BLAST : Basic Local Alignment Search Tool Projet court

Amory Antao amoryantao@net-c.com

Université de Paris Cité M2 Biologie Informatique

September 12, 2025

Introduction and Motivation

ullet Local alignments o function and evolution

Introduction and Motivation

- ullet Local alignments o function and evolution
- Explosion of biological data

Introduction and Motivation

- Local alignments → function and evolution
- Explosion of biological data
- Limits of exact methods → need for heuristics

BLAST: General Principles

Three main steps:

Construction of the word list

BLAST: General Principles

Three main steps:

- Construction of the word list
- Search for hits

BLAST: General Principles

Three main steps:

- Construction of the word list
- Search for hits
- Extension of hits (X-drop)

Query: M A T G L A

• w = 3, word generation.

Query: М

Words =

• w = 3, word generation.

Query: MATGLA

Words = MAT

• w = 3, word generation.

Words = MAT ATG

• w = 3, word generation.

Words = MAT ATG ···

- w = 3, word generation.
- Neighbors via substitution matrix and threshold T

	Α	R	N	D	С	Q	Е
Α	4	-1	-2	-2	0	-1	-1
R		5	0	-2	-3	1	0
N			6	1	-3	0	0
D				6	-3	0	2
С					9	-3	-4
Q						5	2
E							5

Extract of BLOSUM62

- w = 3, word generation.
- Neighbors via substitution matrix and threshold T

	Α	R	N	D	С	Q	Е
Α	4	-1	-2	-2	0	-1	-1
R		5	0	-2	-3	1	0
N			6	1	-3	0	0
D				6	-3	0	2
С					9	-3	-4
Q						5	2
Е							5

MAT

Extract of BLOSUM62

- w = 3, word generation.
- Neighbors via substitution matrix and threshold T

	Α	R	N	D	С	Q	Е
Α	4	-1	-2	-2	0	-1	-1
R		5	0	-2	-3	1	0
N			6	1	-3	0	0
D				6	-3	0	2
С					9	-3	-4
Q						5	2
Е							5

Extract of BLOSUM62

- w = 3, word generation.
- ullet Neighbors via substitution matrix and threshold T

	Α	R	N	D	С	Q	Е
Α	4	-1	-2	-2	0	-1	-1
R		5	0	-2	-3	1	0
N			6	1	-3	0	0
D				6	-3	0	2
С					9	-3	-4
Q						5	2
E							5

Extract of BLOSUM62

- w = 3, word generation.
- Neighbors via substitution matrix and threshold T

	Α	R	N	D	С	Q	Е
Α	4	-1	-2	-2	0	-1	-1
R		5	0	-2	-3	1	0
N			6	1	-3	0	0
D				6	-3	0	2
С					9	-3	-4
Q						5	2
Е							5

Extract of BLOSUM62

- w = 3, word generation.
- Neighbors via substitution matrix and threshold T
- Search for hits in the database

- w = 3, word generation.
- Neighbors via substitution matrix and threshold T
- Search for hits in the database

- w = 3, word generation.
- Neighbors via substitution matrix and threshold T
- Search for hits in the database

- w = 3, word generation.
- Neighbors via substitution matrix and threshold T
- Search for hits in the database
- Ungapped extension with X-drop

- w = 3, word generation.
- Neighbors via substitution matrix and threshold T
- Search for hits in the database
- Ungapped extension with X-drop

- w = 3, word generation.
- Neighbors via substitution matrix and threshold T
- Search for hits in the database
- Ungapped extension with X-drop

- w = 3, word generation.
- Neighbors via substitution matrix and threshold T
- Search for hits in the database
- Ungapped extension with X-drop

Final result: score_max right + score_max left

Word generation

- Word generation
- Double-hit: two close words on the same diagonal

- Word generation
- Double-hit: two close words on the same diagonal

- Word generation
- Double-hit: two close words on the same diagonal
- Ungapped extension on the second hit (score_max ≥ threshold → gapped extension)

- Word generation
- Double-hit: two close words on the same diagonal
- Ungapped extension on the second hit (score_max ≥ threshold → gapped extension)
- Gapped extension

- Word generation
- Double-hit: two close words on the same diagonal
- Ungapped extension on the second hit (score_max ≥ threshold → gapped extension)
- Gapped extension
 - Take gaps into account

- Word generation
- Double-hit: two close words on the same diagonal
- Ungapped extension on the second hit (score_max ≥ threshold → gapped extension)
- Gapped extension
 - Take gaps into account
 - Gotoh algorithm (1982)

- Word generation
- Double-hit: two close words on the same diagonal
- Ungapped extension on the second hit (score_max ≥ threshold → gapped extension)
- Gapped extension
 - Take gaps into account
 - Gotoh algorithm (1982)
 - Gap opening and extension penalties

- Word generation
- Double-hit: two close words on the same diagonal
- Ungapped extension on the second hit (score_max ≥ threshold → gapped extension)
- Gapped extension
 - Take gaps into account
 - Gotoh algorithm (1982)
 - Gap opening and extension penalties
 - Higher x_drop

Experimental Results

• Number of hits (single/double, BLAST I vs II).

Experimental Results

- Number of hits (single/double, BLAST I vs II).
- Accepted alignments (BLAST I vs II).

Experimental Results

- Number of hits (single/double, BLAST I vs II).
- Accepted alignments (BLAST I vs II).
- Runtime (BLAST II \approx 3× faster).

Discussion

Results consistent with the literature.

Discussion

- Results consistent with the literature.
- BLAST I: simpler but noisier, less robust.

Discussion

- Results consistent with the literature.
- BLAST I: simpler but noisier, less robust.
- BLAST II: faster and more sensitive.

Discussion

- Results consistent with the literature.
- BLAST I: simpler but noisier, less robust.
- BLAST II: faster and more sensitive.

Perspectives

Evaluate on real datasets.

Discussion

- Results consistent with the literature.
- BLAST I: simpler but noisier, less robust.
- BLAST II: faster and more sensitive.

- Evaluate on real datasets.
- Optimizations in the code.