

Circuitos Elétricos I

Aula #1: Definições Básicas

Conteúdo

- Premissas importantes;
- Grandezas, Unidades e Prefixos;
- Tensão e corrente;
- Elemento ideal básico de circuito;
- Potência e Energia;
- Exemplos;
- Exercícios propostos;

Premissas Importantes

- Teoria de Circuitos:
 - Caso particular da Teoria Eletromgnética:;
 - Teoria Geral do Campo: complexidade física e matemática;
- Condições de validade da aproximação:
 - Sistema de parâmetros concentrados: os sinais elétricos afetam todos os pontos do circuito simultaneamente;

$$\lambda \ge 10 \cdot d \longrightarrow \frac{c}{f} \ge 10 \cdot d \longrightarrow \boxed{f \le \frac{c}{10 \cdot d}}$$

- Carga líquida nula: individualmente todos os componentes do circuito apresentam carga líquida nula;
- Independência galvânica: não há acoplamento magnético entre elementos de circuito distintos;

Grandezas, Unidades e Prefixos

Quantidade	Nome da unidade (Símbolo)	Fórmula
Freqüência	hertz (Hz)	s-1
Força	newton (N)	kg·m/s²
Energia ou trabalho	joule (J)	$N \cdot m$
Potência	watt (W)	J/s
Carga elétrica	coulomb (C)	A·s
Potencial elétrico	volt (V)	J/C
Resistência elétrica	ohm (Ω)	V/A
Condutância elétrica	siemens (S)	A/V
Capacitância elétrica	farad (F)	C/V
Fluxo magnético	weber (Wb)	V·s
Indutância	henry (H)	Wb/A

Prefixo	Símbolo	Potência
atto	a	10 ⁻¹⁸
femto	f	10-15
pico	p	10-12
nano	n	10-9
micro	μ	10-6
mili	m	10-3
centi	c	10-2
deci	d	10-1
deca	da	10
hecto	h	102
quilo	k	103
mega	M	104
giga	G	10°
tera	T	1012

Tensão e Corrente

- Grandezas físicas fundamentais na perspectiva da Teoria de Circuitos;
- Representação matemática:

$$V = \frac{dU}{dq} \quad e \quad i = \frac{dq}{dt}$$

- Onde:
 - V -> diferença de potencial ou, simplesmente, tensão;
 - i -> corrente elétrica;
 - q -> carga elétrica;
 - t -> tempo;
 - U -> energia potencial elétrica;

Elemento Básico Ideal de Circuito

- Propriedades:
 - Possui apenas dois terminais;
 - É descrito matematicamente pela relação entre sua tensão e sua corrente;
 - Não pode ser subdividido em outros elementos;
- Referências:
 - Polaridade da tensão;
 - Sentido de circulação de corrente;

Convenção passiva (energia):

- i. Se a corrente de referência entra pelo polo positivo de referência da tensão, o elemento está consumindo energia elétrica;
- ii. Caso contrário, se a corrente de referência entra pelo polo negativo de referência da tensão, o elemento está fornecendo energia elétrica.

• Definição clássica de potência elétrica (p):

$$p = \frac{dU}{dt}$$

• Expandindo a partir das definições de Tensão e Corrente:

$$p = \frac{dU}{dq} \cdot \frac{dq}{dt}$$

$$\rightarrow p = V \cdot i$$

- Convenção passiva (potência):
 - Absorção de energia implica potência positiva (p>o);
 - Fornecimento de energia implica potência negativa (p<0);

1.12* Dois circuitos elétricos, representados pelos quadrados A e B, estão conectados como mostra a Figura P1.12. A direção de referência para a corrente i e a polaridade de referência para a tensão v na interconexão são mostradas na figura. Para cada um dos seguintes conjuntos de valores numéricos, calcule a potência na interconexão e indique se a potência está fluindo de A para B ou vice-versa.

a)
$$i = 5 \text{ A}$$
, $v = 120 \text{ V}$

b)
$$i = -8 \text{ A}$$
, $v = 250 \text{ V}$

c)
$$i = 16 \text{ A}, \quad v = -150 \text{ V}$$

d)
$$i = -10 \text{ A}$$
, $v = -480 \text{ V}$

Figura P1.12

$$P_A = -v \cdot i$$
 $P_B = v \cdot i$

a)
$$P_A = -600W$$
 $P_B = 600W$

b)
$$P_A = 2000W$$
 $P_B = -2000W$

- 1.27 Suponha que você seja o engenheiro encarregado de um projeto e um de seus engenheiros subordinados informe que a interconexão da Figura P1.27 não passa no teste de potência. Os dados para a interconexão são fornecidos na Tabela P1.27.
 - a) O subordinado está certo? Explique por quê.
 - b) Se o subordinado estiver certo, você pode determinar o erro nos dados?

Elemento	Tensão (kV)	Corrente (mA)
a	5,0	-150
b	2,0	250
c	3,0	200
d	-5,0	400
e	1,0	- 50
f	4,0	350
g	-2,0	400
h	-6,0	-350

$$P_a = -v \cdot i \equiv 750W$$
 $P_b = v \cdot i \equiv 500W$
 $P_c = -v \cdot i \equiv -600W$
 $P_d = v \cdot i \equiv -2000W$
 $P_f = -4700W$

$$P_e = -v \cdot i \equiv 50W$$
 $P_f = v \cdot i \equiv 1400W$
 $P_g = -v \cdot i \equiv 800W$
 $P_h = -v \cdot i \equiv -2100W$
 $\sum P_c = 3500W$

Exercícios Propostos

- Nilson 8^a. Edição: 1.26, 1.28, 1.29 e 1.30;
- PDF no SIGAA;