```
Problem 1. [16 points] Warmup Exercises
For the following parts, a correct numerical answer will only earn credit if accompanied by
it's derivation. Show your work.
(a) [4 pts] Use the Pulverizer to find integers s and t such that 135s + 59t = gcd(135, 59).
(b) [4 pts] Use the previous part to find the inverse of 59 modulo 135 in the range {1,..., 134}.
(c) [4 pts] Use Euler's theorem to find the inverse of 17 modulo 31 in the range {1,...,30}.
(d) [4 pts] Find the remainder of 3482248 divided by 83. (Hint: Euler's theorem.)
                             acd (59, rem (135,59))
a) ad(135,59) =
                              gcal 17, rem(50, (7))
                                                                       50-17.3 = 59-(135-2.59)-3
                           acal 8, rem(17,81)
                            gcd(8,1)=1.
                                                       1 = rem(17, 8) = 17 - 2.8
                                                                          -2( 59.7 -135.3)
                                                                    125-2.59-14.59+6.135
                                                                      -135-16.59=1
                  = 1 mod 133
                           gcd (135,59) =1, and
                                                               135.7=
                                   ⇒ 59· (-16)-1 1 135
                                          59. (-16) =1 mod 135
                                          -16 is an invese of 59
                                 (135.7-5a.16)
                                  59. K+59.16-135
                                     59 (16+6)-135-7
                                          135 1 16+le
                  mod 31
         Euler's theorem states that
                                                 17 51 mal 31
                                      30 Since 31 is prime.
                                            is an invesse of 17 mod
                                   (7 mad 21 > 17. K = 1 mod 31.
                                              31 | 17·k-1
                                       172a. 17 = 1 mod 31
                                        1729 = rem(1720,31) mod 31
```

17. rem(1720,31) = (mod 3)

```
rem (1729, 31)
                              a = rom (a,n) mod n
   172= 28a
                              anana- (a-kn)
       = 31×9+10
                                     niatka-n.
   174= (31×9+10)
                                     Ol action
                                      = Ola(1+K)
        = 312 x 81 + 20 · 31x9 + 100
        = 312x81+ 180x31+100
           31 (31x 81+120) + 100
         = ·31(31xB1+180)+31x3+7
         = 31(31x81+183)+7.
    178: rem(178,31) = 72-31=18
    1716: rem(1716,21) = 182-310=14
172 = 280 = 10 mod 31
174 = 172-172 = 10.10 mod31
       (74 = 100 mod 31
         12 bon F = PFI (
 (78=174.179 = 7.7 mod3)
             = 49 mod 37
             = (6 mod 3)
     = (78 = 18 mod 31
 1716 = 178.178 = 18 18 = 324 mod 31
```

= 14 mod 21

Since 1729: 17 = 1 mod 31. and 1729

11 is an invesc of 17.

1720 = 1716.178.174.17

=> 1729 = 11 mod 31

= 252.174.17 mod S1 = 4.17.174 mod S1 = 4.7.17 mod S1 = 4.26 mod S1

= k mod 83 3482 =1 mod 83 83 15 prime => Problem 2. [16 points] Prove the following statements, assuming all numbers are positive integers. (a) [4 pts] If $a \mid b$, then $\forall c, a \mid bc$ (b) [4 pts] If $a \mid b$ and $a \mid c$, then $a \mid sb + tc$. (c) $[4 \text{ pts}] \forall c, a \mid b \Leftrightarrow ca \mid cb$ (d) [4 pts] gcd(ka, kb) = k gcd(a, b) Problem 3. [20 points] In this problem, we will investigate numbers which are squares modulo a prime number p. (a) [5 pts] An integer n is a square modulo p if there exists another integer x such that $n \equiv x^2 \pmod{p}$. Prove that $x^2 \equiv y^2 \pmod{p}$ if and only if $x \equiv y \pmod{p}$ or $x \equiv -y$ \pmod{p} . (Hint: $x^2 - y^2 = (x + y)(x - y)$) b1 x3-33 (x+A) (x+A)

b) If n is a square modulo p, then nº = 1 mod p. Pl: It is square modulo p then $n \equiv z^2 \mod p$ \Rightarrow $n^{\frac{1}{2}} \equiv \pm x \mod p$ \Rightarrow $n^{\frac{1}{2}} \equiv x \mod p$ or $n^{\frac{1}{2}} \equiv -x \mod p$ For cae where pln, pln-x2 plpk-x2 ⇒ plx > Euler's theorem does not apply to a. It ptn, then ptz => zp-1 = 1 mod p for n==x mod p > nod p. For not = 1 mod p. $| U_{\frac{1}{2}(b-1)} | = (-x)_{b-1} | x_{b-1} |$ $= (-1)^{p-1} \cdot 1$ $= (-1)^{p-1}$ = 1 Since p cannot be even exact for 2

 $n \equiv x^2 \mod p$, $n^{\frac{1}{2}} \equiv x$ or $n^{\frac{1}{2}} \equiv -x$ mod p $\Rightarrow n^{\frac{1}{2}(p-1)} \equiv 1 \mod p$ for both cases.

Therefore, n=x2 mad p () n2cp-1)=1 mod p.

(c) [10 pts] Assume that $p \equiv 3 \pmod{4}$ and $n \equiv x^2 \pmod{p}$. Given n and p, find one possible value of x. (Hint: Write p as p = 4k + 3 and use Euler's Criterion. You might have to multiply two sides of an equation by n at one point.)

$$P = 4k+3.$$

$$N \equiv \chi^{2} \pmod{p}$$

$$\Rightarrow n^{\frac{p-1}{2}} \equiv 1 \mod{p}$$

$$\cap N^{2k} \equiv 1 \mod{p}$$

$$\cap N^{2k} \equiv 1 \mod{p}$$

$$\Rightarrow n^{2k+2} \equiv n \mod{p}$$

$$\cap N^{2k+2} \equiv 1 \mod{p}$$

$$\Rightarrow n^{2k+2} \equiv$$

Problem 4. [10 points] Prove that for any prime, p, and integer, $k \geq 1,$ $\phi(p^k) = p^k - p^{k-1},$

where ϕ is Euler's function. (Hint: Which numbers between 0 and p^k-1 are divisible by p? How many are there?)

O(pk). Between 1 to pk-1, there are

$$P, 2P, 3P, \dots P^{-1}, 2P^{2}, \dots P^{2}, \dots P^{2}$$

$$p_{k-1}-(p_{k-1}-1)=p_{k-1}-p_{k-1}-1$$

Problem 5. [18 points] Here is a *very*, very fun game. We start with two distinct, positive integers written on a blackboard. Call them x and y. You and I now take turns. (I'll let you decide who goes first.) On each player's turn, he or she must write a new positive integer on the board that is a common divisor of two numbers that are already there. If a player can not play, then he or she loses.

For example, suppose that 12 and 15 are on the board initially. Your first play can be 3 or 1. Then I play 3 or 1, whichever one you did not play. Then you can not play, so you lose.

- (a) [6 pts] Show that every number on the board at the end of the game is either x, y, or a positive divisor of gcd(x, y).
- (b) [6 pts] Show that every positive divisor of $\gcd(x,y)$ is on the board at the end of the game.
- (c) [6 pts] Describe a strategy that lets you win this game every time.

Let ponsine For turn no the number played is a divisor of god (xys.

By induction,

Base case: pc1). For turn 1, the number x, y are on the board, hence the number played must divide both x, y. Let all divisors of both x, y be of ED, when D is the set of all common divisors.

We now show that & die D, dil god (xxx)

Let g(d(x,y)) = Sx+ty, where $S, t \in T$. Since di(x) and di(y), $\frac{Sx+ty}{di} = \frac{S}{di} + t\frac{y}{di} \implies di(Sx+ty)$ $\implies di(g(d(x,y))$

.. VdieD are divisors of gcd(x, y).

theorem pand is true for n , et $1 \le k \le n$, and $1 \le k \le n$, and divisors of godaxy By conson the Deard are $1 \le k \le n$ and divisors of godaxy By conson the 2 number chosen to divide, $1 \le n \le n$ player pick $1 \le n \le n$ divisor of godaxy.
x, di or y, di => By symmetry, we arrely to z, di WLOG with y, di.
Let k∈ IN, since k di, k also can divide x. ⇒ k gcd(xy) since gcd(xy) = d,d2,di,dm
=> k must be a divisor of gradexy.
Between di, di we can use the same argument as before for x, di.
torce, for turn ktl, the number added must also be a common divisor of galaxy).
.: Since pan is the Bor I and lett, pan is the Bor 4 n +1.
feedbre, all numbers on the board one x, y and downsors of godica. Ys.
From above, we showed that for each turn, we not play a divisor of gcd (2, 4). D, the set of common divisore is finite. Hence, the turn ends when no divisor of gcd (2,4) can be placed.
For this to happen, all elements in D must be placed on the board. Hence, all positive drivisors of god crays must be on the board.
To win the game, break down the god(x,y) into a product of primes, som up all its powers: e.g. $2^3.5^4.7^2.9' \Rightarrow 3+4+7+1$. Let this value be n. Calculate the total combinations $\geq (\binom{n}{k}) = 2^n \Rightarrow$ three are 2^n divisors
Since the number of divisors of gcd(1/1/1) is 2
Horce, to un, the player mot always choose to start 2nd, unless x and y are relatively prime, in which case the player must start first.

Here, the number played, dieD, is adiusor of occlex, y)