Introduction to Anomaly Detection

Tom Dietterich

Anomaly Detection

- Anomaly: A data point generated by a different process than the process that generates the normal data points
 - Example: Fraud Detection
 - Normal points: Legitimate financial transactions
 - Anomaly points: Fraudulent transactions
 - Example: Sensor Data
 - Normal points: Correct data values
 - Anomaly points: Bad values (broken sensors)

Three Settings

- Supervised
 - Training data labeled with "nominal" or "anomaly"
- Clean
 - Training data are all "nominal", test data contaminated with "anomaly" points.
- Unsupervised
 - Training data consist of mixture of "nominal" and "anomaly" points

What Makes Anomaly Detection Hard

- Nominal distribution has "heavy tails"
 - Naturally has many outliers
- Anomaly distribution is very similar to nominal distribution
- Unsupervised anomaly detection with very frequent anomalies
 - High level of contamination makes learning the nominal distribution hard
- Anomalies are changing over time
 - Adversaries try to fool the anomaly detector

Approaches to Anomaly Detection: (1) Density Estimation

- Given data points $x_1, ..., x_N$ (each a feature vector of length d)
- Find a probability density function f to maximize

$$\sum_{i} -\log f(x_i)$$

- The function f must be constrained so that it cannot simply put density $\frac{1}{N}$ on each data point
- Anomaly score $A(x_q) = -\log f(x_q)$
- This is known as the "surprise"
 - $-\log 1 = 0$ "no surprise"
 - $-\log 0 = ∞$ "infinite surprise"

EGMM: Ensemble of Gaussian Mixture Models

- Consider this complex cloud of points
- It is clearly not normally distributed
- But it can be modeled as the weighted sum ("mixture") of two Gaussian distributions

Mixture of Gaussians

$$P(c = 1) = 2/3$$

$$P(c = 2) = 1/3$$

$$P(x|c = 1)$$
 "o"

$$P(x|c = 2)$$
 "+"

There are good algorithms for fitting GMMs to data

Fit a single Gaussian

- Give you $\overline{x_1}, \dots, \overline{x_N}$
- mean: $\mu = \frac{1}{N} \sum_{i} x_{i}$
- variance: $\sigma^2 = \frac{1}{N} \sum_i (x_i \mu)^2$

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-\frac{1}{2}(x-\mu)^2}{\sigma^2}}$$

- Mixture:
- Goal: find two means: μ_1 , μ_2 and two variances σ_1^2 , σ_2^2 and the mixture proportion p

$$f(x) = p \frac{1}{\sqrt{2\pi}\sigma_1} e^{\frac{-\frac{1}{2}(x-\mu_1)^2}{\sigma_1^2}} + (1-p) \frac{1}{\sqrt{2\pi}\sigma_2} e^{\frac{-\frac{1}{2}(x-\mu_2)^2}{\sigma_2^2}}$$

Ensemble of GMMs

- Train L independent Gaussian Mixture Models
- Train model $\ell = 1, ..., L$ on a bootstrap replicate of the data
- Vary the number of clusters K
- Delete any model with log likelihood < 70% of best model</p>
- Compute average surprise: $A(x_q) = -\frac{1}{L}\sum_{\ell} \log f_{\ell}(x_q)$

Advantages and Disadvantages of Density Estimation

Advantages:

- Clean theoretical understanding
- Many methods:
 - Kernel density estimation
 - Ensemble of Gaussian Mixture Models
 - Deep density estimation

Disadvantages:

- General density estimation requires large amounts of data
- Sample size grows as $\exp \frac{d+4}{2}$
- If the anomaly points form a tight cluster, it will be assigned high probability density (= low anomaly score)

Approaches to Anomaly Detection: (2) Quantile Methods

- Find a smooth boundary that encloses fraction 1α of the data
- Map each data point x into an (N 1)-dimensional space based on its kernel distance to each of the other data points
- Surround 1α of the points with a surface:
- Linear surface:
 - One-class support-vector machine (OC-SVM)
- Hypersphere:
 - Support-vector data description (SVDD)

 $A(x_q)$ = distance from the boundary

Advantages and Disadvantages of Quantile Methods

Advantages:

• Amount of training data needed grows as $\frac{1}{\epsilon^2}$, where ϵ is the accuracy of the $1-\alpha$ quantile

Disadvantages:

- Requires tuning a kernel function
- Algorithms do not scale to large data sets
- Does not perform very well for ranking

Approaches to Anomaly Detection: (3) Distance-Based Methods

- •Choose a distance metric $||x_i x_j||$ between any two data points x_i and x_j
- A(x) = anomaly score = distance to k-th nearest data point
- Points in empty regions of the input space are likely to be anomalies

Advantages and Disadvantages of Distance Methods

- Advantages:
 - Easy to understand
 - Easy to tune
 - Perform quite well
- Disadvantages
 - Fail when the anomalies form tight clusters
 - Naïve implementation requires computing all pairwise distances (time proportional to dN^2)
 - Must store the training instances

Approaches to Anomaly Detection: (4) Projection Methods

- Isolation Forest
- LODA

Isolation Forest [Liu, Ting, Zhou, 2011]

- Construct a fully random binary tree
 - choose attribute j at random
 - choose splitting threshold θ uniformly from $\left[\min(x_{\cdot j}), \max(x_{\cdot j})\right]$
 - until every data point is in its own leaf
 - let $d(x_i)$ be the depth of point x_i
- repeat 100 times
 - let $\bar{d}(x_i)$ be the average depth of x_i
 - $A(x_i) = 2^{-\left(\frac{\overline{a}(x_i)}{r(x_i)}\right)}$
 - $r(x_i)$ is the expected depth

LODA: Lightweight Online Detector of

Anomalies [Pevny, 2016]

- Π_1, \dots, Π_M set of M sparse random projections
- $f_1, ..., f_M$ corresponding 1dimensional density estimators
- $S(x) = \frac{1}{M} \sum_{m} -\log f_{m}(x)$ average "surprise"

LODA: Lightweight Online Detector of

Anomalies [Pevny, 2016]

- $\Pi_1, ..., \Pi_M$ set of M sparse random projections
- $f_1, ..., f_M$ corresponding 1dimensional density estimators
- S(x) = $\frac{1}{M}\sum_{m} -\log f_{m}(x)$ average "surprise"

LODA: Lightweight Online Detector of Anomalies [Pevny, 2016]

- $\Pi_1, ..., \Pi_M$ set of M sparse random projections
- • $f_1, ..., f_M$ corresponding 1dimensional density estimators
- $S(x) = \frac{1}{M} \sum_{m} -\log f_{m}(x)$ average "surprise"

Benchmarking Study

[Andrew Emmott]

- Most AD papers only evaluate on a few datasets
- Often proprietary or very easy (e.g., KDD 1999)
- Research community needs a large and growing collection of public anomaly benchmarks

[Emmott, Das, Dietterich, Fern, Wong, 2013; KDD ODD-2013] [Emmott, Das, Dietterich, Fern, Wong. 2016; arXiv 1503.01158v2]

Benchmarking Methodology

- Select 19 data sets from UC Irvine repository
- Choose one or more classes to be "anomalies"; the rest are "nominals"
- Manipulate
 - Relative frequency
 - Point difficulty
 - Irrelevant features
 - Clusteredness
- 20 replicates of each configuration
- Result: 25,685 Benchmark Datasets

Algorithms

- Density-Based Approaches
 - RKDE: Robust Kernel Density Estimation (Kim & Scott, 2008)
 - EGMM: Ensemble Gaussian Mixture Model (our group)
- Quantile-Based Methods
 - OCSVM: One-class SVM (Schoelkopf, et al., 1999)
 - SVDD: Support Vector Data Description (Tax & Duin, 2004)
- Neighbor-Based Methods
 - LOF: Local Outlier Factor (Breunig, et al., 2000)
 - ABOD: kNN Angle-Based Outlier Detector (Kriegel, et al., 2008)
- Projection-Based Methods
 - IFOR: Isolation Forest (Liu, et al., 2008)
 - LODA: Lightweight Online Detector of Anomalies (Pevny, 2016)

Analysis

- Linear ANOVA
 - $metric \sim rf + pd + \overline{cl + ir + mset + algo}$
 - rf: relative frequency
 - pd: point difficulty
 - cl: normalized clusteredness
 - ir: irrelevant features
 - mset: "Mother" set
 - algo: anomaly detection algorithm
- Validate the effect of each factor
- Assess the algo effect while controlling for all other factors

Evaluation Metrics

- AUC: Area Under the ROC Curve
 - binary decision: Nominal vs. Anomaly
 - what is the probability that the algorithm correctly ranks a randomly-chosen anomaly above a randomly-chosen nominal point?
 - We measure $\log \frac{AUC}{1-AUC}$
- LIFT: Ratio of precision of algorithm to precision of random guessing
 - Related to Average Precision (AP)
 - We measure $\log \frac{AP}{E[AP]}$

What Matters the Most?

- Problem and Relative Frequency!
- Choice of algorithm ranks third

Algorithm Comparison

iForest Advantages

- Most robust to irrelevant features
 - for both AUC and LIFT
- Second most robust to clustered anomaly points
 - for AUC

iForest Tricks of the Trade

- If your training data are clean
 - Use bootstrap replicate samples to train each isolation tree
- If your training data are contaminated with anomalies
 - Use small random sub-samples
 - Typical sizes vary from 16 to 2048 points
 - This helps Isolation Forest be more robust to the contamination

Anomaly Detection Workflow

- Collect data
 - Do NOT perform feature selection
 - Normalize the data so that the inter-quartile range (25th to 75th quantiles) is 1.0 and centered on 0
- Fit the isolation forest
 - The number of trees should be chosen to ensure that the anomaly scores are stable (e.g., compare anomaly scores computed on bootstrap replicates of the isolation forest)
 - Smaller subsamples require larger forests
 - The forest must grow in size for large dimension d

Deployment Workflow 1: Fraud Detection

- Most cases require a human in the loop
- Show human analyst the topranked anomaly
- The analyst decides whether to take action (e.g., launching a fraud investigation)

Incorporating Analyst Feedback

- Show top-ranked (unlabeled) candidate to the Analyst
- Analyst labels candidate
- Label is used to update the anomaly detector

[Das, et al, ICDM 2016] [Siddiqui, et al., KDD 2018]

Analyst Feedback Yields Huge Improvements in Anomaly Discovery

Method

- Transform the Isolation Forest into a gigantic linear model
 - Each node in each tree becomes a Boolean feature
 - Initial weight of each feature is 1.0, so that the weighted sum == total isolation depth
- Apply online convex optimization algorithms to learn from analyst feedback
 - Online Mirror Descent adjusts the weights to reduce the score of anomalies and increase the score of nominals

Deployment Workflow 2: Open Category Detection

- Training data for classes {1,...,K}
- Test data may contain queries corresponding to additional classes
- Can we detect them?

Prediction with Anomaly Detection

Automated Counting of Freshwater Macroinvertebrates

- Goal: Assess the health of freshwater streams
- Method:
 - Collect specimens via kicknet
 - Photograph in the lab
 - Classify to genus and species

Open Category Object Recognition

- Train on 29 classes of insects
- Test set may contain additional species

10/10/2018 DS Nigeria Boot 37

Theoretical Guarantee for Open Category Detection

Assumptions:

- Clean training data
- Second large (unlabeled) contaminated data set is available
- Tight estimate on α , the fraction of anomalies in the contaminated data set

Specify:

- A desired quantile q and accuracy level ϵ
- Our algorithm shows how to choose a threshold τ such that with high probability we will detect fraction $1-(q+\epsilon)$ of the anomalies

Results on six UCI benchmarks (q = 0.95)

Summary

- Anomaly detection has been less studied than other areas of machine learning
- Many important applications
 - fraud detection, cyber security
 - open category detection, robust ML
- Isolation Forest is a good method
- Analyst feedback can greatly improve the efficiency of detecting true anomalies

Open Research Questions

- Why does sub-sampling improve the robustness of anomaly detectors trained on contaminated data?
- Anomalies in time-series data
- Anomalies in spatial data
- Anomalies in spatial time-series data
- Anomalies in images
- Is anomaly detection fundamentally easier than density estimation?

Bibliography

- Liu, F. T., Ting, K. M., & Zhou, Z.-H. (2008). Isolation Forest. In 2008 Eighth IEEE International Conference on Data Mining (pp. 413–422). Ieee. http://doi.org/10.1109/ICDM.2008.17
- Pevný, T. (2015). Loda: Lightweight on-line detector of anomalies. Machine Learning, (November 2014). http://doi.org/10.1007/s10994-015-5521-0
- Emmott, A., Das, S., Dietterich, T., Fern, A., & Wong, W.-K. (2015). Systematic construction of anomaly detection benchmarks from real data. http://arxiv.org/1503.01158v2
- Fern, A., Dietterich, T. G., Wright, R., Theriault, A., & Archer, D. W. (2018). Feedback-Guided Anomaly Discovery via Online Optimization. In KDD 2018.
- Liu, S., Garrepalli, R., Dietterich, T. G., Fern, A., & Hendrycks, D. (2018). Open Category Detection with PAC Guarantees.
 Proceedings of the 35th International Conference on Machine Learning, PMLR, 80, 3169–3178.