	Gaathi) (3	
01/1/02	Date / /	
24/1/20	CS-425-Assign 1 Soham (180771)	
	Supern Kala Track The 200	
<u> </u>	The simple model of communication is shown below:	
	Locked Roya Karren Matter	FILE
,	Source Tronsmitter Transmission Receiver Destrochion	FIL
	Source Tronsmitter Jystem Receiver Destrochion	
•	Example of Source: Warkstation	
	Transmitter: Modern	
	Transmission System: Public Telephone Network	
	Receive: Muden	
	Destination: Server	
2	Advantages of layered architecture:	
	- Reduces Complexity: It breaks notwork communication into	
	smalle, simples pasts, thus aiding component development, design	
	and troubleshooting.	
	Standardises interfaces: Standardises notwork components to	
	allow multiple vendor levelopment and support.	
•	- facilitates modular engineering: Allows different types of network	
	houdware and software to communicate with each other	
	The other layers, allowing for quick levelorment.	
	the other layers, allowing for quick development.	
	- Accelerates evolution - It provides for effective updates and	
	improvements to individual conforms without affecting other	
	components or having to rewrite the entire protocol	
	Disadvantages of loyered architecture:	
→	There might be a negative impart on the performance or we have the	
* :	extra everhead of possing through layers instead of calling a	
-	component directly.	
	Page No.	1

-> The use of layers addy complexity to simple applications
-> changes to lower level interfaces tend to percolate to higher
levels. - Complexity of identifying bad interaction 6/w layers.

3
$$f(t) = (10\cos t)^2 = 100\cos^2 t = 100\left(\frac{1+\cos(2t)}{2}\right) = 50+50\cos(2t)$$

Period = 2x = 2x = x

(4)
$$s(t) = 4 sin(2\pi t) + 2 sin(6\pi t) + \frac{8}{7} sin(7\pi t)$$

Frequencies: 1, 3, 3.5 Hz

Highest freq = 3.5 Hz 2 Absolute bandwidth = 3.

Lowest freq = 1 Hz

Effective Bondwidth = 2.5 Hz

wife a signal with finite absolute bandwidth, effective bandwidth is same on that of absolute bandwidth.

©
$$C = 9600 \text{ bps}, K = 4 \text{ bits}$$

: $M = 2^k = 2^4 = 16$

$$B = \frac{c}{2 \log_2(M)} = \frac{9000}{2 \log_2(16)} = \frac{1200 \text{ Hz}}{2}$$

$$\bigcirc$$
 B = 10⁴ Hz, S = 10³ W, T = 50°c = 273+50 K = 323 K
N = KTB = 1.38 × 10⁻²³ × 323 × 10⁴ = 4.457×10⁻¹⁷ W

8 Signal:
$$sin(2\pi(f_1)t) + \frac{1}{3}sin(2\pi(3f_1)t) + \frac{1}{5}sin(2\pi(5f_1)t)$$

 $t = \frac{1}{5}sin(2\pi(5f_1)t)$

$$\therefore A = 10^{30/20} = 10^{1.5} = 31.623$$