VILLE DE LIÈGE

Institut de Technologie Enseignement de Promotion sociale

Année académique 2021 – 2022

Développement d'un codec audio AAC : optimisation de l'algorithme MDCT pour l'architecture ARM

Étudiante :

Laura Binacchi

Lieu de stage :

EVS Broadcast EquipmentRue du Bois Saint-Jean 13, 4102 Ougrée

Maître de stage :

Bernard ThilmantSoftware Engineer

Épreuve intégrée présentée pour l'obtention du diplôme de BACHELIER.E EN INFORMATIQUE ET SYSTÈMES FINALITÉ: INFORMATIQUE INDUSTRIELLE

Table des matières

	Introduction	1
1	EVS Brodcast Equipment 1.1 L'entreprise en quelques infos	3
	1.2 Les produits / le seveur XT	
2	L'encodage audionumérique : généralités	3
	2.1 Le son	3
	2.2 La numérisation d'un signal	3
3	Les codec audio	3
	3.1 Définition d'un codec	3
	3.2 Historique des normes MPEG	3
4	Le codec AAC	3
	4.1 Présentation générale	
	4.2 Le bloc MDCT	3
5	Développement de la MDCT	3
	5.1 Formule mathématique	3
	5.2 Fenêtre utilisée (autres paramètres?)	
	5.3 Algorithme de référence	3
6	Optimisations algorithmiques	3
	6.1 Appel à un algorithme de FFT (nombres complexes)	
	6.2 Réduction de la fenêtre d'entrée	
	6.3 Arithmétique fixed point	3
7	Optmisations à l'architecture ARM	3
	7.1 Spécificités de l'architecture ARMv8	
	7.2 Utilisation de la FFT de la librairie Ne10	
	7.3 Utilisation des fonctions Neon SIMD (intrinsic)	3
8	Résultats	3
	8.1 Protocole de validation	3
	8.2 Gain de performance	
	8.3 Perte de précision	3
	Conclusion	4
	Bibliographie	4

Remerciements

Introduction

Développement d'une solution de software embarqué sur processeur ARM pour encodage audio AAC optimisé aux applications d'EVS :

- Prise de connaissance de l'encodage AAC et de l'environnement EVS qui utilise ce type de format;
- Prise de connaissance des résultats des optimisations possibles du modèle psycho-acoustique développé par EVS;
- Développement du code en C ou Assembler pour l'encodage AAC sur plateforme ARM;
- Test du système et documentation de son implémentation.s possibles du modèle psycho-acoustique développé par EVS;
- Développement du code en C ou Assembler pour l'encodage AAC sur plateforme ARM;
- Test du système et documentation de son implémentation.

1 EVS Brodcast Equipment

- 1.1 L'entreprise en quelques infos
- 1.2 Les produits / le seveur XT
- 2 L'encodage audionumérique : généralités
- 2.1 Le son
- 2.2 La numérisation d'un signal
- 3 Les codec audio
- 3.1 Définition d'un codec
- 3.2 Historique des normes MPEG
- 4 Le codec AAC
- 4.1 Présentation générale
- 4.2 Le bloc MDCT
- 5 Développement de la MDCT
- 5.1 Formule mathématique
- 5.2 Fenêtre utilisée (autres paramètres?)
- 5.3 Algorithme de référence
- 6 Optimisations algorithmiques
- 6.1 Appel à un algorithme de FFT (nombres complexes)
- 6.2 Réduction de la fenêtre d'entrée
- 6.3 Arithmétique fixed point
- 7 Optmisations à l'architecture ARM
- 7.1 Spécificités de l'architecture ARMv8
- 7.2 Utilisation de la FFT de la librairie Ne10
- 7.3 Utilisation des fonctions Neon SIMD (intrinsic)
- 8 Résultats
- 8.1 Protocole de validation
- 8.2 Gain de performance
- 8.3 Perte de précision

Conclusion

Bibliographie