An Introduction to Mathematics For Political Science Problem Set 1

You are encouraged to work in groups and actively participate on the Piazza page. Submitted solutions must be your individual work. Do not use a calculator or search for solutions. Show all of your work. Submit typed solutions or scans of handwritten solutions as a PDF by June 21.

Set Basics

- 1. Let A = (40, 60) and B = [50, 70].
 - a) Is $A \subset B$, $B \subset A$, both, or neither?
 - b) What is $A \cup B$?
 - c) What is $A \cap B$?
 - d) Write three elements of the Cartesian product $A \times B$.
- 2. Identify whether the following sets are (a) open, closed, or neither; (b) bounded; (c) compact; (d) convex:
 - a) (0,1)
 - b) [0, 1]
 - c) (0,1]
 - d) $[0,\infty)$
 - $e) (0, \infty)$

- f) $[0,1] \cup [2,3]$
- g) $[0,1] \times [0,1]$
- h) $(0,3] \cap [1,4]$
- i) $[0,5] \setminus \{1,2\}$
- 3. Express the following sentences in mathematical notation:
 - a) A is the set of all real numbers less than or equal to seven, excluding zero and four.
 - b) B is the intersection of the natural numbers and the real numbers between π and 30.5.
 - c) For all epsilon greater than zero, there exists a delta greater than zero.
 - d) The set of all even integers between 5 and 21.

Algebra

- 4. Simplify into one term or evaluate the following:
 - a) $y \cdot y \cdot y \cdot y$
 - b) $(-a)(-b)^3 b^2 + a^3$
 - c) (4b+2)(a-5)
 - d) $\frac{5!}{2!}$
 - e) $\sum_{i=1}^{3} (\frac{1}{3})^i$
 - f) $\sum_{i=2}^{5} 2^{i}$
 - g) $\prod_{i=1}^{3} (\frac{1}{3})^i$
 - h) $\frac{48}{4} 6 \cdot 9$
 - i) $(3^3 + (-5)) \cdot 3 (-7)$
 - j) $[6 + (\frac{-66}{11})] \cdot (-2)^3$
 - k) $\frac{y-11}{5} + \frac{y+12}{3}$
- 5. Solve the following for x:
 - a) 5(-3x-2) (2x-3) = -4(4x+5) + 13
 - b) $8x^2 = 15 14x$

c)
$$x^2 - 3x + 4 = 2(x - 1)$$

d)
$$-6 > 5x + 5 + 4$$

e)
$$-2(x+1)+4<10$$

f)
$$2\ln(2x+1) - 10 = 0$$

g)
$$3^x e^{4x} = e^7$$

Functions

6) Find the image/range of x^2 on the domain [-3, 3].

7) Let $f(x) = x^2 - 4x + 2$ and g(x) = 3x - 7. Find (a) f(x) - g(x); (b) f(x) + g(x); (c) f(g(x)); and (d) g(f(x)). Evaluate each for x = 2.

8) Identify whether each of the following functions $f: \mathbb{R} \to \mathbb{R}$ is (a) surjective/onto; (b) injective/one-to-one; (c) bijective.

a)
$$f(x) = x^2$$

b)
$$f(x) = x^3 - x$$

c)
$$f(x) - e^x$$

d)
$$f(x) = x^3$$

9) Find an equation for the inverse for each of the following functions:

a)
$$f(x) = (5x - 1)^3$$

b)
$$f(x) = \frac{x+4}{3x-5}$$

c)
$$f(x) = e^{5x-1}$$

10) Evaluate each of the following limits or show that they do not exist:

a)
$$\lim_{x\to 5} \frac{x^2-25}{x^2+x-30}$$

b)
$$\lim_{x\to -1} \frac{x^3}{(x+1)^2}$$

c)
$$\lim_{x\to 2} \frac{x^2+4x-12}{|x-2|}$$

d)
$$\lim_{x\to\infty} \frac{x^2-1}{2x^2+1}$$

e)
$$\lim_{x \to \infty} (\frac{x^3}{x^2 + 2} - x)$$

f)
$$\lim_{x\to\infty} \frac{\sqrt{x^2+1}}{x}$$

11) Determine whether the following functions are continuous at the specified value. Use limits where appropriate. You may find sketching the graph of each function to be helpful.

a)
$$f(x) = \frac{x^2+1}{x^3+1}$$
 at $x = -1$

b)
$$f(x) = \begin{cases} 3x - 5 & \text{if } x \neq 1 \\ 2 & \text{if } x = 1 \end{cases}$$
 at $x = 1$

b)
$$f(x) = \begin{cases} 3x - 5 & \text{if } x \neq 1 \\ 2 & \text{if } x = 1 \end{cases}$$
 at $x = 1$
c) $f(x) = \begin{cases} \frac{x - 6}{x - 3} & \text{if } x < 0 \\ 2 & \text{if } x = 0 \\ \sqrt{4 + x^2} & x > 0 \end{cases}$ at $x = 0$