Cálculo Lambda Tipado

¿ Qué es el Cálculo Lambda?

- ► Modelo de computación basado en funciones
 - da origen a la programación funcional
- ► Introducido por Alonzo Church en 1936
- Computacionalmente completo (i.e. Turing completo)
- Vamos a estudiar el Cálculo Lambda Tipado (A. Church, 1940)

Expresiones de tipos de λ^b

Las expresiones de tipos (o simplemente tipos) de λ^b son

$$\sigma,\tau \quad ::= \quad \textit{Bool} \mid \sigma \rightarrow \tau$$

Expresiones de tipos de λ^b

Las expresiones de tipos (o simplemente tipos) de λ^b son

$$\sigma, \tau ::= Bool \mid \sigma \to \tau$$

Descripción informal:

- Bool es el tipo de los booleanos,
- $\sigma \to \tau$ es el tipo de las funciones de σ en τ (donde σ y τ denotan expresiones de tipo)

Términos de λ^b

Sea \mathcal{X} un conjunto infinito enumerable de variables y $x \in \mathcal{X}$. Los términos de λ^b están dados por

$$M, N, P, Q$$
 ::= x
| true
| false
| if M then P else Q
| $\lambda x : \sigma. M$
| M N

Ejemplos

- $\triangleright \lambda x : Bool.x$
- \blacktriangleright λx : Bool.if x then false else true
- ▶ $\lambda f : Bool \rightarrow Bool \rightarrow Bool.\lambda x : Bool.f x$
- $\blacktriangleright \ (\lambda f: Bool \to Bool.f \ true)(\lambda y: Bool.y)$
- ightharpoonup true (λx : Bool.x)
- ▶ x y

ightharpoonup Queremos asignar un tipo σ a un término M.

- ightharpoonup Queremos asignar un tipo σ a un término M.
- Vamos a definir una relación de tipado ":".

- ightharpoonup Queremos asignar un tipo σ a un término M.
- ▶ Vamos a definir una relación de tipado ":".
 - true : Bool,
 - ► false : Bool,
 - $ightharpoonup \lambda x : Bool.x : Bool
 ightarrow Bool, \ldots$

- ightharpoonup Queremos asignar un tipo σ a un término M.
- Vamos a definir una relación de tipado ":".
 - true : Bool,false : Bool.
 - $\triangleright \lambda x : Bool.x : Bool \rightarrow Bool, \ldots$
- ► El conjunto de términos es infinito, cómo definimos a la relación de tipado.

Sistema formal de deducción (o derivación) que utiliza axiomas y reglas de inferencia para caracterizar un subconjunto de los términos llamados tipados.

- Sistema formal de deducción (o derivación) que utiliza axiomas y reglas de inferencia para caracterizar un subconjunto de los términos llamados tipados.
- Definimos una relación de tipado a través de reglas de inferencia.
 - Los axiomas de tipado establecen que ciertos juicios de tipado son derivables.
 - Las reglas de tipado establecen que ciertos juicios de tipado son derivables siempre y cuando ciertos otros lo sean.

Términos de λ^b

Sea \mathcal{X} un conjunto infinito enumerable de variables y $x \in \mathcal{X}$. Los términos de λ^b están dados por

$$M, N, P, Q$$
 ::= x
| true
| false
| if M then P else Q
| $\lambda x : \sigma. M$
| M N

Un juicio de tipado es una expresión de la forma $\Gamma \triangleright M$: σ que se lee:

"el término M tiene tipo σ asumiendo el contexto de tipado Γ "

Un contexto de tipado es un conjunto de pares $x_i:\sigma_i$, anotado $\{x_1:\sigma_1,\ldots,x_n:\sigma_n\}$ donde los $\{x_i\}_{i\in 1...n}$ son distintos. Usamos letras Γ,Δ,\ldots para contextos de tipado.

Axiomas de tipado de λ^b

 $\frac{}{\Gamma \rhd \textit{true} : \textit{Bool}} \left(\text{T-True} \right) \qquad \frac{}{\Gamma \rhd \textit{false} : \textit{Bool}} \left(\text{T-False} \right)$

Axiomas de tipado de λ^b

$$\frac{}{\Gamma \rhd \textit{true} : \textit{Bool}} \text{(T-True)} \qquad \frac{}{\Gamma \rhd \textit{false} : \textit{Bool}} \text{(T-False)}$$

$$\frac{x : \sigma \in \Gamma}{\Gamma \rhd x : \sigma} \text{(T-Var)}$$

Reglas de tipado de λ^b

$$\frac{\Gamma \rhd M : \textit{Bool} \quad \Gamma \rhd P : \sigma \quad \Gamma \rhd Q : \sigma}{\Gamma \rhd \textit{if } M \textit{ then } P \textit{ else } Q : \sigma} (\text{T-IF})$$

Reglas de tipado de λ^b

$$\frac{\Gamma \rhd M : \textit{Bool} \quad \Gamma \rhd P : \sigma \quad \Gamma \rhd Q : \sigma}{\Gamma \rhd \textit{if } M \textit{ then } P \textit{ else } Q : \sigma} (\text{T-IF})$$

$$\frac{\Gamma \rhd M : \sigma \to \tau \quad \Gamma \rhd N : \sigma}{\Gamma \rhd M \, N : \tau} \, (\text{T-App})$$

Reglas de tipado de λ^b

$$\frac{\Gamma \rhd M : \textit{Bool} \quad \Gamma \rhd P : \sigma \quad \Gamma \rhd Q : \sigma}{\Gamma \rhd \textit{if} \; M \; \textit{then} \; P \; \textit{else} \; Q : \sigma} \; (\text{T-IF})$$

$$\frac{\Gamma \rhd M : \sigma \to \tau \quad \Gamma \rhd N : \sigma}{\Gamma \rhd M N : \tau} \text{(T-APP)} \qquad \frac{\Gamma, x : \sigma \rhd M : \tau}{\Gamma \rhd \lambda x : \sigma . M : \sigma \to \tau} \text{(T-Abs)}$$

- ▶ Si $\Gamma \triangleright M$: σ puede derivarse usando los axiomas y reglas de tipado decimos que es derivable.
- ▶ Decimos que M es tipable si el juicio de tipado $\Gamma \rhd M$: σ puede derivarse, para algún Γ y σ .

Resultados básicos

Unicidad de tipos

Si $\Gamma \rhd M : \sigma$ y $\Gamma \rhd M : \tau$ son derivables, entonces $\sigma = \tau$

Resultados básicos

Unicidad de tipos

Si $\Gamma \rhd M$: σ y $\Gamma \rhd M$: τ son derivables, entonces $\sigma = \tau$

Weakening + Strengthening

Resultados básicos

Unicidad de tipos

Si $\Gamma \rhd M$: σ y $\Gamma \rhd M$: τ son derivables, entonces $\sigma = \tau$

Weakening+Strengthening

Si $\Gamma \rhd M : \sigma$ es derivable y $\Gamma \cap \Gamma'$ contiene a todas las variables

libres de M, entonces Γ' $\triangleright M$: σ

Variables libres

Una variable puede ocurrir libre o ligada en un término. Decimos que "x" ocurre libre si no se encuentra bajo el alcance de una ocurrencia de " λ x". Caso contrario ocurre ligada.

- \blacktriangleright λx : Bool.if \underbrace{x}_{ligada} then true else false
- $ightharpoonup \lambda x$: Bool. λy : Bool.if true then \underbrace{x}_{ligada} else \underbrace{y}_{ligada}
- \blacktriangleright λx : Bool.if \underbrace{x}_{ligada} then true else \underbrace{y}_{libre}
- $(\lambda x : Bool.if \underbrace{x}_{ligada} then true else false) \underbrace{x}_{libre}$

Variables libres: Definición formal

$$FV(x) \stackrel{\mathrm{def}}{=} \{x\}$$

$$FV(true) = FV(false) \stackrel{\mathrm{def}}{=} \emptyset$$

$$FV(if M then P else Q) \stackrel{\mathrm{def}}{=} FV(M) \cup FV(P) \cup FV(Q)$$

$$FV(MN) \stackrel{\mathrm{def}}{=} FV(M) \cup FV(N)$$

$$FV(\lambda x : \sigma.M) \stackrel{\mathrm{def}}{=} FV(M) \setminus \{x\}$$

Semántica

- Habiendo definido la sintaxis de λ^b, nos interesa formular cómo se evalúan o ejecutan los términos
- Hay varias maneras de definir rigurosamente la semántica de un lenguaje de programación
 - Operacional
 - Denotacional
 - Axiomática
- ightharpoonup Vamos a definir una semántica operacional para λ^b

¿Qué es semántica operacional?

- Consiste en
 - interpretar a los términos como estados de una máquina abstracta y
 - definir una función de transición que indica, dado un estado, cuál es el siguiente estado

¿Qué es semántica operacional?

- Consiste en
 - interpretar a los términos como estados de una máquina abstracta y
 - definir una función de transición que indica, dado un estado, cuál es el siguiente estado
- ➤ Significado de un término *M*: el estado final que alcanza la máquina al comenzar con *M* como estado inicial

¿Qué es semántica operacional?

- Consiste en
 - interpretar a los términos como estados de una máquina abstracta y
 - definir una función de transición que indica, dado un estado, cuál es el siguiente estado
- ➤ Significado de un término *M*: el estado final que alcanza la máquina al comenzar con *M* como estado inicial
- Formas de definir semántica operacional
 - Small-step: la función de transición describe un paso de computación
 - 2. Big-step (o Natural Semantics): la función de transición, en un paso, evalúa el término a su resultado

Semántica operacional

La formulación se hace a través de juicios de evaluación

$$M \rightarrow N$$

que se leen: "el término M reduce, en un paso, al término N"

- El significado de un juicio de evaluación se establece a través de:
 - Axiomas de evaluación: establecen que ciertos juicios de evaluación son derivables.
 - Reglas de evaluación establecen que ciertos juicios de evaluación son derivables siempre y cuando ciertos otros lo sean.

Semántica operacional small-step de λ^b

- lacktriangle Vamos a presentar una semántica operacional small-step para el cálculo λ^b
- Además de introducir la función de transición es necesario introducir también los valores
 - Valores: Los posibles resultados de evaluación de términos bien-tipados y cerrados

Semántica Operacional - Expr. booleanas

Valores

$$V ::= true \mid false$$

Semántica Operacional - Expr. booleanas

Juicio de evaluación en un paso

$$\overline{\mbox{\it if true then } M_2 \mbox{\it else } M_3 \rightarrow M_2} \, \big(\mbox{E-IfTrue} \big)$$

$$\frac{\phantom{M_{1}}}{\text{if false then } M_{2} \text{ else } M_{3} \rightarrow M_{3}} \left(\text{E-IFFALSE} \right)$$

$$rac{ extit{M}_1
ightarrow extit{M}_1'}{ extit{if M_1 then M_2 else M_3}
ightarrow extit{if M_1 then M_2 else M_3} \left(ext{E-IF}
ight)$$

Ejemplos

 $\frac{}{\textit{if false then false else true}} \underbrace{\text{(E-IFFALSE)}}_{\textit{if (if false then false else true) then false else true}} (\text{E-IF})$ $\xrightarrow{}_{\textit{if true then false else true}} (\text{E-IF})$

Observar que

▶ No existe M tal que $true \rightarrow M$ (idem con false).

Ejemplos

if true then (if false then false else true) else true

→ if true then true else true

La estrategia de evaluación corresponde con el orden habitual en lenguajes de programación.

- 1. Primero evaluar la guarda del condicional
- 2. Una vez que la guarda sea un valor, seguir con la expresión del then o del else, según corresponda

Propiedades

Lema (Determinismo del juicio de evaluación en un paso) Si $M \to M'$ y $M \to M''$, entonces M' = M''

Propiedades

Una forma normal es un término que no puede evaluarse más (i.e. M tal que no existe N, $M \rightarrow N$)

Recordar que un valor es el resultado al que puede evaluar un término bien-tipado y cerrado

Lema

Todo valor está en forma normal

- No vale el recíproco en λ^b (pero sí vale en el cálculo de las expresiones booleanas cerradas):
 - if x then true else false
 - **>** >
 - true false

Evaluación en muchos pasos

El juicio de evaluación en muchos pasos \rightarrow es la clausura reflexiva, transitiva de \rightarrow . Es decir, la menor relación tal que

- 1. Si $M \rightarrow M'$, entonces $M \rightarrow M'$
- 2. $M \rightarrow M$ para todo M
- 3. Si $M \twoheadrightarrow M'$ y $M' \twoheadrightarrow M''$, entonces $M \twoheadrightarrow M''$

 $\begin{array}{ll} \mbox{\it if true then (if false then false else true) else true} \\ \twoheadrightarrow & \mbox{\it true} \end{array}$

Evaluación en muchos pasos - Propiedades

Para el cálculo de expresiones booleanas valen:

Lema (Unicidad de formas normales)

Si $M \twoheadrightarrow U$ y $M \twoheadrightarrow V$ con U, V formas normales, entonces U = V

Lema (Terminación)

Para todo M existe una forma normal N tal que M woheadrightarrow N

Valores

$$V ::= true \mid false \mid \lambda x : \sigma.M$$

Introduciremos una noción de evalución en λ^b tal que valgan los lemas previos y también el siguiente resultado:

Teorema

Todo término bien-tipado y cerrado de tipo

- Bool evalúa, en cero o más pasos, a true, false
- $ightharpoonup \sigma
 ightarrow au$ evalúa, en cero o más pasos, a $\lambda x : \sigma.M$, para alguna variable x, para algún término M

Juicio de evaluación en un paso

$$\frac{\textit{M}_1 \rightarrow \textit{M}_1'}{\textit{M}_1 \, \textit{M}_2 \rightarrow \textit{M}_1' \, \textit{M}_2} \, \big(\text{E-App1} \, / \, \mu \big)$$

Juicio de evaluación en un paso

$$\frac{\textit{M}_1 \rightarrow \textit{M}_1'}{\textit{M}_1 \, \textit{M}_2 \rightarrow \textit{M}_1' \, \textit{M}_2} \, \big(\text{E-App1} \, / \, \mu \big)$$

$$\frac{\textit{M}_2 \rightarrow \textit{M}_2'}{\left(\lambda \textit{x}: \sigma.\textit{M}\right) \textit{M}_2 \rightarrow \left(\lambda \textit{x}: \sigma.\textit{M}\right) \textit{M}_2'} \left(\text{E-App2 } / \ \nu\right)$$

Juicio de evaluación en un paso

$$rac{M_1
ightarrow M_1'}{M_1\,M_2
ightarrow M_1'\,M_2} ext{(E-App1 / μ)}$$

$$\frac{\textit{M}_2 \rightarrow \textit{M}_2'}{\left(\lambda \textit{x}: \sigma.\textit{M}\right) \textit{M}_2 \rightarrow \left(\lambda \textit{x}: \sigma.\textit{M}\right) \textit{M}_2'} \left(\text{E-App2} \ / \ \nu\right)$$

$$\frac{}{(\lambda x : \sigma.M) \stackrel{\mathbf{V}}{\vee} \rightarrow}$$
 (E-AppAbs / β)

Juicio de evaluación en un paso

$$rac{M_1
ightarrow M_1'}{M_1 \, M_2
ightarrow M_1' \, M_2} \, ext{(E-App1 / μ)}$$

$$\frac{\textit{M}_2 \rightarrow \textit{M}_2'}{\left(\lambda \textit{x} : \sigma.\textit{M}\right) \textit{M}_2 \rightarrow \left(\lambda \textit{x} : \sigma.\textit{M}\right) \textit{M}_2'} \left(\text{E-App2} \ / \ \nu\right)$$

$$\frac{}{(\lambda x : \sigma.M) \stackrel{\mathbf{V}}{\lor} \to M\{x \leftarrow \stackrel{\mathbf{V}}{\lor}\}} (\text{E-AppAbs } / \beta)$$

Además de (E-IFTRUE), (E-IFFALSE), (E-IF)

$$M\{x \leftarrow N\}$$

- "Sustituir todas las ocurrencias libres de x en el término M por el término N"
- Operación importante que se usa para darle semántica a la aplicación de funciones (entre otras)
- Es sencilla de definir pero requiere cuidado en el tratamiento de los ligadores de variables (i.e. con " λx ")

$$x\{x \leftarrow N\} \stackrel{\text{def}}{=}$$

$$x\{x \leftarrow N\} \stackrel{\text{def}}{=} N$$

 $a\{x \leftarrow N\} \stackrel{\text{def}}{=}$

$$\begin{array}{ccc} x\{x\leftarrow \textit{N}\} & \stackrel{\mathrm{def}}{=} & \textit{N} \\ & a\{x\leftarrow \textit{N}\} & \stackrel{\mathrm{def}}{=} & a & \mathrm{si} \ a\in\{\textit{true},\textit{false}\}\cup\mathcal{X}\setminus\{x\} \end{array}$$
 (if \textit{M} then \textit{P} else \textit{Q}) $\{x\leftarrow \textit{N}\} & \stackrel{\mathrm{def}}{=} & \text{si} \ a\in\{\textit{true},\textit{false}\}\cup\mathcal{X}\setminus\{x\}$

$$x\{x \leftarrow N\} \stackrel{\mathrm{def}}{=} N$$

$$a\{x \leftarrow N\} \stackrel{\mathrm{def}}{=} a \quad \text{si } a \in \{\textit{true}, \textit{false}\} \cup \mathcal{X} \setminus \{x\}$$

$$(\textit{if M then P else Q})\{x \leftarrow N\} \stackrel{\mathrm{def}}{=} \textit{if } M\{x \leftarrow N\}$$

$$\textit{then P}\{x \leftarrow N\}$$

$$\textit{else Q}\{x \leftarrow N\}$$

$$(M_1 M_2)\{x \leftarrow N\} \stackrel{\mathrm{def}}{=}$$

$$x\{x \leftarrow N\} \stackrel{\mathrm{def}}{=} N$$

$$a\{x \leftarrow N\} \stackrel{\mathrm{def}}{=} a \text{ si } a \in \{true, false\} \cup \mathcal{X} \setminus \{x\}$$

$$(if M \text{ then } P \text{ else } Q)\{x \leftarrow N\} \stackrel{\mathrm{def}}{=} if M\{x \leftarrow N\}$$

$$then P\{x \leftarrow N\}$$

$$else Q\{x \leftarrow N\}$$

$$(M_1 M_2)\{x \leftarrow N\} \stackrel{\mathrm{def}}{=} M_1\{x \leftarrow N\} M_2\{x \leftarrow N\}$$

$$(\lambda y : \sigma.M)\{x \leftarrow N\} \stackrel{\mathrm{def}}{=}$$

```
x\{x \leftarrow N\} \stackrel{\mathrm{def}}{=} N
a\{x \leftarrow N\} \stackrel{\mathrm{def}}{=} a \text{ si } a \in \{true, false\} \cup \mathcal{X} \setminus \{x\}
(if M \text{ then } P \text{ else } Q)\{x \leftarrow N\} \stackrel{\mathrm{def}}{=} if M\{x \leftarrow N\}
then P\{x \leftarrow N\}
else Q\{x \leftarrow N\}
(M_1 M_2)\{x \leftarrow N\} \stackrel{\mathrm{def}}{=} M_1\{x \leftarrow N\} M_2\{x \leftarrow N\}
(\lambda y : \sigma.M)\{x \leftarrow N\} \stackrel{\mathrm{def}}{=} ?
```

Captura de variables

"Sustituir la variable x por el término z" $(\lambda z : \sigma.x)\{x \leftarrow z\} = \lambda z : \sigma.z$

Captura de variables

"Sustituir la variable x por el término z"
$$(\lambda z : \sigma.x)\{x \leftarrow z\} = \lambda z : \sigma.z$$

- ▶ ¡Hemos convertido a la función constante λz : $\sigma.x$ en la función identidad!
- **El** problema: " $\lambda z : \sigma$ " capturó la ocurrencia libre de z
- Hipótesis: los nombres de las variables ligadas no son relevantes
 - la ecuación de arriba debería ser comparable con

$$(\lambda w : \sigma.x)\{x \leftarrow z\} = \lambda w : \sigma.z$$

Conclusión: Para definir $(\lambda y : \sigma.M)\{x \leftarrow N\}$ asumiremos que la variable ligada y se renombró de tal manera que no ocurre libre en N

α -equivalencia

- Dos términos M y N que difieren solamente en el nombre de sus variables ligadas se dicen α-equivalentes
- α-equivalencia es una relación de equivalencia
- **D**e aquí en más identificaremos términos α -equivalentes.
- \blacktriangleright $\lambda x : Bool.x =_{\alpha} \lambda y : Bool.y$
- \blacktriangleright λx : Bool. $y =_{\alpha} \lambda z$: Bool.y
- \blacktriangleright λx : Bool. $y \neq_{\alpha} \lambda x$: Bool.z
- \blacktriangleright λx : Bool. λx : Bool. $x \neq_{\alpha} \lambda y$: Bool. λx : Bool.y

Sustitución - Revisada

- 1. NB: la condición $x \neq y$, $y \notin FV(N)$ siempre puede cumplirse renombrando apropiadamente
- 2. Técnicamente, la sustitución está definida sobre clases de lpha-equivalencia de términos

Estado de error

- Estado (=término) que no es un valor pero en el que la evaluación está trabada
- Representa estado en el cual el sistema de run-time en una implementación real generaría una excepción

Ejemplos

- ▶ if x then M else N
 - Obs: no es cerrado
- ► true M
 - Obs: no es tipable

Objetivo de un sistema de tipos

Garantizar la ausencia de estados de error

Decimos que un término termina o que es fuertemente normalizante si no hay cadenas de reducción infinitas a partir de él.

Teorema

- Todo término bien tipado termina
- Si un término cerrado está bien tipado, entonces evalúa a un valor

Corrección

Corrección = Progreso + Preservación

Progreso

Si M es cerrado y bien tipado entonces

- 1. M es un valor
- 2. o bien existe M' tal que $M \rightarrow M'$

La evaluación no puede trabarse para términos cerrados, bien tipados que no son valores

Preservación

Si $\Gamma \rhd M : \sigma$ y $M \to N$, entonces $\Gamma \rhd N : \sigma$

La evaluación preserva tipos

Tipos y términos de λ^{bn}

$$\sigma ::= Bool \mid Nat \mid \sigma \rightarrow \rho$$
 $M ::= \ldots \mid 0 \mid succ(M) \mid pred(M) \mid iszero(M)$

Descripción informal:

- ightharpoonup succ(M): evaluar M hasta arrojar un número e incrementarlo
- ightharpoonup pred(M): evaluar M hasta arrojar un número y decrementarlo
- iszero(M): evaluar M hasta arrojar un número, luego retornar true/false según sea cero o no

Tipado de λ^{bn}

Agregamos a los axiomas y regla de tipado de λ^b los siguientes:

$$\frac{\Gamma \rhd M : \mathit{Nat}}{\Gamma \rhd \mathit{nat}} \text{(T-Zero)}$$

$$\frac{\Gamma \rhd M : \mathit{Nat}}{\Gamma \rhd \mathit{succ}(M) : \mathit{Nat}} \text{(T-Succ)} \qquad \frac{\Gamma \rhd M : \mathit{Nat}}{\Gamma \rhd \mathit{pred}(M) : \mathit{Nat}} \text{(T-Pred)}$$

$$\frac{\Gamma \rhd M : \mathit{Nat}}{\Gamma \rhd \mathit{iszero}(M) : \mathit{Bool}} \text{(T-IsZero)}$$

Valores y evaluación en un paso de λ^{bn} (1/2)

Valores

$$V ::= \ldots \mid \underline{n} \text{ donde } \underline{n} \text{ abrevia } succ^n(0).$$

Juicio de evaluación en un paso (1/2)

$$rac{M_1
ightarrow M_1'}{succ(M_1)
ightarrow succ(M_1')} ext{(E-Succ)} \ rac{m_1
ightarrow M_1'}{pred(0)
ightarrow 0} ext{(E-PredSucc)} \ rac{M_1
ightarrow M_1'}{pred(M_1)
ightarrow pred(M_1')} ext{(E-Pred)}$$

Valores y evaluación en un paso de $\lambda^{bn}(2/2)$

Juicio de evaluación en un paso (2/2)

$$rac{1}{iszero(0)
ightarrow true} ext{(E-IsZeroZero)}$$
 $rac{1}{iszero(n+1)
ightarrow false} ext{(E-IsZeroSucc)}$
 $rac{M_1
ightarrow M_1'}{iszero(M_1)
ightarrow iszero(M_1')} ext{(E-IsZero)}$

Además de los juicios de evaluación en un paso de λ^b .

Tipos y términos de λ^{bnu}

$$\sigma ::= Bool \mid Nat \mid Unit \mid \sigma \rightarrow \rho$$

$$M ::= \dots \mid unit$$

Descripción informal:

- Unit es un tipo unitario y el único valor posible de una expresión de ese tipo es unit.
- ► Cumple rol similar a *void* en C o Java

Tipado de λ^{bnu}

Agregamos el axioma de tipado:

$$\frac{}{\Gamma \vartriangleright \mathit{unit} : \mathit{Unit}} \, \big(\mathrm{T\text{-}Unit} \big)$$

NB:

- No hay reglas de evaluación nuevas
- Extendemos el conjunto de valores V con unit

$$V ::= \ldots | \mathit{unit}$$

Bibliografía

Benjamin C. Pierce: **Types and programming languages**. MIT Press 2002, ISBN 0-262-16209-1. (Parte II - Simple Types)