

STGB18N40LZT4, STGD18N40LZ, STGP18N40LZ

Automotive-grade 390 V internally clamped IGBT E_{SCIS} 180 mJ

Datasheet - production data

Figure 1. Internal schematic diagram

Features

- Designed for automotive applications and AEC-Q101 qualified
- 180 mJ of avalanche energy @ T_C = 150 °C,
 L = 3 mH
- ESD gate-emitter protection
- Gate-collector high voltage clamping
- Logic level gate drive
- Low saturation voltage
- High pulsed current capability
- · Gate and gate-emitter resistor

Application

· Pencil coil electronic ignition driver

Description

This application-specific IGBT utilizes the most advanced PowerMESH™ technology. The built-in Zener diodes between gate-collector and gate-emitter provide overvoltage protection capabilities. The device also exhibits low on-state voltage drop and low threshold drive for use in automotive ignition system.

Table 1. Device summary

Order codes	Marking	Package	Packaging
STGB18N40LZT4	GB18N40LZ	D²PAK	Tape and reel
STGD18N40LZ-1	GD18N40LZ	IPAK	Tube
STGD18N40LZT4	GD18N40LZ	DPAK	Tape and reel
STGP18N40LZ	GP18N40LZ	TO-220	Tube

Contents

1	Electrical ratings
2	Electrical characteristics
	2.1 Electrical characteristics (curves)
3	Test circuits
4	Package mechanical data
	4.1 STGB18N40LZT4, D ² PAK1
	4.2 STGD18N40LZ-1, IPAK 1
	4.3 STGD18N40LZT4, DPAK
	4.4 STGP18N40LZ, TO-220
5	Packaging mechanical data
6	Revision history

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CES}	Collector-emitter voltage (v _{GE} = 0)	V _{CES(clamped)}	V
V _{ECS}	Emitter collector voltage (V _{GE} = 0)	20	V
I _C ⁽¹⁾	Collector current (continuous) at T _C = 100 °C	30	Α
I _{CP} ⁽²⁾	Pulsed collector current	40	Α
V _{GE}	Gate-emitter voltage	V _{GE(clamped)}	V
P _{TOT}	Total dissipation at T _C = 25 °C	150	W
r (3)	Single pulse energy T_C = 25 °C, L = 3 mH, V_{CC} = 50 V	300	mJ
E _{SCIS} ⁽³⁾	Single pulse energy $T_C=150$ °C, L = 3 mH, $V_{CC}=50$ V	180	mJ
	Human body model, R= 1.5 kΩ, C = 100 pF	8	kV
ESD	Machine model, R = 0, C = 100 pF	800	V
	Charged device model	2	kV
T _{stg}	Storage temperature	FF to 175	°C
Tj	Operating junction temperature	– 55 to 175	

^{1.} Calculated according to the iterative formula

$$I_{C}(T_{C}) = \frac{T_{j(max)} - T_{C}}{R_{thj-c} \times V_{CE(sat)(max)}(T_{j(max)}, I_{C}(T_{C}))}$$

- 2. Pulse width limited by max. junction temperature
- 3. For E_{SCIS} test circuit refer to *Figure 16.: Inductive load switching and E_{SCIS} test circuit* with A and B not connected.

Table 3. Thermal data

Symbol	Parameter	DPAK IPAK	D²PAK TO-220	Unit
R _{thj-case} Thermal resistance junction-case			1	°C/W
R _{thj-amb}	Thermal resistance junction-ambient	100	62.5	°C/W

2 Electrical characteristics

(T_J=25 °C unless otherwise specified)

Table 4. Static electrical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{CES(clamped)}	Collector emitter clamped voltage (V _{GE} = 0)	$I_C = 2 \text{ mA}$ $T_J = -40 ^{\circ}\text{C} \text{ to } 150 ^{\circ}\text{C}$	360	390	420	V
V _{(BR)ECS}	Emitter collector break-down voltage (V _{GE} = 0)	I _C = 75 mA	20	28		V
V _{GE(clamped)}	Gate emitter clamped voltage	$I_G = \pm 2 \text{ mA}$	12		16	V
	Collector cut-off	V _{CE} = 15 V, T _J = 150 °C			10	μΑ
I _{CES}	current (V _{GE} = 0)	V _{CE} = 200 V, T _J = 150 °C			100	μΑ
I _{GES}	Gate-emitter leakage current (V _{CE} = 0)	V _{GE} = ±10 V	450	625	830	μА
R _{GE}	Gate emitter resistance		12	16	22	kΩ
R _G	Gate resistance			1.6		kΩ
		$V_{GE} = V_{CE}$, $I_C = 1$ mA, $T_J = -40$ °C	1.4			V
V _{GE(th)}	Gate threshold voltage	$V_{GE} = V_{CE}$, $I_C = 1 \text{ mA}$	1.2	1.6	2.3	V
		$V_{GE} = V_{CE}$, $I_C = 1$ mA, $T_J = 150$ °C	0.7			V
V _{CE(sat)}		$V_{GE} = 4.5 \text{ V}, I_{C} = 10 \text{ A}$		1.35	1.7	V
	Collector emitter saturation voltage	$V_{GE} = 4.5 \text{ V}, I_{C} = 10 \text{ A},$ $T_{J} = 150 \text{ °C}$		1.30		V
		$V_{GE} = 3.8 \text{ V}, I_{C} = 6 \text{ A}$		1.30		V

Table 5. Dynamic electrical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{ies}	Input capacitance			490	-	pF
C _{oes}	Output capacitance	$V_{CE} = 25 \text{ V, f} = 1 \text{ MHz,}$	-	90	-	pF
C _{res}	Reverse transfer capacitance	V _{GE} = 0		5		pF
Qg	Gate charge	V _{CE} = 280 V, I _C = 10 A, V _{GE} = 5 V	-	29	-	nC

Table 6. Resistive load switching time

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V _{CC} = 14 V,	-	0.65	-	μs
t _r	Rise time	$R_L = 1 \Omega$, $V_{GE} = 5 V$	-	3.5	-	μs
t _{d(on)}	Turn-on delay time	V_{CC} = 14V, R_L = 1 Ω ,	-	0.65	-	μs
t _r	Rise time	V _{GE} = 5V, T _J = 150 °C	-	3.8	-	μs

Table 7. Inductive load switching time

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(off)}	Turn-off delay time	V 000 V I 4 II	-	13.5	-	μs
t _f	Fall time	$V_{CC} = 300 \text{ V, L} = 1 \text{ mH}$ $I_{C} = 10 \text{ A, V}_{GE} = 5 \text{ V}$	-	5.5	-	μs
dv/dt	Turn-off voltage slope	ic is i, i GE o i	-	105	-	V/µs
t _{d(off)}	Turn-off delay time	V _{CC} = 300 V, L = 1 mH	ı	14.2	-	μs
t _f	Fall time	I _C = 10 A, V _{GE} = 5 V	-	8	-	μs
dv/dt	Turn-off voltage slope	T _J = 150 °C	ı	97	-	V/µs

2.1 Electrical characteristics (curves)

Figure 2. Collector-emitter on voltage vs temperature

Figure 3. Collector-emitter on voltage vs temperature

Figure 4. Collector-emitter on voltage vs temperature

Figure 5. Self clamped inductive switch

Figure 6. Output characteristics @ 25 °C

Figure 7. Output characteristics @ -40 °C

Figure 8. Output characteristics @ 175 °C

Figure 9. Transfer characteristics

Figure 10. Collector cut-off current vs. temperature

Figure 11. Normalized collector emitter voltage vs temperature

577

Figure 12. Normalized gate threshold voltage vs temperature

Figure 13. Normalized collector emitter on voltage vs temperature

Figure 14. Thermal impedance for D²PAK, I²PAK, TO-220

Figure 15. Thermal impedance for DPAK, IPAK

3 Test circuits

Figure 16. Inductive load switching and E_{SCIS} test circuit

Figure 17. Resistive load switching

Figure 18. Gate charge test circuit

Figure 19. Switching waveform

10/25

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

4.1 STGB18N40LZT4, D²PAK

Figure 20. D²PAK (TO-263) drawing

Table 8. D²PAK (TO-263) mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
А	4.40		4.60
A1	0.03		0.23
b	0.70		0.93
b2	1.14		1.70
С	0.45		0.60
c2	1.23		1.36
D	8.95		9.35
D1	7.50	7.75	8.00
D2	1.10	1.30	1.50
Е	10		10.40
E1	8.50	8.70	8.90
E2	6.85	7.05	7.25
е		2.54	
e1	4.88		5.28
Н	15		15.85
J1	2.49		2.69
L	2.29		2.79
L1	1.27		1.40
L2	1.30		1.75
R		0.4	
V2	0°		8°

Figure 21. D²PAK footprint^(a)

a. All dimension are in millimeters

4.2 STGD18N40LZ-1, IPAK

D *b2 (3x)* -*B5* e1-0068771_L

Figure 22. IPAK (TO-251) type A drawing

Table 9. IPAK (TO-251) type A mechanical data

DIM		mm.	
DIW	min.	typ.	max.
А	2.20		2.40
A1	0.90		1.10
b	0.64		0.90
b2			0.95
b4	5.20		5.40
B5		0.30	
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
E	6.40		6.60
е		2.28	
e1	4.40		4.60
Н		16.10	
L	9.00		9.40
L1	0.80		1.20
L2		0.80	1.00
V1		10°	

4.3 STGD18N40LZT4, DPAK

E THERMAL PAD c2 E1 L2 Ď1 *b*(2x) R С SEATING PLANE (L1) *V2*

Figure 23. DPAK (TO-252) type A drawing

57

0068772_Q

Table 10. DPAK (TO-252) type A mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
А	2.20		2.40
A1	0.90		1.10
A2	0.03		0.23
b	0.64		0.90
b4	5.20		5.40
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
D1		5.10	
Е	6.40		6.60
E1		4.70	
е		2.28	
e1	4.40		4.60
Н	9.35		10.10
L	1.00		1.50
L1		2.80	
L2		0.80	
L4	0.60		1.00
R		0.20	
V2	0°		8°

Figure 24. DPAK (TO-252) footprint (b)

b. All dimensions are in millimeters

4.4 STGP18N40LZ, TO-220

Figure 25. TO-220 type A drawing

Table 11. TO-220 type A mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
Α	4.40		4.60
b	0.61		0.88
b1	1.14		1.70
С	0.48		0.70
D	15.25		15.75
D1		1.27	
E	10		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13		14
L1	3.50		3.93
L20		16.40	
L30		28.90	
øΡ	3.75		3.85
Q	2.65		2.95

5 Packaging mechanical data

10 pitches cumulative tolerance on tape +/- 0.2 mm

Top cover PD PD PPP PD PP PD PP

Figure 26. Tape for DPAK and D²PAK

Figure 27. Reel for DPAK and D²PAK

Table 12. DPAK (TO-252) tape and reel mechanical data

Tape				Reel		
Dim	m	m	Dim.	mm		
Dim.	Min.	Max.	– Dim.	Min.	Max.	
A0	6.8	7	А		330	
В0	10.4	10.6	В	1.5		
B1		12.1	С	12.8	13.2	
D	1.5	1.6	D	20.2		
D1	1.5		G	16.4	18.4	
Е	1.65	1.85	N	50		
F	7.4	7.6	Т		22.4	
K0	2.55	2.75				
P0	3.9	4.1		Base qty. 2500		
P1	7.9	8.1		Bulk qty.	2500	
P2	1.9	2.1				
R	40					
Т	0.25	0.35				
W	15.7	16.3				

Table 13. D²PAK (TO-263) tape and reel mechanical data

	Таре			Reel		
Dim.	m	ım	Dim.	mm		
	Min.	Max.	Dilli.	Min.	Max.	
A0	10.5	10.7	А		330	
В0	15.7	15.9	В	1.5		
D	1.5	1.6	С	12.8	13.2	
D1	1.59	1.61	D	20.2		
Е	1.65	1.85	G	24.4	26.4	
F	11.4	11.6	N	100		
K0	4.8	5.0	Т		30.4	
P0	3.9	4.1				
P1	11.9	12.1		Base qty 1000		
P2	1.9	2.1		Bulk qty 1000		
R	50					
Т	0.25	0.35				
W	23.7	24.3				

6 Revision history

Table 14. Document revision history

Date	Revision	Changes		
18-Jan-2008 1		Initial release.		
07-Mar-2008	2	Modified Figure 7, Figure 8, Figure 10.		
07-May-2008	3	Modified Figure 9		
31-Mar-2009	4	Added new package, mechanical data: TO-220		
18-May-2009	5	Modified Figure 5		
12-Nov-2014	6	Updated Table 1: Device summary, Table 2: Absolute maximum ratings and Table 3: Thermal data Updated 3: Test circuits Updated Section 4: Package mechanical data Updated Section 5: Packaging mechanical data Minor text changes		

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2014 STMicroelectronics - All rights reserved

