region has over 7.1 million inhabitants and approximately 6,900 square miles of land. The Bay Area consists of nine counties, including Alameda, Contra Costa, Marin, Napa, San Francisco, San Mateo, Santa Clara, Solano, and Sonoma.

Since the first Covid-19 case reported in January, the rate of cases has surged across California. As of August 3, California reported a total of 517,395 positive cases with 55,976 confirmed cases in the Bay Area.

In this project, we will explore the relationship between social venues and the spread of Covid-19 in some Bay Area cities. We will investigate cities in San Mateo county and Santa Clara county which show different case patterns ranging from 1,000 to 13. Other factors such as demographics, access to healthcare, and social economics status will not considered in this project due to the limited time and resource.

# 2. Data Description

Based on the description of our problem, we collected data source as below:

- Reported case data by the Bay Area county health departments and collected by San Francisco Chronicle
- List of cities and towns in the San Francisco Bay Area from Wiki
- The venues of city and towns from Foursquare API

The following methodology is used to extract information from the datasource:

- Number of venues from cities are obtained from Foursquare and aggregated by category and city.
- The population density are calculated
- The infection rate per 10K people are calculated.

# 3. Methodology

## 3.1 Data preparation

Data obtained from multiple sources were combined into one table.

First, basic information of cities in the Bay Area was scrapped from Wiki. From the dataset, we decided to study cities in the San Mateo and Santa Clara except San Jose because its size and population overweighted other cities in the region. Having dropped San Jose, there are 34 cities in our bay city dataset.

|   | Name            | Type | County       | Population (2010)[8][9] | sq mi | km2  | Incorporated[7]    |
|---|-----------------|------|--------------|-------------------------|-------|------|--------------------|
| 0 | Alameda         | City | Alameda      | 73812                   | 10.61 | 27.5 | April 19, 1854     |
| 1 | Albany          | City | Alameda      | 18539                   | 1.79  | 4.6  | September 22, 1908 |
| 2 | American Canyon | City | Napa         | 19454                   | 4.84  | 12.5 | January 1, 1992    |
| 3 | Antioch         | City | Contra Costa | 102372                  | 28.35 | 73.4 | February 6, 1872   |
| 4 | Atherton        | Town | San Mateo    | 6914                    | 5.02  | 13.0 | September 12, 1923 |

Table 1. List of cities and towns in the Bay Area from Wiki

Second, we retrieved the latitude and longitude data from Google Map's geocode API and combined them into the bay city table shown above.

| 1 |   | name       | type | county    | population | area_km2 | lat       | Ing         |
|---|---|------------|------|-----------|------------|----------|-----------|-------------|
|   | 0 | Atherton   | Town | San Mateo | 6914       | 13.0     | 37.461327 | -122.197743 |
|   | 1 | Belmont    | City | San Mateo | 25835      | 12.0     | 37.520215 | -122.275801 |
|   | 2 | Brisbane   | City | San Mateo | 4282       | 8.0      | 37.680766 | -122.399972 |
|   | 3 | Burlingame | City | San Mateo | 28806      | 11.4     | 37.577870 | -122.348090 |
|   | 4 | Colma      | Town | San Mateo | 1792       | 4.9      | 37.674904 | -122.456153 |

Table 2. List of cities and towns with latitude and longitude data

Third, we obtained Covid-19 case data as of August 2 from San Francisco Chronicle and added it to our dataset, as shown below.

|   | name       | type | county    | population | area_km2 | lat       | Ing         | case_num |
|---|------------|------|-----------|------------|----------|-----------|-------------|----------|
| 0 | Atherton   | Town | San Mateo | 6914       | 13.0     | 37.461327 | -122.197743 | 27       |
| 1 | Belmont    | City | San Mateo | 25835      | 12.0     | 37.520215 | -122.275801 | 83       |
| 2 | Brisbane   | City | San Mateo | 4282       | 8.0      | 37.680766 | -122.399972 | 17       |
| 3 | Burlingame | City | San Mateo | 28806      | 11.4     | 37.577870 | -122.348090 | 110      |
| 4 | Colma      | Town | San Mateo | 1792       | 4.9      | 37.674904 | -122.456153 | 13       |

Table 3. List of cities and towns with Covid-19 case data

Fourthly, we requested the name, venue category, location for venues within 1,000 meters radius of the city center from certain venue category from Foursquare API. As we focused on studying the impact of social venues, we selected food, shop and service, transport and residence venues from Foursquare category database. Other categories may have impact on the spread of Covid-19 and can be subject of further study. Below is the example of residence venue data of Foster city.

|      | name        | city lat  | city Ing    | city venue             | venue lat | venue Ing   | type                                     | category  |
|------|-------------|-----------|-------------|------------------------|-----------|-------------|------------------------------------------|-----------|
| 3985 | Foster City | 37.558546 | -122.271079 | Harbor Cove Apartments | 37.553401 | -122.275317 | Residential Building (Apartment / Condo) | residence |
| 3986 | Foster City | 37.558546 | -122.271079 | The Lagoons Apartments | 37.555003 | -122.262600 | Residential Building (Apartment / Condo) | residence |
| 3987 | Foster City | 37.558546 | -122.271079 | The Plaza              | 37.565053 | -122.270414 | Miscellaneous Shop                       | residence |
| 3988 | Foster City | 37.558546 | -122.271079 | Water's Edge           | 37.566855 | -122.266883 | Building                                 | residence |
| 3989 | Atherton    | 37.461327 | -122.197743 | Matched Caregivers     | 37.459263 | -122.193726 | Home Service                             | residence |

Table 4. Venue data of each city/town

Fifty, as we are interested in comparing the Covid-19 infection among cities, details of the venues such as location, sub-category are only necessary for high level of granularity analysis. So we aggregated the venue data by its city and venue category. The number of different venues within each category in each city are combined to dataset. The final dataset is shown below.

|   | name           | type | county      | population | area_km2 | lat       | Ing         | case_num | infection_rate | density     | food | residence | shop  | transport |
|---|----------------|------|-------------|------------|----------|-----------|-------------|----------|----------------|-------------|------|-----------|-------|-----------|
| 0 | Redwood City   | City | San Mateo   | 76815      | 50.3     | 37.485215 | -122.236355 | 1140     | 1484.085140    | 1527.137177 | 97.0 | 9.0       | 100.0 | 19.0      |
| 1 | San Mateo      | City | San Mateo   | 97207      | 31.4     | 37.562992 | -122.325525 | 980      | 1008.157849    | 3095.764331 | 89.0 | 13.0      | 100.0 | 6.0       |
| 2 | Daly City      | City | San Mateo   | 101123     | 19.8     | 37.687924 | -122.470208 | 817      | 807.926980     | 5107.222222 | 56.0 | 4.0       | 71.0  | 7.0       |
| 3 | Gilroy         | City | Santa Clara | 48821      | 41.8     | 37.002983 | -121.556637 | 615      | 1259.703816    | 1167.966507 | 50.0 | 1.0       | 93.0  | 5.0       |
| 4 | East Palo Alto | City | San Mateo   | 28155      | 6.5      | 37.468827 | -122.141075 | 569      | 2020.955425    | 4331.538462 | 17.0 | NaN       | 56.0  | 4.0       |

Table 5. Cities/towns with venue characteristics

# 3.2 Exploratory Data Analysis

To illustrate the difference of those characteristics and their relation, we plotted the case number data along with other features of each city/town using bar charts in Fig.1.



Figure 1. Comparison of population, size, Covid-19 case number, population density and Covid-19 infection rate for each city/town

The infection rate is the ratio of case number to population multiplied by 100K. It is a measure of infection risk. The bigger the infection rate, the higher infection risk. As observed from the bar charts above, infection rate appears to be correlating with population density. Therefore, we plotted the scatter plot of infection rate as a function of population density for each city/town, as shown in Fig. 2 below.



Figure 2. Relation of the infection rate with population density for different cities/towns

Having decided the metric of infection risk, we compared the difference of the number social venues and their relation with regard to infection rate using bar charts and scatter plots, as shown in the Fig. 3 and Fig.4 below.



Figure 3. Comparison of Covid-19 infection rate, the number of food venues, shop and service venues, transport venues, residence venues for each city/town



Figure 4. Relation between the infection rate and the number of food venues, shop and service venues, transport venues, residence venues for each city/town

Some may note that the number of shop venues levels at 100 for some cities. It is due to the limitation of returned results from Foursquare.

#### 3.3 Feature Selection

From Fig. 4, we can see a corresponding increase of infection rate from food venues. We also observed a similar trend in the number of shop & services venues. For transport venues, the relation is not so clear. There are a large number of transport venues concentrates in South San Francisco and San Bruno and the rest are dispersed in other cities. We decided to discard this feature. Therefore those features including the number of shop & service venues, food venues and residence venues, population density and infection rate were used for clustering.

# 3.4 Clustering Modeling

After data normalization, we used K-Means algorithm to cluster the data. K-Means is one of common cluster algorithms for unsupervised learning. We used it to cluster the cities into 3 clusters because we'd like to categorize them into low, medium and high risk groups. Below is a table that combines the cluster labels with city dataset

|   | name                | type | county      | population | area_km2 | lat       | Ing         | case_num | infection_rate | density     | food | residence | shop  | transport | labels |
|---|---------------------|------|-------------|------------|----------|-----------|-------------|----------|----------------|-------------|------|-----------|-------|-----------|--------|
| 0 | East Palo Alto      | City | San Mateo   | 28155      | 6.5      | 37.468827 | -122.141075 | 569      | 2020.955425    | 4331.538462 | 17.0 | 0.0       | 56.0  | 4.0       | 2      |
| 1 | Redwood City        | City | San Mateo   | 76815      | 50.3     | 37.485215 | -122.236355 | 1140     | 1484.085140    | 1527.137177 | 97.0 | 9.0       | 100.0 | 19.0      | 0      |
| 2 | Gilroy              | City | Santa Clara | 48821      | 41.8     | 37.002983 | -121.556637 | 615      | 1259.703816    | 1167.966507 | 50.0 | 1.0       | 93.0  | 5.0       | 0      |
| 3 | San Mateo           | City | San Mateo   | 97207      | 31.4     | 37.562992 | -122.325525 | 980      | 1008.157849    | 3095.764331 | 89.0 | 13.0      | 100.0 | 6.0       | 1      |
| 4 | South San Francisco | City | San Mateo   | 63632      | 23.7     | 37.654656 | -122.407750 | 533      | 837.628866     | 2684.894515 | 68.0 | 1.0       | 100.0 | 36.0      | 1      |

Table 6. Dataset of cities/towns combined with corresponding cluster label

#### 4. Results and Discussion

The results of clustering are plotted in pair shown below in Fig. 5 where cluster group 0, 1, 2 are colored by blue, orange, and green, respectively.

There is clear distinction between cities with high infection rates and population density, i.e. group 2, and other groups. Especially, East Palo Alto in group 2 demonstrates the highest infection rate in those infection rate plots against other features. Furthermore, it is noted that group 2 is different from other groups when looking into the relation between population density and those venue features. For example, for the same number of food, shop and residence venues, East Palo Alto and Daly show higher population density. It suggest that residents in those cities are likely to be underserved and need more movement to obtain the necessity of life, which could increase the risk of infection. Therefore, we conclude that group 2 has the highest infection risk given that other conditions are the same.

For group 1 and group 0, the distinction is not so great as compared to group 2. But the infection rate is relatively higher for group 0 than group 1 for the same population density, and other venues characteristics. So it is valid to conclude that infection risk in group 0 is higher than group 1.



Figure 5. Pair relation between the infection rate and the number of food, shop and service, transport, residence venues for each city/town. The cluster 0, 1, 2 are colored by blue, orange, and green, respectively.

In summary, cities in group 2, group 0, group 1 are ranked from high to low with regards to Covid-19 infection risk based on our analysis.

Finally, we clustered those cities/towns to create a map where the risk ranking are colored by red, orange and green for group 2, group 0 and group 1, respectively.



Figure 6. Cities in the Peninsular and South Bay Area with different Covid-19 infection risk levels from high, medium to low are colored by red, yellow and green, respectively.

#### 5. Conclusion

The purpose of this project was to study the relation between geolocation data and Covid-19 infection data. We obtained geolocation data of 34 cities and towns in the Peninsular and South Bay from Google Map and Foursquare, and Covid-19 case data from San Francisco Chronicle. By exploring the data with visualization method and K-means clustering modeling, we identified three groups with different infection risk level form high to low. The final results are presented in a map.

This report is a preliminary study to demonstrate how to explore geolocation data and other data source to gain insights about the spread of Covid-19 cases. Due to the limitation in time and resource, other factors such as migration of population, access to healthcare and social economics status are not considered in this project. Those are important factors in a greater picture when addressing the challenges posed by the Covid-19 pandemic.