(19)日本国特許庁 (JP)

許 公 報(B2) (12)特

(11)特許番号

特許第3408154号

(P3408154)

(45)発行日 平成15年5月19日(2003.5.19)

(24)登録日 平成15年3月14日(2003.3.14)

_			
(51) Int. Cl. 7	識別記号	FI	
H04M 11/00	302	H04M 11/00 302	
H04B 7/26		HO4N 1/00 107 A	
H04N 1/00	107	H04B 7/26 M	

		請求項の数 3 (全23頁)
(21)出願番号	特願平10-180964	(73)特許権者 399031827
(62)分割の表示	特願平7-309275の分割	エイディシーテクノロジー株式会社
(22)出願日	平成4年11月9日(1992.11.9)	愛知県名古屋市中区錦二丁目9番27号
		(72)発明者 延命 年晴
(65)公開番号	特開平10-341290	愛知県名古屋市守山区守山一丁目13番21
(43)公開日	平成10年12月22日(1998.12.22)	号
審査請求日	平成10年11月30日(1998.11.30)	(74)代理人 100082500
審判番号	不服2001-1701(P2001-1701/J1)	弁理士 足立 勉
審判請求日	平成13年2月8日(2001.2.8)	
		合議体
早期審理対象出願		審判長 武井 袈裟彦
		審判官 小林 勝広
		審判官 山本 春樹
	·	
	_	(56)参考文献 特開 平4-182848 (JP, A) .
	•.	'特開 平1-314462 (JP, A)
		実開 昭64-47129 (J P, U)

(54) 【発明の名称】携帯型コミュニケータ

(57)【特許請求の範囲】

【請求項1】 公衆通信回線に無線によって接続され、 <u>該公衆通信回線を経由して発信、または受信を行う無線</u> 通信手段と、

1

該無線通信手段に対する制御指令の出力、上記無線通信 <u>手段を経由して上記公衆通信回線からデータを入力、ま</u> たは上記無線通信手段を経由して上記公衆通信回線にデ ータを送出する処理を行う<u>コンピュータと、</u>

該コンピュータによって所定の画像を表示する第1のデ <u>ィスプレイと、第2のディスプレイと、</u>

オン信号を出力するオンスイッチが操作された場合に上 記第1のディスプレイと、上記コンピュータを含む全体 に電源を供給して、該第1のディスプレイを利用した入 出力が行われるアクティブ状態にし、オフ信号を出力す るオフスイッチが操作された場合に、上記コンピュータ

2

と、上記無線通信手段とを含む所定の部分にのみ電源を 供給して、上記第1のディスプレイを利用した入出力が 行われることのない待機状態にする電源コントローラ <u>ك.</u>

上記無線通信手段と、上記コンピュータと、上記第1の ディスプレイと、上記第2のディスプレイとを組み合わ せた状態で保持する筺体とを備え、

上記コンピュータは、上記オンスイッチと、上記オフス イッチの操作状態に拘わりなく、

10 上記無線通信手段が受信を待機している受信待機中であ るかを判断する受信待機中判断手段と、

該受信待機中判断手段が受信待機中であると判断した場 合に、上記第2のディスプレイに受信待機中の表示を行 <u>う受信待機中表示手段とを備えることを特徴とする携帯</u> 型コミュニケータ。

【請求項2】 公衆通信回線に無線によって接続され、 該公衆通信回線を経由して発信、または受信を行う無線 通信手段と、

該無線通信手段に対する制御指令の出力、上記無線通信 手段を経由して上記公衆通信回線からデータを入力、ま たは上記無線通信手段を経由して上記公衆通信回線にデ 一夕を送出する処理を行うコンピュータと、

<u>該コンピュータによって所定の画像を表示する第1のディスプレイと、第2のディスプレイと、</u>

オン信号を出力するオンスイッチが操作された場合に上 記第1のディスプレイと、上記コンピュータを含む全体 に蓄電池から電源を供給して、該第1のディスプレイを 利用した入出力が行われるアクティブ状態にし、オフ信 号を出力するオフスイッチが操作された場合に、上記コ ンピュータと、上記無線通信手段とを含む所定の部分に のみ上記蓄電池から電源を供給して、上記第1のディス プレイを利用した入出力が行われることのない待機状態 にする電源コントローラと、

上記無線通信手段と、上記コンピュータと、上記第1の ディスプレイと、上記第2のディスプレイとを組み合わ せた状態で保持する筺体とを備え、

<u>上記コンピュータは、上記オンスイッチと、上記オフスイッチの操作状態に拘わりなく、</u>

上記蓄電池の電源容量を検出する電源容量検出手段と、 上記第2のディスプレイに、上記電源容量検出手段が検 出した電源容量の表示を行う電源容量表示手段とを備え ることを特徴とする携帯型コミュニケータ。

【請求項3】 公衆通信回線に無線によって接続され、 該公衆通信回線を経由して発信、または受信を行う無線 通信手段と、

該無線通信手段に対する制御指令の出力、上記無線通信 手段を経由して上記公衆通信回線からデータを入力、ま たは上記無線通信手段を経由して上記公衆通信回線にデ 一夕を送出する処理を行うコンピュータと、

<u>該コンピュータによって所定の画像を表示する第1のディスプレイと、第2のディスプレイと、</u>

オン信号を出力するオンスイッチが操作された場合に上記第1のディスプレイと、上記コンピュータを含む全体に蓄電池から電源を供給して、該第1のディスプレイを利用した入出力が行われるアクティブ状態にし、オフ信号を出力するオフスイッチが操作された場合に、上記コンピュータと、上記無線通信手段とを含む所定の部分にのみ上記蓄電池から電源を供給して、上記第1のディスプレイを利用した入出力が行われることのない待機状態にする電源コントローラと、

上記無線通信手段と、上記コンピュータと、上記第1の ディスプレイと、上記第2のディスプレイとを組み合わ せた状態で保持する筺体とを備え、

<u>上記コンピュータは、上記オンスイッチと、上記オフス</u>イッチの操作状態に拘わりなく、

上記蓄電池の電源容量を検出する電源容量検出手段と、 上記第2のディスプレイに、上記電源容量検出手段が検 出した電源容量の表示を行う電源容量表示手段と、

<u>上記無線通信手段が受信を待機している受信待機中であるかを判断する受信待機中判断手段と、</u>

該受信待機中判断手段が受信待機中であると判断した場合に、上記第2のディスプレイに受信待機中の表示を行う受信待機中表示手段とを備えることを特徴とする携帯型コミュニケータ。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は<u>、携</u>帯型コミュニケー<u>タ</u>の構造に関する。

[0002]

【従来の技術】従来、携帯型の情報伝達装置として、無線呼出装置や無線電話装置が用いられている。無線呼出装置は、呼出信号やメッセージを受信して、ビープ音を出力したり、或いはメッセージをディスプレイに表示する機能を有する。

20 【0003】無線電話装置は、公衆通信回線を経由して 発信、又は受信する機能を有する。無線電話装置は、通 話に用いられたり、或いはFAX装置や携帯型のパーソ ナルコンピュータに接続される。

[0004]

【発明が解決しようとする課題】 <u>この様な</u>従来の情報伝達装置では、携帯して所望の情報伝達を行うことができなかった。例えば、無線電話装置を携帯すれば、電話の通話は可能であるが、ワードプロセッサーのデータやファクシミリのデータを送受する事は、できなかった。また、無線電話装置と、携帯型コンピュータと、携帯型ファクシミリ装置を持ち歩けばほぼ上記の情報の伝達は可能であるが、現実的ではなかった。

【0005】本発明は、上記の問題を解決することを目的とする。

[0006]

【課題を解決するための手段】請求項1の発明の携帯型コミュニケータは、公衆通信回線に無線によって接続され、該公衆通信回線を経由して発信、または受信を行う無線通信手段と、該無線通信手段に対する制御指令の出力、上記無線通信手段を経由して上記公衆通信回線からデータを入力、または上記無線通信手段を経由して上記公衆通信回線にデータを送出する処理を行うコンピュータと、該コンピュータによって所定の画像を表示する第1のディスプレイと、第2のディスプレイと、オン信号を出力するオンスイッチが操作された場合に上記第1のディスプレイと、上記コンピュータを含む全体に電源を供給して、該第1のディスプレイを利用した入出力が行われるアクティブ状態にし、オフ信号を出力するオフスイッチが操作された場合に、上記コンピュータと、上記

50 無線通信手段とを含む所定の部分にのみ電源を供給し

20

30

て、上記第1のディスプレイを利用した入出力が行われることのない待機状態にする電源コントローラと、上記無線通信手段と、上記コンピュータと、上記第1のディスプレイと、上記第2のディスプレイとを組み合わせた状態で保持する筐体とを備え、上記コンピュータは、上記オンスイッチと、上記オフスイッチの操作状態に拘わりなく、上記無線通信手段が受信を待機している受信待機中であるかを判断する受信待機中判断手段と、該受信待機中判断手段が受信待機中であると判断した場合に、上記第2のディスプレイに受信待機中の表示を行う受信待機中表示手段とを備えることを要旨とする。

【0007】請求項2の発明の携帯型コミュニケータ は、公衆通信回線に無線によって接続され、該公衆通信 回線を経由して発信、または受信を行う無線通信手段 と、該無線通信手段に対する制御指令の出力、上記無線 通信手段を経由して上記公衆通信回線からデータを入 力、または上記無線通信手段を経由して上記公衆通信回 **線にデータを送出する処理を行うコンピュータと、該コ** <u>ンピュータによって所定の</u>画像を表示する第1のディス プレイと、第2のディスプレイと、オン信号を出力する オンスイッチが操作された場合に上記第1のディスプレ イと、上記コンピュータを含む全体に蓄電池から電源を 供給して、該第1のディスプレイを利用した入出力が行 われるアクティブ状態にし、オフ信号を出力するオフス イッチが操作された場合に、上記コンピュータと、上記 無線通信手段とを含む所定の部分にのみ上記蓄電池から 電源を供給して、上記第1のディスプレイを利用した入 出力が行われることのない待機状態にする電源コントロ <u>ーラと、上記無線通信手段と、上記コンピュータと、上</u> 記第1のディスプレイと、上記第2のディスプレイとを 組み合わせた状態で保持する筺体とを備え、上記コンピ <u>ュータは、上記オンスイッチと、</u>上記オフスイッチの操 作状態に拘わりなく、上記蓄電池の電源容量を検出する 電源容量検出手段と、上記第2のディスプレイに、上記 電源容量検出手段が検出した電源容量の表示を行う電源 容量表示手段とを備えることを要旨とする。

【0008】請求項3の発明の携帯型コミュニケータは、公衆通信回線に無線によって接続され、該公衆通信回線を経由して発信、または受信を行う無線通信手段と、該無線通信手段に対する制御指令の出力、上記無線 40 通信手段を経由して上記公衆通信回線からデータを入力、または上記無線通信手段を経由して上記公衆通信回線にデータを送出する処理を行うコンピュータと、該コンピュータによって所定の画像を表示する第1のディスプレイと、第2のディスプレイと、オン信号を出力するオンスイッチが操作された場合に上記第1のディスプレイと、上記コンピュータを含む全体に蓄電池から電源を供給して、該第1のディスプレイを利用した入出力が行われるアクティブ状態にし、オフ信号を出力するオフスイッチが操作された場合に、上記コンピュータと、上記 50

無線通信手段とを含む所定の部分にのみ上記蓄電池から 電源を供給して、上記第1のディスプレイを利用した入 出力が行われることのない待機状態にする電源コントロ <u>ーラと、上記無線通信手段と、上記コンピュータと、上</u> 記第1のディスプレイと、上記第2のディスプレイとを 組み合わせた状態で保持する筺体とを備え、上記コンピ ュータは、上記オンスイッチと、上記オフスイッチの操 作状態に拘わりなく、上記蓄電池の電源容量を検出する 電源容量検出手段と、上記第2のディスプレイに、上記 電源容量検出手段が検出した電源容量の表示を行う電源 容量表示手段と、上記無線通信手段が受信を待機してい る受信待機中であるかを判断する受信待機中判断手段 と、該受信待機中判断手段が受信待機中であると判断し た場合に、上記第2のディスプレイに受信待機中の表示 を行う受信待機中表示手段とを備えることを要旨とす る。

6

[0009]

【作用】本発明の請求項1の携帯型コミュニケータは、オンスイッチが操作された場合に、電源が無線通信手段と、コンピュータと、第1のディスプレイと、第2のディスプレイとを組み合わせた状態で保持する筐体の全体に供給される。これにより、第1のディスプレイと、コンピュータと、無線通信手段とを含む全体がアクティブ状態になって、無線通信手段が公衆通信回線に無線によって接続され、この公衆通信回線を経由して発信、または受信が行われ、コンピュータがその無線通信手段に対する制御指令の出力、無線通信手段を経由して公衆通信回線からデータを入力、または無線通信手段を経由して公衆通信回線にデータを送出する処理を行い、第1のディスプレイと、第2のディスプレイとが、コンピュータによって所定の画像を表示する。これによって、第1のディスプレイを利用した入出力が可能になる。

【0010】 このアクティブ状態は、オフスイッチが操作されることで、終了する。オフスイッチが操作された場合、或いはオンスイッチが操作されるまでは、コンピュータと、無線通信手段とを含む所定の部分にのみ電源が供給される。これにより、第1のディスプレイを利用した入出力が行われることのない待機状態になるが、コンピュータが備える受信待機中判断手段によって、無線通信手段が受信を待機している受信待機中であると判断された場合に、受信待機中表示手段によって第2のディスプレイに受信待機中の表示が行われる。

【0011】これにより、筺体の全体に電源が供給されることのない待機状態でも受信待機中の確認が可能になり、携帯型コミュニケータの動作状態のモニタが常時可能になる。本発明の請求項2の携帯型コミュニケータは、オンスイッチが操作された場合に、蓄電池から供給を受けた電源が無線通信手段と、コンピュータと、第1のディスプレイと、第2のディスプレイとを組み合わせた状態で保持する筐体の全体に供給される。これによ

อบ

<u>り、第1のディスプレイと、コ</u>ンピュータと、無線通信 手段とを含む全体がアクティブ状態になって、無線通信 手段が公衆通信回線に無線によって接続され、この公衆 通信回線を経由して発信、または受信が行われ、コンピ <u>ユータがその無線通信手段に対する制御指令の出力、無</u> 線通信手段を経由して公衆通信回線からデータを入力、 または無線通信手段を経由して公衆通信回線にデータを <u>送出する処理を行い、第1のディ</u>スプレイと、第2のデ イスプレイとが、コンピュータによって所定の画像を表 <u>示する。これによって、第1のディスプレイを利用した</u> 10 入出力が可能になる。

【0012】このアクティブ状態は、オフスイッチが操 作されることで、終了する。オフスイッチが操作された 場合、或いはオンスイッチが操作されるまでは、コンピ ユータと、無線通信手段とを含む所定の部分にのみ**蓄**電 池から供給を受けた電源が供給される。これにより、第 1のディスプレイを利用した入出力が行われることのな い待機状態になるが、電源容量検出手段が検出した蓄電 池の電源容量が電源容量表示手段によって、第2のディ スプレイに表示される。

【0013】これにより、筺体が保持する全体に蓄電池 からの電源が供給されることのない待機状態でも、電源 容量の確認が可能になり、携帯型コミュニケータの動作 状態のモニタが常時可能になる。本発明の請求項3の携 帯型コミュニケータは、オンスイッチが操作された場合 に、蓄電池から供給を受けた電源が無線通信手段と、コ ンピュータと、第1のディスプレイと、第2のディスプ レイとを組み合わせた状態で保持する筺体の全体に供給 される。これにより、第1のディスプレイと、コンピュ <u>一夕と、無線通信手段とを含む全体がアクティブ状態に</u> なって、無線通信手段が公衆通信回線に無線によって接 続され、この公衆通信回線を経由して発信、または受信 が行われ、コンピュータがその無線通信手段に対する制 御指令の出力、無線通信手段を経由して公衆通信回線か らデータを入力、または無線通信手段を経由して公衆通 <u>信回線にデータを送出する処理を行い、第1のディスプ</u> <u>レイと、第2のディスプレイとが、コンピュータによっ</u> て所定の画像を表示する。これによって、第1のディス プレイを利用した入出力が可能になる。

【0014】このアクティブ状態は、オフスイッチが操 作されることで、終了する。オフスイッチが操作された 場合、或いはオンスイッチが操作されるまでは、コンピ ユータと、無線通信手段とを含む所定の部分にのみ蓄電 池から供給を受けた電源が供給される。これにより、第 1のディスプレイを利用した入出力が行われることのな い待機状態になるが、コンピュータが備える受信待機中 判断手段によって、無線通信手段が受信を待機している 受信待機中であると判断された場合に、受信待機中表示 <u>手段によって第2のディスプレイに受信待機中の表示が</u> 行われ、電源容量検出手段が検出した蓄電池の電源容量 が電源容量表示手段によって、第2のディスプレイに表 示される。

【0015】これにより、筺体が保持する全体に蓄電池 からの電源が供給されることのない待機状態でも受信待 機中の確認と、電源容量の確認とが可能になり、携帯型 コミュニケータの動作状態のモニタが常時可能になる。 [0016]

【実施例】 次の本発明の一実施例を説明する。図1、 図2は、パーソナルコミュニケータ1の斜視図、図3 は、そのプロック図である。パーソナルコミュニケータ 1は、ペン入力デバイス3と、本体5と、無線電話装置 7とを備えている。ペン入力デバイス3は、収容枠9に 保持されており、収容枠9と本体5とは、連結部11で 矢印YY方向に開閉可能に連結されている。収容枠9 と、本体5との間には、図1に示す開いた状態の保持 と、図2に示す閉じた状態の保持とを行なう図示しない 保持機構が設けられている。

【0017】収容枠9には、マイク13と、ディスプレ イ15と、オンスイッチ17と、オフスイッチ19とが ペン入力デバイス3の近傍に取り付けられている。マイ 20 ク13の近傍には、「マイク」レタリング13Aが施さ れており、オンスイッチ17の近傍には「オン」レタリ ング17A、オフスイッチ19の近傍には「オフ」レタ リング19Aが施されている。オンスイッチ17と、オ フスイッチ19とは、各々2個のスイッチパネル17A A、17BB、19AA、19BBを備えている。これ らは、収容枠9の表面より3ミリメートル凹状態で配設 されている。スイッチパネル17AAと、17BBと は、両方ともほぼ同時に操作された場合にオン信号を出 力する。スイッチパネル19AAと、19BBとは、両 方ともほぼ同時に操作された場合に、オフ信号を出力す る。これにより、携帯時に誤って手などが触れることに よる誤操作が防止される。

【0018】無線電話装置7と、本体5とは、収容箱2 1に収容されている。収容箱21には、CPU23と、 音声解析プロセッサ24と、ROM25と、RAM27 と、EEPROM29と、ペン入力コントローラユニッ ト31と、入力インタフェース33と、蓄電池35と、 電源ソケット37、39と、電話コントローラ41と、 音声信号発生ユニット43と、入出力コントローラ45 と、イヤー通話コントローラ47と、イヤー通話器49 と、スピーカ51と、スピーカオンスイッチ52と、デ ィスプレイコントローラ53と、入力ペン55と、入力 ペン収納孔57と、ペン取り出しボタン59と、出力イ ンタフェース61と、モニタランプ63と、モニタスピ ーカ65と、アッテネータ66と、電話出力コントロー ラ67と、電話出力コネクタ69と、データ入出力コン トローラ71と、データ入出力コネクタ73と、内蔵ア プリケーションコネクタ74と、カードコネクタ75、

77と、カード収納部79と、電源コントローラ81

と、スピーカ収納部83と、イヤー通話器収納具85 と、足87と、無線電話ユニット89と、アンテナ91 と、アンテナ収納部93とが備えられている。

【0019】内蔵アプリケーションコネクタ74には、 アプリケーションソフトウエアROM94が差し込まれ る。アプリケーションソフトウエアROM94には、ワ ードプロセッサソフトと、データベースソフトと、コミ ュニケータセンタソフトとが格納されている。これら は、後述する。

【0020】カード収納部79には、アプリケーション 10 ソフトウエアカード95、97が収納される。アプリケ ーションソフトウエアカード95、97は、カードコネ クタ75、77に接続される。電話出力コネクタ69に は、電話ケーブル99が接続される。電話ケーブル99 は、ファクシミリ装置101に接続される。データ入出 カコネクタ73には、データ出力ケーブル103が接続 される。データ出力ケーブル103は、パーソナルコン ピュータ105に接続される。

【0021】無線電話装置7は、無線電話ユニット89 と、イヤー通話コントローラ47と、入出力コントロー 20 ラ45と、イヤー通話器49と、スピーカ51と、マイ ク13と、アンテナ91とから構成されており、図示し ない無線電話網との間で、発信、及び受信を行う機能を 有する。電話コントローラ41は、CPU23からの指 令に基づいて、入出力コントローラ45と、無線電話ユ ニット89とを制御する。音声信号発生ユニット43 は、CPU23からの指令に基づいて所定の音声を合成 し、入出力コントローラ45を経由して無線電話ユニッ ト89に出力する。

【0022】入力インタフェース33は、蓄電池35の 30 電圧を検出する。電源コントローラ81は、オンスイッ チ17が操作された場合には、パーソナルコミュニケー タ1全体に電源を供給してアクティブ状態にし、オフス イッチ19が操作された場合には、パーソナルコミュニ ケータ1の所定の部分にのみ電源を供給して、待機状態 にする。

【0023】ペン入力デバイス3は、液晶ディスプレイ 3Aと、センサ層3Bとを備えている。液晶ディスプレ イ3Aは、ペン入力コントローラ31と接続されてお り、表示面3Cに所定の画像データを表示する。センサ 40 層3Bは、ペン入力コントローラ31に接続されてお り、液晶ディスプレイ3Aの下に配設されて、入力ペン 55のペン先55Aの位置を検出する。入力ペン55 は、ペン先55Aの近傍に図示しないコイルが設けられ ている。入力ペン55は、クリック/ドラッグ用のボタ ン55Bを備えている。ペン入力デバイス3と、入力ペ ン55とは、周知の電磁授受方式によって、ペン入力で の位置を検出する。ペン入力デバイス3は、ROM25 内に格納されているペン入力デバイスによって、キーボ ードを用いることなく文字入力の機能と、ポインティン「50 記す)。電源容量は、入力インタフェース33を介して

グデバイスの機能とを有する。

【0024】スピーカ51は、図1に示すように、スピ 一力本体 5 1 A と、支持部材 5 1 B と、連結部材 5 1 C とを備えている。スピーカ本体51Aと、支持部材51 Bとは、連結部材51Cによって矢印YA、YB方向に 回動可能に連結されている。スピーカ本体51Aと、支 持部材51Bとは、矢印YC方向に押されることによっ て、スピーカ収納部83に収納される。また、スピーカ 51は、スピーカオンスイッチ52に接続されており、 矢印YD方向に引き出されると、「オフ」状態から「オ ン」状態に切り替わる。支持部材51Bは、図示しない 排出機構に連結されており収納状態で、「押」レタリン グ部51Dを矢印YC方向に押し込むと、スピーカ本体 51Aを使用位置まで飛び出させる。図示しない排出機 構には、スピーカオンスイッチ52の図示しない操作リ ンクが取り付けられている。

【0025】イヤー通話器49は、使用しない場合に は、イヤー通話器収納具85に収納されている。また、 使用する場合には、引き出されて使用される。これは、 使用後、指掛け孔85Bに指を掛けて、矢印85Aに従 ってイヤー通話機収納具85を回動すると、収納され る。

【0026】アンテナ91は、通常、アンテナ収納部9 3に収納されている。また、特に電波状態を向上させる 場合には、引き出して用いる。このため、矢印YE、Y F方向の移動自由度と、矢印YH、YG方向への回動性 とを備えている。入力ペン55は、図2に示すように、 使用しない場合は、入力ペン収納孔57内に格納されて いる。ペン取り出しボタン59は、押し込まれると、入 カペン55を飛び出させる図示しない排出機構に連結さ れている。

【0027】ROM25は、制御プログラムや変数テー ブルを格納している。EEPROM29は、設定値や指 定値などを保持する。次にCPU23によって実行され る制御を説明する。図4は、ディスプレイ15の表示状 態の説明図、図5は、ディスプレイ制御の説明図、図6 は、ディスプレイ制御処理ルーチンのフローチャートで ある。

【0028】図4の(A)に示すように、ディスプレイ 15の表示面15Aは、電源残量表示領域15Bと、動 作状態表示領域15Cとを備えている。電源残量表示領 域15Bは、「電源」表示15Dと、「0%」表示15 Eと、「100%」表示15Fと、残量表示15Gとを 備えている。残量表示15Gは、蓄電池35の残量を棒 グラフ表示する。動作状態表示領域15Cは、図5に示 す(A)~(K)のような種類の表示態様を有する。

【0029】図6に示すディスプレイ制御処理はCPU 23によって所定時間毎に実行される。まず、電源容量 検出が行われる(ステップ100、以後ステップをSと

入力した蓄電池 35 の電圧に基づいて検出する。次いで、電源容量表示を行う(S110)。表示は、残量表示 15 Gにより行う。例えば、電源容量が 100 %であれば、図 4 の(A)に示すように表示し、80 %であれば、図 4 の(B)に示すように表示する。

【0030】次に、受信待機中かを判断する(S120)。受信待機中は、RAM27の所定エリアに設定される受信待機中フラグのセット状態によって判断する。受信待機中でなければそのまま次の処理に移行し、受信待機中であれば受信待機中表示を行う(S130)。受 10信待機中表示では、ディスプレイ15に図5の(A)、又は(I)、(J)、(K)に示した表示を行う。

【0031】次いで、FAX受信中かの判断を行う(S140)。FAX受信中は、FAX受信中フラグによって行う。FAX受信中であれば、FAX受信中表示を行う(S150)。FAX受信中表示は、図5の(B)に示すように行う。以後、同様にデータ受信中であれば(S160)、図5の(C)のようなデータ受信中表示(S170)、FAX送信中であれば(S180)、図5の(D)のようなFAX送信中表示(S190)、呼出中であれば(S200)、図5の(E)のような呼出中表示(S210)、データ送信中であれば(S220)、図5の(F)のようなデータ送信中表示(S230)、通話中であれば(S240)、図5の(G)のような通話表示(S250)、留守録中であれば(S260)、図5の(H)のような留守録中表示(S270)を行なう。

【0032】次に、データ格納量を検出する(S280)。データ格納量としては、留守録のデータ格納量と、受信FAXのデータ格納量と、受信データのデータ30格納量とを検出する。次いで、データ格納量表示を行う(S290)。留守録の格納量は、図5の(I)に示すように、FAXの格納量は、図5の(J)に示すように、受信データの格納量は、図5の(K)で示すように行う。

【0033】以上のディスプレイ制御は、オンスイッチ17、オフスイッチ19の操作状態に拘りなく常時行われる。これにより、パーソナルコミュニケータ1の動作状態を常時モニタすることができる。図7はモニタ制御処理ルーチンのフローチャートである。CPU23によ40って所定時間毎に実行される。まず、受信中かの判断を行う(S300)。受信中であれば、受信表示を行う(S310)。受信表示は、モニタランプ63をグリーン点灯させるとともに、モニタスピーカ65に受信音を出力させる。受信音の音量は、アッテネータ66によって調整される。

【0034】次いで、送信中の判断を行なって(S320)、送信中であれば送信表示を行う(S330)。送信表示は、モニタランプ63をレッド点灯させるとともに、モニタスピーカ65に送信音を出力させる。次に、

異常であるかを判断し(S340)、異常であれば異常表示を行う(S350)。異常は、メモリがフルの状態や蓄電池35の電圧低下などの各種異常を検出する。表示は、モニタランプ63をグリン、レッド交互点灯するとともに、モニタスピーカ65に警報音を出力させる。【0035】以上に説明したモニタ制御により、パーソナルコミュニケータ1の作動状態をモニタすることができる。図8は、パーソナルコミュニケータ1の待機、及び充電状態の使用状態図である。これに示す状態で使用している場合に、モニタランプ63とモニタスピーカ65とによって、パーソナルコミュニケータ1の状況を一瞬で把握することができる。パーソナルコミュニケータ1は、足87を下にして、図8に示すように台110上に立ての待機状態、及び外部電源装置111による充電電力の供給を受ける。

【0036】図9は、コミュニケータ制御処理ルーチン のフローチャート、図10は、現況報告画面の説明図で ある。コミュニケータ制御処理ルーチンは、オンスイッ チ17からオン信号が出力されたときCPU23によっ て起動され、次にオフスイッチ19からオフ信号が出力 されるまで繰り返し実行される。まず、現況調査が行わ れ(S400)、次いで現況報告画面表示が実行される (S410)。図10がペン入力デバイス3の表示面3 Cに表示される現況報告画面の一例である。現況報告画 面には、現況報告表示121と、動作状態表示領域12 3と、メモリ残量表示125と、FAXデータ格納量表 示127と、データ格納量表示129と、留守録格納量 表示131と、FAXメニュー表示133と、データメ ニュー表示135と、電話メニュー表示137と、アプ リケーションメニュー表示139と、設定メニュー表示 141とが表示されている。動作状態表示領域123に は、「受信待機中」、「FAX受信中」、「データ受信 中」、「FAX送信中」、「呼出中」、「データ送信 中」、「通話」、または「留守録中」の何れかが表示さ れる。

【0037】メモリ残量表示125では、FAX、データ、留守録の格納可能メモリ残量をパーセント表示する。次いで判断を行う(S420)。判断では、入力ペン55による項目の選択を待機する。

【0038】ここで、FAXメニュー表示133が選択された場合には、次にFAX処理を行う(S430)。各処理については、後述する。電話メニュー表示137が選択された場合には、電話処理を行う(S440)。データメニュー表示135が選択された場合には、データ処理を行う(S450)。アプリケーションメニュー表示139が選択された場合には、アプリケーション処理を行う(S460)。設定メニュー表示141が選択された場合には、設定処理を行う(S470)。

【0039】図11は、FAX処理ルーチンのフローチ 50 ャート、図12は、文書入力画面の説明図である。図1

30

1のFAX処理ルーチンは、図9のS430の内容を示 す。FAX処理ルーチンが起動されると、まず文書入力 画面が表示される(S500)。文書入力画面は、図1 2に一例を示すように、メニュー領域151と、文書入 力領域153とを備えている。メニュー領域151に は、FAXメニュー表示155と、FAX送信表示15 7と、受信FAX表示表示159と、中止表示161と が表示されている。文書入力領域153は、始めは無地 状態である。

【0040】文書入力画面の表示後、判断が行われる (S510)。判断では、文字入力が選択されたか、F AXメニュー表示155が選択されたか、FAX送信表 示157が選択されたか、受信FAX表示表示159が 選択されたか、あるいは中止表示161が選択されたか を見る。ここで、文字入力の選択とは、図12に示すよ うに、入力ペン55によって、文書入力領域153を選 択した場合である。

【0041】文字入力が選択された場合には、次に文書 処理が行われる(S520)。文書処理は、ペン入力コ ンピュータの文書入力機能の主要部分を占めるものであ って、まず入力ペン55によって指示された点、例えば 点162に、カーソル163を表示する。次いで、ペン 入力領域枠165の表示を行う。ペン入力領域枠165 の表示後、ペン入力を待機する。ここで、図12に示す ように、例えば平仮名入力があれば、それをなぞってペ ン入力領域枠165内に表示する。この後、入力ペン5 5によって、変換表示167が選択されるのを待って、 辞書変換を行い、その変換後の文章をカーソル163の 位置に表示する。また、再度、変換表示167が選択さ れた場合には、第2候補の辞書変換を行う。変換文章 は、次のペン入力があると確定される。また、削除表示 169が選択されると、文書入力領域153内の文字や ペン入力の軌跡を削除する処理が行われる。軌跡表示1 71が選択されると、文書入力領域153における入力 ペン55の軌跡がそのまま入力される。文書入力領域1 53に表示されている画像は、RAM27内のFAXデ ータメモリ27Aに格納されている。

【0042】S510の判断において、FAXメニュー 表示155が選択された場合には、次にFAXメニュー 処理を行い(S530)、FAX送信表示157が選択 40 された場合には、次にFAX送信処理を行い (S54 0)、受信FAX表示表示159が選択された場合に は、次に受信FAX表示処理を行う(S550)。詳細 は後述する。また、中止表示161が選択された場合に は、本ルーチンをそのまま一旦終了する。

【0043】図13は、FAXメニュー処理ルーチンの フローチャート、図14は、FAXメニュー画面の説明 図である。FAXメニュー処理が起動されると、まずF AXメニュー画面の表示が行われる(S600)。FA Xメニュー画面は、図14に一例を示すように、メニュ 50 れたか、あるいは中止表示207の選択が行われたかを

一領域181と、文書選択領域183とを備えている。 メニュー領域181には、次ページ表示185と、FA X送信表示187と、受信FAX表示表示189と、中 止表示191と、削除表示193とが表示されている。 文書選択領域183には、文書一覧195が設けられて おり、文書一覧195には、文書名表示197が表示さ れている。

【0044】 FAXメニュー画面の表示後、判断が行わ れる(S610)。判断では、文書選択が行われたか、 あるいは次ページ表示185が選択されたか、FAX送 信表示1.87が選択されたか、受信FAX表示表示18 9が選択されたか、中止表示191が選択されたか、削 除表示193が選択されたかを判断する。

【0045】ここで、文書選択、つまり何れかの文書名 表示197が選択された場合には、次に文書処理を行う (S630)。文書処理では、まず図12に示した、文 書入力画面を表示するとともに、選択された文書名表示 197の文書ファイル27Bに格納されている文書デー 夕を文書入力領域153に表示する。文書ファイル27 Bは、RAM27内に設定されている。以後、この表示 された文書データに対して、既述したS520とほぼ同 様の文書処理が行われる。つまり、予め用意していた文 章を編集して、用いることができる。

【0046】S610の判断で、次ページ表示185が 選択された場合には、ページ変更処理が実行される。ペ ージ変更処理では、文書一覧195が次ページに変更さ れる。判断で、FAX送信表示187が選択された場合 には、FAX送信処理が実行され(S640)、受信F AX表示表示189が選択された場合には、受信FAX 表示処理が実行され(S650)、削除表示193が選 択された場合には、削除処理が実行される(S66 0)。また、中止表示191が選択された場合には、本 ルーチンは、そのまま一旦終了される。

【0047】図15は、FAX送信処理ルーチンのフロ ーチャート、図16は、FAX送信画面の説明図であ る。FAX送信処理が起動されると、まずFAX送信画 面の表示が行われる(S700)。FAX送信画面は、 図16に一例を示すように、メニュー領域201と、送 信条件選択領域203とを備えている。メニュー領域2 01には、設定表示205と、中止表示207とが表示 されている。送信条件選択領域203には、送信先選択 表示209と、送信時間選択表示211と、送信先一覧 213と、送信時間一覧215とが設けられており、送 信先一覧213には、送信先名217が表示され、送信 時間一覧215には、送信時間名219が表示されてい

【0048】 FAX送信画面の表示後、判断が行われる (S710)。判断では、送信先選択が行われたか、送 信時間選択が行われたか、設定表示205の選択が行わ

判断する。ここで送信先選択、すなわち、何れかの送信 先名217が選択された場合には、次に送信番号設定処 理を実行する(S720)。送信番号設定処理では、ま ず選択された送信先名217に設定されている電話番号 を、RAM27内の送信番号メモリ27Cにセットする 処理を行う。セット後、判断処理に戻る。

【0049】判断処理で、送信時間選択、すなわち、何 れかの送信時間名219が選択さている場合には、次に 送信時間設定処理を実行する(S730)。送信時間設 定処理では、まず選択された送信時間名219に設定さ 10 れている送信時間をRAM27内の送信時間メモリ27 Dにセットする処理を行う。

【0050】セット後、次に設定された送信時間が即時 かを判断し(S740)、即時でなければ、そのまま本 ルーチンを一旦終了する。送信時間が即時であれば、次 にFAX送信を実行する(S750)。FAX送信処理 は、無線電話装置7によって、RAM27内のFAXデ ータメモリ27Aに格納されているFAXデータを、送 信番号メモリ27Cに設定されている送信先に、ファク シミリ送信する処理を行う。これにより、ペン入力デバ 20 イス3によって入力した、文章や画像を、その場で、所 望の先方にファクシミリ送信することができる。なお、 即時送信でない場合は、後述する。

【0051】S710の判断で、設定表示205が選択 された場合には、次にFAX設定処理が実行される (S 760)。FAX設定処理では、<u>用</u>紙の大きさ、ファク シミリの規格、送信先の追加、変更、送信時間の追加、 変更を、図示しないFAX設定処理ルーチンによって、 行う。つまり、予め設定しておくべき送信条件が設定さ れる。

【0052】判断で、中止表示207が選択された場合 には、本ルーチンをそのまま一旦終了する。図17は、 受信FAX表示処理ルーチンのフローチャート、図18 は、受信FAX一覧画面の説明図である。受信FAX表 示処理が起動されると、まず受信FAX一覧画面表示が 行われる(S800)。受信FAX一覧画面は、図18 に一例を示すように、メニュー領域221と、受信FA X選択領域223とを備えている。メニュー領域221 には、データ出力表示225と、中止表示227とが示 されている。受信FAX選択領域223には、受信FA 40 X一覧表示229と、受信FAX一覧231とが設けら れており、受信FAX一覧231には、受信FAX名2 33が表示されている。

【0053】受信FAX一覧画面の表示後、判断が行わ れる(S810)。判断では、選択が行われたか、デー 夕出力表示225が選択されたか、あるいは中止表示2 27が選択されたかを判断する。ここで何れかの受信 F AX名233が選択された場合には、次に受信FAX表 示処理を実行する(S820)。受信FAX表示処理で は、受信FAX名233に対応する受信FAXデータメ 50 55には、発信条件名259が表示されている。

モリ27Eの格納内容を、ペン入力デバイス3に画像表

【0054】判断で、データ出力表示225が選択され た場合には、データ出力処理を実行する(S830)。 データ出力処理では、図示しないデータ出力画面を表示 して、出力方法の選択を求め、選択された方法で受信F AXデータメモリ27Eの格納内容を出力する。例え ば、電話出力コネクタ69を経由して、他のファクシミ リ装置に出力したり、データ入出力コネクタ73を経由 して、他のコンピュータ装置に出力する。ファクシミリ 装置に出力することにより、用紙への印刷が実行され

【0055】判断で、中止表示227が選択された場合 には、本ルーチンは、そのまま一旦終了する。以上に説 明した受信FAX表示処理により、無線電話装置7を経 由して受信し、受信FAXデータメモリ27Eに格納さ れている受信FAXデータを、表示したり、外部に出力 して印刷したりすることができる。

【0056】図19は、削除処理ルーチンのフローチャ ートである。削除処理ルーチンが起動されると、まずF AX一覧画面の表示が行われる(S900)。図示しな いFAX一覧画面には、FAXデータメモリ27Aの格 納内容と、受信FAXデータメモリ27Eの格納内容と を示すデータ名が表示される。次いで、選択されたFA Xを削除する処理を行う(S910)。選択されたFA Xを削除する処理では、図示しないFAX一覧画面上 で、入力ペン55によって選択されたデータ名に対応す る格納データを削除する処理を行う。

【0057】本削除処理により、送信用、又は受信した 30 FAXデータで、不要になったものを削除することがで きる。以上に説明した図9のコミュニケータ制御のFA X処理(S430)により、FAXの送信データの作 成、送信、表示を入力ペン55の操作だけで行うことが

【0058】図20は、電話処理ルーチンのフローチャ ート、図21は、電話メニュー画面の説明図、図22 は、メッセージ選択画面の説明図、図23は、設定処理 ルーチンのフローチャート、図24は、留守録表示処理 ルーチンのフローチャートである。

【0059】電話処理が起動されると、まず電話メニュ ー画面の表示が行われる(S1000)。電話メニュー 画面は、図21に一例を示すように、メニュー領域24 1と、発信選択領域243とを備えている。メニュー領 域241には、設定表示245と、留守録表示表示24 7と、中止表示249とが表示されている。発信選択領 域243には、発信先選択(次ページ)表示251と、 発信先一覧253と、発信条件表示254と、発信条件 一覧255とが設けられており、発信先一覧253に は、発信先名257が表示されており、発信条件一覧2

【0060】電話メニュー画面の表示後、次に判断を行 う(S1010)。判断では、何れかの発信先名257 が選択されたか、設定表示245が選択されたか、留守 録表示表示247が選択されたか、中止表示249が選 択されたかを判断する。ここで、何れかの発信先名が選 択された場合には、次の判断を行う(S1020)。こ の判断では、発信条件名259の中から、即時表示26 1が選択されたか、メッセージ送信表示263が選択さ れたか、あるいは設定表示245、留守録表示表示24 7、中止表示249が選択されたかを判断する。ここ で、即時表示261が選択された場合には、電話発信が 行われる(S1030)。電話発信では、S1010で 選択された発信先に電話を発信する。これにより、先方 との通話が可能になる。

【0061】判断において、メッセージ送信表示263 が選択された場合には、次にメッセージ選択画面を表示 する(S1040)。メッセージ選択画面は、図22に 一例を示すように、メニュー領域271と、メッセージ 選択領域273とが表示されている。メニュー領域27 1には、電話発信表示275と、中止表示277とが表 20 示されている。メッセージ選択領域273には、メッセ ージ選択表示279と、メッセージ一覧281とが設け られており、メッセージー覧281には、メッセージ名 283が表示されている。

【0062】メッセージ選択画面の表示後、次に判断を 行う(S1050)。判断では、虫止表示277が選択 されたか、あるいは何れかのメッセージ名283が選択 されたかを判断する。ここで、中止表示277が選択さ れた場合には、本ルーチンを一旦終了し、何れかのメッ セージ名283が選択された場合には、次に選択された 30 メッセージ名283に対応する内容を表示する。ここで の表示画面の図示は省略する。表示される内容は、RA M27内のメッセージデータメモリ27Fに格納されて いる。メッセージデータメモリ27Fの内容は、図示し ないメッセージ内容追加、変更ルーチンによって、入力 ペン55を用いて、予め格納される。

【0063】内容の表示後、判断が行われる(S107 0)。判断で、図示しない電話発信表示が選択された場 合には、電話発信を行う(S1030)。ここでの電話 発信では、先方への接続後、選択されたメッセージが音 40 声で、自動的に出力される。ここで、先方から応答があ った場合には、その音声データが受信電話録音メモリ2 7Gに、格納される。この内容は、図示しない受信電話 録音再生処理により、再生される。

【0064】判断で、図示しない中止表示が選択された 場合には、そのまま本ルーチンを一旦終了する。これに より、メッセージ送信は、中止される。電話メニュー画 面の表示状態において、設定表示245が選択された場 合には、次に設定処理が行われる(S1080)。設定

る(S1100)。設定画面は、図示は省略するが、留 守録実行表示と、留守録キャンセル表示と、中止表示 と、音声モード表示と、音声文字変換モード表示とを備 えている。この設定画面の表示後、判断が行われる。

【0065】判断で、留守録実行表示が選択された場合 には、次に留守録処理が行われる(S1120)。留守 録処理では、無線電話装置7を経由して受信した電話の 留守録を実行するセットを行う。以後、受信した電話に 対して、自動的に応答し、受信内容を留守録メモリ27 10 Hに格納する処理が自動的に行われる。

【0066】一方、判断で、留守録キャンセル表示が選 択された場合には、留守録キャンセル処理が行われる (S1130)。この処理により、受信した電話を留守 録する処理が停止される。また、判断で、中止表示が選 択された場合には、そのまま本ルーチンを一旦終了す

【0067】判断で、音声モード表示が選択された場合 には、文字変換キャンセル処理が実行される(S114 0)。文字変換キャンセル処理では、次に説明する文字 変換作動をキャンセルする。判断で、音声文字変換モー ド表示が選択された場合には、文字変換作動処理を行う (S1150)。文字変換作動処理では、RAM27内 の受信電話録音メモリ27Gに格納された留守録音声 を、音声解析プロセッサ24により、文字データに変換 して、受信電話文字メモリ27 I に格納する処理を行 う。また、留守録以外の場合には、無線電話装置7を経 由して受信した音声信号を、リアルタイムで、文字デー 夕に変換して、ペン入力デバイス3に文字表示する処理 を行う。これにより、受信した電話通話を、音声で聞く ことに加えて、あるいは音声で聴くことに替えて、文字 データで確認することができる。

【0068】以上の、設定処理により、留守録を行うか 否かを簡単に設定することができる。また、電話通話を 文字データに変換して、認識することから、音を発する ことができない場面の電話通話に便利であり、あるいは 聾唖者用の電話装置として活用できる。

【0069】電話メニュー画面の表示状態において、留 守録表示表示247が選択された場合には、次に留守録 表示処理が行われる(S1090)。留守録表示処理 は、図24に示すように、まず留守録一覧画面が表示さ れる(S1200)。留守録一覧画面は、図示は省略す るが、留守録一覧と、留守文字一覧と、削除表示と、中 止表示とを備えている。この判断で、留守録一覧、又は 留守文字一覧の中から、何れかの留守録、又は留守文字 が選択された場合には、次にそれを再生する (S122 0)。再生は、留守録の場合では、RAM27内の受信 電話録音メモリ27Gの中から留守録データを呼び出し て、イヤー通話機49、又はスピーカ51によって、行 なう。また、留守文字の場合では、RAM27内の受信 処理は、図23に示すように、まず設定画面が表示され 50 電話文字メモリ27lの中から留守文字データを呼び出

して、ペン入力デバイス3により、行なう。

【0070】判断で、削除であるとされた場合には、次 に削除処理を行う(S1230)。削除処理は、留守録 一覧の中、又は留守文字一覧の中から入力ペン55によ って、選択された留守録音を受信電話録音メモリ27G の中から削除する処理、又は受信電話文字メモリ27Ⅰ の中から削除する処理を行う。

【0071】判断で、中止が選択された場合には、その まま本ルーチンを一旦終了する。以上に説明した留守録 表示処理により、留守録した音声データを再生すること 10 と、文字データの型式で留守録したデータを表示するこ とができる。図25は、データ処理ルーチンのフローチ ャート、図26は、データ入力画面の説明図、図27 は、伝送条件設定処理ルーチンのフローチャート、図2 8は、データ送信処理ルーチンのフローチャートであ

【0072】図25のデータ処理が起動されると、まず データ入力画面の表示が行われる(S1300)。デー タ入力画面は、図26に示すように、メニュー領域29 1と、データ入力領域293とを備えている。メニュー 領域291には、伝送条件設定表示295と、データ送 信表示297と、受信データ表示表示299と、中止表 示301とが設けられている。データ入力領域293 は、始めは無地状態である。

【0073】データ入力画面の表示後、判断が行われる (S1310)。判断では、データ入力が選択された か、伝送条件設定表示295が選択されたか、データ送 信表示297が選択されたか、受信データ表示表示29 9が選択されたか、中止表示301が選択されたかを見 る。ここで、データ入力の選択とは、入力ペン55によ 30 って、データ入力領域293を選択した場合である。

【0074】データ入力が選択された場合には、次にデ 一夕入力処理が行われる(S1320)。データ入力処 理では、まず入力ペン55によって指示された点、例え ば図26に示すように点303に、カーソル305を表 示するとともに、ペン入力領域枠307を表示する。次 いで、入力されたデータを送信データデータメモリ27 Jに格納する処理を行う。

【0075】判断で、伝送条件設定表示295が選択さ れた場合には、次に伝送条件設定処理を行う(S133 40 0)。詳細は後述する。また、判断で、データ送信表示 297が選択された場合には、次にデータ送信処理を実 行し(S1340)、受信データ表示表示299が選択 された場合には、受信データ表示処理を実行し (S13 50)、中止表示301が選択された場合には、本ルー チンをそのまま一旦終了する。

【0076】S1330の伝送条件設定処理では、図2 7に示すように、まず伝送条件設定画面表示を行う (S 1400)。伝送条件設定画面は、図示を省略するが、

こで、選択表示が選択された場合には、次に伝送条件変 更処理が行われる(S1420)。伝送条件変更処理で は、まず図示しない伝送条件変更画面を表示する。この 伝送条件変更画面には、終了表示と、中止表示と、およ びBPS表示、キャラクタ長表示、パリティチェック表 示、ストップビット数表示、Xパラメータ表示などのデ 一夕伝送を行う場合の伝送条件選択表示とが表示されて いる。次いで、画面上で選択された情報を入力する処理 を行う。

【0077】この伝送条件変更画面、又は伝送条件設定 画面の状態で、終了表示が選択されると、伝送条件変更 処理の内容が確定される。また、中止表示が選択される と、伝送条件変更処理の変更が中止される。つまり、従 前の内容は、変更されることはない。

【0078】本伝送条件設定処理により、コンピュータ 間のデータ伝送の規格を設定することができる。図25 のS1310でデータ送信表示297が選択された場合 には、図28のデータ送信処理に示すように、まずデー 夕送信画面表示が行われる(S1500)。データ送信 画面は、図示を省略するが、送信先選択表示と、送信時 間選択表示と、設定表示と、中止表示とを備えている。 表示後判断が行われる(S1510)。

【0079】ここで、送信先選択表示が選択されたと判 断した場合には、次に送信番号設定処理が実行される

(S1520)。送信番号設定処理では、まず図示しな い送信番号選択画面が表示される。送信番号選択画面に は、送信番号一覧と、新規番号追加表示とが設けられて いる。送信番号一覧には、送信番号表示が複数設けられ ている。新規番号追加表示は、これが選択されると、ペ ン入力領域枠が表示され、新規の送信先番号が入力され る。ここで、所望の送信番号の選択を待って、選択があ ったらこの番号をデータ送信番号メモリ27Kに設定す

【0080】判断で、送信時間選択表示が選択された場 合には、つぎに送信時間設定処理を行う(S153 0)。送信時間設定処理では、まず図示しない送信時間 選択画面が表示される。送信時間選択画面には、送信時 間入力表示と、即時表示とが設けられている。送信時間 入力表示が選択されると、ペン入力領域枠が表示され、 ペン入力による日時データがデータ送信時間メモリ27 しに格納される。また、即時表示が選択されると、即時 データが格納される。

【0081】日時のデータが格納されて後、次に即時か の判断が行われる(S1540)。即時でないと判断さ れれば、本ルーチンをそのまま一旦終了する。一方、即 時であると判断された場合には、次にデータ送信処理を 実行する(S1550)。データ送信処理では、送信デ ータメモリ27Mに格納されている内容を即刻送信す る。送信は、S1330で設定された伝送条件で、S1 選択表示と、中止表示と、終了表示とを備えている。こ 50 520で設定された送信番号に送られる。

【0082】S1510の判断で、中止表示が選択され た場合は、本ルーチンをそのまま一旦終了する。設定表 示が選択された場合には、次にデータ設定処理を実行す る(S1560)。データ設定処理では、まず図示しな いデータ設定画面が表示される。このデータ設定画面に は、データ入力対象表示、入力型式選択表示が設けられ ている。データ入力対象表示には、たとえばデータ入出 カコネクタ73、カードコネクタ75、カードコネクタ 77が表示されている。入力型式選択表示には、テキス ト、パイナリ、MMRデータ、RS232C等が表示さ 10 れる。

【0083】本データ送信処理によりデータを入力して 送信するための設定が行われる。図25のS1310の 判断で、受信データ表示表示299が選択された場合に は、受信データ表示処理が実行される(S1350)。 受信データ表示処理では、図示しない受信データ表示一 覧画面を表示して、選択を求め、選択された受信データ を、画像表示する。また、外部出力の選択があった場合 には、選択されたポートから出力する。

【0084】判断 (S1310) で、中止表示301が 20 選択された場合には、本ルーチンをそのまま一旦終了す る。以上に説明したデータ処理により、先方のコンピュ 一夕に直接データを送信したり、先方から送られてきた データを表示したりすることができる。

【0085】図29は、アプリケーション処理ルーチン のフローチャート、図30は、アプリケーション選択画 面の説明図である。図9のS420の判断で、アプリケ ーションメニュー表示139が選択された場合には、次 にアプリケーション処理が実行される(S460)。ア プリケーション処理では、図29に示すように、まずア プリケーション選択画面が表示される(S1600)。 アプリケーション選択画面には、図30に示すように、 メニュー領域311と、アプリケーション選択領域31 3とが設けられている。

【0086】メニュー領域311には、入替表示315 と、全ページ表示317と、次ページ表示319と、中 止表示321と、実行表示323とが設けられている。 アプリケーション選択領域313には、アプリケーショ ン一覧325が設けられている。アプリケーション一覧 325には、利用可否表示327が設けられている。利 40 用可否表示327は、白丸表示の利用可表示329と、 黒丸表示の利用不可表示331とが設けられている。利 用不可表示331の場合は、カード収納部79に、アプ リケーションソフトウエアカードがセットされていない 状態を示す。

【0087】アプリケーション一覧325には、アプリ ケーション表示333が設けられている。アプリケーシ ョン選択画面の表示後、次に判断を行う(S161 0)。判断では、アプリケーション選択画面の何れが選

の選択があった場合には、選択の処理が実行され、中止 表示321が選択された場合には、本ルーチンをそのま ま一旦終了する。また、アプリケーション選択領域31 3内の処理が選択された場合には、次にアプリケーショ ン実行を行う(S1620)。アプリケーション実行で は、選択されたアプリケーションルーチンに処理を移行 する。アプリケーションの例は、後述する。

【0088】図31は、アプリケーションメニュー登録 処理ルーチンのフローチャート、図32は、コミュニケ ータセンタメニュー登録処理ルーチンのフローチャート である。図31のアプリケーションメニュー登録処理 は、所定時間毎に起動される。まず、新規のアプリケー ションソフトウエアカードの挿入かを判断する。この判 断は、まずカードコネクタ75、77にアプリケーショ ンソフトウエアカード95、97が挿入されているかを 検出し、挿入されていればそのカードが既にアプリケー ション登録されているものか否かを判断することにより 行う。

【0089】新規のカードが挿入されていなければ、そ のまま本ルーチンを一旦終了する。挿入されていれば、 登録データの入力を行う(S1710)。登録データ は、所定のデータが入力される。次いで、アプリケーシ ョン登録を行う(S1720)。アプリケーション登録 は、EEPROM29内のアプリケーション登録エリア 29Aに行う。アプリケーション登録を行うと、図30 に示したアプリケーション選択画面のメニュー領域31 1内に表示される。

【0090】図32のコミュニケータセンタメニュー登 録処理は、所定時間毎に起動され、まずコミュニケータ センタ391と通信中かを判断する(S1800)。通 信中でなければ、本ルーチンをそのまま一旦終了する。 コミュニケータセンタ391と通信中であれば、次にコ ミュニケータセンタメニューの読込を行う(S181 0)。コミュニケータセンタメニューは、詳細は後述す るがコミュニケータセンタ391との通信データに含ま れて送信されてくる。読込後、コミュニケータセンタメ ニューに変更があるか否かを判断し(S1820)、変 更がなければ、本ルーチンをそのまま一旦終了する。変 更があれば、コミュニケータセンタメニュー登録を行う (S1830)。コミュニケータセンタメニュー登録 は、EEPROM29内のコミュニケータセンタメニュ ーエリア29B内に行う。これにより、コミュニケータ センタメニュが適宜修正される。

【0091】図33は、コミュニケータセンタ呼出処理 ルーチンのフローチャート、図34~図36は、コミュ ニケータセンタ呼出処理の説明図、図37は、コミュニ ケータセンタ391の説明図である。コミュニケータセ ンタ391は、図37に示すように、無線電話センタ3 93に接続されている。無線電話センタ393は、公衆 択されたかを判断する。ここで、メニュー領域311内 50 通信回線395に接続されるとともに、所定無線電話サ

24

ーピスエリア毎に配置されており、パーソナルコミュニ ケータ1などの無線電話装置と双方向通信を行う。 コミ ュニケータセンタ391は、チケットセンタ397、銀 行コンピュータセンタ399、証券会社401などに接 続されている。

【0092】図33のコミュニケータセンタ呼出処理 は、図29のS1610において、図30の「11コミ ュニケータセンタ呼出・オンライン」表示341が選択 された場合に起動される処理である。まず、利用項目の 表示が行われる(S1900)。利用項目の表示は、図 10 場合には、データ受信設定処理(S2045)、電話発 34に示すように、選択を求める表示351と、利用項 目一覧353とを備えている。利用項目一覧353に は、利用項目名355が表示されている。この表示の 後、判断が行われて(S1910)、選択された利用項 目名355の項目別メニューの表示が行われる(S19 20)。

【0093】項目別メニューは、図35に示すように、 選択を求める表示361と、選択一覧363とを備えて いる。選択一覧363は、選択名365を備えている。 項目別メニューの表示後、判断を行って(S193 0)、選択された選択名365の個別処理画像を表示す る(S1940)。個別処理画像は、図36に示すよう に、所定のデータの入力や選択を求めるものである。こ こでは、チケットの予約の例を示す。

【0094】図36に示す画面には、個別処理の表題表 示371と、入力を求める内容の表示373、377、 381と、入力欄375、379と、選択欄383と、 ペン入力領域枠385とが表示されている。この個別処 理画像に入力が完了すると、次に個別処理実行が行われ る (S1950)。 個別処理実行では、まず、コミュニ 30 ケータセンタ391に接続される。次いで、個別処理画 像によって入力されたデータが、コミュニケータセンタ 391に送信され、所定の手順によるチケットの予約処 理が実行される。

【0095】以上に説明したコミュニケータセンタ39 1は、パーソナルコミュニケータ1と共働する事によ り、チケットの予約や各種の情報サービスを効率よく、 かつ確実に間違いなく行うことができる。また、アプリ ケーション処理機能を有することにより、パーソナルコ ミュニケータ1に殆ど無限の利用範囲を提供する。

【0096】図38は、設定処理ルーチンのフローチャ ート、図39は、設定対象選択画面の説明図である。図 9のS420で設定メニュー表示141が選択された場 合には、次に図38の設定処理が実行される。まず、設 定対象選択画面が表示される(S2000)。設定対象 選択画面には、図39に示すように、設定対象選択表示 411と、設定対象一覧413と、中止表示417とが 設けられている。設定対象一覧413には、設定対象名 表示415が表示されている。

【0097】設定対象選択画面の表示後、次に判断を行 50

う(S2010)。判断で、中止表示417が選択され た場合には、本ルーチンをそのまま一旦終了する。一 方、設定対象一覧413の何れかが選択された場合に は、次の設定処理を実行する。FAX送信表示421が 選択された場合には、FAX送信設定処理が実行される (S2020)。FAX受信表示423が選択された場 合には、FAX受信設定処理(S2030)、データ送 信表示425が選択された場合には、データ送信設定処 理(S2040)、データ受信表示427が選択された 信表示429が選択された場合には、電話発信設定処理 (S2050)、電話受信表示431が選択された場合 には、電話受信設定処理(S2060)が実行される。 【0098】S2020~S2060の各設定処理で は、所定の手順に従って、所定の内容の設定が行われ る。以上に説明したコミュニケータ制御により、使用者 のデータの入出力や設定が行われる。

【0099】図40は、FAX送信時間モニタ処理ルー チンのフローチャート、図41は、データ送信時間モニ タ処理ルーチンのフローチャートである。これは、CP U23によって所定時間毎に起動される。図40のFA X送信時間モニタ処理が起動されると、まず送信待があ るか否かを判断する (S2100)。送信待は、FAX データメモリ27A内に、FAXデータが格納されてい るか否かで判断する。ここで、送信待でないと判断した 場合には、本ルーチンをそのまま一旦終了する。一方、 送信待があれば、次に送信時間か否かを判断する (S2 110)。送信時間は、送信時間メモリ27Dに設定さ れている送信時間を現在時刻と対比することにより行 う。

【0100】ここで、送信時間でなければ、本ルーチン をそのまま一旦終了する。送信時間であれば、次にFA X送信を行う(S2120)。以上に説明したFAX送 信時間モニタ処理により、FAXの予約送信が行われ

【0101】図41のデータ送信時間モニタが起動され ると、まず送信待ちがあるかが判断される(S220 0)。送信待は、送信データメモリ27M内に、データ が格納されているか否かで判断する。ここで、送信待で ないと判断した場合には、本ルーチンをそのまま一旦終 了する。一方、送信待があれば、次に送信時間か否かを 判断する(S2210)。送信時間は、データ送信時間 メモリ27Lに設定されている送信時間を現在時刻と対 比することにより行う。

【0102】ここで、送信時間でなければ、本ルーチン をそのまま一旦終了する。送信時間であれば、次にデー 夕送信を行う(S2220)。以上に説明したデータ送 信時間モニタ処理により、データの予約送信が行われ

【0103】以上に説明したパーソナルコミュニケータ

1は、電話通話、FAX通信、データ通信、各種アプリケーション処理などを、キーボード操作を行うことなく行なうことができるとともに、これらの全てを一式携帯することができる。この結果、利便性が高い情報交換装置が得られるという極めて優れ効果を奏する。

【0104】なお、本発明は上記の実施例に限定される ものでなく本発明の要旨を変更しない範囲で様々な態様 の実施が可能である。

[0105]

【発明の効果】本発明の請求項1の携帯型コミュニケー 10 夕は、全体に電源が供給されることのない待機状態でも 受信待機中の確認が可能になり、携帯型コミュニケータ の動作状態のモニタが常時可能になる。

【0106】この結果、高い利便性が得られると言う極めて優れた効果を奏する。本発明の請求項2の携帯型コミュニケータは、全体に蓄電池からの電源が供給されることのない待機状態でも電源容量の確認が可能になり、携帯型コミュニケータの動作状態のモニタが常時可能になる。

【0107】 この結果、高い利便性が得られると言う極 20 ある。 めて優れた効果を奏する。本発明の請求項3の携帯型コ ミュニケータは、全体に蓄電池からの電源が供給される ートで ことのない待機状態でも受信待機中の確認と、電源容量 の確認とが可能になり、携帯型コミュニケータの動作状 態のモニタが常時可能になる。 のフロ

【0108】<u>この結果、高い利便性が得られると言う極めて優れた効果を奏する。</u>

【図面の簡単な説明】

- 【図1】パーソナルコミュニケータ1の斜視図である。
- 【図2】パーソナルコミュニケータ1の斜視図である。
- 【図3】パーソナルコミュニケータ1のブロック図である。
- 【図4】ディスプレイ15の表示状態の説明図である。
- 【図5】ディスプレイ制御の説明図である。
- 【図 6 】 ディスプレイ制御処理ルーチンのフローチャートである。
- 【図7】モニタ制御処理ルーチンのフローチャートである。
- 【図8】パーソナルコミュニケータ1の待機、及び充電状態の使用状態図である。
- 【図9】コミュニケータ制御処理ルーチンのフローチャートである。
- 【図10】現況報告画面の説明図である。
- 【図11】FAX処理ルーチンのフローチャートである。
- 【図12】文書入力画面の説明図である。
- 【図13】 FAXメニュー処理ルーチンのフローチャートである。
- 【図14】 FAXメニュー画面の説明図である。

- 【図15】 FAX送信処理ルーチンのフローチャートである。
- 【図16】FAX送信画面の説明図である。
- 【図17】受信FAX表示処理ルーチンのフローチャートである。
- 【図18】受信FAX一覧画面の説明図である。
- 【図19】削除処理ルーチンのフローチャートである。
- 【図20】電話処理ルーチンのフローチャートである。
- 【図21】電話メニュー画面の説明図である。
- 【図22】メッセージ選択画面の説明図である。
 - 【図23】設定処理ルーチンのフローチャートである。
 - 【図24】留守録表示処理ルーチンのフローチャートで ある。
 - 【図 2 5】データ処理ルーチンのフローチャートである。
 - 【図26】データ入力画面の説明図である。
 - 【図 2 7】伝送条件設定処理ルーチンのフローチャート である。
- 【図28】データ送信処理ルーチンのフローチャートで 〕 ある。
 - 【図29】アプリケーション処理ルーチンのフローチャートである。
 - 【図30】アプリケーション選択画面の説明図である。
 - 【図31】アプリケーションメニュー登録処理ルーチンのフローチャートである。
 - 【図32】コミュニケータセンタメニュー登録処理ルーチンのフローチャートである。
 - 【図33】コミュニケータセンタ呼出処理ルーチンのフローチャートである。
- 30 【図34】コミュニケータセンタ呼出処理の説明図であ
 - 【図35】コミュニケータセンタ呼出処理の説明図である。
 - 【図36】コミュニケータセンタ呼出処理の説明図であ る。
 - 【図37】コミュニケータセンタ391の説明図である。 ペ
 - 【図38】設定処理ルーチンのフローチャートである。
 - 【図39】設定対象選択画面の説明図である。
- 40 【図40】 FAX送信時間モニタ処理ルーチンのフロー チャートである。
 - 【図41】データ送信時間モニタ処理ルーチンのフローチャートである。

【符号の説明】

- 1…パーソナルコミュニケータ
- 3…ペン入力デバイス
- 5 …本体
- 7…無線電話装置

[図3]

【図6】

-

【図16】

【図17】

【図20】

【図21】

【図23】

【図24】

【図25】

【図26】

【図30】

【図27】

【図28】

【図29】

