Introduction Propriétés

Applications

Introduction au produit matriciel

- Le produit matriciel **ne correspond pas** au produit **« terme à terme »** de deux matrices de mêmes dimensions (produit d'Hadamard)
- Pour faire le produit de deux matrices il n'est pas nécessaire que deux matrices aient les mêmes dimensions
- Mais il faut par contre que le nombre de colonnes de la première matrice soit égal au nombre de lignes de la deuxième.

Produit d'une matrice ligne par une matrice colonne

Produit « ligne – colonne »

$$U = (4 \quad 2 \quad 1)$$
: vecteur **ligne**

$$V = \begin{pmatrix} -1\\2\\3 \end{pmatrix}$$
: vecteur **colonne**

$$UV = (4 \ 2 \ 1) \ 2 \ 3 \) = 4 \times (-1) + 2 \times 2 + 1 \times 3$$

Généralisation

$$U = (u_{1j})_{1 \le j \le n}$$
 d'ordre $(1, n)$
 $V = (v_{i1})_{1 \le j \le n}$ d'ordre $(n, 1)$

U et V ont le même nombre d'éléments

Comment écrire le produit *UV* ?

Produit « ligne – colonne »

$$U = (u_{1j})_{1 \leq j \leq n} \text{ d'ordre } (1,n)$$

$$V = (v_{i1})_{1 \leq j \leq n} \text{ d'ordre } (n,1)$$

$$UV = u_{11}v_{11} + u_{12}v_{21} + \dots + u_{1n}v_{n1} = \sum_{k=1}^{n} u_{1k}v_{k1}$$

Python?

Ecrire une fonction prod_ligne_col(U,V) :

- En entrée : U un vecteur ligne, V un vecteur colonne, U et V ayant le même nombre d'éléments.
- En sortie : le produit UV

Produit « ligne – colonne

```
U = (u_{1j})_{1 \le j \le n} d'ordre (1, n)

V = (v_{i1})_{1 \le j \le n} d'ordre (n, 1)
```

$$UV = u_{11}v_{11} + u_{12}v_{21} + \cdots + U = [4, 2, 1]$$

```
def prod ligne col(u,v):
    prod=0
    for i in range(len(u)):
        prod=prod+u[i]*v[i]
    return prod
# Exemple
V=[-1,2,3]
# Appel de la fonction
```

prod_ligne_col(U,V)

Python?

Ecrire une fonction **prod_ligne_col(u,v)**:

- En entrée : u un vecteur ligne, v un vecteur colonne, u et v ayant le même nombre d'éléments.
- En sortie : le produit uv

Produit « lione – colonne

```
U=(u_{1j})_1
           Produit matriciel
V = (v_{i1})
```

On multiplie les lignes de la première matrice par les colonnes de la deuxième

```
def prod ligne col(u,v):
          prod=0
          for i in range(len(u)):
               prod=prod+u[i]*v[i]
           return prod
      # Exemple
+ \cdots + U = [4, 2, 1]
      V=[-1,2,3]
      # Appel de la fonction
      prod ligne col(U,V)
```

m vecteur colonne, **U** et **V** ayant le même nombre En entrè d'éléments.

En sortie : le produit UV

Pyth

Ecrire un

On multiplie les lignes de la première matrice par les colonnes de la deuxième.

$$\begin{pmatrix} 2 & 1 \\ 4 & 3 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} 2 & 4 & 6 & -1 \\ 1 & -2 & 3 & 5 \end{pmatrix} = \begin{pmatrix} 5 \\ \\ \end{pmatrix}$$

• En multipliant la $\frac{1^{\text{ère}} \text{ ligne}}{1^{\text{ère}}}$ par la $\frac{1^{\text{ère}}}{1^{\text{end}}}$ on obtient l'élément de la $1^{\text{ère}}$ ligne et première colonne : $\frac{1}{2} \times \frac{1}{2} + \frac{1}{4} \times \frac{1}{4} = \frac{5}{4}$

On multiplie les lignes de la première matrice par les colonnes de la deuxième.

$$\begin{pmatrix} 2 & 1 \\ 4 & 3 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} 2 & 4 & 6 & -1 \\ 1 & -2 & 3 & 5 \end{pmatrix} = \begin{pmatrix} 5 \\ 11 \end{pmatrix}$$

- En multipliant la 1^{ère} ligne par la 1^{ère} colonne, on obtient l'élément de la 1^{ère} ligne et première colonne : $\mathbf{5} = 2 \times 2 + 1 \times 1$
- En multipliant la $2^{\text{ème}}$ ligne par la $2^{\text{ème}}$ colonne, on obtient l'élément de la $1^{\text{ère}}$ ligne et première colonne : $4 \times 2 + 3 \times 1 = 11$

On multiplie les lignes de la première matrice par les colonnes de la deuxième.

$$\begin{pmatrix} 2 & 1 \\ 4 & 3 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} 2 & 4 & 6 & -1 \\ 1 & -2 & 3 & 5 \end{pmatrix} = \begin{pmatrix} 5 \\ 11 \\ 0 \end{pmatrix}$$

- En multiple de la lèr 0 on termine le calcul ! colonne, on obtient l'élément de la $2+1\times1$
- En colonne, on obtient l'élément de la 1 è le 1 $= 4 \times 2 + 3 \times 1$

On multiplie les lignes de la première matrice par les colonnes de la deuxième.

$$\begin{pmatrix} 2 & 1 \\ 4 & 3 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} 2 & 4 & 6 & -1 \\ 1 & -2 & 3 & 5 \end{pmatrix} = \begin{pmatrix} 5 & 6 & 15 & 3 \\ 11 & 10 & 33 & 11 \\ 0 & 8 & 0 & -11 \end{pmatrix}$$

Bilan

Dimension de la matrice produit et des opérandes Terme général

Bilan - Dimensions

$$M \times N = Matrice Produit$$

$$(3,2)\times(2,4) \longrightarrow (3,4)$$

Remarque sur les dimensions :

Les lignes de M doivent avoir le même nombre d'éléments que les colonnes de N

Pour pouvoir faire le produit *MN*, il faut donc que le nombrede colonnes de *M* soit égal au nombre de lignes de *N*

Le nombre de lignes de *MN* est donc le nombre de lignes *M*Le nombre de colonnes de *MN* est le nombre de colonnes de *N*

Bilan - Terme général

$$\begin{pmatrix} 2 & 1 \\ 4 & 3 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} 2 & 4 & 6 \\ 1 & -2 & 3 \end{pmatrix} - \begin{pmatrix} 5 & 6 & 15 & 3 \\ 11 & 10 & 33 & 11 \\ 0 & 8 & 0 & -11 \end{pmatrix}$$

$$M = (a_{ij})_{\substack{1 \le i \le 3 \\ 1 \le j \le 2}} \qquad N = (b_{ij})_{\substack{1 \le i \le 2 \\ 1 \le j \le 4}} \qquad MN = (c_{ij})_{\substack{1 \le i \le 3 \\ 1 \le j \le 4}}$$

 a_{ij} le terme général de la matrice $\emph{\textbf{\textit{M}}}$

 b_{ij} le terme général de la matrice \emph{N}

 c_{ij} le terme général de la matrice MN

 c_{23} en fonction des a_{ij} et b_{ij} ?

Bilan terme général

$$\begin{pmatrix} 2 & 1 \\ 4 & 3 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} 2 & 4 & 6 \\ 1 & -2 & 3 \end{pmatrix} = \begin{pmatrix} 5 & 6 & 15 & 3 \\ 11 & 10 & 33 & 11 \\ 0 & 8 & 0 & -11 \end{pmatrix}$$

$$M = (a_{ij})_{\substack{1 \le i \le 3 \\ 1 \le j \le 2}} \qquad N = (b_{ij})_{\substack{1 \le i \le 2 \\ 1 \le j \le 4}} \qquad MN = (c_{ij})_{\substack{1 \le i \le 3 \\ 1 \le j \le 4}}$$

$$c_{23} = 4 \times 6 + 3 \times 3 = a_{21} \times b_{13} + a_{22} \times b_{23}$$

$$c_{ij} = a_{i1} \times b_{1j} + a_{i2} \times b_{2j}$$

$$c_{ij} = \sum_{k=1}^{2} a_{ik} \times b_{kj}$$

Bilan terme général

$$M = (a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$$

$$N = (b_{ij})_{\substack{1 \le i \le p \\ 1 \le j \le m}}$$

$$M = (a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}} \qquad N = (b_{ij})_{\substack{1 \le i \le p \\ 1 \le j \le m}} \qquad MN = (c_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le m}}$$

$$c_{ij} = a_{i1} \times b_{1j} + a_{i2} \times b_{2j} + \dots + a_{ip} \times b_{pj}$$

$$c_{ij} = \sum_{k=1}^{p} a_{ik} \times b_{kj}$$

Définition mathématique

Soit
$$M=(a_{ij})_{\substack{1\leq i\leq m\\1\leq j\leq n}}$$
 et $N=(b_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq p}}$ deux matrices d'ordres respectifs (m,n) et (n,p) :

$$MN = (c_{ij})_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}}$$
 avec $c_{ij} = \sum_{k=1}^n a_{ik} b_{kj}$

EXERCICE 1

- 1. La multiplication de deux matrices non carrées est-elle commutative ?
- 2. La multiplication de deux matrices carrées est-elle commutative ?
- 3. Qu'en est-il de l'addition ?

Ecrire une fonction **prod (m,n)**:

- En entrée : m et n deux matrices, le nombre de colonne de m étant égal au nombre de lignes de n.
- En sortie : le produit mn

FONCTION INTERMÉDIAIRES

ligne(m,i)

- en entrée : une matrice m et un indice de ligne i
- en sortie : la ième ligne sous forme de liste

colonne(m,j)

- en entrée : une matrice m et un indice de colonne j
- en sortie : la jème colonne sous forme de liste

- **En entrée : u** un vecteur ligne, **v** un vecteur colonne, **u** et **v** ayant le même nombre d'éléments.
- En sortie : le produit uv

```
# fonction ligne, renvoie la ième ligne de'la matrice m
def ligne(m,i)
    return m[i]

#Exemple et appel de la fonction
M=[[1,2],[3,4],[5,6]]
ligne(M,1)
```

olonne de **m** étant égal au nombre de

FONCTION INTERMÉDIAIRES

ligne(m,i)

- en entrée : une matrice m et un indice de ligne i
- en sortie : la ième ligne sous forme de liste

colonne(m,j)

- en entrée : une matrice m et un indice de colonne j
- en sortie : la jème colonne sous forme de liste

- En entrée : u un vecteur ligne, v un vecteur colonne, u et v ayant le même nombre d'éléments.
- En sortie : le produit uv

```
# fonction ligne, renvoie la ième ligne de'la matrice m
def ligne(m,i)
    return m[i]

#Exemple et appel de la fonction
M=[[1,2],[3,4],[5,6]]
ligne(M,1)
```

olonne de **m** étant égal au nombre de

```
# fonction colonne, renvoie la jème colonne de la matrice m
def colonne(m,j):
    col=[]
    for i in range(len(m)):
        col.append(m[i][j])
    return col

#Exemple et appel de la fonction
M=[[1,2],[3,4],[5,6]]
colonne(M,1)
```

colonne(m,j)

- en entrée : une matrice m et un indice de colonne j
- en sortie : la jème colonne sous forme de liste

- En entrée : u un vecteur ligne, v un vecteur colonne, u et v ayant le même nombre d'éléments.
- En sortie : le produit uv

```
# fonction ligne, renvoie la ième ligne de'la matrice m
def ligne(m,i)
    return m[i]

#Exemple et appel de la fonction
M=[[1,2],[3,4],[5,6]]
ligne(M,1)
```

```
# fonction colonne, renvoie la jème colonne de la matrice m
def colonne(m,j):
    col=[]
    for i in range(len(m)):
        col.append(m[i][j])
    return col

#Exemple et appel de la fonction
M=[[1,2],[3,4],[5,6]]
colonne(M,1)
```

colonne(m,j)

- en entrée : une matrice m et un indice de colonne j
- en sortie : la jème colonne sous forme de liste

```
# produit ligne-colonne
def prod_ligne_col(u,v):
    prod=0
    for i in range(len(u)):
        prod=prod+u[i]*v[i]
    return prod

# Exemple et appel de la fonction
U=[4,2,1]
V=[-1,2,3]
prod_ligne_col(U,V)
```

- En entrée : u un vecteur ligne, v un vecteur colonne, u et v ayant le même nombre d'éléments.
- En sortie : le produit uv

```
# fonction ligne, renvoie la ième ligne de'la matrice m
def ligne(m,i)
    return m[i]
#Exemple et appel de la fonction
M=[[1,2],[3,4],[5,6]]
ligne(M,1)
```

M=[[1,2],[3,4],[5,6]]

prod_mat(M,N)

```
# fonction colonne, renvoie la jème colonne de la matrice m
def colonne(m,j):
    col=[]
    for i in range(len(m)):
        col.append(m[i][j])
    return col
#Exemple et appel de la fonc:
M=[[1,2],[3,4],[5,6]]
colonne(M,1)
```

colonne(m,j)

- en entrée : une matrice
- en sortie : la jème colon N=[[1,2,3,4],[5,6,7,8]]

```
# produit ligne-colonne
def prod_ligne_col(u,v):
    prod=0
    for i in range(len(u)):
        prod=prod+u[i]*v[i]
    return prod
# Exemple et appel de la fonction
U=[4,2,1]
V=[-1,2,3]
prod_ligne_col(U,V)
```

```
# produit matriciel
def prod_mat(m,n):
    prod=[]
    for i in range(len(m)):
        prod.append([])
        for j in range(len(n[0])):
            prod[i].append(prod ligne col(ligne(m,i),colonne(n,j)))
    return prod
#Exemple et appel de la fonction
```