1 極限と積分の交換に関する定理

単調収束定理と Fatou の補題, Lebesgue の収束定理のステートメントその証明を述べます. 単調収束定理 あるいは Fatou の補題のいずれかを証明できれば, 他の定理はそれらから示すことができますが, 最初にこれら 2 つの命題のいずれかを示すのに骨が折れます. 収束定理の理解を深めるためには, 以下のアプローチで命題間の関係を知ることが近道です.

- 単調収束定理を認めて、Fatou の補題・Lebesgue の収束定理を示す.
- Fatou の補題を認めて、単調収束定理・Lebesgue の収束定理を示す。

以下では、まず命題のステートメントを述べた後、各々の証明を述べます。以下命題はいずれも測度空間 (X,\mathcal{F},μ) 上で考えるものとします。

Theorem 1 (単調収束定理). $0 \le f_n \le f_{n+1}$ a.e., n = 1, 2, ... かつ $f_n \to f, n$ a.e., as $n \to \infty$ である可測関数列 $f_n, n = 1, 2, ...$ と可測関数 f について

$$\lim_{n \to \infty} \int_X f_n d\mu = \int_X f d\mu \tag{1}$$

が成り立つ.

Theorem 2 (Fatou の補題). $f_n \ge 0, n = 1, 2, ...$ a.e. である可測関数 f_n について

$$\liminf_{n \to \infty} \int_X f_n d\mu = \int_X \liminf_{n \to \infty} f_n d\mu \tag{2}$$

が成り立つ.

Theorem 3 (Lebesgue の収束定理). 可測関数列 f_n , n = 1, 2, ... と可測関数 f が

- $f_n \to f$ a.e., as $n \to \infty$
- 任意の n に対して $|f_n| \le h$ a.e. となる可積分関数 g が存在する

をみたすならば,

$$\lim_{n \to \infty} \int_X f_n d\mu = \int_X f d\mu \tag{3}$$

が成り立つ.

証明

命題間の関係を示し、その後に単調収束定理および Fatou の補題をそれぞれ示す.

単調収束定理を認めたときの Fatou の補題の証明. $g_n = \inf_{k \ge n} f_k$ とおけば、 $f_n \ge g_n$ a.e. をみたす.また下極限の定義から、 $\lim_{n \to \infty} \inf_{n \ge 1} f_k$ より、 $g_n \uparrow \liminf_{n \to \infty} f_n$ もみたすことがわかる.したがって、単調収束定理から.

$$\liminf_{n \to \infty} \int_{X} f_n d\mu \ge \liminf_{n \to \infty} \int_{X} g_n d\mu = \lim_{n \to \infty} \int_{X} g_n d\mu = \int_{X} \lim_{n \to \infty} g_n d\mu = \int_{X} \liminf_{n \to \infty} f_n d\mu$$
 (4)

case.

Fatou の補題を認めたときの単調収束定理の証明. 仮定から $f_n \leq f, \int_X f_n d\mu \leq \int_X f d\mu$ なので,

$$\limsup_{n \to \infty} \int_X f_n d\mu \le \int_X f d\mu \tag{5}$$

となる. Fatou の補題から

$$\int_{X} f d\mu \le \liminf_{n \to \infty} \int_{X} f_n d\mu \tag{6}$$

がなりたつ.一方で、上限と下限の定義から

$$\liminf_{n \to \infty} \int_X f_n d\mu \le \limsup_{n \to \infty} \int_X f_n d\mu \tag{7}$$

がなりたつので、これらの式を合わせれば、

$$\int_{X} f d\mu = \liminf_{n \to \infty} \int_{X} f_n d\mu = \limsup_{n \to \infty} \int_{X} f_n d\mu \tag{8}$$

が得られる.

Fatou の補題を認めたときの *Lebesgue* の収束定理. $f_n \to f$ a.e., as $n \to \infty$, $f_n \le h$ a.e., n = 1, 2, ... で g は可積分であることから, $|f| \le h$ となり,f も可積分である. $h + f_n \ge 0$ a.e., $h - f_n \ge 0$ a.e., n = 1, 2, ... なので,これらに対して Fatou の補題を適用すると,

$$\int_{X} h d\mu + \int f d\mu = \int_{X} (h+f) d\mu = \int_{X} \liminf_{n \to \infty} (h+f_n) d\mu \tag{9}$$

$$= \liminf_{n \to \infty} \int_X (h + f_n) d\mu = \int_X h d\mu + \liminf_{n \to \infty} \int_X f_n d\mu \tag{10}$$

より、 $\liminf_{n\to\infty}\int_X f_n d\mu \geq \int_X h d\mu$ が得られる. 同様に

$$\int_X h d\mu + \int (-f) d\mu = \int_X (h - f) d\mu = \int_X \liminf_{n \to \infty} (h - f_n) d\mu \tag{11}$$

$$= \liminf_{n \to \infty} \int_{X} (h - f_n) d\mu = \int_{X} h d\mu + \liminf_{n \to \infty} \int_{X} (-f_n) d\mu$$
 (12)

より、
$$\limsup_{n \to \infty} \int_X f_n d\mu \le \int_X h d\mu$$
 が得られる.これらを合わせれば、題意を得る.

2 Radon-Nikodym の定理

Capinski, and Kopp, *Measure, Integral and Probability*, Springer, 2004 をもとに Radon-Nikodym の定理を証明: 可測空間 (Ω, \mathcal{F}) 上の $F \in \mathcal{F}$ に対する測度 v(F) が

$$F \mapsto \nu(F) = \int_{F} f d\mu \tag{13}$$

となるような f を見つける問題.

用語

絶対連続 (absolutely continuous)

任意の $F \in \mathcal{F}$ に対して $\mu(F) = 0$ ならば $\nu(F) = 0$, が成り立つならば, ν は μ に対して絶対連続であるといい, $\nu \ll \mu$ と表す.

押さえる (dominate)

任意の $F \in \mathcal{F}$ に対して $0 \le \nu(F) \le \mu(F)$ が成り立つとき, μ は ν を押さえるという.

分割 (partition)

 $\mathcal F$ 内の有限な排反部分集合の集まり $\mathcal P$ + $(F_i)_{i\leq n}$ で $\cup_i F_i=\Omega$ をみたすものを、(有限可測な) Ω の分割と呼ぶ.

細分 (refinement)

2 つの分割 \mathcal{P},\mathcal{P}' について、任意の \mathcal{P} の要素が \mathcal{P}' の排反な要素の和集合で表されるとき、 \mathcal{P}' は \mathcal{P} の細分と呼ぶ.

σ -有限 (σ -finite)

 $\cup_i F_i = \Omega$ をみたす \mathcal{F} -可測な集合列 F_i が存在して、各 i について $v(F_i)$ が有限の値をとるとき、v を σ -有限な測度と呼ぶ。

証明

Radon-Nikodym の定理を証明する前に、以下の補助定理を証明しておくと便利. Radon-Nikodym の定理との違いは

- 2 つの測度が σ -有限ではなく、一方が片方を押さえているという仮定になっている.
- 押さえている方の測度 μ が全測度で 1 となる.

という2点. ただし、結論の形式はRadon-Nikodymの定理と同様なので、その雰囲気は伝わるはず.

Theorem 4. 任意の $F \in \mathcal{F}$ に対して, $\mu(\Omega) = 1$, $0 \le \nu(F) \le \mu(F)$ が成り立つ,つまり μ は ν を押さえる測度 とする.このとき,任意の $F \in \mathcal{F}$ に対して,

$$\nu(F) = \int_{E} h d\mu \tag{14}$$

をみたす, $(\Omega \perp 0)$ 非負 \mathcal{F} -可測関数 h が存在する.

以下のステップで証明

• 分割 \mathcal{P} に含まれる集合上で、(14) をみたすような $h_{\mathcal{P}}$ を構成する. ついでに \mathcal{P}_{n+1} が \mathcal{P}_n を細分するような分割の列 $\mathcal{P}_1, \mathcal{P}_2, \dots$ について、

$$\int_{\Omega} h_{\mathcal{P}_n}^2 d\mu \tag{15}$$

が非減少列になることを確認する.

- 1. の結果, および (15) で定められる列は上限 1 で押さえられることから, 収束定理を用いて (14) をみたす h を h_{P_n} の極限として求めることができる.
- 2. の方法で定めた h が望ましい性質を持つことを確認する.

収束定理 3

この節では確率空間 (Ω, \mathcal{F}, P) を固定して考える.

Definition 1 (概収束 (almost sure convergence)). 確率変数 X_n, X が $P\left(\lim_{n\to\infty}|X_n-X|=0\right)=1$ をみたすとき, X_n は X に概収束するいい, $X_n \stackrel{\text{a.s.}}{\to} X$ と書く.

Definition 2 (確率収束 (convergence in probability)). 確率変数 X_n, X が, 任意の $\varepsilon > 0$ に対して $\lim_{n\to\infty} P(|X_n-X|>\varepsilon)=0$ をみたすとき、 X_n は X に確率収束するいい、 $X_n\stackrel{\mathrm{a.s.}}{\to} X$ と書く.

Definition 3 (L^p -収束 (convergence in L^p)). 確率変数 X_n, X が $\lim ||X_n - X|| = 0$ をみたすとき, X_n は X に L^p -収束するいい, $X_n \stackrel{L^p}{\to} X$ と書く.

Definition 4 (弱収束 (weakly convergence)). Borel-確率測度の列 P_n が Borel-確率測度 P に分布収束 (or 弱収 束) するとは、F, Fn, n=1,2,... を \mathbb{R}^k 上の累積分布関数とし、これらに対応する確率測度 P, Pn, n=1,2,... と する. 任意の F(x) の連続点 x に対して $\lim_{n\to\infty}F_n(x)=F(x)$ がなりたつとき, $\{F_n\}$ が F に弱収束する, あるい は $\{P_n\}$ が P に弱収束するといい, $F_n \stackrel{\text{w}}{\to} F$,あるいは $P_n \stackrel{\text{w}}{\to} P$ と書く.

Definition 5 (分布収束 (convergence in distribution)). 確率変数 X_n , X の分布関数 F_{X_n} , F_X について $F_{X_n} \stackrel{\text{w}}{\to} F_X$ がなりたつとき, $\{X_n\}$ は X に分布収束するといい, $X_n \stackrel{\mathrm{d}}{\to} X$ と書く.

Theorem 5. 確率変数 X_n, Y_n, X について次がなりたつ.

- 1. $X_n \stackrel{\text{a.s.}}{\to} X$ ならば $X_n \stackrel{\text{p}}{\to} X$ がなりたつ. 逆は一般的に真ではない.
- 2. $X_n \stackrel{\text{p}}{\to} X$ ならば $X_n \stackrel{\text{d}}{\to} P_X$ がなりたつ. 逆は一般的に真ではないが, 次の 3. がなりたつ.

Theorem 6 (Slutsky の定理). X_n, Y_n, X は確率変数, c は定数のとき, $X_n \stackrel{d}{\to} X$ かつ $Y_n \stackrel{p}{\to} c$ ならば, 次の 2 が なりたつ.

- 1. $X_n + Y_n \stackrel{d}{\rightarrow} X + c$ 2. $Y_n X_n \stackrel{d}{\rightarrow} cX$

Theorem 7 (Slutsky の補題). X_n, Y_n, X は確率変数, c は定数のとき, $X_n \stackrel{d}{\to} X$ かつ $Y_n \stackrel{p}{\to} c$ ならば, $(X_n, Y_n) \stackrel{d}{\to} X$ (X,c) がなりたつ.

- $\times X_n \xrightarrow{d} X, Y_n \xrightarrow{d} Y \not \Leftrightarrow \beta \not \sharp X_n + Y_n \xrightarrow{d} X + Y, X_n Y_n \xrightarrow{d} XY.$ $\bigcirc (X_n, Y_n) \xrightarrow{d} (X, Y) \not \Leftrightarrow \beta \not \sharp, X_n + Y_n \xrightarrow{d} X + Y, X_n Y_n \xrightarrow{d} XY.$

Theorem 8 (Cramer-Wald's device). 確率変数ベクトルの列 $X_n = (X_n^1, ..., X_n^d)^\top$ とその極限 $X = (X^1, ..., X^d)^\top$ が、 $X \stackrel{\text{d}}{\to} X$ であることと、任意の定数ベクトル $c = (c^1, ..., c^d)$ に対して $c^\top X_n \stackrel{\text{d}}{\to} c^\top X$ であることは同値で ある.