Satellite Multi-Hop Queuing Models for the Space IoT

Supervisor: Prof. Beatriz Soret

- Sucheta Ravikanti

General System

A relay network that has to carry the periodic reports from the earth

 λ_1 ... are the parameters representing poisson or periodic traffic at each node. μ_1 , μ_2 ... are the parameters representing exponential servicing times at each nodes. ϵ_1 , ϵ_2 ... are the reliability parameters (probability of successful transmission from node i to i+1) N represents the number of satellites or queues or nodes. U represents the number of users.

Buffer Length vs Time (Poisson Traffic)

Users: 5, 10, 15, 20 Number of nodes: 2

To verify if the server utilization is less than 1

Delay (end-to-end) vs Packet (Poisson Traffic) (Considered for the packets received by the first node)

Users: 5

Number of nodes: 2, 5, 7, 10

As nodes increase, average delay increases and the number of ground packets decrease

Objective

Minimizing the **Age of Information** for the general queuing system model shown

By understanding the effect of each parameter in the system

Age of Information

- Captures the freshness of the information at end-user
- Find uses in various applications: Weather, transportation, live traffic etc

Age: t - u(t) u(t) - Time stamp of the most recently received update

Source:

Real-Time Status: How Often Should One Update?

Single Node Characterization (Poisson Traffic)

Rho minimum (from sim) = 0.52Rho minimum (from theory) ~ 0.53Minimum Aol ~ 3.5

Single Node Characterization (Periodic Traffic)

Rho minimum (from sim) = 0.50 Rho minimum (from theory) ~ 0.515 Minimum Aol ~ 2.25

The optimum rho is different from that

maximizes throughput (rho = 1) and that

minimizes the end-to-end delay (small rho ~ 0)

Aol vs Mu (for different users and traffics)

Nodes: 1 Users: 2, 5

Periodic Queue shows a lower Aol for both the values of users

Re-transmission

Aol vs Time (With & Without retransmissions)

For higher nodes, retransmission benefits the Aol

AoI with and without re-transmission (Periodic)

X-axis: Lambda or (1/period)

Y-axis: Aol

Max limit: 2

Number of users: 7
Number of nodes: 2

epsilon: 0.9

Zero-Wait Policy Tandem Queue

Arrivals to node1: Zero-wait policy

Rho = mu_1/mu_2

Source of the image: Age-of-Information for Computation-Intensive Messages in Mobile Edge Computing

Mu_1 is like the lambda to queue 2 which is MM1

Initially, the rate of arrival is low leading to a high Aol

Later, the rate of arrival gets high resulting in larger waiting times leading to a high AoI

(With Intermediate traffic, poisson traffic and without re-transmissions)

Epsilon: 0.9 Num_users: 5

(With Intermediate traffic, periodic traffic and without re-transmissions)

Epsilon: 0.9 Num_users: 5

(Without Intermediate traffic, poisson traffic and without re-transmissions)

Epsilon: 0.9 Num_users: 5

(Without Intermediate traffic, periodic traffic and without re-transmissions)

Epsilon: 0.9 Num_users: 5

(With Intermediate traffic, periodic traffic and with re-transmissions(limit:2))

Epsilon: 0.9 Num_users: 5

(With Intermediate traffic, poisson traffic and with re-transmissions(limit:2))

Epsilon: 0.9 Num_users: 5

(Without Intermediate traffic, poisson traffic and with re-transmissions(limit:2))

Epsilon: 0.9 Num_users: 5

(Without Intermediate traffic, periodic traffic and with re-transmissions(limit:2))

Epsilon: 0.9 Num_users: 5

(With Intermediate traffic, periodic traffic and retransmissions - (0, 1, 2, 3, 4))

Epsilon: 0.9 Num_users: 5

Aol vs Lambda (2-node system)

(Without Intermediate traffic, periodic traffic and no retransmissions, epsilon = 0.9)

Aol vs Lambda (2-node system)

(Without Intermediate traffic, poisson traffic and no retransmissions, epsilon = 0.9)

Probability of Success vs Number of Nodes

(Without Intermediate traffic, poisson traffic and without re-transmissions)

Epsilon: 0.9 Num_users: 5

Num_events = 5000

Probability of Success vs Number of Nodes

(Without Intermediate traffic, periodic traffic and without re-transmissions)

Epsilon: 0.9 Num_users: 5

Num_events = 5000