EECS 122: Introduction to Computer Networks Interdomain Routing Computer Science Division Department of Electrical Engineering and Computer Sciences University of California, Berkeley Berkeley, CA 94720-1776

Link State vs. Distance Vector Per-node message complexity Robustness: what happens if router malfunctions? - LS: O(e) messages . IS: - e: number of edges node can advertise incorrect link cost DV: O(d) messages, many times - d is node's degree each node computes only its Complexity/Convergence own table LS: O(n²) computation DV: DV: convergence time varies - node can advertise incorrect path cost - may be routing loops each node's table used by - count-to-infinity problem others; error propagate through network

EECS F05

Are We Done?

- We now know how to route scalably
- What more is there to do?

EECS F05

Issues We Haven't Addressed

- Scaling
 - Router table size
- Structure
 - Autonomy
 - Policy

EECS F05

Autonomous Systems (AS)

- Internet is not a single network!
- The Internet is a collection of networks, each controlled by different administrations
- An autonomous system (AS) is a network under a single administrative control

EECS F05 11

Scaling

- Every router must be able to forward based on *any* destination IP address
 - Given address, it needs to know "next hop" (table)
- Naive: Have an entry for each address
 - There would be 10^8 entries!
- Better: Have an entry for a range of addresses
 - But can't do this if addresses are assigned randomly!
- Addresses allocation is a big deal

EECS F05 9

Implications

- ASs want to choose own local routing algorithm
 - Intra-domain routing algorithm, e.g., link state (OSPF), distance vector
- ASs want to choose own nonlocal routing policy
 - Inter-domain routing: BGP de facto standard

Interconnection

- IP unifies network technologies
 - Allows any network to communicate with another
- BGP unifies network organizations
 - Ties them into a global Internet

EECS F05

Original Addressing Scheme

- Class-based addressing schemes:
 - 32 bits divided into 2 parts:

Original Vision:

- Route on network number
- •All nodes with same net # are directly connected

Outline

- Addressing
- BGP

EECS F05 14

Classless Interdomain Routing (CIDR)

Introduced to solve two problems:

- Exhaustion of IP address space
- Size and growth rate of routing table

EECS F05 1

Assigning Addresses (Ideally)

- Host: gets IP address from its organization or ISP
- Organization: gets IP address block from ISP
- ISP: gets address block from routing registry:
 - ARIN: American Registry for Internet Numbers
 - RIPE: Reseaux IP Europeens
 - APNIC: Asia Pacific Network Information Center
- Each AS is assigned a 16-bit number (65536 total)
 - Currently 10,000 AS's

EECS F05 15

#1: Address Space Exhaustion

- Example: an organization needs 500 addresses.
 - A single class C address not enough (254 hosts).
 - Instead a class B address is allocated. (~65K hosts)
 - That's overkill, a huge waste!
- CIDR: networks assigned on arbitrary bit boundaries.
 - Requires explicit masks to be passed in routing protocols
 - Masks: identify the "network" portion of the address
- CIDR solution for example above: organization is allocated a single /23 address (equivalent of 2 class C's).

CIDR Addressing

- Suppose fifty computers in a network are assigned IP addresses 128.23.9.0 - 128.23.9.49
 - They share the prefix 128.23.9
- Range: 011111111 00001111 00001001 00000000 to 01111111 00001111 00001001 00110001
 - How to write 01111111 00001111 00001001 00XX XXXX ?
- Convention: 128.23.9.0/26
 - There are 32-26=6 bits for the 50 computers
 - 2⁶ = 64 addresses
- Maximal waste: 50%

EECS F05 1

Border Gateway Protocol

ignore the details pay attention to the "why"

EECS F05

More Formally

- Specify a range of addresses by a prefix: X/Y
 - The common prefix is the first Y bits of X.
 - X: The first address in the range has prefix X
 - Y: 232-Y addresses in the range
- Example 128.5.10/23
 - Common prefix is 23 bits:
 - 01000000 00000101 0000101
 - Number of addresses: 29 = 512
- Prefix aggregation
 - Combine two address ranges
 - 128.5.10/24 and 128.5.11/24 gives 128.5.10/23
- Routers match to longest prefix

EECS F05

Path Vector Protocol

- Distance vector algorithm with extra information
 - For each route, store the complete path (ASs)
 - No extra computation, just extra storage
- Advantages:
 - Can make policy choices based on set of ASs in path
 - Can easily avoid loops

EECS F05 2

Issues

- What basic routing algorithm should BGP use?
- · How are the routes advertised?
- How are routing policies implemented?
 - Policy routing: not always shortest path

EECS F05

BGP Routing Table

* i12.3.21.0/23 192.205.32.153 0 50 0 7018 4264 6468 25 e

- Every route advertisement contains the entire AS path
- Can implement policies for choosing best route
- Can detect loops at an AS level

EECS F05 29

Choice of Routing Algorithm

- Constraints:
 - Scaling
 - Autonomy (policy and privacy)
- Link-state?
 - Requires sharing of complete network informatin
 - Information exchanges doesn't scale
 - All policies exposed
- Distance Vector?
 - Scales and retains privacy
 - Can't implement policy
 - Can't avoid loops if shortest paths not taken

EECS F05 27

Advertising Routes

- One router can participate in many BGP sessions.
- Initially ... node advertises ALL routes it wants neighbor to know (could be > 50K routes)
- Ongoing ... only inform neighbor of changes

Basic Messages in BGP

- Open.
 - Establishes BGP session (uses TCP port #179)
 - BGP uses TCP
- Notification.
 - Report unusual conditions
- Update.
 - Inform neighbor of new routes that become active
 - Inform neighbor of old routes that become inactive
- Keepalive.
 - Inform neighbor that connection is still viable

EECS F05 3

Local Preference

- Used to indicate preference among multiple paths for the same prefix anywhere in the Internet.
- The higher the value the more preferred
- Exchanged between IBGP peers only. Local to the AS.
- Often used to select a specific exit point for a particular destination

BGP table at AS4:

Destination	AS Path	Local Pref
140.20.1.0/24		
140.20.1.0/24	AS2 AS1	100

EECS F05 3

Routes Have Attributes

- When a route is "advertised" it is described in terms of attributes:
 - next hop, AS-path, etc.
 - We will discuss: Origin, MED, Local Preference
- · Origin:
 - Who originated the announcement? Where was a prefix injected into BGP?
 - IGP, EGP or Incomplete (often used for static routes)

EECS F05

Choosing Best Route

- Choose route with highest LOCAL_PREF
 - Preference-based routing
- Multiple choices: select route with shortest hop-count
- Multiple choices for same neighboring AS: choose path with min MED value
- Choose route based on lowest origin type
 - IGP < EGP < INCOMPLETE
- Among IGP paths, choose one with lowest cost
- Finally use router ID to break the tie.

EECS F05 3

Multi-Exit Discriminator (MED)

- When AS's interconnected via 2 or more links
- AS announcing prefix sets MED (AS2 in picture)
- AS receiving prefix uses MED to select link
- A way to specify how close a prefix is to the link it is announced on

Is Reachability Guaranteed?

- In normal routing, if graph is connected then reachability is assured
- · With policy routing, not always

BGP and Performance

- BGP designed for policy not performance
 Hot Potato routing common but suboptimal

 - 20% of internet paths inflated by at least 5 router hops
- Susceptible to router misconfiguration
 - Blackholes: announce a route you cannot reach
- Incompatible policies
 - Solutions to limit the set of allowable policies