# Ex-6 – Inference Rules from KB

Inference Rules

Rules of Inference for Propositional Logic

### Formal Proofs: using rules of inference to build arguments

#### Definition

A **formal proof** of a conclusion q given hypotheses  $p_1, p_2, \ldots, p_n$  is a sequence of steps, each of which applies some inference rule to hypotheses or previously proven statements (antecedents) to yield a new true statement (the consequent).

A formal proof demonstrates that if the premises are true, then the conclusion is true.

Note that the word formal here is not a synomym of rigorous.

A formal proof is based simply on symbol manipulation (no need of thinking, just apply rules).

A formal proof is rigorous but so can be a proof that does not rely on symbols!



## Formal proof example

#### Show that the hypotheses:

It is not sunny this afternoon and it is colder than yesterday.

We will go swimming only if it is sunny.

If we do not go swimming, then we will take a canoe trip.

If we take a canoe trip, then we will be home by sunset.

#### lead to the conclusion:

We will be home by the sunset.

#### Main steps:

Translate the statements into proposional logic.

Write a formal proof, a sequence of steps that state hypotheses or apply inference rules to previous steps.

#### Show that the hypotheses:

It is not sunny this afternoon and it is colder than yesterday.  $\neg s \land c$  We will go swimming only if it is sunny.  $w \to s$  If we do not go swimming, then we will take a canoe trip.  $\neg w \to t$  If we take a canoe trip, then we will be home by sunset.  $t \to h$  lead to the conclusion:

We will be home by the sunset. h

| Step                      | Reason                   |
|---------------------------|--------------------------|
| 1. $\neg s \wedge c$      | hypothesis               |
| 2. ¬s                     | simplification           |
| 3. $w \rightarrow s$      | hypothesis               |
| <b>4</b> . ¬w             | modus tollens of 2 and 3 |
| 5. $\neg w \rightarrow t$ | hypothesis               |
| 6. t                      | modus ponens of 4 and 5  |
| 7. $t \rightarrow h$      | hypothesis               |
| 8. <i>h</i>               | modus ponens of 6 and 7  |

#### Where:

s: "it is sunny this afternoon"
c: "it is colder than yesterday"
w: "we will go swimming"
t: "we will take a canoe trip.
h: "we will be home by the sunset."



Resolution

# Resolution and Automated Theorem Proving

We can build programs that automate the task of reasoning and proving theorems.

Recall that the rule of inference called **resolution** is based on the tautology:

$$((p \lor q) \land (\neg p \lor r)) \to (q \lor r)$$

If we express the hypotheses and the conclusion as **clauses** (possible by CNF, a conjunction of clauses), we can use **resolution** as the only inference rule to build proofs!

**Example** (Do not confuse with the given. Its given for your understanding purpose)

# Proofs that use exclusively **resolution** as inference rule

Step 1: Convert hypotheses and conclusion into clauses:

| Original hypothesis  | equivalent CNF                                  | Hypothesis as list of clauses |
|----------------------|-------------------------------------------------|-------------------------------|
| $(p \land q) \lor r$ | $(p \lor r) \land (q \lor r)$ $(\neg r \lor s)$ | $(p \lor r)$ , $(q \lor r)$   |
| $r \rightarrow s$    | $(\neg r \lor s)$                               | $(\neg r \lor s)$             |
| Conclusion           | equivalent CNF                                  | Conclusion as list of clauses |
| $p \vee s$           | $(p \lor s)$                                    | $(p \lor s)$                  |

Step 2: Write a proof based on resolution:

| Step               | Reason                |
|--------------------|-----------------------|
| 1. $p \vee r$      | hypothesis            |
| 2. $\neg r \lor s$ | hypothesis            |
| 3. $p \vee s$      | resolution of 1 and 2 |

#### Show that the hypotheses:

 $\neg s \land c$  translates to clauses:  $\neg s, c$ 

 ${\color{red} w} \rightarrow {\color{red} s}$  translates to clause:  $(\neg w \lor s)$ 

 $\neg w \rightarrow t$  translates to clause:  $(w \lor t)$ 

 $t \rightarrow h$  translates to clause:  $(\neg t \lor h)$ 

#### lead to the conclusion:

h (it is already a trivial clause)

Note that the fact that p and  $\neg p \lor q$  implies q (called disjunctive syllogism) is a special case of resolution, since  $p \lor F$  and  $\neg p \lor q$  give us  $F \lor q$  which is equivalent to q.

|    |     | 1 |
|----|-----|---|
| ro | ۰ŧ۰ | 1 |

Resolution-based proof:

| Step               | Reason                |
|--------------------|-----------------------|
| 1. ¬s              | hypothesis            |
| 2. $\neg w \lor s$ | hypothesis            |
| 3. ¬w              | resolution of 1 and 2 |
| 4. $w \vee t$      | hypothesis            |
| 5. t               | resolution of 3 and 4 |
| 6. $\neg t \lor h$ | hypothesis            |
| 7. h               | resolution of 5 and 6 |