How to detect selection in DNA sequences?

C. Lemaire Norwich, April 5-6th 2017

MUTATION, RECOMBINATION AND SELECTION: POPULATION GENOMICS INFERENCES

Polymorphic sites identification

Polymorphism rate estimation

What forces shape polymorphism?

INFERENCES IN POPULATION GENOMICS

Evolutionary parameters

Whole population

Sample

Sequencing 454 Illumina, ...

Sequencing 454 Illumina, ...

SNP calling Indel calling

Sequencing 454 Illumina, ...

SNP calling Indel calling

de novo Assembling

or

Alignment on reference

SNP calling Indel calling

- Read quality
- Mate pair alignment
- Coverage thresholds min & max

Keep information on overall number of sites (i.e. **non filtered**) for polymorphism rates estimates

Structural Variants

Divergence islands detection

de novo assembling > alignment on référence (e.g. limit <8% divergence for BWA)

CONCLUSIONS

- Polymorphic sites are mainly « Single Nucleotide Polymorphism » or SNPs .
- WARNING: non covered regions and filters for SNP calling for polymorphism rates estimates.
- Coverage analysis: « Structural Variants » : duplications, deletions, insertion, divergence islands, that could have strong phenotypic effects.

Polymorphism rate estimation

POLYMORPHISM RATE

CC GCA GAG TTA CTA ATC GAAN = 6
CG GCA GAG TTA CTA ATC GAA^L = 21
CC GCA AAG TTA CCA ATT GAA^S = 5
CC GCA GAG TTA CCA ATC GAA
CC GCA AAG TTA CTA ATC GAG
CC GCA AAG TTA CTA ATC GAA

individuals sites on alignment polymorphic sites

How to quantify polymorphism?

Polymorphism is a combination of mutation and time

Genealogical relationships between sequences

MRCA: Most Recent Common Ancestor

The coalescent, *i.e.* the genealogy of alleles at a locus, depends on evolutionary forces that shape polymorphisms.

Null hypothesis in evolution.

(Achaz, Introduction à la coalescence, 2005)

More details on the coalescence theory on:

http://www.sfu.ca/biology/courses/bisc869/869 lectures/MHP Coalescent.pdf

MRCA: Most Recent Common Ancestor

(Achaz, Introduction à la coalescence, 2005)

Number of mutations

Poisson approximation of Binomial

$$P(k/t) = e^{-\mu t} \frac{(\mu t)^k}{k!}$$

Poisson

$$E(k/t) = \mu t$$

K: number of mutations μ: mutation rate/gen/locus

Genealogical relationships between sequences

What is the expected number of differences between two sequences?

$$E(k_2) = 2 \times \mu \times E(t_2)$$

$$E(k_2) = 2 \times \mu \times 2N = 4N\mu = \theta$$

q Is the populational mutation rate.

Easier to estimate than N and μ

The Watterson's q_S

Length of a genealogy

$$L = a_n \times 4N$$
 with $a_n = \sum_{i=1}^{n-1} \frac{1}{i}$

Expected number of polymorphic sites

$$E(S) = \mu \times L$$

$$E(S) = \mu \times a_n \times 4N$$

$$E(S) = a_n \theta$$

$$\theta_{S} = \frac{S}{a_{n}}$$

The Tajima's P

P is the expected average number of differences between any pairs of sequences in the population

$$\Pi = \frac{1}{C_n^2} \sum_{i=1}^{n-1} \sum_{j=i+1}^n d_{ij}$$

$$E(d_{ij}) = E(k_2) = 2 \times \mu \times 2N = 4N\mu = \theta$$

$$\theta_{\Pi} = E(\Pi)$$

Polymorphism rate estimation

POLYMORPHISM RATE

individuals

sites on alignment

polymorphic sites

$$P = \frac{d_{ij}}{L.N.(N-1)/2}$$

$$Q = \frac{S}{N-1}$$

$$L. 1/i$$

Polymorphism rate estimation

POLYMORPHISM RATE

$$P = \int_{i + 1/i}^{N/1 - N} \frac{P_{ii}}{L N \cdot (N - 1)/2}$$

$$Q = \frac{S}{L 1/I}$$

i 1

$$P = 0.102$$

individuals

sites on alignment

polymorphic sites

$$Q = 0.104$$

The Fu & Li's q_{he}

Estimator based on the mutations found on external branches.

Present in one copy: singleton

Internal (solid) and external (dashed) in a genealogy.

$$\eta_e = L_n \mu = 4N\mu$$

$$E(\eta_e) = \theta$$

Polymorphism estimation

Theoretical expectations of the polymorphism rate

Neutral mutationsConstat size population

$$P = Q = 4 N_e \mu$$
 diploïd population

$$P = Q = 2 N_e \mu$$
 haploïd population

Positive selection

An advantageous mutation will increase in frequency and eliminate all polymorphism around

Selective sweeps

Purifying selection

Selection against deleterious mutations

Related to gene functional constraints: Housekeeping genes

Selection against change!!

Balancing selection

Increases the variability into the population

Neutrality tests are based on comparisons between estimators of *q*

Watterson's
$$q_S = \frac{S}{a_n}$$
 $a_n = \sum_{i=1}^{n-1} \frac{1}{i}$ Tajima's q_P $\theta_\Pi = E(\Pi)$

$$T = \frac{\widehat{\theta_1} - \widehat{\theta_2}}{\sqrt{var(\widehat{\theta_1} - \widehat{\theta_2})}}$$

Tajima's D (1983)

Tajima's q_P

$$\theta_{\Pi} = E(\Pi)$$

Watterson's

$$\theta_{S} = \frac{qS}{a_{n}} \qquad a_{n} = \sum_{i=1}^{n-1} \frac{1}{i}$$

$$D = \frac{\Pi - \frac{S}{a_n}}{\sqrt{var\left(\Pi - \frac{S}{a_n}\right)}}$$

D<0 Excess of rare variants -> Population expansion / selective sweep / purifying selection

D>0 Deficit of rare variants -> Population decline / Population structure/ balancing selection

Adaptive evolution of non-coding DNA in Drosophila

Peter Andolfatto

Figure 1 | Mean Tajima's D values for coding and non-coding DNA. Means across loci are given with bars indicating two standard errors. The expectation of D under the neutral model is shown as a dotted line. Syn, synonymous sites; NonSyn, non-synonymous sites; NonCod, pooled non-coding DNA.

Fu & Li's F (1993)

Tajima's q_P

$$\theta_{\Pi} = E(\Pi)$$

Fu & Li's q_{he}

$$\theta_{\eta_e} = E(\eta_e)$$

$$F = \frac{\Pi - \eta_e}{\sqrt{var(\Pi - \eta_e)}}$$

P Should be less affected by selection than q_{he}

Detection of recent selective sweeps

Fay & Wu's H (2000)

Tajima's q_P

$$\theta_{\Pi} = E(\Pi)$$

ξi

Number of mutations present *i* times

$$\theta_{\xi} = iE(\xi_i)$$

For
$$i = 1$$
 $\theta_{\eta_e} = E(\eta_e)$

$$\theta_H = \frac{2}{n(n-1)} \sum_{i=1}^{n-1} i^2 \xi_i$$

$$H = \frac{\Pi - \frac{2}{n(n-1)} \sum_{i=1}^{n-1} i^2 \xi_i}{\sqrt{var \left(\Pi - \frac{2}{n(n-1)} \sum_{i=1}^{n-1} i^2 \xi_i\right)}}$$

Detection of recent selective sweeps

The frequency spectrum: an example

Polymorphism estimation

SITE FREQUENCY SPECTRUM: SFS

individuals sites on alignment polymorphic sites

SFS can be « *folded* » when we only take into account frequences from 1/N to N/2

Polymorphism estimation

SITE FREQUENCY SPECTRUM: SFS

Allelic frequency

Evolutionary forces like selection shape the SFS

Neutrality

Positive selection

Balancing selection

Purifying/background selection

Demography and selection can be confounded

 M_1 : neutral, constant size p parameters $(q_1, ..., q_p)$

 M_2 : bottleneck p+2 parameters (T, S, q_1 , ..., q_p)

 M_3 : selective sweep 3p parameters $(T_1, S_1, q_1, ..., T_p, S_p, q_p)$

All the tests (Tajima's D, Fu & Li's F and Fay & Wu H) assume ONE population (perturbation of the SFS)

Important to figure out how many populations are in my dataset

There are other tests based on polymorphism and divergence

To be continued....

The Hudson Kreitman & Agadé (HKA) test (Hudson, Kreitman & Agadé, 1987)

Under the neutral hypothesis

$$\begin{array}{ccc} D_{A}=2T\mu_{A} & D_{B}=2T\mu_{B} \\ S_{A}=4N\mu_{A}a_{n} & S_{B}=4N\mu_{B}a_{n} \\ =\theta_{A}a_{n} & =\theta_{D}a_{n} \end{array} \qquad \frac{\theta_{A}}{D_{A}} = \frac{\theta_{B}}{D_{B}} = \frac{4N\mu_{i}a_{n}}{2T\mu_{i}} = \frac{4Na_{n}}{2T} \quad \text{constant } \forall \text{ locus}$$

Reduced polymorphism at locus B probably by selection because it can not be due to:

reduced population size (too much polymorphism at locus A) or

McDonald Kreitman test (1991)

Polymorphism

- Test for adaptive divergence
- •It estimates $\alpha = 1 \frac{DSPn}{DSP}$

Divergence

NS

S

Non-synonymous (**n**)

4	1	-
2	1	
		(

Polymorphism (P)MathematicsBiology $\alpha = 0$
Pn/PsDn/Ds =
Neutral $\alpha < 0$ Dn/Ds < Pn/Ps</td>Polymorphism (Pn) excess $\alpha > 0$ Dn/Ds > Pn/PsDivergence (Dn) excess

Mathematics		Biology
$\alpha = 0$ Pn/Ps	Dn/Ds =	Neutral
α < 0	Dn/Ds < Pn/Ps	Polymorphism (Pn) excess
α > 0	Dn/Ds > Pn/Ps	Divergence (Dn) excess

•Distribution of fitness effects slightly deleterious mutations which segregate within ingroup (increase Pn)

- 3 kind of mutation effects :
 - Neutral:
 - Absence of effects on the fitness
 - Advantageous:
 - Increase the fitness
 - Deleterious (lethal + Slightly deleterious):
 - Complex effects (Fitness variation between 0 and 1)
 - +Underestimation of α

Experimental distribution of mutation fitness effects from Stomatosis virus (from Eyre Walker et *al.*,2007)

Molecular evolution gives us a lot of information

Example:

- Genes involved in interactions with other organism show higher adaptive rates than others
- Ex: Adaptive evolution for immunity genes in Drosophila (Obbard et al., 2009)
 - Adaptation for efficient immunity system against pathogen
- What about pathogen evolution?

Adaptive rate comparison (From Obbard et al., 2009)