矩阵手册

[http://matrixcookbook.com]

Kaare Brandt Petersen Michael Syskind Pedersen

版本: 2012年11月15日

介绍

这是什么? 这些页面是关于矩阵及其相关事项的事实(身份、近似、不等式、关系等)的集合。它以这种形式收集起来,以方便任何想要快速查阅的人。

免责声明:这里介绍的身份、近似和关系显然不是发明的,而是从大量来源中 收集、借用和复制的。 这些来源包括在互联网上找到的类似但较短的笔记和书 籍附录-请参阅参考文献以获取完整列表。

错误:很可能存在错误、拼写错误和错误,我们对此表示歉意,并将非常感谢在cookbook@2302.dk接收更正。

持续进行中:保持一个涉及矩阵的大型关系存储库的项目自然是持续进行的, 版本将在标题中的日期中显示。

建议:欢迎您提供有关额外内容或某些主题的详细说明 acookbook@2302.dk。

关键词:矩阵代数,矩阵关系,矩阵恒等式,行列式的导数,逆矩阵的导数, 矩阵的微分。

致谢:我们要感谢以下人员对我们的贡献和建议:Bill Baxter, Brian Temple ton, Christian Rishøj, Christian Schr oppel, Dan Boley, Douglas L. The obald, Esben Hoegh-Rasmussen, Evripidis Karseras, Georg Martius, Gl ynne Casteel, Jan Larsen, Jun Bin Gao, J urgen Struckmeier, Kamil D edecius, Karim T. Abou-Moustafa, Korbinian Strimmer, Lars Christians en, Lars Kai Hansen, Leland Wilkinson, Liguo He, Loic Thibaut, Mark us Froeb, Michael Hubatka, Miguel Bar o, Ole Winther, Pavel Sakov, Stephan Hattinger, Troels Pedersen, Vasile Sima, Vincent Rabaud, Zh aoshui He。我们还要感谢奥蒂康基金会资助我们的博士研究。

目录

1	基础知识 1.1 迹	6 6 6 7
2	导数 2.1 行列式的导数 2.2 逆矩阵的导数 2.3 特征值的导数 2.4 矩阵、向量和标量形式的导数 2.5 迹的导数 2.6 向量范数的导数 2.7 矩阵范数的导数 2.8 结构化矩阵的导数	8 9 10 10 12 14 14 14
3	逆矩阵 3.1 基本 3.2 精确关系 3.3 对逆矩阵的影响 3.4 近似 3.5 广义逆矩阵 3.6 伪逆矩阵	17 17 18 20 20 21 21
4	复数矩阵 4.1 复数导数	24 24 26 27
5	解和分解 5.1 线性方程的解	28 28 30 31 32 32 33 33
6	统计与概率6.1 矩的定义6.2 线性组合的期望6.3 加权标量变量	34 35 36
7	多元分布 7.1 柯西分布	37 37 37 37 37 37 37

7.7 学生t分布	37
7.8 Wishart	38
7.9 逆Wishart分布	39
8 高斯分布	40
8.1 基础知识	40
8.2 矩的定义	42
8.3 其他	44
8.4 高斯混合模型	44
9个特殊矩阵	46
9.1 块矩阵	46
9.2 离散傅里叶变换矩阵	47
9.3 Hermite矩阵和skew-Hermite矩阵	48
9.4 幂等矩阵	49
9.5 正交矩阵	49
9.6 正定和半正定矩阵	50
9.7 单入口矩阵	52
9.8 对称矩阵,反对称矩阵	54
9.9 Toeplitz矩阵	54
9.10 过渡矩阵	55
9.11 单位矩阵,排列和移位	56
9.12 Vandermonde矩阵	57
10 函数和运算符	58
10.1 函数和级数	58
10.2 Kronecker和Vec运算符	59
10.3 向量范数	61
10.4 矩阵范数	61
10.5 秩	62
10.6 包含Dirac Delta函数的积分	62
10.7 其他	63
一维结果	64
A.1 高斯分布	64
A.2 一维高斯混合	65
B 证明和细节	66
D.1 甘州证明	66

目录 目录

符号和术语

```
矩阵
  \mathbf{A}
 \mathbf{A}_{ij}
          为某种目的而索引的矩阵
          为某种目的而索引的矩阵
  \mathbf{A}_i
 \mathbf{A}^{ij}
          为某种目的而索引的矩阵
          为某种目的而索引的矩阵或
  \mathbf{A}^n
          一个方阵的n次幂
 \mathbf{A}^{-1}
          矩阵 A的逆矩阵
 \mathbf{A}^+
          矩阵 A的伪逆矩阵(见第3.6节)
 A^{1/2}
          矩阵的平方根(如果存在),不是逐元素的
 (\mathbf{A})_{ij}
          矩阵 A的 (i, j) 元素
          矩阵 \mathbf{A}的 (i, j) 元素
 A_{ij}
          矩阵 A的 ij子矩阵,即删除第i行和第j列
 [\mathbf{A}]_{ij}
          向量 (列向量)
  \mathbf{a}
          为某种目的而索引的向量
  \mathbf{a}_i
          向量 a的第i个元素
  a_i
          标量
  a
  \Re z
          标量的实部
          向量的实部
  \Re z
          矩阵的实部
  \Re \mathbf{Z}
          标量的虚部
  \Im z
          向量的虚部
  \Im \mathbf{z}
  \Im \mathbf{Z}
          矩阵的虚部
det(A) 矩阵 A的行列式
Tr(\mathbf{A})
          矩阵 A的迹
\operatorname{diag}(\mathbf{A}) 矩阵 \mathbf{A}的对角矩阵,即 (\operatorname{diag}(\mathbf{A}))_{ij} = \delta_{ij} A_{ij}
          矩阵 A的特征值
eig(\mathbf{A})
vec(A) 矩阵 A的向量形式(见第10.2.2节)
          集合的上确界
 sup
          矩阵范数(下标表示范数类型)
 ||\mathbf{A}||
 \mathbf{A}^T
          转置矩阵
 \mathbf{A}^{-T}
          转置的逆矩阵和逆的转置矩阵, \mathbf{A}^{-T} = (\mathbf{A}^{-1})^T = (\mathbf{A}^T)^{-1}.
  \mathbf{A}^*
          共轭矩阵
 \mathbf{A}^H
          转置共轭矩阵(厄米矩阵)
\mathbf{A} \circ \mathbf{B}
          哈达玛积(逐元素乘积)
\mathbf{A}\otimes\mathbf{B}
          克罗内克积
          零矩阵。所有元素都为零。
  0
          单位矩阵
  Ι
  \mathbf{J}^{ij}
          单元素矩阵,在(i, j)处为1,其他地方为零
  \Sigma
          正定矩阵
          对角矩阵
```

Λ

1基础知识

$$(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$$
(1)

$$(\mathbf{A}\mathbf{B}\mathbf{C}...)^{-1} = ...\mathbf{C}^{-1}\mathbf{B}^{-1}\mathbf{A}^{-1}$$
(2)

$$(\mathbf{A}^{T})^{-1} = (\mathbf{A}^{-1})^{T}$$
(3)

$$(\mathbf{A} + \mathbf{B})^{T} = \mathbf{A}^{T} + \mathbf{B}^{T}$$
(4)

$$(\mathbf{A}\mathbf{B})^{T} = \mathbf{B}^{T}\mathbf{A}^{T}$$
(5)

$$(\mathbf{A}\mathbf{B}\mathbf{C}...)^{T} = ...\mathbf{C}^{T}\mathbf{B}^{T}\mathbf{A}^{T}$$
(6)

$$(\mathbf{A}^H)^{-1} = (\mathbf{A}^{-1})^H$$
 (7)

$$(\mathbf{A} + \mathbf{B})^H = \mathbf{A}^H + \mathbf{B}^H$$
 (8)

$$(\mathbf{A}\mathbf{B})^H = \mathbf{B}^H \mathbf{A}^H \tag{9}$$

$$(\mathbf{A}\mathbf{B}\mathbf{C}...)^{H} = ...\mathbf{C}^{H}\mathbf{B}^{H}\mathbf{A}^{H} \tag{10}$$

1.1 迹

$$Tr(\mathbf{A}) = \sum_{i} A_{ii}$$

$$Tr(\mathbf{A}) = \sum_{i} \lambda_{i}, \quad \lambda_{i} = eig(\mathbf{A})$$

$$Tr(\mathbf{A}) = Tr(\mathbf{A}^{T})$$

$$Tr(\mathbf{AB}) = Tr(\mathbf{BA})$$

$$Tr(\mathbf{A} + \mathbf{B}) = Tr(\mathbf{A}) + Tr(\mathbf{B})$$

$$Tr(\mathbf{ABC}) = Tr(\mathbf{BCA}) = Tr(\mathbf{CAB})$$

$$\mathbf{a}^{T}\mathbf{a} = Tr(\mathbf{aa}^{T})$$

$$(11)$$

$$(12)$$

$$(13)$$

$$(14)$$

$$(15)$$

$$(16)$$

1.2 行列式

设 A为一个 $n \times n$ 矩阵。

$$\det(\mathbf{A}) = \prod_{i} \lambda_{i} \quad \lambda_{i} = \operatorname{eig}(\mathbf{A}) \tag{18}$$

$$\det(c\mathbf{A}) = c^{n} \det(\mathbf{A}), \quad \mathbf{M} \mathbf{R} \mathbf{A} \in \mathbb{R}^{n \times n} \tag{19}$$

$$\det(\mathbf{A}^{T}) = \det(\mathbf{A}) \tag{20}$$

$$\det(\mathbf{A}\mathbf{B}) = \det(\mathbf{A}) \det(\mathbf{B}) \tag{21}$$

$$\det(\mathbf{A}^{-1}) = 1/\det(\mathbf{A}) \tag{22}$$

$$\det(\mathbf{A}^{n}) = \det(\mathbf{A})^{n} \tag{23}$$

$$\det(\mathbf{I} + \mathbf{u}\mathbf{v}^{T}) = 1 + \mathbf{u}^{T}\mathbf{v} \tag{24}$$

对于 n=2:

$$\det(\mathbf{I} + \mathbf{A}) = 1 + \det(\mathbf{A}) + \operatorname{Tr}(\mathbf{A}) \tag{25}$$

对于 n=3:

$$\det(\mathbf{I} + \mathbf{A}) = 1 + \det(\mathbf{A}) + \operatorname{Tr}(\mathbf{A}) + \frac{1}{2}\operatorname{Tr}(\mathbf{A})^2 - \frac{1}{2}\operatorname{Tr}(\mathbf{A}^2)$$
 (26)

对于 n=4:

$$\det(\mathbf{I} + \mathbf{A}) = 1 + \det(\mathbf{A}) + \operatorname{Tr}(\mathbf{A}) + \frac{1}{2}$$

$$+ \operatorname{Tr}(\mathbf{A})^{2} - \frac{1}{2} \operatorname{Tr}(\mathbf{A}^{2})$$

$$+ \frac{1}{6} \operatorname{Tr}(\mathbf{A})^{3} - \frac{1}{2} \operatorname{Tr}(\mathbf{A}) \operatorname{Tr}(\mathbf{A}^{2}) + \frac{1}{3} \operatorname{Tr}(\mathbf{A}^{3})$$
(27)

对于小 ε ,以下近似成立

$$\det(\mathbf{I} + \varepsilon \mathbf{A}) \cong 1 + \det(\mathbf{A}) + \varepsilon \operatorname{Tr}(\mathbf{A}) + \frac{1}{2} \varepsilon^2 \operatorname{Tr}(\mathbf{A})^2 - \frac{1}{2} \varepsilon^2 \operatorname{Tr}(\mathbf{A}^2)$$
 (28)

1.3 特殊情况 2x2

考虑矩阵 A

$$\mathbf{A} = \left[\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array} \right]$$

行列式和迹

$$\det(\mathbf{A}) = A_{11}A_{22} - A_{12}A_{21} \tag{29}$$

$$Tr(\mathbf{A}) = A_{11} + A_{22} \tag{30}$$

特征值

$$\lambda^2 - \lambda \cdot \text{Tr}(\mathbf{A}) + \det(\mathbf{A}) = 0$$

$$\lambda_1 = \frac{\operatorname{Tr}(\mathbf{A}) + \sqrt{\operatorname{Tr}(\mathbf{A})^2 - 4 \det(\mathbf{A})}}{\sqrt{2}} \qquad \lambda_2 = \frac{\operatorname{Tr}(\mathbf{A}) - \sqrt{\operatorname{Tr}(\mathbf{A})^2 - 4 \det(\mathbf{A})}}{2}$$
$$\lambda_1 + \lambda_2 = \operatorname{Tr}(\mathbf{A}) \qquad \lambda_1 \lambda_2 = \det(\mathbf{A})$$

特征向量

$$\mathbf{v}_1 \propto \left[egin{array}{c} A_{12} \ \lambda_1 - A_{11} \end{array}
ight] \qquad \mathbf{v}_2 \propto \left[egin{array}{c} A_{12} \ \lambda_2 - A_{11} \end{array}
ight]$$

逆

$$\mathbf{A}^{-1} = \frac{1}{\det(\mathbf{A})} \begin{bmatrix} A_{22} & -A_{12} \\ -A_{21} & A_{11} \end{bmatrix}$$
 (31)

2 导数

本节涵盖了关于矩阵 X的多个表达式的微分。 请注意,我们始终假设 X没有特殊结构,即 X的元素是独立的(例如不对称、Toeplitz、正定)。 有关结构 化矩阵的微分,请参见第2.8节。 基本假设可以用以下公式表示

$$\frac{\partial X_{kl}}{\partial X_{ij}} = \delta_{ik}\delta_{lj} \tag{32}$$

例如,向量形式如下,

$$\left[\frac{\partial \mathbf{x}}{\partial y}\right]_i = \frac{\partial x_i}{\partial y} \qquad \left[\frac{\partial x}{\partial \mathbf{y}}\right]_i = \frac{\partial x}{\partial y_i} \qquad \left[\frac{\partial \mathbf{x}}{\partial \mathbf{y}}\right]_{ij} = \frac{\partial x_i}{\partial y_j}$$

以下规则是普遍适用的,在推导表达式的微分时非常有用([19]):

2.1 行列式的导数

2.1.1 一般形式

$$\frac{\partial \det(\mathbf{Y})}{\partial x} = \det(\mathbf{Y}) \operatorname{Tr} \left[\mathbf{Y}^{-1} \frac{\partial \mathbf{Y}}{\partial x} \right] \tag{46}$$

$$\sum_{k} \frac{\partial \det(\mathbf{X})}{\partial X_{ik}} X_{jk} = \delta_{ij} \det(\mathbf{X}) \tag{47}$$

$$\frac{\partial^{2} \det(\mathbf{Y})}{\partial x^{2}} = \det(\mathbf{Y}) \left[\underbrace{\mathbf{W}} \left[\mathbf{Y}^{-1} \frac{\partial \mathbf{Y}}{\partial x} \right] + \underbrace{\mathbf{W}} \left[\mathbf{Y}^{-1} \frac{\partial \mathbf{Y}}{\partial x} \right] \right]$$

$$+ \underbrace{\mathbf{W}} \left[\mathbf{Y}^{-1} \frac{\partial \mathbf{Y}}{\partial x} \right] \underbrace{\mathbf{W}} \left[\mathbf{Y}^{-1} \frac{\partial \mathbf{Y}}{\partial x} \right]$$

$$- \underbrace{\mathbf{W}} \left[\left(\mathbf{Y}^{-1} \frac{\partial \mathbf{Y}}{\partial x} \right) \left(\mathbf{Y}^{-1} \frac{\partial \mathbf{Y}}{\partial x} \right) \right] \tag{48}$$

2.1.2 线性形式

$$\frac{\partial \det(\mathbf{X})}{\partial \mathbf{X}} = \det(\mathbf{X})(\mathbf{X}^{-1})^T \tag{49}$$

$$\frac{\partial \det(\mathbf{X})}{\partial \mathbf{X}} = \det(\mathbf{X})(\mathbf{X}^{-1})^{T}$$

$$\sum_{k} \frac{\partial \det(\mathbf{X})}{\partial X_{ik}} X_{jk} = \delta_{ij} \det(\mathbf{X})$$
(49)

$$\frac{\partial \det(\mathbf{AXB})}{\partial \mathbf{X}} = \det(\mathbf{AXB})(\mathbf{X}^{-1})^T = \det(\mathbf{AXB})(\mathbf{X}^T)^{-1}$$
 (51)

2.1.3 方阵形式

如果 X是方阵且可逆,则

$$\frac{\partial \det(\mathbf{X}^T \mathbf{A} \mathbf{X})}{\partial \mathbf{X}} = 2 \det(\mathbf{X}^T \mathbf{A} \mathbf{X}) \mathbf{X}^{-T}$$
 (52)

如果 X不是方阵但 A是对称的,则

$$\frac{\partial \det(\mathbf{X}^T \mathbf{A} \mathbf{X})}{\partial \mathbf{X}} = 2 \det(\mathbf{X}^T \mathbf{A} \mathbf{X}) \mathbf{A} \mathbf{X} (\mathbf{X}^T \mathbf{A} \mathbf{X})^{-1}$$
 (53)

如果 X不是方阵且 A不对称,则

$$\frac{\partial \det(\mathbf{X}^T \mathbf{A} \mathbf{X})}{\partial \mathbf{X}} = \det(\mathbf{X}^T \mathbf{A} \mathbf{X}) (\mathbf{A} \mathbf{X} (\mathbf{X}^T \mathbf{A} \mathbf{X})^{-1} + \mathbf{A}^T \mathbf{X} (\mathbf{X}^T \mathbf{A}^T \mathbf{X})^{-1})$$
(54)

2.1.4 其他非线性形式

一些特殊情况是(见[9,7])

$$\frac{\partial \ln \det(\mathbf{X}^T \mathbf{X})|}{\partial \mathbf{X}} = 2(\mathbf{X}^+)^T$$
 (55)

$$\frac{\partial \mathbf{X}}{\partial \mathbf{X}^{T} \mathbf{X}} = -2\mathbf{X}^{T} \qquad (56)$$

$$\frac{\partial \ln |\det(\mathbf{X}^{T}\mathbf{X})|}{\partial \mathbf{X}} = (\mathbf{X}^{-1})^{T} = (\mathbf{X}^{T})^{-1} \qquad (57)$$

$$\frac{\partial \det(\mathbf{X}^{k})}{\partial \mathbf{X}} = k \det(\mathbf{X}^{k}) \mathbf{X}^{-T} \qquad (58)$$

$$\frac{\partial \ln|\det(\mathbf{X})|}{\partial \mathbf{X}} = (\mathbf{X}^{-1})^T = (\mathbf{X}^T)^{-1}$$
 (57)

$$\frac{\partial \det(\mathbf{X}^k)}{\partial \mathbf{X}} = k \det(\mathbf{X}^k) \mathbf{X}^{-T}$$
 (58)

2.2 逆矩阵的导数

从[27]我们有基本等式

$$\frac{\partial \mathbf{Y}^{-1}}{\partial x} = -\mathbf{Y}^{-1} \frac{\partial \mathbf{Y}}{\partial x} \mathbf{Y}^{-1} \tag{59}$$

由此可见

$$\frac{\partial (\mathbf{X}^{-1})_{kl}}{\partial X_{ij}} = -(\mathbf{X}^{-1})_{ki}(\mathbf{X}^{-1})_{jl} \qquad (60)$$

$$\frac{\partial \mathbf{a}^T \mathbf{X}^{-1} \mathbf{b}}{\partial \mathbf{X}} = -\mathbf{X}^{-T} \mathbf{a} \mathbf{b}^T \mathbf{X}^{-T} \qquad (61)$$

$$\frac{\partial \det(\mathbf{X}^{-1})}{\partial \mathbf{X}} = -\det(\mathbf{X}^{-1})(\mathbf{X}^{-1})^T \qquad (62)$$

$$\frac{\partial \mathbf{a}^T \mathbf{X}^{-1} \mathbf{b}}{\partial \mathbf{X}} = -\mathbf{X}^{-T} \mathbf{a} \mathbf{b}^T \mathbf{X}^{-T}$$
(61)

$$\frac{\partial \det(\mathbf{X}^{-1})}{\partial \mathbf{X}} = -\det(\mathbf{X}^{-1})(\mathbf{X}^{-1})^{T}$$
(62)

$$\frac{\partial \mathbf{X}}{\partial \mathbf{Tr}(\mathbf{A}\mathbf{X}^{-1}\mathbf{B})} = -(\mathbf{X}^{-1}\mathbf{B}\mathbf{A}\mathbf{X}^{-1})^{T} \qquad (63)$$

$$\frac{\partial \mathrm{Tr}((\mathbf{X} + \mathbf{A})^{-1})}{\partial \mathbf{X}} = -((\mathbf{X} + \mathbf{A})^{-1}(\mathbf{X} + \mathbf{A})^{-1})^{T} \qquad (64)$$

$$\frac{\partial \operatorname{Tr}((\mathbf{X} + \mathbf{A})^{-1})}{\partial \mathbf{X}} = -((\mathbf{X} + \mathbf{A})^{-1}(\mathbf{X} + \mathbf{A})^{-1})^{T}$$
(64)

从[32]我们有以下结果:设 A是一个 $n \times n$ 可逆方阵,W是 A的逆矩阵,J(A)是一个关于 A的n元可微函数,那么 J关于 A和 W的偏导数满足

$$\frac{\partial J}{\partial \mathbf{A}} = -\mathbf{A}^{-T} \frac{\partial J}{\partial \mathbf{W}} \mathbf{A}^{-T}$$

2.3 特征值的导数

$$\frac{\partial}{\partial \mathbf{X}} \sum \operatorname{eig}(\mathbf{X}) = \frac{\partial}{\partial \mathbf{X}} \operatorname{Tr}(\mathbf{X}) = \mathbf{I}$$
 (65)

$$\frac{\partial}{\partial \mathbf{X}} \prod \operatorname{eig}(\mathbf{X}) = \frac{\partial}{\partial \mathbf{X}} \operatorname{det}(\mathbf{X}) = \operatorname{det}(\mathbf{X}) \mathbf{X}^{-T}$$
(66)

如果 **A**是实对称矩阵, λ_i 和 \mathbf{v}_i 是 **A**的不同特征值和特征向量(见(276)),则[$33|\partial \lambda_i = \mathbf{v}_i^T \partial(\mathbf{A}) \mathbf{v}_i$

(67)

$$\partial \mathbf{v}_i = (\lambda_i \mathbf{I} - \mathbf{A})^+ \partial (\mathbf{A}) \mathbf{v}_i \tag{68}$$

2.4 矩阵、向量和标量形式的导数

2.4.1 一阶

$$\frac{\partial \mathbf{x}^T \mathbf{a}}{\partial \mathbf{x}} = \frac{\partial \mathbf{a}^T \mathbf{x}}{\partial \mathbf{x}} = \mathbf{a} \tag{69}$$

$$\frac{\partial \mathbf{x}^T \mathbf{a}}{\partial \mathbf{x}} = \frac{\partial \mathbf{a}^T \mathbf{x}}{\partial \mathbf{x}} = \mathbf{a}$$

$$\frac{\partial \mathbf{a}^T \mathbf{X} \mathbf{b}}{\partial \mathbf{X}} = \mathbf{a} \mathbf{b}^T$$
(69)

$$\frac{\partial \mathbf{a}^T \mathbf{X}^T \mathbf{b}}{\partial \mathbf{X}} = \mathbf{b} \mathbf{a}^T \tag{71}$$

$$\frac{\partial \mathbf{X}}{\partial \mathbf{X}} = \frac{\partial \mathbf{a}^T \mathbf{X}^T \mathbf{a}}{\partial \mathbf{X}} = \mathbf{a}\mathbf{a}^T \tag{72}$$

$$\frac{\partial \mathbf{X}}{\partial X_{ij}} = \mathbf{J}^{ij} \tag{73}$$

$$\frac{\partial \mathbf{X}}{\partial X_{ij}} = \mathbf{J}^{ij} \tag{73}$$

$$\frac{\partial (\mathbf{X}\mathbf{A})_{ij}}{\partial X_{mn}} = \delta_{im}(\mathbf{A})_{nj} = (\mathbf{J}^{mn}\mathbf{A})_{ij}$$
 (74)

$$\frac{\partial X_{ij}}{\partial X_{mn}} = \delta_{im}(\mathbf{A})_{nj} = (\mathbf{J}^{mn}\mathbf{A})_{ij} \qquad (74)$$

$$\frac{\partial (\mathbf{X}^T\mathbf{A})_{ij}}{\partial X_{mn}} = \delta_{in}(\mathbf{A})_{mj} = (\mathbf{J}^{nm}\mathbf{A})_{ij} \qquad (75)$$

2.4.2 二阶

$$\frac{\partial}{\partial X_{ij}} \sum_{klmn} X_{kl} X_{mn} = 2 \sum_{kl} X_{kl} \tag{76}$$

$$\frac{\partial \mathbf{b}^T \mathbf{X}^T \mathbf{X} \mathbf{c}}{\partial \mathbf{X}} = \mathbf{X} (\mathbf{b} \mathbf{c}^T + \mathbf{c} \mathbf{b}^T)$$
 (77)

$$\frac{\partial \mathbf{b}^{T} \mathbf{X}^{T} \mathbf{X} \mathbf{c}}{\partial \mathbf{X}} = \mathbf{X} (\mathbf{b} \mathbf{c}^{T} + \mathbf{c} \mathbf{b}^{T})$$

$$\frac{\partial (\mathbf{B} \mathbf{x} + \mathbf{b})^{T} \mathbf{C} (\mathbf{D} \mathbf{x} + \mathbf{d})}{\partial \mathbf{x}} = \mathbf{B}^{T} \mathbf{C} (\mathbf{D} \mathbf{x} + \mathbf{d}) + \mathbf{D}^{T} \mathbf{C}^{T} (\mathbf{B} \mathbf{x} + \mathbf{b})$$

$$\frac{\partial (\mathbf{X}^{T} \mathbf{B} \mathbf{X})_{kl}}{\partial X_{ij}} = \delta_{lj} (\mathbf{X}^{T} \mathbf{B})_{ki} + \delta_{kj} (\mathbf{B} \mathbf{X})_{il}$$
(78)

$$\frac{\partial (\mathbf{X}^T \mathbf{B} \mathbf{X})_{kl}}{\partial X_{ij}} = \delta_{lj} (\mathbf{X}^T \mathbf{B})_{ki} + \delta_{kj} (\mathbf{B} \mathbf{X})_{il}$$
 (79)

$$\frac{\partial (\mathbf{X}^T \mathbf{B} \mathbf{X})}{\partial X_{ij}} = \mathbf{X}^T \mathbf{B} \mathbf{J}^{ij} + \mathbf{J}^{ji} \mathbf{B} \mathbf{X} \qquad (\mathbf{J}^{ij})_{kl} = \delta_{ik} \delta_{jl} \quad (80)$$

有关单入矩阵 J^{ij} 的有用性质,请参见第9.7节

$$\frac{\partial \mathbf{x}^T \mathbf{B} \mathbf{x}}{\partial \mathbf{x}} = (\mathbf{B} + \mathbf{B}^T) \mathbf{x}$$
 (81)

$$\frac{\partial \mathbf{x}^{T} \mathbf{B} \mathbf{x}}{\partial \mathbf{x}} = (\mathbf{B} + \mathbf{B}^{T}) \mathbf{x}$$

$$\frac{\partial \mathbf{b}^{T} \mathbf{X}^{T} \mathbf{D} \mathbf{X} \mathbf{c}}{\partial \mathbf{X}} = \mathbf{D}^{T} \mathbf{X} \mathbf{b} \mathbf{c}^{T} + \mathbf{D} \mathbf{X} \mathbf{c} \mathbf{b}^{T}$$
(81)

$$\frac{\partial}{\partial \mathbf{X}} (\mathbf{X}\mathbf{b} + \mathbf{c})^T \mathbf{D} (\mathbf{X}\mathbf{b} + \mathbf{c}) = (\mathbf{D} + \mathbf{D}^T) (\mathbf{X}\mathbf{b} + \mathbf{c}) \mathbf{b}^T$$
(83)

W 是对称的,那么 假设

$$\frac{\partial}{\partial \mathbf{s}} (\mathbf{x} - \mathbf{A}\mathbf{s})^T \mathbf{W} (\mathbf{x} - \mathbf{A}\mathbf{s}) = -2\mathbf{A}^T \mathbf{W} (\mathbf{x} - \mathbf{A}\mathbf{s})$$
(84)

$$\frac{\partial}{\partial \mathbf{x}} (\mathbf{x} - \mathbf{s})^T \mathbf{W} (\mathbf{x} - \mathbf{s}) = 2\mathbf{W} (\mathbf{x} - \mathbf{s})$$
 (85)

$$\frac{\partial}{\partial \mathbf{s}} (\mathbf{x} - \mathbf{s})^T \mathbf{W} (\mathbf{x} - \mathbf{s}) = -2\mathbf{W} (\mathbf{x} - \mathbf{s})$$
 (86)

$$\frac{\partial}{\partial \mathbf{x}} (\mathbf{x} - \mathbf{A}\mathbf{s})^T \mathbf{W} (\mathbf{x} - \mathbf{A}\mathbf{s}) = 2\mathbf{W} (\mathbf{x} - \mathbf{A}\mathbf{s})$$
(87)

$$\frac{\partial}{\partial \mathbf{A}} (\mathbf{x} - \mathbf{A}\mathbf{s})^T \mathbf{W} (\mathbf{x} - \mathbf{A}\mathbf{s}) = -2\mathbf{W} (\mathbf{x} - \mathbf{A}\mathbf{s})\mathbf{s}^T$$
 (88)

作为具有复数值的情况,以下成立

$$\frac{\partial (a - \mathbf{x}^H \mathbf{b})^2}{\partial \mathbf{x}} = -2\mathbf{b}(a - \mathbf{x}^H \mathbf{b})^*$$
(89)

这个公式也被称为LMS算法[14]

2.4.3 高阶和非线性

$$\frac{\partial (\mathbf{X}^n)_{kl}}{\partial X_{ij}} = \sum_{r=0}^{n-1} (\mathbf{X}^r \mathbf{J}^{ij} \mathbf{X}^{n-1-r})_{kl}$$
(90)

有关以上内容的证明,请参见B.1.3。

$$\frac{\partial}{\partial \mathbf{X}} \mathbf{a}^T \mathbf{X}^n \mathbf{b} = \sum_{r=0}^{n-1} (\mathbf{X}^r)^T \mathbf{a} \mathbf{b}^T (\mathbf{X}^{n-1-r})^T$$
(91)

2.5 迹的导数 2导数

$$\frac{\partial}{\partial \mathbf{X}} \mathbf{a}^{T} (\mathbf{X}^{n})^{T} \mathbf{X}^{n} \mathbf{b} = \sum_{r=0}^{n-1} \left[\mathbf{X}^{n-1-r} \mathbf{a} \mathbf{b}^{T} (\mathbf{X}^{n})^{T} \mathbf{X}^{r} + (\mathbf{X}^{r})^{T} \mathbf{X}^{n} \mathbf{a} \mathbf{b}^{T} (\mathbf{X}^{n-1-r})^{T} \right]$$
(92)

有关证明,请参见B.1.3。

假设 s和 r是 x的函数,即 s = s(x), r = r(x),且 A是一个 常数,那么

$$\frac{\partial}{\partial \mathbf{x}} \mathbf{s}^T \mathbf{A} \mathbf{r} = \left[\frac{\partial \mathbf{s}}{\partial \mathbf{x}} \right]^T \mathbf{A} \mathbf{r} + \left[\frac{\partial \mathbf{r}}{\partial \mathbf{x}} \right]^T \mathbf{A}^T \mathbf{s}$$
 (93)

$$\frac{\partial}{\partial \mathbf{x}} \frac{(\mathbf{A}\mathbf{x})^T (\mathbf{A}\mathbf{x})}{(\mathbf{B}\mathbf{x})^T (\mathbf{B}\mathbf{x})} = \frac{\partial}{\partial \mathbf{x}} \frac{\mathbf{x}^T \mathbf{A}^T \mathbf{A}\mathbf{x}}{\mathbf{x}^T \mathbf{B}^T \mathbf{B}\mathbf{x}}$$
(94)

$$= 2\frac{\mathbf{A}^T \mathbf{A} \mathbf{x}}{\mathbf{x}^T \mathbf{B} \mathbf{B} \mathbf{x}} - 2\frac{\mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x} \mathbf{B}^T \mathbf{B} \mathbf{x}}{(\mathbf{x}^T \mathbf{B}^T \mathbf{B} \mathbf{x})^2}$$
(95)

2.4.4 梯度和海森矩阵

利用上述结果,我们有梯度和海森矩阵

$$f = \mathbf{x}^T \mathbf{A} \mathbf{x} + \mathbf{b}^T \mathbf{x} \tag{96}$$

$$f = \mathbf{x}^{T} \mathbf{A} \mathbf{x} + \mathbf{b}^{T} \mathbf{x}$$

$$\nabla_{\mathbf{x}} f = \frac{\partial f}{\partial \mathbf{x}} = (\mathbf{A} + \mathbf{A}^{T}) \mathbf{x} + \mathbf{b}$$
(96)

$$\frac{\partial^2 f}{\partial \mathbf{x} \partial \mathbf{x}^T} = \mathbf{A} + \mathbf{A}^T \tag{98}$$

2.5 迹的导数

假设 $F(\mathbf{X})$ 是 X的每个元素的可微函数。那么有

$$\frac{\partial \mathrm{Tr}(F(\mathbf{X}))}{\partial \mathbf{X}} = f(\mathbf{X})^T$$

其中 $f(\cdot)$ 是 $F(\cdot)$ 的标量导数。

2.5.1 一阶

$$\frac{\partial}{\partial \mathbf{X}} \mathrm{Tr}(\mathbf{X}) = \mathbf{I} \tag{99}$$

$$\frac{\partial}{\partial \mathbf{X}} \mathrm{Tr}(\mathbf{X}\mathbf{A}) = \mathbf{A}^T \tag{100}$$

$$\frac{\partial}{\partial \mathbf{X}} \mathrm{Tr}(\mathbf{A} \mathbf{X} \mathbf{B}) = \mathbf{A}^T \mathbf{B}^T \tag{101}$$

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{A} \mathbf{X}^T \mathbf{B}) = \mathbf{B} \mathbf{A}$$
 (102)

$$\frac{\partial}{\partial \mathbf{X}} \mathrm{Tr}(\mathbf{X}^T \mathbf{A}) = \mathbf{A} \tag{103}$$

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{A} \mathbf{X}^T) = \mathbf{A} \tag{104}$$

$$\frac{\partial}{\partial \mathbf{X}} \mathrm{Tr}(\mathbf{A} \otimes \mathbf{X}) = \mathrm{Tr}(\mathbf{A})\mathbf{I}$$
 (105)

2.5 迹的导数 2 导数

2.5.2 二阶

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{Tr}(\mathbf{X}^2) = 2\mathbf{X}^T \tag{106}$$

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{Tr}(\mathbf{X}^2 \mathbf{B}) = (\mathbf{X} \mathbf{B} + \mathbf{B} \mathbf{X})^T$$
 (107)

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{Tr}(\mathbf{X}^T \mathbf{B} \mathbf{X}) = \mathbf{B} \mathbf{X} + \mathbf{B}^T \mathbf{X}$$
 (108)

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{Tr}(\mathbf{B} \mathbf{X} \mathbf{X}^T) = \mathbf{B} \mathbf{X} + \mathbf{B}^T \mathbf{X}$$
 (109)

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{Tr}(\mathbf{X} \mathbf{X}^T \mathbf{B}) = \mathbf{B} \mathbf{X} + \mathbf{B}^T \mathbf{X}$$
 (110)

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{Tr}(\mathbf{X} \mathbf{B} \mathbf{X}^T) = \mathbf{X} \mathbf{B}^T + \mathbf{X} \mathbf{B}$$
 (111)

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{B} \mathbf{X}^T \mathbf{X}) = \mathbf{X} \mathbf{B}^T + \mathbf{X} \mathbf{B}$$
 (112)

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{Tr}(\mathbf{X}^T \mathbf{X} \mathbf{B}) = \mathbf{X} \mathbf{B}^T + \mathbf{X} \mathbf{B}$$
 (113)

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{A} \mathbf{X} \mathbf{B} \mathbf{X}) = \mathbf{A}^T \mathbf{X}^T \mathbf{B}^T + \mathbf{B}^T \mathbf{X}^T \mathbf{A}^T \qquad (114)$$

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{Tr}(\mathbf{X}^T \mathbf{X}) = \frac{\partial}{\partial \mathbf{X}} \operatorname{Tr}(\mathbf{X} \mathbf{X}^T) = 2\mathbf{X} \quad (115)$$

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{Tr}(\mathbf{B}^T \mathbf{X}^T \mathbf{C} \mathbf{X} \mathbf{B}) = \mathbf{C}^T \mathbf{X} \mathbf{B} \mathbf{B}^T + \mathbf{C} \mathbf{X} \mathbf{B} \mathbf{B}^T$$
 (116)

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{Tr} \left[\mathbf{X}^T \mathbf{B} \mathbf{X} \mathbf{C} \right] = \mathbf{B} \mathbf{X} \mathbf{C} + \mathbf{B}^T \mathbf{X} \mathbf{C}^T$$
 (117)

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{Tr}(\mathbf{A} \mathbf{X} \mathbf{B} \mathbf{X}^T \mathbf{C}) = \mathbf{A}^T \mathbf{C}^T \mathbf{X} \mathbf{B}^T + \mathbf{C} \mathbf{A} \mathbf{X} \mathbf{B}$$
(118)

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{Tr} \Big[(\mathbf{A} \mathbf{X} \mathbf{B} + \mathbf{C}) (\mathbf{A} \mathbf{X} \mathbf{B} + \mathbf{C})^T \Big] = 2\mathbf{A}^T (\mathbf{A} \mathbf{X} \mathbf{B} + \mathbf{C}) \mathbf{B}^T$$
(119)

$$\frac{\partial}{\partial \mathbf{X}} \mathrm{Tr}(\mathbf{X} \otimes \mathbf{X}) = \frac{\partial}{\partial \mathbf{X}} \mathrm{Tr}(\mathbf{X}) \mathrm{Tr}(\mathbf{X}) = 2 \mathrm{Tr}(\mathbf{X}) \mathbf{I}(120)$$

见[7]。

2.5.3 高阶

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{Tr}(\mathbf{X}^k) = k(\mathbf{X}^{k-1})^T \tag{121}$$

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{Tr}(\mathbf{A} \mathbf{X}^k) = \sum_{r=0}^{k-1} (\mathbf{X}^r \mathbf{A} \mathbf{X}^{k-r-1})^T$$
 (122)

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{Tr} \left[\mathbf{B}^T \mathbf{X}^T \mathbf{C} \mathbf{X} \mathbf{X}^T \mathbf{C} \mathbf{X} \mathbf{B} \right] = \mathbf{C} \mathbf{X} \mathbf{X}^T \mathbf{C} \mathbf{X} \mathbf{B} \mathbf{B}^T \\ + \mathbf{C}^T \mathbf{X} \mathbf{B} \mathbf{B}^T \mathbf{X}^T \mathbf{C}^T \mathbf{X} \\ + \mathbf{C} \mathbf{X} \mathbf{B} \mathbf{B}^T \mathbf{X}^T \mathbf{C} \mathbf{X} \\ + \mathbf{C}^T \mathbf{X} \mathbf{X}^T \mathbf{C}^T \mathbf{X} \mathbf{B} \mathbf{B}^T$$
 (123)

2.5.4 其他

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{Tr}(\mathbf{A} \mathbf{X}^{-1} \mathbf{B}) = -(\mathbf{X}^{-1} \mathbf{B} \mathbf{A} \mathbf{X}^{-1})^T = -\mathbf{X}^{-T} \mathbf{A}^T \mathbf{B}^T \mathbf{X}^{-T}$$
(124)

假设 B和 C是对称的,那么

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{Tr} \Big[(\mathbf{X}^T \mathbf{C} \mathbf{X})^{-1} \mathbf{A} \Big] = -(\mathbf{C} \mathbf{X} (\mathbf{X}^T \mathbf{C} \mathbf{X})^{-1}) (\mathbf{A} + \mathbf{A}^T) (\mathbf{X}^T \mathbf{C} \mathbf{X})^{-1} (125)$$

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{Tr} \Big[(\mathbf{X}^T \mathbf{C} \mathbf{X})^{-1} (\mathbf{X}^T \mathbf{B} \mathbf{X}) \Big] = -2\mathbf{C} \mathbf{X} (\mathbf{X}^T \mathbf{C} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{B} \mathbf{X} (\mathbf{X}^T \mathbf{C} \mathbf{X})^{-1}$$

$$+2\mathbf{B} \mathbf{X} (\mathbf{X}^T \mathbf{C} \mathbf{X})^{-1} (126)$$

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{Tr} \Big[(\mathbf{A} + \mathbf{X}^T \mathbf{C} \mathbf{X})^{-1} (\mathbf{X}^T \mathbf{B} \mathbf{X}) \Big] = -2\mathbf{C} \mathbf{X} (\mathbf{A} + \mathbf{X}^T \mathbf{C} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{B} \mathbf{X} (\mathbf{A} + \mathbf{X}^T \mathbf{C} \mathbf{X})^{-1}$$

$$+2\mathbf{B} \mathbf{X} (\mathbf{A} + \mathbf{X}^T \mathbf{C} \mathbf{X})^{-1} (127)$$

见[7]。

$$\frac{\partial \text{Tr}(\sin(\mathbf{X}))}{\partial \mathbf{X}} = \cos(\mathbf{X})^T \tag{128}$$

2.6 向量范数的导数

2.6.1 二范数

$$\frac{\partial}{\partial \mathbf{x}}||\mathbf{x} - \mathbf{a}||_2 = \frac{\mathbf{x} - \mathbf{a}}{||\mathbf{x} - \mathbf{a}||_2}$$
 (129)

$$\frac{\partial}{\partial \mathbf{x}} \frac{\mathbf{x} - \mathbf{a}}{\|\mathbf{x} - \mathbf{a}\|_{2}} = \frac{\mathbf{I}}{\|\mathbf{x} - \mathbf{a}\|_{2}} - \frac{(\mathbf{x} - \mathbf{a})(\mathbf{x} - \mathbf{a})^{T}}{\|\mathbf{x} - \mathbf{a}\|_{2}^{3}}$$
(130)

$$\frac{\partial ||\mathbf{x}||_2^2}{\partial \mathbf{x}} = \frac{\partial ||\mathbf{x}^T \mathbf{x}||_2}{\partial \mathbf{x}} = 2\mathbf{x}$$
 (131)

2.7 矩阵范数的导数

有关矩阵范数的更多信息,请参阅第10.4节。

2.7.1 弗罗贝尼乌斯范数

$$\frac{\partial}{\partial \mathbf{Y}} ||\mathbf{X}||_{\mathrm{F}}^2 = \frac{\partial}{\partial \mathbf{Y}} \mathrm{Tr}(\mathbf{X} \mathbf{X}^H) = 2\mathbf{X}$$
 (132)

参见(248)。请注意,这也是方程119中结果的特殊情况。

2.8 结构化矩阵的导数

假设矩阵 \mathbf{A} 具有某种结构,即对称的, \mathbf{T} oeplitz的等等。在这种情况下,前一节的导数通常不适用。相反,考虑以下关于标量函数 $f(\mathbf{A})$

$$\frac{\partial A_{kl}}{\partial A_{ij}} = \sum_{kl} \frac{\partial f}{\partial A_{kl}} \frac{\partial A_{kl}}{\partial A_{ij}} = \operatorname{Tr} \left[\left[\frac{\partial f}{\partial \mathbf{A}} \right]^T \frac{\partial \mathbf{A}}{\partial A_{ij}} \right]$$
(133)

本文档中,关于自身的矩阵的矩阵差异被称为 A的结构矩阵,并且简单地定义

$$\frac{\partial \mathbf{A}}{\partial A_{ij}} = \mathbf{S}^{ij} \tag{134}$$

如果 \mathbf{A} 没有特殊结构,我们只需简单地将 $\mathbf{S}^{ij} = \mathbf{J}^{ij}$,也就是说,结构矩阵就 是单个元素的矩阵。 许多结构都可以用单个元素矩阵表示,更多结构矩阵的示 例请参见第9.7.6节。

2.8.1 链式法则

有时候目标是找到另一个矩阵的函数的导数。 设 $\mathbf{U} = f(\mathbf{X})$,目标是找到函数 $\mathbf{g}(\mathbf{X})$ U)相对于 X的导数: $\partial q(U)$

$$\frac{\partial \mathbf{X}}{\partial \mathbf{X}} = \frac{\partial g(f(\mathbf{X}))}{\partial \mathbf{X}} \tag{135}$$

然后链式法则可以写成以下形式:

$$\frac{\partial g(\mathbf{U})}{\partial \mathbf{X}} = \frac{\partial g(\mathbf{U})}{\partial x_{ij}} = \sum_{k=1}^{M} \sum_{l=1}^{N} \frac{\partial g(\mathbf{U})}{\partial u_{kl}} \frac{\partial u_{kl}}{\partial x_{ij}}$$
(136)

使用矩阵符号,可以写成:

$$\frac{\partial g(\mathbf{U})}{\partial X_{ij}} = \operatorname{Tr}\left[\left(\frac{\partial g(\mathbf{U})}{\partial \mathbf{U}}\right)^T \frac{\partial \mathbf{U}}{\partial X_{ij}}\right]. \tag{137}$$

2.8.2 对称

如果 A是对称的,那么 $S^{ij} = J^{ij} + J^{ji} - J^{ij}J^{ij}$,因此

$$\frac{df}{d\mathbf{A}} = \left[\frac{\partial f}{\partial \mathbf{A}}\right] + \left[\frac{\partial f}{\partial \mathbf{A}}\right]^T - \operatorname{diag}\left[\frac{\partial f}{\partial \mathbf{A}}\right]$$
(138)

也就是说,例如([5]):

$$\frac{\partial \det(\mathbf{X})}{\partial \mathbf{X}} = \det(\mathbf{X})(2\mathbf{X}^{-1} - (\mathbf{X}^{-1} \circ \mathbf{I}))$$
 (140)

$$\frac{\partial \ln \det(\mathbf{X})}{\partial \mathbf{X}} = 2\mathbf{X}^{-1} - (\mathbf{X}^{-1} \circ \mathbf{I})$$
(141)

2.8.3 对角

如果 X是对角的,那么([19]):

$$\frac{\partial \mathrm{Tr}(\mathbf{A}\mathbf{X})}{\partial \mathbf{X}} = \mathbf{A} \circ \mathbf{I} \tag{142}$$

2.8.4 Toeplitz

就像对称矩阵和对角矩阵一样,Toeplitz矩阵也具有特殊的结构,在对具有Toeplitz结构的矩阵进行导数时需要考虑这一点。

正如可以看到的,导数 $\alpha(\mathbf{A})$ 也具有 $\mathrm{Toeplitz}$ 结构。 对角线上的每个值是 \mathbf{A} 中 对角线上的所有值的和,主对角线旁边的对角线上的值等于 \mathbf{A}^T 中主对角线旁边的对角线上的值的和。 这个结果仅对无约束的 $\mathrm{Toeplitz}$ 矩阵有效。 如果 $\mathrm{Toeplitz}$ 矩阵也是对称的,同样的导数得到

$$\frac{\partial \text{Tr}(\mathbf{AT})}{\partial \mathbf{T}} = \frac{\partial \text{Tr}(\mathbf{TA})}{\partial \mathbf{T}} = \boldsymbol{\alpha}(\mathbf{A}) + \boldsymbol{\alpha}(\mathbf{A})^T - \boldsymbol{\alpha}(\mathbf{A}) \circ \mathbf{I}$$
(144)

3 逆矩阵

3.1 基本

3.1.1 定义

矩阵 **A**的逆矩阵 \mathbf{A}^{-1} 是指满足以下条件的矩阵 $\mathbf{A} \in \mathbb{C}^{n \times n}$:

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I},\tag{145}$$

其中 I是 $n \times n$ 单位矩阵。 如果 \mathbf{A}^{-1} 存在,则称 \mathbf{A} 为非奇异矩阵。 否则, \mathbf{A} 被称为奇异矩阵(参见例如[12])。

3.1.2 余子式和伴随矩阵

矩阵 ${\bf A}$ 的子矩阵,记为 $[{\bf A}]_{ij}$,是通过删除 ${\bf A}$ 的第 i行和第 j列得到的一个 $(n-1)\times(n-1)$ 矩阵。 矩阵的 (i,j)余子式定义为

$$\operatorname{cof}(\mathbf{A}, i, j) = (-1)^{i+j} \det([\mathbf{A}]_{ij}), \tag{146}$$

余子式矩阵可以由余子式创建

$$cof(\mathbf{A}) = \begin{bmatrix} cof(\mathbf{A}, 1, 1) & \cdots & cof(\mathbf{A}, 1, n) \\ \vdots & cof(\mathbf{A}, i, j) & \vdots \\ cof(\mathbf{A}, n, 1) & \cdots & cof(\mathbf{A}, n, n) \end{bmatrix}$$
(147)

伴随矩阵是余子式矩阵的转置

$$\operatorname{adj}(\mathbf{A}) = (\operatorname{cof}(\mathbf{A}))^T, \tag{148}$$

3.1.3 行列式

矩阵 $\mathbf{A} \in \mathbb{C}^{n \times n}$ 的行列式定义如下(见[12])

$$\det(\mathbf{A}) = \sum_{j=1}^{n} (-1)^{j+1} \text{ 有可式}([\mathbf{A}]_{1j})$$
 (149)

$$= \sum_{j=1}^{n} A_{1j} \, \widehat{\pi} \, \widehat{\tau}(\mathbf{A}, 1, j). \tag{150}$$

3.1.4 构造

逆矩阵可以通过伴随矩阵构造

$$\mathbf{A}^{-1} = \frac{1}{\det(\mathbf{A})} \cdot \operatorname{adj}(\mathbf{A})$$
 (151)

对于2×2矩阵的情况,请参见第1.3节。

3.2 精确关系 3.2 精神

3.1.5 条件数

矩阵 $c(\mathbf{A})$ 的条件数是矩阵的最大奇异值与最小奇异值之比(参见第5.3节的奇异值)

$$c(\mathbf{A}) = \frac{d_{+}}{d} \tag{152}$$

条件数可以用来衡量矩阵的奇异性。如果条件数很大,表示矩阵接近奇异。 条件数也可以从矩阵范数估计。在这里

$$c(\mathbf{A}) = \|\mathbf{A}\| \cdot \|\mathbf{A}^{-1}\|,\tag{153}$$

其中 $\|\cdot\|$ 是一种范数,例如1-范数,2-范数, ∞ -范数或者 Frobenius范数(详见第10.4节关于矩阵范数的更多内容)。

矩阵 $\bf A$ 的2-范数等于 $\overline{/(\max({\rm eig}({\bf A}^H{\bf A})))}$ $[1_2, p.57]$ 。对于对称矩阵,这可以简化为 $||{\bf A}||_2 = \max(|{\bf eig}({\bf A})|)$ $[1_2, p.394]$ 。如果矩阵是对称且正定的, $||{\bf A}||_2 = \max({\rm eig}({\bf A}))$ 。 基于 $_2$ -范数的条件数因此简化为

$$\|\mathbf{A}\|_2 \|\mathbf{A}^{-1}\|_2 = \max(\operatorname{eig}(\mathbf{A})) \max(\operatorname{eig}(\mathbf{A}^{-1})) = \frac{\max(\operatorname{eig}(\mathbf{A}))}{\min(\operatorname{eig}(\mathbf{A}))}.$$
 (154)

3.2 精确关系

3.2.1 基础

$$(\mathbf{AB})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1} \tag{155}$$

3.2.2 伍德伯里恒等式

伍德伯里恒等式有很多变种。 其中的一种可以在[12]中找到

$$(\mathbf{A} + \mathbf{C}\mathbf{B}\mathbf{C}^{T})^{-1} = \mathbf{A}^{-1} - \mathbf{A}^{-1}\mathbf{C}(\mathbf{B}^{-1} + \mathbf{C}^{T}\mathbf{A}^{-1}\mathbf{C})^{-1}\mathbf{C}^{T}\mathbf{A}^{-1}$$
(156)

$$(\mathbf{A} + \mathbf{U}\mathbf{B}\mathbf{V})^{-1} = \mathbf{A}^{-1} - \mathbf{A}^{-1}\mathbf{U}(\mathbf{B}^{-1} + \mathbf{V}\mathbf{A}^{-1}\mathbf{U})^{-1}\mathbf{V}\mathbf{A}^{-1}$$
 (157)

如果 P, R是正定的,那么(见[30])

$$(\mathbf{P}^{-1} + \mathbf{B}^{T} \mathbf{R}^{-1} \mathbf{B})^{-1} \mathbf{B}^{T} \mathbf{R}^{-1} = \mathbf{P} \mathbf{B}^{T} (\mathbf{B} \mathbf{P} \mathbf{B}^{T} + \mathbf{R})^{-1}$$
(158)

3.2.3 凯拉斯变体

$$(\mathbf{A} + \mathbf{BC})^{-1} = \mathbf{A}^{-1} - \mathbf{A}^{-1} \mathbf{B} (\mathbf{I} + \mathbf{CA}^{-1} \mathbf{B})^{-1} \mathbf{CA}^{-1}$$
(159)

参见[4, 第153页]。

3.2.4 谢尔曼-莫里森

$$(\mathbf{A} + \mathbf{b}\mathbf{c}^T)^{-1} = \mathbf{A}^{-1} - \frac{\mathbf{A}^{-1}\mathbf{b}\mathbf{c}^T\mathbf{A}^{-1}}{1 + \mathbf{c}^T\mathbf{A}^{-1}\mathbf{b}}$$
(160)

3.2 精确关系 3.2

3.2.5 西尔尔恩恒等式集合

以下一组恒等式可在[25, 第151页]中找到,

$$(\mathbf{I} + \mathbf{A}^{-1})^{-1} = \mathbf{A}(\mathbf{A} + \mathbf{I})^{-1} \tag{161}$$

$$(\mathbf{A} + \mathbf{B}\mathbf{B}^T)^{-1}\mathbf{B} = \mathbf{A}^{-1}\mathbf{B}(\mathbf{I} + \mathbf{B}^T\mathbf{A}^{-1}\mathbf{B})^{-1}$$
 (162)

$$(\mathbf{A}^{-1} + \mathbf{B}^{-1})^{-1} = \mathbf{A}(\mathbf{A} + \mathbf{B})^{-1}\mathbf{B} = \mathbf{B}(\mathbf{A} + \mathbf{B})^{-1}\mathbf{A}$$
 (163)

$$\mathbf{A} - \mathbf{A}(\mathbf{A} + \mathbf{B})^{-1}\mathbf{A} = \mathbf{B} - \mathbf{B}(\mathbf{A} + \mathbf{B})^{-1}\mathbf{B}$$
 (164)

$$\mathbf{A}^{-1} + \mathbf{B}^{-1} = \mathbf{A}^{-1}(\mathbf{A} + \mathbf{B})\mathbf{B}^{-1}$$
 (165)

$$(\mathbf{I} + \mathbf{A}\mathbf{B})^{-1} = \mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{B}\mathbf{A})^{-1}\mathbf{B}$$
 (166)

$$(\mathbf{I} + \mathbf{A}\mathbf{B})^{-1}\mathbf{A} = \mathbf{A}(\mathbf{I} + \mathbf{B}\mathbf{A})^{-1}$$
 (167)

3.2.6 内积逆的秩-1更新

记 $\mathbf{A} = (\mathbf{X}^T \mathbf{X})^{-1}$ 并且 \mathbf{X} 被扩展以包括一个新的列向量在末尾 $\hat{\mathbf{X}} = [\mathbf{X} \ \mathbf{v}]$. 然后 [34]

$$(\tilde{\mathbf{X}}^T \tilde{\mathbf{X}})^{-1} = \begin{bmatrix} \mathbf{A} + \frac{\mathbf{A} \mathbf{X}^T \mathbf{v} \mathbf{v}^T \mathbf{X} \mathbf{A}^T}{\mathbf{v}^T \mathbf{v} - \mathbf{v}^T \mathbf{X} \mathbf{A} \mathbf{X}^T \mathbf{v}} & \frac{-\mathbf{A} \mathbf{X}^T \mathbf{v}}{\mathbf{v}^T \mathbf{v} - \mathbf{v}^T \mathbf{X} \mathbf{A} \mathbf{X}^T \mathbf{v}} \\ \frac{-\mathbf{v}^T \mathbf{X} \mathbf{A}}{\mathbf{v}^T \mathbf{v} - \mathbf{v}^T \mathbf{X} \mathbf{A} \mathbf{X}^T \mathbf{v}} & \frac{1}{\mathbf{v}^T \mathbf{v} - \mathbf{v}^T \mathbf{X} \mathbf{A} \mathbf{X}^T \mathbf{v}} \end{bmatrix}$$

3.2.7 Moore-Penrose逆的秩-1更新

下面是实值矩阵的Moore-Penrose伪逆的秩-1更新,证明可以在[18]中找到。 矩阵 G定义如下:

$$(\mathbf{A} + \mathbf{c}\mathbf{d}^T)^+ = \mathbf{A}^+ + \mathbf{G} \tag{168}$$

使用以下符号

$$\beta = 1 + \mathbf{d}^T \mathbf{A}^+ \mathbf{c} \tag{169}$$

$$\mathbf{v} = \mathbf{A}^{+}\mathbf{c} \tag{170}$$

$$\mathbf{n} = (\mathbf{A}^+)^T \mathbf{d} \tag{171}$$

$$\mathbf{w} = (\mathbf{I} - \mathbf{A}\mathbf{A}^{+})\mathbf{c} \tag{172}$$

$$\mathbf{m} = (\mathbf{I} - \mathbf{A}^{+} \mathbf{A})^{T} \mathbf{d} \tag{173}$$

解决方案分为六种不同情况,取决于实体 $||\mathbf{w}||$, $||\mathbf{m}||$, 和 β . 请注意,对于任何(列)向量 \mathbf{v} ,有 $\mathbf{v}^+ = \mathbf{v}^T(\mathbf{v}^T\mathbf{v})^{-1} = \frac{\mathbf{v}^T}{||\mathbf{v}||^2}$. 解决方案是:

第1种情况:如果 $||\mathbf{w}|| \neq 0$ 和 $||\mathbf{m}|| \neq 0$ 。那么

$$\mathbf{G} = -\mathbf{v}\mathbf{w}^{+} - (\mathbf{m}^{+})^{T}\mathbf{n}^{T} + \beta(\mathbf{m}^{+})^{T}\mathbf{w}^{+}$$
 (174)

$$= -\frac{1}{||\mathbf{w}||^2} \mathbf{v} \mathbf{w}^T - \frac{1}{||\mathbf{m}||^2} \mathbf{m} \mathbf{n}^T + \frac{\beta}{||\mathbf{m}||^2 ||\mathbf{w}||^2} \mathbf{m} \mathbf{w}^T$$
(175)

第2个案例中的第6个情况:如果 $||\mathbf{w}|| = 0$ 且 $||\mathbf{m}|| \neq 0$ 且 $\beta = 0$ 。那么

$$\mathbf{G} = -\mathbf{v}\mathbf{v}^{+}\mathbf{A}^{+} - (\mathbf{m}^{+})^{T}\mathbf{n}^{T}$$
 (176)

$$= -\frac{1}{||\mathbf{v}||^2} \mathbf{v} \mathbf{v}^T \mathbf{A}^+ - \frac{1}{||\mathbf{m}||^2} \mathbf{m} \mathbf{n}^T$$
 (177)

第3个案例中的第6个情况:如果 $||\mathbf{w}|| = 0$ 且 $\beta = 0$ 。那么

$$\mathbf{G} = \frac{1}{\beta} \mathbf{m} \mathbf{v}^T \mathbf{A}^+ - \frac{\beta}{||\mathbf{v}||^2 ||\mathbf{m}||^2 + |\beta|^2} \left(\frac{||\mathbf{v}||^2}{\beta} \mathbf{m} + \mathbf{v} \right) \left(\frac{||\mathbf{m}||^2}{\beta} (\mathbf{A}^+)^T \mathbf{v} + \mathbf{n} \right)^T$$
(178)

第4个案例中的第6个情况: 如果 $||\mathbf{w}|| \neq 0$ 且 $||\mathbf{m}|| = 0$ 且 $\beta = 0$ 。 那么

$$\mathbf{G} = -\mathbf{A}^{+} \mathbf{n} \mathbf{n}^{+} - \mathbf{v} \mathbf{w}^{+} \tag{179}$$

$$= -\frac{1}{||\mathbf{n}||^2} \mathbf{A}^+ \mathbf{n} \mathbf{n}^T - \frac{1}{||\mathbf{w}||^2} \mathbf{v} \mathbf{w}^T$$
 (180)

第5个案例: 如果 $||\mathbf{m}|| = 0$ 且 $\beta = 0$ 。那么

$$\mathbf{G} = \frac{1}{\beta} \mathbf{A}^{+} \mathbf{n} \mathbf{w}^{T} - \frac{\beta}{\|\mathbf{n}\|^{2} \|\mathbf{w}\|^{2} + |\beta|^{2}} \left(\frac{\|\mathbf{w}\|^{2}}{\beta} \mathbf{A}^{+} \mathbf{n} + \mathbf{v} \right) \left(\frac{\|\mathbf{n}\|^{2}}{\beta} \mathbf{w} + \mathbf{n} \right)^{T}$$
(181)

第6个案例: 如果 $||\mathbf{w}|| = 0$ 且 $||\mathbf{m}|| = 0$ 且 $\beta = 0$ 。 那么

$$\mathbf{G} = -\mathbf{v}\mathbf{v}^{+}\mathbf{A}^{+} - \mathbf{A}^{+}\mathbf{n}\mathbf{n}^{+} + \mathbf{v}^{+}\mathbf{A}^{+}\mathbf{n}\mathbf{v}\mathbf{n}^{+}$$
 (182)

$$= -\frac{1}{||\mathbf{v}||^2} \mathbf{v} \mathbf{v}^T \mathbf{A}^+ - \frac{1}{||\mathbf{n}||^2} \mathbf{A}^+ \mathbf{n} \mathbf{n}^T + \frac{\mathbf{v}^T \mathbf{A}^+ \mathbf{n}}{||\mathbf{v}||^2 ||\mathbf{n}||^2} \mathbf{v} \mathbf{n}^T$$
(183)

3.3 对逆矩阵的影响

If
$$(\mathbf{A} + \mathbf{B})^{-1} = \mathbf{A}^{-1} + \mathbf{B}^{-1}$$
 然后 $\mathbf{A}\mathbf{B}^{-1}\mathbf{A} = \mathbf{B}\mathbf{A}^{-1}\mathbf{B}$ (184) 参见[25]。

3.3.1 正定恒等式

假设 P, R为正定且可逆的,那么

$$(\mathbf{P}^{-1} + \mathbf{B}^{T} \mathbf{R}^{-1} \mathbf{B})^{-1} \mathbf{B}^{T} \mathbf{R}^{-1} = \mathbf{P} \mathbf{B}^{T} (\mathbf{B} \mathbf{P} \mathbf{B}^{T} + \mathbf{R})^{-1}$$
(185)

参见[30]。

3.4 近似

下面的恒等式被称为矩阵的Neuman级数,当 $|\lambda_i| < 1$ 对于所有特征值 λ_i 时成立

$$(\mathbf{I} - \mathbf{A})^{-1} = \sum_{n=0}^{\infty} \mathbf{A}^n \tag{186}$$

等价于

$$(\mathbf{I} + \mathbf{A})^{-1} = \sum_{n=0}^{\infty} (-1)^n \mathbf{A}^n$$
 (187)

当所有特征值 λ_i 的绝对值都小于1时,对于 $n \to \infty$,有 $\mathbf{A} \to 0$,并且以下近似成立

$$(\mathbf{I} - \mathbf{A})^{-1} \cong \mathbf{I} + \mathbf{A} + \mathbf{A}^2 \tag{188}$$

$$(\mathbf{I} + \mathbf{A})^{-1} \cong \mathbf{I} - \mathbf{A} + \mathbf{A}^2 \tag{189}$$

以下近似来自于[22],在 A大且对称时成立

$$\mathbf{A} - \mathbf{A}(\mathbf{I} + \mathbf{A})^{-1}\mathbf{A} \cong \mathbf{I} - \mathbf{A}^{-1} \tag{190}$$

如果 σ^2 相对于 Q和 M很小

$$(\mathbf{Q} + \sigma^2 \mathbf{M})^{-1} \cong \mathbf{Q}^{-1} - \sigma^2 \mathbf{Q}^{-1} \mathbf{M} \mathbf{Q}^{-1}$$
(191)

证明:

$$(\mathbf{Q} + \sigma^2 \mathbf{M})^{-1} = \tag{192}$$

$$(\mathbf{Q}\mathbf{Q}^{-1}\mathbf{Q} + \sigma^2 \mathbf{M}\mathbf{Q}^{-1}\mathbf{Q})^{-1} = \tag{193}$$

$$((\mathbf{I} + \sigma^2 \mathbf{M} \mathbf{Q}^{-1})\mathbf{Q})^{-1} = \tag{194}$$

$$\mathbf{Q}^{-1}(\mathbf{I} + \sigma^2 \mathbf{M} \mathbf{Q}^{-1})^{-1} \tag{195}$$

这可以用泰勒展开式重写:

$$\mathbf{Q}^{-1}(\mathbf{I} + \sigma^2 \mathbf{M} \mathbf{Q}^{-1})^{-1} = \tag{196}$$

$$\mathbf{Q}^{-1}(\mathbf{I} - \sigma^2 \mathbf{M} \mathbf{Q}^{-1} + (\sigma^2 \mathbf{M} \mathbf{Q}^{-1})^2 - ...) \cong \mathbf{Q}^{-1} - \sigma^2 \mathbf{Q}^{-1} \mathbf{M} \mathbf{Q}^{-1}$$
 (197)

3.5 广义逆矩阵

3.5.1 定义

矩阵 A的广义逆矩阵是任何满足 (见

[26]) 的矩阵A-

$$\mathbf{A}\mathbf{A}^{-}\mathbf{A} = \mathbf{A} \tag{198)$$
矩阵

 A^- 不唯一。

3.6 伪逆矩阵

3.6.1 定义

矩阵 A的伪逆矩阵(或摩尔-彭罗斯逆矩阵)是满足的矩阵 A+

I
$$\mathbf{A}\mathbf{A}^{+}\mathbf{A} = \mathbf{A}$$
II $\mathbf{A}^{+}\mathbf{A}\mathbf{A}^{+} = \mathbf{A}^{+}$
III $\mathbf{A}\mathbf{A}^{+}$ 对称
IV $\mathbf{A}^{+}\mathbf{A}$ 对称

矩阵 A^+ 是唯一的且总是存在的。 请注意,在复数矩阵的情况下,对称条件被一个具有埃尔米特性质的条件所替代。

3.6 伪逆矩阵 3逆矩阵

3.6.2 属性

假设 A^+ 是 A的伪逆矩阵,则 (见 [3] 中的一些性质)

$$(\mathbf{A}^+)^+ = \mathbf{A}$$

$$(\mathbf{A}^T)^+ = (\mathbf{A}^+)^T$$

$$(200)$$

$$(\mathbf{A}^T)^+ = (\mathbf{A}^+)^T \tag{200}$$

$$(\mathbf{A}^H)^+ = (\mathbf{A}^+)^H \tag{201}$$

$$(\mathbf{A}^*)^+ = (A^+)^* \tag{202}$$

$$(\mathbf{A}^{+}\mathbf{A})\mathbf{A}^{H} = \mathbf{A}^{H} \tag{203}$$

$$(\mathbf{A}^{+}\mathbf{A})\mathbf{A}^{T} = \mathbf{A}^{T} \tag{204}$$

$$(c\mathbf{A})^+ = (1/c)\mathbf{A}^+ \tag{205}$$

$$\mathbf{A}^{+} = (\mathbf{A}^{T}\mathbf{A})^{+}\mathbf{A}^{T} \tag{206}$$

$$\mathbf{A}^{+} = \mathbf{A}^{T} (\mathbf{A} \mathbf{A}^{T})^{+} \tag{207}$$

$$(\mathbf{A}^T \mathbf{A})^+ = \mathbf{A}^+ (\mathbf{A}^T)^+ \tag{208}$$

$$(\mathbf{A}\mathbf{A}^T)^+ = (\mathbf{A}^T)^+\mathbf{A}^+ \tag{209}$$

$$\mathbf{A}^{+} = (\mathbf{A}^{H}\mathbf{A})^{+}\mathbf{A}^{H} \tag{210}$$

$$\mathbf{A}^{+} = \mathbf{A}^{H}(\mathbf{A}\mathbf{A}^{H})^{+} \tag{211}$$

$$(\mathbf{A}^H \mathbf{A})^+ = \mathbf{A}^+ (\mathbf{A}^H)^+ \tag{212}$$

$$(\mathbf{A}\mathbf{A}^H)^+ = (\mathbf{A}^H)^+\mathbf{A}^+ \tag{213}$$

$$(\mathbf{A}\mathbf{B})^{+} = (\mathbf{A}^{+}\mathbf{A}\mathbf{B})^{+}(\mathbf{A}\mathbf{B}\mathbf{B}^{+})^{+} \tag{214}$$

$$f(\mathbf{A}^H \mathbf{A}) - f(0)\mathbf{I} = \mathbf{A}^+ [f(\mathbf{A}\mathbf{A}^H) - f(0)\mathbf{I}]\mathbf{A}$$
 (215)

$$f(\mathbf{A}\mathbf{A}^{H}) - f(0)\mathbf{I} = \mathbf{A}[f(\mathbf{A}^{H}\mathbf{A}) - f(0)\mathbf{I}]\mathbf{A}^{+}$$
 (216)

其中 $\mathbf{A} \in \mathbb{C}^{n \times m}$.

假设 A具有满秩,则

$$(\mathbf{A}\mathbf{A}^+)(\mathbf{A}\mathbf{A}^+) = \mathbf{A}\mathbf{A}^+ \tag{217}$$

$$(\mathbf{A}^{+}\mathbf{A})(\mathbf{A}^{+}\mathbf{A}) = \mathbf{A}^{+}\mathbf{A} \tag{218}$$

$$Tr(\mathbf{A}\mathbf{A}^{+}) = rank(\mathbf{A}\mathbf{A}^{+}) \qquad (\mathfrak{D}[26]) \tag{219}$$

$$Tr(\mathbf{A}^{+}\mathbf{A}) = rank(\mathbf{A}^{+}\mathbf{A}) \qquad (\mathbb{R}[26]) \tag{220}$$

对于两个矩阵,有

$$(\mathbf{A}\mathbf{B})^{+} = (\mathbf{A}^{+}\mathbf{A}\mathbf{B})^{+}(\mathbf{A}\mathbf{B}\mathbf{B}^{+})^{+} \tag{221}$$

$$(\mathbf{A} \otimes \mathbf{B})^{+} = \mathbf{A}^{+} \otimes \mathbf{B}^{+} \tag{222}$$

3.6.3 构造

假设 A 具有满秩,则

$$\mathbf{A} \ n \times n$$
 方阵 $\mathrm{rank}(\mathbf{A}) = n \Rightarrow \mathbf{A}^+ = \mathbf{A}^{-1}$
 $\mathbf{A} \ n \times m$ 宽 $\mathrm{rank}(\mathbf{A}) = n \Rightarrow \mathbf{A}^+ = \mathbf{A}^T (\mathbf{A} \mathbf{A}^T)^{-1}$
 $\mathbf{A} \ n \times m$ 高 $\mathrm{rank}(\mathbf{A}) = m \Rightarrow \mathbf{A}^+ = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T$ 所

谓的"宽版本"也被称为右逆,而"高版本"被称为左逆。

3.6 伪逆矩阵 3 逆矩阵

假设 A没有满秩,即 A是 $n \times m$ 的矩阵,且 $\mathrm{rank}(\mathbf{A}) = r < \min(n, m)$ 。 伪 逆矩阵 \mathbf{A}^+ 可以通过奇异值分解 $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^T$ 构造,即

$$\mathbf{A}^{+} = \mathbf{V}_{r} \mathbf{D}_{r}^{-1} \mathbf{U}_{r}^{T} \tag{223}$$

其中 \mathbf{U}_r 、 \mathbf{D}_r 和 \mathbf{V}_r 是删除了退化行和列的矩阵。 另一种方式是:总是存在两个满秩矩阵 \mathbf{C} $n\times r$ 和 \mathbf{D} $r\times m$,使得 $\mathbf{A}=\mathbf{C}\mathbf{D}$ 。 利用这些矩阵,有以下关系成立

$$\mathbf{A}^{+} = \mathbf{D}^{T} (\mathbf{D} \mathbf{D}^{T})^{-1} (\mathbf{C}^{T} \mathbf{C})^{-1} \mathbf{C}^{T}$$
(224)

参见[3]。

4复数矩阵

复数标量积 r = pq可以写成

$$\begin{bmatrix}
\Re r \\
\Im r
\end{bmatrix} = \begin{bmatrix}
\Re p & -\Im p \\
\Im p & \Re p
\end{bmatrix} \begin{bmatrix}
\Re q \\
\Im q
\end{bmatrix}$$
(225)

4.1 复数导数

为了对复数z进行表达式 f(z) 的微分,需要满足柯西-黎曼方程组([7]): df(z)

$$\frac{1}{dz} = \frac{\partial \Re(f(z))}{\partial \Re z} + i \frac{\partial \Im(f(z))}{\partial \Re z}$$
 (226)

和

$$\frac{df(z)}{dz} = -i\frac{\partial \Re(f(z))}{\partial \Im z} + \frac{\partial \Im(f(z))}{\partial \Im z}$$
 (227)

或者更简洁地表示为:

$$\frac{\partial f(z)}{\partial \Im z} = i \frac{\partial f(z)}{\partial \Re z}.$$
 (228)

满足区域R中点的柯西-黎曼方程的复函数被称为在该区域R中是解析的。一般来说,涉及复共轭或共轭转置的表达式不满足柯西-黎曼方程。为了避免这个问题,使用了更广义的复导数定义([24],[6]):

• 广义复导数:

$$\frac{df(z)}{dz} = \frac{1}{2} \left(\frac{\partial f(z)}{\partial \Re z} - i \frac{\partial f(z)}{\partial \Im z} \right). \tag{229}$$

• 共轭复导数:

$$\frac{df(z)}{dz^*} = \frac{1}{2} \left(\frac{\partial f(z)}{\partial \Re z} + i \frac{\partial f(z)}{\partial \Im z} \right). \tag{230}$$

当 f是解析函数时,广义复导数等于普通导数。 对于非解析函数,如 $f(z)=z^*$,导数等于零。 当 f是解析函数时,共轭复导数等于零。 在推导复梯度时,例如[21]使用了共轭复导数。

注意:

$$\frac{df(z)}{dz} = \frac{\partial f(z)}{\partial \Re z} + i \frac{\partial f(z)}{\partial \Im z}.$$
 (231)

● 复梯度向量:如果 ƒ是一个关于复向量 z的实函数,那么复梯度向量由以下公式给出([14, p. 798])

$$\nabla f(\mathbf{z}) = 2 \frac{df(\mathbf{z})}{d\mathbf{z}^*}$$

$$= \frac{\partial f(\mathbf{z})}{\partial \Re \mathbf{z}} + i \frac{\partial f(\mathbf{z})}{\partial \Im \mathbf{z}}.$$
(232)

● 复梯度矩阵: 如果 f是一个关于复矩阵 Z的实函数, 那么复梯度矩阵由以下公式给出([2])

$$\nabla f(\mathbf{Z}) = 2 \frac{df(\mathbf{Z})}{d\mathbf{Z}^*}$$

$$= \frac{\partial f(\mathbf{Z})}{\partial \Re \mathbf{Z}} + i \frac{\partial f(\mathbf{Z})}{\partial \Im \mathbf{Z}}.$$
(233)

这些表达式可用干梯度下降算法。

4.1.1 复数的链式法则

当复数函数u = f(x)是非解析的时候,链式法则会更加复杂。 对于非解析函数 ,可以应用以下链式法则([7]) $\partial q(u)$

$$\frac{\partial u}{\partial x} = \frac{\partial g}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial g}{\partial u^*} \frac{\partial u^*}{\partial x} \\
= \frac{\partial g}{\partial u} \frac{\partial u}{\partial x} + \left(\frac{\partial g^*}{\partial u}\right)^* \frac{\partial u^*}{\partial x} \tag{234}$$

注意,如果函数是解析的,第二项将减少为零,函数将简化为常规的众所周知 的链式法则。 对于标量函数 $g(\mathbf{U})$ 的矩阵导数,链式法则可以写成以下形式:

$$\frac{\partial g(\mathbf{U})}{\partial \mathbf{X}} = \frac{\mathrm{Tr}((\frac{\partial g(\mathbf{U})}{\partial \mathbf{U}})^T \partial \mathbf{U})}{\partial \mathbf{X}} + \frac{\mathrm{Tr}((\frac{\partial g(\mathbf{U})}{\partial \mathbf{U}^*})^T \partial \mathbf{U}^*)}{\partial \mathbf{X}}.$$
 (235)

4.1.2 复数的迹导数

如果导数涉及复数,通常会涉及共轭转置。 显示复数导数最有用的方法是分别 显示对实部和虚部的导数。一个简单的例子是:

$$\frac{\partial \text{Tr}(\mathbf{X}^*)}{\partial \Re \mathbf{X}} = \frac{\partial \text{Tr}(\mathbf{X}^H)}{\partial \Re \mathbf{X}} = \mathbf{I}$$
 (236)

$$\frac{\partial \text{Tr}(\mathbf{X}^*)}{\partial \Re \mathbf{X}} = \frac{\partial \text{Tr}(\mathbf{X}^H)}{\partial \Re \mathbf{X}} = \mathbf{I}$$

$$i \frac{\partial \text{Tr}(\mathbf{X}^*)}{\partial \Im \mathbf{X}} = i \frac{\partial \text{Tr}(\mathbf{X}^H)}{\partial \Im \mathbf{X}} = \mathbf{I}$$
(236)

由于这两个结果具有相同的符号,应使用共轭复数导数(230)。

$$\frac{\partial \text{Tr}(\mathbf{X})}{\partial \Re \mathbf{X}} = \frac{\partial \text{Tr}(\mathbf{X}^T)}{\partial \Re \mathbf{X}} = \mathbf{I}$$
 (238)

$$\frac{\partial \text{Tr}(\mathbf{X})}{\partial \Re \mathbf{X}} = \frac{\partial \text{Tr}(\mathbf{X}^T)}{\partial \Re \mathbf{X}} = \mathbf{I}$$

$$i \frac{\partial \text{Tr}(\mathbf{X})}{\partial \Im \mathbf{X}} = i \frac{\partial \text{Tr}(\mathbf{X}^T)}{\partial \Im \mathbf{X}} = -\mathbf{I}$$
(238)

在这里,这两个结果具有不同的符号,应使用广义复数导数(229)。因此, 即使 X是一个复数,也可以看出(100)成立。

$$\frac{\partial \text{Tr}(\mathbf{A}\mathbf{X}^H)}{\partial \Re \mathbf{X}} = \mathbf{A} \tag{240}$$

$$\frac{\partial \text{Tr}(\mathbf{A}\mathbf{X}^{H})}{\partial \Re \mathbf{X}} = \mathbf{A}$$

$$i \frac{\partial \text{Tr}(\mathbf{A}\mathbf{X}^{H})}{\partial \Im \mathbf{X}} = \mathbf{A}$$
(240)

$$\frac{\partial \text{Tr}(\mathbf{A}\mathbf{X}^*)}{\partial \Re \mathbf{X}} = \mathbf{A}^T \tag{242}$$

$$\frac{\partial \text{Tr}(\mathbf{A}\mathbf{X}^*)}{\partial \Re \mathbf{X}} = \mathbf{A}^T$$

$$i \frac{\partial \text{Tr}(\mathbf{A}\mathbf{X}^*)}{\partial \Re \mathbf{X}} = \mathbf{A}^T$$
(242)

$$\frac{\partial \text{Tr}(\mathbf{X}\mathbf{X}^H)}{\partial \Re \mathbf{X}} = \frac{\partial \text{Tr}(\mathbf{X}^H \mathbf{X})}{\partial \Re \mathbf{X}} = 2\Re \mathbf{X}$$
 (244)

$$i \frac{\partial \Re \mathbf{X}}{\partial \Im \mathbf{X}} = i \frac{\partial \Re \mathbf{X}}{\partial \Im \mathbf{X}} = i 2\Im \mathbf{X}$$
 (245)

通过将(244)和(245)插入(229)和(230)中,可以看到

$$\frac{\partial \text{Tr}(\mathbf{X}\mathbf{X}^{H})}{\partial \mathbf{X}} = \mathbf{X}^{*}$$

$$\frac{\partial \text{Tr}(\mathbf{X}\mathbf{X}^{H})}{\partial \mathbf{X}^{*}} = \mathbf{X}$$
(246)

$$\frac{\partial \text{Tr}(\mathbf{X}\mathbf{X}^H)}{\partial \mathbf{X}^*} = \mathbf{X} \tag{247}$$

由于函数 $Tr(XX^H)$ 是复矩阵 X的实函数,复梯度矩阵(233)由以下给出

$$\nabla \text{Tr}(\mathbf{X}\mathbf{X}^{H}) = 2\frac{\partial \text{Tr}(\mathbf{X}\mathbf{X}^{H})}{\partial \mathbf{X}^{*}} = 2\mathbf{X}$$
(248)

4.1.3涉及行列式的复导数

这里提供一个计算示例。 目标是找到关于 $\mathbf{X} \in \mathbb{C}^{m \times n}$ 的 $\det(\mathbf{X}^H \mathbf{A} \mathbf{X})$ 的导数。 通过对 X的实部和虚部进行求导,利用(42)和(37),可以计算出 $\det(X^H A X)$ 详见附录B.1.4)

$$\frac{\partial \det(\mathbf{X}^{H} \mathbf{A} \mathbf{X})}{\partial \mathbf{X}} = \frac{1}{2} \left(\frac{\partial \det(\mathbf{X}^{H} \mathbf{A} \mathbf{X})}{\partial \Re \mathbf{X}} - i \frac{\partial \det(\mathbf{X}^{H} \mathbf{A} \mathbf{X})}{\partial \Im \mathbf{X}} \right) \\
= \det(\mathbf{X}^{H} \mathbf{A} \mathbf{X}) \left(\mathbf{X}^{H} \mathbf{A} \mathbf{X} \right)^{-1} \mathbf{X}^{H} \mathbf{A} \right)^{T} \tag{249}$$

和复共轭导数产生

$$\frac{\partial \det(\mathbf{X}^{H} \mathbf{A} \mathbf{X})}{\partial \mathbf{X}^{*}} = \frac{1}{2} \left(\frac{\partial \det(\mathbf{X}^{H} \mathbf{A} \mathbf{X})}{\partial \Re \mathbf{X}} + i \frac{\partial \det(\mathbf{X}^{H} \mathbf{A} \mathbf{X})}{\partial \Im \mathbf{X}} \right) \\
= \det(\mathbf{X}^{H} \mathbf{A} \mathbf{X}) \mathbf{A} \mathbf{X} (\mathbf{X}^{H} \mathbf{A} \mathbf{X})^{-1} \tag{250}$$

4.2 高阶和非线性导数

$$\frac{\partial}{\partial \mathbf{x}} \frac{(\mathbf{A}\mathbf{x})^H (\mathbf{A}\mathbf{x})}{(\mathbf{B}\mathbf{x})^H (\mathbf{B}\mathbf{x})} = \frac{\partial}{\partial \mathbf{x}} \frac{\mathbf{x}^H \mathbf{A}^H \mathbf{A}\mathbf{x}}{\mathbf{x}^H \mathbf{B}^H \mathbf{B}\mathbf{x}}$$
(251)

$$= 2\frac{\mathbf{A}^{H}\mathbf{A}\mathbf{x}}{\mathbf{x}^{H}\mathbf{B}\mathbf{B}\mathbf{x}} - 2\frac{\mathbf{x}^{H}\mathbf{A}^{H}\mathbf{A}\mathbf{x}\mathbf{B}^{H}\mathbf{B}\mathbf{x}}{(\mathbf{x}^{H}\mathbf{B}^{H}\mathbf{B}\mathbf{x})^{2}}$$
(252)

4.3复数和的逆 4复数矩阵

4.3 复数和的逆

给定实矩阵 A, B找到复数和 A + iB的逆。 形成辅助矩阵

$$\mathbf{E} = \mathbf{A} + t\mathbf{B} \tag{253}$$

$$\mathbf{F} = \mathbf{B} - t\mathbf{A},\tag{254}$$

(259)

并找到一个值为 t 的 \mathbf{E}^{-1} 存在。然后

$$(\mathbf{A} + i\mathbf{B})^{-1} = (1 - it)(\mathbf{E} + i\mathbf{F})^{-1}$$
(255)

$$= (1 - it)((\mathbf{E} + \mathbf{F}\mathbf{E}^{-1}\mathbf{F})^{-1} - i(\mathbf{E} + \mathbf{F}\mathbf{E}^{-1}\mathbf{F})^{-1}\mathbf{F}\mathbf{E}^{-1})(256)$$

$$= (1 - it)(\mathbf{E} + \mathbf{F}\mathbf{E}^{-1}\mathbf{F})^{-1}(\mathbf{I} - i\mathbf{F}\mathbf{E}^{-1})$$
(257)

$$= (\mathbf{E} + \mathbf{F}\mathbf{E}^{-1}\mathbf{F})^{-1}((\mathbf{I} - t\mathbf{F}\mathbf{E}^{-1}) - i(t\mathbf{I} + \mathbf{F}\mathbf{E}^{-1}))$$
(258)

$$= (\mathbf{E} + \mathbf{F}\mathbf{E}^{-1}\mathbf{F})^{-1}(\mathbf{I} - t\mathbf{F}\mathbf{E}^{-1})$$
(259)

5解和分解

5.1 线性方程的解

5.1.1 简单线性回归

假设我们有数据 (x_n,y_n) for n=1,...,N and are seeking the parameters $a,b\in\mathbb{R}$ such that $y_i\cong ax_i+b$. 使用最小二乘误差函数,可以用以下符号表示最优的a,b值

$$\mathbf{x} = (x_1, ..., x_N)^T$$
 $\mathbf{y} = (y_1, ..., y_N)^T$ $\mathbf{1} = (1, ..., 1)^T \in \mathbb{R}^{N \times 1}$

和

$$R_{xx} = \mathbf{x}^T \mathbf{x} \quad R_{x1} = \mathbf{x}^T \mathbf{1} \quad R_{11} = \mathbf{1}^T \mathbf{1}$$

$$R_{yx} = \mathbf{y}^T \mathbf{x} \quad R_{y1} = \mathbf{y}^T \mathbf{1}$$

如

$$\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} R_{xx} & R_{x1} \\ R_{x1} & R_{11} \end{bmatrix}^{-1} \begin{bmatrix} R_{x,y} \\ R_{y1} \end{bmatrix}$$
 (260)

5.1.2 线性系统中的存在性

假设 A是 $n \times m$ 的,并考虑线性系统

$$\mathbf{A}\mathbf{x} = \mathbf{b} \tag{261}$$

构造增广矩阵 $\mathbf{B} = [\mathbf{A} \ \mathbf{b}]$ 然后

条件 解
$$\operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{B}) = m$$
 唯一解 \mathbf{x} $\operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{B}) < m$ 多个解 \mathbf{x} $\operatorname{rank}(\mathbf{A}) < \operatorname{rank}(\mathbf{B})$ 无解 \mathbf{x}

5.1.3 标准方阵

假设 A是方阵且可逆,则

$$\mathbf{A}\mathbf{x} = \mathbf{b} \qquad \Rightarrow \qquad \mathbf{x} = \mathbf{A}^{-1}\mathbf{b} \tag{262}$$

5.1.4 退化的方阵

假设 ${\bf A}$ 是一个 $n \times n$ 的矩阵,但是它的秩为r < n。 在这种情况下,方程组 ${\bf A}$ x = ${\bf b}$ 的解为

$$x = A^+b$$

其中 A+是秩缺失矩阵的伪逆,根据第3.6.3节的描述构造。

5.1.5 克莱姆法则

方程

$$\mathbf{A}\mathbf{x} = \mathbf{b},\tag{263}$$

其中 A是方阵,如果 x的第 i个元素可以表示为

$$x_i = \frac{\det \mathbf{B}}{\det \mathbf{A}},\tag{264}$$

其中 B等于 A, 但是 A的第 i列被 b替换。

5.1.6 过定的矩形方程组

假设 A是一个 $n \times m$ 的矩阵,n > m(高矩阵),且rank(A) = m,那

么方程组
$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
的 \Rightarrow $\mathbf{x} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b} = \mathbf{A}^+ \mathbf{b}$ (265)

也就是说如果存在解x的话!如果没有解,下面的内容可能会有用:Ax = b

$$\Rightarrow \mathbf{x}_{min} = \mathbf{A}^+ \mathbf{b} \tag{266}$$

现在, \mathbf{x}_{min} 是向量 \mathbf{x} ,它最小化了 $||\mathbf{A}\mathbf{x}-\mathbf{b}||^2$,也就是说,它是最"接近正确"的向量。 矩阵 \mathbf{A}^+ 是 \mathbf{A} 的伪逆矩阵。参见[3]。

5.1.7 欠定矩形

假设 \mathbf{A} 是一个 $n \times m$ 的矩阵,且n < m ("宽"),且 $\mathrm{rank}(\mathbf{A}) = n$ 。

$$\mathbf{A}\mathbf{x} = \mathbf{b} \qquad \Rightarrow \qquad \mathbf{x}_{min} = \mathbf{A}^T (\mathbf{A}\mathbf{A}^T)^{-1}\mathbf{b}$$
 (267)

该方程有很多解 \mathbf{x} 。 但是, \mathbf{x}_{min} 是最小化了 $||\mathbf{A}\mathbf{x} - \mathbf{b}||^2$ 的解,也是具有最小范数 $||\mathbf{x}||^2$ 的解。 对于矩阵版本也是一样的:假设 \mathbf{A} 是一个 $n \times m$ 的矩阵, \mathbf{X} 是一个 $m \times n$ 的矩阵, \mathbf{B} 是一个 $n \times n$ 的矩阵,那么 $\mathbf{A}\mathbf{X} = \mathbf{B}$

$$\Rightarrow \mathbf{X}_{min} = \mathbf{A}^{+}\mathbf{B} \tag{268}$$

方程有很多解 X。 但是 X_{min} 是最小化 $||AX-B||^2$ 的解,也是具有最小范数 $||X||^2$ 的解。参见[3]。

类似但不同: 假设 **A**是方阵 $n \times n$,矩阵 **B**₀,**B**₁

是 $n \times N$ 的矩阵,其中N > n,那么如果 \mathbf{B}_0 具有最大秩

$$\mathbf{A}\mathbf{B}_0 = \mathbf{B}_1 \qquad \Rightarrow \qquad \mathbf{A}_{min} = \mathbf{B}_1 \mathbf{B}_0^T (\mathbf{B}_0 \mathbf{B}_0^T)^{-1} \tag{269}$$

其中 \mathbf{A}_{min} 表示在最小二乘意义下最优的矩阵。 一种解释是 \mathbf{A} 是将 \mathbf{B}_0 的列向量映射到 \mathbf{B}_1 的列向量的线性近似。

5.1.8 线性形式和零解

$$Ax = 0$$
, 对于所有的 $x \Rightarrow A = 0$ (270)

5.1.9 方阵形式和零

如果 A是对称的,则

$$\mathbf{x}^T \mathbf{A} \mathbf{x} = \mathbf{0}, \quad \forall \mathbf{x} \qquad \Rightarrow \qquad \mathbf{A} = \mathbf{0} \tag{271}$$

5.1.10 李亚普诺夫方程

$$\mathbf{AX} + \mathbf{XB} = \mathbf{C} \tag{272}$$

$$\operatorname{vec}(\mathbf{X}) = (\mathbf{I} \otimes \mathbf{A} + \mathbf{B}^T \otimes \mathbf{I})^{-1} \operatorname{vec}(\mathbf{C})$$
 (273)

有关克罗内克积和vec运算符的详细信息,请参见第10.2.1节和10.2.2节。

5.1.11 封装求和

$$\sum_{n} \mathbf{A}_{n} \mathbf{X} \mathbf{B}_{n} = \mathbf{C} \tag{274}$$

$$\sum_{n} \mathbf{A}_{n} \mathbf{X} \mathbf{B}_{n} = \mathbf{C}$$

$$\operatorname{vec}(\mathbf{X}) = \left(\sum_{n} \mathbf{B}_{n}^{T} \otimes \mathbf{A}_{n}\right)^{-1} \operatorname{vec}(\mathbf{C})$$
(274)

有关克罗内克积和vec运算符的详细信息,请参见第10.2.1节和10.2.2节。

5.2 特征值和特征向量

5.2.1 定义

特征向量 v_i 和特征值 λ_i 满足以下条件

$$\mathbf{A}\mathbf{v}_i = \lambda_i \mathbf{v}_i \tag{276}$$

5.2.2 分解

对于具有与维度相同数量的不同特征值的矩阵 A,以下等式成立,其中 V的列 是特征向量, $(\mathbf{D})_{ij} = \delta_{ij}\lambda_i$, $\mathbf{AV} = \mathbf{VD}$

(277)对

于有缺陷的矩阵 \mathbf{A} ,即具有较少不同特征值的矩阵,以下分解称为Jordan规范 形式,成立

$$\mathbf{AV} = \mathbf{VJ} \tag{278}$$

其中 J是一个块对角矩阵,块 $J_i = \lambda_i I + N$ 。 矩阵 J_i 的维度与相同特征值 λ_i 的数量相等, N是一个大小相同的方阵,其超对角线上为1,其他位置为0。 对于所有矩阵 A,存在矩阵 V和 R使得

$$AV = VR$$
也成立 (279)

其中 \mathbf{R} 是上三角矩阵,其对角线上是特征值 λ_i

 $\mathbf{5.2.3}$ 一般性质假设 $\mathbf{A} \in \mathbb{R}^{n \times m}$ 和 $\mathbf{B} \in \mathbb{R}$

 $m \times n$, $\mathbf{\square} \operatorname{eig}(\mathbf{AB}) = \operatorname{eig}(\mathbf{BA})$

(280)

$$rank(\mathbf{A}) = r \Rightarrow$$
 最多有 r 个非零特征值 λ_i (281)

5.2.4 对称性

假设 A 是对称矩阵,则

$$\mathbf{V}\mathbf{V}^T = \mathbf{I} \quad (\mathbf{p} \ \mathbf{V}$$
是正交矩阵 $)$ (282)

$$\lambda_i \in \mathbb{R}$$
 (即特征值 λ_i 是实数) (283)

$$\operatorname{Tr}(\mathbf{A}^p) = \sum_{i} \lambda_i^p \tag{284}$$

$$\operatorname{eig}(\mathbf{I} + c\mathbf{A}) = 1 + c\lambda_i \tag{285}$$

$$\operatorname{eig}(\mathbf{A} - c\mathbf{I}) = \lambda_i - c \tag{286}$$

$$\operatorname{eig}(\mathbf{A}^{-1}) = \lambda_i^{-1} \tag{287}$$

对于一个对称的正矩阵 A,

$$\operatorname{eig}(\mathbf{A}^T \mathbf{A}) = \operatorname{eig}(\mathbf{A} \mathbf{A}^T) = \operatorname{eig}(\mathbf{A}) \circ \operatorname{eig}(\mathbf{A})$$
(288)

5.2.5 特征多项式

矩阵 A的特征多项式为

$$0 = \det(\mathbf{A} - \lambda \mathbf{I})$$

$$= \lambda^{n} - g_{1}\lambda^{n-1} + g_{2}\lambda^{n-2} - \dots + (-1)^{n}g_{n}$$
(289)
(290) 注意,

系数 g_j 对于 j=1,...,n在旋转下是不变的矩阵 **A**. 因此, g_j 是 **A**的所有子矩阵 的行和列的行列式之和取j行和列的情况下。 也就是说, g_1 是 **A**的迹, g_2 是从 **A**中删除所有但两行和两列后可以形成的所有(n(n-1)/2)个子矩阵的行列式之和,以此类推 - 参见[17]。

5.3 奇异值分解

任意 $n \times m$ 矩阵 **A**可以表示为

$$\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^T,\tag{291}$$

其中

$$\mathbf{U} =$$
矩阵 $\mathbf{A}\mathbf{A}^T$ 的特征向量,维度为 $n \times n$ $\mathbf{D} = \sqrt{\mathrm{diag}(\mathrm{eig}(\mathbf{A}\mathbf{A}^T))} \qquad n \times m$ $\mathbf{V} =$ 矩阵 $\sqrt{\mathbf{A}^T\mathbf{A}}$ 的特征向量,维度为 $m \times m$ (292)

5.3.1 对称方阵分解为平方

假设 **A** 为 $n \times n$ 的对称方阵。则

$$\left[\begin{array}{c} \mathbf{A} \end{array}\right] = \left[\begin{array}{c} \mathbf{V} \end{array}\right] \left[\begin{array}{c} \mathbf{D} \end{array}\right] \left[\begin{array}{c} \mathbf{V}^T \end{array}\right],\tag{293}$$

其中 D是 A的特征值构成的对角矩阵, V是正交矩阵,是 A的特征向量。

5.3.2 方阵分解为平方

假设 $\mathbf{A} \in \mathbb{R}^{n \times n}$ 。则

$$\left[\begin{array}{c} \mathbf{A} \end{array}\right] = \left[\begin{array}{c} \mathbf{V} \end{array}\right] \left[\begin{array}{c} \mathbf{D} \end{array}\right] \left[\begin{array}{c} \mathbf{U}^T \end{array}\right], \tag{294}$$

其中 D是对角线,其元素为 $\overrightarrow{A}A^T$ 的特征值的平方根, \overrightarrow{V} \overrightarrow{V} $\overrightarrow{A}A^T$ 的特征向量 , \overrightarrow{U} \overrightarrow{U}

5.3.3 方阵分解为矩形

假设 $\mathbf{V}_*\mathbf{D}_*\mathbf{U}_*^T=\mathbf{0}$,那么我们可以将 A的奇异值分解展开为

$$\begin{bmatrix} \mathbf{A} \end{bmatrix} = \begin{bmatrix} \mathbf{V} \mid \mathbf{V}_* \end{bmatrix} \begin{bmatrix} \mathbf{D} \mid \mathbf{0} \\ \mathbf{0} \mid \mathbf{D}_* \end{bmatrix} \begin{bmatrix} \mathbf{U}^T \\ \mathbf{U}_*^T \end{bmatrix}, \tag{295}$$

其中 A的奇异值分解为 $A = VDU^T$ 。

5.3.4 矩形分解 I

假设 A是 $n \times m$ 的矩阵, V是 $n \times n$ 的矩阵, D是 $n \times n$ 的矩阵, \mathbf{U}^T 是 $n \times m$

$$\begin{bmatrix} \mathbf{A} & \end{bmatrix} = \begin{bmatrix} \mathbf{V} \end{bmatrix} \begin{bmatrix} \mathbf{D} \end{bmatrix} \begin{bmatrix} \mathbf{U}^T & \end{bmatrix}, \tag{296}$$

其中 D是对角线上的特征值的平方根 $\mathbf{A}\mathbf{A}^T$,V是 $\mathbf{A}\mathbf{A}^T$ 的特征向量 \mathbf{U}^T 是 $\mathbf{A}^T\mathbf{A}$ 的特征向量。

5.3.5 矩形分解 II

假设 A是 $n \times m$ 的矩阵 V是 $n \times m$ 的矩阵 D是 $m \times m$ 的矩阵 \mathbf{U}^T 是 $m \times m$

$$\begin{bmatrix} \mathbf{A} & \end{bmatrix} = \begin{bmatrix} \mathbf{V} & \end{bmatrix} \begin{bmatrix} \mathbf{D} & \end{bmatrix} \begin{bmatrix} \mathbf{U}^T & \end{bmatrix}$$
 (297)

5.3.6 矩形分解 III

假设 A是 $n \times m$ 的矩阵 V是 $n \times n$ 的矩阵 D是 $n \times m$ 的矩阵 U^T是 $m \times m$

$$\begin{bmatrix} \mathbf{A} & \end{bmatrix} = \begin{bmatrix} \mathbf{V} \end{bmatrix} \begin{bmatrix} \mathbf{D} & \end{bmatrix} \begin{bmatrix} \mathbf{U}^T & \end{bmatrix}, \tag{298}$$

其中 D是对角线上的特征值的平方根 $\mathbf{A}\mathbf{A}^T$,V是 $\mathbf{A}\mathbf{A}^T$ 的特征向量 \mathbf{U}^T 是 $\mathbf{A}^T\mathbf{A}$ 的特征向量。

5.4 三角分解

5.5 LU分解

假设 A是一个具有非零主子式的方阵,则

$$\mathbf{A} = \mathbf{L}\mathbf{U} \tag{299}$$

其中 L是一个唯一的单位下三角矩阵, U是一个唯一的上三角矩阵。

5.5.1 乔列斯基分解

假设 A是一个对称正定的方阵,那么

$$\mathbf{A} = \mathbf{U}^T \mathbf{U} = \mathbf{L} \mathbf{L}^T, \tag{300}$$

其中 U是一个唯一的上三角矩阵, L是一个下三角矩阵。

5.6 LDM分解 5 解和分解

5.6 LDM分解

假设 A是一个具有非零主子式1的方阵,那么

$$\mathbf{A} = \mathbf{L}\mathbf{D}\mathbf{M}^T \tag{301}$$

其中 L, M是唯一的单位下三角矩阵, D是一个唯一的对角矩阵。

5.7 LDL分解

LDL分解是LDM分解的特殊情况。假设 A是一个非奇异的对称正定方阵,那么

$$\mathbf{A} = \mathbf{L}\mathbf{D}\mathbf{L}^T = \mathbf{L}^T\mathbf{D}\mathbf{L} \tag{302}$$

其中 L是一个单位下三角矩阵, D是一个对角矩阵。 如果 A也是正定的,那 Δ D的对角线元素严格为正。

 $^{^{-1}}$ 如果与一个主子式相对应的矩阵是较大矩阵的二次上左部分(即由行和列从 1 到k的矩阵元素组成),则该主子式称为前导主子式。 对于一个 1 和乘 1 的方阵,有 1 个前导主子式。 [31]

6 统计与概率

6.1 矩的定义

假设 $\mathbf{x} \in \mathbb{R}^{n \times 1}$ 是一个随机变量

6.1.1 均值

均值向量 丽的定义如下

$$(\mathbf{m})_i = \langle x_i \rangle \tag{303}$$

6.1.2 协方差

协方差矩阵 M的定义如下

$$(\mathbf{M})_{ij} = \langle (x_i - \langle x_i \rangle)(x_j - \langle x_j \rangle) \rangle \tag{304}$$

或者可以写成

$$\mathbf{M} = \langle (\mathbf{x} - \mathbf{m})(\mathbf{x} - \mathbf{m})^T \rangle \tag{305}$$

6.1.3 第三阶矩

第三阶中心矩阵 - 在某些情况下称为共偏斜度 - 使用以下符号定义

$$m_{ijk}^{(3)} = \langle (x_i - \langle x_i \rangle)(x_j - \langle x_j \rangle)(x_k - \langle x_k \rangle) \rangle$$
 (306)

如

$$\mathbf{M}_{3} = \left[m_{::1}^{(3)} m_{::2}^{(3)} \dots m_{::n}^{(3)} \right] \tag{307}$$

其中': '表示给定索引内的所有元素。 M3也可以表示为

$$\mathbf{M}_3 = \langle (\mathbf{x} - \mathbf{m})(\mathbf{x} - \mathbf{m})^T \otimes (\mathbf{x} - \mathbf{m})^T \rangle \tag{308}$$

6.1.4 四阶矩

第四阶中心矩阵 - 在某些情况下也称为峰度 - 使用以下符号定义

$$m_{ijkl}^{(4)} = \langle (x_i - \langle x_i \rangle)(x_j - \langle x_j \rangle)(x_k - \langle x_k \rangle)(x_l - \langle x_l \rangle) \rangle$$
 (309)

在

$$\mathbf{M}_{4} = \left[m_{::11}^{(4)} m_{::21}^{(4)} ... m_{::n1}^{(4)} | m_{::12}^{(4)} m_{::22}^{(4)} ... m_{::n1}^{(4)} | ... | m_{::1n}^{(4)} m_{::2n}^{(4)} ... m_{::nn}^{(4)} \right]$$
(310)

或者可以表示为

$$\mathbf{M}_4 = \langle (\mathbf{x} - \mathbf{m})(\mathbf{x} - \mathbf{m})^T \otimes (\mathbf{x} - \mathbf{m})^T \otimes (\mathbf{x} - \mathbf{m})^T \rangle$$
(311)

6.2 线性组合的期望

6.2.1 线性形式

假设 X和 x是一个矩阵和一个随机变量向量。那么(见 ϕ 见[26])

$$E[\mathbf{AXB} + \mathbf{C}] = \mathbf{A}E[\mathbf{X}]\mathbf{B} + \mathbf{C}$$
 (312)

$$Var[\mathbf{A}\mathbf{x}] = \mathbf{A}Var[\mathbf{x}]\mathbf{A}^T \tag{313}$$

$$Cov[\mathbf{A}\mathbf{x}, \mathbf{B}\mathbf{y}] = \mathbf{A}Cov[\mathbf{x}, \mathbf{y}]\mathbf{B}^{T}$$
(314)

假设 x是一个具有均值 m的随机向量,那么(见[7])

$$E[\mathbf{A}\mathbf{x} + \mathbf{b}] = \mathbf{A}\mathbf{m} + \mathbf{b} \tag{315}$$

$$E[\mathbf{A}\mathbf{x}] = \mathbf{A}\mathbf{m} \tag{316}$$

$$E[\mathbf{x} + \mathbf{b}] = \mathbf{m} + \mathbf{b} \tag{317}$$

6.2.2 二次型

假设 **A**是对称的, **c** = $E[\mathbf{x}]$ 和 $\Sigma = \mathrm{Var}[\mathbf{x}]$. 还假设所有坐标 x_i 是独立的,具有相同的中心矩 $\mu_1, \mu_2, \mu_3, \mu_4$ 并且记 $\mathbf{a} = \mathrm{diag}(\mathbf{A})$. 那么(参见[26])

$$E[\mathbf{x}^T \mathbf{A} \mathbf{x}] = \operatorname{Tr}(\mathbf{A} \mathbf{\Sigma}) + \mathbf{c}^T \mathbf{A} \mathbf{c}$$
(318)

$$\operatorname{Var}[\mathbf{x}^{T}\mathbf{A}\mathbf{x}] = 2\mu_{2}^{2}\operatorname{Tr}(\mathbf{A}^{2}) + 4\mu_{2}\mathbf{c}^{T}\mathbf{A}^{2}\mathbf{c} + 4\mu_{3}\mathbf{c}^{T}\mathbf{A}\mathbf{a} + (\mu_{4} - 3\mu_{2}^{2})\mathbf{a}^{T}\mathbf{a} (319)$$

另外,假设 x是一个均值为 m,协方差为 M的随机向量(见[7])

$$E[(\mathbf{A}\mathbf{x} + \mathbf{a})(\mathbf{B}\mathbf{x} + \mathbf{b})^{T}] = \mathbf{A}\mathbf{M}\mathbf{B}^{T} + (\mathbf{A}\mathbf{m} + \mathbf{a})(\mathbf{B}\mathbf{m} + \mathbf{b})^{T}$$
(320)

$$E[\mathbf{x}\mathbf{x}^T] = \mathbf{M} + \mathbf{m}\mathbf{m}^T \tag{321}$$

$$E[\mathbf{x}\mathbf{a}^T\mathbf{x}] = (\mathbf{M} + \mathbf{m}\mathbf{m}^T)\mathbf{a} \tag{322}$$

$$E[\mathbf{x}^T \mathbf{a} \mathbf{x}^T] = \mathbf{a}^T (\mathbf{M} + \mathbf{m} \mathbf{m}^T) \tag{323}$$

$$E[(\mathbf{A}\mathbf{x})(\mathbf{A}\mathbf{x})^T] = \mathbf{A}(\mathbf{M} + \mathbf{m}\mathbf{m}^T)\mathbf{A}^T$$
 (324)

$$E[(\mathbf{x} + \mathbf{a})(\mathbf{x} + \mathbf{a})^T] = \mathbf{M} + (\mathbf{m} + \mathbf{a})(\mathbf{m} + \mathbf{a})^T$$
(325)

$$E[(\mathbf{A}\mathbf{x} + \mathbf{a})^T(\mathbf{B}\mathbf{x} + \mathbf{b})] = \operatorname{Tr}(\mathbf{A}\mathbf{M}\mathbf{B}^T) + (\mathbf{A}\mathbf{m} + \mathbf{a})^T(\mathbf{B}\mathbf{m} + \mathbf{b})$$
(326)

$$E[\mathbf{x}^T \mathbf{x}] = \operatorname{Tr}(\mathbf{M}) + \mathbf{m}^T \mathbf{m}$$
 (327)

$$E[\mathbf{x}^T \mathbf{A} \mathbf{x}] = \operatorname{Tr}(\mathbf{A} \mathbf{M}) + \mathbf{m}^T \mathbf{A} \mathbf{m}$$
 (328)

$$E[(\mathbf{A}\mathbf{x})^T(\mathbf{A}\mathbf{x})] = \operatorname{Tr}(\mathbf{A}\mathbf{M}\mathbf{A}^T) + (\mathbf{A}\mathbf{m})^T(\mathbf{A}\mathbf{m})$$
(329)

$$E[(\mathbf{x} + \mathbf{a})^T (\mathbf{x} + \mathbf{a})] = \operatorname{Tr}(\mathbf{M}) + (\mathbf{m} + \mathbf{a})^T (\mathbf{m} + \mathbf{a})$$
(330)

见[7]。

6.2.3 立方形式

假设 \mathbf{x} 是一个具有独立坐标、均值 \mathbf{m} 、协方差 \mathbf{M} 和中心矩 $\mathbf{v}_3 = E[(\mathbf{x} - \mathbf{m})^3]$ 的随机向量。然后(参见[7])

$$E[(\mathbf{A}\mathbf{x} + \mathbf{a})(\mathbf{B}\mathbf{x} + \mathbf{b})^T(\mathbf{C}\mathbf{x} + \mathbf{c})] = \mathbf{A} \operatorname{diag}(\mathbf{B}^T\mathbf{C})\mathbf{v}_3 \\ + \operatorname{Tr}(\mathbf{B}\mathbf{M}\mathbf{C}^T)(\mathbf{A}\mathbf{m} + \mathbf{a}) \\ + \mathbf{A}\mathbf{M}\mathbf{C}^T(\mathbf{B}\mathbf{m} + \mathbf{b}) \\ + (\mathbf{A}\mathbf{M}\mathbf{B}^T + (\mathbf{A}\mathbf{m} + \mathbf{a})(\mathbf{B}\mathbf{m} + \mathbf{b})^T)(\mathbf{C}\mathbf{m} + \mathbf{c}) \\ E[\mathbf{x}\mathbf{x}^T\mathbf{x}] = \mathbf{v}_3 + 2\mathbf{M}\mathbf{m} + (\operatorname{Tr}(\mathbf{M}) + \mathbf{m}^T\mathbf{m})\mathbf{m} \\ E[(\mathbf{A}\mathbf{x} + \mathbf{a})(\mathbf{A}\mathbf{x} + \mathbf{a})^T(\mathbf{A}\mathbf{x} + \mathbf{a})] = \mathbf{A} \operatorname{diag}(\mathbf{A}^T\mathbf{A})\mathbf{v}_3 \\ + [2\mathbf{A}\mathbf{M}\mathbf{A}^T + (\mathbf{A}\mathbf{x} + \mathbf{a})(\mathbf{A}\mathbf{x} + \mathbf{a})^T](\mathbf{A}\mathbf{m} + \mathbf{a}) \\ + \operatorname{Tr}(\mathbf{A}\mathbf{M}\mathbf{A}^T)(\mathbf{A}\mathbf{m} + \mathbf{a}) \\ E[(\mathbf{A}\mathbf{x} + \mathbf{a})\mathbf{b}^T(\mathbf{C}\mathbf{x} + \mathbf{c})(\mathbf{D}\mathbf{x} + \mathbf{d})^T] = (\mathbf{A}\mathbf{x} + \mathbf{a})\mathbf{b}^T(\mathbf{C}\mathbf{M}\mathbf{D}^T + (\mathbf{C}\mathbf{m} + \mathbf{c})(\mathbf{D}\mathbf{m} + \mathbf{d})^T) \\ + (\mathbf{A}\mathbf{M}\mathbf{C}^T + (\mathbf{A}\mathbf{m} + \mathbf{a})(\mathbf{C}\mathbf{m} + \mathbf{c})^T)\mathbf{b}(\mathbf{D}\mathbf{m} + \mathbf{d})^T \\ + \mathbf{b}^T(\mathbf{C}\mathbf{m} + \mathbf{c})(\mathbf{A}\mathbf{M}\mathbf{D}^T - (\mathbf{A}\mathbf{m} + \mathbf{a})(\mathbf{D}\mathbf{m} + \mathbf{d})^T)$$

6.3 加权标量变量

假设 $\mathbf{x} \in \mathbb{R}^{n \times 1}$ 是一个随机变量, $\mathbf{w} \in \mathbb{R}^{n \times 1}$ 是一个常数向量,y是线性组合 $y = \mathbf{w}^T \mathbf{x}$ 。 进一步假设 $\mathbf{m}, \mathbf{M}_2, \mathbf{M}_3, \mathbf{M}_4$ 表示变量 \mathbf{x} 的均值、协方差和中心三阶和四阶矩阵。那么有

$$\langle y \rangle = \mathbf{w}^T \mathbf{m} \tag{331}$$

$$\langle (y - \langle y \rangle)^2 \rangle = \mathbf{w}^T \mathbf{M}_2 \mathbf{w}$$
 (332)

$$\langle (y - \langle y \rangle)^3 \rangle = \mathbf{w}^T \mathbf{M}_3 \mathbf{w} \otimes \mathbf{w}$$
 (333)

$$\langle (y - \langle y \rangle)^4 \rangle = \mathbf{w}^T \mathbf{M}_4 \mathbf{w} \otimes \mathbf{w} \otimes \mathbf{w}$$
 (334)

7多元分布

7.1 柯西分布

柯西分布向量的密度函数 $\mathbf{t} \in \mathbb{R}^{P \times 1}$,给定为

$$p(\mathbf{t}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \pi^{-P/2} \frac{\Gamma(\frac{1+P}{2})}{\Gamma(1/2)} \frac{\det(\boldsymbol{\Sigma})^{-1/2}}{\left[1 + (\mathbf{t} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{t} - \boldsymbol{\mu})\right]^{(1+P)/2}}$$
(335)

其中 μ 是位置, Σ 是正定的, Γ 表示伽玛函数。 柯西分布是学生-t分布的特例。

7.2 狄利克雷分布

狄利克雷分布是与多项分布相比的一种"逆"分布,适用于有界连续变量 $\mathbf{x} = [x_1, \dots, x_P][16, p. 44]$

$$p(\mathbf{x}|\boldsymbol{\alpha}) = \frac{\Gamma\left(\sum_{p}^{P} \alpha_{p}\right)}{\prod_{p}^{P} \Gamma(\alpha_{p})} \prod_{p}^{P} x_{p}^{\alpha_{p}-1}$$

7.3 正态分布

正态分布也被称为高斯分布。见第8节。

7.4 正态逆伽马分布

7.5 高斯分布

见第8节。

7.6 多项分布

如果向量 \mathbf{n} 包含计数,即 $(\mathbf{n})_i \in 0, 1, 2, ...$,则离散多项式分布对于 \mathbf{n} 给出

$$P(\mathbf{n}|\mathbf{a}, n) = \frac{n!}{n_1! \dots n_d!} \prod_{i=1}^{d} a_i^{n_i}, \qquad \sum_{i=1}^{d} n_i = n$$
 (336)

其中 a_i 是概率,即 $0 \le a_i \le 1$,且 \sum

7.7 学生t分布

学生- \mathbf{t} 分布向量 $\mathbf{t} \in \mathbb{R}^{P \times 1}$ 的密度由以下公式给出

$$p(\mathbf{t}|\boldsymbol{\mu}, \boldsymbol{\Sigma}, \nu) = (\pi \nu)^{-P/2} \frac{\Gamma(\frac{\nu+P}{2})}{\Gamma(\nu/2)} \frac{\det(\boldsymbol{\Sigma})^{-1/2}}{\left[1 + \nu^{-1}(\mathbf{t} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{t} - \boldsymbol{\mu})\right]^{(\nu+P)/2}}$$
(337)

其中 μ 是位置,比例矩阵 Σ 是对称的、正定的, ν 是自由度, Γ 表示伽玛函数。 对于 $\nu=1$,学生-t分布变成柯西分布(见第7.1节)。

7.7.1 平均值

$$E(\mathbf{t}) = \boldsymbol{\mu}, \qquad \nu > 1 \tag{338}$$

7.7.2 方差

$$cov(\mathbf{t}) = \frac{\nu}{\nu - 2} \Sigma, \qquad \nu > 2 \tag{339}$$

7.7.3 众数

概念 mode意味着最可能值的位置

$$mode(\mathbf{t}) = \boldsymbol{\mu} \tag{340}$$

7.7.4 完整矩阵版本

如果不是一个向量 $\mathbf{t} \in \mathbb{R}^{P \times 1}$,而是一个矩阵 $\mathbf{T} \in \mathbb{R}^{P \times N}$,则对于T的学生- \mathbf{t} 分布为

$$p(\mathbf{T}|\mathbf{M}, \mathbf{\Omega}, \mathbf{\Sigma}, \nu) = \pi^{-N P/2} \prod_{p=1}^{P} \frac{\Gamma\left[(\nu + P - p + 1)/2\right]}{\Gamma\left[(\nu - p + 1)/2\right]} \times \det\left[\mathbf{\Omega}\right)^{-\nu/2} \det(\mathbf{\Sigma})^{-N/2} \times \det\left[\mathbf{\Omega}^{-1} + (\mathbf{T} - \mathbf{M})\mathbf{\Sigma}^{-1}(\mathbf{T} - \mathbf{M})^{\mathsf{T}}\right]^{-(\nu + P)/2} (341)$$

其中 M是位置, Ω 是缩放矩阵, Σ 是正定的, ν 是自由度, Γ 表示伽玛函数。

7.8 Wishart

对于 $\mathbf{M} \in \mathbb{R}^{P \times P}$ 的中心Wishart分布, M是正定的,其中m可以看作是自由度参数[16,方程3.8.1] [8,第2.5节],[11]

$$p(\mathbf{M}|\mathbf{\Sigma}, m) = \frac{1}{2^{mP/2}\pi^{P(P-1)/4}} \prod_{\mathbf{p}}^{P} \Gamma[\frac{1}{2}(m+1-p)] \times \det(\mathbf{\Sigma})^{-m/2} \det(\mathbf{M})^{(m-P-1)/2} \times \exp\left[-\frac{1}{2} \text{Tr}(\mathbf{\Sigma}^{-1}\mathbf{M})\right]$$
(342)

7.8.1 平均值

$$E(\mathbf{M}) = \mathbf{m}\mathbf{\Sigma} \tag{343}$$

7.9 逆Wishart分布

对于 $\mathbf{M} \in \mathbb{R}^{P \times P}$ 的(正常的)逆Wishart分布, M是正定的,其中 m可以被视为自由度参数[11]

$$p(\mathbf{M}|\mathbf{\Sigma}, m) = \frac{1}{2^{mP/2}\pi^{P(P-1)/4} \prod_{p=1}^{p} \Gamma[\frac{1}{2}(m+1-p)]} \times \det(\mathbf{\Sigma})^{m/2} \det(\mathbf{M})^{-(m-P-1)/2} \times \exp\left[-\frac{1}{2} \operatorname{Tr}(\mathbf{\Sigma}\mathbf{M}^{-1})\right]$$
(344)

7.9.1 平均值

$$E(\mathbf{M}) = \mathbf{\Sigma} \frac{1}{m - P - 1} \tag{345}$$

8 高斯分布

8.1 基础知识

8.1.1 密度和归一化

 $\mathbf{x} \sim \mathcal{N}(\mathbf{m}, \boldsymbol{\Sigma})$ 的密度为

$$p(\mathbf{x}) = \frac{1}{\sqrt{\det(2\pi\Sigma)}} \exp\left[-\frac{1}{2}(\mathbf{x} - \mathbf{m})^T \mathbf{\Sigma}^{-1}(\mathbf{x} - \mathbf{m})\right]$$
(346)

请注意,如果 \mathbf{x} 是 $^{ extsf{V}}d$ 维的,则 $\det(2\pi\mathbf{\Sigma})=(2\pi)^{d}\det(\mathbf{\Sigma})$ 。积分和归一化

$$\int \exp\left[-\frac{1}{2}(\mathbf{x} - \mathbf{m})^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{m})\right] d\mathbf{x} = \sqrt{\det(2\pi \mathbf{\Sigma})}$$

$$\int \exp\left[-\frac{1}{2}\mathbf{x}^T \mathbf{\Sigma}^{-1} \mathbf{x} + \mathbf{m}^T \mathbf{\Sigma}^{-1} \mathbf{x}\right] d\mathbf{x} = \sqrt{\det(2\pi \mathbf{\Sigma})} \exp\left[\frac{1}{2}\mathbf{m}^T \mathbf{\Sigma}^{-1} \mathbf{m}\right]$$

$$\int \exp\left[-\frac{1}{2}\mathbf{x}^T \mathbf{A} \mathbf{x} + \mathbf{c}^T \mathbf{x}\right] d\mathbf{x} = \sqrt{\det(2\pi \mathbf{A}^{-1})} \exp\left[\frac{1}{2}\mathbf{c}^T \mathbf{A}^{-T} \mathbf{c}\right]$$

如果 $\mathbf{X} = [\mathbf{x}_1 \mathbf{x}_2 ... \mathbf{x}_n]$ 和 $\mathbf{C} = [\mathbf{c}_1 \mathbf{c}_2 ... \mathbf{c}_n]$, 那么

$$\int \exp\left[-\frac{1}{2}\mathrm{Tr}(\mathbf{X}^T\mathbf{A}\mathbf{X}) + \mathrm{Tr}(\mathbf{C}^T\mathbf{X})\right] d\mathbf{X} = \sqrt{\det(2\pi\mathbf{A}^{-1})}^n \exp\left[\frac{1}{2}\mathrm{Tr}(\mathbf{C}^T\mathbf{A}^{-1}\mathbf{C})\right]$$

密度的导数为

$$\frac{\partial p(\mathbf{x})}{\partial \mathbf{x}} = -p(\mathbf{x}) \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{m})$$
(347)

$$\frac{\partial^{2} p}{\partial \mathbf{x} \partial \mathbf{x}^{T}} = p(\mathbf{x}) \left(\mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{m}) (\mathbf{x} - \mathbf{m})^{T} \mathbf{\Sigma}^{-1} - \mathbf{\Sigma}^{-1} \right)$$
(348)

8.1.2 边缘分布

假设 $\mathbf{x} \sim \mathcal{N}_{\mathbf{x}}(\mu, \Sigma)$ 其中

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_a \\ \mathbf{x}_b \end{bmatrix} \qquad \boldsymbol{\mu} = \begin{bmatrix} \boldsymbol{\mu}_a \\ \boldsymbol{\mu}_b \end{bmatrix} \qquad \boldsymbol{\Sigma} = \begin{bmatrix} \boldsymbol{\Sigma}_a & \boldsymbol{\Sigma}_c \\ \boldsymbol{\Sigma}_c^T & \boldsymbol{\Sigma}_b \end{bmatrix}$$
(349)

然后

$$p(\mathbf{x}_a) = \mathcal{N}_{\mathbf{x}_a}(\boldsymbol{\mu}_a, \boldsymbol{\Sigma}_a) \tag{350}$$

$$p(\mathbf{x}_b) = \mathcal{N}_{\mathbf{x}_b}(\boldsymbol{\mu}_b, \boldsymbol{\Sigma}_b) \tag{351}$$

8.1.3 条件分布

假设 $\mathbf{x} \sim \mathcal{N}_{\mathbf{x}}(\mu, \Sigma)$ 其中

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_a \\ \mathbf{x}_b \end{bmatrix} \qquad \boldsymbol{\mu} = \begin{bmatrix} \boldsymbol{\mu}_a \\ \boldsymbol{\mu}_b \end{bmatrix} \qquad \boldsymbol{\Sigma} = \begin{bmatrix} \boldsymbol{\Sigma}_a & \boldsymbol{\Sigma}_c \\ \boldsymbol{\Sigma}_c^T & \boldsymbol{\Sigma}_b \end{bmatrix}$$
(352)

然后

$$p(\mathbf{x}_a|\mathbf{x}_b) = \mathcal{N}_{\mathbf{x}_a}(\hat{\mu}_a, \hat{\Sigma}_a) \qquad \left\{ \begin{array}{lcl} \hat{\mu}_a & = & \mu_a + \Sigma_c \Sigma_b^{-1} (\mathbf{x}_b - \mu_b) \\ \hat{\Sigma}_a & = & \Sigma_a - \Sigma_c \Sigma_b^{-1} \Sigma_c^T \end{array} \right. \tag{353}$$

$$p(\mathbf{x}_b|\mathbf{x}_a) = \mathcal{N}_{\mathbf{x}_b}(\hat{\mu}_b, \hat{\mathbf{\Sigma}}_b) \qquad \left\{ \begin{array}{lcl} \hat{\boldsymbol{\mu}}_b & = & \boldsymbol{\mu}_b + \boldsymbol{\Sigma}_c^T \boldsymbol{\Sigma}_a^{-1} (\mathbf{x}_a - \boldsymbol{\mu}_a) \\ \hat{\mathbf{\Sigma}}_b & = & \boldsymbol{\Sigma}_b - \boldsymbol{\Sigma}_c^T \boldsymbol{\Sigma}_a^{-1} \boldsymbol{\Sigma}_c \end{array} \right. \tag{354}$$

注意,协方差矩阵是块矩阵的舒尔补,详见9.1.5

8.1.4 线性组合

假设
$$\mathbf{x} \sim \mathcal{N}(\mathbf{m}_x, \mathbf{\Sigma}_x)$$
 和 $\mathbf{y} \sim \mathcal{N}(\mathbf{m}_y, \mathbf{\Sigma}_y)$,则
$$\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{y} + \mathbf{c} \sim \mathcal{N}(\mathbf{A}\mathbf{m}_x + \mathbf{B}\mathbf{m}_y + \mathbf{c}, \mathbf{A}\mathbf{\Sigma}_x\mathbf{A}^T + \mathbf{B}\mathbf{\Sigma}_y\mathbf{B}^T)$$
 (355)

8.1.5 重新排列均值

$$\mathcal{N}_{\mathbf{A}\mathbf{x}}[\mathbf{m}, \mathbf{\Sigma}] = \frac{\sqrt{\det(2\pi(\mathbf{A}^T\mathbf{\Sigma}^{-1}\mathbf{A})^{-1})}}{\sqrt{\det(2\pi\mathbf{\Sigma})}} \mathcal{N}_{\mathbf{x}}[\mathbf{A}^{-1}\mathbf{m}, (\mathbf{A}^T\mathbf{\Sigma}^{-1}\mathbf{A})^{-1}]$$
(356)

如果 A是方阵且可逆,简化为

$$\mathcal{N}_{\mathbf{A}\mathbf{x}}[\mathbf{m}, \mathbf{\Sigma}] = \frac{1}{|\det(\mathbf{A})|} \mathcal{N}_{\mathbf{x}}[\mathbf{A}^{-1}\mathbf{m}, (\mathbf{A}^T \mathbf{\Sigma}^{-1} \mathbf{A})^{-1}]$$
(357)

8.1.6 重排成方阵形式

如果 A是对称矩阵,则

$$-\frac{1}{2}\mathbf{x}^{T}\mathbf{A}\mathbf{x} + \mathbf{b}^{T}\mathbf{x} = -\frac{1}{2}(\mathbf{x} - \mathbf{A}^{-1}\mathbf{b})^{T}\mathbf{A}(\mathbf{x} - \mathbf{A}^{-1}\mathbf{b}) + \frac{1}{2}\mathbf{b}^{T}\mathbf{A}^{-1}\mathbf{b}$$
$$-\frac{1}{2}\mathrm{Tr}(\mathbf{X}^{T}\mathbf{A}\mathbf{X}) + \mathrm{Tr}(\mathbf{B}^{T}\mathbf{X}) = -\frac{1}{2}\mathrm{Tr}[(\mathbf{X} - \mathbf{A}^{-1}\mathbf{B})^{T}\mathbf{A}(\mathbf{X} - \mathbf{A}^{-1}\mathbf{B})] + \frac{1}{2}\mathrm{Tr}(\mathbf{B}^{T}\mathbf{A}^{-1}\mathbf{B})$$

8.1.7 两个平方形式的和

在向量形式中(假设 Σ

$$_{1}, \Sigma_{2}$$
 是对称的)

$$-\frac{1}{2}(\mathbf{x} - \mathbf{m}_1)^T \mathbf{\Sigma}_1^{-1}(\mathbf{x} - \mathbf{m}_1)$$
 (358)

$$-\frac{1}{2}(\mathbf{x} - \mathbf{m}_2)^T \mathbf{\Sigma}_2^{-1}(\mathbf{x} - \mathbf{m}_2)$$
 (359)

$$= -\frac{1}{2}(\mathbf{x} - \mathbf{m}_c)^T \mathbf{\Sigma}_c^{-1}(\mathbf{x} - \mathbf{m}_c) + C$$
 (360)

$$\Sigma_c^{-1} = \Sigma_1^{-1} + \Sigma_2^{-1} \tag{361}$$

$$\Sigma_c^{-1} = \Sigma_1^{-1} + \Sigma_2^{-1}
\mathbf{m}_c = (\Sigma_1^{-1} + \Sigma_2^{-1})^{-1} (\Sigma_1^{-1} \mathbf{m}_1 + \Sigma_2^{-1} \mathbf{m}_2)$$
(361)

$$C = \frac{1}{2} (\mathbf{m}_1^T \mathbf{\Sigma}_1^{-1} + \mathbf{m}_2^T \mathbf{\Sigma}_2^{-1}) (\mathbf{\Sigma}_1^{-1} + \mathbf{\Sigma}_2^{-1})^{-1} (\mathbf{\Sigma}_1^{-1} \mathbf{X}_1 + \mathbf{\Sigma}_2^{-1} \mathbf{X}_2) (363)$$

$$-\frac{1}{2} \left(\mathbf{\mathcal{H}}_{1}^{T} \mathbf{\Sigma} \bar{\mathbf{\mathcal{H}}} \mathbf{\mathcal{H}}_{1} + \mathbf{\mathcal{H}}_{2}^{T} \mathbf{\Sigma} \bar{\mathbf{\mathcal{H}}} \mathbf{\mathcal{L}}_{2} \right)$$

$$(364)$$

8.2矩的定义 8高斯分布

在迹的表述中(假设 Σ_1, Σ_2 是对称的)

$$-\frac{1}{2}\operatorname{Tr}((\mathbf{X} - \mathbf{M}_1)^T \mathbf{\Sigma}_1^{-1} (\mathbf{X} - \mathbf{M}_1))$$
 (365)

$$-\frac{1}{2}\operatorname{Tr}((\mathbf{X} - \mathbf{M}_2)^T \mathbf{\Sigma}_2^{-1} (\mathbf{X} - \mathbf{M}_2))$$
 (366)

$$= -\frac{1}{2} \text{Tr}[(\mathbf{X} - \mathbf{M}_c)^T \mathbf{\Sigma}_c^{-1} (\mathbf{X} - \mathbf{M}_c)] + C$$
 (367)

$$\Sigma_c^{-1} = \Sigma_1^{-1} + \Sigma_2^{-1}$$

$$\mathbf{M}_c = (\Sigma_1^{-1} + \Sigma_2^{-1})^{-1} (\Sigma_1^{-1} \mathbf{M}_1 + \Sigma_2^{-1} \mathbf{M}_2)$$
(368)
(369)

$$\mathbf{M}_{c} = (\mathbf{\Sigma}_{1}^{-1} + \mathbf{\Sigma}_{2}^{-1})^{-1} (\mathbf{\Sigma}_{1}^{-1} \mathbf{M}_{1} + \mathbf{\Sigma}_{2}^{-1} \mathbf{M}_{2})$$
(369)

$$C = \frac{1}{2} \text{Tr} \Big[(\mathbf{\Sigma}_{1}^{-1} \mathbf{M}_{1} + \mathbf{\Sigma}_{2}^{-1} \mathbf{M}_{2})^{T} (\mathbf{\Sigma}_{1}^{-1} + \mathbf{\Sigma}_{2}^{-1})^{-1} (\mathbf{\Sigma}_{1}^{-1} \mathbf{M}_{1} + \mathbf{\Sigma}_{2}^{-1} \mathbf{M}_{2}) \Big]$$
$$- \frac{1}{2} \text{Tr} (\mathbf{M}_{1}^{T} \mathbf{\Sigma}_{1}^{-1} \mathbf{M}_{1} + \mathbf{M}_{2}^{T} \mathbf{\Sigma}_{2}^{-1} \mathbf{M}_{2})$$
(370)

8.1.8 高斯密度的乘积

设 $\mathcal{N}_{\mathbf{x}}(\mathbf{m}, \mathbf{\Sigma})$ 表示 \mathbf{x} 的密度,则

$$\mathcal{N}_{\mathbf{x}}(\mathbf{m}_1, \mathbf{\Sigma}_1) \cdot \mathcal{N}_{\mathbf{x}}(\mathbf{m}_2, \mathbf{\Sigma}_2) = c_c \mathcal{N}_{\mathbf{x}}(\mathbf{m}_c, \mathbf{\Sigma}_c)$$
(371)

$$c_c = \mathcal{N}_{\mathbf{m}_1}(\mathbf{m}_2, (\mathbf{\Sigma}_1 + \mathbf{\Sigma}_2))$$

$$= \frac{1}{\sqrt{\det(2\pi(\mathbf{\Sigma}_1 + \mathbf{\Sigma}_2))}} \exp\left[-\frac{1}{2}(\mathbf{m}_1 - \mathbf{m}_2)^T(\mathbf{\Sigma}_1 + \mathbf{\Sigma}_2)^{-1}(\mathbf{m}_1 - \mathbf{m}_2)\right]$$

$$\mathbf{m}_c = (\mathbf{\Sigma}_1^{-1} + \mathbf{\Sigma}_2^{-1})^{-1}(\mathbf{\Sigma}_1^{-1}\mathbf{m}_1 + \mathbf{\Sigma}_2^{-1}\mathbf{m}_2)$$

$$\mathbf{\Sigma}_c = (\mathbf{\Sigma}_1^{-1} + \mathbf{\Sigma}_2^{-1})^{-1}$$

但请注意,该乘积未归一化为密度 x。

8.2 矩的定义

8.2.1 线性形式的均值和协方差

一阶和二阶矩。 假设 $\mathbf{x} \sim \mathcal{N}(\mathbf{m}, \boldsymbol{\Sigma})$

$$E(\mathbf{x}) = \mathbf{m} \tag{372}$$

$$Cov(\mathbf{x}, \mathbf{x}) = Var(\mathbf{x}) = \mathbf{\Sigma} = E(\mathbf{x}\mathbf{x}^T) - E(\mathbf{x})E(\mathbf{x}^T) = E(\mathbf{x}\mathbf{x}^T) - \mathbf{mm}^T \quad (373)$$

对于任何其他分布,高斯分布也成立

$$E[\mathbf{A}\mathbf{x}] = \mathbf{A}E[\mathbf{x}] \tag{374}$$

$$Var[\mathbf{A}\mathbf{x}] = \mathbf{A}Var[\mathbf{x}]\mathbf{A}^T \tag{375}$$

$$Cov[\mathbf{A}\mathbf{x}, \mathbf{B}\mathbf{y}] = \mathbf{A}Cov[\mathbf{x}, \mathbf{y}]\mathbf{B}^{T}$$
(376)

8.2 矩的定义 8 高斯分布

8.2.2 平方形式的均值和方差

平方形式的均值和方差: 假设 $\mathbf{x} \sim \mathcal{N}(\mathbf{m}, \Sigma)$

$$E(\mathbf{x}\mathbf{x}^T) = \mathbf{\Sigma} + \mathbf{m}\mathbf{m}^T \tag{377}$$

$$E[\mathbf{x}^T \mathbf{A} \mathbf{x}] = \operatorname{Tr}(\mathbf{A} \mathbf{\Sigma}) + \mathbf{m}^T \mathbf{A} \mathbf{m}$$
 (378)

$$\operatorname{Var}(\mathbf{x}^T\mathbf{A}\mathbf{x}) = \operatorname{Tr}[\mathbf{A}\boldsymbol{\Sigma}(\mathbf{A} + \mathbf{A}^T)\boldsymbol{\Sigma}] + \dots$$

$$+\mathbf{m}^{T}(\mathbf{A} + \mathbf{A}^{T})\mathbf{\Sigma}(\mathbf{A} + \mathbf{A}^{T})\mathbf{m}$$
 (379)

$$E[(\mathbf{x} - \mathbf{m}')^T \mathbf{A} (\mathbf{x} - \mathbf{m}')] = (\mathbf{m} - \mathbf{m}')^T \mathbf{A} (\mathbf{m} - \mathbf{m}') + \text{Tr}(\mathbf{A} \mathbf{\Sigma}) \quad (380)$$

如果 $\Sigma = \sigma^2$ I且 **A**是对称的,则

$$Var(\mathbf{x}^T \mathbf{A} \mathbf{x}) = 2\sigma^4 Tr(\mathbf{A}^2) + 4\sigma^2 \mathbf{m}^T \mathbf{A}^2 \mathbf{m}$$
(381)

假设 $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$ 且 **A** 和 **B** 是对称矩阵,那么

$$Cov(\mathbf{x}^T \mathbf{A} \mathbf{x}, \mathbf{x}^T \mathbf{B} \mathbf{x}) = 2\sigma^4 Tr(\mathbf{A} \mathbf{B})$$
(382)

8.2.3 三次形式

假设 x是一个具有独立坐标、均值 m和协方差 M的随机向量

$$E[\mathbf{x}\mathbf{b}^{T}\mathbf{x}\mathbf{x}^{T}] = \mathbf{m}\mathbf{b}^{T}(\mathbf{M} + \mathbf{m}\mathbf{m}^{T}) + (\mathbf{M} + \mathbf{m}\mathbf{m}^{T})\mathbf{b}\mathbf{m}^{T} + \mathbf{b}^{T}\mathbf{m}(\mathbf{M} - \mathbf{m}\mathbf{m}^{T})$$
(383)

8.2.4 四次形式的均值

$$E[\mathbf{x}\mathbf{x}^{T}\mathbf{x}\mathbf{x}^{T}] = 2(\mathbf{\Sigma} + \mathbf{m}\mathbf{m}^{T})^{2} + \mathbf{m}^{T}\mathbf{m}(\mathbf{\Sigma} - \mathbf{m}\mathbf{m}^{T})$$

$$+ \operatorname{Tr}(\mathbf{\Sigma})(\mathbf{\Sigma} + \mathbf{m}\mathbf{m}^{T})$$

$$E[\mathbf{x}\mathbf{x}^{T}\mathbf{A}\mathbf{x}\mathbf{x}^{T}] = (\mathbf{\Sigma} + \mathbf{m}\mathbf{m}^{T})(\mathbf{A} + \mathbf{A}^{T})(\mathbf{\Sigma} + \mathbf{m}\mathbf{m}^{T})$$

$$+ \mathbf{m}^{T}\mathbf{A}\mathbf{m}(\mathbf{\Sigma} - \mathbf{m}\mathbf{m}^{T}) + \operatorname{Tr}[\mathbf{A}\mathbf{\Sigma}](\mathbf{\Sigma} + \mathbf{m}\mathbf{m}^{T})$$

$$E[\mathbf{x}^{T}\mathbf{x}\mathbf{x}^{T}\mathbf{x}] = 2\operatorname{Tr}(\mathbf{\Sigma}^{2}) + 4\mathbf{m}^{T}\mathbf{\Sigma}\mathbf{m} + (\operatorname{Tr}(\mathbf{\Sigma}) + \mathbf{m}^{T}\mathbf{m})^{2}$$

$$E[\mathbf{x}^{T}\mathbf{A}\mathbf{x}\mathbf{x}^{T}\mathbf{B}\mathbf{x}] = \operatorname{Tr}[\mathbf{A}\mathbf{\Sigma}(\mathbf{B} + \mathbf{B}^{T})\mathbf{\Sigma}] + \mathbf{m}^{T}(\mathbf{A} + \mathbf{A}^{T})\mathbf{\Sigma}(\mathbf{B} + \mathbf{B}^{T})\mathbf{m}$$

$$+ (\operatorname{Tr}(\mathbf{A}\mathbf{\Sigma}) + \mathbf{m}^{T}\mathbf{A}\mathbf{m})(\operatorname{Tr}(\mathbf{B}\mathbf{\Sigma}) + \mathbf{m}^{T}\mathbf{B}\mathbf{m})$$

$$\begin{split} E[\mathbf{a}^T\mathbf{x}\mathbf{b}^T\mathbf{x}\mathbf{c}^T\mathbf{x}\mathbf{d}^T\mathbf{x}] &= & (\mathbf{a}^T(\mathbf{\Sigma} + \mathbf{m}\mathbf{m}^T)\mathbf{b})(\mathbf{c}^T(\mathbf{\Sigma} + \mathbf{m}\mathbf{m}^T)\mathbf{d}) \\ &+ (\mathbf{a}^T(\mathbf{\Sigma} + \mathbf{m}\mathbf{m}^T)\mathbf{c})(\mathbf{b}^T(\mathbf{\Sigma} + \mathbf{m}\mathbf{m}^T)\mathbf{d}) \\ &+ (\mathbf{a}^T(\mathbf{\Sigma} + \mathbf{m}\mathbf{m}^T)\mathbf{d})(\mathbf{b}^T(\mathbf{\Sigma} + \mathbf{m}\mathbf{m}^T)\mathbf{c}) - 2\mathbf{a}^T\mathbf{m}\mathbf{b}^T\mathbf{m}\mathbf{c}^T\mathbf{m}\mathbf{d}^T\mathbf{m} \end{split}$$

$$E[(\mathbf{A}\mathbf{x} + \mathbf{a})(\mathbf{B}\mathbf{x} + \mathbf{b})^T(\mathbf{C}\mathbf{x} + \mathbf{c})(\mathbf{D}\mathbf{x} + \mathbf{d})^T]$$

$$= [\mathbf{A}\boldsymbol{\Sigma}\mathbf{B}^T + (\mathbf{A}\mathbf{m} + \mathbf{a})(\mathbf{B}\mathbf{m} + \mathbf{b})^T][\mathbf{C}\boldsymbol{\Sigma}\mathbf{D}^T + (\mathbf{C}\mathbf{m} + \mathbf{c})(\mathbf{D}\mathbf{m} + \mathbf{d})^T]$$

$$+[\mathbf{A}\boldsymbol{\Sigma}\mathbf{C}^T + (\mathbf{A}\mathbf{m} + \mathbf{a})(\mathbf{C}\mathbf{m} + \mathbf{c})^T][\mathbf{B}\boldsymbol{\Sigma}\mathbf{D}^T + (\mathbf{B}\mathbf{m} + \mathbf{b})(\mathbf{D}\mathbf{m} + \mathbf{d})^T]$$

$$+(\mathbf{B}\mathbf{m} + \mathbf{b})^T(\mathbf{C}\mathbf{m} + \mathbf{c})[\mathbf{A}\boldsymbol{\Sigma}\mathbf{D}^T - (\mathbf{A}\mathbf{m} + \mathbf{a})(\mathbf{D}\mathbf{m} + \mathbf{d})^T]$$

$$+\mathrm{Tr}(\mathbf{B}\boldsymbol{\Sigma}\mathbf{C}^T)[\mathbf{A}\boldsymbol{\Sigma}\mathbf{D}^T + (\mathbf{A}\mathbf{m} + \mathbf{a})(\mathbf{D}\mathbf{m} + \mathbf{d})^T]$$

8.3 其他 8 高斯分布

$$E[(\mathbf{A}\mathbf{x} + \mathbf{a})^T (\mathbf{B}\mathbf{x} + \mathbf{b}) (\mathbf{C}\mathbf{x} + \mathbf{c})^T (\mathbf{D}\mathbf{x} + \mathbf{d})]$$

$$= \operatorname{Tr}[\mathbf{A}\boldsymbol{\Sigma}(\mathbf{C}^T\mathbf{D} + \mathbf{D}^T\mathbf{C})\boldsymbol{\Sigma}\mathbf{B}^T]$$

$$+[(\mathbf{A}\mathbf{m} + \mathbf{a})^T\mathbf{B} + (\mathbf{B}\mathbf{m} + \mathbf{b})^T\mathbf{A}]\boldsymbol{\Sigma}[\mathbf{C}^T(\mathbf{D}\mathbf{m} + \mathbf{d}) + \mathbf{D}^T(\mathbf{C}\mathbf{m} + \mathbf{c})]$$

$$+[\operatorname{Tr}(\mathbf{A}\boldsymbol{\Sigma}\mathbf{B}^T) + (\mathbf{A}\mathbf{m} + \mathbf{a})^T(\mathbf{B}\mathbf{m} + \mathbf{b})][\operatorname{Tr}(\mathbf{C}\boldsymbol{\Sigma}\mathbf{D}^T) + (\mathbf{C}\mathbf{m} + \mathbf{c})^T(\mathbf{D}\mathbf{m} + \mathbf{d})]$$

参见[7].

8.2.5 矩

$$E[\mathbf{x}] = \sum_{k} \rho_k \mathbf{m}_k \tag{384}$$

$$Cov(\mathbf{x}) = \sum_{k}^{\kappa} \sum_{k'} \rho_k \rho_{k'} (\mathbf{\Sigma}_k + \mathbf{m}_k \mathbf{m}_k^T - \mathbf{m}_k \mathbf{m}_{k'}^T)$$
(385)

8.3 其他

8.3.1 白化

假设 $\mathbf{x} \sim \mathcal{N}(\mathbf{m}, \boldsymbol{\Sigma})$ 那么

$$\mathbf{z} = \mathbf{\Sigma}^{-1/2}(\mathbf{x} - \mathbf{m}) \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$
(386)

相反地,如果 $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ 那么可以通过设置

$$\mathbf{x} = \mathbf{\Sigma}^{1/2} \mathbf{z} + \mathbf{m} \sim \mathcal{N}(\mathbf{m}, \mathbf{\Sigma})$$
 来生成数据 (387)

注意 $\Sigma^{1/2}$ 表示满足 $\Sigma^{1/2}\Sigma^{1/2}=\Sigma$ 的矩阵,它存在且唯一,因为 Σ 是正定的。

8.3.2 卡方连接

假设 $\mathbf{x} \sim \mathcal{N}(\mathbf{m}, \boldsymbol{\Sigma})$ 并且 \mathbf{x} 是 n维的,那么

$$z = (\mathbf{x} - \mathbf{m})^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{m}) \sim \chi_n^2$$
(388)

其中 χ^2 和表示自由度为 n的卡方分布。

8.3.3 熵

D维高斯分布的熵

$$H(\mathbf{x}) = -\int \mathcal{N}(\mathbf{m}, \mathbf{\Sigma}) \ln \mathcal{N}(\mathbf{m}, \mathbf{\Sigma}) d\mathbf{x} = \ln \sqrt{\det(2\pi\mathbf{\Sigma})} + \frac{D}{2}$$
(389)

8.4 高斯混合模型

8.4.1 密度

如果变量 x服从高斯混合分布,则其密度函数为

$$p(\mathbf{x}) = \sum_{k=1}^{K} \rho_k \frac{1}{\sqrt{\det(2\pi\Sigma_k)}} \exp\left[-\frac{1}{2}(\mathbf{x} - \mathbf{m}_k)^T \mathbf{\Sigma}_k^{-1} (\mathbf{x} - \mathbf{m}_k)\right]$$
(390)

其中 ρ_k 之和为1,且 Σ_k 都是正定的。

8.4.2 导数

定义
$$p(\mathbf{s}) = \sum_k \rho_k \mathcal{N}_{\mathbf{s}}(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
 得到

$$\frac{\partial \ln p(\mathbf{s})}{\partial \rho_j} = \frac{\rho_j \mathcal{N}_{\mathbf{s}}(\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}{\sum_k \rho_k \mathcal{N}_{\mathbf{s}}(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)} \frac{\partial}{\partial \rho_j} \ln[\rho_j \mathcal{N}_{\mathbf{s}}(\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)]$$
(391)

$$= \frac{\rho_j \mathcal{N}_s(\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}{\sum_k \rho_k \mathcal{N}_s(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)} \frac{1}{\rho_j}$$
(392)

$$\frac{\partial \ln p(\mathbf{s})}{\partial \rho_{j}} = \frac{\rho_{j} \mathcal{N}_{\mathbf{s}}(\boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j})}{\sum_{k} \rho_{k} \mathcal{N}_{\mathbf{s}}(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})} \frac{\partial}{\partial \rho_{j}} \ln[\rho_{j} \mathcal{N}_{\mathbf{s}}(\boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j})] \qquad (391)$$

$$= \frac{\rho_{j} \mathcal{N}_{\mathbf{s}}(\boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j})}{\sum_{k} \rho_{k} \mathcal{N}_{\mathbf{s}}(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})} \frac{1}{\rho_{j}} \qquad (392)$$

$$\frac{\partial \ln p(\mathbf{s})}{\partial \boldsymbol{\mu}_{j}} = \frac{\rho_{j} \mathcal{N}_{\mathbf{s}}(\boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j})}{\sum_{k} \rho_{k} \mathcal{N}_{\mathbf{s}}(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})} \frac{\partial}{\partial \boldsymbol{\mu}_{j}} \ln[\rho_{j} \mathcal{N}_{\mathbf{s}}(\boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j})] \qquad (393)$$

$$= \frac{\rho_{j} \mathcal{N}_{\mathbf{s}}(\boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j})}{\sum_{k} \rho_{k} \mathcal{N}_{\mathbf{s}}(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})} \left[\boldsymbol{\Sigma}_{j}^{-1}(\mathbf{s} - \boldsymbol{\mu}_{j})\right] \qquad (394)$$

$$\frac{\partial \ln p(\mathbf{s})}{\partial \boldsymbol{\Sigma}_{j}} = \frac{\rho_{j} \mathcal{N}_{\mathbf{s}}(\boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j})}{\sum_{k} \rho_{k} \mathcal{N}_{\mathbf{s}}(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})} \frac{\partial}{\partial \boldsymbol{\Sigma}_{j}} \ln[\rho_{j} \mathcal{N}_{\mathbf{s}}(\boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j})] \qquad (395)$$

$$= \frac{\rho_{j} \mathcal{N}_{\mathbf{s}}(\boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j})}{\sum_{k} \rho_{k} \mathcal{N}_{\mathbf{s}}(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})} \frac{1}{2} \left[-\boldsymbol{\Sigma}_{j}^{-1} + \boldsymbol{\Sigma}_{j}^{-1}(\mathbf{s} - \boldsymbol{\mu}_{j})(\mathbf{s} - \boldsymbol{\mu}_{j})^{T} \boldsymbol{\Sigma}_{j}^{-1} \right] 96)$$

$$= \frac{\overline{\rho_j \mathcal{N}_{\mathbf{s}}(\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}}{\sum_k \rho_k \mathcal{N}_{\mathbf{s}}(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)} \left[\boldsymbol{\Sigma}_j^{-1} (\mathbf{s} - \boldsymbol{\mu}_j) \right]$$
(394)

$$\frac{\partial \ln p(\mathbf{s})}{\partial \mathbf{\Sigma}_{j}} = \frac{\sum_{\rho_{j}} \mathcal{N}_{\mathbf{s}}(\boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j})}{\sum_{k} \rho_{k} \mathcal{N}_{\mathbf{s}}(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})} \frac{\partial}{\partial \mathbf{\Sigma}_{j}} \ln[\rho_{j} \mathcal{N}_{\mathbf{s}}(\boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j})]$$
(395)

$$= \frac{-\rho_j \mathcal{N}_{\mathbf{s}}(\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}{\sum_k \rho_k \mathcal{N}_{\mathbf{s}}(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)} \frac{1}{2} \left[-\boldsymbol{\Sigma}_j^{-1} + \boldsymbol{\Sigma}_j^{-1} (\mathbf{s} - \boldsymbol{\mu}_j) (\mathbf{s} - \boldsymbol{\mu}_j)^T \boldsymbol{\Sigma}_j^{-1} \right] 96)$$

但是 ρ_k 和 Σ_k 需要受到限制。

9个特殊矩阵

9.1 块矩阵

设 \mathbf{A}_{ij} 表示 \mathbf{A} 的第 ij个块。

9.1.1 乘法

假设块的维度匹配,我们有

$$\left[\begin{array}{c|c|c} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \hline \mathbf{A}_{21} & \mathbf{A}_{22} \end{array} \right] \left[\begin{array}{c|c|c} \mathbf{B}_{11} & \mathbf{B}_{12} \\ \hline \mathbf{B}_{21} & \mathbf{B}_{22} \end{array} \right] = \left[\begin{array}{c|c|c} \mathbf{A}_{11} \mathbf{B}_{11} + \mathbf{A}_{12} \mathbf{B}_{21} & \mathbf{A}_{11} \mathbf{B}_{12} + \mathbf{A}_{12} \mathbf{B}_{22} \\ \hline \mathbf{A}_{21} \mathbf{B}_{11} + \mathbf{A}_{22} \mathbf{B}_{21} & \mathbf{A}_{21} \mathbf{B}_{12} + \mathbf{A}_{22} \mathbf{B}_{22} \end{array} \right]$$

9.1.2 行列式

行列式可以通过以下方式表示

$$\mathbf{C}_{1} = \mathbf{A}_{11} - \mathbf{A}_{12} \mathbf{A}_{22}^{-1} \mathbf{A}_{21}$$

$$\mathbf{C}_{2} = \mathbf{A}_{22} - \mathbf{A}_{21} \mathbf{A}_{11}^{-1} \mathbf{A}_{12}$$
(397)

$$\mathbf{C}_2 = \mathbf{A}_{22} - \mathbf{A}_{21} \mathbf{A}_{11}^{-1} \mathbf{A}_{12} \tag{398}$$

त्रमार्स
$$\left(\left\lceil egin{array}{c|c} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \hline \mathbf{A}_{21} & \mathbf{A}_{22} \end{array}
ight]
ight) = \det(\mathbf{A}_{22}) \cdot \det(\mathbf{C}_1) = \det(\mathbf{A}_{11}) \cdot \det(\mathbf{C}_2)$$

9.1.3 逆矩阵

逆矩阵可以通过以下方式表示

$$\mathbf{C}_{1} = \mathbf{A}_{11} - \mathbf{A}_{12} \mathbf{A}_{22}^{-1} \mathbf{A}_{21}$$

$$\mathbf{C}_{2} = \mathbf{A}_{22} - \mathbf{A}_{21} \mathbf{A}_{11}^{-1} \mathbf{A}_{12}$$

$$(399)$$

$$\mathbf{C}_2 = \mathbf{A}_{22} - \mathbf{A}_{21} \mathbf{A}_{11}^{-1} \mathbf{A}_{12} \tag{400}$$

$$\begin{split} & \left[\begin{array}{c|c} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \hline \mathbf{A}_{21} & \mathbf{A}_{22} \end{array} \right]^{-1} = \left[\begin{array}{c|c} \mathbf{C}_{1}^{-1} & -\mathbf{A}_{11}^{-1}\mathbf{A}_{12}\mathbf{C}_{2}^{-1} \\ \hline -\mathbf{C}_{2}^{-1}\mathbf{A}_{21}\mathbf{A}_{11}^{-1} & \mathbf{C}_{2}^{-1} \end{array} \right] \\ & = \left[\begin{array}{c|c} \mathbf{A}_{11}^{-1} + \mathbf{A}_{11}^{-1}\mathbf{A}_{12}\mathbf{C}_{2}^{-1}\mathbf{A}_{21}\mathbf{A}_{11}^{-1} & -\mathbf{C}_{1}^{-1}\mathbf{A}_{12}\mathbf{A}_{22}^{-1} \\ \hline -\mathbf{A}_{21}^{-1}\mathbf{A}_{21}\mathbf{C}_{1}^{-1} & \mathbf{A}_{22}^{-1} + \mathbf{A}_{22}^{-1}\mathbf{A}_{21}\mathbf{C}_{1}^{-1}\mathbf{A}_{12}\mathbf{A}_{22}^{-1} \end{array} \right] \end{split}$$

9.1.4 块对角

对于块对角矩阵,我们有

$$\left[\begin{array}{c|c|c} \mathbf{A}_{11} & \mathbf{0} \\ \hline \mathbf{0} & \mathbf{A}_{22} \end{array}\right]^{-1} = \left[\begin{array}{c|c|c} (\mathbf{A}_{11})^{-1} & \mathbf{0} \\ \hline \mathbf{0} & (\mathbf{A}_{22})^{-1} \end{array}\right]$$
(401)

行列式
$$\left(\begin{bmatrix} \mathbf{A}_{11} & \mathbf{0} \\ \mathbf{0} & \mathbf{A}_{22} \end{bmatrix}\right) = 行列式 (\mathbf{A}_1) \cdot 行列式 (\mathbf{A}_{22})$$
 (402)

9.1.5 Schur补

将矩阵视为

$$\begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix}$$

上述矩阵的块 A_{11} 的舒尔补是矩阵(在上文中表示为 C_{\circ})

$$\mathbf{A}_{22} - \mathbf{A}_{21} \mathbf{A}_{11}^{-1} \mathbf{A}_{12}$$

上述矩阵的块 A_{22} 的舒尔补是矩阵(在上文中表示为 C_1)

$$\mathbf{A}_{11} - \mathbf{A}_{12} \mathbf{A}_{22}^{-1} \mathbf{A}_{21}$$

使用舒尔补,可以重写块矩阵的逆

$$\begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix}^{-1}$$

$$= \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ -\mathbf{A}_{22}^{-1}\mathbf{A}_{21} & \mathbf{I} \end{bmatrix} \begin{bmatrix} (\mathbf{A}_{11} - \mathbf{A}_{12}\mathbf{A}_{22}^{-1}\mathbf{A}_{21})^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{A}_{22}^{-1} \end{bmatrix} \begin{bmatrix} \mathbf{I} & -\mathbf{A}_{12}\mathbf{A}_{22}^{-1} \\ \mathbf{0} & \mathbf{I} \end{bmatrix}$$

舒尔补在解决以下形式的线性系统时很有用

$$\begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \end{bmatrix}$$

对于 x_1 ,它具有以下方程

$$(\mathbf{A}_{11} - \mathbf{A}_{12}\mathbf{A}_{22}^{-1}\mathbf{A}_{21})\mathbf{x}_1 = \mathbf{b}_1 - \mathbf{A}_{12}\mathbf{A}_{22}^{-1}\mathbf{b}_2$$

当适当的逆存在时,可以解出 x_1 ,然后将其插入方程中以解出 x_2 。

9.2 离散傅里叶变换矩阵

DFT矩阵是一个 $N \times N$ 对称矩阵 \mathbf{W}_N , 其中k, n元素为

$$W_N^{kn} = e^{\frac{-j2\pi kn}{N}} \tag{403}$$

因此,离散傅里叶变换(DFT)可以表示为

$$X(k) = \sum_{n=0}^{N-1} x(n) W_{Nkn}$$
 (404)

同样,逆离散傅里叶变换(IDFT)可以表示为

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) W_N^{-kn}$$
(405)

向量 $\mathbf{x} = [x(0), x(1), \dots, x(N-1)]^T$ 的DFT可以以矩阵形式表示

$$\mathbf{X} = \mathbf{W}_N \mathbf{x},\tag{406}$$

其中 $\mathbf{X} = [X(0), X(1), \cdots, x(N-1)]^T$. 逆离散傅里叶变换(IDFT)同样给出为

$$\mathbf{x} = \mathbf{W}_N^{-1} \mathbf{X}.\tag{407}$$

一些 \mathbf{W}_N 的性质存在:

$$\mathbf{W}_{N}^{-1} = \frac{1}{N} \mathbf{W}_{N}^{*} \tag{408}$$

$$\mathbf{W}_{N}\mathbf{W}_{N}^{*} = N\mathbf{I}$$

$$\mathbf{W}_{N}^{*} = \mathbf{W}_{N}^{H}$$

$$(409)$$

$$\mathbf{W}_{N}^{*} = \mathbf{W}_{N}^{H} \tag{410}$$

如果 $W_N = e^{-j^2\pi}$ 那么 [23]

$$W_N^{m+N/2} = -W_N^m (411)$$

注意,离散傅里叶变换(DFT)矩阵是一个范德蒙德矩阵。 循环矩阵和离散傅里叶变换(DFT)之间存在以下重要关系

$$\mathbf{T}_C = \mathbf{W}_N^{-1}(\mathbf{I} \circ (\mathbf{W}_N \mathbf{t})) \mathbf{W}_N, \tag{412}$$

其中 $\mathbf{t} = [t_0, t_1, \dots, t_{n-1}]^T$ 是 \mathbf{T}_C 的第一行.

9.3 Hermite矩阵和skew-Hermite矩阵

一个矩阵 $\mathbf{A} \in \mathbb{C}^{m \times n}$ 被称为 Hermitian如果

$$\mathbf{A}^H = \mathbf{A}$$

对于实值矩阵, Hermitian和symmetric矩阵是等价的.

A是Hermitian
$$\Leftrightarrow \mathbf{x}^H \mathbf{A} \mathbf{x} \in \mathbb{R}, \ \forall \mathbf{x} \in \mathbb{C}^{n \times 1}$$
 (413)

A是Hermitian
$$\Leftrightarrow$$
 eig(**A**) ∈ \mathbb{R} (414)

注意

$$\mathbf{A} = \mathbf{B} + i\mathbf{C}$$

其中 B, C 是Hermitian,那么

$$\mathbf{B} = \frac{\mathbf{A} + \mathbf{A}^H}{2}, \qquad \mathbf{C} = \frac{\mathbf{A} - \mathbf{A}^H}{2i}$$

9.3.1 Skew-Hermitian

如果一个矩阵 A被称为skew-hermitian如果

$$\mathbf{A} = -\mathbf{A}^H$$

对于实值矩阵,反厄米矩阵和反对称矩阵是等价的。

$$A$$
厄米矩阵 \Leftrightarrow iA 是反厄米矩阵 (415)

A 反厄米矩阵
$$\Leftrightarrow$$
 $\mathbf{x}^H \mathbf{A} \mathbf{y} = -\mathbf{x}^H \mathbf{A}^H \mathbf{y}, \forall \mathbf{x}, \mathbf{y}$ (416)

A 反厄米矩阵
$$\Rightarrow \operatorname{eig}(\mathbf{A}) = i\lambda, \quad \lambda \in \mathbb{R}$$
 (417)

9.4 幂等矩阵 9 特殊矩阵

9.4 幂等矩阵

矩阵 A是幂等矩阵,如果

$$AA = A$$

幂等矩阵 A和 B, 具有以下性质

$$\mathbf{A}^n = \mathbf{A}, \quad \forall \mathbf{T} = 1, 2, 3, \dots$$
 (418)

$$I - A$$
 是幂等的 (419)

$$\mathbf{A}^H$$
 是幂等的 (420)

$$\mathbf{I} - \mathbf{A}^H$$
 是幂等的 (421)

如果
$$AB = BA \Rightarrow AB$$
 是幂等的 (422)

$$\operatorname{rank}(\mathbf{A}) = \operatorname{Tr}(\mathbf{A}) \tag{423}$$

$$\mathbf{A}(\mathbf{I} - \mathbf{A}) = \mathbf{0} \tag{424}$$

$$(\mathbf{I} - \mathbf{A})\mathbf{A} = \mathbf{0} \tag{425}$$

$$\mathbf{A}^{+} = \mathbf{A} \tag{426}$$

$$f(s\mathbf{I} + t\mathbf{A}) = (\mathbf{I} - \mathbf{A})f(s) + \mathbf{A}f(s+t)$$
 (427)

注意 A - I不一定是幂等的。

9.4.1 零幂

如果矩阵 A是零幂的,则

$$\mathbf{A}^2 = \mathbf{0}$$

零幂矩阵具有以下性质:

$$f(s\mathbf{I} + t\mathbf{A}) = \mathbf{I}f(s) + t\mathbf{A}f'(s)$$
 (428)

9.4.2 单位势

如果矩阵 A是单位势的,则

$$AA = I$$

单位势矩阵具有以下性质:

$$f(s\mathbf{I} + t\mathbf{A}) = [(\mathbf{I} + \mathbf{A})f(s+t) + (\mathbf{I} - \mathbf{A})f(s-t)]/2$$
(429)

9.5 正交矩阵

如果一个方阵 Q是正交的,当且仅当,

$$\mathbf{Q}^T \mathbf{Q} = \mathbf{Q} \mathbf{Q}^T = \mathbf{I}$$

然后 Q具有以下特性

- 它的特征值位于单位圆上。
- 它的特征向量是酉的,即长度为一。
- 正交矩阵的逆矩阵也是正交的。

正交矩阵 Q的基本性质

$$\mathbf{Q}^{-1} = \mathbf{Q}^{T}$$

$$\mathbf{Q}^{-T} = \mathbf{Q}$$

$$\mathbf{Q}\mathbf{Q}^{T} = \mathbf{I}$$

$$\mathbf{Q}^{T}\mathbf{Q} = \mathbf{I}$$

$$\det(\mathbf{Q}) = \pm 1$$

9.5.1 正交对称

一个同时正交和对称的矩阵被称为正交对称矩阵[20]。因此, \mathbf{Q}^{T}_{+} $\mathbf{Q} = \mathbf{I}$

(430)

$$\mathbf{Q}_{+} = \mathbf{Q}_{+}^{T} \tag{431}$$

正交对称矩阵的幂由以下规则给出

$$\mathbf{Q}_{+}^{k} = \frac{1 + (-1)^{k}}{2} \mathbf{I} + \frac{1 + (-1)^{k+1}}{2} \mathbf{Q}_{+}$$
 (432)

$$= \frac{1 + \cos(k\pi)}{2}\mathbf{I} + \frac{1 - \cos(k\pi)}{2}\mathbf{Q}_{+}$$
 (433)

9.5.2 正交斜对称

一个同时正交和反对称的矩阵被称为正交斜对称矩阵[20]。因此, $\mathbf{Q}_{-}^H\mathbf{Q}_{-}=\mathbf{I}$

(434)

$$\mathbf{Q}_{-} = -\mathbf{Q}_{-}^{H} \tag{435}$$

正交斜对称矩阵的幂由以下规则给出

$$\mathbf{Q}_{-}^{k} = \frac{i^{k} + (-i)^{k}}{2} \mathbf{I} - i \frac{i^{k} - (-i)^{k}}{2} \mathbf{Q}_{-}$$
 (436)

$$= \cos\left(k\frac{\pi}{2}\right)\mathbf{I} + \sin\left(k\frac{\pi}{2}\right)\mathbf{Q}_{-} \tag{437}$$

9.5.3 分解

一个方阵 A总是可以写成一个对称矩阵 A_+ 和一个反对称矩阵 A_- 的和

$$\mathbf{A} = \mathbf{A}_{+} + \mathbf{A}_{-} \tag{438}$$

9.6 正定和半正定矩阵

9.6.1 定义

矩阵 A是正定的当且仅当

$$\mathbf{x}^T \mathbf{A} \mathbf{x} > \mathbf{0}, \quad \forall \mathbf{x} = \mathbf{0} \tag{439}$$

矩阵 A是半正定的当且仅当

$$\mathbf{x}^T \mathbf{A} \mathbf{x} \ge \mathbf{0}, \quad \forall \mathbf{x} \tag{440}$$

注意,如果 A是正定的,则 A也是半正定的。

9.6.2 特征值

以下关于特征值成立:

9.6.3 迹

以下关于迹成立:

A正定
$$\Rightarrow \operatorname{Tr}(\mathbf{A}) > 0$$

A 半正定 $\Rightarrow \operatorname{Tr}(\mathbf{A}) \geq 0$ (442)

9.6.4 逆

如果 A是正定的,则 A可逆且 A^{-1} 也是正定的。

9.6.5 对角线

如果 **A**是正定的,则 $A_{ii} > 0$, $\forall i$

9.6.6 分解 I

矩阵 A是秩为 r的半正定矩阵 \Leftrightarrow 存在一个秩为 r的矩阵 B使得 $\mathbf{A} = \mathbf{B}\mathbf{B}^T$

矩阵 A是正定的 \Leftrightarrow 存在可逆矩阵 B使得 $A = BB^T$

9.6.7 分解 II

假设 A是一个 $n \times n$ 半正定矩阵,那么存在一个 $n \times r$ 秩为 r 的矩阵B使得 $\mathbf{B}^T \mathbf{A} \mathbf{B} = \mathbf{I}$.

9.6.8 零方程

假设 A是半正定的,那么 $\mathbf{X}^T \mathbf{A} \mathbf{X} = \mathbf{0} \Rightarrow \mathbf{A} \mathbf{X} = \mathbf{0}$

9.6.9 乘积的秩

假设 A是正定的,那么 $rank(BAB^T) = rank(B)$

9.6.10 正定性质

如果 \mathbf{A} 是一个 $n\times n$ 正定矩阵, \mathbf{B} 是一个 $r\times n$ 秩为 r 的矩阵,那么 $\mathbf{B}\mathbf{A}\mathbf{B}^T$ 是正定的.

9.6.11 外积

如果 X是一个 $n \times r$ 的矩阵,其中 $n \le r$ 且 rank(X) = n,则 XX^T 是正定的。

9.7单入口矩阵 9特殊矩阵

9.6.12 小扰动

如果 A是正定的且 B是对称的,则对于足够小的 t, A - tB是正定的。

9.6.13 Hadamard不等式

如果 A是一个正定或半正定矩阵,则

$$\det(\mathbf{A}) \le \prod_i A_{ii}$$

参见[15, pp.477]

9.6.14 Hadamard乘积关系

假设 $P = AA^T$ 和 $Q = BB^T$ 是半正定矩阵,则有

$$\mathbf{P} \circ \mathbf{Q} = \mathbf{R} \mathbf{R}^T$$

其中 $\mathbf R$ 的列按以下方式构造: $\mathbf r_{i+(j-1)N}$ i=1, 2, ..., N_A 和 j=1, 2, ..., N_B 。 结果尚未发表,但由 Pavel Sakov和Craig Richart Pavel Sakov和Craig Bishop报道。

9.7单入口矩阵

9.7.1 定义

单元素矩阵 $\mathbf{J}\mathbf{i}^j \in \mathbb{R}^{n \times n}$ 被定义为除了在(i,j)处为1之外,其他地方都为零的 矩阵。 在一个4×4的例子中, 可能会有

$$\mathbf{J}^{23} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \tag{443}$$

当处理涉及矩阵的表达式的导数时,单元素矩阵非常有用。

9.7.2 交换和零

假设 A 为 n imes m, \mathbf{J}^{ij} 为 m imes p

ij是一个 $p \times n$ 的矩阵

$$\mathbf{J}^{ij}\mathbf{A} = \begin{bmatrix} \mathbf{0} \\ \vdots \\ \mathbf{0} \\ \mathbf{A}_j \\ \mathbf{0} \\ \vdots \\ \mathbf{0} \end{bmatrix}$$
 (445)

9.7单入口矩阵 9.7单入口矩阵 9 特殊矩阵

即一个 $p \times m$ 的零矩阵,其中第i行用 A的第i行代替。

9.7.3 重写元素的乘积

$$A_{ki}B_{jl}=(\mathbf{A}$$
的第 $_i$ 行乘以 \mathbf{B} 的第 $_j$ 列)的第 $_{kl}$ 个元素 $=(\mathbf{A}\mathbf{J}^{ij}\mathbf{B})$ 的第 $_{kl}$ 个元素
$$\left(446\right)$$

$$A_{ik}B_{lj}$$
= (A的第 $_{i}$ 行乘以 B的第 $_{j}$ 列的转置)的第 $_{kl}$ 个元素 = (A的转置 \mathbf{J}^{ij} B的 $\left(447\right)$

$$A_{ik}B_{jl} = (\mathbf{A}$$
的第 $_i$ 行乘以 \mathbf{B} 的第 $_j$ 列)的第 $_{kl}$ 个元素 = (\mathbf{A} 的转置 $\mathbf{J}^{ij}\mathbf{B}$ (448)

$$A_{ki}B_{lj} = (\mathbf{A}\mathbf{e}_i\mathbf{e}_i^T\mathbf{B}^T)_{kl} = (\mathbf{A}\mathbf{J}^{ij}\mathbf{B}^T)_{kl}$$
 (449)

9.7.4 单元素矩阵的性质

If i = j

$$\begin{aligned} \mathbf{J}^{ij}\mathbf{J}^{ij} &= \mathbf{J}^{ij} & (\mathbf{J}^{ij})^T(\mathbf{J}^{ij})^T = \mathbf{J}^{ij} \\ \mathbf{J}^{ij}(\mathbf{J}^{ij})^T &= \mathbf{J}^{ij} & (\mathbf{J}^{ij})^T\mathbf{J}^{ij} &= \mathbf{J}^{ij} \end{aligned}$$

If i = j

$$\mathbf{J}^{ij}\mathbf{J}^{ij} = \mathbf{0}$$
 $(\mathbf{J}^{ij})^T(\mathbf{J}^{ij})^T = \mathbf{0}$
 $\mathbf{J}^{ij}(\mathbf{J}^{ij})^T = \mathbf{J}^{ii}$ $(\mathbf{J}^{ij})^T\mathbf{J}^{ij} = \mathbf{J}^{jj}$

9.7.5 标量表达式中的单元素矩阵

假设 **A**是 $n \times m$ 的矩阵, **J**是 $m \times n$ 的矩阵, 则

$$\operatorname{Tr}(\mathbf{A}\mathbf{J}^{ij}) = \operatorname{Tr}(\mathbf{J}^{ij}\mathbf{A}) = (\mathbf{A}^T)_{ij} \tag{450}$$

假设 A是 $n \times n$ 的矩阵, J是 $n \times m$ 的矩阵, B是 $m \times n$ 的矩阵, 那么

$$Tr(\mathbf{AJ}^{ij}\mathbf{B}) = (\mathbf{A}^T\mathbf{B}^T)_{ij} \tag{451}$$

$$Tr(\mathbf{AJ}^{ji}\mathbf{B}) = (\mathbf{BA})_{ij} \tag{452}$$

$$\operatorname{Tr}(\mathbf{A}\mathbf{J}^{ij}\mathbf{J}^{ij}\mathbf{B}) = \operatorname{diag}(\mathbf{A}^T\mathbf{B}^T)_{ij} \tag{453}$$

假设 A是 $n \times n$ 的矩阵, \mathbf{J}^{ij} 是 $n \times m$ 的矩阵, B是 $m \times n$ 的矩阵, 那么

$$\mathbf{x}^T \mathbf{A} \mathbf{J}^{ij} \mathbf{B} \mathbf{x} = (\mathbf{A}^T \mathbf{x} \mathbf{x}^T \mathbf{B}^T)_{ij} \tag{454}$$

$$\mathbf{x}^T \mathbf{A} \mathbf{J}^{ij} \mathbf{J}^{ij} \mathbf{B} \mathbf{x} = \operatorname{diag}(\mathbf{A}^T \mathbf{x} \mathbf{x}^T \mathbf{B}^T)_{ij} \tag{455}$$

9.7.6 结构矩阵

结构矩阵的定义如下

$$\frac{\partial \mathbf{A}}{\partial A_{ij}} = \mathbf{S}^{ij} \tag{456}$$

如果 A没有特殊结构,则

$$\mathbf{S}^{ij} = \mathbf{J}^{ij} \tag{457}$$

如果 A是对称的

$$\mathbf{S}^{ij} = \mathbf{J}^{ij} + \mathbf{J}^{ji} - \mathbf{J}^{ij}\mathbf{J}^{ij} \tag{458}$$

9.8 对称矩阵,反对称矩阵

9.8.1 对称矩阵

如果矩阵 A是对称的

$$\mathbf{A} = \mathbf{A}^T \tag{459}$$

对称矩阵具有许多重要的性质,例如它们的特征值是实数,特征向量正交。

9.8.2 反对称矩阵/斜对称矩阵

反对称矩阵也被称为斜对称矩阵。 它具有以下定义的属性

$$\mathbf{A} = -\mathbf{A}^T \tag{460}$$

由此可见,反对称矩阵的对角线始终为零。 $n \times n$ 的反对称矩阵还具有以下属性。

$$\det(\mathbf{A}^T) = \det(-\mathbf{A}) = (-1)^n \det(\mathbf{A}) \tag{461}$$

$$-\det(\mathbf{A}) = \det(-\mathbf{A}) = 0, \quad \text{if } n \text{ is odd}$$
 (462)

反对称矩阵的特征值位于虚轴上,而特征向量是酉的。

9.8.3 分解

一个方阵 A总是可以写成一个对称矩阵 A_+ 和一个反对称矩阵 A_- 的和

$$\mathbf{A} = \mathbf{A}_{+} + \mathbf{A}_{-} \tag{463}$$

这样的分解可以是

$$\mathbf{A} = \frac{\mathbf{A} + \mathbf{A}^T}{2} + \frac{\mathbf{A} - \mathbf{A}^T}{2} = \mathbf{A}_+ + \mathbf{A}_- \tag{464}$$

9.9 Toeplitz矩阵

Toeplitz矩阵 T是一种每个对角线上的元素都相同的矩阵。 在方阵的情况下,它具有以下结构:

$$\mathbf{T} = \begin{bmatrix} t_{11} & t_{12} & \cdots & t_{1n} \\ t_{21} & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & t_{12} \\ t_{n1} & \cdots & t_{21} & t_{11} \end{bmatrix} = \begin{bmatrix} t_{0} & t_{1} & \cdots & t_{n-1} \\ t_{-1} & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & t_{1} \\ t_{-(n-1)} & \cdots & t_{-1} & t_{0} \end{bmatrix}$$
(465)

一个Toeplitz矩阵是对称的。 如果一个矩阵是对称的(或正交对称的),这意味着该矩阵关于其东北-西南对角线(反对角线)对称[12]。 对称矩阵是更大的矩阵类别,因为对称矩阵不一定具有Toeplitz结构。这

是一些特殊情况的Toeplitz矩阵。 对称Toeplitz矩阵的表示为:

$$\mathbf{T} = \begin{bmatrix} t_0 & t_1 & \cdots & t_{n-1} \\ t_1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & t_1 \\ t_{n-1} & \cdots & t_1 & t_0 \end{bmatrix}$$
(466)

循环Toeplitz矩阵:

$$\mathbf{T}_{C} = \begin{bmatrix} t_{0} & t_{1} & \cdots & t_{n-1} \\ t_{n-1} & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & t_{1} \\ t_{1} & \cdots & t_{n-1} & t_{0} \end{bmatrix}$$
(467)

上三角Toeplitz矩阵:

$$\mathbf{T}_{U} = \begin{bmatrix} t_{0} & t_{1} & \cdots & t_{n-1} \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & t_{1} \\ 0 & \cdots & 0 & t_{0} \end{bmatrix}, \tag{468}$$

和下三角Toeplitz矩阵:

$$\mathbf{T}_{L} = \begin{bmatrix} t_{0} & 0 & \cdots & 0 \\ t_{-1} & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ t_{-(n-1)} & \cdots & t_{-1} & t_{0} \end{bmatrix}$$
(469)

9.9.1 Toeplitz矩阵的性质

Toeplitz矩阵具有一些计算优势。 两个Toeplitz矩阵的加法可以在 $\mathcal{O}(n)$ 次浮点运算中完成,两个Toeplitz矩阵的乘法可以在 $\mathcal{O}(n \ln n)$ 次浮点运算中完成。 Toeplitz方程组可以在 $\mathcal{O}(n^2)$ 次浮点运算中求解。 正定Toeplitz矩阵的逆矩阵也可以在 $\mathcal{O}(n^2)$ 次浮点运算中找到。 Toeplitz矩阵的逆矩阵是对称的。 两个下三角Toeplitz矩阵的乘积是一个Toeplitz矩阵。 有关Toeplitz矩阵和循环矩阵的更多信息可以在[13,7]中找到。

9.10 过渡矩阵

一个方阵 P是一个过渡矩阵,也被称为随机矩阵或 概率矩阵,如果

$$0 \le (\mathbf{P})_{ij} \le 1, \qquad \sum_{j} (\mathbf{P})_{ij} = 1$$

过渡矩阵通常描述了从状态 i到状态 j在一步中移动的概率,并且与马尔可夫过程密切相关。过渡矩阵

具有以下属性

$$Prob[i \to j \text{ 在1步中}] = (\mathbf{P})_{ij} \tag{470}$$

$$Prob[i \to j \ \text{在2步中}] = (\mathbf{P}^2)_{ij} \tag{471}$$

$$Prob[i \to j 在 k 步中] = (\mathbf{P}^k)_{ij} \tag{472}$$

如果所有行都相同
$$\Rightarrow$$
 $\mathbf{P}^n = \mathbf{P}$ (473)

$$\alpha P = \alpha, \quad \alpha 被称为不变$$
 (474)

其中 α 是所谓的稳态概率向量,即 $0 \le \alpha_i \le 1$ 和 $\sum_i \alpha_i = 1$.

9.11 单位矩阵,排列和移位

9.11.1 单位向量

设 $\mathbf{e}_i \in \mathbb{R}^{n \times 1}$ 为第 i个单位向量,即在所有条目中都为零,除了第 i个条目为1。

9.11.2 行和列

$$\mathbf{A}$$
的第 i 行 = \mathbf{e}^{T}_{i} \mathbf{A} (475)

$$\mathbf{A}$$
的第 $_{j}$ 列 = $\mathbf{A}\mathbf{e}_{j}$ (476)

9.11.3 排列

设 P为某个排列矩阵,例如

$$\mathbf{P} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{e}_2 & \mathbf{e}_1 & \mathbf{e}_3 \end{bmatrix} = \begin{bmatrix} \mathbf{e}_2^T \\ \mathbf{e}_1^T \\ \mathbf{e}_3^T \end{bmatrix}$$
(477)

对于排列矩阵,有以下性质

$$\mathbf{P}\mathbf{P}^T = \mathbf{I} \tag{478}$$

以及

$$\mathbf{AP} = \begin{bmatrix} \mathbf{Ae}_2 & \mathbf{Ae}_1 & \mathbf{Ae}_3 \end{bmatrix} \qquad \mathbf{PA} = \begin{bmatrix} \mathbf{e}_2^T \mathbf{A} \\ \mathbf{e}_1^T \mathbf{A} \\ \mathbf{e}_3^T \mathbf{A} \end{bmatrix}$$
(479)

也就是说,第一个矩阵的列是 A的列按照排列顺序排列,而第二个矩阵的行是 A的行按照排列顺序排列。

9.11.4 平移、移动或滞后算子

设 L表示 4×4

示例中定义的滞后(或"平移"或"移动")算子

$$\mathbf{L} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \tag{480}$$

即一个零矩阵,其次对角线上为 $\mathbf{1}$,(\mathbf{L}) $_{ij}=\delta_{i,j+1}$ 。 对于一些信号 x_t ,其中 t=1,...,N,滞后算子的 \mathbf{n} 次幂会改变索引,即

$$(\mathbf{L}^n \mathbf{x})_t = \left\{ \begin{array}{l} 0 \quad \text{对于 } t = 1, ..., n \\ \mathbf{x}_{t, t = n+1, ..., N, \text{ 滞后算子的}_n \text{次幂会格索引向后移动}_n \text{个位置}} \end{array} \right. \tag{481}$$

一个相关但略有不同的矩阵是在4x4示例中定义的"循环平移"算子

$$\hat{\mathbf{L}} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \tag{482}$$

即一个矩阵,其定义为 $(\hat{\mathbf{L}})_{ij}=\delta_{i,j+1}+\delta_{i,1}\delta_{j,dim(\mathbf{L})}$ 。 对于一个信号 \mathbf{x} ,它的作用是

$$(\hat{\mathbf{L}}^n \mathbf{x})_t = x_{t'}, \quad t' = [(t-n) \mod N] + 1$$
 (483)也就是

说, \hat{L} 就像移位运算符 L一样,只是它将信号"包裹"起来,就像周期性地移动(用信号的末尾替换零值)。 请注意, \hat{L} 是可逆的和正交的,即

$$\hat{\mathbf{L}}^{-1} = \hat{\mathbf{L}}^T \tag{484}$$

9.12 Vandermonde矩阵

Vandermonde矩阵的形式为[15]

$$\mathbf{V} = \begin{bmatrix} 1 & v_1 & v_1^2 & \cdots & v_1^{n-1} \\ 1 & v_2 & v_2^2 & \cdots & v_2^{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & v_n & v_n^2 & \cdots & v_n^{n-1} \end{bmatrix}.$$
(485)

V的转置也被称为范德蒙德矩阵。 行列式由[29]给出

$$\det \mathbf{V} = \prod_{i>j} (v_i - v_j) \tag{486}$$

10 函数和运算符

10.1 函数和级数

10.1.1 有限级数

$$(\mathbf{X}^n - \mathbf{I})(\mathbf{X} - \mathbf{I})^{-1} = \mathbf{I} + \mathbf{X} + \mathbf{X}^2 + \dots + \mathbf{X}^{n-1}$$
 (487)

10.1.2 标量函数的泰勒展开

考虑一些以向量 \mathbf{x} 为参数的标量函数 $f(\mathbf{x})$ 。 我们可以围绕 \mathbf{x}_0 进行泰勒展开

$$f(\mathbf{x}) \cong f(\mathbf{x}_0) + \mathbf{g}(\mathbf{x}_0)^T (\mathbf{x} - \mathbf{x}_0) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^T \mathbf{H}(\mathbf{x}_0) (\mathbf{x} - \mathbf{x}_0)$$
(488)

哪里

$$\mathbf{g}(\mathbf{x}_0) = \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} \Big|_{\mathbf{x}_0} \qquad \mathbf{H}(\mathbf{x}_0) = \frac{\partial^2 f(\mathbf{x})}{\partial \mathbf{x} \partial \mathbf{x}^T} \Big|_{\mathbf{x}_0}$$

10.1.3 无穷级数矩阵函数

对于一维解析函数,可以通过无穷级数为方阵 X定义一个矩阵函数

$$\mathbf{f}(\mathbf{X}) = \sum_{n=0}^{\infty} c_n \mathbf{X}^n \tag{489}$$

假设极限存在且有限。 如果系数 c_n 满足 $\sum_n c_n x^n < \infty$,则可以证明上述级数存在且有限,参见[1]。 因此,对于任何解析函数 f(x),都存在一个相应的矩阵函数 f(x)通过泰勒展开构造。 利用这一点,可以证明以下结果:

1) 矩阵 A是其特征多项式的零点[1]:

$$p(\lambda) = \det(\mathbf{I}\lambda - \mathbf{A}) = \sum_{n} c_n \lambda^n \qquad \Rightarrow \qquad p(\mathbf{A}) = \mathbf{0}$$
 (490)

2) 如果 A是方阵,则成立[1]

$$\mathbf{A} = \mathbf{U}\mathbf{B}\mathbf{U}^{-1} \quad \Rightarrow \quad \mathbf{f}(\mathbf{A}) = \mathbf{U}\mathbf{f}(\mathbf{B})\mathbf{U}^{-1}$$
 (491)

3) 在使用幂级数时,一个有用的事实是

$$\mathbf{A}^n \to \mathbf{0} \stackrel{\omega}{=} n \to \infty$$
 if $|\mathbf{A}| < 1$ (492)

10.1.4 身份和交换

对于一个解析矩阵函数 f(X),有以下关系成立

$$f(AB)A = Af(BA) \tag{493}$$

参见B.1.2以获取证明。

10.1.5 指数矩阵函数

类似于普通标量指数函数,可以定义指数和对数矩阵函数:

$$e^{\mathbf{A}} \equiv \sum_{n=0}^{\infty} \frac{1}{n!} \mathbf{A}^n = \mathbf{I} + \mathbf{A} + \frac{1}{2} \mathbf{A}^2 + \dots$$
 (494)

$$e^{-\mathbf{A}} \equiv \sum_{n=0}^{\infty} \frac{1}{n!} (-1)^n \mathbf{A}^n = \mathbf{I} - \mathbf{A} + \frac{1}{2} \mathbf{A}^2 - \dots$$
 (495)

$$e^{t\mathbf{A}} \equiv \sum_{n=0}^{\infty} \frac{1}{n!} (t\mathbf{A})^n = \mathbf{I} + t\mathbf{A} + \frac{1}{2} t^2 \mathbf{A}^2 + \dots$$
 (496)

$$\ln(\mathbf{I} + \mathbf{A}) \equiv \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \mathbf{A}^n = \mathbf{A} - \frac{1}{2} \mathbf{A}^2 + \frac{1}{3} \mathbf{A}^3 - \dots$$
 (497)

指数函数的一些性质[1]

$$e^{\mathbf{A}}e^{\mathbf{B}} = e^{\mathbf{A}+\mathbf{B}} \quad \text{if} \quad \mathbf{A}\mathbf{B} = \mathbf{B}\mathbf{A}$$
 (498)

$$(e^{\mathbf{A}})^{-1} = e^{-\mathbf{A}} \tag{499}$$

$$\frac{d}{dt}e^{t\mathbf{A}} = \mathbf{A}e^{t\mathbf{A}} = e^{t\mathbf{A}}\mathbf{A}, \qquad t \in \mathbb{R}$$
 (500)

$$(e^{\mathbf{A}})^{-1} = e^{-\mathbf{A}}$$

$$\frac{d}{dt}e^{t\mathbf{A}} = \mathbf{A}e^{t\mathbf{A}} = e^{t\mathbf{A}}\mathbf{A}, t \in \mathbb{R}$$

$$\frac{d}{dt}\operatorname{Tr}(e^{t\mathbf{A}}) = \operatorname{Tr}(\mathbf{A}e^{t\mathbf{A}})$$

$$\det(e^{\mathbf{A}}) = e^{\operatorname{Tr}(\mathbf{A})}$$

$$(501)$$

$$\det(e^{\mathbf{A}}) = e^{\mathrm{Tr}(\mathbf{A})} \tag{502}$$

10.1.6 三角函数

$$\sin(\mathbf{A}) \equiv \sum_{n=0}^{\infty} \frac{(-1)^n \mathbf{A}^{2n+1}}{(2n+1)!} = \mathbf{A} - \frac{1}{3!} \mathbf{A}^3 + \frac{1}{5!} \mathbf{A}^5 - \dots$$
 (503)

$$\cos(\mathbf{A}) \equiv \sum_{n=0}^{\infty} \frac{(-1)^n \mathbf{A}^{2n}}{(2n)!} = \mathbf{I} - \frac{1}{2!} \mathbf{A}^2 + \frac{1}{4!} \mathbf{A}^4 - \dots$$
 (504)

10.2 Kronecker和Vec运算符

10.2.1 克罗内克积

一个 $m \times n$ 矩阵 **A**和一个 $r \times q$ 矩阵 **B**的克罗内克积是一个 $mr \times nq$ 矩阵, $\mathbf{A} \otimes \mathbf{B}$ 定义为

$$\mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} A_{11}\mathbf{B} & A_{12}\mathbf{B} & \dots & A_{1n}\mathbf{B} \\ A_{21}\mathbf{B} & A_{22}\mathbf{B} & \dots & A_{2n}\mathbf{B} \\ \vdots & & & \vdots \\ A_{m1}\mathbf{B} & A_{m2}\mathbf{B} & \dots & A_{mn}\mathbf{B} \end{bmatrix}$$
(505)

克罗内克积具有以下性质(见[19])

$$\mathbf{A} \otimes (\mathbf{B} + \mathbf{C}) = \mathbf{A} \otimes \mathbf{B} + \mathbf{A} \otimes \mathbf{C} \tag{506}$$

$$\mathbf{A} \otimes \mathbf{B} = \mathbf{B} \otimes \mathbf{A} \qquad \mathbf{-} 般来说 \tag{507}$$

$$\mathbf{A} \otimes (\mathbf{B} \otimes \mathbf{C}) = (\mathbf{A} \otimes \mathbf{B}) \otimes \mathbf{C} \tag{508}$$

$$(\alpha_A \mathbf{A} \otimes \alpha_B \mathbf{B}) = \alpha_A \alpha_B (\mathbf{A} \otimes \mathbf{B}) \tag{509}$$

$$(\mathbf{A} \otimes \mathbf{B})^T = \mathbf{A}^T \otimes \mathbf{B}^T \tag{510}$$

$$(\mathbf{A} \otimes \mathbf{B})(\mathbf{C} \otimes \mathbf{D}) = \mathbf{AC} \otimes \mathbf{BD} \tag{511}$$

$$(\mathbf{A} \otimes \mathbf{B})^{-1} = \mathbf{A}^{-1} \otimes \mathbf{B}^{-1} \tag{512}$$

$$(\mathbf{A} \otimes \mathbf{B})^{+} = \mathbf{A}^{+} \otimes \mathbf{B}^{+} \tag{513}$$

$$rank(\mathbf{A} \otimes \mathbf{B}) = rank(\mathbf{A})rank(\mathbf{B})$$
 (514)

$$\operatorname{Tr}(\mathbf{A} \otimes \mathbf{B}) = \operatorname{Tr}(\mathbf{A})\operatorname{Tr}(\mathbf{B}) = \operatorname{Tr}(\mathbf{\Lambda}_A \otimes \mathbf{\Lambda}_B)$$
 (515)

$$\operatorname{Tr}(\mathbf{A} \otimes \mathbf{D}) = \operatorname{Tr}(\mathbf{A})\operatorname{Tr}(\mathbf{D}) \equiv \operatorname{Tr}(\mathbf{A}_A \otimes \mathbf{A}_B)$$
 (515)

$$det(\mathbf{A} \otimes \mathbf{B}) = \det(\mathbf{A})^{\operatorname{rank}(\mathbf{B})} \det(\mathbf{B})^{\operatorname{rank}(\mathbf{A})}$$

$$\{\operatorname{eig}(\mathbf{A} \otimes \mathbf{B})\} = \{\operatorname{eig}(\mathbf{B} \otimes \mathbf{A})\} \quad \text{如果 } \mathbf{A}, \mathbf{B}$$
是方阵 (517)

$$\{\operatorname{eig}(\mathbf{A} \otimes \mathbf{B})\} = \{\operatorname{eig}(\mathbf{A})\operatorname{eig}(\mathbf{B})^T\}$$
(518)

$$\operatorname{eig}(\mathbf{A} \otimes \mathbf{B}) = \operatorname{eig}(\mathbf{A}) \otimes \operatorname{eig}(\mathbf{B})$$
 (519)

其中 $\{\lambda_i\}$ 表示值 λ_i 的集合,即无特定顺序或结构的值, $\mathbf{\Lambda}_A$ 表示具有特征值的对角矩阵

 \mathbf{A}_{\circ}

10.2.2 向量运算符

向量运算符应用于矩阵 \mathbf{A} 将列堆叠成向量,即对于一个 2×2 的矩阵

$$\mathbf{A} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \qquad \text{vec}(\mathbf{A}) = \begin{bmatrix} A_{11} \\ A_{21} \\ A_{12} \\ A_{22} \end{bmatrix}$$

向量运算符的性质包括(参见[19])

$$vec(\mathbf{AXB}) = (\mathbf{B}^T \otimes \mathbf{A})vec(\mathbf{X})$$
 (520)

$$Tr(\mathbf{A}^T \mathbf{B}) = vec(\mathbf{A})^T vec(\mathbf{B})$$
 (521)

$$\operatorname{vec}(\mathbf{A} + \mathbf{B}) = \operatorname{vec}(\mathbf{A}) + \operatorname{vec}(\mathbf{B}) \tag{522}$$

$$\operatorname{vec}(\alpha \mathbf{A}) = \alpha \cdot \operatorname{vec}(\mathbf{A}) \tag{523}$$

$$\mathbf{a}^T \mathbf{X} \mathbf{B} \mathbf{X}^T \mathbf{c} = \operatorname{vec}(\mathbf{X})^T (\mathbf{B} \otimes \mathbf{c} \mathbf{a}^T) \operatorname{vec}(\mathbf{X})$$
 (524)

参见 B.1.1 以证明等式 524。

10.3 向量范数

10.3.1 例子

$$||\mathbf{x}||_1 = \sum_i |x_i| \tag{525}$$

$$||\mathbf{x}||_2^2 = \mathbf{x}^H \mathbf{x} \tag{526}$$

$$||\mathbf{x}||_{1} = \sum_{i} |x_{i}|$$

$$||\mathbf{x}||_{2}^{2} = \mathbf{x}^{H}\mathbf{x}$$

$$||\mathbf{x}||_{p} = \left[\sum_{i} |x_{i}|^{p}\right]^{1/p}$$

$$(525)$$

$$(526)$$

$$||\mathbf{x}||_{\infty} = \max_{i} |x_{i}| \tag{528}$$

进一步阅读,例如[12, p. 52]

10.4 矩阵范数

10.4.1 定义

矩阵范数是一个满足

$$||\mathbf{A}|| \ge 0$$
的映射 (529)

$$||\mathbf{A}|| = 0 \Leftrightarrow \mathbf{A} = \mathbf{0} \tag{530}$$

$$||c\mathbf{A}|| = |c|||\mathbf{A}||, \quad c \in \mathbb{R}$$
 (531)

$$||\mathbf{A} + \mathbf{B}|| \leq ||\mathbf{A}|| + ||\mathbf{B}|| \tag{532}$$

10.4.2 引导范数或算子范数

引导范数是由向量范数引导的矩阵范数,由以下公式定义

$$||\mathbf{A}|| = \sup\{||\mathbf{A}\mathbf{x}|| \quad |\quad ||\mathbf{x}|| = 1\} \tag{533}$$

左边的|| · ||表示引导矩阵范数,而右边的|| · ||表示向量范数。 对于引导范数, 有 $||\mathbf{I}|| = 1$

$$||\mathbf{A}\mathbf{x}|| \leq ||\mathbf{A}|| \cdot ||\mathbf{x}||, \quad \text{对于所有 } \mathbf{A}, \mathbf{x}$$
 (535)

$$||\mathbf{A}\mathbf{x}|| \leq ||\mathbf{A}|| \cdot ||\mathbf{x}||,$$
 对于所有 \mathbf{A}, \mathbf{x} (535) $||\mathbf{A}\mathbf{B}|| \leq ||\mathbf{A}|| \cdot ||\mathbf{B}||,$ 对于所有 \mathbf{A}, \mathbf{B} (536)

10.4.3 例子

$$||\mathbf{A}||_1 = \max_j \sum_i |A_{ij}| \tag{537}$$

$$||\mathbf{A}||_2 = \int_{\mathbf{A}} \max \operatorname{eig}(\mathbf{A}^H \mathbf{A})$$
 (538)

$$||\mathbf{A}||_p = \sqrt{\max_{|\mathbf{x}||_{p-1}} ||\mathbf{A}\mathbf{x}||_p})^{1/p}$$

$$(539)$$

$$||\mathbf{A}||_{\infty} = \max_{i} \sum_{j} |A_{ij}| \tag{540}$$

$$||\mathbf{A}||_{1} = \max_{j} \sum_{i} |A_{ij}|$$

$$||\mathbf{A}||_{2} = \sqrt{\max_{j} \operatorname{eig}(\mathbf{A}^{H}\mathbf{A})}$$

$$||\mathbf{A}||_{p} = \sqrt{\max_{|\mathbf{x}||_{p}=1} ||\mathbf{A}\mathbf{x}||_{p}}$$

$$||\mathbf{A}||_{\infty} = \max_{i} \sum_{j} |A_{ij}|$$

$$||\mathbf{A}||_{F} = \sqrt{\sum_{ij} |A_{ij}|^{2}} = \sqrt{\operatorname{Tr}(\mathbf{A}\mathbf{A}^{H})}$$
(Frobenius) (541)

$$||\mathbf{A}||_{\max} = \max_{ij} |A_{ij}| \tag{542}$$

$$||\mathbf{A}||_{\mathrm{KF}} = ||\operatorname{sing}(\mathbf{A})||_{1} \quad (\text{Ky Fan}) \tag{543}$$

其中 $sing(\mathbf{A})$ 是矩阵 \mathbf{A} 的奇异值向量。

10.4.4 不等式

E. H. Rasmussen 在尚未发表的资料中推导和收集了以下不等式。 它们被整理 在下表中,假设 **A**是一个 $m \times n$ 的矩阵, $d=\mathrm{rank}(\mathbf{A})$

这些应该被理解为,例如

$$||\mathbf{A}||_{2} \leq \sqrt{\mathbb{R}} \cdot ||\mathbf{A}|| \times \mathbb{R}$$

10.4.5 条件数

矩阵 ${f A}$ 的2范数等于 $\sqrt{(\max({
m eig}({f A}^T{f A})))}$ [12, p.57]。对于对称的、正定的矩阵,这可以简化为 $\max({
m eig}({f A}))$ 基于2范数的条件数因此简化为

$$\|\mathbf{A}\|_2 \|\mathbf{A}^{-1}\|_2 = \max(\operatorname{eig}(\mathbf{A})) \max(\operatorname{eig}(\mathbf{A}^{-1})) = \frac{\max(\operatorname{eig}(\mathbf{A}))}{\min(\operatorname{eig}(\mathbf{A}))}.$$
 (545)

10.5 秩

10.5.1 斯尔维斯特不等式

如果 **A**是 $m \times n$, **B**是 $n \times r$, 那么

$$rank(\mathbf{A}) + rank(\mathbf{B}) - n \le rank(\mathbf{AB}) \le min\{rank(\mathbf{A}), rank(\mathbf{B})\}$$
 (546)

10.6 包含Dirac Delta函数的积分

假设 A 是方阵,那么

$$\int p(\mathbf{s})\delta(\mathbf{x} - \mathbf{A}\mathbf{s})d\mathbf{s} = \frac{1}{\det(\mathbf{A})}p(\mathbf{A}^{-1}\mathbf{x})$$
(547)

假设 A是"欠定"的,即"高瘦"的,那么

$$\int p(\mathbf{s})\delta(\mathbf{x} - \mathbf{A}\mathbf{s})d\mathbf{s} = \left\{ \begin{array}{l} \frac{1}{\sqrt{\det(\mathbf{A}^T\mathbf{A})}}p(\mathbf{A}^+\mathbf{x}) \text{ un } \mathbf{x} = \mathbf{A}\mathbf{A}^+\mathbf{x} \\ 0 \text{ in } \mathbf{b} \end{array} \right\}$$
(548)

见[9]

10.7 其他

对于任意的 A都成立

$$rank(\mathbf{A}) = rank(\mathbf{A}^T) = rank(\mathbf{A}\mathbf{A}^T) = rank(\mathbf{A}^T\mathbf{A})$$
 (549)

它成立

A是正定的
$$\Leftrightarrow$$
 存在B可逆,使得 $\mathbf{A} = \mathbf{B}\mathbf{B}^T$ (550)

一维结果

A.1 高斯分布

A.1.1 密度

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$
 (551)

$$\int e^{-\frac{(s-\mu)^2}{2\sigma^2}} ds = \sqrt{2\pi\sigma^2}$$
 (552)

$$\int e^{-(ax^2+bx+c)}dx = \sqrt{\frac{\pi}{a}} \exp\left[\frac{b^2-4ac}{4a}\right]$$
 (553)

$$\int e^{-(ax^{2}+bx+c)} dx = \sqrt{\frac{\pi}{a}} \exp\left[\frac{b^{2}-4ac}{4a}\right]$$

$$\int e^{c_{2}x^{2}+c_{1}x+c_{0}} dx = \sqrt{\frac{\pi}{-\bar{z}_{2}}} \exp\left[\frac{\bar{z}_{2}}{-4\bar{z}_{2}}\right]$$
(553)

A.1.3 导数

$$\frac{\partial p(\bar{\mathbf{p}})}{\partial \mu} = p(x) \frac{(\bar{\mathbf{p}} - \mu)}{\sigma^2} \tag{555}$$

$$\frac{\partial p(\bar{\mathbf{p}})}{\partial \mu} = p(x) \frac{(\bar{\mathbf{p}} - \mu)}{\sigma^2}$$

$$\frac{\partial \ln p(\bar{\mathbf{p}})}{\partial \mu} = (\bar{\mathbf{p}} - \mu)$$

$$\frac{\partial \bar{\mathbf{p}}}{\partial \mu} = (\bar{\mathbf{p}} - \mu)$$
(556)

$$\frac{\partial p(\bar{\mathbf{p}})}{\partial \sigma} = p(x) \frac{1}{\sigma} \left[\frac{(\bar{\mathbf{p}} - \mu)}{\sigma^2} - 1 \right]$$
 (557)

$$\frac{\partial \ln p(\bar{\mathbf{p}})}{\partial \sigma} = \frac{1}{\sigma} \left[\frac{(\bar{\mathbf{p}}^{\mathsf{L}} - \mu)^2}{\sigma^2} - 1 \right] \tag{558}$$

A.1.4 完成平方

$$\begin{split} & \hat{D}_2 \hat{D}^2 + \hat{D}_1 \hat{D}_1 + \hat{D}_0 = -\hat{D}_1 (\hat{D}_1 - \hat{D}_1)^2 + \hat{D}_1 \\ \\ & -\hat{D}_1 = \hat{D}_2 \qquad \hat{D}_2 = \frac{1}{2} \frac{\hat{E}_1}{\hat{E}_2} \qquad \hat{D}_2 = \frac{1}{4} \frac{\hat{E}_1^2}{\hat{E}_2} + \hat{D}_0 \end{split}$$

或

A.1.5 矩阵的矩

如果密度由以下方式表示

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(s-\mu)^2}{2\sigma^2}\right]$$
 或者 $p(x) = C \exp(c_2 x^2 + c_1 x)$ (559)

那么前几个基本矩为

$$\begin{array}{rclcrcl} \langle x \rangle & = & \mu & = & \frac{-c_1}{2\bar{\pi}_2} \\ \langle x^2 \rangle & = & \sigma^2 + \mu^2 & = & \frac{-1}{2\bar{\pi}_2} + \left(\frac{-c_1}{2c_2}\right)^2 \\ \langle x^3 \rangle & = & 3\sigma^2\mu + \mu^3 & = & \frac{\bar{\pi}_1}{(2c_2)^2} \left[3 - \frac{c_1^2}{2c_2}\right] \\ \langle x^4 \rangle & = & \mu^4 + 6\mu^2\sigma^2 + 3\sigma^4 & = & \left(\frac{\bar{\pi}_1}{2c_2}\right)^4 + 6\left(\frac{\bar{\pi}_1}{2\bar{\pi}_2}\right)^2 \left(\frac{-1}{2c_2}\right) + 3\left(\frac{1}{2c_2}\right)^2 \end{array}$$

以及中心矩是

$$\langle (x - \mu) \rangle = 0 = 0$$

$$\langle (x - \mu)^2 \rangle = \sigma^2 = \begin{bmatrix} \frac{-1}{2c_2} \end{bmatrix}$$

$$\langle (x - \mu)^3 \rangle = 0 = 0$$

$$\langle (x - \mu)^4 \rangle = 3\sigma^4 = 3\left[\frac{1}{2\pi_2}\right]^2$$

一种伪矩(非归一化积分)可以很容易地推导出来

$$\int \exp(c_2 x^2 + c_1 x) x^n dx = Z\langle x^n \rangle = \sqrt{\frac{\pi}{-c_2}} \exp\left[\frac{c_1^2}{-4\bar{\mathbf{g}}_2}\right] \langle x^n \rangle$$
 (560)

从非中心矩可以推导出其他实体,如

$$\begin{array}{rclcrcl} \langle x^2 \rangle - \langle x \rangle^2 & = & \sigma^2 & = & \frac{-1}{2\pi_2} \\ \langle x^3 \rangle - \langle x^2 \rangle \langle x \rangle & = & 2\sigma^2 \mu & = & \frac{2c_1}{(2c_2)^2} \\ \langle x^4 \rangle - \langle x^2 \rangle^2 & = & 2\sigma^4 + 4\mu^2 \sigma^2 & = & \frac{2}{(2c_2)^2} \left[1 - 4\frac{c_1^2}{2c_2} \right] \end{array}$$

A.2 一维高斯混合

A.2.1 密度和归一化

$$p(s) = \sum_{k}^{K} \frac{\rho_k}{\sqrt{2\pi\sigma_k^2}} \exp\left[-\frac{1}{2} \frac{(s-\mu_k)^2}{\sigma_k^2}\right]$$
 (561)

A.2.2 矩

MoG的一个有用的事实是

$$\langle x^n \rangle = \sum_k \rho_k \langle x^n \rangle_k \tag{562}$$

其中 $\langle \cdot \rangle_k$ 表示对第 k个分量的平均。 我们可以从密度函数计算前四个矩

$$p(x) = \sum_{k} \rho_k \frac{1}{\sqrt{2\pi\sigma_k^2}} \exp\left[-\frac{1}{2} \frac{(x-\mu_k)^2}{\sigma_k^2}\right]$$
 (563)

$$p(x) = \sum_{k} \rho_k \frac{1}{\sqrt{2\pi\sigma_k^2}} \exp\left[-\frac{1}{2} \frac{(x-\mu_k)^2}{\sigma_k^2}\right]$$

$$p(x) = \sum_{k} \rho_k O_k \exp\left[c_{k2} x^2 + c_{k1} x\right]$$
(563)

如

$$\begin{array}{lll} \langle x \rangle & = & \sum_{k} \rho_{k} \mu_{k} & = & \sum_{k} \rho_{k} \left[\frac{-c_{k1}}{2c_{k2}} \right] \\ \langle x^{2} \rangle & = & \sum_{k} \rho_{k} (\sigma_{k}^{2} + \mu_{k}^{2}) & = & \sum_{k} \rho_{k} \left[\frac{-1}{2c_{k2}} + \left(\frac{-c_{k1}}{2c_{k2}} \right)^{2} \right] \\ \langle x^{3} \rangle & = & \sum_{k} \rho_{k} (3\sigma_{k}^{2}\mu_{k} + \mu_{k}^{3}) & = & \sum_{k} \rho_{k} \left[\frac{c_{k1}}{(2c_{k2})^{2}} \left[3 - \frac{c_{k1}^{2}}{2c_{k2}} \right] \right] \\ \langle x^{4} \rangle & = & \sum_{k} \rho_{k} (\mu_{k}^{4} + 6\mu_{k}^{2}\sigma_{k}^{2} + 3\sigma_{k}^{4}) & = & \sum_{k} \rho_{k} \left[\left(\frac{1}{2c_{k2}} \right)^{2} \left[\left(\frac{c_{k1}}{2c_{k2}} \right)^{2} - 6\frac{c_{k1}^{2}}{2c_{k2}} + 3 \right] \right] \end{array}$$

如果所有的高斯函数都是以中心为基准的,即 $\mu_k=0$ 对于所有的 k, 那么

$$\langle x \rangle = 0 = 0$$

$$\langle x^2 \rangle = \sum_k \rho_k \sigma_k^2 = \sum_k \rho_k \left[\frac{-1}{2c_{k2}} \right]$$

$$\langle x^3 \rangle = 0 = 0$$

$$\langle x^4 \rangle = \sum_k \rho_k 3\sigma_k^4 = \sum_k \rho_k 3 \left[\frac{-1}{2c_{k2}} \right]^2$$

从非中心矩可以推导出其他实体,如

$$\begin{array}{rcl} \langle x^{2} \rangle - \langle x \rangle^{2} & = & \sum_{k,k'} \rho_{k} \rho_{k'} \left[\mu_{k}^{2} + \sigma_{k}^{2} - \mu_{k} \mu_{k'} \right] \\ \langle x^{3} \rangle - \langle x^{2} \rangle \langle x \rangle & = & \sum_{k,k'} \rho_{k} \rho_{k'} \left[3\sigma_{k}^{2} \mu_{k} + \mu_{k}^{3} - (\sigma_{k}^{2} + \mu_{k}^{2}) \mu_{k'} \right] \\ \langle x^{4} \rangle - \langle x^{2} \rangle^{2} & = & \sum_{k,k'} \rho_{k} \rho_{k'} \left[\mu_{k}^{2} + 6\mu_{k}^{2} \sigma_{k}^{2} + 3\sigma_{k}^{4} - (\sigma_{k}^{2} + \mu_{k}^{2}) (\sigma_{k'}^{2} + \mu_{k'}^{2}) \right] \end{array}$$

A.2.3 导数

 $p(s) = \sum$ 对于第j个分量的参数 θ_j of,我们得到 定义

$$\frac{\partial \ln p(s)}{\partial \theta_j} = \frac{\rho_j \mathcal{N}_s(\mu_j, \sigma_j^2)}{\sum_k \rho_k \mathcal{N}_s(\mu_k, \sigma_k^2)} \frac{\partial \ln(\rho_j \mathcal{N}_s(\mu_j, \sigma_j^2))}{\partial \theta_j}$$
(565)

也就是说.

$$\frac{\partial \ln p(s)}{\partial \rho_j} = \frac{\rho_j \mathcal{N}_s(\mu_j, \sigma_j^2)}{\sum_{\underline{k}} \rho_k \mathcal{N}_s(\mu_k, \sigma_k^2)} \frac{1}{\rho_j}$$
(566)

$$\frac{\partial \ln p(s)}{\partial \mu_j} = \frac{\rho_j \mathcal{N}_s(\mu_j, \sigma_j^2)}{\sum_{\underline{k}} \rho_k \mathcal{N}_s(\mu_k, \sigma_k^2)} \frac{(s - \mu_j)}{\sigma_j^2}$$
(567)

$$\frac{\partial \ln p(s)}{\partial \rho_{j}} = \frac{\rho_{j} \mathcal{N}_{s}(\mu_{j}, \sigma_{j}^{2})}{\sum_{k} \rho_{k} \mathcal{N}_{s}(\mu_{k}, \sigma_{k}^{2})} \frac{1}{\rho_{j}} \qquad (566)$$

$$\frac{\partial \ln p(s)}{\partial \mu_{j}} = \frac{\rho_{j} \mathcal{N}_{s}(\mu_{j}, \sigma_{j}^{2})}{\sum_{k} \rho_{k} \mathcal{N}_{s}(\mu_{k}, \sigma_{k}^{2})} \frac{(s - \mu_{j})}{\sigma_{j}^{2}} \qquad (567)$$

$$\frac{\partial \ln p(s)}{\partial \sigma_{j}} = \frac{\rho_{j} \mathcal{N}_{s}(\mu_{j}, \sigma_{j}^{2})}{\sum_{k} \rho_{k} \mathcal{N}_{s}(\mu_{k}, \sigma_{k}^{2})} \frac{1}{\sigma_{j}} \left[\frac{(s - \mu_{j})^{2}}{\sigma_{j}^{2}} - 1 \right] \qquad (568)$$

注意 ρ_k 必须受到约束,成为适当的比率。通过定义比率为 $ho_j = e^{r_j} / \sum_k e^{r_k}$,我们得到

$$\frac{\partial \ln p(s)}{\partial r_j} = \sum_{l} \frac{\partial \ln p(s)}{\partial \rho_l} \frac{\partial \rho_l}{\partial r_j} \quad \text{mBL} \qquad \frac{\partial \rho_l}{\partial r_j} = \rho_l (\delta_{lj} - \rho_j)$$
 (569)

B证明和细节

B.1 其他证明

B.1.1 方程式 524 的证明

以下证明是 Florian Roemer 的工作。请注意下面的向量和矩阵可以是复数,符 号 X^H 用于转置和共轭,而 X^T 仅用于复数矩阵的转置。

B.1 其他证明 B.1 其他证明 B.1 以 B.1

 $\operatorname{conj}(\mathbf{y}))^H = \operatorname{vec}(\mathbf{a}^T \operatorname{conj}(\mathbf{X}) \operatorname{conj}(\mathbf{B}))^H$ 相同

其中"conj"表示复共轭。 应用线性形式的 vec 规则 方程式 520,我们得到

$$\mathbf{y} = (\mathbf{B}^H \otimes \mathbf{a}^T \operatorname{vec}(\operatorname{conj}(\mathbf{X}))^H = \operatorname{vec}(\mathbf{X})^T (\mathbf{B} \otimes \operatorname{conj}(\mathbf{a}))$$
其中我们还使

用了 Kronecker 乘积的转置规则。对于 \mathbf{y}^T ,这得到了 $(\mathbf{B}^T \otimes \mathbf{a}^H) \text{vec}(\mathbf{X})$ 。类似地,我们可以重写 \mathbf{z} ,这与 $\text{vec}(\mathbf{z}^T) = \text{vec}(\mathbf{c}^T \text{conj}(\mathbf{X}))$ 相同。再次应用方程式520,我们得到 $\mathbf{z} = (\mathbf{I} \otimes \mathbf{c}^T) \text{vec}(\text{conj}(\mathbf{X}))$

其中 I是单位矩阵。 对于 \mathbf{z}^T ,我们得到 $\mathrm{vec}(\mathbf{X})(\mathbf{I}\otimes\mathbf{c})$ 。 最后,原始表达式为 $\mathbf{z}^T\mathbf{y}^T$,现在采用以下形式 $\mathrm{vec}(\mathbf{X})^H(\mathbf{I}\otimes\mathbf{c})(\mathbf{B}^T\otimes\mathbf{a}^H)\mathrm{vec}(\mathbf{X})$

最后一步是应用Kronecker积的乘积规则,并通过此方式组合Kronecker积。 这给出了 $vec(\mathbf{X})^H(\mathbf{B}^T\otimes\mathbf{ca}^H)vec(\mathbf{X})$ 这是所需的结果。

B.1.2 方程式 493 的证明

对于任何矩阵参数X的解析函数 f(X), 有

$$\mathbf{f}(\mathbf{A}\mathbf{B})\mathbf{A} = \left(\sum_{n=0}^{\infty} c_n (\mathbf{A}\mathbf{B})^n\right) \mathbf{A}$$

$$= \sum_{n=0}^{\infty} c_n (\mathbf{A}\mathbf{B})^n \mathbf{A}$$

$$= \sum_{n=0}^{\infty} c_n \mathbf{A} (\mathbf{B}\mathbf{A})^n$$

$$= \mathbf{A}\sum_{n=0}^{\infty} c_n (\mathbf{B}\mathbf{A})^n$$

$$= \mathbf{A}\mathbf{f}(\mathbf{B}\mathbf{A})$$

B.1.3 方程 91 的证明

基本上我们需要计算

$$\begin{array}{lll} \frac{\partial (\mathbf{X}^{n})_{kl}}{\partial X_{ij}} & = & \frac{\partial}{\partial X_{ij}} \sum_{u_{1},...,u_{n-1}} X_{k,u_{1}} X_{u_{1},u_{2}}...X_{u_{n-1},l} \\ & = & \delta_{k,i} \delta_{u_{1},j} X_{u_{1},u_{2}}...X_{u_{n-1},l} \\ & & + X_{k,u_{1}} \delta_{u_{1},i} \delta_{u_{2},j}...X_{u_{n-1},l} \\ & \vdots \\ & & + X_{k,u_{1}} X_{u_{1},u_{2}}...\delta_{u_{n-1},i} \delta_{l,j} \\ & = & \sum_{r=0}^{n-1} (\mathbf{X}^{r})_{ki} (\mathbf{X}^{n-1-r})_{jl} \\ & = & \sum_{r=0}^{n-1} (\mathbf{X}^{r} \mathbf{J}^{ij} \mathbf{X}^{n-1-r})_{kl} \end{array}$$

利用第 9.7.4 节中找到的单个元素矩阵的性质,结果很容易得出。

B.1.4 方程式 571 的详细信息

首先,找到对 X的实部的导数

$$\begin{split} \frac{\partial \det(\mathbf{X}^H \mathbf{A} \mathbf{X})}{\partial \Re \mathbf{X}} &= \det(\mathbf{X}^H \mathbf{A} \mathbf{X}) \Big(\frac{\mathrm{Tr}[\mathbf{A} \mathbf{X} (\mathbf{X}^H \mathbf{A} \mathbf{X})^{-1} \partial (\mathbf{X}^H)]}{\partial \Re \mathbf{X}} \\ &+ \frac{\mathrm{Tr}[(\mathbf{X}^H \mathbf{A} \mathbf{X})^{-1} \mathbf{X}^H \mathbf{A} \partial (\mathbf{X})]}{\partial \Re \mathbf{X}} \Big) \\ &= \det(\mathbf{X}^H \mathbf{A} \mathbf{X}) \Big(\mathbf{A} \mathbf{X} (\mathbf{X}^H \mathbf{A} \mathbf{X})^{-1} + ((\mathbf{X}^H \mathbf{A} \mathbf{X})^{-1} \mathbf{X}^H \mathbf{A})^T \Big) \end{split}$$

通过计算,使用了(100)和(240)。 此 \mathbf{y} ,通过使用(241),找到了对 \mathbf{X} 的虚部的 导数即 $\partial \det(\mathbf{X}^H \mathbf{A} \mathbf{X})$

$$\frac{\partial \Im \mathbf{X}}{\partial \Im \mathbf{X}} = i \det(\mathbf{X}^H \mathbf{A} \mathbf{X}) \left(\frac{\operatorname{Tr}[\mathbf{A} \mathbf{X} (\mathbf{X}^H \mathbf{A} \mathbf{X})^{-1} \partial (\mathbf{X}^H)]}{\partial \Im \mathbf{X}} + \frac{\operatorname{Tr}[(\mathbf{X}^H \mathbf{A} \mathbf{X})^{-1} \mathbf{X}^H \mathbf{A} \partial (\mathbf{X})]}{\partial \Im \mathbf{X}} \right)$$

$$= \det(\mathbf{X}^H \mathbf{A} \mathbf{X}) \left(\mathbf{A} \mathbf{X} (\mathbf{X}^H \mathbf{A} \mathbf{X})^{-1} - ((\mathbf{X}^H \mathbf{A} \mathbf{X})^{-1} \mathbf{X}^H \mathbf{A})^T \right)$$

$$\frac{\partial \det(\mathbf{X}^H \mathbf{A} \mathbf{X})}{\partial \mathbf{X}} = \frac{1}{2} \left(\frac{\partial \det(\mathbf{X}^H \mathbf{A} \mathbf{X})}{\partial \Im \mathbf{X}} - i \frac{\partial \det(\mathbf{X}^H \mathbf{A} \mathbf{X})}{\partial \Im \mathbf{X}} \right)$$

$$= \det(\mathbf{X}^H \mathbf{A} \mathbf{X}) \left(\mathbf{X}^H \mathbf{A} \mathbf{X} \right)^{-1} \mathbf{X}^H \mathbf{A} \right)^T$$

Petersen & Pedersen, 矩阵手册, 版本: 2012年11月15日,第68页

而复共轭导数为

$$\frac{\partial \det(\mathbf{X}^H \mathbf{A} \mathbf{X})}{\partial \mathbf{X}^*} = \frac{1}{2} \left(\frac{\partial \det(\mathbf{X}^H \mathbf{A} \mathbf{X})}{\partial \Re \mathbf{X}} + i \frac{\partial \det(\mathbf{X}^H \mathbf{A} \mathbf{X})}{\partial \Im \mathbf{X}} \right) \\
= \det(\mathbf{X}^H \mathbf{A} \mathbf{X}) \mathbf{A} \mathbf{X} (\mathbf{X}^H \mathbf{A} \mathbf{X})^{-1}$$

注意,对于实数 X, A, (249)和(250)的和减少到(54)。 类似的计算产生

$$\frac{\partial \det(\mathbf{X}\mathbf{A}\mathbf{X}^{H})}{\partial \mathbf{X}} = \frac{1}{2} \left(\frac{\partial \det(\mathbf{X}\mathbf{A}\mathbf{X}^{H})}{\partial \Re \mathbf{X}} - i \frac{\partial \det(\mathbf{X}\mathbf{A}\mathbf{X}^{H})}{\partial \Im \mathbf{X}} \right)$$

$$= \det(\mathbf{X}\mathbf{A}\mathbf{X}^{H}) \left(\mathbf{A}\mathbf{X}^{H} (\mathbf{X}\mathbf{A}\mathbf{X}^{H})^{-1} \right)^{T}$$
(570)

和

$$\frac{\partial \det(\mathbf{X}\mathbf{A}\mathbf{X}^{H})}{\partial \mathbf{X}^{*}} = \frac{1}{2} \left(\frac{\partial \det(\mathbf{X}\mathbf{A}\mathbf{X}^{H})}{\partial \Re \mathbf{X}} + i \frac{\partial \det(\mathbf{X}\mathbf{A}\mathbf{X}^{H})}{\partial \Im \mathbf{X}} \right) \\
= \det(\mathbf{X}\mathbf{A}\mathbf{X}^{H})(\mathbf{X}\mathbf{A}\mathbf{X}^{H})^{-1}\mathbf{X}\mathbf{A} \tag{571}$$

参考文献 参考文献

参考文献

[1] Karl Gustav Andersson and Lars-Christer Boiers. Ordinaera differentialekvationer. Studenterlitteratur, 1992.

- [2] Jörn Anemüller, Terrence J. Sejnowski, and Scott Makeig. Complex independent component analysis of frequency-domain electroencephalographic data. *Neural Networks*, 16(9):1311–1323, November 2003.
- [3] S. Barnet. 矩阵. 方法和应用. 牛津应用数学与计算科学系列. 克拉伦登出版 社, 1990.
- [4] Christopher Bishop. 神经网络模式识别. 牛津 大学出版社, 1995.
- [5] Robert J. Boik. 讲义: 统计学550. 在线, 2002年4月22日. 讲义.
- [6] D. H. Brandwood. 复杂梯度算子及其在 自适应阵列理论中的应用. *IEE Proceedings*, 130(1):11–16, 1983年2月. *P*TS. F和H.
- [7] M. Brookes. 矩阵参考手册, 2004年. 网站于2004年5月20日.
- [8] Contradsen K.,统计学导论, IMM讲义, 1984年.
- [9] Mads Dyrholm. 一些矩阵结果, 2004年. 网站于2004年8月23日.
- [10] Nielsen F. A.,公式, 神经研究单位和丹麦技术大学, 2002年.
- [11] Gelman A. B., J. S. Carlin, H. S. Stern, D. B. Rubin, 贝叶斯数据 分析, Chapman and Hall / CRC, 1995年.
- [12] Gene H. Golub and Charles F. van Loan.矩阵计算. 巴尔的摩约翰斯 霍普金斯大学出版社,第三版, 1996年.
- [13] Robert M. Gray. Toeplitz和循环矩阵: 一份综述. 技术报告, 信息系统实验室, 电气工程系, 斯坦福大学, 加利福尼亚州斯坦福, 94305, 2002年8月.
- [14] Simon Haykin. 自适应滤波器理论 . 普林斯顿大学出版社, 上塞德尔河, 新泽西州, 第四版, 2002年.
- [15] 罗杰・霍恩和查尔斯・约翰逊。矩阵分析。 剑桥 大学出版社,1985年。
- [16] Mardia K. V., J.T. Kent和J.M. Bibby, 多元分析,学术 出版社有限公司,1979年。
- [17] Mathpages关于"特征值问题和矩阵不变量"的内容,
 - http://www.mathpages.com/home/kmath128.htm
- [18] Carl D. Meyer. 修改矩阵的广义逆。 *SIA*M应用数学杂志,24(3):315–323,1973年5月。

[19] Thomas P. Minka. 对统计学有用的旧和新的矩阵代数,2000年12月。笔记。

- [20] Daniele Mortari正交-斜对称和正交-对称矩阵三角学,John Lee Junkins天体动力学研讨会,AAS 03-265,2003年5月。 德克萨斯州 A&M大学,College Station,TX
- [21] L. Parra 和 C. Spence. 非平稳源的卷积盲分离。 在IEEE Transactions Spee ch and Audio Processing, 页码 320–327, 2000年5月。
- [22] Kaare Brandt Petersen, Jiucang Hao 和 Te-Won Lee. 用于过完备表示的生成和过滤方法。 神经信息处理 信件和评论, 卷 8(1), 2005年。
- [23] John G. Proakis 和 Dimitris G. Manolakis. 数字信号处理。 Prentice-Hall, 1996年。
- [24] Laurent Schwartz. Cours d'Analyse, 第二卷。 Hermann, Paris, 1967年。如 [14]中引用。
- [25] Shayle R. Searle. 矩阵代数在统计学中的应用。 John Wiley and Sons, 1982年。
- [26] G. Seber 和 A. Lee. 线性回归分析. John Wiley and Sons, 2002.
- [27] S. M. Selby. 标准数学表. CRC Press, 1974.
- [28] Inna Stainvas. 微分计算中的矩阵代数. 神经计算研究小组, 信息工程, 阿斯顿大学, 英国, 八月 2002. 笔记.
- [29] P. P. Vaidyanathan. **多速率系统和滤波器组**. Prentice Hall, 1993.
- [30] Max Welling. 卡尔曼滤波器. 讲义.
- [31] 维基百科关于子式: "子式 (线性代数)",
 - http://en.wikipedia.org/wiki/Minor_(linear_algebra)
- [32] Zhaoshui He, Shengli Xie, 等,"基于稀疏表示的频域卷积盲源分离", IEEE T ransactions on Audio, Speech and Language Processing, vol.15(5):1551-1563, 2007年7月.
- [33] Karim T. Abou-Moustafa关于广义特征值问题的特征值和特征向量的导数. 麦吉尔技术报告,2010年10月.
- [34] Mohammad Emtiyaz Khan当添加/删除一列时,更新矩阵的逆. Emt CS, U B C 2008年2月27日

索引

反对称,54

分块矩阵,46

链式法则,15 乔列斯基分解,32 共偏度,34 共偏斜度,34 条件数,62 克莱默法则,29

复矩阵的导数,24 行列式的导数,8 迹的导数,12 逆的导数,9 对称矩阵的导数,15 Toeplitz矩阵的导数,16 狄利克雷分布,37

特征值,30 特征向量,30 指数矩阵函数,59

高斯,条件,40 高斯,熵,44 高斯,线性组合,41 高斯,边际,40 高斯,密度的乘积,42 广义逆,21

哈达玛不等式,52 共轭,48

幂等,49

克罗内克积,59

LDL分解,33 LDM分解,33 线性回归,28 LU分解,32 李雅普诺夫方程,30

摩尔-彭罗斯逆,21 多项式分布,37

幂零,49 矩阵的范数,61 向量的范数,61 正态逆伽玛分布,37 正态逆威夏特分布,39

正交,49

矩阵的幂级数, 58 概率矩阵, 55 伪逆, 21

舒尔补, 41, 47 单元素矩阵, 52 奇异值分解 (SVD), 31 斜厄米矩阵, 48 斜对称矩阵, 54 随机矩阵, 55 学生-t分布, 37 Sylvester不等式, 62 对称矩阵, 54

泰勒展开, 58 Toeplitz矩阵, 54 过渡矩阵, 55 三角函数, 59

幂等矩阵,49

范德蒙矩阵, 57 向量算子, 59, 60

Wishart分布, 38 Woodbury恒等式, 18