Unambiguity-Preserving Operation on Tree Languages That Lifts Topological Complexity

Szczepan Hummel

Institute of Informatics, University of Warsaw

HIGHLIGHTS 2013

• infinite trees (binary)

- infinite trees (binary)
- ullet parity automata

- infinite trees (binary)
- unambiguous parity automata

- infinite trees (binary)
- ullet unambiguous parity automata
- topological complexity

- infinite trees (binary)
- unambiguous parity automata
- topological complexity \Leftarrow Wadge reducibility

- infinite trees (binary)
- unambiguous parity automata
- topological complexity \Leftarrow Wadge reducibility = reductions by continuous functions

Given language $L \subseteq T_A$, we construct $\varsigma(L)$ of trees like this:

Given language $L \subseteq T_A$, we construct $\varsigma(L)$ of trees like this:

Trees represent formulas:

- countable disjunction
- negation
- $t \in T_A$ as atoms

Given language $L \subseteq T_A$, we construct $\varsigma(L)$ of trees like this:

Trees represent formulas:

- countable disjunction
- negation
- $t \in T_A$ as atoms TRUE iff $t \in L$

Given language $L \subseteq T_A$, we construct $\varsigma(L)$ of trees like this:

Trees represent formulas:

- countable disjunction
- negation
- $t \in T_A$ as atoms TRUE iff $t \in L$

Well-founded

= no branches with ∞ many turnings right in the "formula part" of a tree

Given language $L \subseteq T_A$, we construct $\varsigma(L)$ of trees like this:

Trees represent formulas:

- countable disjunction
- negation
- $t \in T_A$ as atoms TRUE iff $t \in L$

Well-founded

= no branches with ∞ many turnings right in the "formula part" of a tree

 $\varsigma(L) \iff \text{formulas} \\
\text{evaluating to} \\
\text{TRUE}$

Automata theoretic:

THEOREM

 $L \ \ and \ \overline{L} \ \ unambiguous \implies \varsigma(L) \ \ and \ \overline{\varsigma(L)} \ \ unambiguous.$

- $\varsigma(L)$ rightmost witness of TRUE
- \bullet $\overline{\varsigma(L)}$ rightmost witness of ill-foundedness

PROPERTIES OF SIGMA OPERATION

Automata theoretic:

THEOREM

 $L \ \ and \ \overline{L} \ \ unambiguous \implies \varsigma(L) \ \ and \ \overline{\varsigma(L)} \ \ unambiguous.$

Topological:

THEOREM

L hard for class $\mathcal{K} \implies \varsigma(L)$ hard for class $\sigma(\mathcal{K})$.

PROPERTIES OF SIGMA OPERATION

Automata theoretic:

THEOREM

 $L \ \ and \ \overline{L} \ \ unambiguous \implies \varsigma(L) \ \ and \ \overline{\varsigma(L)} \ \ unambiguous.$

Topological:

THEOREM

L hard for class $\mathcal{K} \implies \varsigma(L)$ hard for class $\sigma(\mathcal{K})$.

Automata theoretic:

THEOREM

 $L \ and \ \overline{L} \ unambiguous \implies \varsigma(L) \ and \ \overline{\varsigma(L)} \ unambiguous.$

Topological:

THEOREM

L hard for class $\mathcal{K} \implies \varsigma(L)$ hard for class $\sigma(\mathcal{K})$.

THEOREM

 $L \ stretchable \implies \varsigma(L) \ stretchable.$

LEMMA (ARNOLD, NIWIŃSKI '07)

 $L \ stretchable \implies \overline{L} \nleq_W L.$

COROLLARY

Automata theoretic:

THEOREM

 $L \ and \ \overline{L} \ unambiguous \implies \varsigma(L) \ and \ \overline{\varsigma(L)} \ unambiguous.$

Topological:

THEOREM

L hard for class $\mathcal{K} \implies \varsigma(L)$ hard for class $\sigma(\mathcal{K})$.

THEOREM

 $L \ stretchable \implies \varsigma(L) \ stretchable.$

LEMMA (ARNOLD, NIWIŃSKI '07)

 $L \ stretchable \implies \overline{L} \nleq_W L.$

Corollary

Automata theoretic:

THEOREM

 $L \ and \ \overline{L} \ unambiguous \implies \varsigma(L) \ and \ \overline{\varsigma(L)} \ unambiguous.$

Topological:

THEOREM

L hard for class $\mathcal{K} \implies \varsigma(L)$ hard for class $\sigma(\mathcal{K})$.

THEOREM

 $L \ stretchable \implies \varsigma(L) \ stretchable.$

LEMMA (ARNOLD, NIWIŃSKI '07)

 $L \ stretchable \implies \overline{L} \nleq_W L.$

COROLLARY

Automata theoretic:

THEOREM

 $L \ and \ \overline{L} \ unambiguous \implies \varsigma(L) \ and \ \overline{\varsigma(L)} \ unambiguous.$

Topological:

THEOREM

L hard for class $\mathcal{K} \implies \varsigma(L)$ hard for class $\sigma(\mathcal{K})$.

THEOREM

 $L \ stretchable \implies \varsigma(L) \ stretchable.$

LEMMA (ARNOLD, NIWIŃSKI '07)

 $L \ stretchable \implies \overline{L} \nleq_W L.$

COROLLARY

PROPERTIES OF SIGMA OPERATION

Automata theoretic:

THEOREM

 $L \ and \ \overline{L} \ unambiguous \implies \varsigma(L) \ and \ \overline{\varsigma(L)} \ unambiguous.$

Topological:

THEOREM

L hard for class $\mathcal{K} \implies \varsigma(L)$ hard for class $\sigma(\mathcal{K})$.

THEOREM

 $L \ stretchable \implies \varsigma(L) \ stretchable.$

LEMMA (ARNOLD, NIWIŃSKI '07)

 $L \ stretchable \implies \overline{L} \nleq_W L.$

COROLLARY

Automata theoretic:

THEOREM

 $L \ and \ \overline{L} \ unambiguous \implies \varsigma(L) \ and \ \overline{\varsigma(L)} \ unambiguous.$

Topological:

THEOREM

L hard for class $\mathcal{K} \implies \varsigma(L)$ hard for class $\sigma(\mathcal{K})$.

THEOREM

 $L \ stretchable \implies \varsigma(L) \ stretchable.$

LEMMA (ARNOLD, NIWIŃSKI '07)

 $L \ stretchable \implies \overline{L} \nleq_W L.$

Corollary

PROPERTIES OF SIGMA OPERATION

Automata theoretic:

THEOREM

 $L \ and \ \overline{L} \ unambiguous \implies \varsigma(L) \ and \ \overline{\varsigma(L)} \ unambiguous.$

Topological:

THEOREM

L hard for class $\mathcal{K} \implies \varsigma(L)$ hard for class $\sigma(\mathcal{K})$.

THEOREM

 $L \ stretchable \implies \varsigma(L) \ stretchable.$

LEMMA (ARNOLD, NIWIŃSKI '07)

 $L \ stretchable \implies \overline{L} \nleq_W L.$

COROLLARY

PROPERTIES OF SIGMA OPERATION

Automata theoretic:

THEOREM

 $L \ and \ \overline{L} \ unambiguous \implies \varsigma(L) \ and \ \overline{\varsigma(L)} \ unambiguous.$

Topological:

THEOREM

L hard for class $\mathcal{K} \implies \varsigma(L)$ hard for class $\sigma(\mathcal{K})$.

THEOREM

 $L \ stretchable \implies \varsigma(L) \ stretchable.$

LEMMA (ARNOLD, NIWIŃSKI '07)

 $L \ stretchable \implies \overline{L} \nleq_W L.$

COROLLARY

 $L \ stretchable \implies \varsigma(L) \notin \sigma(\mathcal{K}).$

K

Automata theoretic:

THEOREM

 $L \ and \ \overline{L} \ unambiguous \implies \varsigma(L) \ and \ \overline{\varsigma(L)} \ unambiguous.$

Topological:

THEOREM

L hard for class $\mathcal{K} \implies \varsigma(L)$ hard for class $\sigma(\mathcal{K})$.

THEOREM

 $L \ stretchable \implies \varsigma(L) \ stretchable.$

LEMMA (ARNOLD, NIWIŃSKI '07)

 $L \ stretchable \implies \overline{L} \nleq_W L.$

COROLLARY

 $L \ stretchable \implies \varsigma(L) \notin \sigma(\mathcal{K}).$

$$\bullet \varsigma(\varsigma(L))$$

$$\bullet \varsigma(L)$$

$$\bullet L \quad \sigma(\mathcal{K})$$

K

Automata theoretic:

THEOREM

 $L \ and \ \overline{L} \ unambiguous \implies \varsigma(L) \ and \ \overline{\varsigma(L)} \ unambiguous.$

Topological:

THEOREM

L hard for class $\mathcal{K} \implies \varsigma(L)$ hard for class $\sigma(\mathcal{K})$.

THEOREM

 $L \ stretchable \implies \varsigma(L) \ stretchable.$

LEMMA (ARNOLD, NIWIŃSKI '07)

 $L \ stretchable \implies \overline{L} \nleq_W L.$

COROLLARY

 $L \ stretchable \implies \varsigma(L) \notin \sigma(\mathcal{K}).$

- $\bullet \ \varsigma(\varsigma(\varsigma(L)))$
- $\bullet \varsigma(\varsigma(L))$
- $\bullet \varsigma(L)$
 - $L \quad \sigma(\mathcal{K})$

K

TECHNICAL ISSUES:

- limit step:
 - $\{\lor, \lnot\}$ -well-foundedness vs #-well-foundedness
- alphabet extension:
 - $L, T_A \setminus L$ unambiguous, $A \subseteq B \implies T_B \setminus L$ unambiguous

TECHNICAL ISSUES:

- limit step:
 - $\{\lor, \neg\}$ -well-foundedness vs #-well-foundedness
- alphabet extension:
 - $L, T_A \setminus L$ unambiguous, $A \subseteq B \implies T_B \setminus L$ unambiguous

REFERENCES:

- André Arnold and Damian Niwiński. Continuous separation of game languages. Fundamenta Informaticae 2007.
 - stretching

TECHNICAL ISSUES:

- limit step:
 - {∨,¬}-well-foundedness vs #-well-foundedness
- alphabet extension:
 - $L, T_A \setminus L$ unambiguous, $A \subseteq B \implies T_B \setminus L$ unambiguous

References:

- André Arnold and Damian Niwiński. Continuous separation of game languages. Fundamenta Informaticae 2007.
 - stretching
- Szczepan Hummel. Unambiguous tree languages are topologically harder than deterministic ones. GandALF 2012.
 - ullet sets G and $\sigma(G)$ the best lower topological complexity bounds for unambiguous languages known so far

$$\begin{array}{cccc} G & \equiv_W & \overline{\varsigma(\emptyset)} & \in & \mathbf{\Sigma}_1^{1}\text{-complete (non-Borel)} \\ \sigma(G) & \equiv_W & \varsigma(\varsigma(\emptyset)) & \notin & \sigma(\mathbf{\Sigma}_1^{1}) \end{array}$$

