Tests multiples

G. Marot-Briend

guillemette.marot@univ-lille.fr

2021-2022

Rappels sur les tests

Question fréquente :

Est-ce que deux variables sont liées?

La réponse dépend du type des variables.

- deux variables qualitatives : test du χ_2
- deux variables quantitatives : test du coefficient de corrélation
- une quantitative, une qualitative : t-test ou ANOVA

Tout comme les intervalles de confiance, les tests sont utilisés pour généraliser des résultats dans une population à partir d'observations d'un échantillon.

Notion de risques (α, β) - Rappel

	Réalité		
Décision	H _O	H_1	
non rejet H_0	conclusion correcte	risque de 2ème espèce (β)	
rejet H ₀	risque de 1ère espèce $(lpha)$	conclusion correcte	

	Réalité		
Décision	H ₀	H_1	
non rejet H_0	Niveau de confiance $1-\alpha$	β	
rejet H_0	α	Puissance $1-\beta$	

Degré de signification (p-value)

Ne pas confondre niveau de signification (risque de 1ère espèce α), niveau de confiance $(1-\alpha)$ et degré de signification (p-value).

Degré de signification ou p-value p(t):

pour une réalisation t d'une statistique de test T, probabilité (calculée sous l'hypothèse nulle) d'obtenir une statistique de test au moins aussi extrême que celle réellement observée.

Autrement dit, la p-value correspond à la plus petite valeur de risque α accepté pour cette réalisation.

p-value $< \alpha \Rightarrow$ on rejette H_0

p-value $\geq \alpha \Rightarrow$ on ne rejette pas H_0

Degré de signification (p-value)

Plus la réalisation de la statistique de test est grande en valeur absolue, plus la p-value est petite.

Cas bilatéral :
$$p(t) = P_{H0}(|T| \ge |t| = 2.(1 - F(|t|))$$

Cas unilatéral à droite : $p(t) = P_{H0}(T \ge t) = 1 - F(t)$
Cas unilatéral à gauche : $p(t) = P_{H0}(T \le t) = F(t)$

Vrais positifs et faux positifs (à un seuil donné)

	H0 rejetée	H0 non rejetée
H0 vraie	Faux Positif	Vrai Négatif
H0 fausse	Vrai Positif	Faux Négatif

Plan

Tests multiples

Tests multiples

Dans le cas de nombreux tests contrôlant chacun un taux d'erreur de première espèce à 5%, le nombre de faux positifs peut devenir très grand .

Ex :
$$m=10000$$
 tests et $\alpha=0.05
ightarrow \mathbb{E}(FP)=500$

Nécessité de corriger pour la multiplicité des tests.

- Family Wise Error Rate : rejeter à tort au moins une hypothèse nulle (e.g. Bonferroni)
- False Discovery Rate : contrôler la proportion attendue de faux positifs parmi les positifs (e.g. Benjamini Hochberg)

Family Wise Error Rate (FWER)

Definition

Probabilité d'obtenir au moins une erreur de type I (faux positif)

$$FWER = \mathbb{P}(FP \ge 1)$$

Procédure de Bonferroni

Soit chaque test est réalisé au niveau $\alpha=\alpha^*/m$ (m : nombre de tests)

soit on utilise une p-value ajustée $pBonf_i = min(1, p_i * m)$ et $FWER < \alpha^*$.

Ex : pour m = 2000 et $\alpha^* = 0.05$; $\alpha = 2.5 \cdot 10^{-5}$.

Facile mais manque de sensibilité quand beaucoup de tests.

Family Wise Error Rate (FWER)

Justification:

$$egin{aligned} extit{FWER} &= \mathbb{P}(extit{FP} \geq 1) = \mathbb{P}(\cup(extit{FP}_{test} \geq 1)) \ &\leq \sum_{tests} \mathbb{P}(extit{FP}_{test} \geq 1) \ &\leq m lpha \end{aligned}$$

Remarque : Sidak suppose l'indépendance entre les tests et écrit : $FWER \leq 1 - (1-\alpha)^m$

False Discovery Rate (FDR)

Idée : Ne pas contrôler la probabilité d'avoir au moins une erreur de type I mais la proportion d'erreurs

 \Rightarrow moins conservatif que le contrôle du FWER.

Définition

Le taux de faux positifs FDR de (Benjamini Hochberg, 1995) est la proportion attendue d'erreurs de type I parmi les hypothèses rejetées

$$FDR = \mathbb{E}(FP/P)$$
 si $P > 0$ et 0 si $P = 0$

Prop

Tests multiples : éléments clefs

- Important de prendre en compte la multiplicité des tests
- le choix entre FDR et FWER dépend du coût associé aux FN et FP

Contrôler le FWER :

Avoir une grande confiance dans les gènes différentiellement exprimés (contrôle très fort). Accepter de ne pas détecter certains gènes intéressants. (manque de sensibilité \Leftrightarrow peu de DE)

Contrôler le FDR:

Accepter une proportion de FP parmi les DE. Très intéressant dans une étude exploratoire.