3. Gün 2. Ders: Stokastik modellerin formüle edilmesi

Bulaşıcı hastalık dinamiklerinin R'de modellenmesi üzerine kısa kurs

Ankara, Türkiye, Eylül 2025

Dr Juan F Vesga

Oturumun amaçları

- Stokastik modellerin nasıl formüle edileceğini öğrenmek
- Stokastikliğin bölmeli ve birey tabanlı modellere nasıl dahil edildiğini öğrenmek
- Deterministik modellerle metodolojik farkı anlamak

Stokastik model formülasyonları

- Birey tabanlı/aracı tabanlı modeller
 - Her bir bireyi ve her birinin başına gelen olayları simüle eder
 - Daha gerçekçi ayrıntılar içerebilir ancak simüle edilmesi yavaş olabilir
- Popülasyon tabanlı veya bölmeli modeller
 - Yalnızca her bir bölmedeki toplam birey sayısının kaydını tutar
 - Bu gruptaki bireylerin başına gelen olayların sayısını simüle eder
 - Simüle edilmesi daha hızlıdır

Tehlike

- Tehlike, birim zamanda bir olayın meydana gelme olasılığıdır.
- Deterministik modelde kullanılan anlık kişi başına orana eşdeğerdir.

Örneğin, enfekte bir kişi bir tehlikeye veya σ iyileşme oranına sahipse:

dt zamanında iyileşme olasılığı <u>küçük dt</u> için **σdt**'dir.

Tehlike

- Elimizde hepsi özdeş (konuştuğumuz sürece göre) N tane birey varsa binom dağılım belirli bir süredeki olay sayısının dağılımını tanımlar.
- Olasılığı p olan bir şeyin N sayıda denemesi, başarı sayısı binom dağılımlı rastgele bir sayıdır:

dt zamanında iyileşenlerin sayısı Binom(σdt, N)'den elde edilir

Rakip Tehlikeler

- Enfekte olan (oran:λ) ancak aynı zamanda ölme ihtimali bulunan (oran:μ) duyarlı birey popülasyonunu düşünün.
- Ama ikisini aynı anda yapamazlar!
- dt zamanında kaçı ölür, kaçı enfekte olur?

Rakip Tehlikeler

- Başına herhangi bir olay gelenlerin toplam sayısını bulmak için
- farklı olayların oranlarını ekleyebiliriz.
- Ardından her birinin başına iki olaydan hangisinin geldiğine karar verebiliriz.

Toplam olay sayısı:
$$H_1 + H_2 = \text{Binomial}((\mu + \lambda)dt, X)$$

$$H_1$$
 ve H_2 olarak ayrılır: $H_1 = \text{Binomial}\left(\frac{\lambda}{\lambda + \mu}, H_1 + H_2\right)$

Basit enfeksiyon süreci

Stokastik model tamamen iki şeye göre tanımlanır:

- Popülasyonun durumu. Ör. duyarlı, enfekte, iyileşmiş durumdaki bireylerin sayısı.
- Tüm olası olaylar ve bunların oranları. Ör. enfeksiyon oranı, ölüm oranı, iyileşme oranı vb.

Mevcut durum için:

Popülasyon: S özdeş duyarlı bireyler, I özdeş enfekte bireyler.

Ad	Popülasyonun başına gelen	Oran/birey
	olay	
Enfeksiyo n	S →S – 1, I→I + 1	λ
iyileşme	I →I - 1	σ

Bireysel tabanlı modeller

- Her bir bireyi ayrı olarak ele alır.
- Senkronize güncelleme durumu için küçük güncelleme zaman adımı (dt) seçin.
- Bireyin başına yalnızca bir olay gelebilir enfekte olmak (oran λ)
- Her zaman adımında, her bir bireysel rastgele seçilmiş sayı *p* için (0 ila 1 arasında eşit olarak dağıtılmış).
 - $p < \lambda dt$ ise birey enfekte olur böylece S \rightarrow S-1, I \rightarrow I+1 olur.
 - $p > \lambda dt$ hiçbir şey olmaz.

Çoklu bireyler-IBM

Her duyarlı birey 'özdeştir'
Her biri için rastgele bir sayı
üretebilir (22 rastgele sayı)
ve enfeksiyon veya ölüm
olup olmadığını bulabilir
ör. 5 yeni enfeksiyon, 17'si
değişmemiş

Çoklu bireyler-Bölme

- 22 birey, birey başına enfeksiyon olasılığıλDt
- 'başarı' sayısını bulmak için Binom dağılımı kullanın,
- Enfeksiyonlar = Binom(λDt,S) =
 7 infeksiyon (örneğin)

Duyarlı
$$\frac{dX}{dt} = -R_0 \nu \frac{X}{N} Y$$
 Maruz Kalan
$$\frac{dW}{dt} = R_0 \nu \frac{X}{N} Y - \sigma W$$
 Enfekte
$$\frac{dY}{dt} = \sigma W - \nu Y$$

Duyarlı
$$\frac{dX}{dt} = -R_0 v \frac{X}{N} Y$$
 Maruz Kalan
$$\frac{dW}{dt} = R_0 v \frac{X}{N} Y - \sigma W$$
 Enfekte
$$\frac{dY}{dt} = \sigma W - v Y$$

Duyarlı
$$X(t+\delta t) = X(t)-\iota(t)$$

Maruz Kalan
$$W(t + \delta t) = W(t) + \iota(t) - \kappa(t)$$

Enfekte
$$Y(t + \delta t) = Y(t) + \kappa(t) - \rho(t)$$

Insidans
$$t(t) = \operatorname{Binomial}\left(R_0 v \frac{1}{N} Y(t) \delta t, X(t)\right)$$

insidans
$$\kappa(t) = \text{Binomial}(\sigma \delta t, W(t))$$

iyileşme
$$\rho(t) = \text{Binomial}(\nu \delta t, Y(t))$$

Özet

- Stokastik etkiler aşağıdaki hususları değerlendirirken önemlidir
 - Kalıcılık
 - Küçük popülasyonlarla uğraşırken (salgının başlangıcı ve sonu)
 - Veya uzaysal yayılım.
- R₀<1 olsa bile tesadüfen salgınlar olabilir
- R₀> 1 olsa bile tesadüfen salgın olmayabilir
- Stokastik modellerin programlanması nispeten basit, analiz edilmeleri zordur

Ekstra materyaller

Stokastik olayların dağılımıyla ilgili daha fazla yayın okumak için

Yardımcı kaynaklar

Kitaplar:

Renshaw, E., Modelling biological populations in space and time, Cambridge Univ. press, 1991

Bailey, N.T.J., The mathematical theory of infectious diseases and its applications, 2nd edition, Griffin, 1975

Makaleler:

Bartlett, M. S. (1957). "Measles periodicity and community size." <u>J. Roy. Stat. Soc. A</u> **120**: 48-70.

Bolker, B. M. and B. T. Grenfell (1995). "Space, persistence and dynamics of measles epidemics." <u>Proc. Roy. Soc. Lond. B</u> **348**: 308-320.

Jansen, V. A. A., N. Stollenwerk, et al. (2003). "Measles outbreaks in a population with declining vaccine uptake." Science 301(5634): 804-804.

Farrington, C. P., M. N. Kanaan, et al. (2003). "Branching process models for surveillance of infectious diseases controlled by mass vaccination." <u>Biostatistics</u> **4**(2): 279-295.

Gelişmiş: Binom ile Poisson karşılaştırması

- Poisson dağılımı, küçük bir zaman adımında meydana gelecek olayların sayısını simüle eder = Poisson(ωΔtN(t))
- Binom formülasyon Binom(ωΔt,N(t)), her biri ωΔt ile yaklaşık olarak bulunan başarı ihtimaline sahip N(t) sayıda deneme bulunduğunu söyler, kaçı başarılıdır?
 - Olay sayısı insanlardan fazla olamaz
 - Çok fazla olay olmayacağı için küçük zaman adımları önemli değildir
 - Çoklu rakip tehlike olduğunda katlı terimleri hesaplar

Popülasyon simülasyonları

Bireysel tabanlı modeller çok yavaş olabilir ve hesaplama süresi N olarak artar.

Olaylar bağımsızsa Dt sabit zamanında i olay tipi sayısı, binom dağılımdan örnekleme yapılarak simüle edilebilir (ayrıca Poisson dağılımından örnekleme yapılarak da simüle edilebilir). S popülasyon boyutunda i olay tipi sayısı aşağıdaki denkleme göre verildiğinden

$$k \sim Binomial(\lambda \Delta t, S)$$

Birbiriyle rekabet eden çoklu olaylar bulunduğunda binom veya multinom yaklaşımları birden fazla Poisson dağılımından yapılan örneklemeyi kullanmaktan daha iyi sonuç verir ve daha tutarlı model formülasyonuna izin verir.

Gelişmiş: Senkron ile asenkron modellerin karşılaştırması

- Senkron: her bir zaman adımında meydana gelebilecek tüm olayları simüle eder.
- Asenkron: sonraki olayın zamanını simüle eder ve o zaman noktasına kadar ilerler,
- Özellikle birey tabanlı simülasyonlarda her birinin gerçekleşme olasılığının düşük olduğu çok sayıda olası olay varsa asenkron bir modele sahip olmak daha verimli olabilir