חישוביות וסיבוכיות

תוכן העניינים

2	מכונות טיורינג	1
2	הגדרה היוריסטית של מכונת טיורינג	2
6	הגדרה פורמלית של מכונת טיורינג	3
16	טבלת המעברים	4
20	חישוב פונקציות	5
23	בעיות לא כריעות	6
25	תורת סיבוכיות	7
27	בעיות NP שלמות	8
29	אלגוריתמי קירוב	9
31	ם סיבוכיות זיכרון	10
33	כלים מתמטיים	A
35	שפות רגולריות	В
37	שפה חופשית הקשר	C

פרק 1 מכונות טיורינג

פרק 2 הגדרה היוריסטית של מכונת טיורינג

הגדרה 2.1 מכונת טיורינג (הגדרה היוריסטית)

הקלט והסרט

מכונת טיורינג (מ"ט) קורא קלט.

הקלט נמצא על סרט אינסופי.

התווים של הקלט נמצאים במשבצות של הסרט.

במכונת טיורינג אנחנו מניחים שהסרט אינסופי לשני הכיוונים.

משמאל לתחילת הקלט לא כתוב כלום, ומימין לסוף הקלט לא כתוב כלום.

אנחנו מניחים שיש תו הרווח _ שנמצא בכל משבצות שאינן משבצות קלט, משמאל לקלט ומימין לקלט.

הראש

במצב ההתחלתי הראש בקצה השמאלי של הקלט.

הראש יכול לזוז ימינה על הסרט וגם שמאלה על הסרט.

הראש יכול לקרוא את התוכן שנמצא במשבצת הסרט שבה הוא נמצא.

הראש יכול לכתוב על המשבצת הסרט שבה הוא נמצא. הכתיבה נעשית תמיד במיקום הראש.

המצבים

 q_0 בהתחלה הראש בקצה השמאלי של הקלט והמ"ט במצב התחלתי

הראש קורא את התו במשבצת הראשונה וכותב עליה לפי הפונקציית המעברים (שנגדיר בהגדרה 3.1). כעת המ"ט במצב חדש q_1

 q_2 הראש קורא את התו במשבצת השניה וכותב עליה לפי הפונקציית המעברים ואז המ"ט במצב חדש התהליך ממשיך עד שהראש מגיע לקצה הימיני של הקלט, ואז הוא ממשיך לקרוא ולכתוב על כל משבצת בכיוון שמאלה, עד שהוא מגיע לקצה השמאלי.

במ"ט ניתן לטייל על הקלט שוב ושוב לשני הכיוונים.

 $q_{
m rei}$ או מצב דוחה מגיע מגיע מגיע מקבל מקבל מסתיים כאשר המ"ט מגיע מגיע

label 2.1 דוגמה

נרכיב מכונת טיורינג אשר מקבלת מילה אם היא בשפה

$$L = \{w \in \{a, b\}^* | \#a_w = \#b_w\}$$
.

b ו a אותיות שווה אותיות מספר עם מכל המילים מכל המורכבת מכל המילים אווא השפה המורכבת מכל המורכבת מכל המורכבת מכל המורכבת מכל המורכבת מכל המורכבת מכל המורכבת המ

תיאור מילולי

- . נחשפ b נחשפ a נסרוק את הקלט משמאל לימין ולכל
 - .√ נטמן עליה, a נניח שראינו במשבצת הראשונה •
- שכבר ראינו. a שכבר מתאימה ל a שכבר ראינו.
 - אם לא מצאנו ,המילה לא בשפה. –
 - \checkmark אם מצאנו ,נסמן את ה- b התואם ב- d
 - נחזור לתחילת הקלט ונעשה סריקה נוספת משמאל לימין.
- במשבצת הראשונה יש √ מסיבוב הראשון. הראש פשוט כותב עליה √, כלומר משבצת ראשונה נשארת ללא שינוי.
 - . \checkmark נסמן במשבצת הבאה. נניח שמצאנו b. נסמן במשבצת . \checkmark
 - שכבר ראינו. a מתאימה ל שכבר ראינו. נסרוק את יתרת הקלט ונחפש אות
 - אם לא מצאנו ,המילה לא בשפה.
 - $\sqrt{-}$ אם מצאנו ,נסמן את ה- a התואם ב- a
 - . בכל משבצת שיש $\sqrt{}$ כותבים עליה $\sqrt{}$ וממשיכים למשבצת הבאה הימני.
 - נחזור לתחילת הקלט ונעשה סריקה נוספת משמאל לימין.
 - חוזרים על התהליך שוב ושוב.
 - אם היה מעבר שבו לא מצאנו אות תואמת, המילה לא בשפה. -
- אם כולן היו תואמות ועשינו מעבר שבו הגכנו לקצה, מרווח לרווח, בלי לראות שום אות, אז המילה בשפה.

כעת נתאר את המ"ט באמצעות המצבי המכונה והפונקציית המעברים.

מצבי המכונה

q_0	המצב ההתחלתי. אליו נחזור לאחרכל סבב התאמה של זוג אותיות.
q_a	מצב שבו ראינו a ומחפשים b תואם.
q_b	מצב שבו ראינו b מחפשים a תואם.
back	מצב שנשתמש בו כדי לחזור לקצה השמאלי של הקלט ולהתחיל את הסריקה הבאה (סבב ההתאמה הבא).
acc	מצב מקבל.
rej	מצב דוחה.

. היא עוצרת acc כאשר המכונה מגיעה למצב

עצירה במצב acc ומשמעותה קבלה.

- כאשר המכונה מגיעה למצב rej היא עוצרת.עצירה במצב rej ומשמעותה דחייה.
 - רק בשני מצבים אלו המכונה מפסיקה.
 בכל מצב אחר המכונה בהכרח ממשיכה.

המעברים

- בכל צעד המכונה מבצעת שתי פעולות:
 - 1. כותבת אות במיקום הראש
- 2. זזה צעד אחד שמאלה או צעד אחד ימינה.
- בכל צעד המכונה יכולה לעבור למצב אחר או להישאר באותו מצב.

דוגמה 2.2

בדקו אם המכונת טיורינג של הדוגמה ?? מקבלת את המילה abbbaa.

פתרון:

_	q_0	а	b	b	b	а	а	_
_	\checkmark	q_a	b	b	b	а	а	_
_	back	\checkmark	\checkmark	b	b	a	а	_
back	_	\checkmark	\checkmark	b	b	а	a	

_	q_0	\checkmark	\checkmark	b	b	а	а	_
_	\checkmark	q_0	\checkmark	b	b	а	а	_
	\checkmark	\checkmark	q_0	b	b	а	а	
	\checkmark	\checkmark	\checkmark	q_b	b	а	а	_
_	\checkmark	\checkmark	\checkmark	b	q_b	а	а	
	\checkmark	\checkmark	\checkmark	back	b	\checkmark	а	_
_	\checkmark	\checkmark	back	\checkmark	b	\checkmark	а	
	\checkmark	back	\checkmark	\checkmark	b	\checkmark	а	_
_	back	\checkmark	\checkmark	\checkmark	b	\checkmark	а	_
back		\checkmark	\checkmark	✓ ✓	b	\checkmark	а	_
_	q_0	\checkmark	\checkmark	\checkmark	b	\checkmark	а	
_	\checkmark	q_0	\checkmark	\checkmark	b	\checkmark	а	_
	\checkmark	\checkmark	q_0	\checkmark	b	\checkmark	а	_
_	\checkmark	\checkmark	q_0		b	\checkmark	а	_
	\checkmark	\checkmark	\checkmark	q_0 \checkmark	q_b	\checkmark	а	_
_	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	q_b	а	_
_	\checkmark	\checkmark	\checkmark	\checkmark	back	\checkmark	√	_
_	\checkmark	\checkmark	\checkmark	back	\checkmark	\checkmark	\checkmark	_
_	\checkmark	\checkmark	back	\checkmark	\checkmark	\checkmark	√	_
_	\checkmark	back	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
_	back	\checkmark	\checkmark	✓ ✓	\checkmark	\checkmark	√ √	_
back	_	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	_
_	q_0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	_
_	\checkmark	q_0	\checkmark	√	\checkmark	\checkmark	\checkmark	_
_	\checkmark	\checkmark	q_0	\checkmark	\checkmark	\checkmark	✓ ✓	_
_	\checkmark	\checkmark	\checkmark	q_0	\checkmark	\checkmark	\checkmark	_
_	\checkmark	\checkmark	\checkmark	q_0 \checkmark	q_0	\checkmark	\checkmark	_
_	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	q_0	\checkmark	
_	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	q_0	_
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	1-1	acc

label 2.3 דוגמה

בדקו אם המכונת טיורינג של הדוגמה ?? מקבלת את המילה aab.

פתרון:

הגדרה 2.2 מכונות טיורינג

מכונת טיורינג (מ"ט) היא שביעייה

 $M = (Q, q_0, F, \Gamma, \Sigma, b, \delta)$

פרק 3 הגדרה פורמלית של מכונת טיורינג

הגדרה 3.1 מכונת טיורינג

מכונת טיורינג (מ"ט) היא שביעיה

$$M = (Q, q_0, \Sigma, \Gamma, \delta, q_0, \text{acc}, \text{rej})$$

 $\delta: (Q \backslash \{ \mathrm{rej}, \mathrm{acc} \} \times \Gamma \to Q \times \Gamma \times \{L, R\}$

 $_ \not \in \Sigma$

 $\Sigma \subseteq \Gamma \,,\, \bot \in \Gamma \,\operatorname{ref}$

:כאשר

קבוצת מצבים סופיות Q

א"ב קלט סופי Σ

א"ב סרט סופי Γ

פונקציית המעברים δ

מצב התחלתי q_0

acc מצב מקבל

rej מצב דוחה

דוגמה 3.1

(המשך דוגמה ??)

$$M=(Q,q_0,\Sigma,\Gamma,\delta,q_0,\mathrm{acc},\mathrm{rej})$$

$$Q = \{q_0, q_a, q_b, \text{back}, \text{rej}, \text{acc}\}$$
.

$$\Sigma = \{ \texttt{a,b} \} \; , \qquad \Gamma = \{ \texttt{a,b,_,\checkmark} \}$$

$$\begin{split} \delta\left(q_0,\mathbf{a}\right) &= (q_a,\checkmark,R) \ , \\ \delta\left(q_0,\mathbf{b}\right) &= (q_b,\checkmark,R) \ , \\ \delta\left(q_0, \bot\right) &= (\mathrm{acc}, \bot, R) \ , \\ \delta\left(q_a,\checkmark\right) &= (q_a,\checkmark,R) \ , \\ \delta\left(q_a,\mathbf{a}\right) &= (q_a,\mathbf{a},R) \ , \\ \delta\left(q_a,\mathbf{b}\right) &= (\mathrm{back},\checkmark,L) \ , \\ \delta\left(q_b,\checkmark\right) &= (q_b,\checkmark,R) \ , \\ \delta\left(q_b,\mathbf{b}\right) &= (q_a,\mathbf{b},R) \ , \\ \delta\left(q_b,\mathbf{b}\right) &= (q_a,\mathbf{b},R) \ , \\ \delta\left(q_b,\mathbf{a}\right) &= (\mathrm{back},\checkmark,L) \ , \end{split}$$

קל יותר לרשום את פונקציית המעבירים δ כטבלה:

Q Γ	а	b		√
q_0	(q_a, \checkmark, R)	(q_b, \checkmark, R)	$(\mathrm{acc}, _, R)$	(q_0, \checkmark, R)
q_a	(q_a, a, R)	$(back, \checkmark, L)$	$(rej, _, L)$	(q_a, \checkmark, R)
q_b	$(\text{back}, \checkmark, L)$	(q_b, b, R)	$(rej, _, L)$	(q_b, \checkmark, R)
back	(back,a,L)	(back, b, L)	(q_0, \bot, R)	$(\text{back}, \checkmark, L)$

הגדרה 3.2 קונפיגורציה

מכונת טיורינג. $M=(Q,q_0,\Sigma,\Gamma,\delta,q_0,\mathrm{acc},\mathrm{rej})$ תהי

קונפיגורציה של M הינה מחרוזת

 $\mu q \sigma \nu$

:כאשר משמעות

$$\mu, \nu \in \Gamma^*$$
, $\sigma \in \Gamma$, $q \in Q$.

- מצב המכונה,
- הסימון במיקום הראש σ
- תוכן הסרט משמאל לראש, μ
 - תוכן הסרט מימין לראש. u

דוגמה 3.2

(המשך של דוגמה ??)

μ	q	σ	ν
	q_0	a	ab _
_√	q_a	a	b _
_ √ a	q_a	b	_
_ ✓	back	a	✓ _
	back	✓	a √ _
	back		√ a √ _
	q_0	✓	a √ _
_ ✓	q_0	a	√ _
_ ✓ ✓	q_a	✓	_
_ ✓ ✓ ✓	q_a		
_ ✓ ✓	rej	√	_

label 3.3 דוגמה

הרכיבו מכונת טיורינג אשר מקבלת כל מילה בשפה

$$L = \{a^n \mid n = 2^k , k \in \mathbb{N}\}\$$

2 אשר חזקה של a אותיות מספר בעלי מילים בעלי

פתרון:

k ב-יוק מתחלק ב- n=2 או n=1 או מתחלק ב- n=2 מספר אשר חזקה של n=2 או n=2 או מתחלק ב- n=2 בדיוק פעמים.

אם n אינו חזקה של 2 אז קיים שלם $1 \geq m$ עבורו אחרי m חילוקים ב- 2 נקבל מספר אי-זוגי שגדול מ-1. למעשה מתקיים משפט שנקרא **משפט החילוק של חזקה של** 2: נתון מספר שלם n.

אנדול שגדול מספר ב- 2 נקבל מספר שלם אי-זוגי שגדול שלם mעבורו אחרי אם אי-זוגי שלם מספר שלם אי-זוגי שגדול מחוה לחזקה של2אם ורק אם לא קיים שלם מ- מ- 1.

אפשר לנסח את המשפט בצורה שקולה:

.1 נקבל ב- 2 אם ורק אם קיים שלם m עבורו אחרי m חילוקים ב- 2 נקבל וחלים שווה n

הוכחה:

יהי n שלם. לפי המשפט הפירוק לראשוניים,

$$n = 2^{e_1} 3^{e_2} 5^{e_3} 7^{e_4} \cdots = 2^{e_1} \prod_{i=2}^{r} p_i^{e_i}$$

. כאשר $\{p_i\}$ קבוצת הראשוניים בפירוק של $\{p_i\}$ שלמיים כאשר

אם אי-זוגי ב-2 נקבל מספר אי-זוגי m עבורו אחרי $e_2=e_3=\cdots=e_r=0$ נקבל מספר אי-זוגי n אשר גדול מ- n

אם $m=e_1$ חילוקים ב- e_2 נקבל את החזקות אחת אחת אחת אחת אחרי שונה אם $n=e_1$ אם אם אם אם אם אז לפחות אחת אחת אחת אחת אי-זוגי. גדול מ- 1 אשר מספר אי-זוגי. גדול מ- 1 השלם 1 אשר מספר אי-זוגי. גדול מ- 1 אשר מספר אי-זוגי.

לאור המשפט הזה נרכיב אלגוריתם אשר מחלק את מספר האותיות במילה ב- 2 בצורה איטרטיבית. אם אחרי סבב מסויים נקבל מספר אי-זוגי גדול מ- 1 אז מספר האותיות a במילה לא יכול להיות חזקה של 2. אם אחרי כל הסבבים לא קיבלנו מספר אי-זוגי גדול מ-1 אז מובטח לנו שיש מספר אותיות a אשר חזקה של 2.

• נתון הקלט

נעבר על סרט הקלט. משמאל לימין.

• מבצעים מחקיה לסירוגין של האות a כלומר אות אחת נמחק ואות אחת נשאיר וכן הלאה.

אם אחרי סבב הראשון

- 2 אין חזקה ב- בתו האחרון \Leftrightarrow קיבלנו מספר אי-זוגי של אותיות a אחרי מספר אין חזקה של * אותיות במילה.
 - . אחרי חילוק ב- 2 ונמשיך לסבב הבא a אותיות מספר אוגי של אותיות a אחרי איש *
 - הראש חוזר לתו הראשון של הקלט

• בסבב הבא חוזרים על התהליך של מחיקה לסירוגין של האות a אות אחת נמחק ואות אחת נשאיר)

אם אחרי סבב השני

- 2 אין חזקה ב- בתו האחרון \Leftrightarrow קיבלנו מספר אי-זוגי של אותיות a אחרי מספר אין חזקה של * אותיות במילה.
 - . ונמשיך לסבב הבא. 2 ונמשיך לסבב הבא. \pm יש \pm האחרון \pm קיבלנו מספר זוגי של אותיות \pm
 - הראש חוזר לתו הראשון של הקלט

שחת נמחק ואות אחת נשאיר) a בסבב הבא חוזרים על התהליך של מחיקה לסירוגין של האות •

- - . ונמשיך לסבב הבא 2 אחרי חילוק ב- 2 ונמשיך מספר * אוגי של אותיות a אותיות *
 - הראש חוזר לתו הראשון של הקלט.

בסבב האחרון נשאר רק אות a בסבב

לכן לפי המשפט למעלה מובטח לנו כי המילה מורכבת ממספר אותיות a אשר חזקה של 2.

המכונת טיורינכ אשר מקבלת מילים בשפה שעובדת לפי האלגוריתם המתואר למעלה מתואר בתרשים למטה.

המצבים:

מצב none: מצב התחלתי. עדיין לא קראנו a בסבב סריקה זה.

מצב one: קראנו a בודד.

. a קראנו מספר זוגי של even מצב

. a מצב odd: קראנו מספר אי-זוגי של

מצב back: חזרה שלמאלה.

דוגמה 3.4

בדקו אם המילה

aaaa

מתקבלת על ידי המכונת טיורינג בדוגמה ??.

	none	а	а	а	а	
	\checkmark	one	а	а	а	
	\checkmark	а	even	а	a	_
	\checkmark	а	\checkmark	odd	a	_
	\checkmark	а	\checkmark	а	even	_
	\checkmark	а	\checkmark	back	a	_
	\checkmark	а	back	\checkmark	a	_
	\checkmark	back	а	\checkmark	a	_
	back	\checkmark	а	\checkmark	a	_
back		\checkmark	а	\checkmark	a	_
	none	\checkmark	а	\checkmark	a	_
	\checkmark	none	а	\checkmark	a	_
	\checkmark	\checkmark	one	\checkmark	a	_
	\checkmark	\checkmark	\checkmark	one	a	_
	\checkmark	\checkmark	\checkmark	а	even	_
	\checkmark	\checkmark	\checkmark	back	a	_
	\checkmark	\checkmark	back	\checkmark	а	_
	\checkmark	back	\checkmark	\checkmark	a	_
	back	\checkmark	\checkmark	\checkmark	a	_
back	_	\checkmark	\checkmark	\checkmark	a	_
	none	\checkmark	\checkmark	\checkmark	a	_
	\checkmark	none	\checkmark	\checkmark	a	_
	\checkmark	\checkmark	none	\checkmark	a	_
	\checkmark	\checkmark	\checkmark	none	а	
	\checkmark	\checkmark	\checkmark	\checkmark	one	
	✓	✓	✓	acc	✓	u

μ	q	σ	ν
_	none	а	aaa _
_ ✓	one	a	aa 🗅
_ √ a	even	а	а 🗀
_ √ a √	odd	a	
_√a√a	even	J	_
_√a√	back	a	
_ √ a	back	\checkmark	а 🗆
_ ✓	back	a	√ a _
_	back	\checkmark	а√а∟
_	back	_	√a√a∟
_	none	\checkmark	а√а∟
	none	a	√ a _
_ ✓ ✓	one	\checkmark	а 🗆
_	one	a	_
_√√√ a	even]	_
_	back	a	_
_ ✓ ✓	back		_
_√	back	\checkmark	√ a _ √√ a _
_	back	\checkmark	√ √ a _

_	back		√√√ a _
_	none	✓	√√ a _
_√	none	✓	√ a _
✓ ✓	none	✓	а 🗀
✓ ✓ ✓	none	a	_
_	one		
	acc	\checkmark	

דוגמה 3.5

בדקו אם המילה

aaa

מתקבלת על ידי המכונת טיורינג בדוגמה ??.

פתרון:

 none	а	а	а	
 \checkmark	one	а	а	J
 \checkmark	а	even	а	_
 \checkmark	а	\checkmark	odd	_
 \checkmark	а	\checkmark		rej

μ	q	σ	ν
	none	a	аа 🗀
_ ✓	one	a	a _
_ √ a	even	a	
_ √ a √	odd	_	_
_ √ a √ _	rej	_	

דוגמה 3.6

מהי שפת המכונה:

פתרון:

תיאור מילולי:

- $:q_0$ במצב התחלתי \bullet
- . עוברים למשבצת הבאה לימין הראש, a אם אנחנו רואים *
- . אם אנחנו רואים b, עוברים למשבצת הבהאה לשמאל \star
- ממשיכים כך עד שנגיע לתו רווח, כלומר לסוף המילה, ואז עוברים למשבצת לשמאל הראש, כלומר לתו האחרון של המילה.
 - (.a אם אנחנו רואים a, המילה מתקבלת. (ז"א התו האחרון הינו *
 - (.b אם אנחנו רואים b, המילה נדחית. (ז"א התו האחרון הינו *
 - * אם אנחנו רואים תו-רווח המילה נדחית. (ז"א המילה הינה ריקה.)

תשובה סופית: המכונה מקבלת שפת המילים המסתיימות באות a.

דוגמה 3.7

מהי שפת המכונה:

פתרון:

תיאור מילולי:

- q_0 במצב התחלתי q_0 :
- * אם אנחנו רואים b, המילה נדחית.
- . אם אנחנו רואים $_{-}$, המילה מתקבלת.
- q_1 עוברת למצס ,a אם אנחנו רואים ,a אם אנחנו רואים q_1 עוברים עליה עוברים למשבצת אם אנחנו רואים אנחנו רואים אנחנו אווברים למשבעת אמיש אנחנו רואים אנחנו רואים אנחנו אווברים למשבעת אמיש אנחנו רואים אנחנו אווברים למשבעת אמיש אנחנו אווברים למשבעת אמיש אנחנו אווברים למשבעת הבאה לימין הראש, והמ"ט עוברת למצס איים אנחנו אווברים למשבעת הבאה לימין הראש, והמ"ט עוברת למצס אווברים למצס אוובר
 - oxdot במצב q_1 אנחנו ראינו a וכתבנו עליה •
- q_1 אם אנחנו רואים במשבצת הבאה או משיכים, ממשיכים, או a או במשבצת במשבצת אנחנו או אינחנו \star
- אם אנחנו רואים תו רווח (כלומר הגענו לסוף המילה) הראש זז למשבצת השמאלי, כלומר לאות * האחרונה של המילה והמ"ט עוברת למצב q_2
 - . במצב q_2 ראינו a בתו הראשון, כתבנו עליה d והראש קורא התו האחרון.
 - אם אנחנו רואים a המילה נדחית.
 - $_{-}$ אם אנחנו רואים $_{-}$, המילה נדחית.
 - q_3 בותבים עליה \perp והמ"ט עוברת למצב *
 - . בתו שחקנו b במצב קראנו בתו ומחקנו ומחקנו בתו a במצב פראנו q_3
 - q_0 הראש אז משבצת אחת שמאלה עד שיגיע לתו הרשאון ומ"ט חוזרת למצב התחלת ullet

- המ"ט באופן איטרטיבי, עוברת על הקלט ובכל מעבר:
- , אחרת המילה המילה אותה ומחליפה אותה שם $_{-}$, אחרת המילה מורידה אותה אותה שם $_{+}$
- . אחרת המילה של המילה אחרת החליפה אותה של המילה מורידה אותה של א אם יש של בסופה \star
- אם לאחר מספר מעברים כאלו הסרט ריק, המ"ט מקבלת, וזה יתקיים לכל מילה ורק למילים בשפה

$$\left\{a^n b^n \middle| n \ge 0\right\} .$$

תשובה סופית: המכונה מקבלת שפת המילים

$$\left\{a^n b^n \middle| n \ge 0\right\} .$$

דוגמה 3.8

פתרון:

μ	q	σ	ν
	q_0	a	aaabbbb
	q_1	a	aabbbb
a	q_1	a	abbbb
aa	q_1	a	bbbb
aaa	q_1	Ъ	bbb
aaab	q_1	Ъ	bb
aaabb	q_1	Ъ	Ъ
aaabbb	q_1	Ъ	
_ ட ட aaabbbb	q_1		_
aaabbb	q_2	Ъ	
aaabb	q_3	Ъ	
aaab	q_3	Ъ	b
aaa	q_3	Ъ	bb
aa	q_3	a	bbb
a	q_3	a	abbb
	q_3	a	aabbb
ــــــــــــــــــــــــــــــــــــــ	q_3		aaabbb
	q_0	a	aabbb
	q_1	a	abbb
a	q_1	a	bbb
aa	q_1	Ъ	bb
aab	q_1	Ъ	Ъ
aabb	q_1	Ъ	
aabbb	q_1	_	
aabb	q_2	Ъ	
aab	q_3	Ъ	
aa	q_3	Ъ	b

a	q_3	a	bb
	q_3	a	abb
	q_3		aabb
	q_0	a	abb
	q_1	a	bb
a	q_1	Ъ	b
ab	q_1	Ъ	
abb	q_1		
ab	q_2	Ъ	
a	q_3	Ъ	
	q_3	a	b
	q_3	_	ab
	q_0	a	b
	q_1	Ъ	
b	q_1		
	q_2	Ъ	
	q_3	_	
	q_0		

פרק 4 טבלת המעברים

דוגמה 4.1

בנו מכונת טיורינג שמכריעה את השפה

$$L = \{w = \{a, b, c\}^* | \#a_w = \#b_w = \#c_w\}$$

פתרון:

מצב	סימון בסרט	מצב חדש	כתיבה	תזוזה	תנאי
q.S	σ	$q.(S \cup \{\sigma\})$	✓	R	$\sigma \notin S$
q.S	σ	q.S		R	$\sigma \in S$
$q/\{a,b,c\}$	a,b,c,\checkmark	back		L	
$q.\emptyset$		acc		R	
back	a,b,c,\checkmark	back		L	
back	_	$q.\emptyset$		R	

דוגמה 4.2

בנו מכונת טיורינג שמכריעה את השפה

$$\{x_1 \dots x_k \# y_1 \dots y_k \# z_1 \dots z_k \mid x_i, y_i, z_i \in \{0, \dots, 3\}, \forall i, x_i \ge z_i \ge y_i\}$$

:פתרון

L={X, X, # Y, Y # = = | X, 1/2, = , e {0,1,2,3} Vi X2=, 2 X;}

מצב	סימון בסרט	מצב חדש	כתיבה	תזוזה	תנאי
X * *	σ	$X\sigma*$	✓	R	
X * *	✓	X * *	✓	R	
$X\sigma*$	$0,1,\ldots,9,\checkmark$	$X\sigma*$		R	
$X\tau*$	#	$Y\tau *$		R	
$Y\tau *$	σ	$Y\tau\sigma$		R	
$Y\tau *$	✓	$Y\tau*$		R	
$Y\tau\sigma$	$0,1,\ldots,9,\checkmark$	$Y\tau\sigma$		R	
$Y \tau_1 \tau_2$	#	$Z\tau_1\tau_2$		R	
$Z\tau_1\tau_2$	✓	$Z\tau_1\tau_2$		R	
$Z\tau_1\tau_2$	σ	back	✓	L	
Z * *		acc		R	
back	$0,1,\ldots,9,\checkmark$	back		L	
back		X * *		R	

פרק 5 חישוב פונקציות

דוגמה 5.1

כפל אונרי בנו מכונת טיורינג אשר מקבלת את הקלט

 $1^{i}#1^{j}$

ומחזירה את פלט

 $1^{i\cdot j}$.

פתרון:

- .2 כפול 2 כפול הוא 2 כפול 2 הקלט הוא 2 הקלט הוא 2
- נרצה להבדיל בין הקלט לבין הפלט. לכן בתחילת הריצה, נתקדם ימינה עד סוף הקלט ונוסיף שם את התו \$. לאחר מכן נחזור לתחילת הקלט.
- .\$ על כל אות במילה השמאלית נעתיק את המילה הימינית לאחר סימן ה-
- לאחר מכן נשאיר רק את התווים שלאחר סימן ה \$. כלומר, נמחק את כל מה שאינו פלט.

μ	q	σ	ν
	q_0	1	1#11_
_11#11	q_1	_]
_11#11	$ q_1 $	\$	_
	$ q_1 $	_	11#11\$
	q_2	1	1 # 11\$
	q_3	1	#11\$
1 #	q_4	1	1\$
1 #√	q_5	1	\$
1 #√ 1\$	q_5		
1 #√ 1\$1	q_6	_]
1#	q_6	\checkmark	1\$1 _
1#√	q_4	1	\$1 _
1#√√	q_5	\$	1 _
1 #√√ \$1	q_5	_	
1 #√√ \$11	q_6]
1#√	q_6	\checkmark	\$11_
1#√√	q_4	\$	11_
1#√	back	\checkmark	\$11_
	back	_	1 # 11\$11_
	q_2	1	#11\$11_
	q_3	#	$11\$11$ _
#	q_4	1	1\$11_

#√	q_5	1	\$11_
_# √1\$11	q_5]	_
_# √1\$111	q_6	_	_
#	q_6	\checkmark	1\$111_
#√	q_4	1	\$111_
# <i>\</i>	q_5	\$	111_
_# \ \ \ \$111	q_5	_]
_# \ \ \$1111	q_6]]
#✓	q_4	\checkmark	\$1111
#√√	q_4	\$	1111
#✓	back	√\$	1111
	back	J	#11\$1111
	q_2	#	11\$1111
	q_7	1	1\$1111
	q_7	\$	1111
	acc	1	111

פרק 6 בעיות לא כריעות

הגדרה 6.1 פונקציה ניתנת לחישוב

פונקציה

$$f:\Sigma^*\to \Sigma$$

-ט M כך ש היא ניתנת לחישוב אם קיימת מ"ט

$$f = f_M$$
.

משפט 6.1 קיום פונקציות שאינן ניתנות לחישוב

קיימות פונקציות שאינן ניתנות לחישוב.

הוכחה: ?

פרק 7 תורת סיבוכיות

הגדרה 7.1 זמן הריצה

x מבצעת על שר מספר איז החישוב א על קלט א על מכונת טיורינג א על קלט א הוא מספר אוא מספר מכונת טיורינג א מבצעת על

משפט 7.1 משפט $P\subseteq R$ ואם $f\in \mathsf{POLY}$ איז f מלאה.

 $L \in P$ הוכחה: תהא

פרק 8 בעיות NP שלמות

הגדרה 8.1 רידוקציה פולינומית

יהיא פונקציה L_1 אל L_1 אל בולינומית פולינומית רידוקציה כלשהן. שפות כלשהן שפות ליהיו

$$f: \Sigma^* \to \Sigma^*$$

כך ש- POLY המקיימת $f\in \mathsf{POLY}$

$$x_1 \in L_1 \Leftrightarrow f(x) \in L_2$$
.

אם מעניינות פולינומיות פולינומיות הך אם אם אם אם אם אם אל בו L_1 אל פולינומיות פולינומיות אם אם אם אם אם בזכות בזכות משפט הרדוקציה המתאים:

8.1 משפט

 $L_1 \leq_p L_2$ -שפות כך ש L_1, L_2 תהיינה

- $L_1 \in P$ אם $L_2 \in P$ אם ullet
- $.L_1 \in NP$ אז $L_2 \in NP$ אם ullet

פרק 9 אלגוריתמי קירוב

הגדרה 9.1 שידוך

שידוך בגרף G הוא תת-קבוצה $M\subseteq E$ כך שאין שתי קשתות ב- M עם צומת משותף. שידוך הוא. שידוך הוא מקסימלי אם לא ניתן להוסיף לו קשת שאין לה צומת משותף עם קשתות אחרות בשידוך.

9.1 משפט

- גרף וא עבורו. יהא G גרף אם הפונקציה הפונקציה אשר החזירה עבור גרף את הגודל המינימלי של כיסוי בצמתים עבורו. יהא א הרף ווא שידוך מקסימלי בגרף. אז M

$$f_{\rm VC}(G) \le |V_M| \le 2f_{\rm VC}(G)$$
.

הוכחה: ?

פרק 10 סיבוכיות זיכרון

הגדרה 10.1

מכונת טיורינג חד סרטית M פועלת על קלט w בסיבוכיות זיכרון k אם הראש הקורא של המכונה אינו s מכונת טיורינג חד סרטית אל מימיןלתא מספר s. בהינתן פונקציה s בחבוכיות s נאמר ש־s פועלת מספר s. בסחבוכיות זיכרון s. פועלת על s בסחבוכיות זיכרון s.

משפט 10.1

 $L\in \mathsf{PSPACE}$ אם $L\in \mathsf{P}$

הוכחה: ?

נספח א כלים מתמטיים

הגדרה A.1 מכונות טיורינג

מכונת טיורינג (מ"ט) היא שביעייה

 $M = (Q, q_0, F, \Gamma, \Sigma, b, \delta)$

הגדרה A.2 הקונפיגורציה ההתחלתית

היא שלשה M המ"ט של בחישוב ההתחלתית ההתחלתית

$$C = (\alpha, q, i)$$

נספח ב שפות רגולריות

הגדרה B.1 מכונות טיורינג

מכונת טיורינג (מ"ט) היא שביעייה

 $M = (Q, q_0, F, \Gamma, \Sigma, b, \delta)$

הגדרה B.2 הקונפיגורציה ההתחלתית

היא שלשה M המ"ט של בחישוב ההתחלתית ההתחלתית הקונפיגורציה ההתחלתית החלתית החלתית

$$C = (\alpha, q, i)$$

נספח ג שפה חופשית הקשר

הגדרה C.1 מכונות טיורינג

מכונת טיורינג (מ"ט) היא שביעייה

 $M = (Q, q_0, F, \Gamma, \Sigma, b, \delta)$

הגדרה C.2 הקונפיגורציה ההתחלתית

היא שלשה M המ"ט של בחישוב ההתחלתית ההתחלתית הקונפיגורציה ההתחלתית החלתית החלתית

$$C = (\alpha, q, i)$$