	<pre>using Pkg Pkg.activate(".") using BenchmarkTools using DataFrames using Plots</pre>
	<pre>using Profile using ProfileView Activating environment at `~/Documents/schoolwork-codes/physics-215-julia/mini-project/Project.toml` Numerical and approximate solutions to the circular Sitnikov model</pre>
	Project member: Gabriel Luis Dizon In this mini-project, I solve and plot the numerical and approximate solutions to the circular Sitnikov model using Julia. For the numerical solutions, I solve the reduced one-dimensional ODE of the circular Sitnikov model using 1) the 4th-order Runge-Kutta method and 2) the leapfrog integrator method. For the approximate solutions, I use the solutions derived by Abouelmagd, et al. (2020) (henceforth referred to as
	the Paper), which employ the multiple scales method of perturbative expansion. The solutions and the methods used to obtain them are tested for both accuracy and speed. Solution accuracy is determined by the relative deviation of the running energies with the total initial energy of the system. Code speed is measured by benchmarking code performance with Julia's BenchmarkTools module. The mini-project is structured as follows. Section 1 will briefly introduce the circular Sitnikov problem and set up the respective differential equations. Section 2 will explain and show the code for the numerical integrators used in solving the circular Sitnikov DEs. Section 3 will show the plots of the numerical
	solutions made using the elements I have built up in Sections 1 and 2, as well as show the accuracy checks and performance benchmarks of the numerical solutions. Section 4 will give the plots of the approximate solutions, as well as their corresponding accuracy checks and performance benchmarks. Section 5 will summarize the mini-project results. 1) The circular Sitnikov model ODE
	The restricted model for three-body motion, consisting of two primary masses in a planar elliptical orbit and an infinitesimal third mass with motion perpendicular to that plane, was first formulated by Pavanini in 1907 (Pavanini, 1907). The circular case was given by MacMillan (1911). Sitnikov then proved in 1961 that the motion of the infinitesimal mass in Pavanini's general three-body system admits oscillatory solutions (Sitnikov, 1961). The figure below shows the diagram of the general (elliptical) Sitnikov model.
	In the case of the circular Sitnikov model, $m_1=m_2$, resulting in the two primary masses having a constant circular orbit about their barycenter. This leads to the equations of motion for test particle m simplifying into a one-dimensional 2nd-order ordinary differential equation along the z -axis $ \ddot{z} = \frac{\mathrm{d}}{\mathrm{d}z} V(z), \tag{1} $ where $V(z)$ is the test particle's potential
	$V(z)=\frac{1}{\sqrt{1/4+z^2}}. \tag{2}$ Direct differentiation of $V(z)$ gives us the 2nd-order ODE $\ddot{z}=-\frac{z}{1/4+z^2}. \tag{3}$ Closed-form solutions to this ODE exist in the form of elliptic integrals, but those are beyond the scope of
In [2]:	this project. I can treat the right-hand side of this equation as the effective force term on the test particle, which I code into the $sitnikov(z)$ function below. function $sitnikov(z::Float64)$ return $-z/(0.25 + (z^2.0))$ end
Out[2]:	sitnikov (generic function with 1 method) We can also write out the total energy of the test particle as $E=\frac{1}{2}\dot{z}^2-V(z). \tag{4}$ The equivalent code to it is expressed in the function energy (z, u), where I have chosen $\dot{z}=u$.
In [3]: Out[3]:	In order to solve the above 2nd-order ODE with the numerical integrators in the next section, I need to break it down into two 1st-order ODEs. Luckily, Newtonian gravitational systems such as the circular
	Sitnikov model are naturally decomposable into 1st-order ODE systems $\dot{z}=u, \tag{5}$ $\dot{u}=-\frac{z}{1/4+z^2}. \tag{6}$ The numerical integrators in Section 2 will be solving this ODE system.
	2) Numerical integrators The first integrator I consider is the leapfrog integrator. Also called the velocity Verlet method, this algorithm is highly attuned for solving ODEs in classical mechanics where the total energy of the system is conserved. The name <i>leapfrog</i> stems from how the algorithm updates its position and velocity values. Given some acceleration (or force per unit mass) term $f(x_i)$ at current position x_i , the updated position x_{i+1} and velocity x_{i+1} are $a_i = f(x_i), \tag{7}$
	$v_{i+1/2} = v_i + \frac{1}{2}a_i\Delta t,$ (8) $x_{i+1} = x_i + v_{i+1/2}\Delta t,$ (9) $a_{i+1} = f(x_{i+1}),$ (10) $v_{i+1} = v_i + \frac{1}{2}a_{i+1}\Delta t.$ (11)
In [4]:	The $v_{i+1/2}$ computation serves as the interleaving step of the integration, and running its full course results in an integrator that "leapfrogs" each update. I implement this scheme with leapfrog(z, u, dt) below, where I directly plug in sitnikov(z) as the integrator's acceleration term.
Out[4]:	<pre>a = sitnikov(z) u = u + (0.5*dt)*a return z, u end leapfrog (generic function with 1 method)</pre>
	Side note: the leapfrog implementation I use above is what is known as the kick-drift-kick form of the leapfrog integrator. While this form is commonly used for cases where variable time steps are needed for the integration, this project does not actually require variable time steps be used for the integrators. Instead, I use this specific implementation in order to extract synchronous values of velocity along with position. Standard leapfrog integration often only computes for $v_{i+1/2}$, but this velocity cannot be used when computing for the energy E_i at the i -th timestep. Using kick-drift-kick allows us to compute for v_{i+1} , which can be used for energy calculations, but at the expense of an additional acceleration calculation.
	which can be used for energy calculations, but at the expense of an additional acceleration calculation. The second integrator I use is the 4th-order Runge-Kutta (RK4) method. The Runge-Kutta methods are a class of 2nd-order and higher integrators derived from the Euler method of solving 1st-order ODEs. The 4th-order Runge-Kutta method in particular is also popular as a numerical integrator for classical mechanics systems, as it provides a reasonable degree of accuracy at moderately small time steps. (The truncation error of RK4 is $O(\Delta t^5)$, which means the error is suppressed by at most, 10 orders of magnitude for time steps as high as $\Delta t = 0.01$.)
	For our implementation of RK4, we follow the following scheme: $u_{i+1}=u_i+\frac{\Delta t}{6}(k_u+2l_u+2p_u+s_u), \\ z_{i+1}=z_i+\frac{\Delta t}{6}(k_z+2l_z+2p_z+s_z), \tag{12}$ where the coefficients k,l,p,s are given by
	$k_u = f(z_i)$ (14) $k_z = u_i$ (15) $l_u = f\left(z_i + \frac{1}{2}k_z\Delta t\right)$ (16) $l_z = u_i + \frac{1}{2}k_u\Delta t$ (17)
	$p_u = f\left(z_i + \frac{1}{2}l_z\Delta t\right) \tag{18}$ $p_z = u_i + \frac{1}{2}l_u\Delta t \tag{19}$ $s_u = f\left(z_i + p_z\Delta t\right) \tag{20}$ $s_z = u_i + p_u\Delta t. \tag{21}$ For our implementation of RK4 below, $f(z)$ is $sitnikov(z)$.
In [5]:	<pre>function rk4(z::Float64, u::Float64, dt::Float64) u_k1 = sitnikov(z) z_k1 = u u_k2 = sitnikov(z + (0.5*dt)*z_k1) z_k2 = u + (0.5*dt)*u_k1 u_k3 = sitnikov(z + (0.5*dt)*z_k2)</pre>
	$z_k = u + (0.5*dt)*u_k = u_k = sitnikov(z + dt*z_k = sitnikov(z + dt*z_k = sitnikov(z + dt*u_k = sitnikov(z + dt*z_k = sitnikov(z + dt*u_k = sitnikov(z + dt*z_k = sitnikov(z $
Out[5]:	rk4 (generic function with 1 method) 3) Solving the ODE In the previous sections, I have established the ODE we wish to solve, as well as the methods I will use to solve it. Now in this section, I will specify the initial conditions of the system and solve the ODE iteratively
In [6]:	using the methods outlined in Section 2. Leaning from initial conditions outlined in the Paper, the test particle is set to have an initial position $z(0)=0.4$ and initial velocity $u(0)=0.0$. The time step of integration is fixed at $\Delta t=0.01$, and the particle will be evolving for a total time of 20.0 time units.
	const $\delta t = 0.01$; const $total_time = 20.0$; The integration loop for both leapfrog and RK4 schemes is fairly simple. The function loops take the initial conditions $z(0)$ and $u(0)$ as input. The function then initializes the start time $t = 0$ and the vectors to store the values as local variables within itself. The function then loops its respective integration methods, appending the new position, velocity, energy, and time values to their respective local vectors. Once the loop has finished, the functions output their final position, velocity, time, and energy arrays. These loops
In [7]:	are implemented as leapfrog_loop(z, u) and rk4_loop(z, u) for the leapfrog and RK4 integrators, respectively.
	<pre>z_series = append!(Vector{Float64}(), z) u_series = append!(Vector{Float64}(), u) t_series = append!(Vector{Float64}(), t) e_series = append!(Vector{Float64}(), e) while t < total_time z, u = leapfrog(z, u, δt) t = t + δt e = energy(z, u) append!(z_series, z)</pre>
	<pre>append!(u_series, u) append!(t_series, t) append!(e_series, e) end return z_series, u_series, t_series, e_series end</pre>
	<pre>function rk4_loop(z, u) t = 0.0 e = energy(z, u) z_series = append!(Vector{Float64}(), z) u_series = append!(Vector{Float64}(), u) t_series = append!(Vector{Float64}(), t) e_series = append!(Vector{Float64}(), e) while t < total_time z, u = rk4(z, u, \deltat)</pre>
	<pre>z, u = rk4(z, u, δt) t = t + δt e = energy(z, u) append!(z_series, z) append!(u_series, u) append!(t_series, t) append!(e_series, e) end</pre>
Out[7]:	As part of the objectives of this mini-project, I will be benchmarking the performance of the integrator codes. Performing a benchmark test on both loops gives the following.
In [8]:	BenchmarkTools.Trial: 10000 samples with 1 evaluation. Range (min max): 84.496 μs 1.510 ms GC (min max): 0.00% 88.58% Time (median): 101.610 μs GC (median): 0.00% Time (mean ± σ): 104.265 μs ± 54.905 μs GC (mean ± σ): 2.21% ± 3.89%
In [9]: Out[9]:	84.5 μs Histogram: frequency by time 117 μs < Memory estimate: 129.81 KiB, allocs estimate: 44. rk4_bench = @benchmark rk4_loop(\$ini_z, \$ini_u) BenchmarkTools.Trial: 10000 samples with 1 evaluation. Range (min max): 113.788 μs 1.873 ms GC (min max): 0.00% 89.69% Time (median): 127.689 μs GC (median): 0.00%
T	Time (median): 127.689 μs GC (median): 0.00% Time (mean \pm σ): 133.122 μs \pm 69.783 μs GC (mean \pm σ): 2.30% \pm 4.06% Memory estimate: 129.81 KiB, allocs estimate: 44. We can compare their times by looking at the median of each benchmarking test.
In [10]:	<pre>leapfrog_median = median(leapfrog_bench.times); rk4_median = median(rk4_bench.times); timetable = DataFrame("Method"=>["Leapfrog", "RK4"], "Median time (ns)"=>[leapfrog_method</pre>
	String Float64 1 Leapfrog 101610.0 2 RK4 1.2769e5 As shown in the above table, the leapfrog method is marginally faster in speed compared to the RK4 method, although the difference is not that great. I suspect that the difference scales if you consider larger systems which involve more than one particle, but just looking at the current median times it seems that there is not an appreciable difference in terms of speed. Whatever difference there may be is likely due to
In [11]:	the amount of function calls to $sitnikov(z)$ made by the respective integrators. $leapfrog(z, u, dt)$ only has to call the acceleration function twice per iteration, while $rk4(z, u, dt)$ has to call it four times per iteration. Having established the marginally small difference in runtimes, we can now evaluate the result of the integrations. Plotting $z(t)$ for both leapfrog and RK4 methods gives us: $z_{leap}, u_{leap}, t_{leap}, e_{leap} = leapfrog_{leap}(ini_z, ini_u);$
<pre>In [12]: Out[12]:</pre>	<pre>z_rk4, u_rk4, t_rk4, e_rk4 = rk4_loop(ini_z, ini_u); gr() z_plot = plot(t_leap, [z_leap, z_rk4], label = ["Leapfrog" "RK4"], xlabel = "t", ylal line = [:solid :dash], linewidth = [2 3])</pre>
	0.2 Leapfrog RK4
	1) 0.0 -0.2 -0.2
	The oscillatory motion of the test particle is expected, with the test particle bobbing above and below the orbital plane of the primaries in periodic motion. There is no discernable difference in the solutions generated either by leapfrog or RK4, suggesting that they also have the same order of error. Indeed we can check it by plotting the total energy $E(t)$ of each solution below.
<pre>In [13]: Out[13]:</pre>	<pre>total_energy = energy(ini_z, ini_u); e_plot = plot(t_leap, [e_leap, e_rk4], label = ["Leapfrog" "RK4"], xlabel = "t", ylabel = [:solid :dash], linewidth = [2 3]) hline!([total_energy], label = "Initial energy", linewidth = 4)</pre> Leapfrog
	-1.60 ————————————————————————————————————
	-1.70 -1.75
	The green solid line shows the initial total energy of the system. The numerical energy fluctuations for both leapfrog and RK4 methods are practically identical, further strengthening the suggestion that their error terms are quite similar. A peculiar behavior of the numerical solutions (as well as the approximate solutions later on) are the oscillatory and periodic energy fluctuations that are apparent in the system. Decoupling the potential and kinetic energy terms of the total energy can let us plot them separately to perhaps infer
In [14]:	<pre>where the energy is going. kinetic = 0.5 .* (u_leap .^2.0) potential = -1.0 ./ sqrt.(0.25 .+ (z_leap.^2.0)) total = kinetic + potential plot(t_leap, [kinetic, potential, total], label = ["Kinetic energy" "Potential energy xlabel = "t", ylabel = "E(t)", line = [:solid :dash], linewidth = [2 3])</pre>
Out[14]:	O.0 Kinetic energy Potential energy Total energy
	-1.5
	From the above plot, it seems that there is a kinetic energy deficit throughout the numerical integration. While I conjecture that the missing kinetic energy may be accounted for by the motion of the two primary masses in the three body system, such a claim will need to be investigated with a full three-body simulation of the circular Sitnikov model. Note also that:
In [15]:	<pre>diff_relative = 100.0 * abs(total_energy - minimum(e_leap))/abs(total_energy); println("The percent energy difference between the minimum of the energy fluctuation and the initial total energy is ", round(diff_relative), " percent.") The percent energy difference between the minimum of the energy fluctuation and the initial total energy is 12.0 percent.</pre> Such a deviation in energy is non-negligible in this case, and looking into the cause for this may be worth
	considering for future projects. 4) Approximate solutions The main major result of the Paper is their derivation of approximate solutions to the circular Sitnikov ODE through the use of the multiple scales method. Multiple scales method is a technique in perturbation theory where the small perturbation parameter ε is attached to the "time" parameter of an ODE. Coupled with the
	standard method of perturbative expansion, this sets a "fast" and a "slow" time scale to the expansion, eliminating secular (unbounded) terms that would be present if only a regular perturbative expansion is performed for the ODE solution. (See Nayfeh 2004 for a full treatment of multiple scales as a pertubation technique.) Without going through the details of the derivation, the 1st and 2nd-order approximations obtained by Abouelmagd, et al. are
	$z^{(1)}(t) = 2\alpha_0 \cos \omega \left(1 - \frac{72\alpha_0^2}{\omega^2}\right) t, \tag{22}$
	$z^{(1)}(t) = 2\alpha_0\cos\omega\left(1 - \frac{72\alpha_0^2}{\omega^2}\right)t, \tag{22}$ $z^{(2)}(t) = z^{(1)}(t) + \frac{12\alpha_0^3}{\omega^2}\left[\cos\omega t - \cos3\omega\left(1 - \frac{72\alpha_0^2}{\omega^2}\right)t\right]. \tag{23}$ The paper specifies $\omega^2 = 8$, and the parameter α_0 determines the initial position of the test particle.
In [16]:	The paper specifies $\omega^2=8$, and the parameter α_0 determines the initial position of the test particle. I straightforwardly implement the above equations, as well as their corresponding first derivatives and resulting energy, in <code>approx1</code> for the 1st-order approximation and <code>approx2</code> for the 2nd-order approximation.
In [16]:	The paper specifies $\omega^2=8$, and the parameter α_0 determines the initial position of the test particle. I straightforwardly implement the above equations, as well as their corresponding first derivatives and resulting energy, in <code>approx1</code> for the 1st-order approximation and <code>approx2</code> for the 2nd-order approximation.
	The paper specifies $\omega^2=8$, and the parameter α_0 determines the initial position of the test particle. I straightforwardly implement the above equations, as well as their corresponding first derivatives and resulting energy, in approx1 for the 1st-order approximation and approx2 for the 2nd-order approximation.
	The paper specifies $\omega^2=8$, and the parameter α_0 determines the initial position of the test particle. I straightforwardly implement the above equations, as well as their corresponding first derivatives and resulting energy, in approx1 for the 1st-order approximation and approx2 for the 2nd-order approximation.
Out[16]:	The paper specifies $\omega^2=8$, and the parameter α_0 determines the initial position of the test particle. I straightforwardly implement the above equations, as well as their corresponding first derivatives and resulting energy, in approx1 for the 1st-order approximation and approx2 for the 2nd-order approximation.
Out[16]:	The paper specifies $\omega^2=8$, and the parameter α_0 determines the initial position of the test particle. I straightforwardly implement the above equations, as well as their corresponding first derivatives and resulting energy, in approx1 for the 1st-order approximation and approx2 for the 2nd-order approximation.
Out[16]:	The paper specifies $\omega^2=8$, and the parameter α_0 determines the initial position of the test particle. Istraightforwardly implement the above equations, as well as their corresponding first derivatives and resulting energy, in approx1 for the 1st-order approximation and approx2 for the 2nd-order approximation. Function approx1(α_0 : Float64, t::Float64, ω ::Float64) k = 1.0 - (72.0 * α_0 '2.0 / ω '2.0) $ z = 2.0 * \alpha_0 * \cos(\omega * t * k) $ $ u = -2.0 * \alpha_0 * \cos(\omega * t * k) $ $ u = -2.0 * \alpha_0 * \cos(\omega * t * k) $ $ u = -2.0 * \alpha_0 * \cos(\omega * t * k) $ $ u = -2.0 * \alpha_0 * \cos(\omega * t * k) $ $ u = -2.0 * \alpha_0 * \cos(\omega * t * k) $ $ u = -2.0 * \alpha_0 * \cos(\omega * t * k) $ $ u = -2.0 * \alpha_0 * \cos(\omega * t * k) $ $ u = -2.0 * \cos(\omega * t * k) $ $ u = -2.0 * \cos(\omega * t * k) $ $ u = u_1 * (12.0 * \alpha_0^2 .0) * (\cos(\omega * t) * \cos(3.0 * \omega * t * k)) $ $ u = u_1 * (12.0 * \alpha_0^2 .0) * (\sin(\omega * t) * 3.0 * k* \sin(3.0 * \omega * t * k)) $ $ u = u_1 * (12.0 * \alpha_0^2 .0) * (\sin(\omega * t) * 3.0 * k* \sin(3.0 * \omega * t * k)) $ $ u = u_1 * (12.0 * \alpha_0^2 .0 * 0) * (\sin(\omega * t) * 3.0 * k* \sin(3.0 * \omega * t * k)) $ $ u = \cos(2) * \cos(3.0 * \omega * t * k) $ $ u = \cos(2) * \cos(3.0 * \omega * t * k) $ $ u = \cos(2) * \cos(3.0 * \omega * t * k) $ $ u = \cos(2.0 * \cos(3.0 * \omega * t * k)) $ $ u =$
Out[16]:	The paper specifies $\omega^2=8$, and the parameter α_0 determines the initial position of the test particle. Istraightforwardly implement the above equations, as well as their corresponding first derivatives and resulting energy, in japprox1 for the 1st-order approximation and japprox2 for the 2nd-order approximation. function approx1(α_0 ::Float64, t::Float64, ω ::Float64) $k=1.9-(72.8^+\alpha_0/2.0^+/e^*2.0)$ $z=2.8^+\alpha_0^+$ cos(α^+ t * k) $u=2.9^+\alpha_0^+$ cos(α^+ t * k) $u=2.9^+\alpha_0^+$ cos(α^+ t * k) $u=2.9^+\alpha_0^+$ cos(α^+ t * k) $u=2.0^+\alpha_0^+$ cos(α^+ t * k) $u=2.0^+\alpha_0^+$ cos(α^+ t * k) $u=2.0^+\alpha_0^+$ cos(α^+ t * k) $u=0.0^+\alpha_0^+$ cos(α^+ cos(α^+ t * k) $u=0.0^+\alpha_0^+$ cos(
Out[16]:	The paper specifies $\omega^2=8$, and the parameter α_0 determines the initial position of the test particle. Istraightforwardly implement the above equations, as well as their corresponding first derivatives and resulting energy, in approx1 for the 1st order approximation and approx2 for the 2nd order approximation approx1(α_i ::Float54, t::Float54, c::Float54)
Out[16]: In [17]: In [18]: In [19]:	The paper specifies $\omega^2 = 8$, and the parameter α_0 determines the initial position of the lest particle. Is transplittorwardly implement the above equations, as well as their corresponding inst derivatives and resulting energy, in approxil for the 1st-order approximation. function suproxi(α_i ::Float64, t::Float64, w::Float64)
Out[16]: In [17]: Out[18]: In [19]:	The paper specifies $\alpha^* = 8$, and the parameter α_i determines the initial position of the test puricle. Is straightforwardly implement the above equations, as well as their corresponding first thrivatives and resuming energy, in approxis (or the 1st-order approximation). Function approxis(α_i):Float64, it:Float64, α_i :Float64) $k = 10 - (7.06 - 0.06) = 0.06)$ $k = 10 - (7.06 - 0.06) = 0.06)$ $k = 10 - (7.06 - 0.06) = 0.06)$ $k = 10 - (7.06 - 0.06) = 0.06)$ $k = 10 - (7.06 - 0.06) = 0.06)$ $k = 10 - (7.06 - 0.06) = 0.06)$ The turn x_i , using the "** *** ** *** *** *** *** *** *** ***
Out[16]: In [17]: In [18]: In [19]:	The paper specifies $\omega^2=8$, and the parameter α_0 determines the initial position of the test particle. Is transphrovarday improvement the above equations, as well as their corresponding this demands are approximation. In paper 2 to the 1st order approximation and approxi2 for the 2nd-order approximation. Function approxi[1], if Float64, if: Float64, oi: Float64) $ x = 2.0 \cdot 0.0 \cdot \cos(w \cdot t \cdot k) $ $ x = 2.0 \cdot 0.0 \cdot \cos(w \cdot t \cdot k) $ $ x = 2.0 \cdot 0.0 \cdot \cos(w \cdot t \cdot k) $ $ x = 2.0 \cdot (0.0 \cdot \cos(w \cdot t \cdot k)) $ $ x = 2.0 \cdot (0.0 \cdot \cos(w \cdot t \cdot k)) $ $ x = 2.0 \cdot (0.0 \cdot \cos(w \cdot t \cdot k)) $ $ x = 2.0 \cdot (0.0 \cdot \cos(w \cdot t \cdot k)) $ $ x = 2.0 \cdot (0.0 \cdot \cos(w \cdot t \cdot k)) $ $ x = 2.0 \cdot (2.0 \cdot \cos(w \cdot t \cdot k)) $
Out[16]: In [17]: In [18]: In [19]:	The paper specifies $\omega^2 = 8$, and the parameter ω_0 determines the initial position of the test particle. Is transpir/ovardy implement the above equations, as well as their corresponding first derivatives and recturing energy in approxil (a): FloatE4, the FloatE4, on: FloatE
Out[16]: In [17]: In [18]: In [19]:	The pages specifies: $x^2 = 8$, and the parameter x_0 determines the initial position of the test particle. Isstagativary imperments above equations, as well as their corresponding frest deviates and residing renergy in approach of the Isst-order approximation. Function sport of the Isstanding Approach of the Isst
Out[16]: In [17]: In [18]: In [19]: In [20]:	The exponentiation of the commerce of colormines to initial position of the test particle. Is the protection of approach of the test particle. Is the protection approach of the test particle and approaching the protection approach of the protection approach of the test particle approaching the protection and the protection approaching to protect the protection and the protection approaching to protect the protection approaching the protection and the protection approaching to protect the protection approaching to protect the protection approaching the protection approac
Out[16]: In [17]: In [19]: In [20]: Out[20]:	The paper sponting $u^2 = 5$, and the potential or in control and must consciously decided and interest and an emulation of the paper of the most and and an emulation of the paper of the most and and an emulation of the paper of the most and and an emulation of the paper of the most and and an emulation of the paper
Out[16]: In [17]: In [19]: In [20]: Out[20]:	The paper sponting $u^2 = 5$, and the potential or, economics the introl pate on the time particle. Is simply meaning dependent of the processor potential continues are all and paper and an activities of the particle of t
Out [16]: In [17]: In [19]: Out [20]: Out [20]:	The paper operation of the parameter is, developed as the initial position of the conjugation and processing the control of the paper o
Out[16]: In [17]: In [18]: In [20]: Out[20]:	The paper southers of the paper with the paper was an extension of the paper with
Out[16]: In [17]: In [18]: In [20]: Out[20]:	Therefore explanation of the control
Out [16]: In [17]: In [18]: In [20]: Out [20]:	The spectrum process of the first of the control of the control of the process of the control of
Out[16]: In [17]: In [18]: In [20]: Out[20]: Out[21]:	The particulation of the control of
Out[16]: In [17]: In [18]: In [20]: Out[20]: Out[21]:	The control of the co
Out[16]: In [17]: In [18]: In [20]: Out[20]: Out[21]:	Integrational control of the transcription of the control of the c
Out[16]: In [17]: In [18]: In [20]: Out[20]: Out[21]: Out[21]:	And the state of process of the control of the cont
Out [16]: In [17]: In [18]: In [20]: Out [20]: Out [21]: Out [22]: Out [23]:	The companion of the co
Out[16]: In [17]: In [18]: In [20]: Out[20]: Out[21]: Out[21]:	Proposed processor and an antimicrophysical control co
Out[16]: In [17]: In [18]: In [20]: Out[20]: In [21]: Out[21]: Out[22]: Out[23]:	The part of manufacture of the control of the contr
Out[16]: In [17]: In [18]: In [20]: Out[20]: In [21]: Out[21]: Out[22]: Out[23]:	The part of methods of the part of the par
Out[16]: In [17]: In [18]: In [20]: Out[20]: In [21]: Out[21]: Out[22]: Out[23]:	The control of the property of the control of the c
Out[16]: In [17]: In [18]: In [20]: Out[20]: In [21]: Out[21]: Out[22]: Out[23]:	Common control — A will be process on the process on the process of the control o
Out[16]: In [17]: In [18]: In [20]: Out[20]: In [21]: Out[21]: Out[22]: Out[23]:	Control of the Contro
Out[16]: In [17]: In [18]: In [20]: Out[20]: In [21]: Out[21]: Out[22]: Out[23]:	The processor of the control of the