10: χ^2 -Tests

Statistische Verfahren in der Geographie

Till Straube <straube@geo.uni-frankfurt.de> Institut für Humangeographie Goethe-Universität Frankfurt

1 Lernziele dieser Sitzung

Sie können...

- einen χ^2 -Unabhängigkeitstest durchführen.
- einen χ^2 -Anpassungstest durchführen.

2 Anwendungsbereich

In Sitzung 9 haben wir gelernt, wie für bivariate Verteilungen Korrelationen beschrieben werden können, wenn beide Variablen nominalskaliert sind. Grundlage dafür waren die Häufigkeiten von Wertekombinationen in der Kreuztabelle.

Auch für χ^2 -Tests sind beobachtete Häufigkeiten in einer Kreuztabelle unser Ausgangspunkt. Wir fragen jedoch nicht nach einem Kennwert für die Stärke der Korrelation, sondern wollen wissen, ob es einen statistisch signifikanten Zusammenhang zwischen den beiden Variablen gibt – also einen Zusammenhang, der nur mit einer Wahrscheinlichkeit α zufällig zustande gekommen ist.

Um den Unterschied zu verdeutlichen: Bei sehr großen Fallzahlen kann auch eine leichte Korrelation statistisch signifikant sein, bei kleinen Fallzahlen wird es es selbst für starke Korrelationen schwierig, eine statistische Signifikanz nachzuweisen.

Mit dem χ^2 -Unabhängigkeitstest und dem χ^2 -Anpassungstest lernen wir im Folgenden zwei leicht unterschiedliche Varianten des χ^2 -Tests kennen. Beide sollen direkt an Beispielen ausgeführt werden.

3 χ^2 -Unabhängigkeitstest

Grundlage sind bivariate Häufigkeiten, die in einer Kreuztabelle dargestellt werden können (s. Tabelle 1). Wie Kreuztabellen erstellt werden, haben wir bereits in Sitzung 9 behandelt.

Unser Beispieldatensatz beschäftigt sich mit Kriegsdienstverweigerern. Zwischen 1956 und 2011 galt in der BRD die Wehrpflicht, d.h. alle vom Staat als "männlich" erfassten und als "tauglich" gemusterte jungen Menschen mussten Dienst an der Waffe leisten – es sei denn, sie verweigerten den Kriegsdienst und leisteten stattdessen Zivildienst (z.B. in sozialen Einrichtungen).

Stand: 28. Juni 2019 1/10

	Grundwehrdienst	Zivildienst	
Land	18	11	29
Stadt	10	23	33
	28	34	62

Tabelle 1: Kreuztabelle der Beispieldaten

Zusätzlich zur Frage der Kriegsdienstverweigerung sei in einer Zufallsstichprobe von als tauglich gemusterten erhoben, ob der Wohnort eine Gemeinde mit über oder unter 20000 Einwohner*innen ("Stadt" oder "Land") ist.¹ Die Ergebnisse sind in Tabelle 1 zusammengefasst.

Wir interessieren uns für den statistischen Zusammenhang dieser beiden Variablen, und zwar möchten wir die Hypothese prüfen, dass Menschen aus der Stadt eher den Kriegsdienst verweigerten als Menschen vom Land. Der Test wird entlang der bekannten sechs Schritte ausgeführt.

3.1 Voraussetzungen prüfen / Test wählen

Für den χ^2 -Unabhängigkeitstest müssen folgende Voraussetzungen erfüllt sein:

- Ziel ist die Überprüfung einer bivariaten Verteilung auf einen statistisch signifikanten Zusammenhang zwischen zwei nominalskalierten Variablen.
- Grundlage sind beobachtete Häufigkeiten aus einer einfachen, unabhängigen Zufallsstichprobe.
- Alle Tabellenfelder enthalten beobachtete Häufigkeiten $(n_{ij} \ge 5)$.

Für unsere Beispieldaten sind diese Voraussetzungen gegeben.

3.2 Hypothesen formulieren

Wir haben wieder zwei Möglichkeiten: die gerichtete und die ungerichtete Alternativhypothese.

3.2.1 Ungerichtete Alternativhyptothese

Wir verzichten an dieser Stelle auf mathematische Notationen und würden bei ungerichteter Alternativhypothese im Klartext schreiben:

 H_0 : Es gibt keinen Zusammenhang zwischen Wohnort und Verweigerungsentscheidung.

 H_1 : Es gibt einen Zusammenhang zwischen Wohnort und Verweigerungsentscheidung.

Stand: 28. Juni 2019 2/10

¹Hier wird also eine verhältnisskalierte Variable (Bevölkerungszahl der Gemeinde) in eine nominalskalierte Variable transformiert. In Fällen wie diesen, wo die Variable nach der Transformation nur zwei Werte annehmen kann, sprechen wir auch von der "Dichotomisierung" einer Variable.

3.2.2 Gerichtete Alternativhyptothese

Im Falle einer gerichteteten Alternativhypothese bleibt die Nullhypothese bestehen, aber die Alternativhypothese gibt eine bestimmte Richtung des Zusammenhangs vor.

 H_0 : Es gibt keinen Zusammenhang zwischen Wohnort und Verweigerungsentscheidung.

 H_1 : Es gibt einen positiven Zusammenhang zwischen Wohnort in der Stadt und Kriegsdienstverweigerung.

Gerichtete Alternativhypothesen sind im χ^2 -Unabhängigkeitstest *nur* für 2×2 -Tabellen möglich.

Im Beispiel entscheiden wir uns für die gerichtete Alternativhypothese, denn wir vermuten einen Zusammenhang in diese bestimmte Richtung.

3.3 Signifikanzniveau entscheiden

Wie in anderen Tests ist ein Signifikanzniveau von $\alpha=0.05$ üblich, wofür wir uns auch im Beispiel entscheiden.

3.4 Kritischen Wert bestimmen

Bei χ^2 -Tests gibt es immer nur einen kritischen Wert. Zunächst müssen beim χ^2 -Unabhängigkeitstest die Freiheitsgrade bestimmt werden mit der Formel:

$$df = (k-1) \cdot (\ell-1) \tag{1}$$

wobei auch hier wieder k für die Zeilenanzahl und ℓ für die Spaltenanzahl steht.

Im Beispiel also:

$$df = (k-1) \cdot (\ell - 1)$$

= $(2-1) \cdot (2-1) = 1$

Damit lässt sich der kritische Wert an der Tabelle im Anhang ablesen, die allerdings für *ungerichtete* Alternativhypothesen ausgelegt ist.

Hätten wir eine ungerichtete Alternativhypothese gewählt, würde der Ablehnungsbereich also definiert durch:

$$\chi^{2} \ge \chi^{2}_{df;(1-\alpha)}$$
 $\chi^{2} \ge \chi^{2}_{1;95\%}$
 $\chi^{2} > 3.841$

Für unsere gerichtete Alternativhypothese "dürfen" wir den Ablehnungsbereich jedoch verdoppeln (müssen aber im nächsten Schritt auch prüfen, ob die Richtung auch stimmt):

Stand: 28. Juni 2019 3/10

	Grundwehrdienst	Zivildienst	
Land	18	11	29
	(13,10)	(15,90)	
	1,833	1,510	
Stadt	10	23	33
	(14,90)	(18,10)	
	1,611	1,327	
	28	34	62

Tabelle 2: Kreuztabelle mit Erwartungswerten und Teilwerten für χ^2

$$\chi^2 \ge \chi^2_{df;(1-2\cdot\alpha)}$$
$$\chi^2 \ge \chi^2_{1;90\%}$$
$$\chi^2 > 2.706$$

3.5 Prüfgröße berechnen

Wie in Sitzung 9 besprochen, wird die Prüfgröße χ^2 anhand der Formel

$$\chi^2 = \sum_{i=1}^k \sum_{j=1}^\ell \frac{(n_{ij} - m_{ij})^2}{m_{ij}} \tag{2}$$

errechnet. Dabei ist die Ermittlung der Erwartungswerte m_{ij} ein notwendiger Schritt, und auch die Teilwerte für χ^2 können wieder direkt in die Kreuztabelle eingetragen werden.

Für unser Beispiel erfolgt die Berechnung anhand Tabelle 2.

Zunächst muss dabei geprüft werden, ob die Richtung unserer Alternativhypothese stimmt. Die beobachtete Häufigkeit der Zivildienstleistenden in der Stadt $n_{22}=23$ ist größer als der Erwartungswert $m_{22}=18,1$. Wenn eine Signifikanz nachgewiesen werden kann, dann also für den *positiven* Zusammenhang zwischen Wohnort in der Stadt und Kriegsdienstverweigerung (wie in unserer Alternativhypothese spezifiziert).

Für χ^2 ergibt sich im Beispiel:

$$\chi^{2} = \sum_{i=1}^{k} \sum_{j=1}^{\ell} \frac{(n_{ij} - m_{ij})^{2}}{m_{ij}}$$
$$= 1,833 + 1,51 + 1,611 + 1,327$$
$$= 6,281$$

Stand: 28. Juni 2019 4/10

3.6 Nullhypothese ablehnen oder beibehalten

Der Wert der Prüfgröße $\chi^2=6,281$ liegt deutlich im Ablehnungsbereich $\chi^2\geq 2,706$. Die Nullhypothese kann abgelehnt werden. Es wurde ein statistisch signifikanter positiver Zusammenhang zwischen Wohnort in Gemeinden mit über 20000 Einwohner*innen und Kriegsdienstverweigerung festgestellt ($\alpha=0,05$).

Softwarehinweis

In R lässt sich ein χ^2 -Unabhängigkeitstest mit dem Befehl chisq.test() durchführen.

4 χ^2 -Anpassungstest

Beim χ^2 -Anpassungsest geht es um die Häufigkeiten *eines* nominalskalierten Merkmals – er ist deshalb der univariaten Teststatistik zuzuordnen. Der Test überprüft, ob das Merkmal entlang einer vorgegebenen Verteilung (im Normalfall gleichmäßig) verteilt ist, oder ob es signifikante Abweichungen von dieser erwarteten Verteilung gibt.

Ein Beispiel: Für größere Verspätungen (≥ 10 Minuten) beim ÖPNV einer Großstadt wird festgehalten, an welchen Wochentagen sie auftreten. Wir ignorieren Wochenden und Feiertage und fragen uns, ob sich die Verzögerungen gleichmäßig auf Werktage verteilen, oder ob es signifikante Abweichungen in Bezug auf den Wochentag gibt. Die Werte in Tabelle 3 seien über drei Monate hinweg erhoben worden.

Tabelle 3: Häufigkeiten größerer Verspätungen im ÖPNV

Wochentag	Häufigkeit			
Montag	459			
Dienstag	409			
Mittwoch	414			
Donnerstag	387			
Freitag	437			

Wir befolgen wieder die sechs Schritte für statistische Testverfahren.

4.1 Voraussetzungen prüfen / Test wählen

Für den χ^2 -Anpassungstest müssen folgende Voraussetzungen erfüllt sein:

- Ziel ist die Überprüfung einer nominalskalierten Variable auf eine statistisch signifikante Abweichung von einer vorgegebenen Verteilung.
- Grundlage sind beobachtete Häufigkeiten aus einer einfachen, unabhängigen Zufallsstichprobe.
- Alle Tabellenfelder enthalten beobachtete Häufigkeiten $(n_i \ge 5)$.

In unserem Beispiel sind diese Voraussetzungen gegeben.

Stand: 28. Juni 2019 5/10

4.2 Hypothesen formulieren

 H_0 : Starke Verspätungen sind an allen Werktagen gleich wahrscheinlich.

 H_1 : Starke Verspätungen sind an manchen Wertkagen wahrscheinlicher als an anderen.

Gerichtete Hypothesen dürfen hier nur bei dichotomen Variablen formuliert werden (also bei zwei Tabellenfeldern).

4.3 Signifikanzniveau entscheiden

Üblich: $\alpha = 0.05$

4.4 Kritischen Wert bestimmen

Die Freiheitsgrade bestimmen sich aus

$$df = k - 1 \tag{3}$$

wobei k hier einfach die Anzahl der Katorien ist.

In unserem Beispiel (bei fünf Werktagen) also:

$$df = k - 1$$
$$= 5 - 1 = 4$$

Der kritische Wert für den Ablehnungsbereich ist der Tabelle im Anhang zu entnehmen.

$$\chi^2 \ge \chi^2_{df;(1-\alpha)}$$
$$\chi^2 \ge \chi^2_{4;95\%}$$
$$\chi^2 \ge 9,488$$

Auch hier wäre bei einer gerichteten Hypothese der kritische Wert $\chi^2_{df;(1-2\cdot\alpha)}$ anzuwenden – dies ist allerdings wie bereits erwähnt nur für dichotome Variablen möglich.

4.5 Prüfgröße berechnen

Die Prüfgröße χ^2 berechnet sich analog zu vorherigen Beispielen. Einzige Besonderheit: Die Erwartungswerte werden direkt anhand der zu erwartenden (im Regelfall: gleichmäßigen) Verteilung bestimmt.

Im Beispiel ergibt sich in den fünf Kategorien jeweils ein Erwartungswert von

$$\frac{n}{k} = \frac{2106}{5} = 421,2$$

Stand: 28. Juni 2019 6/10

Montag	Dienstag	Mittwoch	Donnerstag	Freitag	1
459	409	414	387	437	2106
(421,2)	(421,2)	(421,2)	(421,2)	(421,2)	
3,392	0,353	0,123	2,777	0,593	

Tabelle 4: Tabelle für den χ^2 -Anpassungstest

Dann nehmen wir wieder eine Tebelle zu Hilfe um die Prüfgröße χ^2 zu berechnen (s. Tabelle 4). Wie gehabt werden einfach die Teilwerte zusammengezählt:

$$\chi^{2} = \sum_{i=1}^{k} \frac{(n_{i} - m_{i})^{2}}{m_{i}}$$

$$= 3,392 + 0,353 + 0,123 + 2,777 + 0,593$$

$$= 7.238$$

4.6 Nullhypothese ablehnen oder beibehalten

Der Ablehnungsbereich $\chi^2 \geq 9,488$ wurde nicht erreicht. Die Nullhypothese muss beibehalten werden. Eine statistisch signifikante Abweichung von einer gleichmäßigen Verteilung konnte nicht nachgewiesen werden ($\alpha=0.05$).

Softwarehinweis

Mit einer univariaten Verteilung als Eingabe führt der Befehl chisq.test() einen χ^2 -Anpassungstest durch.

4.7 Andere Verteilungen

Die theoretische Verteilung, von der eine signifikante Abweichung festgestellt werden soll, ist im obigen Beispiel uniform, d.h. gleichmäßig. Allerdings kann beim Anpassungstest auch von anderen Verteilungen ausgegangen werden – so könnte eine (begründete) Nullhypothese auch lauten, dass Kategorie A doppelt so viele Fallzahlen aufweist wie Kategorie B und C.

In der Praxis wird der χ^2 -Anpassungstest auch oft verwendet, um nachzuweisen, dass keine signifikante Abweichung von der Normalverteilung zu beobachten ist – nur dann dürfen nämlich viele statistische Verfahren durchgeführt werden.

Stand: 28. Juni 2019 7/10

5 Aufgaben

5.1 Aufgabe 1

Sie interessieren sich dafür, ob in einem Unternehmen der Tätigkeitsbereich mit dem Geschlecht der Angestellten zusammenhängt.

In den Personalakten sind Angestellte als "männlich" oder "weiblich" erfasst und ihre Tätigkeitsfelder in "Leitende Tätigkeit", "Administration" und "Fertigung" unterteilt.

Folgende Häufigkeiten sind erfasst:

	Leitende Tätigkeit	Administration	Fertigung	NA
männlich	102	290	888	NA
weiblich	38	185	397	NA

- a) Welchen Test führen Sie durch?
- b) Formulieren Sie die Hypothesen.
- c) Das Thema wird in der Unternehmensleitung bereits kontrovers diskutiert, weshalb Sie einen Fehler 1. Art zu 99% ausschließen möchten. Wie lautet das Signifikanzniveau?
- d) Bestimmen Sie die Freiheitsgrade und den kritischen Wert.
- e) Berechnen Sie die Prüfgröße.
- f) Wie interpretieren Sie das Ergebnis?

5.2 Aufgabe 2

Eine Ihner Bekannten behauptet, dass beim Elfmeterschießen – "statistisch gesehen" – in 60% der Fälle das Team gewinnt, das zuerst den Strafstoß ausführt.

Sie möchten das empirisch überprüfen und schauen sich in Archiven siebzig Partien bei Fußballturnieren an, die durch Elfmeterschießen entschieden wurden. Tatsächlich stellen Sie fest, dass in genau 60% der Fälle das zuerst ausführende Team gewann.

Prüfen Sie, ob diese Beobachtung auch statistisch relevant ist. Wählen Sie 5% als Signifikanzniveau.

6 Tipps zur Vertiefung

- Kapitel 9 in Bortz und Schuster (2010)
- Kapitel 5.3.4 in Bahrenberg, Giese und Nipper (2010)
- Kapitel 13 in Klemm (2002)

Stand: 28. Juni 2019 8/10

7 Anhang: χ^2 -Verteilungen

-						Fläche					
df	0,6	0,7	0,8	0,85	0,9	0,95	0,975	0,99	0,995	0,999	0,9995
1	0,708	1,074	1,642	2,072	2,706	3,841	5,024	6,635	7,879	10,828	12,116
2	1,833	2,408	3,219	3,794	4,605	5,991	7,378	9,210	10,597	13,816	15,202
3	2,946	3,665	4,642	5,317	6,251	7,815	9,348	11,345	12,838	16,266	17,730
4	4,045	4,878	5,989	6,745	7,779	9,488	11,143	13,277	14,860	18,467	19,997
5	5,132	6,064	7,289	8,115	9,236	11,070	12,833	15,086	16,750	20,515	22,105
6	6,211	7,231	8,558	9,446	10,645	12,592	14,449	16,812	18,548	22,458	24,103
7	7,283	8,383	9,803	10,748	12,017	14,067	16,013	18,475	20,278	24,322	26,018
8	8,351	9,524	11,030	12,027	13,362	15,507	17,535	20,090	21,955	26,124	27,868
9	9,414	10,656	12,242	13,288	14,684	16,919	19,023	21,666	23,589	27,877	29,666
10	10,473	11,781	13,442	14,534	15,987	18,307	20,483	23,209	25,188	29,588	31,420
11	11,530	12,899	14,631	15,767	17,275	19,675	21,920	24,725	26,757	31,264	33,137
12	12,584	14,011	15,812	16,989	18,549	21,026	23,337	26,217	28,300	32,909	34,821
13	13,636	15,119	16,985	18,202	19,812	22,362	24,736	27,688	29,819	34,528	36,478
14	14,685	16,222	18,151	19,406	21,064	23,685	26,119	29,141	31,319	36,123	38,109
15	15,733	17,322	19,311	20,603	22,307	24,996	27,488	30,578	32,801	37,697	39,719
16	16,780	18,418	20,465	21,793	23,542	26,296	28,845	32,000	34,267	39,252	41,308
17	17,824	19,511	21,615	22,977	24,769	27,587	30,191	33,409	35,718	40,790	42,879
18	18,868	20,601	22,760	24,155	25,989	28,869	31,526	34,805	37,156	42,312	44,434
19	19,910	21,689	23,900	25,329	27,204	30,144	32,852	36,191	38,582	43,820	45,973
20	20,951	22,775	25,038	26,498	28,412	31,410	34,170	37,566	39,997	45,315	47,498
25	26,143	28,172	30,675	32,282	34,382	37,652	40,646	44,314	46,928	52,620	54,947
30	31,316	33,530	36,250	37,990	40,256	43,773	46,979	50,892	53,672	59,703	62,162
35	36,475	38,859	41,778	43,640	46,059	49,802	53,203	57,342	60,275	66,619	69,199
40	41,622	44,165	47,269	49,244	51,805	55,758	59,342	63,691	66,766	73,402	76,095
45	46,761	49,452	52,729	54,810	57,505	61,656	65,410	69,957	73,166	80,077	82,876
50	51,892	54,723	58,164	60,346	63,167	67,505	71,420	76,154	79,490	86,661	89,561
60	62,135	65,227	68,972	71,341	74,397	79,082	83,298	88,379	91,952	99,607	102,695
70	72,358	75,689	79,715	82,255	85,527	90,531	95,023	100,425	104,215	112,317	115,578
80	82,566	86,120	90,405	93,106	96,578	101,879	106,629	112,329	116,321	124,839	128,261
90	92,761	96,524	101,054	103,904	107,565	113,145	118,136	124,116	128,299	137,208	140,782
100	102,946	106,906	111,667	114,659	118,498	124,342	129,561	135,807	140,169	149,449	153,167
110	113,121	117,269	122,250	125,376	129,385	135,480	140,917	147,414	151,948	161,581	165,435
120	123,289	127,616	132,806	136,062	140,233	146,567	152,211	158,950	163,648	173,617	177,603
130	133,450	137,949	143,340	146,719	151,045	157,610	163,453	170,423	175,278	185,571	189,682
140	143,604	148,269	153,854	157,352	161,827	168,613	174,648	181,840	186,847	197,451	201,683
150	153,753	158,577	164,349	167,962	172,581	179,581	185,800	193,208	198,360	209,265	213,613
200	204,434	209,985	216,609	220,744	226,021	233,994	241,058	249,445	255,264	267,541	272,423
300	305,574	312,346	320,397	325,409	331,789	341,395	349,874	359,906	366,844	381,425	387,203
400	406,535	414,335	423,590	429,340	436,649	447,632	457,305	468,724	476,606	493,132	499,666
500	507,382	516,087	526,401	532,803	540,930	553,127	563,852	576,493	585,207	603,446	610,648

Stand: 28. Juni 2019 9/10

Quellen

Bahrenberg, Gerhard, Ernst Giese und Josef Nipper. 2010. *Statistische Methoden in der Geographie*. 5. Aufl. Bd. 1. Univariate und bivariate Statistik. Stuttgart: Bornträger.

Bortz, Jürgen und Christof Schuster. 2010. *Statistik für Human- und Sozialwissenschaftler*. 7. Aufl. Berlin: Springer.

Klemm, Elmar. 2002. Einführung in die Statistik. Für die Sozialwissenschaften. Wiesbaden: Westdeutscher Verlag.

Stand: 28. Juni 2019 10/10