Projet 7

Implémentez un modèle de scoring

Développement d'un « outil de scoring » pour la société Prêt à dépenser

- 1 Contexte et objectifs du projet
- 2 Présentation et préparation du jeu de données
- 3 Modélisation
- 4 Analyse de DataDrift
- 5 Construction et le déploiement du DASHBOARD
- 6 Démonstration de l'API
- 7 Conclusion

1 - Contexte et objectifs

2 - Présentation et préparation

Crédits antérieurs Crédits antérieurs (d'autres institutions) (même institution) Demande de prêt Fichier Principal Fichier Principal application_train application_test previous_application bureau SK_ID_CURR SK_ID_CURR Panel d'entraînement Panel de nouveaux clients Données mensuelles Données mensuelles credit_card_balance bureau_balance installments_payments POSH_CASH_balance SK_ID_CURR VAR_1 VAR_n SK_ID_CURR_1

SK_ID_CURR_k

2 - Présentation et préparation

Utilisation de Kernels Kaggle

- Correction ou élimination
- des valeurs aberrantes

- Agrégation (min, max, moy....)
- Compréhension métier

- Features importance
- Sélection du top 100
- Etude de corrélation
- 57 features retenues

Dataset avec TARGET

Dataset sans TARGET

Utilisation pour l'entrainement des modèles

Simulation de nouveaux clients DASHBOARD

Répartition de la cible avant rééquilibrage

Répartition de la cible après rééquilibrage

Ré-équilibrage

Standardisation

Métriques d'évaluation

Classification Binaire

Evaluation de la performance du modèle

Evaluation de la qualité de la classification

Dépendance de la problématique

Minimiser les pertes financières

FP:
Perte des interêts
de remboursement

FN : Perte de la somme prêtée

« Score métier » =
$$\frac{10*FN+FP}{TN+TP+FP+10*FN}$$

Entrainement et optimisation des modèles

Tracking via MLFlow et Résultat

35856

26065

0.2519995429386416

score_metier_test

score_metier_val

threshold M

Models

😵 sklearn

sklearn

🗞 sklearn

Artifacts

Artifacts

Tracking via MLFlow et Résultat

4 - Analyse de DATADRIFT

Evidently

Dataset Drift

Dataset Drift is NOT detected. Dataset drift detection threshold is 0.5

57 Columns			9 Drifted Columns		0.158 Share of Drifted Columns			
			Data Drift Sun	nmary				
is de	etected for 15.789% of columns (9 out of 57).					C	Search	
	Column	Туре	Reference Distribution	Current Distribution	Data Drift	Stat Test	Drift Score	
>	BURO_STATUS_0_MEAN_MEAN	num	<u> </u>		Detected	Wasserstein distance (normed)	1.277687	
>	PAYMENT_RATE	num		■■■ ■■■■	Detected	Wasserstein distance (normed)	0.57475	
>	EXT_SOURCE_1	num			Detected	Wasserstein distance (normed)	0.17996	
>	INCOME_CREDIT_PERC	num		I.	Detected	Wasserstein distance (normed)	0.179299	
>	AMT_ANNUITY	num			Detected	Wasserstein distance (normed)	0.160446	

Pas de dérive significative sur l'ensemble 9 dérives sur 57 variables dont deux assez conséquentes

5 - Construction et déploiement d'un DASHBOARD

5 - Construction et déploiement d'un DASHBOARD

Démonstration de l'API avec modèle un modèle léger

Conclusion

Développement d'un « outil de scoring »

- Entrainement et mise en place d'un estimateur pour la prise de décision automatique d'accord ou de refus de prêt.
- Création d'un DashBoard interactif pour le conseiller financier
- Mise en place d'un pipeline de déploiement continu

Axes d'amélioration :

- Solution technique pour déploiement du véritable estimateur (RandomForestClassifier)
- Soliciter l'avis d'expert financier pour la création de variable et d'un score spécifique plus adapté
- Dbtenir un retour de la société de crédit sur l'interface de l'API pour l'amélioration des fonctionnalités

Question?