ZAVRŠNI ISPIT IZ DIGITALNE LOGIKE

Grupa D

1	Nad brojem FEED ₁₆ potrebno je izvršiti aritmetički posmak udesno za 3 bita. Rezultat je:							
	a) 1FDD b) 1FEE c) F768 d) FFDD e) F76F f) ništa od navedenoga							
2	Ako je 8-bitno binarno zbrajalo koje zbraja dva broja $A=a_7a_6a_5a_4a_3a_2a_1a_0$ i $B=b_7b_6b_5b_4b_3b_2b_1b_0$ napravljeno s greškom tako da su u gornjoj polovici (za četiri bita najveće težine) upotrijebljena četiri potpuna oduzimala (umjesto potpunih zbrajala), što će se pojaviti na izlazima $s_7s_6s_5s_4s_3s_2s_1s_0$ toga sklopa ako se na ulaz A dovede niz 11101011, a na ulaz B niz bitova 01100111?							
	a) 01000100 c) 10001100 e) 01110010 b) 01010010 d) 10000100 f) ništa od navedenoga							
3	Za izvedbu množenja 3-bitnih sa 7-bitnim brojevima na raspolaganju su 3-bitna zbrajala te logički sklopovi I. Koliko je minimalno potrebno 3-bitnih zbrajala za izvedbu takvog množila (uz upotrebu minimalnog broja logičkih sklopova I)?							
	a) šest b) pet c) četiri d) sedam e) osam f) ništa od navedenoga							
4	Zadana je funkcija $f(A,B,C,D) = \sum m(1,3,5,6,7,9,10,11,13,15)$. Kako glasi njen minimalni oblik izravno ostvariv sklopom PLA tipa NILI-NILI. a) $\overline{D}(\overline{A} + B + \overline{C})(A + \overline{B} + \overline{C})$ c) I e) $\overline{D} + \overline{A}B\overline{C} + A\overline{B}\overline{C}$							
	b) $(C+D)(\overline{A}+\overline{B}+D)(A+B+D)$ d) $C+D$ f) ništa od navedenoga							
5	Mulipleksorima 2/1 potrebno je izgraditi multipleksorsko stablo 8/1. Koliko je multipleksora 2/1 potrebno?							
	a) 8 b) 15 c) 4 d) 16 e) 7 f) ništa od navedenoga							
6	Potrebno je programirati ROM tako da sklop prikazan na slici obavlja funkciju Hammingovog kodera uz uporabu neparnog pariteta. Na izlazu h_0 potrebno je generirati prvi zaštitni bit, a kao prvi podatkovni bit uzima se x_0 . Neka se sadržaji lokacija ROM-a očitavaju kao oktalni brojevi. Na kojoj memorijskoj lokaciji se nalazi zapisan najveći oktalni broj (pri očitavanju d_5 je uzet kao bit najveće težine)?							
	a) 1 b) 7 c) 4 d) 2 e) 5 f) ništa od navedenoga							
7	Programirljiv kombinacijski modul koji ima programirljivo dekodersko polje a fiksno kodersko polje naziva se: a) FPGA sklop b) Programirljivo logičko polje (PLA) c) Ispisna memorija d) Poluprogramirljivo logičko polje (PAL) e) Statička RAM memorija f) ništa od navedenoga							
8	Asinkrono binarno brojilo sastoji se od 4 bistabila T koji imaju asinkrone ulaze za postavljanje i brisanje a koji se aktiviraju logičkom 1. Asinkroni ulazi za postavljanje bistabila B ₀ i B ₁ spojeni su na signal X, a bistabila B ₂ i B ₃ spojeni su na logičku 0. Asinkroni ulazi za brisanje bistabila B ₂ i B ₃ spojeni su na signal X, a bistabila B ₀ i B ₁ na logičku 0. Koju funkciju treba obavljati signal X kako bi brojilo radilo u ciklusu s 8 stanja? Izlazi bistabila označeni su s $Q_3Q_2Q_1Q_0$. a) $\overline{Q}_3Q_2Q_1Q_0$ b) $Q_3\overline{Q}_2Q_1Q_0$ c) $\overline{Q}_3Q_2\overline{Q}_1Q_0$ d) $Q_3Q_2Q_1Q_0$ e) $Q_3\overline{Q}_2Q_1\overline{Q}_0$ f) ništa od navedenoga							
9	Koliko iznosi maksimalna frekvencija signala takta 6-bitnog sinkronog binarnog brojila s paralelnim prijenosom ako je poznato: t _{db} =20 ns, t _{setup} =25 ns, t _{hold} =10 ns. Koriste se logički sklopovi I s t _{dls} = 5 ns.							

10	Funkcija $f(A,B,C,D) = \sum m(2,6,7,8,9,12,13,15)$ ostvaruje se kao suma produkata. Za takav oblik								
	funkcije odredite broj primarnih implikanata (pi) te bitnih primarnih implikanata (bpi). pi/bpi je:								
	a) 5/2	b) 5/5	c) 2/2	d) 3/5	e) 17/5	f) ništa od navedenoga			
11	DA pretvornik s težinskom otpornom mrežom i operacijskim pojačalom izgrađen je za kôd 2421. Maksimalna vrijednost otpora u mreži iznosi 10 kΩ. Ako se na ulazu pretvornika pojavi broj 5, kolika će biti vrijednost izlaznog napona ako je još poznato: U_{REF} =5V, R_f =5 kΩ. a) -12,5V b) -10V c) 10V d) 12,5V e) -5V f) ništa od navedenoga								
12	, ,			, ,	<i>'</i>				
12	Analogno-digitalni pretvornik sa sukcesivnom aproksimacijom za pretvorbu koristi signal takta frekvencije 20 kHz. Vrijeme potrebno za pretvorbu ulaznog napona od 3 V iznosi 100 μs. Koliko će mu vremena trebati za pretvorbu napona od 1,5 V?								
	a) 200 μs	b) 50 μs	c) 300 µs	d) 150 μs	e) 100 μs	f) ništa od navedenoga			
13	Bistabil je opisan VHDL-om u nastavku. Nacrtajte shemu tog sklopa prema priloženom VHDL kôdu. Ako je poznato da se bistabil početno nalazi u stanju 0 (tj. q=0), što je potrebno dovesti na ulaze X, Y i Z da bi bistabil promijenio stanje u 1? entity ff is port(x, y, z:in std_logic; q, qn: out std_logic); end ff; architecture str of ff is signal i1,i2,i3,i4: std_logic; begin i1 <= x nand y; i2 <= y nand z; i3 <= i1 nand i4; i4 <= i3 nand i2; q <= i3; qn <= i4; end str;								
	a) X=0, Y=1, b) X=0, Y=0,		c) X=1, Y d) X=0, Y		,	e) X=1, Y=1, Z=0 f) ništa od navedenoga			
14	Sučelje bistabila T te multipleksora 4/1 prikazano je u nastavku. entity tff is port(t,cp:in std_logic; q,qn: out std_logic); end tff; entity mux41 is port(d0,d1,d2,d3,a1,a0:in std_logic; y: out std_logic); end mux41; Razmotrite djelomični VHDL model koji ostvaruje bistabil JK uporabom bistabila T i multipleksora 4/1. entity jkff is port(j,k,cp:in std_logic; q,qn: out std_logic); end jkff; architecture str of jkff is signal i1,i2,i3: std_logic; begin b: ENTITY work.tff PORT MAP (i3,cp,i1,i2); m: ENTITY work.mux41 PORT MAP (<a>); q <= i1; qn <= i2; end str;								
		U PORT MAP-u koji je nepotpun (umjesto <a>) može pisati:							
	a) i1,0,i2,1 b) 0,i1,i2,1 c) 0,1,1,0,j	l,i3,j,k	d) 0, i1, i2, 1, j, k, i3 e) i1, i2, i1, 1, j, k, i3 f) ništa od navedenoga						
15	Neki memorijski modul ima kapacitet 64K×8 bita. Ako je memorijsko polje organizacije 3D, koliko će ukupno izlaza imati korišteni adresni dekođeri ?								
	a) 1024	b) 4096	c) 512	d) 64	e) 2048	f) ništa od navedenoga			
16	Prednost dinamičkog RAM-a (DRAM) u odnosu na statički (SRAM) je: a) DRAM zahtijeva veći broj tranzistora za realizaciju jedne memorijske ćelije nego SRAM b) DRAM omogućava veći kapacitet memorije na istoj površini čipa c) DRAM omogućava brži rad od SRAM-a d) DRAM koristi diodne matrice za realizaciju memorijskih ćelija e) DRAM zahtjeva manje adresnih bitova od SRAM-a za adresiranje memorije jednakog kapaciteta f) ništa od navedenoga								

Slika 1. Asinkrono brojilo za zadatke 17 i 18.

- Bistabilima tipa T koji su okidani padajućim bridom signala takta ostvareno je 3-bitno asinkrono brojilo prikazano na slici 1. U kojem ciklusu broji prikazano brojilo?
 - a) 0,3,2,5,4,7,6,1
- c) 0,7,6,5,4,3,2,1

e) 0,7,6,5,1,2,3,4

b) 0,1,2,3,4,5,6,7

- d) 0,3,1,2,5,4,6,7
- f) ništa od navedenoga
- Bistabilima tipa T koji su okidani padajućim bridom signala takta ostvareno je 3-bitno asinkrono brojilo prikazano na slici 1. Ulazni signal je simetričan, poluperiode 50 ns. U trenutku t = 0 svi bistabili su u stanju 0. Prvi padajući brid ulaznog signala pojavljuje se u trenutku t = 100 ns. Što ćemo očitati na izlazima brojila (B₂B₁B₀) u trenutcima t = 305 ns, 315 ns, 325 ns i 335 ns ako je t_{dB} = 10 ns? U odgovoru su vrijednosti navedene traženim vremenskim redoslijedom.
 - a) 0,2,4,6
- b) 5,7,1,3
- c) 2,3,1,5
- d) 2,5,1,4
- e) 0,3,1,2
- f) ništa od navedenoga
- 19 Odredite minimalni oblik funkcije koju ostvaruje sklop sa slike.

a) AB + CD

c) $\overline{A}B + \overline{C}D$

e) AB + AC + AD + BC + BD

- b) $AB + AC + AD + B\overline{C} + \overline{B}D$
- d) $A\overline{B} + C\overline{D}$

- f) ništa od navedenoga
- Mealyjev stroj s konačnim brojem stanja opisan je tablicom u nastavku. Ostvarite ga uporabom dva bistabila tipa D (izravno, bez minimizacije broja stanja), pri čemu stanje S_i treba biti kodirano kao binarno zapisan broj i. Bistabili B_1 i B_0 imaju izlaze Q_1 i Q_0 ; B_1 pohranjuje viši bit kôdne riječi. Ulaz automata je označen s X. Kako glasi minimalni zapis Booleove funkcije izlaza ovog stroja?

O^n	Q ¹	n+1	Z ⁿ		
Q	$X^n = 0$	$X^n = 1$	$X^n = 0$	$X^n = 1$	
S_0	S_0	S_1	1	0	
S_1	S_2	S_1	0	1	
S_2	S_3	S_1	0	0	
S_3	S_0	S_1	0	0	

a) $\overline{X} \overline{Q}_1 Q_0 + \overline{X} Q_1 \overline{Q}_0$

d) $X + Q_1 \overline{Q}_0$

b) $\overline{Q}_1 Q_0 + Q_1 \overline{Q}_0$

e) $\overline{X} \overline{Q}_1 \overline{Q}_0$

c) $\overline{X} \overline{Q}_1 \overline{Q}_0 + X \overline{Q}_1 Q_0$

f) ništa od navedenoga

Ako se rješavaju, sljedeća dva zadatka <u>moraju biti riješena u unutrašnjosti košuljice</u>, kako je napisano uz svaki od zadataka (ili se neće bodovati). Zadatci se boduju jednako kao i prethodni zadatci (ali nema negativnih bodova). Zadatak mora imati prikazan postupak te konačno rješenje.

Zadatak 21. Riješiti na unutrašnjosti košuljice, s lijeve strane.

Na raspolaganju je model bistabila JK čije je sučelje prikazano u nastavku. Bistabil je okidan padajućim bridom signala takta.

```
entity jkff is port(j,k,cp:in std logic; q,qn: out std logic); end jkff;
```

Nacrtajte shemu 4-bitnog sinkronog binarnog brojila unaprijed s paralelnim prijenosom koje je ostvareno navedenim bistabilima JK. Potom napišite strukturni VHDL model tog brojila uz pretpostavku da je sučelje zadano kako slijedi.

```
entity brojilo is port(
  cp: in std_logic;
  q: out std_logic_vector(3 downto 0)
); end brojilo;
```

Dovoljno je napisati samo arhitekturu tog opisa – ne treba prepisivati deklaraciju sučelja.

Zadatak 22. Riješiti na unutrašnjosti košuljice, s desne strane.

Komponenta zbr je 3-bitno binarno zbrajalo čije je sučelje:

```
entity zbr is port(a,b:in std_logic_vector(2 downto 0); r: out
std logic vector(2 downto 0); cout: out std logic); end zbr;
```

VHDL kôd u nastavku prikazuje model sekvencijskog sklopa koji koristi tu komponentu.

```
entity sklop is port(
   cp: in std_logic; q: out std_logic_vector(2 downto 0)
); end sklop;
architecture arch of sklop is
   signal s1, s2: std_logic_vector(2 downto 0);
begin

process(cp)
begin
   if falling_edge(cp) then s2 <= s1; end if;
end process;

z: ENTITY work.zbr PORT MAP(s2, "010", s1, open);

q <= s2;
end arch;</pre>
```

Za ovaj sklop nacrtajte dijagram promjene stanja (pod stanjem podrazumijevamo broj zapisan na izlazu q u dekadskom sustavu, pri čemu je q(2) bit najveće težine). Uz pretpostavku da se pri uključenju fizičke implementacije opisanog sklopa bistabili mogu zateći u bilo kojem stanju, odredite ima li takav sklop siguran start (i objasnite odgovor)?