Clustering (Instruction manual)

CIS 400/600 Fundamentals of Data and Knowledge

Mining

	<pre>> install.packages("clustertend") > library(clustertend)</pre>
2.	Reading WINE dataset and performing Hopkins Statistic with 10% sample
	<pre>> wine <- read.csv("wines.csv") > hopkins(wine, 0.1 * nrow(wine))</pre>
3.	Shuffle data as follows
	> wine <- wine[sample(nrow(wine)),]

Attributes under kmeans() method can be explored using

> attribute(kmeans_5)

Some of these attributes include

> kmeans_5 <- kmeans(wine, 5)</pre>

- (a) cluster
- (b) centers

- (c) totss
- (d) tot.withinss
- 5. Printing confusion matrix for K-Means clustering with K=5 is as follows

```
> table(wine[,1], kmeans_5$cluster)
```

6. Hierarchical clustering with **Euclidean distance** as distance metric and **Single - Link** as cluster proximity measure

```
> d <- dist(wine_stand, method = "euclidean")
> hier <- hclust(d, method = "single")</pre>
```

Plotting dendrogram and cutting it to 4 clusters is as follows

```
> plot(hier)
```

- > clusters <- cutree(hier, k = 4)
- > rect.hclust(hier, k = 4, border = "red")

Printing confusion matrix for hierarchical clustering

> table(wine[,1], clusters)