三. 数据处理

参数	数值	单位
小球密度 \rho	7.80E+03	kg/m^3
蓖麻油密度 \rho_{0}	9.50E+02	kg/m^3
重力加速度 g	9.78	m/s^2
小球匀速下落距离 L	2.00E-01	М
圆筒内径 D	2.00E-02	М
时间测量不确定度	2.00E-01	S

粘度系数计算公式为:

$$\eta = rac{(
ho -
ho_0) \, g d^{\,2}}{18 v_0 \Big(1 + 2 \, . \, 4 \, rac{d}{D} \Big)} = rac{(
ho -
ho_0) \, g t d^{\,2}}{18 L \Big(1 + 2 \, . \, 4 \, rac{d}{D} \Big)}$$

由原始数据计算填表可得下表:

小球编号	次数	x1(mm)	x2(mm)	d(mm)	avg d(mm)	T(°C)	t(s)	η(Pa·s)
1	1	20.819	21.821	1.002	1.016	56.4	5.84	0.100
	2	26.116	27.218	1.102				
	3	28.618	29.621	1.003				
	4	30.243	31.210	0.967				
	5	32.417	33.421	1.004				
2	1	4.332	5.328	0.996	0.996	59.6	5.34	0.088
	2	5.470	6.466	0.996				
	3	8.432	9.428	0.996				
	4	10.653	11.649	0.996				
	5	12.620	13.616	0.996				
3	1	13.402	14.406	1.004	1.003	52.1	7.10	0.119
	2	18.314	19.317	1.003				
	3	21.222	22.225	1.003				
	4	26.421	27.424	1.003				
	5	28.924	29.926	1.002				
4	1	32.104	33.105	1.001	1.004	48.0	9.03	0.151
	2	37.200	38.201	1.001				
	3	38.412	39.415	1.003				
	4	42.722	43.732	1.010				
	5	48.219	49.223	1.004				
5	1	10.992	11.982	0.990	0.984	42.0	12.69	0.204
	2	15.510	16.492	0.982				
	3	19.996	20.970	0.974				
	4	23.649	24.634	0.985				
	5	26.328	27.315	0.987				

作图可得:

标准值为:

T(°C)	η(Pa·s)	
42	0.225	
48	0.159	
52	0.124	
56	0.100	
60	0.080	

作图可得:

由图像趋势,初步判断本次实验结果较为准确

接下来计算不确定度

公式

$$E_{\eta} = rac{U_n}{\eta} = \sqrt{\left(rac{\partial \ln \eta}{\partial d}
ight)^2 \cdot \left(U_d
ight)^2 + \left(rac{\partial \ln \eta}{\partial t}
ight)^2 \cdot \left(U_t
ight)^2} = \sqrt{\left(rac{2}{d} - rac{2 \cdot 4}{D + 2 \cdot 4 d}
ight)^2 \cdot \left(U_d
ight)^2 + \left(rac{1}{t}
ight)^2 \cdot \left(U_t
ight)^2}$$

$$d = \left| x_1 - x_2
ight| \Rightarrow U_d = \sqrt{\left(rac{\partial d}{\partial x_1}
ight)^2 \cdot \left(U_{x_l}
ight)^2 + \left(rac{\partial d}{\partial x_2}
ight) \cdot \left(U_{x_2}
ight)^2} = \sqrt{\left(U_{x_l}
ight)^2 + \left(U_{x_2}
ight)^2}$$

按照公式,理论上应当由 x 计算得 d 的不确定度,但此时同一组数据的 xi 并不是在同一位置测量所得,故直接按照 A 类不确定度计算的公式计算结果无意义,在此处近似认为 d 为直接测量量,由公式

$$\Delta_{A}\!=\!\sqrt{rac{\displaystyle\sum_{i=1}^{5}\!\left(d_{i}\!-ar{d}\,
ight)^{2}}{5\! imes\!4}},\;\Delta_{B}\!=\!rac{\Delta_{\langle\chi}}{\sqrt{3}},\;U_{d}\!=\!\sqrt{\left(\Delta_{A}
ight)^{2}\!+\!\left(\Delta_{B}
ight)^{2}}$$

计算的 d 不确定度 Ud, Ut, Un列表如下

温度	η	Ud(mm)	Ut(s)	Εη(%)	Uη(Pa·s)
56.4	0.100	0.022882	0.2	5.466959	0.005462
59.6	0.088	0.002887	0.2	3.785302	0.003333
52.1	0.119	0.002904	0.2	2.869703	0.003405
48.0	0.151	0.003328	0.2	2.30198	0.003479
42.0	0.204	0.003974	0.2	1.752077	0.00358

故最终结果表示如下 $(\eta = \bar{\eta} \pm U_{\eta})$

56.4°C

$$\eta_1 = \overline{\eta}_1 \pm U_{\eta_1} = (0.100 \pm 0.005) Pa \cdot s$$
 $E_{\eta_1} = 5.47\%$ $P = 0.683$

59.6°C

$$egin{aligned} \eta_2 = &\, ar{\eta}_2 \pm U_{\eta_2} \!=\! (0.088 \pm 0.003) Pa \cdot s \ &E_{\eta_2} \!=\! 3.79 \% \ &P \!=\! 0.683 \end{aligned}$$

52.1°C

$$\eta_3 = \overline{\eta}_3 \pm U_{\eta_3} = (0.119 \pm 0.003) Pa \cdot s$$
 $E_{\eta_3} = 2.87\%$ $P = 0.683$

48.0°C

$$\eta_4 = ar{\eta}_4 \pm U_{\eta_4} = (0.151 \pm 0.003) Pa \cdot s$$
 $E_{\eta_4} = 2.30\%$ $P = 0.683$

42.0°C

$$egin{aligned} \eta_5 = \overline{\eta}_5 \pm U_{\eta_5} = & (0.204 \pm 0.004) Pa \cdot s \ E_{\eta_5} = & 1.75 \,\% \ P = & 0.683 \end{aligned}$$

四. 实验结论及现象分析

由我们的实验结果可知,随着温度上升蓖麻油的粘度系数逐渐下降。

根据以上计算过程和分析可知,本次实验结果准确度一般,误差均在5%上下,并且误差有随温度下降而下降的趋势,初步判断是由温度较高时小球下降速度过快时间测量不准确造成的。

为了更准确的测量结果,应当采取自动化仪器测量时间的方式而非人工手动测量。

五. 讨论问题

- 1. 讨论本实验中出现实验误差的原因。
- 答:
- (1) 对于较高温度的测量小球下落过快时,人的反应滞后会导致时间测量偏大,粘度系数结果偏大
- (2) 对于小球直径的测量, 如果显微镜下小球没能与刻度线相切会导致误差增大
- 2. 请解释为什么液体的黏度是随着温度上升而下降。
- 答:液体的粘度随温度的升高而减少,原因是随着温度的升高,液体分子间距变大,从而使粘度下降。
- 3. 如果小球在靠近玻璃管壁处下落, 会对液体黏度的实验测量值有什么影响?
- 答:玻璃管壁处的摩擦力阻碍小球的运动,达成的平衡会使得速度偏小,会导致时间测量结果偏大,导致粘度系数测量值偏大。
- 4. 如果玻璃管是倾斜的, 会对液体黏度的实验测量值有什么影响?
- 答:会导致小球下落的垂直距离与计算所使用的 L 长度不一致,相当于时间测量偏小,使最终粘度系数测量结果偏大。