ÁLGEBRA LINEAL

4. Aplicaciones lineales

- 4.1. Estudia cuáles de las siguientes aplicaciones, definidas de \mathbb{R}^2 en \mathbb{R}^3 , son lineales:
- a) f(x,y) = (0,0,x)b) f(x,y) = (y,x+y,y-x)c) f(x,y) = (x+2y,0,y+2x)d) f(x,y) = (x-y,2,y)
- 4.2. Estudia cuáles de las siguientes aplicaciones, definidas de $(\mathbb{R}^3, +, \cdot \mathbb{R})$ en sí mismo, son lineales:

 - a) f(x, y, z) = (2x, 4y, 3z)b) f(x, y, z) = (x, x + y, x + y + z)c) f(x, y, z) = (2x y, 2y z, 2z x)d) f(x, y, z) = (y, x, 1 z)
- 4.3. Sea f un aplicación lineal de \mathbb{R}^2 en \mathbb{R}^3 tal que $f(\vec{u}_1) = 2\vec{v}_1 3\vec{v}_2 + 2\vec{v}_3$, $f(\vec{u}_2) = \vec{v}_1 4\vec{v}_2 + \vec{v}_3$, siendo $\{\vec{u}_1, \vec{u}_2\}$ y $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ las correspondientes bases. Halla la imagen del vector $\vec{u} =$ (-1,2).
- 4.4. Calcula la matriz asociada a la aplicación lineal f definida entre los espacios vectoriales \mathbb{R}^3 y \mathbb{R}^2 por f(x,y,z)=(2x-y,x+y-z) respecto de las bases canónicas.
- 4.5. Se considera la aplicación lineal de \mathbb{R}^2 en \mathbb{R}^3 que está dada por f(x,y)=(y,x-y,x+y). Halla, respecto de las bases canónicas:
 - a) La matriz asociada.
 - b) Una base del núcleo.
 - c) La dimensión del núcleo.
 - d) Una base de la imagen.
 - e) El rango de la aplicación.
 - f) Comprueba la fórmula $\dim(\mathbb{R}^2) = \dim \operatorname{Ker} f + \dim \operatorname{Im} f$
- 4.6. Se dice que un vector \vec{u} es invariante por una aplicación lineal $f: V \to V$ si verifica que $f(\vec{u}) = \vec{u}$. Halla todos los vectores invariantes por las aplicaciones lineales de los apartados a), b) y c) del ejercicio 4.2.
- 4.7. Halla todos los vectores que verifican la igualdad $f(\vec{u}) = \lambda \vec{u}$, para algún escalar λ , para las aplicaciones lineales de los apartados a), b) c) del ejercicio 4.2.
- 4.8. Sea f la aplicación lineal de $(V, +, \cdot \mathbb{R})$ en sí mismo, tal que $f(\vec{u}_1) = \vec{v}_1 + \vec{v}_2$, $f(\vec{u}_2) = 2\vec{v}_1 \vec{v}_2$, $f(\vec{u}_3) = \vec{v}_2 - \vec{v}_3$, donde $B_1 = {\vec{u}_1, \vec{u}_2, \vec{u}_3}$ y $B_2 = {\vec{v}_1, \vec{v}_2, \vec{v}_3}$ son dos bases de V. Hallar:
 - a) La matriz de la aplicación lineal f respecto de las bases B_1 y B_2 .
 - b) La dimensión de Ker f y el rango de la aplicación.

- c) La imagen del vector $\vec{u} = \vec{u}_1 + \vec{u}_2 + \vec{u}_3$.
- d) ¿Es la aplicación f inyectiva? ¿Es sobreyectiva? En caso de que f sea biyectiva, calcular la matriz de f^{-1} respecto de las bases B_2 y B_1 .
- 4.9. Sea f la aplicación lineal definida entre los espacios vectoriales $(V, +, \cdot \mathbb{R})$ y $(W, +, \cdot \mathbb{R})$ tal que $f(\vec{v}_1) = -\vec{w}_1 3\vec{w}_2 + \vec{w}_3 + 3\vec{w}_4$, $f(\vec{v}_2) = \vec{w}_1 \vec{w}_3$, $f(\vec{v}_3) = \vec{w}_2 \vec{w}_4$, donde $B_1 = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ es una base del primer espacio y $B_2 = \{\vec{w}_1, \vec{w}_2, \vec{w}_3, \vec{w}_4\}$ es una base del segundo espacio. Hallar:
 - a) La imagen del vector $\vec{v}_1 + 2\vec{v}_2 + 3\vec{v}_3$.
 - b) La matriz de la aplicación lineal respecto de las bases B_1 y B_2 .
 - c) El núcleo y el rango de la aplicación lineal.
 - d) ¿Qué vectores \vec{v} verifican $f(\vec{v}) = \vec{w}_1 3\vec{w}_2 \vec{w}_3 + 3\vec{w}_4$?

Comentario: Al conjunto de vectores que satisfacen la condición del apartado (d) se le denomina preimagen por f del vector $\vec{w}_1 - 3\vec{w}_2 - \vec{w}_3 + 3\vec{w}_4$, y se denota por

$$f^{-1}(\{\vec{w}_1 - 3\vec{w}_2 - \vec{w}_3 + 3\vec{w}_4\}).$$

Cuidado, en esta ocasión el símbolo f^{-1} no quiere decir aplicación inversa de f. De hecho, en este caso f no tiene aplicación inversa. ¿Podrías decir por qué?

4.10. Sea \mathcal{P} el espacio vectorial real formado por los polinomios en una variable X con coeficientes reales y grado menor o igual que 2. Para todo polinomio p(X) de \mathcal{P} denotamos por p'(X) su derivada. Consideramos la aplicación:

$$\begin{array}{ccc} f: \mathcal{P} & \to & \mathcal{P} \\ p(X) & \to & p'(X) \end{array}$$

Demuestra que f una aplicación lineal. Determina el núcleo de f. ¿Qué dimensión tiene? Determina la imagen de f. ¿Qué dimensión tiene? ¿Es f inyectiva? ¿Es f sobreyectiva? Calcula la matriz de f respecto de la base $\{1, X, X^2\}$.

- 4.11. Sea f una aplicación lineal de $(V, +, \cdot \mathbb{R})$ en sí mismo, tal que $f(\vec{u}_1) = 3\vec{u}_1 2\vec{u}_2$, $f(\vec{u}_2) = -7\vec{u}_2 + \vec{u}_3$, $f(\vec{u}_3) = 2\vec{u}_1 \vec{u}_2 \vec{u}_3$, donde $B_1 = \{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$ es una base de dicho espacio. Halla la matriz de la aplicación lineal f respecto de la base $B_2 = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ donde $\vec{v}_1 = \vec{u}_1 + \vec{u}_2$, $\vec{v}_2 = \vec{u}_1 \vec{u}_3$, $\vec{v}_3 = \vec{u}_3$.
- 4.12. Sean f y g dos aplicaciones lineales de $(U,+,\cdot\mathbb{R})$ en sí mismo, tales que $f(\vec{u}_1)=\vec{e_1}-3\vec{e_2}$, $f(\vec{u}_2)=\vec{e_1}-\vec{e_2},\ g(\vec{e_1})=\vec{v}_1+2\vec{v}_2,\ g(\vec{e_2})=2\vec{v}_1-\vec{v}_2$, siendo $\{\vec{u}_1,\vec{u}_2\}$, $\{\vec{e_1},\vec{e_2}\}$, $\{\vec{v}_1,\vec{v}_2\}$ tres bases del espacio vectorial. Halla:
 - a) La matriz de la aplicación $g \circ f$ respecto de las bases $\{\vec{u}_1, \vec{u}_2\}$ y $\{\vec{v}_1, \vec{v}_2\}$.
 - b) El núcleo y la imagen de $g \circ f$.
 - c) La imagen del vector $\vec{u} = 4\vec{u}_1 + \vec{u}_2$.

- 4.13. Sean f y g las aplicaciones lineales definidas de \mathbb{R}^2 en \mathbb{R}^3 y de \mathbb{R}^3 en \mathbb{R}^4 tales que f(1,-1)=(2,-1,2), f(1,2)=(-1,2,2), g(2,1,1)=(7,1,0,2) g(1,-2,0)=(1,-2,2,-1), g(0,1,1)=(1,1,0,4). Halla:
 - a) La matriz de la aplicación $g \circ f$ respecto de las bases canónicas.
 - b) La dimensión del núcleo de $g \circ f$.
 - c) El rango de $g \circ f$.
- 4.14. ¿Existe alguna aplicación lineal f de \mathbb{R}^{2015} a \mathbb{R}^{2015} tal que Kerf = Im f? ¿Y alguna aplicación lineal f de \mathbb{R}^{2016} a \mathbb{R}^{2016} tal que Kerf = Im f?
- 4.15. Sea f la aplicación lineal definida entre los espacios vectoriales \mathbb{R}^3 y \mathbb{R}^4 tal que

$$f(\vec{u}_1) = \vec{v}_1 + 2\vec{v}_2 + \vec{v}_4, \qquad f(\vec{u}_2) = \vec{v}_1 + 2\vec{v}_2 - \vec{v}_3, \qquad f(\vec{u}_3) = \vec{v}_3 + \vec{v}_4,$$

donde $B_1=\{\vec{u}_1,\vec{u}_2,\vec{u}_3\}$ y $B_2=\{\vec{v}_1,\vec{v}_2,\vec{v}_3,\vec{v}_4\}$ son bases de los espacios vectoriales. Halla:

- a) La matriz de la aplicación lineal respecto de las bases B_1 y B_2 .
- b) El núcleo de la aplicación.
- c) El rango.
- 4.16. Halla la matriz de la aplicación lineal definida entre \mathbb{R}^3 y \mathbb{R}^4 por

$$f(\vec{u}_1) = \vec{v}_1 + \vec{v}_2 + 3\vec{v}_3 - \vec{v}_4, \qquad f(\vec{u}_3) = \vec{v}_1 - \vec{v}_2 + 4\vec{v}_3,$$

donde $B_1 = \{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$ y $B_2 = \{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\}$ son las bases y se sabe además que el vector \vec{u}_2 pertenece al núcleo. Halla una base de Imf.

4.17. Sea $f: \mathbb{R}^2 \to \mathbb{R}^4$ la aplicación lineal tal que, respecto de las bases $B_1 = \{\vec{u}_1, \vec{u}_2\}$ y $B_2 = \{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\}$, su matriz asociada es

$$\begin{pmatrix} 1 & 0 \\ -1 & 2 \\ -1 & 0 \\ 1 & -2 \end{pmatrix}.$$

Se eligen unas nuevas bases $B_3=\{\vec{e}_1,\vec{e}_2\}$ y $B_4==\{\vec{w}_1,\vec{w}_2,\vec{w}_3,\vec{w}_4\}$ donde

$$\left\{ \begin{array}{l} \vec{e_1} = \vec{u_1} - 2\vec{u_2} \\ \vec{e_2} = \vec{u_1} + \vec{u_2} \end{array} \right. \quad \left\{ \begin{array}{l} \vec{w_1} = \vec{v_1} - 2\vec{v_2} - \vec{v_3} - \vec{v_4} \\ \vec{w_2} = -\vec{v_2} - \vec{v_3} \\ \vec{w_3} = \vec{v_1} - \vec{v_3} \\ \vec{w_4} = \vec{v_1} \end{array} \right.$$

Halla la matriz de la aplicación lineal f,

- a) Respecto de las bases B_1 y B_4 .
- b) Respecto de las bases B_3 y B_2 .
- c) Respecto de las bases B_3 y B_4 .

4.18. Sea λ un número real, y sea $f:\mathbb{R}^4\to\mathbb{R}^3$ la aplicación lineal cuya matriz asociada a las respectivas bases canónicas es

$$\left(\begin{array}{cccc} 1 & -1 & \lambda - 1 & 0 \\ 0 & 1 & 1 & 0 \\ \lambda & 0 & 1 & 1 \end{array}\right).$$

Halla para qué valores de λ el vector $\vec{v} = (1, 2, 3)$ está contenido en la imagen de f.

4.19. Describe geométricamente las aplicaciones lineales de \mathbb{R}^2 a \mathbb{R}^2 cuya matriz con respecto a la base canónica es una de las matrices siguientes:

$$(a) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}; \quad (b) \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}; \quad (c) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \quad (d) \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}$$

4.20. Consideramos la base $B = \{(-1,1), (1,1)\}$ de \mathbb{R}^2 . Describe geométricamente las aplicaciones lineales de \mathbb{R}^2 a \mathbb{R}^2 cuya matriz con respecto a la base B es una de las matrices A siguientes:

$$(a) \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right); \qquad (b) \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right)$$

4.21.* Se define la aplicación $T: \mathcal{C}([a,b]) \to \mathbb{R}$ del siguiente modo $T(f) = \int_a^b f(t)dt$ donde $f \in \mathcal{C}([a,b])$. Prueba que T es una aplicación lineal. Dado $n \in \mathbb{N}$, encuentra n funciones linealmente independientes pertenecientes al núcleo de la aplicación.