JEE PYQ 1

EE24Btech11041 - Mohit

1) Let $f(x) = 3\sqrt{x-2} + \sqrt{4-x}$ be a real function maximum values of f , then $\alpha^2 + 2\beta^2$ is equal to	. If α and β are respectively the minimum and the (April-2024)
a) 44 b) 42	c) 24 d) 31
2) Let $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ and $B = I + \operatorname{adj}(A) + (\operatorname{adj}(A))^2 + Then,the sum of all the elements of the matrix B$	$\cdots + (adj(A))^{10}$. 8 is: (April-2024)
a) -110 b) -88	c) 22 d) -124
3) Let three real numbers a, b, c be in arithmetic property. If $a > 10$ and the arithmetic mean of a, b and c and c is	ogression $a+1,b,c+3$ be in geometric progession is 8, then the cube of the geometric mean of a,b (April-2024)
a) 316b) 120	c) 128 d) 312
 4) Let a relation R on N×N be defined as: (x₁, y₁) R (x₂, y₂) if and only if x₁ ≤ x₂ or y₁ ≤ y Consider the two statments: a) R is reflexive but not symmetric. b) R is transitive Then which one of the following is true? (April-2024) 	2.
a) Neither (1) nor (2) is correct.b) Only (2) is correct.	c) Only (1) is correct.d) Both (1) and (2) are correct.
5) Given that the inverse trigonometric function as real numbers in $[-1, 1]$ such that $\cos^{-1}(x) - \sin^{-1}(x^2 - y^2 + 2xy \sin \alpha$ is	sumes principal values only . Let x,y be any two $1(y)=\alpha, -\frac{\pi}{2} < \alpha < \pi$. Then , the minimum value of (April-2024)
a) -1 b) 0	c) $\frac{1}{2}$ d) $-\frac{1}{2}$
6) If the function	
$f(x) = \begin{cases} \frac{72^{x} - 9^{x} - 8^{x} + 1}{\sqrt{2} - \sqrt{1 + \cos x}}, & x \neq 0 \\ a \log 2 \log 3, & x = 0 \end{cases}$ is continious at $x = 0$, then the value of a^{2} is equal to a^{2} .	qual to (April-2024)

b) 968	d) 1152	
circle C at the points P	adius $\sqrt{10}$ units and centre at the origin. Let the line x and Q . Let MN be a chord of C of length 2 unit and the chords PQ and the chords MN is	
a) $2 - \sqrt{3}$ b) $\sqrt{2} + 1$	c) $\sqrt{2}-1$ d) $3-\sqrt{2}$	
8) If the mean of the follow	ving probability distribution of a radian variable X:	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
is $\frac{46}{9}$, then the variance (April-2024)	of the distribution is	
a) $\frac{566}{81}$ b) $\frac{173}{27}$	c) $\frac{581}{81}$ d) $\frac{151}{81}$	
9) The area (in sq. units) o S={ $\mathbf{z} \in \mathbb{C} : z-1 \le 2$;	f the region $(z + \overline{z}) + i(z - \overline{z}) \le 2$, $Im(z) \ge 0$ } is	(April-2024)
a) $\frac{7\pi}{3}$ b) $\frac{7\pi}{4}$	c) $\frac{17\pi}{8}$ d) $\frac{3\pi}{2}$	
	$+4\hat{j}-5\hat{k}$, and $\mathbf{c} = x\hat{i}+2\hat{j}+3\hat{k}$, $x \in \mathbb{R}$. the direction of $\mathbf{b}+\mathbf{c}$ such that $\mathbf{a}.\mathbf{d} = 1$, then $(\mathbf{a} \times \mathbf{b}).\mathbf{c}$ is \mathbf{c}	equal to (April-2024)
a) 3 b) 6	c) 11 d) 9	
11) Let P be the point of in shortest distance of P from a) $\frac{\sqrt{14}}{7}$ b) $\frac{6\sqrt{14}}{7}$ c) $\frac{5\sqrt{14}}{7}$ d) $\frac{3\sqrt{14}}{7}$	intersection of the lines $\frac{x-2}{1} = \frac{y-4}{5} = \frac{z-2}{1}$ and $\frac{x-3}{2} = \frac{y-3}{3}$ om the line $4x = 2y = z$ is	$\frac{2}{2} = \frac{z-3}{2}$. Then, the (April-2024)
	tion of the differential equation $(xy-2)dx=0$. If $y(0) - 0$, Then $y(2)$ is equal to	(April-2024)
a) $\frac{\pi}{32}$ b) $\frac{\pi}{8}$	c) $\frac{\pi}{16}$ d) 2π	
	ngle between the vectors $\mathbf{a} = \hat{i} + \lambda \hat{j} - 3\hat{k}$ and $\mathbf{b} = 3\hat{i} - 3\hat{k}$ and $\mathbf{b} = 3\hat{i} - 3\hat{k}$ are mutually perpendicular, then the value of (14)	

c) 1250

a) 746

(April-2024)

a) 40	c) 50)
b) 25	d) 20)

- 14) The area (in sq. units) of the region described by $\{(x,y): y^2 \le 2x, \text{ and } y \ge 4x 1 \}$ is (April-2024)
 - a) $\frac{11}{32}$ c) $\frac{9}{32}$ d) $\frac{8}{9}$
- 15) Let PQ be a chord of parabola $y^2 = 12x$ and the midpoint of PQ be at (4, 1). Then ,which of the following points lies on the line passing through the points P and Q? (April-2024)
 - a) (3, -3)b) $(\frac{3}{2}, -16)$ c) $(\frac{1}{2}, -20)$ d) (2, -9)