SIGMA205 : Prédiction d'une série temporelle localement stationnaire

Thomas EBOLI et Amaury DURAND

Télécom ParisTech

30 juin 2016

- Rappels sur les processus AR
 - Construction d'une solution stationnaire au second ordre
 - Génération à partir de Levinson-Durbin
 - Densité spectrale de puissance
- 2 Processus TVAR
 - Construction d'une solution stable
 - Génération
 - Prédiction
 - Agrégation des prédicteurs
- Implémentations
 - Prédiction par agrégation
 - Estimation DSP parole

- Rappels sur les processus AR
 - Construction d'une solution stationnaire au second ordre
 - Génération à partir de Levinson-Durbin
 - Densité spectrale de puissance
- Processus TVAR
 - Construction d'une solution stable
 - Génération
 - Prédiction
 - Agrégation des prédicteurs
- Implémentations
 - Prédiction par agrégation
 - Estimation DSP parole

Equation AR

$$X_t = \sum_{i=1}^p \theta_i X_{t-i} + \epsilon_t \tag{AR}$$

 $p \geq 1$, $(X_t)_{t \in \mathbb{Z}}$ un processus aléatoire à valeurs dans \mathbb{C} , $\theta_1, \cdots, \theta_p \in \mathbb{C}$ et $\epsilon \sim BB(0, \sigma^2)$

Théorème

Soit
$$\Theta(z) = 1 - \sum_{k=1}^{p} \theta_k z^k$$
. Si $\forall |z| = 1, \Theta(z) \neq 0$
Alors il existe une solution stationnaire au second ordre

- Rappels sur les processus AR
 - Construction d'une solution stationnaire au second ordre
 - Génération à partir de Levinson-Durbin
 - Densité spectrale de puissance
- 2 Processus TVAR
 - Construction d'une solution stable
 - Génération
 - Prédiction
 - Agrégation des prédicteurs
- Implémentations
 - Prédiction par agrégation
 - Estimation DSP parole

Algorithme 1.1 : Construction des θ à partir des κ

Théorème

Soit $d \geq 1$. Alors quels que soient $(\kappa_1, \cdots, \kappa_d) \in]-1, 1[^d, \forall p \in [\![1,d]\!]$, les coefficients $(\theta_{1,p}, \cdots, \theta_{p,p})$ construits par l'algorithme 1.1 sont les coefficients d'un processus AR(p) causal i.e.

$$1 - \sum_{k=1}^{p} \theta_{k,p} z^{k} \neq 0 \,\,\forall |z| \leq 1$$

- Rappels sur les processus AR
 - Construction d'une solution stationnaire au second ordre
 - Génération à partir de Levinson-Durbin
 - Densité spectrale de puissance
- 2 Processus TVAR
 - Construction d'une solution stable
 - Génération
 - Prédiction
 - Agrégation des prédicteurs
- Implémentations
 - Prédiction par agrégation
 - Estimation DSP parole

Définition (DSP d'un AR(p))

La DSP est définie pour
$$\lambda \in [-\pi, \pi[S_x(\lambda) = \frac{\sigma^2}{2\pi |\Theta(e^{-i\lambda})|^2}]$$
 où $\Theta(z) = 1 - \sum_{k=1}^p \theta_k z^k$

Proposition

Considérons z_1, \cdots, z_p les inverses des racines de $\Theta(z)$ alors en notant $\forall n \in \llbracket 1, p \rrbracket, z_n = \rho_n \mathrm{e}^{\mathrm{i} \phi_n}$ avec $0 < \rho_n < 1$ et $\phi_n \in [-\pi, \pi[$ on a, $\mathrm{si} \ \forall n \in \llbracket 1, p \rrbracket, \rho_n$ est assez proche de 1

$$S_{x}(\lambda)$$
 admet un pic en $\lambda \iff \exists n \in [1, p] \ \lambda = \phi_{n}$

- Rappels sur les processus AR
 - Construction d'une solution stationnaire au second ordre
 - Génération à partir de Levinson-Durbin
 - Densité spectrale de puissance
- Processus TVAR
 - Construction d'une solution stable
 - Génération
 - Prédiction
 - Agrégation des prédicteurs
- Implémentations
 - Prédiction par agrégation
 - Estimation DSP parole

Equation TVAR et stabilité

Equation TVAR:

$$X_{t} = \sum_{i=1}^{p} \theta_{i}(t) X_{t-i} + \sigma(t) \epsilon_{t}$$
 (TVAR)

où $\epsilon \stackrel{\text{iid}}{\sim} BB(0,1)$.

critère de stabilité :

$$\sup_{t\in\mathbb{Z}}\mathbb{E}\left[|X_t|^2\right]<+\infty\tag{S}$$

Cas où p=1 :
$$X_t = \theta(t)X_{t-1} + \sigma(t)\epsilon_t$$

Proposition

Si $\sup_t |\theta(t)| < 1$ et $\sup_t |\sigma(t)| < +\infty$ alors il existe un unique processus $(X_t)_{t \in \mathbb{Z}}$ vérifiant à la fois (TVAR) et la condition de stabilité (S)

Démonstration : On suppose (TVAR) et (S). En itérant k fois l'équation $\forall k \geq 0$

$$X_{t} = \left(\prod_{j=0}^{k} \theta(t-j)\right) X_{t-k-1} + \sum_{j=0}^{k} \left(\prod_{i=0}^{j-1} \theta(t-i)\right) \sigma(t-j) \epsilon_{t-j}$$

But : $k \to +\infty$

$$M = \sup_{t} \mathbb{E}\left[|X_{t}|^{2} \right], \ \theta_{\mathsf{max}} = \sup_{t} |\theta(t)| \ \mathrm{et} \ \sigma_{\mathsf{max}} = \sup_{t} |\sigma(t)|$$

$$\left\| \left(\prod_{j=0}^{k} \theta(t-j) \right) X_{t-k-1} \right\|_{2}^{2} \leq \theta_{\max}^{2(k+1)} M \xrightarrow[k \to +\infty]{} 0$$

De plus $\forall j \geq 0$

$$\left\| \left(\prod_{i=0}^{j-1} \theta(t-i) \right) \sigma(t-j) \epsilon_{t-j} \right\|_2 \le \theta_{\mathsf{max}}^j \sigma_{\mathsf{max}} \Rightarrow \text{ série convergente}$$

On fait tendre k vers $+\infty$:

$$X_t = \sum_{j=0}^{+\infty} c_j \epsilon_{t-j} \text{ avec } c_j = \left(\prod_{j=0}^{j-1} \theta(t-j)\right) \sigma(t-j)$$

Réciproque : ok

Construction d'une solution stable Génération Prédiction Agrégation des prédicteurs

Contre exemple pour p=2 : GRAPHIQUE A METTRE

Cas général:

Définition (Nouvelle définition TVAR)

$$\theta_1,\cdots,\theta_p$$
 et σ définies sur $]-\infty,1]$ et $(\epsilon_t)_{t\in\mathbb{Z}}\stackrel{\mathrm{iid}}{\sim} BB(0,1)$. $T\geq 1$

$$\forall -\infty < t \le T, X_{t,T} = \sum_{i=1}^{p} \theta_i \left(\frac{t}{T}\right) X_{t-i,T} + \sigma\left(\frac{t}{T}\right) \epsilon_t$$
 (TVAR')

$$\sup_{-\infty < t \le T} \mathbb{E}\left[|X_{t,T}|^2\right] < +\infty \tag{S'}$$

Théorème

Hypothèses:

- $\forall i \in [1, p], \theta_i$ uniformément continue sur $]-\infty, 1]$
- σ bornée sur $]-\infty,1]$.
- $\exists \delta \in]0, 1[, \Theta(z; u) \stackrel{\text{def}}{=} 1 \sum_{i=1}^{p} \theta_i(u) z^i \neq 0 \, \forall |z| < \delta^{-1}, u \in [0, 1]$

Alors il existe $T_0 \ge 1$ tel que $\forall T \ge T_0$ il existe un unique processus $(X_{t,T})_{t \le T}$ vérifiant (TVAR') et (S').

- Rappels sur les processus AR
 - Construction d'une solution stationnaire au second ordre
 - Génération à partir de Levinson-Durbin
 - Densité spectrale de puissance
- 2 Processus TVAR
 - Construction d'une solution stable
 - Génération
 - Prédiction
 - Agrégation des prédicteurs
- Implémentations
 - Prédiction par agrégation
 - Estimation DSP parole

Construction d'une solution stable Génération Prédiction Agrégation des prédicteurs

horizon de temps fini : $t \in [0, T]$ Processus AR abstraits associés A $t \in [0, T]$ fixé $(\theta_1(t/T), \cdots, \theta_p(t/T))$ sont les coefficients d'un AR(p) causal

Théorème

 $\forall \kappa_1, \cdots, \kappa_p$ continues de $[0,1] \rightarrow]-1,1[$, les fonctions $\theta_{1,p}, \cdots, \theta_{p,p}$ obtenues par l'algorithme 1.1 à chaque instant u sont les coefficients d'un processus TVAR(p) stable

Implémentation TVAR(1) à partir de la racine : module variable

Implémentation TVAR(1) à partir de la racine : phase variable

Implémentation TVAR(2) à partir des racines : racines réelles

Implémentation TVAR(2) à partir des racines : racines réelles

Construction d'une solution stabl Génération Prédiction Agrégation des prédicteurs

Implémentation TVAR(..) à partir des κ GRAPHIQUE A METTRE

- Rappels sur les processus AR
 - Construction d'une solution stationnaire au second ordre
 - Génération à partir de Levinson-Durbin
 - Densité spectrale de puissance
- Processus TVAR
 - Construction d'une solution stable
 - Génération
 - Prédiction
 - Agrégation des prédicteurs
- Implémentations
 - Prédiction par agrégation
 - Estimation DSP parole

Construction d'une solution stab Génération **Prédiction** Agrégation des prédicteurs

$$\begin{aligned} \mathbf{X}_{t,T} &= [X_{t,T}, X_{t-1,T}, \cdots, X_{t-p+1,T}]^T \\ \boldsymbol{\theta}_{t,T} &= \left[\theta_1\left(\frac{t}{T}\right), \theta_2\left(\frac{t}{T}\right), \cdots, \theta_p\left(\frac{t}{T}\right)\right]^T, \ \boldsymbol{\sigma}_{t,T} = \boldsymbol{\sigma}\left(\frac{t}{T}\right) \\ \mathbf{Crit\grave{e}re} &: \hat{\boldsymbol{\theta}}_{t,T} = \arg\min_{\boldsymbol{\theta} \in \mathbb{C}^p} \mathbb{E}\left[\left|X_{t+1,T} - \boldsymbol{\theta}^T \mathbf{X}_{t,T}\right|^2\right] \end{aligned}$$

Définition (Estimateur NLMS de θ)

On se donne un pas μ , l'estimateur est le suivant :

$$\hat{\boldsymbol{\theta}}_{0,T}(\mu) = 0
\hat{\boldsymbol{\theta}}_{t+1,T}(\mu) = \hat{\boldsymbol{\theta}}_{t,T}(\mu) + \mu(\boldsymbol{X}_{t+1,T} - \hat{\boldsymbol{\theta}}_{t+1,T}(\mu)^T \boldsymbol{X}_{t,T}) \frac{\boldsymbol{X}_{t,T}}{1 + \mu \|\boldsymbol{X}_{t,T}\|^2}$$

Prédicteur associé :
$$\hat{X}_{t,T}(\mu) = \hat{\theta}_{t-1,T}(\mu)^T \mathbf{X}_{t-1,T}$$

Rappels sur les processus AR Processus TVAR Implémentations Construction d'une solution stabl Génération Prédiction Agrégation des prédicteurs

Influence de μ : GRAPHIQUE A METTRE

Construction d'une solution stabl Génération Prédiction Agrégation des prédicteurs

- Rappels sur les processus AR
 - Construction d'une solution stationnaire au second ordre
 - Génération à partir de Levinson-Durbin
 - Densité spectrale de puissance
- Processus TVAR
 - Construction d'une solution stable
 - Génération
 - Prédiction
 - Agrégation des prédicteurs
- Implémentations
 - Prédiction par agrégation
 - Estimation DSP parole

Définition (Agrégation)

$$\forall t \in [1, T], \hat{X}_{t,T} = \sum_{i=1}^{N} \alpha_{i,t} \hat{X}_{t,T}^{(i)}$$

où
$$\alpha_t = (\alpha_{1,t}, \cdots, \alpha_{N,t}) \in \mathcal{S}_N = \left\{ \alpha \in \mathbb{R}_+^N, \sum_{i=1}^N \alpha_i = 1 \right\}$$

Construction d'une solution stabl Génération Prédiction Agrégation des prédicteurs

Stratégie 1 : à partir du gradient de l'erreur quadratique $\forall i \in [\![1,N]\!], \forall t \in [\![1,T]\!]$

$$\hat{\alpha}_{i,t} = \frac{\exp\left(-2\eta \sum_{s=1}^{t-1} \left(\sum_{j=1}^{N} \hat{\alpha}_{j,s} \hat{X}_{s,T}^{(j)} - X_{s,T}\right) \hat{X}_{s,T}^{(i)}\right)}{\sum_{k=1}^{N} \exp\left(-2\eta \sum_{s=1}^{t-1} \left(\sum_{j=1}^{N} \hat{\alpha}_{j,s} \hat{X}_{s,T}^{(j)} - X_{s,T}\right) \hat{X}_{s,T}^{(k)}\right)}$$

Stratégie 2 : à partir de l'erreur quadratique

$$\forall i \in [[1, N]], \forall t \in [[1, T]]$$

$$\hat{\alpha}_{i,t} = \frac{\exp\left(-\eta \sum_{s=1}^{t-1} \left(\hat{X}_{s,T}^{(i)} - X_{s,T}\right)^2\right)}{\sum_{k=1}^{N} \exp\left(-\eta \sum_{s=1}^{t-1} \left(\hat{X}_{s,T}^{(k)} - X_{s,T}\right)^2\right)}$$

Théorème (Performances)

 $(X_{t,T})_{1 \leq t \leq T}$ TVAR stable + régularité des prédicteurs :

$$\mathcal{E}(T) = \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}[(\hat{X}_{t,T} - X_{t,T})^2]$$

 $\underline{\mathsf{Strat\acute{e}gie}\ 1:}\ \mathsf{Si}\ \mathsf{sup}_{t\in\mathbb{Z}}\,\mathbb{E}\left[\left|\epsilon_{t}\right|^{4}\right]<+\infty$

$$\mathcal{E}(T) \leq \inf_{\alpha \in \mathcal{S}_{\mathcal{N}}} \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}[(\hat{X}_{t,1}^{[\alpha]} - X_{t,T})^2] + \frac{\log(\mathcal{N})}{T\eta} + 2\eta C_4$$

Stratégie 2 : Si il existe $p \geq 2$ tel que $\sup_{t \in \mathbb{Z}} \mathbb{E}\left[\left|\epsilon_t\right|^p\right] < +\infty$

$$\mathcal{E}(T) \leq \min_{1 \leq i \leq N} \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}[(\hat{X}_{t,T}^{(i)} - X_{t,T})^{2}] + \frac{\log(N)}{T\eta} + (2\eta)^{p/2-1} C_{p}$$

- Rappels sur les processus AR
 - Construction d'une solution stationnaire au second ordre
 - Génération à partir de Levinson-Durbin
 - Densité spectrale de puissance
- 2 Processus TVAR
 - Construction d'une solution stable
 - Génération
 - Prédiction
 - Agrégation des prédicteurs
- Implémentations
 - Prédiction par agrégation
 - Estimation DSP parole

Prédiction par agrégation Estimation DSP parole

A REMPLIR

- Rappels sur les processus AR
 - Construction d'une solution stationnaire au second ordre
 - Génération à partir de Levinson-Durbin
 - Densité spectrale de puissance
- 2 Processus TVAR
 - Construction d'une solution stable
 - Génération
 - Prédiction
 - Agrégation des prédicteurs
- Implémentations
 - Prédiction par agrégation
 - Estimation DSP parole

Prédiction par agrégation Estimation DSP parole

A REMPLIR

