```
datafile = r'C:\Users\HP\Downloads\dataas3\Grocery_Items_35.csv'
In [1]:
         import pandas as pd
In [2]:
         from mlxtend.preprocessing import TransactionEncoder
         data= pd.read_csv(datafile)
         # Drop any columns with NaN values
         g_df = [row.dropna().tolist() for index, row in data.iterrows()]
         # Convert the DataFrame into a transaction format using TransactionEncoder
         transen = TransactionEncoder()
         transen\_array = transen.fit(g\_df).transform(g\_df)
         df = pd.DataFrame(transen_array, columns=transen.columns_)
         df.head()
         d:\Users\rakesh\anacondainstall\lib\site-packages\scipy\__init__.py:146: UserWarning: A
         NumPy version >=1.16.5 and <1.23.0 is required for this version of SciPy (detected versi
         on 1.26.4
           warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"</pre>
              Instant
Out[2]:
                                                   baby
                     UHT-
                           abrasive
                                         artif.
                                                               baking
                                                                      bathroom
                food
                                                         bags
                                                                                 beef berries ... turkey vineg
                      milk
                            cleaner sweetener cosmetics
                                                                        cleaner
                                                               powder
            products
         0
                    False
                              False
                                        False
                                                        False
               False
                                                   False
                                                                False
                                                                          False
                                                                                False
                                                                                        False
                                                                                                   False
                                                                                                          Fa
         1
               False False
                              False
                                        False
                                                        False
                                                                False
                                                                          False False
                                                                                        False ...
                                                                                                   False
                                                                                                          Fa
                                                   False
         2
               False False
                              False
                                        False
                                                   False
                                                        False
                                                                False
                                                                          False False
                                                                                        False ...
                                                                                                   False
                                                                                                          Fa
         3
               False
                     False
                              False
                                        False
                                                   False
                                                        False
                                                                False
                                                                          False
                                                                                False
                                                                                        False
                                                                                                   False
                                                                                                          Fa
         4
               False
                      True
                              False
                                        False
                                                   False
                                                        False
                                                                False
                                                                          False False
                                                                                        False ...
                                                                                                   False
                                                                                                          Fa
        5 rows × 165 columns
In [3]:
         from mlxtend.frequent_patterns import apriori,association_rules
         items = apriori(df, min_support=0.01, use_colnames=True)
         association_rules(items, metric="confidence", min_threshold=0.1)
Out[3]:
                                     antecedent consequent
            antecedents consequents
                                                           support confidence
                                                                                   lift
                                                                                        leverage conviction z
                                       support
                                                   support
                  (other
                                                  0.155875 0.01275
                                      0.120625
                                                                     0
                         (whole milk)
                                                                                                   0.943894
             vegetables)
         1
                                                  0.155875 0.01300
              (rolls/buns)
                         (whole milk)
                                      0.110875
                                                                     0.117249 0.752200 -0.004283
                                                                                                   0.956244
         2
                 (soda)
                         (whole milk)
                                      0.100250
                                                  0.155875 0.01300
                                                                     0.129676
                                                                              0.831922 -0.002626
                                                                                                   0.969897
         3
                                                                                                   0.960068
                (yogurt)
                         (whole milk)
                                      0.084875
                                                  0.155875 0.01025
                                                                     0.120766 0.774761 -0.002980
In [4]:
         import seaborn as sns
         msv = [0.001, 0.005, 0.01]
         mct = [0.05, 0.075, 0.1]
         heatmap_data = pd.DataFrame({
              'msv': [i for i in msv for _ in mct],
              'mct': mct * len(msv),
              <mark>'count'</mark>: [len(association_rules(apriori(df, min_support=i, use_colnames=True), metri
                         for i in msv for j in mct]
```

```
})
print(heatmap_data)
heatmap_data = heatmap_data.pivot("mct", "msv", "count")
sns.heatmap(heatmap_data, annot=True, fmt=".1f")
```

```
mct count
    msv
0
  0.001 0.050
                  500
1 0.001 0.075
                  288
  0.001
        0.100
                  147
3 0.005
         0.050
                   59
  0.005
         0.075
                   41
5 0.005
                   24
         0.100
6 0.010 0.050
                    8
7 0.010 0.075
                    7
8 0.010 0.100
                    4
<AxesSubplot:xlabel='msv', ylabel='mct'>
```

Out[4]:

: CAxessubplot.xlabel- msv , ylabel- mct >


```
In [6]: seta = df.iloc[:len(df)//2]
    setb = df.iloc[len(df)//2:]

items = apriori(seta, min_support=0.005, use_colnames=True)
    rules1 = association_rules(items, metric="confidence", min_threshold=0.075)

items = apriori(setb, min_support=0.005, use_colnames=True)
    rules2 = association_rules(items, metric="confidence", min_threshold=0.075)

common_rules = pd.merge(rules1, rules2, on=['antecedents', 'consequents'])
```

In [7]: rules1

Out[7]:

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction
0	(bottled beer)	(other vegetables)	0.04450	0.11850	0.00525	0.117978	0.995591	-0.000023	0.999408
1	(bottled beer)	(whole milk)	0.04450	0.15575	0.00625	0.140449	0.901762	-0.000681	0.982199
2	(bottled water)	(other vegetables)	0.06375	0.11850	0.00525	0.082353	0.694962	-0.002304	0.960609
3	(bottled water)	(soda)	0.06375	0.10300	0.00550	0.086275	0.837617	-0.001066	0.981695
4	(bottled water)	(whole milk)	0.06375	0.15575	0.00625	0.098039	0.629465	-0.003679	0.936016
5	(brown bread)	(whole milk)	0.03600	0.15575	0.00575	0.159722	1.025504	0.000143	1.004727

6	(butter)	(whole milk)	0.03450	0.15575	0.00525	0.152174	0.977040	-0.000123	0.995782
7	(canned beer)	(whole milk)	0.04475	0.15575	0.00550	0.122905	0.789117	-0.001470	0.962553
8	(citrus fruit)	(other vegetables)	0.05375	0.11850	0.00625	0.116279	0.981258	-0.000119	0.997487
9	(citrus fruit)	(whole milk)	0.05375	0.15575	0.00725	0.134884	0.866027	-0.001122	0.975880
10	(citrus fruit)	(yogurt)	0.05375	0.07800	0.00550	0.102326	1.311866	0.001307	1.027098
11	(domestic eggs)	(whole milk)	0.03300	0.15575	0.00600	0.181818	1.167372	0.000860	1.031861
12	(frankfurter)	(other vegetables)	0.03900	0.11850	0.00550	0.141026	1.190090	0.000878	1.026224
13	(margarine)	(whole milk)	0.03750	0.15575	0.00525	0.140000	0.898876	-0.000591	0.981686
14	(pip fruit)	(other vegetables)	0.04925	0.11850	0.00675	0.137056	1.156589	0.000914	1.021503
15	(rolls/buns)	(other vegetables)	0.11025	0.11850	0.00975	0.088435	0.746290	-0.003315	0.967019
16	(other vegetables)	(rolls/buns)	0.11850	0.11025	0.00975	0.082278	0.746290	-0.003315	0.969521
17	(sausage)	(other vegetables)	0.05900	0.11850	0.00675	0.114407	0.965458	-0.000241	0.995378
18	(other vegetables)	(soda)	0.11850	0.10300	0.00975	0.082278	0.798820	-0.002455	0.977421
19	(soda)	(other vegetables)	0.10300	0.11850	0.00975	0.094660	0.798820	-0.002455	0.973668
20	(tropical fruit)	(other vegetables)	0.06725	0.11850	0.00600	0.089219	0.752906	-0.001969	0.967851
21	(other vegetables)	(whole milk)	0.11850	0.15575	0.01500	0.126582	0.812727	-0.003456	0.966605
22	(whole milk)	(other vegetables)	0.15575	0.11850	0.01500	0.096308	0.812727	-0.003456	0.975443
23	(yogurt)	(other vegetables)	0.07800	0.11850	0.00825	0.105769	0.892567	-0.000993	0.985763
24	(pastry)	(whole milk)	0.05200	0.15575	0.00700	0.134615	0.864304	-0.001099	0.975578
25	(pip fruit)	(soda)	0.04925	0.10300	0.00525	0.106599	1.034942	0.000177	1.004028
26	(pip fruit)	(whole milk)	0.04925	0.15575	0.00725	0.147208	0.945156	-0.000421	0.989984
27	(pork)	(whole milk)	0.03575	0.15575	0.00550	0.153846	0.987776	-0.000068	0.997750
28	(sausage)	(rolls/buns)	0.05900	0.11025	0.00675	0.114407	1.037703	0.000245	1.004694
29	(soda)	(rolls/buns)	0.10300	0.11025	0.00775	0.075243	0.682474	-0.003606	0.962144
30	(tropical fruit)	(rolls/buns)	0.06725	0.11025	0.00550	0.081784	0.741808	-0.001914	0.968999
31	(rolls/buns)	(whole milk)	0.11025	0.15575	0.01325	0.120181	0.771630	-0.003921	0.959573
32	(whole milk)	(rolls/buns)	0.15575	0.11025	0.01325	0.085072	0.771630	-0.003921	0.972481
33	(root vegetables)	(soda)	0.06975	0.10300	0.00600	0.086022	0.835160	-0.001184	0.981424
34	(root vegetables)	(whole milk)	0.06975	0.15575	0.00675	0.096774	0.621343	-0.004114	0.934705
35	(sausage)	(soda)	0.05900	0.10300	0.00650	0.110169	1.069607	0.000423	1.008057
36	(sausage)	(whole milk)	0.05900	0.15575	0.00875	0.148305	0.952200	-0.000439	0.991259
37	(shopping	(whole milk)	0.04450	0.15575	0.00625	0.140449	0.901762	-0.000681	0.982199

	bags)								
38	(whole milk)	(soda)	0.15575	0.10300	0.01250	0.080257	0.779192	-0.003542	0.975272
39	(soda)	(whole milk)	0.10300	0.15575	0.01250	0.121359	0.779192	-0.003542	0.960859
40	(tropical fruit)	(whole milk)	0.06725	0.15575	0.00750	0.111524	0.716046	-0.002974	0.950223
41	(yogurt)	(whole milk)	0.07800	0.15575	0.00825	0.105769	0.679096	-0.003898	0.944108

In [8]: rules2

_ _

\cap	ш	+	Γ 2	٦
U	и	L	Γo	Ш

	IUI	.622								
: _		antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction
	0	(bottled beer)	(whole milk)	0.04125	0.15600	0.00725	0.175758	1.126651	0.000815	1.023971
	1	(bottled water)	(other vegetables)	0.05675	0.12275	0.00725	0.127753	1.040760	0.000284	1.005736
	2	(bottled water)	(whole milk)	0.05675	0.15600	0.00650	0.114537	0.734214	-0.002353	0.953174
	3	(canned beer)	(whole milk)	0.04650	0.15600	0.00725	0.155914	0.999449	-0.000004	0.999898
	4	(citrus fruit)	(rolls/buns)	0.05175	0.11150	0.00550	0.106280	0.953186	-0.000270	0.994159
	5	(citrus fruit)	(whole milk)	0.05175	0.15600	0.00825	0.159420	1.021925	0.000177	1.004069
	6	(citrus fruit)	(yogurt)	0.05175	0.09175	0.00500	0.096618	1.053061	0.000252	1.005389
	7	(frankfurter)	(other vegetables)	0.03725	0.12275	0.00500	0.134228	1.093509	0.000428	1.013258
	8	(frankfurter)	(whole milk)	0.03725	0.15600	0.00500	0.134228	0.860437	-0.000811	0.974853
	9	(frozen vegetables)	(whole milk)	0.02675	0.15600	0.00525	0.196262	1.258088	0.001077	1.050093
	10	(fruit/vegetable juice)	(whole milk)	0.03825	0.15600	0.00525	0.137255	0.879839	-0.000717	0.978273
	11	(newspapers)	(whole milk)	0.03650	0.15600	0.00500	0.136986	0.878117	-0.000694	0.977968
	12	(pip fruit)	(other vegetables)	0.04950	0.12275	0.00550	0.111111	0.905182	-0.000576	0.986906
	13	(rolls/buns)	(other vegetables)	0.11150	0.12275	0.00975	0.087444	0.712374	-0.003937	0.961311
	14	(other vegetables)	(rolls/buns)	0.12275	0.11150	0.00975	0.079430	0.712374	-0.003937	0.965163
	15	(root vegetables)	(other vegetables)	0.07175	0.12275	0.00575	0.080139	0.652867	-0.003057	0.953677
	16	(sausage)	(other vegetables)	0.06375	0.12275	0.00700	0.109804	0.894533	-0.000825	0.985457
	17	(shopping bags)	(other vegetables)	0.04950	0.12275	0.00500	0.101010	0.822893	-0.001076	0.975817
	18	(soda)	(other vegetables)	0.09750	0.12275	0.00825	0.084615	0.689331	-0.003718	0.958340
	19	(tropical fruit)	(other vegetables)	0.06725	0.12275	0.00600	0.089219	0.726838	-0.002255	0.963185
	20	(other vegetables)	(whole milk)	0.12275	0.15600	0.01050	0.085540	0.548332	-0.008649	0.922949
	21	(other vegetables)	(yogurt)	0.12275	0.09175	0.01050	0.085540	0.932313	-0.000762	0.993209
	22	(yogurt)	(other vegetables)	0.09175	0.12275	0.01050	0.114441	0.932313	-0.000762	0.990618
	23	(pastry)	(whole milk)	0.04975	0.15600	0.00600	0.120603	0.773096	-0.001761	0.959749

24	(pip fruit)	(whole milk)	0.04950	0.15600	0.00750	0.151515	0.971251	-0.000222	0.994714
25	(pork)	(whole milk)	0.03725	0.15600	0.00525	0.140940	0.903459	-0.000561	0.982469
26	(root vegetables)	(rolls/buns)	0.07175	0.11150	0.00600	0.083624	0.749988	-0.002000	0.969580
27	(sausage)	(rolls/buns)	0.06375	0.11150	0.00500	0.078431	0.703420	-0.002108	0.964117
28	(rolls/buns)	(soda)	0.11150	0.09750	0.01000	0.089686	0.919857	-0.000871	0.991416
29	(soda)	(rolls/buns)	0.09750	0.11150	0.01000	0.102564	0.919857	-0.000871	0.990043
30	(rolls/buns)	(whole milk)	0.11150	0.15600	0.01275	0.114350	0.733011	-0.004644	0.952972
31	(whole milk)	(rolls/buns)	0.15600	0.11150	0.01275	0.081731	0.733011	-0.004644	0.967581
32	(rolls/buns)	(yogurt)	0.11150	0.09175	0.00900	0.080717	0.879755	-0.001230	0.987999
33	(yogurt)	(rolls/buns)	0.09175	0.11150	0.00900	0.098093	0.879755	-0.001230	0.985134
34	(root vegetables)	(whole milk)	0.07175	0.15600	0.00775	0.108014	0.692397	-0.003443	0.946203
35	(sausage)	(soda)	0.06375	0.09750	0.00600	0.094118	0.965309	-0.000216	0.996266
36	(sausage)	(whole milk)	0.06375	0.15600	0.00875	0.137255	0.879839	-0.001195	0.978273
37	(shopping bags)	(whole milk)	0.04950	0.15600	0.00700	0.141414	0.906501	-0.000722	0.983012
38	(tropical fruit)	(soda)	0.06725	0.09750	0.00525	0.078067	0.800686	-0.001307	0.978921
39	(whole milk)	(soda)	0.15600	0.09750	0.01350	0.086538	0.887574	-0.001710	0.988000
40	(soda)	(whole milk)	0.09750	0.15600	0.01350	0.138462	0.887574	-0.001710	0.979643
41	(yogurt)	(soda)	0.09175	0.09750	0.00700	0.076294	0.782505	-0.001946	0.977043
42	(tropical fruit)	(whole milk)	0.06725	0.15600	0.00850	0.126394	0.810218	-0.001991	0.966111
43	(yogurt)	(whole milk)	0.09175	0.15600	0.01225	0.133515	0.855865	-0.002063	0.974050
44	(whole milk)	(yogurt)	0.15600	0.09175	0.01225	0.078526	0.855865	-0.002063	0.985649

In [9]: common_rules

Out[9]:

	antecedents	consequents	antecedent support_x	consequent support_x	support_x	confidence_x	lift_x	leverage_x	convic
0	(bottled beer)	(whole milk)	0.04450	0.15575	0.00625	0.140449	0.901762	-0.000681	9.0
1	(bottled water)	(other vegetables)	0.06375	0.11850	0.00525	0.082353	0.694962	-0.002304	9.0
2	(bottled water)	(whole milk)	0.06375	0.15575	0.00625	0.098039	0.629465	-0.003679	9.0
3	(canned beer)	(whole milk)	0.04475	0.15575	0.00550	0.122905	0.789117	-0.001470	9.0
4	(citrus fruit)	(whole milk)	0.05375	0.15575	0.00725	0.134884	0.866027	-0.001122	9.0
5	(citrus fruit)	(yogurt)	0.05375	0.07800	0.00550	0.102326	1.311866	0.001307	1.0
6	(frankfurter)	(other vegetables)	0.03900	0.11850	0.00550	0.141026	1.190090	0.000878	1.0
7	(pip fruit)	(other vegetables)	0.04925	0.11850	0.00675	0.137056	1.156589	0.000914	1.0
8	(rolls/buns)	(other vegetables)	0.11025	0.11850	0.00975	0.088435	0.746290	-0.003315	9.0
9	(other vegetables)	(rolls/buns)	0.11850	0.11025	0.00975	0.082278	0.746290	-0.003315	9.0

10	(sausage)	(other vegetables)	0.05900	0.11850	0.00675	0.114407	0.965458	-0.000241	9.0
11	(soda)	(other vegetables)	0.10300	0.11850	0.00975	0.094660	0.798820	-0.002455	9.0
12	(tropical fruit)	(other vegetables)	0.06725	0.11850	0.00600	0.089219	0.752906	-0.001969	9.0
13	(other vegetables)	(whole milk)	0.11850	0.15575	0.01500	0.126582	0.812727	-0.003456	9.0
14	(yogurt)	(other vegetables)	0.07800	0.11850	0.00825	0.105769	0.892567	-0.000993	9.0
15	(pastry)	(whole milk)	0.05200	0.15575	0.00700	0.134615	0.864304	-0.001099	0.9
16	(pip fruit)	(whole milk)	0.04925	0.15575	0.00725	0.147208	0.945156	-0.000421	9.0
17	(pork)	(whole milk)	0.03575	0.15575	0.00550	0.153846	0.987776	-0.000068	0.9
18	(sausage)	(rolls/buns)	0.05900	0.11025	0.00675	0.114407	1.037703	0.000245	1.0
19	(soda)	(rolls/buns)	0.10300	0.11025	0.00775	0.075243	0.682474	-0.003606	9.0
20	(rolls/buns)	(whole milk)	0.11025	0.15575	0.01325	0.120181	0.771630	-0.003921	9.0
21	(whole milk)	(rolls/buns)	0.15575	0.11025	0.01325	0.085072	0.771630	-0.003921	9.0
22	(root vegetables)	(whole milk)	0.06975	0.15575	0.00675	0.096774	0.621343	-0.004114	9.0
23	(sausage)	(soda)	0.05900	0.10300	0.00650	0.110169	1.069607	0.000423	1.0
24	(sausage)	(whole milk)	0.05900	0.15575	0.00875	0.148305	0.952200	-0.000439	9.0
25	(shopping bags)	(whole milk)	0.04450	0.15575	0.00625	0.140449	0.901762	-0.000681	9.0
26	(whole milk)	(soda)	0.15575	0.10300	0.01250	0.080257	0.779192	-0.003542	9.0
27	(soda)	(whole milk)	0.10300	0.15575	0.01250	0.121359	0.779192	-0.003542	9.0
28	(tropical fruit)	(whole milk)	0.06725	0.15575	0.00750	0.111524	0.716046	-0.002974	9.0
29	(yogurt)	(whole milk)	0.07800	0.15575	0.00825	0.105769	0.679096	-0.003898	0.9

```
directory= r'C:\Users\HP\Downloads\dataas3\Cropped'
In [24]:
         import os
In [25]:
         import numpy as np
         from tensorflow.keras.preprocessing.image import load_img, img_to_array
         from sklearn.model_selection import train_test_split
         import tensorflow as tf
         from tensorflow.keras.models import Sequential
         from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
         from tensorflow.keras.optimizers import Adam
         import matplotlib.pyplot as plt
         from tensorflow.keras.utils import to_categorical
         # Define the image dimensions
         img_height = 128
         img_width = 128
         dir1 = r'C:\Users\HP\Downloads\dataas3\Cropped\n02097209-standard_schnauzer'
         dir2 = r'C:\Users\HP\Downloads\dataas3\Cropped\n02092002-Scottish_deerhound'
         dir3 = r'C:\Users\HP\Downloads\dataas3\Cropped\n02092339-Weimaraner'
         dir4 = r'C:\Users\HP\Downloads\dataas3\Cropped\n02108422-bull_mastiff'
         def plot_learning_curves(history):
             train_acc = history.history['accuracy']
```

```
val_acc = history.history['val_accuracy']
    epochs = range(1, len(train_acc) + 1)
    plt.plot(epochs, train_acc , label='Training accuracy')
    plt.plot(epochs, val_acc, label='Validation accuracy')
    plt.title('Training and validation accuracy')
    plt.xlabel('Epochs')
    plt.ylabel('Accuracy')
    plt.legend()
    plt.show()
def load_images_and_labels(directory):
    images = []
    labels = []
    for filename in os.listdir(directory):
        if filename.endswith(".jpg") or filename.endswith(".png"):
           img = load_img(os.path.join(directory, filename), target_size=(img_height, i
           img_array = img_to_array(img)
           images.append(img_array)
           if directory == dir1:
               labels.append(0)
           elif directory == dir2:
                labels.append(1)
           elif directory == dir3:
                labels.append(2)
           elif directory == dir4:
               labels.append(3)
    return images, labels
class1_img, class1_l = load_images_and_labels(dir1)
class2_img, class2_l = load_images_and_labels(dir2)
class3_img, class3_l = load_images_and_labels(dir3)
class4_img, class4_l = load_images_and_labels(dir4)
images = np.concatenate([class1_img, class2_img, class3_img, class4_img], axis=0)
labels = np.concatenate([class1_1, class2_1, class3_1, class4_1], axis=0)
labels = to_categorical(labels)
X_train, X_val, y_train, y_val = train_test_split(images, labels, test_size=0.2, random_
X_{train} = X_{train} / 255.0
X_{val} = X_{val} / 255.0
model = Sequential([
    Conv2D(8, (3, 3), activation='relu', input_shape=(img_height, img_width, 3)),
    MaxPooling2D((2, 2)),
    Flatten(),
    Dense(16, activation='relu'),
    Dense(4, activation='softmax')
])
model.compile(optimizer='adam',
             loss='categorical_crossentropy',
             metrics=['accuracy'])
history = model.fit(X_{train}, y_{train}, epochs=20, validation_data=(X_{val}, y_{val}))
plot_learning_curves(history)
Epoch 1/20
0.3677 - val_loss: 1.3337
20/20 000000000000000 1s 43ms/step - accuracy: 0.4166 - loss: 1.3066 - val_accuracy:
 0.3871 - val_loss: 1.2865
Epoch 3/20
20/20 0000000000000000 1s 42ms/step - accuracy: 0.4636 - loss: 1.2179 - val_accuracy:
```

```
0.4065 - val_loss: 1.2706
Epoch 4/20
20/20 000000000000000 1s 37ms/step - accuracy: 0.5215 - loss: 1.1247 - val_accuracy:
0.4194 - val_loss: 1.2414
Epoch 5/20
20/20 0000000000000000 1s 38ms/step - accuracy: 0.6130 - loss: 1.0657 - val_accuracy:
0.3742 - val_loss: 1.3386
Epoch 6/20
0.4387 - val_loss: 1.2373
Epoch 7/20
0.4645 - val_loss: 1.2271
Epoch 8/20
20/20 000000000000000 1s 35ms/step - accuracy: 0.6683 - loss: 0.9077 - val_accuracy:
0.4387 - val_loss: 1.3056
Epoch 9/20
20/20 0000000000000000 1s 32ms/step - accuracy: 0.6994 - loss: 0.8483 - val_accuracy:
0.5097 - val_loss: 1.1632
Epoch 10/20
20/20 000000000000000 1s 33ms/step - accuracy: 0.7791 - loss: 0.7644 - val_accuracy:
0.4194 - val_loss: 1.2319
Epoch 11/20
20/20 0000000000000000 1s 33ms/step - accuracy: 0.7610 - loss: 0.7047 - val_accuracy:
0.4903 - val_loss: 1.2168
Epoch 12/20
20/20 0000000000000000 1s 32ms/step - accuracy: 0.7731 - loss: 0.6978 - val_accuracy:
0.4387 - val_loss: 1.4899
Epoch 13/20
20/20 0000000000000000 1s 35ms/step - accuracy: 0.7444 - loss: 0.7211 - val_accuracy:
0.4774 - val_loss: 1.3940
Epoch 14/20
20/20 000000000000000 1s 34ms/step - accuracy: 0.7722 - loss: 0.6676 - val_accuracy:
0.4645 - val_loss: 1.3516
Epoch 15/20
20/20 0000000000000000 1s 35ms/step - accuracy: 0.7699 - loss: 0.6209 - val_accuracy:
0.5097 - val_loss: 1.2312
Epoch 16/20
20/20 0000000000000000 1s 34ms/step - accuracy: 0.9056 - loss: 0.4678 - val_accuracy:
0.4516 - val_loss: 1.2530
Epoch 17/20
20/20 000000000000000 1s 32ms/step - accuracy: 0.8564 - loss: 0.4732 - val_accuracy:
0.4581 - val_loss: 1.2729
Epoch 18/20
20/20 0000000000000000 1s 35ms/step - accuracy: 0.9024 - loss: 0.4080 - val_accuracy:
0.5032 - val_loss: 1.1818
Epoch 19/20
20/20 000000000000000 1s 33ms/step - accuracy: 0.9361 - loss: 0.3432 - val_accuracy:
0.5161 - val_loss: 1.2123
Epoch 20/20
20/20 0000000000000000 1s 33ms/step - accuracy: 0.9254 - loss: 0.3137 - val_accuracy:
```

0.5290 - val_loss: 1.2298

Training and validation accuracy Training accuracy 0.9 Validation accuracy 0.8 0.7 Accuracy 0.6 0.5 0.4 0.3 2.5 12.5 17.5 5.0 7.5 10.0 15.0 20.0 Epochs

```
model = Sequential([
    Conv2D(8, (3, 3), activation='relu', input_shape=(128, 128, 3)),
    MaxPooling2D((2, 2)),
    Flatten(),
    Dense(8, activation='relu'),
    Dense(4, activation='softmax')
])
model.compile(optimizer='adam',
              loss='categorical_crossentropy',
              metrics=['accuracy'])
history = model.fit(X_train, y_train, epochs=20, validation_data=(X_val, y_val))
plot_learning_curves(history)
Epoch 1/20
20/20 0000000000000000 2s 41ms/step - accuracy: 0.2431 - loss: 1.4050 - val_accuracy:
 0.3032 - val_loss: 1.3856
Epoch 2/20
20/20 0000000000000000 1s 35ms/step - accuracy: 0.3432 - loss: 1.3846 - val_accuracy:
 0.3032 - val_loss: 1.3849
Epoch 3/20
20/20 0000000000000000 1s 30ms/step - accuracy: 0.3211 - loss: 1.3837 - val_accuracy:
 0.3032 - val_loss: 1.3842
Epoch 4/20
20/20 0000000000000000 1s 29ms/step - accuracy: 0.3159 - loss: 1.3826 - val_accuracy:
 0.3032 - val_loss: 1.3836
Epoch 5/20
20/20 0000000000000000 1s 30ms/step - accuracy: 0.3135 - loss: 1.3813 - val_accuracy:
 0.3032 - val_loss: 1.3831
Epoch 6/20
20/20 0000000000000000 1s 30ms/step - accuracy: 0.3006 - loss: 1.3813 - val_accuracy:
 0.3032 - val_loss: 1.3827
Epoch 7/20
20/20 0000000000000000 1s 30ms/step - accuracy: 0.3032 - loss: 1.3818 - val_accuracy:
 0.3032 - val_loss: 1.3823
Epoch 8/20
20/20 0000000000000000 1s 31ms/step - accuracy: 0.3035 - loss: 1.3799 - val_accuracy:
 0.3032 - val_loss: 1.3821
Epoch 9/20
20/20 0000000000000000 1s 34ms/step - accuracy: 0.3014 - loss: 1.3803 - val_accuracy:
 0.3032 - val_loss: 1.3818
Epoch 10/20
20/20 0000000000000000 1s 32ms/step - accuracy: 0.3214 - loss: 1.3758 - val_accuracy:
 0.3032 - val_loss: 1.3815
Epoch 11/20
20/20 0000000000000000 1s 31ms/step - accuracy: 0.3360 - loss: 1.3737 - val_accuracy:
```

```
0.3032 - val_loss: 1.3812
Epoch 12/20
20/20 0000000000000000 1s 28ms/step - accuracy: 0.2896 - loss: 1.3809 - val_accuracy:
0.3032 - val_loss: 1.3811
Epoch 13/20
20/20 0000000000000000 1s 29ms/step - accuracy: 0.3167 - loss: 1.3760 - val_accuracy:
0.3032 - val_loss: 1.3810
Epoch 14/20
20/20 0000000000000000 1s 29ms/step - accuracy: 0.3094 - loss: 1.3761 - val_accuracy:
0.3032 - val_loss: 1.3810
Epoch 15/20
20/20 000000000000000 1s 33ms/step - accuracy: 0.3230 - loss: 1.3751 - val_accuracy:
0.3032 - val_loss: 1.3809
Epoch 16/20
0.3032 - val_loss: 1.3809
Epoch 17/20
20/20 0000000000000000 1s 29ms/step - accuracy: 0.3281 - loss: 1.3699 - val_accuracy:
0.3032 - val_loss: 1.3810
Epoch 18/20
20/20 0000000000000000 1s 31ms/step - accuracy: 0.3129 - loss: 1.3742 - val_accuracy:
0.3032 - val_loss: 1.3810
Epoch 19/20
20/20 0000000000000000 1s 29ms/step - accuracy: 0.3558 - loss: 1.3666 - val_accuracy:
0.3032 - val_loss: 1.3809
Epoch 20/20
20/20 0000000000000000 1s 31ms/step - accuracy: 0.3194 - loss: 1.3747 - val_accuracy:
0.3032 - val_loss: 1.3809
             Training and validation accuracy
  0.32
  0.31
  0.30
```

0.32 - 0.31 - 0.30 - 0.29 - 0.28 - Training accuracy Validation accuracy Validation accuracy Epochs

```
20/20 00000000000000 1s 44ms/step - accuracy: 0.3326 - loss: 1.3420 - val_accuracy:
 0.2903 - val_loss: 1.3591
Epoch 3/20
20/20 000000000000000 1s 45ms/step - accuracy: 0.3702 - loss: 1.3318 - val_accuracy:
 0.2839 - val_loss: 1.3753
Epoch 4/20
20/20 0000000000000000 1s 46ms/step - accuracy: 0.3583 - loss: 1.3056 - val_accuracy:
 0.3419 - val_loss: 1.3351
Epoch 5/20
20/20 0000000000000000 1s 46ms/step - accuracy: 0.3938 - loss: 1.2394 - val_accuracy:
 0.3032 - val_loss: 1.3646
Epoch 6/20
20/20 000000000000000 1s 46ms/step - accuracy: 0.3702 - loss: 1.2378 - val_accuracy:
 0.3355 - val_loss: 1.3088
Epoch 7/20
20/20 0000000000000000 1s 46ms/step - accuracy: 0.3881 - loss: 1.1937 - val_accuracy:
 0.2968 - val_loss: 1.3490
Epoch 8/20
20/20 000000000000000 1s 49ms/step - accuracy: 0.3910 - loss: 1.1784 - val_accuracy:
 0.3032 - val_loss: 1.3447
Epoch 9/20
20/20 000000000000000 1s 45ms/step - accuracy: 0.3936 - loss: 1.1333 - val_accuracy:
 0.3226 - val_loss: 1.3190
Epoch 10/20
20/20 0000000000000000 1s 49ms/step - accuracy: 0.4113 - loss: 1.1038 - val_accuracy:
 0.3355 - val_loss: 1.2889
Epoch 11/20
20/20 0000000000000000 1s 41ms/step - accuracy: 0.4642 - loss: 1.0629 - val_accuracy:
 0.3419 - val_loss: 1.2854
Epoch 12/20
20/20 000000000000000 1s 44ms/step - accuracy: 0.4652 - loss: 1.0963 - val_accuracy:
 0.3484 - val_loss: 1.2860
Epoch 13/20
20/20 0000000000000000 1s 40ms/step - accuracy: 0.4539 - loss: 1.0446 - val_accuracy:
 0.3355 - val_loss: 1.2943
Epoch 14/20
20/20 000000000000000 1s 40ms/step - accuracy: 0.4843 - loss: 1.0269 - val_accuracy:
 0.3419 - val_loss: 1.3001
Epoch 15/20
20/20 0000000000000000 1s 40ms/step - accuracy: 0.5107 - loss: 0.9794 - val_accuracy:
 0.3226 - val_loss: 1.3012
Epoch 16/20
20/20 0000000000000000 1s 40ms/step - accuracy: 0.4992 - loss: 1.0131 - val_accuracy:
 0.3226 - val_loss: 1.3016
Epoch 17/20
20/20 0000000000000000 1s 43ms/step - accuracy: 0.4848 - loss: 0.9886 - val_accuracy:
 0.3226 - val_loss: 1.3017
Epoch 18/20
20/20 0000000000000000 1s 41ms/step - accuracy: 0.5097 - loss: 0.9768 - val_accuracy:
0.3355 - val_loss: 1.3050
Epoch 19/20
20/20 000000000000000 1s 41ms/step - accuracy: 0.5265 - loss: 0.9386 - val_accuracy:
 0.3355 - val_loss: 1.3116
Epoch 20/20
20/20 000000000000000 1s 39ms/step - accuracy: 0.5100 - loss: 0.9628 - val_accuracy:
```

0.3419 - val_loss: 1.3592

