		Created with OSdag®	
Company Name	Daredevil Developers	Project Title	Osdag on Web
Group/Team Name	Web Development Teams	Subtitle	
Designer	Gyrnaskha Aahoa	Job Number	0
Date	10 /03 /2023	Client	The No Name Guy

1 Input Parameters

Main Module	Shear Connection
Module	Fin Plate Connection
Connectivity	Column Flange-Beam Web
Shear Force (kN)	10.0
Axial Force (kN)	30.0

Supporting Section - Mechanical Properties

supporting section	Supporting Section - Mechanical Properties					
Supporting Section		HB 150				
Materia	1	E 250 (Fe 410 W)A			
Ultimate Strength	F_u (MPa)		410			
Yield Strength,	F_y (MPa)		250			
Mass, m (kg/m)	27.06	$I_z \text{ (cm}^4)$	1450.0			
Area, $A \text{ (cm}^2)$	34.4	$I_y(\mathrm{cm}^4)$	431.0			
D (mm)	150.0	r_z (cm)	6.49			
B (mm)	150.0	r_y (cm)	3.53			
t (mm)	5.4	$Z_z \text{ (cm}^3)$	194.0			
T (mm)	9	$Z_y \text{ (cm}^3)$	57.5			
Flange Slope	94	$Z_{pz} (\mathrm{cm}^3)$	215.0			
$R_1 \text{ (mm)}$	8.0	$Z_{py} (\text{cm}^3)$	92.7			
$R_2 \text{ (mm)}$	4.0					

Supported Section - Mechanical Properties

supported section		P	
Supported Section		JB 150	
Materia	1	E 250 (Fe 410 W)A
Ultimate Strength, F_u (MPa)			410
Yield Strength,	Yield Strength, F_y (MPa)		250
Mass, m (kg/m)	7.07	$I_z \text{ (cm}^4)$	321.0
Area, $A \text{ (cm}^2)$	9.0	$I_y(\mathrm{cm}^4)$	9.21
D (mm)	150.0	r_z (cm)	5.97
B (mm)	50.0	r_y (cm)	1.01
t (mm)	3.0	$Z_z (\mathrm{cm}^3)$	42.8
T (mm)	4.6	$Z_y \text{ (cm}^3)$	3.68
Flange Slope	91.5	$Z_{pz} \ (\mathrm{cm}^3)$	49.5
$R_1 \text{ (mm)}$	5.0	$Z_{py} \ (\mathrm{cm}^3)$	5.96
$R_2 \text{ (mm)}$	1.5		

		Cre	ated with Osdag®
Company Name	Daredevil Developers	Project Title	Osdag on Web
Group/Team Name	Web Development Teams	Subtitle	
Designer	Gyrnaskha Aahoa	Job Number	0
Date	10 /03 /2023	Client	The No Name Guy

Bolt Details - Input and De	esign Preference
Diameter (mm)	[8, 10, 12, 14, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 42, 45, 48, 52, 56, 60, 64]
Property Class	['3.6', '4.6', '4.8', '5.6', '5.8', '6.8', '8.8', '9.8', '10.9', '12.9']
Type	Bearing Bolt
Hole Type	Standard
Bolt Tension	Non pre-tensioned
Slip Factor, (μ_f)	0.3
Detailing - Design P	reference
Edge Preparation Method	Sheared or hand flame cut
Gap Between Members (mm)	10.0
Are the Members Exposed to Corrosive Influences?	False
Plate Details - Input and D	esign Preference
Thickness (mm)	[8, 10, 12, 14, 16, 18, 20, 22, 25, 28, 32, 36, 40, 45, 50, 56, 63, 75, 80, 90, 100, 110, 120]
Material	E 250 (Fe 410 W)A
Ultimate Strength, Fu (MPa)	410
Yield Strength, Fy (MPa)	250
Weld Details - Input and D	esign Preference
Weld Type	Fillet
Type of Weld Fabrication	Shop Weld
Material Grade Overwrite, Fu (MPa)	410.0

		Cre	ated with Osdag®
Company Name	Daredevil Developers	Project Title	Osdag on Web
Group/Team Name	Web Development Teams	Subtitle	
Designer	Gyrnaskha Aahoa	Job Number	0
Date	10 /03 /2023	Client	The No Name Guy

2 Design Checks

Design Status	Fail
---------------	------

2.1 Initial Section Check

Check	Required	Provided	Remarks
Shear Yielding Capacity (kN)	10.0	$V_{d_y} = \frac{A_v f_y}{\sqrt{3}\gamma_{m0}}$ $= \frac{150.0 \times 3.0 \times 250}{\sqrt{3} \times 1.1 \times 1000}$ $= 59.05$ [Ref. IS 800:2007, Cl.10.4.3]	Pass
Allowable Shear Capacity (kN)	10.0	$V_d = 0.6 V_{dy}$ $= 0.6 \times 59.05$ $= 35.43$ [Limited to low shear]	Pass
Tension Yielding Capacity (kN)	30.0	$T_{\rm dg} = \frac{A_g f_y}{\gamma_{m0}}$ $A_g = lt = 150.0 \times 3.0$ $= \frac{450.0 \times 250}{1.1 \times 10^3}$ $= 102.27$ [Ref. IS 800:2007, Cl.6.2]	Pass

2.2 Load Consideration

Check		Required	Provided	Remarks
Applied Axial Force	(kN)	30.0	30.0	

		Cre	ated with Osdag®
Company Name	Daredevil Developers	Project Title	Osdag on Web
Group/Team Name	Web Development Teams	Subtitle	
Designer	Gyrnaskha Aahoa	Job Number	0
Date	10 /03 /2023	Client	The No Name Guy

Check	Required	Provided	Remarks
Applied Shear Force (kN)	10.0	$V_{y_{\min}} = \min(0.15V_{d_y}, 40.0)$ $= \min(0.15 \times 59.05, 40.0)$ $= 40$ $V_u = \max(V_y, V_{y_{\min}})$ $= \max(10.0, 40)$ $= 40$ [Ref. IS 800:2007, Cl.10.7]	

2.3 Bolt Design

Check	Required	Provided	Remarks
Diameter (mm)		10.0	
Property Class		6.8	
Plate Thickness (mm)	$t_w = 3.0$	8.0	Pass
No. of Bolt Columns		1	Pass
No. of Bolt Rows		3	
	$p_{\min} = 2.5d$		
	$= 2.5 \times 10.0$		
Min. Pitch Distance (mm)	= 25.0	40	Pass
	[Ref. IS 800:2007, Cl.10.2.2]		
	$p/g_{\text{max}} = \min(32t, 300)$		
	$= \min(32 \times 3.0, 300)$		
	$= \min(96.0, 300)$		
Max. Pitch Distance (mm)	= 96.0	40	Pass
Max. 1 Iteli Distance (IIIII)		40	1 ass
	Where, $t = \min(8.0, 3.0)$		
	[Ref. IS 800:2007, Cl.10.2.3]		

		Created with OSCIO	
Company Name	Daredevil Developers	Project Title	Osdag on Web
Group/Team Name	Web Development Teams	Subtitle	
Designer	Gyrnaskha Aahoa	Job Number	0
Date	10 /03 /2023	Client	The No Name Guy

Pass
Pass
Pass
Pa

		Created with OSCIAG®	
Company Name	Daredevil Developers	Project Title	Osdag on Web
Group/Team Name	Web Development Teams	Subtitle	
Designer	Gyrnaskha Aahoa	Job Number	0
Date	10 /03 /2023	Client	The No Name Guy

Check	Required	Provided	Remarks
Max. Edge Distance (mm)	$e'_{\text{max}} = 12t\varepsilon; \ \varepsilon = \sqrt{\frac{250}{f_y}}$ $e_1 = 12 \times 8.0 \times \sqrt{\frac{250}{250}} = 96.0$ $e_2 = 12 \times 3.0 \times \sqrt{\frac{250}{250}} = 36.0$ $e'_{\text{max}} = min(e_1, e_2) = 36.0$ [Ref. IS 800:2007, Cl.10.2.4.3]	20	Pass
Moment Demand (kNm)	[160. 15 500.2501, 6.10.2.10]	$M_d = (V_u \times \text{ecc} + M_w)$ $\text{ecc} = \text{eccentricity}$ $M_w = \text{external moment acting on web}$ $= \frac{(10.0 \times 10^3 \times 30.0 + 0.0 \times 10^6)}{10^6}$ $= 0.3$	
Bolt Force Parameter(s) (mm)	l_n = length available l_n = $p (n_r - 1)$ = $40 \times (3 - 1)$ = 80 $y_{\text{max}} = l_n/2$ = $80/2$ = 40.0 $x_{\text{max}} = g(n_c - 1)/2$ = $0.0 \times (1 - 1)/2$ = 0.0		

		Created with OSdag®	
Company Name	Daredevil Developers	Project Title	Osdag on Web
Group/Team Name	Web Development Teams	Subtitle	
Designer	Gyrnaskha Aahoa	Job Number	0
Date	10 /03 /2023	Client	The No Name Guy

Check	Required	Provided	Remarks
Check Bolt Force (kN)	$vbv = V_u/(n_r \times n_c)$ $= \frac{10.0}{(3 \times 1)}$ $= 3.33$ $tmh = \frac{M_d \times y_{\text{max}}}{\Sigma r_i^2}$ $= \frac{0.3 \times 40.0}{3.2}$ $= 3.75$ $tmv = \frac{M_d \times x_{\text{max}}}{\Sigma r_i^2}$ $= \frac{0.3 \times 0.0}{3.2}$ $= 0.0$	Provided	Remarks
olt Force (kN)	$= 3.75$ $tmv = \frac{M_d \times x_{\text{max}}}{\Sigma r_i^2}$ $= \frac{0.3 \times 0.0}{3.2}$		
	$v_{\text{res}} = \sqrt{(vbv + tmv)^2 + (tmh + abh)^2}$ $= \sqrt{(3.33 + 0.0)^2 + (3.75 + 10.0)^2}$ $= 14.15$		
Shear Capacity (kN)		$V_{\text{dsb}} = \frac{f_{ub}n_n A_{nb}}{\sqrt{3}\gamma_{mb}}$ $= \frac{600.0 \times 1 \times 58}{1000 \times \sqrt{3} \times 1.25}$ $= 16.07$ [Ref. IS 800:2007, Cl.10.3.3]	

		Created with OSCIAG®	
Company Name	Daredevil Developers	Project Title	Osdag on Web
Group/Team Name	Web Development Teams	Subtitle	
Designer	Gyrnaskha Aahoa	Job Number	0
Date	10 /03 /2023	Client	The No Name Guy

Check	Required	Provided	Remarks
		$k_b = \min\left(\frac{e}{3d_0}, \frac{p}{3d_0} - 0.25, \frac{f_{ub}}{f_u}, 1.0\right)$	
		$= \min\left(\frac{20}{3\times10}, \ \frac{40}{3\times10} - 0.25, \ \frac{600.0}{410}, \ 1.0\right)$	
Kb		$= \min(0.67, 1.08, 1.46, 1.0)$	
		= 0.67	
		[Ref. IS 800:2007, Cl.10.3.4]	
		$V_{\rm dpb} = \frac{2.5k_b dt f_u}{\gamma_{mb}}$	
		$= \frac{2.5 \times 0.67 \times 10.0 \times 3.0 \times 410}{1000 \times 1.25}$	
Bearing Capacity (kN)			
		= 16.48	
		[D.f. IC 200 2007, Cl 10 2 4]	
		[Ref. IS 800:2007, Cl.10.3.4] $V_{\rm db} = \min (V_{\rm dsb}, V_{\rm dpb})$	
		$= \min (16.07, 16.48)$	
Capacity (kN)		= 16.07	
		[Ref. IS 800:2007, Cl.10.3.2]	
	if $l_j \ge 15d$ then $V_{\rm rd} = \beta_{lj} V_{\rm db}$		
		$l_j = (n_r - 1) \times p$	
	if $l_j < 15d$ then $V_{\rm rd} = V_{\rm db}$	$= (3-1) \times 40 = 80$	
	where,	l = 80	
Long Joint Reduction Fac-	$l_j = ((nc \text{ or } nr) - 1) \times (p \text{ or } g)$	$15 \times d = 15 \times 10.0 = 150.0$	
tor			
	$\beta_{lj} = 1.075 - l/(200d)$	since, $l_j < 15 \times d$ then $\beta_{lj} = 1.0$	
	but $0.75 \le \beta_{lj} \le 1.0$	[D. f. 10 000 0007 (01 10 0 0 1]	
	[D. C. IC 200 2007, Cl. 10.2.2.1]	[Ref. IS 800:2007, Cl.10.3.3.1]	
Canacity (kN)	[Ref. IS 800:2007, Cl.10.3.3.1]	16.07	Pass
Capacity (kN)	14.15	10.01	rass

		Created with OSdag®	
Company Name	Daredevil Developers	Project Title	Osdag on Web
Group/Team Name	Web Development Teams	Subtitle	
Designer	Gyrnaskha Aahoa	Job Number	0
Date	10 /03 /2023	Client	The No Name Guy

2.4 Plate Design

Check	Required	Provided	Remarks
Min. Plate Height (mm)	$0.6 \times (d_b - 2 \times t_f - 2 \times r_r)$ = 0.6 \times (150.0 - 2 \times 4.6 - 2 \times 5.0) = 78.48 [Ref. INSDAG, Ch.5, sec.5.2.3]	120	Pass
Max. Plate Height (mm)	$d_b - 2(t_{bf} + r_{b1} + \text{gap})$ $= 150.0 - 2 \times (4.6 + 5.0 + 10)$ $= 130.8$	120	Pass
Min. Plate Width (mm)	$2e_{\min} + (n_c - 1)p_{\min}$ $= 2 \times 17.0 + (1 - 1) \times 25.0$ $= 44.0$	50.0	Pass
Min. Plate Thickness (mm)	$t_w = 3.0$	8.0	Pass
Shear Yielding Capacity (kN)		$V_{d_y} = \frac{A_v f_y}{\sqrt{3}\gamma_{m0}}$ $= \frac{120 \times 8.0 \times 250}{\sqrt{3} \times 1.1 \times 1000}$ $= 125.97$ [Ref. IS 800:2007, Cl.10.4.3]	
Allowable Shear Capacity (kN)	V = 10.0	$V_d = 0.6 V_{dy}$ = 0.6×125.97 = 75.58 [Limited to low shear]	Pass
Shear Rupture Capacity (kN)		[Limited to low shear] $V_{d_n} = \frac{0.75 A_{v_n} f_u}{\sqrt{3} \gamma_{m1}}$ $= 1 \times \frac{(120 - (3 \times 10)) \times 8.0 \times 410}{\sqrt{3} \times 1.25}$ $= 221.4$ [Ref. AISC, sect. J4]	

		Created with OSCIAG®	
Company Name	Daredevil Developers	Project Title	Osdag on Web
Group/Team Name	Web Development Teams	Subtitle	
Designer	Gyrnaskha Aahoa	Job Number	0
Date	10 /03 /2023	Client	The No Name Guy

Check	Required	Provided	Remarks
Block Shear Capacity in Shear (kN)		$V_{\text{dbl1}} = \frac{A_{\text{vg}} f_y}{\sqrt{3} \gamma_{m0}} + \frac{0.9 A_{tn} f_u}{\gamma_{m1}}$ $V_{\text{dbl2}} = \frac{0.9 A_{vn} f_u}{\sqrt{3} \gamma_{m1}} + \frac{A_{tg} f_y}{\gamma_{m0}}$ $V_{\text{db}} = \min(V_{db1}, V_{db2}) = 138.62$	
		[Ref. IS 800:2007, Cl.6.4] $V_d = \min(S_c, V_{d_n}, V_{d_b})$	
		$= \min(75.58, 221.4, 138.62)$	
Shear Capacity (kN)	10.0	= 75.58	Pass
		[Ref. IS 800:2007, Cl.6.1]	
Tension Yielding Capacity (kN)		$T_{dg} = \frac{A_g f_y}{\gamma_{m0}}$ $A_g = lt = 120 \times 8.0$ $= \frac{960.0 \times 250}{1.1 \times 10^3}$ $= 218.18$	
		[Ref. IS 800:2007, Cl.6.2]	
Tension Rupture Capacity (kN)		$T_{\rm dn} = \frac{0.9A_n f_u}{\gamma_{m1}}$ $= \frac{1 \times 0.9 \times (120 - 3 \times 10) \times 8.0 \times 410}{1.25}$ $= 259.78$ [Ref. IS 800:2007, Cl.6.3.1]	

		Created with OSdag®	
Company Name	Daredevil Developers	Project Title	Osdag on Web
Group/Team Name	Web Development Teams	Subtitle	
Designer	Gyrnaskha Aahoa	Job Number	0
Date	10 /03 /2023	Client	The No Name Guy

Check	Required	Provided	Remarks
Block Shear Capacity in Tension (kN)		$T_{\text{dbl1}} = \frac{A_{\text{vg}} f_y}{\sqrt{3} \gamma_{m0}} + \frac{0.9 A_{tn} f_u}{\gamma_{m1}}$ $T_{\text{dbl2}} = \frac{0.9 A_{vn} f_u}{\sqrt{3} \gamma_{m1}} + \frac{A_{tg} f_y}{\gamma_{m0}}$ $T_{\text{db}} = \min(T_{db1}, T_{db2}) = 183.69$ [Ref. IS 800:2007, Cl.6.4]	
Tension Capacity (kN)	30.0	$T_{\rm d} = \min(T_{\rm dg}, T_{\rm dn}, T_{\rm db})$ $= \min(218.18, 259.78, 183.69)$ $= 183.69$ [Ref.IS 800:2007, Cl.6.1]	Pass
Moment Capacity (kNm)	0.3	$M_{dz} = \frac{\beta_b Z_p f y}{\gamma_{m0} \times 10^6}$ $= \frac{1.0 \times 28800.0 \times 250}{1.1 \times 10^6}$ $= 6.55$ [Ref. IS 800:2007, Cl.8.2.1.2]	Pass
Interaction Ratio	≤ 1	$\frac{0.3}{6.55} + \frac{30.0}{183.69} = 0.21$ [Ref. IS 800:2007, Cl.10.7]	Pass

2.5 Section Design

Check	Required	Provided	Remarks
Shear Yielding Capacity (kN)		$V_{d_y} = \frac{A_v f_y}{\sqrt{3}\gamma_{m0}}$ $= \frac{150.0 \times 3.0 \times 250}{\sqrt{3} \times 1.1 \times 1000}$ $= 59.05$ [Ref. IS 800:2007, Cl.10.4.3]	

		Created with OSdag®	
Company Name	Daredevil Developers	Project Title	Osdag on Web
Group/Team Name	Web Development Teams	Subtitle	
Designer	Gyrnaskha Aahoa	Job Number	0
Date	10 /03 /2023	Client	The No Name Guy

Check	Required	Provided	Remarks
		$V_d = 0.6 \ V_{dy}$	
		$= 0.6 \times 59.05$	
Allowable Shear Capacity	V = 10.0	= 35.43	Pass
(kN)			
		[Limited to low shear]	
		[Limited to low shear] $V_{d_n} = \frac{0.75 A_{v_n} f_u}{\sqrt{3} \gamma_{m1}}$	
		$= 1 \times \frac{(150.0 - (3 \times 10)) \times 3.0 \times 410}{\sqrt{3} \times 1.25}$	
Shear Rupture Capacity			
(kN)		= 110.7	
		[Ref. AISC, sect. J4] $A_{Vg} f_{u} = 0.9 A_{tn} f_{u}$	
		$V_{\text{dbl1}} = \frac{A_{\text{vg}} f_y}{\sqrt{3} \gamma_{m0}} + \frac{0.9 A_{tn} f_u}{\gamma_{m1}}$	
		$V_{\text{dbl2}} = \frac{0.9A_{vn}f_u}{\sqrt{3}\gamma_{m1}} + \frac{A_{tg}f_y}{\gamma_{m0}}$	
Block Shear Capacity in		$\sqrt{3}\gamma_{m1}$ γ_{m0}	
Shear (kN)		W . (W W) 7100	
		$V_{\rm db} = \min(V_{db1}, \ V_{db2}) = 51.98$	
		[D.f. IC 200 2007, Cl.c.4]	
		[Ref. IS 800:2007, Cl.6.4] $V_d = \min(S_c, V_{d_n}, V_{d_h})$	
		$= \min(35.43, 110.7, 51.98)$	
Shear Capacity (kN)	10.0	= 35.43	Pass
		[Ref. IS 800:2007, Cl.6.1]	
		$T_{\rm dg} = \frac{A_g f_y}{\gamma_{m0}}$	
		γ_{m0}	
		$A_g = lt = 150.0 \times 3.0$	
Tension Yielding Capacity			
(kN)		$=\frac{450.0\times250}{1.1\times10^3}$	
		= 102.27	
		[Ref. IS 800:2007, Cl.6.2]	

		Created with OSdag®	
Company Name	Daredevil Developers	Project Title	Osdag on Web
Group/Team Name	Web Development Teams	Subtitle	
Designer	Gyrnaskha Aahoa	Job Number	0
Date	10 /03 /2023	Client	The No Name Guy

Check	Required	Provided	Remarks
Tension Rupture Capacity (kN)		$T_{\rm dn} = \frac{0.9A_n f_u}{\gamma_{m1}}$ $= \frac{1 \times 0.9 \times (150.0 - 3 \times 10) \times 3.0 \times 410}{1.25}$ $= 106.27$ [Ref. IS 800:2007, Cl.6.3.1]	
Block Shear Capacity in Tension (kN)		$T_{\text{db11}} = \frac{A_{\text{vg}} f_y}{\sqrt{3} \gamma_{m0}} + \frac{0.9 A_{tn} f_u}{\gamma_{m1}}$ $T_{\text{db12}} = \frac{0.9 A_{vn} f_u}{\sqrt{3} \gamma_{m1}} + \frac{A_{tg} f_y}{\gamma_{m0}}$ $T_{\text{db}} = \min(T_{db1}, T_{db2}) = 68.88$ [Ref. IS 800:2007, Cl.6.4]	
Tension Capacity (kN)	30.0	$T_{\rm d} = \min(T_{\rm dg}, T_{\rm dn}, T_{\rm db})$ $= \min(102.27, 106.27, 68.88)$ $= 68.88$ [Ref.IS 800:2007, Cl.6.1]	Pass
Moment Capacity (kNm)	0.3	$M_{dz} = \frac{\beta_b Z_p fy}{\gamma_{m0} \times 10^6}$ $= \frac{1.0 \times 49500.0 \times 250}{1.1 \times 10^6}$ $= 11.25$ [Ref. IS 800:2007, Cl.8.2.1.2]	Pass
Interaction Ratio	≤ 1	$\frac{0.3}{11.25} + \frac{30.0}{68.88} = 0.46$ [Ref. IS 800:2007, Cl.10.7]	Pass

		Created with OSdag®	
Company Name	Daredevil Developers	Project Title	Osdag on Web
Group/Team Name	Web Development Teams	Subtitle	
Designer	Gyrnaskha Aahoa	Job Number	0
Date	10 /03 /2023	Client	The No Name Guy

2.6 Weld Design

Check	Required	Provided	Remarks
Min. Weld Size (mm)	$t_{w_{\min}}$ based on thinner part $= \max(8, 8)$ s_{\min} based on thicker part = 3 $[\text{Ref. IS } 800:2007, \text{ Table } 21, \text{ Cl.} 10.5.2.3]$	3	Pass
Max. Weld Size (mm)	Thickness of thinner part $= \min(9, 8.0) = 8.0$ $s_{\text{max}} = 8$ [Ref. IS 800:2007, Cl.10.5.3.1]	3	Pass
Weld Strength (N/mm)	$R_{\rm w} = \sqrt{(T_{\rm wh} + A_{\rm wh})^2 + (T_{\rm wv} + V_{\rm wv})^2}$ $T_{\rm wh} = \frac{M \times y_{\rm max}}{I_{pw}} = \frac{300000.0 \times 57.0}{246924.0}$ $T_{\rm wv} = \frac{M \times x_{\rm max}}{I_{pw}} = \frac{300000.0 \times 0.0}{246924.0}$ $V_{\rm wv} = \frac{V}{l_w} = \frac{10000.0}{228}$ $A_{\rm wh} = \frac{A}{l_w} = \frac{300000.0}{228}$ $R_{\rm w} = \sqrt{(69.25 + 131.58)^2 + (0.0 + 43.86)^2}$ $= 205.56$	$f_w = \frac{t_t f_u}{\sqrt{3} \gamma_{mw}}$ $= \frac{3 \times 410}{\sqrt{3} \times 1.25}$ $= 568.11$ [Ref. IS 800:2007, Cl.10.5.7.1.1]	Pass

3 Design Log