ℓ_1 Regularization of Word Embeddings for Multi-Word Expression Identification

Gábor Berend

Institute of Informatics, University of Szeged berendg@inf.u-szeged.hu

Overview

- Multi-word expressions (MWEs) are lexical items with spaces (called catenas in linguistics)
- We conducted controlled experiments to compare the effects of various word representations and classification algorithms for MWE identification

MWE dataset used

- \bullet WIKI50 corpus Vincze et al. (2011) (cca. 114K tokens and 4.4K sentences)
- Multiple types of MWEs

MWE type	Example
Noun compounds	black box
Adjectival compounds	monkey styled
Verb-Particle Constructions (VPC)	went on
Light-Verb Constructions (LVC)	opens fire
Idioms	caught the eye of
Other	alter ego
Location NE	Sierra Leone
Person NE	Sir Elton John
Organization NE	Major Indoor Soccer League

Compared models

- Linear CRF model based on pre-trained dense word embeddings
- Glove, polyglot, skip-gram, CBOW embeddings trained on English Wikipedia
- **2** Linear CRF model based on ℓ_1 -regularized word embeddings
- For an embedding matrix $X \in \mathbb{R}^{d \times |V|}$ we solve for $\min_{D \in \mathcal{C}, \alpha} \|X D\alpha\|_F^2 + \lambda \|\alpha\|_1$
 - \mathcal{C} is the convex set of $\mathbb{R}^{d \times k}$ matrices with column norms ≤ 1 , and α contains the sparse coefficients for word forms
- For word i features are derived by $\phi_{sparse}(i) = \{j : 1 | \alpha_x[j,i] > 0 \land 1 \le j \le k\}$
- 3 Linear CRF model based on Brown-cluster prefixes of word forms as features
- ullet CRF model based on "traditional" feature set (\oplus denoting concatenation)

Feature template	
$\overline{\mathtt{isNumber}(w_t)}$	
$isTitleCase(w_t)$	
$\mathtt{isNonAlnum}(w_t)$	
$\mathtt{prefix}(w_t,i)$	$1 \le i \le 4$
$\mathtt{suffix}(w_t,i)$	$1 \le i \le 4$
$\overline{w_{t+j}}$	$-2 \le j \le 2$
$w_t \oplus w_{t+j}$	$1 \le j \le 9$
$w_t \oplus w_{t-j}$	$1 \le j \le 9$
$\bigoplus_{i=t+j}^{t+j+1} w_i$	$-2 \le j \le 1$
$\bigoplus_{i=t+j}^{t+j+2} w_i$	$-2 \le j \le 0$
$\bigoplus_{i=t+j-1}^{t+j+2} w_i$	$-1 \le j \le 0$
$\bigoplus_{i=t-2}^{t+2} w_i$	

- word-level biLSTM models (optionally extended with character-level representations) (Plank et al., 2016)
 - Word embeddings initialized with polyglot (important due to the size of WIKI50)

The effects of ℓ_1 regularization

- Compared the effects of relying on differently trained word embeddings (all trained on the same Wikipedia dumps)
- d=64, k=1000, sparsity ranging between 0.5% and 5%

Dense versus sparse representation

Comparison of alternative models

metho	d	Precision	Recall	F-score
FR	V	62.91	18.04	28.04
FRw	'C	62.92	50.30	55.91
polyglot sparse ($\lambda = 0.3$	3)	67.65	60.03	63.61
bi-LSTN	/	64.81	63.64	64.22
Brow	n	68.79	60.90	64.60
polyglot dens	e	69.24	61.07	64.90

Detailed performance of alternative models

Extending biLSTM with character-level representation

• Improvements mostly on the NE categories

	biLSTM	biLSTM with char
Compound adj	31.67	6.32
Compound noun	57.70	59.82
LVC	37.12	33.74
VPC	67.77	61.17
Location	70.30	72.98
Misc	49.15	51.66
Organization	49.98	53.55
Person	81.59	84.50
Avg.	64.22	66.48

Conclusions

- biLSTM tends to produce more balanced results with respect to precision-recall (except for the Persons)
- Models employing sparse word representation perform best on verb-related MWE types (VPC and LVC)

References

- G. Berend. Sparse coding of neural word embeddings for multilingual sequence labeling. *Transactions of the Association for Computational Linguistics*, 5:247-261, 2017. ISSN 2307-387X. URL https://transacl.org/ojs/index.php/tacl/article/view/1063.
- B. Plank, A. Søgaard, and Y. Goldberg. Multilingual part-of-speech tagging with bidirectional long short-term memory models and auxiliary loss. In *Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)*, pages 412–418. Association for Computational Linguistics, 2016. URL http://anthology.aclweb.org/P16-2067.
- V. Vincze, I. Nagy T., and G. Berend. Multiword expressions and named entities in the Wiki50 corpus. In *Proceedings of the International Conference Recent Advances in Natural Language Processing 2011*, pages 289–295, Hissar, Bulgaria, September 2011. RANLP 2011 Organising Committee. URL http://aclweb.org/anthology/R11-1040.