

成数的假设检验

授课教师: 陈雄强

浙江财经大学 数据科学学院

成数的假设检验

- □ 单个总体成数的检验: 判断成数是否等于给定值?
- □ 两个总体成数的检验: 判断成数是否相等?

单个总体成数的检验

研究的问题

假设	研究的问题		
	双侧检验	左侧检验	右侧检验
原假设: H ₀	$P = P_0$	$P \ge P_0$	$P \le P_0$
备择假设: H ₁	$P \neq P_0$	$P < P_0$	$P > P_0$

一、单个总体成数的检验

- ▶假定条件
 - ●有两类结果1或0,其中1出现的成数P介于0~1之间。
 - ●当样本容量足够大,即nP和n(1-P)都大于5时,成数 P的抽样分布近似服从正态分布。
- ▶ 成数检验的z统计量

$$z = \frac{p - P_0}{\sqrt{\frac{P_0 (1 - P_0)}{n}}} \sim N(0, 1)$$

一个总体成数的z检验

【例】某研究者估计某地区有车家庭的国产轿车拥有率为 30%。现随机抽查了200户家庭,发现68个家庭拥有国产轿车。 试问研究者的估计是否可信? (a=0.05)

一个总体成数的 z 检验

成数检验步骤

1.建立原假设和备择假设。

$$H_0$$
: $P = 30\%$

$$H_1: P \neq 30\%$$

2.构建检验统计量。

$$z = \frac{p - P_0}{\sqrt{\frac{P_0 (1 - P_0)}{n}}} = \frac{0.34 - 0.3}{\sqrt{\frac{0.3 \times (1 - 0.3)}{200}}} = 1.234$$

一个总体成数的 z 检验

成数检验步骤

3.确定拒绝域

$$P\{|z| \ge 1.96\} = 0.05.$$

4.作出统计决策

在 α = 0.05的水平上无法拒绝 H_0 ,说明研究者估计国产 车占30%基本可信。

二、两个总体成数的检验

假设	研究的问题			
	双侧检验	左侧检验	右侧检验	
H_0	$P_1 - P_2 = 0$	P_1 – P_2 ≥ 0	P_1 – P_2 ≤0	
H_1	P_1 – P_2 \neq 0	$P_1 - P_2 < 0$	$P_1 - P_2 > 0$	

二、两个总体成数的检验

- ▶假定条件
 - ●两个总体是独立的
 - ●两个总体都服从二项分布
 - ●可以用正态分布来近似
- ▶ 在大样本条件下,统计量

$$z = \frac{p_1 - p_2}{\sqrt{p(1-p)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \sim N(0,1)$$

其中,
$$p = \frac{n_1 p_1 + n_2 p_2}{n_1 + n_2}$$

两个总体成数的检验

【例】在选择吃麦当劳还是中式快餐时,抽样调查发现,小学生100人中有76人选择吃麦当劳;而中学生100人中有69人选择吃麦当劳。请问小学生和中学生在对麦当劳的偏好上,是否存在显著差异? (*a*= 0.05)

两个总体成数的检验

成数检验步骤

1.建立原假设和备择假设。 H_0 : $P_1 = P_2$;

$$H_1: P_1 \neq P_2$$

2.构建检验统计量。

$$z = \frac{p_1 - p_2}{\sqrt{p(1-p)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = \frac{0.76 - 0.69}{\sqrt{0.725(1 - 0.725)\left(\frac{1}{100} + \frac{1}{100}\right)}} = 1.11$$

其中,
$$p = \frac{76+69}{100+100} = 0.725$$

两个总体成数的检验

成数检验步骤

3.确定拒绝域

$$P\{|z| \ge 1.96\} = 0.05.$$

4.作出统计决策

在 α = 0.05的水平上无法拒绝 H_0 ,说明小学生和中学生对麦当劳的偏爱程度并无显著差异。

谢 谢