Literature Review on AI based Food Demand Forecasting Techniques.

S.	Forecasting	Author and Years	Specific Model used	Advantages	Disadvantages
no	Techniques				
1.	Regression[19, 20]	Schorfheide (2010)	Linear regression and multiple linear regression.	very useful in non- real time forecasting. Functional relationship between previous,forecast load and other factors such as weather,time of the day.	Not accurate for real time load and unable to handle non linear load consumption. Adding parameters make it unstable.
2.	Time series Analysis[20-22]	James D. Hamilton(1994)	Auto regressive moving average, auto regressive intergrated moving average, Deterministic decomposition.	They possess abilities to accommodate seasonal component effects.	They suffer numerical instability.
3.	Artificial Neural Network[23,24]	Frank Rosenblatt (1958)	Multilayer perceptrons, back propagation algorithm, steepest descent error back propagation.	Ability to handle non linear relationships in load consumption by adjusting its weight during training process.	Large amount of data are needed to train the model and complexity in the training of such data.
4.	Fuzzy interface system [19,25]	Rush and Roy (2001)	Defuzzification method using center of area, middle of maxima, last of maxima and center of gravity.	Faster and more accurate in performance including simplicity in rule formation.	Selection of membership function to form its rule is based on trial and error.

Literature Review on AI based Food Demand Forecasting Techniques.

5.	Support vector	Vladimir N. Vapnik	Support vector	It enhances higher	Choosing of
	machine [15,26]	and Alexey	regression using	feature space	situable kernel and
		Ya.Chervonenkis	incremental learning	dimensionality by	difficuties in its
		(1963)	algorithm support vector	using insensitive	interpretation are
			regression.	loss for linear	major concerns.
				regression	
				computation and	
				reduction in model	
				complexity.	