

# Aufgaben zur Linearen Algebra - Blatt 10

elektronische Abgabe im OLAT Kurs des Proseminars (z.B. bis Mo. 10. Jänner 2022, 08:00 Uhr)

# Aufgabe 37

Bestimmen Sie für die folgenden linearen Abbildungen jeweils eine Basis für Kern und Bild:

- (a)  $\phi_1: \mathbb{R}^3 \to \mathbb{R}^2$ ;  $(x_1, x_2, x_3) \mapsto (x_1 x_2 x_3, x_2 + 2x_1 x_3)$
- (b)  $\phi_2: \mathbb{R}^3 \to \mathbb{R}^3; (x_1, x_2, x_3) \mapsto (7x_1 + x_2, x_1 + x_2 + x_3, x_3 6x_1)$
- (c)  $\phi_3: \operatorname{Mat}_2(\mathbb{R}) \to \operatorname{Mat}_2(\mathbb{R}); A \mapsto A^t \operatorname{spur}(A) \cdot I$

Zur Erinnerung für  $A \in \operatorname{Mat}_m(K)$  gilt  $\operatorname{spur}(A) := \sum_{i=1}^m A_{ii}$ .

#### Aufgabe 38

Sei  $V = \mathbb{R}[t]_{\leq 4}$  der Vektorraum aller reellen Polynome vom Grad  $\leq 4$ . Entscheiden Sie, welche der folgenden Abbildungen  $\phi_i : V \to V$  linear sind:

- (a)  $\phi_1: p \mapsto p(0)$  Auswertung in 0
- (b)  $\phi_2: p \mapsto p'$  (formale) Ableitung nach t
- (c)  $\phi_3: p \mapsto 2p + 2$
- (d)  $\phi_4: p \mapsto t \cdot p' + t^2 \cdot p(1)$ .

## Aufgabe 39

Sei  $\psi\colon V_1\to V_2$  eine lineare Abbildung zwischen K-Vektorräumen. Beweisen oder widerlegen Sie die folgenden Aussagen

- (a) Sind  $v_1, \ldots, v_m$  in  $V_1$  linear unabhängig, so sind  $\psi(v_1), \ldots, \psi(v_m)$  in  $V_2$  linear unabhängig.
- (b) Sind  $\psi(v_1), \ldots, \psi(v_m)$  in  $V_2$  linear unabhängig, so sind  $v_1, \ldots, v_m$  in  $V_1$  linear unabhängig.
- (c) Wenn  $\psi$  bijektiv ist, dann ist  $\psi^{-1}: V_2 \to V_1$  ebenfalls linear.
- (d) Aus  $\dim_K(\psi(V_1)) = \dim_K(V_2)$  folgt, dass  $\psi$  bijektiv ist.

## Aufgabe 40

Bestimmen Sie den Rang der folgenden Matrix über dem Körper Q:

$$A = \left(\begin{array}{cccc} 1 & 1 & 2 & 0 \\ 2 & 0 & 1 & 2 \\ 0 & 1 & 0 & 2 \\ 2 & 2 & 1 & 2 \end{array}\right).$$

Was ist der Rang, wenn wir A als Matrix über dem Körper  $\mathbb{Z}/3\mathbb{Z}$  auffassen? Finden Sie jeweils eine invertierbare Untermatrix von maximaler Größe.