Algebra Abstracta: Tarea #7

Jonathan Andrés Niño Cortés

13 de marzo de 2015

Sección 10.2 4. Sea A cualquier \mathbb{Z} -módulo, sea a cualquier elemento de A y sea n un entero positivo. Pruebe que el mapa $\varphi_a : \mathbb{Z}/n\mathbb{Z} \to A$ dado por $\varphi(\overline{k}) = ka$ es un homomorfismo de \mathbb{Z} -módulos si y solo na = 0. Pruebe que $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z}, A) \cong A_n$, donde $A_n = \{a \in A \mid na = 0\}$ (de tal manera que A_n es el aniquilador en A del ideal (n) de \mathbb{Z}).

Demostración. Una dirección es sencilla. Si suponemos que $an \neq 0$, entonces φ_a no estaría bien definida. Por ejemplo, tenemos que $\overline{0} = \overline{n}$, pero $\varphi_a(\overline{n}) = an \neq 0 = \varphi_a(\overline{0})$, por lo que la función no esta bien definida.

Para la otra dirección supongase que an=0. En primer lugar φ_a esta bien definida. Si $\overline{x}=\overline{y}$ entonces x=y+nk para algún $k\in\mathbb{Z}$. Luego $\varphi_a\overline{x}=xa=(y+nk)a=ya+nka=ya+k0=ya=\varphi_a(\overline{y})$.

Finalmente, para probar que es un homomorfismo nótese que para todo $\overline{x}, \overline{y} \in \mathbb{Z}/n\mathbb{Z}$ y para cualquier $r \in \mathbb{Z}$ tenemos que $\varphi_a(r\overline{x} + \overline{y}) = (\varphi_a(\overline{rx} + \overline{y})) = (rx + y)a = rxa + ya = r\varphi_a(\overline{x}) + \varphi_a(\overline{y})$.

Ahora para probar que $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z},A) \cong A_n$ vamos a demostrar que $\psi : \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z},A) \to A_n$ tal que $\psi(\phi) = \phi(\overline{1})$ es un homomorfismo biyectivo.

Primero obsérvese que para cualquier homomorfismo ϕ entre $\mathbb{Z}/n\mathbb{Z}$ y A tenemos que $\phi(\overline{1}) \in A_n$. Esto se debe a que $n\phi(\overline{1}) = \phi(n\overline{1}) = \phi(\overline{n}) = 0$. Por lo tanto se puede ver que la función esta bien definida.

Ahora para probar que es un homomorfismo nótese que $\psi(r\phi_1 + \phi_2) = (r\phi_1 + \phi_2)(\overline{1}) = r\phi_1(\overline{1}) + \phi_2(\overline{1}) = r\psi(\phi_1) + \psi(\phi_2)$.

Para probar que es inyectivo, observese que si $\phi_1(\overline{1}) = \phi_2(\overline{1})$, entonces $\phi_1(\overline{x}) = \phi_1(x\overline{1}) = x\phi_1(\overline{1}) = x\phi_2(\overline{1}) = \phi_2(\overline{x})$, por lo que los dos homomorfismos serían iguales.

Por último, ψ es sobreyectiva por la primera parte de la demostración pues para cualquier $a \in A_n \ \phi_a$ es un homomorfismo tal que $\phi_a(\overline{1}) = 1a = a$.

Sección 10.2 8. Sea $\varphi: M \to N$ un homomorfismo de R-módulos. Pruebe que $\varphi(\text{Tor}(M)) \subseteq \text{Tor}(N)$.

Demostración. Tome un elemento $a = \varphi(b) \in \varphi(\text{Tor}(M))$. Entonces por definición tenemos que existe $r \in R$ distinto de 0 tal que rb = 0. Entonces si tomamos $ra = r\varphi(b) = \varphi(rb) = \varphi(0) = 0$, por lo que $a \in \text{Tor}(N)$.

Sección 10.3 10. Asuma que R es conmutativo. Muestre que un R-módulo es irreducible si y sólo si M es isomórfico (como un R-módulo) a R/I donde I es un ideal máximal de R. [Por el ejercicio previo, si M es irreducible entonces hay un mapa natural $R \to M$ definido por $r \to rm$, ,donde m es cualquier elemento no cero fijo de M].

Demostración. Para una dirección supongase que M es isomorfo a R/I (como submódulo) donde I es un ideal máximal. Vamos a demostrar que si $N \leq R/I$ entonces N debe ser un ideal de R/I. Que es un subgrupo aditivo ya esta dado por la definición de sub-módulo. Además, si tomamos cualquier $r+I \in R/I$ y cualquier $n+I \in N$ vemos que (r+I)(n+I) = rn + I, pero como $r \in R$ y N es submódulo concluimos que $r(n+I) = rn + I \in N$. Por lo tanto, N es un ideal. Pero si I es máximal entonces R/I sería un campo y en un campo el único ideal propio es $\{0\}$. Por lo tanto, M es irreducible.

Ahora para probar la otra dirección suponga que R es irreducible. Por el punto anterior si fijamos un elemento no cero $m \in M$, tenemos que existe un homomorfismo natural $\phi: R \to M$ tal que $r \mapsto rm$. Este homomorfismo se puede ver como un homomorfismo de submódulos. Es sobreyectivo porque M = Rm. Entonces por el primer teorema del isomorfismo $M \cong R/\ker(\phi)$. Pero además tenemos que $\ker(\phi)$ debe ser máximal. Si no lo fuera entonces existiria algún ideal propio de R, K tal que $\ker(\phi) \subsetneq K$. Pero K es un submódulo de K visto como K-módulo. Entonces por el teorema de la correspondencia existiría un submódulo propio K' de M tal que $\{0\} \subsetneq K'$. Lo que contradice el hecho que M sea irreducible.

Sección 10.3 18. Sea R un dominio de ideales principales y sea M un R-módulo que es aniquilado por el ideal propio no cero (n). Sea $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ la factorización única de a en potencias de primos distintas en R. Sea M_i el aniquilador de $p_i^{\alpha_i}$ en M, i.e., M_i es el conjunto $\{m \in M \mid p_i^{\alpha_i}m = 0\}$ — llamado el componente p_i -primario de M. Pruebe que

$$M = M_1 \oplus M_2 \oplus \cdots \oplus M_k$$
.

Demostración. Primero probemos que la suma directa da todo el módulo.

Tome cualquier $m \in M$. Sabemos que $(p_1^{\alpha_1})$ y $(p_2^{\alpha_2} \cdots p_k^{\alpha_k})$ son comáximales. Entonces existe a, b tales que $a \in (p_1^{\alpha_1})$ y $b \in (p_2^{\alpha_2} \cdots p_k^{\alpha_k})$ y a + b = 1. Luego m = (a + b)m = am + bm. Y tenemos que $bm = sp_2^{\alpha_2} \cdots p_k^{\alpha_k}m$ por lo que al multiplicar por $p_1^{\alpha_1}$, bm = snm = s0 = 0, es decir que $bm \in M_1$. Además podemos encontrar c y d tales que $c \in (p_2^{\alpha_2})$ y $d \in (p_3^{\alpha_3} \cdots p_{j-1}^{\alpha_{j-1}} \cdots p_k^{\alpha_k})$ y c + d = 1. Luego am = (c + d)(am) = cam + dam y tenemos que $dam \in M_2$ pues $p_2^{\alpha_2} dam = rr'nm = rr'0 = 0$. Repitiendo este proceso n veces obtendremos n + 1 términos donde los primeros n términos perteneces a cada M_i . Sin enmbargo el ultimo término es de la forma $ace \cdots xm$ y como ya se se recorrieron todos las potencias de primos concluimos que $ace \cdots x \in (a)$ luego este último término es igual a 0.

Ahora probemos que cumple las condiciones para que sea una suma directa.

Ahora es facíl ver que $M_1 \oplus \cdots \oplus M_{j-1} \oplus M_{j+1} \oplus \cdots \oplus M_k$ es aniquilado por $(p_1^{\alpha_1} \cdots p_{j-1}^{\alpha_{j-1}} \cdots p_k^{\alpha_k})$. Como $(p_i^{\alpha_i})$ y $(p_1^{\alpha_1} \cdots p_{j-1}^{\alpha_{j-1}} \cdots p_k^{\alpha_k})$ son comáximales tenemos que existe $a \in (p_i^{\alpha_i})$ y $b \in (p_1^{\alpha_1} \cdots p_{j-1}^{\alpha_{j-1}} \cdots p_k^{\alpha_k})$ elementos tales que a+b=1. Luego $m=(a+b)m=am+bm=rp_j^{\alpha_j}m+sp_1^{\alpha_1} \cdots p_{j-1}^{\alpha_{j-1}} \cdots p_k^{\alpha_k}m$ que es igual por nuestra suposición a r(0)+s(0)=0.

Sección 12.1 13. Si M es un módulo finitamente generado sobre el Dominio de Ideales Principales R, describa la estructura de M/Tor(M).

Demostración. Este es precisamente el componente libre de M. Por la primera parte del teorema fundamental probada en esta sección tenemos que $M \cong R^n \oplus \operatorname{Tor}(M)$. Entonces por el segundo teorema del isomorfismo tenemos que $M \cong R^n \oplus \operatorname{Tor}(M)/\operatorname{Tor}(M) \cong R^n/(R^n \cap \operatorname{Tor}(M))$. Pero $R^n \cap \operatorname{Tor}(M) = \{0\}$ porque la suma es directa. Luego $R^n/(R^n \cap \operatorname{Tor}(M)) \cong R^n/\{0\} \cong R^n$.

Sección 12.1 14. Sea R un D.I.P. y sea M un R-módulo de torsión. Pruebe que M es irreducible si y sólo si M=Rm para cualquier elemento no cero $m\in M$ donde el aniquilador de m es un ideal primo no cero (p).

Demostración. Una dirección esta dada por el Punto 3 de esta tarea. Si M es irreducible entonces es isomorfo a R/I para algún ideal I máximal de R. Además como I máximal es primo y como estamos en un D.I.P. tenemos que I=(p), donde p es un elemento primo de R. Además vemos que (p) es el anulador de M. Entonces si tomamos cualquier $m \in M$ distinto de 0 vemos que Rm = M. Si ese no fuera el caso entonces tendriamos que $Rm \subsetneq M$ y Rm es diferente al submódulo trivial porque $m = 1m \in Rm$, por lo que M no sería irreducible.

Para la otra dirección si tomamos cualquier m diferente a 0 tenemos un homomorfismo sobreyectivo natural entre R y Rm = M. Además claramente el kernel de este homomorfismo es por definición el anulador de m, que es igual a (p). Pero como (p) es primo es máximal y entonces por el primer teorema del isomorfismo $M \cong R/(p)$. Luego por el tercer punto M es irreducible. Luego $M \cong R/(p)$ y como p es primo y estamos en un D.I.P concluimos que (p) es máximal. Entonces por el punto 3 M es irreducible.