RAPPORT ELECTRONIQUE VI Les filtres analogiques

30 mars 2024

Nicolas Oscar - Mohamed Ali Irshad JUNIA ISEN Lille T1 CIR 1

Table des matières

1	Introdu	iction & I	Matériel Utilisé	2						
2	La dio	de		3						
3	Pont de	e Wheatst	one	5						
4	Redres	seurs de t	ension	7						
	4.1	Préparat	ion	7						
	4.2	Redress	eur mono-alternance	9						
	4.3	Redresseur double-alternance								
		4.3.1	Filtrage simple	. 1						
		4.3.2	Filtrage double	4						
5	Conclu	ision		7						

1 Introduction & Matériel Utilisé

Le but de ce T.P. était d'étudier le fonctionnement d'une diode. Ce composant peut être utilisé dans le redressement de tensions alternatives et la commutation d'alimentation.

Voic la liste du matériel que nous avons utilisé pour ce T.P.:
— 1 alimentation double
— 1 générateur basse fréquence (GBF)
— 1 oscilloscope + 2 sondes
— 1 potentiomètre
— 1 diode 1N4148

— Résistances et condensateurs divers

2. LA DIODE 3

2 La diode

FIGURE 1 – Schéma d'un montage avec une diode, une résistance $R=270\Omega$ et un GBF.

Nous avons réalisé le montage précédent et avons ensuite mesuré la tension aux bornes de la diode, de la résistance et avons estimer en conséquence le courant du circuit en variant la tension d'entrée. Nous avons obtenu les résultats suivants :

<i>E</i> (V)	-5	-4	-3	-2	-1	0	1	2	3	4	5
V_D (V)	-5	-4	-3	-2	-1	0	0.63	0.69	0.72	0.74	0.77
V_R (V)	0	0	0	0	0	0	0.37	1.34	2.22	3.22	4.2
I (mA)	0	0	0	0	0	0	1.3	4.6	8.13	11.9	15.49

Table 1 - Tableau correspondant aux mesures de la figure 1.

2. LA DIODE 4

Voici ensuite la courbe représentant l'intensité du courant I en fonction de la tension V_D :

FIGURE 2 – Courbe représentant l'intensité du courant I en fonction de la tension V_D .

Nous pouvons distinguer deux états distincts qui sont :

- Si la tension est négative, alors le courant est nul donc la diode est dite "bloquante"
- Si la tension est positive, alors le courant est non nul donc la diode est dite "passante"

La résistance dans ce circuit permet de simuler la résistance de la diode lorsque la tension est négative et que la diode soit "bloquante".

3 Pont de Wheatstone

★ Rappel : - Une diode peut être modélisé de la manière suivante :

FIGURE 3 - Modélisation d'une diode.

- Sur les ponts de Wheatstone :

$$U_{AB} = 0V \text{ si } (R_1 + R_2 + xR_p)(R_4 + R_D) = R_3R_5$$

FIGURE 4 – Schéma d'un montage avec $E_2=0V$, $R_1=100\Omega$, $R_2=820\Omega$, $R_3=150\Omega$, $R_4=47\Omega$ et $R_5=470\Omega$.

Dans le cas d'une diode idéale, R_D et V_{th} sont nulles, mais cela n'est pas le cas pour un composant réel. Le but de cet exercice était de déterminer les valeurs R_D et V_{th} des diodes disponibles en salle de TP.

Nous avons reproduis le montage de la figure 4, avons réglé le potentiomètre pour obtenir une tension de $U_{AB} = 0V$ et avons ensuite, sans dérégler le potentiomètre, placé la diode et réglé le générateur $E_1 = 7V$ et $E_2 = 0.69$ pour avoir une tension $U_C = 0V$.

Le but d'une tel manipulation est de déterminer la valeur de la résistance du potentiomètre sans la connaître par équilibrage des deux branches du circuit, En effet lorsque $U > V_{th}$ la diode se comporte comme un générateur. On règle donc le générateur E_2 de manière à ce qu'il compense la tension V_{th} afin de calculer R_D . Voici un schéma l'expliquant :

Ensuite, et ce sans déréglé V_2 , nous avons réglé la valeur $E_1 = 10V$ et réglé de nouveau le potentiomètre pour obtenir une tension $U_{AB} = 0V$:

$$(R_1 + R_2 + xR_p)(R_4 + R_D) = R_3R_5$$

$$\leftrightarrow R_4 + R_D = \frac{R_3R_5}{R_1 + R_2 + xR_p}$$

$$\leftrightarrow R_D = \frac{R_3R_5 - R_4(R_1 + R_2 + xR_p)}{R_1 + R_2 + xR_p}$$

$$\leftrightarrow R_D = \frac{150 * 470 - 47(100 + 820 + 500)}{100 + 820 + 500}$$

$$\leftrightarrow R_D \approx 2.64\Omega$$

Nous pouvons en déduire que la valeur de R_D d'environ 2.64 Ω .

4 Redresseurs de tension

4.1 Préparation

Figure 5 - Redresseur de tension

★ Rappel:

$$\overline{V_{eff} = \sqrt{2} * V_{max} V_{max} = \frac{V_{pp}}{4} V_{moy} = \frac{V_{max}}{2\pi}}$$

Voici l'allure des composants U_1 , U_2 , I_1 et I_2 , sachant que $R = 1k\Omega$ et $V_{PP} = 5V$:

FIGURE 6 – Allure de U_1 et I_1

Figure 7 – Allure de U_2 et I_2

Calculons ensuite les valeurs moyennes et efficaces de U_1 et U_2 :

$$Vpp = 5V$$

$$V_{moy1} = \frac{V_{max1}}{2\pi} \simeq 0.39V$$

$$V_{eff1} = \frac{V_{max1}}{\sqrt{2}} = 0.884V$$

$$V_{max2} = 2V_{moy1} \simeq 0.78V$$

$$V_{eff2} = \sqrt{2} * 1.25 = 0.884V$$

La valeur moyenne de U_1 est de 0.39V et la valeur efficace est de 0.884V. Pour U_2 , la valeur moyenne est de 0.78V et la valeur efficace est de 0.884V.

4.2 Redresseur mono-alternance

Nous avons réalisé le premier circuit et avons mesuré la tension aux bornes de la résistance R appelée U_1 . Voici l'oscillogramme correspondant :

Figure 8 – Oscillogramme de la tension U_1 avec $R = 1K\Omega$.

Nous pouvons voir sur la capture d'écran précédente que la tension moyenne est de 869.29 mV et la tension efficace est de 500.92 mV. Nous avons donc des résultats proches de ceux calculés précédemment.

Ensuite, nous avons ajouté un condensateur de $1\mu F$ en parallèle de la résistance R et avons mesuré la tension aux bornes de ce dernier. Voici l'oscillogramme correspondant :

FIGURE 9 – Oscillogramme de la tension U_1 avec $R = 1k\Omega$ et $C = 1\mu F$.

Nous pouvons déduire de la courbe précédente que des sortes de pics se forment, ce qui est dû au condensateur qui se charge et se décharge.

Après quoi, nous avons modifié la résistance pour une résistance de $10k\Omega$ et avons mesuré la tension aux bornes de la résistance. Voici l'oscillogramme correspondant :

FIGURE 10 – Oscillogramme de la tension U_1 avec $R = 10k\Omega$ et $C = 1\mu F$.

4.3 Redresseur double-alternance

4.3.1 Filtrage simple

FIGURE 11 - Filtrage simple

Nous avons reproduis le circuit précédent sur LTSPICE, voici son rendu :

FIGURE 12 - Filtrage simple sur LTSPICE

Ensuite, nous représenté l'allure de la tension aux bornes de R_1 sur 10ms avec différentes valeurs de R_1 : $10k\Omega$; $5.6k\Omega$; $2.2k\Omega$; $1k\Omega$; 560Ω ; 220Ω ; 100Ω , que voici :

FIGURE 13 – $R = 10k\Omega$

FIGURE 14 – $R = 5.6k\Omega$

FIGURE 15 – $R = 2.2k\Omega$

FIGURE 16 – $R = 1k\Omega$

FIGURE 17 – $R = 560\Omega$

Figure 18 – $R = 220\Omega$

Figure 19 – $R = 100\Omega$

Nous pouvons en conclure que lorsque R_1 diminue, le signal oscille de plus en plus et la tension maximale diminue.

4.3.2 Filtrage double

FIGURE 20 - Filtrage double

Nous avons reproduis le circuit précédent sur LTSPICE, voici son rendu :

FIGURE 21 - Filtrage double sur LTSPICE

Ensuite, nous représenté l'allure de la tension aux bornes de R_1 sur 10ms avec différentes valeurs de R_1 : $10k\Omega$; $5.6k\Omega$; $2.2k\Omega$; $1k\Omega$; 560Ω ; 220Ω ; 100Ω , que voici :

FIGURE 22 – $R = 10k\Omega$

FIGURE 23 – $R = 5.6k\Omega$

FIGURE 24 – $R = 2.2k\Omega$

FIGURE 25 – $R = 1k\Omega$

FIGURE 26 – $R = 560\Omega$

FIGURE 27 – $R = 220\Omega$

Nous pouvons voir que le signal est meilleur qu'avant : cela est dû au fait que le filtrage double est plus efficace que le filtrage simple, avec les deux condensateurs en parallèle. Cependant, le principal inconveniant de ce montage est que le signal est déphasé de $\frac{\pi}{2}$, ce qui peut poser problème dans certaines applications. De plus, il est nécessaire d'avoir un composants suplémentaire.

5. CONCLUSION 17

5 Conclusion

Pour conclure ce TP final, nous avons réutilisé différentes notions vues dans les TP précédents en les appliquant avec les diodes. Le côté pratique avec les différents montage réalisés, ainsi que l'utilisation à nouveau de LTSpice. Encore une fois, côté LaTex, nous avons pu nous améliorer pour tracer des courbes et pour mieux structurer notre rapport.

Enfin, je pense que cette deuxième année de TP nous a permis d'avoir une meilleure démarche scientifique lors d'expériences et sommes désormais prêts pour des réalisations plus complexes.