Functional Near-Infrared Spectroscopy

Benjamin Zinszer 1 June 2011

Brain, Language, and Computation Lab (PSU)
Center for Language Science (PSU)

fNIRS - Outline

(Kuhl & Rivera-Gaxiola, 2008)

- What is (f)NIRS?
- Basic NIRS physics
- fNIRS system at Drexel
- A simple fNIRS design
- Lexical decision pilot and analysis walk-through
- Proposed study of bilingual lexical categorization

What is NIRS?

Measurement of scattered infrared light...

...to detect and measure hemoglobin.

What is fNIRS?

A unique neuroimaging tool...

	Measures	Spatial Resolution	Temporal Resolution	Motion Sensitivity
EEG	Electrical potential	Very low	100s Hz	moderate
fMRI	Hemodynamic Response	A few mm	< 0.3 Hz	high
fNIRS	Hemodynamic Response	A few cm	2-10 Hz	moderate

...suited for cognitive neuroscience research.

4.4352

4.0271

Basic NIRS Physics

Most biological tissues are roughly transparent in the 700-900 nm range.

However, hemoglobin selectively absorbs near infra-red light within this optic window:

730 nm - Deoxy-Hb

850 nm - Oxy-Hb

Using the Modified Beer-Lambert Law, measurements of scattered light can be used to infer Hb levels along the "banana curve"

Fig. 1. Absorption spectrum in near-infrared (NIR) window.

Fig. 2. Photon path inside the human head.

Basic NIRS Physics (supplemental)

Raw data collected: light intensity (I) at 730 and 850 nm

$$I = GI_0e - (\alpha_{HB}C_{HB} + \alpha_{HBO2}C_{HBO2}) \times L$$

$$\Delta OD = \log_{10} \frac{I_b}{I} = \alpha_{HB} \Delta C_{HB} + \alpha_{HBO2} \Delta C_{HBO2}$$

 $Oxygenation = \Delta C_{HBO2} - \Delta C_{HB}$

 $BloodVolume = \Delta C_{HBO2} + \Delta C_{HB}$

Processed data (usually done by software): OxyHb, DeoxyHb, Total Hb

fNIRS Applications

- Brain-ComputerInterface (Ayaz et al, 2009)
- Working memory (Itzzetoglu et al, 2007)
- Situational awareness (Menda et al, 2010)
- Pain Response (Barati et al, in prep)
- Bilingual Processing (Kovelman et al, 2008)
- Hematoma Detection (Zhang et al, 2000)

fNIR at the CONQUER Collaborative (Drexel Univ)

£ 3 : S

: source

: detector

- > 16 channels @ ~2Hz
- 2 cm source-to-detector
- Fast & easy deployment
- Limited to mPFC

fNIR at the CONQUER Collaborative (Drexel Univ)

- fNIR Data Processing:
 Probe → Signal Amplifier → Analysis Display
- Event Marking:
 Task computer → Analysis Display (via serial port)

fNIR at the CONQUER Collaborative (Drexel Univ)

Figure 2, COBI main window and components

Side Pane

- COBI Studio:
 Stand-alone fNIR
 data collection
 platform
- Option for highly portable fNIR experiments (and more to come...)

Anagram Study – Event Related Analysis

 $hrf(t) = A*t^{\alpha}*e^{t\beta}$

Izzetoglu, M., Nioka, S., Chance, B., & Onaral, B. (2005). Single trial hemodynamic response estimation in a block anagram solution study using fNIR spectroscopy. IEEE, 633-636.

LDT: Event-Related Design

Task: Word/Pseudoword lexical decision

Protocol:

- random-ordered presentation of w/p's in E-Prime 2.0
 - Stimulus duration: 200ms
 - Response duration: 2000ms
 - Inter-stimulus interval: U-dist 6-14sec
- continuous fNIRS data collection for OxyHB, DeoxyHB, Blood volume

Hypothesis: Increased PFC activitation for semantic processing in p condition. Based on Blumenfeld, Booth, and Burman (2006)

Data Analysis

Data Analysis – event related

Data Analysis – event related

Lexical Categorization (English Monolingual)

Cup

Bottle

Mug

Lexical Categorization (CE Bilingual)

Lexical categories aren't universal between languages.

Future Work

Medial prefrontal activation as a predictor of lexical categorization shifts.

Task: Picture naming in L1

Protocol:

- random-ordered presentation of objects in self-paced naming
- objects differ in X-linguistic agreement
- continuous fNIRS data collection for OxyHB

Hypothesis: Increased mPFC oxygenation in CE-bilinguals for x-linguistically conflicting items

Thanks

Drexel University
CONQUER Collaborative

Dr. Kambiz Pourrezaei Dr. Anna Merzegora Dr. Hasan Ayaz Justin Menda

Penn State
Dr. Ping Li