CISC6000 Deep Learning Autoencoder

Dr. Yijun Zhao Fordham University

Motivations

Pre-training for supervised learning

Data Encoding (Compression)

Denoising

Others

Traditional Neural Network

- Could have L hidden layers:
 - layer input activation for k>0 $(\mathbf{h}^{(0)}(\mathbf{x})=\mathbf{x})$

$$\mathbf{a}^{(k)}(\mathbf{x}) = \mathbf{b}^{(k)} + \mathbf{W}^{(k)}\mathbf{h}^{(k-1)}(\mathbf{x})$$

 \blacktriangleright hidden layer activation (k from 1 to L):

$$\mathbf{h}^{(k)}(\mathbf{x}) = \mathbf{g}(\mathbf{a}^{(k)}(\mathbf{x}))$$

• output layer activation (k=L+1):

$$\mathbf{h}^{(L+1)}(\mathbf{x}) = \mathbf{o}(\mathbf{a}^{(L+1)}(\mathbf{x})) = \mathbf{f}(\mathbf{x})$$

 First hypothesis: optimization is harder (underfitting)

vanishing gradient problem

 saturated units block gradient propagation

 This is a well known problem in recurrent neural networks

- Second hypothesis: overfitting
 - we are exploring a space of complex functions
 - deep nets usually have lots of parameters
- · Might be in a high variance / low bias situation

 Depending on the problem, one or the other situation will tend to dominate

- · If first hypothesis (underfitting): use better optimization
 - this is an active area of research

- · If second hypothesis (overfitting): use better regularization
 - unsupervised learning
 - stochastic «dropout» training

- · Solution: initialize hidden layers using unsupervised learning
 - force network to represent latent structure of input distribution

encourage hidden layers to encode that structure

Unsupervised Pre-training

- · We will use a greedy, layer-wise procedure
 - train one layer at a time, from first to last, with unsupervised criterion
 - fix the parameters of previous hidden layers

- We call this procedure unsupervised pre-training
 - first layer: find hidden unit features that are more common in training inputs than in random inputs
 - second layer: find combinations of hidden unit features that are more common than random hidden unit features
 - third layer: find combinations of combinations of ...
 - etc.
- Pre-training initializes the parameters in a region such that the near local optima overfit less the data

Fine-Tuning

- Once all layers are pre-trained
 - add output layer
 - train the whole network using supervised learning
- Supervised learning is performed as in a regular feed-forward network
 - forward propagation, backpropagation and update
- We call this last phase fine-tuning
 - all parameters are "tuned" for the supervised task at hand
 - representation is adjusted to be more discriminative

Deep Learning Pseudo Code

- for l=1 to L
 - lacktriangle build unsupervised training set (with ${f h}^{(0)}({f x})={f x}$):

$$\mathcal{D} = \left\{ \mathbf{h}^{(l-1)}(\mathbf{x}^{(t)}) \right\}_{t=1}^{T}$$

- ullet train "greedy module" (RBM, autoencoder) on ${\cal D}$
- use hidden layer weights and biases of greedy module to initialize the deep network parameters $\mathbf{W}^{(l)}$, $\mathbf{b}^{(l)}$
- Initialize $\mathbf{W}^{(L+1)}$, $\mathbf{b}^{(L+1)}$ randomly (as usual)
- Train the whole neural network using (supervised) stochastic gradient descent (with backprop)

pre-training

finetuning

What Kind of Unsupervised Learning?

Stacked restricted Boltzmann machines:

- Hinton, Teh and Osindero suggested this procedure with RBMs
 - A fast learning algorithm for deep belief nets. Hinton, Teh, Osindero., 2006.
 - To recognize shapes, first learn to generate images. Hinton, 2006.

Stacked autoencoders:

- Bengio, Lamblin, Popovici and Larochelle studied and generalized the procedure to autoencoders
 - Greedy Layer-Wise Training of Deep Networks. Bengio, Lamblin, Popovici and Larochelle, 2007.
- Ranzato, Poultney, Chopra and LeCun also generalized it to sparse autoencoders
 - Efficient Learning of Sparse Representations with an Energy-Based Model. Ranzato, Poultney, Chopra and LeCun, 2007.

What Kind of Unsupervised Learning?

Stacked denoising autoencoders:

- proposed by Vincent, Larochelle, Bengio and Manzagol
 - Extracting and Composing Robust Features with Denoising Autoencoders,
 Vincent, Larochelle, Bengio and Manzagol, 2008.

And more:

- stacked semi-supervised embeddings
 - Deep Learning via Semi-Supervised Embedding. Weston, Ratle and Collobert, 2008.
- stacked kernel PCA
 - Kernel Methods for Deep Learning.
 Cho and Saul, 2009.
- stacked independent subspace analysis
 - Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis.
 - Le, Zou, Yeung and Ng, 2011.

Autoencoders

Definition

 Feed-forward neural network trained to reproduce its input at the output layer

Loss Function

For binary inputs:

$$f(\mathbf{x}) \equiv \widehat{\mathbf{x}}$$

$$l(f(\mathbf{x})) = -\sum_{k} (x_k \log(\widehat{x}_k) + (1 - x_k) \log(1 - \widehat{x}_k))$$

- cross-entropy (more precisely: sum of Bernoulli cross-entropies)
- For real-valued inputs:

$$l(f(\mathbf{x})) = \frac{1}{2} \sum_{k} (\widehat{x}_k - x_k)^2$$

- sum of squared differences (squared euclidean distance)
- we use a linear activation function at the output

Undercomplete Autoencoder

- Hidden layer is undercomplete if smaller than the input layer
 - hidden layer "compresses" the input
 - will compress well only for the training distribution
- Hidden units will be
 - good features for the training distribution
 - but bad for other
 types of input

Overcomplete Autoencoder

- Hidden layer is overcomplete if greater than the input layer
 - no compression in hidden layer
 - each hidden unit could copy a different input component
- No guarantee that the hidden units will extract meaningful structure

Denoising Autoencoder

- Idea: representation should be robust to introduction of noise:
 - ightharpoonup random assignment of subset of inputs to 0, with probability u
 - Gaussian additive noise
- Reconstruction $\widehat{\mathbf{x}}$ computed from the corrupted input $\widetilde{\mathbf{x}}$
- Loss function compares x
 reconstruction with the
 noiseless input x

Deep Learning Using Stacked Autoencoder

from: Bengio ICML 2009

Deep Learning Using Stacked Autoencoder

Network		MNIST-small	MNIST-rotation
Type	Depth	classif. test error	classif. test error
Deep net	1	4.14 % ± 0.17	$15.22~\% \pm 0.31$
	2	4.03 % ± 0.17	10.63 % ± 0.27
	3	4.24 % ± 0.18	$11.98~\% \pm 0.28$
	4	$4.47~\% \pm 0.18$	$11.73~\% \pm 0.29$
Deep net + autoencoder	1	$3.87~\% \pm 0.17$	$11.43\% \pm 0.28$
	2	3.38 % ± 0.16	$9.88~\% \pm 0.26$
	3	3.37 % ± 0.16	9.22 % ± 0.25
	4	3.39 % ± 0.16	9.20 % ± 0.25
Deep net + RBM	1	$3.17~\% \pm 0.15$	$10.47~\% \pm 0.27$
	2	2.74 % ± 0.14	$9.54~\% \pm 0.26$
	3	2.71 % ± 0.14	8.80 % ± 0.25
	4	2.72 % ± 0.14	8.83 % ± 0.24

An Empirical Evaluation of Deep Architectures on Problems with Many Factors of Variation Larochelle, Erhan, Courville, Bergstra and Bengio, 2007

Motivations

Pre-training for supervised learning

Data Encoding (Compression)

Denoising

Others

Principal Component Analysis (PCA)

- Statistical approach for data compression and visualization
- Invented by Karl Pearson in 1901

- Weakness: linear components only.

Principal Component Analysis (PCA)

MNIST digit reconstruction using p principal components

Pattern Recognition and Machine Learning. Bishop, 2006. page 567

Autoencoder Example

It has been shown that an AE without non-linear activation functions achieves the PCA capacity.

Autoencoder Example

Deep Auto-encoder

Reference: Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. "Reducing the dimensionality of data with neural networks." *Science* 313.5786 (2006): 504-507

Autoencoder Example

Compress Data

Motivations

Pre-training for supervised learning

Data Encoding (Compression)

Denoising

Others

Denoising Autoencoder

Vincent, Pascal, et al. "Extracting and composing robust features with denoising autoencoders." *ICML*, 2008.

Denoising Autoencoder

Denoising Autoencoder

- Corrupt input images with noisy patterns that you would expect to see in real life
- Network learns to remove this noise

71491

Original

Figures: https://towardsdatascience.com/denoising-autoencoders-explained-dbb82467fc2

Motivations

Pre-training for supervised learning

Data Encoding (Compression)

Denoising

Others

Neural Inpainting

(source: Github -- Faster-High-Res-Neural-Inpainting)

Impute Missing Values

MIDA: Multiple Imputation using Denoising Autoencoders

Lovedeep Gondara, Ke Wang (PAKDD 2018)

https://github.com/Oracen/MIDAS

 MISSING DATA IMPUTATION IN THE ELECTRONIC HEALTH RECORD USING DEEPLY LEARNED AUTOENCODERS*

BRETT K. BEAULIEU-JONES, JASON H. MOORE

Convolutional Autoencoder

Recall CNN

Decoding: How do we go up in size?

Convolutional Autoencoder: Decoding

Multiple names for the operation:

- Up-convolution (fine, but not precise)
- Fractionally-strided convolution (i.e., stride of ½)
- Transpose convolution

Convolutional Autoencoder: UpPooling

Convolutional Autoencoder: UpSampling

Convolution can be viewed as a matrix multiplication How do we represent it this way?

2	1	0	3		1	2	3			
0	0	1	2				5		57	50
				(4	5	6	=	66	61
3		2	0		7					
0	2	2	1		/	8	9			
Input										put

Step 1: Flatten the image into a column vector

2	1	0	3
0	0	1	2
3	1	2	0
0	2	2	1

Step 3: Matrix multiply flattened kernel with flattened image

1	2	3	0	4	5	6	0	7	8	9	0	0	0	0	0
0	1	2	3	0	4	5	6	0	7	8	9	0	0	0	0
0	0	0	0	1	2	3	0	4	5	6	0	7	8	9	0
0	0	0	0	0	1	2	3	0	4	5	6	0	7	8	9

Step 4: Finally reshape the output back into a grid

To upsample an image, we just do the inverse of this operation.

What matrix do we use?

The **transpose** of the big convolution matrix

Reshape the output vector into a grid to get the final output image:

Transpose Convolution in Tensorflow

```
tf.nn.conv2d transpose(
    input,
    filters,
    output shape,
    strides,
    padding='SAME',
    data format='NHWC',
    dilations=None,
    name=None
```

```
An optional string from: "NHWC" or "NCHW".

Defaults to "NHWC".

"NHWC": batch_shape + [height, width, channels].

"NCHW": batch_shape + [channels, height, width].
```

Documentation here:

https://www.tensorflow.org/api_docs/python/tf/nn/conv2d_transpose