Give a model of the sentence

$$\phi_{\text{eq}} = \forall x \left[R_1(x, x) \right]$$

$$\wedge \forall x, y \left[R_1(x, y) \leftrightarrow R_1(y, x) \right]$$

$$\wedge \forall x, y, z \left[(R_1(x, y) \land R_1(y, z)) \rightarrow R_1(x, z) \right].$$

Step-by-step solution

Step 1 of 5

Given sentence is

$$\begin{split} \phi_{eq} &= \forall x \Big[R_1 \big(x, x \big) \Big] \\ &\wedge \forall x, y \Big[R_1 \big(x, y \big) &\leftrightarrow R_1 \big(y, x \big) \Big] \\ &\wedge \forall x, y, z \Big[\big(R_1 \big(x, y \big) \big) \wedge R_1 \big(y, z \big) &\to R_1 \big(x, z \big) \Big] \end{split}$$

 ϕ_{qq} gives three conditions of equivalence relations i.e., Reflexive relation, Symmetric relation and Transitive relations.

Comment

Step 2 of 5

Let $R_{\rm II}$ and $R_{\rm I2}$ are two equivalence relations on some set, definition of $R_{\rm I}$ by

$$\forall x, y [R_1(x, y) \equiv R_{11}(x, y) \land R_{12}(x, y)]$$

Where x, y are elements from set.

Reflexive relation: $\forall x [R_1(x,x)]$

 $\equiv \{\text{definition of } R_1\}$

$$R_{11}(x,x) \wedge R_{12}(x,x)$$

 $\equiv \{R_{11}, \text{ being an equivalence relation, is reflexive}\}\$ similarly R_{12}

 $\equiv \{true\} \land \{true\}$

≡ true

Comment

similarly R₁₂

Step 3 of 5

Symmetric relation: $\forall x, y [R_1(x, y) \leftrightarrow R_1(y, x)]$ $\equiv \{\text{definition of } R_1 \}$ $R_{11}(x, y) \land R_{12}(x, y)$ $\equiv \{R_{11}, \text{ being an equivalence relation, is symmetric}\}$

Comment	
	Step 4 of 5
Transitive relation	n: $\forall x, y, z [(R_1(x,y)) \land R_1(y,z) \rightarrow R_1(x,z)]$
$\equiv \{\text{definition of } B\}$	R_1
$(R_{11}(x,y)\wedge R_{12}(x,y))$	$(x,y) \wedge (R_{11}(y,z) \wedge R_{12}(y,z))$
≡ {rearranging th	
	(y,z) $\wedge (R_{12}(x,y) \wedge R_{12}(y,z))$
$\equiv \{R_{11}, \text{ being an e similarly } R_{12}$	quivalence relation, is transitive}
$\equiv \{\text{definition of } A\}$	ζ,}
$R_1(x,z)$	
Comment	
	Step 5 of 5
A model (U, R_1) ,	where U is universe and R_{\parallel} is equivalence relation over U , is a model of ϕ_{eq} .