ECEN 3714-----Network Analysis Cover Sheet for Lab 3 to 11

Spring 2022

Lab # 9____

Topic: Active Band Pass Filter

Final Report (Pre-lab + Post-lab)

Name of Group Members:	
Name (Print): Roger Bennett	Name (Print): Thomas Kidd
Signature: Rager M. Bennett	Signature: Thomas Kidd
TA Signature:	

1. Introduction

1.1. In this lab we constructed a 2nd Order Band-Pass Filter and compared them to the 1st Order Low-Pass for High-Pass filters from the previous labs. A band-Pass filter shows frequency within a certain range and rejects the frequencies outside of that range. We achieved an active Band-Pass filter by passing a Low-Pass and High-Pass filter together using a Dual Op-Amp such as LM358 to build and pass the two filters.

2. Pre-Lab Assignment:

2.1. Find the frequency-response of the designed BPF circuit using PSPICE

Figure 1: Magnitude Response of Circuit in Volts

Figure 2: Magnitude Response of Circuit in dB

Figure 3: Phase Response of Circuit in degrees

2.2. Measurements:

Measurement	Value	
Maximum	0.909 V	
Pspice formula: Max(V(out))		
Lower Cutoff Frequency	11.824 kHz	
Pspice formula: Cutoof_Lowpass_3dB(V(out))		
Higher Cutoff Frequency	846.322 Hz	
Pspice formula: Cutoof_Highpass_3dB(V(out))		
Bandwidth	10.978 kHz	
Pspice formula: Bandwidth_Bandpass_3dB(V(out))		
Center Frequency	3.163 kHz	
Pspice formula: SQRT(Cutoff_Highpass_3dB(V(out))*Cutoff_ Lowpass_3dB(V(out)))		
Gain at the Center Frequency	0.909	
Pspice formula: Max_XRange(V(out),3160,3170) The center frequency is between that range		
Q Factor	288.16m or 0.28816	
Pspice formula: SQRT(Cutoff_Highpass_3dB(V(out))*Cutoff_ Lowpass_3dB(V(out))) / (Cutoff_Lowpass_3dB(V(out))- Cutoff_Highpass_3dB(V(out)))		

Evaluate	Measurement	Value
7	Max(V(out))	909.09436m
~	Cutoff_Lowpass_3dB(V(out))	11.82401k
V	Cutoff_Highpass_3dB(V(out))	846.32178
V	Bandwidth_Bandpass_3dB(V(out))	10.97769k
V	SQRT(Cutoff_Highpass_3dB(V(out))*	3.16337k
V	SQRT(Cutoff_Highpass_3dB(V(out))*	288.16363m
V	Max_XRange(V(out),3160,3170)	909.09436m

Figure 4: Measurements from Pspice

3. Assignments:

3.1. Assignment 1:

Measured lower cut-off frequency of the HPF taken separately of the HPF taken separately	1.1kHz
Measured higher cut-off frequency of the LPF taken separately	16kHz

Table 1

3.2. Assignment 2:

Frequency	Magnitude response (Vout (peak-to-peak) Vin (peak-to-peak))	$\begin{array}{c} \textbf{Magnitude} \\ \textbf{response in dB} \\ \textbf{(by taking } 20log_{10} \\ \end{array}$	Phase Differences in degrees
100Hz	112mV	-19.016dB	170.1
250Hz	252mV	-11.972dB	77.84
500Hz	448mV	-6.974dB	60.64
800Hz	624mV	-4.096dB	46.61
1kHz	704mV	-3.049dB	37.75
2.5kHz	940mV	-0.537dB	6.5
5kHz	900mV	-0.915dB	-18.49
8kHz	820mV	-1.724dB	-48.11
10kHz	712mV	-2.950dB	-56.65
25kHz	480mV	-6.375dB	-67.47
50kHz	464mV	-6.670dB	-76.61
80kHz	480mV	-6.375dB	-179.3
100kHz	464mV	-6.670dB	178.3

Table 2

Figure 5: Magnitude Response Graph in dB from Table 2

Figure 6: Phase Response Graph in Degrees from Table 2

Figure 7: Band Pass Filter - 1kHz

Figure 8: Band Pass Filter - 10kHz

3.3. Assignment 3:

Center frequency	4195.24 Hz
Gain at Center frequency	940mV so 0.94 gain
Lower cut-off frequency of BPF	10.5 kHz
Higher cut-off frequency of BPF	950 Hz

Table 3

4. Discussion

4.1. In this lab we reinforced our knowledge on Low Pass Filter and High Pass Filters by making each on their own. We then took our knowledge of these filters and put them together. Cascading the Low Pass Filter over the High Pass Filter using a Dual Op-Amp IC. We also noticed that real life circuits will not resemble ideal situations due to many different factors. Because of this, our plotted points look somewhat different from the simulation. This is interesting because it shows how relying on simulations is not an accurate way of modeling all situations when it comes to precise electrical needs.