Tema d'esame di Statistica e analisi dei dati

Prova scritta del 12 febbraio 2019

Esercizio 0

Siano A e B due eventi, e siano note le probabilità P(A) e P(B) che si verifichino rispettivamente A e B. Supponiamo inoltre di conoscere anche la probabilità P(A|B) che si verifichi A sapendo che si è verificato B.

- 1. Esprimete, in funzione di P(A), P(B) e P(A|B), la probabilità P(B|A) che accada B sapendo che si è verificato A.
- 2. Considerate una variable aleatoria X che assume esclusivamente i valori 0 e 1. Si indichi con p la probabilità P(X = 1).
 - 2.1. Esprimete il valore atteso E(X) e la deviazione standard σ_X di X in funzione di p.
 - 2.2. In Figura 1 è mostrato il grafico della deviazione standard σ_X al variare di p. Per quali valori di p la deviazione standard di X assume il valore 0.3?
 - 2.3. Qual è il valore massimo che deviazione standard di X può assumere?

Figura 1: Deviazione standard di X al variare del parametro p.

2.4. Fissato, solo in questo punto, p=0.5, tracciate a mano un grafico più dettagliato possibile della funzione di ripartizione di X.

Esercizio 1

Sia $\overline{X}_{(n)}$ la media campionaria di un campione casuale X_1, \ldots, X_n estratto dalla popolazione X studiata nell'esercizio precedente.

- 1. Esprimete, eventualmente in funzione di n, il valore assunto da $\overline{X}_{(n)}$ nei seguenti casi:
 - 1.1. tutte le realizzazioni campionarie sono uguali a 0;
 - 1.2. esattamente due delle realizzazioni campionarie sono uguali a 1;
 - 1.3. tutte le realizzazioni campionarie sono uguali a 1.
- 2. Esprimete, in funzione di n, i valori che la variabile casuale $\overline{X}_{(n)}$ può assumere.
- 3. La variabile casuale $\overline{X}_{(n)}$ è uno stimatore non distorto di p? Si giustifichi la risposta.
- 4. Indicata con Φ la funzione di ripartizione della variabile normale standard, verificate che per $n \gg 1$ vale la seguente relazione:

$$P(|\overline{X}_{(n)} - p| \le \epsilon) \ge 2\Phi(2\epsilon\sqrt{n}) - 1.$$

Esercizio 2

Collegatevi al sito upload.di.unimi.it, selezionate l'esame di *Statistica e analisi dei dati* per l'appello odierno e scaricate il file carsharing.csv. Questo file contiene le seguenti informazioni raccolte da un servizio di car sharing riguardo a singoli utilizzi dei veicoli della propria flotta:

- CarIdentifier: identificatore del veicolo;
- TimeFrame: fascia oraria in cui il veicolo è stato utilizzato;
- RushHour: indica se la fascia oraria corrisponde a un orario di punta, usando un'ovvia codifica binaria;
- *PremiumCustomer*: indica se l'utente che ha utilizzato il veicolo è iscritto al programma *Premium* (usando anche in questo caso una semplice codifica binaria);
- Distance: lunghezza del tragitto (espressa in km);
- Time: tempo impiegato a percorrere il tragitto (espresso in minuti).

In questo file il carattere ";" separa le colonne e i numeri reali sono stati registrati usando il carattere "," come separatore dei decimali.

In questo esercizio analizzeremo la distanza percorsa nei tragitti effettuati dagli utenti del servizio di carsharing (carattere *Distance*).

- 1. Il carattere Distance è nominale, ordinale o scalare? Giustificate la risposta.
- 2. Tracciate, possibilmente nella stessa figura, il box plot della distanza nel caso di utilizzo dell'auto in orario di punta (RushHour=1) e in orario non di punta (RushHour=0).
- 3. Ispezionando i due grafici ottenuti al punto precedente, dite se negli orari di punta sono privilegiati spostamenti "più brevi" oppure "più lunghi" rispetto agli orari non di punta, giustificando la risposta.

Distanza percorsa

Figura 2: Istogramma della distanza percorsa

- 4. In Figura 2 è mostrato l'istogramma della distanza percorsa. In tale grafico si può individuare la presenza di due gruppi abbastanza distinti.
 - Calcolate la distanza media nei due gruppi di orario (di punta/non di punta) e commentate l'istogramma utilizzando queste due informazioni.

Esercizio 3

- 1. Selezionate in una variabile chiamata tragittibrevi tutti i casi in cui il veicolo è stato utilizzato per percorrere un tragitto breve, inteso come una tratta la cui lunghezza è inferiore a 1.5 km".
- 2. Tracciate il grafico di dispersione della distanza e del tempo per i tragitti brevi.
- 3. Commentate il grafico che avete tracciato al punto precedente per concludere se, per i tragitti brevi, è riscontrabile una relazione tra la distanza e il tempo necessario per percorrerla.

Esercizio 4

Concentriamoci ora sulla distanza percorsa dai veicoli negli orari non di punta.

- 1. Tracciate un grafico opportuno che descriva la distanza percorsa negli orari non di punta.
- 2. È plausibile affermare che negli orari *non* di punta la distanza segue una legge normale? Giustificate la risposta.

Esercizio 5

- 1. Stimate la probabilità p che un'auto venga utilizzata in un orario di punta.
- 2. Quale stimatore avete utilizzato al punto precedente?
- 3. Qual è la numerosità del campione che avete a disposizione?
- 4. Fornite una minorazione della probabilità che nella stima di p abbiate compiuto un errore al più uguale a 0.05.

Esercizio 6

Utilizzando altre informazioni riguardo al servizio di carsharing (non presenti nel dataset che vi abbiamo fornito), si è stimato che:

- (i) la probabilità che un'auto subisca un incidente è 0.15;
- (ii) la probabilità che in un orario di punta un'auto subisca un incidente è 0.2.

Una data auto oggi non è disponibile perché ieri ha subito un incidente. Stimate la probabilità che l'incidente sia avvenuto in un orario di punta.