

دانشگاه صنعتی امیرکبیر (پلیتکنیک تهران) دانشکده ریاضی و علوم کامپیوتر

پایاننامه کارشناسیارشد گرایش سیستمهای کامپیوتری

کاهش بعد دادههای بزرگ مقیاس با استفاده از نگاشت تصادفی

نگارش سیامک دهبد

استاد راهنما دکتر عادل محمدپور

> استاد مشاور دکتر هادی زارع

> > دی ۱۳۹۷

صفحه فرم ارزیابی و تصویب پایان نامه - فرم تأیید اعضاء کمیته دفاع

در این صفحه فرم دفاع یا تایید و تصویب پایان نامه موسوم به فرم کمیته دفاع- موجود در پرونده آموزشی- را قرار دهید.

نكات مهم:

- نگارش پایان نامه/رساله باید به زبان فارسی و بر اساس آخرین نسخه دستورالعمل و راهنمای تدوین پایان نامه های دانشگاه صنعتی امیرکبیر باشد.(دستورالعمل و راهنمای حاضر)
- رنگ جلد پایان نامه/رساله چاپی کارشناسی، کارشناسی ارشد و دکترا باید به ترتیب مشکی، طوسی و سفید رنگ باشد.
- چاپ و صحافی پایان نامه/رساله بصورت پشت و رو(دورو) بلامانع است و انجام آن توصیه می شود.

تعهدنامه اصالت اثر تاریخ: دی ۱۳۹۷

اینجانب سیامک دهبد متعهد میشوم که مطالب مندرج در این پایاننامه حاصل کار پژوهشی اینجانب تحت نظارت و راهنمایی اساتید دانشگاه صنعتی امیر کبیر بوده و به دستاوردهای دیگران که در این پژوهش از آنها استفاده شده است مطابق مقررات و روال متعارف ارجاع و در فهرست منابع و مآخذ ذکر گردیده است. این پایاننامه قبلاً برای احراز هیچ مدرک همسطح یا بالاتر ارائه نگردیده است.

در صورت اثبات تخلف در هر زمان، مدرک تحصیلی صادر شده توسط دانشگاه از درجه اعتبار ساقط بوده و دانشگاه حق پیگیری قانونی خواهد داشت.

کلیه نتایج و حقوق حاصل از این پایاننامه متعلق به دانشگاه صنعتی امیرکبیر میباشد. هرگونه استفاده از نتایج علمی و عملی، واگذاری اطلاعات به دیگران یا چاپ و تکثیر، نسخهبرداری، ترجمه و اقتباس از این پایان نامه بدون موافقت کتبی دانشگاه صنعتی امیرکبیر ممنوع است. نقل مطالب با ذکر مآخذ بلامانع است.

سىامك دھىد

امضا

"" لفديم .

با تشکر از استاد گرامی دکتر محمدپور بابت همراهی و صبر ایشان

سامک دسید دی ۱۳۹۷

چکیده

با ظهور دادههای بزرگ مقیاس و ناتوانی در نگهداری و پردازش این داده در حافظه، مسئله کاهش بعد اهمیت زیادی پیدا کرده است. یکی از روشهای کاهش بعد، تصویر تصادفی است که میتواند بر روی کلان دادههایی که بزرگ مقیاس هستند و همچنین بر روی جریانهای داده، اعمال شود. مبنای این روش ضرب ماتریسی دادههای اولیه در یک ماتریس تصویرگر است که بعد دادههای اولیه را کاهش داده ولی اطلاعات آماری مورد نیاز در دادههای اولیه را با دقت مورد نیاز نگه می دارد.

روش تصویر تصادفی برای کاهش بعد دادههای بزرگ مقیاس مزایای متعددی نسبت به روشهای دیگر کاهش بعد کاهش بعد دارد. در این پایاننامه این روش برای دادههای بزرگ مقیاس با دیگر روشهای کاهش بعد مقایسه شده است. همچنین توانایی این روش برای دادههایی با توزیع پایدار غیر نرمال با دیگر روشهای کاهش بعد مقایسه شده است.

واژههای کلیدی:

کاهش بعد، تصویر تصادفی، توزیع پایدار، دادههای بزرگ مقیاس

فهرست مطالب

صفحه

عنوان

١	مقدمه	١
۴	کاهش بعد و دادههای بزرگ مقیاس	۲
	۱-۲ کاهش بعد	
	ت. ۱-۱-۲ تحلیل مولفههای اصلی	
	ـــــــــــــــــــــــــــــــــــــ	
	۲-۲-۲	
	۳-۲ دادههای حجیم	
λ	۲-۳-۱ دادههای حجیم وب	
١.	۲-۳-۲ جریانهای دادهی حجیم	
	۲-۲ چالشهای نمونه گیری از دادههای حجیم	
17	۲-۴-۲ مزایای نمونه گیری تصادفی مختصات	
18	۲-۴-۲ معایب نمونه گیری تصادفی مختصات	
	۵-۲ تصویر تصادفی پایدار	
	۶-۲ کاربردها	
18	۲–۶–۱ کاوش قوانین وابستگی	
18	۲-۶-۲ وابستگی جفتی همه (فاصلهها)	
18	۲-۶-۳ تخمین فاصلهها به طور آنلاین	
18	۲-۶-۲ بهینهسازی درخواست از پایگاه داده	
۱۸	۲-۶-۵ جستجوی نزدیکترین همسایه از مرتبهی زیر خطی	
۲٠	تصویر تصادفی پایدار	٣
	۳-۱ مسئلهی اصلی در تصویر تصادفی پایدار	
	۳-۱-۱ توزیعهای پایدار	
	۳-۱-۲ مسئله برآورد آماری	
	۳-۳ تصویر تصادفی نرمال	

74	۳–۲-۳ مشخصههای اصلی
77	۳-۳ تصویر تصادفی زیر گوسی و بسیار پراکنده
۲۸	۳-۳-۱ تصویر تصادفی زیرگوسی
٣.	l_1 تصویر تصادفی کوچی برای l_1 برای l_2 تصویر تصادفی کوچی برای از l_3 تصویر تصادفی کوچی برای l_4
٣١	۳-۴-۳ خلاصه نتایج اصلی
٣٣	
٣٣	۳–۵–۳ نتایج اصلی
٣۵	ىنابع و مراجع
۴.	يوست
41	اژهنامهی فارسی به انگلیسی
۴٣	اژهنامهی انگلیسی به فارسی

فهرست اشكال

شكل صفحه

۱۴ تصویر تصادفی پایدار ${f A}$ ، ${f B}={f A} imes{f R}$ ماتریس اولیه دادهها است.

را در یک ماتریس تصادفی $\mathbf{A}\in\mathbb{R}^{n imes D}$ را در یک ماتریس تصادفی ۱-۳ روش تصویر تصافی پایدار ماتریس تصویر شده $\mathbf{B}=\mathbf{A}\mathbf{R}\in\mathbb{R}^{n imes k}$ حاصل شود.

صفحه	فهرست جداول	جدول
٩.	تعداد بازدید صفحات برای کلمات با بازخورد بالا و کلمات با بازخورد نادر	1-7
	با افزایش تعداد عبارات در درخواست، باید فرکانسهای جفت شده کاهش پیدا کنند.	7-7
	ولی تخمینهای بیان شده توسط موتورهای جستجو گاهی این موضوع تثبیت شده	
١٠.	را نقض میکنند.	
	بازدید صفحات گزارش شده توسط Google برای چهار کلمه و وابستگیهای دو، سه	٣-٢
۱۷ .	و چهارتایی آنها	

فهرست نمادها

مفهوم نماد n فضای اقلیدسی با بعد \mathbb{R}^n n بعدی \mathbb{S}^n M بعدی-m M^m M وی هموار روی برداری هموار روی $\mathfrak{X}(M)$ (M,g) مجموعه میدانهای برداری هموار یکه روی $\mathfrak{X}^1(M)$ M مجموعه p-فرمیهای روی خمینه $\Omega^p(M)$ اپراتور ریچی Qتانسور انحنای ریمان \mathcal{R} تانسور ریچی ricمشتق لي L۲-فرم اساسی خمینه تماسی Φ التصاق لوی-چویتای ∇ لاپلاسين ناهموار Δ عملگر خودالحاق صوری القا شده از التصاق لوی-چویتای ∇^* متر ساساكي g_s التصاق لوی-چویتای وابسته به متر ساساکی ∇ عملگر لاپلاس-بلترامی روی p-فرمها Δ

فصل اول مقدمه

 $\mathbf{R} \in \mathbb{R}^{D \times k}$ روش تصویر تصادفی پایدار، ماتریس دادههای اولیه $\mathbf{A} \in \mathbb{R}^{n \times D}$ را در ماتریس تصادفی $\mathbf{B} = \mathbf{A} \mathbf{R} \in \mathbb{R}^{n \times k}$ ست. معمولا در ایههای ماتریس تصادفی $(k \ll D)$ ضرب می کند و نتیجه ماتریس $\mathbf{B} = \mathbf{A} \mathbf{R} \in \mathbb{R}^{n \times k}$ به صورت $(k \ll D)$ از $(k \ll D)$ بیادار متقارن انتخاب می شوند ($k \ll D$). ما می توانیم مشخصههای $k \in \mathbb{R}$ را در $k \in \mathbb{R}$ بر اساس $k \in \mathbb{R}$ تخمین بزنیم. در مورد حالت $k \in \mathbb{R}$ مزیت توزیع تصادفی پایدار توسط لم مشخصههای $k \in \mathbb{R}$ باشد تا هم فاصله دو به لم ایر برجسته شده است. لم $k \in \mathbb{R}$ بیان می دارد که کافی است $k \in \mathbb{R}$ باشد تا هم فاصله دو به دویی با نرم $k \in \mathbb{R}$ و آبان با ضریب $k \in \mathbb{R}$ از روی ماتریس $k \in \mathbb{R}$ تخمین زد. در تز $k \in \mathbb{R}$ ایر مشابه لم $k \in \mathbb{R}$ و آبات شده است. روش تصویر تصادفی پایدار به یک مسئله تخمین مشابه لم ایر ای تخمین پارامتر مقیاس برای یک توضیع پایدار $k \in \mathbb{R}$ متقارن. این مسئله از این مسئله از این جهت مورد توجه قرار می گیرد زیرا ما به دنبال برآوردی می گردیم که هم از نظر آماری درست باشند و هم از نظر محاسباتی مقرون به صرفه. برآوردگرهای مختلفی را مطالعه و مقایسه کردیم. شامل میانگین هم از نظر محاسباتی مقرون به صرفه. برآوردگرهای مختلفی را مطالعه و مقایسه کردیم. شامل میانگین حسابی، میانگین هندسی، میانگین هارمونیک، تقسیم توانی ٔ و برآوردگر حداکثر بزر گنمایی.

در این پایان نامه ما به بررسی موارد خاصی از تصویر تصادفی پایدار می پردازیم. برای نرم 2 ارتقایی را با استفاده از اطلاعات حاشیهای پیشنهاد می کنیم. همچنین برای حالت 2 می توان ماتریس تصویر گر را از یک توزیع زیر گوسی بسیار کوچکتر به جای توزیع نرمال انتخاب کرد. با در نظر گرفتن محدودیتهای معقولی می توان، از یک توزیع خاص زیر گوسی استفاده کرد. این توزیع شامل [-1,0,1] با احتمالات می تواند به $\{\frac{1}{s},1-\frac{1}{2s},\frac{1}{s}\}$ با مقادیر بسیار بزرگی برای $\{\frac{1}{s},1-\frac{1}{2s},\frac{1}{s}\}$

¹Stable Random Projection

²Independent and identically distributed random variables

³Johnson-Lindenstrauss

⁴fractional power

⁵sub-Gaussian

⁶Very sparse random projections

خوبی تصویر تصادفی نرمال عمل کند. برای حالت نرم l_1 به عبارتی دیگر تصویر تصادفی کوچی $^{\vee}$ انجام تخمین کاری نسبتا جذاب است. برای مثال، محاسبه برآوردگر بیشینه درستنمایی MLE در این حالت از لحاظ محاسباتی ممکن است. و یک توزیع معکوس گاوسی $^{\wedge}$ برای مدلسازی دقیق توزیع MLE بیان شده است.

روش تصویر تصادفی از پراکندگی دادهها استفادهای نمی کند. در حالی که دادههای بزرگ مقیاس معمولا بسیار پراکنده هستند. از روش تصویر تصادفی می توان برای حل مسائل بزرگ مقیاس در علوم و مهندسی در موتورهای جستجو و سیستمهای اخذ داده، پایگاههای داده، سیستمهای جریان داده جدید، جبر خطی عددی و بسیاری از کارهای یادگیری ماشین و داده کاوی که شامل محاسبه حجیم فاصلهها است، استفاده کرد.

⁷Cauchy random projections

⁸inverse Gaussian

فصل دوم کاهش بعد و دادههای بزرگ مقیاس

۱-۲ کاهش بعد

۱-۱-۲ تحلیل مولفههای اصلی

تحلیل چند متغیره معمولا بر روی دادههایی که شامل تعداد زیادی از متغیرهای مرتبط با هم هستند انجام می شود.

روش تحلیل مؤلفههای اصلی(PCA) یک ابزار کاهش بعد است که می توان از آن برای کاهش یک مجموعه ی بزرگ از متغیرها به مجموعه ی کوچکتری که غالب اطلاعات مجموعه ی بزرگ را دارد استفاده کرد.

روش تحلیل مولفههای اصلی یک تابع ریاضی است که تعدادی متغیر (احتمالا) همبسته را به تعداد (کمتر یا مساوی) متغیرهای غیرهمبسته به نام «مولفههای اصلی» تبدیل می کند.

بیشترین میزان اطلاعات ممکن در داده در اولین مولفه اصلی ثبت میشود. بیشترین میزان اطلاعات ممکن باقیمانده به ترتیب در مولفههای بعدی ثبت میشوند.

تحلیل مولفههای اصلی مشابه یک تابع چند متغیره دیگر به نام تحلیل عاملی است. این دو روش در موارد زیادی با یکدیگر اشتباه گرفته می شوند، و تفاوت بین این دو، و انواع تحلیل هایی که هر یک برایشان مناسب تر هستند به درستی تشخیص داده نمی شود. به طور سنتی، تحلیل مولفه های اصلی بر روی ماتریس های متقارن مربعی انجام می شود. این ماتریسها می تواند یکی از انواع $^{\mathsf{TSSCP}}$ (مجموع خالص مربعات و ضرب های داخلی)، ماتریس کوواریانس (مجموع مقیاس شده مربعات و ضرب های داخلی)، یا ماتریس همبستگی (مجموع مربعات و ضرب های داخلی داده های استاندارد شده) باشد.

نتایج تحلیل روی ماتریسهای از نوع SSCP و کوواریانس تغییری ندارند، چرا که تغییرات آنها فقط در یک ضریب مقیاس قابل مشاهده است.

از ماتریسهای همبستگی زمانی استفاده میشود که واریانس متغیرهای منحصر به فرد تفاوتهای زیادی داشته باشد، و یا واحدهای اندازه گیری این متغیرها متفاوت باشد.

¹Principal Components Analysis

²pure sums of squares and cross products

³covariance

⁴correlation

اهداف نحليل مولفههاي اصلى

تحلیل مولفههای اصلی فضای مشخصهها را از تعداد زیادی متغیر به تعداد کمتری عامل کاهش میدهد، و یک تابع «غیر وابسته» است (یعنی نیازی وجود ندارد که یک متغیر وابسته تعیین شده باشد).

تحلیل مولفه های اصلی یک روش کاهش یا فشرده سازی ابعاد است. هدف، کاهش بعد است و تضمینی وجود ندارد که این ابعاد قابل تفسیر باشند.

در نهایت، انتظار آن است که زیرمجموعهای از متغیرها از یک مجموعه بزرگتر انتخاب شود، به گونهای که متغیرهای اولیه بیشترین همبستگی را با مولفه اصلی داشته باشند.

تحلیل مولفههای اصلی به دنبال رسیدن به ترکیبی خطی از متغیرها است، به گونه ای که بیشینه واریانس از آنها قابل استخراج باشد. پس از آن، این واریانس حذف شده و ترکیب خطی دومی جستجو می شود که بیشینه باقیمانده واریانس را توصیف می کند، و این روند ادامه پیدا می کند. به این روش، روش محور اصلی گفته می شود و عامل های متعامد غیرهمبسته را به دست می دهد. تحلیل مولفههای اصلی، واریانس (مشترک و یکتای) کل را شرح می دهند.

ویژه بردارها: مولفههای اصلی، هر دو واریانس مشترک و یکتای متغیرها را منعکس می کنند و بنابراین ممکن است که این روش به عنوان یک روش واریانس محور دیده شود که هم به دنبال بازتولید واریانس متغیر کل با تمام مولفهها و هم بازتولید همبستگیها است. مولفه های اصلی، ترکیب های خطی از متغیرهای اولیه هستند که بر اساس میزان سهمشان در به وجود آمدن واریانس در یک بعد متعامد مشخص، وزن دهی میشوند. وزنهای داده شده برای هر یک از مولفههای اصلی نسبت به دادههای اولیه، ویژه بردارها هستند.

ویژه مقدارها: ویژه مقدار یک مولفه، واریانس همه ی متغیرهایی را که به آن عامل مرتبط هستند اندازه گیری می کند. نسبت ویژه مقدارها، نسبت اهمیت توصیفی عامل ها با توجه به متغیرها است. اگر یک عامل دارای ویژه مقدار پایین باشد، نشانگر آن است که اثر کمی روی توصیف واریانس در متغیرها دارد، و ممکن است از آن در مقابل عامل های مهمتر چشم پوشی شود. در ویژه مقدارها میزان تغییر در نمونه کل حساب شده است.

ویژه مقدار یک عامل ممکن است حاصل جمع مربعات عامل های تمامی متغیرها باشد. باید توجه شود که ویژه مقدارهای مرتبط با راه حل های دورانی و غیردورانی متفاوت خواهند بود، اگرچه مقدار کل آنها یکسان است.

برای به دست آوردن واریانس همه متغیرها که توسط عامل لحاظ می شود، مجموع مربعات بارگذاری

های عامل برای آن عامل (ستون) را جمع کرده، و بر تعداد متغیرها تقسیم می کنیم. (توجه کنید که تعداد متغیرها برابر با مجموع واریانس آنهاست، چرا که واریانس یک متغیر استاندارد شده مساوی با ۱ است). این کار مشابه تقسیم ویژه مقدار عامل بر تعداد متغیرها است.

امتیاز PC : این امتیازها، امتیازهای هر نمونه (ردیف) در هر عامل (ستون) هستند. امتیاز عامل برای یک نمونه و برای یک عامل داده شده، به صورت مجموع حاصل ضرب امتیاز استاندارد نمونه در هر متغیر با بارگذاری عامل مربوطه برای عامل داده شده محاسبه می شود. ■

۲-۲ خوشهبندی و شاخصهای سنجش

۲-۲-۲ شاخص رند تعدیل شده

برای مقایسه نتایج خوشهبندی در کنار شاخصهای بیرونی، نیازمند معیارهای مورد توافق هستیم. برای $V=\{v_1,\ldots,v_R\}$ و $U=\{u_1,\ldots,u_R\}$ مجموعه $S=\{O_1,\ldots,O_n\}$ و و نرض کنید که و باید و افراز متفاوت از عضوهای S برای و هستند به گونه ای که و باید و نرض کنید که یک U شاخص خارجی و V یک نتیجه خوشهبندی است. فرض کنید S تعداد جفت عضوهایی باشد که در یک کلاس یکسان S اما یکسان S و خوشه یکسان S هستند، S تعداد جفت عضوهایی باشد که در یک کلاس یکسان S اما خوشه متفاوت S هستند، S تعداد جفت عضوهایی باشد که در یک کلاس متفاوت S و خوشه یکسان S هستند، و S تعداد جفت عضوهایی باشد که در یک کلاس متفاوت S و خوشه متفاوت S هستند، و S تعداد جفت عضوهایی باشد که در یک کلاس متفاوت S و خوشه متفاوت S هستند، و S تعداد جفت عضوهایی باشد که در یک کلاس متفاوت S و خوشه متفاوت S هستند، و مقادیر S و نازد توافق، و مقادیر S و مقادیر S و نازد ازد، S و نازد توافق تعریف می شود. شاخص رند عددی بین S و است. زمانی که دو خوشه کاملا در حالت توافق باشند، مقدار شاخص رند برابر با S خواهد بود.

یکی از مشکلات شاخص رند آن است که مقدار مورد انتظار شاخص رند دو خوشه تصادفی یک مقدار ثابت (به عنوان مثال صفر) نیست. مقدار شاخص رند تعدیل شده پیشنهادی توسط آهوبرت و اربی، ثابت (به عنوان مثال صفر) نیست. مقدار شاخص رند تعدیل شده پیشنهادی توسط آهوبرت و اربی، [۱۹۸۵ بر پایه این فرض است که توزیع ابرهندسی تعمیم یافته برای مدل تصادفی استفاده میشود، به عبارت دیگر خوشه های U و V به شکلی انتخاب میشوند که تعداد عضوهای کلاسها و خوشهها ثابت باشد. فرض کنید باشد. فرض کنید و فرض کنید v_j و هم در خوشه v_j هستند. و فرض کنید n_{ij} و n_{ij}

۲-۳ دادههای حجیم

عبارات زیر از سایت Information Week نقل قول شدهاند $^{\Delta}$:

- مقدار دادهای که توسط کسب و کارها ذخیره میشود تقریبا هر ۱۲ تا ۱۸ ماه دو برابر میشود.
- پایگاه دادهها بیشتر هم زمان شدهاند. فروشگاههای زنجیرهای Wall-Marat دادههای فروش را هر ساعت به روز می کند.
- اضافه شدن یک میلیون خط داده اجازه جستجوهای پیچیده تری را می دهد. شرکت EBay به کارمندان اجازه می دهد برای بدست آوردن در کی عمیق تر در خصوص رفتار مشتریان در میان داده های حراج در بازه های زمانی کوتاه جستجو کنند.
- بزرگترین پایگاه دادهها توسط، مرکز شتابدهنده خطی استاندارد، مرکز تحقیقات ناسا، آژانس امنیت ملی و ... در ابعادی در محدوده ی پتابایت (هزار ترابایت 10¹5 بایت)، اداره می شوند.

پدیده نو ظهور مجموعه داده ای حجیم، چالشهای محاسباتی در بسیاری کاربردهای علمی و تجاری به وجود آورده است. شامل اخترفیزیک، بیوتکنولوزی، جمعیت شناسی^۶، مالی، سیستمهای اطلاعات جغرافیایی، دولت، دارو، ارتباطات از راه دور، محیط زیست و اینترنت.

۲-۳-۲ دادههای حجیم وب

وب چقدر بزرگ است؟ جدول 1-1 نشان دهنده تعداد بازدید صفحات در موتورهای جستجوی امروزی است. به طور تخمینی حدود $D=10^10$ صفحه وب را می توان بر اساس بازدید دو واژه ی بسیار پر کاربرد « A » و « A » تخمین زد. جدول A » مچنین نشان می دهد که حتی کلماتی که به ندرت کاربرد دارند هم تعداد زیادی بازدید دارند.

کلماتی با بازخورد معمولی چه میزان بازدید دارند؟ برای جواب این سوال ما به طور تصادفی ۱۵ صفحه از لغتنامهی آموزشی انتخاب می کنیم. [۳۱] (لغتنامهای با ۵۷،۱۰۰ کلمه) و اولین کلمه در هر صفحه را مد نظر قرار می دهیم. میانهی آماری بر اساس جستجوگر گوگل ۱۰ میلیون صفحه برای کلمه است.

زبان انگلیسی چند کلمه دارد؟ در اینجا عبارتی را از AskOxford.com نقل قول می کنیم:

⁵http://www.informationweek.com/news/showArticle.jhtml?articleID=175801775

⁶demographics

Query	Google	Bing
A	25,270,000,000	175,000,000
The	25,270,000,000	101,000,000
Kalevala	7,440,000	939,000
Griseofulvin	1,163,000	332,000
Saccade	1,030,000	388,000

جدول ۲-۱: تعداد بازدید صفحات برای کلمات با بازخورد بالا و کلمات با بازخورد نادر

« این بیان میدارد که حداقل یک چهارم میلیون واژه ی انگلیسی مستقل وجود دارد. به جز افعال صرفی و کلمات فنی و ناحیهای که توسط OED تحت پوشش قرار نمی گیرند یا کلماتی که هنوز به لغتنامههای منتشر شده اضافه نشدهاند. در صورتی که این موارد هم در نظر گرفته شوند تعداد لغات در حدود سه چهارم میلیون لغت خواهد بود »

بنابراین اگر یک ماتریس «عبارت به سند» $\mathbf{A} \in \mathbb{R}^{n \times D}$ در نظر بگیریم. در ابعاد وب این ماتریس در j بنابراین اگر یک ماتریس «عبارت به سند» j بزرگ خواهد شد. در اینجا عدد j در j عداد ظهور واژه j در سند j در سند j در انشان می دهد.

کارکردن با ماترسی در این ابعاد بزرگ چالش برانگیز است. برای مثال، شاخص LSI [۲۳] و یک مدل موضوعی فراگیر، از SVD بر روی ماتریس عبارت به سند استفاده میکند. که انجام این عملیات در ابعاد وب قطعا غیرممکن است.

یک مشکل اصلی در قبال مجموعه دادههای سنگین، حافظه کامپیوتر است. به این دلیل که ابعاد و سرعت حافظه فیزیکی بسیار رشد کمتری در مقایسه با پردازندهها (CPU) دارد. این پدیده به عنوان دیوار حافظه شناخته میشود [۴۸، ۴۳] . برای مثال، هر چند ممکن است تمامی رخدادهای همزمان دوتایی از پیش محاسبه شوند، ولی نگهداری این حجم از داده در حافظه غیر ممکن است. علاوه بر این، گاهی اوقات تخصیصهایی با بیش از دو عامل هم اهمیت پیدا میکنند زیرا درخواستها ممکن است شامل بیش از دو واژه هم باشند. یک راه حل ممکن این است که یک «نمونه» از A نگهداری شود و همزمانیها بر اساس این نمونه در حین کار تخمین زده شوند. ما حدس میزنیم که این روش توسط موتورهای جستجوی امروزی مورد استفاده قرار می گیرد، هر چند که روش واقعی قطعا جزو اسرار تجاری موتورهای است.

هر چند که انتظار میرود تخمینها سازگار باشند و فرکانسهای جفت شده باید با افزایش عبارت به

⁷Oxford English Dictionary

⁸latent semantic indexing

⁹singular value decomposition

درخواست، کاهش پیدا کنند. جدول ۲-۲ نشان میدهد که تخمینهای بیان شده با موتورهای جستجوی فعلی، همیشه سازگار نیستند.

Query	Hits(Bing)	Hits(Google)
America	150,731,182	393,000,000
America & China	15,240,116	66,000,000
America & China & Britain	235,111	6,090,000
America & CHina & Britain & Japan	154,444	23,300,000

جدول ۲-۲: با افزایش تعداد عبارات در درخواست، باید فرکانسهای جفت شده کاهش پیدا کنند. ولی تخمینهای بیان شده توسط موتورهای جستجو گاهی این موضوع تثبیت شده را نقض میکنند.

با اینکه، تعداد کل واژههای انگلیسی (که بهطور صحیح نوشته شدهاند) هم اکنون شگفتاور است، در بسیاری کاربردهای متن کاوی، ما باید با ابعاد بسیار بزرگتری سر و کار داشته باشیم. در حالی که یک سند ممکن است بیانگر برداری از تک واژهها باشد (به عبارت دیگر، مدل کیسه لغات ٔ ٔ). معمولا بهتر است سند به عنوانن یک بردار از لغات به صورت 1 پیوسته ٔ ٔ ۱۵ اییان شود. برای مثال، با استفاده از مدل π پیوسته، جملهی "It is a nice day" به مجموعهی زیر تجزیه می شود. π "it is a nice day" پیوسته، جملهی شعری ابعداد دادهها را افزایش می دهد. به خاطر اینکه، اگر مجموعهی π 10 افزایش می دهد. π 10 افزایش می دهد.

۲-۳-۲ جریانهای دادهی حجیم

در بسیاری کاربردهای جدید پردازش داده، جریانهای دادهی حجیم نقش بنیادی دارند. جریانهای دادهای که از روترهای اینترنت، سوئیچهای تلفن، رصد امسفر، شبکههای سنسور، شرایط ترافیکی بزرگراهی، دادههای مالی و غیره [۳، ۴۴، ۲۲، ۹، ۳۲، ۳۷، ۳۰] حاصل میشوند.

برخلاف پایگاه دادههای سنتی، معمول نیست که جریانهای داده و حجیم (که با سرعت زیادی منتقل میشوند. میشوند. بنابراین پردازش معمولا به طور همزمان انجام میشوند. برای مثال، گاهی اوقات «رصد تصویری» دادهها با رصد تغییرات زمانی برخی آمارهها کفایت میکند. برای مثال آمارههای نظیر: مجموع، تعداد آیتمهای مجزا، برخی نرمهای l_{α} در برخی کاربردها (برای مثال، طبقه بندی صدا/محتوا و جدا سازی) نیاز است یک مدل یادگیری آماری برای کلاسه بندی 17 یا

¹⁰bag-of-words

¹¹l-shingles

¹²Classification

خوشهبندی ^{۱۳} جریان دادههای حجیم توین شود. ولی معمولا فقط می توانیم یکبار دادهها را مورد بررسی قرار دهیم.

یک خاصیت مهم جریانهای دادهای این است که دینامیک هستند. به عنوان یک مدل محبوب، جریان $D=2^{64}$ شامل ورودیهای $D=2^{64}$ است که D=1 برای مثال، $D=2^{64}$ زمانی که جریان بیانگر آلود. آلودی است مکن است ممکن است به هر ترتیبی باشند و ممکن است مرتبا به روز شوند. آلودی است مرتبا به روز شوند نمونه گیری را بسیار چالشبرانگیزتر ا زمانی می کند که با دادههای ایستا سر و کار داریم.

۴-۲ چالشهای نمونهگیری از دادههای حجیم

در حالی که مسائل جذاب و چالشبرانگیزی با ورود دادههای حجیم شکل گرفتهاند، این پایاننامه بر روی توسعهی روشهای نمونه گیری برای محاسبه فاصله در دادههایی با ابعاد بسیار بالا با استفاده از حافظه محدود تمرکز دارد.

در کاربردهای مدلسازی آماری و یادگیری ماشین، در اغلب موارد به جای دادههای اصلی به فاصله، به خوصو فاصله ی جفتی نیاز داریم. برای مثال، محاسبه ماتریس گرام 10 10 در آمار و یادگیری ماشین معمول است. 10 بیانگر همه ی ضربهای داخلی دوتایی در ماتریس داده ی 10 است.

دو داده ی $u_1,u_2\in\mathbb{R}^D$ داده شدهاند. ضرب داخلی آنها (که با $u_1,u_2\in\mathbb{R}^D$ داده میشود) د

¹³Clustering

است حد البیشتر اوقات تعداد دقیق ابعاد (D) یک جریان داده را نمیدانیم ولی در بیشتر کاربردها کافی است حد بالایی محافظه کارانه ای را در نظر بگیریم. برای مثال $D=2^{64}$ زمانی که جریان بیانگر IP های ورودی است. همچنین این یکی از دلایلی است که داده ها بسیار پراکنده هستند. به این نکته توجه داشته باشید که ابعاد بسیار بزرک تاثیری در محاسبه ی فاصله ها و نمونه گیری طی الگوریتم های معرفی شده در این پایان نامه ندارد.

¹⁵Gram matrix

ا نمایش داده می شوند با عبارات زیر تعریف می شوند: $d_{(lpha)}$

$$a = u_1^T u_2 = \sum_{i=1}^D u_{1,i} u_{2,i} \tag{1-7}$$

$$d_{(\alpha)} = \sum_{i=1}^{D} |u_1 - u_2|^{\alpha}$$
 (Y-Y)

به این نکته توجه داشته باشید که هم ضرب داخلی و هم فاصله به شکل جمع D جمله تعریف می شوند. بنابراین، زمانی که دادهها به اندازهای حجیم هستند که نمی توان به طور کارا آنها را مدیریت کرد، نمونه گیری خیلی عادی به نظر می رسد تا بتوان با انتخاب تصادفی k عضو از D جمله تخمینی از مجموع به دست آوریم (با ضریب مقیاس D). در خصوص ماتریس داده ی D انتخاب تصادفی مختصات D ستون را از ماتریس داده به طور یکنواخت و تصادفی انتخاب می کند.

نمونه گیری از این جهت سودمند است که هم سایکلهای کاری CPU را کاهش می دهد و هم در حافظه صرفه جویی می کند. در کابردهای جدید، در اغلب موارد صرفه جویی در حافظه از اهمیت بیشتری برخوردار است. در نیم قرن گذشته گلوگاه محاسباتی حافظه بوده است، نه پردازشگر، سرعت پردازشگرها با نرخ تقریبی ۷۵ درصد در سال رو به افزایش است. در حالی که سرعت حافظه تقریبا سالی ۷ درصد افزایش می یابد [۴۳]. این پدیده به عنوان «دیوار حافظه» شناخته می شود [۴۸، ۴۳]. بنابراین در کاربردهایی که شامل مجموعه داده های حجیم می شوند، بحرانی ترین کار بیان کردن داده ها است. برای مثال، از طریق نمونه گیری با فرمی فشرده برای قرار گیری در ابعاد حافظه در دسترس.

مزایای نمونه گیری تصادفی مختصات -4-1

نمونه گیری تصادفی مختصات به دو دلیلی معمولا انتخاب پیشفرض است.

 $\mathbf{A} \in \mathbb{R}^{n \times D}$ این روش از لحاظ زمانی تنها از مرتبه O(nk) برای نمونه گیری k ستون از طول می کشد.

 $^{(\}sum_{i=1}^{D}|u_1-u_2|^{lpha})^{1/lpha}$ را به صورت $\int_{i=1}^{D}|u_1-u_2|^{lpha}$ تعریف کردهایم. به جای اینکه به شکل به صورت $\int_{i=1}^{D}|u_1-u_2|^{lpha}$ تعریف کنیم. زیرا شکل اول در کاربردهای عملی عمومیت بیشتری دارد. برای مثال، لم $\int_{i=1}^{D}|u_1-u_2|^2$ به جای $\int_{i=1}^{D}|u_1-u_2|^2$ به جای $\int_{i=1}^{D}|u_1-u_2|^2$ به جای «مربع فاصله ی ی». در این پایان نامه، ما برای سادگی $\int_{i=1}^{D}|u_1-u_2|^2$ به جای «مربع فاصله ی ی».

¹⁷Random coordinate sampling

¹⁸Memory wall

• انعطاف پذیری یک مجموعه نمونه را می توان برای تخمین بسیاری از شاخصهای آماری استفاده α (برای هر مقداری از α)

Y-Y-Y معایب نمونه گیری تصادفی مختصات

با این حال نموننه گیری تصادفی مختصات دو ایراد اساسی دارد.

- معمولا دقیق نیست زیرا مقادیری با مقدار زیاد محتمل است که گم شوند. مخصوصا زمانی که داده ها دم سنگینی داشته باشند. داده های بزرگ مقیاس دنیای واقعی (مخصوصا داده های مربوط به اینترنت) همیشه دم سنگین هستند و از قاعده توانی پیروی می کنند. [۲۹، ۲۰، ۲۵] زمانی که فاصله l_2 یا ضرب داخلی را تخمین می زنیم. واریانس تخمینها بر اساس ممان چهارم داده ها تعیین می شود. در حالی که در داده های دم سنگین، گاهی اوقات حتی ممان اول هم معنی دار نیست (محدود نیست) [۲۵].
- این روش دادههای پراکنده را به خوبی مدیریت نمی کند. بسیاری از دادههای بزرگ مقیاس به شدت پراکنده هستند، به عنوان مثال، دادههای متنی [۲۴] و دادههای بر اساس بازار [۴، ۴۶]. به جز برخی واژههای کاربردی مانند "A" و "The" بیشتر لغات با نسبت بسیار کمی در مستندات ظاهر می شوند (1% >) اگر ما دادهها را با در نظر گرفتن تعدادی از ستونهای ثابت نمونه گیری کنیم. خیلی محتمل است که بیشتر دادههای (مقادیر غیر صفر) را از دست بدهیم.به خصوص موارد جذابی که دو مقدار با هم غیر صفر شدهاند.

در این پایاننامه ما روش تصویر تصادفی را مورد بررسی قرار میدهیم و نشان خواهیم داد که این روش به خوبی قابلیت مدیریت دادههای دمسنگین را دارد.

$\Delta -$ تصویر تصادفی یایدار

تصویر شکل ۱-۲ ، ایده تصویر تصادفی را نشان می دهد. ایده اصلی تصویر تصادفی ضرب ماتریس داده ی تصویر شکل ۱-۲ ، ایده تصویر تصادفی $\mathbf{R} \in \mathbb{R}^{D \times k} (k \ll D)$ است. که حاصل ماتریس تصویر شده ی $\mathbf{A} \in \mathbb{R}^{n \times D}$ است. $\mathbf{B} = \mathbf{A} \times \mathbf{R} \in \mathbb{R}^{n \times k}$ است. $\mathbf{B} = \mathbf{A} \times \mathbf{R} \in \mathbb{R}^{n \times k}$ است. و بنابراین به راحتی قابل ذخیره سازی است. (برای مثال: برای حافظه های فیزیکی به اندازه ی کافی کوچک است)

شکل ۲-۱: $\,$ تصویر تصادفی پایدار $\, {f A} imes {f A} = {f A} imes {f R} \,$ ماتریس اولیه دادهها است.

ماتریس تصویر گر $\mathbf{R} \in \mathbb{R}^{D \times k}$ معمولا از داریههای مستقل هم توزیع (i.i.d) یک توزیع متقارن $\mathbf{R} \in \mathbb{R}^{D \times k}$ (بنابراین نام این روش «تصویر تصادفی پایدار» است.) بر اساس مشخصات توزیعهای $-\alpha$ پایدار، دادههای تصویر شده هم از توزیع $-\alpha$ پایدار پیروی می کنند. که بر اساس آنها شاخصهای $-\alpha$ و فاصله دودویی $-\alpha$ در $-\alpha$ تخمین زده می شوند و می توانیم دادههای اصلی را دور بریزیم. شاخصهای $-\alpha$ و فاصله دودویی $-\alpha$ در $-\alpha$ تخمین زده می شوند و می توانیم دادههای اصلی را دور بریزیم. موفقیت تصویر پایدار تصادفی توسط لم (JL) آلیم تخمین روده شده است. لم JL بیان می کند: رعایت $-\alpha$ تضمین می کند هر فاصله $-\alpha$ بیانی می کند: رعایت $-\alpha$ تخمین زده شود. ($-\alpha$ در اینجا بیانگر تعداد ابعاد کاهش یافته است)

با این حال لم JL برای نرمهای فاصله با α کوچکتر از ۲ (α < 2) مادق نیست. در صورتی که لازم باشد از برآوردگرهایی استفاده کنیم که متریک باشند (در نامساوی مثلثی صدق کنند). به این نتیجه «عدم امکان» ^{۱۹} گفته می شود. [۱۴، ۳۸، ۱۶] خوشبختانه شامل برآوردگرهایی که متریک نیستند نمی شود. در این پایان نامه ما در مورد برآوردگرهای کوناگونی که متریک نیستند صحبت خواهیم کرد. شامل: میانگین هندسی ^{۲۱}، میانگین هارمونیک ^{۲۱}، نسبت توانی ^{۲۱} و همچنین حداکثر بزرگنمایی.

¹⁹Impossibility

²⁰Geometric mean

²¹Harmonic mean

²²Fractional power

۲-۶ کاربردها

علاقه ی زیادی به تکنیکهای نمونه برداری وجود دارد که در کاربردهای زیادی مورد استفاده قرار می گیرند. مانند: قانون وابستگی ۲۳ [۱۲ ، ۱۱] ، خوشهبندی، بهینهسازی درخواست ۲۴ [۱۸ ،۴۲] ، تشخیص تکراری ۲۵ [۱۵ ، ۱۵] و بسیاری موارد دیگر. روشهای نمونه بردار هر چه بیشتر و بیشتر برای مجموعههای بزرگتر اهمیت پیدا می کنند.

طرح برودر ^{۲۶} [۱۵] در ابتدا برای تشخیص صفحات وب تکراری معرفی شد. URL های زیادی به HTML های مشابه (یا تقریبا مشابه) اشاره می کنند. جوابهای تخمین زده شده به اندازهی کافی خوب بودند. نیازی نبود تا همه تکراری ها پیدا شوند ولی کاربردی بود که تعداد زیدی از آن ها پیدا شوند، بدون اینکه بیش از ارزش آن از توان محاسباتی استفاده شود.

در کاربردهای بازیابی اطلاعات (IR) ^{۲۷} معمولا گلوگاه حافظهی فیزیکی است. زیرا مجموعهی وب برای حافظه (RAM) بسیار بزرگ است و از طرفی ما میخواهیم زمان گشتن به دنبال داده ابر روی دیسک را کمینه کنیم. زیرا زمان پاسخ به یک درخواست کلیدی است [۱۳]. به عنوان یک وسیله صرفه جویی در فضا، کاهش بعد یک ارائه فشرده از دادهها فراهم می کند که برای تولید جوابهای تخمینی در حافظه فیزیکی مورد استفاده قرار می گیرند.

ما به بازدید صفحات وب اشاره کردیم. اگر ما یک عبارت جستجوی دو کلمهای داشته باشیم، میخواهیم بدانیم چه تعداد از صفحات هر دو کلمه را دارند. فرض می کنیم محاسبه ی از قبل و نگهداری بازدید صفحات غیر ممکن باشد. حداقل نه برای کلماتی که تکرار زیادی ندارند و سریهای چند کلمهای. مرسوم است که در بازیابی اطلاعات با یک ماتریس بزرگ عبارت به ازای سند شروع کنیم که در آن مقادیر ورودی نشان دهنده ی وجود عبارت در متن است. بنا به کاربردهای خاص می توانیم بک اندیس معکوس ۲۸ بسازیم و کلیتی از عبارات (برای تخمین شباهت اسناد) نگهداری کنیم.

²³Association rules

²⁴Query optimization

²⁵Duplicate detection

²⁶Broder's sketch

²⁷information retrieval

²⁸inverted index

۲-۶-۲ کاوش قوانین وابستگی

تحلیلهای مبتنی بر بازار و قوانین وابستگی [۵، ۶، ۷] ابزارهای مناسبی برای کاوش پایگاه دادههای تجاری هستند. پایگاه دادههای تجاری دارند روز به روز بزرگتر و گسستهتر میشوند. [۴، ۴۶] الگوریتمهای مختلف نمونهبرداری پیشنهاد شده است. نمونه برداری این امکان را فراهم می کند تا قواعد تخصیص را به صورت آنلاین برآورد کنیم. که می تواند مزایایی در کاربردهای خاص داشته باشد.

Y-8-7 وابستگی جفتی همه (فاصلهها)

در کابردهای مختلفی شامل کلاسهبندی بر مبنای فاصله یا خوشهبندی و مدلسازی زبان با n سطر ما نیازمند محاسبه همه مهه بخت تخصیصها (یا فاصلهها) هستیم. ماتریس داده n شامل n سطر ما نیازمند محاسبه همه مهه بخت تخصیصها (یا فاصلهها) هستیم. ماتریس داده n شامل n سطور بهینه بر n ستون داده شده است. محاسبه مستقیم n مستیم n هزینه بر است. یا به طور بهینه بر n تعداد میانگین مقادیر غیر صفر میان تمام سطرهای n است. محاسبه مستیم می تواند به شدت زمان بر باشد. همچنین، به طور خاص زمانی که ماتریس داده آنقدر بزرگ است که در حافظه فیزیکی جا نمی شود. محاسبه به طور خاص بسیار ناکار آمد خواهد بود.

۲-۶-۳ تخمین فاصلهها به طور آنلاین

در حالی که ماتریس داده ی اولیه $\mathbf{A} \in \mathbb{R}^{n \times D}$ ممکن است برای حافظه ی فیزیکی بسیار بزرگ باشد، نگهداری $\mathbf{A} \in \mathbb{R}^{n \times D}$ هو و وابستگیها در $\mathbf{A} \in \mathcal{C}(n^2)$ فضا مصرف می کند. که می تواند برای حافظه ی فیزیکی بسیار بزرگتر باشد. در این میان وابستگیهای چندتایی را کنار می گزاریم. در بسیاری از کاربردها نظیر یادگیری برخط، سیستمهای توصیه آنلاین، تحلیلهای بازار برخط و موتورهای جستجو، بهتر است که نمونهها (sketches) در حافظه نگهداری شوند و همه ی فاصله ها به طور آنلاین، زمانی که مورد نیاز باشد، محاسبه شوند.

۲-۶-۲ بهینهسازی درخواست از پایگاه داده

در پایگاه دادهها یک وظیفه ی بسیار مهم تخمین join های چندراهی است، که تاثیر زیادی بر روی کارایی سیستم دارد [۲۹] . بر اساس تخمین دوراهی، سهراهی و حتی join هایی از مرتبه ی بالاتر، بهینه گرهای

²⁹litez48

³⁰Materializing

درخواست یک نقشه برای کمینه کردن تابع هزینه میسازند (برای مثال، نوشتنهای میانی^{۳۱}). بهینه بودن اهمیت بسیاری دارد زیرا مثلا نمیخواهیم زمان بیشتری برای بهینهسازی نقشه نسبت به زمان اجرای آن تلف کنیم.

ما از مثال Governator برای نمایش کاربرد تخمین دو و چند راهه برای بهینه کردن درخواست استفاده می کنیم.

	Query	Hits(Google)
	Austria	88,200,000
One were	Governor	37,300,000
One-way	Schwarzenegger	4,030,000
	Terminator	3,480,000
	Governor & Schwarzenegger	1,220,000
	Governor & Austria	708,000
Tryra ryrayr	Schwarzenegger & Terminator	504,000
Two-way	Terminator & Austria	171,000
	Governor & Terminator	132,000
	Schwarzenegger & Austria	120,000
	Governor & Schwarzenegger & Terminator	75,100
Trac vyov	Governor & Schwarzenegger & Austria	46,100
Tree-way	Schwarzenegger & Terminator & Austria	16,000
	Governor & Terminator & Austria	11,500
Four-way	Governor & Schwarzenegger & Terminator & Austria	6,930

جدول ۲-۳: بازدید صفحات گزارش شده توسط Google برای چهار کلمه و وابستگیهای دو، سه و چهارتایی آنها

جدول ۲–۳ بازدید صفحات را برای چهار کلمه و ترکیبات دو، سه، چهارتایی آنها نشان می دهد. فرض جدول ۲–۳ بازدید صفحات را برای چهار کلمه و ترکیبات دو، سه، چهارتایی آنها نشان می دهد. فرض کنیم بهینه ساز قصد استخراج نقشه برای درخواست: "Governor, Schwarzenegger" ("Schwarzenegger" \cap "کنیم بهینه باشد. راه حل استاندارد این است که با عبارات با کمترین فراوانی شروع کند: \cap "Governor" ("Governor") "Austria" ("Schwarzenegger" \cap "Austria") \cap "Terminator" ("Schwarzenegger" \cap "Austria") \cap "Terminator" (باشد که \cap 579, 100 کاهش می دهد.

³¹Intermediate writes

-8-8 جستجوی نزدیکترین همسایه از مرتبهی زیر خطی

محاسبهی نزدیکترین همسایه در بسیاری کاربردها از اهمیت زیادی برخوردار است. با این حال، به دلیل «نفرین ابعاد»^{۲۲} راه حل فعلی برای پیدا کردن بهینهی نزدیکترین همسایهها (حتی به طور تقریبی) اصلا رضایت بخش نیست. [۲۶، ۲۴]

به دلیل ملاحظات محاسباتی، دو شکل اصلی در جستجوی نزدیکترین همسایهها وجود دارد. اول اینکه ماتریس اصلی دادهها $\mathbf{A} \in \mathbb{R}^{n \times D}$ ممکن است برای حافظه فیزیکی بسیار بزرگ باشد ولی اسکن کردن دیسکهای سخت برای پیدا کردن نزدیکترین همسایهها میتواند خیلی کند باشد. دوما، پیدا کردن نزدیکترین همسایههای یک داده ممکن است O(nD) هزینه بر باشد که میتواند به شدت زمان بر شود.

با این حال، روس کاهش ابعادی در این پایاننامه می تواند در حافظه صرفه جویی کند و سرعت $\mathbf{B} \in \mathbb{R}^{n \times k}$ دهد. برای مثال: وقتی ماتریس داده ی اولیه \mathbf{A} به ماتریس داده ی مثال: وقتی ماتریس داده ی افزایش دهد. برای مثال: وقتی ماتریس داده ی اولیه O(n) و معمولا این درخواست وجود دارد که هزینه ی محاسباتی از O(n) برای O(n) برای کاهش پیدا کند، حداقل برای کاربردهای خاص.

دو گروه اصلی الگوریتمهای زیر خطی برای محاسبه عبارتند از KD-Trees (و انواع آن) [۲۲، ۲۷] و KD-Trees این الگوریتمها معمولا با یک فضای متریک کار و (۲۲، ۲۱، ۸] لین الگوریتمها معمولا با یک فضای متریک کار می کنند (که در آن نامساوی مثلثی برقرار است). برای مثال، فضای l_{α} زمانی که $1 \geq 1$ باشد یک متریک است. زمانی که به دنبال نزدیکترین همسایهها در $\alpha > 1$ ($\alpha > 1$) میگردیم، می توانیم (نسبتا به سادگی) فضای جستجو را به طور کاملا اساسی با استفاده از نامساوی مثلثی کاهش دهیم. به عبارت دیگر، نیازی نیست که همه α نقطه دادهها را مورد بررسی قرار دهیم.

در دادههایی با ابعاد بسیار بزرگ، الگوریتمهای زیر خطی موجود شامل KD-trees و LSH ، عملکرد رضایت بخشی ندارند. وقتی حافظه ی فیزیکی (به جای CPU) گلوگاه باشد 77 ، یکی از مشکلات اصلی این است که این الگوریتمها برای کاهش هزینه ی محاسباتی به حافظه ی ابر خطی 77 نیاز دارند که می تواند مشکل ساز باشد. [74] به طرح کلی برای LSH توجه کنید که ترکیبی از هش 70 و تصویر تصادفی است. متاسفانه این طرح به دلیل هزینه ی زیاد پیش پردازش غیر کاربردی است. [74]

در این پایاننامه، موفقیت اصلی کاهش بعد داده $\mathbf{A} \in \mathbb{R}^{n imes D}$ به $\mathbf{B} \in \mathbb{R}^{n imes k}$ و تامین برآوردگرهای

³²Curse of dimensionality

³³Memory wall

³⁴Super-linear memory

³⁵ Hash

دقیق برای استخراج فاصلههای اولیه در A بر اساس B است. در حالی که سناریوهای مهمی وجود دارند که در آنها نتایج ما رضایت بخش هستند، توسعه ی یک الگوریتم زیر-خطی برای تخمین نزدیکترین همسایهها، بر اساس الگوریتم ما یک ایده جذاب برای تحقیقات آینده است. یک مانع اصلی در این راه این است که بیشتر برآوردگرهای ما غیر متریک هستند و بنابراین طراحی یک الگوریتم هوشمند و تحلیلهای تئوری ممکن است سخت باشد، با این حال غیر ممکن نیست.

فصل سوم تصویر تصادفی پایدار روش تصویر تصادفی پایدار $l_{\alpha}(0<\alpha\leq 2)$ به ۴۲، ۳۳، ۳۳، ۳۳، ۱۳ یک روش پرکاربرد در داده کاوی و یادگیری ماشین است. با این روش به طور کار $l_{\alpha}(0<\alpha\leq 2)$ فاصله در داده های حجیم (برای مثال: وب یا جریان های داده ی حجیم) محاسبه می شود. در این روش حافظه ی کمی استفاده شده و فقط یک بار پایش داده ها کافی است.

 $\mathbf{R}\in\mathbb{R}^{n imes D}$ را در یک ماتریس تصادفی $\mathbf{A}\in\mathbb{R}^{n imes D}$ را در یک ماتریس تصادفی $\mathbf{B}=\mathbf{A}$ را در یک ماتریس تصادفی $\mathbf{B}=\mathbf{A}$ خاصل شود.

همانطور که در شکل ۱-۲ میبینید. ایده تصویر تصادفی پایدار، ضرب ماتریس دادهها همانطور که در شکل $\mathbf{R} \in \mathbb{R}^{n \times D}$ است. در ماتریس تصادفی $\mathbf{R} \in \mathbb{R}^{n \times k}$ است که حاصل یک ماتریس تصویر شده $\mathbf{R} \in \mathbb{R}^{n \times k}$ است. در ماتریس تصادفی ماتریس تصادفی α به طور α افغان (مستقل و هم توزیع) از یک توزیع α -پایدار حاصل میشوند. به همین دلیل به این روش «تصویر تصادفی پایدار» گفته میشود. به این نکته توجه کنید که توزیع α است.

حالت خاص تصویر تصادفی نرمال (به عبارت دیگر $\alpha=2$) نسبتا به خوبی مورد بررسی قرار گرفته $\alpha<2$) است. به رساله $\alpha<2$ مراجعه کنید. بنابراین، بخش اعظم این پایاننامه به تصویر تصادفی پایدار $\alpha<2$ اختصاص یافته است.

پس از مروری بر حالت کلی تصویر تصادفی پایدار $2 \le \alpha \le 2$ ، جزئیات بیشتری در خصوص حالت پس از مروری بر حالت کلی تصویر تقاء روش با استفاده از اطلاعات حاشیه α بررسی میشود. در این کار با نمونهبرداری α از حالت توزیع گسسته گسسته ادامه، تصویر تصادفی نرمال ساده سازی می شود. این کار با نمونه برداری α

¹Stable Random Projections

²Independent and Identically distributed

 $^{^{3}\}alpha$ -stable distribution

⁴Cauchy

⁵Marginal information

سهنقطه یی زیر گوسی گست. سپس نرم سهنقطه ای [-1,0,1] انجام می شود. این حالت، یک حالت خاص توزیعهای زیر گوسی گست. سپس نرم مورد بررسی قرار گرفته و در ادامه حالت کلی $0<lpha\leq 2$ مورد بررسی قرار گرفته و در ادامه حالت کلی $0<lpha\leq 2$

۱-۳ مسئلهی اصلی در تصویر تصادفی پایدار

مسئله اصلی تصویر تصادفی پایدار یک مسئله برآورد آماری است. همانطور که بیان شد، ماتریس مسئله اصلی تصویر تصادفی پایدار یک مسئله برآورد آماری است. همانطور که بیان شد، ماتریس داده داده که $\mathbf{A} \in \mathbb{R}^{n \times D}$ را در ماتریس تصادفی $\mathbf{B} \in \mathbb{R}^{n \times k}$ بر اساس ماتریس $\mathbf{B} = \mathbf{A} \times \mathbf{R} \in \mathbb{R}^{n \times k}$ استنتاج شوند. (شامل نرم و فاصله)

 $v_1,v_2\in\mathbb{R}^k$ ، ${f B}$ و دو سطر اول در $u_1,u_2\in\mathbb{R}^D$ ، ${f A}$ سطر اول ${f R}$ سطر اول در ${f R}$ تمرکز می کنیم. تعریف می کنیم ${f R}=\{r_{ij}\}_{i=1}^D$ بنابراین:

$$v_{1,j} = \sum_{i=1}^{D} r_{ij} u_{1,i}, \quad v_{2,j} = \sum_{i=1}^{D} r_{ij} u_{2,i}, \quad x_j = v_{1,j} - v_{2,j} = \sum_{i=1}^{D} r_{ij} (u_{1,i} - u_{2,i}).$$
 (1-7)

۳-۱-۱ توزیعهای پایدار

به طور معمول $r_{ij}\sim S(\alpha,1)$ و به طور i.i.d. استخراج میشود. همچنین در ادامه ما حالتهای ساده تری را هم مورد بررسی قرار می دهیم. در اینجا $S(\alpha,1)$ بیانگر یک توزیع متقارن α –پایدار تصادفی است را هم مورد بررسی α و پارامتر مقیاس ۱.

یک متغییر تصادفی z در صورتی متقارن lpha -پایدار است که تابع مشخصه ی آن به شکل زیر باشد.

$$E(\exp(\sqrt{-1}zt)) = \exp(-d|t|^{\alpha})$$
 (Y-Y)

که d>0 که به طور کلی شکل بستهای برای تابع $z\sim S(\alpha,d)$ مینویسیم است. ما مینویسیم d>0 که به طور کلی شکل بستهای برای تابع که $\alpha=0$ (نرمال) و $\alpha=0$ (نرمال) و $\alpha=0$ (کوچی).

⁶sub-Gaussian

⁷Cauchy random projection

⁸Cauchy

۲-۱-۳ مسئله برآورد آماری

 α با توجه به خواص تبدیل فوریه، به راحتی میتوان نشان داد که دادههای تصویر شده هم از توزیع l_{α} -پایدار پیروی می کنند که در این حالت پارامتر مقیاس مشخصه ی l_{α} ی (نرمها، فاصلهها) دادههای اصلی در \mathbf{A} است. به طور خاص:

$$v_{1,j} \sim S\left(\alpha, \sum_{i=1}^{D} |u_{1,i}|^{\alpha}\right), \quad v_{2,j} \sim S\left(\alpha, \sum_{i=1}^{D} |u_{2,i}|^{\alpha}\right),$$
 (Y-Y)

$$x_j = v_{1,j} - v_{2,j} \sim S\left(\alpha, d_{(\alpha)} = \sum_{i=1}^{D} |u_{1,i} - u_{2,i}|^{\alpha}\right).$$
 (4-7)

بنابراین، کار ما به برآورد پارامتر مقیاس از k نمونه k نمونه $x_j \sim S(\alpha, d_{(\alpha)})$ ، i.i.d. بنابراین، کار ما به برآورد پارامتر مقیاس از k نمونه k نمونه بنابراین، کار ما به برآورد فرآیند تخمین عالی به جز در حالت k وجود ندارد، فرآیند تخمین این خاطر که هیچ شکل بسته ای برای تابع چگالی به جز در حالت k وجود ندارد، فرآیند تخمین خود مسئله و جالبی است اگر به دنبال برآوردگرهایی بگردیم که هم به طور آماری دقیق باشند و هم از لحاظ محاسباتی کارا باشند.

یک موضوع مربوط و نزدیک هم تعیین اندازه نمونه k است. روش استاندارد محدود کردن احتمال دم یک موضوع مربوط و نزدیک هم تعیین اندازه نمونه $d_{(\alpha)}$ برآوردگری برای $d_{(\alpha)}$ است و e دقت مورد نظر است (معمولا است و e دقت مورد نظر است (معمولا است) به طور ایده آل امیدوار هستیم نشان دهیم e :

$$\mathbf{Pr}\left(|\hat{d}_{(\alpha)} - d_{(\alpha)}| > \epsilon d_{(\alpha)}\right) \le 2\exp\left(-k\frac{\epsilon^2}{G}\right),\tag{2-7}$$

برای برخی مقادیر ثابت G که می تواند تابعی از ϵ هم باشد.

برای ماتریس داده ی $\mathbf{A} \in \mathbb{R}^{n \times D}$ ، در مجموع $\frac{n(n-1)}{2} < \frac{n^2}{2}$ جفت فاصله وجود دارد. ما معمولا علاقمندیم که احتمالات دم را به طور همزمان برای همه ی جفتها محدود کنیم.

بنابر قضیه حدمرکزی برآوردگر $\hat{d}_{(\alpha)}$ بر اساس k نمونه تحت شروط سادهای به حالت نرمال همگرا می شود. بنابر $\Pr(|\hat{d}_{(\alpha)} - d_{(\alpha)}| \geq \epsilon d_{(\alpha)}) \leq 2 \exp\left(-k\frac{\epsilon^2}{2V}\right)$ باید محدوده ی دم نرمال می دانیم که حداقل برای پارامترهای خاصی $\hat{d}_{(\alpha)}$ است. بنابراین، حداقل برای آزمون درستی، می توانیم با بررسی این که آیا صادق باشد. در اینجا $\frac{V}{k}$ واریانس مجانبی که محدوده ی دم نسبت مطلوب را دارا باشد. $\frac{V}{k}$ است. کنیم که محدوده ی دم نسبت مطلوب را دارا باشد.

۲-۳ تصویر تصادفی نرمال

برای کاهش بعد در نرم l_2 ، روش تصویر تصادفی نرمال ماتریس داده ی اولیه $\mathbf{A} \in \mathbb{R}^{n \times D}$ را در ماتریس $\mathbf{B} \in \mathbb{R}^{n \times k}$ با درایههای i.i.d. از N(0,1) از i.i.d. با درایههای $\mathbf{R} \in \mathbb{R}^{D \times k} (k \ll D)$ حاصل شود. تحلیلهای مربوط به تصویر تصادفی نرمال نسبتا ساده است. برای مثال، به شکل سرراستی می توان یک نسخه از لم l_2 را برای حالت l_2 استنتاج کرد.

ما در ابتدا برخی خواص اولیه تصویر تصادفی نرمال را بیان می کنیم و سپس بر روی اطلاعات حاشیه تمرکز می کنیم تا تخمینها را بهینه کنیم. حاشیهها (به عبارت دیگر، نرم l_2 برای هر خط در A) معمولا در ابتدا در دسترس هستند (برای مثال، از طریق نرمال سازی دادهها). ولی حتی در حالتی که در دسترس نیستند، محاسبه ی نرم l_2 برای تمام سطرهای A فقط نیازمند یکبار مرور دادهها است که هزینه ای از O(nD) دارد که قابل صرفنظر است. ۱۱ از آنجا که اعمال تصویر تصادفی O(nD) دارد.

در این بخش، ما این قاعده مرسوم تبعیت در ادبیات تصویر تصادفی $[^{rak{FV}}]$ پیروی می کنیم و تعریف می کنیم $\mathbf{B} = rac{1}{\sqrt{k}} \mathbf{A} \mathbf{R}$

۲-۲-۳ مشخصههای اصلی

i.i.d. ما فرض می کنیم یک ماتریس داده ${\bf R} \in \mathbb{R}^{n \times D}$ و یک ماتریس تصویر گر ${\bf R} \in \mathbb{R}^{D \times k}$ که به طور ${\bf A}$ ماتریس ${\bf A}$ ماتریس داده ${\bf A}$ تولید شده است. در نظر می گیریم ${\bf B} = \frac{1}{\sqrt{k}} {\bf A} {\bf R}$ سطر ${\bf R}$ سطر ${\bf R}$ سطر متناظر در ${\bf R}$ باشد. برای راحتی بر روی دو سطر اول ${\bf R}$ یعنی ${\bf R}$ و یعنی ${\bf R}$ باشد. برای راحتی بر روی دو سطر اول ${\bf R}$ یعنی ${\bf R}$ و یعنی دو سطر اولیه ${\bf R}$ و یعنی در و یعنی دو در ${\bf R}$ تمرکز می کنیم. تعریف می کنیم:

$$a = u_1^T u_2, \ m_1 = \|u_1\|^2, \ m_2 = \|u_2\|^2, \ d = \|u_1 - u_2\|^2 = m_1 + m_2 - 2a$$
 (9-4)

به آسانی میتوانیم نشان دهیم $\|v_1-v_2\|$ ، فاصله ی l_2 نمونه و $v_1^Tv_2$ ضرب داخلی نمونه، بر آوردگرهای

¹⁰Johnson-Lindenstrauss

اا این وضعیتی برای زمانی که با جریان دادههای داینامیک سر و کار داریم اندکی متفاوت است. در جریانهای داده ما معمولا به دنبال اطلاعات آماری یک جریان داده هستیم تا اختلاف میان دو جریان داده را مد نظر داشته باشیم. به عبارت دیگر، محاسبه نرم l_2 حاشیهای گاهی اوقات هدف اصلی است. به دلیل ذات دینامیک جریانهای داده (برای مثال، به روز شدن مدام)، محاسبه ی حاشیهها می تواند پر هزینه باشد.

. $[rac{f \cdot l}{1}]$ اثناریبی از u_1 و هستند. لم ۱ واریانس و تابع مشخصه ی $v_1^T v_2$ را مشخص می کند. اثبات در ایان درایه از i.i.d. اثبات در ایان اثبات داری در اثبات در اثبات داری در اثبات داری در اثبات در اثبات داری در اثبات در اثبا

$$E(\|v_1 - v_2\|^2) = d, \quad Var(\|v_1 - v_2\|^2) = \frac{2}{k}d^2$$
 (Y-Y)

$$E(v_1^T v_2) = a, \quad Var(v_1^T v_2) = \frac{1}{k} (m_1 m_2 + a^2),$$
 (A-Y)

سومین ممان مرکزی $v_1^T v_2$ عبارت است از:

$$E(v_1^T v_2)^2 = a, \quad \frac{2a}{k^2} (2m_1 m_2 + a^2)$$
 (9-7)

و تابع مولد احتمال برای $v_1^T v_2$ عبارت است از:

$$E(\exp(v_1^T v_2 t)) = \left(1 - \frac{2}{k}at - \frac{1}{k^2}(m_1 m_2 - a^2)t^2\right)^{-\frac{k}{2}}$$
 (1.-7)

که
$$\frac{-k}{\sqrt{m_1m_2}-a} \leq t \leq \frac{-k}{\sqrt{m_1m_2}+a}$$
 است.

بنابراین، برآوردگرهای نااریبی برای فاصله l_2 فاصله و خرب داخلی a به شکل سر راستی عبارت است از:

$$\hat{d}_{MF} = \|v_1 - v_2\|^2, \quad Var(\hat{d}_{MF}) = \frac{d^2}{k},$$
 (11-7)

$$\hat{a}_{MF} = v_1^T v_2, \quad Var(\hat{a}_{MF}) = \frac{1}{k} (m_1 m_2 + a^2),$$
 (17-٣)

که اندیس « MF » به معنی «بدون حاشیه» نشان دهنده این است که برآوردگرها از اطلاعات $m_2 = \|u_2\|^2$ و $m_1 = \|u_1\|^2$ و استفاده نمی کنند.

به این نکته توجه کنید که، χ^2 از توزیع χ^2 با χ^2 با $k \hat{d}_{MF}/d$ بنابراین، بنابراین،

¹²margin-free

به راحتی میتوان میتوانیم این محدودههای دم را برای لم ۲ اثبات کنیم. **لم ۲:**

$$\mathbf{Pr}(\hat{d}_{MF} - d > \epsilon d) \le \exp\left(-\frac{k}{2}(\epsilon - \log(1 + \epsilon))\right), \quad \epsilon > 0$$
 (14-4)

$$\mathbf{Pr}(\hat{d}_{MF} - d < -\epsilon d) \le \exp\left(-\frac{k}{2}(-\epsilon - \log(1 - \epsilon))\right), \quad 0 < \epsilon < 1$$
 (14-7)

اثىات:

از آنجا که χ_k^2 ، برای هر t>0 ، برای هر اساس نام مساوی چرنوف ۱۳ [۱۹] ، برای هر اساس نام مساوی داریم:

$$\mathbf{Pr}(\hat{d}_{MF} - d > \epsilon d) = \mathbf{Pr}(k\hat{d}_{MF}/d > k(1 + \epsilon))$$

$$\leq \frac{E\left(\exp(k\hat{d}_{MF}/dt)\right)}{\exp\left((1 + \epsilon)kt\right)} = \exp\left(-\frac{k}{2}\left(\log(1 - 2t) + 2(1 + \epsilon)t\right)\right)$$
(12-7)

که در $\epsilon>0$ هر بنابراین برای هر $t=t_{NR}=rac{\epsilon}{2(1+\epsilon)}$ که در

$$\mathbf{Pr}(\hat{d}_{MF} - d > \epsilon d) \le \exp\left(-\frac{k}{2}\left(\epsilon - \log\left(1 + \epsilon\right)\right)\right)$$
 (18-7)

lacktriangle ما میتوانیم به طور مشابه برای دیگر محدودهی دم $\Pr(\hat{d}_{MF}-d<-\epsilon d)$ هم اثبات کنیم.

 $\Pr\left(\left|\hat{d}_{MF}-d\right|>\epsilon d
ight)$ برای راحتی مرسوم است که محدوده دم را در لم ۲ به صورت متقارن و برای راحتی مرسوم است که محدوده دم را در لم ۲ به صورت متقارن نوشته شود. نامساویهای ساده ای برای $\log(1+\epsilon)$ و $\log(1+\epsilon)$ نتیجه می دهد:

$$\mathbf{Pr}\left(\left|\hat{d}_{MF} - d\right| \ge \epsilon d\right) \le 2\exp\left(-\frac{k}{4}\epsilon^2 + \frac{k}{6}\epsilon^3\right), \quad 0 < \epsilon < 1 \tag{1Y-T}$$

از آنجا که $\mathbf{A} \in \mathbb{R}^{n \times D}$ جفت. ما باید احتمال دم را به از آنجا که ما باید احتمال دم را به از آنجا

¹³Chernoff inequality

طور همزمان برای همهی جفتها محدود کنیم. با استفاده از محدوده تجمیعی بنفرونی ۱۴ کافی است که:

$$\frac{n^2}{2} \mathbf{Pr} \left(\left| \hat{d}_{MF} - d \right| \ge \epsilon d \right) \le \delta$$
 (1A-3)

به عبارت دیگر کافی است اگر:

$$\frac{n^2}{2}2\exp\left(-\frac{k}{4}\epsilon^2 + \frac{k}{6}\epsilon^3\right) \le \delta \Rightarrow k \ge \frac{2\log n - \log \delta}{\epsilon^2/4 - \epsilon^3/6} \tag{19-7}$$

بنابراین ما یک نسخهای از لم JL را نشان دادهایم.

لم T: اگر $\frac{2\log n - \log \delta}{\epsilon^2/4 - \epsilon^3/6}$ پس با حداقل احتمال $1-\delta$ فاصله l_2 بین هر جفت از دادهها (میان $k \geq \frac{2\log n - \log \delta}{\epsilon^2/4 - \epsilon^3/6}$ بین هر جفت از تصویر n نقطه) می تواند با ضریب اطمینان t با استفاده فاصله t در دادههای تصویر شده بعد از تصویر t تصافی نرمال، تخمین زده شود. t t دادههای استفاده فاصله t دادههای تصویر شده بعد از تصویر t تصافی نرمال، تخمین زده شود. t

T-T تصویر تصادفی زیر گوسی و بسیار پراکنده

در بخش قبل ما به بررسی تصویر تصادفی نرمال پرداختیم، که در آن ماتریس تصویرگر ${\bf R}$ از روی توزیع در بخش قبل ما به بررسی تصویر تصادفی نرمال پرداختیم، که در آن ماتریس تصویرگر ${\bf R}$ نمونه گیری می شود. این انتخاب خاص برای ${\bf R}$ می صولت تحلیل تئوری است. در واقع می توان ${\bf R}$ را از هر توزیعی با میانگین صفر و واریانس محدود برای کاهش بعد در نرم ${\bf R}$ نمونه گیری کرد.

نمونه گیری R از یک توزیع زیر گوسی ^{۱۵} هم از نظر تئوری قابل قبول و هم از جنبه ی محاسباتی تسهیل کننده است. برای مثال، محدوده ی دم زیر گوسی به سادگی به نسخه ای از لم JL منتهی می شود. ما بر روی یک انتخاب معمول از توزیع زیر گوسی تمرکز خواهیم کرد، که درایه ها ماتریس R از مجموعه ی S از احتمالات S اختمالات S به این ترتیب فرآیند نمونه گیری ساده تر شده و محاسبات سریعتر انجام می شوند. در واقع، زمانی که S باشد، واریانس های صرحا کوچکتری نسبت به استفاده از تصویر تصادفی نرمال بدست می آید.

¹⁴Benferroni union bound

¹⁵sub-Gaussian

با در نظر گرفتن قواعد معقول، برای مثال، دادههای اولیه ممان سوم محدود داشته باشند،می توانیم $s \gg 3$ در نظر بگیریم (حتی $s = \sqrt{D}$ ی تا نتایج s برابر سریعتر بدست بیاوریم؛ و بنابراین، این رویه را تصویر تصادفی بسیار پراکنده می نامیم.

7-7 تصویر تصادفی زیرگوسی

 $\mathbf{R} \in \mathbb{R}^{D imes k}$ مشابه قسمت ۲-۲ ماتریس داده را $\mathbf{A} \in \mathbb{R}^{n imes D}$ در نظر می گیریم. ماتریس تصویر تصادفی $\mathbf{B} = \frac{1}{\sqrt{k}} \mathbf{A} \mathbf{R} \in \mathbb{R}^{n imes k}$ شده و آن را در \mathbf{A} ضرب می کنیم تا به یک ماتریس تصویر شده و آن را در \mathbf{A} فر دریف ابتدایی تمرکز می کنیم، که یعنی u_1 و u_2 و u_3 در u_4 و همچنین تساوی های زیر را تعریف می کنیم:

$$a = u_1^T u_2, \quad m_1 = \|u_1\|^2, \quad m_2 = \|u_2\|^2, \quad d = \|u_1 - u_2\|^2 = m_1 + m_2 - 2a$$
 (Y - - T)

را به طور i.i.d از یک توزیع زیر گوسی مشخصا پرکاربرد تولید می کنیم: \mathbf{R}

$$r_{ij}=\sqrt{s} imes \begin{cases} 1 & ext{lection} \ \frac{1}{2s} \end{cases}$$
 $0 & ext{lection} \ 1-rac{1}{s} \ -1 & ext{lection} \ \frac{1}{2s} \end{cases}$ (۲۱-۳)

- نمونه گیری از معادله N(0,1) ساده تر از نمونه گیری از معادله N(0,1) است.
- میتواند از s برابر افزایش سرعت در ضرب ماتریسی $\mathbf{A} \times \mathbf{R}$ بهره برد، زیرا فقط $\frac{1}{s}$ دادههای نیازمند یردازش هستند.
- نیازی به عملیات محاسباتی با ممیز شناور نیست و تمامی بار محاسباتی بر روی عملیات تجمیع پایگاه داده است که به خوبی بهینه شده.
 - وقتی s < 3 باشد میتوان به تخمینهایی با دقت بیشتر (واریانس کمتر) دست پیدا کرد.
 - هزینه نگهداری ماتریس ${f R}$ از O(Dk/s) به O(Dk/s) کاهش می یابد.

ای دست پیدا s=3 و s=1 و s=1 ای دست پیدا s=1 ای دست پیدا خواص توزیع زیر گوسی میپردازیم، کرد که در تصویر تصادفی نرمال وجود دارد. ما در ادامه به بررسی خواص توزیع زیر گوسی میپردازیم، که برای تحلیل محدوده ی دم مناسب است. در واقع، آنالیز زیر گوسی نشان می دهد که می توان حتی در بدترین شرایط از مقادیری اند کی بیشتر از s=1 برای s=1 استفاده کرد.

توزیع زیر گوسی

ما در اینجا مقدمهای کوتاه بر توزیعهای زیرگوسی بیان میکنیم. برای جزئیات و منابع بیشتر میتوانید به [۱۲] مراجعه کنید. تئوری توزیعهای زیرگوسی در حدود ۱۹۶۰ آغاز شد.

متغییر تصادفی x زیر گوسی است اگر ثابت g>0 وجود داشته باشد به شکلی که:

$$\mathrm{E}(\exp(xt)) \le \exp\left(\frac{g^2t^2}{2}\right), \forall t \in \mathbb{R}$$
 (۲۲-۳)

می توان مقدار بهینه ی g^2 را از تعریف $T^2(x)$ با استفاده از فرمول زیر بدست آورد.

$$T^{2}(x) = \sup_{t \neq 0} \frac{2 \log \mathcal{E}(\exp(xt))}{t^{2}} \tag{\Upsilon\Upsilon-\Upsilon}$$

توجه کنید که $T^2(x)$ فقط یک نمادگذاری برای مقدار ثابت بهینه ی زیرگوسی یک متغییر تصادفی x است (و نه یک نمونه مشخص از x).

برخی از ویژگیهای اولیهی توزیعهای زیرگوسی:

 $T^2(cx)=$ ، c اگر x زیر گوسی باشد آنگاه $\mathrm{E}(x)=0$ و $\mathrm{E}(x)=0$ و $\mathrm{E}(x)=0$ ، برای هر مقدار ثابت $c^2T^2(x)=0$. و

$$\mathbf{Pr}(|x| > t) \le 2\exp\left(-\frac{t^2}{2T^2(x)}\right) \tag{75-7}$$

است. $\sum_{i=1}^{D} x_i$ زير گوسي مستقل باشند، آنگاه x_1, x_2, \dots, x_D • اگر

$$T^2\left(\sum_{i=1}^D x_i\right) \le \sum_{i=1}^D T^2(x_i) \tag{$\Upsilon \Delta - \Upsilon$}$$

، $t \in [0,1)$ همهی باشد، آنگاه برای همهی • اگر x

$$\mathbf{E}\left(\exp\left(\frac{x^2t}{2T^2(x)}\right)\right) \le (1-t)^{-\frac{1}{2}} \tag{79-7}$$

را برای توزیع ویژهی معادله ۲-۲۱ بدست آوردهاند. یک متغییر $E(x^2) = T^2(x)$ بات اگر تصادفی زیرگوسی x صریحا زیرگوسی است اگر

- اگر x صریحا زیر گوسی باشد، آنگاه $\mathrm{E}(x^3)=0$ و کشیدگی ۱۶ غیر مثبت خواهد بود، به عبارت $\frac{\mathrm{E}(x^4)}{\mathrm{E}^2(x^2)}-3\leq 0$ دیگر $\frac{\mathrm{E}(x^4)}{\mathrm{E}^2(x^2)}-3\leq 0$
 - است. مستقل باشند، آنگاه $\sum_{i=1}^D x_i$ صریحا زیر گوسی مستقل باشند، آنگاه x_1, x_2, \dots, x_D

$$T^{2}\left(\sum_{i=1}^{D} x_{i}\right) = \sum_{i=1}^{D} T^{2}(x_{i}) = \sum_{i=1}^{D} \mathbf{E}\left(x_{i}^{2}\right) \tag{YY-Y}$$

l_1 تصویر تصادفی کوچی برای $\mathfrak{F}-\mathfrak{P}$

در بخشهای قبلی به تصویر تصادفی برای کاهش بعد در نرم l_2 پرداخته شد. در این بخش به کاهش بعد در نرم l_1 پرداخته خواهد شد.

در اینجا هم با یک ماتریس داده ی $\mathbf{A} \in \mathbb{R}^{n \times D}$ کار خواهیم کرد. و یک ماتریس تصویر گر تصادفی در اینجا هم با یک ماتریس داده ی $\mathbf{A} \in \mathbb{R}^{n \times D}$ از توزیع کوچی استاندارد $\mathbf{C}(0,1)$ نمونه گیری شده است، تولید خواهیم کرد. ما اجازه خواهیم داد که ماتریس تصویرشده $\mathbf{B} = \mathbf{A} \times \mathbf{R} \in \mathbb{R}^{n \times k}$ باشد. بدون آنکه ضریب نرمال سازی $\frac{1}{\sqrt{k}}$ که در بخشهای قبلی مشاهده کردیم، حضور داشته باشد. ضمن آنکه این کار به یک

¹⁶kurtosis

i.i.d. تخمین آماری منجر خواهد شد که پارامتر مقیاس دهی را از تعداد k متغییر تصادفی کوچی به طور برآورد می کند.

از آنجا که کوچی میانگین محدود ندارد. نمی توانیم از یک برآوردگر خطی آنطور که در تصویر تصادفی نرمال استفاده کردیم، استفاده کنیم. علاوه بر این، نتیجه ی عدم امکان بیان شده در [؟، ۲۸، ۱۴] اثبات کرده است که وقتی از یک تصویر گر خطی استفاده شود، نمی توان از برآوردگرهای خطی بدون رخ دادن خطاهای بزرگ استفاده کرد. به عبارت دیگر، لم L برای L برای L صدق نمی کند.

در این بخش سه برآوردگر غیرخطی ارائه و یک معادل برای لم JL برای l_1 استنتاج می شود. از آنجا در این بخش سه برآوردگرهای ما، متریک نیستند، این معادل لم JL از حالت کلاسیک لم JL برای J2 ضعیفتر است.

۳-۴-۳ خلاصه نتایج اصلی

ما دوباره مانند بخشهای قبلی دو سطر اول u_1 ، A و u_2 و u_1 ، A و نظر می گیریم. $d=\sum_{i=1}^D |u_{1,i}-u_{2,i}|$ فاصله ی u_1 را با u_2 با را با u_2 تعریف می کنیم.

 $x_j \sim 0$ در تصویر تصادفی کوچی، فعالیت اصلی آن است که پارامتر مقیاسدهی کوچی از k نمونه کوچی، فعالیت اصلی آن است که پارامتر مقیاسدهی کوچی از k نمونه i.i.d. استخراج شود. برخلاف تصویر تصادفی نرمال، نمی توان k را از میانگین نمونه برآورد کرد (به عبارت دیگر، k این اصلی آن است که پارت دیگر، این اصلی است که نمونه نم

سه نوع برآوردگر غیر خطی مورد بررسی قرار خواهند گرفت: برآوردگرهای میانه ی نمونه، برآوردگرهای میانگین هندسی و برآوردگرهای حداکثر درستنمایی.

• برآوردگرهای میانه نمونه

برآوردگر میانهی نمونه \hat{d}_{me} و نسخهی بدون انحراف $\hat{d}_{me,c}$ به شکل زیر هستند.

$$\hat{d}_{me} = \operatorname{median}(|x_i|, j = 1, 2, \dots, k)$$
 (TA-T)

$$\hat{d}_{me,c} = rac{\hat{d}_{me}}{b_{me}}$$
 (۲۹–۳)

$$b_{me} = \int_0^1 \frac{(2m+1)!}{(m!)^2} \tan\left(\frac{\pi}{2}t\right) (t-t^2)^2 dt, \quad k = 2m+1$$
 (**Y**•-**Y**)

برای سهولت، ما فقط $k=2m+1, m=1,2,\ldots$ را در نظر می گیریم.

در بین تمامی برآوردگرهای چندکی، \hat{d}_{me} (و $\hat{d}_{me,c}$) کوچکترین مقدار واریانس مجانبی را بدست میدهد.

• برآوردگرهای میانگین هندسی

برآوردگر میانگین هندسی، \hat{d}_{gm} و نسخهی بدون انحراف $\hat{d}_{gm,c}$ به شکل زیر هستند:

$$\hat{d}_{gm} = \prod_{j=1}^{k} |x_j|^{1/k} \tag{TI-T}$$

$$\hat{d}_{gm,c} = \cos^k \left(\frac{\pi}{2k}\right) \prod_{j=1}^k |x_j|^{1/k} \tag{TT-T}$$

از نظر واریانسهای مجانبی، برآوردگرهای میانگین هندسی به صورت مجانبی متناظر با برآوردگرهای میانهی نمونه همکن است نیازمند میانهی نمونه همکن است نیازمند نمونهای به اندازه ی تا دو برابر بزرگتر باشند.

• برآوردگر حداکثر درستنمایی

) این برآوردگر که به صورت $\hat{d}_{MLE,c}$ تعریف می شود. برآوردگر بدون انحراف حداکثر درستمانی (MLE) عبارت است از:

$$\hat{d}_{MLE,c} = \hat{d}_{MLE} \left(1 - rac{1}{k}
ight)$$
 (TT-T)

که معادلهی غیر خطی MLE را حل می کند. که \hat{d}_{MLE}

$$-\frac{k}{\hat{d}_{MLE}} + \sum_{j=1}^{k} \frac{2\hat{d}_{MLE}}{x_j^2 + \hat{d}_{MLE}^2} = 0$$
 (٣۴-٣)

MLE 80% برآوردگرهای میانه و میانگین هندسی از نظر واریانس مجانبی، دقتی معادل دارند. در حالی که استنتاج محدودههای دمی فرم-بسته دشوار است. نشان خواهیم داد که توزیع

را می توان به وسیله یی معکوس گوسی 17 تخمین زد.

تصویر تصادفی α –پایدار $-\alpha$

توضیحات در بخشهای قبلی، در مورد تصویر تصادفی نرم l_2 و تصویر تصادفی نرم l_1 صحبت کردیم. در l_2 و l_1 و l_2 و l_3 مورد بررسی قرار خواهد گرفت. و نرمهای l_4 و l_4 این بخش، کاهش بعد در نرم l_4 ، برای l_5 l_6 مورد بررسی قرار خواهد گرفت. و نرمهای l_6 به عنوان حالت خاص بررسی میشوند.

مسئله اساسی در تصویر تصادفی پایدار، انجام برآورد آماری است. به عبارت دیگر، برآورد پارامتر مقیاس دهی توزیع پایدار متقارن. از آنجا که چگالی احتمال توزیع پایدار جز برای $\alpha=1,2$ فرم بسته ندارد. تولید برآوردگرهایی که از نظر آماری دقیق و از نظر محاسباتی بهینه هستند، جذاب است.

برآوردگرهایی که بر اساس میانههای نمونه (با به طور کلی بر اساس چندکهای نمونه) تولید شدهاند، در علم آمار شناخته شدهاند، اما خیلی دقیق نیستند به خصوص در مورد نمونههای کوچک، و برای تحلیل نظری از جمله محدودههای دم زمانی که 2, 2 راحت نیستند.

ما در اینجا برآوردگرهای مختلفی را بر اساس میانگین هندسی، میانگین هارمونیک^{۱۸} و توان نسبی ۱۹ بررسی خواهیم کرد.

۳−۵−۳ نتایج اصلی

A دوهای ماریس داده $u_1,u_2 \in \mathbb{R}^D$ اور در ماتریس داده $u_1,u_2 \in \mathbb{R}^D$ اگفته شد که اگر دو بردار $u_1,u_2 \in \mathbb{R}^D$ باشند) اگر و بردار $u_1,u_2 \in \mathbb{R}^D$ و $u_1,u_2 \in \mathbb{R}^D$ مامل نمونههای در باشند) اگر و $u_1,u_2 \in \mathbb{R}^D$ و $u_1,u_2 \in \mathbb{R}^D$ و $u_1 \in \mathbb{R}^D$ مامل نمونههای در $u_1,u_2 \in \mathbb{R}^D$ و باشند که $u_2,u_3 \in \mathbb{R}^D$ و باشند الله باشده آنگاه باشده آنگاه $u_1,u_2 \in \mathbb{R}^D$ و بازر تعداد با نمونه و بازرود بازرامتر مقیاس دهی $u_1,u_2 \in \mathbb{R}^D$ و بازرود بازرود بازرامتر مقیاس دهی $u_2,u_3 \in \mathbb{R}^D$ و بازرود بازرود بازرود بازر مرور کردیم. $u_1,u_2 \in \mathbb{R}^D$ و بازر بازرود کردیم.

برآوردگری پرکاربرد در آمار بر اساس نمونه میان چندکی 7 [7 , 7 , 7] است که به دلیل تقارن برآوردگر میانهی نمونه، ساده سازی کرد. $S(\alpha,d_{(\alpha)})$

¹⁷Inverse Gaussian

¹⁸Harmonic mean

¹⁹Fractional power

²⁰inter-quantiles

$$\hat{d}_{(\alpha),me} = \frac{\mathrm{median}\left\{\left|x_{j}\right|^{\alpha}, j = 1, 2, \dots, k\right\}}{\mathrm{median}\left\{S(\alpha, 1)\right\}^{\alpha}} \tag{$\Upsilon \Delta - \Upsilon$}$$

على على مسائل بسيارى براساس برآوردگر ميانهى نمونه $\hat{d}_{(\alpha),me}$ وجود دارند. اين برآوردگر على على الخصوص براى نمونههاى كوچک يا α ى كوچک دقيق نيست. همچنين براى تحليل نظرى دقيق از جمله تحليل محدودهى دم دشوار است.

ما برآوردگرهای زیادی را بر اساس میانگین هندسی، میانگین هارمونیک و توان کسری ارائه خواهیم کرد.

- $:\hat{d}_{(lpha),gm}$ (نحراف) برآوردگر میانگین هندسی به برآوردگر میانگین و با
- $\hat{d}_{(lpha),gm,b}$ (دارای انحراف) هندسی دارای انحراف •

 $\hat{d}_{(\alpha),gm,b}$ این معادله به طور مجانبی معادل $\hat{d}_{(\alpha),gm}$ است. اگرچه برای $\hat{d}_{(\alpha),gm}$ توزیع $\hat{d}_{(\alpha),gm}$ دارد. خطای میانگین مربعات کوچکتری در مقایسه با

- برآوردگر میانگین هارمونیک $\hat{d}_{(\alpha),hm}: \hat{d}_{(\alpha),hm}$ به صورت مجانبی بهینه است و در مقایسه با برآوردگرهای میانگین هندسی، برای $\alpha \leq 0.344$ واریانس مجانبی کوچکتری دارد.
 - برآوردگر میانگین ریاضی

برای $\alpha=2$ بهترین روش استفاده از برآوردگر میانگین ریاضی $\alpha=2$ است. این برآوردگر را می توان با استفاده از برآوردگر بیشینه درستنمایی، به شکلی که در بخش تصویر تصادفی نرمال توضیح داده شد، با استفاده از اطلاعات حاشیه آی ارتقاع داد.

 $: \hat{d}_{(lpha),fp}$ برآوردگر توان کسری ullet

برای $\alpha \to 0+$ معدل برآوردگر میانگین ریاضی و برای $\alpha \to 0+$ معدل برآوردگر میانگین میانگین میانگین میانگین است. علاوه بر این، برای $\hat{d}_{(\alpha),fp}$ ، $\alpha \to 1$ دارای واریانس مجانبی برابر با برآوردگر میانگین هندسی است.

منابع و مراجع

- [1] Achlioptas, Dimitris. Database-friendly random projections. In *Proceedings of the twentieth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems*, pages 274–281. ACM, 2001.
- [2] Achlioptas, Dimitris. Database-friendly random projections: Johnson-lindenstrauss with binary coins. *Journal of computer and System Sciences*, 66(4):671–687, 2003.
- [3] Aggarwal, Charu C. *Data streams: models and algorithms*, volume 31. Springer Science & Business Media, 2007.
- [4] Aggarwal, Charu C, Wolf, Joel L, and Yu, Philip S. *A new method for similarity indexing of market basket data*. ACM, 1999.
- [5] Agrawal, Rakesh, Imieliński, Tomasz, and Swami, Arun. Mining association rules between sets of items in large databases. In *Acm sigmod record*, volume 22, pages 207–216. ACM, 1993.
- [6] Agrawal, Rakesh, Mannila, Heikki, Srikant, Ramakrishnan, Toivonen, Hannu, Verkamo, A Inkeri, et al. Fast discovery of association rules. *Advances in knowledge discovery and data mining*, 12(1):307–328, 1996.
- [7] Agrawal, Rakesh, Srikant, Ramakrishnan, et al. Fast algorithms for mining association rules. In *Proc. 20th int. conf. very large data bases, VLDB*, volume 1215, pages 487–499, 1994.
- [8] Andoni, Alexandr and Indyk, Piotr. Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. In *Foundations of Computer Science*, 2006. FOCS'06. 47th Annual IEEE Symposium on, pages 459–468. IEEE, 2006.

- [9] Babcock, Brian, Babu, Shivnath, Datar, Mayur, Motwani, Rajeev, and Widom, Jennifer. Models and issues in data stream systems. In *Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems*, pages 1–16. ACM, 2002.
- [10] Brin, Sergey, Davis, James, and Garcia-Molina, Hector. Copy detection mechanisms for digital documents. In ACM SIGMOD Record, volume 24, pages 398–409. ACM, 1995.
- [11] Brin, Sergey, Motwani, Rajeev, and Silverstein, Craig. Beyond market baskets: Generalizing association rules to correlations. In *Acm Sigmod Record*, volume 26, pages 265–276. ACM, 1997.
- [12] Brin, Sergey, Motwani, Rajeev, Ullman, Jeffrey D, and Tsur, Shalom. Dynamic itemset counting and implication rules for market basket data. *Acm Sigmod Record*, 26(2):255–264, 1997.
- [13] Brin, Sergey and Page, Lawrence. The anatomy of a large-scale hypertextual web search engine. *Computer networks and ISDN systems*, 30(1-7):107–117, 1998.
- [14] Brinkman, Bo and Charikar, Moses. On the impossibility of dimension reduction in 1 1. *Journal of the ACM (JACM)*, 52(5):766–788, 2005.
- [15] Broder, Andrei Z. On the resemblance and containment of documents. In *Compression and complexity of sequences 1997. proceedings*, pages 21–29. IEEE, 1997.
- [16] Buhler, Jeremy and Tompa, Martin. Finding motifs using random projections. *Journal of computational biology*, 9(2):225–242, 2002.
- [17] Buldygin, Valeri Vladimirovich and Kozachenko, IU V. *Metric characterization of random variables and random processes*, volume 188. American Mathematical Soc., 2000.
- [18] Chaudhuri, Surajit, Motwani, Rajeev, and Narasayya, Vivek. On random sampling over joins. In *ACM SIGMOD Record*, volume 28, pages 263–274. ACM, 1999.

- [19] Chernoff, Herman et al. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. *The Annals of Mathematical Statistics*, 23(4):493–507, 1952.
- [20] Crovella, Mark E and Bestavros, Azer. Self-similarity in world wide web traffic: evidence and possible causes. *IEEE/ACM Transactions on networking*, 5(6):835–846, 1997.
- [21] Datar, Mayur, Immorlica, Nicole, Indyk, Piotr, and Mirrokni, Vahab S. Locality-sensitive hashing scheme based on p-stable distributions. In *Proceedings of the twentieth annual symposium on Computational geometry*, pages 253–262. ACM, 2004.
- [22] Datar, Mayur and Indyk, Piotr. Comparing data streams using hamming norms. In *Proceedings 2002 VLDB Conference: 28th International Conference on Very Large Databases (VLDB)*, page 335. Elsevier, 2002.
- [23] Deerwester, Scott, Dumais, Susan T, Furnas, George W, Landauer, Thomas K, and Harshman, Richard. Indexing by latent semantic analysis. *Journal of the American society for information science*, 41(6):391–407, 1990.
- [24] Dhillon, Inderjit S and Modha, Dharmendra S. Concept decompositions for large sparse text data using clustering. *Machine learning*, 42(1-2):143–175, 2001.
- [25] Faloutsos, Michalis, Faloutsos, Petros, and Faloutsos, Christos. On power-law relationships of the internet topology. In *ACM SIGCOMM computer communication review*, pages 251–262. ACM, 1999.
- [26] Friedman, Jerome, Hastie, Trevor, and Tibshirani, Robert. *The elements of statistical learning*, volume 10. Springer series in statistics New York, NY, USA:, 2001.
- [27] Friedman, Jerome H, Baskett, Forest, and Shustek, Leonard J. An algorithm for finding nearest neighbors. *IEEE Transactions on computers*, 100(10):1000–1006, 1975.
- [28] Friedman, Jerome H, Bentley, Jon Louis, and Finkel, Raphael Ari. An algorithm for finding best matches in logarithmic time. ACM Trans. Math. Software, 3(SLAC-PUB-1549-REV. 2):209–226, 1976.

- [29] Garcia-Molina, Hector. Database systems: the complete book/hector garcia, molina jeffrey d. ullman, jennifer widom, 2002.
- [30] Henzinger, Monika Rauch, Raghavan, Prabhakar, and Rajagopalan, Sridhar. Computing on data streams. *External memory algorithms*, 50:107–118, 1998.
- [31] Hornby, Albert Sydney, editor. *Oxford Advanced Learner's Dictionary of Current English*. Oxford University Press, Oxford, UK, fourth edition, 1989.
- [32] Indyk, Piotr. Stable distributions, pseudorandom generators, embeddings and data stream computation. In *focs*, page 189. IEEE, 2000.
- [33] Indyk, Piotr. Stable distributions, pseudorandom generators, embeddings, and data stream computation. *Journal of the ACM (JACM)*, 53(3):307–323, 2006.
- [34] Indyk, Piotr and Motwani, Rajeev. Approximate nearest neighbors: towards removing the curse of dimensionality. In *Proceedings of the thirtieth annual ACM symposium on Theory of computing*, pages 604–613. ACM, 1998.
- [35] Johnson, William B and Lindenstrauss, Joram. Extensions of lipschitz mappings into a hilbert space. *Contemporary mathematics*, 26(189-206):1, 1984.
- [36] Johnson, William B and Schechtman, Gideon. Embeddingl p m intol 1 n. *Acta Mathematica*, 149(1):71–85, 1982.
- [37] Kannan, J Feigenbaum S, Strauss, M, and Viswanathan, M. An approximate 11-difference algorithm for massive data streams. *Unknown*, Unknown.
- [38] Lee, James R and Naor, Assaf. Embedding the diamond graph in 1 p and dimension reduction in 1 1. *Geometric & Functional Analysis GAFA*, 14(4):745–747, 2004.
- [39] Leland, Will E, Willinger, Walter, Taqqu, Murad S, and Wilson, Daniel V. On the self-similar nature of ethernet traffic. *ACM SIGCOMM Computer Communication Review*, 25(1):202–213, 1995.
- [40] Li, Ping. Stable random projections and conditional random sampling, two sampling techniques for modern massive datasets. Stanford, 2007.

- [41] Li, Ping. Estimators and tail bounds for dimension reduction in 1 α (0< α < 2) using stable random projections. In *Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete algorithms*, pages 10–19. Society for Industrial and Applied Mathematics, 2008.
- [42] Matias, Yossi, Vitter, Jeffrey Scott, and Wang, Min. Wavelet-based histograms for selectivity estimation. In *ACM SIGMoD Record*, volume 27, pages 448–459. ACM, 1998.
- [43] McKee, Sally A. Reflections on the memory wall. In *CF'04: Proceedings of the 1st conference on Computing frontiers*, page 162, 2004.
- [44] Muthukrishnan, S. Data streams: Algorithms and applications (foundations and trends in theoretical computer science). *Hanover, MA: Now Publishers Inc*, 2005.
- [45] Newman, Mark EJ. Power laws, pareto distributions and zipf's law. *Contemporary physics*, 46(5):323–351, 2005.
- [46] Strehl, Alexander and Ghosh, Joydeep. A scalable approach to balanced, high-dimensional clustering of market-baskets. In *International Conference on High-Performance Computing*, pages 525–536. Springer, 2000.
- [47] Vempala, Santosh S. *The random projection method*, volume 65. American Mathematical Soc., 2005.
- [48] Wulf, Wm A and McKee, Sally A. Hitting the memory wall: implications of the obvious. *ACM SIGARCH computer architecture news*, 23(1):20–24, 1995.
- [49] Zolotarev, VM. One-dimensional stable distributions. translated from the russian by hh mcfaden. translation edited by ben silver. translations of mathematical monographs, 65. *American Mathematical Society, Providence, RI*, 1986.

پیوست

موضوعات مرتبط با متن گزارش پایان نامه که در یکی از گروههای زیر قرار می گیرد، در بخش پیوستها آورده شوند:

```
۱. اثبات های ریاضی یا عملیات ریاضی طولانی.
```

۲. داده و اطلاعات نمونه (های) مورد مطالعه (Case Study) چنانچه طولانی باشد.

۳. نتایج کارهای دیگران چنانچه نیاز به تفصیل باشد.

۴. مجموعه تعاریف متغیرها و پارامترها، چنانچه طولانی بوده و در متن به انجام نرسیده باشد.

کد مییل

```
with(DifferentialGeometry):
with(Tensor):
DGsetup([x, y, z], M)
frame name: M
a := evalDG(D_x)
D_x
b := evalDG(-2 y z D_x+2 x D_y/z^3-D_z/z^2)
```

واژهنامهی فارسی به انگلیسی

حاصل ضرب دکارتی Cartesian product	Ĩ
Ċ	اسکالر
خودریختی Automorphism	ب
s	بالابر
Degree	پ
j	پایا
microprocessor	ت
ز	تناظر Correspondence
Submodule	ث
ریرسون س	ثابتساز Stabilizer
S	τ
سرشت	جایگشت Permutation
ص	€
صادقانه	چند جملهای Polynomial
ض	τ

انگلیسی	ىە	فارسی	مەي	اژەنا	ا
<u> </u>		\mathcal{L}	_		

همبند Connected	ضرب داخلی Inner product
ى	ط
يال	طوقه
	ظ
	ظرفیت
	3
	عدم مجاورت Nonadjacency
	ف
	فضای برداری Vector space
	ک
	کاملاً تحویل پذیر Complete reducibility
	گ
	گراف
	م
	ماتریس جایگشتی Permutation matrix
	ڹ
	ناهمبند Disconnected
	9
	وارون پذیر Invertible

واژهنامهی انگلیسی به فارسی

A	همریختی Homomorphism
خودریختی Automorphism	I
В	ایا
دوسویی	${f L}$
C	بالابر Lift
گروه دوری	M
D	مدول
Degree	N S
E	
Edge	نگاشت طبیعیما
F	О
تابع Function	یک به یک
G	P
گروه	گروه جایگشتی Permutation group
Н	Q

 Quotient graph
 گراف خارجقسمتی

 R
 U

 Reducible
 تحویل پذیر

 Junique
 Unique

 S
 V

 Sequence
 V

 T
 Vector space
 Vector space

Abstract

This page is accurate translation from Persian abstract into English.

Key Words:

Write a 3 to 5 KeyWords is essential. Example: AUT, M.Sc., Ph. D,..

Amirkabir University of Technology (Tehran Polytechnic)

Department of ...

M. Sc. Thesis

Title of Thesis

By

Name Surname

Supervisor

Dr.

Advisor

Dr.

Month & Year