

Introdução à Regressão Logística

Parte 1

Unidade III

UnB – IE

Departamento de Estatística

Análise de Dados Categorizados

Maria Teresa Leão Costa

Vantagens:

- A forma estrutural do modelo descreve os padrões de associação e interação.
- A magnitude dos parâmetros do modelo determinam a força e a importância dos efeitos.
- As inferências sobre os parâmetros avaliam quais variáveis explicativas estão realmente associadas à variável resposta Y, enquanto são controlados os efeitos de outras variáveis, como possíveis variáveis confundidoras.
- Os valores previstos do modelo suavizam os dados e fornecem estimativas melhoradas da média de Y em possíveis valores de variáveis explicativas.

INTRODUÇÃO

 Os métodos apresentados para análise de tabelas de contingência nos ajudam a investigar os efeitos de uma variável explicativa categórica sobre uma variável de resposta categorizada.

Ideia:

- Utilizar modelos para analisar dados categorizados.
- Construção de modelo tem como foco estimação de parâmetros que descrevem a natureza e a intensidade da associação (efeitos) em termos de um pequeno número de parâmetros.
 - resultam na análise feita pelo métodos apresentados tabelas de contingência
 - é mais informativo que testar a significância meramente.
- Contudo, os modelos podem lidar com situações mais complicadas, como analisar simultaneamente os efeitos de diversas variáveis explicativas, que podem ser categóricas ou quantitativas ou ambas.

INTRODUÇÃO

- Estudo da relação entre características dos elementos da população pesquisada.
- <u>Objetivo:</u> criar um modelo que descreva a relação entre um resultado (*variável resposta* ou *dependente*) e um conjunto de variáveis independentes (*preditoras* ou *explicativas* – covariáveis)

 Modelos

Lineares Generalizados

- Os Modelos de Regressão são amplamente utilizados neste cuso.
 - quando a variável resposta é quantitativa Modelo de Regressão Linear (Simples ou Múltiplo)
 - variável resposta é categorizada, tendo dois ou mais valores possíveis - Modelo de Regressão Logística.
 - variável de resposta discreta para as quais o resultado é uma contagem - Modelos Loglineares.

Exemplos

- Em uma análise sobre se as empresas têm ou não um departamento de marketing, de acordo com o tamanho da empresa.
- Em um estudo de participação na força de trabalho de mulheres casadas, em função da idade, número de filhos e da renda do cônjuge.
- Em um estudo longitudinal de doença coronariana em função da idade, gênero, histórico de tabagismo, nível de colesterol, porcentagem do peso corporal ideal e pressão arterial

PROBLEMA

Para tal foi selecionada uma amostra de 173 fêmeas e as seguintes características foram investigadas para cada uma delas:

- X largura da carapaça da fêmea em cm;
- Y se a fêmea tem pelo menos um satélite (1 sim e 0- não)

PROBLEMA

- Os dados analisados neste exemplo foram extraídos de um estudo de ninhadas de caranguejo do tipo ferradura realizado por J. Brockmann, a ser impresso em Ethology (1996).
- Neste estudo cada fêmea de caranguejo ferradura tinha um caranguejo macho ligado a ela em seu ninho. O estudo investiga fatores que afetam a existência de qualquer outros machos, chamados satélites, morando perto da fêmea. Pensou-se que um dos possíveis fatores seria a largura da carapaça da fêmea de caranguejo.

	Nº de	Satélite		Média
Largura	Casos	Sim	Não	(Proporção com satélite)
< 23,25	14	5	9	0,36
23,25 24,25	14	4	10	0,29
24,25 25,25	28	17	11	0,61
25,25 26,25	39	21	17	0,54
26,25 27,25	22	15	7	0,68
27,25 28,25	24	20	4	0,83
28,25 29,25	18	15	3	0.83
≥ 29,25	14	14	0	1,00

PORQUE USAR REGRESSÃO LOGÍSTICA?

Natureza da relação entre a variável resposta e a variável independente

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

Considerando que:

$$E(\varepsilon_i)=0$$

temos que:

$$E(Y_i) = \beta_0 + \beta_1 X_i$$

Esta expressão implica na possibilidade de $E(Y_i)$ assumir qualquer valor entre $-\infty$ e $+\infty$.

- Na Regressão Logística Binária a variável binária Y pode assumir apenas dois resultados possíveis:
 - 1 quando ocorre "sucesso"
 - 0 no caso de "insucesso".
- Sua distribuição de probabilidade é a distribuição de Bernoulli especificada pelas probabilidades:

$$P(Y_i = 1) = \pi_i$$
 (probabilidade de sucesso)

$$P(Y_i = 0) = 1 - \pi_i$$
 (probabilidade de insucesso)

Esta distribuição tem média $E(Y_i) = \pi_i$ (ou seja, entre 0 e 1) e variância $V(Y_i) = \pi_i$ (1- π_i) (ou seja, não é constante).

Modelo de Regressão Logística Simples

Propriedades da função Logística:

- 1. A função logística é monótona (crescente ou decrescente, dependendo do sinal de β_1).
- 2. É quase linear no intervalo de crescimento e nas extremidades aproxima-se gradualmente de 0 e 1.
- 3. Pode ser linearizada.

Estimação dos Parâmetros do Modelo

Considere que para cada valor fixado x_i , i=1,...,c da variável explicativa X observamos variáveis aleatórias independentes $Y_{i1},Y_{i2},...,Y_{in_i}$, com

$$Y_{ij} \sim Bernoulli(\pi_i), \qquad j = 1, 2, ..., n_i$$

$$\pi_i = \pi(x_i) = \frac{exp(\beta_0 + \beta_1 x_i)}{1 + exp(\beta_0 + \beta_1 x_i)}$$

Isto significa que para cada valor fixado da variável explicativa X_i observou-se n_i replicações independentes da variável resposta. Vamos supor que os vetores aleatórios que definem cada grupo de replicações $(Y_{i_1},...,Y_{i_n})$ i=1,2,...,c

são independentes. Assim temos que as variáveis aleatórias definidas por $Z_i = \sum\limits_{n_i} Y_{ii}$

representam o número de sucessos dentre as n_i repetições do grupo correspondente ao valor , têm distribuição e, além disso são independentes.

Modelo de Regressão Logística Simples

$$E(Y_{i}) = \pi(x_{i}) = \frac{\exp(\beta_{0} + \beta_{1}X_{i})}{1 + \exp(\beta_{0} + \beta_{1}X_{i})}$$

Transformação logito:

$$\pi^*(x_i) = \ln\left(\frac{\pi(x_i)}{1 - \pi(x_i)}\right),\,$$

resposta média logito:

$$\pi^*_{i} = \pi^*(x_i) = \ln\left(\frac{\pi(x_i)}{1 - \pi(x_i)}\right) = \beta_0 + \beta_1 X_i$$

Assim, dada uma amostra observada $Z_1, Z_2, ..., Z_c$, a função de distribuição conjunta é dada por:

$$g(Z_1, Z_2, ..., Z_c) = \prod_{i=1}^{c} f(z_i) = \prod_{i=1}^{c} {n_i \choose Z_i} (\pi_i)^{Z_i} (1 - \pi_i)^{n_i - Z_i}$$
 (5)

e denominada função de verossimilhança.

Pelo método de máxima verossimilhança deve-se maximizar o logaritmo da função de verossimilhança associada, dado por:

$$ln(g(Z_{1}, Z_{2}, ..., Z_{c})) = ln\left(\prod_{i=1}^{c} \binom{n_{i}}{Z_{i}} (\pi_{i})^{Z_{i}} (1 - \pi_{i})^{n_{i} - Z_{i}}\right) =$$

$$= \sum_{i=1}^{c} \left[ln\binom{n_{i}}{Z_{i}} + Z_{i} ln(\pi_{i}) + (n_{i} - Z_{i}) ln(1 - \pi_{i})\right]$$

$$= \sum_{i=1}^{c} \left[ln\binom{n_{i}}{Z_{i}} + Z_{i} ln\left(\frac{\pi_{i}}{1 - \pi_{i}}\right) + n_{i} ln(1 - \pi_{i})\right] =$$

$$= \sum_{i=1}^{c} \left[ln\binom{n_{i}}{Z_{i}} + Z_{i}(\beta_{o} + \beta_{1}X_{i}) - n_{i} ln(1 + exp(\beta_{0} + \beta_{1}X_{i}))\right] = l(\beta_{0}, \beta_{1})$$

$$l'(\beta_0,\beta_1) = 0.$$

As derivadas parciais de *l* são dadas por

$$\frac{\partial l}{\partial \boldsymbol{\beta}_0}(\boldsymbol{\beta}_0, \boldsymbol{\beta}_1) = \sum_{i=1}^{c} \left[\boldsymbol{Z}_i - \boldsymbol{n}_i \frac{exp(\boldsymbol{\beta}_0 + \boldsymbol{\beta}_1 \boldsymbol{x}_i)}{1 + exp(\boldsymbol{\beta}_0 + \boldsymbol{\beta}_1 \boldsymbol{x}_i)} \right]$$

$$\frac{\partial l}{\partial \boldsymbol{\beta}_{1}}(\boldsymbol{\beta}_{0}, \boldsymbol{\beta}_{1}) = \sum_{i=1}^{c} \left[\boldsymbol{Z}_{i} \boldsymbol{x}_{i} - \boldsymbol{n}_{i} \boldsymbol{x}_{i} \left(\frac{exp(\boldsymbol{\beta}_{0} + \boldsymbol{\beta}_{1} \boldsymbol{x}_{i})}{1 + exp(\boldsymbol{\beta}_{0} + \boldsymbol{\beta}_{1} \boldsymbol{x}_{i})} \right) \right]$$

Não existe uma forma algébrica fechada para (b_0, b_1) solução do sistema

$$\left(\frac{\partial l}{\partial \boldsymbol{\beta}_0}(\boldsymbol{\beta}_0, \boldsymbol{\beta}_1), \frac{\partial l}{\partial \boldsymbol{\beta}_1}(\boldsymbol{\beta}_0, \boldsymbol{\beta}_1)\right) = (0,0)$$

A solução estão deve ser encontrada utilizando métodos iterativos, como os procedimentos de *Newton-Raphson* ou do *Score*. Algoritmos estão implementados na maioria dos programas estatísticos.

Interpretação de β_1

• sinal de β_1 indica se a curva cresce $(\beta_1 > 0)$

ou decresce $(\beta_1 < 0)$

Interpretação de β_1

• O parêmetro β_1 determina a taxa de crescimento ou decrescimento para curva (em forma de \mathcal{S}) para $\pi(x)$.

$$\frac{d\pi(x)}{dx} = \beta_1 \pi(x) \left(1 - \pi(x)\right)$$
(depende do valor de x)

• sinal de eta_1 indica se a curva cresce $(eta_1>0)$ ou decresce $(eta_1<0)$

Considerando a fórmula:

$$logito(\pi(x)) = ln\left(\frac{\pi(x)}{1 - \pi(x)}\right) = \beta_0 + \beta_1 x$$

- O logito cresce de β_1 unidades para cada unidade que x aumenta.
- Lembrando da odds (chance estimada se sucesso) está presente na expressão do modelo tem-se que:

$$\frac{\pi(x)}{1 - \pi(x)} = \exp(\beta_0 + \beta_1 x) = e^{\beta_0} (e^{\beta_1})^x$$

Exem

Exemplo – Problema Caranguejo Ferradura

Response Profile			
Ordered Value y		Total Frequency	
1	1	111	
2	0	62	

Probability modeled is y='1

Model Convergence Status			
Convergence criterion (GCONV=1E-8) satisfie	d.		

Estimated Covariance Matrix				
Parameter	Intercept	x		
Intercept	6.910227	-0.26685		
x	-0.26685	0.01035		

Model Fit Statistics			
Criterion	Intercept Only	Intercept and Covariates	
AIC	227.759	198.453	
sc	230.912	204.759	
-2 Log L	225.759	194.453	

Testing Global Null Hypothesis: BETA=0				
Test	Chi-Square	DF	Pr > ChiSq	
Likelihood Ratio	31.3059	1	<.0001	
Score	27.8752	1	<.0001	
Wald	23.8872	1	<.0001	

Analysis of Maximum Likelihood Estimates					
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept	1	-12.3508	2.6287	22.0749	<.0001
x	1	0.4972	0.1017	23.8872	<.0001

• Para um valor x + 1 a chance de sucesso é dada por:

$$\frac{\pi(x+1)}{1-\pi(x+1)} = exp(\beta_0 + \beta_1(x+1)) = e^{\beta_0} (e^{\beta_1})^x e^{\beta_1}$$

- De modo que a razão de chances entre x + 1 e x é dada por e^{β_1} .
- Para cada unidade que aumenta em \mathcal{X} a chance estimada de sucesso (odds) é multiplicada por e^{β_1} . Isto é, a "odds" no nível x+1 é igual a odds no nível x multiplicada por e^{β_1} .

