Homework #1:

1. Given $V_g=10\text{mV}$, find V_o . Find the Thevenin equivalent between terminals a-b. (Note: $v_1 \neq V_g$)

- 2. Sketch the following waveforms. Identify the dc component of the waveform and the ac component of the waveform.
 - a. Vs=10cos(10t) V
 - b. $V_s=3V +7\cos(10t) V$
 - c. $V_s=3V \pm 0.25V$
- 3. Explain in your own words the procedural steps for plotting Bode Plots. (Note: I would prepare this question for use during an exam)
- 4. (a) Plug in values of ω from 0.1 to 10^5 rad/sec. Plot this graph of Volts vs ω .
 - (b) Sketch the Bode plots using a straight-line approximation (procedures described in class)
 - (c) Use Matlab to obtain the Bode Plot.
 - (d) Compare the three. What differences do you see?

$$H(s) = \frac{10s}{(s+10,000)(s+100)}$$

5. Sketch the Bode plot using a straight-line approximation (procedures described in class) and then use Matlab to obtain the Bode Plot. Compare the two.

$$H(s) = \frac{100,000(s+10)^3}{s^2(s+10k)(s+1k)}$$

6. Use PSPICE to simulate the circuit of Fig. 1 and determine the Bode Plots. Print out the schematic, along with the plots. (Double points – counts as two homework problems)

Fig. 1

7. Analyze the following circuit to find the transfer function Vi/Vs. Solve the circuit symbolically first (with R_s , R_i , R_i , R_i , R_i , R_i) and then plug in their values. Create a rough sketch of the transfer function using a straight-line approximation procedure.

Find Vo',

$$V_0 = -3i_2(202)$$

 $\dot{Q} = -5V_1$
 $V_1 = V_9 - (5V_1 \cdot 32)$
 $V_1 = \frac{1}{16}V_9$
 $\dot{Q}_2 = -\frac{5}{16}V_9$

Therenin's Equivalent:

 $V_{th} = \text{open circuit voltage} = V_0 = 18.75 V_g$ $R_{th} = 20SL$ because with V_g off $i_2 = i_3 = 0$ A

leaving the only path between terminals a and be as the 20SL resistor shown.

3 Procedural Steps for Bode Plots.

- 1. Determine the poles and the zeros.
- 2. Determine the starting point of the amplitude plot by plugging into the transfer function the first frequency on the plot:
- 3. Draw the amplitude plot; begin at the starting point. Start with the slope given by poles or zeros at $\omega=0$; at each zero add 20 dB/decade, and at each pole subtract 20 dB/decade. The pole/zero order determines how many 20 dB/decade one added or subtracted. Continue drawing, changing the slope until reaching the end of the graph.
- 4. Draw the phase plot.

Start Value = 0° if constants > 0 180° if constants < 0 +90° for each zero at the origin -90° for each pole at the origin

Each pole/zero contributes a 45° difference in the slope of the Bode Phase Diagram. Mark these on the plot; and the effect begins I decade before the pole/zero and ends I decade after the pole/zero.

For the Magnitude
Plot, there is a
3dB difference at
each pole/zero(from
the Matlab compared by
the straight line approx.)

Similarly, the Phase go Plot has errors, however o the plot is correct six during periods w/no change in Slope and at the corner frequencies.

Bode Diagram

** Profile: "SCHEMATIC1-test" [E:\ECE2280\HW1 Stuff\hw1-schematic1-test.sim] Date/Time run: 01/Q9/08 13:25:19 Temperature: 27.0 (A) hwl-SCHEMATIC1-test.dat (active) -20d-40d-60d -80d -100d 1.0Hz 10Hz 100Hz 1.0KHz 10KHz 100KHz P(V(C1:2,0)) Frequency Page 1 Date: January 09, 2008 Time: 13:26:11

$$G_1 = \frac{1}{R_1}$$
 $G_2 = \frac{1}{R_2 + R_S}$

Using node voltage at the V; node:

$$\frac{V_{i}}{V_{5}} = \frac{G_{2}}{G_{1} + G_{2} + 5C_{i}} = \frac{G_{2}}{G_{1} + G_{2}}$$

$$= \frac{G_{2}}{G_{1} + G_{2}}$$

$$= \frac{G_{2}}{G_{1} + G_{2}}$$

$$\frac{V_1}{V_5} = \frac{0.0909}{1.364 \times 10^7 \text{s} + 1} = \frac{0.0909}{\frac{\text{s}}{7.3 \times 10^6} + 1}$$

Here's a Rough sketch of the Bode Plots:

