Using the three cases for the ratio:

$$\left(\frac{a}{a^d}\right)$$

from DPV pg. 60:

Case 1: $\left(\frac{a}{a^d}\right) < 1$ Then the series is decreasing. It's sum is given by $O(n^d)$

Case 2: $(\frac{a}{a^d}) > 1$ Then the series is decreasing. It's sum is given by $n^{\log_b^a}$

Case 3: $\binom{a}{a^d} = 1$ Then the series is decreasing. It's sum is given by $n^d \log(n)$

(a)
$$T(n) = 2T(\frac{n}{3}) + 1$$
 case 1: $\Theta(n)$

(b) $T(n) = 5T(\frac{n}{4}) + n$ case 2: $\Theta(n^{\log_4^5})$

(c) $T(n) = 7T(\frac{n}{7}) + n$ case 3 with d = 1: $\Theta(n \log(n))$

(d) $T(n) = 9T(\frac{n}{3}) + n^2$ case 3 with d = 2: $\Theta(n^2 \log(n))$

(e) $T(n) = 8T(\frac{n}{2}) + n^3$ case 3 with d = 3: $\Theta(n^3 \log(n))$

(f) $T(n) = 49T(\frac{n}{25}) + n^{\frac{3}{2}}\log(n)$ case 2 but the non-recursive portion dominates so: $\Theta(n^{\frac{3}{2}}\log(n))$

(g) T(n) = T(n-1) + 2

The depth of the recursion tree will be n so it's easy to see that this one is $\Theta(n)$

(h) $T(n) = T(n-1) + n^c$

In this case the depth of the recursion tree is still n but each level of the tree takes n^c so: $\Theta(n*n^c)$

(i) $T(n) = T(n-1) + c^n$

In this case the depth of the recursion tree is still n but c^n for c>1 is going to dominate so: $\Theta(c^n)$

(j) T(n) = 2T(n-1) + 1

The depth of the tree will be n and time 2 at each level: $\Theta(2^n)$

(k) $T(n) = T(\sqrt{n}) + 1$ Stuck on this one. There's going to be a $\log(n)$ in there somewhere since n decreases by \sqrt{n} at each level. : $\Theta(?)$