CS6701 CRYPTOGRAPHY AND NETWORK SECURITY L T P C 3 0 0 3 OBJECTIVES:

The student should be made to:

The student should be made to:
☐ Understand OSI security architecture and classical encryption techniques.
☐ Acquire fundamental knowledge on the concepts of finite fields and number theory.
☐ Understand various block cipher and stream cipher models.
☐ Describe the principles of public key cryptosystems, hash functions and digital signature.

UNIT I INTRODUCTION & NUMBER THEORY 10

Services, Mechanisms and attacks-the OSI security architecture-Network security model-Classical Encryption techniques (Symmetric cipher model, substitution techniques, transposition techniques, steganography).FINITE FIELDS AND NUMBER THEORY: Groups, Rings, Fields-Modular arithmetic-Euclid's algorithm-Finite fields- Polynomial Arithmetic —Prime numbers-Fermat's and Euler's theorem-Testing for primality -The Chinese remainder theorem- Discrete logarithms.

UNIT II BLOCK CIPHERS & PUBLIC KEY CRYPTOGRAPHY 10

Data Encryption Standard-Block cipher principles-block cipher modes of operation-Advanced Encryption Standard (AES)-Triple DES-Blowfish-RC5 algorithm. **Public key cryptography:** Principles of public key cryptosystems-The RSA algorithm-Key management - Diffie Hellman Key exchange- Elliptic curve arithmetic-Elliptic curve cryptography.

UNIT III HASH FUNCTIONS AND DIGITAL SIGNATURES 8

Authentication requirement – Authentication function – MAC – Hash function – Security of hash function and MAC –MD5 - SHA - HMAC – CMAC - Digital signature and authentication protocols – DSS – EI Gamal – Schnorr.

UNIT IV SECURITY PRACTICE & SYSTEM SECURITY 8

Authentication applications – Kerberos – X.509 Authentication services - Internet Firewalls for Trusted System: Roles of Firewalls – Firewall related terminology- Types of Firewalls - Firewall designs – SET for E-Commerce Transactions. Intruder – Intrusion detection system – Virus and related threats – Countermeasures – Firewalls design principles – Trusted systems – Practical implementation of cryptography and security.

UNIT V E-MAIL, IP & WEB SECURITY 9

E-mail Security: Security Services for E-mail-attacks possible through E-mail - establishing keys privacy-authentication of the source-Message Integrity-Non-repudiation-Pretty Good Privacy-S/MIME.

IPSecurity: Overview of IPSec - IP and IPv6-Authentication Header-Encapsulation Security Payload (ESP)-Internet Key Exchange (Phases of IKE, ISAKMP/IKE Encoding). **Web Security:** SSL/TLS Basic Protocol-computing the keys- client authentication-PKI as deployed by SSLAttacks fixed in v3-Exportability-Encoding-Secure Electronic Transaction (SET).

TOTAL: 45 PERIODS

OUTCOMES:

Upon Completion of the course, the students should be able to:

Ш	Compare various Cryptographic Techniques
	Design Secure applications
	Inject secure coding in the developed applications

TEXT BOOKS:

- 1. William Stallings, Cryptography and Network Security, 6th Edition, Pearson Education, March 2013. (UNIT I,II,III,IV).
- 2. Charlie Kaufman, Radia Perlman and Mike Speciner, "Network Security", Prentice Hall of India, 2002. (UNIT V).

REFERENCES:

- 1. Behrouz A. Ferouzan, "Cryptography & Network Security", Tata Mc Graw Hill, 2007.
- 2. Man Young Rhee, "Internet Security: Cryptographic Principles", "Algorithms and Protocols", Wiley Publications, 2003.
- 3. Charles Pfleeger, "Security in Computing", 4th Edition, Prentice Hall of India, 2006.
- 4. Ulysess Black, "Internet Security Protocols", Pearson Education Asia, 2000.
- 5. Charlie Kaufman and Radia Perlman, Mike Speciner, "Network Security, Second Edition, Private Communication in Public World", PHI 2002.
- 6. Bruce Schneier and Neils Ferguson, "Practical Cryptography", First Edition, Wiley Dreamtech India Pvt Ltd, 2003.
- 7. Douglas R Simson "Cryptography Theory and practice", First Edition, CRC Press, 1995.
- 8. http://nptel.ac.in/.

CS6711 SECURITY LABORATORY L T P C 0 0 3 2 OBJECTIVES: The student should be made to:
☐ Be exposed to the different cipher techniques
☐ Learn to implement the algorithms DES, RSA,MD5,SHA-1
□ Learn to use network security tools like GnuPG, KF sensor, Net Strumbler LIST OF EXPERIMENTS: 1. Implement the following SUBSTITUTION & TRANSPOSITION TECHNIQUES concepts: a) Caesar Cipher b) Playfair Cipher c) Hill Cipher d) Vigenere Cipher e) Rail fence – row & Column Transformation 2. Implement the following algorithms a) DES b) RSA Algorithm c) Diffiee-Hellman d) MD5 e) SHA-1 5 Implement the SIGNATURE SCHEME - Digital Signature Standard 6. Demonstrate how to provide secure data storage, secure data transmission and for creating digital signatures (GnuPG). 7. Setup a honey pot and monitor the honeypot on network (KF Sensor) 8. Installation of rootkits and study about the variety of options 9. Perform wireless audit on an access point or a router and decrypt WEP and WPA.(Net Stumbler)
10. Demonstrate intrusion detection system (ids) using any tool (snort or any other s/w) OUTCOMES:
At the end of the course, the student should be able to
☐ Implement the cipher techniques
☐ Develop the various security algorithms
☐ Use different open source tools for network security and analysis LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS: SOFTWARE: C / C++ / Java or equivalent compiler GnuPG, KF Sensor or Equivalent, Snort, Net Stumbler or Equivalent HARDWARE: Standalone desktops - 30 Nos. (or) Server supporting 30 terminals or more.