Asymptotic Distribution of Maximum Likelihood Estimator

Overview

Our goal:

As $n \to \infty$, the distribution of the maximum likelihood estimator becomes approximately $\hat{\Theta}^{MLE} \sim \text{Normal}\left(\theta, \frac{1}{I(\theta)}\right)$

Strategy:

- Take a Taylor series approximation to the first derivative of the log-likelihood
- Use the fact that the derivative of the log-likelihood function is 0 at the maximum
- Let $n \to \infty$. As the sample size grows, we can apply the central limit theorem and the law of large numbers to get our desired result.

Preliminary Results (ingredients for the proof)

Let X_1, \ldots, X_n be independent and identically distributed with mean μ and variance σ^2 .

Law of Large Numbers, Convergence in Probability

• Informal statement of the law of large numbers:

As $n \to \infty$, the sample mean approaches μ .

• Slightly more formal statement of the law of large numbers:

As $n \to \infty$, the probability that the sample mean is close to μ goes to 1

• Formal statement of law of large numbers:

For any
$$\varepsilon > 0$$
, $\lim_{n \to \infty} P(|\bar{X} - \mu| < \varepsilon) = 1$

This is a statement that the sample mean converges in probability to μ .

Central Limit Theorem, Convergence in Distribution

• Informal statement of the central limit theorem:

As $n \to \infty$, the distribution of the sample mean is approximately Normal (μ, σ^2) .

• Slightly more statement of central limit theorem:

As $n \to \infty$, the distribution of $\frac{\sqrt{n}}{\sigma}(\bar{X} - \mu)$ approaches the distribution of a random variable Z that follows a Normal(0, 1) distribution.

• Formal statement of central limit theorem:

Let $F_{Z_n}(\bar{x})$ be the cumulative distribution function of $Z_n = \frac{\sqrt{n}}{\sigma} \left(\frac{1}{n} \sum_{i=1}^n X_i - \mu \right)$ based on a sample of size n, and $F_Z(z)$ be the cumulative distribution function of a Normal(0,1) random variable.

For any point z at which F_Z is continuous, $\lim_{n\to\infty} F_{Z_n}(z) = F_Z(z)$.

This is a statement that the (centered and scaled) sample mean **converges in distribution** to a random variable Z that follows a Normal(0,1) distribution.

Slutsky's Theorem (probably new to you; stated without proof)

Suppose that $X_1, X_2, ...$ is a sequence of random variables that converges in distribution to a random variable X, and $Y_1, Y_2, ...$ is a sequence of random variables that converges in probability to a constant c.

Then $\frac{X_n}{Y_n}$ converges in distribution to $\frac{X}{c}$.

Proof of main claim

- Take a first order Taylor series approximation of the first derivative of the log-likelihood around the parameter estimate $\hat{\theta}^{MLE}$.
 - We saw last class that the first derivative is 0 (the MLE maximizes the log-likelihood)
 - So we get:

$$\ell'(\theta) \approx \ell'(\hat{\theta}^{MLE}) + \ell''(\hat{\theta}^{MLE}|X_1, \dots, X_n)(\theta - \hat{\theta}^{MLE})$$
$$= \ell''(\hat{\theta}^{MLE}|X_1, \dots, X_n)(\theta - \hat{\theta}^{MLE})$$

• Evaluating at the true parameter value θ_0 , we get:

$$\ell'(\theta_0) \approx \ell''(\hat{\theta}^{MLE}|X_1,\dots,X_n)(\theta_0 - \hat{\theta}^{MLE})$$

• Rearrange to get $\sqrt{n}(\hat{\theta}^{MLE} - \theta_0)$ on the left hand side. Our goal is to show that this converges in distribution to a Normal(0,???) random variable.

$$\sqrt{n}(\hat{\theta}^{MLE} - \theta_0) \approx -\frac{\sqrt{n}\ell'(\theta_0)}{\ell''(\hat{\theta}^{MLE}|X_1, \dots, X_n)}$$

• Plug in $\ell(\theta|X_1,\ldots,X_n) = \sum_{i=1}^n \log \{f_{X_i}(x_i|\theta)\}$

$$\sqrt{n}(\hat{\theta}^{MLE} - \theta_0) \approx -\frac{\sqrt{n} \sum_{i=1}^{n} \frac{d}{d\theta} \log \left\{ f_{X_i}(x_i|\theta) \right\} |_{\theta = \theta_0}}{\sum_{i=1}^{n} \frac{d^2}{d\theta^2} \log \left\{ f_{X_i}(x_i|\theta) \right\} |_{\theta = \hat{\theta}^{MLE}}}$$

• Divide the numerator and denominator by $\frac{1}{n}$. We're setting up to apply the law of large numbers and the central limit theorem.

$$\sqrt{n}(\hat{\theta}^{MLE} - \theta_0) \approx -\frac{\sqrt{n} \frac{1}{n} \sum_{i=1}^{n} \frac{d}{d\theta} \log \left\{ f_{X_i}(x_i | \theta) \right\} |_{\theta = \theta_0}}{\frac{1}{n} \sum_{i=1}^{n} \frac{d^2}{d\theta^2} \log \left\{ f_{X_i}(x_i | \theta) \right\} |_{\theta = \hat{\theta}^{MLE}}}$$

- Let $n \to \infty$. Three things happen:
- 1. $\hat{\theta}^{MLE} \to \theta_0$. This means the Taylor series approximation becomes better and better, and we don't have to worry about \approx .
- 2. In the denominator, the law of large numbers applies.

As $n \to \infty$, $\frac{1}{n} \sum_{i=1}^{n} \frac{d^2}{d\theta^2} \log \{f_{X_i}(x_i|\theta)\}|_{\theta = \hat{\theta}^{MLE}}$ converges in probability to $E\left[\frac{d^2}{d\theta^2} \log \{f_{X_i}(x_i|\theta)\}|_{\theta = \hat{\theta}^{MLE}}\right]$. This is the definition of the Fisher information, $I(\hat{\theta}^{MLE})$.

3. In the numerator, the Central Limit Theorem applies.

A lemma is required to show that $E\left[\frac{d}{d\theta}\log\{f_X(x|\theta)\}\right]|_{\theta=\theta_0} = \frac{d}{d\theta}E\left[\log\{f_X(x|\theta)\}\right]|_{\theta=\theta_0} = 0$. Once you have that,

$$\sqrt{n} \left[\frac{1}{n} \sum_{i=1}^{n} \frac{d}{d\theta} \log \left\{ f_{X_i}(x_i | \theta) \right\} |_{\theta = \theta_0} - 0 \right]$$

converges in distribution to a Normal(0, ***) distribution by the CLT

Above, *** is $Var\left[\frac{d}{d\theta}\log\left\{f_X(x|\theta)\right\}\right]$