Principios de Estadística

Clase htest

prácticos

Problema de la clase

Principios de Estadística

Leonardo Collado Torres y María Gutiérrez Arcelus Licenciatura en Ciencias Genómicas, UNAM

www.lcg.unam.mx/~lcollado/index.php
www.lcg.unam.mx/~mgutierr/index.php

Cuernavaca, México Febrero - Junio, 2009

Pruebas de hipótesis: lo básico

Principios de Estadística

Clase htes

Ejemplos prácticos

Problema d la clase 1 Clase htest

2 Ejemplos prácticos

Objetivos

Principios de Estadística

Clase htest

Ejemplos prácticos

Problema de

- Después de un largo descanso...
- En la clase de hoy vamos a ver las bases de las funciones de pruebas de hipótesis en R.

Márgenes de una tabla

Principios de Estadística

Clase htest

Ejemplo práctico

Problema de la clase Antes de entrar en el tema, les quiero enseñar dos formas de obtener fácilmente los datos marginales de una tabla.

```
> x <- matrix(rnorm(9), 3, 3)
```

- > margin.table(x, 1)
- > margin.table(x, 2)
- > addmargins(x)
- Intituivamente, ¿qué resultado nos da cada una de las margin.table?
- Esto les debe ser útil en casos como la ji cuadrada, etc.

Speedy

Principios de Estadística

Clase htest

Ejemplo práctico

```
Para ver que tan rápido corren podemos usar la función
system.time<sup>1</sup> la cual nos regresa 3 medidas. Fíjense en la
de elapsed.
```

```
> x < -matrix(rnorm(1e+06), 10000,
     100)
> system.time(margin.table(x, 1))
  user system elapsed
  0.17
          0.00
                  0.17
> system.time(margin.table(x, 2))
       system elapsed
  user
  0.03
          0.00
                  0.03
> system.time(addmargins(x))
```

Speedy

Principios de Estadística

Clase htest

Ejemplos prácticos

Problema de la clase

user system elapsed 0.70 0.06 0.77

¹Para una buena comparación tienen que hacer unas 500 o 1000 réplicas y comparar las medias

Clase de un objeto

Principios de Estadística

Clase htest

Ejemplos prácticos

Problema de la clase

```
Si recuerdan, hay varios tipos de objeto que hemos usado
a lo largo del semestre. Por ejemplo:
```

```
> x <- 1
> v <- "1"
> z <- list(reprobados = 5)
> class(x)
[1] "numeric"
> class(y)
[1] "character"
> class(z)
[1] "list"
```

De los anteriores 3 objetos, ¿cúal tiene atributos?

Atributos de un objeto

Principios de Estadística

Clase htest

Ejemplos prácticos

Problema de

 En realidad no hemos aprovechado los atributos de los objetos mucho. Si a caso en los objetos data.frame o list.

> attributes(x)

NULL

> attributes(y)

NULL

> attributes(z)

\$names

[1] "reprobados"

Usando los atributos

Principios de Estadística

Clase htest

ejempios prácticos

Problema de la clase

- En R, las funciones de prueba de hipótesis regresan objetos de clase htest. Estos varían dependiendo de cada función; usen la función attributes o chequen la ayuda.
- Todos regresan el atributo names con el cual pueden obtener algo que les interese, por ejemplo, el valor p.
 - > z\$reprobados

[1] 5

> class(z\$reprobados)

[1] "numeric"

Noten que aunque z es de clase list, z\$reprobados es de clase numeric.

Binomial

Principios de Estadística

Clase htes

Ejemplos prácticos

- Tal vez una de las pruebas más fáciles es la de la binomial, que es la repetición de un experimento Bernoulli n veces.
 - > `?`(binom.test)
- Chequen la ayuda y ahora resolvamos el siguiente problema.
- Un examen dado tiene 70 preguntas donde cada una tiene 5 respuestas posibles. ¿Cúal es el valor p de que alguien saque x preguntas buenas?
 - 1 7
 - 2 68
 - 3 50
- ¿Cúal creen que será el que nos de el valor p más extremo?

Solución

Principios de Estadística

Clase htest

Ejemplos prácticos

- Para resolver este problema en realidad solo vamos a usar 3 argumentos de la función binom.test. ¿Cúales?
- Como solo queremos el valor p de regreso, aprovechemos dicho atributo.
 - > binom.test(7, 70, 0.2)\$p.value
 - [1] 0.03589705
 - > binom.test(68, 70, 0.2)\$p.value
 - [1] 4.594981e-45
 - > binom.test(50, 70, 0.2)\$p.value
 - [1] 2.327952e-20
- Si se dan cuenta, ya ni guardamos el resultado de la función en algún objeto, pues solo nos interesaban los 3 valores p.

Cuidado al concluir

Principios de Estadística

Clase htes

Ejemplos prácticos

- Tengan cuidado para que no vayan a concluir algo erróneamente después de usar una prueba.
- En el ejemplo anterior, ¿cúal era la hipótesis alternativa? Simplemente utilicemos la función sin almacenarla en algún objeto.
- Corran el siguiente comando:
 - > binom.test(x = 35, n = 70, p = 0.2)
- De esta prueba, podemos rechazar la H0 en favor de la HA y nada más.

Shapiro

Principios de Estadística

Clase htes

Ejemplos prácticos

- Si recuerdan, vimos las gráficas tipo QQplot y en específico a la QQnorm.
- Existe una prueba de hipótesis, la cual es más fácil de interpretar, para checar si tus datos se distribuyen como una normal.
- Chequen la ayuda y corran el siguiente comando de shapiro.test:
 - > `?`(shapiro.test)
 - > shapiro.test(rnorm(10000))
- Como ven, cada función tiene sus peculiaridades. Por ahora no nos interesa mucho saber como funcionan, si no como utilizarlas. Aunque si alguien quiere, R te ofrece referencias por cada función.

Shapiro

Principios de Estadística

Clase htes

Ejemplos prácticos

- > shapiro.test(rnorm(1000))\$p.value
- [1] 0.7557873
- > shapiro.test(runif(1000, 0, 3))\$p.value
- [1] 1.936899e-17
- Con shapiro.test es evidente cual no es normal y cual si, lo cual tal vez era un poco más complicado en un diagrama de caja y brazos.

Comparando tiempos de expresiones

Principios de Estadística

Clase htes

Ejemple

- Bueno, ahora pasemos al ejercicio principal.
- Usando t.test hagan la prueba de hipótesis para ver si las medias de los tiempos² en los que corren las siguientes expresiones son iguales o diferentes. Las medias son de 100 eventos y solo necesitaremos el valor p para poder sacar nuestra conclusión.
 - $> x \leftarrow rnorm(1e+06)$
 - > sort(x)

²Solo fíjense en elapsed

Tips

Principios de Estadística

Clase htes

práctico

- Usen un ciclo for o si alguien se anima, un apply.
- Solo necesitan los datos de 1 posición de la función system.time
- Al usar t.test usen la forma más simple. Osea, entre menos argumentos usen, mejor :)

Solución

Principios de Estadística

Clase htes

práctico

Problema de la clase

Dados nuestros datos, rechazamos las H0 en favor de la HA, osea que las medias no son iguales.

Una trampa

Principios de Estadística

Clase htes

prácticos

Problema de la clase ■ Tengan cuidado!! Miren que pasa ahora:

```
> dat1 <- NULL
> dat2 <- NULL
> for (sim in 1:100) {
+         dat1 <- c(dat1, system.time(x <- rnorm(1000))[3])
+         dat2 <- c(dat2, system.time(sort(x))[3])
+ }
> t.test(dat1, dat2)$p.value
[1] 0.08093636
```