last time (1)

deadlock avoidance

consistent order (usually preferred for locks) avoid hold and wait (one resource, abort+retry, revoke resources)

deadlock detection

get info about what threads have what/are waiting for what repeatedly: eliminate threads could be immediately given all resources they're waiting for if you can't eliminate all threads: deadlock

last time (2)

```
producer/consumer problem
shared queue: one+ producers (enqueue) + one+ consumer (dequeue)
```

condition variables

```
badly misnamed
```

represent queue of waiting threads

consumers wait if queue full

Wait(condvar, lock): unlock lock + wait + relock lock when done waiting

Signal(condvar): stop one thread from waiting (and have it reacquire lock)

Broadcast(convar): stop all threads from waiting

monitors = lock + shared data + condition variables

anonymous feedback (1)

"This TA has been on the same person for like 45+ minutes when there's less than an hour before the deadline and they just stand there on their phone waiting for the person to do more work and reach another question...."

yes, I have talked to TAs about this kind of thing hopefully TAs will use strategies to switch between students (though I would hope students aren't relying on being able to get last-hour help consistently since we don't have the staff to make that happen...)

anonymous feedback (2)

"Labs for the past few weeks have been much better than earlier labs were, particularly the signals and network labs. Recent labs like the cache lab, sync games, and the pthreads lab could definitely be finished in a 75-minute time span and really helped me get some good practice with the material. Thank you for making these lab exercises more forgiving and doable in lab time."

```
this is more of an accident than on purpose labs are mostly the way they are from pilot... (and I think for pthreads needs to have more — probably provide some base code for extra approach 2 + \text{have people start it})
```

anonymous feedback (3)

"I was thinking about the class with a friend of mine and we just realized we are very grateful for how much effort you have put into the class, and your willingness to adjust things. I imagine it is hard to have to change things and update them in response to the weird things one of us 200something students come up with (I know I have contributed my fair share of these), so I really appreciate how willing you have been to listen to us. Thank you very much and I am sorry some people are mean in here. "

"I really enjoy this class! It is one of my favorite classes that I have taken. You run it very well and the structure is very organized and well done."

```
pthread mutex t lock;
pthread_cond_t data_ready; pthread_cond_t space_ready;
BoundedQueue buffer;
Produce(item) {
    pthread_mutex_lock(&lock);
    while (buffer.full()) { pthread_cond_wait(&space_ready, &lock); }
    buffer.engueue(item);
    pthread_cond_signal(&data_ready);
    pthread mutex unlock(&lock);
Consume() {
    pthread_mutex_lock(&lock);
    while (buffer.empty()) {
        pthread_cond_wait(&data_ready, &lock);
    }
    item = buffer.dequeue();
    pthread_cond_signal(&space_ready);
    pthread_mutex_unlock(&lock);
    return item;
```

```
pthread mutex t lock;
pthread_cond_t data_ready; pthread_cond_t space_ready;
BoundedQueue buffer;
Produce(item) {
    pthread_mutex_lock(&lock);
    while (buffer.full()) { pthread_cond_wait(&space_ready, &lock); }
    buffer.engueue(item);
    pthread_cond_signal(&data_ready);
    pthread mutex unlock(&lock);
Consume() {
    pthread_mutex_lock(&lock);
    while (buffer.empty()) {
        pthread_cond_wait(&data_ready, &lock);
    item = buffer.dequeue();
    pthread_cond_signal(&space_ready);
    pthread_mutex_unlock(&lock);
    return item;
```

```
pthread mutex t lock;
pthread_cond_t data_ready; pthread_cond_t space_ready;
BoundedQueue buffer;
Produce(item) {
    pthread_mutex_lock(&lock);
    while (buffer.full()) { pthread_cond_wait(&space_ready, &lock); }
    buffer.engueue(item);
    pthread cond signal (&data ready):
    pt correct (but slow?) to replace with:
Consum pthread_cond_broadcast(&space_ready);
       (just more "spurious wakeups")
        pthread_cond_wait(&data_ready, &lock);
    item = buffer.dequeue();
    pthread_cond_signal(&space_ready);
    pthread_mutex_unlock(&lock);
    return item;
```

return item;

```
pthread_mutex_t lock;
pthread_cond_t data_ready; pthread_cond_t space_ready;
BoundedQueue buffer;
Produce(item) {
    pthread_mutex_lock(&lock);
    while (buffer.full()) { pthread_cond_wait(&space_ready, &lock); }
    buffer.engueue(item);
    pthread_cond_signal(&data_ready);
                                              correct but slow to replace
    pthread mutex unlock(&lock);
                                              data ready and space ready
Consume() {
                                              with 'combined' condvar ready
    pthread_mutex_lock(&lock);
                                              and use broadcast
    while (buffer.empty()) {
        pthread_cond_wait(&data_ready, &lock) (just more "spurious wakeups")
    item = buffer.dequeue();
    pthread_cond_signal(&space_ready);
    pthread_mutex_unlock(&lock);
```

monitor pattern

```
pthread mutex lock(&lock);
while (!condition A) {
    pthread_cond_wait(&condvar_for_A, &lock);
... /* manipulate shared data, changing other conditions */
if (set condition A) {
    pthread_cond_broadcast(&condvar_for_A);
   /* or signal, if only one thread cares */
if (set condition B) {
    pthread cond broadcast(&condvar for B);
    /* or signal, if only one thread cares */
pthread_mutex_unlock(&lock)
```

monitors rules of thumb

never touch shared data without holding the lock

keep lock held for entire operation:

verifying condition (e.g. buffer not full) up to and including manipulating data (e.g. adding to buffer)

create condvar for every kind of scenario waited for

always write loop calling cond_wait to wait for condition X

broadcast/signal condition variable every time you change X

monitors rules of thumb

never touch shared data without holding the lock

keep lock held for entire operation:

verifying condition (e.g. buffer not full) up to and including manipulating data (e.g. adding to buffer)

create condvar for every kind of scenario waited for

always write loop calling cond_wait to wait for condition X

broadcast/signal condition variable every time you change X

correct but slow to...

broadcast when just signal would work broadcast or signal when nothing changed use one condvar for multiple conditions

wait for both finished

```
// MISSING: init calls, etc.
pthread mutex t lock;
bool finished[2];
pthread_cond_t both_finished_cv;
void WaitForBothFinished() {
  pthread_mutex_lock(&lock);
 while (______
   pthread_cond_wait(&both_finished_cv, &lock);
  pthread_mutex_unlock(&lock);
void Finish(int index) {
  pthread_mutex_lock(&lock);
  finished[index] = true;
  pthread_mutex_unlock(&lock);
```

wait for both finished

```
A. finished[0] && finished[1]
// MISSING: init calls, etc.
                                  B. finished[0] || finished[1]
pthread mutex t lock;
                                  C. !finished[0] || !finished[1]
bool finished[2];
                                  D. finished[0] != finished[1]
pthread_cond_t both_finished_cv;
                                  E. something else
void WaitForBothFinished() {
  pthread_mutex_lock(&lock);
  while (______
   pthread_cond_wait(&both_finished_cv, &lock);
  pthread_mutex_unlock(&lock);
void Finish(int index) {
  pthread_mutex_lock(&lock);
  finished[index] = true;
  pthread_mutex_unlock(&lock);
```

wait for both finished

```
// MISSING: init calls, etc.
pthread mutex t lock;
                           A. pthread cond signal(&both finished cv)
bool finished[2];
                           B. pthread_cond_broadcast(&both_finished_cv)
pthread_cond_t both_fini
                           C. if (finished[1-index])
                                   pthread cond singal(&both finished cv);
void WaitForBothFinished D if (finished[1-index])
  pthread_mutex_lock(&lo
                                   pthread_cond_broadcast(&both_finished_cv);
                           E. something else
  while (
    pthread_cond_wait(&both_finished_cv, &lock);
  pthread_mutex_unlock(&lock);
void Finish(int index) {
  pthread_mutex_lock(&lock);
  finished[index] = true;
  pthread mutex unlock(&lock);
```

monitor exercise: barrier

suppose we want to implement a one-use barrier; fill in blanks: struct BarrierInfo { pthread mutex t lock; int total_threads; // initially total # of threads int number_reached; // initially 0 **}**; void BarrierWait(BarrierInfo *b) { pthread mutex lock(&b->lock); ++b->number reached; if (b->number reached == b->total threads) { } else { pthread mutex unlock(&b->lock);

generalizing locks: semaphores

semaphore has a non-negative integer value and two operations:

P() or **down** or **wait**: wait for semaphore to become positive (>0), then decerement by 1

V() or **up** or **signal** or **post**: increment semaphore by 1 (waking up thread if needed)

P, V from Dutch: proberen (test), verhogen (increment)

semaphores are kinda integers

semaphore like an integer, but...

cannot read/write directly

down/up operaion only way to access (typically) exception: initialization

never negative — wait instead

down operation wants to make negative? thread waits

reserving books

```
suppose tracking copies of library book...
Semaphore free_copies = Semaphore(3);
void ReserveBook() {
    // wait for copy to be free
    free_copies.down();
    ... // ... then take reserved copy
void ReturnBook() {
    ... // return reserved copy
    free copies.up();
    // ... then wakekup waiting thread
```

suppose tracking copies of same library book non-negative integer count = # how many books used? up = give back book; down = take book

Copy 1	
Copy 2	
Сору 3	

free copies 3

suppose tracking copies of same library book non-negative integer count = # how many books used? up = give back book; down = take book

suppose tracking copies of same library book non-negative integer count = # how many books used? up = give back book; down = take book

free copies 2 after calling down to reserve

suppose tracking copies of same library book non-negative integer count = # how many books used? up = give back book; down = take book

free copies 0 after calling down three times to reserve all copies

suppose tracking copies of same library book non-negative integer count = # how many books used? up = give back book; down = take book

reserve book call down again start waiting...

suppose tracking copies of same library book non-negative integer count = # how many books used? up = give back book; down = take book

implementing mutexes with semaphores

```
struct Mutex {
    Semaphore s; /* with inital value 1 */
   /* value = 1 --> mutex if free */
    /* value = 0 --> mutex is busy */
MutexLock(Mutex *m) {
   m->s.down();
MutexUnlock(Mutex *m) {
    m->s.up();
```

implementing join with semaphores

```
struct Thread {
    Semaphore finish_semaphore; /* with initial value 0 */
   /* value = 0: either thread not finished OR already joined */
    /* value = 1: thread finished AND not joined */
};
thread join(Thread *t) {
    t->finish semaphore.down();
  assume called when thread finishes */
thread exit(Thread *t) {
    t->finish semaphore.up();
   /* tricky part: deallocating struct Thread safely? */
```

POSIX semaphores

```
#include <semaphore.h>
...
sem_t my_semaphore;
int process_shared = /* 1 if sharing between processes */;
sem_init(&my_semaphore, process_shared, initial_value);
...
sem_wait(&my_semaphore); /* down */
sem_post(&my_semaphore); /* up */
...
sem_destroy(&my_semaphore);
```

semaphore exercise

```
int value; sem t empty, ready; // with some initial values
void PutValue(int argument) {
    sem_wait(&empty);
    value = argument;
                        What goes in the blanks?
    sem_post(&ready);
                        A: sem_post(&empty) / sem_wait(&ready)
                        B: sem_wait(&ready) / sem_post(&empty)
                        C: sem_post(&ready) / sem_wait(&empty)
int GetValue() {
                        D: sem_post(&ready) / sem_post(&empty)
    int result:
                        E: sem_wait(&empty) / sem_post(&ready)
    result = value;
                        F: something else
    return result;
```

PutValue().
PutValue() waits for prior GetValue(), places value, then allows next GetValue().

GetValue() waits for PutValue() to happen, retrieves value, then allows next

semaphore intuition

```
What do you need to wait for?

critical section to be finished
queue to be non-empty
array to have space for new items

what can you count that will be 0 when you need to wait?

# of threads that can start critical section now
# of threads that can join another thread without waiting
```

of empty spaces in array

of items in queue

use up/down operations to maintain count

producer/consumer constraints

consumer waits for producer(s) if buffer is empty producer waits for consumer(s) if buffer is full any thread waits while a thread is manipulating the buffer

producer/consumer constraints

```
consumer waits for producer(s) if buffer is empty producer waits for consumer(s) if buffer is full any thread waits while a thread is manipulating the buffer
```

one semaphore per constraint:

```
sem_t full_slots; // consumer waits if empty
sem_t empty_slots; // producer waits if full
sem_t mutex; // either waits if anyone changing buffer
FixedSizedQueue buffer;
```

producer/consumer pseudocode

```
sem_init(&full_slots, ..., 0 /* # buffer slots initially used */);
sem_init(&empty_slots, ..., BUFFER_CAPACITY);
sem_init(&mutex, ..., 1 / * # thread that can use buffer at once */);
buffer.set_size(BUFFER_CAPACITY);
Produce(item) {
    sem_wait(&empty_slots); // wait until free slot, reserve it
    sem_wait(&mutex);
    buffer.enqueue(item);
    sem_post(&mutex);
    sem_post(&full_slots); // tell consumers there is more data
Consume() {
    sem_wait(&full_slots); // wait until queued item, reserve it
    sem wait(&mutex);
    item = buffer.dequeue();
    sem_post(&mutex);
    sem_post(&empty_slots); // let producer reuse item slot
    return item;
```

producer/consumer pseudocode

```
sem_init(&full_slots, ..., 0 /* # buffer slots initially used */);
sem_init(&empty_slots, ..., BUFFER_CAPACITY);
sem_init(&mutex, \dots, 1 /* # thread that can use buffer at once */);
buffer.set_size(BUFFER_CAPACITY);
Produce(item) {
    sem_wait(&empty_slots); // wait until free slot, reserve it
    sem_wait(&mutex);
    buffer.enqueue(item);
    sem_post(&mutex);
    sem_post(&full_slots); // tell consumers there is more data
Consume() {
    sem_wait(&full_slots); // wait until queued item, reserve it
    sem wait(&mutex);
    item = buffer.dequeue();
    sem_post(&mutex);
    sem_post(&empty_slots); // let producer reuse item slot
    return item;
```

producer/consumer pseudocode

```
sem_init(&full_slots, ..., 0 /* # buffer slots initially used */);
sem_init(&empty_slots, ..., BUFFER_CAPACITY);
sem_init(&mutex, \dots, 1 /* # thread that can use buffer at once */);
buffer.set_size(BUFFER_CAPACITY);
Produce(item) {
    sem_wait(&empty_slots); // wait until free slot, reserve it
    sem_wait(&mutex);
    buffer.enqueue(item);
    sem_post(&mutex);
    sem_post(&full_slots); // tell consumers there is more data
Consume() {
    sem_wait(&full_slots); // wait until queued item, reserve it
    sem wait(&mutex);
    item = buffer.dequeue();
    sem_post(&mutex);
    sem_post(&empty_slots); // let producer reuse item slot
    return item;
```

producer/consumer pseudocode

```
sem_init(&full_slots, ..., 0 /* # buffer slots initially used */);
sem_init(&empty_slots, ..., BUFFER_CAPACITY);
sem_init(&mutex, ..., 1 /* # thread that can use buffer at once */);
buffer.set_size(BUFFER_CAPACITY);
Produce(item) {
    sem wait(&empty slots); // wait until free slot. reserve it
    sem_wait(&mutex);
                            Can we do
    buffer.engueue(item);
                              sem wait(&mutex);
    sem_post(&mutex);
                              sem_wait(&empty_slots);
    sem_post(&full_slots);
                            instead?
Consume() {
    sem_wait(&full_slots); // wait until queued item, reserve it
    sem wait(&mutex);
    item = buffer.dequeue();
    sem_post(&mutex);
    sem_post(&empty_slots); // let producer reuse item slot
    return item;
```

producer/consumer pseudocode

```
sem_init(&full_slots, ..., 0 /* # buffer slots initially used */);
sem_init(&empty_slots, ..., BUFFER_CAPACITY);
sem_init(&mutex, ..., 1 / * # thread that can use buffer at once */);
buffer.set_size(BUFFER_CAPACITY);
Produce(item) {
    sem wait(&empty slots); // wait until free slot. reserve it
   sem_wait(&mutex);
                            Can we do
    buffer.enqueue(item);
                              sem wait(&mutex);
    sem_post(&mutex);
                              sem_wait(&empty_slots);
                                                            data
   sem_post(&full_slots);
                            instead?
Consume() {
                           No. Consumer waits on sem wait(&mutex)
   sem_wait(&full_slots);
                           so can't sem post(&empty slots)
   sem wait(&mutex);
   item = buffer.dequeue()
                           (result: producer waits forever
   sem_post(&mutex);
                           problem called deadlock)
   sem_post(&empty_slots);
    return item:
```

producer/consumer: cannot reorder mutex/empty

```
ProducerReordered() {
    // BROKEN: WRONG ORDER
    sem_wait(&mutex);
    sem_wait(&empty_slots);
    ...
    sem_post(&mutex);
```

```
Consumer() {
   sem_wait(&full_slots);

// can't finish until
   // Producer's sem_post(&mutex):
   sem_wait(&mutex);

...

// so this is not reached
   sem_post(&full_slots);
```

producer/consumer pseudocode

```
sem_init(&full_slots, ..., 0 /* # buffer slots initially used */);
sem_init(&empty_slots, ..., BUFFER_CAPACITY);
sem_init(&mutex, ..., 1 / * # thread that can use buffer at once */);
buffer.set_size(BUFFER_CAPACITY):
Produce(item) {
    sem_wait(&empty_slots); // wait until free slot, reserve it
    sem_wait(&mutex);
    buffer.enqueue(item);
    sem_post(&mutex);
   sem_post(&full_slots Can we do
                                                       more data
                           sem post(&full slots);
                           sem_post(&mutex);
Consume() {
    sem_wait(&full_slots
                                                       reserve it
                        instead?
    sem wait(&mutex);
    item = buffer.dequeu Yes — post never waits
    sem post(&mutex);
    sem_post(&empty_slots); // let producer reuse item slot
    return item;
```

producer/consumer summary

```
producer: wait (down) empty_slots, post (up) full_slots consumer: wait (down) full_slots, post (up) empty_slots
```

two producers or consumers? still works!

transactions

```
transaction: set of operations that occurs atomically
idea: something higher-level handles locking, etc.:
BeginTransaction();
int FromOldBalance = GetBalance(FromAccount);
int ToOldBalance = GetBalance(ToAccount);
SetBalance(FromAccount, FromOldBalance - 100);
SetBalance(ToAccount, FromOldBalance + 100);
EndTransaction();
idea: library/database/etc. makes "transaction" happens all at
once
```

consistency / durability

"happens all at once" = could mean:

locking to make sure no other operations interfere (consistency) making sure on crash, no partial transaction seen (durability)

(some systems provide both, some provide only one)

we'll just talk baout implementing consistency

implementing consistency: simple

simplest idea: only one run transaction at a time

implementing consistency: locking

everytime something read/written: acquire associated lock

on end transaction: release lock

if deadlock: undo everything, go back to BeginTransaction(), retry how to undo?
one idea: keep list of writes instead of writing apply writes only at EndTransaction()

implementing consistency: locking

everytime something read/written: acquire associated lock

on end transaction: release lock

if deadlock: undo everything, go back to BeginTransaction(), retry how to undo? one idea: keep list of writes instead of writing apply writes only at EndTransaction()

implementing consistency: optimistic

on read: copy version # for value read

on write: record value to be written, but don't write yet

on end transaction:

acquire locks on everything make sure values read haven't been changed since read

if they have changed, just retry transaction

backup slides

```
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;
Produce(item) {
    pthread_mutex_lock(&lock);
    buffer.enqueue(item);
    pthread_cond_signal(&data_ready);
    pthread_mutex_unlock(&lock);
Consume() {
    pthread_mutex_lock(&lock);
    while (buffer.empty()) {
        pthread_cond_wait(&data_ready, &lock);
    item = buffer.dequeue();
    pthread_mutex_unlock(&lock);
    return item;
```

```
pthread_mutex_t lock;
                                      rule: never touch buffer
pthread_cond_t data_ready;
UnboundedOueue buffer;
Produce(item) {
    pthread_mutex_lock(&lock);
    buffer.enqueue(item);
    pthread_cond_signal(&data_ready);
    pthread_mutex_unlock(&lock);
Consume() {
   pthread_mutex_lock(&lock);
   while (buffer.empty()) {
        pthread_cond_wait(&data_ready, &lock);
    item = buffer.dequeue();
    pthread_mutex_unlock(&lock);
    return item:
```

without acquiring lock otherwise: what if two threads simulatenously en/dequeue? (both use same array/linked list entry?) (both reallocate array?)

```
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedOueue buffer;
Produce(item) {
    pthread_mutex_lock(&lock);
    buffer.enqueue(item);
    pthread_cond_signal(&data_ready);
    pthread_mutex_unlock(&lock);
                                                check if empty
                                                if so, dequeue
Consume() {
    pthread_mutex_lock(&lock);
    while (buffer.empty()) {
        pthread_cond_wait(&data_ready, &lock);
                                                okay because have lock
                                   other threads cannot dequeue here
    item = buffer.dequeue();
    pthread_mutex_unlock(&lock);
    return item;
```

```
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;
Produce(item) {
    pthread_mutex_lock(&lock);
                                                wake one Consume thread
    buffer.enqueue(item);
    pthread_cond_signal(&data_ready);
                                                if any are waiting
    pthread_mutex_unlock(&lock);
Consume() {
    pthread_mutex_lock(&lock);
    while (buffer.empty()) {
        pthread_cond_wait(&data_ready, &lock);
    item = buffer.dequeue();
    pthread_mutex_unlock(&lock);
    return item;
```

```
Thread 1
                                                                  Thread 2
pthread_mutex_t lock;
                                          Produce()
pthread_cond_t data_ready;
                                          ...lock
UnboundedOueue buffer;
                                          ...enqueue
                                          ...signal
Produce(item) {
                                          ...unlock
    pthread_mutex_lock(&lock);
                                                             Consume()
    buffer.engueue(item);
                                                             ...lock
    pthread_cond_signal(&data_ready)
                                                             ...empty? no
    pthread_mutex_unlock(&lock);
                                                             ...dequeue
                                                             ...unlock
Consume() {
                                                             return
    pthread_mutex_lock(&lock);
    while (buffer.empty()) {
         pthread_cond_wait(&data_ready, &lock);
    item = buffer.dequeue();
    pthread_mutex_unlock(&lock)
                                      0 iterations: Produce() called before Consume()
    return item;
                                       iteration: Produce() signalled, probably
                                       + iterations: spurious wakeup or ...?
```

```
Thread 1
                                                                   Thread 2
pthread_mutex_t lock;
                                                               Consume()
pthread_cond_t data_ready;
                                                               ...lock
UnboundedOueue buffer;
                                                               ...empty? yes
                                                               ...unlock/start wait
Produce(item) {
                                                   Produce()
                                                                   waiting for
    pthread_mutex_lock(&lock);
                                                   ...lock
    buffer.engueue(item);
                                                                   data ready
                                                   ...enqueue
    pthread_cond_signal(&data_ready);
                                                   ...signal
                                                              stop wait
    pthread_mutex_unlock(&lock);
                                                   ...unlock
                                                              lock
                                                               ...empty? no
Consume() {
                                                               ...dequeue
    pthread_mutex_lock(&lock);
                                                               ...unlock
    while (buffer.empty()) {
         pthread_cond_wait(&data_ready, &loc
                                                              return
    item = buffer.dequeue();
    pthread_mutex_unlock(&lock)
                                      0 iterations: Produce() called before Consume()
    return item;
                                        iteration: Produce() signalled, probably
                                        + iterations: spurious wakeup or ...?
```

```
Thread 1
                                                         Thread 2
                                                                         Thread 3
pthread_mutex_t lock;
                                                    Consume()
pthread_cond_t data_ready;
                                                    ...lock
UnboundedOueue buffer;
                                                    ...empty? yes
                                                    ...unlock/start wait
Produce(item) {
                                        Produce()
                                                         waiting for
     pthread_mutex_lock(&lock);
                                        ..lock
                                                                        Consume()
     buffer.engueue(item);
                                                         data ready
                                        ...enqueue
                                                                         waiting for
     pthread_cond_signal(&data_rea
                                        ...signal
                                                    stop wait
     pthread_mutex_unlock(&lock);
                                                                            lock
                                                                        lock
                                        ...unlock
                                                         waiting for
                                                                        ...empty? no
Consume() {
                                                            lock
                                                                         ...dequeue
    pthread_mutex_lock(&lock);
                                                                         ...unlock
    while (buffer.empty()) {
                                                    ...lock
         pthread_cond_wait(&data_r
                                                                        return
                                                    ...empty? yes
                                                    ...unlock/start wait
     item = buffer.dequeue();
     pthread_mutex_unlock(&lock)
                                       0 iterations: Produce() called before Consume()
     return item;
                                         iteration: Produce() signalled, probably
                                          iterations: spurious wakeup or ...?
```

```
Thread 1
                                                            Thread 2
                                                                             Thread 3
pthread_mutex_t lock;
                                                       Consume()
pthread_cond_t data_ready;
                                                       ...lock
UnboundedOueue buffer;
                                                       ...empty? yes
                                                       ...unlock/start wait
in pthreads: signalled thread not
                                          Produce()
                                                            waiting for
    gaurenteed to hold lock next);
                                           ...lock
                                                                            Consume()
                                                            data ready
                 alternate design: a_rea ...enqueue ...signal
                                                                             waiting for
                                                       stop wait
                                                                                lock
                                                                            lock
                                          ...unlock
   signalled thread gets lock next
                                                            waiting for
                                                                             ...empty? no
        called "Hoare scheduling"
                                                               lock
                                                                             ...dequeue
   not done by pthreads, Java, ...
                                                                             ...unlock
                                                       ...lock
          pthread_cond_wait(&data_r
                                                                            return
                                                       ...empty? yes
     item = buffer.dequeue();
                                                       ...unlock/start wait
     pthread_mutex_unlock(&lock)
                                         0 iterations: Produce() called before Consume()
     return item;
                                           iteration: Produce() signalled, probably
                                             iterations: spurious wakeup or ...?
```

monitor exercise: ConsumeTwo

suppose we want producer/consumer, but...

but change Consume() to ConsumeTwo() which returns a pair of values

and don't want two calls to ConsumeTwo() to wait... with each getting one item

what should we change below?

```
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
    pthread_mutex_lock(&lock);
    buffer.enqueue(item);
    pthread_cond_signal(&data_ready);
    pthread_mutex_unlock(&lock);
}

Consume() {
    pthread_mutex_lock(&lock);
    while (buffer.empty()) {
        pthread_cond_wait(&data_ready, &lock);
    }
    item = buffer.dequeue();
    pthread_mutex_unlock(&lock);
    return item;
}
```

monitor exercise: ordering

suppose we want producer/consumer, but...

but want to ensure first call to Consume() always returns first

(no matter what ordering cond_signal/cond_broadcast use)

```
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
    pthread_mutex_lock(&lock);
    buffer.enqueue(item);
    pthread_cond_signal(&data_ready);
    pthread_mutex_unlock(&lock);
}

Consume() {
    pthread_mutex_lock(&lock);
    while (buffer.empty()) {
        pthread_cond_wait(&data_ready, &lock);
    }
    item = buffer.dequeue();
    pthread_mutex_unlock(&lock);
    return item;
}
```

producer/consumer signal?

```
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;
Produce(item) {
    pthread_mutex_lock(&lock);
    buffer.engueue(item);
    /* GOOD CODE: pthread_cond_signal(&data_ready); */
    /* BAD CODE: */
    if (buffer.size() == 1)
        pthread_cond_signal(&item);
    pthread_mutex_unlock(&lock);
Consume() {
    pthread_mutex_lock(&lock);
    while (buffer.empty()) {
        pthread_cond_wait(&data_ready, &lock);
    item = buffer.dequeue();
    pthread_mutex_unlock(&lock);
    return item;
```

bad case (setup)

thread 0	1	2	3
Consume():			
lock			
empty? wait on cv			
	lock		
	empty? wait on cv		
		Produce(): lock	
		lock	Produce():

bad case

thread 0	1	2	3
Consume(): lock			
empty? wait on cv	Consume():		
empty: wate on ev	lock		
	empty? wait on cv		
		Produce():	
		lock	Produce(): wait for lock
			wait for lock
wait for lock		enqueue $size = 1? signal$	
Walt for lock		unlock	gets lock
			enqueue
			$size \neq 1$: don't signal
			unlock
gets lock			
dequeue	ctill waiting		
	still waiting		

Anderson-Dahlin and semaphores

Anderson/Dahlin complains about semaphores

"Our view is that programming with locks and condition variables is superior to programming with semaphores."

argument 1: clearer to have separate constructs for waiting for condition to be come true, and allowing only one thread to manipulate a thing at a time

arugment 2: tricky to verify thread calls up exactly once for every down

alternatives allow one to be sloppier (in a sense)

monitors with semaphores: locks

```
sem_t semaphore; // initial value 1

Lock() {
    sem_wait(&semaphore);
}

Unlock() {
    sem_post(&semaphore);
}
```

monitors with semaphores: [broken] cvs

start with only wait/signal:

```
sem_t threads_to_wakeup; // initially 0
Wait(Lock lock) {
    lock.Unlock();
    sem_wait(&threads_to_wakeup);
    lock.Lock();
}
Signal() {
    sem_post(&threads_to_wakeup);
}
```

monitors with semaphores: [broken] cvs

start with only wait/signal:

```
sem_t threads_to_wakeup; // initially 0
Wait(Lock lock) {
    lock.Unlock();
    sem_wait(&threads_to_wakeup);
    lock.Lock();
}
Signal() {
    sem_post(&threads_to_wakeup);
}
problem: signal wakes up non-waiting threads (in the far future)
```

monitors with semaphores: cvs (better)

start with only wait/signal:

```
sem t private lock; // initially 1
int num_waiters;
sem_t threads_to_wakeup; // initially 0
Wait(Lock lock) {
                                           Signal() {
  sem_wait(&private_lock);
                                             sem_wait(&private_lock);
                                             if (num waiters > 0) {
  ++num waiters;
  sem_post(&private_lock);
                                               sem_post(&threads_to_wakeup);
  lock.Unlock();
                                               --num_waiters;
  sem_wait(&threads_to_wakeup);
  lock.Lock();
                                             sem_post(&private_lock);
```

monitors with semaphores: broadcast

now allows broadcast:

```
sem_t private_lock; // initially 1
int num waiters;
sem_t threads_to_wakeup; // initially 0
Wait(Lock lock) {
                                          Broadcast() {
  sem_wait(&private_lock);
                                             sem_wait(&private_lock);
  ++num waiters;
                                             while (num_waiters > 0) {
  sem_post(&private_lock);
                                               sem_post(&threads_to_wakeup);
  lock.Unlock();
                                               --num waiters;
  sem_wait(&threads_to_wakeup);
  lock.Lock();
                                             sem_post(&private_lock);
```

pthread_mutex_t lock;

lock to protect shared state

```
pthread_mutex_t lock;
unsigned int count;
```

lock to protect shared state

shared state: semaphore tracks a count

```
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
```

lock to protect shared state shared state: semaphore tracks a count

add cond var for each reason we wait semaphore: wait for count to become positive (for down)

```
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {
    pthread_mutex_lock(&lock);
   while (!(count > 0)) {
        pthread_cond_wait(
            &count_is_positive_cv,
            &lock);
    count -= 1;
    pthread mutex unlock(&lock);
```

lock to protect shared state shared state: semaphore tracks a count

add cond var for each reason we wait semaphore: wait for count to become positive (for down)

wait using condvar; broadcast/signal when condition changes

```
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {
                                        void up() {
    pthread_mutex_lock(&lock);
                                            pthread_mutex_lock(&lock);
   while (!(count > 0)) {
                                            count += 1;
        pthread_cond_wait(
                                            /* count must now be
            &count_is_positive_cv,
                                               positive, and at most
            &lock);
                                               one thread can go per
                                               call to Up() */
                                            pthread_cond_signal(
    count -= 1:
    pthread_mutex_unlock(&lock);
                                                &count is positive cv
                                            pthread_mutex_unlock(&lock);
lock to protect shared state
```

add cond var for each reason we wait semaphore: wait for count to become positive (for down)

shared state: semaphore tracks a count

wait using condvar; broadcast/signal when condition changes

binary semaphores

binary semaphores — semaphores that are only zero or one

as powerful as normal semaphores

exercise: simulate counting semaphores with binary semaphores (more than one) and an integer

counting semaphores with binary semaphores

via Hemmendinger, "Comments on 'A correct and unrestrictive implementation of general semaphores' " (1989); Barz, "Implementing semaphores by binary semaphores" (1983) // assuming initialValue > 0 BinarySemaphore mutex(1); int value = initialValue ; BinarvSemaphore gate(1 /* if initialValue >= 1 */); /* gate = # threads that can Down() now */ void Down() { void Up() { gate.Down(); mutex.Down(); // wait, if needed value += 1; mutex.Down(); **if** (value == 1) { value -= 1; gate.Up(); **if** (value > 0) { // because down should finish now gate.Up(); // but could not before // because next down should finish // now (but not marked to before) mutex.Up(); mutex.Up();

gate intuition/pattern

pattern to allow one thread at a time: $sem_t gate; // 0 = closed; 1 = open$ ReleasingThread() { ... // finish what the other thread is waiting for while (another thread is waiting and can go) { sem_post(&gate) // allow EXACTLY ONE thread ... // other bookkeeping WaitingThread() { ... // indicate that we're waiting sem_wait(&gate) // wait for gate to be open ... // indicate that we're not waiting

exercise: forwarding paths (2)

```
cycle # 0 1 2 3 4 5 6 7 8
addq %r8, %r9
subg %r8, %r9
ret (goes to andg)
andg %r10, %r9
in subg. \%r8 is _____ addg.
in subq, \%r9 is _____ addq.
in and \frac{1}{3} %r9 is _____ subq.
in andq, %r9 is _____ addq.
```

A: not forwarded from

B-D: forwarded to decode from $\{\mbox{execute,memory,writeback}\}$ stage of

mutex/cond var init/destroy

```
pthread_mutex_t mutex;
pthread cond t cv;
pthread_mutex_init(&mutex, NULL);
pthread_cond_init(&cv, NULL);
// --OR--
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
pthread cond t cv = PTHREAD COND INITIALIZER;
// and when done:
pthread cond destroy(&cv);
pthread mutex destroy(&mutex);
```