2.15 Introducción a las transformaciones lineales

Representación matricial

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

$$A\vec{x} = b$$

Representacion vectorial

$$x_1\vec{a}_1 + x_2\vec{a}_2 + \ldots + x_n\vec{a}_n = \vec{b}$$

LA IDEA DE TRANSFORMACION

Matriz A "actua" sobre vector x para producir un nuevo vector Ax

Ejemplo

$$\begin{pmatrix} 4 & -3 & 1 & 3 \\ 2 & 0 & 5 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 5 \\ 8 \end{pmatrix}$$

X

$$\begin{pmatrix} 4 & -3 & 1 & 3 \\ 2 & 0 & 5 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 4 \\ -1 \\ 3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Resolver *A*x=b:

Encontrar todos los vectores $x \in \mathbb{R}^4$ que se transformen en el vector $b \in \mathbb{R}^2$ bajo la acción de multiplicar por A

Función:

Coorespondencia entre x y Ax

Transformación

Transformación (mapeo, función) $T: \mathbb{R}^n \to \mathbb{R}^m$

 \mathbb{R}^n , dominio de *T*

 \mathbb{R}^m , codominio de *T*

 $T(x) \in \mathbb{R}^m$ es la imagen de x, para $x \in \mathbb{R}^n$

El conjunto de todas las imágenes $T(x) \in \mathbb{R}^m$ es el rango de T

Transformaciones Matriciales

Para cada $\vec{x} \in \mathbb{R}^n$, $T(\vec{x})$ se calcula (está dada por la regla) $A(\vec{x})$, donde A es una matriz $m \times n$

Dominio de T es \mathbb{R}^n . Matriz A con n columnas

Codominio de T es \mathbb{R}^m . Matriz A con m renglones

Ejemplo

Sea transformación $T: \mathbb{R}^2 \to \mathbb{R}^3$, definida por la regla $T(\vec{x}) = A\vec{x}$ donde

$$A = \begin{pmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{pmatrix}; \quad \mathbf{y} \quad \vec{b} = \begin{pmatrix} 3 \\ 2 \\ -5 \end{pmatrix}; \quad \vec{u} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}; \quad \vec{c} = \begin{pmatrix} 3 \\ 2 \\ 5 \end{pmatrix}$$

Preguntas:

- 1. Encontrar T(u), la imagen de u bajo T
- 2. Encontrar una *x* cuya imagen bajo *T* sea *b*
- 3. Existe mas de una *x* cuya imagen bajo *T* sea *b*?
- 4. Determinar si c está en el rango de T

1. Encontrar T(u), la imagen de u bajo T. Respuesta

$$T(\vec{u}) = A\vec{u} = \begin{pmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 5 \\ 1 \\ -9 \end{pmatrix}$$

2. Encontrar una *x* cuya imagen bajo *T* sea *b*. Respuesta

$$T(\vec{x}) = A\vec{x} = \begin{pmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ -5 \end{pmatrix} \qquad \begin{pmatrix} 1 & -3 & 3 \\ 3 & 5 & 2 \\ -1 & 7 & -5 \end{pmatrix} \sim \begin{pmatrix} 1 & -3 & 3 \\ 0 & 14 & -7 \\ 0 & 4 & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & -3 & 3 \\ 0 & 1 & -0.5 \\ 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1.5 \\ 0 & 1 & -0.5 \\ 0 & 0 & 0 \end{pmatrix}$$

Por lo tanto, para el vector $\vec{x} = \begin{pmatrix} 1.5 \\ -0.5 \end{pmatrix}$, la imagen de \vec{x} bajo T es \vec{b}

3. Existe mas de una x cuya imagen bajo T sea b? Respuesta

La ecuación que representa Ax=b, por inciso anterior, tiene solo una solución. Sólo un vector x cuya imagen es el vector b

4. Determinar si *c* está en el rango de *T*. Respuesta.

$$\begin{pmatrix} 1 & -3 & 3 \\ 3 & 5 & 2 \\ -1 & 7 & 5 \end{pmatrix} \sim \begin{pmatrix} 1 & -3 & 3 \\ 0 & 14 & -7 \\ 0 & 4 & 8 \end{pmatrix} \sim \begin{pmatrix} 1 & -3 & 3 \\ 0 & 1 & 2 \\ 0 & 14 & -7 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1.5 \\ 0 & 1 & 2 \\ 0 & 0 & -35 \end{pmatrix}$$

Ecuación 3 es degenerada. Por lo tanto el sistema es inconsistente y no tiene solución.

Se concluye que vector c no está en el rango de T

Otro Ejemplo

$$\mathbf{Si} \ A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

entonces la transformación $\vec{x} \mapsto A\vec{x}$ proyecta puntos de \mathbb{R}^3 sobre el plano x_1x_2

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix}$$

Transformaciones lineales

•Teorema

Si *A* es una matriz $m \times n$, \vec{u} y $\vec{v} \in \mathbb{R}^n$ y $c \in \mathbb{R}$, entonces

1.
$$A(\overrightarrow{u} + \overrightarrow{v}) = A(\overrightarrow{u}) + A(\overrightarrow{v})$$

$$2. \vec{A(cu)} = c\vec{A(u)}$$

Definición:

Una transformación T es lineal si y solo si

1.
$$T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$$
 para todo \vec{u} , \vec{v} en el dominio de T

2.
$$T(\vec{cu}) = cT(\vec{u})$$
 para todo \vec{u}, c

•En otras palabras, las transformaciones lineales preservan las operaciones de suma de vectores y multiplicación por un escalar

Toda transformación matricial es una transformación lineal

Otras Propiedades

Si *T* es una transformacion lineal, entonces

1.
$$T(\vec{0}) = \vec{0}$$

<u>Demostración</u>

Hipótesis: T es una transformacion lineal

Entonces $T(\vec{0}) = T(\vec{0u}) = 0$ $\vec{0}$ por propiedad 2 de teorema anterior

Se concluye que $T(\vec{0}) = \vec{0}$

2. $T(c\vec{u} + d\vec{v}) = cT(\vec{u}) + dT(\vec{v})$ para todo \vec{u} , \vec{v} en el dominio de T y escalares c,d

Esto es una combinación lineal!!

Extendiendo para *n* vectores: principio de superposición (e.g. Si una señal de entrada es una combinación lineal de sus señales de entradas, la respuesta del sistema es la misma combinación lineal de respuestas a las señales individuales)

Ejemplo

 Compañía que fabrica productos B y C

Costos por peso producido

Producto	В	С
Costos		
Materiales	0.45	0.40
Mano de Obra	0.25	0.35
Generales	0.15	0.15

Matriz de costos unitarios

$$U = \begin{pmatrix} 0.45 & 0.40 \\ 0.25 & 0.35 \\ 0.15 & 0.15 \end{pmatrix}$$

Sea $\vec{x} = (x_1, x_2)$ vector de producción x_1 , pesos de producción del producto B x_2 , pesos de producción del producto C

Sea $T: \mathbb{R}^2 \to \mathbb{R}^3$ definida por la regla

$$T(\vec{x}) = U\vec{x} = x_1 \begin{pmatrix} 0.45 \\ 0.25 \\ 0.15 \end{pmatrix} + x_2 \begin{pmatrix} 0.40 \\ 0.35 \\ 0.15 \end{pmatrix}$$

Mapeo transforma pesos producidos por producto en una lista de costos totales

- 1. Si producción aumenta por 4 (i.e de x a 4x) entonces los costos se incrementan en la misma proporcion i.e de T(X) a 4T(X)
- 2. Si x y y son vectores de producción, entonces el costo asociado a la producción combinada x+y es la suma T(x)+T(y)

Cuestiones de Existencia y Unicidad

Una función $T: \mathbb{R}^n \to \mathbb{R}^m$ es suprayectiva (surjective) o "sobre" (onto) \mathbb{R}^m si cada $\vec{b} \in \mathbb{R}^m$ es la imagen de por lo menos un $\vec{x} \in \mathbb{R}^n$ (i.e. el rango es el codominio)

Una función $T: \mathbb{R}^n \to \mathbb{R}^m$ es inyectiva si y solo si cada $\vec{b} \in \mathbb{R}^m$ es la imagen de a lo mas un $\vec{x} \in \mathbb{R}^n$ T es inyectiva si y solo si $T(\vec{x}) = \vec{b}$ tiene una solución única o no tiene solución

Ejemplo

$$A = \begin{pmatrix} 1 & -4 & 8 & 1 \\ 0 & 2 & -1 & 3 \\ 0 & 0 & 0 & 5 \end{pmatrix} \qquad T : \mathbb{R}^4 \to \mathbb{R}^3 \qquad \text{es una función inyectiva?}$$

- 1. Matriz en forma escalonada. Un pivote en cada renglón
 - •Por lo tanto, sel asociado es consistente. Esto es, existe solución En otras palabras $T: \mathbb{R}^4 \to \mathbb{R}^3$ mapea dominio a su codominio
- 2. Sel asociado a A tiene x_3 como variable libre. Por lo tanto, existen múltiples soluciones

Esto es, cada b es la imagen de mas de un vector x

Por lo tanto, T no es inyectiva

Para terminar

•Teorema

Sea $T: \mathbb{R}^n \to \mathbb{R}^m$ una transformación lineal.

T es inyectiva si y solo si la ecuación $T(\vec{x}) = \vec{0}$ tienen solo la solución trivial

Demostración →

Hipótesis: T es inyectiva

Entonces, cada $\vec{b} \in \mathbb{R}^m$ es la imagen de solo un $\vec{x} \in \mathbb{R}^n$

Entonces, la ecuación $T(\vec{x}) = \vec{0}$ tienen una solución

Como $T(\vec{x}) = \vec{0}$ es un sel homogeneo y tiene solo una solución

Entonces, $T(\vec{x}) = \vec{0}$ tiene solo la solución trivial (por teorema existencia solución sel homogeneo)

Se concluye que la ecuación $T(\vec{x}) = \vec{0}$ tienen solo la solución trivial

Demostración ← como ejercicio

Otras preguntas importantes

- Existe una sola expresión matricial (i.e. forma canónica matricial) para una transformación?
- Como saber si una transformación es inyectiva sin tener que analizar el sistema homogéneo?
- Como establecer una transformación suprayectiva?
- Preguntas a contestar en el capítulo 4. Espacios vectoriales