Tutorial do Linux

Um pouco de História

O Kernel do Linux foi inicialmente desenvolvido pelo estudante finlandês Linus Torvalds numa tentativa de conseguir o seu próprio sistema operativo semelhante ao Unix (Unix-like) que corresse em processadores Intel 80386.

Linus obteve uma cópia do Minix estudou a mesma não ficando satisfeito com sua arquitetura. O projeto foi lançado em 1991 numa famosa mensagem para um grupo de discussão da Usenet. Curiosamente, o nome Linux foi criado por Ari Lemmke, administrador do site ftp.funet.fi que deu esse nome ao diretório FTP onde o kernel do linux estava inicialmente disponível (Linus tinha batizado como "Freax", inicialmente). Desde o princípio, ele recebeu a ajuda de hackers do Minix, e hoje recebe contribuições de milhares de programadores de todo mundo.

Arquitetura

O Linux é um núcleo (kernel) monolítico. Isto é, as funções do núcleo (agendamento de processos, gerenciamento de memória, operações de entrada e saída, acesso ao sistema de arquivos) são executadas no espaço do núcleo. Uma característica do Linux é que algumas das funções (drivers de dispositivos, suporte à rede, sistemas de arquivo, por exemplo) podem ser compiladas e executadas como módulos (LKM - loadable kernel modules), que são bibliotecas compiladas separadamente da parte principal do núcleo e podem ser carregadas e descarregadas após o núcleo estar em execução.

Portabilidade

Embora Linus Torvalds não tenha tido como objetivo inicial tornar o Linux um sistema portável, ele evoluiu nessa direção. Linux é hoje, na verdade, um dos núcleos (*kernels*) de sistema operacional com mais portabilidade, correndo em sistemas desde o iPaq (um computador portátil) até o IBM S/390 (um denso e altamente custoso mainframe)

De qualquer modo, é importante notar que os esforços de Linus foram também dirigidos a um diferente tipo de portabilidade. Portabilidade, de acordo com Linus, era a habilidade de facilmente compilar aplicações de uma variedade de fontes no seu sistema; portanto o Linux originalmente tornou-se popular em parte devido ao esforço para que as fontes GPL ou outras favoritas de todos executassem em Linux.

Termos de Licenciamento

Inicialmente, Torvalds lançou o Linux sob uma licença que proibia qualquer uso comercial. Isso foi mudado de imediato para a Licença Pública Geral GNU. Essa licença permite a distribuição e mesmo a venda de versões possivelmente modificadas do Linux mas requer que todas as cópias sejam lançadas dentro da mesma licença e acompanhadas do código fonte.

Distribuições

Atualmente, um Sistema Operacional GNU/Linux completo (equivalente a "distribuição de GNU/Linux") é uma coleção de software livre (e alguns não-livres) criados por indivíduos, grupos e organizações de todo o mundo, tendo o Linux como seu núcleo. Companhias como a Red Hat, a SuSE, a Mandriva (união da Mandrake com a Conectiva), bem como projetos de comunidades como o Debian ou o Gentoo, compilam o software e fornecem um sistema completo, pronto para instalação e uso.

Dentre as maiores, distribuídas em CDs, podem-se citar: Slackware, Debian, Suse, Ubuntu e Conectiva. O que faz a diferença é como estão organizadas e pré-configuradas as aplicações. A distribuição Conectiva Linux, por exemplo, tinha as suas aplicações traduzidas em português, o que facilitou que usuários que falam a Lingua Portuguesa tenham aderido melhor a esta distribuição. Hoje esta

distribuição foi incorporada à Mandrake, o que resultou na Mandriva. Para o português, existe também a distribuição brasileira Kurumin, construída sobre Knoppix e Debian.

Distribuições atuais de Linux:

Arch Linux	Fedora	Kubuntu	Slackware Linux
Caixa Mágica	Gentoo Linux	Lycoris	Sorcerer GNU/Linux
Conectiva	GoboLinux	Mandriva	SuSE
Cytrun Linux	Kake Linux	Muriqui Linux	TechLinux
Debian	Kalango Linux	Red Hat Linux	tsl linux
Debian-BR-CDD	Knoppix	RXART Linux	Ubuntu Linux
Famelix	Kurumin Linux	Skolelinux	White Box

O que é uma shell?

No mundo da computação, uma shell é um programa que interpreta comandos do usuario para que o sistema operacional possa entender e executar o que lhe é pedido.

A shell é uma interface em linha de comando, baseada em texto. O usuário pode digitar comandos para executar funções ou programas, abrir e navegar diretórios, e ver processos que estão ocorrendo no momento. Sendo a shell a unica camada para o sistema operacional, você pode fazer operações que não são possiveis usando usando uma interface grafica do usuario (do ingles GUI - graphical user interface). Alguns exemplos inclui mover arquivos dentro das pastas de sistema e deletar arquivos que são tipicamentes bloqueados. Para executar isso, você precisa saber as a sintaxe correta dos comandos e permitir o seu acesso como administrador do sistema.

Duas shells mais comumente utilizadas são a Bourne Again Shell (bash) e a Tenex C shell (tcsh).

Vale ressaltar que na linha de comandos de uma shell, podemos utilizar diversos comandos um após o outro, ou até mesmo combiná-los numa mesma linha. Se colocarmos diversas linhas de comandos em um arquivo texto simples, teremos em mãos um *Shell Script*, ou um script em shell, já que Script é uma descrição geral de qualquer programa escrito em linguagem interpretada, ou seja, não compilada. O script shell vai ser um assunto abordado mais adiante.

Lista de Comandos

Comandos para manipulação de arquivos

A partir do momento que vamos começar a mexer com arquivos, precisamos saber alguns comandos básicos para a sua manipulação.

- cd Navegando entre diretórios
- ls Listar arquivos
- mkdir Cria um diretório
- rmdir Remove um diretório vazio
- cp Cópia de arquivos e diretórios
- mv Move arguivos e diretórios
- rm Deleta arquivos e diretórios
- ln Linkando arquivos

- cat Exibe o conteúdo de um arquivo ou direciona-o para outro
- less Exibe o conteúdo de um arquivo grande, permitindo a navegação no mesmo
- pipe Concatena comandos
- grep Filtra e busca resultados

cd - Navegando entre diretórios

cd [nome do diretório]

Este comando acima mudará o diretório atual de onde o usuário está. Há também algumas abreviações de diretórios no Linux para a facilitação, estes são:

Abreviação	Significado
. (ponto)	Diretório atual
(dois pontos)	Diretório superior
~ (til)	Diretório HOME do usuário
/ (barra)	Diretório Raiz
- (hífen)	Diretório anterior

Por exemplo, se eu quero ir para o meu diretório home, faço o seguinte:

```
$ pwd
/usr/games
$ cd ~
$ pwd
/home/pres
```

Ou seja, eu estava no diretório /usr/games, e com um simples cd para o diretório ~, fui para o meu diretório home (/home/pres). Quando você deseja saber o caminho completo do diretório em que você está, utilize o comando pwd. Se você deseja ir para um diretório que está na raiz diretamente, você usa o / antes, exemplo:

```
$ pwd
/usr/local/RealPlayer7/Codecs
$ cd /etc/rc.d
$ pwd
/etc/rc.d
$ cd -
$ pwd
/usr/local/RealPlayer7/Codecs
```

Eu estava no diretório /usr/local/RealPlayer7/Codecs e quis ir para o diretório etc/rc.d que está na raiz. Note depois que eu usei o hífen e fui de volta para o último diretório em que eu estava.

ls - Listar arquivos

ls [opções] [arquivo/diretório]

Este comando lista os arquivos, nada mais que isso. Se você executar apenas o ls sozinho, ele vai mostrar todos os arquivos existentes no diretório atual. Há também as opções extras:

Parâmetro	Significado
-1	Lista os arquivos em formato detalhado.
-a	Lista os arquivos ocultos (que começam com um .)
-h	Exibe o tamanho num formato legível (combine com -l)
-R	Lista também os subdiretórios encontrados
-t	Lista em ordem cronológica
-S	Lista em blocos de 1024-bytes, mostrando a esquerda

Exemplo de uma listagem detalhada:

```
$ ls -1
total 9916
drwxrwxr-x 5 hugo hugo 1302 Aug 16 10:15 CursoC_UFMG
-rw-r--r- 1 hugo hugo 122631 Jul 12 08:20 Database.pdf
-rw-r--r- 1 hugo hugo 2172065 Jul 12 08:20 MySQL.pdf
-rw-r--r- 1 hugo hugo 2023315 Jul 12 08:20 PHP3.pdf
```

Podemos também usar no ls os wildcards, ou seja, caracteres que substituem outros. Exemplo: eu quero listar todos os arquivos que têm a extensão .txt, faço o seguinte:

```
$ ls *.txt

debian-install.txt manualito.txt named.txt plip.txt
seguranca.txt ipfw.txt mouse.txt placa_de_video.txt
rede.txt sis.txt
```

O wildcard é o "*", que representa "tudo".txt. Existem outros wildcards, exemplo disso é o ponto de interrogação (?), que substitui apenas 1 caractere, exemplo:

```
$ ls manual?.txt
manual1.txt manual2.txt manual3.txt manualx.txt manualP.txt
```

Existe outro wildcard, que envolve os colchetes. Por exemplo:

```
$ 1s manual[3-7].txt
manual3.txt manual4.txt manual6.txt manual7.txt
```

Lista todos os arquivos que tiverem como manual?.txt, onde o ? pode ser substituído por 3, 4, 5, 6 e 7.

mkdir - Cria um diretório

mkdir <nome do diretório>

Cria um diretório. Exemplo:

```
$ mkdir ~/paginas
```

Este comando criará o diretório paginas no seu diretório home.

rmdir - Remove um diretório vazio

rmdir <nome_do_diretorio>

Apaga um diretório que esteja vazio. Exemplo:

```
$ rmdir /tmp/lixo
```

Isto apagará o diretório /tmp/lixo apenas se ele estiver vazio. Para apagar um diretório com seu conteúdo, refira-se ao comando rm.

cp - Cópia de arquivos e diretórios

cp [opções] <arquivo_origem> <arquivo_destino>

O comando cp copia arquivos e diretórios. Como opções dele, podemos ver:

Parâmetro	Significado
-i	Modo interativo
-v	Mostra o que está sendo copiado
-R	Copia recursivamente (diretórios e subdiretórios)

Exemplos:

Quero copiar brasil.txt para livro.txt, com a opção de modo interativo.

```
$ cp -i brasil.txt livro.txt
cp: sobrescrever `livro.txt'?
```

Como o arquivo livro.txt já existia, ele pergunta se quer sobrescrever, responda y(sim) ou n(não).

Agora eu quero copiar o diretório /home/ftp com tudo dentro (até seus subdiretórios) para /home/ftp2, faço o seguinte:

```
$ cp -R /home/ftp /home/ftp2
```

mv - Move arquivos e diretórios

mv [opções] <arquivo_origem> <arquivo_destino>

Este comando simplesmente move algum arquivo para outro lugar. Ele também é usado para renomear um arquivo. Vale os parâmetros listados no comando cp. Por exemplo, se eu quero renomear o industria.txt para fabrica.txt, eu faço o seguinte:

```
$ mv industria.txt fabrica.txt
```

Se eu quiser mover o industria.txt para /home/usuario com o mesmo nome, faço:

```
$ mv industria.txt /home/usuario
```

<u>rm - Deleta arquivos e diretórios</u>

rm [opções] <arquivo>

Novamente, as opções listadas no comando cp, são válidas aqui, principalmente a -i, pois não queremo apagar um arquivo sem querer, né :-)

Este comando apaga definitivamente o arquivo ou diretório. Exemplo:

```
$ rm arquivo.bin
```

Para apagar um diretório com todo seu conteúdo, usa-se a opção -r, assim:

```
$ rm -r /tmp/lixo
```

<u>ln - Linkando arquivos</u>

ln -s <arquivo_origem> <link simbólico>

Este comando é usado para gerar links simbólicos, ou seja, que se comportam como um arquivo ou diretório, mas são apenas redirecionadores que mandam seu comando para outro arquivo ou diretório, por exemplo:

```
$ ln -s /manual /home/linux-manual
```

Este comando criará o link /home/linux-manual, se você der um ls -1 você verá que o diretório /home/linux-manual está apontando para /manual. Se você ir para o /home/linux-manual, você na verdade estará no /manual, mas como é um link, não há diferença.

cat - Exibe o conteúdo de um arquivo ou direciona-o para outro

cat <arquivo>

Este comando existe para mostrar o conteúdo de um arquivo, ou para fazer a cópia deste arquivo, ou uma junção. Vejamos um exemplo, se eu quiser mostrar o conteúdo de /home/usuario/contato, eu digito:

```
$ cat /home/pres/contato
```

Aparecerá o conteúdo do arquivo contato:

Presidente – Fernando Luz presidente arroba ifsc ponto usp ponto br

Este comando pode também servir de direcionador para outro arquivo. Indicadores são usados para isso:

Indicador ">" - faz uma cópia, exemplo:

```
$ cat contato1 > contato2
```

Indicador ">>" - Acrescenta um arquivo ao outro, exemplo:

```
$ cat contato1 >> contato2
```

less - Exibe o conteúdo de um arquivo grande, permitindo a navegação no mesmo

less <arquivo>

Um dos problemas do cat é que quando visualizamos o conteúdo de um arquivo grande, ele é jogado todo na tela, e acabamos vendo somente as linhas finais do texto. Para resolver este problema, criaram um comando chamado more, com as funções parecidas com a do cat, mas ele não permitia retrocesso na leitura do arquivo. Então Mark Nudelman iniciou seu trabalho no less em 1983 quando teve a necessidade de utilizar uma ferramenta como o more porém com rolagem para trás. Ela também deveria suportar a leitura de arquivos de log grandes demais na época para ferramentas como vi.

O nome less é o contrário de more, que vem de uma brincadeira com o nome do seu precessor.

```
$ less /home/pres/disertacao.tex
```

Aparecerá o conteúdo do arquivo contato:

Presidente - Fernando Luz

Ta na hora de começar hein!!! X-(

Os procedimentos executados com o cat, também são validos com o less. Pressione h enquanto ele é executado para ver as funcionalidades que o less permite (como busca dentro do texto).

pipe - Concatena comandos

<comando> | <comando>

O pipe é um das maneiras que o Linux pode utilizar para comunicação entre processos. De uma maneira simples podemos dizer que o pipe nada mais é do que o encadeamento de processos. Ao primeiro olhar o pipe pode até não chamar atenção dos principiantes, mas trata-se de um ferramenta muito poderosa. Esse encadeamento de processo pode ser ativado pelo usuário através do comando "|". Vamos demonstrar no exemplo abaixo o uso dessa ferramenta:

```
$ cp --help | less
```

O resultado do comando cp -help, é jogado para o comando less, que permite uma melhor forma de ler o resultado.

grep – Filtra e busca resultados

```
grep <arquivo>
```

Uma utilidade do comando grep é a de buscar por ocorrências de expressões dentro de 1 ou mais arquivos. Imagine que precisamos pesquisar a expressão "servidor" dentro de todos os arquivos do diretório /etc.

```
$ grep -s kernel /etc/*
/etc/filesystems:#Uncomment the following line if your modular kernel has vfat
/etc/make.conf.example:#setting for all linux kernel+glibc based systems.
/etc/modules.conf:#Crypto modules (see http://www.kerneli.org/)
/etc/modules.conf:#0xFFFFFFFF let the kernel module autodetect the correct value
```

O resultado aparece da seguinte forma.

nome do arquivo: linha que contém a expressão.

Podemos também utilizar o grep como um filtro de resultados. Utilizando o comando pipe (/), podemos concatenar a saida de um comando com grep, como no exemplo abaixo que estamos interessados em saber quais documentos foram mexidos pela última vez no ano de 2007.

Comandos sobre processos do sistema

- ps Listando processos
- kill Matando um processo
- killall Matando processos pelo nome

ps - Listando processos

ps [opções]

Quando um programa é executado no sistema, ele recebe um número de identificação, o chamado PID. Este comando lista esses processos executados, e apresenta o PID. Além do PID, ele também mostra o comando executado (CMD) e também o STAT (status atual do processo executado, veja nota abaixo), além de outros.

O status do processo é identificado por letras, aqui segue uma tabela com as definições de cada letra:

Letra	Definição
0	Não existente
S	Descansando, fora de funcionamento (Sleeping)
R	Rodando (Running)
I	Intermediando (Intermediate)
Z	Terminando (Zumbi)
T	Parado (Stopped)
W	Esperando (Waiting)

Agora um exemplo para este comando:

\$ ps	aux									
USER		PID	%CPU	%MEM	VSZ	RSS	TTY	STAT	START	TIME COMMAND
root		1	0.0	0.0	1120	52	?	S	Dec25	0:05 init
root		2	0.0	0.0	0	0	?	SW	Dec25	0:00 [kflushd]
root		3	0.0	0.0	0	0	?	SW	Dec25	0:00 [kupdate]
root		4	0.0	0.0	0	0	?	SW	Dec25	0:00 [kpiod]
root		1004	0.0	0.0	10820	48	?	SN	Dec25	0:00 [mysqld]
root		1007	0.0	0.0	2852	0	?	SW	Dec25	0:00 [smbd]
pres		1074	0.0	0.0	1736	0	tty1	SW	Dec25	0:00 [bash]
pres		1263	0.0	0.0	1632	0	tty1	SW	Dec25	0:00 [startx]
pres		1271	0.0	0.0	2304	0	tty1	SW	Dec25	0:00 [xinit]
pres		1275	0.0	2.4	4312	1360	tty1	S	Dec25	0:16 wmaker
pres		2461	0.0	0.0	1636	0	tty1	SW	07:09	0:00 [netscape]
pres		9618	0.9	4.9	5024	2688	pts/1	S	09:56	0:06 vim d03.html

Este parâmetro (aux) fez o ps listar todas as informações sobre todos os processos executados.

kill - Matando um processo

kill [-SINAL] <PID>

O comando kill é muito conhecido, ele serve para matar um processo que está rodando. Matar? Terminar este processo, finalizar natoralmente! Para matar um processo, temos de saber o PID dele (veja o comando ps), e então executar o kill neste PID. Vamos killar o Netscape:

```
$ ps aux | grep netscape
pres 2461 0.0 0.0 1636 0 ttyl SW 07:09 0:00 [netscape]
$ kill -9 2461
```

E o processo do Netscape foi morto!

killall - Matando processos pelo nome

killall [-SINAL] <comando>

Faz a mesma coisa que o kill, só que a vantagem aqui é que você não precisa saber o PID do processo, e sim o nome. A desvantagem é que se tiver dois processos com o mesmo nome, os dois são finalizados. Seguindo o exemplo do comando kill:

```
$ ps aux | grep netscape
pres 2461 0.0 0.0 1636 0 tty1 SW 07:09 0:00 [netscape]
$ killall -9 netscape
```

Dicas Básicas

Para saber informações da máquina onde você esta trabalhando, basta ver o arquivo /proc/cpuinfo, e para verificar a memória do seu sistema, observe o arquivo /proc/meminfo.

```
$ cat /proc/cpuinfo | grep "model name"
model name : AMD Athlon(TM) XP1700+
$ cat /proc/meminfo | grep MemTotal
MemTotal: 514716 kB
```

O comando grep foi concatenado apenas para não mostrar a saída inteira do arquivo.

As vezes, é interessante que alguns comandos tenham na sua chamada um valor diferente do padrão, imagine que toda vez que vamos deletar um arquivo, temos que colocar -i para ele sempre pedir a confirmação dos arquivos a serem deletados. Para isso podemos definir as chamadas padrão dos comandos da shell editando o arquivo ./bashrc.

```
$ emacs .bashrc
```

E inclua a linha a seguir no arquivo.

```
alias rm="rm -i"
```

Outros tipos de comandos

Descompactar arquivos

Extensão .tar.gz	tar zxpvf arquivo.tar.gz
Extensão .tar	tar xpvf arquivo.tar
Extensão .zip	unzip arquivo.zip

Compactar arquivos

Empacotar um diretório em .tar	tar cvf diretorio/
Empacotar um diretório em .tar.gz	tar zcvf diretorio/
Empacotar um diretório em .zip	zip -r [arquivo-destino].zip [diretório-origem]

Espaço em disco

df -h	Mostra o espaço em disco das partições montadas
du -hs	Mostra o espaço ocupado pelo diretório atual

Informações do sistema

date	Mostra a data e hora atual
uptime	Mostra quanto tempo seu sistema está rodando
free	Exibe a memória livre, a usada, e os buffers da memória RAM
top	Mostra os processos que mais gastam memória

Programas (console)

vi	Editor de texto
emacs	Editor de texto
links	Navegador Web

Bibliografias consultadas

BOAVENTURA, Frederico Freire. **GNU/Linux.** Disponível em: http://galahad.com.br/lnx/index.php. Acesso em: 04 mar. 2007.

CISNEIROS, Hugo. Página do Eitch. Disponível em: http://www.devin.com.br/eitch/. Acesso em: 04 mar. 2007.

KLIMAS, Stan; KLIMAS, Peter; KLIMAS, Marrei. **LINUX NEWBIE ADMINISTRATOR GUIDE.** Disponível em: http://www.onlinux.com.br/dicas/lnag/Linux_help.htm>. Acesso em: 03 mar. 2007.

MITRE, J. F.. .bashrc. Disponível em: http://www.vivaolinux.com.br/conf/verConf.php?codigo=341. Acesso em: 03 mar. 2007.

SHELL(2) Disponível em: http://www.istf.com.br/vb/archive/index.php?t-5484.html. Acesso em: 03 mar. 2007.

SILVA, Gleydson Mazioli da. **Guia Foca GNU/Linux Intermediário.** Disponível em: http://www.htmlstaff.org/guiafoca/intermediario/>. Acesso em: 04 mar. 2007.

WIKIPÉDIA Disponível em: http://pt.wikipedia.org/wiki/. Acesso em: 15 fev. 2007.