Recognition of dynamic signs in a sign language

Gustavo Lucas

Valmir Rodrigues

A comunidade das pessoas deficientes auditivas enfrenta, dentre outros empecilhos, a dificuldade de se comunicar com a sociedade majoritariamente não surda

Contexto

- De acordo com a OMS, existem aproximadamente 400 milhões de pessoas no mundo com perda auditiva "incapacitante".
- No Brasil a Língua de Sinais (LS) é denominada como Língua Brasileira de Sinais (LIBRAS), que é a língua oficial.

Por mais que existam dispositivos legais que garantam a inclusão dessa comunidade, na prática ainda há muitos desafios.

Problema!

A inclusão dos surdos na sociedade tem enfrentado a falta de conhecimento de grande parte dos ouvintes sobre línguas de sinais, tornando consideravelmente complicada a comunicação entre eles.

Justificativa

Facilitar a comunicação

Através de um sistema capaz de reconhecer o símbolos de LIBRAS para aqueles que não possuem conhecimento da língua

Inclusão

Pesquisa nesse ramo podem contribuir para uma maior inserção dos surdos na sociedade.

Objetivo

Geral

Elaborar um protótipo de uma ferramenta na linguagem Python, que consiga reconhecer sinais do alfabeto da LIBRAS, utilizando técnicas de processamento de imagens e redes convolucionais.

Específico

Identificar e classificar símbolos estáticos da língua e averiguar a efetividade do protótipo.

Desenvolvimento

Metodologia

A implementação proposta por Simon et al (2017) no artigo: Hand Keypoint Detection in Single Images using Multiview Bootstrapping

A experimentação prática foi feita utilizando o dataset: xar47x/pose (github.com)

Arquitetura da Rede Neural Convolucional (CNN) - VGGNet

 $112 \times 112 \times 128$

 $56 \times 56 \times 256$

 $\times 28 \times 512$

 $7 \times 7 \times 512$

convolution+ReLU max pooling

softmax

fully connected+ReLU

O modelo precisa de uma imagem de entrada, precisando passar a largura e o comprimento da imagem, assim a saída será a marcação em 2D dos pontos chaves na imagem.

Múltiplos Estágios de Duas Ramificações

Resultado

Detecção de Pontos Chave da Mão

A mão inteira como um único objeto

- O modelo foi treinado sobre um pequeno conjunto de imagens de mão rotuladas.
- Sistema multi-view
- Visualização da imagem de vários ângulos
- Modelo possui 22 pontos chave. A mão tem 21 pontos, enquanto o 22 o fundo da imagem.

Módulo: extrator_ALTURA.py

- Verificam se um ponto está "acima" ou "abaixo" de outro ponto específico.
- Compara-se a posição das pontas dos dedos na vertical em relação a posição do punho na vertical.

Módulo: extrator_POSICAO.py

- Verifica se os dedos estão "dobrados " ou "esticados", na vertical ou na horizontal.
- Recebe do módulo extrator_ALTURA o resultado para identificar a posição da mão.

Módulo: extrator_PROXIMIDADE.py

 Comparam a proximidade entre os pontos chaves detectados.

Resultados

Serão apresentados os resultados dos experimentos contendo elementos além da destaque da mão na imagem e os experimentos com a mão em destaque e com fundo branco.

Resultados

Os resultados obtidos através da simulação realizada mostrou a perda de acertos significativa dos símbolos do alfabeto quando a imagem possuir elementos ruidosos. Além disso, podemos notar que a rede não possui a capacidade de reconhecimento dos sinais das letras H, J, K, X, Y, Z devido ao movimento na representação destes sinais.

Referências

- WHO, W. H. O. (2021, Apr). Deafness and hearing loss. Author. Retrieved from https://www.who.int/en/news-room/fact-sheets/detail/deafness-and-hearing-loss
- Simon, T., Joo, H., Matthews, I., & Sheikh, Y. (2017). Hand keypoint detection in single images using multiview bootstrapping. In Proceedings of the ieee conference on computer vision and pattern recognition (pp. 1145–1153)
- CIVIL, C. (2002). Lei n° 10.436, de 24 de abril de 2002. Retrieved from http://www.planalto.gov.br/ccivil_03/leis/2002/L10436.htm
- COCO Common Objects in Context. Disponível em:
 - https://cocodataset.org/#keypoints-2018>. Acesso em: 12 ago. 2021.

Obrigado!

