

# **Polymer Chemistry**











#### Lecture No. 1

- Introduction
- Polymers in day today life
- Functionality of monomer
- Polymerization



#### Introduction





#### What are Polymers

A **Polymer** (Greek, Poly - many and mer – parts or units) is a large molecule, or macromolecule composed of many repeated subunits (Monomer)





# Polymers in day-today life

























#### **Formation of Polymers**



- Natural polymers wood, rubber, cotton, wood, leather, silk etc
- Synthetic polymers PE, PS, PP, PVC etc



### **Functionality of monomer**

- Functionality number of reactive sites
- Monomer Polyfunctional
- Polyfunctionality -unsaturation or functional group
- **Bifunctional** monomer 2 reactive sites linear polymer
  - eg: PE, PP, PVC (unsaturation), PS (functional group)
- **Trifunctional** monomer -3 reactive sites branched (short or long) eg: Phenol (unsaturation), glycerol (functional group)
- **Higher functionality** monomer 4,5,or more reactive sites crosslinked polymer respectively
- eg: Acetylene, urea, butadiene etc



#### **Polymerization**

- Chemical process by which monomers get converted to polymers
- Degree of Polymerization (DP) number of monomeric units in Polymer molecule.
- Denoted by 'n'
- Molecular weight of polymer can be determined using 'n'
- Higher the DP, greater is the molecular weight, greater is the strength with more complex structure of Polymer.



#### Lecture No. 2

- Addition polymerization
- Condensation polymerization
- Chain growth polymerization
- Free radical mechanism





#### **Reactions of Polymerization**

- Carothers in 1929 classified polymers on the basis of compositional difference
- Addition polymerization
- Condensation polymerization





## **Addition Polymerization**

- Monomers polyfuctionality unsaturation
- Polymerization by addition reaction
- Polymers with low or medium molecular weight formed at once
- Fast
- High yields
- Elemental composition of monomer is retained in polymer



#### **Addition Polymerization**

- Name of polymers derived from name of monomer by preceding a prefix 'poly' to its name
- eg PE, PP, PVC, PS etc

$$n \text{ CH}_2 = \text{CHCI}$$
  $\longrightarrow$   $\text{CH}_2 - \text{CHCI}$   $\longrightarrow$  poly(chloroethene)





### **Condensation Polymerization**

- Monomers polyfunctionality functional group
- Polymerization by condensation reaction
- Elimination of small molecule
- New functional group linkage in polymer
- Name of polymer involves name of new functional group linkage
- Elemental composition of monomer not retained in polymer
- Molecular weight increases steadily



## **Condensation Polymerization**

- High molecular weight polymers are found at the end
- Long reaction time needs to synthesize high conversion and high molecular weight
- eg. Nylon 6,6

•

O C 
$$(CH_2)_4$$
  $-C$  O  $+$  H  $N$   $-(CH_2)_6$   $-N$  H hexamethylene diamine

O C  $-(CH_2)_4$   $-C$  O peptide bond

O C  $-(CH_2)_4$   $-C$  N  $-(CH_2)_6$   $-N$  H  $-(CH_2)_6$  H  $-(CH_2)$ 



### **Polymerization Mechanism**

- Classification on the basis of polymerization mechanism
- 1. Chain polymerization
- 2. Step polymerization

Chain Polymerization



#### Step Polymerization





## **Chain Growth Polymerization**

- 3 steps of polymerization –
- Chain initiation catalyst or initiator generate chain initiating species (free radical, cation or anion)
- Chain Propagation accounts for growth of polymer
- Chain termination active polymer chain get terminated





#### Free radical chain mechanism

#### Chain-Initiation step

$$R-O-O-R \longrightarrow 2R-O \bullet$$

$$R-O-C-C-C-C-C$$

#### Chain-propagating step

#### Chain-terminating step



#### Lecture No. 3

- Step growth polymerization
- Tm and Tg
- Thermoplastic and Thermosetting polymers



- Monomer polyfunctionality functional group
- Condensation reaction
- Removal of small molecule at each step
- Step mechanism
- Rate of polymerization is greater than chain
- Molecular weight of polymer either low or medium
- Usually gives linear polymer





Formation of polymer in stepwise manner

$$M + M \longrightarrow D$$
,  $D + M \longrightarrow T$  or  $D + D \longrightarrow T$ etra







$$HO-\overset{\circ}{C}-OH$$
 +  $HO-CH_2CH_2-OH$    
  $-H_2O$    
  $HO-\overset{\circ}{C}-O-CH_2CH_2-OH$ 



# Glass transition temperatue $(T_g)$

- Property of crystalline polymers only
- $T_g$  temperature below which polymers exist as hard and brittle (glassy state) and above which they exist as soft and elastic (rubbery state)
- $T_m$  temperature above which polymer exist as molten mass





# Factors affecting $T_g$

- Presence of Bulky Side Group slower down C-C bond rotation (Steric crowding). Poly styrene has more Tg than PE because of Bulky Side Group
- Nylon-66 has hydrogen bonding causing Tg to higher side
- Addition of plasticizer reduces intermolecular forces and increase flexibility and hence decreases Tg
- Higher crystallinity in polymers leads to tight close packing leading to high Tg
- Branching reduces spacing among polymer chain by increasing free volume in polymer chain and decreases tg
- Cross linking will make polymer chain tight and hence Tg increases



### Thermoplastic and Thermosetting polymers

#### Classification on thermal behavior of polymers

| Sr. No. | Description    | Thermoplastic polymers              | Thermosetting polymers                       |
|---------|----------------|-------------------------------------|----------------------------------------------|
| 1       | Monomer        | Unsaturation                        | Functional group                             |
| 2       | Reaction       | Addition                            | Condensation                                 |
| 3       | Mechanism      | Chain growth                        | Step growth                                  |
| 4       | Mol.Wt.        | Low or medium                       | High                                         |
| 5       | Structure      | Linear or branched (small branches) | Highly branched or cross-linked              |
| 6       | Solubility     | Soluble in some organic solvents    | Insoluble                                    |
| 7       | Action of heat | Reversible                          | Irreversible                                 |
| 8       | Reshaping      | Shapes can be changed many times    | Once shaped, reshaping is impossible         |
| 9       | Reclaimed      | Reclaimed from waste                | Not possible                                 |
| 10      | Examples       | PE, PP, PVC, PS etc                 | Urea formaldehyde, melamine formaldehyde etc |



#### Lecture No. 4

#### **Techniques of polymerization**

- Bulk polymerization
- Solution polymerization
- Suspension polymerization
- Emulsion polymerization



#### **Polymerization Techniques**

 Polymerization - Chemical Process by which monomers get converted to polymers

#### **Addition Polymerization**

- Bulk Polymerization
- Solution Polymerization
- Suspension Polymerization
- Emulsion Polymerization

#### **Condensation Polymerization**

- Melt Polycondensation
- Solution Polycondensation



#### **Bulk Polymerization**

- Mass or block polymerization: Polymerization of undiluted monomer.
- Carried out by adding a soluble initiator to pure monomer (in liquid state)
- The mixture is constantly agitated and heated to polymerization temperature
- Once the reaction starts, heating is stopped as reaction is exothermic
- The heat is dissipated by circulation water jacket
- Viscosity increases drastically during conversion
- Used for polymerization of liquid state monomers
- Usually adopted to produce low density PE, PS, PVC, polymethyl methacrylate etc



#### **Bulk Polymerization**

- In the reactor :-
- Liquid monomer
- Initiator (soluble in monomer)
- Chain transfer agents (soluble in monomer)





### **Advantages of Bulk Polymerization**

- The system is simple and requires thermal insulation
- Large castings may be prepared directly
- Molecular weight distribution can be easily changed by using chain transfer agent
- Obtain purest possible polymer
- Make objects with a desirable good shape



### **Disadvantages of Bulk Polymerization**

- Heat transfer and mixing becomes difficult as the viscosity of reaction mass increases
- Highly exothermic
- Difficult to control
- Reaction has to be run slowly
- Cannot get high rate and high MW at the same time
- Difficult to remove last traces of unreacted monomer



### **Solution Polymerization**

- Some disadvantages of bulk polymerization are eliminated in solution polymerization
- Monomer along with initiator dissolved in solvent and the formed polymer stays dissolved.





## **Solution Polymerization**

- After the reaction is over the polymer formed is used as such in the form of polymer solution or the polymer is isolated by evaporating the solvent
- The polymer so formed can be used for surface coating
- The method is used for the production of PVC, polyvinyl alcohol, poly acrylamide, poly acrylic acid, poly butadiene, PMMA etc



## Advantages of solution polymerization

- The solvent acts as diluent and helps in facilitating continuous transfer of heat of polymerization. Therefore temperature control is easy.
- Solvent allows easy stirring as decreases the viscosity of reaction mixture
- Solvent also facilitates ease of removal of polymer from the reactor
- Viscosity build up is negligible
- Reduces the tendency toward autoacceleration



## Disadvantages of Solution Polymerization

- The method is costly as it uses costly solvents
- Need solvent separation & recovery
- This technique gives smaller yield of polymer per reactor volume as solvent waste the reactor space
- The purity of polymer is also not as high as that in bulk polymerization
- Removal of last traces of solvent is difficult
- Solvent wastage
- Lower yield
- Solvent may not be really inert



## **Suspension Polymerization**

- Liquid or dissolved monomer suspended in liquid phase like water
- Initiators used are monomer soluble eg. dibenzoyl peroxide
- Thus polymer is produced in heterogeneous medium
- Size of monomer droplet is 50-200 µm in diameter
- The dispersion is maintained by continuous agitation and the droplets are prevented to accumulate by adding small quantity of stabilizer
- Organic stabilizers used are PVA, gelatine, cellulose etc
- Inorganic stabilizers are kaolin, magnesium silicate, aluminium hydroxide, calcium/magnesium phosphate etc



#### **Suspension Polymerization**





#### **Suspension Polymerization**

- Each droplet is a tiny bulk reactor
- Polymerization takes place inside the droplet and the product formed is insoluble in water
- The product is separated out in the form of bead, pearl or granule
- Hence the technique is also known as Also known as bead, pearl or granular polymerization
- The product can be used directly for some applications as precursors of ion exchange resins
- They can be dissolved in suitable medium for use as adhesives and coatings
- Used to form PVC, PS, polyvinyl acetate etc



## **Advantages of Suspension Polymerization**

- The process is comparatively cheap as it involves only water instead of any other solvent
- Viscosity increase is negligible
- Agitation and temperature control is easy
- Product isolation is easy since the product is insoluble in water
- Easy heat removal and control
- Obtain polymer in a directly useful from



## Disadvantages of Suspension Polymerization

- Adopted only for water insoluble monomer
- Difficult to control polymer size
- Polymer purity is low due to suspending and stabilizing additives that are difficult to remove completely
- It is highly agitation sensitive
- Larger volume of reactor is taken up by water
- Low yield / reactor volume
- Traces of suspending agent on particle surfacesCannot run continuously
- Cannot be used for condensation polymers



- This technique is used for the production of large number of commercial plastics and elastomers
- Water insoluble monomer, dispersion medium, emulsifying agent of surfactant (soaps and detergents) and water soluble initiator (potassium persulphate, H<sub>2</sub>O<sub>2</sub> etc)
- Monomer is dispersed in aqueous phase in the form of uniform emulsion
- Size of monomer droplet is 0.5 to  $10~\mu m$  in diameter depending upon the rate of agitation and temperature of polymerization



- The emulsion of monomer in water is stabilized by surfactant
- A surfactant has hydrophilic and hydrophobic end in its structure
- When it is added to water, the surfactant molecules gather together into aggregates called micelles
- In the micelles, hydrocarbon tails (hydrophobic) orient inward and heads (hydrophilic) orient outwards in water
- Monomer molecules diffuse from monomer droplets to water and from water to micelles



- Water, monomer, surfactant
- Examples –
- Synthetic SBR, polybutadiene, polychloroprene
- Plastics PVC, PS, ABS
- Dispersions Polyvinyal acetate, polyvinyal acetate copolymers,
   latexacrylic paints, styrene butadiene











#### **Advantages of Emulsion Polymerization**

- High molecular weight polymers
- Fast rate of polymerization
- Allows removal of heat from the system
- Viscosity remains close to that of water and is not dependent on molecular weight
- The final product can be used as such, does not need to be altered or processed



# **Disadvantages of Emulsion Polymerization**

- Surfactants and polymerization adjuvants difficult to remove
- Cannot be used for condensation, ionic, Ziegler Natta polymerization



#### Lecture No. 5

- Compounding of plastics
   Specialty polymers –
- Conducting polymers
- Biodegradable polymers



#### **Compounding of Plastics**

- The Process by which ingredients / additives / compounding agents are intimately mixed with the polymer to get a homogeneous mass is known as compounding.
- To add a new property or increase the degree / extent of the existing property
- eg. Stabilizers, flame retarding agents, coloring agents, emulsifying agents, plasticizer etc



#### **Components used in Compounding**

- Stabilizers: used to prevent degradation of polymer from air and light e.g Alkyl Phenol and Phenyl Salicylate
- Accelerators: to accelrate the overall process e.g. Benzoyl peroxide
- Plasticizers: used to convert rigid polymer into flexible by lowering intermolecular forces e.g. Di-isooctyl Phthalate in PVC
- Fillers: used either to reduce cost or to increase strength of polymer e.g. Asbestos, clay, mica, Nylon



#### **Creators of Conducting polymers**

Yet Alan J. Heeger, Alan G. MacDiarmid and Hideki Shirakawa have changed this view with their discovery that a polymer, polyacetylene, can be made conductive almost like a metal.



# MIT-WPU

#### **Conducting Polymers**

- Free electrons are needed
- Conductivity due to -
- Conjugated compounds

- The second condition is that the plastic has to be disturbed either by removing electrons from (oxidation), or inserting them into (reduction), the material. The process is known as *Doping*.
- There are two types of doping
- oxidation with halogen (or *p*-doping)
- Reduction with alkali metal (called *n*-doping).



#### **Examples of conducting polymers**



### **Applications of conducting polymers**

- Anti-static substances for photographic film
- Corrosion Inhibitors
- Compact Capacitors
- Anti Static Coating
- Electromagnetic shielding for computers "Smart Windows"
- Transistors
- Light Emitting Diodes (LEDs)
- Lasers used in flat televisions
- Solar cells
- Displays in mobile telephones and mini-format television screens



#### **Conducting Polymers**

#### Photographic Film





Light-emitting diodes





smart" windows





Solar cell



Shield for computer screen against electromagnetic "smart" windows



#### **Biodegradable Polymers**

 Polymers comprised of monomers linked to one another through functional groups and have unstable links in the backbone.

- They are broken down into biologically acceptable molecules that are metabolized and removed from the body via normal metabolic pathways.
- Based on biodegradability polymers are classified as:
  - Biodegradable polymers
     eg: collagen, poly glycolic acid etc.,
  - Non biodegradable polymers
     eg: poly vinyl chloride, polyethylene etc.,



#### **Mechanism of Biodegradable Polymers**



• eg: Aliphatic poly(esters), Polyanhydrides, polyaminoacids, Albumin, Collagen, Dextran, Gelatin, Pectin, starch etc



#### Enzymatic or chemical degradation

• It is mediated by water, enzymes, microorganisms.

#### CLEAVAGE OF CROSSLINKS



**CLEAVAGE OF BACKBONE** 

#### TRANSFORMATION OF SIDE CHAINS







#### **Mechanism of biodegradation**





#### Examples of biodegradable polymers





#### **Applications of biodegradable polymers**

- Polymer system for gene therapy.
- Biodegradable polymer for ocular, tissue engineering, vascular, orthopedic, skin adhesive & surgical glues.
- Bio degradable drug system for therapeutic agents such as anti tumor, antipsychotic agent, anti-inflammatory agent.
- Used in and on soil to improve aeration, and promote plant growth and health.
- Many biomaterials, especially heart valve replacements and blood vessels, are made of polymers like Dacron, Teflon and polyurethane.



#### Lecture No. 6

- Recycling of polymers
- Revision





### Why to recycle plastic

- Plastic in the ocean is responsible for the deaths of millions of sea animals.
- Plastic never degrades.
- Incinerating plastic contributes to greenhouse gases.
- Plastics contain harmful chemicals.

• Making new plastics requires significant amount of

fossil fuels.



#### **Recycling of Polymers**

- **Plastic recycling** is the process of recovering scrap or waste plastic and reprocessing the material into useful products.
- Since the vast majority of plastic is nonbiodegradable, recycling is a part of global efforts to reduce plastic in the waste stream
- This helps to reduce the high rates of plastic polluion.





### **Process of recycling**





#### **Benefits of recycling plastic**

- Conserving energy
- Lower emissions
- Conservation of recourses
- Reusability
- Saves landfills space
- Creates job opportunities

