Тема 11. Треугольник, четырехугольник, n-угольники. Окружность и круг.

Треугольник. Четырехугольник. Площади фигур.

Представим *основные теоремы*, используемые при решении задач по данной теме.

«**Теорема 1** (*о замечательных точках и линиях треугольника*):

- три медианы треугольника пересекаются в одной точке (эта точка называется *центроидом треугольника*) и делятся этой точкой в отношении 2:1, считая от вершины; три высоты треугольника пересекаются в одной точке (эта точка называется *ортоцентром треугольника*); три биссектрисы треугольника пересекаются в одной точке (эта точка является *центром окружности, вписанной в данный треугольник*); три серединных перпендикуляра к сторонам треугольника пересекаются в одной точке (эта точка является *центром окружности, описанной около данного треугольника*);
- ортоцентр H треугольника, его центроид M и центр O описанной окружности лежат на одной прямой (она называется *прямой Эйлера*), причем OM: MH = 1: 2 (рисунок 11.1);
- основания высот треугольника, середины его сторон и середины отрезков, соединяющих ортоцентр треугольника с его вершинами, лежат на одной окружности (она называется *окружностью Эйлера* или *окружностью девяти точек*) (рисунок 11.2): центр этой окружности совпадает с серединой отрезка, соединяющего ортоцентр и центр описанной окружности; радиус ее равен половине радиуса описанной окружности» [18].

Рисунок 11.2

«Теорема 2 (*теорема Менелая*). Пусть A₁, B₁, C₁ - три точки, лежащие на сторонах соответственно BC, CA, AB треугольника ABC, или на их продолжениях (рисунок 11.3). Точки A₁, B₁, C₁ тогда и только тогда лежат на одной прямой, если: $\left|\frac{AC_1}{C_1B}\right| \cdot \left|\frac{BA_1}{A_1C}\right| \cdot \left|\frac{CB_1}{B_1A}\right| = 1.$

Теорема 3 (*теорема Чевы*). Пусть A₁, B₁, C₁ - три точки, лежащие на сторонах соответственно ВС, СА, АВ треугольника ABC. или на ИХ (рисунок продолжениях б) a) 11.4, а, б). Для того, чтобы Рисунок 11.3 Рисунок 11.4 AA₁, BB₁, CC₁ прямые необходимо чтобы: пересекались одной точке, достаточно $\left| \frac{AC_1}{C.B} \right| \cdot \left| \frac{BA_1}{A_1C} \right| \cdot \left| \frac{CB_1}{B_1A} \right| = 1 \text{ ``[24]}.$

«Теорема 4. Биссектриса внутреннего угла треугольника делит противоположную сторону на части, пропорциональные сторонам этого треугольника, заключающих данный угол: BD:DC = AB:BC (рисунок 11.5).

Теорема 5. Средние линии треугольника делят его на четыре равных треугольника (рисунок 11.6).

Теорема 6. Середины сторон выпуклого четырехугольника являются вершинами

Рисунок 11.5 Рисунок 11.6 Рисунок 11.7 параллелограмма (рисунок 11.7).

Теорема 7 (*признак прямоугольного треугольника*). Если в треугольнике одна из медиан равна половине стороны, к которой она проведена, то этот треугольник прямоугольный» [18].

«Теорема 8. В прямоугольном треугольнике (рисунок 11.8): а) высота, проведенная из вершины прямого угла на гипотенузу, является средней пропорциональной величиной между проекциями катетов на гипотенузу: $CD^2 = AD \cdot BD$; б) каждый катет является средней пропорциональной величиной между гипотенузой и проекцией этого катета на гипотенузу: $AC^2 = AB \cdot AD$; $BC^2 = AB \cdot BD$.

Теорема 9. Если R и r - радиусы соответственно описанной и вписанной окружностей прямоугольного треугольника, катеты которого равны a и b, а гипотенуза - c, то $r = \frac{a+b-c}{2}$, $R+r = \frac{a+b}{2}$ » [24].

«**Теорема 10.** Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон.

Теорема 11. (*теорема синусов*). Во всяком треугольнике ABC со сторонами BC = a, CA = b, AB = c выполняется соотношение: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2$ R, где R - радиус описанной окружности.

Теорема 12. (*теорема косинусов*). Во всяком треугольнике ABC со сторонами BC = a, CA = b, AB = c выполняется соотношение:

$$a^2 = b^2 + c^2 - 2bc \cos A$$
» [18].

«Теорема 13 (*о площади треугольника*):

- площадь треугольника равна половине произведения основания на высоту (рисунок 11.9): S = $\frac{1}{2}a \cdot h$;
- площадь треугольника равна половине произведения двух его сторон на синус угла между ними (рисунок 11.10): S = $\frac{1}{2}ab\sin C$;

- площадь треугольника равна половине произведения периметра треугольника на радиус вписанной в него окружности (рисунок 11.11): $S = \frac{1}{2}(a+b+c)\cdot r\,;$
- площадь треугольника со сторонами a,b и c вычисляется по формуле (формуле Герона): S = $\sqrt{p(p-a)(p-b)(p-c)}$, где $p=\frac{a+b+c}{2}$;

- площадь треугольника со сторонами a,b и c вычисляется по формуле: $\mathsf{S} = \frac{abc}{4R} \text{, где R радиус описанной окружности;}$
- отношение площадей двух подобных треугольников равно квадрату коэффициента подобия этих треугольников;
- отношение площадей двух треугольников, имеющих общее основание (рисунок 11.12), равно отношению высот этих треугольников: $S_{\Delta\!ABC}\!:\!S_{\Delta\!ABD} = \text{CE:DK};$
- отношение площадей двух треугольников, имеющих равные высоты (рисунок 11.13), равно отношению оснований этих треугольников: $S_{\Delta\!A\!E\!C}\!:\!S_{\Delta\!B\!E\!C}\!=\!\mathsf{AE}\!:\!\mathsf{BE};$

Рисунок 11.12

Рисунок 11.13

- отношение площадей двух треугольников, имеющих равный угол, равно отношению произведений длин сторон этих треугольников, заключающих этот угол: $\frac{S_{\triangle ABC}}{S_{\triangle MPK}} = \frac{AB \cdot AC}{MP \cdot MK}$, ($\angle BAC = \angle PMK$)» [24].

«Теорема 14 (*о площади четырехугольника*):

- площадь *выпуклого четырехугольника* равна половине произведения длин его диагоналей на синус угла между ними (рисунок 11.14): $S = \frac{1}{2} mn \sin \varphi$;
- площадь *выпуклого четырехугольника* равна половине произведения его периметра на радиус вписанного круга (рисунок 11.15): $S = \frac{1}{2}(a+b+c+d)\cdot r\;;$
- площадь *трапеции* равна произведению полусуммы ее оснований на высоту (произведению средней линии на высоту);
- площадь *параллелограмма* равна произведению длин двух его сторон на синус угла между ними (рисунок 11.16);

- площадь *ромба* равна половине произведения его диагоналей» [18]. Приведем примеры решения задач.

Задача 1. «Две медианы треугольника, равные 9 и 12, взаимно перпендикулярны. Найдите длину третьей медианы этого треугольника.

Решение. Построение данного треугольника начинаем с проведения двух

взаимно перпендикулярных прямых. Пусть О - точка их пересечения (рисунок 11.17). На одной из этих прямых выбираем точку А и строим точку Р (по разные стороны от точки О) так, чтобы выполнялось АО:ОР = 2:1. Аналогично, на другой прямой выбираем точку В и строим точку Н так, чтобы ВО:ОН = 2:1. Точки А и В принимаем за вершины заданного треугольника и получаем третью вершину С = АН ∩ ВР.

Рисунок 11.17

Докажем, что BH и AP - медианы треугольника ABC. Из соотношений AO:OP = BO:OH = 2:1 следует подобие треугольников AOB и POH с равными вертикальными углами при вершине О. Поэтому HP \parallel AB и HP = 0,5AB. Это означает, что точки H и P - середины сторон соответственно AC и BC треугольника ABC, то есть, AP и BH - его медианы. Теперь приступаем к *«вычислительному» этапу решения этой задачи*. Пусть AP = 9 и BH = 12 - медианы в \triangle ABC. Найдем длину медианы CM. По свойству медиан треугольника имеем: AO:OP = BO:OH = $2:1 \Rightarrow AO = \frac{2}{3}$ AP = $\frac{2}{3} \cdot 9 = 6$; BO = $\frac{2}{3}$ BH = $\frac{2}{3}$

·12 = 8. Тогда по теореме Пифагора в прямоугольном $\triangle AOB$: $AB = \sqrt{AO^2 + BO^2} = \sqrt{6^2 + 8^2} = 10$. Так как OM - медиана этого треугольника, проведенная из вершины прямого угла, то OM = $\frac{1}{2}$ AB = $\frac{1}{2}$ ·10 = 5. Имеем: MO:OC = 1:2, значит: CM = 3MO = 3.5 = 15» [17]. Ответ: 15.

Задача 2. Найдите площадь треугольника ABC, если AB = 26 см, AC = 30 см и длина медианы AM равна 14 см.

Рисунок 11.18

Решение. Достроим треугольник АВС до 11.18), параллелограмма ABDC (рисунок в котором M - середина AD. Тогда AD = 28, и по формуле Герона находим $S_{ABD} = \sqrt{42 \cdot 16 \cdot 12 \cdot 14} = 336$, половину что составляет площади

параллелограмма ABDC, которая, в свою очередь, равна удвоенной площади треугольника ABC. Значит, $S_{\Delta ABC} = 336$ (см²). Ответ: 336 см².

Задача 3. В выпуклом четырехугольнике ABCD длины диагоналей равны 7 и 18. Найдите площадь четырехугольника, зная, что длины отрезков, соединяющих середины его противоположных сторон, равны.

Решение. Пусть МК и РН - отрезки, соединяющие середины противоположных сторон выпуклого четырехугольника ABCD (рисунок 11.19),

Рисунок 11.19

PH,

причем MK = PH, AC = 18, BD = 7. Имеем: MP \parallel AC, MP = $\frac{1}{2}AC$ (как средняя линия \triangle ABC); HK \parallel AC,HK

= $\frac{1}{2}$ $_{AC}$ (как средняя линия Δ ADC) \Rightarrow MP \parallel HK, MP

= НК ⇒ МРКН - параллелограмм. А так как МК =

то четырехугольник МРКН - прямоугольник, стороны которого параллельны диагоналям AC и BD данного четырехугольника ABCD, поэтому AC \perp BD . Это означает, что $S_{ABCD} = \frac{1}{2} AC \cdot BD = \frac{1}{2} \cdot 18 \cdot 7 = 63$ (кв.ед.). Ответ: 63 кв.ед.

Треугольник, четырехугольник и окружность

Для решения задач на комбинации треугольника, многоугольника с окружностью применяются следующие теоремы:

«Теорема 15 (об измерении углов, связанных с окружностью).

– центральный угол измеряется дугой, на которую он опирается (рисунок 11.20);

- вписанный угол измеряется половиной дуги, на которую он опирается (рисунок 11.20);
- угол с вершиной внутри круга (рисунок 11.21) измеряется полусуммой дуг, заключенных между его сторонами и их продолжениями за вершину угла;
- угол с вершиной вне круга (рисунок 11.22) измеряется полуразностью дуг, заключенных между его сторонами (предполагается, что каждая из сторон угла пересекается с окружностью данного круга);
- угол между касательной и хордой (рисунок 11.23) измеряется половиной дуги, заключенной между ними» [18].

Рисунок 11.22

Рисунок 11.23

«**Теорема 16** (*о свойствах касательных, секущих и хорд окружности*):

- радиус, проведенный в точку касания, перпендикулярен касательной (рисунок 11.24);
- если из точки проведены две касательные к окружности, то длины отрезков касательных от этой точки до точек касания равны и центр окружности лежит на биссектрисе угла между ними (рисунок 11.25);
- если из точки А проведена касательная АВ и секущая АС, то $AC \cdot AD = AB2$ (рисунок 11.26);
- если хорды AB и CD пересекаются в точке M (рисунок 11.27), то $MA \cdot MB = MC \cdot MD$:

– если из точки М проведены к окружности две секущие МАВ и МСD (рисунок 11.28), то МА · МВ = МС · MD» [23].

Рисунок 11.24

Рисунок 11.25

Рисунок 11.26

Рисунок 11.27

Рисунок 11.28

«Теорема 17 (*о центре вписанной и описанной окружности треугольника*):

- три биссектрисы треугольника пересекаются в одной точке (эта точка является центром окружности, вписанной в данный треугольник);
- три серединных перпендикуляра к сторонам треугольника пересекаются в одной точке (эта точка является центром окружности, описанной около данного треугольника).

Теорема 18 (*об окружности и четырехугольнике*):

- около выпуклого четырехугольника ABCD можно описать окружность тогда и только тогда, когда сумма величин его противоположных углов равна 180° : $\angle A + \angle C = \angle B + \angle D = 180^{\circ}$;
- в выпуклый четырехугольник можно вписать окружность тогда и только тогда, когда равны суммы длин его противоположных сторон: a+c=b+d;
- из всех параллелограммов только около прямоугольника можно описать окружность;
- около трапеции можно описать окружность тогда и только тогда, когда она равнобедренная;

- если для четырех точек A, B, M и K плоскости выполняется одно из следующих условий:
- а) \angle AMB = \angle AKB и точки M и K расположены по одну сторону от прямой AB;
- б) ∠ AMB + ∠ AKB = 180° и точки М и К расположены по разные стороны от прямой АВ, то точки А, В, М и К лежат на одной окружности» [18].

Таким образом, при решении задач по теме «Треугольник, четырехугольник, n-угольники. Окружность и круг» рекомендуется использовать таблицы 11.1 - 11.4 [24].

Таблица 11.1 - Треугольник. Окружность

Содержание формулы	Формула	Символы
		(обозначения)
		` ′
Периметр (Р)	P = a + b + c	<i>а, b, с</i> - длины сторон
	$p = \frac{a+b+c}{2}$	<i>p</i> – полупериметр
Сумма внутренних углов	$A + B + C = 180^{\circ}$	<i>А, В, С</i> – величины углов
	$a^2 = b^2 + c^2 - 2bc \cos A;$	
Теорема косинусов	$b^2 = a^2 + c^2 - 2ac \cos B$;	
	$c^2 = a^2 + b^2 - 2ab \cos C$,	<i>а, b, c</i> - длины сторон
	$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$	<i>А, В, С</i> – величины углов
		R - радиус описанной
Теорема синусов	$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$	окружности
Радиус описанной	$2R = \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$	
окружности		

Продолжение Таблицы 11.1

Содержание формулы	Формула	Символы
		(обозначения)

	$S = \frac{1}{2} a h_a = \frac{1}{2} b h_b =$	<i>a, b, c</i> - длины сторон
	$=\frac{1}{2}ch_c;$	$h_{a_1} h_{b_1} h_c$ – длины высот
	2	<i>А, В, С</i> – величины углов
	$S = \frac{1}{2} ab sin C =$	<i>p</i> – полупериметр
Площадь (<i>S</i>)	$= \frac{1}{2} ac sin B = \frac{1}{2} bc sin A;$	<i>r</i> - радиус вписанной
	0	окружности
	S = p r,	<i>R</i> - радиус описанной
	$S = \frac{abc}{4R}$	окружности
Формула Герона	$S = \sqrt{p(p-a)(p-b)(p-c)}$	
Связь между медианой	$m_a^2 = \frac{2b^2 + 2c^2 - a^2}{4}$	<i>а, b, с</i> - длины сторон
и сторонами		<i>m</i> _a - длина медианы к
Свойство биссектрисы	m a	стороне <i>а</i>
внутреннего угла	$\frac{m}{n} = \frac{a}{b}$	<i>т, п</i> - длины отрезков,
		на которые
		биссектриса угла ${\cal C}$
Связь между высотами и		делит сторону <i>с</i>
радиусом вписанной	$\frac{1}{h_a} + \frac{1}{h_b} + \frac{1}{h_c} = \frac{1}{r}$	h_{a} , h_{b} , h_{c} – длины высот
окружности		<i>r</i> - радиус вписанной
		окружности

Таблица 11.2 - Прямоугольный треугольник. Окружность

Содержание формулы	Формула	Символы (обозначения)
Сумма острых углов	A + B = 90°	А, В - величины острых углов
Теорема Пифагора	$a^2 + b^2 = c^2$	<i>а, b</i> - длины катетов

Метрические	$h_c^2 = a_1 \cdot b_1;$	<i>с</i> - длина гипотенузы
соотношения	$a^2 = c \cdot a_1, b^2 = c \cdot b_1$	h_c - длина высоты
	$R = \frac{c}{2}$; $r = \frac{a+b-c}{2}$;	$a_1,\; b_1$ – длины проекций
Зависимость между	$r = a + b + \sqrt{a^2 + b^2}$	катетов на гипотенузу
сторонами, радиусами	$f = \frac{a+b-\sqrt{a^2+b^2}}{2};$	<i>r</i> - радиус вписанной
вписанной и описанной	$R + r = \frac{1}{2} (a + b)$	окружности
окружностей		<i>R</i> - радиус описанной
		окружности
Площадь (<i>S</i>)	$S = \frac{1}{2} ab$	<i>а, b</i> - длины катетов

Таблица 11.3 - Правильный треугольник. Окружность

		_
Содержание формулы	Формула	Символы (обозначения)
Периметр (Р)	P= 3 <i>a</i>	<i>а</i> - длина стороны
Величина угла	$A = B = C = 60^{\circ}$	<i>А, В, С</i> - величины углов
Зависимость между	$h = \frac{a\sqrt{3}}{2}$	<i>h</i> - длина высоты
высотой и стороной	2	<i>а</i> - длина стороны
Зависимость между	$a = R\sqrt{3}$; $R = 2r$,	<i>R</i> - радиус описанной
стороной, радиусами	$R = \frac{a\sqrt{3}}{3}$; $r = \frac{a\sqrt{3}}{6}$	окружности
вписанной и описанной	$R = \frac{1}{3}$, $I = \frac{1}{6}$	<i>r</i> - радиус вписанной
окружностей		окружности
Выражение площади (<i>S</i>)	$S = \frac{a^2 \sqrt{3}}{4};$	<i>а</i> - длина стороны
через: сторону, радиус	$S = \frac{4}{4}$;	<i>R</i> - радиус описанной
описанной окружности,	$S = \frac{3R^2\sqrt{3}}{4};$	окружности
радиус вписанной	7	<i>r</i> - радиус вписанной
окружности	$S = 3r^2\sqrt{3}$	окружности

Таблица 11.4 - Окружность и круг

Содержание формулы	Формула	Символы (обозначения)
Длина окружности (<i>C</i>)	C = 2πR	<i>C</i> - длина окружности;
Длина дуги (<i>ì</i>)	$f = \frac{\pi Rn}{180}$; $f = \varphi R$	<i>R</i> - радиус окружности;
	2 -12	n – градусная мера дуги;
Площадь круга (<i>S</i>)	$S = \pi R^2; S = \frac{\pi d^2}{4}$	arphi – градусная мера дуги;
Площадь сектора (<i>S</i>)	$S = \frac{\pi R^2 n}{360}$	<i>R</i> - радиус круга;
тиощадь осктора (о)	360	<i>d</i> − диаметр;
	$S = \frac{\pi R^2 n}{360} \pm S_{\Delta};$	<i>а</i> - длина стороны
Площадь сегмента (<i>S</i>)	2	<i>b</i> – основание сегмента;
	$S = \frac{2}{3}bh$	<i>h</i> - высота сегмента.

Приведем примеры решения задач.

Задача 4. В прямоугольный треугольник, периметр которого равен 15, вписана окружность радиуса 1. Найдите стороны этого треугольника.

Решение. Пусть в прямоугольный \triangle ABC вписана окружность с центром 0 и радиусом r (рисунок 11.29). Обозначим: AB = c, BC = a, AC = b.

Так как
$$\mathcal{C}=(a-1)+(b-1),$$
 то $a+b+c=1$ = $a+b+(a-1)+(b-1)=15$ \Rightarrow $a+b=8,5.$ Имеем: $S_{\Delta ABC}=\frac{1}{2}a\cdot b=\frac{1}{2}(a+b+c)\cdot r=\frac{1}{2}\cdot 15\cdot 1,$ откуда $a\cdot b=15.$ Таким образом, $a+b=8,5$ и $a\cdot b=15,$ поэтому значения a и b являются корнями квадратного уравнения:

 $t^2 - 8.5t + 15 = 0$ \Leftrightarrow $2t^2 - 17t + 30 = 0$. Находим: $t_1 = 2.5$,

Рисунок 11.29 t_2 = 6. Значит, a = 2.5; b = 6. Тогда c = 15 - (a+b) = 15 - 8.5 = 6.5. Ответ: AB = 6.5; BC = 2.5; AC = 6.

Задача 5. В окружность радиуса 32,5 см вписан треугольник, две стороны которого равны 25 см и 39 см. Найдите третью сторону треугольника.

Рисунок 11.30

Решение. Пусть в \triangle ABC известно (рисунок 11.30): AB = 25 см, BC = 39 см. Найдем длину стороны AC. Вычислим сначала высоту ВН: BH = $\frac{AB \cdot BC}{2R} = \frac{25 \cdot 39}{2 \cdot 32,5} = 15$. В \triangle ABH и \triangle BCH: AH = $\sqrt{AB^2 - BH^2} = \sqrt{25^2 - 15^2} = 20$; $CH = \sqrt{BC^2 - BH^2} = \sqrt{39^2 - 15^2} = 36$. Тогда: AC = AH + HC = 20 + 36 = 56 (см). Ответ: 56 см.

Задача 6. В прямоугольную трапецию с основаниями *а* и *b* вписана окружность. Найдите площадь этой трапеции.

Решение. Пусть окружность с центром О и радиусом R, вписанная в прямоугольную трапецию ABCD, касается ее оснований AD = a и BC = b в точках H и P, а боковых сторон AB и CD - в точках M и K соответственно (рисунок 11.31). Тогда: $O \in PH$; OM = BP = AH = R; PH = 2R, (O - середина высоты PH

трапеции); PC = b - R, HD = a - R. Так как, центр окружности, вписанной в трапецию, - точка пересечения биссектрис углов трапеции; сумма внутренних односторонних углов трапеции при ее основаниях, равна 180° , тогда центр О окружности, вписанной в трапецию, - вершина прямого угла прямоугольного треугольника COD. Значит в этом треугольнике на основании свойства высоты, проведенной из вершины прямого угла на гипотенузу, имеем: $OK^2 = CK \cdot KD$ ($OK \perp CD$, как радиус, проведенный в точку касания). На основании свойства отрезков касательных, проведенных к окружности из данной точки, находим: CK = PC = b - R, CD = CD = a - R. Тогда: CD = a - R. Тогда

Задача 7. Основания равнобедренной трапеции, в которую можно вписать окружность, равны 1 и 3. Найдите радиус окружности, описанной около этой трапеции.

Решение. Пусть ABCD - данная трапеция (BC = 1, AD = 3), в которую

Рисунок 11.32

вписана окружность ω и около которой описана окружность ω_1 с центром O и радиуса R (рисунок 11.32). Так как в данную трапецию вписана окружность, то BC + AD = 2 CD, откуда CD = $\frac{BC + AD}{2} = \frac{1+3}{2} = 2$. Кроме того,

равнобедренной трапеции выполняется: АН = =

 $\frac{BC+AD}{2}=\frac{1+3}{2}$ = 2, значит, HD = AD - AH = = 3 - 2 = 1. Тогда в

прямоугольном треугольнике CHD имеем: CD = 2HD $\Rightarrow \angle HCD$ = 30°, значит, $\angle CDH$ = 60°. В прямоугольных треугольниках CHD и ACH находим соответственно: CH² = CD² – HD² = 4 – 1 = 3; AC = $\sqrt{AH^2 + CH^2}$ = = $\sqrt{4+3}$ = $\sqrt{7}$. Трапеция ABCD - равнобедренная, поэтому окружность ω_1 , описанная около этой трапеции, совпадает с окружностью, описанной около Δ ACD. Значит искомый радиус R найдем по теореме синусов в Δ ACD: R = $\frac{AC}{2\sin 60^\circ}$ = $\sqrt{7}$: (2· $\frac{\sqrt{3}}{2}$

) =
$$\frac{\sqrt{21}}{3}$$
. Otbet: $\frac{\sqrt{21}}{3}$.