사례2: 당뇨병 발병 예측

당뇨병 발병 예측하기

■목표

- ✔ 딥러닝과 그리드 탐색 방법을 사용해 당뇨병 발병을 예측하는 사례를 소개한다
- ✓ 또한 딥러닝의 개념과 최적화를 위한 파라미터를 소개하고, 적절한 파라미터를 선택하는 방법도 다룬다

■순서

- ✓ 준비하기
- ✓ 케라스 모델 설계
- ✓ 그리드 탐색 실행하기
- ✓ 드롭아웃 규제로 과적합 줄이기
- ✓ 최적의 초매개변수 찾기
- ✓ 최적 초매개변수를 사용해 예측하기

준비하기

- 필요한 패키지들을 로드하고 데이터셋을 불러온다
 - ✔ 요약 통계량 확인
 - 데이터셋 문제점?

import libraries
import pandas as pd
import numpy as np
import sklearn
from tensorflow import keras

```
For Each Attribute: (all numeric-valued)
```

- 1. Number of times pregnant
- 2. Plasma glucose concentration a 2 hours in an oral glucose tolerance test
- 3. Diastolic blood pressure (mm Hg)
- 4. Triceps skin fold thickness (mm)
- 5. 2-Hour serum insulin (mu U/ml)
- Body mass index (weight in kg/(height in m)^2)
- 7. Diabetes pedigree function
- 8. Age (years)
- 9. Class variable (0 or 1)

*각 열의 의미

df.describe().transpose()

n_pregnant 768.0 3.845052 3.369578 0.000 1.00000 3.0000 6.00000 17.00 glucose_concentration 768.0 120.894531 31.972618 0.000 99.00000 117.0000 140.25000 199.00 blood_pressure (mm Hg) 768.0 69.105469 19.355807 0.000 62.00000 72.0000 80.00000 122.00 skin_thickness (mm) 768.0 20.536458 15.952218 0.000 0.00000 23.0000 32.00000 99.00 serum_insulin (mu U/ml) 768.0 79.799479 115.244002 0.000 0.00000 30.5000 127.25000 846.00 BMI 768.0 31.992578 7.884160 0.000 27.30000 32.0000 36.60000 67.10 pedigree_function 768.0 0.471876 0.331329 0.078 0.24375 0.3725 0.62625 2.42 age 768.0 0.348958 0.476951 0.000 0.00000 0.0000 1.00000 1.00000 1.00		count	mean	std	min	25%	50%	75%	max
blood_pressure (mm Hg) 768.0 69.105469 19.355807 0.000 62.00000 72.0000 80.00000 122.00 skin_thickness (mm) 768.0 20.536458 15.952218 0.000 0.00000 23.0000 32.00000 99.00 serum_insulin (mu U/ml) 768.0 79.799479 115.244002 0.000 0.00000 30.5000 127.25000 846.00 BMI 768.0 31.992578 7.884160 0.000 27.30000 32.0000 36.60000 67.10 pedigree_function 768.0 0.471876 0.331329 0.078 0.24375 0.3725 0.62625 2.42 age 768.0 33.240885 11.760232 21.000 24.00000 29.0000 41.00000 81.00	n_pregnant	768.0	3.845052	3.369578	0.000	1.00000	3.0000	6.00000	17.00
skin_thickness (mm) 768.0 20.536458 15.952218 0.000 0.00000 23.0000 32.00000 99.00 serum_insulin (mu U/ml) 768.0 79.799479 115.244002 0.000 0.0000 30.5000 127.25000 846.00 BMI 768.0 31.992578 7.884160 0.000 27.30000 32.0000 36.60000 67.10 pedigree_function 768.0 0.471876 0.331329 0.078 0.24375 0.3725 0.62625 2.42 age 768.0 33.240885 11.760232 21.000 24.00000 29.0000 41.00000 81.00	glucose_concentration	768.0	120.894531	31.972618	0.000	99.00000	117.0000	140.25000	199.00
serum_insulin (mu U/ml) 768.0 79.799479 115.244002 0.000 0.0000 30.5000 127.25000 846.00 BMI 768.0 31.992578 7.884160 0.000 27.30000 32.0000 36.60000 67.10 pedigree_function 768.0 0.471876 0.331329 0.078 0.24375 0.3725 0.62625 2.42 age 768.0 33.240885 11.760232 21.000 24.00000 29.0000 41.00000 81.00	blood_pressure (mm Hg)	768.0	69.105469	19.355807	0.000	62.00000	72.0000	80.00000	122.00
BMI 768.0 31.992578 7.884160 0.000 27.30000 32.0000 36.60000 67.10 pedigree_function 768.0 0.471876 0.331329 0.078 0.24375 0.3725 0.62625 2.42 age 768.0 33.240885 11.760232 21.000 24.00000 29.0000 41.00000 81.00	skin_thickness (mm)	768.0	20.536458	15.952218	0.000	0.00000	23.0000	32.00000	99.00
pedigree_function 768.0 0.471876 0.331329 0.078 0.24375 0.3725 0.62625 2.42 age 768.0 33.240885 11.760232 21.000 24.00000 29.0000 41.00000 81.00	serum_insulin (mu U/ml)	768.0	79.799479	115.244002	0.000	0.00000	30.5000	127.25000	846.00
age 768.0 33.240885 11.760232 21.000 24.00000 29.0000 41.00000 81.00	ВМІ	768.0	31.992578	7.884160	0.000	27.30000	32.0000	36.60000	67.10
	pedigree_function	768.0	0.471876	0.331329	0.078	0.24375	0.3725	0.62625	2.42
class 768.0 0.348958 0.476951 0.000 0.00000 0.0000 1.00000 1.00	age	768.0	33.240885	11.760232	21.000	24.00000	29.0000	41.00000	81.00
	class	768.0	0.348958	0.476951	0.000	0.00000	0.0000	1.00000	1.00

데이터 전처리

- 결측값 처리
 - ✓ 0을 NaN으로 바꾸기
- 결측값있는 행 제거
- 데이터셋을 NumPy 배열로 변환
 - √ df.values

■ 최종 데이터셋 크기는?

	count	mean	std	min	25%	50%	75%	max	
n_pregnant	768.0	3.845052	3.369578	0.000	1.00000	3.0000	6.00000	17.00	
glucose_concentration	763.0	121.686763	30.535641	44.000	99.00000	117.0000	141.00000	199.00	
blood_pressure (mm Hg)	733.0	72.405184	12.382158	24.000	64.00000	72.0000	80.00000	122.00	
skin_thickness (mm)	541.0	29.153420	10.476982	7.000	22.00000	29.0000	36.00000	99.00	
serum_insulin (mu U/ml)	394.0	155.548223	118.775855	14.000	76.25000	125.0000	190.00000	846.00	
BMI	757.0	32.457464	6.924988	18.200	27.50000	32.3000	36.60000	67.10	
pedigree_function	768.0	0.471876	0.331329	0.078	0.24375	0.3725	0.62625	2.42	
age	768.0	33.240885	11.760232	21.000	24.00000	29.0000	41.00000	81.00	
class	768.0	0.348958	0.476951	0.000	0.00000	0.0000	1.00000	1.00	

df.dropna(inplace=True)
df.describe().transpose()

	count	mean	std	min	25%	50%	75%	max	-
n_pregnant	392.0	3.301020	3.211424	0.000	1.00000	2.0000	5.000	17.00	
glucose_concentration	392.0	122.627551	30.860781	56.000	99.00000	119.0000	143.000	198.00	
blood_pressure (mm Hg)	392.0	70.663265	12.496092	24.000	62.00000	70.0000	78.000	110.00	
skin_thickness (mm)	392.0	29.145408	10.516424	7.000	21.00000	29.0000	37.000	63.00	
serum_insulin (mu U/ml)	392.0	156.056122	118.841690	14.000	76.75000	125.5000	190.000	846.00	
ВМІ	392.0	33.086224	7.027659	18.200	28.40000	33.2000	37.100	67.10	
pedigree_function	392.0	0.523046	0.345488	0.085	0.26975	0.4495	0.687	2.42	
age	392.0	30.864796	10.200777	21.000	23.00000	27.0000	36.000	81.00	
class	392.0	0.331633	0.471401	0.000	0.00000	0.0000	1.000	1.00	

dataset = df.values
print(dataset.shape)

데이터 전처리

- 데이터셋 분리
 - ✓ 입력 데이터셋 X와 타깃 값 Y로 나누기
 - ✓ 값을 정수로 바꾸기
 - astype(int)
 - ✓ 데이터셋 형태 확인
 - 처음 다섯 케이스 출력
- 데이터 정규화
 - ✓ sklearn에서 제공하는 StandardScaler
 - 평균 0, 표준편차 1을 가짐
 - 머신러닝 알고리즘들이 모든 열에 대해 특별히 의존하거나 가중치를 부여하는 일 없도록 균등하게 처리할 수 있게 하는 것

```
X = dataset[:, 0:8]
 Y = dataset[:, 8].astype(int)
print(X.shape)
print(Y.shape)
print(X[:5])
print(Y[:5])
(392, 8)
(392.)
[[1.000e+00 8.900e+01 6.600e+01 2.300e+01 9.400e+01 2.810e+01 1.670e-01
 [0.000e+00 1.370e+02 4.000e+01 3.500e+01 1.680e+02 4.310e+01 2.288e+00
  3.300e+011
 [3,000e+00 7,800e+01 5,000e+01 3,200e+01 8,800e+01 3,100e+01 2,480e-01
 [2,000e+00 1,970e+02 7,000e+01 4,500e+01 5,430e+02 3,050e+01 1,580e-01
  5.300e+011
 [1,000e+00 1.890e+02 6,000e+01 2,300e+01 8,460e+02 3,010e+01 3,980e-01
  5.900e+0111
[0\ 1\ 1\ 1\ 1]
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler().fit(X)
X standardized = scaler.transform(X)
```

X_standardized = scaler.transform(X)
data = pd.DataFrame(X_standardized)
data.describe().transpose()

	count	mean	std	min	25%	50%	75%	max
0	392.0	-9.063045e-18	1.001278	-1.029213	-0.717427	-0.405640	0.529718	4.271153
1	392.0	1.132881e-17	1.001278	-2.161731	-0.766596	-0.117696	0.660984	2.445459
2	392.0	-4.531523e-16	1.001278	-3.739001	-0.694164	-0.053146	0.587873	3.151946
3	392.0	1.087565e-16	1.001278	-2.108484	-0.775531	-0.013844	0.747843	3.223325
4	392.0	1.064908e-16	1.001278	-1.196867	-0.668179	-0.257445	0.285988	5.812990
5	392.0	1.631348e-16	1.001278	-2.120941	-0.667678	0.016210	0.571870	4.846172
6	392.0	1.812609e-17	1.001278	-1.269525	-0.734091	-0.213147	0.475164	5.497667
7	392.0	1.110223e-16	1.001278	-0.968299	-0.771985	-0.379357	0.504056	4.921123

케라스 모델 정의

- 모델 정의 과정을 create_model()이라는 사용자 정의 함수로 만듦
 - ✓ 매개변수를 바꿔가면서 모델을 여러 번 초기화하여 재사용할 것이기 때문에 함수화 하는 것이 유리함
- model.summary()로 모델의 특징을 확인할 수 있다
 - ✓ 이 신경망의 모든 매개변수의 개수는 113개

```
import tensorflow as tf
from tensorflow import keras
from scikeras.wrappers import KerasClassifier
from sklearn.model selection import GridSearchCV, KFold
seed = 6
np.random.seed(seed)
def create model():
  model = keras.models.Sequential()
  model.add(keras.layers.Dense(8, input dim = 8, kernel initializer='normal', activation='relu'))
  model.add(keras.layers.Dense(4, kernel_initializer='normal', activation='relu'))
  model.add(keras.layers.Dense(1, activation='sigmoid'))
  adam = keras.optimizers.Adam(learning_rate=0.01)
  model.compile(optimizer=adam. loss='binary crossentropy', metrics=['accuracy'])
  return model
model = create model()
print(model.summary())
Model: "sequential 71"
 Laver (type)
                         Output Shape
 dense_213 (Dense)
                                               72
                         (None, 8)
 dense 214 (Dense)
                         (None, 4)
 dense_215 (Dense)
                         (None, 1)
Total params: 113
Trainable params: 113
Non-trainable params: 0
None
```


그리드 탐색 실행하기

- Keras 모델은 SciKeras 모듈의 KerasClassifier 클래스로 래핑(wrapping)하여 사이킷런에서 사용가능
 - ✓ 매개변수 model은 모델을 정의하는 데 사용되는 함수를 지정
- 그리드 탐색 매개변수 설정
 - ✓ 배치 크기와 에포크
 - ✓ 그리드 검색 알고리즘에 넣기 위해 dict()로 파이썬 딕셔너리로 바꿔줌

```
model = KerasClassifier(model=create model)
batch size = [10, 20, 40]
epochs = [10, 50, 100]
param grid = dict(batch size = batch size, epochs=epochs)
grid = GridSearchCV(estimator=model, param_grid=param_grid,
            cv=KFold(random state=seed, shuffle=True), verbose=0)
grid results=grid.fit(X_standardized, Y)
Epoch 1/10
Epoch 2/10
Epoch 3/10
32/32 [============ ] - Os 4ms/step - loss: 0.4658 - accuracy: 0.7764
Epoch 4/10
32/32 [=========== ] - Os 6ms/step - loss: 0.4552 - accuracy: 0.7827
Epoch 5/10
Epoch 6/10
Epoch 7/10
```


그리드 탐색 실행하기

- 결과를 보고하는 코드
 - ✓ 테스트 데이터에 대해 78.59%의 정확도를 보임
 - 훈련 성능에 비해 떨어지는 것은 새로운 데이터에 대한 일반화가 제대로 안되고 있음을 나타냄
 - 훈련데이터에 대한 과적합이 발생한 것

```
print("Best: {0}, **using** {1}".format(grid_results.best_score_, grid_results.best_params ))
means = grid results.cv results ['mean test score']
stds = grid_results.cv_results_['std_test_score']
params = grid_results.cv_results_['params']
for mean, stdev, param in zip(means, stds, params):
  print('{0} ({1}) with: {2}'.format(mean, stdev, param))
Best: 0.7859136643946771, **using** { 'batch_size': 40, 'epochs': 50}
0.7601752677702045 (0.02616915502679476) with: {'batch_size': 10, 'epochs': 10}
0.7680298604349236 (0.03527727422923945) with: {'batch_size': 10, 'epochs': 50}
0.7093476144109057 (0.06197033939294773) with: {'batch_size': 10, 'epochs': 100}
0.772963323596235 (0.034341279422125594) with: {'batch_size': 20, 'epochs': 10}
0.7679324894514767 (0.036700379636644326) with: {'batch size': 20. 'epochs': 50}
0.7731905225576112 (0.0454171362817325) with: {'batch_size': 20, 'epochs': 100}
0.7680298604349236 (0.04407817591736467) with: {'batch_size': 40, 'epochs': 10}
0.7859136643946771 (0.049048672432162356) with: {'batch_size': 40, 'epochs': 50}
0.7706264199935086 (0.05447320342397348) with: {'batch size': 40. 'epochs': 100}
```


드롭아웃 정규화

- 과적합을 줄이고자 하는 전략
 - ✓ 주기적으로 일부 뉴런을 제거해 나머지 뉴런들이 그 부분들을 채우게 됨
 - ✓ 어떤 뉴런이 전체 신경망에서 차지하는 중요도가 너무 올라가는 것을 방지함
- Adam 최적화 함수에서 학습률 값을 하나의 변수로 대체
 - ✓ 신경망의 매개변수를 업데이트하는 속도를 조절
- create_model() 함수에 learning_rate, dropout_rate 인자를 추가

```
seed = 6
np.random.seed(seed)
def create model(learn rate, dropout rate):
  model = keras.models.Sequential()
  model.add(keras.layers.Dense(8, input_dim = 8, kernel_initializer='normal', adtivation='relu'))
  model.add(keras.lavers.Dropout(dropout rate))
  model.add(keras.layers.Dense(4, kernel_initializer='normal', activation='relu'))
  model.add(keras.layers.Dropout(dropout rate))
  model.add(keras.layers.Dense(1, activation='sigmoid'))
  adam = keras.optimizers.Adam(learning_rate=learn_rate)
  model.compile(optimizer=adam, loss='binary crossentropy', metrics=['accuracy'])
  return model
model = KerasClassifier(model = create model, epochs = 50,
                        batch size = 40, verbose = 0)
learn_rate = [0.001, 0.01, 0.1]
dropout rate = [0.0, 0.1, 0.2]
param_grid = dict(model__learn_rate=learn_rate, model__dropout_rate=dropout_rate)
grid = GridSearchCV(estimator = model, param_grid = param_grid,
                    cv = KFold(random state=seed, shuffle=True), verbose = 0)
grid results = grid.fit(X standardized, Y)
```


드롭아웃 정규화

- 결과를 보고하는 코드
 - ✓ 테스트 데이터에 대해 78.83%의 정확도를 보임 (78.59->78.83↑)

```
print("Best: {0}, using {1}".format(grid results.best score , grid results.best barams ))
means = grid results.cv results ['mean test score']
stds = grid results.cv results ['std test score']
params = grid results.cv results ['params']
for mean, stdey, param in zip(means, stds, params):
    print('{0} ({1}) with: {2}'.format(mean. stdev. param))
Best: 0.7882505679974035, using {'model__dropout_rate': 0.2, 'model__learn_rate': 0.01}
0.7730606945796819 (0.028598756460473506) with: {'model__dropout_rate': 0.0. 'model__learn_rate': 0.001}
0.7703992210321324 (0.0378626387119945) with: {'model__dropout_rate': 0.0, 'model__learn_rate': 0.01}
0.7577734501785134 (0.02803438961621694) with: {'model__dropout_rate': 0.0, 'model__learn_rate': 0.1}
0.7680623174294061 (0.04611114385392336) with: {'model__dropout_rate': 0.1, 'model__learn_rate': 0.001}
0.7729957805907173 (0.026828685416583172) with: {'model__dropout_rate': 0.1. 'model__learn_rate': 0.01}
0.7576111652061019 (0.03738738649978769) with: {'model__dropout_rate': 0.1, 'model__learn_rate': 0.1}
0.7423888347938981 (0.03954929727088495) with: {'model__dropout_rate': 0.2. 'model__learn_rate': 0.001}
0.7882505679974035 (0.032796247125592815) with: {'model__dropout_rate': 0.2. 'model__learn_rate': 0.01}
0.770464135021097 (0.024929972163360344) with: {'model__dropout_rate': 0.2, 'model__learn_rate': 0.1}
```


최적 초매개변수 찾기

- 이전에 찾은 최적의 학습률과 드롭아웃 비율을 적용하고, 활성함수와 초깃값에 대한 매개변수를 설정
 - ✓ kernel_initializer
 - ✓ activation
- 그리드 탐색 매개변수 설정
 - ✓ activation = ['softmax', 'relu',
 'tanh', 'linear']
 - ✓ init = ['uniform', 'normal', 'zero']

```
seed = 6
np.random.seed(seed)
def create model(init, activation):
  model = keras.models.Sequential()
  model.add(keras.layers.Dense(8, input_dim = 8, kernel_initializer=init, activation=activation))
  model.add(keras.lavers.Dropout(0.2))
  model.add(keras.layers.Dense(4, kernel_initializer=init, activation=activation))
  model.add(keras.layers.Dropout(0.2))
  model.add(keras.layers.Dense(1, activation='sigmoid'))
  adam = keras.optimizers.Adam(learning_rate=0.01)
  model.compile(optimizer=adam. loss='binary crossentropy'.metrics=['accuracy'])
  return model
model = KerasClassifier(model = create_model, epochs = 50,
                        batch size = 40. verbose = 0)
activation = ['softmax', 'relu', 'tanh', 'linear']
init = ['uniform', 'normal', 'zero']
param_grid = dict(model__activation = activation, model__init = init)
grid = GridSearchCV(estimator = model, param_grid = param_grid,
                    cv = KFold(random state=seed, shuffle=True).verbose = 0)
'grid results = grid.fit(X standardized, Y)
```


최적 초매개변수 찾기

- 결과를 보고하는 코드
 - ✓ 테스트 데이터에 대해 79.09%의 정확도를 보임 (78.59->78.83->79.09↑)

```
print("Best: {0}, using {1}".format(grid_results.best_score_, grid_results.best_barams_))
means = grid_results.cv_results_['mean_test_score']
stds = grid results.cv results ['std test score']
params = grid results.cv results ['params']
for mean, stdev, param in zip(means, stds, params):
    print('{0} ({1}) with: {2}'.format(mean, stdey, param))
Best: 0.7909444985394353, using {'model__activation': 'linear'. 'model__init': 'uniform'}
0.7551768906199285 (0.04310156886487648) with: {'model__activation': 'softmax', 'model__init': 'uniform'}
0.7628042843232716 (0.04960811385070853) with: {'model__activation': 'softmax'. 'model__init': 'normal'}
0.7653034728984096 (0.03840067109508175) with: {'model__activation': 'softmax'. 'model__init': 'zero'}
0.7679974034404413 (0.04709672069720052) with: {'model__activation': 'relu', 'model__init': 'uniform'}
0.7832521908471277 (0.04538105351737658) with: {'model__activation': 'relu', 'model__init': 'normal'}
O.6685167153521585 (O.02715733189031009) with: {'model__activation': 'relu', 'model__init': 'zero'}
0.7679324894514767 (0.03995836996573496) with: {'model__activation': 'tanh', 'model__init': 'uniform'}
0.7831548198636806 (0.0385684705054551) with: {'model__activation': 'tanh'. 'model__init': 'normal'}
O.6685167153521585 (O.02715733189031009) with: {'model__activation': 'tanh', 'model__init': 'zero'}
0.7909444985394353 (0.038325567621991456) with: {'model__activation': 'linear', 'model__init': 'uniform'}
0.7807854592664718 (0.03335315875606232) with: {'model__activation': 'linear', 'model__init': 'normal'}
0.6685167153521585 (0.02715733189031009) with: {'model__activation': 'linear', 'model__init': 'zero'}
```


뉴런의 개수 최적화

- 이전에 찾은 최적의 초매개변수를 적용하고, 레이어의 뉴런 개수에 대한 최적화를 시도함
 - ✓ neuron1
 - ✓ neuron2
- 그리드 탐색 매개변수 설정
 - \checkmark neuron1 = [4, 8, 16]
 - \checkmark neuron2 = [2, 4, 8]

```
seed = R
np.random.seed(seed)
def create model(neuron1, neuron2):
  model = keras.models.Sequential()
  model.add(keras.layers.Dense(neuron1, input_dim = 8, kernel_initializer='uniform', activation='linear'))
  model.add(keras.layers.Dropout(0.2))
  model.add(keras.layers.Dense(neuron2.kernel_initializer='uniform'.activation='linear'))
  model.add(keras.lavers.Dropout(0.2))
  model.add(keras.layers.Dense(1, activation='sigmoid'))
  adam = keras.optimizers.Adam(learning rate=0.01)
  model.compile(optimizer=adam, loss='binary_crossentropy', metrics=['accuracy'])
  return model
model = KerasClassifier(model = create model, epochs = 50.
                        batch size = 40. verbose = 0)
neuron1 = [4, 8, 16]
neuron2 = [2, 4, 8]
param_grid = dict(model__neuron1 = neuron1, model__neuron2 = neuron2)
grid = GridSearchCV(estimator = model, param_grid = param_grid,
                    cv = KFold(random_state=seed, shuffle=True), verbose = 0)
grid_results = grid.fit(X_standardized, Y)
```


뉴런의 개수 최적화

- 결과를 보고하는 코드
 - ✔ 테스트 데이터에 대해 79.35%의 정확도를 보임 (78.59->78.83->79.09->79.35↑)

```
print("Best: {0}, using {1}".format(grid_results.best_score_, grid_results.best_barams_))
means = grid results.cv results ['mean test score']
stds = grid results.cv results ['std test score']
params = grid_results.cv_results_['params']
for mean, stdev, param in zip(means, stds, params):
    print('{0} ({1}) with: {2}'.format(mean, stdey, param))
Best: 0.7935086011035378, using {'model__neuron1': 16, 'model__neuron2': 8}
0.7833171048360921 (0.03207194515510668) with: {'model__neuron1': 4, 'model__neuron2': 2}
0.7935086011035377 (0.03630494379281224) with: {'model__neuron1': 4, 'model__neuron2': 4}
0.7832846478416098 (0.03328030756314274) with: {'model__neuron1': 4, 'model__neuron2': 8}
0.7884128529698149 (0.03464279026440206) with: {'model__neuron1': 8, 'model__neuron2': 2}
0.7807530022719895 (0.032579127562990105) with: {'model__neuron1': 8. 'model__neuron2': 4}
0.7833171048360921 (0.03406027165506637) with: {'model__neuron1': 8, 'model__neuron2': 8}
0.7832846478416098 (0.025605174629432525) with: {'model__neuron1': 16, 'model__neuron2': 2}
0.7832846478416098 (0.03328030756314274) with: {'model__neuron1': 16, 'model__neuron2': 4}
0.7935086011035378 (0.03263414815148896) with: {'model neuron1': 16. 'model neuron2': 8}
```


최적의 초매개변수를 사용해 예측하기

- 최적의 초매개변수를 사용하여 데이터셋의 모든 사례에 대해 당뇨병이 발생할 지 예측해 보자
 - ✓ X_standardized를 전부 예측에 사용
- 처음 다섯 개의 행을 둘러보자
 - ✓ y_pred와 Y를 비교하면?
- 분류 보고서
 - ✓ support는 각 클래스에 해당하는 사례의 개수
 - 262명이 건강, 130명이 당뇨
 - ✓ 78% 정확도

relevant elements

true negatives

from sklearn.metrics import classification_report, accuracy_score
print(accuracy_score(Y, y_pred))
print(classification_report(Y, y_pred))

0.78061224489	79592 precision	recall	f1-score	support
0 1	0.80 0.72	0.90 0.55	0.85 0.62	262 130
accuracy macro avg weighted avg	0.76 0.77	0.72 0.78	0.78 0.73 0.77	392 392 392

하나의 사례에 대한 예측

■ 다음 코드로 하나의 사례를 뽑았을 때, 최적화된 신경망으로 이 환자가 당뇨를 가질 것인지 아닌지를 예측해 보자

print(prediction)

- Inclass Assignment
 - ✓ 출력 결과를 확인하고 화면을 캡처하여 업로드한다

```
example = df.iloc[1]
print(example)
                            0.000
n_pregnant
                          137,000
glucose_concentration
blood_pressure (mm Hg)
                           40.000
skin_thickness (mm)
                           35.000
serum_insulin (mu U/ml)
                          168,000
                           43,100
BMI
                            2.288
pedigree_function
                           33.000
аяе
                            1.000
class
Name: 4, dtype: float64
prediction = grid.predict(X_standardized[1].reshape(1, -1))
```


요약

- 케라스를 사용해 신경망을 만들고, 사이킷런 그리드 탐색법을 사용해 최적의 초매개변수를 찿는다. 초매개변수를 조정해 신경망을 최적화 하는 방법을 배웠다
- 신경망과 초매개변수 최적화 방법을 배웠고, 이를 신경망에 적용해 당뇨병 환자 데이터에서 당뇨병의 발병을 예측하는 데 응용할 수 있었다

