BEST AVAILABLE COPY

(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平7-5197

(43)公開日 平成7年(1995)1月10日

(51) Int. C1. 6

識別記号

庁内整理番号

FI

技術表示箇所

G01R 1/06

H01L 21/66

B 7630-4M

F

審査請求 未請求 請求項の数3 FD (全5頁)

(21)出願番号

特顯平5-342767

(22)出願日

平成5年(1993)12月16日

(31)優先権主張番号 特願平5-93964

(32)優先日

平5(1993)3月30日

(33)優先権主張国

日本(JP)

(71)出願人 593077836

株式会社ベクトルセミコンダクタ

神奈川県川崎市幸区北加瀬1-15-12

(72)発明者 工藤 秀継

神奈川県川崎市幸区北加瀬1-15-12 株

式会社ベクトルセミコンダクタ内

(72)発明者 曽根 和義

神奈川県川崎市幸区北加瀬1-15-12 株

式会社ベクトルセミコンダクタ内

(72) 発明者 吉沢 茂

神奈川県川崎市幸区北加瀬1-15-12 株

式会社ベクトルセミコンダクタ内

(74)代理人 弁理士 吉原 省三 (外1名)

最終頁に続く

(54)【発明の名称】電気的特性測定用プローブ装置

(57)【要約】

【目的】 測定時に外界よりの電波等による影響を低減 でき、又試料台11自身より発生するノイズN₁、N₂及 びリーク電流1、1、0影響を最小限に低減することが できる微少な電気的特性の測定が可能なプロープ装置を 提供せんとするものである。

【構成】 測定針13a及び13bから電流や電流容量 等を計測する計測器 15 に繋げられた計測線 1は、該計 測線1を中心軸電極として絶縁体を介挿せしめた三重電 極構造で構成されており、そのうち中間軸電極は1 a は 計測器15のガード用に繋げられると共に、最外軸電極 1 b はシールドボックス10と計測器15のシャーシに 接地せしめられている。

2

【特許請求の範囲】

【請求項1】 測定対象となる試料を載せる試料台と、その試料台上の試料に接触せしめられる測定針とを有し、外部で計測器と接続して前記試料の電気的特性の評価を行う電気的特性測定用プローブ装置において、前記計測器から試料直前の測定針先端側までの間を連絡する計測線の構成につき、該計測線を中心軸電極として絶縁体を介挿せしめた三重電極構造とし、中間軸電極をガード用に前記計測器に繋ぐと共に、最外軸電極を計測器のシャーシに繋いで計測器のシャーシと同電位になるようにしたことを特徴とする電気的特性測定用プローブ装置。

【請求項2】 測定対象となる試料を載せる試料台と、その試料台上の試料に接触せしめられる測定針とを有し、外部で計測器と接続して前記試料の電気的特性の評価を行う電気的特性測定用プローブ装置において、前記試料台につき、その試料接触面の導電部を計測用電極として、その計測用電極を含めて絶縁体を介揮せしめた三重電極構造とし、且つ前記計測器から計測用電極までの間を連絡する計測線の構成につき、該計測線を中心軸電程とし、試料台の中間電極を計測線の中間軸電極に繋いでガード用に前記計測器に連絡すると共に、試料台の最下側電極を計測線の最外軸電極に繋いて計測器のシャーシに繋き計測器のシャーシと同電位になるようにしたことを特徴とする電気的特性測定用プローブ装置。

【請求項3】 請求項第2項記載に記載された電気的特性測定用プローブ装置の構成を備えると共に、その試料台の構成中に、試料の加熱又は冷却が可能な加熱装置又は冷却装置が設置されていることを特徴とする電気的特性測定用プローブ装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、半導体デバイス等の 製造分野におけるプロセス開発工程でウエハ基板等の試 料の微少な電流や電流容量等の電気的特性の測定を行う プローブ装置に関する。

[0002]

【従来の技術】近年、半導体デバイス製造分野では益々高集積化及び超微細化が要求されており、特にメモリ事 40 業では記憶容量の大容量化に伴い高集積化及び微細化が余儀なくされている。ダイナミックランダムアクセスメモリ(DRAM)を例にあげると、これは各ビットセルを構成するキャパシタンス及びトランジスタ等のサイズを縮小化する等の手段により大容量化を図っている。従って、そのキャパシタンスより僅かなリーク電流等が生じても、そのビット情報に大きな影響を与え真値を保持できなくなるため、リフレッシュサイクル時間の補償にも影響を与える。そのため半導体デバイス製造分野にお

微少な電流や電流容量等の電気的特性の評価は欠かせないものとなっている。

【0003】図4は、そのような評価試験に使用されるマニュアルプローバを用いたシステムを例に採りその構成の概略を示している。同図において、10は外界からの影響を少なくすためのシールドボックス、そのシールドボックス10内の11は測定対象となるウエハ等の試料Xを載置する試料台、13a及び13bはその試料台11上の試料Xに接触せしめられる測定針、14a及び1014bは測定針13a及び13bを試料X上で移動させるマニュピレータで更に14a、及び14b、はマニュピレータベース、15は試料Xに接触せしめられた測定針13a及び13bから入力される電流等をシールドボックス外において測定する計測器、16は試料台11の上方の設けられた顕微鏡である。

【0004】この装置では、まず試料台11上に試料Xを載せて顕微鏡16で観察しながらマニュピレータ14 a及び14bを使って測定針13a及び13bを移動させ、試料Xの目的の場所に接触させる。このセット後、定電圧定電流計等の計測器15によってその試料Xにおける微少な電気的特性の測定を行う。

[0005]

【発明が解決しようとする課題】以上の構成では、試料 X や測定針 13a 及び 13b が前記シールドボック 10 によって外界と遮断されているため、本来外界の影響を 受けないはずであるが、実際に得られるデータには、試料の加熱・冷却が可能なヒータ 12 等の加熱・冷却装置 が試料台 11a 自身に設けられている場合、特にそのヒータ 12 等よりノイズ 11 が入り、又試料台 11 の試料接触面の導電部である計測用電極 11a からプローブステーション 11 11 へのリーク 11 が生じるため、その測定用電極の電圧降下、及びある一定量のリーク電流 11 が存在する。このため微少である電気的測定データを正確に測定することは困難であった。

【0006】本発明は従来技術の以上な問題に鑑み創案されたもので、測定時に外界よりの電波等による影響を低減でき、又試料台11自身より発生するノイズ N_1 、 N_2 及びリーク電流 1_1 、 1_2 の影響を最小限に低減することができる微少な電気的特性の測定が可能なプローブ装置を提供せんとするものである。

[0007]

【課題を解決するための手段】本発明者等は、まず微少な電気的特性の測定に対し、測定針13a及び13bの計測線、試料台11の計測用電極11a等へ影響を与えるノイズN₁、N₂及びリークI₁、I₂等の原因を究明したところ、測定対象となる試料の周辺に電気的電位の浮遊している各導電性物質間での静電容量結合等による外界からの誘導によるノイズN₂の影響、試料台11に設置される試料加熱・冷却用のヒータ12等の加熱・冷却

BEST AVAILABLE GOPY

a、13 bの計測線1とシールド(接地)間のリーク1、及び試料台11の計測用電極11 a とシールド間でのリーク1。等が原因となることが判明した。そこでこの様な原因を最小限に低減できる手段につき鋭意検討したところ、以下に説明する本発明の構成を創案するに至った。

【0008】即ち、本発明に係る微少な電気的特性測定 用プローブ装置は、前記計測器から測定針先端側までの 間を連絡する計測線の構成につき、該計測線を中心軸電 極として絶縁体を介挿せしめた三重電極構造とし、中間 10 軸電極をガード用に前記計測器に繋ぐことにより、計測 器側にて計測線に影響がでないようにガード・バッファ を経由して前記中間軸電極が計測線と同電位になるよう 制御されることになり、そのためリーク1」そのものが なくなる。またシールド効果も大で計測線へのノイズN 1、N2の影響も最少限に低減されることになる。一方最 外軸電極を計測器のシャーシに繋ぎ計測器本体と同電位 になるよう(通常は計測器側で接地)ようにする。この ように、前記計測器から測定針先端側までの間を連絡す る計測線を三重電極構造としたことによって、ノー・リ 20 一ク(計測線と中間軸電極とが同電位になったことによ る)及びロー・ノイズ(中間軸電極と最外軸電極の二重 シールド効果による)とすることが可能となった。従来 の測定針側の計測線が絶縁体を介挿させた二重電極構造 であり、その最外軸電極を前記計測器のガード用に繋ぐ と一重シールド効果しか得られず、ノイズN₁、N₂によ る影響が大となる。又最外軸電極を前記計測器のシャー シに繋いだ場合、同じく一重シールド効果しか得られ ず、そのためノイズN₁、N₂による影響が大で、しかも 計測線と最外軸電極(通常計測器側で接地)との間に電 30 位差が生じるため、絶縁体の固有抵抗値に依存したリー ク」が生じる。これに対し本発明は、上述のような二 重シールド効果によりロー・ノイズとなり、又中間軸電 極を設けたことで計測線との間が同電位になってノー・ リークとなるため、前記計測器の能力を十分発揮でき、 微少な電気的特性の測定が可能となる。

【0009】また第2発明の構成は、前記試料台の構成につき、試料接触面の計測用電極を含め絶縁体を介揮せしめた三重電極構造とし、且つ前記計測器から計測用電極までの間を連絡する計測線の構成についても、該計測線を中心軸電極として絶縁体を介揮せしめた同じく三重電極構造とし、試料台の中間電極を計測線の中間軸電極に繋いでガード用に前記計測器に連絡することにより、計測器側にて計測線に影響がでないようにガード・バッファを経由して前記中間電極が計測用電極と同電位になるように制御されることになり、そのためリーク I_1 そのものがなくなる。またシールド効果も大で計測線へのノイズ I_1 、 I_2 の影響も最小限に低減されることになる。一方試料台の最下側電極を計測線の最外軸電極に繋

になるよう(通常は計測器側で接地)にする。このよう に前記試料台の構成を三重電極構造とすると共に、同じ く計測器から試料台の計測用電極までの間を連絡する計 測線についても三重電極構造としたことで、ノー・リー ク(計測用電極と中間電極とが同電位になったことによ る) 及びロー・ノイズ (中間電極と最下側電極の二重シ ールド効果による)とすることが可能になった。従来の 試料台が試料接触面の計測用電極を含め絶縁体を介挿さ せた二重構造であり、その最下側電極を測定器のシャー シに繋ぐと、一重シールド効果しか得られず、ノイズの 影響が大となり、更に計測用電極と最下側電極(通常測 定器側で接地)との間に電位差が生じるため、絶縁体の 固有抵抗値に依存したリーク 1.が生じていた。又加熱 ・冷却用ヒータ等の加熱装置又は冷却装置が設けられた 試料台では、温度上昇によりそのセラミックス系絶縁体 材料の固有抵抗値が低下するため、更に計測用電極と最 下側電極との間に発生するリーク 12が増大する。これ に対し本発明では、上述のようなガード用の中間電極を 設けたことにより計測用電極との間が同電位になるた め、絶縁体の固有抵抗値が低下してもノー・リークとな り、又二重シールド効果によってロー・ノイズとなって いるため、前記計測器の能力を十分発揮でき、微少な電 気的特性の測定が可能になる。

[0010]

【実施例】本発明の具体的実施例を以下説明する。図1 乃至図3は半導体ウエハ基板を試料Xとしてその微少な 電気的特性の測定を行う本発明の一実施例に係るマニュ アル型のプローブ装置の構成を示している。図1におい て、10は外界からの影響を低減するシールドボック ス、そのシールドボックス10内の11は測定対象とな る半導体ウエハ基板Xを載置する試料台、12はその試 料台11に内蔵された加熱用ヒータ、13a及び13b はその試料台11上のウエハ基板Xに接触せしめられる 測定針、14a及び14bは測定針13a及び13bを ウエハ基板X上で移動させるマニピレータで更に14 a'及び14b'はマニピレータベース、15はウエハ 基板×に接触せしめられた測定針13a及び13bに入 力される電流等を計測する測定器(キースレイ社製シス テム251/SMU)、16は試料台11の上方に設け 40 られた顕微鏡である。

【0011】上記構成中、測定針13a及び13bから電流や電流容量等を計測する計測器15に繋げられた計測線1は、図2に示されるように該計測線1を中心軸電極として絶縁体を介挿せしめた三重電極構造で構成されており、そのうち中間軸電極は1aは計測器15のガード用に繋げられると共に、最外軸電極1bはシールドボックス10と計測器15のシャーシに接地せしめられている。

【0012】また試料台11自身、及び該試料台11の

5

2についても、同様に絶縁体を介揮せしめた三重電極構造で構成されている。即ち図3に示されるように、試料接触面の導電部が、計測用電極11aとして、前記計測器15に連絡している中心軸電極である計測線2に繋げられると共に、その計測用電極11aとの間に絶縁体11bを介揮せしめて設けられた中間電極11cが、計測線2の中間軸電極2aに繋げられて計測器15のガード用に繋げられ、またその下に絶縁体11dを介揮せしめて設けられた最下側電極11eが、計測線2の最外軸電極2bに繋げられて計測器15のシャーシに繋げられており、更にこの最外軸電極2bは前記シールドボックス10に繋げられ接地せしめられている。

【0013】以上の本実施例構成は、計測器の計測経路である測定針13a、13bからの計測線1の構成と、試料台11そのものの構成及びその計測用電極11aと計測器の間を繋ぐ計測線2の構成につき、これらを絶縁

体を介挿せしめた三重電極構造とした。このことで計測線1の中心軸電極と中間軸電極1a及び試料台11の計測用電極11aと中間電極11c間が同電位になってリーク1、1、が発生しなくなり、又中間軸電極1aと最外軸電極1b、及び中間電極11cと最下側電極11eの二重シールド効果のためノイズN、N。の影響を最小限に低減できた。従って計測される微少な電流の測定値(電流容量等も測定可能)はリークの影響がなく、ノイズの影響の少ない正確な計測データとなる。下記表1は、各測定項目の中でリーク及びノイズの影響により測

6

は、各測定項目の中でリーク及びノイズの影響により測定が一番困難と思われる微少電流測定を例に採って、従来構成と本実施例構成で測定されたウエハ基板Xの測定可能下限値を示している。

【0014】 【表1】

従来構成	3007ェムトA (10 ⁻¹⁵ A)
本実施例	10フェムトA以下

【0015】この実験で使用した微少電流測定器15自身は、10フェムトA以下まで測定可能であるが、従来構成での測定針13a、13b及び試料台11は中間軸電極や中間電極を設けていない絶縁体を介挿せしめた二重電極構造であるためノー・リーク効果、二重シールド効果の何れか一方又は双方が不完全なものとなり、上記のような300フェムトAが測定可能下限値となった。これに対し本実施例構成では、上記ノー・リーク効果、二重シールド効果の双方とも十分であり、その測定器分30解能近くまで測定できることとなった。

[0016]

【発明の効果】以上詳述した本発明の構成によれば、測定針や試料台におけるリーク I₁、 I₂ の発生がなく、又二重シールド効果によりノイズ N₁、 N₂ の影響が最小限に低減されているため、正確で再現性がある微少電流や電流容量等の電気的特性が測定可能となる。

【図面の簡単な説明】

【図1】本発明の一実施例に係るマニュアル型のプロー

ブ装置の構成を示す概略図である。

【図2】測定針から計測器に繋げられた計測線の三重電極構造の構成を示す説明図である。

【図3】試料台及び該試料台の計測用電極と計測器とを 繋ぐ計測線の三重電極構造の構成を示す説明図である。

【図4】従来のマニュアル型プローブ装置の一構成を示す説明図である。

【符号の簡単な説明】

1, 2	計測線
la, 2a	中間軸電極
1 b, 2 b	最外軸電極
1 0	シールドボックス
1 1	試料台
lla	計測用電極
1 1 b	中間電極
1 1 c	最下側電極
13a,13b	測定針
1 5	計測器

[図2]

[図1]

【図4】

N1: 試料台にヒータ等が設けられている場合のノイズN1 N2:外界よりのノイズN2 I2: 試料台のウエハ接触面より接地側に流れるリークl2 I1: 測定用針の外軸が接地の場合に存在するリークla

フロントページの続き

(72)発明者 森井 彰

神奈川県川崎市幸区北加瀬1-15-12 株 式会社ベクトルセミコンダクタ内