Et4-57

SOLUTIONS: DISCRETE EVENT SYSTEMS

MASTER IN CONTROL

1. Exercise

a) We fllag initially (with a plus) all pair of states that are terminal and non-terminal. This is done according to the following table:

01	+	8	ecanon.			. TI		sc- 1.0	Y
02	+								
03	+			1	734				
10	+				3: 11				
11	+								
12	+								
20	+								
21	+								
30	+								
	00	01	02	03	10	11	12	20	21

b) Then, all state pairs that have different sets of enabled events are flagged with an x. This is done according to the following table:

01	+								
02	+								
03	+	Х	Х						
10	+			Х					
11	+			Х					
12	+	Х	Х		Х	Х			
20	+			Х			Х		
21	+	х	х		Х	Х		х	
30	+	Х	х		Х	Х		Х	
	00	01	02	03	10	11	12	20	21

c) We flag next with an o those pair of states such that arrival events lead to flagged pair of states. This is done according to the following table:

10	+								
02	+	0							
03	+	х	х						
10	+		0	Х					
11	+	0		Х	0				
12	+	Х	х		х	х			
20	+	0		Х	0		Х		
21	+	Х	Х		х	Х		Х	
30	+	Х	Х		х	Х		Х	
	00	01	02	03	10	11	12	20	21

Flagging stops after the first iteration.

Figure 1.1 Transition diagram of reduced automaton

d) Checking the set of unflagged nodes from the table one can build the following equivalence classes.

$$\{00\}, \{01, 10\}, \{02, 11, 20\}, \{03, 12, 21, 30\}.$$

Notice that d events (which are cause of non-determinism) always map nodes within one equivalence class to nodes within another equivalence class. In this respect, flagging on the ground of d events will not identify any additional non-equivalent states. Therefore all unflagged nodes are equivalent in the sense defined before.

e) A reduced equivalent automaton (which happens to be deterministic) can be found by collapsing each equivalence class into a single state. Its transition diagram is shown in Fig. 1.1.

Figure 2.1 Transition diagram of automaton G

Figure 2.2 Parallel composition of labelling automaton and G

Exercise

- a) The automaton operates with events $E = \{p_1, p_2, p_3, r_1, r_2, r_3, r\}$. We adopt a state space $X = \{000, 001, 010, 011, 100, 101, 110, 111\}$ where a 0 in position i denotes an empty slot and a 1 in position i denotes a full slot. In particular, 111 is the initial state. The automaton G, modeling the rotating platform can be provided as in Fig. 2.1.
- b) The labelling automaton as usual has two states N and Y, a single event r, and two transitions, $f_L(N,r) = Y$ and $f_L(Y,r) = Y$. Initial state is N. Accordingly parallel composition of G and G_L yields the automaton in Fig. 2.2. The next step is to replace r events with ε events, and then apply the algorithm for the computation of the Observer automaton to the resulting nondeterministic automaton. In particular, the initial state will be the ε -Reach of 11N, and is therefore the set, $\{11N,11Y\}$. From there, exploration of all accessible states leads to the Observer automaton shown in Fig. 2.3

3. Exercise

Figure 2.3 Diagnoser for detection of r events

a) The incidence matrix C is computed as follows:

$$C = Post - Pre = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 1 & 1 & -1 \\ 1 & -1 & -1 & 1 \end{bmatrix}.$$

b) The minimal P-semiflows are non-negative vectors that annihilate C from the left. In particular there are 3 P-semiflows of minimal support:

- c) The network is structurally bounded as [1,1,1,1] is a P-semiflow of support equal to the set of all places.
- From the initial marking [1,1,1,1]' two additional markings can be reached: [1,1,0,2]' and [1,1,2,0]'. These are reached with transitions t_1 (or t_4) and t_2 (or t_3) respectively. Conversely, from the marking [1,1,0,2]', transitions t_2 and t_3 bring back to the initial marking [1,1,1,1]'. Similarly, from the marking [1,1,2,0]', transitions t_1 and t_4 bring back to the initial marking [1,1,1,1]'.
- e) Notice that, from each reachable state it is possible to get back to the initial state, hence the Petri Net is reversible.

4. Exercise

- a) The transition diagrams of Automata G_A and G_B are shown in Fig. 4.1.
- b) The parallel composition $G = G_A || G_B$ is shown in Fig. 4.2.
- c) The specification can be modelled with the automaton G_{spec} in Fig. 4.3. This allows to model the situation in which only a single tool 1 is available for the 2 robots. Notice that we may afford to allow apparently meaningless sequences such as p_{1a} , r_{1b} or $p_{1b}r_{1a}$, as these are not allowed by the open loop language, anyway. The specification avoids that tool 1 be picked twice without it being released first.

Figure 4.1 Automata: G_A and G_B

Figure 4.2 Automaton $G = G_A || G_B$

Figure 4.3 Specification automaton G_{spec}

Figure 4.4 Parallel composition $G||G_{spec}|$

- d) The parallel composition of the automaton G with G_{spec} is shown in Fig. 4.4
- e) Concerning controllability it can be seen that the only disabled events are p_{1a} and p_{1b} , which are controllable. Hence, the specification is controllable.

