Logica proposizionale

Linguaggio comune

Nel linguaggio comune si utilizzano spesso frasi imprecise o ambigue

Esempio

Un americano muore di melanoma ogni ora

- Assurdo: significa che c'è un americano (sfortunato) che ogni ora muore di melanoma
- Corretta: Ogni ora, un americano muore di melanoma

Esempio

L'uomo vedeva la donna con il binocolo

Ambigua: chi ha il binocolo?

Linguaggio matematico

Il linguaggio matematico richiede certezze nelle affermazioni

Il linguaggio matematico richiede soprattutto che sia possibile determinare se una affermazione è vera o falsa

Linguaggio matematico

Dire quale delle seguenti affermazioni sono vere e quali sono false

- 2 è un numero primo
- non ci sono numeri primi al di fuori di 2
- quando piove apro l'ombrello

Proposizione

Una **proposizione** è una frase che dichiara un fatto e che può essere vera (T) o può essere falsa (F) ma non può essere entrambe

Esempi:

- Come stai?
 - Una domanda non una proposizione
- x+5=3
 - x non è specificato => non è né T né F
- 2 è un numero primo
 - T
- Lei ha molto talento
 - Lei non è specificato => non è né T né F
- Ci sono altre forme di vita su altri pianeti dell'universo
 - Può essere T o F

Proposizioni

Le seguenti frasi NON sono proposizioni.

- Il tuo cinismo mi addolora.
 - Esprime un sentimento
- Toccare ferro porta fortuna
 - é una credenza
- Hai superato l'esame per la patente guida?
 - è una domanda
- Correre in bicicletta mi diverte molto.
 - Esprime una sensazione
- Smettila d'essere maleducato!
 - è un ordine
- Come fa freddo oggi!
 - è un'esclamazione

Proposizioni composte

Una proposizione più complessa può essere costruita attraverso proposizioni elementari connesse attraverso connettivi logici

Esempi:

- Proposizione A: Fuori piove
- Proposizione B: Vedremo un film
- Una nuova proposizione composta:
 - Se fuori piove allora vedremo un film

Proposizioni composte

Una proposizione più complessa può essere costruita attraverso proposizioni elementari connesse attraverso connetivi logici

Connettivi logici

- Negazione
- Congiunzione
- Disgiunzione
- Or esclusivo
- Implicazione
- Bicondizione (o Equivalenza)

Negazione

Sia p una proposizione. La frase "non è vero che p" è un'altra proposizione, chiamata la negazione di p. La negazione di p è denotata con ¬p e si legge non p.

Esempi:

- Salerno è una città della Campania
 - Non è vero che Salerno è una città della Campania
 - Salerno non è una città della Campania
- $2+5 \neq 3$
- 10 non è un numero primo
- Non è vero che l'autobus 31 passa ogni 10 minuti

Negazione

Neghiamo le seguenti proposizioni:

- Oggi piove
 - Oggi non piove
- 2 è un numero primo
 - 2 non è un numero primo
- L'auto di Giovanni ha almeno tre anni di vita
 - Non è vero che l'auto di Giovanni ha almeno tre anni di vita
 - L'auto di Giovanni non ha almeno tre anni di vita
 - L'auto di Giovanni ha meno di tre anni di vita

Negazione

Il valore della negazione di p, cioè di ¬p, è l'opposto del valore di p

р	٦р
Т	F
F	Т

Tabella di verità:

per ciascuno dei
possibili valori di p
associa il
corrispondente
valore di ¬p

Congiunzione

Siano p e q proposizioni. La frase "p e q" è una proposizione detta congiunzione di p e q.

La congiunzione di p e q è denotata con p \lambda q.

p ∧ q è vera se entrambe p e q sono vere, altrimenti è falsa.

Esempi:

- Salerno è una città della Campania e 5+2=8.
- Oggi piove e $2+5 \neq 3$.
- 10 è un numero primo e 5+2=7.
- Oggi piove e l'autobus 31 passa ogni 10 minuti.

Congiunzione: tabella di verità

Il valore della congiunzione p \(\lambda \) q è vero se entrambe p e q sono vere, altrimenti è falso

р	q	p∧q
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Il numero delle righe è uguale al numero di tutte le possibili combinazioni di p e q

Disgiunzione

Siano p e q proposizioni. La frase "p o q" è detta disgiunzione di p e q.

La disgiunzione di p e q è denotata con p v q.

p ∨ q è falsa se entrambe p e q sono false, altrimenti è vera.

Esempi:

- Salerno è una città della Campania o 5+2=8.
- Oggi piove o $2+5 \neq 3$.
- 10 è un numero primo o 5+2=7.
- Oggi piove o l'autobus 31 passa ogni 10 minuti.

Disgiunzione: tabella di verità

Il valore della disgiunzione p v q è vero se o p o q o entrambe sono vere

р	q	p∨q
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Disgiunzione esclusiva (Or esclusivo)

Siano p e q proposizioni.

L'or esclusivo di p e q è denotato con p ⊕ q. p ⊕ q è vero quando esattamente uno tra p e q sono veri, altrimenti è falso.

La disgiunzione esclusiva traduce lo "aut" latino

Esempio:

- Nel menù a prezzo fisso di un ristorante
 - Frutta o formaggio

Or esclusivo: tabella di verità

Il valore dell' or esclusivo p ⊕ q è vero se esattamente una tra p e q è vera

р	q	p⊕q
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

Siano p e q proposizioni. La proposizione "p implica q" è chiamata implicazione.

Essa è denotata con $p \rightarrow q$ (talvolta anche con $p \Rightarrow q$) $p \rightarrow q$ è falsa quando p è vera e q è falsa, altrimenti è vera.

p è chiamata ipotesi e q è chiamata conclusione.

La proposizione $p \rightarrow q$ può essere letta in molti modi equivalenti:

- se p allora q
- p solo se q
- p è sufficiente per q
- q è necessaria per p
- q ogniqualvolta p

condizione sufficiente → condizione necessaria

Implicazione: tabella di verità

Il valore dell'implicazione $p \rightarrow q$ è falsa solamente se la verità di p implica la falsità di q

р	q	$p \to q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Il valore dell'implicazione $p \rightarrow q$ è falsa solamente se la verità di p implica la falsità di q

Esempio:

- Se ho la febbre allora sono ammalato
 - Consideriamo tutte le situazioni che si possono presentare
 - * Se ho la febbre allora sono ammalato
 - * Se ho la febbre allora non sono ammalato
 - * Se non ho la febbre allora sono ammalato
 - * Se non ho la febbre allora non sono ammalato

Il valore dell'implicazione $p \rightarrow q$ è falsa solamente se la verità di p implica la falsità di q

Esempio:

- Se ho la febbre allora sono ammalato
 - Consideriamo tutte le situazioni che si possono presentare
 - * Se ho la febbre allora sono ammalato (si può verificare)
 - * Se ho la febbre allora non sono ammalato (non si può verificare)
 - * Se non ho la febbre allora sono ammalato (si può verificare)
 - * Se non ho la febbre allora non sono ammalato (si può verificare)

Il valore dell'implicazione $p \rightarrow q$ è falsa solamente se la verità di p implica la falsità di q

Esempio:

Supponete che abbia estratto una carta da un mazzo e vi dica:

Se è una carta di cuori allora è una regina

- In quali casi ho mentito?
 - * Se è una carta di cuori ed è una regina
 - * Se è una carta di cuori ed è un re
 - * Se è una carta di picche ed è una regina
 - * Se è una carta di picche ed è un re

Il valore dell'implicazione $p \rightarrow q$ è falsa solamente se la verità di p implica la falsità di q

Esempio:

- Supponete che abbia estratto una carta da un mazzo e vi dica:
 Se è una carta di cuori allora è una regina
 - In quali casi ho mentito?
 - * Se è una carta di cuori ed è una regina
 - * Se è una carta di cuori ed è un re
 - * Se è una carta di picche ed è una regina
 - * Se è una carta di picche ed è un re

NOTA:

L'implicazione $p \rightarrow q$ non presuppone vi sia una qualche relazione tra p e q

Esempio:

- Se Giulio Cesare è morto allora 2 3 = 6
 - Giulio Cesare è morto T
 - $-2 \cdot 3 = 6$
 - * Se T allora T
 - * T

Il valore dell'implicazione $p \rightarrow q$ è falsa solamente se la verità di p implica la falsità di q

Esempio:

- Se la Salernitana vince lo scudetto nel 2013 allora 2 è un numero primo
 - Quale è il valore di verità della proposizione ?
 - p = la Salernitana vince lo scudetto nel 2013
 - q = 2 è un numero primo

```
* Se F allora T ?????
```

* T

- L'inverso di $p \rightarrow q$ è $q \rightarrow p$
- L'opposto di $p \rightarrow q$ è $\neg p \rightarrow \neg q$
- Il contronominale di p \rightarrow q è $\neg q \rightarrow \neg p$

• L'inverso di $p \rightarrow q$ è $q \rightarrow p$

Esempio:

Se nevica allora le auto procedono lentamente.

<u>L'inverso</u>: Se le auto procedono lentamente allora nevica

*
$$q \rightarrow p$$

р	q	$p \rightarrow q$	q →p
Т	F	F	Т

• L'inverso di $p \rightarrow q$ è $q \rightarrow p$

Determinare la tabella di verità di $p \rightarrow q e q \rightarrow p$

р	q	$p \rightarrow q$	q →p

• L'inverso di $p \rightarrow q$ è $q \rightarrow p$

Determinare la tabella di verità di $p \rightarrow q e q \rightarrow p$

р	q	$p \to q$	q →p
Т	Т	Т	Т
Т	F	F	Т
F	Т	Т	F
F	F	T	T

• L'opposto di p \rightarrow q è $\neg p \rightarrow \neg q$

Esempio:

Se nevica allora le auto procedono lentamente.

L'opposto: Se non nevica allora le auto procedono velocemente

*
$$\neg p \rightarrow \neg q$$

р	q	$p \rightarrow q$	٦р	٦q	¬p → ¬q
Т	F	F	F	Т	Т

• L'opposto di $p \rightarrow q$ è $\neg p \rightarrow \neg q$

Determinare la tabella di verità di $p \rightarrow q$ è $\neg p \rightarrow \neg q$

р	q	$p \to q$	٦р	ŗ	¬p → ¬q

• L'opposto di p \rightarrow q è $\neg p \rightarrow \neg q$

Determinare la tabella di verità di $p \rightarrow q$ è $\neg p \rightarrow \neg q$

р	q	$p \rightarrow q$	٦р	٦q	¬p → ¬q
Т	Т	T	F	F	Т
Т	F	F	F	Т	Т
F	Т	Т	Т	F	F
F	F	Т	Т	Т	Т

• Il contronominale di p \rightarrow q è $\neg q \rightarrow \neg p$

Esempio:

Se nevica allora le auto procedono lentamente.

```
    p = nevica q = le auto procedono lentamente
    * p → q
```

• <u>Il contronominale</u>: Se le auto procedono velocemente allora non nevica

```
* ¬q → ¬p
```

• Il contronominale di $p \rightarrow q$

 $\neg q \rightarrow \neg p$ ha gli stessi valori di verità di $p \rightarrow q$

р	q	$p \rightarrow q$	¬q	¬р	¬q → ¬p

• Il contronominale di $p \rightarrow q$

 $\neg q \rightarrow \neg p$ ha gli stessi valori di verità di $p \rightarrow q$

р	q	$p \rightarrow q$	¬q	¬р	¬q → ¬p
Т	Т	Т	F	F	Τ
Т	F	F	Т	F	F
F	Т	Т	F	Т	Т
F	F	Т	Т	Т	Т

Bicondizione (o equivalenza)

Siano p e q proposizioni. La proposizione "p se e solo se q" è chiamata bicondizione (o equivalenza). Essa è denotata con $p \leftrightarrow q$ (talvolta anche con p <=> q) $p \leftrightarrow q$ è vera quando p e q hanno lo stesso valore di verità, altrimenti è falsa.

La proposizione p ← q può essere letta in molti modi equivalenti:

- Se p allora q e viceversa
- piff q
- p è necessaria e sufficiente per q

Bicondizione (o equivalenza)

Il valore dell'equivalenza $p \leftrightarrow q$ è vera solamente se i valori di verità di p e q coincidono

Esempio:

- Puoi prendere l'aereo se e solo se hai comprato il biglietto
 - Vera se
 - * Sono entrambe vere oppure entrambe false
 - Se puoi prendere l'aereo e hai comprato il biglietto
 - Se non puoi prendere l'aereo e non hai comprato il biglietto
 - Falsa se
 - * Hanno valori opposti
 - Se puoi prendere l'aereo e non hai comprato il biglietto
 - Se non puoi prendere l'aereo e hai comprato il biglietto

Bicondizione (o equivalenza):

tabella di verità

Il valore dell'implicazione $p \leftrightarrow q$ è vera solamente se i valori di verità di p e q coincidono

р	q	$p \leftrightarrow q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

Bicondizione (o equivalenza):

tabella di verità

 $p \leftrightarrow q$ ha gli stessi valori di verità di $(p \rightarrow q) \land (q \rightarrow p)$

р	q	$p \to q$	$q \rightarrow p$	$p \longleftrightarrow q$
Т	Т	Т	Т	Т
Т	F	F	Т	F
F	Т	Т	F	F
F	F	T	Т	Т

Esempi

```
p = 2 è un numero primo = T
q = 6 è un numero primo = F
* ¬n =
```

$$* p \lor q =$$

*
$$p \rightarrow q =$$

*
$$q \rightarrow p =$$

*
$$p \leftrightarrow q =$$

Esempi

```
p = 2 è un numero primo = T
q = 6 è un numero primo = F
```

*
$$\neg p = F$$

* $\neg q = T$
* $p \land q = F$
* $p \land \neg q = T$
* $p \lor q = T$
* $p \oplus q = T$
* $p \to q = F$
* $q \to p = T$
* $p \leftrightarrow q = F$

Esempio

р	q	¬р	$p \to q$	¬p ↔ q	$(p \rightarrow q) \wedge (\neg p \leftrightarrow q)$
Т	Т				
Т	F				
F	Т				
F	F				

Esempio

Esempio

• Consideriamo l'espressione $(p \rightarrow q) \land (\neg p \leftrightarrow q)$

р	q	٦р	$p \to q$	¬p ↔ q	$(p \rightarrow q) \wedge (\neg p \leftrightarrow q)$
Т	Т				
Т	F				
F	Т				
F	F				proposizioni
					composte ausiliarie

Esempio

• Consideriamo l'espressione $(p \rightarrow q) \land (\neg p \leftrightarrow q)$

р	q	¬р	$p \rightarrow q$	¬p ↔ q	$(p\toq)\wedge(p\toq)$
Т	Т	F			
Т	F	F			
F	Т	Т			
F	F	T			

Esempio

р	q	¬р	$p \rightarrow q$	¬p ↔ q	$(p \rightarrow q) \wedge (\neg p \leftrightarrow q)$
Т	Т	F	Т		
Т	F	F	F		
F	Т	Т	Т		
F	F	Т	Т		

Esempio

р	q	¬р	$p \rightarrow q$	¬p ↔ q	$(p \rightarrow q) \wedge (\neg p \leftrightarrow q)$
Т	Т	F	Т	F	
Т	F	F	F	Т	
F	Т	Т	Т	Т	
F	F	Т	Т	F	

Esempio

• Consideriamo l'espressione $(p \rightarrow q) \land (\neg p \leftrightarrow q)$

р	q	¬р	$p \to q$	¬p ↔ q	$(p \to q) \land (p \leftrightarrow q)$
Т	Т	F	Т	F	F
Т	F	F	F	Т	F
F	Т	Т	Т	Т	Т
F	F	Т	Т	F	F