Lineare Algebra 2 — Übungsblatt 8

Sommersemester 2020

AOR Dr. D. Vogel P. Gräf, R. Steingart

Abgabe: Do 25.06.2020 um 9:15 Uhr

28. Aufgabe: (6 Punkte, Isomorphismen von Moduln) Seien R ein Ring, M und N zwei R-Moduln und $f: M \to N$ ein R-Modulhomomorphismus. Man zeige, dass die folgenden Aussagen äquivalent sind:

- (i) *f* ist ein *R*-Modulisomorphismus.
- (ii) Für alle R-Moduln L ist die Abbildung

$$\operatorname{Hom}_R(L, M) \to \operatorname{Hom}_R(L, N)$$

 $g \mapsto f \circ g$

bijektiv.

Hinweis: Für die Implikation (ii) \Rightarrow (i) setze man in (ii) L = N und L = M ein.

- **29. Aufgabe:** (2+2+2 *Punkte, Elementare Tensorprodukte)* Man zeige:
 - (a) $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z} = 0$.
 - (b) $2\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z}$.
 - (c) $2 \otimes 1 = 0$ in $\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z}$, aber $2 \otimes 1 \neq 0$ in $2\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z}$.

30. Aufgabe: (3+3 *Punkte, Ideale und Tensorprodukte)* Seien R ein Ring, $I \subseteq R$ ein Ideal und M ein R-Modul.

(a) Man zeige, dass es einen eindeutigen surjektiven R-Modulhomomorphismus

$$f: I \otimes_R M \to IM$$

mit $f(a \otimes m) = am$ für $a \in I$, $m \in M$ gibt.

(b) Man zeige anhand eines Gegenbeispiels, dass die Abbildung *f* aus Teil (a) im Allgemeinen kein *R*-Modulisomorphismus ist.

Hinweis: Man verwende Aufgabe 29 (b).

- **31. Aufgabe:** (2+2+2 *Punkte, Eigenwerte und Tensorpodukte)* Seien K ein Körper und V ein endlichdimensionaler K-Vektorraum. Seien $f,g \in \operatorname{End}_K(V)$ und sei $\lambda \in K$ ein Eigenwert von f und $\mu \in K$ ein Eigenwert von g.
 - (a) Seien $v, w \in V \setminus \{0\}$. Man zeige, dass $v \otimes w \neq 0$ in $V \otimes_K V$. **Hinweis:** Man zeige zunächst, dass es eine bilineare Abbildung $\beta \colon V \times V \to K$ gibt, sodass $\beta(v, w) \neq 0$.
 - (b) Man zeige, dass $\lambda \mu$ ein Eigenwert von $f \otimes g \in \operatorname{End}_K(V \otimes_K V)$ ist.
 - (c) Man zeige, dass $\lambda + \mu$ ein Eigenwert von $f \otimes id_V + id_V \otimes g \in End_K(V \otimes_K V)$ ist.

Die Übungsblätter sowie weitere Informationen zur Vorlesung sind über MaMpf abrufbar.