Angle Chasing, Congruence, Similarity and Parallelism

Nilotpal Roy Sayon

Essence of Olympiad Geometry - Day 1

September 30, 2024

Diagrams aren't provided for your "drawing" practice (and our convenience :D). Do try the problems that were not shown in class.

1 Class Problems

- **Problem 1.1.** In $\triangle ABC$, It is given that AB = AD and $\angle ABC \angle ACB = 30^{\circ}$. Find the value of $\angle CBD$.
- **Problem 1.2.** In a trapezium ABCD where $AD \parallel BC$, E is a point of AB. Show that $\angle ADE + \angle BCD = \angle CED$.
- **Problem 1.3.** In an acute triangle ABC, M, N and L are the midpoints of AB, AC and BC respectively. Points P and Q are chosen **outside the triangle** such that, PM = MB and $PM \perp AB$, and QN = NC and $QN \perp BC$. Prove that LP = LQ.
- **Problem 1.4.** In a right triangle $\triangle ABC$, $\angle BAC = 90^{\circ}$. D is a point of BC such that $AD \perp BC$ and M is the midpoint of BC. It is given that $\angle MAD = 14^{\circ}$. Find the value of $\angle ABC$.
- **Problem 1.5.** Suppose, there is a triangle $\triangle ABC$. The angle bisector of each angle intersects at a single point I. The line through I that is parallel to AB intersects AC and BC at points M and N, respectively. Prove that AM + BN = MN.
- **Problem 1.6.** Let ABCD be a convex quadrilateral such that $\angle BCD = 90^{\circ}$. P is a point CD such that $\angle APD = \angle BPC$ and $\angle BAP = \angle ABC$. Prove that $BC = \frac{AP + BP}{2}$.

2 Class Problems that got left out

- **Problem 2.1.** Let ABCD be a parallelogram with area 1. Let M be a the midpoint of side AD. Let $BM \cap AC = P$. Find the area of $\square MPCD$.
- **Problem 2.2.** Let ABC be a acute triangle with circumcenter O. H is point on the altitude drawn from A onto BC. Prove that $\angle BAH = \angle CAO$.

3 Homework

- **Problem 3.1.** [1 point] $\triangle ABC$ is a equilateral triangle. D and E are points on AB and BC respectively such that AD = BE. AE and CD intersect each other at point F. What is the value of $\angle CFE$?
- **Problem 3.2.** [2 points] Suppose there is a triangle $\triangle ABC$. We draw a square $\Box ABDE$ on AB and another square $\Box CAFG$ on AC such that both squares are **outside the triangle**. M is the midpoint of BC. AA' passes through M such that AA' = 2AM. Prove that AA' = EF.
- **Problem 3.3.** [2 points] In a $\triangle ABC$, D is a point on the side BC. BE and CF are perpendicular to the line AD. It is also given that $\angle BAD = \angle CAD$. Prove that $AE \cdot DF = AF \cdot DE$.
- **Problem 3.4.** [4 points] Let ω be the circumcircle of a triangle ABC with AC > AB. Let X be a point on AC and Y be a point on the circle ω , such that CX = CY = AB. (The points A and Y lie on different sides of the line BC). The line XY intersects ω for the second time in point P. Show that PB = PC.