ESC201T : Introduction to Electronics

Lecture 33: Digital Circuits-3

B. Mazhari Dept. of EE, IIT Kanpur

Obtaining Boolean expressions from truth Table

Product of Sum (POS) form

Implementing Boolean expressions

Elementary Gates

AND:
$$y = x_1 \cdot x_2$$

$$x_1$$
 AND y

Why call it a gate?

$$x_1$$
 AND $y = x_1$ Gate is open

OR:
$$y = x_1 + x_2$$

$$x_1$$
 OR y_2

NOT:
$$y = \bar{x}$$

NAND:
$$y = \overline{x_1 \cdot x_2}$$

$$x_1$$
 x_2
AND
 $x_1 x_2$
 $x_1 x_2$

$$x_1$$
 NAND y

NOR:
$$y = \overline{x_1 + x_2}$$
 x_2 x_2

$$X_1$$
 X_2
 $X_1 + X_2$
 $X_1 + X_2$

$$x_1$$
 NOR NOR

XOR:
$$y = x_1 \oplus x_2 = x_1 \cdot x_2 + x_1 \cdot x_2$$

Y is 1 if only one variable is 1 and the other is zero

$$\begin{array}{c|c}
x_1 \\
\hline
x_2 \\
\hline
x_1 \\
x_2
\end{array}$$

$$\begin{array}{c|cccc} x_1 & x_2 & y \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$$

$$x_1$$
 x_2 x_2 x_2 x_3 x_4 x_4 x_5 x_4 x_5 x_4 x_5 x_5

XNOR:
$$y = x_1 \odot x_2 = x_1 \cdot x_2 + \overline{x_1} \cdot \overline{x_2}$$

$$x_1$$
 XNOR XNOR

Y is 1 if only both variables are either 0 or 1

$$y = x_1 \odot x_2 = \overline{x_1 \oplus x_2}$$

Gates with more than 2 inputs

AND:
$$y = x_1. x_2. x_3...$$

$$X_1$$
 X_2
 X_3
 X_3
 X_3

OR:
$$y = x_1 + x_2 + x_3 + \dots$$

$$X_1$$
 X_2
 X_3

XOR:
$$y = x_1 \oplus x_2 \oplus x_3 = x_1 \cdot \overline{x_2} \cdot \overline{x_3} + \overline{x_1} \cdot x_2 \cdot \overline{x_3} + \overline{x_1} \cdot \overline{x_2} \cdot x_3 + x_1 \cdot x_2 \cdot x_3$$

Y = 1 only if odd number of inputs is 1

Implementing Boolean expressions using gates

$$S = x.y.z + x.y.z + x.y.z + x.y.z$$

$$C = x.y + x.z + y.z$$

Implementing gates using Switches

Voltage controlled Switch SN:

Switch is closed if voltage x is HIGH Switch is open if voltage x is LOW

Voltage controlled Switch SP:

Switch is closed if voltage x is LOW Switch is open if voltage x is HIGH

We have seen earlier that transistors act as switches!

Switch is closed if voltage x is LOW Switch is open if voltage x is HIGH

NAND Gate NAND: $y = x_1 \cdot x_2$

X ₁	X_2	у
LOW	LOW	HIGH
LOW	HIGH	HIGH
HIGH	LOW	HIGH
HIGH	HIGH	LOW
		J

NOR Gate

NOR:
$$y = \overline{x_1 + x_2}$$

X ₂	У
LOW	HIGH
HIGH	LOW
LOW	LOW
HIGH	LOW
	LOW HIGH LOW

Design Overview

$$S = x.y.z + x.y.z + x.y.z + x.y.z$$

$$C = x.y + x.z + y.z$$

а	b	С	S	CY
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Representation of Boolean Expressions

$$f_1 = \bar{x} \cdot y + x \cdot \bar{y}$$

$$\mathbf{f}_1 = m_1 + m_2$$

$$f_1 = m_1 + m_2$$
 $f_1 = \sum (1, 2)$

$$f_2 = \sum (0,2,3) = ?$$

$$f_2 = \overline{x} \cdot \overline{y} + x \cdot \overline{y} + x \cdot y$$

A minterm is a product that contains all the variables used in a function

Three variable functions

$$f_2 = \sum (1, 4, 7) = ?$$

$$f_2 = x \cdot y \cdot z + x \cdot y \cdot z + x \cdot y \cdot z$$

Product of Sum Terms Representation

X	у	f ₁
0	0	1
0	1	0
1	0	0
1	1	1

$$f_1 = (x + \overline{y}).(\overline{x} + y)$$

$$\mathbf{f}_1 = M_1.M_2$$

$$f_1 = \Pi(1,2)$$

$$f_2 = \Pi(0,3) = ?$$

$$f_2 = (x+y).(\overline{x}+\overline{y})$$

$$f_1 = \Pi(1,5,7) = ?$$

$$f_2 = (x + y + \overline{z}).(\overline{x} + y + \overline{z}).(\overline{x} + \overline{y} + \overline{z})$$

Simplification

X ₁	X ₂	X_3	у
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

$$y = \sum (1,3,5,7)$$

$$y = \overline{x_1} \cdot \overline{x_2} \cdot x_3 + \overline{x_1} \cdot x_2 \cdot x_3 + x_1 \cdot \overline{x_2} \cdot x_3 + x_1 \cdot x_2 \cdot x_3$$

Simplification of Boolean expression yields : $y = x_3$!! which does not require any gates at all!

Goal of Simplification

$$y = \overline{x_1} \cdot \overline{x_2} \cdot x_3 + \overline{x_1} \cdot x_2 \cdot x_3 + x_1 \cdot \overline{x_2} \cdot x_3 + x_1 \cdot x_2 \cdot x_3$$

Goal of simplification is to reduce the complexity of gate circuit. This requires that we minimize the number of gates. Since number of gates depends on number of minterms, one of the goals of simplification is to minimize the number of minterms in SOP expression

$$y = \overline{x_1} \cdot \overline{x_2} \cdot x_3 + \overline{x_1} \cdot x_2 \cdot x_3 + x_1 \cdot \overline{x_2} \cdot x_3 + x_1 \cdot x_2 \cdot x_3$$

$$\Rightarrow y = \overline{x_1} \cdot x_3 + x_1 \cdot \overline{x_2} \cdot x_3 + x_1 \cdot x_2 \cdot x_3$$

$$x_1 = \overline{x_1} \cdot x_2 \cdot x_3 + x_1 \cdot x_2 \cdot x_3 + x_1 \cdot x_2 \cdot x_3$$

This circuit is simpler not just because it uses 4 gates instead of 5 but also because circuit-2 uses one 2-input and three 3-input gates as compared to five 3-input gates

used in circuit-1

Goal of Simplification

$$y = \overline{x_1} \cdot \overline{x_2} \cdot x_3 + \overline{x_1} \cdot x_2 \cdot x_3 + x_1 \cdot \overline{x_2} \cdot x_3 + x_1 \cdot x_2 \cdot x_3$$
 $\implies y = \overline{x_1} \cdot x_3 + x_1 \cdot \overline{x_2} \cdot x_3 + x_1 \cdot x_2 \cdot x_3$

In the SOP expression:

- 1. Minimize number of product terms
- 2. Minimize number of literals in each term

Simplification \Rightarrow Minimization

Minimization

$$y = \overline{x_1} \cdot \overline{x_2} \cdot x_3 + \overline{x_1} \cdot x_2 \cdot x_3 + x_1 \cdot \overline{x_2} \cdot x_3 + x_1 \cdot x_2 \cdot x_3$$

$$y = \overline{x_1} \cdot x_3 \cdot (\overline{x_2} + x_2) + x_1 \cdot x_3 \cdot (\overline{x_2} + x_2)$$

$$y = \overline{x_1} \cdot x_3 + x_1 \cdot x_3$$

$$y = (\overline{x_1} + x_1).x_3$$

$$y = x_3$$

Principle used: $x + \overline{x} = 1$

$$f = \overline{x} \cdot \overline{y} + \overline{x} \cdot y + x \cdot \overline{y}$$

Apply the Principle: $x + \overline{x} = 1$ to simplify

$$f = \overline{x} \cdot (\overline{y} + y) + x \cdot \overline{y}$$

$$f = \overline{x} + x \cdot \overline{y}$$

How do we simplify further?

$$f = x \cdot y + x \cdot y + x \cdot y = x \cdot y + x \cdot y + x \cdot y + x \cdot y + x \cdot y$$

Principle used : x + x = x

$$f = \bar{x}. \bar{y} + \bar{x}. y + \bar{x}. \bar{y} + \bar{x}. \bar{y}$$

$$= \bar{x}. (\bar{y} + y) + (\bar{x} + x). \bar{y} = \bar{x} + \bar{y}$$

Principle:
$$x + \overline{x} = 1$$
 and $x + x = x$

Need a systematic and simpler method for applying these two principles

Karnaugh Map (K map) is a popular technique for carrying out simplification

It represents the information in problem in such a way that the two principles become easy to apply