Engineering Electromagnetics

Mattia Fait

30 maggio 2025

Indice

1	Vec	tor Algebra			
	1.1	Scalars and Vectors			
	1.2	Products of Vectors			
	1.3	Fields			
	1.4	Systems of Coordinates			
	1.5	Position Vectors			
2	Vec	tor Calculus			
	2.1	Integration			
		2.1.1 Line Integrals			
		2.1.2 Surface Integrals			
		2.1.3 Volume Integrals			
	2.2	Differentiation			
		2.2.1 Gradient			
		2.2.2 Divergence			
		2.2.3 Circulation			
3	Elec	ctric Field			
	3.1	Charge			
	3.2	Coulomb's Law			
	3.3	Electric Field			
	3.4	Electric Flux			
	0.1	Electric Flax			
4	Electric Potential 4.1 Electristatic Field				
	4.1	Electristatic Field			
	4.2	Gauss's Law			
	4.3	Electric Potential			
	4.4	Materials in the Electric Field			
	4.5	Interface Conditions			
	4.6	Capacitance			
	4.7	Energy in the Electrostatic Field			
5	Bou	ındary Value			
	5.1	Poisson's Equation for the Electrostatic Field			
	5.2	Laplace's Equation for the Electrostatic Field			

6	Steady Electric Current 6				
	6.1	Conservation of Charge	6		
	6.2	Conductors, Dielectrics and Lossy Dielectrics	6		
	6.3	Ohm's Law	6		
	6.4	Power Dissipation and Joule's Law	6		
	6.5	The Continuity Equation and Kirchhoff's Current Law	6		
	6.6	Current Density as a Field	6		
	6.7	Interface Conditions for Current Density	6		
7	Static Magnetic Field 6				
	7.1	Magnetic Field	6		
	7.2	Biot-Savart Law	6		
	7.3	Ampère's Law	6		
	7.4	Magnetic Flux	6		
	7.5	Static Magnetic Field	6		
	7.6	Potential Functions	6		
8	Magnetic Materials and Properties 6				
	8.1	Magnetic Properties of Materials	6		
	8.2		6		
	8.3	Inductance and Inductors	6		
	8.4	Energy Stored in the Magnetic Field	6		
	8.5	Magnetic Circuits	6		
	8.6	Forces in the Magnetic Field	6		
	8.7	Torque	6		
9	Induction 6				
	9.1	Faraday's Law	6		
	9.2		6		
	9.3	Motional Electromotive Force	6		
10	Max	twell Equations	6		
			6		
			6		
			6		
		<u> </u>	6		

1 Vector Algebra

- 1.1 Scalars and Vectors
- 1.2 **Products of Vectors**
- 1.3 **Fields**
- Systems of Coordinates
- 1.5 **Position Vectors**

2 Vector Calculus

- Integration 2.1
- 2.1.1 Line Integrals
- 2.1.2 **Surface Integrals**
- 2.1.3 **Volume Integrals**
- 2.2 Differentiation
- 2.2.1Gradient
- 2.2.2Divergence
- 2.2.3 Circulation

3 Electric Field

Charge

Line Charge Density

$$\rho_l = \lim_{\Delta l \to 0} \frac{\Delta Q}{\Delta l} \qquad \left[\frac{\mathbf{C}}{\mathbf{m}}\right]$$
 Surface Charge Density

$$\rho_s = \lim_{\Delta s \to 0} \frac{\Delta Q}{\Delta s} \quad \left[\frac{C}{m^2}\right]$$
Volume Charge Density

Volume Charge Density

$$\rho_v = \lim_{\Delta v \to 0} \frac{\Delta Q}{\Delta v} \quad \left[\frac{\mathbf{C}}{3}\right]$$

Coulomb's Law

$$\vec{F} = k \frac{Q_1 Q_2}{r^2} \hat{r} \quad [N]$$

$$k = \frac{1}{4\pi\epsilon} \quad \left[\frac{Nm^2}{C^2} \right]$$

3.3 Electric Field

$$\vec{E} = \lim_{Q \to 0} \frac{\vec{F}}{Q} \quad \left[\frac{N}{C}\right]$$

3.4 Electric Flux

Electric Flux Density

$$\vec{D} = \vec{E} \quad \left[\frac{C}{m^2} \right]$$
 Electric Flux

$$\Phi = \int_{S} \vec{D} \cdot d\vec{s} \quad [C]$$

4 Electric Potential

4.1 Electristatic Field

Postulates for the Electrostatic Field:

Solutions for the Electron
$$\left\{ oldsymbol{
abla} \cdot \vec{E} = rac{
ho_v}{\epsilon_0} \\ \nabla \times \vec{E} = 0 \\ \left\{ \oint_S \vec{E} \cdot d\vec{s} = rac{Q}{\epsilon_0} = 0 \\ \oint_C \vec{E} \cdot d\vec{l} = 0 \right\}$$

4.2 Gauss's Law

$$\oint_{s} \vec{D} \cdot d\vec{s} = Q \quad [C]$$

$$\oint_{s} \vec{E} \cdot d\vec{s} = \frac{Q}{\epsilon_{0}}$$

4.3 Electric Potential

Scalar Electric Potential

$$V_{ba} = \frac{W}{Q}$$

- 4.4 Materials in the Electric Field
- 4.5 Interface Conditions
- 4.6 Capacitance
- 4.7 Energy in the Electrostatic Field
- 5 Boundary Value
- 5.1 Poisson's Equation for the Electrostatic Field
- 5.2 Laplace's Equation for the Electrostatic Field
- 6 Steady Electric Current
- 6.1 Conservation of Charge
- 6.2 Conductors, Dielectrics and Lossy Dielectrics
- 6.3 Ohm's Law
- 6.4 Power Dissipation and Joule's Law
- 6.5 The Continuity Equation and Kirchhoff's Current Law
- 6.6 Current Density as a Field
- 6.7 Interface Conditions for Current Density
- 7 Static Magnetic Field
- 7.1 Magnetic Field
- 7.2 Biot-Savart Law
- 7.3 Ampère's Law
- 7.4 Magnetic Flux
- 7.5 Static Magnetic Field
- 7.6 Potential Functions
- 8 Magnetic Materials and Properties
- 8.1 Magnetic Properties of Materials
- 8.2 Magnetic Interface Conditions
- 8.3 Inductance and Inductors
- 8.4 Energy Stored in the Magnetic Field
- 8.5 Magnetic Circuits
- 8.6 Forces in the Magnetic Field