

General Description

The MAX6461-MAX6466 family of ultra-low-power voltage detectors and µP reset supervisory circuits monitors battery, power-supply, and system voltages. Each circuit includes a precision bandgap reference, a comparator, internally trimmed resistor networks that set specified trip thresholds, and an internal 5% threshold hysteresis circuit (see the Functional Diagram). Output is asserted when VCC falls below the internal VTH- and remains asserted until V_{CC} rises above V_{TH+} ($V_{TH+} = V_{TH-} \times 1.05$). These devices provide excellent circuit reliability and low cost by eliminating external components and adjustments when monitoring nominal system voltages from +1.6V to +5.5V. The MAX6461/MAX6462/MAX6463 are voltage detectors with a propagation delay of 17µs.

The MAX6464/MAX6465/MAX6466 are µP supervisory circuits with a minimum reset timeout period of 150ms. All devices are available with thresholds from +1.6V to +5.5V in 100mV increments.

The family is available with three output stage options: push-pull with active-low output, push-pull with activehigh output, and open drain with active-low output. These devices are available in SC70 and SOT23 packages specified over the -40°C to +125°C temperature range.

Applications

Precision Battery Monitoring

Load Switching/Power Sequencing

Power-Supply Monitoring in Digital/Analog Systems

Noise-Immune µP Reset Circuits

Portable/Battery-Powered Equipment

Cellular Phones/Cordless Phones

PDAs

Portable Medical Devices

Features

- ♦ Ultra-Low 1.0µA Supply Current
- ♦ Preset Thresholds from +1.6V to +5.5V in 100mV Increments
- ♦ Internal 5% Threshold Hysteresis
- **♦** ±2.5% Threshold Accuracy Over Temperature
- ♦ Internal Timeout Period Option (150ms min)
- **♦ Immune to Short Voltage Transients**
- **♦ No External Components**
- ♦ Available in Three Output Options: Push-Pull (Active Low/Active High) and Open Drain (Active Low)
- ♦ Fully Specified from -40°C to +125°C
- ♦ Small SC70 and SOT23 Packages

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX6461 XRT	-40°C to +125°C	3 SC70-3
MAX6461URT	-40°C to +125°C	3 SOT23-3
MAX6461UKT	-40°C to +125°C	5 SOT23-5
MAX6462 XRT	-40°C to +125°C	3 SC70-3
MAX6462URT	-40°C to +125°C	3 SOT23-3
MAX6462UKT	-40°C to +125°C	5 SOT23-5

The MAX6461-MAX6466 are available in factory-set thresholds from 1.6V to 5.5V in approximately 100mV increments. Choose the desired voltage threshold suffix from Table 1 and insert it in the blank spaces in the part number. There are 30 standard versions with a required order increment of 2500 pieces. Sample stock generally is held on the standard versions only (Table 2). Nonstandard versions require a 10k-piece order increment. Contact factory for availability. All devices available in tape-andreel only.

Devices are available in both leaded and lead-free packaging. Specify lead-free by replacing "-T" with "+T" when ordering.

Ordering Information continued at end of data sheet. Selector Guide appears at end of data sheet.

Pin Configurations

NIXIN

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND unle	ess otherwise noted.)	Operating
V _{CC} , Open-Drain OUT	0.3V to +7V	Junction To
Push-Pull OUT/OUT	0.3V to (V _{CC} + 0.3V)	Storage Te
Input/Output Current (all pins)	20mA	Lead Temp
Output Short Circuit (V _{CC} or GND)		
Continuous Power Dissipation (TA =	+70°C)	
3-Pin SC70 (derate 2.9mW/°C abo	ove +70°C)228.6mW	
3-Pin SOT23 (derate 4.0mW/°C at	bove +70°C)320mW	

5-Pin SOT23 (derate 7.1mW/°C above +70°C)......571mW

Operating Temperature Range	e40°C to +125°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering,	10s)+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +1.2V \text{ to } +6V, T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}. \text{ Typical values are at } T_A = +25^{\circ}\text{C}, \text{ unless otherwise noted.})$ (Note1)

PARAMETER	SYMBOL	CONDITIO	ONS	MIN	TYP	MAX	UNITS
Occupation Wellers Berein	V.	$T_A = 0$ °C to +125°C	$T_A = 0$ °C to +125°C			6	V
Operating Voltage Range	Vcc	$T_A = -40^{\circ}C$ to $0^{\circ}C$		1.2		6.0	V
		V _{CC} = 3.6V, T _A = -40°C to no load, output not assert			1	2	
V _{CC} Supply Current	Icc	V _{CC} = 5.0V, T _A = -40°C to no load, output not assert			1.3	2.5	μΑ
		V _{CC} = 5.0V, T _A = +85°C to no load, output not assert				3.5	
Voltage Threshold (Note 2)	V	V_{CC} rising, $T_A = +25^{\circ}C$		(V _{TH} +) × 0.985	V _{TH} +	(V _{TH} +) × 1.015	
	V _{TH} +	V_{CC} rising, $T_A = -40^{\circ}C$ to $+125^{\circ}C$		(V _{TH} +) × 0.975		(V _{TH} +) × 1.025	V
	V _{TH} -	V _{CC} falling, T _A = +25°C		(V _{TH} -) × 0.985	V _{TH} -	(V _{TH} -) × 1.015	
		V _{CC} falling, T _A = -40°C to +125°C		(V _{TH} -) × 0.975		(V _{TH} -) × 1.025	
Voltage Threshold Hysteresis	VHYST	V _H YST = [(V _{TH} +) - (V _{TH} -)]	/ (V _{TH} -)] × 100%	3	4.5	6	%
		V _{CC} falling at 10mV/µs fro (V _{TH} -) + 100mV to (V _{TH} -)			17		
Propagation Delay	V _{CC} rising at 10mV/µs MAX6461/ from (V _{TH+}) - 100mV to MAX6462/ (V _{TH+}) + 100mV MAX6463 only			100		μs	
Startup Time (MAX6461/MAX6462/MAX6463)					225		μs
Output Timeout Period (MAX6464/MAX6465/MAX6466)	t _{RP}			150	260	430	ms

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +1.2V \text{ to } +6V, T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}. \text{ Typical values are at } T_A = +25^{\circ}\text{C}, \text{ unless otherwise noted.})$ (Note1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
OUT Outside Law (Outside Date)		V _{CC} ≥ 1.2V, I _{SINK} = 1.0mA, OUT asserted			0.3		
OUT Output Low (Open Drain or Push-Pull)	V_{OL}	V _{CC} ≥ 2.5V, I _{SINK} = 4.0mA, OUT asserted			0.3	V	
r don'r dily		V _{CC} ≥ 4.5V, I _{SINK} = 9.0mA, OUT asserted			0.4		
		V _{CC} ≥ 1.8V, I _{SOURCE} = 1.5mA, OUT not asserted	0.8 × V _{CC}				
OUT Output High (Push-Pull)	VoH	V _{CC} ≥ 2.5V, I _{SOURCE} = 3.0mA, OUT not asserted	0.8 × V _{CC}			V	
		V _{CC} ≥ 4.5V, I _{SOURCE} = 8.0mA, OUT not asserted	0.8 × V _{CC}				
OUT Output Open-Drain Leakage Current	I _{LKG}	OUT not asserted, V _{OUT} = +6V			100	nA	
		V _{CC} ≥ 1.2V, I _{SOURCE} = 200μA, OUT asserted	0.8 × V _{CC}				
OUT Output High (Duch Dull)	Vон	V _{CC} ≥ 1.8V, I _{SOURCE} = 1.5mA, OUT asserted	0.8 × V _C C			V	
OUT Output High (Push-Pull)		V _{CC} ≥ 2.5V, I _{SOURCE} = 3.0mA, OUT asserted	0.8 × V _{CC}			V	
		V _{CC} ≥ 4.5V, I _{SOURCE} = 8.0mA, OUT asserted	0.8 × V _{CC}				
OUT Output Low (Push-Pull)	Vol	V _{CC} ≥ 2.5V, I _{SINK} = 4.0mA, OUT not asserted			0.3	V	
OOT Output Low (Fusti-Full)	VOL	V _{CC} ≥ 4.5V, I _{SINK} = 9.0mA, OUT not asserted			0.4	V	

Note 1: 100% production testing done at +25°C. Limits over temperature are guaranteed by design.

Note 2: See Table 1 for V_{TH} - and V_{TH} + values.

Typical Operating Characteristics

 $(V_{CC} = 5V, T_A = +25^{\circ}C, unless otherwise noted.)$

Typical Operating Characteristics (continued)

($V_{CC} = 5V$, $T_A = +25$ °C, unless otherwise noted.)

Pin Description

PIN MAX6461–MAX6466		PIN		
		NAME	FUNCTION	
SOT23-3	SC70-3	SOT23-5		
1	2	4	OUT	Detector Output for the MAX6461/MAX6462/MAX6463: Push-pull (active-low or active-high) and open-drain (active-low) options. $\overline{\text{OUT}}$ is asserted low when the monitored input (V _{CC}) drops below the internal V _{TH} - threshold and remains low until the monitored input exceeds the internal V _{TH+} threshold. OUT is asserted high when the monitored input (V _{CC}) drops below the internal V _{TH+} threshold and remains high until the monitored input exceeds the internal V _{TH+} threshold. The open-drain output $\overline{\text{OUT}}$ requires an external pullup resistor. Output for the MAX6464/MAX6465/MAX6466: Push-pull (active-low or active-high) and open-drain (active-low) options.
			OUT	OUT is asserted low when the monitored input (V _{CC}) drops below the internal V _{TH} - threshold and remains low for at least 150ms after the monitored input exceeds the internal V _{TH} + threshold. OUT is asserted high when the monitored input (V _{CC}) drops below the internal V _{TH} - threshold and remains high for at least 150ms after the monitored input exceeds the internal V _{TH} + threshold. The opendrain output OUT requires an external pullup resistor.
2	1	2, 3	GND	Ground. In the SOT23-5 package, both pins must be grounded.
3	3	5	Vcc	Supply Voltage and Monitored Voltage Input
_	_	1	N.C.	No Connection

Functional Diagram

Detailed Description

The MAX6461/MAX6462/MAX6463 voltage detectors and the MAX6464/MAX6465/MAX6466 μP reset supervisory circuits monitor battery, power-supply, and system voltages from +1.6V to +5.5V. These devices consume only 1 μA of supply current with a 3.6V supply voltage. Whenever VCC falls below the internal VTH- threshold, the output is asserted and remains asserted until VCC rises above VTH+ (VTH+ = VTH- \times 1.05). All devices have $\pm 2.5\%$ threshold accuracy over temperature and offer protection to short voltage transients. These devices are ideal for low-cost and space-critical applications because they do not require external components for proper operation.

Figure 1. Interfacing to Different Logic Voltage Components

_____Applications Information Interfacing to Different Logic Voltage Components

The MAX6463 and MAX6466's active-low, open-drain output versions can be used to interface with a different logic voltage than V_{CC} , as shown in Figure 1. This output structure sinks current when \overline{OUT} is asserted. Connect a pullup resistor from \overline{OUT} to any supply from 0 to 6V. Select a resistor value large enough to allow a valid logic low (see the *Electrical Characteristics*) and small enough to register a logic high while supplying all input current and leakage paths connected to the \overline{OUT} pin.

Hysteresis

The MAX6461–MAX6466 feature internal hysteresis that creates two trip points: one for rising supply voltage and one for falling supply voltage. The hysteresis prevents the output from oscillating (chattering) when V_{CC} is near the voltage threshold.

Transients Immunity

These devices are relatively immune to short-duration and falling V_{CC} transients (glitches). The *Typical Operating Characteristics* show the Maximum Transient Duration vs. Threshold Overdrive graph, for which $\overline{\text{OUT}}$ is not asserted. The graph shows the maximum pulse width that a falling V_{CC} transient typically might have before the devices are asserted. As the amplitude of the transient increases, the maximum allowable pulse width decreases.

Ensuring Valid Output Down to 0V

When V_{CC} falls below 1V, the MAX6461/MAX6464 output sinking capability is reduced. Therefore, high-impedance CMOS logic inputs connected to $\overline{\text{OUT}}$ can drift to undetermined voltages. This presents no problem in most applications, because most circuitry is inoperative when V_{CC} is below 1V. In applications where $\overline{\text{OUT}}$ must be valid down to ground, add a pull-down resistor to ground so any stray leakage currents flow to ground, holding $\overline{\text{OUT}}$ low. Select a resistor large enough not to load $\overline{\text{OUT}}$ and small enough to pull $\overline{\text{OUT}}$ to ground. For most applications, 100k Ω does not load $\overline{\text{OUT}}$ and pulls $\overline{\text{OUT}}$ to ground.

Table 1a. MAX6461-MAX6466 Lower Trip Threshold (VTH-) Voltage Options

	VOLTAGE THRESHOLD, V _{TH} -					
SUFFIX		T _A = +25°C		T _A = -40°C	to +125°C	
	V _{TH-} (min)	V _{TH-} (typ)	V _{TH-} (max)	V _{TH-} (min)	V _{TH-} (max)	
16	1.576	1.600	1.624	1.560	1.640	
17	1.675	1.700	1.726	1.658	1.743	
18	1.773	1.800	1.827	1.755	1.845	
19	1.872	1.900	1.929	1.853	1.948	
20	1.970	2.000	2.030	1.950	2.050	
21	2.069	2.100	2.132	2.048	2.153	
22	2.167	2.200	2.233	2.145	2.255	
23	2.266	2.300	2.335	2.243	2.358	
24	2.364	2.400	2.436	2.340	2.460	
25	2.463	2.500	2.538	2.438	2.563	
26	2.561	2.600	2.639	2.535	2.665	
27	2.660	2.700	2.741	2.633	2.768	
28	2.758	2.800	2.842	2.730	2.870	
29	2.857	2.900	2.944	2.828	2.973	
30	2.955	3.000	3.045	2.925	3.075	
31	3.054	3.100	3.147	3.023	3.178	
32	3.152	3.200	3.248	3.120	3.280	
33	3.251	3.300	3.350	3.218	3.383	
34	3.349	3.400	3.451	3.315	3.485	
35	3.448	3.500	3.553	3.413	3.588	
36	3.546	3.600	3.654	3.510	3.690	
37	3.645	3.700	3.756	3.608	3.793	
38	3.743	3.800	3.857	3.705	3.895	
39	3.842	3.900	3.959	3.803	3.998	
40	3.940	4.000	4.060	3.900	4.100	
41	4.039	4.100	4.162	3.998	4.203	
42	4.137	4.200	4.263	4.095	4.305	
43	4.236	4.300	4.365	4.193	4.408	
44	4.334	4.400	4.466	4.290	4.510	
45	4.433	4.500	4.568	4.388	4.613	
46	4.531	4.600	4.669	4.485	4.715	
47	4.630	4.700	4.771	4.583	4.818	
48	4.728	4.800	4.872	4.680	4.920	
49	4.827	4.900	4.974	4.778	5.023	
50	4.925	5.000	5.075	4.875	5.125	
51	5.024	5.100	5.177	4.973	5.228	
52	5.122	5.200	5.278	5.070	5.330	
53	5.221	5.300	5.380	5.168	5.433	
54	5.319	5.400	5.481	5.265	5.535	
55	5.418	5.500	5.583	5.363	5.638	

Table 1b. MAX6461-MAX6466 Upper Trip Threshold (VTH+) Voltage Options

	VOLTAGE THRESHOLD, V _{TH+}				
SUFFIX		$T_A = +25^{\circ}C$	T _A = -40°C	to +125°C	
	V _{TH+} (min)	V _{TH+} (typ)	V _{TH+} (max)	V _{TH+} (min)	V _{TH+} (max)
16	1.647	1.672	1.697	1.630	1.714
17	1.750	1.777	1.803	1.732	1.821
18	1.853	1.881	1.909	1.834	1.928
19	1.956	1.986	2.015	1.936	2.035
20	2.059	2.090	2.121	2.038	2.142
21	2.162	2.195	2.227	2.140	2.249
22	2.265	2.299	2.333	2.242	2.356
23	2.367	2.404	2.440	2.343	2.464
24	2.470	2.508	2.546	2.445	2.571
25	2.573	2.613	2.652	2.547	2.678
26	2.676	2.717	2.758	2.649	2.785
27	2.779	2.822	2.864	2.751	2.892
28	2.882	2.926	2.970	2.853	2.999
29	2.985	3.031	3.076	2.955	3.106
30	3.088	3.135	3.182	3.057	3.213
31	3.191	3.240	3.288	3.159	3.320
32	3.294	3.344	3.394	3.260	3.428
33	3.397	3.449	3.500	3.362	3.535
34	3.500	3.553	3.606	3.464	3.642
35	3.603	3.658	3.712	3.566	3.749
36	3.706	3.762	3.818	3.668	3.856
37	3.809	3.867	3.924	3.770	3.963
38	3.911	3.971	4.031	3.872	4.070
39	4.014	4.076	4.137	3.974	4.177
40	4.117	4.180	4.243	4.076	4.285
41	4.220	4.285	4.349	4.177	4.392
42	4.323	4.389	4.455	4.279	4.499
43	4.426	4.494	4.561	4.381	4.606
44	4.529	4.598	4.667	4.483	4.713
45	4.632	4.703	4.773	4.585	4.820
46	4.735	4.807	4.879	4.687	4.927
47	4.838	4.912	4.985	4.789	5.034
48	4.941	5.016	5.091	4.891	5.141
49	5.044	5.121	5.197	4.992	5.249
50	5.147	5.225	5.303	5.094	5.356
51	5.250	5.330	5.409	5.196	5.463
52	5.352	5.434	5.516	5.298	5.570
53	5.455	5.539	5.622	5.400	5.677
54	5.558	5.643	5.728	5.502	5.784
55	5.661	5.748	5.834	5.604	5.891

MIXIM

Table 2. Standard Versions Table

PART	TOP MARK (SC70)
MAX6461XR16-T	AMB
MAX6461XR22-T	AMC
MAX6461XR26-T	AMD
MAX6461XR29-T	AKV
MAX6461XR46-T	AME
MAX6462XR16-T	AKW
MAX6462XR22-T	AMF
MAX6462XR26-T	AMG
MAX6462XR29-T	АМН
MAX6462XR46-T	AMI
MAX6463XR16-T	AMJ
MAX6463XR22-T	AMK
MAX6463XR26-T	AML
MAX6463XR29-T	AMM
MAX6463XR46-T	AMN

PART	TOP MARK (SC70)
MAX6464XR16-T	AMO
MAX6464XR22-T	AMP
MAX6464XR26-T	AMQ
MAX6464XR29-T	AMR
MAX6464XR46-T	AMS
MAX6465XR16-T	AMT
MAX6465XR22-T	AMU
MAX6465XR26-T	AMV
MAX6465XR29-T	AMW
MAX6465XR46-T	AKZ
MAX6466XR16-T	AMX
MAX6466XR22-T	AMY
MAX6466XR26-T	AMZ
MAX6466XR29-T	ALA
MAX6466XR46-T	ALB

Selector Guide

PART	PUSH-PULL OUT	PUSH-PULL OUT	OPEN-DRAIN OUT	TYPICAL PROPAGATION DELAY (µs)	MINIMUM TIMEOUT PERIOD (ms)
MAX6461	~	_	_	14	_
MAX6462	_	✓	_	14	_
MAX6463	_	_	V	14	_
MAX6464	~	_	_	_	150
MAX6465	_	✓	_	_	150
MAX6466	_	_	~	_	150

Ordering Information (continued)

PART	TEMP RANGE	PIN-PACKAGE
MAX6463 XRT	-40°C to +125°C	3 SC70-3
MAX6463URT	-40°C to +125°C	3 SOT23-3
MAX6463UKT	-40°C to +125°C	5 SOT23-5
MAX6464 XRT	-40°C to +125°C	3 SC70-3
MAX6464URT	-40°C to +125°C	3 SOT23-3
MAX6464UKT	-40°C to +125°C	5 SOT23-5
MAX6465XRT	-40°C to +125°C	3 SC70-3
MAX6465URT	-40°C to +125°C	3 SOT23-3
MAX6465UKT	-40°C to +125°C	5 SOT23-5
MAX6466 XRT	-40°C to +125°C	3 SC70-3
MAX6466URT	-40°C to +125°C	3 SOT23-3
MAX6466UKT	-40°C to +125°C	5 SOT23-5

The MAX6461–MAX6466 are available in factory-set thresholds from 1.6V to 5.5V in approximately 100mV increments. Choose the desired voltage threshold suffix from Table 1 and insert it in the blank spaces in the part number. There are 30 standard versions with a required order increment of 2500 pieces. Sample stock generally is held on the standard versions only (Table 2). Nonstandard versions require a 10k-piece order increment. Contact factory for availability. All devices available in tape-and-reel only.

Devices are available in both leaded and lead-free packaging. Specify lead-free by replacing "-T" with "+T" when ordering.

_Chip Information

TRANSISTOR COUNT: 581
PROCESS: BICMOS

Package Information

For the latest package outline information, go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.