Árboles Binarios de Búsqueda

Guillermo Palma

Universidad Simón Bolívar Departamento de Computación y T.I.

CI-2612: Algoritmos y Estructuras de Datos II

(USB)

Árboles Binarios de Búsqueda

CI-2612 enero-marzo 2020

1 / 40

Plan

- Representación de árboles enraizados
- Árboles binarios de búsqueda (ABB)
 - Características de los ABB
 - Consultando los ABB
 - Inserción en ABB
- Eliminación en un ABB

Árboles enraizados

- Estructura de datos enlazadas donde cada uno de los nodos es un objeto enlazado a otro objeto
- El objeto se nodo se representa con varios campos:
 - Un campo para la clave
 - Un campo para el valor que se quiere almacenar
 - Un apuntador al padre
 - Un apuntador al hijo izquierdo
 - Un apuntador al hijo derecho
 - Posiblemente apuntadores a otros nodos en caso de no ser árboles binarios
- El número de ramificaciones puede ser variable

(USB)

Árboles Binarios de Búsqueda

CI-2612 enero-marzo 2020

4 / 40

Representación de árboles enraizados

Ejemplo de un nodo de los árboles enraizados

Figura: Fuente [1]

Ejemplo de un árbol binario

Figura: Fuente [1]

(USB)

Árboles Binarios de Búsqueda

CI-2612 enero-marzo 2020

6 / 40

Representación de árboles enraizados

Ejemplo de un árbol sin restricciones en el número de ramificaciones

Figura: Fuente [1]

Propiedad de los ABB

Sea x un nodo cualquiera del ABB, se tiene que:

- Si y es un subárbol izquierdo de x, entonces y. $key \le x.key$
- Si y es un subárbol derecho de x, entonces $y.key \ge x.key$

(USB)

Árboles Binarios de Búsqueda

CI-2612 enero-marzo 2020

9 / 40

Árboles binarios de búsqueda (ABB)

Características de los ABB

Ejemplo de un ABB

Figura: Fuente [1]

Sobre los ABB

- Soportan varias operaciones del TAD Conjunto, tales como Búsqueda, Mínimo, Máximo, Sucesor, predecesor, insertar, eliminar
- La altura esperada de un ABB con n elementos es log n
- En promedio las operaciones de los ABB se ejecutan en $\Theta(\log n)$
- El peor caso de las operaciones de los ABB ocurre cuando el árbol está totalmente desbalanceado, es decir, es una lista enlazada
- El tiempo en el peor caso de las operaciones de los ABB es O(n)

(USB)

Árboles Binarios de Búsqueda

CI-2612 enero-marzo 2020

11 / 40

Árboles binarios de búsqueda (ABB)

Características de los ABB

Recorriendo los ABB

- Recorrido Inorder: el valor de la raíz se muestra entre los valores de los valores del hijo izquierdo y derecho, es decir, se imprime izquierdo - raíz - derecho
- Recorrido Preorder: se imprime raíz izquierdo derecho
- Recorrido Postorder: se imprime izquierdo derecho raíz

Ejemplo de los recorridos de los ABB

Figura: Fuente [1]

Recorrido Inorder: 2 3 5 5 7 9

• Recorrido Preorder: 5 3 2 5 7 9

• Recorrido Postorder: 2 5 3 9 7 5

(USB)

Árboles Binarios de Búsqueda

CI-2612 enero-marzo 2020

13 / 40

Árboles binarios de búsqueda (ABB)

Características de los ABB

Recorriendo los ABB

Procedimiento Inorder-Tree-Walk(x)

inicio

Recorriendo los ABB

Teorema

Si un árbol con raíz en x tiene n elementos, entonces el recorrido en inorder tiene un tiempo de $\Theta(n)$.

(USB)

Árboles Binarios de Búsqueda

CI-2612 enero-marzo 2020

15 / 40

Árboles binarios de búsqueda (ABB)

Consultando los ABB

Búsqueda en ABB

- Dada una clave, se retorna el apuntador al nodo que contiene la clave, o NIL en caso de que la clave no exista
- La idea es comenzar desde la raíz del árbol y se compara la clave del nodo actual.
- Si la clave es menor que la del nodo actual entonces, se busca en subárbol izquierdo, y si es mayor en subárbol derecho.

Ejemplo de búsqueda en un ABB

Figura: Ejemplo búsqueda del nodo con clave 13. Fuente [1]

(USB)

Árboles Binarios de Búsqueda

CI-2612 enero-marzo 2020

17 / 40

Árboles binarios de búsqueda (ABB)

Consultando los ABB

Búsqueda en un ABB, versión recursiva

Función Tree-Search(x, k)

inicio

```
si x = N/L \( \times k = x.key \) entonces
\[ devolver x;

si k < x.key entonces
\[ devolver Tree-Search(x.left, k);

en otro caso
\[ devolver Tree-Search(x.right, k);
\]</pre>
```

Si la altura del ABB es h, el tiempo de la búsqueda es O(h)

Búsqueda en un ABB, versión iterativa

Función Iterative-Tree-Search(x, k)

inicio

```
mientras x \neq NIL \land k \neq x.key hacer

si k < x.key entonces

x \leftarrow x.left;

en otro caso

x \leftarrow x.right;

devolver x;
```


(USB)

Árboles Binarios de Búsqueda

CI-2612 enero-marzo 2020

19 / 40

Árboles binarios de búsqueda (ABB)

Consultando los ABB

Encontrando la clave mínima de un ABB

Función Tree-Minimum(x)

inicio

 Si la altura del ABB es h, el tiempo de encontrar la clave mínima es O(h)

Encontrando la clave mínima de un ABB

Figura: La clave mínima del árbol es 2. Fuente [1]

(USB)

Árboles Binarios de Búsqueda

CI-2612 enero-marzo 2020

21 / 40

Árboles binarios de búsqueda (ABB)

Consultando los ABB

Encontrando la clave máxima de un ABB

Función Tree-Maximum(x)

inicio

 Si la altura del ABB es h, el tiempo de encontrar la clave máxima es O(h)

Encontrando la clave máxima de un ABB

Figura: La clave máxima del árbol es 20. Fuente [1].

(USB)

Árboles Binarios de Búsqueda

CI-2612 enero-marzo 2020

23 / 40

Árboles binarios de búsqueda (ABB)

Consultando los ABB

Obteniendo el sucesor en un ABB

Definición de sucesor

Una clave y es sucesor de la clave x, si y es la clave más pequeña que es mayor que la clave x.

Obteniendo el sucesor en un ABB

Figura: Se tiene que el sucesor de 15 es 17, que el sucesor de 13 es 15, y que el sucesor de 9 es 13. Fuente [1].

(USB)

Árboles Binarios de Búsqueda

CI-2612 enero-marzo 2020

25 / 40

Árboles binarios de búsqueda (ABB)

Consultando los ABB

Obteniendo el sucesor en un ABB

Función Tree-Successor(x)

inicio

Obteniendo el predecesor en un ABB

 TAREA: Investigar como se obtiene el predecesor de un nodo en un ABB.

(USB)

Árboles Binarios de Búsqueda

CI-2612 enero-marzo 2020

27 / 40

Árboles binarios de búsqueda (ABB)

Consultando los ABB

Análisis de las operaciones sobre el ABB

Teorema

Si la altura del ABB es h, el tiempo de las operaciones de búsqueda, mínimo, máximo, sucesor y predecesor son O(h)

Inserción en ABB

- Se quiere insertar un nodo con clave *k* en el ABB
- Se comienza desde la raíz
- Si la clave a insertar es menor al nodo actual se recorre el subárbol izquierdo, de lo contrario el derecho
- Se inserta el nodo cuando se encuentra el elemento NIL

(USB)

Árboles Binarios de Búsqueda

CI-2612 enero-marzo 2020

29 / 40

Árboles binarios de búsqueda (ABB)

Inserción en ABB

Ejemplo de inserción en un ABB

Figura: Fuente [1].

Inserción en un ABB

Procedimiento Tree-Insert(T, z)

inicio

```
y \leftarrow NIL;

x \leftarrow T.root;

mientras x \neq NIL hacer

y \leftarrow x;

si z.key < x.key entonces

x \leftarrow x.left;

en otro caso

x \leftarrow x.right;

z.p \leftarrow y;

si y = NIL entonces x \leftarrow z;

si no, si x.key < y.key entonces y.left \leftarrow z;

en otro caso y.right \leftarrow z;
```


(USB)

Árboles Binarios de Búsqueda

CI-2612 enero-marzo 2020

31 / 40

Eliminación en un ABB

Eliminación en un ABB

- Se quiere eliminar un nodo con clave z en el ABB
- Suponiendo que la clave z está en el ABB, hay tres casos posibles
 - Caso 1: z no tiene hijos
 - Caso 2: z tiene un solo hijo izquierdo o derecho
 - Caso 3: z tiene dos hijos

Eliminación en un ABB

- Caso 1: z no tiene hijos
 - Se elimina z haciendo que el padre de z apunte a NIL.

(USB)

Árboles Binarios de Búsqueda

CI-2612 enero-marzo 2020

34 / 40

Eliminación en un ABB

Eliminación en un ABB

- Caso 2: z tiene un solo hijo izquierdo o derecho
 - ▶ Se elimina z haciendo que el padre de z apunte al hijo de z.

Eliminación en un ABB

- Caso 3: z tiene dos hijos
 - ▶ Se encuentra el sucesor y de z en el subárbol derecho
 - ▶ Se tiene que es la y clave mínima en el subárbol derecho
 - Se tiene que y o no tiene hijos o tiene un hijo derecho. No tiene hijo izquierdo
 - ▶ Se elimina y del árbol aplicando el caso 1 o el caso 2
 - Se reemplaza la clave y el valor del nodo con clave z, por la clave y el valor que tiene el nodo con clave y

(USB)

Árboles Binarios de Búsqueda

CI-2612 enero-marzo 2020

36 / 40

Eliminación en un ABB

Eliminación en un ABB, caso 3

Eliminación en un ABB

Procedimiento Tree-Delete(T, z)

inicio

```
si z.left = NIL \lor z.right = NIL entonces y \leftarrow z;en otro caso y \leftarrow Tree-successor(z);si y.left \neq NIL entonces x \leftarrow y.left;en otro caso x \leftarrow y.right;si x \neq NIL entonces x.p \leftarrow y.p;si y.p = NIL entonces T.root \leftarrow x;en otro casosi y = y.p.left entonces y.p.left \leftarrow x;en otro caso y.p.right \leftarrow x;si y \neq z entoncesz.key \leftarrow y.key;z.data \leftarrow y.data
```


(USB)

Árboles Binarios de Búsqueda

CI-2612 enero-marzo 2020

38 / 40

Eliminación en un ABB

Análisis de las operaciones sobre el ABB

Teorema

Si la altura del ABB es h, el tiempo de las operaciones de INSERCIÓN y ELIMINACIÓN son O(h)

(USB)

Referencias

T. Cormen, C. Leirserson, R. Rivest, and C. Stein. Introduction to Algorithms.

McGraw Hill, 3ra edition, 2009.

(USB)

Árboles Binarios de Búsqueda

CI-2612 enero-marzo 2020

40 / 40