Import libraries

```
In [1]: import numpy as np
  import pandas as pd
  import matplotlib.pyplot as plt
  import seaborn as sns
```

Read the Dataset

```
In [2]: df=pd.read_csv('tesla.csv')
df
```

Out[2]:		Date	Open	High	Low	Close	Volume	Adj Close
	0	6/29/2010	19.000000	25.000000	17.540001	23.889999	18766300	23.889999
	1	6/30/2010	25.790001	30.420000	23.299999	23.830000	17187100	23.830000
	2	7/1/2010	25.000000	25.920000	20.270000	21.959999	8218800	21.959999
	3	7/2/2010	23.000000	23.100000	18.709999	19.200001	5139800	19.200001
	4	7/6/2010	20.000000	20.000000	15.830000	16.110001	6866900	16.110001
	•••							
	1687	3/13/2017	244.820007	246.850006	242.779999	246.169998	3010700	246.169998
	1688	3/14/2017	246.110001	258.119995	246.020004	258.000000	7575500	258.000000
	1689	3/15/2017	257.000000	261.000000	254.270004	255.729996	4816600	255.729996
	1690	3/16/2017	262.399994	265.750000	259.059998	262.049988	7100400	262.049988
	1691	3/17/2017	264.000000	265.329987	261.200012	261.500000	6475900	261.500000

1692 rows × 7 columns

In [3]: df.isnull()

Out[3]:		Date	Open	High	Low	Close	Volume	Adj Close
	0	False	False	False	False	False	False	False
	1	False	False	False	False	False	False	False
	2	False	False	False	False	False	False	False
	3	False	False	False	False	False	False	False
	4	False	False	False	False	False	False	False
	•••							
	1687	False	False	False	False	False	False	False
	1688	False	False	False	False	False	False	False
	1689	False	False	False	False	False	False	False
	1690	False	False	False	False	False	False	False
	1691	False	False	False	False	False	False	False

1692 rows × 7 columns

checking null values

```
In [4]: df.isnull().sum()
Out[4]: Date
                    0
        0pen
        High
                    0
        Low
        Close
        Volume
        Adj Close
        dtype: int64
In [5]: df.info()
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 1692 entries, 0 to 1691
      Data columns (total 7 columns):
       #
           Column
                     Non-Null Count Dtype
                     -----
           -----
       0
          Date
                     1692 non-null object
                     1692 non-null float64
          0pen
       1
                     1692 non-null float64
       2 High
                     1692 non-null float64
       3 Low
                     1692 non-null float64
       4 Close
                     1692 non-null
          Volume
                                    int64
          Adj Close 1692 non-null
                                    float64
      dtypes: float64(5), int64(1), object(1)
      memory usage: 92.7+ KB
In [6]: df.describe()
```

Out[6]:		Open	High	Low	Close	Volume	Adj Close
	count	1692.000000	1692.000000	1692.000000	1692.000000	1.692000e+03	1692.000000
	mean	132.441572	134.769698	129.996223	132.428658	4.270741e+06	132.428658
	std	94.309923	95.694914	92.855227	94.313187	4.295971e+06	94.313187
	min	16.139999	16.629999	14.980000	15.800000	1.185000e+05	15.800000
	25%	30.000000	30.650000	29.215000	29.884999	1.194350e+06	29.884999
	50%	156.334999	162.370002	153.150002	158.160004	3.180700e+06	158.160004
	75%	220.557495	224.099999	217.119999	220.022503	5.662100e+06	220.022503
	max	287.670013	291.420013	280.399994	286.040009	3.716390e+07	286.040009

```
In [7]: df.shape
Out[7]: (1692, 7)
In [8]: df.duplicated().sum()
Out[8]: 0
In [9]: # assume 'df' is your DataFrame with a 'Date' column df['Date'] = pd.to_datetime(df['Date']) df['Unix Timestamp'] = df['Date'].apply(lambda x: x.timestamp())
```

dropping unwanted columns

```
In [10]: df=df.drop(columns=['Adj Close','Date'],axis=1)
In [11]: df.columns
Out[11]: Index(['Open', 'High', 'Low', 'Close', 'Volume', 'Unix Timestamp'], dtype='obje ct')
```

MinMax Normalization

```
In [12]: from sklearn.preprocessing import MinMaxScaler
In [13]: scaler = MinMaxScaler()
    df_scaled = pd.DataFrame(scaler.fit_transform(df), columns=df.columns)
    df_scaled
```

Out[13]:		Open	High	Low	Close	Volume	Unix Timestamp
	0	0.010533	0.030460	0.009645	0.029936	0.503377	0.000000
	1	0.035539	0.050184	0.031347	0.029714	0.460748	0.000408
	2	0.032630	0.033808	0.019931	0.022795	0.218659	0.000815
	3	0.025264	0.023545	0.014053	0.012581	0.135544	0.001223
	4	0.014216	0.012264	0.003202	0.001147	0.182166	0.002854
	•••						
	1687	0.842191	0.837803	0.858262	0.852464	0.078072	0.998369
	1688	0.846941	0.878816	0.870469	0.896240	0.201294	0.998777
	1689	0.887047	0.889297	0.901552	0.887840	0.126820	0.999185
	1690	0.906935	0.906583	0.919599	0.911227	0.188469	0.999592
	1691	0.912827	0.905055	0.927662	0.909192	0.171611	1.000000

1692 rows × 6 columns

Statistical feature extraction

```
In [14]: features = df_scaled.drop('Close', axis=1)
         target_variables = df_scaled['Close']
         # Statistical feature extraction (row-wise)
         stat_features = pd.DataFrame()
         stat_features['mean'] = features.mean(axis=1)
         stat_features['std'] = features.std(axis=1)
         stat_features['min'] = features.min(axis=1)
         stat_features['max'] = features.max(axis=1)
         stat_features['range'] = features.max(axis=1) - features.min(axis=1)
         stat_features['median'] = features.median(axis=1)
         # Quantiles (25th and 75th)
         stat_features['25%'] = features.quantile(0.25, axis=1)
         stat_features['75%'] = features.quantile(0.75, axis=1)
         # Variance
         stat_features['variance'] = features.var(axis=1)
         stat_features
```

[14]:		mean	std	min	max	range	median	25%	75%	V
	0	0.110803	0.219735	0.000000	0.503377	0.503377	0.010533	0.009645	0.030460	0
	1	0.115645	0.193768	0.000408	0.460748	0.460340	0.035539	0.031347	0.050184	0
	2	0.061168	0.089036	0.000815	0.218659	0.217843	0.032630	0.019931	0.033808	0
	3	0.039926	0.054299	0.001223	0.135544	0.134322	0.023545	0.014053	0.025264	0
	4	0.042940	0.078000	0.002854	0.182166	0.179312	0.012264	0.003202	0.014216	0
	•••									
	1687	0.722939	0.366552	0.078072	0.998369	0.920298	0.842191	0.837803	0.858262	0
	1688	0.759260	0.317429	0.201294	0.998777	0.797483	0.870469	0.846941	0.878816	0
	1689	0.760780	0.357428	0.126820	0.999185	0.872365	0.889297	0.887047	0.901552	0
	1690	0.784236	0.335285	0.188469	0.999592	0.811124	0.906935	0.906583	0.919599	0
	1691	0.783431	0.344080	0.171611	1.000000	0.828389	0.912827	0.905055	0.927662	0
	1692 rd	ows × 9 co	lumns							
	4									•

Principle Component Analysis

```
In [15]: from sklearn.decomposition import PCA
# Apply PCA
pca = PCA(n_components=3)
X_pca = pca.fit_transform(stat_features)

# Create a DataFrame with PCA results
df_pca = pd.DataFrame(data=X_pca, columns=['Principal Component 1', 'Principal Cdf_pca
```

Out[15]:		Principal Component 1	Principal Component 2	Principal Component 3
	0	-0.617023	-0.395733	0.189968
	1	-0.622444	-0.333381	0.147415
	2	-0.851568	-0.095923	-0.004825
	3	-0.936504	-0.018251	-0.054248
	4	-0.912142	-0.072199	-0.014792
	•••			
	1687	1.053848	-0.176483	-0.017460
	1688	1.050010	0.002144	0.048293
	1689	1.113395	-0.081652	-0.019253
	1690	1.125041	0.012709	0.007680
	1691	1.136931	-0.007244	-0.006151

1692 rows × 3 columns

Concatenate normalized data and statistical features

```
# Concatenate normalized data and statistical features
 combined_output = pd.concat([ df_pca,df_scaled], axis=1)
 print(combined_output.head())
  Principal Component 1 Principal Component 2 Principal Component 3 \
                                 -0.395733
            -0.617023
                                                       0.189968
             -0.622444
1
                                 -0.333381
                                                       0.147415
             -0.851568
                                 -0.095923
                                                       -0.004825
3
             -0.936504
                                 -0.018251
                                                       -0.054248
             -0.912142
                                 -0.072199
                                                       -0.014792
      0pen
              High
                        Low
                               Close Volume Unix Timestamp
0 0.010533 0.030460 0.009645 0.029936 0.503377
                                                   0.000000
1 0.035539 0.050184 0.031347 0.029714 0.460748
                                                     0.000408
2 0.032630 0.033808 0.019931 0.022795 0.218659
                                                     0.000815
3 0.025264 0.023545 0.014053 0.012581 0.135544
                                                     0.001223
4 0.014216 0.012264 0.003202 0.001147 0.182166
                                                     0.002854
```

spliting Training and testing data

```
In [17]: from sklearn.model_selection import train_test_split
    x=combined_output.drop('Close',axis=1)
    y=combined_output['Close']

# Split the data into training and testing sets
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_
```

POA Optimizer

```
In [18]: from mealpy.optimizer import Optimizer
         from mealpy import *
         import pandas as pd
         from sklearn.linear model import LinearRegression
         # Define the Original POA class
         class OriginalPOA(Optimizer):
             def __init__(self, epoch: int = 10000, pop_size: int = 100, **kwargs: object
                 super().__init__(**kwargs)
                  self.epoch = self.validator.check_int("epoch", epoch, [1, 100000])
                  self.pop_size = self.validator.check_int("pop_size", pop_size, [5, 10000]
                  self.set_parameters(["epoch", "pop_size"])
                  self.is_parallelizable = False
                  self.sort_flag = False
             def evolve(self, epoch):
                 ## UPDATE Location of food
                  kk = self.generator.permutation(self.pop_size)[0]
                  for idx in range(0, self.pop_size):
                      # PHASE 1: Moving towards prey (exploration phase)
                      if self.compare_target(self.pop[kk].target, self.pop[idx].target, se
                          pos_new = self.pop[idx].solution + self.generator.random() * (se
                      else:
                          pos_new = self.pop[idx].solution + self.generator.random() * (se
                      pos_new = self.correct_solution(pos_new)
                      agent = self.generate_agent(pos_new)
                      if self.compare_target(agent.target, self.pop[idx].target, self.prob
                          self.pop[idx] = agent
                      # PHASE 2: Winging on the water surface (exploitation phase)
                      pos_new = self.pop[idx].solution + 0.2 * (1 - epoch/self.epoch) *(2*
                      pos_new = self.correct_solution(pos_new)
                      agent = self.generate agent(pos new)
                      if self.compare_target(agent.target, self.pop[idx].target, self.prob
                          self.pop[idx] = agent
         # Define the objective function
         def objective_function(solution):
             # Use the transformed data to train a model and predict the target variable
             model = LinearRegression()
             model.fit(x_train, y_train)
             y_pred = model.predict(x_test)
             # Calculate the fitness value (e.g., mean squared error)
             fitness = np.mean((y_pred - y_test) ** 2)
             return fitness
         # Define the bounds for the problem
         from mealpy.utils.space import FloatVar
         bounds = [FloatVar(lb=x_train.min()[i], ub=x_train.max()[i]) for i in range(x_train.max()[i])
         # Define the problem dictionary
         problem dict = {
             "bounds": bounds,
              "minmax": "min",
```

```
"obj_func": objective_function
}

# Create a POA model
model = OriginalPOA(epoch=100, pop_size=50)

# Solve the problem
g_best = model.solve(problem_dict)

# Print the solution and fitness value
print(f"Solution: {g_best.solution}, Fitness: {g_best.target.fitness}")
```

```
2024/07/28 10:59:14 AM, INFO, __main__.OriginalPOA: Solving single objective opti
mization problem.
2024/07/28 10:59:17 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 1, Curr
ent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 2.7
3120 seconds
2024/07/28 10:59:18 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 2, Curr
ent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.5
6235 seconds
2024/07/28 10:59:19 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 3, Curr
ent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.5
2024/07/28 10:59:19 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 4, Curr
ent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.5
4050 seconds
2024/07/28 10:59:20 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 5, Curr
ent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.5
5229 seconds
2024/07/28 10:59:20 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 6, Curr
ent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.5
2024/07/28 10:59:21 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 7, Curr
ent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.5
5158 seconds
2024/07/28 10:59:21 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 8, Curr
ent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.5
4088 seconds
2024/07/28 10:59:22 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 9, Curr
ent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.5
4071 seconds
2024/07/28 10:59:22 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 10, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
2024/07/28 10:59:23 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 11, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
55398 seconds
2024/07/28 10:59:24 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 12, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
55488 seconds
2024/07/28 10:59:24 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 13, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
55210 seconds
2024/07/28 10:59:25 AM, INFO, main .OriginalPOA: >>>Problem: P, Epoch: 14, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
54379 seconds
2024/07/28 10:59:25 AM, INFO, main .OriginalPOA: >>>Problem: P, Epoch: 15, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
54511 seconds
2024/07/28 10:59:26 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 16, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
53589 seconds
2024/07/28 10:59:26 AM, INFO, main .OriginalPOA: >>>Problem: P, Epoch: 17, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
2024/07/28 10:59:27 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 18, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
53336 seconds
2024/07/28 10:59:27 AM, INFO, main .OriginalPOA: >>>Problem: P, Epoch: 19, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
55754 seconds
2024/07/28 10:59:28 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 20, Cur
```

```
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
58647 seconds
2024/07/28 10:59:28 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 21, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
55529 seconds
2024/07/28 10:59:29 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 22, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
2024/07/28 10:59:30 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 23, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
54655 seconds
2024/07/28 10:59:30 AM, INFO, main .OriginalPOA: >>>Problem: P, Epoch: 24, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
58132 seconds
2024/07/28 10:59:31 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 25, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
56209 seconds
2024/07/28 10:59:31 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 26, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
2024/07/28 10:59:32 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 27, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
55665 seconds
2024/07/28 10:59:32 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 28, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
54476 seconds
2024/07/28 10:59:33 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 29, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
53505 seconds
2024/07/28 10:59:34 AM, INFO, main .OriginalPOA: >>>Problem: P, Epoch: 30, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
55802 seconds
2024/07/28 10:59:34 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 31, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
55297 seconds
2024/07/28 10:59:35 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 32, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
54373 seconds
2024/07/28 10:59:35 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 33, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
2024/07/28 10:59:36 AM, INFO, main .OriginalPOA: >>>Problem: P, Epoch: 34, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
58507 seconds
2024/07/28 10:59:36 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 35, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
56463 seconds
2024/07/28 10:59:37 AM, INFO, main .OriginalPOA: >>>Problem: P, Epoch: 36, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
53979 seconds
2024/07/28 10:59:37 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 37, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
54980 seconds
2024/07/28 10:59:38 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 38, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
57115 seconds
2024/07/28 10:59:39 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 39, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
54270 seconds
2024/07/28 10:59:39 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 40, Cur
```

```
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
54465 seconds
2024/07/28 10:59:40 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 41, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
53130 seconds
2024/07/28 10:59:40 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 42, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
2024/07/28 10:59:41 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 43, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
53722 seconds
2024/07/28 10:59:41 AM, INFO, main .OriginalPOA: >>>Problem: P, Epoch: 44, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
55603 seconds
2024/07/28 10:59:42 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 45, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
57614 seconds
2024/07/28 10:59:42 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 46, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
2024/07/28 10:59:43 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 47, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
54745 seconds
2024/07/28 10:59:43 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 48, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
53985 seconds
2024/07/28 10:59:44 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 49, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
53404 seconds
2024/07/28 10:59:45 AM, INFO, main .OriginalPOA: >>>Problem: P, Epoch: 50, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
53940 seconds
2024/07/28 10:59:45 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 51, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
52977 seconds
2024/07/28 10:59:46 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 52, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
55625 seconds
2024/07/28 10:59:46 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 53, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
2024/07/28 10:59:47 AM, INFO, main .OriginalPOA: >>>Problem: P, Epoch: 54, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
53144 seconds
2024/07/28 10:59:47 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 55, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
53145 seconds
2024/07/28 10:59:48 AM, INFO, main .OriginalPOA: >>>Problem: P, Epoch: 56, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
2024/07/28 10:59:48 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 57, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
55577 seconds
2024/07/28 10:59:49 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 58, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
54930 seconds
2024/07/28 10:59:49 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 59, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
56603 seconds
2024/07/28 10:59:50 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 60, Cur
```

```
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
54493 seconds
2024/07/28 10:59:51 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 61, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
52204 seconds
2024/07/28 10:59:51 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 62, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
2024/07/28 10:59:52 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 63, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
56377 seconds
2024/07/28 10:59:52 AM, INFO, main .OriginalPOA: >>>Problem: P, Epoch: 64, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
53255 seconds
2024/07/28 10:59:53 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 65, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
51370 seconds
2024/07/28 10:59:53 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 66, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
2024/07/28 10:59:54 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 67, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
59163 seconds
2024/07/28 10:59:54 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 68, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
55477 seconds
2024/07/28 10:59:55 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 69, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
56337 seconds
2024/07/28 10:59:56 AM, INFO, main .OriginalPOA: >>>Problem: P, Epoch: 70, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
53375 seconds
2024/07/28 10:59:56 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 71, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
59446 seconds
2024/07/28 10:59:57 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 72, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
54873 seconds
2024/07/28 10:59:57 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 73, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
2024/07/28 10:59:58 AM, INFO, main .OriginalPOA: >>>Problem: P, Epoch: 74, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
53209 seconds
2024/07/28 10:59:58 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 75, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
54789 seconds
2024/07/28 10:59:59 AM, INFO, main .OriginalPOA: >>>Problem: P, Epoch: 76, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
52751 seconds
2024/07/28 10:59:59 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 77, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
54787 seconds
2024/07/28 11:00:00 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 78, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
55093 seconds
2024/07/28 11:00:00 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 79, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
55647 seconds
2024/07/28 11:00:01 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 80, Cur
```

```
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
55778 seconds
2024/07/28 11:00:02 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 81, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
53087 seconds
2024/07/28 11:00:02 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 82, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
2024/07/28 11:00:03 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 83, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
53346 seconds
2024/07/28 11:00:03 AM, INFO, main .OriginalPOA: >>>Problem: P, Epoch: 84, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
54780 seconds
2024/07/28 11:00:04 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 85, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
52386 seconds
2024/07/28 11:00:04 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 86, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
2024/07/28 11:00:05 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 87, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
53436 seconds
2024/07/28 11:00:05 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 88, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
55922 seconds
2024/07/28 11:00:06 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 89, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
52886 seconds
2024/07/28 11:00:07 AM, INFO, main .OriginalPOA: >>>Problem: P, Epoch: 90, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
54572 seconds
2024/07/28 11:00:07 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 91, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
53434 seconds
2024/07/28 11:00:08 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 92, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
53633 seconds
2024/07/28 11:00:08 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 93, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
2024/07/28 11:00:09 AM, INFO, main .OriginalPOA: >>>Problem: P, Epoch: 94, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
58266 seconds
2024/07/28 11:00:09 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 95, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
54892 seconds
2024/07/28 11:00:10 AM, INFO, main .OriginalPOA: >>>Problem: P, Epoch: 96, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
2024/07/28 11:00:10 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 97, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
54533 seconds
2024/07/28 11:00:11 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 98, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
54580 seconds
2024/07/28 11:00:11 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 99, Cur
rent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime: 0.
53197 seconds
2024/07/28 11:00:12 AM, INFO, __main__.OriginalPOA: >>>Problem: P, Epoch: 100, Cu
```

```
rrent best: 3.668744032993749e-05, Global best: 3.668744032993749e-05, Runtime:
       0.57347 seconds
       Solution: [-0.2740154 -0.25495294 -0.11414563 0.6899788 0.00727423 0.7261986
         0.29153982 0.14319515], Fitness: 3.668744032993749e-05
In [19]: # Define the number of features to select (e.g., 3)
         # Select the top k features with the highest weights
         selected_features = np.argsort(g_best.solution)[::-1][:k]
         # Print the selected features
         print("Selected features:", selected_features)
         # Select the corresponding columns from the training and testing data
         x_train_selected = x_train.iloc[:, selected_features]
         x_test_selected = x_test.iloc[:, selected_features]
         # Print the shape of the selected data
         print("x_train_selected shape:", x_train_selected.shape)
         print("x_test_selected shape:", x_test_selected.shape)
        Selected features: [5 3 6]
        x_train_selected shape: (1353, 3)
        x_test_selected shape: (339, 3)
In [20]: # Print the selected feature columns
         print("Selected feature columns:")
         print(x_train_selected.head().to_string(header=True, index=True))
       Selected feature columns:
                  Low
                           0pen
                                   Volume
       980
            0.677455 0.663057 0.139475
             0.017218 0.014952 0.008325
       22
       1260 0.952716 0.939012 0.053521
             0.017406 0.012816 0.010161
             0.402532 0.397230 0.205637
       771
In [21]: # Add the 'Close' column to the selected feature columns
         x_train_selected['Close'] = y_train
         x_test_selected['Close'] = y_test
         # Print the updated selected feature columns
         print("Updated selected feature columns:")
         print(x_train_selected.head().to_string(header=True, index=True))
       Updated selected feature columns:
                  Low
                          Open Volume
                                              Close
             0.677455 0.663057 0.139475 0.679581
       980
        22
             0.017218 0.014952 0.008325 0.015320
       1260 0.952716 0.939012 0.053521 0.937500
             0.017406 0.012816 0.010161 0.017207
       45
       771
             0.402532 0.397230 0.205637 0.395722
```

```
C:\Users\DELL\AppData\Local\Temp\ipykernel_13036\700162215.py:2: SettingWithCopyW
        arning:
        A value is trying to be set on a copy of a slice from a DataFrame.
        Try using .loc[row_indexer,col_indexer] = value instead
        See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stabl
        e/user_guide/indexing.html#returning-a-view-versus-a-copy
          x_train_selected['Close'] = y_train
        C:\Users\DELL\AppData\Local\Temp\ipykernel_13036\700162215.py:3: SettingWithCopyW
        arning:
        A value is trying to be set on a copy of a slice from a DataFrame.
        Try using .loc[row_indexer,col_indexer] = value instead
        See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stabl
        e/user_guide/indexing.html#returning-a-view-versus-a-copy
         x_test_selected['Close'] = y_test
In [22]: x_train_selected.shape
Out[22]: (1353, 4)
In [23]: from sklearn.linear model import LinearRegression
         from sklearn.tree import DecisionTreeRegressor
 In [ ]:
In [24]: w=x_train_selected.drop('Close',axis=1)
         z=x train selected['Close']
In [25]: w_train,w_test,z_train,z_test=train_test_split(w,z,test_size=0.2,random_state=0)
In [26]: print(f"'w_train:{w_train.shape}")
         print(f"'w_test:{w_test.shape}")
        'w train:(1082, 3)
        'w_test:(271, 3)
In [27]: models=[('LinearRegression', LinearRegression()),
                 ('DecisionTree', DecisionTreeRegressor())]
In [28]: from sklearn.metrics import mean_squared_error,r2_score,mean_absolute_error
In [29]: for name, model in models:
             print(name)
             model.fit(w_train,z_train)
             z pred=model.predict(w test)
             print("mean squared error:",mean squared error(z test,z pred))
             print('\n')
             print("MeanAbsoluteError:",mean_absolute_error(z_test,z_pred))
             print('\n')
             print("RSquared(R2):",r2_score(z_test,z_pred))
             print('\n')
```

mean squared error: 6.030012073534787e-05

MeanAbsoluteError: 0.004995614662627104

LinearRegression

```
RSquared(R2): 0.9995040929980761
        DecisionTree
        mean squared error: 0.00014938054337527927
        MeanAbsoluteError: 0.007163780418875161
        RSquared(R2): 0.9987714973617361
In [32]: model_names = []
         mse_scores = []
         mae_scores = []
         r2_scores = []
In [35]: for name, model in models:
             model names.append(name)
             model.fit(w_train, z_train)
             z_pred = model.predict(w_test)
             mse = mean_squared_error(z_test, z_pred)
             mae = mean_absolute_error(z_test, z_pred)
             r2 = r2_score(z_test, z_pred)
             mse_scores.append(mse)
             mae scores.append(mae)
             r2_scores.append(r2)
         # Bar plot for Mean Squared Error (MSE)
         plt.figure(figsize=(6,6))
         sns.barplot(x=model_names, y=mse_scores)
         plt.title('Mean Squared Error (MSE) Comparison')
         plt.xlabel('Model')
         plt.ylabel('MSE')
         plt.xticks(rotation=45)
         plt.tight_layout()
         plt.show()
         # Bar plot for Mean Absolute Error (MAE)
         plt.figure(figsize=(6, 6))
         sns.barplot(x=model_names, y=mae_scores)
         plt.title('Mean Absolute Error (MAE) Comparison')
         plt.xlabel('Model')
         plt.ylabel('MAE')
         plt.xticks(rotation=45)
         plt.tight_layout()
         plt.show()
         # Bar plot for R-squared (R2)
         plt.figure(figsize=(6, 6))
         sns.barplot(x=model_names, y=r2_scores)
         plt.title('R-squared (R2) Comparison')
```

```
plt.xlabel('Model')
plt.ylabel('R2 Score')
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
```


Tn Γ 1: