

#### A LITTLE TREAT

In the last ACM-ICPC Regional Contest in Thailand, University of Science and Technology - The University of Danang did so well, getting their record place in a regional contest. Coach Tuan was so proud of his students and decided to give them a little treat: he let his *N* students choose their most favourite candy and then he paid for them. There were *M* types of candy.

However, candies were sold in boxes, each had exactly K candies of the same kind. Coach Tuan thought that it would be a great selection if for every kind of candy, the number of students choosing it was a multiple of K. Your task is to count the number of ways his students could choose candies to form a great selection. Two selections are considered different if there exists some student who selects differently.

### Input

The input consists of 3 space-separated integers N, M, K ( $1 \le N \le 10^9$ ,  $1 \le M \le 1000$ ,  $1 \le K \le 4$ ).

# **Output**

You should print the number of great selections modulo  $10^9+7$ .

### **Examples**

| Standard Input | Standard Output |
|----------------|-----------------|
| 623            | 22              |
| 4 3 2          | 21              |
| 5 4 1          | 1024            |

## **Explanation**

With N=6, M=2, K=3 there are 22 great selections:

- (1,1,1,1,1,1)
- (2,2,2,2,2,2)
- (1,1,1,2,2,2)
- (1,1,2,1,2,2)
- (1,1,2,2,1,2)
- (1,1,2,2,2,1)
- (1,2,1,1,2,2)

#### 2018 ACM-ICPC Vietnam Central Provincial Programming Contest Hosted by University of Science and Technology - The University of Danang



- (1,2,1,2,1,2)
- (1,2,1,2,2,1)
- (1,2,2,1,1,2)
- (1,2,2,1,2,1)
- (1,2,2,2,1,1)
- (2,1,1,1,2,2)
- (2,1,1,2,1,2)
- (2,1,1,2,2,1)
- (2,1,2,1,1,2)
- (2,1,2,1,2,1)
- (2,1,2,2,1,1)
- (2,2,1,1,1,2)
- (2,2,1,1,2,1)
- (2,2,1,2,1,1)
- (2,2,2,1,1,1)