

innovations in workflows

P. David Mozley, MD

objectives

- to describe new workflows for implementing volumetric image analysis
- to acknowledge the costs, challenges, and limitations of these new workflows
- to outline our future steps

Problem Statement: General

estimated costs \$0.8 - 1.7BB

Problem Statement: Specific

 paucity of evidence that quantification adds value

hypothesis

- better quantification techniques will add value
 - improve patient care
 - decrease number of subjects per trial
 - shorten time-on-study per subject
 - reduce development times
 - speed delivery of new treatments
- problem: too much time, trouble, & treasure

current state of SOPs

- site investigators measure LD
 - selection of 5 target lesions max
 - make major medical decisions in real time
- backtrack
 - transfer images to central analysis lab
 - lab make new sets of measurements
- problems
 - discordance
 - right-censoring

old workflow

- first run standard RECIST drill
- then selection of target lesions for volume measurement by radiologists
- semi-automatic edge detection algorithm
- manual revision of edges
- certification of final boundaries
- automatic computation
 - 3D tumor volume [mm³]
 - 1D longest diameter = greatest distance [mm] between any two in-plane pixels on any slice in the stack of tomographic images representing the target

new workflow: stage 1

selection of 5 target lesions by radiologists

◆ NEW:

- measurement of <u>all</u> tumors by trained technologists
- then certification of status by radiologists
 - confirm appropriate selection of target lesions, else delete
 - confirm boundaries are correct, else revise

consequences of stage 1 changes

- minimizes selection bias
- maximizes sampling
- more efficient division of labor
- reduces total workflow time
 - "click & grow" is often faster than manual calipers
 - expert review is no longer rate limiting
 - decreases time & costs of expert review

consequences of stage 1 changes

- measuring whole tumor volume first allows automatic generation of uni-dimensional LDs and WHO cross products
 - "auto-LDs" are already acknowledged as the ideal future state for measuring LDs
 - cross products are still the standard in lymphomas
- thus comparisons are "free of charge"

problems not solved

- site versus central discordance
- right-censoring

workflow innovation: stage 2

- deploy a single, free standing image analysis tool at sites
- design specifications include
 - rigidly constrained, guided workflow
 - quantitative assessment tools
 - database of quantitative lesion measurements
 - electronic case report form

workflow details: stage 2

- image acquisition as per QIBA proffered UPICT
- standard diagnostic reads as per local SOP
 - depend on site radiologists to detect new lesions
 - collaborate on assessment of non-target lesions
- image transfer to laptop
 - -any method allowed, e.g., CD, ftp, metor. IMAGING

workflow details: stage 2

- select target lesions that are either obvious or have been identified by a local expert
 - can be based on verbal descriptions in the standard radiology report or face-to-face collaboration with local radiologists

target lesion measurements

- "smart read" strategy
 - start at time of first follow up scan
 - if only baseline scans, and no follow up scans, then don't bother
 - if new lesions emerge, then volume
 measurements at that time-point are obviated
 - if progression of non-target lesions seems unequivocal, then volume measurements are not necessary

target lesion measurements

- "one click" on a target lesion allows the software to automatically place boundaries on all slices in the 3D stack and extract measurements
- then scrolling through the stack of images allows for deeper understanding AND error checking
 - manually "nudge" & "cut" as indicated, but
 - over-analyzing the images is not encouraged for the sake of reproducibility

target lesion follow-up

- key feature = constrained workflow
- slice-by-slice check for potential inconsistencies prior to locking

Note: tool automatically positions the viewer on the region of the target lesions on follow up time points

case reports

automatic reports

DECICE Outside

- general information about the patient, clinicians and examinations
- snapshots of target lesions

- quantification
 - standard RECIST SOD
 - volumes
 - attenuation...
- detailed results for each confirmed lesion

	Target	Non target
Axial LD sum (mm)	74.1% 40.8→71.0	0.0% 0.0→0.0
Volume sum (cm3)	259.2% 2.4→8.5	0.0% 0.0→0.0
Number of Lesions (prior)	4	0
Disappeared Lesions	0	0
New Lesions	0	0

expect some failures, like RECIST

When?

- tumor morphology becomes overly complex
- tumor masses becomes highly heterogeneous
- tumors invade other organs or compartments,
 e.g., penetrate the diaphragm, chest wall, etc.

Where?

- areas of co-morbidity, e.g., pleural effusions, atelectasis, etc.
- tissues with similar contrast, e.g., bowel wall

coping with failures

- treat masses as non-target lesions
- over classify findings as non-evaluable
- consultation with site radiologists
- practice medicine as per local standard of care

making treatment decisions

- adverse events: as per SOP
- clinical signs of progression: as per SOP
- new lesions: as per SOP (rely on local radiology reads as always)
- non-target / non-measurable disease: as per RECIST 1.1 (unequivocal signs of progression)

making treatment decisions

- increases in volume:
 - check the boundaries on every slice; look at the longest diameters, cross products, and areas for those slices
 - be conservative; recall that small changes in small masses are often artifacts from differences in image acquisition parameters
 - when in doubt, consider allowing patients to remain on trial one more round

verification procedures for sites

- i-CRO uses their own experts & image analysis tools to quantify volumes
- Merck Imaging tries to reproduce site results with site software
- Merck compares all results
- feedback loop to sites includes both i-CRO
 & Merck assessments

qualification procedures: stage 2

 nothing new: relationships to health outcomes as per SOP

Conclusions

- new workflow at i-CRO
 - now nearly universal: all phases
 - starting with whole tumor volume is faster, cheaper, better
 - minimizes target lesion selection bias
- new workflow at sites could
 - reduce discordance
 - decrease censoring and thus accelerate trials
 - improve individual patient care

¿ Questions?

- P. David Mozley, M.D.
- ◆ mozley@merck.com
- ◆ (+1) 215 353 8958 (mobile)

