This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-191983

(43)Date of publication of application: 28.07.1998

(51)Int.CI.

C12N 15/09 A01H 5/00 C07H 21/04 C12N 5/10 C12P 21/02 C12Q 1/68 // (C12N 15/09 C12R (C12P 21/02 C12R 1:91

(21)Application number: 09-006793

(71)Applicant: SHOKUBUTSU KOGAKU KENKYUSHO:KK

(22)Date of filing:

17.01.1997

(72)Inventor: HAYASHI YASUYUKI

SHONO MARIKO **FUJIMOTO HIDEYA** TANAKA AKIRA

(54) ESCHERICHIA COLI BETA GENE, PLANT OF FAMILY GRAMINEAE TRANSFORMED WITH THE GENE AND PRODUCTION OF THE PLANT

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain the subject new gene producing Oryza sativa having resistance to higher salts or drying by removing a poly(A) addition signal-like sequence and a palindrome sequence from a gene coding a natural-type Escherichia coli betA protein.

SOLUTION: This new gene has a base sequence obtained by removing a poly(A) addition signal-like sequence and a palindrome sequence from a base sequence of a gene coding a natural-type Escherichia coli betA protein and codes the Escherichia coli betA protein. The gene highly manifests in a plant of family gramineae and the plant of family gramineae transformed by introducing the gene produces and accumulates glycine betaine, then the utility as a crop having resistance to higher salts stress or drying stress can be expected. The gene is obtained by collecting a gene coding a natural-type Escherichia coli betA protein and modifying its base sequence by removing a poly(A) addition signal-like sequence and a palindrome sequence by using a site-specific variation method.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-191983

(43)公開日 平成10年(1998) 7月28日

(51) Int.Cl.*	識別記号	FI
C12N 15/09	ZNA	C12N 15/00 ZNAA
A01H 5/00)	A 0 1 H 5/00 A
CO7H 21/04	1	C 0 7 H 21/04 B
C12N -5/10	· ·	C 1 2 P 21/02 C
C 1 2 P 21/02	2	C 1 2 Q 1/68 A
	審查器	r求 未請求 請求項の数8 OL (全20頁) 最終頁に続く
(21) 出顧番号	特顧平9-6793	(71) 出願人 597007318
•		株式会社植物工学研究所
(22) 出願日	平成9年(1997)1月17日	東京都千代田区丸の内二丁目5番2号
		(72)発明者 林 泰行
特許法第30条第17	項適用申請有り 1996年8月26日~8	神奈川県横浜市鴨志田町1000番地 株式会
月30日 日本分子:	生物学会・日本生化学会開催の「第69	社植物工学研究所内
回日本生化学会大:	会•第19回日本分子生物学会年会 合	(72)発明者 庄野 真理子
同年会」において	文書をもって発表	神奈川県横浜市鴨志田町1000番地 株式会
		社植物工学研究所内
		(72)発明者 藤本 英也
		神奈川県横浜市鴨志田町1000番地 株式会
*		社植物工学研究所内
		(74)代理人 弁理士 遠山 勉 (外2名)
•		最終頁に続く

(54) 【発明の名称】 大腸菌 b e t A遺伝子、該遺伝子で形質転換されたイネ科植物及びその製造方法

(57)【要約】

【課題】 ベタイン産生能を有する形質転換植物を得る。

【解決手段】 天然型betAタンパク質をコードする遺伝子の塩基配列において、poly(A)付加シグナル様配列であるATTATTはATCATCに、AATAACはAACACに、TTTATTはTCATCに、AATAACはATCAACに、TATAACはTACAACに置換し、かつ、パリンドローム配列TGCCGGCTCAGCCGGCAはTGCCGGCTCAGCGGCAに置換する。

【特許請求の範囲】

【請求項1】 天然型大腸菌betAタンパク質をコードする遺伝子の塩基配列からpoly(A)付加シグナル様配列およびパリンドローム配列が除去された塩基配列を有し、かつ、大腸菌betAタンパク質をコードする遺伝子。

【請求項2】 前記poly(A)付加シグナル様配列が、ATT ATT、AATAAC、TITATT、AATATT、ATTAAC、及びTATAACから選ばれる請求項1記載の遺伝子。

【請求項3】 前記パリンドローム配列がTGCCGGCTCAGC CGGCAである請求項1記載の遺伝子。

【請求項4】 天然型betAタンパク質をコードする遺伝子の塩基配列において、poly(A)付加シグナル様配列であるATTATTはATCATCに、AATAACはAACACに、TTTATTはTT CATCに、AATATTはAACATCに、ATTAACはATCAACに、TATAACはTACAACに置換され、かつ、パリンドローム配列TGCCGG CTCAGCCGGCAはTGCCGGGTCAGCGGGCAに置換されることを特徴とする請求項1記載の遺伝子。

【請求項5】 配列表の配列番号1に記載の塩基配列で表されることを特徴とする請求項4記載の遺伝子。

【請求項6】 請求項1~5のいずれか一項に記載の遺 伝子が導入されていることを特徴とするベクター。

【請求項7】 請求項6に記載のベクターをイネ科植物 由来のプロトプラストに導入し、このプロトプラストか らコロニーを形成させた後、該コロニーから植物体を再 生させて得られたイネ科植物。

【請求項8】 請求項6に記載のベクターおよびイネ科植物由来のプロトプラストを液体培地に懸濁し、電気パルスを印加して該ベクターを導入した後、イネ培養細胞を含有する培地で培養しコロニーを形成させ、該コロニーから植物体うを再生させることを特徴とする、大腸菌betAタンパク質を産生するイネ科植物の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、大腸菌由来の適合溶質合成遺伝子、該遺伝子を導入して得られたイネ科植物及びその製造方法に関し、詳細には適合溶質として知られるグリシンベタイン(以下、「ベタイン」と略す)の生合成酵素タンパク質をコードする合成遺伝子及び当該遺伝子を導入することによる耐塩性・耐乾燥性イネ科植物の製造方法に関する。

[0002]

【従来の技術及び発明が解決しようとする課題】近年、生物が高塩類環境や乾燥に適応する機構として、適合溶質(低分子有機化合物、浸透圧調節物質)に関する研究が活発に進められている。例えば、高塩類環境下で、大腸菌は適合溶質として4級アンモニウム化合物のベタインやアミノ酸のプロリンを、細胞内に高濃度蓄積することによって細胞内の浸透圧を高め、環境に適応する。また、耐塩性・耐乾燥性植物も、ベタイン、プロリン、ないしはジメチルスルフォニオプロピオネートのような3

級スルフォニウム化合物、マンニトールのような糖アルコールなどを細胞質に蓄積し、塩類ストレスや乾燥ストレスに適応することが明らかとなった。一方、イネ科の重要な作物、例えばイネ、普及種のトウモロコシなどは、これらの適合溶質を蓄積する能力を欠くために、高塩類環境や乾燥に弱いと考えられている。

【0003】適合溶質のなかでも、ベタインは多くの植 物種で利用されており、また植物細胞内の浸透圧調節以 外の機能、即ち、葉緑体のタンパクの保護作用 (野村 ら、日本植物生理学会1996年度年会講演要旨集,pl4 6) の解明がすすんでいる。そこで、ベタイン生産能の ない植物にベタイン生合成に関わる酵素タンパク質の遺 伝子を導入することによる耐塩性・耐乾燥性作物の育種 に関する研究がさかんになってきた。例えば、林らは、 放線菌が持つコリンオキシダーゼ遺伝子をクローニング し、アラビドプシスで発現させ、ベタイン生産能のある 形質転換体植物を得ることに成功している (日本植物生 理学会1996年度年会講演要旨集,p146)。コリンオ キシダーゼは、前駆体であるコリンからベタインへ一段 階で転換する酵素であるが、その反応の際に、植物細胞 にとって極めて毒性の高い過酸化水素をベタインと等量 産生するという問題がある。

【0004】大腸菌ではベタインは、コリンからベタインアルデヒドへ転換するコリン脱水素酵素と、ベタインアルデヒドからベタインへ転換するベタインアルデヒド脱水素酵素の2つの酵素によって産生される。コリン脱水素酵素はbetA遺伝子にコードされているが、この遺伝子にコードされるタンパクにはベタインアルデヒド脱水素酵素活性もあることが報告されている。野村らは、淡水性ラン藻に大腸菌のbetA遺伝子を導入し、耐塩性の強化に成功した(Plant Physiol.107,703-708(1995))。また、Liliusらは、betA遺伝子をタバコに導入することでストレス耐性の形質転換体植物を得たと報告している

(Bio/Technology, 165(3),849 (1996))。しかし、betA 遺伝子が植物細胞中で発現したという証拠がなく、ベタインが蓄積したことも証明できていない。さらに、農業上重要なイネ科作物においてbetA遺伝子を導入し発現させ、ベタイン産生能のある形質転換体を得たという報告は未だなされていない。

[0005]

【課題を解決するための手段】本発明者らは、betA遺伝子を詳細に解析した結果、遺伝子配列中に植物、とくにイネ科植物での遺伝子発現に好ましくない配列が存在することを見出した。即ち、①転写レベルでの発現を妨げる6カ所のpoly(A)付加シグナル様配列、②翻訳レベルでの発現を妨げるパリンドローム配列である。さらに、betA遺伝子には、イネ科植物遺伝子ではほとんど使用されないコドンが存在することを見出した。そこで、当該遺伝子のイネ科植物での発現を検討した結果、特定の改変遺伝子が、遺伝子導入によりイネ科植物で高発現し、

betA遺伝子産物の酵素タンパク質をコードし、植物体内 にベタインを蓄積させうることを初めて見出し、本発明 を完成するに至った。

【0006】即ち本発明の要旨は、植物中で遺伝子発現させる際に妨げとなる当該遺伝子中のpoly(A)付加シグナル様配列、及びパリンドローム配列がなくなるように改変されたbetA遺伝子(以下、「改変型betA遺伝子」という)、当該遺伝子が導入されたベクター、当該ベクターで形質転換されたイネ科植物およびその製造法に存する。

【0007】本発明において対象となる植物はイネ科植物であり、イネ科に属するものであれば特に制限はされない。具体的にはイネ、ムギ (コムギ、オオムギ、ライムギ等)、ヒエ、アワ、シバ、トウモロコシ等が挙げられ、本発明においては特にイネが好ましい。

[0008]

【発明の実施の形態】以下、本発明につき詳細に説明する。

【0009】<1>本発明の改変型betA遺伝子本発明の改変型betA遺伝子は、天然型大腸菌betAタンパク質をコードする遺伝子の塩基配列から、poly(A)付加シグナル様配列およびパリンドローム配列が除去された塩基配列を有し、かつ、大腸菌betAタンパク質をコードする遺伝子である。poly(A)付加シグナル様配列としてはATTATT、AATAAC、TTTATT、AATATT、ATTAAC、及びTATAACが、パリンドローム配列としてはTGCCGGCTCAGCCGGCAが挙げられる。

【0010】天然型大腸菌betAタンパク質をコードする遺伝子は、Molecular Microbiology, 5(5), 1049 (1991)に記載されている。その塩基配列は、配列表の配列番号2に示すような配列であり、配列番号3に示すアミノ酸配列を有するタンパク質をコードしている。尚、配列番号2に示される塩基配列では、翻訳開始コドンの前にBamHI切断部位の6塩基GGATCCが、終始コドンの27塩基後にSacI切断部位の6塩基GAGCTCが、各々付加され、翻訳開始コドンはTTCからATGに置換されている。

【0011】本発明の遺伝子は、betAタンパク質と機能的に同等のタンパク質をコードし、かつ、イネ科植物内で天然のbetA遺伝子よりも高いレベルで発現されるように、化学的、酵素学的に改変される。ここで、betAタン

パク質と機能的に同等なタンパク質とは、betA遺伝子の コードするタンパク質、すなわち配列表の配列番号3に 示すアミノ酸配列を有するタンパク質、又はこのアミノ 酸配列において1若しくは数個のアミノ酸が欠失、置換 若しくは付加されたアミノ酸配列からなり、かつ、コリ ンからベタインを生成する活性を有するタンパク質であ る。このようなbetAタンパク質と機能的に同等なタンパ ク質をコードするDNAは、例えば野生型betA遺伝子を 基に部位特異的変異法によって取得することができる。 また、野生型betA遺伝子又はこれを有する細胞に変異処 理を行って得られるDNA若しくは細胞微生物から、配 列番号2に記載の塩基配列を有するDNAとストリンジ エントな条件下でハイブリダイズするDNAであって、 コリンからベタインを生成する活性を有するタンパク質 を選択することによっても、欠失、置換若しくは付加さ れた塩基配列を有する遺伝子を得ることができる。ここ でいう「ストリンジェントな条件」とは、いわゆる特異 的なハイブリッドが形成され、非特異的なハイブリッド が形成されない条件をいう。この条件を明確に数値化す ることは困難であるが、一例を示せば、相同性が高い核 酸同士、例えば、60%以上、好ましくは80%以上の 相同性を有するDNA同士がハイブリダイズし、それよ り相同性が低い核酸同士がハイブリダイズしない条件が 挙げられる。

【0012】本発明の改変型betA遺伝子は、天然のbetA遺伝子がコードするアミノ酸配列又はbetAタンパク質と機能的に同等のタンパク質のアミノ酸配列を基にして、これらのアミノ酸配列を変化させることなく、それぞれのアミノ酸のコドンの種類だけを変化させるように改変される。具体的には、次の2点を満たすように改変される。

【0013】 ①遺伝子転写の妨げとなる天然のbetA遺伝子中のpoly(A)付加シグナル様配列を、転写の妨げとならないような他の配列であって、アミノ酸置換を起こさないような配列に置換する。置換後の配列として、具体的には表1に示す配列が挙げられる。これらのpoly(A)付加シグナル様配列のうち、少なくとも1箇所、好ましくは2箇所以上、特に好ましくは全てを置換する。

[0014]

【表1】

置換前の配列	配列番号2に における位置	置換後の配列	配列番号1に における位置
ATTATT	25 ~ 30	ATCATC	19 ~ 24
AATAAC	223 ~ 228	AACAAC	217 ~ 222
TTATT	1048 ~ 1053	TTCATC	1042 ~ 1047
TTATAA	1081 ~ 1086	AACATC	1075 ~ 1080
ATTAAC	11111 ~ 1116	ATCAAC	1105 ~ 1110
TATAAC	1117 ~ 1122	TACAAC	1111 ~ 1116

【0015】 ②遺伝子の翻訳の妨げとなる天然のbetA遺伝子中のパリンドローム配列TGCCGGCTCAGCCGGCA (配列表配列番号2において塩基番号33~49) は、パリンドロームを形成せず、かつ、コードするアミノ酸の置換が起こらないような配列、例えばTGCCGGTCAGCGGCA (配列表配列番号1において塩基番号27~43) に置換する。

及配列番号1において塩を番号21~43)に直接する。
【0016】上記のような置換型betA遺伝子は、例えば、天然型betA遺伝子を鋳型とし、置換しようとする領域を含む63~85塩基程度の合成1本鎖オリゴヌクレオチド(以下、「プライマー」と略す)を用いたポリメラーゼチェインリアクション法(以下、「PCR」と略す(Am. J. Hum. Genet., 37, 172, 1985))による増幅反応を行うことによって、取得することができる。オリゴヌクレオチドの合成は、定法によって行えばよく、その際、プライマー内のアミノ酸のコドンは、イネ科植物でのコドン使用率が1%以下の場合、最大使用率のコドン等、使用率の高いコドンに変えることが好ましい。PCRに用いるプライマーは、betA遺伝子の塩基配列を基に、上記の置換を含むように設計したものを用いればよい。プライマーの配列と、PCR法による改変型betA遺伝子の取

【0017】まず、天然型betA遺伝子の配列のうち、5'末端部分の改変したい塩基配列を含む約300 bpの配列をはさんで63 bpの5'側プライマー①(配列番号6)と63 bpの3'側プライマー②(配列番号7)を合成し、天然betA遺伝子を鋳型としてPCRによって2本鎖DNA(配列番号4において7~290、配列番号1において塩基番号1~275に相当する)を増幅する。以下、このDNA断片を、「DNA断片A」という。尚、プライマー①の5'末端側には、開始コドンの上流に、グルタミン合成酵素の葉緑体移行配列の一部をコードする塩基配列と制限酵素の認識配列(GGATCC)が付加されている。

得法を、以下に例示する。

【0018】次に、85 bpの2本のプライマー ② (配列番号9)及びプライマー ⑤ (配列番号10)を、それぞれの3 末端で約15 bp相補鎖を形成するように合成し、このプライマーを用いたPCRにより、156 bpの2本鎖DNA (配列番号5において78~233、配列番号1において塩基番号1010~1165に相当する)を増幅する。次に得られたDNAとプライマー ③ (配列番号

8) を用いて P C R 反応を行い、226bp の 2 本鎖 D N A (配列番号 5 において 8 ~ 2 3 3、配列番号 1 において 塩基番号 9 4 0 ~ 1 1 6 5 に相当する) を得る。以下、この D N A 断片を、「D N A 断片 B 」という。

【0019】上記のようにして得られるDNA断片A及 びDNA断片Bは、マルチプルクローニングサイトを有 する大腸菌ベクター、例えばpCRTMII (Invitrogen 社製、TA Cloning Kit) にクローニングされる。この 後、クローニングされた各々のDNA断片はSangerら、(Pr oc. Natl. Acad. Sci., 74, 5463-5467, 1977) のジデオキシ法 等によって配列を決定、確認される。各々のDNA断片は 定法により、両端に有する制限酵素部位を利用して制限 酵素で切断後、天然betA遺伝子中の各々のDNA断片が対 応する部分と置き換えることで最終的にbetAタンパク質 をコードする全長の構造遺伝子となる。その一例を、配 列表の配列番号1に示す。尚、この塩基配列において は、表2に示すように、イネ科植物遺伝子で使用頻度の 低いコドンが、アミノ酸の置換を伴わないように他の等 価のコドンに置換されている。本発明においては、これ らのコドンのうち、好ましくは18箇所以上、より好ま しくは20箇所以上、特に好ましくは全てを置換する。

[0020]

【表2】

表 2

コドンの位置	置換前のコドン	置換後のコドン
3	TTT	TTC
80	GGA	GCC
82	GCT	GGC
83	AAA	AAG
86	GGT	GCC
87	GGA	GGC .
325		AAC
327	GGT	GCC
332	TTT	TTC
335	ACT	- ACC
337	GTT	CTC
338	GGT	GGC
343	TTT	TTC
344	GAA	GAC
345	GCA	GCC
346	CGT	GGC
347	GGA	60C
352	CGT	CCC
354	GAA	GAG.
363	CAT	CAC
366	CCA	ccc
367	GTA	GTC
375	AAT	AAC
376	GCA	ecc
378	AAA	AAG
381	GGT .	GGC

【0021】<2>本発明のベクター

本発明のベクターは、上記のようにして得られる改変型 betA遺伝子が導入されたベクターである。改変型betA遺伝子は、イネ科植物中で発現するプロモーターとターミネーター、もしくは必要に応じてイントロンを有するプラスミドベクターに組み込まれる。

【0022】利用するプロモーターとして、例えばCaMV 35S(pBI221: EMBO.J., 6, 3901-3907, 1987)等のカリフラワーモザイクウイルス由来のプロモーター、rbcS(ribu losel.5-bisphosphate carboxylase)、Cab(chlorophylla/b binding protein)等(Science, 244, 174 (1989))、植物中で発現することが確認されたプロモーターが挙げられる。また、構造遺伝子の上流には、蛋白質を葉緑体に移行させるアミノ酸配列 (Plant Molecular Biology, 13,611 (1989)) もしくはミトコンドリアに移行させるアミノ酸配列 (Plant Cell Physiol 34(2):345(1993))を、betAタンパク質との融合タンパクを形成するように付加し、betAタンパク質を葉緑体もしくはミトコンドリアに局在させるか、移行配列は付けずに発現されたbetAタンパク質が細胞質に存在するようにする。

【0023】ターミネーターとしては、例えばカリフラワーモザイクウイルス由来のターミネーター,NOS (ノバ

リン合成酵素) 遺伝子由来のターミネーター等があげられる。また、プロモーターと構造遺伝子の間にイントロンを配するベクターも高発現ベクターとして利用でき、イントロンとしては、例えばトウモロコシAdh1 (アルコールデヒドロゲナーゼ遺伝子) の第一イントロン(Genes &Development, 1, 1183-1200, 1987)、ヒマCat (カタラーゼ遺伝子) の第一イントロン(Tanaka et al., Nucleic Acids Research, 18, 6767-6770, 1990)等があげられる。

【0024】本発明においては更に、ハイグロマイシンフォスフォトランスフェラーゼ遺伝子、ネオマイシンフォスフォトランスフェラーゼ遺伝子、クロラムフェニコールアセチルトランスフェラーゼ遺伝子、βーグルクロニダーゼ遺伝子等から選ばれる2つ以上の外来遺伝子を使用し、かつその1つは目的とするコロニーを選択する際に有効な、いわゆる選択マーカー遺伝子を使用するのが好ましい。かかる選択マーカー遺伝子としては、ハイグロマイシンフォスフォトランスフェラーゼ遺伝子が好ましい。

【0025】<3>本発明のイネ科植物及びその製造法本発明のイネ科植物は、上記ベクターをイネ科植物由来のプロトプラストに導入し、このプロトプラストからコロニーを形成させた後、該コロニーから植物体を再生させて得られる。また、本発明のイネ科植物の製造方法は、上記ベクターおよびイネ科植物由来のプロトプラストを液体培地に懸濁し、電気バルスを印加して該ベクターを導入した後、イネ培養細胞を含有する培地で培養しコロニーを形成させ、該コロニーから植物体を再生させることを特徴とする。

【0026】本発明においては、選択マーカー遺伝子と改変型betA遺伝子を同一のプラスミド中に有するものを使用してもよいし、選択マーカー遺伝子を有するプラスミドと改変型betA遺伝子を有するプラスミドとを併用してもよい。ベクターはイネ科植物を形質転換するのに用いられる。すなわち、イネ科植物由来のプロトプラストを液体培地に懸濁し、電気バルスを印加して当該ベクターを導入した後、イネ培養細胞を含有する培地で培養しコロニーを形成させ、該コロニーから植物体を再生させる方法である(Shimamoto et al., Nature, 337, 274-276, 1989)。

【0027】プロトプラストは次のようにして調製することができる。例えば、日本晴、コシヒカリ、ササニシキ等の栽培イネの完熟及び未熟種子、葉鞘、根の組織に由来するサスペンジョン細胞あるいはカルスを液体培地で培養した後、常法に従い、例えばセルラーゼやマセロザイム等の細胞壁分解酵素を含む酵素液中25~30℃,0~50 r.p.m.の条件で3~16時間程度酵素処理する。酵素処理終了後、濾過して未消化物を除き、ろ液に2~5倍量のKMC液(0.118M塩化カリウム,0.0817M塩化マグネシウム,0.085M塩化カルシウム,pH6.0)(Theo

r. Appl. Genet.,53, 57-63,1978)等を加え遠心分離して、精製されたプロトプラストを得ることができる。

【0028】上記のようにして調製した改変型betA遺伝子を含む発現ベクター、例えば1-100μg/mlと、上記植物由来のプロトプラスト、例えば(2~10)×106個/mlとを、30~200mM塩化カリウム、0~50mM塩化マグネシウム、0.2~0.6Mマニトール、0.1%MESを含むpH5.8の緩衝液中に懸濁し、これに電気パルスを印加してプラスミドをプロトプラスト中に導入する。電気パルス処理は、100~1000μFのコンデンサーを用いて得られる200~1000V/cmの初期電圧の直流パルスで、パルス幅1~50msec程度の条件で印加するのが好適である(特開平1-181791号公報参照)。

【0029】上述のように電気バルス処理したプロトブラストを、例えばR2培地(Plant.Cell. Physiol., 14, 1113, 1973)の無機成分とMS培地(Murashige and Skoog, 15, 473-497, 1962)のビタミン混合液を含む液体培地(R2/MS)あるいはMS培地で、好ましくは窒素源として硝酸カリウムを0.2~0.5%含有する培地に懸濁し、これを1.0~3.0%程度のアガロースを含むR2/MSあるいはMS培地等と等量ずつ混ぜ、速やかにシャーレ中に広げて薄く固める。この時のプロトプラストの濃度は約(5~50)×105個/mlとなるようにするのが好ましい。

【0030】続いて固化したアガロースを5~20mm大の大きさに切断し上記液体培地上で培養する。その際、イネ科植物由来のプロトプラストを使用した場合には、好ましくは培地中にイネ培養細胞を100~300mgFW/シャーレ程度共存させ、20~50r.p.mの回転でゆっくり振とうしながら、暗条件下23~27℃で培養する。イネ培養細胞と共存させる方法は上記の方法のほかに、プロトプラストを含む液体培地を、底にメンプレンフィルターを設けた容器内に入れ、その容器をイネ培養細胞と共に液体培地を入れたシャーレに浸して共存させる方法がある。ここに示すイネ培養細胞は、旺盛に分裂している細かい始えばイネ植物の種子、茎、根あるいは葯より得られたカルスを液体培地中に継代して分裂速度の早い細胞を選抜していく等の公知の方法に準じて容易に得られる。

【0031】培養後3~4週間で、0.5~1mm程度のコロニーが形成される。その際、ベクターに選択マーカー遺伝子としてハイグロマイシンホスホトランスフェラーゼ遺伝子(hph)を導入しておいた場合、培養開始後7~20日にハイグロマイシンを10~100µg/ml程度培養液中に添加し、さらに培養を続けると目的とする形質転換細胞の選択を効率よく行うことができる。次いでこのコロニーを増殖培地、例えばR2培地に植物ホルモン、例えば2,4-ジクロロフェノキシ酢酸(2,4-D)を2mg/1程度、アガロースを0.1~1.0%加えた寒天培地上で2~4週間、照明下(1,000~4,0001ux)、23~27℃で培養し直径3~6mmのカルスを得る。個々のカルスを単独に分離し、さらに、例

えば選択マーカー遺伝子としてhph遺伝子を導入した場合には、ハイグロマイシン20-50 µ g/mlを含む同増殖培地に置床して培養し、ハイグロマイシン耐性を確認する。

【0032】このカルスを、例えば0.5~1.5%アガロースを含むR2/MS培地(但しホルモン無添加あるいはサイトカイニンを1~10mg/l添加)で23~27℃、2,000~4,000luxの条件下で培養すれば2~10週間で不定胚または不定芽の形成が認められる。さらに2~3週間ホルモンを含まないR2/MS培地等で培養することにより、移植可能な幼植物体が得られる。こうして得られた幼植物体は、バーミュキュライト等に移植して成長させると目的とする形質転換されたイネの植物体を得ることができる。

【0033】形質転換細胞、もしくは形質転換植物に遺 伝子が組み込まれていることは、これらからDNAを、 例えばMol. Gen. Genet., 211, 27, 1988に準じた方法 で単離し、PCR法(Am. J. Hum. Genet., 37, 172, 19 85)もしくはサザン法(J. Mol. Biol., 98, 505, 1980) により確認できる。また、形質転換細胞が植物ゲノムに 組み込まれた改変型betA遺伝子を発現していることは、 例えば、改変型betA遺伝子の配列又はその一部をプロー ブとしたノーザン法(Thomas, P. et al., Proc. Natl. Acad. Sci., 77, 5201, 1980)、導入した遺伝子産物 (b etAタンパク質)に対する抗血清を用いたウエスタン法 (Towbin et al., Proc. Natl. Acad. Sci., 76, 4350. 1979) により明らかにできる。導入した遺伝子の翻訳産 物であるbetAタンパク質の酵素活性は、長沢らの方法 (Agr. Biol. Chem., 40(10), 2077 (1976)) により測定で きる。形質転換イネ植物体中のベタイン含量は荒川らの 方法 (Plant Physiol. 29, 1315-1321 (1988))に従って 1H-NMRにより検出・定量できる。

[0034]

【実施例】以下、本発明につき実施例を挙げて具体的に 説明するが、その要旨を越えない限り以下の実施例に限 定されるものではない。

[0035]

【実施例1】未改変betA遺伝子を含む植物用発現ベクターの構築、betA構造遺伝子の化学的、酵素的合成、及びベクターへの結合

(1)未改変betA遺伝子(配列表配列番号 2)を含む植物用発現ベクターの構築カリフラワーモザイクウイルス35 Sプロモーターと、ヒマ カタラーゼ遺伝子のイントロンと、イネのグルタミン合成酵素の葉緑体移行配列をコードする DNAと、 β -グルクロニダーゼ(GUS)構造遺伝子とをこの順序で含み、葉緑体移行配列と β -グルクロニダーゼが融合タンパクのかたちで発現するプラスミドGSC-GUS(日本農芸化学会誌, 69(5), 11-13, (1995))を、10mM Tris-HCI (pH7.5),7mM MgCl 2、7mM 2-メルカプトエタノール,20mM KCl (以後、この組成の反応液をLow bufferと呼ぶ) 100μ 1中で制限酵素Sac I 2un

itsで切断したのち、10mM Tris-HCl (pH7.5), 7mM MgC 12, 7mM 2-メルカプトエタノール, 150mM KCl (以後、この組成の反応液をHigh bufferと呼ぶ) 100μl中で制限酵素BamHI 2unitsで切断し、GUS遺伝子を取り除いた。

【0036】次いで、betA遺伝子(Molecular Microbio logy, 5(5), 1049 (1991))の翻訳開始コドンの前にBamH I切断部位の6塩基GGATCCを付加し、終始コドンの27塩基後にSacI切断部位の6塩基GAGCTCを付加したbetA遺伝子(翻訳開始コドンはTTGからATGに変えてある)(配列表の配列番号2)を、Low buffer 100μl中で制限酵素SacI 2unitsで切断したのち、High buffer 100μl中で制限酵素BamHI 2unitsで切断して得たDNA断片を、先のプラスミドGSC-GUSのGUS遺伝子を取り除いた部分にライゲーションキット(Ligation kit、宝酒造(株))を用いて繋ぎ込み、プラスミドpbet/chl(図1)を得た。

【0037】(2) PCR用プライマーの調製 前述のようにして設計されたbetA遺伝子の塩基配列(配 列表の配列番号1)にしたがって、DNA断片A(配列表 の配列番号4)、DNA断片B(配列表の配列番号5)を PCRによって増幅するためのプライマーに用いるオリ ゴヌクレオチド (配列表の配列番号6~10) を合成し た。オリゴヌクレオチドの調製は、Matteucciら(1981) J. Am. Chem. Soc. 103, 3185-3192およびBeaucage ら、(1981) Tetrahedron Lett. 22, 1859-1862に記載さ れている一般的な手法にしたがって実施した。オリゴヌ クレオチドはすべて、Applied Biosystems 391形DNA合 成装置を用いて、固相ホスホアミダイトトリエステル・ カップリング法で調製した。オリゴマーの個体担体から の脱保護と分離は、標準法に従い28%アンモニア水を用 いて行った。粗製オリゴヌクレオチド混合物は、オリゴ ヌクレオチド精製カートリッジ(OPCカラム、Applied Bi osystems)を用い、Mcbridgら (1988) Biotechniques, 6; 362-367) に記載されているのと同様にして精製し

【0038】(3) PCR法による2本鎖DNA化置換しようとするpoly(A)付加シグナル様配列、及びイネ科植物遺伝子で使用頻度の低いコドンの位置は、前記表1、2に示したとおりである。また、パリンドローム配列は、配列表配列番号2において塩基番号33~49(TGCCGCCTCAGCCGGCA)に存在する。

液(以後(3)の項におけるPCR法による2本鎖DNA化には、プライマーの種類と鋳型DNAが異なる以外は同じ組成の反応液を用いて行った。)をDNAサーマルサイクラー(MJRESEARCH社)を用いて、94 $^{\circ}$ C, 1 min., 54 $^{\circ}$ C, 2 min., 72 $^{\circ}$ C, 3 min. からなるサイクルを30回繰り返し反応させて行った。

【0040】DNA断片 Bは、両端にPstI, BglI部位をもつ226bpの断片で、これは 3本のオリゴヌクレオチドプライマー③④⑤(配列表の配列番号 8、9、10)を用いたPCRによって増幅された。DNA断片 Bは、まずプライマー④および⑤を用いてPCRを行い、156bpのDNAを合成した。PCRは94℃、1 min., 45℃、1 min., 72℃、2 min. の条件で 5 回繰り返し、次に94℃、1 min., 60℃、1 min., 72℃、2 min. の条件で20回繰り返し反応させて行った。続いて、前記のようにして増幅された15 6bpのDNA5 μ lとプライマー③を用いて1回目と同じ反応条件でPCRを行い226bpのDNAを合成した(配列表の配列番号 5)。

【0041】プラスミドの構築は図1~4に従って行った。プラスミドpbet/chlを10mM Tris-HC1(pH7.5), 7mM MgCl2, 7mM 2-mercaptoethanol, 60mM NaCl (以後この組成の反応液をMedium bufferと呼ぶ) 100μ1中で制限酵素BclI 2unitsで切断したのちHigh buffer 100μ1中で制限酵素BamHI 2 unitsで切断し、0.7% Seakem GTGAg arose(FMC社), 1×TBE 緩衝液で電気泳動し4.9 kbp の DNAバンドを切り出した。このバンドを透析チューブに入れ、0.5×TBE 緩衝液中で135mA定電流を流し、ゲルからDNAを泳動して回収した。得られた400μ1のDNA溶液に40μ13M NaOAcおよび1000μ1 100% エタノールを加え、15000 rpmで15分遠心し目的の4.9 kbp DNA 断片C(図1)を精製した。

【0042】ついで、DNA断片Aが挿入された大腸菌べ クター p C R TMII/AをMedium buffer100μ1中で制限酵 素BclI 2 unitsで切断したのちHigh buffer 100μl中で 制限酵素BamHI 2 unitsで切断し、4% NuSieve GTG Agar ose(FMC社), 1×TBE 緩衝液で電気泳動し278 bpのDN Aバンドを切り出した。このバンドを透析チュープに入 れ、0.5×TBE 緩衝液中で135mA定電流を流し、ゲルから DNAを泳動して回収した。得られた400μ1のDNA溶 液に40μl 3M NaOAcおよび1000μl 100% エタノールを 加え、15,000 rpmで15分遠心し目的の278 bp DNA断 片A'(図1)を精製した。精製したDNAそれぞれ約 1/10量をT4 DNA リガーゼを利用したDNALigation Kit(T akara社)を用いてキットのマニュアルに従って全50 μl の反応系で結合し、大腸菌株DH5αに形質転換しクロラ ムフェニコールで選抜することでDNA断片A相当部分が 置き換わったプラスミドpbet/chl/Ml (図1) が導入さ れた菌株を得た。この菌を培養しプラスミドpbet/chl/M 1を精製した。

【0043】プラスミドpbet/chl/MlをLow buffer 100

μ1中で制限酵素SacI 2 unitsで切断したのちHigh buff er 100μl中で制限酵素SalI 2 unitsで切断し、1% Sea kem TG Agarose (FMC社), 1×TBE 緩衝液で電気泳動し1. 9 kbp のDNAバンドを切り出し、透析チューブに入 れ、0.5×TBE 緩衝液中で135mA定電流を流し、ゲルから DNAを泳動して回収した。得られた400μ1のDNA溶 液に40μl 3M NaOAcおよび1000μl 100% エタノールを 加え、15,000 rpmで15分遠心し目的の1.9 kbp DNA断 片D(図2)を精製した。大腸菌ベクターpBluescript R II KS(STRATAGENE社)についても同様にして制限酵素S alI, SacIで切断し精製した2.9 kbp DNA断片E (図 2) を得た。精製したDNAそれぞれ約1/10量をT4 DNA リガーゼを利用したDNA Ligation Kit (Takara社)を用 いてキットのマニュアルに従って全50μ1の反応系で結 合し、大腸菌株DH5αに形質転換しアンピシリンで選抜 することで変異させたbetA構造遺伝子部分が挿入された プラスミドpBS/bet/M1 (図2) が導入された菌株を得 た。この菌を培養しプラスミドpBS/bet/Mlを精製した。 【0044】プラスミドpBS/bet/MlをLow buffer 100 μ1中で制限酵素SacI 2 unitsで切断したのちHigh buff er 100 μl中で制限酵素PstI 2 unitsで切断し、1% Sea kemGTG Agarose (FMC社), 1×TBE 緩衝液で電気泳動し4 kbp のDNAバンドおよび742 bpのDNAバンドを切 り出し、それぞれ透析チューブに入れて0.5×TBE 緩衝 液中で135mA定電流を流し、ゲルからDNAを泳動して 回収した。得られた400μlのDNA溶液に40μl 3M NaO Acおよび1000 µ 1 100% エタノールを加え、15、000 rpmで 15分遠心し目的の4 kbp DNA断片F (図3) と742 bp のDNA断片G(図3)を精製した。742 bpのPstI-Sa cI断片 G はさらにHigh buffer 100 μl中で制限酵素Bgl I 2 unitsで切断し、4% NuSieve GTG Agarose(FMC社), 1×TBE 緩衝液で電気泳動し542 bpのバンドを切り出 し、透析チューブに入れ、0.5×TBE緩衝液中で135mA定 電流を流し、ゲルからDNAを泳動して回収した。得ら れた400µlのDNA溶液に40µl 3M NaOAcおよび1ml 10 0% エタノールを加え、15、000rpmで15分遠心し目的の54 2 bp DNA断片H (図3) を精製した。

【0045】ついで、DNA断片Bが挿入された大腸菌ベクターpCRTMII/B(図3)をHighbuffer 100 μ1中で制限酵素PstI 2 unitsで切断したのちHigh buffer 100 μ1中で制限酵素BglI 2 unitsで切断し、4% NuSieve GT G Agarose(FMC社)、1×TBE緩衝液で電気泳動し205 b pのDNAバンドを切り出し、透析チューブに入れ、0.5×TBE 緩衝液中で135mA定電流を流し、ゲルからDNAを泳動して回収した。得られた400μ1のDNA溶液に40μ1 3M NaOAcおよび1ml 100% エタノールを加え、15,000 rpmで15分遠心し、目的の205 bp DNA断片B'(図3)を精製した。

【0046】205 bpのPstI-BglI断片B'と542 bpのBg II-SacI断片Hを、T4 DNA リガーゼを利用したDNA Liga tion Kit (Takara社) を用いてキットのマニュアルに従って全50 μ lの反応系で結合したのちエタノール沈殿により精製し、次いでそれと4 kbpのDNA断片Fを、T4 DNA リガーゼを利用したDNA Ligation Kit (Takara社) を用いてキットのマニュアルに従って全50 μ lの反応系で結合した。この反応液を用いて大腸菌株DH5 α に形質転換しアンピシリンで選抜することで変異の入ったbetA構造遺伝子部分が挿入されたプラスミドpBS/bet/M2(図3)が導入された菌株を得た。この菌を培養しプラスミドpBS/bet/M2を精製した。

【0047】プラスミドpBS/bet/M2をLow buffer 100 μ l中で制限酵素SacI 2 unitsで切断したのちHigh buffer 100 μ l中で制限酵素SalI 2 unitsで切断し、1% Sea ke m GTG Agarose(FMC社), 1×TBE 緩衝液で電気泳動し、1.9 kbp のDNAバンドを切り出し、透析チューブに入れ、0.5×TBE 緩衝液中で135mA定電流を流し、ゲルからDNAを泳動して回収した。得られた400 μ lのDNA溶液に40 μ l 3M NaOAcおよびlml 100% エタノールを加え、15、000 rpmで15分遠心し目的のDNA断片 I (図4)を精製した。

【0048】プラスミドpbet/chlをLow buffer 100µl中で制限酵素SacI 2 unitsで切断したのちHigh buffer 100µl中で制限酵素SalI 2 unitsで切断し、1% Sea kem GTGAgarose(FMC社), 1×TBE 緩衝液で電気泳動し3.5 k bp のDNAバンドを切り出し、透析チューブに入れ、0.5×TBE 緩衝液中で135mA定電流を流し、ゲルからDNAを泳動して回収した。得られた400µlのDNA溶液に40µl 3M NaOAcおよび1ml 100% エタノールを加え、15,000 rpmで15分遠心し目的のDNA断片J(図4)を精製した。

【0049】変異の入ったbetA構造遺伝子の1.9 kbp Sa lI-SacI断片 I とプラスミドpbet/chlから切り出された 3.5 kbp SalI-SacI断片 J をT4 DNA リガーゼを利用した DNA Ligation Kit (Takara社)を用いてキットのマニュアルに従って全 50μ lの反応系で結合し、この反応液を用いて大腸菌DH5 α に形質転換しクロラムフェニコールで選抜することで変異の入ったbetA構造遺伝子部分が挿入されたプラスミドpbet/chl/M2 (図 4) が導入された菌株を得た。この菌を培養しプラスミドpbet/chl/M2を精製した。

[0050]

【実施例2】合成betA遺伝子の植物中での発現

(1) イネプロトプラストへの形質転換

ベクターpbet/chl/M2はイネ科植物を形質転換するのに 用いられる。すなわち、イネ科植物由来のプロトプラストを液体媒体に懸濁し、電気パルスを印加して当該ベクターを導入した後、イネ培養細胞を含有する培地で培養しコロニーを形成させ、当該コロニーから植物体を再生させる方法である(Shimamoto et al., Nature, 338: 274-276, 1989)。 【0051】プロトプラストは次のようにして調製した。栽培イネ(品種 日本晴)の完熟胚カルスから作製した植え継ぎ後3~5日のサスペンション細胞を、4%セルラーゼRS, 1%マセロザイムR-10, 0.4Mマニトールを含む酵素液(pH5.6)で30℃,3~4時間処理した。酵素処理終了後、濾過して未消化物を除き、ろ液に4倍量のKMC液(0.118M塩化カリウム,0.0817M塩化マグネシウム,0.085M塩化カルシウム,pH6.0;前述の文献参照)を加え、遠心分離して沈降したプロトプラストを集め、更にKMC液で2回洗浄した。

【0052】得られたプロトプラストを、70mM 塩化カリウム, 5mM 塩化マグネシウム, 0.4M マニトール, 0.1% MESを含むpH5.8の緩衝液に8×106個/mlとなるように 懸濁した。

【0053】この懸濁液に上記のようにして調製した遺伝子を含むプラスミドベクター $60\mu g/ml$ 並びにプロモーターとしてCaMV35S、外来遺伝子としてハイグロマイシンホスホトランスフェラーゼ遺伝子及びNOS(ノバリンシンターゼ)あるいはCaMV由来のターミネーターを有するプラスミド、例えばpGL2(Nature, 338: 274-276,1989) $60\mu g/ml$ を添加し、4℃で5分間冷却した後、滅菌したプラスチックセルに移し並行電極を用い、直流の電気バルスを印加した。その際、 $1000\mu F$ のコンデンサーを用いて500V/cmの初期電圧をかけ、バルス幅30msecとした。パルス印加後、4℃で10分間冷却した後、等量のR2/mlのアラストアガロース培地(Mol)。Gen. Genet., 206, 408, 1987)と混合し、100ml0.710ml0.710ml0.710ml0.010ml

【0054】電気バルス処理したプロトプラストを含むアガロースを10mm大の大きさに切断しR2/MS液体プロトプラスト培地が5ml入った直径6cmのプレートに入れ、更に約100mg(FW)のイネ培養細胞をナース細胞として入れた。プロトプラストの培養は約29℃で約10日間,50rpmの回転でゆっくり振とうしながら、暗条件下で培養した。

【0055】このイネ培養細胞は次のようにして調製した。実生のイネの根に由来するカルスを液体培地中で週1回植継ぎ、作製した懸濁培養細胞中に存在する分裂旺盛な細かい細胞(直径1mm)を用いた。10日間培養後、ナース細胞をKMC液で取り除いた。さらに培養2~4日後に20~30μg/mlとなるようにハイグロマイシンBを培地に加え、2~3週間培養した。

【0056】次いでこのアガロース片をR2ソフトアガー培地(2,4-ジクロロフェノキシ酢酸(2,4-D)2mg/l, 6%ショ糖, 0.25%アガロース)に置き培養し、2~4週間後、さらに大きくなったコロニーを個々に分けてR2ソフトアガー培地に移した。このカルスをR2/MS再生培地(3%ソルビトール,2%ショ糖,1%アガロース,pH5.8)に移し、25℃,2,000~4,0001uxの条件下で3~10週間培養す

ると、芽及び根が現れた。芽が2cm程度に成長したところで、R2/MS再生培地を入れたプラスチックボックスに移し、幼植物へと成長させた。さらにバーミュキュライトポットに移植して成育させたところ、成熟した完全な形質転換イネ植物体が得られた。

【0057】(2) PCR法による形質転換細胞のスクリーニング

得られたハイグロマイシン耐性カルスの1部からDNAを抽出した(Mol. Gen. Genet., 211, 27, 1988)。直径約2~3mmのカルス2個を1.5mlマイクロ遠心チュープ内でResuspension buffer (20mM Tris-HCl, 10mM EDTA) 250μlと共にホモゲナイズし、20% SDSを20μl加えて、68℃15分間加温した。ここに、7.5M Ammonium Acetate 150μlを加えて氷上に30分間置いた。15,000 rpm.、4℃、15分間遠心後、上清にエタノール 1ml加えて再度同様の条件で遠心してDNAを沈澱させた。得られたDNAを70%EtOHで洗い、乾燥させた後、TE 緩衝液(10mM Tris-HCl(pH8.0),1mM EDTA)30μlに溶かした。

【0058】このDNAをPCR法によるスクリーニン グに用いた。5' 側プライマーには配列番号1の塩基番 号9~26に相当する塩基配列を有するプライマー、及 び5' 側プライマーには配列番号1の塩基番号1098 ~1114に相当する塩基配列を有するプライマーを用 いた。このプライマーの部位を図5に示す。PCRはプ ライマー濃度各1μM, 10mM Tris-HCl(pH8.3), 1.5mM Mg Cl₂, 50mM KCl, 0.005% Tween 20, 0.005% NP-40, 0.00 1% ゼラチン, dATP, dCTP, dCTP, dTTP各200 μ M, 耐熱 性DNAポリメラーゼ(REPLITHERM Thermostable DNA Pol ymerase (EPISENTRE社)) 5 units、先の方法で調製した DNA5μlを合わせて、全50μlの反応液をDNAサー マルサイクラーPJ1000 (PERKIN-ELMER CETUS社) を用い て、94℃, 1分., 50℃, 2分., 72℃, 3分からなるサイ クルを、30~35回繰り返し反応させて行った。PCR反 応産物を常法のアガロース電気泳動で分析したところ、 図6に見られるようにプラスミドpbet/chl/CM2が組み込 まれた形質転換カルスには1.1 kbpの位置に増幅された DNAが見られた。同様にして多くのハイグロマイシン 耐性カルスをスクリーニングした結果、約30%の効率で カルスに導入されていた。

【0059】(3)導入した遺伝子の転写-mRNAの 検出

先にサザン法により全長の遺伝子が導入された形質転換体植物から全RNAを抽出(Analytical Biochem., 162, 156-159, 1987)し、Oligo-dT kit (宝酒造)を用いてmRNAを抽出した。各mRNA 2μgをノザン法(Thomas, P. et al., Proc. Natl. Acad. Sci., 77, 5201, 1980)で解析した。プローブとしては、配列番号1に示す塩基配列を含む、pbet/chl/M2のBamHI~NotI断片を用いた。このプローブの位置を図5に示す。その結果、図7に示すように形質転換体植物ではbetA遺伝子から予想される

2.0 KbのmRNAを検出した。遺伝子に改変を加えたプラスミドpbet/chl/M2を導入した形質転換体では、もとのプラスミドpbet/chlを導入したものの最大11倍のmRNAが検出された。

【0060】(4)導入した遺伝子の翻訳ーbetAタンパ ク質の検出

大腸菌betAタンパクに対するウサギ抗体を作成し、Blob elらの方法に従って免疫沈降により35Sでラベルした試料中のbetAタンパク質を濃縮し、定法に従ってウェスタン分析をして約60kDaのbetAタンパク質由来のバンドを検出した(図8)。

【0061】(5)導入した遺伝子の翻訳産物のコリン 脱水素酵素活性の検出

形質転換体カルスを 46.5mM K-リン酸緩衝液(pH 7.4), 10% グリセロール,5mMジチオスレイトール, 5 mM EDTA, 5 % ポリビニルピロリドン、1μM PMSF(フェニルメタ ンスルフォニルフルオリド), 1μM MIA (モノヨード酢 酸)を含む抽出液中で磨砕し10,000rpmで15分遠心分離 し上清を得た。これを抽出液中で一晩透析して得られた ものを粗抽出液とした。この粗抽出液のタンパク含量を 測定し、サンプル間の濃度を揃えたのち、400μ1に対 し、91 mM K-リン酸緩衝液(pH 7.4)300 μl, 20mM KCN 5 フェノールナトリウム塩水和物) 50 µ 1, 2.6mM PMS 50 μ1 加えて混ぜ合わせ26℃で5分放置した後、0.73M 塩 化コリンを50μ1加えて600 nmの吸収の減少を2分間測 定した。1分間に1μMのDCPIPを還元する酵素量を1uni tとして活性値を計算したところ、遺伝子に改変を加え たプラスミドpbet/chl/M2を導入した形質転換体では、 もとのプラスミドpbet/chlを導入したものの最大10倍 のコリン脱水素酵素活性が検出された(図9)。

【0062】 (6) 形質転換体植物でのベタインの検出 荒川らの方法 (Plant Physiol. 29, 1315-1321 (1988)) に従い、イネ形質転換植物体からベタインを抽出し、これを過ヨウ素酸塩の形で析出させ重水に溶解し、500 MHz の 1 H-NMRを用いてベタインの蓄積を確認した。同時に内部標準として加えたt-ブタノールの量をもとにベタイン含量を定量した。もとのプラスミドpbet/chlを導入した形質転換体植物では全くベタインが検出されなかったが、遺伝子に改変を加えたプラスミドpbet/chl/M2を導入した形質転換体では $1\sim 2~\mu$ moles/gFW (FW:新鲜重)のベタインが検出された(図10)。これはベタインを蓄積する耐塩性の強いオオムギの数分の1の蓄積量に相当している。

[0063]

【発明の効果】本発明の大腸菌betAタンパク質をコードする遺伝子は、betAタンパク質をコードし、植物細胞中での遺伝子発現の妨げになるpoly(A)付加シグナル様配列およびパリンドローム配列をのぞいたものであることから、イネ科植物において高発現し、かかる遺伝子を導入して形質転換されたイネ科植物はベタインを生産・蓄積し、高塩類ストレスや乾燥ストレスに耐性のある作物としての有用性が期待される。

[0064]

【配列表】

配列番号:1 配列の長さ:1671

配列の型:核酸鎖の数:二本鎖

トポロジー:直鎖状

配列の種類:他の核酸..Genomic DNAを部分的に改変し

たもの

配列の特徴

特徴を表す記号:CDS 存在位置:1..1668 特徴を決定した方法:E

配列

VIG	CAA	TIC	GAC	TAC	ATC	ATC	ATC	GGT	GCC	GGG	TUA	GCG	GGC	AAC	GTT	•	48
Met	Gln	Phe	Asp	Tyr	Ile	Ile	Ile	Gly	Ala	Gly	Ser	Ala	Gly	Asn	Val	•	
1				5					10					15			
CTC	GCT	ACC	CGT	CTG	ACT	GAA	GAT	CCG	AAT	ACC	TCC	GTG	CTG	CTG	CTT		96
Leu	Ala	Thr	Arg	Leu	Thr	Glu	Asp	Pro	Asn	Thr	Ser	Val	Leu	Leu	Leu		•
			20					25					30				
GAA	GCG	GGC	GGC	CCG	GAC	TAT	CGC	TTT	GAC	TTC	CGC	ACC	CAG	ATG	CCC		144
Glu	Ala	Gly	Gly	Pro	Asp	Tyr	Arg	Phe	Asp	Phe	Arg	Thr	Gln	Met	Pro		
		35					40					45					
GCT	GCC		GCA	TTC	CCG	CTA		GGT	AAA	CGC	TAC		TGG	GCC	TAT		192
GCT Ala		CTG					CAG					AAC					192
		CTG					CAG					AAC					192
	Ala 50	CTG Leu	Ala	Phe	Pro	Leu 55	CAG Gln	Gly	Lys	Arg	Tyr 60	AAC Asn	Trp	Ala	Tyr		192 240
Ala	Ala 50 ACG	CTG Leu GAA	Ala CCT	Phe GAA	Pro CCG	Leu 55 TTT	CAG Gln ATG	Gly AAC	Lys AAC	Arg CGC	Tyr 60 CGC	AAC Asn ATG	Trp GAG	Ala TGC	Tyr GGC		
Ala GAA	Ala 50 ACG	CTG Leu GAA	Ala CCT	Phe GAA	Pro CCG	Leu 55 TTT	CAG Gln ATG	Gly AAC	Lys AAC	Arg CGC	Tyr 60 CGC	AAC Asn ATG	Trp GAG	Ala TGC	Tyr GGC		

				•												
Arg	Gly	Lys	Gly	Leu 85	Gly	Gly	Ser	Ser	Leu 90	Ile	Asn	Gly	Met	Cys 95	Tyr	
ATC	CGT	GGC	AAT		CTG	GAT	СТС	GAT		TGG	GCG	CAA	GAA		GGT	336
	Arg															
	Ū	•	100			•		105		*			110		,	
CTG	GAG	AAC	TGG	AGC	TAC	СТС	GAC	TGC	CTG	CCC	TAC	TAC		AAG	GCC	384
	Glu															
	•	115			-		120	•			•	125				
GAG	ACT	CGC	GAT	ATG	GGT	GAA	AAC	GAC	TAT	CAC	GGC	GGT	GAT	GGC	CCG	432
Glu	Thr	Arg	Asp	Met	Gly	Glu	Asn	Asp	Tyr	His	Gly	Gly	Asp	Gly	Pro	
	130				•	135					140					
GTG	AGC	GTC	ACT	ACC	TCC	AAA	CCC	GGC	GTC	AAT	CCG	CTG	TTT	GAA	GCG	480
Val	Ser	Val	Thr	Thr	Ser	Lys	${\tt Pro}$	Gly	Val	Asn	Pro	Leu	Phe	$\hbox{\bf Gl} u$	Ala	
145					150					155				-	160	
ATG	ATT	GAA	GCG	GGC	GTG	CAG	GCG	GGC	TAC	CCG	CGC	ĄCG	GAC	GAT	CTC .	528
Met	Ile	Glu	Ala	Gly	Val	Gln	Ala	Gly	Tyr	Pro	Arg	Thr	Asp	Asp.	Leu	
				165					170					175	·	
	GGT															576
Asn	Gly	Tyr		Gln	Glu	Gly	Phe		Pro	Met	Asp	Arg		Val	Thr	
000			180					185					190			•
	CAG															624
Pro	Gln	195	Arg	Arg	Ala	ser	200	Ala	Arg	GIŸ	lyr		Asp	GIn	Ala	
A A A	TCG		ССТ	AAC	CTC	۸۲۲	_	ССТ	∧~T	CAC	ርርጥ	205	ACC	CAT	CAC	672
_	Ser								•							072
2,0	210		•••	11011	Dou	215	110	*** 8	****	1115	220	MC C	1111	nop ·	1113	
ATC	ATT	TTT	GAC	GGC	AAA		GCG	GTG	GGC	GTC		TGG	CTG	GAA	GGC	720
	Ile															0
225					230					235		_			240	
GAC	AGC	ACC	ATC	CCA	ACC	CGC	GCA	ACG	GCC	AAC	AAA	GAA	GTG	CTG	TTA	768
Asp	Ser	Thr	Ile	Pro	Thr	Arg	Ala	Thr	Ala	Asn	Lys	Glu	Val	Leu	Leu	
				245					250					255		
	GCA															816
Cys	Ala	Gly		Ile	Ala	Ser	Pro			Leu	Gln	Arg		Gly	Val	
000		0.00	260					265					270			
	AAC															864
GIY	Asn		Glu	Leu	Leu	Ala		Phe	Asp	He	Pro		Val	His	Glu	
ጉ ፕል	CCC	275 ccc	ርፐር	ccc	CAA	ል ልጥ	280	CAG	САТ	CAT	ርፕሮ	285	ATC.	ጥለጥ	CTC	012
	Pro															912
DCu	290	Uly	vai	Oly	oru	295	Leu	0111	nop	1115	300	Giu	MEL	1 9 1	Leu	
CAA	TAT	GAG	TGC	AAA	GAA		GTT	TCC	CTC	TAC		GCC	CTG	CAG	TCC	960
	Tyr															300
305	-,-		-,-	-,-	310					315			200	• • • • • • • • • • • • • • • • • • • •	320	
	AAC	CAG	CCG	AAG	•	GGC	GCG	GAG	TGG		TTC	GGC	GGC	ACC		1008
	Asn															
-				325		-			330			-	•	335	-	
GTC	GGC	GCC	AGC	AAC	CAC	TTC	GAG	GCG	GGC	GGC	TTC	ATC	CGC		CGC	1056
Val	Gly	Ala	Ser	Asn	His	Phe	Glu	Ala	Gly	Gly	Phe	Ile	Arg	Ser	Arg	
			340					345	•				350			•

```
GAG GAG TTC GCG TGG CCG AAC ATC CAG TAC CAC TTC CTG CCG GTC GCG
                                                                                    1104
                 Glu Glu Phe Ala Trp Pro Asn Ile Gln Tyr His Phe Leu Pro Val Ala
                         355
                                             360
                 ATC AAC TAC AAC GGC TCG AAC GCC GTG AAG GAG CAC GGC TTC CAG TGC
                                                                                    1152
                 Ile Asn Tyr Asn Gly Ser Asn Ala Val Lys Glu His Gly Phe Gln Cys
                     370
                                         375
                 CAC GTC GGC TCA ATG CGC TCG CCA AGC CGT GGG CAT GTG CGG ATT AAA
                                                                                    1200
                 His Val Gly Ser Met Arg Ser Pro Ser Arg Gly His Val Arg Ile Lys
                                     390
                                                        395
                 TCC CGC GAC CCG CAC. CAG CAT CCG GCG ATT CTG TTT AAC TAC ATG TCG
                                                                                    1248
                 Ser Arg Asp Pro His Gln His Pro Ala Ile Leu Phe Asn Tyr Met Ser
                                                    410
                 CAC GAG CAG GAC TGG CAG GAG TTC CGC GAC GCA ATT CGC ATC ACC CGC
                                                                                    1296
                 His Glu Gln Asp Trp Gln Glu Phe Arg Asp Ala Ile Arg Ile Thr Arg
                                                425
                 GAG ATC ATG CAT CAA CCC GCG CTG GAT CAG TAT CGT GGC CGC GAA ATC
                                                                                    1344
                 Glu Ile Met His Gln Pro Ala Leu Asp Gln Tyr Arg Gly Arg Glu Ile
                                            440
                                                                445
                 AGC CCC GGT GTC GAA TGC CAG ACG GAT GAA CAG CTC GAT GAG TTC GTG
                                                                                    1392
                 Ser Pro Gly Val Glu Cys Gln Thr Asp Glu Gln Leu Asp Glu Phe Val
                     450
                                        455
                 CGT AAC CAC GCC GAA ACC GCC TTC CAT CCG TGC GGT ACC TGC AAA ATG
                                                                                    1440
                 Arg Asn His Ala Glu Thr Ala Phe His Pro Cys Gly Thr Cys Lys Met
                                     470
                                                       475
                 GGT TAC GAC GAG ATG TCC GTG GTT GAC GGC GAA GGC CGC GTA CAC GGG
                                                                                    1488
                 Gly Tyr Asp Glu Met Ser Val Val Asp Gly Glu Gly Arg Val His Gly
                                485
                                                    490
                 TTA GAA GGC CTG CGT GTG GTG GAT GCG TCG ATT ATG CCG CAG ATT ATC
                                                                                    1536
                 Leu Glu Gly Leu Arg Val Val Asp Ala Ser Ile Met Pro Gin Ile Ile
                             500
                                                505
                 ACC GGG AAT TTG AAC GCC ACG ACA ATT ATG ATT GGC GAG AAA ATA GCG
                                                                                   1584
                 Thr Gly Asn Leu Asn Ala Thr Thr Ile Met Ile Gly Glu Lys Ile Ala
                                            520
                 GAT ATG ATT CGT GGA CAG GAA GCG CTG CCG AGG AGC ACG GCG GGA TAT
                                                                                    1632
                 Asp Met Ile Arg Gly Gln Glu Ala Leu Pro Arg Ser Thr Ala Gly Tyr
                     530
                                        535
                 TTT GTG GCA AAT GGG ATG CCG GTG AGA GCG AAA AAA TGA
                                                                                   .1671
                 Phe Val Ala Asn Gly Met Pro Val Arg Ala Lys Lys
                 545
                                     550
                                                        555
【0065】配列番号:2
                                                      生物名:大腸菌(Escherichia coli)
配列の長さ:1710
                                                      株名:K-10
配列の型:核酸
                                                      配列の特徴
鎖の数:二本鎖
                                                      特徴を表す記号:CDS
トポロジー:直鎖状
                                                      存在位置:7..1674
配列の種類:Genomic DNA
                                                      特徴を決定した方法:E
起源
                 GGATCC ATG CAA TTT GAC TAC ATC ATT ATT GGT GCC GGC TCA GCC GGC
                                                                                     48
                        Met Gln Phe Asp Tyr Ile Ile Ile Gly Ala Gly Ser Ala Gly
```

5

		•														
AAC	GTT	CTC	GCT	ACC	CGT	CTG	ACT	GAA.	GAT	CCG	AAT	ACC	TCC	GTG	CTG	96
Asn	Val	Leu	Ala	Thr	Arg	Leu	Thr	Glu	Asp	Pro	Asn	Thr	Ser	Val	Leu	
15					20					25					30	
CTG	CTT	GAA	GCG	GGC	GGC	CCG	GAC	TAT	CGC	TTT	GAC	TTC	CGC	ACC	CAG	144
Leu	Leu	Glu	Ala	Gly	Gly	Pro	Asp	Tyr	Arg	Phe	Asp	Phe	Arg	Thr	Gln	
				·35					40					45		
ATG	CCC	GCT	GCC	CTG	GCA	TTC	CCG	CTA	CAG	GGT	AAA	CGC	TAC	AAC	TGG	192
Met	Pro	Ala	Ala	Leu	Ala	Phe	Pro	Leu	Gln	Gly	Lys	Arg	Tyr	Asn	Trp	
			50				•	55					60			
GCC	TAT	GAA	ACG	GAA	CCT	GAA	CCG	TTT	ATG	AAT	AAC	CGC	CGC	ATG	GAG	240
Ala	Tyr	Glu	Thr	Glu	Pro	Glu	Pro	`Phe	Met	Asn	Asn	Arg	Arg	Met	Glu	•
		65					70					75				
					GGT											288
Cys	Gly	Arg	Gly	Lys	Gly	Leu	Gly	Gly	Ser	Ser	Leu	Ile	Asn	Gly	Met	
	80					85					90		•			
_					AAT				_							336
	Tyr	Ile	Arg	Gly	Asn	Ala	Leu	Asp	Leu	Asp	Asn	Trp	Ala	Gln	Glu	
95					100					105					110	
					TGG											384
Pro	Gly	Leu	Glu		Trp	Ser	Tyr	Leu	Asp	Cys	Leu	Pro	Tyr	Tyr	Arg	
				115					120					125		
					GAT											432
Lys	Ala	Glu		Arg	Asp	Met	Gly		Asn.	Asp	Tyr	His		Gly	Asp	
	000	.:	130	~~~		`		135	222	aa'a			140			
					ACT											480
GIY	Pro		Ser	vaı	Thr	Thr		Lys	Pro	Gly	V,a I		Pro	Leu	Phe	
CAA	ccc	145	A TIVE	C	ccc		150	C+C	000	000	m. c	155	000			=00
					GCG											528
Giu	160	met	116	GIU	Ala		vai	Gin	міа	GIY		Pro	Arg	ınr	Asp	
САТ		A A C	ССТ	ТАТ	CAG	165	CAA	CCT	TTT	CCT	170	ATC	CAT	ccc	ACC .	F76
					Gln											576
175	LCu	non	Oly	1 9 1	180	GIII	oru,	Gly	THE	185	110	Met	nsp	MIG	190	
	ACG	CCG	CAG	ccc	CGT	ccc	CCC	ACC	۸۲۲		CCT	ccc	- ТАТ	CTC		624
					Arg											024
			· · · ·	195	8			501	200			Oly	. , ,	205	пор	
CAG	GCC	AAA	TCG		ССТ	AAC	CTG	ACC		CGT	ACT	CAC	GCT		ACC	672
					Pro											0.2
		_,	210	0				215		8			220		••••	
GAT	CAC	ATC		TTT	GAC	GGC	AAA		GCG	GTG	GGC	GTC		TGG	CTG	720
					Asp											, 20
_		225			•	•	230					235				
GAA	GGC	GAC	AGC	ACC	ATC	CCA	ACC	CGC	GCA	ACG	GCC		AAA	GAA	GTG	768
					Ile											
	240					245		•		•	250		•			
CTG	TTA	TGT	GCA	GGC	GCG	ATT	GCC	TCA	CCG	CAG	ATC	CTG	CAA	CGC	TCC	816
					Ala											
255					260				٠.	265				_	270	
GGC	GTC	GGC	AAC	GCT	GAA	CTG	CTG	GCG	GAG	TTT	GAT	ATT	CCG	CTG	GTG	864
Gly	Val	Gly	Asn	Ala	Glu	Leu	Leu	Ala	Glu	Phe	Asp	Ile	Pro	Leu	Val	

	275	280		285	
CAT GAA TTA CCC	GGC GTC GGC (GAA AAT CTT	CAG GAT CAT C	rg gag atg g	912
His Glu Leu Pro	Gly Val Gly (Glu Asn Leu	Gln Asp His L	eu Glu Met	
290		295	3	00	
TAT CTG CAA TAT	GAG TGC AAA (GAA CCG GTT	TCC CTC TAC C	CT GCC CTG 9	960
Tyr Leu Gln Tyr	Glu Cys Lys (Glu Pro Val	Ser Leu Tyr P	ro Ala Leu	
305	. :	310	315	•	
CAG TGG TGG AAC	CAG CCG AAA	ATC GGT GCG	GAG TGG CTG T	TT GGC GGC 10	800
Gln Trp Trp Asn	Gln Pro Lys	Ile Gly Ala	Glu Trp Leu P	he Gly Gly	
320	325		330		
ACT GGC GTT GGT	GCC AGC AAC	CAC TTT GAA	GCA GGT GGA T	IT ATT CGC 10	056
Thr Gly Val Gly	Ala Ser Asn I	His Phe Glu	Ala Gly Gly P	he Ile Arg	
335	340	•	345	350	
AGC CGT GAG GAA	TTT GCG TGG	CCG AAT ATT	CAG TAC CAT T	TC CTG CCA 11	104
Ser Arg Glu Glu	Phe Ala Trp 1	Pro Asn Ile	Gln Tyr His P	ne Leu Pro	
•	355	360		365	
GTA GCG ATT AAC					152
Val Ala Ile Asn	Tyr Asn Gly	Ser Asn Ala		-	
370		375		80	
CAG TGC CAC GTC				=	200
Gln Cys His Val				is Val Arg	
385		390	395		
ATT AAA TCC CGC					248
Ile Lys Ser Arg		GIn His Pro		he Asn Tyr	
400	405	CLC CLC TTC	410		20.0
ATG TCG CAC GAG					296
Met Ser His Glu		Gin Giu Phe			
ACC CGC GAG ATC	420	רכר ניני ניזיי	425	430 ·	244
Thr Arg Glu Ile					344
im arg did rie	435	440	ASP OIN TYL A	445	
GAA ATC AGC CCC		_	GAT GAA CAG C		392
Glu Ile Ser Pro				•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
450		455		60	
TTC GTG CGT AAC			_		140
Phe Val Arg Asn					
465		470	475	-,	
AAA ATG GGT TAC	GAC GAG ATG	TCC GTG GTT	GAC GGC GAA G	GC CGC GTA 14	188
Lys Met Gly Tyr					
480	485		490		
CAC GGG TTA GAA	GGC CTG CGT	GTG GTG GAT	GCG TCG ATT A	TG CCG CAG 15	536
His Gly Leu Glu	Gly Leu Arg	Val Val Asp	Ala Ser Ile M	et Pro Gln	
495	500		505	-510	
ATT ATC ACC GGG	AAT TTG AAC	GCC ACG ACA	ATT ATG ATT G	GC GAG AAA 15	584
Ile Ile Thr Gly	Asn Leu Asn	Ala Thr Thr	Ile Met Ile G	ly Glu Lys	
	515	520		525	
ATA GCG GAT ATG	ATT CGT GGA	CAG GAA GCG	CTG CCG AGG A	GC ACG GCG 16	532
Ile Ala Asp Met	Ile Arg Gly	Gln Glu Ala	Leu Pro Arg S	er Thr Ala	
530		535		40	
GGA TAT TTT GTG	GCA AAT GGG	ATG CCG GTG	AGA GCG AAA A	AA · 16	574

1710

Gly Tyr Phe Val Ala Asn Gly Met Pro Val Arg Ala Lys Lys

550 TGAGTCGTGA TGTGAACTAA CGCAGGAACC GAGCTC 【0066】配列番号:3 トポロジー:直鎖状 配列の長さ:556 配列の種類:タンパク質 配列の型:アミノ酸 配列 Met Gln Phe Asp Tyr Ile Ile Ile Gly Ala Gly Ser Ala Gly Asn Val Leu Ala Thr Arg Leu Thr Glu Asp Pro Asn Thr Ser Val Leu Leu Leu Glu Ala Gly Gly Pro Asp Tyr Arg Phe Asp Phe Arg Thr Gln Met Pro 40 Ala Ala Leu Ala Phe Pro Leu Gln Gly Lys Arg Tyr Asn Trp Ala Tyr 55 . Glu Thr Glu Pro Glu Pro Phe Met Asn Asn Arg Arg Met Glu Cys Gly Arg Gly Lys Gly Leu Gly Gly Ser Ser Leu Ile Asn Gly Met Cys Tyr Ile Arg Gly Asn Ala Leu Asp Leu Asp Asn Trp Ala Gln Glu Pro Gly Leu Glu Asn Trp Ser Tyr Leu Asp Cys Leu Pro Tyr Tyr Arg Lys Ala 120 Glu Thr Arg Asp Met Gly Glu Asn Asp Tyr His Gly Gly Asp Gly Pro 135 140 Val Ser Val Thr Thr Ser Lys Pro Gly Val Asn Pro Leu Phe Glu Ala 150 155 Met Ile Glu Ala Gly Val Gln Ala Gly Tyr Pro Arg Thr Asp Asp Leu 170 Asn Gly Tyr Gln Glu Gly Phe Gly Pro Met Asp Arg Thr Val Thr Pro Gln Gly Arg Arg Ala Ser Thr Ala Arg Gly Tyr Leu Asp Gln Ala 200 Lys Ser Arg Pro Asn Leu Thr Ile Arg Thr His Ala Met Thr Asp His 215 220 Ile Ile Phe Asp Gly Lys Arg Ala Val Gly Val Glu Trp Leu Glu Gly 235 Asp Ser Thr Ile Pro Thr Arg Ala Thr Ala Asn Lys Glu Val Leu Leu 250 Cys Ala Gly Ala Ile Ala Ser Pro Gln Ile Leu Gln Arg Ser Gly Val Gly Asn Ala Glu Leu Leu Ala Glu Phe Asp Ile Pro Leu Val His Glu 280 Leu Pro Gly Val Gly Glu Asn Leu Gln Asp His Leu Glu Met Tyr Leu 295 Gln Tyr Glu Cys Lys Glu Pro Val Ser Leu Tyr Pro Ala Leu Gln Trp 310 315

Trp Asn Gln Pro Lys Ile Gly Ala Glu Trp Leu Phe Gly Gly Thr Gly

Val Gly Ala Ser Asn His Phe Glu Ala Gly Gly Phe Ile Arg Ser Arg

330

	Glu	Glu		Ala	Trp	Pro	Asn		Gln	Tyr	His	Phe		Pro	Val	Ala	
	T1.	A	355	A	C1	C	4	360	17 1				365	Di.	٥.		
	116	370		ASI	GIY	ser	375	Ala	val	Lys	GIU	380	GIY	Phe	Gln	Cys	
•	His	Val	Gly	Ser	Met	Arg	Ser	Pro	Ser	Arg	Gly	His	Val	Arg	Ile	Lys	
V	385					390					395		•			400	
	Ser	Arg	Asp	Pro	His	Gln	His	Pro	Ala	Lle	Leu	Phe	Asn	Tyr	Met	Ser	
					405					410					415		
	His	Glu	Gln		Trp	Gln	Glu	Pḥe	Arg	Asp	Ala	Ile	Arg	Ile	Thr	Arg	
				420		_			425					430			
	Glu	He		His	Gln	Pro	Ala		Asp	Gln	Tyr	Arg		Arg	Glu	Ile	
	<u>.</u>	ъ	435		0.1	•	٥.	440		٥.	۵.		445				
•	Ser			vai	Glu	Lys		Thr	Asp	Glu	GIn		Asp	Glu	Phe	Val	
	۸	450		۸۱۸	C1	TL	455	DL -	11: -	`D	C	460	T1	C		1	
	465		1115	nıa	Giu	470		rne	піѕ	FIO	475	GIA	inr	Cys	Lys	мет 480	
			Asn	Glu	Met			Vəl	Asn	Glv		e Glw	Ara	Val	His		
	013	1 9 1	пор	oru	485	JCI	Vai	Val	nop	490	oru	Gly	VI B	Val	495	Gly	
,	Leu	Glu	Glv	Leu		Val	Val	Asp	Ala		Ile	Met	Pro	Gln	Ile	Ile	
		-,	,	500					505		,	11100		510	-10	110	
	Thr	Gly	Asn	Leu	Asn	Ala	Thr	Thr			Ile	Gly	Glu		Ile	Ala	
			515					520				-	525	•			
	Asp	Met	Ile	Arg	Gly	Gln	Glu	Ala	Leu	Pro	Arg	Ser	Thr	Ala	Gly	Tyr	
		530					535					540					
	Phe	Val	Ala	Asn	Gly	Met	Pro	Val	Arg	Ala	Lys	Lys					
	545					550					555						
【0067】配列番	号:	4								,	己列の			成DI	NΑ		
配列の長さ:306											列の				_		
配列の型:核酸											持徴を)S		-
鎖の数:二本鎖	<u>.</u>										在位						
トポロジー:直鎖状	配列	าเ								47	手徴を	伏汉	ミレバ	力社	: E		·
•			TCC	CATO	ር ል ጥር ነ	CA A'	ጉጥ ሶሶ	ል <i>ር</i> ጥል (^ AT	ሮልጥሮ	ልጥርር	CTC	CCCC	ርጥር	ACCCC	ĠGCAAC	.00
																GCGGGC	
·																CCGCTA	
																AACCGC	240
																ATGTGC	-
	TAC																306
【0068】配列番	号:	5								Ē	己列の	種類	€ : €	成DI	NΑ		
配列の長さ:238										Ě	2列の	特徵	ć				
配列の型:核酸										华	手徴を	表す	記号	: CI	os		
鎖の数:二本鎖										荐	在位	[置:	1	238			
トポロジー:直鎖状	t			•						华	き徴を	決定	ミした	:方法	: E		
	配歹																
																GTGGCT	
•																CCGCAG	
																CAACTA	
			TCG	AACG	CCGT	GA A	GGAG	CACG	G CT						CAAT	GCGC	238
【0069】配列番	亏:	ь								Ē	己列の	及さ	: 6	3			

配列の型:核酸 配列の特徴 鎖の数:二本鎖 特徴を表す記号:CDS トポロジー:直鎖状 存在位置:1..63 配列の種類:合成DNA 特徴を決定した方法:E 配列 ATGGGATCCA TGCAATTCGA CTACATCATC ATCGGTGCCG GGTCAGCGGG CAACGTTCTC 60 63 【0070】配列番号:7 配列の種類:合成DNA 配列の長さ:63 配列の特徴 配列の型:核酸 特徴を表す記号:CDS 鎖の数:二本鎖 存在位置:1..63 トポロジー:直鎖状 特徴を決定した方法:E 配列 TTGATCAGCG ACGAGCCGCC CAGACCCTTG CCGCGGCCGC ACTCCATGCG GCGGTTGTTC 60 63 【0071】配列番号:8 配列の種類:合成DNA 配列の長さ:85 配列の特徴 配列の型:核酸 特徴を表す記号:CDS 鎖の数:二本鎖 存在位置:1..85 トポロジー:直鎖状 特徴を決定した方法:E 配列 CTCTACCCTG CCCTGCAGTG GTGGAACCAG CCGAAGATCG GCGCGGAGTG GCTGTTCGGC 60 GGCACCGGCG TCGGCGCCAG CAACC 85 【0072】配列番号:9 配列の種類:合成DNA 配列の長さ:85 配列の特徴 配列の型:核酸 特徴を表す記号:CDS 鎖の数:二本鎖 存在位置:1..85 トポロジー:直鎖状 特徴を決定した方法:E TCGGCGCCAG CAACCACTTC GAGGCGGGC GCTTCATCCG CAGCCGCGAG GAGTTCGCGT 60 GGCCGAACAT CCAGTACCAC TTCCT 85 【0073】配列番号:10 配列の種類:合成DNA 配列の長さ:85 配列の特徴 配列の型:核酸 特徴を表す記号:CDS 鎖の数:二本鎖 存在位置:1..85 トポロジー:直鎖状 特徴を決定した方法:E TGGAGCCGAC GTGGCACTGG AAGCCGTGCT CCTTCACGGC GTTCGAGCCG TTGTAGTTGA 60 TCGCGACCGG CAGGAAGTGG TACTG 85 【図面の簡単な説明】 す図。 【図1】 プラスミドpbet/chl/Mlを構築する過程を示 【図5】 ハイグロマイシン耐性カルスから抽出したD す図。PRはカリフラワーモザイクウイルス35SSプ NAのスクリーニングに用いたPCR用プライマーと、 ロモーター、INTはヒマカタラーゼ遺伝子第1イント 改変型betA遺伝子配列との対応を、及びbetA遺伝子転写 ロン、Termはノパリンシンターゼ遺伝子ターミネー 産物の検出に用いたノザン法用プロープと、改変型betA

ターを表す。

図。

図。

【図3】

【図4】

【図2】 プラスミドpBS/chl/Mlを構築する過程を示す

プラスミドpBS/bet/M2を構築する過程を示す

プラスミドpbet/chl/M2を構築する過程を示

遺伝子配列との対応を示す図。 【図 6 】 PCRによるハイグロマイシン耐性カルスの

スクリーニングの結果を示す図(電気泳動写真)。

【図7】 ノザン法によるbetA遺伝子転写産物の検出の 結果を示す図(電気泳動写真)。レーン1はコントロー ル(キヌヒカリ)、レーン2はpbet/chlで形質転換され たイネ細胞、レーン3~8はpbet/chl/M2で形質転換さ れたイネ細胞。

【図8】 大腸菌betAタンパクに対するウサギ抗体を用 いたウェスタン分析によるbetA遺伝子翻訳産物の検出の 結果を示す図(電気泳動写真)。レーン1は25μ1の 抗体とインキュペートしたC-238、レーン2は50 μ 1 の抗体とインキュペートしたC-238。

【図9】 形質転換植物のコリン脱水素酵素活性を示す 図。

【図10】 形質転換植物のベタイン蓄積量を示す図。 【符号の説明】

B:BamHI

Bc:BclI

Bg:BglI

S:SalI

Sa:Sac I

P:PstI

【図2】

【図4】

【図5】

改变型betA遺伝子 Term PCR用プライマー ノザン用プローブ

95S PR : カリフラワーモザイクウイルス35Sプロモーター : トマカタラーゼ遺伝子第1イントロン : ノパリンシンターゼ遺伝子ターミネーター Int

【図7】

【図3】

【図10】

フロントページの続き

(51) Int. Cl. 6		識別記号		F	rı			
C 1 2 Q	1/68	•		(212N	5/00	•	С
//(C 1 2 N	15/09	ZNA	-					
C 1 2 R	1:19)		•	٠				
(C·1 2 P	21/02	•						
C 1 2 R	1:91)							

(72) 発明者 田中 章

神奈川県横浜市鴨志田町1000番地 株式会 社植物工学研究所内