Validation and annotation of SARS-CoV-2 sequences for GenBank using VADR

Eric Nawrocki Staff Scientist

Computational Biology Branch National Center for Biotechnology Information National Library of Medicine

GenBank indexers handle incoming sequence submissions

SOFTWARE Open Access

VADR: validation and annotation of virus sequence submissions to GenBank

Alejandro A. Schäffer^{1,2}, Eneida L. Hatcher², Linda Yankie², Lara Shonkwiler^{2,3}, J. Rodney Brister², Ilene Karsch-Mizrachi² and Eric P. Nawrocki^{2*}

- general tool for reference-based annotation of viral sequences
- used for dengue virus and norovirus submissions since 2018
- used for SARS-CoV-2 submissions since March 2020

VADR assists GenBank indexers: Each sequence PASSes or FAILs

Indexers decide fate of most FAILing sequences but some are sent directly back to submitter with error reports

VADR builds a reference model of a RefSeq and its features

VADR validates and annotates each input sequence using its best-matching model

- Each sequence S proceeds through 4 stages:
 - 1. Classification
 - 2. Coverage determination
 - 3. Alignment
 - 4. Protein validation

Different types of alerts are identified and reported at each stage

code	S/F	error message	description
Fatal alerts	detecte	ed in the classification stage	
noannotn*	S	NO_ANNOTATION	no significant similarity detected
revcompl*	S	REVCOMPLEM	sequence appears to be reverse complemented
incsbgrp	S	INCORRECT_SPECIFIED_SUBGROUP	score difference too large between best overall model and best specified
			subgroup model
incgroup	S	INCORRECT_SPECIFIED_GROUP	score difference too large between best overall model and best specified
			group model
Non-fatal a	erts de	tected in the classification stage	
qstsbgrp	S	QUESTIONABLE_SPECIFIED_SUBGROUP	best overall model is not from specified subgroup
qstgroup	S	QUESTIONABLE_SPECIFIED_GROUP	best overall model is not from specified group
indfclas	S	INDEFINITE_CLASSIFICATION	low score difference between best overall model and second best model
			(not in best model's subgroup)
lowscore	S	LOW_SCORE	score to homology model below low threshold

Stage 2: Coverage determination

Search each sequence with best-matching model (HMMER3 full pipeline)

Stage 2: Coverage determination

Search each sequence with best-matching model (HMMER3 full pipeline)

code	S/F	error message	description
Fatal alerts detected in the coverage stage			
lowcovrg	S	LOW_COVERAGE	low sequence fraction with significant similarity to homology model
dupregin	S	DUPLICATE_REGIONS	similarity to a model region occurs more than once
discontn	S	DISCONTINUOUS_SIMILARITY	not all hits are in the same order in the sequence and the homology model
indfstrn	S	INDEFINITE_STRAND	significant similarity detected on both strands
lowsim5s	S	LOW_SIMILARITY_START	significant similarity not detected at 5' end of the sequence
lowsim3s	S	LOW_SIMILARITY_END	significant similarity not detected at 3' end of the sequence
lowsimis	S	LOW_SIMILARITY	internal region without significant similarity
Non-fatal alerts detected in the coverage stage			
biasdseq	S	BIASED_SEQUENCE	high fraction of score attributed to biased sequence composition

Stage 3: Alignment and feature mapping

Align each sequence to its best-matching model (Infernal's cmalign)

Stage 3: Alignment and feature mapping

Align each sequence to its best-matching model (Infernal's cmalign)

gap or low confidence at feature boundary (indf5gap, indf3gap, indf5loc, indf3loc alert)

code	S/F	error message	description
Fatal alerts	detect	ed in the annotation stage	
unexdivg*	S	UNEXPECTED_DIVERGENCE	sequence is too divergent to confidently assign nucleotide-based annotation
$noftrann^*$	S	NO_FEATURES_ANNOTATED	sequence similarity to homology model does not overlap with any features
mutstart	F	MUTATION_AT_START	expected start codon could not be identified
mutendcd	F	MUTATION_AT_END	expected stop codon could not be identified, predicted CDS stop by homology is invalid
mutendns	F	MUTATION_AT_END	expected stop codon could not be identified, no in-frame stop codon exists 3' of predicted valid start codon
mutendex	F	MUTATION_AT_END	expected stop codon could not be identified, first in-frame stop codon exists 3' of predicted stop position
unexleng	F	UNEXPECTED_LENGTH	length of complete coding (CDS or mat_peptide) feature is not a multiple of 3
cdsstopn	F	CDS_HAS_STOP_CODON	in-frame stop codon exists 5' of stop position predicted by homology to reference
peptrans	F	PEPTIDE_TRANSLATION_PROBLEM	mat_peptide may not be translated because its parent CDS has a problem
pepadjcy	F	PEPTIDE_ADJACENCY_PROBLEM	predictions of two mat_peptides expected to be adjacent are not adjacent
indfantn	F	INDEFINITE_ANNOTATION	nucleotide-based search identifies CDS not identified in protein-based search
indf5gap	F	INDEFINITE_ANNOTATION_START	alignment to homology model is a gap at 5' boundary
indf5loc	F	INDEFINITE_ANNOTATION_START	alignment to homology model has low confidence at 5' boundary
indf3gap	F	INDEFINITE_ANNOTATION_END	alignment to homology model is a gap at 3' boundary
indf3loc	F	INDEFINITE_ANNOTATION_END	alignment to homology model has low confidence at 3' boundary
lowsim5f	F	LOW_FEATURE_SIMILARITY_START	region within annotated feature at 5' end of sequence lacks significant similarity
lowsim3f	F	LOW_FEATURE_SIMILARITY_END	region within annotated feature at 3' end of sequence lacks significant similarity
lowsimif	F	LOW_FEATURE_SIMILARITY	region within annotated feature lacks significant similarity

Stage 4: Protein validation (Alejandro Schäffer)

Compare each predicted CDS to model (RefSeq) proteins with BLASTX

Stage 4: Protein validation (Alejandro Schäffer)

Compare each predicted CDS to model (RefSeq) proteins with BLASTX

code	S/F	error message	description	
Fatal alert	Fatal alerts detected in the protein validation stage			
cdsstopp	F	CDS_HAS_STOP_CODON	stop codon in protein-based alignment	
indfantp	F	INDEFINITE_ANNOTATION	protein-based search identifies CDS not identified in nucleotide-based search	
indf5plg	F	INDEFINITE_ANNOTATION_START	protein-based alignment extends past nucleotide-based alignment at 5' end	
indf5pst	F	INDEFINITE_ANNOTATION_START	protein-based alignment does not extend close enough to nucleotide -based alignment 5' endpoint	
indf3plg	F	INDEFINITE_ANNOTATION_END	protein-based alignment extends past nucleotide-based alignment at 3' end	
indf3pst	F	INDEFINITE_ANNOTATION_END	protein-based alignment does not extend close enough to nucleotide -based alignment 3' endpoint	
indfstrp	F	INDEFINITE_STRAND	strand mismatch between protein-based and nucleotide-based predictions	
insertnp	F	INSERTION_OF_NT	too large of an insertion in protein-based alignment	
deletinp	F	DELETION_OF_NT	too large of a deletion in protein-based alignment	

SARS-CoV-2 sequences in GenBank: Jan 2020 to June 2020

VADR 1.0: functional but slow

SARS-CoV-2 sequences have a lot of ambiguous nucleotides (Ns)

	% of nucleotides	% of seqs w/stretch
virus	that are Ns	of Ns $>=$ 50 nt
Dengue virus	0.0037%	0.0070%
Norovirus	0.296%	0.628%
SARS-CoV-2	1.12%	26.4%

SARS-CoV-2 sequences have a lot of ambiguous nucleotides (Ns)

		% of seqs w/stretch
virus	that are Ns	of Ns $>=$ 50 nt
Dengue virus	0.0037%	0.0070%
Norovirus	0.296%	0.628%
SARS-CoV-2	1.12%	26.4%

VADR 1.1 exploits high similarity (typically > 99.5%) of SARS-CoV-2 sequences to the RefSeq

- blastn replaces hmmer3 in classification and coverage determination stages
- max ungapped blastn alignment region seeds the cmalign alignment

VADR 1.1: 150X speedup on typical sequences

VADR 1.1: 150X speedup on typical sequences

Sequence volume increased dramatically in 2021

Speed and memory bottleneck in VADR 1.1 is cmalign

- VADR 1.2 replaces cmalign with glsearch ('glocal' alignment)
 - lower memory requirement (2G max) opens door for multi-threading

VADR v1.2 is about 10X faster than v1.1

GenBank is now better prepared for large sequence submissions

Besides getting faster, VADR has improved in other ways

Besides getting faster, VADR has improved in other ways

Besides getting faster, VADR has improved in other ways

We actively support (and are helped by) the SPHERES community

- VADR is portable and is run locally by labs on their sequences prior to submission
- SPHERES/CDC alert us of problems with VADR and model coverage

Future improvements: VADR 1.2.1 TODO list

- Review list of seqs that fail VADR but should pass
 - make changes to code and/or models to accommodate them, if possible
- Review VADR error messages, and add parseable position data (SPHERES)
- Update handling of non NNN start/stop codons that translate to X (CDC)

Acknowledgements

NCBI - viral annotation Alejandro Schäffer (now NCI)

Ilene Mizrachi
Colleen Bollin
Linda Yankie
Vincent Calhoun
Susan Schafer
Beverly Underwood
Vasuki Gobu
Sergiy Gotvyanskyy
Alex Kotliarov

Rodney Brister Eneida Hatcher

Lara Shonkwiler Sophia Hu

Wratko Hlavina Eyal Mozes Ron Patterson Sumit Saluja NCBI - leadership

David Landsman Kim Pruitt Steve Sherry Jim Ostell David Lipman

NLM - leadership Patti Brennan Jerry Sheehan Valerie Florance **Software developers**

Sean Eddy (HMMER/Infernal/Easel)
Travis Wheeler (HMMER)
Tom Madden and BLAST team
William Pearson (FASTA/glsearch)
Michael Farrar (HMMER/glsearch)

