1 Несобственные интегралы Римана двух типов. Критерий Коши сходимости несобственного интеграла.

1. Пусть функция f определена на промежутке $[a, +\infty)$ и $\forall b \in [a, +\infty)$ $f \in \Re[a, b]$. Предел

$$\lim_{b \to +\infty} \int_{a}^{b} f(x) dx,$$

если он существует и конечен, называют несобственным интегралом первого рода и обозначают символом

$$\int_{a}^{+\infty} f(x)dx$$

Аналогично определяется интеграл

$$\int_{-\infty}^{b} f(x)dx$$

2. Пусть функция f определена на промежутке [a,B), неограничена в окрестности точки B и $\forall b \in [a,B)$ $f \in \mathfrak{R}[a,b]$. Предел

$$\lim_{b \to B-0} \int_a^b f(x) dx,$$

если он существует и конечен, называют несобственным интегралом второго рода и обозначают символом

$$\int_{a}^{B} f(x)dx$$

3. Критерий Коши сходимости несобственного интеграла: Несобственный интеграл $\int_a^w f(x) dx$ сходится \iff

$$\forall \epsilon > 0 \quad \exists B \in [a, w) \quad \forall b_1, b_2 \in (B, w) \quad \left| \int_{b_1}^{b_2} f(x) dx \right| < \epsilon$$

Доказательство:

В силу определения несобственного интеграла его сходимость равносильна существованию предела функции $F(b)=\int_a^b f(x)dx$ при $b\to w,\quad b\in [a,w),$ а

$$\int_{b_1}^{b_2} f(x)dx = \int_a^{b_2} f(x)dx - \int_a^{b_1} f(x)dx = F(b_2) - F(b_1).$$

Осталось записать условие критерия Коши существования предела функции F при $b \to w$.

2 Абсолютная сходимость несобственного интеграла. Признаки абсолютной сходимости несобственных интегралов.

- **1. Говорят, что** несобственный интеграл $\int_a^w f(x) dx$ абсолютно сходится, если сходится интеграл $\int_a^w |f(x)| dx$.
- **2.** Пусть $f(x)\geqslant 0 \quad \forall x\in [a,w).$ Тогда интеграл $\int_a^w f(x)dx$ сходится \iff когда функция

$$F(b) = \int_{a}^{b} f(x)dx, \quad b \in [a, w),$$

ограничена.

Доказательство:

Если $f(x)\geqslant 0 \quad \forall x\in [a,w)$, то функция $F(b)=\int_a^b f(x)dx$ неубывает на [a,w) и поэтому она имеет предел при $b\to w,\quad b\in [a,w),\iff$ когда она ограничена.

3. Признак мажорации:

Если $0\leqslant f(x)\leqslant g(x)\quad \forall x\in [a,w)$ и интеграл $\int_a^w g(x)dx$ сходится, то интеграл $\int_a^w f(x)dx$ тоже сходится.

Доказательство:

Если интеграл $\int_a^w g(x)dx$ сходится, то функция

$$G(b) = \int_a^b g(x)dx, \quad b \in [a, w),$$

ограничена. Согласно свойству монотонности несобственного интеграла

$$0 \leqslant F(b) = \int_a^b f(x)dx \leqslant \int_a^b g(x)dx = G(b),$$

и, следовательно, функция F также ограничена. В силу предыдущей теоремы интеграл $\int_a^w f(x) dx$ сходится.

4. Пусть $\forall x \in [a, w) \quad f(x) \geqslant 0, \quad g(x) > 0$ и $\lim_{x \to w} \frac{f(x)}{g(x)} = A, \quad 0 < A < +\infty.$

Тогда интегралы $\int_a^w f(x) dx$ и $\int_a^w g(x) dx$ одновременно сходятся или расходятся.

Доказательство:

Возьмём $\epsilon = A/2 > 0$. $\exists c \in [a,w)$ такая что $\forall x \in [c,w)$

$$\left| \frac{f(x)}{g(x)} - A \right| < A/2,$$

то есть

$$\frac{A}{2}g(x) < f(x) < \frac{3}{2}Ag(x), \quad x \in [c, w).$$

Остаётся воспользоваться признаком мажорации и свойством:

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx, \quad c \in [a, w)$$

3 Признаки условной сходимости несобственных интегралов. Несобственные интегралы с несколькими особенностями.

Утверждение: Если существует интеграл $\int_a^w g^{'}(x)F(x)dx=A$ и существует конечный предел $\lim_{b\to w}g(b)F(b)=B,$ то существует несобственный интеграл

$$\int_{a}^{w} f(x)g(x)dx = B - g(a)F(a) - A.$$

1. Признак Дирихле:

Пусть функции $f,g,g^{'}$ непрерывны на $[a,w),\quad F(b)=\int_{a}^{b}f(x)dx$ ограничена на [a,w), функция g(x), монотонно убывая, стремится к 0 при $x\to w.$ Тогда интеграл $\int_{a}^{w}f(x)g(x)dx$ сходится.

Доказательство:

Очевидно, что $\lim_{b \to n} g(b) F(b) = 0$. Поскольку $g^{'}(x) \leq 0$, то

$$\lim_{b \to w} \int_{a}^{b} \left| g'(x) \right| dx = -\lim_{b \to w} \int_{a}^{b} g'(x) dx = -\lim_{b \to w} \left[g(b) - g(a) \right] = g(a),$$

то есть, интеграл $\int_a^w |g^{'}(x)| dx$ сходится. Так как функция F ограничена, то согласно признаку мажорации интеграл $\int_a^w |g^{'}(x)F(x)| dx$ сходится, и, следовательно, интеграл $\int_a^w g^{'}(x)F(x)dx$ сходится. Осталось воспользоваться предыдущим утверждением.

2. Признак Абеля:

Пусть функции $f,g,g^{'}$ непрерывны на [a,w), интеграл $\int_{a}^{w}f(x)dx$ сходится, функция g монотонна и ограничена на [a,w). Тогда интеграл $\int_{a}^{w}f(x)g(x)dx$ сходится.

Доказательство: (Нужно найти и записать)

3. Несобственные интегралы с несколькими особенностями:

Если оба предела интегрирования являются особенностями того или другого из изученных типов, то полагают по определению

$$\int_{w_1}^{w_2} f(x)dx := \int_{w_1}^{c} f(x)dx + \int_{c}^{w_2} f(x)dx,$$

где c — произвольная точка промежутка (w_1, w_2) .

При этом предполагается, что каждый из интегралов в правой части равенства сходится.

В том случае, когда подынтегральная функция не ограничена в окрестности одной из внутренних точек w отрезка интегрирования [a,b], полагают

$$\int_{a}^{b} f(x)dx := \int_{a}^{w} f(x)dx + \int_{w}^{b} f(x)dx,$$

требуя, чтобы оба стоящих справа интеграла сходились. Наконец, если на промежутке интегрирования имеется несколько (конечное число) тех или иных особенностей, лежащих внутри промежутка или совпадающих с его концами, то неособыми точками промежуток разбивают на конечное число таких промежутков, в каждом из которых имеется только одна особенность, а интеграл вычисляют как сумму интегралов по отрезкам разбиения.

4 Числовой ряд, сумма ряда, сходящийся числовой ряд. Критерий Коши сходимости числового ряда. Необходимое условие сходимости числового ряда.

1-3. Пусть (a_n) числовая последовательность. Определим новую последовательноть (S_n) , где

$$S_n = \sum_{k=1}^n a_k, \quad n \in N.$$

Числовым рядом $\sum a_n$ называют последовательность (S_n) . Если в \overline{R} существует предел $\lim_{n\to\infty}S_n=S,$ то $S\in\overline{R}$ называют суммой ряда и обозначают

$$S = \sum_{n=1}^{\infty} a_n$$

Если число S конечное, то ряд называют сходящимся.

4. Говорят, что ряд $\sum a_n$ удовлетворяет условию Коши, если

$$\forall \epsilon > 0 \quad \exists n_{\epsilon} \in N \quad \forall n \ge n_{\epsilon} \quad \forall p \in N \quad \left| \sum_{k=n+1}^{n+p} a_k \right| < \epsilon$$

5. Критерий Коши сходимости числового ряда:

Ряд $\sum a_n$ сходится \iff когда он удовлетворяет условию Коши. Доказательсво:

Используя критерий Коши сходимости последовательности, имеем: ряд $\sum a_n$ сходится \iff (S_n) сходится \iff (S_n) фундаментальна, т.е.

$$\forall \epsilon > 0 \quad \exists n_{\epsilon} \in N \quad \forall n \ge n_{\epsilon} \quad \forall p \in N \quad |S_{n+p} - S_n| < \epsilon$$

Осталось заметить, что

$$S_{n+p} - S_n = \sum_{k=1}^{n+p} a_k - \sum_{k=1}^n a_k = \sum_{k=n+1}^{n+p} a_k.$$

6. Необходимое условие сходимости ряда:

Если ряд $\sum a_n$ сходится, то $\lim_{n\to\infty}=0$

Доказательство:

Пусть ряд $\sum a_n$ сходится и его сумма равна числу $S \in R$. тогда

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} (S_n - S_{n-1}) = S - S = 0$$

5 Теорема об арифметических действиях над сходящимися рядами. Абсолютная сходимость числовых рядов, связь со сходимостью.

1. Теорема об арифметических действиях над сходящимися рядами:

Пусть ряды $\sum a_n, \sum b_n$ сходятся и $\sum_{n=1}^\infty a_n = A, \sum_{n=1}^\infty b_n = B, \quad \lambda \in R.$ Тогда ряды $\sum (a_n + b_n)$ и $\sum \lambda a_n$ сходятся и

$$\sum_{n=1}^{\infty} (a_n + b_n) = A + B, \quad \sum_{n=1}^{\infty} \lambda a_n = \lambda A.$$

Доказательство:

$$\sum_{n=1}^{\infty} (a_n + b_n) = \lim_{n \to \infty} \sum_{k=1}^{n} (a_k + b_k) = \lim_{n \to \infty} (\sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k) = \lim_{n \to \infty} \sum_{k=1}^{n} a_k + \lim_{n \to \infty} \sum_{k=1}^{n} b_k = A + B.$$

$$\sum_{n=1}^{\infty} \lambda a_n = \lim_{n \to \infty} \sum_{k=1}^{n} \lambda a_k = \lim_{n \to \infty} (\lambda \sum_{k=1}^{n} a_k) = \lambda \lim_{n \to \infty} \sum_{k=1}^{n} a_k = \lambda A.$$

- **2.** Ряд $\sum a_n$ называют абсолютно сходящимся, если сходится ряд $\sum |a_n|$.
- 3. Теорема о сходимости абсолютно сходящегося ряда:

Если ряд сходится абсолютно, то он сходится.

Доказательство:

В силу свойств модуля

$$\left| \sum_{k=n+1}^{n+p} a_k \right| \le \sum_{k=n+1}^{n+p} \left| a_k \right|,$$

и остаётся воспользоваться критерием Коши сходимости числового ряда.

6 Основной признак Вейштрасса. Интегральный признак сходимости.

1. Основной признак Вейштрасса:

Ряд с неотрицательными членами сходится \iff когда последовательность его частных сумм ограничена.

Доказательство: (Нужно найти и записать)

2. Интегральный признак сходимости:

Пусть функция f неотрицательная и невозрастающая на промежутке $[1,+\infty)$. Тогда интеграл $\int_1^{+\infty} f(x) dx$ и ряд $\sum f(n)$ сходятся или расходятся одновременно.

Доказательство:

Обозначим $S_n = \sum_{k=1}^n f(k)$ и $F(b) = \int_1^b f(x) dx$. Согласно условию при $k=1,2,\dots$ имеем

$$f(k+1) \le \int_{k}^{k+1} f(x)dx \le f(k)$$

Следовательно

$$\sum_{k=1}^{n} f(k+1) \le \int_{1}^{n+1} f(x) dx \le \sum_{k=1}^{n} f(k)$$

т.е.

$$S_{n+1} - f(1) \le F(n+1) \le S_n$$

Так как функция F и последовательность (S_n) неубывают, то из последннего двойного неравенства вытекает, что ограниченность функции F равносильна ограниченности последовательности (S_n) .

Следовательно интеграл $\int_1^{+\infty} f(x) dx$ сходится \iff когда сходится ряд $\sum f(n)$.

7 Признак мажорации. Признак сравнения.

1. Признак мажорации:

Пусть $\forall n \in N \quad a_n \ge 0, \quad b_n \ge 0, \quad a_n = O(b_n)$ и $\sum_{n=1}^\infty b_n < +\infty$. Тогда $\sum_{n=1}^\infty a_n < +\infty$

Доказательство: Итак,

$$\exists C > 0 \quad \forall n \in N \quad 0 \le a_n \le Cb_n.$$

Поэтому

$$0 \le \sum_{k=1}^{n} a_k \le C \sum_{k=1}^{n} b_k.$$

Переходя далее к пределу при $n \to +\infty$, получим

$$0 \le \sum_{k=1}^{\infty} a_k \le C \sum_{k=1}^{\infty} b_k < +\infty.$$

Следствие 1: Пусть $\forall n \in N \quad a_n \geq 0, b_n > 0$, последовательность $\left(\frac{a_n}{b_n}\right)$ сходится и $\sum_{n=1}^{\infty} b_n < +\infty$. Тогда $\sum_{n=1}^{\infty} a_n < +\infty$.

Из условия вытекает, что последовательность $\left(\frac{a_n}{b_n}\right)$ ограничена, т.е.

$$\exists C > 0 \quad \forall n \in N \quad 0 \le \frac{a_n}{b_n} \le C,$$

и, следовательно, $a_n = O(b_n)$. Осталось воспользоваться признаком мажорации.

2. Признак сравнения в предельной форме:

Пусть $\forall n \in N \quad a_n > 0, \quad b_n > 0,$ и существует конечный предел

$$\lim_{n \to \infty} \frac{a_n}{b_n} = k \neq 0.$$

Тогда ряды $\sum a_n$ и $\sum b_n$ ведут себя одинаково.

Доказательство:

В силу следствия 1 предыдущей теоремы из сходимости ряда $\sum b_n$ вытекает сходимость ряда $\sum a_n$. Поскольку

$$\lim_{n \to \infty} \frac{b_n}{a_n} = \frac{1}{k},$$

то в силу того же следствия из сходимости ряда $\sum a_n$ вытекает сходимость ряда $\sum b_n$.

8 Признак Коши

Признак Коши:

Пусть $\forall n \in N \quad a_n \ge 0$ и

$$\overline{\lim_{n\to\infty}}\sqrt[n]{a_n} = \alpha.$$

Тогда

- 1) если $\alpha < 1$, то ряд $\sum a_n$ сходится; 2) если $\alpha > 1$, то ряд $\sum a_n$ расходится;
- 3) если $\alpha = 1$, то вопрос о сходимости ряда остаётся открытым.

Доказательство:

1) Пусть $\alpha < 1$ и $\alpha < q < 1$. Согласно определению верхнего предела $\exists n_0$, начиная с которого

$$\sqrt[n]{a_n} \le \sup_{n > n_0} \sqrt[n]{a_n} < q,$$

T.e. $a_n < q^n$

Поскольку ряд $\sum q^n$, 0 < q < 1, сходится, то заключение верно в силу признака мажорации.

- 2) Если q>1, то для бесконечного числа значений $n-\sqrt[n]{a_n}\geq 1$. Слодовательно, $a_n \neq o(1)$, и ряд расходится.
- 3) Для рядов $\sum \frac{1}{n}$ и $\sum \frac{1}{n^2}$ указанное в теореме число $\alpha=1$, в то время как один из них расходится, а другой сходится.

9 Признак Даламбера

1. Следствие признака мажорации:

Пусть $\forall n\in N\quad a_n>0,\quad b_n>0,\quad \frac{a_{n+1}}{a_n}\leq \frac{b_{n+1}}{b_n}$ и $\sum_{n=1}^\infty b_n<+\infty$. Тогда $\sum_{n=1}^{\infty} a_n < +\infty.$

Доказательство:

Имеем

$$0 < \frac{a_{n+1}}{a_n} \le \frac{a_n}{b_n} \le \dots \le \frac{a_1}{b_1},$$

и, следовательно, $a_n = 0(b_n)$. Осталось воспользоваться признаком мажорации.

2. Признак Даламбера:

Пусть $\forall n \in N \quad a_n > 0$ и

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \alpha$$

Тогда

- 1) если $\alpha<1$, то ряд $\sum a_n$ сходится. 2) если $\alpha>1$, то ряд $\sum a_n$ рассходится.
- 3) если $\alpha = 1$, то вопрос о сходимости ряда остаётся открытым.

Доказательство:

1) Пусть $\alpha < 1$ и $\alpha < q < 1$. В силу порядковых свойств предела

$$\exists n_0 \quad \forall n \ge n_0 \quad \frac{a_{n+1}}{a_n} < q = \frac{q^{n+1}}{q^n}$$

 Поскольку ряд $\sum q^n$ при 0 < q < 1 сходится, то, на основании следствия признака мажорации, делаем вывод о сходимости ряда $\sum a_n$.

2) Пусть $\alpha > 1$. Тогда

$$\exists n_0 \quad \forall n \ge n_0 \quad \frac{a_{n+1}}{a_n} > 1,$$

т.е. $a_{n+1}>a_n$ при $n\geq n_0$. В это случае $a_n\neq \mathrm{o}(1),$ следовательно ряд $\sum a_n$ расходится.

3) Для рядов $\sum \frac{1}{n}$ и $\sum \frac{1}{n^2}$ указанное в теореме число $\alpha=1$, в то время как один из них расходится, а другой сходится.

10 Необходимое и достаточное условие абсолютной сходимости ряда. Понятие условно сходящегося ряда.

1. Необходимое и достаточное условие абсолютной сходимости ряда:

Ряд $\sum a_n$ абсолютно сходится \iff когда сходятся ряды $\sum a_n^+$ и $\sum a_n^-$. Доказательство: (нужно найти и записать)

2. Числовой ряд называют условно сходящимся, если он сходится, но не сходится абсолютно.

11 Преобразование Абеля. Теорема о равносходимости рядов, связанных преобразованием Абеля.

1. Преобразование Абеля:

Пусть $B_n = \sum_{k=1}^n, n \geq 1$. Тогда справедлива формула

$$\sum_{k=1}^{n} a_k b_k = a_n B_n - \sum_{k=1}^{n-1} (a_{k+1} - a_k) B_k \qquad (*)$$

Доказательство:

Принимая во внимание очевидные равенства

$$b_1 = B_1, b_2 = B_2 - B_1, \dots, b_n = B_n - B_{n-1},$$

получим

$$\sum_{k=1}^{n} a_k b_k = a_1 B_1 + a_2 (B_2 - B_1) + \ldots + a_n (B_n - B_{n-1}) =$$

$$= B_1(a_1 - a_2) + B_2(a_2 - a_3) + \ldots + B_{n-1}(a_{n-1} - a_n) + B_n a_n =$$

$$= \sum_{k=1}^{n-1} B_k(a_k - a_{k+1}) + B_n a_n,$$

что эквивалентно равенству (*).

2. Теорема о равносходимости рядов, связанных преобразованием Абеля:

Пусть $B_n = \sum_{k=1}^n b_k$, и последовательность $(a_n B_n)$ сходится. Тогда ряды $\sum a_n b_n$ и $\sum B_n (a_{n+1} - a_n)$ ведут себя одинаково.

12 Признак Абеля. Признак Дирихле и Лейбница.

1. Признак Абеля:

- 1) последовательность (a_n) монотонна и ограничена;
- 2) ряд $\sum b_n$ сходится;

Тогда ряд $\sum a_n b_n$ сходится.

Доказательство:

Пусть $|a_k| \leq M, k \geq 1$. ЗАпишем условие Коши для сходящегося ряда $\sum b_n$:

$$\forall \epsilon > 0 \quad \exists n_0 \in N \quad \forall n \ge n_0 \quad \forall p \in N \quad \left| \sum_{k=n+1}^{n+p} b_k \right| < \epsilon.$$

Обозначим

$$B_p^n = \sum_{k=n+1}^{n+p} b_k.$$

В этих обозначениях имеем

$$|B_n^n| < \epsilon, \quad n \ge n_0, \quad p \in N.$$

Применив к сумме

$$\sum_{k=n+1}^{n+p} a_k b_k$$

преобразование Абеля, получим

$$\sum_{k=n+1}^{n+p} a_k b_k = a_{n+p} B_p^n - \sum_{k=n+1}^{n+p-1} (a_{k+1} - a_k) B_k^n.$$

При $n \ge n_0$ имеем

$$\left| \sum_{k=n+1}^{n+p} a_k b_k \right| \le |a_{n+p}| |B_p^n| + \sum_{k=n+1}^{n+p-1} |a_{k+1} - a_k| |B_k^n| \le$$

$$\leq M\epsilon + \epsilon \sum_{k=n+1}^{n+p-1} |a_{k+1} - a_k|.$$

В силу монотонности и ограниченности последовательности (a_n)

$$\sum_{k=n+1}^{n+p-1} |(a_{k+1} - a_k)| = |a_{n+p} - a_{n+1}| \le 2M$$

И

$$\left| \sum_{k=n+1}^{n+p} a_k b_k \right| < M\epsilon + \epsilon 2M = 3M\epsilon.$$

По критерию Коши ряд $\sum a_n b_n$ сходится.

2. Признак Дирихле:

- 1) последовательность (a_n) монотонная и бесконечно малая;
- 2) последовательность $B_n = \sum_{k=1}^n b_k$ ограничена.

Тогда ряд $\sum a_n b_n$ сходится.

Доказательство:

Согласно условиям теоремы

$$a_n B_n = o(1)O(1) = o(1).$$

В силу теоремы о равносходимости рядов, связанных преобразованием Абеля, ряды $\sum a_n b_n$ и $\sum B_n (a_{n+1} - a_n)$ ведут себя одинаково. К исследованию сходимости вроторого из этих рядов применим критерий Копти

Пусть $|b_k| \leq M, k \geq 1$. Возьмём произвольное $\epsilon > 0$ $\exists n_0 \quad \forall n \geq n_0 \quad |a_n| < \epsilon$ (это возможно поскольку $a_n = o(1)$).

При $n \ge n_0$ будем иметь оценку

$$\left| \sum_{k=n+1}^{n+p} (a_{k+1} - a_k) B_k \right| \le \sum_{k=n+1}^{n+p} |(a_{k+1} - a_k)| |B_k| \le M \sum_{k=n+1}^{n+p} |(a_{k+1} - a_k)|.$$

Так как последовательность (a_n) монотонна, то разности $a_{k+1}-a_k$ одного знака и поэтому

$$\sum_{k=n+1}^{n+p} |(a_{k+1} - a_k)| = \left| \sum_{k=n+1}^{n+p} (a_{k+1} - a_k) \right| = |a_{n+p+1} - a_{n+1}| \le$$

$$|a_{n+p+1}| + |a_{n+1}| < 2\epsilon.$$

Соединяя все оценки, получим

$$\left| \sum_{k=n+1}^{n+p} (a_{k+1} - a_k) B_k \right| < 2M\epsilon$$

 $\forall n \geq n_0$ и $\forall p \geq 1$, что по критерию Коши эквивалентно сходимости ряда $\sum (a_{n+1} - a_n)B_n$. Теорема доказана.

3. Признак Лейбница:

Пусть последовательность (a_n) монотонная и бесконечно малая. Тогда ряд $\sum (-1)^{n-1} a_n$ сходится.

Доказательство:

Нужно положить $b_n = (-1)^{n-1}$ и воспользоваться признаком Дирихле.