Beyond projections

CSE 250B

Low dimensional manifolds

Sometimes data in a high-dimensional space \mathbb{R}^p in fact lies close to a k-dimensional manifold, for $k \ll p$

- Motion capture M markers on a human body yields data in \mathbb{R}^{3M}
- 2 Speech signals
 Representation can be made
 arbitrarily high dimensional by
 applying more filters to each window
 of the time series

This whole area: "Manifold learning"

Beyond projections

PCA and SVD find informative linear projections. Given a data set in \mathbb{R}^p , and a number k < p, they:

- Find orthogonal directions $u_1, \ldots, u_k \in \mathbb{R}^p$
- Approximate points in \mathbb{R}^p by their projection into the subspace spanned by these directions

Two ways in which we'd like to generalize this.

- Manifold learning What if the data lies on (or near) a nonlinear surface?
- 2 Dictionary learning What if we want the basis vectors u_1, \ldots, u_k to have other special properties: for instance, that the data points x have a *sparse representation* in terms of these directions?

The ISOMAP algorithm

ISOMAP (Tenenbaum et al, 1999): given data $x^{(1)}, \dots, x^{(n)} \in \mathbb{R}^p$,

- 1 Estimate *geodesic distances* between the data points: that is, distances along the manifold.
- 2 Then embed these points into Euclidean space so as to (approximately) match these distances.

How can these two steps be achieved?

Estimating geodesic distances

Key idea: for **nearby** pairs of points, Euclidean distance and geodesic distance are approximately the same.

- **1** Construct the **neighborhood graph**. Given data $x^{(1)}, \ldots, x^{(n)}$, construct a graph G = (V, E) with
 - Nodes $V = \{1, 2, \dots, n\}$ (one per data point)
 - Edges $(i,j) \in E$ whenever $x^{(i)}$ and $x^{(j)}$ are close together
- **2** Compute distances in this graph. Set the length of any $(i,j) \in E$ to $||x^{(i)} x^{(j)}||$. Compute all pairwise distances between nodes, using a shortest-paths algorithm.

The Gram matrix

For points in Euclidean space, it is easy to express squared distances in terms of dot products.

$$||x - x'||^2 = ||x||^2 + ||x'||^2 - 2x \cdot x' = x \cdot x + x' \cdot x' - 2x \cdot x'.$$

What about expressing dot products in terms of distances?

Let $z^{(1)}, \ldots, z^{(n)}$ be points in Euclidean space.

- Let $D_{ij} = ||z^{(i)} z^{(j)}||^2$ be the squared interpoint distances.
- Let $B_{ij} = z^{(i)} \cdot z^{(j)}$ be the dot products. This is the **Gram matrix**.

Moving between D and B:

- We've seen: $D_{ij} = B_{ii} + B_{jj} B_{ij} B_{ji}$. That is, D is linear in B.
- A little algebra also shows that for $H = I_n \frac{1}{n} 11^T$,

$$B=-\frac{1}{2}HDH.$$

The Gram matrix is convenient: we can read off an embedding from it.

Distance-preserving embeddings

The algorithmic task:

• *Input*: An $n \times n$ matrix of pairwise distances

 D_{ij} = desired distance between points i and j,

as well as an integer k.

• *Output*: an embedding $z^{(1)}, \ldots, z^{(n)} \in \mathbb{R}^k$ that realizes these distances as closely as possible.

Most widely-used algorithm: classical multidimensional scaling.

- Let $D \in \mathbb{R}^{n \times n}$ be the matrix of desired *squared* interpoint distances.
- Schoenberg (1938): D can be realized in Euclidean space if and only if $B = -\frac{1}{2}HDH$ is positive semidefinite, where $H = I_n \frac{1}{n}11^T$.
- In fact, looking at this matrix *B* suggests an embedding even if it is not positive semidefinite.

Quick quiz

Consider the two points $x_1 = (1,0)$ and $x_2 = (-1,0)$ in \mathbb{R}^2 .

- 1 What is the matrix D of squared interpoint distances?
- 2 Write down $H = I_n \frac{1}{n}11^T$.
- 3 Compute $B = -\frac{1}{2}HDH$. Is this the correct Gram matrix?

In general, how might one recover an embedding from the Gram matrix?

Recovering an embedding based only on distances

Let $D \in \mathbb{R}^{n \times n}$ be a matrix of desired *squared* interpoint distances. Suppose these are realizable in Euclidean space: that is, there exist vectors $z^{(1)}, \ldots, z^{(n)}$ such that $D_{ij} = \|z^{(i)} - z^{(j)}\|^2$.

We have seen that we can easily obtain the Gram matrix, $B_{ij} = z^{(i)} \cdot z^{(j)}$.

- B is p.s.d. (why?). Thus its eigenvalues are nonnegative.
- Compute spectral decomposition:

$$B = U \Lambda U^T = Y Y^T$$
,

where Λ is the diagonal matrix of eigenvalues and $Y = U\Lambda^{1/2}$.

• Denote the rows of Y by $y^{(1)}, \ldots, y^{(n)}$. Then

$$y^{(i)} \cdot y^{(j)} = (YY^T)_{ii} = B_{ii} = z^{(i)} \cdot z^{(j)}.$$

If dot products are preserved, so are distances.

Result: an embedding $y^{(1)}, \dots, y^{(n)}$ that exactly replicates distances D.

What is the dimensionality of this embedding?

Classical multidimensional scaling

A slight generalization works even when the distances cannot necessarily be realized in Euclidean space.

Given $n \times n$ matrix D of squared interpoint distances, and target dimension k:

- **1** Compute $B = -\frac{1}{2}HDH$.
- **2** Compute the spectral decomposition $B = U\Lambda U^T$, where the eigenvalues in Λ are arranged in decreasing order.
- **3** Zero out any negative entries of Λ to get Λ_+ .
- **4** Set $Y = U \Lambda_{+}^{1/2}$.
- **5** Set Y_k to the first k columns of Y.
- 6 Let the embedding of the *n* points be given by the rows of Y_k .

ISOMAP: examples

ISOMAP: examples

More manifold learning

- 1 Other good algorithms, such as
 - Locally linear embedding
 - Laplacian eigenmaps
 - Maximum variance unfolding
- 2 Notions of intrinsic dimensionality
- 3 Statistical rates of convergence for data lying on manifolds
- 4 Capturing other kinds of topological structure

Sparse coding

Given $x^{(1)}, \ldots, x^{(n)} \in \mathbb{R}^p$, find dictionary vectors ϕ_1, \ldots, ϕ_m and sparse representations $s^{(1)}, \ldots, s^{(n)} \in \mathbb{R}^m$ such that

$$x^{(i)} \approx \Phi s^{(i)}$$
.

Optimization problem: find matrices Φ, S that minimize

$$L(\Phi, S) = \|X - \Phi S\|_F^2 - \lambda \cdot \text{sparsity}(S)$$
$$= \sum_{i=1}^n \left(\|x^{(i)} - \Phi s^{(i)}\|^2 - \lambda \cdot \text{sparsity}(s^{(i)}) \right)$$

Alternating minimization procedure:

- Initialize Φ somehow
- Repeat until convergence:
 - Fixing Φ , minimize $L(\cdot)$ over S
 - Fixing S, minimize $L(\cdot)$ over Φ

Dictionary learning

Given data points $x^{(1)}, \ldots, x^{(n)} \in \mathbb{R}^p$, and an integer m:

- Choose m dictionary vectors $\phi_1, \ldots, \phi_m \in \mathbb{R}^p$.
- Approximate each $x^{(i)}$ by a linear combination of these dictionary elements.

$$\begin{pmatrix}
\uparrow & & \uparrow \\
x^{(1)} & \cdots & x^{(n)} \\
\downarrow & & \downarrow
\end{pmatrix}
\approx
\begin{pmatrix}
\uparrow & \uparrow & & \uparrow \\
\phi_1 & \phi_2 & \cdots & \phi_m \\
\downarrow & \downarrow & & \downarrow
\end{pmatrix}
\begin{pmatrix}
\uparrow & & \uparrow \\
s^{(1)} & \cdots & s^{(n)} \\
\downarrow & & \downarrow
\end{pmatrix}$$
dictionary Φ encoding S

- Principal component analysis: the ϕ_i are orthogonal and $m \leq p$
- Independent component analysis: the rows of S are approximately statistically independent and $m \le p$
- Sparse coding: the columns of S are sparse and often m > p
 ("overcomplete basis")

Example: image patches

Olshausen-Field (1996), Lewicki-Olshausen (1999): PCA versus sparse coding for natural image patches.

Sparse coding does a much better job at finding a basis that resembles the receptive fields of simple cells in visual cortex.

Autoencoders

A generalization of dictionary learning.

Here E and D might be probabilistic maps. Fit them so that

 $x \approx D(E(x))$ on data points $x \in \mathbb{R}^p$.

Example: MNIST

Hinton-Salakhutdinov (2006):

- First row: original images
- Second row: reconstruction using stacked autoencoder with layers of size 784-1000-500-250-30
- Third and fourth rows: reconstruction using two variants of PCA, each with 30 components

Stacked autoencoders

Successively higher-level representations

One way to fit these models (using unlabeled data):

- Fit one layer at a time to the previous layer's activations
- Then fine-tune the whole structure to minimize reconstruction error