SONY

Diagonal 6.4 mm (Type 1/2.9) CMOS Image Sensor with Square Pixel for Color Cameras

IMX122LQJ-C

Description

The IMX122LQJ-C is a diagonal 6.4 mm (Type 1/2.9) CMOS active pixel type image sensor with a square pixel array and approximately 2.43 M effective pixels. This chip operates with analog 2.7 V, digital 1.2 V and interface 1.8 V triple power supplies. High sensitivity, low dark current and no smear are achieved through the adoption of R, G and B primary color pigment mosaic filters. This chip features an electronic shutter with variable integration time. (Applications: Surveillance cameras)

Features

- ◆ CMOS active pixel type dots
- ◆ Input clock frequency: 54 MHz/37.125 MHz
- ◆ Readout mode

All-pixel scan mode

HD1080 p mode (when INCK = 37.125 MHz)

HD720 p mode (when INCK = 37.125 MHz)

Window cropping mode

Horizontal vertical 2 × 2 binning mode

Vertical 1/2 subsampling mode

- ◆ Variable-speed shutter function (Minimum unit: One horizontal sync signal period (1XHS))
- ♦ H driver, V driver and serial communication circuit on chip
- ◆ CDS/PGA on chip

0 dB to 24 dB: Analog Gain 24 dB (step pitch 0.3 dB)

24.3 dB to 42 dB: Analog Gain 24 dB + Digital Gain 0.3 to 18 dB (step pitch 0.3 dB)

- ◆ 10-bit/12-bit A/D converter on-chip
- ◆ Output method switchable
 - ◆ CMOS logic parallel SDR/DDR output Data-Clock output
 - ◆ Low voltage LVDS serial 1ch/2ch output Data-Strobe output
- ◆R, G, B primary color pigment mosaic filters on chip
- ◆ Recommended lens F value: 2.8 or more (close side)
- ◆ Recommended exit pupil distance: -30 mm to -∞

^{* &}quot;Exmor" is a trademark of Sony Corporation. The "Exmor" is a version of Sony's high performance CMOS image sensor with high-speed processing, low noise and low power dissipation by using column-parallel A/D conversion.

SONY IMX122LQJ-C

Device Structure

◆ CMOS image sensor

◆ Image size Diagonal 6.4 mm (Type 1/2.9)

◆ Total number of pixels

All-pixel scan: 2000 (H) \times 1241 (V) approx. 2.48 M pixels HD1080 p: 2000 (H) \times 1121 (V) approx. 2.24 M pixels

◆ Number of effective pixels

All-pixel scan: 1984 (H) \times 1225 (V) approx. 2.43 M pixels HD1080 p: 1984 (H) \times 1105 (V) approx. 2.19 M pixels

♦ Number of active pixels

All-pixel scan: 1936 (H) \times 1217 (V) approx. 2.36 M pixels HD1080 p: 1936 (H) \times 1097 (V) approx. 2.12 M pixels

◆ Number of recommended recording pixels

All-pixel scan: 1920 (H) \times 1200 (V) approx. 2.30 M pixels HD1080 p: 1920 (H) \times 1080 (V) approx. 2.07 M pixels

◆ Chip size

7.60 mm (H) × 5.80 mm (V)

◆ Unit cell size

 $2.8 \mu m (H) \times 2.8 \mu m (V)$

◆ Optical black

Horizontal (H) direction: Front 16 pixels, rear 0 pixels
Vertical (V) direction: Front 16 pixels, rear 0 pixels

♦ Dummy

Horizontal (H) direction: Front 0 pixels, rear 0 pixels
Vertical (V) direction: Front 7 pixels, rear 0 pixels

◆ Substrate material

Silicon

Absolute Maximum Ratings

Supply voltage (analog 2.7 V)	AV_DD	-0.3 to +3.3	V
Supply voltage (digital 1.2 V)	DV_{DD}	-0.3 to +2.0	V
Supply voltage (digital 1.8 V)	OV_DD	-0.3 to +3.3	V
Input voltage (digital)	V_{I}	-0.3 to OV_{DD} +3.3	V
Output voltage (digital)	V_{O}	-0.3 to OV_{DD} +3.3	V
Guaranteed Operating temperature	Topr	-10 to +60	°C
Guaranteed storage temperature	Tstg	-30 to +80	°C
Guaranteed performance temperature	Tspc	-10 to +60	°C

Recommended Operating Conditions

Supply voltage (analog 2.7 V)	AV_DD	2.7 ± 0.1	V
Supply voltage (digital 1.2 V)	DV_{DD}	1.2 ± 0.1	V
Supply voltage (digital 1.8 V)	OV_DD	1.8 ± 0.1	V
Input voltage (digital)	V_{I}	-0.1 to OV_{DD} +0.1	٧
Output voltage (digital)	V_{O}	-0.1 to OV _{DD} +0.1	V

USE RESTRICTION NOTICE

This USE RESTRICTION NOTICE ("Notice") is for customers who are considering or currently using the image sensor products ("Products") set forth in this specifications book. Sony Corporation ("Sony") may, at any time, modify this Notice which will be available to you in the latest specifications book for the Products. You should abide by the latest version of this Notice. If a Sony subsidiary or distributor has its own use restriction notice on the Products, such a use restriction notice will additionally apply between you and the subsidiary or distributor. You should consult a sales representative of the subsidiary or distributor of Sony on such a use restriction notice when you consider using the Products.

Use Restrictions

- The Products are intended for incorporation into such general electronic equipment as office products, communication products, measurement products, and home electronics products in accordance with the terms and conditions set forth in this specifications book and otherwise notified by Sony from time to time.
- You should not use the Products for critical applications which may pose a life- or injury- threatening
 risk or are highly likely to cause significant property damage in the event of failure of the Products. You
 should consult your sales representative beforehand when you consider using the Products for such
 critical applications. In addition, you should not use the Products in weapon or military equipment.
- Sony disclaims and does not assume any liability and damages arising out of misuse, improper use, modification, use of the Products for the above-mentioned critical applications, weapon and military equipment, or any deviation from the requirements set forth in this specifications book.

Design for Safety

 Sony is making continuous efforts to further improve the quality and reliability of the Products; however, failure of a certain percentage of the Products is inevitable. Therefore, you should take sufficient care to ensure the safe design of your products such as component redundancy, anti-conflagration features, and features to prevent mis-operation in order to avoid accidents resulting in injury or death, fire or other social damage as a result of such failure.

Export Control

 If the Products are controlled items under the export control laws or regulations of various countries, approval may be required for the export of the Products under the said laws or regulations.
 You should be responsible for compliance with the said laws or regulations.

No License Implied

• The technical information shown in this specifications book is for your reference purposes only. The availability of this specifications book shall not be construed as giving any indication that Sony and its licensors will license any intellectual property rights in such information by any implication or otherwise. Sony will not assume responsibility for any problems in connection with your use of such information or for any infringement of third-party rights due to the same. It is therefore your sole legal and financial responsibility to resolve any such problems and infringement.

Governing Law

This Notice shall be governed by and construed in accordance with the laws of Japan, without reference
to principles of conflict of laws or choice of laws. All controversies and disputes arising out of or relating
to this Notice shall be submitted to the exclusive jurisdiction of the Tokyo District Court in Japan as the
court of first instance.

Other Applicable Terms and Conditions

The terms and conditions in the Sony additional specifications, which will be made available to you when
you order the Products, shall also be applicable to your use of the Products as well as to this
specifications book. You should review those terms and conditions when you consider purchasing
and/or using the Products.

CONTENTS

Description	
⁼ eatures	1
Device Structure	2
Absolute Maximum Ratings	3
Recommended Operating Conditions	3
JSE RESTRICTION NOTICE	
Chip Center and Optical Center	
Pixel Arrangement	5
Block Diagram and Pin Configuration	(
Diock Diagram and Fin Comiguration	5
Electrical Characteristics	10
DC Characteristics	
Current Consumption	
Power Consumption	14
AC Characteristics	- 12
a) Master clock (INCK)	
b) XVS and XHS Input Characteristics (In Slave Mode)	
c) XVS, XHS Output Characteristics (In Master Mode, CMOS Output)	
d) Serial Communication (4-wire Serial)	18
e) DCK and DO Output Characteristics (Parallel CMOS Output Mode)	19
f) DATA/STROBE Output Characteristics (Serial LVDS Output Mode)	2 ⁻
/O Equivalent Circuit Diagram	22
Spectral Sensitivity Characteristics	23
mage Sensor Characteristics	2/
Zone Definition of Video Signal Shading	2 <u>-</u>
mage Sensor Characteristics Measurement Method	25
Measurement Conditions	25 25
Color Coding of this Image Sensor and Readout	25
Definition of standard imaging conditions	25
Measurement Method	26
Setting Registers with Serial Communication	
Description of Setting Registers	28
Register Communication Timing	28
Register Write and Read	29
Communication Timing to Registers with Continuous Addresses	30
Communication Timing to Registers with Discontinuous Addresses	30
Register Map	31
ČhipID: 02	31
ChipID: 03	41
Readout Drive Mode	
Sync Code (Parallel CMOS Output Mode)	43
Sync Code Output Timing (Parallel CMOS Output Mode)	44
Sync Code (Serial LVDS Output Mode)	45
Sync Code Output Timing (Serial LVDS Output Mode)	47
Image Data Output Format	48
All-pixel Scan Mode	
HD1080 p Mode	51
HD720 p mode	55
Window Cropping Mode	
2 × 2 Binning Readout Mode	bi
Vertical 1/2 Subsampling Mode	
Standby mode	67
Slave Mode and Master ModeSlave Mode and Master Mode	67
XHSLNG Selection	
XVSLNG Selection	
Gain Adjustment Function	
Black Level Adjustment Function	71 71
Vertical Normal Operation and Inverted Drive	7
Shutter and Integration Time Settings	74
Normal Exposure Operation (Controlling the Integration Time in 1H Units)	7!
Long Exposure Operation (Control by Expanding the Number of Lines per Frame)	76
Long Exposure Operation (Controlling the Integration Time in Frame Units)	77
Example of Integration Time Setting	78
Shutter Break Function	

SONY

Output Signal Interface Control	81
Parallel CMOS SDR Output	
Parallel CMOS DDR Output	
Serial LVDS Output	
DATA-Strobe Method	
Output Signal Range	
Mode Transitions	85
Power-on/off Sequence	
Power-on Sequence	
Power-off Sequence	
Sensor Setting Flow Chart	
Serial Communication Period after Sensor Reset	
Slave mode	
Master mode	~ .
Peripheral CircuitPeripheral Circuit	
Power pins	91
Signal pins	
Data out pins	
Spot Pixel Specifications	
Zone Definition	
Notice on White Pixels Specifications	
Measurement Method for Spot Pixels	96
Spot Pixel Pattern Specifications	
Stain SpecificationsStain Specifications	98
Stain Zone Definition	
Stain Measurement Method	98
CR Characteristics	99
Marking	100
Notes On Handling	101
Package Outline	103

Chip Center and Optical Center

Optical Center

Pixel Arrangement

(Top View)

Pixel Arrangement - Physical Image

Block Diagram and Pin Configuration

(Top View)

Block Diagram

	L	K	J	Н	G	F	Е	D	С	В	Α
1	N.C.	N.C.	TEST7	DO0 / DATAP0	DO2 / STRBP0	DO4 / STRBP1	DO6 / DATAP1	DO8	DO10	N.C.	N.C.
2	N.C.	N.C.	DCK	DO1 / DATAM0	DO3 / STRBM0	DO5 / STRBM1	DO7 / DATAM1	DO9	DO11	N.C.	N.C.
3	xvs	INCK	VSSL	XCLR	XHS	VSSL	VSSL	VDDM	VDDM	VSSL	TEST3
4	VDDL	VSSL	VSSL	VDDL				VDDL	VSSL	VSSL	VDDL
5	VDDH	VSSH	VSSL	VDDL	IN	ЛХ12	2	VSSH	VDDH	VSSL	VDDL
6	VDDH	VSSH	VSSL	VDDL	TC	P Vi	ew	VDDH	SDI	SDO	SCK
7	VDDH	VSSH	VSSH	VDDH2				XMASTER	TEST2	VSSM	VDDM
8	VDDH	VSSH	VSSL	VDDL	VDDL	VDDL	VSSM	TEST1	XCE	VSSH	VDDH
9	TEST6	N.C.	Vcap2	VSSL	VSSL	VSSL	VSSM	TEST4	VCP	N.C.	N.C.
10	N.C.	N.C.	Vcap1	VSSH	VSSH	VDDH	VDDH	TEST5	VRL	N.C.	N.C.

Pin Configuration

Pin Description

				Svn	nbol		
No.	Pin.	I/O	Analog/	CMOS	LVDS	Description	Remarks
	No.		Digital	parallel	serial	·	
1	A1	_		N.C.	N.C.	Not connected.	OPEN
2	A2	_	_	N.C.	N.C.	Not connected.	OPEN
3	A3	TEST	D	TEST3	TEST3	Test	Low level fixed
4	A4	Power	D	VDDL	VDDL	1.2 V power supply	
5	A5	Power	D	VDDL	VDDL	1.2 V power supply	
6	A6	I	D	SCK	SCK	Serial I/F (Communication clock input)	
7	A7	Power	D	VDDM	VDDM	1.8 V power supply	
8	A8	Power	Α	VDDH	VDDH	2.7 V power supply	
9	A9	_		N.C.	N.C.	Not connected.	OPEN
10	A10	_	_	N.C.	N.C.	Not connected.	OPEN
11	B1	_		N.C.	N.C.	Not connected.	OPEN
12	B2	_	_	N.C.	N.C.	Not connected.	OPEN
13	В3	GND	D	VSSL	VSSL	1.2 V GND	
14	B4	GND	D	VSSL	VSSL	1.2 V GND	
15	B5	GND	D	VSSL	VSSL	1.2 V GND	
16	В6	0	D	SDO	SDO	Serial I/F (Register value output)	
17	B7	GND	D	VSSM	VSSM	1.8 V GND	
18	B8	GND	А	VSSH	VSSH	2.7 V GND	
19	В9	_	_	N.C.	N.C.	Not connected.	OPEN
20	B10	_	_	N.C.	N.C.	Not connected.	OPEN
21	C1	0	D	DO10	TEST11	When CMOS output: Digital output When LVDS output: Open	
22	C2	0	D	DO11	TEST12	When CMOS output: Digital output When LVDS output: Open	
23	C3	Power	D	VDDM	VDDM	1.8 V power supply	
24	C4	GND	D	VSSL	VSSL	1.2 V GND	
25	C5	Power	Α	VDDH	VDDH	2.7 V power supply	
26	C6	1	D	SDI	SDI	Serial I/F (Register value input)	
27	C7	TEST	D	TEST2	TEST2	Test	Low level fixed
28	C8	1	D	XCE	XCE	Serial I/F (Communication enable)	
29	C9	0	Α	VCP	VCP	Connected to VRL	Connected to an external capacitor.
30	C10	-	Α	VRL	VRL	Connected to VCP	Connected to an external capacitor.
31	D1	0	D	DO8	TEST9	When CMOS output: Digital output When LVDS output: Open	
32	D2	0	D	DO9	TEST10	When CMOS output: Digital output When LVDS output: Open	
33	D3	Power	D	VDDM	VDDM	1.8 V power supply	
34	D4	Power	D	VDDL	VDDL	1.2 V power supply	
35	D5	GND	Α	VSSH	VSSH	2.7 V GND	
36	D6	Power	Α	VDDH	VDDH	2.7 V power supply	
37	D7	I	D	XMASTER	XMASTER	Slave Mode: High / Master Mode: Low	High:1.8 V Low:GND
38	D8	TEST	D	TEST1	TEST1	Test	10 kΩPull-Up
39	D9	TEST	D	TEST4	TEST4	Test	OPEN
40	D10	TEST	D	TEST5	TEST5	Test OPEN	

				Svr	nbol		
No.	Pin. No.	I/O	Analog/ Digital	CMOS parallel	LVDS serial	Description	Remarks
41	E1	0	D	DO6	DATAP1	When CMOS output: Digital output When LVDS output: LVDS DATAP1 signal output of low power version	
42	E2	0	D	DO7	DATAM1	When CMOS output: Digital output When LVDS output: LVDS DATAM1 signal output of low power version	
43	E3	GND	D	VSSL	VSSL	1.2 V GND	
44	E8	GND	D	VSSM	VSSM	1.8 V GND	
45	E9	GND	D	VSSM	VSSM	1.8 V GND	
46	E10	GND	А	VDDH	VDDH	2.7 V power supply	
47	F1	0	D	DO4	STRBP1	When CMOS output: Digital output When LVDS output: LVDS strobeP1 signal output of low power version	
48	F2	0	D	DO5	STRBM1	When CMOS output: Digital output When LVDS output: LVDS strobeM1 signal output of low power version	
49	F3	GND	D	VSSL	VSSL	1.2 V GND	
50	F8	Power	D	VDDL	VDDL	1.2 V power supply	
51	F9	GND	D	VSSL	VSSL	1.2 V GND	
52	F10	Power	Α	VDDH	VDDH	2.7 V power supply	
53	G1	0	D	DO2	STRBP0	When CMOS output: Digital output When LVDS output: LVDS strobeP0 signal output of low power version	
54	G2	0	D	DO3	STRBM0	When CMOS output: Digital output When LVDS output: LVDS strobeM0 signal output of low power version	
55	G3	I/O	D	XHS	XHS	Horizontal sync signal input/output	When LVDS output : Only input
56	G8	Power	D	VDDL	VDDL	1.2 V power supply	
57	G9	GND	D	VSSL	VSSL	1.2 V GND	
58	G10	GND	А	VSSH	VSSH	2.7 V GND	
59	H1	0	D	DO0	DATAP0	When CMOS output: Digital output When LVDS output: LVDS DATAP0 signal output of low power version	
60	H2	0	D	DO1	DATAM0	When CMOS output: Digital output When LVDS output: LVDS DATAM0 signal output of low power version	
61	НЗ	I	D	XCLR	XCLR	System clear	
62	H4	Power	D	VDDL	VDDL	1.2 V power supply	
63	H5	Power	D	VDDL	VDDL	1.2 V power supply	
64	H6	Power	D	VDDL	VDDL	1.2 V power supply	
65	H7	Power	Α	VDDH2	VDDH2	2.7 V power supply	
66	H8	Power	D	VDDL	VDDL	1.2 V power supply	
67	H9	GND	D	VSSL	VSSL	1.2 V GND	
68	H10	GND	Α	VSSH	VSSH	2.7 V GND	
69	J1	0	D	TEST7	TEST7	Test	
70	J2	0	D	DCK	TEST8	When CMOS output: clock output. When LVDS output: open	
71	J3	GND	D	VSSL	VSSL	1.2 V GND	
72	J4	GND	D	VSSL	VSSL	1.2 V GND	
73 74	J5 J6	GND GND	D D	VSSL VSSL	VSSL VSSL	1.2 V GND 1.2 V GND	
75	J7	GND	A	VSSH	VSSH	2.7 V GND	
76	J8	GND	D	VSSL	VSSL	1.2 V GND	
77	J9	TEST	А	Vcap2	Vcap2	Test	Connected to an external capacitor.
78	J10	TEST	А	Vcap1	Vcap1	Test	Connected to an external capacitor.

	Pin.		Analog/	Syn	nbol		
No.	No.	I/O	Analog/ Digital	CMOS	LVDS	Description	Remarks
	INO.		Digital	parallel	serial		
79	K1	_	_	N.C.	N.C.	Not connected.	OPEN
80	K2	_	_	N.C.	N.C.	Not connected.	OPEN
81	K3	I	D	INCK	INCK	Master clock	
82	K4	GND	D	VSSL	VSSL	1.2 V GND	
83	K5	GND	Α	VSSH	VSSH	2.7 V GND	
84	K6	GND	Α	VSSH	VSSH	2.7 V GND	
85	K7	GND	Α	VSSH	VSSH	2.7 V GND	
86	K8	GND	Α	VSSH	VSSH	2.7 V GND	
87	K9	_	_	N.C.	N.C.	Not connected.	OPEN
88	K10	_	_	N.C.	N.C.	Not connected.	OPEN
89	L1	_	_	N.C.	N.C.	Not connected.	OPEN
90	L2	_	_	N.C.	N.C.	Not connected.	OPEN
91	L3	I/O	D	xvs	XVS	Horizontal sync signal input/output Slave mode : Input , Master mode : Output	When LVDS output : Only input
92	L4	GND	D	VDDL	VDDL	1.2 V power supply	
93	L5	Power	Α	VDDH	VDDH	2.7 V power supply	
94	L6	Power	Α	VDDH	VDDH	2.7 V power supply	
95	L7	Power	Α	VDDH	VDDH	2.7 V power supply	
96	L8	Power	Α	VDDH	VDDH	2.7 V power supply	
97	L9	TEST	D	TEST6	TEST6	Test OPEN	
98	L10	_	_	N.C.	N.C.	Not connected.	OPEN

Electrical Characteristics

The electrical characteristics of this device is shown below.

DC Characteristics

Item		Pin	Symbol	Conditions	Min.	Тур.	Max.	Unit
	Analog	V _{DD} H	AV _{DD}	AV _{DD} —		2.7	2.8	V
Supply voltage	Distal	V _{DD} M	OV_{DD}	_	1.7	1.8	1.9	V
	Digital	V _{DD} L	DV _{DD}	_	1.1	1.2	1.3	V
Digital input voltage Digital input voltage XHS XVS XCLR INCK XMAST XCE SDI SCK		XVS XCLR	V _{IH}	VA COM IO	0.8OV _{DD}	l	_	V
		XMASTER XCE SDI	V _{IL}	XVS/XHS: In slave mode	_		0.20V _{DD}	V
		DO [11:0]	V _{OH}	CMOS output I _{OH} = -4 mA	OV _{DD} – 0.4		_	V
		DCK V _{OL}		CMOS output I _{OL} = 4 mA	_		0.4	V
Digital output voltage		DATA0/1 V _{CM}		LVDS output Terminating	OV _{DD} /2 - 0.1	OV _{DD} /2	OV _{DD} /2 + 0.1	V
		STRB0/1	V _{OD}	resistance: 100 Ω	100	150	200	mV
		XHS XVS	V _{OH}	XVS/XHS: In master mode,	OV _{DD} – 0.4	_	_	V
			V _{OL}	CMOS output	_	_	0.4	V

LVDS Output

Current Consumption

			Ту	/p.	Ma		
Item, conditions	Pin	Symbol	Standard Luminous intensity	Saturated luminous intensity	Standard Luminous intensity	Saturated Luminous intensity	Unit
All-pixel mode	V _{DD} H	IAV _{DD}	36	36	46	46	
Parallel CMOS-SDR output INCK = 54 MHz	V _{DD} L	IDV _{DD}	34	43	46	52	mA
10 bit/12 bit 19.64 frame/s	V _{DD} M	IOV _{DD}	25	5	31	8	
All-pixel mode	$V_{DD}H$	IAV _{DD}	36	36	46	46	
Serial LVDS-2ch output INCK = 54 MHz	V _{DD} L	IDV _{DD}	36	45	50	54	mA
10 bit/12 bit 19.64 frame/s	V _{DD} M	IOV _{DD}	12	12	18	18	
HD1080 p mode	$V_{DD}H$	IAV _{DD}	36	36	46	46	
Parallel CMOS-SDR output INCK = 37.125 MHz	V _{DD} L	IDV _{DD}	36	49	47	58	mA
10 bit/12 bit 30 frame/s	V _{DD} M	IOV _{DD}	33	5	42	8	
HD1080 p mode	$V_{DD}H$	IAV _{DD}	36	36	46	46	
Serial LVDS-2ch output INCK = 37.125 MHz	V _{DD} L	IDV _{DD}	39	52	51	62	mA
10 bit/12 bit 30 frame/s	V _{DD} M	IOV _{DD}	12	12	18	18	
	$V_{DD}H$	IAV _{DD} _STB	3	3	4	7	
Standby current	V _{DD} L	IDV _{DD} _STB	400		2200		μΑ
	V _{DD} M	IOV _{DD} _STB	Ę	5	143		

Typ.: AV_{DD} = 2.7 V, OV_{DD} = 1.8 V, DV_{DD} = 1.2 V, Ta = 25 °C Max.: AV_{DD} = 2.8 V, OV_{DD} = 1.9 V, DV_{DD} = 1.3 V, Ta = 60 °C

Standard luminous intensity: Luminous intensity at standard imaging condition I Saturated luminous intensity: Luminous intensity when the sensor is saturated

Power Consumption

			Ту	/p.	Ma			
Item, conditions	Pin	Symbol	Standard Luminous intensity	Saturated luminous intensity	Standard Luminous intensity	Saturated Luminous intensity	Unit	
All-pixel mode	V _{DD} H	IAV _{DD}	97.2	97.2	128.8	128.8		
Parallel CMOS-SDR output	V _{DD} L	IDV _{DD}	40.8	51.6	59.8	67.6	mW	
INCK = 54 MHz	V _{DD} M	IOV _{DD}	45.0	9.0	58.9	15.2	IIIVV	
10 bit/12 bit 19.64 frame/s	TOTAL	PV _{DD}	183.0	157.8	247.5	211.6		
	V _{DD} H	IAV _{DD}	97.2	97.2	128.8	128.8		
All-pixel mode Serial LVDS-2ch output	V _{DD} L	IDV _{DD}	43.2	54.0	65.0	70.2	mW	
INCK = 54 MHz 10 bit/12 bit 19.64 frame/s	V _{DD} M	IOV _{DD}	21.6	21.6	34.2	34.2	11177	
10 bit/12 bit 19.04 frame/s	TOTAL	PV _{DD}	162	172.8	228.0	233.2		
LID4000 ramada	V _{DD} H	IAV _{DD}	97.2	97.2	128.8	128.8		
HD1080 p mode Parallel CMOS-SDR output	V _{DD} L	IDV _{DD}	43.2	58.8	61.1	75.4	mW	
INCK=37.125 MHz 10 bit/12 bit 30 frame/s	V _{DD} M	IOV _{DD}	59.4	9.0	79.8	15.2	IIIVV	
10 bit/12 bit 30 frame/s	TOTAL	PV _{DD}	199.8	165.0	269.7	219.4		
LID4000 is recorded	$V_{DD}H$	IAV _{DD}	97.2	97.2	128.8	128.8		
HD1080 p mode Serial LVDS-2ch output INCK = 37.125 MHz 10 bit/12 bit 30 frame/s	V _{DD} L	IDV _{DD}	46.8	62.4	66.3	80.6	m\\/	
	V _{DD} M	IOV _{DD}	21.6	21.6	34.2	34.2	mW	
10 bit/12 bit 30 frame/s	TOTAL	PV _{DD}	165.6	181.2	229.3	243.6		

^{*} The condition of measuring Typ. value and Max. value are the same as current consumption.

AC Characteristics

a) Master clock (INCK)

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
INCK clock frequency	f _{INCK}	53	54	55	MHz	
INCK Low level width	t _{WLINCK}	6.5	_	_	ns	
INCK High level width	t _{WHINCK}	6.5	_	_	ns	
INCK clock duty	_	45	50	55	%	Defined with 0.5 × OV _{DD}

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
INCK clock frequency	f _{INCK}	*1	37.125	*1	MHz	
INCK Low level width	t _{WLINCK}	10.3	_	_	ns	
INCK High level width	t _{WHINCK}	10.3	_	_	ns	
INCK clock duty	_	45	50	55	%	Defined with 0.5 × OV _{DD}

^{*1} The INCK fluctuation affects the frame rate. 37.125 MHz is the value of INCK for HD1080 p mode and the sensor does not operate with specified 30 frame/s except for typical value.

b) XVS and XHS Input Characteristics (In Slave Mode)

Item	Symbol	Min.	Тур.	Max.	Unit
XVS fall time	tf	_	_	5	ns
XVS rise time	tr	_	_	5	ns
XHS fall time	tf	_	_	5	ns
XHS rise time	tr	_	_	5	ns
XVS, XHS input setup time	t _{VHSU}	0	_	_	ns
XVS, XHS input hold time	t _{VHHLD}	5	_	_	ns
XVS Low level pulse width	t _{WLXVS}	4	_	100	INCK
XHS Low level pulse width	t _{wLXHS}	4	_	100	INCK
XVS-XHS fall delay	t _{VHDLY}	_	_	1	INCK

c) XVS, XHS Output Characteristics (In Master Mode, CMOS Output)

(Load capacitance: 20 pF)

Item	Symbol	Min.	Тур.	Max.	Unit
XVS Low level pulse width	t _{WLXVS}	1	1	8	Н
XHS Low level pulse width	t _{WLXHS}	6	6	128	DCK
DCK-XVS fall delay	t _{VFDLY}	-1	_	15	ns
DCK-XHS fall delay	t _{HFDLY}	-1	_	15	ns

d) Serial Communication (4-wire Serial)

(Output load capacitance: 20 pF)

Item	Symbol	Min.	Тур.	Max.	Unit
SCK clock frequency	f _{SCK}	_	13.5	28	MHz
XCLR Low level pulse width	twlxclr	500	_	_	ns
XCE effective margin	t _{ENXCE}	100	_	_	ns
XCE input setup time	t _{SUXCE}	20	_	_	ns
XCE input hold time	t _{HDXCE}	20	_	_	ns
XCE High level pulse width	t _{WLXCE}	20	_	_	ns
SDI input setup time	tsuspi	10	_	_	ns
SDI input hold time	t _{HDSDI}	10	_	_	ns
SDO output setup time	t _{SUSDO}	_	_	25	ns
SDO output hold time	t _{HDSDO}	0	_	_	ns

SONY

e) DCK and DO Output Characteristics (Parallel CMOS Output Mode)

e-1) SDR Output (FRSEL = 1d)

(Output load capacitance: 20 pF)

Item	Symbol	Min.	Тур.	Max.	Unit
DCK clock frequency	f _{DCK}	_	INCK	_	MHz
DCK clock duty	_	40	50	60	%
Maximum skew between DCK and DO*	t _{SKMAXDOS}	_	_	2	ns
Minimum skew between DCK and DO*	t _{SKMINDOS}	_	_	2	ns

The DCK frequency is the same as that of INCK. It is 54 MHz for all-pixel mode or other modes and 37.125 MHz for HD720 p mode.

e-2) DDR Output In-phase Output (DCKDLY = 0d) (FRSEL = 1d)

(Output load capacitance: 20 pF)

Item	Symbol	Min.	Тур.	Max.	Unit
DCK clock frequency	f _{DCK}	_	INCK/2	_	MHz
DCK clock duty	_	40	50	60	%
Maximum skew between DCK and DO*	t _{SKMAXDOD}	_	_	2	ns
Minimum skew between DCK and DO*	t _{SKMINDOD}	_	_	2	ns

e-3) DDR Output 90 $^{\circ}$ Phase Delay Output (DCKDLY = 1d) (FRSEL = 1d)

(Output load capacitance: 20 pF)

Item	Symbol	Min.	Тур.	Max.	Unit
DCK clock frequency	f _{DCK}	_	INCK/2	_	MHz
DCK clock duty	_	40	50	60	%
Maximum skew between DCK and DO*	t _{SKMAXDOD}	_	_	6.6	ns
Minimum skew between DCK and DO*	t _{SKMINDOD}	3.2	_	_	ns

f) DATA/STROBE Output Characteristics (Serial LVDS Output Mode)

Note)

Voa/Vob: Differential signals which are paired DATAM0 / DATAP0
 DATAM1 / DATAP1
 STRBM0 / STRBP0
 STRBM1 / STRBP1

Characteristics in [] indicate the followings
 Figure (0/1): Output channel
 Alphabet (d/s): d: Data
 s: Strope

3. T_{chcskew} uses the cross point of Voa and Vob as a reference.

The skew of STRB signal is set with the DATA clock as a reference in the diagram.

Item	Symbol	Min.	Тур.	Max.	Unit
Skew between differential signal clocks	t _{chcskew}	-400	_	400	ps
Skew between different signals	t _{datskew}	-250	_	250	ps
Difference between data and strobe edges ^{*1}	t _{chdly}	1	_	_	bit

^{*1} The offset of data output waveform edge and strobe output waveform are represented.

The diagram above indicates the difference from data output edge to strobe output edge.

I/O Equivalent Circuit Diagram

\square : External pin

Symbol	Equivalent circuit	Symbol	Equivalent circuit
INCK	INCK 1 MΩ	XVS/XHS	Digital I/O TIME VSSM
XCLR	XCLR	SDO	Digital output
TEST4 TEST5 TEST6 Vcap1 Vcap2	Analog Output VooH1, 2	SDI SCK XCE	Digital input VssL1 VssL1
VRL VCP	VRL VCP TITT VssH1, 2	TEST1	VooM VooM Pull-up WssL1 TEST1 WssL1
TEST2	TEST2 VooM Pull-down VssL1	TEST3	TEST3 THE VSsH1, 2
DOx DCK	Digital output T/7/VssM	DATAPX DATAMX STRBPX STRBMX	VDDM VDDM LVDS output P WDDM VSSM LVDS output M WSSM VSSM

Spectral Sensitivity Characteristics

(Excludes lens characteristics and light source characteristics.)

Image Sensor Characteristics

 $(VA_{DD}$ = 2.7 V, OV_{DD} = 1.8 V, DV_{DD} = 1.2 V, Ta = 60 °C, All-pixel scan 12 bits 19.64 frame/s, Gain: 0 dB)

Item	l	Symbol	Min.	Тур.	Max.	Unit	Measurement method	Remarks
G sensitivity		Sg	1664 (370)	1911 (425)	_	Digit (mV)	1	1/30 s integration
Compitivity ratio	R/G	Rr	0.45	_	0.6	_	2	
Sensitivity ratio	B/G	Rb	0.35	_	0.5	_	2	
Saturation	Zone0-I*3	Vsat01	3696 (822)	_	_	Digit (mV)	2	To- 00 °C
signal	Zone0-II'*3	Vsat2D	3651 (812)	_	_	Digit (mV)	3	Ta= 60 °C
Video signal	Zone0-I*3	SH01	_	_	20	%	4	
shading	Zone0-II'*3	SH2D	_	_	25	%	4	
Dark signal		Vdt	_	_	0.67 (0.15)	Digit (mV)	5	Ta = 60 °C, 1/30 s integration
Dark signal shad	ing	ΔVdt	_	_	0.67 (0.15)	Digit (mV)	6	Ta = 60 °C, 1/30 s integration
Line crawl R		Lcr	_	_	6	%	7	
Line crawl B		Lcb			6	%	/	
Lag		Lag	_	_	0.5	%	8	

^{*1} Conversion is executed with 1 digit = 0.890 mV for 10-bit output and 1 digit = 0.222 mV for 12-bit output.

Zone Definition of Video Signal Shading

^{*2} The video signal shading is the measured value in the wafer status (including color filter) and does not include the seal glass characteristics.

^{*3} See the Zone Definition of Video Signal Shading (diagram below) for Zone.

Image Sensor Characteristics Measurement Method

Measurement Conditions

In the following measurements, the device drive conditions are at the typical values of the bias conditions and clock voltage conditions.

In the following measurements, spot pixels are excluded and, unless otherwise specified, the optical black (OB) level is used as the reference for the signal output, which is taken as the value of the Gr/Gb channel signal output or the R/B channel signal output of the measurement system.

Color Coding of this Image Sensor and Readout

The primary color filters of this image sensor are arranged in the layout shown in the figure below. Gr and Gb represent the G signal on the same line as the R and B signals, respectively. The Gb signal and B signal lines and the R signal and Gr signal lines are output successively.

Gb	В	Gb	В
R	Gr	R	Gr
Gb	В	Gb	В
R	Gr	R	Gr

Color Coding Diagram

Definition of standard imaging conditions

◆ Standard imaging condition I:

Use a pattern box (luminance: 706 cd/m^2 , color temperature of 3200 K halogen source) as a subject. (Pattern for evaluation is not applicable.) Use a testing standard lens with CM500S (t = 1.0 mm) as an IR cut filter and image at F5.6. The luminous intensity to the sensor receiving surface at this point is defined as the standard sensitivity testing luminous intensity.

◆ Standard imaging condition II:

Image a light source (color temperature of 3200 K) with a uniformity of brightness within 2 % at all angles. Use a testing standard lens with CM500S (t = 1.0 mm) as an IR cut filter. The luminous intensity is adjusted to the value indicated in each testing item by the lens diaphragm.

Standard imaging condition III:

Image a light source (color temperature of 3200 K) with a uniformity of brightness within 2 % at all angles. Use a testing standard lens (exit pupil distance -30 mm) with CM500S (t = 1.0 mm) as an IR cut filter. The luminous intensity is adjusted to the value indicated in each testing item by the lens diaphragm.

Measurement Method

1. Sensitivity

Set the measurement condition to the standard imaging condition I. After setting the electronic shutter mode with a shutter speed of 1/100 s, measure the Gr and Gb signal outputs (VGr, VGb) at the center of the screen, and substitute the values into the following formula.

$$Sg = (VGr + VGb)/2 \times 100/30 [mV]$$

2. Sensitivity ratio

Set the measurement condition to the standard imaging condition II. After adjusting the average value of the Gr and Gb signal outputs to 425 mV, measure the R signal output (VR [mV]), the Gr and Gb signal outputs (VGr, VGb [mV]) and the B signal output (VB [mV]) at the center of the screen in frame readout mode, and substitute the values into the following formulas.

3. Saturation signal

Set the measurement condition to the standard imaging condition II. After adjusting the luminous intensity to 20 times the intensity with the average value of the Gr and Gb signal outputs, 425 mV, measure the average values of the Gr, Gb, R and B signal outputs.

4. Video signal shading

Set the measurement condition to the standard imaging condition III. With the lens diaphragm at F2.8, adjust the luminous intensity so that the average value of the Gr and Gb signal outputs is 425 mV. Then measure the maximum value (Gmax [mV]) and the minimum value (Gmin [mV]) of the Gr and Gb signal outputs, and substitute the values into the following formula.

$$SH = (Gmax - Gmin)/425 \times 100 [\%]$$

5. Dark signal

With the device ambient temperature of 60 °C and the device in the light-obstructed state, divide the output difference between 1/30 s integration and 1/300 s integration by 0.9, and calculate the signal output converted to 1/30 s integration. Measure the average value of this output (Vdt [mV]).

6. Dark signal shading

After the measurement item 5, measure the maximum value (Vdmax [mV]) and the minimum value (Vdmin [mV]) of the dark signal output, and substitute the values into the following formula.

$$\Delta Vdt = Vdmax - Vdmin [mV]$$

7. Line crawl

Set the measurement condition to the standard imaging condition II. After adjusting the average value of the Gr signal output to 400 mV, insert R and B filters and measure the difference between G signal lines (Δ Glr, Δ Glb[mV]) as well as the average values of the G signal outputs (Gar, Gab). Substitute the values into the following formula.

Lci =
$$(\Delta Gli/Gai) \times 100 [\%] (i = r, b)$$

8. Lag

Adjust the G signal output value generated by strobe light to 80 mV. After setting the strobe light so that it strobes with the following timing, measure the residual signal (Glag), and substitute the value into the following formula.

Lag = (Glag/80) × 100 [%]

Setting Registers with Serial Communication

Description of Setting Registers

This sensor can write and read the setting values of the various registers shown in the Register Map by 3-wire serial communication. See the Register Map for the addresses and setting values to be set. The serial data input order is LSB-first transfer. The table below shows the various data types and descriptions.

Туре	Description			
ChipID	02h: Write to the CID = 02h register 03h: Write to the CID = 03h register 82h: Read from the CID = 02h register 83h: Read from the CID = 03h register			
Address	Designate the address according to the Register Map. When using a communication method that designates continuous addresses, the address is automatically incremented from the previously transmitted address.			
Data	Input the setting values according to the Register Map.			

Register Communication Timing

Perform register communication within the 6H period after the falling edge of XVS. Register setting values are reflected at the following timing. When communication is performed during the communication period shown in the figure below, items noted as "V" in the "Reflection timing" column of the Register Map are output in the state with the setting value reflected in the N frame. However, note that although the integration time setting is reflected in the N frame, it is reflected to shutter control after N frame readout, so the setting value is reflected to the output in the N + 1 frame. Items that are reflected instantly are reflected at the timing when communication is performed.

Register Reflection Timing

Register Write and Read

- Follow the communication procedure below when writing registers.
 - (1) Set XCE Low to enable the chip's communication function. Serial data input is executed using SCK and SDI.
 - (2) Transmit data in sync with SCK 1 bit at a time from the LSB using SDI. Transfer SDI in sync with the falling edge of SCK. (The data is loaded at the rising edge of SCK.)
 - (3) Input the Chip ID (CID = 02h or 03h) to the first byte. If the Chip ID differs, subsequent data is ignored.
 - (4) Input the start address to the second byte. The address is automatically incremented.
 - (5) Input the data to the third and subsequent bytes. The data in the third byte is written to the register address designated by the second byte, and the register address is automatically incremented thereafter when writing the data for the fourth and subsequent bytes. Normal register data is loaded to the inside of the sensor and established in 8-bit units.
 - (6) The register values starting from the register address designated by the second byte are output from the SDO pin. The register values before the write operation are output. The actual register values are the input data.
 - (7) Set XCE High to end communication.
- ◆ Follow the communication procedure below when reading registers.
 - Set XCE Low to enable the chip's communication function.
 Serial data input is executed using SCK and SDI.
 - (2) Transmit data in sync with SCK 1 bit at a time from the LSB using SDI. Transfer SDI in sync with the falling edge of SCK. (The data is loaded at the rising edge of SCK.)
 - (3) Input Chip ID (CID = 82h or 83h) to the first byte. If the Chip ID differs, subsequent data is ignored.
 - (4) Input the start address to the second byte. The address is automatically incremented.
 - (5) Input data to the third and subsequent bytes. Input dummy data in order to read the registers. The dummy data is not written to the registers. To read continuous data, input the necessary number of bytes of dummy data.
 - (6) The register values starting from the register address designated by the second byte are output from the SDO pin. The input data is not written, so the actual register values are output.
 - (7) Set XCE High to end communication.
- Note) Even when changing register setting values during imaging, communication should finish within the 6H communication period. When writing data to multiple registers with discontinuous addresses, access to undesired registers can be avoided by repeating the above procedure multiple times. The figures on the following page show examples of transmission.

Communication Timing to Registers with Continuous Addresses

Communication Timing to Registers with Discontinuous Addresses

Register Map

ChipID: 02

Address	5	Register name Descrip		after	t value reset	Reflection timing
	Bit		Description	By register	By address	
	0	STANDBY	STANDBY control 0: Normal operation, 1: STANDBY	1		*1
	1		Fixed to "0".	0		
	2		Fixed to "0".	0		
	3		Fixed to "0".	0		
00h	4	TESTEN [1:0]	Register write 0h: Invalid	0	01h	Immediately
	5		3h: Valid Others: Invalid			
	6		Fixed to "0".	0		
	7		Fixed to "0".	0	•	
	0	VREVERSE	Vertical (V) scanning direction control 0: Normal 1: Inverted	0		V
	1		Fixed to "0".	0		
	2		Fixed to "0".	0	1	
01h	3		Fixed to "0".	0	00h	
	4		Fixed to "0".	0		
	5		Fixed to "0".	0		
	6		Fixed to "0".	0		
	7		Fixed to "0".	0		
	0		Readout mode designation			
02h	1		0h: All pixels (2.3 M) 1h:HD720 p			
	2		2h: Window cropping			.,
	3	MODE [3:0]	3h: 2 × 2 binning 4h: Vertical 1/2 subsampling Fh: HD1080 p Others: Invalid	0	00h	V
	4		Fixed to "0".	0		
	5		Fixed to "0".	0]	
	6		Fixed to "0".	0		
	7		Fixed to "0".	0		

Address	Bit Register name	Decistor rome	Description	Default value after reset		Reflection
Address		Register name		By register	By address	timing
	0		LSB			
	1					
	2					
	3				4Ch	
03h	4					
	5		l			V
	6		In master mode Horizontal (H) direction clock number			
	7	HMAX [13:0]	designation	044Ch		
	0		Default: All-pixel 10 bits 39.27 frame/s			
	1					
	2					
	3					
04h	4				04h	
	5		MSB			
	6		Fixed to "0".	0		
	7		Fixed to "0".	0		
	0		LSB			
	1					
	2				E2h	
	3					
05h	4					
	5					
	6					
	7		In master mode	04E2h -		, .
	0	VMAX [15:0]	Vertical (V) direction line number designation Default: All-pixel 10 bits 39.27 frame/s			V
06h	1					
	2					
	3					
	4	1			04h	
	5					
	6					
	7		MSB			
07h	[7:0]		Fixed to "00h"	00h	00h	

Address	Bit	Register name Description	Description	Default value after reset		Reflection
Address	Dit Register name Description	By register	By register	timing		
	0		LSB		00h	
	1					
	2					
086	3					
08h	4					
	5					
	6					
	7	CHC414E-01	Integration time adjustment	00001		
	0	SHS1[15:0]	Designated in line units	0000h		V
	1					İ
	2					
001-	3				00h	
09h	4					
	5					
	6					
	7		MSB			
0Ah	[7:0]		Fixed to "00h"	00h	00h	
0Bh	[7:0]		Fixed to "00h"	00h	00h	
0Ch	[7:0]		Fixed to "00h"	00h	00h	
	0		LSB		00h	
	1					
	2					
0.01	3					
0Dh	4	0.01.50.01	Integration time adjustment			.,
	5	SPL[9:0]	(Low-speed shutter) Designated in frame units	000h		V
	6		Dooignated in marile drinte			
	7					
	0					
	1		MSB			
	2		Fixed to "0".	0		
051	3		Fixed to "0".	0	001	
0Eh	4		Fixed to "0".	0	00h	
	5		Fixed to "0".	0		
	6		Fixed to "0".	0		
	7		Fixed to "0".	0		

Address	Bit	Register name	Description	Default value after reset		Reflection
	Бк			By register	By register	timing
	0		LSB			
	1					
	2					
	3				001	
0Fh	4	0) (0, 10, 0)	Integration time adjustment	0001-	00h	.,,
	5	SVS [9:0]	(Low-speed shutter) Designated in frame units	000h		V
	6					
	7					
	0					
	1		MSB			
	2		Fixed to "0".	0		
401	3		Fixed to "0".	0		
10h	4		Fixed to "0".	0	00h	
	5		Fixed to "0".	0		
	6		Fixed to "0".	0		
	7		Fixed to "0".	0		
	0		Output data rate designation 0: 2 times INCK			
	1	FRSEL [2:0]	1: Equal to INCK 2: 1/2 of INCK (2 × 2 binning mode only) 3: 1/4 of INCK (2 × 2 binning mode only)	0h		V
	2		Others: Invalid			
11h	3	OPORTSEL [1:0]	Output system selection 0: Parallel CMOS SDR output 1: Parallel CMOS DDR output 2: Serial LVDS 1ch output	1h	88h	Immediately
	4		3: Serial LVDS 2ch output			
	5		The output resolution is set to 10 bit			
	6	M12BEN [1:0]	(2x2 binning mode only.) 0: disable 2:enable others: setting prohibited	0h		V
	7		Fixed to "0". *2	1		Immediately
	0	SSBRK	Low-speed shutter forcible termination	0		Immediately
	1	ADRES	AD gradation setting 0: 10 bits, 1: 12 bits	0		V
12h	2		Fixed to "0".	0		
	3		Fixed to "0".	0	80h	
	4		Fixed to "0".	0		
	5		Fixed to "0".	0		
	6		Fixed to "0".	0		
	7		Fixed to "1".	1		
13h	[7:0]		Fixed to "40h".	00h	00h	Immediately

Address	Bit Register name Description	Pogistor namo	Description	Default value after reset		Doffertion
		By register	By register	Reflection timing		
	0		LSB			
	1					
	2					
	3				004	
14h	4				00h	
	5	WINPH [11:0]	In window cropping mode Designation of upper left coordinate for cropping	0001-		V
	6		position (Horizontal position)	000h		
	7		(Horizontal position)			
	0					
	1					
	2					
	3		MSB			
15h	4		Fixed to "0".	0	00h	
	5		Fixed to "0".	0		
	6		Fixed to "0".	0		
	7		Fixed to "0".	0		
	0		LSB			
	1					
	2			00h	00h	
4.01	3					
16h	4					
	5	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	In window cropping mode Designation of upper left coordinate for			\/
	6	WINPV [11:0]	cropping position	uuun	On	V
	7		(Vertical position)			
	0					
	1					
	2					
	3		MSB		001-	
17h	4		Fixed to "0".	0	00h	
	5		Fixed to "0".	0		
	6		Fixed to "0".	0		
	7		Fixed to "0".	0		

Address	Bit Register name Description	Dogistar nama	Description	Default value after reset		Reflection
		By register	By register	timing		
18h	0		LSB			
	1					
	2					
	3				001-	
	4	- WINWH [11:0]			C0h	
	5		In window cropping mode	7001-		V
	6		Cropping size designation (Horizontal direction)	7C0h		
	7					
	0					
	1					
	2					
401	3		MSB		071	
19h	4		Fixed to "0".	0	07h	
	5		Fixed to "0".	0		
	6		Fixed to "0".	0		
	7		Fixed to "0".	0		
	0		LSB			
	1					
	2					
1 Ah	3				C9h	
1 An	4				Call	
	5	\A(INI\AA) / [44.0]	In window cropping mode	4C9h		V
	6	WINWV [11:0]	Cropping size designation (Vertical direction)	40911		V
	7					
	0					
	1					
	2					
1Bh	3		MSB		045	
	4		Fixed to "0".	0	04h	
	5		Fixed to "0".	0		
	6		Fixed to "0".	0		
	7		Fixed to "0".	0		
1Ch	[7:0]		Fixed to "50h"	50h	50h	
1Dh	[7:0]		Fixed to "00h"	00h	00h	

Addross	Bit	Pogistor namo	Description		t value reset	Reflection
Address	ы	Register name	Description	By register	By register	timing
	0		LSB			
	1					
	2					
	3		.			
1Eh	4	GAIN [7:0]	Gain setting	00h	00h	V
	5					
	6					
	7		MSB			
1Fh	[7:0]		Fixed to "31h".	31h	31h	
	0		LSB			
	1					
	2					
	3					
20h	4	BLKLEVEL [8:0]	Black level offset value setting	03Ch	3Ch	Immediately
	5					,
	6					
	7					
	0		MSB			
	1		Fixed to "0".	0		
	2		Fixed to "0".	0		
	3		Fixed to "0".	0		
21h	4		XHS low level width setting		00h	
	5	XHSLNG [1:0]	Oh: 6 clk, 1h: 12 clk, 2h: 22 clk, 3h: 128 clk	0h		Immediately
	6		Fixed to "0".	0		
	7	10BITA	Setting registers for 10 bit.	0		Immediately
	0		XVS low level width setting.			
	1	XVSLNG [2:0]	0h: 1 line, 1h: 2line, 2h: 4line,	0h		Immediately
	2		3h: 8 line, others: Invalid			
22h	3		Fixed to "0".	0	00h	
2211	4		Fixed to "0".	0	0011	
	5		Fixed to "0".	0		
	6		Fixed to "1". *2	0		
	7	720PMODE	Fixed to 1 for HD720 p mode.	0		V
23h to 26h	[7:0] to [7:0]		Do not communicate			
27h	[7:0]		Fixed to "20".	21h		Immediately
28h to 2Bh	[7:0] to [7:0]		Do not communicate			

Addraga	Bit	Degister name	Description		t value reset	Reflection timing
Address	ЫI	Register name	Description	By register	By register	timing
	0	XMSTA	Trigger for master mode operation start 0:Master mode operation start 1: Trigger standby	1		Immediately
	1		Fixed to "0".	0		
	2		Fixed to "0".	0		
2Ch	3		Fixed to "0".	0	01h	
	4		Fixed to "0".	0		
	5		Fixed to "0".	0		
	6		Fixed to "0".	0		
	7		Fixed to "0".	0		
	0		Fixed to "0".	0		
	1	DCKDLY	DCK phase delay For SDR output 0: 0 °, 1: 180 ° For DDR output 0: 0 °, 1: 90 °	0		V
	2		Fixed to "0"	0		
2Dh	3	BITSEL	10-bit output 2-bit shift 0: Left justified, 1: Right justified	0	40h	V
	4		Fixed to "0".	0		
	5		Fixed to "0".	0		
	6		Fixed to "1".	1		
	7		Fixed to "0".	0		
2Eh to 3Ah	[7:0] to [7:0]		Do not communicate.			
3Bh	[7:0]	SYNCCODE [7:0]	Sync code setting	E0h	E0h	V
3Ch to 79h	[7:0] to [7:0]		Do not communicate.			
7Ah	[7:0]	10BITB	Setting registers for 10 bit.	00h	00h	Immediately
7Bh	[7:0]	10BITC	Setting registers for 10 bit.	00h	00h	Immediately
7Ch to 97h	[7:0] to [7:0]		Do not communicate.			

Address	D:#	Decistor nome	Description	Defaul after	t value reset	Reflection
Address	Bit	Register name	Description	By register	By register	timing
	0		LSB			
	1					
	2					
98h	3				26h	
9011	4				2011	
	5	40D4000 D [44.0]	A discourse and the mind on a second on a	2204		
	6	10B1080 P [11:0]	Adjustment registers for each operation mode.	226h		
	7					
	0					
	1					
	2					
	3		MSB		001	
99h	4		Fixed to "0".	0	02h	
	5		Fixed to "0".	0		
	6		Fixed to "0".	0		
	7		Fixed to "0".	0		
	0		LSB			
	1					
	2					
	3				401	
9Ah	4				4Ch	
	5	40D4000 D (44 0)		4.401		
	6	12B1080 P [11:0]	Adjustment registers for each operation mode.	44Ch		Immediately
	7					
	0					
	1					
	2					
	3		MSB			
9Bh	4		Fixed to "0".	0	04h	
	5		Fixed to "0".	0		
	6		Fixed to "0".	0		
	7		Fixed to "0".	0	1	

Address	Dit	Dominton name	Description		t value reset	Reflection
Address	Bit	Register name	Description	By register	By register	timing
9Ch to CDh	[7:0] to [7:0]		Do not communicate			
	0		LSB			
	1					
	2					
CEh	3	PRES[6:0]	Adjustment registers for each operation mode.	16h	16h	Immediately
CEII	4				1011	illinediately
	5					
	6		MSB			
	7		Fixed to "0".	0		
	0		LSB			
	1					
	2					
CFh	3			082h	82h	
CFII	4	DRES	Adjustment registers for each operation mode.			Immediately
	5					
	6					
	7					
	0		MSB		00h	
	1		Fixed to "0".	0		
	2		Fixed to "0".	0		
D0h	3		Fixed to "0".	0		
DOII	4		Fixed to "0".	0		
	5		Fixed to "0".	0		
	6		Fixed to "0".	0		
	7		Fixed to "0".	0		

ChipID: 03

Address	Bit	Register name	Description		t value reset	Reflection
Address	DIL	Register flame	Description	By register	By register	timing
17h	[7:0]		Fixed to "0Dh" *2.	4Dh	4Dh	Immediately

- *1 The STANDBY (Address 00h [0]) register is reflected at the following timings.
 - •When canceling standby mode: Reflected immediately
 - •When entering standby mode: Reflected immediately after the end of the frame during which the setting was made
- *2 The values must be changed from the default values, so initial setting after reset is required after power-on. Subsequent setting by communication is not needed unless the power is turned Off or the system is reset.
- *3 "V" in the "Reflection timing" column indicates that the setting value is reflected at the falling edge of the next XVS after the register communication is performed.
- *4 Do not perform communication to addresses not listed in the Register Map. Doing so may result in malfunction. However, other registers that require communication to addresses not listed above may be added, so addresses up to FFh should be supported for both CID = 02h and 03h.

Readout Drive Mode

The table below lists the operating modes available with this sensor.

				Imaging co	nditions			
Drive mode	INCK	Frame	Output Resolution		nber of ve pixels	Data w	idth ^{*1}	1H
	[MHz]	rate [frame/s]	[bit]	H [pixels]	V [lines]	H [INCK]	V [lines]	period [µs]
All pivol open	54	19.64	10/12	1984	1225	2200	4050	40.74
All-pixel scan	34	39.27	10	1904	1225	1100	1250	20.37
		15.00	10/12			2200		59.26
HD1080 p	37.125	25.00	10/12	1984	1105	1320	1125	35.56
		30.00	10/12			1100		29.63
UD720 p	37.125	30.00	10/12	1344	745	1650	750	44.44
HD720 p	37.123	60.00	10	1344	745	825		22.22
Window cropping	54	14.985	10/12	1664	1225	2200	1638	40.74
(UXGA)	34	29.97	10	1004	1225	1100	1036	20.37
2 × 2 binning	54	14.985	10/12 ^{*2}	992	610	4400	819	81.48
readout	34	29.97	10/12 ^{*2}	992	612	2200	019	40.74
Vertical 1/2	54	29.97	10/12	1368	524	2200		40.74
subsampling	34	59.94	10	1300	52 4	1100	819	20.37

^{*1} The data width indicates the output sync signal period in master mode. In slave mode the data width is the input XVS and XHS clock interval.

^{*2} In 2 × 2 binning readout mode, the pixel signals are converted to 10 bits and digitally added. The output gradation can be selected from 10 bits or 12 bits.

	Ir	naging conditi	ons		Data	rate		
Drive mode	INCK	Frame rate	Output	Parallel CN	IOS output	Serial LVDS output		
	[MHz]	[frame/s]	resolution [bit]	SDR	DDR	1ch	2ch	
All-pixel scan	54	19.64	10/12	54	54	648	648	
All-pixel scall	54	39.27	10	N/A	108	N/A	1296	
		15.00	10/12	37.125	37.125	445.5	445.5	
HD1080 p	37.125	25.00	10/12	74.25	74.25	N/A	891	
		30.00	10/12	74.25	74.25	N/A	891	
HD720 p	37.125	30.00	10/12	37.125	37.125	445.5	445.5	
Πυτ20 μ	37.123	60.00	10	74.25	74.25	N/A	891	
Window cropping	54	14.985	10/12	54	54	648	648	
(UXGA)	54	29.97	10	N/A	108	N/A	1296	
2 × 2 binning	54	14.985	10/12	13.5	13.5	162	162	
readout	54	29.97	10/12	27	27	324	324	
Vertical 1/2 sub	54	29.97	10/12	54	54	648	648	
sampling	04	59.94	10	N/A	108	N/A	1296	

Sync Code (Parallel CMOS Output Mode)

The sync code is added immediately before and after "dummy signal + OB signal + effective pixel data" and then output. The sync code is output in order of 1st, 2nd, 3rd and 4th. The fixed value is output for 1st to 3rd. (BLK: Blanking period)

Sync Code Output Timing (Parallel CMOS Output)

Sync Code Output Timing (Parallel CMOS Output Mode)

The sensor output signal passes through the internal circuits and is output with a latency time (system delay) relative to the horizontal sync signal. This system delay value is undefined for each line, so refer to the sync codes output from the sensor and perform synchronization.

SONY IMX122LQJ-C

Sync Code (Serial LVDS Output Mode)

The sync code is added immediately before and after "dummy signal + OB signal + effective pixel data" and then output. The sync code is output in order of 1st, 2nd, 3rd and 4th. The fixed value is output for 1st to 3rd. (BLK: Blanking period)

* N/A : The minimum sensor output value is output (Not 00h)

Sync Code 1 Output Timing (Serial LVDS Output)

* N/A : The minimum sensor output value is output (Not 00h)

Sync Code 2 Output Timing (Serial LVDS Output)

Sync Code Output Timing (Serial LVDS Output Mode)

In serial LVDS output mode, the sync codes can be selected from sync code 1 that is output added to the effective signal line, and sync code 2 that are not added during the vertical blanking period. The figure below shows examples of the two sync code types. In addition, the sync codes are output in the order of 1st \rightarrow 2nd \rightarrow 3rd \rightarrow 4th, and fixed values are output for the 1st to 3rd sync codes. (BLK: Blanking period)

8 bits of sync codes are added, from 1st to 4th, regardless of the number of output bits (10 bits or 12 bits). Codes supporting 1ch and 2ch are added in the 4th code and output. (See the figure below.)

List of Sync Code Setting Registers

R	egister de	etails		Initial	Setting	Function	
Register name	ChipID	Address	Bit	value	value	Function	
					E0h	In parallel CMOS output mode	
SYNCCODE	02h	3Bh	[7:0]	E0h	90h	Operation using sync code 1 in serial LVDS output mode	
					D0h	Operation using sync code 2 in serial LVDS output mode	

When outputting SOL (Code when starting an effective line)

Example of Sync Code Output

Image Data Output Format

All-pixel Scan Mode

The all pixel signals of sensor are read.

Register List of All-pixel Mode Setting

Regis	ter details			9	Setting value	:		
_			Initial	10	bit	12 bit	Forestion	
Register name	Address	Bit	value	19.64	39.27	19.64	Function	
name				[frame/s]	[frame/s]	[frame/s]		
MODE	02h	[3:0]	00h		0h		All-pixel mode	
HMAX	03h	[7:0]	044Ch	0898h	044Ch	0898h	Horizontal (H) direction clock	
ПІМА	04h	[5:0]	044Ch	009011	044011	009011	number designation.	
VMAX	05h	[7:0]	04E2h		04E2h		Vertical (V) direction line	
VIVIAX	06h	[7:0]	04L211		04L211		number designation.	
FRSEL		[2:0]	0h	1h	0h	1h	Output data rate designation.	
				0h	N/A	0h	Parallel CMOS SDR output.	
OPORTSEL	11h	116 [4:2		1h	1h	1h	1h	Parallel CMOS DDR output
OPORISEL	''''	[4:3]	111	2h	N/A	2h	Serial LVDS 1ch output.	
				3h	3h	3h	Serial LVDS 2ch output.	
M12BEN		[6:5]	0h		0h		Output gradation setting	
ADRES	12h	[1]	0h	0	h	1h	AD gradation setting.	
WINPH	14h	[7:0]	000h		000h		Designation of upper left coordinate for	
VVIINFII	15h	[3:0]	00011		00011		cropping position (Horizontal)	
WINPV	16h	[7:0]	000h		000h		Designation of upper left coordinate for	
VVIINEV	17h	[3:0]	00011		00011		cropping position (Vertical)	
WNIWH	18h	[7:0]	7C0h		7C0h		Cropping size designation (Horizontal)	
VVINIVVII	19h	[3:0]	70011		70011		Cropping size designation (Florizontal)	
WINWV	1Ah	[7:0]	4C9h		4C9h		Cropping size designation (Vertical)	
VVIINVV	1Bh	[3:0]	40911		40911		Cropping size designation (vertical)	
10BITA	21h	[7]	0	1	0)	Adjustments register for each operation mode.	
720 P MODE	22h	[7]	0		0		Sets in 720 p mode only.	
10BITB	7Ah	[7:0]	00h	40h	00)h		
10BITC	7Bh	[7:0]	00h	02h	00)h		
40D4000 D	98h	[7:0]	0001-	001-	0.0	N-		
10B1080 P	99h	[3:0]	226h	02h	00h			
40D4000 D	9Ah	[7:0]	4405		44Ch		Adjustments register for each operation	
12B1080 P	9Bh	[3:0]	44Ch				mode.	
PRES	CEh	[6:0]	16h	10	6h	40h		
DDEC	CFh	[7:0]	0006	0.0	in.	404b		
DRES	D0h	[0]	082h	08	32h	181h		

Pixel Array Image Drawing in All-pixel Scan Mode

Drive Timing Chart for Parallel CMOS Output in All-pixel Scan Mode

Drive Timing Chart for Serial LVDS Output in All-pixel Scan Mode

HD1080 p Mode

The sensor signal is cut out with the angle of view for HD1080 p (1920 \times 1080) and read. Input 37.125 MHz to INCK.

Register List for HD1080 p Mode Setting

Regis	ter details				Settir	g value				
			Initial	10	bit	12	bit			
Register	Address	Bit	value	15	30	15	30	Function		
name				[frame/s]	[frame/s]	[frame/s]	[frame/s]			
MODE	02h	[3:0]	00h			Fh		HD1080 p mode		
LINANY	03h	[7:0]	04401-	00001-	04401-	00001-		Horizontal (H) direction clock		
HMAX	04h	[5:0]	044Ch	0898h	044Ch	0898h	044Ch	number designation		
VMAX	05h	[7:0]	04E2h		0.	165h		Vertical (V) direction line		
VIVIAA	06h	[7:0]	04E2II		U ²	110011		number designation		
FRSEL		[2:0]	0h	1h	0h	1h	0h	Output data rate designation		
				0h	0h	0h	0h	Parallel CMOS SDR output		
OPORTSEL	11h	[4:3]	1h	1h	1h	1h	1h	Parallel CMOS DDR output		
OFORTSEL	1111	[4.5]	""	2h	N/A	2h	N/A	Serial LVDS 1ch output		
				3h	3h	3h	3h	Serial LVDS 2ch output		
M12BEN		[6:5]	0h			0h		Output gradation setting		
ADRES	12h	[1]	0h	0	h	1	h	AD gradation setting		
WINPH	14h	[7:0]	000h		0	00h		Designation of upper left coordinate for		
WIINFII	15h	[3:0]	00011			JUII		cropping position (Horizontal)		
WINPV	16h	[7:0]	000h		0	3Ch		Designation of upper left coordinate for		
VVIINPV	17h	[3:0]	00011		U	SCII		cropping position (Vertical)		
\A/N \A/L	18h	[7:0]	700h		7	C0h		Cranning size designation (Herizontel)		
WNIWH	19h	[3:0]	7C0h		- /	JUN		Cropping size designation (Horizontal)		
\A/INI\A/\	1Ah	[7:0]	400h		4	54 b		Cransing size designation () (artical)		
WINWV	1Bh	[3:0]	4C9h		4	51h		Cropping size designation (Vertical)		
10BITA	21h	[7]	0		1		0	Adjustments register for each operation mode.		
720PMODE	22h	[7]	0			0		Sets in 720 p mode only.		
10BITB	7Ah	[7:0]	00h	40)h	0	0h			
10BITC	7Bh	[7:0]	00h	02	2h	0	0h			
10P1090 P	98h	[7:0]	2266	4404		220				
10B1080 P	99h	[3:0]	226h	44Cł	'	226h	I			
12D1000 D	9Ah	[7:0]	4405		4404	0001		Adjustments register for each operation		
12B1080 P	9Bh	[3:0]	44Ch		44Ch		226h	mode.		
PRES	CEh	[6:0]	16h	16h	40h	1	6h			
DDEC	CFh	[7:0]	0001			00				
DRES	D0h	[0]	082h	082h	181h	08	32h			

Regis	ter details			Setting	g value	
5			Initial	10 bit	12 bit	Function
Register name	Address	Bit	value	2	5	Function
Hame				[frame/s]		
MODE	02h	[3:0]	00h	F	'h	HD1080 p mode
HMAX	03h	[7:0]	044Ch	051	28h	Horizontal (H) direction clock
ПІЛІАЛ	04h	[5:0]	044011	052	2011	number designation.
VMAX	05h	[7:0]	04E2h	046	35h	Vertical (V) direction line
VIVIAX	06h	[7:0]	04L211	040	JJII	number designation.
FRSEL		[2:0]	0h	0	h	Output data rate designation.
				0h	0h	Parallel CMOS SDR output.
OPORTSEL	11h	[4.2]	1h	1h	1h	Parallel CMOS DDR output
OPORTSEL	1111	[4:3]	111	N/A	N/A	Serial LVDS 1ch output.
				3h	3h	Serial LVDS 2ch output.
M12BEN		[6:5]	0h	0	h	Output gradation setting
ADRES	12h	[1]	0h	0h	1h	AD gradation setting.
M/INIDI I	14h	[7:0]	0006	00	0.6	Designation of upper left coordinate for
WINPH	15h	[3:0]	000h	00	0h	cropping position (Horizontal)
AA/IAIDA/	16h	[7:0] 000h		00	O.b.	Designation of upper left coordinate for
WINPV	17h	[3:0]	OUUN	03	Ch	cropping position (Vertical)
\A/\ \\ A/\	18h	[7:0]	7001-	7.0	201-	Occupies size designation (Hericantell)
WNIWH	19h	[3:0]	7C0h	70	0h	Cropping size designation (Horizontal)
14/15 DAD /	1Ah	[7:0]	4001	4.5		0
WINWV	1Bh	[3:0]	4C9h	45	1h	Cropping size designation (Vertical)
10BITA	21h	[7]	0	1	0	Adjustments register for each operation mode.
720PMODE	22h	[7]	0	()	Sets in 720 p mode only.
10BITB	7Ah	[7:0]	00h	40h	00h	
10BITC	7Bh	[7:0]	00h	02h	00h	
4004666	98h	[7:0]	0001	00.41	0001]
10B1080 P	99h	[3:0]	226h	294h	226h	
1001000 5	9Ah	[7:0]	4401	44Ch 226h		1
12B1080 P	9Bh	[3:0]	44Ch			Adjustments register for each operation mode.
PRES	CEh	[6:0]	16h	40h	16h	
DRES	CFh	[7:0]	082h	181h	082h	1
	D0h	[0]	JJ211	. 5 111	332	

Pixel Array Image Drawing in HD1080 p Mode

Drive Timing Chart for Parallel CMOS Output in HD1080 p Mode

Drive Timing Chart for Serial LVDS Output in HD1080 p Mode

HD720 p mode

The sensor signal is cut out with the angle of view for HD720 p (1280 \times 720) and read. However,set "1" to the register 720 P MODE (Address 22h [7]) Input 37.125 MHz to INCK.

Register List for HD720 p Mode Setting

Regist	ter details			S	Setting valu	e	
			Initial	10	bit	12 bit	Formation
Register name	Address	Bit	value	30	60	30	Function
Hairie				[frame/s]	[frame/s]	[frame/s]	
MODE	02h	[3:0]	00h	1h			HD720 p mode
LIMAN	03h	[7:0]	044Cb	0670h 0320h 06		0672h	Horizontal (H) direction clock
HMAX	04h	[5:0]	044Ch	0672h	0339h	067211	number designation.
VMAX	05h	[7:0]	04E2h		02EEh		Vertical (V) direction line
VIVIAA	06h	[7:0]	04EZII		UZEEII		number designation.
FRSEL		[2:0]	0h	1h	0h	1h	Output data rate designation.
				0h	0h	0h	Parallel CMOS SDR output.
OPORTSEL	11h	[4:3]	1h	1h	1h	1h	Parallel CMOS DDR output
OPORISEL	1111	[4.3]	""	2h	N/A	2h	Serial LVDS 1ch output.
				3h	3h	3h	Serial LVDS 2ch output.
M12BEN		[6:5]	0h		0h		Output gradation setting
ADRES	12h	[1]	0h	0	h	1h	AD gradation setting.
WINPH	14h	[7:0] 000h		140h			Designation of upper left coordinate for
VVIINEIT	15h	[3:0]	00011		14011		cropping position (Horizontal)
WINPV	16h	[7:0]	000h		0501		Designation of upper left coordinate for
VVIINEV	17h	[3:0]	00011		0F0h		cropping position (Vertical)
WNIWH	18h	[7:0] 7C0h			540h		Cropping size designation (Herizontal)
VVINIVVII	19h	[3:0]	70011		54011		Cropping size designation (Horizontal)
WINWV	1Ah	[7:0]	400h		2F0b		Cropping size designation () (artical)
VVIINVV	1Bh	[3:0]	4C9h		2E9h		Cropping size designation (Vertical)
10BITA	21h	[7]	0	1	()	Adjustments register for each operation mode.
720PMODE	22h	[7]	0		1		Sets in 720 p mode only.
10BITB	7Ah	[7:0]	00h	40h	00)h	
10BITC	7Bh	[7:0]	00h	02h	00	Oh	
10B1080 P	98h	[7:0]	226h		226h		
10B1000 F	99h	[3:0]	22011		22011		
12D1000 D	9Ah	[7:0]	44Ch	44Ch			Adjustments register for each energies made
12B1080 P	9Bh	[3:0]	44UII				Adjustments register for each operation mode.
PRES	CEh	[6:0]	16h	00	00h 40h		
DDES	CFh	[7:0]	0006	00	Oh	1016	
DRES	D0h	[0]	082h		0h	181h	

Pixel Array Image Drawing in HD720 p Mode

Drive Timing Chart for Parallel CMOS Output in HD720 p Mode

Drive Timing Chart for Serial LVDS Output in HD720 p Mode

Window Cropping Mode

Sensor signals are cut out and read out in arbitrary positions.

Use a fixed window cropping size and position. When changing the size or the position, set via the all-pixel scan mode.

In addition, when returning to all-pixel scan mode after setting window cropping mode, return WINPH, WINPV, WINWH and WINWV to the initial values.

List of Window Cropping Mode Setting Registers

Register details			S	Setting valu	е				
D			Initial	10	bit	12 bit	Function		
Register name	Address	Bit	value	14.985	29.97	14.985	Function		
Hame				[frame/s]	[frame/s]	[frame/s]			
MODE	02h	[3:0]	00h		2h		Window cropping mode		
HMAX	03h	[7:0]	044Ch	0898h	044Ch	0898h	Horizontal (H) direction clock		
TIIVIAA	04h	[5:0]	044011	009011	044011	009011	number designation.		
VMAX	05h	[7:0]	04E2h		0666h		Vertical (V) direction line		
VIVIAX	06h	[7:0]	04L211				number designation.		
FRSEL		[2:0]	0h	1h	0h	1h	Output data rate designation.		
				0h	N/A	0h	Parallel CMOS SDR output.		
OPORTSEL	11h	[4:3]	1h	1h	1h	1h	Parallel CMOS DDR output		
OPORTSEL	1111	[4.3]	'''	2h	N/A	2h	Serial LVDS 1ch output.		
				3h	3h	3h	Serial LVDS 2ch output.		
M12BEN		[6:5]	0h		0h		Output gradation setting.		
ADRES	12h	[1]	0h	0h 1h		1h	AD gradation setting.		
WINPH	14h [7:0		000h	0A0h(UXGA)* ^{1,3}			Designation of upper left coordinate for		
VVIINETI	15h	[3:0]	00011	UA	.un(uxga)		cropping position (Horizontal)		
WINPV	16h	[7:0]	000h	000h(UXGA)* ^{1,3}			Designation of upper left coordinate for		
VVIINEV	17h	[3:0]	00011	00	UII(UXGA)		cropping position (Vertical)		
WNIWH	18h	[7:0]	7C0h	60	0h(UXGA)	* 2,3	Cropping size designation (Herizantal)		
VVINIVVII	19h	[3:0]	70011	00	UII(UXGA)		Cropping size designation (Horizontal)		
WINWV	1Ah	[7:0]	4C9h	40	9h(UXGA)	* 2,3	Cropping size designation (Vertical)		
VVIIAVV	1Bh	[3:0]	40911	40		'	Cropping size designation (vertical)		
10BITA	21h	[7]	0	1	()	Adjustments register for each operation mode.		
720PMODE	22h	[7]	0		0		Sets in 720 p mode only.		
720FWODE	2211	[7]	U						
10BITB	7Ah	[7:0]	00h	40h	00	Oh			
10BITC	7Bh	[7:0]	00h	02h	00	Oh			
10B1080 P	98h	[7:0]	226h	44Ch	22	6h			
10B1000 F	99h	[3:0]	22011	44011	22	.011	Adjustments register for each operation mode.		
12B1080 P	9Ah	[7:0]	44Ch		44Ch		Aujustinents register for each operation mode.		
12D 1000 P	9Bh	[3:0]	44011		44011				
PRES	CEh	[6:0]	16h	16	3h	40h			
DRES	CFh	[7:0]	USSP	00	2h	181h			
DICES	D0h	[0]	082h	00	∠ 11	10111			

SONY

*1 The start position designation should satisfy the following conditions.

WINPH + WINWH < 7C0h WINPV + WINWV < 4C9h

*2 Set the cropping size setting values as follows.

Horizontal direction: Multiple of 16 Vertical direction: Multiple of 4

*3 Return to the initial values when transitioning from window cropping mode to all-pixel scan mode.

Pixel Array Image Drawing in Window Cropping Mode

Drive Timing Chart for Parallel CMOS Output in Window Cropping Mode

Drive Timing Chart for Serial LVDS Output in Window Cropping Mode

2 x 2 Binning Readout Mode

Sensor signals are read out by binning of 2 vertical pixels and 2 horizontal pixels.

Note) The pixel signals are A/D converted to 10 bits, and 12-bit output is performed by digital binning of 4 same-color pixels.

List of 2 × 2 Binning Readout Mode Setting Registers

Regis	Register details				Setting value				
Dogistor			Initial	10	bit	12	bit	Function	
Register name	Address	Bit	value	14.985	29.97	14.985	29.97	Tunction	
				[frame/s]	[frame/s]	[frame/s]	[frame/s]		
MODE	02h	[3:0]	00h		;	3h		All-pixel mode	
HMAX	03h	[7:0]	044Ch	1130h	0898h	1130h	0898h	Horizontal (H) direction clock	
11170	04h	[5:0]	011011	110011	000011	110011	000011	number designation.	
VMAX	05h	[7:0]	04E2h		0.3	333h		Vertical (V) direction line	
VIVIO	06h	[7:0]	046211					number designation.	
FRSEL		[2:0]	0h	3h	2h	3h	2h	Output data rate designation.	
				0h	0h	0h	0h	Parallel CMOS SDR output.	
OPORTSEL	11h	[4:3]	1h	1h	1h	1h	1h	Parallel CMOS DDR output	
OI OINTOLL		[4.0]	""	2h	2h	2h	2h	Serial LVDS 1ch output.	
				3h	3h	3h	3h	Serial LVDS 2ch output.	
M12BEN		[6:5]	0h	2	?h	Oh	1	Output gradation setting	
ADRES	12h	[1]	0h			0h		AD gradation setting.	
WINDLI	14h	[7:0]	000h	000h			Designation of upper left coordinate for cropping position (Horizontal)		
WINPH	15h	[3:0]	UUUII						
\A/INID\/	16h	[7:0]	000h	0001			Designation of upper left coordinate for		
WINPV	17h	[3:0]	000h	000h				cropping position (Vertical)	
\A/\ II\ A/I	18h	[7:0]	7005		7.	00h			
WNIWH	19h	[3:0]	7C0h	7C0h			Cropping size designation (Horizontal)		
\A(I) DAO (1Ah	[7:0]	1001		4.	001		0	
WINWV	1Bh	[3:0]	4C9h		40	C9h		Cropping size designation (Vertical)	
10BITA	21h	[7]	0	1		0		Adjustments register for each operation mode.	
720PMODE	22h	[7]	0			0		Sets in 720 p mode only.	
10BITB	7Ah	[7:0]	00h	40h		00h			
10BITC	7Bh	[7:0]	00h	02h		00h			
40D4000 D	98h	[7:0]	0001-	4405	0001-	4401-	0001-		
10B1080 P	99h	[3:0]	226h	44Ch	226h	44Ch	226h		
40D 4000 D	9Ah	[7:0]	4401			401		Adjustments register for each operation	
12B1080 P	9Bh	[3:0]	44Ch	44Ch			mode.		
PRES	CEh	[6:0]	16h		16h				
DDES	CFh	[7:0]	000h		0	92h			
DRES	D0h	[0]	082h			82h			

Pixel Array Image Drawing in 2 × 2 Binning Readout Mode

Drive Timing Chart for Parallel CMOS Output in 2 × 2 Binning Readout Mode

Drive Timing Chart for Serial LVDS Output in 2 × 2 Binning Readout Mode

Vertical 1/2 Subsampling Mode

The sensor signal is read by eliminating it in vertical direction.

Register List of Vertical 1/2 Subsampling Mode Setting

Register details				Setting value				
D			Initial	10	bit	12 bit	Function	
Register name	Address	bit	value	29.97	59.94	29.97	Function	
name				[frame/s]	[frame/s]	[frame/s]		
MODE	02h	[3:0]	00h		4h		Vertical 1/2 subsampling mode	
HMAX	03h	[7:0]	044Ch	0898h	044Ch	0898h	Horizontal (H) direction clock	
TIWAX	04h	[5:0]	044011	009011	044011	009011	number designation	
VMAX	05h	[7:0]	04E2h		0333h		Vertical (V) direction line	
VIVIAX	06h	[7:0]	04L211		000011		number designation	
FRSEL		[2:0]	0h	1h	0h	1h	Output data rate designation	
				0h	N/A	0h	Parallel CMOS SDR output	
OPORTSEL	11h	[4:3]	1h	1h	1h	1h	Parallel CMOS DDR output	
OPORISEL	11111	[4.3]	111	2h	N/A	2h	Serial LVDS 1ch output	
				3h	3h	3h	Serial LVDS 2ch output	
M12BEN		[6:5]	0h		0h		Output gradation setting	
ADRES	12h	[1]	0h	0	Oh 1h		AD gradation setting	
MINDLI	14h	[7:0]	0006	0001-			Designation of upper left coordinate for	
WINPH	15h	[3:0]	000h	000h			cropping position (Horizontal)	
MAINIDN /	16h	[7:0]	0006	222			Designation of upper left coordinate for	
WINPV	17h	[3:0]	000h		000h		cropping position (Vertical)	
14/11/14/11	18h	[7:0]	7001		7001			
WNIWH	19h	[3:0]	7C0h		7C0h		Cropping size designation (Horizontal)	
VACIA IVA D. C	1Ah	[7:0]	4005		4005		One desired as in a state of Martine D	
WINWV	1Bh	[3:0]	4C9h		4C9h		Cropping size designation (Vertical)	
10BITA	21h	[7]	0	1	C	١	Adjustments register for each operation mode.	
720PMODE	22h	[7]	0		0		Sets in 720 p mode only.	
10BITB	7Ah	[7:0]	00h	40h	00	h		
10BITC	7Bh	[7:0]	00h	02h	00	h		
40D4000 D	98h	[7:0]	0001	4401	000	21		
10B1080 P	99h	[3:0]	226h	44Ch	220	on		
	9Ah	[7:0]					Adjustments register for each operation mode.	
12B1080 P	9Bh	[3:0]	44Ch		44Ch		Adjustments register for each operation mode.	
PRES	CEh	[6:0]	16h	16	16h 40h			
DDEO	CFh	[7:0]	0001		.O.I-	4041		
DRES	D0h	[0]	082h	08	2h	181h		

Pixel Array Image Drawing in Vertical 1/2 Subsampling Mode

Drive Timing Chart for Parallel CMOS Output in Vertical 1/2 Subsampling Mode

Drive Timing Chart for Serial LVDS Output in Vertical 1/2 Subsampling Mode

Description of Various Functions

Standby mode

This sensor stops its operation and goes into standby mode which reduces the power consumption by writing "1" to the standby control register STANDBY (address 00h, Bit [0]). (Standby mode immediately after power-on and reset)

Standby mode is reflected after V. OB after the set frame.

Write to register is possible because the serial communication function operates even in standby mode. Set the STANDBY register to "0" to cancel standby mode. The standby cancel is immediately reflected from the communication.

List of Standby Mode Setting

Regi	ster details		Initial	Setting	Sta	tus		
Register name	Address	Bit	value	value	Digital circuit	Analog circuit	Remarks	
STANDBY	00h [[0]	1 .	1 (Standby)	Stop	Stop	Register communication is executed even in standby mode.	
		اما		0	Operate	Operate		

Standby Mode Change Timing

Slave Mode and Master Mode

The sensor can be switched between slave mode and master mode. The switching is made by the XMASTER pin.

Set the XMSTA register (address 2Ch [0]) to "0" in order to start the operation after setting to master mode. In addition, set the count number of sync signal in vertical direction by the VMAX register (address 05h [7:0], 06h [7:0]) and the clock number in horizontal direction by the HMAX register (address 03h [7:0], 04h [5:0]). See the description of Operation Mode for details of drive mode.

List of Slave and Master Mode Setting (e.g. All pixels 19.64 frame/s)

Pin name	Pin processing	Operation mode	Remarks	
VMA CTED min	Low fixed	Master Mode	High: 1.8 V Low: GND	
XMASTER pin	High fixed	Slave Mode		

Description	Description of register			Setting	Status	Remarks	
Register name	Address	Bit	value	value Master Mode		romano	
XMSTA	2Ch	[0]	1	0	Master operation start	The master operation	
AWISTA	2011	[0]	ı	1	Master operation ready	starts by setting to 0.	
XHSLNG	21h	[5:4]	0		See the diagram.	XHS width designated (XVS reference output)	
XVSLNG	22h	[2:0]	0			XVS width designated	
VMAX	05h	[7:0]	Line number		Line number per frame		
VIVIAX	06h	[7:0]	4E2h	S	ee the each item in	designated	
HMAX	03h	[7:0]	44Ch		Operation Mode.	Clock number per	
TIIVIAA	04h [5:0]		44011			frame designated	

XHSLNG Selection

The signal of horizontal sync signal XHS is set by the XHSLNG register. The output has system delay from the XHS fall to effective data (sync code) output.

List of XHS Pulse Width Setting

XVSLNG Selection

The signal of vertical sync signal XVS is set.

List of XVS Pulse Width Setting

Gain Adjustment Function

The Programmable Gain Control (PGC) of this device consists of the analog block and digital block. The total of analog gain and digital gain can be set up to 42 dB by the GAIN register (address 1Eh [7:0]) setting.

See the List of Gain Setting Register Value for Each Register.

List of PGC Register

Regi	Initial Setting value		yalue	Remarks		
Register name	Address	Bit	value	Min.	Max.	Remarks
GAIN	1Eh	[7:0]	00h	00h	8Ch	See the next page.

List of Gain Setting Register Value

Gain [dB]	GAIN [7:0]	Gain [dB]	GAIN [7:0]	Gain [dB]	GAIN [7:0]
0.0	0h	14.1	2Fh	28.2	5Eh
0.3	1h	14.4	30h	28.5	5Fh
0.6	2h	14.7	31h	28.8	60h
0.9	3h	15.0	32h	29.1	61h
1.2	4h	15.3	33h	29.4	62h
1.5	5h	15.6	34h	29.7	63h
1.8	6h	15.9	35h	30.0	64h
2.1	7h	16.2	36h	30.3	65h
2.4	8h	16.5	37h	30.6	66h
2.7	9h	16.8	38h	30.9	67h
3.0	Ah	17.1	39h	31.2	68h
3.3	Bh	17.4	3Ah	31.5	69h
3.6	Ch	17.7	3Bh	31.8	6Ah
3.9	Dh	18.0	3Ch	32.1	6Bh
4.2	Eh	18.3	3Dh	32.4	6Ch
4.5	Fh	18.6	3Eh	32.7	6Dh
4.8	10h	18.9	3Fh	33.0	6Eh
5.1	11h	19.2	40h	33.3	6Fh
5.4	12h	19.5	41h	33.6	70h
5.7	13h	19.8	42h	33.9	71h
6.0	14h	20.1	43h	34.2	72h
6.3	15h	20.4	44h	34.5	73h
6.6	16h	20.7	45h	34.8	74h
6.9	17h	21.0	46h	35.1	75h
7.2	18h	21.3	47h	35.4	76h
7.5	19h	21.6	48h	35.7	77h
7.8	1Ah	21.9	49h	36.0	78h
8.1	1Bh	22.2	4Ah	36.3	79h
8.4	1Ch	22.5	4Bh	36.6	7Ah
8.7	1Dh	22.8	4Ch	36.9	7Bh
9.0	1Eh	23.1	4Dh	37.2	7Ch
9.3	1Fh	23.4	4Eh	37.5	7Dh
9.6	20h	23.7	4Fh	37.8	7Eh
9.9	21h	24.0	50h	38.1	7Fh
10.2	22h	24.3	51h	38.4	80h
10.5	23h	24.6	52h	38.7	81h
10.8	24h	24.9	53h	39.0	82h
11.1	25h	25.2	54h	39.3	83h
11.4	26h	25.5	55h	39.6	84h
11.7	27h	25.8	56h	39.9	85h
12.0	28h	26.1	57h	40.2	86h
12.3	29h	26.4	58h	40.5	87h
12.6	2Ah	26.7	59h	40.8	88h
12.9	2Bh	27.0	5Ah	41.1	89h
13.2	2Ch	27.3	5Bh	41.4	8Ah
13.5	2Dh	27.6	5Ch	41.7	8Bh
13.8	2Eh	27.9	5Dh	42.0	8Ch

Black Level Adjustment Function

The black level offset (offset variable range: 03Ch to 1FFh) can be added relative to the data in which the digital gain modulation was performed by the BLKLEVEL register (address: 20h [7:0], 21h [0]). When the BLKLEVEL setting is increased by 1 LSB, the black level is increased by 1 LSB.

Use with values shown below is recommended.

10-bit output: 3Ch (60d) 12-bit output: F0h (240d)

List of Black Level Adjustment Register

Re	gister details	Initial value	Setting value			
Register name	Address	Bit	iiiiiai value	Min.	Max.	
DI KI EVEI	20h	[7:0]	02Ch	02Ch	155b	
BLKLEVEL	/EL 21h		03Ch	03Ch	1FFh	

SONY IMX122LQJ-C

Vertical Normal Operation and Inverted Drive

The sensor readout direction (normal/inverted) in vertical direction can be switched by the VREVERSE (address 01h [0]) register setting. See the item of "Drive mode" for the order of readout lines in normal and inverted modes. One invalid frame is generated when reading immediately after the readout direction change in order to switch the normal operation and inversion between frames.

List of Vertical Drive Direction Setting Register

Re	gister details	Initial value	Setting value		
Register name	Address	Bit	Initial value	Normal	Inverted
VREVERSE	01h	[0]	0	0	1

Normal and Inverted Drive Outline in Vertical Direction

Shutter and Integration Time Settings

This sensor has a variable electronic shutter function that can control the integration time in line units. In addition, this sensor performs rolling shutter operation in which electronic shutter and readout operation are performed sequentially for each line.

Note) For integration time control, an image which reflects the setting is output from the frame after the setting changes.

Example of Integration Time Setting

The sensor's integration time is obtained by the following formula.

Integration time = 1 frame period × (SVS + 1 - SPL) - (SHS1) × (1H period) - t_{OFFSET} (However, SVS > SPL)

- Note) 1. The frame period is determined by the input XVS when the sensor is operating in slave mode, or the register VMAX value in master mode. The frame period is designated in 1H units, so the time is determined by (Number of lines × 1H period).
 - 2. See "Drive Modes" for the 1H period.
 - 3. t_{OFFSET} is the integration time error. Substitute the value below in the formula of integration time.

Operation mode	toffset [H]
All-pixel scan mode HD1080 p mode (10 bit-15 frame/s, 10 bit-30 frame/s, 12 bit-15 frame/s) Window cropping mode Vertical 1/2 subsampling mode	0.3
HD1080 p mode (12 bit 30 frame/s) 2 x 2 binning mode	0.1

In this item, the shutter operation and integration time are shown as in the figure below with the time sequence on the horizontal axis and the vertical address on the vertical axis. For simplification, shutter and readout operation are noted in line units.

Image Drawing of Shutter Operation

Normal Exposure Operation (Controlling the Integration Time in 1H Units)

The integration time can be controlled by varying the electronic shutter timing. In the electronic shutter settings, the integration time is controlled by the SHS1 register (address: 08h [7:0], 09h [7:0]).

Set SHS1 to a value between 0 and (Number of lines per frame - 1). When the sensor is operating in slave mode, the number of lines per frame is determined by the XVS interval (number of lines), using the input XHS interval as the line unit.

When the sensor is operating in master mode, the number of lines per frame is determined by the VMAX register (address: 05h [7:0], 06h [7:0]).

The number of lines per frame varies according to the drive mode.

Registers Used to Set the Integration Time in 1H Units

Register details		Initial	Description				
Register name	Address	Bit	value	Description			
SHS1	08h	[7:0]	00006	Code the aboutton access time			
5П51	09h	[7:0]	0000h	Sets the shutter sweep time.			
\/N4A\	05h	[7:0]	04E2h	Sets the number of lines per frame (only in master mode).			
VMAX	06h	[7:0]	04EZN	See "Operating Modes" for the setting value in each mode.			

Image Drawing of Integration Time Control within a Frame

Long Exposure Operation (Control by Expanding the Number of Lines per Frame)

Long exposure operation can be performed by lengthening the frame period.

When the sensor is operating in slave mode, this is done by lengthening the input vertical sync signal (XVS) pulse interval.

When the sensor is operating in master mode, it is done by designating a larger register VMAX (address: 05h [7:0], 06h [7:0]) value compared to normal operation.

Likewise, in slave mode the integration time can be increased by lengthening the input XVS signal pulse interval. When the integration time is extended by increasing the number of lines, the rear V blanking increases by an equivalent amount.

The maximum VMAX and SHS1 values are 65535d. When the number of lines per frame is set to the maximum value, the integration time in all-pixel scan mode at 19.64 frame/s is approximately 2.7 s.

When set to a number of V lines or more than that noted for each readout drive mode, the imaging characteristics are not guaranteed during long exposure operation.

Image Drawing of Long Exposure Time Control by Adjusting the Frame Period

Long Exposure Operation (Controlling the Integration Time in Frame Units)

When setting a long exposure that extends the integration time to one frame or more, set the SVS register (address: 06h [7:0], 07h [1:0]) to the value of (Number of integration frames - 1). In addition, the frame in which the shutter operates is designated by the SPL register (address: 0Dh [7:0], 0Eh [1:0]). To further adjust the integration time in 1H units within the frame set by SPL, set the SHS1 register. However, note that performing long integration causes the readout timing and the setting reflection timing to be eliminated according to the value set by SVS, so the frame rate drops. The blanking signal is output in data corresponding to the drop in the frame rate.

- ◆ This description is for the settings in master mode. In slave mode, long integration is set by eliminating the input vertical sync signal (XVS) pulse.
- When set so that SVS < SPL, the SPL setting value is ignored, and the signal is stored for the number of frames designated by SVS.
- ◆ Set SHS1 to a value between 0 and (Number of lines per frame 7).
- During long exposure operation, register communication is also reflected at the eliminated timing. To forcibly end operation partway, use the shutter break function.
- ♦ The imaging characteristics are not guaranteed during long exposure operation that performs integration for two frames or more.

Register details		In:High value	Description	
Register name	Address	Bit	Initial value	Description
SSBRK	1Bh	[0]	1h	Shutter break function Set both SVS and SPL to "0" simultaneously with this setting.
SVS	07h	[7:0]	000h	Designates the number of integration frames.
373	08h	[1:0]	00011	Integration time = Setting value + 1 frame
SPL	0Dh	[7:0]	000h	Designates the number of sugar frames
SPL	0Eh	[1:0]	00011	Designates the number of sweep frames.
	08h	[7:0]		Sets the shutter sweep time.
SHS1	09h	[7:0]	0000h	Note) When SVS is set to more than 1h, SHS1 is limited to less than VMAX-7.

^{*} Integration time control is reflected to the next readout frame after the frame during which the setting was made.

Image Drawing of Long Exposure Control in Frame Units

Example of Integration Time Setting

The example of register setting for controlling the integration time is shown below.

Example of Integration Time Setting (in all-pixel mode, t_{OFFSET}=0.3H)

Operation	Ser	nsor settir	ng (Regis	ster)	late continue time
Operation	VMAX*	SVS	SPL	SHS1	Integration time
				1249	0.7H period
				1248	1.7H period
				:	:
Normal frame rate	1250	0	0	N	(1250 – N – 0.3) H period
				÷	:
				1	1248.7H period
				0	1249.7H period
	1251			0	1250.7H period
Long-time exposure	1252	0	0		1251.7H period
operation (control by expanding the number of	:				:
lines per frame)	М			N	(M – N – 0.3) H period
	:			:	:
		1			(2499.7 – N) H period
		2			(3269.7 – N) H period
		:	0		:
		V			{(V + 1) × VMAX – N – 0.3} H period
		:			:
Long-time exposure operation (integration time	1250			N	(12499.7 – N) H period
control in frame units)	1250		1	IN .	(11249.7 – N) H period
,		9	2		(9999.7 – N) H period
		9	:		:
			L		{VMAX × (10 − L) − N − 0.3} H period
			:		:
		V	L		{VMAX × (V + 1 − L) − N − 0.3} H period

^{*} In sensor master mode. XHS interval to be input in slave mode.

 $^{^{\}star}$ $\,$ The SHS1 setting value (N) is set to the VMAX value (M) of -7 to 0.

Shutter Break Function

When changing the integration time setting before the next reflection timing (readout timing) during long integration operation, the setting can be reflected at the normal XVS timing (when the register SVS is set to "0h") by setting the SSBRK register (address: 12h [0]) to "01h". The timing at which the SSBRK register is reflected conforms to the frame sequence before SVS is set.

Image Drawing of Shutter Break Function

Depending on the value set when long integration operation starts (point "A" on the time base), the scheduled output can be stopped partway and settings can be changed as shown in the figure above. In this case, readout occurs in the frame when the SSBRK register is transmitted, and the signal stored up to that point is output. In this case the signal output in the frame when SSBRK is set becomes an invalid signal. In addition, perform communication at the next communication timing to return the SSBRK register to "0d".

Example Showing Application of the Shutter Break Function

When the SVS and SPL register values are left unchanged after the shutter break, readout is performed and then long integration starts again. To stop long integration with shutter break, the SVS and SPL register values must both be set to "0d" during the communication period of the frame during which shutter break is performed.

IMX122LQJ-C

Output Signal Interface Control

This sensor supports the following output formats. See "Image Data Output Format" for the data rate. Shaded areas in the figure indicate invalid data with regards to the AC characteristics. See "AC Characteristics" for details.

Parallel CMOS SDR Output

Example of Pin Waveform in CMOS 1-port SDR Output Mode

The sensor signal is output in sync with the falling edge of the data clock (DCK). (When DCKDLY is set to "0h") Output in sync with the rising edge is possible by setting DCKDLY to "1h".

Parallel CMOS DDR Output

Example of Pin Waveform in CMOS 1-port DDR Output Mode

The sensor signal is output in sync with both rising and falling edges of the data clock (DCK). (When DCKDLY is set to "0h")

Output can be performed with the DCK phase shifted by 90 ° relative to the data by setting DCKDLY to "1h".

SONY IMX122LQJ-C

Serial LVDS Output

Serial LVDS uses a different format depending on whether the output gradation is 10 bits or 12 bits. The data is divided into a DATA line and a STROBE line, and is output on 1 channel or divided into 2 channels.

List of Serial LVDS Output Formats

DATA-Strobe Method

DATA-Strobe Method

LVDS output uses the DATA-Strobe method. The DATA signal outputs the output data in binary format, but the STROBE signal performs toggle operation when the DATA signal does not change $(0 \rightarrow 0, 1 \rightarrow 1)$. The signal switching timing is obtained by taking the XOR (exclusive OR) of the DATA and STROBE signals. Data is output LSB first at both the rising and falling edges of the waveform obtained by the XOR operation.

Example: When outputting 01h, 12h, 23h and 34h in order

Output sequence

Output Formats and Setting Methods

Register details		Initial Setting		Description					
Register name	Address	Bit	value	value	Description				
				0	Parallel CMOS output, SDR output				
OPORTSEL	11h	[4.2]		1	Parallel CMOS output, DDR output				
OPORTSEL	1111	[4:3]	0	2	Serial LVDS 1ch output				
				3	Serial LVDS 2ch output				
ADRES	12h	[4]	0	0	In parallel CMOS output mode: 10-bit output In serial LVDS output mode: 10-bit RAW10 output				
ADRES	1211		[1]	0	U	U	,,,	1	In parallel CMOS output mode: 12-bit output In serial LVDS output mode: 12-bit RAW12 output
DOKDIA	2Db	F41		0	In CMOS SDR output mode: Output in sync with the falling edge In CMOS DDR output mode: Output in sync with the edge (0 °) In LVDS output mode: Setting invalid				
DCKDLY	2Dh	[1]	0	1	In CMOS SDR output mode: Output in sync with the rising edge In CMOS DDR output mode: Output with the phase delayed by 90 ° In LVDS output mode: Setting invalid				

Output Signal Range

The output gradation of this sensor can be switched to 10 bits or 12 bits. However, the output gradation is fixed for some drive modes.

In parallel CMOS output mode, the output 10 bits or 12 bits are assigned to 10 pins or 12 pins, respectively. When set to 10 bits, the data is output from DO11 to DO2, and the unused pins are fixed Low.

Bit Assignment for Each Output Gradation

DO nin	Output bit a	assignment
DO pin	10 bit	12 bit
DO [11]	DO [9]	DO [11]
DO [10]	DO [8]	DO [10]
DO [9]	DO [7]	DO [9]
DO [8]	DO [6]	DO [8]
DO [7]	DO [5]	DO [7]
DO [6]	DO [4]	DO [6]
DO [5]	DO [3]	DO [5]
DO [4]	DO [2]	DO [4]
DO [3]	DO [1]	DO [3]
DO [2]	DO [0]	DO [2]
DO [1]	Fixed to "0"	DO [1]
DO [0]	Fixed to "0"	DO [0]

In serial LVDS output mode, output uses the RAW10 format when the sensor gradation is 10 bits, or the RAW12 format when the sensor gradation is 12 bits.

 PO
 PO<

→ RAW10 Format

Example of RAW12 and RAW10 Format Output

Output Range

Output method	Output gradation	Output range			
Output method	Output gradation	Minimum value	Maximum value		
Darallal CMOS autaut	10 bit	000h	3FEh		
Parallel CMOS output	12 bit	000h	FFEh		
Social IVDS output	10 bit	004h	3FFh		
Serial LVDS output	12 bit	010h	FFFh		

The range of the minimum and maximum values of the output data differs in parallel CMOS output mode and serial LVDS output mode. In parallel CMOS output mode, the output pins do not go to "All 1" except for the sync code. In serial LVDS output mode, the sensor signal may go to "All 1", but not to "All 0".

Mode Transitions

When changing the drive mode during sensor drive operation, first set the sensor to all-pixel scan mode, and then set it again to the desired drive mode. The table below shows the number of invalid frames generated by transition between the various modes.

Data is output from sensor during the invalid frame period, but the output values may not reflect the integration time or may not be uniform on the screen, or a partially saturated image may be output.

Number of Invalid Frames Generated during Mode Transitions

Mo	Mode transition				
All-pixel scan mode	⇒	Window cropping mode			
All-pixel scan mode	⇒	2 × 2 binning mode			
All-pixel scan mode	⇒	Vertical 1/2 subsampling mode			
All-pixel scan mode	⇒	All-pixel scan mode, vertical value inversion			
Window cropping mode	⇒	All-pixel scan mode	1		
2 × 2 binning mode	⇒	All-pixel scan mode			
Vertical 1/2 subsampling mode	⇒	All-pixel scan mode			
All-pixel scan mode, vertical value inversion	⇒	All-pixel scan mode			

Note) When transitioning from window cropping mode to all-pixel scan mode, return the cropping range setting registers WINWH and WINWV to the initial values (7C0h, 4C9h).

*When changing the drive mode also changes the frame period, the number of invalid frames is counted according to the frame period after the change.

Invalid Frame Generation Timing

Power-on/off Sequence

Power-on Sequence

Follow the sequence below to turn on the power supplies.

- Turn on the power supplies so that the power supplies rise in order of 1.2 V power supply (DV_{DD}) →
 1.8 V power supply (OV_{DD}) → 2.7 V power supply (AV_{DD}). In addition, all power supplies should finish rising within 200 ms.
- 2. Start master clock (INCK) input after turning on the power supplies.
- 3. The register values are undefined immediately after power-on, so the system must be cleared. Hold XCLR at Low level for 500 ns or more after all the power supplies have finished rising. (The register values after a system clear are the default values.) In addition, hold XCE at High level during this period. The XCE rise timing differs according to the 1.8 V power supply (OV_{DD}), so hold XCE at High level until INCK is input. The system clear is applied by setting XCLR to High level. However, the master clock needs to stabilize before setting the XCLR pin to High level.
- 4. Make the sensor settings by register communication after the system clear. A period of 100 ns or more should be provided after setting XCLR High before inputting the communication enable signal XCE.

Power-on Sequence

Power-off Sequence

Turn Off the power supplies so that the power supplies fall in order of 2.7 V power supply (AV_{DD}) \rightarrow 1.8 V power supply (OV_{DD}) \rightarrow 1.2 V power supply (DV_{DD}). In addition, all power supplies should finish falling within 200 ms. Set each digital input pin (INCK, XCE, SCK, SDI, XCLR, XMASTER, XVS, XHS) to 0 V or high impedance before the 1.8 V power supply (OV_{DD}) falls.

Power-off Sequence

Sensor Setting Flow Chart

The initial setting flow chart of sensor is shown below. The initial setting should be made after the sensor reset immediately after the power-on.

See the items of the operation description shown in "Remarks" for control method.

Serial Communication Period after Sensor Reset

Slave mode

The communication period is set at the timing shown below for the sensor initial settings immediately after power-on. In slave mode, the vertical and horizontal sync signals (XVS, XHS) become valid only from the falling edges 100 ns or more after sensor reset (after XCLR is set Low). The 6H serial communication period is from the falling edge of the first valid XVS to the sixth XHS falling edge thereafter.

Note) XVS and XHS signals input when XCLR is Low are ignored. At this time the sensor is in standby mode until the next XVS signal. Register communication is possible in standby mode.

Communication Period after Sensor Reset in Slave Mode

Master mode

In master mode, the HMAX register (address 03h [7:0], 04h [5:0]) initial value is "44Ch" and the VMAX register (address 05h [7:4], 06h [7:0]) initial value is "4E2h", so both XVS and XHS are output at these initial setting V and H widths until the setting values are reflected 6H later. When the VMAX and HMAX registers are set to arbitrary values by serial communication at the initial setting, and the master mode start register XMSTA (address 26h [0]) setting is changed from "1" to "0", XVS and XHS start output according to the set values from the 7th H after the register settings are reflected. However, when VMAX and HMAX are set during the standby period, XVS and XHS are output according to the set values after standby is canceled.

Communication Period after Sensor Reset in Master Mode

IMX122LQJ-C

Peripheral Circuit

Power pins

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

SONY

Signal pins

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

SONY

IMX122LQJ-C

Data out pins

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same

Spot Pixel Specifications

(VA_{DD} = 2.7 V, OV_{DD} = 1.8 V, DV_{DD} = 1.2 V, Ta = 60 °C, 30 frame/s, Gain: 0 dB)

		Maximum distorted pixels in each zone				Measurement	
Type of distortion	Level	0 to II'	Effective OB	Ш	Ineffective OB	method	Remarks
Black or white pixels at high light	30 % ≤ D	17	17 No evaluation criteria applied		1		
White pixels in the dark	5.6 mV ≤ D	2	200		evaluation eria applied	2	Ta = 60 °C 1/30 s integration
Black pixels at signal saturated	D ≤ 649 mV	0	No evaluat	tion cr	iteria applied	3	

Note) 1. Zone is specified based on all-pixel drive mode.

- 2. D...Spot pixel level.
- 3. See the Spot Pixel Pattern Specifications for the specifications in which white pixel and black pixel are close.

Zone Definition

Notice on White Pixels Specifications

After delivery inspection of CMOS image sensors, cosmic radiation may distort pixels of CMOS image sensors, and then distorted pixels may cause white point effects in dark signals in picture images. (Such white point effects shall be hereinafter referred to as "White Pixels".) Unfortunately, it is not possible with current scientific technology for CMOS image sensors to prevent such White Pixels. It is recommended that when you use CMOS image sensors, you should consider taking measures against such White Pixels, such as adoption of automatic compensation systems for White Pixels in dark signals and establishment of quality assurance standards. Unless the Seller's liability for White Pixels is otherwise set forth in an agreement between you and the Seller, Sony Corporation or its distributors (hereinafter collectively referred to as the "Seller") will, at the Seller's expense, replace such CMOS image sensors, in the event the CMOS image sensors delivered by the Seller are found to be to the Seller's satisfaction, to have over the allowable range of White Pixels as set forth as set forth above under the heading "Spot Pixels Specifications", within the period of three months after the delivery date of such CMOS image sensors from the Seller to you; provided that the Seller disclaims and will not assume any liability after if you have incorporated such CMOS image sensors into other products. Please be aware that Seller disclaims and will not assume any liability for (1) CMOS image sensors fabricated, altered or modified after delivery to you, (2) CMOS image sensors incorporated into other products, (3) CMOS image sensors shipped to a third party in any form whatsoever, or (4) CMOS image sensors delivered to you over three months ago. Except the above mentioned replacement by Seller, neither Sony Corporation nor its distributors will assume any liability for White Pixels. Please resolve any problem or trouble arising from or in connection with White Pixels at your costs and expenses.

[For Your Reference] The Annual Number of White Pixels Occurrence

The chart below shows the predictable data on the annual number of white pixels occurrence in a single-story building in Tokyo at an altitude of 0 meters. It is recommended that you should consider taking measures against the annual White Pixels, such as adoption of automatic compensation systems appropriate for each annual number of White Pixels occurrence.

The data in the chart is based on records of past field tests, and signifies estimated number of White Pixels calculated according to structures and electrical properties of each device. Moreover, the data in the chart is for your reference purpose only, and is not to be used as part of any CMOS image sensor specifications.

Example of Annual Number of Occurrence

White Pixel Level (in case of integration time = $1/30 \text{ s}$) (Ta = $60 ^{\circ}\text{C}$)	Annual number of occurrence
5.6 mV or higher	2.4 p.c.s
10.0 mV or higher	1.6 p.c.s
24.0 mV or higher	0.8 p.c.s
50.0 mV or higher	0.5 p.c.s
72.0 mV or higher	0.4 p.c.s

- Note 1) The above data indicates the number of White Pixels occurrence when a CMOS image sensor is left for a year.
- Note 2) The annual number of White Pixels occurrence fluctuates depending on the CMOS image sensor storage environment (such as altitude, geomagnetic latitude and building structure), time (solar activity effects) and so on. Moreover, there may be statistic errors. Please take notice and understand that this is an example of test data with experiments that have being conducted over a specific time period and in a specific environment.
- Note 3) This data does not guarantee the upper limits of the number of White Pixels occurrence.

For Your Reference:

The annual number of White Pixels occurrence at an altitude of 3,000 meters is from 5 to 10 times more than that at an altitude of 0 meters because of the density of the cosmic rays. In addition, in high latitude geographical areas such as London and New York, the density of cosmic rays increases due to a difference in the geomagnetic density, so the annual number of White Pixels occurrence in such areas approximately doubles when compared with that in Tokyo.

Measurement Method for Spot Pixels

After setting the measurement condition to the standard imaging condition II, and the device drive conditions are within the bias and clock voltage conditions. Configure the drive circuit according to the example and measure.

1. Black or white pixels at high light

After adjusting the average value of the Gr/Gb signal output to 425 mV, measure the local dip point (black pixel at high light, ViB) and the peak point (white pixel at high light, ViK) in the Gr/Gb/R/B signal output Vi (i = Gr/Gb/R/B), and substitute the values into the following formula.

Spot pixel level D = $\{(Vi_B \text{ or } Vi_K)/Vi \text{ average value}\} \times 100 [\%]$

Signal output waveform of R/G/B channel

2. White pixels in the dark

Set the device to a dark setting and measure the local peak point of the signal output waveform using the average value of the dark signal output as a reference.

3. Black pixels at signal saturated

Set the device to operate in saturation and measure the local dip point using the OB output as a reference.

Signal output waveform of R/G/B channel

Spot Pixel Pattern Specifications

Spot pixel patterns are counted as shown below.

List of Spot Pixel Patterns

No.	Pattern	White pixel	Black pixel	Bright spot
1		Rejected	Rejected	Rejected
2		Rejected	Rejected	Rejected
3		Allowed	Allowed	Allowed
4		Rejected	Allowed	Allowed
4		Allowed	Allowed	Allowed

- Note) 1. ●: Black circles indicate the positions of spot pixels. The patterns are specified separately for white pixels, black pixels and bright spots.
 - (Example: Even when a black pixel and a white pixel are arranged as shown by pattern No. 1, this is not judged as a defect (Allowed).)
 - 2. Sensors exhibiting one or more patterns indicated as "Rejected" are sorted and removed.
 - 3. Sensors exhibiting patterns indicated as "Allowed" are not subject to sorting and removal, and these pixels are instead counted in the number of allowable spot pixels by zone.
 - 4. White pixels and black pixels other than the patterns noted in the table above are all counted in the number of allowable spot pixels by zone.

Stain Specifications

Zone	Allowable pixels	Size	Level	Lens aperture	
0 to II	0	L≥3	R ≥ 8 %	F = 16	
Means no stain over three lines or more.					

Stain Zone Definition

Stain Measurement Method

In the following measurement, set the measurement condition to the standard imaging condition II, set the lens diaphragm to F16, and adjust the luminous intensity so that the average value of the G channel signal output is 150 mV. Measure the local dip in the average value of the R/G/B channel signal output (ViBL), and then calculate the stain level (R) as the ratio of ViBL to the average value of the R/G/B channel signal output (Vi).

Stain level R =
$$(Vi_{BL}/Vi) \times 100 [\%] (i = R, G, B)$$

At the same time, the size (L) of the area where the stain level is 8 % or more is determined by line number conversion.

The distance from one center of a stain to another is the stain interval, and is also determined in the same way by line number conversion.

Signal output waveform of R/G/B channel

CRA Characteristics

(Exit pupil distance: -30 mm)

The recommended CRA characteristics is 0.0 degrees all over the image height (0 - 100 %), because the target E.P.D. is infinite.

We assume that the worst case of E.P.D. is -30 mm. The CRA characteristics of -30 mm E.P.D. is described below. The real CRA should be smaller than the table below.

Image	CRA	
(%)	(mm)	(deg)
0	0.00	0.00
5	0.16	0.31
10	0.32	0.61
15	0.48	0.92
20	0.64	1.22
25	0.80	1.53
30	0.96	1.83
35	1.12	2.14
40	1.28	2.44
45	1.44	2.75
50	1.60	3.05
55	1.76	3.36
60	1.92	3.66
65	2.08	3.97
70	2.24	4.27
75	2.40	4.57
80	2.56	4.88
85	2.72	5.18
90	2.88	5.48
95	3.04	5.79
100	3.20	6.09

Marking

Note: Following characters enter into "W", and "X".

W:In English upper case character, One character X:Number, single number

Notes On Handling

1. Static charge prevention

Image sensors are easily damaged by static discharge. Before handling be sure to take the following protective measures.

- Either handle bare handed or use non-chargeable gloves, clothes or material.
 Also use conductive shoes.
- (2) Use a wrist strap when handling directly.
- (3) Install grounded conductive mats on the floor and working table to prevent the generation of static electricity.
- (4) Ionized air is recommended for discharge when handling image sensors.
- (5) For the shipment of mounted boards, use boxes treated for the prevention of static charges.

2. Protection from dust and dirt

Image sensors are packed and delivered with care taken to protect the element glass surfaces from harmful dust and dirt. Clean glass surfaces with the following operations as required before use.

- (1) Perform all lens assembly and other work in a clean environment (class 1000 or less).
- (2) Do not touch the glass surface with hand and make any object contact with it. If dust or other is stuck to a glass surface, blow it off with an air blower. (For dust stuck through static electricity, ionized air is recommended.)
- (3) Clean with a cotton swab with ethyl alcohol if grease stained. Be careful not to scratch the glass.
- (4) Keep in a dedicated case to protect from dust and dirt. To prevent dew condensation, preheat or precool when moving to a room with great temperature differences.
- (5) When a protective tape is applied before shipping, remove the tape applied for electrostatic protection just before use. Do not reuse the tape.

3. Installing (attaching)

- (1) If a load is applied to the entire surface by a hard component, bending stress may be generated and the package may fracture, etc., depending on the flatness of the bottom of the package. Therefore, for installation, use either an elastic load, such as a spring plate, or an adhesive.
- (2) The adhesive may cause the marking on the rear surface to disappear.
- (3) If metal, etc., clash or rub against the package surface, the package may chip or fragment and generate dust.
- (4) Acrylate anaerobic adhesives are generally used to attach this product. In addition, cyanoacrylate instantaneous adhesives are sometimes used jointly with acrylate anaerobic adhesives to hold the product in place until the adhesive completely hardens. (reference)
- (5) Note that the sensor may be damaged when using ultraviolet ray and infrared ray on mounting it.

4. Recommended reflow soldering conditions

The following items should be observed for reflow soldering.

(1) Temperature profile for reflow soldering

Control item	Profile (at part side surface)
1. Preheating	150 to 180 °C 60 to 120 s
2. Temperature up (down)	+4 °C/s or less (–6 °C/s or less)
3. Reflow temperature	Over 230 °C 10 to 30 s Max. 5 °C/s
4. Peak temperature	Max. 240 ± 5 °C

(2) Reflow conditions

- (a) Make sure the temperature of the upper surface of the seal glass resin adhesive portion of the package does not exceed 245 °C.
- (b) Perform the reflow soldering only one time.
- (c) Finish reflow soldering within 72 h after unsealing the degassed packing. Store the products under the condition of temperature of 30 °C or less and humidity of 70 % RH or less after unsealing the package.
- (d) Perform re-baking only one time under the condition at 125 °C for 24 h

(3) Others

- (a) Carry out evaluation for the solder joint reliability in your company.
- (b) After the reflow, the paste residue of protective tape may remain around the seal glass. (The paste residue of protective tape should be ignored except remarkable one.)
- (c) Note that X-ray inspection may damage characteristics of the sensor.

5. Others

- (1) Do not expose to strong light (sun rays) for long periods, as the color filters of color devices will be discolored.
- (2) Exposure to high temperature or humidity will affect the characteristics. Accordingly avoid storage or use in such conditions.
- (3) This product is precision optical parts, so care should be taken not to apply excessive mechanical shocks or force.
- (4) Note that imaging characteristics of the sensor may be affected when approaching strong electromagnetic wave or magnetic field during operation.
- (5) Note that image may be affected by the light leaked to optical black when using an infrared cut filter that has transparency in near infrared ray area during shooting subjects with high luminance.

Package Outline

(Unit: mm)

SONY

Note

Sony reserves the right to change products and specifications without prior notice.

This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.