Analyse Exploratoire des Données de Vent (Mensuelles par Commune)

1. ANALYSES SIMPLES VISION GLOBALE

Q1 : Quels sont les ordres de grandeur des variables ?

df.describe()

But : détecter les valeurs aberrantes, calibrer les échelles, connaître les moyennes.

Q2 : Comment se répartissent les valeurs sur l'ensemble des communes/mois ?

sns.histplot(df['gust_max'], bins=30, kde=True)

But : voir si la distribution est normale, asymétrique ou extrême (long tail).

2. ANALYSES TEMPORELLES (FRANCE ENTIÈRE)

Q3 : Quelle est la tendance mensuelle globale du vent ?

df.groupby('date_mois')[['wind_speed_10m_mean', 'gust_max']].mean().plot(marker='o')

But : identifier les pics anormaux, les mois calmes vs à risque.

Q4 : Y a-t-il une saisonnalité du vent ?

df['mois'] = pd.to_datetime(df['date_mois']).dt.month

df.groupby('mois')[['gust_max', 'wind_speed_100m_mean']].mean().plot()

But : exploiter des effets de mois (variables saisonnières) en modélisation.

3. ANALYSES SPATIALES (COMMUNES)

Q5 : Quelles communes sont les plus exposées en rafale max ?

df.groupby('code_commune')['gust_max'].mean().sort_values(ascending=False).head(20)

But : identifier les zones structurellement à risque.

Q6 : Ces communes sont-elles géographiquement cohérentes ?

En affichant sur une carte (si tu as les coordonnées ou un shapefile).

Q7 : Y a-t-il des communes avec haute variance intermensuelle ?

df.groupby('code_commune')['wind_speed_10m_mean'].std().sort_values(ascending=False).head(20)

But : détecter linstabilité structurelle.

4. INTERACTIONS SPATIO-TEMPORELLES

Q8 : Évolution du vent pour une commune précise sur plusieurs mois

df[df['code_commune'] == 'XXXXXX'].set_index('date_mois')[['wind_speed_10m_mean', 'gust_max']].plot()

But : préparer le terrain pour des séries temporelles locales (contrats géolocalisés).

Q9 : Détection des événements extrêmes (rafale > seuil)

df['gust_extreme'] = df['gust_max'] > 30

df.groupby('date_mois')['gust_extreme'].sum().plot(kind='bar')

But : observer quand ont eu lieu des pics météo dangereux.

5. ANALYSES MULTIVARIÉES & SEGMENTATION

Q10 : Quelles sont les corrélations entre variables météo ?

sns.heatmap(df.drop(columns=['date_mois', 'code_commune']).corr(), annot=True)

But : réduire la redondance pour la modélisation.

Q11 : Peut-on segmenter les communes en fonction de leur profil météo ?

from sklearn.cluster import KMeans

X = df.groupby('code_commune')[['gust_max', 'wind_speed_10m_mean']].mean()

X['cluster'] = KMeans(n_clusters=4, random_state=42).fit_predict(X)

But : enrichir ta base de modélisation avec une typologie météo.