

30 SEPTIEMBRE 2017

DEEP LEARNING CON CNTK

Taller de Visión Artificial

Manuel Rodrigo Cabello Malagón

Software Engineer @ PLAIN CONCEPTS

@mrcabellom ☑
mrcabellom@Gmail.com ☑
https://geeks.ms/mrcabellom/ ☑

Pablo Doval

DATA PONTIFEX @ PLAIN CONCEPTS

"I work with code and data, but don't tell my mom; she thinks I'm a piano player in a whorehouse."

¿QUÉ ES ESTO?

¿PARA QUE NOS SIRVE ESTO?

MACHINE LEARNING EN AZURE

Azure ML

- Fácil y sencillo
- Escalabilidad limitada
- Version Renovada hace 4 dias;)

R Server

- Lenguaje conocido
- Escalado a grandes datasets
- Evaluaciones en tiempo real

HDInsight

- Mahout
- SparkML
- Escalabilidad casi ilimitada

Cognitive Services

- APIs listas para usar
- Modelos preentrenados
- No son necesarios conocimientos de ML

CNTK

- Modelos complejos
- Entrenamiento personalizado
- Entrenamiento multi server/multi GPU

Speech

Language

Knowledge

Search

plain concepts

- Computer Vision
- Content Moderator
- Emotion API
- Face API
- ...

Speech

Language

Knowledge

Search

I am not really confident, but I think it's a group of people on a sidewalk and they seem 😁 😁 😁 😁 😁 😁 😁 😁 😁 😁 🈁 🈁 🈁 🈁 🈁 🈁 🈁 🈁 🌣

Speech

- Bing Speech API
- Custom Speech Service
- Speaker Recognition Service

Language

Knowledge

Search

Speech

Language

- Spell Check API
- LUIS
- Linguistic Analysis
- Translator API
- ...

Knowledge

Search

Speech

Language

Knowledge

- Entity Linking Service
- Academic Knowledge Service
- Q&A Maker
- ...

Search

Speech

Language

Knowledge

Search

- Autosuggest API
- Image Search API
- News Search API
- ...

DEEP LEARNING CON CNTK

DEEP LEARNING CON CNTK

DEEP LEARNING

Machine Learning

Basados en Redes Neuronales

Más de una capa oculta (Deep Models)

DEEP LEARNING CON CNTK

CNTK

¿Por qué?

- Desarrollo más rápido de los modelos
- Uso de múltiples CPUs y GPUs
- Multi-plataforma
 - Es el producto que Microsoft usa internamente

CNTK

- Es el acrónimo del algo.
- Es un framework de Deep Learning, y es open-source, con contribuciones externas relevantes del MIT y Stanford, entre otros.
- Permite expresar redes neuronales complejas de un modo relativamente sencillo, y se encarga de todos los pasos de su ciclo de vida: desde el entrenamiento hasta la evaluación.
- Desarrollo en BrainScript, Python (.NET en camino)

LAB 0: INSTALACIÓN

TÉCNICAS DE VISIÓN ARTIFICIAL

Regresión Logística

UN EJEMPLO

- Sum (weights x pixels) = $\overrightarrow{w_x} \cdot \overrightarrow{x}$
- Sum (weights x pixels) = $\overrightarrow{w_0} \cdot \overrightarrow{x}$

$$z = \vec{w} \cdot \vec{x} + b$$

SIGMOIDE

SOFTMAX

$$s_{(y_i)} = \frac{e^{y_i}}{\sum_j e^{y_i}}$$

Esto ya son probabilidades

FUNCIÓN DE PERDIDA

FUNCIÓN DE PERDIDA

$$error = \frac{1}{n} \sum_{i=1}^{n} (y_j - p_j)^2$$

CROSS ENTROPY

$$error = y_j^T \log P_j$$

ENTRENAMIENTO

z = times(x, W) + b
cross_entropy_with_softmax(z, y)
classification_error(z, y)

DESCENSO DE GRADIENTE

DESCENSO DE GRADIENTE

DESCENSO DE GRADIENTE

LAB 1: REGRESIÓN LOGÍSTICA

TÉCNICAS DE VISIÓN ARTIFICIAL

Perceptrón Multicapa

REDES NEURONALES - CLASIFICADOR

REDES NEURONALES - CLASIFICADOR

PESOS Y BIAS

Coste = Valor Generado – Valor Real

BACK PROPAGATION

Coste = Valor Generado – Valor Real

LAB 2: PERCEPTRÓN MULTICAPA

DEEP LEARNING

IMAGENET CHALLENGE

% de Error por Año y Equipo

TÉCNICAS DE VISIÓN ARTIFICIAL

Redes Neuronales Convolucionales

TÉCNICAS DE VISIÓN ARTIFICIAL

Redes Neuronales Convolucionales

Con Excel

FILTRADO

FILTRADO

Filtro 1 Filtro 2 Filtro 3


```
1 1 1
1 1 1
1 1 1
```


0.55

FILTRADO

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

CONVOLUCIÓN

```
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1
        -1<
```


0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

CONVOLUCIÓN

 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1<

	0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-	0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
	0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
	0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
	0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-	0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
	0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1<

0.33	3	-0.11	0.55	0.33	0.11	-0.11	0.77
-0.1	1	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.5	5	-0.11	0.11	-0.33	1.00	-0.11	0.11
0.33	3	0.33	-0.33	0.55	-0.33	0.33	0.33
0.1	1	-0.11	1.00	-0.33	0.11	-0.11	0.55
-0.1	1	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.7	7	-0.11	0.11	0.33	0.55	-0.11	0.33

CONVOLUCIÓN


```
      0.77
      -0.11
      0.11
      0.33
      0.55
      -0.11
      0.33

      -0.11
      1.00
      -0.11
      0.33
      -0.11
      0.11
      -0.11

      0.11
      -0.11
      1.00
      -0.33
      0.11
      -0.11
      0.55

      0.33
      0.33
      -0.33
      0.55
      -0.33
      0.33
      0.33

      0.55
      -0.11
      0.11
      -0.33
      1.00
      -0.11
      0.11

      -0.11
      0.11
      -0.11
      0.33
      -0.11
      1.00
      -0.11

      0.33
      -0.11
      0.55
      0.33
      0.11
      -0.11
      0.77
```

0.33	-0.55	-0.11	-0.11	0.11	-0.55	0.33
-0.55	0.55	-0.55	0.33	-0.55	0.55	-0.55
0.11	-0.55	0.55	-0.77	0.55	-0.55	0.11
-0.11	0.33	-0.77	1.00	-0.77	0.33	-0.11
0.11	-0.55	0.55	-0.77	0.55	-0.55	0.11
-0.55	0.55	-0.55	0.33	-0.55	0.55	-0.55
0.33	-0.55	0.11	-0.11	0.11	-0.55	0.33

0.33	-0.11	0.55	0.33	0.11	-0.11	0.77
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.77	-0.11	0.11	0.33	0.55	-0.11	0.33

POOLING

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

POOLING

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

AVERAGE POOLING – STRIDE 1

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

0.39	0.22	0.17	0.28	0.11	0.06
0.22	0.45	0.22	0.00	0.00	0.11
0.17	0.22	0.22	0.00	0.00	0.28
0.28	0.00	0.00	0.22	0.22	0.17
0.11	0.00	0.00	0.22	0.45	0.22
0.06	0.11	0.28	0.17	0.22	0.39

MAX POOLING – STRIDE 1

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

```
1.001.000.330.550.550.331.001.001.000.330.110.550.331.001.000.550.330.550.550.330.551.001.000.330.550.110.331.001.001.000.330.550.550.331.001.00
```

MAX POOLING – STRIDE 2

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

1.00	0.33	0.55	0.33
0.33	1.00	0.33	0.55
0.55	0.33	1.00	0.11
0.33	0.55	0.11	0.77

POOLING - ¿PARA QUE?

FUNCIONES DE ACTIVACIÓN

FUNCIONES DE ACTIVACIÓN

FUNCIÓN LOGÍSTICA ("sigmoide"):

- Simple.
- Pegas:
 - Saturación
 - No centrada en cero
- No la usamos, pero le agradecemos los servicios prestados :)

FUNCIONES DE ACTIVACIÓN

TANGENTE HIPERBÓLICA (tanh):

- Resuelve el problema del nocentrado en cero
- Sigue 'matando gradientes' por saturación
- Siempre es preferible a la función logística

FUNCIONES DE ACTIVACIÓN

RECTIFIED LINEAR UNITS (ReLU):

- Optimización para la convergencia del SGD
- Computacionalmente más sencilla (no hay que exponenciar, etc..)
- Fragiles (pueden 'morir' dejando parte de la red inaccesible)

FUNCIONES DE ACTIVACIÓN

LEAKY ReLU:

- Más estables que ReLU tradicional
- La pendiente de la región negativa puede parametrizarse
- Caso particular del MaxOut

ReLU

0.77	0.00	0.11	0.33	0.55	0.00	0.33
0.00	1.00	0.00	0.33	0.00	0.11	0.00
0.11	0.00	1.00	0.00	0.11	0.00	0.55
0.33	0.33	0.00	0.55	0.00	0.33	0.33
0.55	0.00	0.11	0.00	1.00	0.00	0.11
0.00	0.11	0.00	0.33	0.00	1.00	0.00
0.33	0.00	0.55	0.33	0.11	0.00	0.77

DROPOUT

DROPOUT

¿QUÉ FALTA AQUÍ?

¿De dónde han salido estos?

LAB 2: REDES NEURONALES CONVOLUCIONALES

ALEXNET EN CNTK (PYTHON)

EJEMPLO: AlexNet

EJEMPLO: AlexNet

PRODUCCIONALIZACIÓN

- Nuevo Servicio de AzureML
- Maquinas Virtuales de Azure de tipo NC
 - Coordinación con Azure Batch / Azure Al Training Service
- Clústers de HDInsight mediante PySpark
- Checkpoints

ALGUNAS IDEAS

- AutoEncoders
- Recurrent Neural Networks (RNN)
- Long Short Term Memory (LSTM)

ALGUNOS PAPERS INTERESANTES

```
"ImageNet Classification with Deep Convolutional Neural Netowrks"
   [Krizhevsky, Sutskever, Hinton]
   arXiv:
"Visualizing and Understanding Convolutional Networks":
   [Zeiler, Fergus]
   arXiv: 1311.2901v3
"Optimization Methods for Large-Scale Machine Learning":
   [Bottou, Curtis, Nocedal]
   arXiv: 1606.04838v2
```

CALL TO ACTION

¡Cacharread!

Cognitive toolkit @ https://cntk.ai

Tutoriales @ https://cntk.ai/pythondocs/tutorials.html

Notebooks @ https://notebooks.azure.com/cntk/libraries/tutorials

"Road to Deep Learning" en Plain<TV>

Entended el backpropagation, ¡en serio! ©