

Week 2. Introduction to Supervised Learning

Dr. Shuo Wang

Overview

- Different forms of machine learning
- Supervised learning
- Regression and classification

Machine Learning Problems

Machine learning problems are those that require a model to be built automatically from data, e.g. to make classifications, estimations or predictions.

Forms of Machine Learning

- Three forms: supervised learning, unsupervised learning, reinforcement learning
- Supervised learning
 - The most prevalent form
 - Learning with a teacher
 - Teacher: expected output, label, class, etc.
 - Solve 2 types of problems: classification, regression problems

Example: Spam detection

Input: Emails received

Output: Spam, or not spam

Example: Stock price prediction

 Input: Historical records of stock prices

Output: Next day's stock price

Types of supervised learning

Spam detection

<u>Classification problem</u> predict categorical class labels e.g. the handwritten digit (multi-class)

Stock price prediction

Regression problem
Prediction of a real value
e.g. students' grade scores

Forms of Machine Learning

Unsupervised learning

- Learning without a teacher
- To find hidden structure/insights in data
- Clustering, e.g. product recommendation, sport strategy discovery

Reinforcement learning

- Learning with (delayed) feedback/reward
- Learn series of actions, e.g. chess, robots, ...

Clustering

How does supervised learning work?

How does supervised learning work?

How does supervised learning work?

Formulate supervised learning

- Task:
 - Given some input x,
 - Predict an appropriate output y
- Goal: a function f such that f(x) = y

The learning process:

- 1) Have: examples of input-output pairs \rightarrow training data $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(n)}, y^{(n)})$
- 2) Supervised learning helps find a good $f \rightarrow \text{training/modelling}$
- 3) Given a new input $x^{(n+1)}$, predict its output $y^{(n+1)} \rightarrow \text{prediction}$

Is painting 8 a genuine Mondrian?

Attributes

Labels

Annotated training data

Examples

Number	Lines	Line types	Rectangles	Colours	Mondrian?
1	6	1	10	4	No
2	4	2	8	5	No
3	5	2	7	4	Yes
4	5	1	8	4	Yes
5	5	1	10	5	No
6	6	1	8	6	Yes
7	7	1	14	5	No

NumberLinesLine typesRectanglesColoursMondrian?87294???

Painting 8

How quick will your team complete a project?

(programming language)	(team expertise)	(estimated size)	 (required effort)
Java	low	1000	 10 p-month
C++	medium	2000	 20 p-month
Java	high	2000	 8 p-month

General notations we often use

Lines	Line types	Rectangles	 Mondrian?
	$x^{(}$	(1)	$y^{(1)}$
	$x^{(}$	(2)	$y^{(2)}$
	$x^{(}$	(3)	$y^{(3)}$

Vector notation:

The input of the i-th example

Attributes, d-dimensional

Supervised learning workflow

Pictorially

Regression problem

Housing price prediction.

Classification problem

Breast cancer prediction

Terminology in supervised learning

- Input = attribute(s) = feature(s) = independent variable(s)
- Output = target = response = dependent variable
- Function = hypothesis = predictor

Pause. Is this some magic?

So...

- There is an unknown function we are after.
- We are given the function values at n specific points only (training set)
- Is it really possible to find out the function values at other points?

No!

- Unless we make the right assumptions about the unknown function.
- Each ML algorithm, implicitly or explicitly, makes assumptions.
- There is a zoo of ML algorithms, there is no best one.

How many predictors are there for each case?

Regression problem

Classification problem

Housing price prediction.

Breast cancer prediction

Overfitting and Underfitting

- Fitting the training data too well is BAD! Why?
- Remember the data you actually want to classify, or predict for, is not the same as the training data
 –so learning every irrelevant detail (noise) in a training data set will not help.
- Overfitting happens when the model is more complex than required.
- Underfitting happens when the model is simpler than required.

Applications of Supervised Learning

Handwriting recognition

• When you write an envelope, algorithms can automatically route envelopes through the post.

Computer vision & graphics

 When you go out during lockdown, object detection & vision tracking algorithms can automatically detect compliance with the rules.

Bioinformatics

- Algorithms can predict protein function from sequence.
- Human-computer interaction
 - Algorithms can recognize speech, gestures, intention.

Q/A

Teams Channel for Week2
Office Hour and Dropin Sessions
See Canvas module homepage

