blockDAGs

Jörn

August 19, 2021

Contents

1	\mathbf{Dig}	raph Utilities	6	
2	DAG			
	2.1	Functions and Definitions	8	
	2.2	Lemmas	9	
		2.2.1 Tips	9	
		2.2.2 Anticone	9	
		2.2.3 Future Nodes	0	
		2.2.4 Past Nodes	0	
		2.2.5 Reduce Past	1	
		2.2.6 Reduce Past Reflexiv	3	
		2.2.7 Reachability cases	3	
		2.2.8 Soundness of the topological sort algorithm 1	5	
3	blockDAGs 19			
	3.1	Functions and Definitions	9	
	3.2	Lemmas	0	
		3.2.1 Genesis	0	
		3.2.2 Tips	0	
	3.3	Future Nodes	5	
		3.3.1 Reduce Past	5	
		3.3.2 Reduce Past Reflexiv	0	
		3.3.3 Genesis Graph	2	
4	Spe	ectre 4	0	
	4.1	Definitions	0	
	4.2	Lemmas	2	
5	GH	OSTDAG 5	${f 2}$	
	5.1	Funcitions and Definitions		
	5.2	Soundness		
	J. _	5.2.1 Soundness of the $add-set-list$ function 5		

```
5.2.2
                 Soundness of the add - if - blue function . . . . . .
         5.2.3
                 Soundness of the larger - blue - tuple comparison . .
         5.2.4
                 Soundness of the choose_max_blue_set function . . . . .
                                                                                 55
         5.2.5
                  55
                 5.2.6
theory Utils
 imports Main
begin
The following functions transform a list L to a relation containing a tuple
(a,b) iff a=b or a precedes b in the list L
fun list-to-rel:: 'a list \Rightarrow 'a rel
 where list-to-rel [] = \{\}
 | list-to-rel (x\#xs) = \{x\} \times (set (x\#xs)) \cup list-to-rel xs
lemma list-to-rel-in: (a,b) \in (list\text{-to-rel } L) \longrightarrow a \in set \ L \land b \in set \ L
proof(induct L, auto) qed
Show soundness of list-to-rel
lemma list-to-rel-equal:
 (a,b) \in list\text{-to-rel } L \longleftrightarrow (\exists k::nat. \ hd \ (drop \ k \ L) = a \land b \in set \ (drop \ k \ L))
\mathbf{proof}(safe)
 assume (a, b) \in list\text{-}to\text{-}rel\ L
 then show \exists k. \ hd \ (drop \ k \ L) = a \land b \in set \ (drop \ k \ L)
 \mathbf{proof}(induct\ L)
   case Nil
   then show ?case by auto
 \mathbf{next}
   case (Cons\ a2\ L)
   then consider (a, b) \in \{a2\} \times set (a2 \# L) \mid (a,b) \in list-to-rel L by auto
   then show ?case unfolding list-to-rel.simps(2)
   proof(cases)
    case 1
     then have a = hd (a2 \# L) by auto
     moreover have b \in set (a2 \# L) using 1 by auto
     ultimately show ?thesis using drop0
      by metis
   next
     case 2
     then obtain k where k-in: hd (drop \ k \ (L)) = a \land b \in set (drop \ k \ (L))
      using Cons(1) by auto
     show ?thesis proof
      let ?k = Suc \ k
      show hd (drop ?k (a2 \# L)) = a \land b \in set (drop ?k (a2 \# L))
        unfolding drop-Suc using k-in by auto
     \mathbf{qed}
```

```
qed
 qed
\mathbf{next}
 \mathbf{fix} \ k
 assume b \in set (drop \ k \ L)
   and a = hd (drop \ k \ L)
 then show (hd (drop \ k \ L), \ b) \in list-to-rel \ L
 \mathbf{proof}(induct\ L\ arbitrary:\ k)
   {\bf case}\ Nil
   then show ?case by auto
 next
   case (Cons\ a\ L)
   consider (zero) k = 0 \mid (more) \ k > 0 by auto
   then show ?case
   proof(cases)
     case zero
     then show ?thesis using Cons drop-0 by auto
   \mathbf{next}
     case more
     then obtain k2 where k2-in: k = Suc \ k2
       using gr0-implies-Suc by auto
      show ?thesis using Cons unfolding k2-in drop-Suc list-to-rel.simps(2) by
auto
   qed
 qed
qed
lemma list-to-rel-append:
 assumes a \in set L
 shows (a,b) \in list\text{-}to\text{-}rel\ (L @ [b])
 using assms
proof(induct L, simp, auto) qed
For every distinct L, list-to-rel L return a linear order on set L
lemma list-order-linear:
 assumes distinct L
 shows linear-order-on (set L) (list-to-rel L)
  unfolding linear-order-on-def total-on-def partial-order-on-def preorder-on-def
refl-on-def
   trans-def\ antisym-def
\mathbf{proof}(safe)
 \mathbf{fix} \ a \ b
 assume (a, b) \in list\text{-}to\text{-}rel\ L
 then show a \in set L
 proof(induct L, auto) qed
next
 \mathbf{fix} \ a \ b
 assume (a, b) \in list\text{-}to\text{-}rel\ L
 then show b \in set L
```

```
proof(induct L, auto) qed
\mathbf{next}
  \mathbf{fix} \ x
  assume x \in set L
  then show (x, x) \in list\text{-}to\text{-}rel\ L
  proof(induct L, auto) qed
\mathbf{next}
  \mathbf{fix} \ x \ y \ z
  assume as1: (x,y) \in list\text{-}to\text{-}rel\ L
    and as2: (y, z) \in list\text{-}to\text{-}rel\ L
  then show (x, z) \in list\text{-}to\text{-}rel\ L
    using assms
  proof(induct L)
    {\bf case}\ {\it Nil}
    then show ?case by auto
  next
    case (Cons\ a\ L)
   then consider (nor) (x, y) \in \{a\} \times set (a \# L) \land (y, z) \in \{a\} \times set (a \# L)
      (xy) (x,y) \in list\text{-}to\text{-}rel\ L \land (y,z) \in \{a\} \times set\ (a \# L)
       (yz) (y,z) \in list\text{-to-rel } L \land (x, y) \in \{a\} \times set \ (a \# L)
      |(both)(y,z) \in list\text{-}to\text{-}rel\ L \land (x,y) \in list\text{-}to\text{-}rel\ L\ \mathbf{by}\ auto
    then show ?case proof(cases)
      case nor
      then show ?thesis by auto
    next
      case xy
      then have y \in set L using list-to-rel-in by metis
     also have y = a using xy by auto
      ultimately have \neg distinct (a \# L)
       by simp
      then show ?thesis using Cons by auto
    next
     case yz
      then show ?thesis using list-to-rel.simps(2)
       by (metis Cons.prems(2) SigmaD1 SigmaI UnI1 list-to-rel-in)
      case both
     then show ?thesis unfolding list-to-rel.simps(2) using Cons by auto
  qed
\mathbf{next}
  \mathbf{fix} \ x \ y
  assume (x, y) \in list\text{-}to\text{-}rel\ L
    and (y, x) \in list\text{-}to\text{-}rel\ L
  then show x = y
    using assms
  proof(induct\ L,\ simp)
    case (Cons\ a\ L)
   then consider (nor) (x, y) \in \{a\} \times set (a \# L) \land (y, x) \in \{a\} \times set (a \# L)
```

```
|(xy)(x,y) \in list\text{-}to\text{-}rel\ L \land (y,x) \in \{a\} \times set\ (a \# L)
      (yz) (y,x) \in list\text{-}to\text{-}rel\ L \land (x,\ y) \in \{a\} \times set\ (a\ \#\ L)
      |\ (both)\ (y,x)\in list\text{-}to\text{-}rel\ L\ \land\ (x,y)\in list\text{-}to\text{-}rel\ L\ \mathbf{by}\ auto
   then show ?case unfolding list-to-rel.simps
   proof(cases)
     case nor
      then show ?thesis by auto
   next
     case xy
     then show ?thesis
      by (metis\ Cons.prems(3)\ SigmaD1\ distinct.simps(2)\ list-to-rel-in\ singletonD)
   \mathbf{next}
     case yz
     then show ?thesis
      by (metis Cons.prems(3) SigmaD1 distinct.simps(2) list-to-rel-in singletonD)
   next
     case both
     then show ?thesis using Cons by auto
   qed
  qed
\mathbf{next}
  \mathbf{fix} \ x \ y
  assume x \in set L
   and y \in set L
   and x \neq y
   and (y, x) \notin list\text{-}to\text{-}rel\ L
  then show (x, y) \in list\text{-}to\text{-}rel\ L
 proof(induct L, auto) qed
qed
lemma list-to-rel-mono:
 assumes (a,b) \in list\text{-}to\text{-}rel\ (L)
 shows (a,b) \in list\text{-}to\text{-}rel (L @ L2)
  using assms
proof(induct L2 arbitrary: L, simp)
  case (Cons a L2)
  then show ?case
 proof(induct L, auto)
 qed
qed
lemma list-to-rel-mono2:
 assumes (a,b) \in list\text{-}to\text{-}rel\ (L2)
 shows (a,b) \in list\text{-}to\text{-}rel (L @ L2)
  using assms
proof(induct L2 arbitrary: L, simp)
```

```
case (Cons a L2)
  then show ?case
 proof(induct L, auto)
  qed
qed
lemma map-snd-map: \bigwedge L. (map snd (map (\lambda i. (P i , i)) L)) = L
proof -
 \mathbf{fix}\ L
 show map snd (map (\lambda i. (P i, i)) L) = L
 proof(induct L)
   {\bf case}\ {\it Nil}
   then show ?case by auto
  next
   case (Cons a L)
   then show ?case by auto
 qed
qed
end
{\bf theory}\ {\it Digraph Utils}
  imports Main Graph-Theory. Graph-Theory
begin
     Digraph Utilities
lemma graph-equality:
  assumes digraph G \wedge digraph C
 assumes verts G = verts \ C \land arcs \ G = arcs \ C \land head \ G = head \ C \land tail \ G =
tail C
 shows G = C
 by (simp \ add: \ assms(2))
lemma (in digraph) del-vert-not-in-graph:
 assumes b \notin verts G
 shows (pre-digraph.del-vert G b) = G
proof -
  have v: verts (pre\text{-}digraph.del\text{-}vert\ G\ b) = verts\ G
   using assms(1)
   by (simp add: pre-digraph.verts-del-vert)
  have \forall e \in arcs \ G. \ tail \ G \ e \neq b \land head \ G \ e \neq b  using digraph-axioms
     assms\ digraph.axioms(2)\ loopfree-digraph.axioms(1)
   by auto
```

```
then have arcs G \subseteq arcs (pre-digraph.del-vert G b)
   using assms
   by (simp add: pre-digraph.arcs-del-vert subsetI)
  then have e: arcs G = arcs (pre-digraph.del-vert G b)
   by (simp add: pre-digraph.arcs-del-vert subset-antisym)
  then show ?thesis using v by (simp add: pre-digraph.del-vert-simps)
\mathbf{qed}
lemma del-arc-subgraph:
 assumes subgraph H G
 assumes digraph \ G \wedge digraph \ H
 shows subgraph (pre-digraph.del-arc H e2) (pre-digraph.del-arc G e2)
 using subgraph-def pre-digraph.del-arc-simps Diff-iff
proof -
 have f1: \forall p \ pa. \ subgraph \ p \ pa = ((verts \ p::'a \ set) \subseteq verts \ pa \land (arcs \ p::'b \ set) \subseteq
arcs pa \land
  wf-digraph pa \land wf-digraph p \land compatible pa p)
   using subgraph-def by blast
 have arcs\ H - \{e2\} \subseteq arcs\ G - \{e2\}\ using\ assms(1)
   by auto
 then show ?thesis
   unfolding subgraph-def
     using f1 assms(1) by (simp add: compatible-def pre-digraph.del-arc-simps
wf-digraph.wf-digraph-del-arc)
qed
lemma graph-nat-induct[consumes 0, case-names base step]:
 assumes
cases: \bigwedge V. (digraph V \Longrightarrow card (verts V) = 0 \Longrightarrow P(V)
\bigwedge W \ c. \ (\bigwedge V. \ (digraph \ V \Longrightarrow card \ (verts \ V) = c \Longrightarrow P \ V))
  \implies (digraph W \implies card (verts W) = (Suc c) \implies P(W)
shows \bigwedge Z. digraph Z \Longrightarrow P Z
proof -
 fix Z:: ('a,'b) pre-digraph
 assume major: digraph Z
 then show P Z
 proof (induction card (verts Z) arbitrary: Z)
   case \theta
   then show ?case
     by (simp add: local.cases(1) major)
  \mathbf{next}
   case su: (Suc x)
   assume (\bigwedge Z. \ x = card \ (verts \ Z) \Longrightarrow digraph \ Z \Longrightarrow P \ Z)
   show ?case
     by (metis\ local.cases(2)\ su.hyps(1)\ su.hyps(2)\ su.prems)
 qed
qed
end
```

```
theory DAGs imports Main Graph-Theory.Graph-Theory begin
```

2 DAG

```
locale DAG = digraph +
assumes cycle-free: \neg(v \rightarrow^+_G v)
```

sublocale $DAG \subseteq wf$ -digraph **using** DAG-def digraph-def nomulti-digraph-def DAG-axioms **by** auto

2.1 Functions and Definitions

```
fun direct-past:: ('a,'b) pre-digraph <math>\Rightarrow 'a \Rightarrow 'a set
  where direct-past G a = \{b \in verts \ G. \ (a,b) \in arcs-ends \ G\}
fun future-nodes:: ('a,'b) pre-digraph \Rightarrow 'a \Rightarrow 'a set
  where future-nodes G a = \{b \in verts \ G. \ b \rightarrow^+_G a\}
fun past-nodes:: ('a,'b) pre-digraph \Rightarrow 'a \Rightarrow 'a set
  where past-nodes G a = \{b \in verts \ G. \ a \rightarrow^+_G b\}
fun past-nodes-refl :: ('a,'b) pre-digraph \Rightarrow 'a \Rightarrow 'a set
  where past-nodes-refl G a = \{b \in verts G. a \rightarrow^*_G b\}
fun anticone:: ('a, 'b) pre-digraph <math>\Rightarrow 'a \Rightarrow 'a set
  where anticone G a = \{b \in verts \ G. \ \neg(a \rightarrow^+_G b \lor b \rightarrow^+_G a \lor a = b)\}
fun reduce-past:: ('a,'b) pre-digraph <math>\Rightarrow 'a \Rightarrow ('a,'b) pre-digraph
  where
    reduce-past G a = induce-subgraph G (past-nodes G a)
fun reduce-past-refl:: ('a,'b) pre-digraph \Rightarrow 'a \Rightarrow ('a,'b) pre-digraph
  where
    reduce-past-refl G a = induce-subgraph G (past-nodes-refl G a)
fun is-tip:: ('a,'b) pre-digraph \Rightarrow 'a \Rightarrow bool
  where is-tip G a = ((a \in verts G) \land (\forall x \in verts G. \neg x \rightarrow^+ G a))
definition tips:: ('a, 'b) pre-digraph \Rightarrow 'a set
  where tips G = \{v \in verts G. is-tip G v\}
fun kCluster:: ('a,'b) pre-digraph \Rightarrow nat \Rightarrow 'a set \Rightarrow bool
  where kCluster\ G\ k\ C = (if\ (C \subseteq (verts\ G))
   then (\forall a \in C. \ card \ ((anticone \ G \ a) \cap C) \leq k) \ else \ False)
```

2.2 Lemmas

```
lemma (in DAG) unidirectional:
 u \to^+ G v \longrightarrow \neg (v \to^* G u)
 using cycle-free reachable1-reachable-trans by auto
2.2.1 Tips
lemma (in wf-digraph) tips-not-referenced:
 assumes is-tip G t
 shows \forall x. \neg x \rightarrow^+ t
 using is-tip.simps assms reachable1-in-verts(1)
 \mathbf{by}\ metis
lemma (in DAG) del-tips-dag:
 assumes is-tip G t
 shows DAG (del\text{-}vert t)
 unfolding DAG-def DAG-axioms-def
proof safe
 show digraph (del-vert t) using del-vert-simps DAG-axioms
     digraph-def
   using digraph-subgraph subgraph-del-vert
   by auto
next
 \mathbf{fix} \ v
 assume v \rightarrow^+ del\text{-}vert\ t\ v then have v \rightarrow^+ v using subgraph\text{-}del\text{-}vert
   by (meson arcs-ends-mono trancl-mono)
  then show False
   by (simp add: cycle-free)
\mathbf{qed}
lemma (in digraph) tips-finite:
 shows finite (tips G)
 using tips-def fin-digraph.finite-verts digraph.axioms(1) digraph-axioms Collect-mono
is\mbox{-}tip.simps
 by (simp add: tips-def)
lemma (in digraph) tips-in-verts:
 shows tips G \subseteq verts G unfolding tips-def
 using Collect-subset by auto
lemma tips-tips:
 assumes x \in tips G
 shows is-tip G x using tips-def CollectD assms(1) by metis
2.2.2 Anticone
lemma (in DAG) tips-anticone:
 assumes a \in tips G
```

```
and b \in tips G
   and a \neq b
 shows a \in anticone \ G \ b
proof(rule ccontr)
 assume a \notin anticone \ G \ b
 then have k: (a \rightarrow^+ b \lor b \rightarrow^+ a \lor a = b) using anticone.simps assms tips-def
   by fastforce
  then have \neg (\forall x \in verts \ G. \ x \rightarrow^+ a) \lor \neg (\forall x \in verts \ G. \ x \rightarrow^+ b) using
reachable 1\hbox{-}in\hbox{-}verts
     assms(3) cycle-free
   by (metis)
 then have \neg is-tip G a \lor \neg is-tip G b using assms(3) is-tip.simps k
   by (metis)
 then have \neg a \in tips \ G \lor \neg b \in tips \ G \ using \ tips-def \ CollectD \ by \ metis
 then show False using assms by auto
qed
lemma (in DAG) anticone-in-verts:
 shows anticone G a \subseteq verts G using anticone.simps by auto
lemma (in DAG) anticon-finite:
 shows finite (anticone G a) using anticone-in-verts by auto
lemma (in DAG) anticon-not-refl:
 shows a \notin (anticone \ G \ a) by auto
2.2.3 Future Nodes
lemma (in DAG) future-nodes-not-refl:
 assumes a \in verts G
 shows a \notin future-nodes G a
 using cycle-free future-nodes.simps reachable-def by auto
2.2.4 Past Nodes
lemma (in DAG) past-nodes-not-refl:
 assumes a \in verts G
 shows a \notin past-nodes G a
 using cycle-free past-nodes.simps reachable-def by auto
lemma (in DAG) past-nodes-verts:
 shows past-nodes G a \subseteq verts G
 using past-nodes.simps reachable1-in-verts by auto
lemma (in DAG) past-nodes-refl-ex:
 assumes a \in verts G
 shows a \in past-nodes-refl G a
 using past-nodes-refl.simps reachable-refl assms
 by simp
```

```
lemma (in DAG) past-nodes-refl-verts:
 shows past-nodes-refl G a \subseteq verts G
 using past-nodes.simps reachable-in-verts by auto
lemma (in DAG) finite-past: finite (past-nodes G a)
 by (metis finite-verts rev-finite-subset past-nodes-verts)
lemma (in DAG) future-nodes-verts:
 shows future-nodes G a \subseteq verts G
 using future-nodes.simps reachable1-in-verts by auto
lemma (in DAG) finite-future: finite (future-nodes G a)
 by (metis finite-verts rev-finite-subset future-nodes-verts)
lemma (in DAG) past-future-dis[simp]: past-nodes G a \cap future-nodes G a = \{\}
proof (rule ccontr)
 assume \neg past-nodes G a \cap future-nodes G a = \{\}
 then show False
    using past-nodes.simps future-nodes.simps unidirectional reachable1-reachable
by auto
qed
2.2.5 Reduce Past
lemma (in DAG) reduce-past-arcs:
 shows arcs (reduce\text{-}past\ G\ a) \subseteq arcs\ G
 using induce-subgraph-arcs past-nodes.simps by auto
lemma (in DAG) reduce-past-arcs2:
 e \in arcs \ (reduce-past \ G \ a) \Longrightarrow e \in arcs \ G
 using reduce-past-arcs by auto
lemma (in DAG) reduce-past-induced-subgraph:
 shows induced-subgraph (reduce-past G a) G
 using induced-induce past-nodes-verts by auto
lemma (in DAG) reduce-past-path:
 assumes u \rightarrow^+_{reduce\text{-}past\ G\ a} v
 shows u \to^+ G v
 using assms
proof induct
 case base then show ?case
   using dominates-induce-subgraphD r-into-trancl' reduce-past.simps
   by metis
\mathbf{next} case (step\ u\ v) show ?case
   using dominates-induce-subgraphD reachable1-reachable-trans reachable-adjI
     reduce-past.simps\ step.hyps(2)\ step.hyps(3) by metis
```

qed

```
lemma (in DAG) reduce-past-path2:
 assumes u \to^+_G v
   and u \in past\text{-}nodes \ G \ a
   and v \in past-nodes G a
 shows u \to^+ reduce\text{-}past\ G\ a\ v
 using assms
\mathbf{proof}(induct\ u\ v)
 case (r\text{-}into\text{-}trancl\ u\ v\ )
 then obtain e where e-in: arc \ e \ (u,v) using arc-def \ DAG-axioms \ wf-digraph-def
   by auto
 then have e-in2: e \in arcs (reduce-past G a) unfolding reduce-past.simps in-
duce-subgraph-arcs
   using arcE\ r-into-trancl.prems(1)\ r-into-trancl.prems(2) by blast
 then have arc-to-ends (reduce-past G a) e = (u,v) unfolding reduce-past simps
     arcE arc-to-ends-def induce-subgraph-head induce-subgraph-tail
   by metis
 then have u \rightarrow_{reduce-past\ G\ a} v using e-in2 wf-digraph.dominatesI DAG-axioms
   by (metis reduce-past.simps wellformed-induce-subgraph)
 then show ?case by auto
next
 case (trancl-into-trancl a2 b c)
 then have b-in: b \in past-nodes G a unfolding past-nodes.simps
   by (metis (mono-tags, lifting) adj-in-verts(1) mem-Collect-eq
      reachable 1-reachable reachable 1-reachable-trans)
 then have a2-re-b: a2 \rightarrow^+ reduce-past G a b using trancl-into-trancl by auto
 then obtain e where e-in: arc e (b,c) using trancl-into-trancl
     arc-def DAG-axioms wf-digraph-def by auto
  then have e-in2: e \in arcs (reduce-past G a) unfolding reduce-past.simps in-
duce-subgraph-arcs
   using arcE\ trancl-into-trancl
     b-in by blast
 then have arc-to-ends (reduce-past G a) e = (b,c) unfolding reduce-past.simps
using e-in
     arcE\ arc-to-ends-def induce-subgraph-head induce-subgraph-tail
   by metis
 then have b \rightarrow_{reduce-past~G~a} c using e-in2 wf-digraph.dominatesI DAG-axioms
   by (metis reduce-past.simps wellformed-induce-subgraph)
 then show ?case using a2-re-b
   by (metis trancl-into-trancl)
qed
lemma (in DAG) reduce-past-pathr:
 assumes u \to^* reduce\text{-}past\ G\ a\ ^v
 shows u \to^*_G v
```

2.2.6 Reduce Past Reflexiv

```
lemma (in DAG) reduce-past-refl-induced-subgraph:
 shows induced-subgraph (reduce-past-refl G a) G
 using induced-induce past-nodes-refl-verts by auto
lemma (in DAG) reduce-past-refl-arcs2:
  e \in arcs \ (reduce-past-refl \ G \ a) \Longrightarrow e \in arcs \ G
 using reduce-past-arcs by auto
lemma (in DAG) reduce-past-refl-digraph:
 assumes a \in verts G
 shows digraph (reduce-past-refl G a)
 using digraphI-induced reduce-past-refl-induced-subgraph reachable-mono by simp
2.2.7 Reachability cases
lemma (in DAG) reachable1-cases:
 obtains (nR) \neg a \rightarrow^+ b \land \neg b \rightarrow^+ a \land a \neq b
  (one) a \rightarrow^+ b
```

```
|(two) b \rightarrow^+ a
 |(eq)|a = b
 using reachable-neg-reachable1 DAG-axioms
 by metis
lemma (in DAG) verts-comp:
 assumes x \in tips G
```

```
show verts G \subseteq \{x\} \cup anticone G \times x \cup verts (reduce-past G \times x)
 proof(rule subsetI)
   \mathbf{fix} \ xa
   assume in-V: xa \in verts G
   then show xa \in \{x\} \cup anticone \ G \ x \cup verts \ (reduce-past \ G \ x)
   proof( cases x xa rule: reachable1-cases)
     case nR
     then show ?thesis using anticone.simps in-V by auto
   next
     case one
   then show ?thesis using reduce-past.simps induce-subgraph-verts past-nodes.simps
in-V
       by auto
   next
     case two
```

shows verts $G = \{x\} \cup (anticone \ G \ x) \cup (verts \ (reduce-past \ G \ x))$

have is-tip G x using tips-tips assms(1) by simpthen have False using tips-not-referenced two by auto

then show ?thesis by simp

next

```
case eq
     then show ?thesis by auto
   qed
 qed
next
  show \{x\} \cup anticone \ G \ x \cup verts \ (reduce-past \ G \ x) \subseteq verts \ G \ using \ di-
graph.tips-in-verts
   digraph-axioms anticone-in-verts reduce-past-induced-subgraph induced-subgraph-def
     subgraph-def assms by auto
qed
lemma (in DAG) verts-comp2:
 assumes x \in tips G
   and a \in verts G
 obtains a = x
  a \in anticone G x
 \mid a \in past\text{-}nodes \ G \ x
 using assms
proof(cases a x rule:reachable1-cases)
 case one
 then show ?thesis
   by (metis assms(1) tips-not-referenced tips-tips)
next
 case two
 then show ?thesis using past-nodes.simps wf-digraph.reachable1-in-verts(2) wf-digraph-axioms
     mem-Collect-eq that(3)
   by (metis (no-types, lifting))
next
 case nR
 then show ?thesis using that(2) anticone.simps assms by auto
lemma (in DAG) verts-comp-dis:
 shows \{x\} \cap (anticone\ G\ x) = \{\}
   and \{x\} \cap (verts \ (reduce-past \ G \ x)) = \{\}
   and anticone G x \cap (verts (reduce-past G x)) = \{\}
proof(simp-all, simp add: cycle-free, safe) qed
lemma (in DAG) verts-size-comp:
 assumes x \in tips G
 shows card (verts G) = 1 + card (anticone G x) + card (verts (reduce-past G x) + card)
x))
proof -
 have f1: finite (verts G) using finite-verts by simp
 have f2: finite \{x\} by auto
 have f3: finite (anticone G x) using anticone.simps by auto
 have f_4: finite (verts (reduce-past G(x)) by auto
```

```
have c1: card \{x\} + card (anticone G(x)) = card (\{x\}) (anticone G(x)) using
card-Un-disjoint
     verts-comp-dis by auto
 have (\{x\} \cup (anticone\ G\ x)) \cap verts\ (reduce-past\ G\ x) = \{\}\ using\ verts-comp-dis
by auto
 then have card (\{x\} \cup (anticone \ G \ x) \cup verts (reduce-past \ G \ x))
     = card \{x\} + card (anticone \ G \ x) + card (verts (reduce-past \ G \ x))
       using card-Un-disjoint
   by (metis c1 f2 f3 f4 finite-UnI)
 moreover have card (verts G) = card (\{x\} \cup (anticone Gx) \cup verts (reduce-past
G(x)
   using assms verts-comp by auto
 moreover have card \{x\} = 1 by simp
 ultimately show ?thesis using assms verts-comp
   by presburger
qed
end
theory TopSort
 imports DAGs Utils
begin
Function to sort a list L under a graph G such if a references b, b precedes
a in the list
fun top-insert:: ('a::linorder,'b) pre-digraph \Rightarrow'a list \Rightarrow 'a \Rightarrow 'a list
 where top-insert G [] a = [a]
  | top-insert G (b \# L) a = (if (b \rightarrow^+_G a) then (<math>a \# (b \# L)) else (b \#
top-insert G(L(a))
fun top-sort:: ('a::linorder,'b) pre-digraph \Rightarrow 'a list \Rightarrow 'a list
 where top-sort G = [
 \mid top\text{-}sort \ G \ (a \# L) = top\text{-}insert \ G \ (top\text{-}sort \ G \ L) \ a
2.2.8
        Soundness of the topological sort algorithm
lemma top-insert-set: set (top-insert G L a) = set L \cup \{a\}
proof(induct L, simp-all, auto) qed
lemma top-sort-con: set (top\text{-sort } G L) = set L
\mathbf{proof}(induct\ L)
 case Nil
 then show ?case by auto
next
 case (Cons\ a\ L)
 then show ?case using top-sort.simps(2) top-insert-set insert-is-Un list.simps(15)
sup-commute
   by (metis)
qed
```

```
lemma top-insert-len: length (top-insert G L a) = Suc (length L)
proof(induct L)
 case Nil
 then show ?case by auto
next
  case (Cons\ a\ L)
  then show ?case using top-insert.simps(2) by auto
qed
lemma top-sort-len: length (top-sort G L) = length L
\mathbf{proof}(induct\ L,\ simp)
 case (Cons a L)
 then have length (a\#L) = Suc (length L) by auto
 then show ?case using
     top-insert-len top-sort.simps(2) Cons
   by (simp add: top-insert-len)
\mathbf{qed}
lemma top-insert-mono:
 assumes (y, x) \in list\text{-}to\text{-}rel\ ls
 shows (y, x) \in list\text{-}to\text{-}rel \ (top\text{-}insert \ G \ ls \ l)
 using assms
proof(induct ls, simp)
  case (Cons a ls)
 consider (rec) a \rightarrow^+_G l \mid (nrec) \neg a \rightarrow^+_G l by auto
 then show ?case
 proof(cases)
   case rec
   then have sinse: (top\text{-}insert\ G\ (a\ \#\ ls)\ l)\ =\ l\ \#\ a\ \#\ ls
     unfolding top-insert.simps by simp
   show ?thesis unfolding sinse list-to-rel.simps using Cons
     by auto
  next
   case nrec
   then have sinse: (top\text{-}insert\ G\ (a\ \#\ ls)\ l)\ =\ a\ \#\ top\text{-}insert\ G\ ls\ l
     unfolding top-insert.simps by simp
   consider (ya) y = a \mid (yan) \mid (y, x) \in list\text{-to-rel } ls \text{ using } Cons \text{ by } auto
   then show ?thesis proof(cases)
     case ya
     then show ?thesis unfolding sinse list-to-rel.simps
     by (metis Cons.prems SigmaI UnI1 top-insert-set insertCI list-to-rel-in sinse)
   next
     case yan
     then show ?thesis using Cons unfolding sinse list-to-rel.simps by auto
   ged
 qed
qed
```

```
lemma top-sort-mono:
 assumes (y, x) \in list\text{-}to\text{-}rel \ (top\text{-}sort \ G \ ls)
 shows (y, x) \in list\text{-}to\text{-}rel \ (top\text{-}sort \ G \ (l \# ls))
 using assms
 by (simp add: top-insert-mono)
fun (in DAG) top-sorted :: 'a list \Rightarrow bool where
  top\text{-}sorted [] = True |
  top-sorted (x \# ys) = ((\forall y \in set \ ys. \ \neg x \rightarrow^+_G y) \land top\text{-sorted } ys)
lemma (in DAG) top-sorted-sub:
 assumes S = drop \ k \ L
   and top-sorted L
 shows top-sorted S
 using assms
proof(induct \ k \ arbitrary: L \ S)
 case \theta
 then show ?case by auto
\mathbf{next}
  case (Suc\ k)
 then show ?case unfolding drop-Suc using top-sorted.simps
   by (metis Suc.prems(1) drop-Nil list.sel(3) top-sorted.elims(2))
qed
lemma top-insert-part-ord:
 assumes DAG G
   and DAG.top-sorted G L
 shows DAG.top-sorted G (top-insert G L a)
 using assms
proof(induct L)
 case Nil
 then show ?case
   by (simp add: DAG.top-sorted.simps)
next
  case (Cons b list)
 consider (re) b \rightarrow^+_G a \mid (nre) \neg b \rightarrow^+_G a by auto
  then show ?case proof(cases)
   case re
   have (\forall y \in set (b \# list). \neg a \rightarrow^+_G y)
   proof(rule ccontr)
     assume \neg (\forall y \in set (b \# list). \neg a \rightarrow^+_G y)
     then obtain wit where wit-in: wit \in set (b \# list) \land a \rightarrow^+_G wit by auto
     then have b \rightarrow^+ G wit using re
       by auto
     then have \neg DAG.top\text{-}sorted \ G \ (b \# list)
```

```
using wit-in using DAG.top-sorted.simps(2) Cons(2)
                    by (metis DAG.cycle-free set-ConsD)
               then show False using Cons by auto
          then show ?thesis using assms(1) DAG.top-sorted.simps Cons
               by (simp add: DAG.top-sorted.simps(2) re)
     \mathbf{next}
           case nre
          have DAG.top-sorted G list using Cons(2,3)
               by (metis\ DAG.top\text{-}sorted.simps(2))
          then have DAG.top-sorted G (top-insert G list a)
               using Cons(1,2) by auto
        \mathbf{moreover\ have}\ (\forall\ y{\in}\mathit{set}\ (\mathit{top\text{-}insert}\ G\ \mathit{list}\ a).\ \neg\ b\rightarrow^+_{\ G}\ y\ )\ \mathbf{using}\ \mathit{top\text{-}insert\text{-}set}
                      Cons DAG.top-sorted.simps(2) nre
               by (metis Un-iff empty-iff empty-set list.simps(15) set-ConsD)
          ultimately show ?thesis using Cons(2)
               by (simp\ add:\ DAG.top\text{-}sorted.simps(2)\ nre)
     qed
qed
lemma top-sort-sorted:
     assumes DAG G
     shows DAG.top-sorted G (top-sort G L)
     using assms
proof(induct L)
     case Nil
     then show ?case
          by (simp\ add:\ DAG.top\text{-}sorted.simps(1))
     case (Cons\ a\ L)
      then show ?case unfolding top-sort.simps using top-insert-part-ord by auto
qed
lemma top-sorted-rel:
     assumes DAG G
          and y \to^+ G x
          and x \in set L
          and y \in set L
          and DAG.top-sorted G L
     shows (x,y) \in list\text{-}to\text{-}rel\ L
     using assms
proof(induct\ L,\ simp)
     have une: x \neq y using assms
         by (metis DAG.cycle-free)
     case (Cons\ a\ L)
      then consider x = a \land y \in set \ (a \# L) \mid y = a \land x \in set \ L \mid x \in set \ L \land y \in se
set L
          using une by auto
```

```
then show ?case proof(cases)
   case 1
   then show ?thesis unfolding list-to-rel.simps by auto
  next
   case 2
   then have \neg DAG.top\text{-}sorted \ G\ (a \# L)
     using assms\ DAG.top\text{-}sorted.simps(2)
     by fastforce
   then show ?thesis using Cons by auto
  next
   case \beta
  then show ?thesis unfolding list-to-rel.simps using Cons\ DAG.top-sorted.simps(2)
     by metis
 qed
qed
lemma top-sort-rel:
 assumes DAG G
   and y \to^+ G x
   and x \in set L
   and y \in set L
  shows (x,y) \in list\text{-}to\text{-}rel \ (top\text{-}sort \ G \ L)
  using assms top-sort-sorted top-sorted-rel top-sort-con
  by metis
end
theory blockDAG
 imports DAGs DigraphUtils
begin
3
      blockDAGs
\mathbf{locale}\ \mathit{blockDAG} = \mathit{DAG}\ +
 assumes genesis: \exists p \in verts \ G. \ \forall r. \ r \in verts \ G \ \longrightarrow (r \rightarrow^+_G p \lor r = p)
   and only-new: \forall e. (u \rightarrow^+_{(del-arc\ e)} v) \longrightarrow \neg arc\ e\ (u,v)
3.1
       Functions and Definitions
fun (in blockDAG) is-genesis-node :: 'a \Rightarrow bool where
  \textit{is-genesis-node } v = ((v \in \textit{verts } G) \, \land \, (\textit{ALL } x. \, (x \in \textit{verts } G) \, \longrightarrow \, x \, \rightarrow^*_{G} v))
definition (in blockDAG) genesis-node:: 'a
  where genesis-node = (THE \ x. \ is-genesis-node \ x)
```

3.2 Lemmas

```
lemma subs:
  assumes blockDAG G
  shows DAG G \wedge digraph G \wedge fin-digraph G \wedge wf-digraph G
 using assms blockDAG-def DAG-def digraph-def fin-digraph-def by blast
3.2.1 Genesis
lemma (in blockDAG) genesisAlt :
  (is\text{-}genesis\text{-}node\ a)\longleftrightarrow ((a\in verts\ G)\land (\forall\ r.\ (r\in verts\ G)\longrightarrow r\rightarrow^* a))
  by simp
lemma (in blockDAG) genesis-existAlt:
  \exists a. is-qenesis-node a
  using genesis genesisAlt
 by (metis reachable1-reachable reachable-refl)
lemma (in blockDAG) unique-genesis: is-genesis-node a \wedge is-genesis-node b \longrightarrow a
  using genesisAlt reachable-trans cycle-free
    reachable-refl reachable-reachable1-trans reachable-neq-reachable1
  by (metis (full-types))
\mathbf{lemma} \ (\mathbf{in} \ \mathit{blockDAG}) \ \mathit{genesis-unique-exists} \colon
  \exists !a. is-genesis-node a
  using genesis-existAlt unique-genesis by auto
lemma (in blockDAG) genesis-in-verts:
  genesis-node \in verts G
 \mathbf{using}\ is-genesis-node. simps\ genesis-node-def\ genesis-exist Alt\ the 112\ genesis-unique-exists
 by metis
3.2.2
          Tips
lemma (in blockDAG) tips-exist:
  \exists x. is-tip G x
  \mathbf{unfolding}\ is\text{-}tip.simps
proof (rule ccontr)
  assume \nexists x. \ x \in verts \ G \ \land (\forall xa \in verts \ G. \ (xa, x) \notin (arcs\text{-}ends \ G)^+)
  then have contr: \forall x. \ x \in verts \ G \longrightarrow (\exists y. \ y \rightarrow^+ x)
    by auto
  have \forall x y. y \rightarrow^+ x \longrightarrow \{z. x \rightarrow^+ z\} \subseteq \{z. y \rightarrow^+ z\}
    using Collect-mono trancl-trans
    by metis
  then have sub: \forall x y. y \rightarrow^+ x \longrightarrow \{z. x \rightarrow^+ z\} \subset \{z. y \rightarrow^+ z\}
    using cycle-free by auto
  have part: \forall x. \{z. x \rightarrow^+ z\} \subseteq verts G
    using reachable1-in-verts by auto
  then have fin: \forall x. finite \{z. x \rightarrow^+ z\}
```

```
using finite-verts finite-subset
   by metis
  then have trans: \forall x y. y \rightarrow^+ x \longrightarrow card \{z. x \rightarrow^+ z\} < card \{z. y \rightarrow^+ z\}
   using sub psubset-card-mono by metis
  then have inf: \forall y \in verts \ G. \ \exists x. \ card \ \{z. \ x \to^+ z\} > card \ \{z. \ y \to^+ z\}
   using fin contr genesis
     reachable 1-in-verts(1)
   by (metis (mono-tags, lifting))
  have all: \forall k. \exists x \in verts \ G. \ card \ \{z. \ x \to^+ z\} > k
  proof
   \mathbf{fix} \ k
   show \exists x \in verts \ G. \ k < card \ \{z. \ x \rightarrow^+ z\}
   \mathbf{proof}(induct\ k)
     case \theta
     then show ?case
       using inf neq0-conv
       by (metis contr genesis-in-verts local.trans reachable1-in-verts(1))
   \mathbf{next}
     case (Suc\ k)
     then show ?case
       using Suc-lessI inf
       by (metis contr local.trans reachable1-in-verts(1))
   qed
 qed
  then have less: \exists x \in verts \ G. card (verts G) < card \{z. \ x \to^+ z\} by simp
 have \forall x. \ card \ \{z. \ x \to^+ z\} \leq card \ (verts \ G)
   using fin part finite-verts not-le
   by (simp add: card-mono)
 then show False
   using less not-le by auto
lemma (in blockDAG) tips-not-empty:
 shows tips G \neq \{\}
proof(rule ccontr)
 assume as1: \neg tips G \neq \{\}
 obtain t where t-in: is-tip G t using tips-exist by auto
 then have t-inV: t \in verts G by auto
 then have t \in tips \ G using tips-def CollectI t-in by metis
  then show False using as1 by auto
qed
lemma (in blockDAG) tips-unequal-gen:
 assumes card(verts G) > 1
   and is-tip G p
 shows \neg is-genesis-node p
proof (rule ccontr)
 assume as: \neg \neg is-genesis-node p
```

```
have b1: 1 < card (verts G) using assms by linarith
 then have 0 < card ((verts \ G) - \{p\}) using card-Suc-Diff1 as finite-verts b1
by auto
 then have ((verts\ G) - \{p\}) \neq \{\} using card-gt-0-iff by blast
 then obtain y where y-def:y \in (verts \ G) - \{p\} by auto
 then have uneq: y \neq p by auto
 then have reachable 1 G y p using is-genesis-node.simps as
     reachable-neq-reachable1 Diff-iff y-def
   by metis
 then have \neg is-tip G p
   by (meson\ is-tip.elims(2)\ reachable 1-in-verts(1))
 then show False using assms by simp
qed
lemma (in blockDAG) tips-unequal-gen-exist:
 assumes card(verts G) > 1
 shows \exists p. p \in verts \ G \land is\text{-}tip \ G \ p \land \neg is\text{-}genesis\text{-}node \ p
proof -
 have b1: 1 < card (verts G) using assms by linarith
 obtain x where x-in: x \in (verts\ G) \land is-genesis-node x
   using genesis genesisAlt genesis-node-def by blast
 then have 0 < card ((verts \ G) - \{x\}) using card-Suc-Diff1 x-in finite-verts b1
by auto
 then have ((verts\ G) - \{x\}) \neq \{\} using card-gt-0-iff by blast
 then obtain y where y-def:y \in (verts \ G) - \{x\} by auto
 then have uneq: y \neq x by auto
 have y-in: y \in (verts \ G) using y-def by simp
 then have reachable 1 G y x using is-genesis-node.simps x-in
     reachable-neq-reachable1 uneq by simp
 then have \neg is-tip G x
   by (meson is-tip.elims(2) y-in)
 then obtain z where z-def: z \in (verts \ G) - \{x\} \land is\text{-tip } G \ z \text{ using } tips\text{-exist}
     is-tip.simps by auto
 then have uneq: z \neq x by auto
 have z-in: z \in verts \ G  using z-def by simp
 have \neg is-genesis-node z
 proof (rule ccontr, safe)
   assume is-genesis-node z
   then have x = z using unique-genesis x-in by auto
   then show False using uneq by simp
 then show ?thesis using z-def by auto
lemma (in blockDAG) del-tips-bDAG:
 assumes is-tip G t
   and \neg is-genesis-node t
```

```
shows blockDAG (del\text{-}vert\ t)
  unfolding blockDAG-def blockDAG-axioms-def
proof safe
 show DAG(del\text{-}vert\ t)
   using del-tips-dag assms by simp
next
  \mathbf{fix} \ u \ v \ e
 assume wf-digraph.arc (del-vert t) e(u, v)
  then have arc: arc e(u,v) using del-vert-simps wf-digraph.arc-def arc-def
   by (metis (no-types, lifting) mem-Collect-eq wf-digraph-del-vert)
  assume u \rightarrow^+ pre-digraph.del-arc (del-vert t) e^{-v}
  then have path: u \rightarrow^+ del-arc e v
   using del-arc-subgraph subgraph-del-vert digraph-axioms
     digraph-subgraph
   by (metis arcs-ends-mono trancl-mono)
  show False using arc path only-new by simp
  obtain g where gen: is-genesis-node g using genesisAlt genesis by auto
 then have genp: g \in verts (del-vert t)
   using assms(2) genesis del-vert-simps by auto
 have (\forall r. \ r \in verts \ (del\text{-}vert \ t) \longrightarrow r \rightarrow^*_{del\text{-}vert \ t} g)
 proof safe
   \mathbf{fix} \ r
   assume in-del: r \in verts (del-vert t)
   then obtain p where path: awalk r p q
     using reachable-awalk is-genesis-node.simps del-vert-simps gen by auto
   have no-head: t \notin (set (map (\lambda s. (head G s)) p))
   proof (rule ccontr)
     assume \neg t \notin (set (map (\lambda s. (head G s)) p))
     then have as: t \in (set (map (\lambda s. (head G s)) p))
       by auto
     then obtain e where tl: t = (head \ G \ e) \land e \in arcs \ G
       using wf-digraph-def awalk-def path by auto
     then obtain u where hd: u = (tail \ G \ e) \land u \in verts \ G
       using wf-digraph-def tl by auto
     have t \in verts G
       using assms(1) is-tip.simps by auto
     then have arc-to-ends G e = (u, t) using tl
       by (simp add: arc-to-ends-def hd)
     then have reachable 1 G u t
       using dominatesI tl by blast
     then show False
       using is-tip.simps assms(1)
        hd by auto
   qed
   have neither: r \neq t \land g \neq t
     using del-vert-def assms(2) gen in-del by auto
   have no-tail: t \notin (set (map (tail G) p))
   proof(rule ccontr)
```

```
assume as2: \neg t \notin set (map (tail G) p)
 then have tl2: t \in set (map (tail G) p) by auto
 then have t \in set \ (map \ (head \ G) \ p)
 proof (induct rule: cas.induct)
   case (1 \ u \ v)
   then have v \notin set \ (map \ (tail \ G) \ []) by auto
   then show v \in set \ (map \ (tail \ G) \ ||) \Longrightarrow v \in set \ (map \ (head \ G) \ ||)
 next
   case (2 \ u \ e \ es \ v)
   then show ?case
     using set-awalk-verts-not-Nil-cas neither awalk-def cas.simps(2) path
     by (metis UnCI tl2 awalk-verts-conv'
         cas-simp\ list.simps(8)\ no-head\ set-ConsD)
 qed
 then show False using no-head by auto
qed
have pre-digraph.awalk (del-vert t) r p g
 unfolding pre-digraph.awalk-def
proof safe
 show r \in verts (del\text{-}vert \ t) using in-del by simp
next
 \mathbf{fix} \ x
 assume as3: x \in set p
 then have ht: head G x \neq t \land tail G x \neq t
   using no-head no-tail by auto
 have x \in arcs G
   using awalk-def path subsetD as3 by auto
 then show x \in arcs (del\text{-}vert \ t) \text{ using } del\text{-}vert\text{-}simps(2) \ ht \ by \ auto
next
 have pre-digraph.cas G r p g using path by auto
 then show pre-digraph.cas (del-vert t) r p g
 proof(induct p arbitrary:r)
   {\bf case}\ {\it Nil}
   then have r = g using awalk-def cas.simps by auto
   then show ?case using pre-digraph.cas.simps(1)
     by (metis)
 next
   case (Cons \ a \ p)
   assume pre: \bigwedge r. (cas r p g \Longrightarrow pre\text{-}digraph.cas (del-vert t) r p g)
     and one: cas \ r \ (a \ \# \ p) \ g
   then have two: cas (head G a) p g
     using awalk-def by auto
   then have t: tail (del-vert t) a = r
     using one cas.simps awalk-def del-vert-simps(3) by auto
   then show ?case
     unfolding pre-digraph.cas.simps(2) t
     using pre two del-vert-simps(4) by auto
 qed
```

```
qed
   then show r \rightarrow^*_{del\text{-}vert\ t} g by (meson wf-digraph.reachable-awalkI
         del	ext{-}tips	ext{-}dag \ assms(1) \ DAG	ext{-}def \ digraph	ext{-}def \ fin	ext{-}digraph	ext{-}def)
  then show \exists p \in verts (del-vert t).
       (\forall r. \ r \in verts \ (del\text{-}vert \ t) \longrightarrow (r \rightarrow^+_{del\text{-}vert \ t} \ p \lor r = p))
   using gen genp
   by (metis reachable-rtranclI rtranclD)
qed
lemma (in blockDAG) tips-cases [consumes 2, case-names ma past nma]:
 assumes p \in tips G
   and x \in verts G
 obtains (ma) x = p
  | (past) x \in past-nodes G p
  \mid (nma) \ x \in anticone \ G \ p
proof -
  consider (eq)x = p \mid (neq) \neg x = p by auto
  then show ?thesis
 proof(cases)
   case eq
   then show thesis using eq ma by simp
  next
   case neq
   consider (in-p)x \in past-nodes \ G \ p \mid (nin-p)x \notin past-nodes \ G \ p \ \mathbf{by} \ auto
   then show ?thesis
   proof(cases)
     case in-p
     then show ?thesis using past by auto
   next
     case nin-p
     then have nn: \neg p \rightarrow^+_G x using nin-p past-nodes.simps assms(2) by auto
     have \neg x \rightarrow^+_G p using is-tip.simps assms tips-def CollectD by metis
     then have x \in anticone \ G \ p \ using \ anticone.simps \ neq \ nn \ assms(2) by auto
     then show ?thesis using nma by auto
   qed
 qed
qed
       Future Nodes
3.3
lemma (in blockDAG) future-nodes-ex:
 assumes a \in verts G
 shows a \notin future-nodes G a
 using cycle-free future-nodes.simps reachable-def by auto
3.3.1 Reduce Past
```

lemma (in blockDAG) reduce-past-not-empty:

```
assumes a \in verts G
   and \neg is-genesis-node a
 shows (verts (reduce-past G a)) \neq {}
proof -
 obtain q
   where gen: is-genesis-node g using genesis-existAlt by auto
 have ex: g \in verts (reduce-past G a) using reduce-past.simps past-nodes.simps
      genesisAlt reachable-neq-reachable1 reachable-reachable1-trans gen assms(1)
assms(2) by auto
 then show (verts\ (reduce\text{-past}\ G\ a)) \neq \{\}\ using\ ex\ by\ auto
qed
lemma (in blockDAG) reduce-less:
 assumes a \in verts G
 shows card (verts (reduce-past G a)) < card (verts G)
proof -
 have past-nodes G a \subset verts G
   using assms(1) past-nodes-not-reft past-nodes-verts by blast
 then show ?thesis
   by (simp add: psubset-card-mono)
qed
lemma (in blockDAG) reduce-past-dagbased:
 assumes a \in verts G
   and \neg is-genesis-node a
 shows blockDAG (reduce-past G a)
 unfolding blockDAG-def DAG-def blockDAG-def
proof safe
 show digraph (reduce-past G a)
   using digraphI-induced reduce-past-induced-subgraph by auto
 show DAG-axioms (reduce-past G a)
   unfolding DAG-axioms-def
   using cycle-free reduce-past-path by metis
next
 show blockDAG-axioms (reduce-past G a)
   unfolding blockDAG-axioms-def
 proof safe
   \mathbf{fix} \ u \ v \ e
   assume arc: wf-digraph.arc (reduce-past G a) e (u, v)
   then show u \to^+ pre-digraph.del-arc\ (reduce-past\ G\ a)\ e\ v \Longrightarrow False
   proof -
     assume e-in: (wf-digraph.arc (reduce-past G a) e (u, v))
     then have (wf-digraph.arc G e (u, v))
      using assms reduce-past-arcs2 induced-subgraph-def arc-def
```

```
proof -
       have wf-digraph (reduce-past G a)
      \textbf{using} \ reduce-past. simps \ subgraph-def \ subgraph-refl \ wf-digraph. well formed-induce-subgraph
         by metis
       then have e \in arcs (reduce-past G a) \wedge tail (reduce-past G a) e = u
                    \land head (reduce-past G a) e = v
         using arc wf-digraph.arcE
         by metis
       then show ?thesis
         using arc-def reduce-past.simps by auto
     then have \neg u \rightarrow^+ del - arc e v
       using only-new by auto
     then show u \rightarrow^+ pre-digraph.del-arc\ (reduce-past\ G\ a)\ e\ v \Longrightarrow False
       using DAG.past-nodes-verts reduce-past.simps blockDAG-axioms subs
         del-arc-subgraph digraph-subgraph digraph-axioms
         subgraph{-induce}{-subgraph}I
       by (metis arcs-ends-mono trancl-mono)
   qed
  next
   obtain p where gen: is-genesis-node p using genesis-existAlt by auto
   have pe: p \in verts \ (reduce-past \ G \ a) \land (\forall r. \ r \in verts \ (reduce-past \ G \ a) \longrightarrow r
\rightarrow^*_{reduce-past\ G\ a}\ p)
   proof
   show p \in verts (reduce-past G a) using genesisAlt induce-reachable-preserves-paths
      reduce-past.simps\ past-nodes.simps\ reachable 1-reachable\ induce-subgraph-verts
assms(1)
          assms(2) gen mem-Collect-eq reachable-neq-reachable1
       by (metis (no-types, lifting))
     show \forall r. r \in verts (reduce-past G a) \longrightarrow r \rightarrow^*_{reduce-past G a} p
     proof safe
       \mathbf{fix} \ r \ a
       assume in-past: r \in verts (reduce-past G a)
       then have con: r \rightarrow^* p using gen genesisAlt past-nodes-verts by auto
       then show r \rightarrow^*_{reduce\text{-}past\ G\ a} p
       proof -
         have f1: r \in verts \ G \land a \rightarrow^+ r
           using in-past past-nodes-verts by force
         obtain aaa :: 'a \ set \Rightarrow 'a \ set \Rightarrow 'a \ where
           f2: \forall x0 \ x1. \ (\exists \ v2. \ v2 \in x1 \land v2 \notin x0) = (aaa \ x0 \ x1 \in x1 \land aaa \ x0 \ x1 \notin x1)
x\theta)
           by moura
         have r \to^* aaa \ (past-nodes \ G \ a) \ (Collect \ (reachable \ G \ r))
                  \rightarrow a \rightarrow^+ aaa \ (past-nodes \ G \ a) \ (Collect \ (reachable \ G \ r))
           using f1 by (meson reachable1-reachable-trans)
            then have an (past-nodes G a) (Collect (reachable G r)) \notin Collect
(reachable G r)
```

```
\vee aaa (past-nodes G a) (Collect (reachable G r)) \in past-nodes
G a
           by (simp\ add:\ reachable-in-verts(2))
         then have Collect (reachable G r) \subseteq past-nodes G a
            using f2 by (meson subsetI)
         then show ?thesis
                using con induce-reachable-preserves-paths reachable-induce-ss re-
duce-past.simps
            by (metis (no-types))
       \mathbf{qed}
     qed
   qed
   show
      \exists p \in verts \ (reduce\text{-past} \ G \ a). \ (\forall r. \ r \in verts \ (reduce\text{-past} \ G \ a)
        \longrightarrow (r \rightarrow^+_{reduce\text{-}past\ G\ a}\ p \lor r = p))
      using pe
      by (metis reachable-rtranclI rtranclD)
  qed
qed
lemma (in blockDAG) reduce-past-gen:
  assumes \neg is-genesis-node a
   and a \in verts G
 shows blockDAG.is-genesis-node G b \implies blockDAG.is-genesis-node (reduce-past
G(a) b
proof -
  assume gen: blockDAG.is-genesis-node G b
 have une: b \neq a using gen assms(1) genesis-unique-exists by auto
 have a \to^* b using gen assms(2) by simp
  then have a \rightarrow^+ b
   using reachable-neq-reachable1 is-genesis-node.simps assms(2) une by auto
  then have b \in (past\text{-}nodes\ G\ a) using past-nodes.simps gen by auto
 then have inv: b \in verts (reduce-past G a) using reduce-past.simps induce-subgraph-verts
   by auto
  \mathbf{have} \forall \ r. \ r \in \ verts \ (\textit{reduce-past} \ G \ a) \longrightarrow r \rightarrow^*_{\textit{reduce-past}} G \ a \ b
  proof safe
   \mathbf{fix} \ r \ a
   assume in-past: r \in verts (reduce-past G a)
   then have con: r \rightarrow^* b using gen genesisAlt past-nodes-verts by auto
   then show r \rightarrow^*_{reduce\text{-}past\ G\ a}\ b
   proof -
     have f1: r \in verts \ G \land a \rightarrow^+ r
       using in-past past-nodes-verts by force
     obtain aaa :: 'a \ set \Rightarrow 'a \ set \Rightarrow 'a \ where
       f2: \forall x0 \ x1. \ (\exists v2. \ v2 \in x1 \land v2 \notin x0) = (aaa \ x0 \ x1 \in x1 \land aaa \ x0 \ x1 \notin x0)
       \mathbf{by} \ moura
```

```
have r \to^* aaa \ (past\text{-}nodes \ G \ a) \ (Collect \ (reachable \ G \ r))
           \rightarrow a \rightarrow^+ aaa \ (past-nodes \ G \ a) \ (Collect \ (reachable \ G \ r))
      using f1 by (meson reachable1-reachable-trans)
    then have an (past-nodes G a) (Collect (reachable G r)) \notin Collect (reachable
G(r)
                \vee aaa (past-nodes G a) (Collect (reachable G r)) \in past-nodes G a
      by (simp\ add:\ reachable-in-verts(2))
     then have Collect (reachable G r) \subseteq past-nodes G a
      using f2 by (meson subsetI)
     then show ?thesis
    {\bf using} \ con \ induce-reachable-preserves-paths \ reachable-induce-ss \ reduce-past. simps
      by (metis (no-types))
   qed
 qed
 then show blockDAG.is-genesis-node (reduce-past G a) b using inv is-genesis-node.simps
   by (metis\ assms(1)\ assms(2)\ blockDAG.is-genesis-node.elims(3)
      reduce-past-dagbased)
qed
lemma (in blockDAG) reduce-past-gen-rev:
 assumes \neg is-genesis-node a
   and a \in verts G
 shows blockDAG.is-genesis-node (reduce-past G a) b \Longrightarrow blockDAG.is-genesis-node
G b
 assume as1: blockDAG.is-genesis-node (reduce-past G a) b
 have bD: blockDAG (reduce-past G a) using assms reduce-past-dagbased blockDAG-axioms
by simp
 obtain gen where is-gen: is-genesis-node gen using genesis-unique-exists by
 then have blockDAG.is-genesis-node (reduce-past G a) gen using reduce-past-gen
assms by auto
 then have gen = b using as 1 blockDAG.unique-genesis bD by metis
 then show blockDAG.is-qenesis-node (reduce-past G a) b \Longrightarrow blockDAG.is-qenesis-node
G b
   using is-gen by auto
qed
lemma (in blockDAG) reduce-past-gen-eq:
 assumes \neg is-genesis-node a
   and a \in verts G
 shows blockDAG.is-genesis-node (reduce-past G a) b = blockDAG.is-genesis-node
G b
 using reduce-past-gen reduce-past-gen-rev assms assms by metis
```

3.3.2 Reduce Past Reflexiv

```
lemma (in blockDAG) reduce-past-refl-induced-subgraph:
 shows induced-subgraph (reduce-past-refl G a) G
 using induced-induce past-nodes-refl-verts by auto
lemma (in blockDAG) reduce-past-refl-arcs2:
 e \in arcs (reduce-past-refl \ G \ a) \Longrightarrow e \in arcs \ G
 using reduce-past-arcs by auto
lemma (in blockDAG) reduce-past-refl-digraph:
 assumes a \in verts G
 shows digraph (reduce-past-refl G a)
 using digraphI-induced reduce-past-refl-induced-subgraph reachable-mono by simp
lemma (in blockDAG) reduce-past-refl-dagbased:
 assumes a \in verts G
 shows blockDAG (reduce-past-refl G a)
 unfolding blockDAG-def DAG-def
proof safe
 show digraph (reduce-past-refl G a)
   using reduce-past-refl-digraph assms(1) by simp
 show DAG-axioms (reduce-past-refl G a)
   unfolding DAG-axioms-def
   using cycle-free reduce-past-refl-induced-subgraph reachable-mono
   by (meson arcs-ends-mono induced-subgraph-altdef trancl-mono)
next
 show blockDAG-axioms (reduce-past-refl G a)
   unfolding blockDAG-axioms
 proof
   \mathbf{fix} \ u \ v
   show \forall e. u \rightarrow^+ pre-digraph.del-arc (reduce-past-refl G a) e^v
       \longrightarrow \neg wf-digraph.arc (reduce-past-refl G a) e (u, v)
   proof safe
     \mathbf{fix} \ e
     assume a: wf-digraph.arc (reduce-past-refl G a) e (u, v)
      and b: u \rightarrow^+ pre\text{-}digraph.del\text{-}arc (reduce\text{-}past\text{-}reft\ G\ a)}\ e\ ^v
     have edge: wf-digraph.arc G e (u, v)
       using assms reduce-past-arcs2 induced-subgraph-def arc-def
     proof -
      have wf-digraph (reduce-past-refl G a)
        using reduce-past-refl-digraph digraph-def by auto
      then have e \in arcs (reduce-past-refl G a) \wedge tail (reduce-past-refl G a) e = u
                  \land head (reduce-past-refl G a) e = v
        using wf-digraph.arcE arc-def a
        by (metis (no-types))
       then show arc e(u, v)
        using arc-def reduce-past-refl.simps by auto
```

```
qed
     have u \rightarrow^+ pre-digraph.del-arc\ G\ e\ v
       using a b reduce-past-refl-digraph del-arc-subgraph digraph-axioms
         digraph I-induced past-nodes-refl-verts reduce-past-refl. simps
       reduce-past-refl-induced-subgraph subgraph-induce-subgraphI arcs-ends-mono
trancl-mono
       by metis
     then show False
       using edge only-new by simp
   qed
 next
   obtain p where gen: is-genesis-node p using genesis-existAlt by auto
   have pe: p \in verts (reduce-past-refl G a)
     {\bf using} \ \ genesis Alt \ \ induce-reachable-preserves-paths
     reduce-past.simps\ past-nodes.simps\ reachable 1-reachable\ induce-subgraph-verts
       gen mem-Collect-eg reachable-neg-reachable1
       assms by force
   have reaches: (\forall r. \ r \in verts \ (reduce\text{-past-refl} \ G \ a) \longrightarrow
            (r \rightarrow^+ reduce\text{-past-refl } G \text{ } a \text{ } p \vee r = p))
   proof safe
     \mathbf{fix} \ r
     assume in-past: r \in verts (reduce-past-refl G a)
     assume une: r \neq p
     then have con: r \rightarrow^* p using gen genesisAlt reachable-in-verts
         reachable 1-reachable
       by (metis in-past induce-subgraph-verts
           past-nodes-refl-verts reduce-past-refl.simps subsetD)
     have a \rightarrow^* r using in-past by auto
     then have reach: r \to^* G \upharpoonright \{w. \ a \to^* w\} \ p
     proof(induction)
       case base
       then show ?case
         {f using} \ \ con\ induce{-reachable-preserves-paths}
         by (metis)
     next
       case (step \ x \ y)
       then show ?case
       proof -
         have Collect (reachable G y) \subseteq Collect (reachable G x)
           using adj-reachable-trans step.hyps(1) by force
         then show ?thesis
           {f using}\ reachable	ext{-}induce	ext{-}ss\ step. IH\ reachable	ext{-}neq	ext{-}reachable1
           by metis
       qed
     qed
     then show r \rightarrow^+_{reduce\text{-}past\text{-}refl\ G\ a} p unfolding reduce\text{-}past\text{-}refl.simps
      past-nodes-refl.simps using reachable-in-verts une wf-digraph.reachable-neq-reachable1
       by (metis (mono-tags, lifting) Collect-cong wellformed-induce-subgraph)
   qed
```

```
then show \exists p \in verts \ (reduce\text{-past-refl} \ G \ a). \ (\forall r. \ r \in verts \ (reduce\text{-past-refl} \ a))
G(a)
        \rightarrow (r \rightarrow^{+}_{reduce-past-refl\ G\ a}\ p \lor r = p)) unfolding blockDAG-axioms-def
     using pe reaches by auto
 ged
qed
3.3.3
        Genesis Graph
definition (in blockDAG) gen-graph::('a,'b) pre-digraph where
  gen-graph = induce-subgraph \ G \ \{blockDAG.genesis-node \ G\}
lemma (in blockDAG) gen-gen : verts (gen-graph) = \{genesis-node\}
  unfolding genesis-node-def gen-graph-def by simp
lemma (in blockDAG) gen-graph-one: card (verts gen-graph) = 1 using gen-gen
by simp
lemma (in blockDAG) gen-graph-digraph:
  digraph gen-graph
 using digraphI-induced induced-induce gen-graph-def
   genesis-in-verts by simp
lemma (in blockDAG) gen-graph-empty-arcs:
  arcs\ gen-graph = \{\}
proof(rule ccontr)
 \mathbf{assume} \neg \mathit{arcs} \mathit{gen-graph} = \{\}
 then have ex: \exists a. \ a \in (arcs \ gen-graph)
 also have \forall a. a \in (arcs \ gen-graph) \longrightarrow tail \ G \ a = head \ G \ a
 proof safe
   \mathbf{fix} \ a
   assume a \in arcs gen-graph
   then show tail G a = head G a
     using digraph-def induced-subgraph-def induce-subgraph-verts
       induced-induce gen-graph-def by simp
 qed
 then show False
   using digraph-def ex gen-graph-def gen-graph-digraph induce-subgraph-head in-
duce-subgraph-tail
     loop free-digraph. no-loops
   by metis
qed
lemma (in blockDAG) gen-graph-sound:
  blockDAG (gen-graph)
 \mathbf{unfolding}\ blockDAG\text{-}def\ DAG\text{-}def\ blockDAG\text{-}axioms\text{-}def
proof safe
```

```
show digraph gen-graph using gen-graph-digraph by simp
next
  have (arcs\text{-}ends\ gen\text{-}graph)^+ = \{\}
    using trancl-empty gen-graph-empty-arcs by (simp add: arcs-ends-def)
  then show DAG-axioms gen-graph
    by (simp add: DAG-axioms.intro)
\mathbf{next}
  \mathbf{fix} \ u \ v \ e
  have wf-digraph.arc gen-graph e(u, v) \equiv False
    using wf-digraph.arc-def gen-graph-empty-arcs
    \mathbf{by}\ (simp\ add\colon wf\text{-}digraph.arc\text{-}def\ wf\text{-}digraph\text{-}def)
  then show wf-digraph.arc gen-graph e(u, v) \Longrightarrow
       u \rightarrow^+ pre-digraph.del-arc\ qen-graph\ e\ v \Longrightarrow False
    by simp
\mathbf{next}
  have refl: genesis-node \rightarrow^*_{gen-graph} genesis-node
    using gen-gen rtrancl-on-refl
    by (simp add: reachable-def)
  have \forall r. \ r \in verts \ gen\text{-}graph \longrightarrow r \rightarrow^*_{gen\text{-}graph} \ genesis\text{-}node
  proof safe
    \mathbf{fix} \ r
    assume r \in verts gen-graph
    then have r = genesis-node
      using gen-gen by auto
    then show r \rightarrow^*_{gen\text{-}graph} genesis-node
      by (simp add: local.refl)
  qed
  then show \exists p \in verts \ gen\text{-}graph.
        (\forall r. \ r \in verts \ gen\text{-}graph \longrightarrow r \rightarrow^+_{gen\text{-}graph} \ p \lor r = p)
    by (simp add: gen-gen)
qed
lemma (in blockDAG) no\text{-}empty\text{-}blockDAG:
  shows card (verts G) > 0
proof -
  have \exists p. p \in verts G
    using genesis-in-verts by auto
  then show card (verts G) > \theta
    using card-gt-0-iff finite-verts by blast
qed
lemma (in blockDAG) gen-graph-all-one:
  card\ (verts\ (G)) = 1 \longleftrightarrow G = gen\text{-}graph
  \mathbf{using}\ card	ext{-}1	ext{-}singletonE\ gen	ext{-}graph	ext{-}def\ genesis	ext{-}in	ext{-}verts
  induce-eq-iff-induced\ induced-subgraph-refl\ singleton D\ qen-graph-def\ qenesis-node-def
 by (metis qen-qen qenesis-existAlt is-qenesis-node.simps less-one linorder-neqE-nat
      neq0-conv no-empty-blockDAG tips-unequal-gen-exist)
```

lemma blockDAG-nat-induct[consumes 1, case-names base step]:

```
assumes
   bD: blockDAG Z
   and
   cases: \bigwedge V. (blockDAG V \Longrightarrow card (verts V) = 1 \Longrightarrow P(V)
   \bigwedge W \ c. \ (\bigwedge V. \ (blockDAG \ V \Longrightarrow card \ (verts \ V) = c \Longrightarrow P \ V))
 \implies (blockDAG W \implies card (verts W) = Suc c \implies P(W)
 shows P Z
proof -
  have bG: card (verts Z) > 0 using bD blockDAG.no-empty-blockDAG by auto
 show ?thesis
   using bG bD
 proof (induction card (verts Z) arbitrary: Z rule: Nat.nat-induct-non-zero)
   then show ?case using cases(1) by auto
 next
   case su: (Suc n)
   show ?case
     by (metis\ local.cases(2)\ su.hyps(2)\ su.hyps(3)\ su.prems)
 qed
qed
lemma blockDAG-nat-less-induct[consumes 1, case-names base step]:
  assumes
   bD: blockDAG Z
   and
   cases: \bigwedge V. (blockDAG V \Longrightarrow card (verts V) = 1 \Longrightarrow P(V)
   \bigwedge W \ c. \ (\bigwedge V. \ (blockDAG \ V \Longrightarrow card \ (verts \ V) < c \Longrightarrow P \ V))
  \implies (blockDAG \ W \implies card \ (verts \ W) = c \implies P \ W)
 shows P Z
proof -
 have bG: card\ (verts\ Z) > \theta using blockDAG.no-empty-blockDAG\ assms(1) by
auto
 \mathbf{show}\ P\ Z
   using bD bG
 proof (induction card (verts Z) arbitrary: Z rule: less-induct)
   fix Z::('a, 'b) pre-digraph
   assume a:
     (\bigwedge Za. \ card \ (verts \ Za) < card \ (verts \ Z) \Longrightarrow blockDAG \ Za \Longrightarrow 0 < card \ (verts \ Za)
Za) \Longrightarrow P Za
   assume blockDAG Z
   then show P Z using a cases
     by (metis\ blockDAG.no-empty-blockDAG)
 qed
qed
lemma (in blockDAG) blockDAG-size-cases:
 obtains (one) card (verts G) = 1
 | (more) \ card \ (verts \ G) > 1
```

```
using no\text{-}empty\text{-}blockDAG
 by linarith
lemma (in blockDAG) blockDAG-cases-one:
 shows card (verts G) = 1 \longrightarrow (G = qen-graph)
proof (safe)
 assume one: card (verts G) = 1
 then have blockDAG.genesis-node G \in verts G
   by (simp add: genesis-in-verts)
 then have only: verts G = \{blockDAG.genesis-node G\}
   by (metis one card-1-singletonE insert-absorb singleton-insert-inj-eq')
 then have verts-equal: verts G = verts (blockDAG.gen-graph G)
   using blockDAG-axioms one blockDAG.gen-graph-def induce-subgraph-def
     induced-induce\ blockDAG.genesis-in-verts
   by (simp add: blockDAG.gen-graph-def)
 have arcs G = \{\}
 proof (rule ccontr)
   assume not-empty: arcs \ G \neq \{\}
   then obtain z where part-of: z \in arcs \ G
     by auto
   then have tail: tail G z \in verts G
     using wf-digraph-def blockDAG-def DAG-def
      digraph-def\ blockDAG-axioms\ nomulti-digraph.axioms(1)
     by metis
   also have head: head G z \in verts G
     by (metis (no-types) DAG-def blockDAG-axioms blockDAG-def digraph-def
        nomulti-digraph.axioms(1) part-of wf-digraph-def)
   then have tail G z = head G z
     using tail only by simp
   then have \neg loopfree-digraph-axioms G
     unfolding loopfree-digraph-axioms-def
     using part-of only DAG-def digraph-def
     by auto
   then show False
     using DAG-def digraph-def blockDAG-axioms blockDAG-def
      loopfree-digraph-def by metis
 qed
 then have arcs G = arcs (blockDAG.gen-graph G)
   by (simp add: blockDAG-axioms blockDAG.gen-graph-empty-arcs)
 then show G = gen\text{-}graph
   \mathbf{unfolding} \quad blockDAG.gen\text{-}graph\text{-}def
   using verts-equal blockDAG-axioms induce-subgraph-def
     blockDAG.gen-graph-def by fastforce
qed
lemma (in blockDAG) blockDAG-cases-more:
 shows card (verts G) > 1 \longleftrightarrow (\exists b \ H. (blockDAG H \land b \in verts \ G \land del-vert \ b
= H)
proof safe
```

```
assume card (verts G) > 1
 then have b1: 1 < card (verts G) using no-empty-blockDAG by linarith
 obtain x where x-in: x \in (verts\ G) \land is-genesis-node\ x
   using genesis genesisAlt genesis-node-def by blast
 then have 0 < card ((verts G) - \{x\}) using card-Suc-Diff1 x-in finite-verts b1
by auto
 then have ((verts\ G) - \{x\}) \neq \{\} using card-gt-0-iff by blast
 then obtain y where y-def:y \in (verts \ G) - \{x\} by auto
 then have uneq: y \neq x by auto
 have y-in: y \in (verts \ G) using y-def by simp
 then have reachable1 G y x using is-genesis-node.simps x-in
     reachable-neq-reachable1 uneq by simp
 then have \neg is-tip G x
   using y-in by force
 then obtain z where z-def: z \in (verts\ G) - \{x\} \land is-tip G\ z using tips-exist
     is-tip.simps by auto
 then have uneq: z \neq x by auto
 have z-in: z \in verts \ G  using z-def by simp
 have \neg is-genesis-node z
 proof (rule ccontr, safe)
   assume is-genesis-node z
   then have x = z using unique-genesis x-in by auto
   then show False using uneq by simp
 qed
 then have blockDAG (del-vert z) using del-tips-bDAG z-def by simp
 then show (\exists b \ H. \ blockDAG \ H \land b \in verts \ G \land del-vert \ b = H) using z-def
by auto
next
 fix b and H::('a,'b) pre-digraph
 assume bD: blockDAG (del-vert b)
 assume b-in: b \in verts G
 show card (verts G) > 1
 proof (rule ccontr)
   assume \neg 1 < card (verts G)
   then have 1 = card (verts G) using no-empty-blockDAG by linarith
   then have card (verts (del-vert b)) = \theta using b-in del-vert-def by auto
   then have \neg blockDAG (del\text{-}vert \ b) using bD \ blockDAG.no\text{-}empty\text{-}blockDAG
     by (metis less-nat-zero-code)
   then show False using bD by simp
 qed
qed
lemma (in blockDAG) blockDAG-cases:
 obtains (base) (G = gen\text{-}graph)
 | (more) (\exists b \ H. (blockDAG \ H \land b \in verts \ G \land del-vert \ b = H))
 using blockDAG-cases-one blockDAG-cases-more
   blockDAG-size-cases by auto
```

 ${\bf lemma}\ blockDAG\text{-}induct[consumes\ 1,\ case\text{-}names\ fund\ base\ step]:$

```
assumes base: blockDAG G
 assumes cases: \bigwedge V::('a,'b) pre-digraph. blockDAG V \Longrightarrow P (blockDAG.gen-graph
    \bigwedge H::('a,'b) pre-digraph.
 (\bigwedge b::'a.\ blockDAG\ (pre-digraph.del-vert\ H\ b)\Longrightarrow b\in verts\ H\Longrightarrow P(pre-digraph.del-vert\ H\ b)
  \implies (blockDAG \ H \implies P \ H)
 shows P G
proof(induct-tac G rule:blockDAG-nat-induct)
 show blockDAG G using assms(1) by simp
next
 fix V::('a,'b) pre-digraph
 assume bD: blockDAG\ V
   and card (verts V) = 1
  then have V = blockDAG.gen-graph V
   using blockDAG.blockDAG-cases-one equal-reft by auto
  then show P \ V \ using \ bD \ cases(1)
   by metis
next
 fix c and W::('a,'b) pre-digraph
 show (\bigwedge V. blockDAG \ V \Longrightarrow card \ (verts \ V) = c \Longrightarrow P \ V) \Longrightarrow
          blockDAG \ W \Longrightarrow card \ (verts \ W) = Suc \ c \Longrightarrow P \ W
   assume ind: \bigwedge V. (blockDAG V \Longrightarrow card (verts V) = c \Longrightarrow P(V)
     and bD: blockDAG W
     and size: card (verts W) = Suc c
   have assm2: \land b. \ blockDAG \ (pre-digraph.del-vert \ W \ b)
           \implies b \in verts \ W \implies P(pre-digraph.del-vert \ W \ b)
   proof -
     \mathbf{fix} \ b
     assume bD2: blockDAG (pre-digraph.del-vert W b)
     assume in-verts: b \in verts W
     have verts (pre-digraph.del-vert\ W\ b) = verts\ W\ - \{b\}
       by (simp add: pre-digraph.verts-del-vert)
     then have card (verts (pre-digraph.del-vert W b)) = c
      using in-verts fin-digraph.finite-verts bD subs fin-digraph.fin-digraph-del-vert
       by (simp add: fin-digraph.finite-verts subs
           DAG.axioms \ assms(1) \ digraph.axioms)
     then show P (pre-digraph.del-vert W b) using ind bD2 by auto
   show ?thesis using cases(2)
     by (metis \ assm2 \ bD)
 qed
qed
function genesis-nodeAlt:: ('a::linorder,'b) pre-digraph \Rightarrow 'a
 where genesis-nodeAlt G = (if (\neg blockDAG G) then undefined else
```

```
if (card\ (verts\ G\ ) = 1) then (hd\ (sorted-list-of-set\ (verts\ G)))
 else genesis-nodeAlt\ (reduce-past G\ ((hd\ (sorted-list-of-set\ (tips\ G))))))
 by auto
termination proof
 let ?R = measure (\lambda G. (card (verts G)))
 show wf ?R by auto
\mathbf{next}
 \mathbf{fix} \ G :: ('a::linorder, 'b) \ pre-digraph
 assume \neg \neg blockDAG G
 then have bD: blockDAG G by simp
 assume card (verts G) \neq 1
 then have bG: card (verts G) > 1 using bD blockDAG.blockDAG-size-cases by
auto
 have set (sorted-list-of-set (tips G)) = tips G
   by (simp add: bD subs tips-def fin-digraph.finite-verts)
 then have hd (sorted-list-of-set (tips G)) \in tips G
   using hd-in-set bD tips-def bG blockDAG.tips-unequal-gen-exist
     empty-iff empty-set mem-Collect-eq
   by (metis (mono-tags, lifting))
 then show (reduce-past G (hd (sorted-list-of-set (tips G))), G) \in measure (\lambda G.
card (verts G)
   using blockDAG.reduce-less\ bD
   using tips-def by fastforce
qed
lemma genesis-nodeAlt-one-sound:
 assumes bD: blockDAG G
   and one: card (verts G) = 1
 shows blockDAG.is-genesis-node G (genesis-nodeAlt G)
proof -
 have exone: \exists ! x. x \in (verts \ G)
  \textbf{using } bD \ one \ blockDAG. genesis-in-verts \ blockDAG. genesis-unique-exists \ blockDAG. reduce-less
     blockDAG.reduce-past-dagbased less-nat-zero-code less-one by metis
 then have sorted-list-of-set (verts G) \neq []
   by (metis card.infinite card-0-eq finite.emptyI one
      sorted-list-of-set-empty sorted-list-of-set-inject zero-neg-one)
 then have genesis-nodeAlt G \in verts \ G using hd-in-set genesis-nodeAlt.simps
bD exone
   by (metis one set-sorted-list-of-set sorted-list-of-set.infinite)
 then show one-sound: blockDAG.is-genesis-node G (genesis-nodeAlt G)
   using bD one
   by (metis blockDAG.blockDAG-size-cases blockDAG.reduce-less
       blockDAG.reduce-past-dagbased less-one not-one-less-zero)
qed
\mathbf{lemma}\ genesis\text{-}nodeAlt\text{-}sound:
 assumes blockDAG G
 shows blockDAG.is-genesis-node\ G\ (genesis-node\ Alt\ G)
proof(induct-tac G rule:blockDAG-nat-less-induct)
```

```
show blockDAG G using assms by simp
next
 fix V::('a,'b) pre-digraph
 assume bD: blockDAG\ V
 assume one: card (verts V) = 1
 then show blockDAG.is-genesis-node V (genesis-nodeAlt V)
   using genesis-nodeAlt-one-sound bD
   by blast
next
 fix W::('a,'b) pre-digraph
 \mathbf{fix} \ c :: nat
 assume basis:
   (\bigwedge V::('a,'b) \text{ pre-digraph. blockDAG } V \Longrightarrow card \text{ (verts } V) < c \Longrightarrow
 blockDAG.is-genesis-node V (genesis-nodeAlt V))
 assume bD: blockDAG W
 assume cd: card (verts W) = c
 consider (one) card (verts W) = 1 | (more) card (verts W) > 1
   using bD blockDAG.blockDAG-size-cases by blast
 then show blockDAG.is-genesis-node W (genesis-nodeAlt W)
 \mathbf{proof}(cases)
   case one
   then show ?thesis using genesis-nodeAlt-one-sound bD
    by blast
 next
   case more
   then have not-one: 1 \neq card (verts W) by auto
   have se: set (sorted-list-of-set (tips W)) = tips W
    by (simp add: bD subs tips-def fin-digraph.finite-verts)
   obtain a where a-def: a = hd (sorted-list-of-set (tips W))
    by simp
   have tip: a \in tips W
    using se a-def hd-in-set bD tips-def more blockDAG.tips-unequal-gen-exist
      empty-iff empty-set mem-Collect-eq
    by (metis (mono-tags, lifting))
   then have ver: a \in verts W
    by (simp add: tips-def a-def)
   then have card (verts (reduce-past W a)) < card (verts W)
    using more cd blockDAG.reduce-less bD
    by metis
   then have cd2: card ( verts (reduce-past W a)) < c
    using cd by simp
   have n-gen: \neg blockDAG.is-genesis-node W a
     using blockDAG.tips-unequal-gen bD more tip tips-def Collect-mem-eq by
fastforce
   then have bD2: blockDAG (reduce-past W a)
    using blockDAG.reduce-past-dagbased ver bD by auto
   have ff: blockDAG.is-genesis-node (reduce-past W a)
    (genesis-nodeAlt (reduce-past W a)) using cd2 basis bD2 more
    by blast
```

```
 \begin{aligned} & \textbf{have} \ rec: \ genesis-nodeAlt \ W = \ genesis-nodeAlt \ (reduce-past \ W \ (hd \ (sorted-list-of-set \ (tips \ W)))) \\ & \textbf{using} \ genesis-nodeAlt.simps \ not-one \ bD \\ & \textbf{by} \ met is \\ & \textbf{show} \ ?thesis \ \textbf{using} \ rec \ ff \ bD \ n-gen \ ver \ blockDAG.reduce-past-gen-eq \ a-def \ \textbf{by} \\ & met is \\ & \textbf{qed} \\ & \textbf{qed} \end{aligned}  end
```

theory Spectre imports Main Graph-Theory.Graph-Theory blockDAG begin

Based on the SPECTRE paper by Sompolinsky, Lewenberg and Zohar 2016

4 Spectre

4.1 Definitions

Function to check and break occuring ties

```
fun tie-break-int:: 'a::linorder \Rightarrow 'a \Rightarrow int \Rightarrow int where tie-break-int a b i = (if i=0 then (if (b < a) then -1 else 1) else (if i > 0 then 1 else -1))
```

Function to check if all entries of a list are zero

```
\begin{array}{l} \textbf{fun } zero\text{-}list \colon int \ list \Rightarrow bool \\ \textbf{where } zero\text{-}list \ [] = True \\ \mid zero\text{-}list \ (x \ \# \ xs) = ((x = \ \theta) \ \land \ zero\text{-}list \ xs) \end{array}
```

Function given a list of votes, sums them up if not only zeros, otherwise "no vote"

```
fun sumlist-break :: 'a::linorder \Rightarrow 'a \Rightarrow int list \Rightarrow int where sumlist-break a b L = (if (zero-list L) then 0 else tie-break-int a b (sum-list L))
```

Spectre core algorithm, vote - SpectreVabc returns 1 if a votes in favour of b (or b = c), -1 if a votes in favour of c, 0 otherwise

```
function vote-Spectre :: ('a::linorder,'b) pre-digraph \Rightarrow 'a \Rightarrow 'a \Rightarrow int where
vote-Spectre V a b c = (
if (\neg blockDAG V \lor a \notin verts V \lor b \notin verts V \lor c \notin verts V) then 0 else if (b=c) then 1 else
```

```
if ((a \rightarrow^+_V b) \land (a \rightarrow^+_V c)) then
   (sumlist-break b c (map (\lambda i).
 (vote-Spectre (reduce-past V a) i b c)) (sorted-list-of-set (past-nodes V a))))
 else
   sumlist-break b c (map (\lambda i.
   (vote-Spectre V i b c)) (sorted-list-of-set (future-nodes V a))))
  by auto
termination
proof
 let ?R = measures [(\lambda(V, a, b, c). (card (verts V))), (\lambda(V, a, b, c). card {e.
e \to^* V a\})]
 show wf ?R
   by simp
next
  fix V::('a::linorder, 'b) pre-digraph
 \mathbf{fix} \ x \ a \ b \ c
 assume bD: \neg (\neg blockDAG\ V \lor a \notin verts\ V \lor b \notin verts\ V \lor c \notin verts\ V)
  then have a \in verts \ V by simp
  then have card (verts (reduce-past V a)) < card (verts V)
   \mathbf{using}\ bD\ blockDAG.reduce\text{-}less
   by metis
  then show ((reduce-past V a, x, b, c), V, a, b, c)
      \in measures
          [\lambda(V, a, b, c)]. card (verts V),
           \lambda(V, a, b, c). card \{e. e \rightarrow^*_V a\}
   by simp
\mathbf{next}
 fix V::('a::linorder, 'b) pre-digraph
 \mathbf{fix} \ x \ a \ b \ c
 assume bD: \neg (\neg blockDAG\ V \lor a \notin verts\ V \lor b \notin verts\ V \lor c \notin verts\ V)
  then have a-in: a \in verts \ V \text{ using } bD \text{ by } simp
  assume x \in set (sorted-list-of-set (future-nodes V(a))
  then have x \in future-nodes V a using DAG.finite-future
     set-sorted-list-of-set bD subs
   by metis
  then have rr: x \to^+ V a using future-nodes.simps bD mem-Collect-eq
   by simp
  then have a-not: \neg \ a \rightarrow^* _V x using bD DAG.unidirectional subs by metis
  have bD2: blockDAG\ V using bD by simp
  have \forall x. \{e. e \rightarrow^*_V x\} \subseteq verts \ V \text{ using } subs \ bD2 \ subsetI
     wf-digraph.reachable-in-verts(1) mem-Collect-eq
   by metis
  then have fin: \forall x. finite \{e.\ e \rightarrow^* V x\} using subs bD2 fin-digraph.finite-verts
     finite-subset
   by metis
  have x \to^* V a using rr wf-digraph.reachable 1-reachable subs bD2 by metis
  then have \{e. e \rightarrow^*_V x\} \subseteq \{e. e \rightarrow^*_V a\} using rr
```

if $(((a \rightarrow^+_V b) \lor a = b) \land \neg(a \rightarrow^+_V c))$ then 1 else if $(((a \rightarrow^+_V c) \lor a = c) \land \neg(a \rightarrow^+_V b))$ then -1 else

```
wf-digraph.reachable-trans Collect-mono subs bD2 by metis
  then have \{e. e \rightarrow^*_V x\} \subset \{e. e \rightarrow^*_V a\} using a-not
     subs\ bD2\ a-in\ mem-Collect-eq\ psubsetI\ wf-digraph.reachable-refl
   by metis
  then have card \{e. e \rightarrow^*_V x\} < card \{e. e \rightarrow^*_V a\} using fin
   by (simp add: psubset-card-mono)
  then show ((V, x, b, c), V, a, b, c)
      \in measures
          [\lambda(V, a, b, c). \ card \ (verts \ V), \ \lambda(V, a, b, c). \ card \ \{e. \ e \rightarrow^*_{V} a\}]
   by simp
qed
Given vote-Spectre calculate if a < b for arbitrary nodes
definition Spectre-Order :: ('a::linorder,'b) pre-digraph \Rightarrow 'a \Rightarrow 'a \Rightarrow bool
  where Spectre-Order G a b = (sumlist-break \ a \ b \ (map \ (\lambda i.
  (vote\text{-}Spectre\ G\ i\ a\ b))\ (sorted\text{-}list\text{-}of\text{-}set\ (verts\ G)))=1)
Given Spectre-Order calculate the corresponding relation over the nodes of
definition Spectre-Order-Relation :: ('a::linorder,'b) pre-digraph \Rightarrow ('a \times 'a) set
 where Spectre-Order-Relation G \equiv \{(a,b) \in (verts \ G \times verts \ G). \ Spectre-Order-
G \ a \ b
4.2 Lemmas
lemma zero-list-sound:
 zero-list L \equiv \forall a \in set L. a = 0
proof(induct L, auto) qed
lemma sumlist-one-mono:
 assumes \forall x \in set L. x > 0
   and \exists x \in set L. x > 0
   and L \neq []
 shows sumlist-break \ a \ b \ L = 1
 using assms
proof(induct\ L,\ simp)
 case (Cons a2 L)
  then have nz: \neg zero-list (a2 \# L)  using assms
   by (metis less-int-code(1) zero-list-sound)
 consider (bg) a2 > 0 \mid a2 = 0 using Cons
   by (metis le-less list.set-intros(1))
 then show ?case
  proof(cases)
   case bq
   then have sum-list L \geq 0 using Cons
     by (simp add: sum-list-nonneg)
   then have sum-list (a2 # L) > 0 using bg sum-list-def
     by auto
   then show ?thesis using nz sumlist-break.simps tie-break-int.simps
```

```
by auto
     next
         case 2
         then have be: \exists a \in set L. \ 0 < a \text{ using } Cons
              by (metis less-int-code(1) set-ConsD)
         then have L \neq [] by auto
         then have sumlist-break a b L = 1 using Cons be
         then show ?thesis using sum-list-def 2 sumlist-break.simps nz
              by auto
     qed
qed
lemma domain-tie-break:
    shows tie-break-int a b c \in \{-1, 1\}
    using tie-break-int.simps by simp
lemma domain-sumlist:
     shows sumlist-break a b c \in \{-1, 0, 1\}
     using insertCI sumlist-break.elims domain-tie-break
    by (metis insert-commute)
lemma domain-sumlist-not-empty:
     assumes \neg zero-list l
     shows sumlist-break a b l \in \{-1, 1\}
     using sumlist-break.elims domain-tie-break assms
     by metis
lemma Spectre-casesAlt:
     fixes V:: ('a::linorder,'b) pre-digraph
         and a :: 'a:: linorder and b :: 'a:: linorder and c :: 'a:: linorder
     obtains (no-bD) (\neg blockDAG V \lor a \notin verts \ V \lor b \notin verts \ V \lor c \notin verts \ V)
     | (equal) (blockDAG \ V \land a \in verts \ V \land b \in verts \ V \land c \in verts \ V) \land b = c
     | (one) (blockDAG \ V \land a \in verts \ V \land b \in verts \ V \land c \in verts \ V) \land a \in verts \ V \land b \in verts \ V \land c \in verts \ V) \land a \in verts \ V \land b \in verts \ V \land c 
                      b \neq c \land (((a \rightarrow^+_V b) \lor a = b) \land \neg(a \rightarrow^+_V c))
     | (two) (blockDAG \ V \land a \in verts \ V \land b \in verts \ V \land c \in verts \ V) \land b \neq c
     \wedge \neg (((a \to^+_V b) \lor a = b) \land \neg (a \to^+_V c)) \land 
     ((a \rightarrow^+_V c) \stackrel{\cdot}{\vee} a = c) \wedge \neg (a \rightarrow^+_V b)
     | (three) (blockDAG \ V \land a \in verts \ V \land b \in verts \ V \land c \in verts \ V) \land b \neq c
       \land \neg (((a \rightarrow^+ V b) \lor a = b) \land \neg (a \rightarrow^+ V c)) \land
       \neg(((a \to^+ _V c) \lor a = c) \land \neg(a \to^+ _V b)) \land
     ((a \rightarrow^+_{V} b) \land (a \rightarrow^+_{V} c))
| (four) (blockDAG\ V \land a \in verts\ V \land b \in verts\ V \land c \in verts\ V) \land b \neq c \land
     \neg(((a \to^+_V b) \lor a = b) \land \neg(a \to^+_V c)) \land
       \neg(((a \to^+ V c) \lor a = c) \land \neg(a \to^+ V b)) \land
     \neg((a \rightarrow^+_V b) \land (a \rightarrow^+_V c))
```

```
by auto
```

```
lemma Spectre-theo:
 assumes P \theta
   and P1
   and P(-1)
   and P (sumlist-break b c (map (\lambda i.
(vote-Spectre (reduce-past V a) i b c)) (sorted-list-of-set ((past-nodes V a)))))
   and P (sumlist-break b c (map (\lambda i.
  (vote-Spectre V i b c)) (sorted-list-of-set (future-nodes V a))))
 shows P (vote-Spectre V \ a \ b \ c)
 using assms vote-Spectre.simps
 by (metis (mono-tags, lifting))
lemma domain-Spectre:
 shows vote-Spectre V a b c \in \{-1, 0, 1\}
proof(rule Spectre-theo, simp, simp, simp, metis domain-sumlist, metis domain-sumlist)
qed
lemma antisymmetric-tie-break:
 shows b \neq c \implies tie\text{-break-int} \ b \ c \ i = -tie\text{-break-int} \ c \ b \ (-i)
 unfolding tie-break-int.simps using less-not-sym by auto
{f lemma} antisymmetric-sumlist:
 shows b \neq c \Longrightarrow sumlist-break \ b \ c \ l = - \ sumlist-break \ c \ b \ (map \ (\lambda x. -x) \ l)
proof(induct \ l, \ simp)
 case (Cons\ a\ l)
 have sum-list (map uminus (a \# l)) = - sum-list (a \# l)
   by (metis map-ident map-map uminus-sum-list-map)
 moreover have zero-list (map (\lambda x. -x) l) \equiv zero-list l
 proof(induct \ l, \ auto) \ qed
 ultimately show ?case using sumlist-break.simps antisymmetric-tie-break Cons
by auto
qed
lemma vote-Spectre-antisymmetric:
 shows b \neq c \Longrightarrow vote-Spectre V \ a \ b \ c = - (vote-Spectre V \ a \ c \ b)
proof(induction V a b c rule: vote-Spectre.induct)
 case (1 \ V \ a \ b \ c)
 show vote-Spectre V a b c = - vote-Spectre V a c b
  proof(cases a b c V rule:Spectre-casesAlt)
   case no-bD
   then show ?thesis by fastforce
```

```
next
   case equal
   then show ?thesis using 1 by simp
   case one
   then show ?thesis by auto
 next
   case two
   then show ?thesis by fastforce
 next
   case three
   then have ff: vote-Spectre V a b c = (sumlist-break\ b\ c\ (map\ (\lambda i.
(vote-Spectre (reduce-past V a) i b c)) (sorted-list-of-set (past-nodes V a))))
     by (metis (mono-tags, lifting) vote-Spectre.elims)
   have ff2: vote-Spectre V a c b = (sumlist-break \ c \ b \ (map \ (\lambda i.
   (- vote-Spectre (reduce-past V a) i b c)) (sorted-list-of-set (past-nodes V a))))
     using three 1 vote-Spectre.simps map-eq-conv
     by (smt (verit, ccfv-SIG))
     have (map\ (\lambda i. - vote-Spectre\ (reduce-past\ V\ a)\ i\ b\ c)\ (sorted-list-of-set
(past-nodes\ V\ a)))
    = (map\ uminus\ (map\ (\lambda i.\ vote-Spectre\ (reduce-past\ V\ a)\ i\ b\ c)
      (sorted-list-of-set\ (past-nodes\ V\ a))))
     using map-map by auto
   then have vote-Spectre V a c b = - (sumlist-break b c (map (\lambda i.
   (vote-Spectre (reduce-past V a) i b c)) (sorted-list-of-set (past-nodes V a))))
     using antisymmetric-sumlist 1 ff2
     by (metis\ verit\text{-}minus\text{-}simplify(4))
   then show ?thesis using ff
     by presburger
 next
   case four
   then have ff: vote-Spectre V a b c = sumlist-break b c \pmod{\lambda i}.
  (vote-Spectre V i b c)) (sorted-list-of-set (future-nodes V a)))
     using vote-Spectre.simps
     by (metis (mono-tags, lifting))
   have ff2: vote-Spectre V a c b = (sumlist-break \ c \ b \ (map \ (\lambda i.
   (- vote-Spectre V i b c)) (sorted-list-of-set (future-nodes V a))))
     using four 1 vote-Spectre.simps map-eq-conv
     by (smt (z3))
   have (map (\lambda i. - vote-Spectre \ V \ i \ b \ c) \ (sorted-list-of-set \ (future-nodes \ V \ a)))
   = (map\ uminus\ (map\ (\lambda i.\ vote-Spectre\ V\ i\ b\ c)\ (sorted-list-of-set\ (future-nodes
V(a))))
     using map-map by auto
   then have vote-Spectre V a c b = - (sumlist-break b c (map (\lambda i.
   (vote-Spectre V i b c)) (sorted-list-of-set (future-nodes V a))))
     using antisymmetric-sumlist 1 ff2
     by (metis\ verit\text{-}minus\text{-}simplify(4))
   then show ?thesis using ff
     by linarith
```

```
qed
lemma vote-Spectre-reflexive:
 assumes blockDAG V
   and a \in verts V
  shows \forall b \in verts \ V. \ vote-Spectre \ V \ b \ a \ a = 1 \ using \ vote-Spectre.simps \ assms
by auto
lemma Spectre-Order-reflexive:
 assumes blockDAG V
   and a \in verts V
 {f shows} Spectre-Order V a a
 unfolding Spectre-Order-def
 obtain l where l-def: l = (map (\lambda i. vote-Spectre V i a a) (sorted-list-of-set (verts))
V)))
   by auto
 have only-one: l = (map (\lambda i.1) (sorted-list-of-set (verts V)))
   using l-def vote-Spectre-reflexive assms sorted-list-of-set(1)
   by (simp add: fin-digraph.finite-verts subs)
 have ne: l \neq []
   using blockDAG.no-empty-blockDAG length-map
    by (metis\ assms(1)\ length-sorted-list-of-set\ less-numeral-extra(3)\ list.size(3)
l-def)
  then have snn: \neg zero-list\ l\ using\ only-one
   using zero-list.elims(2) by fastforce
 have sum-list l = card (verts \ V) using ne only-one sum-list-map-eq-sum-count
   by (simp add: sum-list-triv)
 then have sum-list l > 0 using blockDAG.no-empty-blockDAG assms(1) by simp
  then show sumlist-break a a (map (\lambda i. vote-Spectre V i a a) (sorted-list-of-set
(verts\ V))) = 1
   using l-def ne sumlist-break.simps tie-break-int.simps
     list.exhaust verit-comp-simplify1(1) snn by auto
qed
{f lemma}\ vote	ext{-}Spectre	ext{-}one	ext{-}exists:
 assumes blockDAG V
   and a \in verts V
   and b \in verts V
 shows \exists i \in verts \ V. \ vote-Spectre \ V \ i \ a \ b \neq 0
proof
 show a \in verts \ V \ using \ assms(2) \ by \ simp
 show vote-Spectre V a a b \neq 0
   using assms
 proof(cases a b a V rule: Spectre-casesAlt, simp, simp, simp, simp)
   case three
```

qed

```
then show ?thesis
     by (meson DAG.cycle-free blockDAG.axioms(1))
 next
   case four
   then show ?thesis
     \mathbf{bv} blast
 qed
qed
{f lemma} Spectre-Order-antisym:
 assumes blockDAG V
   and a \in verts V
   and b \in verts V
   and a \neq b
 shows Spectre-Order V a b = (\neg (Spectre-Order \ V \ b \ a))
 obtain wit where wit-in: vote-Spectre V wit a b \neq 0 \land wit \in verts \ V
   using vote-Spectre-one-exists assms
   by blast
 obtain l where l-def: l = (map (\lambda i. vote-Spectre V i a b) (sorted-list-of-set (verts
V)))
   by auto
 have wit \in set (sorted-list-of-set (verts V))
   using wit-in sorted-list-of-set(1)
     fin-digraph.finite-verts subs
   by (simp add: fin-digraph.finite-verts subs assms(1))
 then have vote-Spectre V wit a b \in set l unfolding l-def
   by (metis (mono-tags, lifting) image-eqI list.set-map)
 then have ne0: \neg zero-list l using assms l-def zero-list-sound
     zero-neq-one wit-in
   by blast
  then have dm: sumlist-break a b l \in \{-1,1\} using domain-sumlist-not-empty
 obtain l2 where l2-def: l2 = (map (\lambda i. vote-Spectre V i b a) (sorted-list-of-set
(verts\ V)))
   by auto
 have minus: l2 = map \ uminus \ l
   unfolding l-def l2-def map-map
   using vote-Spectre-antisymmetric assms(4)
   by (metis comp-apply)
 then have ne02: \neg zero-list l2 using ne0 zero-list-sound
   by fastforce
 then have anti: sumlist-break a b l = - sumlist-break b a l2 unfolding minus
   using antisymmetric-sumlist ne0 assms(4) by metis
 have dm2: sumlist-break b a <math>l2 \in \{-1,1\} using ne02 domain-sumlist-not-empty
by auto
 then show ?thesis unfolding Spectre-Order-def using anti l-def dm l2-def
     add.inverse-inverse empty-iff equal-neg-zero insert-iff zero-neq-one
   by (metis)
```

```
\mathbf{qed}
```

```
{\bf lemma}\ Spectre-Order-total:
 assumes blockDAG V
   and a \in verts \ V \land b \in verts \ V
 shows Spectre-Order V a b \vee Spectre-Order V b a
proof safe
 assume notB: \neg Spectre-Order V b a
 consider (eq) a = b| (neq) a \neq b by auto
 then show Spectre-Order\ V\ a\ b
 proof (cases)
   case eq
   then show ?thesis using Spectre-Order-reflexive assms by metis
 next
   case neg
   then show ?thesis using Spectre-Order-antisym notB assms
 qed
qed
{\bf lemma}\ Spectre-Order-Relation-total:
 assumes blockDAG G
 shows total-on (verts \ G) (Spectre-Order-Relation \ G)
 unfolding total-on-def Spectre-Order-Relation-def
 using Spectre-Order-total assms
 by fastforce
lemma Spectre-Order-Relation-reflexive:
 assumes blockDAG G
 shows refl-on (verts G) (Spectre-Order-Relation G)
 unfolding refl-on-def Spectre-Order-Relation-def
 using Spectre-Order-reflexive assms by fastforce
{\bf lemma}\ Spectre-Order-Relation-antisym:
 assumes blockDAG G
 shows antisym (Spectre-Order-Relation G)
 unfolding antisym-def Spectre-Order-Relation-def
 using Spectre-Order-antisym assms by fastforce
lemma vote-Spectre-Preserving:
 assumes c \to^+_G b
 shows vote-Spectre G a b c \in \{0,1\}
 using assms
proof(induction G a b c rule: vote-Spectre.induct)
 case (1 \ V \ a \ b \ c)
```

```
then show ?case
proof(cases a b c V rule:Spectre-casesAlt)
 case no-bD
 then show ?thesis by auto
next
 case equal
 then show ?thesis by simp
 case one
 then show ?thesis by auto
next
 case two
 then show ?thesis
   by (metis local.1.prems trancl-trans)
next
 case three
 then have b \in past-nodes \ V \ a \ by \ auto
 also have c \in past-nodes \ V \ a \ using \ three \ by \ auto
 ultimately have c \rightarrow^+_{reduce-past\ V\ a} b using DAG.reduce-past-path2 three 1
   by (metis blockDAG.axioms(1))
 then have all 1: \forall x. \ x \in set \ (sorted-list-of-set \ (past-nodes \ V \ a)) \longrightarrow
       vote-Spectre (reduce-past V a) x b c \in \{0, 1\} using 1 three by auto
 obtain the-map where the-map-in:
   the-map = (map \ (\lambda i. \ vote-Spectre \ (reduce-past \ V \ a) \ i \ b \ c)
 (sorted-list-of-set (past-nodes V a))) by auto
 consider (zero-l) zero-list the-map
   (n\text{-}zero\text{-}l) \neg zero\text{-}list the\text{-}map by auto
 then have sumlist-break b c (map (\lambda i. vote-Spectre (reduce-past V a) i b c)
   (sorted-list-of-set\ (past-nodes\ V\ a))) \in \{0,1\}
 proof(cases)
   case zero-l
   then show ?thesis unfolding the-map-in by auto
 next
   case n-zero-l
   then have nem: the-map
        \neq [] using zero-list-sound
     zero-list.simps(1) the-map-in
     by metis
  have exune: \exists x \in set the\text{-map}. \ x \neq 0 \text{ using } n\text{-zero-list-sound the-map-in}
     by blast
   have all 01-1: \forall x \in set the -map. x \in \{0,1\}
     unfolding the-map-in set-map
     using all1
     by blast
   then have \exists x \in set the\text{-}map. \ x = 1 \text{ using } exune
     by blast
   then have \exists x \in set the\text{-}map. \ x > 0
     using zero-less-one by blast
   moreover have \forall x \in set the\text{-}map. x \geq 0 \text{ using } all 01\text{-}1
```

```
by (metis empty-iff insert-iff less-int-code(1) not-le-imp-less zero-le-one)
       ultimately show ?thesis using nem unfolding the-map-in using sum-
list-one-mono
       by blast
   ged
   then show ?thesis using three
     by simp
  next
   case four
   then have all 01: \forall a2. \ a2 \in set \ (sorted-list-of-set \ (future-nodes \ V \ a)) \longrightarrow
                            vote-Spectre V a2 b c \in \{0,1\}
     using 1
     by metis
   obtain the-map where the-map-in:
      the\text{-}map = (map \ (\lambda i. \ vote\text{-}Spectre \ V \ i \ b \ c) \ (sorted\text{-}list\text{-}of\text{-}set \ (future\text{-}nodes \ V \ i \ b \ c))
a))) by auto
   consider (zero-l) zero-list the-map
     (n\text{-}zero\text{-}l) \neg zero\text{-}list the\text{-}map by auto
   then have sumlist-break b c (map (\lambda i. vote-Spectre V i b c)
     (sorted-list-of-set\ (future-nodes\ V\ a))) \in \{0,1\}
   proof(cases)
     {\bf case}\ {\it zero-l}
     then show ?thesis unfolding the-map-in by auto
   next
     case n-zero-l
     then have nem: the-map
          \neq [] using zero-list-sound
       zero-list.simps(1) the-map-in
       by metis
    have exune: \exists x \in set the\text{-map.} \ x \neq 0 \text{ using } n\text{-zero-list-sound the-map-in}
       by blast
     have all 01-2: \forall x \in set the\text{-map}. x \in \{0,1\}
       unfolding the-map-in set-map
       using all01
       by blast
     then have \exists x \in set the\text{-}map. \ x = 1 \text{ using } exune
       by blast
     then have \exists x \in set the\text{-}map. \ x > 0
       using zero-less-one by blast
     moreover have \forall x \in set the\text{-}map. \ x \geq 0 \text{ using } all 01-2
       by (metis empty-iff insert-iff less-int-code(1) not-le-imp-less zero-le-one)
       ultimately show ?thesis using nem unfolding the-map-in using sum-
list-one-mono
       by blast
   qed
   then show ?thesis using vote-Spectre.simps
     by (simp add: four)
  qed
qed
```

```
lemma Spectre-Order-Preserving:
 assumes blockDAG G
   and b \rightarrow^+_G a
 shows Spectre-Order G a b
proof -
 have set-ordered: set (sorted-list-of-set (verts G)) = verts G
   using assms(1) subs fin-digraph.finite-verts
     sorted-list-of-set by auto
 have a-in: a \in verts \ G \ using \ wf-digraph.reachable 1-in-verts (2) \ assms \ subs
   by metis
 have b-in: b \in verts \ G \ using \ wf-digraph.reachable1-in-verts(1) \ assms \ subs
   by metis
 obtain the-map where the-map-in:
   the-map = (map \ (\lambda i. \ vote-Spectre \ G \ i \ a \ b) \ (sorted-list-of-set \ (verts \ G))) by auto
 obtain wit where wit-in: wit \in verts G and wit-vote: vote-Spectre G wit a b \neq
0
   using vote-Spectre-one-exists a-in b-in assms(1)
   by blast
 have (vote\text{-}Spectre\ G\ wit\ a\ b) \in set\ the\text{-}map
   unfolding the-map-in set-map
   using assms(1) fin-digraph.finite-verts
     subs sorted-list-of-set(1) wit-in image-iff
   by metis
  then have exune: \exists x \in set the\text{-}map. \ x \neq 0
   using wit-vote by blast
 have all 01: \forall x \in set the -map. x \in \{0,1\}
  unfolding set-ordered the-map-in set-map using vote-Spectre-Preserving assms(2)
image-iff
   by (metis (no-types, lifting))
  then have \exists x \in set the\text{-}map. \ x = 1 \text{ using } exune
   by blast
  then have \exists x \in set the\text{-}map. \ x > 0
   using zero-less-one by blast
 moreover have \forall x \in set the\text{-}map. \ x \geq 0 \text{ using } all 01
   by (metis empty-iff insert-iff less-int-code(1) not-le-imp-less zero-le-one)
  ultimately show ?thesis unfolding the-map-in Spectre-Order-def using sum-
list-one-mono
     empty-iff set-empty
   by (metis)
qed
{\bf lemma}\ Spectre-Order-Relation-Preserving:
 assumes blockDAG G
   and b \rightarrow^+ G a
 shows (a,b) \in (Spectre-Order-Relation G)
```

```
unfolding Spectre-Order-Relation-def
using assms wf-digraph.reachable1-in-verts subs
Spectre-Order-Preserving
SigmaI case-prodI mem-Collect-eq by fastforce
end
theory Ghostdag
imports blockDAG Utils TopSort
begin
```

5 GHOSTDAG

 $\mathbf{fun}\ larger-blue-tuple::$

Based on the GHOSTDAG blockDAG consensus algorithmus by Sompolinsky and Zohar 2018

5.1 Funcitions and Definitions

Function to compare the size of set and break ties. Used for the GHOSTDAG maximum blue cluster selection

```
(('a::linorder\ set\ \times\ 'a\ list)\ \times\ 'a)\Rightarrow (('a\ set\ \times\ 'a\ list)\ \times\ 'a)\Rightarrow (('a\ set\ \times\ 'a\ list)\ \times\ 'a) where larger-blue-tuple A B= (if (card\ (fst\ (fst\ A)))\ >\ (card\ (fst\ (fst\ B)))\ \vee\ (card\ (fst\ (fst\ A)))\ >\ (card\ (fst\ (fst\ B)))\ \wedge\ snd\ A\le snd\ B) then A else B)

Function to add node a to a tuple of a set S and List L

fun add\text{-}set\text{-}list\text{-}tuple::(('a::linorder\ set\ \times\ 'a\ list)\ \times\ 'a)\Rightarrow ('a::linorder\ set\ \times\ 'a\ list)
where add\text{-}set\text{-}list\text{-}tuple:((S,L),a)=(S\cup\{a\},L\ @\ [a])

Function that adds a node a to a kCluster S, if S+a remains a kCluster. Also adds a to the end of list L

fun app\text{-}if\text{-}blue\text{-}else\text{-}add\text{-}end::
```

```
fun app-if-blue-else-add-end ::

('a::linorder,'b) pre-digraph <math>\Rightarrow nat <math>\Rightarrow 'a \Rightarrow ('a::linorder set \times 'a list)

\Rightarrow ('a::linorder set \times 'a list)

where app-if-blue-else-add-end G k a (S,L) = (if (kCluster G k <math>(S \cup \{a\}))

then add-set-list-tuple ((S,L),a) else (S,L) @ [a]))
```

Function to select the largest ((S, L), a) according to larger - blue - tuple fun $choose-max-blue-set :: (('a::linorder set <math>\times$ 'a list) \times 'a) list \Rightarrow (('a set \times 'a list) \times 'a)

where choose-max-blue-set L = fold (larger-blue-tuple) L (hd L)

GHOSTDAG ordering algorithm

function $OrderDAG :: ('a::linorder,'b) pre-digraph <math>\Rightarrow nat \Rightarrow ('a \ set \times 'a \ list)$

```
where
   OrderDAG\ G\ k =
  (if (\neg blockDAG\ G) then (\{\},[]) else
  if (card\ (verts\ G) = 1) then (\{genesis-nodeAlt\ G\}, [genesis-nodeAlt\ G]) else
let M = choose-max-blue-set
 ((map\ (\lambda i.(((OrderDAG\ (reduce-past\ G\ i)\ k))\ ,\ i))\ (sorted-list-of-set\ (tips\ G))))
 in fold (app-if-blue-else-add-end G k) (top-sort G (sorted-list-of-set (anticone G
(add\text{-}set\text{-}list\text{-}tuple\ M))
 by auto
termination proof
 let ?R = measure (\lambda(G, k). (card (verts G)))
 show wf ?R by auto
next
 fix G::('a::linorder,'b) pre-digraph
 \mathbf{fix} \ k :: nat
 \mathbf{fix} \ r
 assume bD: \neg \neg blockDAG G
 assume card (verts G) \neq 1
 then have card\ (verts\ G) > 1 using bD\ blockDAG.blockDAG-size-cases by auto
  then have nT: \forall x \in tips \ G. \ \neg \ blockDAG.is-genesis-node Gx
   using blockDAG.tips-unequal-gen bD tips-def mem-Collect-eq
   by metis
  assume x \in set (sorted-list-of-set (tips G))
  then have in-t: x \in tips \ G  using bD
  \mathbf{by}\ (\textit{metis card-gt-0-iff length-pos-if-in-set length-sorted-list-of-set set-sorted-list-of-set})
  then show ((reduce-past G(x, k), G(x) \in measure(\lambda(G(x), k), card(verts G)))
   using blockDAG.reduce-less bD tips-def is-tip.simps
   by fastforce
qed
Creating a relation on verts G based on the GHOSTDAG OrderDAG algo-
fun GhostDAG-Relation :: ('a::linorder,'b) pre-digraph <math>\Rightarrow nat \Rightarrow 'a rel
  where GhostDAG-Relation G k = list-to-rel (snd (OrderDAG G k))
5.2
       Soundness
\mathbf{lemma} \ \mathit{OrderDAG-casesAlt} \colon
 obtains (ntB) \neg blockDAG G
  | (one) \ blockDAG \ G \land card \ (verts \ G) = 1
 | (more) \ blockDAG \ G \land card \ (verts \ G) > 1
 using blockDAG.blockDAG-size-cases by auto
```

5.2.1 Soundness of the add - set - list function

lemma add-set-list-tuple-mono:

```
shows set L \subseteq set (snd (add-set-list-tuple ((S,L),a)))
  using add-set-list-tuple.simps by auto
\mathbf{lemma}\ add\text{-}set\text{-}list\text{-}tuple\text{-}mono2\text{:}
 shows set (snd (add\text{-}set\text{-}list\text{-}tuple ((S,L),a))) \subseteq set L \cup \{a\}
 using add-set-list-tuple.simps by auto
lemma add-set-list-tuple-length:
 shows length (snd (add-set-list-tuple ((S,L),a))) = Suc (length L)
proof(induct L, auto) qed
        Soundness of the add - if - blue function
lemma app-if-blue-mono:
 assumes finite S
 shows (fst (S,L)) \subseteq (fst (app-if-blue-else-add-end G k a (S,L)))
 unfolding app-if-blue-else-add-end.simps add-set-list-tuple.simps
 by (simp add: assms card-mono subset-insertI)
lemma app-if-blue-mono2:
 shows set (snd (S,L)) \subseteq set (snd (app-if-blue-else-add-end G k a (S,L)))
 unfolding app-if-blue-else-add-end.simps add-set-list-tuple.simps
 by (simp add: subsetI)
lemma app-if-blue-append:
  shows a \in set (snd (app-if-blue-else-add-end G k a (S,L)))
 {\bf unfolding} \ app-if-blue-else-add-end. simps \ add-set-list-tuple. simps
 by simp
lemma app-if-blue-mono3:
 shows set (snd (app-if-blue-else-add-end G k a (S,L))) \subseteq set L \cup \{a\}
 unfolding app-if-blue-else-add-end.simps add-set-list-tuple.simps
 by (simp add: subsetI)
lemma app-if-blue-mono4:
 assumes set L1 \subseteq set L2
 shows set (snd (app-if-blue-else-add-end G k a (S,L1)))
  \subseteq set (snd (app-if-blue-else-add-end G k a (S2,L2)))
 {\bf unfolding} \ app-if-blue-else-add-end. simps \ add-set-list-tuple. simps
 using assms by auto
lemma app-if-blue-card-mono:
 assumes finite S
 shows card (fst (S,L)) \leq card (fst (app-if-blue-else-add-end G k a (S,L)))
 {\bf unfolding} \ app-if-blue-else-add-end. simps \ add-set-list-tuple. simps
 by (simp add: assms card-mono subset-insertI)
```

```
lemma app-if-blue-else-add-end-length:

shows length (snd (app-if-blue-else-add-end G k a (S,L))) = Suc (length L)

proof(induction L, auto) qed
```

5.2.3 Soundness of the larger - blue - tuple comparison

```
lemma larger-blue-tuple-mono:
assumes finite (fst V)
shows larger-blue-tuple ((app-if-blue-else-add-end G k a V),b) (V,b)
= ((app-if-blue-else-add-end <math>G k a V),b)
using assms app-if-blue-card-mono larger-blue-tuple.simps eq-refl
by (metis fst-conv prod.collapse snd-conv)
```

```
lemma larger-blue-tuple-subs:

shows larger-blue-tuple A B \in \{A,B\} by auto
```

5.2.4 Soundness of the $choose_max_blue_set$ function

```
lemma choose-max-blue-avoid-empty:
   assumes L \neq []
   shows choose-max-blue-set L \in set L
   unfolding choose-max-blue-set.simps
   proof (rule fold-invariant)
   show \bigwedge x. \ x \in set \ L \implies x \in set \ L using assms by auto
   next
   show hd \ L \in set \ L using assms by auto
   next
   fix x \ s
   assume x \in set \ L
   and s \in set \ L
   then show larger-blue-tuple x \ s \in set \ L using larger-blue-tuple.simps by auto
  qed
```

5.2.5 Auxiliary lemmas for OrderDAG

```
 \begin{array}{l} \textbf{lemma} \ fold\text{-}app\text{-}length: \\ \textbf{shows} \ length \ (snd \ (fold \ (app\text{-}if\text{-}blue\text{-}else\text{-}add\text{-}end \ G \ k) \\ L1 \ PL2)) = length \ L1 + length \ (snd \ PL2) \\ \textbf{proof}(induct \ L1 \ arbitrary: \ PL2) \\ \textbf{case} \ Nil \\ \textbf{then show} \ ?case \ \textbf{by} \ auto \\ \textbf{next} \\ \textbf{case} \ (Cons \ a \ L1) \\ \textbf{then show} \ ?case \ \textbf{unfolding} \ fold\text{-}Cons \ comp\text{-}apply \ \textbf{using} \ app\text{-}if\text{-}blue\text{-}else\text{-}add\text{-}end\text{-}length} \\ \textbf{by} \ (metis \ add\text{-}Suc \ add\text{-}Suc\text{-}right \ length\text{-}Cons \ old\text{.}prod\text{.}exhaust \ snd\text{-}conv) \\ \textbf{qed} \end{array}
```

```
lemma fold-app-mono:
 shows snd (fold\ (app-if-blue-else-add-end\ G\ k)\ L2\ (S,L1)) = L1\ @\ L2
proof(induct L2 arbitrary: S L1, simp)
 case (Cons a L2)
 then show ?case unfolding fold-simps(2) using app-if-blue-else-add-end.simps
   by simp
qed
lemma fold-app-mono1:
 assumes x \in set (snd (S,L1))
 shows x \in set (snd (fold (app-if-blue-else-add-end G k) L2 (S2,L1)))
 using fold-app-mono
 by (metis\ Cons\text{-}eq\text{-}appendI\ append.assoc\ assms\ in\text{-}set\text{-}conv\text{-}decomp\ snd}I)
lemma fold-app-mono2:
 assumes x \in set L2
 shows x \in set (snd (fold (app-if-blue-else-add-end G k) L2 (S,L1)))
 using assms unfolding fold-app-mono by auto
lemma fold-app-mono3:
 assumes set L1 \subseteq set L2
 shows set (snd (fold (app-if-blue-else-add-end G k) L (S1, L1)))
  \subseteq set (snd (fold (app-if-blue-else-add-end G k) L (S2, L2)))
 using assms unfolding fold-app-mono
 by auto
lemma fold-app-mono-ex:
 shows set (snd (fold (app-if-blue-else-add-end G k) L2 (S,L1)) = (set L2 \cup set
 unfolding fold-app-mono by auto
lemma fold-app-mono-rel:
 assumes (x,y) \in list\text{-}to\text{-}rel\ L1
 shows (x,y) \in list-to-rel (snd (fold (app-if-blue-else-add-end G k) L2 (S,L1)))
 using assms
proof(induct L2 arbitrary: S L1, simp)
 case (Cons a L2)
 then show ?case
   unfolding fold.simps(2) comp-apply
   using list-to-rel-mono app-if-blue-else-add-end.simps
   by (metis add-set-list-tuple.simps prod.collapse snd-conv)
qed
lemma fold-app-mono-rel2:
 assumes (x,y) \in list\text{-}to\text{-}rel\ L2
 shows (x,y) \in list-to-rel (snd (fold (app-if-blue-else-add-end G k) L2 (S,L1)))
```

```
using assms
 by (simp add: fold-app-mono list-to-rel-mono2)
lemma fold-app-app-rel:
 assumes x \in set L1
   and y \in set L2
 shows (x,y) \in list-to-rel (snd (fold (app-if-blue-else-add-end G k) L2 (S,L1)))
 using assms
proof(induct L2 arbitrary: S L1, simp)
 case (Cons a L2)
 then show ?case
   unfolding fold.simps(2) comp-apply
   using list-to-rel-append app-if-blue-else-add-end.simps
  by (metis Un-iff add-set-list-tuple.simps fold-app-mono-rel set-ConsD set-append)
qed
lemma chosen-max-tip:
 assumes blockDAG G
 assumes x = snd ( choose-max-blue-set (map (\lambda i. (OrderDAG (reduce-past G i)
      (sorted-list-of-set\ (tips\ G))))
 shows x \in set (sorted-list-of-set (tips G)) and x \in tips G
proof -
 obtain pp where pp-in: pp = (map (\lambda i. (OrderDAG (reduce-past G i) k, i)))
  (sorted-list-of-set\ (tips\ G))) using blockDAG.tips-exist by auto
 have mm: choose-max-blue-set pp \in set \ pp \ using \ pp-in choose-max-blue-avoid-empty
     digraph.tips-finite\ subs\ assms(1)
     list.map-disc-iff\ sorted-list-of-set-eq-Nil-iff\ blockDAG.tips-not-empty
   by (metis (mono-tags, lifting))
 then have kk: snd (choose-max-blue-set pp) \in set (map snd pp)
 have mm2: \bigwedge L. (map \ snd \ (map \ (\lambda i. \ ((OrderDAG \ (reduce-past \ G \ i) \ k) \ , \ i)) \ L))
= L
 proof -
   show map snd (map (\lambda i. (OrderDAG (reduce-past G i) k, i)) L) = L
   proof(induct L)
     case Nil
     then show ?case by auto
   next
     \mathbf{case}\ (\mathit{Cons}\ \mathit{a}\ \mathit{L})
     then show ?case by auto
   qed
 qed
 have set (map \ snd \ pp) = set (sorted-list-of-set (tips \ G))
   using mm2 pp-in by auto
 then show x \in set (sorted-list-of-set (tips G)) using pp-in assms(2) kk by blast
```

```
then show x \in tips G
   using digraph.tips-finite sorted-list-of-set(1) kk subs assms pp-in by auto
qed
lemma chosen-map-simps1:
 assumes x \in set \ (map \ (\lambda i. \ (P \ i, \ i)) \ L)
 shows fst x = P (snd x)
  using assms
proof(induct L, auto) qed
lemma chosen-map-simps:
 assumes blockDAG G
 assumes x = map (\lambda i. (OrderDAG (reduce-past G i) k, i))
      (sorted-list-of-set\ (tips\ G))
  shows snd (choose-max-blue-set x) \in set (sorted-list-of-set (tips G))
   and snd (choose-max-blue-set x) \in tips G
   and set (map \ snd \ x) = set \ (sorted-list-of-set \ (tips \ G))
   and choose\text{-}max\text{-}blue\text{-}set\ x \in set\ x
   and \neg blockDAG.is-genesis-node G (snd (choose-max-blue-set x)) \Longrightarrow
  blockDAG (reduce-past G (snd (choose-max-blue-set x)))
  and OrderDAG (reduce-past G (snd (choose-max-blue-set x))) k = fst (choose-max-blue-set
proof -
 obtain pp where pp-in: pp = (map (\lambda i. (OrderDAG (reduce-past G i) k, i)))
  (sorted-list-of-set (tips G))) using blockDAG.tips-exist by auto
 have mm: choose-max-blue-set pp \in set \ pp \ using \ pp-in choose-max-blue-avoid-empty
     digraph.tips-finite subs assms(1)
     list.map-disc-iff\ sorted-list-of-set-eq-Nil-iff\ blockDAG.tips-not-empty
   by (metis (mono-tags, lifting))
  then have kk: snd (choose-max-blue-set pp) <math>\in set (map \ snd \ pp)
   by auto
 \mathbf{have} \ \mathit{seteq} \colon \mathit{set} \ (\mathit{map} \ \mathit{snd} \ \mathit{pp}) = \mathit{set} \ (\mathit{sorted-list-of-set} \ (\mathit{tips} \ \mathit{G}))
   using map-snd-map pp-in by auto
  then show snd (choose-max-blue-set x) \in set (sorted-list-of-set (tips G))
   using pp-in assms(2) kk by blast
  then show tip: snd (choose-max-blue-set x) \in tips G
   using digraph.tips-finite sorted-list-of-set(1) kk subs assms pp-in by auto
  show set (map \ snd \ x) = set \ (sorted-list-of-set \ (tips \ G))
   using map-snd-map assms(2)
   by simp
  then show choose-max-blue-set x \in set \ x \ using \ seteq \ pp-in \ assms(2)
     mm by blast
 show OrderDAG (reduce-past\ G\ (snd\ (choose-max-blue-set\ x)))\ k = fst\ (choose-max-blue-set\ x)
x)
   by (metis (no-types) assms(2) chosen-map-simps1 mm pp-in)
 assume \neg blockDAG.is-genesis-node G (snd (choose-max-blue-set x))
  then show blockDAG (reduce-past G (snd (choose-max-blue-set x)))
    using tip blockDAG.reduce-past-dagbased assms(1) digraph.tips-in-verts subs
```

```
\begin{array}{c} subsetD \\ \textbf{by } met is \\ \textbf{qed} \end{array}
```

5.2.6 OrderDAG soundness

```
lemma Verts-in-OrderDAG:
 assumes blockDAG G
   and x \in verts G
 shows x \in set (snd (OrderDAG G k))
 using assms
proof(induct \ G \ k \ arbitrary: x \ rule: OrderDAG.induct)
 case (1 G k x)
 then have bD: blockDAG G by auto
 assume x-in: x \in verts G
 then consider (cD1) card (verts G) = 1 (cDm) card (verts G) \neq 1 by auto
 then show x \in set (snd (OrderDAG G k))
 \mathbf{proof}(cases)
   case (cD1)
   then have set (snd (OrderDAG G k)) = \{genesis-nodeAlt G\}
    using 1 OrderDAG.simps by auto
   then show ?thesis using x-in bD cD1
      genesis-nodeAlt-sound blockDAG.is-genesis-node.simps
    using 1
    by (metis\ card-1-singletonE\ singletonD)
 next
   case (cDm)
   then show ?thesis
   proof -
    obtain pp where pp-in: pp = (map (\lambda i. (OrderDAG (reduce-past G i) k, i)))
     (sorted-list-of-set\ (tips\ G))) using blockDAG.tips-exist by auto
    then have tt2: snd (choose-max-blue-set pp) \in tips G
      using chosen-map-simps bD
      by blast
    show ?thesis
    proof(rule blockDAG.tips-cases)
      show blockDAG G using bD by auto
      show snd (choose-max-blue-set pp) \in tips G using tt2 by auto
      show x \in verts \ G using x-in by auto
      assume as1: x = snd (choose-max-blue-set pp)
      obtain fCur where fcur-in: fCur = add-set-list-tuple (choose-max-blue-set
pp
        by auto
      have x \in set (snd(fCur))
        unfolding as1 using add-set-list-tuple.simps fcur-in
         add\text{-}set\text{-}list\text{-}tuple.cases\ snd\text{-}conv\ insertI1\ snd\text{-}conv
         by (metis (mono-tags, hide-lams) Un-insert-right fst-conv list.simps(15)
set-append)
```

```
then have x \in set (snd (fold (app-if-blue-else-add-end G k)
               (top\text{-}sort\ G\ (sorted\text{-}list\text{-}of\text{-}set\ (anticone\ G\ (snd\ (choose\text{-}max\text{-}blue\text{-}set
(pp)))))) (fCur)))
         using fold-app-mono1 surj-pair
         by (metis)
      then show ?thesis unfolding pp-in fcur-in using 1 OrderDAG.simps cDm
         by (metis (mono-tags, lifting))
       assume anti: x \in anticone\ G\ (snd\ (choose-max-blue-set\ pp))
      obtain ttt where ttt-in: ttt = add-set-list-tuple (choose-max-blue-set pp) by
auto
       have x \in set (snd (fold (app-if-blue-else-add-end G k)
               (top\text{-}sort\ G\ (sorted\text{-}list\text{-}of\text{-}set\ (anticone\ G\ (snd\ (choose\text{-}max\text{-}blue\text{-}set
pp))))))
                 ttt))
         using pp-in sorted-list-of-set(1) anti bD subs
           DAG.anticon-finite fold-app-mono2 surj-pair top-sort-con by metis
       then show x \in set (snd (OrderDAG G k)) using OrderDAG.simps pp-in
bD cDm ttt-in 1
         by (metis (no-types, lifting) map-eq-conv)
     next
       assume as2: x \in past-nodes \ G \ (snd \ (choose-max-blue-set \ pp))
       then have pas: x \in verts (reduce-past G (snd (choose-max-blue-set pp)))
         using reduce-past.simps induce-subgraph-verts by auto
       have cd1: card (verts G) > 1 using cDm \ bD
         using blockDAG.blockDAG-size-cases by blast
      have (snd\ (choose-max-blue-set\ pp)) \in set\ (sorted-list-of-set\ (tips\ G)) using
tt2
           digraph.tips-finite bD subs sorted-list-of-set(1) by auto
       moreover
       have blockDAG (reduce-past G (snd (choose-max-blue-set pp))) using
           blockDAG.reduce-past-dagbased bD tt2 blockDAG.tips-unequal-gen
           cd1 tips-def CollectD by metis
       ultimately have bass:
         x \in set ((snd (OrderDAG (reduce-past G (snd (choose-max-blue-set pp)))))
k)))
         \mathbf{using} \ pp\text{-}in \ 1 \ cDm \ tt2 \ pas \ \mathbf{by} \ met is
       then have in-F: x \in set (snd (fst ((choose-max-blue-set pp))))
         using x-in chosen-map-simps(6) pp-in
         using bD by fastforce
       then have x \in set (snd (fold (app-if-blue-else-add-end G k)
       (top\text{-}sort\ G\ (sorted\text{-}list\text{-}of\text{-}set\ (anticone}\ G\ (snd\ (choose\text{-}max\text{-}blue\text{-}set\ pp)))))
        (fst((choose-max-blue-set pp)))))
         by (metis fold-app-mono1 in-F prod.collapse)
       moreover have OrderDAG \ G \ k = (fold \ (app-if-blue-else-add-end \ G \ k)
       (top\text{-}sort\ G\ (sorted\text{-}list\text{-}of\text{-}set\ (anticone}\ G\ (snd\ (choose\text{-}max\text{-}blue\text{-}set\ pp)))))
       (add-set-list-tuple (choose-max-blue-set pp))) using cDm 1 OrderDAG.simps
pp-in
         by (metis (no-types, lifting) map-eq-conv)
```

```
then show x \in set (snd (OrderDAG G k))
         by (metis (no-types, lifting) add-set-list-tuple-mono fold-app-mono1
             in-F prod.collapse subset-code(1))
     qed
   qed
 qed
\mathbf{qed}
{f lemma} OrderDAG-in-verts:
 assumes x \in set (snd (OrderDAG G k))
 shows x \in verts G
 using assms
\mathbf{proof}(induction\ G\ k\ arbitrary:\ x\ rule:\ OrderDAG.induct)
  case (1 G k x)
  consider (inval) \neg blockDAG G | (one) blockDAG G \land
  card\ (verts\ G) = 1\ |\ (val)\ blockDAG\ G\ \land
  card (verts G) \neq 1  by auto
  then show ?case
 proof(cases)
   case inval
   then show ?thesis using 1 by auto
  next
   case one
  then show ?thesis using OrderDAG.simps 1 genesis-nodeAlt-one-sound blockDAG.is-genesis-node.simps
     using empty-set list.simps(15) singleton-iff sndI by fastforce
  next
   case val
   then show ?thesis
   proof
     have bD: blockDAG G using val by auto
       obtain M where M-in:M = choose-max-blue-set (map (\lambda i. (OrderDAG)
(reduce\text{-}past\ G\ i)\ k,\ i))
      (sorted-list-of-set\ (tips\ G))) by auto
     obtain pp where pp-in: pp = (map (\lambda i. (OrderDAG (reduce-past G i) k, i)))
      (sorted-list-of-set (tips G))) using blockDAG.tips-exist by auto
     have set (snd (OrderDAG G k)) =
       set \ (snd \ (fold \ (app-if-blue-else-add-end \ G \ k) \ (top-sort \ G \ (sorted-list-of-set
(anticone \ G \ (snd \ M))))
     (add-set-list-tuple M))) unfolding M-in val using OrderDAG.simps val
       by (metis (mono-tags, lifting))
     then have set (snd (OrderDAG G k))
  = set (top\text{-}sort \ G (sorted\text{-}list\text{-}of\text{-}set \ (anticone \ G \ (snd \ M)))) \cup set \ (snd \ (add\text{-}set\text{-}list\text{-}tuple \ (snd \ M)))) \cup set \ (snd \ (add\text{-}set\text{-}list\text{-}tuple \ (snd \ M)))) \cup set \ (snd \ (snd \ M))))
M))
       using fold-app-mono-ex
       by (metis eq-snd-iff)
      then consider (ac) x \in set (top-sort G (sorted-list-of-set (anticone G (snd
M))))
       |(co)| x \in set (snd (add-set-list-tuple M))
```

```
using 1 by auto
     then show x \in verts \ G \ proof(cases)
       case ac
       then show ?thesis using top-sort-con DAG.anticone-in-verts val
          sorted-list-of-set(1) subs
         by (metis DAG.anticon-finite subsetD)
     \mathbf{next}
       case co
       then consider (ma) x = snd M \mid (nma) x \in set (snd(fst(M)))
         \mathbf{using}\ add\text{-}set\text{-}list\text{-}tuple.simps
         \mathbf{by}\ (\mathit{metis}\ (\mathit{no-types},\ \mathit{lifting})\ \mathit{Un-insert-right}\ \mathit{append-Nil2}\ \mathit{insertE}
            list.simps(15) prod.collapse set-append sndI)
       then show ?thesis proof(cases)
         case ma
         then show ?thesis unfolding M-in using bD
            chosen-map-simps(2) digraph.tips-in-verts subs
          by blast
       next
          have mm: choose-max-blue-set pp \in set pp unfolding pp-in using bD
chosen-map-simps(4)
       \mathbf{by}\ (\mathit{metis}\ (\mathit{mono-tags},\ \mathit{lifting})\ \mathit{Nil-is-map-conv}\ \mathit{choose-max-blue-avoid-empty})
         then have x \in set (snd (OrderDAG (reduce-past G (snd M)) k))
           unfolding M-in choose-max-blue-avoid-empty blockDAG.tips-not-empty
bD
          by (metis (no-types, lifting) ex-map-conv fst-conv mm pp-in snd-conv)
       then have x \in verts (reduce-past G (snd M)) using 1 val chosen-map-simps
M\text{-}in\ pp\text{-}in
            sorted-list-of-set(1) digraph.tips-finite subs\ bD
          then show x \in verts \ G using reduce-past.simps induce-subgraph-verts
past-nodes.simps
          by auto
       qed
     qed
   qed
 qed
qed
lemma OrderDAG-length:
 shows blockDAG G \Longrightarrow length (snd (OrderDAG G k)) = card (verts G)
proof(induct G k rule: OrderDAG.induct)
  case (1 G k)
 then show ?case proof (cases G rule: OrderDAG-casesAlt)
   then show ?thesis using 1 by auto
 next
```

```
then show ?thesis using OrderDAG.simps by auto
    next
       case more
       show ?thesis using 1
       proof -
          have bD: blockDAG G using 1 by auto
           obtain ma where pp-in: ma = (choose-max-blue-set \ (map \ (\lambda i. \ (OrderDAG
(reduce\text{-}past\ G\ i)\ k,\ i))
            (sorted-list-of-set\ (tips\ G))))
              by (metis)
          then have backw: OrderDAG G k = fold (app-if-blue-else-add-end G k)
                         (top\text{-}sort\ G\ (sorted\text{-}list\text{-}of\text{-}set\ (anticone\ G\ (snd\ ma))))
                         (add-set-list-tuple ma) using OrderDAG.simps pp-in more
              by (metis (mono-tags, lifting) less-numeral-extra(4))
         have tt: snd\ ma \in set\ (sorted-list-of-set\ (tips\ G)) using pp-in chosen-max-tip
                  more by auto
          have ttt: snd\ ma \in tips\ G\ using\ chosen-max-tip(2)\ pp-in
                  more by auto
       then have bD2: blockDAG (reduce-past G (snd ma)) using blockDAG.tips-unequal-gen
bD more
                  blockDAG.reduce-past-dagbased bD tips-def
              by fastforce
          then have length (snd (OrderDAG (reduce-past G (snd ma)) k))
                                = card (verts (reduce-past G (snd ma)))
              using 1 tt bD2 more by auto
          then have length (snd (fst ma))
                                = card (verts (reduce-past G (snd ma)))
              using bD chosen-map-simps(6) pp-in
              by fastforce
          then have length (snd (add-set-list-tuple ma)) = 1 + card (verts (reduce-past))
G (snd ma)))
              by (metis add-set-list-tuple-length plus-1-eq-Suc prod.collapse)
          then show ?thesis unfolding backw
              using subs DAG.verts-size-comp ttt
            add. assoc\ add. commute\ bD\ fold-app-length\ length-sorted-list-of-set\ top-sort-length\ length-sorted-list-of-set\ length\ length
              by (metis (full-types))
       qed
   qed
qed
lemma OrderDAG-total:
   assumes blockDAG G
   shows set (snd (OrderDAG G k)) = verts G
   using Verts-in-OrderDAG OrderDAG-in-verts assms(1)
   by blast
lemma OrderDAG-distinct:
```

```
assumes blockDAG G
 shows distinct (snd (OrderDAG G k))
 \mathbf{using}\ \mathit{OrderDAG-length}\ \mathit{OrderDAG-total}
   card-distinct assms
 by metis
{f lemma} {\it GhostDAG-linear}:
  assumes blockDAG G
 shows linear-order-on (verts G) (GhostDAG-Relation G(k))
 unfolding GhostDAG-Relation.simps
 using list-order-linear OrderDAG-distinct OrderDAG-total assms by metis
lemma GhostDAG-preserving:
  assumes blockDAG G
   and x \to^+_G y
 shows (y,x) \in GhostDAG-Relation G k
 unfolding GhostDAG-Relation.simps using assms
proof(induct G k arbitrary: x y rule: OrderDAG.induct)
  case (1 G k)
  then show ?case proof (cases G rule: OrderDAG-casesAlt)
   case ntB
   then show ?thesis using 1 by auto
  next
   case one
   then have \neg x \rightarrow^+ G y
     using subs wf-digraph.reachable1-in-verts 1
     by (metis DAG.cycle-free OrderDAG-casesAlt blockDAG.reduce-less
     blockDAG.reduce-past-dagbased blockDAG.unique-genesis less-one not-one-less-zero)
   then show ?thesis using 1 by simp
  next
   case more
   obtain pp where pp-in: pp = (map (\lambda i. (OrderDAG (reduce-past G i) k, i)))
      (sorted-list-of-set\ (tips\ G))) using blockDAG.tips-exist by auto
   have backw: list-to-rel (snd (OrderDAG G(k)) =
                  list-to-rel (snd (fold (app-if-blue-else-add-end G k)
               (top\text{-}sort\ G\ (sorted\text{-}list\text{-}of\text{-}set\ (anticone\ G\ (snd\ (choose\text{-}max\text{-}blue\text{-}set
pp))))))
                (add-set-list-tuple (choose-max-blue-set pp))))
     using OrderDAG.simps less-irrefl-nat more pp-in
     by (metis (mono-tags, lifting))
   obtain S where s-in:
     (top\text{-}sort\ G\ (sorted\text{-}list\text{-}of\text{-}set\ (anticone\ G\ (snd\ (choose\text{-}max\text{-}blue\text{-}set\ pp))))))
= S by simp
   obtain t where t-in: (add-set-list-tuple (choose-max-blue-set pp)) = t by simp
   obtain ma where ma-def: ma = (snd (choose-max-blue-set pp)) by simp
   have ma-vert: ma \in verts \ G \ unfolding \ ma-def \ using \ chosen-map-simps(2)
digraph.tips\hbox{-}in\hbox{-}verts
```

```
more(1) subs subsetD pp-in by blast
   have ma-tip: is-tip G ma unfolding ma-def
     using chosen-map-simps(2) more pp-in tips-tips
     by (metis (no-types))
  then have no-gen: \neg blockDAG.is-genesis-node G ma unfolding ma-def using
pp	ext{-}in
       blockDAG.tips-unequal-gen more
     by metis
   then have red-bd: blockDAG (reduce-past G ma)
     {\bf using} \ blockDAG. reduce-past-dagbased \ more \ ma\text{-}vert \ {\bf unfolding} \ ma\text{-}def
     by auto
   consider (ind) x \in past\text{-}nodes \ G \ ma \land y \in past\text{-}nodes \ G \ ma
     |(x-in)| x \notin past-nodes G ma \land y \in past-nodes G ma
     |(y-in)| x \in past-nodes G ma \land y \notin past-nodes G ma
     |(both-nin)| x \notin past-nodes G ma \land y \notin past-nodes G ma by auto
   then show ?thesis proof(cases)
     case ind
     then have x \to^+_{reduce-past\ G\ ma} y using DAG.reduce-past-path2 more
         1 subs
      by (metis)
     moreover have ma-tips: ma \in set (sorted-list-of-set (tips G))
       using chosen-map-simps(1) pp-in more(1)
      unfolding ma-def by auto
     ultimately have (y,x) \in list\text{-}to\text{-}rel \ (snd \ (OrderDAG \ (reduce\text{-}past \ G \ ma) \ k))
       unfolding ma-def
      using more 1 ind less-numeral-extra(4) ma-def red-bd
      by (metis)
     then have (y,x) \in list\text{-}to\text{-}rel \ (snd \ (fst \ (choose\text{-}max\text{-}blue\text{-}set \ pp)))
      using chosen-map-simps(6) pp-in 1 unfolding ma-def by fastforce
   then have rel-base: (y,x) \in list-to-rel (snd (add-set-list-tuple (choose-max-blue-set
pp)))
       using add-set-list-tuple.simps list-to-rel-mono prod.collapse snd-conv
      by metis
     show ?thesis
      unfolding ma-def backw s-in
      using rel-base unfolding t-in
      using fold-app-mono-rel prod.collapse
      by metis
   next
     case x-in
     then have y \in set (snd (OrderDAG (reduce-past G ma) k))
     unfolding reduce-past.simps using induce-subgraph-verts Verts-in-OrderDAG
        more red-bd reduce-past.elims
      by (metis)
     then have y-in-base: y \in set (snd (fst (choose-max-blue-set pp)))
      unfolding ma-def using chosen-map-simps(6) more pp-in
      by fastforce
```

```
consider (x-t) x = ma \mid (x-ant) x \in anticone G ma using DAG.verts-comp2
         subs\ 1 ma-tip\ ma-vert
         mem	ext{-}Collect	eq tips	ext{-}def wf	ext{-}digraph.reachable1	ext{-}in	ext{-}verts(1) x	ext{-}in
       by (metis (no-types, lifting))
     then show ?thesis proof(cases)
       case x-t
       then have (y,x) \in list-to-rel (snd (add-set-list-tuple (choose-max-blue-set
pp)))
         unfolding x-t ma-def
        \mathbf{using}\ y\text{-}in\text{-}base\ add\text{-}set\text{-}list\text{-}tuple.simps\ list\text{-}to\text{-}rel\text{-}append\ prod.collapse\ snd}I
         by metis
       then show ?thesis unfolding ma-def backw s-in
         unfolding t-in
         \mathbf{using}\ fold\text{-}app\text{-}mono\text{-}rel\ prod.collapse
         by metis
     next
       case x-ant
       then have x \in set (sorted-list-of-set (anticone G ma))
         using sorted-list-of-set(1) more subs
         by (metis DAG.anticon-finite)
       moreover have y \in set (snd (add-set-list-tuple (choose-max-blue-set pp)))
         using add-set-list-tuple-mono in-mono prod.collapse y-in-base
         by (metis (mono-tags, lifting))
       ultimately show ?thesis unfolding backw
         by (metis fold-app-app-rel ma-def prod.collapse top-sort-con)
     qed
   next
     case y-in
     then have y \in past-nodes\ G\ ma\ unfolding\ past-nodes.simps\ using\ 1(2,3)
         wf\text{-}digraph.reachable 1\text{-}in\text{-}verts (2) \ subs \ mem\text{-}Collect\text{-}eq \ trancl\text{-}trans
       by (metis (mono-tags, lifting))
     then show ?thesis using y-in by simp
   next
     {\bf case}\ both\text{-}nin
     consider (x-t) x = ma \mid (x-ant) x \in anticone G ma using DAG.verts-comp2
         subs 1 ma-tip ma-vert
         mem	ext{-}Collect	ext{-}eq \ tips	ext{-}def \ wf	ext{-}digraph.reachable1-in-verts(1) \ both-nin
       by (metis (no-types, lifting))
     then show ?thesis proof(cases)
       case x-t
       have y \in past\text{-}nodes\ G\ ma\ using\ 1(3)\ more
           past-nodes.simps unfolding x-t
         by (simp add: subs wf-digraph.reachable1-in-verts(2))
       then show ?thesis using both-nin by simp
     next
       have y-ina: y \in anticone \ G \ ma
       proof(rule ccontr)
         assume \neg y \in anticone \ G \ ma
         then have y = ma
```

```
 unfolding \ anticone.simps \ using \ subs \ wf-digraph.reachable 1-in-verts (2) 
1(2,3)
              ma-tip both-nin
            by fastforce
          then have x \to^+_G ma using 1(3) by auto then show False using subs 1(2)
            by (metis wf-digraph.tips-not-referenced ma-tip)
        \mathbf{qed}
        {f case} \ x-ant
       then have (y,x) \in list\text{-}to\text{-}rel \ (top\text{-}sort \ G \ (sorted\text{-}list\text{-}of\text{-}set \ (anticone \ G \ ma)))
         using y-ina DAG.anticon-finite subs 1(2,3) sorted-list-of-set(1) top-sort-rel
        then show ?thesis unfolding backw ma\text{-}def using
            fold\text{-}app\text{-}mono\ list\text{-}to\text{-}rel\text{-}mono2
          by (metis old.prod.exhaust)
      qed
    \mathbf{qed}
  \mathbf{qed}
qed
```

 \mathbf{end}