

Convergence of Graph Filters in the Spectral Domain

► Convergence of graph filter sequences towards graphon filters for convergent graph signal sequences

 \triangleright Given coefficients h_k consider a graph filter sequence and a graphon filter with the same coefficients

- ightharpoonup Does the graph filter sequence converge to the graphon filter? \Rightarrow Not the most pertinent question
 - ⇒ Filter convergence is important inasmuch as it implies convergence of filter outputs

 \triangleright Given coefficients h_k consider a graph filter sequence and a graphon filter with the same coefficients

- ▶ Consider a convergent sequence of graph signals $(G_n, \times_n) \to (W, X)$
 - \Rightarrow Input graph signal x_n to graph filter $H(S_n)$ to produce output graph signal y_n
 - \Rightarrow Input graphon signal X to graphon filter T_H to produce output graphon signal Y
- ▶ The graph signal sequence (G_n, y_n) converges to the graphon signal (W, Y) under some conditions

- \blacktriangleright Given filter coefficients h_k we have five polynomials which are the same except for their variables
- ► Two polynomials are representations in the node domain
 - \Rightarrow The graph filter sequence defined on variable $S_n \Rightarrow H(S_n) = \sum_{k=1}^K h_k S_n^k$
 - \Rightarrow The graphon filter defined on variable $T_W \Rightarrow T_H = \sum_{k=1}^K \frac{h_k}{N_W} T_W^{(k)}$

- ▶ Given filter coefficients h_k we have five polynomials which are the same except for their variables
- ► Three polynomials are representations in the spectral domain
 - \Rightarrow The frequency response of the graph and graphon filters with variable $\lambda \Rightarrow \tilde{h}(\lambda) = \sum_{k=1}^{K} h_k \lambda^{(k)}$
 - \Rightarrow The frequency representation of the graph filters with variable $\lambda_{nj} \Rightarrow \tilde{h}(\lambda_{nj}) = \sum_{k=1}^n h_k \lambda_{nj}^{(k)}$
 - \Rightarrow The frequency representation of the graphon filter with variable $\lambda_j \Rightarrow \tilde{h}(\lambda_j) = \sum_{k=1}^K h_k \lambda_j^{(k)}$

- \Rightarrow Frequency representation of graph filters $\Rightarrow \tilde{h}(\lambda_{nj}) = \sum_{k=1}^{n} h_k \lambda_{nj}^k$
- \Rightarrow Frequency representation of graphon filter $\Rightarrow \tilde{h}(\lambda_j) = \sum_{k=1}^n h_k \lambda_j^k$

Theorem (Convergence of graph filter sequences in the frequency domain)

Consider filter coefficients h_k generating a sequence of graph filters $H(S_n)$ supported on the graph sequence G_n and a graphon filter T_H supported on the graphon W. If $G_n \to W$

$$\lim_{n\to\infty}\tilde{h}(\lambda_{nj})=\tilde{\textbf{\textit{h}}}(\lambda_{j})$$

- ► Graph filter GFT representations converge to graphon filter WFT representation $\Rightarrow \lim_{n \to \infty} \tilde{h}(\lambda_{nj}) = \tilde{h}(\lambda_j)$
- ► This is true because eigenvalues converge and the frequency responses are the same
- ▶ This is not much to say ⇒ GFT and WFT are representations. ⇒ Filters operate in the node domain

Convergence of Graph Filters in the Node Domain

- ▶ We leverage spectral domain convergence to prove convergence of graph filters in the node domain
 - \Rightarrow Provides a first approach to the study of transferability of graph filters

► To prove convergence in the node domain we can go to the frequency domain and back

- Frequency representation of graph filters converge to frequency representation of graphon filter
 - \Rightarrow But the GFT and the iGFT do not converge \Rightarrow Unless the signals are graphon bandlimited

- ▶ Input graph signal sequence (G_n, x_n) \Rightarrow Generates output sequence (G_n, y_n) with $y_n = H(S_n)x_n$
- ▶ Input graphon signal (W, X) \Rightarrow Generates output signal (W, Y) with $Y = T_H X$

Theorem (Graph filter convergence for bandlimited inputs)

Given convergent graph signal sequence $(G_n, \times_n) \to (W, X)$ and filters $H(S_n)$ and T_H generated by the same coefficients h_k . If the input signals are c-bandlimited

$$(G_n, y_n) \rightarrow (W, Y)$$

The sequence of output graph signals converges to the output graphon signal

▶ Convergence for bandlimited input is easy. Also weak. Therefore cheap. A stronger result is possible

lacktriangle Lipschitz graphon filters are filters with frequency responses that are Lipschitz in [-1,1]

$$\Big| \ h(\lambda_1) - h(\lambda_2) \ \Big| \ \leq \ m{L} \ \Big| \ \lambda_1 - \lambda_2 \ \Big|, \quad ext{for all } \ \lambda_1, \lambda_2 \in [0,1]$$

Claim convergence of graph filter sequence, despite lack of convergence of the GFT and the iGFT

Theorem (Graph filter convergence for Lipschitz continuous filters)

Given convergent graph signal sequence $(G_n, \times_n) \to (W, X)$ and filters $H(S_n)$ and T_H generated

by the same coefficients h_k . If the frequency response $\tilde{h}(\lambda)$ is Lipschitz

$$(G_n, y_n) \rightarrow (W, Y)$$

The sequence of output graph signals converges to the output graphon signal

Proof: See course webpage https://gnn.seas.upenn.edu/lectures/lecture-10/

- ightharpoonup The challenge of filter convergence comes from the accumulation of eigenvalues around $\lambda=0$
- ▶ Which causes complications with eigenvector convergence.
- Lipschitz continuity renders the effect void. All components are multiplied by similar numbers

Proof: See course webpage https://gnn.seas.upenn.edu/lectures/lecture-10/

Remarks on the Convergence of Lipschitz Graphon Filters

- ► We identify a fundamental issue ⇒ Transferability is counter to discriminability
 - \Rightarrow If the filter converges, it can't separate eigenvectors associated to eigenvalues close to $\lambda=0$
- ► Characterization is just a limit ⇒ Work on a finite-*n* transference bounding

Graphon Filters are Generative Models for Graph Filters

▶ Graph filters can approximate graphon filters under certain conditions. We discuss them now.

- ► For a converging graph sequence, graph filters converge asymptotically to graphon filters
- ▶ Thus, as *n* grows, the graph filters become more similar to the graphon filter

- ► And we can then use a graph filter as a surrogate for the graphon filter
- \triangleright We now want to quantify the quality of that approximation for different values of n

- ► Graphon eigenvalues accumulate at $\lambda = 0$
- \triangleright Making it hard to match graph eigenvalues to the corresponding graphon eigenvalues if λ is small

Small Eigenvalues are Hard to Discriminate

- ▶ Which in turn makes it hard to discriminate consecutive eigenvalues in that range
- ▶ If the filter changes rapidly near zero, it may modify the graph and graphon eigenvalues differently
- lacktriangle To obtain good approximations, we must then assume filters do not change much around $\lambda=0$

Small Eigenvalues are Hard to Discriminate

- ▶ Which in turn makes it hard to discriminate consecutive eigenvalues in that range
- ▶ If the filter changes rapidly near zero, it may modify the graph and graphon eigenvalues differently
- lacktriangle To obtain good approximations, we must then assume filters do not change much around $\lambda=0$

- ► Graphon eigenvalues tend to zero as the index i grows $\Rightarrow \lim_{i \to \infty} \lambda_i = \lim_{i \to \infty} \lambda_{-i} = 0$
- **Low-pass** graphon filters must thus be zero for $\lambda < c$. Constant c determines the filter's band.

The filter removes high frequency components. But low-frequency components are not affected.

(A1) The graphon W is L_1 -Lipschitz \Rightarrow For all arguments (u_1, v_1) and (u_2, v_2) , it holds

$$|W(u_2, v_2) - W(u_1, v_1)| \le L_1(|u_2 - u_1| + |v_2 - v_1|)$$

(A2) The filter's response is L_2 -Lipschitz and normalized \Rightarrow For all λ_1 , λ_2 and λ we have

(A3) The graphon signal X is L_3 -Lipschitz \Rightarrow For all u_1 and u_2

$$|X(u_2) - X(u_1)| \leq L_3 |u_2 - u_1|$$

• We fix a bandwidth c > 0 to separate eigenvalues not close to $\lambda = 0$ and define

(D1) The c-band cardinality of G_n is the number of eigenvalues with absolute value larger than c

$$B_{nc} = \# \left\{ \lambda_{ni} : |\lambda_{ni}| > c \right\}$$

(D2) The c-eigenvalue margin of graph G_n is the

$$\delta_{nc} = \min_{i,j\neq i} \left\{ |\lambda_{ni} - \lambda_j| : |\lambda_{ni}| > c \right\}$$

• Where λ_{ni} are eigenvalues of the shift operator S_n and λ_j are eigenvalues of graphon W

Theorem (Graphon filter approximation by graph filter for low-pass filters)

Consider a graphon filter $Y = \Phi(X; h, W)$ and a graph filter $y_n = \Phi(x_n; h, S_n)$ instantiated from

Y. With Definitions (D1) - (D2), Assumptions (A1) - (A3), and

(A4) $h(\lambda)$ is zero for $|\lambda| < c$

The difference between Y and $Y_n = \Phi(X_n; h, W_n)$ (graph filter induced by y_n) is bounded by

$$\|\mathbf{Y} - Y_n\|_{L_2} \le \sqrt{L_1} \left(\frac{L_2}{\delta_{nc}} + \frac{\pi n_c}{\delta_{nc}} \right) n^{-\frac{1}{2}} \|X\|_{L_2} + \frac{L_3}{\sqrt{3}} n^{-\frac{1}{2}}$$

Proof: See course webpage https://gnn.seas.upenn.edu/lectures/lecture-10/

- ▶ High-pass filters have null frequency response for $|\lambda| > c$, removing low-frequency components
- Moreover, we consider filters that have low variability around $\lambda = 0$

lacktriangle This makes it easier to match graph eigenvalues to graphon eigenvalues around $\lambda=0$

Theorem (Graphon filter approximation by graph filter for high-pass filters)

Consider a graphon filter $Y = \Phi(X; h, W)$ and a graph filter $y_n = \Phi(x_n; h, S_n)$ instantiated from

Y. With Definitions (D1) - (D2), Assumptions (A1) - (A3), and

(A4)
$$h(\lambda)$$
 is zero for $|\lambda| > c$

The difference between Y and $Y_n = \Phi(X_n; h, W_n)$ (graph filter induced by y_n) is bounded by

$$\|\mathbf{Y} - Y_n\|_{L_2} \leq L_2 c \|X\|$$

Proof: See course webpage https://gnn.seas.upenn.edu/lectures/lecture-10/

- ▶ Filter response has low variability for $|\lambda| < c$. Where the eigenvalues of the graphon accumulate
- ightharpoonup For $|\lambda| > c$, graphon eigenvalues are countable. And easier to match to those of the graph

A Lipschitz filter with variable band is the composition of a low-pass filter and a high-pass one

Theorem (Graphon filter approximation by graph filter)

Consider a graphon filter $Y = \Phi(X; h, W)$ and a graph filter $y_n = \Phi(x_n; h, S_n)$ instantiated from

Y. With Definitions (D1) - (D2), Assumptions (A1) - (A3), and

(A4) $h(\lambda)$ has low variability for $|\lambda| < c$

The difference between Y and $Y_n = \Phi(X_n; h, W_n)$ (graph filter induced by y_n) is bounded by

$$\|\mathbf{Y} - Y_n\|_{L_2} \le \sqrt{L_1} \left(L_2 + \frac{\pi n_c}{\delta_{nc}} \right) n^{-\frac{1}{2}} \|X\|_{L_2} + \frac{L_3}{\sqrt{3}} n^{-\frac{1}{2}} + L_2 c \|X\|$$

- ▶ Filter with variable band is the sum of an L_2 -Lipschitz filter $h_1(\lambda)$ with $h_1(\lambda) = 0$ for $|\lambda| < c$
- ▶ And a high-pass filter $h_2(\lambda)$ with $h_2(\lambda)$ showing low variability for $|\lambda| < c$ and 0 otherwise
- ► Thus, by the triangle inequality

$$\|\mathbf{Y} - Y_n\|_{L_2} = \|T_HX - T_{H_n}\|_{L_2} \le \|T_{H_1}X - T_{H_{1_n}}X_n\|_{L_2} + \|T_{H_2}X - T_{H_{2_n}}X_n\|_{L_2}$$

- ▶ We know the first-term on the right-hand side. It's the bound for low-pass filters
- And the second-term on the right-hand side is the bound for constant filters
- ▶ Summing up the two bounds, we then prove our result for Lipschitz filters with variable band

Theorem (Graphon filter approximation by graph filter)

The difference between Y and $Y_n = \Phi(X_n; h, W_n)$ (graph filter induced by y_n) is bounded by

$$\|\mathbf{Y} - Y_n\|_{L_2} \le \sqrt{L_1} \left(L_2 + \frac{\pi n_c}{\delta_{nc}} \right) n^{-\frac{1}{2}} \|X\|_{L_2} + \frac{L_3}{\sqrt{3}} n^{-\frac{1}{2}} + L_2 c \|X\|$$

- \triangleright Bound depends on the filter transferability constant and on the difference between X and X_n
- ► Transferability constant depends on the graphon via L₁ which also affects the graphon variability
- ▶ As *n* grows, the transferability constant dominates the bound

Theorem (Graphon filter approximation by graph filter)

The difference between Y and $Y_n = \Phi(X_n; h, W_n)$ (graph filter induced by y_n) is bounded by

$$\|\mathbf{Y} - Y_n\|_{L_2} \le \sqrt{L_1} \left(\mathbf{L_2} + \frac{\pi \mathbf{n_c}}{\delta_{nc}} \right) n^{-\frac{1}{2}} \|X\|_{L_2} + \frac{L_3}{\sqrt{3}} n^{-\frac{1}{2}} + \mathbf{L_2} c \|X\|$$

- ▶ Transferability constant depends on the filter parameters L_2 , n_c and δ_{nc}
- ▶ Filter's Lipschitz constant L_2 and filter's band [c, 1] determine variability of the spectral response
- Number of eigenvalues in the passing band has to be limited: $n_c < \sqrt{n}$
- \triangleright This ensures eigenvalues of W_n converge to those of W. And thus so does the filter approximation

Discriminability - Approximation Trade-Off

- ▶ We identify a fundamental issue ⇒ Good approximations are counter to discriminability
 - \Rightarrow Tight approximation bounds require filters with low variability around $\lambda=0$
 - \Rightarrow But then the filter can't discriminate components associated to eigenvalues close to $\lambda=0$
- lacktriangle That is less of an issue for larger graphs. Filter approximation requires $n_c < \sqrt{n}$
 - \Rightarrow As n grows, we can afford a larger number of eigenvalues n_c in the passing band
 - \Rightarrow Improving discriminability without penalizing the approximation bound

Transferability of Graph Filters: Theorem

▶ We show that graph filters are transferable across graphs that are drawn from a common graphon

Comparing Graph Filters through their Generating Graphon Filter

- ► Have not proven transferability ⇒ Have proven that graph filters are close to graphon filters
 - \Rightarrow Graph G_n with n nodes sampled from graphon W
 - \Rightarrow Have shown that graph filter $H(S_n)$ running on G_n is close to the graphon filter T_H

Comparing Graph Filters through their Generating Graphon Filter

- ► Transferability means that two different graphs with different number of nodes are close
 - \Rightarrow Graph G_n and graph G_m with $n \neq m$ nodes. Both sampled from graphon W
 - \Rightarrow Want to show that graph filter $H(S_n)$ and graph filter $H(S_m)$ are close

- ▶ But graph filters are close because they are both close to the graphon filter
 - \Rightarrow Graph filter $H(S_n)$ close to graphon filter T_H . Graph filter $H(S_m)$ close to graphon filter T_H
 - \Rightarrow Graph filter $H(S_n)$ is close to graph filter $H(S_m)$ \Rightarrow This is just the triangle inequality

▶ Consider graph signals (S_n, x_n) and (S_m, x_m) sampled from the graphon signal (W, X)

- \triangleright Given filter coefficients h_k we process signals on their respective graphs
 - \Rightarrow Run filter with coefficients h_k on graph S_n to process $x_n \Rightarrow y_n = H(S_n)x_n = \sum_{k=1}^K h_k S_n^k x_n$
 - \Rightarrow Run filter with coefficients h_k on graph S_m to process $x_m \Rightarrow y_m = H(S_m)x_m = \sum_{k=1}^K h_k S_m^k x_n$

 \triangleright Since they have different number of components we compare induced graphon signals Y_n and Y_m

(A1) The graphon W is L_1 -Lipschitz \Rightarrow For all arguments (u_1, v_1) and (u_2, v_2) , it holds

$$|W(u_2, v_2) - W(u_1, v_1)| \le L_1(|u_2 - u_1| + |v_2 - v_1|)$$

(A2) The filter's response is L_2 -Lipschitz and normalized \Rightarrow For all λ_1 , λ_2 and λ we have

$$\left| \, ilde{h}(\lambda_2) - ilde{h}(\lambda_1) \,
ight| \, \leq \, \, rac{m{L}_2}{2} \left| \, \lambda_2 - \lambda_1 \,
ight| \, \quad \, ext{and} \quad \, \left| \, h(\lambda) \,
ight| \, \leq \, \, 1$$

(A3) The graphon signal X is L_3 -Lipschitz \Rightarrow For all u_1 and u_2

$$|X(u_2) - X(u_1)| \leq L_3 |u_2 - u_1|$$

• We fix a bandwidth c > 0 to separate eigenvalues not close to $\lambda = 0$ and define

(D1) The c-band cardinality of G_n is the number of eigenvalues with absolute value larger than c

$$B_{nc} = \# \left\{ |\lambda_{ni}| : |\lambda_{ni}| > c \right\}$$

(D2) The c-eigenvalue margin of of graph G_n is the

$$\delta_{nc} = \min_{i,j\neq i} \left\{ |\lambda_{ni} - \lambda_j| : |\lambda_{ni}| > c \right\}$$

• Where λ_{ni} are eigenvalues of the shift operator S_n and λ_j are eigenvalues of graphon W

Consider graph signals (S_n, x_n) and (S_m, x_m) sampled from graphon signal (W, X) along with filter outputs $y_n = H(S_n)x_n$ and $y_m = H(S_m)x_m$. With Assumptions (A1)-(A3) and Definitions (D1)-(D2) the difference norm of the respective graphon induced signals is bounded by

$$\|Y_n - Y_m\| \le \sqrt{L_1} \left(L_2 + \pi \frac{\max(B_{nc}, B_{mc})}{\min(\delta_{nc}, \delta_{mc})} \right) \left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{m}} \right) \|X\| + \frac{2L_3}{\sqrt{3}} \left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{m}} \right) + L_2 c \|X\|$$

Proof: See course webpage https://gnn.seas.upenn.edu/lectures/lecture-10/

Transferability of Graph Filters: Remarks

▶ We present remarks on the transferability theorem of graph filters sampled from a graphon filter

$$\|Y_{n} - Y_{m}\| \leq \sqrt{L_{1}} \left(L_{2} + \pi \frac{\max(B_{nc}, B_{mc})}{\min(\delta_{nc}, \delta_{mc})} \right) \left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{m}} \right) \|X\| + \frac{2L_{3}}{\sqrt{3}} \left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{m}} \right) + L_{2}c\|X\|$$

- Thing 1: A term that comes from the discretization of the graphon signal ⇒ Not very important
- **Thing 2:** A term coming from filter variability at eigenvalues $|\lambda| > c \Rightarrow$ The easy components
- Thing 3: A term coming from filter variability at eigenvalues $|\lambda| \le c$ \Rightarrow The difficult components

$$\|Y_{n} - Y_{m}\| \leq \sqrt{L_{1}} \left(L_{2} + \pi \frac{\max(B_{nc}, B_{mc})}{\min(\delta_{nc}, \delta_{mc})} \right) \left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{m}} \right) \|X\| + \frac{2L_{3}}{\sqrt{3}} \left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{m}} \right) + L_{2}c\|X\|$$

- As $(n, m) \to \infty$ most of the transferability error decreases with the square root of the graph sizes
- We can also afford smaller bandwidth limit $c \Rightarrow$ Transfer filters closer to $\lambda = 0$
- ▶ Sharper filter responses (larger Lipschitz constant L_2) \Rightarrow Transfer more discriminative filters

$$\|Y_{n} - Y_{m}\| \leq \sqrt{L_{1}} \left(L_{2} + \pi \frac{\max(B_{nc}, B_{mc})}{\min(\delta_{nc}, \delta_{mc})} \right) \left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{m}} \right) \|X\| + \frac{2L_{3}}{\sqrt{3}} \left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{m}} \right) + L_{2}c\|X\|$$

- ► Graph signals and graphons with rapid variability make filter transference more difficult
- ► This is because of sampling approximation error ⇒ Not fundamental
- ▶ The constants can be sharpened with modulo-permutation Lipschitz constants

$$\|Y_{n} - Y_{m}\| \leq \sqrt{L_{1}} \left(L_{2} + \pi \frac{\max(B_{nc}, B_{mc})}{\min(\delta_{nc}, \delta_{mc})} \right) \left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{m}} \right) \|X\| + \frac{2L_{3}}{\sqrt{3}} \left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{m}} \right) + L_{2}c\|X\|$$

- ▶ Filters that are more discriminative are more difficult to transfer
 - \Rightarrow True in the part of the bound related to easy components associated with eigenvalues $|\lambda| > c$
 - \Rightarrow True in the part of the bound related to difficult components associated with eigenvalues $|\lambda| \le c$

$$\|Y_{n} - Y_{m}\| \leq \sqrt{L_{1}} \left(L_{2} + \pi \frac{\max(B_{nc}, B_{mc})}{\min(\delta_{nc}, \delta_{mc})} \right) \left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{m}} \right) \|X\| + \frac{2L_{3}}{\sqrt{3}} \left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{m}} \right) + L_{2}c\|X\|$$

- ▶ Bound is parametric on the bandwidth $c \Rightarrow$ Different c result in different values for the bound
- ▶ Increase c-band cardinality or decrease c-eigenvalue margin ⇒ More challenging transferability
- ▶ A property of the graphon \Rightarrow Since eigenvalues converge B_{nc} and δ_{nc} converge

Transferability vs Discriminability Non-Tradeoff

- ▶ If we fix *n* and *m* we observe emergence of a transferability vs discriminability non-tradeoff
- lacktriangle Discriminating around $\lambda=0$ needs large Lipschitz constant $L_2\Rightarrow$ Useless transferability bound
- ► To make transferability and discriminability compatible ⇒ Graph Neural Networks

Transferability of GNNs

▶ We define graphon neural networks and discuss their interpretation as generative models for GNNs

▶ We show that graph neural networks inherit the transferability properties of graph filters

- ► Graph filters are transferable ⇒ we can expect GNNs to inherit transferability from graph filters
- ► To analyze GNN transferability, we we first define Graphon Neural Networks (WNNs)
- lacktriangle The /th layer of a WNN composes a graphon convolution with parameters h and a nonlinearity σ

$$X_{l}^{f} = \sigma \left(\sum_{g=1}^{F_{l-1}} h_{kl}^{fg} T_{W}^{(k)} X_{l-1}^{g} \right)$$

L layers, $1 \le f \le F_I$ output features per layer. WNN input is $X_0 = X$. Output is $Y = X_L$

► Can be represented as $Y = \Phi(\mathcal{H}; W; X)$ with coefficients $\mathcal{H} = \{h_{kl}^{fg}\}_{k,l,f,g}$. Just like the GNN

- As in the GNN map $\Phi(\mathcal{H}; S; x)$, in the WNN $\Phi(\mathcal{H}; W; X)$, the set \mathcal{H} doesn't depend on the graphon
- ► Therefore, we can use WNNs to instantiate GNNs ⇒ the WNN is a generative model for GNNs

▶ We will consider GNNs $\Phi(\mathcal{H}; S_n; x_n)$ instantiated from $\Phi(\mathcal{H}; W; X)$ on weighted graphs G_n

$$[S_n]_{ij} = W(u_i, u_j)$$
 $[x_n]_i = X(u_i)$

▶ Consider a graph signal (S_n, x_n) sampled from the graphon signal (W, X)

- ▶ Given WNN coefficients \mathcal{H} for L layers, width $F_l = F$ for $1 \le l < L$, and $F_0 = F_L = 1$
 - \Rightarrow Run WNN with coefficients \mathcal{H} on graphon W to process $X \Rightarrow Y = \Phi(\mathcal{H}; W, X)$
 - \Rightarrow Run GNN with coefficients \mathcal{H} on graph S_n to process $x_n \Rightarrow y_n = \Phi(\mathcal{H}; S_n, x_n)$

 \triangleright Since one is a vector and the other a function we consider the induced graphon signal Y_n

(A1) The graphon W is L_1 -Lipschitz \Rightarrow For all arguments (u_1, v_1) and (u_2, v_2) , it holds

$$|W(u_2, v_2) - W(u_1, v_1)| \le L_1(|u_2 - u_1| + |v_2 - v_1|)$$

(A2) The filter's response is L_2 -Lipschitz and normalized \Rightarrow For all λ_1 , λ_2 and λ we have

$$\left|\left.\widetilde{h}(\lambda_2)-\widetilde{h}(\lambda_1)\right.
ight| \ \le \ \left|\left. \mathsf{L}_2 \right| \lambda_2 - \lambda_1 \left. \right| \qquad \mathsf{and} \qquad \left|\left. h(\lambda) \right. \right| \ \le \ 1$$

(A3) The graphon signal X is L_3 -Lipschitz \Rightarrow For all u_1 and u_2

$$|X(u_2)-X(u_1)| \leq L_3|u_2-u_1|$$

(A4) The nonlinearities σ are normalized Lipschitz and $\sigma(0) = 0 \Rightarrow$ For all x and y

$$|\sigma(x) - \sigma(y)| \leq |x - y|$$

• We fix a bandwidth c > 0 to separate eigenvalues not close to $\lambda = 0$ and define

(D1) The c-band cardinality of G_n is the number of eigenvalues with absolute value larger than c

$$B_{nc} = \# \left\{ |\lambda_{ni}| : |\lambda_{ni}| > c \right\}$$

(D2) The c-eigenvalue margin of of graph G_n is the

$$\delta_{nc} = \min_{i,j\neq i} \left\{ |\lambda_{ni} - \lambda_j| : |\lambda_{ni}| > c \right\}$$

• Where λ_{ni} are eigenvalues of the shift operator S_n and λ_i are eigenvalues of graphon W

Theorem (GNN-WNN approximation)

Consider the graph signal (S_n, x_n) sampled from the graphon signal (W, X) along with the GNN output $y_n = \Phi(\mathcal{H}; S_n, x_n)$ and WNN output $Y = \Phi(\mathcal{H}; W, X)$. With Assumptions (A1)-(A4) and Definitions (D1)-(D2) the norm difference $||Y_n - Y||$ is bounded by

$$\|Y - Y_n\| \le LF^{L-1}\sqrt{L_1}\left(L_2 + \pi \frac{B_{nc}}{\delta_{nc}}\right)\left(\frac{1}{\sqrt{n}}\right)\|X\| + \frac{L_3}{\sqrt{3}}\left(\frac{1}{\sqrt{n}}\right) + LF^{L-1}L_2c\|X\|$$

Proof: See course webpage https://gnn.seas.upenn.edu/lectures/lecture-10/

- ▶ The error incurred when using a GNN to approximate a WNN can be upper bounded
- ► Same comments as for graph and graphon filters apply. With additional dependence on L and F
- Distances between GNNs and WNN can be combined to calculate distance between GNNs
- ► GNNs $Y_n = \Phi(\mathcal{H}; W_n, x_n)$ and $Y_m = \Phi(\mathcal{H}; W_m, x_m)$ instantiated from WNN $Y = \Phi(\mathcal{H}; W, X)$

$$\|Y_n - Y_m\| = \|Y_n - Y + Y - Y_m\| \le \|Y_n - Y\| + \|Y - Y_m\|$$

▶ The inequality follows from the triangle inequality. By which we have proved GNN transferability

▶ Consider graph signals (S_n, x_n) and (S_m, x_m) sampled from the graphon signal (W, X)

- ▶ Given GNN coefficients \mathcal{H} for L layers, width $F_l = F$ for $1 \le l < L$, and $F_0 = F_L = 1$
 - \Rightarrow Run GNN with coefficients \mathcal{H} on graph S_n to process $x_n \Rightarrow y_n = \Phi(\mathcal{H}; S_n, x_n)$
 - \Rightarrow Run filter with coefficients \mathcal{H} on graph S_m to process $x_m \Rightarrow y_m = \Phi(\mathcal{H}; S_m, x_n)$

 \blacktriangleright Since they have different number of components we compare induced graphon signals Y_n and Y_m

Theorem (GNN transferability)

Consider graph signals (S_n, x_n) and (S_m, x_m) sampled from graphon signal (W, X) along with GNN outputs $y_n = \Phi(\mathcal{H}; S_n, x_n)$ and $y_m = \Phi(\mathcal{H}; S_m, x_m)$. With Assumptions (A1)-(A4) and Definitions (D1)-(D2) the difference norm of the respective graphon induced signals is bounded by

$$\|Y_{n}-Y_{m}\| \leq LF^{L-1}\sqrt{L_{1}}\left(L_{2}+\pi\frac{\max(B_{nc},B_{mc})}{\min(\delta_{nc},\delta_{mc})}\right)\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{m}}\right)\|X\|+\frac{L_{3}}{\sqrt{3}}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{m}}\right)+LF^{L-1}L_{2}c\|X\|$$

► Same comments as in the case of graph filter transferability. With additional dependence on *L*, *F*

Transferability-Discriminability Trade-off for GNNs

- ▶ The transferability-discriminability trade-off looks the same. But it is helped by the nonlinearities
- ▶ At each layer of the GNN, the nonlinearities σ scatter eigenvalues from $|\lambda| \le c$ to $|\lambda| > c$

- ▶ Nonlinearities allows $\downarrow c$ and $\uparrow L_2$ \Rightarrow increasing discriminability while retaining transferability
- For the same level of discriminability, GNNs are more transferable than graph filters