CS1231(S) Tutorial 3: Sets

National University of Singapore

2020/21 Semester 1

When asked to 'find' a set in the following, the answer should involve a list of all of the elements in the set.

Questions for discussion on the LumiNUS Forum

Answers to these questions will not be provided.

- 1. Let $R = \{x : x \notin x\}$.
- 2. Case 1: suppose $R \in R$.
 - 2.1. Then $\sim (R \notin R)$ by the Double Negative Law.
 - 2.2. So $R \notin R$ by the definition of R on line 1.
 - 2.3. Line 2 and line 2.2 form a contradiction.
- 3. Case 2: suppose $R \notin R$.
 - 3.1. So $R \in R$ by the definition of R on line 1.
 - 3.2. Line 3 and line 3.1 form a contradiction.
- 4. Thus we have a contradiction in any case.

- D1. Let $A = \{a, \varnothing\}$, where a is a letter. Which of the following are true? Which of them are false?
 - (a) $a \in A$.

(e) $\varnothing \subseteq A$.

(b) $\{a\} \in A$.

(f) $\varnothing \in A$.

(c) $a \subseteq A$.

(g) $\{\emptyset\} \subseteq A$.

(d) $\{a\} \subseteq A$.

- (h) $\{\emptyset\} \in A$.
- D2. Find two finite sets A, B such that $A \in B$ and $A \subseteq B$.
- D3. Find the power set of each of the following sets:
 - (a) $\{x, y, z, w\}$;
- (c) Ø;

(e) $\{\{a\}, \emptyset\}.$

- (b) $\{a, \{a, b\}\};$
- $(d) \{\emptyset\};$

Tutorial questions

- 1. Which of the following are true? Which of them are false?
 - (a) $\emptyset \in \emptyset$.

(e) $\{\emptyset, 1\} = \{1\}.$

(b) $\varnothing \subseteq \varnothing$.

(f) $1 \in \{\{1,2\},\{2,3\},4\}.$

(c) $\emptyset \in \{\emptyset\}$.

(g) $\{1,2\} \subseteq \{3,2,1\}$.

(d) $\varnothing \subseteq \{\varnothing\}$.

(h) $\{3,3,2\} \subseteq \{3,2,1\}$.

- 2. Let $A = \{1, \{1, 2\}, 2, \{1, 2\}\}$. Find |A|.
- 3. Let $A = \{0, 1, 4, 5, 6, 9\}$ and $B = \{0, 2, 4, 6, 8\}$. Find $|A|, |B|, |A \cap B|$, and $|A \cup B|$.
- 4. Let $A = \{2n+1 : n \in \mathbb{Z}\}$ and $B = \{2n-1 : n \in \mathbb{Z}\}$. Is A = B? Prove that your answer is correct.
- 5. Let $A = \{x \in \mathbb{Z} : 2 \leqslant x \leqslant 5\}$ and $B = \{x \in \mathbb{Q} : 2 \leqslant x \leqslant 5\}$. Is A = B? Prove that your answer is correct.
- 6. Let $U = \{5, 6, 7, \dots, 12\}$ and $M_k = \{n \in \mathbb{Z} : n = km \text{ for some } m \in \mathbb{Z}\}$ for each $k \in \mathbb{Z}$. Find:
 - (a) $\{n \in U : n \text{ is even}\};$
 - (b) $\{n \in U : n = m^2 \text{ for some } m \in \mathbb{Z}\};$
 - (c) $\{-5, -4, -3, \dots, 5\} \setminus \{1, 2, 3, \dots, 10\};$
 - (d) $\overline{\{5,7,9\} \cup \{9,11\}}$, where U is considered the universal set;
 - (e) $\{(x,y) \in \{1,3,5\} \times \{2,4\} : x+y \ge 6\};$
 - (f) $\mathcal{P}(\{2,4\})$.
- 7. Show that for all sets A, B, C,

$$A \cap (B \setminus C) = (A \cap B) \setminus C$$
.

8. (2009/10 Semester 2 exam question B) Prove that for all sets A and B,

$$(A \cup \overline{B}) \cap (\overline{A} \cup B) = (A \cap B) \cup (\overline{A} \cap \overline{B}).$$

- 9. Let A, B be sets. Show that $A \subseteq B$ if and only if $A \cup B = B$.
- 10. For sets A and B, define $A \oplus B = (A \setminus B) \cup (B \setminus A)$.
 - (a) Let $A = \{1, 4, 9, 16\}$ and $B = \{2, 4, 6, 8, 10, 12, 14, 16\}$. Find $A \oplus B$.
 - (b) Show that for all sets A, B,

$$A \oplus B = (A \cup B) \setminus (A \cap B).$$

11. (2015/16 Semester 1 exam question 16(a)) Denote by |x| the absolute value of the integer x, i.e.,

$$|x| = \begin{cases} x, & \text{if } x \geqslant 0; \\ -x, & \text{if } x < 0. \end{cases}$$

Given the set $S = \{-9, -6, -1, 3, 5, 8\}$, for each of the following statements, state whether it is true or false, with explanation.

- (a) $\exists z \in S \ \forall x, y \in S \ z > |x y|$.
- (b) $\exists z \in S \ \forall x, y \in S \ z < |x y|$.
- 12. For sets $A_m, A_{m+1}, \ldots, A_n$, define

$$\bigcup_{i=m}^{n} A_i = A_m \cup A_{m+1} \cup \dots \cup A_n \quad \text{and} \quad \bigcap_{i=m}^{n} A_i = A_m \cap A_{m+1} \cap \dots \cap A_n.$$

- (a) Let $A_i = \{x \in \mathbb{Z} : x \geqslant i\}$ for each $i \in \mathbb{Z}$. Write down $\bigcup_{i=2}^5 A_i$ and $\bigcap_{i=2}^5 A_i$ in roster notation.
- (b) Let $B_1, B_2, \ldots, B_k, C_1, C_2, \ldots, C_\ell$ be sets such that

$$\bigcup_{i=1}^k B_i \subseteq \bigcap_{j=1}^\ell C_j.$$

Show that $B_i \subseteq C_j$ for all $i \in \{1, 2, ..., k\}$ and all $j \in \{1, 2, ..., \ell\}$.