Computer Project

a02394870 Yi-Cheng Chen

Introduction

The wing planform I study is the wing from a bat. Bats are the only mammals that can fly, so I wanted to understand the aerodynamic properties of their wings. The program we wrote uses the assumption of thin airfoil theory, and the bat's wings are made of a thin film, so I think it is very suitable for analysis by our program.

Model settings

The original bat wing picture (**Figure 1**) is come from <u>Properties of the bat wing. (A) Muscle bundles</u> (red) of the wing... | Download Scientific Diagram (researchgate.net)

Figure 1

I used WebPlotDigitizer to convert the image to point data and output it as "bat_project.json", and the chord distribution file is "bat_planfrom.txt", both of which are attached in the zip file. **Table 1** below shows the parameters I used, and the part 2 of the json file "input2.json" is also attached to the zip file.

Parameters	value	
Planform type	"file"	
Aspect ratio	6.495228458657533 (compute from the file)	
Taper ratio	-	
filename	"bat_planform.txt"	
Airfoil lift slope	6.283185307179590,	
Node per semispan	100	
Washout distribution	"optimum"	
Washout amount[deg]	"optimum"	
CL design	0.65	
В3	0.0	
Aileron begin[z/b]	0.15	
Aileron end[z/b]	0.4	
Aileron begin[cf/c]	0.18	
Aileron end[cf/c]	0.18	
Hinge efficiency	0.85	
Alpha root[deg]	"CL"	
CL	2	
Aileron deflection	0.0	
pbar	0.0	

Result

The shape of the plot of the planform (**Figure 2**) is not the same as the original bat wing (with forward sweep) because the program will place the position of the quarter chord of the wing at the position of c/b = 0.

Figure 2

The design lift coefficient I chose is 0.65. Under this condition, the root angle of attack = 9.59817174 (deg), the optimum washout distribution is shown in **Figure 3**, the optimum washout magnitude = 5.95754168 (deg), and the lift distribution is shown in **Figure 4**.

Figure 3

Figure 4

The induced resistance is calculated when design lift coefficient is fixed at 0.65 and when design lift coefficient = CL(operating lift coefficient). As shown in **Table 2** and **Figure 5**, the induced drag for design lift coefficient = CL is always smaller than design lift coefficient = 0.65 when B3 = 0, because when design lift coefficient = CL, is always calculated under the condition of minimizing the induced drag. At CL = 0.6 and 0.7, the two curves almost overlap, because at this point the CL is close to design lift coefficient.

	B3 = 0		
	CLd = 0.65	CLd = CL	
CL	Cdi	Cdi	difference
-1	0.05283906	0.04900673	0.003832
-0.9	0.04307733	0.03969545	0.003382
-0.8	0.03432389	0.03136431	0.00296
-0.7	0.02657874	0.0240133	0.002565
-0.6	0.01984188	0.01764242	0.002199
-0.5	0.0141133	0.01225168	0.001862
-0.4	0.00939301	0.00784108	0.001552
-0.3	0.00568101	0.00441061	0.00127
-0.2	0.0029773	0.00196027	0.001017
-0.1	0.00128187	0.00049007	0.000792
0	0.00059473	0	0.000595
0.1	0.00091588	0.00049007	0.000426
0.2	0.00224532	0.00196027	0.000285
0.3	0.00458304	0.00441061	0.000172
0.4	0.00792905	0.00784108	8.8E-05
0.5	0.01228335	0.01225168	3.17E-05
0.6	0.01764594	0.01764242	3.52E-06
0.7	0.02401682	0.0240133	3.52E-06
0.8	0.03139598	0.03136431	3.17E-05
0.9	0.03978343	0.03969545	8.8E-05
1	0.04917916	0.04900673	0.000172

Table 2

Figure 5

Part 3. Extra Credit

- 1. The advantage of using class structure is that new function can be easily added or removed, and parameters can be easily reused, which makes modifying code easy and neat looking.
- 2. When a code is clean, legible and well commented, it will be easy to modify and debug the code, especially if someone else is taking over your work.