

Fundamentals of Data Engineering

Trainer: Pradnyaa S Dindorkar

CAP Theorem

- Consistency Data is consistent after operation.
 After an update operation, all clients see the same data.
- Availability System is always on (i.e. service guarantee), no downtime.
- Partition Tolerance System continues to function even the communication among the servers is unreliable.

NoSQL Databases

- Key-value databases e.g. redis, dynamodb, riak
 - Based on Amazon's Dynamo database.
 - Keys are unique and values can be of any type i.e. JSON, BLOB, etc.
 - Implemented as big distributed hash-table for <u>fast</u> searching.
- Wide Column databases e.g. hbase, cassandra, bigtable, ...
 - Values of columns are stored contiguously.
 - Better performance while accessing few columns & aggregations. count, sum, min, max, avg
 - Good for data-warehousing, business intelligence, CRM, ...

50000 X 30 = RDBMS 1000 2000

Row Key	Customer		Sales	
Customer Id	Name	City	Product	Amount
101	John White	Los Angeles, CA	Chairs	\$400.00
102	Jane Brown	Atlanta, GA	Lamps	\$200.00
103	Bill Green	Pittsburgh, PA	Desk	\$500.00
104	Jack Black	St. Louis, MO	Bed	\$1600.00

NoSQL Databases

- Graph databases e.g. Neo4J, Titan, ...
 - Graph is collection of vertices and edges.
 - Excellent performance, while dealing with all relations of an entity

(irrespective of size of data).

- Document oriented databases e.g. MongoDb,
 CouchDb, ...

 JavaScript Object Notation
 - Document contains data as key-value pair as <u>JSON</u> or <u>Semi-struct data</u>
 - Document schema is flexible & are added in collection for processing.

Document – flexible schema

RDBMS	DoC -NoSQL
Table	Collection
Rows	Documents
column s	fields

NoSQL Databases

- Search databases e.g. Elasticsearch, Solr, Lucene, …
 - For faster search Text search, Log analysis.
 - Indexed, Exact/Fuzzy matches, Anomaly detection, Analytics.

- Time series databases e.g. Influx, Druid, …
 - Values organized by time like stock market, weather,
 ...
 - Optimized for retrieval, statistical processing, ...
 - Used for measurement data (weather, ...) and event-based data (accidents, ...)

Date	Ozone (µg/m³)	Temperature (°C)	Relative humidity (%)	n deaths
1 Jan 2002	4.59	-0.2	75.7	199
2 Jan 2002	4.88	0.1	77.5	231
3 Jan 2002	4.71	0.9	81.3	210
4 Jan 2002	4.14	0.5	85.4	203
5 Jan 2002	2.01	4.3	93.5	224
6 Jan 2002	2.4	7.1	96.4	198

Data warehousing

- Data warehouse is a single, complete and consistent store of data obtained from a variety of different sources made available to end users in a what they can understand and use in a business context.
- Data warehousing is a process of transforming data into information and making it available to users in a timely enough manner to make a difference.

Extract - Transform - Load

temp area

- Extracting: Extract data from sources into staging area
- Conditioning: Data types conversion to fit warehouse.
- **House holding: Grouping similar data** 1000/4=250
- Enrichment: Add relevant data from external sources
- Scoring: Computation of probability of an event
- Scrubbing: Data cleaning: find duplicate, missing data
- Merging: Merging data from various sources.
- De-normalize: Duplicate data to reduce joins.
- Loading: Load data in warehouse models like Star, Snowflake, Galaxy.
- Delta Updating: Incremental data uploading
- **少**Partitioning: Dividing the data in logical parts to improve performance.

De-normalize:- Duplicate data to reduce joins.

batch	table (7 cols)

join

id	name
1	OM50
2	PH24
3	PH25
4	PH26
5	CH06
6	ру
7	java

Normalized data

not reduntdent

ud	lent	ts ta	ble	(10	CO	S)

ro	name	bate	hID
1	а	1	
2	b	2	
3	С	1	
4	d	3	
5	е	1	
6	f	1	
7	g	5	
8	h	1	
9	i	1	
10	j	3	
11	k	4	

1	\cap	. 7	7	1	7
	U)	+ /		-	

data is	reduntdent
---------	------------

Ro	name	batch name
1	a	OM50
2	b	PH24
3	С	OM50
4	d	PH25
5	е	OM50
6	f	OM50
7	g	CH06
8	h	OM50
9	i	OM50
10	j	PH25
11	k	PH26

De-Normalized

DWH Schemas

hinjewadi pune mh IND market yard pune mh ind katraj pune mh ind

- DWH schema is how data is stored in tables in warehouse for the efficient processing of the data.
- A <u>fact table</u> stores metrics, measurements, or facts about business processes. number
- <u>Dimension tables</u> are tables used to store data attributes or dimensions. string+number
- Star schema: Single facts table and a few dimension tables (de-normalized) Simple design.
- Snowflake schema: Single facts table and connected dimension/sub-dimension tables (normalized).
- Galaxy or Fact-Constellation schema: Multiple facts tables mapped to multiple dimension/subdimension tables.

OLTP (Database) vs OLAP (Data warehouse)

- Online Transaction Processing
- Modeled to run the business
- Detailed/Transactional normalized real-time data
- Transaction performance DML
- Read/Write operations
- Isolated data (Application specific)
 Limited data (100 MB to 100 GB)

- Online Analytical Processing
- Modeled to analyze/optimize business
- Summarized/refined redundant snapshot data
- Analytical query performance DQL join Aggr
- Mostly Read operations sum ,count,avg
- Integrated data (from all sources) Huge data (100 GB to Few TB)

Data lake vs Data warehouse vs Data mart

IND=15% USA=18% Affica=11%

Data engineering

- Data engineering is the development, implementation, and maintenance of systems and processes that take in raw data and produce high-quality, consistent information that supports downstream use cases, such as analysis and machine learning.
- Data engineer manages data engineering lifecycle, beginning with getting data from source systems & ending with serving data for use cases, such as analysis or machine learning.

Traditional ETL vs Hadoop ELT

- ETL stands for Extract, Transform and Load.
- The ETL process typically extracts data from the source/transactional systems, transforms it to fit the model of data-warehouse and finally loads it to the data warehouse.
- The transformation process involves cleansing, enriching and applying transformations to create desired output.
- Data is usually dumped to a staging area after extraction.

- ELT stands for Extract, Load and Transform. bigdata
- As opposed to loading just the transformed data in the target systems, the ELT process loads the entire data into the data lake. This results in faster load times.
- The load process can also perform some basic validations and data cleansing rules.
- The data is then transformed for analytical reporting as per demand.

Data storage

- Data storage is related to multiple stages in data engineering life cycle i.e. ingestion, transformation and serving.
- Storage needs to be selected based on read/write requirement, speed, durability, consistency, availability, scalability, fault tolerance, ... factors.
- Storage tradeoffs
 - Local storage vs Distributed storage
 - Strong consistency vs Eventual consistency
- Storage options are: File storage, Local disk storage, Network attached storage (NAS), Cloud file systems (S3/Blob), Block storage, RAID, Storage area network (SAN), Object storage, HDFS, Streaming storage.

Q: Which of the following is not the type of NoSQL?

A: Graph

B: Doument

C: Text

D: Search

Q: Which of the following is not the type of NoSQL?

A: Graph

B: Doument

C: Text

D: Search

Q: Which of the following is the type of NoSQL?

A: Row

B: Column

C: Collection

D: Table

Q: Which of the following is the type of NoSQL?

A: Row

B: Column

C: Collection

D: Table

Q: Which of the following is not the valid Data warehouse schema?

A: Star

B: Showfall

C: Showflake

D: Galaxy

Q: Which of the following is not the valid Data warehouse schema?

A: Star

B: Showfall

C: Showflake

D: Galaxy

Q: Which of the following is working on real time data?

A: OLAP

B: OLTP

C: OLPP

Q: Which of the following is working on real time data?

A: OLAP

B: OLTP

C: OLPP

Q: Analytical queries are performed in _____

A: OLAP

B: OLTP

C: OLPP

Q: Analytical queries are performed in ______.

A: OLAP

B: OLTP

C: OLPP

Q: In data engg life cycle pulling data is called known as _____ data.

A: Poping

B: Ingesting

C: Serving

D: Analysing

Q: In data engg life cycle pulling data is called known as _____ data.

A: Poping

B: Ingesting

C: Serving

D: Analysing

Thank you!

Pradnyaa S Dindorkar om>

