Warp™

VHDL Development System

Warp System Library Manual

Cypress Semiconductor 3901 North First Street San Jose, CA 95134 (408)943-2600 JANUARY 1995

Cypress Software License Agreement

- 1. LICENSE. Cypress Semiconductor Corporation ("Cypress") hereby grants you, as a Customer and Licensee, a single-user, non-exclusive license to use the enclosed Cypress software program ("Program") on a single CPU at any given point in time. Cypress authorizes you to make archival copies of the software for the sole purpose of backing up your software and protecting your investment from loss.
- 2. TERM AND TERMINATION. This agreement is effective from the date the diskettes are received until this agreement is terminated. The unauthorized reproduction or use of the Program and/or documentation will immediately terminate this Agreement without notice. Upon termination you are to destroy both the Program and the documentation.
- 3. COPYRIGHT AND PROPRIETARY RIGHTS. The Program and documentation are protected by both United States Copyright Law and International Treaty provisions. This means that you must treat the documentation and Program just like a book, with the exception of making archival copies for the sole purpose of protecting your investment from loss. The Program may be used by any number of people, and may be moved from one computer to another, so long as there is **No Possibility** of its being used by two people at the same time.
- 4. DISCLAIMER. THIS PROGRAM AND DOCUMENTA-TION ARE LICENSED "AS-IS," WITHOUT WARRANTY AS TO PERFORMANCE. CYPRESS EXPRESSLY DIS-CLAIMS ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTY OF MERCHANTABILITY OR

FITNESS OF THIS PROGRAM FOR A PARTICULAR PURPOSE.

- 5. LIMITED WARRANTY. The diskette on which this Program is recorded is guaranteed for 90 days from date of purchase. If a defect occurs within 90 days, contact the representative at the place of purchase to arrange for a replacement.
- 6. LIMITATION OF REMEDIES AND LIABILITY. IN NO EVENT SHALL CYPRESS BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES RESULTING FROM PROGRAM USE, EVEN IF CYPRESS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. CYPRESS'S EXCLUSIVE LIABILITY AND YOUR EXCLUSIVE REMEDY WILL BE IN THE REPLACEMENT OF ANY DEFECTIVE DISKETTE AS PROVIDED ABOVE. IN NO EVENT SHALL CYPRESS'S LIABILITY HEREUNDER EXCEED THE PURCHASE PRICE OF THE SOFTWARE.
- 7. ENTIRE AGREEMENT. This agreement constitutes the sole and complete Agreement between Cypress and the Customer for use of the Program and documentation. Changes to this Agreement may be made only by written mutual consent.
- 8. GOVERNING LAW. This Agreement shall be governed by the laws of the State of California. Should you have any question concerning this agreement, please contact:

Cypress Semiconductor Corporation Attn: Legal Counsel 3901 N. First Street San Jose, CA 95134-1599

408-943-2600

Table of Contents

Chapter 1 - Introduction

Chapter 2 - Counters

CNTR	
CNTR4	2-3
CNTR8	2-4
CNTR16	2-5
DNCNTR	2-6
DNCNTR4	2-7
DNCNTR8	2-8
DNCNTR16	
PLDN8	2-10
PLDN16	2-11
PLUP8	
PLUP16	
UPDN	
UPDN4	
UPDN8	
UPDN16	
Chapter 3 - Gates	
AND14I7	3-2
AND2	
AND3	
AND4	
AND8	

Table of Contents

	BUF	3-7
	NAND13I6	3-8
	NAND2	3-9
	NAND3	3-10
	NAND4	3-11
	NAND8	3-12
	NOR14I7	3-13
	NOR2	3-14
	NOR3	3-15
	NOR4	3-16
	NOR8	3-17
	OR13I6	3-18
	OR2	3-19
	OR3	3-20
	OR4	3-21
	OR8	3-22
	SOP14I7	3-23
	XNOR2	
	XNOR3	
	XNOR4	3-26
	XNOR8	3-27
	XOR2	3-28
	XOR3	3-29
	XOR4	3-30
	XOR8	
Ch	napter 4 - I/O	
	BUFOE	4-2
	CKPAD	4-3
	HDPAD	4-4
	INPAD	4-5
	OUTPAD	4-6
	TRIOUT	4-7

Chapter 5 - Math

ADD	5-2
ADD4	5-3
ADD8	5-4
ADD16	5-5
COMPBIT2	5-6
EQCOMP4	5-7
EQCOMP8	5-8
EQCOMP16	5-9
FBSUB4	5-10
FBSUB8	5-11
FBSUB16	5-12
FCADD4	5-13
FCADD8	5-14
FCADD16	
MULT4X4	5-16
NCIADD8	
NCIADD16	5-18
SUB	5-19
Chapter 6 - Macrocells	en et e
LOGICO	6-2
MC22V10I	
MC22V10N	
MC335NR	
MC335RG	
PABICELL	
PACKCELL	
PAFRAG A	
PAFRAG F	
PAFRAG_M	
PAFRAG_Q	
PAINCELL	
PALCELL	

Chapter 7 - Memory	
DFF	7-2
DLTCH	7-3
DSRFF	7-4
DSRLCH	7-5
JKFF	7-6
JKSRFF	7-7
SRFF	7-8
SRL	7-9
TFF	7-10
TSRFF	7-11
XDFF	7-12
XDSRFF	7-13
Chapter 8 - Multiplexers	
DE2X4	8-2
DE3X8	8-3
DE4X16	8-4
MUX1OF2	8-6
MUX1OF4	8-7
MUX1OF8	8-8
MUX1OF16	8-9
MUX2OF4	8-11
Chapter 9 - Registers	
REG	9-2
REG4	9-3
REG8	9-4
REG16	9-5
Chapter 10 - Shifters	
SHIFT	10-2
SHIFT4	
SHIFT8	
SHIFT16	10-5
UNSR	10-6

UNSR4	10-7
UNSR8	10-8
UNSR16	10-9
Chapter 11 - TTL Parts	
TTL00	11-2
TTL02	11-3
TTL04	11-4
TTL08	11-5
TTL10	11-6
TTL11	11-7
TTL20	11-8
TTL21	11-9
TTL25	11-10
TTL27	11-11
TTL30	11-12
TTL32	11-13
TTL73	11-14
TTL74	11-15
TTL75	11-16
TTL76	11-17
TTL82	11-18
TTL83	11-19
TTL85	11-20
TTL86	11-22
TTL107	11-23
TTL109	11-24
TTL112	11-25
TTL113	11-26
TTL116	11-27
TTL125	11-28
TTL126	11-29
TTL138	11-30
TTL139	11-32
TTL148	11-33
TTL150	11-35

Table of Contents

TTL151
TTL153
TTL154
TTL157
TTL158
TTL160
TTL161
TTL162
TTL163
TTL168
TTL169
TTL173
TTL174
TTL175
TTL180
TTL190
TTL191
TTL198
TTL19911-60
TTL240
TTL244
TTL251
TTL253
TTL257
TTL261
TTL273
TTL299
TTL322
TTL323
TTL36511-78
TTL366 11-79
TTL373 11-80
TTL374 11-81
TTL518

Chapter

Introduction

About This Document

This manual provides the information you are likely to need to know about each component in the $Warp^1$ system libraries.

For each component, the following information is given:

- a diagram of the component's symbol, as instantiated on a schematic;
- a listing of the VHDL entity declaration for the component. This information is useful for determining the order, direction, and type of each port when instantiating the component in a VHDL file;
- a description (usually tabular) of the functionality of the component.

The manual is made up of the following sections:

- Section 2 Counters
- Section 3 Gates
- Section 4 I/O

^{1.} Warp is a trademark of Cypress Semiconductor Corporation.

- Section 5 Math (adders, subtractors, comparators, multipliers)
- Section 6 MCparts (macrocells, etc.)
- Section 7 Memory
- Section 8 Multiplexers (and de-multiplexers)
- Section 9 Registers
- Section 10 Shifters
- Section 11 TTL

Chapter 2

Counters

To use any of the components described in this chapter within a VHDL description, include the following lines in your VHDL file, immediately above the entity and architecture declarations

```
use work.counterpkg.all;
use work.rtlpkg.all;
use work.cypress.all;
```

2.1. CNTR

1-Bit Cascadable Up Counter.


```
ENTITY cntr IS

PORT(ci: IN BIT;
co: OUT BIT;
en: IN BIT;
l: IN BIT;
d: IN BIT;
clk: IN BIT;
r: IN BIT;
q: OUT BIT);
```

		OUTPUTS					
CI	EN	L	CLK	D	R	СО	Q
X	X	X	X	X	Н	L	L
L	X	L	Λ	X	L	L	Q_0
Н	L	L	Λ	X	L	Q_0	Q_0
Н	Н	L	Λ	X	L	$\overline{\mathbb{Q}}_0$	$\overline{\mathbb{Q}}_0$
X	X	Н	Λ	L	L	L	L
X	X	Н	Λ	Н	L	Н	Н

2.2. CNTR4

4-Bit Cascadable Up Counter.


```
ENTITY cntr4 IS

PORT(ci: IN BIT;

co: OUT BIT;

en: IN BIT;

l: IN BIT;

d3, d2, d1, d0: IN BIT;

clk: IN BIT;

r: IN BIT;

q3, q2, q1, q0: OUT BIT);

END cntr4;
```

		OUTPUTS					
CI	EN	L	CLK	D	R	СО	Q
X	X	X	X	X	Н	L	L
L	X	X	Λ	X	L	L	Q_0
Н	L	L	Λ	X	L	H if Q=F, else L	Q ₀
Н	Н	L	Λ	X	L	H if Q=F, else L	Q ₀ +1
X	X	Н	Λ	L	L	L	L
X	X	Н	Λ	Н	L	Н	Н

2.3. CNTR8

8-Bit Cascadable Up Counter.


```
ENTITY cntr8 IS

PORT(ci: IN BIT;

co: OUT BIT;

en: IN BIT;

l: IN BIT;

d7, d6, d5, d4, d3, d2, d1, d0: IN BIT;

clk: IN BIT;

r: IN BIT;

q7, q6, q5, q4, q3, q2, q1, q0: OUT

BIT);

END cntr8;
```

		OUTPUTS					
CI	EN	L	CLK	D	R	СО	Q
X	X	X	X	X	Н	L	L
L	X	X	Λ	X	L	L	Q_0
Н	L	L	Λ	X	L	H if Q=FF, else L	Q ₀
Н	Н	L	Λ	X	L	H if Q=FF, else L	Q ₀ +1
X	X	Н	Λ	L	L	L	L
X	X	Н	Λ	Н	L	Н	Н

2.4. CNTR16

16-Bit Cascadable Up Counter.


```
ENTITY cntr16 IS

PORT(ci: IN BIT;

co: OUT BIT;

en: IN BIT;

l: IN BIT;

d15, d14, d13, d12, d11, d10, d9, d8, d7, d6, d5, d4, d3, d2, d1, d0: IN BIT;

clk: IN BIT;

r: IN BIT;

q15, q14, q13, q12, q11, q10, q9, q8, q7, q6, q5, q4, q3, q2, q1, q0: OUT

BIT);

END cntr16;
```

		OUTPUTS					
CI	EN	L	CLK	D	R	со	Q
X	X	X	X	X	Н	L	L
L	X	X	Λ	X	L	L	Q_0
Н	L	L	Λ	X	L	H if Q=FFFF, else L	Q_0
Н	Н	L	Λ	X	L	H if Q=FFFF, else L	Q ₀ +1
X	X	Н	Λ	L	L	L	L
X	X	Н	Λ	Н	L	Н	Н

2.5. DNCNTR

1-Bit Cascadable Down Counter.


```
ENTITY dnentr IS

PORT(ci: IN BIT;

co: OUT BIT;

en: IN BIT;

l: IN BIT;

d: IN BIT;

clk: IN BIT;

r: IN BIT;

p: IN BIT;

q: OUT BIT);
```

	OUTPUTS							
CI	EN	L	CLK	D	R	P	со	Q
X	X	X	X	X	Н	X	L	L
X	X	X	X	X	L	Н	L	Н
L	X	L	Λ	X	L	L	L	Q_0
Н	L	L	Λ	X	L	L	$\overline{\mathbb{Q}}_0$	Q_0
Н	Н	L	Λ	X	L	L	Q_0	\overline{Q}_0
X	X	Н	Λ	L	L	L	Н	L
X	X	Н	Λ	Н	L	L	L	Н

2.6. **DNCNTR4**

4-Bit Cascadable Down Counter.


```
ENTITY dncntr4 IS

PORT(ci: IN BIT;

co: OUT BIT;

en: IN BIT;

l: IN BIT;

d3, d2, d1, d0: IN BIT;

clk: IN BIT;

r: IN BIT;

p: IN BIT;

q3, q2, q1, q0: OUT BIT);

END dncntr4;
```

	INPUTS									
CI	EN	L	CLK	D	R	P	со	Q		
X	X	X	X	X	Н	X	L	L		
X	X	X	X	X	L	Н	L	Н		
L	X	X	Λ	X	L	L	L	Q_0		
Н	L	L	Λ	X	L	L	H if Q=0, else L	Q_0		
Н	Н	L	Λ	Х	L	L	H if Q=0, else L	Q ₀ -1		
X	X	Н	Λ	L	L	L	Н	L		
X	X	Н	Λ	Н	L	L	L	Н		

2.7. DNCNTR8

8-Bit Cascadable Down Counter.


```
ENTITY dncntr8 IS

PORT(ci: IN BIT;

co: OUT BIT;

en: IN BIT;

l: IN BIT;

d7, d6, d5, d4, d3, d2, d1, d0: IN BIT;

clk: IN BIT;

r: IN BIT;

p: IN BIT;

q7, q6, q5, q4, q3, q2, q1, q0: OUT

BIT);

END dncntr8;
```

			INPUTS				OUTPUTS	
CI	EN	L	CLK	D	R	P	СО	Q
X	X	X	X	X	Н	X	L	L
X	X	X	X	X	L	Н	L	Н
L	X	X	Λ	X	L	L	L	Q_0
Н	L	L	Λ	Х	L	L	H if Q=00, else L	Q_0
Н	Н	L	Λ	Х	L	L	H if Q=00, else L	Q ₀ -1
X	X	Н	Λ	L	L	L	Н	L
X	X	Н	Λ	Н	L	L	L	Н

2.8. DNCNTR16

16-Bit Cascadable Down Counter.


```
ENTITY dncntr16 IS

PORT(ci: IN BIT;

co: OUT BIT;

en: IN BIT;

l: IN BIT;

d15, d14, d13, d12, d11, d10, d9, d8, d7, d6, d5, d4, d3, d2, d1, d0: IN BIT;

clk: IN BIT;

r: IN BIT;

p: IN BIT;

q15, q14, q13, q12, q11, q10, q9, q8, q7, q6, q5, q4, q3, q2, q1, q0: OUT

BIT);

END dncntr16;
```

	INPUTS								
CI	EN	L	CLK	D	R	P	СО	Q	
X	X	X	X	X	Н	X	L	L	
X	X	X	X	X	L	Н	L	Н	
L	X	X	L	X	L	L	L	Q_0	
Н	L	L	L	X	L	L	H if Q=0000, else L	Q_0	
Н	Н	L	L	X	L	L	H if Q=0000, else L	Q ₀ -1	
X	X	Н	L	L	L	L	Н	L	
X	X	Н	L	Н	L	L	L	Н	

2.9. PLDN8

8-Bit Pipelined Down Counter.

ENTITY pldn8 is

PORT(EN: IN BIT;

L: IN BIT;

D7, D6, D5, D4, D3, D2, D1, D0: IN

BIT;

CLK: IN BIT;

P: IN BIT;

Q7, Q6, Q5, Q4, Q3, Q2, Q1, Q0:

INOUT BIT);

DESCRIPTION

		INP	UTS			OUTPUTS
EN	L	CLK	D	R	P	Q
X	X	X	X	Н	X	L
X	X	X	X	L	Н	Н
L	L	Λ	X	L	L	Q_0
Н	L	Λ	X	L	L	Q ₀ -1
X	Н	Λ	L	L	L	L
X	Н	Λ	Н	L	L	Н

END pldn8;

2.10. PLDN16

16-Bit Pipelined Down Counter.

ENTITY pldn16 is

PORT(EN: IN BIT;

L: IN BIT;

D15, D14, D13, D12, D11, D10, D9,

D8, D7, D6, D5, D4, D3, D2, D1, D0: IN BIT;

CLK: IN BIT;

P: IN BIT;

Q15, Q14, Q13, Q12, Q11, Q10, Q9,

Q8, Q7, Q6, Q5, Q4, Q3, Q2, Q1, Q0: INOUT

BIT);

END pldn16;

		INP	UTS			OUTPUTS
EN	L	CLK	D	R	P	Q
X	X	X	X	Н	X	L
X	X	X	X	L	Н	Н
L	L	Λ	X	L	L	Q_0
Н	L	Λ	X	L	L	Q ₀ -1
X	Н	Λ	L	L	L	L
X	Н	Λ	Н	L	L	Н

2.11. PLUP8

8-Bit Pipelined Up Counter.

ENTITY plup8 is

PORT(EN: IN BIT;

L: IN BIT;

D7, D6, D5, D4, D3, D2, D1, D0: IN

BIT;

CLK: IN BIT;

R: IN BIT;

Q7, Q6, Q5, Q4, Q3, Q2, Q1, Q0:

INOUT BIT);

END plup8;

	INPUTS								
EN	L	CLK	D	R	Q				
X	X	X	X	Н	L				
L	L	Λ	X	L	Q_0				
Н	L	Λ	X	L	Q ₀ +1				
X	Н	Λ	L	L	L				
X	Н	Λ	Н	L	Н				

2.12. PLUP16

16-Bit Pipelined Up Counter.

ENTITY plup16 is

PORT(EN: IN BIT;

L: IN BIT;

D15, D14, D13, D12, D11, D10, D9,

D8, D7, D6, D5, D4, D3, D2, D1, D0: IN BIT;

CLK: IN BIT;

R: IN BIT;

Q15, Q14, Q13, Q12, Q11, Q10, Q9,

Q8, Q7, Q6, Q5, Q4, Q3, Q2, Q1, Q0: INOUT

BIT);

END plup16;

		INPUTS			OUTPUTS
EN	L	CLK	D	R	Q
X	X	X	X	Н	L
L	L	Λ	X	L	Q_0
Н	L	Λ	X	L	Q ₀ +1
X	Н	Λ	L	L	L
X	Н	Λ	Н	L	Н

2.13. UPDN

1-Bit Cascadable Up-Down Counter.


```
ENTITY updn IS

PORT(ci: IN BIT;

co: OUT BIT;

up: IN BIT;

en: IN BIT;

d: IN BIT;

clk: IN BIT;

r: IN BIT;

q: OUT BIT);
```

	· · · · · · · · · · · · · · · · · · ·	OUTPUTS						
CI	EN	L	CLK	D	R	UP	CO	Q
X	X	X	X	X	H	X	L	L
L	X	L	L	X	L	Н	L	Q_0
Н	L	L	L	X	L	Н	Q_0	Q_0
Н	Н	L	L	X	L	Н	$\overline{\overline{Q}}_0$	$\overline{\overline{Q}}_0$
X	X	Н	L	L	L	Н	L	L
X	X	Н	L	Н	L	Н	Н	Н
L	X	L	L	X	L	L	L	Q_0
Н	L	L	L	X	L	L	$\overline{\overline{Q}}_0$	Q_0
Н	Н	L	L	X	L	L	Q_0	$\overline{\overline{Q}}_0$
X	X	Н	L	L	L	L	Н	L
X	X	Н	L	Н	L	L	L	Н

2.14. UPDN4

4-Bit Cascadable Up/Down Counter.


```
ENTITY updn4 IS

PORT(ci: IN BIT;

co: INOUT BIT;

up: IN BIT;

en: IN BIT;

l: IN BIT;

d3, d2, d1, d0: IN BIT;

clk: IN BIT;

r: IN BIT;

q3, q2, q1, q0: INOUT BIT);

END updn4;
```

			OUTPUTS					
CI	EN	L	CLK	D	R	UP	СО	Q
X	X	X	X	X	Н	X	L	L
L	X	L	Λ	X	L	Н	L	Q_0
Н	L	L	Λ	X	L	Н	H if Q=F, else L	Q_0
Н	Н	L	Λ	X	L	Н	H if Q=F, else L	Q ₀ +1
X	X	Н	Λ	L	L	Н	L	L
X	X	Н	Λ	Н	L	Н	Н	Н
L	X	L	Λ	X	L	L	L	Q_0
Н	L	L	Λ	X	L	L	H if Q=0, else L	Q_0
Н	Н	L	Λ	X	L	L	H if Q=0, else L	Q ₀ -1
X	X	Н	Λ	L	L	L	Н	L
X	X	Н	Λ	Н	L	L	L	Н

2.15. UPDN8

8-Bit Cascadable Up/Down Counter.


```
ENTITY updn8 IS

PORT(ci: IN BIT;

co: OUT BIT;

up: IN BIT;

en: IN BIT;

l: IN BIT;

d7, d6, d5, d4, d3, d2, d1, d0: IN BIT;

clk: IN BIT;

r: IN BIT;

q7, q6, q5, q4, q3, q2, q1, q0: OUT

BIT);

END updn8;
```

			INPUTS				OUT	PUTS
CI	EN	L	CLK	D	R	UP	со	Q
X	X	X	X	X	Н	X	L	L
L	X	L	Λ	X	L	Н	L	Q_0
Н	L	L	Λ	Х	L	Н	H if Q=FF, else L	Q_0
Н	Н	L	Λ	Х	L	Н	H if Q=FF, else L	Q ₀ +1
X	X	Н	Λ	L	L	Н	L	L
X	X	Н	Λ	Н	L	Н	Н	Н
L	X	L	Λ	X	L	L	L	Q_0
Н	L	L	Λ	Х	L	L	H if Q=00, else L	Q_0
Н	Н	L	Λ	X	L	L	H if Q=00, else L	Q ₀ -1
X	X	Н	Λ	L	L	L	Н	L
X	X	Н	Λ	Н	L	L	L	Н

2.16. UPDN16

16-Bit Cascadable Up/Down Counter.


```
ENTITY updn16 IS

PORT(ci: IN BIT;

co: OUT BIT;

up: IN BIT;

en: IN BIT;

l: IN BIT;

d15, d14, d13, d12, d11, d10, d9, d8, d7, d6, d5, d4, d3, d2, d1, d0: IN BIT;

clk: IN BIT;

r: IN BIT;

r: IN BIT;

q15, q14, q13, q12, q11, q10, q9, q8, q7, q6, q5, q4, q3, q2, q1, q0: OUT

BIT);

END updn16;
```

			INPUTS				OUT	PUTS
CI	EN	L	CLK	D	R	UP	со	Q
X	X	X	X	X	Н	X	L	L
L	X	L	Λ	X	L	Н	L	Q_0
Н	L	L	Λ	X	L	Н	H if Q=FFFF, else L	Q_0
Н	Н	L	Λ	Х	L	Н	H if Q=FFFF, else L	Q ₀ +1
X	X	Н	Λ	L	L	Н	L	L
X	X	Н	Λ	Н	L	Н	Н	Н
L	X	L	Λ	X	L	L	L	Q_0
Н	L	L	Λ	X	L	L	H if Q=0000, else L	Q_0
Н	Н	L	Λ	Х	L	L	H if Q=0000, else L	Q ₀ -1
X	X	Н	Λ	L	L	L	Н	L
X	X	Н	Λ	Н	L	L	L	Н

Chapter 3

Gates

To use any of the components described in this chapter within a VHDL description, include the following lines in your VHDL file; outside the entity and architecture declarations:

```
use work.gatespkg.all;
use work.rtlpkg.all;
use work.cypress.all;
```

3.1. AND1417

14-input AND gate, 7 inputs inverted.

ENTITY and 14i7 IS

PORT(a,b,c,d,e,f,g,
h,i,j,k,l,m,n: IN BIT;
q: OUT BIT);

END and 14i7;

DESCRIPTION

 $\mathbf{Q}=\mathbf{A}$ AND B AND C AND D AND E AND F AND G AND NOT H AND NOT I AND NOT J AND NOT K AND NOT L AND NOT M AND NOT N

3.2. AND2

2-Input Positive AND Gate.

ENTITY and2 IS
PORT(a, b: IN BIT;
q: OUT BIT);
END and2;

DESCRIPTION

Q = (A AND B).

3.3. AND3

3-Input Positive AND Gate.

ENTITY and 3 IS

PORT(a, b, c: IN BIT;

q: OUT BIT);

END and 3;

DESCRIPTION

Q = (A AND B AND C).

3.4. AND4

4-Input Positive AND Gate.

ENTITY and4 IS

PORT(a, b, c, d: IN BIT;

q: OUT BIT);

END and4;

DESCRIPTION

Q = (A AND B AND C AND D).

3.5. AND8

8-Input Positive AND Gate.

ENTITY and8 IS

PORT(a, b, c, d, e, f, g, h: IN BIT;

q: OUT BIT);

END and8;

DESCRIPTION

Q = (A AND B AND C AND D AND E AND F AND G AND H).

3.6. BUF

Buffer.

ENTITY buf IS

PORT(x: IN BIT;

y: OUT BIT);

END buf;

DESCRIPTION

INPUT	OUTPUT
X	Y
L	L
Н	н

3.7. NAND1316

13-input NAND gate, 6 inputs inverted.

ENTITY nand13i6 IS

PORT(a,b,c,d,e,f,g,
h,i,j,k,l,m: IN BIT;
qn: OUT BIT);

END nand13i6;

DESCRIPTION

 $\mathrm{QN}=\mathrm{NOT}$ (A AND B AND C AND D AND E AND F AND G AND NOT H AND NOT I AND NOT J AND NOT K AND NOT L AND NOT M)

3.8. NAND2

2-Input Positive NAND Gate.

ENTITY nand2 IS
PORT(a, b: IN BIT;
qn: OUT BIT);
END nand2;

DESCRIPTION

QN = NOT(A AND B).

3.9. NAND3

3-Input Positive NAND Gate.

ENTITY nand3 IS

PORT(a, b, c: IN BIT;

qn: OUT BIT);

END nand3;

DESCRIPTION

QN = NOT(A AND B AND C).

3.10. NAND4

4-Input Positive NAND Gate.

ENTITY nand4 IS

PORT(a, b, c, d: IN BIT;

qn: OUT BIT);

END nand4;

DESCRIPTION

QN = NOT(A AND B AND C AND D).

3.11. NAND8

8-Input Positive NAND Gate.

ENTITY nand8 IS

PORT(a, b, c, d, e, f, g, h: IN BIT;

qn: OUT BIT);

END nand8;

DESCRIPTION

 $\mathrm{QN} = \mathrm{NOT}(\mathrm{A}\ \mathrm{AND}\ \mathrm{B}\ \mathrm{AND}\ \mathrm{C}\ \mathrm{AND}\ \mathrm{D}\ \mathrm{AND}\ \mathrm{E}\ \mathrm{AND}\ \mathrm{F}\ \mathrm{AND}\ \mathrm{G}\ \mathrm{AND}$ H).

3.12. NOR14I7

14-input NOR gate, 7 inputs inverted.

ENTITY nor14i7 IS

PORT(a,b,c,d,e,f,g,
h,i,j,k,l,m,n: IN BIT;
qn: OUT BIT);
END nor14i7;

DESCRIPTION

QN = NOT(A OR B OR C OR D OR E OR F OR G OR NOT H OR NOT I OR NOT J OR NOT K OR NOT L OR NOT M OR NOT N)

3.13. NOR2

2-Input Positive NOR Gate.

ENTITY nor2 IS

PORT(a, b: IN BIT;

qn: OUT BIT);

END nor2;

DESCRIPTION

QN = NOT(A OR B).

3.14. NOR3

3-Input Positive NOR Gate.

ENTITY nor3 IS

PORT(a, b, c: IN BIT;

qn: OUT BIT);
END nor3;

DESCRIPTION

QN = NOT(A OR B OR C).

3.15. NOR4

4-Input Positive NOR Gate.

ENTITY nor4 IS

PORT(a, b, c, d: IN BIT;

qn: OUT BIT);

END nor4;

DESCRIPTION

QN = NOT(A OR B OR C OR D).

3.16. NOR8

8-Input Positive NOR Gate.

ENTITY nor8 IS

PORT(a, b, c, d, e, f, g, h: IN BIT;

qn: OUT BIT);

END nor8;

DESCRIPTION

QN = NOT(A OR B OR C OR D OR E OR F OR G OR H).

3.17. OR13I6

13-input OR gate, 6 inputs inverted.

ENTITY or13i6 IS

PORT(a,b,c,d,e,f,g,
h,i,j,k,l,m: IN BIT;
q: OUT BIT);
END or13i6;

DESCRIPTION

Q = A OR B OR C OR D OR E OR F OR G OR NOT H OR NOT I OR NOT J OR NOT K OR NOT L OR NOT M

3.18. OR2

2-Input Positive OR Gate.

ENTITY or 2 IS

PORT(a, b: IN BIT;

q: OUT BIT);

END or 2;

DESCRIPTION

Q = (A OR B).

3.19. OR3

3-Input Positive OR Gate.

ENTITY or3 IS

PORT(a, b, c: IN BIT;

q: OUT BIT);

END or3;

DESCRIPTION

Q = (A OR B OR C).

3.20. OR4

4-Input Positive OR Gate.

ENTITY or4 IS

PORT(a, b, c, d: IN BIT;

q: OUT BIT);

END or4;

DESCRIPTION

Q = (A OR B OR C OR D).

3.21. OR8

8-Input Positive OR Gate.

ENTITY or8 IS

PORT(a, b, c, d, e, f, g, h: IN BIT;

q: OUT BIT);

END or8;

DESCRIPTION

Q = (A OR B OR C OR D OR E OR F OR G OR H).

3.22. SOP1417

14-input sum-of-products component, 7 inputs inverted.

ENTITY sop14i7 IS

PORT(a,b,c,d,e,f,g,
h,i,j,k,l,m,n: IN BIT;
q: OUT BIT);

END sop14i7;

DESCRIPTION

Q = (A AND B AND C AND NOT D AND NOT E AND NOT F)

OR (G AND NOT H)

OR (I AND J AND K AND NOT L AND NOT M AND NOT N)

3.23. XNOR2

2-Input Exclusive-NOR Gate.

ENTITY xnor2 IS

PORT(a, b: IN BIT;
q: OUT BIT);
END xnor2;

DESCRIPTION

Q = NOT(A XOR B).

3.24. XNOR3

3-Input Exclusive-NOR gate.

ENTITY xnor3 IS

PORT(a, b, c: IN BIT;

q: OUT BIT);

END xnor3;

DESCRIPTION

Q = NOT(A XOR B XOR C).

3.25. XNOR4

4-Input Exclusive-NOR Gate.

ENTITY xnor4 IS

PORT(a, b, c, d: IN BIT;
q: OUT BIT);
END xnor4;

DESCRIPTION

Q = NOT(A XOR B XOR C XOR D).

3.26. XNOR8

8-Input Exclusive-NOR Gate.

ENTITY xnor8 IS

PORT(a, b, c, d, e, f, g, h: IN BIT;

q: OUT BIT);

END xnor8;

DESCRIPTION

Q = NOT(A XOR B XOR C XOR D XOR E XOR F XOR G XOR H).

3.27. XOR2

2-Input Exclusive-OR Gate.

ENTITY xor2 IS

PORT(a, b: IN BIT;

q: OUT BIT);

END xor2;

DESCRIPTION

Q = (A XOR B).

3.28. XOR3

3-Input Exclusive-OR Gate.

ENTITY xor3 IS

PORT(a, b, c: IN BIT;
q: OUT BIT);
END xor3;

DESCRIPTION

Q = (A XOR B XOR C).

3.29. XOR4

4-Input Exclusive-OR Gate.

ENTITY xor4 IS

PORT(a, b, c, d: IN BIT;

q: OUT BIT);

END xor4;

DESCRIPTION

Q = (A XOR B XOR C XOR D).

3.30. XOR8

8-Input Exclusive-OR Gate.

ENTITY xor8 IS

PORT(a, b, c, d, e, f, g, h: IN BIT;

q: OUT BIT);

END xor8;

DESCRIPTION

Q = (A XOR B XOR C XOR D XOR E XOR F XOR G XOR H).

Chapter I/O

To use any of the components described in this chapter within a VHDL description, include the following lines in your VHDL file, immediately above the entity and architecture declarations:

```
use work.iopkg.all;
use work.rtlpkg.all;
use work.cypress.all;
```

4.31. BUFOE

3-State Buffer with Feed Back.

ENTITY bufoe IS

PORT(x: IN BIT;

oe: IN BIT;

y: INOUT X01Z;

yfb: OUT BIT);

END bufoe;

DESCRIPTION

INI	PUTS	OUT	PUT
X	OE	Y	YFB
X	L	Z	X
L	Н	L	L
Н	Н	Н	Н

4.32. CKPAD

Clock Pin Input Pad (pASIC).

ENTITY ckpad IS
PORT(p: IN BIT;
q: OUT BIT);
END ckpad;

DESCRIPTION

INPUT	OUTPUT
P	Q
L	L
н	Н

The CKPAD is a special input pin for the pASIC devices. It is realized as a buffer for other devices.

4.33. HDPAD

High Drive PinInput Pad (pASIC).

ENTITY hdpad IS
PORT(p: IN BIT;
q: OUT BIT);
END hdpad;

DESCRIPTION

INPUT	OUTPUT
P	Q
L	L
Н	Н

The HDPAD is a special input pin for the pASIC devices. It is realized as a buffer for other devices.

4.34. INPAD

PinInput Pad (pASIC).

ENTITY inpad IS
PORT(p: IN BIT;
q: OUT BIT);
END inpad;

DESCRIPTION

INPUT	OUTPUT
P	Q
L	L
Н	Н

The INPAD is an input pin for the pASIC devices. It is realized as a buffer for other devices.

4.35. OUTPAD

Pin Output Pad (pASIC).

ENTITY outpad IS

PORT(a: IN BIT;

p: OUT BIT);

END outpad;

DESCRIPTION

INPUT	OUTPUT
A	P
L	L
Н	Н

The OUTPAD is an output pin for the pASIC devices. It is realized as a buffer for other devices.

4.36. TRIOUT

3-State Buffer.

ENTITY triout IS

PORT(x: IN BIT;

oe: IN BIT;

y: OUT X01Z);

END triout;

DESCRIPTION

·		
X	OE	Y
X	L	Z
L	Н	L
Н	Н	Н

Chapter 5

Math

To use any of the components described in this chapter within a VHDL description, include the following lines in your VHDL file, immediately above the entity and architecture declarations:

```
use work.mathpkg.all;
use work.rtlpkg.all;
use work.cypress.all;
```

5.1. ADD

1-Bit Full Adder.


```
ENTITY add IS

PORT(ci: IN BIT;

a: IN BIT;

b: IN BIT;

sum: OUT BIT;

co: OUT BIT);

END add;
```

DESCRIPTION

CO = (A AND B) OR (A AND CI) OR (B AND CI)

SUM = (A XOR B) XOR C

5.2. ADD4

4-Bit Full Adder.


```
ENTITY add4 IS

PORT(ci: IN BIT;

a3, a2, a1, a0: IN BIT;

b3, b2, b1, b0: IN BIT;

sum3, sum2, sum1, sum0: OUT BIT;

co: OUT BIT );

END add4;
```

DESCRIPTION

SUM = A + B + CI

A 4-bit adder with 2 stage carry-look-ahead. It is not as fast as the FCADD4, but is more space efficient in most cases. In the case of the pASIC devices, it is identical to the FCADD4.

5.3. ADD8

8-Bit Full Adder.

ENTITY add8 IS

PORT(ci: IN BIT;

a7, a6, a5, a4, a3, a2, a1, a0: IN BIT; b7, b6, b5, b4, b3, b2, b1, b0: IN BIT; sum7, sum6, sum5, sum4, sum3, sum2, sum1, sum0, co: OUT BIT);

END add8;

DESCRIPTION

SUM = A + B + CI

An 8-bit adder with 2 stage carry-look-ahead. It is not as fast as the FCADD8, but is more space efficient in most cases. In the case of the pASIC devices, it is identical to the FCADD8.

5.4. ADD16

16-Bit Full Adder.

ENTITY add16 IS

PORT(ci: IN BIT;

a15,a14,a13,a12,a11,a10,a9: IN BIT; a8,a7,a6,a5,a4,a3,a2,a1 a0: IN BIT; b15,b14,b13,b12,b11,b10,b9: IN BIT; b8,b7,b6,b5,b4,b3,b2,b1,b0: IN BIT; sum15,sum14,sum13,sum12: OUT BIT; sum11,sum10,sum9,sum8: OUT BIT; sum7,sum6,sum5,sum4,sum3: OUT BIT; sum2,sum1,sum0,co: OUT BIT);

END add16;

DESCRIPTION

$$SUM = A + B + CI$$

A 16-bit adder with 2 stage carry-look-ahead. It is not as fast as the FCADD16, but is more space efficient in most cases. In the case of the pASIC devices, it utilizes the FCADD16.

5.5. COMPBIT2

Two-bit comparator.

ENTITY compbit2 IS
PORT(a0,b0,a1,b1: IN BIT;
eq0,eq1: INOUT BIT);
END compbit2;

DESCRIPTION

EQ0 = NOT(A0 XOR B0)

EQ1 = (A1 XOR B1)

5.6. EQCOMP4

4-Bit Equal Compare.

ENTITY eqcomp4 IS

PORT(a3, a2, a1, a0, b3, b2, b1, b0: IN BIT;

eq: OUT BIT);

END eqcomp4;

DESCRIPTION

EQ = NOT (A3 XOR B3) AND NOT (A2 XOR B2) AND NOT (A1 XOR B1) AND NOT (A0 XOR B0)

5.7. EQCOMP8

8-Bit Equal Compare.

ENTITY eqcomp8 IS

PORT(a7, a6, a5, a4, a3, a2, a1, a0: IN BIT;

b7, b6, b5, b4, b3, b2, b1, b0: IN BIT;

eq: OUT BIT);

END eqcomp8;

U

DESCRIPTION

EQ = NOT (A7 XOR B7) AND NOT (A6 XOR B6) AND NOT (A5 XOR B5) AND NOT (A4 XOR B4) AND NOT (A3 XOR B3) AND NOT (A2 XOR B2) AND NOT (A1 XOR B1) AND NOT (A0 XOR B0)

5.8. **EQCOMP16**

16-Bit Equal Compare.

ENTITY eqcomp16 IS

PORT(a15,a14,a13,a12,a11,a10,a9:IN BIT; a8,a7,a6,a5,a4,a3,a2,a1,a0: IN BIT; b15,b14,b13,b12,b11,b10,b9: IN BIT; b8,b7,b6,b5,b4,b3,b2,b1,b0: IN BIT; eq: OUT BIT);

END eqcomp16;

DESCRIPTION

EQ = NOT (A15 XOR B15) ANDNOT (A14 XOR B14) AND NOT (A13 XOR B13) AND NOT (A12 XOR B12) AND NOT (A11XOR B11) AND NOT (A10 XOR B10) AND NOT (A9 XOR B9) AND NOT (A8 XOR B8) AND NOT (A7 XOR B7) AND NOT (A6 XOR B6) AND NOT (A5 XOR B5) AND NOT (A4 XOR B4) AND NOT (A3 XOR B3) AND NOT (A2 XOR B2) AND NOT (A1 XOR B1) AND NOT (A0 XOR B0)

5.9. FBSUB4

4-Bit Fast Borrow Subtract.

ENTITY fbsub4 IS

PORT(ci: IN BIT;

a3,a2,a1,a0: IN BIT;

b3,b2,b1,b0: IN BIT;

dif3,dif2,dif1,dif0: OUT BIT;

co: OUT BIT);

END fbsub4;

DESCRIPTION

DIF = A - B - CI

A 4-bit subtractor using a fast borrow-look-ahead architecture.

5.10. FBSUB8

8-Bit Fast Borrow Subtract.


```
ENTITY fbsub8 IS

PORT(ci: IN BIT;

a7,a6,a5,a4,a3,a2,a1,a0: IN BIT;

b7,b6,b5,b4,b3,b2,b1,b0: IN BIT;

dif7.dif6,dif5,dif4: OUT BIT;

dif3,dif2,dif1,dif0: OUT BIT;

co: OUT BIT);

END fbsub8;
```

DESCRIPTION

DIF = A - B - CI

An 8-bit subtractor using a fast borrow-look-ahead architecture in the pASIC devices. For other devices, it uses 4-stage fast borrow-look-ahead.

5.11. FBSUB16

16-Bit Fast Borrow Subtract.

ENTITY fbsub16 IS

PORT(ci: IN BIT;

a15,a14,a13,a12,a11,a10,a9: IN BIT; a8,a7a,6,a5,a4,a3,a2,a1,a0: IN BIT; b15,b14,b13,b12,b11,b10,b9: IN BIT; b8,b7,b6,b5,b4,b3,b2,b1,b0: IN BIT; dif15,dif14,dif13,dif12: OUT BIT; dif11,dif10,dif9,dif8: OUT BIT; dif7,dif6,dif5,dif4dif3: OUT BIT; dif2,dif1,dif0,co: OUT BIT);

END fbsub16:

DESCRIPTION

DIF = A - B - CI

A 16-bit subtractor using a fast borrow-look-ahead architecture in the pASIC devices. For other devices, it uses 4-stage fast borrow-look-ahead.

5.12. FCADD4

4-Bit Fast Carry Add.

ENTITY fcadd4 IS

PORT(ci: IN BIT;

a3, a2, a1, a0 IN BIT;

b3, b2, b1, b0: IN BIT;

sum3, sum2, sum1, sum0: OUT BIT;

co: OUT BIT);

END fcadd4;

DESCRIPTION

SUM = A + B + CI

A 4-bit adder using a fast carry-look-ahead architecture.

5.13. FCADD8

8-Bit Fast Carry Add.

ENTITY fcadd8 IS

PORT(ci: IN BIT;

a7,a6,a5,a4,a3,a2,a1,a0: IN BIT;

b7,b6,b5,b4,b3,b2,b1,b0: IN BIT;

sum7,sum6,sum5,sum4: OUT BIT;

sum3,sum2,sum1,sum0: OUT BIT;

co: OUT BIT);

END fcadd8;

DESCRIPTION

SUM = A + B + CI

An 8-bit adder using a fast carry-look-ahead architecture in the pASIC devices. For other devices, it uses 4-stage fast carry-look-ahead.

5.14. FCADD16

16-Bit Fast Carry Add.

ENTITY fcadd16 IS

PORT(ci: IN BIT;

a15,a14,a13,a12,a11,a10,a9: IN BIT; a8,a7,a6,a5,a4,a3,a2,a1,a0: IN BIT; b15,b14,b13,b12,b11,b10,b9: IN BIT; b8,b7,b6,b5,b4,b3,b2,b1,b0: IN BIT; sum15,sum14,sum13,sum12: OUT BIT; sum11,sum10,sum9,sum8: OUT BIT; sum7,sum6,sum5,sum4,sum3: OUT BIT; sum2,sum1,sum0,co: OUT BIT);

END fcadd16:

DESCRIPTION

SUM = A + B + CI

A 16-bit adder using a fast carry-look-ahead architecture in the pASIC devices. For other devices, it uses 4-stage fast carry-look-ahead.

5.15. MULT4X4

4-Bit by 4-Bit Binary Multiplier.

ENTITY mult4x4 IS

PORT(b3,b2, b1,b0,m3,m2,m1,m0: IN BIT;

q7,q6,q5,q4,q3,q2,q1,q0: OUT BIT);

END mult4x4;

DESCRIPTION

Q = B X M

This element multiplies two 4-bit inputs and generates an 8-bit output. The range is 0 to 225 (decimal).

5.16. NCIADD8

8-bit adder, no carry input.

ENTITY nciadd8 is PORT(a7,a6,a5,a4,a3,a2,a1,a0,

b7,b6,b5,b4,b3,b2,b1,b0 : IN bit; sum7,sum6,sum5,sum4, sum3,sum2,sum1,sum0,

co: INOUT bit);

END nciadd8;

DESCRIPTION

SUM = A + B

5.17. NCIADD16

16-bit adder, no carry input.

ENTITY nciadd16 IS

END nciadd16;

PORT(ci,a15,a14,a13,a12,a11,a10,a9,a8, a7,a6,a5,a4,a3,a2,a1,a0, b15,b14,b13,b12,b11,b10,b9,b8, b7,b6,b5,b4,b3,b2,b1,b0:
IN bit;
sum15,sum14,sum13,sum12, sum11,sum10,sum9,sum8, sum7,sum6,sum5,sum4,sum3, sum2,sum1,sum0,co:
INOUT bit);

DESCRIPTION

SUM = A + B

5.18. SUB

1-Bit Subtractor.


```
ENTITY sub IS

PORT(ci: IN BIT;

a: IN BIT;

b: IN BIT;

dif: OUT BIT;

co: OUT BIT);

END sub;
```

DESCRIPTION

DIF = NOT(NOT(A XOR B) XOR CI)

CO = (NOT A AND B) OR ((NOT A AND CI) OR (B AND CI))

Chapter 6

Macrocells

To use any of the components described in this chapter within a VHDL description, include the following lines in your VHDL file, immediately above the entity and architecture declarations:

```
use work.mcpartspkg.all;
use work.rtlpkg.all;
use work.cypress.all;
```

6.1. LOGICO

pASIC380 FPGA internal logic cell, minus register.

ENTITY logico is

PORT(a1,a2,a3,a4,a5,a6: IN BIT;

b1,b2: IN BIT;

c1,c2: IN BIT;

d1,d2: IN BIT;

e1,e2: IN BIT;

f1,f2,f3,f4,f5,f6: IN BIT;

oz: INOUT BIT);

END logico;

DESCRIPTION

OZ <= ((EL AND NOT (E2) AND F1 AND NOT (F2) AND F3 AND NOT (F4) AND F5 AND NOT (F6)) OR (D1 AND NOT (D2) AND NOT (F1 AND NOT (F2) AND F3 AND NOT (F4) AND F5 AND NOT (F6))) AND A1 AND NOT (A2) AND A3 AND NOT (A4) AND A5 AND NOT (A6)) OR ((C1 AND NOT (C2) AND F1 AND NOT (F2) AND F3 AND NOT (F4) AND F5 AND NOT (F6)) OR (B1 AND NOT (B2) AND NOT (F1 AND NOT (F2) AND F3 AND NOT (F4) AND F5 AND NOT (F6))) AND NOT (A1 AND NOT (A2) AND A3 AD NOT (AR) AND A5 AND NOT (A6)));

6.2. MC22V10I

Inverting Output Macro-cell for C22V10.

ENTITY mc22v10i IS

PORT(d: IN BIT;

oe: IN BIT;

clk: IN BIT;

y: INOUT X01Z;

qfb_bar: OUT BIT);

END mc22v10i;

DESCRIPTION

SELECT			IN/OUT	OUTPUT
D	OE	CLK	Y	QFB_BAR
X	L	X	Z	Q
L	Н	Λ	Н	Н
Н	Н	Λ	L	L

6.3. MC22V10N

Non-inverting Output Macro-cell for C22V10..

ENTITY mc22v10n IS

PORT(d: IN BIT;

oe: IN BIT;

clk: IN BIT;

y: INOUT X01Z;

qfb_bar: OUT BIT);

END mc22v10n;

DESCRIPTION

SELECT			IN/OUT	OUTPUT
D	OE	CLK	Y	QFB_BAR
X	L	X	Z	Q
L	Н	Λ	L	Н
Н	Н	Λ	Н	L

6.4. MC335NR

Non-registered Input/Output Macro-cell for C335.


```
ENTITY mc335nr IS

PORT(x1: IN BIT;

x2: IN BIT;

clk: IN BIT;

clk_i: IN BIT;

oe: IN BIT;

q_bar: OUT BIT;

q_i: OUT BIT;

y: INOUT X01Z;

yfb: OUT BIT);
```

DESCRIPTION

INPUTS			OUTPUTS			IN/OUT		
X1	X2	CLK	CLI_I	OE	Q_BAR	Q_I	YFB	Y
X	X	L	L	L	Q	Q_I	Y	Z
L	L	L	Λ	Н	Q	Н	Н	Н
L	Н	, L	Λ	Н	Q	L	L	L
Н	L	L	Λ	Н	Q	L	L	L
Н	Н	L	Λ	Н	Q	Н	Н	Н
L	L	Λ	Λ	Н	Н	Н	Н	Н
L	Н	Λ	Λ	Н	L	L	L	L
Н	L	Λ	Λ	Н	L	L	L	L
Н	Н	Λ	Λ	Н	Н	Н	Н	Н
X	X	L	Λ	L	Q	L	L	Lψ
X	X	L	Λ	L	Q	Н	Н	Нψ

 ψ - "Y" as an input.

6.5. MC335RG

Registered Input/Output Macro-cell for C335.

ENTITY mc335rg IS

PORT(x1: IN BIT;

x2: IN BIT;

clk: IN BIT;

clk_i: IN BIT;

oe: IN BIT;

q_bar: OUT BIT;

q_i: OUT BIT;

y: INOUT X01Z;

yfb: OUT BIT);

END mc335rg;

DESCRIPTION

INPUTS			OUTPUTS			IN/OUT		
X1	X2	CLK	CLI_I	OE	Q_BAR	Q_I	YFB	Y
X	X	L	L	L	Q	Q_I	Y	Z
L	L	Λ	Λ	Н	Н	Y_0	Н	Н
L	Н	Λ	Λ	Н	L	Y_0	L	L
Н	L	Λ	Λ	Н	L	Y ₀	L	L
Н	Н	Λ	Λ	Н	Н	Y ₀	Н	Н
X	X	L	Λ	L	Q	L	L	Lψ
X	X	L	Λ	L	Q	Н	Н	нψ

 ψ - "Y" as an input.

6.6. PABICELL

pASIC Bi-directional Master Cell.


```
ENTITY pabicell IS

PORT(ie: IN BIT;
i1: IN BIT;
i2: IN BIT;
iz: OUT BIT;
ip: INOUT X01Z);
END pabicell;
```

DESCRIPTION

INPUTS			IN/OUT	OUTPUT
IE	I1	12	IZ	IP
L	X	X	X	Z
Н	L	L	Н	Н
Н	Н	L	L	L
Н	L	Н	Н	Н
Н	Н	Н	Н	Н

The PABICELL implements the I/O pads other than the high-drive elements for pASIC devices. It is implemented as follows for other devices:

```
ory <= i2 or not i1;
U1: bufoe port map (oe => ie, x => ory, yfb => iz, y => ip);
```

6.7. PACKCELL

pASIC Clock Master Cell.

ENTITY packcell IS

PORT(ip: IN BIT;

ini: OUT BIT;

iz: OUT BIT;

ic: OUT BIT);

END packcell;

DESCRIPTION

INPUT	OUTPUTS		
IP	INI	IZ	IC
Н	L	Н	Н
L	Н	L	L

The PACKCELL implements the clock input pad for pASIC devices. It is implemented as two buffers and an inverter for other devices.

6.8. PAFRAG_A

pASIC Macro Cell "A" Fragment.


```
ENTITY pafrag_a IS

PORT(a1: IN BIT;
a2: IN BIT;
a3: IN BIT;
a4: IN BIT;
a5: IN BIT;
a6: IN BIT;
a7: OUT BIT;
a7: OUT BIT;
```

DESCRIPTION

The PAFRAG_A implements the "A" fragment of the pASIC macro cell. It is implemented with combinatorial logic in other devices. The logic equivalent is:

 $az \le a1 \text{ AND NOT}(a2) \text{ AND a3 AND NOT}(a4) \text{ AND a5 AND NOT}(a6)$

6.9. PAFRAG F

pASIC Macro Cell "F" Fragment.

ENTITY pafrag_f IS

PORT(f1: IN BIT;
f2: IN BIT;
f3: IN BIT;
f4: IN BIT;
f5: IN BIT;
f6: IN BIT;
fc: OUT BIT);
END pafrag_f;

DESCRIPTION

The PAFRAG_F implements the "F" fragment of the pASIC macro cell. It is implemented with combinatorial logic in other devices. The logic equivalent is:

fz <= f1 AND NOT(f2) AND f3 AND NOT(f4) AND f5 AND NOT(f6)

6.10. PAFRAG_M

pASIC Macro Cell "M" Fragment.


```
ENTITY pafrag_m IS

PORT(os: IN BIT;

nsi: IN BIT;

b1: IN BIT;

b2: IN BIT;

c1: IN BIT;

c2: IN BIT;

d1: IN BIT;

d2: IN BIT;

d2: IN BIT;

e1: IN BIT;

e2: IN BIT;

e1: IN BIT;

e2: IN BIT;

c2: OUT BIT;

nz: OUT BIT);
```

DESCRIPTION

The PAFRAG_M implements the "M" fragment of the pASIC macro cell. It is implemented with combinatorial logic in other devices. The logic equivalent is:

```
nz <= (e1 and not(e2) and nsi) or (d1 and not(d2) and not(nsi));
oz <= ((e1 and not(e2) and nsi) or
(d1 and not(d2) and not(nsi)) and os) or
((c1 and not(c2) and nsi) or
(b1 and not(b2) and not(nsi)) and not(os));
```

6.11. PAFRAG_Q

pASCI Macro Cell "Q" Fragment.


```
ENTITY pafrag_q IS

PORT(qs: IN BIT;
qc: IN BIT;
qr: IN BIT;
qd: IN BIT;
qz: OUT BIT);
END pafrag_q;
```

DESCRIPTION

The PAFRAG_Q implements the "Q" fragment of the pASIC macro cell. It is implemented with logic elements in other devices. The logic equivalent is:

U1: $dsrff port map(s \Rightarrow qs, clk \Rightarrow qc, r \Rightarrow qr, d \Rightarrow qd, q \Rightarrow qz);$

6.12. PAINCELL

pASIC Input Master Cell.

ENTITY paincell IS

PORT(ip: IN BIT;

ini: OUT BIT;

iz: OUT BIT);

END paincell;

DESCRIPTION

INPUT	OUTPUTS		
IP	INI	IZ	
Н	L	Н	
L	Н	L	

The PAINCELL implements the input pad for pASIC devices. It is implemented as a buffer and an inverter for other devices.

6.13. PALCELL

pASIC380 FPGA internal logic cell.


```
ENTITY palcell IS

PORT(qs: IN BIT;

a1,a2,a3,a4,a5,a6: IN BIT;
b1,b2: IN BIT;
c1,c2: IN BIT;
d1,d2: IN BIT;
e1,e2: IN BIT;
f1,f2,f3,f4,f5,f6: IN BIT;
qc,qr: IN BIT;
az,oz,qz,nz,fz: INOUT BIT);
END palcell;
```

DESCRIPTION

AZ <= A1 AND NOT (A2) AND A3 AND NOT (A4) AND A5 AND NOT (A6);

OZ <= (NZ AND AZ) OR ((C1 AND NOT (C2) AND FZ) OR (B1 AND NOT (B2) AND NOT (FZ)) AND NOT (AZ));

 $NZ \leftarrow (EL \ AND \ NOT \ (E2) \ AND \ FZ) \ OR \ (D1 \ AND \ NOT \ (D2) \ AND \ NOT \ (FZ));$

 $\label{eq:fz} \text{FZ} \quad \mathrel{<=} \quad \text{F1 AND NOT (F2) AND F3 AND NOT (F4) AND F5 AND NOT (F6)};$

The output 'qz' is from the internal DFF, for which 'qc' is the clock, 'oz' is the D-input, 'qs' is the present, and 'qr' is the clear.

Memory

To use any of the components described in this chapter within a VHDL description, include the following lines in your VHDL file, immediately above the entity and architecture declarations:

```
use work.memorypkg.all;
use work.rtlpkg.all;
use work.cypress.all;
```

7.1. DFF

D-Type Edge Triggered Flip-Flop.

ENTITY dff IS

PORT(d: IN BIT;
clk: IN BIT;
q: OUT BIT);
END dff;

INPUTS		OUTPUTS
D	CLK	Q
L	Λ	L
Н	Λ	Н

7.2. **DLTCH**

D-Type Latch.

ENTITY dltch IS

PORT(d: IN BIT;
e: IN BIT;
q: OUT BIT);
END dltch;

INPUTS		OUTPUT
D	E	Q
X	L	Q_0
L	Н	L
Н	Н	Н

7.3. DSRFF

D-Type Edge Triggered Flip-Flop with Set and Reset.


```
ENTITY dsrff IS

PORT(d: IN BIT;
s: IN BIT;
r: IN BIT;
clk: IN BIT;
q: OUT BIT);
END dsrff;
```

	INPUTS			
D	S	R	CLK	Q
X	X	Н	X	L
X	Н	L	X	Н
L	L	L	Λ	L
Н	L	L	Λ	Н

7.4. DSRLCH

D-Type Latch with Set and Reset.

ENTITY dsrlch IS

PORT(d: IN BIT;
s: IN BIT;
r: IN BIT;
e: IN BIT;
q: INOUT BIT);
END dsrlch;

	OUTPUT			
D	S	R	E	Q
X	X	Н	X	L
X	Н	L	X	Н
X	L	L	L	Q_0
L	L	L	Н	L
Н	L	L	Н	Н

7.5. JKFF

J-K-Type Edge Triggered Flip-Flop.

ENTITY jkff IS

PORT(j: IN BIT;
k: IN BIT;
clk: IN BIT;
q: OUT BIT);
END jkff;

INPUTS			OUTPUTS
J	К	CLK	Q
L	L	Λ	Q_0
L	Н	Λ	L
Н	L	Λ	Н
Н	Н	Λ	$\overline{\mathrm{Q}}_{\mathrm{0}}$

7.6. JKSRFF

J-K-Type Edge Triggered Flip-Flop with Set and Reset.

ENTITY jksrff IS

PORT(j: IN BIT;

k: IN BIT;
s: IN BIT;
r: IN BIT;
clk: IN BIT;
q: INOUT BIT);
attribute dont_touch of jksrff:
ENTITY IS TRUE;
END jksrff;

INPUTS					OUTPUTS
J	K	S	R	CLK	Q
X	X	X	Н	X	L
X	X	Н	L	X	Н
L	L	L	L	Λ	Q_0
L	Н	L	L	Λ	L
Н	L	L	L	Λ	Н
Н	Н	L	L	Λ	$\overline{\mathrm{Q}}_{\mathrm{0}}$

7.7. SRFF

S-R-Type Edge-Triggered Flip-Flop.


```
ENTITY srff IS

PORT(s: IN BIT;

r: IN BIT;

clk: IN BIT;

q: OUT BIT);

END srff;
```

	INPUTS		
S	R	CLK	Q
L	L	Λ	Q_0
L	Н	Λ	L
Н	L	Λ	Н
Н	Н	Λ	L

7.8. SRL

Set-Reset Latch.

ENTITY srl IS

PORT(s: IN BIT;

r: IN BIT;

q: OUT BIT);

END srl;

INPUTS		OUTPUT
S	R	Q
Н	L	Н
L	L	Q_0
X	Н	L

7.9. TFF

T-Type Edge Triggered Flip-Flop.

ENTITY tff IS

PORT(t: IN BIT;

clk: IN BIT;

q: OUT BIT);

END tff;

INPUTS		OUTPUT
Т	CLK	Q
L	Λ	Q_0
Н	Λ	$\overline{\mathbb{Q}}_0$

7.10. TSRFF

T-Type Edge Triggered Flip-Flop with Set and Reset.


```
ENTITY tsrff IS

PORT(t: IN BIT;
s: IN BIT;
r: IN BIT;
clk: IN BIT;
q: INOUT BIT);
END tsrff;
```

	OUTPUTS			
Т	s	R	CLK	Q
X	X	Н	X	L
X	Н	L	X	Н
L	L	L	Λ	Q_0
Н	L	L	Λ	$\overline{\mathbb{Q}}_0$

7.11. XDFF

D-Type Edge Triggered Flip-Flop with XOR Inputs.

ENTITY xdff IS

PORT(x1: IN BIT;

x2: IN BIT;

clk: IN BIT;

q: OUT BIT);

END xdff;

DESCRIPTION

7-12

INPUTS			OUTPUT
X1	X2	CLK	Q
L	L	Λ	L
L	Н	Λ	Н
Н	L	Λ	Н
Н	Н	Λ	L

7.12. XDSRFF

D-Type Edge Triggered Flip-Flop with XOR Inputs and Set and Reset.

ENTITY xdsrff IS

PORT(x1: IN BIT;
x2: IN BIT;
s: IN BIT;
r: IN BIT;
clk: IN BIT;
q: OUT BIT);
END xdsrff;

INPUTS					OUTPUT	
S	S R X1 X2 CLK					
X	Н	X	X	X	L	
H	L	X	X	X	Н	
L	L	L	L	Λ	L	
L	L	L	Н	Λ	Н	
L	L	Н	L	Λ	Н	
L	L	Н	Н	Λ	L	

Chapter

Multiplexers

To use any of the components described in this chapter within a VHDL description, include the following lines in your VHDL file, immediately above the entity and architecture declarations:

```
use work.muxpkg.all;
use work.rtlpkg.all;
use work.cypress.all;
```

8.1. DE2X4

2-Line to 4-Line Decoder/Demultiplexer.


```
ENTITY de2x4 IS

PORT(en: IN BIT;

s0: IN BIT;

s1: IN BIT;

y0: OUT BIT;

y1: OUT BIT;

y2: OUT BIT;

y3: OUT BIT;

y3: OUT BIT);
```

	INPUTS		OUTPUTS						
EN	S1	S0	Y3	Y2	Y1	Y0			
L	X	X	L	L	L	L			
Н	L	L	L	L	L	Н			
Н	L	Н	L	L	Н	L			
Н	Н	L	L	Н	L	L			
Н	Н	Н	Н	L	L	L			

8.2. DE3X8

3-Line to 8-Line Decoder/Demultiplexer.


```
ENTITY de3x8 IS

PORT(en: IN BIT;

s0: IN BIT;

s1: IN BIT;

s2: IN BIT;

y0: OUT BIT;

y1: OUT BIT;

y2: OUT BIT;

y3: OUT BIT;

y4: OUT BIT;

y5: OUT BIT;

y6: OUT BIT;

y7: OUT BIT;
```

	INP	UTS			OUTPUTS								
EN	S2	S1	SO	¥7	Y6	Y5	Y4	Y3	Y2	Y1	Y0		
L	X	X	X	L	L	L	L	L	L	L	L		
Н	L	L	L	L	L	L	L	L	L	L	Н		
Н	L	L	Н	L	L	L	L	L	L	Н	L		
Н	L	Н	L	L	L	L	L	L	Н	L	L		
Н	L	Н	Н	L	L	L	L	Н	L	L	L		
Н	Н	L	L	L	L	L	Н	L	L	L	L		
Н	Н	L	Н	L	L	Н	L	L	L	L	L		
Н	Н	Н	L	L	Н	L	L	L	L	L	L		
Н	Н	Н	Н	Н	L	L	L	L	L	L	L		

8.3. DE4X16

4-Line to 16-Line Decoder/Demultiplexer.


```
ENTITY de4x16 IS

PORT(en: IN BIT;

s0: IN BIT;

s1: IN BIT;

s2: IN BIT;

s3: IN BIT;

y0,y1,y2,y3,y4,y5,y6,y7,y8,y9,

y10,y11,y12,y13,y14,y15: OUT BIT);

END de4x16;
```

	IN	PU'I	ſS			OUTPUTS														
E N	S 3	S 2	S 1	S 0	Y 1 5	Y 1 4	Y 1 3	Y 1 2	Y 1 1	Y 1 0	Y 9	Y 8	Y 7	Y 6	Y 5	Y 4	Y 3	Y 2	Y 1	Y 0
L	X	X	X	X	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L
Н	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	Н
Н	L	L	L	Н	L	L	L	L	L	L	L	L	L	L	L	L	L	L	Н	L
Н	L	L	Н	L	L	L	L	L	L	L	L	L	L	L	L	L	L	Н	L	L
Н	L	L	Н	Н	L	L	L	L	L	L	L	L	L	L	L	L	Н	L	L	L
Н	L	Н	L	L	L	L	L	L	L	L	L	L	L	L	L	Н	L	L	L	L
Н	L	Н	L	Н	L	L	L	L	L	L	L	L	L	L	Н	L	L	L	L	L
Н	L	Н	Н	L	L	L	L	L	L	L	L	L	L	Н	L	L	L	L	L	L

	IN	IPU T	rs			OUTPUTS														
E N	S 3	S 2	S 1	S	Y 1 5	Y 1 4	Y 1 3	Y 1 2	Y 1 1	Y 1 0	Y 9	Y 8	Y 7	Y 6	Y 5	Y 4	Y 3	Y 2	Y 1	Y 0
Н	L	Н	Н	Н	L	L	L	L	L	L	L	L	Н	L	L	L	L	L	L	L
Н	Н	L	L	L	L	L	L	L	L	L	L	Н	L	L	L	L	L	L	L	L
Н	Н	L	L	Н	L	L	L	L	L	L	Н	L	L	L	L	L	L	L	L	L
Н	Н	L	Н	L	L	L	L	L	L	Н	L	L	L	L	L	L	L	L	L	L
Н	Н	L	Н	Н	L	L	L	L	Н	L	L	L	L	L	L	L	L	L	L	L
Н	Н	Н	L	L	L	L	L	Н	L	L	L	L	L	L	L	L	L	L	L	L
Н	Н	Н	L	Н	L	L	H	L	L	L	L	L	L	L	L	L	L	L	L	L
Н	Н	Н	Н	L	L	Н	L	L	L	L	L	L	L	L	L	L	L	L	L	L
Н	Н	Н	Н	Н	Н	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L

8.4. MUX10F2

2-Line to 1-Line Encoder/Multiplexer.

ENTITY mux1of2 IS

PORT(en: IN BIT;
s: IN BIT;
d0: IN BIT;
d1: IN BIT;
y: OUT BIT);
END mux1of2;

INP	OUTPUT	
EN	S	Y
L	X	L
Н	L	D0
Н	Н	D1

8.5. MUX1OF4

4-Line to 1-Line Encoder/Multiplexer.

ENTITY muxlof4 IS

PORT(en: IN BIT;

s0: IN BIT;

s1: IN BIT;

d0: IN BIT;

d1: IN BIT;

d2: IN BIT;

d3: IN BIT;

y: OUT BIT);

	INPUTS					
EN	S1	S0	Y			
L	X	X	L			
Н	L	L	D0			
Н	L	Н	D1			
Н	Н	L	D2			
Н	Н	Н	D3			

8.6. MUX1OF8

8-Line to 1-Line Encoder/Multiplexer.


```
ENTITY mux1of8 IS

PORT(en: IN BIT;

s0: IN BIT;

s1: IN BIT;

s2: IN BIT;

d0,d1,d2,d3,d4,d5,d6,d7: IN BIT;

y: OUT BIT);

END mux1of8;
```

	INPUTS								
EN	S2	S1	S0	Y					
L	X	X	X	L					
Н	L	L	L	D0					
Н	L	L	Н	D1					
Н	L	Н	L	D2					
Н	L	Н	Н	D3					
Н	Н	L	L	D4					
H	Н	L	Н	D5					
Н	Н	Н	L	D6					
Н	Н	Н	Н	D7					

8.7. MUX10F16

16-Line to 1-Line Encoder/Multiplexer.

ENTITY mux1of16 IS

PORT(en: IN BIT;

s0: IN BIT;

s1: IN BIT;

s2: IN BIT;

s3: IN BIT;

d0,d1,d2,d3,d4,d5,d6,d7,d8,d9

d10,d11,d12,d13,d14,d15: IN BIT;

y: OUT BIT);

END mux1of16;

	INPUTS								
EN	S3	S2	S1	S0	Y				
L	X	X	X	X	L				
Н	L	L	L	L	D0				
Н	L	L	L	Н	D1				
Н	L	L	Н	L	D2				
Н	L	L	Н	Н	D3				
Н	L	Н	L	L	D4				
Н	L	Н	L	Н	D5				
Н	L	Н	Н	L	D6				
Н	L	Н	Н	Н	D7				

Multiplexers

	INPUTS								
EN	S3	S2	S1	S0	Y				
Н	Н	L	L	L	D8				
Н	Н	L	L	Н	D9				
Н	Н	L	Н	L	D10				
Н	Н	L	Н	Н	D11				
Н	Н	Н	L	L	D12				
Н	Н	Н	L	Н	D13				
Н	Н	Н	H	L	D14				
Н	Н	Н	Н	Н	D15				

8.8. MUX2OF4

Dual 2-Line to 1-Line Encoder/Multiplexer.

ENTITY mux2of4 IS

PORT(en: IN BIT;
s: IN BIT;
a1: IN BIT;
a0: IN BIT;
b1: IN BIT;
b0: IN BIT;
y1: OUT BIT;
y0: OUT BIT);
END mux2of4;

INP	PUTS	OUTPUT				
EN	S	Y1	Y0			
L	X	L	L			
Н	L	A1	A0			
Н	Н	B1	В0			

Registers

To use any of the components described in this chapter within a VHDL description, include the following lines in your VHDL file, immediately above the entity and architecture declarations:

```
use work.registerpkg.all;
use work.rtlpkg.all;
use work.cypress.all;
```

9.1. REG

1-Bit D-Type Register with Clear.

ENTITY reg IS

PORT(d: IN BIT;
en: IN BIT;
clk: IN BIT;
r: IN BIT;
q: INOUT BIT);
END reg;

	INPUTS						
EN	CLK	R	Q				
X	X	Н	L				
L	Λ	L	Q_0				
Н	Λ	L	D				

9.2. REG4

4-Bit D-Type Register with Clear.


```
ENTITY reg4 IS

PORT(d3: IN BIT;
d2: IN BIT;
d1: IN BIT;
d0: IN BIT;
en: IN BIT;
clk: IN BIT;
r: IN BIT;
q3: INOUT BIT;
q1: INOUT BIT;
q0: INOUT BIT;
```

	INPUTS						
EN	CLK	R	Q(i)				
X	X	Н	L				
L	Λ	L	Q(i) ₀				
Н	Λ	L	D(i)				

9.3. REG8

8-Bit D-type Register with Clear.


```
ENTITY reg8 IS

PORT(d7,d6,d5,d4,d3,d2,d1,d0: IN BIT;
en: IN BIT;
clk: IN BIT;
r: IN BIT;
q7,q6,q5,q4,q3,q2,q1,q0: OUT BIT);
END reg8;
```

DESCRIPTION

INPUTS			OUTPUT
EN	CLK	R	Q(i)
X	X	Н	L
L	Λ	L	Q(i) ₀
Н	Λ	L	D(i)

NOTE: This library element is only available through schematic entry.

9.4. REG16

16-Bit D-Type Register with Clear.


```
ENTITY reg16 IS

PORT(d15,d14,d13,d12,d11,d10,d9,d8
d7,d6,d5,d4,d3,d2,d1: IN BIT;
en: IN BIT;
clk: IN BIT;
r: IN BIT;
q15,q14,q13,q12,q11,q10,q9,q8
q7,q6,q5,q4,q3,q2,q1,q0: OUT BIT);
END reg16;
```

DESCRIPTION

INPUTS			OUTPUT
EN	CLK	R	Q(i)
X	X	Н	L
L	Λ	L	Q(i) ₀
Н	Λ	L	D(i)

NOTE: This library element is only available through schematic entry.

Chapter 0

Shifters

To use any of the components described in this chapter within a VHDL description, include the following lines in your VHDL file, immediately above the entity and architecture declarations:

```
use work.shifterpkg.all;
use work.rtlpkg.all;
use work.cypress.all;
```

10.1. SHIFT

1-Bit Cascadable Shift Register.


```
ENTITY shift IS

PORT(si: IN BIT;

l: IN BIT;

d: IN BIT;

en: IN BIT;

clk: IN BIT;

r: IN BIT;

q: OUT BIT);
```

INPUTS				OUTPUT
L	EN	CLK	R	Q
X	X	X	Н	L
Н	X	Λ	L	D
L	L	Λ	L	Q_0
L	Н	Λ	L	SI

10.2. SHIFT4

4-Bit Cascadable Shift Register.


```
ENTITY shift4 IS

PORT(si: IN BIT;

l: IN BIT;

d3,d2,d1,d0: IN BIT;

en: IN BIT;

clk: IN BIT;

r: IN BIT;

q3,q2,q1,q0: OUT BIT);

END shift4;
```

INPUTS				OUTPUT
L	EN	CLK	R	Q
X	X	X	H	0
Н	X	Λ	L	D
L	L	Λ	L	Q_0
L	н	Λ	L	Q0=SI Q1=Q0 ₀ Q2=Q1 ₀ Q3=Q2 ₀

10.3. SHIFT8

8-Bit Cascadable Shift Register.


```
ENTITY shift8 IS

PORT(si: IN BIT;

l: IN BIT;

d7.d6,d5,d4,d3,d2,d1,d0: IN BIT;

en: IN BIT;

clk: IN BIT;

r: IN BIT;

q7,q6,q5,q4,q3,q2,q1,q0: OUT BIT);

END shift8;
```

DESCRIPTION

INPUTS			OUTPUT		
L	EN	CLK	R	Q	
X	X	X	Н	00	
Н	X	Λ	L	D	
L	L	Λ	L	Q_0	
L	Н	Λ	L	$\begin{array}{ccc} \text{Q0=SI} & \text{Q4=Q3}_0 \\ \text{Q1=Q0}_0 & \text{Q5=Q4}_0 \\ \text{Q2=Q1}_0 & \text{Q6=Q5}_0 \\ \text{Q3=Q2}_0 & \text{Q7=Q6}_0 \end{array}$	

10-4

10.4. SHIFT16

16-Bit Cascadable Shift Register.


```
ENTITY shift16 IS

PORT(si: IN BIT;

l: IN BIT;

d15,d14,d13,d12,d11,d10,d9,d8,
d7,d6,d5,d4,d3,d2,d1,d0: IN BIT;
en: IN BIT;
clk: IN BIT;
r: IN BIT;
q15,q14,q13,q12,q11,q10,q9,q8,
q7,q6,q5,q4,q3,q2,q1,q0: OUT BIT);
END shift16;
```

INPUTS				OUTPUT
L	EN	CLK	R	Q
X	X	X	Н	0000
Н	X	Λ	L	D
L	L	Λ	L	Q_0
L	н	Λ	L	Q0=SI Q1=Q0 ₀ Q2=Q1 ₀ Q1=Q0 ₀ Q14=Q13 ₀

10.5. UNSR

1-Bit Cascadable Universal Shift Register.


```
ENTITY unsr IS

PORT(sl: IN BIT;

sr: IN BIT;

s0: IN BIT;

s1: IN BIT;

d: IN BIT;

clk: IN BIT;

r: IN BIT;

q: INOUT BIT);
```

INPUTS				OUTPUT
S1	S0	CLK	R	Q
X	X	X	Н	0000
Н	Н	Λ	L	D
L	L	Λ	L	Q_0
L	Н	Λ	L	Q=SR
Н	L	Λ	L	Q=SL

10.6. UNSR4

4-Bit Cascadable Universal Shift Register.


```
ENTITY unsr4 IS

PORT(sl: IN BIT;

sr: IN BIT;

s0: IN BIT;

s1: IN BIT;

d3,d2,d1,d0: IN BIT;

clk: IN BIT;

r: IN BIT;

q3,q2,q1,q0: INOUT BIT);

END unsr4;
```

	INPUTS				
S1	S0	CLK	R	Q	
X	X	X	Н	0	
Н	Н	Λ	L	D	
L	L	Λ	L	Q_0	
L	Н	Λ	L	Q3=SR Q2=Q3 ₀ Q1=Q2 ₀ Q0=Q1 ₀	
н	L	Λ	L	Q0=SL Q1=Q0 ₀ Q2=Q1 ₀ Q3=Q2 ₀	

10.7. UNSR8

8-Bit Cascadable Universal Shift Register.


```
ENTITY unsr8 IS

PORT (sl: IN BIT;

sr: IN BIT;

s0: IN BIT;

s1: IN BIT;

d7,d6,d5,d4,d3,d2,d1,d0: IN BIT;

clk: IN BIT;

r: IN BIT;

q7,q6,q5,q4,q3,q2,q1,q0: OUT BIT);

END unsr8;
```

INPUTS				OUTPUT
S1	SO	CLK	R	Q
X	X	X	Н	0000
Н	Н	Λ	L	D
L	L	Λ	L	Q_0
L	Н	Λ	L	Q7=SR Q3=Q2 ₀ Q6=Q5 ₀ Q2=Q1 ₀ Q5=Q4 ₀ Q1=Q2 ₀ Q4=Q3 ₀ Q0=Q1 ₀
Н	L	Λ	L	Q0=SL Q4=Q3 ₀ Q1=Q0 ₀ Q5=Q4 ₀ Q2=Q1 ₀ Q6=Q5 ₀ Q3=Q2 ₀ Q7=Q6 ₀

10.8. UNSR16

16-Bit Cascadable Universal Shift Register.


```
ENTITY unsr16 IS

PORT (sl: IN BIT;

sr: IN BIT;

s0: IN BIT;

s1: IN BIT;

d15,d14,d13,d12,d11,d10,d9,d8

d7,d6,d5,d4,d3,d2,d1,d0: IN BIT;

clk: IN BIT;

r: IN BIT;

q15,q14,q13,q12,q11,q10,q9,q8

q7,q6,q5,q4,q3,q2,q1,q0: OUT BIT);

END unsr16;
```

	INPUTS				
S1	S0	CLK	R	Q	
X	X	X	Н	0000	
Н	Н	Λ	L	D	
L	L	Λ	L	Q_0	
L	Н	Λ	L	Q15=SR Q14=Q15 ₀ Q13=Q14 ₀	
Н	L	Λ	L	Q0=SL Q1=Q0 ₀ Q2=Q1 ₀	

Chapter

TTL Parts

To use any of the components described in this chapter within a VHDL description, include the following lines in your VHDL file, immediately above the entity and architecture declarations:

```
use work.ttlpkg.all;
use work.rtlpkg.all;
use work.cypress.all;
```

11.1. TTL00

2-Input Positive-NAND Gate.

ENTITY ttl00 IS

PORT(qn: OUT BIT;

a: IN BIT;

b: IN BIT);

END ttl00;

DESCRIPTION

INPUTS		OUTPUT
A	В	QN
Н	Н	L
L	X	Н
X	L	Н

11.2. TTL02

2-Input Positive-NOR Gate.

ENTITY ttl02 IS

PORT(qn: OUT BIT;

a: IN BIT;

b: IN BIT);

END ttl02;

DESCRIPTION

INPUTS		OUTPUT
A	В	QN
Н	X	L
X	Н	L
L	L	Н

11.3. TTL04

Inverter.

ENTITY ttl04 IS

PORT(qn: OUT BIT;

a: IN BIT);

END ttl04;

DESCRIPTION

INPUT	OUTPUT
A	QN
н	L
L	Н

11.4. TTL08

2-Input Positive-AND gate.

ENTITY ttl08 IS

PORT(q: OUT BIT;

a: IN BIT;

b: IN BIT);

END ttl08;

DESCRIPTION

INPUTS		OUTPUT
A	В	Q
Н	Н	Н
L	X	L
X	L	L

11.5. TTL10

3-Input Positive-NAND Gate.

ENTITY ttl10 IS

PORT(qn: OUT BIT;

a: IN BIT;

b: IN BIT;

c: IN BIT);

END ttl10;

DESCRIPTION

INPUTS			OUTPUT
A	В	C	QN
Н	Н	Н	L
L	X	X	Н
X	L	X	Н
X	X	L	Н

11.6. TTL11

3-Input Positive-AND Gate.

ENTITY ttl11 IS

PORT(q: OUT BIT;

a: IN BIT;

b: IN BIT;

c: IN BIT);

END ttl11;

DESCRIPTION

INPUTS			OUTPUT
A	В	C	Q
Н	Н	Н	Н
L	X	X	L
X	L	X	L
X	X	L	L

11.7. TTL20

4-Input Positive-NAND Gate.


```
ENTITY ttl20 IS

PORT(qn: OUT BIT;

a: IN BIT;

b: IN BIT;

c: IN BIT;

d: IN BIT);
```

DESCRIPTION

	INPUTS				
A	В	С	D	QN	
Н	Н	Н	Н	L	
L	X	X	X	Н	
X	L	X	X	Н	
X	X	L	X	Н	
X	X	X	L	Н	

11.8. TTL21

4-Input Positive-AND Gate.

ENTITY ttl21 IS

PORT(q: OUT BIT;

a: IN BIT;

b: IN BIT;

c: IN BIT;

d: IN BIT);

DESCRIPTION

	OUTPUT			
A	В	С	D	Q
Н	Н	Н	Н	Н
L	X	X	X	L
X	L	X	X	L
X	X	L	X	L
Х	X	X	L	L

11.9. TTL25

4-Input Positive-NOR Gate with Strobe.


```
ENTITY ttl25 IS

PORT(qn: OUT BIT;

a: IN BIT;

b: IN BIT;

c: IN BIT;

d: IN BIT;

g: IN BIT);
```

DESCRIPTION

	OUTPUT				
A	В	C	D	G	QN
Н	X	X	X	Н	L
X	Н	X	X	Н	L
X	X	Н	X	Н	L
X	X	X	Н	Н	L
L	L	L	L	X	Н
X	X	X	X	L	Н

11.10. TTL27

3-Input Positive-NOR Gate.

ENTITY ttl27 IS

PORT(qn: OUT BIT;

a: IN BIT;

b: IN BIT;

c: IN BIT);

END ttl27;

DESCRIPTION

	OUTPUT		
A	В	C	QN
Н	X	X	L
X	Н	X	L
X	X	Н	L
L	L	L	Н

11.11. TTL30

8-Input Positive-NAND Gate.

PORT (qn: OUT BIT; a: IN BIT; b: IN BIT;

ENTITY ttl30 IS

c: IN BIT; d: IN BIT;

e: IN BIT; f: IN BIT;

g: IN BIT;

h: IN BIT);

END ttl30;

DESCRIPTION

INPUTS	OUTPUT
INPUTS A THRU H	QN
All inputs H	L
One or more inputs L	Н

11.12. TTL32

2-Input Positive-OR Gate.

ENTITY ttl32 IS
PORT (q: OUT BIT;
a: IN BIT;
b: IN BIT);
END ttl32;

DESCRIPTION

INP	OUTPUT	
A	В	Q
Н	X	Н
X	Н	Н
L	L	L

11.13. TTL73

J-K Flip-Flop with Clear.


```
ENTITY ttl73 IS

PORT (j: IN BIT;
k: IN BIT;
clk: IN BIT;
clr: IN BIT;
q: OUT BIT;
qn: OUT BIT);
END ttl73;
```

DESCRIPTION

	INP	OUTPUTS			
CLR	CLK	J	K	Q	QN
L	X	X	X	L	Н
Н	A	L	L	Q_0	$\overline{\mathbb{Q}}_0$
Н	A	Н	L	Н	L
Н	A	L	Н	L	Н
Н	A	Н	Н	TOO	GLE

11.14. TTL74

D-Type Positive-Edge-Triggered Flip-Flop with Preset and Clear.


```
ENTITY ttl74 IS

PORT (pre: IN BIT;
d: IN BIT;
clk: IN BIT;
clr: IN BIT;
q: OUT BIT;
qn: OUT BIT);
END ttl74;
```

DESCRIPTION

	INP	OUTPUTS			
PRE	CLR	CLK	D	Q	QN
L	Н	X	X	Н	L
Н	L	X	X	L	Н
L	L	X	X	Н	Н
Н	Н	Λ	Н	Н	L
Н	Н	Λ	L	L	Н

11.15. TTL75

4-Bit Bistable Latch.


```
ENTITY ttl75 IS

PORT (d: IN BIT;
c: IN BIT;
q: OUT BIT;
qn: OUT BIT);
END ttl75;
```

DESCRIPTION

INPUTS		OUTPUTS		
D	С	Q	QN	
L	Н	L	Н	
Н	Н	Н	L	
X	L	Q_0	\overline{Q}_0	

11.16. TTL76

J-K Flip-Flop with Preset and Clear.


```
ENTITY ttl76 IS

PORT (pre: IN BIT;

j: IN BIT;

k: IN BIT;

clk: IN BIT;

clr: IN BIT;

q: OUT BIT;

qn: OUT BIT);
```

DESCRIPTION

		OUTPUTS				
PRE	CLR	CLK	J	K	Q	QN
L	Н	X	X	X	Н	L
Н	L	X	X	X	L	Н
L	L	X	X	X	Н	Н
Н	Н	A	L	L	Q_0	$\overline{\mathbb{Q}}_0$
Н	Н	A	Н	L	Н	L
Н	Н	A	L	Н	L	Н
Н	Н	A	Н	Н	TOGGLE	
Н	Н	Н	X	X	Q_0	$\overline{\mathrm{Q}}_{\mathrm{0}}$

11.17. TTL82

2-Bit Binary Full Adder with Fast Carry.


```
ENTITY ttl82 IS

PORT(c0: IN BIT;

a1: IN BIT;

a2: IN BIT;

b1: IN BIT;

b2: IN BIT;

s1: OUT BIT;

s2: OUT BIT;

c2: OUT BIT);
```

DESCRIPTION

S1 = A1 XOR B1 XOR C0

s2 = A2 XOR B2 XOR ((A1 AND B1) OR (A1 AND C0) OR (B1 AND C0))

C2 = (A2 AND B2) OR (A2 AND A1 AND B1) OR (A2 AND A1 AND C0) OR (A2 AND B1 AND C0) OR (B2 AND A1 AND B1) OR (B2 AND A1 AND C0) OR (B2 AND B1 AND C0)

In general, S = A + B + C0; with carry out on C2.

11.18. TTL83

4-Bit Binary Full Adder with Fast Carry.


```
ENTITY ttl83 IS
    PORT(c0: IN BIT;
          al: IN BIT;
          a2: IN BIT;
          a3: IN BIT;
          a4: IN BIT:
          b1: IN BIT;
          b2: IN BIT:
          b3: IN BIT;
          b4: IN BIT;
          s1: OUT BIT;
          s2: OUT BIT;
          s3: OUT BIT;
          s4: OUT BIT;
          c4: OUT BIT);
END ttl83;
```

DESCRIPTION

S = A + B + C0; with carry out on C4.

11.19. TTL85

4-Bit Magnitude Comparator.


```
ENTITY ttl85 IS
    PORT(a0: IN BIT;
          al: IN BIT;
          a2: IN BIT;
          a3: IN BIT:
          b0: IN BIT;
          b1: IN BIT;
          b2: IN BIT;
          b3: IN BIT;
          albi: IN BIT;
          aebi: IN BIT;
          agbi: IN BIT;
          alb: OUT BIT;
          aeb: OUT BIT;
          agb: OUT BIT);
END ttl85;
```

	INPUTS							A rand ran	7	
	COMP	ARING		CA	CASCADING			OUTPUTS		
A3,B3	A2,B2	A1,B1	A0,B0	AGBI	ALBI	AEBI	AGB	ALB	AEB	
a3>b3	X	X	X	X	X	X	Н	L	L	
a3 <b3< td=""><td>X</td><td>X</td><td>X</td><td>X</td><td>X</td><td>X</td><td>L</td><td>Н</td><td>L</td></b3<>	X	X	X	X	X	X	L	Н	L	
a3=b3	a2>b2	X	X	X	X	X	Н	L	L	
a3=b3	a2 <b2< td=""><td>Х</td><td>X</td><td>X</td><td>X</td><td>X</td><td>L</td><td>Н</td><td>L</td></b2<>	Х	X	X	X	X	L	Н	L	
a3=b3	a2=b2	a1>b1	X	X	X	Х	Н	L	L	

	INPUTS								2
	COMP	ARING		CA	ASCADIN	NG	OUTPUTS		
A3,B3	A2,B2	A1,B1	A0,B0	AGBI	ALBI	AEBI	AGB	ALB	AEB
a3=b3	a2=b2	a1 <b1< td=""><td>X</td><td>X</td><td>X</td><td>X</td><td>L</td><td>Н</td><td>L</td></b1<>	X	X	X	X	L	Н	L
a3=b3	a2=b2	a1=b1	a0>b0	X	X	X	Н	L	L
a3=b3	a2=b2	a1=b1	a0 <b0< td=""><td>X</td><td>X</td><td>X</td><td>L</td><td>Н</td><td>L</td></b0<>	X	X	X	L	Н	L
a3=b3	a2=b2	a1=b1	a0=b0	Н	L	L	Н	L	L
a3=b3	a2=b2	a1=b1	a0=b0	L	Н	L	L	Н	L
a3=b3	a2=b2	a1=b1	a0=b0	X	X	Н	L	L	Н
a3=b3	a2=b2	a1=b1	a0=b0	Н	Н	L	L	L	L
a3=b3	a2=b2	a1=b1	a0=b0	L	L	L	Н	Н	L

11.20. TTL86

2-Input EXCLUSIVE-OR Gate.

ENTITY ttl86 IS

PORT (q: OUT BIT;

a: IN BIT;

b: IN BIT);

END ttl86;

INF	OUTPUT	
A	В	Q
L	L	L
L	Н	Н
Н	L	Н
Н	Н	L

11.21. TTL107

J-K Flip-Flop with Clear.


```
ENTITY ttl107 IS

PORT(j: IN BIT;
k: IN BIT;
clk: IN BIT;
clr: IN BIT;
q: OUT BIT;
qn: OUT BIT);
END ttl107;
```

DESCRIPTION

	INP	OUTPUTS			
CLR	CLK	J	K	Q	QN
L	X	X	X	L	Н
Н	A	L	L	Q_0	$\overline{ ext{Q}}_0$
Н	A	Н	L	Н	L
Н	A	L	Н	L	Н
Н	A	Н	Н	TOGGLE	
Н	Н	X	X	Q_0	$\overline{\mathbb{Q}}_0$

11.22. TTL109

J-K Positive-Edge-Triggered Flip-Flop with Preset and Clear.


```
ENTITY ttl109 IS

PORT(pre: IN BIT;
j: IN BIT;
k: IN BIT;
clk: IN BIT;
clr: IN BIT;
q: OUT BIT;
qn: OUT BIT);
END ttl109;
```

DESCRIPTION

		OUTPUTS				
PRE	CLR	CLK	J	K	Q	QN
L	Н	X	X	X	H	L
Н	L	X	X	X	L	Н
L	L	X	X	X	Н	Н
Н	Н	Λ	L	L	L	Н
Н	Н	Λ	Н	L	TOGGLE	
Н	Н	Λ	L	Н	Q_0	$\overline{\mathbb{Q}}_0$
Н	Н	Λ	Н	Н	Н	L
Н	Н	Н	X	X	Q_0	$\overline{\mathrm{Q}}_{\mathrm{0}}$

11.23. TTL112

J-K Negative-Edge-Triggered Flip-Flop with Preset and Clear.


```
ENTITY ttl112 IS

PORT(pre: IN BIT;

j: IN BIT;

k: IN BIT;

clk: IN BIT;

clr: IN BIT;

q: OUT BIT;

qn: OUT BIT);
```

DESCRIPTION

INPUTS					OUTPUTS	
PRE	CLR	CLK	J	K	Q	QN
L	Н	X	X	X	Н	L
Н	L	X	X	X	L	Н
L	L	X	X	X	Н	Н
Н	Н	A	L	L	Q_0	\overline{Q}_0
Н	Н	A	Н	L	Н	L
Н	Н	A	L	Н	L	Н
Н	Н	A	Н	Н	TOG	GLE
Н	Н	Н	X	X	Q_0	$\overline{\mathrm{Q}}_{\mathrm{0}}$

11.24. TTL113

J-K Negative-Edge-Triggered Flip-Flop with Preset.


```
ENTITY ttl113 IS

PORT(j: IN BIT;
k: IN BIT;
clk: IN BIT;
pre: IN BIT;
q: OUT BIT;
qn: OUT BIT);
END ttl113;
```

DESCRIPTION

	INP	OUTPUTS			
PRE	CLK	J	K	Q	QN
L	X	X	X	Н	L
Н	A	L	L	Q_0	\overline{Q}_0
Н	A	Н	L	Н	L
Н	A	L	Н	L	Н
Н	A	Н	Н	TOGGLE	
Н	Н	X	X	Q_0	$\overline{\mathrm{Q}}_{\mathrm{0}}$

11.25. TTL116

4-Bit Latch with Clear.


```
ENTITY ttl116 IS

PORT(clr: IN BIT;

c1: IN BIT;

c2: IN BIT;

d1: IN BIT;

d2: IN BIT;

d3: IN BIT;

d4: IN BIT;

d4: IN BIT;

q1: OUT BIT;

q2: OUT BIT;

q4: OUT BIT;

q4: OUT BIT;
```

DESCRIPTION

	OUTPUT			
CLR	C2	C1	D(i)	Q(i)
Н	L	L	L	L
Н	L	L	Н	Н
Н	X	Н	X	Q(i) ₀
Н	Н	X	X	Q(i) ₀
L	X	X	X	L

11.26. TTL125

Bus Buffer with Low Enable 3-State Output.

ENTITY ttl125 IS

PORT(g: IN BIT;

a: IN BIT;

y: OUT X01Z);

END ttl125;

DESCRIPTION

INP	OUTPUTS	
G	A	Y
Н	X	Z
L	L	L
L	Н	Н

11.27. TTL126

Bus Buffer with High Enable 3-State Output.

ENTITY ttl126 IS

PORT(g: IN BIT;

a: IN BIT;

y: OUT X01Z);
END ttl126;

DESCRIPTION

INP	OUTPUTS	
G	A	Y
L	X	Z
Н	L	L
Н	Н	Н

11.28. TTL138

3-Line to 8-Line Decoder/Demultiplexer.


```
ENTITY ttl138 IS
    PORT(g1: IN BIT;
          g2a: IN BIT;
          g2b: IN BIT;
          a: IN BIT;
          b: IN BIT;
          c: IN BIT;
          y0: OUT BIT;
          y1: OUT BIT;
          y2: OUT BIT;
          y3: OUT BIT;
          y4: OUT BIT;
          y5: OUT BIT;
          y6: OUT BIT;
          y7: OUT BIT);
END ttl138;
```

	J	NPUT	S					OUT	DITTC			
ENA	BLE	S	SELEC'	Г	OUTPUTS							
G1	G2*	С	В	A	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
X	Н	X	X	X	Н	Н	Н	Н	H	H	Н	Н
L	X	X	X	X	Н	Н	Н	Н	Н	Н	Н	Н
Н	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н
Н	L	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н
Н	L	L	Н	L	Н	Н	L	Н	Н	Н	Н	Н
Н	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н	Н
Н	L	Н	L	L	Н	Н	Н	Н	L	Н	Н	Н
Н	L	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н
Н	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н
Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

^{*} G2 = G2A + G2B

11.29. TTL139

2-Line to 4-Line Decoder/Demultiplexer.


```
ENTITY ttl139 IS

PORT(g: IN BIT;

a: IN BIT;

b: IN BIT;

y0: OUT BIT;

y1: OUT BIT;

y2: OUT BIT;

y3: OUT BIT);

END ttl139;
```

DESCRIPTION

	INPUTS			OUT	PUTS	
ENABLE	SEL	ECT				
G	В	A	Y0	Y1	Y2	Y3
Н	X	X	Н	Н	Н	Н
L	L	L	L	Н	Н	Н
L	L	Н	Н	L	Н	Н
L	Н	L	Н	Н	L	Н
L	Н	Н	Н	Н	Н	L

11.30. TTL148

8-Line to 3-Line Priority Encoder.


```
ENTITY ttl148 IS
    PORT(ei: IN BIT;
           i0: IN BIT;
          il: IN BIT;
          i2: IN BIT;
           i3: IN BIT;
          i4: IN BIT;
           i5: IN BIT;
          i6: IN BIT;
          i7: IN BIT;
           a0: OUT BIT;
           al: OUT BIT;
          a2: OUT BIT;
          gs: OUT BIT;
          eo: OUT BIT );
END ttl148;
```

DESCRIPTION

	INPUTS										OUTPUTS			
EI	10	I1	I 2	I 3	I 4	I 5	I 6	I 7	A2	A1	A0	GS	EO	
Н	X	X	X	X	X	X	X	X	Н	Н	Н	Н	Н	
L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	
L	X	X	X	X	X	X	Х	L	L	L	L	L	Н	
L	Х	Х	X	X	X	Х	L	Н	L	L	Н	L	Н	
L	X	Х	X	X	X	L	Н	Н	L	Н	L	L	Н	
L	X	X	X	X	L	Н	Н	Н	L	Н	Н	L	Н	

TTL Parts

	INPUTS										OUTPUTS			
EI	10	I1	I 2	13	I 4	15	16	17	A2	A1	A0	GS	ЕО	
L	X	X	X	L	Н	Н	Н	Н	Н	L	L	L	Н	
L	X	X	L	Н	Н	Н	Н	Н	Н	L	Н	L	Н	
L	X	L	Н	Н	Н	Н	Н	Н	Н	Н	L	L	Н	
L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	

11.31. TTL150

1 of 16 Data Selector/Multiplexer.


```
ENTITY ttl150 IS
    PORT(g: IN BIT;
           a: IN BIT;
          b: IN BIT;
          c: IN BIT;
          d: IN BIT;
          e0: IN BIT;
          e1: IN BIT;
          e2: IN BIT;
          e3: IN BIT;
          e4: IN BIT;
          e5: IN BIT;
          e6: IN BIT;
          e7: IN BIT;
          e8: IN BIT:
          e9: IN BIT;
          e10: IN BIT;
          e11: IN BIT;
          e12: IN BIT;
          e13: IN BIT;
          e14: IN BIT;
          e15: IN BIT;
          w: OUT BIT);
END ttl150;
```

	INPUTS										
ENABLE		SEL	ECT		OUTPUT						
G	D	С	В	A	w						
Н	X	X	X	X	Н						
L	L	L	L	L	E 0						
L	L	L	L	Н	<u>E1</u>						
L	L	L	Н	L	E2						
L	L	L	Н	Н	E3						
L	L	Н	L	L	E 4						
L	L	Н	L	Н	E5						
L	L	Н	Н	L	<u>E6</u>						
L	L	Н	Н	Н	E7						
L	Н	L	L	L	E8						
L	Н	L	L	Н	<u>E9</u>						
L	Н	L	Н	L	E10						
L	Н	L	Н	Н	E11						
L	Н	Н	L	L	<u>E12</u>						
L	Н	Н	L	Н	E13						
L	Н	Н	Н	L	E14						
L	Н	Н	Н	Н	E15						

11.32. TTL151

1 of 8 Data Selector/Multiplexer.


```
ENTITY ttl151 IS
    PORT(d0: IN BIT;
          d1: IN BIT;
          d2: IN BIT;
          d3: IN BIT;
          d4: IN BIT;
          d5: IN BIT;
          d6: IN BIT;
          d7: IN BIT;
          g: IN BIT;
          a: IN BIT;
          b: IN BIT;
          c: IN BIT;
          y: OUT BIT;
          w: OUT BIT);
END ttl151;
```

	INP		- OUTPUTS					
ENABLE		SELECT		Journals				
G	С	В	A	Y	w			
Н	X	X	X	L	Н			
L	L	L	L	D0	$\overline{\mathrm{D}0}$			
L	L	L	Н	D1	D 1			
L	L	Н	L	D2	$\overline{\mathrm{D2}}$			
L	L	Н	Н	D3	D 3			
L	Н	L	L	D4	D 4			
L	Н	L	Н	D5	D 5			
L	Н	Н	L	D6	<u>D6</u>			
L	Н	Н	Н	D7	$\overline{\mathrm{D7}}$			

11.33. TTL153

4-Line to 1-Line Data Selector/Multiplexer.


```
ENTITY ttl153 IS

PORT(c0: IN BIT;

c1: IN BIT;

c2: IN BIT;

c3: IN BIT;

g: IN BIT;

a: IN BIT;

b: IN BIT;

y: OUT BIT);
```

	INPUTS											
SEL	ECT	DATA				STROBE	OUTPUT					
В	A	C0	C1	C2	С3	G	Y					
X	X	X	X	X	X	Н	L					
L	L	L	X	X	X	L	L					
L	L	Н	X	X	X	L	Н					
L	Н	X	L	X	X	L	L					
L	Н	X	Н	X	X	L	Н					
Н	L	X	X	L	X	L	L					
Н	L	X	X	Н	X	L	Н					
Н	Н	X	X	X	L	L	L					
Н	Н	X	X	X	Н	L	Н					

11.34. TTL154

4-Line to 16-Line Decoder/Demultiplexer.


```
ENTITY ttl154 IS
    PORT(g1: IN BIT;
          g2: IN BIT;
          a: IN BIT;
          b: IN BIT;
          c: IN BIT;
          d: IN BIT;
          y0: OUT BIT;
          v1: OUT BIT;
          y2: OUT BIT;
          y3: OUT BIT;
          y4: OUT BIT;
          y5: OUT BIT;
          y6: OUT BIT;
          y7: OUT BIT;
          y8: OUT BIT;
          y9: OUT BIT;
          y10: OUT BIT;
          y11: OUT BIT;
          y12: OUT BIT;
          y13: OUT BIT;
          y14: OUT BIT;
          y15: OUT BIT);
END ttl154;
```

		INP	UTS			OUTPUTS															
EN	NA		SEL	ECI	7							·	JU 1 1	PUI	3						
G 1	G 2	D	C	В	A	Y 0	Y 1	Y 2	Y 3	Y 4	Y 5	Y 6	Y 7	Y 8	Y 9	Y 1 0	Y 1 1	Y 1 2	Y 1 3	Y 1 4	Y 1 5
L	L	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
L	L	L	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
L	L	L	L	Н	L	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
L	L	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
L	L	L	Н	L	L	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	H	Н	Н
L	L	L	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Ή	Н	Н	Н	Н	Н	Н	Н	Н
Ĺ	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н
L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н
L	L	Н	L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н
L	L	Н	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	H	Н	Н	Н	Н
L	L	H	L	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	H	Н	Н
L	L	Н	L	Н	Н	Н	Н	Н	H	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н
L	L	Н	Н	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н
L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	H	Н	Н	Н	Н	Н	L	Н	Н
L	L	Н	Н	Н	L	H	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н
L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L
L	Н	X	X	X	X	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	ŀΗ	Н	Н
Н	L	X	X	X	X	Н	Н	Н	Н	Н	H	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
Н	Н	X	X	X	X	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н

11.35. TTL157

2-Line to 1-Line Data Selector/Multiplexer.


```
ENTITY ttl157 IS

PORT(a: IN BIT;
b: IN BIT;
g: IN BIT;
s: IN BIT;
y: OUT BIT);
END ttl157;
```

DESCRIPTION

	INPUTS									
STROBE	SELECT	DA	TA	OUTPUT						
G	S	A	В	Y						
Н	X	X	X	L						
L	L	L	X	L						
L	L	Н	X	Н						
L	Н	X	L	L						
L	Н	Х	Н	Н						

11.36. TTL158

2-Line to 1-Line Data Selector/Multiplexer.


```
ENTITY ttl158 IS

PORT(a: IN BIT;
b: IN BIT;
g: IN BIT;
s: IN BIT;
y: OUT BIT);
END ttl158;
```

DESCRIPTION

	INPUTS										
STROBE	SELECT	DA	TA	OUTPUT							
G	S	Å	В	Y							
Н	X	X	X	Н							
L	L	L	X	Н							
L	L	Н	X	L							
L	Н	X	L	Н							
L	Н	X	Н	L							

11.37. TTL160

Synchronous 4-Bit Decade Counter with Direct Clear.


```
ENTITY ttl160 IS
    PORT(ent: IN BIT:
           enp: IN BIT;
           ld: IN BIT:
           a: IN BIT:
           b: IN BIT:
           c: IN BIT:
           d: IN BIT:
           clk: IN BIT:
           clr: IN BIT:
           rco: OUT BIT;
           ga: OUT BIT:
           qb: OUT BIT:
           ac: OUT BIT;
           ad: OUT BIT );
END ttl160;
```

DESCRIPTION

Decade counter with cascade in and out signals. Both count enable inputs (ENT and ENP) must be high to count, and input ENT is fed forward to enable the ripple carry output (RCO). The RCO then produces a high-level output pulse with a duration approximately equal to the high-level portion of the QA output. This pulse is used to enable successive cascaded stages. The counter is loaded when the load (LD) is low during a high-going clock (CLK). The counter is cleared asynchronously when CLR is asserted low.

11.38. TTL161

Synchronous 4-Bit Binary Counter with Direct Clear.


```
ENTITY ttl161 IS
    PORT(ent: IN BIT;
           enp: IN BIT;
          ld: IN BIT:
           a: IN BIT:
           b: IN BIT:
           c: IN BIT;
           d: IN BIT:
           clk: IN BIT:
           clr: IN BIT;
           rco: OUT BIT;
           ga: OUT BIT;
           qb: OUT BIT;
           qc: OUT BIT;
           qd: OUT BIT );
END ttl161:
```

DESCRIPTION

Binary counter with cascade in and out signals. Both count enable inputs (ENT and ENP) must be high to count, and input ENT is fed forward to enable the ripple carry output (RCO). The RCO then produces a high-level output pulse with a duration approximately equal to the high-level portion of the QA output. This pulse is used to enable successive cascaded stages. The counter is loaded when the load (LD) is low during a high-going clock (CLK). The counter is cleared asynchronously when CLR is asserted low.

11.39. TTL162

Fully Synchronous 4-Bit Decade Counter.


```
ENTITY ttl162 IS
    PORT(ent: IN BIT;
          enp: IN BIT;
          ld: IN BIT;
          a: IN BIT:
          b: IN BIT;
          c: IN BIT:
          d: IN BIT:
          clk: IN BIT;
          clr: IN BIT:
          rco: OUT BIT;
          qa: OUT BIT;
          qb: OUT BIT;
           qc: OUT BIT;
          qd: OUT BIT);
END ttl162:
```

DESCRIPTION

Decade counter with cascade in and out signals. Both count enable inputs (ENT and ENP) must be high to count, and input ENT is fed forward to enable the ripple carry output (RCO). The RCO then produces a high-level output pulse with a duration approximately equal to the high-level portion of the QA output. This pulse is used to enable successive cascaded stages. The counter is loaded when the load (LD) is low during a high going clock (CLK). The counter is cleared synchronously when CLR is low during a high going CLK.

11.40. TTL163

Fully Synchronous 4-Bit Binary Counter.


```
ENTITY ttl163 IS
    PORT(ent: IN BIT:
           enp: IN BIT;
          ld: IN BIT;
           a: IN BIT:
           b: IN BIT:
           c: IN BIT;
           d: IN BIT;
           clk: IN BIT;
           clr: IN BIT;
           rco: OUT BIT;
           ga: OUT BIT;
           qb: OUT BIT;
           qc: OUT BIT;
           qd: OUT BIT );
END ttl163:
```

DESCRIPTION

Binary counter with cascade in and out signals. Both count enable inputs (ENT and ENP) must be high to count, and input ENT is fed forward to enable the ripple carry output (RCO). The RCO then produces a high-level output pulse with a duration approximately equal to the high-level portion of the QA output. This pulse is used to enable successive cascaded stages. The counter is loaded when the load (LD) is low during a high-going clock (CLK). The counter is cleared synchronously when CLR is low during a high going CLK.

11.41. TTL168

Synchronous 4-Bit Up/Down Decade Counter.


```
ENTITY ttl168 IS
    PORT(ent: IN BIT;
           enp: IN BIT;
          ld: IN BIT;
          up: IN BIT;
           a: IN BIT;
           b: IN BIT:
           c: IN BIT:
           d: IN BIT:
          clk: IN BIT;
          rco: OUT BIT:
           qa: OUT BIT;
           qb: OUT BIT;
           qc: OUT BIT;
           qd: OUT BIT );
END ttl168:
```

DESCRIPTION

Decade up/down counter with cascade in and out signals. Both count enable inputs (ENT and ENP) must be high to count, and input ENT is fed forward to enable the ripple carry output (RCO). The RCO then produces a high-level output pulse with a duration approximately equal to the high-level portion of the QA output. This pulse is used to enable successive cascaded stages. The counter is loaded when the load (LD) is low during a high-going clock (CLK). The counter counts up if UP is high and down if UP is low.

11.42. TTL169

Synchronous 4-Bit Up/Down Binary Counter.


```
ENTITY ttl169 IS
    PORT(ent: IN BIT;
          enp: IN BIT;
          ld: IN BIT;
          up: IN BIT;
           a: IN BIT:
          b: IN BIT:
          c: IN BIT:
           d: IN BIT;
          clk: IN BIT:
          rco: OUT BIT;
           qa: OUT BIT;
           qb: OUT BIT;
           qc: OUT BIT;
           qd: OUT BIT);
END ttl169:
```

DESCRIPTION

Binary up/down counter with cascade in and out signals. Both count enable inputs (ENT and ENP) must be high to count, and input ENT is fed forward to enable the ripple carry output (RCO). The RCO then produces a high-level output pulse with a duration approximately equal to the high-level portion of the QA output. This pulse is used to enable successive cascaded stages. The counter is loaded when the load (LD) is low during a high-going clock (CLK). The counter counts up if UP is high and down if UP is low.

11.43. TTL173

4-Bit D-Type register with 3-State Outputs.


```
ENTITY ttl173 IS
    PORT(m: IN BIT;
          n: IN BIT;
          g1: IN BIT;
          g2: IN BIT;
          d1: IN BIT;
          d2: IN BIT;
          d3: IN BIT;
          d4: IN BIT;
          clk: IN BIT;
          clr: IN BIT;
          q1: OUT X01Z;
          q2: OUT X01Z;
          q3: OUT X01Z;
          q4: OUT X01Z);
END ttl173;
```

	INPUTS										
CLR	CLR CLK G1 G2 D(i)										
Н	X	X	X	X	L						
L	L	X	X	X	Q0						
L	Λ	Н	X	X	Q0						
L	Λ	X	Н	X	Q0						
L	Λ	L	L	L	L						
L	Λ	L	L	Н	Н						
	L A L H H When either M or N are high the output is disabled to the high impedance state; however sequential operation is not affected.										

11.44. TTL174

Hex D-Type Flip-Flops with Clear.


```
ENTITY ttl174 IS
    PORT(d1: IN BIT;
          d2: IN BIT;
          d3: IN BIT;
          d4: IN BIT:
          d5: IN BIT;
          d6: IN BIT;
          clk: IN BIT:
          clr: IN BIT;
          q1: OUT BIT;
          q2: OUT BIT;
          q3: OUT BIT;
          q4: OUT BIT;
          q5: OUT BIT;
          q6: OUT BIT);
END ttl174;
```

DESCRIPTION

	INPUTS							
CLR	CLK	D(i)	Q(i)					
L	X	X	L					
Н	Λ	Н	Н					
Н	Λ	L	L					
Н	L	X	Q(i) ₀					

11.45. TTL175

Quadruple D-Type Flip-Flops with Clear.


```
ENTITY ttl175 IS
    PORT(d1: IN BIT;
          d2: IN BIT;
          d3: IN BIT;
          d4: IN BIT;
          clk: IN BIT;
          clr: IN BIT;
          q1: OUT BIT;
          q1n: OUT BIT;
          q2: OUT BIT;
          q2n: OUT BIT;
          q3: OUT BIT;
          q3n: OUT BIT;
          q4: OUT BIT;
          q4n: OUT BIT);
END ttl175;
```

DESCRIPTION

	INPUTS	OUTPUTS			
CLR	CLK	D(i)	Q(i)	Q(i)N	
L	X	X	L	Н	
Н	Λ	Н	Н	L	
Н	Λ	L	L	Н	
Н	L	X	Q(i) ₀	$\overline{Q}(i)_0$	

11.46. TTL180

9-Bit Odd/Even Parity Generator/Checker.

ENTITY ttl180 IS

PORT(a: IN BIT;
b: IN BIT;
c: IN BIT;
d: IN BIT;
e: IN BIT;
f: IN BIT;
g: IN BIT;
h: IN BIT;
oddi: IN BIT;
evei: IN BIT;
odd: OUT BIT;
eve: OUT BIT;

END ttl180;

DESCRIPTION

	INPUTS	OUTPUTS			
Σ of H's AT A THRU H	EVEI	ODDI	EVE	ODD	
EVEN	Н	L	Н	L	
ODD	Н	L	L	Н	
EVEN	L	Н	L	Н	
ODD	L	Н	Н	L	
X	Н	Н	L	L	
X	L	L	Н	Н	

11.47. TTL190

Synchronous Decade Up/Down Counter with Down/Up Mode Control.


```
ENTITY ttl190 IS
    PORT(cten: IN BIT:
           down: IN BIT;
          load: IN BIT:
           a: IN BIT;
           b: IN BIT:
           c: IN BIT:
           d: IN BIT:
           clk: IN BIT:
           rco: OUT BIT:
           mm: OUT BIT:
           qa: OUT BIT;
           ab: OUT BIT:
           qc: OUT BIT;
          qd: OUT BIT);
END ttl190:
```

DESCRIPTION

Decade up/down counter with cascade in and out signals. CTEN must be low to count, and is fed forward to enable the ripple carry output (RCO). The RCO then produces a low-level output pulse with a duration approximately equal to the low-level portion of the clock during a min/max (MM) count. This pulse is used to enable successive cascaded stages. The counter is loaded when the LOAD is low during a high-going clock (CLK). The counter counts up if DOWN is high and down if DOWN is low. Output MM is high if the count is at 0000 when counting down or if the count is 1001 when counting up.

11.48. TTL191

Synchronous Binary Up/Down Counter with Down/Up Mode Control.


```
ENTITY ttl191 IS
    PORT(cten: IN BIT;
          down: IN BIT:
          load: IN BIT:
          a: IN BIT:
          b: IN BIT:
          c: IN BIT:
          d: IN BIT:
          clk: IN BIT:
          rco: OUT BIT;
          mm: OUT BIT;
          ga: OUT BIT;
           ab: OUT BIT;
           qc: OUT BIT;
          qd: OUT BIT );
END ttl191:
```

DESCRIPTION

Binary up/down counter with cascade in and out signals. CTEN must be low to count, and is fed forward to enable the ripple carry output (RCO). The RCO then produces a low-level output pulse with a duration approximately equal to the low-level portion of the clock during a min/max (MM) count. This pulse is used to enable successive cascaded stages. The counter is loaded when the LOAD is low during a high-going clock (CLK). The counter counts up if DOWN is high, and down if DOWN is low. Output MM is high if the count is at 0000 when counting down, or if the count is 1001 when counting up.

11.49. TTL198

8-Bit Bi-directional Shift Register.


```
ENTITY ttl198 IS
    PORT(sr: IN BIT;
          s0: IN BIT;
          s1: IN BIT;
          a: IN BIT;
          b: IN BIT;
          c: IN BIT;
          d: IN BIT;
          e: IN BIT;
          f: IN BIT;
          g: IN BIT;
          h: IN BIT;
          clk: IN BIT;
          clr: IN BIT;
          sl: IN BIT;
          qa: OUT BIT;
          qb: OUT BIT;
          qc: OUT BIT;
          qd: OUT BIT;
          ge: OUT BIT;
          qf: OUT BIT;
          qg: OUT BIT;
          qh: OUT BIT);
END ttl198;
```

	INPUTS					OUTPUTS								
CL R	S1	S0	CL K	SL	SR	ah	QA	QB	QC	QD	QE	QF	QG	QН
L	X	X	X	X	X	X	L	L	L	L	L	L	L	L
Н	X	X	L	X	X	X	QA ₀	QB ₀	QC_0	QD_0	QE ₀	QF ₀	QG_0	QH ₀
Н	Н	Н	Λ	X	X	ah	A	В	С	D	Е	F	G	Н
Н	L	Н	Λ	X	Н	X	Н	QA _N	QB_N	QC _N	QD_N	QE _N	QF _N	QG _N
Н	L	Н	Λ	X	L	X	L	QA _N	QB _N	QC_N	QD_N	QE _N	QF _N	QG _N
Н	Н	L	Λ	Н	X	X	QB _N	QC _N	QD_N	QE _N	QF _N	QG _N	QH _N	Н
Н	Н	L	Λ	L	X	X	QB _N	QC_N	QD_N	QE _N	QF _N	QG _N	QH _N	L
Н	L	L	X	X	X	X	QA ₀	QB ₀	QC ₀	QD_0	QE ₀	QF ₀	QG ₀	QH ₀

 QA_0 , QB_0 , etc. = the level of QA, QB, etc. before the indicated steady state input conditions were established.

 QA_N , QB_N , etc. = the level of QA, QB, etc. before the most recent Λ transition of the clock.

11.50. TTL199

8-Bit Shift Register with J- \overline{K} Serial Inputs.


```
ENTITY ttl199 IS
    PORT(j: IN BIT;
          k: IN BIT;
          snl: IN BIT;
          a: IN BIT;
          b: IN BIT;
          c: IN BIT;
          d: IN BIT;
          e: IN BIT;
          f: IN BIT;
          g: IN BIT;
          h: IN BIT;
          ci: IN BIT;
          clk: IN BIT;
          clr: IN BIT;
          qa: OUT BIT;
          qb: OUT BIT;
          qc: OUT BIT;
          qd: OUT BIT;
          qe: OUT BIT;
          qf: OUT BIT;
          qg: OUT BIT;
          qh: OUT BIT);
END ttl199;
```

	INPUTS					OUTPUTS								
CLR	SN L	CI	CL K	J	K	ah	QA	QB	QC	QD	QE	QF	QG	QН
L	X	X	X	X	X	X	L	L	L	L	L	L	L	L
Н	X	X	L	X	X	X	QA ₀	QB ₀	QC_0	QD_0	QE ₀	QF ₀	QG_0	QH ₀
Н	L	L	Λ	X	X	ah	A	В	С	D	Е	F	G	Н
Н	Н	L	Λ	L	Н	X	QA ₀	QA ₀	QB _N	QC _N	QD_N	QE _N	QF _N	QG _N
Н	Н	L	Λ	L	L	X	L	QA _N	QB _N	QC _N	QD_N	QE _N	QF _N	QG_N
Н	Н	L	Λ	Н	Н	X	Н	QA _N	QB _N	QC _N	QD_N	QE _N	QF _N	QG _N
Н	Н	L	Λ	Н	L	X	$\overline{\mathbb{Q}}A_{\mathbb{N}}$	QA _N	QB _N	QC _N	QD_N	QE _N	QF _N	QG _N
Н	X	Н	Λ	X	X	X	QA ₀	QB ₀	QC ₀	QD_0	QE ₀	QF ₀	QG ₀	QH ₀

 QA_0 , QB_0 , etc. = the level of QA, QB, etc. before the indicated steady state input conditions were established.

 $QA_N,\,QB_N,\,etc.$ = the level of QA, QB, etc. before the most recent Λ transition of the clock.

11.51. TTL240

Buffer/Driver with Inverted Output and Low True Output Enable.


```
ENTITY ttl240 IS

PORT(g: IN BIT;
a1: IN BIT;
a2: IN BIT;
a3: IN BIT;
a4: IN BIT;
y1: OUT X01Z;
y2: OUT X01Z;
y3: OUT X01Z;
y4: OUT X01Z);
END ttl240;
```

DESCRIPTION

INP	INPUTS				
G	A(i)	Y(i)			
Н	X	Z			
L	L	Н			
L	Н	L			

11.52. TTL244

Buffer/Driver with Low True Output Enable.


```
ENTITY ttl244 IS

PORT(g: IN BIT;
a1: IN BIT;
a2: IN BIT;
a3: IN BIT;
a4: IN BIT;
y1: OUT X01Z;
y2: OUT X01Z;
y3: OUT X01Z;
y4: OUT X01Z);
END ttl244;
```

DESCRIPTION

INPU	INPUTS				
G	A(i)	Y(i)			
Н	X	Z			
L	L	L			
L	Н	Н			

11.53. TTL251

Data Selector/Multiplexer with 3-State Outputs.


```
ENTITY ttl251 IS
    PORT(d0: IN BIT;
          d1: IN BIT;
          d2: IN BIT;
          d3: IN BIT;
          d4: IN BIT;
          d5: IN BIT;
          d6: IN BIT;
          d7: IN BIT;
          g: IN BIT;
          a: IN BIT;
          b: IN BIT;
          c: IN BIT;
          y: OUT X01Z;
          w: OUT X01Z);
END ttl251;
```

	INP	OUTPUTS			
ENABLE		Oolfuls			
G	C	В	A	Y	w
Н	X	X	X	Z	Z
L	L	L	L	D0	$\overline{\mathrm{D0}}$
L	L	L	Н	D1	D1
L	L	Н	L	D2	D 2
L	L	Н	Н	D3	D 3
L	Н	L	L	D4	D 4
L	Н	L	Н	D5	<u>D5</u>
L	Н	Н	L	D6	D 6
L	Н	Н	Н	D7	D7

11.54. TTL253

4-Line to 1-Line Data Selector/Multiplexer with 3-State Outputs.


```
ENTITY ttl253 IS

PORT(a: IN BIT;
b: IN BIT;
g: IN BIT;
c0: IN BIT;
c1: IN BIT;
c2: IN BIT;
c3: IN BIT;
y: OUT X01Z);
END ttl253;
```

DESCRIPTION

	INPUTS							
В	A	C0	C1	C2	C3	G	Y	
X	X	X	X	X	X	Н	Z	
L	L	L	X	X	· X	L	L	
L	L	Н	X	X	X	L	Н	
L	Н	X	L	X	X	L	L	
L	Н	X	Н	X	X	L	Н	
Н	L	X	X	L	X	L	L	
Н	L	X	X	Н	X	L	Н	
Н	H	X	X	X	L	L	L	
Н	Н	X	X	X	Н	L	Н	

11.55. TTL257

2-Line to 1-Line Data Selector/Multiplexer with 3-State Output.

ENTITY ttl257 IS

PORT(a: IN BIT;
b: IN BIT;
g: IN BIT;
s: IN BIT;
y: OUT X01Z);
END ttl257;

DESCRIPTION

	INPUTS								
G	S	A	В	Υ					
Н	X	X	X	Z					
Ĺ	L	L	X	L					
L	L	Н	X	Н					
L	Н	X	L	L					
L	Н	X	Н	Н					

11.56. TTL261

2-Bit by 4-Bit Parallel Binary Multiplier.


```
ENTITY ttl261 IS
    PORT(c: IN BIT;
          b0: IN BIT;
          b1: IN BIT;
          b2: IN BIT;
          b3: IN BIT;
          b4: IN BIT;
          m0: IN BIT;
          m1: IN BIT;
          m2: IN BIT;
          q0: OUT BIT;
          q1: OUT BIT;
          q2: OUT BIT;
          q3: OUT BIT;
          q4: OUT BIT);
END ttl261;
```

DESCRIPTION

	INP	UTS		OUTPUTS					
С	M2	M1	М0	Q4	Q3	Q2	Q1	Q0	
L	X	X	X	Q4 ₀	Q3 ₀	Q2 ₀	Q1 ₀	Q0 ₀	
Н	L	L	L	Н	L	L	L	L	
Н	L	L	Н	B 4	B4	В3	В2	B 1	
Н	L	Н	L	B 4	В4	В3	B2	B1	
Н	L	Н	Н	B 4	В3	B2	B1	В0	
Н	Н	L	L	B4	B 3	B2	B1	<u>B0</u>	
Н	Н	L	Н	В4	B 4	B3	<u>B</u> 2	<u>B</u> 1	

	INP	UTS		OUTPUTS					
С	M2	M1	М0	Q4	Q3	Q2	Q1	Q0	
Н	Н	Н	L	B4	B4	B3	B2	<u>B1</u>	
Н	Н	Н	Н	Н	L	L	L	L	

11.57. TTL273

Octal D-Type Flip-Flop with Clear.


```
ENTITY ttl273 IS
    PORT (d1: IN BIT;
          d2: IN BIT;
          d3: IN BIT;
          d4: IN BIT:
          d5: IN BIT;
          d6: IN BIT:
          d7: IN BIT:
          d8: IN BIT:
          clk: IN BIT;
          clr: IN BIT;
          q1: OUT BIT;
          q2: OUT BIT;
          a3: OUT BIT:
          q4: OUT BIT;
          q5: OUT BIT;
          q6: OUT BIT;
          q7: OUT BIT;
          q8: OUT BIT);
END ttl273;
```

	INPUTS							
CLR	CLK	Q(i)						
L	X	X	L					
Н	Λ	Н	Н					
Н	Λ	L	L					
Н	L	X	Q(i) ₀					

11.58. TTL299

8-Bit Universal Shift/Storage Register.


```
ENTITY ttl299 IS
    PORT (sr: IN BIT;
          s0: IN BIT;
          s1: IN BIT;
          g1: IN BIT;
          g2: IN BIT;
          clk: IN BIT;
          clr: IN BIT;
          sl: IN BIT;
          qa: OUT BIT;
          a: INOUT X01Z;
          b: INOUT X01Z;
          c: INOUT X01Z;
          d: INOUT X01Z;
          e: INOUT X01Z;
          f: INOUT X01Z;
          g: INOUT X01Z;
          h: INOUT X01Z;
          qh: OUT BIT );
END ttl299;
```

	INPUTS							INPUT/OUTPUT							OI	UT	
C L R	S 1	S 0	G 1	G 2	C L K	S L	S R	A	В	C	D	E	F	G	н	Q A	Q H
L	X	L	L	L	X	X	X	L	L	L	L	L	L	L	L	L	L
L	L	X	L	L	X	X	X	L	L	L	L	L	L	L	L	L	L
L	Н	Н	X	X	X	X	X	X	X	X	X	X	X	X	X	L	L
Н	L	L	L	L	X	X	X	A_0	Во	C ₀	D_0	E ₀	F ₀	G_0	H_0	A ₀	H ₀
Н	X	X	L	L	L	X	X	A ₀	В ₀	C ₀	D_0	E ₀	F ₀	G_0	H ₀	A ₀	H ₀
Н	L	Н	L	L	Λ	X	Н	Н	A _n	B _n	C _n	D _n	E _n	F _n	G _n	Н	G _n
Н	L	Н	L	L	Λ	X	L	L	A _n	B _n	C _n	D _n	En	F _n	G _n	L	G _n
Н	Н	L	L	L	Λ	Н	X	B _n	C _n	D _n	En	F _n	G _n	H _n	Н	B _n	Н
Н	Н	L	L	L	Λ	L	X	B _n	C _n	D _n	En	F _n	G _n	H _n	L	B _n	L
Н	Н	Н	X	X	Λ	X	X	a	b	с	d	e	f	g	h	a	h

When one or both output controls (G1, G2) are high, the eight input/output terminals are disabled to the high-impedance state; however, sequential operation or clearing of the register is not affected.

The notation " A_0 , B_0 , C_0 , ..." indicates that the A, B, C, etc., outputs retain their current value.

The notation " A_n , B_n , C_n , ..." indicates the output whose previous value is copied over to the current column. For example, when the inputs are set as specified in the sixth row, the A output goes high, the B output gets the previous value of A, the C output gets the previous value of B, etc.

11.59. TTL322

8-Bit Shift Register with Sign Extend.


```
ENTITY ttl322 IS
    PORT (g1: IN BIT;
          snp: IN BIT;
          se: IN BIT;
          d1: IN BIT;
          ds: IN BIT;
          d0: IN BIT:
          clk: IN BIT;
          clr: IN BIT:
          oe: IN BIT;
          a: INOUT X01Z;
          b: INOUT X01Z;
          c: INOUT X01Z;
          d: INOUT X01Z:
          e: INOUT X01Z;
          f: INOUT X01Z;
          g: INOUT X01Z;
          h: INOUT X01Z;
          qh: OUT BIT );
END ttl322;
```

	INPUTS							INPUT/OUTPUT							O U T
C L R	G	S N P	S E	D S	O E	C L K	A	В	C	D	E	F	G	н	Q H
L	Н	X	X	X	L	X	L	L	L	L	L	L	L	L	L
L	X	Н	X	X	L	X	L	L	L	L	L	L	L	L	L
Н	Н	X	X	X	L	X	A ₀	B ₀	C ₀	\mathbf{D}_0	\mathbf{E}_0	F ₀	G ₀	\mathbf{H}_{0}	H ₀
Н	L	Н	L	L	L	Λ	D0	A _n	B _n	C _n	D _n	En	F_n	G _n	G _n
Н	L	Н	L	Н	L	Λ	D1	An	B _n	C _n	D _n	En	F _n	G _n	G_n
Н	L	Н	Н	X	L	Λ	A _n	A _n	B _n	C _n	D _n	En	F _n	G _n	G _n
Н	L	L	Н	X	X	Λ	a	b	С	d	e	f	g	h	h

When the output enable is high, the eight input/output ports are disabled to the high-impedance state; however, sequential operation or clearing of the register is not affected. If both the G input and the SNP input are low while the clear input is low, the register is cleared while the eight I/O ports are disabled to the high-impedance state.

The notation " A_0 , B_0 , C_0 , ..." indicates that the A, B, C, etc., outputs retain their current value.

The notation " A_n , B_n , C_n , ..." indicates the output whose previous value is copied over to the current column. For example, when the inputs are set as specified in the fourth row, the A output gets the value of input D0, the B output gets the previous value of A, the C output gets the previous value of B, etc.

11.60. TTL323

8-Bit Universal Shift/Storage Register.


```
ENTITY ttl323 IS
    PORT (sr: IN BIT;
          s0: IN BIT;
          s1: IN BIT;
          clr: IN BIT;
          g1: IN BIT;
          g2: IN BIT;
          clk: IN BIT;
          sl: IN BIT;
          qa: OUT BIT;
          a: INOUT X01Z;
          b: INOUT X01Z;
          c: INOUT X01Z;
          d: INOUT X01Z;
          e: INOUT X01Z;
          f: INOUT X01Z;
          g: INOUT X01Z;
          h: INOUT X01Z;
          qh: OUT BIT );
END ttl323;
```

	INPUTS							INPUT/OUTPUT							Ol	UT	
C L R	S 1	S 0	G 1	G 2	C L K	S L	S R	A	В	C	D	E	F	G	н	Q A	Q H
L	X	L	L	L	X	X	X	L	L	L	L	L	L	L	L	L	L
L	L	X	L	L	X	X	X	L	L	L	L	L	L	L	L	L	L
L	Н	Н	X	X	X	X	X	X	X	X	X	X	X	X	X	L	L
Н	L	L	L	L	X	X	X	A ₀	В ₀	C ₀	D ₀	E ₀	F ₀	G_0	H ₀	A ₀	H ₀
Н	X	X	L	L	L	X	X	A_0	Во	C ₀	D_0	E ₀	F ₀	G_0	H ₀	A ₀	H ₀
Н	L	Н	L	L	Λ	X	Н	Н	A _n	B _n	C _n	D_n	En	F _n	G _n	Н	G _n
Н	L	Н	L	L	Λ	X	L	L	A _n	B _n	C _n	D _n	En	F _n	G _n	L	G _n
Н	Н	L	L	L	Λ	Н	X	B _n	C _n	D _n	En	F _n	G_n	H _n	Н	B _n	Н
Н	Н	L	L	L	Λ	L	X	B _n	C _n	$\mathbf{D_n}$	En	F _n	G _n	H _n	L	B _n	L
Н	Н	Н	X	X	Λ	X	X	a	b	c	d	e	f	g	h	a	h

When one or both output controls (G1, G2) are high, the eight input/output terminals are disabled to the high impedance state; however, sequential operation or clearing of the register is not affected. The Clear function is synchronous.

The notation " A_0 , B_0 , C_0 , ..." indicates that the A, B, C, etc., outputs retain their current value.

The notation " A_n , B_n , C_n , ..." indicates the output whose previous value is copied over to the current column. For example, when the inputs are set as specified in the sixth row, the A output goes high, the B output gets the previous value of A, the C output gets the previous value of B, etc.

11.61. TTL365

Hex Bus Drivers with 3-State Outputs.


```
ENTITY ttl365 IS
    PORT (g1: IN BIT;
          g2: IN BIT;
          al: IN BIT;
          a2: IN BIT:
          a3: IN BIT:
          a4: IN BIT:
          a5: IN BIT;
          a6: IN BIT;
          y1: OUT X01Z;
          y2: OUT X01Z;
          y3: OUT X01Z;
          y4: OUT X01Z;
          y5: OUT X01Z;
          y6: OUT X01Z);
END ttl365;
```

DESCRIPTION

	OUTPUT		
G1	G2	A(i)	Y(i)
Н	X	X	Z
Х	Н	X	Z
L	L	L	L
L	L	Н	Н

11.62. TTL366

Hex Inverted Bus Drivers with 3-State Outputs.

ENTITY ttl366 IS PORT (g1: IN BIT; g2: IN BIT; al: IN BIT; a2: IN BIT: a3: IN BIT; a4: IN BIT; a5: IN BIT; a6: IN BIT; v1: OUT X01Z; y2: OUT X01Z; y3: OUT X01Z; y4: OUT X01Z; y5: OUT X01Z; y6: OUT X01Z); END ttl366;

DESCRIPTION

	INPUTS						
G1	G2	A(i)	Y(i)				
Н	X	X	Z				
. X	Н	X	Z				
L	L	L	Н				
L	L	Н	L				

11.63. TTL373

Octal D-Type Transparent Latch with 3-State Outputs.


```
ENTITY ttl373 IS
    PORT (oc: IN BIT;
          d1: IN BIT;
          d2: IN BIT;
          d3: IN BIT:
          d4: IN BIT:
          d5: IN BIT;
          d6: IN BIT;
          d7: IN BIT;
          d8: IN BIT;
          c: IN BIT;
          q1: OUT X01Z;
          q2: OUT X01Z;
          q3: OUT X01Z;
          q4: OUT X01Z;
          q5: OUT X01Z;
          q6: OUT X01Z;
          q7: OUT X01Z;
          q8: OUT X01Z);
END ttl373;
```

DESCRIPTION

	INPUTS						
ОС	С	D(i)	Q(i)				
L	Н	Н	Н				
L	Н	L	L				
L	L	X	Q(i) ₀				
Н	Х	X	Z				

11.64. TTL374

Octal D-Type Edge-Triggered Flip-Flops with 3-State Outputs.


```
ENTITY ttl374 IS
    PORT (oc: IN BIT;
          d1: IN BIT;
          d2: IN BIT;
          d3: IN BIT:
          d4: IN BIT:
          d5: IN BIT:
          d6: IN BIT:
          d7: IN BIT;
          d8: IN BIT:
          clk: IN BIT;
          q1: OUT X01Z;
          q2: OUT X01Z;
          q3: OUT X01Z;
          q4: OUT X01Z;
          q5: OUT X01Z;
          q6: OUT X01Z;
          q7: OUT X01Z;
          q8: OUT X01Z);
END ttl374;
```

DESCRIPTION

	INPUTS						
ОС	C	D(i)	Q(i)				
L	Λ	Н	Н				
L	Λ	L	L				
L	L	X	Q(i) ₀				
Н	X	X	Z				

11.65. TTL518

8-bit magnitude comparator.


```
ENTITY ttl518 IS
    PORT(g: IN BIT;
          q0: IN BIT;
          q1: IN BIT;
          q2: IN BIT;
          q3: IN BIT;
           q4: IN BIT;
          q5: IN BIT;
          q6: IN BIT;
          q7: IN BIT;
          p0: IN BIT;
          pl: IN BIT;
          p2: IN BIT;
          p3: IN BIT;
          p4: IN BIT;
          p5: IN BIT;
          p6: IN BIT;
          p7: IN BIT;
          pg: OUT BIT );
END ttl518;
```

DESCRIPTION

```
PQ <= (not G) and

(not (Q7 xor P7)) and

(not (Q6 xor P6)) and

(not (Q5 xor P5)) and

(not (Q4 xor P4)) and

(not (Q3 xor P3)) and

(not (Q2 xor P2)) and

(not (Q1 xor P1)) and

(not (Q0 xor P0));
```

PQ is at a high level when input P equals input Q.