Problem

a. Let A be an infinite regular language. Prove that A can be split into two infinite disjoint regular subsets.

b. Let B and D be two languages. Write $\,B\,\Subset\, D\,\,{
m if}\,\,B\,\subseteq\, D\,\,{
m and}\,\, D$

Step-by-step solution

Step 1 of 2

a.

The proof that an infinite regular language, say A, can be split into two infinite disjoint regular subsets is as follows:

- Let there be a string, say 's', such that $s \in A$ and s = xyz, where x, y and, z, represent the sub-strings of the string s.
- Since s belongs to the language A, and the language A is regular, xyⁱz must belong to A, where i≥ 0. (As per the condition 1 of pumping lemma).
- $\bullet \text{ Let } \mathsf{A}_1 \text{ be a language such that } \ \mathsf{A}_i = \{xy^{2i}z, where \, i \geq 0\} \,.$
- Since all the strings of the form xy^iz belong to A, the strings of the form $xy^{2i}z$ must also belong to A.
- Hence, the language A₁ is a subset of the language A, i.e:

 $A_1 \subset A$

• The strings of the language A₁ can be represented by the following regular expression:

x(yy)*z

Hence, the language A_1 is a regular language

- Since in the expression, $A_i = \{xy^{2i}z, where \ i \geq 0\}$, there is no upper limit for the value of i, the language A_1 is infinite.
- Since the regular languages are closed under the operation of complement, the language $\overline{A_i}$ is a regular language.
- Let A_2 be a language such that, $A_2 = \overline{A_1} \cap A$.
- Since the regular languages are closed under the operation of intersection, the language A2 is a regular language.
- ${\mbox{\ \ }}$ Since the languages, A_1 and A are infinite, the language A2 is also infinite
- Clearly A₂ and A₁ are two disjoint sets.
- Also, $A = A_1 \cup A_2$

Thus, the language A can be split into two infinite disjoint regular subsets.

Hence, proved.

Comment

Step 2 of 2

b.

The steps required to prove the given statement are as follows:

- Divide the regular language D into two regular disjoint subsets and let one of those subsets be B.
- Let the other subset be A, such that A = D B.
- Since D contains infinitely many strings that are not in B, A also contains infinitely many strings that are not in B.
- Further divide the language A into two disjoint subsets, A1 and A2, such that A2 contains infinitely many strings that are not in A1 and vice versa.

$B \in C$
• Since A2 contains infinitely many strings that are not in A1, D contains infinitely many strings that are not present in A1.
• Since D contains infinitely many strings that are not present in A ₁ , D contains infinitely many strings that are not present in C.
Hence, the following statement is true:
$C \subseteq D$.
• Since $B \in C$ and $C \in D$, the following statement is true:
$B \in C \in D$
Hence, proved.

 $\bullet \ \, \text{Since A contains infinitely many strings that are not present in B, A}_1 \ \text{also contains infinitely many strings that are not in B}. \\$

 \bullet Since A_1 contains infinitely many strings that are not in B, C also contains infinitely many strings that are not in B.

Comment

 ${\:\raisebox{3.5pt}{\text{\circle*{1.5}}}}$ Create a set C such that ${\:\raisebox{3.5pt}{\text{C}}} = A_{_1} \cup B$.

 \bullet Hence, the following statement is true:

• Clearly, B is a subset of C.