Problem 1 (3.1.1). Show that $Ext(H,G)$ is a contravariant functor for fixed H .	of H for fixed G and covarian
Proof.	С
Problem 2 (3.1.2). Show that the maps $G \xrightarrow{n} G$ and $H \xrightarrow{n} H$ me integer n induce multiplication by n in $\operatorname{Ext}(H,G)$.	nultiplying each element by th
Proof.	
Problem 3 (3.1.3). Regarding \mathbb{Z}_2 as a module over the ring \mathbb{Z}_4 , α	construct a resolution of \mathbb{Z}_2 h
free modules over \mathbb{Z}_4 and use this to show that $\operatorname{Ext}^n_{\mathbb{Z}_4}(\mathbb{Z}_2,\mathbb{Z}_2)$ is now	
Proof.	