

Appl. No.

: New Application

Applicant

: NITSCH et al.

Filed

: Herewith

TC/A.U.

Examiner

: 2958-131

Docket No. Customer No.: 06449

Director of the United States Patent and Trademark Office P.O. Box 1450 Alexandria, Virginia 22313-1450

STATEMENT UNDER 37 C.F.R. §1.821(f)

An initial Sequence Listing is submitted and its entry into the application is respectfully requested. An initial computer-readable form of the Sequence Listing is also submitted. and it is hereby certified that the content of the Sequence Listing information recorded in the computer readable form is identical to the Sequence Listing written on paper, and contains no new matter.

Respectfully submitted,

Robert B. Murray

Attorney for Applicants

Registration No. 22,980

ROTHWELL, FIGG, ERNST, & MANBECK

Suite 800, 1425 K Street, N.W.

Washington, D.C. 20005

Telephone: (202) 783-6040

RBM/cg

SEQUENCE LISTING

	Nitsch, Robert Ninnemann, Olaf Braeuer, Anja Savaskan, Nicolai
	Lipid Phosphate Phosphatases and Uses Therefor for Treating Neuronal Diseases
<130>	2958-131
	PCT/EP2003/010228 2003-09-15
	03002993.8 2003-02-11
	02020679.3 2002-09-13
<160>	38
<170>	PatentIn version 3.3
<211> <212>	1 763 PRT Homo sapiens
<400>	1
Met Gln 1	Arg Ala Gly Ser Ser Gly Gly Arg Gly Glu Cys Asp Ile Ser 5 10 15
Gly Ala	Gly Arg Leu Gly Leu Glu Glu Ala Ala Arg Leu Ser Cys Ala 20 25 30
Val His	Thr Ser Pro Gly Gly Gly Arg Arg Pro Gly Gln Ala Ala Gly 35 40 45
Met Ser 50	Ala Lys Glu Arg Pro Lys Gly Lys Val Ile Lys Asp Ser Val 55 60
Thr Leu 65	Leu Pro Cys Phe Tyr Phe Val Glu Leu Pro Ile Leu Ala Ser 70 75 80
Ser Val	Val Ser Leu Tyr Phe Leu Glu Leu Thr Asp Val Phe Lys Pro 85 90 95

Val His Ser Gly Phe Ser Cys Tyr Asp Arg Ser Leu Ser Met Pro Tyr Ile Glu Pro Thr Gln Glu Ala Ile Pro Phe Leu Met Leu Ser Leu Ala Phe Ala Gly Pro Ala Ile Thr Ile Met Val Gly Glu Gly Ile Leu Tyr Cys Cys Leu Ser Lys Arg Arg Asn Gly Val Gly Leu Glu Pro Asn Ile Asn Ala Gly Gly Cys Asn Phe Asn Ser Phe Leu Arg Arg Ala Val Arg Phe Val Gly Val His Val Phe Gly Leu Cys Ser Thr Ala Leu Ile Thr Asp Ile Ile Gln Leu Ser Thr Gly Tyr Gln Ala Pro Tyr Phe Leu Thr Val Cys Lys Pro Asn Tyr Thr Ser Leu Asn Val Ser Cys Lys Glu Asn Ser Tyr Ile Val Glu Asp Ile Cys Ser Gly Ser Asp Leu Thr Val Ile Asn Ser Gly Arg Lys Ser Phe Pro Ser Gln His Ala Thr Leu Ala 245 250 Ala Phe Ala Ala Val Tyr Val Ser Met Tyr Phe Asn Ser Thr Leu Thr Asp Ser Ser Lys Leu Leu Lys Pro Leu Leu Val Phe Thr Phe Ile Ile Cys Gly Ile Ile Cys Gly Leu Thr Arg Ile Thr Gln Tyr Lys Asn His Pro Val Asp Val Tyr Cys Gly Phe Leu Ile Gly Gly Gly Ile Ala Leu

Tyr Leu Gly Leu Tyr Ala Val Gly Asn Phe Leu Pro Ser Asp Glu Ser Met Phe Gln His Arg Asp Ala Leu Arg Ser Leu Thr Asp Leu Asn Gln Asp Pro Asn Arg Leu Leu Ser Ala Lys Asn Gly Ser Ser Ser Asp Gly Ile Ala His Thr Glu Gly Ile Leu Asn Arg Asn His Arg Asp Ala Ser Ser Leu Thr Asn Leu Lys Arg Ala Asn Ala Asp Val Glu Ile Ile Thr Pro Arg Ser Pro Met Gly Lys Glu Asn Met Val Thr Phe Ser Asn Thr Leu Pro Arg Ala Asn Thr Pro Ser Val Glu Asp Pro Val Arg Asn Ala Ser Ile His Ala Ser Met Asp Ser Ala Arg Ser Lys Gln Leu Leu Thr Gln Trp Lys Asn Lys Asn Glu Ser Arg Lys Leu Ser Leu Gln Val Ile Glu Pro Glu Pro Gly Gln Ser Pro Pro Arg Ser Ile Glu Met Arg Ser Ser Ser Glu Pro Ser Arg Val Gly Val Asn Gly Asp His His Gly Pro Gly Asn Gln Tyr Leu Lys Ile Gln Pro Gly Ala Val Pro Gly Cys Asn Asn Ser Met Pro Gly Gly Pro Arg Val Ser Ile Gln Ser Arg Pro Gly Ser Ser Gln Leu Val His Ile Pro Glu Glu Thr Gln Glu Asn Ile

530 535 540

Ser 545	Thr	Ser	Pro	Lys	Ser 550	Ser	Ser	Ala	Arg	Ala 555	Lys	Trp	Leu	Lys	Ala 560
Ala	Glu	Lys	Thr	Val 565	Ala	Cys	Asn	Arg	Ser 570	Asn	Ser	Gln	Pro	Arg 575	Ile
Met	Gln	Val	Ile 580	Ala	Met	Ser	Lys	Gln 585	Gln	Gly	Val	Leu	Gln 590	Ser	Ser
Pro	Lys	Asn 595	Thr	Glu	Gly	Ser	Thr 600	Vaļ	Ser	Cys ,	Thr	Gly 605	Ser	Ile	Arg
Tyr	Lys 610	Thr	Leu	Thr	Asp	His 615	Glu	Pro	Ser	Gly	Ile 620	Val	Arg	Val	Glu
Ala 625	His	Pro	Glu	Asn	Asn 630	Arg	Pro	Ile	Ile	Gln 635	Ile	Pro	Ser	Thr	Glu 640
Gly	Glu	Gly	Ser	Gly 645	Ser	Trp	Lys	Trp	Lys 650	Ala	Pro	Glu	Lys	Gly 655	Ser
Leu	Arg	Gln	Thr 660	Tyr	Glu	Leu	Asn	Asp 665	Leu	Asn	Arg	Asp	Ser 670	Glu	Ser
Cys	Glu	Ser 675	Leu	Lys	Asp	Ser	Phe 680	Gly	Ser	Gly	Asp	Arg 685	Lys	Arg	Ser
Asn	Ile 690	Asp	Ser	Asn	Glu	His 695	His	His	His	Gly	Ile 700	Thr	Thr	Ile	Arg
Val 705	Thr	Pro	Val	Glu	Gly 710	Ser	Glu	Ile	Gly	Ser 715	Glu	Thr	Leu	Ser	Ile 720
Ser	Ser	Ser	Arg	Asp 725	Ser	Thr	Leu	Arg	Arg 730	Lys	Gly	Asn	Ile	Ile 735	Leu
Ile	Pro	Glu	Arg 740	Ser	Asn	Ser	Pro	Glu 745	Asn	Thr	Arg	Asn	Ile 750	Phe	Tyr

Lys Gly Thr Ser Pro Thr Arg Ala Tyr Lys Asp 755 760

<210> 2

<211> 746

<212> PRT

<213> Homo sapiens

<400> 2

Met Ile Ser Thr Lys Glu Lys Asn Lys Ile Pro Lys Asp Ser Met Thr 1 5 10 15

Leu Leu Pro Cys Phe Tyr Phe Val Glu Leu Pro Ile Val Ala Ser Ser 20 25 30

Ile Val Ser Leu Tyr Phe Leu Glu Leu Thr Asp Leu Phe Lys Pro Ala 35 40 45

Lys Val Gly Phe Gln Cys Tyr Asp Arg Thr Leu Ser Met Pro Tyr Val 50 55 60

Glu Thr Asn Glu Glu Leu Ile Pro Leu Leu Met Leu Leu Ser Leu Ala 65 70 75 80

Phe Ala Ala Pro Ala Ala Ser Ile Met Val Ala Glu Gly Met Leu Tyr 85 90 95

Cys Leu Gln Ser Arg Leu Trp Gly Arg Ala Gly Gly Pro Ala Gly Ala 100 105 110

Glu Gly Ser Ile Asn Ala Gly Gly Cys Asn Phe Asn Ser Phe Leu Arg 115 120 125

Arg Thr Val Arg Phe Val Gly Val His Val Phe Gly Leu Cys Ala Thr 130 135 140

Ala Leu Val Thr Asp Val Ile Gln Leu Ala Thr Gly Tyr His Thr Pro 145 150 155 160

Phe Phe Leu Thr Val Cys Lys Pro Asn Tyr Thr Leu Leu Gly Thr Ser 165 170 175

,	Phe	Ser	His	Thr	Leu 405	Pro	Arg	Ala	Ser	Ala 410	Pro	Ser	Leu	Asp	Asp 415	Pro
	Ala	Arg	Arg	His 420	Met	Thr	Ile	His	Val 425	Pro	Leu	Asp	Ala	Ser 430	Arg	Ser
	Lys	Gln	Leu 435	Ile	Ser	Glu	Trp	Lys 440	Gln	Lys	Ser	Leu	Glu 445	Gly	Arg	Gly
	Leu	Gly 450	Leu	Pro	Asp	Asp	Ala 455	Ser	Pro	Gly	His	Leu 460	Arg	Ala	Pro	Ala
	Glu 465	Pro	Met	Ala	Glu	Glu 470	Glu	Glu	Glu	Glu	Glu 475	Asp	Glu	Glu	Glu	Glu 480
	Glu	Glu	Glu	Glu	Glu 485	Glu	Glu	Asp	Glu	Gly 490	Pro	Ala	Pro	Pro	Ser 495	Leu
	Tyr	Pro	Thr	Val 500	Gln	Ala	Arg	Pro	Gly 505	Leu	Gly	Pro	Arg	Val 510	Ile	Leu
	Pro	Pro	Arg 515	Ala	Gly	Pro	Pro	Pro 520	Leu	Val	His	Ile	Pro 525	Glu	Glu	Gly
	Ala	Gln 530	Thr	Gly	Ala	Gly	Leu 535	Ser	Pro	Lys	Ser	Gly 540	Ala	Gly	Val	Arg
	Ala 545		Trp	Leu		Met 550		Glu		Ser			Ala	Val		Asn 560
	Pro	Pro	Arg	Leu	Leu 565	Gln	Val	Ile	Ala	Met 570	Ser	Lys	Ala	Pro	Gly 575	Ala
	Pro	Gly	Pro	Lys 580	Ala	Ala	Glu	Thr	Ala 585	Ser	Ser	Ser	Ser	Ala 590	Ser	Ser
	Asp	Ser	Ser 595	Gln	Tyr	Arg	Ser	Pro 600	Ser	Asp	Arg	Asp	Ser 605	Ala	Ser	Ile
	Val	Thr 610	Ile	Asp	Ala	His	Ala 615	Pro	His	His	Pro	Val 620	Val	His	Leu	Ser

.

Ala Gly Gly Ala Pro Trp Glu Trp Lys Ala Ala Gly Gly Gly Ala Lys 625 630 635 640

Ala Glu Ala Asp Gly Gly Tyr Glu Leu Gly Asp Leu Ala Arg Gly Phe 645 650 655

Arg Gly Gly Ala Lys Pro Pro Gly Val Ser Pro Gly Ser Ser Val Ser 660 665 670

Asp Val Asp Gln Glu Glu Pro Arg Phe Gly Ala Val Ala Thr Val Asn 675 680 685

Leu Ala Thr Gly Glu Gly Leu Pro Pro Leu Gly Ala Ala Asp Gly Ala 690 695 700

Leu Gly Pro Gly Ser Arg Glu Ser Thr Leu Arg Arg His Ala Gly Gly 705 710 715 720

Leu Gly Leu Ala Glu Arg Glu Ala Glu Ala Glu Ala Glu Gly Tyr Phe 725 730 735

Arg Lys Met Gln Ala Arg Arg Phe Pro Asp 740 745

<210> 3

<211> 325

<212> PRT

<213> Homo sapiens

<400> 3

Met Ala Val Gly Asn Asn Thr Gln Arg Ser Tyr Ser Ile Ile Pro Cys 1 5 10 15

Phe Ile Phe Val Glu Leu Val Ile Met Ala Gly Thr Val Leu Leu Ala 20 25 30

Tyr Tyr Phe Glu Cys Thr Asp Thr Phe Gln Val His Ile Gln Gly Phe 35 40 45

Phe Cys Gln Asp Gly Asp Leu Met Lys Pro Tyr Pro Gly Thr Glu Glu 50 55 60

Glu Ser Phe Ile Thr Pro Leu Val Leu Tyr Cys Val Leu Ala Ala Thr Pro Thr Ala Ile Ile Phe Ile Gly Glu Ile Ser Met Tyr Phe Ile Lys Ser Thr Arg Glu Ser Leu Ile Ala Gln Glu Lys Thr Ile Leu Thr Gly Glu Cys Cys Tyr Leu Asn Pro Leu Leu Arg Arg Ile Ile Arg Phe Thr Gly Val Phe Ala Phe Gly Leu Phe Ala Thr Asp Ile Phe Val Asn Ala Gly Gln Val Val Thr Gly His Leu Thr Pro Tyr Phe Leu Thr Val Cys Lys Pro Asn Tyr Thr Ser Ala Asp Cys Gln Ala His His Gln Phe Ile Asn Asn Gly Asn Ile Cys Thr Gly Asp Leu Glu Val Ile Glu Lys Ala Arg Arg Ser Phe Pro Ser Lys His Ala Ala Leu Ser Ile Tyr Ser Ala Leu Tyr Ala Thr Met Tyr Ile Thr Ser Thr Ile Lys Thr Lys Ser Ser Arg Leu Ala Lys Pro Val Leu Cys Leu Gly Thr Leu Cys Thr Ala Phe Leu Thr Gly Leu Asn Arg Val Ser Glu Tyr Arg Asn His Cys Ser Asp Val Ile Ala Gly Phe Ile Leu Gly Thr Ala Val Ala Leu Phe Leu Gly Met Cys Val Val His Asn Phe Lys Gly Thr Gln Gly Ser Pro Ser Lys 280 285

Pro Lys Pro Glu Asp Pro Arg Gly Val Pro Leu Met Ala Phe Pro Arg 290 295 300

Ile Glu Ser Pro Leu Glu Thr Leu Ser Ala Gln Asn His Ser Ala Ser 305 $310 \hspace{1.5cm} 315 \hspace{1.5cm} 320$

Met Thr Glu Val Thr 325

275

<210> 4

<211> 343

<212> PRT

<213> Homo sapiens

<400> 4

Met Ala Gly Gly Arg Pro His Leu Lys Arg Ser Phe Ser Ile Ile Pro 1 5 10 15

Cys Phe Val Phe Val Glu Ser Val Leu Leu Gly Ile Val Ile Leu Leu 20 25 30

Ala Tyr Arg Leu Glu Phe Thr Asp Thr Phe Pro Val His Thr Gln Gly 35 40 45

Phe Phe Cys Tyr Asp Ser Thr Tyr Ala Lys Pro Tyr Pro Gly Pro Glu 50 55 60

Ala Ala Ser Arg Val Pro Pro Ala Leu Val Tyr Ala Leu Val Thr Ala 65 70 75 80

Gly Pro Thr Leu Thr Ile Leu Leu Gly Glu Leu Ala Arg Ala Phe Phe 85 90 95

Pro Ala Pro Pro Ser Ala Val Pro Val Ile Gly Glu Ser Thr Ile Val 100 105 110

Ser Gly Ala Cys Cys Arg Phe Ser Pro Pro Val Arg Arg Leu Val Arg 115 120 125

Phe Leu Gly Val Tyr Ser Phe Gly Leu Phe Thr Thr Ile Phe Ala

130	135	140

Asn 145	Ala	Gly	Gln	Val	Val 150	Thr	Gly	Asn	Pro	Thr 155	Pro	His	Phe	Leu	Ser 160
Val	Cys	Arg	Pro	Asn 165	Tyr	Thr	Ala	Leu	Gly 170	Cys	Leu	Pro	Pro	Ser 175	Pro
Asp	Arg	Pro	Gly 180	Pro	Asp	Arg	Phe	Val 185	Thr	Asp	Gln	Gly	Ala 190	Cys	Ala
Gly	Ser	Pro 195	Ser	Leu	Val	Ala	Ala 200	Ala	Arg	Arg	Ala	Phe 205	Pro	Cys	Lys
Asp	Ala 210	Ala	Leu	Cys	Ala	Tyr 215	Ala	Val	Thr	Tyr	Thr 220	Ala	Met	Tyr	Val
Thr 225	Leu	Val	Phe	Arg	Val 230	Lys	Gly	Ser	Arg	Leu 235	Val	Lys	Pro	Ser	Leu 240
Cys	Leu	Ala	Leu	Leu 245	Cys	Pro	Ala	Phe	Leu 250	Val	Gly	Val	Val	Arg 255	Val
Ala	Glu	Tyr	Arg 260	Asn	His	Trp	Ser	Asp 265	Val	Leu	Ala	Gly	Phe 270	Leu	Thr
Gly	Ala	Ala 275	Ile	Ala	Thr	Phe	Leu 280	Val	Thr	Cys	Val	Val 285	His	Asn	Phe
Gln	Ser 290	_	Pro	Pro		Gly 295	_	Arg	Leu	Ser	Pro 300		Glu	Asp	Leu
Gly 305	Gln	Ala	Pro	Thr	Met 310	Asp	Ser	Pro	Leu	Glu 315	Lys	Asn	Pro	Arg	Ser 320
Ala	Gly	Arg	Ile	Arg 325	His	Arg	His	Gly	Ser 330	Pro	His	Pro	Ser	Arg 335	Arg
Thr	Δ 1 =	Pro	Δla	Val	Δla	Thr									

Thr Ala Pro Ala Val Ala Thr 340

<21: <21: <21:	1>	766 PRT Mus 1	musci	ulus											
<40	0> :	5													
Met 1	Gln	Arg	Ala	Gly 5	Ser	Ser	Gly	Ala	Arg 10	Gly	Glu	Cys	Asp	Ile 15	Ser
Gly	Ala	Gly	Arg 20	Leu	Arg	Leu	Glu	Gln 25	Ala	Ala	Arg	Leu	Gly 30	Gly	Arg
Thr	Val	His 35	Thr	Ser	Pro	Gly	Gly 40	Gly	Leu	Gly	Ala	Arg 45	Gln	Ala	Ala
Gly	Met 50	Ser	Ala	Lys	Glu	Arg 55	Pro	Lys	Gly	Lys	Val 60	Ile	Lys	Asp	Ser
Val 65	Thr	Leu	Leu	Pro	Cys 70	Phe	Tyr	Phe	Val	Glu 75	Leu	Pro	Ile	Leu	Ala 80
Ser	Ser	Val	Val	Ser 85	Leu	Tyr	Phe	Leu	Glu 90	Leu	Thr	Asp	Val	Phe 95	Lys
Pro	Val	His	Ser 100	Gly	Phe	Ser	Cys	Tyr 105	_	Arg	Ser	Leu	Ser 110	Met	Pro
Tyr	Ile	Glu 115	Pro	Thr	Gln	Glu	Ala 120	Ile	Pro	Phe	Leu	Met 125	Leu	Leu	Ser
Leu	Ala 130	Phe	Ala	Gly	Pro	Ala 135	Ile	Thr	Ile	Met	Val 140	Gly	Glu	Gly	Ile
Leu 145	Tyr	Cys	Cys	Leu	Ser 150	Lys	Arg	Arg	Asn	Gly 155	Ala	Gly	Leu	Glu	Pro 160
Asn	Ile	Asn	Ala	Gly 165	Gly	Cys	Asn	Phe	Asn 170	Ser	Phe	Leu	Arg	Arg 175	Ala
Val	Arg	Phe	Val 180	Gly	Val	His	Val	Phe 185	Gly	Leu	Cys	Ser	Thr 190	Ala	Leu

<210> 5

Ile	Thr	Asp 195	Ile	Ile	Gln	Leu	Ser 200	Thr	Gly	Tyr	Gln	Ala 205	Pro	Tyr	Phe
Leu	Thr 210	Val	Cys	Lys	Pro	Asn 215	Tyr	Thr	Ser	Leu	Asn 220	Val	Ser	Cys	Lys
Glu 225	Asn	Ser	Tyr	Ile	Val 230	Glu	Asp	Ile	Cys	Ser 235	Gly	Ser	Asp	Leu	Thr 240
Val	Ile	Asn	Ser	Gly 245	Arg	Lys	Ser	Phe	Pro 250	Ser	Gln	His	Ala	Thr 255	Leu
Ala	Ala	Phe	Ala 260	Ala	Val	Tyr	Val	Ser 265	Met	Tyr	Phe	Asn	Ser 270	Thr	Leu
Thr	Asp	Ser 275	Ser	Lys	Leu	Leu	Lys 280	Pro	Leu	Leu	Val	Phe 285	Thr	Phe	Ile
Ile	Cys 290	Gly	Ile	Ile	Cys	Gly 295	Leu	Thr	Arg	Ile	Thr 300	Gln	Tyr	Lys	Asn
His 305	Pro	Val	Asp	Val	Tyr 310	Cys	Gly	Phe	Leu	Ile 315	Gly	Gly	Gly	Ile	Ala 320
Leu	Tyr	Leu	Gly	Leu 325	Tyr	Ala	Val	Gly	Asn 330	Phe	Leu	Pro	Ser	Glu 335	Asp
Ser	Met	Leu	Gln 340	His	Arg	Asp	Ala	Leu 345	Arg	Ser	Leu	Thr	Asp 350	Leu	Asn
Gln	Asp	Pro 355	Ser	Arg	Val	Leu	Ser 360	Ala	Lys	Asn	Gly	Ser 365	Ser	Gly	Asp
Gly	Ile 370	Ala	His	Thr	Glu	Gly 375	Ile	Leu	Asn	Arg	Asn 380	His	Arg	Asp	Ala
Ser 385	Ser	Leu	Thr	Asn	Leu 390	Lys	Arg	Ala	Asn	Ala 395	Asp	Val	Glu	Ile	Ile 400
Thr	Pro	Arg	Ser	Pro 405	Met	Gly	Lys	Glu	Ser 410	Met	Val	Thr	Phe	Ser 415	Asn

Thr	Leu	Pro	Arg 420	Ala	Asn	Thr	Pro	Ser 425	Val	Glu	Asp	Pro	Val 430	Arg	Arg
Asn	Ala	Ser 435	Ile	His	Ala	Ser	Met 440	Asp	Ser	Ala	Arg	Ser 445	Lys	Gln	Leu
Leu	Thr 450	Gln	Trp	Lys	Ser	Lys 455	Asn	Glu	Ser	Arg	Lys 460	Met	Ser	Leu	Gln
Val 465	Met	Asp	Thr	Glu	Pro 470	Glu	Gly	Gln	Ser	Pro 475	Pro	Arg	Ser	Ile	Glu 480
Met	Arg	Ser	Ser	Ser 485	Glu	Pro	Ser	Arg	Val 490	Gly	Val	Asn	Gly	Asp 495	His
His	Val	Pro	Gly 500	Asn	Gln	Tyr	Leu	Lys 505	Ile	Gln	Pro	Gly	Thr 510	Val	Pro
Gly	Cys	Asn 515	Asn	Ser	Met	Pro	Gly 520	Gly	Pro	Arg	Val	Ser 525	Ile	Gln	Ser
Arg	Pro 530	Gly	Ser	Ser	Gln	Leu ⁻ 535	Val	His	Ile	Pro	Glu 540	Glu	Thr	Gln	Glu
Asn 545	Ile	Ser	Thr	Ser	Pro 550	Lys	Ser	Ser	Ser	Ala 555	Arg	Ala	Lys	Trp	Leu 560
Lys	Ala	Ala	Glu	Lys 565	Thr	Val	Asp	Cys	Asn 570	Arg	Ser	Asn	Asn	Gln 575	Pro
Arg	Ile	Met	Gln 580		Ile	Ala	Met	Ser 585	Lys	Gln	Gln	Gly	Val 590	Leu	Gln
Ser	Ser	Pro 595	Lys	Asn	Ala	Glu	Gly 600	Ser	Thr	Val	Thr	Cys 605	Thr	Gly	Ser
Ile	Arg 610	Tyr	Lys	Thr	Leu	Thr 615	Asp	His	Glu	Pro	Ser 620	Gly	Ile	Val	Arg
Val 625	Glu	Ala	His	Pro	Glu 630	Asn	Asn	Arg	Pro	Ile 635	Ile	Gln	Ile	Pro	Ser 640

Ser Thr Glu Gly Glu Gly Ser Gly Ser Trp Lys Trp Lys Val Pro Glu 645 650 655

Lys Ser Ser Leu Arg Gln Thr Tyr Glu Leu Asn Asp Leu Asn Arg Asp 660 665 670

Ser Glu Ser Cys Glu Ser Leu Lys Asp Ser Phe Gly Ser Gly Asp Arg 675 680 685

Lys Arg Ser Asn Ile Asp Ser Asn Glu His His His Gly Ile Thr 690 695 700

Thr Ile Arg Val Thr Pro Val Glu Gly Ser Glu Ile Gly Ser Glu Thr 705 710 715 720

Leu Ser Val Ser Ser Ser Arg Asp Ser Thr Leu Arg Arg Lys Gly Asn 725 730 735

Ile Ile Leu Ile Pro Glu Arg Ser Asn Ser Pro Glu Asn Thr Arg Asn 740 745 750

Ile Phe Tyr Lys Gly Thr Ser Pro Thr Arg Ala Tyr Lys Asp 755 760 765

<210> 6

<211> 716

<212> PRT

<213> Mus musculus

<400> 6

Met Leu Ala Met Lys Glu Lys Asn Lys Thr Pro Lys Asp Ser Met Thr 1 5 10 15

Leu Leu Pro Cys Phe Tyr Phe Val Glu Leu Pro Ile Val Ala Ser Ser 20 25 30

Ile Val Ser Leu Tyr Phe Leu Glu Leu Thr Asp Leu Phe Lys Pro Ala 35 40 45

Lys Val Gly Phe Gln Cys Tyr Asp Arg Ala Leu Ser Met Pro Tyr Val 50 55 60

Glu Thr Asn Glu Glu Leu Ile Pro Leu Leu Met Leu Leu Ser Leu Ala Phe Ala Ala Pro Ala Ala Ser Ile Met Val Gly Glu Gly Met Val Tyr Cys Leu Gln Ser Arg Leu Trp Gly Arg Gly Pro Gly Gly Val Glu Gly Ser Ile Asn Ala Gly Gly Cys Asn Phe Asn Ser Phe Leu Arg Arg Thr Val Arg Phe Val Gly Val His Val Phe Gly Leu Cys Ala Thr Ala Leu Val Thr Asp Val Ile Gln Leu Ala Thr Gly Tyr His Thr Pro Phe Phe Leu Thr Val Cys Lys Pro Asn Tyr Thr Leu Leu Gly Thr Ser Cys Glu Ser Asn Pro Tyr Ile Thr Gln Asp Ile Cys Ser Gly His Asp Thr His Ala Ile Leu Ser Ala Arg Lys Thr Phe Pro Ser Gln His Ala Thr Leu Ser Ala Phe Ala Ala Val Tyr Val Ser Met Tyr Phe Asn Ala Val Ile Ser Asp Thr Thr Lys Leu Leu Lys Pro Ile Leu Val Phe Ala Phe Ala Ile Ala Ala Gly Val Cys Gly Leu Thr Gln Ile Thr Gln Tyr Arg Ser His Pro Val Asp Val Tyr Ala Gly Phe Leu Ile Gly Ala Gly Ile Ala Ala Tyr Leu Ala Cys His Ala Val Gly Asn Phe Gln Ala Pro Pro Ala

275	280	285

Glu	Lys 290	Val	Pro	Thr	Pro	Ala 295	Pro	Ala	Lys	Asp	Ala 300	Leu	Arg	Ala	Leu
Thr 305	Gln	Arg	Gly	His	Glu 310	Ser	Met	Tyr	Gln	Gln 315	Asn	Lys	Ser	Val	Ser 320
Thr	Asp	Glu	Leu	Gly 325	Pro	Pro	Gly	Arg	Leu 330	Glu	Gly	Val	Pro	Arg 335	Pro
Val	Ala	Arg	Glu 340	Lys	Thr	Ser	Leu	Gly 345	Ser	Leu	Lys	Arg	Ala 350	Ser	Val
Asp	Val	Asp 355	Leu	Leu	Ala	Pro	Arg 360	Ser	Pro	Met	Gly	Lys 365	Glu	Gly	Met
Val	Thr 370	Phe	Ser	Asn	Thr	Leu 375	Pro	Arg	Val	Ser	Thr 380	Pro	Ser	Leu	Asp
Asp 385	Pro	Ala	Arg	Arg	His 390	Met	Thr	Ile	His	Val 395	Pro	Leu	Asp	Ala	Ser 400
Arg	Ser	Arg	Gln	Leu 405	Ile	Gly	Glu	Trp	Lys 410	Gln	Lys	Ser	Leu	Glu 415	Gly
Arg	Gly	Leu	Gly 420	Leu	Pro	Asp	Glu	Ala 425	Ser	Pro	Val	His	Leu 430	Arg	Ala
Pro	Ala	Glu 435				Glu					Glu	Glu 445	Glu	Glu	Glu
Glu	Glu 450	Glu	Glu	Glu	Glu	Glu 455	Glu	Glu	Glu	Gly	Pro 460	Val	Pro	Pro	Ser
Leu 465	Tyr	Pro	Thr	Val	Gln 470	Ala	Arg	Pro	Gly	Leu 475	Gly	Pro	Arg	Val	Ile 480
Leu	Pro	Pro	Arg	Pro 485	Gly	Pro	Gln	Pro	Leu 490	Val	His	Ile	Pro	Glu 495	Glu

<212 <212 <213	1> 3 2> 1	, 325 PRT Mus r	nusci	ılus											
<400	0> 7	7											•		
Met 1	Ala	Val	Glu	Asn 5	Asn	Thr	Gln	Arg	Ser 10	Tyr	Ser	Ile	Ile	Pro 15	Cys
Phe	Ile	Phe	Val 20	Glu	Leu	Val	Ile	Met 25	Ala	Gly	Thr	Val	Leu 30	Leu	Ala
Tyr	Tyr	Phe 35	Glu	Cys	Thr	Asp	Thr 40	Phe	Gln	Val	His	Ile 45	Gln	Gly	Phe
Phe	Cys 50	Gln	Asp	Gly	Asp	Leu 55	Met	Lys	Pro	Tyr	Pro 60	Gly	Thr	Glu	Glu
Glu 65	Ser	Phe	Ile	Ser	Pro 70	Leu	Val	Leu	Tyr	Cys 75	Val	Leu	Ala	Ala	Thr 80
Pro	Thr	Ala	Ile	Ile 85	Phe	Ile	Gly	Glu	Ile 90	Ser	Met	Tyr	Phe	Ile 95	Lys
Ser	Thr	Arg	Glu 100	Ser	Leu	Ile	Ala	Glu 105	Glu	Lys	Met	Ile	Leu 110	Thr	Gly
Asp	Cys	Cys 115	Tyr	Leu	Ser	Pro		Leu	Arg	Arg	Ile	Ile 125	Arg	Phe	Ile
Gly	Val 130	Phe	Ala	Phe	Gly	Leu 135	Phe	Ala	Thr	Asp	Ile 140	Phe	Val	Asn	Ala
Gly 145	Gln	Val	Val	Thr	Gly 150	His	Leu	Thr	Pro	Tyr 155	Phe	Leu	Thr	Val	Cys 160
Gln	Pro	Asn	Tyr	Thr 165	Ser	Thr	Asp	Cys	Arg 170	Ala	His	Gln	Gln	Phe 175	Ile
Asn	Asn	Gly	Asn 180	Ile	Cys	Thr	Gly	Asp 185	Leu	Glu	Val	Ile	Glu 190	Lys	Ala

<210> 7

Arg Arg Ser Phe Pro Ser Lys His Ala Ala Leu Ser Ile Tyr Ser Ala 195 200 Leu Tyr Ala Thr Met Tyr Ile Thr Ser Thr Ile Lys Thr Lys Ser Ser 210 215 220 Arg Leu Ala Lys Pro Val Leu Cys Leu Gly Thr Leu Cys Thr Ala Phe 235 225 230 Leu Thr Gly Leu Asn Arg Val Ser Glu Tyr Arg Asn His Cys Ser Asp 245 250 2.55 Val Ile Ala Gly Phe Ile Leu Gly Thr Ala Val Ala Leu Phe Leu Gly 260 265 Met Cys Val Val His Asn Phe Arg Gly Thr Gln Gly Ser Pro Ser Lys 280 275 Pro Lys Pro Glu Asp Pro Arg Gly Val Pro Leu Met Ala Phe Pro Arg 290 295 300 Ile Glu Ser Pro Leu Glu Thr Leu Ser Ala Gln Asn His Ser Ala Ser 315 320 305 310 Met Thr Glu Val Thr 325 <210> 8 <211> 343 <212> PRT <213> Mus musculus <400> 8

Met Ala Gly Gly Arg Pro His Leu Lys Arg Ser Phe Ser Ile Ile Pro 1 5 10 15

Cys Phe Val Phe Val Glu Ser Val Leu Leu Gly Ile Val Val Leu Leu 20 25 30

Ala Tyr Arg Leu Glu Phe Thr Asp Thr Phe Pro Val His Thr Gln Gly 35 40 45

Phe Phe Cys Tyr Asp Ser Ala Tyr Ala Lys Pro Tyr Pro Gly Pro Glu Ala Ala Ser Arg Ala Pro Pro Ala Leu Ile Tyr Ala Leu Val Thr Ala Gly Pro Thr Leu Thr Ile Leu Leu Gly Glu Leu Ala Arg Ala Phe Phe Pro Ala Pro Pro Ser Ser Pro Val Ser Gly Glu Ser Thr Ile Val Ser Gly Ala Cys Cys Arg Phe Ser Pro Pro Leu Arg Arg Leu Val Arg Phe Leu Gly Val Tyr Ser Phe Gly Leu Phe Thr Thr Ile Phe Ala Asn Ala Gly Gln Val Val Thr Gly Asn Pro Thr Pro His Phe Leu Ser Val Cys Arg Pro Asn Tyr Thr Ala Leu Gly Cys Pro Pro Pro Ser Pro Asp Arg Pro Gly Pro Asp Arg Phe Val Thr Asp Gln Ser Ala Cys Ala Gly Ser Pro Ser Leu Val Ala Ala Ala Arg Arg Ala Phe Pro Cys Lys Asp Ala Ala Leu Cys Ala Tyr Ala Val Thr Tyr Thr Ala Met Tyr Val Thr Leu Val Phe Arg Val Lys Gly Ser Arg Leu Val Lys Pro Ser Leu Cys Leu Ala Leu Leu Cys Pro Ala Phe Leu Val Gly Val Val Arg Val Ala Glu Tyr Arg Asn His Trp Ser Asp Val Leu Ala Gly Phe Leu Thr

Gly Ala Ala Ile Ala Thr Phe Leu Val Thr Cys Val Val His Asn Phe 275 280 285

Gln Ser Arg Pro His Ser Gly Arg Arg Leu Ser Pro Trp Glu Asp Leu 290 295 300

Ser Gln Ala Pro Thr Met Asp Ser Pro Leu Glu Lys Asn Pro Arg Pro 305 310 315 320

Ala Gly Arg Ile Arg His Arg His Gly Ser Pro His Pro Ser Arg Arg 325 330 335

Thr Val Pro Ala Val Ala Thr 340

<210> 9

<211> 766

<212> PRT

<213> Rattus norvegicus

<400> 9

Met Gln Arg Ala Gly Ser Ser Gly Ala Arg Gly Glu Cys Asp Ile Ser 1 5 10 15 .

Gly Thr Gly Arg Leu Arg Leu Glu Gln Ala Arg Leu Gly Gly Arg
20 25 30

Ala Val His Thr Ser Pro Thr Gly Gly Leu Gly Ala Arg Gln Val Ala 35 40 45

Gly Met Ser Ala Lys Glu Arg Pro Lys Gly Lys Val Ile Lys Asp Ser 50 55 60

Val Thr Leu Leu Pro Cys Phe Tyr Phe Val Glu Leu Pro Ile Leu Ala 65 70 75 80

Ser Ser Val Val Ser Leu Tyr Phe Leu Glu Leu Thr Asp Val Phe Lys 85 90 95

Pro Val His Ser Gly Phe Ser Cys Tyr Asp Arg Ser Leu Ser Met Pro 100 105 110

Tyr Ile Glu Pro Thr Gln Glu Ala Ile Pro Phe Leu Met Leu Leu Ser Leu Ala Phe Ala Gly Pro Ala Ile Thr Ile Met Val Gly Glu Gly Ile Leu Tyr Cys Cys Leu Ser Lys Arg Arg Asn Gly Ala Gly Leu Glu Pro Asn Ile Asn Ala Gly Gly Cys Asn Phe Asn Ser Phe Leu Arg Arg Ala Val Arg Phe Val Gly Val His Val Val Gly Leu Cys Ser Thr Ala Leu Ile Thr Asp Ile Ile Gln Leu Ala Thr Gly Tyr Gln Ala Pro Tyr Phe Leu Thr Val Cys Lys Pro Met Tyr Thr Ser Leu Glu Gly Ser Cys Lys 215 . Glu Asn Ser Tyr Ile Val Glu Glu Ile Cys Ser Gly Ser Asp Leu Thr Val Ile Asn Asn Gly Lys Lys Ser Phe Pro Ser Gln His Ala Thr Leu Ala Ala Phe Ala Ala Val Tyr Val Ser Met Tyr Phe Asn Ser Thr Leu Thr Asp Ser Ser Lys Leu Leu Lys Pro Leu Leu Val Phe Thr Phe Ile Ile Cys Gly Ile Ile Cys Gly Leu Thr Arg Ile Thr Gln Tyr Lys Asn His Pro Val Asp Val Tyr Cys Gly Phe Leu Ile Gly Gly Gly Ile Ala Leu Tyr Leu Gly Leu Tyr Ala Val Gly Asn Phe Leu Pro Ser Glu Asp

325	330	335

Ser	Met	Leu	Gln 340	His	Arg	Asp	Ala	Leu 345	Arg	Ser	Leu	Thr	Asp 350	Leu	Asn
Gln	Asp	Pro 355	Ser	Arg	Val	Leu	Ser 360	Ala	Lys	Asn	Gly	Ser 365	Ser	Gly	Asp
Gly	Ile 370	Ala	His	Thr	Glu	Gly 375	Ile	Leu	Asn	Arg	Asn 380	His	Arg	Asp	Ala
Ser 385	Ser	Leu	Thr	Asn	Leu 390	Lys	Arg	Ala	Asn	Ala 395	Asp	Val	Glu	Ile	Ile 400
Thr	Pro	Arg	Ser	Pro 405	Met	Gly	Lys	Glu	Ser 410	Met	Val	Thr	Phe	Ser 415	Asn
Thr	Leu	Pro	Arg 420	Ala	Asn	Thr	Pro	Ser 425	Val	Glu	Asp	Pro	Val 430	Arg	Arg
Asn	Ala	Ser 435	Ile	His	Ala	Ser	Met 440	Asp	Ser	Ala	Arg	Ser 445	Lys	Gln	Leu
Leu	Thr 450	Gln	Trp	Lys	Ser	Lys 455	Asn	Glu	Ser	Arg	Lys 460	Met	Ser	Leu	Gln
Val 465	Met	Asp	Ser	Glu	Pro 470	Glu	Gly	Gln	Ser	Pro 475	Pro	Arg	Ser	Ile	Glu 480
Met	Arg	Ser		Ser 485	Glu			Arg		_			Gly	_	
His	Val	Pro	Gly 500	Asn	Gln	Tyr	Leu	Lys 505	Ile	Gln	Pro	Gly	Thr 510	Val	Pro
Gly	Cys	Asn 515	Asn	Ser	Met	Pro	Ala 520	Gly	Pro	Arg	Val	Ser 525	Ile	Gln	Ser
Arg	Pro 530	Gly	Ser	Ser	Gln	Leu 535	Val	His	Ile	Pro	Glu 540	Glu	Thr	Gln	Glu

Asn 545	Ile	Ser	Thr	Ser	Pro 550	Lys	Ser	Ser	Ser	Ala 555	Arg	Ala	Lys	Trp	Leu 560
343					330					333					300
Lys	Ala	Ala	Glu	Lys 565	Thr	Val	Ala	Cys	Asn 570	Arg	Gly	Asn	Asn	Gln 575	Pro
Arg	Ile	Met	Gln 580	Val	Ile	Ala	Met	Ser 585	Lys	Gln	Gln	Gly	Val 590	Leu	Gln
Ser	Ser	Pro 595	Lys	Asn	Ala	Glu	Gly 600	Ser	Thr	Val	Thr	Cys 605	Thr	Gly	Ser
Ile	Arg 610	Tyr	Lys	Thr	Leu	Thr 615	Asp	His	Glu	Pro	Ser 620	Gly	Ile	Val	Arg
Val 625	Glu	Ala	His	Pro	Glu 630	Asn	Asn	Arg	Pro	Ile 635	Ile	Gln	Ile	Pro	Ser 640
Ser	Thr	Glu	Gly	Glu 645	Gly	Ser	Gly	Ser	Trp 650	Lys	Trp	Lys	Ala	Pro 655	Glu
Lys	Ser	Ser	Leu 660	Arg	Gln	Thr	Tyr	Glu 665	Leu	Asn	Asp	Leu	Asn 670	Arg	Asp
Ser	Glu	Ser 675	Cys	Glu	Ser	Leu	Lys 680	Asp	Ser	Phe	Gly	Ser 685	Gly	Asp	Arg
Lys	Arg 690	Lys	His	Ile	Asp	Ser 695	Asn	Glu	His	His	His 700	His	Gly	Ile	Thr
Thr 705	Île	Arg	Val	Thr	Pro 710	Val	Glu	Gly	Ser	Glu 715	Ile	Gly	Ser	Glu	Thr 720
Leu	Ser	Val	Ser	Ser 725	Ser	Arg	Asp	Ser	Thr 730	Leu	Arg	Arg	Lys	Gly 735	Asn
Ile	Ile	Leu	Ile 740	Pro	Glu	Arg	Ser	Asn 745	Ser	Pro	Glu	Asn	Thr 750	Arg	Asn
Ile	Phe	Tyr 755	Lys	Gly	Thr	Ser	Pro 760	Thr	Arg	Pro	Tyr	Lys 765	Asp		

<210> 10 <211> 74 <212> PR <213> Ra	8 T	ervegicus	5									
<400> 10												
Met Ile A 1		Lys Glu 5	Lys	Asn	Lys	Thr 10	Pro	Lys	Asp	Ser	Met 15	Thr
Leu Leu P	ro Cys 20	Phe Tyr	Phe	Val	Glu 25	Leu	Pro	Ile	Val	Ala 30	Ser	Ser
Val Val S		Tyr Phe		Glu 40	Leu	Thr	Asp	Leu	Phe 45	Gln	Pro	Ala
Lys Val G 50	ly Phe	Gln Cys	His .	Asp	Arg	Ser	Leu	Ser 60	Met	Pro	Tyr	Val
Glu Thr A 65	sn Glu	Glu Leu 70	Ile	Pro	Leu	Leu	Met 75	Leu	Leu	Ser	Leu	Ala 80
Phe Ala A		Ala Ala 85	Ser	Ile	Met	Val 90	Gly	Glu	Gly	Met	Val 95	Tyr
Cys Leu G	ln Ser	Arg Leu	Trp	Gly	Arg 105	Gly	Pro	Gly	Gly	Val 110	Glu	Gly
Ser Ile A	sn Ala 15	Gly Gly	_	Asn 120	Phe	Asn	Ser	Phe	Leu 125	Arg	Arg	Thr
Val Arg P 130	he Val	Gly Val	His 135	Val	Phe	Gly	Leu	Cys 140	Ala	Thr	Ala	Leu
Val Thr A 145	sp Val	Ile Gln 150	Leu	Ala	Thr	Gly	Tyr 155	His	Thr	Pro	Phe	Phe 160
Leu Thr V	_	Lys Pro 165	Asn	Tyr	Thr	Leu 170	Leu	Gly	Thr	Ser	Cys 175	Glu
Ala Asn P	ro Tyr 180	Ile Thr	Gln	Asp	Ile 185	Cys	Ser	Gly	His	Asp 190	Thr	His

Ala	Ile	Leu 195	Ser	Ala	Arg	Lys	Thr 200	Phe	Pro	Ser	Gln	His 205	Ala	Thr	Leu
Ser	Ala 210	Phe	Ala	Ala	Val	Tyr 215	Val	Ser	Met	Tyr	Phe 220	Asn	Ser	Val	Ile
Ser 225	Asp	Ala	Thr	Lys	Leu 230	Leu	Lys	Pro	Ile	Leu 235	Val	Phe	Ala	Phe	Ala 240
Ile	Ala	Ala	Gly	Val 245	Cys	Gly	Leu	Thr	Gln 250	Ile	Thr	Gln	Tyr	Arg 255	Ser
His	Pro	Val	Asp 260	Val	Tyr	Ala	Gly	Phe 265	Leu	Ile	Gly	Ala	Gly 270	Ile	Ala
Ala	Tyr	Leu 275	Ala	Cys	His	Ala	Val 280	Gly	Asn	Phe	Gln	Ala 285	Pro	Pro	Ala
Glu	Lys 290	Val	Pro	Thr	Pro	Ala 295	Pro	Ala	Lys	Asp	Ala 300	Leu	Arg	Val	Leu
Thr 305	Gln	Arg	Gly	His	Glu 310	Ser	Met	Tyr	Gln	Gln 315	Asn	Lys	Ser	Val	Ser 320
Thr	Asp	Glu	Leu	Gly 325	Pro	Pro	Gly	Arg	Leu 330	Glu	Gly	Val	Pro	Arg 335	Pro
Val	Ala	Arg	Glu 340		Thr	Ser	Leu	Gly 345	Ser	Leu	Lys	Arg	Ala 350	Ser	Val
Asp	Val	Asp 355	Leu	Leu	Ala	Pro	Arg 360	Ser	Pro	Met	Gly	Lys 365	Glu	Gly	Met
Val	Thr 370	Phe	Ser	Asn	Thr	Leu 375	Pro	Arg	Val	Ser	Thr 380	Pro	Ser	Leu	Asp
Asp 385	Pro	Ser	Arg	Arg	His 390	Met	Thr	Ile	His	Val 395	Pro	Leu	Asp	Ala	Ser 400
Arg	Ser	Arg	Gln	Leu 405	Ile	Ser	Glu	Trp	Lys 410	Gln	Lys	Ser	Leu	Glu 415	Gly

Arg Gly Leu Gly Leu Pro Asp Glu Ala Ser Pro Ala His Leu Arg Ala Glu Glu Glu Glu Glu Glu Glu Glu Glu Gly Pro Val Pro Pro Ser Leu Tyr Pro Thr Val Gln Ala Arg Pro Gly Leu Gly Pro Arg Val Ile Leu Pro Pro Arg Pro Gly Pro Gln Pro Leu Ile His Ile Pro Glu Glu Val Val Gln Ala Gly Ala Gly Leu Ser Pro Lys Ser Ser Ala Ser Val Arg Ala Lys Trp Leu Ser Met Val Glu Lys Gly Gly Gly Pro Val Ala Val Ala Pro Pro Gln Pro Arg Val Ala Asn Pro Pro Arg Leu Leu Gln Val Ile Ala Met Ser Lys Ala Ala Gly Gly Pro Lys Ala Glu Thr 550 . . 555 Ala Ser Ser Ser Ser Ala Ser Ser Asp Ser Ser Gln Tyr Arg Ser Pro Ser Asp Arg Asp Ser Ala Ser Ile Val Thr Ile Asp Ala His Ala Pro His His Pro Val Val His Leu Ser Ala Gly Ser Thr Pro Trp Glu Trp Lys Ala Lys Val Val Glu Gly Gly Gly Tyr Glu Leu Gly Asp Leu Ala Arg Gly Phe Arg Ser Ser Cys Lys Gln Pro Gly Ile Gly Pro Gly

Ser	Pro	Val	Ser	Asp	Val	Asp	Gln	Glu	Glu	Pro	Arg	Phe	Gly	Ala	Val
				645					650					655	

Ala Thr Val Asn Leu Ala Thr Gly Glu Gly Leu Pro Pro Gly Ala 660 665 670

Ser Glu Gly Ala Leu Gly Ala Gly Ser Arg Glu Ser Thr Leu Arg Arg 675 680 685

Gln Val Gly Ala Leu Gly Glu Arg Glu Val Glu Ala Glu Ala Glu Ser 690 695 700

Tyr Tyr Arg Arg Met Gln Ala Arg Arg Tyr Gln Asp Ala Trp Gln Ser 705 710 715 720

Cys Asp Gly Gln Lys Ala Gly Trp Gly Val Thr Thr Ala Pro Pro Ile
725 730 735

Lys Val His Gly Asn Arg Lys Lys Lys Lys Lys T40 745

<210> 11

<211> 325

<212> PRT

<213> Rattus norvegicus

<400> 11

Met Ala Val Glu Asn Asn Thr Gln Arg Ser Tyr Ser Ile Ile Pro Cys $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Phe Ile Phe Val Glu Leu Val Ile Met Ala Gly Thr Val Leu Leu Ala 20 25 30

Tyr Tyr Phe Glu Cys Thr Asp Thr Phe Gln Val His Ile Gln Gly Phe 35 40 45

Phe Cys Gln Asp Gly Asp Leu Met Lys Pro Tyr Pro Gly Thr Glu Glu 50 55 60

Glu Ser Phe Ile Ser Pro Leu Val Leu Tyr Cys Val Leu Ala Ala Thr

80 -

Pro	Thr	Ala	Ile	Ile 85	Phe	Ile	Gly	Glu	Ile 90	Ser	Met	Tyr	Phe	Ile 95	Lys	
Ser	Thr	Arg	Glu	Ser	Leu	Ile	Ala	Glu	Glu	Lys	Met	Ile	Leu	Thr	Gly	

- Asp Cys Cys Tyr Leu Ser Pro Leu Leu Arg Arg Ile Val Arg Phe Ile
- Gly Val Phe Ala Phe Gly Leu Phe Ala Thr Asp Ile Phe Val Asn Ala
- Gly Gln Val Val Thr Gly His Leu Thr Pro Tyr Phe Leu Thr Val Cys
- Gln Pro Asn Tyr Thr Ser Thr Asp Cys Arg Ala His His Gln Phe Ile
- Asn Asn Gly Asn Ile Cys Thr Gly Asp Leu Glu Val Ile Glu Lys Ala
- Arg Arg Ser Phe Pro Ser Lys His Ala Ala Leu Ser Ile Tyr Ser Ala
- Leu Tyr Ala Thr Met Tyr Ile Thr Ser Thr Ile Lys Thr Lys Ser Ser
- Arg Leu Ala Lys Pro Val Leu Cys Leu Gly Asp Leu Cys Thr Ala Phe
- Leu Thr Gly Leu Asn Arg Val Ser Glu Tyr Arg Asn His Cys Ser Asp
- Val Ile Ala Gly Phe Ile Leu Gly Thr Ala Val Ala Leu Phe Leu Gly
- Met Cys Val Val His Asn Phe Lys Gly Thr Gln Gly Ser Ala Ser Lys

Pro Lys Pro Glu Asp Pro Arg Gly Val Pro Leu Met Ala Phe Pro Arg 290 295 300

Ile Glu Ser Pro Leu Glu Thr Leu Ser Ala Gln Asn His Ser Ala Ser 305 310 315 320

Met Thr Glu Val Thr 325

<210> 12

<211> 343

<212> PRT

<213> Rattus norvegicus

<400> 12

Met Ala Gly Gly Arg Pro His Leu Lys Arg Ser Phe Ser Ile Ile Pro 1 5 10 15

Cys Phe Val Phe Val Glu Ser Val Leu Leu Gly Ile Val Val Leu Leu 20 25 30

Ala Tyr Arg Leu Glu Phe Thr Asp Thr Phe Pro Val His Thr Gln Gly 35 40 45

Phe Phe Cys Tyr Asp Ser Ala Tyr Ala Lys Pro Tyr Pro Gly Pro Glu 50 55 60

Ala Ala Ser Arg Ala Pro Pro Ala Leu Ile Tyr Ala Leu Val Thr Ala 65 70 75 80

Gly Pro Thr Leu Thr Ile Leu Leu Gly Glu Leu Ala Arg Ala Phe Phe 85 90 95

Pro Ala Pro Pro Ser Ser Pro Val Ser Gly Glu Ser Thr Ile Val 100 105 110

Ser Gly Ala Cys Cys Arg Phe Ser Pro Pro Leu Arg Arg Leu Val Arg 115 120 125

Phe Leu Gly Val Tyr Ser Phe Gly Leu Phe Thr Thr Thr Ile Phe Ala 130 135 140

Asn Ala Gly Gln Val Val Thr Gly Asn Pro Thr Pro His Phe Leu Ser Val Cys Arg Pro Asn Tyr Thr Ala Leu Gly Cys Pro Pro Pro Ser Pro Asp Arg Pro Gly Pro Asp Arg Phe Val Thr Asp Gln Ser Ala Cys Ala Gly Ser Pro Ser Leu Val Ala Ala Ala Arg Arg Ala Phe Pro Cys Lys Asp Ala Ala Leu Cys Ala Tyr Ala Val Thr Tyr Thr Ala Met Tyr Val Thr Leu Val Phe Arg Val Lys Gly Ser Arg Leu Val Lys Pro Ser Leu Cys Leu Ala Leu Leu Cys Pro Ala Phe Leu Val Gly Val Val Arg Val Ala Glu Tyr Arg Asn His Trp Ser Asp Val Leu Ala Gly Phe Leu Thr Gly Ala Ala Ile Ala Thr Phe Leu Val Thr Cys Val Val His Asn Phe Gln Ser Arg Pro His Ser Gly Arg Arg Leu Ser Pro Trp Glu Asp Leu Ser Gln Ala Pro Thr Met Asp Ser Pro Leu Glu Lys Asn Pro Arg Pro Ala Gly Arg Ile Arg His Arg His Gly Ser Pro His Pro Ser Arg Arg Thr Val Pro Ala Val Ala Thr

<210> 13

<211> 5083

<212> DNA

<213> Homo sapiens

<400> 13 ggatccacta gtaacggccg ccagtgtgct ggaattcgcc cttgaagcca ttgcagcaac 60 120 agcttggagg agggagctgg acgtcgtctc tcgccagaaa aacggggagc aggagccaga 180 ctaaaggagg aagaggactg gcccgctcag ggaatagctg ggttgctgca aaaaggggcg 240 gggagaaggc ggggggcgctg catgcagcgc gctggctcca gcggtggccg cggggaatgt gacatcagcg gcgccgggcg cttggggctg gaggaggcgg ctcgcctcag ctgcgctgtg 300 360 cacacctcgc ccgggggagg acgcagaccc gggcaggcgg cagggatgtc ggcgaaggag 420 aggccaaagg gcaaagtgat caaggacagc gtcaccctcc tgccctgctt ttatttcgtc 480 gagttgccta tattggcatc atcggtggtt agcctctatt tcctcgaact cacagatgtc ttcaaacctg tgcactctgg atttagctgc tatgaccgga gtcttagcat gccgtacatt 540 600 gaaccaaccc aggaggcaat tccattcctc atgttgctta gcttggcttt tgctggacct 660 gcaattacga ttatggtagg agaaggaatt ctctactgtt gcctctccaa aagaagaaat 720 ggggtcggac tagagcccaa cattaatgct ggaggctgca acttcaattc cttcctcaga 780 cgagctgtca gattcgttgg tgttcatgta tttggattat gctctacagc tctcattaca 840 gatatcatac agctgtccac aggatatcaa gcaccttact ttctgactgt gtgcaaacca 900 aactatacct ctctgaatgt atcttgcaaa gaaaattcct acattgtgga agatatttgc 960 accettgetg cetttgeage tgtgtatgtt tegatgtact teaatteeae attaaeggat 1020 1080 tcctctaagc ttctgaaacc tctcttggtc ttcacattta tcatctgtgg aataatctgc 1140 gggctaacac ggataactca gtataagaac cacccagttg atgtctattg tggcttttta ataggaggag gaattgcact gtacttgggc ttgtatgctg tggggaattt cctgcccagt 1200 1260 gatgagagta tgtttcagca cagagacgcc ctcaggtctc tgacagacct caatcaagat 1320 cccaaccgac ttttatctgc taaaaatggt agcagcagtg atggaattgc tcatacagaa 1380 ggcatcctca accgaaacca cagagatgct agctctctga caaatctcaa aagagcaaat gctgatgtgg aaatcattac tccacggagc cccatgggga aggagaacat ggttaccttc 1440 1500 agcaatacct tgccgcgagc caatacccca tctgtagaag accctgtcag aagaaatgcg 1560 agcattcatg cctctatgga ttccgctcga tcaaagcagc tcctcaccca gtggaagaat

1620 aagaatgaaa gtcgaaagtt gtccttgcaa gttatagagc ctgagcctgg gcagtcacca 1680 cccagatcca tagaaatgag gtcaagctca gagccatcga gggtaggggt gaatggagac 1740 caccatggtc ctggcaatca gtacctcaaa atccagcctg gcgctgtccc cggatgtaac aacagcatgc ctggagggcc aagagtgtcc attcagtccc gtcctgggtc ctcacagttg 1800 1860 gtgcacatcc ctgaggagac tcaggaaaac ataagcacct cccccaaaag cagctctgct 1920 cgggccaagt ggttaaaagc tgctgaaaag actgtggcct gtaacagaag caacagccag ccccgaatca tgcaagtcat agccatgtcc aagcagcagg gtgtcctcca aagcagcccc 1980 2040 aagaacactg aaggcagcac ggtctcctgc actggctcca tccgctataa aaccttgaca 2100 gaccatgage ccagtgggat agtgagggtt gaggeteace cagagaacaa caggeecate 2160 atacagatcc cgtccactga aggtgaaggc agtggctcct ggaagtggaa agcccctgaa aagggcagcc ttcgccaaac ttacgagctc aacgatctca acagggactc agaaagctgt 2220 2280 gagtetetga aagacagett tggttetgga gategeaaga gaagcaacat tgatagcaat 2340 gagcatcacc accacggaat taccaccatc cgcgtcaccc cagtagaggg cagcgaaatt 2400 ggctcagaga cgctgtccat ttcttcttcc cgcgactcca ccctgcggag aaagggcaat 2460 atcattctaa tccctgaaag aagcaacagc cccgaaaaca ctagaaatat cttctacaaa 2520 ggaacctccc ccacacgggc ttataaggat tgagtgatgt ccattccatc attagggcta 2580 ctcgcaaaag accatatgtt gattctacct gtgttctgtt ccagcgaatt gggaagtctc accaagctag attgtctacc atcagcccag aactctgtaa cttttcagaa ctgctatact 2640 2700 caaacttgca gatctcacat caaggagagg gaaaagcaca atgcaagaac ctaactaacg tgatgatatg aagagttttc ttaagacctg tcgtcaaact taaaaggttt tgcagagggc 2760 2820 agtatcaaaa gaaagtggtt ttcttcaaat gtatactatt ttacttcctg aatgtgccaa ctttggggat ttttctttat agtgagctgt gggaacccag aacacacg ttttccctac 2880 2940 agcagaggcc atgcagtatt atatattcat tttgcagaat ctgcacctac agctcaatac 3000 gggtggtgct gattattata gtacatatac catgtaaact ctcaaactct atttagctgt 3060 gaaatagtgg tgtgcaattc cttgttaaag aaatgctact ttattaagaa gatgctggct gctttgtgtt agaataggac accccgcagc ttctctgtag tggctctgtc acagtcaaaa 3120 3180 aatgaaaagg tttttgtgcg tttcttcaaa attctgcttt cttcaacatc aaaaattgtg 3240 tagaaatatt ttcagtgaaa gggaataact agtacttttc tgcatagttt ttcttctgct

3300 tactttttat ttaagtatag gtactgctaa tgaatctgtt ttcttagtga gtaaatttgc 3360 ataattttat aaatattatt ttagagaatc ttttgaaatt gttgtgatca tattttgctt tctatggctt ctccttaact tattgattaa ttttttgaag ttatagatat gttctcctat 3420 3480 tttaaaagca aaaataacaa ttgacattcc ttgagcaaaa tatactgctg tgaatttgca 3540 aacaagaaat ctgagccaaa acttgacatt gtgggttaca ttgccagaaa tgttggtcaa 3600 gtttgccctt agatgtctac aactagctgg cataggttgc catcttaaca agtaatctaa aagtcccatt cggttctaca ttattaactt tttttttcta tatcctgatg accagtaaat 3660 3720 tagagccaca ctggttaagt ttgactcgtc tctaaaacgt ttttgttaat tggacaccaa 3780 gaggaagaat ctgaaaaaaa aatgcatgtt ggtaagtaaa agtatctcac ggtacaaatt aagaatgact ttcttcaaaa tatctgaata ggtgcagttt tagtttaaca tgcaaacaac 3840 3900 cattgttgct acctatcctg aatcaagcct tgagcctaaa tcaaagcaaa ccaataccat 3960 tgataagaag aagataaaaa caaaatattt tggagtgttt tccaacttaa agtatgaaga 4020 catactcagt tcttggaact tagtattaaa ccttttttat gccatttcat aagaattccg 4080 4140 ttagctcact ttccaataac agaaggagtt gtttacagat gaatagtatc acatcattat 4200 caatttccac atgaaaaagg tggagctttc tagaaaaacc aacctctaag gcattaggaa 4260 tttagctgaa accagcagaa ttgaaaactc tggcaataaa acatggactc aaccatatcc cttctggcaa tttccttctc agagagggga gtgggaataa aatgttgcct tccccacttc 4320 4380 tcaccaccac cgccatcatg acgctcatac tggcttttgc ctgtttgtag aggaaaaggt gggctggttt tagtactctg aaggacaaaa acaagcaaac aaaaacccct gctgcagcat 4440 ttcaggtgca gtatgatatt tcctaatctt tcctatttct taacaaaaga ttttaaagta 4500 4560 cttctctagt cattgaagtt tttttttctt tacataaata ttgatatatt ctttttctac tcaaagtgcc aaaggctaca gtttttaatg acttaacaaa ttgtaccaca ttgttaagga 4620 4680 catataatga tagacactag aactcagacc tctgcatgta tatttgataa catgtctttt gtaaaacaaa aattacaaaa aaatttgttt acattccact ggtaccttaa tttaaaataa 4740 4800 atcagactaa aaggtggtat ctcttcttag tgttctattt atcttatttg ctaatgggag 4860 cacttcttcc tttgttaggc tgtgctttac tgataaaacc aagtattgaa taaagagagt

taattatctt	tttaaagtaa	ataaaattat	gaaaatatat	atagtatata	taaagtcctg	4920
tgtttaaaaa	aatgttatgc	aatgttttcc	aaactgataa	agtttgtaaa	gtgctataaa	4980
tgtattttgt	taagtacaga	taaaagctat	tgtgtgagta	tattgtgcta	aaatcataga	5040
aataaagatt	agatttcttc	atcaaaaaaa	aaaaaaaaa	aaa		5083

<210> 14 <211> 2356 <212> DNA

<213> Homo sapiens

<400> 60 aggagacgcg ctttgtgctg ggcgccggcc gcgccagcca cggcctgcgg cgcccgcggc 120 accatgatct ccaccaagga gaagaacaag atcccgaagg acagcatgac gcttctgccc tgcttctact tcgtggagct gcccatagtg gcttcttcca tcgtatcctt gtacttcctg 180 240 gagetgaceg acetetteaa geeggeeaag gtgggettee agtgetatga eegeactete tccatgccct acgtggagac caacgaggag ctcatcccgc tgctgatgct gctcagcttg 300 gccttcgcgg cccctgccgc ctcgatcatg gtggccgagg gcatgttgta ctgtctgcag 360 420 teceggetgt ggggeegtge eggggggeee geeggggegg agggeageat caaegeegge 480 ggctgcaact tcaactcctt cctgcggcgt acggtgcggt ttgtgggtgt ccacgtgttc 540 ggcctgtgtg ccacagccct ggtgacggac gtgatccagc tggccacggg ttaccacact cccttcttcc tcaccgtctg caagcccaac tacactctcc tgggcacgtc ctgcgaggtc 600 660 aacccctaca tcacgcagga catctgctcc ggccacgaca tccacgccat cctgtctgca 720 cggaagacct tcccgtccca gcacgccacg ctgtcagcct tcgccgcggt ctatgtgtcg 780 gtgagtccgg cacctcactg cccttcccag gccctcttgc tgacccgtgg ggagcctcc ctgaccccaa cccccatgcc ccagatgtac ttcaactcgg tcatctcgga caccaccaag 840 900 ctgctgaagc ccatcctggt cttcgccttt gccatcgccg cgggcgtatg cgggctcacg 960 cagatcacgc agtaccgcag ccaccctgtg gacgtgtatg ccggcttcct catcggggcg 1020 ggcatcgctg cctacctggc ctgccacgcg gtgggcaact tccaggcccc acctgcagag aagecegegg eeceggeeee egecaaggae gegetgeggg eeetgaegea geggggeeae 1080 1140 gactcggttt atcagcagaa taagtcggtg agcaccgacg agctggggcc cccagggcgg

ctggagggcg cgccccggcc cgtggcccgc gagaagacct cgctgggcag cctgaagcgc

1200

gccagcgtgg	acgtggacct	gctggccccg	cgcagcccca	tggccaagga	gaacatggtg	1260
accttcagcc	acacgctgcc	cagggccagc	gcgccctcgc	tggacgaccc	cgcgcgccgc	1320
cacatgacca	tccacgtgcc	gctggacgcc	tcgcgctcca	agcagctcat	cagcgagtgg	1380
aagcagaaga	gcctggaggg	ccgcggcctg	gggctgcccg	acgacgccag	ccccgggcac	1440
ctgcgcgcgc	ccgccgaacc	catggcggag	gaggaggaag	aggaggagga	cgaagaggaa	1500
gaggaggagg	aggaagagga	ggaggacgag	ggcccggccc	cgccctcgct	ctaccccacc	1560
gtgcaggcgc	ggccggggct	ggggcctcgg	gtcatcctcc	caccgcgcgc	ggggccgccg	1620
ccgctggtgc	acatcccgga	ggagggcgcg	cagacggggg	ccggcctgtc	ccccaaaagc	1680
ggcgccgggg	tgcgcgccaa	gtggctcatg	atggccgaga	agagcggggc	ggcagtggcc	1740
aaccctccgc	ggctgctgca	ggtcatcgcc	atgtccaagg	ctccgggcgc	gccgggcccc	1800
aaggcggccg	agacggcgtc	gtcgtccagc	gccagctccg	actcctcgca	gtaccggtcg	1860
ccgtcggacc	gcgactccgc	cagcatcgtg	accatcgacg	cgcacgcgcc	gcaccacccc	1920
gtggtgcacc	tgtcggccgg	cggcgcgccc	tgggagtgga	aggcggcggg	cggcggggcc	1980
aaggcggagg	ccgacggcgg	ctacgagctg	ggggacctgg	cgcgcggctt	ccgcggcggg	2040
gccaagcccc	cgggcgtgtc	ccccggctcg	tcggtcagcg	acgtggacca	ggaggagccg	2100
cggttcgggg	ccgtggccac	cgtcaacctg	gccacgggcg	aggggctgcc	cccgctgggc	2160
gcggccgatg	gggcgctggg	cccgggcagc	cgggagtcca	cgctgcggcg	ccacgcgggc	2220
ggcctggggc	tggcggagcg	cgaggcggag	gcggaggccg	agggctactt	ccgcaagatg	2280
caggcgcgcc	gcttccccga	ctagcgcggc	ggggccgggg	gcgggcgggg	ggcgggccga	2340
gggcgcgggc	ggccgc	·				2356

<210> 15

<400> 15

atggtgtgag aaatggctgt aggaaacaac actcaacgaa gttattccat catcccgtgt 60
tttatatttg ttgagcttgt catcatggct gggacagtgc tgcttgccta ctacttcgaa 120
tgcactgaca cttttcaggt gcatatccaa ggattcttct gtcaggacgg agacttaatg 180
aagccttacc cagggacaga ggaagaaagc ttcatcaccc ctctggtgct ctattgtgtg 240

<211> 1306

<212> DNA

<213> Homo sapiens

ctggctgcca ccccaactgc	tattatttt	attggtgaga	tatccatgta	tttcataaaa	300
tcaacaagag aatccctgat	tgctcaggag	aaaacaattc	tgaccggaga	atgctgttac	360
ctgaacccct tacttcgaag	gatcataaga	ttcacagggg	tgtttgcatt	tggacttttt	420
gctactgaca tttttgtaaa	cgccggacaa	gtggtcactg	ggcacttaac	gccatacttc	480
ctgactgtgt gcaagccaaa	ctacaccagt	gcagactgcc	aagcgcacca	ccagtttata	540
aacaatggga acatttgtac	tggggacctg	gaagtgatag	aaaaggctcg	gagatccttt	600
ccctccaaac acgctgctct	gagcatttac	tccgccttat	atgccacgat	gtatattaca	660
agcacaatca agacgaagag	cagtcgactg	gccaagccgg	tgctgtgcct	cggaactctc	720
tgcacagcct tcctgacagg	cctcaaccgg	gtctctgagt	atcggaacca	ctgctcggac	780
gtgattgctg gtttcatcct	gggcactgca	gtggccctgt	ttctgggaat	gtgtgtggtt	840
cataacttta aaggaacgca	aggatctcct	tccaaaccca	agcctgagga	tccccgtgga	900
gtacccctaa tggctttccc	aaggatagaa	agccctctgg	aaaccttaag	tgcacagaat	,960
cactctgcgt ccatgaccga	agttacctga	gacgactgat	gtgtcacaag	ctgtttttta	1020
aaatcatctt ccaattctat	acttcaaaac	acacagttgc	tcaatgtcaa	actgtgatga	1080
caaatattac gtttatctag	ttagaagcta	atgttttgta	cattttttgt	atgaggaagt	1140
gatgtagctt gccctgattt	tttttttt	ttttggtcag	ctttaatata	tttatgccag	1200
aattttaaaa ccaacaaaat	tttcttgttc	aagcgtgcat	tgaagaacca	catttattca	1260
atggttgacg ttgttttgtg	atatttgtac	acaaattttc	ttttt		1306

<210> 16

<400> 16

agtetgege gegegeeag geeeggeega eegegteteg gtettegegt etgeeageet 60 ggetggeagt eegtetgee atecegeege geeggggeag tetaggegga gegggggete 120 aggeggege ggeetegaeg egagtgagtg tegtggttgg ggtgetggae eeagagtgee 180 taccetegee tgeetgggee teagttteea eatetgeaea atgggggtga eeateeetge 240 eetgetgget geeaggageg getgtgagte tteaggegtg gatgeageet gggggaagee 300 atagggeget tteacaggee tggeetteae eatggegga gggagaeege atetgaagag 360

<211> 2680

<212> DNA

<213> Homo sapiens

gagtttctcc	atcatcccct	gctttgtctt	cgtggagtcg	gtgctgctgg	gcattgtgat	420
cctgcttgct	taccgcctgg	agttcacgga	caccttccct	gtgcacaccc	agggattctt	480
ctgctatgac	agtacctacg	ccaagcccta	cccagggcct	gaggctgcca	gccgagtgcc	540
tcctgctctt	gtctacgcac	tggtcactgc	cgggcccacc	ctcacgatcc	tgctgggaga	600
gctggcgcgt	gcctttttcc	ctgcaccacc	ttcagccgtc	ccagtcatcg	gggagagcac	660
catcgtgtct	ggggcctgct	gccgcttcag	cccccagtg	cggaggctgg	tccgcttcct	720
gggggtctac	tccttcggcc	tcttcaccac	gaccatcttc	gccaacgcgg	ggcaggtggt	780
gaccggcaat	cccacgccac	acttcctgtc	cgtgtgccgc	cccaactaca	cggccctggg	840
ctgcctgcca	ccttctccgg	atcggccagg	tcccgaccgc	tttgtcactg	accagggtgc	900
ctgcgctggc	agtcccagcc	tcgtggccgc	cgcgcgccgc	gccttcccct	gcaaggatgc	960
ggccctctgc	gcctacgcgg	tcacctacac	agcgatgtac	gtgactctcg	tgttccgcgt	1020
gaagggctcc	cgcctggtca	aaccctcgct	ctgcctggcc	ttgctgtgcc	cggccttcct	1080
ggtgggcgtg	gtccgcgtgg	ccgagtaccg	aaaccactgg	tcggacgtgc	tggctggctt	1140
cctgacaggg	gcggccatcg	ccaccttttt	ggtcacctgc	gttgtgcata	actttcagag	1200
ccggccaccc	tctggccgaa	ggctctctcc	ctgggaggac	ctgggccaag	ccccaccat	1260
ggatagcccc	ctcgaaaaga	acccgaggtc	tgcaggccgc	attcgacacc	ggcacggctc	1320
accccatcca	agtcgcagaa	ctgcgcccgc	cgtggccacc	tgatccccag	ctgtgtctcc	1380
tccagggccc	cagccatgtg	ttcgtcgccc	cgtgtgcccc	gtcctcgatt	gaggtctgag	1440
ccgacgccct	tgcccctgcc	cctacccctg	ccagcgccca	cccccagcca	gggcccctcg	1500
ccttcctccc	ctggacctgg	ggggccaggc	gggggtggtg	gacgtggccg	gaagctgctg	1560
ctgcccacgc	ccctgctgcg	ggacctgtac	accctgagtg	gactctatcc	ctccccttc	1620
caccgggaca	acttcagccc	ttacctgttt	gccagccgtg	accacctgct	gtgaggcccg	1680
accacccacc	cagaatctgc	ccagtcccca	cttcttccct	gccacgcgtg	tgtgtgcgtg	1740
tgccacgtga	gtgccaaagt	cccctgcccc	ccaagccagc	cagacccaga	cattagaaga	1800
tggctagaag	gacatttagg	agacatctgc	ctctctggcc	ctctgagata	tcccgatggg	1860
cacaaatgga	aggtgcgcac	ttgcccctac	tattgccctt	ttaagggcca	aagcttgacc	1920
ccattggcca	ttgcctggct	aatgagaacc	cctggttctc	agaattttaa	ccaaaaggag	1980
ttggctccaa	ccaatgggag	ccttcccctc	acttcttaga	atcctcctgc	aagagggcaa	2040

ctccagccag	tgttcagcga	ctgaacagcc	aataggagcc	cttggtttcc	agaatttcta	2100
gagtgggtgg	gcatgattcc	agtcaatggg	ggaccgcccg	tgtctaagca	tgtgcaaagg	2160
agaggaggga	gatgaggtca	ttgtttgtca	ttgagtcttc	tctcagaatc	agcgagccca	2220
gctgtagggt	ggggggcagg	ctcccccatg	gcagggtcct	tggggtaccc	cttttcctct	2280
cagcccctcc	ctgtgtgcgg	cctctccacc	tctcacccac	țctctcctaa	tcccctactt	2340
aagtagggct	tgccccactt	cagaggtttt	ggggttcagg	gtgctgtgtc	tccccttgcc	2400
tgtgcccagg	tcatcccaaa	cccttctgtt	atttattagg	gctgtgggaa	gggtttttct	2460
tctttttctt	ggaacctgcc	cctgttcttc	acactgcccc	ccatgcctca	gcctcataca	2520
gatgtgccat	catggggggc	atgggtggag	cagaggggct	ccctcacccc	gggcaggcaa	2580
aggcagtggg	tagaggaggc	actgcccccc	tttcctgccc	cctcctcate	tttaataaag	2640
acctggcttc	tcatctttaa	taaagacctg	tttgtaacag			2680

<210> 17 <211> 5708 <212> DNA

<213> Mus musculus

<220>

<221> misc_feature <222> (460)..(460)

<223> n is a, c, g, or t

<400> 17

60 ygagcgatga tgccccattt accetttete ttcagatgca ggaaatttte actetgttee 120 ccagctgatt ggagcttttt ctaggtgctt ccctgggagt tacctcccta gagatcagca ggcagggctg tcacgcttgg gtagcagcca gctcccagtg aattccttct gtggcctact 180 240 tgtccttatg aagtccgagt tttaattttg cacaggtagg aggtctcttt tgctatggat 300 agggcggata acggtgctac cattagaaaa caggcttctg ttttctagga aggcaagagg 360 aaccccaggt aggggacctt gtgagaccag gtgacttggc tcctcagcct tgcttctaca gaaaccagga gtgcttcccc ccactcttcc ctatttttga cgtcaagctc aaccagccag 420 480 cagaggagcc tcacggcttg ggcggtggag agagagcccn aggagagtgg cagggagggg aagccatctc agcaacagct tggagaggga gctgctatcc cttgcccgca aaacacggac 540 600 taaagccagg ctgaagaaga cctgcgggct cgggctcggg gatccgcggg gttactgcaa

agaagggcgg	ggaaaaggcg	ggggcgctgc	atgcaacgcg	ctggttccag	cggtgcccgc	660
ggggaatgtg	acatcagcgg	cgccgggcgc	ttgcggctgg	agcaggcagc	tcgcctcggt	720
ggccgcacgg	tgcacacctc	gcccggggga.	ggacttggag	cccggcaggc	ggccgggatg	780
tcggcgaagg	agaggccaaa	gggcaaagtg	atcaaggaca	gcgtcaccct	cctgccctgt	840
ttttatttcg	ttgagttgcc	tatattggca	tcatcagtgg	ttagcctcta	cttcttggaa	900
ctcacagatg	tcttcaaacc	tgtgcactct	ggattcagtt	gctatgatag	gagtcttagc	960
atgccgtaca	ttgagccaac	ccaggaggcc	ataccattcc	ttatgttgct	tagcttggct	1020
tttgctggac	ctgcaattac	gatcatggtg	ggtgaaggga	ttctatactg	ctgcctctcc	1080
aaaagaagaa	acggagctgg	attggagcct	aacatcaacg	ccggaggctg	caacttcaac	1140
tcctttctca	ggagagccgt	cagattcgtt	ggtgtccatg	tgtttggact	gtgctccaca	1200
gctctcatta	cagatatcat	acagctctcc	acaggatatc	aggcaccata	ctttctgact	1260
gtgtgcaagc	caaactatac	ctctctgaat	gtatcctgca	aagaaaactc	ctacatcgtg	1320
gaagatattt	gttcaggatc	tgaccttaca	gtcatcaaca	gtggcagaaa	gtcattccca	1380
tcccaacatg	cgaccctcgc	tgcctttgcc	gctgtgtatg	tgtccatgta	cttcaattcc	1440
acattaaccg	attcctctaa	gctcctgaaa	cctctcttgg	tcttcacatt	tatcatctgt	1500
gggatcatct	gcggactaac	acggataact	caatataaga	accatccagt	cgatgtctat	1560
tgtggctttt	taataggagg	aggaatcgca	ctatatttgg	gcctgtatgc	tgtagggaat	1620
tttttgccta	gtgaagacag	tatgcttcag	cacagagatg	ccctcaggtc	actgacagac	1680
ctcaatcaag	accccagcag	ggttttatca	gctaaaaatg	gtagcagtgg	tgatggaatt	1740
gctcacacag	agggtatcct	caaccgaaac	cacagggatg	caagctcctt	gacaaatctc	1800
aagagggcca	acgctgacgt	agaaatcatc	actcctagga	gccccatggg	gaaggaaagc	1860
atggtgacct	tcagcaacac	gctgcccagg	gccaacaccc	cctccgtgga	agacccagtg	1920
agaagaaatg	cgagcatcca	tgcctctatg	gattctgccc	ggtccaaaca	gctccttacc	1980
cagtggaaga	gcaagaatga	gagtcgtaag	atgtccctac	aggttatgga	cactgaacca	2040
gaaggccagt	caccacccag	gtccatagaa	atgaggtcca	gctcagagcc	ctcgagggtg	2100
ggggtgaacg	gagatcacca	tgtccctggc	aatcagtacc	tcaagataca	gcctggcaca	2160
gtccccgggt	gcaacaatag	tatgccggga	gggccacgcg	tgtccatcca	gtcccgccct	2220

ggctcttccc aattggtgca catccccgag gagacccagg aaaacataag cacctcgccc 2280 2340 aagagcagtt ctgcgcgagc caagtggctg aaagcagctg agaagaccgt ggactgtaac cggagcaaca accagccacg catcatgcag gtcatcgcca tgtccaagca gcagggcgtg 2400 2460 ctgcagagca gccccaagaa tgccgaaggt agcactgtca cctgcacagg ttccatccgc 2520 tacaaaaccc tgactgacca tgagcccagc ggcatcgtgc gagtggaggc tcatcccgag 2580 aacaacaggc ccatcattca gatcccgtcg tccactgagg gtgaaggcag cggctcctgg aagtggaaag ttccggagaa aagtagtctg cgccaaacct atgagctcaa cgacctcaac 2640 2700 agggactcag aaagctgtga gtccctcaaa gacagctttg gttctggaga tcgcaaaaga 2760 agcaacatcg acagcaatga gcaccaccac cacggcatca ccaccatccg agtgaccccg 2820 gtggagggca gcgagatagg ctcagagacg ctgtccgtgt cctcctcacg cgactccacc 2880 ctgcgcagga agggcaacat catcttgatc ccggaaagaa gcaacagccc tgaaaacaca 2940 agaaacatct tctacaaagg aacctccccc acgcgggctt ataaggattg agagatggcg 3000 gcccttcttg tcatcatttt gatgacaccc ccacctcccc atcccccacc ctcacccaa 3060 3120 cctttttttt tccctagaag atatggagag ccttcttgtc caactagatt gttcaccatc 3180 agcctggaac tctcactgaa ccaccacaga aatcgtggcg attttacacc aagggaaagg 3240 aaaagcacaa agcaagaccc gaactaaact catcatcaga acagttctta agacacaggc tttgcagaag gtagtattaa gataaagtgg tttcctccga tgtatagtat ttaactttct 3300 3360 gaatgtgcca acttaatgga gtttttttt ttcattataa ttagctgtgg gaacccaaaa 3420 cacataggtt ttcccaacag cagaggccat gcggtattat atattattca tttttgcaga 3480 ctctgcacca gaagagcaga ctgggtggtg ctgattatca cagtgcatct accatttaaa ctctcaaact ctatgtagct gtgaaatagt ggtgtgcaac tcctcgtcag agaaatgcta 3540 3600 cttcattcag aagacgccag tgactttgtg ttagaataga ccattcttgg cttccctgta 3660 3720 aagagagaaa gaaagaaaga aagaaagaaa gaaagaaaga aagaaagaaa gaaagaaaga aagaaagaaa gaaagaaaga aagaaagaat tggatgaatt ggacagggct ttgagcattt 3780 3840 ctttgaaaga tgctttttt caacatctga aagcttgtag gaatgttttc agtgaaacag 3900 aataactagt tctctgcatc gtttttcttc tttttattta agtattggta atgctgcttt

3960 ctggtttttt gtttttgtt ttagtgagtg catttgcata tttaaaatac attgttttag 4020 agaatatttt gaaattatta tgattacatt ttccatttta tggctttacc ttagtttatt aagttttctg agggttacac atattcttct attttaagaa agcaaaagtg acaacttgca 4080 4140 ttctttqtqc aaaatacact gctgtgaggt cctacactag aaatctgagc caaaggttga 4200 aactgtgcgt gccaatgcca gatacgctgg tcaaggtcaa gatgtctcca atccgatggc 4260 4320 tcatgttatc ttgataatca ccatattgga gccacagtgg gggtgagttt gactcccttt 4380 cctgacacac ttttaactgc acaccaacag taagaatcta ggcaaatgct aattgataaa 4440 tagatgtgta tcacagtata agtttagaaa gcatatcttc aaaatgtcag accaggtaaa gctttcgtgc ttagagtata accaacagtt ttggatgtct gtcttgaatc tagaacctta 4500 4560 agcctaaatc aaaggaaacc ttactgttga tagcaagaag ataacaacat atttttgaag 4620 tggttttcca agctagctgt ttaaagtgtg gagaaggatt tggttcttga aatttggtat 4680 taaccttttt tcatgccatg tcttaagagt tataatgtac actcgatgat tgccaagaga gggggagggg gaggaaaaca gccaacagca gagctggttg gtctgaactc agtgcagttt 4740 4800 4860 caaagggcag agctttttag aaaactcaac ctcctaaggc attaggaatt gagctgaaac 4920 cagcagaatt gaaaactctg gcaataaaat atagactcaa tcgtaaccct tctggcaagt tccttctcag agaaggaagt gggagtaaaa tgtggccttc cccacttctt tacatcaccc 4980 ctgtcacaat gtccccgctg gcctggccag tttcgagagg gaagggtgga ctggttttag 5040 5100 tactctgaag aaaacccaag ctgcagtatt tgaggtgcag tataatattt cctaatcttt cctatttctt aacaaaaaa gattttaaag tacttctcta ctcattgaat ttttgttctt 5160 5220 tacatactat tgatatattc tttttctact caaaagtgcc aaaggctaca gtttttaatg 5280 acttaacaaa ttgtaccaca ttgttaagga aatataatga tagacactag aattcagacc 5340 tctgcatgta tatttgataa cacatctttt gtaaaaaata aataattaca aaaaatttgt ttacattcca caggtacctt aatttaaaat aaatcagact aacaggtggt atctcttctt 5400 agtgttctat ttatcttatt tgctaatgag aacaattctt cttctgttag gctgtgcttt 5460 attgataaaa ccaagtattg aataaaggga gttaattatc tttttaaagt aaatgaaatt 5520

ataaatatat aatatata aagtattgtg tttaataaaa tgttatgcaa tgttttccaa	5580
actgataaag tttgtaaagt gctataaatg tattttgtta agtacagatc aaagctatcg	5640
tgtgagtata ttgtgctaac atcatagaaa taaagattag atttcttcat caaaaaaaa	5700
aaaaaaaa	5708
<210> 18 <211> 2783 <212> DNA <213> Mus musculus	
<400> 18 ggcgcggggc gcgggatctc gccttcccca cactgcgccg cgcgctccta ggtcccggag	60
atcaaccgtg ctcgcgcaag gcgcacagaa ggcacgcgca aggggcaggg acgagaccca	120
gattgcggtc cccgcgcagg gccagagacc ctgagacccg cagagtggga ggcggaggcg	180
cccaagccgg gggcggggtt ggggcggggc cgagcgggct gcagagcgcg cagacaaaga	240
gctcacgcgc cgcacaccgc gcccgggcct cgcgtccctc ccacgcgggg accctggctt	300
tgtgtccgcg ctttgcaagg gactccgccc tccttgctcc ctccaggtga acgagccgcg	360
tgcgcgcgcg ggggctccgg cctctccctt ccccaagttc cccctctgct ccagcctcag	420
tttccccgag ccctcttggc taacccttat ctccccacct ggagactcca tctgcgcagc	480
toctagtoto cagootgoot tigicoccot goaatotogg cotacagogo caacgicaco	540
atgcttgcta tgaaggagaa gaataaaacg ccgaaggaca gcatgacact cctgccttgc	600
ttttatttcg tggagctacc catcgtggct tcctccattg tgtctctgta cttcctggag	660
ctgactgacc tgttcaagcc ggccaaggtg ggctttcagt gctacgaccg cgccctgtcc	720
atgccctatg tggagacaaa tgaagagctg atcccattgc tcatgctgct gagcctggcc	780
ttcgctgcac ctgcggcctc aatcatggtc ggcgagggca tggtctactg tctgcagtcc	840
aggetetggg geegtggtee agggggegtg gagggeagea teaacgetgg tggetgeaac	900
ttcaactcct tcctccggcg cacagtgcgc tttgtgggtg tacacgtgtt tggcctgtgt	960
gccacggctc tggtgacaga tgtcatccag ctggccaccg gctaccacac acctttcttc	1020
ttaacggtct gcaaacccaa ttacaccctg ctgggcactt cctgtgagtc gaacccttac	1080

1140

1200

atcacacagg acatctgctc tggccacgat acccatgcca tcctgtcagc aaggaagacc

ttcccgtccc agcacgccac tctgtcagcc tttgctgctg tctacgtgtc gatgtacttc

aacgcggtta	tctcggacac	cacgaagctg	ctgaagccca	tccttgtgtt	tgccttcgcc	1260
attgctgcgg	gcgtctgcgg	cctcacacag	atcacccagt	atcgaagcca	ccctgtggac	1320
gtctacgctg	gctttcttat	cggtgctggc	atcgctgcct	acctggcctg	ccacgctgtg	1380
ggcaacttcc	aggcaccacc	tgcagaaaag	gttcctaccc	cagctcctgc	caaggacgcc	1440
ctgcgagcgc	tgacacagcg	gggccatgag	tccatgtatc	agcagaataa	gtctgtcagt	1500
accgatgagc	tgggccctcc	agggaggcta	gagggcgtgc	ctcggcctgt	ggctcgagag	1560
aagacatctc	ttggcagctt	gaagcgagcc	agcgtggatg	tggacctgct	ggccccacgt	1620
agccccatgg	gcaaagaagg	catggtcacc	ttcagcaaca	cactgccccg	ggtcagcacg	1680
ccctcgctgg	atgaccctgc	acggcgccac	atgactatcc	acgtgcccct	tgatgcctcc	1740
cgttccaggc	agcttatcgg	tgagtggaag	caaaaatccc	tggagggacg	tggcctgggt	1800
ctgcctgatg	aagccagccc	tgtgcatctg	agggccccag	cagagcaggt	agcagaggag	1860
gaagaggaag	aggaggagga	ggaggaagaa	gaggaggaag	aggaggaaga	ggaagggcct	1920
gttccaccct	cactctaccc	tactgtccag	gctcggccag	gccttgggcc	ccgagtcatc	1980
ctgcctccaa	ggccagggcc	ccagcccctc	gtacacatcc	ctgaggaagg	cgttcaggct	2040
ggagctggcc	tgtcacccaa	gagcagcagc	tcatcagtga	gggccaagtg	gctgtcagtg	2100
gctgagaagg	gtgggggccc	agtggctgtg	gctccatccc	agccccgggt	ggccaaccca	2160
cccaggctac	tacaggtcat	cgctatgtcc	aaggcggcag	ggggccccaa	ggctgagaca	2220
gcttcgtcct	ccagtgccag	ctccgactct	tcccagtaca	ggtccccgtc	agaccgtgac	2280
tctgccagca	ttgttacaat	cgatgcccat	gcacctcacc	atccagtggt	gcacctgtct	2340
gctggcagca	caccctggga	gtggaaggct	aaagtagtgg	agggtgaggg	tagctatgag	2400
ctgggggacc	tggcacgcgg	cttcagaagc	agctgtaaac	agcctggaat	gggcccgggg	2460
tctccagtca	gtgatgtgga	ccaggaagaa	ccccggtttg	gggcagtggc	cactgtcaac	2520
ctggccactg	gggagggtct	gcccccacca	ggtgcaagtg	aaggggccct	aggtgcaggc	2580
agcagagaat	ccaccctaag	gcgccaggtg	ggcgggctgg	cagagagaga	agtggaggct	2640
gaggcagaaa	gttattatag	gaggatgcag	gccaggaggt	accaggacta	agcctggcaa	2700
aactgtgatg	gggattaggg	gagctggggg	tgtctacagc	cccaccaata	aaaacttatg	2760
ctattaaaaa	aaaaaaaaa	aaa				2783

<210> 19 <211> 3764 <212> DNA

<213> Mus musculus

<400> 19 60 gatacgcccg tgccgcgcgc tcgcccgctc gctctcccac gcaagcggaa tgcagcagcg 120 cctgaggage tegtetgeag eegetgeetg aatgeaecte geegeetgea gteegteege ccaatagggc gcaaggaagg aagcttggcc gccaaagcct ggacagtttc tgacagtgca 180 gtctcaccac atgatttgag aaatggctgt agaaaacaac actcaacgca gttactccat 240 300 cattccatgt tttatatttg ttgagcttgt catcatggct gggaccgtgc tgcttgccta 360 ctacttcgaa tgcactgaca cctttcaggt gcatatccaa ggattcttct gtcaggacgg agacttaatg aagccttacc cggggacaga ggaggaaagt ttcatcagcc ctctggtgct 420 480 ctactgcgtt ctggctgcca ctccaactgc tattattttc attggtgaaa tatccatgta 540 tttcataaag tcaacaaggg agtccctgat tgctgaggag aaaatgatcc tgacagggga 600 ctgctgctac ctgagcccct tactccgaag gatcatcagg ttcatcgggg tatttgcatt tggacttttt gctactgaca tttttgtaaa cgcggggcaa gtcgtcactg gtcacctaac 660 720 accatacttc ctgacagtgt gccagccaaa ctataccagt acagactgcc gggcacacca 780 acagttcatc aacaatggca acatctgcac tggggacctg gaagtgatag aaaaagctcg 840 gaggteettt eeeteeaaac atgetgetet gageatttae teegeettat atgeeaegat gtacatcaca agcacaatca agacgaagag cagtcggctg gccaagccag tgctgtgctt 900 960 ggggaccete tgtaccgcet tectgacagg ceteaacege gteteagagt aceggaacea 1020 ctgttccgac gtgatcgccg gcttcatcct gggcaccgca gtggccctgt ttttgggaat 1080 gtgtgtggtt cataacttca gaggaaccca aggctctcct tccaaaccca aacccgagga 1140 teccegegga gtteccetga tggetttece aaggatagag agecegetgg aaacettaag 1200 tgcacagaat cactccgcct ccatgaccga agtcacctga gatgaatgaa gacatgcagc 1260 tgtttaggga ttgtttggtt tttgttttgt tttttttcca gcaaccttcc agttcaattc ttcaaaacac acagatactc aagtcaaact gtgaagacaa gtattacatt tgtctagtta 1320 1380 gaggctaatg ttttgtacat tttttgtatg aagaagtgat gtagcttgcc ctgatctttt tttgtcagct ttaatatatt tatgccagat ttttaaaaacc aacaaaattt tcctgttgtt 1440

caagtgtgca ttgaagaatc acatttatcc aatggttgac gttgttttgt gatatttgta

1500

1560 cacaaatttt tctcagtttt atagacacaa ataaagcaaa caacccactt taacccttta ttaccacagt tgctgcctcc tccagaagtt ttgaatttta atggaagtta aacttttgag 1620 ttacaggaag gaccgtggtg gttaattgta aatctcaaag tcaatcgtgg aaaaaaaaat 1680 1740 attggaagag aacattgtgt tctgctttgt aaatagttga ctgcattccc agttaaagca 1800 acaggggcat actagtgaag agttctagtt gcccaactat tggcacagaa gcctatattt 1860 ggaggaagag tactttggtt atatgatgct ttcttagata atggcctcgc catcctacag agcacaaggt cagtctggga ttctgacctt gggcaggtga caccgtggcc tactatccaa 1920 1980 gagagcagca agcaccagcc tttcctgtca actcaacagt tttgtatatc atattgtatg 2040 gactttttat gaaaaagaat attttacagt ttgcacagta ttattttaca gaaaggctat cagagcatct acatgtagag cccagagcaa cggcttcact atggggcttt taactgttct 2100 2160 tagattttaa ctgcatccca ttttttctag catggtgata atgtgtccct cctttgggag 2220 aaggagttcc ctttctgtat ctatcaaaat gtttctcacc cttgtcaggt cttcttagct 2280 ttttttgtac atatttttt ttctaaagag aagaaaaaaa aagttatcac aaaatgtagt ctggctcctg tgctctgtgt ttcatttcag ttggcggtgt ttgaagaact gtggagtgtc 2340 2400 tqtqcttctc aqtccatqaq aqaqqqqatt aqatqaacca ttaaacaqqq qcatqctgaa 2460 aggtcattca gagtaagcag acagaagcag ggggcgaagg aatgactgta cacaaatagg 2520 catacatatg tgttaaaata aggtgaaaga attccttcat ttattaagat actcaaatca aatgcatttt ctggattctt agtgtgatgc catagtcttc aacctgttct gaaatttcca 2580 agttttcagt aaacaattag tcttttttt ttttttagga acaaaagtca cctctgataa 2640 2700 aactttcctg ggagtttcct gaactgtact catacacatg ttctaagtag tatctgacta aagtcagaga aaagagctgt taaggctctg ttcatcacaa gtgttaacca cctgccctca 2760 2820 catatataat gcatctgttg ttttcagggc aatgaaccca gggagggata taaactctaa 2880 aacactgtga catacactag ttccaacatc ttggtcgagc tctgccccat tcttatttct 2940 atttctgtta catgatgcct ctgaatcaag tttagccctt cttggtgtga tgtgtctact gagatggttc atggatgcta cagacaaaag gaagtcccag gaaagaatga tttgtagact 3000 3060 ctgagctctg tcttctgtcc tgtatgctaa gtgtgaagtc atccagtgtc tgggcgacac 3120 attttattta cttaaacaca tggtattttt aaagaaaatt agtaatgggc tctctttagt

ttacttttcc taaaacatca	gaaatgaggg	tagacaaaat	tgatgtttat	tacctacttc	3180
atgtcacacg tagttatcag	cttttcttgt	caccaaattg	tattttgaag	aaaaatcaag	3240
tcaacaacac ggatcactac	ctttgaactc	ctcttttcta	ggtttgattc	tgggaagatc	3300
acttgttact tcaaaatctg	tggtcacaga	ctctgcttcc	atagcccagg	gtgtataggg	3360
tattctctgg caagctatgc	tctatatcag	ttacaactga	gggatttctt	tctgttctgt	3420
tccctggatc tctgagttag	tctaccctct	gcattatgcc	actttaataa	agcctctgcg	3480
tacccttaag atattcagtg	gcctcaggtt	gagggtaaac	cttccaatct	agcatgtgag	3540
attcattcct caggtttgga	tgtccctact	tggtttttct	gacaaagaca	aagctttttg	3600
ttcaaacagg acaaataatg	actataacct	aagagaaata	aattctggag	tgaatgctgt	3660
tcctctttt tagtggattg	cagaaatgcc	tgagaaagtc	tggcttgctg	tggaaaggga	3720
ttggaaagga acaagacgaa	taaagtgttt	tgattttatg	ccgc		3764

<210> 20

<211> 2699

<212> DNA

<213> Mus musculus

<400> 20 60 gtgtagtgtt tgggatggag gccacgcctg ggttatatct tatgtgggag tgcccatatg 120 ggtgactctg cacacctgga atctggtgac cctctctcca atatgtcatt ctgtggagta ggcctcaatg gagccctgga tgcacagtac ccaccttcat ctgcctgggc ctcagtttcc 180 acatccgtgc aatggagatg aatgttcttg ccttgctggc ctcacggagt ggctgtgagt 240 300 tggtggcagt ggaggtggat gcctggaaga agccctaggg ctctttcaca ggccccagct 360 tegecatgge tggagggaga ceteacetga ageggagttt etetateate cettgetteg tctttgtgga gtctgtgttg ctaggcatcg tggtccttct tgcgtaccgc ctggagttca 420 480 cggacacctt ccctgtgcac acccagggct tcttctgcta tgacagcgct tatgccaagc 540 cgtatcccgg gcctgaggct gccagccgag cgcccctgc cctcatctat gccttggtca 600 ctgctgggcc caccctcacg atcctgctgg gggagctggc ccgtgccttc ttccctgcgc caccetecte cagteetgte agtggggaga geaceategt gteeggggee tgetgeeget 660 720 tcagtccccc actgaggagg ctggtccgtt tcctgggggt gtactctttt ggcctcttca 780 ccacgaccat ttttgcaaat gcgggacaag tggtgaccgg taaccccaca cctcacttcc

tatcaatata	tcgccccaac	tacacggccc	tagactaccc	accaccqtct	cctgaccggc	840
		acggaccaga				900
		ccctgcaagg				960
•						
atactgcgat	gtacgtgacc	ctagtgttcc	gcgtgaaggg	ctctcgcctg	gtgaaacctt	1020
ccctctgcct	ggccctgctg	tgccccgcct	tcctggtggg	cgtggtccgc	gtggcggagt	1080
atcgcaacca	ttggtcggac	gtgctggctg	gctttctgac	gggagcagcc	atcgccacct	1140
ttttggtcac	ctgtgttgtg	cacaatttcc	agagccgacc	ccactctggt	cgaaggctct	1200
cccctggga	ggacctgagc	caggccccca	ccatggacag	cccctcgaa	aagaacccga	1260
gacctgcagg	ccgcattcga	caccggcacg	gctcacccca	tccaagccgc	agaactgtgc	1320
ccgccgtggc	cacctgattc	ccagctgtgt	gtcctccagg	gcgccagcta	tgtgctcctc	1380
gccccgtgtg	ccccgccctc	gactgaggtc	tgagccaaca	cccctgcctc	tgccgctgcc	1440
tcttcctgca	ccgactccca	gtcagggtcc	ctcgccttcc	tcccctggac	ccgggggccc	1500
aggcggggga	ggtgggcggg	gccggaagct	gctgctgccc	acgcccctgc	taagggacct	1560
gtacaccctc	agtggactcc	atccctcccc	tttccaccgc	gacaacttca	gcccttatct	1620
gtttgccagc	cgcgaccacc	tgctgtgaga	tccaccacct	agaatctacc	cagtgaccgt	1680
ttcccccctg	ccacgcgtgt	gtgtggcatg	tgagtgctaa	aggcccctgc	cctccaaacc	1740
agccaggccc	acccagcgtc	agaagatggc	tggaagggac	gcttcaaggc	agggaatctc	1800
ttggctgctc	tttggccttt	tgggatatct	gggtaggcaa	aaataaccag	gtgggcccat	1860
gtccccagga	tttccctttt	aacggctgat	gcttgaccta	attgaccatt	gcctagccag	1920
tgagagctct	gagttatcag	aattcaaccc	aaaagtttac	aaaagtttat	gggaacctct	1980
cacttcttag	cttcctcaag	caggagggtg	ctactgtggc	cggtgttcaa	gtgtctaaac	2040
agccaataag	agcccttggc	gttcagaatt	gcagagagtg	ggtgggaatg	attccagtca	2100
atgggggacc	gcccgtgtca	aagccaagtc	aaagccaagg	agggctatcc	agctctcctc	2160
gggaacacgg	aatccagctg	gagagggggg	gggcaggctc	ccccacagca	gagtcctgcg	2220
gcaccccttc	ccttctagac	cttcccccag	gtgcaccatc	tcacaccctc	caactcccta	2280
cttaagtagg	gcttgcccca	gttcacaggt	tttagaattc	tggacgctgt	ctcccttggc	2340
tgtgcctagg	gcacctcccc	ccactccccg	ccaaaccttc	tattattact	agggctgtgg	2400
aaaatgactt	tattttctcg	ggacccaccc	ttcttcttca	cactgccccc	atgcctcagt	2460

ctcatgcagt tgtgccatct tggggggcat gggtggagca gaagggggtt cccctaccct 2	2520
gaatagccaa aggcagtggg cagatgagac actgtccccc tttcctgccc ccctcctcat 2	2580
ctttaataaa gacctgtttg taacagaaaa aaaaaaaaaa	2640
aaaaaaaaa aaaaaaaaa aaaaaaaaa aaaaaaaa	2699
<210> 21 <211> 5372 <212> DNA <213> Rattus norvegicus	
<220> <221> misc_feature <222> (1137)(1137) <223> n is a, c, g, or t	
<220> <221> misc_feature <222> (2899)(2899) <223> n is a, c, g, or t	
<220> <221> misc_feature <222> (2917)(2919) <223> n is a, c, g, or t	
<220> <221> misc_feature <222> (2921)(2924) <223> n is a, c, g, or t	
<220> <221> misc_feature <222> (2929)(2929) <223> n is a, c, g, or t	
<400> 21 atgccccaat tcaccctctc tcttcagatg caggcaaaaa attctcactt tgttcctcgg	60
cggattggag ctttttctag gtgcttccct tggagttacc tccctagaga tcagaaggtc	120
agggctgtca cgcttgggta gcggccagct cccagtgaat tccttctatg gcctacttgt	180
cagtatgaaa tctgagtttt aattttgcac aggtggaggt ctcttttgct atgggtaagg	240
tggatagcgg tgcccagcaa gctcctgctc tctagaaagg caacaagaac cccaggtagg	300
agaccaggtg ccttggctcc tcagccttgc ttctgcagaa accaggagtg cctccccca	360
ctatttttga cgtcaagctc agacaaccag cagaggagcc tcacagcttg ggcggtggag	420

480 agcccaggga gagtggcagg gaggggaagc catcacagca acagcttgga gggggagctg 540 gctatcactt tccctcaaaa tacggactaa aacccggctg aagaagacct gcgggatcag 600 ggaagcgccg ggttactgca aagaagggcg gggaaaagga gggggcgctg catgcagcgc 660 gctggctcca gcggtgcccg cggggaatgt gacatcagcg gcaccgggcg cttgcggctg 720 gagcaggcag ctcgcctcgg tggccgcgca gtgcacacct cacccacggg aggactcgga 780 gcccggcagg tggccgggat gtcggcgaag gagaggccaa agggcaaagt gatcaaggac 840 agegteacce teetgeeetg tttetattte gttgagttge etatattgge gteateggtg 900 gttagtctct acttcctgga actcacagat gtcttcaaac ctgtgcactc cggattcagt 960 ctcatgttgc ttagcttggc ttttgctgga cctgcaatta cgatcatggt gggtgaaggg 1020 1080 attctgtact gctgcctctc taaaagaaga aatggagctg gattggagcc caacatcaac 1140 gccgggggct gcaacttcaa ttcctttctc agaagagccg tcagatttgt tggtgtncac 1200 gtggttggac tgtgctccac agctctcatt acggatatca tacagcttgc cacaggatat 1260 caggcaccat actttctgac tgtgtgcaag ccaatgtaca cctccctgga aggatcctgc 1320 aaggaaaatt cctacatcgt ggaagaaatt tgttcgggat ctgacctaac agtcatcaac 1380 aatggcaaaa agtcattccc gtcccagcat gcgaccctcg ctgcctttgc tgctgtgtat 1440 gtgtccatgt acttcaattc cacattaact gactcctcca agctcctgaa acctctcttg gtcttcacat ttatcatctg tggaatcatc tgcgggctaa cacggatcac tcagtataag 1500 1560 aaccatcccg tcgatgttta ttgtggcttt ttaattggag gaggaatcgc gctgtatttg 1620 ggcctgtatg ctgtagggaa ttttctgcct agtgaagaca gcatgcttca gcacagagat gccctcaggt cactgacaga cctcaatcaa gaccccagca gggttttgtc agctaaaaat 1680 1740 ggtagcagcg gtgatggaat tgctcacaca gagggtattc tcaaccgaaa tcacagggat 1800 gcaagctcct taacaaatct gaagagggcc aacgctgacg tagagatcat cactcctagg 1860 agccccatgg ggaaggagag catggtgacc ttcagtaaca cgctgcccag ggccaacacc ccgtccgtgg aagacccggt gagaagaaac gcgagcattc acgcctctat ggattctgcc 1920 1980 cggtccaagc agctccttac ccagtggaag agcaagaacg agagtcgcaa gatgtccctg 2040 caggttatgg actctgaacc agaagggcag tcaccaccca ggtccataga aatgaggtcc

2100 agctcagagc cctcgagggt gggggtgaat ggagatcacc atgtcccggg caatcagtac 2160 ctcaagatcc agcctggcac agttcccggg tgcaacaata gtatgcctgc agggccacgt 2220 gtgtccatcc agtcccgccc tggctcttcc caattggtgc acatccccga ggagacccag 2280 gaaaacataa gcacctcgcc caagagcagt tccgcacggg ccaagtggct gaaagcagca 2340 gagaagaccg tggcctgtaa ccggggcaac aaccagccac gcatcatgca ggtcatcgcc 2400 atgtccaagc agcagggcgt gctgcagagc agccccaaga atgccgaagg tagcacggtc acctgcacag gctccatccg ctacaaaacc ctgactgacc acgagccgag tggcattgtg 2460 2520 cgagtggagg ctcatcccga gaacaacagg cccatcatcc agattccatc gtccaccgag 2580 ggcgaaggca gtggctcctg gaagtggaaa gctccggaga agagtagcct gcgccaaacc 2640 tatgagetea acgaceteaa cagggaeteg gaaagetgeg agteeeteaa agacagettt ggttctggag atcgcaagag aaagcacatc gacagcaatg agcaccacca ccacggcatc 2700 2760 acaaccatcc gcgtgacccc agtggagggc agcgagatag gctcagagac gctgtctgta 2820 tectecteae gegaetecae eetgegeagg aagggeaaca ttatettgat eeetgaaaga 2880 agcaacagee etgaaaacae aagaaacate ttetacaaag gaaceteece caegaggeet tataaggatt gaatccccnc ccttctgcct catcatnnng nnnncatcnc ccacccccc 2940 3000 accccaqcca cacatttatt atagtacctt gtgctctttt gggtattttg ttgttgtttt 3060 ggttttggtt ttttgttttc ttttctagtg gatatggaga gccttcttgc ccaactagat 3120 tgttcaccat cagcctggaa ctctcactga cccaccacag aaaccgtggt gattttccac 3180 caagggaaag gaaaagcaca aagcaagacc cgaactaatc tcatcatctg aatagttctt 3240 aaggcctgtc actgagactt cgcagagggc agtattagga taaagtggtc tcctccgatg 3300 tatagtattt aactttctga atgtgccaac tttgaagttt ctttttttt ttttcatta taattagcgg tgggaaccca aaacactaca ggtttccccg gcagcagagg ccacgcagta 3360 3420 ttatatagta tttatttttg cagactctgc accagaagag cagactgggc ggtgctgatt 3480 accacagtac atctaccatt tcaactctca gactctgtgt agctgtgaga gagtggtgta 3540 caaccccctt gtcagagaaa tgctacttca ttcagaagac gccagtgact ttgtggtagc 3600 ataggccatt cttggcttcc ctgtagtggc tctctcacag tcaaaaagaa aaaagaaaga aaaaactgga cagggttctg agcatttctt tgaaagattc tttgttttca acatttgaaa 3660 3720 gtctgtaggg atgttttcgg tgagacggaa caactagttc tccgcatcgt ttttctgctt

3780 tttatttaag tattggtaat gctggtttct ggtatctttt ttttttagtg agtgcatttg 3840 catatttaaa atacattgtt ttagagaata ttttgaaatt attataatca cattttccat tttgtggctt catcttagtt tattaagttt tttgaggtta tgcacaccat tcttctattt 3900 3960 taagaaagca acagtgacca tttacattcc ttgtgcaaaa tacactgctt cgaggtccta 4020 cgcaagaaat atgagccaac ggttgaaact gtgcgttcca ttgccagata cattggtcac attcaagatg tctccaatcc gatggcatag gttatcacat cagtaagcga tccccaaact 4080 tcattttctt ccagagcatt tcatttttgt gttatcctga taatcaccat atcggagcca 4140 4200 ccatgggggt gagcttgact cccttccctg acacactttt aactggacac caacagtaag 4260 gacctaggca aaggctaatt gatagataga agtgtatcac agcatacatt tagaaagtgt atcttcaaaa cagcagacca ggcaaagctt ttgtgcttag agtactattg acagttttgg 4320 4380 ctgcctgtct tgaatctaga accttgagcc aaaatcaaag gaaaccatac tgttgatagc 4440 aagaagatta ccacaagata tttttgaagt gttttcccag gttagatgtt taaagagtgg 4500 agacatatat ttggtccttg aaatttgtta taaaaccttt ctcatgccat gtcttaagaa ttataatgga cacttgatga ttgccaagag ggggagcaaa aacagcgaac agcagagctg 4560 4620 gttggtctga actcagtgca gctttcagtg agaacaaaag ctgtccagca aagagtcaca 4680 tcattcattc tctagcctct ccattcaaag ggcagagctt ttttttttt ttaagaaaac 4740 tcaacctctt aaggcattag gaatttagct gagaccagca gaattgaaaa ctctggcagt aaaatatagg ctcaaccata accettctgg aaagttcctt ttttttttt ttttcctttt 4800 4860 ttttattttt tttttttt ttgtgatcga gttgactgca gtagttcatc atattctttt 4920 tctactcaaa gtgccaaagg ctacagtttt taaacgactt aacaaattgt accacactgt taaggaacta taacgataga cactagaatt cagacctctg catgtatatt tgataacaca 4980 5040 tcttttgtaa aaaataaata attacaaaaa atttgtttac attccactgg taccttaatt 5100 taaaagaaat cagactaaca ggtggtatct cttcttagtg ttctatttat cttacttgct 5160 aacgagagca attcttcttt tgttaggctg tgctttattg atgaaaccga gtattgaata 5220 aagagagtta attatctttt taaagtaaat aaaactatga atatataata tatatgaagt atcgtgttta ataaaaatgt tatgcaatgt tttccaaact gataaagttt gtaaagtgct 5280 5340 ataaatgtat tttgttaagt acagatcaaa gctatcgtgt gagtatattg tgctggcatc

atagaaataa agattagatt to	cttcatcaa aa		5372
<210> 22 <211> 2597 <212> DNA <213> Rattus norvegicus	s		
<400> 22 gaccaaagca tgttcataag tt	tctgggaac tgttcataca	taaaagtagc cttggcaatc	60
tctcccatga gctgcccaga ag			120
gactcgatct ctgaataatt ca	•		180
cccttcccca agtttccccc tt		·	240
agccagggct agcccttatc to	ccccacctg gagactccat	ctgcgcacca actagtctcc	300
agcctgcctt tgtccccctg ca	aacctcggc ctacagcgcc	agcgtcacca tgattgctaa	360
gaaggagaag aataaaacgc cg	gaaggacag catgacgctc	ctaccttgct tttatttcgt	420
ggagctaccc atcgtggctt cc	ctctgttgt gtctctgtac	ttcctggagc tgactgacct	480
gttccagccg gctaaggtgg gc	ctttcagtg ccacgaccgc	tecetgteca tgecetaegt	540
ggagacaaat gaagaactga tt	tccactgct catgttgctg	agcctggcct ttgctgcacc	600
cgcggcctcc atcatggtcg gc	cgagggcat ggtctactgt	ctgcagtcca ggctctgggg	660
ccgaggtcca gggggtgtag ag	gggcagcat caatgctggt	ggctgcaact tcaactcctt	720
cctccggcgc acagtgcgct tt	tgtgggtgt acacgtgttt	ggcctgtgtg ccacggctct	780
ggtgacagat gtcatccagc tg	ggcaaccgg ctaccacaca	cctttcttcc taaccgtctg	840
caaacccaat tacaccctgc tg	gggcacttc ctgtgaggcg	aacccttaca tcacacagga	900
catctgctct ggccatgata ct	tcatgccat cctgtcagca	cggaagacct tcccatccca	960
gcacgccact ctgtccgcct to	cgctgctgt ctacgtttcg	atgtacttca actccgttat	1020
ctcggacgcc acaaagctgc tg	gaaacccat ccttgtgttc	gccttcgcca ttgccgctgg	1080
cgtctgtggc ctcacacaga to	cacccagta ccgcagtcac	cctgtggacg tctacgccgg	1140
cttccttatt ggtgctggca tt	tgctgccta cctggcctgc	cacgcggtgg gcaacttcca	1200
ggcgccacct gcagaaaagg tg	gcccacccc agctcctgcc	aaggacgccc ttcgagtgct	1260
gacacagegg ggecatgagt co	catgtatca gcagaataag	tctgtcagca cagatgagct	1320
gggccctccg gggaggttag ag	gggtgtgcc tcggcctgtg	gctagagaga agacatctct	1380

tggcagcctg	aagcgagcca	gcgtggatgt	agacctgctg	gccccacgca	gccccatggg	1440
caaagagggc	atggtcacct	tcagcaacac	actgccccgg	gtcagcacgc	cctcgctgga	1500
tgacccttcc	cggcgacaca	tgactatcca	cgtgcccctt	gatgcctcgc	gctccaggca	1560
gctgatcagt	gagtggaagc	aaaagtctct	ggagggtcgt	ggcctggggc	tgcctgatga	1620
ggctagccct	gcgcatctgc	gggccccagc	agagcaggtg	gcagaggaag	aagaggaaga	1680
ggaggaggag	gaagaggagg	aagaagagga	agaggaggag	gaggaagggc	ctgttccacc	1740
ctcgctctac	cccactgtcc	aggctcggcc	agggctcggg	ccccgagtca	tcctgcctcc。	1800
aaggcctggg	ccccagcccc	tcatccacat	ccctgaggaa	gtagttcagg	ctggagctgg	1860
cctgtcaccc	aagagcagtg	catcagtgcg	ggccaagtgg	ctgtcaatgg	tggagaaggg	1920
tgggggccca	gtggctgtgg	ctccaccaca	gccacgggtg	gccaacccac	cgaggctact	1980
acaggtcatt	gccatgtcca	aggcagcagg	gggccccaag	gctgagacag	cttcctcctc	2040
cagtgccagc	tccgactctt	cccagtacag	gtccccatca	gaccgggact	ctgccagcat	2100
cgtcacaatt	gatgcacatg	caccccacca	cccggtggtg	cacctgtctg	cgggcagcac	2160
accctgggag	tggaaggcca	aagtggtgga	gggggaaggt	ggctatgagc	tgggggacct	2220
ggcgcgtggg	ttcagaagca	gctgcaaaca	gcctggaatt	ggcccagggt	ctccagtcag	2280
tgatgtggac	caggaggaac	cccggtttgg	ggctgtggcc	accgtcaacc	tggccactgg	2340
ggagggtctg	cccccaccag	gtgcaagtga	aggggccctg	ggtgcaggca	gcagggaatc	2400
caccctgaga	cgccaggtgg	gggcgctggg	ggagagagaa	gtggaggcag	aggcagaaag	2460
ctactacaga	aggatgcagg	ccaggaggta	ccaggactaa	gcctggcaaa	gctgtgatgg	2520
gcagaaggca	ggctgggggg	tcactacagc	cccaccaata	aaggttcatg	gtaaccgtaa	2580
aaaaaaaaa	aaaaaaa					2597

- <210> 23
- <211> 1040
- <212> DNA
- <213> Rattus norvegicus
- <400> 23
- agcttggccg ccaaagcctg gattatttct gtcagtgcag tctcaccaca tggtttgaga 60
 aatggctgta gagaacaaca cccaacgcag ttactccatc atcccatgtt ttatatttgt 120
 tgagcttgtc atcatggctg ggacagtgct gcttgcctac tacttcgaat gcactgacac 180

ctttcaggtg catatccaag	gattcttctg	tcaggatgga	gacttaatga	agccttaccc	240
ggggacagag gaggaaagct	tcatcagccc	tctggtgctc	tactgtgttc	tggctgccac	300
cccaactgct attatttca	ttggtgaaat	atctatgtat	ttcataaagt	caacaaggga	360
gtccctgatt gctgaggaga	aaatgatcct	gacgggggac	tgctgctacc	tgagcccctt	420
actccgaagg atcgtcaggt	tcattggggt	atttgcattt	ggactttttg	ctactgacat	480
ttttgtaaac gccgggcaag	tagtcactgg	tcacctaaca	ccgtacttcc	tgacagtgtg	540
ccagccaaac tataccagta	cagactgccg	ggcacaccac	cagttcatca	acaatggcaa	600
catctgcact ggggacctgg	aagtgataga	aaaagctcgg	aggtcctttc	cttccaaaca	660
cgctgctctg agtatttact	ccgccttata	tgccacgatg	tacatcacaa	gcacaatcaa	720
gacaaagagc agtcggctgg	ccaagccagt	gctgtgcttg	ggggacctct	gtacagcctt	780
cctgacaggc ctcaatcggg	tctcagagta	ccggaaccac	tgttcagacg	tgattgccgg	840
cttcatcctg ggcaccgcag	tagccctgtt	tttgggcatg	tgtgtggttc	ataactttaa	900
aggaactcaa ggctctgctt	ccaaacccaa	acctgaggat	ccccgtggag	ttcctctgat	960
ggctttccca aggatagaga	gcccgctgga	aaccttaagt	gcacagaatc	actcagcctc	1020
catgaccgaa gtcacctgag					1040

<210> 24

<400> 24

gtgtagtgtt tgggatggag gccacgcctg ggttatatct tatgtgggag tgcccatatg - 60 120 ggtgactctg cacacctgga atctggtgac cctctctcca atatgtcatt ctgtggagta ggcctcaatg gagccctgga tgcacagtac ccaccttcat ctgcctgggc ctcagtttcc 180 240 acatccgtgc aatggagatg aatgttcttg ccttgctggc ctcacggagt ggctgtgagt 300 tggtggcagt ggaggtggat gcctggaaga agccctaggg ctctttcaca ggccccagct 360 tegecatgge tggaggaga ceteacetga ageggagttt etetateate cettgetteg tctttgtgga gtctgtgttg ctaggcatcg tggtccttct tgcgtaccgc ctggagttca 420 480 cggacacctt ccctgtgcac acccagggct tcttctgcta tgacagcgct tatgccaagc 540 cgtatcccgg gcctgaggct gccagccgag cgccccctgc cctcatctat gccttggtca

<211> 1501

<212> DNA

<213> Rattus norvegicus

						600
ctgctgggcc	caccctcacg	atcctgctgg	gggagctggc	ccgtgccttc	ttccctgcgc	600
caccctcctc	cagtcctgtc	agtggggaga	gcaccatcgt	gtccggggcc	tgctgccgct	660
tcagtccccc	actgaggagg	ctggtccgtt	tcctgggggt	gtactctttt	ggcctcttca	720
ccacgaccat	ttttgcaaat	gcgggacaag	tggtgaccgg	taaccccaca	cctcacttcc	780
tgtcggtgtg	tcgccccaac	tacacggccc	tgggctgccc	accaccgtct	cctgaccggc	840
cagggcctga	ccgcttcgtc	acggaccaga	gcgcctgtgc	aggcagtccc	agcttggtgg	900
ccgccgcacg	ccgcgccttt	ccctgcaagg	atgcggccct	gtgcgcctac	gctgtcacct	960
atactgcgat	gtacgtgacc	ctagtgttcc	gcgtgaaggg	ctctcgcctg	gtgaaacctt	1020
ccctctgcct	ggccctgctg	tgccccgcct	tcctggtggg	cgtggtccgc	gtggcggagt	1080
atcgcaacca	ttggtcggac	gtgctggctg	gctttctgac	gggagcagcc	atcgccacct	1140
ttttggtcac	ctgtgttgtg	cacaatttcc	agagccgacc	ccactctggt	cgaaggctct	1200
cccctggga	ggacctgagc	caggccccca	ccatggacag	cccctcgaa	aagaacccga	1260
gacctgcagg	ccgcattcga	caccggcacg	gctcacccca	tccaagccgc	agaactgtgc	1320
ccgccgtggc	cacctgattc	ccagctgtgt	gtcctccagg	gcgccagcta	tgtgctcctc	1380
gccccgtgtg	cccgccctc	gactgaggtc	tgagccaaca	cccctgcctc	tgccgctgcc	1440
tcttcctgca	ccgactccca	gtcagggtcc	ctcgccttcc	tcccctggac	ccgggggccc	1500
a						1501

<210> 25 <211> 30

<212> DNA

<213> Rattus norvegicus

<400> 25

caccacagct gagagggaaa tcgtgcgtga

<210> 26

<211> 30

<212> DNA

<213> Rattus norvegicus

<400> 26

atttgcggtg cagcatggag gggccggact

<210> 27

<211> 51

30

30

<212> <213>	DNA Rattus norvegicus	
<400> gcagag	27 gtct gaattctagt gtctatcgtt atagttcctt aacagtgtgg g	51
<210><211><211><212><213>	14	
<400>	28	
Cys Va	l Gly Val Asn Gly Asp His His Val Pro Gly Asn Gln 5 10	
<210> <211> <212> <213>		
	29 ttgt agctgtgggg aatttc	26
<210><211><211><212><213>		
	30 ctta taagcccgtg tg	22
<210><211><211><212><213>	20	
<400> gaactt	31 tgcg agtgagctgg	20
<210><211><211><212><213>		
<400> tgcgga	32 gagc tttaacctcc	20
<210>	33	

<211>	20			
<212>	DNA			
<213>	Rattus norvegicus			
<400>	33			
		20		
CCLacc	tctt cctcatgttc	20		
<210×	34			
<210> <211>				
<211>				
	Rattus norvegicus			
\213 /	Raccus Horvegicus			
<400>	24			
		20		
taaagg	gtgg agtccatcag	20		
<210>	35			
<211>				
<212>				
<213>	Rattus norvegicus			
<400>	35			
		21		
ggaatt	gcct ctgcaacatc t	21		
<210>	36			
<211>	18			
<211>				
	DNA Rattus parvagious			
<213>	Rattus norvegicus			
<400>	36			
		18		
gagtagatga tgggttca 18				
<210>	37			
<211>	51			
<211>	DNA			
\213/	Rattus norvegicus	• •		
<400>	27			
	gtct gaattctagt gtctatcgtt atagttcctt aacagtgtgg g	51		
gcagag	gict gaattetagt gretateget atageteett aacagegegg g	J 1		
<210>	38			
<211>				
<211>				
	Rattus norvegicus			
\ 213/	naccus norvegicus			
<400>	38			
	totg tagtagettt etgeetetge etceaettet etet	44		
Callet	coly taginguit digeology elecative titl	-1 -1		