$\begin{array}{c} {\rm NUEN~629} \\ {\rm Numerical~Methods~in~Reactor~Analysis} \\ {\rm Homework~4~\&~5~\&~Project} \end{array}$

Due on: Thursday, November 19, 2015 & & Thursday, December 3, 2015

Dr. McClarren

Paul Mendoza

Contents

Homework 4 Problem Statement	3
Homework 4 Problem Background	4
Homework 4 Problem Solution	8
Homework 5	10
Project	11

Homework 4 Problem Statement

Solve the following problem and submit a detailed report, including a justification of why a reader should believe your results and a description of your methods and iteration strategies.

1. (150 points + 50 points extra credit) In class we discussed the diamond-difference spatial discretization. Another discretization is the step discretization (this has several other names from other disciplines). It writes the discrete ordinates equations with isotropic scattering as, for $\mu_n > 0$ to

$$\mu_n \frac{\psi_{i,n} - \psi_{i-1,n}}{h_r} + \Sigma_t \psi_{i,n} = \frac{\Sigma_s}{2} \phi_i + \frac{Q}{2}$$
 (1)

and for $\mu_n < 0$

$$\mu_n \frac{\psi_{i+1,n} - \psi_{i,n}}{h_x} + \Sigma_t \psi_{i,n} = \frac{\Sigma_s}{2} \phi_i + \frac{Q}{2}$$
 (2)

The codes provided in class should be modified to implement this discretization.

- (a) (50 Points) Your task (should you choose to accept it) is to solve a problem with uniform source of Q = 0.01, $\Sigma_t = \Sigma_s = 100$ for a slab in vacuum of width 10 using step and diamond difference discretizations. Use, 10, 50, and 100 zones ($h_x = 1, 0.02, 0.01$) and your expert choice of angular quadratures. Discuss your results and how the two methods compare at each number of zones.
- (b) (10 points) Discuss why there is a different form of the discretization for the different signs of μ .
- (c) (40 points) Plot the error after each iteration using a 0 initial guess for the step discretization with source iteration and GMRES.
- (d) (50 points) Solve Reed's problem (see finite difference diffusion codes). Present convergence plots for the solution in space and angle to a "refined" solution in space and angle.
- (e) (50 points extra credit) Solve a time dependant problem for a slab surrounded by vacuum with $\Sigma_t = \Sigma_s = 1$ and initial condition given by $\psi(\mathbf{0}) = \mathbf{1}/h_x$ (original problem statement said $\phi(0) = 1/h_x$ and I'm not sure how to solve that). Plot the solution at t = 1 s, using step and diamond difference. The particles have a speed of 1 cm/s. Which discretization is better with a small time step? What do you see with a small number of ordinates compared to a really large number (100s)?

Homework 4 Problem Background

Due to the complicated nature of this course, I provided this background for the lay person (me), so that they might have some grounding for the solution and hopefully believe the results. It should be noted that most of this background information is copied from various points in Dr. McClarren's notes, and is in no way original. Anything intelligent in the following is due to this fact and for any errors, I blame myself.

Beginning with the weighty neutron transport equation.

$$\left(\frac{1}{v}\frac{\delta}{\delta t} + \hat{\Omega}\cdot\nabla + \Sigma_t\right)\psi = \int_0^\infty dE' \int_{4\pi} d\hat{\Omega}' K(\hat{\Omega}'\cdot\hat{\Omega}, v'\to v)\Sigma_s\psi + \frac{1}{4\pi}\chi\int_0^\infty dE' \bar{\nu}\Sigma_f\phi + q$$

Where $K(\hat{\Omega}' \cdot \hat{\Omega}, v' \to v)$ represents the probability of scattering from one angle and energy to another given a scattering event occurred and Σ_s is the macroscopic scattering cross section. The dependencies for the variables are shown below.

$$\Sigma_{t}(\vec{x}, v, t)$$

$$\psi(\vec{x}, \hat{\Omega}, v, t)$$

$$\Sigma_{s}(\vec{x}, v, t)$$

$$\chi(\vec{x}, v)$$

$$\Sigma_{f}(\vec{x}, v, t)$$

$$\phi(\vec{x}, v, t)$$

$$q(\vec{x}, \hat{\Omega}, v, t)$$

There are 7 free variables (three spatial $[\vec{x}]$, two angular $[\hat{\Omega}]$, one energy [v] and one time [t]) in this equation. In the steady state $\left(\frac{\delta\psi}{\delta t}=0\right)$, i.e. no time dependence, non fissioning $(\Sigma_f=0)$ case the transport equation reduces to,

$$\left(\hat{\Omega} \cdot \nabla + \Sigma_t\right) \psi = \int_0^\infty dE' \int_{4\pi} d\hat{\Omega}' K(\hat{\Omega}' \cdot \hat{\Omega}, v' \to v) \Sigma_s \psi + q.$$

In order to reduce this to a single energy the following definitions are helpful (remembering all time dependence is gone).

$$\begin{split} \psi(\vec{x}, \hat{\Omega}) &= \int_0^\infty dE \ \psi(\vec{x}, \hat{\Omega}, v(E)) \\ \Sigma_t(\vec{x}) &= \frac{\int_0^\infty dE \ \Sigma_t(\vec{x}, v(E)) \psi(\vec{x}, \hat{\Omega}, v(E))}{\psi(\vec{x}, \hat{\Omega})} \\ K(\hat{\Omega}' \cdot \hat{\Omega}, v' \to v) &= K(\hat{\Omega}' \cdot \hat{\Omega}) K(v' \to v) \\ \Sigma_s(\vec{x}) &= \frac{\int_0^\infty dE \int_0^\infty dE' \ \Sigma_s(\vec{x}, v(E)) K(v' \to v) \psi(\vec{x}, \hat{\Omega}, v(E))}{\psi(\vec{x}, \hat{\Omega})} \\ q(\vec{x}, \hat{\Omega}) &= \int_0^\infty dE \ q(\vec{x}, \hat{\Omega}, v(E)) \end{split}$$

Using these definitions, integrating the transport equation over all energy, and assuming cross sections and sources do not vary in space or angle, our transport equation reduces again to,

$$\left(\hat{\Omega} \cdot \nabla + \Sigma_t\right) \psi(\vec{x}, \hat{\Omega}) = \int_{A\pi} d\hat{\Omega}' \ K(\hat{\Omega}' \cdot \hat{\Omega}) \Sigma_s \psi(\vec{x}, \hat{\Omega}') + q.$$

Where the double differential was assumed to be separable in angle and energy. The final simplification for our problem will be in space. If we assume that our geometry is infinite in y $\left(\frac{\delta}{\delta y}=0\right)$ and x $\left(\frac{\delta}{\delta x}=0\right)$. This also means that ψ depends only on z and mu, and if we recall that

$$\hat{\Omega} = (\sqrt{1 - \mu^2} \cos(\rho), \sqrt{1 - \mu^2} \sin(\rho), \mu),$$

and

$$\nabla = \left(\frac{\delta}{\delta x}, \frac{\delta}{\delta y}, \frac{\delta}{\delta x}\right)$$

also assuming that

$$K(\hat{\Omega}' \cdot \hat{\Omega}) = \frac{1}{4\pi}$$
 Isotropic Scattering

then our transport equation, and the equation I think we are trying to solve for this homework is.

$$\left(\mu \frac{\delta}{\delta z} + \Sigma_t\right) \psi(z, \mu) = \Sigma_s \frac{2\pi}{4\pi} \int_{-1}^1 d\mu' \ \psi(z, \mu') + q.$$

Checking units,

$$\left(\mu \frac{\delta}{\delta z} + \Sigma_t\right) \left[\frac{1}{cm}\right] \psi(z,\mu) \left[\frac{n \cdot cm}{str \cdot cm^3 \cdot s}\right] = \Sigma_s \frac{1}{2} \left[\frac{1}{cm \cdot rad}\right] \int_{-1}^1 d\mu' \, \psi(z,\mu') \left[\frac{n \cdot cm}{rad \cdot cm^3 \cdot s}\right] + q \left[\frac{n}{str \cdot cm^3 \cdot s}\right].$$

 Σ_s was moved outside the integral because it has no angular dependence integration over the azimuthal angle occurred because $\psi(z,\hat{\Omega})$ is assumed to be uniform and not depend on that angle.

Using Gauss-Legendre Quadrature for the integration term

$$\phi = \int_{-1}^{1} d\mu' \psi(z, \mu') = \sum_{i=1}^{n} w_i \psi(z, \mu'_i)$$

where

$$w_i = \frac{2}{(1 - \mu_i^2)[P_n'(\mu_i)]^2}$$

 P'_n is the differential of the legendre polynomial n, and μ'_i are the roots of P_n . The weights of even n's of the legendre polynomials should sum to 2, the value of $\int_{-1}^{1} d\mu$, which they do.

Putting this all together with time dependence:

$$\left(\frac{1}{v}\frac{\delta}{\delta t} + \mu \frac{\delta}{\delta z} + \Sigma_t\right)\psi_n(z) = \Sigma_s \frac{1}{2} \sum_{n'=1}^N w_{n'}\psi_{n'}(z) + q \frac{w_n}{2}$$

Where n and n' denote the direction being solved for and N is the total number of angles being solved for, q was multiplied by $\frac{w_n}{2}$ so that $\sum_{n=1}^{N} q \frac{w_n}{2} = 1$. Also unites of w are rad.

Diamond difference discretization

$$\frac{1}{v} \frac{\psi_{n,i}^{\ell+1,j+1} - \psi_{n,i}^{L,j}}{\Delta t} + \mu_n \frac{\psi_{n,i+1/2}^{\ell+1,j+1} - \psi_{n,i-1/2}^{\ell+1,j+1}}{hz} + \Sigma_t \psi_{n,i}^{\ell+1,j+1} = \Sigma_s \frac{1}{2} \sum_{n'=1}^N w_i \psi_{n',i}^{\ell,j+1} + q \frac{w_n}{2}.$$

Where n is for angle, i is the midplane of a spacial discretization, ℓ is the iteration index for spacial convergence, j is for a time step and

$$\psi_{n,i}^{\ell+1,j+1} = \frac{1}{2} (\psi_{n,i+1/2}^{\ell+1,j+1} + \psi_{n,i-1/2}^{\ell+1,j+1})$$

Writing this in terms of a steady state

$$\mu_n \frac{\psi_{n,i+1/2}^{\ell+1,j+1} - \psi_{n,i-1/2}^{\ell+1,j+1}}{hz} + \Sigma_t^* \psi_{n,i}^{\ell+1,j+1} = \Sigma_s \frac{1}{2} \sum_{n'=1}^N w_i \psi_{n',i}^{\ell,j+1} + q^*.$$

where

$$\Sigma_t^* = \Sigma_t + \frac{1}{v\Delta t}$$
$$q^* = q\frac{w_n}{2} + \frac{\psi_{n,i}^{L,j}}{v\Delta t}$$

The above equation has L for the iteration index to indicate that its value was iteratively determined in the previous time step.

Step discretization

Writing this in terms of a steady state for $\mu > 0$

$$\mu_n \frac{\psi_{n,i}^{\ell+1,j+1} - \psi_{n,i-1}^{\ell+1,j+1}}{hz} + \Sigma_t^* \psi_{n,i}^{\ell+1,j+1} = \Sigma_s \frac{1}{2} \sum_{n'=1}^N w_i \psi_{n',i}^{\ell,j+1} + q^*.$$

and for $\mu < 0$

$$\mu_n \frac{\psi_{n,i+1}^{\ell+1,j+1} - \psi_{n,i}^{\ell+1,j+1}}{hz} + \Sigma_t^* \psi_{n,i}^{\ell+1,j+1} = \Sigma_s \frac{1}{2} \sum_{n'=1}^N w_i \psi_{n',i}^{\ell,j+1} + q^*.$$

where

$$\Sigma_t^* = \Sigma_t + \frac{1}{v\Delta t}$$
$$q^* = q\frac{w_n}{2} + \frac{\psi_{n,i}^{L,j}}{v\Delta t}$$

The different forms are needed in the step discretization because in both the diamond and step approaches to the solution a value is needed from a previous zone. Our vacuum boundary condition states that the incoming neutrons are zero, which at the left side of the boundary, determines the angular flux moving to the right, and at the right side of the boundary, the angular flux moving to the left (these values are 0).

Errors

Error will be determined with the following:

$$Error = \frac{||\phi^{\ell+1} - \phi^{\ell}||}{||\phi^{\ell+1}||}$$

GMRES

The generalized minimium residual (GMRES) method is an iterative method for solving linear systems of equations. The method approximates the solution by the vector in a Krylov subspace with a minimum residual (see wikipedia or Dr. McClarren's notes, I'm not really sure how this method works, but python has a solver for it).

The system $A\vec{\phi} = b$ is solved with GMRES, where for our situation,

$$A = \left(I - \sum_{n'=1}^{N} L^{-1} \Sigma_{s} \frac{1}{2}\right)$$

where L^{-1} is a sweep solve for our system and acts as an operator (I think), and

$$b = \sum_{n'=1}^{N} L^{-1} q^*$$

Reeds Problem

Reeds problem is a similar system as above, except the source and scattering and total cross sections are variable in z, and the width of z is 16.

Homework 4 Problem Solution

The Sweeps

Listing 1: Diamond Difference Spatial Discretization

```
def Timevector(T, dt):
       Time=[dt]
       while Time[-1]<T:
           Time.append(Time[-1]+dt)
35
       return (Time)
   def diamond_sweep1D(I,hx,q,sigma_t,mu,boundary):
     """Compute a transport diamond difference sweep for a given
     Inputs:
40
       I:
                        number of zones
       hx:
                       size of each zone
                       source array
       q:
                      array of total cross-sections
       sigma_t:
                        direction to sweep
      mu:
       boundary:
                        value of angular flux on the boundary
     Outputs:
                        value of angular flux in each zone
      psi:
     .....
     assert(np.abs(mu) > 1e-10)
50
     psi = np.zeros(I)
     ihx = 1./hx
     if (mu > 0):
       psi_left = boundary
       for i in range(I):
         psi\_right = (q[i] + (mu*ihx-0.5*sigma\_t[i])*psi\_left) \setminus
                     /(0.5*sigma_t[i] + mu*ihx)
         psi[i] = 0.5*(psi_right + psi_left)
         psi_left = psi_right
     else:
60
       psi_right = boundary
```

Listing 2: Step Discretization

```
psi_left = (q[i] + (-mu*ihx-0.5*sigma_t[i])*psi_right)
                    /(0.5*sigma_t[i] - mu*ihx)
         psi[i] = 0.5*(psi\_right + psi\_left)
         psi_right = psi_left
     return psi
   def step_sweep1D(I, hx, q, sigma_t, mu, boundary):
     """Compute a transport step sweep for a given
     Inputs:
                       number of zones
       I:
       hx:
                        size of each zone
                        source array
       q:
                      array of total cross-sections
75
       sigma_t:
                        direction to sweep
       mu:
                     value of angular flux on the boundary
       boundary:
```

```
Outputs:
                         value of angular flux in each zone
      psi:
     n n n
80
     assert(np.abs(mu) > 1e-10)
     psi = np.zeros(I)
     ihx = 1./hx
     if (mu > 0):
      psi_left = boundary
85
       for i in range(I):
         psi\_right = (q[i] + mu*ihx*psi\_left) / (mu*ihx + sigma\_t[i])
         psi[i] = 0.5*(psi\_right + psi\_left)
         psi_left = psi_right
     else:
90
```

Homework 5

 $\psi(\Omega, \bar{x}, t, E)$

Page 10 of 11

Project

Page 11 of 11