兰州大学2018~2019学年第一学期

期末试卷 (A卷)

即印度加	数学分析	(=)	任课教师:	王智	7成
课程名称: 学院:	英英学院 	专业:		级:	17级
姓名:			校园卡号:		

题号	-	=	Ξ	[70]	五	六	七	总分
分数								-
阅卷教师								

1. 计算题. (每题8分, 共48分)

1). 设函数f(x)有连续的导数,f(0) = 0,求极限 $\int_{t^2}^{t^2} \int_{0}^{t^2} (r) r^2 \sin\theta d\theta dr$ $\lim_{t\to 0} \frac{1}{t^4} \iiint_{t^2 \le x^2 + y^2 + z^2 \le 4t^2} f\left(\sqrt{x^2 + y^2 + z^2}\right) dx dy dz$. $\int_{0}^{t^2} \sin t d\theta dt dt dt$

- 2). 求曲面积分 $I = \iint_{\Sigma} -2x dy dz + y dz dx + (z+1) dx dy$, 其中 Σ 是由 曲面 $x^2 + y^2 = 4$ 被平面x + z = 2和z = 0所截取的部分的外侧。
- 3). 求重积分 $I = \iint_{\Omega} e^{-y^2} dx dy$, 其中 Ω 是以O(0,0), A(1,1), B(0,1) 为 顶点的三角形闭区域。
- 4) 求半球面 $x^2 + y^2 + z^2 = 2(z \ge 0)$ 和锥面 $z = \sqrt{x^2 + y^2}$ 所围成区域 的体积。
- 5). 求 $I = \int_0^1 \frac{x^b x^a}{\ln x} dx$, 其中b > a > 0。
- 6). 求 $I = \iint_{\Omega} xy dx dy$,其中 Ω 由抛物线 $y^2 = x$, $y^2 = 4x$, $x^2 = y$, $x^2 = 4y$ 围成。

$$f(x,y) = \begin{cases} \frac{1}{x}, & x \neq 0, \\ y, & x = 0. \end{cases}$$

讨论f(x,y)在其定义域上是否连续。如果连续、请给出证明。

- 3. (12分) 对含参无穷积分 $I(a) = \int_{1}^{+\infty} x^{n} e^{-x} dx$, 证明:
 - (1) 对任意b > 0, I(a)关于 $a \in [0, b]$ 一致收敛;
 - (2) I(a)关于 $a \in [0, +\infty)$ 不一致收敛:
 - (3) 讨论I(a)在 $[0,+\infty)$ 上的可微性。
- 4. (12分) 设函数

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0. \end{cases}$$

讨论了(3-3)在(0,0)点的连续性、可导性及可微性。

- $\sqrt{5}$. (10分) (1) 求f(x, y, z) = xyz在条件 $\frac{1}{r} + \frac{1}{y} + \frac{1}{z} = \frac{1}{r} (x > 0, y > 0, z > 0, r > 0)$ 下的极小值;
 - (2) 证明不等式

$$3\left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right)^{-1} \le \sqrt[3]{xyz}, \quad \forall x > 0, y > 0, z > 0.$$

% (8分) 设f(x, y, z)在 $a \le x, y, z \le b$ 上连续,令

$$\phi(x) = \max_{a \le y \le x} \left(\min_{a \le z \le b} f(x, y, z) \right),$$

则 $\phi(x)$ 在[a,b]上连续。

兰州大学2019~2020学年第一学期

期末试卷(A卷)

课程名称: 数学分析(三)

任课教师: 王智诚

学院: 数学与统计学院 专业: 数学 年级: 2018级

姓名:

题号	-	=	三	29	五	六	七	总分
分数								
阅卷教师								

1. 计算题. (每题8分, 共48分)

- 1). 求曲线积分 $I = \oint_C (y-z) dx + (z-x) dy + (x-y) dz$, 其中C 是 柱面 $x^2 + y^2 = 4$ 与平面x + z = 2的交线,从x轴正向看去沿逆时针方
- 2). 求曲面积分 $I = \iint_S x dy dz + y dz dx + z dx dy$. 其中S是以A(1,0,0), B(0,1,0), C(0,0,1) 为顶点的三角形,下侧为正侧。
- 3). 求半球面 $x^2 + y^2 + z^2 = 2(z \ge 0)$ 和锥面 $z = \sqrt{x^2 + y^2}$ 所围成区域 的体积。
- 4). 求 $I = \int_0^{+\infty} \frac{e^{-ax} e^{-bx}}{x} dx$, 其中b > a > 0。
- 5). $\bar{x}I = \int_0^1 \frac{\ln(1+x)}{1+x^2} dx$.
- 6). 设函数 $f(x,y) = xy \frac{x^2 y^2}{x^2 + y^2}$, 求 $\lim_{(x,y) \to (0,0)} f(x,y)$.
- 2. (10分) 对含参无穷积分 $I(a) = \int_0^{+\infty} ae^{-ax} dx$, 证明:
 - (1) 对任意b > 0, I(a)关于 $a \in [b, \infty)$ 一致收敛;
 - (2) I(a)关于 $a \in (0, +\infty)$ 不一致收敛。

- 3./(10分) 设函数 $f(x,y) = \sqrt{|xy|}$. 讨论f(x,y)在(0,0)点的连续性、可导性及可微性。
- 4. (8分) 拋物而x²+y²= z与平面x+y+z=1的交线为一个椭圆。求这个椭圆到原点的最长和最短距离。
- 5. (8分)设E是R^m中的有界闭集。 $\{S_{\lambda}: \lambda \in \Lambda\}$ 是R^m中的一族闭集。它们中任意有限个与E的交都非空。证明:集合 $\bigcap_{\lambda \in \Lambda} S_{\lambda}$ 与集合E的交也非空。
- 6. (8分) 设 Ω 是 \mathbb{R}^m 中的凸开集, $\mathbf{F}:\Omega\to\mathbb{R}^m$ 是可微映射,且对任意 $x\in\Omega$, $D\mathbf{F}(x)$ 都是正定矩阵。证明: \mathbf{F} 是单射。
- 7 (8分) 设 ʃ 是 [0,1] 上恒取正值的连续函数. 证明:

$$\lim_{x \to 0^+} \int_0^1 \frac{x f(y)}{x^2 + y^2} dy = \frac{\pi}{2} f(0).$$