

Lecture 1 - Introduction

Outline – Lecture 1

- Why memory?
- Opportunities for emerging memory for storage
- Opportunities for memory devices in machine learning

Why bother about Memory?

Memory hierarcy

Modern work-loads

Modern work-loads are data-driven

Modern work-loads require more memory

- Big data → big memory
- Big data is shuffled around → Need fast data access
- Harddrive bandwidth has not kept up with capacity!

	1985	2019	Change
Capacity	30 MB	15 TB	500 000x
Max. Transfer Rate	2 MB/s	260 MB/s	130x
Latency	20 ms	4.17 ms	5x
Capacity/MTR	15 s	57700 s (16h!)	3846x

- SSDs better, but not much: MTR ~ 2.5 GB/s → Cap/MTR ~ 200s
- Q: What can be a solution to this problem?

The memory gap

Von-Neumann bottleneck, even on-chip doesn't always help!

10.1109/SBAC-PAD.2011.10 Bahi & Eisenbeis 2011

In-memory computation

- Instead of moving memory to the logic → move the computation into the memory
- Moving memory takes resources
- Use properties of non-volatile memory to perform calculations directly in the memory circuit!

Computing at the edge, power constraints

Generic architecture of memory arrays

Array Area efficiency

- Core Area (Memory Array area)
 - How many memory cells can fit in a certain area?
- Peripheral Area
 - Sense amplifier, decoders, multiplexer, etc..
 - How much area is needed for peripheral circuits?
- Area Efficiency = Core / (Core + Peripheral Circuits) < 1

How small can a memory element be?

- Device size is limited by the patterning technology → Technology node
- Smallest "feature size" defined as F.

Q: What limits resolution?

Area scaling

- Feature size F depends on technology node
 - Smallest possible feature that can be fabricated
- Ideal 2D memory cell size: A_{min} = 4F². Q: Why?
- Real memory technologies, area per bit
 - SRAM: 150-300 F²
 - DRAM: 6F²
 - NOR FLASH 10F²
 - 2D NAND FLASH 4F²
 - 3D NAND FLASH 4F²/n (n is number of layers)

Example: SRAM footprint

SRAM cell in the 14 nm node (Samsung) $6F \times 13F = 78F^2$

Song et al. (Samsung) ISSCC 2014

2 min exercise - Footprint

• Calculate footprint of a circuit (Hynix 44 nm DRAM). How large is the cell area?

Exercise 2: How much fits?

1 cell

6F²

- How much DRAM fits on a die?
- Assume 1024 x 1024 memory cells in array
- Cell area = 6F² (best case scenario)
- Area efficiency 45 %
- Die size 76 mm²
- F = 26.7 nm

Opportunity for emerging memory devices

- Integrated on chip for fast access
- Non-volatile → energy-efficient
- Small latency (fast)
- Small footprint → high area efficiency
- Can we do all at once?
- Exchange for current memory technologies: SRAM, DRAM, Flash

Conductive filament

Ferroelectric

Phase Change

<u>Magnetic</u>

What about machine learning then?

The Artificial Neural network I

The Perceptron Neuron Model:

$$ext{output} = egin{cases} 0 & ext{if } \sum_j w_j x_j \leq & ext{threshold} \ 1 & ext{if } \sum_j w_j x_j > & ext{threshold} \end{cases}$$

The Artificial Neural network II

How it works (on the surface) 1.

Principle of Machine learning

- 1. Push labeled data through network (matrix operations)
- 2. Check if outcome fits expectations
- 3. Adjust weights and biases in a smart way (*matrix operations*)
- 4. Repeat 1-3 with (tons of) more data until network gives the expected answer

The power problem of Machine learning

March 19 2016: Google's Alpha Go beat Go Master Lee Sedol

• But:

1920 CPUs + 280 GPUs → 1 MW (!!)*

Power problem in machine learning

Machine Learning is basically a matrix multiplication/inversion problem

General purpose hardware (CPU)
200 W, lots of memory but slow access

Specialized hardware for matrices (GPU, TPU)

250 W @ 100 teraflops

Human Brain
20 W @ 10⁶ teraflops

How the brain works ("much simplified")

- Neurons ~ 10¹¹
- Connected by synapses with varying "resistance"/"weight"
 - ~ 10¹⁵ synapses
- Electrical stimuli above threshold close in time causes them to fire
- Signals propagate through network
- Connections encode logic/memory
- Hierarcial "layered" structure

Spiking neurons

- Input signals in dendrites are integrated in the neuron
- Many inputs in short time interval
 - → a threshold is overcome
 - → the neuron will fire a signal into the axon

Memories in Neuromorphic Computing

- Emerging non-volatile memories
 - Resistance-based! → "weights"
- Can we use memories to make synapses and neurons in hardware?

Phase Change Conductive filament Magnetic Ferroelectric Top electrode Metal Electrode Phase change Bit line $\oplus \oplus \oplus \oplus \oplus \oplus \oplus$ material Dielectric (MeO_x) > Drain Heater~ Metal Electrode Insulator Gate p-Ge **Conductive Filament** (OFF) **Bottom electrode Conductive Filament** Formed: Si substrate Ruptured; tunnel Ohmic conduction **Programmable** barrier formed observed

region

6 F2

Summary

As computational units for in-memory computing?
Accelerating machine learning

As efficient memory for storage?

Replacing conventional memory technologies

As building blocks for neuromorphic computing?

Synapses and neuron devices