Universidade Federal do Rio Grande do Norte Instituto Metrópole Digital Bacharelado em Tecnologia da Informação Fundamentos Matemáticos da Computação II

Estudo dirigido do conteúdo da Unidade 2

Autor: Yuri Alessandro Martins

 $\frac{\mathrm{Natal/RN}}{\mathrm{10~de~maio~de~2016}}$

Sumário

1	Teoria dos Conjuntos		
	1.1	Os Axiomas de Zermelo-Frankel	2
		1.1.1 Extensionalidade	2
		1.1.2 Emptyset	2
		1.1.3 Pairset	2
		1.1.4 Separation	2
		1.1.5 Powerset &	3
		1.1.6 Unionset	3
		1.1.7 Infinity Axiom	4
	1.2	Relações, Funções e Funções parciais na ZFC	4
		1.2.1 Definindo um par ordenado	4
		1.2.2 Relações	4
			5
		1.2.4 Funções parciais na ZFC	5
	1.3	Currying	6
	1.4		6
	1.5	Os Axiomas de Peano	6
	1.6	Teorema da Recursão	7
	1.7		7
		1.7.1 Existência de \mathbb{N}	7
			8
	1.8		9
2	λ -C	alculus 1	1
	2.1	O conjunto de λ -termos	1
	2.2	Conversões α , $\beta e \eta$	
		, , , , , , , , , , , , , , , , , , ,	2
		2.2.2 Redução β	2
		2.2.3 Redução η	
	2.3	Booleanos naturais no Λ	
	2.4	Combinators I, K, B, S	
3	Pol	ítica de Colaboração 1	3

1 Teoria dos Conjuntos

1.1 Os Axiomas de Zermelo-Frankel

1.1.1 Extensionalidade

Para quaisquer conjuntos A, B:

$$A = B \iff (\forall x)(x \in A \iff x \in B)$$

1.1.2 Emptyset

Garante que existe um conjunto vazio (\emptyset) .

$$\exists x \forall y \ (y \notin x)$$

1.1.3 Pairset

Para todo $a \in b$, existe o conjunto $\{a, b\}$.

$$\forall a \forall b \ \exists w \forall x (x \in w \iff x = a \lor x = b)$$

1.1.4 Separation

Para cada condição P(x),

$$\forall a \exists w \forall x (x \in w \iff x \in a \land P(x))$$

Um problema de usar somente esses últimos três axiomas é que só somos capazes de formar conjuntos com cardinalidade ≤ 2 .

- ZF4 (1.1.4) é um <u>axiom-scheme</u>. Isto é, possui infinitos axiomas dentro dele, já que para cada P(x) estamos formando um novo axioma.
- Usando os axiomas anteriores, é possível representarmos algumas coisas como conjuntos:
 - $\bullet (x, y) \triangleq \{ \{x\}, \{x, y\} \}$
 - $\bullet \ A \setminus B \triangleq \{ \ x \in A \ \mid \ x \notin B \ \}$
 - $\bullet \ A \cap B \triangleq \{x \in A \mid x \in B\}$

1.1.5 Powerset \wp

Para cada conjunto a, existe um conjunto b, onde os elementos de b são subconjuntos de a.

$$\forall a \exists p \forall w (x \in p \iff \forall x (x \in a \Rightarrow x \in b))$$

Esse é o conjunto $\wp(a)$.

Aqui $x \in a$ é uma abreviação de $(\forall t)[t \in x \Rightarrow t \in a]$. O Axioma da Extensionalidade (1.1.1) implica que para cada a, apenas um conjunto b pode satisfazer a defininção do Powerset; Nós podemos chamar **Conjunto Potência** de a e denotá-lo como:

$$\wp(a) \triangleq \{x \mid Set(x) \& x \in a\}$$

Algumas propriedades interesantes:

$$\wp(\emptyset) = \{\emptyset\}$$

$$\wp(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}$$

Exercício: Para cada conjunto A, existe um conjunto B cujo membros são exatamente singletons dos membros de A:

$$x \in B \iff (\exists t \in A)[x = \{t\}]$$

1.1.6 Unionset

Corresponde ao conjunto $\cup a$.

$$\forall a \exists u \forall x (x \in u \iff (\exists e \in a)[x \in e])$$

Ex:
$$\bigcup \emptyset = \bigcup \{\emptyset\} = \emptyset$$

 $\bullet \ a \cup b = \cup \{a, b\}$

Usando os axiomas ZF2 (1.1.2) e ZF5 (1.1.6)

$$t \in A \cup B \iff (\exists X \in \{A, B\})[t \in X]$$

$$t \in A \cup B \iff t \in A \lor t \in B$$

- $a \times b \triangleq \{w \in S \mid \exists x \exists y (w = (x, y) \land x \in a \land x \in b)\}$ Onde $S = \wp(\wp(a \cup b))$
- sigletonset $\triangleq \{x \in \wp a \mid (\exists t \in a)[x = \{t\}]\}$
- $\bullet \ \cap a \triangleq \{x \in \cup a \mid (\forall e \in a)[x \in e]\}\$

1.1.7 Infinity Axiom

$$\exists I(\emptyset \in I \land \forall x(x \in I \Rightarrow \{x\} \in I)) \text{ ou}$$

$$\exists I(\emptyset \in I \land \forall x(x \in I \Rightarrow x \cup \{x\} \in I))$$

Esse axioma é garantido pois

$$\{x\} \neq x$$
$$x \cup \{x\} \neq x$$

Com ele, somos capazes de montar o seguinte conjunto infinito: $I = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \dots\}$

1.2 Relações, Funções e Funções parciais na ZFC

1.2.1 Definindo um par ordenado

A operação de par do Kuratowski: $(x,y) = \{\{x\}, \{x,y\}\}\$, como vimos anteriormente na seção 1.1.4

PROOF AND MORE DETAILS...

1.2.2 Relações

Def: Sejam A, B conjuntos, R é uma relação entre A e B se $R \subseteq A \times B$. Dessa forma,

- $f(a) = b \rightsquigarrow (a, b) \in f$
- União Disjunta: $A \uplus B = (\{0,a\} \times A) \cup (\{1,b\} \times B)$

Sendo R uma relação sobre o conjunto $\mathbb{N}(R \subseteq A \times A)$, R pode ser:

$$\begin{split} xRx: Reflexiva \leadsto ``=, \le, \ge, \subseteq'' \\ xRy \Rightarrow yRx: Simetrica \leadsto ``='' \\ xRy \land yRz \Rightarrow xRz: Transitiva \leadsto ``=, \le, \ge, <, >, \subseteq'' \end{split}$$

Ainda existem outras propriedas como essas, como a <u>Antireflexiva</u> ou Antisimétrica.

1.2.3 Relações de Equivalência

Uma relação sobre um conjunto A é chamada **relação de equivalência** se ela for reflexiva, simétrica e transitiva.

O conjunto de todos os elementos que são relacionados a um elemento a de A é chamado de classe de equivalência de a. Isso implica que:

$$\cup [a] = A$$

• $[a] \cap [b] = \emptyset quando[a] \neq [b]$

Uma partição de um conjunto S é uma coleção de subconjuntos disjuntos não vazios de S. A união de todas as partições resulta, portanto, em S. Em outras palavras, os subconjuntos A_i formam partições de S se e somente se

$$A_i \neq \emptyset$$

$$A_i \cap A_j = \emptyset, quando \ i \neq j$$

$$\cap A_i = S$$

Podemos definir classes de equivalência como:

$$[x/\backsim] \triangleq \{a \in A \mid x \backsim a\}$$
$$[A/\backsim] \triangleq \{c \in \wp(A) \mid \exists x \ C = [x/\backsim]\}$$

Seja $x, y \in A$, e \sim uma relação de equivalência no A:

$$[x/\backsim] = [y/\backsim] \iff x\backsim y$$

$$[x/\backsim] = [y/\backsim] \iff \begin{cases} [x/\backsim] & \text{se } x\backsim y \\ \emptyset & \text{se n\~ao} \end{cases}$$

$$\cup \{[x/\backsim] \mid x\in a\} = A$$

1.2.4 Funções parciais na ZFC

O conceito de funções parciais remete a ideia de uma função em que nem todos os x possuem uma f(x). B

$$f:\mathbb{N}\to\mathbb{N}$$
 Domínio da função $f(x)=\sqrt[2]{x}$ $x=3$ não possui uma saída bem definida nesse domínio.

1.3 Currying

Dada uma f do tipo $f:(X\times X)\to Z$, então a técnica de **currying** a torna $(f):X\to (Y\to Z)$. Isto é, currying torna um paramêtro do tipo X e retorna uma função do tipo $Y\to Z$.

Achar um
$$\phi((x,y) \to A \rightarrowtail (x \to (y \to A)))$$

 $\phi(F) = G$, onde G é definida pela,
 $G(x)(y) = g$, ode g é definida pela,
 $g(y), f(x,y)$

1.4 Cardinais

Seja A um conjunto. O que é |A|?

c1.
$$A =_c |A|$$

c2.
$$A =_{c} B \iff |A| = |B|$$

c3. para todo conjunto de conjuntos \in , $\{|x| \mid x \in \in\}$ é conjunto.

Aqui estaremos definindo funções cardinais fracas (**weak**). Isso porquê seria necessário provar o c2, algo extremamanete complicado agora. Portanto, podemos o resumir como:

c2.
$$A =_c B \iff |A| =_c |B|$$

Sejam κ, λ, μ números cardinais:

- $\kappa + \lambda \triangleq_c \kappa \uplus \lambda$
- $\kappa.\lambda \triangleq_c \kappa \times \lambda$
- $\kappa^{\lambda} \triangleq_{c} (\kappa \to \lambda)$

1.5 Os Axiomas de Peano

Structed set: $(\mathbb{N}; 0; S)$, onde $0 \in \mathbb{N}$ e $S : \mathbb{N} \to \mathbb{N}$

$$0 \in \mathbb{N}$$

$$S : \mathbb{N} \to \mathbb{N}$$

$$S : \mathbb{N} \mapsto \mathbb{N}$$

$$(\forall x \in \mathbb{N})[S_n \neq 0]$$

$$(\forall x \subseteq \mathbb{N})[[0 \in X \land (\forall n \in \mathbb{N})[n \in X \Rightarrow S_n \in X]] \Rightarrow X = \mathbb{N}]$$

O axioma de peano 5 é o que nos permite realizar indução matemática. Observe:

$$\forall x \subseteq \mathbb{N} \ corresponde \ a \ \mathbf{base}.$$
 $(\forall n \in \mathbb{N})[n \in X \Rightarrow S_n \in X] \ corresponde \ ao \ \mathbf{passo} \ \mathbf{indutivo}.$ $n \in X \ corresponde \ a \ \mathbf{hipot\acute{e}se} \ \mathbf{indutiva}.$

1.6 Teorema da Recursão

Theorem. Sejam: $(\mathbb{N}, 0, S)$ um sistema de naturais conjunto E. $a \in E$ $h: E \to E$ Então existe $f: \mathbb{N} \to E$ tal que: $f(0) = aef(S_n) = h(f(n))$.

1.7 Os Naturais na ZFC

Para estabelecermos os Naturais na ZFC, temos que garantir duas coisas:

- ullet Existência de $\mathbb N$
- \bullet Singularidade de $\mathbb N$

Para tal, iremos precisar do Teorema da Recursão (1.6).

1.7.1 Existência de \mathbb{N}

Seja
$$J = \text{todos os conjuntos } X \text{ tal que satisfaz o ZF7 (1.1.7)}$$

 $J = \{X \in \wp I \mid \emptyset \in X \land (\forall x \in X)[S \in X]\}$

Seja
$$\mathbb{N} \triangleq \cap J$$
 Seja $0_1 = \emptyset$

 $^{^{1}\}text{Visiste}$ 2 para $\lambda\text{-Calculus}$ e entender melhor esse ponto

Seja
$$S_1=\lambda x.\{x\}^{-1}$$
 Seja $S_2=\emptyset$ Seja $S_2=\lambda x.x\cup\{x\}^{-2}$ Seja $S_2=\lambda x.x\cup\{x\}^{-2}$

Encaixando com os Axiomas de Peano:

1.
$$(\forall x \in J)[\emptyset \in X]$$
, então $\emptyset \in \cap J$ e $\emptyset \in \mathbb{N}$

2. Também, pela própria definição de J

3.
$$a \neq b \iff S_a \neq S_b \text{ ou } a \neq b \iff \{a\} \neq \{b\}$$

4.
$$\forall x\{x\} \neq \emptyset$$

5. Seja
$$X \subseteq \mathbb{N}$$
, tal que $0 \in X$ $(\forall x \in X)[S_X \in X]$ Seja $n \in \mathbb{N}$ $\exists p : x = \{p\}$ $->$ Mesmo que $\{p\} \in \cap J = \mathbb{N}$ $->$ Mesmo que $n \in X$ e $n \geq \mathbb{N}$

Basicamente, podemos descrever N de duas maneiras, agora:

$$\begin{array}{lll} 0 & \emptyset = \emptyset & 0 & \emptyset = \emptyset \\ 1 & \{\emptyset\} = \{0\} & 1 & \{\emptyset\} = \{0\} \\ 2 & \{\{\emptyset\}\}\} = \{1\} & 2 & \{\emptyset, \{\emptyset\}\} = \{0, 1\} \\ 3 & \{\{\{\emptyset\}\}\}\} = \{2\} & 3 & \{\emptyset, \{\emptyset\} \{\{\emptyset\}\}\} \\ \vdots & \vdots & \vdots & \vdots \\ S = \lambda x.\{x\} & S = \lambda x.x \cup \{x\} \end{array}$$

1.7.2 Singularidade de \mathbb{N}

"N is unique up to isomorphism:" $\pi: (\mathbb{N}_1; 0_1; S_1) \rightarrowtail (\mathbb{N}_1; 0_2; S_2).$ $\pi(0_1) = 0_2$ $\pi(S_1 n_1) = S_2 \pi(n_1)$

Se traçarmos um paralelo com o Teorema da Recursão (1.6), para tentarmos provar a singularidade de \mathbb{N} , podemos realizar as seguintes associações:

 $^{^2}$ Veja nota 1

- $\mathbb{N}: \mathbb{N}_1$
- E: \mathbb{N}_2
- a: 0_2
- h: S_2

 $\begin{array}{l} \textit{Demonstração.} \ \pi: \mathbb{N}_1 \Rightarrow \mathbb{N}_2 \\ \pi[\mathbb{N}_1] = \mathbb{N}_2 \end{array}$

- $0_2 \in \pi[\mathbb{N}_1]$ $-> \text{Como } \pi(0_1) \Rightarrow S_2 n_2 \in \pi[\mathbb{N}_1]$
- $n_2 \in \pi[\mathbb{N}_1]$ -> Suponha que $n_2 \in \pi[\mathbb{N}_1]$ -> H.I -> $(\exists n_1 \in \mathbb{N}_1)[\pi(n_1) = n_2]$ -> $\pi(S_1n_1) = S_2(\pi(n_2))$ que = S_2n_2

MAIS COISA AQUI DEPOIS...[?]

1.8 String Recursion

- Dado [] \in [N]
- $\bullet \ \mbox{Se} \ n \in \mathbb{N},$ e $L \in [\mathbb{N}],$ então $(n:L) \in [\mathbb{N}]$

Exemplo: 2:3:4:[] = [2,3,4]

Alguns exemplos de funções recursivas que podemos definir utilizando String Recursion:

$$iszero: [\mathbb{N}] \to \mathbb{B}$$

 $iszero \ 0 = true$
 $iszero \ S_n = false$

$$empty : [\mathbb{N}] \to \mathbb{B}$$
 $empty [] = true$
 $empty (x : x_s) = false$

$$++: [\mathbb{N}] \to [\mathbb{N}] \to [\mathbb{N}]$$

$$[\quad] ++ y_s = y_s$$

$$(x:x_s) ++ y_s = x: (x_s++y_s)$$

$$Ex: [1,2] + +[6,7,8,9] = 1:2:[] + +[6,7,8,9]$$

$$= 1: (2:[] + +[6,7,8,9])$$

$$= 1: (2:([] + +[6,7,8,9]))$$

$$= 1: 2:[6,7,8,9]$$

$$= [1,2,6,7,8,9]$$

$$\begin{split} reverse: [\mathbb{N}] &\to [\mathbb{N}] \\ reverse[& \] = [& \] \\ reverse[x] &= [x] \\ revese(x:x_s) &= reversexs + +[x] \end{split}$$

$$Ex : [2,3,4,5] \sqsubseteq [2,3,5,7] = (2=2) \land ([3,4,5] \sqsubseteq [3,5,7])$$

= $(3=3) \land ([4,5] \sqsubseteq [5,7])$
= $(4=5) \land ([5] \sqsubseteq [7])$
= FALSE

$$\in : \mathbb{N} \to [\mathbb{N}] \to \mathbb{B}$$

 $n \in x[\] = false$
 $x \in (x : x_s) = (n = x) \lor (n \in x_s)$

$$find : \mathbb{N} \to [\mathbb{N}] \to \mathbb{B}$$

 $findn[\] = 0$
 $findn(n : nx) = 0$
 $findn(x : x_s) = 1 + find \ n \ x_s$

$$\begin{aligned} sum : [\mathbb{N}] &\to \mathbb{N} \\ sum[\] &= 0 \\ sum(x : xs) &= x + sumxs \end{aligned}$$

$$\begin{split} \oplus : [\mathbb{N}] \to [\mathbb{N}] \to [\mathbb{N}] \\ \text{'}[\quad] \oplus y_s &= y_s \\ x_s \oplus [\quad] &= x_s \\ (x:x_s) \oplus (y:y_s) &= (x+y) : (x_s \oplus y_s) \end{split}$$

$$circle: (\mathbb{N} \to \mathbb{N} \to \mathbb{N}) \to [\mathbb{N}] \to [\mathbb{N}]$$

$$circlef[\]y_s = [\]$$

$$fxs[\] = [\]$$

$$f(x:x_s)(y:y_s) = [fxy]: (circle\ f\ x_s\ y_s)$$

2 λ -Calculus

2.1 O conjunto de λ -termos

Sendo $\Lambda = \lambda$ -termos;

$$X \in \Lambda$$

$$s, t \in \Lambda \Rightarrow (s \ t) \in \Lambda$$

$$x \in var, t \in \Lambda \Rightarrow \lambda X.t \in \Lambda$$

2.2 Conversões α , $\beta e \eta$

2.2.1 Conversão α

Determina que a escolha da variável ligada, na abstração lambda, não importa (normalmente):

$$\lambda x.x =_{\alpha} \lambda y.y$$

 $\lambda x.\lambda x.x =_{\alpha} \lambda y.\lambda x.x$ Note que isso não poderá ser transformado em $\lambda y.\lambda x.y$

Primeiro, quando alfa-conversão atua em uma abstração, as únicas ocorrências de variáveis que podem ser renomeados são aqueles que são vinculados a esta mesma abstração. No segundo exemplo, portanto:

 $\lambda x.\lambda x.x \neq_{\alpha} \lambda y.\lambda x.y$ Este último tem um significado diferente do original.

Em segundo lugar, uma conversão α não é possível se isto irá resultar em uma variável sendo capturada por uma abstração diferente. Por exemplo, se substituirmos x com y em $\lambda x.\lambda y.x$, nós obteríamos $\lambda y.\lambda y.y$, que tem um significado diferente da expressão anterior.

2.2.2 Redução β

Redução β é a ideia de aplicar uma função. Por exemplo, se temos f(x) = x * 2, para x = 2 aplicamos o valor a função que irá ficar como f(2) = 2 * 2. Essa é basicamente a ideia da redução β .

$$(\lambda x.x * 2) \ 2 =_{\beta} 2 * 2$$

2.2.3 Redução η

Eta-conversão expressa a ideia de extensionalidade, que neste contexto é que duas funções são as mesmas se e somente se eles dão o mesmo resultado para todos os argumentos.³

2.3 Booleanos naturais no Λ

$$\lambda y.x = \lambda x.(\lambda y.x) := true := fst$$

 $\lambda x.y = \lambda x.(\lambda y.y) := false := snd$

³Sujeito a severas mudanças no futuro. Visite ³ para saber mais sobre.

2.4 Combinators I, K, B, S

Combinadores⁴

$$I = \lambda x.x$$

 $B = \lambda x \lambda y.\lambda z.x(yz)$ "Composition"
 $S = \lambda x \lambda y.\lambda z.\lambda xz(yz)$

3 Política de Colaboração

Você é capaz de alterar o conteúdo desse documento, para corrigir erros, melhorar suas explicações ou dar dicas/exemplos adicionais. Esse foi o objetivo desde começo.

Visita a página remota do documento para obter sua versão mais atualizada e/ou colaborar também.

Como base foram utilizados os livros "Notes on Set Theory" [2] e "Classic Set Theory" [1]. Caso você queira continuar usando-os como base para esse documento, sinta-se a vontade.

⁴A melhorar bruscamente

Referências

- [1] DC Goldrei. Classic Set Theory: For Guided Independent Study. CRC Press, 1996.
- [2] Yiannis Moschovakis. Notes on set theory. Springer Science & Business Media, 2006.