华东理工大学 2013 - 2014 学年第_二_学期

《高分子物理》课程期终考试试卷 A卷 2014.7

开课学院	: <u>材料学图</u>	<u>完</u> 专业:_	材料物理	_考试形式:	<u>闭卷</u> ,所	听需时间 <u>1</u>	<u>20</u> _分钟
考生姓名:	:学号:		班级:		任课教师:		
题序	_		三	四	五.	六	总 分
得分							
评卷人							
() 1.		」适合制备 液; (B	球晶的是3)熔体;				逐剪切力
` '		结合链均力	下列表征其 方末端距;	.,			端距;
() 3.			属于二级纪 .; (C)支		晶态结构		
() 4. =	(A)热的强	极性溶剂:	下列哪种溶 ; (B))热的 ; (D)能与之	非极性溶	剂;		
() 5. 吊	高分子良溶 (A) 大于氢		化学位 于零; (C	S) 小于零;	(D)不确定	Ē	
	莫渗透压法 随温度升高		物相对分子	产量,以 <u></u>	[对 c 作图 [c	图,得到的	直线截距
()7.	(A)增大; 下列高聚物	; (B) J中,使用)不变; 温度下限为 聚四氟乙烯	为 $T_{\rm g}$ 的是			
	文联橡胶的	模量随温					, , ,
()9.	下列方法中	不能测定	下阵; 聚合物熔体 (B 旋转粘度	体粘度的是	, ,		粘度计
() 10.			单形变的条 [。]				

	(A) 断裂应力小于屈服应力; (B) 断裂应力大于屈服应力;
	(C) 断裂应力等于屈服应力
()11. 在适当外力作用以下,在以下哪个温度区有明显粘弹性现象
	$(A)T_g$ 以下很多; $(B)T_g$ 附近; $(C)T_g$ 以上很多; $(D)T_f$ 以上
()12. 实际橡胶网络中存在自由链端,导致其弹性模量比理想网络
	(A)偏大; (B)偏小; (C)不变; (D)不确定
()13. 利用时温等效原理做叠合曲线时,计算移动因子的方程是
	(A) Avrami 方程; (B) Ahrenius 方程; (C) WLF 方程
() 14. 在光散射实验中, 若入射光是非偏振光, 分别在 90°~180° 的散射角范
	围测定小粒子散射光强,所测得的散射光强随散射角增大而
	(A) 增大; (B) 不变; (C) 减小; (D) 不确定
()15. 提高高分子材料拉伸强度的有效途径是
	(A)提高拉伸速度;(B))取向;(C)增塑;(D)加入碳酸钙
<u> </u>	多项选择题(每题1分,共10分)
(]	下面每题至少有一个答案是正确的,全部答对得1分)
() 1. 下列因素中,使 $T_{\rm g}$ 升高的有
	(A) 主链引入刚性基团; (B) 主链引入孤立双键;
	(C)增加分子极性; (D)加入增塑剂; (E)引入氢键
() 2. 下列物理量中,可以用来表示聚合物流动性的有
	(A)表观黏度;(B)黏流活化能;(C)熔融指数;(D)剪切速率
() 3. 下列能作为塑料使用的聚丁二烯有
Ì	(A) 全同聚 1,2-丁二烯; (B) 间同聚 1,2-丁二烯;
	(C) 顺式聚 1,4-丁二烯; (D) 反式聚 1,4-丁二烯
() 4. 下列有关应力松弛现象的描述,不正确的是
	(A) 在温度和形变保持不变的情况下, 高聚物内部的应力随时间增
	加而逐渐衰减的现象;
	(B) 交联聚合物的应力可以松弛到零;
	(C) 线形聚合物的应力可以松弛到零;
	(D) 在远低于 $T_{\rm g}$ 的温度下,应力松弛很慢
() 5. 下列有关橡胶高弹性的描述,正确的是
	(A)弹性模量较小; (B)形变量较小; (C)伸长时会放热;
	(D) 回缩时会放热; (E) 形变是一个松弛过程
() 6. 关于理想弹性体叙述正确的有:
	(A) 等温形变时内能保持不变

- (B) 等温形变时无体积变化
- (C) 拉伸时构象熵保持不变
- (D) 拉伸时橡胶产生放热现象
-) 7. 理想溶液的热力学性质是 (
 - (A) $\Delta H_{\rm m}=0$; (B) $\Delta S_{\rm m}=0$; (C) $\Delta V_{\rm m}=0$; (D) $\chi_1=0.5$; (E) $\chi_1=0$
- () 8. Maxwell 模型可用来模拟

 - (A) 线形聚合物的蠕变行为: (B) 交联聚合物的蠕变行为:
 - (C) 线形聚合物的应力松弛行为: (D) 交联聚合物的应力松弛行为;
 - (E) 牛顿流体的蠕变行为
-) 9. 下列因素与高分子在溶液中的特性粘数有关的是 (
 - (A) 溶液浓度; (B) 高分子相对分子量; (C) 溶剂; (D) 温度
-) 10. 产生高弹性的分子结构特征为 (

- (A)分子链有一定柔性; (B)分子间相互作用强; (C)分子间化学键连接; (D)足够大的相对分子量;
- (E) 常温下能结晶
- 三. 是非题 (每题 1 分, 共 10 分)
- ()1. 玻璃化温度是热塑性塑料使用温度的上限,橡胶使用温度的下限。
- () 2. 聚合物的 T_g随升温速率的增大而提高, 随降温速率的增加而降低。
- ()3. 分子在晶体中是规整排列的,所以只有全同立构或间同立构的高分子才 能结晶,无规立构高分子不能结晶。
-) 4. 当温度高于 T_f 后整个分子链开始运动。
- () 5. 高分子溶液的第二维利系数与排斥体积的变化趋势一致。
- () 6. 聚合物与溶剂的溶度参数越接近,其在溶液中的特性粘数越小。
-) 7. 尼龙可在常温下溶于甲酸,表明结晶聚合物可直接溶于极性溶剂中。
- ()8. 在聚合物晶体的熔点以下,随结晶温度的降低,结晶速率减小。
- () 9. 高分子溶液的特性黏数在不良溶剂中随温度升高而升高。
- ()10. 聚丁二烯中顺式结构比反式结构熔点更低。

四. 图示题(共15分)

- 1. 画出聚合物结晶速度与结晶温度之间的关系曲线,并标出玻璃化转变温度 $(T_{\rm g})$ 和熔点 $(T_{\rm m})$ 的大致位置。解释为什么聚合物的结晶温度在 $T_{\rm g}$ 和 $T_{\rm m}$ 之 间,且有一最大结晶速率温度。(10分)
- 2. 画出聚合物相对分子质量分布曲线,并标明气相渗透法、光散射法、黏度法 测得同一聚合物样品的相对分子量大小。(5分)

五. 问答题(共15分)

- 1. 比较下列聚合物玻璃化转变温度的大小,并解释其原因。(8分)
 - (1) 聚二甲基硅氧烷、聚甲醛和聚乙烯;
 - (2) 聚乙烯、聚丙烯和聚苯乙烯;
 - (3) 聚甲基丙烯酸甲酯、聚甲基丙烯酸乙酯和聚甲基丙烯酸丙酯;
 - (4) 尼龙 6 和尼龙 10。
- 2. 试解释为何聚四氟乙烯(PTFE)不能通过熔融或溶解的方式进行加工? (7 分)

六. 计算题 (每题 10 分, 共 20 分)

- 1. PS 试样有工作曲线 $\lg[\eta]M=-0.2352V_{\rm e}+12.7072$ 。相同条件下,测定 PMMA 试样,已知 PMMA 的 $K=6.27\times10^5$, $\alpha=0.76$,试导出 PMMA 的 $M-V_{\rm e}$ 关系式。
- 2. 25℃的 θ 溶剂中,测得浓度为 7.36×10^{-3} g/mL的PVC溶液渗透压为0.248 g/cm²,求此试样的相对分子质量和第二维里系数,并指出所得是何种平均分子量。 $R=8.48\times10^4$ g·cm/(mol·K)