I Want to Predict with Transformer

Reviewing 'Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting'

Sungguk Cha

Contents

- Introduce *transformer*
- Introduce limitations of prior approaches
- Review 'Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting (AAAI21)'
- Discussion

Transformer?

Transformer is

- proposed for seq2seq task.
- based on attention algorithm.

Figure. Attention algorithm

Figure 1: The Transformer - model architecture.

Transformer Is Overwhelming

Transformer has shown overwhelming performances over NLP, CV and multi-modal learning.

NLP: GPT-3 (text generation), BERT (language representation pretraining)

CV: ViT (image recognition)

Vision-NLP: CLIP (zero-shot classification), DALL E (text-to-image synthesis)

Vision-Audio: Lip reading, audio supervised object detection

Transformer Is Overwhelming

Transformer has shown **overwhelming performances** over NLP, CV and multi-modal learning.

NLP: GPT-3 (text generation), BERT (language representation pretraining)

CV: ViT (image recognition)

Vision-NLP: CLIP (zero-shot classification), DALL E (text-to-image synthesis)

Vision-Audio: Lip reading, audio supervised object detection

In a sense that transformer shows irreplaceable performance on seq2seq, I believe it will be the same over price prediction task.

Limitations of Transformers

- The quadratic computation of self-attention: O(L^2)
- The memory bottleneck in stacking layers of J long inputs: O(J*L^2)
- The speed plunge in predicting long outputs.

Limitations of Transformers

- The quadratic computation of self-attention: $O(L^2)$
- The memory bottleneck in stacking layers of J long inputs: $O(J^*L^2)$
- The speed plunge in predicting long outputs.

I will give you an example of BERT-base model w.r.t. the **space complexity**, while the computation complexity is problematic as well.

Example with a sequence with 512 tokens.

Figure. Attention algorithm

Example with a sequence with 512 tokens.

A token is expressed with 4B * 768 = 3,072B (3KB).

Figure. Attention algorithm

Example with a sequence with 512 tokens.

A token is expressed with 4B * 768 = 3,072B (3KB).

A sequence is 3,072B * 512 = 1,572,864B(1.5MB).

Figure. Attention algorithm

Example with a sequence with 512 tokens.

A token is expressed with 4B * 768 = 3,072B (3KB).

A sequence is 3,072B * 512 = 1,572,864B(1.5MB).

a1		W a1 a1	 W a512 a1	a1'
	\bowtie		 	
a512		W a1 a512	 W a512 a512	a512`

Figure. Attention algorithm

Example with a sequence with 512 tokens.

A token is expressed with 4B * 768 = 3,072B (3KB).

A sequence is 3,072B * 512 = 1,572,864B(1.5MB).

Figure. Attention algorithm

Figure 1: The Transformer - model architecture.

Transformer has 12 layers. 12 * 800 MB = 9.6GB.

1 batch requires at least about 10GB.

Training is conducted with thousands of batches.

I.e., **terabytes GPU** memory is needed.

Attention matrix takes 512 * 512 * 4B * 768 = 805,306,368B (800MB)

Informer!

- 1. The quadratic computation of self-attention: $O(L^2)$
- 2. The memory bottleneck in stacking layers of J long inputs: $O(J^*L^2)$
- 3. The speed plunge in predicting long outputs.

Informer!

1. The quadratic computation of self-attention: $O(L^2)$

Heuristic approaches to obtain $O(L \log L)$ but the efficiency gain is limited.

Sparse Transformer (Child et al. 2019), LogSparse Transformer (Li et al. 2019), Longformer (Beltagy et al. 2020)

Reformer (Kitaev et al. 2019) achieves $O(L \log L)$ on extremely long sequences.

Linformer (Wang et al. 2020) conditionally obtains O(L) with risks of degradation to $O(L^2)$.

Canonical Self-Attention Takes O(Lq Lk)

Proposed *ProbSparse* Self-attention takes O(Lk log Lq)

Constrain queries by ignoring sparse correlations.

$$\mathcal{A}(\mathbf{q}_i, \mathbf{K}, \mathbf{V}) = \sum_j \frac{k(\mathbf{q}_i, \mathbf{k}_j)}{\sum_l k(\mathbf{q}_i, \mathbf{k}_l)} \mathbf{v}_j = \mathbb{E}_{p(\mathbf{k}_j | \mathbf{q}_i)}[\mathbf{v}_j]$$

Measuring Sparsity

 $p(\mathbf{k}_j|\mathbf{q}_i)$ If an attention value is closed to 1 / L, it means the attention is as meaningless as uniform.

Measuring Sparsity

$$p(\mathbf{k}_j|\mathbf{q}_i)$$
 If an attention value is closed to 1 / L, it means the attention is as meaningless as uniform.

$$M(\mathbf{q}_i, \mathbf{K}) = \ln \sum_{j=1}^{L_K} e^{\frac{\mathbf{q}_i \mathbf{k}_j^\top}{\sqrt{d}}} - \frac{1}{L_K} \sum_{j=1}^{L_K} \frac{\mathbf{q}_i \mathbf{k}_j^\top}{\sqrt{d}} \qquad \text{measuring KL divergence} \dots$$

Measuring Sparsity

$$p(\mathbf{k}_j|\mathbf{q}_i)$$

 $p(\mathbf{k}_j|\mathbf{q}_i)$ If an attention value is closed to 1 / L, it means the attention is as meaningless as uniform.

$$M(\mathbf{q}_i, \mathbf{K}) = \ln \sum_{j=1}^{L_K} e^{\frac{\mathbf{q}_i \mathbf{k}_j^{\top}}{\sqrt{d}}} - \frac{1}{L_K} \sum_{j=1}^{L_K} \frac{\mathbf{q}_i \mathbf{k}_j^{\top}}{\sqrt{d}}$$

measuring KL divergence

Waa	Wba	Wca
Wab	Wbb	Wcb
Wac	Wbc	Wcc

They are to use top- c log L correlations only according to their importance ranking (QiKj).

Computing relatively meaningful ones only.

Additional Engineering Contributions

- Reduce memory usage by self-attention distilling.
- Generates sequential output once
 - which can avoid error accumulation.

Experiment: Baselines

A feed on to	Traiı	Testing		
Methods	Time	Memory	Steps	
Informer	$\mid \mathcal{O}(L \log L) \mid$	$\mathcal{O}(L \log L)$	1	
Transformer	$O(L^2)$	$\mathcal{O}(L^2)$		
LogTrans	$\mid \mathcal{O}(L \log L) \mid$	$\mathcal{O}(L^2)$	1*	
Reformer	$\mid \mathcal{O}(L \log L) \mid$	$\mathcal{O}(L \log L)$	L	
LSTM	$ \mathcal{O}(L) $	$\mathcal{O}(L)$	L	

¹ The LSTnet is hard to present in a closed form.

Table 4: *L*-related computation statics of each layer.

² The ★ denotes applying our proposed decoder.

Experiment: Datasets

They experimented on their own dataset.

- Electricity Transformer Temperature (ETT)
- Electricity Consuming Load (ECL)
- Weather

Experimental Results

Methods		Informer		Informer [†]		LogTrans		Reformer		LSTMa		LSTnet	
M	etric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
ETTh_1	24 48 168 336 720	0.577 0.685 0.931 1.128 1.215	0.549 0.625 0.752 0.873 0.896	0.620 0.692 0.947 1.094 1.241	0.577 0.671 0.797 0.813 0.917	0.686 0.766 1.002 1.362 1.397	0.604 0.757 0.846 0.952 1.291	0.991 1.313 1.824 2.117 2.415	0.754 0.906 1.138 1.280 1.520	0.650 0.702 1.212 1.424 1.960	0.624 0.675 0.867 0.994 1.322	1.293 1.456 1.997 2.655 2.143	0.901 0.960 1.214 1.369 1.380
$ETTh_2$	24 48 168 336 720	0.720 1.457 3.489 2.723 3.467	0.665 1.001 1.515 1.340 1.473	0.753 1.461 3.485 2.626 3.548	0.727 1.077 1.612 1.285 1.495	0.828 1.806 4.070 3.875 3.913	0.750 1.034 1.681 1.763 1.552	1.531 1.871 4.660 4.028 5.381	1.613 1.735 1.846 1.688 2.015	1.143 1.671 4.117 3.434 3.963	0.813 1.221 1.674 1.549 1.788	2.742 3.567 3.242 2.544 4.625	1.457 1.687 2.513 2.591 3.709
$ETTm_1$	24 48 96 288 672	0.323 0.494 0.678 1.056 1.192	0.369 0.503 0.614 0.786 0.926	0.306 0.465 0.681 1.162 1.231	0.371 0.470 0.612 0.879 1.103	0.419 0.507 0.768 1.462 1.669	0.412 0.583 0.792 1.320 1.461	0.724 1.098 1.433 1.820 2.187	0.607 0.777 0.945 1.094 1.232	0.621 1.392 1.339 1.740 2.736	0.629 0.939 0.913 1.124 1.555	1.968 1.999 2.762 1.257 1.917	1.170 1.215 1.542 2.076 2.941
Weather	24 48 168 336 720	0.335 0.395 0.608 0.702 0.831	0.381 0.459 0.567 0.620 0.731	0.349 0.386 0.613 0.707 0.834	0.397 0.433 0.582 0.634 0.741	0.435 0.426 0.727 0.754 0.885	0.477 0.495 0.671 0.670 0.773	0.655 0.729 1.318 1.930 2.726	0.583 0.666 0.855 1.167 1.575	0.546 0.829 1.038 1.657 1.536	0.570 0.677 0.835 1.059 1.109	0.615 0.660 0.748 0.782 0.851	0.545 0.589 0.647 0.683 0.757
ECL	48 168 336 720 960	0.344 0.368 0.381 0.406 0.460	0.393 0.424 0.431 0.443 0.548	0.334 0.353 0.381 0.391 0.492	0.399 0.420 0.439 0.438 0.550	0.355 0.368 0.373 0.409 0.477	0.418 0.432 0.439 0.454 0.589	1.404 1.515 1.601 2.009 2.141	0.999 1.069 1.104 1.170 1.387	0.486 0.574 0.886 1.676 1.591	0.572 0.602 0.795 1.095 1.128	0.369 0.394 0.419 0.556 0.605	0.445 0.476 0.477 0.565 0.599
Count		3	3	1	4		1		0	()		2

Conclusion

- We introduced Transformer and its limitations.
- We simply reviewed some approaches making transformer *lighter*.

Discussion

- Additionally, transformer is known to require extreme-scale data.
- Can we make awesome DNN for price prediction except temporarily dominating RL?

