Entregable cache 2

Per convenció, es denomina una memòria cau segons la quantitat de dades que conté (és a dir, una memòria cau de 4 KiB pot contenir 4 KiB de dades); tanmateix, com haureu comprovat a classe, les memòries cache també requereixen SRAM per emmagatzemar metadades com ara etiquetes i bits d' "status".

Per a aquest exercici, examinareu com afecta la configuració d'una memòria cau a la quantitat total de SRAM necessària per implementar-la, considerant que a la SRAM només hi guardarem les etiquetes. Suposem que les memòries cau són adreçables byte a byte i que les adreces i les paraules són de 64 bits. (adreçables byte a byte vol dir que, si volem, podem accedir a només un byte de la paraula)

Calculeu el nombre total de bits, provinents de les etiquetes, que es guardaran a l'SRAM si tenim una memòria cau totalment associativa de 32 KiB amb blocs de 2 paraules.

Per convenció, es denomina una memòria cau segons la quantitat de dades que conté (és a dir, una memòria cau de 4 KiB pot contenir 4 KiB de dades); tanmateix, com haureu comprovat a classe, les memòries cache també requereixen SRAM per emmagatzemar metadades com ara etiquetes i bits d' "status".

Per a aquest exercici, examinareu com afecta la configuració d'una memòria cau a la quantitat total de SRAM necessària per implementar-la, considerant que a la SRAM només hi guardarem les etiquetes. Suposem que les memòries cau són adreçables byte a byte i que les adreces i les paraules són de 64 bits. (adreçables byte a byte vol dir que, si volem, podem accedir a només un byte de la paraula)

Calculeu el nombre total de bits, provinents de les etiquetes, que es guardaran a l'SRAM si tenim una memòria cau totalment associativa de 32 KiB amb blocs de 2 paraules.

Paraula = 64 bits = 8 bytes, mida = 32 KiB, bloc = 2 paraules = 16 bytes, completament associativa

Tag	W	В
64 - W - B	2 paraules/línia	8 bytes/paraula
60	1	3

Línies = 32 KiB / 16 = 2048 Mida etiquetes SRAM = 60 × 2048 = 122880 bits

Tag	Index	Offset
63-10	9-5	4-0

- a) Quina és la mida dels blocs de la caché?
- b) Quantes línies té la caché?
- c) Quin és el ratio entre els bits dedicats a emmagatzemar dades i el nombre total d'informació que ha d'emmagatzemar la caché si considerem que, a més, tenim 1 bit d'status?
- d) Ompliu la taula
- e) Segons aquestes dades, quin és el hit rate?

Tag	Index	Offset
63-10	9-5	4-0

a) Quina és la mida dels blocs de la caché?

Offset = "byte en un bloc" = 5 bits, **Bloc = 2^5 = 32 bytes**

Tag	Index	Offset
63-10	9-5	4-0

b) Quantes línies té la caché?

Index = "línia en la cache" = 5 bits, Línies = 2^5 = 32 línies

Tag	Index	Offset
63-10	9-5	4-0

c) Quin és el ratio entre els bits dedicats a emmagatzemar dades i el nombre total d'informació que ha d'emmagatzemar la caché si considerem que, a més, tenim 1 bit d'status?

Mida etiquetes = (54 + 1 bits) × 32 línies = 1760 bits = 220 bytes Mida dades = 32 bytes × 32 línies = 1024 bytes Mida total = Mida etiquetes + Mida dades = 220 + 1024 = 1244 Ràtio = 1024 / 1244 = 0,82... = 82,32% d) Amb la caché inicialment buida, les següents adreces són introduïdes (per ordre d'esquerra a dreta):

Hex	00	04	10	84	E8	A0	400	1E	8C	C1C	B4	884
Dec	0	4	16	132	232	160	1024	30	140	3100	180	2180

Ompliu la següent taula:

Byte Address	Binary Address	Tag	Index	Offset	Hit/Miss

Address	Binary Address	Tag	Index	Offset	Hit/Miss	
00	000000000000000000000000000000000000000	0	0	0	M	
04	000000000000000000000000000000000000000	0	0	4	H (esp.)	
10	000000000000000000000000000000000000000	0	0	16	H (esp.)	
84	000000000000000000000000000000000000000	0	4	4	M	
E8	000000000000000000000000000000000000000	0	7	8	M	
A0	000000000000000000000000000000000000000	0	5	0	M	
400	000000000000000000000000000000000000000	1	0	0	M (subst. 00h)	
1E	000000000000000000000000000000000000000	0	0	30	M (subst. 400h)	
8C	000000000000000000000000000000000000000	0	4	12	H (esp.)	
C1C	000000000000000000000000000000000000000	3	0	28	M (subst. 1Eh)	
B4	000000000000000000000000000000000000000	0	5	20	H (esp.)	
884	000000000000000000000000000000000000000	2	4	4	M (subst. 8Ch)	

Tag	Index	Offset
63-10	9-5	4-0

e) Segons aquestes dades, quin és el hit rate?

Hit rate = Hits / Accessos = 4 / 12 = 0,33... = 33,33%