

ECE 20200: Linear Circuit Analysis II Steve Naumov (Instructor)

Overview

- Balanced poly-phase networks: A network comprising a balanced poly-phase source and a balanced poly-phase load
- ▶ Balanced Poly-phase source: A voltage source that generates k sinusoidal voltage waveforms with these characteristics:
 - Each waveform's operating frequency is the same
 - Each waveform's magnitude is the same
 - Consecutive waveform pairs are (360/k) degrees apart.
- Balanced Poly-phase load: A load that draws the same power from each voltage waveform
 Three-phase
- Most common poly-phase network is a three-phase network

Overview (cont'd)

- Why study balanced poly-phase networks?
 - Nearly all electric power is generated and distributed using balanced poly-phase networks.
 - Instantaneous power is constant (not pulsating) and results in uniform power transmission and less vibration in the polyphase generators.
 - For the same amount of power, a poly-phase network is more economical than a single-phase counterpart.

Balanced 3-Phase Voltage Sources

Balanced 3-Phase Voltages

- A balanced 3-phase source generates
 3 sinusoidal voltages:
 - Each voltage's magnitude and frequency is V_{ϕ} volts and f_{ϕ} Hz
 - Consecutive pairs of voltages are $360^{\circ}/3 = 120^{\circ}$ apart.

- Each voltage is referred to as V_a (a-phase voltage), V_b (b-phase voltage), and V_c (c-phase voltage)
- $\mathbf{V_b}$ and $\mathbf{V_c}$ relate to $\mathbf{V_a}$ with respect to phase in one of two ways:
 - Positive Phase Sequence (a-b-c)

$$\mathbf{V}_a = V_\phi e^{j\theta_{\phi_V}} \qquad \mathbf{V}_b = \left(e^{-j120^\circ}\right) \mathbf{V}_a$$

$$\mathbf{V}_c = \left(e^{+j120^{\circ}}\right)\mathbf{V}_a$$

Negative Phase Sequence (a-c-b)

$$\mathbf{V}_a = V_{\phi} e^{j\theta_{\phi_V}} \qquad \mathbf{V}_b = (e^{+j120^{\circ}}) \mathbf{V}_a$$

$$\mathbf{V}_c = \left(e^{-j120^\circ}\right)\mathbf{V}_a$$

Balanced 3-Phase Voltages(cont'd)

Independent of the phase sequence, an important characteristic of balanced 3-phase voltages is that:

$$\mathbf{V}_a + \mathbf{V}_b + \mathbf{V}_c = 0\mathbf{V}$$

Proof (a-c-b sequence)

$$\begin{aligned} & \mathbf{V}_{\phi} e^{j\theta\phi_{V}} + \mathbf{V}_{\phi} e^{j(\theta\phi_{V} + 120^{\circ})} + \mathbf{V}_{\phi} e^{j(\theta\phi_{V} - 120^{\circ})} = 0\mathbf{V} \\ & (1 + e^{+j120} + e^{-j120^{\circ}}) \mathbf{V}_{a} = 0\mathbf{V} \\ & (0) \mathbf{V}_{a} = 0\mathbf{V} \end{aligned}$$

Three-phase

voltage

source

Three-phase

line

Balanced 3-phase Voltages

Source Topologies

Two ideal 3-phase voltage source topologies exist

{Wye-(Y), Tee-(T), Star-(*)} Topology {Delta-(Δ), Pie-(π)} Topology

 $\{V_{an}, V_{bn}, V_{cn}\}$ called $\{phase,$ line-to-neutral) voltages

$$\mathbf{V}_{an} + \mathbf{V}_{bn} + \mathbf{V}_{cn} = 0\mathbf{V}$$

 $\{V_{ab}, V_{bc}, V_{ca}\}$ called $\{line, line, line,$ line-to-line} voltages

$$\mathbf{V}_{ab} + \mathbf{V}_{bc} + \mathbf{V}_{ca} = 0\mathbf{V}$$

Transforming 3-Phase Voltages

Wye- $(Y) \rightarrow Delta-(\Delta)$ Transformations

Given a a-b-c phase sequence, balanced 3-phase phase voltages V_{an} , V_{bn} , and V_{cn} , the line-to-line voltage V_{ab} can be computed as follows:

Since line-to-line voltages \mathbf{V}_{bc} and \mathbf{V}_{ca} are balanced, we can compute them in terms of \mathbf{V}_{ab} :

$$\mathbf{V}_{bc} = (e^{-j120^{\circ}})\mathbf{V}_{ab}$$
$$\mathbf{V}_{ca} = (e^{+j120^{\circ}})\mathbf{V}_{ab}$$

How do equations on this slide change for a negative phase sequence Y source?

Transforming 3-Phase Voltages

Delta- $(\Delta) \rightarrow Wye-(Y)$ Transformations

• Given an a-b-c sequence, balanced 3-phase line-to-line voltages V_{ab} , V_{bc} , and V_{ca} , the a-phase voltage V_{an} can be computed as follows:

$$\mathbf{V}_{an} = \mathbf{V}_{ab} / \left(\sqrt{3}e^{+j30^{\circ}}\right) = V_{\phi}e^{j\theta_{\phi_V}}$$

$$\mathbf{V}_{an} = \mathbf{V}_{ab} \left[\left(\sqrt{3}/3 \right) e^{-j30^{\circ}} \right] = V_{\phi} e^{j\theta_{\phi_V}}$$

Since the phase voltages \mathbf{V}_{bn} and \mathbf{V}_{cn} are balanced, we can compute them in terms of a-phase voltage \mathbf{V}_{ab} :

$$\mathbf{V}_{bc} = \left(e^{-j120^{\circ}}\right)\mathbf{V}_{ab}$$

$$\mathbf{V}_{ca} = \left(e^{+j120^{\circ}}\right)\mathbf{V}_{ab}$$

How do equations on this slide change for a negative phase sequence Y source?

Delta (Pie) and Wye (Tee) Impedance Networks

Wye-(Y) and Delta- (Δ) Impedance Networks

There are two important load types for poly-phase networks

{Wye-(Y), Tee-(T), Star-(*)} Topology

Delta- (Δ) or Pie- (π) Topology

Wye-(Y) and Delta- (Δ) Impedance Networks Transforming Impedances of Unbalanced Loads

▶ Transforming Wye-Y \rightarrow Delta- Δ Impedances

$$Z_{AB} = \frac{Z_{AN}Z_{BN} + Z_{BN}Z_{CN} + Z_{CN}Z_{AN}}{Z_{CN}}$$

$$Z_{BC} = \frac{Z_{AN}Z_{BN} + Z_{BN}Z_{CN} + Z_{CN}Z_{AN}}{Z_{AN}}$$

$$Z_{CA} = \frac{Z_{AN}Z_{BN} + Z_{BN}Z_{CN} + Z_{CN}Z_{AN}}{Z_{BN}}$$

▶ Transforming Delta- Δ → Wye-Y Impedances

$$Z_{AN} = rac{Z_{AB}Z_{CA}}{Z_{AB} + Z_{BC} + Z_{CA}}$$
 $Z_{BN} = rac{Z_{BC}Z_{AB}}{Z_{AB} + Z_{BC} + Z_{CA}}$
 $Z_{CN} = rac{Z_{CA}Z_{BC}}{Z_{AB} + Z_{BC} + Z_{CA}}$

Balanced 3-Phase Loads Voltage and Current Transformations

- Balanced Poly-phase load: Load draws same power from each phase
 - To meet requirement, the each load impedance must be equal!
 - ightharpoonup A Wye-Y load is balanced when $Z_{AN}=Z_{BN}=Z_{CN}=Z_{Y}$
 - lacktriangle A Delta- Δ load is balanced when $Z_{AB}=Z_{BC}=Z_{CA}=Z_{\Delta}$
- Transforming Balanced Loads
 - ▶ Wye-Y \rightarrow Delta- Δ

$$Z_{\Delta} = \frac{Z_Y Z_Y + Z_Y Z_Y + Z_Y Z_Y}{Z_Y}$$

$$Z_{\Delta} = 3Z_{Y}$$

▶ Delta- Δ → Wye-Y Loads

$$Z_Y = \frac{Z_\Delta Z_\Delta}{Z_\Delta + Z_\Delta + Z_\Delta}$$

$$Z_Y = Z_{\Delta}/3$$

Overview of 3-Phase Networks

- Since 3-phase sources and loads can each have either a Wye-Y or Delta-D topology, four combinations of sources and loads exist
- Configurations of 3-phase networks

The Balanced Y-Y Network

neutral line The General 3-Phase Y-Y Network impedance a-phase source impedance a b-phase load impedance c-phase ideal source a'n $Z_{\ell \mathrm{b}}$ $Z_{
m sb}$ Z_{B} b I_{bB} $V_{b'n}$ Z_{C} 3-ф Transmission Line 3-ф Y-Load 3-ф Y-Source

A Balanced Y-Y 3-phase Network: Analysis

Perform nodal analysis @ at node N:

$$\frac{\mathbf{V}_{N} - \mathbf{V}_{a'n}}{Z_{S} + Z_{\ell} + Z_{Y}} + \frac{\mathbf{V}_{N} - \mathbf{V}_{b'n}}{Z_{S} + Z_{\ell} + Z_{Y}} + \frac{\mathbf{V}_{N} - \mathbf{V}_{c'n}}{Z_{S} + Z_{\ell} + Z_{Y}} + \frac{\mathbf{V}_{N} - 0\mathbf{V}}{Z_{\ell n}} = 0\mathbf{A}$$

$$\mathbf{V}_{N} \left[\frac{3}{Z_{\phi}} + \frac{1}{Z_{\ell n}} \right] = \frac{1}{Z_{\phi}} \left[\mathbf{V}_{a'n} + \mathbf{V}_{b'n} + \mathbf{V}_{c'n} \right] \rightarrow \mathbf{V}_{N} \left[\frac{3}{Z_{\phi}} + \frac{1}{Z_{\ell n}} \right] = \frac{1}{Z_{\phi}} \left[0\mathbf{V} \right]$$

$$\mathbf{V}_{N} = 0\mathbf{V}$$

Major conclusions:

- Consequence:
 - Can remove neutral line from <u>this</u> configuration or can replace neutral line with a short between nodes {n,N}

A Balanced Y-Y 3-phase Network

Preferred Analysis Method: Single-phase equivalent network

Single-phase equivalent network:

An equivalent network for a single phase (e.g. a-phase) that gives same V-I values on previous slide.

- ightharpoonup The a-phase line current \mathbf{I}_{aA} : $\mathbf{I}_{aA} = \mathbf{V}_{a'n}/\mathbf{Z}_{\phi}$
- The a-phase load voltage \mathbf{V}_{AN} : $\mathbf{V}_{AN} = \mathbf{I}_{aA} Z_Y$
- lacktriangle The a-phase terminal source voltage $oldsymbol{V}_{an}$:

$$\mathbf{V}_{an} = V_{a'n} - \mathbf{I}_{aA} Z_S = \mathbf{I}_{aA} (Z_{\ell} + Z_Y) = (\mathbf{V}_{a'n} / Z_{\phi}) (Z_{\ell} + Z_Y)$$

- Line-to-line load voltages (\mathbf{V}_{AB} , \mathbf{V}_{BC} , \mathbf{V}_{CA}) and the line-to-line terminal source voltages (\mathbf{V}_{ab} , \mathbf{V}_{bc} , \mathbf{V}_{ca}) can be derived using conversion factor ($\sqrt{3}e^{\pm j30^\circ}$) and the source's phase sequence
- For example (assuming a-b-c sequence):

$$\mathbf{V}_{AB} = \left(\sqrt{3}e^{j30^{\circ}}\right)\mathbf{V}_{AN} \qquad \qquad \mathbf{V}_{ab} = \left(\sqrt{3}e^{j30^{\circ}}\right)\mathbf{V}_{an}$$

Analysis of Balanced 3-Phase Sources

Balanced 3-Phase Networks

Y-Connected Sources

- lacktriangle Ideal a-Phase Source Voltage: $oldsymbol{V}_{a'n}$
- ightharpoonup Transmission Line Current: I_{aA}
- Other values are computed as follows:
 - a-Phase Current ($\mathbf{I}_{na'}$):

$$\mathbf{I}_{na'} = \mathbf{I}_{aA}$$

ightharpoonup a-Phase Terminal Voltage (V_{an}):

$$\mathbf{V}_{an} = \mathbf{V}_{a'n} - \mathbf{I}_{aA} Z_s$$

lacktriangle a-to-b Line-to-Line Voltage ($f V_{ab}$): Using KVL...

$$\mathbf{V}_{ab} = \mathbf{V}_{an} - \mathbf{V}_{bn} = \mathbf{V}_{an} - \mathbf{V}_{an} e^{\mp j120^{\circ}} = \left(1 - e^{\mp j120^{\circ}}\right) \mathbf{V}_{an}$$
$$\mathbf{V}_{ab} = \left(\sqrt{3}e^{j\pm30^{\circ}}\right) \mathbf{V}_{an} = \left(\sqrt{3}e^{\pm j30^{\circ}}\right) \left(\mathbf{V}_{a'n} - \mathbf{I}_{aA}Z_{s}\right)$$

• a-to-b Line-to-Line Current (I_{ab}): N/A

Balanced 3-Phase Networks

Δ-Connected Sources

- lacktriangle Ideal a-Phase Source Voltage: $oldsymbol{V}_{a'b}$
- ightharpoonup Transmission Line Current: \mathbf{I}_{aA}
- Other values are computed as follows
 - a-to-b Terminal Line-to-Line Voltage (\mathbf{V}_{ab}):

$$\mathbf{V}_{ab} = \mathbf{V}_{a'b} - \mathbf{I}_{ba} Z_s = \left(\sqrt{3}e^{\pm j30^{\circ}}\right) \mathbf{V}_{an}$$

 \triangleright a-Phase Voltage (\mathbf{V}_{ab}):

$$\mathbf{V}_{ab} = \mathbf{V}_{a'b} - \mathbf{I}_{ba} Z_s = \left(\sqrt{3}e^{\pm j30^{\circ}}\right) \mathbf{V}_{an}$$

• a-Phase Current (I_{ba}): Use KCL @ (a)

$$\mathbf{I}_{aA} = \mathbf{I}_{ba} - \mathbf{I}_{ac} = \mathbf{I}_{ba} - \mathbf{I}_{ba}e^{\pm j120^{\circ}} = \left(1 - e^{\pm j120^{\circ}}\right)\mathbf{I}_{ba} = \left(\sqrt{3}e^{\mp j30^{\circ}}\right)\mathbf{I}_{ba}$$

$$\boxed{\mathbf{I}_{ba} = \mathbf{I}_{aA}/\left(\sqrt{3}e^{\mp j30^{\circ}}\right)}$$

b-to-a Line-to-Line Current (\mathbf{I}_{ba}): $\mathbf{I}_{ba} = (\mathbf{V}_{a'b} - \mathbf{V}_{ab})/Z_s = \mathbf{I}_{aA}/(\sqrt{3}e^{\mp j30^\circ})$

Analysis of Balanced 3-Phase Loads

Balanced 3-Phase Networks Y-Connected Loads

- lacktriangle Transmission Line Current: $oldsymbol{I}_{aA}$
- Other related values can be computed as follows
 - \blacktriangleright A-Phase Current (\mathbf{I}_{AN}):

$$\mathbf{I}_{AN} = \mathbf{I}_{aA}$$

 \blacktriangleright A-Phase Voltage (\mathbf{V}_{AN}):

$$\mathbf{V}_{AN} = \mathbf{I}_{AN} Z_Y = \mathbf{I}_{aA} Z_Y$$

lacktriangle A-to-B Line-to-Line Voltage $oldsymbol{V}_{AB}$: Using KVL...

$$\mathbf{V}_{AB} = \mathbf{V}_{AN} - \mathbf{V}_{BN} = \mathbf{V}_{AN} - \mathbf{V}_{AN} e^{\mp j120^{\circ}} = (1 - e^{\mp j120^{\circ}}) \mathbf{V}_{AN}$$
$$\mathbf{V}_{AB} = (\sqrt{3}e^{\pm j30^{\circ}}) \mathbf{V}_{AN}$$

▶ A-to-B Line-to-Line Current: $I_{AB} \rightarrow N/A$

Balanced 3-Phase Networks Δ-Connected Loads

- lacktriangle Transmission line current: $oldsymbol{I}_{aA}$
- Other related values can be computed as follows
 - A-Phase Voltage (V_{AB}):

$$\mathbf{V}_{AB} = \left(\sqrt{3}e^{\pm j30^{\circ}}\right)\mathbf{V}_{AN}$$

 \blacktriangleright A-to-B Line-to-Line Voltage (\mathbf{V}_{AB}):

$$\mathbf{V}_{AB} = \left(\sqrt{3}e^{\pm j30^{\circ}}\right)\mathbf{I}_{aA}(Z_{\Delta}/3)$$

 \blacktriangleright A-Phase Current (I_{AB}): Use KCL @ (A)

$$\mathbf{I}_{aA} = \mathbf{I}_{AB} - \mathbf{I}_{CA} = \mathbf{I}_{AB} - \mathbf{I}_{AB} e^{\pm j120^{\circ}} = (1 - e^{\pm j120^{\circ}}) \mathbf{I}_{AB} = (\sqrt{3}e^{\mp j30^{\circ}}) \mathbf{I}_{AB}$$

$$\left| \mathbf{I}_{AB} = \mathbf{V}_{AB}/Z_{\Delta} = \mathbf{I}_{aA}/\left(\sqrt{3}e^{\mp j30^{\circ}}\right) \right|$$

A-to-B Line-to-Line Current (\mathbf{I}_{AB}): $\mathbf{I}_{AB} = \mathbf{V}_{AB}/Z_{\Delta} = \mathbf{I}_{aA}/\left(\sqrt{3}e^{\mp j30^{\circ}}\right)$