```
import pandas as pd
 In [2]:
          import numpy as np
          import matplotlib.pyplot as plt
          import seaborn as sns
          import warnings
          from scipy import stats
          import statsmodels.api as sm
          from statsmodels.formula.api import ols
          from statsmodels.stats.multicomp import pairwise_tukeyhsd
          from scipy.stats import chi2, chi2_contingency
          import statsmodels.formula.api as smf
          from sklearn.linear_model import LinearRegression
          from sklearn.metrics import mean_squared_error, r2_score
          pd.set_option('display.max_column',None)
          warnings.filterwarnings('ignore')
          import re
In [39]:
          red_wine = pd.read_csv('winequality-red.csv')
In [40]:
          red_wine.shape
          (1599, 12)
Out[40]:
In [41]:
          red_wine.head()
Out[41]:
                                                         free
                                                                total
              fixed volatile citric residual
                                                       sulfur
                                                                sulfur
                                            chlorides
                                                                      density
                                                                               pH sulphates alcohol
                     acidity
                              acid
             acidity
                                     sugar
                                                      dioxide
                                                              dioxide
          0
                 7.4
                        0.70
                              0.00
                                        1.9
                                               0.076
                                                         11.0
                                                                 34.0
                                                                       0.9978 3.51
                                                                                         0.56
                                                                                                  9.4
                7.8
                        0.88
                              0.00
                                        2.6
                                               0.098
                                                         25.0
                                                                 67.0
                                                                       0.9968 3.20
                                                                                         0.68
                                                                                                  9.8
          2
                              0.04
                                                                                         0.65
                7.8
                        0.76
                                        2.3
                                               0.092
                                                         15.0
                                                                 54.0
                                                                       0.9970 3.26
                                                                                                  9.8
          3
                11.2
                        0.28
                              0.56
                                        1.9
                                               0.075
                                                         17.0
                                                                 60.0
                                                                       0.9980 3.16
                                                                                         0.58
                                                                                                  9.8
                7.4
                        0.70
                              0.00
                                               0.076
                                                                                         0.56
          4
                                        1.9
                                                         11.0
                                                                 34.0
                                                                       0.9978 3.51
                                                                                                  9.4
          red wine.select dtypes('number').columns.shape # all are continous variable
In [42]:
          (12,)
Out[42]:
          red wine.info()
In [43]:
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1599 entries, 0 to 1598
Data columns (total 12 columns):
```

#	Column	Non-Null Count	Dtype						
0	fixed acidity	1599 non-null	float64						
1	volatile acidity	1599 non-null	float64						
2	citric acid	1599 non-null	float64						
3	residual sugar	1599 non-null	float64						
4	chlorides	1599 non-null	float64						
5	free sulfur dioxide	1599 non-null	float64						
6	total sulfur dioxide	1599 non-null	float64						
7	density	1599 non-null	float64						
8	рН	1599 non-null	float64						
9	sulphates	1599 non-null	float64						
10	alcohol	1599 non-null	float64						
11	quality	1599 non-null	int64						
dtynes: $float64(11)$ int64(1)									

dtypes: float64(11), int64(1)

memory usage: 150.0 KB

In [44]:	<pre>red_wine.describe()</pre>
----------	--------------------------------

4]:		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide
	count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000
	mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.467792
	std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.895324
	min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.000000
	25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.000000
	50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.000000
	75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.000000
	max	15.900000	1.580000	1.000000	15.500000	0.611000	72.000000	289.000000

1) quality(Target attribute)

```
In [45]:
          bins = (2, 6.5, 8)
          labels = ['bad', 'good']
          red_wine['quality'] = pd.cut(x = red_wine['quality'], bins = bins, labels = labels
          red_wine['quality'].value_counts() # here i'm considering this variable as contino
In [46]:
          bad
                  1382
Out[46]:
          good
                   217
          Name: quality, dtype: int64
In [48]:
          # giving intiger value
          from sklearn.preprocessing import LabelEncoder
          labelencoder_y = LabelEncoder()
          red_wine['quality'] = labelencoder_y.fit_transform(red_wine['quality'])
          sns.displot(data = red_wine , x = 'quality' , kind='hist') # distribution of the "distribution of the "distribution"
In [49]:
          <seaborn.axisgrid.FacetGrid at 0x1868d8e9660>
Out[49]:
```



```
In [50]: sns.boxplot(data = red_wine , x = 'quality' , color='r')
Out[50]: <AxesSubplot: xlabel='quality'>
```



```
In [54]: ## Correlation matrix
    corr = red_wine.corr()
    #Plot figsize
    fig, ax = plt.subplots(figsize=(10, 8))
    #Generate Heat Map, allow annotations and place floats in map
    sns.heatmap(corr, cmap='coolwarm', annot=True, fmt=".2f")
    #Apply xticks
    plt.xticks(range(len(corr.columns)), corr.columns);
    #Apply yticks
    plt.yticks(range(len(corr.columns)), corr.columns)
    #show plot
    plt.show()
```


2) fixed acidity

```
In [51]: sns.displot(data = red_wine , x = 'fixed acidity' , kind='hist') # slightly positi
Out[51]: <seaborn.axisgrid.FacetGrid at 0x1868d8ebdc0>
```


In [57]: sns.boxplot(data = red_wine , x = 'quality' , y = 'fixed acidity' , color='b')
Out[57]: <AxesSubplot: xlabel='quality', ylabel='fixed acidity'>


```
In [15]:
         # fix the outliers
         #iqr_fa = stats.iqr(red_wine['fixed acidity'])
         #iqr_fa
         2.09999999999996
Out[15]:
In [16]: #Q1 = red_wine['fixed acidity'].quantile(0.25)
         #Q3 = red_wine['fixed acidity'].quantile(0.75)
         \#upper\ bound = Q3 + 1.5*igr\ fa
         #Lower_bound = Q1 - 1.5*iqr_fa
         #red_wine['fixed acidity'] = np.where(red_wine['fixed acidity'] > upper_bound , up;
In [17]:
         #sns.boxplot(data = red_wine , x = 'fixed acidity' , color='b') # outlier fixed
In [18]:
         <AxesSubplot: xlabel='fixed acidity'>
Out[18]:
```


3) volatile acidity

```
In [19]: red_wine['volatile acidity'].dtype
Out[19]: dtype('float64')
In [20]: sns.displot(data = red_wine , x = 'volatile acidity') # positively skewed data
Out[20]: <seaborn.axisgrid.FacetGrid at 0x186891c9b40>
```


Out[58]: <AxesSubplot: xlabel='quality', ylabel='volatile acidity'>

4) citric acid

```
In [59]: sns.displot(data = red_wine , x = 'citric acid')
Out[59]: <seaborn.axisgrid.FacetGrid at 0x1868db71ba0>
```



```
In [60]: sns.boxplot(data = red_wine , x = 'quality' , y = 'citric acid' , color= 'r')
Out[60]: <AxesSubplot: xlabel='quality', ylabel='citric acid'>
```


5) residual sugar

```
In [26]: red_wine['residual sugar'].dtype
Out[26]: dtype('float64')

In [27]: sns.displot(data = red_wine , x = 'residual sugar') # PositiveLy skewed
Out[27]: <seaborn.axisgrid.FacetGrid at 0x1868d6276a0>
```


In [61]: sns.boxplot(data = red_wine , x = 'quality' , y = 'residual sugar' , color='g')
Out[61]: <AxesSubplot: xlabel='quality', ylabel='residual sugar'>

6) chlorides

```
In [62]: sns.displot(data = red_wine , x = 'chlorides')
Out[62]: <seaborn.axisgrid.FacetGrid at 0x1868d5b3c40>
```



```
In [63]: sns.boxplot(data = red_wine , x = 'quality' , y = 'chlorides' , color='g')
Out[63]: <AxesSubplot: xlabel='quality', ylabel='chlorides'>
```


7) free sulfur dioxide

```
In [64]: sns.displot(data = red_wine , x = 'free sulfur dioxide')
Out[64]: <seaborn.axisgrid.FacetGrid at 0x1868936abc0>
```


In [65]: sns.boxplot(data = red_wine , x = 'quality' , y = 'free sulfur dioxide' , color='g
Out[65]: <AxesSubplot: xlabel='quality', ylabel='free sulfur dioxide'>

8) total sulfur dioxide

```
sns.displot(data = red_wine , x = 'total sulfur dioxide')
In [66]:
```

<seaborn.axisgrid.FacetGrid at 0x1868cf66890> Out[66]:


```
sns.boxplot(data = red_wine , x = 'quality' , y = 'total sulfur dioxide' , color=';
In [67]:
         <AxesSubplot: xlabel='quality', ylabel='total sulfur dioxide'>
```


9) density

```
In [68]: sns.displot(data = red_wine , x = 'density')
Out[68]: 
cseaborn.axisgrid.FacetGrid at 0x1868c6847c0>
```


10) pH

```
red_wine.pH.value_counts()
In [70]:
                  57
          3.30
Out[70]:
          3.36
                  56
          3.26
                  53
          3.38
                  48
          3.39
                  48
          3.75
                   1
          2.74
                   1
          3.70
                   1
          3.85
          2.90
         Name: pH, Length: 89, dtype: int64
          sns.displot(data = red_wine , x = 'pH')
In [71]:
          <seaborn.axisgrid.FacetGrid at 0x18692ab0bb0>
Out[71]:
```



```
In [72]: sns.boxplot(data = red_wine , x = 'quality' , y = 'pH' , color='g')
Out[72]: <AxesSubplot: xlabel='quality', ylabel='pH'>
```

Out[72]: <axesSubplot: xlabel='quality', ylabel='ph'>

11) sulphates

```
In [73]: sns.displot(data = red_wine , x = 'sulphates')
Out[73]: 
cseaborn.axisgrid.FacetGrid at 0x18692c10910>
```


In [74]: sns.boxplot(data = red_wine , x = 'quality' , y = 'sulphates' , color='g')
Out[74]: <AxesSubplot: xlabel='quality', ylabel='sulphates'>

12) alcohol

Out[75]: <seaborn.axisgrid.FacetGrid at 0x18692bbfe50>


```
In [76]: sns.boxplot(data = red_wine , x = 'quality' , y = 'alcohol' , color='g')
Out[76]: <AxesSubplot: xlabel='quality', ylabel='alcohol'>
```


Classification Models

```
red_wine.info()
In [77]:
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 1599 entries, 0 to 1598
         Data columns (total 12 columns):
              Column
                                    Non-Null Count Dtype
          0
             fixed acidity
                                    1599 non-null
                                                    float64
              volatile acidity
                                    1599 non-null
                                                   float64
              citric acid
                                    1599 non-null
                                                    float64
          2
             residual sugar
                                    1599 non-null
                                                   float64
          3
              chlorides
                                    1599 non-null
                                                    float64
                                                   float64
              free sulfur dioxide 1599 non-null
             total sulfur dioxide 1599 non-null
                                                   float64
                                                    float64
          7
              density
                                    1599 non-null
                                                    float64
          8
                                    1599 non-null
              рΗ
          9
              sulphates
                                    1599 non-null
                                                    float64
                                                    float64
          10 alcohol
                                    1599 non-null
          11 quality
                                    1599 non-null
                                                    int32
         dtypes: float64(11), int32(1)
         memory usage: 143.8 KB
In [78]:
         X = red_wine.iloc[: , :11]
         y = red_wine.iloc[: , -1]
         # Splitting the dataset into the Training set and Test set
In [79]:
         from sklearn.model selection import train test split
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_s
         print("Shape of X_train: ",X_train.shape)
In [80]:
         print("Shape of X_test: ", X_test.shape)
```

```
print("Shape of y_train: ",y_train.shape)
print("Shape of y_test",y_test.shape)

Shape of X_train: (1279, 11)
Shape of X_test: (320, 11)
Shape of y_train: (1279,)
Shape of y_test (320,)

In [81]: # Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train_scaled = sc.fit_transform(X_train)
X_test_scaled = sc.transform(X_test)
```

1) Logistic Regression

```
In [82]: # Fitting Logistic Regression to the Training set
         from sklearn.linear_model import LogisticRegression
         classifier_lr = LogisticRegression(C=1, fit_intercept=True, max_iter=1000, penalty
         classifier_lr.fit(X_train_scaled, y_train.ravel())
         LogisticRegression(C=1, max_iter=1000, solver='liblinear')
Out[82]:
         # Predicting Cross Validation Score
In [84]:
         from sklearn.model_selection import cross_val_score
         from sklearn.metrics import confusion_matrix
         cv_lr = cross_val_score(estimator = classifier_lr, X = X_train_scaled, y = y_train_
         print("CV: ", cv_lr.mean())
         y_pred_lr_train = classifier_lr.predict(X_train_scaled)
         accuracy_lr_train = accuracy_score(y_train, y_pred_lr_train)
         print("Training set: ", accuracy_lr_train)
         y_pred_lr_test = classifier_lr.predict(X_test_scaled)
         accuracy_lr_test = accuracy_score(y_test, y_pred_lr_test)
         print("Test set: ", accuracy_lr_test)
         CV: 0.885857529527559
         Training set: 0.8858483189992181
         Test set: 0.865625
         confusion matrix(y test, y pred lr test)
In [85]:
                       9],
         array([[264,
Out[85]:
                [ 34, 13]], dtype=int64)
         from sklearn.metrics import classification report
In [86]:
         print(classification_report(y_test , y_pred_lr_test))
                       precision
                                    recall f1-score
                                                        support
                    0
                            0.89
                                       0.97
                                                 0.92
                                                            273
                    1
                            0.59
                                       0.28
                                                 0.38
                                                             47
                                                 0.87
                                                            320
             accuracy
                            0.74
                                       0.62
                                                 0.65
                                                            320
            macro avg
         weighted avg
                            0.84
                                       0.87
                                                 0.84
                                                            320
         tp lr = confusion matrix(y test, y pred lr test)[0,0]
         fp_lr = confusion_matrix(y_test, y_pred_lr_test)[0,1]
```

```
tn_lr = confusion_matrix(y_test, y_pred_lr_test)[1,1]
fn_lr = confusion_matrix(y_test, y_pred_lr_test)[1,0]
```

2) K-Nearest Neighbors (K-NN)

```
In [88]: # Fitting classifier to the Training set
          from sklearn.neighbors import KNeighborsClassifier
          classifier_knn = KNeighborsClassifier(leaf_size = 1, metric = 'minkowski', n_neighl
          classifier_knn.fit(X_train_scaled, y_train.ravel())
          KNeighborsClassifier(leaf_size=1, n_neighbors=32, weights='distance')
Out[88]:
In [92]:
          y_train.ravel().shape
         (1279,)
Out[92]:
In [93]:
          # Predicting Cross Validation Score
          cv_knn = cross_val_score(estimator = classifier_knn, X = X_train_scaled, y = y_train_scaled, y = y_train_scaled, y = y_train_scaled, y = y_train_scaled
          print("CV: ", cv_knn.mean())
          y_pred_knn_train = classifier_knn.predict(X_train_scaled)
          accuracy_knn_train = accuracy_score(y_train, y_pred_knn_train)
          print("Training set: ", accuracy_knn_train)
          y_pred_knn_test = classifier_knn.predict(X_test_scaled)
          accuracy_knn_test = accuracy_score(y_test, y_pred_knn_test)
          print("Test set: ", accuracy_knn_test)
          CV: 0.9022699311023622
          Training set: 1.0
          Test set: 0.89375
In [94]:
          confusion_matrix(y_test, y_pred_knn_test)
         array([[264,
                         9],
Out[94]:
                 [ 25, 22]], dtype=int64)
          from sklearn.metrics import classification_report
In [95]:
          print(classification_report(y_test , y_pred_knn_test))
                                      recall f1-score
                         precision
                                                          support
                     0
                              0.91
                                        0.97
                                                   0.94
                                                               273
                     1
                              0.71
                                        0.47
                                                   0.56
                                                                47
                                                   0.89
                                                               320
              accuracy
                                        0.72
                                                   0.75
                                                               320
             macro avg
                              0.81
         weighted avg
                              0.88
                                        0.89
                                                   0.88
                                                               320
In [96]: | tp_knn = confusion_matrix(y_test, y_pred_knn_test)[0,0]
          fp_knn = confusion_matrix(y_test, y_pred_knn_test)[0,1]
          tn_knn = confusion_matrix(y_test, y_pred_knn_test)[1,1]
          fn knn = confusion matrix(y test, y pred knn test)[1,0]
```

3) Support Vector Machine (SVM - Linear)

```
In [97]: # Fitting classifier to the Training set
from sklearn.svm import SVC
```

```
classifier_svm_linear = SVC(kernel = 'linear')
          classifier_svm_linear.fit(X_train_scaled, y_train.ravel())
          SVC(kernel='linear')
Out[97]:
In [98]: # Predicting Cross Validation Score
          cv_svm_linear = cross_val_score(estimator = classifier_svm_linear, X = X_train_scal
          print("CV: ", cv_svm_linear.mean())
          y_pred_svm_linear_train = classifier_svm_linear.predict(X_train_scaled)
          accuracy_svm_linear_train = accuracy_score(y_train, y_pred_svm_linear_train)
          print("Training set: ", accuracy_svm_linear_train)
          y_pred_svm_linear_test = classifier_svm_linear.predict(X_test scaled)
          accuracy_svm_linear_test = accuracy_score(y_test, y_pred_svm_linear_test)
          print("Test set: ", accuracy_svm_linear_test)
          CV: 0.8670829232283465
          Training set: 0.8670836591086787
          Test set: 0.853125
          confusion_matrix(y_test, y_pred_svm_linear_test)
In [99]:
          array([[273,
                         0],
Out[99]:
                 [ 47,
                         0]], dtype=int64)
          from sklearn.metrics import classification_report
In [100...
          print(classification_report(y_test , y_pred_svm_linear_test))
                        precision
                                     recall f1-score
                                                         support
                     0
                             0.85
                                       1.00
                                                  0.92
                                                             273
                     1
                             0.00
                                       0.00
                                                  0.00
                                                             47
                                                  0.85
                                                             320
              accuracy
                             0.43
                                       0.50
                                                  0.46
                                                             320
             macro avg
          weighted avg
                             0.73
                                       0.85
                                                  0.79
                                                             320
In [121...
          tp_svm_linear = confusion_matrix(y_test, y_pred_svm_linear_test)[0,0]
          fp_svm_linear = confusion_matrix(y_test, y_pred_svm_linear_test)[0,1]
          tn_svm_linear = confusion_matrix(y_test, y_pred_svm_linear_test)[1,1]
          fn_svm_linear = confusion_matrix(y_test, y_pred_svm_linear_test)[1,0]
```

Support Vector Machine (SVM - Kernel)

```
In [101... # Fitting classifier to the Training set
    from sklearn.svm import SVC
    classifier_svm_kernel = SVC(kernel = 'rbf', C = 10, tol = 0.001, gamma = 'scale')
    classifier_svm_kernel.fit(X_train_scaled, y_train.ravel())

Out[101]:

SVC(C=10)

In [102... # Predicting Cross Validation Score
    cv_svm_kernel = cross_val_score(estimator = classifier_svm_kernel, X = X_train_scaled)
    print("CV: ", cv_svm_kernel.mean())

y_pred_svm_kernel_train = classifier_svm_kernel.predict(X_train_scaled)
    accuracy_svm_kernel_train = accuracy_score(y_train, y_pred_svm_kernel_train)
    print("Training set: ", accuracy_svm_kernel_train)
```

```
y_pred_svm_kernel_test = classifier_svm_kernel.predict(X_test_scaled)
          accuracy_svm_kernel_test = accuracy_score(y_test, y_pred_svm_kernel_test)
          print("Test set: ", accuracy_svm_kernel_test)
          CV: 0.8999261811023622
          Training set: 0.9421422986708365
          Test set: 0.89375
          confusion_matrix(y_test, y_pred_svm_kernel_test)
In [103...
          array([[261,
                        12],
Out[103]:
                  [ 22, 25]], dtype=int64)
In [105...
          from sklearn.metrics import classification report
          print(classification_report(y_test , y_pred_svm_kernel_test))
                         precision
                                      recall f1-score
                                                         support
                      0
                              0.92
                                        0.96
                                                  0.94
                                                             273
                                        0.53
                                                              47
                     1
                              0.68
                                                  0.60
                                                  0.89
                                                             320
              accuracy
                                                             320
                              0.80
                                        0.74
                                                  0.77
             macro avg
                                        0.89
                                                  0.89
                                                             320
          weighted avg
                              0.89
          tp_svm_kernel = confusion_matrix(y_test, y_pred_svm_kernel_test)[0,0]
In [104...
          fp_svm_kernel = confusion_matrix(y_test, y_pred_svm_kernel_test)[0,1]
          tn_svm_kernel = confusion_matrix(y_test, y_pred_svm_kernel_test)[1,1]
          fn svm kernel = confusion matrix(y test, y pred svm kernel test)[1,0]
```

4) Naive Bayes

```
# Fitting classifier to the Training set
In [106...
          from sklearn.naive_bayes import GaussianNB
          classifier_nb = GaussianNB()
          classifier_nb.fit(X_train_scaled, y_train.ravel())
          GaussianNB()
Out[106]:
          # Predicting Cross Validation Score
In [107...
          cv_nb = cross_val_score(estimator = classifier_nb, X = X_train_scaled, y = y_train
          print("CV: ", cv_nb.mean())
          y_pred_nb_train = classifier_nb.predict(X_train_scaled)
          accuracy_nb_train = accuracy_score(y_train, y_pred_nb_train)
          print("Training set: ", accuracy_nb_train)
          y_pred_nb_test = classifier_nb.predict(X_test_scaled)
          accuracy_nb_test = accuracy_score(y_test, y_pred_nb_test)
          print("Test set: ", accuracy_nb_test)
          CV: 0.8373462106299213
          Training set: 0.8389366692728695
          Test set: 0.846875
          confusion_matrix(y_test, y_pred_nb_test)
In [108...
          array([[234, 39],
Out[108]:
                 [ 10, 37]], dtype=int64)
```

```
from sklearn.metrics import classification report
In [109...
          print(classification_report(y_test , y_pred_nb_test))
                                      recall f1-score
                         precision
                                                          support
                      0
                              0.96
                                        0.86
                                                   0.91
                                                              273
                      1
                                        0.79
                                                   0.60
                              0.49
                                                               47
                                                   0.85
                                                              320
               accuracy
                                                   0.75
                              0.72
                                        0.82
                                                              320
              macro avg
          weighted avg
                              0.89
                                        0.85
                                                   0.86
                                                              320
In [120...
          tp_nb = confusion_matrix(y_test, y_pred_nb_test)[0,0]
          fp_nb = confusion_matrix(y_test, y_pred_nb_test)[0,1]
          tn_nb = confusion_matrix(y_test, y_pred_nb_test)[1,1]
          fn_nb = confusion_matrix(y_test, y_pred_nb_test)[1,0]
```

5) Decision Tree Classification

```
# Fitting classifier to the Training set
In [110...
          from sklearn.tree import DecisionTreeClassifier
          classifier_dt = DecisionTreeClassifier(criterion = 'gini', max_features=6, max_lea-
          classifier_dt.fit(X_train_scaled, y_train.ravel())
          DecisionTreeClassifier(max_features=6, max_leaf_nodes=400, random_state=33)
Out[110]:
          # Predicting Cross Validation Score
In [111...
          from sklearn.model_selection import cross_val_score
          cv_dt = cross_val_score(estimator = classifier_dt, X = X_train_scaled, y = y_train
          print("CV: ", cv_dt.mean())
          y_pred_dt_train = classifier_dt.predict(X_train_scaled)
          accuracy_dt_train = accuracy_score(y_train, y_pred_dt_train)
          print("Training set: ", accuracy_dt_train)
          y pred dt test = classifier dt.predict(X test scaled)
          accuracy_dt_test = accuracy_score(y_test, y_pred_dt_test)
          print("Test set: ", accuracy_dt_test)
          CV: 0.8960014763779528
          Training set: 1.0
          Test set: 0.878125
          confusion_matrix(y_test, y_pred_dt_test)
In [112...
          array([[252, 21],
Out[112]:
                  [ 18, 29]], dtype=int64)
In [113...
          from sklearn.metrics import classification report
          print(classification_report(y_test , y_pred_dt_test))
```

1/6/23, 11:57 AM Red_wine_Quality

```
recall f1-score
              precision
                                                support
                              0.92
           0
                    0.93
                                         0.93
                                                    273
           1
                    0.58
                              0.62
                                        0.60
                                                     47
                                         0.88
                                                    320
    accuracy
                              0.77
                                        0.76
                                                    320
   macro avg
                   0.76
                    0.88
                              0.88
                                         0.88
                                                    320
weighted avg
```

```
tp_dt = confusion_matrix(y_test, y_pred_dt_test)[0,0]
fp_dt = confusion_matrix(y_test, y_pred_dt_test)[0,1]
tn_dt = confusion_matrix(y_test, y_pred_dt_test)[1,1]
fn_dt = confusion_matrix(y_test, y_pred_dt_test)[1,0]
```

6) Random Forest Classification

```
# Fitting Random Forest Classification to the Training set
In [114...
          from sklearn.ensemble import RandomForestClassifier
          classifier_rf = RandomForestClassifier(criterion = 'entropy', max_features = 4, n_
          classifier_rf.fit(X_train_scaled, y_train.ravel())
          RandomForestClassifier(criterion='entropy', max_features=4, n_estimators=800,
Out[114]:
                                  random_state=33)
          # Predicting Cross Validation Score
In [115...
          cv_rf = cross_val_score(estimator = classifier_rf, X = X_train_scaled, y = y_train_
          print("CV: ", cv_rf.mean())
          y_pred_rf_train = classifier_rf.predict(X_train_scaled)
          accuracy_rf_train = accuracy_score(y_train, y_pred_rf_train)
          print("Training set: ", accuracy_rf_train)
          y_pred_rf_test = classifier_rf.predict(X test scaled)
          accuracy_rf_test = accuracy_score(y_test, y_pred_rf_test)
          print("Test set: ", accuracy_rf_test)
          CV: 0.9140194389763779
          Training set: 1.0
          Test set: 0.9125
          confusion_matrix(y_test, y_pred_rf_test)
In [116...
          array([[267,
                        6],
Out[116]:
                 [ 22, 25]], dtype=int64)
In [117...
          from sklearn.metrics import classification report
          print(classification_report(y_test , y_pred_rf_test))
                         precision
                                      recall f1-score
                                                         support
                      0
                              0.92
                                        0.98
                                                  0.95
                                                              273
                      1
                              0.81
                                        0.53
                                                  0.64
                                                              47
              accuracy
                                                  0.91
                                                             320
             macro avg
                              0.87
                                        0.75
                                                  0.80
                                                             320
          weighted avg
                              0.91
                                        0.91
                                                  0.90
                                                             320
          tp_rf = confusion_matrix(y_test, y_pred_rf_test)[0,0]
In [118...
          fp_rf = confusion_matrix(y_test, y_pred_rf_test)[0,1]
```

1/6/23, 11:57 AM Red wine Quality

```
tn_rf = confusion_matrix(y_test, y_pred_rf_test)[1,1]
fn_rf = confusion_matrix(y_test, y_pred_rf_test)[1,0]
```

models = [('Logistic Regression', tp_lr, fp_lr, tn_lr, fn_lr, accuracy_lr_train, a

('K-Nearest Neighbors (KNN)', tp_knn, fp_knn, tn_knn, fn_knn, accuracy_ki ('SVM (Linear)', tp_svm_linear, fp_svm_linear, tn_svm_linear, fn_svm_linear)

Models summary

In [122...

```
('SVM (Kernel)', tp_svm_kernel, fp_svm_kernel, tn_svm_kernel, fn_svm_kernel
                        ('Naive Bayes', tp_nb, fp_nb, tn_nb, fn_nb, accuracy_nb_train, accuracy_i
                        ('Decision Tree Classification', tp_dt, fp_dt, tn_dt, fn_dt, accuracy_dt
                        ('Random Forest Tree Classification', tp rf, fp rf, tn rf, fn rf, accura
                      ]
            predict = pd.DataFrame(data = models, columns=['Model', 'True Positive', 'False Positive')
In [123...
                                                                   'False Negative', 'Accuracy(training
                                                                   'Cross-Validation'])
            predict
Out[123]:
                               True
                                        False
                                                  True
                                                            False
                                                                                                        Cros
                    Model
                                                                   Accuracy(training) Accuracy(test)
                                                                                                     Validati
                            Positive
                                     Positive Negative Negative
                   Logistic
                                264
                                           9
                                                     13
                                                               34
                                                                            0.885848
                                                                                           0.865625
                                                                                                      0.8858
                 Regression
                  K-Nearest
                 Neighbors
                                264
                                           9
                                                    22
                                                              25
                                                                            1.000000
                                                                                           0.893750
                                                                                                      0.9022
                     (KNN)
            2 SVM (Linear)
                                273
                                           0
                                                     0
                                                              47
                                                                            0.867084
                                                                                           0.853125
                                                                                                      0.8670
               SVM (Kernel)
                                          12
                                                     25
                                                               22
                                                                            0.942142
                                                                                           0.893750
                                261
                                                                                                      0.8999
                Naive Bayes
                                          39
                                                     37
                                                               10
                                                                            0.838937
                                                                                           0.846875
                                234
                                                                                                      0.8373
                   Decision
            5
                       Tree
                                252
                                          21
                                                    29
                                                               18
                                                                            1.000000
                                                                                           0.878125
                                                                                                      0.8960
               Classification
                   Random
            6
                 Forest Tree
                                267
                                           6
                                                    25
                                                               22
                                                                            1.000000
                                                                                           0.912500
                                                                                                      0.9140
               Classification
```

Visualizing Models Performance ¶

```
In [124... f, axe = plt.subplots(1,1, figsize=(18,6))

predict.sort_values(by=['Cross-Validation'], ascending=False, inplace=True)

sns.barplot(x='Cross-Validation', y='Model', data = predict, ax = axe)

#axes[0].set(xlabel='Region', ylabel='Charges')
axe.set_xlabel('Cross-Validaton Score', size=16)
axe.set_ylabel('Model')
axe.set_xlim(0,1.0)
axe.set_xticks(np.arange(0, 1.1, 0.1))
plt.show()
```



```
f, axes = plt.subplots(2,1, figsize=(14,10))
In [125...
          predict.sort_values(by=['Accuracy(training)'], ascending=False, inplace=True)
          sns.barplot(x='Accuracy(training)', y='Model', data = predict, palette='Blues_d',
          #axes[0].set(xlabel='Region', ylabel='Charges')
          axes[0].set_xlabel('Accuracy (Training)', size=16)
          axes[0].set_ylabel('Model')
          axes[0].set_xlim(0,1.0)
          axes[0].set_xticks(np.arange(0, 1.1, 0.1))
          predict.sort_values(by=['Accuracy(test)'], ascending=False, inplace=True)
          sns.barplot(x='Accuracy(test)', y='Model', data = predict, palette='Reds_d', ax =
          #axes[0].set(xlabel='Region', ylabel='Charges')
          axes[1].set_xlabel('Accuracy (Test)', size=16)
          axes[1].set_ylabel('Model')
          axes[1].set_xlim(0,1.0)
          axes[1].set_xticks(np.arange(0, 1.1, 0.1))
          plt.show()
```



```
In [126... predict.sort_values(by=(['Accuracy(test)']), ascending=True, inplace=True)

f, axe = plt.subplots(1,1, figsize=(24,8))
sns.barplot(x = predict['Model'], y=predict['False Positive'] + predict['False Negative | p
```


In []: