

Szenariospezifikation

Karlsruhe, Juli 2008

Beispiele für Schwarmroboter

- Simulative Lösungen:
 - 2-dimensionale, rechteckige Gridwelten
 - Populär in Forschung zu Multiagenten und Reinforcement Learning
- Betrachtete Szenarien:
 - Navigationsprobleme
 - Navigationsprobleme plus Observations- oder Suchaufgabe
 - Finden/Suchen von Objekten in der Umgebung
 - Erfassen/Bewältigen: Ernteaufgaben, Säubern von Flächen
 - Erkundungsaufgaben
 - Multi-target observation
 - Object transportation (collaboration)
 - Teamsport, Roboterfußball
 - Attack and pursuit (predator and prey)

Auswahl an Forschungsprojekten (1/2)

- EU-Projekt Intelligent Robot Swarm for Attendance, Recognition, Cleaning and Delivery (IWARD) → Elektronische Krankenschwester
 - Im Notfall Krankenschwester oder Arzt rufen
 - Besucher führen
 - Krankenzimmer sauber halten
- University of Nebraska, Lincolm: Schwarmroboter auf Autobahnbaustellen, automatische Absperrung mit Pylonen
- IPVS Universität Stuttgart: Jasmine Roboterschwarm
- EU-Iridia-Projekt: Swarm-Bots
- EU-Projekt Elimination Units for Maritime Oil Pollutions (EU-MOP)
 - Abwurf durch Flugzeug über Unglücksstelle
 - Ortung und Kettenbildung um Ölteppich
- Logistik/selbstständige Container

Auswahl an Forschungsprojekten (2/2)

- Humanitäre Hilfe: Ortung von Lawinen- und Erbebenopfern, von Minen oder von unerforschten Gebieten
- Produktion: Prüf- und Messaufgaben auf Bauteilen
- TETWalker, NASA-ANTS-Projekt
- EU-Projekt Symbrion (Symbiotic Evolutionary Robot Organisms)
- Roboterschwärme im Körper
- Mobile Informationssäulen (EXPO 2000)

Observationsszenario

- Annahme der Ressourcenbeschränkung
- Begrenzte Anzahl von Robotern, die in einem Gebiet ein bestimmtes Objekt verfolgen (das sich schneller bewegt, als sie selbst) oder den roten Punkt einfangen (Sonderfall?).
 - Grid-basierte Simulationsmgebung
 - Roboter (→ grüne Punkte) verfolgen das Zielobjekt.
 - Zielobjekt (→ roter Punkt) ist beweglich und weicht den Robotern aus.
- Ziel: Selbstorganisierende Positionierung der Roboter auf dem Feld zur optimalen Verfolgung des Zielobjektes.
- Aufgabe: Selbsttätiges Erlernen einer optimalen Verhaltensstrategie zur Positionierung und zur dynamischen Navigation der Roboter.

Robotereigenschaften

- Geschwindigkeit: Eine Zelle pro Tick (Zielobjekt: 2 Zellen pro Tick)
- Sichtbeschränkung für alle ist begrenzt auf die Nachbarschaft.
- Kommunikation mit den Robotern in der Nachbarschaft ist möglich.
- Fähigkeit: Aufnahme eines Objektes in der Nachbarschaft mit einer Kamera
- Lokales Ziel: Das Zielobjekt so lange wie möglich aufnehmen/verfolgen.
- 6. GPS- oder Positionsdaten des Zielobjektes sind bekannt.
- Jedem Roboter sind die eigenen Positionsdaten und die Positionsdaten der Roboter in seiner Nachbarschaft bekannt.
- 8. Mögliches Vorgehen: Die (euklidische) Distanz zum Zielobjekt minimieren und die Distanz zu den anderen Robotern maximieren.

Lokales Verhalten

- Berücksichtigung anderer Roboter in der Nachbarschaft
- Das Zielobjekt zieht den Roboter R1 an und die anderen Roboter in seiner Nachbarschaft schieben ihn weg. → Kraftvektoren.
- Gewichtung der Kraftvektoren ist möglich. → homogene versus heterogene Roboter (mit unterschiedlichen α und β)

Kumulierter Vektor

Lernen (1/2)

- Unterteilung der Simulationszeit in diskrete Zeitabschnitte (z. B. 50 Ticks)
- Alle 50 Ticks ein Bewertungsschritt mit globalem Signal an alle Agenten: kumulierte Überwachungszeit
- Jeder Agent versucht, einen Beitrag zu leisten und die globale Überwachungszeit zu maximieren (∆=t_{i+1}-t_i).
 (evtl. Paper von Agogino und Tumer)
- Agent kann α, β und die eigene Distanz zum roten Punkt beim Lernen berücksichtigen
- Ein Agent lernt lokal eine Strategie.

Lernen (2/2)

Strategie/Classifier

$$0^{\circ} \le \gamma \le 20^{\circ} \to \alpha_{1}, \beta_{1}$$
 $20^{\circ} \le \gamma \le 40^{\circ} \to \alpha_{2}, \beta_{2}$
 $40^{\circ} \le \gamma \le 60^{\circ} \to \alpha_{3}, \beta_{3}$
 $60^{\circ} \le \gamma \le 80^{\circ} \to \alpha_{4}, \beta_{4}$
 $80^{\circ} \le \gamma \le 100^{\circ} \to \alpha_{5}, \beta_{5}$
 $100^{\circ} \le \gamma \le 120^{\circ} \to \alpha_{6}, \beta_{6}$
 $120^{\circ} \le \gamma \le 140^{\circ} \to \alpha_{7}, \beta_{7}$
 $140^{\circ} \le \gamma \le 160^{\circ} \to \alpha_{8}, \beta_{8}$
 $160^{\circ} \le \gamma \le 180^{\circ} \to \alpha_{9}, \beta_{9}$

Strategie/Classifier

$$\begin{array}{l} 0^{\circ} \leq \gamma \leq 20^{\circ} \rightarrow \alpha_{1}, \, \beta_{1} \\ 20^{\circ} \leq \gamma \leq 40^{\circ} \rightarrow \alpha_{2}, \, \beta_{2} \\ 40^{\circ} \leq \gamma \leq 60^{\circ} \rightarrow \alpha_{3}, \, \beta_{3} \\ 60^{\circ} \leq \gamma \leq 80^{\circ} \rightarrow \alpha_{4}, \, \beta_{4} \\ 80^{\circ} \leq \gamma \leq 100^{\circ} \rightarrow \alpha_{5}, \, \beta_{5} \\ 100^{\circ} \leq \gamma \leq 120^{\circ} \rightarrow \alpha_{6}, \, \beta_{6} \\ 120^{\circ} \leq \gamma \leq 140^{\circ} \rightarrow \alpha_{7}, \, \beta_{7} \\ 140^{\circ} \leq \gamma \leq 160^{\circ} \rightarrow \alpha_{8}, \, \beta_{8} \\ 160^{\circ} \leq \gamma \leq 180^{\circ} \rightarrow \alpha_{9}, \, \beta_{9} \end{array}$$

Fragestellungen

- Unterschiedliche Landschaften ausprobieren, in denen sich die Roboter bewegen (z. B. Hindernisse). → Anpassen von gelernten Verfolgungsstrategien in unterschiedlichen Umgebungen.
- Unterschiedliche Typen eines Zielobjektes ausprobieren.
- Modifizierung der Fähigkeiten der Roboter:
 - Wahrnehmungshorizont vergrößern.
 - Intelligentere Kommunikation (Wissensaustausch)
 - **–** ...
- Erhöhung der Komplexität durch Implementierung mehrerer Zielobjekte (viele rote Punkte).
- •