Analytická geometrie

- **1. Příklad** Vypočtěte vnitřní úhly trojúhelníka ABC, kde A = [2, -1, 3], B = [1, 1, 1], C = [0, 0, 5].Výsledek: $\alpha = 90^{\circ}, \ \beta = \gamma = 45^{\circ}C.$
- **2.** Příklad Nechť A = [-1, 2, 3], B = [1, 1, 1], C = [0, 0, a]. Určete a tak, aby $\overrightarrow{AB} \perp \overrightarrow{AC}$. Výsledek: a = 5.
- **3. Příklad** Určete vzdálenost bodu M = [2, -1, 3] od přímky AB, kde A = [-1, -2, 1], B = [2, 2, 6]. $V \acute{y} sledek: \frac{3}{10} \sqrt{38}$.
- **4. Příklad** Bodem P = [2, 3, 2] veďte kolmici k přímce $\frac{x+1}{-1} = \frac{y}{2} = \frac{z-3}{3}$. *Výsledek:* $\frac{x-2}{-3} = \frac{y-3}{-3} = \frac{z-2}{1}$.
- **5. Příklad** Určete rovnici roviny procházející rovnoběžkami $\frac{x-4}{4} = \frac{y+1}{1} = \frac{z-2}{1}, \frac{x-2}{4} = \frac{y+5}{1} = \frac{z-5}{1}$. Výsledek: x - 2y - 2z - 2 = 0.
- **6. Příklad** Určete kolmý průmět bodu P = [2, 3, 2] na přímku x = -3 + 2t, y = -6 + t, z = -1 + 3t. *Výsledek:* [1, -4, 5].
- 7. Příklad Určete obecnou rovnici roviny procházející body A = [1, -1, 2], B = [2, 1, 2], C = [1, 1, 4]. $V\acute{y}sledek: 2x - y + z - 5 = 0.$
- 8. Příklad Určete obecnou rovnici roviny α , která je dána body A[5,-1,0], B=[1,2,5], C=[-3,-2,8].

$$V$$
ýsledek: $\alpha : 29x - 8y + 28z - 153 = 0$

9. Příklad Jsou dány body A = [5, 1, -2] a B = [3, -3, 3]. Bodem A veďte rovinu ϱ , která bude kolmá k vektoru \overrightarrow{AB} .

$$V\acute{y}sledek: \varrho: 2x + 4y - 5z + 24 = 0$$

- **10. Příklad** Bodem A = [2, 1, -1] veďte rovinu kolmou k vektoru $\vec{v} = (1, -2, 3)$. Výsledek: x - 2y + 3z + 3 = 0.
- 11. Příklad Bodem P[1, 2, 0] veďte rovinu β kolmou k přímce p dané parametricky x = 3 + t, y = 2 2t, $z = -5 + 6t, t \in \mathbb{R}$.

Výsledek:
$$\beta : x - 2y + 6z + 3 = 0$$

- 12. Příklad Převeďte rovnici roviny na parametrický tvar:
 - a) 3x 2y + 6z 14 = 0;
 - b) z + 1 = 0.

Výsledek: a)
$$x = \frac{14}{3} + \frac{2}{3}u - 2v, y = u, z = v,$$
 b) $x = u, y = v, z = -1.$

- 13. Příklad Najděte úhel dvou rovin $x-y+\sqrt{2}z+2=0, x+y+\sqrt{2}z-3=0.$ Výsledek: $60^{\circ}C$.
- 14. Příklad Dokažte, že následující roviny α a β jsou rovnoběžné a určete jejich vzdálenost.

$$\alpha: 30x - 32y + 24z - 75 = 0, \ \beta: 15x - 16y + 12z - 25 = 0.$$

Výsledek: $\frac{1}{2}$.

15. Příklad Napište parametrickou rovnici i obecnou rovnici osy z.

Výsledek: Par. rovnice: x = 0, y = 0, z = t, obecná rovnice: x = 0, y = 0.

16. Příklad Převeďte obecné rovnice $x+4y+4z-7=0,\,4x+4y+5z-11=0$ přímky na parametrické rovnice.

Výsledek:
$$x = 4t, y = -\frac{9}{4} + 11t, z = 4 - 12t.$$

17. Příklad Napište parametrické rovnice přímky procházející bodem M = [4, -5, 7] rovnoběžně s přímkou x = 3 - t, y = 2 + 2t, z = 3.

Výsledek:
$$x = 4 - t, y = -5 + 2t, z = 7.$$

18. Příklad Zjistěte vzájemnou polohu přímek x=2+t, y=1-2t, z=5+3t a x=4, y=2-5t, z=11t.

Výsledek: Jde o různoběžky, průsečík je [4, -3, 11].

19. Příklad Určete úhel přímek x = -3 + t, y = -3 + 2t, z = 4 - 2t a 9x + 2y + 2z - 11 = 0, 6x - y + 6z + 8 = 0.

Výsledek:
$$\cos \varphi = \frac{4}{21}$$
.

20. Příklad Jsou dány přímky p,q. Určete úhel, který svírají. p je dána parametrickými rovnicemi $x=3-t,y=4+2t,z=t,t\in\mathbb{R}$ a přímka q je dána jako průsečnice dvou rovin 2x-3y+z-1=0, 5x+2y-z-10=0.

$$V$$
ýsledek: $\cos \varphi = \frac{32}{\sqrt{6}\sqrt{411}} \doteq 0,6443$, tedy $\varphi \doteq 49^{\circ}52'$

- **21. Příklad** Určete průsečík přímky x = -1 + 2t, y = 2 + t, z = 1 t s rovinou 3x 2y + z 3 = 0. Výsledek: [5, 5, -2].
- **22. Příklad** Určete rovinu procházející přímkou $p: \frac{x-1}{3} = \frac{y-2}{7} = \frac{z+1}{2}$ rovnoběžně s přímkou $q: \frac{x+1}{2} = \frac{y-3}{5} = \frac{z-1}{1}$. Výsledek: 3x - y - z - 2 = 0.

23. Příklad Určete úhel přímky
$$\frac{x-1}{2} = \frac{y+1}{-2} = \frac{z+5}{-1}$$
 s rovinou $4x - y + z + 24 = 0$. Výsledek: 45° .

24. Příklad Určete rovnici kolmice z bodu A = [4, 1, 2] na přímku $\frac{x-1}{1} = \frac{y+1}{2} = \frac{z}{1}$.

Výsledek:
$$\frac{x-4}{3} = \frac{y-1}{-2} = \frac{z-2}{1}$$
.

25. Příklad Určete rovnici přímky procházející bodem [-6,3,4] rovnoběžně s přímkou x-2y-3z+7=0, 4x+5y-z-9=0.

Výsledek:
$$\frac{x+6}{17} = \frac{y-3}{-11} = \frac{z-4}{13}$$
.

26. Příklad Určete úhel přímek p a q, které jsou zadány obecnými rovnicemi takto: p: x-y-2z-1=0, x-y+z+1=0, q: 2x-y-z-1=0, 2x+y+z-1=0.

$$V$$
ýsledek: 60° .

27. Příklad Určete kolmý průmět bodu [8,2,1] do roviny 3x-4y+z+9=0.

$$V$$
ýsledek: $[5, 6, 0]$.

28. Příklad Určete kolmý průmět přímky a: 2x+2y-3z=0, x-3y-2z+5=0 do roviny $\beta: 3x + y + 2z + 3 = 0.$

 $V\acute{y}sledek$: Kolmým průmětem je přímka $m: \frac{x+1}{5} = \frac{y}{-17} = \frac{z}{1}$. Pozn.: Hledanou přímku m je také možno vyjádřit jako průsečnici zadané roviny β a roviny α , která obsahuje přímku a a je k rovině β kolmá. Potom m: 3x+y+2z+3=0, 5x+y-8z+5=0.

29. Příklad Určete obsah trojúhelníka ABC, kde A = [3, 3, 4], B = [3, 5, 4], C = [4, 5, 3].

Výsledek: $\sqrt{2}$.

30. Příklad Určete rovnici roviny procházející bodem [0,3,2] a přímkou x+y-z+1=0, x-2y-z+5=0.

Výsledek: 5x - y - 5z + 13 = 0.

31. Příklad Vypočtěte vzdálenost dvou rovnoběžných přímek p: x=2t-2, y=t+2, z=t+1a q: x = 2t - 2, y = t + 3, z = t + 2.

Výsledek: $\frac{2}{\sqrt{3}}$.

32. Příklad Určete vzdálenost bodu [2,3,5] od přímky $\frac{x-2}{9} = \frac{y+5}{5} = \frac{z-3}{1}$.

Výsledek: $\sqrt{\frac{5514}{107}}$.

33. Příklad Nalezněte rovnici roviny, která kolmo promítá zadanou přímku p: 7x - 2y + 5z - 10 = 0, 3x + y + 2z - 6 = 0 do souřadné roviny xy.

Výsledek: x + 9y - 10 = 0.

34. Příklad Napište parametrické rovnice i obecnou rovnici roviny xy.

Výsledek: Par. rovnice: x = u, y = v, z = 0, obec. rovnice: z = 0.

35. Příklad Počátkem souřadnic veďte rovinu rovnoběžně s různoběžkami $a: \frac{x}{2} = \frac{y}{3} = \frac{z-1}{z-1}$ a $b: \frac{x}{4} = \frac{y}{-8} = \frac{z-1}{12}$.

Výsledek: -x + y + z = 0.

36. Příklad Určete vzdálenost bodu [2, -1, 3] od přímky AB, kde A = [-1, -2, 1], B = [2, 2, 6].

Výsledek: $\frac{3}{10}\sqrt{38}$.

37. Příklad Určete rovnici přímky k, která prochází bodem A = [1, 2, 3] a je kolmá k přímce p dané parametricky $x=2+4t, y=-1+t, z=1+2t, t\in\mathbb{R}$. Přímky k a p jsou různoběžné.

Výsledek: Rovina α , která prochází bodem A kolmo k přímce p má rovnici $\alpha: 4x+y+2z-12=0$. Průsečík $P = p \cap \alpha$ vychází pro parametr $t = \frac{1}{7}$ a $P = \left[\frac{18}{7}, -\frac{6}{7}, \frac{9}{7}\right]$. Přímka k je dána bodem A a směrovým vektorem $AP = (\frac{11}{7}, -\frac{20}{7}, -\frac{12}{7})$. Přímka k má potom parametrické vyjádření $x = 1 + \frac{11}{7}t$, $y = 2 - \frac{20}{7}t$, $z=3-\frac{12}{7}t$, kde $t\in\mathbb{R}$. Pozn.: Směrový vektor přímky k je možno vynásobit například číslem 7 a pro parametrické vyjádření pak použít vektor s celočíselnými souřadnicemi.

38. Příklad Je dán čtyřstěn ABCD, kde A = [1, 2, 1], B = [0, 5, 7], C = [3, -1, -1], D = [0, 6, 5]. Určete průsečík výšky jehlanu, která prochází bodem D s podstavou ABC.

Výsledek: Výška v (pro $D \in v$) vychází $x = 12t, y = 6 + 10t, z = 5 - 3t, t \in \mathbb{R}$. Rovina podstavy ABC má rovnici $\alpha: 12x+10y-3z-29=0$. Pro hledaný průsečík P vychází parametr $t=-\frac{16}{253}$. $P = \left[-\frac{192}{253}, \frac{1358}{253}, \frac{1313}{253} \right].$