Appendix A: Vector-Based Astronomical Alignment Analysis

A.1 Astronomical Parameters and Modelling Conditions

Celestial alignments were modelled using the following parameters:

- Target star: Alnitak (ζ Orionis), the easternmost star of Orion's Belt
- Epochs: $2500 \pm 30 \text{ BCE}$ and $4400 \pm 200 \text{ BCE}$
- Event: Vernal equinox heliacal rising
- Observation time: 04:00 local time
- Coordinates: Giza Plateau, 29.9792°N, 31.1342°E (WGS84)
- Corrections: Precession, nutation, ΔT (Skyfield + VSOP87 ephemerides; Morrison & Stephenson, 2004)
- Terrain correction: Horizon slope adjustment using local DEM
- Atmospheric model: Clear-sky Holocene conditions (Butzer, 1976)
- Azimuthal uncertainty bounds:
- Survey tolerance: ±0.5°
- Terrain slope estimation: $\pm 1.0^{\circ}$
- Refraction variability: ±0.2°
- Ephemeris uncertainty (ΔT): $\pm 0.3^{\circ}$

A.2 S-Value Metric and Vector Formulation

To assess angular similarity between structures and Alnitak's rising azimuth, we define the S-value as the 2D Euclidean distance between their corresponding unit vectors on the unit circle:

$$S = \sqrt{(x_p - x_s)^2 + (y_p - y_s)^2}, \text{ where } (x, y) = (\cos \theta, \sin \theta)$$

Here:

- θ_p : Azimuth of the structure
- θ s: Rising azimuth of Alnitak
- (x p, y p), (x s, y s): Unit vectors of structure and star respectively

This vector-based metric provides a rotationally invariant measure of alignment on a circular domain.

Classification thresholds:

```
- S < 0.02: Strong alignment
```

- $0.02 \le S < 0.1$: Moderate alignment

- $S \ge 0.1$: Weak or no alignment

These thresholds were derived from null model simulations (see Section A.6).

A.3 Python-Based Analytical Reproducibility

The following Python code calculates S-values using structure azimuths and Alnitak's positions:

```
```python
import numpy as np
import pandas as pd
def azimuth to unit vector(az deg):
 az rad = np.deg2rad(az deg)
 return np.cos(az rad), np.sin(az rad)
def compute s value(az structure, az star):
 x p, y p = azimuth to unit vector(az structure)
 x s, y s = azimuth to unit vector(az star)
 return np.sqrt((x_p - x_s)^{**2} + (y_p - y_s)^{**2})
data = [
 {"Structure": "Khufu", "Azimuth": 90.9},
 {"Structure": "Khafre Valley Temple", "Azimuth": 90.6},
 {"Structure": "Menkaure", "Azimuth": 91.1},
 {"Structure": "Sphinx", "Azimuth": 90.2},
 {"Structure": "Osiris Shaft", "Azimuth": 91.8},
 {"Structure": "Khentkawes Complex", "Azimuth": 91.6},
```

```
{"Structure": "Unfinished Pyramid", "Azimuth": 91.5},
alnitak az 2500 = 89.3
alnitak az 4400 = 90.9
results = []
for entry in data:
 name = entry["Structure"]
 az = entry["Azimuth"]
 delta az 2500 = abs(az - alnitak az 2500)
 delta az 4400 = abs(az - alnitak az 4400)
 s 2500 = compute s value(az, alnitak az 2500)
 s 4400 = compute s value(az, alnitak az 4400)
 results.append({
 "Structure": name,
 "Structure Azimuth (°)": az,
 "Azimuth (2500 BCE)": alnitak az 2500,
 "\DeltaAz (2500 BCE)": delta az 2500,
 "S (2500 BCE)": s 2500,
 "Azimuth (4400 BCE)": alnitak az 4400,
 "\DeltaAz (4400 BCE)": delta az 4400,
 "S (4400 BCE)": s 4400
 })
df = pd.DataFrame(results)
print(df.to string(index=False, float format="%.5f"))
```

#### A.4 Structure-Level Results

Structure	Structure Azimuth (°)	Az (2500 BCE)	ΔAz (2500 BCE)	S (2500 BCE)	Az (4400 BCE)	ΔAz (4400 BCE)	S (4400 BCE)
Khufu	90.90000	89.30000	1.60000	0.02792	90.90000	0.00000	0.00000
Khafre Valley Temple	90.60000	89.30000	1.30000	0.02269	90.90000	0.30000	0.00524
Menkaure	91.10000	89.30000	1.80000	0.03141	90.90000	0.20000	0.00349
Sphinx	90.20000	89.30000	0.90000	0.01571	90.90000	0.70000	0.01222
Osiris Shaft	91.80000	89.30000	2.50000	0.04363	90.90000	0.90000	0.01571
Khentkawes Complex	91.60000	89.30000	2.30000	0.04014	90.90000	0.70000	0.01222
Unfinished Pyramid	91.50000	89.30000	2.20000	0.03839	90.90000	0.60000	0.01047

# A.5 RMS S-Value Summary

**Epoch** RMS S-value

 $2500 \pm 30 \text{ BCE} \quad 0.03764$  $4400 \pm 200 \text{ BCE} \quad 0.01650$ 

A.6 Monte Carlo Null Model Justification

To validate the statistical significance of the observed S-values, a Monte Carlo simulation was conducted under the null hypothesis of random structural orientation. The simulation involved:

- Generating 10,000 sets of 7 random azimuths drawn from a uniform 0°–360° distribution
- Computing RMS S-values for each set using the same S-value metric
- Comparing empirical S-values to the simulated distribution

### Results:

- RMS S < 0.02 was achieved in fewer than 1% of cases
- Observed RMS for 4400 BCE (0.0165) falls within the 95th percentile of non-random alignment

## References

- Butzer, K. W. (1976). Early Hydraulic Civilization in Egypt: A Study in Cultural Ecology. University of Chicago Press.
- Morrison, L. V., & Stephenson, F. R. (2004). Historical values of the Earth's clock error ΔT and the calculation of eclipses. Journal for the History of Astronomy, 35(3), 327–336.