CS771 Mid-semester Examination

RAKTIM MITRA

TOTAL POINTS

78.5 / 80

QUESTION 1

- 1 True or False 8/8
 - + O Correct
 - +8 Point adjustment

QUESTION 2

Ultra Short Answer 24 pts

- 2.1 Problem 2.1 4 / 4
 - + 4 Correct
 - + O Incorrect
- 2.2 Problem 2.2 4 / 4
 - + 4 Correct
 - + 0 incorrect
 - + 0 Not attempted
- 2.3 Problem 2.3 4 / 4
 - + 4 Correct
 - + 0 incorrect
 - + 3 d missing from complextity term
 - + 2 only one expression correct
- 2.4 Problem 2.4 4 / 4
 - +1 part1 exp
 - +1 part ans
 - +1 part2 exp
 - +1 part2 ans
 - + 4 Correct
 - + 0 incorrect
- 2.5 Problem 2.5 4/4
 - + 1 Root
 - + 1 Squared error
 - + 2 Averaged
 - + 1 Absolute deviation
 - + O Incorrect
- 2.6 Problem 2.6 3 / 4

- + 2 Repeated assignment of clusters
- + 1 Mention trapped at local optima
- +1 Complete answer
- + 1 Not fully formed arguments
- + O Incorrect or wrong logic

QUESTION 3

Short Answer 32 pts

- 3.1 Problem 3.1 8 / 8
 - + 4 Correct line in the plot
 - + 4 Correct Expression
 - + 0 Wrong Solution
 - + O No solution
 - + 2 Incomplete expression
- 3.2 Problem 3.2 8 / 8
 - +8 Correct
 - + 1 Some Condition(s) mentioned, but doesn't solve the problem correctly.
 - + 1 Only condition(s) mentioned, without a hint of how that would solve the problem
 - + 7 Correct approach, but use of < instead of <= as required for the definition of the set.
 - + 7 Correct Approach
 - 1 Convexity condition incorrect
 - + 4 Condition(s) mentioned correct to some extent. Solution incomplete/missing details
 - + O Not attempted/Doesn't count/Doesn't make sense
- 3.3 Problem 3.3 8 / 8
 - + 3 Correct likelihood expression
 - + 3 correct prior expression for case ||W|| <= 1
 - + 2 correct prior expression for case ||W|| > 1
 - + 1 Partial answer for prior expression
 - + O Wrong Answer or Irrelevant Answer or No Answer
 - 1 Silly Mistakes, Neglecting Constants(like normalization), not defining prior expression

(distribution) properly, neglecting variance term..

+ 2 Partially correct answer for likelihood expression

3.4 Problem 3.4 8 / 8

- +8 Correct
- 2 Incorrect Cluster allocation(Should be sigma inverse)
- + 0 Not Attempted
- 3 No Algorithm.
- + O In correct
- 1 No need to update co-variance matrix
- + 6 No mean updation/incorrect mean updation.
- + 3 No need to update the co-variance matrices.
- + 2 Incorrect
- + 4 Use Gaussian Model as Probability Model.

QUESTION 4

Long Answer 16 pts

- 4.1 Problem 4.1 3 / 3
 - + 2 Argmin expression
 - + 0.5 Positivity constraints
 - + 0.5 Sum of probabilities equals to 1
 - + 0 not attempted
 - + 0 wrong expression

4.2 Problem 4.2 2.5/3

- + 2 log probabilities
- + 0.5 Positivity constraint
- + 0.5 Sum of probabilities constraint
- 0.5 Sign mistake
- + 0 wrong expression
- + 0 not attempted

4.3 Problem 4.3 5 / 5

- + 0 Unattempted or wrong answer
- + 1 Correct use of Lagrangian term in dual
- + 1 Correct order of max and min operations
- + 2 Steps to show elimination of primal variable
- + 1 Correct dual with primal variable eliminated
- 4.4 Problem 4.4 5 / 5
 - + O Incorrect or unattempted
 - + 4 Correct expression for dual variable(s)
 - + 1 Correct expression for MLE estimate for \pi_k

			Page 1	
Name:	Raktim	Mitsa		IIT Kanpui CS771 Intro to ML
Roll No.:	15056	,2	Dept.: CSE	Mid-semester Examination Date: September 21, 2017
Instructi	ons:	a	* *	Total: 80 marks
2. W 3. W	rite your name, rite final answer	roll number, departs neatly with a p	en. Pencil marks can get	er). Please verify. every sheet of this booklet. smudged and you may lose credit. ecifically asks you to provide these.
Problem 1	(True or False:	8 X 1 = 8 marks).	For each of the following s	simply write T or F in the box.
1. F	The Bayesian p for $\mathbb{P}[y \mathbf{x}, \mathbf{w}]$ a	oredictive posterior l and a Gaussian prio	has a nice closed form soluor for $\mathbb{P}[\mathbf{w}]$.	tion if we have a logistic likelihood
2. F	Hard assignment soft assignment	nt alternating optim alternating optimi	nization approaches are muzation approaches.	ach more expensive to execute than
3. F	In ridge regress constant $\lambda > 0$	sion ($\arg\min \lambda/2 \cdot \ $ we set, we will alw	$\ \mathbf{w}\ _{2}^{2} + \ X^{T}\mathbf{w} - \mathbf{y}\ _{2}^{2}$, no a ays get good solutions.	matter how large a regularization
4.		MLE solutions, wor	· ·	erms is simpler than working with
5. F		erform minor evalua	ations on the test set during	ng training so long as we don't do
6. F			\mathbb{R}^2 , then their union $S_1 \cup$	$\cup S_2$ is always a convex set as well.
7. F	It is not possib	le to execute the Se	GD algorithm if the object	etive function is not differentiable.
8.	Convex optimiz (while carrying	ation problems like out optimization)	e ridge regression are not a as are non-convex problem	as sensitive to proper initialization as like k-means.
roblem 2	(Ultra Short Ans	swer: $6 \times 4 = 24 \text{ ma}$	arks). Give your answers i	n the space provided only.
	this coin is toss	ed n times, we obse		bility p . What is the probability that ils? Give only the final expression.
	mcx p2 (1	(P)		
a				
2. Given	a vector $\mathbf{a} \in \mathbb{R}^{c}$, what is the trace	of the matrix $A = \mathbf{a}\mathbf{a}^{T} \in$	$\mathbb{R}^{d \times d}$?

The ball is l_2 norm of a.

Squared

i.e. $l_2 = ||a||_2^2$ $l_2 = ||a||_2^2$

N	ame:
TA	anic.

Raktim Mitora

Roll No.: 150562

Dept.:

CSE

IIT Kanpur CS771 Intro to ML Mid-semester Examination

Date: September 21, 2017

3. Give the time complexity of predicting the label of a new point using the OvA and AvA approaches in a multiclassification problem with K classes with d-dimensional features. Briefly justify your answer.

OVA: W is KXd, we multiply it with dx 1 new point and take the maximum. => O(Kd)

AVA we have KXK d-dimensional weight vectors here. Multiplying all thus to dx1 new point and getting required value makes

it O(K2d)

4. We are given that $\mathbb{P}[\Theta] = 0.1$, $\mathbb{P}[y \mid \mathbf{x}, \Theta] = 0.4$, $\mathbb{P}[\mathbf{x} \mid y, \Theta] = 0.5$, $\mathbb{P}[y \mid \Theta] = 0.2$, $\mathbb{P}[\mathbf{x}, y] = 0.5$. Find $\mathbb{P}[\Theta \mid \mathbf{x}, y]$ and $\mathbb{P}[\mathbf{x} \mid \Theta]$. Show your expressions for these terms briefly and the final answer.

P[
$$\theta$$
] x , y] and $P[x][\theta]$. Show your expressions for these terms briefly and the final answer.

P[θ] x , y] = $P[x|y,\theta]P[y|\theta]P[\theta]$ = $\frac{0.5 \times 0.2 \times 0.1}{0.5}$ = $\frac{0.02}{P[x,\theta]}$

P[x , y] = $\frac{P[x|y,\theta]P[y|\theta]P[\theta]}{P[x]}$ => $\frac{P[x]y,\theta]P[y|\theta]P[\theta]}{P[x]y,\theta]P[y|\theta]}$

= $\frac{0.5 \cdot 0.2}{0.4} = 0.25$ [Answer]

5. Consider a regression problem with covariates $\mathbf{x}^i \in \mathbb{R}^d$ and responses $y^i \sim \mathcal{N}(\langle \mathbf{w}, \mathbf{x}^i \rangle, \sigma^2)$. Suppose you are given $(\mathbf{x}^i, y^i)_{i=1,2,\dots,n}$ as well as \mathbf{w} . Write down an estimator for σ .

are given
$$(\mathbf{x}^i, y^i)_{i=1,2,\dots,n}$$
 as well as w. Write down an estimator for σ .

The is y average of errors in estimation in estimation.

6. Let $\mathbf{z}^t \in [K]^n$ denote the cluster assignments made by the k-means algorithm at the t-th iteration i.e. data point $i \in [n]$ gets assigned to the cluster $\mathbf{z}_i^t \in [K]$. Suppose we have $\mathbf{z}^t \neq \mathbf{z}^{t+1}$ but $\mathbf{z}^t = \mathbf{z}^{t'}$ for some t' > t+1? What must be happening if cluster assignments get repeated in this manner?

That means, given the initialization and point set, it is not possible to converge to a cluster set.

The function is oscillating b/w some optimore than one optimal solutions, but no solution leads to convergence.

N	an	le:

Rakotson Milyra

Roll No.:

150562

Dept.:

CSE

IIT Kanpur CS771 Intro to ML Mid-semester Examination

Date: September 21, 2017

Problem 3 (Short Answer: $4 \times 8 = 32$ marks). For each of the problems, give your answer in space provided.

1. We wish to perform binary classification when we have two prototypes: the triangle prototype (0,1) and the circle prototype (1,0). Find the decision boundary when we use the L_1 metric to calculate distances i.e. $d(\mathbf{z}^1,\mathbf{z}^2) = \|\mathbf{z}^1 - \mathbf{z}^2\|_1 = |\mathbf{z}^1_1 - \mathbf{z}^2_1| + |\mathbf{z}^1_2 - \mathbf{z}^2_2|$ for $\mathbf{z}^1,\mathbf{z}^2 \in \mathbb{R}^2$. Calculate the decision boundary only within the box $B := {\mathbf{z} \in \mathbb{R}^2 : \mathbf{z}_1, \mathbf{z}_2 \in [0,1]} \subset \mathbb{R}^2$ and write its expression below. Draw the decision boundary in the figure. Note that you dont have to calculate the decision boundary outside the box B.

 $|\pi|+|i-y|=|i-\pi|+|y|$ in box B, $\pi + i-y = i-x + y = y = 2\pi = 2y$ =) $y=\pi$ Co, $z_1 = \overline{z_2}$ in 2 notation.

2. Let $f: \mathbb{R}^d \to \mathbb{R}$ be a differentiable convex function on \mathbb{R}^d . Prove (with detailed steps) that the set $S_f := \{\mathbf{x}: f(\mathbf{x}) \leq 0\}$ is always a convex set. Use any definition of convexity you are comfortable with.

By convening,
$$f(\alpha u + (1-\alpha)v) \leq \alpha f(u) + (1-\alpha)f(v)$$
 $\forall u, v \in \mathbb{R}^d$ $\forall x \in [0,1]$

Claim: $S_f: f(x) \leq 0$ is a conven set.

Proof: $f(\alpha u + (1-\alpha)v) \leq \alpha f(u) + (1-\alpha)f(v)$
 $f(\alpha u + (1-\alpha)v) \leq \alpha f(u) + (1-\alpha)f(v)$
 $f(\alpha u + (1-\alpha)v) \leq \alpha f(u) + (1-\alpha)f(v)$
 $f(\alpha u + (1-\alpha)v) \leq \alpha f(u) + (1-\alpha)f(v)$
 $f(\alpha u + (1-\alpha)v) \leq \alpha f(u) + (1-\alpha)f(v)$
 $f(\alpha u + (1-\alpha)v) \leq \alpha f(u) + (1-\alpha)f(v)$
 $f(\alpha u + (1-\alpha)v) \leq \alpha f(u) + (1-\alpha)f(v) \leq \alpha f(u)$
 $f(\alpha u + (1-\alpha)v) \leq \alpha f(u) + (1-\alpha)f(v) \leq \alpha f(u)$
 $f(\alpha u + (1-\alpha)v) \leq \alpha f(u) + (1-\alpha)f(u) \leq \alpha f(u)$
 $f(\alpha u + (1-\alpha)v) \leq \alpha f(u) + (1-\alpha)f(u) \leq \alpha f(u)$
 $f(\alpha u + (1-\alpha)v) \leq \alpha f(u) + (1-\alpha)f(u) \leq \alpha f(u)$
 $f(\alpha u + (1-\alpha)v) \leq \alpha f(u) + (1-\alpha)f(u) \leq \alpha f(u)$
 $f(\alpha u + (1-\alpha)v) \leq \alpha f(u) + (1-\alpha)f(u) \leq \alpha f(u)$
 $f(\alpha u + (1-\alpha)v) \leq \alpha f(u) + (1-\alpha)f(u) \leq \alpha f(u)$
 $f(\alpha u + (1-\alpha)v) \leq \alpha f(u) + (1-\alpha)f(u) \leq \alpha f(u)$
 $f(\alpha u + (1-\alpha)v) \leq \alpha f(u) + (1-\alpha)f(u) \leq \alpha f(u)$
 $f(\alpha u + (1-\alpha)v) \leq \alpha f(u) + (1-\alpha)f(u) \leq \alpha f(u)$
 $f(\alpha u + (1-\alpha)v) \leq \alpha f(u) + (1-\alpha)f(u) \leq \alpha f(u)$
 $f(\alpha u + (1-\alpha)v) \leq \alpha f(u) + (1-\alpha)f(u) \leq \alpha f(u)$
 $f(\alpha u + (1-\alpha)v) \leq \alpha f(u) + (1-\alpha)f(u)$
 $f(\alpha u + (1-\alpha)v) \leq \alpha f(u) + (1-\alpha)f(u)$
 $f(\alpha u + (1-\alpha)v) \leq \alpha f(u) + (1-\alpha)f(u)$
 $f(\alpha u + (1-\alpha)v) \leq \alpha f(u) + (1-\alpha)f(u)$
 $f(\alpha u + (1-\alpha)v) \leq \alpha f(u)$
 $f(\alpha u$

TA	
IN	ame:

Raktim Mitra

Roll No.:

150562

Dept.:

CSE

IIT Kanpur CS771 Intro to ML Mid-semester Examination

Date: September 21, 2017

3. Consider the following optimization problem for linear regression $\mathbf{x}^i \in \mathbb{R}^d$, $y^i \in \mathbb{R}$. In the box below, write down a likelihood distribution for $\mathbb{P}[y^i \mid \mathbf{x}^i, \mathbf{w}]$ and prior $\mathbb{P}[\mathbf{w}]$ such that $\hat{\mathbf{w}}_{rnc}$ is the MAP estimate for your model. Give explicit forms for the density functions but you need not calculate normalization constants.

$$\hat{\mathbf{w}}_{\text{rnc}} = \underset{\mathbf{w} \in \mathbb{R}^d}{\text{arg min}} \sum_{i=1}^n (y^i - \left\langle \mathbf{w}, \mathbf{x}^i \right\rangle)^2 + \|\mathbf{w}\|_2^2$$
s.t. $\|\mathbf{w}\|_2 \le 1$.

4. Recall that we derived the k-means algorithm by considering a Gaussian mixture model and forcibly setting the mixture proportions to $\pi_k^t = \frac{1}{K}$ as well as the covariance matrices of the Gaussians to identity $\Sigma^{k,t} = I$. Suppose we instead set $\Sigma^{k,t} = \Sigma$ where $\Sigma \in \mathbb{R}^{d \times d}$ is a known positive definite matrix. How will the k-means algorithm change due to this? Give the final algorithm below (no derivations required).

Name:

Raktin Mitog

Roll No.:

150562

Dept.:

CSF

IIT Kanpur CS771 Intro to ML Mid-semester Examination

Date: September 21, 2017

Problem 4 (Long Answer: 3+3+5+5=16 marks). In this question we will derive an MLE estimate for a multinoulli distribution. Consider a K-faced die with faces k = 1, 2, ..., K. Let the vector π^* denote the vector encoding the probabilities of the various faces turning up i.e. face k turns up with probability π_k^* . Clearly $\pi_k^* \geq 0$ and $\sum_{k=1}^K \pi_k^* = 1$. Now suppose I get n rolls of this die. Let $\mathbf{x} \in \mathbb{N}^K$ denote the vector that tells me how many times each face turned up i.e. the k-th face is found turning up $\mathbf{x}_k \geq 0$ times with $\sum_{k=1}^K \mathbf{x}_k = n$ (recall $\mathbb{N} = \{0, 1, 2, \ldots\}$ is the set of natural numbers). It turns out that we have $\mathbb{P}[\mathbf{x} \mid \boldsymbol{\pi}^*] = \frac{n!}{\prod_{k=1}^K (\mathbf{x}_k)!} \prod_{k=1}^K (\boldsymbol{\pi}_k^*)^{\mathbf{x}_k}$.

1. Write down the problem of finding the MLE estimate $\arg \max_{\pi} \mathbb{P}[\mathbf{x} \mid \boldsymbol{\pi}]$ as an optimization problem. *Hint*:

it will be a constrained optimization problem.

$$\pi_{NLE} = \underset{\pi}{\text{arg main}} \sum_{k=1}^{\infty} X_k \log (\pi_k)$$
(after taking "loop)

 $S.f. \sum_{k=1}^{\infty} X_k = \pi, \sum_{k=1}^{\infty} \pi_k = 1 \pi_k \geq 0$
Limain constant $\frac{\pi}{\pi}$

2. Write down the Lagrangian for that optimization problem.

Write down the Lagrangian for that optimization problem.

So,
$$\mathcal{L}(\Pi, \alpha) = f(\Pi) + \alpha g(\Pi) +$$

3. Find the dual problem and eliminate the primal variable. Show major steps. Give the simplified dual

problem which should be only in terms of constants and the dual variable.

Name:	Rahdin	Mora	

150562

Roll No.:

Dept.: CSE

CS771 Intro to ML Mid-semester Examination Date: September 21, 2017

4. Solve the dual problem and use it to obtain the MLE estimate. Only give expressions for both the dual solution as well as the MLE estimate.

$$\frac{1}{A} = \frac{1}{2} \chi_{k} = \frac$$

BLANK SPACE: Any answers written here will be left ungraded. No exceptions.

You may use this space for rough work.

FOR POLYGINA