

PODSTAWY TECHNIKI CYFROWEJ

Sprawozdanie z ćwiczeń laboratoryjnych

LABORATORIUM NR: 4 DATA: 25.05.2021

TEMAT: Realizacja układów kombinacyjnych z wykorzystaniem cyfrowych

bloków funkcjonalnych średniej skali integracji

IMIĘ I NAZWISKO: Rafał Kuźmiczuk

Zadanie 1

Zaprojektować układ realizujący zespół 3 funkcji 4 zmiennych przy pomocy dostępnych bramek logicznych.

• $X = \sum [1,3,11,12,13,14,15],$

• $Y = \sum [0,1,2,3,7,12,14],$

• $Z = \sum [0,2,3,7,11,13,15].$

Zbudować postać sumacyjną na bramkach NAND.

Tabela 1. Tablica prawdy

L.P.	Α	В	С	D	Х	Υ	Z
0	0	0	0	0	0	1	1
1	0	0	0	1	1	1	0
2	0	0	1	0	0	1	1
3	0	0	1	1	1	1	1
4	0	1	0	0	0	0	0
5	0	1	0	1	0	0	0
6	0	1	1	0	0	0	0
7	0	1	1	1	0	1	1
8	1	0	0	0	0	0	0
9	1	0	0	1	0	0	0
10	1	0	1	0	0	0	0
11	1	0	1	1	1	0	1
12	1	1	0	0	1	1	0
13	1	1	0	1	1	0	1
14	1	1	1	0	1	1	0
15	1	1	1	1	1	0	1

Sprawozdanie z ćwiczeń laboratoryjnych

			CD		
		00	01	11	10
AB	00	0	1	1	0
	01	0	0	0	0
	11	1	1	1	1
	10	0	0	1	0

Obrazek 1. Tablica Karnaugh dla funkcji X w postaci sumacyjnej

$$X(A,B,C,D) = \overline{A} \cdot \overline{B} \cdot D + A \cdot B + \overline{B} \cdot C \cdot D$$

			CD		
		00	01	11	10
AB	00	1	1	1	1
	01	0	0	1	0
	11	1	0	0	1
	10	0	0	0	0

Obrazek 2. Tablica Karnaugh dla funkcji Y w postaci sumacyjnej

$$Y(A, B, C, D) = \overline{A} \cdot \overline{B} + \overline{A} \cdot C \cdot D + A \cdot B \cdot \overline{D}$$

			CD		
		00	01	11	10
ΑB	00	1	0	1	1
	01	0	0	1	0
	11	0	1	1	0
	10	0	0	1	0

Obrazek 3. Tablica Karnaugh dla funkcji Z w postaci sumacyjnej

$$Z(A, B, C, D) = \overline{A} \cdot \overline{B} \cdot \overline{D} + C \cdot D + A \cdot B \cdot D$$

Utworzony układ działa poprawnie. Na następnych stronach zamieszczam przykładowe zrzuty ekranu.

Obrazek 4. Wynik dla wejścia z L.P. 0

Obrazek 5. Wynik dla wejścia z L.P. 7

Obrazek 6. Wynik dla wejścia z L.P. 15

PODSTAWY TECHNIKI CYFROWEJ

Sprawozdanie z ćwiczeń laboratoryjnych

Zadanie 2

Zaprojektować układ realizujący funkcję:

 $y = \sum [0,3,5,12,15; (1,2,4,7,8,11,13,14)]$ przy pomocy:

Tabela 2. Tablica prawdy dla funkcji $y = \sum [0,3,5,12,15; (1,2,4,7,8,11,13,14)]$

L.P.	Α	В	С	D	Υ
0	0	0	0	0	1
1	0	0	0	1	-
2	0	0	1	0	-
3	0	0	1	1	1
4	0	1	0	0	-
5	0	1	0	1	1
6	0	1	1	0	0
7	0	1	1	1	-
8	1	0	0	0	-
9	1	0	0	1	0
10	1	0	1	0	0
11	1	0	1	1	-
12	1	1	0	0	1
13	1	1	0	1	-
14	1	1	1	0	-
15	1	1	1	1	1

a) multiplekserów o 3 wejściach adresowych

Obrazek 7. Funkcja: $y = \sum [0,3,5,12,15; (1,2,4,7,8,11,13,14)]$ wyrażona za pomocą multiplekserów o 3 wejściach adresowych

b) multiplekserów o 2 wejściach adresowych

Obrazek 8. Funkcja: $y = \sum [0,3,5,12,15; (1,2,4,7,8,11,13,14)]$ wyrażona za pomocą multiplekserów o 2 wejściach adresowych

PODSTAWY TECHNIKI CYFROWEJ

Sprawozdanie z ćwiczeń laboratoryjnych

Zadanie 3

Zaprojektować układ realizujący funkcję:

 $y = \sum [0,2,4,9,11,13,16,17,20,21,27,31; (3,6,10,15,18,22,25,28,29)]$ przy pomocy:

Tabela 3. Tablica prawdy dla funkcji $y = \sum [0,2,4,9,11,13,16,17,20,21,27,31;$ (3,6,10,15,18,22,25,28,29)]

L.P.	Α	В	С	D	E	Υ
0	0	0	0	0	0	1
1	0	0	0	0	1	0
2	0	0	0	1	0	1
3	0	0	0	1	1	-
4	0	0	1	0	0	1
5	0	0	1	0	1	0
6	0	0	1	1	0	-
7	0	0	1	1	1	0
8	0	1	0	0	0	0
9	0	1	0	0	1	1
10	0	1	0	1	0	-
11	0	1	0	1	1	1
12	0	1	1	0	0	0
13	0	1	1	0	1	1
14	0	1	1	1	0	0
15	0	1	1	1	1	-
16	1	0	0	0	0	1
17	1	0	0	0	1	1
18	1	0	0	1	0	-
19	1	0	0	1	1	0
20	1	0	1	0	0	1
21	1	0	1	0	1	1
22	1	0	1	1	0	-
23	1	0	1	1	1	0
24	1	1	0	0	0	0
25	1	1	0	0	1	-
26	1	1	0	1	0	0
27	1	1	0	1	1	1
28	1	1	1	0	0	-
29	1	1	1	0	1	-
30	1	1	1	1	0	0
31	1	1	1	1	1	1

a) multiplekserów o 4 wejściach adresowych

Obrazek 9. Funkcja: $y = \sum [0,2,4,9,11,13,16,17,20,21,27,31; (3,6,10,15,18,22,25,28,29)]$ wyrażona za pomocą multiplekserów o 4 wejściach adresowych

b) multiplekserów o 3 wejściach adresowych

Obrazek 10. Funkcja: $y = \sum [0,2,4,9,11,13,16,17,20,21,27,31; (3,6,10,15,18,22,25,28,29)]$ wyrażona za pomocą multiplekserów o 3 wejściach adresowych

c) multiplekserów o 2 wejściach adresowych

Obrazek 11. Funkcja: $y = \sum [0,2,4,9,11,13,16,17,20,21,27,31; (3,6,10,15,18,22,25,28,29)]$ wyrażona za pomocą multiplekserów o 2 wejściach adresowych