Linear Grammars

Grammars with at most one variable at the right side of a production

$$S \rightarrow aSb$$

$$S \to \lambda$$

$$S \rightarrow Ab$$

$$A \rightarrow aAb$$

$$A \rightarrow \lambda$$

A Non-Linear Grammar

Grammar
$$G: S \to SS$$

$$S \to \lambda$$

$$S \to aSb$$

$$S \to bSa$$

$$L(G) = \{w: n_a(w) = n_b(w)\}$$

Number of a in string w

Another Linear Grammar

Grammar
$$G: S \to A$$

$$A \to aB \mid \lambda$$

$$B \to Ab$$

$$L(G) = \{a^n b^n : n \ge 0\}$$

Right-Linear Grammars

All productions have form:

$$A \rightarrow xB$$

or

$$A \rightarrow x$$

Example: $S \rightarrow abS$

$$S \rightarrow abS$$

$$S \rightarrow a$$

string of terminals

Left-Linear Grammars

All productions have form:

$$A \rightarrow Bx$$

or

$$A \rightarrow x$$

Example:
$$S \rightarrow Aab$$

$$A \rightarrow Aab \mid B$$

$$B \rightarrow a$$

string of terminals

Regular Grammars

Regular Grammars

A regular grammar is any right-linear or left-linear grammar

Examples:

$$G_1$$
 G_2 $S \rightarrow abS$ $S \rightarrow Aab$ $A \rightarrow Aab \mid B$ $B \rightarrow a$

Observation

Regular grammars generate regular languages

Examples:

 G_2

 G_1

 $S \rightarrow Aab$

 $S \rightarrow abS$

 $A \rightarrow Aab \mid B$

 $S \rightarrow a$

 $B \rightarrow a$

 $L(G_1) = (ab) * a$

 $L(G_2) = aab(ab)*$

Regular Grammars Generate Regular Languages

Theorem

```
Languages
Generated by
Regular Grammars
Regular Grammars
```

Theorem - Part 1

Any regular grammar generates a regular language

Theorem - Part 2

Any regular language is generated by a regular grammar

Proof - Part 1

```
Languages
Generated by
Regular Grammars
Regular Grammars
```

The language L(G) generated by any regular grammar G is regular

The case of Right-Linear Grammars

Let G be a right-linear grammar

We will prove: L(G) is regular

Proof idea: We will construct NFA M with L(M) = L(G)

Grammar G is right-linear

Example:
$$S \rightarrow aA \mid B$$

 $A \rightarrow aa \mid B$
 $B \rightarrow b \mid B \mid a$

Construct NFA M such that every state is a grammar variable:

special final state

Add edges for each production:

 $S \rightarrow aA$

 $S \rightarrow aA \mid B$

$$S \rightarrow aA \mid B$$

 $A \rightarrow aa \mid B$

 $S \Rightarrow aA \Rightarrow aaaB \Rightarrow aaabB \Rightarrow aaaba$

NFA M Grammar $S \rightarrow aA \mid B$ $A \rightarrow aa B$ $B \rightarrow bB \mid a$ aL(M) = L(G) =aaab*a+b*a

In General

A right-linear grammar G

has variables: V_0, V_1, V_2, \dots

and productions:
$$V_i \rightarrow a_1 a_2 \cdots a_m V_j$$

or

$$V_i \rightarrow a_1 a_2 \cdots a_m$$

We construct the NFA M such that:

each variable V_i corresponds to a node:

For each production: $V_i \rightarrow a_1 a_2 \cdots a_m V_j$

we add transitions and intermediate nodes

For each production: $V_i \rightarrow a_1 a_2 \cdots a_m$

we add transitions and intermediate nodes

Resulting NFA M looks like this:

It holds that: L(G) = L(M)

The case of Left-Linear Grammars

Let G be a left-linear grammar

We will prove: L(G) is regular

Proof idea:

We will construct a right-linear grammar G' with $L(G) = L(G')^R$

Example

$$C \rightarrow Bc$$

$$B \rightarrow Ab$$

$$A \rightarrow a$$

The derivation of abc is: $C \rightarrow Bc \rightarrow Abc \rightarrow abc$

Equivalently, $C \rightarrow cB$

$$C \rightarrow cB$$

$$B \rightarrow bA$$

$$A \rightarrow a$$

 $C \rightarrow cB \rightarrow cbA \rightarrow cba$ and then take the reverse.

It is easy to see that: $L(G) = L(G')^R$

Since G' is right-linear, we have:

$$L(G') \longrightarrow L(G')^R \longrightarrow L(G)$$
Regular Regular
Language Language Language

Since G is left-linear grammar the productions look like:

$$A \rightarrow Ba_1a_2\cdots a_k$$

$$A \rightarrow a_1 a_2 \cdots a_k$$

Construct right-linear grammar G'

Left G linear

$$A \rightarrow Ba_1a_2\cdots a_k$$

$$A \rightarrow Bv$$

Right G' linear

$$A \rightarrow a_k \cdots a_2 a_1 B$$

$$A \rightarrow v^R B$$

Construct right-linear grammar G'

Left G linear

$$A \rightarrow a_1 a_2 \cdots a_k$$

$$A \rightarrow v$$

Right G'

$$A \rightarrow a_k \cdots a_2 a_1$$

$$A \rightarrow v^R$$

Proof - Part 2

```
Languages
Generated by
Regular Grammars
Regular Grammars
```

Any regular language $\,L\,$ is generated by some regular grammar $\,G\,$

Any regular language $\,L\,$ is generated by some regular grammar $\,G\,$

Proof idea:

Let M be the NFA with L = L(M).

Construct from M a regular grammar G such that L(M) = L(G)

Since L is regular there is an NFA M such that L = L(M)

Convert M to a right-linear grammar

$$L(G) = L(M) = L$$

In General

For any transition:

For any final state:

$$(q_f)$$

Add production:

$$q_f \to \lambda$$

Since G is right-linear grammar

G is also a regular grammar

with
$$L(G) = L(M) = L$$