Appendix: Frobenius' Method

I will demonstrate this technique. Consider the following differential equation.

$$x^2y'' + 4xy' + (x^2 + 2)y = 0$$

The solution will take the form

$$y = \sum_{n=0}^{\infty} a_n x^{n+s}$$

Substituting this into each terms, we have

$$x^{2}y'' = \sum_{n=0}^{\infty} (n+s)(n+s-1)a_{n}x^{n+s}$$

$$4xy' = \sum_{n=0}^{\infty} 4(n+s)a_{n}x^{n+s}$$

$$x^{y} = \sum_{n=0}^{\infty} a_{n}x^{n+s+2}$$

$$2y = \sum_{n=0}^{\infty} 2a_{n}x^{n+s}$$

Then we put them into table.

Using the terms on x^s column, we have the following indicial equation.

$$s(s-1)a_0 + 4sa_0 + 2a_0 = 0$$
$$a_0 [s(s+3) + 2] = 0$$

Since a_0 cannot be zero, we write

$$s^2 + 3s + 2 = 0$$

By solving the indicial equation we obtain s = (-1, -2). From the x^{n+s} , we obtain the general formula for a_n in terms of a_{n-2}

$$a_n[(n+s)(n+s+3)+2] = -a_{n-2}$$

We also obtain the fact the value of a_1 is zero, proved by the terms in x^{s+1} column

$$a_1[(s+1)(s+4)+2] = 0$$

 $s = (-1, -2)$ $\implies a_0 = 0$

Since we have two value of s, we first consider the case for s = -1. The general a_n formula evaluated into

$$a_n = -\frac{a_{n-2}}{(n-1)(n+2)+2} = -\frac{a_{n-2}}{n^2+n} = -\frac{a_{n-2}}{n(n+1)}$$

The values of a_n for few n are as follows

$$a_2 = -\frac{a_0}{3!}$$

$$a_4 = -\frac{a_2}{4 \cdot 5} = \frac{a_0}{5!}$$

$$a_6 = -\frac{a_4}{6 \cdot 7} = -\frac{a_0}{7!}$$

Thus the solution for this case is

$$y_{-1} = \sum_{n=0}^{\infty} a_n x^{n-1} = \frac{a_0}{x} - \frac{a_0}{3!} x + \frac{a_0}{5!} x^3 - \frac{a_0}{7!} x^5 + \dots$$
$$= \frac{a_0}{x^2} \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots \right) = \frac{a_0}{x^2} \sin x$$

For the case of s = -2, the general a_n formula evaluated into

$$a_n = -\frac{a_{n-2}}{(n-2)(n+1)+2} = -\frac{a_{n-2}}{n^2 - n} = -\frac{a_{n-2}}{n(n-1)}$$

The values of a_n for few n are as follows

$$a_2 = -\frac{a_0}{2!}$$

$$a_4 = -\frac{a_2}{4 \cdot 3} = \frac{a_0}{4!}$$

$$a_6 = -\frac{a_4}{6 \cdot 5} = -\frac{a_0}{6!}$$

Thus the solution for this case is

$$y_{-2} = \sum_{n=0}^{\infty} a_n x^{n-2} = \frac{a_0}{x^2} - \frac{a_0}{2!} + \frac{a_0}{4!} x^2 - \frac{a_0}{6!} x^4 + \dots$$
$$= \frac{a_0}{x^2} \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots \right) = \frac{a_0}{x^2} \cos x$$

Hence the complete form of the solution is

$$y = \frac{a_0}{x^2} \left(\cos x + \sin x\right)$$

Appendix: Differential Equation Study Guide

First Order Equations. General Form of ODE

$$\frac{dy}{dx} = f(x, y)$$

Initial Value Problem

$$y' = f(x, y), \ y(x_0) = y_0$$

Linear Equations. General Form:

$$y' + p(x)y = f(x)$$

Integrating Factor

$$\mu(x) = e^{\int p(x)dx}$$

$$\Longrightarrow \frac{d}{dx} (\mu(x)y) = \mu(x)f(x)$$

General Solution

$$y = \frac{1}{\mu(x)} \left(\int \mu(x) f(x) dx + C \right)$$

Homogeneous Equations. General form

$$y' = f(y/x)$$

Substitution

$$y = zx \implies y' = z + xz'$$

The result is always separable in z:

$$\frac{dz}{f(z) - z} = \frac{dx}{x}$$

Bernoulli Equations. General Form

$$y' + p(x)y = q(x)y^n$$

Substitution

$$z = y^{1-n}$$

The result is always linear in z:

$$z' + (1 - n)p(x)z = (1 - n)q(x)$$

Exact Equations. General Form

$$M(x,y)dx + N(x,y)dy = 0$$

Text for Exactness

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

Solution

$$\phi = C$$

where

$$M = \frac{\partial \phi}{\partial x} \quad \text{ and } \quad N = \frac{\partial \phi}{\partial y}$$

Method for Solving Exact Equations.

- 1. Let $\phi = \int M(x,y)dx + h(y)$
- 2. Set $\frac{\partial \phi}{\partial y} = N(x, y)$
- 3. Simplify and solve for h(y)
- 4. Substitute the result for h(y) in the expression for ϕ from step 1 and then set $\phi = 0$. This is the solution.

Alternatively:

- 1. Let $\phi = \int N(x,y)dy + g(x)$
- 2. Set $\frac{\partial \phi}{\partial x} = M(x, y)$
- 3. Simplify and solve for g(x).
- 4. Substitute the result for g(x) in the expression for ϕ from step 1 and then set $\phi = 0$. This is the solution.

Integrating Factors. Case 1. If P(x, y) depends only on x, where

$$P(x,y) = \frac{M_y - N_x}{N} \implies \mu(y) = e^{\int P(x)dx}$$

then

$$\mu(x)M(x,y)dx + \mu(x)N(x,y)dy = 0$$

is exact.

Case 2. If Q(x,y) depends only on y, where

$$Q(x,y) = \frac{N_x - M_y}{M} \implies \mu(y) = e^{\int Q(y)dy}$$

Then

$$\mu(y)M(x,y)dx + \mu(y)N(x,y)dy = 0$$

is exact.

Second Order Linear Equations General Form of the Equation

$$a(t)y'' + b(t)y' + c(t)y = g(t)$$
 (1)

Homogeneous

$$a(t)y'' + b(t)y' + c(t)y = 0 (2)$$

Standard Form

$$y'' + p(t)y' + q(t)y = f(t)$$
(3)

General Solution. The general solution of (1) or (3) is

$$y = C_1 y_1(t) + C_2 y_2(t) + y_n(t)$$
(4)

where $y_1(t)$ and $y_2(t)$ are linearly independent solutions of (2).

Linear Independence and The Wronskian. Two functions f(x) and g(x) are linearly dependent if there exist numbers a and b, not both zero, such that af(x) + bg(x) = 0 for all x. If y_1 and y_2 are two solutions of (2), then Wronskian

$$W(t) = y_1(t)y_2'(t) - y_1'(t)y_2(t)$$

and Abel's Formula

$$W(t) = Ce^{-\int p(t)dt}$$

and the following are all equivalent:

- 1. $\{y_1, y_2\}$ are linearly independent.
- 2. $\{y_1, y_2\}$ are a fundamental set of solutions.
- 3. $W(y_1, y_2)(t_0) \neq 0$ at some point t_0 .
- 4. $W(y_1, y_2)(t) \neq 0$ for all t.

Initial Value Problem. The initial value problem includes two initial conditions at the same point in time, one condition on y(t) and one condition on y'(t).

$$\begin{cases} y'' + p(t)y' + q(t)y = 0\\ y(t_0) = y_0\\ y'(t_0) = y_1 \end{cases}$$

The initial conditions are applied to the entire solution $y = y_h + y_p$.

Linear Equation With Constant Coefficients. The general form of the homogeneous equation is

$$ay'' + by' + cy = 0 \tag{5}$$

Non-homogeneous

$$ay'' + by' + cy = g(t) \tag{6}$$

Characteristic Equation

$$ar^2 + br + c = 0$$

Quadratic Roots

$$r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \tag{7}$$

The solution of (5) of Real Roots $(r_1 \neq r_2)$

$$y_h = C_1 e^{r_1 t} + C_2 e^{r_2 t} (8)$$

Repeated $(r_1 = r_2)$

$$y_h = (C_1 + C_2 t)e^{r_1 t} (9)$$

Complex $(r = \alpha \pm i\beta)$

$$y_H = e^{\alpha t} (C_1 \cos \beta t + C_2 \sin \beta t) \tag{10}$$

The solution of (6) is $y = y_p + y_h$ where y_h is given by (8) through (10) and y_p is found by undetermined coefficients or reduction of order.

Heuristics for Undetermined Coefficients. Also called Trial and Error

If $f(t) =$	then guess that a particular solution $y_p =$.
$P_n(t)$	$t^s(A_0 + A_1t + \dots + A_nt^n)$
$P_n(t)e^{at}$	$t^s(A_0 + A_1t + \dots + A_nt^n)e^{at}$
$P_n(t)e^{at}\sin bt$	$t^s e^{at} [(A_0 + A_1 t + \dots + A_n t^n) \cos bt$
or $P_n(t)e^{at}\cos bt$	$+(A_0+A_1t+\cdots+A_nt^n)\sin bt]$

Method of Reduction of Order. When solving (2), given y_1 , then y_2 can be found by solving

$$y_1 y_2' - y_1' y_2 = Ce^{-\int p(t)dt}$$

The solution is given by

$$y_2 = y_1 \int \frac{e^{-\int p(x)dx} dx}{y_1(x)^2}$$
 (11)

Method of Variation of Parameters. If $y_1(t)$ and $y_2(t)$ are a fundamental set of solutions to (2) then a particular solution to (3) is

$$y_P(t) = -y_1(t) \int \frac{y_2(t)f(t)}{W(t)} dt + y_2(t) \int \frac{y_1(t)f(t)}{W(t)} dt$$
 (12)

Cauchy-Euler Equation. For ODE

$$ax^2y'' + bxy' + cy = 0 (13)$$

with auxiliary Equation

$$ar(r-1) + br + c = 0$$
 (14)

The solutions of (13) depend on the roots $r_{1,2}$ of (14). For Real Roots

$$y = C_1 x^{r_1} + C_2 x^{r_2}$$

Repeated Root

$$y = C_1 x^r + C_2 x^r \ln x$$

Complex

$$y = x^{\alpha} [C_1 \cos(\beta \ln x) + C_2 \sin(\beta \ln x)] \tag{15}$$

In (15) $r_{1,2} = \alpha \pm i\beta$, where $\alpha, \beta \in \mathbb{R}$

Series Solutions.

$$(x - x_0)^2 y'' + (x - x_0)p(x)y' + q(x)y = 0$$
(16)

If x_0 is a regular point of (16) then

$$y_1(t) = (x - x_0)^n \sum_{k=0}^{\infty} a_k (x - x_k)^k$$

At a Regular Singular Point x_0 , the indicial Equation

$$r^{2} + (p(0) - 1)r + q(0) = 0$$
(17)

First Solution

$$y_1 = (x - x_0)^{r_1} \sum_{k=0}^{\infty} a_k (x - x_k)^k$$

Where r_1 is the larger real root if both roots of (17) are real or either root if the solutions are complex.