Graph coloring Approches complètes et incomplètes

CONRAD Chloé & LEFEBVRE Julien

Plan

01

Rappel du problème 02

Approche complète: CSP

03

Approche incomplète: DSatur

01 - Rappel du problème

→ Définition

Entrée:

Un graphe G(V, E) où V est
 l'ensemble des sommets et E est
 l'ensemble des arêtes.

Sortie:

 Une fonction c qui associe une couleur à chaque noeud du graph tel que deux sommets reliés par une arête ne soient pas de la même couleur.

01 - Rappel du problème

- → Benchmark
 - 76 graphes
 - Spécifique au problème de la coloration de graphe
 - De 11 à 1 000 sommets et de 22
 à 898 898 arêtes
- → Choco-Solver
 - Solveur open-source en java dédié à la programmation par contraintes
 - Solveur paramétrable

02 - CSP

Variables:

- Sommets représentés par des entiers

Contraintes:

- Liens représentés par une contrainte sur les sommets

Objectif:

- Nombre minimal de couleurs

Heuristiques:

- domOverWDeg
- FirstFail

02 - CSP

→ Résultats

	Nombre de sommets	Nombre de liens	Nombre de couleurs	Temps (ms)
miles1500	128	10 396	73	6
school1_nsh	352	14 612	23	8
DSJR500.1c	500	242 550	94	68
DSJC1000.9	1000	898 898	303	328

02 - CSP avec heuristique

	domOve	rWDeg	First	ail
	Nombre de couleurs	Temps (ms)	Nombre de couleurs	Temps (ms)
miles1500	73	6	73	10
school1_nsh	23	8	27	13
DSJR500.1c	94	68	92	213
DSJC1000.9	303	328	307	391

02 - CSP avec heuristique

	Sans minimisation			Avec minimisation				
	domOverWDeg		FirstFail		domOverWDeg		FirstFail	
	Nombre de couleurs	Temps (ms)	Nombre de couleurs	Temps (ms)	Nombre de couleurs	Temps (ms)	Nombre de couleurs	Temps (ms)
miles1500	73	6	73	10	73	392	73	75
school1_nsh	23	8	27	13	17	14299	25	2820
DSJR500.1c	94	68	92	213	94	537	92	308
DSJC1000.9	303	328	307	391	301	4965	305	5977

- → Présentation et implémentation
 - Coloration gloutonne séquentielle par heuristique
 - DSATUR : Degree saturation
 - Algorithme:
 - 1. Ordonner les sommets par degré
 - Attribuer la plus petite couleur au sommet de plus grand degré
 - 3. Choisir le sommet avec le plus grand DSat
 - 4. Colorier ce sommet avec la plus petite couleur possible
 - 5. Répéter les étapes 3 et 4 jusqu'à ce que tous les sommets soient coloriés

Sommet	Degré
4	4
1	3
2	2
3	2
6	2
5	1

Couleurs:

Sommet	Degré
1	3
2	2
3	2
6	2
5	1

Sommet	DSatur
1	1
2	1
5	1
6	1
3	0

Couleurs: (1)(2

Sommet	Degré
2	2
3	2
6	2
5	1

Sommet	DSatur
2	2
5	1
6	1
3	1

Couleurs: 1 2 3

Sommet	Degré
3	2
6	2
5	1

Sommet	DSatur
5	1
6	1
3	1

Couleurs: (1)(2)(3)

Sommet	Degré
6	2
5	1

Sommet	DSatur
5	1
6	1

Couleurs: (1)(2)(3)

Sommet	Degré
5	1

Sommet	DSatur
5	1

Couleurs: 1 2 3

→ Résultat

	domOverWDeg		FirstFail		DSATUR	
	Nombre de couleurs	Temps (ms)	Nombre de couleurs	Temps (ms)	Nombre de couleurs	Temps (ms)
miles1500	73	392	73	75	73	174
school1_nsh	17	14299	25	2820	18	238
DSJR500.1c	94	537	92	308	92	4116
DSJC1000.9	301	4965	305	5977	316	71049