9 Fitness Selection and Population Management

Fitness Selection and Population Management

- in this set of slides we'll look at:
 - population management models
 - selection operators
 - preserving diversity

Recap: General Scheme of an EA

figure 3.2, Introduction to Evolutionary Computation

Population Management Models: Introduction

- two different population management models exist:
 - generational model
 - each individual survives for exactly one generation
 - the entire set of parents is replaced by the offspring

steady-state model

- only some members of the population survive between generations
- population has fixed size μ
- \bullet λ new offspring are generated every generation

generation gap

the proportion of the population replaced

Population Management Models: Fitness Based Competition

- selection can occur in two places:
 - parent selection: which members of current generation will take part in mating
 - survivor selection: which parents and offspring will go into the next generation
- selection operators work on the <u>whole individual</u>
- so they are independent of the chosen problem representation

Fitness Proportionate Selection

ullet probability for individual i to be selected for mating in a population size μ with FPS is

$$P_{FPS}(i) = f_i / \sum_{j=1}^{\mu} f_j$$
 概率 = individual fitness = 3, 和总体的fitness的占比 (3+4+5....)

- problems include:
 - premature convergence: one highly fit member can rapidly take over if rest of population is much less fit 大的fitter在前面,即使后面有好的也选不上了
 - there's a loss of selection pressure when fitnesses are similar, such as at the end of runs 如果分都差不多, 很难选
 - behaves differently if the fitness function is transposed 分变了, 不好选了
- scaling can be used to fix the last two problems, such as windowing

Fitness Proportionate Selection: Example

• suppose that f(A)=2, f(B)=3 and f(C)=5:

Individual	Fitness for f	Selection Probability for f	Fitness for f+10	Selection Probability for f+10	Fitness for f+100	Selection Probability for f+100	Fitness with Windowing	Selection Probability with Wind.
А	2	0.2	12	0.3	102	0.329	2-1=1	0.14
В	3	0.3	13	0.325	103	0.332	3-1=2	0.29
С	5	0.5	15	0.375	105	0.339	5-1=4	0.57
sum	10	1.0	40	1.0	310	1.0	7	1.0

- we can see that a transposed fitness function changes the selection pressure
- to a point where there's almost no difference between selection probabilities
- windowing can be use to scale the fitness and increase selection pressure:
 - $f'(i) = f(i) \beta_n$
 - where β_n is worst fitness seen in the last n generations
 - $(\beta_n = 1)$ in the example shown above

Rank-Based Selection

- attempt to remove problems of FPS by basing selection probabilities on relative rather than absolute fitness
- rank population of size µ according to fitness and then base selection probabilities on rank:
 - fittest has rank μ -1 and worst has rank 0
- this imposes a sorting overhead on the algorithm
- but this is usually negligible compared to the fitness evaluation time

Rank-Based Selection: Linear Ranking

$$P_{lin-rank}(i) = \frac{(2-s)}{\mu} + \frac{2i(s-1)}{\mu(\mu-1)}$$

- i is the rank
- parameterised by factor $s: 1 < s \le 2$
 - s measures advantage of best individual
- simple 3 member example:

Individual	Fitness	Selection Probability using FPS	Rank (by fitness)	Selection Probability using LR when s=2	Selection Probability using LR when s=1.5
А	2	0.2	0	0	0.167
В	3	0.3	1	0.33	0.33
С	5	0.5	2	0.67	0.5
sum	10	1.0	-	1.0	1.0

mu: size of the population

S: 随便选的

Linear Ranking example: s = 1.5, $\mu = 10$

$$P_{lin-rank}(i) = \frac{(2-s)}{\mu} + \frac{2i(s-1)}{\mu(\mu-1)}$$

- suppose population size $\mu = 10$
- let's take a middle value for s of 1.5
- note that the first term is always $(1/2) \div 10 = 1/20$
- (and we can rewrite this as 9/180 for reasons that will become apparent below)
- then for i = 0 (least fit member):

$$p = 9/180 + 0 = 9/180$$

• for i = 1:

$$p = 9/180 + 2 \times (1/2)/90 = 1/20 + 1/90$$

= $(9+2)/180 = 11/180$

• ...and so on

Individual	Rank (by fitness)	Selection Probability
А	0	9/180
В	1	11/180
С	2	13/180
D	3	15/180
Е	4	17/180
F	5	19/180
G	6	21/180
Н	7	23/180
I	8	25/180
J	9	27/180
	total:	180/180

So the probability of selection is linearly proportional to rank (which we knew it would be!), with the fittest member 3 times more likely to be selected than the least-fit member.

Linear Ranking example: s = 2, $\mu = 10$

$$P_{lin-rank}(i) = \frac{(2-s)}{\mu} + \frac{2i(s-1)}{\mu(\mu-1)}$$

- now let's go to the extremes of the values for s
- first, suppose that s = 2
- note that the first term is always $(2-2) \div 10 = 0$
- then for i = 0 (least fit member):

$$p = 0 + 0/90 = 0/90$$

• for i = 1:

$$p = 0 + 2/90 = 2/90$$

• ...and so on

Individual	Rank (by fitness)	Selection Probability	
А	0	0/90	
В	1	2/90	
С	2	4/90	
D	3	6/90	
Е	4	8/90	
F	5	10/90	
G	6	12/90	
Н	7	14/90	
I	8	16/90	
J	9	18/90	
	total:	90/90	

So the probability of selection is directly proportional to rank, and we see that the worst member can never be selected.

Linear Ranking example: $s = 1, \mu = 10$

$$P_{lin-rank}(i) = \frac{(2-s)}{\mu} + \frac{2i(s-1)}{\mu(\mu-1)}$$

- note that s is always strictly > 1
- let's see what would happen if we allowed s = 1
- then, for all members:

$$p = (2-1) \div 10 + (2i \times 0)/(90)$$
$$= 1/10 + 0 = 1/10$$

Individual	Rank (by fitness)	Selection Probability	
А	0	1/10	
В	1	1/10	
С	2	1/10	
D	3	1/10	
Е	4	1/10	
F	5	1/10	
G	6	1/10	
Н	7	1/10	
I	8	1/10	
J	9	1/10	
	total:	10/10	

So every member is equally likely to be chosen.

Exponential Ranking

$$P_{\text{exp-rank}}(i) = \frac{1 - e^{-i}}{c}$$

- parameter c is chosen to ensure that the selection probabilities sum to 1.0
- creates more emphasis on creating individuals with above average fitness:

Individual	Fitness	Selection Probability using FPS	Rank (by fitness)	Selection Probability using ER (c = 1.497)
А	2	0.2	0	0
В	3	0.3	1	0.422
С	5	0.5	2	0.578
sum	10	1.0	-	1.0

Roulette Wheel Algorithm

- the roulette wheel algorithm makes λ spins of the wheel
 - one spin for each new individual
- each spin there is one arm pointing to which individual is chosen
- example:

Individual	Fitness	Selection Probability	Cumulative Probability
1	1.0	0.07	0.07
2	2.0	0.13	0.20
3	3.0	0.20	0.40
4	4.0	0.27	0.67
5	5.0	0.33	1.00

Roulette Wheel Algorithm

```
BEGIN
  // Given the cumulative probability distribution a and
  // assuming we wish to select \lambda members of the mating pool
set current member = 1;
WHILE ( current member \leq \lambda ) DO
   Pick a random value r uniformly from [0,1];
   set i=1;
   WHILE( a_i < r ) DO // a_i is the cumulative probability value
      set i=i+1;
   OD
   set mating pool[current member] = parents[i];
   set current member = current member + 1;
OD
END
```

Roulette Wheel Algorithm

stochastic universal sampling (SUS):

- sometimes the roulette wheel algorithm does not give a good sample of the distribution
- so instead of choosing individuals by performing multiple spins...
- SUS uses λ equally-spaced arms and spins the wheel just once
- this brings the actual number of times each parent is chosen much closer to the expected value

 λ = number of children to be created (10 here)

Parent Selection: Tournament Selection

- all the previous methods above rely on global population statistics
- this could cause a bottleneck in computation
 - especially on parallel machines, or with a very large population
- they rely on the presence of an external fitness function which might not exist:
 - for example, evolving game players
- one idea for a procedure that only uses local fitness information:
 - pick k members at random then select the best of these
 - repeat to select more individuals

Parent Selection: Tournament Selection

- the probability of selecting individual i will depend on:
 - rank of i
 - size of sample k
 - higher k increases selection pressure
 - whether or not contestants are picked with replacement
 - picking without replacement increases selection pressure
 - whether or not the fittest contestant always wins (deterministic), or wins with probability p (stochastic)

Parent Selection: Tournament Selection

```
BEGIN
  // Assume we wish to select \lambda members of a pool of \mu
  // individuals
set current member = 1;
WHILE ( current member \leq \lambda ) DO
   Pick k individuals randomly, with or without replacement;
   Compare these k individuals and select the best of them;
   Denote this individual as i;
   set mating pool[current member] = i;
   set current member = current member + 1;
OD
END
```

Case Study: Iterated Prisoner's Dilemma

- iterated version: two players play a series of games against each other
- allows opportunity for evolution of strategies:
 - when to cooperate, when to defect, how to react
- easy to determine the fitness of individuals by playing them against each other
- and that's exactly what's been done many times!
- these links introduce the problem:
 - The Iterated Prisoner's Dilemma
 - Axelrod: The Evolution of Cooperation
- ...and there's lots more in the Resources section of Brightspace

Parent Selection: Uniform

- effectively no selection pressure at this stage
- leaves that job to the survivor selection strategy
- over-selection: a variant where the population is split into two groups based on fitness
 - top x% in first group
 - bottom 100-x% in second group
- more selections chosen from the first group than the second
- typically an 80/20 split

Survivor Selection

- this is managing the process of reducing the working memory of the EA from:
 - a set of μ parents and λ offspring
 - to
 - \bullet a set of μ individuals forming the next generation
- the parent selection mechanisms can also be used for selecting survivors
- survivor selection can be divided into two approaches:
 - age-based selection
 - fitness is not taken into account
 - in steady state GA can implement as 'delete-random' (not recommended) or as first-in-first-out (also known as 'delete-oldest')
 - fitness-based replacement

Fitness Based Replacement

elitism:

- always keep at least one copy of the fittest solution (or top % of solutions) so far
- widely used in both generational and steady state population models

GENITOR ('delete-worst'):

- from Whitley's original steady-state algorithm
- rapid takeover can lead to rapid convergence
 - so best used with a large population, or with a 'no duplicates' policy

Fitness Based Replacement

round-robin tournament:

- μ parents, λ offspring
- pairwise competitions in round-robin format:
 - every pair of individuals compared to each other
 - count number of 'wins' for each individual
 - µ individuals with most wins selected to form the new population

Fitness Based Replacement

(μ, λ) -selection

- based on the set of children only $(\lambda > \mu)$
- choose best μ

$(\mu + \lambda)$ -selection

- based on the set of parents and children
- choose best μ
- often (μ, λ) -selection is preferred because:
 - better ability to escape local optima
 - better ability to follow moving optima
 - when using the $(\mu + \lambda)$ strategy, bad σ values can survive in <x, $\sigma>$ for too long if their host x is very fit
- $\lambda = 3.\mu$ is usually good setting

Selection Pressure

- takeover time T* is a measure to quantify the selection pressure
- the number of generations it takes until the application of selection completely fills the population with copies of the best individual
- for fitness proportional selection in a genetic algorithm the takeover time is $\lambda \ln(\lambda)$

Multimodality

 most interesting problems have more than one locally optimal solution:

Multimodality: Genetic Drift

- finite population with global mixing and selection eventually convergence around one optimum
- why?
- often might want to identify several possible peaks
 - perhaps to make it easier to adapt the solution to other problems
- sub-optimum can be more attractive
 - perhaps aesthetically

Approaches for Preserving Diversity: Introduction

explicit vs implicit:

- implicit approaches:
 - impose an equivalent of geographical separation
 - impose an equivalent of speciation
- explicit approaches:
 - make similar individuals compete for resources (fitness)
 - make similar individuals compete with each other for survival

Approaches for Preserving Diversity: Introduction

different spaces:

- genotype space
 - set of representable solutions
 - 'decision space'
- phenotype space
 - the end result
 - neighbourhood structure may bear little relation with genotype space
 - 'solution space'
- algorithmic space
 - equivalent of the geographical space on which life on earth has evolved
 - structuring the population of candidate solutions
 - such as splitting a population over a number of different processors or cores
- any technique that maintains diversity in the population based on the measure of some 'distance' between the population members is called a niching technique

Explicit Approaches for Preserving Diversity: Fitness Sharing

(Goldberg & Richardson)

- a type of niching where the fitness of each individual is scaled based on its proximity to others
- so good solutions in densely populated regions are given a lower fitness value than comparably good solutions in sparsely populated regions
- which lowers their chances of selection
- and therefore increases the chances of maintaining a population of solutions occupying several niches

Explicit Approaches for Preserving Diversity: Fitness Sharing

- the distance between individuals can be calculated in several ways, based either on values in:
 - genotype space
 - usually Hamming distance
 - phenotype space
 - usually Euclidian distance
 - or both

Fitness Sharing: Pseudocode

```
define:
minimum distance:
   - a measure of niche size
   -any solution j closer to current solution i than minimum distance will
    share fitness
shareParameter:
   - a parameter that determines how much influence sharing has on the
fitness
     value
for each individual i in the population:
   denominator = 1
   for each individual j in the population:
      calculate the distance between i and j
      if distance < minimum_distance: // if share the same niche
         denominator = denominator + (1 - distance/share parameter)
   fitness[i] = fitness[i]/denominator
```

Explicit Approaches for Preserving Diversity: Crowding

(de Jong)

- attempts to distribute individuals evenly amongst niches
- ensures that new individuals replace similar members of the population
- so offspring replace the parents that they are most similar to

Explicit Approaches for Preserving Diversity: Crowding

deterministic crowding (Mahfoud):

- I. parent population is randomly paired
- 2. each pair produces two offspring via recombination
- 3. offspring are mutated and evaluated
- 4. pairwise distances between parents and offspring are calculated
- 5. each offspring competes for survivial against one parent for survival, using the parent-offspring pairings that minimize the overall distances between each pair:

```
d(p_1,o_1) + d(p_2,o_2) < d(p_1,o_2) + d(p_2,o_1)
```

Explicit Approaches for Preserving Diversity: Crowding or Fitness sharing?

An Aside: Maintaining Population Diversity for Multi-objective Problems

'pareto fronts' with (a) and without (b) fitness sharing

Implicit Approaches for Preserving Diversity: Automatic Speciation

use mating restrictions:

- either only mate with genotypically / phenotypically similar members
 - or
- add tags to problem representation
 - extra genes (one per genotype) that acts as a label for which species the genotype belongs to
 - initially randomly set
 - subject to recombination and mutation
 - when selecting partner for recombination, only pick members with a good match

Implicit Approaches for Preserving Diversity: Island Model: Parallel EAs

periodic migration of individual solutions between populations

Implicit Approaches for Preserving Diversity: Island Model: Parallel EAs

- run multiple populations in parallel
- after a (usually fixed) number of generations an epoch - exchange individuals with neighbours
- repeat until ending criteria met
- partially inspired by parallel/clustered systems

Island Model: Parameters

- how often should individuals be exchanged between populations?
 - too quick and all sub-populations converge to same solution
 - too slow and waste time
 - most authors use range of 25 to 150 generations
 - can do it adaptively:
 - stop each pop when no improvement for (say) 25 generations
- how many and which individuals should be exchanged?
 - usually around 2 to 5, but depends on population size
 - copied vs moved
 - Martin et al found that better to exchange randomly selected individuals than best
- can have a flexible approach: operators can differ between the sub-populations

Implicit Approaches for Preserving Diversity: Cellular EAs

impose spatial structure - usually a grid

Implicit Approaches for Preserving Diversity: Cellular EAs

- selection and replacement take place using the concept of neighbourhoods
- the use of neighbourhoods for parent and survivor selection leads to different parts of grid searching different parts of space
- while, because neighbourhoods overlap, good solutions diffuse across grid over a number of generations

Implicit Approaches for Preserving Diversity: Cellular EAs

example of use:

- equivalent of 1 generation is:
 - pick individual in population at random
 - pick one of its neighbours using roulette wheel
 - crossover to produce 1 child, and mutate
 - replace individual with child if fitter
 - circle through population until done

Reading & References

- slides based on and adapted from, Chapter 5 (and slides)
 of Eiben & Smith's Introduction to Evolutionary Computing
- see the Resources section of Brightspace for wider reading
- E. Alba and B. Dorronsoro. Cellular Genetic Algorithms. Computational Intelligence and Complexity. Springer, 2008.
- G. Luque and E. Alba. Parallel Genetic Algorithms, volume 367 of Studies in Computational Intelligence. Springer, 2011.