Задание 1. Интегральная сумма

Исследуйте интегральную сумму функции x^3 , заданной на отрезке [-1;1,5]:

1.
$$f(x)=x^3$$
 $a=-1;b=1,5$

Возьмем n=5 - кол-во элементарных отрезков

$$\Delta x = \frac{b-a}{n} = \frac{1}{2}$$
 - шаг разбиения

2. Посмотрим, как изменяется фигура при смещении точек внутри элементарных отрезков в крайнее левое, крайнее правое и промежуточное положение.

при n=5:

при n=9:

при n=15:

3. Таким образом, можно заметить, что чем больше n, тем менее площадь покрытия ступенчатой фигурой графика зависит от выбора точек внутри элементарных отрезков, и при $n \to \infty$ эта разница исчезает.

4,5,7.
$$S_n = \sum_{i=1}^n \Delta S_i = \sum_{i=1}^n f(c_i) \Delta x_i$$

n=5:

точка в середине отрезка: $S_5 = 0.5 \left(\frac{-27}{64} - \frac{1}{64} + \frac{1}{64} + \frac{27}{64} + \frac{125}{64} \right) = \frac{125}{128} \approx 0,97656$

левая крайняя: $S_5 = 0.5 \left(-1 - \frac{1}{8} + 1 + \frac{1}{8}\right) = 0$

правая крайняя: $S_5 = 0.5 \left(\frac{-1}{8} + \frac{1}{8} + 1 + 1, 5^3 \right) = \frac{35}{16} = 2,1875$

n=9:

точка в середине отрезка: $S_9 = \frac{5}{18} (...) \approx 1,00357$

левая крайняя: S_9 ≈ 0,4321

правая крайняя: $S_9 \approx 1,6474$

n=15:

точка в середине отрезка: $S_{15} = \frac{1}{6} (...) \approx 1,0113$

левая крайняя: S_{15} ≈ 0,66

правая крайняя: S_{15} ≈1,389

$$\int_{-1}^{1,5} x^3 = \frac{x^4}{4} \Big|_{1}^{1,5} = \frac{1,5^4}{4} - \frac{1}{4} = \frac{65}{64} = 1,015625$$

8. Таким образом, можно заметить, что чем ближе точка разбиения к середине элементарного отрезка, тем ближе значение интегральной суммы к значению интеграла. При этом, чем левее точка разбиения, тем меньше интегральная сумма, и чем правее, тем она больше значения интеграла. При этом, при п, стремящемся к бесконечности, эта разница исчезает (что логично, т.к. определенный интеграл - это предел от интегральной суммы).