7. Zadania do wykładu Analiza IB, R. Szwarc

1. Funkcja f spełnia

$$f(x) = \begin{cases} x - ax^2 + x^3 & \text{dla } x < 2\\ a + b & \text{dla } x = 2\\ \sin(\pi x/3) + be^x & \text{dla } x > 2. \end{cases}$$

Dla jakich wartości a i b funkcja ta jest ciągła w punkcie 2. A w pozostałych punktach?

- 2. Korzystając z trygonometrii oraz z $\lim_{x\to 0} \sin x = 0$ i $\lim_{x\to 0} \cos x = 1$ udowodnić, że funkcje $\sin x$ i $\cos x$ są ciągłe w każdym punkcie.
- 3. Zbadać ciągłość podanych funkcji

$$f(x) = \{x\} + \frac{1}{2}\{2x\} + \frac{1}{4}\{4x\}$$

$$g(x) = 1/[1/x], \quad x \neq 0, \ g(0) = 0$$

$$u(x) = \lim_{n \to \infty} \frac{nx}{1 + nx} \quad x \geqslant 0$$

$$v(x) = \lim_{k \to \infty} \lim_{n \to \infty} \left(\cos(2^k \pi x)\right)^{2n}$$

- 4. Podać przykłady funkcji określonych na \mathbb{R} takich, że :
 - (a) |f| jest ciągła w każdym punkcie podczas gdy f jest nieciągła w każdym punkcie.
 - (b) f jest nieciągła dokładnie w punktach 1, $\frac{1}{2}$, $\frac{1}{3}$, ..., $\frac{1}{n}$,
 - (c) f jest nieciągła w punktach 0, 1, $\frac{1}{2}$, $\frac{1}{3}$, ..., $\frac{1}{n}$,
 - (d) f jest ciągła i dla każdej liczby $x_0 \in \mathbb{R}$ istnieje granica $\lim_{n \to \infty} f(x_0 + n)$, ale nie istnieje granica f(x) gdy $x \to \infty$.
- **5.** Funkcje f(x) i g(x) są ciągłe na \mathbb{R} . Pokazać, że funkcje $\max(f(x),g(x))$ oraz $\min(f(x),g(x))$ są ciągłe. Wskazówka: $\max(a,b) = \frac{1}{2}(a+b+|a-b|)$.
- 6. Pokazać, że każda funkcja ciągła na \mathbb{R} jest różnicą dwu nieujemnych funkcji ciągłych. Wskazówka: $g(x) = \max(0, f(x)), h(x) = \max(0, -f(x)).$
- 7. Pokazać, że funkcja spełniająca warunek $|f(x) f(y)| \le |x y|^p$, $x, y \in \mathbb{R}, \ p > 0$, jest ciągła w każdym punkcie. Co można powiedzieć o funkcji f(x) w przypadku p > 1?
- 8. Znaleźć przykład funkcji ciągłej na \mathbb{R} takiej, że $f(x) \ge 0$ oraz $f^{-1}(\{0\}) = \{0, 1, \frac{1}{4}, \ldots, \frac{1}{n^2}, \ldots\}$.
- *9. Pokazać, że funkcja Riemanna $f(x) = \frac{1}{n}$ jeśli $x = \frac{m}{n}$, gdzie m i n są względnie pierwsze, $n \ge 1$, oraz f(x) = 0, gdy x jest niewymierne jest nieciągła w punktach wymiernych i ciągła w punktach niewymiernych.
- *10. Udowodnić, że funkcja f ciągła w zerze (lub ograniczona w pewnym otoczeniu zera) spełniająca warunek $f(x+y)=f(x)+f(y),\ x,y\in\mathbb{R}$ jest postaci f(x)=cx.
- *11. Pokazać, że funkcja monotoniczna na przedziale ma co najwyżej przeliczalną ilość punktów nieciągłości.
- *12. Skonstruować funkcję ściśle rosnącą, nieciągłą w punktach przeliczalnego ciągu liczb $\{a_n\}_{n=1}^{\infty}$.
- 13. Czy funkcja jednostajnie ciągła na przedziale [a, b] jest ciągła na tym przedziale?
- 14. Pokazać, że funkcja jednostajnie ciągła na ograniczonym przedziale (a,b) jest ograniczona.
- 15. Udowodnić, że funkcja jednostajnie ciągła na ograniczonym przedziale (a, b) posiada granice jednostronne w końcach przedziału. Wskazówka: Pokazać, że f(x) spełnia warunek Cauchy'ego istnienia granicy jednostronnej w punktach a i b.
- 16. Pokazać, że suma funkcji jednostajnie ciągłych na \mathbb{R} jest jednostajnie ciągła. Czy iloczyn tych funkcji jest zawsze jednostajnie ciągły? Rozstrzygnąć to samo zagadnienie dla ograniczonego przedziału (a,b).