MATH 127 Calculus for the Sciences

Lecture 1

September 3, 2025

1/12

Information

Instructor | Jiahui (Kent) Huang; Email:j346huan@uwaterloo.ca

Learn | Use the website called Learn to access course material, including

- Course outline; course schedule; course notes
- Exercises, practice exams.

Odyssey Use the website called Odyssey to find quiz/midterm/exam seating.

Piazza Use the forum called Piazza to ask questions, answer other people's questions, and discuss.

Quiz 1 is on Sept 10. The first quiz includes questions about high school algebra and calculus which we will not review in lecture.

Today's lecture

Course note coverage Section 1.1.1 - 1.1.2

Definition of derivative Differentiability

Computation of derivative

Common derivatives

Rules of differentiation

Motivation

Question Assume an object has height t^2 at time t. What is the speed of the object at the moment t = 0?

Derivative

Definition Let y = f(x) be a function. The **derivative of** y is the function

Given a specific number a, the derivative of y at x = a is the value

Remark

The domain of the derivative is where the limit on the right-hand side exists.

If the limit exists everywhere, then we say the function is differentiable.

The derivative of a function at a point is a number.

If the limit exists at a specific point x = a exists, then we say the function is differentiable at a.

Notations for derivatives

Since the derivative of a function is a function, we can take the derivative of a derivative. Doing this n times, we get the n-th derivative of y = f(x).

Notation

The n-th derivative of f(x) is

The n-th derivative at a is

Example The derivative of x^2 is the function denoted $(x^2)' = 2x$.

Notation

The *n*-th derivative of y = f(x) is

The n-th derivative at a is

Example The second derivative of $y = x^2$ is the function $\frac{d^2y}{dx^2} = 2$.

Derivatives might not exist

Question Assume an object has height |t| at time t. What is the speed of the object at the moment t = 0?

Examples of non-differentiable functions

The following are some (not all) of the cases where a function is not differentiable.

Example If f has a sharp corner at
$$x = a$$
, e.g. $f(x) = |x|$.

Example If f has a vertical tangent at
$$x = a$$
, e.g. $f(x) = x^{1/3}$.

Example If f is not continuous at
$$x = a$$
, e.g. $f(x) = \begin{cases} 1, & \text{if } x \leq 1, \\ 0.5, & \text{if } x > 1. \end{cases}$

Common derivatives

You should know the derivatives of the following functions from high school.

- 1. If f(x) = c for c a constant, then f'(x) = 0.
- 2. If $f(x) = x^n$ for an integer $n \neq 0$, then $f'(x) = nx^{n-1}$.
- 3. If $f(x) = e^x$, then $f'(x) = e^x$.
- 4. If $f(x) = \sin(x)$, then $f'(x) = \cos(x)$.
- 5. If $f(x) = \cos(x)$, then $f'(x) = -\sin(x)$.

Derivatives rules

You should know the following rules from high school. Suppose c is a number, and f,g,h are functions.

1. If
$$h(x) = cf(x)$$
, then $h'(x) = cf'(x)$. (Constant rule)

2. If
$$h(x) = f(x) + g(x)$$
, then $h'(x) = f'(x) + g'(x)$. (Sum rule)

3. If
$$h(x) = f(x) \cdot g(x)$$
, then $h'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$. (Product rule)

4. If
$$h(x) = f \circ g(x) = f(g(x))$$
, then $h'(x) = f'(g(x))g'(x)$. (Chain rule)

The quotient rule

Question (Quotient rule)

If
$$h(x) = \frac{f(x)}{g(x)}$$
, how to compute $h'(x)$ in terms of f and g ?

Example

Question Assume the mass M (in kg) of an object of radius r (in cm) is

$$M(r) = \frac{e^r + 3r}{r^3}$$

Find the rate of change of the mass with respect to the radius.