Genome-wide association studies of brain imaging phenotypes in UK Biobank

陈逸希 曾镜瑀 曹晨音 任宇晗

华大生命科学研究院

前提:大脑结构和功能的遗传基础在很大程度上是未知的。

样本: UK BIOBANK 8428受试者的3144种结构和功能脑影像学表型(IDPs)

结果:许多表型是可以遗传的,鉴定了多个SNP与影像学表型之间的关联

可解释的关联包括: 1.铁转运和储存相关基因 与 皮层下脑组织磁化率

2.细胞外基质和表皮生长因子基因 与 白质微结构病变

3.调节中线轴突发育的基因 与 脑桥交叉纤维束

MRI: 磁共振成像

UK BIOBANK: 同时拥有人脑IDPs和全基因组SNP遗传数据

Heritability and genetic correlations of IDPs

对所有IDPs估计SNP的遗传力。

IDPs被分为三大类: a、结构MRI。b,扩散MRI。c,功能MRI。

使用SBAT软件中的线性混 合模型来计算性状的遗传力

Heritability and genetic correlations of IDPs

SWI T2* sub-cortical

存在于不同IDPs之间的表型相关性和遗传相关性 使用SBAT软件中的多性状混合模型估计遗传相关性

Significant associations between IDPs and SNPs

FAST_ROIs_V_cerebellum_VIIIa

Significant associations between IDPs and SNPs

cluster index	cluster name	#	IDPs	top IDP	chi	RSID	position	locus	ref allele		nonref AF	p value	replication p-value (N=3456)	replication p-value (N=930)	GTEX eQTL
1	Volume Cerebellum VIIIa (vermis)	1		T1_FAST_ROIs_V_cerebel lum_VIIIa	1	rs76934732	76013268	SLC44A5	G	Α	0.145	8.51E-13	6.10E-04	5.22E-02	SLC44A5 ACADM
2	dMRI Corpus callosum (genu)	1		dMRI_TBSS_ICVF_Genu_ of_corpus_callosum	1	rs2365715	156615114	BCAN	A	G	0.388	5.38E-12	4.50E-03	1.33E-02	BCAN. APOA1BP, SYT1
3	Volume WM lesions	1		T2_FLAIR_BIANCA_WMH _volume	2	rs3762515 (5' UTR)	56150864	EFEMP1	С	Т	0.0959	4.27E-13	1.18E-02	4.84E-01	
4	rfMRI Cortical and cerebellar motor nodes and edges	2		NODEamps25_0012	2	rs60873293	114092549	intergenic	G	Т	0.217	9.86E-15	3.10E-07	9.50E-02	AC016745.3, RP11- 480C16.1
5	T2* Pallidum	1		SWI_T2*_pallidum_L+R	2	rs6740926	190326498	WDR75	С	T	0.038	1.31E-14	3.50E-09	3.78E-04	WDR75
6	rfMRI Middle temporal sulcus nodes and edges	2		netmat_ICA_003	3	rs35124509 (missense)	89521693	ЕРНАЗ	Т	С	0.3853	4.49E-22	3.27E-09	3.73E-03	EPHA3
7	T2* Putamen and pallidum	6		SWI_T2*_putamen_L+R	3	rs4428180	133466374	TF	A	G	0.152	2.23E-22	6.11E-07	1.03E-03	TF
8	rfMRI Prefrontal and parietal edges	1		netmat_ICA_002	3	rs2279829 (3' UTR)	147106319	ZIC4	С	Т	0.221	8.34E-12	5.46E-05	2.51E-03	
9	dMRI Superior cerebellar peduncles	8		dMRI_TBSS_ICVF_Superi or_cerebellar_peduncle_ L	4	rs4697414	23724255	RP11- 380P13.2	С	Т	0.823	5.83E-24	1.33E-06	4.63E-02	RP13-497K6.1, RP11- 380P13.2
10	Volume Putamen, ventral striatum, cerebellum VIIIb, IX, X; T2* Pallidum; dMRI Cerebral peduncles	2)	IDP_T1_FAST_ROIs_L_ve ntral_striatum	4	rs13107325 (missense)	103188709	SLC39A8	С	Т	0.073	1.04E-42	6.64E-20	8.97E-06	
11	dMRI Most WM tracts	1	19	dMRI_ProbtrackX_ICVF_iI f_r	5	rs67827860	82860485	VCAN	С	Т	0.188	4.06E-37	3.93E-12	2.19E-04	
12	rfMRI Parietal and prefrontal edges	1		netmat_ICA_004	5	rs7442779	92788278	NR2F1- AS1	A	G	0.05	8.18E-15	1.90E-04	4.04E-02	
13	dMRI Corpus callosum (genu, body, splenium)	7		dMRI_TBSS_ICVF_Genu_ of_corpus_callosum	5	rs4150221	139719991	HBEGF	Т	С	0.264	8.43E-20	1.72E-09	4.06E-02	SRA1

该表汇总了38组SNP-IDP关联的聚类(n = 8428)。如果SNP在该基因中,基因座列将详细说明该基因。

Significant associations between IDPs and SNPs

Significant associations between IDPs and SNPs

硬膜T2*与4个SNPs关联的曼哈顿图和体素SNP空间关联图。

a.与双侧硬膜内IDP T2*的GWAS有关的曼哈顿图。

b.空间图显示,硬膜中与T2*联系最紧密的四个SNPs(每行一个)在整个大脑中有不同的体素模式影响:

rs4428180 (TF)的作用存在于尾状核

rs144861591 (HFE)位于小脑的背纹状体、丘脑底核

rs10430578 (SLC39A12)在整个背侧纹状体和苍白球

rs668799 (COASY)在整个背侧纹状体和皮层。

Significant associations between IDPs and SNPs

灰质体积与rs13107325 (SLC39A8)之间关联的曼哈顿图和体素SNP空间关联图。

- a.与左腹侧纹状体灰质体积IDP的GWAS有关的曼哈顿图。
- b, c.rs13107325对体素局部灰质体积的空间映射。该图谱显示rs13107325的作用更广泛地见于双侧的腹尾状核、壳核、腹侧纹状体、前扣带皮层。

Significant associations between IDPs and SNPs

dMRI 影像中ICVF指标GWAS分析的曼哈顿图以及相关SNP(rs67827860)的相关脑区分布图。 a. ICVF的GWAS分析的曼哈顿图,ICVF与rs67827860显著相关。 b.rs67827860与体素级别白质ICVF关联的脑区分布图。

Significant associations between IDPs and SNPs

全表型组关联分析结果

c. rs67827860与3144个影像指标的全表型组分析结果图。点的颜色用来表示不同的影像指标类型。该snp除了同白质高信号相关,还同其他多种dMRI影像指标显著相关。

Multi-phenotype association tests

多表型联合测试:

用来对大规模影像指标进行关联分析,来检验每个SNP与不同性状分组的关联。

利用多表型关联分析方法对23组IDP进行分析,在-log10(P) > 7.5的阈值下共发现278个SNP与影像指标显著相关, 其中有170个SNP在多次矫正后仍是显著的。这170个SNP中有138个可以在另一个由3456人组成的独立数据集上

满足p<0.05。

IDP group	Number of IDPs per group					
T1_brain_vol_all	10					
T1_Subcortical_all	15					
T1_Subcortical_L_plus_R	7					
T1_FAST_ROIs	139					
Freesurfer_volume	59					
Freesurfer_area	212					
Freesurfer_thickness	212					
T2_star	14					
T2_star_L_plus_R	7					
dMRI_Probtrackx	243					
dMRI_FA	75					
dMRI_MD	75					
dMRI_MO	75					
dMRI_L1	75					
dMRI_L2	75					
dMRI_L3	75					
dMRI_ICVF	75					
dMRI_OD	75					
dMRI_ISOVF	75					
rfMRI_ICA_Features	6					
tfMRI	16					
rfMRI_25	21					
rfMRI_100	55					

Multi-phenotype association tests

23组IDPs进行多性状GWAS的GWAS曼哈顿图。

Multi-phenotype association tests

多表型联合测试优点:

- 1.通过对一组影像指标拟合相关联合模型,利用基因相关性来提高分析的可靠程度。
- 2.在一个GWAS分析中同时分析多个表型可以避免由于进行多次GWAS分析带来的多重矫正问题。

Genetic correlation with clinically relevant traits

使用LD Score回归估计IDPs与神经质人格特征、自闭症谱系和睡眠时间,以及7个疾病特征:注意缺陷多动障碍、精神分裂症、重度抑郁症和双相情感障碍、阿尔茨海默病、中风和肌萎缩性侧索硬化症的GWAS数据。

发现肌萎缩侧索硬化症(ALS),精神分裂症以及中风主要和白质纤维束的dMRI影像指标相关。

Genetic correlation with clinically relevant traits

78个突变根据其在基因组中的不同功能分为24种功能类别。

超级增强子及组蛋白修饰相关的区域 在多个功能和结构影像指标组中富集, 结果与其具有较高的遗传力结果一致。

X轴为23组IDPs Y轴为24种功能类别的突变

Letter Published: 25 June 2018

Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence

Jeanne E. Savage, Philip R. Jansen, [...] Danielle Posthuma

Nature Genetics 50, 912–919 (2018) | Cite this article

24k Accesses | 285 Citations | 489 Altmetric | Metrics

- 智力在过往的研究中已经被证明是高度遗传的,同时与健康和正常行为也有很高的关联性,本文发表之前仅有24个基因位点被发现与智力有关
- 本文使用了269,867例基因数据和认知测试结果进行了全基因组关联分析,发现了190个全新的基因位点和使用eQTL方法、染色体互作和gene-based关联测试发现的939个与智力相关的基因。
- 本文还使用数据证明了智力和健康之间的关联性,还使用孟德尔随机化 (MR) 发现了智力对于阿尔兹海默症和多动症有保护作用,但对精神分裂有着多样的双向因果关系。

- 文章主要数据来源和研究依据
- 文章使用了来自14个欧洲人群,总共包含9,295,118个变异的数据
- 智力数据来自各式各样的认知测试结果,基本都是测试认知功能的流体部分(fluid domains of cognitive functioning)
- 衡量智力主要依靠g值,同时在不同的测试方法中都能发现较好的一致性
- 各个样本之间的基因一致性较好(mean r=0.67),智力遗传力同之前的工作也是一致的 $(h^2=0.22)$

• 关联分析结果

• 共有12,110个和智力显著关联的变异被发现,包含242个lead SNP, 205个基因

• 关联分析结果

• 在关联分析结果中还发现遗传力高的SNP集中在保守区间、编码区间和组蛋白Lys9乙酰化区间 (H3K9ac)

• 关联分析结果

- 对变异结果的功能注释显示主要的变异是在内含子 (intron) 和基因间区域内 (intergenic) , 但仍有部分SNP是外显子内的非同义突变
- 发现了rs13107325,一个与智力有强烈关 联的错义突变。

- 基因定位 (gene-mapping)
- 文章使用了三种FUMA软件包含的基因定位方法,positional gene-mapping将SNP比对到了522个基因上,eQTL比对到了684个基因,染色质相互作用图谱(chromatin interaction mapping)比对到了227个基因

定位方法	positional gene-mapping	eQTL	染色质相互作用图谱
比对到的基因数量	522	684	227

• SNP在各个脑区以及组织的表现

- 智力与其他性状的联系
- 在将智力和其他性状进行回归分析中,发现智力同ADHD、抑郁现象、阿尔兹海默症、精神分裂症以及寿命的关系

Supplementary Figure 10. Genetic correlations between intelligence and other traits

- 孟德尔随机化分析
- 文章还发现教育因素和认知能力具有双向因果性
- 发现智力对精神分裂症是一个保护 因素,精神分裂症对智力也有不好 的影响;高智力不易得ADHD和阿 尔兹海默症,但更容易得自闭症

THANKS

OMICS FOR ALL

基因科技造福人类