Case 3

2.
$$a = 4$$
, $b = 2$, $f(n) = n^2$, $log_b^a = 2$

$$n^2 = n^2 \rightarrow T(n) = \Theta(n^2 \log^n)$$

cose 2

3.
$$a=1$$
, $b=2$, $f(n)=2^n$, $log_b^a=0$

$$2^n > n^\circ \rightarrow T(n) = \Theta(2^n)$$

corse 3

4. a 7 constant - we can't use moster method.

5.
$$a = 16$$
, $b = 4$, $f(n) = n$, $log_b^a = 2$

$$n < n^2 \rightarrow T(n) = \Theta(n^2)$$

case 7

cerse 3

7.
$$\alpha = 2$$
, $b = 2$, $f(n) = \frac{n}{\log^n}$, $\log^a = 1$

n on > count be compared > we can't use master method

logn > isn't polynomial

8.
$$\alpha = 2$$
, $b = 4$, $f(n) = n^{0.51}$, $\log_b^{\alpha} = \frac{1}{2}$

$$n \rightarrow T(n) = \theta(n^{0.51})$$

case 3

9.
$$a = 0.5$$
, $b = 2$, $f(n) = \frac{1}{n}$, $log_b^a = \frac{1}{n}$

ax1 > master method can't be applyed

10.
$$w = 16$$
, $b = 4$, $f(n) = n!$, $log_b^{\alpha} = 2$

cese 3

71.
$$\alpha = 2^{\frac{1}{2}}$$
, $b = 2$, $f(n) = log^n$, $log_b^a = \frac{1}{2}$

logn
$$\langle \sqrt{n} \rangle = \theta(\sqrt{n})$$

case 7

12.
$$\alpha = 3$$
, $b = 2$, $f(n) = n$, $log_b^a = 1.58$
 $n < n^{1.58} \rightarrow T(n) = \Theta(n^{1.58})$
 $case7$