Final Exam of NSIB AY2007/8

解答用紙に ID と名前を書いて下さい。所定の場所以外に解答を書くときはそのことを明記してください。 $(5pts \times 20)$

- I. 次の問題の解答を解答欄の決められた場所に書いて下さい。
 - 1. 解答欄の、 $p \Rightarrow (\neg(q \lor r))$ と $\neg((p \land q) \lor (p \land r))$ の真理表を完成し、これらの命題が等値(真理値がいつも等しい)かどうか判定せよ。
 - 2. 関数 f(x) とその高階導関数 (何回か微分した関数) について、以下の記述のうち、正しいものには、 \bigcirc を、誤っているものには、 \times を解答欄に記入せよ。ただし、f(x)、f'(x)、f''(x)、f'''(x) はすべての x について微分可能とする。
 - (a) f(x) が x=c で極小ならば、f'(c)=0 かつ f''(c)>0 である。
 - (b) f'(c) = 0 かつ f''(c) > 0 ならば、f(x) は x = c で極小となる。
 - (c) f'(c) = f''(c) = f'''(c) = 0 かつ f''''(c) > 0 ならば、f(x) は x = c で増加している。
 - (d) $(f(x))^2$ の導関数は 2f'(x) である。
 - (e) f'(x) はすべての x=c に関して連続、すなわち、 $\lim_{x\to c} f'(x)=f'(c)$ である。
- II. 次の問いに答え、途中式もふくめ、解答欄の決められた場所に書いて下さい。(Show work!)

 - 4. 多項式 f(x) で、f(-2) = f(4) = f(7) = 0 かつ、f(-5) = -5 かつ f(1) = 1 を満たすものとする。次数が 4 以下のものと、次数が 5 のものを一つずつ書け。
 - 5. $f(x) = x^4 5x^3 + 5x^2 + 8x 12 = q(x)(x-2) + r = c_4(x-2)^4 + c_3(x-2)^3 + c_2(x-2)^2 + c_1(x-2) + c_0$ であるとき、多項式 q(x), 定数 r および c_4 , c_3 , c_2 , c_1 , c_0 を求めよ。
 - 6. g(x) はその導関数 g'(x) が前問 (問題 5) の f(x) すなわち $g'(x) = f(x) = x^4 5x^3 + 5x^2 + 8x 12$ となっているものとする。このとき、g''(x), g'''(x) を求めよ。
 - 7. g(x) は前問 (問題 6) の関数とする。このとき、g(x) は x=2 で 増加しているか、減少しているか、極大か極小かを決定し、理由も述べよ。
 - 8. $f(x) = c_4(x-2)^4 + c_3(x-2)^3 + c_2(x-2)^2 + c_1(x-2) + c_0$ とする。このとき、 $f(2) = c_0$, $f'(2) = c_1$, $f''(2) = 2c_2$, $f'''(2) = 6c_3$, $f''''(2) = 24c_4$ であることを示せ。
 - 9. $f(x)=rac{x^2-1}{x^2+1}$ とする。このとき、 f(x) の x=-2 における微分係数 f'(-2) を求め f(x) が x=-2 で増加しているか、減少しているか、極小か、極大か判定し、その理由も述べよ。
 - 10. $\lim_{x\to 2} \frac{3x^3 13x^2 + 16x 4}{x^4 5x^3 + 5x^2 + 8x 12}$ を求めよ。

- 11. $f(x)=(e^x+1)^{100}$ とする。この関数を合成関数 f(x)=h(g(x)) として表し導関数を求めたい。 $g(x),\,h(x)$ および f(x) の導関数 f'(x) を求めよ。
- $12. xe^{-3x^2}$ の導関数を求めよ。
- 13. x>0 のときに $f'(x)=-\frac{3}{x^4}+\frac{2}{x}-1+2e^{2x}$ となる関数 f(x) (f'(x) の原始関数) を一つ求めよ。
- 14. $\sqrt{x} + 3\log x + 1 + \frac{1}{x^3}$ の導関数を求めよ。
- 15. $y=e^{cx}$ が微分方程式 y''-y'-6y=0 を満たすとき定数 c を求めよ。この結果を用いて、 $y=f(x)=c_1e^{ax}+c_2e^{bx}$ $(a,b,c_1,c_2$ は定数) が、y''-y'-6y=0 および f(0)=5, f'(0)=5 を満たすように a,b,c_1,c_2 を決定せよ。
- III. 左下の行列 B に行に関する基本変形を (1) で一回、(2) で一回、(3) では三回おこない右下の行列 D を得た。次の問題の解答を解答欄の決められた場所に書いて下さい。

$$B = \begin{bmatrix} -1 & 1 & 3 & 1 & 0 \\ -2 & 0 & 4 & -1 & 7 \\ 1 & 0 & -2 & 0 & 3 \\ 2 & 1 & -3 & 1 & 9 \end{bmatrix}, C = \begin{bmatrix} -1 & 1 & 3 & 1 \\ -2 & 0 & 4 & -1 \\ 1 & 0 & -2 & 0 \\ 2 & 1 & -3 & 1 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}$$

- 16. 上の (1), (2), (3) で行った基本変形を [i;c] (i 行を c 倍), [i,j] (i 行と j 行の入れ換え), [i,j;c] (i 行に j 行の c 倍を加える) を用いて表せ。(3) においては三つの基本変形を行っていることに注意せよ。
- 17. 上の (1), (2), (3) で行った変形は、ある行列を左からかけることによっても得られる。その行列をそれぞれ、 P_1 , P_2 , P_3 とする。 P_1 , P_2 , P_3 を書け。答のみでよい。
- 18. 前問 (問題 17) の P_1 , P_2 , P_3 の逆行列をそれぞれ求めよ。答のみでよい。
- 19. 上の行列 B はある連立一次方程式の拡大係数行列であるする。B を既約ガウス行列に変形し、解 x_1,x_2,x_3,x_4 を求めよ。
- 20. 行列方程式 Cx = b で解 x が存在しないような b があることを示せ。

NSIB FINAL 2007/8 解答用紙

ID#: Division: Name:

I-1.

p	q	r	p	\Rightarrow	(¬	(q	V	r))	_	((p	\wedge	q)	V	(<i>p</i>	\wedge	r))
T	T	T														
T	T	F														
T	F	T														
T	F	F														
F	T	T														
F	T	F														
F	F	T														
F	F	F														

等値かどうかの判定:

2.

(a)	(b)	(c)	(d)	(e)

メッセージ: 数学少しは楽しめましたか。苦しんだ人もいるかな。以下の ことについて書いて下さい。

- (A) この授業について。改善点など何でもどうぞ。
- (B) ICU の教育一般について。改善点など、ICU に関すること何でもど うぞ。

No.	PTS.
1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	
9.	
10.	
11.	
12.	
13.	
14.	
15.	
16.	
17.	
18.	
19.	
20.	
Total	

II.

3. x と y を論理式とするとき $x \downarrow y = \neg(x \lor y)$ を表すものとする。このとき、 $p \Rightarrow q$ を p, q および \downarrow と 括弧のみを用いて表せ。 $\neg, \land, \lor, \Rightarrow$ は用いないこと。(Hint: Quiz 1 問題 2 参照)

4. 多項式 f(x) で、f(-2) = f(4) = f(7) = 0 かつ、f(-5) = -5 かつ f(1) = 1 を満たすものとする。次数が 4 以下のものと、次数が 5 のものを一つずつ書け。

5. $f(x)=x^4-5x^3+5x^2+8x-12=q(x)(x-2)+r=c_4(x-2)^4+c_3(x-2)^3+c_2(x-2)^2+c_1(x-2)+c_0$ であるとき、多項式 q(x)、定数 r および c_4,c_3,c_2,c_1,c_0 を求めよ。

6. g(x) はその導関数 g'(x) が前問 (問題 5) の f(x) すなわち $g'(x) = f(x) = x^4 - 5x^3 + 5x^2 + 8x - 12$ となっているものとする。このとき、g''(x), g'''(x) を求めよ。

7. g(x) は前問 (問題 6) の関数とする。このとき、g(x) は x=2 で 増加しているか、減少しているか、極大か極小かを決定し、理由も述べよ。

8. $f(x)=c_4(x-2)^4+c_3(x-2)^3+c_2(x-2)^2+c_1(x-2)+c_0$ とする。このとき、 $f(2)=c_0$, $f'(2)=c_1$, $f''(2)=2c_2$, $f'''(2)=6c_3$, $f''''(2)=24c_4$ であることを示せ。

9. $f(x)=\frac{x^2-1}{x^2+1}$ とする。このとき、 f(x) の x=-2 における微分係数 f'(-2) を求め f(x) が x=-2 で増加しているか、減少しているか、極小か、極大か判定し、その理由も述べよ。

10. $\lim_{x\to 2} \frac{3x^3-13x^2+16x-4}{x^4-5x^3+5x^2+8x-12}$ を求めよ。

11. $f(x)=(e^x+1)^{100}$ とする。この関数を合成関数 f(x)=h(g(x)) として表し導関数を求めたい。 $g(x),\,h(x)$ および f(x) の導関数 f'(x) を求めよ。

 $12. xe^{-3x^2}$ の導関数を求めよ。

13. x>0 のときに $f'(x)=-\frac{3}{x^4}+\frac{2}{x}-1+2e^{2x}$ となる関数 f(x) (f'(x) の原始関数) を一つ求めよ。

14. $\sqrt{x} + 3\log x + 1 + \frac{1}{x^3}$ の導関数を求めよ。

15. $y=e^{cx}$ が微分方程式 y''-y'-6y=0 を満たすとき定数 c を求めよ。この結果を用いて、 $y=f(x)=c_1e^{ax}+c_2e^{bx}$ $(a,b,c_1,c_2$ は定数) が、y''-y'-6y=0 および f(0)=5 を満たすように a,b,c_1,c_2 を決定せよ。

III.

- 16. 上の(1), (2), (3) で行った基本変形を[i;c] (i 行をc 倍), [i,j] (i 行とj 行の入れ換え), [i,j;c] (i 行にj 行のc 倍を加える) を用いて表せ。(3) においては三つの基本変形を行っていることに注意せよ。
 - (1)
 - (2)
 - (3)
- 17. 上の (1), (2), (3) で行った変形は、ある行列を左からかけることによっても得られる。その行列をそれぞれ、 P_1 , P_2 , P_3 とする。 P_1 , P_2 , P_3 を書け。答のみでよい。
 - $P_1 = P_2 = P_3 =$
- 18. 前問 (問題 17) の P_1 , P_2 , P_3 の逆行列をそれぞれ求めよ。答のみでよい。
 - $P_1^{-1} = P_2^{-1} = P_3^{-1} =$
- 19. 上の行列 B はある連立一次方程式の拡大係数行列であるする。B を既約ガウス行列に変形し、解 x_1,x_2,x_3,x_4 を求めよ。

20. 行列方程式 Cx = b で解 x が存在しないような b があることを示せ。

I.

1. $p \Rightarrow (\neg(q \lor r)) \succeq \neg((p \land q))$	$V(p \wedge r))$ の真理表による等値かどうか ${m G}$	り判定。
---	--	------

p	q	r	p	\Rightarrow	(¬	(q	V	r))	_	((p	\wedge	q)	V	(p	\wedge	r))
T	T	T	T	$oldsymbol{F}$	F	T	T	T	$oldsymbol{F}$	T	T	T	T	T	T	T
T	T	F	T	$oldsymbol{F}$	F	T	T	F	\boldsymbol{F}	T	T	T	T	T	F	F
T	F	T	T	$oldsymbol{F}$	F	F	T	T	\boldsymbol{F}	T	F	F	T	T	T	T
T	F	F	T	T	T	F	F	F	T	T	F	F	F	T	F	F
\overline{F}	T	T	F	T	F	T	T	T	T	F	F	T	F	F	F	T
F	T	F	F	$oldsymbol{T}$	F	T	T	F	T	F	F	T	F	F	F	F
F	F	T	F	T	F	F	T	T	T	F	F	F	F	F	F	T
F	F	F	F	T	T	F	F	F	T	F	F	F	F	F	F	F

等値かどうかの判定:等値

2.

(a)	(b)	(c)	(d)	(e)
×	\circ	×	×	\circ

II.

$$p \Rightarrow q = (\neg p) \lor q = (p \downarrow p) \lor q = ((p \downarrow p) \downarrow q) \downarrow ((p \downarrow p) \downarrow q).$$

4. 多項式 f(x) で、f(-2) = f(4) = f(7) = 0 かつ、f(-5) = -5 かつ f(1) = 1 を満たすものとする。次数が 4 以下のものと、次数が 5 のものを一つずつ書け。

解:次数が4以下のものは

$$f(x) = \frac{-5(x+2)(x-1)(x-4)(x-7)}{(-5+2)(-5-1)(-5-4)(-5-7)} + \frac{(x+5)(x+2)(x-4)(x-7)}{(1+5)(1+2)(1-4)(1-7)}.$$

次数が5のものは、上のf(x)を用いて

$$f(x) + (x+5)(x+2)(x-1)(x-4)(x-7)$$
.

 $5. \ f(x) = x^4 - 5x^3 + 5x^2 + 8x - 12 = q(x)(x-2) + r = c_4(x-2)^4 + c_3(x-2)^3 + c_2(x-2)^2 + c_1(x-2) + c_0$ であるとき、多項式 q(x)、定数 r および c_4, c_3, c_2, c_1, c_0 を求めよ。

解:組み立て除法を用いると良い。

$$f(x) = x^4 - 5x^3 + 5x^2 + 8x - 12 = (x^3 - 3x^2 - x + 6)(x - 2)$$
$$= (x - 2)^4 + 3(x - 2)^3 - (x - 2)^2.$$

したがって、 $q(x) = x^3 - 3x^2 - x + 6$, r = 0, $c_4 = 1$, $c_3 = 3$, $c_2 = -1$, $c_1 = 0$, $c_0 = 0$.

6. g(x) はその導関数 g'(x) が前問 (問題 5) の f(x) すなわち $g'(x) = f(x) = x^4 - 5x^3 + 5x^2 + 8x - 12$ となっているものとする。このとき、g''(x), g'''(x) を求めよ。

$$\mathbf{H}: g''(x) = 4x^3 - 15x^2 + 10x + 8, \ g'''(x) = 12x^2 - 30x + 10.$$

別解として
$$g'(x)=f(x)=(x-2)^4+3(x-2)^3-(x-2)^2$$
 を用いると、 $g''(x)=f'(x)=4(x-2)^3+9(x-2)^2-2(x-2),$ $g'''(x)=f''(x)=12(x-2)^2+18(x-2)-2$ を得る。

7. g(x) は前問 (問題 6) の関数とする。このとき、g(x) は x=2 で 増加しているか、減少しているか、極大か極小かを決定し、理由も述べよ。

解:問題 5 より $f(x)=(x-2)^4+3(x-2)^3-(x-2)^2$ だから g'(2)=f(2)=0. 同様に上の別解を用いると、g''(2)=0, g'''(2)=-2 を得る。g'''(2)<0 だから g''(x) は x=2 の付近で減少。よって x<2 で g''(x)>0, x>2 で g''(x)<0。よって g'(x) は x<2 で増加、x>2 で減少、g'(2)=0 だから x=2 の付近で $x\neq0$ では x=2 では x=2 では y'(x)<0 よって y(x) は x=2 で減少している。

8. $f(x) = c_4(x-2)^4 + c_3(x-2)^3 + c_2(x-2)^2 + c_1(x-2) + c_0$ とする。このとき、 $f(2) = c_0$, $f'(2) = c_1$, $f''(2) = 2c_2$, $f'''(2) = 6c_3$, $f''''(2) = 24c_4$ であることを示せ。

解:まず、 $f(2) = c_0$ は明らか。上で使った議論を使えば合成関数の微分から、

$$f'(x) = 4c_4(x-2)^3 + 3c_3(x-2)^2 + 2c_2(x-2) + c_1,$$

$$f''(x) = 12c_4(x-2)^2 + 6c_3(x-2) + 2c_2,$$

$$f'''(x) = 24c_4(x-2) + 6c_3,$$

$$f''''(x) = 24c_4.$$

したがって、 $f'(2) = c_1$, $f''(2) = 2c_2$, $f'''(2) = 6c_3$, $f''''(2) = 24c_4$ を得る。

9. $f(x)=\frac{x^2-1}{x^2+1}$ とする。このとき、 f(x) の x=-2 における微分係数 f'(-2) を求め f(x) が x=-2 で増加しているか、減少しているか、極小か、極大か判定し、その理由も述べよ。解:商の微分を用いると、

$$f'(x) = \frac{2x(x^2+1) - (x^2-1)(2x)}{(x^2+1)^2} = \frac{4x}{(x^2+1)^2}, \ f'(-2) = -\frac{8}{25} < 0$$

だから f(x) は減少している。

10. $\lim_{x\to 2} \frac{3x^3 - 13x^2 + 16x - 4}{x^4 - 5x^3 + 5x^2 + 8x - 12}$ を求めよ。

解:問題 5 と同じように分子を書き表すと $3x^3-13x^2+16x-4=3(x-2)^3+5(x-2)^2$ となる。 したがって

$$\lim_{x \to 2} \frac{3x^3 - 13x^2 + 16x - 4}{x^4 - 5x^3 + 5x^2 + 8x - 12} = \lim_{x \to 2} \frac{3(x - 2)^3 + 5(x - 2)^2}{(x - 2)^4 + 3(x - 2)^3 - (x - 2)^2}$$
$$= \lim_{x \to 2} \frac{3(x - 2) + 5}{(x - 2)^2 + 3(x - 2) - 1} = -5.$$

11. $f(x)=(e^x+1)^{100}$ とする。この関数を合成関数 f(x)=h(g(x)) を表し導関数を求めたい。 $g(x),\,h(x)$ および f(x) の導関数 f'(x) を求めよ。

解:
$$g(x)=e^x+1,\ h(x)=x^{100}$$
 とおけばよい。 $g'(x)=e^x,\ h'(x)=100x^{99}$ だから
$$f'(x)=h'(g(x))g'(x)=100(e^x+1)^{99}e^x.$$

 $12. xe^{-3x^2}$ の導関数を求めよ。

解:積の微分を用いる。 e^{-3x^2} の部分は合成関数の微分を用いて、 $(e^{-3x^2})'=e^{-3x^2}(-6x)$ だから

$$(xe^{-3x^2})' = (x)'e^{-3x^2} + x(e^{-3x^2})' = e^{-3x^2} + xe^{-3x^2}(-6x) = e^{-3x^2}(1 - 6x^2).$$

13. x>0 のときに $f'(x)=-\frac{3}{x^4}+\frac{2}{x}-1+2e^{2x}$ となる関数 f(x) (f'(x) の原始関数) を一つ求めよ。

解: $\frac{1}{x^4}$ は x^{-4} で x^n の原始関数は、 $\frac{1}{n+1}x^{n+1}$ $(n\neq -1)$ で、 x^{-1} の原始関数は $\log x$ だったから、C を任意の定数として、

$$f(x) = \frac{1}{x^3} + 2\log x - x + e^{2x} + C.$$

 $14. \,\,\, \sqrt{x} + 3\log x + 1 + rac{1}{x^3} \,$ の導関数を求めよ。

解:

$$(\sqrt{x} + 3\log x + 1 + \frac{1}{x^3})' = (x^{1/2} + 3\log x + 1 + x^{-3})' = \frac{1}{2}x^{-1/2} + \frac{3}{x} - 3x^{-4}.$$

15. $y=e^{cx}$ が微分方程式 y''-y'-6y=0 を満たすとき定数 c を求めよ。この結果を用いて、 $y=f(x)=c_1e^{ax}+c_2e^{bx}$ $(a,b,c_1,c_2$ は定数) が、y''-y'-6y=0 および f(0)=5, f'(0)=5 を満たすように a,b,c_1,c_2 を決定せよ。

解: $y' = ce^{cx}$, $y'' = c^2 e^{cx}$ だから

$$0 = y'' - y' - 6y = c^{2}e^{cx} - ce^{cx} - 6e^{cx} = (c^{2} - c - 6)e^{cx} = (c - 3)(c + 2)e^{cx}$$

 $e^{cx} \neq 0$ だから c=3 または c=-2 を得る。ここで $y=f(x)=c_1e^{3x}+c_2e^{-2x}$ とおくと、この y も y''-y'-6y=0 を満たす。 $y'=3c_1e^{3x}-2c_2e^{-2x}$ だから $5=f(0)=c_1+c_2$ かつ、 $5=f'(0)=3c_1-2c_2$ 。これより $c_1=3$, $c_2=2$ を得る。したがって、 $y=f(x)=3e^{3x}+2e^{-2x}$.

III. 左下の行列 B に行に関する基本変形を (1) で一回、(2) で一回、(3) では三回行い右下の行列 D を得た、次の問題の解答を解答欄の決められた場所に書いて下さい

$$B = \begin{bmatrix} -1 & 1 & 3 & 1 & 0 \\ -2 & 0 & 4 & -1 & 7 \\ 1 & 0 & -2 & 0 & 3 \\ 2 & 1 & -3 & 1 & 9 \end{bmatrix}, C = \begin{bmatrix} -1 & 1 & 3 & 1 \\ -2 & 0 & 4 & -1 \\ 1 & 0 & -2 & 0 \\ 2 & 1 & -3 & 1 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}$$

16. 上の (1), (2), (3) で行った基本変形を [i;c] (i 行を c 倍), [i,j] (i 行と j 行の入れ換え), [i,j;c] (i 行に j 行の c 倍を加える) を用いて表せ。(3) においては三つの基本変形を行っていることに注意せよ。

解: (1) [1; -1] (第1行を -1 倍。) (2) [2,3] (第2行と第3行を交換。) (3) [2,1; -1], [3,1; 2], [4,1; -2] (第2行に第1行の -1 倍を加え、第3行に第1行の 2 倍を加え、第4行に第1行の -2 倍を加える。この場合は、どの順番でも良い。)

17. 上の (1), (2), (3) で行った変形は、ある行列を左からかけることによっても得られる。その行列をそれぞれ、 P_1 , P_2 , P_3 とする。 P_1 , P_2 , P_3 を書け。答のみでよい。

解:単位行列にそれぞれの基本変形を施したものと等しいから、

$$P_1 = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ P_2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ P_3 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ -2 & 0 & 0 & 1 \end{bmatrix}.$$

18. 前問 (問題 17) の P_1 , P_2 , P_3 の逆行列をそれぞれ求めよ。答のみでよい。

解:P を P_1 , P_2 , P_3 のいずれかとするとき [P,I] に基本変形を施し [I,Q] とすれば、 $Q=P^{-1}$ であった。これらについては、簡単に求められるので、

$$P_1^{-1} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ P_2^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ P_3^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ -2 & 0 & 1 & 0 \\ 2 & 0 & 0 & 1 \end{bmatrix}.$$

19. 上の行列 B はある連立一次方程式の拡大係数行列であるする。B を既約ガウス行列に変形し、解 x_1,x_2,x_3,x_4 を求めよ。

解: D にさらに基本変形を施すと

$$D \to \begin{bmatrix} 1 & 0 & -2 & 0 & 3 \\ 0 & 1 & 1 & 1 & 3 \\ 0 & 0 & 0 & -1 & 13 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \to \begin{bmatrix} 1 & 0 & -2 & 0 & 3 \\ 0 & 1 & 1 & 1 & 3 \\ 0 & 0 & 0 & 1 & -13 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \to \begin{bmatrix} 1 & 0 & -2 & 0 & 3 \\ 0 & 1 & 1 & 0 & 16 \\ 0 & 0 & 0 & 1 & -13 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

したがって $x_1 = 2s + 3$, $x_2 = -s + 16$, $x_3 = s$. $x_4 = -13$, s はパラメタである。

20. 行列方程式 Cx = b で解 x が存在しないような b があることを示せ。

解:上で行った基本変形を行列 P をかけることによって行うものとする。c を 第 4 成分が 1 であとは、0 であるものとする。すると、PC は上の既約ガウス行列の左四列の部分だから PCx=c は解を持たない。ここで $b=P^{-1}c$ とおけば、Cx=b は解をもたない。実際 解をもつとすると、 $PCx=PP^{-1}c=c$ となり、矛盾である。実際 $b_1+3b_3-b_4\neq 0$ であればいつでも解をもたない。

鈴木寛 (hsuzuki@icu.ac.jp)