COVID-19 Epidemic Information

Nick Lauerman

Contents

et up
R Libraries
Get data
Create data set for Germany
Create data set for world wide data
harts and graphs
World Wide
Germany
US
Complete data set
Filtered to use only "complete data"
Using WHO data for US

Set up

##

##

intersect, setdiff, union

date, intersect, setdiff, union

The following objects are masked from 'package:base':

R Libraries

R is extended using packages or libraries. For this analysis the following packages are used.

```
library(tidyverse)
## -- Attaching packages -----
## v ggplot2 3.3.0
                v purrr
                           0.3.3
## v tibble 3.0.0
                           0.8.5
                   v dplyr
## v tidyr
         1.0.2
                 v stringr 1.4.0
## v readr
          1.3.1
                   v forcats 0.5.0
## -- Conflicts ------ tidyverse_c
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                 masks stats::lag()
library(lubridate)
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:dplyr':
```

Note: the tidyverse package loads a set of packages that make up the tidy data universe. Use of the tidyverse package to load these packages is a convince instead of loading each individual backage.

Get data

Two R scripts are used to read in the data used. The source of this data is the WHO, for world wide data, and the CDC for US data. While the WHO data contains data for the US the CDC data is being used. The WHO data is a series of files scraped from their daily situtation reports and the CDC data is scraped from their web site for the CORANA virus. Due to the WHO data being in 85 plus files the execution of these scripts is not shown to insure that the files is not overly large.

Create data set for Germany

The data for Germany is extracted from the WHO data for easy in displaying

```
germany <- WHO %>%
    filter(`Country Territory area` == "Germany")
germany$`Week Number` <- week(germany$date)</pre>
```

Create data set for world wide data

This data set displays the daily total for world wide data.

Charts and graphs

World Wide

Number of New Cases of COVID-19 Reported to the WHO

Number of New Cases of COVID-19 Reported to the WHO

Cumulative Number of Cases of COVID-19 Reported to the WHO

Figure 1: Cumulative cases

Figure 2: Growth Rate

Germany

US

Complete data set

CDC designates a date to which they consider the data "good". Reported data after that date is considered incomplete due to delays in reporting. This intial set of plots uses the complete data set

Warning: Transformation introduced infinite values in continuous y-axis

Warning: Transformation introduced infinite values in continuous y-axis

Figure 3: Another look at growth

Figure 4: weekly growth rate

Figure 5: Another look at growth

Number of New Cases of COVID-19

Figure 6: Epi curve 1

Number of New Cases of COVID-19 Reported

Figure 7: Epi curve 2, traditional

Cumulative Number of Cases of COVID-19 Reported

Figure 8: Cumulative cases

Figure 9: Growth Rate

Figure 10: Another look at growth

Figure 11: Weekly growth rate

Figure 12: Another look at growth

Number of New Cases of COVID-19 Reported to the CDC

Figure 13: Epi curve 1

Number of New Cases of COVID-19 Reported to the CDC 15000 -10000 -Cases 5000 -0 -

Figure 14: Epi curve 2, traditional

Mar

Date

Apr

Feb

Cumulative Number of Cases of COVID-19 Reported to the CDC

Figure 15: Cumulative cases

Figure 16: Growth Rate

Figure 17: Another look at growth

Warning: Transformation introduced infinite values in continuous y-axis

Warning: Removed 1 rows containing non-finite values (stat_smooth).

Weekly Growth Rate

Figure 18: weekly growth rate

Warning: Transformation introduced infinite values in continuous y-axis

Warning: Transformation introduced infinite values in continuous y-axis

Warning: Transformation introduced infinite values in continuous y-axis

Warning: Removed 1 rows containing non-finite values (stat_smooth).

Figure 19: Another look at growth

Filtered to use only "complete data"

Remove dates on or after 4 April as this data may not be completely reported

Number of New Cases of COVID-19 Reported to the CDC

Figure 20: Epi curve 1

Using WHO data for US

Number of New Cases of COVID-19 Reported to the CDC

Figure 21: Epi curve 2, traditional

Figure 22: Cumulative cases

Figure 23: Growth Rate

Figure 24: Another look at growth

Figure 25: weekly growth rate

Figure 26: Another look at growth

Number of New Cases of COVID-19

Figure 27: Epi curve 1

Number of New Cases of COVID-19 Reported 40000 -30000 -Cases 20000 -10000 -Apr Feb Mar

Figure 28: Epi curve 2, traditional

date

Cumulative Number of Cases of COVID-19 Reported

Figure 29: Cumulative cases

Figure 30: Growth Rate

Figure 31: Another look at growth

Figure 32: stable weekly growth rate

Figure 33: Another look at growth