Introduction to Machine Learning (CSCI-UA.473): Homework 4

Instructor: Sumit Chopra

November 4^{th} , 2021

Submission Instructions

You must typeset the answers using \LaTeX and compile them into a single PDF file. Name the pdf file as: $\langle \text{Your-NetID} \rangle$ _hw4.pdf. For the programming part of the assignment, complete the Jupyter notebook named HW4.ipynb. Create a ZIP file containing both the PDF file and the completed Jupyter notebook. Name it $\langle \text{Your-NetID} \rangle$ _hw4.zip. Submit the ZIP file on Brightspace. The due date is **November** 18th, 2021, 11:59 **PM**.

Theory

Question T1: Back propagation of a 2D Convolution Operation (15 points)

Let the input be an 2D gray scale image of size $m \times n$, denoted by the matrix $X \in \Re^{m \times n}$. Let the parameters of the $p \times p$ convolution kernel be denoted by [W,b], where $W \in \Re^{p \times p}$ are the weights of the kernel and b is the bias associated with the kernel. Let us denote by L the loss function of your model and by δ the gradient of the loss with respect to the output of the convolution operation. Write the expression for the following:

- 1. (5 points) Gradient of the loss function L with respect to the inputs $X\colon \frac{dL}{dX}$
- 2. (5 points) Gradient of the loss function L with respect to the weights W: $\frac{dL}{dW}$
- 3. (5 points) Gradient of the loss function L with respect to the bias b: $\frac{dL}{db}$

Please write all the steps that led you to the final expression. No points will be given if only the final expression is provided without the steps.

Question T2: Back propagation of other functions (15 points)

Compute the back propagation expression (the gradient of the loss function L with respect to the input x, where $x \in \Re^d$ is the 1D input vector of size d), for the following functions:

- 1. (5 points) Tanh: $f(x) = \tanh(x) = \frac{e^x e^{-x}}{e^x + e^{-x}}$
- 2. (5 points) Max pooling: $f(x) = \max_{i \in \{1,\dots,d\}} x_i$
- 3. (5 points) Average pooling: $f(x) = \frac{1}{d} \sum_{i=1}^{d} x_i$

Here again, assume that you know the gradient of the loss L with respect to the output of each function and denote it by δ . Please write all the steps that led you to the final expression. No points will be given if only the final expression is provided without the steps.

Practicum

See the accompanying Python notebook.

Question P1: Long-Short Term Memory Networks for sequence modeling (35 points)

Question P2: Ensemble of neural networks for multi-class classification (35 points)