

A Guide to Pseudolabelling: How to get a Kaggle medal with only one model

Stanley Zheng

About Me

GitHub/Kaggle/LinkedIn: @stanleyjzheng

Contents

- 1. What are pseudolabels, and why should we use them?
- 2. Effective use of pseudolabels
- 3. Applications
- 4. Minimal code example on MNIST

Sources and further reading at bit.ly/pydata-github

Thanks to Yauhen Babakhin for some of the graphics in this presentation [1]

What is Pseudolabelling?

- Semi-supervised learning
- Allows models to leverage a large unlabelled dataset

Visual Example

Visual Example

Visual Example

Why use pseudolabelling?

- Data is expensive to label
 - Requires expert labelling or is time consuming

Why use pseudolabelling?

- Data is expensive to label
 - Requires expert labelling or is time consuming
- Data is time-sensitive
 - Model needs to be made now but data is time consuming to label

Why use pseudolabelling?

- Data is expensive to label
 - Requires expert labelling or is time consuming
- Data is time-sensitive
 - Model needs to be made now but data is time consuming to label
- There is a large diversity in the datasets
 - Training images are from one use case, while test images are from another

Why use pseudolabelling? [2]

- Data is expensive to label
 - Requires expert labelling or is time consuming
- Data is time-sensitive
 - Model needs to be made now but data is time consuming to label
- There is a large diversity in the datasets
 - Training images are from one use case, while test images are from another
- Any application with a small training set and a large test set

Training Schemes - Self Training

Training Schemes - Simultaneous training

Training Schemes - Pretraining [3]

General tips and tricks with pseudolabels

- For uncleaned datasets, use confidence thresholds to ensure labels are less noisy

General tips and tricks with pseudolabels

- For uncleaned datasets, use confidence thresholds to ensure labels are less noisy
- Where possible, use soft pseudolabels over hard pseudolabels
- Reduce variance with ensemble

General tips and tricks with pseudolabels [4]

- For uncleaned datasets, use confidence thresholds to ensure labels are less noisy
- Where possible, use soft pseudolabels over hard pseudolabels
- Reduce variance with ensemble
- Use iterative pseudolabels, not one shot
 - Make sure to reinitialize the weights after each iteration
- Take measures to reduce overfitting (dropout/stochastic depth, augmentations)

K-fold Cross Validation

- 1. Split the dataset into k groups
- 2. For each unique group:
 - i. Take the group as a test data set
 - ii. Take the remaining groups as a training data set
 - iii. Fit a model on the training set and evaluate it on the test set
- 3. Find model's out-of-fold performance and save the model.

Ensembling folds to produce pseudolabels

- 1. Split the dataset into k groups
- 2. For each unique group:
 - i. Take the group as a test data set
 - ii. Take the remaining groups as a training data set
 - iii. Fit a model on the training set
- 3. Ensemble all models together to produce one set of pseudolabels
- 4. Train models on pseudolabels and evaluate

Ensembling folds to produce pseudolabels

Non-leaky approach

- 1. Split the dataset into k groups
- 2. For each unique group:
 - i. Take the group as a test data set
 - ii. Take the remaining groups as a training data set
 - iii. Fit a model on the training set
 - iv. Infer pseudolabels for the test set and train on it
 - v. Evaluate the model
- 3. Find model's out-of-fold performance and save the model.

Non-leaky approach

Global Wheat Detection [5]

Scores of various models (Intersection over Union, higher is better)

Technique	Public Leaderboard	Private Leaderboard
No pseudolabelling	0.7115 (821st)	0.6371 (327th)
Self-training	0.7406 (+4%, 207th)	0.6625 (+4%, 36th)
Pretraining	0.7562 (+6%, 61st)	0.6668 (+5%, 22nd)

Countless other winners using pseudolabelling [6]

EfficientNet Noisy Student [4]

Method	# Params	Extra Data	Top-1 Acc.	Top-5 Acc.
ResNet-50 Billion-scale [93]	26M	3.5B images labeled with tags	81.2%	96.0%
ResNeXt-101 Billion-scale [93]	193M		84.8%	-
ResNeXt-101 WSL [55]	829M		85.4%	97.6%
FixRes ResNeXt-101 WSL [86]	829M		86.4%	98.0%
Big Transfer (BiT-L) [43] [†]	928M	300M weakly labeled images from JFT	87.5%	98.5%
Noisy Student Training (EfficientNet-L2)	480M	300M unlabeled images from JFT	88.4%	98.7%

Simple Code Example on MNIST [7]

bit.ly/pydata-notebook

Thanks!

I'm looking for paid or unpaid remote internships during Winter 2020 or Summer

2021 - szheng3@athabasca.edu

Find me on GitHub/Kaggle/LinkedIn: @stanleyjzheng