WHAT IS CLAIMED IS:

1	1. A meta-addressing architecture for a network of dynamically reprogrammable
2	processing machines, the meta-address specifying a local memory destination for a data
3	packet comprising:
4	a plurality of addressing machines, each addressing machine having a unique
5	geographic address, for servicing interrupts, generating and
6	transmitting meta-addresses comprising of a geographic address and a
7	local address, and queuing messages;
8	a plurality of dynamically reprogrammable processing machines (DRPMs),
9	each dynamically reprogrammable processing machine coupled to at
10	least one addressing machine, for storing, retrieving, and processing
11	data from a local memory unit responsive to received local-addresses;
12	a plurality of memory units, each memory unit associated with a DRPM; and
13	an interconnect unit, coupled to the addressing machines, for routing data
14	between addressing machines responsive to the geographic address of
15	the meta-address.
1	2. The addressing machine of claim 1, wherein at least one of the addressing machines
2	further comprising:
3	an address decoder, for decoding a received meta-address into a geographic
4	address and a local address;
5	a control unit, coupled to the DRPM, local memory, and the address decoder,
6	for retrieving meta-address information from the local memory
7	responsive to receiving an imperative from the DRPM, assembling a
8	data packet responsive to the retrieved meta-address, receiving
9	geographic and local addresses from the address decoder, and

10	transmitting a data packet to the DRPM responsive to determining a
11	decoded geographic address matches an associated geographic address.
1	3. The architecture of claim 1 further comprising:
2	a plurality of architecture description memory units, each one coupled to a
3	DRPM, for storing a geographic address for the DRPM to which it is
4	coupled.
1	4. The apparatus of claim 2 wherein the addressing machine further comprises:
2	an interrupt handler, coupled to the I/O unit, comprising:
3	a recognition unit, for identifying interrupt requests;
4	a comparator, for comparing identified interrupt requests to a stored
5	list of interrupt requests to verify validity of an interrupt
6	request; and
7	interrupt logic, for processing a validated interrupt request in
8	accordance with stored interrupt handling instructions.
1	5. The meta-addressing architecture of claim 1 wherein the meta-address is 80 bits side,
2	the geographic address is 16 bits wide, and the local address is 64 bits wide.
1	6. A method for processing instructions in a parallel processor architecture having local
2	processing machines coupled to local addressing machines and local memory, and the
.3	addressing machines are identified by unique geographic identifications and are
4	interconnected through an interconnection unit, comprising the steps of:
5	receiving a program instruction
6	determining if the received program instruction requires a remote operation;
7	responsive to a remote operation being required, storing remote component
8	information into local memory; and

9	issuing an imperative to the local addressing machine to initiate the remote
10	operation.
1	7. The method of claim 6 wherein the addressing machine performs the steps of:
2	receiving an imperative from the local processing machine;
3	retrieving remote component information from the local memory, wherein the
4	remote component information comprises a local geographic address, a
5	remote geographic address, and a remote local memory address;
6	generating a meta-address responsive to the retrieved remote component
7	information;
8	generating a data packet responsive to the generated meta-address; and
9	sending the data packet to the interconnect unit.
1	8. A method for addressing memory in a parallel computing environment in which local
2	processing units are coupled to local memory, local addressing machines, and an interconnect
3	unit, the addressing machine performing the steps of:
4	receiving a data packet;
5	decoding the data packet into a geographic address and a local address;
6	comparing the geographic address to an associated geographic address; and
7	responsive to the geographic address matching the associated geographic
8	address, transmitting the data packet to the local processor.
1	9. The method of claim 8 wherein the step of transmitting the data packet to the local
2	processor further comprises the step of storing the data packet in a queue for processing by
3	the local processor.
1	10. The method of claim 8 further comprising the steps of:
2	receiving data from the local processor;

3	retrieving remote operation data from the local memory responsive to the
4	received data;
5	generating a meta-address from the retrieved data;
6	generating a data packet responsive to the generated meta-address; and
7	transmitting the data packet to the interconnect unit.
1	11. The method of claim 10 wherein retrieving remote operation data comprises
2	retrieving a remote geographic address and a remote local memory address.
1	12. The method of claim 11 further comprising retrieving a source geographic address
2	from local memory.
1	13. The method of claim 12 in which architecture description memory is coupled to each
2	processor and stores a geographic address for the local processor to which it is coupled,
3	further comprising retrieving a source geographic address from architecture description
4	memory.
1	14. A method for processing instructions in a parallel processor architecture having local
2	processing machines coupled to local addressing machines and local memory, and the
3	addressing machines are identified by unique geographic identifications and are
4	interconnected through an interconnection unit, comprising the steps of:
5	receiving an imperative from the local processing machine;
6	retrieving remote component information from the local memory, wherein the
7	remote component information comprises a local geographic address, a
8	remote geographic address, and a remote local memory address;
9	generating a meta-address responsive to the retrieved remote component
10	information;
11	generating a data packet responsive to the generated meta-address; and
12	sending the data packet to the interconnect unit.

PATENT

1	15. A method for addressing memory in a parallel computing environment in which local
2	processing units are coupled to local memory, local addressing machines, and an interconnect
3	unit, the addressing machine performing the steps of:
4	receiving data from the local processor;
5	retrieving remote operation data from the local memory responsive to the
6	received data;
7	generating a meta-address from the retrieved data;
8	generating a data packet responsive to the generated meta-address; and
9	transmitting the data packet to the interconnect unit.
10	