Package 'FastStepGraph'

October 12, 2023

October 12, 2025
Type Package
Title A Fast Algorithm for Sparse Precision Matrix Estimation
Version 0.1.1
Maintainer Juan G. Colonna < juancolonna@icomp.ufam.edu.br>
Description It implements an improved and computationally faster version of the original Stepwise Gaussian Graphical Algorithm for estimating the Omega precision matrix from high-dimensional data. Zamar, R., Ruiz, M., Lafit, G. and Nogales, J. (2021) <doi:10.52933 jdssv.v1i2.11="">.</doi:10.52933>
License MIT + file LICENSE
<pre>URL https://github.com/juancolonna/FastStepGraph</pre>
Depends R (>= 4.3),
Imports doParallel (>= 1.0), foreach (>= 1.5), MASS (>= 7.3)
Suggests knitr, rmarkdown, devtools
VignetteBuilder knitr
Encoding UTF-8
Language en-US
RoxygenNote 7.2.3
NeedsCompilation no
Author Juan G. Colonna [cre, aut] (https://orcid.org/0000-0002-1740-2618), Marcelo Ruiz [aut]
Repository CRAN
Date/Publication 2023-10-12 16:10:02 UTC
R topics documented:
cv.FastStepGraph
Index

2 cv.FastStepGraph

cv.FastStepGraph	Searches for the optimal combination of alpha_f and alpha_b parameters using Cross-Validation

Description

 ${\tt cv.FastStepGraph\ implements\ the\ cross-validation\ for\ the\ Fast\ Step\ Graph\ algorithm.}$

Usage

```
cv.FastStepGraph(
    x,
    n_folds = 5,
    alpha_f_min = 0.2,
    alpha_f_max = 0.8,
    b_coef = 0.5,
    n_alpha = 32,
    nei.max = 5,
    data_scale = FALSE,
    data_shuffle = TRUE,
    max.iterations = NULL,
    return_model = FALSE,
    parallel = FALSE,
    n_cores = NULL
)
```

Arguments

x	Data matrix (of size n x p).
n_folds	Number of folds for the cross-validation procedure (default value 5).
alpha_f_min	Minimum threshold value for the cross-validation procedure (default value 0.2).
alpha_f_max	Minimum threshold value for the cross-validation procedure (default value 0.8).
b_coef	This parameter applies the empirical rule alpha_b=b_coef*alpha_f during the initial search for the optimal alpha_f parameter while alpha_b remains fixed, after finding optimal alpha_f, alpha_b is varied to find its optimal value. The default value of b_coef is 0.5.
n_alpha	Number of elements in the grid for the cross-validation (default value 32).
nei.max	Maximum number of variables in every neighborhood (default value 5).
data_scale	Boolean parameter (TRUE or FALSE), when to scale data to zero mean and unit variance (default FALSE).
data_shuffle	Boolean parameter (default TRUE), when samples (rows of X) must be randomly shuffled.
max.iterations	Maximum number of iterations (integer), the defaults values is set to $p^*(p-1)$.

FastStepGraph 3

return_model Default FALSE. If set to TRUE, at the end of cross-validation, FastStepGraph

is called with the optimal parameters alpha_f and alpha_b, returning vareps,

beta, Edges and Omega.

parallel Boolean parameter (TRUE or FALSE), when to run Cross-Validation in parallel

using a multicore architecture (default FALSE).

n_cores An 'int' value specifying the number of cores do you want to use if 'paral-

lel=TRUE'. If n_cores is not specified, the maximum number of cores on your

machine minus one will be set automatically.

Value

A list with the values:

alpha_f_opt the optimal alpha_f value.
alpha_f_opt the optimal alpha_f value.

CV.loss minimum loss.

If return_model=TRUE, then also returns:

vareps Response variables.
beta Regression coefficients.
Edges Estimated set of edges.

Omega Estimated precision matrix.

Author(s)

Prof. Juan G. Colonna, PhD. < juancolonna@icomp.ufam.edu.br>

Prof. Marcelo Ruiz, PhD. <mruiz@exa.unrc.edu.ar>

Examples

```
data <- FastStepGraph::SigmaAR(30, 50, 0.4) # Simulate Gaussian Data
res <- FastStepGraph::cv.FastStepGraph(data$X, data_scale=TRUE)</pre>
```

FastStepGraph Fast Stepwise Gaussian Graphical Model

Description

Improved and faster implementation of the Stepwise Gaussian Graphical Algorithm.

FastStepGraph

Usage

```
FastStepGraph(
   x,
   alpha_f,
   alpha_b = NULL,
   nei.max = 5,
   data_scale = FALSE,
   max.iterations = NULL
)
```

Arguments

Data matrix (of size n_samples x p_variables).

alpha_f Forward threshold (no default value).

alpha_b Backward threshold. If alpha_b=NULL, then the rule alpha_b <- 0.5*alpha_f is

applied.

nei.max Maximum number of variables in every neighborhood (default value 5).

data_scale Boolean parameter (TRUE or FALSE), when to scale data to zero mean and unit

variance (default FALSE).

max.iterations Maximum number of iterations (integer), the defaults values is set to p*(p-1).

Value

A list with the values:

vareps Response variables.

beta Regression coefficients.

Edges Estimated set of edges.

Omega Estimated precision matrix.

Author(s)

```
Prof. Juan G. Colonna, PhD. <juancolonna@icomp.ufam.edu.br>
```

Prof. Marcelo Ruiz, PhD. <mruiz@exa.unrc.edu.ar>

Examples

```
data <- FastStepGraph::SigmaAR(30, 50, 0.4) # Simulate Gaussian Data
G <- FastStepGraph::FastStepGraph(data$X, alpha_f = 0.22, alpha_b = 0.14, data_scale=TRUE)</pre>
```

SigmaAR 5

Stillitute Covariance name with an interest (int) induct	SigmaAR	Simulate Covariance Matrix with an Auto-regressive (AR) Model
--	---------	---

Description

Helper function to simulate Simulate Gaussian Data with an Autoregressive (AR) Model

Usage

```
SigmaAR(n_rows, p_columns, phi)
```

Arguments

 $\begin{array}{ll} \mbox{n_rows} & \mbox{Number of samples (rows of X)}. \\ \mbox{p_columns} & \mbox{Number of variables (columns of X)}. \end{array}$

phi Auto-regression coefficient.

Value

A list with the values:

Sigma A covariance matrix.

Omega A precision matrix.

X A normalized data matrix with Gaussian distribution.

Author(s)

```
Prof. Juan G. Colonna, PhD. <juancolonna@icomp.ufam.edu.br>
Prof. Marcelo Ruiz, PhD. <mruiz@exa.unrc.edu.ar>
```

Examples

```
data <- FastStepGraph::SigmaAR(30, 50, 0.4) \# Simulate Gaussian Data
```

Index

```
cv.FastStepGraph, 2
FastStepGraph, 3
SigmaAR, 5
```