Assignment -9:

Let consider a sample dataset have one input (x; a) and one output (y; a), and a number of samples 4.

Develop a simple linear regression model using momentum optimizer.

Sample(i)	xa.	y,a
	0.2	3.4
2	0.4	3.8
3	0.6	4.2
¢ .	0.8	4.6

-> Do manual calculations for 2 iterations with first two samples.

Step 1:- [x,y],
$$m=1$$
, $c=-1$, $n=0.1$, epochs = 2, $8=0.9$, $v_m=v_c=0$, $ns=2$

Step 4:
$$g_{m} = \frac{\partial E}{\partial m} = -(y_{1} - mx_{1} - c)x_{1}$$

 $= -(3.4 - (1)(0.2) + 1)(0.2)$
 $g_{m} = -0.84$
 $g_{c} = \frac{\partial E}{\partial c} = -(y_{1} - mx_{1} - c)$
 $= -(3.4 - (1)(0.2) + 1)$
 $g_{c} = -4.2$

Step 5:
$$V_m = 8V_m - \eta g_m$$

$$= (0.9)(0) - (-0.1)(-0.84)$$

$$V_m = -0.084$$

$$V_c = 8V_c - 9g_c$$

$$= (0.9)(0) - (-0.1)(-4.2)$$

$$V_c = -0.42$$
Step 6: $m = m + v_m = 1 + (-0.084) = 0.916$

$$c = c + V_c = -1 - 0.42 = -1.42$$
Step 4: $sample = sample + 1 = 1 + 1 = 2$
Step 8: if $(sample > ns)$

$$2 > 2 \Rightarrow false$$

$$g = 5 = 6$$

$$2 > 2 \Rightarrow false$$

$$g = 6 = -(3.8 - (0.916)(0.4) + 1.42)(0.4)$$

$$g_m = -1.941$$

$$g_c = \frac{\delta E}{\delta c} = -(3.8 - (0.916)(0.4) + 1.42)$$

$$g_c = -4.853$$
Step 5: $V_m = 8V_m - \eta g_m$

$$= (0.9)(-0.084) - (0.1)(-1.941)$$

$$V_m = -0.269$$

$$V_c = 8V_c - \eta g_c$$

$$= (0.9)(-0.42) - (-0.1)(-4.853)$$

$$V_c = -0.863$$

Step 6:
$$m = m + V_m = 0.916 + (-0.269)$$
 $m = 0.647$
 $c = c + V_c = -1.42 - 0.863 = -2.283$

Step 7: sample = sample +1 = 2+1=3

Step 8: If (sample > ns)

 $3 > 2$ True

 $\Rightarrow goto = x + y =$

Step 6:
$$m = m + v_m = 0.6463 + (-0.353)$$
 $m = 0.293$
 $c = c + v_6 = -2.283 - 1.332$
 $c = -3.615$

Step 7: sample = sample +1 = 1+1 = 2

Step 8: ${}^{2}f(sample > ns)$
 $2 - 2$
 $false$

goto step 4

Step 4: $false$
 $false$

$$c = c + \sqrt{c} = -3.615 - 1.9285$$

$$c = -5.5435$$
Step 7: sample = sample $+1 = 2 + 1 = 3$
Step 8: - if (sample > ns)
$$3 > 2 \quad \text{Tsue}$$

$$\Rightarrow \text{goto next step}$$
else goto step 4

Step 9: item = item + 1
$$= 2 + 1 = 3$$
Step 10: if (item > epochs)
$$3 > 2 \quad \text{Tsue}$$
goto step 11

step 11: print m, c values
$$m = -0.316, c = -5.543$$

Wind the Manney of the Control