CSE 546 Homework #0 -B

Lu Yu

Spring 2020

Probability and Statistics

B.1 [1 points] Let $X_1, ..., X_n$ be n independent and identically distributed random variables drawn unfiromly at random from [0,1]. If $Y = \max\{X_1, ..., X_n\}$ then find $\mathbb{E}[Y]$. $X \sim uniform(0,1)$

Given any $u \in (0, 1)$,

$$F_U(u) = P(U \le u) = P(\max\{X_1, X_2, \dots, X_n\} \le u) = P(X_1 \le u)P(X_2 \le u)\dots P(X_n \le u) = u^n$$

$$f_U(u) = [F_U(u)]' = nu^{n-1}$$

$$E(U) = \int_0^1 u f_U(u) du = \int_0^1 nu^n du = \frac{n}{n+1}$$

So, $\mathbb{E}[Y_n] = \frac{n}{n+1}$.

Linear Algebra and Vector Calculus

B.2 [1 points] The trace of a matrix is the sum of the diagonal entries; $Tr(A) = \sum_i A_{ii}$. If $A \in \mathbb{R}^{n \times m}$ and $B \in \mathbb{R}^{m \times n}$, show that Tr(AB) = Tr(BA).

Notice that AB is a $n \times n$ matrix, BA is a $m \times m$ matrix. $A = (a_{ij})$, and $B = (b_{ij})$.

$$(AB)_{ii} = \sum_{j=1}^{m} a_{ij}b_{ji}$$

$$Tr(AB) = \sum_{i=1}^{n} (AB)_{ii} = \sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij}b_{ji}$$

$$(BA)_{ii} = \sum_{j=1}^{n} a_{ij}b_{ji}$$

$$Tr(BA) = \sum_{i=1}^{m} (BA)_{ii} = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}b_{ji}$$

So, Tr(AB) = Tr(BA)

B.3 [1 points] Let v_1, \ldots, v_n be a set of non-zero vectors in \mathbb{R}^d . Let $V = [v_1, \ldots, v_n]$ be the vectors concatenated.

a. What is the minimum and maximum rank of $\sum_{i=1}^{n} v_i v_i^T$?

$$v_{i} = \begin{bmatrix} v_{i1} & v_{i2} & \dots & v_{id} \end{bmatrix}$$

$$\sum_{i=1}^{n} v_{i} v_{i}^{T} = \begin{bmatrix} \sum_{i=1}^{n} v_{i1} v_{i1} & \sum_{i=1}^{n} v_{i1} v_{i2} & \dots & \sum_{i=1}^{n} v_{i1} v_{id} \\ \sum_{i=1}^{n} v_{i2} v_{i1} & \sum_{i=1}^{n} v_{i2} v_{i2} & \dots & \sum_{i=1}^{n} v_{i2} v_{id} \\ \dots & \dots & \dots & \dots \\ \sum_{i=1}^{n} v_{id} v_{i1} & \sum_{i=1}^{n} v_{id} v_{i2} & \dots & \sum_{i=1}^{n} v_{id} v_{id} \end{bmatrix}$$

If all vectors are equal, the rank will be 1 which is the minimum rank. If all vectors are linearly independent, then the maximum rank is min(n, d).

- b. What is the minimum and maximum rank of V?

 V is a $d \times n$ matrix, same to part a, if all vectors are equal, the rank will be 1 which is the minimum rank. While if all vectors are linearly independent, then the maximum rank is min(n, d).
- c. Let $A \in \mathbb{R}^{D \times d}$ for D > d. What is the minimum and maximum rank of $\sum_{i=1}^{n} (Av_i)(Av_i)^T$? $(Av_i)(Av_i)^T$ is a $D \times D$ matrix. If A is a zero matrix, the rank will be 0 which is the minimum rank. While if all vectors in matrix are linearly independent, then the maximum rank is D.
- d. What is the minimum and maximum rank of AV? What if V is rank d? A is a $D \times d$ matrix, V is a $d \times n$ matrix, AV is a $D \times n$ matrix.

$$rank(AV) \le min(rank(A), rank(V)) = min(D, n, d) = min(d, n)$$

If A is a zero matrix, the rank will be 0 which is the minimum rank. While if all vectors in matrix are linearly independent, then the maximum rank is min(D, n, d).

If rank(V) = d, then n > d. The minimum keeps the same. The maximum will be min(D, d) = d.