Question ONE

Construct the DFA, parsing stack for input(x,(x)), and Parsing table of LR(0) parser for the following grammar

- $1: S \rightarrow (L)$
- $2: S \rightarrow x$
- 3: L →S
- $4: L \rightarrow L, S$

Solution

- $0: S' \rightarrow S$ \$
- $1: S \rightarrow (L)$
- $2: S \rightarrow x$
- 3: L →S
- $4: L \rightarrow L$, S

<u>DFA</u>

Parsing Stack

parse (x,(x))	\$	
stack	input	action
0	(x,(x))\$	s2
0(2	x,(x))\$	sI
0(2x1	(x)	r2: S →x
0(2S6	,(x))\$	r3: L →S
0(2L4	,(x))\$	s7
0(2L4,7	(x))\$	s2
0(2L4,7(2	x))\$	sI
0(2L4, 7(2x1))\$	r2: S →x
0(2L4,7(2S6))\$ r.	3: L →S
0(2L4,7(2L4))\$ s5	5
0(2L4,7(2L4)5)\$ r1:	S → (L)
0(2L4,7S8)\$ r4:	$L \rightarrow L, S$
0(2L4)\$ s5	
0(2L4)5	\$ r1	:S → (L)
03S	\$ a	

Parsing TABLE

	()	X	,	\$	S	L
0	s2		s1			g3	
1	r2	r2	r2	r2	r2		
2	s2		s1			g6	g4
3					a		
4		s5		s7			
5	r1	r1	r1	r1	r1		
6	r3	r3	r3	r3	r3		
7	s2		s1			g8	
8	r4	r4	r4	r4	r4		

Question Two

Construct the DFA ,Parsing table of LR(0) parser for the following grammar

 $S \rightarrow (S) | ID$

Solution

S'**→**s\$

 $S \rightarrow (S) | ID$

<u>DFA</u>

Parsing table

		Goto			
State	()	\$	ID	S
0	s3			s1	2
1	r2	r2	r2	r2	
2			accept		
3	s3			s1	4
4		s5			
5	r0	r0	r0	r0	

Question Three

Construct the DFAparser for the following grammar

$$E \rightarrow E+T$$

 $E \rightarrow T$
 $T \rightarrow T*F$

Solution

In state 1:

we reduce $(E \rightarrow T.)$ AND we shift $(T \rightarrow T. *F)$

shift reduce conflict

Question Four

Construct the DFA, parsing stack for input i+i, and Parsing table for LR(0) parser for the following grammar

$$E \rightarrow T$$

 $E \rightarrow E + T$
 $T \rightarrow i$
 $T \rightarrow (E)$

Solution

Grammar G:

$$Z \rightarrow E$$
\$

$$E \rightarrow T$$

$$E \rightarrow E + T$$

$$T \rightarrow i$$

$$T \rightarrow (E)$$

state	i	+	()	\$	Е	Т	
0	5		7			1	6	shift
1		3			2			shift
2								Z→E\$
3	5		7				4	shift
4								E→E+T
5								T→I
6								E→T
7	5		7			8	6	shift
8		3		9				shift
9								T→(E)

Stack	Input	Action
S_0	i + i \$	shift
$S_0 i S_5$	+ i \$	reduce by $T \rightarrow i$
S ₀ T S ₆	+ i \$	reduce by $E \rightarrow T$
$S_0 \to S_1$	+ i \$	shift
$S_0 \to S_1 + S$	i \$	shift
$S_0 E S_1 + S_3 i S_5$	\$	reduce by $T \rightarrow i$
$S_0 \to S_1 + S_3 \to S_4$	\$	reduce by $E \rightarrow E + T$
$S_0 \to S_1$	\$	shift
$S_0 \to S_1 \$ S_2$		reduce by $Z\rightarrow E$ \$
$S_0 Z$		stop

Question Five

Construct the DFA , and Parsing table of LR(0) parser for the following grammar $\,$

$$E \rightarrow E + T \mid T$$
$$T \rightarrow ID \mid (E)$$

Solution

<u>DFA</u>

Parsing Table

State			Goto				
	+	ID	()	\$	E	T
0		S1	S2			G4	G3
1	R3	R3	R3	R3	R3		
2		S1	S2			G6	G3
3	R2	R2	R2	R2	R2		
4	S5				A		
5		S1	S2				G7
6	S5			S8			
7	R1	R1	R1	R1	R1		
8	R4	R4	R4	R4	R4		

References

http://www.cse.aucegypt.edu/~rafea/CSCE447/

https://www.cs.bgu.ac.il/~romanm/wcc06/LR%20Parsing.pdf

https://www.cs.colostate.edu/~cs453/yr2014/Slides/12-LR0-SLR.ppt.pdf