Data Science Companion

${\rm Greg\ Simon,\ gregorygsimon@gmail.com}$

October 3, 2020

Abstract

A reference for basic data science tools and vocabulary, explaining essential terms and concepts, examining core ideas in major areas, and putting methods in historical context.

Contents

1	Natural Language Processing	2
2	Deep Learning	2
3	Time series & Forecasting	2
	3.1 ARIMA	
	3.2 In R	2
	3.3 In Python	2
	3.4 References	2

1 Natural Language Processing

2 Deep Learning

3 Time series & Forecasting

3.1 ARIMA

An ARIMA(p, d, q) is an autoregressive integrated moving-average with p autoregressive terms (AR), d differencings, and q moving average (MA) terms.

$$\phi(B)(1-B)^d Y_t = c + \theta(B)\epsilon_t$$

where

- B is the back-shift/lag operator $BY_t = Y_{t-1}$.
- $\phi(B) = (1 \phi_1 B \dots \phi_p B^p)$ is the autoregressive AR(p) component
- \bullet c is a constant
- $\theta(B) = 1 + \theta_1 B + \dots + \theta_q B^q$ is the moving average of the errors MA(q) component.
- ϵ_t is the error of the AR(p) model at time t
- The $(1-B)^d$ term induces d differencing

3.2 In R

auto.arima utilizes AIC and MLE to decide on best ARIMA parameters

3.3 In Python

3.4 References

https://otexts.com/fpp2/non-seasonal-arima.html