2017학년도 2학	학 과		감!	독교수확인	
과 목 명	일반수학2	학 번			
출제교수 명	용	교수 명	분 반		
시 험 일 시	2017년 10월 17일 (오전 10:00-11:40)	성 명		점 수	

※ 1-10번은 단답형 문제들로, 주어진 답란에 적힌 답으 로만 채점되고 부분점수는 없습니다.

1. 점 P(1,1,2)를 지나고 두 평면 2x-3y+z=10과 -3x+y+4z=7에 각각 평행인 직선의 대칭방정식을 구하여라.

6. 타원체면 $\frac{x^2}{4} + y^2 + \frac{z^2}{9} = 3$ 위의 점 P(-2, 1, -3)에서 접평면의 방정식을 구하여라.

답:

2. 점P(-5,3,5)에서 평면 4x+8y-z=17에 이르는 거 리를 구하여라.

답:

7. 점 (1,-1,1)에서 벡터 v=<2,1,-2> 방향으로 함수 $f(x,y,z) = x^3 - x^2y - y^2z + z^3$ 의 방향도함수를 구하여라.

답:

3. 점 P는 직교좌표가 (1/2, 1, a)이고 구면좌표방정식 $\rho = 2\sin\theta$ 로 정의된 곡면 위에 있다. 이때 a^2 의 값을 구하여라.

답:

8. 구면 $x^2 + y^2 + z^2 = 4$ 와 추면 $3z^2 = x^2 + y^2$ 의 공통부 분인 곡선 C와 그 위의 점 $P(1, \sqrt{2}, 1)$ 에 대해서 P를 지나고 *C*와 수직인 평면의 방정식을 구하여라.

답:

4. 다변수 함수의 전 미분을 이용하여 $\frac{1.99\cos(0.02)}{e^{0.01}}$ 의 $\frac{9. 함수 f(x,y) = x - 3xy + 3x + 3y}{x (-2,0)}$ 을 판별하여라. (극대, 극소, 또는 안장점) 근삿값을 구하여라.

답:

9. 함수 $f(x,y) = x^3 - 3xy^2 + 3x^2 + 3y^2$ 의 임계점 (0,0)

답:

5. 함수 z(x,y)가 식 $x^3 + y^3 + z^3 - 2xy - 3xz + 2yz = 6 을 10$. 다음 이중적분의 값을 구하여라. 만족시킬 때, $\frac{\partial z}{\partial r}(1,1)$ 을 구하여라.

답:

$$\int_0^1 \int_{\sin^{-1}x}^{\frac{\pi}{2}} e^{\cos y} \, dy dx$$

답:

답:

2017학년도 2학	학 과		감	독교수확인	
과 목 명	일반수학2	학 번			
출제교수 명	공 동	교수 명	분 반		
시 험 일 시	2017년 10월 17일 (오전 10:00-11:40)	성 명		점 수	

(15,1,0)들 시나는 생년의> > 0)형태로 답하여라.	2), Q(3,1,U)을 시나는 생번의 (a>0)형태로 답하여라.	(,0,-2), Q(3,1,0)을 시나는 병면의 $z=d, \ (a>0)$ 형태로 답하여라.	P(1,0,-2), Q(3,1,0)을 시나는 병면의 (+ cz = d, (a > 0)형태로 답하여라.	점 $P(1,0,-2)$, $Q(3,1,0)$ 를 지나는 평면으 $z+by+cz=d$, $(a>0)$ 형태로 답하여라.	두 평면 $x-y+z=5$ 와 $3x-y=4$ 의 교선에 된다. 무점 $P(1,0,-2),\ Q(3,1,0)$ 를 지나는 평면의 $ax+by+cz=d,\ (a>0)$ 형태로 답하여라.
> 0) 영대도 답아먹다	(a > U) 영대도 답아먹다	z=a, (a > 0) 영대도 급하여덕	y+cz=a, (a>0)영대도 합아버티	$c+by+cz=a, \ (a>0)$ 성대도 답아먹다	를 ax+oy+cz=a, (a>0)영대도 답하역단
(5) (5) (5) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	(a > 0)형태로 답	(a > 0) 형태로 답	$cz=d, \ (a>0)$ 형태로 답	$c+by+cz=d, \ (a>0)$ 형태로 답	달 $ax + by + cz = d$, $(a > 0)$ 형태로 답
y(3,1,1) > 0) 형	2), Q(3,1,1 (a > 0) 형	z = d, (a > 0)형	P(1,0,-2), Q(3,1,0) y+cz=d, (a>0)형	점 $P(1,0,-2)$, $Q(3,1,0)$ 로 + $by + cz = d$, $(a > 0)$ 형	구 점 $P(1,0,-2)$, $Q(3,1,0)$ 를 $ax + by + cz = d$, $(a > 0)$ 형
	(a	z = d, (a)	P(1,0,-2), 0 $y + cz = d, (a$	P(1,0,-2), $c+by+cz=d, $ $(a$	P(1,0,-2), 0 $ax + by + cz = d, (a$

2017학년도 2학	학 과		감!	독교수확인	
과 목 명	일반수학2	학 번			
출제교수 명	용	교수 명	분 반		
시 혐 일 시	2017년 10월 17일 (오전 10:00-11:40)	성 명		점 수	

13. 다음 함수는 연속함수인지 답하

$$g(x,y) = \begin{cases} \frac{xy^2}{\sqrt{x^2 + y^2}}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

14. 세 직선 x = 0, y = x, y = 3으로 둘러싸인 평면영역 R에서 $f(x,y) = 2x^2 + 2xy + y^2 - 8x - 6y$ 로 정의된 함수 f의 최댓값과 최솟값을 각각 구하여라.

2017학년도 2학기 (중간고사)		학 과		감!	독교수확인
과 목 명	일반수학2	학 번			
출제교수 명	용	교수 명	분 반		
시 험 일 시	2017년 10월 17일 (오전 10:00-11:40)	성 명		점 수	

15.	회전포물	는면 z=	$x^2 + y^2$ 과	평면	z-y=3/4으로	둘러
싸인	입체의	부피를	반복적분			

$$V = \int_a^b \int_{\phi(y)}^{\psi(y)} g(x, y) \, dx \, dy$$

로 표현할 때, 식 $g(x,y)+\phi(y)\psi(y)+\frac{b}{a}$ 를 간단히 정리하여라. (여기서 a<0, b>0는 상수이고, y의 함수 ϕ,ψ 는 부등식 $\phi(y)\leq 0$, $\psi(y)\geq 0$ 을 만족시킨다.)