Clar action, (1) Adam la designalad

(2) Unicided le la extrasión?

Clor de hoy: (3) Conero,
$$K$$
 con int $(K) \neq \emptyset \sim ?$

Bolos intra, al noma $M \in \mathbb{N}$
 $f: M \longrightarrow \mathbb{R}$ If $f(x) \leq \|f\|_{\infty} \|x\|$
 $f: M \longrightarrow \mathbb{R}$ If $f(x) \leq \|f\|_{\infty} \|x\|$
 $f: M \longrightarrow \mathbb{R}$ If $f(x) \leq \|f\|_{\infty} \|x\|$
 $g: \langle M, y \rangle \longrightarrow \mathbb{R}$
 $\chi = M + ky$

Germos:

 $g(\chi) \leq \|f\|_{\infty} \|\chi\| \quad (\|g\|_{\infty} \leq \|f\|_{\infty})$
 $g(M+ky) = g(M) + k g(y) = f(M) + k g(y)$

Grenos $f(M) + d[g(y)] \leq \|f\|_{\infty} \|M+dy\| \int dx$
 $g(y) \leq \|f\|_{\infty} \|M+dy\| - f(M)$
 $g(y) \leq \|f\|_{\infty} \|M+dy\| - f(M)$
 $g(y) \geq \|f\|_{\infty} \|M+dy\| - f(M)$
 $g(y) \geq \|f\|_{\infty} \|M+dy\| - f(M)$

$$f(m_{2}) - \|f\|_{m_{1}} \|m_{2}\| \le g(y) \le \|f\|_{m_{1}} \|m_{1} + y\| - f(m_{1})$$

$$f(m_{1}) + f(m_{2}) \le \|f\|_{m_{1}} (\|m_{1} + y\| + \|m_{2} - y\|)$$

$$f(m_{1}) + f(m_{2}) = f(m_{1} + m_{2}) \le \|f\|_{m_{1}} \|m_{1} + m_{2}\|$$

$$\frac{||\chi||_{m_{1}} \le ||\chi||_{m_{2}} \le ||\chi||_$$

Positivité horogéneo: P(XX)=Lp(X) +L>0.

$$||z|| = \inf \left\{ \lambda > 0 : \lambda \mathbb{B} \ni z \right\}$$

$$= \inf \left\{ \lambda > 0 : \frac{z}{\lambda} \in \mathbb{B} \right\}$$

$$\forall e.v. hermode / \mathbb{R}$$

V e.v. normado / R

Definiash; Si K \(\subseteq \mathbb{V} \) es conrexo y 0 \(\alpha \) mt(K)

definitions
$$P_{K}(x) = \inf \{\lambda > 0 : \lambda K \ni x\}$$

Corema:

(1) ~> p(x) ≥ 0

(2) PK es connexo

(3) pk es positionant honogéneo

PK es un

seminorm

(4) Pk es continua

(5) $\{x \in V: p_{\kappa}(x) \leq 1\} = \sqrt{k}$ {* = V; pr(x) < 1} = int(K)

Ependo.

(1)
$$p_{k}(x) < \infty$$
 poople $0 \in Inf$

(2) $p_{k}(x) = p_{k}$ $p_{k}(x) = 1$, $p_{k}(x) = 1$
 $p_{k}(x) = p_{k}$ $p_{k}(x) = 1$
 $p_{k}(x) = p_{k}(x) = p_{k}(x)$
 $p_{k}(x) = p_{k}(x)$

(4)

$$P_{\kappa}(z) \leq P_{\delta}(z) = ||z||$$

$$Luego \quad P_{\kappa}(z) \leq |z||z||$$

$$||P_{\kappa}(z) - P_{\kappa}(0)| \leq \frac{1}{\delta} ||z||$$

$$p_{\kappa}(z) = p_{\kappa}(z-y+y) \leq p_{\kappa}(y) + p_{\kappa}(z-y)$$
 $p_{\kappa}(z) - p_{\kappa}(y) \leq p_{\kappa}(z-y) \leq \frac{1}{8}|z-y|$