- $\alpha(i,t)$ peut être utilisé pour inférer la distribution de prédiction $\mathbf{P}(H_{t+k}|s_{1:t})$
- On utilise également un programme dynamique
 - on définit $\pi(i,k) = P(H_{t+k} = i | S_{1:t} = s_{1:t})$
 - on note la récursion

$$\pi(i,k+1) = P(H_{t+k+1} = i | S_{1:t} = S_{1:t})$$

$$= \sum_{j} P(H_{t+k+1} = i, H_{t+k} = j | S_{1:t} = S_{1:t})$$

$$= \sum_{j} P(H_{t+k+1} = i | H_{t+k} = j) P(H_{t+k} = j | S_{1:t} = S_{1:t})$$

$$= \sum_{j} P(H_{t+k+1} = i | H_{t+k} = j) \pi(j,k)$$

• on a les valeurs initiales $\pi(i,0) = P(H_t = i \mid s_{1:t}) = \alpha(i,t) / \sum_i \alpha(j,t) \quad \forall i$

On pourrait également faire une prédiction de S_{t+k}

$$P(S_{t+k} = s | S_{1:t} = s_{1:t}) = \sum_{j} P(S_{t+k} = s | H_{t+k} = j) P(H_{t+k} = j | S_{1:t} = s_{1:t})$$

$$= \sum_{j} P(S_{t+k} = s | H_{t+k} = j) \pi(j,k)$$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - on souhaite calculer la distribution de prédiction $P(H_6=0 \mid S_1=0, S_2=0, S_3=0, S_4=1)$

iviodele d'observation			
	H _t =0	H _t =1	
$P(S_t=0 \mid H_t)$	0.9	0.2	

0.1

0.8

 $P(S_t=1 \mid H_t)$

Middele de transition		
	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.6
$P(H_t=1 \mid H_{t-1})$	0.7	0.4

Madàla da transition

<u>Distribution initiale</u>				
$H_1=0$ $H_1=1$				
$P(H_1)$	0.5	0.5		

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - on souhaite calculer la distribution de prédiction $P(H_6=0 \mid S_1=0,S_2=0,S_3=0,S_4=1)$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.6
$P(H_t=1 \mid H_{t-1})$	0.7	0.4

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

ב. ב	it	•••	4
α(Ξ,	0		0.00439
•	1		0.05769

• initialisation: $\pi(0,0) = \alpha(0,4) / (\alpha(0,4) + \alpha(1,4))$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - on souhaite calculer la distribution de prédiction $P(H_6=0 \mid S_1=0,S_2=0,S_3=0,S_4=1)$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.6
$P(H_t=1 \mid H_{t-1})$	0.7	0.4

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

<u>.</u>	it	 4
ב'(ב)	0	 0.00439
	1	 0.05769

→	ik	0	1	2
Į, į	0	0.07071		
	1			

• initialisation: $\pi(0,0) = 0.00439 / (0.00439 + 0.05769) = 0.07071$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - on souhaite calculer la distribution de prédiction $P(H_6=0 \mid S_1=0, S_2=0, S_3=0, S_4=1)$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.6
$P(H_t=1 \mid H_{t-1})$	0.7	0.4

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

<u>,</u>	it	•••	4
) - -	0		0.00439
	1		0.05769

→	i k	0	1	2
τ(i,k)	0	0.07071		
	1	0.92929		

• initialisation: $\pi(1,0) = 0.05769 / (0.00439 + 0.05769) = 0.92929$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - on souhaite calculer la distribution de prédiction $P(H_6=0 \mid S_1=0, S_2=0, S_3=0, S_4=1)$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.6
$P(H_t=1 \mid H_{t-1})$	0.7	0.4

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

·	it	•••	4
) - -	0		0.00439
	1		0.05769

• récursion (k=0): $\pi(i,k+1) = \sum_{j} P(H_{t+k+1} = i | H_{t+k} = j) \pi(j,k)$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - on souhaite calculer la distribution de prédiction $P(H_6=0 \mid S_1=0,S_2=0,S_3=0,S_4=1)$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.6
$P(H_t=1 \mid H_{t-1})$	0.7	0.4

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	it	•••	4
α(<u>:</u> ,1	0		0.00439
•	1	•••	0.05769

• récursion (k=0): $\pi(0, 1) = P(H_5 = 0 | H_4 = 0) \pi(0,0) + P(H_5 = 0 | H_4 = 1) \pi(1,0)$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - on souhaite calculer la distribution de prédiction $P(H_6=0 \mid S_1=0,S_2=0,S_3=0,S_4=1)$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.6
$P(H_t=1 \mid H_{t-1})$	0.7	0.4

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

<u>.</u>	it	•••	4
), 	0		0.00439
	1		0.05769

⊋ '	i k	0	1	2
آ:) ا	0	0.07071	0.57879	
	1	0.92929		

• récursion (k=0): $\pi(0, 1) = 0.3 \times 0.07071 + 0.6 \times 0.92929 = 0.57879$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - on souhaite calculer la distribution de prédiction $P(H_6=0 \mid S_1=0, S_2=0, S_3=0, S_4=1)$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.6
$P(H_t=1 \mid H_{t-1})$	0.7	0.4

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

<u>.</u>	it	•••	4
), 	0		0.00439
	1		0.05769

<u>څ</u> ,	i k	0	1	2
τ(i,k)	0	0.07071	0.57879	
	1	0.92929 —	\rightarrow	

• récursion (k=0): $\pi(1, 1) = P(H_5 = 1 | H_4 = 0) \pi(0,0) + P(H_5 = 1 | H_4 = 1) \pi(1,0)$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - on souhaite calculer la distribution de prédiction $P(H_6=0 \mid S_1=0,S_2=0,S_3=0,S_4=1)$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.6
$P(H_t=1 \mid H_{t-1})$	0.7	0.4

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

<u>.</u>	it	 4
ב'(ב) אלבו	0	 0.00439
	1	 0.05769

⊋	i k	0	1	2
رة. ار:	0	0.07071	0.57879	
	1	0.92929	0.42121	

• récursion (k=0): $\pi(0, 1) = 0.7 \times 0.07071 + 0.4 \times 0.92929 = 0.42121$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - on souhaite calculer la distribution de prédiction $P(H_6=0 \mid S_1=0,S_2=0,S_3=0,S_4=1)$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.6
$P(H_t=1 \mid H_{t-1})$	0.7	0.4

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

,t,	it	•••	4
α(i,1	0		0.00439
	1		0.05769

	i k	0	1	2
τ(i,k)	0	0.07071	0.57879	0.42637
	1	0.92929	0.42121	0.57363

on continue d'appliquer la récursion jusqu'à la fin (k=2)...

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - on souhaite calculer la distribution de prédiction $P(H_6=0 \mid S_1=0,S_2=0,S_3=0,S_4=1)$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.6
$P(H_t=1 \mid H_{t-1})$	0.7	0.4

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

<u>.</u>	it	 4
α(Ε,	0	 0.00439
	1	 0.05769

<u>ئ</u>	i k	0	1	2
τ(i,k)	0	0.07071	0.57879	0.42637
	1	0.92929	0.42121	0.57363

$$P(H_6=0 \mid S_1=0, S_2=0, S_3=0, S_4=1) = \pi(0,2) = 0.42637$$