- 1. Z uporabo totalnega diferenciala določi približno vrednost spodnjih izrazov:
 - (a) arctan(0.03),

(c) $\sqrt[3]{25}$,

(b) $\sqrt{4.1}$,

- (d) $\log(0.9)$.
- 2. Z L'Hospitalovim pravilom izračunaj naslednji limiti:
 - (a) $\lim_{x\to\infty} \frac{\log x}{x}$,

- (b) $\lim_{x\to 0} \frac{e^x e^{-x}}{\sin x}$.
- 3. Poišči stacionarne točke spodnjih funkcij spremenljivke *x*. Na katerih intervalih funkciji naraščata?

(a)
$$f(x) = x^3 - 2x^2 + x + 2$$
,

(b)
$$g(x) = \frac{x}{1+x^2}$$
.

- 4. Za naslednje funkcije določi lokalne ekstreme ter intervale naraščanja in padanja in čimbolj natančno skiciraj njihove grafe.
 - $(a) h(x) = \frac{x}{1 + x^2},$

(c)
$$q(x) = \frac{e^{-2/x^2}}{x}$$
.

(b)
$$p(x) = x^2 e^{-x^2}$$
,

- 5. Poišči točko na krivulji $y = \sqrt{x^2 + 3x + 4}$, ki je najbližja koordinatnemu izhodišču (0,0).
- 6. Med vsemi enakokrakimi trikotniki z danim obsegom *O*, poiščite tistega, ki ima največjo ploščino.
- 7. Poišči največjo in najmanjšo vrednost, ki jo zavzame funkcija $f(x) = 3x^5 5x^3$ na intervalu $\left[-\frac{4}{3}, 2\right]$.
- 8. Poišči največjo in najmanjšo vrednost, ki jo zavzame funkcija $f(x)=x^3-3x+3$ na intervalu $[-\frac{3}{2},\frac{5}{2}]$.