DSA Blatt 03

Leonard Oertelt 1276156 Julian Opitz 1302082

Aufage 6:

a)

 $n^3 + 2n^2 - 5n - 10 \in O(n^3)$ mit $f(n) = n^3$ und $g(n) = n^3 + 2n^2 - 5n - 10$ daraus folgt:

1.
$$n^3 + 2n^2 - 5n - 10 \le cn^3$$

2. umstellen und nach c auflösen:

$$1 + \frac{2}{n} - \frac{5}{n^2} - \frac{10}{n^3} \le c$$

$$1+2n^{-1}-5n^{-2}-10n^{-3} \le c$$

wähle n = 1:

$$1+2-5-10 \le c$$

$$-12 \le c$$

 $n_0 = 1$ nicht möglich, da sonst negative Laufzeit

wähle n = 2:

$$1+1-\frac{5}{4}-\frac{5}{4} \le c$$

$$2-2-\frac{1}{2} \le c$$

$$\frac{-1}{2} \le c$$

 n_0 = 2 nicht möglich, da sonst negative Laufzeit

wähle n = 3:

$$1 + \frac{2}{3} - \frac{5}{9} - \frac{10}{27} \le c$$

$$\frac{27}{27} + \frac{18}{27} - \frac{15}{27} - \frac{10}{27} \le c$$

$$\frac{27}{27} + \frac{18}{27} - \frac{15}{27} - \frac{10}{27} \le c$$

$$\frac{20}{27} \le 1$$

wähle c = 1

$$\lim_{n \to \infty} 1 + \frac{2}{n} - \frac{5}{n^2} - \frac{10}{n^3} \le c$$
$$\lim_{n \to \infty} 1 + 0 - 0 - 0 = 1 \le c$$

$$c = 1$$
 und $n_0 = 3$

3. Abschluss des Beweises:

Für alle
$$n>n_0$$
 gilt $g(n)\le c\cdot f(n)$ mit $n=3$ und $c=1$ Für alle $n>3$ gilt $n^3+2n^2-5n-10\le n^3$ Also gilt für $g(n)=n^3+2n^2-5n-10$ und $f(n)=n^3$ die Aussage $g\in O(f)$

- q.e.d.

c)

$$n^a \notin O(n^b)$$
 für $a, b \in \mathbb{R}, b < a$

Annahme: es gilt $n^a \in O(n^b)$

mit $f(n) = n^b$ und $g(n) = n^a$

daraus folgt:

- 1. $n^a \leq cn^b$
- 2. nach n umstellen:

$$n^{a} \le cn^{b}$$
 $n^{a} \le cn^{b}$ | : n^{b}
 $\frac{n^{a}}{n^{b}} \le c$
 $n^{a-b} \le c$

3. da gilt b<a folgt:

$$a-b>0$$

es soll gelten:

$$n \leq \sqrt[a-b]{c}$$

n soll unendlich groß werden können und $\sqrt[a-b]{c}$ bleibt konstant, folglich gilt nicht $n^a \in O(n^b)$, sondern $n^a \notin O(n^b)$.

Aufgabe 7:

Grenzen und Vergleiche im Java Quellcode