Application of Transfer Learning & Automated Machine Learning in Image Classifiers for Dog Breeds

Group 17

Brandon Attai, Tahsin Chowdhury, Kelten Falez, Timothy Mok, Aron Saengchan, and Yong Jun Zhu

ENEL 645: Data Mining & Machine Learning Final Project Presentation

April 6, 2022

Problem Statement & Objective

- Problem Statement:
 - O Develop a multiclass image classifier for a set of dog breed images
- Apply various machine learning and deep learning methods
 - Convolution neural networks (CNNs) using transfer learning
 - Ensemble methods
 - Automated machine learning (AutoML)
 - Gradient-weight class activation mapping (Grad-CAM)

Dataset

10,222 images

120 classes

Transfer Learning Models

- Two CNN models were used as the primary architectures for this dataset:
 - 1. ResNet50
 - 2. VGG16
- Transfer learning methods were applied by replacing the fully connected section of the pre-trained model with a custom output layer of dense and dropout layers
- Models were tested using:
 - Softmax activation function
 - Categorical cross entropy loss function
 - Learning rate of 0.0001
 - Early stopping and patience

Ensemble Model

- Ensemble learning methods were employed to further improve the validation accuracy
- Adapted a method to extract and combine features from each optimized ResNet50 and VGG16 model
- Objective was to acquire a more diverse range of features in order to better classify the dog breed images

AutoML Models

- Two different AutoML options were explored:
 - 1. AutoKeras (Keras) All model architectures
 - 2. AutoGluon (Amazon) All model architectures
- Compare the benefits and drawback between the two options
 - Fit time
 - Validation accuracy

Deep Learning Model Results

- ResNet50 model
 - \bigcirc Val. accuracy: 62.1% \rightarrow 79.8%
 - Still overfitting
- VGG16 model
 - Val. accuracy: $53.1\% \rightarrow 68.7\%$
 - Slightly underfitting
 - Low accuracy
- Ensemble model
 - Low training accuracy and high validation accuracy (89.3%)
 - Short training time

	Training accuracy (%)	Validation accuracy (%)	Training time (s)
Baseline ResNet50	99.9	62.1	800
Best ResNet50	95.4	79.8	893
Baseline VGG16	99.9	53.1	808
Best VGG16	65.7	68.7	2034
Ensemble	42.6	89.3	14

AutoML Results (AutoKeras)

Model architecture

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 224, 224, 3)]	0
cast_to_float32 (CastToFloa t32)	(None, 224, 224, 3)	0
normalization (Normalization)	(None, 224, 224, 3)	7
random_translation (RandomT ranslation)	(None, 224, 224, 3)	0
random_flip (RandomFlip)	(None, 224, 224, 3)	0
efficientnetb7 (Functional)	(None, None, None, 2560)	64097687
global_average_pooling2d (G lobalAveragePooling2D)	(None, 2560)	0
dense (Dense)	(None, 120)	307320
<pre>classification_head_1 (Soft max)</pre>	(None, 120)	0

Total params: 64,405,014 Trainable params: 64,094,280 Non-trainable params: 310,734

Model	Training accuracy (%)	Validation accuracy (%)	Training time (s)
AutoKeras	97.5	82.9	2604
AutoGluon	85.5	89.9	2083

AutoML Results (AutoGluon)

Model hyperparameters

```
Finished, total runtime is 2080.38 s
{ 'best_config': { 'batch_size': 16,
                   'dist ip addrs': None,
                   'early_stop_baseline': -inf,
                   'early stop max value': inf,
                   'early stop patience': 10,
                   'epochs': 100,
                   'final fit': False,
                   'gpus': [0],
                   'lr': 0.01,
                   'model': 'resnet50',
                   'ngpus per trial': 8,
                   'nthreads_per_trial': 128,
                   'num workers': 4,
                   'searcher': 'random',
                   'seed': 468,
                   'time limits': 7200},
  'total time': 2005.747457742691,
  'train acc': 0.8546385017421603,
  'valid acc': 0.8993157380254154}
```

Model	Training accuracy (%)	Validation accuracy (%)	Training time (s)
AutoKeras	97.5	82.9	2604
AutoGluon	85.5	89.9	2083

Grad-CAM Analysis

- Grad-CAM analysis was used to make the models more interpretable
- Highlights the regions of an image that was deemed important by the model

Challenges

- Goal when training was to optimize the accuracy on the validation set
- Encountered both underfitting and overfitting using transfer learning
- Strategies to tackle underfitting:
 - Adding a dense layer followed by a dropout prior to the activation layer
- Strategies to tackle overfitting:

Layer manipulation – freezing and unfreezing convolutional layers in the

pre-trained model

- Global pooling layers
- Batch normalization layers

Summary

Transfer learning, ensemble, and AutoML models were used to build multiclass image classifiers for a dataset of different dog breed images containing 120 different classes

AutoGluon had a val. accuracy of 89.9% and a test accuracy of 91% on test set

Thank You! Any questions?

Brandon Attai
Tahsin Chowdhury
Kelten Falez
Timothy Mok
Aron Saengchan
Yong Jun Zhu