IX - Suites numériques

I - Suites usuelles

À Savoir

La suite (u_n) est une suite arithmétique de raison r si

$$\forall n \in \mathbb{N}, u_{n+1} = u_n + r.$$

Alors.

$$\forall n \in \mathbb{N}, u_n = u_0 + nr.$$

Exemple 1 - Une suite arithmétique

Soit (u_n) telle que $u_0 = 1$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n + 3$. Alors, (u_n) est une suite arithmétique de raison 3. Ainsi,

$$\forall n \in \mathbb{N}, u_n = 1 + 3n.$$

À Savoir

La suite (u_n) est une suite géométrique de raison q si

$$\forall n \in \mathbb{N}, u_{n+1} = q \times u_n.$$

Alors,

$$\forall n \in \mathbb{N}, u_n = q^n u_0.$$

Exemple 2 - Une suite géométrique

Soit (u_n) telle que $u_0 = 3$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = 2u_n$. Alors, (u_n) est une suite arithmétique de raison 2. Ainsi,

$$\forall n \in \mathbb{N}, u_n = 3 \times 2^n.$$

À Savoir

La suite (u_n) est une suite arithmético-géométrique si

$$\forall n \in \mathbb{N}, u_{n+1} = q \times u_n + r.$$

Exemple 3 - Une suite arithmético-géométrique

L'étude d'une suite arithmético-géométrique suit toujours le schéma suivant.

Soit (u_n) telle que $u_0 = 7$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = 2u_n + 3$.

* Recherche du réel ℓ tel que $\ell = 2\ell + 3$:

$$\ell = 2\ell + 3$$
$$0 = 2\ell - \ell + 3$$
$$\ell = -3$$

* Étude de la suite définie par $v_n = u_n - \ell$. Alors,

$$v_{n+1} = u_{n+1} - \ell$$

$$= (2u_n + 3) - (2\ell + 3)$$

$$= 2u_n + 3 - 2\ell - 3$$

$$= 2(u_n - \ell)$$

$$= 2v_n.$$

De plus, $v_0 = u_0 - \ell = 7 - (-3) = 10$.

Ainsi, (v_n) est une suite géométrique de raison 2 et

$$\forall n \in \mathbb{N}, v_n = 10 \times 2^n.$$

* Retour sur u_n . D'après la définition,

$$u_n - \ell = v_n$$

 $u_n = v_n + \ell$
 $= 10 \times 2^n - 3 = 5 \times 2^{n+1} - 3.$

Chapitre IX - Suites numériques

II - Comportement des suites

À Savoir

Soit (u_n) une suite de nombres réels.

* La suite (u_n) est croissante si

$$\forall n \in \mathbb{N}, u_{n+1} - u_n \geqslant 0.$$

* La suite (u_n) est décroissante si

$$\forall n \in \mathbb{N}, u_{n+1} - u_n \leq 0.$$

Exemple 4 - Études de monotonie

* On définit $u_n = \sum_{k=1}^n \frac{1}{k}$ pour tout entier naturel n non nul. Soit $n \in \mathbb{N}^*$.

$$u_{n+1} - u_n = \sum_{k=1}^{n+1} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k}$$
$$= \sum_{k=1}^{n} \frac{1}{k} + \frac{1}{n+1} - \sum_{k=1}^{n} \frac{1}{k}$$
$$= \frac{1}{n+1} \ge 0.$$

Ainsi, la suite (u_n) est croissante.

* Soit $t \in]0,1[$. On définit $v_n = \ln(1+t^n)$ pour tout entier naturel n.

Soit $n \in \mathbb{N}$. Comme $t \in]0,1[$,

$$t\leqslant 1$$

$$t^n\times t\leqslant t^n\times 1, \text{ car } t^n\geqslant 0$$

$$1+t^{n+1}\leqslant 1+t^n$$

$$\ln(1+t^{n+1})\leqslant \ln(1+t^n), \text{ car ln est croissante}$$

$$v_{n+1}\leqslant v_n$$

$$v_{n+1}-v_n\leqslant 0.$$

Ainsi, la suite (v_n) est croissante.

Attention! Il convient de travailler avec un entier naturel n quelconque. Montrer que $u_1 - u_0 \ge 0$ ou $u_2 - u_1 \ge 0$ n'est d'aucune utilité pour étudier la monotonie d'une suite.

Exemple 5 - Représentations graphiques

Suite croissante.

Suite non monotone.

À Savoir

Soit (u_n) une suite de réels.

- * La suite (u_n) est majorée s'il existe un réel M tel que pour tout $n \in \mathbb{N}, u_n \leq M$.
- * La suite (u_n) est minorée s'il existe un réel m tel que pour tout $n \in \mathbb{N}$, $u_n \geqslant m$.

Exemple 6 - Étude de majorant

Soit $t \in]0,1[$. On définit $v_n = \ln(1+t^n)$ pour tout entier naturel n.

Soit $n \in \mathbb{N}$. Comme $t \in]0,1[$,

$$t \leqslant 1$$

 $t^n \leq 1^n$, car les puissances sont croissantes sur \mathbb{R}_+

$$1 + t^n \leqslant 2$$

 $ln(1+t^n) \leq ln(2)$, car ln est croissante

Chapitre IX - Suites numériques

Ainsi, la suite (v_n) est majorée par $\ln(2)$.

Attention! Le minorant ou le majorant \mathbf{ne} doit \mathbf{pas} dépendre de l'indice n.

Exemple 7 - Représentation graphique

À Savoir

La suite (u_n) est convergente s'il existe un réel ℓ tel que $\lim_{n\to+\infty}u_n=\ell$. Sinon, la suite (u_n) est dite divergente.

À Savoir

Limites classiques

Soit a > 0. Les limites suivantes sont à connaître :

$$\lim_{n \to +\infty} \frac{1}{n^a} = 0, \text{ si } a > 0$$

$$\lim_{n \to +\infty} n^a = +\infty, \text{ si } a > 0$$

$$\lim_{n \to +\infty} t^n = 0, \text{ si } t \in]-1,1[$$

$$\lim_{n \to +\infty} a^n = +\infty, \text{ si } a > 1$$

$$\lim_{n \to +\infty} e^n = +\infty$$

$$\lim_{n \to +\infty} \ln(n) = +\infty$$

$$\lim_{n \to +\infty} \frac{-4n^5 + 3n + 1}{n^2 + 2} = \lim_{n \to +\infty} \frac{-4n^5}{n^2} = \lim_{n \to +\infty} -4n^3 = -\infty$$

Les limites des polynômes ou des fractions rationnelles sont données par les limites des monômes de plus haut degré ou de leur quotient.

Exemple 8 - Représentation graphique

III - Opérations sur les limites

À Savoir

Si la case indique??, la limite est indéterminée. Il faut transformer l'expression (factorisation, expression conjuguée,...) pour pouvoir la déterminer.

* Multiplication par une constante.

$\lim_{n \to +\infty} u_n =$	ℓ	$-\infty$	$+\infty$	
$\lim_{n \to +\infty} k u_n =$	$k\ell$	$-\infty$	$+\infty$	$\sin k > 0$
	$k\ell$	$+\infty$	$-\infty$	$\sin k < 0$
	0	0	0	$\sin k = 0$

* **Addition** de limites. Dans le tableau est indiquée la valeur de $\lim_{n \to +\infty} (u_n + v_n)$.

$ o$ + ∞					
$\lim_{n \to +\infty} u_n \qquad \lim_{n \to +\infty} v_n$	ℓ_1	$-\infty$	$+\infty$		
ℓ_2	$\ell_1 + \ell_2$	$-\infty$	$+\infty$		
$-\infty$	$-\infty$	$-\infty$??		
$+\infty$	$+\infty$??	$+\infty$		

* Multiplication de limites. Dans le tableau est indiquée la valeur de $\lim_{n\to +\infty}(u_n\times v_n).$

$\lim_{n \to +\infty} u_n v_n$	$\ell_1 < 0$	$\ell_1 > 0$	0	$-\infty$	$+\infty$
$\ell_2 < 0$	$\ell_1\ell_2$	$\ell_1\ell_2$	0	$+\infty$	$-\infty$
$\ell_2 > 0$	$\ell_1\ell_2$	$\ell_1\ell_2$	0	$-\infty$	$+\infty$
0	0	0	0	??	??
$-\infty$	$+\infty$	$-\infty$??	$+\infty$	$-\infty$
$+\infty$	$-\infty$	$+\infty$??	$-\infty$	$+\infty$

* Quotient de limites. Dans le tableau est indiquée la valeur de $\lim_{n\to +\infty} \frac{u_n}{v_n}$.

$\lim_{\substack{n \to +\infty}} v_n$	$\ell_1 < 0$	$\ell_1 > 0$	0-	0+	$-\infty$	$+\infty$
$\ell_2 < 0$	$rac{\ell_1}{\ell_2}$	$rac{\ell_1}{\ell_2}$	$+\infty$	$-\infty$	0+	0-
$\ell_2 > 0$	$\frac{\ell_1}{\ell_2}$	$\frac{\ell_1}{\ell_2}$	$-\infty$	$+\infty$	0-	0+
0-	0+	0-	??	??	0+	0-
$-\infty$	$+\infty$	$-\infty$	$+\infty$	$-\infty$??	??
$+\infty$	$-\infty$	$+\infty$	$-\infty$	$+\infty$??	??

Exemple 9 - Opérations sur les limites

- * Comme $\lim_{n \to +\infty} \frac{1}{n} = 0$ et $\lim_{n \to +\infty} \ln(n) = +\infty$, alors $\lim_{n \to +\infty} \left(\frac{1}{n} 5\ln(n)\right) = -\infty$.
- * Comme $\lim_{n\to +\infty} n^2 = +\infty$ et $\lim_{n\to +\infty} \mathrm{e}^{-n} = 0$, alors $\lim_{n\to +\infty} \frac{\mathrm{e}^{-n}}{n^2} = 0$.
- * Comme $\lim_{n \to +\infty} n^3 = +\infty$ et $\lim_{n \to +\infty} n^5 = +\infty$, alors $\lim_{n \to +\infty} n^3 n^5$ est une forme indéterminée. On va utiliser une factorisation pour lever l'indétermination :

$$n^3 - n^5 = n^5 \left(\frac{1}{n^2} - 1\right).$$

Comme $\lim_{n\to+\infty}\frac{1}{n^2}=0$, alors $\lim_{n\to+\infty}\left(\frac{1}{n^2}-1\right)=-1$. De plus, $\lim_{n\to+\infty}n^5=+\infty$. Ainsi,

$$\lim_{n \to +\infty} n^5 \left(\frac{1}{n^2} - 1 \right) = -\infty.$$

Chapitre IX - Suites numériques ECT 2

À Savoir

Soit (u_n) et (v_n) deux suites de réels telles que, pour tout n entier naturel, $u_n \leqslant v_n$.

Si (u_n) et (v_n) convergent, alors

$$\lim_{n \to +\infty} u_n \leqslant \lim_{n \to +\infty} v_n.$$

À Savoir

Théorème d'encadrement.

Soit (u_n) , (v_n) et (w_n) trois suites de réels tells que pour tout nentier naturel.

$$v_n \leqslant u_n \leqslant w_n$$
.

* Si (v_n) et (w_n) convergent vers une même limite ℓ , alors (u_n) converge et

$$\lim_{n \to +\infty} u_n = \ell.$$

- * Si $\lim_{n \to +\infty} v_n = +\infty$, alors $\lim_{n \to +\infty} u_n = +\infty$. * Si $\lim_{n \to +\infty} w_n = -\infty$, alors $\lim_{n \to +\infty} u_n = -\infty$.

Exemple 10 - Théorème d'encadrement

* Soit (u_n) une suite de réels telle que pour tout n entier naturel non nul

$$\frac{n^5 + n^3 + 1}{2n(1+n^4)} \leqslant u_n \leqslant \frac{n^5 + n^4 + 1}{2n(1+n^4)}.$$

Comme la limite d'une fraction rationnelle est égale au rapport de ses monômes de plus hauts degrés,

$$\lim_{n \to +\infty} \frac{n^5 + n^3 + 1}{2n(1 + n^4)} = \frac{1}{2} \text{ et } \lim_{n \to +\infty} \frac{n^5 + n^4 + 1}{2n(1 + n^4)} = \frac{1}{2}.$$

D'après le théorème d'encadrement, (u_n) converge et $\lim_{n \to +\infty} u_n = \frac{1}{2}.$

* Soit (u_n) une suite de réels telle que pour tout n entier naturel.

$$\frac{n^4 + n^3 + 1}{n^2} \leqslant u_n.$$

Comme la limite d'une fraction rationnelle est égale au rapport de ses monômes de plus hauts degrés,

$$\lim_{n \to +\infty} \frac{n^4 + n^3 + 1}{n^2} = +\infty.$$

D'après le théorème d'encadrement, (u_n) converge et $\lim_{n \to +\infty} u_n = +\infty.$

IV - Existence de limites

À Savoir

Théorème de la limite monotone.

Soit (u_n) une suite de réels.

- * Si (u_n) est croissante et majorée, alors (u_n) converge.
- * Si (u_n) est décroissante et minorée, alors (u_n) converge.

Attention! Ce théorème ne fournit pas la valeur de la limite. Pour cela, il faudra se reporter à une des techniques précédentes.

Exemple 11 - Limite monotone

Soit (u_n) une suite telle que

$$u_0 = -2 \text{ et } \forall n \in \mathbb{N}, u_{n+1} = \frac{u_n}{2} + 3.$$

* Montrons par récurrence que (u_n) est majorée par 6. **Initialisation.** Pour $n=0, u_0=-2 \leqslant 6$ donc la propriété est vraie à l'ordre 0.

Hérédité. Soit $n \in \mathbb{N}$. Supposons que $u_n \leq 6$. Alors,

$$u_{n+1} = \frac{u_n}{2} + 3$$

$$\leqslant \frac{6}{2} + 3, \text{ d'après l'H.R.}$$

$$\leqslant 6.$$

Ainsi, la propriété est vraie à l'ordre n + 1.

Conclusion. La propriété est vraie à l'ordre 0 et est héréditaire, donc

$$\forall n \in \mathbb{N}, u_n \leq 6.$$

* Étudions la monotonie de (u_n) . Soit $n \in \mathbb{N}$.

$$u_{n+1} - u_n = \frac{u_n}{2} + 3 - u_n$$

$$= 3 - \frac{1}{2}u_n$$

$$\geqslant 3 - \frac{1}{2}6, \text{ car } u_n \leqslant 6$$

$$\geqslant 0.$$

Ainsi, la suite (u_n) est croissante.

- * La suite (u_n) est croissante et majorée par 6. D'après le théorème de la limite monotone, (u_n) converge.
- * Notons $\ell = \lim_{n \to +\infty} u_n$. Alors, $\lim_{n \to +\infty} u_{n+1} = \ell$ et en passant à la limite dans l'égalité,

$$u_{n+1} = \frac{u_n}{2} + 3$$
$$\ell = \frac{\ell}{2} + 3$$
$$\frac{\ell}{2} = 3$$
$$\ell = 6.$$

Ainsi, $\lim_{n\to+\infty} u_n = 6$.

ECT 2