Algorithms for Computing Strong RRQR Factorization

Shashi Satyam Shiuli Subhra Ghosh Shreyan Patra Shubham Parashar

Chennai Mathematical Institute

July 1st, 2021

Overview

- 1. Introduction
- 2. Factorizations
- 3. Computational Algorithms
- 4. Algorithmic Properties

Abstract

- Finding the numerical rank of a matrix has applications in subset selection, least squares, regularization, matrix approximation etc.
- The SVD is the "best" rank-revealing factorization. However, it can be very computationally expensive and is sensitive to change in A.
- We first review the use of QR factorization as a rank-revealing alternative over SVD.
- Then we introduce a 'strong' rank revealing QR (SRRQR) factorization which apart form rank, also provides a basis for the approximate right null space.

Introduction - Covered so far...

Over the course, we looked at two ways to compute the numerical rank.

- 1. Using SVD
- 2. Using QR with column pivoting.

In this project we extend the concepts and algorithms pertaining to the QR methods.

Note - QR with column pivoting is essentially a modification of householder's procedure!

Introduction - SVD and Numerical Rank

Let $A \in \mathbb{R}^{m \times n}$ and suppose $r = \operatorname{rank}(A) \leq \min\{m, n\}$. If $A = U \Sigma V^T$ is the SVD of A, then $A = \sum_{k=1}^r \sigma_k U_k V_k^T$ where $\sigma_i(i > r) = 0$.

- In theory $\sigma_i(i > r) = 0$. But, in reality while solving with computer it is not.
- So, we choose a \hat{r} for which $\sigma_1, \sigma_2, \dots, \sigma_{\hat{r}} \neq 0$ and rest of the σ 's are stipulated to be zero.

Numerical Rank

In such a case \hat{r} is called the numerical rank of A. Typically $\hat{r} \leq r$.

In this project we use a slightly different notion for Numerical Rank.

Introduction - Partial QR and Numerical Rank

Given a matrix $M \in \mathbb{R}^{m \times n}$ with $m \ge n$, we consider a partial QR factorization of the form,

$$M\Pi = QR = Q \begin{pmatrix} A_k & B_k \\ & C_k \end{pmatrix}$$

where,

- $Q \in \mathbb{R}^{m \times m}$ is orthogonal and $\Pi \in \mathbb{R}^{n \times n}$ is a permutation matrix.
- $A_k \in \mathbb{R}^{k \times k}$ is upper triangular with non negative diagonal elements
- $B_k \in \mathbb{R}^{k \times n k}$ is linearly dependent on A_k
- $C_k \in \mathbb{R}^{m-k \times n-k}$ has a sufficiently small norm

Numerical rank

k is chosen to be the smallest integer $1 \le k \le n$ for which $||C_k||_2$ is sufficiently small and is called the numerical rank of M.

RRQR Factorization

Rank Revealing QR Factorisation

We call a QR factorization rank-revealing if it satisfies,

$$\sigma_{min}(A_k) \geq \frac{\sigma_k(M)}{p(k,n)} \text{ and } \sigma_{max}(C_k) \leq \sigma_{k+1}(M)p(k,n)$$

where p(k, n) is a function bounded by a low degree polynomial in k and n.

- We assume that $\sigma_k(M) >> \sigma_{k+1}(M) \approx 0$ such that numerical rank of M is k.
- Our aim for RRQR algorithms is to find a Π for which $\sigma_{min}(A_k)$ is sufficiently large and $\sigma_{max}(C_k)$ is sufficiently small.

SRRQR Factorization

- Some numerical applications require a basis for the approximate right null space of M, as in-
 - Rank-deficient least-squares computations
 - Subspace tracking
- Others require us to separate the linearly independent columns of M from the linearly dependent ones, as in-
 - Subset selection
 - Linear dependency analysis

The RRQR factorization does not lead to a stable algorithm because the elements of $A^{-1}B$ can be very large. So we need stronger conditions over RRQR to attain such information.

SRRQR Factorization

Strong Rank Revealing QR Factorisation

A QR factorization strong rank revealing if, for all $1 \le i \le k$ and $1 \le j \le n - k$

- ullet $\sigma_i(A_k) \geq rac{\sigma_i(M)}{q_1(k,n)}$ and $\sigma_j(C_k) \leq \sigma_{k+j}(M)q_1(k,n)$
- $|(A_k^{-1}B_k)_{i,j}| \leq q_2(k,n)$

Where, q_1 and q_2 are functions bounded by a low degree polynomial in k and n.

Columns of
$$N = \Pi \begin{pmatrix} -A_k^{-1}B_k \\ I_{n-k} \end{pmatrix}$$
 form an approximate basis for the right null space of M .

Algorithms - Notation

By convention,

- ullet $A_k, ar{A_k} \in \mathbb{R}^{k imes k}$ denote upper triangular matrices with non negative diagonal elements
- $B_k, \bar{B_k} \in \mathbb{R}^{k \times n k}$ and $C_k, \bar{C_k} \in \mathbb{R}^{m k \times n k}$ denote general matrices

In the partial QR factorization $X=Q\left(\begin{array}{cc}A_k&B_k\\C_k\end{array}\right)$ of a matrix $X\in\mathbb{R}^{m\times n}$, where the diagonal elements of A_k are non negative, we write

$$A_k(X) = A_k, \quad C_k(X) = C_k, \quad \mathcal{R}_k(X) = \begin{pmatrix} A_k & B_k \\ & C_k \end{pmatrix}$$

Further define the following-

- $1/\omega_i$ denotes the 2-norm of the i^{th} row of A^{-1} (where $A \in \mathbb{R}^{l \times l}$ is non singular)
- γ_i denotes the 2-norm of the i^{th} column of C (where C has I columns)
- $\omega_*(A) = (\omega_1(A), \omega_2(A), \cdots, \omega_I(A))^T$ and $\gamma_*(A) = (\gamma_1(A), \gamma_2(A), \cdots, \gamma_I(A))$

Algorithm 1: QR with column pivoting

```
ALGORITHM 1. QR with column pivoting.
   k := 0: R := M: \Pi := I:
    while \max_{1 \le i \le n-k} \gamma_i (\mathcal{C}_k(R)) \ge \delta do
       j_{\max} := \operatorname{argmax}_{1 < j < n-k} \gamma_j (\mathcal{C}_k(R));
       k := k + 1:
       Compute R := \mathcal{R}_k(R \prod_{k,k+i_{max}-1}) and \Pi := \prod \prod_{k,k+i_{max}-1}; • When the algorithm halts,
    endfor:
```

- This algorithm uses a greedy strategy for finding well-conditioned columns.
- Having determined the first k columns it picks a column from the remaining n - k columns that maximizes $det(A_{k+1}(R))$

$$\sigma_{max}(C_k(M\Pi)) \leq \sqrt{n-k}$$

$$\max_{1 \le j \le n-k} \gamma_j(C_k(M\Pi)) \le \sqrt{n-k}\delta$$

Failing of Algorithm 1

- When there are only a few well-conditioned columns, this strategy is guaranteed to find a strong RRQR factorization.
- It works well in general but fails for the following example. Let $M = S_n K_n$ where,

$$S_n = \left(egin{array}{cccc} 1 & 0 & \cdots & 0 \ 0 & s & \cdots & 0 \ dots & \ddots & \ddots & dots \ 0 & \cdots & 0 & s^{n-1} \end{array}
ight) \quad ext{and} \quad K_n = \left(egin{array}{cccc} 1 & -c & \cdots & -c \ 0 & 1 & \cdots & -c \ dots & \ddots & \ddots & dots \ 0 & \cdots & 0 & 1 \end{array}
ight)$$

where
$$c^2 + s^2 = 1$$
 and $c, s > 0$

ullet Here all the columns of M are unit norms so no permutation of columns take place.

Failing of Algorithm 1

• Let k = n - 1, then it can be shown that,

$$\frac{\sigma_k(M)}{\sigma_{min}(A_k)} \geq \frac{c^3(1+c)^{n-4}}{2s}$$

and the right hand side grows faster than any polynomial in k and n.

• For example, let n = 100, k = 99, c = 0.2. Though M is not in rank-revealed form, the singular values are,

$$\sigma_{100}(\textit{M}) \approx 3 \times 10^{-9}, \ \ \sigma_{99}(\textit{M}) \approx 0.1482, \ \ \overline{\sigma}_{99} \approx 4 \times 10^{-9}$$

Although the 99^{th} and 100^{th} singular values are well separated, the smallest singular value of the first 99 columns ($\overline{\sigma}_{99}$) is exponentially smaller than $\sigma_{99}(M)$.

Algorithms 2: Hybrid-III(k)

```
ALGORITHM 2. Hybrid-III(k).
    R := M : \Pi := I :
    repeat
        i_{\min} := \operatorname{argmin}_{1 \le i \le k} \ \omega_i (\mathcal{A}_k(R));
        if there exists a j such that \det \left[ \mathcal{A}_k(R \prod_{i = j, j+k}) \right] / \det \left[ \mathcal{A}_k(R) \right] > 1 then
            Find such a i:
            Compute R := \mathcal{R}_k(R \prod_{i=i_1,i_2+k}) and \Pi := \prod \prod_{i_2,i_2,i_3+k};
        endif:
        j_{\max} := \operatorname{argmax}_{1 < j < n-k} \gamma_j (\mathcal{C}_k(R));
        if there exists an i such that \det \left[ \mathcal{A}_k(R \prod_{i,j_{\max}+k}) \right] / \det \left[ \mathcal{A}_k(R) \right] > 1 then
            Find such an i:
            Compute R := \mathcal{R}_k(R \prod_{i, i_{max}+k}) and \Pi := \prod \prod_{i, i_{max}+k};
        endif:
    until no interchange occurs:
```

 Algorithm 2 keeps interchanging the most "dependent" of the first k columns (column i_{min}) with one of the last n-k columns. and interchanging the most "independent" of the last n-k columns (column i_{max}) with one of the first k columns, as long as det $[A_k(R)]$ strictly increases.

Failing of Algorithm 2

• Considering the previous example where $M = S_n K_n$, let k = n - 2.

$$M = \begin{pmatrix} S_{k-1}K_{k-1} & 0 & 0 & -cS_{k-1}d_{k-1} \\ & \mu & 0 & 0 \\ & & \mu & 0 \\ & & & \mu \end{pmatrix}$$

where
$$d_{k-1} = (1, \dots, 1)^T \in \mathbb{R}^{k-1}$$
 and $\mu = \frac{1}{\sqrt{k}} \min_{1 \le i \le k-1} \omega_i(S_{k-1} K_{k-1})$

• Then the algorithm does not permute the columns of M, yet it can be shown that,

$$rac{\sigma_{k-1}(M)}{\sigma_{k-1}(A_k)} \geq rac{c^3(1+c)^{n-4}}{2s} \ \ ext{and} \ \ ||A_k^{-1}B_k||_{\infty} = c(1+c)^{k-2}$$

and the right hand side grows faster than any polynomial in k and n.

Algorithm 3: Compute strong RRQR, given k

ALGORITHM 3. Compute a strong RRQR factorization, given k.

```
R := \mathcal{R}_k(M); \ \Pi := I;

while there exist i and j such that \det(\bar{A}_k)/\det(A_k) > f,

where R = \begin{pmatrix} A_k & B_k \\ C_k \end{pmatrix} and \mathcal{R}_k(R \ \Pi_{i,j+k}) = \begin{pmatrix} \bar{A}_k & \bar{B}_k \\ \bar{C}_k \end{pmatrix}, do

Find such an i and j;

Compute R := \mathcal{R}_k(R \ \Pi_{i,j+k}) and \Pi := \Pi \ \Pi_{i,j+k};

endwhile;
```

• This algorithm constructs a SRRQR factorization by using column interchanges to try to maximize $det(A_k)$.

Why $det(A_k)$?

Since, $\det(A_k) = \prod_{i=1}^k \sigma_i(A_k) = \sqrt{\det(M^T M)}/\prod_{j=1}^{n-k} \sigma_j(C_k)$ a strong RRQR factorization also results in a large $\det(A_k)$.

Lemma 3.1

To prove that algorithm 3 computes a SRRQR factorization, we first express $\det(\bar{A}_k)/\det A_k$ in terms of $\omega_i(A_k), \gamma_j(C_k)$ and $(A_k^{-1}B_k)_{i,j}$.

Let,
$$R = \begin{pmatrix} A_k & B_k \\ C_k \end{pmatrix}$$
 and $\mathcal{R}_k(R \Pi_{i,j+k}) = \begin{pmatrix} \bar{A}_k & \bar{B}_k \\ \bar{C}_k \end{pmatrix}$. Where A_k has positive diagonal elements. Then,

$$\frac{\det(\overline{A}_k)}{\det(A_k)} = \sqrt{(A_k^{-1}B_k)_{i,j}^2 + (\gamma_j(C_k)/\omega_i(A_k))^2}$$

Some Additional Notation

We will be using Lemma 3.1 to modify Algorithm 3 in two ways. Define $\rho(R, k)$ and $\hat{\rho}(R, k)$ for the same, where

$$\rho(R,k) = \max_{1 \le i \le k, 1 \le j \le n-k} \sqrt{(A_k^{-1}B_k)_{i,j}^2 + (\gamma_j(C_k)/\omega_i(A_k))^2}$$

$$\hat{\rho}(R,k) = \max_{1 \leq i \leq k, 1 \leq j \leq n-k} \max \left\{ |(A_k^{-1}B_k)_{i,j}|, \gamma_j(C_k)/\omega_i(A_k) \right\}$$

Algorithm 4: Compute strong RRQR given k

ALGORITHM 4. Compute a strong RRQR factorization, given
$$k$$
.

Compute $R \equiv \begin{pmatrix} A_k & B_k \\ C_k \end{pmatrix} := \mathcal{R}_k(M)$ and $\Pi = I$;

while $\rho(R, k) > f$ do

Find i and j such that $\sqrt{\left(A_k^{-1}B_k\right)_{i,j}^2 + \left(\gamma_j(C_k)/\omega_i(A_k)\right)^2} > f$;

Compute $R \equiv \begin{pmatrix} A_k & B_k \\ C_k \end{pmatrix} := \mathcal{R}_k(R \Pi_{i,j+k})$ and $\Pi := \Pi \Pi_{i,j+k}$;

endwhile;

endwhile;

- Algorithm 4 is equivalent to Algorithm-3. $\det(\overline{A}_k)/\det(A_k)$ is replaced with $\rho(R, k)$.
- It eventually halts and finds a permutation Π for which $\rho(\mathcal{R}_k(M\Pi), k) < f$.
- $\sigma_i(A_k) \geq \frac{\sigma_i(M)}{\sigma_1(k,n)},$ $\sigma_i(C_k) \leq \sigma_{k+i}(M)q_1(k,n)$ with $q_1(k,n) = \sqrt{1 + f^2 k(n-k)}$

Algorithm 5: Compute k and a SRRQR factorization

ALGORITHM 5. Compute k and a strong RRQR factorization.

```
k := 0: R \equiv C_{\nu} := M: \Pi := I:
Initialize \omega_*(A_k), \gamma_*(C_k), and A_k^{-1}B_k;
while \max_{1 \le i \le n-k} \gamma_i(C_k) \ge \delta do
    j_{\text{max}} := \operatorname{argmax}_{1 \le i \le n-k} \gamma_i(C_k);
   k := k + 1:
   Compute R \equiv \begin{pmatrix} A_k & B_k \\ C_k \end{pmatrix} := \mathcal{R}_k (R \Pi_{k,k+j_{\text{max}}-1}) and \Pi := \Pi \Pi_{k,k+j_{\text{max}}-1};
   Update \omega_*(A_k), \gamma_*(C_k), and A_k^{-1}B_k;
    while \hat{\rho}(R, k) > f do
       Find i and j such that \left| \left( A_k^{-1} B_k \right)_{i,j} \right| > f or \gamma_j(C_k)/\omega_i(A_k) > f;
       Compute R \equiv \begin{pmatrix} A_k & B_k \\ C_k \end{pmatrix} := \mathcal{R}_k(R \Pi_{i,j+k}) and \Pi := \Pi \Pi_{i,j+k};
        Modify \omega_*(A_k), \gamma_*(C_k), and A_k^{-1}B_k;
    endwhile:
endwhile:
```

- This algorithm is combination of Algo-1 and Algo-4.
- Instead of $\rho(R, k)$ from Algo-4 here $\hat{\rho}(R, k)$ is used.
- It halts having found k and a permutation Π for which $\rho(R, \hat{k}) \leq f$ which implies $\rho(\mathcal{R}_k(M\Pi), k) \leq \sqrt{2}f$
- This satisfies $q_1(k,n)=\sqrt{1+2f^2k(n-k)}$ and $q_2(k,n)=\sqrt{2}f$

Efficiency of Algorithm 5

• Algorithm 1 has a flop count of $4mnk - 2k^2(m+n) + 4k^3/3$.

ltem	Flops
Updating procedure	2(2m-k)(n-k)
Reduction procedure	3k(2n - k)
Modifying procedure	$4m(n-k)+k^2$
Finding $\hat{ ho}(R,k)$	2k(n-k)

Table: Flop Count for Algorithm 5

• Let, k_f be the final value of k when Algorithm 5 terminates and the total number of interchanges is denoted by t_{k_f} . t_{k_f} is bounded by $k_f log_f \sqrt{n}$. Then the total cost is about $2mk_f(2n-k_f)+4t_{k_f}n(m+n)$. When f is taken to be small power of n the total cost is $\mathcal{O}(mnk_f)$.

Efficiency of Algorithm 5

Comparing Algorithms 1 and 5

- When m >> n, Algorithm 5 is almost as fast as Algorithm 1.
- When $m \approx n$ Algorithm 5 is about 50% more expensive.

Final Remark

Despite the fact that Algorithm 5 is providing more information while covering a broader class of matrices, the efficiency is almost the same to Algorithm 1.

Numerical Stability of Algorithm 5

- Since we updated and modified $\omega_*(A_k)$, γ_*C_k and $A_k^{-1}B_k$, rather than recompute them, we might expect some loss of accuracy.
- But Since we use these quantities for deciding which pairs of columns to interchange, Algorithm 5 could be only unstable if they are extremely inaccurate.
- We give an upper bound of $\rho(R,k)$ during interchanges. Since the bound grows slowly with k, A_k can never be extremely ill conditioned provided that $\sigma_k(M)$ is not very much smaller than $||M||_2$. This implies that $A_k^{-1}B_k$ cannot be too inaccurate.

References

Minh Gu and Stanley C. Eisenstat (1996)

Efficient Algorithms for Computing A Strong Rank-Revealing OR Factorization SIAM J. SCI. COMPUT Vol. 17, No. 4, pp. 848-869, July 1996

Shivkumar Chandrasekaran and Ilse C.F. Ipsen (1994)

On Rank Revealing Factorisations

SIAM J. MATRIX ANAL. APPL. Vol. 15, No. 2, pp. 592-622, April 1994

Xin Xing (2019)

Strong Rank Revealing QR decomposition

(https://www.mathworks.com/matlabcentral/fileexchange/69139-strong-rank-revealing-qr-decomposition), MATLAB Central File Exchange. Retrieved July 1, 2021.

Thank You