Order of convergence

$$\lambda = |g'(x)|, \quad \lambda = 0 \rightarrow \text{Super Linear Convergent}$$

$$0 < \lambda < 1 \rightarrow \text{Linear Convergent}$$

$$\lambda \ge 1 \rightarrow \text{Divergent}$$

-> Root Finding Algorithm -> Herodive Approach

 \rightarrow Super Linear Convergent (7=0)

We keep iterating until we are reaching the root or reaching close enough ()

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

Example: Given, $f(x) = x^2 - 2x e^{-x} + e^{-2x}$, fixing point $x_0 = 1$ and Error bound = 0.01. Find the root of f(x) using Newton's MethodSolution:

$$f(x) = x^{2} - 2x e^{-x} + e^{-2x}$$

$$f'(x) = 2x - \left[2e^{-x} + 2x e^{-x} (-1)\right] + e^{-2x} (-2)$$

$$= 2x - 2e^{-x} + 2x e^{-x} - 2e^{-2x}$$

k	×μ	$f(x_k)$	f(xk) < Error Bound	$\int'(x_k)$	$\chi^{K+1} = \chi^{K-} \frac{f(\chi^{K})}{f(\chi^{K})}$
0	1	0.3995	No	1.729	x, = 0.7689
1	0-7689	0.0933	No	0.8939	2 = 0.6645
2	0-6645	0-0 225	No	0.4542	x3 = 0.6149
3	0.6149	0-005506	Yes		
	\				
	Root x*				
	' χ [*]	ı	•	ļ '	ı

$$x^* = 0.6149$$

Example: $f(x) = \frac{1}{x} - 0.5$ [x* is at 2], Given, initial point $x_0 = 1$, find the root of f(x) with relative error/at each distribution until less than 0.01. $f'(x) = (-1)x^{-2} = -\frac{1}{x^2}$

k	χ _κ	$f(x_k)$	f'(xk)	<i>a</i>	(xk)	Relative Error 1xk4 - xk1
0	1	0.5	-	1.5		0.5
1	1.5	0.1667	-0.4444	1.875		0 · 375
2	1.875	0.0333	-0.284	1.99225		0.11725
3	1.99225	0.00194	-0.35	2.00		0.00775
4	3.00		-0.25	2.00		O iteration stop.
ı	' ~ 00 '	O				7 Rost

= 1.99225

* * Important **

Prove that newton raphson method is a super linear convergent.

$$\mathcal{A}_{k+1} = x - \frac{f(x)}{f'(x)}$$

$$\mathcal{A}(x) = x - \frac{f(x)}{f'(x)}$$

We know,

Convengence Rate
$$\lambda = \left| \frac{g'(x)}{g'(x)} \right| \frac{d}{dx} \frac{u}{v} = \frac{vu'-uv'}{v^2}$$

$$= \left| \frac{d}{dx} \left(x - \frac{f'(x)}{f'(x)} \right) \right| \frac{d}{dx} \frac{v}{v} = \frac{vu'-uv'}{v^2}$$

$$= \left| 1 - \frac{\left(f'(x) f'(x) - f(x) f''(x) \right)}{\left[f'(x) \right]^2} \right|$$

$$= \left| \frac{f'(x) f''(x)}{\left[f'(x) \right]^2} \right|$$

$$= \left| \frac{f(x) f''(x)}{\left[f'(x) \right]^2} \right|$$

$$= \left| \frac{f(x) f''(x)}{\left[f'(x) \right]^2} \right|$$

$$= \left| \frac{f(x) f''(x)}{\left[f'(x) \right]^2} \right|$$

$$\lambda = \left| \beta'(x_*) \right| = \left| \frac{f(x_*) f''(x_*)}{\left[f'(x_*) \right]_{\sigma}} \right|$$

$$= \left| \frac{0 * f'(0)^2}{(f'(0))^2} \right|$$

. Newton Raphson method is super linear convergent.

[Proved]

Advantage:

Since it is super linear convergent, this approach faster.

Dis advantages:

is much

formula,
$$\chi_{k+1} = \chi_k - \frac{f(\chi_k)}{f'(\chi_k)} \leftarrow 0$$

⇒ if the iteration leads

to a turning point (f(in)=0)

then we can't find

the root as ×k+1

becomes infinity,

If the initial point is chosen such that it lies near a turning point, the iteration may enter a loop and making it impossible to find the root.

Newton's method doesn't work if there is a turning point between x_k and x_{k+1} .

$$f(x) = x^3 - 2x^2 + 2$$

Turning point,
$$f'(x) = 3x^2 - 2 = 0$$

 $\Rightarrow x^2 = \frac{2}{3}$
 $\Rightarrow x = \sqrt{\frac{2}{3}} = \pm 0.816$

We need to make sure to 2 -0.816