MATEMATICKÉ KYVADLO

ONDREJ KUREŠ, MAREK MIKLOŠ, LADISLAV TRNKA

ABSTRACT. V tejto správe sa budeme zaoberať pohybom matematického kyvadla popísaným ako aj lineárnymi, tak aj nelineárnymi diferenciálnymi rovnicami. Pomocou eliptického integrálu a perturbačnej metódy získame aproximácie preiódy kmitov a porovnáme ich s numerickým riešením v programe Mathematica.

Contents

1. Úvod

Matematické kyvadlo je nejjednodušším typem kyvadla. Máme hmotný bod o hmotnosti m zavěšený na provázku délky l zanedbatelné hmotnosti. Tření a odpor vzduchu nezapočítáváme. Tíhové pole považujeme za homogenní s tíhovým zrychlením q.

Pohybová rovnice. Teď se podíváme na pohybovou rovnici. Hmotný bod se pohybuje po kružnici o poloměru l a jeho pohyb popisujeme aktuálním úhlem $\varphi(t)$, který měří výchylku z dolní rovnovážné polohy. Pro zrychlení platí $a = l\varepsilon = l\dot{\omega} = l\ddot{\varphi}$ a pro vratnou sílu platí $F = -mg\sin\varphi$. Teď použijeme 2. Newtonův zákon: F = ma.

$$ma = ml\ddot{\varphi} = F = -mg\sin\varphi$$

Můžeme pokrátit m z naší rovnice a vydělíme celou rovnici l. Pak vše převedeme na jednu stranu. Dostáváme pohybovou rovnici matematického kyvadla.

$$\left[\ddot{\varphi} + \frac{g}{l}\sin\varphi = 0\right] \tag{1.1}$$

Vidíme, že naše rovnice je nelineární diferenciální rovnice druhého řádu. Pokud budeme brát v úvahu jen malé výchylky z rovnovážné polohy, můžeme rovnici linearizovat.

$$\ddot{\varphi} + \frac{g}{I}\varphi = 0 \tag{1.2}$$

Využili jsme Taylorova rozvoje $\sin \varphi$:

$$\sin \varphi = \varphi - \frac{\varphi^3}{6} + \frac{\varphi^5}{120} + O(\varphi^6).$$

Kde jsme vzali jen první člen, neboť nás zajímají jen malé výchylky.

2. Perioda oscilací

2.1. Eliptický integrál. Eliptický integrál nám poskytuje exaktní řešení nelinearizované rovnice (??). Když rovnici (??) vynásobíme $\frac{d\varphi}{dt}$, tak získáme:

$$\frac{d\varphi}{dt}\left(\ddot{\varphi} + \frac{g}{l}\sin\varphi\right) = \frac{d}{dt}\left(\frac{1}{2}\dot{\varphi}^2 - \frac{g}{l}\cos\varphi\right) = 0.$$

Po integraci dostáváme první integrál pohybu pohybové rovnice (??).

$$\frac{1}{2}\dot{\varphi}^2 - \frac{g}{l}\cos\varphi = C \tag{2.1}$$

Protože chceme, aby kyvadlo mělo na počátku nulovou rychlost ($\dot{\varphi} = 0$, pro $\varphi = \varphi_0$, kde φ_0 je počáteční úhel), můžeme dopočítat konstantu C, což nám dává $C = -\frac{g}{l}\cos\varphi_0$. Dosadíme konstantu C a upravíme.

$$\dot{\varphi} = \frac{d\varphi}{dt} = \sqrt{\frac{2g}{l}} \sqrt{\cos\varphi - \cos\varphi_0} \tag{2.2}$$

Využijeme větu o derivaci inverzní funkce na (??) a vynásobíme ji $d\varphi$.

$$dt = \frac{d\varphi}{\sqrt{\frac{2g}{l}\sqrt{\cos\varphi - \cos\varphi_0}}} \tag{2.3}$$

Budeme integrovat od $\varphi = 0$ do $\varphi = \varphi_0$. Tento interval odpovídá čtvrtině periody.

$$\frac{T}{4} = \int_0^{\varphi_0} \frac{d\varphi}{\sqrt{\frac{2g}{l}}\sqrt{\cos\varphi - \cos\varphi_0}}$$
 (2.4)

Pomocí substituce $\cos \varphi = 1 - 2\sin^2 \theta$ ($\theta = \frac{\varphi}{2}$) a dalších úprav, se nám podaří získat eliptický integrál, díky němuž jsme schopni vypočítat periodu T matematického kyvadla.

$$T = 4\sqrt{\frac{l}{g}} \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1 - k^2 \sin^2 \theta}},$$
 (2.5)

kde $k=\sin\frac{\varphi_0}{2}$. Uděláme Taylorův rozvoj $\frac{1}{\sqrt{1-k^2\sin^2\theta}}$, čímž si usnadňujeme práci s integrálem, ale musíme počítat s tím, že budeme získávat jeho aproximovanou hodnotu.

$$\frac{1}{\sqrt{1 - k^2 \sin^2 \theta}} \approx 1 + \frac{1}{8} \varphi_0^2 \sin^2 \theta + \frac{1}{384} \varphi_0^4 \left(9 \sin^4 \theta - 4 \sin^2 \theta\right) \tag{2.6}$$

Teď už jen $(\ref{eq:continuous})$ vložíme do $(\ref{eq:continuous})$ a dostaneme:

$$T = 4\sqrt{\frac{l}{g}} \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1 - k^2 \sin^2 \theta}} \approx 2\pi \sqrt{\frac{l}{g}} \left(1 + \frac{1}{16} \varphi_0^2 + \frac{11}{3072} \varphi_0^4 \right). \tag{2.7}$$