Ejercicios Geometría Diferencial

Hugo Del Castillo Mola

1 de noviembre de 2022

Índice general

Ejercicio 0.1 (Evaluación Continua). Sea $S \subset \mathbb{R}^3$ superficie. Demostrar que

- 1. Si $X:U\subset\mathbb{R}^2\to S$ es una parametrización y $h:V\subset\mathbb{R}^2\to U\subset\mathbb{R}^2$ es difeomorfismo, entonces $X\circ h:V\to S$ es parametrización.
- 2. Sea $S' \subset \mathbb{R}^3$ superficie. Si $X: U \subset \mathbb{R}^2 \to S$ es parametrización y $\phi: S \to S'$ difeomorfismo, entonces $\phi \circ X: U \to S'$ es parametrización de S'.
- 3. $Y:U\subset\mathbb{R}^2\to S$ parametrización de $Y(U)\Leftrightarrow Y$ es un difeomorfismo.

Solución.

- 1. Lo vemos usando la definición. Debemos comprobar que
 - a) $X \circ h$ es diferenciable.

X es parametrización $\Rightarrow X$ es diferenciable y h difeomorfismo $\Rightarrow h$ diferenciable. Por tanto, $X \circ h$ es diferenciable ya que la composición de aplicaciones diferenciables es diferenciable.

b) $X \circ h$ es homeomorfismo.

X parametrización $\Rightarrow X$ homeomorfismo y h difeomorfismo $\Rightarrow h$ homeomorfismo diferenciable con inversa diferenciable. Entoces, $X \circ h$ es homeomorfismo y que la composición de homeomorfismos es homeomorfismo.

c) $d(X \circ h)_p$ es inyectiva.

X parametrización $\Rightarrow (dX)_q$ es inyectiva y h difeomorfismo $\Rightarrow (dh)_p$ es inyectiva (*). Como la composición de funciones inyectivas es inyectiva, entonces $d(X \circ h)$ es inyectiva.

Por tanto, $X \circ h$ es parametrización.

- 2. Usamos que Y es parametrización $\Leftrightarrow Y$ es difeomorfismo. Como X parametrización $\Rightarrow X$ difeomorfismo, entonces $\phi \circ X$ es difeomorfismo por ser composición de difeomorfismos. Por tanto, $\phi \circ X$ difeomorfismo $\Rightarrow \phi \circ X$ parametrización.
- 3. (\Rightarrow) Si $Y:U\subset\mathbb{R}^2\to S$ es una parametrización, entonces

$$Y^{-1}:Y(U)\to\mathbb{R}^2$$

es diferenciable. Además, $\forall p \in Y(U)$, $\forall Z: V \subset \mathbb{R}^2 \to S$ parametrización,

$$Y^{-1} \circ Z : Z^{-1}(W) \to Y^{-1}(W)$$

donde $W=Y(U)\cap Z(V)$, es diferenciable. Por tanto, U y Y(U) son difeomorfos.

- (\Leftarrow) Sea $S \subset \mathbb{R}^3$ superficies. Si $Y: U \subset \mathbb{R}^2 \to S$ es difeomorfismo, entonces Y es diferenciable, Y es homeomorfismo y $(dY)_p$ (*) es inyectiva. Por tanto, Y es parametrización de S.
- (*) Veamos que $f:X\subset\mathbb{R}^m\to Y\subset\mathbb{R}^m$ difeomorfismo $\Rightarrow (df)_p$ isomorphismo, $p\in X:f(p)\in Y.$ Si f difeomorfismo, entonces f tiene inversa $f^{-1}.$ Ahora,

$$(dI_Y)_{f(p)} = d(f \circ f^{-1})_{f(p)} = (df)_p \circ (df^{-1})_{f(p)},$$
$$(dI_X)_p = d(f^{-1} \circ f)_p = (df^{-1})_{f(p)} \circ (df)_p$$

entonces, $(df)_p$ es un isomorfismo.