4.2 Error Correction Coding

Motivation

In the set of all multisymbol sequences S.

• $\mathbf{w}_{m_a}, \mathbf{w}_{m_b}, m_a, m_b \in \mathcal{S}, a \neq b$ may be similar.

Sample

•
$$L = 3, |\mathcal{A}| = 4, \mathcal{W}_{\mathcal{AL}}[i, j] \cdot \mathcal{W}_{\mathcal{AL}}[i, j] = N$$

•
$$\mathbf{w}_{312} = \mathcal{W}_{\mathcal{AL}}[1,3] + \mathcal{W}_{\mathcal{AL}}[2,1] + \mathcal{W}_{\mathcal{AL}}[3,2].$$

•
$$\mathbf{w}_{314} = \mathcal{W}_{\mathcal{AL}}[1,3] + \mathcal{W}_{\mathcal{AL}}[2,1] + \mathcal{W}_{\mathcal{AL}}[3,4].$$

Inner product:

$$\mathcal{W}_{\mathcal{A}\mathcal{L}}[i, a] \cdot \mathcal{W}_{\mathcal{A}\mathcal{L}}[j, b] = 0, \quad i \neq j$$

$$\implies \mathbf{w}_{312} \cdot \mathbf{w}_{314} = \mathcal{W}_{\mathcal{A}\mathcal{L}}[1, 3] \cdot \mathcal{W}_{\mathcal{A}\mathcal{L}}[1, 3]$$

$$+ \mathcal{W}_{\mathcal{A}\mathcal{L}}[2, 1] \cdot \mathcal{W}_{\mathcal{A}\mathcal{L}}[2, 1]$$

$$+ \mathcal{W}_{\mathcal{A}\mathcal{L}}[3, 2] \cdot \mathcal{W}_{\mathcal{A}\mathcal{L}}[3, 4]$$

$$\geq N + N - \frac{\mathbf{N}}{\mathbf{N}} = N$$

h different symbols in a length L sequence

$$(L-2h)N$$
.

The Idea of Error Correction Codes

Decompose all possible sequences \mathcal{S} into $\mathcal{S}_c \cup \bar{\mathcal{S}}_c$.

- S_c : Code words
 - Messages to encode.
 - Well separate to each other.
- \bar{S}_c : Corrupted code words
 - Polluted messages.
 - Associated with the closest code word.

 $\mathcal{S}_c \cup \bar{\mathcal{S}}_c$

Error Correction Code (ECC)

To preserve the capacity

- Increase the length of sequence.
- Expand the alphabet.

Increase the Length of Sequence

Sample

- ullet 4-bits message set ${\cal M}$
 - Length 4 binary sequence, 16 messages.
- ullet 7-bits word space ${\cal S}$
 - Length 7 binary sequence, 128 words.
 - $|S_c| = |\mathcal{M}| = 16$.
 - $a, b \in \mathcal{S}_c, a \neq b$ have at less 3 different bits.
 - Why 3? Flip one bit for each of the two.
 - Decode $s \in \mathcal{S}$: find $c \in \mathcal{S}_c$ has at most one different bit.

Performance

Without ECC

- Length 4, 1 bit difference for different message.
- Min inner product: $N(4-2\times 1)=2N$.

With ECC

- Length 7, at least 3 bit differences for different message.
- Min inner product: $N(7-2\times 3)=N$.

Expand the Alphabet

From
$$|\mathcal{A}| = 2$$
 to $|\mathcal{A}'| = 4$.

- Less typical.
- Equivalent to increase length in capacity.
- But different in modulation.

Trellis Codes

Trellis-coded Modulation

- Summing L symbols (watermarking keys).
 - Zero correction: random in high dimensional space.
- Expand the alphabet to $2^4 = 16$ symbols.
 - Negative correction: uniformly distribute 16 points on a sphere.

Convolutional Coding

- Trellis code is a special convolutional code.
 - Not blocks of message+parity.
 - A sequence of parity.
 - Message is reconstructed from the parity in a slicing window.
 - The windows are overlapped.
 - Each time, slide one bit.

Illustration of Convolutional Code

Illustration of Convolutional Code

Viterbi Decoding

- Find most closest code (most-likely path).
 - dynamic programming (not exhausting search).
 - Add branch metric B into path metric P.

$$P(s,i+1) = \min(P(\alpha,i) + B(\alpha,s), P(\beta,i) + B(\beta,s)).$$

Trellis Diagram in Book

Performance of E_TRELLIS_8/D_TRELLIS_8

The same to E_SIMPLE_8/D_SIMPLE_8:

- 8-bit message instead of 4-bit.
 - Pad two more zero at the end: 10-bit indeed.
 - More redundancy: a priory for accuracy.
- 6 integers in each of 2000 images.

Much better accuracy

• 1 out of 12000 is wrong.

4.3 Detecting Multisymbol **Watermarks**

False Positive

If there is no watermark

- Direct message encoding
 - The most likely one is still poor in correction.
- Multisymbol system:
 - The corrections for all the symbols are not good enough.
 - How to define "good".

Valid Messages

An intelligible message or a garbage.

- Checksum for verification
 - 16-bits message: m.
 - 9-bits checksum: c = m[1:8] + m[9:16].
 - 25-bits watermarking: (m, c).
- Detector
 - Extractor 25-bits watermarking (m, c).
 - Compare c and m[1:8] + m[9:16].
- False positive probability: $P_{fp} = \frac{1}{2^9}$.

Individual Symbols 1

All symbols are reliable (high correlated).

Watermark presence.

2-bit system in linear correlation.

Individual Symbols 2

False positive probability

- Single reference mark: P_{fp0} .
- In each index/position/order
 - If one mark in A

$$P_{fp1} \approx |\mathcal{A}| P_{fp0}.$$

- For the whole length L sequence.
 - All of them is high

$$P_{fp} = (P_{fp1})^L \approx (|\mathcal{A}|P_{fp0})^L.$$

Normalized Correlation 1

- Multiple-symbol embedding
 - \mathbf{w}_{ri} orthogonal to each other and unit.

$$\mathbf{v}_L = \mathbf{v}_o + \sum_{i=1}^L \mathbf{w}_{ri}, \quad \|\mathbf{v}_L\| \approx \sqrt{L}.$$

Linear correlation: independent of L

$$z_{lc}(\mathbf{v}_L, \mathbf{w}_{r1}) = \mathbf{v}_o \cdot \mathbf{w}_{r1} + \mathbf{w}_{r1} \cdot \mathbf{w}_{r1} = \varepsilon + 1.$$

Normalized correlation: difficult for larger L

$$z_{nc}(\mathbf{v}_L, \mathbf{w}_{r1}) = \frac{\mathbf{v}_L}{\|\mathbf{v}_L\|} \cdot \mathbf{w}_{r1} = \frac{\varepsilon + 1}{\sqrt{L}}.$$

Normalized Correlation 2

Less distinguishable.

- Large threshold: none is correlated enough, no symbol found.
- Small threshold: High false positive probability.

Geometric Interpretation

Large threshold: no overlap for the cones.

No detectable 2-bit message.

Reencode

- \bigcirc Extract message m.
- 2 Reencode m into mark \mathbf{v}_m .
- Test the presence of \mathbf{v}_m

False Positive Probability

When the detection regions for the different messages do not overlap,

$$P_{fp} = |\mathcal{M}| P_{fp0}.$$

E_BLK_8/D_BLK_8

8-bit message:

- Trellis code with two padding 0 at the end.
 - A sequence of 10 symbols drawn from a 16-symbol alphabet.
- Reference marks:
 - 8×8 (block): low dimensional mark space.
 - So choose seed to reduce max correlation (0.73).
- Embedding strength $\alpha = 2$.
- $\tau_{cc} = 0.65$: false positive probability 10^{-6} .

Performance

- 2000 unwatermarked images (dashed line).
 - No false positive found.
- 12000 watermarked images (solid line).
 - \bullet 6 messages $\times 2000$ images.
 - 109 fail: effectiveness 99%.

Project: System 6

E_BLK_8/D_BLK_8

- Marking space: 8 × 8 block.
- 8-bit message.
- ECC: hamming or optional.
- Reencode check.
- \circ z_{cc} .

Presentation: 7.3,7.4

- False Negative Errors
- ROC curve
 - Receiver operating characteristic curve
 - Balance of false positives and false negatives rate.