

CONCLUSION ON PESTICIDE PEER REVIEW

Conclusion on the peer review of the pesticide risk assessment of the active substance fenoxycarb¹

European Food Safety Authority²

European Food Safety Authority (EFSA), Parma, Italy

SUMMARY

Fenoxycarb is one of the 84 substances of the third stage part B of the review programme covered by Commission Regulation (EC) No $1490/2002^3$, as amended by Commission Regulation (EC) No $1095/2007^4$. In accordance with the Regulation, at the request of the Commission of the European Communities (hereafter referred to as 'the Commission'), the EFSA organised a peer review of the initial evaluation, i.e. the Draft Assessment Report (DAR), provided by the Netherlands being the designated rapporteur Member State (RMS). The peer review process was subsequently terminated following the applicant's decision, in accordance with Article 11e, to withdraw support for the inclusion of fenoxycarb in Annex I to Council Directive 91/414/EEC.

Following the Commission Decision of 5 December 2008 (2008/934/EC)⁵ concerning the non-inclusion of fenoxycarb in Annex I to Council Directive 91/414/EEC and the withdrawal of authorisations for plant protection products containing that substance, the applicant Syngenta Crop Protection AG made a resubmission application for the inclusion of fenoxycarb in Annex I in accordance with the provisions laid down in Chapter III of Commission Regulation (EC) No. 33/2008⁶. The resubmission dossier included further data in response to the issues identified in the DAR.

In accordance with Article 18 of Commission Regulation (EC) No. 33/2008, The Netherlands being the designated RMS, submitted an evaluation of the additional data in the format of an Additional Report. The Additional Report was received by the EFSA on 10 December 2009.

In accordance with Article 19 of Commission Regulation (EC) No. 33/2008, the EFSA distributed the Additional Report to Member States and the applicant for comments on 11 December 2009. The DAR was also distributed to Member States for comments in view of the fact that the original peer review had been terminated following the applicant's notification of withdrawal of support. The EFSA collated and forwarded all comments received to the Commission on 25 January 2010,

In accordance with Article 20, following consideration of the Additional Report, the comments received, and where necessary the DAR, the Commission requested the EFSA to conduct a focused peer review in the areas of ecotoxicology and mammalian toxicology and deliver its conclusions on fenoxycarb.

¹ On request from the European Commission, Question No EFSA-Q-2010-00136 issued on 13 September 2010.

² Correspondence: praper@efsa.europa.eu

³ OJ L224, 21.08.2002, p.25

⁴ OJ L 246, 21.9.2007, p. 19

⁵ OJ L 333, 11.12.2008, p0.11

⁶ OJ L 15, 18.01.2008, p.5

Suggested citation: European Food Safety Authority; Conclusion on the peer review of the pesticide risk assessment of the active substance fenoxycarb EFSA Journal 2010;8(12):1779. [75 pp.]. doi:10.2903/j.efsa.2010.1779. Available online: www.efsa.europa.eu/efsajournal.htm

The conclusions laid down in this report were reached on the basis of the evaluation of the representative uses of fenoxycarb as an insecticide on apples and pears as proposed by the applicant. Full details of the representative uses can be found in Appendix A to this report.

No areas of concern were identified in the area of physical-chemical properties. One data gap was identified for attrition characteristics of the granule formulation before and after 2 years storage.

No data gaps or areas of concern were identified in the area of mammalian toxicology.

The consumer risk assessment for the representative use of fenoxycarb in apples and pears has been addressed by the available data and no areas of concern were identified.

The data available in the area of environmental fate and behaviour are sufficient to carry out the required environmental exposure assessments at the EU level for the representative uses.

A high risk was identified for aquatic organisms based on higher tier level assessment for all the representative uses which was considered a critical area of concern. A data gap was identified for to further address the risk to aquatic invertebrates taking into account the mode of action of fenoxycarb and the most sensitive growth stages. A data gap was identified to further address the effects on bee brood and mitigation measures to protect bees (i.e. SPe8) were recommended. A high risk was identified for the in-crop and off-crop risk to non-target arthropods and a data gap was set for all the representative uses. A critical area of concern was identified. A low risk was assessed for birds and mammals, soil non-target macro and micro-organisms, terrestrial non-target plants and biological methods for sewage treatments.

KEY WORDS

fenoxycarb, peer review, risk assessment, pesticide, insecticide

TABLE OF CONTENTS

Summary
Table of contents
Background
The active substance and the formulated product
Conclusions of the evaluation
1. Identity, physical/chemical/technical properties and methods of analysis
2. Mammalian toxicity
3. Residues
4. Environmental fate and behaviour
5. Ecotoxicology
6. Overview of the risk assessment of compounds listed in residue definitions for the environmental
compartments1
6.1. Soil
6.2. Ground water
6.3. Surface water and sediment
6.4. Air
List of studies to be generated, still ongoing or available but not peer reviewed
Particular conditions proposed to be taken into account to manage the risk(s) identified
Issues that could not be finalised
Critical areas of concern
References
Appendices
Abbreviations

BACKGROUND

Legislative framework

Commission Regulation (EC) No 1490/2002⁷, as amended by Commission Regulation (EC) No 1095/2007⁸ lays down the detailed rules for the implementation of the third stage of the work programme referred to in Article 8(2) of Council Directive 91/414/EEC. This regulates for the European Food Safety Authority (EFSA) the procedure for organising, upon request of the Commission of the European Communities (hereafter referred to as 'the Commission'), a peer review of the initial evaluation, i.e. the Draft Assessment Report (DAR), provided by the designated rapporteur Member State.

Commission Regulation (EC) No 33/2008⁹ lays down the detailed rules for the application of Council Directive 91/414/EEC for a regular and accelerated procedure for the assessment of active substances which were part of the programme of work referred to in Article 8(2) of Council Directive 91/414/EEC but which were not included in Annex I. This regulates for the EFSA the procedure for organising the consultation of Member States and the applicant for comments on the Additional Report provided by the designated RMS, and upon request of the Commission the organisation of a peer review and/or delivery of its conclusions on the active substance.

Peer review conducted in accordance with Commission Regulation (EC) No 1490/2002

Fenoxycarb is one of the 84 substances of the third stage part B of the review programme covered by Commission Regulation (EC) No 1490/2002, as amended by Commission Regulation (EC) No 1095/2007. In accordance with the Regulation, at the request of the Commission, the EFSA organised a peer review of the DAR provided by the designated rapporteur Member State, the Netherlands which was received by the EFSA on 4 June 2007 (Netherlands, 2007)

The peer review process was subsequently terminated following the applicant's decision, in accordance with Article 11e, to withdraw support for the inclusion of fenoxycarb in Annex I to Council Directive 91/414/EEC.

Peer review conducted in accordance with Commission Regulation (EC) No 33/2008

Following the Commission Decision of 5 December 2008 (2008/934/EC)¹⁰ concerning the non-inclusion of fenoxycarb in Annex I to Council Directive 91/414/EEC and the withdrawal of authorisations for plant protection products containing that substance, the applicant Syngenta Crop Protection AG made a resubmission application for the inclusion of fenoxycarb in Annex I in accordance with the provisions laid down in Chapter III of Commission Regulation (EC) No. 33/2008. The resubmission dossier included further data in response to the issues identified in the DAR.

In accordance with Article 18, the Netherlands being the designated RMS, submitted an evaluation of the additional data in the format of an Additional Report (Netherlands, 2009). The Additional Report was received by the EFSA on 10 December 2009.

In accordance with Article 19, the EFSA distributed the Additional Report to Member States and the applicant for comments on 11 December 2009. The DAR was also distributed to Member States for comments in view of the fact that it had not previously been distributed for consultation. In addition, the EFSA conducted a public consultation on the Additional Report and the DAR. The EFSA collated and forwarded all comments received to the Commission on 25 January 2010. At the same time, the collated comments were forwarded to the RMS for compilation in the format of a Reporting Table.

⁷ OJ L224, 21.08.2002, p.25

⁸ OJ L246, 21.9.2007, p.19

⁹ OJ L 15, 18.01.2008, p.5

¹⁰ OJ L 333, 11.12.2008, p.11

The applicant was invited to respond to the comments in column 3 of the Reporting Table. The comments and the applicant's response was evaluated by the RMS in column 3.

In accordance with Article 20, following consideration of the Additional Report, the comments received, and where necessary the DAR, the Commission decided to further consult the EFSA. By written request, received by the EFSA on 23 February 2010 the Commission requested the EFSA to arrange a consultation with Member State experts as appropriate and deliver its conclusions on fenoxycarb within 6 months of the date of receipt of the request, subject to an extension of a maximum of 90 days where further information were required to be submitted by the applicant in accordance with Article 20(2).

The scope of the peer review and the necessity for additional information, not concerning new studies, to be submitted by the applicant in accordance with Article 20(2), was considered in a telephone conference between the EFSA, the RMS, and the Commission on 24 February 2010 the applicant was also invited to give its view on the need for additional information. On the basis of the comments received, the applicant's response to the comments, and the RMS' subsequent evaluation thereof, it was concluded that the EFSA should organise a consultation with Member State experts in the areas of mammalian toxicology and ecotoxicology and that further information should be requested from the applicant in the area of ecotoxicology.

The outcome of the telephone conference, together with EFSA's further consideration of the comments is reflected in the conclusions set out in column 4 of the Reporting Table. All points that were identified as unresolved at the end of the comment evaluation phase and which required further consideration, including those issues to be considered in consultation with Member State experts, and the additional information to be submitted by the applicant, were compiled by the EFSA in the format of an Evaluation Table.

The conclusions arising from the consideration by the EFSA, and as appropriate by the RMS, of the points identified in the Evaluation Table, together with the outcome of the expert discussions where these took place, were reported in the final column of the Evaluation Table.

A final consultation on the conclusions arising from the peer review of the risk assessment took place with Member States via a written procedure in August 2010.

This conclusion report summarises the outcome of the peer review of the risk assessment on the active substance and the representative formulation evaluated on the basis of the representative uses as an insecticide on apples and pears, as proposed by the applicant A list of the relevant end points for the active substance as well as the formulation is provided in Appendix A. In addition, a key supporting document to this conclusion is the Peer Review Report, which is a compilation of the documentation developed to evaluate and address all issues raised in the peer review, from the initial commenting phase to the conclusion. The Peer Review Report (EFSA, 2010) comprises the following documents:

- the comments received,
- the Reporting Table (revision 1-1; 24 February 2010
- the Evaluation Table (09 September 2010)
- the report(s) of the scientific consultation with Member State experts (where relevant).

Given the importance of the DAR and the Additional Report including its addendum (compiled version of August 2010, Netherlands 2010) containing all individually submitted addenda) and the Peer Review Report, both documents are considered respectively as background documents A and B to this conclusion.

THE ACTIVE SUBSTANCE AND THE FORMULATED PRODUCT

Fenoxycarb is the ISO common name for ethyl 2-(4-phenoxy)ethylcarbamate (IUPAC).

The representative formulated product for the evaluation was 'Insegar 25 WG' a water dispersible granule (WG) containing 250 g/kg of fenoxycarb.

The representative uses evaluated comprise outdoor foliar spraying to control insect pests on apples and pears. Full details of the GAP can be found in the list of end points in Appendix A.

CONCLUSIONS OF THE EVALUATION

1. Identity, physical/chemical/technical properties and methods of analysis

The minimum purity of the active substance as manufactured is 970 g/kg. Toluene was considered as a relevant impurity but, based on its hazards and the level proposed in the technical specification, does not give rise to significant toxicological concern.

The main data regarding the identity of fenoxycarb and its physical and chemical properties are given in Appendix A.

Data were not available on the attrition characteristics of the granule before and after two years storage and a data gap has been identified.

The residue definition for all matrices is fenoxycarb. For plant matrices the multi-method DFG S19 is available as well as single HPLC-UV methods. For products of animal origin a HPLC-UV method is available. All environmental matrices can be analysed by LC-MS/MS methods. A method of analysis for body fluids and tissues is not required as the active substance is not classified as toxic or very toxic.

2. Mammalian toxicity

Fenoxycarb was discussed in the PRAPeR 79 expert meeting in July 2010. The batches used in the toxicological studies were considered representative of the technical specification. Toluene is a relevant impurity in the technical specification, but not of concern at the proposed level.

Of low acute toxicity upon oral, dermal or inhalation exposure, fenoxycarb is neither a skin or eye irritant nor a skin sensitiser. In short-term toxicity studies, the target organs were the liver (in all species), the thyroid and the kidney (in rats). The relevant NOAEL for the rat is 9.7 mg/kg bw/day based on the 13-week study, whereas only a LOAEL was identified for the dog (25 mg/kg bw/day in the 1-year study) and for the mouse (100 mg/kg bw/day in a 13-week study with limitations).

No potential for genotoxicity *in vivo* or *in vitro* was demonstrated in the available studies. In the long-term study with rats, the relevant NOAEL is 8.1 mg/kg bw/day based on liver findings (increased weight, hypertrophy and focal necrosis and fibrosis). In the first long-term study with mice (from 1995), the NOAEL was set at 5.3 mg/kg bw/d based on the increased incidences of lung and liver tumours. In the second long term study with mice (from 1987), a LOAEL of 5.3 mg/kg bw/day was identified based on higher incidences of alveolar/bronchiolar tumours in the lungs of males of all treated groups. Based on mechanistic studies, it was demonstrated that the liver tumours were due to peroxisome proliferation induced by fenoxycarb, a mechanism for which humans are less sensitive, and therefore were not relevant for humans. However, the experts could not conclude that the lung tumours observed in male mice are not relevant to humans, and the classification as **Carc. Cat.3**, **R40** *Limited evidence of a carcinogenic effect* was proposed. As metabolic differences were shown in the production of metabolites potentially related to tumour induction, it was nevertheless agreed that humans could be considered less sensitive to tumour formation than mice.

In the rat multigeneration study, the NOAEL for the reproductive parameters is 119 mg/kg bw/day, whereas the parental and offspring NOAEL is 13 mg/kg bw/day based on an increased liver weight. In the rat developmental study, no adverse effects were observed in foetuses and the maternal NOAEL was 50 mg/kg bw/d. From the two rabbit developmental studies presented, the maternal NOAEL was 100 mg/kg bw/day, and the developmental NOAEL was 200 mg/kg bw/day based on an increased incidence of spina bifida at 300 mg/kg bw/day, above historical control data. Based on this finding, the majority of the experts agreed to propose classification as **Repr. Cat. 3 R63** *Possible risk of harm to the unborn child.*

With regard to neurotoxicity, fenoxycarb is unlikely to have any significant effect on cholinesterase, and no clinical signs indicative of neurotoxicity were observed in the available repeated dose studies.

For the derivation of the **Acceptable Daily Intake** (ADI), the experts agreed to use the LOAEL of the second long-term mouse study. For the safety factor, while mouse to human extrapolation can be reduced by a factor of 3 based on the mechanistic studies, the use of a LOAEL does imply the use of a higher safety factor, resulting in an overall safety factor of 100 and an ADI of 0.053 mg/kg bw/day. The agreed **Acceptable Operator Exposure Level** (AOEL) is 0.1 mg/kg bw/day based on the 13-week rat study and with the use of a safety factor of 100. The agreed **Acute Reference Dose** (ARfD) is 2.0 mg/kg bw/day based on the rabbit developmental studies and the use of a safety factor of 100.

The ARfD is provides a margin of safety of 150 with regard to the dose level where spina bifida (triggering R63) are observed in the rabbit developmental studies.

For the dermal absorption, the experts agreed on the values of 0.2% for the concentrate and 28% for the spray dilution. The exposure assessment was performed for mechanical upward spraying on pome fruits. For operators and re-entry workers, the exposure levels are below the AOEL without the use of personal protective equipment. For bystanders, the estimated exposure is also below the AOEL.

3. Residues

Metabolism of fenoxycarb was investigated in oranges and apples. A study in Bermuda grass is available as supportive information. The major component of the residue in oranges was fenoxycarb, representing between 60% and 80% of the TRR at harvest. In apples, at a comparable PHI as in oranges, fenoxycarb represented 44% of the TRR; at a later PHI only 8% of the TRR were present as parent. Very similar metabolites were identified in both oranges and apples. Metabolism of fenoxycarb in the fruits proceeded mainly by reactions such as ring hydroxylation, cleavage of the ether linkages and loss of the side chain, followed by further hydroxylation and conjugation steps. Although fenoxycarb is eventually extensively metabolised in fruit and metabolisation seemed to occur faster in apple than in oranges, fenoxycarb will be the major component of the residue in fruit upon treatment according to the representative uses for apple and pear. Therefore, the residue definition for post-registration monitoring and for risk assessment is proposed as fenoxycarb only.

Crop rotation is not relevant in the cultivation of apple and pear; however an available confined crop rotational study indicated there was no significant uptake into rotational crops.

Metabolism studies with fenoxycarb were submitted in goat and in hen. In livestock, fenoxycarb is rapidly metabolised by oxidation and dealkylation followed by conjugate formation. Residues were assessed in ruminant matrices only since fruit pomace is not relevant in chicken and pig diet. With the exception of kidney fenoxycarb was recovered in all edible ruminant products, with the highest percentage in the fat (22% of the TRR). The metabolite CGA294850 and its glucuronide and sulphate conjugates were by far the major residues in ruminant matrices (up to 66% of the TRR). However, based on the goat metabolism data and the cow feeding study with analysis for fenoxycarb and CGA294850, residues of fenoxycarb and CGA294850 are expected to be less than 0.01 mg/kg in animal tissues with the exception of fat where fenoxycarb was present up to 0.02 mg/kg at the relevant dose level. Hence, for the representative uses a definition of residues in food of animal origin should be fenoxycarb for risk assessment and monitoring, and a MRL of 0.02 mg/kg in ruminant fat is proposed.

A sufficient number of residue trials are available in apple in Northern Europe and Southern Europe. By extrapolation of data from apple to pear an MRL of 0.5 mg/kg fenoxycarb for apple and pear could be proposed. The residue trials are supported by validated analytical methods and acceptable freezer storage stability data for fenoxycarb residues.

Fenoxycarb was shown to be stable under conditions simulating industrial and houshold processing. Based on a processing study in apple, processing factors could be established for apple juice, puree, wet and and dry pomace.

A consumer risk assessment with the proposed MRLs, using EFSA PRIMo rev. 2.0 indicated the chronic intake (TMDI) was 12% of the ADI for the most critical consumer group. The highest short term intake (IESTI) was less than 3% of the ARfD for the most critical consumer group.

4. Environmental fate and behaviour

In soil laboratory incubations under aerobic conditions in the dark, fenoxycarb exhibits very low to moderate persistence forming no major (>10% applied radioactivity (AR)) or minor non-transient (>5% AR at least 2 consecutive sampling times¹¹) soil metabolites that trigger further assessment. Mineralisation of both phenyl ring radiolabels to carbon dioxide accounted for 24-32% AR after 88-91 days. The formation of unextractable residues (not extracted using acetonitrile:water followed by Soxhlet with acetonitrile or either basified methanol or methanol water followed by aqueous sodium hydroxide) from these phenyl ring radiolabels accounted for 53 – 63 % AR after 88-91 days. In an anaerobic dark laboratory soil incubation and a laboratory soil photolysis study, the behaviour of fenoxycarb was comparable to that observed in the aerobic incubations. Fenoxycarb exhibited slight to low mobility in soil. In satisfactory field dissipation studies carried out at 3 sites, (in the USA (California), Spain and Southern France, spray application to the bare soil surface in June or August, subsequently sown grass emerged except in California where plots were maintained bare) fenoxycarb exhibited low persistence.

In laboratory incubations in dark aerobic natural sediment water systems, fenoxycarb exhibited low persistence, forming no major metabolites. The unextractable sediment fraction (not extracted using acetonitrile followed by acetonitrile:water, then aqueous neutral and acid extraction at 80° C) of the phenoxy ring radiolabel, accounted for 50 - 52 % AR at study end (119 days). Mineralisation of this radiolabel accounted for 36-40 % AR at the end of the study. The rate of decline of fenoxycarb in laboratory sterile aqueous photolysis experiments was either faster or comparable to that which occurred in the aerobic sediment water incubations (short light path lengths with light energy equated to summer sunlight at 40° N). Under these photolysis conditions the major metabolites CGA-294847 (max. 17% AR at study end), 30 days and phenol (max. 18 % AR at 22 days) were produced.

The necessary surface water exposure assessments (Predicted Environmental Concentrations (PEC)) in were carried out for the metabolites CGA-294847 and phenol, using a FOCUS (FOCUS, 2001) step 1 approach (version 1.1 of the Steps 1-2 in FOCUS calculator). For the active substance fenoxycarb, appropriate step 2 (FOCUS, 2001), step 3 and step 4 calculations PEC in surface water and sediment were available ¹². The step 4 calculations appropriately followed the FOCUS (FOCUS, 2007) guidance, with just no-spray drift buffer zones of up to 30 m being implemented. The SWAN tool (version 1.1.4) was appropriately used to implement these mitigation measures in the simulations.

The necessary groundwater exposure assessments were appropriately carried out using FOCUS (FOCUS, 2000) scenarios and the models PEARL 3.3.3 and PELMO $3.3.2^{13}$ for parent fenoxycarb. The potential for groundwater exposure from the representative uses assessed by fenoxycarb above the parametric drinking water limit of $0.1 \,\mu\text{g/L}$ was concluded to be low in geoclimatic situations that are represented by all 9 FOCUS groundwater scenarios.

¹¹ The importance of this is for groundwater exposure assessment of metabolites as discussed in European Commission (2003)

Step 3 and 4 simulations correctly utilised the agreed Q10 of 2.58 (following EFSA, 2007) and Walker equation coefficient of 0.7

¹³ Simulations complied with EFSA, 2004 recomendations and correctly utilised the agreed Q10 of 2.58 (following EFSA, 2007) and Walker equation coefficient of 0.7

The PEC in soil, surface water, sediment, and groundwater covering the representative uses assessed can be found in Appendix A of this conclusion.

5. Ecotoxicology

The risk to birds and mammals via dietary exposure and from consumption of contaminated water was assessed as low at first tier following the Guidance Document (European Commission, 2002). For long-term risk assessment for birds residue data from the PPR-panel opinion (EFSA, 2008) were taken into account.

Fenoxycarb was very toxic to aquatic organisms. The lowest endpoint was observed in the chronic toxicity study with Daphnia magna and the active substance (NOEC of 1.6 ng a.s./L). Based on this data, a high risk was identified at FOCUS step 3. The risk was subsequently refined with FOCUS step 4 calculations including mitigation measures and the higher tier endpoint from an outdoor microcosm study. However, the higher tier endpoint was questioned because several deficiencies in study were identified during the PRAPeR expert meeting. The geographic and climatic conditions were not comparable with the conditions in Europe because the study was conducted in Texas. The dosing scheme applied was considered not sufficient to cover all the representative uses. The presence of bluegill sunfish was considered to be a factor which could potentially reduce the statistical power of the study and, as a consequence, the reliability of a derived NOEC. In addition, since fenoxycarb is an insect growth regulator, it was questioned whether the relevant life stages were considered in the study, even if the RMS confirmed that the most sensitive species and univoltine insects were included. Therefore, due to all these uncertainties, the consensus was reached to reject the microcosm study. The TERs, calculated on the basis of FOCUS step 4 including no-spray buffer zone up to 30m and first-tier endpoints, were still below the trigger for aquatic invertebrates (chronic risk) and sediment-dwelling organisms. A data gap was identified to address the risk to aquatic invertebrates and sedimentdwelling organisms taking into account the mode of action of fenoxycarb and the most sensitive growth stages. Overall, since a high risk was identified for aquatic organisms for all the representative uses, a critical area of concern was proposed. The potential for endocrine disruptor effects to fish was discussed during the PRAPeR expert meeting. It was noted that there was no evidence of endocrine effects in the mammalian toxicology assessment and potential risk to fish would be covered by the risk assessment for aquatic invertebrates. The risk to aquatic organisms from the photolysis metabolite CGA-294847 was assessed as low. In the DAR the risk from the other photolysis metabolite phenol was considered addressed by the microcosm study As the microcosm study was not accepted, therefore the data gap remains to address the risk from the photolysis metabolite phenol.

The available study on bee brood was considered not sufficient to address the risk because it was conducted with an application rate lower than the representative uses and with only one application. Therefore, the risk assessment for bee brood could not be finalised and a data gap to further address the effects on bee brood was identified. Due to the mode of action of fenoxycarb, mitigation measures (i.e SPe8) should be taken into account at Member State level to protect bees

The first tier risk assessment for non-target arthropods indicated a high risk to in-crop and off-crop species. *Coccinella septempunctata* was the most sensitive species in extended laboratory tests and semi-field studies. To demonstrate the potential for recovery and recolonisation, the applicant conducted a population simulation modelling with Coccinella and Lepidoptera. Geographic Information System (GIS) analysis was also provided to demonstrate the presence of recolonisation areas around orchards in Europe and the potential exposure of these areas, in support of the population modelling. However, the entire approach was questioned during the PRAPeR expert meeting. The population modelling was rejected because the parameterisation was not supported by substantial and reliable data. For example an inappropriate DT50 value was used (i.e derived from a study where residues on leaves were washed off, and the residues observed were not in accordance with duration of residual toxicity in other studies); for Lepidoptera, the endpoint used was a geometric mean of LD50 values of other Lepidopteran species than the meadow brown, resulting in further uncertainty (large variation in endpoints). In addition, the literature data used to derive some parameters could not be considered during the peer review and there was no indication of the degree of validation of the

modelling. The assumption of a distance of 20m between the treated field and the potential areas for recolonisation was considered too large. It was not described to what extent the outcome covered the uncertainty for the biodiversity of the off-crop area and the experts were concerned that the most sensitive species in the off-crop area were not represented in the population modelling studies. Overall, besides these uncertainties and concerns, the potential recovery was not definitely demonstrated and the application of additional mitigation measures such as drift reduction nozzles and in-field no spray buffer zones would be needed. Therefore, the experts agreed that the simulations and their outcomes could not be used in the refined risk assessment. Although the GIS analysis was considered relevant to show potential in-crop recovery, geographically. However, an analysis of the off-crop recovery was lacking. The resolution of the data source (i.e.CORINE¹⁴ 2000 land cover database) was considered too low to properly represent the edge-of-field situations. The buffer zone applied from the orchard areas to the recovery/recolonisation areas (i.e.20-500 m) was also considered too large, without any validation at field level. Therefore, overall it was agreed that the GIS approach could not be used in the risk assessment. A data gap was identified to further address the in- and off-crop risk to non-target arthropodsfor all representative uses .

A low risk was assessed for soil not target macro and micro-organisms, terrestrial non-target plants and biological methods for sewage treatments.

¹⁴ Coordinated Information on the European Environment.

6. Overview of the risk assessment of compounds listed in residue definitions triggering assessment of effects data for the environmental compartments

6.1. Soil

Compound (name and/or code)	Persistence	Ecotoxicology
fenoxycarb	very low to moderate persistence Biphasic DT ₅₀ 0.75-2.91 days (DT90 4.9-66 days 20-25°C 25-40% maximum water holding capacity and pF 2-2.5 soil moisture) Field dissipation studies Single first order DT ₅₀ 4.1-8.9 days.	The risk was assessed as low for soil living organisms.

6.2. Ground water

Compound (name and/or code)	Mobility in soil	>0.1 µg/L 1m depth for the representative uses (at least one FOCUS scenario or relevant lysimeter)		Toxicological relevance	Ecotoxicological activity
fenoxycarb	low to slight mobility KFoc 1251-2599mL/g	No	yes	yes	yes

6.3. Surface water and sediment

Compound (name and/or code)	Ecotoxicology
fenoxycarb	Very toxic to aquatic organisms. The lowest endpoint was observed in the chronic toxicity study with <i>Daphnia magna</i> and the active substance (NOEC of 1.6 ng a.s./L). the risk was assessed as high.
CGA 294847	Risk to aquatic organisms was assessed as low
phenol	Data gap to address the risk to aquatic organisms.

6.4. Air

Compound (name and/or code)	Toxicology
fenoxycarb	Low toxicity by inhalation (LC ₅₀ in rats > 4.4 mg/L air)

18314732, 2010, 12, Downloaded from https://efsa.onlinelibrary.wiley.com/doi/10.2903/jefsa.2010.1779 by University College London UCL Library Services, Wiley Online Library on [1405.2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library of rules of use; OA articles are governed by the applicable Centative Commons

LIST OF STUDIES TO BE GENERATED, STILL ONGOING OR AVAILABLE BUT NOT PEER REVIEWED

- Attrition of the granule before and after two years storage (relevant for all representative uses evaluated; submission date proposed by the applicant: unknown; see section 1).
- The risk to aquatic invertebrates and sediment-dwelling organisms needs to be further addressed taking into account the mode of action and the most sensitive growth stages (relevant for all representative uses evaluated; submission date proposed by the applicant: unknown; see section 5).
- The risk to aquatic organisms from the photolysis metabolite phenol needs to be addressed (relevant for all representative uses evaluated; submission date proposed by the applicant: unknown; see section 5).
- The effects on bee brood need to be further addressed (relevant for all representative uses evaluated; submission date proposed by the applicant: unknown; see section 5) o.k.
- The in- and off-crop risk to non-target arthropods need to be further addressed (relevant for all representative uses evaluated; submission date proposed by the applicant: unknown; see section 5).

PARTICULAR CONDITIONS PROPOSED TO BE TAKEN INTO ACCOUNT TO MANAGE THE RISK(S) IDENTIFIED

• Mitigation measures to protect bees (i.e. SPe8) were recommended.

ISSUES THAT COULD NOT BE FINALISED

• The risk assessment for bee brood was not finalised and a data gap was identified to further address the effects.

CRITICAL AREAS OF CONCERN

- Based on a higher tier level assessment a high risk to aquatic organisms was identified.
- Based on a higher tier level assessment a high in-crop and off-crop risk to non-target athropods was identified.

REFERENCES

- Netherlands, 2007. Draft Assessment Report (DAR) on the active substance fenoxycarb prepared by the rapporteur Member State the Netherlands in the framework of Directive 91/414/EEC, June 2007
- Netherlands, 2009. Additional Report to the Draft Assessment Report on the active substance fenoxycarb prepared by the rapporteur Member State the Netherlands in the framework of Commission Regulation (EC) No 33/2008, December 2009
- Netherlands, 2010. Final Addendum to the Additional Report on fenoxycarb, compiled by EFSA, August 2010

Guidance documents¹⁵:

- European Commission, 2003. Guidance document on assessment of the relevance of metabolites in groundwater of substances regulated under council directive 91/414/EEC. SANCO/221/2000-rev 10-final, 25 February 2003.
- EFSA (European Food Safety Authority), 2008. Scientific Opinion of the Panel on Plant protection products and their Residues (PPR) on the Science behind the Guidance Document on Risk Assessment for birds and mammals (EFSA journal 2008 734:1-181)
- FOCUS (2001). "FOCUS Surface Water Scenarios in the EU Evaluation Process under 91/414/EEC". Report of the FOCUS Working Group on Surface Water Scenarios, EC Document Reference SANCO/4802/2001-rev.2. 245 pp.
- FOCUS (2007). "Landscape And Mitigation Factors In Aquatic Risk Assessment. Volume 1. Extended Summary and Recommendations". Report of the FOCUS Working Group on Landscape and Mitigation Factors in Ecological Risk Assessment, EC Document Reference SANCO/10422/2005 v2.0. 169 pp.
- FOCUS (2000). "FOCUS Groundwater Scenarios in the EU review of active substances". Report of the FOCUS Groundwater Scenarios Workgroup, EC Document Reference SANCO/321/2000-rev.2. 202 pp, as updated by the Generic Guidance for FOCUS groundwater scenarios, version 1.1 dated April 2002
- EFSA (2007). Scientific Opinion of the Panel on Plant Protection Products and their Residues on a request from EFSA related to the default *Q*10 value used to describe the temperature effect on transformation rates of pesticides in soil. The EFSA Journal (2007) 622, 1-32
- EFSA (2004). Opinion of the Scientific Panel on Plant Health, Plant Protection Products and their Residues on a request of EFSA related to FOCUS groundwater models comparability and the consistency of this risk assessment of groundwater contamination. The EFSA Journal (2004) 93, 1-20
- European Commission, 2001. Guidelines on comparability, extrapolation, group tolerances and data requirements for setting MRLs. SANCO Doc 7525/VI/95-rev.7. pp.1-31.

of use; OA articles are governed by the applicable Creative Commons

¹⁵ For further guidance documents see http://ec.europa.eu/food/plant/protection/resources/publications en.htm#council (EC) or http://www.oecd.org/document/59/0,3343,en 2649 34383 1916347 1 1 1 1,00.html (OECD)

APPENDICES

APPENDIX A - LIST OF END POINTS FOR THE ACTIVE SUBSTANCE AND THE REPRESENTATIVE **FORMULATION**

Identity, Physical and Chemical Properties, Details of Uses, Further Information Chapter 2.1

Identity, Physical and Chemical Properties, Details of Uses, Further Information

Active substance (ISO Common Name) Fenoxycarb Function (e.g. fungicide) Insecticide

The Netherlands Rapporteur Member State

Identity (Annex IIA, point 1)

Chemical name (IUPAC) ethyl 2-(4-phenoxyphenoxy)ethylcarbamate

Chemical name (CA) ethyl N-[2-(4-phenoxyphenoxy)ethyl]carbamate 425

CIPAC No

CAS No 72490-01-8 (old); 79127-80-3 (new)

EEC No (EINECS or ELINCS) 276-696-7

FAO Specification (including year of publication) Not available

Minimum purity of the active substance as 970 g/kg

manufactured (g/kg)

Identity of relevant impurities (of toxicological, environmental and/or other significance) in the active substance as manufactured (g/kg)

Molecular formula

Molecular mass

Structural formula

Toluene max. 1 g/kg

 $C_{17}H_{19}NO_4$

301.4

Physical-chemical properties (Annex IIA, point 2)

53.6°C (99.2%) Melting point (state purity) Boiling point (state purity) 100.4°C at reduced pressure; 65 mPa (99.2%) Temperature of decomposition (state purity) decomposition in air started at about 248°C (99.2%) Pure material: white flakes (99.5%) Appearance (state purity)

of use; OA articles are governed by the applicable Creative Commons

18314732, 2010, 12, Dow

from https://efsa.onlinelibrary.wiley.com/doi/10.2903/j.efsa.2010.1779 by University College London UCL Library Services, Wiley Online Library on [14/05/2025]. See the Terms

	Technical material: colourless to white solidified melt (97.6%)
Vapour pressure (state temperature, state purity)	8.670x10-7 Pa at 25°C (99.2%)
Henry's law constant	3.3x10-5 Pa.m3.mol-1
Solubility in water (state temperature, state purity	7.9 mg/L at 25°C (99.2%)
and pH)	Effect of pH was not investigated since there is no dissociation in water in the environmentally relevant pH-range
Solubility in organic solvents	Solubility at 25°C (97.6%)
(state temperature, state purity)	acetone >500
	dichloromethane >500
	ethyl acetate >500
	methanol >500
	toluene >500 g/L.
	hexane 4.6 g/L
	octanol 110 g/L
Surface tension (state concentration and temperature, state purity)	56.7 to 57.6 mN/m; filtrates of 10.0 g/L suspensions at 20° C (97.6%)
Partition co-efficient	Log Po/w = 4.07 at 25°C (99.2%)
(state temperature, pH and purity)	Effect of pH was not investigated since there is no dissociation in water in the environmentally relevant pH-range
Dissociation constant (state purity)	no dissociation constant in the pH range from 1 to 10 (purified)

18314732, 2010, 12, Downhoaded from https://efsa.onlinelibrary.wiley.com/doi/10.2903/j.efsa.2010.1779 by University College London UCL Library Services, Wiley Online Library on [1405.2025]. See the Terms and Conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

UV/VIS absorption (max.) incl. ε (state purity, pH)

methanol solution: 13.831 mg/L

λmax (nm); ε (L.mol-1.cm-1) 15219

228

278 2453 300 745

acidic (9% 1N HCl) methanol solution: 13.831 mg/L

λmax (nm); ε (L.mol-1.cm-1)

15062 228 278 2357 300 643

basic (9% 1N NaOH) methanol solution: 13.831 mg/L

 λ max (nm); ϵ (L.mol-1.cm-1)

228 14879 278 2374 300 664

(99.5%)

No absorption maximum between 310 and 750 nm.

flammability (A.10): not highly flammable (97.6%)

auto-flammability (A.16): no self-ignition between room temperature and the melting point (about 56°C) (97.6%)

not explosive (97.6%)

not oxidizing (97.6%)

Flammability (state purity)

Explosive properties (state purity)

Oxidising properties (state purity)

Classification and proposed labelling (Annex IIA, point 10)

RMS/peer review proposal

none

Active substance

18314732, 2010, 12, Downloaded from https://eika.onlinelibrary.wiley.com/doi/10.2903/j.eik.20.101.779 by University College London UCL Library on [1405.2025]. See the Terms and Conditions (thtps://onlinelibrary.wie); com/terms-and-conditions) on Wiley Online Library on Wiley Conline Library on [1405.2025]. See the Terms and Conditions (thtps://onlinelibrary.wie); com/terms-and-conditions) on Wiley Online Library of the paper of th

	1472, 2010
), 12 Down
	ookel from
	https://cisa
	onlinether
	y wiley cen
	sdor/10.290
	E9 etsa. 20
	0.1729 by 1
	Iniversity C
	olegy Lon
	on UCLL
	stay Servic
	e. Wilg O
	nine Librar
	y on [14/05/
	2025], See 1
	te Toms a
	d Condition
	ts (https://or
	linelitesy
	wity cont
	erm- and co
	indivas) o
	wiky Onl
	in Library
	for rules of
	ue; OA art
	bles are go
	erned by th
	e aphiaté.
	Orașire C
	omnoss Li
	cone

Summary of representative uses evaluated (fenoxycarb)*

Crop and / or situation (a)	Member State or Country	Product name	F G or I	Pests or Group of pests controlled (c)	Form	ılation		Арр	lication		Applicat	ion rate per t	reatment	PHI (days)	Remarks:
(a)			(0)		Type (d-f)	Conc. of as	method kind (f-h)	growth stage & season (j)	number min max (k)	interval between applications (min)	kg as/hl min max	water l/ha min max	kg as/ha min max		
Apples and pears	North EU	INSEGAR 25 WG	F	Lepidoptera, Tortricidae	WG	250 g/kg	Spray	*)	2	10	Max. 0.015	Min. 1000	0.150	21	*) April – June Dependant on pest pressure. No application during flowering.
Apples and pears	South EU	INSEGAR 25 WG	F	Lepidoptera, Tortricidae	WG	250 g/kg	Spray	*)	2	21	Max. 0.015	Min. 1500	0.225	21	*) April – June Dependant on pest pressure. No application during flowering. (I), (2)

- (1) Based on the data available the risk to aquatic organisms and non-target arthropods (in-crop and off-crop) was assessed as high.
- (2) The risk assessment for bee brood could not be finalised.
- * For uses where the column "Remarks" is marked in grey further consideration is necessary. Uses should be crossed out when the notifier no longer supports this use(s).
- (a) For crops, the EU and Codex classifications (both) should be taken into account; where relevant, the use situation should be described (e.g. fumigation of a structure)
- (b) Outdoor or field use (F), greenhouse application (G) or indoor application (I)
- (c) e.g. biting and suckling insects, soil born insects, foliar fungi, weeds
- (d) e.g. wettable powder (WP), emulsifiable concentrate (EC), granule (GR)
- (e) GCPF Codes GIFAP Technical Monograph No 2, 1989
- (f) All abbreviations used must be explained
- (g) Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench
- (h) Kind, e.g. overall, broadcast, aerial spraying, row, individual plant, between the plant-type of equipment used must be indicated

- (i) g/kg or g/L. Normally the rate should be given for the active substance (according to ISO) and not for the variant in order to compare the rate for same active substances used in different variants (e.g. fluoroxypyr). In certain cases, where only one variant is synthesised, it is more appropriate to give the rate for the variant (e.g. benthiavalicarb-isopropyl).
- (j) Growth stage at last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including where relevant, information on season at time of application
- (k) Indicate the minimum and maximum number of application possible under practical conditions of use
- (1) The values should be given in g or kg whatever gives the more manageable number (e.g. 200 kg/ha instead of 200 000 g/ha or 12.5 g/ha instead of 0.0125 kg/ha
- (m) PHI minimum pre-harvest interval

Chapter 2.2 Methods of Analysis

Analytical methods for the active substance (Annex IIA, point 4.1)

Technical as (analytical technique)

Impurities in technical as (analytical technique)

Plant protection product (analytical technique)

Dissolution in acetonitrile followed by reversed phase HPLC-UV analysis.

Dissolution in solvent followed by HPLC-UV analysis

Dissolution in acetonitrile:water followed by reversed phase HPLC-UV analysis.

Analytical methods for residues (Annex IIA, point 4.2)

Residue definitions for monitoring purposes

Food of plant origin

Soil

Water surface

Food of animal origin

drinking/ground

Air

Fenoxycarb Fenoxycarb

Fenoxycarb

Fenoxycarb

Fenoxycarb

Fenoxycarb

Monitoring/Enforcement methods

Food/feed of plant origin (analytical technique and LOQ for methods for monitoring purposes)

Multi-residue method DFG S19:

GC-MS 0.02 mg/kg

(fenoxycarb in apples) (ILV

+ conf. method available)

Single Method REM 169.02:

HPLC-UV 0.02 mg/kg

(fenoxycarb in apples) (ILV

+ conf. method available)

Single method AG-622A:

HPLC-UV 0.01 mg/kg

(fenoxycarb in apples) (ILV

+ conf. method available)

Food/feed of animal origin (analytical technique and LOQ for methods for monitoring purposes)

Single Method AG-608:

HPLC-UV 0.01 mg/kg

(fenoxycarb in liver, fat,

muscle, milk) (ILV + conf.

method available)

Soil (analytical technique and LOQ) Method RAM 406/01:

LC-MS/MS 0.01 mg/kg (fenoxycarb)

Water (analytical technique and LOQ)

Method RAM 408/01:

LC-MS/MS 0.1 μg/L (fenoxycarb)

matrix: surface, ground and drinking water

Air (analytical technique and LOQ)

Method: RAM 409/01 LC-MS/MS 2.8 µg/m³

Body fluids and tissues (analytical technique and

LOQ)

Fenoxycarb is not classified as a toxic substance. Therefore, no method in body fluids and tissues is

required.

Chapter 2.3 Impact on Human and Animal Health

Absorption, distribution, excretion and metabolism (toxicokinetics) (Annex IIA, point 5.1)

Rate and extent of oral absorption	Based on the comparison between oral and IV administration:
	complete, based on urinary (14-23%), faeces (assumed biliary) (73-81%) excretion within 168h
Distribution	Highest residues in fat, liver and kidneys at 168 h (< 0.01% AR).
Potential for accumulation	No evidence for accumulation.
Rate and extent of excretion	Rapid and extensive within 72 h: mainly via faeces (73-81%), also via urine (16-22%).
Metabolism in animals	Extensively metabolised, mainly by conjugation
Toxicologically relevant compounds (animals and plants)	Fenoxycarb
Toxicologically relevant compounds (environment)	Fenoxycarb
2 0	Fenoxycarb

Acute toxicity (Annex IIA, point 5.2)

Rat LD ₅₀ oral	> 10000 mg/kg bw	
Rat LD ₅₀ dermal	> 2000 mg/kg bw	
Rat LC ₅₀ inhalation	> 4.4 mg/L air /4h (nose only)	
Skin irritation	Non-irritant	
Eye irritation	Non-irritant	
Skin sensitisation	Non-sensitiser (M & K)	

Short term toxicity (Annex IIA, point 5.3)

Target / critical effect	Liver (weight and hypertrophy) in rats, dogs, mice
	Thyroid (weight and hypertrophy) and kidneys (weight) in rats
Relevant oral NOAEL	9.7 mg/kg bw/d (13-wk rat)
	LOAEL 25 mg/kg bw/d (1-yr dog)
	LOAEL 100 mg/kg bw/d (13-wk mouse)
Relevant dermal NOAEL	200 mg/kg bw/d (4-wk rat)
Relevant inhalation NOAEL	99 mg/m ³ (4-wk rat)

Genotoxicity (Annex IIA, point 5.4)

Fenoxycarb has no genotoxic potential	
---------------------------------------	--

Long term toxicity and carcinogenicity (Annex IIA, point 5.5)

Target/critical effect	Liver: increased weight, hypertrophy, focal necros fibrosis (rat, mouse) Lung: alveolar/bronchiolar tumours (mouse)	sis and
Relevant NOAEL	8.1 mg/kg bw/d (2-yr rat) 5.3 mg/kg bw/d (18-mo mouse) NOAEL (mouse s 1); LOAEL (mouse study 2)	study
Carcinogenicity	Tumours in liver and lungs (liver tumours not relevant for human risk assessment; attributed to peroxisome proliferation).	Carc cat.3 R40

Reproductive toxicity (Annex IIA, point 5.6)

Reproduction toxicity

ı		
Reproduction target / critical effect	Parental and offspring: increased liver weight Reproductive: no adverse effects	
Relevant parental NOAEL	13 mg/kg bw/d	
Relevant reproductive NOAEL	119 mg/kg bw/d	
Relevant offspring NOAEL	13 mg/kg bw/d	
Developmental toxicity		
Developmental target / critical effect	Maternal: clinical signs (rat), decreased body weight gain (rabbit)	Repr Cat.3

	weight gain (rabbit) Developmental: no developmental or irreversible structural effects (rat); increased incidence of spina bifida (rabbit)	Cat.3 R63
Relevant maternal NOAEL	50 mg/kg bw/d (rat) 100 mg/kg bw/d (rabbit)	
Relevant developmental NOAEL	500 mg/kg bw/d (rat) 200 mg/kg bw/d (rabbit)	

Neurotoxicity (Annex IIA, point 5.7)

Acute neurotoxicity	No data available – not required	
Repeated neurotoxicity	No data available – no concern from other studies. No additional data required	
Delayed neurotoxicity	No data available – not required	

Other toxicological studies (Annex IIA, point 5.8)

Mechanism studies

No inhibition of plasma cholinesterase in rats after a single oral dose of fenoxycarb.

In a 14-day oral study with mice, fenoxycarb showed to be a strong inducer of hepatic metabolising enzymes and can be classified as a peroxisome proliferator.

In a 14-day oral study with mice fenoxycarb had no inducing properties on pulmonary xenobiotic metabolising enzymes.

In a repeated dose study with mice, cell proliferation was noted in liver (PCNA labelling) at 500 and 2000 mg/kg food, but not in lung.

The oxidative metabolisme fo fenoxycarb was studied *in vitro* using liver and lung microsomes. Lung microsome from mouse, rat, marmoset and man did not metabolise fenoxycarb. Liver microsomes did metabolise fenoxycarb. Mice showed the highest formation rate of metabolites possibly related to tumour formation as ethyl carbamate (urethane) or hydroquinone (benzoquinone).

In vitro formation of urethane by (mouse and human) liver microsomes was confirmed by GC-MS. Human liver rmicrosomes were 11-173 fold slower than control mice and 22-253 fold slower than fenoxycarb pre-treated mouse liver microsomes.

In an *in vivo* study with mice, no indication was found for a genotoxic potential of fenoxycarb mediated by the formation of urethane-type DNA adducts after single oral exposure.

Studies performed on metabolites or impurities

No data available – not required.

Medical data (Annex IIA, point 5.9)

No evidence of adverse effects to workers of manufacturing plants, agricultural workers and consumers.

Summary (Annex IIA, point 5.10)

ADI

AOEL

ARfD

value	Study	factor
0.053 mg/kg bw/d	18-mo, mouse	100*
0.1 mg/kg bw/d	13-wk, rat	100
2.0 mg/kg bw	Rabbit developmental	100

^{*} decreased by a factor of 3 based on mechanistic data, and increased by a factor of 3 based on the use of a LOAEL.

Dermal absorption (Annex IIIA, point 7.3)

Formulation (Insegar 25 WG)

In vivo and in vitro studies:

High dose (612 μ g/cm²): 0.2%

Low dose $(0.5 \,\mu\text{g/cm}^2)$: 28%

Exposure scenarios (Annex IIIA, point 7.2)

Operator

Workers

Bystanders

Use in pome fruit

Without PPE: 88% (UK-POEM), 84% (DE-model)

With PPE*: 62% (UK-POEM), 78% (DE-model).

73% of AOEL without PPE (EUROPOEM II)

32% of AOEL (EUROPOEM II)

Classification and proposed labelling with regard to toxicological data (Annex IIA, point 10)

RMS/peer review proposal

Substance classified (fenoxycarb)

Xn "Harmful" R40 "Limited evidence of a carcinogenic effect"

R63 "May cause harm to the unborn child"

of use; OA articles are governed by the applicable Creative Commons

18314732, 2010, 12, Downloaded from https://efsa.onlinelibrary.wiley.com/doi/10.2903/j.efsa.2010.1779 by University College London UCL Library Services, Wiley Online Library on [1405/2025]. See the Terms

^{*} PPE: gloves during mixing/loading and application

Chapter 2.4 Residues

Metabolism in plants (Annex IIA, point 6.1 and 6.7, Annex IIIA, point 8.1 and 8.6)

Plant groups covered	Fruits (citrus, apple) (soil, leaf-paint, fruit-paint and spray applications)
	supportive: Cereals (Bermuda grass) (spray application)
Rotational crops	Wheat, mustard, radish
Metabolism in rotational crops similar to metabolism in primary crops?	Low total residues in rotational crops. Triggers for metabolite identification were not exceeded.
Processed commodities	Conditions simulating baking, brewing and sterilisation
Residue pattern in processed commodities similar to residue pattern in raw commodities?	Fenoxycarb residues are stable upon processing.
Plant residue definition for monitoring	Fenoxycarb (fruit crop category).
Plant residue definition for risk assessment	Fenoxycarb (fruit crop category).
Conversion factor (monitoring to risk assessment)	None.

Metabolism in livestock (Annex IIA, point 6.2 and 6.7, Annex IIIA, point 8.1 and 8.6)		
Goat, hen.		
milk: 2 and >5 days. eggs: 8 days.		
Fenoxycarb		
Fenoxycarb (for representative uses only; different uses with higher animal exposure may require reevaluation for inclusion of metabolites)		
None.		
Yes.		
Yes (LogPow >3; in livestock feeding studies fenoxycarb in fat was at the LOQ (0.01 mg/kg) at intake levels relevant to the representative use).		

Residues in succeeding crops (Annex IIA, point 6.6, Annex IIIA, point 8.5)

No studies submitted and no studies required.

Stability of residues (Annex IIA, point 6 introduction, Annex IIIA, point 8 Introduction)

Fenoxycarb is stable for up to 24 months in whole oranges, orange juice, dried orange pulp, whole apples and wet pomace during frozen storage (-20°C).

Fenoxycarb is stable for up to 22 months in beef muscle, beef liver, milk and eggs during frozen storage (-20°C). For fat, storage stability of parent is not shown (it is strongly suggested that the sum of fenoxycarb and GCA249850 is constant. However, CGA 249850 is not stable in muscle.

Residues from livestock feeding studies (Annex IIA, point 6.4, Annex IIIA, point 8.3)

Expected intakes by livestock ≥ 0.1 mg/kg diet (dry weight basis) (yes/no - If yes, specify the level)

Potential for accumulation (yes/no):

Metabolism studies indicate potential level of residues ≥ 0.01 mg/kg in edible tissues (yes/no)

Muscle

Liver

Kidney

Fat

Milk

Eggs

Ruminant:	Poultry:	Pig:
Conditions of requ	irement of feeding s	tudies
yes, 0.787 mg/kg dw diet	no	no
yes	1	-
yes	-	-
Feeding studies (cows: 1.1 mg/kg dm feed) Residue levels in matrices: Mean (max) mg/kg		
<0.01	-	-
<0.01	-	-
<0.01	-	-
0.01 (0.02)	-	-
<0.01		
	-	

of use; OA articles are governed by the applicable Creative Commons

18314732, 2010, 12, Downloaded from https://efsa.onlinelibrary.wiley.com/doi/10.2903/j.efsa.2010.1779 by University College London UCL Library Services, Wiley Online Library on [1405/2025]. See the Terms

Summary of residues data according to the representative uses on raw agricultural commodities and feedingstuffs (Annex IIA, point 6.3, Annex IIIA, point 8.2)

Crop	Northern or Mediterranean Region, field or glasshouse, and any other useful information	Trials results relevant to the representative uses	Recommendation/comments	MRL estimated from trials according to the representative use	HR	STMR
Apple	NE	0.03 0.10 0.03 0.12 0.27 0.03 0.17 0.19	-	0.5	0.27	0.11
Apple	SE	0.16 0.17 0.06 0.32 0.17 0.16 0.26 0.06 0.26	-	0.5	0.32	0.17

Consumer risk assessment (Annex IIA, point 6.9, Annex IIIA, point 8.8)

ADI	0.053 mg/kg bw/d
TMDI (% ADI) according to EFSA PRIMo rev. 2a	12% (DE child)
	1.3% (WHO cluster diet B)
IEDI (WHO European Diet) (% ADI)	Not calculated.
NEDI (specify diet) (% ADI)	Not calculated.
Factors included in IEDI and NEDI	Not applicable
ARfD	2.0 mg/kg bw
IESTI (% ARfD)	Apples 2.4 % (UK infants)
	Pears 2.3% (DE child)
NESTI (% ARfD) according to national (to be specified) large portion consumption data	Not calculated
Factors included in IESTI and NESTI	MRL of 0.5 mg/kg.

Processing factors (Annex IIA, point 6.5, Annex IIIA, point 8.4)

Crop/ process/ processed product	Number of studies	Processing factors		Amount transferred
		Transfer factor	Yield factor	(%) (Optional)
Juice	1	0.1 (0.1, 0.1)	na	
Puree	1	0.73 (0.67, 0.72, 0.74, 0.79)	na	
Wet pomace	1	3.55 (3.5-3.6)	na	
Dry pomace	1	13.8 (11, 12, 14, 18)	na	

Proposed MRLs (Annex IIA, point 6.7, Annex IIIA, point 8.6)

Proposed MRLs apple, pear: 0.5 mg/kg fenoxycarb ruminant fat: 0.02 mg/kg

Chapter 2.5 Fate and Behaviour in the Environment

Route of degradation (aerobic) in soil (Annex IIA, point 7.1.1.1.1)

Mineralization after 100 days ‡	32% after 90 d, A-label fenoxycarb (n=1)
	29% after 88 d, A-label fenoxycarb (n=1)
	24% after 91 d, B-label fenoxycarb (n=1)
Non-extractable residues after 100 days ‡	63% after 90 d, A-label fenoxycarb (n=1)
	53% after 88 d, A-label fenoxycarb (n=1)
	58% after 91 d, B-label fenoxycarb (n=1)
Metabolites requiring further consideration ‡	none
- name and/or code, % of applied (range and maximum)	

Route of degradation in soil - Supplemental studies (Annex IIA, point 7.1.1.1.2)

Anaerobic degradation ‡

Mineralization after 100 days

Non-extractable residues after 100 days

Metabolites that may require further consideration for risk assessment - name and/or code, % of applied (range and maximum)

Soil photolysis ‡

Metabolites that may require further consideration for risk assessment - name and/or code, % of applied (range and maximum) 25% after 90 d, A-label fenoxycarb (n=1)

52% after 90 d, A-label fenoxycarb (n=1)

none

None

The DT_{50} of fenoxycarb in irradiated soil was not different from the dark control.

Rate of degradation in soil (Annex IIA, point 7.1.1.2, Annex IIIA, point 9.1.1)

Laboratory studies ‡

Parent	Aero	erobic conditions - persistence endpoints										
Soil type	X^1	pН	t. °C / % MWHC	DT ₅₀ /DT ₉₀ (d)	DT ₅₀ (d) 20°C	Chi ²	Method of calculation					
Silt loam		7.3	20°C/40% MWHC	0.75/5.10	0.75	0.633	FOMC					
Silt loam		7.3	20°C/25% MWHC	2.03/13.1	2.03	2.17	FOMC					
geomean for silt loam 20 °C					1.23							
Sandy loam (1)		7.7	25°C/75% pF2.5	0.40/66.5	-	11.9	DFOP					
Sandy loam (1)		7.8	25°C/75% pF2.5	2.91/29.0 ²	-	18.0	FOMC					
Geomean for Sandy loam (1)				1.08/43.9								
Sandy loam (2) (aged residue column leaching)		6.4	20°C/40% MWHC	2.27/20.5	2.27	5.24	FOMC					
Silty clay loam		7.2	20°C/pF2	1.47/4.87	1.47	7.00	SFO					

	(H ₂ O)			
Geometric mean/median/mean			Not calculated (not needed for exposure assessment)	

¹ X This column is reserved for any other property that is considered to have a particular impact on the degradation rate.

² average of 2 values derived from the same soil with equal incubation

Parent	Aer	obic c	onditions - modelling	endpoints								
		Normalisation of DT50 values to FOCUS reference conditions was carried out using the Q10 f 2.58 and Walker equation coefficient of 0.7										
Soil type	X ¹	рН	t. °C / % MWHC	DT ₅₀ (d)	DT ₅₀ (d) 20°C pF2/10kPa	Chi ²	Method of calculation					
Silt loam		7.3	20°C/40% MWHC	1.29	1.29	7.75	SFO					
Silt loam		7.3	20°C/25% MWHC	2.70	2.01	13.2	SFO					
geomean for silt loam 20 °C					1.61							
Sandy loam (1)		7.7	25°C/75% pF2.5	81.5*	86.0	11.9	DFOP					
Sandy loam (1)		7.8	25°C/75% pF2.5	8.73 # 2	13.1 2	18.0	FOMC					
Geomean for Sandy loam (1)					33.6							
Sandy loam (2) (aged residue column leaching)		6.4	20°C/40%MWHC	2.89	2.89	14.1	SFO					
Silty clay loam		7.2 (H ₂ O)	20°C/pF2	1.47/4.87	1.47	7.00	SFO					
Geometric mean/median/mean	1				3.89 **/-/-							

¹ X This column is reserved for any other property that is considered to have a particular impact on the degradation rate.

Field studies ‡

Parent	Aerobic condition	ns (sup j	erobic conditions (supplementary data, not required)											
Soil type (indicate if bare or cropped soil was used).		X ¹	pН	Depth (cm)	DT ₅₀ (d) actual	DT ₉₀ (d) actual	St. (r ²)	DT ₅₀ (d) Norm.	Method of calculation					
sandy loam, bare	California		6.9	0-30	7.3	24.2	≥0.87	-	SFO					
sandy loam, grass	Spain		7.9	0-30	4.08	13.55	0.99	-	SFO					
loam, grass	France (south)		7.5	0-30	8.89	29.53	0.92	-	SFO					
Geometric mean/me														

² average of 2 values derived from the same soil with equal incubation

^{# -} calculated from DegT90 / 3.32

^{*} - calculated from ln2 / k2

^{**} for exposure modeling, the notifier geomean value of 4.06 days is used.

¹ X This	column	is	reserved	for	any	other	property	that	is	considered	to	have	a	particular	impact	on	the
degradatio	on rate.																

pH depender (yes / no) (if yes type of depe	T	No
Soil accumulation and plateau	u concentration ‡	No data. Not required.

Laboratory studies ‡

Parent	10° C	C study- persistence endpoint (supplementary data, not required)										
Soil type	X^1	pН	t. °C / % MWHC		DT ₅₀ (d) 20°C	Chi2	Method of calculation					
Silt loam (Gartenacker)		7.3	10°C/40% MWHC	4.46/14.8	-	7.39	SFO					
Geometric mean/median/mean					-							

Laboratory studies ‡

Parent	Anaer	aerobic conditions (supplementary data, not required)										
Soil type	\mathbf{X}^1	рН	t. °C / % MWHC	DT ₅₀ /DT ₉₀ (d)	DT ₅₀ (d) 20°C	St. (r ²)	Method of calculation					
Sandy loam		7.7 25°C/flooded 0.25/365 0.37 na graphically										
Geometric mean/me	edian/m	ean			0.37							

¹ X This column is reserved for any other property that is considered to have a particular impact on the degradation rate.

Soil adsorption/desorption (Annex IIA, point 7.1.2)

Parent ‡										
Soil Type	OC %	Soil pH (water)	Kd (mL/g)	Koc (mL/g)	Kf (mL/g)	Kfoc (mL/g)	1/n			
Clay	1.8	6.6	-	-	46.7	2599	0.839			
Sand	0.2	6.0	-	-	4.4	1883	0.910			
Sandy loam	1.8	7.7	-	-	22.5	1251	0.867			
Silt loam	1.0	6.7	-	-	16.2	1639	0.962			
Loam	1.9	6.8	-	-	32.7	1710	0.873			
Arithmetic mean/median 24.5/22.5 1816/1710 0.89/0.87										
pH dependence, Yes or No No										

Mobility in soil (Annex IIA, point 7.1.3, Annex IIIA, point 9.1.2)

Column leaching ‡ Eluation (mm): 200-550 mm (n=12)
Time period (d): <1 d to 19 d (n=12)

Leachate: $\leq 1.5 \% AR (n=12)$

Active substance was not detected in the leachate >91 % total residues/radioactivity retained in top 12 cm

Aged residues leaching ‡

Aged for (d): 2-14 d (n=2)

Time period (d): 2-4 d (n=2)

Eluation (mm): 196-508 mm (n=2)

Analysis of soil residues post ageing (soil residues preleaching): 18.5-51 % active substance, 3-12 % other

extractables.

Leachate: ≤1.0 % column applied radioactivity (n=2) Active substance was not detected in the leachate

89.6 % total column applied radioactivity retained in top 6 cm

(n=1)

Lysimeter/ field leaching studies ‡

No study submitted. No data required.

PEC (soil) (Annex IIIA, point 9.1.3)

Parent

Method of calculation

Application data

Northern and Southern Europe:

 DT_{50} / DT_{90} (d): 8.9 / 29.5 days

Kinetics: SFO

Absolute worst case from field studies.

Crop: apple/pear

Depth of soil layer: 5 cm. Soil bulk density: 1.5 g/cm³ % plant interception: 50% Number of applications: 2

Interval (d): 10 d (NE), 21 d (SE)

Application rate(s): 150 (NE) and 225 (SE) g as/ha

Northern Europe

PEC _(s) (mg/kg)		Single application Actual	Single application Time weighted average	Multiple application Actual	Multiple application Time weighted average
Initial		X		0.146	-
Short term	24h	X	X	0.135	0.140
	2d	X	x	0.125	0.135
	4d	X	X	0.107	0.125
Long term	7d	X	x	0.085	0.112
	14d	X	x	0.049	0.089
	21d	X	x	0.028	0.072
	28d	X	x	0.016	0.059
	50d	X	X	0.003	0.037
	100d	X	x	0.001	0.019
not applical	ble				

Plateau concentration

Southern Europe

PEC _(s) (mg/kg)		Single application		ingle oplication	Multiple application	Multiple application
(mg/kg)		Actual	Ti w	ime eighted verage	Actual	Time weighted average
Initial		X			0.179	
Short term	24h	X	X		0.166	0.172
	2d	X	X		0.153	0.166
	4d	X	X		0.131	0.154
Long term	7d	X	X		0.104	0.138
	21d	x	X		0.035	0.088
	28d	X	X		0.020	0.073
	50d	X	X		0.004	0.045
	100d	X	X		0.000	0.023
		not applicable				

Plateau concentration

Route and rate of degradation in water (Annex IIA, point 7.2.1)

Hydrolytic degradation of the active substance and pH 3: stable at 35°C and 50°C metabolites > 10 % ‡ pH 5: stable at 25°C pH 7: stable at 25, 35 and 50°C pH 9: stable at 25, 35 and 50°C distilled water: stable at 35 and 50°C photolytic half-life was 4 h, 16.1 d and 29.4 d under study Photolytic degradation of active substance and metabolites above 10 % ‡ conditions (roughly equivalent to summer sunlight at 40°N) phenol (max 17.9% AR at 22 d) CGA-294847 (max 16.9% AR at 30 d) $5.11 \cdot 10^{-2}$ Quantum yield of direct phototransformation in water at $\Sigma > 290 \text{ nm}$ biodegradable Readily Submitted study was not acceptable. Therefore considered not (yes/no) readily biodegradable.

Degradation in water / sediment

Parent		Persistence endpoints Distribution (max in water 95.0% after 0 d. Max. sed 37.1% after 3 d)											
Water / sediment system	pH water phase	pH sed	t. °C	DT ₅₀ -DT ₉₀ whole sys.	St. (r²) Chi2	DT ₅₀ -DT ₉₀ water ¹	St. (r²) Chi2	DT ₅₀ - DT ₉₀ sed ¹	St. (r²) Chi2	Method of calculation			
River	6.9	7.9	20	6.09-20.2	10.5	2.69-8.94	1.93	13.4-44.5	19.4*	SFO/SFO/SF O			
Pond	6.9	7.3	20	4.54- 15.1	14.7	1.35-4.47	2.23	10.0-33.4	26.8*	SFO/SFO/SF O			
Geometric mean				5.26-17.5		1.91-6.32		11.6-38.6					
Median			n.c.		n.c.		n.c.						
Mean				n.c.		n.c.		n.c.					

¹ half-lives for dissipation

n.c.: Not calculated

Parent	Modelling endpoints										
Water / sediment system	pH water phase	pH sed	t. °C	DT ₅₀ whole sys.	St. (r ²) Chi2	DT ₅₀ water	St. (r ²)	DT ₅₀ sed	St. (r ²)	Method calculation	of
River	6.9	7.9	20	6.09	10.5	6.09	-	6.09	-	SFO	
Pond	6.9	7.3	20	4.54	14.7	4.54	-	4.54	-	SFO	
Geometric mean				5.26		5.26		5.26 (STEP 1/2) 1000 (STEP			

^{*} T0 values left out

								3/4)				
Median				n.c.		n.c.		n.c.				
Mean			n.c.		n.c.		n.c.					
Mineralization and non extractable residues												
Water / sediment system	pH water phase	pH sed		eralization after n d. (en y).	1 3 4				Non-extractable residues in sed. Max x % after n d (end of the study)			
River	6.9	7.9	40%	after 119 d	max 56% a	max 56% after 29 d			50% after 119 d			
Pond	6.9	7.3	36%	36% after 119 d		max 55% a	max 55% after 14 d			52% after 119 d		

PEC (surface water) and PEC sediment (Annex IIIA, point 9.2.3)

Parent

Parameters used in FOCUSsw step 1 and 2

Version control no. of FOCUS calculator: vs 1.1

Molecular weight (g/mol): 301.4 Water solubility (mg/L): 7.9

K_{OC} (L/kg): 1816 DT₅₀ soil (d): 3.46

DT₅₀ water/sediment system (d): 7.45 DT₅₀ water (d): 7.45 (system value used) DT₅₀ sediment (d): 7.45 (system value used)

Parameters used in FOCUSsw step 3 (if performed)

MACRO in FOCUS vs 4; PRZ in FOCUS vs 1; TOXSWA in

FOCUS vs 2.4.2

DT₅₀ water/sediment system (d): 5.26 DT₅₀ water (d): 5.26 (system value used)

DT₅₀ sediment (d): 1000

 DT_{50} soil (d): 4.06. NB RMS calculated a geomean soil DT50 of 3.89 days. As notifier value is conservative, the use of 4.06 days is considered acceptable.

normalisation of DT50 values to FOCUS reference conditions and subsequently the simulations were carried out using the Q10 of 2.58 and Walker equation coefficient of 0.7

K_{OC} (L/kg): 1816

1/n: 0.89

STEP 1 (worst-case conditions):

Crop: pome/stone fruit/early application (SE)/late application (NE)

Number of applications: 2

Application rate(s): 150 (NE) and 225 g as/ha (SE)

 $STEP\ 2\ (worst\mbox{-}case\ conditions)$:

Input as in STEP 1, additional input:

Interval (d): 10 (NE) and 21 (SE)

Crop interception: average crop cover (40%) (SE), full canopy

(70%) (NE)

Application window: March-May (SE), June-Sep (NE)

NB For NE cGAP both single and multiple application was

Application rate

simulated in STEP 2.

STEP 3 (worst-case conditions):

Crop: pome/stone fruit/early application (NE and SE)

Number of applications: 2 (NE) and 2 (SE) Application window: March-May (NE and SE)

STEP 4 (worst-case conditions):

As in STEP 3 with additional buffer zones, 25 m for NE GAP

and 30 m for SE GAP

FOCUS STEP 1	•	PEC _{SW} (µg/L)		PEC _{SED} (μg/kg)	
Scenario	overall maximum	Actual	TWA	Actual	TWA
Apple, SE GAP	0 h	87.6381	-	796.1808	-

FOCUS STEP 2		PEC _{SW} (µg/L)		PEC _{SED} (μg/kg)	
Scenario	overall maximum	Actual	TWA	Actual	TWA
Apple, NE GAP	0 h	14.60		85.30	
Single application,	24 h	7.03	10.81	83.05	84.17
1x 150 g/ha	2 d	5.21	8.47	80.85	83.06
	4 d	5.50	6.74	76.63	80.89
	7 d	4.06	5.74	70.70	77.78
	14 d	3.36	4.72	58.60	71.12
	21 d	2.79	4.17	48.57	65.23
	28 d	2.31	3.76	40.26	59.99
	42 d	1.59	3.15	27.66	51.19

FOCUS STEP 2	-	PEC _{SW} (μg/L)		PEC _{SED} (μg/kg)	
Scenario	overall maximum	Actual	TWA	Actual	TWA
Apple, NE GAP	0 h	7.56	-	55.14	-
Multiple	24 h	4.36	5.96	53.68	54.41
application, 2x 150 g/ha	2 d	3.56	4.96	52.26	53.69
2x 100 g/m	4 d	3.60	4.20	49.53	52.29
	7 d	2.62	3.63	45.70	50.28
	14 d	2.17	3.01	37.88	45.97
	21 d	1.80	2.67	31.40	42.16
	28 d	1.49	2.41	26.03	38.78
	42 d	1.03	2.02	17.88	33.09

FOCUS STEP 2	•	PEC _{SW} (µg/L)		PEC _{SED} (μg/kg)	
Scenario	overall maximum	Actual	TWA	Actual	TWA
Apple, SE GAP	0 h	22.38	-	172.58	-
Multiple	24 h	12.34	17.36	168.01	170.30
application, 2x 225 g/ha	2 d	9.86	14.23	163.57	168.04
J 8	4 d	11.05	12.00	155.03	163.66
	7 d	8.21	10.67	143.05	157.36
	14 d	6.81	9.08	118.57	143.90
	21 d	5.64	8.12	98.27	131.97
	28 d	4.68	7.38	81.46	121.38
	42 d	3.21	6.22	55.96	103.56

18314732, 2010, 12, Downhoaded from https://efsa.onlinelibrary.wiley.com/doi/10.2903/j.efsa.2010.1779 by University College London UCL Library Services, Wiley Online Library on [1405.2025]. See the Terms and Conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licensea.

STEP 3

a •			ECsw (µg/L)		ECsw (µg/L)	
Scenario Time (d		Single application			Multiple applications	
		Actual	TWA	Actual	TWA	
D3 ditch	0	11.6	-	10.0		
NE GAP	1	4.70	8.61	4.40	7.55	
	2	0.507	5.35	0.540	4.79	
	4	0.061	2.76	0.064	2.48	
	7	0.029	1.59	0.033	1.44	
	14	0.010	0.804	0.012	0.729	
	21	0.005	0.539	0.007	0.937	
	28	0.003	0.405	0.005	0.710	
	42	0.002	0.271	0.003	0.476	
	50	0.002	0.228	0.002	0.400	
	100	0.001	0.114	0.001	0.201	
O4 pond	0	0.706	-	0.985	-	
NE GAP	1	0.661	0.683	0.923	0.957	
	2	0.622	0.662	0.884	0.932	
	4	0.557	0.625	0.777	0.882	
	7	0.481	0.579	0.633	0.805	
	14	0.346	0.496	0.408	0.658	
	21	0.225	0.425	0.274	0.600	
	28	0.152	0.365	0.188	0.550	
	42	0.075	0.279	0.081	0.442	
	50	0.045	0.244	0.050	0.391	
	100	0.004	0.130	0.005	0.210	
04 stream	0	11.1	-	9.87	-	
VE GAP	1	< 0.001	0.635	< 0.001	0.795	
	2	< 0.001	0.317	< 0.001	0.398	
	4	< 0.001	0.159	< 0.001	0.199	
	7	< 0.001	0.091	< 0.001	0.114	
	14	< 0.001	0.045	< 0.001	0.096	
	21	< 0.001	0.030	< 0.001	0.064	
	28	< 0.001	0.023	< 0.001	0.048	
	42	< 0.001	0.015	< 0.001	0.032	
	50	< 0.001	0.013	< 0.001	0.027	
	100	< 0.001	0.006	< 0.001	0.013	
D5 pond	0	0.706	-	0.876	-	
NE GAP	1	0.651	0.677	0.816	0.845	
	2	0.604	0.652	0.764	0.817	
	4	0.525	0.607	0.674	0.767	
	7	0.435	0.552	0.567	0.703	
	14	0.296	0.456	0.341	0.577	
	21	0.208	0.387	0.205	0.500	
	28	0.130	0.332	0.128	0.488	
	42	0.052	0.250	0.054	0.397	
	50	0.033	0.216	0.033	0.349	
	100	0.003	0.114	0.004	0.187	
D5 stream	0	11.3	-	10.4	-	
NE GAP	1	< 0.001	0.426	< 0.001	0.697	
	2	< 0.001	0.213	< 0.001	0.348	
	4	< 0.001	0.107	< 0.001	0.174	
	7	< 0.001	0.061	< 0.001	0.100	

		PECs	sw (μg/L)	PE	Csw (µg/L)
Scenario	Time (d)		application		le applications
		Actual	TWA	Actual	TWA
	14	< 0.001	0.031	< 0.001	0.050
	21	< 0.001	0.020	< 0.001	0.051
	28	< 0.001	0.015	< 0.001	0.038
	42	< 0.001	0.010	< 0.001	0.025
	50	< 0.001	0.009	< 0.001	0.021
	100	< 0.001	0.004	< 0.001	0.011
R1 pond	0	0.706	-	0.857	=
NE GAP	1	0.625	0.678	0.786	0.820
	2	0.605	0.653	0.723	0.786
	4	0.527	0.609	0.618	0.727
	7	0.421	0.550	0.497	0.653
	14	0.257	0.441	0.311	0.525
	21	0.164	0.363	0.202	0.486
	28	0.107	0.305	0.118	0.457
	42	0.043	0.228	0.044	0.369
	50	0.025	0.197	0.027	0.323
	100	0.002	0.103	0.003	0.171
R1 stream	0	9.40	-	8.02	-
NE GAP	1	0.001	1.62	0.001	1.38
	2	0.001	0.809	0.001	0.691
	4	0.001	0.405	0.001	0.346
	7	< 0.001	0.232	< 0.001	0.198
	14	< 0.001	0.116	< 0.001	0.175
	21	< 0.001	0.077	< 0.001	0.117
	28	< 0.001	0.058	< 0.001	0.089
	42	< 0.001	0.039	< 0.001	0.061
	50	< 0.001	0.033	< 0.001	0.051
	100	< 0.001	0.017	< 0.001	0.026
R2 stream	0	12.5	-	10.6	-
NE GAP	1	0.001	1.05	0.001	0.900
	2	< 0.001	0.527	< 0.001	0.450
	4	< 0.001	0.264	< 0.001	0.225
	7	< 0.001	0.151	< 0.001	0.129
	14	< 0.001	0.076	0.056	0.066
	21	< 0.001	0.050	< 0.001	0.045
	28	< 0.001	0.038	< 0.001	0.065
	42	< 0.001	0.025	< 0.001	0.044
	50	< 0.001	0.021	< 0.001	0.037
	100	< 0.001	0.011	< 0.001	0.019
R3 stream	0	13.2	-	11.4	-
NE GAP	1	0.010	3.60	0.021	3.62
	2	0.007	1.80	0.009	1.81
	4	0.005	0.905	0.005	0.910
	7	0.003	0.519	0.003	0.522
	14	0.001	0.260	0.002	0.288
	21	< 0.001	0.174	0.001	0.322
	28	< 0.001	0.133	< 0.001	0.255
	42	< 0.001	0.089	< 0.001	0.170
	50	< 0.001	0.075	< 0.001	0.143
	100	< 0.001	0.037	< 0.001	0.072
R4 stream	0	9.40	-	8.03	-
NE GAP	1	0.001	1.63	0.001	1.39
	2	0.001	0.814	0.001	0.695

Scenario	Time (d)	PECsw (μg/L) Single application			ECsw (μg/L) iple applications
		Actual	TWA	Actual	TWA
	4	0.001	0.407	0.001	0.348
	7	< 0.001	0.233	< 0.001	0.199
	14	< 0.001	0.117	< 0.001	0.100
	21	< 0.001	0.078	< 0.001	0.133
	28	< 0.001	0.058	< 0.001	0.100
	42	< 0.001	0.039	< 0.001	0.067
	50	< 0.001	0.033	< 0.001	0.056
	100	< 0.001	0.017	< 0.001	0.028

Scenario	Time (d)	P	– single and multiple ECsw (µg/L) gle application	P	ECsw (µg/L) iple applications
		Actual	TWA	Actual	TWA
D3 ditch	0	17.4	-	15.0	-
SE GAP	1	7.06	12.9	7.38	11.5
	2	0.766	8.03	1.20	7.63
	4	0.092	4.14	0.115	4.00
	7	0.043	2.39	0.054	2.32
	14	0.014	1.21	0.020	1.18
	21	0.007	0.808	0.011	0.789
	28	0.005	0.608	0.008	0.594
	42	0.003	0.406	0.004	0.740
	50	0.002	0.342	0.003	0.624
	100	0.001	0.172	0.002	0.314
D4 pond	0	1.06	-	1.21	-
SE GAP	1	0.992	1.02	1.11	1.16
	2	0.934	0.993	1.03	1.11
	4	0.837	0.938	0.891	1.03
	7	0.723	0.869	0.729	0.936
	14	0.521	0.746	0.478	0.765
	21	0.339	0.638	0.324	0.642
	28	0.229	0.549	0.197	0.636
	42	0.112	0.420	0.080	0.598
	50	0.068	0.367	0.052	0.545
	100	0.006	0.195	0.007	0.303
D4 stream	0	16.7	-	14.4	-
SE GAP	1	< 0.001	0.952	< 0.001	0.916
	2	< 0.001	0.476	< 0.001	0.458
	4	< 0.001	0.238	< 0.001	0.229
	7	< 0.001	0.136	< 0.001	0.131
	14	< 0.001	0.068	< 0.001	0.066
	21	< 0.001	0.045	< 0.001	0.044
	28	< 0.001	0.034	< 0.001	0.062
	42	< 0.001	0.023	< 0.001	0.041
	50	< 0.001	0.019	< 0.001	0.035
	100	< 0.001	0.010	< 0.001	0.017
D5 pond	0	1.06	-	1.17	-
SE GAP	1	0.977	1.02	1.06	1.11
	2	0.906	0.978	0.964	1.06
	4	0.788	0.911	0.806	0.971
	7	0.654	0.828	0.627	0.860
	14	0.446	0.685	0.365	0.672

Comorio	Time (d)		ECsw (µg/L)		ECsw (µg/L)
Scenario	Time (d)		gle application		ple applications
		Actual	TWA	Actual	TWA
	21	0.313	0.528	0.223	0.547
	28	0.195	0.500	0.141	0.566
	42	0.078	0.375	0.056	0.527
	50	0.049	0.325	0.035	0.474
	100	0.005	0.171	0.005	0.260
D5 stream	0	16.9	-	15.7	-
SE GAP	1	< 0.001	0.640	0.001	1.14
	2	< 0.001	0.320	< 0.001	0.572
	4	< 0.001	0.160	< 0.001	0.286
	7	< 0.001	0.092	< 0.001	0.164
	14	< 0.001	0.046	< 0.001	0.082
	21	< 0.001	0.031	< 0.001	0.055
	28	< 0.001	0.023	< 0.001	0.060
	42	< 0.001	0.015	< 0.001	0.040
	50	< 0.001	0.013	< 0.001	0.034
	100	< 0.001	0.006	< 0.001	0.017
R1 pond	0	1.06	_	1.20	_
SE GAP	1	0.979	1.02	1.12	1.16
~- ~	2	0.908	0.979	1.04	1.12
	4	0.792	0.913	0.899	1.04
	7	0.633	0.826	0.722	0.942
	14	0.387	0.662	0.452	0.758
	21	0.387	0.545	0.432	0.738
	28	0.161	0.459	0.196	0.617
	42	0.161	0.439	0.190	0.568
	50	0.003	0.342	0.078	0.515
	100				
D1 -4		0.004	0.154	0.005	0.286
R1 stream	0	14.1	- 2.42	12.0	- 2.07
SE GAP	1	0.002	2.43	0.002	2.07
	2	0.002	1.21	0.002	1.04
	4	0.001	0.607	0.001	0.519
	7	< 0.001	0.347	< 0.001	0.297
	14	< 0.001	0.174	< 0.001	0.148
	21	< 0.001	0.116	< 0.001	0.099
	28	< 0.001	0.088	< 0.001	0.148
	42	< 0.001	0.059	< 0.001	0.099
	50	< 0.001	0.050	< 0.001	0.084
	100	< 0.001	0.025	< 0.001	0.042
R2 stream	0	18.7	-	15.9	-
SE GAP	1	0.001	1.58	0.001	1.35
	2	0.001	0.791	0.001	0.676
	4	< 0.001	0.396	< 0.001	0.338
	7	< 0.001	0.226	< 0.001	0.193
	14	< 0.001	0.113	< 0.001	0.099
	21	< 0.001	0.076	< 0.001	0.068
	28	< 0.001	0.057	< 0.001	0.097
	42	< 0.001	0.038	< 0.001	0.066
	50	< 0.001	0.032	< 0.001	0.056
	100	< 0.001	0.016	< 0.001	0.028
R3 stream	0	19.9	-	17.0	-
SE GAP		0.016	5.40	0.031	5.43
	2	0.010	2.71	0.013	2.72
	ı -	0.020		0.010	

Scenario	Time (d)	PECsw (μg/L) Single application			ECsw (μg/L) iple applications
		Actual	TWA	Actual	TWA
	7	0.004	0.778	0.004	0.798
	14	0.001	0.390	0.001	0.401
	21	0.001	0.260	0.001	0.268
	28	0.001	0.200	0.001	0.366
	42	< 0.001	0.133	< 0.001	0.245
	50	< 0.001	0.112	< 0.001	0.206
	100	< 0.001	0.056	< 0.001	0.103
R4 stream	0	14.1	-	12.1	-
SE GAP	1	0.002	2.44	0.003	2.44
	2	0.002	1.22	0.002	1.22
	4	0.001	0.611	0.001	0.610
	7	0.001	0.350	0.001	0.349
	14	< 0.001	0.175	< 0.001	0.188
	21	< 0.001	0.117	< 0.001	0.126
	28	< 0.001	0.088	< 0.001	0.097
	42	< 0.001	0.058	< 0.001	0.108
	50	< 0.001	0.049	< 0.001	0.091
	100	< 0.001	0.025	< 0.001	0.049

STEP 4 -global maximum values

 $NE\ GAP, 2x150\ g\ a.s./ha, early\ application-\ single\ and\ multiple\ applications, 25\ m\ crop-free\ buffer\ zone$

Scenario	PECsw (μg/L)	PECsw (μg/L)
	Single application	Multiple applications
D3 Ditch	0.755	0.655
D4 Pond	0.095	0.121
D4 Stream	0.791	0.712
D5 Pond	0.095	0.107
D5 Stream	0.801	0.752
R1 Pond	0.095	0.105
R1 Stream	0.668	0.579
R2 Stream	0.885	0.767
R3 Stream	0.941	0.820
R4 Stream	0.668	0.579

 $SE\ GAP, 2x225\ g\ a.s./ha, early\ application-\ single\ and\ multiple\ applications, 30\ m\ crop-free\ buffer\ zone$

Scenario	PECsw (μg/L)	PECsw (µg/L)
	Single application	Multiple applications
D3 Ditch	0.734	0.608
D4 Pond	0.102	0.102
D4 Stream	0.770	0.644
D5 Pond	0.102	0.099
D5 Stream	0.779	0.702
R1 Pond	0.102	0.101
R1 Stream	0.650	0.537
R2 Stream	0.861	0.711
R3 Stream	0.915	0.760
R4 Stream	0.650	0.540

PEC sediment

STEP 3 and 4 – global maximum values

NE GAP, $2x150 \ g$ a.s./ha, interval $10 \ days$, early application—single and multiple applications, $25 \ m$ crop-free buffer zone

Scenario	STEP 3	STEP 3	STEP 4 (25 m)	STEP 4 (25 m)
	PECsed (µg/kg)	PECsed (µg/kg)	PECsed (µg/kg)	PECsed (µg/kg)
	Single application	Multiple application	Single application	Multiple application
D3 ditch	6.65	7.84	0.453	0.556
D4 pond	2.52	3.99	0.373	0.543
D4 stream	0.456	0.737	0.033	0.056
D5 pond	2.28	3.743	0.337	0.509
D5 stream	0.298	0.592	0.021	0.044
R1 pond	2.13	3.42	0.316	0.466
R1 stream	1.18	1.12	0.085	0.097
R2 stream	0.765	0.831	0.055	0.195
R3 stream	2.56	3.26	0.185	0.460
R4 stream	1.19	1.33	0.085	0.101

SE GAP, 2x225 g a.s./ha, interval 21 days, early application- single and multiple applications, 30 m cropfree buffer zone

Scenario	STEP 3	STEP 3	STEP 4 (30 m)	STEP 4 (30 m)
	PECsed (µg/kg)	PECsed (µg/kg)	PECsed (µg/kg)	PECsed (µg/kg)
	Single application	Multiple application	Single application	Multiple application
D3 ditch	9.90	11.4	0.441	0.503
D4 pond	3.71	5.45	0.400	0.521
D4 stream	0.684	0.814	0.032	0.038
D5 pond	3.36	4.91	0.362	0.468
D5 stream	0.447	0.928	0.021	0.043
R1 pond	3.14	5.24	0.339	0.500
R1 stream	1.77	1.90	0.083	0.090
R2 stream	1.15	1.24	0.053	0.274
R3 stream	3.83	4.68	0.180	0.308
R4 stream	1.78	2.05	0.083	0.190

These values can be compared with a NOEC_{Chironomus} of 2.8 µg/kg (recalculated based on NOEC of 0.75 µg/L and test characteristics, see addendum to the revised DAR, March 2010).

Metabolites

Parameters used in FOCUSsw step 1 and 2

Molecular weight: CGA294847 MW 225.2

CGA 294850 MW 317.34

Phenol MW 94

Soil or water metabolite: CGA294847 and phenol, photolysis in water; CGA 294850 water-sediment study

Maximum % observed aqueous photolysis:

CGA294847: 16.9% and phenol: 17.9% surface water: CGA 294850: 3.8 %

PECini calculated by using PECini parent from STEP 1 x maximum observed % x relative molecular weight

Crop ^(A)	CGA 294847	CGA 294850	Phenol
	PECsw (µg/L)	PECsw (µg/L)	PECsw (µg/L)
EU N	5.7	1.8	2.5
EU S	11	3.5	4.9

(A) Apples and pears in EU N (Northern Europe) and EU S (Southern Europe)

PEC (ground water) (Annex IIIA, point 9.2.1)

Method of calculation and type of study (*e.g.* modelling, field leaching, lysimeter)

Modelling using FOCUS model(s), with appropriate FOCUSgw scenarios, according to FOCUS guidance.

Model used: FOCUS-PEARL

3.3.3 and FOCUS-PELMO 3.3.2 Scenarios: All FOCUS scenarios

Crop: Apple

Geometric mean parent DT_{50lab} 4.06 d (normalisation to 10kPa or pF2, 20 °C with Q10 of 2.58). NB RMS calculated a geomean soil DT50 of 3.89 days. As notifier value is conservative, the use of 4.06 days is considered acceptable.

normalisation of DT50 values to FOCUS reference conditions and subsequently the simulations were carried out using the Q10 of 2.58 and Walker equation coefficient of 0.7

 K_{OC} : parent, arithmetic mean 1816, $^{1}/_{n}$ = 0.89.

Metabolites: none

Application rate: 150 (NE) and 225 g/ha (SE)

No. of applications: 2 (NE and SE) Interval: 10 d (NE) and 21 d (SE)

Time of first application: Chateaudun & Piacenza 1st April; Hamburg, Kremsmunster 15th April; Porto, Sevilla, Thiva 15th March; Jokioinen 10th May; Okehampton 25th March. Selected to coincide with the leaf emergence date defined for each

scenario, which respects 'before BBCH 59'

Crop interception: 50%, corresponding to before BBCH 59

Application rate

PEC(gw) - FOCUS modelling results (80th percentile annual average concentration at 1m)

FOCUS-PEARL 3.3.3/FOC Apple / Northern EU GAP	Scenario	Parent (µg/L)
ARI	Chateaudun	<0.001
	Hamburg	< 0.001
3.3.3/FOCUS PELMO 3.3.2 EU GAP	Jokioinen	< 0.001
OCU VP	Kremsmunster	< 0.001
S PE	Okehampton	< 0.001
LM	Piacenza	< 0.001
0 3.3	Porto	< 0.001
3.2	Sevilla	< 0.001
	Thiva	< 0.001

FO Ap	Scenario	Parent
FOCUS-PEARL 3.3.3/FOCUS PELMO 3.3.2 Apple / Southern EU GAP		(μg/L)
Sou		
ARL	Chateaudun	< 0.001
3.3 n EU	Hamburg	< 0.001
.3/F0 J GA	Jokioinen	< 0.001
)CU	Kremsmunster	< 0.001
S PE	Okehampton	< 0.001
LMC	Piacenza	< 0.001
3.3	Porto	< 0.001
.2	Sevilla	< 0.001
	Thiva	< 0.001

Fate and behaviour in air (Annex IIA, point 7.2.2, Annex III, point 9.3)

Direct photolysis in air ‡

Quantum yield of direct phototransformation

Photochemical oxidative degradation in air ‡

Volatilisation ‡

Metabolites

Not studied - no data requested

Not studied - no data requested

 DT_{50} of 3.2-4.9 hours derived by the Atkinson model. OH (12 h) concentration assumed = 9.7×10^5 OH/cm³

plant surface (BBA): 2.1% after 24 h (1 m/s)

soil surface (BBA): 3.1-6.9% after 24 h (0.003 and 1m/s)

None

PEC (air)

Method of calculation

Expert judgement, based on vapour pressure, dimensionless Henry's Law Constant, Atkinson calculation and laboratory volatility studies no residues in air are expected.

PEC(a)

Maximum concentration

No data provided - none requested

Residues requiring further assessment

Environmental occurring metabolite requiring further assessment by other disciplines (toxicology and ecotoxicology) or for which a groundwater exposure assessment is triggered. Soil: fenoxycarb

Surface Water: fenoxycarb, CGA 294847, phenol

Sediment: fenoxycarb
Ground water: fenoxycarb
Air: fenoxycarb

of use; OA articles are governed by the applicable Creative Common

onlinelibrary.wiley.com/doi/10.2903/j.efsa.2010.1779 by University College London UCL Library Services, Wiley Online Library on [14/05/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions)

Monitoring data, if available (Annex IIA, point 7.4)

Soil (indicate location and type of study)
Surface water (indicate location and type of study)

Ground water (indicate location and type of study)

Air (indicate location and type of study)

No data provided - none requested
No data provided - none requested
No data provided - none requested
No data provided - none requested

Points pertinent to the classification and proposed labelling with regard to fate and behaviour data

Not readily biodegradable (by default, submitted study was rejected). Candidate for R53.

Chapter 2.6 Ecotoxicology

Effects on terrestrial vertebrates (Annex IIA, point 8.1, Annex IIIA, points 10.1 and 10.3)

Species	Test substance	Time scale	End point (mg/kg bw/day)	End point (mg/kg feed)
Birds		•	•	
Mallard duck	a.s.	Acute	LD50: >3000	-
Bobwhite quail	a.s.	Acute	LD50: >7000	-
Mallard duck	a.s.	Short-term	LC50: >5885	LC50: >20000
Bobwhite quail	a.s.	Short-term	LC50: 1356*	LC50: 10000
Mallard duck	a.s.	Long-term	NOEC: 17.7	NOEC: 160
Bobwhite quail	a.s.	Long-term	NOEC: 35.9	NOEC: 400
Mammals				
Rat	a.s.	Acute	LD50: >10000	-
Rat	a.s.	Long-term	NOAEC: 40	600
Additional higher tier studies	‡			
No data available – not requir	red			

^{*} based on the reported mean feed consumption and the mean body weight (days 0-5) of the two highest concentrations (5000 and 20000 ppm). Mean feed consumption: 3.3 g/bird/day; mean body weight: 24.3 g

Toxicity/exposure ratios for terrestrial vertebrates (Annex IIIA, points 10.1 and 10.3)

Apples and pears, Southern Europe, 2 x 0.225 kg a.s./ha (worst-case exposure)

Indicator species/Category	Time scale	ETE	TER	Annex VI Trigger		
Tier 1 (Birds)						
Route: insects	Acute	12	>247	10		
Route: water	Acute	0.024	>1E+05	10		
Route: insects	Short-term	6.8	200	10		
Route: insects	Long-term	6.8	2.6	5		
Route: insects (higher tier) ¹	Long-term	2.6	6.8	5		
Route: earthworms	Long-term	0.23	78	5		
Route: fish	Long-term	1.1	16	5		
Tier 1 (Mammals)						
Route: short grass	Acute	32	>313	10		
Route: water	Acute	0.014	>7E+05	10		
Route: short grass	Long-term	7.7	5.2	5		
Route: earthworms	Long-term	0.28	143	5		
Route: fish	Long-term	0.72	56	5		

¹⁾ Based on a PPR-opinion by EFSA's PPR-panel published in June 2008 (Question No EFSA-Q-2006-064. *The EFSA Journal* (2008) 734:1-181).

Apples and pears, Northern Europe, 2 x 0.150 kg a.s./ha

Indicator species/Category	Time scale	ETE	TER	Annex VI Trigger	
Tier 1 (Birds)					
Route: insects	Long-term	4.5	3.9	5	
Route: insects (higher tier) ¹	Long-term	2.2	8.1	5	
Tier 1 (Mammals)	Tier 1 (Mammals)				
Route: short grass	Long-term	6.3	6.3	5	

¹⁾ Based on a PPR-opinion by EFSA's PPR-panel published in June 2008 (Question No EFSA-Q-2006-064. *The EFSA Journal* (2008) 734:1-181).

Toxicity data for aquatic species (most sensitive species of each group) (Annex IIA, point 8.2, Annex IIIA, point 10.2)

Group	Test substance	Time-scale (Test type)	End point	Toxicity ¹ (mg/L)
Laboratory tests		(Test type)		(mg/L)
Fish				
Oncorhynchus mykiss	a.s.	96 hr (flow-through)	Mortality, LC ₅₀	0.66 _(mm)
	Preparation (A-8995 B)	96 hr (static)	Mortality, LC ₅₀	3.4 (initial, a.s.)
	CGA294847	96 hr (static)	Mortality, LC ₅₀	100 (nom)
Oncorhynchus mykiss	a.s.	96 d (flow-through)	ELS NOEC	0.048 _(mm)
Salmo gairdneri	a.s.	74 d (flow-through)	ELS NOEC	<0.062 _(mm)
Lepomis macrochirus	a.s.	96 hr (flow-through)	Mortality, LC ₅₀	0.74 _(mm)
Cyprinus carpio	a.s.	96 hr (flow-through)	Mortality, LC ₅₀	1.5 _(mm)
Ictalurus punctatus	a.s.	96 hr (flow-through)	Mortality, LC ₅₀	0.88 _(mm)
Cyprinodon variegatus	a.s.	96 hr (flow-through)	Mortality, LC ₅₀	1.1 _(mm)
Aquatic invertebrate				
Daphnia magna	a.s.	48 h (flow-through)	Mortality, LC ₅₀	0.50 _(mm)
	Preparation (A-8995 B)	48 h (static)	Mortality, LC ₅₀	1.5 (nom, a.s.)
	CGA294847	48 h (static)	Mortality, LC ₅₀	61 _(nom)

Group	Test substance	Time-scale (Test type)	End point	Toxicity ¹ (mg/L)
	CGA294850	48 h (static)	Mortality, LC ₅₀	8.5 (nom)
	a.s.	21 d (flow-through)	Reproduction, NOEC	1.6 n g/L _(mm)
	a.s.	21 d (flow-through)	Reproduction, NOEC	0.0032 (initial) ²
Mysidopsis bahia	a.s.	96 h (flow-through)	Mortality, LC ₅₀	0.35 _(mm)
Crassostrea virginica	a.s.	96 h (flow-through)	Mortality, LC ₅₀	0.52 _(mm)
Sediment dwelling organisms				
Chironomus riparius	a.s.	28 d (static)	NOEC	$\begin{array}{c} 0.75~\mu g/L_{(nom)} \\ or~2.8~\mu g/kg_{(nom)} \end{array}$
Algae				
Pseudokirchneriella subcapitata	a.s.	72 h (static)	No data available –data required	
Pseudokirchneriella subcapitata	Preparation (A-8995 B)	72 h (static)	Biomass: E _b C ₅₀ Growth rate: E _r C ₅₀	0.82 _(mm, a.s.) ³ 1.4 _(mm, a.s.) ³
Selenastrum capricornutum	Preparation (A-8995 B)	72 h (static)	Biomass: E_bC_{50} Growth rate: E_rC_{50}	0.38 (initial, a.s.) 0.84 (initial, a.s.)
Selenastrum capricornutum	CGA294847	72 h (static)	Biomass: E_bC_{50} Growth rate: E_rC_{50}	17.4 _(nom) 67.8 _(nom)
Higher plant				
No data submitted – no data r	equired			

Microcosm or mesocosm tests: outdoor microcosm study submitted, but study not considered valid (fish added; 28 days interval between the two applications; climatic differences (Texas vs Europe); not clear if relevant life stages were included)

Toxicity/exposure ratios for the most sensitive aquatic organisms (Annex IIIA, point 10.2) FOCUS Step1

Test substance	Organism	Toxicity end point (µg/L)	Time scale	PEC _i (µg/L)	TER	Annex VI Trigger
a.s.	Fish	660	Acute	87.6	7.5	100
a.s.	Fish	48	Chronic	87.6	0.55	10

 $^{^{1}}$ indicate whether based on nominal ($_{nom}$) or mean measured concentrations ($_{mm}$). In the case of preparations indicate whether end points are presented as units of preparation or a.s.

² Exposure concentrations were manipulated so as to gradually achieve a reduction of 50% in concentration after each ten-hour period throughout the duration of the study.

³ Measured concentrations were 111-123% of nominal

Test substance	Organism	Toxicity end point (µg/L)	Time scale	PEC _i (µg/L)	TER	Annex VI Trigger
a.s.	Aquatic invertebrates	350	Acute	87.6	4.0	100
a.s.	Aquatic invertebrates	0.0016	Chronic	87.6	2E-05	10
a.s.	Sediment-dwelling organisms	0.75	Chronic	87.6	0.0086	10
a.s.	Algae	380	Chronic	87.6	4.3	10
CGA294847	Fish	100000	Acute	11	8980	100
CGA294847	Aquatic invertebrates	61000	Acute	11	5478	100
CGA294847	Algae	17400	Chronic	11	1562	10
CGA294850	Aquatic invertebrates	8500	Acute	3.5	2424	100

Apples and pears, Northern Europe, 2 x 0.150 kg a.s./ha

Test substance	Organism	Toxicity end point (µg/L)	Time scale	PEC _i (µg/L)	TER	Annex VI Trigger
a.s.	Fish	660	Acute	45.0	15	100
a.s.	Fish	48	Chronic	45.0	1.1	10
a.s.	Aquatic invertebrates	350	Acute	45.0	7.8	100
a.s.	Aquatic invertebrates	0.0016	Chronic	45.0	4E-05	10
a.s.	Sediment-dwelling organisms	0.75	Chronic	45.0	0.017	10
a.s.	Algae	380	Chronic	45.0	8.5	10

FOCUS Step 2

Apples and pears, Southern Europe, 2 x 0.225 kg a.s./ha

Test substance	N/S ¹	Organism ²	Toxicity end point (µg/L)	Time scale	PEC _{sw} ³ (max., µg/L)	TER	Annex VI Trigger ⁴
a.s.	S	Fish	660	Acute	22.4	29	100
a.s.	S	Fish	48	Chronic	22.4	2.1	10
a.s.	S	Aquatic invertebrates	350	Acute	22.4	16	100
a.s.	S	Aquatic invertebrates	0.0016	Chronic	22.4	7E-05	10
a.s.	S	Algae	380	Chronic	22.4	17	10
a.s.	S	Sediment-dwelling organisms ⁵	0.75	Chronic	22.4	0.033	10

Test substance	N/S^1	Organism ²	Toxicity	Time	PEC _{sw} ³	TER	Annex VI
			end point	scale	(max.,		Trigger
			$(\mu g/L)$		μg/L)		

Test substance	N/S ¹	Organism ²	Toxicity end point (µg/L)	Time scale	PEC _{sw} ³ (max., µg/L)	TER	Annex VI Trigger
a.s.	N	Fish	660	Acute	14.6	45	100
a.s.	N	Fish	48	Chronic	14.6	3.3	10
a.s.	N	Aquatic invertebrates	350	Acute	14.6	24	100
a.s.	N	Aquatic invertebrates	0.0016	Chronic	14.6	1.1E-04	10
a.s.	N	Algae	380	Chronic	14.6	26	10
a.s.	N	Sediment-dwelling organisms	0.75	Chronic	14.6	0.051	10

Refined aquatic risk assessment using higher tier FOCUS modelling.

FOCUS Step 3

Test substance	Scenario ¹	Water body type ²	Test organism ³	Time scale	Toxicity end point (µg/L)	PEC _{sw} (max., µg/L) ⁴	TER	Annex VI trigger
a.s.	D3	Ditch	Fish	Acute	660	17.4	38	100
a.s.	D4	Pond	Fish	Acute	660	1.21	545	100
a.s.	D4	Stream	Fish	Acute	660	16.7	40	100
a.s.	D5	Pond	Fish	Acute	660	1.17	564	100
a.s.	D5	Stream	Fish	Acute	660	16.9	39	100
a.s.	R1	Pond	Fish	Acute	660	1.2	550	100
a.s.	R1	Stream	Fish	Acute	660	14.1	47	100
a.s.	R2	Stream	Fish	Acute	660	18.7	35	100
a.s.	R3	Stream	Fish	Acute	660	19.9	33	100
a.s.	R4	Stream	Fish	Acute	660	14.1	47	100
Preparation ⁵	D3	Ditch	Fish	Acute	3400	17.4	195	100
Preparation ⁵	D4	Pond	Fish	Acute	3400	1.21	2810	100
Preparation ⁵	D4	Stream	Fish	Acute	3400	16.7	204	100
Preparation ⁵	D5	Pond	Fish	Acute	3400	1.17	2906	100
Preparation ⁵	D5	Stream	Fish	Acute	3400	16.9	201	100
Preparation ⁵	R1	Pond	Fish	Acute	3400	1.2	2833	100
Preparation ⁵	R1	Stream	Fish	Acute	3400	14.1	241	100
Preparation ⁵	R2	Stream	Fish	Acute	3400	18.7	182	100
Preparation ⁵	R3	Stream	Fish	Acute	3400	19.9	171	100

¹ indicate whether Northern of Southern
² include critical groups which fail at Step 1.
³ indicate whether maximum or twa values have been used.

Test substance	Scenario ¹	Water body type ²	Test organism ³	Time scale	Toxicity end point (µg/L)	PEC _{sw} (max., µg/L) ⁴	TER	Annex VI trigger
Preparation ⁵	R4	Stream	Fish	Acute	3400	14.1	241	100
a.s.	D3	Ditch	Fish	Chronic	48	17.4	2.8	10
a.s.	D4	Pond	Fish	Chronic	48	1.21	40	10
a.s.	D4	Stream	Fish	Chronic	48	16.7	2.9	10
a.s.	D5	Pond	Fish	Chronic	48	1.17	41	10
a.s.	D5	Stream	Fish	Chronic	48	16.9	2.8	10
a.s.	R1	Pond	Fish	Chronic	48	1.2	40	10
a.s.	R1	Stream	Fish	Chronic	48	14.1	3.4	10
a.s.	R2	Stream	Fish	Chronic	48	18.7	2.6	10
a.s.	R3	Stream	Fish	Chronic	48	19.9	2.4	10
a.s.	R4	Stream	Fish	Chronic	48	14.1	3.4	10
drainage (D1- ditch/stream/p include critica indicate wheth A-8995 B	ond Il groups whic	h fail at Ste	p 2. whether maximu	ım or twa v	alues used			,

Test substance	Scenario ¹	Water body type ²	Test organism ³	Time scale	Toxicity end point (µg/L)	PEC _{sw} (max., µg/L) ⁴	TER	Annex VI trigger ⁵
a.s.	D3	Ditch	Invertebrate	Acute	350	17.4	20	100
a.s.	D4	Pond	Invertebrate	Acute	350	1.21	289	100
a.s.	D4	Stream	Invertebrate	Acute	350	16.7	21	100
a.s.	D5	Pond	Invertebrate	Acute	350	1.17	299	100
a.s.	D5	Stream	Invertebrate	Acute	350	16.9	21	100
a.s.	R1	Pond	Invertebrate	Acute	350	1.2	292	100
a.s.	R1	Stream	Invertebrate	Acute	350	14.1	25	100
a.s.	R2	Stream	Invertebrate	Acute	350	18.7	19	100
a.s.	R3	Stream	Invertebrate	Acute	350	19.9	18	100
a.s.	R4	Stream	Invertebrate	Acute	350	14.1	25	100
Preparation ⁵	D3	Ditch	Invertebrate	Acute	1500	17.4	86.2	100
Preparation ⁵	D4	Pond	Invertebrate	Acute	1500	1.21	1240	100
Preparation ⁵	D4	Stream	Invertebrate	Acute	1500	16.7	90	100
Preparation ⁵	D5	Pond	Invertebrate	Acute	1500	1.17	1282	100
Preparation ⁵	D5	Stream	Invertebrate	Acute	1500	16.9	89	100

Test substance	Scenario ¹	Water body type ²	Test organism ³	Time scale	Toxicity end point (µg/L)	PEC _{sw} (max., µg/L) ⁴	TER	Annex VI trigger ⁵
Preparation ⁵	R1	Pond	Invertebrate	Acute	1500	1.2	1250	100
Preparation ⁵	R1	Stream	Invertebrate	Acute	1500	14.1	106	100
Preparation ⁵	R2	Stream	Invertebrate	Acute	1500	18.7	80	100
Preparation ⁵	R3	Stream	Invertebrate	Acute	1500	19.9	75	100
Preparation ⁵	R4	Stream	Invertebrate	Acute	1500	14.1	106	100
a.s.	D3	Ditch	Invertebrate	Chronic	0.0016	17.4	0.00009	10
a.s.	D4	Pond	Invertebrate	Chronic	0.0016	1.21	0.0013	10
a.s.	D4	Stream	Invertebrate	Chronic	0.0016	16.7	0.0001	10
a.s.	D5	Pond	Invertebrate	Chronic	0.0016	1.17	0.0014	10
a.s.	D5	Stream	Invertebrate	Chronic	0.0016	16.9	0.00009	10
a.s.	R1	Pond	Invertebrate	Chronic	0.0016	1.2	0.0013	10
a.s.	R1	Stream	Invertebrate	Chronic	0.0016	14.1	0.00011	10
a.s.	R2	Stream	Invertebrate	Chronic	0.0016	18.7	0.00009	10
a.s.	R3	Stream	Invertebrate	Chronic	0.0016	19.9	0.00008	10
a.s.	R4	Stream	Invertebrate	Chronic	0.0016	14.1	0.00011	10

¹ drainage (D1-D6) and run-off (R1-R4)

Test substance	Scenario ¹	Water body type ²	Test organism ³	Time scale	Toxicity end point (µg/L)	PEC _{sw} (max., µg/L) ⁴	TER	Annex VI trigger
a.s.	D3	Ditch	Sediment- dwelling organisms	Chronic	0.75	17.4	0.04	10
a.s.	D4	Pond	Sediment- dwelling organisms	Chronic	0.75	1.21	0.41	10
a.s.	D4	Stream	Sediment- dwelling organisms	Chronic	0.75	16.7	0.045	10
a.s.	D5	Pond	Sediment- dwelling organisms	Chronic	0.75	1.17	0.64	10
a.s.	D5	Stream	Sediment- dwelling	Chronic	0.75	16.9	0.044	10

² ditch/stream/pond

³ include critical groups which fail at Step 2. ⁴ indicate whether PEC_{sw}, or PEC_{sed} and whether maximum or twa values used

⁵ A-8995 B

Test substance	Scenario ¹	Water body type ²	Test organism ³	Time scale	Toxicity end point (µg/L)	PEC _{sw} (max., µg/L) ⁴	TER	Annex VI trigger
			organisms					
a.s.	R1	Pond	Sediment- dwelling organisms	Chronic	0.75	1.2	0.63	10
a.s.	R1	Stream	Sediment- dwelling organisms	Chronic	0.75	14.1	0.053	10
a.s.	R2	Stream	Sediment- dwelling organisms	Chronic	0.75	18.7	0.040	10
a.s.	R3	Stream	Sediment- dwelling organisms	Chronic	0.75	19.9	0.038	10
a.s.	R4	Stream	Sediment- dwelling organisms	Chronic	0.75	14.1	0.053	10
	T .	1	1	<u> </u>	 	1	<u> </u>	
Test substance	Scenario ¹	Water body type ²	Test organism ³	Time scale	Toxicity end point	PEC _{sed} (max., µg/kg) ⁴	TER	Annex VI trigger
					(µg/kg)			
a.s.	D3	ditch	Sediment- dwelling organisms	Chronic	2.8	11.4	0.25	10
a.s.	D4	Pond	Sediment- dwelling organisms	Chronic	2.8	5.45	0.51	10
a.s.	D4	Stream	Sediment- dwelling organisms	Chronic	2.8	0.814	3.4	10
a.s.	D5	Pond	Sediment- dwelling organisms	Chronic	2.8	4.91	0.57	10
a.s.	D5	Stream	Sediment- dwelling organisms	Chronic	2.8	0.928	3.017	10
a.s.	R1	pond	Sediment- dwelling organisms	Chronic	2.8	5.24	0.53	10
a.s.	R1	stream	Sediment- dwelling organisms	Chronic	2.8	1.9	1.47	10
a.s.	R2	Stream	Sediment- dwelling organisms	Chronic	2.8	1.24	2.26	10

Test substance	Scenario ¹	Water body type ²	Test organism ³	Time scale	Toxicity end point (µg/kg)	PEC _{sed} (max., µg/kg) ⁴	TER	Annex VI trigger
a.s.	R3	Stream	Sediment- dwelling organisms	Chronic	2.8	4.68	0.60	10
a.s.	R4	Stream	Sediment- dwelling organisms	Chronic	2.8	2.05	1.37	10

¹ drainage (D1-D6) and run-off (R1-R4) ² ditch/stream/pond

Test substance	Scenario ¹	Water body	Test organism ³	Time scale	Toxicity end	PEC _{sw} (max.,	TER	Annex VI
		type ²			point (μg/L)	μg/L) ⁴		trigger
a.s.	D3	Ditch	Fish	Acute	660	11.6	57	100
a.s.	D4	Pond	Fish	Acute	660	0.99	667	100
a.s.	D4	Stream	Fish	Acute	660	11.1	59	100
a.s.	D5	Pond	Fish	Acute	660	0.88	750	100
a.s.	D5	Stream	Fish	Acute	660	11.3	58	100
a.s.	R1	Pond	Fish	Acute	660	0.86	767	100
a.s.	R1	Stream	Fish	Acute	660	9.4	70	100
a.s.	R2	Stream	Fish	Acute	660	12.5	53	100
a.s.	R3	Stream	Fish	Acute	660	13.2	50	100
a.s.	R4	Stream	Fish	Acute	660	9.4	70	100
Preparation ⁵	D3	Ditch	Fish	Acute	3400	11.6	293	100
Preparation ⁵	D4	Pond	Fish	Acute	3400	0.99	3434	100
Preparation ⁵	D4	Stream	Fish	Acute	3400	11.1	306	100
Preparation ⁵	D5	Pond	Fish	Acute	3400	0.88	3864	100
Preparation ⁵	D5	Stream	Fish	Acute	3400	11.3	301	100
Preparation ⁵	R1	Pond	Fish	Acute	3400	0.86	3953	100
Preparation ⁵	R1	Stream	Fish	Acute	3400	9.4	362	100
Preparation ⁵	R2	Stream	Fish	Acute	3400	12.5	272	100
Preparation ⁵	R3	Stream	Fish	Acute	3400	13.2	257	100
Preparation ⁵	R4	Stream	Fish	Acute	3400	9.4	362	100
a.s.	D3	Ditch	Fish	Chronic	48	11.6	4.1	10
a.s.	D4	Pond	Fish	Chronic	48	0.99	48	10

³ include critical groups which fail at Step 2. ⁴ indicate whether PEC_{sw}, or PEC_{sed} and whether maximum or twa values used

Test substance	Scenario ¹	Water body type ²	Test organism ³	Time scale	Toxicity end point (µg/L)	PEC _{sw} (max., µg/L) ⁴	TER	Annex VI trigger
a.s.	D4	Stream	Fish	Chronic	48	11.1	4.3	10
a.s.	D5	Pond	Fish	Chronic	48	0.88	55	10
a.s.	D5	Stream	Fish	Chronic	48	11.3	4.2	10
a.s.	R1	Pond	Fish	Chronic	48	0.86	56	10
a.s.	R1	Stream	Fish	Chronic	48	9.4	5.1	10
a.s.	R2	Stream	Fish	Chronic	48	12.5	3.8	10
a.s.	R3	Stream	Fish	Chronic	48	13.2	3.6	10
a.s.	R4	Stream	Fish	Chronic	48	9.4	5.1	10

¹ drainage (D1-D6) and run-off (R1-R4)

Test substance	Scenario	Water body type	Test organism	Time scale	Toxicity end point (µg/L)	PEC _{sw} (max., µg/L)	TER	Annex VI trigger
a.s.	D3	Ditch	Invertebrates	Acute	350	11.6	30	100
a.s.	D4	Pond	Invertebrates	Acute	350	0.99	354	100
a.s.	D4	Stream	Invertebrates	Acute	350	11.1	32	100
a.s.	D5	Pond	Invertebrates	Acute	350	0.88	398	100
a.s.	D5	Stream	Invertebrates	Acute	350	11.3	31	100
a.s.	R1	Pond	Invertebrates	Acute	350	0.86	407	100
a.s.	R1	Stream	Invertebrates	Acute	350	9.4	37	100
a.s.	R2	Stream	Invertebrates	Acute	350	12.5	28	100
a.s.	R3	Stream	Invertebrates	Acute	350	13.2	26	100
a.s.	R4	Stream	Invertebrates	Acute	350	9.4	37	100
Preparation ²	D3	Ditch	Invertebrates	Acute	1500	11.6	129	100
Preparation ²	D4	Pond	Invertebrates	Acute	1500	0.99	1515	100
Preparation ²	D4	Stream	Invertebrates	Acute	1500	11.1	135	100
Preparation ²	D5	Pond	Invertebrates	Acute	1500	0.88	1705	100
Preparation ²	D5	Stream	Invertebrates	Acute	1500	11.3	133	100
Preparation ²	R1	Pond	Invertebrates	Acute	1500	0.86	1744	100
Preparation ²	R1	Stream	Invertebrates	Acute	1500	9.4	160	100
Preparation ²	R2	Stream	Invertebrates	Acute	1500	9.4	120	100

² ditch/stream/pond

³ include critical groups which fail at Step 2.

⁴ indicate whether PEC_{sw}, or PEC_{sed} and whether maximum or twa values used

⁵ A-8995 B

Test substance	Scenario	Water body type	Test organism	Time scale	Toxicity end point (µg/L)	PEC _{sw} (max., µg/L)	TER	Annex VI trigger
Preparation ²	R3	Stream	Invertebrates	Acute	1500	13.2	113	100
Preparation ²	R4	Stream	Invertebrates	Acute	1500	9.4	160	100
a.s.	D3	Ditch	invertebrates	Chronic	0.0016	11.6	0.00014	10
a.s.	D4	Pond	invertebrates	Chronic	0.0016	0.99	0.0016	10
a.s.	D4	Stream	invertebrates	Chronic	0.0016	11.1	0.00014	10
a.s.	D5	Pond	invertebrates	Chronic	0.0016	0.88	0.0018	10
a.s.	D5	Stream	invertebrates	Chronic	0.0016	11.3	0.00014	10
a.s.	R1	Pond	invertebrates	Chronic	0.0016	0.86	0.0019	10
a.s.	R1	Stream	invertebrates	Chronic	0.0016	9.4	0.00017	10
a.s.	R2	Stream	invertebrates	Chronic	0.0016	9.4	0.00013	10
a.s.	R3	Stream	invertebrates	Chronic	0.0016	13.2	0.00012	10
a.s.	R4	Stream	invertebrates	Chronic	0.0016	9.4	0.00017	10
a.s.	D4	Pond	invertebrates	Chronic	3.21	0.99	3.2	10
a.s.	D5	Pond	invertebrates	Chronic	3.21	0.88	3.6	10
a.s.	R1	Pond	invertebrates	Chronic	3.21	0.86	3.7	10

¹ Data from a study in which exposure concentrations were manipulated so as to gradually achieve a reduction of 50% in concentration after each ten-hour period throughout the duration of the study.

² A-8995 B

Test substance	Scenario ¹	Water body type ²	Test organism ³	Time scale	Toxicity end point (µg/L)	PEC _{sw} (max., µg/L) ⁴	TER	Annex VI trigger
a.s.	D3	Ditch	Sediment- dwelling organisms	Chronic	0.75	11.6	0.065	10
a.s.	D4	Pond	Sediment- dwelling organisms	Chronic	0.75	0.99	0.76	10
a.s.	D4	Stream	Sediment- dwelling organisms	Chronic	0.75	11.1	0.068	10
a.s.	D5	Pond	Sediment- dwelling organisms	Chronic	0.75	0.88	0.85	10
a.s.	D5	Stream	Sediment- dwelling organisms	Chronic	0.75	11.3	0.066	10
a.s.	R1	Pond	Sediment- dwelling organisms	Chronic	0.75	0.86	0.87	10
a.s.	R1	Stream	Sediment- dwelling	Chronic	0.75	9.4	0.080	10

Test substance	Scenario ¹	Water body type ²	Test organism ³	Time scale	Toxicity end point (µg/L)	PEC _{sw} (max., µg/L) ⁴	TER	Annex VI trigger
			organisms					
a.s.	R2	Stream	Sediment- dwelling organisms	Chronic	0.75	12.5	0.060	10
a.s.	R3	Stream	Sediment- dwelling organisms	Chronic	0.75	13.2	0.057	10
a.s.	R4	Stream	Sediment- dwelling organisms	Chronic	0.75	9.4	0.080	10

Apples and pears, Northern Europe, 2 x 0.150 kg a.s./ha with 10 day interval

Test substance	Scenario ¹	Water body type ²	Test organism ³	Time scale	Toxicity end point (µg/kg)	PEC _{sed} (max., µg/kg) ⁴	TER	Annex VI trigger
a.s.	D3	ditch	Sediment- dwelling organisms	Chronic	2.8	7.84	0.36	10
a.s.	D4	Pond	Sediment- dwelling organisms	Chronic	2.8	3.99	0.70	10
a.s.	D4	Stream	Sediment- dwelling organisms	Chronic	2.8	0.737	3.8	10
a.s.	D5	Pond	Sediment- dwelling organisms	Chronic	2.8	3.743	0.75	10
a.s.	D5	Stream	Sediment- dwelling organisms	Chronic	2.8	0.592	4.73	10
a.s.	R1	pond	Sediment- dwelling organisms	Chronic	2.8	3.42	0.82	10
a.s.	R1	stream	Sediment- dwelling organisms	Chronic	2.8	1.12	2.5	10
a.s.	R2	Stream	Sediment- dwelling organisms	Chronic	2.8	0.831	3.37	10
a.s.	R3	Stream	Sediment- dwelling organisms	Chronic	2.8	3.26	0.86	10
a.s.	R4	Stream	Sediment- dwelling organisms	Chronic	2.8	1.33	2.11	10

¹ drainage (D1-D6) and run-off (R1-R4) ² ditch/stream/pond

 $^{^3}$ include critical groups which fail at Step 2. 4 indicate whether PEC $_{sw}$, or PEC $_{sed}$ and whether maximum or twa values used

Refined TERs for fenoxycarb based on FOCUS STEP 4

C (A)	Dani	C	1CC	Testini	DEC	TED	4
Crop ^(A)	Dose	Scenario	bufferzone	Toxicity endpoint	PECsw	TER	trigger
				(µg/L)			
	(kg a.s./ha)		(m)	(μς/L)	(μg a.s./L)		
FISH ac		1	<u> </u>	1	14:0(2)	1	1
1011 40							
EU N		D3 ditch	25	660	0.755	874	100
2 x 0.150	0	D4 stream	25	660	0.791	834	100
İ		D5 stream	25	660	0.801	824	100
		R1 stream	25	660	0.668	988	100
İ		R2 stream	25	660	0.885	746	100
		R3 stream	25	660	0.941	701	100
İ		R4 stream	25	660	0.668	988	100
FISH ch	ronic			l	· I		
EU N		D3 ditch	25	48	0.755	64	10
2 x 0.150	0	D4 stream	25	48	0.791	61	10
		D5 stream	25	48	0.801	60	10
1		R1 stream	25	48	0.668	72	10
		R2 stream	25	48	0.885	54	10
		R3 stream	25	48	0.941	51	10
İ		R4 stream	25	48	0.668	72	10
INVER	TEBRATES	acute	•	•	•	•	•
EU N		D3 ditch	25	350	0.755	464	100
2 x 0.150	0	D4 stream	25	350	0.791	442	100
		D5 stream	25	350	0.801	437	100
		R1 stream	25	350	0.668	524	100
		R2 stream	25	350	0.885	395	100
		R3 stream	25	350	0.941	372	100
		R4 stream	25	350	0.668	524	100
INVER'	TEBRATES	chronic		JI.	· I	JI.	
EU N		D3 ditch	25	0.0016	0.755	0.002	10
2 x 0.150	0	D4 pond	25	0.0016	0.095	0.017	10
1		D4 stream	25	0.0016	0.791	0.002	10
		D5 pond	25	0.0016	0.095	0.017	10
		D5 stream	25	0.0016	0.801	0.002	10
		R1 pond	25	0.0016	0.095	0.017	10
		R1 stream	25	0.0016	0.668	0.002	10
1		R2 stream	25	0.0016	0.885	0.002	10
		R3 stream	25	0.0016	0.941	0.002	10
SEDIM	ENT DWEL		ANISMS	•	•	•	•
EU N		D3 ditch	25	0.75	0.755	1.0	10
2 x 0.150	0	D4 pond	25	0.75	0.095	7.9	10
		D4 stream	25	0.75	0.791	0.9	10
		D5 pond	25	0.75	0.095	7.9	10
		D5 stream	25	0.75	0.801	0.9	10
		R1 pond	25	0.75	0.095	7.9	10
		R1 stream	25	0.75	0.668	1.1	10
		R2 stream	25	0.75	0.885	0.8	10
		R3 stream	25	0.75	0.941	0.8	10
			1		1		

⁽A) Apples and pears in EU N (Northern Europe) and EU S (Southern Europe). For Northern Europe a single early application has been taken as the worst case.

Crop ^(A)	Dose	Scenario	bufferzone	Toxicity	PECsw	TER	trigger
2.00	_ 555	2000000		endpoint			
				(µg/L)			
	(kg a.s./ha)		(m)		(µg a.s./L)		
FISH ac	cute						
EU S		D3 ditch	30	660	0.734	899	100
2 x 0.22	5	D4 stream	30	660	0.77	857	100
		D5 stream	30	660	0.779	847	100
		R1 stream	30	660	0.65	1015	100
		R2 stream	30	660	0.861	767	100
		R3 stream	30	660	0.915	721	100
		R4 stream	30	660	0.65	1015	100
FISH cl	ronic					1010	1
EU S		D3 ditch	30	48	0.734	65	10
2 x 0.22	5	D4 stream	30	48	0.77	62	10
		D5 stream	30	48	0.779	62	10
		R1 stream	30	48	0.65	74	10
		R2 stream	30	48	0.861	56	10
		R3 stream	30	48	0.915	52	10
		R4 stream	30	48	0.65	74	10
INVER'	TEBRATES	acute					ı
EU S		D3 ditch	30	350	0.734	477	100
2 x 0.22	5	D4 stream	30	350	0.77	455	100
		D5 stream	30	350	0.779	449	100
		R1 stream	30	350	0.65	538	100
		R2 stream	30	350	0.861	407	100
		R3 stream	30	350	0.915	383	100
		R4 stream	30	350	0.65	538	100
INVER'	TEBRATES	chronic	1			l.	JI
EU S		D3 ditch	30	0.0016	0.734	0.00218	10
2 x 0.22	5	D4 pond	30	0.0016	0.102	0.01569	10
		D4 stream	30	0.0016	0.77	0.00208	10
		D5 pond	30	0.0016	0.102	0.01569	10
		D5 stream	30	0.0016	0.779	0.00205	10
		R1 pond	30	0.0016	0.102	0.01569	10
		R1 stream	30	0.0016	0.65	0.00246	10
		R2 stream	30	0.0016	0.861	0.00186	10
		R3 stream	30	0.0016	0.915	0.00175	10
SEDIM	ENT DWEL			1	1		1
EU S		D3 ditch	30	0.75	0.734	1.0	10
2 x 0.22	5	D4 pond	30	0.75	0.102	7.4	10
		D4 stream	30	0.75	0.77	1.0	10
		D5 pond	30	0.75	0.102	7.4	10
		D5 stream	30	0.75	0.779	1.0	10
		R1 pond	30	0.75	0.102	7.4	10
		R1 stream	30	0.75	0.65	1.2	10
		R2 stream	30	0.75	0.861	0.9	10
		R3 stream	30	0.75	0.915	0.8	10
(A) A	les and nears			1			or Northern

⁽A) Apples and pears in EU N (Northern Europe) and EU S (Southern Europe). For Northern Europe a single early application has been taken as the worst case.

Bioconcentration			
	Active substance	CGA294847	Phenol
$\log P_{\mathrm{OW}}$	4.07	1.70^2	1.51 ²
Bioconcentration factor (BCF) ¹	215 (fenoxycarb, 6% lipid content)	No data available- no data required	No data available- no data required
Annex VI Trigger for the bioconcentration factor	100		
Clearance time (days) (CT ₅₀)	0.62-1.1		
(CT ₉₀)	2.0-3.7		
Level and nature of residues (%) in organisms after the 14 day depuration phase	≤5%; nature not investigated		

Effects on honeybees (Annex IIA, point 8.3.1, Annex IIIA, point 10.4)

Test substance	Acute oral toxicity (LD ₅₀ µg/bee)	Acute contact toxicity (LD ₅₀ µg/bee)
a.s. ‡	No data available – no data required	No data available – no data required
Preparation ¹ (A-8995 B, a WG formulation)	>204 (a.s.)	>204 (a.s.)
Field or semi-field tests		
0.06-1.2% brood loss after application of fenoxycarb and leaving cut weeds as a mulch.	at 150 g a.s./ha before bloom	with mowing of weeds

for preparations indicate whether end point is expressed in units of a.s. or preparation

Hazard quotients for honey bees (Annex IIIA, point 10.4)

Apples and pears, Southern Europe, 2 x 225 g a.s./ha

Test substance	Route	Hazard quotient	Annex VI Trigger
Preparation	Contact	<1.1	50
Preparation	Oral	<1.1	50

Effects on other arthropod species (Annex IIA, point 8.3.2, Annex IIIA, point 10.5)

Laboratory tests with standard sensitive species

Species	Test Substance	End point	Effect (LR ₅₀ g/ha ¹)
Typhlodromus pyri ‡	Preparation	Mortality	No data available - no data required
Aphidius rhopalosiphi ‡	Preparation	Mortality	No data available - no data required

for preparations indicate whether end point is expressed in units of a.s. or preparation

only required if log P_{O/W} >3.
² estimated by EPA EPI Suite software

	•	led laboratory stud	lies ‡	 	i	
Species	Life stage	Test substance, substrate and duration	Dose (g a.s./ha)	End point	% effect	Trigger
Aphidius rhopalosiphi	Adults	Preparation ¹ , extended laboratory, barley seedlings, 2 days	29; 58; 116; 231; 463 (fresh residues)	Mortality Reduction of reproduction	0; 0; 0; 3.3; 0 LR50 (g a.s./ha): >463 12; -17 ² ; 5.7; -24 ² ; 15 ER50 (g a.s./ha): >463	50 % 50 %
	Mummies	Preparation ¹ , extended laboratory, direct exposure of mummies (overspray) on barley leaf pieces, 7 days	14; 29; 58; 116; 231; 463 (fresh residues)	Mortality Reduction of reproduction	-4.0 ² ; -3.2 ² ; -9.9 ² ; -9.3 ² ; -1.5 ² ; 3.2 LR50 (g a.s./ha): >463 -25 ² ; 19; 1.8; 14; 16; 8.7 ER50 (g a.s./ha): >463	50 %
Typhlodromus pyri	Proto- nymphs	Preparation ¹ , laboratory, leaf discs, 14 days	1.8; 3.6; 7.2; 14; 29; 29 ³ ; 58; 116; 231; 463 (fresh residues)	Reduction of reproduction	-3.6 ² ; -1.7 ² ; 0; 3.7; 3.7; 11; 9.2; -1.7 ² ; 0; 16 LR50 (g a.s./ha): >463 4.7; 10; 29; 38; 43; 33; 46; 54; 48; 45 ER50 (g a.s./ha): 29	50 %
	Eggs	Preparation ¹ , extended laboratory, direct exposure of eggs (overspray) + leaf discs, 18 days	29; 58; 116; 231; 463 (fresh residues)	Reduction of hatching Mortality	-5.4 ² ; -7.2 ² ; -3.6 ² ; -5.4 ² ; 41 ER50 (g a.s./ha): >463 0; -5.7 ² ; 0; 23; 59 LR50 (g a.s./ha): 396	50 %

Species	Life stage	Test substance, substrate and duration	Dose (g a.s./ha)	End point	% effect	Trigger
Chrysoperla carnea	1 st instar larvae	Preparation ¹ , extended laboratory, bean leaves, until adult emergence	0.48; 1.4; 4.3; 13; 39; 116 (fresh residues)	Mortality Reduction of reproduction	6.9; 3.5; 41; 93; 97; 100 LR50 (g a.s./ha): 5.0 -24 ² ; -23 ² ; -22 ² ; n.a. ⁴ ; n.a. ⁴ ; n.a. ⁴ ER50 (g a.s./ha): >4.3	50 %
	Eggs	Preparation ¹ , extended laboratory, direct exposure of eggs (overspray) + bean leaves, until adult emergence	0.48; 1.4; 4.3; 13; 39; 116 (fresh residues)	Reduction of hatching Mortality	0; -21 ² ; 0; -21 ² ; 0; 17 ER50 (g a.s./ha): >116 -9.5 ² ; -4.8 ² ; 48; 95; 100; 100 LR50 (g a.s./ha): 4.6	50 % 50 %
Orius laevigatus	2 nd instar larvae	Preparation ¹ , extended laboratory, bean leaves, 9 days	14; 29; 58; 115; 230; 461 (fresh residues)	Mortality Reduction of reproduction	15; 17; 17; 32; 79; 58 LR50 (g a.s./ha): 169 24; 2.4; 38; 36; 97; n.a. ⁴ ER50 (g a.s./ha): 135	50 % 50 %
	Eggs	Preparation ¹ , extended laboratory, direct exposure of eggs (overspray) + bean leaves, until adult development	7.2; 14; 29; 58; 116; 231; 463 (fresh residues)	Reduction of hatching Mortality	4.2; -5.6 ² ; -4.5 ² ; -3.9 ² ; 15; 16; 21 ER50 (g a.s./ha): >463 -5.2 ² ; 5.6; -23 ² ; -17 ² ; 5.8; 23; 67 LR50 (g a.s./ha): 333	50 %
Coccinella septempunctata	adult	Laboratory , dried residues on sprayed glass plates	0.00975, 0.039, 0.156, 0.625 and 2.5 g as/ha	Mortality Reduction of reproduction	LR50 (g a.s./ha) > 2.5 53% (at 2.5 g a.s./ha)	30

Species	Life stage		_	-	0, 00	.
Species	Life stage	Test substance,	Dose	End point	% effect	Trigger
		substrate and duration	(g a.s./ha)			
G : 11	and ·		0.16.0.40	3.6 . 12.	20.70.06.100.100	50.0 /
Coccinella	2 nd instar	Preparation ¹ ,	0.16; 0.48;	Mortality	30; 78; 96; 100; 100;	50 %
septempunctata	larvae	extended	1.4; 4.3;		100; 100	
		laboratory, bean	13; 39;		LR50 (g a.s./ha): 0.25	7 0 0/
		leaves, until adult	116 (fresh	Reduction of	-8.5^{2} ; n.a. ⁴ ; n.a. ⁴ ; n.a. ⁴ ;	50 %
		emergence	residues)	reproduction	n.a. ⁴ ; n.a. ⁴ ; n.a. ⁴	
	-	D .: 1	0.0001	D 1 .: C	ER50 (g a.s./ha): >0.16	50 0/
	Eggs	Preparation ¹ ,	0.0021;	Reduction of	-3.6^2 ; 3.5; 3.5; 11; 21;	50 %
		extended	0.0059;	hatching	100; 100	
		laboratory, direct	0.018;	3.6	ER50 (g a.s./ha): 0.24	7 0 0/
		exposure of eggs	0.053;	Mortality	-4.8 ² ; 19; 9.5; 43; 38;	50 %
		(overspray) +	0.16; 0.48;		100; 100	
		bean leaves, until	1.4 (fresh		LR50 (g a.s./ha): 0.10	
Poecilus	Adults	adult emergence	residues)	Montalita	0. 0. 0. 0. 0	50 %
	Aduits	Preparation ¹ , extended	15; 29; 58; 116; 231;	Mortality	0; 0; 0; 0; 0; 0 LR50 (g a.s./ha): >463	30 %
cupreus		laboratory, direct	463	Dadwatian of		50 o/
		•	(fresh	Reduction of	22; 18; 2.7; -7.3 ² ; -31 ² ; -39 ²	50 %
		exposure (overspray) +	residues)	reproduction		
		soil, 14 days	residues)		ER50 (g a.s./ha): >463	
	24-48 h	Preparation ¹ ,	15; 29; 58;	Mortality	30; 73; 82; 88; 82; 79	50 %
	old larvae	extended ,	116; 231;	Wiortanty	LR50 (g a.s./ha): 19	30 70
		laboratory, larval	463	Development	ER50 (g a.s./ha): >463	50 %
		exposure to soil,	(fresh	time	Erts o (g a.s./na). > 105	20 70
		40-46 days	residues)			
Trichogramma	24 h old	Preparation ¹ ,	29; 57;	Reduction of	30; 35; 26; 51; 60	50 %
cacoeciae	wasps	extended	115; 230;	parasitisation	ER50 (g a.s./ha): 287	
	1	laboratory, bean	459		,	
		leaves, 7 days	(fresh			
			residues)			
	Parasitised	Preparation ¹ ,	29; 57;	Reduction of	11; 55; 69; 86; 93	50 %
	eggs	extended	115; 230;	parasitisation	ER50 (g a.s./ha): 73	
		laboratory, direct	459			
		exposure of	(fresh			
		parasitised eggs +	residues)			
		bean leaves, 7				
		days				
	24 h old	Preparation ¹ ,	1 x 30; 1 x		38; 27; 54; 3.7	50 %
	wasps	extended	150; 2 x	parasitisation	ER50 (g a.s./ha):	
		laboratory, leaves	30; 2 x		>2x150	
		from apple trees,	150 (fresh			
		9 days	residues)			

A-8995 B, a WG formulation

Field or semi-field tests

Semi-field studies

Note: negative effect %, hence no adverse effect

This dose was tested twice

n.a. = not applicable (insufficient survivors from initial phase to assess reproduction)

No treatment related effects up to and including the highest test dose

Species	Life stage	Test substance, substrate and duration	Dose (g a.s./ha)	End point	% effect	Trigger
Coccinella septempunctata	Larvae	Preparation, semi-field, confinement over treated apple trees, 12- 21 days	8.5; 43 g a.s./hL (fresh residues)	Mortality	100; 100 LR50 (g a.s./hL): <8.5	50 %
	Larvae	Preparation, semi-field, confinement over treated apple trees, 12- 21 days	8.5; 43 g a.s./hL (21 days aged residues)	Mortality	100; 100 LR50 (g a.s./hL): <8.5	50 %
	Larvae	Preparation, semi-field, confinement over treated apple trees, 12- 21 days	8.5; 43 g a.s./hL (42 days aged residues)	Mortality	100; 100 LR50 (g a.s./hL): <8.5	50 %
	Larvae	Preparation, extended laboratory, leaves from treated trees, 12-21 days	8.5; 43 g a.s./hL (63 days aged residues)	Mortality	100; 100 LR50 (g a.s./hL): <8.5	50 %
Chrysoperla carnea	1 st instar larvae	Preparation, semi-field, confinement over treated apple trees, 14- 28 days	8.5; 43 g a.s./hL (fresh residues)	Mortality	94; 100 LR50 (g a.s./hL): <8.5	50 %
	1 st instar larvae	Preparation, semi-field, confinement over treated apple trees, 14- 28 days	8.5; 43 g a.s./hL (21 days aged residues)	Mortality	63; 100 LR50 (g a.s./hL): <8.5	50 %
	1 st instar larvae	Preparation, semi-field, confinement over treated apple trees, 14- 28 days	8.5; 43 g a.s./hL (42 days aged residues)	Mortality	60; 100 LR50 (g a.s./hL): <8.5	50 %
Chrysoperla carnea	1 st instar larvae	Preparation, extended laboratory, leaves from treated apple trees, 14-28 days	8.5; 43 g a.s./hL (63 days aged residues)	Mortality	60; 80 LR50 (g a.s./hL): <8.5	50 %

Effects on earthworms, other soil macro-organisms and soil micro-organisms (Annex IIA points 8.4 and 8.5. Annex IIIA, points, 10.6 and 10.7)

Test organism	Test substance	Time scale	End point ¹
Earthworms			
	a.s. ‡	Acute 14 days	LC _{50, corr} 425 mg a.s./kg d.w.soil
	a.s. ‡	Chronic 8 weeks	No data available - no data required
	Preparation (A-8995 B, a WG formulation)	Acute	LC _{50,corr} >128 mg a.s./kg d.w.soil
	CGA294850	Acute	LC _{50, corr} 372 mg/kg d.w.soil
	CGA294850	Chronic	No data available - no data required
Other soil macro-organism	ns		
Soil mite	a.s. ‡		No data available – no data required
	Preparation		No data available – no data required
Collembola			
	a.s. ‡	Chronic	No data available – no data required
	Preparation		No data available – no data required
Soil micro-organisms			
Nitrogen mineralisation	a.s. ‡		16% effect at day 28 at 3.0 mg a.s./kg d.w.soil
Carbon mineralisation	a.s. ‡		2% effect at day 28 at 3.0 mg a.s./kg d.w.soil
Field studies	•		
Not required			

indicate where end point has been corrected due to log Pow >2.0 (e.g. LC_{50corr})

Toxicity/exposure ratios for soil organisms

Apples and pears, Southern Europe, 2 x 0.225 kg a.s./ha

Test organism	Test substance	Time scale	Soil PEC _(initial)	TER	Trigger
Earthworms					
	a.s. ‡	Acute	0.179	>712	10
	CGA-294850	Acute	0.0085	43795	10

Effects on non target plants (Annex IIA, point 8.6, Annex IIIA, point 10.8)

The phytotoxic effects of CGA 114597 25 WG on seedling emergence of six plant species

Test species	EC50 (g product/ha)	EC50 (g a.s./ha)
Maize (Zea mais)	> 1800	> 450
Wild oat (Avena fatua)	> 1800	> 450
Onion (Allium cepa)	> 1800	> 450
Sugar beet (Beta vulgaris)	> 1800	> 450
Oilseed rape (Brassica napus)	> 1800	> 450
Soybean (Glycine max)	> 1800	> 450

The phytotoxic effects of CGA 114597 25 WG on vegetative vigor of six plant species

Test species	EC50 (g product/ha)	EC50 (g a.s./ha)
Maize (Zea mais)	> 1800	> 450
Wild oat (Avena fatua)	> 1800	> 450
Onion (Allium cepa)	> 1800	> 450
Sugar beet (Beta vulgaris)	> 1800	> 450
Oilseed rape (Brassica napus)	> 1800	> 450
Soybean (Glycine max)	> 1800	> 450

Effects on biological methods for sewage treatment (Annex IIA 8.7)

Test type/organism end point	
Activated sludge	3-hour EC ₅₀ >100 mg/L
Pseudomonas sp	No data available – no data required

Ecotoxicologically relevant compounds (consider parent and all relevant metabolites requiring further assessment from the fate section)

Compartment	
soil	Fenoxycarb
water	Fenoxycarb, CGA-294847, phenol
sediment	Fenoxycarb
groundwater	Fenoxycarb

Classification and proposed labelling with regard to ecotoxicological data (Annex IIA, point 10 and Annex IIIA, point 12.3)

	RMS/peer review proposal			
Active substance	N, R50, R53			
	RMS/peer review proposal			
Preparation	N, R51, R53			

Code/Trivial name	Chemical name	Structural formula
Fenoxycarb	[2-(4-phenoxyphenoxy)ethyl] carbamic acid, ethyl ester	
CGA-294847	[2-(4-hydroxy-phenoxy)-ethyl]- carbamic acid ethyl ester	HO NO NO NO NO NO NO NO NO NO NO NO NO NO
Phenol	phenol	HO

APPENDIX B – USED COMPOUND CODE(S)

Code/Trivial name*	Chemical name	Structural formula
CGA 294847	[2-(4-hydroxy-phenoxy)- ethyl]-carbamic acid ethyl ester	HO CONTRACTOR
CGA 294850	{2-[4-(4-hydroxy-phenoxy)-phenoxy]-ethyl}-carbamic acid ethyl ester	HOOON

^{*} The metabolite name in bold is the name used in the conclusion.

ABBREVIATIONS

1/n slope of Freundlich isotherm

ε decadic molar extinction coefficient

°C degree Celsius (centigrade)

μg microgram

μm micrometer (micron)
a.s. active substance
AChE acetylcholinesterase
ADE actual dermal exposure
ADI acceptable daily intake
AF assessment factor

AOEL acceptable operator exposure level

AP alkaline phosphatase
AR applied radioactivity
ARfD acute reference dose

AST aspartate aminotransferase (SGOT)

AV avoidance factor
BCF bioconcentration factor
BUN blood urea nitrogen
bw body weight

CAS Chemical Abstract Service
CFU colony forming units
ChE cholinesterase
CI confidence interval

CIPAC Collaborative International Pesticide Analytical Council Limited

CL confidence limits

d day

DAA days after application
DAR draft assessment report
DAT days after treatment

DM dry matter

DT₅₀ period required for 50 percent disappearance (define method of estimation) DT₉₀ period required for 90 percent disappearance (define method of estimation)

dw dry weight

EbC₅₀ effective concentration (biomass)

ECHA European Chemical Agency
EEC European Economic Community

EINECS European Inventory of Existing Commercial Chemical Substances

ELINCS European List of New Chemical Substances

EMDI estimated maximum daily intake ER₅₀ emergence rate/effective rate, median ErC₅₀ effective concentration (growth rate)

EU European Union

EUROPOEM European Predictive Operator Exposure Model

f(twa) time weighted average factor

FAO Food and Agriculture Organisation of the United Nations

FIR Food intake rate

FOB functional observation battery

FOCUS Forum for the Co-ordination of Pesticide Fate Models and their Use

g gram

GAP good agricultural practice GC gas chromatography

GCPF Global Crop Protection Federation (formerly known as GIFAP)

GGT gamma glutamyl transferase

GM geometric mean GS growth stage **GSH** glutathion hour(s) h ha hectare haemoglobin Hb Hct haematocrit hectolitre hL

HPLC high liquid chromatography pressure

or high performance liquid chromatography

HPLC-MS high pressure liquid chromatography – mass spectrometry high-pressure liquid chromatography with UV detector **HPLC-UV**

НО hazard quotient

international estimated daily intake **IEDI IESTI** international estimated short-term intake International Organisation for Standardisation ISO **IUPAC** International Union of Pure and Applied Chemistry

JMPR Joint Meeting on the FAO Panel of Experts on Pesticide Residues in Food and

the Environment and the WHO Expert Group on Pesticide Residues (Joint

Meeting on Pesticide Residues)

 K_{doc} organic carbon linear adsorption coefficient

kilogram kg

 K_{Foc} Freundlich organic carbon adsorption coefficient

L

LC liquid chromatography LC_{50} lethal concentration, median

LC-MS liquid chromatography-mass spectrometry

LC-MS-MS liquid chromatography with tandem mass spectrometry

lethal dose, median; dosis letalis media LD_{50}

lactate dehydrogenase LDH

LOAEL lowest observable adverse effect level

LOD limit of detection

limit of quantification (determination) LOQ

metre m

mixing and loading M/Lmultiple application factor **MAF** mean corpuscular haemoglobin MCH

mean corpuscular haemoglobin concentration **MCHC**

MCV mean corpuscular volume

milligram mg millilitre mLmm millimetre

maximum residue limit or level **MRL**

MS mass spectrometry material safety data sheet **MSDS** maximum tolerated dose **MTD**

maximum water holding capacity **MWHC** national estimated short-term intake **NESTI**

nanogram ng

no observed adverse effect concentration **NOAEC**

NOAEL no observed adverse effect level no observed effect concentration **NOEC**

NOEL no observed effect level OMorganic matter content

onlinelibrary.wiley.com/doi/10.2903/j.efsa.2010.1779 by University College London UCL Library Services, Wiley Online Library on [14/05/2025]. See the Terms

Pa Pascal

PD proportion of different food types
PEC predicted environmental concentration
PEC_{air} predicted environmental concentration in air

PEC_{gw} predicted environmental concentration in ground water PEC_{sed} predicted environmental concentration in sediment PEC_{soil} predicted environmental concentration in soil

PEC_{sw} predicted environmental concentration in surface water

pH pH-value

PHED pesticide handler's exposure data

PHI pre-harvest interval

PIE potential inhalation exposure

pK_a negative logarithm (to the base 10) of the dissociation constant

P_{ow} partition coefficient between *n*-octanol and water

PPE personal protective equipment

ppm parts per million (10⁻⁶) ppp plant protection product

PT proportion of diet obtained in the treated area

PTT partial thromboplastin time

QSAR quantitative structure-activity relationship

r² coefficient of determination RPE respiratory protective equipment

RUD residue per unit dose
SC suspension concentrate
SD standard deviation
SFO single first-order

SSD species sensitivity distribution
STMR supervised trials median residue
t_{1/2} half-life (define method of estimation)

TER toxicity exposure ratio

TER_A toxicity exposure ratio for acute exposure

TER_{LT} toxicity exposure ratio following chronic exposure TER_{ST} toxicity exposure ratio following repeated exposure

TK technical concentrate
TLV threshold limit value

TMDI theoretical maximum daily intake

TRR total radioactive residue

TSH thyroid stimulating hormone (thyrotropin)

TWA time weighted average UDS unscheduled DNA synthesis

UV ultraviolet
W/S water/sediment
w/v weight per volume
w/w weight per weight
WBC white blood cell

WG water dispersible granule
WHO World Health Organisation

wk week yr year