Калибриране на МЕМЅ Акселерометри

Курсов проект на:

Никола Тотев

ПО

Приложение на Математиката за Моделиране на Реални Процеси

Съдържание

Резюме	3
Въведение	
Акселерометри. MEMS акселерометри. Видове акселерометри	
Видове грешки	5
Постоянно отклонение	5
Отклонения в мерните единици	6
Грешки, които идват от неортогоналността на осите	6
Калибриране на MEMS акселерометри	6
Постановка на математическата задача	6
Постановка на задачата	7
Математически модел	8
Използвани методи за минимизиране на <mark>(3)</mark>	10
Метод на Нютон	77
Числени резултати	12
Заключение	14
Литература	15

Резюме

В рамките на този проект се разглежда задачата за калибриране на MEMS акселерометри. За целта е използвана линейна връзка между калибрираните данни и некалибрираните данни, в която има 12 неизвестни параметъра. За да бъдат намерени тези параметри, е построена функция на грешките, която се минимизира, като се реши една система от 12 нелинейни уравнения.

В секция 1, читателят може да се запознае с различните видове акселерометри, по-подробно се разглежда начина на работа на MEMS акселерометрите, както и грешките, които се наблюдават при такъв вид сензори.

В секция 2 е представен алгоритъм за калибриране на MEMS акселерометри. В секцията е предоставено сравнение между резултатите, получени с вградените функции в СКА Mathematica и тези получени с имплементирания от нас алгоритъм.

1. Въведение

• Акселерометри. MEMS акселерометри. Видове акселерометри.

Акселерометрите са сензори, който измерват ускорение. Основните видове са следните:

- о Пиезоелектричени (piezoelectric)
- о Пиезорезистивени (piezoresistive)
- Капацитивни акселерометри (capacitive accelerometers)
- о MEMS Акселерометри (MEMS Accelerometers)

Сега ще разгледаме по-подробно MEMS акселерометрите.

МЕМЅ е съкращение за *Microelectromechanical systems* и такъв вид акселерометри се изработва от силиций (фигура 1 показва начина на работа). Едно от предимствата на MEMЅ акселерометрите са, че имат малки размери и лесно могат да бъдат използвани в проекти, където има ограничено място. Поради това акселерометрите намират много приложения в индустрията, както и в хоби роботиката и електрониката. Тук ще посоча 3 основни приложения:

- Използват се за диагностика на машини, като се следи за появата на вибрации.
- Служат за да се измерва ускорението на роботи, например мобилни роботи.
- Намират приложение в дронове и самолети.

Фигура 1 Показва и начина на работа на MEMS акселерометър. При ускорение, сините части се движат и се отдалечават/приближават до фиксираните електроди.

• Видове грешки

Като всяко измервателно устройство и при акселерометрите има различни видове грешки, които се наблюдават. Основните видове, които се получават при производството, са:

Постоянно отклонение

Това е постоянно отклонение, което възниква при производство. В такъв случай в положение на покой сензора може да показва ускорение, различно от земното ускорение.

• Отклонения в мерните единици Тази грешка означава, че данните, които идват от сензора са в неизвестна за нас мерна единица, вместо m/s например.

Грешки, които идват от неортогоналността на осите

При производството на триосеви акселерометри, бихме искали осите да са ортогонални, но тъй като технологията за производство не е съвършена, между осите се наблюдават ъгли между 86°и 94°. Тези отклонения водят го нежелани грешки.

Освен тези грешки възникват други грешки. Например грешки, които се появяват заради условията, при които работи акселерометърът или електромагнитен шум.

2. Калибриране на MEMS акселерометри

Постановка на математическата задача

Като входни данни използвам dataset от [1]. Първоначалният план беше да се използват данни от собствен сензор, но това не се реализира, защото при по-задълбочено проучване на сензорите, които са достъпни, се калибрират от производителя.

В таблици 1 е показан пример за некалибрирани данни, а в таблица 2 са пресметнати нормите на тези данни.

Uncalibrated		
X	Υ	Z
0.686143985	9.693013241	0.146230973
0.307313184	-9.555131822	0.121707371
10.20588166	0.146627372	0.293913142
-9.235730337	0.149835656	-0.153514714

Таблица 1 Не калибрирани данни по осите X, Y и Z

Norms Before Calibration
9.71837
9.56085
10.2112
9.23822
9.72837

Таблица 2 Нормите на векторите, зададени вданните в таблица 1.

• Постановка на задачата

Когато сензорът се намира в покой и е успореден на земната повърхност, трябва да показва (X, Y, Z)=(0, 0, 9.8) или нормата на вектора да бъде 9.8. От таблиците 1 и 2 се вижда, че при сурови данни – данни директно от сензора, това условие не е изпълнено. Целта на този проект е да използва математически модел, който обработва данните по такъв начин, че да се стигне до норма на калибрираните вектори 9.8 или да се калибрират данните.

• Математически модел

Както беше обяснено в предишната точка, ако един акселерометър е калибриран, то нормата на вектора трябва да е приблизително 9.8 или

$$|v| - 9.8 \approx 0.$$

Важно е да съобразим, че в реалния живот, при наличието на много данни е невъзможно да се получи резултат точно равен на нула. Поради тази причина се стремим да е възможно най-близко до нула.

За да се калибрират данните използваме линейна връзка между калибрираните и суровите данни:

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \underbrace{\begin{pmatrix} M_{xx} & M_{xy} & M_{xz} \\ M_{yx} & M_{yy} & M_{yz} \\ M_{zx} & M_{zy} & M_{zz} \end{pmatrix}}_{M} \cdot \begin{pmatrix} \hat{X} \\ \hat{Y} \\ \hat{Z} \end{pmatrix} + \begin{pmatrix} B_{x} \\ B_{y} \\ B_{z} \end{pmatrix} \tag{1}$$

където

- векторът $\begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$ е векторът от калибрираните данни.
- Матрицата М тази матрица се грижи за ортогоналността на осите X, Y, Z, както и за мащаба. Коефициентите по диагонала отговарят за грешките от мерните единици, а останалите – за грешките от неортогоналността на осите.

- векторът $egin{pmatrix} \hat{X} \\ \hat{Y} \\ \hat{Z} \end{pmatrix}$ представлява суровите данни от сензора.
- векторът В се грижи за коригирането на постоянното отместване.

След извършване на действията отдясно стигаме до следните уравнения:

$$X = M_{xx}x + M_{xy}x + M_{xz}x + B_{x}$$

$$Y = M_{yx}y + M_{yy}y + M_{yz}y + B_{y}$$
(2)
$$Z = M_{zx}z + M_{zy}z + M_{xz}z + B_{z}$$

За да калибрираме един акселерометър е необходимо да намерим матрицата М и вектора b, което означава, че имаме 12 неизвестни параметъра. За да ги намерим че минимизираме функцията:

$$Err(M,B) = \sum_{i=1}^{n} (M_{xx}x_i + M_{xy}y_i + M_{xz}z_i + B_x)^2 + (M_{yx}x_i + M_{yy}y_i + M_{yz}z_i + B_y)^2 + (M_{zx}x_i + M_{zy}y_i + M_{xz}z_i + B_z)^2 - g^2$$
(3)

Така задачата добива вида min Err(M,B).

Използвани методи за минимизиране на (3)

За да може да намерим минимума на (3) трябва да намерим частните производни спрямо 12-те неизвестни параметри. След като сме получили всичките производни ги приравняваме на нула, което означава, че трябва да решим нелинейна система с 12 уравнения и 12 неизвестни. За решаването на тази система използваме метода на Нютон.

Фигура 3 Графично представяне на метода на Нютон [2]

• Метод на Нютон

Фигура 4 Графично представяне на метода на Нютон [3]

Формулите за метода на Нютон за едно уравнение f(x) = 0 са следните:

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$
 $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$. (4)

За да мога да го използвам, направихме наша имплементация на този метод в CKA Wolfram Mathematica.

Този метод се използва за решаване на уравнения, както може да се приложи и за решаване на система от нелинейни уравнения. Например можем да решим системата

$$\begin{aligned}
|f_1(x,y) &= 0 \\
f_2(x,y) &= 0
\end{aligned}$$

като използваме формулата

$${x_1 \choose y_1} = {x_0 \choose y_0} - [J(x, y)]^{-1} {f_1(x_0, y_0) \choose f_2(x_0, y_0)} (5)$$

, където J е матрицата на Якоби, т.е. J=(.....). Аналогично се правят сметките за решаване на система с 12 уравнения.

Числени резултати

Norms After Calibration (LSM)
9.79577
9.7911
9.80487
9.79417
9.7825

Таблица 3 Показва нормата от калибрираните данни, получени при използване на вградените функции.

Norms After Calibration (NM)
9.79577
9.7911
9.80487
9.79417
9.7825

Таблица 4 Показва нормата от калибрираните данни, получени при използване на имплементирания от нас метод на Нютон

Таблици 3 и 4 показват нормите след калибрацията на векторите. Както се вижда имплементацията на Метода на Нютон (*MH*), която съм направил, извежда еднакви резултати

като Метода на Най-Малките Квадрати (*МНМК*), който използва вградени функции за минимизация.

M Matrix Values (LSM)		
1.00432	-0.0247	-0.0738
0.01773	1.01322	-0.0892
0.07967	0.08645	0.99275

Таблица 3 Показва матрицата М при използване на вградените функции.

M Matrix Values (NM)		
0.22671	0.07337	0.97174
0.60662	0.7872	-0.1967
-0.772	0.64003	0.12634

Таблица 4 Показва матрицата М при използване на имплементирания от нас метод на Нютон

Таблиците 5 и 6 показват стойностите на матрицата М. Както описах по-горе това са коефициентите, при които грешката (3) е минимална. Тази разлика се дължи на това, че не се взима предвид ориентацията на сензора в пространството.

B Matrix Values (LSM)
-0.488037
-0.0814727
0.0155627

Таблица 7- Показва стойностите на вектора В получени при използване на вградените функции.

B Matrix Values (NM)
-0.0558736
-0.35741
0.337929

Таблица 8 – Показва стойностите на вектора В получени при използване на имплементирания от нас метод на Нютон

Таблиците 7 и 8 показват стойностите на вектора В, като отново както при матрицата М и тук има разминаване между стойностите получени с МНМК и МН.

Calibrated (LSM)		
X	Y	Z
-0.0487887	9.73885	1.05333
0.0473013	-9.76837	-0.665145
9.73665	0.22181	1.13312
-9.75604	-0.0796934	-0.859694

Таблица 9 Показва калибрираните вектори при използване на вградените функции.

Calibrated (NM)		
X	Y	Z
0.952926	7.66039	6.03053
-0.568964	-7.71673	-5.9995
2.55426	5.89126	-7.40974
-2.28789	-5.81181	7.54415

Таблица 10 Показва калибрираните вектори получени при използване на имплементирания от нас метод на Нютон

Таблиците 9 и 10 показват данните след калибрация, съответно с МНКМ и МН. Отново се виждат разлики между двата метода.

Заключение

В рамките на този проект се разглежда задачата за калибриране на MEMS акселерометри. За целта е използвана линейна връзка между калибрираните данни и некалибрираните данни. В последната фигурират 2 неизвестни параметъра, който са намерени, като е решена една нелинейна система от 12 уравнения чрез метода на Нютон.

От получените резултати се вижда ясно, че успешно е решена задачата за калибриране на MEMS акселерометъри, тъй като резултатите от вградените функции и имплементираната в рамките на този проект функция са сходни.

Литература:

[1] MM Solutions AD, Laboratory calibration of a MEMS accelerometer sensor, 95th- Euroean Study Group with Industry (ESGI'95), ctp. 21

[2]

https://upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Linear_regression.svg/1200px-Linear_regression.svg.png

[3] https://openstax.org/books/calculus-volume-1/pages/4-9-newtonsmethod