Workshop 1: questions for week 2

- 1. Let $f: D \to \mathbb{R}$ (read as "let f map D to \mathbb{R} "), where $D \subseteq \mathbb{R}$. Write down precise mathematical formulations of the following statements, using quantifiers (\forall, \exists) :
 - (a) D is bounded below.
 - (b) f is unbounded above.
 - (c) f is surjective.
 - (d) f is not surjective.
- 2. Prove from first principles (i.e. give a direct ε -N proof) that the following sequence converges:

 $a_n = \frac{n^2 + (-1)^n}{n^2 + 2}$

- 3. Give a direct ε -N proof of part (i) of Proposition 1: if $a_n \to A$ and $b_n \to B$ then $a_n + b_n \to A + B$.
- 4. Let the sequence (a_n) be defined so that $a_1 = 1$ and $a_{n+1} = 1/(2 + a_n^2)$ for all $n \ge 1$.
 - (a) Show that, for all $n \ge 2$, $|a_{n+1} a_n| \le \frac{1}{2} |a_n a_{n-1}|$.
 - (b) Deduce that (a_n) is Cauchy, hence convergent. Any idea what its limit is?