

Universidade Federal de Juiz de Fora

Modelos de Mistura Gaussiana (GMM)

Fundamentos e Aplicações

Claudia Fonseca Paulo Sérgio de Castro Nascimento Patrícia Oliveira Silva

Universidade Federal de Juiz de Fora

Conceitos iniciais de clusterização

Considerações iniciais

- Clusterização ou agrupamento é a tarefa de encontrar grupos onde os elementos sejam similares entre si.
- No entanto, existem situações nas quais não sabemos a maneira apropriada de **agrupar** uma coleção de objetos de acordo com suas "similaridades";
- Frequentemente não sabemos se existe algum **agrupamento natural** dos objetos segundo um conjunto de características que descrevem esses objetos.

Agrupamentos

• O que é um agrupamento natural entre os seguintes objetos?

Grupo é um conceito subjetivo:

Uma definição para agrupamento de dados

"Finding groups of objects such that the objects in a group are <u>similar</u> (or <u>related</u>) to one another and <u>different</u> from (or <u>unrelated</u> to) the objects in other groups." (Tan et al.,2006)

Algoritmos de clusterização

- Algoritmos de *clustering* induzem *clusters*;
- Os *clusters* a serem induzidos dependem de uma série de fatores, além dos dados propriamente ditos, por exemplo:
 - Medidas de similaridade ou dissimilaridade;
 - Índices de avaliação;
 - Parâmetros definidos pelo usuário, etc.
- No *Machine Larning* (Aprendizado de Máquina):
 - Projetista define o que o computador pode aprender;
 - Existem diversos de algoritmos de *cluterização*.

Técnicas de Machine Larning

Aprendizagem Supervisionada

- Ocorre quando o modelo aprende a partir de resultados prédefinidos.
- O modelo possui uma referência daquilo que está certo e daquilo que está errado.

Aprendizagem Não Supervisionado

 Não existem resultados pré-definidos para o modelo utilizar como referência para aprender.

Aprendizagem Por Reforço

 A máquina tenta aprender qual é a melhor ação a ser tomada, dependendo das circunstâncias na qual essa ação será executada.

Agrupamento x Classificação

Agrupamento ou Clusterização

NÃO SUPERVISONADO

- Encontrar os rótulos das categorias (grupos ou *clusters*) e possivelmente o número de categorias diretamente a partir dos dados.
- É a indução de grupos a partir da base de dados e após agrupados esses grupos serão cuidadosamente estudos

Classificação

SUPERVISONADO

 Aprender um método para predizer as categorias (classes) de padrões não vistos a partir de exemplos pré-rotulados (classificados).

Agrupamento x Classificação (exemplos)

Agrupamento x Classificação (exemplos)

Agrupamento

Classificação

Universidade Federal de Juiz de Fora

Modelo de misturas gaussianas

GMM (Gaussian Mixture Model)

- Método de aprendizagem não supervisionado.
- Ocorre a partir de dados não rotulados e sem conhecimento prévio das categorias presentes no conjunto de dados.
- Busca compreender automaticamente a organização dos padrões existentes nos dados.
- Para finalmente obter conclusões úteis a respeito deles.

GMM x K-means

- Ambos são modelos de agrupamento.
- No entanto, muitos cientistas de dados, tendem a escolher um algoritmo K-Means.
- Porém, o GMM pode se provar superior em certos problemas de agrupamento
- Os dois modelos oferecem um desempenho diferente em termos de velocidade e robustez.
- Por último, é possível usar K-Means como um inicializador para o GMM, o que tende a aumentar o desempenho do modelo de agrupamento.

Como o K-means e o GMM trabalham?

K-means

GMM

GMM (Gaussian Mixture Model)

Um GMM é representado pela *p.d.f*:

onde
$$\sum_{k=1}^{K} \pi_k = 1$$

Centro da i-ésima Gaussiana (vetor da mesma dimensão de **x**)

Matriz de covariância da i-ésima Gaussiana

$$p(\boldsymbol{x}/\mu_k, \boldsymbol{\Sigma}_k) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}$$

GMM (Gaussian Mixture Model)

Expandindo para um exemplo com 2 gaussianas

$$p(x/\theta) = \pi_1 p(x/\mu_1, \sum_1) + \pi_2 p(x/\mu_2, \sum_2)$$

$$\theta = \pi_1, \pi_2, \mu_1, \mu_2, \sum_1, \sum_2$$

EM para Mistura de Gaussianas

- O algoritmo EM (*Expectation Maximization*) parte do princípio do método da máxima verossimilhança.
- O EM é utilizado para encontrar estimadores de máxima verossimilhança (EMV's) de parâmetros de modelos estatísticos nos casos em que as equações não podem ser resolvidas analiticamente.
- Tipicamente, isso ocorre porque tais modelos envolvem variáveis latentes.
- Além disso, os parâmetros dos dados observados são desconhecidos
- Modelo mais utilizado: Mistura de Gaussianas

Formulação Matemática para o algoritmo EM

 Dado um modelo estatístico que gera um conjunto X de observações, um conjunto de variáveis latentes Z e um vetor de parâmetros Θ, temos que a função verossimilhança é dada:

$$L(\theta; X, Z) = p(X, Z|\theta)$$

- O Estimador de Máxima Verossimilhança do vetor de parâmetros θ é determinado pela maximização da verossimilhança marginal dos dados observados.
- A marginalização é feita através da integração da variável latente Z.

$$L(\theta; X) = p(X|\theta) = \int p(X, Z \mid \theta) dZ$$

- O algoritmo EM busca encontrar o Estimador da Máxima Verossimilhança interativamente aplicando os dois passos:
- 1. *Expectation* (Etapa E): calcula o valor esperado da log- verossimilhança com relação a distribuição condicional de Z dado X, utilizando a estimativa atual dos parâmetros θ da iteração 't'.

$$Q(\theta|\theta_t) = E_{Z|X,\theta_t}[\log L(\theta;X,Z)]$$

2. *Maximization* (Etapa M): Encontrar os parâmetros θ que maximizam essa quantidade (Q).

$$\theta_{t+1} = \arg\max_{\theta} Q(\theta, \theta_t)$$

Passo da expectativa

Gaussiana multivariada.
$$r_{ic} = \frac{\pi_c \mathcal{N}(x_i | \mu_c, \sum_c)}{\sum_{c=1}^{N_c} \mathcal{N}(x_i | \mu_c, \sum_c)}$$

Passo Maximização

Dados
$$r_{ic}$$
 Atualizar parâmetros

$$m_c = \sum_{c=1}^{N_c} r_{ic}$$

$$\mu_c = \frac{1}{m_c} \sum_{i=1}^{N_i} r_{ic} x_i$$

$$\sum_{c} = \frac{1}{m_c} \sum_{i=1}^{N_i} r_{ic} (x_i - \mu_c)^T (x_i - \mu_c)$$

$$\pi_c = \frac{m_c}{N_i}$$

Avaliação do Critério de Parada

• Função log - verossimilhança

$$\ln p(X|\mu, \Sigma, \pi) = \sum_{i=1}^{N_i} \ln \left\{ \sum_{c=1}^{N_c} \pi_c \mathcal{N}(x_i|\mu_c, \Sigma_c) \right\}$$

Medida de confiança de que os dados são gerados pelos parâmetros estimados.

Deve ser computado ao final de cada iteração.

- Número de pontos por cluster → 10
- Número de clusters → 2
- Iterações → 6

Dados originais							
μ_1	μ_2	\sum_2					
1	4	1/4	0	1/4	0		
1	4	0	1/4	0	1/4		

Dados iniciais							
\sum_{1}		\sum_2		π_1	π_2		
1/4	0	1/4	0	0.5	0.5		
0	1/4	0	1/4	0,5	0,5		
		μ_1	μ_2				
		0	5				
		5	2				

Iteração 1							
Σ_1		Σ	π_1		π_2		
0,4155	0,4209	1,8269	1,9600	0,2571	0,7429		
0,4209	0,6952	1,9600	2,5388				
		μ_1	μ_2				
		0,6799	3,1183				
		1,328	2,975				

Iteração 2							
\sum_{1}		Σ	$_{2}$ π_{1}		π_2		
0,2070	0,0615	1,8020	1,8898	0,2661	0,7339		
0,0615	0,2271	1,8898	2,4767				
		μ_1	μ_2				
		0,6555	3,1570				
		1,1573	3,0571				

Iteração 3							
\sum_{1}		Σ	1 12	π_1	π_2		
0,2128	0,0224	1,6021	1,6508	0,3191	0,6809		
0,0224	0,2043	1,6508	2,2294				
		μ_1	μ_2				
		0,7379	3,3131				
		1,0910	3,2361				

Iteração 4							
Σ_1		Σ	1 12	π_1	π_2		
0,2332	0,0070	1,2867	1,2743	0,3772	0,6228		
0,0070	0,2084	1,2743	1,8088				
		μ_1	μ_2				
		0,8109	3,5091				
		1,0433	3,4651				

Iteração 5							
\sum_{1}		Σ	2	π_1	π_2		
0,2602	0	0,8690	0,7636	0,4327	0,5673		
0	0,2186	0,7636	1,2013				
		μ_1	μ_2				
		0,8744	3,7246				
		1,0124	3,7255				

Iteração 6							
\sum_{1}		Σ	1 12	π_1	π_2		
0,2954	- 0,0017	0,4336	0,2142	0.4902	0 E100		
- 0,0017	0,2247	0,2142	0,5111	0,4802	0,5198		
		μ_1	μ_2				
		0,9368	3,9274				
		1,0050	3,9801				

EM × k-means

Informação mais rica

Probabilidades facilmente convertidas em partição rígida

Custo computacional elevado

K-means

Caso particular do EM