圆锥曲线选填

1 直线与圆

1.	已知点 $M(a,b)$ 在圆 O :	$x^2 + y^2 = 1 \text{ft},$	则直线 ax +	by = 1 与圆 O 的位置	关系是	()
	(A) 相切	(B) 相交		(C) 相离	(D) 不确定		
2.	已知圆 $C: x^2 + y^2 - 4x =$	= 0, <i>l</i> 为过点 <i>P</i> (3,0) 的直线,	则		()
	(A) <i>l</i> 与 <i>C</i> 相交						
	(B) <i>l</i> 与 <i>C</i> 相切						
	(C) <i>l</i> 与 <i>C</i> 相离						
	(D) 以上三个选项均有可	可能					
3.	过点 (1,0) 且与直线 x-	2y - 2 = 0平行	的直线方程是	른		()
	(A) $x - 2y - 1 = 0$			(B) $x - 2y + 1 = 0$			
	(C) $2x + y - 2 = 0$			(D) $x + 2y - 1 = 0$			
4.	已知直线 $3x + 4y - 3 = 0$) 与直线 6x + n	$ny + 14 = 0 \ \forall$	^云 行,则它们之间的距离		()
	(A) $\frac{17}{10}$	(B) $\frac{17}{5}$		(C) 8	(D) 2		
5.	直线 $ax + by + c = 0$ 同印	寸要经过第一、	第二、第四象	象限,则 a,b,c 要满足		()
	(A) $ab > 0$, $bc < 0$			(B) $ab > 0, bc > 0$			
	(C) $ab < 0, bc > 0$			(D) $ab < 0, bc < 0$			
6.	若动点 $P_1(x_1,y_1)$, $P_2(x_2)$, y ₂) 分别在直约	$\xi l_1: x-y-5$	$b = 0, l_2 : x - y - 15 = 0$)上移动,则 $P_1 P_2$? 2 的中点	点 P
	到原点的距离的最小值是			15 √ 2		()
	$(A) \frac{5\sqrt{2}}{2}$	(B) $5\sqrt{2}$		$(C) \frac{15\sqrt{2}}{2}$	(D) $15\sqrt{2}$		
7.	已知 $a \neq 0$,直 $ax + (b + ax + b)$	-2)y + 4 = 0 = 5	i直线 $ax + (b)$	-2)y-3=0 互相垂直	,则 ab 的最大值	直为()
	(A) 0	(B) 2		(C) 4	(D) $\sqrt{2}$		
8.	与直线 $x - y - 4 = 0$ 和愿	$ x^2 + y^2 + 2x - $	-2y=0都相	切的半径最小的圆的方	程是	()
	(A) $(x+1)^2 + (y+1)^2$	=2		(B) $(x+1)^2 + (y+1)^2$	=4		
	(C) $(x-1)^2 + (y+1)^2 =$	= 2		(D) $(x-1)^2 + (y+1)^2$	=4		
9.	已知直线通过点 $M(-3, 4)$ 直线的方程是	4),被直线 <i>l</i> ::	x - y + 3 = 0	反射,反射光线通过点	$\mathbb{R}[N(2,6)$,则反射	射光线角	斤在
10.	设直线 $l: 3x + 4y + a =$	$0, \; \boxtimes C : (x - $	$(2)^2 + y^2 = 2,$	若在圆 C 上存在两点	P, Q, 在直线 l	上存在-	一点

)

M,使得 $\angle PMQ = 90^{\circ}$,则 a 的取值范围是

	(A) $[-18, 6]$		(B) $\left[6 - 5\sqrt{2}, 6 + 5\right]$	$5\sqrt{2}$		
	(C) $[-16, 4]$		(D) $\left[-6 - 5\sqrt{2}, -6\right]$	$+5\sqrt{2}$		
11.		$-(y-3)^2=1$,圆 $C_2:(x)$ 则 $ PM + PN $ 的最小值为		f , N 分别是圆 C_1 , G		点,)
	(A) $5\sqrt{2} - 4$	(B) $\sqrt{17} - 1$	(C) $6 - 2\sqrt{2}$	(D) $\sqrt{17}$		
12.	已知圆 $C: (x-3)^2 + (y-3)^2 + (y-3)^$	$(y-4)^2=1$ 和两点 $A(-m)$	(0), B(m,0) (m > 0), 若愿	日上存在点 P, 使得	$\angle APB = 9$)0°,
	(A) 7	(B) 6	(C) 5	(D) 4		
13.	设 $m,n \in \mathbb{R}$,若直线(是	(m+1)x + (n-1)y - 2 =	$0 = (x-1)^2 + (y-1)^2 =$	= 1 相切,则 m + n	n 的取值范 (围
	$(A) \left[1 - \sqrt{3}, 1 + \sqrt{3} \right]$		(B) $\left(-\infty, 1 - \sqrt{3}\right]$	$U\left[1+\sqrt{3},+\infty\right)$		
	(C) $\left[2-2\sqrt{2},2+2\sqrt{2}\right]$	$\sqrt{2}$	(D) $\left(-\infty, 2-2\sqrt{2}\right]$	$\cup \left[2+2\sqrt{2},+\infty\right)$		
14.	若直线 $l: \frac{x}{a} + \frac{y}{b} = 1$ (a	u > 0, b > 0) 经过点 (1,2)	,则直线 l 在 x 轴和 y 轴上	亡的截距之和的最小	·值是	
	a c	,若直线 $y = kx + 1$ 上有				
2	圆锥曲线					
1.	己知 $P(5,2)$, $F_1(-6,0)$), $F_2(6,0)$ 三点,那么以	F_1 , F_2 为焦点且过点 P	的椭圆的短轴长为	()
	(A) 3	(B) 6	(C) 9	(D) 12		
2.	已知 $F_1(-1,0)$, $F_2(1,0)$ 则 C 的方程是	(C)) 是椭圆 (C) 的两个焦点,	过 F_2 且垂直于 x 轴的直线	线交 C 于 A , B 两点	,且 <i>AB</i> =	3,
	(A) $\frac{x^2}{2} + y^2 = 1$ (C) $\frac{x^2}{4} + \frac{y^2}{3} = 1$		(B) $\frac{x^2}{3} + \frac{y^2}{2} = 1$ (D) $\frac{x^2}{5} + \frac{y^2}{4} = 1$			
3.	设 P, Q 分别为圆 x²+	$(y-6)^2 = 2 \text{ 和椭圆 } \frac{x^2}{10}$	$+y^2 = 1$ 上的点,则 P,Q	两点间的最大距离	是 ()
	(A) $5\sqrt{2}$	(B) $\sqrt{46} + \sqrt{2}$	(C) $7 + \sqrt{2}$	(D) $6\sqrt{2}$		
4.	设 P 是双曲线 $\frac{x^2}{a^2} - \frac{y}{Q}$ 左、右焦点,若 $ PF_1 $	$rac{2}{0}=1$ 上一点,双曲线的 $ =3$,则 $ PF_2 =$	一条渐近线方程为 3x -	$2y=0, F_1, F_2$ 分另		l的)
	(A) 1或5	(B) 6	(C) 7	(D) 9		
5						
3.		F 是椭圆 C : $\frac{x^2}{a^2} + \frac{y^2}{b^2} = x$ 轴,且过点 A 的直线 b			告直线 BM	

6.	已知方程 $\frac{x^2}{m^2+n} - \frac{y^2}{3m^2-n} = 1$ 表示双曲线,且该双曲线两焦点间的距离为 4,则 n 的取值范围是()				
	(A) $(-1,3)$	(B) $\left(-1, \sqrt{3}\right)$	(C) $(0,3)$	(D) $(0, \sqrt{3})$	
7.	已知椭圆 $\frac{x^2}{16} + \frac{y^2}{9} = 1$ 的 $x = 2$ 三个顶点,则点 P 到 $x = 2$ 轴	的距离为		, F_2 是一个直角三角形的 $ ()$	
	(A) $\frac{9}{5}$	(B) 3	$(C) \frac{9\sqrt{7}}{7}$	(D) $\frac{9}{4}$	
8.	若实数 k 满足 $0 < k < 9$,	则曲线 $\frac{x^2}{25} - \frac{y^2}{9-k} = 1$ 与	曲线 $\frac{x^2}{25-k} - \frac{y^2}{9} = 1$ 的	()	
	(A) 离心率相等	(B) 虚半轴长相等	(C) 实半轴长相等	(D) 焦距相等	
9.	已知椭圆 $C_1: \frac{x^2}{m} + y^2 = 1$ 的离心率,则	$1(m>1) 与双曲线 C_2: \frac{x^2}{n}$	$y - y^2 = 1 \ (n > 0)$ 的焦点重	重合, e_1,e_2 分别为 C_1,C_2	
	$(A) m > n \perp e_1 e_2 > 1$	(B) $m > n \perp e_1 e_2 < 1$	(C) $m < n \perp e_1 e_2 > 1$	(D) $m < n \perp e_1 e_2 < 1$	
10.	已知 $M(x_0, y_0)$ 是双曲线 0 的取值范围是	$C: \frac{x^2}{2} - y^2 = 1$ 上的一点,	F_1, F_2 是 C 的两个焦点.	若 $\overrightarrow{MF_1} \cdot \overrightarrow{MF_2} < 0$,则 y_0	
	$(A)\left(-\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3}\right)$	$(B)\left(-\frac{\sqrt{3}}{6}, \frac{\sqrt{3}}{6}\right)$	$(C)\left(-\frac{2\sqrt{2}}{3}, \frac{2\sqrt{2}}{3}\right)$	$(D)\left(-\frac{2\sqrt{3}}{3}, \frac{2\sqrt{3}}{3}\right)$	
11.	已知椭圆 E : $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 点坐标为 $(1,-1)$,则 E 的		F(3,0), 过点 F 的直线交 E	于 A, B 两点, 若 AB 的中 ()	
	(A) $\frac{x^2}{45} + \frac{y^2}{36} = 1$	(B) $\frac{x^2}{36} + \frac{y^2}{27} = 1$	(C) $\frac{x^2}{27} + \frac{y^2}{18} = 1$	(D) $\frac{x^2}{18} + \frac{y^2}{9} = 1$	
12.	椭圆 $C: \frac{x^2}{4} + \frac{y^2}{3} = 1$ 的 那么直线 PA_1 的斜率的取	左右顶点分别为 A_1, A_2, \dots 值范围是	点 P 在 C 上且直线 PA ₂ 斜	率的取值范围是 [-2,-1], ()	
	$(A)\left[\frac{1}{2}, \frac{3}{4}\right]$	$(B)\left[\frac{3}{8}, \frac{3}{4}\right]$	$(C)\left[\frac{1}{2},1\right]$	$(D)\left[\frac{3}{4},1\right]$	
13.	椭圆 $\frac{x^2}{12} + \frac{y^2}{3} = 1$ 的焦点。 标是	为 F_1 ,点 P 在椭圆上,如	果线段 PF_1 的中点 M 在	y 轴上,那么点 <i>M</i> 的纵坐 ()	
	$(A) \pm \frac{\sqrt{3}}{4}$	$(B) \pm \frac{\sqrt{3}}{2}$	$(C) \pm \frac{\sqrt{2}}{2}$	$(D) \pm \frac{3}{4}$	
14.	已知椭圆 C : $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	1 (a > b > 0) 的左,右焦点	\mathbb{R} 分别为 F_1 , F_2 ,离心率	为 $\frac{\sqrt{3}}{3}$,过 F_2 的直线 l 交	
	$C \pm A, B$ 两点,若 $\triangle AF_1B$			()	
	0 2	(B) $\frac{x^2}{3} + y^2 = 1$	12 0	12 4	
15.	已知椭圆 $C: \frac{x^2}{4} + \frac{y^2}{3} = 1$		F_2 ,椭圆 C 上的点 A 满足	$AF_2 \perp F_1 F_2$,若点 P 是椭	
	圆 C 上的动点,则 $\overrightarrow{F_1P} \cdot \overrightarrow{D}$ (A) $\frac{\sqrt{3}}{2}$	$F_2 ilde{A}$ 的最大值为 $(\mathrm{B}) rac{3\sqrt{3}}{2}$	(C) $\frac{9}{4}$	(D) $\frac{15}{4}$	

16.	已知动点 $P(x,y)$ 在椭圆 $\overrightarrow{MP} \cdot \overrightarrow{MF} = 0$,则 $ \overrightarrow{PM} $ 的	- 0 - 0	r 为椭圆 c 的右焦点,老	告点 <i>M</i> 满足 M 	= 1	且)
	(A) $\sqrt{3}$	(B) 3	(C) $\frac{12}{5}$	(D) 1		
17.	设点 $M(x_0,1)$, 若在圆 O : (A) $[-1,1]$	$x^{2} + y^{2} = 1$ 上存在点 N , (B) $\left[-\frac{1}{2}, \frac{1}{2} \right]$		x_0 的取值范围是 (D) $\left[-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right]$	()
18.	已知 F 为双曲线 C: x ² - r	$my^2 = 3m \ (m > 0)$ 的一个处	焦点,则点 <i>F</i> 到 <i>C</i> 的一条	新近线的距离为	()
	(A) $\sqrt{3}$	(B) 3	(C) $\sqrt{3}m$	(D) 3 <i>m</i>		
19.	已知 A, B 为双曲线 E 的左心率为	E、右顶点, 点 <i>M</i> 在 <i>E</i> 上,	,△ABM 为等腰三角形,	且顶角为 120°,贝	リ <i>E</i> 的 (离)
	(A) $\sqrt{5}$	(B) 2	(C) $\sqrt{3}$	(D) $\sqrt{2}$		
20.	已知双曲线 $\frac{x^2}{4} - \frac{y^2}{b^2} = 1(b)$ 线相交于 A, B, C, D 四点, (A) $\frac{x^2}{4} - \frac{3y^2}{4} = 1$		2b,则双曲线的方程为		(近)
21.	已知点 $Q(2\sqrt{2},0)$ 及抛物:	线 $x^2 = 4y$ 上一动点 $P(x, y)$	(y),则 $y + PQ $ 的最小值	为	()
	(A) $\frac{1}{2}$	(B) 1	(C) 2	(D) 3		
22.	已知抛物线 $x^2 = 4y$ 上有一	一条长为 6 的动弦 AB,则	AB 的中点到 x 轴的最短	距离为	()
	$(A) \frac{3}{4}$	(B) $\frac{3}{2}$	(C) 1	(D) 2		
23.	若直线 $y = x + b$ 与曲线 y	$y = 3 - \sqrt{4x - x^2}$ 有公共点	,则 b 的取值范围是		()
	(A) $\left[1 - 2\sqrt{2}, 1 + 2\sqrt{2}\right]$	$(B) \left[1 - \sqrt{2}, 3 \right]$	$(C)\left[-1,1+2\sqrt{2}\right]$	$(D) \left[1 - 2\sqrt{2}, 3 \right]$		
24.	若抛物线 $C: y^2 = 2px (p)$ 的方程为	> 0) 的焦点为 <i>F</i> ,直线 <i>l</i>				[] <i>l</i>)
	(A) y = x - 1	+ 1	(B) $y = \frac{\sqrt{3}}{3} (x - 1)$ 或 y	<u> </u>		
	(C) $y = \sqrt{3}(x-1)$ 或 $y =$	$=-\sqrt{3}\left(x-1\right)$	(D) $y = \frac{\sqrt{2}}{2} (x - 1) \neq y$	$= -\frac{\sqrt{2}}{2} \left(x - 1 \right)$		
25.	设 F_1, F_2 是椭圆 $E: \frac{x^2}{a^2} +$ 为 30° 的等腰三角形,则	ν	右焦点, P 为直线 $x = \frac{3a}{2}$	¹ 上一点,△F ₁ PF ₂	,	角)
	(A) $\frac{1}{2}$	(B) $\frac{2}{3}$	(C) $\frac{3}{4}$	(D) $\frac{4}{5}$		
26.	设抛物线 $C: y^2 = 2px (p$ 则 C 的方程为	> 0) 的焦点为 F ,点 M 在	E C 上, MF = 5,若以 A	MF 为直径的圆过。	点 (0,5 (2),
	$(A) y^2 = 4x $		(B) $y^2 = 2x \neq y^2 = 8x$			
	(C) $y^2 = 4x \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		(D) $y^2 = 2x \neq y^2 = 16x$			

27.	设 F 为抛物线 $C: y^2 = 3x$ $\triangle OAB$ 的面积为	x 的焦点,过 F 且倾斜角	为 30° 的直线交 C 于 A, E	3 两点, <i>O</i> 为坐标原点,则 ()	
	$(A) \frac{3\sqrt{3}}{4}$	$(B) \frac{9\sqrt{3}}{8}$	(C) $\frac{63}{32}$	(D) $\frac{9}{4}$	
28.	已知圆 $C: (x-3)^2 + (y-4)$ 则 m 的最大值为	$A(1)^2 = 1 \text{ 和两点 } A(-m,0), B(1)$	B(m,0) (m > 0),若圆上存	在点 P ,使得 $\angle APB = 90^{\circ}$,	
	(A) 7	(B) 6	(C) 5	(D) 4	
29.	$ A_1B_1 = A_2B_2 $,其中 A_1 , 值范围是	B_1 和 A_2 , B_2 分别是这对	直线与双曲线 C 的交点,	D直线 A_1B_1 和 A_2B_2 ,使得则该双曲线的离心率的取 $\begin{pmatrix} & & & & & & & & & & & & & & & & & & &$	
	$(A)\left(\frac{2\sqrt{3}}{3},2\right]$	$(B) \left[\frac{2\sqrt{3}}{3}, 2 \right]$	$(C)\left(\frac{2\sqrt{3}}{3}, +\infty\right)$	$(D)\left[\frac{2\sqrt{3}}{3}, +\infty\right)$	
30.	在平面直角坐标系 xOy 中 A 在 x 轴上方. 若直线 l 的			相交于 A,B 两点,其中点	
31.	过点 $M(1,1)$ 作斜率为 $-\frac{1}{2}$ AB 的中点,则椭圆 C 的	u	$\frac{y^2}{b^2} = 1 \ (a > b > 0) \ 相交^2$	于 A,B 两点,若 M 是线段	
32.	2. 若椭圆 C : $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 的焦点在 x 轴上,过点 $\left(1, \frac{1}{2}\right)$ 的切线,切点分别为 A , B ,直线 AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是				
33.	. 椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ $(a > b > 0)$ 的左、右顶点分别是 $A, B, 左、右焦点分别是 F_1, F_2. 若 AF_1 , F_1F_2 , F_1B 成等比数列,则次椭圆的离心率为$				
34.	. 设 F_1, F_2 分别是椭圆 $E: x^2 + \frac{y^2}{b^2} = 1(0 < b < 1)$ 的左、右焦点,过点 F_1 的直线交椭圆 $E 与 A$, B 两点,若 $ AF_1 = 3 BF_1 $, $AF_2 \bot x$ 轴,则椭圆 E 的方程为				
35.	椭圆 $\frac{x^2}{9} + \frac{y^2}{2} = 1$ 的焦点为	为 F_1,F_2 ,点 P 在椭圆上	E_{1} ,若 $ PF_{1} = 4$,则 $ PF_{2} $	=, ∠F ₁ PF ₂ 的大小	
36.	曲线 C 是平面内与两个定点 $F_1(-1,0)$ 和 $F_2(1,0)$ 的距离的积等于常数 $a^2(a>1)$ 的点的轨迹,给出以下三个结论:				
	①曲线 C 过坐标原点; ③若点 P 在曲线 C 上,则 其中,所有正确的结论的	$\triangle F_1 P F_2$ 的面积大于 $\frac{1}{2}a^2$			
37.	已知双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ 的为		園 $\frac{x^2}{25} + \frac{y^2}{9} = 1$ 的焦点相同	司,那么双曲线的焦点坐标	
38.	设双曲线 <i>C</i> 经过点 (2,2) 为	,且与 $\frac{y^2}{4} - x^2 = 1$ 具有	有相同渐近线,则 C 的方	冠程为; 渐近线方程	
39.	已知动点 P 到定点 $A(-2, 0)$	0) 与点 $B(2,0)$ 的斜率之和	识为 $-\frac{1}{4}$,点 P 的轨迹方程	呈为	

- 40. 双曲线 $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 的渐近线为正方形 *OABC* 的边 *OA*, *OC* 所在的直线,点 *B* 为该双曲 线的焦点,若正方形 *OABC* 的边长为 2,则 a =_____.
- 41. 若双曲线 M 上存在四个点 A,B,C,D,使得四边形 ABCD 是正方形,则双曲线 M 的离心率的取值范围是
- 42. 设 F_1, F_2 分别为椭圆 $\frac{x^2}{3}+y^2=1$ 的左、右焦点,点 A,B 在椭圆上,若 $\overrightarrow{F_1A}=5\overrightarrow{F_2B}$,则点 A 的坐标是
- 43. 设直线 x 3y + m = 0 ($m \neq 0$) 与 $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 的两条渐近线分别交于 A, B. 若点 P(m, 0) 满足 |PA| = |PB|,则该双曲线的离心率是_____.
- 44. 已知 P 是椭圆 C: $\frac{x^2}{25} + \frac{y^2}{16} = 1$ 上的一点,M, N 分别是圆 $(x+3)^2 + y^2 = 1$ 和圆 $(x-3)^2 + y^2 = 4$ 上的点,则 |PM| + |PN| 的最小值为_____.
- 45. 设抛物线 $C: y^2 = 4x$ 的焦点为 F, M 为抛物线 C 上一点, N(2,2), 则 |MN| + |MF| 的取值范围是