Week 12 : Big Data Term Project

College of Science and Technology, Bellevue University

DSC650-T301 Big Data (2243-1)

Sashidhar Bezawada

February 29 , 2024

Finance - Transaction Log Analysis

Objective: Streamline large volumes of transaction logs, identifying transaction volumes, peak transaction times, and other important metrics.

Dataset: Bank Transactions Dataset (Kaggle)

The dataset used for the project is presently only one of few on Kaggle with information on the rising risk of digital financial fraud, emphasizing the difficulty in obtaining such data. This synthetically generated dataset consists of payments from various customers made in different time periods and with different amounts.

Columns:

- Step: This feature represents the day from the start of simulation. It has 180 steps so simulation ran for virtually 6 months.
- Customer: This feature represents the customer id
- zipCodeOri: The zip code of origin/source.
- Merchant: The merchant's id
- zipMerchant: The merchant's zip code
- Age: Categorized age
 - **■** 0: <= 18,
 - **1**: 19-25,
 - **2**: 26-35,
 - **3**: 36-45,
 - **4**: 46:55,
 - **5**: 56:65,
 - **■** 6: > 65
 - U: Unknown
- Gender: Gender for customer
 - E: Enterprise,
 - F: Female,
 - M: Male,
 - U: Unknown
- Category: Category of the purchase. I won't write all categories here, we'll see them later in the analysis.
- Amount: Amount of the purchase
- Fraud: Target variable which shows if the transaction fraudulent(1) or benign(0)

Exploratory Data Analysis

Firstly, we shall import the dataset into Hadoop and gain insights of metadata & data.

bash-5.0# hdfs dfs -put /data/bs140513_032310.csv /

bash-5.0# hdfs dfs -head /bs140513_032310.csv step,customer,age,gender,zipcodeOri,merchant,zipMerchant,category,amount,fraud 0,'C1093826151','4','M','28007','M348934600','28007','es_transportation',4.55,0 0,'C352968107','2','M','28007','M348934600','28007','es_transportation',39.68,0 0,'C2054744914','4','F','28007','M1823072687','28007','es_transportation',26.89,0 0,'C1760612790','3','M','28007','M348934600','28007','es_transportation',17.25,0 0,'C757503768','5','M','28007','M348934600','28007','es_transportation',35.72,0 0,'C1315400589','3','F','28007','M348934600','28007','es_transportation',25.81,0 0,'C765155274','1','F','28007','M348934600','28007','es_transportation',9.1,0 0,'C202531238','4','F','28007','M348934600','28007','es_transportation',21.17,0 0,'C105845174','3','M','28007','M348934600','28007','es_transportation',32.4,0 0,'C39858251','5','F','28007','M348934600','28007','es_transportation',35.4,0 0,'C98707741','4','F','28007','M348934600','28007','es_transportation',35.4,0

Based on the descriptions, I have renamed the Columns to give more value add:

step ==> step_date
customer ==> customer_id
age ==> age_category
gender ==> customer_gender
zipcodeOri ==> origin_zipcode
merchant ==> merchant_id

zipMerchant ==> merchant_zipcode category ==> purchase_category amount ==> purchase_amount

fraud ==> fraud_ind

Data Analysis (using Hive)

- 1. Created the Hive Table bank_tran.
- 2. Loaded the hdfs file into the Hive table bank tran
- 3. Check total count, sample data, frequency on columns age, gender, category, fraud and Min,max,avg of amount.

hive>

hive> LOAD DATA INPATH '/bs140513_032310.csv' INTO TABLE bank_tran;

hive> select count(*) from bank_tran;

594643

Time taken: 13.149 seconds, Fetched: 1 row(s)

hive> set hive.cli.print.header=true;

hive> select step, customer ,age ,gender , zipcodeOrigin ,merchant ,zipMerchant , category , amount , fraud from bank_tran limit 10;

OK

step	customer	age	gender	zipcode	ori merchant	zipmerchar	nt category	amount	fraud
0	'C1093826151'	'4'	'M'	'28007'	'M348934600'	'28007'	'es transportation'	4.55	0
0	'C352968107'	'2'	'M'	'28007'	'M348934600'	'28007'	'es transportation'	39.68	0
0	'C2054744914'	'4'	'F'	'28007'	'M1823072687'	'28007'	'es transportation'	26.89	0
0	'C1760612790'	'3'	'M'	'28007'	'M348934600'	'28007'	'es transportation'	17.25	0
0	'C757503768'	151	'M'	'28007'	'M348934600'	'28007'	'es transportation'	35.72	0
0	'C1315400589'	'3'	'F'	'28007'	'M348934600'	'28007'	'es transportation'	25.81	0
0	'C765155274'	'1'	'F'	'28007'	'M348934600'	'28007'	'es transportation'	9.10	0
0	'C202531238'	'4'	'F'	'28007'	'M348934600'	'28007'	'es transportation'	21.17	0
0	'C105845174'	'3'	'M'	'28007'	'M348934600'	'28007'	'es transportation'	32.40	0
0	'C39858251'	151	'F'	'28007'	'M348934600'	'28007'	'es_transportation'	35.40	0

Time taken: 0.185 seconds, Fetched: 10 row(s)

hive> select fraud,count(*) as count,min(amount) as min_amount ,max(amount) as max_amount , avg(amount) as mean amount from bank tran group by fraud ;

fraud	count	min_amount	max_amount	mean_amount
1	7200	$0.0\overline{3}$	8329. 9 6	530.9265513888888888
0	587443	0.00	2144.86	31.84723038660772194

Time taken: 8.137 seconds, Fetched: 2 row(s)

hive> select gender,age,count(*) as count from bank_tran where fraud = 1 group by gender,age order by count(*);

gender	age	count
'E'	'U'	7
'M'	'0'	9
'F'	'0'	39
'M'	'6'	117
'F'	'6'	144
'M'	' 5'	159
'M'	'1'	193
'F'	'1'	496
'F'	' 5'	527
'M'	'4'	599
'M'	131	656
'M'	'2'	702
' F'	'4'	811
' F'	'3'	1099
'F'	'2'	1642

Time taken: 9.146 seconds, Fetched: 15 row(s)

hive> select gender,category,count(*) as count from bank_tran where fraud = 1 group by gender,category order by count(*);

category	count
'es_fashion'	116
<pre>'es_barsandrestaurants'</pre>	120
'es tech'	158
'es otherservices'	228
'es hyper'	280
'es_home'	302
'es_leisure'	474
'es hotelservices'	548
'es travel'	578
'es wellnessandbeauty'	718
'es_health'	1696
'es_sportsandtoys'	1982

Time taken: 16.187 seconds, Fetched: 12 row(s)

Based on the above Data analysis using Hive, my observations are as follows:

- 1. Dataset has 7200 fraud transactions out of total 594643 transactions. (i.e. 1.21%)
- 2. Purchases made by Females spanning in the age groups category 2,3,4 (I.e age groups between 25 thru 55) contribute (3522/7200 *100) = 49.33 % of fraud purchases.
- 3. Purchases made in the two categories es_health & es_sportsandtoys contribute to more than (3678/7200) = **51.08**% of fraud purchases.

Additional Data Preparation, Transformation and Analysis (Using pyspark)

1. Renaming the Columns and Changing datatypes

```
banktran df = banktran df.withColumn("step", banktran df.step.cast('int')) \
        .withColumn("amount", banktran_df.amount.cast('decimal(13,2)')) \
        .withColumn("fraud", banktran df.fraud.cast('int'))
   banktran df= banktran df.withColumnRenamed("step", "step day num") \
        .withColumnRenamed("customer", "customer_id") \
        .withColumnRenamed("age", "age category") \
        .withColumnRenamed("gender", "customer gender") \
        .withColumnRenamed("zipcodeOri", "origin_zipcode") \
        .withColumnRenamed("merchant", "merchant id") \
        .withColumnRenamed("zipMerchant", "merchant_zipcode") \
        .withColumnRenamed("category", "purchase_category") \
        .withColumnRenamed("amount", "purchase amount") \
        .withColumnRenamed("fraud", "fraud_ind")
>>> banktran df.printSchema()
root
|-- step day num: integer (nullable = true)
 |-- customer id: string (nullable = true)
 |-- age category: string (nullable = true)
 |-- customer gender: string (nullable = true)
 |-- origin zipcode: string (nullable = true)
 |-- merchant_id: string (nullable = true)
 |-- merchant zipcode: string (nullable = true)
 |-- purchase category: string (nullable = true)
 |-- purchase amount: decimal(13,2) (nullable = true)
 |-- fraud ind: integer (nullable = true)
2. Checking for Nulls in the dataset
>>> from pyspark.sql.functions import col, isnan, when, count
>>> bank tran columns=banktran df.columns
>>> banktran df.select([count(when(isnan(c) | col(c).isNull(), c)).alias(c) for c in
bank tran columns]).show()
```

3. Data Transformations and Further Analysis:

```
banktran_df_fraud=banktran_df.filter(banktran_df.fraud_ind == 1)
banktran_df_nonfraud=banktran_df.filter(banktran_df.fraud_ind == 0)
banktran_df.createOrReplaceTempView('banktran_df')
banktran_df_fraud.createOrReplaceTempView('banktran_df_fraud')
banktran_df_nonfraud.createOrReplaceTempView('banktran_df_nonfraud')
spark.sql('SHOW TABLES').show()
```

+		L
database	tableName	isTemporary
default	bank_tran banktran_df banktran_df_fraud banktran_df_nonfraud	true

4. Fraud Frequency:

a.Fraud Frequency for purchase_category

purchase_category	total_cnt	 fraud_percent 	++ nonfraud_percent ++
es leisure'	499	95	5
'es_travel'	728	79	21
'es_contents'	885	null	100
'es otherservices'	912	25	75
'es_hotelservices'	1744	31	69
'es_home'	1986	15	85
'es_tech'	2370	7	93
'es_sportsandtoys'	4002	50	50
<pre>'es_hyper' </pre>	6098	5	95
'es_barsandrestau	6373	2	98
'es_fashion'	6454	2	98
'es_wellnessandbe	15086	5	95
'es_health'	16133	11	89
<pre>'es_food' </pre>	26254	null	100
'es_transportation'	505119	null	100

b.Fraud Frequency customer_gender

+	+			·+
customer_ge	nder	total_cnt	fraud_percent	nonfraud_percent
1	'U'	515	null	100
	'E'	1178	1	99
	'M'	268385	1	99
1	'F'	324565	1	99
+	+		·	++

c. Fraud Frequency for age_category

```
+----+
|age category|total cnt|fraud percent|nonfraud percent|
          'U'| 1178| 1|
'O'| 2452| 2|
'6'| 26774| 1|
'1'| 58131| 1|
'5'| 62642| 1|
'4'| 109025| 1|
+----
                                                          991
                                                         991
                                      1|
           '3'| 147131|
                                      1|
           '2'| 187310|
                                      1 |
spark.sql('select total.age_category,total_cnt ,decimal(fraud_cnt/total_cnt*100 ) as
fraud_percent,decimal(nonfraud_cnt/total_cnt*100) as nonfraud_percent \
          from ( SELECT age_category,count(*) as total_cnt FROM banktran_df group by age_category) as
          left join ( SELECT age_category,count(*) as fraud_cnt FROM banktran_df_fraud group by
age_category) as fraud on total.age_category=fraud.age_category \
          left join ( SELECT age_category,count(*) as nonfraud_cnt FROM banktran_df_nonfraud group by
age_category) as nonfraud on total.age_category=nonfraud.age_category order by total_cnt').show()
```

d. Fraud Frequency for purchase_amount_category

```
|fraud_ind|purchase_amount_category|count(1)|
+----+
                   Amt_801_to_1000| 283|
null| 637|
Amt_601_to_800| 643|
Amt_401_to_600| 1196|
Amt_201_to_400| 2196|
           1 |
           1 |
1 |
1 |
1 |
                        Amt_201_to_400|
Amt_0_to_200|
           1|
                                                22451
                     Amt_801_to_1000|
           0 |
                                                  19|
24|
                       Amt_601_to_800|
Amt_401_to_600|
           01
                                                     53|
           0 |
                                                     84|
           01
                                       null|
                                                  2509|
           0 |
                          Amt 201 to 400|
                           Amt_0_to_200| 584754|
banktran_df_fraud_bucket = spark.sql(f'''
SELECT a.*
     ,(case when purchase_amount between 0 and 200 Then 'Amt_0_to_200'
             when purchase amount between 201 and 400 Then 'Amt 201 to 400'
             when purchase amount between 401 and 600 Then 'Amt 401 to 600'
             when purchase_amount between 601 and 800 Then 'Amt_601_to_800'
             when purchase amount between 801 and 1000 Then 'Amt_801_to_1000'
        END ) as purchase amount category
      , (case when step_day_num between 0 and 29 Then 'day_Bucket_30' when step_day_num between 30 and 59 Then 'day_Bucket_60'
             when step_day_num between 60 and 89 Then 'day_Bucket_90'
             when step_day_num between 90 and 119 Then 'day_Bucket_120'
             when step day num between 120 and 149 Then 'day Bucket 150'
             when step_day_num between 150 and 179 Then 'day_Bucket_180'
        END ) as day_Bucket_category
FROM banktran_df a
```

```
banktran\_df\_fraud\_bucket.createOrReplaceTempView('banktran\_df\_fraud\_bucket')
spark.sql('select total.purchase_amount_category,total_cnt ,decimal(fraud_cnt/total_cnt*100 ) as
fraud_percent,decimal(nonfraud_cnt/total_cnt*100) as nonfraud_percent \)
            from ( SELECT purchase_amount_category,count(*) as total_cnt FROM banktran_df_fraud_bucket
group by purchase amount category) as total \
            left join ( SELECT purchase_amount_category,count(*) as fraud_cnt FROM banktran_df_fraud_bucket
where fraud_ind = 1 group by purchase_amount_category) as fraud
total.purchase_amount_category=fraud.purchase_amount_category \
            left join ( SELECT purchase_amount_category,count(*) as nonfraud_cnt FROM
banktran df fraud bucket where fraud ind = 0 group by purchase amount category) as nonfraud on
total.purchase_amount_category=nonfraud.purchase_amount_category order by total_cnt').show()
|purchase_amount_category|total_cnt|fraud_percent|nonfraud_percent|
                       _____
          Amt_801_to_1000| 302| 94|
Amt_601_to_800| 667| 96|
null| 721| null| nul
Amt_401_to_600| 1249| 96|
Amt_201_to_400| 4705| 47| 5
Amt_0_to_200| 586999| 0| 10
                                                                     4 |
                                                                 null|
                                                                 4 |
                                                                    531
                                                                   1001
```

e. Fraud Frequency for day_Bucket_category

+	+		·
fraud_	_ind day	_Bucket_category	count(1)
 	1 1 1 1 1 1 1 1 1 1	day_Bucket_90 day_Bucket_150 day_Bucket_180 day_Bucket_120 day_Bucket_30 day_Bucket_30 day_Bucket_60 day_Bucket_60 day_Bucket_120 day_Bucket_100 day_Bucket_100 day_Bucket_120 day_Bucket_150	1200 1200 1200 1200 1200 1200 1200 1200 79279 90119 97490 103226 107223
+	0 +	day_Bucket_180 	110106 ++

Based on the above Data analysis using pyspark, my observations are as follows:

- 1. Dataset does not have any Null values.
- 2. Fraud Frequency for purchase_category 'es_leisure', 'es_travel' are top 2 category
- 3. Fraud Frequency for customer_gender Female gender has the highest category
- 4. Fraud Frequency for age_category Age group less than 18 has the highest fraud category.
- 5. Fraud Frequency for purchase_amount_category 'Amt_401_to_600' & 'Amt_601_to_800' both have 96 % of fraud transactions categories
- 6. Fraud Frequency for day_Bucket_category 'day_Bucket_30' has the highest fraud transactions category.

spark.sql('select fraud_ind,customer_gender,purchase_category,count(*) as total_cnt from banktran_df where fraud_ind = 1 group by fraud_ind,customer_gender,purchase_category order by count(*) desc ').show(50)

+	<u> </u>		++
fraud_ind	customer_gender	purchase_category	total_cnt
+	+		++
1	'F'	'es sportsandtoys'	1305
1	'F'	es health'	1111
1	'M'	es sportsandtoys'	677
1	'M'	es health'	584
1	'F'	'es wellnessandbe	503
1	'F'	es travel'	378
1	'F'	'es hotelservices'	360
1	'F'	es leisure'	309
1	'M'	'es wellnessandbe	213
1	'M'	es_travel'	200
+	+		++

Conclusion:

Top fraud categories are see from below:

- a. Purchase_category → 'es_sportsandtoys' & 'es_health'
- b. Customer_gender → It is shared between F & M
- c. Age_category → less than 18 year contribute to more frauds than other age groups.
- d. purchase_amount_category → Purchase amount made less than 400 contribute to nearly 62 % of the fraud transactions.