Arquitectura de Sistemas

Práctica 7: Cooperación entre hebras

Gustavo Romero López

Actualizado: 2 de mayo de 2018

Arquitectura y Tecnología de Computadores

Objetivos

- Supondremos al alumno familiarizado con las hebras tipo POSIX o pthreads.
- ⊙ Vamos conocer el nuevo modelo de hebras de C++11.
- © Como material de referencia podemos consultar las páginas cppreference.com y cplusplus.com.
- Descubriremos su funcionamiento mediante una serie de ejemplos.
- Al final el alumno debe crear un programa para comprobar los conocimientos adquiridos.
- ⊚ Hebras C++11 explicadas para usuarios de pthreads.

2

std::thread

- Clase que representa una hebra de ejecución.
- Miembros:
 - tipos: native_handle_type: tipo subyacente (pthread).
 - o clases: id: representa la identificación de una hebra.
 - funciones:
 - o (constructor)
 - o (destructor)
 - o operator=
 - o joinable
 - o get_id
 - o native_handle
 - hardware_concurrency
 - o join
 - o detach
 - o swap

hola.cc

```
#include <iostream>
#include <thread>
void hola() { std::cout << "hola"; }</pre>
int main()
    std::thread t1(hola);
    t1.join();
    std::thread t2([]{ std::cout << " mundo!\n"; })
    t2.join();
```

lambda.cc

- función lambda = función anónima.
- declaración completa: [capture-list] (params)mutable
 (optional)exception attribute -> ret { body }
- o uso habitual: []{ cuerpo }
- o documentación de funciones lambda.
- o ejemplo:

```
int main()
{
    auto f = []{ cout << "hola, mundo!\n"; };
    f();
}</pre>
```

Trabajo a realizar

- Estudie la tres formas de implementar un servidor web mostradas al final del tema 7, activación.
 - Basada en **procesos**.
 - Basada en hebras.
 - Basada en un conjunto de hebras.
- O La misma idea se ha aplicado en estos 4 ejemplos:
 - **servero.cc** (1 proceso/secuencial).
 - server1.cc (N procesos/paralelo).
 - o **server2.cc** (nº óptimo de procesos / paralelo).
 - **server3.cc** (N hebras/paralelo).
 - **server4.cc** (nº óptimo de hebras/paralelo).
- Existen 3 cargas de trabajo, ficheros work.h, cada una de las cuales ejercita el uso del procesador o de la E/S.

Trabajo a realizar

- Dado que no puede modificar las implementaciones, intente explicar la diferencia de rendimiento entre ellas.
- En la práctica anterior nos centramos en estudiar el rendimiento con perf.
- Ahora vamos a intentar buscar otro tipo de cuellos de botella que puedan ralentizar la ejecución de los programas de prueba:
 - Llamadas al sistema: strace
 - o Funciones de biblioteca: ltrace
- o ¿Los programas de prueba funcionan bien?
- ¿Cuál cree que es mejor?
- Proponga usted una nueva carga de trabajo y verifique qué modelo de procesamiento se adapta mejor a la misma.