

Week 05: Recurrent Neural Networks (RNNs)

Machine Learning 2
Dr. Hongping Cai

Topic 1: Types of Sequence Problems

So far: Standard "Feedforward" Neural Networks

e.g. image classification, house price prediction

Image from: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

BATH

So far: Standard "Feedforward" Neural Networks

Types of Sequence Problems

e.g. image captioning

BATH

So far: Standard "Feedforward" Neural Networks

Types of Sequence Problems

e.g. video classification, sentiment classification

So far: Standard "Feedforward" Neural Networks

Types of Sequence Problems

one to one one to many many to one many to many

(Input length = output length)

many to many

many to many

e.g. Per-frame video classification

Image from: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

BATH

So far: Standard "Feedforward" Neural Networks

Types of Sequence Problems

one to one one to many many to one many to many many to many

e.g. machine translation, chatbots

Image from: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

So far: Standard "Feedforward" Neural Networks

Recurrent Neural Networks (RNN) for sequential modelling

Have an internal loop

Reference for Topic 1

- Blog by Andrej Karpathy: http://karpathy.github.io/2015/05/21/rnn-effectiveness/
- Lectures from University of Michigan: https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/schedule.html
- Video lecture by Alexander Amini: MIT course on Recurrent Neural Networks, YouTube.

Topic 2: Recurrent Neural Networks (RNNs)

Given a location of a ball at present, can you predict where it will go in the next second?

Given a location of a ball at present, can you predict where it will go in the next second?

Q: How to model such a dependency of an input sequence?

A: Using a hidden state

Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs)

Also called "Vanilla RNNs"

Key idea: RNNs have an internal/hidden state h_t that can represent context information.

"Recurrent" Neural Networks (RNNs)

State update and output

Output vector

$$\hat{y}_t = g(W_{hy}h_t + b_y)$$

Update the hidden state

$$h_t = \tanh(W_{hh}h_{t-1} + W_{xh}x_t + b_h)$$

Unfolding an RNN

$$h_t = \tanh(W_{hh})h_{t-1} + W_{xh}x_t + b_h$$

$$\hat{y}_t = g(W_h)yh_t + b_y$$

The same weight matrices are used at every time-step

Summary of RNNs

- Main feature of RNNs is its **hidden state**, considered as the **memory** of the network.
- Sharing parameters across all time steps.
- We may not need inputs or output at every time step, depending on the task.

Reference for Topic 2

- Video lecture by Alexander Amini: MIT course on Recurrent Neural Networks, YouTube.
- Blog by Andrej Karpathy: http://karpathy.github.io/2015/05/21/rnn-effectiveness/
- Lectures from University of Michigan: https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/schedule.html

Topic 3: A Simple Language-Modelling Example

Example: Character-level Language Modelling

Task: Given characters at time 1, 2, ..., t, predicts the next character (at time t+1)

Example from: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Given "h", target output: "e"

Given "he", target output: "I"

Given "hel", target output: "l"

Given "hell", target output: "o"

Example: Character-level Language Modelling

Example: Character-level Language Modelling

Reference for Topic 3

- Blog by Andrej Karpathy: http://karpathy.github.io/2015/05/21/rnn-effectiveness/
- Lectures from University of Michigan: https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/schedule.html

Topic 4: Backpropagation Through Time (BPTT)

Training process

UNIVERSITY OF

See Weberna's blog for detailed equations: https://weberna.github.io/blog/2017/11/15/LSTM-Vanishing-Gradients.html

RNN gradient flow

Many values > 1: exploding gradients

Gradient clipping: scale big gradients

Computing the gradient wrt W involves multiplying many factors

Many values < 1: vanishing gradients

RNN gradient flow

Many values > 1: exploding gradients

Computing the gradient wrt W involves multiplying many factors

Many values < 1: vanishing gradients

Change RNN architecture

The vanishing gradient problem

• Short term dependencies:

May I have some water to drink

• Long term dependencies:

It started raining. Mia still played in the garden, with her cloth all wet

Standard RNNs have difficulties in modelling long-term dependencies because of vanishing gradient problem.

Solutions

- Key idea: use a **more complex recurrent unit** with **gates** to control the flow of information.
 - Long Short Term Memory (LSTM) ← Next topic
 - □ Sepp Hochreiter et al., "Long short-term memory", 1997.
 - Gated Recurrent Units (GRU)
 - □ Cho et al "Learning phrase representations using RNN encoder-decoder for statistical machine translation", 2014

Reference for Topic 4

- Video lecture by Alexander Amini: MIT course on Recurrent Neural Networks, YouTube.
- Blog by Denny Brits: http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-through-time-and-vanishing-gradients/
- Lectures from University of Michigan: https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/schedule.html
- Blog by Weberna: https://weberna.github.io/blog/2017/11/15/LSTM-Vanishing-Gradients.html

Topic 5: LSTM-1

Standard/Vanilla RNNs

• In a standard RNN, repeating modules contain a simple computation

node.

 $h_t = \tanh(W\binom{h_{t-1}}{x_t} + b_h)$

Long-Short Term Memory (LSTM)

- LSTMs are explicitly designed to deal with the long-term dependency problem.
- LSTM modules contain computational blocks that control information flow.

cell state

Two core concepts of LSTMs

• Gates: to control what information is to keep and forget. C_{t-1} • Cell state: act as a transport highway that transfers relative forget gate information all way down the

information all way down the sequence chain, thus store long-term information.

All gate values are between 0 (discard) and 1 (keep).

Sigmoid tanh pointwise multiplication pointwise addition concatenation

Image from: https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

input gate

output gate

Forget gate

• Forget gate: forget irrelevant parts of the previous state.

$$f_t = \sigma(W_f \binom{h_{t-1}}{x_t} + b_f)$$

Animation from: https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

Input gate

• **Input gate**: decides what information is relevant to add from the current step.

$$i_t = \sigma(W_i \binom{h_{t-1}}{x_t} + b_i)$$

• New cell content: the new content to be written to the cell

$$\tilde{C}_t = \tanh(W_C \binom{h_{t-1}}{x_t} + b_C)$$

Animation from: https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

Cell state

• **Cell state**: update the cell state to new values that the network finds relevant.

 $C_t = f_t \circ C_{t-1} + i_t \circ \tilde{C}_t$

Erase ("forget") some content from the previous state

sigmoid tanh pointwise pointwise vector addition concatenation

Output gate

• Output gate: determines what parts of the cell are output to the hidden state.

$$o_t = \sigma(W_o \binom{h_{t-1}}{x_t} + b_o)$$

• **Hidden state**: read ("output") some content from the cell.

$$h_t = o_t \circ \tanh(C_t)$$

Animation from: https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

Vanilla RNN:

$$h_t, b_h \in \mathbb{R}^H$$

$$x_t \in \mathbb{R}^M$$

$$W \in \mathbb{R}^{H \times (H+M)}$$

LSTM:

$$f_t \in \mathbb{R}^H$$

$$i_t \in \mathbb{R}^H$$

$$o_t \in \mathbb{R}^H$$

$$\tilde{C}_t \in \mathbb{R}^H$$

$$C_t \in \mathbb{R}^H$$

$$h_t \in \mathbb{R}^H$$

$$x_t \in \mathbb{R}^M$$

$$W_f, W_i, W_o, W_C \in \mathbb{R}^{H \times (H+M)}$$

$$h_t = \tanh(W\binom{h_{t-1}}{x_t} + b_h)$$

$$f_{t} = \sigma(W_{f} \binom{h_{t-1}}{\chi_{t}} + b_{f})$$

$$i_{t} = \sigma(W_{i} \binom{h_{t-1}}{\chi_{t}} + b_{i})$$

$$o_{t} = \sigma(W_{o} \binom{h_{t-1}}{\chi_{t}} + b_{o})$$

$$\tilde{C}_{t} = \tanh(W_{C} \binom{h_{t-1}}{\chi_{t}} + b_{C})$$

$$C_{t} = f_{t} \circ C_{t-1} + i_{t} \circ \tilde{C}_{t}$$

$$h_{t} = o_{t} \circ \tanh(C_{t})$$

Reference for Topic 5

- Blog by Colah: Understanding LSTM Networks.
 http://colah.github.io/posts/2015-08-Understanding-LSTMs/
- Blog by Michael Phi: Illustrated Guide to LSTM's and GRU's: A step to step explanation. https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21
- Video lecture by Alexander Amini: MIT course on Recurrent Neural Networks, YouTube.
- Lectures from University of Michigan: https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/schedule.html

Topic 6: LSTM-2

LSTM Architecture

 $Image\ from: https://towardsdatascience.com/illustrated-guide-to-lstms- and-gru-s-a-step-by-step-explanation-44e9eb85bf21$

LSTM Gradient Flow

Uninterrupted gradient flow

LSTMs solve the vanishing/exploding gradient problem using an additive gradient structure.

Advanced use of RNNs/LSTMs

 Multi-layer RNNs (Deep RNNs): stack more than one RNN. It increases the representation power of the network, at the cost of higher computational loads.

```
from keras.layers import LSTM
...
model.add(LSTM(32), return_sequences=True)
model.add(LSTM(32), return_sequences=True)
model.add(LSTM(32))
...
```


True means: output all the hidden states

Advanced use of RNNs/LSTMs

 Bidirectional RNNs: process a sequence in both directions, capturing pattens that may be missed by the chronologicalorder version alone.


```
from keras.layers import Bidirectional, LSTM
...
model.add(Bidirectional(LSTM(32)))
...
```

Example Tasks: Neural Machine Translation (NMT)

Seq2seq [Sutskever et al, 2014][Cho et al, 2014]

Problem: **Encoding bottleneck**

One solution: Attention Based seq2seq

Example Tasks: Image Caption Generation

UNIVERSITY OF

Summary of LSTMs

- Beside the hidden state, also maintain a cell state to store long-term information.
- Use gates to control the flow of information
 - Forget gate: gets rid of irrelevant old information
 - Input gate: stores relevant information from current input
 - Output gate: output a filtered version of the cell state
- Backpropagation through time with uninterrupted gradient flow, to avoid the vanishing/exploding gradient problem.

Reference for Topic 6

- Blog by Colah: Understanding LSTM Networks.
 http://colah.github.io/posts/2015-08-Understanding-LSTMs/
- Blog by Michael Phi: Illustrated Guide to LSTM's and GRU's: A step to step explanation. https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21
- Video lecture by Alexander Amini: MIT course on Recurrent Neural Networks, YouTube.
- Lectures from University of Michigan: https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/schedule.
 https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/schedule.
 https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/schedule.
 https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/schedule.
 https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/schedule.
 https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/schedule.
 https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/schedule.
 https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/schedule.
 https://web.eecs498/FA2020/schedule.
 https://www.edu/
 https://www.edu/
- Blogs by Nir Arbel: How do LSTM networks solve the problem of vanishing gradients: https://medium.com/datadriveninvestor/how-do-lstm-networks-solve-the-problem-of-vanishing-gradients-a6784971a577