磁学自测题

一、选择题

- 1. 电流由长直导线 1 沿切向经 a 点流入一个电阻均匀的圆环,再由 b 点沿切向从圆环流出,经长直导线 2 返回电源(如图). 已知直导线上电流强度为 I,圆环的半径为 R,且 a、b 和圆心 O 在同一直线上. 设长直载 $\bigcap_{k=1}^{I} I$ $\bigcap_{k=1}^{I} C$ 流导线 1、2 和圆环中的电流分别在 O 点产生的磁感强度为 \overline{B}_1 、
- \vec{B}_2 、 \vec{B}_3 ,则圆心处磁感强度的大小
 - (A) B=0, $\exists B_1 = B_2 = B_3 = 0$.
- (B) B = 0, 因为虽然 $B_1 \neq 0$ 、 $B_2 \neq 0$,但 $\vec{B}_1 + \vec{B}_2 = 0$, $B_3 = 0$.
 - (C) $B \neq 0$, 因为 $B_1 \neq 0$ 、 $B_2 \neq 0$, $B_3 \neq 0$.
- (D) $B \neq 0$, 因为虽然 $B_3 = 0$, 但 $\vec{B}_1 + \vec{B}_2 \neq 0$.

2. 在图(a)和(b)中各有一半径相同的圆形回路 L_1 、 L_2 , c 内有电流 I_1 、 I_2 ,其分布相同,且均在真空中,

但在(b)图中 L_2 回路外有电流 I_3 , P_1 、 P_2 为两圆形回路上的对应点,则:

(A)
$$\oint_{L_1} \vec{B} \cdot d\vec{l} = \oint_{L_2} \vec{B} \cdot d\vec{l} , B_{P_1} = B_{P_2}$$

(B)
$$\oint_{L_1} \vec{B} \cdot d\vec{l} \neq \oint_{L_2} \vec{B} \cdot d\vec{l} , B_{P_1} = B_{P_2}.$$

(C)
$$\oint_{L_1} \vec{B} \cdot d\vec{l} = \oint_{L_2} \vec{B} \cdot d\vec{l} , B_{P_1} \neq B_{P_2}.$$

(D)
$$\oint_{L_1} \vec{B} \cdot d\vec{l} \neq \oint_{L_2} \vec{B} \cdot d\vec{l} , B_{P_1} \neq B_{P_2}.$$

[]

3. 图为四个带电粒子在 O 点沿相同方向垂直于磁感线射迹的照片. 磁场方向垂直纸面向外, 轨迹所对应的四个粒子的相等, 则其中动能最大的带负电的粒子的轨迹是

入均匀磁场后的偏转轨 质量相等,电荷大小也

- (A) *Oa*.
- (B) Ob.
- (C) *Oc*.
- (D) *Od*.

4. 如图所示的一细螺绕环,它由表面绝缘的导线在铁环上成,每厘米绕 10 匝. 当导线中的电流 I 为 2.0 A 时,测得铁环感应强度的大小 B 为 1.0 T,则可求得铁环的相对磁导率 μ_r 为(真率 $\mu_0 = 4\pi \times 10^{-7}$ T・m・A⁻¹)

密绕而 内的磁 空磁导

圆周

- (A) 7.96×10^2
- (B) 3.98×10^2
- (C) 1.99×10^2
- (D) 63.3

7

5. 将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通量随时间的变化率相等,则不计自感时 []

- (A) 铜环中有感应电动势, 木环中无感应电动势.
- (B) 铜环中感应电动势大, 木环中感应电动势小.
- (C) 铜环中感应电动势小, 木环中感应电动势大.
- (D) 两环中感应电动势相等.
- 6. 如图,长载流导线 ab 和 cd 相互垂直,它们相距 l, ab 固定不动, cd 能绕中点 O 转动,并能靠近或离开 ab. 当电流方向如图所示时,导线 cd 将「

- A. 顺时针转动同时离开 ab。
- B. 顺时针转动同时靠近 ab。
- C. 逆时针转动同时离开 ab。
- D.逆时针转动同时靠近 ab。
- *7. 如图, 平板电容器(忽略边缘效应)充电时, 沿环 的磁场强度 \vec{H} 的环流与沿环路 L_2 的磁场强度 \vec{H} 的环流两 有: [

- 8. 在匀强磁场中,有两个平面线圈,其面积 A₁=2A₂,通有电流 I₁=2I₂,它们所受的最大 磁力矩之比 M₁/M₂等于「
- (A) 1 (B) 2 (C) 4
- (D) 1/4
- 9. 感生电场是 []
- A.由电荷激发,是无源场
- B. 由变化的磁场激发,是有源场
- C.由变化的磁场激发,是无源场 D. 由电荷激发,是有源场

二、填空题

1. 半径为 R 的圆,圆面的法线 \vec{n} 与 \vec{B} 成 60° 角,如图所示,则 通过以该圆周为边线的如图所示的任意曲面S的磁通量

- $\Phi_m = \iint_{S} \vec{B} \cdot d\vec{S} = \underline{\hspace{1cm}}$
- 2. 电流元 $Id\bar{l}$ 在磁场中某处沿直角坐标系的x 轴方向放置时不受力,把电流元转到y轴正方向时受到的力沿z轴反方向,该处磁感强度 \bar{B} 指向 方向.

3. 已知两长直细导线 A、B 通有电流 I_A = 1 A, I_B = 流向和放置位置如图. 设 I_A 与 I_B 在 P 点产生的磁感强度为 B_A 和 B_B ,则 B_A 与 B_B 之比为______,此时 P 强度 \bar{B}_B 与 x 轴夹角为

2 A, 电流 大小分别 点处磁感

4. 一电子以 $1.0 \times 10^6 \, m/s$ 的速度进入一均匀磁场

速度方向

与磁场方向垂直。已知电子在磁场中作半径为 $0.1 \, m$ 的圆周运动。求磁感应强度的大小为_______,电子的旋转角速度大小_____。

*5. 图示为三种不同的磁介质的 $B\sim H$ 关系曲线,其表示的是 $B=\mu_0H$ 的关系. 说明 a、b、c 各代表哪一类磁介 $B\sim H$ 关系曲线:

6. 长直电缆由一个圆柱导体和一共轴圆筒状导体组成,两导体中有等值反向均匀电流 I 通过,其间充满磁导率为 μ 的均匀磁介质.介质中离中心轴距离为r 的某点处的磁场强度的大小 B =

7. 一线圈中通过的电流 I 随时间 t 变化的曲线如图所示. 试定性画出自感电动势 \mathcal{E}_{L} 随时间变化的曲线. (以 I 的正向作为 \mathcal{E}_{I} 的正向)

8. 自感系数 L=0.3 H 的螺线管中通以 I=8 A 的电流时,螺线管存储的磁场能量

 $W = \underline{\hspace{1cm}}$

三、计算题

1. 如图所示,AB、CD 为长直导线, $\hat{B}C$ 为圆心在O 点的一段圆弧形导线,其半径为R. 若通以电流 I,求O 点的磁感应强度.

2.如图所示形状的导线,通电流 I ,放在一个与均匀磁场 B 垂直的平面上, ced 为半圆弧, ac 长为 l ,求导线受到的安培力的大小和方向。

3、如图,一矩形线圈可绕 y 轴转动,线圈中载有电流 0.10A,放在磁感应强度 B=0.50T 的均匀磁场中,B 的方向平行于 x 轴,求维持线圈在图示位置时的力矩。

4. 均匀磁场 \bar{B} 被限制在半径 R=10 cm 的无限长圆柱空间内,方向垂直纸面向里. 取一固定的等腰梯形回路 abcd,梯形所在平面的法向与圆柱空间的轴平行,位置如图所示. 设磁感强度以 dB/dt=1 T/s 的匀速率增加,已知 $\theta=\frac{1}{3}\pi$, $\overline{Oa}=\overline{Ob}=6$ cm ,求等腰梯形回路中感应电动势的大小和方向.

5. 如图所示,一根长为L的金属细杆 ab 绕竖直轴 O_1O_2 以角速度 ω 在水平面内旋转。 O_1O_2 在离细杆 a 端 L/5 处。若已知地磁场在竖直方向的分 量 为

 $ar{B}$. 求 ab 两端间的电势差 U_a $-U_b$.

6.载有恒定电流 I 的长直导线旁有一半圆环导线 cd,半圆环半径为 b,环面与直导线垂直,且半圆环两端点连线的延长线与直导线相交,如图. 当半圆环以速度 \bar{v} 沿平行于直导线的方向平移时,求半圆环上的感应电动势。

