Эффекты самоорганизации в рекомендательных системах

Дементьев Сергей

Московский физико-технический институт

22 мая, 2025

Цель исследования

- Предложить математическую модель обратной связи в модели рекомендации
- На основе модели провести исследование рекомендательных алгоритмов на появление петли обратной связи

Проблема

- Существующие компоненты системы:
 - Алгоритм рекомендаций (a_{rec}): отвечает за формирование персональных рекомендаций товаров пользователям.
 - Алгоритм выбора пользователя (a_{choice}): моделирует, на какие из предложенных рекомендаций пользователь вероятно отреагирует.
 - Генераторы новых пользователей (*userGAN*) и новых товаров(*itemGAN*): алгоритмы, способный изменять распределения объектов: как удаляют, так и добавляют новых.
- Динамика распределений:
 - В процессе взаимодействия происходит изменение распределения по некоторому закону, который мы и хотим исследовать.
 - ullet **D** оператор эволюции распределения.
 - Распределение пользователей: f_u^t и $\mathbf{D} f_u^t = f_u^{t+1}$
 - Распределение товаров: f_i^t и $\mathbf{D} f_i^t = f_i^{t+1}$

Основные определения

• Мы будем говорить, что в динамической системе, которая характеризуется начальными данными и последовательностью операторов эволюции: $\{\mathbf{D}_t\}_{t=1}^{\infty}$ возникли эхо-камеры, если существует конечное множество точек $\{u_1, \dots u_K\} \subset \mathbb{R}^d, K \geq 1$ и соотвествующие веса $\{w_1, \dots w_K\}, \sum_{i=1}^K w_i = 1$, такие что:

$$f_t \underset{t \to \infty}{\rightharpoonup} \sum_{i=1}^K w_i \delta_{u_i}$$

(слабая сходимость к смеси дельта-распределений)

• $HDR_{\alpha}(f)=\{x\in\mathbb{R}^n|f(x)\geq c_{\alpha}\}$, где c_{α} удовлетворяет следующему условию $\int_{HDR_{\alpha}(f)}f(x)dx=\alpha$

Теоретические результаты

Пусть $\{f_t\}_{t=1}^\infty$ — последовательность функций плотности распределений в пространстве признаков \mathbb{R}^d . Эхо-камера формируется в системе тогда и только тогда, когда существует уровень $\alpha_0 \in (0;1)$ такой, что для любого $\alpha > \alpha_0$ выполняются следующие условия:

1. $K \in \mathbb{N}$ и момент времени T_0 , такие что $\forall t > T_0$: множество $HDR_{\alpha}(f_t)$ состоит ровно из K компонент. $HDR_{\alpha}(f_t) = \bigcup_{i=1}^{K} C_{i,t}$ 2. $\exists \delta > 0$, T_0 такое, что $\min_{i \neq j} d(C_{i,t}, C_{j,t}) \geq \delta \quad \forall t > T_0$

Где
$$d(A, B) = \inf_{x \in A, y \in B} ||x - y||$$

- 3. $\lim_{t\to\infty} \lambda(HDR_{\alpha}(f)) = 0$
- 4. $\exists u_1, \dots u_K$ такие, что $\forall j \in \{1, \dots K\} : \lim_{t \to \infty} \rho_H(C_{j,t}, \{u_j\}) = 0$, где $\rho_H(A, B)$ метрика Хаусдорфа между двумя множествами.

Алгоритм эксперимента

```
Algorithm 1 Модель рекомендации для детекции петли обратной связи
```

```
 T ← 100

                                                                                ⊳ ограничение на количество итераций
 2: while t < T do
                                                                         ⊳ пока не дошли до ограничения по времени
 3:
        a_{rec} \leftarrow \operatorname{train}(D_t^*)
                                           > тренируем модель рекомендаций, ей не доступна вся информация
                                    ⊳ тренируем модель выбора пользователей, ей доступна вся информация
        a_{choice} \leftarrow \operatorname{train}(D_t)
       A_t \leftarrow \text{pick up recommendations}(a_{rec}, D_t)
                                                                                               ⊳ полбираем рекомендации
        R_{t+1} \leftarrow \text{respond to recommendations}(a_{choice}, D_t)
                                                                               ⊳ Моделируем ответы пользователей на
    рекомендации
        U_{t+1} \leftarrow a_{n'}(D_t)

    Обновляем пользователей

      I_{t+1} \leftarrow a_{i'}(D_t)
                                                                                                        ⊳ Обновляем товары
       D_{t+1} \leftarrow (U_{t+1}, I_{t+1}, R_{t+1})
       D_{t+1}^* \leftarrow (\operatorname{proj}(U_{t+1}, dims), \operatorname{proj}(I_{t+1}, dims), R_{t+1}) \triangleright Сохраняем датасет с неполной информацией,
10:
    чтобы на нем обучить a_{rec}
```

11: end while

Исследуемые зависимости

$\dim(E_U),\dim(E_I)$	размерность эмбеддинга пользователей и товаров
$\dim(E_U^{rec}),\dim(E_I^{rec})$	размерность эмбеддингов пользователей и товаров, которые буду подаваться в модель a_{rec}
$\dim(E_U^{choice}), \dim(E_I^{choice})$	размерность эмбеддингов пользователей и товаров, которые будуподаваться в модель a_{choice}
$arphi_I^{rec}, arphi_U^{rec}$	отображения, которые понижают размерность изначального пространства эмбеддингов. (Это может быть как PCA, t-SNE, так и просто взятие первых $\dim(E^{rec})$ координат от начального вектора
$arphi_I^{rec}, arphi_U^{rec}$	отображения, которые понижают размерность изначального пространства эмбеддингов. (Это может быть как PCA, t-SNE, так и просто взятие первых $\dim(E^{rec})$ координат от начального вектора
K	количество рекомендаций, предлагаемых определенному пользователю
$\mathcal{P}_U, \mathcal{P}_I$	Параметризованное семейство распределений, которое задает распределение эмбеддингов пользователей и товаров
T_{rec}, T_{choice}	период, в течение которого модель рекомендаций $/$ выбора пользователей не обновляется
$\mathcal{A}_{\mathrm{emb}}$	семейство алгоритмов оптимизации для получения эмбеддингов пользователей из начальных данных по сделкам (т.е. алгоритм для колаборативной фильтрации)
$\mathcal{A}_{ ext{train}}$	алгоритм оптимизации для обучения модели a_{rec}, a_{choice}
Θ_{emb}	параметры модели, с помощью которой мы получили эмбеддинги
$\Theta_{ m rec}, \Theta_{ m choice}$	гиперпараметры моделей a_{rec} и a_{choice} (например, в случае полносвязных нейронных сетей – это количество скрытых слоев в нейронов в них)

Как определить, что петля есть?

Algorithm 2 Алгоритм вычисления $\lambda(HDR)$

9: return $\lambda(HDR)$

Модель

Эксперимент и его результаты

Скрытая петля положительной обратной связи

Эксперимент и его результаты

Скрытая петля отрицательной обратной связи

Анализируем результаты

- В ходе экспериментов была получена явная зависимость от времени, которую если не учитывать, то система будет либо сходится к стационарной, либо будет происходить data drift только малой части данных
- От количества информации в данных зависит возникновение петли. Это легко получить, используя разные размеры эмбеддингов для модели рекомендации, а также изменяя преобзования эмбеддингов

Вывод

- Будет построена CI модель для изучения зависимости
- Исследуем возникновения петли обратной связи в других постановках задачи
- Исследуем функциональную зависимость от параметров

Список литературы

- [1] Wenlong Sun et al. Debiasing the Human-Recommender System Feedback Loop in Collaborative Filtering , 2019.
- [2] Karl Krauth et al. Breaking Feedback Loops in Recommender Systems with Causal Inference, 2022.
- [3] Anton Khritankov. Positive feedback loops lead to concept drift in machine learning systems, 2023.