ESP8266 应用笔记

固件下载协议

关于本手册

本文档介绍了 ESP8266 的固件下载协议。

发布说明

日期	版本	发布说明
2016.05	V1.0	首次发布。
2017.06	V1.1	在表 2-2 中增加操作代码 09、0a、0b。
0010.11	V1.2	• 更新 4.3. 参考资料
2018.11		• 更新文档格式

文档变更通知

用户可通过乐鑫官网订阅页面 <u>https://www.espressif.com/zh-hans/subscribe</u> 订阅技术文档变更的电子邮件通知。

证书下载

用户可通过乐鑫官网证书下载页面 https://www.espressif.com/zh-hans/certificates 下载产品证书。

目录

1.1. 硬件准备	1
1.1.2. 硬件连接	1
1.2. 下载流程	1
2. 传输协议 2.1. 数据头 2.2. 数据体 3. 固件格式 A. 附录 - 编程示例 A.1. 校验和	1
2.1. 数据头 2.2. 数据体 3. 固件格式 A. 附录 - 编程示例 A.1. 校验和	2
2.2. 数据体 3. 固件格式 A. 附录 – 编程示例 A.1. 校验和	3
3. 固件格式	3
A. 附录 – 编程示例	2
A. 附录 – 编程示例	
A.1. 校验和	
/ \ 1	
A.3. 参考资料	

1. 概述

1.1. 硬件准备

ESP8266 处于 UART 下载模式时,可以通过外部 MCU 将固件下载到 ESP8266.

1.1.1. 硬件设置

硬件设置如表 1-1 所示。

设置项设置UART 下载模式GPIO0 和 GPIO15: 低电平 GPIO2: 高电平波特率自适应数据位8停止位1校验位无流控关闭

表 1-1. 硬件设置

1.1.2. 硬件连接

硬件连接如图 1-1 所示。

图 1-1. 硬件连接

1.2. 下载流程

图 1-2. 下载流程

- 同步: 发送同步帧同步波特率。
- 擦除数据:根据要下载的固件大小和下载地址擦除 flash 相应的块区域。
- 发送数据:将固件封装成多帧发送给 ESP8266.
- 发送结束帧:发送下载结束帧给 ESP8266。

2.

传输协议

传输协议采用串联线路网际网络协议 (SLIP) 的封装格式。

- 每个数据包都以 0xC0 开始和结束。
- 如果 0xC0 出现在数据包内部,就将 0xC0 替换成两个字节 0xDB 0xDC;如果 0xDB 出现在数据包内部,则替换为 0xDB 0xDD。
- 在数据帧里,数据包由数据头和长度不定的数据体组成,如图 2-1 所示。
- 所有多字节字段的存储模式均为小端模式。

图 2-1. 数据包格式

2.1. 数据头

数据头的格式如表 2-1 所示。

表 2-1. 数据头格式

字节	数据类型	请求	应答
0	Туре	始终为 0x00。	始终为 0x01。
1	Command	操作代码详细信息请参考表 2-2。	
2~3	Data size	数据体的大小。 说明: Data size 统计的是 0 × C0 和 0 2	xDB 被替换前的数据体的长度。
4~7	Checksum/Response	payload(数据体中 16 字节之后的 固件数据)的异或校验。 Checksum 计算方法请参考"附录 - 编程示例"。	响应数据。
8~n	Body	取决于操作。	
8	Status	-	状态标志,成功 (0) 或失败 (1)。
9	Error	-	成功 (null) 或失败(错误码)。

表 2-2. 操作代码

代码	名称	说明
02	Flash Download Start	擦除 flash 中的数据。 • Word0:擦除扇区的数量,每扇区 4096 个字节。 • Word1:发送数据包的数量。 • Word2:发送数据包的大小,如 0x400。 • Word3:偏移地址。 说明:关于擦除数据的代码示例请参考"附录 — 编程示例"。
03	File Packet Send	发送数据。 Word0: 发送数据包的大小(填 0x400)。 Word1: 发送数据包的序列号。 Word2: 0x0 Word3: 0x0
04	Flash DownLoad Stop	停止发送数据。
08	Sync Frame Send	<pre>sync_frame[36] = { 0x07, 0x07, 0x12, 0x20, 0x55, 0x55 };</pre>
09	Write register	四个字 (word):地址、值、掩码和延迟(毫秒级)。
0a	Read register	以字为单位读取数据。
0b	Configure SPI params	24 个字节未知的 SPI 参数。

2.2. 数据体

数据体格式如图 2-2 所示。

图 2-2. 数据体格式

数据体的前 16 个字节 (Word0 ~ Word3) 是描述数据体的,不同的数据指令,其描述也不同。

3.

固件格式

固件包含文件头和数量可变的数据块(数据块的大小可能不同),如图 3-1 所示。所有多字节字段的存储模式均为小端模式。

图 3-1. 固件格式

文件头格式如表 3-1 所示。

表 3-1. 固件格式说明

字节	数据类型	说明
0	Magic Code	值始终为 ØXE9。
1	Block Number	数据块的数量。
2	SPI Mode	SPI 的工作模式。
3	SPI Flash Info	SPI flash 的大小和频率。 高 4 位: 0x0 = 512 kB; 0x1 = 256 kB; 0x2 = 1 MB; 0x3 = 2 MB; 0x4 = 4 MB 低 4 位: 0x0 = 40 MHz; 0x1 = 26 MHz; 0x2 = 20 MHz; 0XF = 80 MHz
4~7	Entry Address	CPU 入口地址。

A.

附录 - 编程示例

A.1. 校验和

```
uint32_t espcomm_calc_checksum(unsigned char *data, uint16_t data_size)
{
    uint16_t cnt;
    uint32_t result;
    result = 0xEF;
    for(cnt = 0; cnt < data_size; cnt++)
    {
        result ^= data[cnt];
    }
    return result;
}</pre>
```

A.2. 擦除 flash

```
#define BLOCKSIZE_FLASH 0x400
#define FLASH_DOWNLOAD_BEGIN 0x02
uint32 flash_packet[];
//uint32_t size:firmware real size,
                                      uint32_t address: download offset address
int erase_flash(uint32_t size, uint32_t address)
{
const int sector_size = 4096;
const int sectors_per_block = 16;
const int first_sector_index = address / sector_size;
const int total_sector_count = ((size % sector_size) == 0) ?
                               (size / sector_size) : (size / sector_size + 1);
const int max_head_sector_count = sectors_per_block - (first_sector_index %
sectors_per_block);
const int head_sector_count = (max_head_sector_count > total_sector_count) ?
                               total_sector_count : max_head_sector_count;
// SPIEraseArea function in the esp8266 ROM has a bug which causes extra area to be erased.
// If the address range to be erased crosses the block boundary,
// then extra head_sector_count sectors are erased.
```


A.3. 参考资料

espressif/esptool: https://github.com/espressif/esptool

乐鑫 IoT 团队 www.espressif.com

免责申明和版权公告

本文中的信息,包括供参考的 URL 地址,如有变更,恕不另行通知。

文档"按现状"提供,不负任何担保责任,包括对适销性、适用于特定用途或非侵权性的任何担保,和任何提案、规格或样品在他处提到的任何担保。本文档不负任何责任,包括使用本文档内信息产生的侵犯任何专利权行为的责任。本文档在此未以禁止反言或其他方式授予任何知识产权使用许可,不管是明示许可还是暗示许可。

Wi-Fi 联盟成员标志归 Wi-Fi 联盟所有。蓝牙标志是 Bluetooth SIG 的注册商标

文中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此声明。

版权归 © 2018 乐鑫所有。保留所有权利。