CSC236 - Week 3

Cristyn Howard

Thursday, January 18, 2018

Building Recursively Defined Sets:

- 1. Define the smallest, simplest, elementary objects in the set.
- 2. Indicate how larger, more complex objects in the set can be constructed out of simpler ones.
- 3. Close the definition of the set.

Examples of Recursively Defined Sets:

- The set of natural numbers, \mathbb{N} .
 - $-0 \in \mathbb{N}$
 - $-k \in \mathbb{N} \to (k+1) \in \mathbb{N}$
 - nothing else belongs to $\mathbb N$
- Non-empty binary trees.
 - a single node is a binary tree
 - given disjoint non-empty binary trees T_1 , T_2 , and single node r, the tree with root r connected to the roots of one or both of $\{T_1, T_2\}$ is a non-empty binary tree
 - nothing else is a non-empty binary tree

<u>Structural Induction</u>: Prove that P holds for all elements of a recursively defined set.

- 1. Show that every elementary object in the set satisfies P.
- 2. Assume that P holds for smaller, simpler elements in the set. Show that every possible element constructed out of smaller elements for which P holds also satisfies P.

Examples of Structural Induction:

- Prove that every non-empty binary tree has one more node than edge.
- \bullet Consider the following recursively defined set $S\subseteq \mathbb{N}^2$:
 - this is an item
 - this is an item
 - this is an item