# Relations

JaKeoung Koo

#### Reference

• https://math.libretexts.org/Bookshelves/Combinatorics\_and\_Discrete\_Mathematics

#### **Motivation**

- Connection between relations, graphs, matrix ...
- Preliminary to studying knowledge graphs
- Where does the term "transitive closures" taught in algorithms come from?

#### Relation from A to B

**Definition.** Let A and B be sets. A relation from A to B is any subset of  $A \times B$ .

**Example.**  $A=\{1,2,3\}$ ,  $B=\{8,9\}$ . Then, each of the followings is a relation from A to B

- $A \times B = \{(1,8), (1,9), (2,8), (2,9), (3,8), (3,9)\}$
- $\{(1,8),(1,9)\}$
- $\{(1,8),(2,9),(3,8)\}$  as known as a function from A to B

Surprisingly, a function is also a relation with some conditions: A function f from A to B is a relation from A to B such that for each a in A, there exists only one b in B.

So a function is nothing but a set.

#### Relation on a set A

**Definition.** A relation from a set A into itself is called a relation on A.

**Example.**  $A = \{1, 2, 3\}$ . Each of the followings is a relation on A:

- $A \times A = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\}$
- $\{(1,2),(1,3),(2,1),(2,2)\}$
- $\{(1,2),(2,1),(3,3)\}$  as known as a function from A to A

#### **Notation**

If (a,b) is an element of a relation R, a standard notation is by  $a\sim b$ . We often denote the relation itself by  $\sim$ .

Some textbooks use another notation: aRb

## **Properties of relation**

**Def.** A relation  $\sim$  on A is reflexive if  $a \sim a$  for all  $a \in A$ .

**Def.** A relation  $\sim$  on A is symmetric if  $a\sim b$  implies that  $b\sim a$  for all  $a,b\in A$  and  $a\neq b$ .

**Def**. A relation  $\sim$  on A is transitive if  $a\sim b$  and  $b\sim c$  implies that  $a\sim c$ , for all  $a,b,c\in A$ .

**Def.** A relation  $\sim$  on A is antisymmetric if  $a\sim b$  implies that  $b\sim a$  is false for all  $a,b\in A$  and  $a\neq b$ .

#### **Examples** in real life

- ullet Consider  $a\sim b$  if and only if a and b are roommates (symmetric)
- Consider  $a \sim b$  if and only if  $a \leq b$  (transitive, but not symmetric)

## **Equivalence relation**

**Def.** An equivalence relation on A is a relation on A that is reflexive, symmetric and transitive.

**Real life example.**  $x \sim y$  if and only if x and y have the same birthday.

- $x \sim x$  is true
- ullet  $x\sim y$  is true, then  $y\sim x$  is true
- ullet  $x\sim y$  and  $y\sim z$  are true, then  $x\sim z$

**Def.** The equivalence class of a determined by  $\sim$  is the subset of A, denoted by [a], consisting of all the elements of A that are equivalent to a. That is,

$$[a]=\{x\in A, x\sim a\}$$

We say that [a] is "the equivalence class of a" or as "bracket a"

#### Congruent modulo n

**Notation.**  $a \equiv b \pmod 3$  means that  $a \mod 3 = b \mod 3$ . e.g.:  $b \equiv b \pmod 3$ 

Let  $a,b\in A$  where A is a set of integers. Consider  $a\sim b$  if and only if  $a\equiv b$  (mod 3). Then,  $\sim$  is an equivalence relation, because

- ullet  $a\sim a$  is true for all a in A
- ullet  $a\sim b$  is true, then  $b\sim a$  is true for all a,b in A and a
  eq b
- ullet  $a\sim b$  and  $b\sim c$  are true, then  $a\sim c$  for all  $a,b,c\in A$

We can partition a set of integers into three equivalence classes of [0], [1], [2].

In this case, [a] is called the congruence class of a modulo n

• i.e., [0] is the congruence class of 0 modulo 3.

**Theorem.** If R is an equivalence relation on any non-empty set A, then the distinct set of equivalence classes of R forms a partition of A.

## **Appendix: Asymptotic notation in Algorithms**

https://en.wikipedia.org/wiki/Big\_O\_notation

Consider a relation:  $f\sim g$  if and only if f(n)=O(g(n)). The big O notation gives an upper bound of f, kind of  $f\leq g$ .

- ullet  $f\sim f$  is true
- If  $f \sim g$  is true, it does not imply that  $g \sim f$ . (e.g., 3 $\leq$ 4 doesn't imply 4 $\leq$ 3)

**Def**. We say that  $f(n) = \Theta(g(n))$  if f(n) = O(g(n)) and g(n) = O(f(n))

Consider a relation of two functions:  $f \sim g$  if and only if  $f(n) = \Theta(g(n))$ .

**Exercise**. Show that this relation gives an equivalence relation.

# Relations and graphs

# Graph representation of relations on a set A

Let  $A=\{0,1,2,3\}$  and a relation R on A:  $R=\{(0,0),(0,3),(1,2),(2,1),(3,2),(2,0)\}$ 

We can represent a relation by a graph:



## Matrix representation of relations

A relation  $\sim$  on A can be represented by the n x n matrix defined by:

$$R_{ij} = egin{cases} 1 & ext{if} & a_i \sim a_j \ 0 & ext{otherwise} \end{cases}$$

where  $A = \{a_1, \ldots, a_n\}$ .

**Example.** Let  $A=\{2,5,6\}$  and a relation  $R=\{(2,2),(2,5),(5,6),(6,6)\}$ . Its matrix representation is

$$R = egin{pmatrix} 1 & 1 & 0 \ 0 & 0 & 1 \ 0 & 0 & 1 \end{pmatrix}$$

Composition of two relations can be regarded as the multiplication of their corresponding matrices.

#### Matrix representation of relations

- ullet If all of a matrix A's diagonal elements are non-zeros, the corresponding relation is reflexive
- ullet If a matrix A is symmetric, the corresponding relation is also symmetric
- If a matrix A satisfies  $A^2 \leq A$ , the corresponding relation is transitive Here,  $\leq$  is defined as an element-wise comparison (i.e.,  $A^2_{i,j} \leq A_{i,j}$  for all i,j)

If there is a path of length 2 (i -> k -> j) in the relation, then there must also be a direct path (i -> j) for the relation to be transitive

The matrix multiplication  $A^2$  captures all the paths of length 2, and the inequality  $A^2 \leq A$  ensures that any such path of length 2 also has a corresponding direct path

#### **Closure operations**

**Def.** (Transitive closure). Let A be a set and R be a relation on A. The transitive closure of R is the smallest transitive relation that contains R as a subset.

In general, "smallest" helps ensure that the definition is well-defined and provides a unique solution. It also allows us to focus on the essential parts of the concept without introducing unnecessary complexity or ambiguity. e.g., convex hull, ...

A set S is said to be closed under the operation \* if whenever we apply the operation \* to an arbitrary element of S, the result is also an element of S. The set of integers are closed under + and x, but not closed under /. The closure of S under the operation \* is the smallest superset of S that is closed under the operation \*.

**Example.** Let  $A = \{1, 2, 3, 4\}$ , and let  $R = \{(1, 2), (2, 3), (3, 4)\}$  be a relation on A.

The transitive closure of R is  $\{(1,2),(2,3),(3,4),(1,3),(2,4),(1,4)\}$ 

The composition

- $R^2 = \{(1,3),(2,4)\}$
- $R^3 = \{(1,4)\}$

# **Example**



In  $A^2$ , (i,j) element represents a path whose length is 2.

```
>>> A.dot(A) # length 2
array([[0, 0, 1, 1, 1, 0],
       [0, 0, 0, 0, 1, 0],
       [0, 0, 0, 1, 0, 0],
       [0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0]]
>>> A.dot(A).dot(A) # length 3
array([[0, 0, 0, 1, 1, 0],
       [0, 0, 0, 1, 0, 0],
       [0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0]]
>>> A+A.dot(A) # at most length 2
array([[0, 1, 2, 2, 1, 1],
       [0, 0, 1, 1, 1, 0],
       [0, 0, 0, 1, 1, 0],
       [0, 0, 0, 0, 0, 0],
       [0, 0, 0, 1, 0, 0],
       [0, 0, 0, 0, 0, 0]]
```

