รวมสูตรคณิตศาสตร์ม.ปลาย โดยครูน้อย (อ. นันทวัน มั่นจิตร)

1. เชต

สมบัติบางประการที่เกี่ยวกับการปฏิบัติการทางเซต

1. กฎการสลับที่ $A \cup B = B \cup A$ $A \cap B = B \cap A$

2. กฎการเปลี่ยนกลุ่ม $(A \cup B) \cup C = A \cup (B \cup C)$

 $(A \cap B) \cap C = A \cap (B \cap C)$

3. กฎการแจกแจง

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

4. กฎเอกลักษณ์

 $A \cup \emptyset = A$ $A \cup \mathfrak{U} = \mathfrak{U}$

 $A \cap \emptyset = \emptyset$ $A \cap \mathfrak{U} = A$

5. กฎการซ้ำ

 $A \cup A = A$ $A \cap A = A$

7. กฎเดอร์มอร์แกน $(A \cup B)' = A' \cap B'$ $(A \cap B)' = A' \cup B'$

6. กฎคอมพลีเมนต์ A \cup A' = น \varnothing' = น (A')' = A $A \cap A' = \varnothing$

สูตรนี้ออกบ่อยค่ะ ♥***** A – B = A ∩ B' | *****♥ จำไว้ให้ดีนะคะ

กำหนด A เป็นเซตใดๆ แล้วจะได้ สมบัติของสับเซต

- $\emptyset \subset A$ 1)
- 2) $A \subset A$
- 3) ถ้าจำนวนสมาชิก A มี m ตัว แล้วจำนวนสมาชิกสับเซตของ A จะมี 2^m เซต
- 4) จำนวนสับเซตแท้ของ A จะมี 2^m-1 เซต
- 5) ให้ A = { 1,2,3,..., m } และ B = { 1,2,3,..., n } โดยที่ m < n แล้วจะได้
 - 5.1) ถ้า A ⊂ X ⊂ B แล้วจำนวนเซต X = 2^{n-m} เซต
 - 5.2) ถ้า A \cap X \neq \varnothing และ X \subset B แล้วจำนวนเซต X = $2^n 2^{n-m}$ เซต

นิยาม ให้ A เป็นเซต เพาเวอร์เซตของ A หมายถึง $\{x \mid x \subset A \}$ ใช้สัญลักษณ์ P(A)แทนเพาเวอร์เซตของ A

สมบัติของเพาเวอร์เซต (Power set) กำหนด A เป็นเซตใดๆ จะได้ว่า

- 1) $\emptyset \in P(A)$ use $\{\emptyset\} \subset P(A)$
- 2) A ∈ P(A) และ {A} ⊂ P(A)
- 3) ถ้า n(A) = m ตัวแล้ว $n(P(A)) = 2^{m}$
- 4) ถ้า n(A) = m ตัวแล้ว $n(P(P(A))) = 2^{2^m}$

ตรรกศาสตร์

สมมูล (=)

- 1. $\sim (\sim p) \equiv p$
- 2. เดอร์มอร์แกน $\sim (p \vee q) \equiv \sim p \wedge \sim q$, $\sim (p \wedge q) \equiv \sim p \vee \sim q$
- 3. สลับที่ $p \wedge q \equiv q \wedge p$, $p \vee q \equiv q \vee p$, $p \leftrightarrow q \equiv q \leftrightarrow p$
- 4. เปลี่ยนกลุ่ม $p \wedge (q \wedge r) \equiv (p \wedge q) \wedge r$, $p \vee (q \vee r) \equiv (q \vee q) \vee r$
- 5. แจกแจง $p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$, $p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$

คณิต-ฟิสิกส์-เคมี

ถ้าแล้วที่ควรรั ♥* ออกข้อสอบตลอดเลยค่ะ *♥

$$\sim$$
 $(p \rightarrow q) \equiv p \land \sim q$

7. ก็ต่อเมื่อที่ควรรู้

$$ightharpoonup (p \leftrightarrow q) \equiv (p \rightarrow q)) \land (q \rightarrow p)$$

$$\triangleright$$
 $\sim (p \leftrightarrow q)$ \equiv $\sim p \leftrightarrow q$ \equiv $p \leftrightarrow \sim q$

$$\triangleright$$
 $(p \leftrightarrow q)$ \equiv $\sim p \leftrightarrow \sim q$ \equiv $\sim q \leftrightarrow \sim p$

8. พิเศษสุด ๆ (→ เข้าข้างหน้า ∧ , ∨ ไม่เปลี่ยนเครื่องหมาย)♥

$$P \to (q \land r) \ \equiv \ (p \to q) \land (p \to r) \ , \ P \to (q \lor r) \ \equiv \ (p \to q) \lor (p \to r)$$

พิเศษสุด ๆ (แต่ → เข้าข้างหลัง ∧ , ∨ ต้องเปลี่ยนเครื่องหมาย)♥

$$(p \land q) \rightarrow r \equiv (p \rightarrow r) \lor (q \rightarrow r), (p \lor q) \rightarrow r \equiv (p \rightarrow r) \land (q \rightarrow r)$$

นิเสธของประพจน์ที่มีตัวบ่งปริมาณ

1.
$$\sim \forall x [P(x)] \equiv \exists x [\sim P(x)]$$

2.
$$\sim \exists x [P(x)] \equiv \forall x [\sim P(x)]$$

3.
$$\sim \forall x \forall y [P(x, y)] \equiv \exists x \exists y [\sim P(x, y)]$$

4.
$$\sim \forall x \exists y [P(x, y)] \equiv \exists x \forall y [\sim P(x, y)]$$

5.
$$\sim \exists x \forall y [P(x, y)] \equiv \forall x \exists y [\sim P(x, y)]$$

6.
$$\sim \exists x \exists y [P(x, y)] \equiv \forall x \forall y [\sim P(x, y)]$$

3. ระบบจำนวนจริงและทฤษฎีจำนวน

ทฤษฎีบทเศษเหลือ (Remainder Theorem) : พหุนาม P(x) หารด้วย x-a จะมีเศษเหลือเท่ากับ P(a) ทฤษฎีบทตัวประกอบจำนวนตรรกยะ : ถ้า $x-\frac{a}{b}$ โดยที่ ห.ร.ม. (a,b)=1 เป็นตัวประกอบของพหุนาม

 $a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + ... + a_2 x^2 + a_1 x + a_0$ แล้ว a $|a_0|$ และ b $|a_n|$ ค่าสัมบูรณ์ (Absolute value)

2.
$$\left| a+b \right| \leq \left| a \right| + \left| b \right|$$

3.
$$|a-b| \ge |a|-|b|$$

5.
$$\sqrt[n]{a^n} = \begin{cases} |a|, & \text{ide } n = 2,4,6,... \\ a, & \text{ide } n = 3,5,7,... \end{cases}$$

6.
$$|x| \le a$$
 เมื่อ $-a \le x \le a$

7.
$$|x| \ge a$$
 เมื่อ $x \le -a$ หรือ $x \ge a$

ทฤษฎีจำนวน

- 1. ถ้า n|m แล้ว m = nc เมื่อ c ∈ I
- ก้า n/m แล้ว m = nq + r เมื่อ 0 < r < | n |
- 3. (a,b)[a,b] = |ab|

4. ความสัมพันธ์และฟังก์ชัน

สมบัติเกี่ยวกับผลคูณคาร์ทีเชียน

- 1. $A \times (B \cup C) = (A \times B) \cup (A \times C)$
- 2. $(A \cup B) \times C = (A \times C) \cup (B \times C)$
- 3. $A \times (B \cap C) = (A \times B) \cap (A \times C)$ 4. $(A \cap B) \times C = (A \times C) \cap (B \times C)$
- 5. $A \times (B C)$ = $(A \times B) (A \times C)$ 6. $(A B) \times C$ = $(A \times C) (B \times C)$
- 7. $A \times B = \phi$ ก็ต่อเมื่อ $A = \phi$ หรือ $B = \phi$ 8. ถ้า $A \times C = B \times C$ และ $C \neq \phi$ แล้ว A = B
- 9. ถ้า A และ B เป็นเซตจำกัด แล้ว $n(A \times B) = n(A) \times n(B)$

ฟังก์ชัน

บทนิยาม กำหนดให้ f เป็นฟังก์ชันจาก A ไป B จะได้

$$D_f = \{x \mid (x, y) \in f\}, R_f = \{y \mid (x, y) \in f\}$$

บทนิยาม ถ้า r เป็นความสัมพันธ์จากเซต A ไป B แล้ว r^{-1} เป็นความสัมพันธ์จากเซต B ไป A

$$D_{r} = R_{r^{-1}}$$
 และ $R_{r} = D_{r^{-1}}$

คอมโพสิทฟังก์ชัน

- 1. fog(x) = f(g(x))
- 2. $fog(x) \neq gof(x)$

กำหนดให้ f และ g เป็นฟังก์ชันในเซตของจำนวนจริง พีชคณิตของฟังก์ชัน

- 1. f+g = { (x,y) | y = f(x) + g(x) และ x ∈ D_f ∩ D_g }
- 2. f-g = { (x,y) | y = f(x) g(x) และ x ∈ D_f ∩ D_g }
- 4. $\frac{f}{g} = \{ (x, y) | y = \frac{f(x)}{g(x)}$ และ $x \in D_f \cap D_g$ และ $g(x) \neq 0 \}$

6. เรขาคณิตวิเคราะห์และภาคตัดกรวย

ความรู้เบื้องต้นเกี่ยวกับเรขาคณิตวิเคราะห์

1. ระยะทางระหว่างจุดสองจุด

ทฤษฎีบท ถ้า $p_1(x_1,y_1)$ และ $p_2(x_2,y_2)$ เป็นจุดในระนาบ ระยะทางระหว่าง $p_1p_2 = \sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$

จุดกึ่งกลางระหว่างจุดสองจุด

ทฤษฎีบท ถ้าจุด p(x,y)เป็นจุดกึ่งกลางระหว่างจุด p₁(x₁,y₁)และ p₂(x₂,y₂)แล้ว $\mathbf{x}=\frac{\mathbf{x}_1+\mathbf{x}_2}{2}$ และ $\mathbf{y}=\frac{\mathbf{y}_1+\mathbf{y}_2}{2}$

4

3. จุดแบ่งอัตราส่วน m : n

ทฤษฎีบท ถ้าจุด p(x,y)เป็นจุดที่อยู่ระหว่างจุด p₁(x₁,y₁) และ p₂(x₂,y₂) และแบ่งส่วนของ เส้นตรง p₁p₂ ออกเป็น อัตราส่วน p₁p: pp₂ = m:n แล้ว x = $\frac{mx_2+nx_1}{m+n}$ และ y = $\frac{my_2+ny_1}{m+n}$

4. จุดตัดเส้นมัธยฐาน

ทฤษฎีบท กำหนด Δ ABC มีพิกัด(x_1 , y_1),(x_2 , y_2),(x_3 , y_3) และ O(x, y) เป็นจุดตัดเส้นมัธยฐานทั้งสามเส้น

จะได้
$$x = \frac{x_1 + x_2 + x_3}{3}$$
 และ $y = \frac{y_1 + y_2 + y_3}{3}$

ความชันของเส้นตรง

บทนิยาม กำหนดให้ L เป็นเส้นตรงที่ผ่านจุด $A(x_1,y_1)$ และ $B(x_2,y_2)$ แล้วความชันเส้นตรงL = $\frac{y_2-y_1}{x_2-x_1}$

6. สมการเส้นตรง

เส้นตรงที่ผ่านจุด ($\mathbf{x}_1, \mathbf{y}_1$) และมีความชั้น \mathbf{m} จะมี สมการเส้นตรงคือ $\mathbf{y} - \mathbf{y}_1 = \mathbf{m}$ ($\mathbf{x} - \mathbf{x}_1$)

7. ระยะห่างระหว่างเส้นตรงกับจุด

ทฤษฎีบท ระยะห่างระหว่างเส้นตรง Ax + By + C = 0 กับจุด (x_1 , y_1) คือ $d = \frac{|Ax_1 + By_1 + C|}{\sqrt{A^2 + B^2}}$

8. ระยะห่างระหว่างเส้นคู่ขนาน

ทฤษฎีบท ระยะห่างระหว่างเส้นตรง $Ax + By + C_1 = 0$ และ $Ax + By + C_2 = 0$ คือ $d = \frac{|C_1 - C_2|}{\sqrt{A^2 + B^2}}$

วงกลม คือ เซตของจุดทุกจุดบนระนาบ ซึ่งอยู่ห่างจากจุดคงที่จุดหนึ่งเป็นระยะทางเท่ากันเสมอ

- a. สมการของวงกลมที่มีจุดศูนย์กลางที่จุดกำเนิด และมีรัศมีเท่ากับ \mathbf{r} คือ $\mathbf{x}^2+\mathbf{y}^2=\mathbf{r}^2$
- b. สมการของวงกลมที่มีจุดศูนย์กลางที่ (h , k) และมีรัศมีเท่ากับ r คือ (x h) $^2 + (y k)^2 = r^2$
- c. สมการของวงกลมสามารถเขียนในรูปทั่วไปได้คือ $x^2 + y^2 + Ax + By + C = 0$ เมื่อ A , B และ C เป็นค่าคงตัวที่มี $(h,k) = (-\frac{A}{2}, -\frac{B}{2})$ และ $r = \sqrt{h^2 + k^2 c}$

วงรี คือ เซตของจุดซึ่งผลบวกของระยะทางจากจุดใดๆ ไปยังจุดคงที่สองจุดมีค่าคงตัวเสมอ (ค่าคงตัว = 2a)

a. สมการของวงรีที่มีจุดศูนย์กลางที่จุดกำเนิด (0,0)

- 1. แกนเอกอยู่บนแกน x คือ $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ จุดยอด (a , 0) กับ (–a , 0) โฟกัส (c , 0) กับ (–c , 0)
- 2. แกนเอกอยู่บนแกน y คือ $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$ จุดยอด (0 , a) กับ (0, -a) โฟกัส (0 , c) กับ (0 , -c)

b. สมการของวงรีที่มีจุดศูนย์กลางที่ (h,k)

- 1. แกนเอกอยู่บนแกน x คือ $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$ จุดยอด (h \pm a , k) โฟกัส (h \pm c , k)
- 2. แกนเอกอยู่บนแกน y คือ $\frac{(x-h)^2}{h^2} + \frac{(y-k)^2}{a^2} = 1$ จุดยอด (h , k \pm a) โฟกัส (h , k \pm c)
- c. เมื่อ a คือระยะทางจากจุดศูนย์กลางถึงจุดยอด มีแกนเอกยาว = 2a
 - b คือระยะทางจากจุดศูนย์กลางถึงจุดปลายของแกนโท มีแกนโทยาว = 2b
- c คือระยะทางจากจุดศูนย์กลางถึงโฟกัส และ $a^2 = b^2 + c^2$ ความยาวลาตัสเรกตัม $= \frac{2b^2}{a}$ สมการทั่วไปของวงรีคือ $Ax^2 + By^2 + Cx + Dy + E = 0$ เมื่อ $A \neq B$ และ A , B มีเครื่องหมายเหมือนกัน

สรุปสูตรที่จำเป็นต่อการคำนวณข้อสอบฟิสิกส์ ม.ปลาย โดยครูมิค (กนกพล ซัยวรวิทย์กุล)

การเคลื่อนที่แนวตรง

$$ullet$$
 เคลื่อนที่ด้วยอัตราเร็วสม่ำเสมอ : อัตราเร็วเฉลี่ย $v=rac{\Delta S}{\Delta t}$ ความเร็วเฉลี่ย $ar{v}=rac{\Delta ar{S}}{\Delta t}$

$$ullet$$
 ความเร่ง $ec{a}=rac{\Delta ec{v}}{\Delta t}$

$$ullet$$
 เคลื่อนที่ด้วยอัตราเร่งสม่ำเสมอ $v=u+at$ $S=rac{1}{2}ig(u+vig)t$ $v^2=u^2+2as$ $S=ut+rac{1}{2}at^2$

<u>หมายเหตุ 1</u>: กำหนดให้ทิส u เป็น + เสมอ, ตัวแปรใดทิสตาม u เป็น + ถ้าทิสตรงข้าม u เป็น – <u>หมายเหตุ 2</u>: ถ้าเป็นการตกแบบเสรี ให้เปลี่ยนความเร่งจาก a เป็น g (โยนขึ้น g –, ตกหรือขว้างลง g +)

ullet กราฟ $ar{S}$ &t: ความเร็ว $ar{v}$ = ความชั้น

• กราฟ $\vec{v} \& t$: ความเร่ง $\vec{a} =$ ความชั้น

• กราฟ $\bar{v} \& t$: การกระจัด $\bar{S} = ผลต่างพื้นที่ใต้กราฟ, ระยะทาง <math>S = ผลบวกพื้นที่ใต้กราฟ$

• กราฟ $\bar{a} \& t$: ความเร็วที่เปลี่ยนไป $\Delta \bar{v} = \omega$ ลต่างพื้นที่ใต้กราฟ

แรง มวล กฎการเคลื่อนที่ของนิวตัน

- ullet กฎข้อที่ 1 ของนิวตัน $\sum ar{F} = 0$ (แรงในแนวแกนเดียวกันหักล้างกันหมด)
- กฎข้อที่ 1 ใช้เมื่อวัตถุยังคงหยุดนิ่งหรือเคลื่อนที่ด้วยความเร็วคงตัว
- ullet กฎข้อที่ 2 ของนิวตัน $\sum \vec{F} = m\vec{a}$
- กฎข้อที่ 2 ใช้เมื่อวัตถุเคลื่อนที่ด้วยความเร่งหรือถูกแรงลัพธ์กระทำ
- กฎข้อที่ 3 ของนิวตัน (ใช้การกลับประธานเป็นกรรม, กรรมเป็นประธาน เพื่อหาแรงคู่กิริยา ปฏิกิริยา)
- ullet แรงคึงคูดระหว่างมวล $F=rac{Gm_1m_2}{r^2}$, แรงโน้มถ่วงเป็นแรงคึงคูดระหว่างมวล $mg=rac{GMm}{r^2}$
- ค่าความเร่งโน้มถ่วงบนดาวเคราะห์ $g=rac{Gm}{r^2}$ (m และ r คือ มวลและรัศมีของดาวเคราะห์ ตามลำดับ)
- ullet แรงเสียคทานสถิต, $f_{s,max}=\mu_s N$ และแรงเสียคทานจลน์, $f_k=\mu_k N$ โคยที่ $\mu_s>\mu_k$ เสมอ

การเคลื่อนที่แบบโปรเจกใทล์

- <u>แนวราบ</u>: ไม่มีแรงกระทำ ($\Sigma \bar{F}_x = 0$) \rightarrow ไม่มีความเร่ง ($\bar{a}_x = 0$) \rightarrow ความเร็วคงที่ ($S_x = v_x t$)
- <u>แนวดิ่ง</u>: แรงโน้มถ่วง ($\sum \vec{F}_y = m \vec{g}$) \rightarrow ความเร่งโน้มถ่วง ($\vec{a}_y = \vec{g}$) \rightarrow ความเร่งคงตัว (สูตรคำนวณ 4 สูตร)
- ความเร็วลัพธ์ $v=\sqrt{{v_x}^2+{v_y}^2}$, มุมของทิศทางความเร็วที่ทำกับแนวระดับ $\theta=\tan^{-1}rac{v_y}{v_x}$

- ความสัมพันธ์ระหว่างพิสัยแนวราบและแนวดิ่ง $\frac{y}{x} = \frac{1}{4} \tan \theta$
- สำหรับโปรเจกไทล์แบบเต็มใบ
 - 1. พิสัยแนวราบไกลสุดที่มุมยิง 45°
 - 2. การยิง 2 ครั้ง ถ้าเริ่มต้นยิงด้วยอัตราเร็วต้นเดียวกันแล้ว จะตกลงที่จุดเดียวกัน ได้เมื่อมุมยิงสองครั้ง $\theta_1 + \theta_2 = 90^\circ$

การเคลื่อนที่แบบวงกลม

- ความถี่และคาบ $f = \frac{1}{T}$
- ความเร็วเชิงมุม $\omega=rac{\Delta heta}{\Lambda_t}=2\pi f=rac{2\pi}{T}$, ความสัมพันธ์ระหว่างความเร็วเชิงเส้นและเชิงมุม $v=\omega r$
- ullet แรงสู่ศูนย์กลาง $\sum ar{F}_{
 m C} = mar{a}_{
 m C}$ (เพื่อเปลี่ยนทิศทางการเคลื่อนที่)
- แรงตามแนวเส้นสัมผัส $\sum ar{F}_{\!\scriptscriptstyle
 m T} = mar{a}_{\!\scriptscriptstyle
 m T}$ (เพื่อเปลี่ยนขนาดของความเร็ว)
- แนวสู่ศูนย์กลางและแนวสัมผัสมีทิศตั้งฉากกัน ดังนั้น $F=\sqrt{{F_{
 m C}}^2+{F_{
 m T}}^2}$ $a=\sqrt{{a_{
 m C}}^2+{a_{
 m T}}^2}$
- ความเร่งสู่ศูนย์กลาง $a_{\rm C}=rac{v^2}{r}=\omega^2 r$
- ullet แรงสู่ศูนย์กลาง $F_{
 m C}=mrac{v^2}{r}=m\omega^2 r$

augana

- <u>สภาพสมคุลต่อการเลื่อนที่</u> (ไม่เลื่อนเลย(สภาพนิ่ง) หรือเลื่อนด้วยความเร็วเชิงเส้นคงที่) $\sum \vec{F}_{x} = 0$ (แรงซ้ายเท่ากับแรงขวา) และ $\sum \vec{F}_{y} = 0$ (แรงขึ้นเท่ากับแรงลง)
- <u>สภาพสมดุลต่อการหมูน</u> (ไม่หมุนเลย(สภาพนิ่ง) หรือหมุนด้วยความเร็วเชิงมุมคงที่) $\sum \bar{M} = 0$ (โมเมนต์ทวนเข็มนาฬิกาเท่ากับโมเมนต์ตามเข็มนาฬิกา)
- <u>สภาพสมคุลสัมบูรณ์</u> (สมคุลต่อการเลื่อนที่และต่อการหมุนในเวลาเคียวกัน)

$$\sum \vec{F}_{\!\scriptscriptstyle x} = 0, \qquad \qquad \sum \vec{F}_{\!\scriptscriptstyle y} = 0 \qquad \qquad \text{uns } \sum \vec{M} = 0$$

• การหาตำแหน่งของจุดศูนย์กลางมวล (C.M.) และจุดศูนย์ถ่วง (C.G.) ของอนุภาคที่เรียงอยู่บนแนวเส้นตรงเดียวกัน

$$x_{\text{C.M.}} = \frac{\sum m_i x_i}{\sum m_i} = \frac{m_1 x_1 + m_2 x_2 + m_3 x_3 + ...}{m_1 + m_2 + m_3 + ...}$$

งานและพลังงาน

- ullet งาน $W=ec F\cdot ec S$
- ullet กำลัง $P=rac{W}{t}=ec{F}\cdotec{v}$
- ullet พลังงานกล $E = E_k + E_p$ ประกอบด้วย

พลังงานจลน์ $E_k=rac{1}{2}mv^2$ พลังงานศักย์โน้มถ่วง $E_p=mgh$ พลังงานศักย์ยึดหยุ่น $E_{ps}=rac{1}{2}kx^2$

- แรงดึงในสปริง F = kx
- ullet กฎการอนุรักษ์พลังงาน (กฎทรงพลังงาน) $E_1=E_2$ หรือ $v^2=u^2\pm 2gs$
- ทฤษฎีงาน พลังงานจลน์ $E_{k\,2} = E_{k\,1} + W_{1 o 2}$

การดลและโมเมนตัม

- โมเมนตัม $\vec{P}=m\vec{v}$
- ullet การคล $ec{I} = oldsymbol{\Delta}ec{P} = \sum ec{F} \cdot t = m(ec{v} ec{u})$
 - 1. กราฟ \vec{F} &t : การคล \vec{I} = พื้นที่ใต้กราฟ
 - 2. ถ้ากระแทกแล้ววัตถุสะท้อนกลับ, ค่า $(\vec{v} \vec{u})$ ให้นำความเร็วมาบวกกัน
- การชนแบบยืดหยุ่น (กรณีมีวัตถุในระบบ 2 ก้อน, ไม่มีแรงจากภายนอก)

<u>สมการ 1:</u> $\sum \vec{P}$ ก่อนชน = $\sum \vec{P}$ หลังชน : $m_1 \vec{u}_1 + m_2 \vec{u}_2 = m_1 \vec{v}_1 + m_2 \vec{v}_2$

<u>สมการ 2:</u> $\sum E_k$ ก่อนชน = $\sum E_k$ หลังชน : $\frac{1}{2}m_1u_1^2 + \frac{1}{2}m_2u_2^2 = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2$

• การชนแบบไม่ยืดหยุ่น (กรณีมีวัตถุในระบบ 2 ก้อน, ไม่มีแรงจากภายนอก)

สมการ 1: $\sum \vec{P}$ ก่อนชน = $\sum \vec{P}$ หลังชน : $m_1 \vec{u}_1 + m_2 \vec{u}_2 = m_1 \vec{v}_1 + m_2 \vec{v}_2$

 $\sum E_k$ ก่อนชน $> \sum E_k$ หลังชน (ชนแล้วติดกันไป, ชนแล้วพลังงานสูญหาย)

• การระเบิด

<u>สมการ 1:</u> $\sum \vec{P}$ ก่อนชน = $\sum \vec{P}$ หลังชน : $m_1\vec{u}_1 + m_2\vec{u}_2 = m_1\vec{v}_1 + m_2\vec{v}_2$

การเคลื่อนที่แบบฮาร์มอนิกอย่างง่าย

- ทิสแรง (ทิสความเร่ง) มีทิส<u>ตรงข้าม</u>กับทิสการกระจัดตลอดเวลา (F=-kx)
- ปริมาณการกระจัด, ความเร็ว และความเร่งมีค่าเ<u>ปลี่ยนแปลงไปตลอดเวลา</u>ที่เคลื่อนที่ (ไม่มีปริมาณใดคงที่เลย)
- การเคลื่อนที่กลับไปกลับมารอบตำแหน่งสมคุลนี้ ถือว่า <u>พลังงานในระบบคงที่</u>ตลอดเวลา ไม่มีการสูญหาย
- การกระจัด $S=A\sin \omega t$ (พิจารณาจากกรณีเริ่มต้นเคลื่อนที่จากตำแหน่งสมคุล, x=0 เมื่อ t=0)
- ความเร็ว $v = \omega A \sin\left(\omega t + \frac{\pi}{2}\right) = \omega A \cos \omega t$
- ความเร่ง $a=\omega A\sin\left(\omega t+\pi\right)=-\omega^2 A\sin\omega t=-\omega^2 S$ (แสดงได้ว่า $a\propto -S$)
- ที่ตำแหน่ง<u>ไกลสุค</u> (การกระจัค = A); ความเร็ว<u>น้อยสุค</u> ($v_{\min}=0$) แต่ ความเร่ง<u>มากสุค</u> ($a_{\max}=\omega^2 A$)
- ที่ตำแหน่ง<u>สมคุล</u> (การกระจัด = 0); ความเร็ว<u>มากสุด</u> ($v_{\max} = \omega A$) แต่ ความเร่ง<u>น้อยสุด</u> ($a_{\min} = 0$)
- ullet พลังงานของการเกลื่อนที่แบบซิมเปิลฮาร์มอนิก $E=rac{1}{2}\mathit{k}A^2, k$ คือ ค่าคงที่ของระบบ ($k=m\omega^2$)
- ullet คาบการแกว่งของมวลติดปลายสปริง $T=2\pi\sqrt{rac{m}{k}}$ สั่นในแนวดิ่งหรือแนวราบก็ได้
- ullet คาบการแกว่งของลูกตุ้มอย่างง่าย $T=2\pi\sqrt{rac{L}{g}}$ <u>ไม่ขึ้นกับมวล</u>ของลูกตุ้มที่นำมาแกว่ง

อะตอมและโครงสร้างอะตอม

แบบจำลองอะตอม

1. ดอลตัน

ธาตุประกอบด้วยอนุภาคเล็กๆที่เรียกว่า อะตอม ซึ่งแบ่งแยกทำให้สูญหายไม่ได้ อะตอมของธาตุชนิด เดียวกันจะมีสมบัติเหมือนกันและมีสมบัติแตกต่างจากธาตุอื่น

ทอมสัน

ทอมสันทคลองโคยใช้หลอครั้งสีแคโทค จนใค้ค่า e/m เป็นค่าคงที่พบว่าอะตอม ประกอบด้วยอนุภาค มูลฐานที่เรียกว่าอิเล็กตรอน โกลด์สไตล์ดัดแปลงหลอดรังสีพบว่าแก๊สทุกชนิดประกอบด้วยอนุภาค บวกที่เรียกว่า โปรตอน ดังนั้นแบบจำลองอะตอมของทอมสัน คืออะตอมเป็นทรงกลมตัน มือนุภาคที่ เป็น ลบ (อิเล็กตรอน) และ บวก (โปรตอน) กระจายอย่างสม่ำเสมอ

รัทเทอร์ฟอร์ด

รัทเทอร์ฟอร์คทำการทดลองยิงอนุภาคแอลฟาไปยังแผ่นทองคำบาง ด้านหลังเป็นฉากเรื่องแสง ได้ แบบจำลองว่า อะตอมประกอบด้วย นิวเคลียสเป็นที่รวมของโปรตอน(+) มีขนาดเล็กแต่มวลมาก ส่วนอิเล็กตรอน(-) มีมวลน้อยมากเคลื่อนที่เป็นชั้นเคียวรอบนิวเคลียส

นีลส์ บอห์ร

บอห์รศึกษาสเปกตรัมและพลังงานใอออในเซชัน สรุปว่าอะตอมประกอบด้วยนิวเคลียส เป็นที่รวม ของโปรตอน(+) และนิวตรอน(0) ส่วนอิเล็กตรอน (-) เคลื่อนที่เป็นชั้นๆ ตามระดับพลังงานรอบ นิวเคลียส

กลุ่มหมอก

อนุภาคมูลฐานของอะตอม

กลุ่มหมอก 	ที่มีโอกาสพบฮ์	•	ของอิเล็กตรอน	รอบนิวเคลียส บริ	เวณที่มีกลุ่มหมอกทึบเป็นบริเวณ
อนุภาค	สัญลักษณ์	มวถ(g)	ประจุ(C)	ชนิดของประจุ	
โปรตอน	p	1.67×10 ⁻²⁴	1.6×10 ⁻¹⁹	+1	
นิวตรอน	n	1.67×10 ⁻²⁴	0	0	>
อิเล็กตรอน	e	9.1×10 ⁻²⁸	1.6×10 ⁻¹⁹	-1	

สัญลักษณ์นิวเคลียร์

A X

Z คือเลขอะตอม (atomic number) = p^+ ในอะตอมที่เป็นกลาง $p^+ = e^-$

A คือเลขมวล (mass number) = $p^+ + n^0$

$$A - Z = n^0$$

eactkk.

www.tr

42

ตัวอย่างเช่น

$${}^{14}_{7}N$$
 $p^{+}=7$ $e^{-}=7$ $n^{0}=7$ ${}^{35}_{17}C1^{-}$ $p^{+}=17$ $e^{-}=18$ $n^{0}=18$

ไอโซโทป (Isotope) ยายตอมของธาตุชนิดเดียวกันจำนวนนิวตรอนต่างกัน เช่น
$${}^1_1 H, {}^2_1 H, {}^3_1 H$$

ไอโซโทน (Isotone) : อะตอมของชาตุต่างชนิดกันมีจำนวนนิวตรอนเท่ากัน เช่น
$${}^{13}_{6}$$
C, ${}^{14}_{7}$ N

ไอโซบาร์ (Isobar) : อะตอมของธาตุต่างชนิดกันที่มีเลขมวลเท่ากัน เช่น
$$^{14}_{6}$$
C, $^{14}_{7}$ N

ใอโซอิเล็กทรอนิก (Isoelectronic) : อะตอมหรือไอออนของธาตุต่างชนิดกันที่จำนวนอิเล็กตรอนเท่ากัน เช่น ₁₁ Na⁺, ₈ O²⁻ จากการศึกษาสเปกตรัมของแก๊ส จะได้ว่าสเปกตรัม คือ พลังงานในรูปแสงที่อะตอมในภาวะกระตุ้นคายพลังงานออกมา เพื่อกลับสู่ภาวะพื้น (ground state)

พลังงานของคลื่นแม่เหล็กไฟฟ้า

$$E = hV = h\frac{c}{\lambda}$$

เมื่อ E = พลังงานคลื่นแม่เหล็กไฟฟ้า (J)

$$h =$$
ก่าคงที่ของพลังค์ (6.625 x 10^{-34} J.s)

$$c =$$
ความเร็วแสง (3 x 10^8 m/s) $\lambda =$ ความยาวคลื่นแม่เหล็กไฟฟ้า (m)

การศึกษาพลังงานไอออไนเซชันและการจัดเรียงอิเล็กตรอน

จากการศึกษาสเปกตรัมและค่าพลังงานใอออในเซชันจะทำให้ได้การจัดเรียงอิเล็กตรอนตามแบบจำลองอะตอมของบอห์ร

การจัดเรียงอิเล็กตรอนตามระดับพลังงานหลัก มีหลักการจัดเรียงดังนี้

- 1. จำนวนอิเล็กตรอนที่สามมารถจุได้สูงสุดในแต่ละชั้นเป็นไปตามสูตร $2n^2$
- 2. อิเล็กตรอนวงนอกสุด (valence electron) มีได้ไม่เกิด 8
- 3. อิเล็กตรอนก่อนวงนอกสุด ต้องเป็น 8 หรือ 18 เท่านั้น

จาการจัดเรียงอิเล็กตรอน จะได้ว่า เวเลนซ์อิเล็กตรอนบอกหมู่ จำนวนระดับพลังงานบอกคาบ

**สำหรับโลหะแทรนสิชัน อิเล็กตรอนวงนอกสุดต้องเป็น 2 เท่านั้น ยกเว้น Cr, Cu มีเวเลนซ์อิเล็กตรอนเป็น 1 และจำนวน อิเล็กตรอนที่เหลือจะบรรจุไว้ในชั้นก่อนวงนอกสุด

ตัวอย่าง เช่น
$$_{11}$$
Na = 2, 8, 1 Na เป็นธาตุในหมู่ 1 คาบ 3 ในตารางธาตุ $_{20}$ Ca = 2, 8, 8, 2 Ca เป็นธาตุในหมู่ 2 คาบ 4 ในตารางธาตุ $_{24}$ Cr = 2, 8, 13, 1 Cr เป็นโลหะแทรนสิชันคาบ 4 ในตารางธาตุ

การจัดเรียงอิเล็กตรอนตามระดับพลังงานย่อย

อิเล็กตรอนในแต่ละระดับพลังงานหลัก (shell) จะมีระดับพลังงานย่อย (sub – shell : s, p, d, f, ...) โดยอิเล็กตรอนจะบรรจุ อยู่ในแต่ละระดับพลังงานย่อย บริเวณหรือรูปร่างที่บรรจุอิเล็กตรอนในแต่ละระดับพลังงานย่อย เรียกว่า ออร์บิทัล (obital) เช่น s – orbital มีรูปร่างเป็นทรงกลมจุอิเล็กตรอนได้สองตัว

p-orbital มีรูปร่างเป็นคัมเบล มี p_x , p_v , $p_z\,$ จุอิเล็กตรอนได้ 6 ตัว

43

ทฤษฎีและกฎที่เกี่ยวกับการจัดเรียงอิเล็กตรอน มีหลักการดังนี้

- 1. หลักการกีดกันของเพาลี (Pauli Exclusion Principle) กล่าวคือ อิเล็กตรอนที่บรรจุในออร์บิทัลเดียวกันจะมีสปิน ต่างกัน
- 2. กฎของฮุนค์ (Hund's Rule) กล่าวคือ การบรรจุอิเล็กตรอนในออร์บิทัลที่มีระคับพลังงานเท่ากัน ให้บรรจุ อิเล็กตรอนที่มีสปินขึ้นทุกออร์บิทัลก่อน แล้วจึงค่อยเติมอิเล็กตรอนที่มีสปินลง
- 3. หลักของอาฟบาว (Aufbau principle) กล่าวคือ ต้องบรรจุอิเล็กตรอนในออร์บิทัลที่ระดับพลังงานให้เต็มก่อน แล้ว จึงไปเติมในระดับพลังงานที่อยู่สูงขึ้นไป

s – obital จุอิเล็กตรอนใค้ 2 ตัว

p – obital จุอิเล็กตรอนได้ 6 ตัว

d – obital จุอิเล็กตรอนได้ 10 ตัว

f – obital จุอิเล็กตรอนได้ 10 ตัว

ตัวอย่างการจัดเรียงอิเล็กตรอน ตามระดับพลังงานย่อยของ

 $_{11}Na = 1s^2 2s^2 2p^6 3s^1$

Na เป็นธาตุในหมู่ 1 คาบ 3 อิเล็กตรอนวงนอกสุดบรรจุใน s - orbital

 $_{20}$ Ca = $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$

Ca เป็นธาตุในหมู่ 2 คาบ 4 อิเล็กตรอนวงนอกสุดบรรจุใน s - orbital

 $_{23}V = 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^3$

V เป็นโลหะทรานสิชันคาบ 4 ในตารางธาตุ มีเวเลนซ์อิเล็กตรอนเป็น 2

สมบัติของธาตุตามตารางธาตุ

IE1, EN, EA, ความเป็นอโลหะ, รัศมีใอออนลบ

ขนาดอะตอม, ความเป็นโลหะ, รัศมีใอออนบวก

แนวโน้มสมบัติต่างๆ ตามหมู่และคาบ

2.1 ขนาดอะตอม

ตามหมู่ : เพิ่มขึ้นจากบนลงล่าง คืออะตอมด้านล่างจะมีขนาดใหญ่กว่าด้านบน

ตามกาบ: ลดลงจากซ้ายไปขวา คือ ด้านซ้ายจะใหญ่กว่าด้านขวา คือ โลหะขนาดใหญ่กว่าอโลหะ

2.2 ขนาดใอออน

ใอออนบวก แรงคึงดูคระหว่างนิวเคลียสกับอิเล็กตรอนสูง ขนาคจะเล็ก กล่าวคือ ยิ่งมีประจุบวกมากขนาคยิ่งเล็กลงมาก

ตามหมู่ : เพิ่มขึ้นจากบนลงล่าง ตามคาบ : ลดลงจากซ้ายไปขวา

ใอออนลบ แรงดึงคูดระหว่างนิวเคลียสกับอิเล็กตรอนลคลงสำหรับใอออนลบ กล่าวคือ ยิ่งมีประจุลบมากขนาดใอออน

ยิ่งใหญ่มากขึ้น ตามหมู่ : ลดลงจากบนลงล่าง ตามคาบ : เพิ่มขึ้นจากซ้ายไปขวา

2.3 พลังงานใจออในเซชัน (Ionization energy : IE)

IE คือ พลังงานที่น้อยที่สุดที่ทำให้อิเล็กตรอนวงนอกสุดหลุดออกจากอะตอมในสภาวะแก๊ส

$$Na(g) + IE_1 \rightarrow Na^+(g) + e^-$$

$$Na(g) + IE_2 \rightarrow Na^{2+}(g) + e$$

แนวโน้มค่าพลังงานไอออไนเซชันอันดับหนึ่ง

ตามหมู่ : ลดลงจากบนลงล่าง ตามคาบ : เพิ่มขึ้นจากซ้ายไปขวา

2.4 อิเล็กโทรเนติวิตี (Electronegativity: EN)

อิเล็กโทรเนกาติวิตี คือ ความสามารถในการดึงคูดอิเล็กตรอน

แนวโน้มค่าอิเล็กโทรเนกาติวิตี

ตามหมู่ : ลดลงจากบนลงล่าง ตามคาบ : เพิ่มขึ้นจากซ้ายไปขวา

2.5 สัมพรรคภาพอิเล็กตรอน (Electron affinity: EA)

สัมพรรคภาพอิเล็กตรอน คือ ความสามารถในการรับอิเล็กตรอนของธาตุ ซึ่งจะต้องคายพลังงานออกมา EA จึงมีค่าเป็นลบ (คายพลังงาน)

แนวโน้มค่าสัมพรรคภาพอิเล็กตรอน

ตามหมู่ : ลดลงจากบนลงล่าง ตามกาบ : เพิ่มขึ้นจากซ้ายไปขวา

2.6 จุดเดือดจุดหลอมเหลว (ของโลหะ หมู่ IA, IIA และ IIIA)

ตามหมู่ : เพิ่มขึ้นจากบนลงล่าง ตามคาบ : ลดลงจากซ้ายไปขวา

เลขออกซิเดชัน

คือ เลขที่บอกประจุสถานะของธาตุนั้นๆ มีหลักการหาค่าเลขออกซิเดชัน ดังนี้

1. ค่าเลขประจุมาตรฐาน

โลหะหมู่ IA = +1 โลหะหมู่ IIA = +2

โลหะหมู่ IIIA = +3

อโลหะหมู่ VA = -3

อโลหะหมู่ VIA = -2

อโลหะหมู่ VIIA = -3

CN = -1

 $NO_3 = -1$

 $SO_4 = -2$

 $CO_{2} = -1$

 $PO_4 = -3$

H = +1

- 2. ผลรวมค่าเลขออกซิเคชันของทุกธาตุในสารประกอบเป็นศูนย์
- 3. ผลรวมค่าเลขออกซิเคชันของทุกธาตุในสารประกอบไอออน ต้องเท่ากับประจุไอออนนั้น

สารประกอบออกไซด์ สารประกอบคลอไรด์

สารประกอบ	โลหะ	อโลหะ	สารประกอบไม่ละลายน้ำ
คลอไรค์	กลาง	กรด	NCl ₃ CCl ₄
ออกไซค์	เบส	กรด	BeO MgO Al ₂ O ₃ SiO ₂

◆การละลายน้ำของสารประกอบไอออนิก

สารประกอบไอออนิกที่ละลายน้ำได้	สารประกอบใอออนิกที่ไม่ละลายน้ำ		
$1.$ สารประกอบของโลหะหมู่ I ทุกตัว เช่น ${ m KNO_3}, { m NA_2CO_3}, { m LiClO_3}$ เป็นต้น ${ m 2.}$ สารประกอบของ ${ m NH_4}^+$ ทุกตัว เช่น ${ m (NH_4)_2SO_4}, { m NH_4Cl}$ เป็นต้น	1.สารประกอบที่เกิดจากโลหะหมู่ VII หรือ ${\rm CO_3}^{2-}, {\rm PO_4}^{3-}, {\rm SO_4}^{2-} ~ กับ ~ {\rm Ag}^+, {\rm Hg}^+, {\rm Pb}^{2+} ~ เช่น$ ${\rm AgCl, PbI}_2, {\rm Ag}_2 {\rm SO}_4 ~ เป็นต้น$		
3.สารประกอบของ NO3 ทุกตัว เช่น Pb(NO)3, Ba(NO)3 เป็นต้น 4.สารประกอบของ ClO3 ทุกตัว เช่น NaClO3, Mg(ClO3)2 เป็นต้น	2.เป็นสารประกอบที่เกิดจากโลหะหมู่ II กับ ${{\rm CO_3}^{2-}, {\rm PO_4}^{3-}, {\rm SO_4}^{2-}} $ <u>ยกเว้น</u> ${\rm MgSO_4}$ เช่น ${{\rm Mg_3(PO_4)_2, CaCO_3}}$ เป็นต้น		
5.สารประกอบของ CIO ₄ ทุกตัว <u>ยกเว้น</u> KCIO ₄ เช่น LiClO ₄ , Fe(ClO ₄) ₂ เป็นต้น 6.สารประกอบของ CH ₃ COO ทุกตัว <u>ยกเว้น</u> CH ₃ COOAg เช่น CH ₃ COONa, (CH ₃ COO) ₂ Ca เป็นต้น	3.เป็นสารประกอบที่เกิดจาก <u>โลหะทุกชนิด</u> กับ S^{2-} , OH^{-} , O^{2-} <u>ยกเว้น</u> โลหะหมู่ I,II บางตัว ใด้แก่ Ca^{2+} , Sr^{2+} , Ba^{2+} เช่น Al_2S_3 , ZnS , $Cu(OH)_2$ เป็นต้น		

ullet พลังงานในการละลาย (ΔH_{sol}) ประกอบไปด้วยพลังงาน 2 ขั้นตอนดังนี้

รูปแสดงกลไกการละลายของสารประกอบไอออนิก

1.พลังงานแลตทิช (LE) ทำลายโครงร่างผลึก (คูดความร้อนเพื่อสลายพันธะ)

$$NaCl(s) \rightarrow Na^+(g) + Cl^-(g)$$

2.พลังงาน ใชเครชัน (HE) โมเลกุลของน้ำเข้ามาล้อมรอบ ใอออน (คายความร้อนเพื่อสร้างพันธะกับน้ำ)

$$Na^{+}(g)+Cl^{-}(g) \rightarrow Na^{+}(aq)+Cl^{-}(aq)$$

<u>หมายเหตุ</u>

- 1. ถ้า HE>LE เป็นการละลายแบบคายพลังงาน สารละลายจะร้อน
- 2. ถ้า LE>HE เป็นการละลายแบบคูคพลังงานสารละลายจะเย็น
- 3. ถ้า LE>>>HE สารประกอบจะไม่ละลายน้ำ

2.3.พันธะโคเวเลนท์่ (Covalent Bond)

เป็นแรงชึดเหนี่ยวที่เกิดจาก**อโลหะกับอโลหะ** (ยกเว้น Be กับ B ที่สามารถเกิดพันธะ โควาเลนท์ได้)นำเอาวาเลนซ์อิเล็กตรอน มาใช้ร่วมกันโดยสามารถใช้ร่วมกัน 1 คู่(พันธะเดี่ยว), 2 คู่(พันธะคู่), 3 คู่(พันธะสาม)

ผลิตภัณฑ์ที่ได้	จุดเดือด (°C)	สถานะ	จำนวนคาร์บอน	การใช้ประโยชน์		
แก๊สปิโตรเลียม	< 30	แก๊ส	1 - 4	ทำสารเคมี วัสคุสังเคราะห์ เชื้อเพลิง		
				แก๊สหุงต้ม		
แนฟทาเบา	30 - 110	ของเหลว	5 - 7	น้ำมันเบนซิน ตัวทำละลาย		
แนฟทาหนัก	65 - 170	ของเหลว	6 - 12	น้ำมันเบนซิน แนฟทาหนัก		
น้ำมันก๊าด	170 - 250	ของเหลว	10 - 14	น้ำมันก๊าค เชื้อเพลิง เครื่องยนต์ไอพ่น		
				และตะเกียง		
น้ำมันดีเซล	250 - 340	ของเหลว	14 - 19	เชื้อเพลิงเครื่องยนต์ดีเซล		
น้ำมันถ่อถื่น	> 350	ของเหลว	19 - 35	น้ำมันล่อลื่น น้ำมันเครื่อง		
ไข	> 500	ของแข็ง	> 35	ใช้ทำเทียนไข เครื่องสำอาง ยาขัดมัน		
				ผลิตผงซักฟอก		
น้ำมันเตา	> 500	ของเหลวหนืด	> 35	เชื้อเพลิงเครื่องจักร		
ยางมะตอย	> 500	ของเหลวหนืด	> 35	ยางมะตอย เป็นของแข็งที่อ่อนตัวและ		
				เหนียวหนืดเมื่อถูกความร้อน ใช้เป็น		
				วัสดุกันซึม		
ารปรับปรุงคุณภาพ	น้ำมัน มี 4 กระบวน	เการ ดังนี้				
กระบวนการแต	กสลาย (Cracking p	rocess)				
เป็นกระบวนกา	รทำให้สารประกอบ	เไฮโครคาร์บอนโม	แลกุลใหญ่แตกออกเ	ป็นโมเลกุลเล็กลง โดยใช้ความร้อนสูง		
ประมาณ 500°C	: และมีตัวเร่งปฏิกิริเ	ขาที่เหมาะสม				
		C ₁₀ H ₂₂ Catalys	\rightarrow $C_8H_{16} +$	$\cdot C_2H_6$		
กระบวนการรีฟ	อร์มมิง (Reforming		0 10			
เป็นกระบวนกา	รเปลี่ยนสารประกอ	บไฮโครคาร์บอนโ	ซ่ตรงให้เป็นไอโซเม	มอร์แบบโซ่กิ่ง หรือการเปลี่ยนสารประกอ		
ใฮโครคาร์บอน	แบบวงให้เป็นสารอ	ะโรมาติก โดยใช้ค	วามร้อนสูงและมีตัว	มเร่งปฏิกิริยา		
				CH ₃		
$CH_3 - CH_2 - CH_2 - CH_2 - CH_3 - $						
CH ₃ −CH ₂ −CH ₂ −CH ₂ −CH ₃ ← Catalyst/Heat → CH ₃ ← CH ← CH ← CH ₃ ← CH ← C						
_	Catalyst/Heat >					
. กระบวนการแอ	ลคิเลชัน (Alkylatio	n process)				
เป็นกระบวนกา	รรวมสารประกอบเ	เอลเคนและแอลคืน	เโซ่กิ่งที่มีมวลโมเลก	กุลต่ำ เกิดเป็น โมเลกุลสารประกอบแอลเก		
ที่มีโครงสร้างเป็	ในแบบโซ่กิ่งที่มีโมเ	ลกุลใหญ่ขึ้น				

$$C_{10}H_{22} \xrightarrow{Catalyst/500^{\circ}C} C_8H_{16} + C_2H_{60}$$

$$\begin{array}{c} \text{CH}_3 - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{CH}_3 & \xrightarrow{\text{Catalyst/Heat}} \\ \xrightarrow{\text{CH}_3} & \xrightarrow{\text{CH}$$

เป็นกระบวนการรวมสารประกอบแอลเคนและแอลคืน โซ่กิ่งที่มีมวล โมเลกุลต่ำ เกิดเป็น โมเลกุลสารประกอบแอลเคน ที่มีโครงสร้างเป็นแบบโซ่กิ่งที่มีโมเลกุลใหญ่ขึ้น

2,2,4-trimethyl- pentane

4. กระบวนการโอลิโกเมอไรเซชัน (Oligomerization process)

การเปรียบเทียบเซลล์กัลวานิกและเซลล์อิเล็กโทรไลต์

เซลล์่กัลวานิก	เซลล์อิเล็กโทรไลต์		
1. เป็นเซลล์ไฟฟ้าเคมีที่เปลี่ยนพลังงานเคมีเป็น	1. เป็นเซลล์ไฟฟ้าเคมีที่เปลี่ยนพลังงานไฟฟ้า		
พลังงานไฟฟ้า	เป็นพลังงานเคมี		
2. ขั้วแอโนดเกิดปฏิกิริยาออกซิเดชัน	2. ขั้วแอโนคเกิดปฏิกิริยาออกซิเคชัน		
3. ขั้วแคโทดเกิดปฏิกิริยารีดักชัน	3. ขั้วแคโทดเกิดปฏิกิริยารีดักชั้น		
4. ขั้วลบเป็นขั้วที่อิเล็กตรอนไหลออก	4. ขั้วลบเป็นขั้วที่ต่อกับขั้วลบจากแหล่งกำเนิด		
5. ขั้วบวกเป็นขั้วที่อิเล็กตรอนใหลเข้า	5. ขั้วบวกเป็นขั้วที่ต่อกับขั้วบวกจาก		
6. ศักย์ไฟฟ้าของเซลล์เป็นขั้วบวก	แหล่งกำเนิด		
7. ปฏิกิริยาเคมีเกิดขึ้นเอง	6. ศักย์ไฟฟ้าของเซลล์เป็นขั้วลบ		
	7. ปฏิกิริยาเคมีเกิดขึ้นเอง ต้องใช้ไฟฟ้า		

5. การชุบโลหะด้วยไฟฟ้า

- 1. นำวัตถุที่จะชุบไปต่อเข้ากับขั้วลบของแบตเตอรีหรือแคโทค ส่วนโลหะที่เป็นตัวชุบต่อเข้ากับขั้วบวกของแบตเตอรีหรือ เป็นแอโนค
- 2. สารละลายอิเล็กโทรไลต์ต้องมีไอออนของโลหะชนิดเดียวกับโลหะที่เป็นแอโนคหรือโลหะที่ใช้ชุบ
- 3. ใช้ไฟฟ้ากระแสตรงเพื่อให้ขั้วไฟฟ้าเป็นขั้วบวกและลบคงเดิม

6. การทำโลหะให้บริสุทธิ์

การทำโลหะให้บริสุทธิ์ด้วยกระบวนการอิเล็กโทรลิซิส ใช้หลักการเดียวกับกับการชุบด้วยไฟฟ้า โดยใช้โลหะที่บริสุทธิ์ เป็นแคโทด โลหะที่ไม่บริสุทธิ์เป็นแอโนด และใช้สารละลายที่มีไอออนของโลหะดังกล่าวเป็นอิเล็กโทรไลต์ เช่นการทำ ทองแดงให้บริสุทธิ์

- 1. นำทองแดงที่ไม่บริสุทธิ์มาต่อเป็นขั้วแอโนดของเซลล์ : $Cu(s) o Cu^{2+}(aq) + 2e-$
- 2. ทองแดงบริสุทธิ์เป็นขั้วแกโทด : ${\rm Cu}^{2+} + 2{\rm e} o {\rm Cu}({\rm s})$
- 3. ขั้วไฟฟ้าทั้งสองจุ่มอยู่ในสารละลายผสมของ $CuSO_4$ และ H_2SO_4 Cu^{2+} ละลายลงไปในสารละลาย ส่วนโลหะที่ เจือปนอยู่กับทองแดง เช่น Fe Zn เป็นโลหะที่เสียอิเล็กตรอนได้ง่ายกว่า Cu จึงถูกออกซิไดส์เป็น Fe^{2+} และ Zn^{2+} ปนอยู่ในสารละลาย ส่วนโลหะ Ag Au และ Pt เสียอิเล็กตรอนได้ยากกว่า Cu จะไม่ถูกออกซิไดส์ จึงตกตะกอน อยู่ที่ก้นภาชนะ