REGRESSÃO E CORRELAÇÃO

MINIMIZAÇÃO DOS DESVIOS ABSOLUTOS

Considere o seguinte conjunto de pontos

X

1

2 1

•

5

RECTAS DE AJUSTE

R1
$$Y=-0.1+0.7X$$

$$Y = 0.5 + 0.5X$$

R3
$$Y=-0.7+0.9X$$

RECTAS

R1	R2	R3
0.6	1	0.2
1.3	1.5	1.1
2	2	2
2.7	2.5	2.9
3.4	3	3.8

DESVIOS

Desv1	Desv2	Desv3
0.4	0	0.8
-0.3	-0.5	-0.1
0	0	0
-0.7	-0.5	-0.9
0.6	1	0.2
0	0	0

DESVIOS ABSOLUTOS

Desv1	Desv2	Desv3
0.4	0	0.8
0.3	0.5	0.1
0	0	0
0.7	0.5	0.9
0.6	1	0.2
2	2	2

(Desv1) ²	(Desv2) ²	(Desv3) ²
0.16	0	0.64
0.09	0.25	0.01
0	0	0
0.49	0.25	0.81
0.36	1	0.04
1.10	1.50	1.50

 Comprimento alar (cm) em função da idade (dias) para andorinhas

Dias	Comp.
3	1,4
4	1,5
5	2,1
6	2,4
8	3,1
9	3,2
10	3,3

Curve Estimation		X
	Dependent(s): Comprimento alar (cm), Independent Variable: Idade (dias), X [Idade] Case Labels:	OK Paste Reset Cancel Help Include constant in equation Plot models
	✓ Logarithmic ✓ Cubic ☐ S ✓ Inverse ✓ Power ☐ Lo	ompound Growth Exponential ogistic per bound: Save

a. The model requires all non-missing values to be positive.

Title
Notes
Model Description
Case Processing Summs

▶ 🚡 Variable Processing Sun ■ 🚡 Model Summary and Para ■ 🚠 Curvefit for Comprimento

Variable Processing Summary

		Variables		
			Independent	
		Comprimento alar (cm), Y	ldade (dias), X	
Number of Positive V	alues	7	7	
Number of Zeros		0	0	
Number of Negative Values		0	0	
Number of Missing	User-Missing	0	0	
Values	System-Missing	0	0	

Model Summary and Parameter Estimates

Dependent Variable: Comprimento alar (cm), Y

	Model Summary				Parameter Estimates				
Equation	R Square	F	df1	df2	Sig.	Constant	b1	b2	b3
Linear	,964	132,174	1	5	,000	,515	,298		
Logarithmic	,971	165,753	1	5	,000	-,727	1,772		
Inverse	,915	53,833	1	5	,001	4,087	-9,026		
Quadratic	.980	99,685	2	4	,000	-,274	,579	-,021	
Cubic	,991	106,896	3	3	,002	1,471	-,387	,141	-,00
Power	,968	149,638	1	5	,000	,563	,792		
Growth	,931	67,190	1	5	,000	-,006	,131		6
Exponential	,931	67,190	1	5	,000	,994	,131		

The independent variable is Idade (dias), X.

RECTA DE MÍNIMOS QUADRADOS

RESÍDUOS

$$Y_i = \beta_0 + \beta_1 \cdot \left(X_i - \overline{X}\right) + \varepsilon_i \quad i = 1,...,n$$

$$\hat{\beta}_0 = \frac{1}{n} \sum_i Y_i = \overline{Y}$$

$$\hat{\beta}_{1} = \frac{\sum_{i} \left(X_{i} - \overline{X}\right) \cdot \left(Y_{i} - \overline{Y}\right)}{\sum_{i} \left(X_{i} - \overline{X}\right)^{2}} = \frac{s_{XY}}{s_{xx}}$$

$$\sigma^{2} \qquad s^{2} = \frac{1}{n-2} \sum_{i} \hat{e}_{i}^{2} = \frac{1}{n-2} \sum_{i} \left\{ Y_{i} - \left[\hat{\beta}_{0} + \hat{\beta}_{1} \cdot \left(X_{i} - \overline{X} \right) \right] \right\}^{2}$$

DISTRIBUIÇÃO DOS ERROS

RESÍDUOS

IC e Testes de hipóteses

	IC	TH
β_{o}	$\hat{\beta}_0 \pm t_{n-2,(\frac{\alpha}{2})} \cdot \frac{s}{\sqrt{n}}$	$H_0: \beta_0 = b_0$ $H_1: \beta_0 \neq b_0, \beta_0 > b_0 \text{ ou } \beta_0 < b_0$ $ET = \frac{\hat{\beta}_0 - b_0}{s / \sqrt{n}}$ $H_0 \text{ verdadeira } \Rightarrow ET \sim t_{n-2}$
β _o ΄	$\left(\hat{\beta}_{0} - \overline{X}.\hat{\beta}_{1}\right) \pm t_{n-2,(\frac{\alpha}{2})}.s.\sqrt{\frac{1}{n} + \frac{\overline{X}^{2}}{s_{XX}}}$	$H_{0}: \beta_{0}' = b_{0}'$ $H_{1}: \beta_{0}' \neq b_{0}', \beta_{0}' > b_{0}' \text{ ou } \beta_{0}' < b_{0}'$ $ET = \frac{\left(\hat{\beta}_{0} - \overline{X} \cdot \hat{\beta}_{1}\right) - b_{0}'}{s \cdot \sqrt{\frac{1}{n} + \frac{\overline{X}^{2}}{s_{XX}}}}$ $H_{0} \text{ verdadeira } \Rightarrow ET \sim t_{n-2}$
β_1	$\hat{\beta}_1 \pm t_{n-2,(\frac{\alpha}{2})} \cdot \frac{S}{\sqrt{S_{XX}}}$	$H_{0}: \beta_{1} = b_{10}$ $H_{1}: \beta_{1} \neq b_{10}, \beta_{1} > b_{10} \text{ ou } \beta_{1} < b_{10}$ $ET = \frac{\hat{\beta}_{1} - b_{10}}{\frac{s}{\sum_{i} (X_{i} - \overline{X})^{2}}}$ $H_{0} \text{ verdadeira } \Rightarrow ET \sim t_{n-2}$

REGRESSÃO NÃO LINEAR

$$\hat{Y} = \beta_0 + \beta_1 \frac{1}{X}$$

$$\hat{Y} = \beta_0 + \beta_1 e^X$$

$$\hat{Y} = \beta_0 + \beta_1 \ln X$$

$$\hat{Y} = \beta_0 + \beta_1 X^2$$

REGRESSÃO NÃO LINEAR

Modelo	Transformação
$\bullet Y_i = \alpha' + \frac{\beta}{X_i} + e_i$	$U_{i} = \frac{1}{X_{i}}$ $Y_{i} = \alpha' + \beta . U_{i} + e_{i}$
$\bullet Y_i = e^{\alpha' + \beta . X_i + e_i}$	$Z_{i} = \ln Y_{i}$ $Z_{i} = \alpha' + \beta \cdot X_{i} + e_{i}$
• $Y_i = e^{\alpha' + \frac{\beta}{X_i} + e_i} \operatorname{com} \alpha' > 0, \beta < 0$	$U_{i} = \frac{1}{X_{i}}$ $Z_{i} = \ln Y_{i}$ $Z_{i} = \alpha' + \beta \cdot U_{i} + e_{i}$

COEFICIENTE DE CORRELAÇÃO

Coeficiente de correlação de Pearson

$$R = \frac{\sum \left(X_{i} - \overline{X}\right)\left(Y_{i} - \overline{Y}\right)}{\sqrt{\sum \left(X_{i} - \overline{X}\right)^{2} \sum \left(Y_{i} - \overline{Y}\right)^{2}}} = \frac{s_{XY}}{\sqrt{s_{XX}} \cdot \sqrt{s_{YY}}}$$

TESTES DE ASSOCIAÇÃO

Unilateral à direita

Unilateral à esquerda

Bilateral

$$H_0: \rho = 0$$

$$H_0: \rho = 0$$

$$H_0: \rho = 0$$

$$H_1: \rho > 0$$

$$H_1: \rho < 0$$

$$H_1: \rho \neq 0$$

Estatística de teste

$$t = \frac{r.\sqrt{n-2}}{\sqrt{1-r^2}}$$

Região de Rejeição:

$$t > t_{n-2,(\alpha)}$$

$$t < -t_{n-2,(\alpha)}$$

$$|t| > t_{n-2,(\alpha/2)}$$

- Índice de Desenvolvimento de Griffiths
 - avaliações motora e intelectual para 9 crianças com a idade de 4 anos

Motor	Intelectua	al
84	77	
73	85	
101	105	
74	86	
88	108	
100	116	
86	96	
95	100	
82	100	

30

CORRELAÇÃO

COEFICIENTE DE DETERMINAÇÃO

Coeficiente de determinação (r²), representa a proporção da variação de Y que é explicada pela regressão

$$r^{2} = \frac{\hat{\beta}_{1}^{2}.s_{XX}}{s_{YY}} = \frac{\hat{\beta}_{1}^{2}.\sum_{i}(X_{i} - \overline{X})^{2}}{\sum_{i}(Y_{i} - \overline{Y})^{2}} = \frac{\text{variação de } Y \text{ explicada pela regressão}}{\text{variação total de } Y}$$

- O coeficiente ρ de Spearman mede a intensidade da relação entre variáveis ordinais. Usa, em vez do valor observado, apenas a ordem das observações.
- Aplica-se igualmente em variáveis intervalares/rácio como alternativa ao R de Pearson, quando neste último se viola a normalidade.
- Nos caso em que os dados não formam uma nuvem "bem comportada", com alguns pontos muito afastados dos restantes, ou em que parece existir uma relação crescente ou decrescente em formato de curva, o coeficiente ρ de Spearman é mais apropriado.

Sem observações repetidas

$$R_{S} = \frac{\sum_{i=1}^{n} \left[R(X_{i}) - \frac{n+1}{2} \right] \left[R(Y_{i}) - \frac{n+1}{2} \right]}{\frac{n(n^{2}-1)}{12}}$$

ou

$$R_S = 1 - \frac{6T}{n(n^2 - 1)}$$
 $T = \sum_{i=1}^{n} [R(X_i) - R(Y_i)]^2$

Com observações repetidas

$$R_{S} = \frac{\sum_{i=1}^{n} R(X_{i})R(Y_{i}) - n\left(\frac{n+1}{2}\right)^{2}}{\sqrt{\sum_{i=1}^{n} R(X_{i})^{2} - n\left(\frac{n+1}{2}\right)^{2}} \cdot \sqrt{\sum_{i=1}^{n} R(Y_{i})^{2} - n\left(\frac{n+1}{2}\right)^{2}}}$$

TESTES DE CORRELAÇÃO DE SPEARMAN

A. Teste bilateral

Ho: As variáveis X e Y são independentes.

 H_1 : (a) Existe uma tendência para os maiores valores de X formarem pares com os maiores valores de Y, ou

(b) Existe uma tendência para os menores valores de X formarem pares com os maiores valores de Y.

R.R: $R_S>c_1$ ou $R_S< c_2$, sendo c_1 o ponto crítico que corresponde a $1-rac{lpha}{2}$ e c_2 o ponto crítico que corresponde a $rac{lpha}{2}$

B. Teste unilateral para correlação positiva

Ho: As variáveis X e Y são independentes.

H₁: Existe uma tendência para os maiores valores de X e de Y formarem pares.

R.R: $R_S>c$, em que c é o ponto crítico que corresponde a 1-lpha

C. Teste unilateral para correlação negativa

Ho: As variáveis X e Y são independentes.

 ${
m H}_1$: Existe uma tendência para os menores valores de X formarem pares com os maiores valores de Y e vice-versa.

R.R: $R_S < c$ sendo c o ponto crítico que corresponde a lpha.

Exemplo (Ficha 13 exerc 15)

O Sr. José foi seleccionado para júri num concurso de beleza. Concorreram oito jovens, e os resultados foram registados.

As idades são também apresentadas porque se suspeita que o Sr. José tem um favoritismo em relação às mais jovens. Verifique se existe ou não favoritismo.

		$R(X_i)$	lugar	$R(Y_i)$	$R(X_i)*R(Y_i)$	$R(X_i)^2$	$R(Y_i)^2$
Amélia	17 anos	2	1	1	2	4	1
Bela	16 anos	1	2	2,5	2,5	1	6,25
Carolina	18 anos	4	2	2,5	10	16	6,25
Deolinda	20 anos	6,5	4	4	26	42,25	16
Eva	18 anos	4	5	5	20	16	25
Francisca	18 anos	4	6	6	24	16	36
Georgina	20 anos	6,5	7	7,5	48,75	42,25	56,25
Helena	23 anos	8	7	7,5	60	64	56,25
Somas		36		36	193,25	201,5	203

$$R_{S} = \frac{\sum_{i=1}^{n} R(X_{i})R(Y_{i}) - n\left(\frac{n+1}{2}\right)^{2}}{\sqrt{\sum_{i=1}^{n} R(X_{i})^{2} - n\left(\frac{n+1}{2}\right)^{2}} \cdot \sqrt{\sum_{i=1}^{n} R(Y_{i})^{2} - n\left(\frac{n+1}{2}\right)^{2}}} = \frac{193,25 - 8*4,5^{2}}{\sqrt{201,5 - 8*4,5^{2}}*\sqrt{203 - 8*4,5^{2}}} = 0,7765$$