Representation homology and Lie algebra cohomology of nilpotent algebras

Guanyu Li, Cornell

Gone fishing, March 7th, 2025

A classical important fact

Representations can be parameterized.

A classical important fact

Representations can be parameterized.

- Given a discrete group $\pi_1(X)$, one has the representation scheme parameterizing all $\pi_1(X)$ -representations.
- This representation scheme also parametrizes all local systems over X provided X is a CW complex.

A classical important fact

Representations can be parameterized.

- Given a discrete group $\pi_1(X)$, one has the representation scheme parameterizing all $\pi_1(X)$ -representations.
- This representation scheme also parametrizes all local systems over X provided X is a CW complex.
- Similarly for Lie algebra representations.

Space parameterizing Lie algebra representations

Let k be a field. There is no harm to assume $k = \mathbb{C}$. Let \mathfrak{g} be a finite dimensional Lie algebra over k.

Space parameterizing Lie algebra representations

Let k be a field. There is no harm to assume $k = \mathbb{C}$. Let \mathfrak{g} be a finite dimensional Lie algebra over k.

Definition-Lemma

Given a finite dimensional Lie algebra $\mathfrak g$ and a Lie algebra $\mathfrak a$, the functor $\operatorname{Rep}_{\mathfrak g}(\mathfrak a):\operatorname{\mathbf{CommAlg}}_k\to\operatorname{\mathbf{Set}}$

$$A \mapsto \operatorname{Hom}_{\mathbf{Lie}}(\mathfrak{a}, \mathfrak{g}(A))$$

is representable, where $\mathfrak{g}(A):=\mathfrak{g}\otimes A$ is "the Lie algebra with coefficient A", with Lie bracket

$$[\xi \otimes a, \eta \otimes b] := [\xi, \eta] \otimes (ab).$$

The representative is denoted by $(\mathfrak{a})_{\mathfrak{g}}$. The space $\operatorname{Spec}\ (\mathfrak{a})_{\mathfrak{g}}$ is called **representation scheme**.

Examples

Let $\mathfrak a$ be the two dimensional abelian Lie algebra, and let $\mathfrak g=\mathfrak g \mathfrak l_2.$ Then

$$(\mathfrak{a})_{\mathfrak{g}} \cong \frac{k[x_{1,1}, x_{1,2}, x_{2,1}, x_{2,2}, y_{1,1}, y_{1,2}, y_{2,1}, y_{2,2}]}{[X, Y] = 0}.$$
 (1)

The space $\operatorname{Spec}(\mathfrak{a})_{\mathfrak{g}}$ can be interpreted as all pairs of matrices $(X,Y)\in\mathfrak{gl}_2$ s.t. [X,Y]=0. This example is the coordinate ring of (additive) commuting scheme of \mathfrak{gl}_2 .

Examples

Let $\mathfrak a$ be the two dimensional abelian Lie algebra, and let $\mathfrak g=\mathfrak g \mathfrak l_2.$ Then

$$(\mathfrak{a})_{\mathfrak{g}} \cong \frac{k[x_{1,1}, x_{1,2}, x_{2,1}, x_{2,2}, y_{1,1}, y_{1,2}, y_{2,1}, y_{2,2}]}{[X, Y] = 0}.$$
 (1)

The space $\operatorname{Spec}(\mathfrak{a})_{\mathfrak{g}}$ can be interpreted as all pairs of matrices $(X,Y)\in \mathfrak{gl}_2$ s.t. [X,Y]=0. This example is the coordinate ring of (additive) commuting scheme of \mathfrak{gl}_2 .

This gives a functor

$$(-)_{\mathfrak{g}}: \mathbf{Lie} \to \mathbf{CommAlg}_k,$$

which is the left adjunction of $\mathbf{Lie} \leftarrow \mathbf{CommAlg}_k : \mathfrak{g}(-)$.

Character scheme

There is another scheme called the character scheme defined by "the orbits of the adjoint action". This corresponds to the commutative ring inclusion

$$((\mathfrak{a})_{\mathfrak{g}})^{\mathrm{ad}\ \mathfrak{g}} \hookrightarrow (\mathfrak{a})_{\mathfrak{g}}$$

Character scheme

There is another scheme called the character scheme defined by "the orbits of the adjoint action". This corresponds to the commutative ring inclusion

$$((\mathfrak{a})_{\mathfrak{g}})^{\mathrm{ad}\ \mathfrak{g}} \hookrightarrow (\mathfrak{a})_{\mathfrak{g}}$$

It is known that "there is a symplectic structure on the *smooth* locus of the character scheme".

Problems

- The representation / character schemes are generally very singular. This makes it very difficult to study them.
- ② If the Lie algebra (or the discrete group) comes from **Top**, we lose all higher information of the topological space.

Problems

- The representation / character schemes are generally very singular. This makes it very difficult to study them.
- ② If the Lie algebra (or the discrete group) comes from **Top**, we lose all higher information of the topological space.

Many people (a very incomplete list consists of Kontsevich, Kapranov, Töen, ...) suggest that we should consider the derived version of representation / character schemes.

Deriving the representation schemes

Berest-Felder-Patotski-Ramadoss-Willwacher, [BFP+17]

Given a finite dimensional Lie algebra \mathfrak{g} , the adjunction

$$(-)_{\mathfrak{g}}:\mathbf{DGLA}_{k}\leftrightarrows\mathbf{DGCommAlg}_{k}:\mathfrak{g}(-)$$

is an Quillen pair, so $(-)_{\mathfrak{g}}$ admits a (total) left derived functor $\mathbb{L}(-)_{\mathfrak{g}}$, which could be computed by $(Q\mathfrak{a})_{\mathfrak{g}}$ where $Q\mathfrak{a}$ is a cofibrant replacement of \mathfrak{a} .

Deriving the representation schemes

Berest-Felder-Patotski-Ramadoss-Willwacher, [BFP+17]

Given a finite dimensional Lie algebra \mathfrak{g} , the adjunction

$$(-)_{\mathfrak{g}}:\mathbf{DGLA}_{k}\leftrightarrows\mathbf{DGCommAlg}_{k}:\mathfrak{g}(-)$$

is an Quillen pair, so $(-)_{\mathfrak{g}}$ admits a (total) left derived functor $\mathbb{L}(-)_{\mathfrak{g}}$, which could be computed by $(Q\mathfrak{a})_{\mathfrak{g}}$ where $Q\mathfrak{a}$ is a cofibrant replacement of \mathfrak{a} .

Then the homology of

$$\mathbb{L}(\mathfrak{a})_{\mathfrak{g}} \in \mathrm{Ho}(\mathbf{DGCommAlg}_k)$$

is called the **representation homology** of \mathfrak{a} with coefficient \mathfrak{g} , denoted by $HR_*(\mathfrak{a},\mathfrak{g})$.

Deriving the character schemes

Berest-Felder-Patotski-Ramadoss-Willwacher, [BFP+17]

Given a finite dimensional Lie algebra \mathfrak{g} , the functor

$$(-)^{\mathfrak{g}}_{\mathfrak{g}}:\mathbf{DGLA}_k o \mathbf{DGCommAlg}_k$$

admits a (total) left derived functor $\mathbb{L}(-)^{\mathfrak{g}}_{\mathfrak{g}}.$

Deriving the character schemes

Berest-Felder-Patotski-Ramadoss-Willwacher, [BFP+17]

Given a finite dimensional Lie algebra \mathfrak{g} , the functor

$$(-)^{\mathfrak{g}}_{\mathfrak{g}}:\mathbf{DGLA}_k\to\mathbf{DGCommAlg}_k$$

admits a (total) left derived functor $\mathbb{L}(-)^{\mathfrak{g}}_{\mathfrak{g}}$.

Then the homology of

$$\mathbb{L}(\mathfrak{a})^{\mathfrak{g}}_{\mathfrak{g}} \in \mathrm{Ho}(\mathbf{DGCommAlg}_k)$$

is called the **character homology** of \mathfrak{a} with coefficient \mathfrak{g} , denoted by $HR_*(\mathfrak{a},\mathfrak{g})^{\mathfrak{g}}$.

Why representation / character homology

Some reasons

 The symplectic structure on a smooth locus of character scheme comes from the (shifted) symplectic structure on the derived character scheme.

Why representation / character homology

Some reasons

- The symplectic structure on a smooth locus of character scheme comes from the (shifted) symplectic structure on the derived character scheme.
- The Harish-Chandra homomorphism gives an isomorphism

$$Z(\mathfrak{g}) \simeq \operatorname{Sym}[\mathfrak{h}^*]^W$$
.

In the derived setting, there is a similar derived Harish-Chandra homomorphism

$$HR_*(\mathfrak{a},\mathfrak{g})^{\mathfrak{g}} \to \operatorname{Sym}[\mathfrak{h} \oplus \mathfrak{h} \oplus \mathfrak{h}^*[1]]^W$$

which is conjectured to be true where $\mathfrak a$ is the two dimensional abelian Lie algebra [BFP⁺17].

Why representation / character homology

Some reasons

- The symplectic structure on a smooth locus of character scheme comes from the (shifted) symplectic structure on the derived character scheme.
- The Harish-Chandra homomorphism gives an isomorphism

$$Z(\mathfrak{g}) \simeq \operatorname{Sym}[\mathfrak{h}^*]^W$$
.

In the derived setting, there is a similar derived Harish-Chandra homomorphism

$$HR_*(\mathfrak{a},\mathfrak{g})^{\mathfrak{g}} \to \operatorname{Sym}[\mathfrak{h} \oplus \mathfrak{h} \oplus \mathfrak{h}^*[1]]^W$$

which is conjectured to be true where $\mathfrak a$ is the two dimensional abelian Lie algebra [BFP $^+$ 17].

• (Time permitting) Strong Macdonald conjecture.

Why representation homology of nilpotent coefficient

Why representation homology of nilpotent coefficient

Some reasons

 Nilpotent coefficient representation homology computation turns to be experimentally computationally easier than the semisimple cases.

Examples

Let \mathfrak{n}_m be the maximal nilpotent subalgebra of \mathfrak{gl}_m and \mathfrak{a} be the abelian Lie algebra of dimension 2. Then the following are equivalent [L, analogue of [Li24]]:

• The representation homology $HR_i(\mathfrak{a}, \mathfrak{n}_m)$ vanishes in dimension greater or equal than m, namely

$$HR_i(\mathfrak{a},\mathfrak{n}_m)=0 \quad \forall i\geq m.$$

There is an isomorphism of graded algebras

$$HR_*(\mathfrak{a},\mathfrak{n}_m) \cong HR_0(\mathfrak{a},\mathfrak{n}_m) \otimes \operatorname{Sym}_k(T_1,\cdots,T_{m-1})$$
 (2)

where Sym_k is the graded symmetric algebra over k and T_i is of homological degree 1.

3 The commuting scheme $C(\mathfrak{n}_m)$ is a complete intersection of codimension $\frac{(n-2)(n-1)}{2}$.

Why representation homology of nilpotent coefficient

Some reasons

- Nilpotent coefficient representation homology computation turns to be experimentally easier than the semisimple cases.
- \bullet For a semisimple Lie algebra $\mathfrak g$ over $\mathbb C,$ we have the triangular decomposition

$$\mathfrak{g}=\mathfrak{n}_-\oplus\mathfrak{h}\oplus\mathfrak{n}_+.$$

Why representation homology of nilpotent coefficient

Some reasons

- Nilpotent coefficient representation homology computation turns to be experimentally easier than the semisimple cases.
- \bullet For a semisimple Lie algebra $\mathfrak g$ over $\mathbb C,$ we have the triangular decomposition

$$\mathfrak{g}=\mathfrak{n}_-\oplus\mathfrak{h}\oplus\mathfrak{n}_+.$$

We have seen $HR_*(\mathfrak{a},\mathfrak{g})^{\mathfrak{g}}$ and $HR_*(\mathfrak{a},\mathfrak{h})^W$ are (conjecturally) related. It would be nice if we can say more things from the triangular decomposition.

Lie (co)homology

Recall

Given a Lie algebra $\mathfrak g$ over k and a $\mathfrak g$ -module M. The complex $C_*(\mathfrak g;M):=(M\otimes_k\bigwedge_{i=1}^n\mathfrak g,\delta_n)$ called the Chavelley-Eilenberg chain complex computes the Lie homology

$$H_*(\mathfrak{g}; M)$$
.

Dually, the cochain complex $C^*(\mathfrak{g}; M) := (\operatorname{Hom}_k(\bigwedge_{i=1}^n \mathfrak{g}, M), d^n)$ computes the Lie cohomology

$$\mathrm{H}^*(\mathfrak{g};M).$$

Why Lie (co)homology

Why Lie (co)homology

Theorem (Chavelley)

Let $\mathfrak g$ be the Lie algebra of the compact Lie group G (so $\mathfrak g$ is semisimple). Then there is a canonical isomorphism of groups

$$\mathrm{H}^*_{\mathrm{CE}}(\mathfrak{g};\mathbb{R})\cong\mathrm{H}^*_{\mathrm{dR}}(G;\mathbb{R}).$$

Why Lie (co)homology

Theorem (Chavelley)

Let $\mathfrak g$ be the Lie algebra of the compact Lie group G (so $\mathfrak g$ is semisimple). Then there is a canonical isomorphism of groups

$$\mathrm{H}^*_{\mathrm{CE}}(\mathfrak{g};\mathbb{R})\cong\mathrm{H}^*_{\mathrm{dR}}(G;\mathbb{R}).$$

Theorem (Bott-Kostant)

Let $\mathfrak n$ be the maximal nilpotent Lie algebra of a complex semisimple Lie algebra $\mathfrak g$. Let G be the complex Lie group of $\mathfrak g$. Then there is an isomorphism of groups

$$\mathrm{H}^*_{\mathrm{CE}}(\mathfrak{n};\mathbb{C}) \cong \mathrm{H}^{2*}_{\mathrm{Sing}}(\mathit{G/B};\mathbb{C})$$

where B is the Borel subgroup of G.

Result

Let $\mathfrak g$ be a complex semisimple Lie algebra of rank r, with triangular decomposition

$$\mathfrak{g}=\mathfrak{h}\oplus\sum_{lpha\in R}\mathfrak{g}^lpha$$

and $\mathfrak{g}^{\alpha} = \{x \in \mathfrak{g} \mid [H,x] = \alpha(H)x, \forall H \in \mathfrak{h}\}$, where R is its root system and W is its Weyl group. By *Bott-Kostant theorem*, a basis of $H^1(\mathfrak{n};k)$ corresponds to the elements in W of length 1. There is a characteristic pairing map

$$\chi_{\mathfrak{a}}(\mathfrak{n})_{2,1}: \mathrm{H}_{2}(\mathfrak{a}; k) \otimes \mathrm{H}^{1}(\mathfrak{n}; k) \to \mathrm{HR}_{1}(\mathfrak{a}, \mathfrak{n})$$
 (3)

giving nontrivial distinct homology classes $T_1, \dots, T_r \in \mathrm{HR}_1(\mathfrak{a}, \mathfrak{n})$.

Let ${\mathfrak g}$ be a semisimple Lie algebra and let ${\mathfrak a}$ be the 2-dimensional abelian Lie algebra.

Let ${\mathfrak g}$ be a semisimple Lie algebra and let ${\mathfrak a}$ be the 2-dimensional abelian Lie algebra.

Construction of the pairing map

- We have the cobar-bar adjunction $\Omega_{\text{Comm}} : \mathbf{DGCC}_{k/k} \hookrightarrow \mathbf{DGLA}_k : \mathcal{C}.$
- **②** We know that $C(\mathfrak{a})$ is the Chavelley-Eilenberg complex.

Let ${\mathfrak g}$ be a semisimple Lie algebra and let ${\mathfrak a}$ be the 2-dimensional abelian Lie algebra.

Construction of the pairing map

- We have the cobar-bar adjunction $\Omega_{\text{Comm}} : \mathbf{DGCC}_{k/k} \leftrightarrows \mathbf{DGLA}_k : \mathcal{C}.$
- f 2 We know that $C(\mathfrak{a})$ is the Chavelley-Eilenberg complex.
- The semifree Lie algebra $L := \Omega_{\texttt{Comm}}(\mathcal{C}(\mathfrak{a}))$ is a resolution of \mathfrak{a} . Hence $L_{\mathfrak{g}}$ computes the representation homology $\mathtt{HR}_*(\mathfrak{a},\mathfrak{g})$.

Let ${\mathfrak g}$ be a semisimple Lie algebra and let ${\mathfrak a}$ be the 2-dimensional abelian Lie algebra.

Construction of the pairing map

- We have the cobar-bar adjunction $\Omega_{\text{Comm}} : \mathbf{DGCC}_{k/k} \hookrightarrow \mathbf{DGLA}_k : \mathcal{C}.$
- 2 We know that $C(\mathfrak{a})$ is the Chavelley-Eilenberg complex.
- The semifree Lie algebra $L := \Omega_{\texttt{Comm}}(\mathcal{C}(\mathfrak{a}))$ is a resolution of \mathfrak{a} . Hence $L_{\mathfrak{g}}$ computes the representation homology $\mathtt{HR}_*(\mathfrak{a},\mathfrak{g})$.
- **1** There is a universal representation $\mathfrak{a} \to \mathfrak{g}(\mathfrak{a}_\mathfrak{g})$ lifted to the derived universal representation

$$\pi:L\to\mathfrak{g}(L_{\mathfrak{g}})$$

in $\mathbf{DGCC}_{k/k}$.

1 Derived universal representation $\pi: L \to \mathfrak{g}(L_{\mathfrak{g}})$.

- **1** Derived universal representation $\pi: L \to \mathfrak{g}(L_{\mathfrak{g}})$.
- Under the cobar-bar adjunction, it corresponds to

$$au: \mathcal{C}(\mathfrak{a}) o \mathcal{C}(\mathfrak{g}(L_{\mathfrak{g}})) = \mathcal{C}(\mathfrak{g}) \otimes L_{\mathfrak{g}}.$$

- **1** Derived universal representation $\pi: L \to \mathfrak{g}(L_{\mathfrak{g}})$.
- Under the cobar-bar adjunction, it corresponds to

$$au: \mathcal{C}(\mathfrak{a}) o \mathcal{C}(\mathfrak{g}(L_{\mathfrak{g}})) = \mathcal{C}(\mathfrak{g}) \otimes L_{\mathfrak{g}}.$$

At the homology level, we have

$$H_n(\mathfrak{a};k) \to \bigoplus_{p+q=n} H_p(\mathfrak{a},\mathfrak{g}) \otimes H_q(\mathfrak{g};k).$$

- **1** Derived universal representation $\pi: L \to \mathfrak{g}(L_{\mathfrak{g}})$.
- Under the cobar-bar adjunction, it corresponds to

$$\tau: \mathcal{C}(\mathfrak{a}) \to \mathcal{C}(\mathfrak{g}(L_{\mathfrak{g}})) = \mathcal{C}(\mathfrak{g}) \otimes L_{\mathfrak{g}}.$$

At the homology level, we have

$$\mathrm{H}_n(\mathfrak{a};k) o igoplus_{p+q=n} \mathrm{H}_p(\mathfrak{a},\mathfrak{g}) \otimes \mathrm{H}_q(\mathfrak{g};k).$$

O Dualizing by the cohomology, we have

$$igoplus_{
ho+q=n} \operatorname{H}_n(\mathfrak{a};k) \otimes \operatorname{H}^q(\mathfrak{g};k) o \operatorname{H}_p(\mathfrak{a},\mathfrak{g}).$$

Thank you!

References

Yuri Berest, Giovanni Felder, Sasha Patotski, Ajay C. Ramadoss, and Thomas Willwacher.

Representation homology, Lie algebra cohomology and the derived Harish-Chandra homomorphism.

J. Eur. Math. Soc. (JEMS), 19(9):2811-2893, 2017.

Guanyu Li.

Commuting varieties of upper triangular matrices and representation homology, 2024.

arXiv:2403.13953.