## RESPUESTAS DEL TRABAJO PRÁCTICO Nº1

Números reales. Intervalos. Inecuaciones. Valor absoluto. Cotas y extremos.

Funciones: operaciones, gráficos, acotación, paridad, monotonía.





c) 
$$S = (-\infty, 0) \cup \left(\frac{1}{2}, +\infty\right)$$



d) 
$$S = (-3, 5)$$



e) 
$$S = [-11, -4)$$



f) 
$$S = \left(-\infty, -\frac{4}{3}\right) \cup (4, +\infty)$$



g) S = [-6, 0]



2-

| Símbolo         | Lenguaje Coloquial                                          |
|-----------------|-------------------------------------------------------------|
| x  = 6          | La distancia de x al origen es igual a 6.                   |
| x - 5  > 3      | La distancia de x a 5 es mayor que 3.                       |
| $ x+4  \le 7$   | La distancia de $\mathbf{x}$ a $-4$ es menor o igual que 7. |
| $(x-1)^2 \ge 4$ | La distancia de <b>x</b> a 1 es mayor o igual que 2.        |

**3- a)**  $A = \{2,3,4,5,6\}$ 



$$Cs = [6, +\infty)$$

$$Ci = (-\infty, 2]$$

$$S = 6$$

$$I = 2$$

$$M = 6$$

$$m = 2$$

**b)** 
$$B = \{x / x \in R, x < -8 \lor x \ge 6\}$$



$$Cs = \emptyset$$

$$Ci = \emptyset$$

∄S

∄I

∄M

 $\not\exists m$ 

**c)** 
$$C = \{x \mid x \in R, |x-4| < 1\} \cup \{-2\}$$



$$Cs = [5, +\infty)$$

$$Ci = (-\infty, -2]$$

$$S = 5$$

$$I = -2$$

$$m = -2$$

**d)** 
$$D = \left\{ x / x \in R, \left| x + \frac{1}{4} \right| < \frac{3}{4} \land x \ge -5 \right\}$$



**e)** 
$$E = \{x / x \in \mathbb{N}, |x - 2| > 5\}$$



**4-** a) El conjunto de cotas superiores del conjunto  $\{x \mid x \in R, x \ge 2\}$  es  $(2,+\infty)$ 

Afirmación FALSA.

 $Cs = \emptyset$ 

**b)** El intervalo (-3,5] tiene como ínfimo a -3.

Afirmación VERDADERA.

c) El máximo del conjunto  $\{x/x \in R, 8 \le x < 20\}$  es 20.

Afirmación FALSA.

 $\not\exists M$ 

- 5- a) El intervalo de producción debe ser (0, 500]
- b) El estudiante debe obtener una calificación superior a 58 puntos.
- c) La temperatura, medida en escala Fahrenheit, estará comprendida entre 104 y 122.

6- a) No es función.

b) No es función.

c) Es función.  $Dominio = \{a, e, i, o\}$  $Imagen = \{b, d, f, g\}$  d) No es función.

- e) Es función. Dominio = [-10, 5]Imagen = [-3, 2]
- f) Es función.  $Dominio = \{0,2,4,6,8,10,12,14,16,18,20,22,24\}$   $Imagen = \{7,5,3,2,12,18,20,15,11,8,6\}$
- g) Es función. Dominio = R h) Es función.  $Dominio = [0, +\infty)$   $Imagen = [3, +\infty)$   $Imagen = (-\infty, 1]$
- i) No es función.
- 7-a) Dominio = R

- **b)** *Dominio* =  $R \{0,2\}$
- **c)** *Dominio* =  $(-\infty, -1] \cup [1, +\infty) \{7\}$
- **d)** *Dominio* =  $(-3, +\infty) \{3\}$

- 8- a)  $Imagen = \left[\frac{4}{3}, +\infty\right)$
- **b)** Imagen = R
- c)  $Imagen = [-5, +\infty)$
- **d)**  $Imagen = R \{2\}$

- **9-** a)  $P(A) = 4.\sqrt{A}$
- V. Dependiente: Perímetro
- V. Independiente: Área

- **b)**  $P(h) = \sqrt{25 h^2} + h + 5$
- V. Dependiente: Perímetro
- V. Independiente: altura

- $A(h) = \frac{25\cos\alpha.sen\alpha}{2}$
- V. Dependiente: Área
- V. Independiente:  $\alpha$
- c) Área = Acuadrado + Asemicírculo =  $l^2 \left(1 + \frac{\pi}{8}\right)$

Si l = 1.5m el costo del vidrio es, aproximadamente, de \$12534,30.

Si se pagaron \$22280 por el vidrio,  $l \cong 1,99985$  metros

**10-** a) Dominio =  $R - \{-7, -1\}$  Imagen =  $R - \{1\}$ 

Intervalos de crecimiento:  $(-\infty, -7)$ , (-7, -3), (-2, -1), (2, 4),  $(4, +\infty)$  Intervalos de decrecimiento: (-3, -2), (-1, 2)

**b)** 
$$Dominio = (-\infty, 7] - \{-4, -2\}$$
  $Imagen = (-2, +\infty)$ 

Intervalos de crecimiento:  $(-\infty, -4)$ , (-2, 0), (0, 4)Intervalos de decrecimiento: (-4, -2), (4, 7)

**11-** Dadas las siguientes fórmulas de funciones:

a) 
$$(f+3h)_{(2)} = 16$$
  $(h.j)_{(0)} = -1$ 

b)

$$\frac{f}{g}$$
:  $\left(-\frac{5}{2}, +\infty\right) \rightarrow R/y = \left(\frac{f}{g}\right)_{(x)} = \frac{2x+3}{\sqrt{2x+5}}$ 

$$g^2 - \frac{f}{h} : \left[ -\frac{5}{2}, +\infty \right) - \{-1, 1\} \to R/y = \left( g^2 - \frac{f}{g} \right)_{(x)} = 2x + 5 - \frac{(2x+3)(x-1)}{x+1}$$

**12-** a) Intervalos de crecimiento:  $(-\infty, -2)$ 

Intervalos de decrecimiento:  $(-2, +\infty)$ 

 $Imagen = [1, +\infty)$  La función no es acotada.

**b)** Intervalos de crecimiento: (-2,3) Intervalos de decrecimiento: (-3,-2)

Imagen = [1, 6] La función es acotada.

c) Intervalos de crecimiento:  $(\pi, 2\pi)$ Intervalos de decrecimiento:  $(0,\pi)$ 

Imagen = [-3, -1] La función es acotada.

**d)** Intervalos de crecimiento:  $(-\infty, 0)$  Intervalos de decrecimiento:  $(0, +\infty)$ 

 $Imagen = (0, +\infty)$  La función no es acotada.

13- La gráfica de la función f es simétrica respecto al eje de ordenadas. Por lo tanto, se afirma que la función f es par.

La gráfica de la función g es simétrica respecto al origen. Por lo tanto, se afirma que la función g es impar.

- **14-** a) Función par. La gráfica es simétrica respecto al eje de ordenadas.
- b) La función no tiene paridad
- c) Función impar. La gráfica es simétrica respecto al origen.

## **15-**

