Classification: K-nearest neighbors

Nazerfard, Ehsan nazerfard@aut.ac.ir

Regression vs. Classification

K-nearest neighbors (K-NN)

Binary classification:

$$h: X \to \{+, -\}$$

- Old algorithm borrowed from pattern recognition
- K-NN Properties:
 - Instance-based
 - 1–NN, 3–NN, 5–NN, ...
 - Lazy learning (vs. Eager)
 - Not scalable

K-NN (cont.)

- K-NN Properties:
 - Distance metrics
 - Euclidean: $d(x, x') = \sqrt{\sum_i (x_i x_i')^2}$
 - Weighted K-NN, where the i-th nearest neighbor is assigned a weight w_{ni} , with $\sum_{i=1}^{n} w_{ni} = 1$
 - · Manhattan, minkowski, Chebyshev, ...
 - Non-parametric

K-NN (cont.)

■ K–NN Properties:

Bias-Variance tradeoff

K-NN Example

■Who is good at Basketball?

1-NN Decision Boundary

Voronoi Cell

Voronoi Diagram

Fortune's algorithm

Noisy Example Added

Sensitivity to Noise

The higher the K, the smoother the Decision Boundary

1-nearest neighbours

20-nearest neighbours

Further Reading

- Weighted k-nearest neighbors
- K-NN for real valued prediction (regression)
- Curse of dimensionality in K-NN
- Sublinear time algorithm for approximating K-NN

...