Examen Final de Matemática Discreta Segundo Semestre. Curso 2005-2006

Nombre y apellidos:	Grupo:
 Clasifique los siguientes enunciados en verdadero (V) o falso (F) mente en cada caso. 	justificando adecuada-
Si G es un grafo con n vértices, m aristas y c componentes hay al menos $c+m-n$ ciclos.	
En todo grafo G de $2k$ vértices donde $\delta(G) \geq k$ hay un emp Para todo $k \in \mathbb{Z}^+$ es posible encontrar un lenguaje infinite requiera de una máquina de Turing de al menos k estados.	_
2. Sea $n \in \mathbb{N}$ demuestre que las siguientes funciones son primitivas (a) rev (n) que computa el reverso del número n . Por ejemplo,	

(b) espot2(n) = $\begin{cases} 1 & n = 2^k \text{ para algún } k \in \mathbb{N} \\ 0 & \text{en otro caso} \end{cases}$

2416 es 6142 y el reverso de 3 es el propio 3.

- 3. Sea $G = \langle V, E \rangle$ un grafo conexo de n vértices. Demuestre que G es K_n o existen en G tres vértices u, v y w tales que $uv \in E$, $vw \in E$ pero $uw \notin E$.
- 4. Sea G un grafo de n vértices y una cantidad de aristas $m \geq \frac{n^2}{4}$. Demuestre que en G existe al menos un ciclo de longitud 3.
- 5. Diseñe una máquina de Turing que reconozca el lenguaje de las cadenas sobre el alfabeto {a, b, c} que cumplen que el símbolo que aparece en las posiciones múltiplos de 3 es el mismo. Por ejemplo la cadena abbccbacbb pertenece al lenguaje y no la cadena aaaaaaacba.