COSC 290 Discrete Structures

Lecture 10: Proofs by contradiction and cases

Prof. Michael Hay

Wednesday, Feb. 14, 2018

Colgate University

Plan for today

- 1. Proof by contradiction
- 2. Examples of proof by contradiction
- 3. Proof by contradiction vs. proof by contrapositive
- 4. Proof by cases

Logistics |

- First midterm exam: 1 week from this Friday!
- Lab 1: continue to work on it this week

Proof by contradiction

Proof by contradiction

To prove that proposition φ is true,

you can assume φ is false (i.e, $\neg \varphi$ is true) and show that this assumption leads to a contradiction.

Goal: prove that φ is true.

Process:

1. Negate the proposition, resulting in $\neg \varphi$. (Note: you typically want to **simplify** this expression, pushing the negation down.)

Goal: prove that φ is true.

Process:

- 1. Negate the proposition, resulting in $\neg \varphi$. (Note: you typically want to **simplify** this expression, pushing the negation down.)
- 2. Assume $\neg \varphi$ is true.

Goal: prove that φ is true.

Process:

- 1. Negate the proposition, resulting in $\neg \varphi$. (Note: you typically want to **simplify** this expression, pushing the negation down.)
- 2. Assume $\neg \varphi$ is true.
- 3. Show that this leads to a contradiction, i.e.,

Goal: prove that φ is true.

Process:

- 1. Negate the proposition, resulting in $\neg \varphi$. (Note: you typically want to **simplify** this expression, pushing the negation down.)
- 2. Assume $\neg \varphi$ is true.
- 3. Show that this leads to a contradiction, i.e., leads to two statements that are opposed to one another.

Why does this work?

A little more formally, proof by contradiction works like this.

- Assume $\neg \varphi$
- Find some proposition ψ such that you can show...
- $\bullet \neg \varphi \implies \psi$, and
- $\neg \varphi \implies \neg \psi$.
- But $\psi \wedge \neg \psi \equiv \textit{False}!$

In other words, we have shown $\neg \varphi \implies \textit{False}$. So what?

Truth table for contradiction

Claim:

$$(\neg p \implies False) \equiv p$$

Proof:

Truth table for contradiction

Claim:

$$(\neg p \implies False) \equiv p$$

Proof: Recall that $p \implies q \equiv \neg p \lor q$.

Truth table for contradiction

Claim:

$$(\neg p \implies False) \equiv p$$

Proof: Recall that $p \implies q \equiv \neg p \lor q$.

р	q	$p \implies q$	$\neg p \lor q$
Т	Т	Т	Т
Т	F	F	F
F	Т	Т	Т
F	F	Т	Т

Thus,

$$(\neg p \implies False) \equiv (\neg \neg p \lor False) \equiv (p \lor False) \equiv p$$

Proof by Contradiction Template

- **Claim**: Write the theorem/claim to be proved, " φ is true."
- **Proof by contradiction**: Assume the claim is false. In other words, [state negated form of φ] It's critical that you (a) explicitly state this is a proof by a contradiction and (b) state the assumption that will lead to the contradiction! Why?

Proof by Contradiction Template

- **Claim**: Write the theorem/claim to be proved, " φ is true."
- **Proof by contradiction**: Assume the claim is false. In other words, [state negated form of φ]
 - Write main body of proof...
 - ... establish some ψ must be true.
 - ... establish some $\neg \psi$ must also be true.
 - But [state ψ and $\neg \psi$] is a contradiction. Be sure to clearly identify the contradiction!

Proof by Contradiction Template

- **Claim**: Write the theorem/claim to be proved, " φ is true."
- **Proof by contradiction**: Assume the claim is false. In other words, [state negated form of φ]
 - · Write main body of proof...
 - ... establish some ψ must be true.
 - ... establish some $\neg \psi$ must also be true.
 - But [state ψ and $\neg \psi$] is a contradiction. Be sure to clearly identify the contradiction!
 - **Conclusion**: Therefore the original assumption that [restate $\neg \varphi$] is false, and we can conclude that [restate φ] is true.

Examples of proof by

contradiction

Poll: no integer is both even and odd

- Claim: There is no integer that is both even and odd.
- Proof by contradiction: Assume the claim is false. In other words, ... what goes here?
- A) All integers are both odd and even.
- B) All integers are not odd or not even.
- C) There is an integer *n* that is both odd and even.
- D) There is an integer *n* that is neither odd nor even.
- E) None of above / More than one of above

Exercise: complete the proof

- **Claim**: There is no integer that is both even and odd.
- Proof by contradiction: Assume the claim is false. In other words, suppose there exists an integer n that is both even and odd.
- · Work in small groups to find a contradiction!
- · Useful tools:
 - $\ensuremath{\mathbb{Z}}$ is the set of all integers
 - Even $(x) := \exists k \in \mathbb{Z} : x = 2k$
 - $Odd(x) := \exists \ell \in \mathbb{Z} : x = 2\ell + 1$
 - Sum/Difference of two integers is an integer.
 - · Algebra, logic.

Complete proof

- Claim: There is no integer that is both even and odd.
- Proof by contradiction: Assume the claim is false. In other words, suppose there exists an integer n that is both even and odd.

Since n is odd, $\exists \ell \in \mathbb{Z} : n = 2\ell + 1$.

Since *n* is even, $\exists k \in \mathbb{Z} : n = 2k$.

Since k and ℓ are integers, $k - \ell$ is an integer.

However, some algebra shows that,

$$2\ell + 1 = 2k1$$
 $= 2(k - \ell)\frac{1}{2} = (k - \ell)$

and thus $(k-\ell)$ is non-integral. This is a contradiction! This means the assumption that n is both even and odd is false and therefore, we can conclude there is no integer that is both even and odd.

Rational numbers

Recall: a rational number is a real number that can be expressed as the ratio of two integers.

$$Rational(y) := \exists n \in \mathbb{Z} : \exists d \in \mathbb{Z}^{\neq 0} : y = n/d$$

Rational numbers

Recall: a rational number is a real number that can be expressed as the ratio of two integers.

$$Rational(y) := \exists n \in \mathbb{Z} : \exists d \in \mathbb{Z}^{\neq 0} : y = n/d$$

We will consider the following claim: if x^2 is irrational, then x is irrational.

Poll: from English to predicate logic

Consider the claim,

"If x^2 is irrational, then x is irrational."

Formulate this claim in predicate logic:

- A) $\exists x \in \mathbb{R} : \neg Rational(x^2) \land \neg Rational(x)$
- B) $\exists x \in \mathbb{R} : \neg Rational(x^2) \implies \neg Rational(x)$
- C) $\forall x \in \mathbb{R} : \neg Rational(x^2) \land \neg Rational(x)$
- D) $\forall x \in \mathbb{R} : \neg Rational(x^2) \implies \neg Rational(x)$
- E) None of above / More than one of above

Poll: irrational squares

· Claim:

$$\forall x \in \mathbb{R} : \neg Rational(x^2) \implies \neg Rational(x)$$
(If x^2 is irrational, then x is irrational.)

- Proof by contradiction: Assume the claim is false. In other words, ... what goes here? be careful with negation!
- A) There exists x where both x and x^2 are rational.
- B) There exists x where both x and x^2 are irrational.
- C) There exists x where x is rational and x^2 is irrational.
- D) There exists x where x is irrational and x^2 is rational.
- E) None of above / More than one of above

Exercise: complete the proof

- **Claim**: If x^2 is irrational, then x is irrational.
- **Proof by contradiction**: Assume the claim is false. In other words, suppose there exists an x such that x is rational but x^2 is irrational.
- · Work in small groups to find a contradiction!
- · Useful tools:
 - \mathbb{R} is the set of all real numbers
 - \mathbb{Z} is the set of all integers
 - Rational(y) := $\exists n \in \mathbb{Z} : \exists d \in \mathbb{Z}^{\neq 0} : y = n/d$
 - · Product of two integers is an integer.
 - · Algebra, logic.

Proof by contradiction vs. proof

by contrapositive

- **Claim**: If x^2 is irrational, then x is irrational.
- **Proof by contradiction**: Assume the claim is false. In other words, suppose there exists an x such that x is rational but x^2 is irrational. We will show this leads to a contradiction...
- **Proof by contrapositive**: Assume that x is rational. We will show that x^2 is rational.

• Contradiction can be used for *any* proposition φ . Contrapositive only applies to φ of the form $p \implies q$.

- Contradiction can be used for *any* proposition φ . Contrapositive only applies to φ of the form $p \implies q$.
- How do they compare when $\varphi := p \implies q$?

- Contradiction can be used for *any* proposition φ . Contrapositive only applies to φ of the form $p \implies q$.
- How do they compare when $\varphi := p \implies q$?
- Contrapositive: given $\neg q$, show $\neg p$.
- Contradiction: ?? Let's look at $\neg(p \implies q)$ on the board.

- Contradiction can be used for *any* proposition φ . Contrapositive only applies to φ of the form $p \implies q$.
- How do they compare when $\varphi := p \implies q$?
- Contrapositive: given $\neg q$, show $\neg p$.
- Contradiction: given $\neg(p \implies q) \equiv \neg q \land p$, show some contradiction (any contradiction you can think of!). For example, you could assume $\neg q \land p$ and show the contrapositive (i.e. $\neg q \implies \neg p$) and then you have a contradiction $p \land \neg p$.

When to use proof by contradiction?

There isn't an easy answer.1

Try other techniques first.

Situations where I've found it useful...

- proving a "negative": $\sqrt{2}$ is irrational (i.e., not rational).
- proving that a particular algorithm always computes the "best" solution

https://gowers.wordpress.com/2010/03/28/
when-is-proof-by-contradiction-necessary/

Proof by cases

Example

Claim: among any 6 people, there are 3 who all know each other (a club) or 3 who don't know each other (strangers).

This proof assume any two people either know each other or not (A knows B iff B knows A).

We will use the strategy of proof by cases.

Proof by cases

Claim: among any 6 people, there are 3 who all know each other (a club) or 3 who don't know each other (strangers).

Proof: The proof is by cases. Let *x* denote one of the 6 people. There are two cases:

- 1. x knows at least 3 of the other 5 people
- 2. x knows at most 2 of the other 5 people

Some quick asides:

- Notice it says "there are two cases"
- You'd better be right there are no more cases!
- Cases must completely cover possibilities
- · Cases could overlap, but generally don't.
- Tip: you don't need to worry about trying to make the cases "equal size" or scope.

Proof continued...

Claim: among any 6 people, there are 3 who all know each other (a club) or 3 who don't know each other (strangers).

Case 1, x knows at least 3 people, can be split into two sub cases.

- **1.1** Among the the ones that *x* knows, no pair knows each other. Then we have at least 3 strangers.
- **1.2** Among the the ones that *x* knows, there is one pair that knows each other. They both also know *x*, so a club.

Some quick asides:

- · Again, notice it says "there are two subcases"
- Cases must completely cover possibilities within this case

Proof continued...

Claim: among any 6 people, there are 3 who all know each other (a club) or 3 who don't know each other (strangers).

Case 2, x knows at most 2 people, can be split into two sub cases.

- **2.1** Among the the ones that *x* does *not* know, they all know each other. There are at least 3, so we have a club.
- **2.2** Among the the ones that *x* does *not* know, there exists a pair that does not know each other. Then, together with *x*, we have 3 strangers.