Number Theory Notes First Week of November, 2021

1 Primitive roots

Definition. Given a positive integer m, an integer $a \leq m$ and coprime to m, is said to be "a primitive root mod m" if its order mod m is $\phi(m)$ (the maximum possible).

Later, we will see that this is the same as saying that "the group \mathbb{Z}_m^* is cyclic."

The first theorem is due to Gauss and it should be remarked that the proof is group-theoretic although the notions of modern group theory were developed only later!

Before stating the theorem, we make a useful observation concerning the totient function.

For any positive integer n, $\sum_{d|n} \phi(d) = n$.

This can be seen to be true as follows. Consider the n fractions $\frac{1}{n}, \frac{2}{n}, \dots, \frac{n}{n}$. When we reduce each fraction to its lowest terms, the fractions $\frac{a}{d}$ that have a particular denominator d (which evidently divides n) are precisely those for which (a,d)=1. Being bounded by 1, this gives $\phi(d)$ such fractions. This proves the identity stated above.

Theorem (Gauss). For any odd prime p, there exist $\phi(p-1)$ primitive roots mod p.

Proof. Recall the set \mathbb{Z}_p^* of positive integers a < p. Each a in it has some order $d \mod p$ and d divides p-1 by Fermat's little theorem. Let us decompose \mathbb{Z}_p^* as a union of disjoint subsets G(d) for divisors d of p-1 where G(d) contains all those elements which have order equal to d. Then, the cardinality count gives

$$p-1 = \sum_{d|(p-1)} |G(d)|.$$

Of course, G(d) may, a priori, be empty for some d. The theorem asserts that G(p-1) has cardinality $\phi(p-1)$. Now, consider any possible nonempty G(d) and an element $a \in G(d)$. As a has order $d \mod p$, the powers $a, a^2, \dots, a^{d-1}, a^d = 1 \mod p$ are distinct. But, these elements are d distinct solutions of the congruence $x^d - 1 \equiv 0 \mod p$ in \mathbb{Z}_p . We know that a

polynomial congruence mod p of degree d can have at the most d solutions. So, these powers of a are all the solutions. In other words, any element b of \mathbb{Z}_p satisfying $b^d=1$ in \mathbb{Z}_p must be one of the powers of a mod p. Among these powers, the elements of G(d) are those powers a^i for which (i,d)=1 (because we have seen that order of a is d implies order of a^i is d/(i,d)). Thus, $|G(d)|=\phi(d)$. Therefore, we have shown that either |G(d)|=0 or $|G(d)|=\phi(d)$. In particular, $|G(d)|\leq\phi(d)$ for all d. But $p-1=\sum_{d|(p-1)}\phi(d)$ as observed earlier. Thus,

$$p-1 = \sum_{d|(p-1)} |G(d)| \le \sum_{d|(p-1)} \phi(d) = p-1.$$

Therefore, $|G(d)| = \phi(d)$ for every d|(p-1). In particular, the case d = p-1 proves the theorem.

Lemma 1. Let p be an odd prime and $n \ge 2$. Then, there exists a primitive root a mod p such that $a^{p^{n-2}(p-1)} \not\equiv 1 \mod p^n$. In fact, ANY primitive root a mod p which has the property above for n = 2 has the property for each $n \ge 2$.

Proof. From Gauss's theorem, we know there exists a primitive root a mod p. We prove the lemma by induction on n. First, let n = 2. If $a^{p-1} \not\equiv 1 \mod p^2$, we have nothing more to prove. If $a^{p-1} \equiv 1 \mod p^2$, look at a + p which is also a primitive root mod p. Now

$$(a+p)^{p-1} - 1 = a^{p-1} - 1 + (p-1)a^{p-2}p + p^2u$$

for some integer u. Therefore,

$$(a+p)^{p-1} \equiv a^{p-1} - 1 - pa^{p-2} \mod p^2.$$

As $a^{p-1} - 1 \equiv 0$, we must have $a^{p-2} \equiv 0 \mod p$ which is impossible as (a, p) = 1. Therefore, the case n = 2 is proved (a + p) works if a does not). Assume the result holds for some $n \geq 2$. Thus, we have a primitive root $a \mod p$ for which

$$a^{p^{n-2}(p-1)} \not\equiv 1 \mod p^n.$$

Of course, since $\phi(p^{n-1}) = p^{n-2}(p-1)$, by Euler's congruence, we do have

$$a^{p^{n-2}(p-1)} \equiv 1 \mod p^{n-1}.$$

Writing $a^{p^{n-2}(p-1)} = 1 + up^{n-1}$ we have (p,u) = 1. Raising to the *p*-th power, we have $a^{p^{n-1}(p-1)} = 1 + up^n \mod p^{n+1}$. Clearly, $1 + up^n \not\equiv 1 \mod p^{n+1}$ as (p,u) = 1. The lemma follows by induction now.

Note that we have shown above that any primitive root $a \mod p$ which satisfies $a^{p-1} \not\equiv 1 \mod p^2$ also satisfies $a^{p^{n-2}(p-1)} \not\equiv 1 \mod p^n$ for every $n \geq 2$.

Proposition 1. For any odd prime and any n, there exists a primitive root $a \mod p^n$. Moreover, either $a \text{ or } a + p^n$ is also primitive roots $\mod 2p^n$.

Proof. Consider a primitive root $a \mod p$ as in the lemma above; so, $a^{p^{n-2}(p-1)} \not\equiv 1 \mod p^n$. By Euler's congruence, $a^{p^{n-1}(p-1)} \equiv 1 \mod p^n$. Thus, the order d of $a \mod p^n$ divides $p^{n-1}(p-1)$ and, since a has order $p-1 \mod p$, we have (p-1)|d. So, $d=p^r(p-1)$ with $r \leq n-1$. If $r \leq n-2$, we have $a^{p^r(p-1)} \not\equiv 1 \mod p^n$ as we know $a^{p^{n-2}(p-1)} \not\equiv 1 \mod p^n$. Therefore, $d=p^{n-1}(p-1)$; that is, a is a primitive root mod p^n .

Finally, such an a can be taken to be odd (else, we may replace a by $a+p^n$); then, $a^{p^{n-1}(p-1)} \equiv 1 \mod 2$. As $\phi(p^n) = \phi(2p^n)$, the last assertion also follows.

Lemma 2. There exists a primitive root mod 2^n if, and only if, $n \leq 2$.

Proof. The cases n = 1, 2 are easy to see as 1 and 3 are primitive roots mod 2^n for n = 1, 2 respectively.

Let $n \geq 3$. We show by induction that for each odd a,

$$a^{2^{n-2}} \equiv 1 \mod 2^n.$$

This will show primitive roots mod 2^n cannot exist for $n \geq 3$. Indeed, we prove the above congruences by induction on $n \geq 3$. The case n = 3 is clear as $a^2 \equiv 1 \mod 8$ for every odd a.

Assuming for some $n \geq 3$ that $a^{2^{n-2}} \equiv 1 \mod 2^n$, we may write $a^{2^{n-2}} = 1 + 2^n u$. Squaring both sides, it is clear that $a^{2^{n-1}} = 1 + 2^{n+1} u + 2^{2n} u^2 \equiv 1 \mod 2^{n+1}$. The lemma is proved.

Theorem. Primitive roots mod n exist if, and only if, $n = 2, 4, p^r$ or $2p^r$ with p an odd prime.

Proof. In view of Proposition 1 and Lemma 2, the following assertion would prove the theorem:

For (m, n) = 1 and m, n > 2, there is no primitive root mod mn.

To prove this, observe that $\phi(m)$, $\phi(n)$ are both even. So, their LCM L is $<\phi(m)\phi(n)/2$. Also, from the expressions for the totient function, $\phi(u)\phi(v) \le \phi(uv)$ for all u, v. In particular,

$$L := LCM(\phi(m), \phi(n)) \le \frac{\phi(m)\phi(n)}{2} = \frac{\phi(mn)}{2}.$$

For any a coprime to mn, we have $a^L \equiv 1 \mod m$ and $a^L \equiv 1 \mod n$; this implies $a^L \equiv 1 \mod mn$ as (m,n) = 1. Therefore, the order of $a \mod mn$ is less than $\phi(mn)$. This completes the proof of the theorem.

If m admits a primitive root, then determining which integers mod m are powers is comparatively easier as follows:

Proof. The "only if" part (which does not use the assumption that m admits a primitive root) is clear because $b \equiv c^k$ implies

$$b^{\phi(m)/(\phi(m),k)} \equiv (c^{\phi(m)})^{k/(\phi(m),k)} \equiv 1 \mod m.$$

For the "if" part, assume $b^{\phi(m)/(\phi(m),k)} \equiv 1 \mod m$. Let a be a primitive root mod m. Then, the set of powers $a^r(1 \leq r \leq \phi(m)) \mod m$ is the full set $\mathbb{Z}_{>}^*$ as the powers are distinct and are $\phi(m)$ in number. Thus, we may write $b \equiv a^r$ for some r. The assumption $b^{\phi(m)/(\phi(m),k)} \equiv 1 \mod m$ implies that $a^{r\phi(m)/(\phi(m),k)} \equiv 1 \mod m$, which means $(\phi(m),k)$ divides r; say $(\phi(m),k)s = r$. Hence, $b = a^r = a^{(\phi(m),k)s} = d^{(\phi(m),k)}$ where $d = a^s$. Writing $(\phi(m),k) = kv - \phi(m)u$ for some POSITIVE integers u,v we get

$$d^{kv} = d^{u\phi(m)}d^{(\phi(m),k)} \equiv d^{(\phi(m),k)} \equiv b \mod m.$$

Therefore $b \equiv c^k \mod m$ where $c = d^v$. The proof is complete.