Type-C Stanley Symmetric Functions and Shifted Primed Tableaux

Graham Hawkes, Kirill Paramonov and Anne Schilling

University of California, Davis

Goal

It is known that Stanley symmetric functions are Shur-positive, i.e. the coefficients of the Shur expantion are non-negative. Our goal here is to introduce a crystal structure on the set of unimodal factorizations that is isomorphic to the crystal structure of type-A crystal.

In particular, we use Kraśkiewicz insertion [?, ?] to use the notion of Primed Tableaux and introduce crystal operators on those tableaux instead.

Background

Stanley Symmetric Functions

- Coxeter group of type C_n is defined to be generated by $\{s_0, s_1, \ldots, s_{n-1}\}$ subject to relations
- $s_i^2 = 1$ for all *i*,
- $s_i s_j = s_j s_i$ provided |i j| > 1,
- $s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}$ for all i > 0,
- $\bullet s_0 s_1 s_0 s_1 = s_1 s_0 s_1 s_0.$
- Each Coxeter group element $w = s_{i_1} \dots s_{i_l}$ is represented by a word $i_1 \dots i_l$ and many other equivalent words. Among those, the words of shortest length are called *reduced words*.
- A word $i_1 ldots i_l$ is called unimodal if there exists an index ν with $i_1 > \ldots > i_{\nu} < \ldots < i_l$. Unimodal factorization of a Coxeter group element w is a factorization of its reduced word into unimodal factors. Denote the set of unimodal factorizations of w as U(w).
- For example, given $w = s_2 s_1 s_2 s_0 s_1 s_0$, some of the elements of U(w) are (212)(0)(10), (21)()(201)(0), (1)(2101)(0), ()(12)(01)(01).
- Given unimodal factorization **A**, define its *weight* wt(**A**) to be the vector consisting of the number of elements in each factor, and nz(**A**) to be the number of non-empty factors.
- Type-C Stanley symmetric function is defined as

$$F_w^C(\mathbf{x}) = \sum_{\mathbf{A} \in U(w)} 2^{\text{nz}(\mathbf{A})} \mathbf{x}^{\text{wt}(\mathbf{A})}$$

Type-A crystals and Schur Functions

- Consider the set of words \mathcal{B}_n^h of length h in the alphabet $\{1, 2, \ldots, n+1\}$, with no equivalency relations. We impose a crystal structure on \mathcal{B}_n^h by defining lowering operators f_i and raising operators e_i for $1 \le i \le n$ and a weight function.
- The weight of $\mathbf{b} \in \mathcal{B}_n^h$ is the tuple $\mathrm{wt}(\mathbf{b}) = (a_1, \dots, a_{n+1})$, where a_i is the number of letters i in \mathbf{b} .
- Lowering operator f_i acts on **b** by changing a particular letter i to i + 1 if such letter exists, and is not defined otherwise. Raising operator e_i acts as the inverse of f_i .
- Crystal operators induce digraph structure on \mathcal{B}_n^h , with the character of each connected component equal to a symmetric Schur polynomial $s_{\lambda}(x_1, \ldots, x_{n+1})$ with $\lambda \vdash h$.
- In the limit $n \to \infty$ Shur polynomials become Schur functions $s_{\lambda}(\mathbf{x})$. Shur functions form an orthonormal basis to the vector space of symmetric functions with integer coefficients.

Unimodal Tableaux and Shifted Primed Tableaux

A shifted diagram $S(\lambda)$ associated to a partition $\lambda = (\lambda_1, ..., \lambda_\ell)$ with $\lambda_i > \lambda_{i+1}$ is the set of boxes in positions (i, j) satisfying $1 \le i \le \ell$ and $i \le j \le \lambda_i + i - 1$.

Unimodal Tableaux

- A unimodal tableau \mathbf{P} of shape λ associated to a Coxeter group element w of type C_n is a filling of a shifted diagram $S(\lambda)$ with letters from the alphabet $\{0 < 1 < 2 < \cdots < n-1\}$ such that the rows of \mathbf{P} , denoted by P_1, \ldots, P_ℓ , are unimodal words,
- P_i is the longest unimodal subsequence in a concatenated word $P_{i+1}P_i$, • the concatenated word $P_{\ell}P_{\ell-1}\dots P_1$ a reduced type-C word that represents w.
- For example, unimodal tableau $\begin{bmatrix} 4 & 3 & 2 & 0 & 1 \\ 2 & 1 & 2 \end{bmatrix}$ corresponds to $w = s_2 s_1 s_2 s_4 s_3 s_2 s_0 s_1$.

Primed Tableaux

- A primed tableau T of shape λ on n letters is a filling of $S(\lambda)$ with letters from the alphabet $\{1' < 1 < 2' < 2 < \cdots < m' < m\}$ such that:
- The entries are weakly increasing along each column and each row of **T**.
- Each row contains at most one i' for every i = 1, ..., m.
- Each column contains at most one i for every i = 1, ..., m.
- The weight of a primed tableau, denoted by wt(**T**), is the vector with *i*-th coordinate equal to the total number of letters in **T** that are either *i* or *i'*.

Kraśkiewicz insertion

The Kraśkiewicz insertion gives a bijection

$$KR: U^{\pm}(w) \to \bigcup_{\lambda} [\mathcal{UT}_{w}(\lambda) \times \mathcal{PT}(\lambda)],$$

where $U^{\pm}(w)$ is the set of all unimodal factorizations of w with a sign assigned to each non-zero factor, $\mathcal{UT}_{w}(\lambda)$ is the set of all unimodal tableaux of shape λ associated with w, and $\mathcal{PT}(\lambda)$ is the set of all primed tableaux of shape λ .

Moreover, the weight of a unimodal factorization is equal to the weight of a primed tableau in the image.

Lowering operator f_i on Primed Tableau

We can introduce a crystal structure on the set $\mathcal{PT}(\lambda)$ instead and induce the structure on $U^{\pm}(w)$ via the Kraśkiewicz insertion. It is convenient to define the crystal operators on the subset of $\mathcal{PT}(\lambda)$ with no primed elements on the diagonal, and extend the action on the whole set afterwards. Consider a primed tableau T.

- Construct the *reading word* rw(**T**) as follows:
- 1 List all primed letters in the tableau, column by column, in decreasing order within each column, moving from the rightmost column to the left, and with all the primes removed.
- 2 Then list all unprimed elements, row by row, in increasing order within each row, moving from the bottommost row to the top.
- Apply a bracketing rule for letters i and i + 1 in rw(\mathbf{T}) to find an i that operator f_i would act on. If no such i exist, the operator f_i is not defined for \mathbf{T} .
- An example of the crystal structure for $\mathcal{PT}((3,1))$ is shown below.

Bibliography