Dimensionality Reduction Introduction

Objective

Objective

Illustrate the need for dimensionality reduction

What is Dimensionality Reduction?

We have N data points in a high-dimensional space,

-e.g., in the order of tens of thousands of dimensions.

We want to project them into some lowdimensional space,

-e.g., in the order of tens of dimensions.

Why dimensionality reduction?

A key technique to mitigate curse of dimensionality

The Curse of Dimensionality

Consider histogram as a density estimator.

Exponentially more samples would be needed in higher-dimensional spaces for the same "resolution".

Many Techniques for Dimensionality Reduction

Many ways for going from a higher-dimensional space to a lower-dimensional space.

- Feature Selection achieves this by keeping only a subset of the original features/dimension.

There are many other techniques, employing a feature mapping/projection approach.

- New features are generated (instead of selecting only from the original features).
- The underlying assumptions and/or goals of the techniques are often different.

Examples of Feature Mapping

- Linear discriminant analysis (LDA)
- Independent component analysis (ICA)
- Non-negative matrix factorization (NMF)
- Auto-encoder
- Self-organizing maps
- Principal component analysis (and its variants)

Dimensionality Reduction Principal Component Analysis: Basic Idea

Objective

Objective

Illustrate the basic idea of Principal Component Analysis

Principal Component Analysis: Basic Idea

Look at a simple 2-D to 1-D example: we want to use a single feature to describe the 2-D samples

Consider these possibilities

- Naïve: randomly discard one dimension
- Better: discard the less-descriptive one (x₂ in the figure)
- Much better: project the data to a most-descriptive direction and use the projections.

How to Formulate this Idea?

"Most descriptive" ≈ Largest "variance"

So the problem is to find the direction of the largest variance.

Problem

Given n samples $D = \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n\}$ in d-dimensional space, find a direction \mathbf{e}_1 , such that the projection of D onto \mathbf{e}_1 gives the largest variance (compared with any other direction).

e₁ is a *d*-dimensional vector with unit norm.

Find e₁

Let's compute the variance of the projected data on a given direction e.

-The *n* projected samples are given as, for i = 1, ..., n, $y_i = \mathbf{x}_i \cdot \mathbf{e}$

- The mean of the projections:

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i \cdot \mathbf{e} = \overline{\mathbf{x}} \cdot \mathbf{e}$$

-Thus the (sample) variance of the projections:

$$\sigma^{2}(\mathbf{e}) = \frac{1}{n} \sum_{i=1}^{n} (y_{i} - \overline{y})^{2} = \frac{1}{n} \sum_{i=1}^{n} [(\mathbf{x}_{i} - \overline{\mathbf{x}}) \cdot \mathbf{e}]^{2}$$
 n vs n-1

Find e₁ (cont'd)

Expand the previous expression

$$\sigma^{2}(\mathbf{e}) = \sum_{j=1}^{d} \sum_{k=1}^{d} e_{j} e_{k} \left[\frac{1}{n} \sum_{i=1}^{n} (x_{i,j} - \overline{x}_{i,j})(x_{i,k} - \overline{x}_{i,k}) \right]$$

$$= \sum_{j=1}^{d} \sum_{k=1}^{d} e_{j} e_{k} C_{jk} = \mathbf{e}^{t} C \mathbf{e}$$

$$k\text{-th component of } \mathbf{e}$$

$$k\text{-th component of } \mathbf{e}$$

$$(j,k)\text{-th element of the matrix } C$$

C is the sample covariance matrix.

Find e₁ (cont'd)

To find e₁, we can do

$$\mathbf{e}_1 = \underset{\mathbf{e}}{\operatorname{arg\,max}} \sigma^2(\mathbf{e})$$
 subject to $\|\mathbf{e}\| = 1$

what if without this constraint?

Constrained maximization: use Lagrange multiplier method.

maximize
$$F(\mathbf{e}) = \mathbf{e}^t C \mathbf{e} - \lambda (\mathbf{e}^t \mathbf{e} - 1)$$

Lagrange multiplier

Find e₁ (cont'd)

Set the partial derivative to 0, we have

$$\frac{\partial F}{\partial \mathbf{e}} = 2C\mathbf{e} - 2\lambda\mathbf{e} = 0$$

$$\to C\mathbf{e} = \lambda\mathbf{e}$$

The solution is an eigenvector of *C*, with eigenvalue *λ*, which is also the variance under e:

$$\sigma^2(\mathbf{e}) = \mathbf{e}^t C \mathbf{e} = \lambda$$

We should set e_1 to be the eigenvector corresponding to the largest eigenvalue λ_1 .

Recap of the Key Idea

We want to project the given data samples to certain direction so that the variance is maximized, compared with any other direction.

We figured out what this optimal direction e₁ should be:

- It should be the eigenvector of corresponding to the largest eigenvalue λ_1 , of the covariance matrix.

Dimensionality Reduction Principal Component Analysis: The Algorithm & Important Properties

Objective

Objective
Implement the PCA algorithm

Objective
Discuss some important properties of PCA

Principal Components

We found e₁, which gives the direction of the largest variance after projection

-The first **principal component.**

The process can be continued in the subspace orthogonal to e₁, and so on and so forth.

–Obtaining other principal components: \mathbf{e}_2 , \mathbf{e}_3 , etc., corresponding to other eigenvectors of C, ordered by the corresponding eigenvalues λ_i

Principal Components (cont'd)

The principal components are orthogonal to each other $\rightarrow \{e_i\}$ forms an orthonormal basis in the *d*-dimensional space.

The total variance is given by the sum of the variances of the projections.

$$\sigma^2 = \sum_{j=1}^d \lambda_j$$

How Many Principal Components to Keep?

- To reduce dimensions, we will need to keep only d' << d projections.
- We can measure how much of the total variance a *d'*-dimensional subspace captures, by the ratio

$$\sum_{j=1}^{d'} \lambda_j / \sum_{j=1}^{d} \lambda_j$$

- Variance may be related to the "energy" of a signal: how accurately we want to represent the data.
 - The ratio can be used to guide in choosing a proper d' for desired accuracy.

The PCA Algorithm

- 1. Compute the *dxd* sample covariance matrix *C*
- 2. Find the eigenvalues and corresponding eigenvectors of *C*
- 3. Project the original data onto the space spanned by the eigenvectors
 - The projection may be done onto a d'-dimensional subspace spanned by the first d' eigenvectors (ordered by the eigenvalue in descending order)
 - d'is determined by the desired accuracy

Important Properties of PCA

- PCA represents the data in a new space, in which the components of the data is ordered by their "significance".
 - Dimension reduction can be done by simply discarding less significant dimensions.
- Linearity assumption -> extensions exist
- "Variance ≈ Importance" is meaningful only under large signal-to-noise ratio

PCA as Feature Mapping

When we use only d' dimensions from PCA (with original dimension d > d'), this may look like feature section.

But in general they are different approaches.

PCA

- -Unsupervised (in general)
- Generates new features (linear combination of original ones)

Feature Selection

- -Supervised (in general)
- Selects a few original features (e.g., for better classification)

Can PCA Help Classification?

- Can we do better classification in a lowerdimensional space from d' principal components given by PCA?
 - Not necessarily.

LDA may be better posed for such a task.

