

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 08-306137

(43)Date of publication of application : 22.11.1996

(51)Int.Cl.

G11B 20/12
G11B 27/10
H04N 5/783
H04N 5/92

(21)Application number : 08-033448

(71)Applicant : VICTOR CO OF JAPAN LTD

(22)Date of filing : 21.02.1996

(72)Inventor : HIGURE SEIJI
OISHI TAKESHI
HARUMATSU MITSUO

(30)Priority

Priority number : 07 72367 Priority date : 06.03.1995 Priority country : JP

BEST AVAILABLE COPY

(54) DIGITAL SIGNAL RECORDING AND REPRODUCING METHOD, RECORDING AND REPRODUCING DEVICE AND RECORDING MEDIUM

(57)Abstract:

PURPOSE: To record digital signals having different packet size standards using a single recording and reproducing device.

CONSTITUTION: During a digital signal recording in an MPEG2-TS system, the signals are repeatedly recorded in terms of two synchronization block units. The region of the 96 byte data storage areas of SB#n consists of an additional information storage area 10 in which one packet (188 bytes) additional information is recorded and reproduced and a data storage area 11 in which 92 bytes of data from the start of one packet are recorded and reproduced. An adjacent SB#n+1 is constituted by a data storage area 12 in which the remaining 96 byte data of the one packet are recorded and reproduced. The counter value which indicates the order among the packets is respectively recorded in synchronization blocks at least as additional information in a main header. The value is reproduced to identify the order of the packets.

LEGAL STATUS

[Date of request for examination] 29.06.1998

[Date of sending the examiner's decision of rejection]

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平8-306137

(43)公開日 平成8年(1996)11月22日

(51)Int.Cl. ⁶	識別記号	序内整理番号	F I	技術表示箇所
G 11 B 20/12 27/10	103	9295-5D	G 11 B 20/12 27/10	103
H 04 N 5/783 5/92			H 04 N 5/783 5/92	A H H

審査請求 未請求 請求項の数14 O.L (全14頁)

(21)出願番号	特願平8-33448	(71)出願人	000004329 日本ピクター株式会社 神奈川県横浜市神奈川区守屋町3丁目12番地
(22)出願日	平成8年(1996)2月21日	(72)発明者	日暮 誠司 神奈川県横浜市神奈川区守屋町3丁目12番地 日本ピクター株式会社内
(31)優先権主張番号	特願平7-72367	(72)発明者	大石 剛士 神奈川県横浜市神奈川区守屋町3丁目12番地 日本ピクター株式会社内
(32)優先日	平7(1995)3月6日	(72)発明者	春松 光男 神奈川県横浜市神奈川区守屋町3丁目12番地 日本ピクター株式会社内
(33)優先権主張国	日本 (JP)	(74)代理人	弁理士 松浦 兼行

(54)【発明の名称】 デジタル信号記録再生方法、記録再生装置及び記録媒体

(57)【要約】

【課題】 一台の記録再生装置でパケットサイズの異なる規格のデジタル信号を記録できない。

【解決手段】 M P E G 2-T S方式のデジタル信号記録時には、2つのシンクブロック単位で繰り返してデジタル信号を記録する。S B # n は 9 6 バイトのデータ格納エリアの領域が、1つのパケット(188バイト)の付加情報が記録再生される付加情報格納エリア10と、1つのパケットのうちの先頭から92バイトのデータが記録再生されるデータ格納エリア11から構成される。隣接するS B # n + 1 は、1つのパケットのうちの残りの96バイトのデータが記録再生されるデータ格納エリア12により構成されている。パケットのうちの順番を示すカウンタ値が、メインヘッダ中に少なくとも付加情報としてシンクブロックのそれぞれに記録し、このカウンタ値を再生してパケットの順番を識別する。

1

【特許請求の範囲】

【請求項1】 互いにパケットサイズの異なるN種類 (Nは2以上の自然数) のデジタル信号伝送方式のうち任意のk番目 ($k = 1 \sim N$) のデジタル信号伝送方式のデジタル信号の記録時には、 p_k 個のパケット数のデジタル信号を付加情報と共に d_k 個 (p_k, d_k はそれぞれ自然数) のデータブロック単位で記録媒体にトラックを順次に形成して記録し、かつ、1本のトラックあたり前記N種類のデジタル信号伝送方式の各デジタル信号のデータブロック記録単位の最小公倍数Rの倍数のデータブロックを記録し、前記記録媒体のデータブロックを再生することを特徴とするデジタル信号記録再生方法。

【請求項2】 パケットサイズの異なる第1及び第2のデジタル信号伝送方式のうち該第1のデジタル信号伝送方式のデジタル信号の記録時には1パケットのデジタル信号を前記付加情報と共に2データブロック単位で記録し、前記第2のデジタル信号伝送方式のデジタル信号の記録時には2パケットを3データブロック単位で記録し、1本のトラックあたり6の倍数のデータブロックを記録媒体に記録し、該データブロックを再生することを特徴とする請求項1記載のデジタル信号記録再生方法。

【請求項3】 前記 d_k 個のデータブロックに前記 p_k 個のパケットを分割して付加情報と共に記録するに際し、前記 p_k 個のパケットのうちの順番を示すカウンタ値をヘッダ情報として前記 d_k 個のデータブロックのそれぞれに記録し、このカウンタ値を再生して前記 p_k 個のパケットの順番を識別することを特徴とする請求項1記載のデジタル信号記録再生方法。

【請求項4】 前記カウンタ値は前記データブロックの順番を示す番号とは前記データブロック内の別の領域に記録することを特徴とする請求項3記載のデジタル信号記録再生方法。

【請求項5】 前記デジタル信号は記録時と同一速度で再生される通常再生用データ系列と、記録時と異なる速度で再生されるn種類のトリックプレイ用データ系列とを混在して1本のトラックあたり前記最小公倍数Rの倍数のデータブロックに記録し、これを再生するデジタル信号記録再生方法であって、

前記n種類のトリックプレイ用データ系列は予め定められたそれぞれ固有のトラック周期でトラック内の特定の固定位置に配置記録すると共に、それぞれのトラック周期の最小公倍数Tのトラック数内の前記通常再生用データ系列のデータブロック数の合計が前記最小公倍数Rの倍数であり、かつ、前記最小公倍数Tのトラック数内の各種類毎の前記トリックプレイ用データ系列のデータブロック数の合計をそれぞれ前記最小公倍数Rの倍数に設定して記録し、これを再生することを特徴とする請求項1記載のデジタル信号記録再生方法。

10

【請求項6】 前記最小公倍数Tのトラック数内の前記通常再生用データ系列のデータブロック数の合計が6の倍数であり、かつ、前記最小公倍数Tのトラック数内の前記トリックプレイ用データ系列のデータブロック数の合計を各種類毎にそれぞれ6の倍数に設定して記録し、これを再生することを特徴とする請求項5記載のデジタル信号記録再生方法。

【請求項7】 前記最小公倍数Tのトラック数内の任意の1本のトラック内の前記通常再生用データ系列のデータブロック数の合計を前記最小公倍数Rの倍数に設定して記録し、これを再生することを特徴とする請求項5記載のデジタル信号記録再生方法。

【請求項8】 前記最小公倍数Tのトラック数内の前記任意の1本のトラック内の前記通常再生用データ系列のデータブロック数の合計を6の倍数に設定して記録し、これを再生することを特徴とする請求項7記載のデジタル信号記録再生方法。

20

【請求項9】 前記デジタル信号は記録時と同一速度で再生される通常再生用データ系列と、記録時と異なる速度で再生されるn種類のトリックプレイ用データ系列とを混在して1本のトラックあたり前記最小公倍数Rの倍数のデータブロックに記録し、これを再生するデジタル信号記録再生方法であって、

20

前記n種類のトリックプレイ用データ系列は予め定められたそれぞれ固有のトラック周期でトラック内の特定の固定位置に配置記録すると共に、各トラック内の前記通常再生用データ系列のデータブロック数の合計を前記最小公倍数Rの倍数に設定して記録し、かつ、各トラック内の各種類毎の前記トリックプレイ用データ系列のデータブロック数の合計をそれぞれ前記最小公倍数Rの倍数に設定して記録し、これを再生することを特徴とする請求項1記載のデジタル信号記録再生方法。

30

【請求項10】 各トラック内の前記通常再生用データ系列のデータブロック数の合計が6の倍数であり、かつ、各トラック内の前記トリックプレイ用データ系列のデータブロック数の合計を各種類毎にそれぞれ6の倍数に設定して記録し、これを再生することを特徴とする請求項9記載のデジタル信号記録再生方法。

40

【請求項11】 互いにパケットサイズの異なるN種類 (Nは2以上の自然数) のデジタル信号伝送方式のうち任意の種類のデジタル信号伝送方式のパケットデータが入力され、このパケットデータに応じた付加情報を発生する付加情報発生手段と、

前記入力されたパケットデータに前記付加情報発生手段により発生した付加情報を付加して一時記憶する付加及び記憶手段と、

前記付加及び記憶手段から前記入力されたパケットデータのデジタル信号伝送方式に応じて、 p_k 個のパケット数のパケットデータを前記付加情報と共に d_k 個 (p_k, d_k はそれぞれ自然数) のデータブロック単位に分

50

割する分割手段と、

前記分割手段から取り出されたパケットデータ及び付加情報に少なくともデータブロック単位にヘッダ情報及び誤り訂正符号を付加する付加手段と、

前記付加手段から取り出されたディジタル信号を記録媒体にトラックを順次に形成して記録し、かつ、1本のトラックあたり前記N種類のディジタル信号伝送方式の各ディジタル信号のデータブロック記録単位の最小公倍数Rの倍数のデータブロックを記録する記録手段と、

前記記録媒体から前記ディジタル信号を再生し、再生された前記パケットデータを一時記憶するバッファメモリと、

前記再生ディジタル信号中の付加情報及びヘッダ情報に基づいて前記バッファメモリの書き込み及び読み出しを制御して再生パケットを出力させる制御手段とを有することを特徴とするディジタル信号記録再生装置。

【請求項12】前記付加手段は、前記 p_k 個のパケットのうちの順番を示すカウンタ値を、前記ヘッダ情報として前記分割手段から取り出された前記 d_k 個のデータブロックのパケットデータ及び付加情報にそれぞれに付加し、前記制御手段は前記ヘッダ情報中の前記カウンタ値に基づいて前記 p_k 個のパケットの順番を識別して前記バッファメモリの書き込み及び読み出しを制御して再生パケットを出力させることを特徴とする請求項11記載のディジタル信号記録再生装置。

【請求項13】同期信号領域、アドレス情報領域、ヘッダ領域、データ格納領域及び誤り訂正符号領域が時系列的に合成されたデータブロックが複数個ずつ記録されたトラックやセクタ等の記録区間を順次に形成された記録媒体であって、

互いにパケットサイズの異なるN種類(Nは2以上の自然数)のディジタル信号伝送方式のうち任意のk番目($k=1 \sim N$)のディジタル信号伝送方式の p_k 個のパケット数のディジタル信号が、付加情報と共に d_k 個(p_k, d_k はそれぞれ自然数)のデータブロックの前記データ格納領域に記録され、かつ、1つの前記記録区間あたり前記N種類のディジタル信号伝送方式の各ディジタル信号のデータブロック記録単位 $d_1 \sim d_N$ の最小公倍数Rの倍数のデータブロックが記録されていることを特徴とする記録媒体。

【請求項14】前記ディジタル信号は記録時と同一速度で再生される通常再生用データ系列と、記録時と異なる速度で再生されるn種類のトリックプレイ用データ系列とを有し、これらの通常再生用データ系列とn種類のトリックプレイ用データ系列とは混在して1つの前記記録区間あたり前記最小公倍数Rの倍数のデータブロックの前記データ格納領域に記録され、

前記n種類のトリックプレイ用データ系列は予め定められたそれぞれ固有の記録区間周期で1つの前記記録区間に内の特定の固定位置に配置記録されると共に、それぞれ

の前記記録区間周期の最小公倍数Tの記録区間数内の前記通常再生用データ系列のデータブロック数の合計が前記最小公倍数Rの倍数であり、かつ、前記最小公倍数Tの記録区間数内の各種類毎の前記トリックプレイ用データ系列のデータブロック数の合計をそれぞれ前記最小公倍数Rの倍数に設定して記録されていることを特徴とする請求項13記載の記録媒体。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明はディジタル信号記録再生方法、記録再生装置及び記録媒体に係り、特にパケット化されたディジタル信号を記録媒体に記録し再生するディジタル信号記録再生方法及びこれにより記録された記録媒体に関する。

【0002】

【従来の技術】一般に、記録媒体にディジタル信号を記録し再生するディジタル信号記録再生方法においては、ディジタル信号をデータブロック単位で記録し再生する。この場合、データブロックのデータ格納領域は固定長であるため、ディジタル信号がパケット化された信号であるときには、従来はパケット長とデータ格納領域の大きさとを対応付け、またトラックサイズ(トラック中のデータブロック数)を最適な値に設定して記録再生を行っている。

【0003】

【発明が解決しようとする課題】しかるに、近年、ディジタル放送テレビ規格その他のディジタル信号の伝送規格が種々提案されており、それらの伝送規格ではそれぞれパケットサイズが異なるため、同じ記録再生装置で一つの物理的なトラックフォーマットでパケットサイズの異なるディジタル信号を記録再生すると、ある伝送規格では最適なトラックサイズやデータブロック長であっても、別の伝送規格のパケットサイズによってはトラックを構成するデータブロックの数が不適当になり、データブロック数に端数がでて記録効率が落ちる可能性があり、また、このときパケットデータを各トラック内のデータブロックに対応づけるときのアドレッシングやバッファリングが複雑になる可能性がある。

【0004】

従って、通常はそれぞれの規格に適合した専用の記録再生装置でディジタル信号を記録再生することが考えられるが、専用の記録再生装置でディジタル信号を記録再生するのは不経済であり、一台の記録再生装置でパケットサイズの異なる規格のディジタル信号をそれぞれ記録再生できることが望まれる。

【0005】本発明は上記の点に鑑みなされたもので、一台の装置でパケットサイズの異なる規格のディジタル信号をそれぞれ記録再生し得るディジタル信号記録再生方法、記録再生装置及び記録媒体を提供することを目的とする。

【0006】また、本発明の他の目的は、記録時と異な

る速度で再生されるトリックプレイ用のデジタル信号を、データブロックを過不足なく利用でき、効率が良く、また、バッファメモリの利用効率が良く、アドレスシングも容易にできる構成で記録再生し得るデジタル信号記録再生方法、記録再生装置及び記録媒体を提供することにある。

【0007】

【課題を解決するための手段】上記の目的を達成するため、請求項1記載のデジタル信号記録再生方法では、互いにパケットサイズの異なるN種類（Nは2以上の自然数）のデジタル信号伝送方式のうち任意のk番目

（ $k = 1 \sim N$ ）のデジタル信号伝送方式のデジタル信号の記録時には、 p_k 個のパケット数のデジタル信号を付加情報と共に d_k 個（ p_k, d_k はそれぞれ自然数）のデータブロック単位で記録媒体にトラックを順次に形成して記録し、かつ、1本のトラックあたり前記N種類のデジタル信号伝送方式の各デジタル信号のデータブロック記録単位の最小公倍数Rの倍数のデータブロックを記録し、記録媒体のデータブロックを再生するようにしたものである。

【0008】また、請求項5記載のデジタル信号記録再生方法は、デジタル信号は記録時と同一速度で再生される通常再生用データ系列と、記録時と異なる速度で再生されるn種類のトリックプレイ用データ系列とを混在して1本のトラックあたり前記最小公倍数Rの倍数のデータブロックに記録し、これを再生するデジタル信号記録再生方法であり、n種類のトリックプレイ用データ系列は予め定められたそれぞれ固有のトラック周期でトラック内の特定の固定位置に配置記録すると共に、それぞれのトラック周期の最小公倍数Tのトラック数内の通常再生用データ系列のデータブロック数の合計が最小公倍数Rの倍数であり、かつ、最小公倍数Tのトラック数内の各種類毎の前記トリックプレイ用データ系列のデータブロック数の合計をそれぞれ前記最小公倍数Rの倍数に設定して記録し、これを再生することを特徴とする。

【0009】また、請求項7記載のデジタル信号記録再生方法は、最小公倍数Tのトラック数内の任意の1本のトラック内の通常再生用データ系列のデータブロック数の合計を最小公倍数Rの倍数に設定して記録し、これを再生することを特徴とする。

【0010】更に、請求項9記載のデジタル信号記録再生方法では、各トラック内の通常再生用データ系列のデータブロック数の合計を最小公倍数Rの倍数に設定して記録し、かつ、各トラック内の各種類毎のトリックプレイ用データ系列のデータブロック数の合計をそれぞれ最小公倍数Rの倍数に設定して記録し、これを再生することを特徴とする。

【0011】また、請求項11記載の本発明記録再生装置は、互いにパケットサイズの異なるN種類（Nは2以

上の自然数）のデジタル信号伝送方式のうち任意の種類のデジタル信号伝送方式のパケットデータが入力され、このパケットデータに応じた付加情報を発生する付加情報発生手段と、入力されたパケットデータに付加情報発生手段により発生した付加情報を付加して一時記憶する付加及び記憶手段と、付加及び記憶手段から入力されたパケットデータのデジタル信号伝送方式に応じて、 p_k 個のパケット数のパケットデータを付加情報と共に d_k 個（ p_k, d_k はそれぞれ自然数）のデータブロック単位に分割する分割手段と、分割手段から取り出されたパケットデータ及び付加情報に少なくともデータブロック単位にヘッダ情報及び誤り訂正符号を付加する付加手段と、付加手段から取り出されたデジタル信号を記録媒体にトラックを順次に形成して記録し、かつ、1本のトラックあたりN種類のデジタル信号伝送方式の各デジタル信号のデータブロック記録単位の最小公倍数Rの倍数のデータブロックを記録する記録手段と、記録媒体からデジタル信号を再生し、再生されたパケットデータを一時記憶するバッファメモリと、再生デジタル信号中の付加情報及びヘッダ情報に基づいてバッファメモリの書き込み及び読み出しを制御して再生パケットを出力させる制御手段とを有することを特徴とする。

【0012】更に、本発明の記録媒体は請求項1乃至8記載のデジタル信号記録再生方法のいずれかにより記録された記録媒体で、互いにパケットサイズの異なるN種類のデジタル信号伝送方式のうち任意のk番目のデジタル信号伝送方式の p_k 個のパケット数のデジタル信号が、付加情報と共に d_k 個のデータブロックのデータ格納領域に記録され、かつ、1つの記録区間あたりN種類のデジタル信号伝送方式の各デジタル信号のデータブロック記録単位 $d_1 \sim d_N$ の最小公倍数Rの倍数のデータブロックが記録されている。

【0013】請求項1記載の発明では、任意のk番目のデジタル信号伝送方式のデジタル信号の記録時には、 p_k 個のパケット数のデジタル信号を付加情報と共に d_k 個のデータブロックに記録することで、記録再生単位を d_k 個のデータブロックとし、更にN種類のデジタル信号伝送方式の各デジタル信号のデータブロック記録単位 $d_1 \sim d_N$ の最小公倍数Rの倍数のデータブロックを1本のトラックに記録するようにしたため、N種類のデジタル信号伝送方式のどのデジタル信号を記録するときにもパケットをトラックに過不足なく割付けることができる。

【0014】また、請求項5記載の発明では、通常再生用データ系列と、n種類のトリックプレイ用データ系列とを混在して1本のトラックあたり前記最小公倍数Rの倍数のデータブロックに記録すると共に、n種類のトリックプレイ用データ系列それぞれのトラック周期の最小公倍数Tのトラック数内の通常再生用データ系列のデータ

タブロック数の合計が最小公倍数Rの倍数であり、かつ、最小公倍数Tのトラック数内の各種類毎のトリックプレイ用データ系列のデータブロック数の合計をそれぞれ前記最小公倍数Rの倍数に設定して記録し、これを再生するようにしているため、少なくともTトラック周期内で記録再生されるパケットを完結することができる。

【0015】しかし、請求項5記載の発明では、Tトラックの境界でパケットがまたがることはないが、Tトラック数内のトラック間では、トリックプレイ用データ系列が存在する場合には、通常再生用データ系列のパケットがトラック間でまたがることもある。

【0016】そこで、請求項7記載の発明では、Tトラック数内の任意の1本のトラック内の通常再生用データ系列のデータブロック数の合計を最小公倍数Rの倍数に設定して記録し再生する。これにより、トリックプレイ用データ系列が存在していても、通常再生用データ系列のパケットがトラック内で完結し、トラック間にまたがることはない。

【0017】また、請求項9記載の発明では、各トラック内の通常再生用データ系列のデータブロック数の合計を最小公倍数Rの倍数に設定して記録し、かつ、各トラック内の各種類毎のトリックプレイ用データ系列のデータブロック数の合計をそれぞれ最小公倍数Rの倍数に設定して記録しているため、すべてのデータ系列のパケットがトラック内で完結するようできる。

【0018】また、請求項11及び12記載のデジタル信号機録再生装置では、請求項1及び3に記載した記録再生方法を実現することができる。

【0019】更に、請求項13及び14記載の記録媒体では、パケットがトラック間にまたがらないため、どの種類のデジタル信号伝送方式のデジタル信号であっても記録効率良くデジタル信号の記録ができる。

【0020】

【発明の実施の形態】次に、本発明の実施の形態について説明する。本実施の形態では互いにアジマス角度の異なる180度対向して回転体に設けられた2つの回転ヘッドにより、回転体の外側面に約180度の角度範囲に亘って斜めに巻回されて一定速度で走行される磁気テープに情報信号を記録再生する構成のヘリカルスキャン方式磁気記録再生装置(VTR)によって形成されるトラックに、任意のパケットサイズのデジタル信号を記録するものとする。

【0021】各トラックは、前記したデータブロックに相当するシンクブロックと呼ばれる一定量のデータエリアを回転ヘッドの走査に従って複数個配置することにより構成される。図1はこのシンクブロックの一実施の形態のフォーマットを示す。同図に示すように、シンクブロックはそのシンクブロック再生のための2バイトの同期信号(Sync)の領域1と、3バイトのアドレス情報(ID)の領域2と、様々な情報を格納する3バイト

のヘッダ格納領域3と、96バイトの実質的なデータ格納エリア4と、このシンクブロックの情報の誤り訂正のための8バイトのパリティの領域5とが時系列的に合成された全部で112バイトの構成である。

【0022】本実施の形態は第1の伝送方式であるMPEG2(Moving Picture Experts Group 2)のトランスポートパケット(TP)伝送方式におけるパケットサイズ188バイトのデジタル信号と、第2の伝送方式であるデジタル・サテライト・システム(DSS)パケット伝送方式を想定してパケットサイズ140バイトのデジタル信号を互換性をもって記録再生するものである。

【0023】第1の伝送方式のMPEG2-TS方式のデジタル信号記録時には、本実施の形態では上記のシンクブロックを、図2にSB#n及びSB#n+1でそれぞれ示すシンクブロックとし、これら2つのシンクブロックSB#n及びSB#n+1単位で繰り返してデジタル信号を記録し、これを再生する。

【0024】ここで、図2において、シンクブロックSB#nは図1に示した96バイトのデータ格納エリア4の領域が、1つのパケット(188バイト)の付加情報(例えば、パケットの到着時刻及びその他の情報)が記録再生される4バイトの付加情報格納エリア10と、188バイトの1つのパケットのうちの先頭から92バイトのデータが記録再生されるデータ格納エリア11とから構成されている。また、隣接するシンクブロックSB#n+1は、図1に示した96バイトのデータ格納エリア4の領域が、上記の1つのパケットのうちの残りの96バイトのデータが記録再生されるデータ格納エリア12により構成されている。

【0025】また、第2の伝送方式のDSS方式は米国のデジタル放送テレビ規格の一つで、パケットサイズは130バイトであり、これに10バイトのデータ(ダミー若しくは付加情報)を付加して140バイトの大きさにして伝送する(なお、説明の便宜上、この140バイトもパケットというものとする)。このDSS方式のデジタル信号記録時には、本実施の形態では上記の図1に示したシンクブロックを、図3にSB#n、SB#n+1及びSB#n+2でそれぞれ示すシンクブロックとし、これら3つのシンクブロックSB#n、SB#n+1及びSB#n+2単位で繰り返してデジタル信号を記録し、これを再生する。

【0026】ここで、図3において、シンクブロックSB#nは図1に示した96バイトのデータ格納エリア4の領域が、2つのパケット(2×140=280バイト)のそれぞれに対する各4バイトの付加情報(例えば、パケットの到着時刻及びその他の情報)のうち、1番目のパケットに対する4バイトの付加情報が記録再生される付加情報格納エリア15と、1番目のパケットの先頭から92バイトのパケットデータが記録再生される

9

データ格納エリア 16 とから構成されている。

【0027】また、隣接するシンクブロック SB# n+1 は、図 1 に示した 96 バイトのデータ格納エリア 4 の領域が、上記の 2 つのパケットのうちの 1 番目のパケットの残りの 38 バイトのパケットデータとこれに付加された 10 バイトのデータ（ダミーデータ又は付加情報）がそれぞれ記録再生されるデータ格納エリア 17、18 と、2 番目のパケットに対する 4 バイトの付加情報が記録再生される付加情報格納エリア 19 と、2 番目のパケットの先頭から 44 バイトのデータが記録再生されるデータ格納エリア 20 とにより構成されている。

【0028】更に、シンクブロック SB# n+2 は、図 1 に示した 96 バイトのデータ格納エリア 4 の領域が、上記の 2 つのパケットのうちの 2 番目のパケットの残りの 86 バイトのパケットデータとこれに付加された 10 バイトのデータ（ダミーデータ又は付加情報）がそれぞれ記録再生されるデータ格納エリア 21 及び 22 により構成されている。

【0029】このように、本実施の形態では第 2 の伝送方式（パケットサイズが最大 140 バイトの方式）のデジタル信号記録時には、140 バイトのうち少なくとも伝送される 130 バイトのパケットを図 3 に示したように前詰めで記録しているため、4 バイトの付加情報と連続してバッファメモリから取り出すことができる。

【0030】トラックフォーマットは、記録波長、主要データの必要記録容量、その他の情報のための必要記録容量、位相同期回路（PLL 回路）のロック用エリア、編集用のマージンのエリアなどとの関係を考慮しながら決定される。このうち、主要データの必要記録容量の決定にあたっては、第 1 の伝送方式の記録再生単位である 2 シンクブロックと、第 2 の伝送方式の記録再生単位である 3 シンクブロックの最小公倍数である 6 シンクブロックを単位として、この倍数のデータシンクブロックで構成することを条件とする。

【0031】図 4 は本実施の形態におけるトラックフォーマットを示す。同図に示すように、1 本のトラックは、マージン領域 25、ブリアンブル領域 26、サブコード領域 27、ポストアンブル領域 28、IBG 領域 29、ブリアンブル領域 30、データ領域 31、誤り訂正符号領域 32、ポストアンブル領域 33 及びマージン領域 34 からなる。

【0032】ここで、主要データエリアを構成しているデータ領域 31 及び誤り訂正符号領域 32 のうち、データ領域 31 は本実施の形態では上記の条件を満たす、6 シンクブロックの倍数の 306 シンクブロックに設定される。また、誤り訂正符号領域 32 は誤り訂正のための外符号（C3 符号）が記録される領域で、30 シンクブロックからなる。

【0033】これにより、前記第 1 の伝送方式のデジタル信号は、2 シンクブロック単位で 1 パケットが記録

10

されるから、1 本のトラックに 153 (= 306 / 2 × 1) パケット記録され、再生される。また、前記第 2 の伝送方式のデジタル信号は、3 シンクブロック単位で 2 パケットが記録されるから、1 本のトラックに 204 (= 306 / 3 × 2) パケット記録され、再生される。

【0034】このように、本実施の形態によれば、第 1 及び第 2 の伝送方式のどちらに対しても、1 トラック内のデータブロックを過不足なく利用できるため記録効率が良く、また、1 つのパケットデータが 2 つのトラックにまたがることがないため、パケット処理はトラック内で完結するため、バッファメモリの利用効率が良く、アドレッシングも容易である。

【0035】ところで、上記したように図 2 の第 1 の伝送方式のデジタル信号記録時のシンクブロックの構成では、2 シンクブロック単位で第 1 の伝送方式の 1 パケットを記録しているため、1 シンクブロックに記録されるパケット分割部分が 1 パケットの前半か後半かを判定するのに、ID 部分に記録されるシンクブロック番号が例えば偶数のとき前半部分とし、奇数のときには後半部分に対応させることで識別することができる。

【0036】一方、図 3 の第 2 の伝送方式のデジタル信号記録時のシンクブロックの構成では、3 シンクブロック単位で第 2 の伝送方式の 2 パケットを記録しているため、1 シンクブロックに記録されるパケット分割部分がどのパケットのどの部分のものであるかを判定するのに、ID 部分に記録されているシンクブロック番号を参考し、これを「3」で除算して剰余を求め、剰余が「0」ならば第 1 、剰余が「1」ならば第 2 、剰余が「2」ならば第 3 の分割部分と判定する。

【0037】更に、この第 2 の伝送方式のパケット分割部分の入るシンクブロックの位置は、第 1 、第 2 、第 3 の各分割部分で指定となり、他の情報に 1 シンクブロックを必要とすると、他の部分を使用できなくなる。つまり、2 シンクブロック単位、若しくは 3 シンクブロック単位での情報記録しかできなくなる。

【0038】そこで、次に説明する実施の形態では、分割単位にシンクブロック番号を記録するようにしたものである。図 5 は第 1 の伝送方式のデジタル信号記録時のシンクブロックの他の実施の形態の構成図を示す。同図中、図 2 と同一構成部分には同一符号を付してある。

【0039】この実施の形態では、任意の隣接する 2 つのシンクブロック # n とシンクブロック # n+1 とは、それぞれ図 1 及び図 2 に示した 3 バイトのアドレス情報（ID）及びそのパーティと、96 バイトのデータ格納エリアとの間に配置される 3 バイトのヘッダ領域を、図 5 に示すように、2 バイトのメインヘッダ領域 41 と 1 バイトのデータ予備領域 42 とに分割し、かつ、メインヘッダ領域 41 に記録されるメインヘッダの第 1 バイトの下位 2 ビットを分割したシンクブロックのカウンタとして使用する。すなわち、上記メインヘッダの第 1 バイ

11

トの下位2ビットの値「00」を第1シンクブロックSB#nに、「01」を第2シンクブロックSB#n+1に割り当てる。

【0040】同様に、図6は第2の伝送方式のデジタル信号記録時のシンクブロックの他の実施の形態の構成図を示す。同図中、図3と同一構成部分には同一符号を付してある。この実施の形態では、任意の隣接する3つのシンクブロックSB#n、シンクブロックSB#n+1及びシンクブロックSB#n+2は、それぞれ図1及び図3に示した3バイトのアドレス情報(ID)及びそのパリティと、96バイトのデータ格納エリアとの間に配置される3バイトのヘッダ領域を、図6に示すように、2バイトのメインヘッダ領域51と1バイトのデータ予備領域52とに分割し、かつ、メインヘッダ領域51に記録されるメインヘッダの第1バイトの下位2ビットを分割したシンクブロックのカウンタとして使用する。すなわち、上記メインヘッダの第1バイトの下位2ビットの値「00」を第1シンクブロックSB#nに、「01」を第2シンクブロックSB#n+1に、「10」を第3シンクブロックSB#n+2に割り当てる。

【0041】このように、シンクブロックのカウンタ値でどのような情報が入っているシンクブロックか判断できるため、第2の伝送方式のデジタル信号記録時でも除算回路等を用いることなく、メインヘッダの第1バイトの下位2ビットでパケットの分割部分の判定ができる。また、このメインヘッダの第1バイトの下位2ビットのカウンタ値は、00を初期値としてシンクブロック番号(ID)とは独立に付けることができるため、間に何シングルブロックでも他のデータを自由に記録できる。

【0042】また、本発明ではデジタル信号は図7に示す実施の形態のフォーマットでも記録することができる。同図中、図3と同一構成部分には同一符号を付してある。この実施の形態では、任意の隣接する4つのシンクブロックSB#n、シンクブロックSB#n+1、シンクブロックSB#n+2及びシンクブロックSB#n+3は、それぞれ図6に示したように3バイトのアドレス情報(ID)及びそのパリティと、96バイトのデータ格納エリアとの間に配置される3バイトのヘッダ領域に続いて2バイトのメインヘッダ領域61が配置される点は図5及び図6と同じであるが、続いて97バイトのデータ格納領域を設けたものである。

【0043】すなわち、この実施の形態では、第1シンクブロックSB#nのデータ格納領域は3バイトのデータ予備領域62を配置し、続いて77バイトのパケット0の格納領域63とパケット1の最初の17バイトの格納領域64とからなる。また、第2シンクブロックSB#n+1の97バイトのデータ格納領域65は、パケット1の残りの60バイトとパケット2の最初の37バイトが記録される。更に、第3シンクブロックSB#n+2の97バイトのデータ格納領域66は、パケット2の

12

残りの40バイトとパケット3の最初の57バイトが記録される。また更に、第4シンクブロックSB#n+3の97バイトのデータ格納領域67は、パケット3の残りの20バイトとパケット4の77バイトすべてが記録される。

【0044】このように、77バイトのパケットが4シンクブロック単位で5パケット分ずつ記録されるが、メインヘッダ領域61に記録されるメインヘッダの第1バイトの下位2ビットを分割したシンクブロックのカウンタとして使用する。すなわち、上記メインヘッダの第1バイトの下位2ビットの値「00」を第1シンクブロックSB#nに、「01」を第2シンクブロックSB#n+1に、「10」を第3シンクブロックSB#n+2、「11」を第4シンクブロックSB#n+3に割り当てる。

【0045】このデジタル伝送方式のパケットデータを、前記した第1及び第2の伝送方式のパケットデータと選択して1台の装置で記録再生する場合は、第1の伝送方式の記録再生単位である2シンクブロックと、第2の伝送方式の記録再生単位である3シンクブロックと、この第3の伝送方式の記録再生単位である4シンクブロックの最小公倍数Rが12シンクブロックであるから、このR(=12)の倍数の例えば276シンクブロックで前記1トラック当りのデータ領域を構成する。

【0046】なお、分割したシンクブロックのカウンタ値は上記のメインヘッダの第1バイトに限定されるものではなく、また、ビット数は2ビットに限定されるものではなく増加させることもできる。

【0047】次に、本発明の他の実施の形態について説明する。本実施の形態は、ヘリカルスキャン方式磁気記録再生装置により、前記第1の伝送方式のデジタル信号及び/又は第2の伝送方式のデジタル信号を1本のトラックあたり6の倍数のシンクブロック数で記録再生する点は前記実施の形態と同様であるが、本実施の形態ではどちらの伝送方式のデジタル信号記録時にも、映像信号及び音声信号が通常速度(記録時と同一速度)で再生されるときの通常再生用データ系列NMLと、記録時と異なる2つの速度で再生されるとき(ここでは、3倍速再生と9倍速再生の2つのトリックプレイ時)のトリックプレイ用データ系列TP1及びTP2があるものとしている点に特徴がある。

【0048】ここで、トリックプレイ用データ系列TP1は3倍速再生のためのデータ系列であり、これは映像信号用のデータ系列TP1vと、音声信号用のデータ系列TP1aとからなる。また、トリックプレイ用データ系列TP2は、9倍速再生のためのデータ系列であり、これは映像信号用のデータ系列である。

【0049】図8は本発明の他の実施の形態のトラックパターンを示す。同図に71~73及び81~83でそれぞれ示すように、データ系列TP1v及びTP1a

10

20

30

40

50

は、同一アジマス角の回転ヘッドにより記録されるトラック番号「1」、「7」及び「13」の各トラック、すなわち6トラック周期でそれぞれ記録される。また、データ系列TP2は、91～94で示すように、同一アジマス角の回転ヘッドにより記録されるトラック番号

「1」、「3」、「5」及び「7」の各トラックに1トラックおきで記録された後、続く10本のトラックには記録されないことが繰り返される、18トラック周期で記録される。

【0050】また、上記の各トリックプレイ用のデータ系列TP1v、TP1a及びTP2は、図8に示すようにそれぞれのトリックプレイ時において、回転ヘッドがトラックを斜めに横切る際に、確実に走査できるエリアに記録される。コントロールトラックには、18トラック周期でマーカa1、a2が記録される。なお、実線の矢印は3倍速再生時又は9倍速再生時の+アジマス角の回転ヘッドの走査軌跡、破線の矢印は3倍速再生時又は9倍速再生時の-アジマス角の回転ヘッドの走査軌跡を示す。

【0051】ここで、本実施の形態では、1本のトラックに設定する各トリックプレイ用のデータブロック数(シンクブロック数)を各データ系列毎に6の倍数となるように設定する。すなわち、1再生バーストあたりの容量をデータ系列TP1vは90(=6×15)シンクブロック、データ系列TP1aは6(=6×1)シンクブロック、データ系列TP2は24(=6×4)シンクブロックに設定する。

【0052】また、回転ヘッドが取り付けられた回転体*

代表的な トラック番号	NML	TP1v	TP1a	TP2	TP合計
0	306(=6×51)	0	0	0	0
1	186(=6×31)	90	6	24	120(=6×20)
3	282(=6×47)	0	0	24	24(=6×4)
13	210(=6×35)	90	6	0	96(=6×16)

表1からわかるように、1本のトラック内の通常再生用データ系列NMLのシンクブロック数はいずれも前記最小公倍数「6」の倍数であり、また、1本のトラック内のトリックプレイ用のデータ系列TPのシンクブロック数の合計も前記最小公倍数「6」の倍数である。

【0055】従って、シンクブロックの再生レートは、1秒間に回転体が30回転するので、データ系列TP1vは2.42M b p s (=90×30×112×8)であり、データ系列TP1aは1.61k b p s (=6×30×112×8)であり、データ系列TP2は2.58M b p s (=96×30×112×8)である。

【0056】実質のパケットの再生レートは、第1の伝送方式(MPEG2-TP)の場合、1シンクブロックあたり94(=188/2)バイト格納されているので、データ系列TP1vは2.03M b p s (=90×30

*の1回の回転で回転ヘッドにより再生されるバーストの数は、図8に矢印3×で示す3倍速再生時のヘッド走査軌跡と矢印9×で示す9倍速再生時のヘッド走査軌跡とから分かるように、データ系列TP1vが1バースト、データ系列TP1aも1バーストであり、データ系列TP2は9倍速再生時のヘッド走査軌跡から分かるように4バーストであるから、回転体の1回の回転で回転ヘッドにより再生されるシンクブロック数は、データ系列TP1vは90(=90×1)シンクブロック、データ系列TP1aは6(=6×1)シンクブロック、データ系列TP2は96(=24×4)シンクブロックである。

【0053】図8において、トリックプレイフレーム内のトラックパターンは、すべて通常再生用のシンクブロックが記録されている第1のトラック(トラック番号「0」など)と、データ系列TP1v、TP1a及びTP2がそれぞれ通常再生用のシンクブロックと混在して記録されている第2のトラック(トラック番号「1」など)と、データ系列TP2が通常再生用のシンクブロックと混在して記録されている第3のトラック(トラック番号「3」など)と、データ系列TP1v、TP1aがそれぞれ通常再生用のシンクブロックと混在して記録されている第4のトラック(トラック番号「13」など)の4種類のトラックが記録されている。これら4種類のトラックについてシンクブロック数をまとめると次表のようになる。

【0054】

【表1】

×94×8)であり、データ系列TP1aは1.35k b p s (=6×30×94×8)であり、データ系列TP2は2.17M b p s (=96×30×94×8)である。

【0057】また、第2の伝送方式(パケットサイズが最大140バイトの方式)の場合、1シンクブロックあたり93.3(-140×2/3)バイト格納されているので、データ系列TP1vは2.02M b p s (=90×30×93.3×8)であり、データ系列TP1aは1.34k b p s (=6×30×93.3×8)であり、データ系列TP2は2.15M b p s (=96×30×93.3×8)である。

【0058】一方、図8に示す各トラックの白地の部分に記録されている通常再生用のデータ系列NMLのシンクブロックの再生レートは、図8に示すように18トラックあたりデータ系列TP1vとTP1aの記録部分が503ヶ所、データ系列TP2記録部分が1ヶ所があるので、

15

$$18 \times 306 - (90 \times 3 + 6 \times 3 + 96) = 5124 \text{ (シンクブロック/18トラック)}$$

$$5124 \times (60/18) \times 112 \times 8 = 15.3 \text{ (Mbps)}$$

となる。従って、通常再生時の実質のパケットデータの再生レートは、最大で第1の伝送方式 (MPEG 2-T P) の場合、 12.84 Mbps ($=5124 \times (60/18) \times 94 \times 8$) であり、第2の伝送方式 (パケットサイズが最大 140 バイトの方式) の場合は 12.75 Mbps ($=5124 \times (60/18) \times 93.3 \times 8$) となる。

【0059】ところで、一つのパケットが2つのトリックプレイフレームにまたがっていたとすると、トリックプレイはトリックプレイフレーム単位で再生されるため、分割されたパケットの後半が格納されているトリックフレームから再生を開始した場合、分割されたパケットは再生できないことになるので望ましくない。また、パケットが分割されるのを避けるために、データブロックを無効データで埋めることは記録効率が下がることになるので望ましくない。

【0060】これに対し、本実施の形態によれば、1 ト リックフレーム (18 トラック) 周期でトリックプレイ用データ系列 T P 1 v、T P 1 a 及び T P 2 が配置されているので、トラック内でパケットが完結しており、かつ、トリックフレーム内でパケットが完結している。従って、本実施の形態によれば、どのデータ系列についても1つのパケットデータが2 トラック間に*

代表的な トラック番号	NML	TP1v	TP1a	TP2	TP合計
0	306 (=6×51)	0	0	0	0
1	192 (=6×32)	88	2	24	114 (=6×19)
3	282 (=6×47)	0	0	24	24 (=6×4)
13	216 (=6×36)	88	2	0	90 (=6×15)

表2からわかるように、1本のトラック内の通常再生用データ系列NMLのシンクブロック数はいずれも前記最小公倍数「6」の倍数であり、また、1本のトラック内のトリックプレイ用のデータ系列TPのシンクブロック数の合計も前記最小公倍数「6」の倍数である。

【0064】次に、本発明方法を実現する記録装置の一実施の形態について図9のブロック図と共に説明する。同図において、入力パケットデータは、ノーマルデータ用バッファメモリ101に書き込まれる一方、制御回路102に入力されて、読み出し信号RTP1v、RTP1A、RTP2、RN、スイッチング信号SWなどの各種制御信号を発生させる。

【0065】制御回路102の出力信号はパケット用ヘッダ付加回路103に入力され、これよりパケット用ヘッダを発生させてノーマルデータ用バッファメモリ101に入力させる。ノーマルデータ用バッファメモリ101に書き込まれたパケットデータ及びヘッダは、読み出し信号RNにより読み出されてトリックプレイデータ生成回路104及び選択回路109に入力される。トリック

16

*またがることがないので、パケット処理はトラック内で完結することになり、データブロックを過不足なく利用でき、効率が良く、また、バッファメモリの利用効率が良く、アドレッシングも容易である。

【0061】なお、本発明は上記の実施の形態に限定されるものではなく、その他種々の変形例が可能である。例えば、データ系列TP1vを86シンクブロック、T

10 P1aを2シンクブロック、TP2を21シンクブロックとしてもよく、この場合は、1トリックフレームの18本のトラック内のトリックプレイ用のシンクブロック数の合計は3倍速再生用が「264」、9倍速再生用が「84」でそれぞれ前記最小公倍数「6」の倍数であり、また、18本のトラック内の通常再生用のシンクブロック数は「5160」で前記最小公倍数「6」の倍数である。

【0062】また、データ系列TP1vを88シンクブロック、TP1aを2シンクブロック、TP2を24シンクブロックとしてもよい。この場合は、前記4種類のトラックについてシンクブロック数をまとめると次表のようになる。

【0063】

【表2】

クプレイデータ生成回路104からは前記したデータ系列TP1v、TP1a及びTP2が並列に取り出され、パケット用ヘッダ（アディショナルヘッダ）付加回路105により各パケット毎にその4バイトの付加情報（例えば、パケットの到着時刻及びその他の情報）がアディショナルヘッダとして多重された後、それぞれ専用のバッファメモリ106、107及び108に書き込まれる。

【0066】これにより、バッファメモリの106、107及び108の格納データは、入力パケットデータが前記第1の伝送方式のものであるときには、図9(A)に示すように188バイトの各トリックプレイ用パケットの先頭に4バイトの付加情報（アディショナルヘッダ）が多重されたフォーマット構成であり、前記第2の伝送方式のものであるときには、図9(B)に示すように140バイトの各トリックプレイ用パケットの先頭に4バイトの付加情報（アディショナルヘッダ）が多重されたフォーマット構成である。

【0067】上記のバッファメモリの106、107及

び108の格納データは、読み出し信号RTP1v、 RTP1a及びRTP2により読み出されて選択回路109に入力される。選択回路109は、上記の通常再生用パケットデータ、3種類のトリックプレイ用パケットデータをスイッチング信号SWに基づいていずれか一のパケットデータをパケット単位で選択し、これをパケット分割回路110に入力する。

【0068】パケット分割回路110は、1シンクブロック中の96バイトのデータ格納エリア(図1の4)に対応して、入力パケットデータを96バイト単位に区切るための回路で、前記第1の伝送方式のパケットデータ入力時には、4バイトの付加情報に統いて188バイトのパケットデータの先頭から92バイトを出力し、その後にパケットデータの残りの96バイトを出力することを繰り返す。

【0069】また、前記第2の伝送方式のパケットデータ入力時には、パケット分割回路110は、4バイトの付加情報と1パケット目の先頭から92バイトからなる96バイトを出力し、次に1パケット目の残りの48バイトと4バイトの付加情報と2パケット目の先頭から44バイトからなる96バイトを出力し、その後に2パケット目の残りの96バイトを出力することを繰り返す。

【0070】パケット分割回路110から出力された96バイト(図7の例では97バイト)のデータは、ヘッダ付加回路111に供給されて、制御回路102からの3バイトのヘッダ情報がその先頭に付加された後、外符号生成回路112に入力される。ここで、上記の3バイトのヘッダ情報は、前記図5～図7に示した各実施の形態の記録を行うときには、2バイトのメインヘッダと1バイトのデータ予備領域のためのダミータからなり、メインヘッダ2バイト中には、その第1バイトの下位2ビットにパケットの順番を示す前記カウンタ値が含まれている。

【0071】外符号生成回路112は、99(=96+3)バイト単位で入力されるデータ及びヘッダが1トラック分の306シンクブロック入力されたときの誤り訂正符号として30バイトの外符号を生成する。

【0072】内符号生成回路113は、外符号生成回路112よりのデータ、ヘッダ及び外符号が入力され、これらに基づいて8バイトのパリティを内符号として生成する。この内符号生成回路113の出力ディジタル信号(データ、ヘッダ、外符号及び内符号)は、付加回路114に供給されて図1乃至図3にSyncで示した2バイトの同期信号やIDで示した3バイトのアドレス情報などが付加された後、更に信号記録回路で図4に示した領域26、27、28、30、33などに記録されるプリアンブル、サブコード、ポストアンブルなどが多重され、更に変調及び増幅された後、図示しない公知の回転ヘッドを用いた記録機構により記録媒体(ここでは磁気テープ)116に記録される。

【0073】本実施の形態では、第1及び第2のディジタル信号伝送方式のどのディジタル信号伝送方式のディジタル信号を記録するときにもパケットをトラックに過不足なく割付けられて記録するため、その記録信号のバッファメモリ101、106～108の利用効率が良く、アドレッシングも容易である。

【0074】次に、本発明の再生方法を実現する再生装置の構成及び動作について図10のブロック図と共に説明する。同図において、上記の記録媒体116の記録デイジタル信号は公知の再生機構(ここでは回転ヘッドを含む機構)により再生された後、信号再生回路201、ID検出回路202及び誤り訂正回路203をそれぞれ通して制御回路204及びデータ振り分け回路205に供給される。

【0075】制御回路204は再生ディジタル信号のヘッダ(又はメインヘッダ)を解析してデータ振り分け回路205の制御信号を発生すると共に、バッファメモリ206～209の書き込み制御信号WTP1v、WTP1a、WTP2及びWNを発生し、かつ、再生ディジタル信号中の4バイトの付加情報(アディショナルヘッダ)を解析して、パケット到着時刻を参照し、同じタイミングでパケットを読み出すように読み出し制御信号RTP1v、RTP1a、RTP2及びRNを発生する。

【0076】データ振り分け回路205は上記制御信号に基づいて入力再生ディジタル信号がトリックプレイ用のデータ系列TP1v、TP1a及びTP2のときにはバッファメモリ206、207及び208にそれぞれ振り分け入力し、通常再生用のパケットデータのときはバッファメモリ209に入力する。

【0077】ここで、本実施の形態の記録媒体116は、前記したように2種類のディジタル信号伝送方式のどのディジタル信号伝送方式のディジタル信号を記録するときにもパケットをトラックに過不足なく割付けられて記録されているため、その再生信号のバッファメモリ206～209の利用効率が良く、アドレッシングも容易である。バッファメモリ206～209の格納パケットデータは、制御回路204からの読み出し制御信号RTP1v、RTP1a、RTP2及びRNに基づいて読み出される。

【0078】なお、本発明は以上の実施の形態に限定されるものではなく、パケットサイズの異なる3種類以上の伝送方式に対しても同様に本発明を適用できる。すなわち、この場合は、所定個数のパケットを付加情報と共に所定個のデータブロックに格納するように記録し、また、1つのトラック上のデータブロック数を複数の伝送方式のそれぞれの記録再生単位のデータブロック数の最小公倍数Rの倍数に設定すればよい。

【0079】また、以上の実施の形態では磁気テープにディジタル信号を記録再生するものとして説明したが、本発明は磁気ディスク、光ディスクなどのディスク状記

録媒体に、複数のセクタで構成されるトラックを形成して記録再生する方式にも適用でき、この場合には1つのトラック上のセクタ数を複数の伝送方式のそれぞれの記録再生単位のデータブロック数の最小公倍数Rの倍数に設定すればよい。

【0080】

【発明の効果】以上説明したように、請求項1及び2記載の発明によれば、N種類のデジタル信号伝送方式のどのデジタル信号伝送方式のデジタル信号を記録するときにもパケットをトラックに過不足なく割付けることができるため、記録媒体の利用効率を向上でき、また、パケット処理がトラック内で完結するために、記録、再生系のバッファメモリの利用効率が良く、アドレッシングも容易にできる。

【0081】また、請求項3及び4記載の発明によれば、 p_k 個のパケットのうちの順番を示すカウンタ値を少なくとも付加情報として d_k 個のデータブロックのそれぞれに記録し、このカウンタ値を再生して p_k 個のパケットの順番を識別するようにしたため、除算回路等を用いることなく、パケットの分割部分の判定ができる。また、このカウンタ値は、0を初期値としてデータブロック番号とは独立に付けるようにしたため、間に何データブロックでも他のデータを自由に記録できる。

【0082】また、請求項5及び6記載の発明によれば、通常再生用データ系列と、n種類のトリックプレイ用データ系列とを混在して記録し、これを再生するに際して、少なくともTトラック周期内で記録再生されるパケットを完結することができるため、トリックプレイ用データ系列についても記録媒体の利用効率を向上できると共に、記録、再生系のバッファメモリの利用効率が良く、アドレッシングも容易にできる。

【0083】また、請求項7及び8記載の発明によれば、Tトラック数内の任意の1本のトラック内の通常再生用データ系列のデータブロック数の合計を最小公倍数Rの倍数に設定して記録し再生することにより、トリックプレイ用データ系列が存在していても、通常再生用データ系列のパケットがトラック内で完結し、トラック間にまたがることはないため、トリックプレイ用データ系列が存在する場合であっても、記録媒体の利用効率を向上できると共に、記録、再生系のバッファメモリの利用効率が良く、アドレッシングも容易にできる。

【0084】また、請求項9及び10記載の発明によれば、各トラック内の通常再生用データ系列のデータブロック数の合計を最小公倍数Rの倍数に設定して記録し、かつ、各トラック内の各種類毎のトリックプレイ用データ系列のデータブロック数の合計をそれぞれ最小公倍数Rの倍数に設定して記録することにより、すべてのデータ系列のパケットがトラック内で完結するようにしたため、どのデータ系列についてもバッファメモリの利用効率が良く、アドレッシングも容易にでき、1台の記録再

生装置でN種類のデジタル信号伝送方式のうちのどの伝送方式のデジタル信号も記録効率よく最適に記録再生できる。

【0085】また、請求項11及び12に記載の記録再生装置によれば、請求項1及び3記載の記録再生方法を実現することができる。

【0086】更に、請求項13及び14記載の記録媒体によれば、どの種類のデジタル信号伝送方式のデジタル信号であってもパケットがトラック間にまたがらず、記録効率良く記録されているため、パケットが2つのトラックにまたがっていたときに、パケットの後半のトラックから再生された場合に生じる再生できないパケットの発生を通常再生用データ系列及びトリックプレイ用データ系列のいずれについても防止できる。

【図面の簡単な説明】

【図1】本発明により記録再生されるシンクブロックの一実施の形態のフォーマット図である。

【図2】第1の伝送方式のデジタル信号記録時のシンクブロックの構成を示す図である。

【図3】第2の伝送方式のデジタル信号記録時のシンクブロックの構成を示す図である。

【図4】本発明による一実施の形態のトラックフォーマットを示す図である。

【図5】第1の伝送方式のデジタル信号記録時の他の実施の形態のシンクブロックの構成を示す図である。

【図6】第2の伝送方式のデジタル信号記録時の他の実施の形態のシンクブロックの構成を示す図である。

【図7】デジタル信号記録時の更に他の実施の形態のシンクブロックの構成を示す図である。

【図8】本発明の他の実施の形態のトラックパターンとトリックプレイ時のヘッド走査軌跡等を説明する図である。

【図9】本発明方法を実現する記録装置の一実施の形態のブロック図である。

【図10】本発明方法を実現する再生装置の一実施の形態のブロック図である。

【符号の説明】

1 同期信号(Sync)領域

2 アドレス情報(ID)領域

3 ヘッダ格納領域

4 データ格納エリア

5 パリティ領域

10、15、19 付加情報格納エリア

11、12、16、17、18、20、21、22 データ格納エリア

27 サブコード領域

31 データ領域

32 誤り訂正符号領域

41、51、61 メインヘッダ領域

71~73 トリックプレイ用映像信号データ系列TP

21

1 v 記録部分

81~83 トリックプレイ用音声信号データ系列TP

1 a 記録部分

91~94 トリックプレイ用映像信号データ系列TP

2 記録部分

101 ノーマルデータ用バッファメモリ(付加及び記憶手段)

102 制御回路(付加情報発生手段、付加手段)

103 パケット用ヘッダ付加回路(付加及び記憶手段)

104 トリックプレイデータ生成回路

106~108 トリックプレイデータ用バッファメモリ*

【図1】

22

*り(付加及び記憶手段)

109 選択回路

110 パケット分割回路(分割手段)

111 ヘッダ付加回路(付加手段)

115 信号記録回路(信号記録回路)

116 記録媒体

204 制御回路(制御手段)

205 データ振り分け回路

10 206~208 トリックプレイデータ用バッファメモリ(バッファメモリ)

209 ノーマル用バッファメモリ(バッファメモリ)

210 パケット選択回路(制御手段)

【図2】

【図3】

【図4】

【図5】

BEST AVAILABLE COPY

【図 6】

【図 7】

【図 8】

BEST AVAILABLE COPY

【図 9】

(A) 8 188 4 188 4 188 4 188
(B) 8 140 4 140 4 140 4 140 4 140

【図 10】

