SYLLABUS

ENGLISH - I

Introduction:

In view of the growing importance of English as a tool for global communication and the consequent emphasis on training the students to acquire communicative competence, the syllabus has been designed to develop linguistic and communicative competence of the students of Engineering.

As far as the detailed Textbooks are concerned, the focus should be on the skills of listening, speaking, reading and writing. The non-detailed Textbooks are meant for extensive reading for pleasure and profit.

Thus the stress in the syllabus in primarily on the development of communicative skills and fostering of ideas.

Objectives:

- 1. To imporve the language proficiency of the students in English with emphasis on LSRW skills.
- 2. To enable the students to study and comprehend the prescribed lessons and subjects more effectively relating to their theoretical and practical components.
- 3. To develop the communication skills of the students in both formal and informal situations.

LISTENING SKILLS:

Objectives:

- 1. To enable the students to appreciate the role of listening skill and improve their pronounciation.
- 2. To enable the students to comprehend the speech of people belonging to different backgrounds and regions.
- 3. To enable the students to listen for general content, to fill up information and for specific information.

SPEAKING SKILLS:

Objectives:

- 1. To make the students aware of the importance of speaking for their personal and professional communication.
- 2. To enable the students to express themselves fluently and accurately in social and professional success.
- 3. To help the students describe objects, situations and people.
- 4. To make the students participate in group activities like roleplays, discussions and debates.
- 5. To make the students particiante in Just a Minute talks.

READING SKILLS:

Objectives:

- 1. To enable the students to comprehend a text through silent reading.
- 2. To enable the students to guess the meanings of words, messages and inferences of texts in given contexts.
- 3. To enable the students to skim and scan a text.
- 4. To enable the students to identify the topic sentence.
- 5. To enable the students to identify discourse features.
- 6. To enable the students to make intensive and extensive reading.

WRITING SKILLS:

Objectives:

- 1. To make the students understand that writing is an exact formal skills.
- 2. To enable the students to write sentences and paragraphs.
- 3. To make the students identify and use appropriate vocabulary.
- 4. To enable the students to narrate and describe.
- 5. To enable the students capable of note-making.
- 6. To enable the students to write coherently and cohesively.
- 7. To make the students to write formal and informal letters.
- 8. To enable the students to describe graphs using expressions of comparision.
- 9. To enable the students to write techincal reports.

Methodology:

- 1. The class are to be learner-centered where the learners are to read the texts to get a comprehensive idea of those texts on their own with the help of the peer group and the teacher.
- 2. Integrated skill development methodology has to be adopted with focus on individual language skills as per the tasks/exercise.
- 3. The tasks/exercises at the end of each unit should be completed by the learners only and the teacher interventionis perimitted as per the complexity of the task/exercise.
- 4. The teacher is expected to use supplementary material wherever necessary and also generate activities/tasks as per the requirement.
- 5. The teacher is perimitted to use lecture method when a completely new concept is introduced in the class.

Assessment Procedure: Theory

- 1. The formative and summative assessment procedures are to be adopted (mid exams and end semester examination).
- 2. Neither the formative nor summative assessment procedures should test the memory of the content of the texts given in the textbook. The themes and global comprehension of the units in the present day context with application of the language skills learnt in the unit are to be tested.
- 3. Only new unseen passages are to be given to test reading skills of the learners. Written skills are to be tested from sentence level to essay level. The communication formats—emails, letters and reports—are to be tested along with appropriate language and expressions.
- 4. Examinations:

I mid exam + II mid exam (15% for descriptive tests+10% for online tests)= 25%

(80% for the best of two and 20% for the other)

Assignments= 5%

End semester exams=70%

5. Three take home assignments are to be given to the learners where they will have to read texts from the reference books list or other sources and write their gist in their own words.

The following text books are recommended for study in I B.Tech I Semester (Common for all branches) and I B.Pharma I Sem of JNTU Kakinada from the academic year 2016-17

(R-16 Regualtions)

DETAILED TEXTBOOK:

ENGLISH FOR ENGINEERS AND TECHNOLOGISTS, Published by Orient Blackswan Pvt Ltd

NON-DETAILED TEXTBOOK:

PANORAMA: A COURSE ON READING, Published by Oxford University Press India

The course content along with the study material is divided into six units.

UNIT I:

1. 'Human Resources' from English for Engineers and Technologists.

OBJECTIVE:

To develop human resources to serve the society in different ways.

OUTCOME:

The lesson motivates the readers to develop their knowledge different fields and serve the society accordingly.

2. 'An Ideal Family' from Panorama: A Course on Reading

OBJECTIVE:

To develop extensive reading skill and comprehension for pleasure and profit.

OUTCOME:

Acquisition of writing skills

UNIT 2:

1. 'Transport: Problems and Solutions' from English for Engineers and Technologists.

OBJECTIVE:

To highlight road safety measures whatever be the mode of transport.

OUTCOME:

The lesson motivates the public to adopt road safety measures.

2. 'War' from 'Panorama: A Course on Reading'

OBJECTIVE:

To develop extensive reading skill and comprehension for pleasure and profit.

OUTCOME:

Acquisition of writing skills

UNIT 3:

1. 'Evaluating Technology' from English for Engineers and Technologists.

OBJECTIVE:

To highlight the advantages and disadvantages of technology.

OUTCOME:

The lesson creates an awareness in the readers that mass production is ultimately detrimental to biological survival.

2. 'The Verger' from 'Panorama: A Course on Reading'

OBJECTIVE:

To develop extensive reading skill and comprehension for pleasure and profit.

OUTCOME:

Acquisition of writing skills

UNIT 4:

1. 'Alternative Sources of Energy' from English for Engineers and Technologists.

OBJECTIVE:

To bring into focus different sources of energy as alternatives to the depleting sources.

OUTCOME:

The lesson helps to choose a source of energy suitable for rural India.

2. 'The Scarecrow' from Panorama: A Course on Reading

OBJECTIVE:

To develop extensive reading skill and comprehension for pleasure and profit.

OUTCOME:

Acquisition of writing skills

UNIT 5:

1. 'Our Living Environment' from English for Engineers and Technologists.

OBJECTIVE:

To highlight the fact that animals must be preserved beacuase animal life is precious.

OUTCOME:

The lesson creates an awareness in the reader as to the usefulness of animals for the human society.

2. 'A Village Host to Nation' from Panorama: A Course on Reading

OBJECTIVE:

To develop extensive reading skill and comprehension for pleasure and profit.

OUTCOME:

Acquisition of writing skills

UNIT 6:

1. 'Safety and Training' from English for Engineers and Technologists.

OBJECTIVE:

To highlight the possibility of accidents in laboratories, industries and other places and to follow safety measures.

OUTCOME:

The lesson helps in identifying safety measures against different varieties of accidents at home and in the workplace.

2. 'Martin Luther King and Africa' from Panorama: A Course on Reading

OBJECTIVE:

To develop extensive reading skill and comprehension for pleasure and profit.

OUTCOME:

Acquisition of writing skills

NOTE:

All the exercises given in the prescribed lessons in both detailed and non-detailed textbooks relating to the theme and language skills must be covered.

OVERALL COURSE OUTCOME:

- 1. Using English languages, both written and spoken, competently and correctly.
- 2. Improving comprehension and fluency of speech.
- 3. Gaining confidence in using English in verbal situations.

MODEL QUESTION PAPER FOR THEORY

PART- I

Six short answer questions on 6 unit themes

One question on eliciting student's response to any of the themes

PART-II

Each question should be from one unit and the last question can be a combination of two or more units.

Each question should have 3 sub questions: A,B & C

A will be from the main text: 5 marks

B from non-detailed text: 3 marks

C on grammar and Vocabulary: 6 marks

MATHEMATICS-I

(Common to ALL branches of First Year B.Tech.)

Course Objectives:

- 1. The course is designed to equip the students with the necessary mathematical skills and techniques that are essential for an engineering course.
- 2. The skills derived from the course will help the student from a necessary base to develop analytic and design concepts.

Course Outcomes: At the end of the Course, Student will be able to:

- 1. Solve linear differential equations of first, second and higher order.
- 2. Determine Laplace transform and inverse Laplace transform of various functions and use Laplace transforms to determine general solution to linear ODE.
- 3. Calculate total derivative, Jocobian and minima of functions of two variables.

UNIT I: Differential equations of first order and first degree:

Linear-Bernoulli-Exact-Reducible to exact.

Applications: Newton's Law of cooling-Law of natural growth and decay-Orthogonal trajectories- Electrical circuits- Chemical reactions.

UNIT II: Linear differential equations of higher order:

Non-homogeneous equations of higher order with constant coefficients with RHS term of the type e^{ax} , sin ax, cos ax, polynomials in x, e^{ax} V(x), xV(x)- Method of Variation of parameters. Applications: LCR circuit, Simple Harmonic motion.

UNIT III: Laplace transforms:

Laplace transforms of standard functions-Shifting theorems - Transforms of derivatives and integrals - Unit step function -Dirac's delta function- Inverse Laplace transforms- Convolution theorem (with out proof).

Applications: Solving ordinary differential equations (initial value problems) using Laplace transforms.

UNIT IV: Partial differentiation:

Introduction- Homogeneous function-Euler's theorem-Total derivative-Chain rule-Generalized Mean value theorem for single variable (without proof)-Taylor's and Mc Laurent's series expansion of functions of two variables—Functional dependence-Jacobian.

Applications: Maxima and Minima of functions of two variables without constraints and Lagrange's method (with constraints).

UNIT V: First order Partial differential equations:

Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions –solutions of first order linear (Lagrange) equation and nonlinear (standard types) equations.

UNIT VI: Higher order Partial differential equations:

Solutions of Linear Partial differential equations with constant coefficients. RHS term of the type e^{ax+by} , $\sin(ax+by)$, $\cos(ax+by)$, x^my^n . Classification of second order partial differential equations.

Text Books:

- 1. **B.S.Grewal,** Higher Engineering Mathematics, 43rd Edition, Khanna Publishers.
- 2. N.P.Bali, Engineering Mathematics, Lakshmi Publications.

Reference Books:

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wiley-India
- 2. Micheael Greenberg, Advanced Engineering Mathematics, 9th edition, Pearson edn
- 3. Dean G. Duffy, Advanced engineering mathematics with MATLAB, CRC Press
- 4. Peter O'neil, Advanced Engineering Mathematics, Cengage Learning.
- 5. Srimanta Pal, Subodh C.Bhunia, Engineering Mathematics, Oxford University Press.
- 6. Dass H.K., Rajnish Verma. Er., Higher Engineering Mathematics, S. Chand Co. Pvt. Ltd, Delhi.

ENGINEERING CHEMISTRY

(CE, ME, PCE, PE, Met.E, Mining, Automobile, Aeronautical, Chemical, Bio. Tech.)

Knowledge of basic concepts of Chemistry for Engineering students will help them as professional engineers later in design and material selection, as well as utilizing the available resources.

Learning Objectives:

- Plastics are nowadays used in household appliances; also they are used as composites (FRP) in aerospace and automotive industries.
- Fuels as a source of energy are a basic need of any industry, particularly industries like thermal power stations, steel industry, fertilizer industry etc., and hence they are introduced.
- The basics for the construction of galvanic cells are introduced. Also if corrosion is to be controlled, one has to understand the mechanism of corrosion which itself is explained by electrochemical theory.
- With the increase in demand, a wide variety of materials are coming up; some of them have excellent engineering properties and a few of these materials are introduced.
- Water is a basic material in almost all the industries, more so where steam is generated and also where it is supplied for drinking purposes.
- Materials used in major industries like steel industry, metallurgical industries and construction industries and electrical equipment manufacturing industries are introduced. Also lubrication is introduced.

UNIT I: HIGH POLYMERS AND PLASTICS

Polymerisation:- Introduction- Mechanism of polymerization - Stereo regular polymers - methods of polymerization (emulsion and suspension) -Physical and mechanical properties - **Plastics** as engineering materials: advantages and limitations - Thermoplastics and Thermosetting plastics - Compounding and fabrication (4/5 techniques)- Preparation, properties and applications of polyethene, PVC, Bakelite Teflon and polycarbonates

Elastomers: Natural rubber- compounding and vulcanization – Synthetic rubbers: Buna S, Buna N, Thiokol and polyurethanes – Applications of elastomers.

Composite materials & Fiber reinforced plastics – Biodegradable polymers – Conducting polymers.

UNIT II: FUEL TECHNOLOGY

Fuels – Introduction – Classification – Calorific value – HCV and LCV – Dulong's formula – Bomb calorimeter – Numerical problems – Coal — Proximate and ultimate analysis – Significance of the analyses – Liquid fuels – Petroleum- Refining – Cracking – Synthetic petrol –Petrol knocking – Diesel knocking – Octane and Cetane ratings – Anti-knock agents – Power alcohol – Bio-diesel – Gaseous fuels – Natural gas, LPG and CNG – Combustion – Calculation of air for the combustion of a fuel – Flue gas analysis – Orsat apparatus – Numerical problems on combustion.

Explosives:- Rocket fuels

UNIT III: ELECTROCHEMICAL CELLS AND CORROSION

Galvanic cells - Reversible and irreversible cells - Single electrode potential - Electro chemical series and uses of this series- Standard electrodes (Hydrogen and Calomel electrodes) - Concentration Cells - Batteries: Dry Cell - Ni-Cd cells - Ni-Metal hydride cells - Li cells - Zinc - air cells.

Corrosion: Definition – Theories of Corrosion (chemical & electrochemical) – Formation of galvanic cells by different metals, by concentration cells, by differential aeration and waterline corrosion – Passivity of metals – Pitting corrosion - Galvanic series – Factors which influence the rate of corrosion - Protection from corrosion – Design and material selection – Cathodic protection - Protective coatings: – Surface preparation – Metallic (cathodic and anodic) coatings - Methods of application on metals (Galvanizing, Tinning, Electroplating, Electroless plating).

UNIT IV: CHEMISTRY OF ADVANCED MATERIALS

Nano materials:- Introduction – Sol-gel method & chemical reduction method of preparation – Characterization by BET method and TEM methods - Carbon nano tubes and fullerenes: Types, preparation, properties and applications

Liquid crystals:- Introduction – Types – Applications

Super conductors:-Type –I, Type II – Characteristics and applications

Green synthesis: Principles - 3or 4 methods of synthesis with examples – R₄M₄ principles

UNIT V: WATER TECHNOLOGY

Hard water:- Reasons for hardness – units of hardness - determination of hardness and alkalinity - Water for steam generation - Boiler troubles – Priming and Foaming, Scale formation, Boiler corrosion, Caustic embrittlement - Internal treatments - Softening of Hard water : Lime – Soda process, Zeolite process and numerical problems based on these processes and Ion Exchange process - Water for drinking purposes-Purification – Sterilization and disinfection : Chlorination, Break point chlorination and other methods – Reverse Osmosis and Electro Dialysis.

UNIT VI: CHEMISTRY OF ENGINEERING MATERIALS AND FUEL CELLS

Refractories: - Definition, characteristics, classification, properties, failure of refractories

Lubricants: - Definition, function, Theory and mechanism of lubricants, properties (Definition and importance)

Cement: - Constituents, manufacturing, hardening and setting, deterioration of cement

Insulators: - Thermal and electrical insulators

Fuel cells: - Hydrogen Oxygen fuel cells - Methanol Oxygen fuel cells

Outcome: The advantages and limitations of plastic materials and their use in design would be understood. Fuels which are used commonly and their economics, advantages and limitations are discussed. Reasons for corrosion and some methods of corrosion control would be understood. The students would be now aware of materials like nano materials and fullerenes and their uses. Similarly liquid crystals and superconductors are understood. The importance of green synthesis is well understood and how they are different from conventional methods is also explained. The impurities present in raw water, problems associated with them and how to avoid them are understood. The advantages and limitations of plastic materials and their use in design would be understood. The commonly used industrial materials are introduced.

Standard Books:

- 1. Engineering Chemistry by Jain and Jain; Dhanpat Rai Publicating Co.
- 2. Engineering Chemistry by Shikha Agarwal; Cambridge University Press, 2015 edition.

Reference Books:

- 1. Engineering Chemistry of Wiley India Pvt. Ltd., Vairam and others, 2014 edition (second).
- 2. Engineering Chemistry by Prasanth Rath, Cengage Learning, 2015 edition.
- 3. A text book of engineering Chemistry by S. S. Dara; S. Chand & Co Ltd., Latest Edition
- 4. Applied Chemistry by H.D. Gesser, Springer Publishers
- 5. Text book of Nano-science and nanotechnology by B.S. Murthy, P. Shankar and others, University Press, IIM

ENIGINEERING MECHANICS

(Common to all branches)

Objectives: The students completing this course are expected to understand the concepts of forces and its resolution in different planes, resultant of force system, Forces acting on a body, their free body diagrams using graphical methods. They are required to understand the concepts of centre of gravity and moments of inertia and their application, Analysis of frames and trusses, different types of motion, friction and application of work energy method.

UNIT - I

Objectives: The students are to be exposed to the concepts of force and friction, direction and its application.

Introduction to Engg. Mechanics – Basic Concepts.

Systems of Forces: Coplanar Concurrent Forces – Components in Space – Resultant – Moment of Force and its Application – Couples and Resultant of Force Systems.

Friction: Introduction, limiting friction and impending motion, coulomb's laws of dry friction, coefficient of friction, cone of friction

UNIT II

Objectives: The students are to be exposed to application of free body diagrams. Solution to problems using graphical methods and law of triangle of forces.

Equilibrium of Systems of Forces: Free Body Diagrams, Equations of Equilibrium of Coplanar Systems, Spatial Systems for concurrent forces. Lamis Theorem, Graphical method for the equilibrium of coplanar forces, Converse of the law of Triangle of forces, converse of the law of polygon of forces condition of equilibrium, analysis of plane trusses.

UNIT - III

Objectives: The students are to be exposed to concepts of centre of gravity.

Centroid: Centroids of simple figures (from basic principles) – Centroids of Composite Figures

Centre of Gravity: Centre of gravity of simple body (from basic principles), centre of gravity of composite bodies, Pappus theorems.

UNIT IV

Objective: The students are to be exposed to concepts of moment of inertia and polar moment of inertia including transfer methods and their applications.

Area moments of Inertia: Definition – Polar Moment of Inertia, Transfer Theorem, Moments of Inertia of Composite Figures, Products of Inertia, Transfer Formula for Product of Inertia. **Mass Moment of Inertia:** Moment of Inertia of Masses, Transfer Formula for Mass Moments of Inertia, mass moment of inertia of composite bodies.

UNIT - V

Objectives: The students are to be exposed to motion in straight line and in curvilinear paths, its velocity and acceleration computation and methods of representing plane motion.

Kinematics: Rectilinear and Curvelinear motions – Velocity and Acceleration – Motion of Rigid Body – Types and their Analysis in Planar Motion. **Kinetics:** Analysis as a Particle and Analysis as a Rigid Body in Translation – Central Force Motion – Equations of Plane Motion – Fixed Axis Rotation – Rolling Bodies.

UNIT - VI

Objectives: The students are to be exposed to concepts of work, energy and particle motion

Work – Energy Method: Equations for Translation, Work-Energy Applications to Particle Motion, Connected System-Fixed Axis Rotation and Plane Motion. Impulse momentum method.

TEXT BOOKS:

1. Engg. Mechanics - S. Timoshenko & D.H. Young., 4th Edn - , Mc Graw Hill publications.

REFERENCES:

- 1. Engineering Mechanics statics and dynamics R.C.Hibbeler, 11th Edn Pearson Publ.
- 2. Engineering Mechanics, statics J.L.Meriam, 6th Edn Wiley India Pvt Ltd.
- 3. Engineering Mechanics, statics and dynamics I.H.Shames, Pearson Publ.
- Mechanics For Engineers, statics F.P.Beer & E.R.Johnston 5th Edn Mc Graw Hill Publ.
- 5. Mechanics For Engineers, dynamics F.P.Beer & E.R.Johnston –5th Edn Mc Graw Hill Publ.
- 6. Theory & Problems of engineering mechanics, statics & dynamics E.W.Nelson, C.L.Best & W.G. McLean, 5th Edn Schaum's outline series Mc Graw Hill Publ.
- 7. Singer's Engineering Mechanics: Statics And Dynamics, K. Vijay Kumar Reddy, J. Suresh Kumar, Bs Publications
- 8. Engineering Mechanics, Fedinand . L. Singer, Harper Collins.
- 9. Engineering Mechanics statics and dynamics, A Nelson, Mc Graw Hill publications

COMPUTER PROGRAMMING

Learning objectives:

Formulating algorithmic solutions to problems and implementing algorithms in C.

- Notion of Operation of a CPU, Notion of an algorithm and computational procedure, editing and executing programs in Linux.
- Understanding branching, iteration and data representation using arrays.
- Modular programming and recursive solution formulation.
- Understanding pointers and dynamic memory allocation.
- Understanding miscellaneous aspects of C.
- Comprehension of file operations.

UNIT-I:

History and Hardware - Computer Hardware, Bits and Bytes, Components, Programming Languages - Machine Language, Assembly Language, Low- and High-Level Languages, Procedural and Object-Oriented Languages, Application and System Software, The Development of C Algorithms The Software Development Process.

UNIT-II:

Introduction to C Programming- Identifiers, The main () Function, The printf () Function

Programming Style - Indentation, Comments, Data Types, Arithmetic Operations, Expression Types, Variables and Declarations, Negation, Operator Precedence and Associativity, Declaration Statements, Initialization.

Assignment - Implicit Type Conversions, Explicit Type Conversions (Casts), Assignment Variations, Mathematical Library Functions, Interactive Input, Formatted Output, Format Modifiers.

UNIT-III:

Control Flow-Relational Expressions - Logical Operators:

Selection: if-else Statement, nested if, examples, Multi-way selection: switch, else-if, examples.

Repetition: Basic Loop Structures, Pretest and Posttest Loops, Counter-Controlled and Condition-Controlled Loops, The while Statement, The for Statement, Nested Loops, The do-while Statement.

UNIT-IV

Modular Programming: Function and Parameter Declarations, Returning a Value, Functions with Empty Parameter Lists, Variable Scope, Variable Storage Class, Local Variable Storage Classes, Global Variable Storage Classes, Pass by Reference, Passing Addresses to a Function, Storing Addresses, Using Addresses, Declaring and Using Pointers, Passing Addresses to a Function.

Case Study: Swapping Values, Recursion - Mathematical Recursion, Recursion versus Iteration.

UNIT-V:

Arrays & Strings

Arrays: One-Dimensional Arrays, Input and Output of Array Values, Array Initialization, Arrays as Function Arguments, Two-Dimensional Arrays, Larger Dimensional Arrays- Matrices

Strings: String Fundamentals, String Input and Output, String Processing, Library Functions

UNIT-VI:

Pointers, Structures, Files

Pointers: Concept of a Pointer, Initialization of pointer variables, pointers as function arguments, passing by address, Dangling memory, address arithmetic, character pointers and functions, pointers to pointers, Dynamic memory management functions, command line arguments.

Structures: Derived types, Sstructures declaration, Initialization of structures, accessing structures, nested structures, arrays of structures, structures and functions, pointers to structures, self referential structures, unions, typedef, bit-fields.

Data Files: Declaring, Opening, and Closing File Streams, Reading from and Writing to Text Files, Random File Access

Outcomes:

- Understand the basic terminology used in computer programming
- Write, compile and debug programs in C language.
- Use different data types in a computer program.
- Design programs involving decision structures, loops and functions.
- Explain the difference between call by value and call by reference
- Understand the dynamics of memory by the use of pointers
- Use different data structures and create/update basic data files.

Text Books:

- 1. ANSI C Programming, Gary J. Bronson, Cengage Learning.
- 2. Programming in C, Bl Juneja Anita Seth, Cengage Learning.
- 3. The C programming Language, Dennis Richie and Brian Kernighan, Pearson Education.

Reference Books:

- 1. C Programming-A Problem Solving Approach, Forouzan, Gilberg, Cengage.
- 2. Programming with C, Bichkar, Universities Press.
- 3. Programming in C, ReemaThareja, OXFORD.
- 4. C by Example, Noel Kalicharan, Cambridge.

ENVIRONMENTAL STUDIES

Course Learning Objectives:

The objectives of the course is to impart

- Overall understanding of the natural resources
- Basic understanding of the ecosystem and its diversity
- Acquaintance on various environmental challenges induced due to unplanned anthropogenic activities
- An understanding of the environmental impact of developmental activities
- Awareness on the social issues, environmental legislation and global treaties

Course Outcomes:

The student should have knowledge on

- The natural resources and their importance for the sustenance of the life and recognize the need to conserve the natural resources
- The concepts of the ecosystem and its function in the environment. The need for protecting the producers and consumers in various ecosystems and their role in the food web
- The biodiversity of India and the threats to biodiversity, and conservation practices to protect the biodiversity
- Various attributes of the pollution and their impacts and measures to reduce or control the pollution along with waste management practices
- Social issues both rural and urban environment and the possible means to combat the challenges
- The environmental legislations of India and the first global initiatives towards sustainable development.
- About environmental assessment and the stages involved in EIA and the environmental audit.
- Self Sustaining Green Campus with Environment Friendly aspect of Energy, Water and Wastewater reuse Plantation, Rain water Harvesting, Parking Curriculum.

Syllabus:

UNIT – I Multidisciplinary nature of Environmental Studies: Definition, Scope and Importance – Sustainability: Stockholm and Rio Summit–Global Environmental Challenges: Global warming and climate change, Carbon Credits, acid rains, ozone layer depletion, population growth and explosion, effects. Role of information Technology in Environment and human health.

Ecosystems: Concept of an ecosystem. - Structure and function of an ecosystem. - Producers, consumers and decomposers. - Energy flow in the ecosystem - Ecological succession. - Food chains, food webs and ecological pyramids. - Introduction, types, characteristic features, structure and function of Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystems.

UNIT – II Natural Resources: Natural resources and associated problems

Forest resources – Use and over – exploitation, deforestation – Timber extraction – Mining, dams and other effects on forest and tribal people

Water resources – Use and over utilization of surface and ground water – Floods, drought, conflicts over water, dams – benefits and problems

Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, Sustainable mining of Granite, Literate, Coal, Sea and River sands.

Food resources: World food problems, changes caused by non-agriculture activities-effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity

Energy resources: Growing energy needs, renewable and non-renewable energy sources use of alternate energy sources Vs Oil and Natural Gas Extraction.

Land resources: Land as a resource, land degradation, Wasteland reclamation, man induced landslides, soil erosion and desertification. Role of an individual in conservation of natural resources. Equitable use of resources for sustainable lifestyles.

UNIT – III Biodiversity and its conservation: Definition: genetic, species and ecosystem diversity-classification - Value of biodiversity: consumptive use, productive use, social-Biodiversity at national and local levels. India as a mega-diversity nation - Hot-spots of biodiversity - Threats to biodiversity: habitat loss, manwildlife conflicts - Endangered and endemic species of India – Conservation of biodiversity: conservation of biodiversity.

UNIT – IV Environmental Pollution: Definition, Cause, effects and control measures of Air pollution, Water pollution, Soil pollution, Noise pollution, Nuclear hazards. Role of an individual in prevention of pollution. - Pollution case studies, Sustainable Life Studies. Impact of Fire Crackers on Men and his well being.

Solid Waste Management: Sources, Classification, effects and control measures of urban and industrial solid wastes. Consumerism and waste products, Biomedical, Hazardous and e – waste management.

UNIT – V Social Issues and the Environment: Urban problems related to energy -Water conservation, rain water harvesting-Resettlement and rehabilitation of people; its problems and concerns. Environmental ethics: Issues and possible solutions. Environmental Protection Act -Air (Prevention and Control of Pollution) Act. – Water (Prevention and control of Pollution) Act -Wildlife Protection Act -Forest Conservation Act-Issues involved in enforcement of environmental legislation. -Public awareness.

UNIT – VI Environmental Management: Impact Assessment and its significance various stages of EIA, preparation of EMP and EIS, Environmental audit. Ecotourism, Green Campus – Green business and Green politics.

The student should Visit an Industry / Ecosystem and submit a report individually on any issues related to Environmental Studies course and make a power point presentation.

TEXT BOOKS:

- 1. Environmental Studies, K. V. S. G. Murali Krishna, VGS Publishers, Vijayawada
- 2. Environmental Studies, R. Rajagopalan, 2nd Edition, 2011, Oxford University Press.
- 3.Environmental Studies, P. N. Palanisamy, P. Manikandan, A. Geetha, and K. Manjula Rani; Pearson Education, Chennai

REFERENCE:

- 1. Text Book of Environmental Studies, Deeshita Dave & P. Udaya Bhaskar, Cengage Learning.
- 2. A Textbook of Environmental Studies, Shaashi Chawla, TMH, New Delhi
- 3. Environmental Studies, Benny Joseph, Tata McGraw Hill Co, New Delhi
- 4. Perspectives in Environment Studies, Anubha Kaushik, C P Kaushik, New Age International Publishers, 2014

ENGINEERING / APPLIED CHEMISTRY LABORATORY

- 1. Introduction to Chemistry laboratory Molarity, Normality, Primary, secondary standard solutions, Volumetric titrations, Quantitative analysis, Qualitative analysis, etc.
- 2. Trial experiment Determination of HCl using standard Na₂CO₃ solution.
- 3. Determination of alkalinity of a sample containing Na₂CO₃ and NaOH.
- 4. Determination of KMnO₄ using standard Oxalic acid solution.
- 5. Determination of Ferrous iron using standard K₂Cr₂O₇ solution.
- 6. Determination of Copper using standard K₂Cr₂O₇ solution.
- 7. Determination of temporary and permanent hardness of water using standard EDTA solution.
- 8. Determination of Copper using standard EDTA solution.
- 9. Determination of Iron by a Colorimetric method using thiocynate as reagent.
- 10. Determination of pH of the given sample solution using pH meter.
- 11. Conductometric titration between strong acid and strong base.
- 12. Conductometric titration between strong acid and weak base.
- 13. Potentiometric titration between strong acid and strong base.
- 14. Potentiometric titration between strong acid and weak base.
- 15. Determination of Zinc using standard EDTA solution.
- 16. Determination of Vitamin C.

Outcomes: The students entering into the professional course have practically very little exposure to lab classes. The experiments introduce volumetric analysis; redox titrations with different indicators; EDTA titrations; then they are exposed to a few instrumental methods of chemical analysis. Thus at the end of the lab course, the student is exposed to different methods of chemical analysis and use of some commonly employed instruments. They thus acquire some experimental skills.

Reference Books

- 1. A Textbook of Quantitative Analysis, Arthur J. Vogel.
- 2. Dr. Jyotsna Cherukuris (2012) Laboratory Manual of engineering chemistry-II, VGS Techno Series
- 3. Chemistry Practical Manual, Lorven Publications
- 4. K. Mukkanti (2009) Practical Engineering Chemistry, B.S. Publication

ENGLISH - COMMUNICATION SKILLS LAB- I

PRESCRIBED LAB MANUAL FOR SEMESTER I:

'INTERACT: English Lab Manual for Undergraduate Students' Published by Orient Blackswan Pvt Ltd.

OBJECTIVES:

To enable the students to learn through practice the communication skills of listening, speaking, reading and writing.

OUTCOME:

A study of the communicative items in the laboratory will help the students become successful in the competitive world.

The course content along with the study material is divided into six units.

UNIT 1:

- 1. WHY study Spoken English?
- 2. Making Inqueries on the phone, thanking and responding to Thanks Practice work.

UNIT 2:

1. Responding to Requests and asking for Directions Practice work.

UNIT 3:

- 1. Asking for Clarifications, Inviting, Expressing Sympathy, Congratulating
- 2. Apologising, Advising, Suggesting, Agreeing and Disagreeing Practice work.

UNIT 4:

1. Letters and Sounds Practice work.

UNIT 5:

1. The Sounds of English Practice work.

UNIT 6:

- 1. Pronunciation
- 2. Stress and Intonation Practice work.

Assessment Procedure: Laboratory

- 1. Every lab session (150 minutes) should be handled by not less than two teachers (three would be ideal) where each faculty has to conduct a speaking activity for 20/30 students.
- 2. The teachers are to assess each learner in the class for not less than 10 speaking activities, each one to be assessed for 10 marks or 10%. The average of 10 day-to-day activity assessments is to be calculated for 10 marks for internal assessment.

The rubric given below has to be filled in for all the students for all activities.

The rubric to assess the learners:

Body language		Fluency & Audibility	Clarity in Speech	Neutralization of accent	Appropriate Language		Total 10 marks	Remarks
Gesture s & Posture s	Contac				Gramma r	Vocabulary & expressions		

• Lab Assessment: Internal (25 marks)

1. Day-to-Day activities: 10 marks

2. Completing the exercises in the lab manual: 5 marks

3. Internal test (5 marks written and 5 marks oral)

• Lab Assessment: External (50 marks)

- 1. Written test: 20 marks (writing a dialogue, note-taking and answering questions on listening to an audio recording.
- 2. Oral: Reading aloud a text or a dialogue- 10 marks
- 3. Viva-Voce by the external examiner: 20 marks

Reference Books:

- 1. Strengthen your communication skills by Dr M Hari Prasad, Dr Salivendra Raju and Dr G Suvarna Lakshmi, Maruti Publications.
- 2. English for Professionals by Prof Eliah, B.S Publications, Hyderabad.
- 3. Unlock, Listening and speaking skills 2, Cambridge University Press
- 4. Spring Board to Success, Orient BlackSwan
- 5. A Practical Course in effective english speaking skills, PHI
- 6. Word power made handy, Dr shalini verma, Schand Company
- 7. Let us hear them speak, Jayashree Mohanraj, Sage texts
- 8. Professional Communication, Aruna Koneru, Mc Grawhill Education
- 9. Cornerstone, Developing soft skills, Pearson Education

COMPUTER PROGRAMMING LAB

OBJECTIVES:

- Understand the basic concept of C Programming, and its different modules that includes conditional and looping expressions, Arrays, Strings, Functions, Pointers, Structures and File programming.
- Acquire knowledge about the basic concept of writing a program.
- Role of constants, variables, identifiers, operators, type conversion and other building blocks of C Language.
- Use of conditional expressions and looping statements to solve problems associated with conditions and repetitions.
- Role of Functions involving the idea of modularity.

Programming

Exercise - 1 Basics

- a) What is an OS Command, Familiarization of Editors vi, Emacs
- b) Using commands like mkdir, ls, cp, mv, cat, pwd, and man
- c) C Program to Perform Adding, Subtraction, Multiplication and Division of two numbers From Command line

Exercise - 2 Basic Math

- a) Write a C Program to Simulate 3 Laws at Motion
- b) Write a C Program to convert Celsius to Fahrenheit and vice versa

Exercise - 3 Control Flow - I

- a) Write a C Program to Find Whether the Given Year is a Leap Year or not.
- b)Write a C Program to Add Digits & Multiplication of a number

Exercise - 4 Control Flow - II

- a) Write a C Program to Find Whether the Given Number is
 - i) Prime Number
 - ii) Armstrong Number
- b) Write a C program to print Floyd Triangle
- c) Write a C Program to print Pascal Triangle

Exercise – 5 Functions

- a) Write a C Program demonstrating of parameter passing in Functions and returning values.
- b) Write a C Program illustrating Fibonacci, Factorial with Recursion without Recursion

Exercise - 6 Control Flow - III

- a) Write a C Program to make a simple Calculator to Add, Subtract, Multiply or Divide Using switch...case
- b) Write a C Program to convert decimal to binary and hex (using switch call function the function)

Exercise – 7 Functions - Continued

Write a C Program to compute the values of sin x and cos x and e^x values using Series expansion. (use factorial function)

Exercise – 8 Arrays

Demonstration of arrays

- a) Search-Linear.
- b) Sorting-Bubble, Selection.
- c) Operations on Matrix.

Exercises - 9 Structures

- a) Write a C Program to Store Information of a Movie Using Structure
- b) Write a C Program to Store Information Using Structures with Dynamically Memory Allocation
- c) Write a C Program to Add Two Complex Numbers by Passing Structure to a Function

Exercise - 10 Arrays and Pointers

- a) Write a C Program to Access Elements of an Array Using Pointer
- b) Write a C Program to find the sum of numbers with arrays and pointers.

Exercise – 11 Dynamic Memory Allocations

- a) Write a C program to find sum of n elements entered by user. To perform this program, allocate memory dynamically using malloc () function.
- b) Write a C program to find sum of n elements entered by user. To perform this program, allocate memory dynamically using calloc () function.

Understand the difference between the above two programs

Exercise – 12 Strings

- a) Implementation of string manipulation operations with library function.
 - i) copy
 - ii) concatenate
 - iii) length
 - iv) compare
- b) Implementation of string manipulation operations without library function.
 - i) copy
 - ii) concatenate
 - iii) length
 - iv) compare

Exercise -13 Files

- a)Write a C programming code to open a file and to print it contents on screen.
- b)Write a C program to copy files

Exercise - 14 Files Continued

- a) Write a C program merges two files and stores their contents in another file.
- b)Write a C program to delete a file.

OUTCOMES:

- Apply and practice logical ability to solve the problems.
- Understand C programming development environment, compiling, debugging, and linking and executing a program using the development environment
- Analyzing the complexity of problems, Modularize the problems into small modules and then convert them into programs
- Understand and apply the in-built functions and customized functions for solving the problems.
- Understand and apply the pointers, memory allocation techniques and use of files for dealing with variety of problems.
- Document and present the algorithms, flowcharts and programs in form of user-manuals
- •Identification of various computer components, Installation of software

Note:

- a) All the Programs must be executed in the Linux Environment. (Mandatory)
- b) The Lab record must be a print of the LATEX (.tex) Format.