

Mark Scheme (Results) Summer 2009

GCE

GCE Mathematics (6677/01)

June 2009 6677 Mechanics M1 Mark Scheme

Question Number		Scheme	Mar	·ks
Q1				
		$45 = 2u + \frac{1}{2}a2^2 \implies 45 = 2u + 2a$	M1 A1	
		$165 = 6u + \frac{1}{2}a6^2 \Rightarrow 165 = 6u + 18a$	M1 A1	
		eliminating either u or a	M1	
		u = 20 and $a = 2.5$	A1 A1	[7]
Q2	(a) (b)	$\tan\theta = \frac{p}{2p} \Longrightarrow \theta = 26.6^{\circ}$	M1 A1	(2)
	(D)	$\mathbf{R} = (\mathbf{i} - 3\mathbf{j}) + (p\mathbf{i} + 2p\mathbf{j}) = (1+p)\mathbf{i} + (-3+2p)\mathbf{j}$	M1 A1	
		R is parallel to $\mathbf{i} \implies (-3 + 2p) = 0$	DM1	
		$\Rightarrow p = \frac{3}{2}$	A1	(4) [6]
Q3	(a)			
		For A: $-\frac{7mu}{2} = 2m(v_A - 2u)$	M1 A1	
		$v_A = \frac{u}{4}$	A1	(3)
	(b)	$\frac{7mu}{2} = m(v_B3u)$ For B:	M1 A1	
		$v_B = \frac{u}{2}$	A1	(3)
		OR CLM:	OR	
		$4mu - 3mu = 2m\frac{u}{4} + mv_B$	M1 A1	
		$v_B = \frac{u}{2}$	A1	(3)
				[6]

Question Number		Scheme	Marks
Q4		$0.5g\sin\theta - F = 0.5a$	M1 A1 A1
		$F = \frac{1}{3}R$ seen	B1
		$R = 0.5g\cos\theta$	M1 A1
		Use of $\sin \theta = \frac{4}{5}$ or $\cos \theta = \frac{3}{5}$ or decimal equiv or decimal angle e.g 53.1° or 53°	B1
		$a = \frac{3g}{5}$ or 5.88 m s ⁻² or 5.9 m s ⁻²	DM1 A1 [9]
Q5		$F = P\cos 50^{\circ}$	M1 A1
		F = 0.2R seen or implied.	B1
		$P\sin 50^\circ + R = 15g$	M1 A1 A1
		Eliminating R ; Solving for P ; $P = 37 (2 SF)$	DM1;D M1; A1 [9]
Q6	(a)	For whole system: $1200 - 400 - 200 = 1000a$	M1 A1
		$a = 0.6 \text{ m s}^{-2}$	A1 (3)
	(b)	For trailer: $T - 200 = 200 \times 0.6$	M1 A1 ft
		T = 320 N	A1
		OR : For car: $1200 - 400 - T = 800 \times 0.6$	OR: M1 A1 ft
		T = 320 N	A1 (3)
	(c)	For trailer: $200 + 100 = 200f$ or $-200f$	M1 A1
		$f = 1.5 \text{ m s}^{-2} (-1.5)$	A1
		For car: $400 + F - 100 = 800f$ or $-800f$	M1 A2
		F = 900	A1 (7)
		(N.B. For both: $400 + 200 + F = 1000f$)	[13]

Question Number		Scheme	Mark	S
Q7	(a)	$M(Q)$, $50g(1.4 - x) + 20g \times 0.7 = T_P \times 1.4$	M1 A1	
		$T_p = 588 - 350x$ Printed answer	A1	(3)
	(b)	$M(P)$, $50gx + 20g \times 0.7 = T_Q \times 1.4$ or $R(\uparrow)$, $T_P + T_Q = 70g$	M1 A1	
		$T_{\mathcal{Q}} = 98 + 350x$	A1	(3)
	(c)	Since $0 < x < 1.4$, $98 < T_P < 588$ and $98 < T_Q < 588$	M1 A1 A	1 (3)
	(d)	98 + 350x = 3 (588 - 350x)	M1	
		x = 1.19	DM1 A1	(3) [12]
Q8	(a)	$ \mathbf{v} = \sqrt{1.2^2 + (-0.9)^2} = 1.5 \text{ m s}^{-1}$	M1 A1	(2)
	(b)	$(\mathbf{r}_H =)100\mathbf{j} + t(1.2\mathbf{i} - 0.9\mathbf{j}) \text{ m}$	M1 A1	(2)
	(c)	$(\mathbf{r}_K =)9\mathbf{i} + 46\mathbf{j} + t(0.75\mathbf{i} + 1.8\mathbf{j}) \text{ m}$	M1 A1	
	(d)	$HK = \mathbf{r}_K - \mathbf{r}_H = (9 - 0.45t)\mathbf{i} + (2.7t - 54)\mathbf{j}$ m Printed Answer	M1 A1	(4)
		Meet when $\overrightarrow{HK} = 0$		
		(9-0.45t) = 0 and $(2.7t-54) = 0$	M1 A1	
		t = 20 from both equations	A1	
		$\mathbf{r}_K = \mathbf{r}_H = (24\mathbf{i} + 82\mathbf{j}) \text{ m}$	DM1 A1	cso
				(5)
				[13]