Introdução à Linguagem de Programação em R para tratamento de dados de poluição do ar

R básico e data frames

Mario Gavidia-Calderón, Rafaela Squizzato, Thiago Nogueira 05/02/2024

Universidade de São Paulo

Introdução

RStudio

Sintaxe Básica

Data Frames

Introdução

Efeitos adversos à saúde

Carga global de doenças da poluição do ar em 2015:

- 19 % de todas as mortes cardiovasculares.
- · 23 % de toas as mortes por câncer de pulmão.

Figure 4: Global estimated deaths (millions) by pollution risk factor, 2005–15 Using data from the GBD study²² and WHO.²⁹ IHME=Institute for Health Metrics and Evaluation.

Ranking global de fatores de risco por número total de mortes em 2019

Então

- · Precisamos conhecer o nível da poluição.
- · Para isso precisamos de medições: dados.
- Este curso tem como objetivo mostrar como trabalhar com dados de poluição do ar no R.

Além disso

- · Analizadores de poluentes medem concentrações com maior frequência.
- · R é uma ótima ferramenta para mexer com dados.
- É importante conhecer uma linguagem de programação.

Um questionário

Por que R?

- R é uma Linguagem de programação para a análise de dados.
 - · Um sistema para estatística.
 - Um sistema de computação gráfica e estatística.
 - Um ambiente para a análise de dados e estatística.

Por que R?

- É open source (é livre).
- Funciona em qualquer sistema operacional.
- Podemos trabalhar com muitos dados e tipos.
- Grande comunidade de usuários:
 Muita ajuda on-line.
- · Reprodutibilidade das ciências.

Por que R?

- Muitos pacotes para muitas áreas das ciências.
 - \cdot openair ightarrow poluição do ar.
 - sf e raster \rightarrow GIS.
 - Rmarkdown → Documentos e apresentações.
 - $shiny \rightarrow aplicações$.
 - etc, etc, etc

RStudio

RStudio

Figure 1: Distribuição das janelas do RStuido. Fonte: RStudio User Guide

RStudio

- · É importante aprender os keyboard shortcuts.
 - Ctrl + 1: Janela scripts.
 - · Ctrl + 2: Janela console.
 - · Alt + -:<-
 - · TAB: Autocompleta nome de funções e diretórios de arquivos.
- Na console, \uparrow e \downarrow procura comandos anteriores.

Sintaxe Básica

The theoretical minimum

 What you need to know to start doing R

R como calculadora

- · R é uma calculadora.
- · Segue a ordem das operações

Declarar variavéis

• No R usamos <- em vez de = para definir variavéis.

R

Comentar

· Para comentar usamos #. O código após o # não é lido.

```
R <- 8.314 # Constante universal dos gases (J K / mol)
R
```

```
## [1] 8.314
```

Funções

- · Para usar funções: nome_da_função().
- Dentro dos () colocamos os **argumentos**.

class(R)

```
## [1] "numeric"
```

Objetos

- · No R existem diversos tipos de objetos.
- · character

```
o3_nome <- "ozônio"
class(o3_nome)
```

[1] "character"

· numeric

[1] "numeric"

```
this_year <- 2024
g <- 9.81 # m/s2
class(this_year)
```

Objetos

· booleans

```
verdade <- TRUE
verdade
## [1] TRUE
falso < -5 > 10
falso
## [1] FALSE
muito falso <- "cinco" == "5"</pre>
muito falso
```

• É definido usando a função **c()**. Só podem ter um único tipo de objeto.

```
pontos cardeais <- c("N", "E", "S", "W")
pontos cardeais # só character
## [1] "N" "E" "S" "W"
pontos cardeais graus \leftarrow c(0, 90, 180, 270)
class(pontos cardeais graus) # só numeric
## [1] "numeric"
```

· Uma sequência é definida seq(início, final, intervalo)

```
de 1ate5 \leftarrow seq(1, 5)
de 1ate5
## [1] 1 2 3 4 5
pares ate10 <- seq(0, 10, 2)
pares_ate10
## [1] 0 2 4 6 8 10
sec float \leftarrow seq(0, 1, 0.2)
sec float
```

· Para saber quantos elementos tem um vetor usamos a função length.

```
length(de_1ate5)
```

```
## [1] 5
```

length(sec_float)

```
## [1] 6
```

• Para selecionar elementos do vetor: nome_vetor[posição]:

```
# Primeiro elemento
pontos cardeais graus[1]
## [1] 0
# Último elemento
pontos cardeais graus[4]
## [1] 270
```

· Podemos selecionar vários elementos usando outro vetor

```
GEE

## [1] "H20" "C02" "02" "CH4"

GEE[-3] # Oxigênio não é GEE
```

· Podemos Substituir um elemento do vetor assim:

```
# Substituímos Oxigênio por Ozônio
GEE[3] <- "03"
GEE</pre>
```

```
## [1] "H20" "CO2" "O3" "CH4"
```

Exercicio 1

Criar três vetores. Um vetor chamado pol_sp com os poluentes que tem padrão de qualidade do ar no Estado de São Paulo. Outro vetor chamado pol_amostra com o menor tempo de amostragem em horas. Finalmente, um vetor chamado pol_pqa com o respectivo padrão de qualidade do ar.

Referência: Padrões de qualidade do ar CETESB

Exercicio 1

```
pol_sp <- c("MP10", "MP2.5", "S02", "N02", "03", "C0", "FMC", "PTS", "I
pol_amostra <- c(24, 24, 24, 1, 8, 8, 24, 24, 365*24)
pol_pqa <- c(100, 50, 40, 240, 130, 9, 100, 240, 0.5)
```

Operações Element-wise

```
tempC \leftarrow c(27, 32, 28, 26)
tempK <- tempC + 273.15
tempK
## [1] 300.15 305.15 301.15 299.15
tempk chr <- as.character(tempK)</pre>
str(tempk chr)
```

chr [1:4] "300.15" "305.15" "301.15" "299.15"

Operações Element-wise

```
pol_atr <- c("nome", "pm", "conc", "unit")
paste("o3", pol_atr, sep = "_")

## [1] "o3_nome" "o3_pm" "o3_conc" "o3_unit"</pre>
```

Data Frames

R: Objetos - data frames

- · Um data frame é uma tabela
- · Uma matriz indexada: tem nomes das colunas e linhas.
- · Cada coluna é uma variável.
- · Cada linha é uma observação.
- · Um conjunto de vetores.

· Criamos um data frame usando a função data.frame()

ar

```
## gas W per
## 1 N2 28 78.08
## 2 O2 32 20.95
## 3 Ar 40 0.90
## 4 CO2 44 0.04
```

· Criamos um data frame usando a função data.frame()

```
ar <- data.frame(gas = c("N2", "02", "Ar", "C02"), # Ou diretamente W = c(28, 32, 40, 12 + 2 * 16), per = c(78.08, 20.95, 0.9, 0.04))
```

ar

```
## gas W per
## 1 N2 28 78.08
## 2 O2 32 20.95
## 3 Ar 40 0.90
## 4 CO2 44 0.04
```

Selecionar colunas \$

- · Selecionamos uma coluna de um data frame como um vetor
- · Sintaxis: df\$nome_coluna
- E.g. Nome dos componentes do ar

```
ar$gas

## [1] "N2" "02" "Ar" "C02"

class(ar$gas)

## [1] "character"
```

Selecionar filas e colunas []

- · Selecionamos uma coluna de um data frame como um data frame
- Sintaxis: df[interiro] ou df[nome_coluna]
- E.g. Nome dos componentes do ar

```
ar[1] # ou ar["gas"]
##
     gas
## 1 N2
## 2 02
## 3 Ar
## 4 CO2
class(ar[1])
```

Selecionar filas e colunas []

- · Algumas funções precisam vetores como input
- · e.g. média massa molar

```
mean(ar["W"])
## Warning in mean.default(ar["W"]): argument is not numeric or logical
## NA
## [1] NA
mean(ar$W)
## [1] 36
```

Criando novas colunas

Usamos \$: df\$nova_coluna <- nova_coluna

```
## gas W per name

## 1 N2 28 78.08 Nitrogênio

## 2 02 32 20.95 Oxigênio

## 3 Ar 40 0.90 Argônio

## 4 CO2 44 0.04 Diôxido de Carbono
```

[1] 4

· Número de linhas: **nrow()**

```
· Número de colunas: ncol()
nrow(ar)
## [1] 4
ncol(ar)
```

nome das colunas

str(ar)

names(ar)

· Tipo de objeto de cada coluna: str()

[1] "gas" "W" "ner" "name"

'data.frame': 4 obs. of 4 variables:

```
## $ gas : chr "N2" "O2" "Ar" "CO2"
## $ W : num   28 32 40 44
## $ per : num   78.08 20.95 0.9 0.04
## $ name: chr "Nitrogênio" "Oxigênio" "Argônio" "Diôxido de Carbono"
```

- Primeiras observações: head()
- Últimas observações: tail()

head(ar)

```
## gas W per name

## 1 N2 28 78.08 Nitrogênio

## 2 O2 32 20.95 Oxigênio

## 3 Ar 40 0.90 Argônio

## 4 CO2 44 0.04 Diôxido de Carbono

tail(ar)
```

gas W per

name

47

- Primeiras observações: head()
- Últimas observações: tail()

```
## gas W per name
## 1 N2 28 78.08 Nitrogênio
## 2 O2 32 20.95 Oxigênio
```

```
tail(ar, 2)
```

head(ar, 2)

```
## gas W per name
## 3 Ar 40 0.90 Argônio
## 4 CO2 44 0.04 Diôxido de Carbono
```

Substituição de coluna

· Para subsituir uma coluna, ela tem que ter o mesmo número de filas.

nombres		name		per	W	gas		##
Nitrógeno		Nitrogênio		78.08	28	N2	1	##
Oxígeno		Oxigênio		20.95	32	02	2	##
Argón		Argônio		0.90	40	Ar	3	##
do de carbono	Dióxido	de Carbono	Diôxido	0.04	44	C02	4	##

Exercicio 2

- · Criar um data.frame llamado pqa_sp usando os vetores do Exercicio 1.
- Adiciona una coluna chamada pm con o peso molecular de cada poluente. Para MP colocar 1.
- · Adiciona una coluna chamada nome com o nome completo de cada poluente.

Exercicio 2

```
pqa_sp <- data.frame(
   pol_sp,
   pol_amostra,
   pol_pqa
)
pqa_sp$pm <- c(1, 1, 32 + 16 * 2, 14 + 16 * 2, 16 * 3, 12 + 16, 1, 1, 1)</pre>
```

data frames: Ler arquivos .csv

- · Vamos ler dados do ano 2023 do aeroporto de Guarulhos.
- · Os dados são baixados do site ASOS Network da Iowa State University.
- No R para ler tabelas em csv (e para outros formatos) usamos a função 'read.table()'.
- Esta função precisa saber o diretório do arquivo. Para isso podemos usar a função file.choose().

data frames Ler arquivos .csv

data frames Ler arquivos .csv

• Exploramos o nome das colunas do data frame:

```
names(gru)
```

```
## [1] "station"
                             "valid"
                                                  "tmpf"
## [4] "dwpf"
                             "relh"
                                                  "drct"
## [7] "sknt"
                             "p01i"
                                                  "alti"
## [10] "mslp"
                             "vsbv"
                                                  "gust"
## [13] "skvc1"
                                                  "skvc3"
                             "skvc2"
## [16] "skvc4"
                             "skvl1"
                                                  "skvl2"
## [19] "skyl3"
                             "skvl4"
                                                  "wxcodes"
## [22] "ice accretion 1hr" "ice accretion 3hr" "ice accretion 6hr"
## [25] "peak wind gust"
                             "peak wind drct"
                                                  "peak wind time"
## [20] "fool"
                             "ma+ 2 ""
                                                  "cnowdonth"
```

data frames Ler arquivos .csv

str(gru)

##

##

###

'data.frame':

\$ sknt \$ p01i

¢ ~1+;

• Exploramos a estrutura do data frame.

```
'
```

```
$ station
                        : chr "SBGR" "SBGR" "SBGR" "SBGR" ...
##
##
   $ valid
                       : chr
                             "2023-01-01 00:00" "2023-01-01 01:00" "20
##
   $ tmpf
                              69.8 68 69.8 68 66.2 64.4 64.4 64.4 62.6
                       : num
##
   $ dwpf
                              66.2 66.2 68 66.2 66.2 64.4 64.4 64.4 62
                       : num
    $ relh
##
                        : num
                              88.3 94 94 94 100 ...
   $ drct
                              80 110 80 70 60 80 80 100 0 0 ...
##
                       : num
```

: num

: num 3 5 6 6 6 7 4 3 0 0 ...

0 0 0 0 0 0 0 0 0 0 ...

20 1 20 1 20 1 20 1 20

8736 obs. of 30 variables:

Operações

· A temperatura está em Farenheit e a velocidade de vento está em nós.

```
gru$tc <- (gru$tmpf - 32) * 5 / 9
```

Operações

· A temperatura está em Farenheit e a velocidade de vento está em nós.

```
gru$ws <- gru$sknt * 0.51
```

Análise exploratória de dados (AED)

 Vamos olhar as estatísticas básicas usando summary() da temperatura, velocidade do vento, umidade do ar.

```
summary(gru[c("tc", "relh", "ws")])
```

```
relh
##
         t c
                                        WS
##
   Min. : 7.00
                  Min. : 18.33
                                   Min. : 0.000
                  1st Qu.: 65.54 1st Qu.: 1.530
##
   1st Qu.:17.00
##
   Median :20.00
                   Median : 83.09
                                   Median : 2.550
                  Mean : 78.27
##
   Mean :20.71
                                   Mean : 2.763
   3rd Ou.:24.00
                   3rd Qu.: 93.79
                                   3rd Qu.: 3.570
##
                                   Max. :11.730
##
   Max. :37.00
                   Max. :100.00
```

Análise exploratória de dados (AED)

· Ou podemos calcular manualmente:

```
mean(gru$tc, na.rm = TRUE) # na.rm = TRUE não considera NA

## [1] 20.71028

median(gru$tc, na.rm = TRUE)

## [1] 20
```

Análise exploratória de dados (AED)

```
max(gru$tc, na.rm = TRUE)
## [1] 37
min(gru$tc, na.rm = TRUE)
## [1] 7
sd(gru$tc, na.rm = TRUE)
## [1] 4.903718
```

Exercio 3

- · Baixe os dados do aeroporto de campo de marte para o ano 2023.
- Transforme a Temperatura para Celcius, e a velocidade do vento para m s^{-1} .
- · Existen datos faltantes?
- · Todos as colunas foram lidas corretamente?

Um plot simples

```
plot(gru$tc, # vetor para plotar
    t = "l", # tipo de plot, l = linha
    xlab = "2023", # nome do eixo x
    ylab = "Temperatura (C)", # nome eixo y
    col = "orange", # color da linha
    lwd = 1.25 # largura linha
    )
```

Um plot simples

Histograma

hist(gru\$tc)

Um diagrama de caixa

boxplot(gru\$tc)

Um scatter plot

```
plot(gru$tc, # valores eixo x
        gru$relh, # valores eixo y
        col = "lightblue", # color dos pontos
        xlab = "Temperatura (C)", # nome eixo x
        ylab = "Umidade relativa (%)" # nome eixo y
        )
```

Um scatter plot

Coeficiente de correlação

```
cor(gru$tc, # variavel x
    gru$relh) # variavel y
```

```
## [1] -0.7436237
```

Exercicio 4

- Calcule a média, mediana, min, max e sd, da Temperatura, Umidade relativa, Velocidade do vento no Aeroporto Campo de Marte.
- · Faça uma série temporal, um histograma e um boxplot destes parâmetros.