# Category-theoretic properties

"Any two isomorphic objects in a category have the same category-theoretic properties."

instead of formalizing the "language & logic of category theory", we'll just look at examples of category-theoretic properties. Here's our first one...

# Terminal objects

An object  $T \in \mathbb{C}$  of a category  $\mathbb{C}$  is terminal if for all  $X \in \mathbb{C}$ , there is a unique morphism  $X \to T$  (we'll write  $\langle \rangle_x$ , or just  $\langle \rangle$  for this morphism)

Theorem In a category C:

(a) if T is terminal & T=T, then T is terminal

(b) if T& T' are both terminal, then T=T'

(and there is only one isomorphism between

T& T')

terminal objects are unique up to

unique isomorphism

3.2

# Terminal objects

An object  $T \in \mathbb{C}$  of a category  $\mathbb{C}$  is terminal if for all  $X \in \mathbb{C}$ , there is a unique morphism  $X \to T$  (we'll write  $\langle \cdot \rangle_{x}$ , or just  $\langle \cdot \rangle$  for this morphism)

Theorem. In a category C:

(a) if T is terminal & T=T, then T is terminal

(b) if T& T' are both terminal, then T=T'

(and ...)

Proof

## Examples of terminal objects

- In Set: any one-element set
- Any one-element set has a unique pre-order & this makes it terminal in Pre
- Ditto for Mon.
- A pre-ordered set (B≤), regarded as a category, has a terminal object iff it has a greatest element: (∀x∈P) x ≤T
- When does a monoid (M, , , 1), regarded as a category, have a terminal object?

# The opposite of a category.

is the category Cop defined by

Obj  $\mathbb{C}^{op} \triangleq Obj \mathbb{C}$   $\mathbb{C}^{op}(x,y) \triangleq \mathbb{C}(y,x)$  for all objects  $X_{A}Y$ 

same objects

Same morphisms, but with direction reversed, that is, dom & cod swapped



# The opposite of a category. C

is the category Cop defined by

- Obj C°P = Obj C
- $\mathbb{C}^{op}(X,Y) \triangleq \mathbb{C}(Y,X)$  for all objects  $X_{x}Y$
- · identity morphism on XEObj C' is  $id_{x}$ , the identity on  $X \in \partial ij\mathbb{C}$
- the composition of  $f \in C^{0}(X,Y) \& g \in C^{0}(Y,Z)$ is given by composition  $f \circ g \in \mathbb{C}(Z,X)$  in  $\mathbb{C}$   $g \circ_{\mathbb{C}^{op}} f \stackrel{d}{=} f \circ_{\mathbb{C}} g$

(associativity & unity props hold, because they do in C)

# Principle of Duality

Whenever we {define a concept in terms of prove a theorem Commutative diagrams, we obtain another (Concept, called its dual, by reversing theorem) the direction of morphisms throughout (i.e. by replacing ( by Cop).

for example...

#### Initial object

is the dual notion to "terminal object"

An object I & C of a category C is initial if for all X & C, there is a unique morphism I -> X [we'll write [], or just [] for this morphism

By duality, we have that initial objects are unique up to 1so and that any object isomorphic to an initial object is itself initial.

18 "isomorphism" is a self-dual concept 3.8

## Examples of initial objects

- The empty set is initial in Set
- Any one-element monoid (has uniquely determined monoid operation & unit) is initial in Mon (why?)

  So initial & terminal objects coincide in Mon)

an object that's both initial & terminal is sometimes called a zero object

(relevant to automata & formal languages)



Free monoid on a set ZE Set:  $i_z: \Sigma \to List(\Sigma)$  in Set  $a \mapsto [a]$  where  $[a] \stackrel{\triangle}{=} a :: nil$ z sends element α ∈ Σ to corr. list of length 1 It has the following "universal property"...

Theorem Given Ze Set, (M,.,e) E Mon and  $f \in Set(\Sigma, M)$ , there is a unique monoid homomorphism  $\hat{f} \in Mon(List(\Sigma), M)$  $l \Sigma \rightarrow L' st(\Sigma)$ -fuf Commute in Set

Proof ...

Theorem Griven Ze Set, (M,.,0) EMM and  $f \in Set(\Sigma, M)$ , there is a unique moneil homomorphism femon (List(E), M) making  $\Sigma$ List( $\Sigma$ )

Commute in Set

M

he theorem just says that  $i_{\Sigma}: \Sigma \to List(\Sigma)$ is an initial object in the following category:

- Category  $\Sigma/Mon$ :
   objects (M,f) where  $M \in Mon & f \in Set(\Sigma,M)$
- morphisms in ∑|Mon((M,f),(N,g)) are  $h \in Mon(M, N)$  st.  $\sum_{g=1}^{t} M$  commutes in Set
- · identities & composition as in Mon

Theorem Given Ze Set, (M,.,1) EMM and  $f \in Set(\Sigma, M)$ , there is a unique mone if homomorphism  $f \in Mon(\Sigma^*, M)$ making  $\Sigma$  if commute in Set is an initial object in  $\Sigma/Mon$ .

The theorem just says that is: E -> E\* is an initial object

50 this universal property determines List(Σ) uniquely up to monoid isomorphism.

We'll see later that EHSLISHE) is pout of a fundor (= category morphism) which is left adjoint to the 'forgetful fundor' Mong Set.