(19) World Intellectual Property Organization International Bureau

16 MAR 2005

(43) International Publication Date 25 March 2004 (25.03.2004)

PCT

(10) International Publication Number WO 2004/024292 A2

(51) International Patent Classification7:

B01D 39/00

(21) International Application Number:

PCT/IB2003/004543

(22) International Filing Date:

8 September 2003 (08.09.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/411,006 16 September 2002 (16.09.2002) US 60/434,526 19 December 2002 (19.12.2002) US 60/458,800 28 March 2003 (28.03.2003) US

(71) Applicant (for all designated States except US): TRIOSYN HOLDING, INC. [CA/CA], 14163 La-Belle Blvd., Mirabel, Quebec J7J 1M3 (CA).

- (72) Inventor; and
- (75) Inventor/Applicant (for US only): MESSIER, Pierre [CA/CA]; Mirabel, Quebec J7J 1M3 (CA).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

BEST AVAILABLE COPY

(54) Title: FACEMASK WITH FILTERING CLOSURE

(57) Abstract: There is provided a protective media and a method of manufacturing the same. In one aspect, the protective media includes a porous dielectric carrier, an active agent incorporated in the porous dielectric carrier, and an electrostatic charge across at least a portion of the porous dielectric carrier. This innovative media is capable of eradicating microorganisms and/or toxins more efficiently than prior art solutions and can also self sterilize.

/024292 A

WO 2004/0

	•		
1		TITI	Æ

2 Facemask with filtering closure

3

- 4 CROSS-REFERENCE TO RELATED APPLICATIONS
- 5 This application claims the benefit of priority to US Provisional Application Nos.
- 6 60/411,006, 60/434,526 and 60/458,800, filed on September 16, 2002, December 19,
- 7 2002 and March 28, 2003, respectively, the contents of each are hereby incorporated by
- 8 reference herein in the entirety.

9

- 10 STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR
- 11 DEVELOPMENT
- 12 Not applicable.

13

- 14 REFERENCES TO SEQUENCE LISTING, TABLES OR COMPUTER PROGRAM
- 15 LISTING APPENDIX ON COMPACT DISK
- 16 Not applicable.

17

- 18 FIELD OF THE INVENTION
- 19 The present invention relates to facemasks and more particularly to a facemask with a
- 20 filtering closure.

21

22 BACKGROUND OF THE INVENTION

.1 Electrostatically charged filters are known to be used in facemasks. One of the problems facing present face masks is well known and represents a limitation that the industry has 2 3 been trying to address. The problem resides in the fact that from one morphological 4 physical structure of a human being or structure to the next the differences generate such 5 a wide spectrum of geometrical deviations that it has been difficult to create a 100% 6 airtight seal. For a facemask the difficulty in creating a seal occurs between the skin and 7 the mask for a range of face sizes and shapes. Various different technological means 8 have been tried, for example using, adhesive seals, flat and wide seals and resilient 9 material seals. The industry has oriented its work on creating an airtight seal, however, 10 the pressure differential generated actually forces air in the gaps between seal and skin 11 thus bypassing the air filter material. The electrostatic filter of the present invention may 12 be made of a spongy or other breathable nonwoven material so as to minimize the 13 pressure differential, thus preventing air from being forced through the gaps. Further, it effectively makes the gasket used to create a closure between the user and the facemask 14 out of a thin filter having a low-pressure drop like the electrostatic filter and having the 15 16 added benefit of the active agent incorporated thereon. 17 18 Given the shortcomings of the prior art, it is advantageous to have an electret, which has 19 improved characteristics over known solutions. The present innovation comprises a 20 substrate that supports an active agent and is a dielectric. 21

2

22

SUMMARY OF THE INVENTION

The present invention overcomes the aforementioned problems of the prior art. For 1 2 example and in accordance with one aspect of the present invention there is provided a combination comprising: a facemask having a periphery designed to abut a persons face 3 and a tri-dimensional breathable material; said tri-dimensional breathable material 4 attached to said periphery of said facemask to form a filtering closure and also may 5 6 include an electrostatic charge thereacross. 7 In accordance with a further aspect of the present invention said tri-dimensional 8 breathable material may include an active agent incorporated therein. 9 10 In accordance with another aspect of the present invention said tri-dimensional breathable 11 12 material comprises a porous dielectric carrier. 13 In accordance with a further aspect of the present invention, there is provided an 14 electrostatically charged non-woven media that has active agents incorporated therein. 15 This innovative media is capable of eradicating microorganisms and/or toxins more 16 efficiently than prior art solutions and can also self-sterilize. 17 18 The present invention additionally provides for methods of making the electrostatically 19 20 charged filter media having an active agent incorporated therein. The substrate may be manufactured according to various methods; the active agent may be incorporated 21 according to various methods; and the electrostatic charge may be provided according to 22

various methods, all of which are described herein or are known in the art.

1	•
2	Because substantially less active agent is used for each filter costs are reduced while
3	maintaining effectiveness. Additionally, the enhanced electrostatic filter of the present
4	invention provides added performance of the active agent and electrostatic properties.
5	•
6	In addition to the above aspects of the present invention, additional aspects, features and
7	advantages will become better understood with regard to the following description in
8	connection with the accompanying drawings.
9	
10	BRIEF DESCRIPTION OF THE DRAWINGS
11	Figure 1 depicts aspects of an exemplary embodiment of the present invention in
12	accordance with the teachings presented herein.
13	
14	Figures 2 and 3 depict exemplary embodiments of electrostatically charged substrates.
15	
16	Figure 4 depicts an exemplary embodiment for providing a nonwoven media with an
17	active agent incorporated thereon.
18	
19	Figure 5 depicts alternative views of an exemplary embodiment of a face mask in
20	accordance with the present invention.
21	
22	Figure 6 depicts an aspect of the exemplary embodiment of Figure 5.
23	

1	DETAILED	DESCRIPTION OF THE INVENTION
---	----------	------------------------------

- 2 The following sections describe exemplary embodiments of the present invention. It
- 3 should be apparent to those skilled in the art that the described embodiments of the
- 4 present invention provided herein are illustrative only and not limiting, having been
- 5 presented by way of example only. All features disclosed in this description may be
- 6 replaced by alternative features serving the same or similar purpose, unless expressly
- 5 stated otherwise. Therefore, numerous other embodiments of the modifications thereof
- 8 are contemplated as falling within the scope of the present invention as defined herein
- 9 and equivalents thereto.

11 The present invention provides an electrostatically charged filter media comprising a

- substrate with an active agent incorporated therein.
- 14 <u>Filter Media</u>

10

13

17

- 15 The filter media of the present invention includes (1) a substrate, (2) an active agent
- incorporated therein and (3) an electrostatic charge.
- 18 Substrate
- 19 The substrate comprises any material having dielectric properties or capable of being
- 20 enhanced to have dielectric properties and which is capable of having an active agent
- 21 incorporated therein.

In a particular embodiment, the substrate may be a fiber based material having a fibrous 1 matrix structure; it may be a sponge like material have an open cell matrix structure; it 2 3 may be flexible or inflexible; etc. 4 5 As stated above, in one embodiment, the substrate is a nonwoven fabric. Nonwoven is a type of fabric that is bonded together rather than being spun and woven into a cloth. It 6 may be a manufactured sheet, mat, web or batt of directionally or randomly oriented 7 fibers bonded by friction or adhesion; it may take the form of a type of fabric. Figure 1 is 8 9 provided as an exemplary embodiment of a nonwoven fabric. 10 In another embodiment, the substrate may be a nonwoven textile of varying fluffiness, 11 comprising polymer fiber. The polymer may be for example, nylon, polyethylene, 12 polypropylene, polyester, etc. or any other polymer suitable for a filter substrate. 13 Additionally, the substrate can be made of materials other than polymer fiber. 14 15 The nonwoven material may be of a type suitable for a high efficiency particulate air 16 filter (i.e. a HEPA filter). A suitable nonwoven material may be obtained from Technol 17 Aix en Provence Cedex 03 France (see Canadian patent no. 1,243,801); another suitable 18 material may also be obtained from Minnesota Mining & Manufacturing Co. (3M). The 19 nonwoven material has a three dimensional structure which should be configured in such 20 a fashion as to provide a matrix capable to entrap (i.e. physically) the desired active 21 agent. For example if the nonwoven material is based on fibers, the structural fibers of 22

the nonwoven material may be present and distributed in such a fashion as to provide a

1 fibrous matrix structure able to entrap the desired active agent. The nonwoven material

2 may have a microstructure. In a particular embodiment, the active agent has a size

appropriate to be entrapped by the three dimensional (e.g. web) matrix structure of the

4 desired nonwoven material.

5

8

9

10

11

12

13

3

6 Alternative substrates may further include glass fibers and fibers, such as cellulose, that

7 are ultimately formed into a paper-based filter media. Any substrate capable of acting as

carrier for the active agent and having dielectric properties or capable of having dielectric

properties imparted to it, would be a suitable substrate for the present invention. When

substrates that do not have strong dielectric properties are used, such as glass fibers,

additives may be provided to improve the dielectric properties of the substrate. The

present invention is not limited to a nonwoven material. Other suitable substrates may

include spongy materials or foam.

14

15

17

18

19

20

21

22

Active Agent

16 The active agent of the present invention may be, for example, an antimicrobial, an

antitoxin, or the like. The antimicrobial may be biostatic and/or biocidal. Biostatic is a

material that inhibits the growth of all or some of bacteria spores, viruses, fungi, etc.

(having bioactive particles), and a biocidal is a material that kills all or some of bacteria

spores, viruses, fungi, etc. Preferably, the biocidal comprises the iodinated resin

particles, such as those described above in the '452 patent, as described above. Other

suitable active agents include silver, copper, zeolyte with an antimicrobial attached

23 thereto, halogenated resins, and agents capable of devitalizing/deactivating

- 1 microorganisms/toxins that are known in the art, including for example activated carbon,
- 2 other metals and other chemical compounds. For example, a non-exhaustive list of
- 3 suitable metals and/or chemical compounds is as follows:

4

- 5 Exemplary Metals
- 6 Aluminum
- 7 Barium
- 8 Boron
- 9 Calcium
- 10 Chromium
- 11 Copper
- 12 Iron
- 13 Magnesium
- 14 Manganese
- 15 Molybdenum
- 16 Nickel
- 17 Lead
- 18 Potassium
- 19 Silicon
- 20 Sodium
- 21 Strontium
- 22 Zinc

1	Exemplary Chemical Compounds
2	N-methyl piperazine
3	Potassium Hydroxide
4	Zinc Chloride
5	Calcium chloride
6	Mixture of Sodium carbonate and sodium bicarbonate
7	
8	Reference in the specification to antimicrobial is used for ease of reading and is not
9	meant to be limiting.
10	
11	Electrostatic Charge
12	The filter media with an active agent incorporated thereon is also electrostatically
13	charged. Accordingly, there is a potential across the surface(s) of the media creating a
14	field wherein the field can attract and/or repel charged particles introduced to the media
15	so that in some instances it alters the path of travel of the charged particles.
16	
17	Figures 2 - 3 provide exemplary representations of electrostatically charged media.
18	Electrostatically charged filter media of the present invention may, for example, be single
19	or multi-layered. Each layer may be individually charged. A single layered media can
20	have a positive charge on one side and a negative charge on the other. An example of a
21	multi-layered media is a double-layered media. Preferably, a double layered media is

charged on one side and negatively charge on the other side, wherein the two layers are

used wherein the double-layered media comprises two layers, each being positively

22

1 separated by an airspace and the two layers are oriented so that the negative side of one of the two layers is closest to the positive side of the other layer. In this two-layer 2 embodiment, the air space increases the net dielectric constant of the electrostatically 3 4 charged filter media. 5 Preferably, a high dielectric constant is provided to maintain the charge for an extended 6 7 period of time. For example, air provides a good dielectric constant, as can be employed 8 in an airspace as described above. Thus, the present invention may be effective even 9 when wet or in a humid environment. 10 11 The resulting media is an insulating carrier with an active agent adhered thereto or impregnated therein and having an electrostatic charge. The media according to the 12 13 present invention can be produced of different thickness, density and pressure drop. The media described herein can be used in, for example: clothing, wound dressings, air filters, 14 15 shelters, liners and generally, any filter material. 16 17 Method Of Manufacturing 18 The present invention additionally provides for a method of manufacturing the 19 electrostatically charged filter media having an active agent incorporated thereon. The 20 substrate itself may be manufactured according to various known methods, such as melt

22

21

blown, spun blown, air laid, carted, etc.

Method of Incorporating the Active Agent

Prior art incorporation methods using polypropylene require the use of polyethylene to
maintain a tackiness to the fibers to hold the solid particulate for a longer amount of time
to prevent the particulate from falling off the fibers. In the present invention, the active
agent, such as the iodinated resin disclosed in the '452 patent, may be physically
entrapped in the fibers. Thus, the active agent does not have to adhere to the fibers to be
incorporated into the media.

In the present invention, the active agent may be incorporated to the substrate according to various methods. For example, liquid emulsification of the active agent in the melt at increased temperature and increased pressure for mix and melt processes, or incorporation by spraying the active agent after extrusion of non-woven fibers during processing.

In a preferred embodiment, as shown in Figure 4, polymer granules, such as polypropylene granules, are extruded through an extruder; the extruded fibers being of varying thickness and length. As the fibers are extruded they fall toward a collecting web. A desired active agent is provided in a cloud at a location closest to the extrusion point of the resulting fibers. The cloud envelops the cooling fibers while the fibers are still in a quasi-liquid quasi-solid state. In one embodiment, the active agent particulate may range from 0.2 microns to 0.5 millimeters. However, one of ordinary skill in the art can apply active agents with smaller and bigger particulates size. The active agent particulate settles and collects so that it is intermeshed or entrapped with the fibers on the

- 1 collecting web. After the fibers with the active agent incorporated thereon falls to the
- 2 collecting web, the resulting media is formed into a mesh by known methods.
- Additionally, the cloud may be in various physical states including a vapor, fine dry dust,
- 4 or atomized or aerosolized particulate. Advantageously, cloud incorporation may occur
- 5 at room temperature with particulate also at room temperature. Further, the thickness,
- 6 length and pressure define the mechanical properties of the resulting media.

8 A suitable melt blown system for the above embodiment is the Accuweb provided by

9 Accurate Products Co. of Hillside, NJ.

7

10

14

15

16

18

19

21

22

23

Various other methods of incorporating an active agent to a filter media are suitable for the present invention. First, for example, using the method disclosed in published U.S

patent application number 20010045398 A1. Second, soaking a bail of hair-like extruded

fibers in an active agent (and using alcohol to achieve the soak) and then creating the felt

using pressure and temperature. Third, taking solid polymer granules manufactured with

an active agent mixed in an extruder hopper to create a mixture that is then extruded into

17 fine hair-like bails. Felt is then formed through a temperature and pressure process.

Fourth, extruding a substrate, such as a polymer in to a hair-like substance on to which an

active agent is sprayed in solid after the extrusion. The active agent may be vaporized

20 like an aerosol. Fifth, the active agent can be injected or sprayed into non-woven fabric

as the fabric is being pressurized. Sixth, carting bails of filament and mixing the

resulting media with the active agent to generate a sheet having the active agent

incorporated therein. Seventh, depositing the active agent on a non-woven media and

1

thereafter needle-punching the media to impregnate the active agent through and through 2 the media. Other methods may be used. 3 In another embodiment of the present invention, polymer granules are placed in a hopper 4 of an extruder with active agent in dust form prior to extrusion. Thus, the active agent is 5 6 mixed in the hopper prior to the melt. The two components are mixed, heated and then extruded to form a thin "hair" fiber used to make a felt. The resulting hair in the above 7 8 embodiments having the active agent incorporated thereto is a bail-like wool. The 9 substrate could be transparent depending on the polymer used. Additionally, a resulting polymer fiber having the active agent incorporated thereto can be treated with water, 10 pressurized and then heated to form a felt. In other embodiments, the resulting polymer 11 fiber having the active agent incorporated thereto can an be air laid, vacuum laid, water 12 laid, etc. 13 14 Although not specifically described herein, other conventional or known methods that 15 achieve incorporation of an active agent to a substrate are suitable for the present 16 17 invention. Thus, at this point the substrate has an active agent incorporated therein. 18 19 Method of Electrostatically Charging The substrate having an active agent incorporated therein is provided with an electrostatic 20

charge. The charge may be induced by using a corona, needle punching, chemical

1 enhancement, any other known charge inducing system or method, or a combination of

2 any of the foregoing. Needle punching creates high-level friction thus adding a charge.

4 In a particular embodiment, to make the electrostatically charged non-woven fabric the

formed media, such as felt, is placed into a corona system of about 25Kv, slow pass, until

fully charged. The resulting material holds its charge for between about 6 months to 2

years.

Operation Of An Electrostatic Filter Media

In operation, a contaminated air or fluid stream is introduced to a filter employing the electrostatically charged filter media of the present invention. The air/fluid stream may be forced or drawn through the filter media by means of a pressure gradient. The stream may contain contaminant particles of various sizes to be removed or treated by the filter element. As the stream approaches the filter media, it is directed through the filter media such that the contaminate particles are brought into contact with the filter media and removed from the stream or treated by the active agent as describe elsewhere in this application. This is achieved through the properties of the filter, which causes the particles to follow a convoluted pathway through the filter element, thus increasing the time that the contaminant is in contact with the active agent. This increased contact time increases the effectiveness of the active agent in treating the particles in the stream.

The convoluted path that the particles follow is the result of the added electrostatic properties and the nonwoven properties of the substrate of the filter element. With

1 respect to the electrostatic properties of the filter element, the convoluted pathway of the contaminant particles may be attributed to the particles polar nature. Polar molecules are 2 neutrally charged and are also large in size. Because of the large size, the contaminants 3 4 have a magnetic moment, which when subjected to an electric field causes the 5 contaminant particle to be diverted from its pathway. 6 Additionally, the convoluted path of the contaminant particles is attributable to the 7 nonwoven properties of the filter substrate. This is achieved because the nonwoven 8 substrate had no direct and continuous pathway for the stream to pass through. Instead, 9 10 due to the nonwoven properties, the substrate is made up of a porous material wherein no single pores of the material forms a continuous pathway through the substrate. 11 Therefore, the stream and the particles carried by the stream are continuously diverted 12 13 through the substrate. Accordingly, the travel time through the filter is lengthened and 14 the exposure to the active agent is increased. 15 16 Additional Uses The present invention can also be used in a manner consistent with existing nonwoven 17 fabrics. Uses in various goods include both durable and disposable goods. For example, 18 nonwovens can be used products such as diapers, feminine hygiene, adult incontinence, 19 wipes, bed linings, automotive products, face masks, air filtration, water filtration, 20 biological fluids filtration, home furnishings and geotextiles. The media described 21

herein can also be used in, for example: clothing, wound dressing, air filter, shelters, and

1 liners. Additional uses include those known in the art for electrostatic filters and

2 antimicrobial or antitoxin filters.

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

In a particular embodiment, the filter media according to the present invention with or without the active agent can be used as a closure or to make a filter closure for air filters for products such as facemasks and HVAC. See Figure 5. According to the present invention there is provided a closure material made of substrate having electrostatic properties and an electrostatic material with an active agent incorporated therein, where the material is a high loft (in one embodiment, approximately, 1" thick) breathable material of a tri-dimensional structure and is placed around the mask or air filter in order to not create a so-called airtight junction but instead creates a breathable closure that actually covers all the contours of the different geometrical surface to provided a permeable closure, having filtering properties. This approach makes the closure into a filter whereby air that bypasses the mask through gaps caused by a non-perfect fit, still passes through the closure and is filtered. In addition, contrary to a "resilient" closure the pressure differential that is detrimental in an airtight approach is reversed in our approach since the air following the path of least resistance will pass through the filter material of the mask instead. This method of closing a facemask or other filter type could also be achieved with a substitution of the non-woven filter element with a breathable foam having the same properties. See Figures 5 and 6, label A. Thus, while prior art facemask attempt to block air flow at the closure, the facemasks of the present invention acts as a gasket that allows air there through and kills the spores, virus, bacteria, fungi, etc. traveling through the airstream with an effective active agent, such as the iodinated resin

disclosed in the '452 patent, described above. Additionally, the use of straps to hold the 1 mask in place compresses the gasket of the present invention to fit essentially all faces. 2 3 4 **Experimental Data** Experimental tests were performed comparing a particular embodiment of the filter 5 media of the present invention to an existing electrostatic filter. Each test was run in the 6 7 same environment to treat air with a different contaminant. The experimental data provided was collected during these tests. In each of the tests a contaminant was 8 9 introduced into a chamber in a controlled amount and fed into four lines. Two of the 10 lines included a filter according to the present invention comprising an electrostatically charged filter with an iodinated resin according the the '452 patent incorporated thereto. 11 The third line included an electrostatically charged filter, known as Transweb. This filter 12 does not have antimicrobial properties or any other type of active agent incorporated 13 14 thereto. And a fourth line was provided as a control, having no filter and was used to confirm that the amount of contaminant entering the control chamber was equivalent to 15 16 the amount of contaminant exiting the control chamber. 17 Exhibit A sets forth experimental data illustrating certain features of exemplary 18 19 embodiments of the present invention. Experiment No. AF276, describes the 20 performance of different filtration membranes against BG spores for 30, 60, 120, 180, 21 240, 300, and 360 minutes of filtration. BG spores must be present in amounts of about

8,000 to 30,000 spores to cause illness in the average human. As can be seen in Exhibit

A, for each of the 30, 60, 120, 180, 240, 300 and 360-minute tests, the filter of the present 1 invention achieved a 100% reduction of BG spores from the airstream. 2 3 As can be seen in Exhibit A, the electrostatic filter of the present invention achieves the 4 essentially the same or similar net effect as the Transweb in these tests. However, an 5 important advantage provided is that the present invention sterilizes the spores rather than 6 just holding the spores to the filter. Thus, unlike the present invention, if the Transweb is 7 handled by a user or is contacted by the skin, contamination will occur. The present 8 9 invention maintains the hygiene of the filter. 10 Turning now to Exhibit B, the results of Experiment AF270 there is shown test results for 11 the performance of different filtration membranes against MS2 viruses for 30, 60, 120, 12 180, 240 300, and 360 minutes of filtration. Virus amounts ranging from 1 to 1000 13 viruses will cause illness in the average human. Thus, the presence of even one virus can 14 15 cause illness in a human. As can be seen in Exhibit B, for each of the 30, 60, 120, 180, 240, 300 and 360-minute tests, the filter of the present invention achieved a 100% 16 reduction of MS2 viruses from the airstream. However, the Transweb does not achieve a 17 100% reduction in MS2 viruses and allows between 1000 to 10000 viral units to be found 18 in the effluent air stream. Use of Transweb to air contaminated with MS2 viruses would 19 not achieve desired results. Thus, as can be seen in Exhibit B, in addition to the benefits 20

of sterilization properties described above with respect to Exhibit A, the present invention

protects more effectively over viruses such as MS2 over time. Because only a small

21

1	amount of viruses contaminate a human (1 to 1000 viruses), unlike the present invention,
2	Transweb does not effectively protect a user from these viruses.
3	
4	CONCLUSION
5	Having now described one or more exemplary embodiments of the invention, it should b
6	apparent to those skilled in the art that the foregoing is illustrative only and not limiting,
.7	having been presented by way of example only. All the features disclosed in this
8	specification (including any accompanying claims, abstract, and drawings) may be
9	replaced by alternative features serving the same purpose, and equivalents or similar
10	purpose, unless expressly stated otherwise. Therefore, numerous other embodiments of
11	the additions and modifications thereof are contemplated as falling within the scope of
12	the present invention as defined by the appended claims and equivalents thereto.
13	

-30

1	CLA	MS ·
2		
. 3	What	is claimed is:
4		
5	1.	A combination comprising:
6		a facemask having a periphery designed to abut a persons face and
7		a tri-dimensional breathable material having an electrostatic charge thereacross;
8		said tri-dimensional breathable material attached to said periphery of said
9		facemask to form a filtering closure.
10		
11	2.	The combination as in claim 1 wherein said tri-dimensional breathable material
12		includes an active agent incorporated therein.
13		
14	3.	The combination as in claim 1 wherein said tri-dimensional breathable material
15		comprises a porous dielectric carrier.
16		·
17	4.	The combination as in claim 3 wherein said porous dielectric carrier is a non-
18		woven material.
19		
20	5.	The combination as in claim 3 wherein said porous dielectric carrier is a fiber
21		based material having a fibrous matrix structure.
22 .		

1	6.	The combination as in claim 3 wherein said porous dielectric carrier is a sponge
2		like material have an open cell matrix structure.
3		·
4	7.	The combination as in claim 2 wherein said active agent is chosen from the group
5		consisting of metals and chemical compounds.
6		
7	, 8.	The combination as in claim 2 wherein said active agent is an iodinated resin.
8		
9	9.	A combination comprising:
10		a facemask having a periphery designed to abut a persons face and
11		a tri-dimensional breathable material an active agent incorporated therein; said tri-
12		dimensional breathable material attached to said periphery of said facemask to
13		form a filtering closure.
14		
15	10.	. The combination as in claim 9 wherein said tri-dimensional breathable material
16		includes an electrostatic charge thereacross.
17		
18	11.	. The combination as in claim 9 wherein said tri-dimensional breathable material
19		comprises a porous dielectric carrier.
20		•
21	12.	The combination as in claim 11 wherein said porous dielectric carrier is a non-
22		woven material.

1	13. The combination as in claim 11 wherein said porous dielectric carrier is a fiber
2	based material having a fibrous matrix structure.
3	
4	14. The combination as in claim 11 wherein said porous dielectric carrier is a sponge
5	like material have an open cell matrix structure.
6	
7	15. The combination as in claim 10 wherein said active agent is chosen from the
8	group consisting of metals and chemical compounds.
9	
10	16. The combination as in claim 10 wherein said active agent is an iodinated resin.
11 12	

PCT/IB2003/004543 10/528006

FIGURE 1

SINGLE MEDIA

FIGURE 2

 $I_{ij}^{(i)}$

DOUBLE LAYER MEDIA

FIGURE 3

WO 2004/024292 PCT/IB2003/004543 10/528 006

FIGURE 4

10/528006

FIGURE 5

FIGURE 6

EXHIBIT A

Experiment No AF276: Biocidal air filtration membrane project: Performance of different filtration membrane against BG spores for 30, 60, 120, 180, 240, 300 and 360 minutes of filtration

			BG				BG
			30 min				60 min
			7.5 LPM		;		7.5 LPM
	D,	CFU total	% Reduction		D.	CFU total	% Reduction
2M03-01-75C+	19.5	0.00E+00	100.00000%	2M03-01-75C+	21.0	0.00E+00	100.0000%
2M03-01-75C+	21.5	0.00E+00	100.00000%	ZM03-01-75C+	20.5	0.00E+00	100.0000%
Transweb	17.5	1.75E+01	99.99471%	Transweb	20.0	0.00E+00	100.0000%
ţ.	21.5	3.31E+05	0.00000%	+0	18.5	1.49E+06	0.0000%
			BG	•			BG
			120 min				180 min
			7.5 LPM				7.5 LPM
	סר	CFU total	% Reduction		. טר	CFU total	% Reduction
2M03-01-75C+	12.5	0.00E+00	100.0000%	2M03-01-75C+	16.0	3.20E+01	99.99924%
2M03-01-75C+	19.0	0.00E+00	100.0000%	2M03-01-75C+	17.0	0.00E+00	100.0000%
Fransweb	6.5	1.30E+01	99.99496%	Transweb	15.0	0.00E+00	100.0000%
C+	16.0	2.58E+05	0.00000%	C+	18.5	4.20E+06	0.0000%
			BG				BG
			240 min 7.5 LPM				300 min 7.5 LPM
	٥٢	CFU total	% Reduction		Ы	CFU total	% Reduction
2M03-01-75C+	19.0	0.00E+00	100:0000%	2M03-01-75C+	13.5	2.70E+01	99.99884%
2M03-01-75C+	16.0	0.00E+00	100.00000%	2M03-01-75C+	16.0	0.00E+00	100.0000%
Transweb	11.0	0.00E+00	100.00000%	Transweb	9.0	0.00E+00	100.0000%
ţ	13.0	4.21E+06	0.00000	ţ	9.0	2.32E+06	0.00000

EXHIBIT A

Experiment No AF276: Biocidal air filtration membrane project: Performance of different filtration membrane against BG spores for 30, 60, 120, 180, 240, 300 and 360 minutes of filtration

			ВС
	•		360 min
			7.5 LPM
	. סר	CFU total	% Reduction
103-01-75C+	9.0	0.00E+00	100.00000%
103-01-75C+	16.0	4.80E+01	99.99923%
answeb	14.0	0.00E+00	100.0000%
	11.0	6.20E+06	0.00000%

Challenge microorganism: BG
Challenge microorganism: BG
duction
00000%
Aerosol generated by:
Nepre-vaporisation: 30 min
Air flow velocity: 7.5 LPM
Nebulizer air flow: 40 PSI
Filtration time: 30 minutes

Collection fluid: 5 ml of PBS with 0.001% antifoam A

Sampling on TSA

6 Jets Modified Collision

Nebulizer

75C+ Non-woven + Triosyn + Electrostatic charge		Detection Level
ZM03-01-75C+	Transweb	<u>م</u>

EXHIBIT B

Performance of different filtration membrane against MS2 viruses for 60, 120, 180, 240, 300 and 360 minutes of filtration Biocidal air filtration membrane project:

			MS2
		9	. e0 min
		7.	7.5 LPM
	Ωľ	PFU total	% Reduction
2M03-01-92C+	4.2	0.00E+00	100.00000%
Transweb	4.3	1.29E+03	99.89250%
ţ	4.0	1.20E+06	0.00000%

			MS2
		18	180 min
		7.	7.5 LPM
	סר	PFU total	% Reduction
2M03-01-92C+	4.0	0.00E+00	100.00000%
Transweb	3.5	4.23E+03	99.94125%
C+	3.6	7.20E+06	0.00000%

% Reduction 100.000000%

PFU total 0.00E+00

2M03-01-92C+

Transweb

120 min 7.5 LPM MS2

			MSZ
	-	36	300 min
		7.	7.5 LPM
	טר	PFU total	PFU total % Reduction
2M03-01-92C+	4.1	0.00E+00	100.00000%
Transweb	3.9	4.79E+05	96.45185%
ڻ .	4.2	1.35E+07	%00000'0

	·		MS2
		7	240 min
		7	7.5 LPM
	סר	PFU total	% Reduction
2M03-01-92C+	3.9	0.00E+00	100.00000%
Transweb	3.9	8.34E+04	99.01882%
C+	3.9	8.50E+06	0.00000

EXHIBIT B

Performance of different filtration membrane against MS2 viruses for 60, 120, 180, 240, 300 and 360 minutes of filtration Biocidal air filtration membrane project:

	_		MS2
		3(360 min
		7.	7.5 LPM
	טר	PFU total	% Reduction
2M03-01-92C+	3.8	0.00E+00	100.00000%
Transweb	3.9	4.62E+05	97.47541%
¢5	3.9	1.83E+07	0.00000%

Challenge microorganism: MS2 For MS2 tests

6 Jets Modified Collision Nebulizer Aerosol generated by:

Air flow velocity: 7.5 LPM pre-vaporisation: 30 min

Nebulizer air flow: 40 PSI

Filtration time: 30 min, 1, 2, 3, 4, 5 and 6 hours Collection fluid: 5 ml of PBS with 0.001% antifoam A

Sampling on MS2 media by single layer soft agar

Non woven + Triosyn + Electrostatic Charge Electrostatic Non Woven without Triosyn Detection Level 2M03-01-92C+ Transweb

EXHIBIT B

Experiment No AF270: Blocidal air filtration membrane project: Performance of different filtration membrane against MS2 virus for 30 minutes of filtration

			MS2
		E.	30 min
		7.	7.5 LPM
	_ 	PFU total	% Reduction
M03-01-69-C+	4.3	0.00E+00	100.00000%
M03-01-81-C+	4.2	0.00E+00	100.00000%
Transweb	4.0	2.48E+02	99.99757%
÷	3.9	1.02E+07	0.00000%

For MS2 tests

Challenge microorganism: MS2

Aerosol generated by: Nebulizer

pre-vaporisation: 30 min Air flow velocity: 7.5 LPM

Nebulizer air flow: 40 PSI

Filtration time: 30 minutes

Collection fluid: 5 ml of PBS with 0.001% antifoam A Sampling on MS2 media by single layer soft agar

M03-01-69-C+ Non woven + Triosyn + Electrostatic Charge		Defection I evel
M03-0	Transweb	Č

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.