Value-at-Risk, Expected Shortfall and Density Forecasting

http://www.kevinsheppard.com

Oxford MFE

This version: February 4, 2020

ECONOMICS

UNIVERSITY O

Risk Measurement Overview

- What is risk?
- What is Value-at-Risk?
- How can VaR be measured and modeled?
- How can VaR models be tested?
- What is Expected Shortfall?
- How can densities be forecasted?
- How can density models be evaluated?
- What is a coherent risk measure?

Risk

- What is risk?
- Market Risk
 - ► Liquidity Risk
 - ► Credit Risk
 - ► Counterparty Risk
 - ► Model Risk
 - ► Estimation Risk
- Today's focus: Market Risk
- Tools
 - ► Value-at-Risk
 - ► Expected Shortfall
 - ▶ Density Estimation

- Value-at-Risk is a standard tool of risk management
 - ► Basel Accord

Definition (Value-at-Risk)

The α Value-at-Risk (VaR) of a portfolio is defined as the largest number such that the probability that the loss in portfolio value over some period of time is greater than the VaR is α ,

$$Pr(R < -VaR) = \alpha$$

where $R=W_1-W_0$ is the total return on the portfolio, W_t , $t=0,\ 1$, is the value of the assets in the portfolio and 1 and 0 measure an arbitrary time span (e.g. one day or two weeks).

- Units are \$, £, ¥
- Almost always positive
- It is a quantile

Value-at-Risk in a picture

- $\blacksquare \ \, \mathsf{Returns} \,\, \mathsf{are} \,\, N(.001,.015^2)$
- W_0 is £10,000,000

Percent Value-at-Risk

■ Value-at-Risk can be normalized and reported as a %

Definition (Percentage Value-at-Risk)

The α percentage Value-at-Risk (%VaR) of a portfolio is defined as the largest return such that the probability that the return on the portfolio over some period of time is less than -%VaR is α ,

$$Pr(r < -\%VaR) = \alpha$$

where r is the percentage return on the portfolio. %VaR can be equivalently defined as $%VaR = VaR/W_0$.

- Units are returns (no units)
- Also almost always positive
- Lets VaR be interpreted without knowing the value of the portfolio, W_0
 - ▶ No meaningful loss of information from standard VaR
 - Used throughout rest of lecture in place of formal definition of VaR

Relationship between Quantiles and VaR

- VaR is a quantile
 - ► Quantile of the future distribution

Definition (α -Quantile)

The α -quantile of a random variable X is defined as the *smallest* number q_{α} such that

$$\Pr(X \le q_{\alpha}) = \alpha$$

- Other "-iles"
 - ► Tercile
 - ► Quartile
 - Quintile
 - ► Decile
 - ▶ Percentile

Conditional and Unconditional VaR

 Condiitonal VaR is similar to conditional mean or conditional variance

Definition (Conditional Value-at-Risk)

The conditional α Value-at-Risk is defined as

$$Pr(r_{t+1} < -VaR_{t+1|t}|\mathcal{F}_t) = \alpha$$

where $r_{t+1} = \left(W_{t+1} - W_t\right)/W_t$ is the return on a portfolio at time t+1.

- t is an arbitrary measure of time $\Rightarrow t+1$ also refers to an arbitrary unit of time
 - ► day, two-weeks, 5 years, etc.
- Incorporates all information available at time t to assess risk at time t+1
- Natural extension of conditional expectation and conditional variance to conditional quantile

Conditional VaR: RiskMetrics

- Industry standard benchmark
- Restricted GARCH(1,1)

$$\sigma_{t+1}^2 = (1 - \lambda)r_t^2 + \lambda \sigma_t^2$$

■ Exponentially Weighted Moving Average (EWMA):

$$\sigma_{t+1}^{2} = \sum_{i=0}^{\infty} (1 - \lambda) \lambda^{i} r_{t-i}^{2}$$
$$VaR_{t+1} = -\sigma_{t+1} \Phi^{-1}(\alpha)$$

- $lacktriangledown \Phi^{-1}(\cdot)$ is the inverse normal CDF
- Advantages
 - ► No parameters to estimate
 - λ = .94 (daily data), .97 (weekly), .99 (monthly)
 - ► Easy to extend to portfolios (see notes)
- Disadvantages
 - ▶ No parameters to estimate
 - ▶ No leverage effect
 - Random Walk VaR

Conditional VaR: GARCH models for Value-at-Risks

$$r_{t+1} = \mu + \epsilon_{t+1}$$

$$\sigma_{t+1}^2 = \omega + \gamma \epsilon_t^2 + \beta \sigma_t^2$$

$$\epsilon_{t+1} = \sigma_{t+1} e_{t+1}$$

$$e_{t+1} \stackrel{\text{i.i.d.}}{\sim} f(0,1)$$

■ Value-at-Risk:

$$VaR_{t+1} = -\hat{\mu} - \hat{\sigma}_{t+1}F_{\alpha}^{-1}$$

- F_{α}^{-1} is the α quantile of the distribution of e_{t+1}
 - ► For example, 1.645 for the 5% from a normal
- Advantages
 - ► Flexible volatility model and easy to estimate
- Disadvantages
 - ► Must chose f (know f to get the correct VaR)
 - ► Location-Scale families

Conditional VaR: Semiparametric/Filtered HS

■ Parametric GARCH + Nonparametric Density → Semi-parametric VaR

$$e_{t+1} \overset{\text{i.i.d.}}{\sim} g(0,1), \quad g$$
unknown distribution

- Implementation
 - 1. Fit an ARCH model using Normal QMLE

 - 2. $\hat{e}_t = \frac{\hat{\epsilon}_t}{\hat{\sigma}_t}$ 3. Order residuals

$$\hat{e}_1 < \hat{e}_2 < \ldots < \hat{e}_{N-1} < \hat{e}_N$$

■ Quantile is residual $\alpha \times N$ residual (N=T).

$$VaR_{t+1}(\alpha) = -\hat{\mu} - \hat{\sigma}_{t+1}\hat{G}_{\alpha}^{-1}$$

- Advantages
 - All advantages of GARCH
 - Quantile converges to true quantile
- Disadvantages
 - ► Location-Scale families
 - ► Quantile convergence is *slow*

Conditional VaR: CaViaR

- Conditional Autoregressive Value-at-Risk (ARCVaR)
 - ► Conditional quantile *regression*
 - Directly parameterize quantile $F_{\alpha}^{-1} = q$ of the return distribution

$$q_{t+1} = \omega + \gamma HIT_t + \beta q_t$$

$$HIT_t = I_{[r_t < q_t]} - \alpha$$

$$VaR_{t+1} = -q_{t+1}$$

- Advantages
 - ► Focuses on quantile
 - ► Flexible specification
- Disadvantages
 - ► Hard to estimate
 - ▶ Which specification?
 - Out-of-order VaR: 5% can less than 10% VaR

Estimation of CaViaR models

- Many CaViaR specifications
 - ► Symmetric

$$q_{t+1} = \omega + \gamma HIT_t + \beta q_t.$$

Symmetric absolute value,

$$q_{t+1} = \omega + \gamma |r_t| + \beta q_t.$$

► Asymmetric absolute value

$$q_{t+1} = \omega + \gamma_1 |r_t| + \gamma_2 |r_t| I_{[r_t < 0]} + \beta q_t$$

► Indirect GARCH

$$q_{t+1} = \left(\omega + \gamma r_t^2 + \beta q_t^2\right)^{\frac{1}{2}}$$

Estimation minimizes the "tick" loss function

$$\underset{\boldsymbol{\theta}}{\operatorname{argmin}} \ T^{-1} \sum_{t=1}^{T} \alpha(r_t - q_t) (1 - I_{[r_t < q_t]}) + (1 - \alpha) (q_t - r_t) I_{[r_t < q_t]}$$

- ▶ Non-differentiable
- ► Requires "derivative-free" optimizers (e.g. simplex optimizers)

Weighted Historical Simulation

- Uses a weighted empirical CDF
- Weights are exponentially decaying

$$w_i = \lambda^{t-i} (1 - \lambda) / (1 - \lambda^t), i = 1, 2, \dots, t$$

■ Weighted Empirical CDF

$$\hat{G}_t(r) = \sum_{i=1}^t w_i I_{[r_i < r]}$$

■ Conditional VaR is solution to

$$VaR_{t+1} = \min_{r} \hat{G}(r) \ge \alpha$$

■ Example uses $\lambda = 0.975$

Weighted Historical Simulation

Weighted Historical Simulation

% VaR using RiskMetrics

% VaR using TARCH(1,1,1) with Skew t errors

% VaR using Asymmetric CaViaR

% VaR using Weighted Historical Simulation

Unconditional VaR

- Parametric Estimation
 - Specify some fully parametric model for returns
 - Estimate the parameters by MLE
 - ▶ VaR is the α -quantile of the fit distribution
- Nonparametric Estimation (Historical Simulation)
 - Nonparametric estimation of the density of returns using raw data
 - Identical to previous density estimation
 - ► Can "smooth" to reduce variance
- Parametric Monte Carlo
 - Estimate a conditional model for short horizon returns
 - ► Simulate the model for many periods
 - Use a nonparametric estimate of the density of the simulated returns

Evaluating VaR models

Basic instrument for testing VaR is the "Hit"

$$ge_t = I_{[r_t < F_t^{-1}]} - \alpha = HIT_t$$

- Is the *generalized error* from the "tick" loss function
- If the VaR is correct,

$$E_{t-1}[HIT_t] = 0$$

- Leads to a standard Generalized Mincer-Zarnowitz evaluation framework
- Hit Regression

$$HIT_{t+h} = \gamma_0 + \gamma_1 VaR_{t+h|t} + \gamma_2 HIT_t + \gamma_3 HIT_{t-1} + \ldots + \gamma_K HIT_{t-K+1}$$

- ▶ Null is $H_0: \gamma_0 = \gamma_1 = \ldots = \gamma_K = 0$
- ▶ Alternative is $H_1: \gamma_j \neq 0$ for some j
- As always, GMZ can be augmented with any time t measurable variable

Unconditional Evaluation of VaR using the Bernoulli.

- lacktriangleq \widetilde{HIT} s from a correct VaR model have a Bernoulli distribution
 - ▶ 1 with probability α
 - ▶ 0 with probability 1α
- Likelihood for T Bernoulli random variables $x_t \in \{0, 1\}$

$$f(x_t; p) = \prod_{t=1}^{T} p^{x_t} (1-p)^{1-x_t}$$

■ Log-likelihood is

$$l(p; x_t) = \sum_{t=1}^{T} x_t \ln p + (1 - x_t) \ln 1 - p$$

■ In terms of α and \widetilde{HIT}_t $I(\alpha; \widetilde{HIT}_t) = \sum_{t=0}^{T} \widetilde{HIT}_t \ln \alpha_t + C$

$$l(\alpha; \widetilde{HIT}_t) = \sum_{t=1}^T \widetilde{HIT}_t \ln \alpha + \left(1 - \widetilde{HIT}_t\right) \ln 1 - \alpha$$

■ Easy to conduct a LR test

$$LR = 2(l(\hat{\alpha}; \widetilde{HIT}) - l(\alpha_0; \widetilde{HIT})) \sim \chi_1^2$$

 $\hat{\alpha} = T^{-1} \sum_{t=1}^{T} \widetilde{HIT}_t$, α_0 is the α from the VaR

Evaluation of Conditional VaR using the Bernoulli

- lacktriangle Can also be extended to testing conditional independence of HITs
- Define

$$n_{00} = \sum_{t=1}^{T-1} (1 - \widetilde{HIT}_t)(1 - \widetilde{HIT}_{t+1}), \quad n_{10} = \sum_{t=1}^{T-1} (1 - \widetilde{HIT}_t)\widetilde{HIT}_{t+1}$$

$$n_{01} = \sum_{t=1}^{T-1} \widetilde{HIT}_t(1 - \widetilde{HIT}_{t+1}), \quad n_{11} = \sum_{t=1}^{T-1} \widetilde{HIT}_t\widetilde{HIT}_{t+1}$$

■ The log-likelihood for the sequence two VaR exceedences is

$$l(p; \widetilde{HIT}) = n_{11} \ln(p_{11}) + n_{01} \ln(1 - p_{11}) + n_{00} \ln(p_{00}) + n_{10} \ln(1 - p_{00})$$

Evaluation of Conditional VaR using the Bernoulli

- Null is $H_0: p_{11} = 1 p_{00} = \alpha$
- MLEs are

$$\hat{p}_{00} = \frac{n_{00}}{n_{00} + n_{10}}, \ \hat{p}_{11} = \frac{n_{11}}{n_{11} + n_{01}}$$

■ Tested using a likelihood ratio test

$$LR = 2(l(\hat{p}_{00}, \hat{p}_{11}; \widetilde{HIT}) - l(p_{00} = 1 - \alpha, p_{11} = \alpha; \widetilde{HIT}))$$

 \blacksquare Test statistic follows a χ^2_2 distribution

Relationship to Probit/Logit

- Standard GMZ regression is not an ideal test
- Ignores special structure of a *HIT*
- A HIT is a limited dependant variable
 - Only takes one of two values
- \blacksquare Define a modified hit $\widetilde{HIT}_t = I_{[r_t < F_t^{-1}]}$
 - ▶ Takes the value 1 with probability α and 0 with probability $1-\alpha$
 - ▶ Name that distribution →
- Leads to a modified regression framework known as a probit or logit
 - ► Probit:

$$\widetilde{HIT}_{t+1} = \Phi \left(\gamma_0 + \mathbf{x}_t \boldsymbol{\gamma} \right)$$

- ho If model is correct, $\gamma_0 = \Phi^{-1}(\alpha)$ and $\gamma = 0$
- Estimated using Bernoulli Maximum Likelihood
- Accounts for the limited range of the variable and that the density is non-normal
- Allows for simple-yet-powerful likelihood ratio tests under the null

Density Estimation and Forecasting

- End all be all of risk measurement
- Issues:
 - ► Equally hard
 - ► Lots of estimation and model error
 - ▷ Can have non obvious effects on nonlinear functions (i.e. options)
 - Not closed under aggregation
 - ⊳ No multi-step
- Builds off of the GARCH VaR application

Density forecasts from GARCH models

■ Simple constant mean GARCH(1,1)

$$r_{t+1} = \mu + \epsilon_{t+1}$$

$$\sigma_{t+1}^2 = \omega + \gamma \epsilon_t^2 + \beta \sigma_t^2$$

$$\epsilon_{t+1} = \sigma_{t+1} e_{t+1}$$

$$e_{t+1} \stackrel{\text{i.i.d.}}{\sim} g(0,1).$$

- lacktriangleq g is some known distribution, but not necessarily normal
- Density forecast is simply $g(\mu, \sigma_{t+1|t}^2)$
- Flexible through choice of g
- Parsimonious
- Semiparametric works in same way replacing *g* with the standardized residuals of a "smoothed" estimate

Kernel Densities

■ "Smoothed" densities are more precise than rough estimates

$$g(e) = \frac{1}{Th} \sum_{t=1}^{T} K\left(\frac{\hat{e}_t - e}{h}\right), \quad \hat{e}_t = \frac{y_t - \hat{\mu}_t}{\hat{\sigma}_t} = \frac{\hat{\epsilon}_t}{\hat{\sigma}_t}$$

- Local average of how many \hat{e}_t there are in a small neighborhood of e
- \blacksquare $K(\cdot)$ is a kernel
 - ► Gaussian

$$K(x) = \frac{1}{\sqrt{2\pi}} \exp(-x^2/2)$$

► Epanechnikov

$$K(x) = \left\{ \begin{array}{ll} \frac{3}{4}(1-x^2) & -1 \leq x \leq 1 \\ 0 & \text{otherwise} \end{array} \right.$$

- h: Bandwidth controls smoothing
- Silverman's bandwidth

$$1.06\sigma_x T^{-\frac{1}{5}}$$

- ► h too small produces very rough densities (low bias but lots of variance)
- ► h too large produces overly smooth (low variance but very biased) 44

S&P 500 Parametric and Nonparametric Densitie

Multi-step Density Forecasts

- Densities do not aggregate in general
 - Multivariate normal is special
- Densities from GARCH models do not easily aggregate
- 1-step density forecast from a standard GARCH(1,1)

$$r_{t+1}|\mathcal{F}_t \sim N(\mu, \sigma_{t+1|t}^2)$$

■ Wrong 2-step forecast from a standard GARCH(1,1)

$$r_{t+2}|\mathcal{F}_t \sim N(\mu, \sigma_{t+2|t}^2)$$

Correct 2-step forecast from a standard GARCH(1,1)

$$r_{t+2}|\mathcal{F}_t \sim \int_{-\infty}^{\infty} \phi(\mu, \sigma^2(e_{t+1})_{t+2|t+1}) \phi(e_{t+1}) de_{t+1}.$$

- Must integrate out the variance uncertainty between t+1 and t+2
- Easy fix: directly model t + 2 (or t + h)

The Fan plot

- Hard to produce time-series of densities
- Solution is the Fan Plot
- Popularized by the Bank of England
- Horizontal axis (x) is the number of time-periods ahead
- Vertical axis (y) is the vale the variable might take
- Density is expressed using varying degrees of color intensity.
 - Dark color indicate the highest probability
 - ► Progressively lighter colors represent decreasing likelihood
 - ► Essentially a plot of many quantiles of the distribution through time
- A lot of "wow"
- Not necessarily a lot of content

Density "Standardized" Residuals

- Consider a generic stochastic process $\{y_t\}$
 - ► Residuals from mean models:

$$\hat{\epsilon}_t = y_t - \hat{\mu}_t$$

► Residuals from variance models:

$$\hat{e}_t = \frac{\hat{\epsilon}_t}{\hat{\sigma}_t} = \frac{y_t - \hat{\mu}_t}{\hat{\sigma}_t}$$

► Residuals from Value-at-Risk models:

$$HIT_t = I_{[y_t < q_t]} - \alpha$$

Residual from density models:

$$\hat{u}_t = F_t(y_t)$$

- Known as the Probability Integral Transformed Residuals.
- One very useful property: If $y_t \sim F$ then $u_t \equiv F(y_t) \sim U(0,1)$

Probability Integral Transform

Theorem (Probability Integral Transform)

Let a random variable X have a continuous, increasing CDF $F_X(x)$ and define $Y = F_X(X)$. Then Y is uniformly distributed and $\Pr(Y \le y) = y, \, 0 < y < 1$.

For any
$$y \in (0,1)$$
, $Y = F_X(X)$, and so

$$\Pr(Y \le y) = \Pr(F_X(X) \le y)$$

$$= \Pr(F_X^{-1}(F_X(X)) \le F_X^{-1}(y))$$

$$= \Pr(X \le F_X^{-1}(y))$$

$$= F_X(F_X^{-1}(y))$$

$$= y$$

Since F_X^{-1} is increasing Invertible since strictly increasing Definition of F_X

Evaluating Density Forecasts: QQ Plots

- Quantile-Quantile Plots
- Plots the data against a hypothetical distribution

$$\hat{e}_1 < \hat{e}_2 < \ldots < \hat{e}_{N-1} < \hat{e}_N$$

- lacktriangleq N = T but used to indicate that the index is not related to time
- e_n against $F^{-1}(\frac{j}{T+1})$

$$F^{-1}\left(\frac{1}{T+1}\right) < F^{-1}\left(\frac{2}{T+1}\right) < \dots < F^{-1}\left(\frac{T-1}{T+1}\right) < F^{-1}\left(\frac{T}{T+1}\right)$$

- lacktriangledown F^{-1} is inverse CDF of distribution being used for comparison
- Should lie along a 45° line
- No confidence bands

QQ Plots for the S&P 500

Student's t, $\nu=5.8$

GED, $\nu=1.25$

Skewed $t\text{, }\nu=6.3, \lambda=-0.19$

Evaluating Density Forecasts: Kolmogorov-Smirn

- Formalizes QQ plots
- Key property
 - If $x \sim F$, then $u \equiv F(x) \sim U(0,1)$
 - ightharpoonup Can test U(0,1)
- KS tests maximum deviation from U(0,1)

$$\max_{\tau} \left| \frac{1}{T} \left(\sum_{i=1}^{\tau} I_{[u_i < \frac{\tau}{T}]} \right) - \frac{\tau}{T} \right|, \quad \tau = 1, 2, \dots, T$$

- $\frac{1}{T}\sum_{i=1}^{\tau}I_{[u_j<\frac{\tau}{T}]}$: Empirical percentage of u below τ/T τ/T : How many should be below τ/T
- Nonstandard distribution
- Parameter estimation error
 - ► Parameter Estimation Error (PEE) causes significant size distortions
 - ▶ Using a 5% CV will only reject 0.1% of the time
 - ► Solution is to simulate the needed critical values

The Kolmogorov-Smirnov Test

Addressing PEE in a KS test

- Model is a complete model so can be easily simulated
- Exact KS distribution tabulated

Algorithm (Correct CV for KS test with PEE)

- 1. Estimate model and save $\hat{\theta}$
- 2. Repeat many times (1000+)
 - a. Simulate artificial series from model using $\hat{\theta}$ with same number of observations as original data
 - b. Estimate parameters from simulated data, $\ddot{ heta}$
 - c. Compute KS test statistic on simulated data using $\ddot{\theta}$ and save as KS_i , i = 1, 2, ...,
- 3. Sort the KS_i values and use the $1-\alpha$ quantile for get correct CV for α size test

Evaluating Density Forecasts: Berkowitz Test

- Berkowitz Test extends KS to evaluation of conditional densities
- Exploits probability integral transform property

$$\hat{u}_t = F(y_t)$$

■ But then re-transforms the data to a standard normal

$$\hat{\eta}_t = \Phi^{-1}(\hat{u}_t) = \Phi^{-1}(F(y_t))$$

- ► Since $\hat{u}_t \stackrel{\text{i.i.d.}}{\sim} U(0,1)$, $\hat{\eta}_t \stackrel{\text{i.i.d.}}{\sim} N(0,1)$
- Test is a likelihood ratio test using an AR(1)

$$\hat{\eta}_t = \phi_0 + \phi_1 \hat{\eta}_{t-1} + \nu_t$$

- If the model is correctly specified
 - $\phi_0 = 0, \phi_1 = 0, \sigma^2 = V[\nu_t] = 1$
- Likelihood ratio

$$2\left(l(\eta_t|\hat{\phi}_0,\hat{\phi}_1,\hat{\sigma}^2) - l(\eta_t|\phi_0 = 0,\phi_1 = 0,\sigma^2 = 1)\right) \sim \chi_3^2$$

Critical values wrong if F has estimated parameters

Coherent Risk Measures

- Coherence is a desirable property for a risk measure
 - ▶ But not completely necessary
- ρ is the required capital necessary according to some measure of risk (VaR, ES, Standard Deviation, etc.)
- P, P_1 and P_2 are portfolios of assets
- A Coherent measure satisfies:

Drift Invariance

$$\rho(P+c) = \rho(P) - c$$

Homogeneity

$$\rho(\lambda P) = \lambda \rho(P) \quad \text{for any } \lambda > 0$$

Monotonicity If P_1 first order stochastically dominates P_2 , then

$$\rho(P_1) \le \rho(P_2)$$

Subadditivity

$$\rho(P_1 + P_2) \le \rho(P_1) + \rho(P_2)$$

Coherent Risk Measures

- VaR is *not* coherent
 - ► Because VaR is a quantile it may not be subadditive

VaR is Not Coherent

- Two portfolios P_1 and P_2 holding a bond
 - ► Each paying 0%, par value of \$1,000
 - ► Default probability 3%, recovery rate 60%
 - ► Two companies, defaults are independent
- Value-at-Risk of P_1 and P_2 is \$0
- Value-at-RIsk of $P_3 = 50\% \times P_1 + 50\% \times P_2 = \200
 - ▶ 5.91% that one or both default

P_3

42 / 44

Coherent Risk Measures

- ES is coherent
 - ► Doesn't mean much
 - VaR still has a lot of advantages
 - More importantly VaR and ES agree in most realistic settings

ES is coherent

- ES of P_1 and P_2 is \$240
 - ▶ Given in lower 5% of distribution, 60% chance of a loss of \$400
- \blacksquare ES of P_3
 - ► Given in lower 5% of distribution:
 - > 0.0009/0.05 = .018 probability of \$400 loss (2 defaults)
 - > 0.0491/0.05 = .982 probability of \$200 loss (1 default)
 - \triangleright ES of \$7.20 + \$196.40 = \$203.60
- ES is subadditive when VaR is not

Expected Shortfall

■ Conditional Expected Shortfall (ES, also called Tail VaR)

$$ES_{t+1} = E_t[r_{t+1}|r_{t+1} < -VaR_{t+1}]$$

- "Expected Loss given you have a Value-at-Risk violation"
- Usually requires the specification of a complete model for the conditional distribution
- Uses all of the information in the tail
- Evaluation
 - Standard Problem, a conditional mean
 - GMZ regression

$$(ES_{t+1|t} - R_{t+1})I_{[R_{t+1} < -VaR_{t+1|t}]} = \mathbf{x}_t \boldsymbol{\gamma}$$

$$\triangleright H_0: \gamma = \mathbf{0}$$

Difficult to test since relatively few observations