

A Keyword-Aware Grammar Framework for LVCSR-based Spoken Keyword Search

I-Fan Chen, Chongjia Ni, Boon Pang Lim, Nancy F. Chen, and Chin-Hui Lee

Introduction

- Spoken keyword search (KWS)
 - To detect a set of preselected keywords in continuous speech

LVCSR-based KWS

- Search keywords in LVCSR transcribed text documents
- Use n-gram LM grammar
 - Comparing to the simple keyword-filler loop grammar
- Pros
 - Less false alarms, Better performance, Flexible on keywords
- Cons
 - n-gram LMs need a great amount of training data to cover potential keywords
 - High miss rates for uncovered keywords
 - □ Whose prior probabilities are seriously underestimated

Keyword-aware grammar framework

Integrate keyword-filler loop grammars into LVCSR-based KWS [1]

Boost KW probabilities in the decoding grammar

- Approximate the boosting effect
 - Context-Simulated keyword language model (CS-KWLM) interpolated LMs

KW,

 KW_N

n-gram grammar

Interpolate the CS-KWLM with the original n-gram LM

$$P_{INT_LM}(w \mid h) = \alpha \cdot P_{CS-KWLM}(w \mid h) + (1 - \alpha)P_{LM}(w \mid h)$$

 $\alpha \in [0, 1]$ controls the weight of CS-KWLM in the interpolation

Exact Realization of the KW-aware Grammar

Weighted Finite State Automata (WFSA)

- Insert KW paths to the n-gram LM grammar WFSA of the system
- For each kw=w₁...w₁
- $P_{KW-aware}(kw|h) = \max \{ P_{n-gram}(kw|h), \kappa \}$
 - $P_{n-gram}(kw \mid h) = \prod_{i=1}^{L} P(w_i \mid h_i)$
 - K: prior constant
 - \square global constant (or κ_c for KW in class c)
- Disambiguation
 - Non-deterministic
 - ▶ Both n-gram grammar and the inserted standalone KW paths can represent the keywords
 - ▶ Use disambiguation symbol #k (or $\#k_c$ for KW in class c)
 - For arcs entering the standalone KW path

n-gram grammar

Realize the KW-aware Grammar using WFSA

- Insert a keyword path for a 3-word keyword $w_1w_2w_3$
- In this work
 - A global K and a single keyword initial state were used.

Experimental Setup (1)

- IARPA Babel OpenKWS13 Vietnamese and OpenKWS14 Tamil Limited Language Pack tasks
 - Conversational speech over telephone channels (landline, cell-phone, etc.) with sampling rate 8 kHz
 - Training data
 - 10-hour transcribed audio data
 - Development data
 - 2-hour subset of 10-hour IARPA development data
 - Evaluation data
 - 15-hour evaluation part 1 (evalpart1) data

Experimental Setup (2)

- Evaluation keyword list (official)
 - Vietnamese: 4065 keywords
 - Keyword lengths range from 1 to 6 words
 - ▶ Tamil: 5576 keywords
 - Keyword lengths range from 1 to 5 words
- Performance measure
 - Number of miss detections
 - Actual Term Weight Value (ATWV)
 - A metric takes both miss and false alarm rate into account
- Baseline LVCSR-based KWS system
 - Kaldi Babel recipe
 - Acoustic Feature BNF + fMLLR [on top of PLP+F0]
 - Acoustic models DNN model with sMBR training
 - Language models 3-gram LM trained with the 10-hour transcription

Comparison of grammar WFSAs

- Vietnamese task [4065 keywords]
- KW-aware grammar WFSA is very compact
 - Comparing with CS-KWLM approximation approach
- The grammar size of the CS-KWLM interpolated LM is much larger
 - Due to additional history states derived from the keyword list (CS-KWLM)

Vietnamese grammars	# arcs	# states	File Size
n-gram baseline	38,713	17,616	812 Kb
KW-aware grammar (global κ = 0.00005)	66,913	24,215	I.3 Mb
CS-KWLM Int (α = 0.6)	381,461	165,063	7.8 Mb

Vietnamese System Performance

- KW-aware framework is very effective
 - Reduced 1/3 #miss
 - Achieved 57% relative ATWV improvement
- Both realizations have a similar overall performance
 - Though the file size of the KW-aware grammar is much smaller

Vietnamese [evalpart I]		# Miss	ATWV
	n-gram baseline	2,562	0.2093
KW-aware framework	KW-aware grammar (global κ = 0.00005)	1,589	0.3224
	CS-KWLM Interpolation $(\alpha=0.6)$	1,651	0.3287

Tamil System Performance

- Similar observation could be found in the Tamil task
 - The effect of KW-aware framework is language independent
 - 24% reduction on #miss
 - ➤ ~50% relative ATWV improvement

Та	mil [evalpart]	# Miss	ATWV
ı	n-gram baseline	3,663	0.2128
KW-aware framework	KW-aware grammar (global κ = 0.0000347)	2,830	0.3102
	CS-KWLM Interpolation $(\alpha=0.3)$	2,689	0.3160

ATWV analysis for keywords of different length

- n-gram LM baseline
 - Suffers from KW prior underestimation
 - Especially for multi-word keywords
- KW-aware grammar works better on long keywords
 - L > 2
 - Standalone keyword path
 - Boost the probability of keyword sequence only

Conclusion

- Exact realization of the KW-aware grammar
 - Using WFSA with disambiguation symbols
- The improvement of the KW-aware framework over the n-gram baseline is consistent across languages
- Two realizations available for the KW-aware framework
 - Both alleviate the keyword prior underestimation problem
 - Achieve similar performance enhancement
 - Exact realization insert standalone KW paths
 - Much more compact in final grammar WFSA
 - Better performance for long keywords (L>2)
 - Approximation by CS-KWLM interpolation
 - Very easy to be realized
 - Better performance for short keywords (L <= 2)</p>
 - Can be applied to all LVCSR-based KWS system
 - Suit different scenarios
 - Further system combination may achieve better KWS results

Thank You!!