KHOA CÔNG NGHỆ THÔNG TIN ĐẠI HỌC KHOA HỌC TỰ NHIÊN THÀNH PHỐ HỒ CHÍ MINH ĐẠI HỌC QUỐC GIA TPHCM

HỆ THỐNG MULTIMEDIA NHẬN BIẾT BIỂN BÁO TỐC ĐỘ

Thực hiện:

20C12007 – Trần Đình Lâm

20C11035 - Trương Thế Kiệt

20C11040 – Đặng Nhật Minh

BÁO CÁO ĐỒ ÁN CÀI ĐẶT NĂM HỌC 2020-2021

BẢNG THÔNG TIN CHI TIẾT NHÓM

Mã nhóm:	13						
Tên nhóm:	K2014						
Số lượng:	4						
MSSV	Họ tên	Email	Điện thoại				
20C12007	Trần Đình Lâm	tdlam123@gmail.com	0383522356				
20C11035	Trương Thế Kiệt	truongthekiet709@gmail.com					
20C11040	Đặng Nhật Minh	minhdangnhat685@gmail.com					

BẢNG PHÂN CÔNG & ĐÁNH GIÁ HOÀN THÀNH CÔNG VIỆC					
Người thực hiện	Công việc thực hiện	Mức độ hoàn thành	Đánh giá của nhóm		
20C12007 Trần Đình Lâm	Cài đặt model classification đã tham khảo, tìm hiểu và giải thích mô hình mạng CNN được đề xuất	70% 7/10			
	Train và test model với tỉ lệ 0.8/0.2, Thử nghiệm chạy train bằng GPU				
20C11035 Trương Thế Kiệt	Chuẩn hóa dữ liệu để train mạng phân lớp Thực hiện integrate hai model và detect dữ liệu từ camera/video/hình ảnh	70%	7/10		
	Viêt báo cáo Cài đặt model classification đã tham khảo và training với bộ dữ liệu traning chỉ bao gồm những biển báo về tốc độ(6 loại) và test integration với model detection để so sánh độ chính xác				
20C11040 Đặng Nhật Minh	Chạy train mô hình yolo theo tutorial hướng dẫn là output file weight Viết báo cáo	70%	7/10		

MỤC LỤC

I.	TÔNG QUAN	. 2
	1. Mô tả bài toán	. 2
	2. Các thư viện sử dụng trong project	. 2
II.	MÔ TẢ KIẾN TRÚC TỔNG QUÁT	. 3
III.	PHÂN TÍCH BỘ DỮ LIỆU GTSRB	. 4
	1. Bộ dữ liệu dùng để phân lớp	. 4
	i. Cấu trúc Dataset GTSRB	. 4
	ii. Chuẩn hóa data	. 5
	iii. Load data	. 5
	iv. Nguồn bộ dữ liệu	. 5
	2. Bộ dữ kiệu dùng để detect biển báo giao thông	. 5
IV.	CÀI ĐẶT MÔ HÌNH MẠNG	. 6
	1. Cấu trúc mạng phân lớp biển báo nhóm đã cài đặt	6
	2. Train detection object bằng Yolo	. 9
	3. Kết hợp hai model	. 9
V.	CHẠY CHƯƠNG TRÌNH VÀ ĐÁNH GIÁ KẾT QUẢ	10
	1. Đánh giá về detection và get bouding box	10
	2. Đánh giá về phần loại biển báo	10
	3. Khi kết hợp hai mô hình lại với nhau	11
VI.	KÉT LUẬN	12
TÀI	I NGUYÊN SỬ DỤNG	13
TÀI	I LIÊU THAM KHẢO	14

I. TỔNG QUAN

1. Mô tả bài toán

- Trong các loại biển báo giao thông, các biển báo quy định về tốc độ xuất hiện với tần suất khá lớn. Khi di chuyển trên đường, chúng ta đôi khi không nhớ ra ý nghĩa hoặc không chú ý tới các biển báo tốc độ đó, dẫn đến việc vi phạm luật giao thông
- Với mong muốn giải quyết vấn đề này bằng những kiến thức đã học về mạng neural và xử lý hình ảnh, nhóm quyết định sẽ nghiên cứu để tạo ra một ứng dụng với đầu vào là video từ camera hành trình, giúp người dùng biết được những biển báo tốc độ trên đường và đưa ra cảnh báo về giới hạn tốc một cách dễ dàng, nhanh chóng và trực quan nhất

2. Các thư viện sử dụng trong project

Tên thư viện	Mục đích sử dụng		
os	làm việc với các tập tin và thư mục		
pandas	làm việc với dataset		
numpy	tính toán		
matplotlib và seaborn	trực quan hóa dữ liệu bằng các dạng biểu đồ		
PIL	thao tác trên hình ảnh		
Sciki-learn sklearn	cung cấp cài đặt của các thuật toán thường dùng trong machine learning		
Tensorflow và Keras	xây dựng mô hình neural network		
Yolo v4	Thực hiện detect biển báo tốc độ và lấy bouding box		

II. MÔ TẢ KIẾN TRÚC TỔNG QUÁT

- Khi chương trình chạy, giá trị input có thể là một tấm hình/video/camera được đưa qua mạng detection để lấy ra bounding box của những nói có biển báo tốc độ.
- Đối với input là giá trị từ video/camera các frame được xử lí 2s một lần để hạn chế việc delay.
- Sau khi lấy được bounding box. Có thể lưu lại những hình ảnh đó hoặc không.
- Sau đó tiến hành phần lớp từ những hình ảnh đã được cắt ra từ một frame.
- Sau khi phân loại xong sẽ ghi log lại giá trị tính toán được.

III. PHÂN TÍCH BỘ DỮ LIỆU GTSRB

1. Bộ dữ liệu dùng để phân lớp

- i. Cấu trúc Dataset GTSRB
- German Traffic Sign Recognition Benchmark(GTSRG) là bộ data được sử dụng để trainning và test trong khảo sát này. Bộ data này được phần chia thành 43 loại với tổng số lượng hình ảnh cho bộ dữ liệu train lên đến 39209 hình.
- Các loại biển báo trong bộ data GTSRG:

Hình III-a: Các loại biển báo trong GTSRB

- Hình ảnh trong mỗi loại biển báo rất đa dạng về độ lớn, độ tương phản, noise và blurred.

Hình III-b: Độ đa dạng hình ảnh trong từ loại

ii. Chuẩn hóa data

- Do hình ảnh với size khác nhau, nên mỗi tấm ảnh từ nguyên gốc với size w x h x 3 sẽ được đưa về dạng được resize về 50x50x3.
- Sau khi chuẩn hóa xong thì dùng numpy để lưu lại 2 file vào folder "numpy", để không phải scan lại tập train.
- Lúc này ta có được tập train kích thước (39209, 50, 50, 3)

iii. Load data

- Tập dữ liệu input sau khi được chuẩn hóa xong sẽ được chia làm hai bộ là bộ train và bộ test.
- Bốn biến output tương ứng sau khi load data:
 - x_train có x_val tương ứng
 - y train có y val tương ứng

iv. Nguồn bộ dữ liệu

- https://www.kaggle.com/meowmeowmeowmeow/gtsrb-german-traffic-sign

2. Bộ dữ kiệu dùng để detect biển báo giao thông

- Bộ dữ liệu được tác giả đánh label sắn được chia thành bốn loại là : speed limit, yield, mandatory, other
- Trong bài toán lần này mình chỉ cần một loại là biển báo tốc độ.
- Nguồn bộ dữ liệu
 https://onedrive.live.com/download?cid=A86CBC7F31A1C06B&resid=A86CBC7F31A1C06B%
 https://onedrive.live.com/download?cid=A86CBC7F31A1C06B&resid=A86CBC7F31A1C06B%
 https://onedrive.live.com/download?cid=A86CBC7F31A1C06B&resid=A86CBC7F31A1C06B%

IV. CÀI ĐẶT MÔ HÌNH MẠNG

1. Cấu trúc mạng phân lớp biển báo nhóm đã cài đặt

Dựa theo cấu trúc một số mạng CNN được sử dụng tương ứng cho tập dữ liệu GTSRB trên Kaggle [3], cùng một số điều chỉnh mới, nhóm đã xây dựng mô hình mạng CNN như hình *IV-b* và *IV-c*:

Hình IV-b Cấu trúc 2 layer đầu của mạng

Hình IV-c Cấu trúc 4 layer sau của mạng

Theo đó, cấu trúc mang bao gồm 6 layer chính:

- Layer 1 đến layer 3: Convolutional với kernel size 3x3, sau đó kết hợp max pooling 2x2 và dropout 50%
- Layer 4: Là một lớp Flatten để dàn phẳng output của layer 3
- Layer 5 và Layer 6: Fully-connected layer
- Đầu ra cuối cùng là vector 43 chiều, biểu thị 43 loại biển báo giao thông cần phân loại.

Sau khi cài đặt, các thông số mô tả mô hình biểu thi như hình *IV-d* sau:

Output	Shape	Param #
(None,	50, 50, 64)	1792
(None,	25, 25, 64)	0
(None,	25, 25, 64)	0
(None,	23, 23, 64)	36928
(None,	11, 11, 64)	0
(None,	11, 11, 64)	0
(None,	9, 9, 64)	36928
(None,	4, 4, 64)	0
(None,	4, 4, 64)	0
(None,	1024)	0
(None,	128)	131200
(None,	128)	0
		5547
	(None,	Output Shape (None, 50, 50, 64) (None, 25, 25, 64) (None, 23, 23, 64) (None, 11, 11, 64) (None, 11, 11, 64) (None, 9, 9, 64) (None, 4, 4, 64) (None, 4, 4, 64) (None, 1024) (None, 128) (None, 43)

Hình IV-d Các thông số của model cài đặt bằng Keras

Một cách thể hiện khác của mô hình, vẽ bằng công cụ [4]:

KHOA CÔNG NGHỆ THÔNG TIN TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIỀN 227 Nguyễn Văn Cử, Phường 4, Quản 5, TP.HCM Điện Thoại: (08) 38.354.266 - Fax:(08) 38.350.096

Hình IV-i Layer 4,5,6

2. Train detection object bằng Yolo

- Để thực hiện train cho yolo, nhóm đã sử dụng một bộ data đã được đánh nhãn sắn nhầm giúp tiết kiệm thời gian cho việc gán nhãn.
- Việt training được thực hiện theo hướng dẫn ở NoteBook này:
 https://colab.research.google.com/drive/1VNc-Ywrs1XmfHcsq BWpXZ5Zv_A2FcFn?usp=sharing&fbclid=IwAR22UkmNlEEFKXNZbHWQaUattjF14z_23_d
 RQnYybem5jfcI9fuowimPSYM

3. Kết hợp hai model

- Sử dụng thư việc là opency (version 4.5.2.54) để thực hiện loại lại các trọng số cũng như những config để thực hiện detection.
- Sử dụng keras để load lại mode đã train để sử dụng output từ model detection để xem biển báo đó thuôc loai nào.
- Chi tiêt code: https://github.com/TruongTheKiet/multimedia/blob/master/main.py

V. CHẠY CHƯƠNG TRÌNH VÀ ĐÁNH GIÁ KẾT QUẢ

1. Đánh giá về detection và get bouding box

- Mô hình train yolo để get boudinging bố của biển báo giao thông hoạt động tương đối chính xác, với hình ảnh độ lớn biển báo gần tương đồng với bộ dữ liệu train.
- Kết quả từ hính ảnh inputs có thể lấy ra được các hình ảnh biển báo tốc độ:
- Ảnh đầu vào:

- Ảnh đầu ra:

2. Đánh giá về phần loại biển báo

Model có thể phận loại được các biển báo thuộc loại cảnh báo tốc độ

 Nhưng vẫn còn mốt số giới hạn như khi hình ảnh input đầu vào với chất lượng thấp, quá mò. mô hình vẫn chưa thực hiện được chính xác việc phần loại.

3. Khi kết hợp hai mô hình lại với nhau

- Việc kết hợp hai mô hình lại với nhau cũng mang lại kết quả tương đối với những hình ảnh input với chất lượng không quá kém.
- Output của mô hình detection sẽ làm input để thực hiện làm phân lớp.
- Hạn chế của app hiện tại là không thể thực hiện mượt mà được trên thời gian thực cũng như trên một video nào đó. Hạn chế do việc xử lí cần nhiều thời gian để hoàn thành nên sẽ đêm lại độ trê cũng như sự giật lag khi đang xem video/camera.
- Input một hình ảnh:

Giá trị log ra là 30Km/h

VI. KẾT LUẬN

- Với mục tiêu tìm hiểu, cài đặt và thực hiện training một model(train yolo cũng như một model nhóm cài đặt) coi như đã đạt được.
- Sử dụng được các thư viện phổ biến trong AI.ML.
- Giá trị đầu ra chưa đúng như mong đợi như lúc đầu đặt ra là có thể thực hiện trên thời gian thực.
- Đối với những hình ảnh input có biển báo có thể thực hiện được việc hiện thông tin biển báo tốc đô.
- Một số lí do nhóm không thực hiện phân loại luôn trên yolo mà lại sử dụng một model khác:
 - Do bộ dataset đã đánh nhãn rồi để thực hiện training không có
 - Để tiết kiệm thời gian, nhóm tái sử dụng lại mạng ở môn AI nâng cao để thực hiện phân loại ngoài ra thuwje nghiệm ở một số data train khác nhau như chỉ train data của biển báo tốc độ và đánh giá jeets quả

TÀI NGUYÊN SỬ DỤNG

- Source code model phân lớp:

https://github.com/trandinhlam/document/tree/master/Al NangCao/DoAnCaiDat/Project

Source code training Yolo: https://colab.research.google.com/drive/1VNc-Ywrs1XmfHcsq-

BWpXZ5Zv_A2FcFn?usp=sharing&fbclid=IwAR22UkmNIEEFKXNZbHWQaUattjF14z_2 3_dRQnYybem5jfcl9fuowimPSYM

- Source code integration 2 model:

https://github.com/TruongTheKiet/multimedia/blob/master/main.py

- Bộ dữ liệu GTSRB:

https://www.kaggle.com/meowmeowmeowmeowmeow/gtsrb-german-traffic-sign

- Bộ dữ liệu training yolo:

https://onedrive.live.com/download?cid=A86CBC7F31A1C06B&resid=A86CBC7F31A1C06B%21121&authkey=AMUUk0Np4tqH3n4

File trọng số cho mô hình yolo:

https://drive.google.com/file/d/1-cGUzkbdTl40t4Ef-DnITBa5iC7iAoXZ/view?usp=sharing

- File config:

https://drive.google.com/file/d/1bnxwqyS9Bm-zTJkoDqC-

AOxH9skzdi_Y/view?usp=sharing

- File model phân lớp:

https://drive.google.com/file/d/1hC2iXeZfcXCpT-

SRCGh0FqQhZ47r1Yky/view?usp=sharing

- File label cho mạng yolo:

https://drive.google.com/file/d/1bt65Hr4VWr2vZldbquw5uNRZOpgwj9c-

/view?usp=sharing

TÀI LIỆU THAM KHẢO

- [1] "Keras From Wikipedia, the free encyclopedia," [Online]. Available: https://en.wikipedia.org/wiki/Keras.
- [2] "Module: tf.keras | TensorFlow Core v2.4.1," [Online]. Available: https://www.tensorflow.org/api_docs/python/tf/keras?hl=tr.
- [3] Kaggle, "Traffic sign Classification using CNN," [Online]. Available: view-source:https://www.kaggle.com/pritamaich/traffic-sign-classification-using-cnn.
- [4] "NN-SVG," [Online]. Available: http://alexlenail.me/NN-SVG/LeNet.html.
- [5] S. I. M. K. M. &. T. S. Saha, "An Efficient Traffic Sign Recognition Approach Using a Novel Deep Neural Network Selection Architecture," 2019.
- [6] V. H. Tiệp, "Bài 36. Giới thiệu về Keras," machinelearningcoban.com, [Online]. Available: https://machinelearningcoban.com/2018/07/06/deeplearning/.
- [7] https://medium0.com/@quangnhatnguyenle/yolov4-in-google-colab-train-your-custom-dataset-traffic-signs-with-ease-3243ca91c81d
- [8] https://robocademy.com/2020/05/01/a-gentle-introduction-to-yolo-v4-for-object-detection-in-ubuntu-20-04/
- [9] https://www.geeksforgeeks.org/python-opency-capture-video-from-camera/