МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе

по дисциплине «Дифференциальные уравнения»

Тема: «Определение жесткости пружин-ребер в плоском графе с известной топологией в случае двумерных продольных колебаний (в вершинах предполагаются массы).»

Студентка гр. 2384	Соц Е.А.
Преподаватель	Колоницкий С.Б.

Санкт-Петербург 2024

Цель работы

Целью данной работы является определение жесткости пружин-ребер в плоском графе с известной топологией в случае двумерных продольных колебаний с помощью метода оптимизации Бройдена — Флетчера — Гольдфарба — Шанно.

Задание

Дан плоский граф с известной топологией (указаны координаты вершин в декартовой системе координат), массы вершин, равновесные длины пружин-ребер, а также траектории движения масс вершин, измеренных с погрешностями (моделируется добавлением шума к выходу прямой задачи). Необходимо определить жесткости пружин-ребер.

Рисунок 1 - Плоский граф с известной топологией

Описание способа решения задачи

Для решения данной задачи необходимо:

- 1. Применить итерационный метод численной оптимизации, предназначенный для нахождения локального минимума нелинейного функционала без ограничений, над полученными зашумленным данными для нахождения жесткости пружин-ребер в плоском графе.
- 2. Так как взять истинные значения траектории движения масс из натурного эксперимента невозможно, они берутся из численного эксперимента: решается соответствующая система дифференциальных уравнений методом семейства Рунге-Кутты.
- 3. Зашумление полученных "истинных" значений с использованием Гауссовского шума.

Решение прямой задачи

Для решения прямой задачи необходимо найти значения скорости и ускорения движения вершин с известными для них входными параметрами: массы, жесткости и равновесные длины пружин.

Для нахождения данных параметров системы используем дифференциальное уравнение второго закон Ньютона, для которого сила описана законом Гука:

$$\frac{m_i^* \delta^2 u_i}{\partial t^2} = -\sum_j K_{ij} (u_i - u_j)$$
 , где

 m_{i} - масса вершины

 \boldsymbol{u}_i , \boldsymbol{u}_j - координата і-ой и ј-ой вершины соответственно

 K_{ii} - жесткость пружины между і-ой и ј-ой вершиной

Сила упругости между двумя вершинами системы рассчитывается по следующим формулам:

$$F_{y\pi p} = -k * (r - l_{eq})$$

$$F_x = rac{F^*(x-x_i)}{r}$$
 $F_y = rac{F^*(y-y_i)}{r}$, где $r = \sqrt{\left(x - x_i^{}
ight)^2 + \left(y - y_i^{}
ight)^2}$ - расстояние между вершинами

 $F_{_{_{\it Y}}}$ - сила, вдоль оси Ох

 $F_{_{
m V}}$ - сила, вдоль оси Оу

 $l_{\it eq}$ - равновесная длина пружины

k - жесткость пружины

х, у - координаты текущей вершины

 x_{i} , y_{i} - координаты соседней вершины

Для численного решения системы дифференциальных уравнений используется метод Рунге-Кутты. В данной задаче использован метод Рунге-Кутты четвертого порядка(РК4), который использует таблицу Бутчера для вычисления коэффициентов.

Рисунок 2 - Таблица Бутчера РК4

Метод Рунге-Кутты 4-го порядка является мощным и универсальным инструментом для решения задач, связанных с обыкновенными дифференциальными уравнениями. Его высокая точность, простота реализации и гибкость делают его предпочтительным выбором в широком спектре прикладных задач.

Решение обратной задачи

Добавление шума

Первоначально для решения данной задачи необходимо зашумить данные, полученные на этапе численного интегрирования системы. Для этого используем Гауссовский шум. Гауссов шум моделируется как случайная величина с нормальным распределением:

$$y_{obs} = y_{true} + \varepsilon$$
, $\varepsilon \sim \mathcal{N}(0, \sigma^2)$, где

 y_{true} - истинные данные.

 ϵ - шум с нулевым средним и стандартным отклонением σ , задающим уровень шума.

<u>Оптимизация параметров с использованием метода BFGS</u>

Для восстановления истинных значений жесткостей пружин на основе зашумленных данных используется метод BFGS. Это итерационный метод оптимизации, который аппроксимирует обратную матрицу Гессе для нахождения направления поиска.

Алгоритм BFGS

• Инициализация:

Начальное приближение параметров K и начальная аппроксимация обратной матрицы Гессе H.

• Вычисление градиента:

Градиент функции ошибки вычисляется численно с использованием метода конечных разностей.

• Направление поиска:

Направление поиска определяется как

$$p = -H * \nabla f$$

• Линейный поиск:

Выполняется линейный поиск для определения длины шага α, которая минимизирует функцию ошибки вдоль направления р.

• Обновление параметров:

Новые параметры вычисляются как

$$x_{new} = x + \alpha * p$$

• Обновление матрицы Гессе:

Матрица Н обновляется с использованием векторов s и y, где

$$s = x_{new} - x \quad \mathbf{M}$$
$$y = \nabla f(x_{new}) - \nabla f(x)$$

• Критерий остановки:

Итерации продолжаются до тех пор, пока норма градиента не станет меньше заданного порога tol.

Результаты работы программы и график ошибок представлены в приложении А. Так как графики траектории истинных и восстановленных значений совпадают, был рассмотрен именно график разниц траекторий, что позволяет оценить ошибку восстановления. Глядя на график, можно заметить, что ошибка не превосходит 0,002, а значит программа решает задачу с высокой точностью. Результат вывода программы это подтверждает: числа практически совпадают.

Исходный код программы представлен в приложении Б.

Код программы для симуляции представлен в приложении В.

Вывод

В ходе выполнения работы написана программа, которая определяет жесткости пружин-ребер в плоском графе с известной топологией в случае двумерных продольных колебаний с помощью метода оптимизации Бройдена — Флетчера — Гольдфарба — Шанно. Программа достигла высокой точности и выдает результат за малый промежуток времени.

ПРИЛОЖЕНИЕ А

РЕЗУЛЬТАТ РАБОТЫ ПРОГРАММЫ

Массы пружин, поданные на вход

0.0, 1.0, 0.0, 0.0 - Macca 1 (x, y, vx, vy)

1.0, 1.0, 0.0, 0.0 - Macca 2 (x, y, vx, vy)

0.0, 0.0, 0.0, 0.0 - Macca 3 (x, y, vx, vy)

0.0, -1.0, 0.0, 0.0 - Macca 4 (x, y, vx, vy)

Равновесные длины пружин

 $L_eq = [1.0, 1.5, 2.0]$

Истинные значения жесткостей пружин

K true = [2.0, 3.0, 4.0]

/home/katya/anaconda3/bin/python /home/katya/comp_math/project/ver3.py Истинные значения К: [2. 3. 4.] Восстановленные значения К: [2.00037604 2.99811294 3.99870284] Process finished with exit code 0

Рисунок 3 - Результат работы программы

Рисунок 4 - График ошибок

приложение б

ИСХОДНЫЙ КОД ПРОГРАММЫ

```
import numpy as np
     import matplotlib.pyplot as plt
     from typing import Callable, List, Tuple, Any
     import os
     # Функция для расчета силы упругости
     def spring_force(x, y, x_i, y_i, k, l_eq):
           r = np.sqrt((x - x_i)^- ** 2 + (y - y i) ** 2) #
Расстояние между вершинами
         if np.isclose(r, 0): # Избегаем деления на ноль
                return 0, 0 # Нет взаимодействия для совпадающих
точек
          F = -k * (r - l eq) # Закон Гука с учетом равновесной
длины l eq
         Fx = F * (x - x i) / r
         Fy = F * (y - y_i) / r
         return Fx, Fy
     # Функция для расчёта ускорений всех масс в системе
     def compute_forces(_, y, K, L_eq):
         m1, m2, m3, m4 = 1.0, 2.0, 3.0, 4.0
         x1, y1, vx1, vy1, x2, y2, vx2, vy2, x3, y3, vx3, vy3, x4,
y4, vx4, vy4 = y
         # Силы упругости между вершинами
         F1x, F1y = spring force(x1, y1, x3, y3, K[0], L eq[0])
         F2x, F2y = spring force(x2, y2, x3, y3, K[1], L eq[1])
         F3x, F3y = spring force(x4, y4, x3, y3, K[2], L eq[2])
         # Ускорения каждой массы
         ax1, ay1 = F1x / m1, F1y / m1
         ax2, ay2 = F2x / m2, F2y / m2
         ax3, ay3 = (-(F1x + F2x + F3x) / m3), (-(F1y + F2y + F3y)
/ m3)
         ax4, ay4 = F3x / m4, F3y / m4
         return np.array([vx1, vy1, ax1, ay1,
                          vx2, vy2, ax2, ay2,
                          vx3, vy3, ax3, ay3,
                          vx4, vy4, ax4, ay4])
     # Функция для коэффициентов Рунге-Кутты
     def get k coefficients(t: float, y: np.ndarray, h: float, f:
Callable[[Any, Any], np.ndarray], tableau: dict) -> List[
         np.ndarray]:
         a_ = tableau['a ']
         c_ = tableau['c ']
         k = []
```

```
for i in range(len(a)):
                y \text{ temp} = y + h * sum(a [i][j] * k[j] for j in
range(i))
             k.append(f(t + c [i] * h, y temp))
        return k
     # Полный шаг Рунге-Кутты
     def rk_one_step(t: float, y: np.ndarray, h: float, f:
Callable[[Any, Any], np.ndarray], tableau: dict) -> Tuple[
         float, np.ndarray]:
         k = get k coefficients(t, y, h, f, tableau)
        b = tableau['b ']
             y_next = y + h * sum(b_[i] * k[i] for i in
range(len(b )))
        return t + h, y_next
     # Решение всей задачи с помощью Рунге-Кутты
     def rk(t0: float, t end: float, y0: np.ndarray, h: float, f:
Callable[[Any, Any], np.ndarray], tableau: dict) -> Tuple[
        np.ndarray, np.ndarray]:
        t steps = int((t end - t0) / h) + 1
        t = np.zeros(t_steps)
        y = np.zeros((y0.size, t_steps))
        t[0] = t0
        y[:, 0] = y0
        for step in range(t_steps - 1):
              t[step + 1], y[:, step + 1] = rk one step(t[step],
y[:, step], h, f, tableau)
        return t, y
     # Функция для добавления шума к данным
     def add noise(data: np.ndarray, noise level: float) ->
np.ndarray:
        noise = np.random.normal(0, noise level, size=data.shape)
        return data + noise
     # Функция ошибки для оптимизации
     def error function (K: np.ndarray, t obs: np.ndarray, y obs:
np.ndarray, y0: np.ndarray, h: float, L eq: List[float],
                       tableau: dict) -> float:
         f = lambda t, y: compute_forces(t, y, K, L_eq)
        h sim = h / 10 # Более мелкий шаг для высокой точности
         t sim, y sim = rk(0, t obs[-1], y0, h sim, f, tableau)
             # Сравнение наблюдаемых и модельных данных без
интерполяции
         y obs interp = np.array([
                 np.interp(t obs, t sim, y sim[i, :]) for i in
range(y obs.shape[0])
```

```
])
         return np.mean((y obs - y obs interp) ** 2)
     # Линейный поиск для адаптивного шага
     def line search (func, x, p, qrad, arqs, c1=1e-4, c2=0.9,
alpha max=1.0):
         alpha = alpha max
         phi0 = func(x, *args)
         phi prime0 = np.dot(grad, p)
         while True:
             x new = x + alpha * p
             phi = func(x new, *args)
               if phi > phi0 + c1 * alpha * phi prime0 or (phi >=
phi0 and alpha > 0.1):
                 alpha *= 0.5
             else:
                 break
         return alpha
     # Численное вычисление градиента
     def numerical gradient(func: Callable[[np.ndarray], float],
params: np.ndarray, eps: float = 1e-6) -> np.ndarray:
         grad = np.zeros like(params)
         for i in range(len(params)):
             params_eps = np.copy(params)
             params eps[i] += eps * (np.abs(params[i]) + 1)
             grad[i] = (func(params eps) - func(params)) / eps
         return grad
     # BFGS-оптимизация с улучшениями
     def bfgs optimization(func: Callable, x0: List[float], args:
Tuple, bounds: List[Tuple[float, float]],
                            tol: float = 1e-5, max_iter: int = 100)
-> np.ndarray:
         x = np.array(x0)
         n = len(x)
         I = np.eye(n)
         H = I # Начальная аппроксимация обратной матрицы Гессе
         for iteration in range(max_iter):
             # Вычисляем значение функции и градиент
             f val = func(x, *args)
               grad = numerical gradient(lambda p: func(p, *args),
x)
             # Проверяем критерий остановки
             if np.linalg.norm(grad) < tol:</pre>
                 break
             # Направление поиска
             p = -np.dot(H, grad)
```

```
# Линейный поиск
             alpha = line search(func, x, p, grad, args)
             # Обновление параметров
             x new = x + alpha * p
                  grad new = numerical gradient(lambda p: func(p,
*args), x new)
             s = x new - x
             y = grad new - grad
             # Проверка для обновления Н
             if np.dot(y, s) > 0:
                  rho = 1.0 / np.dot(y, s)
                   H = (I - rho * np.outer(s, y)) @ H @ (I - rho *
np.outer(y, s)) + rho * np.outer(s, s)
             x = x new
         return x
     # Сохраняем и загружаем данные
     npz file = "simulation data.npz"
     # Функция для сохранения данных
     def save_simulation_data(filename, **data):
         np.savez compressed(filename, **data)
     # Функция для загрузки данных
     def load simulation data(filename):
         if os.path.exists(filename):
             return np.load(filename)
         return None
     # Функция для построения графиков
     def plot_trajectories(t, y_true, y_obs, y_restored):
    num_bodies = y_true.shape[0] // 4
         for i in range (num bodies):
             idx x = i * 4 # Индекс x для текущего тела
             idx y = idx x + 1 \# Индекс у для текущего тела
             plt.figure(figsize=(10, 6))
             # Истинная траектория
                   plt.plot(t, y true[idx x, :], label=f"Истинная
x\{idx x // 4 + 1\}")
                   plt.plot(t, y_true[idx_y, :], label=f"Истинная
y\{idx y // 4 + 1\}")
             # Наблюдаемая траектория
```

```
y_obs[idx_x, :], '--',
                            plt.plot(t,
label=f"Наблюдаемая x{idx x // 4 + 1}")
                            plt.plot(t, y_obs[idx_y, :], '--',
label=f"Наблюдаемая y{idx y // 4 + 1}")
             # Восстановленная траектория
                         plt.plot(t, y_restored[idx_x, :], ':',
label=f"Восстановленная x\{idx x // 4 + \overline{1}\}")
                         plt.plot(t, y_restored[idx_y, :], ':',
label=f"Восстановленная y{idx y // 4 + 1}")
             plt.xlabel("Время")
             plt.ylabel("Координаты")
             plt.title(f"Траектория тела {i + 1}")
             plt.legend()
             plt.grid()
             plt.savefig(f"trajectory body {i + 1}.png")
             # plt.show()
     def plot error(t, y true, y restored):
         num_bodies = y_true.shape[0] // 4
         plt.figure(figsize=(10, 6))
         for i in range (num bodies):
             idx x = i * 4 # Индекс x для текущего тела
             idx y = idx x + 1 \# Индекс у для текущего тела
             # Вычисляем ошибку
             error_x = y_true[idx_x, :] - y_restored[idx_x, :]
             error y = y true[idx y, :] - y restored[idx y, :]
             # Строим график ошибки
               plt.plot(t, error x, label=f"Oшибка x{idx x} // 4 +
1 } ")
               plt.plot(t, error y, label=f"Ошибка y{idx y // 4 +
1 } " )
         plt.xlabel("Время")
         plt.ylabel("Ошибка")
         plt.title(f"График ошибок")
         plt.legend()
         plt.grid()
         plt.savefig(f"error body.png")
         # plt.show()
     # Главная программа
     if __name__ == "__main__":
    data = load_simulation_data(npz_file)
         if data is not None:
             t = data["t"]
             y true = data["y true"]
             y obs = data["y obs"]
```

```
y_restored = data["y_restored"]
            K estimated = data["K estimated"]
            K true = data["K true"]
        else:
            # Задаём таблицу Бутчера
            tableau = {
                'a ': [
                    [0, 0, 0, 0],
                    [0.5, 0, 0, 0],
                    [0, 0.5, 0, 0],
                    [0, 0, 1, 0]
                ],
                'b ': [1 / 6, 1 / 3, 1 / 3, 1 / 6],
                'c': [0, 0.5, 0.5, 1]
            }
            # Начальные условия
             vx, vy)
                            1.0, 1.0, 0.0, 0.0, # Macca 2 (x, y,
vx, vy)
                            0.0, 0.0, 0.0, 0.0, # Macca 3 (x, y,
vx, vy)
                             0.0, -1.0, 0.0, 0.0]) # Macca 4 (x,
y, vx, vy)
            t end = 10
            h = 0.01
            L eq = [1.0, 1.5, 2.0] # Равновесные длины пружин
                 K true = [2.0, 3.0, 4.0] # Истинные значения
жесткостей пружин
            # Генерация "истинных" данных
              f true = lambda t, y: compute forces(t, y, K true,
L eq)
            t, y true = rk(0, t end, y0, h, f true, tableau)
            # Добавление шума к данным
            noise level = 0.05
            y obs = add noise(y true, noise level)
            # Оптимизация для восстановления жесткостей пружин
                 K initial guess = [1.0, 1.0, 1.0] # Начальное
приближение
              bounds = [(0.1, 10.0), (0.1, 10.0), (0.1, 10.0)] #
Ограничения на жесткости
            # Выполняем оптимизацию
            K estimated = bfgs optimization(
                error function,
                K initial guess,
                args=(t, y_obs[:4, :], y0, h, L_eq, tableau),
                bounds=bounds
            )
```

ПРИЛОЖЕНИЕ В

КОД ПРОГРАММЫ ДЛЯ СИМУЛЯЦИИ

```
from matplotlib.animation import FuncAnimation
     from matplotlib import animation
     import matplotlib.pyplot as plt
     import numpy as np
     from ver3 import load simulation data
     def animate bodies(filename, t, y true):
         fig, ax = plt.subplots(figsize=(8, 8))
         num bodies = y true.shape[0] // 4
                  x min,
                          x max = np.min(y true[0::4,
                                                              :1),
np.max(y true[0::4, :])
                           y max = np.min(y true[1::4, :]),
                  y min,
np.max(y_true[1::4, :])
         ax.set_xlim(x_min - 1, x_max + 1)
         ax.set_ylim(y_min - 1, y_max + 1)
         ax.set xlabel("X")
         ax.set ylabel("Y")
         ax.set title("Движение тел в системе")
         ax.grid()
            lines = [ax.plot([], [], 'o-', markersize=5, lw=2,
label=f"Тело массой {i + 1}")[0] for i in range(num bodies)]
         connections = [(0, 2), (1, 2), (2, 3)]
          springs = [ax.plot([], [], '-', color='gray', lw=1.5)[0]
for in range(len(connections))]
         ax.legend()
         # Функция инициализации
         def init():
             for line in lines:
                 line.set data([], [])
             for spring in springs:
                 spring.set data([], [])
             return lines + springs
         # Функция обновления анимации
         def update(frame):
             for i, line in enumerate(lines):
                 x idx = i * 4
                   x, y = y_true[x_idx, frame], y_true[x_idx + 1,
frame]
                 line.set_data([x], [y])
             for i, (a, b) in enumerate(connections):
                  spring_x = [y_true[a * 4, frame], y_true[b * 4,
frame]]
```

```
spring_y = [y_true[a * 4 + 1, frame], y true[b *
4 + 1, frame]]
                 springs[i].set_data(spring_x, spring_y)
             return lines + springs
              ani = FuncAnimation(fig, update, frames=len(t),
init func=init, blit=True, interval=50)
         writergif = animation.PillowWriter(fps=30)
         ani.save(f'{filename}.gif', writer=writergif)
         plt.show()
     if name == " main ":
         npz file = "simulation data.npz"
         data = load simulation data(npz file)
         if data is not None:
            t = data["t"]
             y_true = data["y_true"]
             y_obs = data["y_obs"]
             y_restored = data["y_restored"]
             K estimated = data["K estimated"]
             K true = data["K true"]
         animate_bodies("true_bodies_motion",t, y_true)
         animate_bodies("restored_bodies_motion", t, y_restored)
```