Colles semaine 9 - Pratique de la diagonalisation

1 Définitions

- Équation des couples propres $A\vec{X} = \lambda \vec{X}$ avec $\vec{X} \neq \vec{0}$.
- ▶ Vocabulaire dans l'équation ci-dessus, on dit que :
- $\rightarrow \lambda$ est une **valeur propre** de A.
- \vec{X} est un **vecteur propre** de A, associé à la valeur propre λ .
 - ightharpoonup Spectre d'une matrice carrée A: l'ensemble, noté Sp(A), des valeurs propres de A.
 - ▶ **Vérifier si** $\lambda \in \operatorname{Sp}(A)$ (λ donnée): pivot de Gauss (résolⁿ de $A\vec{X} = \lambda \vec{X} \Leftrightarrow (A \lambda I_n) \cdot \vec{X} = \vec{0}$)
 - ▶ **Sous-espace propre** associé à une valeur propre λ . C'est : $E_{\lambda}(A) = \text{Ker}(A \lambda I_n)$.
 - ▶ **Reformulation des valeurs propres** On a $\lambda \in \text{Sp}(A) \iff \text{Ker}(A \lambda I_n) \neq \{\vec{0}\}.$

2 Approche directe

(seulement dans quelques cas)

Valeurs propres d'une matrice triangulaire

- (Elles sont « déjà » sur sa diagonale)
- Les valeurs propres d'une matrice triangulaire sont ses coefficients diagonaux.
- ▶ Le **spectre** d'une matrice triangulaire est **l'ensemble de** ses coefficients diagonaux
 - ▶ Pivot de Gauss à paramètre On écrit $\lambda \in \text{Sp}(A) \Leftrightarrow (A - \lambda I_n)$ pas inversible

(Approche déconseillée sauf demande explicite)

(puis pivot de Gauss avec discussion selon λ)

3 Avec un polynôme annulateur

(méthode plus générale)

- ▶ **Définition** Un polynôme P est un polynôme annulateur de A si $P(A) = 0_n$.
- ▶ **Recherche d'un polynôme annulateur** par calcul des premières puissances de *A*.
- ▶ Polynôme annulateur et calcul d'inverse
- Condition nécessaire de valeur propres

(Si λ est une vp de A, alors $P(\lambda) = 0$.)

(En testant toutes les racines λ de P, on est sûr de ne manquer aucune vp de A.)

4 Diagonalisation d'une matrice

Une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est **diagonalisable** si l'on peut écrire : $A = P \cdot D \cdot P^{-1}$. avec : (*c'est une formule de changement de base*)

ne jorniule de changement de base)

► D diagonale : « la matrice des valeurs propres »

(matrice dans une nouvelle base)

▶ *P* inversible : « la matrice des vecteurs propres »

(matrice de passage)

Diagonalisabilité

L'existence d'une diagonalisation revient à l'existence d'une base de vecteurs propres.

Condition nécessaire et suffisante de diagonalisabilité:

La matrice carrée $A \in \mathcal{M}_n(\mathbb{R})$ est **diagonalisable** *ssi* la somme des dimensions de ses sous-espaces propres $E_{\lambda}(A)$ vaut n

5 Questions de cours

1. Définir « *P* est un polynôme annulateur de *A*. » Que dire alors des valeurs propres de *A*?

2. Le sous-espace propre associé à une valeur propre λ . Lien avec l'équation $A \cdot \vec{X} = \lambda \cdot \vec{X}$.

3. La somme des dimensions des sous-espaces propres.

4. La formule de diagonalisation.

5. Principe de la représentation matricielle d'un endomorphisme.

