GRAU: Enginyeria Matemàtica i Física

Assignatura: FISICA DEL ESTAT SÒLID i SUPERFICIES

(CRISTAL·LOGRAFIA, SIMETRIA)

Prof. Dra. M. AGUILÓ.

Universitat Rovira i Virgili.

Tarragona, setembre 2024

GRAU: EMIF

Assignatura: FISICA DEL ESTAT SÒLID i SUPERFICIES (CRISTAL·LOGRAFIA; SIMETRIA)

Prof. Dra. M. AGUILÓ

Catedràtica Emèrita Universitat Rovira i Virgili.

CRISTAL·LOGRAFIA; SIMETRIA

Introducció conceptes bàsics de **CRISTAL·LOGRAFIA** i **Difracció de Raigs X** per aplicar a Sòlids Cristal·lins. Entendre la Nomenclatura de la Unió Internacional de Cristal·lografia (IUCr).

Periodicitat i simetria. Material cristal·lí bidimensional. Material cristal·lí tridimensional. Sistemes cristal·lins. Elements de simetria. Xarxes de Bravais.

Simetria puntual: Elements de simetria. Simetria puntual de sòlids cristal·lins. Objectes finits. Visió macroscòpica. Sistema de referencia exterior al cristall. **32 grups puntuals cristal·logràfics.** Representació d'elements de simetria. Projecció estereogràfica. Nomenclatura de Herman-Mauguin. Nomenclatura de Schoenflies

Simetria espacials: **230 Grups espacials cristal·lografics**. Objectes infinits. Cristalls. Visió amb sistema de referencia definit per els vectors de periodicitat a sobre de distribució ordenada (ions, àtoms, o molècules). Nomenclatura de Herman-Mauguin.

Sistema real i sistema recíproc. Punt, direcció i pla cristal·logràfic. Càlculs geomètrics: distàncies entre punts, angles i distàncies entre plans.

GRAU: EMIF

Assignatura: FISICA DEL ESTAT SÒLID i SUPERFICIES (CRISTAL·LOGRAFIA; SIMETRIA)

Prof. Dra. M. AGUILÓ

Universitat Rovira i Virgili.

Estructura Cristal·lina: cel·la, posicions atòmiques, grup espacial, Z número de fórmules estequiomètriques. Descripció d'un material cristal·lí.

Difracció de R-X. Llei vectorial de la difracció. Llei de Bragg. Caracterització per difracció de RX. Tècniques de difracció de RX.

Exemples d'algunes estructures.

Defectes cristal·lins: defectes puntuals, defectes linials, defectes en altres dimensions.

Anisotropia de les propietats fisiques: Tensors.

Nomenclatura tensors de 2on, 3rt i 4rt ordre.

Principi de Newmann.

Principi de Curie.

Bibliografia:

- **1.** M. Aguiló, documents Moodle per l'assignatura de "Física Estado Solido i Superficies", Tarragona 2023.
- 2.- M. Aguiló, document problemes, practiques i Taules de "Física Estado Solido i Superficies", Tarragona 2023
- **3.** A. Putnis, Introduction to the mineral Sciences, Cambridge University Press, 1992, ISBN 0 521 42947 1, Chap 1
- **4.-** International Tables for Crystallography (IUCr Series. International Tables for Crystallography).
- C. P. Brock is the editor of International Tables for Crystallography, published by Wiley, 2016. Volum A.
- **5.-** J.F.Nye, Physics Properties of Crystals. Their Represention by Tensors and Matrices. Pu. In the USA by Oxford University Press, 1957, 1987.
- 6.- X. Solans, Introducció a la cristal·lografia. Textos docentes 158. Ed. Universidad de Barcelona, 1999.
- 7.- S. Galí, Cristal·lografia. Teoria Reticular, grups puntuals i grups espacials. PPU, Barcelona, 1988.
- **8**.- Hammond, C. , The basics of crystallography and diffraction IUCr Texts on Crystallography, IUCR- Oxford Science Pu., 1997

Cristal·lografia

La **Cristal·lografia** estudia la matèria cristal·lina. Els **cristalls** són ordenacions amb periodicitat, en l'espai, dels àtoms i/o molècules que els constitueixen. Això els diferencia dels vidres, en els que els àtoms no estan ordenats de forma periòdica en l'espai.

Periodicitat: característica fonamental dels materials cristal·lins

Figure 1.1. This image of the crystal structure of the mineral cordicrite, (Mg₂Al₂Si₃O₁₈) has been taken with a high resolution transmission electron microscope. It is a projection, through a very thin (~200 Å) slice, of the atomic distribution, the black spots representing hollow channels through the structure while the white spots can be equated with the regions of high atomic density, arranged around the channels in 6-fold rings. It is shown here to illustrate some aspects of the periodicity and symmetry of crystalline materials. (Scale: The distance between the black spots is ~ 9.7Å or 19.7mm.)

Vectors de periodicitat: Sistema de referència, interior, del material

Sistema de referència:

red directa, de paràmetres: a, b, c, α, β, γ

Cel·la: $a=b\neq c$, $\alpha=90^{\circ}$, $\beta=90^{\circ}$, $\gamma=120^{\circ}$

Elements de simetria: 3, 6, m,

M. AGUILÓ. Catedràtica de Cristal·lografia

Figure 1.1. This image of the crystal structure of the mineral cordierite, $(Mg_2Al_4Si_5O_{18})$ has been taken with a high resolution transmission electron microscope. It is a projection, through a very thin ($\sim 200 \text{ Å}$) slice, of the atomic distribution, the black spots representing hollochannels through the structure while the white spots can be equated with the regions of high atomic density, arranged around the channel in 6-fold rings. It is shown here to illustrate some aspects of the periodicity and symmetry of crystalline materials. (Scale: The distance between the black spots is $\sim 9.7\text{Å}$ or 0.97nm.)

 $1 \text{ Å } (\underline{\text{angstrom}}) = 1 \times 10^{-10} \, \underline{\text{m}} = 0.1 \, \underline{\text{nm}}$

A. Putnis, Introduction to the mineral Sciences, Cambridge University Press, 1992, ISBN 0 521 42947 1, Chap 1

Cel·la: àtoms i coordenades:

Cel·la: $a=b\neq c$, $\alpha=90^{\circ}$, $\beta=90^{\circ}$, $\gamma=120^{\circ}$. (a=b=0.97nm=9,7 Å); (1 Å (<u>àngstrom</u>) = 1 × 10⁻¹⁰ <u>m</u>= 0.1 <u>nm</u>)

Coordenades atòmiques: (2/3,1/3) (1/3,2/3) en 2-D; (2/3,1/3,0) (1/3,2/3,0) en 3-D

TWO-DIMENSIONAL LATTICE SYMMETRIES

Figure 1.5. This pattern is similar to the atomic distribution of 'white atoms' shown in Figure 1.1. If point O is chosen as a lattice point, the array of identical points defines a hexagonal unit cell as shown in bold. The motif consists of 2 atoms with coordinates (2/3, 1/3) and (1/3, 2/3). The whole pattern can be generated by specifying the hexagonal lattice, and applying this motif to each lattice point. Note that only 2 atoms are needed for the motif, but that their coordinates depend on the choice of origin for the unit cell.

Matèria cristal·lina: Propietats

- ⇒ Periòdica
- ⇒ Homogènia
- ⇒ Anisòtropa: DIRECCIONALITAT DE LES PROPIETATS Els materials són isòtrops si el valor de les seves propietats es independent de la direcció de la mesura
- ⇒ Simetria. Presenten elements de simetria. Tan des del punt de vista intern com extern.

Les propietats dels materials cristal·lins presentaran simetria que estarà relacionades amb la simetria del material. PN. PC.

Punt de vista microscòpic (sistema de referència intern).

Punt de vista macroscòpic (sistema de referència extern)

Elements de simetria espacial.

Elements de simetria puntual.

a=b=9.7Å;a=b≠c; α=β=90; γ=120

https://www.google.com/search?q=hexagonal+c rystal+minerals&client=firefoxb&tbm=isch&source=iu&ictx=1&fir= U9SVJPXCS U06M%253A%252C05BPP9Fjsn8UAM%252C_&u sg=__YMPJ[qcjzK99-

8lCLiCdZfye54%3D&sa=X&ved=0ahUKEwij-H6tPPbAhUHPBQKHcl3C8oQ9QEINDAC#imgrc: MuR68flFk_0jrM:

Anisotropia de la matèria cristal·lina

Propietats com conductivitat tèrmica, índex de refracció, etc., depenen de la direcció a llarg de la qual són mesurades.

Si una propietat d'un material es independent de la direcció es diu que la substància és isòtropa respecta a aquesta propietat.

L'Hàbit Cristal·lí, forma externa dels cristalls, és una manifestació de la *Anisotropia Cristal·lina*

a=b=9.7Å;

a=b≠c; α=β=90; γ=120

PERIODICITAT

Sigui una magnitud F en un punt donat per r:

$$F(\overrightarrow{r}) = F(\overrightarrow{r} + \overrightarrow{t})$$

Vector de periodicitat:

$$\overrightarrow{\mathbf{t}} = \overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{a}} + \overrightarrow{\mathbf{b}} + \overrightarrow{\mathbf{b}} + \overrightarrow{\mathbf{c}}$$
 $u, v, w \in \mathbf{Z}$; [uvw]

- Si un àtom ocupa una posició qualsevol donada pel vector de posició \overrightarrow{r} i \overrightarrow{t} és un vector de periodicitat del cristall, en qualsevol altra posició \overrightarrow{r} + n \overrightarrow{t} , (n \in Z) trobem <u>el mateix àtom</u>.
- Si $\overrightarrow{t_1}$ i $\overrightarrow{t_2}$ són vectors de translació, també ho és el vector:

$$\overrightarrow{nt_1} + \overrightarrow{mt_2}, \forall n, m \in Z$$

• Si hi ha tres vectors de translació qualsevols, no coplanaris i si s'apliquen a un mateix punt \rightarrow paral·lelepípede que es diu cel·la.

Cel·la

Si hi ha tres vectors de translació qualsevols, no coplanaris i si s'apliquen a un mateix punt \rightarrow paral·lelepípede que es diu cel·la

'Si es coneixen les propietats de la cel·la, es coneixen les propietats de tot el cristall.

Les propietats, el contingut, en àtoms, i en elements de simetria, etc., ...

Aquests tres vectors constitueixen la base de l'espai vectorial TRANSLACIONS DE CEL·LA

Tot vector de translació pot expressar-se com a combinació lineal de \overline{a} , \overline{b} , \overline{c} que defineixen la cel·la:

$$\overrightarrow{t} \stackrel{?}{=} n \overrightarrow{a} \stackrel{?}{=} m \overrightarrow{b} \stackrel{?}{=} p \overrightarrow{c}; n, m, p \in Z$$

CEL·LA PRIMITIVA

ve definida pels tres vectors de translació més petits no coplanaris: a, b, c

Paràmetres de la cel·la a, b, c, i α , β , γ

Aquests tres vectors constitueixen la base de l'espai vectorial TRANSLACIONS DE CEL·LA

Tot vector de translació pot expressar-se com a combinació lineal de a, b, c que defineixen la cel·la primitiva:

$$\overrightarrow{t} = n \overrightarrow{a} + m \overrightarrow{b} + p \overrightarrow{c}$$
; n, m, p $\in \mathbb{Z}$

PARÀMETRES DE LA CEL·LA a, b, c, α , β , γ

$$a = |\vec{a}|$$

lpha : angle que formen els vectors \vec{b} i \vec{c}

$$\mathbf{b} = |\vec{\mathbf{b}}|$$

 β : angle que formen els vectors \vec{a} i \vec{c}

$$\mathbf{c} = |\vec{\mathbf{c}}|$$

 γ : angle que formen els vectors \vec{a} i \vec{b}

VOLUM DE LA CEL·LA

$$V_c = \vec{a} \cdot (\vec{b} \wedge \vec{c}) = \vec{b} \cdot (\vec{c} \wedge \vec{a}) = \vec{c} \cdot (\vec{a} \wedge \vec{b})$$

VOLUM DE LA QUALSEVOL ALTRE PARAL·LELEPÍPEDE

$$V = \vec{t}_1 \cdot (\vec{t}_2 \wedge \vec{t}_3) = \vec{t}_2 (\vec{t}_3 \wedge \vec{t}_1) = \vec{t}_3 (\vec{t}_1 \wedge \vec{t}_2)$$

Nomenclatura Cristal·logràfica per la matèria cristal·lina

(x,y,z): punt (de la xarxa cristal·lina)

 $\vec{t} = u \vec{a} + v \vec{b} + w \vec{c}$ [uvw] : direcció cristal·logràfica

 $\vec{w}_{hkl}^* = h \vec{a}^* + k \vec{b}^* + l \vec{c}^*$ (hkl): pla cristal·logràfic. Índexs de Miller.

 $\vec{r} = x \, \vec{a} + y \, \vec{b} + z \, \vec{c}$

Vectors de periodicitat: Cel·la.

Vectors mes petits. Altres mes grans construïts amb els petits. Cel·les diferents descrivint la mateixa distribució periòdica.

Figure 1.3. This two-dimensional array of lattice points shows some of the ways in which a unit cell could be defined. The conventionally chosen hexagonal unit cell has lattice parameters a and b equal and an interaxial angle $\gamma = 120^{\circ}$. This is the smallest cell which describes the symmetry in the distribution of the lattice points.

A. Putnis, Introduction to the mineral Sciences, Cambridge University Press, 1992, ISBN 0 521 42947 1, Chap 1

Cel·les: Primitives i Centrades

Figure 1.4. In this pattern the distribution of lattice points is such that the smallest primitive unit cell (shown dashed: $a \neq b$, $\gamma \neq 120^{\circ}$) does not describe the symmetry, and hence the rectangular unit cell (solid line) is conventionally chosen to describe the lattice. This rectangular cell, with a lattice point at the centre as well as at the corners is termed non-primitive, and is obviously larger than the smallest repeat unit.

A. Putnis, Introduction to the mineral Sciences, Cambridge University Press, 1992, ISBN 0 521 42947 1, Chap 1

7 Sistemes Cristal·lins

Paràmetres de Cel·la

Triclínic
Monoclínic (2nd "setting")
Monoclínic (1st "setting")
Ortoròmbic
Tetragonal
Cúbic

$$a\neq b\neq c$$
; $\alpha\neq \beta\neq \gamma$

2)a
$$\neq$$
 b \neq c; α = γ =90; β >90

1)a
$$\neq$$
 b \neq c; α = β =90; γ >90

$$a \neq b \neq c$$
; $\alpha = \beta = \gamma = 90$;

$$a=b\neq c$$
; $\alpha=\beta=\gamma=90$;

$$a=b=c$$
; $\alpha=\beta=\gamma=90$;

$$a=b\neq c$$
; $\alpha=\beta=90$; $\gamma=120$

1)a= b
$$\neq$$
c; α = β =90; γ =120

2)
$$a = b = c$$
; $\alpha = \beta = \gamma < 120 \neq 90$;

Els 7 sistemes cristal·lins i les 14 xarxes de BRAVAIS (3-D).

Table 1.2. The 7 crystal systems and 14 Bravais lattices in 3 dimensions

Crystal system	Unit cell dimensions	Essential symmetry	Bravais lattices
Triclinic	$a \neq b \neq c;$ $\alpha \neq \beta \neq \gamma$	None	P
Monoclinic	$a \neq b \neq c$ $\alpha = \gamma = 90^{\circ}$ $\neq \beta$	A diad (2-fold) axis	P, C
Orthorhombic	$a \neq b \neq c$ $\alpha = \beta = \gamma$ $= 90^{\circ}$	Three mutually perpen- dicular diad axes	P, C, I, F
Tetragonal	$a = b \neq c$ $\alpha = \beta = \gamma$ $= 90^{\circ}$	A tetrad (4-fold) axis	P, I
Cubic	$a = b = c$ $\alpha = \beta = \gamma$ $= 90^{\circ}$	Four triad (3-fold) axes	P, I, F
Trigonal*	$a = b = c$ $120^{\circ} > \alpha$ $= \beta = \gamma \neq$ 90°	A triad axis	R (rhombo- hedral)
Hexagonal	$a = b \neq c$ $\alpha = \beta$ $= 90^{\circ},$ $\gamma = 120^{\circ}$	A hexad (6-fold) axis	P

^{*} Crystals in the trigonal system may be described by an hexagonal unit cell, even though they do not have a hexad rotation axis.

Les 14 xarxes de BRAVAIS, (1848).

Figure 1.11. The 14 Bravais lattices. All crystalline solids can be described by unit cells which belong to one of these 14 types.

14 xarxes de BRAVAIS.

√pp

14 xarxes de BRAVAIS i la simetria

M. AGUILÓ. Catedràtica de Cristal·lografia

<u>Tipus de XARXES TRIDIMENSIONALS (1)</u>

VECTORS DE TRASLACIÓ

$$\mathbf{P} \Rightarrow \text{Primitiva}$$

$$A \Rightarrow$$
 centrada en A _____

$$\vec{a}; \vec{b}; \vec{c}; \frac{\vec{b} + \vec{c}}{2}$$

$$\mathbf{B} \Rightarrow$$
 centrada en B

$$\vec{a}; \vec{b}; \vec{c}; \frac{\vec{a} + \vec{c}}{2}$$

TIPUS DE XARXES TRIDIMENSIONALS (2)

VECTORS DE TRASLACIÓ

$$\mathbf{C} \Rightarrow \text{centrada en C} \qquad \qquad \vec{\mathbf{a}}; \vec{\mathbf{b}}; \vec{\mathbf{c}}; \frac{\vec{\mathbf{a}} + \vec{\mathbf{b}}}{2}$$

$$\mathbf{F} \Rightarrow \text{centrada en CARES} \longrightarrow \vec{a}; \vec{b}; \vec{c}; \frac{\vec{a} + \vec{b}}{2}; \frac{\vec{b} + \vec{c}}{2}; \frac{\vec{c} + \vec{a}}{2}$$

I
$$\Rightarrow$$
 centrada en L'INTERIOR $\vec{a}; \vec{b}; \vec{c}; \frac{\vec{a} + \vec{b} + \vec{c}}{2}$

TIPUS DE XARXES TRIDIMENSIONALS (3)

Notació matricial

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

TIPUS DE XARXES TRIDIMENSIONALS (4)

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} 1/2 \\ 1/2 \\ 0 \end{pmatrix}$$

TIPUS DE XARXES TRIDIMENSIONALS (5)

Notació matricial

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} 1/2 \\ 1/2 \\ 1/2 \end{pmatrix}$$

TIPUS DE XARXES TRIDIMENSIONALS (6)

$$\vec{a}; \vec{b}; \vec{c}; \frac{\vec{a} + \vec{b}}{2}; \frac{\vec{b} + \vec{c}}{2}; \frac{\vec{c} + \vec{a}}{2}$$

Multiplicitat: 4

$$(x,y,x) \longrightarrow (x+1,y,z) (x,y+1,z) (x+1,y+1,z) (x, y, z+1) (x+1/2, y+1/2, z) (x, y+1/2, z+1/2)$$

(x+1/2, y, z+1/2)

Notació matricial

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} 1/2 \\ 1/2 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} 1/2 \\ 1/2 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} x'' \\ y'' \\ z'' \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} 0 \\ 1/2 \\ 1/2 \end{pmatrix} \qquad \begin{pmatrix} x''' \\ y''' \\ z''' \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} 1/2 \\ 0 \\ 1/2 \end{pmatrix}$$

TIPUS DE XARXES TRIDIMENSIONALS (7)

Sistema trigonal (Romboèdric, R) i equivalència amb Sistema hexagonal auxiliar

Trigonal (Romboedric) R

Sistema trigonal a=b=c, $\alpha=\beta=\gamma$

Sistema hexagonal auxiliar

$$a_1 = b_1, c_1, \alpha = \beta = 90, \gamma = 120$$

M. AGUILÓ. Catedràtica de Cristal·lografia

Elements de Simetria: OPERACIONS DE SIMETRIA PUNTUAL CRISTAL·LINES

En la ordenació dels àtoms en el sòlids cristal·lins periòdics, per descriure de forma completa la equivalènci entre ells, es necessita també els elements de simetria, que son operacions o moviments (descrits per matrius).

Els elements de simetria considerats són els **compatibles** amb la teoria reticular (xarxes de Bravais).

- Reflexió: m

- **Rotacions: 2,3,4,6**

- Inversió: 1

- Rotació amb reflexió

- Rotacions amb inversió

- a) Mirror plane
- b) Two-fold axis
- c) Combination of two-fold axis with two mirrors
- d) Three-fold axis, shown in plan only
- e) Centre of symmetry
- f) Four-fold inversion axis

Nomenclatura internacional o de la IUCr. Nomenclatura de Hermann-Mauguin.

La notació de **Hermann–Mauguin** és usada per representar els elements de simetria, en grups puntuals, grups plans (2D) I grups espacials (3D). Es així nomenada per el treball del cristal·lògraf Alemany Carl Hermann (que la va introduir en 1928) i per el mineralogista Francès Charles-Victor Mauguin (qui la va modificar en 1931). Aquesta anotació es anomenada també notació internacional, perquè va esser adoptada com estàndard en les taules internacionals de Cristalografia (the *International Tables For Crystallography*) en la seva primera edició en 1935.

La nomenclatura Hermann–Mauguin, comparada amb la notació de Schoenflies, és preferida en Cristal·lografia perquè dona informació fàcilment dels elements de simetria i de la direcció dels elements de simetria respecte del sistema de vectors de periodicitat **a**, **b**, **c** que defineix el sistema cristal·lí.

Translation. (2 dimensions)

Elements de Simetria. (2 dimensions)

Figure 1.7. The way in which symmetry elements operate in two dimensions, and the conventional symbols used to describe them.

Els 10 grups puntuals bidimensionals.

TWO-DIMENSIONAL SPACE GROUPS - AN EXAMPLE

Figure 1.8. The 10 two-dimensional point groups which are consistent with the symmetries of a plane lattice. These represent the total number of combinations of mirror lines with rotation axes about a point. The symmetry elements themselves are not shown, but are indicated by the point group symbol.

Els 17 grups espacials bidimensionals (space groups).

	S S S S S
p1	p2 \$ \$ \$ \$ \$ \$
	ww ww ww
Sex Sex Sex	
	ON ME ON ME AND ON ME
pm	p2mm
	p z mm
cm	
	c2mm
Control of the contro	
Sea may see " "	Who was
www www	
خبرين جيد	
-2	•
p2mg	p2gg
ex ex	
	fi.
que que	Figure 1.9. The 17 types of plane patterns (or two-dimension space groups). Thirteen of these can be produced by combining the state of the second produced by combining the state of the second produced by combining the state of the second produced by combining the second produced by the second pro
	the 5 lattice types in Figure 1.6 with the 10 point groups in Figure 1.8 and the additional four come about by recognising the existence of the glide operation (a reflection plus a translation
pg	one half of a lattice repeat). All two-dimensional periodic paterns must belong to one of these space groups.

Les 5 cel·les bidimensionals i els elements de simetria de les mateixes

Figure 1.6. The five two-dimensional lattices, and the symmetry of the distribution of lattice points in each. In each case a single unit cell is shown on the left, and the symmetry elements within the cell are shown in the figure on the right.

Table 1.1. Two-dimensional crystal systems, lattices and space groups

Crystal system	Point groups compatible with crystal system	Lattices in system	Space groups compatible with lattice
Oblique $a \neq b$, $\gamma \neq 90^{\circ}$	1, 2	p (primitive)	p1, p2
Rectangular $a \neq b, \gamma = 90^{\circ}$	1m, 2mm	p (primitive) c (centred)	pm, p2mm, pg, p2mg p2gg cm, c2mm
Square $a = b$, $\gamma = 90^{\circ}$	4, 4mm	p (primitive)	p4, p4mm, p4gm
Hexagonal $a = b$, $\gamma = 120^{\circ}$	3, 3m, 6, 6mm	p (primitive)	p3, p31m, p3m1 p6, p6mm

Eixos: de rotació, d'inversió i de rotació i translació

1			Symbols of Sy	H		BULL BURNESS CONTRACTOR	
Symbol	Symmetry axis	Graphical symbol	Nature of right-handed screw trans- lation along the axis	Symbol	Symmetry axis	Graphical symbol (normal to plane of paper)	Nature of right-handed screw trans- lation along the axis
1	Rotation monad	None	None	4	Rotation tetrad	•	None
ī	Inversion monad	0	None	41	Screw tetrads	*	c/4
2	Rotation diad	(normal to paper)	None	42		*	2c/4 3c/4
		(parallel to paper)		4	Inversion tetrad	•	None
2,	Screw diad	(normal to paper)	c/2	6	Rotation hexad	•	None
		(parallel to paper)	Either a/2 or b/2	6,	Screw hexads	N	c/6
		Normal to paper		62		•	2c/6
3	Rotation	A	None	63		使用多有	3c/6
3,	triad Screw		c/3	6.		•	4c/6
32	triads	4	2c/3	66		•	5c/6
3	Inversion triad	Δ	None	6	Inversion hexad	(4)	None

Eixos: de rotació i translació

Plans de simetria: reflexió, i de reflexió i translació (lliscament)

		Graphic	al symbol	
Symbol	ymbol Symmetry plane	Normal to plane of projection	Parallel to plane of projection	Nature of glide translation
m	Reflection plane (mirror)	-	7_/	None (Norm. If the plane is at $z=\frac{1}{2}$ this is shown by printing $\frac{1}{2}$ beside the symbol.)
a, b	Axial glide plane		777	a/2 along [100] or b/2 along [010]; or along (100).
c			None	c/2 along z-axis; or (a+b+c)/2 along [111] on rhombohedral axes.
n	Diagonal glide plane (net)		7	(a+b)/2 or $(b+c)/2$ or $(c+a)/2$; or $(a+b+c)/2$ (tetragonal and cubic).
d	"Diamond" glide plane		7	$(a\pm b)/4$ or $(b\pm c)/4$ or $(c\pm a)/4$; or $(a\pm b\pm c)/4$ (tetragonal and cubic). See note below.

Note. In the "diamond" glide plane the glide translation is half of the resultant of the two possible axial glide translations. The arrows in the first diagram show the direction of the horizontal component of the translation when the z-component is positive. In the second diagram the arrow shows the actual direction of the glide translation; there is always another diamond-glide reflection plane parallel to the first with a height difference of \(\frac{1}{2}\) and with the arrow pointing along the other diagonal of the cell face.

32 grups puntuals de simetria cristal·logràfica

TABLE 3-1 CRYSTALLOGRAPHIC POINT GROUPS

Crystal system	Schoenflies symbol	Hermann- Mauguin symbol	Order of group	Laue
Trictinic	C1	ı	1	ĭ
	C_{ℓ}	T	2	
Monoclinic	C_2	2	2 2	2/m
	Cs	m	2	
	Czh	2/m	4	
Orthorhombic	D_2	222	4	mmm
	C_{2e}	mm2	4	
	D_{2h}	mmm	8	
Tetragonal	C_4	4	4	4/m
	S_4	4	4	
	C_{4k}	4/m	8	
	D_4	422	8	4/mmm
	Car	4mm	8	
	D_{24}	42m	8	
	D_{4h}	4/mmm	16	
Trigonal	C3	3	3	3
	C31	3	6	
	D_3	32	6	3m
	C30	3 <i>m</i>	6	
	D_{3d}	3m	12	
Hexagonal	C_6	6	6	6/m
	C_{3h}	8	6	
	Con	6/m	12	
	D_6	622	12	6/mmn
	Cov	6mm	12	
	D_{3h}	6m2	. 12	
	D_{6A}	6/mmm	24	
Cubic	T	23	12	m3
	T_h	m3	24	
	0	432	24	m3m
	T_d	43m	24	
	O_h	m3m	48	

GRUPS ESPACIALS CRISTAL·LOGRAFICS: Quants n'hi ha?, Nomenclatura

230 grups espacials cristal·lografics,

relacionats amb els 32 grups puntuals i

classificats en 7 sistemes

Ex:

Grup Espacial: Pmmm

Grup puntual: mmm

Ex:

Grup Espacial: Fm3m

Grup puntual: m3m

Grup Espacial:Pn3m

Grup puntual: m3m

1)Tipus de xarxa

2)Elements de simetria

3)Elements de simetria

4) Elements de simetria

230 SPACE GROUP OF SYMMETRY.

No. of space	System	230 groups
group	symmetry	
1-2	Triclinic	2
3-15	Monoclinic	13
16-74	Rombic	59
75-142	Tetragonal	68
143-167	Trigonal	25
168-194	Hexagonal	27
195-230	Cubic	36

Space group of symmetry: 230

TRICLINIC SYSTEM

No. of space	Schoenflies	Hermann-Mauguin
group	symbol	symbol for all settings of the same unit cell
1	C_1^1	P1
2	C_i^1	P1

MONOCLINIC SYSTEM

No. of space group	Schoenflies symbol	Standard short Hermann-Mauguin symbol
3	C_2^1	P2
4	C_2^2	P2 ₁
5	C_2^3	C2
6	C_s^1	Pm
7	$egin{array}{c} C_{ m s}^1 \ C_{ m s}^2 \end{array}$	Pc
8	C_s^3	Cm
9	C_s^4	Сс

No. of space	Schoenflies	Standard short
group	symbol	Hermann-Mauguin symbol
10	C_{2h}^1	P2/m
11	C_{2h}^2	P2 ₁ /m
12	$egin{array}{c} C_{2h}^1 \\ C_{2h}^2 \\ C_{2h}^3 \\ C_{2h}^4 \\ C_{2h}^4 \end{array}$	C2/m
13	C_{2h}^4	P2/c
14	C_{2h}^5	P2 ₁ /c
15	C_{2h}^6	C2/c

ORTHORHOMBIC SYSTEM

No. of space group	Schoenflies symbol	Standard full Hermann-Mauguin symbol abc
16	D_2^1	P222
17	D_2^2	P222 ₁
18	D_2^3	P2 ₁ 2 ₁ 2
19	D_2^4	P2 ₁ 2 ₁ 2 ₁
20	D_2^5	C222 ₁
	D_2^6	C222
21 22	D_2^7	F222
23	D_2^8	I222
23	D 9	1222
24	D_2^9	I2 ₁ 2 ₁ 2 ₁

N. C	Q 1 Q:	C. 1 1 C 11
No. of space	Schoenflies symbol	Standard full Hermann-Mauguin
group	Syllibol	symbol
		abc
25	C_{2v}^1	Pmm2
26	C_{2v}^2	Pmc2 ₁
27	C_{2v}^3	Pcc2
28	$\mathrm{C}_{\mathrm{2v}}^4$	Pma2
29	C_{2v}^5	Pca2 ₁
30	C_{2v}^6	Pnc2
31	C_{2v}^7	Pmn2 ₁
32	C_{2v}^8	Pba2
33	C_{2v}^9	Pna2 ₁

No. of space group	Schoenflies symbol	Standard full Hermann-Mauguin symbol abc
34	C_{2v}^{10}	Pnn2
35	C_{2v}^{11}	Cmm2
36	C_{2v}^{12}	Cmc2 ₁
37	C_{2v}^{13}	Ccc2
38	C_{2v}^{14}	Amm2
39	C_{2v}^{15}	Abm2
40 41	C_{2v}^{16} C_{2v}^{17}	Ama2 Aba2
41		Fmm2
42	C _{2v} ¹⁸	FIIIIIZ

No. of space	Schoenflies	Standard full
group	symbol	Hermann-Mauguin
		symbol
		abc
43	C_{2v}^{19}	Fdd2
44	$\mathrm{C}_{\mathrm{2v}}^{20}$	Imm2
45	C_{2v}^{21}	Iba2
46	C_{2v}^{22}	Ima2
47	C_{2v}^{22} D_{2h}^{1}	P 2 2 2
48	D_{2h}^2	$ \begin{array}{c} m \ m \ m \\ P \frac{2}{n} \frac{2}{n} \frac{2}{n} \end{array} $
49	D_{2h}^3	$P\frac{2}{c}\frac{2}{c}\frac{2}{m}$
50	D_{2h}^4	$P\frac{2}{b}\frac{2}{a}\frac{2}{n}$
51	D_{2h}^5	$P\frac{2_1}{m}\frac{2}{m}\frac{2}{a}$

	No. of space	Schoenflies	Standard full
	group	symbol	Hermann-Mauguin
	8	-)	symbol
			abc
	52	$\mathrm{D}_{2\mathrm{h}}^{6}$	$P^{\frac{2}{1}} \frac{2_1}{2}$
		2h	P———— n n a
		- 7	
	53	D_{2h}^7	$P = \frac{2}{m} = \frac{2}{n} = \frac{2}{n}$
			m n a
	54	$\mathrm{D}^8_{2\mathrm{h}}$	$P^{\frac{2_1}{2}} = \frac{2}{2}$
	54	2h	сса
	55	D9	$P \frac{2_1}{b} \frac{2_1}{a} \frac{2}{m}$
		$\mathrm{D}^9_{2\mathrm{h}}$	b a m
		10	
	56	$\mathrm{D}_{2\mathrm{h}}^{10}$	$P\frac{2_1}{c}\frac{2_1}{c}\frac{2}{n}$
			ссп
	57	$\mathrm{D}_{2\mathrm{h}}^{11}$	$_{\rm p}$ 2 2 ₁ 2 ₁
	57	Zn	$P\frac{2}{b}\frac{2_1}{c}\frac{2_1}{m}$
		D12	$P^{\frac{2_1}{2_1}} \frac{2_1}{2}$
	58	D_{2h}^{12}	n n m
		12	$P^{\frac{2_1}{2_1}} \frac{2_1}{2}$
	59	D_{2h}^{13}	P
			111 11
	60	$\mathrm{D}_{2\mathrm{h}}^{14}$	$2_1 \ 2_1$
	60	Δn	$P\frac{2_1}{b}\frac{2}{c}\frac{2_1}{n}$
II			

		1	
Ì	No. of space	Schoenflies	Standard full
	group	symbol	Hermann-Mauguin
			symbol
			abc
	61	D_{2h}^{15}	$P^{\frac{2_1}{2_1}} \frac{2_1}{2_1}$
		211	$\frac{1}{b} \frac{\overline{a}}{c} \frac{\overline{a}}{a}$
		n 16	$P^{\frac{2_1}{2_1}} \frac{2_1}{2_1}$
	62	${\rm D_{2h}^{16}}$	
			n m a
		D_{2h}^{17}	$C^{\frac{2}{2}}$
	63	2h	тст
	C 4 +	10	$C = \frac{2}{2} \frac{2}{21}$
	64*	D_{2h}^{18}	m c a
			m v u
	65	${\rm D}_{2h}^{19}$	2 2 2
	03	D_{2h}	$C = \frac{2}{3} = \frac{2}{3} = \frac{2}{3}$
			m m m
		20	2.2.2
	66	D_{2h}^{20}	$C^{\frac{2}{2}}$
			c c m
		D_{2h}^{21}	$C^{\frac{2}{2}}$
	67*	D _{2h}	m m a
			$C^{\frac{2}{2}}$
	68	D_{2h}^{22}	C c c a
		D_{2h}^{23}	2 2 2
	69	2h	$F = \frac{2}{2} = \frac{2}{2}$
			m m m

No. of space	Schoenflies	Standard full		
group	symbol	Hermann-Mauguin		
2 2		symbol		
		abc		
70	D_{2h}^{24}	$F\frac{2}{d}\frac{2}{d}\frac{2}{d}$		
71	$\mathrm{D}_{2\mathrm{h}}^{25}$	$I\frac{2}{m}\frac{2}{m}\frac{2}{m}$		
72	$\mathrm{D}_{2\mathrm{h}}^{26}$	$I\frac{2}{b}\frac{2}{a}\frac{2}{m}$		
73 ⁺	$\mathrm{D}_{2\mathrm{h}}^{27}$	$I\frac{2_1}{b}\frac{2_1}{c}\frac{2_1}{a}$		
74*	$\mathrm{D}_{2\mathrm{h}}^{28}$	$I\frac{2_1}{m}\frac{2_1}{m}\frac{2_1}{a}$		

^{*} For space groups *Cmca* (64), *Cmma* (67), and *Imma* (74), the first lines of the extended symbols, as tabulated here, correspond with the symbols for the six settings in the diagrams of these space groups (Section 7). An alternative formulation which corresponds with the coordinate triplets is given in Section 4.3.3.

^{*} For space group *Ibca* (73) the space-group diagrams (Section 7) contain only *one* symbol, *Ibca*, for all six settings.

Exemples: estructures cristal·lines. Grup Espacial Pm3m.

1) Sistema cúbic. Exemple monoatòmic: Primitiva i projecció //[001]//c .

Àtoms: (0,0,0); i equivalents per vectors de periodicitat

Z=1 unitat formula dintre de la cel·la ó 1 àtoms dintre de la cel·la

2) Sistema cúbic. CsCl: Primitiva i projecció //[001]//c .

Cl (0,0,0); i equivalents per vectors de periodicitat

Cs (1/2,1/2,1/2); i equivalents per vectors de periodicitat

Z=1 unitat formula dintre de la cel·la ó 1 àtoms de Cl; 1 de Cs dintre de la cel·la

Exemples: estructures cristal·lines. Grup Espacial Pm3m.

3) Sistema cúbic. **BaTiO₃** (Perovskita): **P**rimitiva i projecció //[001]//c .

Ba (0,0,0); i equivalents per vectors de periodicitat

Ti (1/2,1/2,1/2); i equivalents per vectors de periodicitat

O (1/2,1/2,0); (1/2,0,1/2); (0,1/2,1/2); i equivalents per vectors de periodicitat

Z=1 unitat formula dintre de la cel·la ó 1 àtoms de Ba; 1 de Ti i 3 àtoms d'oxigen dintre de la cel·la

Exemples: estructures cristal·lines. Grup Espacial Im3m.

4) Sistema cúbic. Alguns Metalls; **monoatòmic**: **Cel·la tipus I** i projecció //[001]//c.

Àtoms: (0,0,0); (1/2,1/2,1/2). Z=2 unitats formula ó 2 àtoms dintre de la cel·la

Exemples: estructures cristal·lines. Grup Espacial Fm3m.

5) Sistema cúbic. Alguns Metalls; **monoatòmic**: **Cel·la tipus F** i projecció //[001]//c .

Àtoms (0,0,0); (1/2,1/2,0); (0,1/2,1/2); (1/2,0,1/2); Z=4 unitats formula ó 4 àtoms dintre de

la cel·la

Exemples: estructures cristal·lines. Grup Espacial Fd3m.

6) Sistema cúbic. Diamant i també el silici. **monoatòmic**: **Cel·la tipus F** i projecció //[001]//c .

Àtoms (0,0,0); (1/2,1/2,0); (0,1/2,1/2); (1/2,0,1/2); (1/4,1/4,1/4); (3/4,3/4,1/4); (1/4,3/4,3/4); (3/4,1/4,3/4);

Z=8 unitats formula ó 8 àtoms dintre de la cel·la

[uvw]: Nomenclatura de direccions.

Figure 1.16. The direction [UVW] in relation to its components along the crystallographic axes.

[uvw]: Nomenclatura de direccions. Exemples

Figure 1.17. Examples showing lattice directions in a two-dimensional lattice. Note that in general, a lattice direction is not parallel to the normal to a plane indexed with the same integers. This is illustrated by the relationship between the plane (110), shown as a dashed line, and the direction [110].

(hkl) indexs de Miller: Nomenclatura de plans.

Figure 1.14. Examples of lattice planes and their Miller indices.

dhki.: distancia entre plans.

Figure 1.15. The orientation of (200) planes is the same as that of (100) planes, but the interplanar spacing of (200) planes is clearly one-half of the (100) interplanar spacing. The set of (200) planes includes all of the planes in this diagram whereas the set of (100) planes is shown by the darker lines. The bold square is the unit cell.

Bibliografia:

- 1.- M. Aguiló, documents Moodle per l'assignatura de "Física Estado Solido i Superficies", Tarragona 2023.
- 2.- M. Aguiló, document problemes, practiques i Taules de "Física Estado Solido i Superficies", Tarragona 202
- **3.-** A. Putnis, Introduction to the mineral Sciences, Cambridge University Press, 1992, ISBN 0 521 42947 1, Chap 1
- **4.-** International Tables for Crystallography (IUCr Series. International Tables for Crystallography).
- C. P. Brock is the editor of International Tables for Crystallography, published by Wiley, 2016. Volum A.
- **5.-** J.F.Nye, Physics Properties of Crystals. Their Represention by Tensors and Matrices. Pu. In the USA by Oxford University Press, 1957, 1987.
- 6.- X. Solans, Introducció a la cristal·lografia. Textos docentes 158. Ed. Universidad de Barcelona, 1999.
- 7.- S. Galí, Cristal·lografia. Teoria Reticular, grups puntuals i grups espacials. PPU, Barcelona, 1988.
- **8**.- Hammond, C., The basics of crystallography and diffraction IUCr Texts on Crystallography, IUCR- Oxford Science Pu., 1997