

UBDA Workshop: State-of-the-art in Deep Learning FrameworksIce-Breaker Activity

http://etc.ch/WEwL

Which Framework have you used in your research?

Which Framework do you plan to use in your research?

Let's poll now!

What is Deep Learning?

Source: http://www.introtodeeplearning.com

Deep Learning Daily Life Examples

Deep Learning Tools available in 2020

Sonnet ONNX

History of Deep Learning Tools since 2000

Content of this workshop

Most Popular Deep Learning Framework

How UBDA supports your Deep Learning work?

Technical Support & Research Support

Deep Learning Framework

Keras vs † TensorFlow vs O PyTorch

Source:

https://www.mygreatlearning.c om/blog/computer-visionusing-pytorch/(2020)

	Keras	TensorFlow	PyTorch C
Level of API	High-level API	Both high & low level APIs	Lower-level API
Speed	Slow	High	High
Architecture	Simple, more readable and concise	Not very easy to use	Complex
Debugging	No need to debug	Difficult to debugging	Good debugging capabilities
Dataset Compatibility	Slow & Small	Fast speed & large	Fast speed & large datasets
Popularity Rank	1	2	3
Uniqueness	Multiple back-end support	Object Detection Functionality	Flexibility & Short Training Duration
Created By	Not a library on its own	Created by Google	Created by Facebook
Ease of use	User-friendly	Incomprehensive API	Integrated with Python language
Computational graphs used	Static graphs	Static graphs	Dynamic computation graphs

Deep Learning Framework Architecture of O PyTorch

Package	Description	
torch	The top-level PyTorch package and tensor library	
torch.nn	A subpackage that contains modules and extensible classes for building neural networks.	
torch.autograd	A subpackage that supports all the differentiable Tensor operations in PyTorch	
torch.nn.functional	A functional interface that contains typical operations used for building neural networks like loss functions, activation functions, and convolution operations.	
torch.optim	A subpackage that contains standard optimization operations like SGD and Adam	
torch.utils	A subpackage that contains utility classes like data sets and data loaders that make data preprocessing easier	
torchvision	A package that provides access to popular datasets, model architectures, and image transformations for computer vision.	

 PyTorch is made of different modules which help in executing deep learning models for CV and Natural Language Processing (NLP)

Setting up the Environment

```
import torch
import torchvision
import torchvision.transforms as transforms
```


 Transform torchvision datasets to Tensors of normalized range

```
Downloading https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to ./data/cifar-10-python.tar.gz
Extracting ./data/cifar-10-python.tar.gz to ./data
Files already downloaded and verified
```



```
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
   def __init__(self):
        super(Net, self). init_()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)
   def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x
net = Net()
```

 Define a Convolutional Neural Network

Define Loss function and optimizer

```
import torch.optim as optim

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
```


Train the network

```
for epoch in range(2): # loop over the dataset multiple times
    running loss = 0.0
   for i, data in enumerate(trainloader, 0):
        # get the inputs; data is a list of [inputs, labels]
        inputs, labels = data
        # zero the parameter gradients
        optimizer.zero_grad()
        # forward + backward + optimize
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        # print statistics
       running loss += loss.item()
        if i % 2000 == 1999:
                                # print every 2000 mini-batches
            print('[%d, %5d] loss: %.3f' %
                  (epoch + 1, i + 1, running_loss / 2000))
            running_loss = 0.0
print('Finished Training')
```

```
[1, 2000] loss: 2.197
[1, 4000] loss: 1.871
[1, 6000] loss: 1.670
[1, 8000] loss: 1.582
[1, 10000] loss: 1.508
[1, 12000] loss: 1.464
[2, 2000] loss: 1.390
[2, 4000] loss: 1.390
[2, 6000] loss: 1.327
[2, 8000] loss: 1.331
[2, 10000] loss: 1.293
[2, 12000] loss: 1.292
Finished Training
```



```
correct = 0
total = 0
with torch.no_grad():
    for data in testloader:
        images, labels = data
        outputs = net(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

print('Accuracy of the network on the 10000 test images: %d %%' % (
        100 * correct / total))
```

Test the network on the test data (overall)

```
Accuracy of the network on the 10000 test images: 55 %
```


Test the network on the test data (in class)

```
class correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
with torch.no_grad():
   for data in testloader:
       images, labels = data
       outputs = net(images)
        _, predicted = torch.max(outputs, 1)
        c = (predicted == labels).squeeze()
       for i in range(4):
           label = labels[i]
            class correct[label] += c[i].item()
            class total[label] += 1
for i in range(10):
   print('Accuracy of %5s : %2d %%' % (
       classes[i], 100 * class correct[i] / class total[i]))
```

```
Accuracy of plane : 74 %
Accuracy of car : 72 %
Accuracy of bird : 23 %
Accuracy of cat : 44 %
Accuracy of deer : 55 %
Accuracy of dog : 34 %
Accuracy of frog : 56 %
Accuracy of horse : 66 %
Accuracy of ship : 63 %
Accuracy of truck : 60 %
```


Tensors

- o primary data structure used in deep learning
- multidimensional data arrays
- Sample is Scalar

Data	Tensor
Vector	1D tensors of shape (features)
Timeseries	2D tensors of shape (timesteps, features)
Images	3D tensors of shape (height, width, channels)
Video	4D tensors of shape (frames, height, width, channels)

O PyTorch

Dynamic Computation Graph

function

Static Computation Graph: Define-and-Run (Build graph once, then run many times)

Parameters
Model definition
Computational graph
Parameters
Gradient function
Computational Gradient
Gradient

graph

Training

data

<u>Dynamic Computation Graph: Define-by-Run</u> (Each forward pass defines a new graph)

Locked Locked 18

Deep Learning Framework

Focus on user experience

Multi-backend Multi-platform

Research community

Large adoption in the industry

Easy to grasp all concepts

Import Libraries

Written In R library(keras)

Import numpy as np import pandas as pd import matplotlib.pyplot as plt import keras from keras.datasets import mnist from keras.models import Sequential from keras.layers import Dense, Dropout from keras.utils import to_categorical

Import MINST Dataset

Written In R mnist <- dataset_mnist()</pre> x_train <- mnist\$train\$x y_train <- mnist\$train\$y</pre> x_test <- mnist\$test\$x y_test <- mnist\$test\$y</pre>

Written in Python

(x_train, y_train), (x_test, y_test) = mnist.load_data()

Preprocess Train Set and Test Set and Scale the Input Features

Written In R

Reshaping & Scaling the input and output dimensions

x_train <- array_reshape(x_train, c(nrow(x_train), 784))/255

x_test <- array_reshape(x_test, c(nrow(x_test), 784))/255</pre>

Performing one-hot encoding on target variables

y_train <- to_categorical(y_train, 10)</pre>

y_test <- to_categorical(y_test, 10)</pre>

Written in Python

Reshaping & Scaling the input and output dimensions

x train=np.reshape(x train,(x train.shape[0],-1))/255

 $x_{test} = np.reshape(x_{test},(x_{test}.shape[0],-1))/255$

Performing one-hot encoding on target variables

y_train = to_categorical(y_train, 10)

y_test = to_categorical(y_test, 10)

- # Define Layers to this Model
- # Sequential Model with One Input Layer[784 neurons], 1 Hidden Layer[256 neurons] with Dropout Rate 0.4, 1 Hidden Layer[128 neurons] with Dropout Rate 0.3, and 1 Output Layer [10 #neurons]

Written In R # Defining the model and layers model <- keras model sequential() model %>% layer dense(units = 256, activation = 'relu', input shape = c(784)) % > %layer_dropout(rate = 0.4) %>% layer dense(units = 128, activation = 'relu') %>% layer_dropout(rate = 0.3) %>% layer dense(units = 10, activation = 'softmax')

Written in Python # Defining the model and layers model = Sequential() model.add(Dense(256, activation='relu', input shape=(784,))) model.add(Dropout(0.4)) model.add(Dense(128, activation='relu')) model.add(Dropout(0.3)) model.add(Dense(10, activation='softmax'))

Display All Model Layers

Written In R				
summary(model)				
Layer (type)	Output Shape	Param #		
dense (Dense)	(None, 256)	200960		
dropout (Dropout)	(None, 256)	0		
dense_1 (Dense)	(None, 128)	32896		
dropout_1 (Dropout)	(None, 128)	0		
dense_2 (Dense)	(None, 10)	1290		
Total params: 235,146 Trainable params: 235,146 Non-trainable params: 0		=======================================		

Written in Python				
model.summary()				
Layer (type)	Output Shape	Param #		
dense_1 (Dense)	(None, 256)	200960		
dropout_1 (Dropout)	(None, 256)	0		
dense_2 (Dense)	(None, 128)	32896		
dropout_2 (Dropout)	(None, 128)	0		
dense_3 (Dense)	(None, 10)	1290		
Total params: 235,146 Trainable params: 235,146 Non-trainable params: 0				

- # Specify the loss function and optimizer to use
- **#** Using Adam optimizer and accuracy as metric

Train the Model and Perform Validation

Written In R

history <- model %>% fit(x_train, y_train,

epochs = 30, batch_size = 512,

validation_split = 0.2)

Written in Python

history = model.fit(x_train, y_train,

epochs=30,batch_size=512,

validation_split=0.2)

Training Sequential Model Result (Output by R)

```
48000/48000 [=============] - 3s 71us/sample - loss: 0.0468 - acc: 0.9848 - val_loss: 0.0763 -
val acc: 0.9797
Epoch 22/30
val_acc: 0.9788
Epoch 23/30
48000/48000 [=============] - 3s 64us/sample - loss: 0.0440 - acc: 0.9852 - val_loss: 0.0759 -
val_acc: 0.9788
Epoch 24/30
val_acc: 0.9781
Epoch 25/30
val_acc: 0.9785
Epoch 26/30
48000/48000 [=============] - 3s 63us/sample - loss: 0.0392 - acc: 0.9871 - val_loss: 0.0744 -
val_acc: 0.9804
Epoch 27/30
val acc: 0.9799
Epoch 28/30
48000/48000 [=============] - 3s 60us/sample - loss: 0.0357 - acc: 0.9882 - val_loss: 0.0783 -
val_acc: 0.9791
Epoch 29/30
48000/48000 [==============] - 3s 56us/sample - loss: 0.0343 - acc: 0.9885 - val_loss: 0.0800 -
val_acc: 0.9794
25600/48000 [=========>.....] - ETA: 1s - loss: 0.0338 - acc: 0.9887[I 15:06:21.615 NotebookApp]
Saving file at /state-of-the-art/rkeras_minst.ipynb
48000/48000 [============] - 3s 59us/sample - loss: 0.0338 - acc: 0.9886 - val_loss: 0.0778 -
[I 15:08:26.673 NotebookApp] Saving file at /state-of-the-art/rkeras_minst.ipynb
```

Training Sequential Model Result (Output by Python)

```
Epoch 21/30
cc: 0.9795
Epoch 22/30
cc: 0.9788
Epoch 23/30
cc: 0.9785
Epoch 24/30
48000/48000 [================== ] - 3s 59us/step - loss: 0.0428 - acc: 0.9865 - val_loss: 0.0746 - val_a
cc: 0.9787
Epoch 25/30
48000/48000 [================== ] - 3s 64us/step - loss: 0.0400 - acc: 0.9869 - val_loss: 0.0786 - val_a
cc: 0.9793
Epoch 26/30
cc: 0.9799
Epoch 27/30
48000/48000 [================= ] - 3s 61us/step - loss: 0.0368 - acc: 0.9884 - val_loss: 0.0780 - val_a
cc: 0.9800
Epoch 28/30
cc: 0.9802
Epoch 29/30
48000/48000 [================== ] - 3s 61us/step - loss: 0.0345 - acc: 0.9885 - val loss: 0.0777 - val a
cc: 0.9803
Epoch 30/30
cc: 0.9804
```


- # Plot the Learning curves for this model
- **#** Loss Plot and Accuracy Plot

Written In R plot(history)

Written in Python df hist=pd.DataFrame(history.history) plt.plot(df_hist['loss'],'--o') plt.plot(df_hist['val_loss'], '--x') plt.legend(['loss', 'val_loss']) ; plt.show() plt.plot(df_hist['acc'],'--o') plt.plot(df_hist['val_acc'],'--x') plt.legend(['acc', 'val_acc']); plt.show()

Evaluate the model's performance on the test data

Written In R loss_acc_metrics <- model %>% evaluate(x_test, y test) print(loss_acc_metrics) Out: \$loss [1] 0.0683236 \$acc [1] 0.9832

```
Written in Python
loss_acc_metrics = model.evaluate(x_test, y_test)
print(loss_acc_metrics)
Out:
[0.07049376319068433, 0.9824]
```


Deep Learning Framework

Major features and improvements

- Keras will be the high-level API for TensorFlow, and it's extended that all the advanced features of TensorFlow can be used directly from tf.keras.
- Eager execution is now the default.
- TensorBoard integration with Keras
- Deep learning researchers will benefit from a low-level API which enables them to export internally used ops and continue to build models onto the internals of TensorFlow without having to rebuild TensorFlow.

Deep Learning Framework TensorFlow Model Building Style

From simple to arbitrarily flexible

Sequential API + built-in layers

Functional API

+ built-in layers

Functional API

+ Custom layers

+ Custom metrics + Custom losses Subclassing: write everything from scratch

Models not support:

- o share layers
- o branches
- o multiple inputs
- o multiple output

Engineers with standard use cases

- More complex models
- o Multiple inputs & output
- Easily Define branches
- Easily share layers

Engineers requiring increasing control

Researchers

Source: https://goo.gle/TensorFlow

How UBDA support your Deep Learning work?

Technical Support

Research Support

UBDA Technical Support Secure and Scalable Infrastructure

 \checkmark UBDA provides a dedicated, secure, and scalable 24/7 Linux platform for building deep learning model

- Storage layer consists of over 400 TB storage system with parallel file systems to allow users to store and process their research data in a reliable environment.
- External network connection is secured with SSH and PolyU Campus Network
- Support users execute their own developed application (C++, Python, R) with multiple (up to 104) CPU cores among multiple computing nodes via MPI
- Support Deep Learning with multiple (up to 4) nVidia P100 GPU Cards
- Allow users install/update libraries as well as software packages in their personal local accounts

UBDA Technical Support Deep Learning related tool available in UBDA Platform

- Python (supported to 3.8.1)
- Anaconda (supported to 2019.10)
- CUDA Toolkit (supported to 10.0)
- Keras (supported to 2.3.1)
- PyTorch (supported to 1.4)
- TensorFlow (support to tensorflow 2.0, tensorflow-gpu 1.14.0)
- Intel MPI (support to 2018.0.3)
- OpenMPI (support to 4.0.1)
- MPICH (Support to 3.2.1)

UBDA Technical Support Numerous job queues for different computing application

- Parallel Programming queue for huge dataset
- Large memory queue for Engineering and Mathematical Modelling
- GPU queue for Deep Learning
- MIC queue for High-Performance Computing (HPC)

UBDA Technical Support List of Documents support users in platform application

- GUI Files Transfer (Window/Mac iOS)
- UBDA Platform Login (Window/ Mas iOS) and Interface
- UBDA Network Drive Mapping over SSH (Window/Mac iOS)
- Deep Learning Framework installation with CUDA Support in user environment
- Job Submission and Scheduling (PBS Scripts)
- Practice with Open-source Python Scripts (e.g. Keras, PyTorch, TensorFlow etc.)
- Job Creation on a Time-based schedule
- Status Information Check
- SSH Keys and Public Key Authentication

UBDA Technical Support Consultation Service in UBDA Platform Application

Mr. Dillian Wong, Scientific Officer, dillian.wong@polyu.edu.hk

Mr. Jack Wong, Scientific Officer, jack.cw.wong@polyu.edu.hk

Account Registration Library Installation Resource Request Job Submission

UBDA Research Support Seminar, Talk, Lecture

UBDA Research Support UBDA Deep Learning Workshop

Topics:

- Deep Learning Algorithms and its Use Cases
- Deep Drive into Recurrent Neural Networks (RNN) model
- Deep Drive into Convolutional Neural Networks (CNN) model
- Deep Learning for Time Series Forecasting
- Unsupervised Deep Learning with Python

UBDA Research Support UBDA Users Gathering

Aims:

- Experience sharing for empowering users research idea
- enhance the collaborative use and transfer of acquired knowledge of the UBDA platform

UBDA Research Support Consultation Service in Data-driven Research and Proposal Writing

- Help in analyzing data-driven research problem and formulating the data-driven problem-solving approach
- Support writing proposal related to data-driven research
- Help calculation on the budget involved with using UBDA facility
- Be the supporting party in fund application if necessary

UBDA Research Support

Consultation Service in Data-driven Research and Proposal Writing

Dr. Divya SAXENA, divya.saxena@polyu.edu.hk

Statistical Analytics

Dr. Xiao WANG, xiao-ubda.wang@polyu.edu.hk

Dr. Jackei WONG, jackei.wong@polyu.edu.hk

Social Media Analysis Dr. Vincent NG, vincent.ng.comp@polyu.edu.hk

Data Mining

Health Informatics

Thank you!

Question and Answer Section