Hierarchy

$$O(1) \leqslant O(\log(n)) \leqslant O(n^c)$$
$$\leqslant O(n) \leqslant O(n^2)$$
$$\leqslant O(n^c) \leqslant O(c^n)$$

Big-O

We say that f(n) grows asymptotically no faster than g(n) if there is a constant $c_1 > 0$ such that $f(n) \leq c_1 \cdot g(n)$ and holds for all n at least a constant c_2 . This is denoted by f(n) = O(g(n)). $\lim_{n \to \infty} \frac{f(n)}{g(n)} = c$ for some constant c

2.1 Example

 $1000\log_2 n = O(n),$ $n \neq O(10000 \log_2 n)$ $\log_{b_1} n = O(\log_{b_2} n)$ for any constants $b_1 > 1$ and $b_2 > 1$. Therefore $f(n) = 2 + 6 \log_2 n$ can be represented; $f(n) = O(\log n)$

3 Big- Ω

If g(n) = O(f(n)), then $f(n) = \Omega(g(n))$ to indicate that f(n) grows asymptotically no slower than g(n). We say that f(n) grows asymptotically no slower than g(n) if $c_1 > 0$ such $f(n) \ge c_1 \cdot g(n)$ for $n > c_2$; denoted by $f(n) = \Omega(g(n))$

4 Big- Θ

If f(n) = O(g(n)) and $f(n) = \Omega(g(n))$, then $f(n) = \Theta(g(n))$ to indicate that f(n) grows asymptotically as fast as g(n)

When using 'Direction 1: Constant Finding' setting c_1 , always set it to match the coefficent on the LHS so that you can cancel. When trying to get a contradiction, try and isolate an $x \cdot c_1$ on the RHS, where $x \in \mathbb{Z}$, such that an expression that contains n is $\leq x \cdot c_1$

Make judicious use of the max function when adding functions together If $f_1(n) + f_2(n) \leqslant c_1 \cdot g_1(n) + c'_1 \cdot g_2(n) \leqslant$

 $max\{c_1, c_1'\} \cdot (g_1(n) + g_2(n)), \text{ for all }$ $n \geqslant \max\{c_2, c_2'\}.$

The Master Theorem

Theorem 1

$$n + \frac{n}{c} + \frac{n}{c^2} + \ldots + \frac{n}{c^h} = O(n)$$

5.2 Theorem 2

Let f(n) be a function that returns a positive value for every integer n > 0. We know:

$$f(1) \leq c_1$$

 $f(n) \leq \alpha \cdot f(\lceil n/\beta \rceil) + c_2 \cdot n^{\gamma} \text{ for } n \geq 2$

where $\alpha, \beta, \gamma, c_1$ and c_2 are positive constants. Then:

- If $log_b \alpha < \gamma$ then $f(n) = O(n^{\gamma})$
- If $log_b \alpha = \gamma$ then $f(n) = O(n^{\gamma} \cdot log(n))$
- If $loq_b \alpha > \gamma$ then $f(n) = O(n^{log_\beta(a)})$