Calculus Crash Course

HECHEN SHA, SUNI YAO, YUYANG WANG

September 2023

Contents

1	Uct	ober 8 -	- Derivative		
	1.1	Deriva	tive Function		
	1.2				
	1.3				
	1.4	Funda	mental rules of differentiation		
	1.5	Deriva	tive of different functions		
		1.5.1	Derivative of logarithmic functions		
			Derivative of exponential functions		
			Derivative of trigonometric functions		
			Derivative of inverse trigonometric functions		
2	Oct	October 16 - Applications of Derivative			
	2.1				
	2.2				
			Indeterminate Form 0/0		
			Indeterminate Forms ∞/∞ , $\infty \cdot 0$, $\infty - \infty$		
			Extension - Proof of L'Hopital Rule		

§1 October 8 - Derivative

§1.1 Derivative Function

Definition 1.1 (Derivative Function). Gradient function, gradient of the tangent for the original function, of y = f(x) is called its derivative function and is labelled f'(x) or $\frac{dy}{dx}$

Exercise 1.2. What is the derivative function of y = 3 and y = 2x?

§1.2 First principle

Question 1.3. What is the gradient of a line if A (a, f(a)) and B (a+h, f(a+h)) are on the line?

Claim 1.4 — When A and B gets infinitely close, the gradient is the gradient of the tangent for y = f(x) where x = a.

Definition 1.5 (First principle). The derivative function is defined as: $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$

Exercise 1.6. Compute y = 2x, $y = 3x^2$ using first principle.

Exercise 1.7. Prove that $\frac{d}{dx}x^n = nx^{n-1}$ using first principle.

Exercise 1.8. Prove that if f(x) = cu(x), then f'(x) = cu'(x) using first principle.

Exercise 1.9. Prove that if f(x) = u(x) + v(x), then f'(x) = u'(x) + v'(x) using first principle.

§1.3 Differentiability

Definition 1.10. If the limit $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$ exists, f(x) is differentiable at x=a.

Claim 1.11 — If f is differentiable at x = a, then f is also continuous at x = a.

Proof.

$$\lim_{h \to 0} f(a+h) - f(a)$$

$$= \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \times h$$

$$= \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \times \lim_{h \to 0} h \qquad \text{{by the limit laws, since both limits exist}}$$

$$= f'(a) \times 0$$

$$= 0$$

Therefore, $\lim_{h\to 0} f(a+h) = f(a)$

Letting x = a + h, this is equivalent to $\lim_{x \to a} f(x) = f(a)$.

Therefore, f is continuous at x = a.

So we can conclude the way to test for differentiability:

Proposition 1.12 (Test for Differentiability)

A function f with domain D is **differentiable at** $x = a, a \in D$, if:

- 1. f is continuous at x = a, and
- 2. $f'_{-}(a) = \lim_{h \to 0^{-}} \frac{f(a+h) f(a)}{h}$ and $f'_{+}(a) = \lim_{h \to 0^{+}} \frac{f(a+h) f(a)}{h}$ both exist and are equal.

§1.4 Fundamental rules of differentiation

We have learned from former exercise that if f(x) = cu(x), then f'(x) = cu'(x), and if f(x) = u(x) + v(x), then f'(x) = u'(x) + v'(x).

Then we can start thinking about the f'(x) when f(x) = u(x)v(x) or $f(x) = \frac{u(x)}{v(x)}$. Try to deduce the formula by using first principle.

Theorem 1.13 (The Product Rule)

If f(x) = u(x)v(x), then f'(x) = u'(x)v(x) + u(x)v'(x). Alternatively, if y = uv where u and v are functions of x, then

$$\frac{dy}{dx} = u'v + uv' = \frac{du}{dx}v + u\frac{dv}{dx}$$

Theorem 1.14 (The Quotient Rule)

If $Q(x) = \frac{u(x)}{v(x)}$, then $Q'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{[v(x)]^2}$. Alternatively, if $y = \frac{u}{v}$ where u and v are functions of x, then

$$\frac{dy}{dx} = \frac{u'v - uv'}{v^2} = \frac{\frac{du}{dx}v - u\frac{dv}{dx}}{v^2}$$

The rules about calculations between simple functions are all listed and the next and maybe the most important rule is the chain rule.

Definition 1.15 (Chain rule). Version 1: If y = g(u) where u = f(x), then $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$

Version 2: If h(x) = f(g(x)), then h'(x) = f'(g(x))g'(x)

Proof.

$$\frac{dy}{du} = \lim_{\delta x \to 0} \frac{\delta y}{\delta u} \frac{\delta u}{\delta x}$$

$$= \left(\lim_{\delta x \to 0} \frac{\delta y}{\delta u}\right) \left(\lim_{\delta x \to 0} \frac{\delta u}{\delta x}\right)$$

$$= \left(\lim_{\delta u \to 0} \frac{\delta y}{\delta u}\right) \left(\lim_{\delta x \to 0} \frac{\delta u}{\delta x}\right)$$

$$= \frac{dy}{du} \frac{du}{dx}$$

§1.5 Derivative of different functions

§1.5.1 Derivative of logarithmic functions

Exercise 1.16. Prove that $(\log_a(x))' = \frac{1}{x \ln a}$ by using first principle.

Proof.

$$(\log_{a}(x))' = \lim_{\delta x \to 0} \frac{\log_{a}(x + \delta x) - \log_{a}(x)}{\delta x}$$

$$= \lim_{\delta x \to 0} \frac{\log_{a}(\frac{x + \delta x}{x})}{\delta x}$$

$$= \lim_{\delta x \to 0} \frac{\log_{a}(1 + \frac{\delta x}{x})}{x} \cdot \frac{x}{\delta x}$$

$$= \lim_{\delta x \to 0} \frac{\log_{a}(1 + \frac{\delta x}{x})}{x}$$

$$= \lim_{\delta x \to 0} \frac{\log_{a}(1 + \frac{\delta x}{x})}{x}$$

$$= \frac{\log_{a}(e)}{x}$$

$$= \frac{1}{x \cdot \ln a}$$

Exercise 1.17. Show that $(\ln f(x))' = \frac{f'(x)}{f(x)}$

§1.5.2 Derivative of exponential functions

Exercise 1.18. Using $x = \ln e^x$, find $(e^x)'$

Exercise 1.19. Show that $(a^x)' = \ln a \cdot a^x$

Exercise 1.20. Compute $(x^x)'$

§1.5.3 Derivative of trigonometric functions

Exercise 1.21. Show that $(\sin x)' = \cos x$, $(\cos x)' = -\sin x$

Proof.

$$(\sin x)' = \lim_{\delta x \to 0} \frac{\sin(x + \delta x) - \sin x}{\delta x}$$

$$= \lim_{\delta x \to 0} \frac{\sin x \cos \delta x + \sin \delta x \cos x - \sin x}{\delta x}$$

$$= \cos x$$

$$(\cos x)' = \lim_{\delta x \to 0} \frac{\cos(x + \delta x) - \cos x}{\delta x}$$

$$= \lim_{\delta x \to 0} \frac{\cos x \cos \delta x - \sin \delta x \sin x - \cos x}{\delta x}$$

$$= -\sin x$$

Try to prove the following derivatives by using product rule and quotient rule:

$$(\sin x)' = \cos x$$
$$(\cos x)' = -\sin x$$
$$(\tan x)' = \sec^2 x$$
$$(\cot x)' = -\csc^2 x$$
$$(\sec x)' = \tan x \cdot \sec x$$
$$(\csc x)' = -\cot x \cdot \csc x$$

Proof.

$$(\tan x)' = \left(\frac{\sin x}{\cos x}\right)'$$

$$= \frac{(\sin x)' \cos x - (\cos x)' \sin x}{\cos^2 x}$$

$$= \frac{\cos^2 x + \sin^2 x}{\cos^2 x}$$

$$= \sec^2 x$$

§1.5.4 Derivative of inverse trigonometric functions

Exercise 1.22. Show that $(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$, $(\arccos x)' = \frac{-1}{\sqrt{1-x^2}}$, $(\arctan x)' = \frac{1}{1+x^2}$

Proof.

$$y = \arcsin x, x = \sin y$$

$$\frac{dx}{dy} = \cos y$$

$$\frac{dy}{dx} = \frac{1}{\cos y}$$

$$= \frac{1}{\sqrt{1 - \sin y^2}}$$

$$= \frac{1}{\sqrt{1 - x^2}}$$

§2 October 16 - Applications of Derivative

§2.1 Sketching Graph by Derivative

Definition 2.1. Suppose S is an interval in the domain of f(x) such that f(x) is defined for all x in S

- f(x) is increasing on $S \longleftrightarrow f(a) \le f(b)$ for all $a, b \in S$ and $a < b \longleftrightarrow f'(x) \ge 0$
- f(x) is decreasing on $S \longleftrightarrow f(a) \ge f(b)$ for all $a, b \in S$ and $a < b \longleftrightarrow f'(x) \le 0$

Example 2.2

Prove that lnx is an increasing function when x > 0Traditional Way:

$$\forall x_1 > x_2 > 0
f(x_1) - f(x_2) = lnx_1 - lnx_2 = ln\frac{x_1}{x_2} > 0
\therefore f(x_1) > f(x_2)$$

 $\therefore lnx$ is an increasing function when x > 0

Using Derivative:

$$(lnx)' = 1/x$$
$$\therefore x > 0 \therefore 1/x > 0$$

 $\therefore lnx$ is an increasing function when x > 0

Theorem 2.3 (Fermat's Theorem)

If f has a local maximum or minimum at c, and if f'(c) exists, then f'(c) = 0.

Example 2.4

Find the maximum and minimum value of sinx + cos2xTraditional way:

$$\sin x + \cos 2x = \sin x + (1 - 2\sin^2 x) = -2\sin^2 x + \sin x + 1 = -2(\sin x - \frac{1}{4})^2 + \frac{9}{8}$$

$$\therefore -1 \le \sin x \le 1$$

$$\therefore -2 \le -2(\sin x - \frac{1}{4})^2 + \frac{9}{8} \le \frac{9}{8}$$

Using Derivative:

$$(\sin x + \cos 2x)' = \cos x - 2\sin 2x$$

The original function f(x) reaches its maximum when $(\sin x + \cos 2x)' = 0$, solving the equation and we can get $\sin x = \frac{1}{4}$, $\cos 2x = 1 - 2 \times \frac{1}{4}^2 = \frac{7}{8}$ or $\cos x = 0$, $x = \pi/2 + k\pi(k \in \mathbb{Z})$. Therefore, the maximum of function is $\frac{9}{8}$ while the minimum of function is -2.

Figure 1: $\sin x + \cos 2x$

Definition 2.5. The second derivative, or the second-order derivative, of a function f is the derivative of the derivative of f. It can be written as:

$$\frac{d^2y}{dx^2} = f''(x)$$

Definition 2.6. If the graph of lies above all of its tangents on an interval, then it is called **concave upward** on (f''(x) > 0). If the graph of lies below all of its tangents on I, it is called **concave downward on** (f''(x) < 0).

This is because f''(x) represents rate of change of f'(x), namely the slope of a function.

Figure 2: Example of how rate of change of slope effect function's shape

Definition 2.7. A point P on a curve f(x) is called **an inflection point** if f(x) is continuous there, the curve changes from concave upward to concave downward or from concave downward to concave upward at P(f'' = 0).

Remark 2.8. Are the gradient of a function at an inflection point necessarily equal to 0? The answer is NO. There is no relationship between y'' = 0 and y' = 0.

Theorem 2.9 (The Second Derivative Test)

For f(x) continuous near a:

If f'(a) = 0 and f''(a) > 0, f(x) has a local minimum at a.

If f'(a) = 0 and f''(a) < 0, f(x) has a local maximum at a.

Figure 3: Example of the second derivative test

Now we can sketch almost all elementary functions. Let's try!

Exercise 2.10. Sketch the graph of $y = x^4 - 3x^3 + 1$.

$$y' = 4x^3 - 9x^2$$
, when $y' = 0, x = 0$ or $\frac{9}{4}$,
 $y'' = 12x^2 - 18x$, when $y' = 0, x = 0$ or $\frac{3}{2}$.

Exercise 2.11. Sketch the graph of $y = \frac{x^2}{\sqrt{x+1}}$

Exercise 2.12. Sketch the graph of $y = \sin(2x) + \cos(x)$

Answers are in the shared GeoGebra File.

§2.2 Indeterminate Forms and L' Hopital Rule

§2.2.1 Indeterminate Form 0/0

Theorem 2.13 (L' Hopital^a Rule)

Suppose that f(a) = g(a) = 0, that f and g are differentiable on an open interval I containing a, and that $g'(x) \neq 0$ on I if $x \neq a$. Then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

assuming that the limit on the right side of this equation exists.

§2.2.2 Indeterminate Forms ∞/∞ , $\infty \cdot 0$, $\infty - \infty$

Sometimes when we try to evaluate a limit as $x \to a$ by substituting x = a we get an indeterminate form like $\infty/\infty, \infty \cdot 0, \infty - \infty$ instead of 0/0. We first consider the form ∞/∞ .

When we are trying to calculate $\lim_{x\to a} f(x)/g(x)$ while $f(x)\to\pm\infty$ and $g(x)\to\pm\infty$ as $x\to a$, then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{\frac{1}{g(x)}}{\frac{1}{f(x)}}$$

and since $f(x) \to \pm \infty$ and $g(x) \to \pm \infty$ as $x \to a$, $1/f(x) \to 0$ and $1/g(x) \to 0$, therefore, we can apply L'Hopital Rule to it.

Similarly, for the $0 \cdot \infty$ case, just transform the ∞ to 1/0 and therefore, the $0 \cdot \infty$ indeterminate case turns into 0/0 form.

For the $\infty - \infty$ case, turn f(x) - g(x) into fractional form, an example here will be more clear:

Example 2.14

Find the limit of this $\infty - \infty$ form:

$$\lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{x} \right)$$

^aL' Hopital should be pronounced as *lowpeetal* as its original pronunciation in French.

Solution.

$$\lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{x} \right) = \lim_{x \to 0} \frac{x - \sin x}{x \sin x}$$

$$= \lim_{x \to 0} \frac{(x - \sin x)'}{(x \sin x)'}$$

$$= \lim_{x \to 0} \frac{1 - \cos x}{\sin x + x \cos x}$$

$$= \lim_{x \to 0} \frac{\sin x}{2 \cos x - x \sin x} = \frac{0}{2} = 0.$$
Still $\frac{0}{0}$

§2.2.3 Extension - Proof of L'Hopital Rule

Theorem 2.15 (The Rolle's Theorem)

Suppose that y = f(x) is continuous over the closed interval [a, b] and differentiable at every point of its interior (a, b). If f(a) = f(b), then there is at least one number c in (a, b) at which f'(c) = 0.

Proof. This is intuitively easy and is related to the local/global minima/maxima and interior points. Can you sketch a proof for it by yourself? This is left as an exercise for reader. \Box

Theorem 2.16 (The Mean Value Theorem)

Suppose y = f(x) is continuous over a closed interval [a,b] and differentiable on the interval's interior (a,b). Then there is at least one point c in (a,b) at which

$$\frac{f(b)-f(a)}{b-a}=f'(c).$$

Proof. We picture the graph of f and draw a line through the points A(a, f(a)) and B(b, f(b)). The secant line can be expressed by

$$g(x) = f(a) + \frac{f(b) - f(a)}{b - a}(x - a)$$

with point-slope equation. The vertical difference between the graphs of f and g at x is

$$h(x) = f(x) - g(x)$$

$$= f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a)$$

According to Rolle's Theorem, we know that there must exist at least one point c such that h'(c) = 0. We differentiate both sides of the equation with respect to x and set x = c:

$$h'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}$$

$$h'(c) = f'(c) - \frac{f(b) - f(a)}{b - a}$$

$$0 = f'(c) - \frac{f(b) - f(a)}{b - a}$$

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

and therefore we are done.

9

Figure 4: The secant AB is the graph of the function g(x). The function h(x) = f(x) - g(x) gives the vertical distance between the graphs of f and g at x.

Theorem 2.17 (L' Hopital Rule)

Suppose that f(a) = g(a) = 0, that f and g are differentiable on an open interval I containing a, and that $g'(x) \neq 0$ on I if $x \neq a$. Then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

assuming that the limit on the right side of this equation exists.

Proof. We first establish the limit equation for the case $x \to a^+$. The method needs almost no change to apply to $x \to a^-$, and the combination of these two cases establishes the result.

Suppose that x lies to the right of a. Then $g'(x) \neq 0$, and we can apply Cauchy's Mean Value Theorem to the closed interval from a to x. This step produces a number c between a and x such that

$$\frac{f'(c)}{g'(c)} = \frac{f(x) - f(a)}{g(x) - g(a)}$$

But f(a) = q(a) = 0, so

$$\frac{f'(c)}{g'(c)} = \frac{f(x)}{g(x)}.$$

As x approaches a, c approaches a because it always lies between a and x. Therefore,

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = \lim_{c \to a^+} \frac{f'(c)}{g'(c)} = \lim_{x \to a^+} \frac{f'(x)}{g'(x)}$$

which establishes L'Hopital's Rule for the case where x approaches a from above. The case where x approaches a from below is proved by applying Cauchy's Mean Value Theorem to the closed interval [x, a], x < a.