UNIVERSIDADE FEDERAL DE SANTA CATARINA Centro de Ciências, Tecnologia e Saúde

Curso de Graduação em Engenharia de Computação EES7527 — Fenômenos de Transporte

Turma: 05655

PROVA #4

Antes de iniciar a prova, leia atentamente as observações abaixo:

- A) Proceda a resolução das questões de forma organizada e clara, destacando as hipóteses adotadas. Isso também será avaliado.
- B) Em caso de evidência de plágio na resolução de qualquer uma das questões, as notas das provas dos envolvidos serão <u>zeradas</u>.
- C) Início da prova: 10h10; Postagem no Moodle: até às 14h10.

1) [2,0 p] A parede de um refrigerador é composta por um miolo de material isolante envolto de duas lâminas de material metálico, conforme mostrado na figura abaixo. A temperatura do ar no interior do refrigerador (T_{ar,int}) é 7°C e o coeficiente de transferência de calor por convecção entre essa porção de ar e a parede (h_{int}) é 6 W/m².K. A temperatura do ar externo (T_{ar,ext}) é 25°C e o coeficiente de transferência de calor por convecção entre essa porção de ar e a parede (h_{ext}) é 9 W/m².K. As condutividades térmicas do material isolante (k_{iso}) e do metal (k_m) são 0,08 W/m.K e 60 W/m.K, respectivamente. A espessura das lâminas de metal (L_m) vale 1 mm. Sabendo que a temperatura da superfície externa do refrigerador não pode ser inferior a 20°C, pois nesse caso, haveria condensação de água junto a essa superfície, determine a espessura mínima de isolante para evitar que isso aconteça.

2) [5,0 p] Considere uma parede plana A com geração de calor uniforme (Q'''_A) igual a 20 MW/m³ em contato com uma parede plana B, onde não há geração de calor. Conforme a figura abaixo, a temperatura da superfície esquerda de A é constante (T_{sup}) e igual a 50 °C. A superfície livre de B está exposta a um líquido com temperatura (T_{fluido}) igual a 20°C e coeficiente de transferência de calor por convecção h igual a 1,5 kW/m².K. As

condutividades térmicas dos materiais A e B são 100 W/m.K e 50 W/m.K, respectivamente. As espessuras das paredes A (L_A) e B (L_B) são 20 mm e 10 mm, respectivamente. Considere uma resistência de contato entre A e B igual a $4*10^{-4}$ m².K/W. Determine:

- a. a posição x em que a temperatura é máxima. [1,0]
- b. o valor da temperatura máxima. [1,0]
- c. os fluxos de calor em x = 0 e $x = L_A$. [1,0]
- d. a temperatura da superfície da parede B exposta ao fluido. [1,0]
- e. esboce a distribuição de temperatura no sistema. [1,0]

- 3) [3,0 p] Um dissipador de alumínio (k = 220 W/m.K) com aletas retangulares é posicionado junto a um fino componente eletrônico, como mostrado na figura abaixo. A largura (w) e o comprimento (L) do dissipador são 40 mm e 20 mm, respectivamente. O comprimento (H) e a espessura (t) das 5 aletas do dissipador valem 10 mm e 0,5 mm, respectivamente. Assuma resistência de contato igual a 10⁻⁴ m²K/W entre componente eletrônico e dissipador, e considere que a superfície inferior do componente eletrônico está perfeitamente isolada. Dados adicionais: h = 100 W/m².K; T_{amb} = 25°C; H_b = 5 mm. (Observação: o desenho está fora de escala).
 - a. Apresente o circuito térmico equivalente desse sistema, destacando as resistências, temperaturas e taxa de transferência de calor envolvidas. [1,0]
 - b. Estime a máxima potência que pode ser dissipada pelo componente eletrônico de modo que sua temperatura não supere 80°C. [2,0]

FORMULÁRIO:

RRIO.
$$R'' = \frac{\Delta T}{\dot{Q}''} \qquad \dot{Q}_x = -kA\frac{dT}{dx} \qquad \dot{Q} = hA(T_s - T_\infty)$$

$$R = \frac{\Delta T}{\dot{Q}} \qquad R_{conv} = \frac{1}{hA} \qquad R_{cond} = \frac{L}{kA}$$

$$\frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \dot{Q}''' = \rho c_p \frac{\partial T}{\partial t}$$

$$\eta_{aleta} = \frac{\dot{Q}}{\dot{Q}_{max}}$$

Case	Tip Condition $(x = L)$	Temperature Distribution θ/θ_b	Fin Heat Transfer Rate <i>q</i>
A	Convection heat	$\cosh m(L-x) + (h/mk) \sinh m(L-x)$	$M = \frac{\sinh mL + (h/mk)\cosh mL}{h}$
	transfer: $h\theta(L) = -kd\theta/dx _{x=L}$	$\cosh mL + (h/mk) \sinh mL$	$\frac{M}{\cosh mL + (h/mk) \sinh mL}$
		(3.75	(3.77)
В	Adiabatic: $d\theta/dx _{x=L} = 0$	$\frac{\cosh m(L-x)}{\cosh mL}$	M anh mL
		(3.80	(3.81)
С	Prescribed temperature:		
	$\theta(L) = \theta_L$	$(\theta_L/\theta_b) \sinh mx + \sinh m(L-x)$	$(\cosh mL - \theta_L/\theta_b)$
		sinh mL	$M\frac{(\cosh mL - \theta_l/\theta_b)}{\sinh mL}$
		(3.82	(3.83)
D	Infinite fin $(L \rightarrow \infty)$:	(2.94	(2.95)
	$\theta(L) = 0$	e^{-mx} (3.84)	M (3.85)