LINIVERSIDAD LINIVERSIDAD LA CIONATA A GIONATA A GIONATA

UNIVERSIDAD NACIONAL DE LANUS

LICENCIATURA EN SISTEMAS Sistemas Operativos

Profs.: Dr. Hernán Merlino

Dr. Pablo Pytel

GUIA DE TRABAJOS PRÁCTICOS

Ejercicio 1. Resuelva la siguiente traza de procesos indicando cuales procesos terminaron, cuales no y por qué.

P1	P2	P3	P4	P5
Down(A)	Down(A)	Down(A)	Down(A)	Down(F)
Down(B)	Down(C)	Down(D)	Up(A)	Down(A)
Up(A)	Up(A)	Up(A)	Down(E)	Up(E)
Down(C)	Down(D)	Down(B)	Down(F)	Up(F)
Down(D)	Down(B)	Down(C)	Up(E)	Down(E)
Up(D)	Up (C)	Up(B)	Up(F)	Up(A)
Up(B)	Up(D)	Up(D)		
Up(c)	Up(B)	Up(C)		

Valores iniciales de los semáforos:

• A = 1

• B = 1

• C = 1

• D = 1

• E = 0

• F = 1

Ejercicio 2. Resuelva la siguiente traza de procesos indicando cuales procesos terminaron, cuales no y por qué.

P1	P2	P3
Down(A)	Down(B)	Down(B)
Down(B)	Down(C)	Down(D)
Down(C)	Up(B)	Down(A)
Up(B)	Up (C)	Up(B)
Up(C)	Down(D)	Up(D)
Up(A)	Up(D)	Up(A)

Valores iniciales de los semáforos:

• A = 0

• C = 1

• D = 1

Ejercicio 3. Dada la siguiente traza de procesos.

P1	P2	P3	P4
Down(A) Down(B) Down(C) Up(B) Up(A)	Down(C) Up(A) Down(B) Up(B) Up(C)	Up(C) Down(A) Up(A) Down(B)	Down(A) Down(B) Up(A) Down(C) Up(B)

- a) Indique el valor inicial de los semáforos para que todos los procesos puedan finalizar con éxito. Justifique.
- b) Indique el valor inicial de los semáforos para que terminen con Bloque Mutuo. Justifique.

Ejercicio 4. Resuelva la siguiente traza de procesos indicando cuales procesos terminaron, cuales no y por qué. En caso de que no terminen, indique si hay procesos en deadlock.

P1	P2	Р3	P4	Valores iniciales de los semáforos:
Down(B)	Down(A)	Down(B)	Down(D)	A = 1
Down(C)	Down(B)	Down(D)	Up(D)	B = 1
Up(B)	Down(C)	Down(A)	Down(C)	C = 1
Down(D)	Up(C)	Up(B)	Down(B)	D = 1
Up (D)	Up(B)	Up(D)	Up(C)	
Up(C)	Up(A)	Up(A)	Up(B)	

Ejercicio 5. Resuelva la siguiente traza de procesos indicando cuales procesos terminaron, cuales no y por qué. En caso de que no terminen, indique si hay procesos en deadlock.

P1	P2	Р3	P4	Valores iniciales de los semáforos:
Down(A)	Down(D)	Down(B)	Down(B)	A = 0
Down(B)	Down(B)	Up(A)	Up(D)	B = 2
Up(B)	Down(C)	Down(C)	Down(C)	C = 0
Down(D)	Up(C)	Up(B)	Down(B)	D = 1
Up (D)	Up(B)	Up(C)	Up(C)	
Up(A)	Up(D)	Up(D)	Up(B)	

Ejercicio 6. Dada la siguiente tabla que indica los recursos ya asignados y por necesarios para cada proceso:

Proceso	Recursos Asignados	Recursos Necesarios
P1	R1, R8	R5
P2	R2, R4	R10
Р3	R3, R9	R8
P4	-	R1, R2, R3
P5	R5	R3, R8
P6	R7, R10	R4

- a) Indique si existe un Bloqueo Mutuo y/o Inanición entre los procesos.
- b) En caso afirmativo, determine como debería resolverse.

Ejercicio 7. Resuelva el siguiente ejercicio de planificación de procesos en un sistema distribuido indicando la traza completa de ejecución de los procesos.

Máquina	D	Comienza en tiempo	Duración		
	Proceso		CPU	E/S	CPU
	P1	t1	4	3	1
	P2	t2	3	4	3
M1	Р3	t3	2	2	1
	P4	t4	3	3	3
M2	P5	t2	3	4	3
М3	P6	t1	4	5	4

Consideraciones:

- La Políticia de Transfeferencia indica que se migran procesos si la cantidad de procesos (en todas las colas) es mayor a 2.
- La Políticia de Selección indica que se migran sólo los procesos recién creados.

- La Política de Información indica que se pregunta a todas las máquinas (broadcasting) su estado al necesitar migrar un proceso y por lo tanto esto consume 1 CPU de todas las máquinas.
- La Política de Ubicación indica que se selecciona como destino la máquina que tenga menos de 2 procesos en todas sus colas. En caso de existir más de una máquina se elige cualquier máquina con la menor cantidad de procesos y en caso de no existir no se migra el proceso.
- La transferencia de un proceso le consume 2 CPUs sólo a la máquina de destino.

Utilizando el algoritmo de planificación en todas las máquinas:

- a) First Come First Served (también denominado FIFO, No Apropiativo).
- b) Round Robin (q = 2).

Ejercicio 8. Resuelva el siguiente ejercicio de planificación de procesos en un sistema distribuido indicando la traza completa de ejecución de los procesos.

Máquina	Dunnen	Comienza en tiempo	Duración		
	Proceso		CPU	E/S	CPU
	P1	t1	4	2	2
M1	P2	t2	3	3	3
	Р3	t3	2	1	4
M2	P4	t1	3	4	1
	P5	t4	1	2	3
М3	P6	t1	2	2	1

Consideraciones:

- La Políticia de Transfeferencia indica que se migran procesos si la cantidad de procesos (en todas las colas) es mayor a 2.
- La Políticia de Selección indica que se migran sólo los procesos recién creados.
- La Política de Información indica que se pregunta a todas las máquinas (broadcasting) su estado al necesitar migrar un proceso y por lo tanto esto consume 1 CPU de todas las máquinas.
- La Política de Ubicación indica que se selecciona como destino la máquina que tenga menos de 2 procesos en todas sus colas. En caso de existir más de una máquina se elige cualquier máquina con la menor cantidad de procesos y en caso de no existir no se migra el proceso.
- La transferencia de un proceso le consume 2 CPUs sólo a la máquina de destino.

Utilizando el algoritmo de planificación en todas las máquinas:

- a) First Come First Served (también denominado FIFO, No Apropiativo).
- b) Round Robin (q = 3).

Ejercicio 9. Resuelva el siguiente ejercicio de planificación de procesos en un sistema distribuido con migración indicando la traza completa de ejecución de los procesos.

Nodo	Proceso	Comienza en tiempo	Duración		
			CPU	E/S	CPU
	P1	1	2	2	2
N1	P2	2	1	3	2
	P3	3	3	2	1
N2	P4	1	2	3	2
	P5	3	1	4	2

Consideraciones:

- Se cuenta con tres nodos que utilizan algoritmo de planificación Round Robin (q = 3).
- La Políticia de Selección indica que se migran sólo los procesos recién creados.
- La Políticia de Transfeferencia indica que se migran procesos para intentar balancear la cantidad de procesos en todas las máquinas.
- La Política de Información indica que se pregunta a todas las máquinas (broadcasting) su estado al necesitar migrar un proceso y por lo tanto esto consume 1 CPU de todas las máquinas.
- La Política de Ubicación indica que se selecciona como destino la máquina que tenga menos procesos en todas sus colas. En caso de existir más de una máquina se elige cualquier máquina con la menor cantidad de procesos y en caso de no existir no se migra el proceso.
- La transferencia de un proceso le consume 2 CPUs sólo a la máquina de origen y destino.

Ejercicio 10. Resuelva el siguiente ejercicio de planificación de procesos en un sistema distribuido con migración indicando la traza completa de ejecución de los procesos.

Nodo	Proceso	Comienza en tiempo	Duración		
			CPU	E/S	CPU
N1	P1	1	3	2	1
	P2	2	2	1	4
	P3	2	3	3	1
	P4	3	1	1	4
N2	P5	1	4	2	1

Consideraciones:

- Se cuenta con tres nodos que utilizan algoritmo de planificación Round Robin (q = 2).
- La Políticia de Selección indica que se migran sólo los procesos recién creados.
- La Políticia de Transfeferencia indica que se migran procesos para intentar balancear la cantidad de procesos en todas las máquinas.
- La Política de Información indica que se pregunta a todas las máquinas (broadcasting) su estado al necesitar migrar un proceso y por lo tanto esto consume 1 CPU de todas las máquinas.

- La Política de Ubicación indica que se selecciona como destino la máquina que tenga menos procesos en todas sus colas. En caso de existir más de una máquina se elige cualquier máquina con la menor cantidad de procesos y en caso de no existir no se migra el proceso.
- La transferencia de un proceso le consume 2 CPUs sólo a la máquina de origen y destino.