Aula - 02 Movimento em uma dimensão

F-128: Física Geral I

Ilustração dos "Principia" de Newton mostrando a ideia de integral Si in figura quavis AacE reclis Aa, AE, & curva AcE comprehensa, inscribantur parallelogramma quotcunq; Ab, Bc,

Cd, &c. sub basibus AB,BC, CD,&c. equalibus, & lateribus Bb, Cc, Dd, &c. signification and series are series and series are series and series are series and series and series are series and series a

Movimento em 1-D

- Entender o movimento é uma das metas das leis da Física.
- A Mecânica estuda o movimento e as suas causas.
- A sua descrição é feita pela Cinemática.
- As suas causas são descritas pela Dinâmica.
- Iniciamos com o movimento em 1-D.

Posição – 1D

Em cinemática, os conceitos de tempo e posição são primitivos. Um objeto é localizado pela sua posição ao longo de um eixo orientado, relativamente a um ponto de referência (observador), geralmente tomado como origem (x = 0)

Um conceito importante é o da relatividade do movimento: sua descrição depende do observador.

O deslocamento

O deslocamento unidimensional de um objeto num intervalo de tempo (t_2-t_1) é a diferença entre a posição final (x_2) no instante t_2 e a posição inicial (x_1) no t_1 . Exemplo: corrida de 100 metros.

 $\Delta x = x_2 - x_1$: deslocamento $\Delta t = t_2 - t_1$: intervalo de tempo

$$v_m = \frac{x_2 - x_1}{t_2 - t_1} = \frac{\Delta x}{\Delta t}$$

** Se $\Delta x > 0 \Rightarrow v > 0$ (movimento à direita, ou no sentido de crescimento de (x) < 0) (movimento para a esquerda, ou no sentido do decréscimo de (x))

Exemplo: Corrida de 100 metros.

De 0 a 5,01 s : $v_m = 40$ m / 5,0s = 8,0 m/s

De 5,01 a 10,5 s: $v_m = 60$ m / 5,5s = 10,9 m/s

Em todo o intervalo (de 0 a 10,5 s):

 $v_m = 100 \text{ m} / 10,5 \text{s} = 9,5 \text{ m/s}$

A velocidade média nos dá informações sobre um <u>intervalo de tempo</u>. Mas pode ser que queiramos saber a velocidade <u>em um dado instante.</u>

$$t_0 e t_0 + \Delta t$$

$$t_0 e t_0 + \Delta t$$

$$t_0 e t_0 + \Delta t$$

$$t_0 e t_0 + \Delta t$$

Velocidade instantânea

Velocidade instantânea

x(t)

(a velocidade instantânea é a derivada da posição em relação ao tempo)

Velocidade instantânea

Conceito

Derivada

$$v(t) = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$$

Exemplo:

Na corrida, de 100 m, a velocidade em t = 2s é

$$v(t=2s) = \frac{90m}{11.2s} \cong 8.0 \, m/s$$

Geometricamente

Questão 1: Na função abaixo, em qual ponto a derivada é máxima?

- a) Ponto A.
- b) Ponto B.
- c) Ponto C.

Questão 1b: No gráfico abaixo é representada a posição da partícula em função do tempo. Em que ponto a velocidade instantânea da partícula é máxima?

- a) Ponto A.
- b) Ponto B.
- c) Ponto C.

Questão 2: Na função abaixo, em qual região a derivada é negativa?

- a) Para x entre A e B.
- b) Para x entre B e C.
- c) Para x > C.

Questão 2b: Novamente, o gráfico abaixo mostra a posição de uma partícula em função do tempo. Em que região a velocidade da partícula é negativa?

- a) Para x entre A e B.
- b) Para x entre B e C.
- c) Para x > C.

Visualização gráfica da derivada

Visualização gráfica da derivada

Um caso particular: velocidade constante

$$v(t) = \frac{dx}{dt} = v_m = \frac{x - x_0}{t - t_0}$$
ou:

$$x - x_0 = v(t - t_0)$$

Graficamente:

Algumas derivadas importantes

$$f(t) \qquad \qquad df(t)/dt$$

$$a f(t)+b g(t) \qquad a df(t)/dt+b dg(t)/dt$$

$$a=\text{constante} \qquad \qquad 0$$

$$t^n \qquad \qquad nt^{n-1}$$

$$\sin \omega t \qquad \qquad \omega \cos \omega t$$

$$\cos \omega t \qquad \qquad -\omega \sin \omega t$$

$$e^{\lambda t} \qquad \qquad \lambda e^{\lambda t}$$

$$\ln \lambda t \qquad \qquad t^{-1}$$

Questão 3: Se vou até São Paulo com velocidade constante de 100 km/h,e volto ao ponto de partida, qual minha velocidade média?

A. 100 km/h

B. zero

Velocidade escalar média e velocidade média

A velocidade escalar média é uma forma diferente de descrever a "rapidez" com que uma partícula se move. Ela envolve apenas a distância percorrida, independentemente da direção e sentido:

$$v_{em} = \frac{\text{distância total percorrida}}{\Delta t}$$

Velocidade escalar média e velocidade média

Em algumas situações, $v_{em} = v_m$. Entretanto, as duas podem ser bastante diferentes. Ex: partícula parte de O, em ritmo constante, atinge P e retorna a O, depois de decorrido um tempo total τ e ter percorrido uma distância total L.

Neste caso:

$$v_m = 0$$
 e $v_{em} = \frac{L}{\tau}$

A velocidade escalar é o módulo da velocidade; ela é destituída de qualquer indicação de direção e sentido. (O velocímetro de um carro marca a velocidade escalar instantânea e não a velocidade, já que ele não pode determinar a direção e o sentido).

O cálculo de x(t) a partir de v(t)

Este é o problema inverso. Considere inicialmente o caso de velocidade constante. Então:

$$x - x_0 = v(t - t_0)$$

Note que $V(t-t_0)$ é a área sob a curva da velocidade v = constante em função do tempo.

Este é um resultado geral. Para demonstrá-lo, usaremos que para intervalos de tempo muito curtos podemos escrever:

$$\Delta x = v(t) \, \Delta t \,,$$

onde v(t) é a velocidade instantânea em t.

O cálculo de x(t) a partir de v(t)

Dividimos o intervalo (t- t_0) em um número grande N de pequenos intervalos Δt

$$\Delta x_i \approx v(t_i) \Delta t$$
 \downarrow

$$x(t) -x(t_0) = \sum_i \Delta x_i =$$

$$\sum_{i} v(t_i) \Delta t$$

No limite N $\rightarrow \infty$ e $\Delta t \rightarrow 0$:

$$x - x_0 = \int_{t_0}^t v(t')dt'$$

O cálculo de x(t) a partir de v(t)

$$v(t) = \frac{dx(t)}{dt} \qquad e \qquad x(t) - x_0 = \int_{t_0}^t v(t') dt'$$

A velocidade é obtida derivando-se a posição em relação ao tempo; geometricamente, a velocidade é o coeficiente angular da reta tangente à curva da posição em função do tempo no instante considerado.

O deslocamento é obtido pela anti-derivação (ou integração) da velocidade; geometricamente, o deslocamento é a área sob a curva da velocidade em função do tempo.

Questão 4: A partir de que ponto a integral de f(x), a partir de x=0, é negativa?

- a) Ponto A.
- b) Ponto B.
- c) Ponto C.

Questão 4b: O gráfico mostra a velocidade de uma partícula em função do tempo. Em que instante de tempo a partícula volta à posição original?

- a) Ponto A.
- b) Ponto B.
- c) Ponto C.

Algumas integrais importantes

$$f(t) \qquad F(t)$$

$$a f(t) + b g(t) \qquad a F(t) + b G(t)$$

$$a = \text{constante} \qquad at$$

$$t^{n}, n \neq -1 \qquad t^{n+1}/n + 1$$

$$\sin \omega t \qquad -\cos \omega t/\omega$$

$$\cos \omega t \qquad \sin \omega t/\omega$$

$$e^{\lambda t} \qquad e^{\lambda t}/\lambda$$

$$t^{-1} \qquad \ln|t|$$

Aceleração média

Aceleração média:

$$a_m = \frac{v_2 - v_1}{t_2 - t_1} = \frac{\Delta v}{\Delta t}$$

Um corredor acelera uniformemente até 10 m/s em t = 4,0 s. Mantém a velocidade nos próximos 4s e reduz a velocidade para 8,0 m/s nos 4,7s seguintes. Acelerações médias:

de 0s até 4s: $a_m = 10$ m/s / 4s = 2,5 m/s²

de 4s até 8s: $a_m = 0$ m/s / 4s = 0 m/s²

de 8s até 12,7s: $a_m = -2m/s / 4,7s = -0,42 m/s^2$

Aceleração média

Aceleração média $t_0 e t_0 + \Delta t$

$$t_0 e t_0 + \Delta t$$

entre

$$a_{m} = \frac{\Delta v(t)}{\Delta t} = tg\theta$$

$$\Delta v(t)$$

$$t_0 + \Delta t$$

Aceleração instantânea

Aceleração instantânea

v(t)

$$a(t) = \lim_{\Delta t \to 0} \frac{\Delta v(t)}{\Delta t} = \frac{dv(t)}{dt} = tg\theta$$

(a aceleração instantânea é a derivada da velocidade em relação ao tempo)

Aceleração instantânea

Conceito

$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt}$$

Note que

Derivada

Derivada segunda

$$a = \frac{dv}{dt} = \frac{d}{dt} \left[\frac{dx}{dt} \right] = \frac{d^2x}{dt^2}$$

Exemplo:

Na corrida de 100 m, a aceleração em t = 2s é:

$$a(t=2s)=\frac{5.9m/s}{2.7s}=2.2 m/s^2$$

v(t)

a(t)

v(t)

GP Monaco

Vettel no GP de Mônaco

		Temp			
Tempo	Velocidade	0	Velocidade	Tempo	Velocida
0	218	25	90	50	104
1	242	26	143	51	158
2	260	27	101	52	200
3	272	28	62	53	227
4	273	29	49	54	183
5	157	30	55	55	181
6	114	31	95	56	210
7	136	32	89	57	104
8	179	33	89	58	223
9	213	34	133	59	168
10	238	35	93	60	117
11	256	36	88	61	99
12	266	37	110	62	114
13	272	38	176	63	162
14	209	39	212	64	197
15	174	40	237	65	123
16	155	41	253	66	68

Distância Percorrida e Velocidade Escalar Média

$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt}$$

$$v(t) = \frac{dx(t)}{dt}$$

e

$$x(t) - x_0 = \int_{t_0}^t v(t') dt'$$

Area da curva medida = Deslocamento

1 Volta = 3.35km!!!!!

$$v_{em} = \frac{\text{distância total}}{\Delta t} = \frac{3.35 \text{km}}{74 \text{s}} \times \frac{3600 \text{s}}{1 h} = 163 \text{km/h}$$

Aceleração

$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt}$$

$$v(t) = \frac{dx(t)}{dt}$$

2

$$x(t) - x_0 = \int_{t_0}^{t} v(t') dt'$$

Aceleração constante

Se a aceleração é constante
$$a = a_m = \frac{v(t) - v(t_0)}{t - t_0}$$

Se $t_0 = 0$ e $v(t_0) = v_0$, temos que a velocidade fica:

$$v = v_0 + at$$

Note que neste movimento a velocidade média é dada por

$$v_{m} = \frac{x - x_{0}}{t} = \frac{v_{0} + v}{2}$$

Como
$$x = x_0 + v_m t$$
 temos: $x = x_0 + v_0 t + \frac{at^2}{2}$

Aceleração constante

As equações de movimento para o caso de aceleração constante são:

$$v = v_0 + at$$

$$x = x_0 + v_0 t + \frac{1}{2} a t^2$$

$$v^2 = v_0^2 + 2a(x - x_0)$$

$$x = x_0 + \frac{1}{2} (v_0 + v) t$$

O cálculo de v(t) a partir de a(t)

Este é novamente o problema inverso. Considere inicialmente o caso de aceleração constante. Então,

$$v - v_0 = a \left(t - t_0 \right)$$

Note que $a.(t-t_0)$ é a área sob a curva da aceleração a(t) = constante em função do tempo. Este também é um resultado geral. Para demonstrá-lo, usaremos que para intervalos de tempo muito curtos podemos escrever

$$\Delta v = a(t) \, \Delta t$$

onde a(t) é a aceleração instantânea no instante t.

O cálculo de v(t) a partir de a(t)

Dividimos o intervalo (t- t_{\cap}) em um número grande N de pequenos intervalos Δt

$$\Delta v_i \approx a(t_i) \Delta t$$
 \downarrow

$$v(t) -v(t_0) = \sum_i \Delta v_i =$$

$$\sum_i a(t_i) \Delta t$$

No limite N $\rightarrow \infty$ e $\Delta t \rightarrow 0$:

$$v - v_0 = \int_{t_0}^t a(t') dt'$$

O cálculo de v(t) a partir de a(t)

$$a(t) = \frac{dv(t)}{dt} \qquad e \qquad v(t) - v_0 = \int_{t_0}^t a(t') dt'$$

A aceleração é obtida derivando-se a velocidade; geometricamente, é o coeficiente angular da reta tangente à curva da velocidade em função do tempo no instante considerado.

A velocidade é obtida pela anti-derivação (ou integração) da aceleração; geometricamente, a variação de velocidade é a área sob a curva da aceleração em função do tempo.

O cálculo de v(t) e x(t) a partir de a cte.

A velocidade é obtida integrando-se a aceleração;

$$v(t) - v_0 = \int_{t_0}^{t} a(t') dt' = at \rightarrow v(t) = v_0 + at$$

A posição é obtida integrando-se a velocidade;

$$s(t) - s_0 = \int_{t_0}^{t} v(t') dt' = v_0 t + at^2 / 2 \rightarrow s(t) = s_0 + v_0 t + at^2 / 2$$

Aceleração da gravidade 🧗

Galileo, o primeiro físico moderno, estudou a queda dos corpos. Refutou as hipóteses de Aristóteles.

Usando experimentos, mostrou que os corpos caem com a mesma velocidade, indepen-dentemente de sua massa.

 $x \sim t^2$, $v \sim t$: consequências de uma aceleração constante!

Aceleração da gravidade

a resistência do ar!!

Mas... devemos notar que há, em geral, outras forças atuando no corpo considerado, o que pode frustrar uma experiência se não formos suficientemente cuidadosos.

Resumo: aceleração constante (-g)

As equações de movimento para o caso de aceleração da gravidade -g são (ao longo do eixo y):

$$v = v_0 - gt$$

$$y = y_0 + v_0 t - \frac{1}{2} gt^2$$

$$v^2 = v_0^2 - 2g(y - y_0)$$

$$y = y_0 + \frac{1}{2} (v_0 + v) t$$

