

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

(19)

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11)

EP 1 119 134 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:
25.07.2001 Bulletin 2001/30

(51) Int Cl.7: H04L 12/18

(21) Application number: 00124919.2

(22) Date of filing: 15.11.2000

(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE TR
Designated Extension States:
AL LT LV MK RO SI

(30) Priority: 21.12.1999 US 469034

(71) Applicant: Alcatel Canada Inc.
Kanata, Ontario K2K 2E6 (CA)

(72) Inventors:

- Bosloy, Jonathan L.
Kanata, Ontario K2W 1A1 (CA)
- Bessette, Francois
Gatineau, Quebec J8V 2C6 (CA)

(74) Representative: Fischer, Matthias, Dipl.-Ing. et al
Schroeter Fleuchaus Lehmann & Gallo
Patentanwälte,
Wolfratshauser Strasse 145
81479 München (DE)

(54) Method and apparatus for an improved internet group management protocol

(57) A method and apparatus for controlling multi-cast group subscriptions in a multicast distribution circuit is presented. When a router included in the multicast circuit receives notification to terminate support of a particular multicast group (group leave request), data flow with respect to that multicast group is initially maintained on the communication link coupling the router to the hosts. Queries are issued to hosts on the communication link to determine whether continued support of the particular group is desired by any hosts coupled to the communication link. If while waiting for a positive response to the queries issued, a request to join an additional multicast group is received bandwidth availability on the communication link is examined to determine if adequate bandwidth is available for supporting the newly requested group addition. If adequate bandwidth is available, the newly requested group is added to those groups supported on the communication link. However, if adequate bandwidth for support of the newly requested group is not available, one or more groups that are pending termination (group specific queries have been issued for these groups) are selected for early termination in order to make enough bandwidth available to support the newly requested group addition. The selection criteria utilized to determine the groups to be terminated may be based on a variety of parameters.

Figure 1.

Description**Field of the Invention**

[0001] The invention relates generally to data communication, and more particularly to a method and apparatus for improved internet group management protocol communication.

Background of the Invention

[0002] As data communication systems continue to evolve, the bandwidth capabilities of such communication systems continue to increase. As such, applications that require large amounts of bandwidth become increasingly feasible. One such application is the distribution of digital media services. Digital media services can provide video information such as television programs or movies, audio programs, and text based information streams.

[0003] Typically, the various types of digital media that may be provided are sourced from one or more information sources. These information sources are intended to provide the multimedia programming to a large number of users that have access to the information via one or more communication networks. Destination routers coupled to the communication network provide interfaces to end users, or subscribers.

[0004] Typically, multiple subscribers are coupled to a single communication link that is coupled to the router. This communication link is utilized for distribution of the program data streams, or channels, to the end users. The Internet Group Management Protocol (IGMP) has been developed by the Internet Engineering Task Force (IETF) as a standard that relates to the communication between the router and the subscriber, which is often referred to as a host. The communication between the router and the set of hosts coupled to a particular communication link is accomplished using point-to-multipoint multicast transmissions. IETF specifications rfc1 112 "Host Extensions for IP Multicasting" and rfc2236 "Internet Group Management Protocol, Version 2" describe the use of the current IGMP standard in detail.

[0005] The IGMP protocol as currently defined by the IETF dictates how the multicast transmissions between the router and host are managed. Each of the hosts coupled to a router determines which of the potential multicast transmission groups, or channels, that it receives. When the communication link between the router and a plurality of hosts is shared by the plurality of hosts, bandwidth limitations on the communication link can require intelligent management of the multicast transmissions provided via the communication link. For example, if a number of users reside on a single communication link and the bandwidth limitations only allow for a limited number of multicast transmissions to be supported over the communication link, usage of the particular multicast

transmissions by the plurality of hosts must be monitored to ensure that bandwidth is not wasted on multicast transmissions which none of the hosts are actively receiving or using.

5 [0006] The prior art IGMP standards deal with the inclusion or deletion of particular multicast transmissions, or groups, from the communication link in an inefficient manner that may reduce the overall functionality of the multicast system. In one prior art system corresponding to the original IGMP standard, a host could explicitly join a group (multicast transmission) but could not explicitly leave a group. Periodic queries issued by the router would inquire as to whether hosts coupled to the communication link were actively using particular groups.

10 [0007] For example, if a periodic query asked if group A was being used by any hosts on the communication link resulted in no positive responses, group A could then be deleted in terms of being supported via the communication link. Unfortunately, the periodic queries often took a substantial amount of time in resolving whether or not a particular group required continued support. During this time, the bandwidth utilized to support the group that was to be deleted was essentially wasted. Such bandwidth considerations are especially important in bandwidth-limited systems that broadcasting high data rate multicast groups.

15 [0008] The second version of IGMP allowed for hosts to send explicit messages indicating that a particular multicast group was no longer required. However, because multiple hosts on a particular communication link could be utilizing a particular group, group specific queries are utilized to determine if all of the hosts agree that the particular group could be omitted from support. Once again, the querying process can induce a significant delay between the time at which the message indicating that the group should be terminated was received and actual termination of support of that particular group. In high bandwidth applications, such as digital media distribution services (DMDS) that broadcast multiple video, audio, and text channels to a large number of users, the delay associated with terminating particular groups can have adverse consequences in that bandwidth that should be available is not available for the addition of subsequent groups. As such, the delay in obtaining data corresponding to a new group could be noticeable, and undesirable to the end user.

20 [0009] Another prior art system based on the second version of the IGMP protocol stops the data flow for a particular group immediately upon receiving a leave group message corresponding to that particular group. If the queries as to whether any other hosts desire the data for that group result in a positive response, the data flow for that group is resurrected. Although this technique immediately makes bandwidth available for the addition of subsequent channels, the data flow to hosts that wish to maintain receipt of the group which is immediately terminated can be interrupted, which may result in glitches in service or other unacceptable conse-

quences.

[0009] Therefore, a need exists for a method and apparatus for supporting multicast group transmissions that efficiently adds and removes particular multicast groups from support while making efficient use of available bandwidth available on the communication link for transmission of the multicast groups.

Brief Description of the Drawings

[0010]

Figure 1 illustrates a block diagram of a multicast distribution circuit in accordance with a particular embodiment of the present invention;

Figure 2 illustrates a block diagram of various group classifications used in conjunction with the multicast distribution circuit of Figure 1;

Figures 3 and 4 illustrate a portion of the group classifications of Figure 2 at subsequent time intervals; Figure 5 illustrates a block diagram of a multicast distribution processor in accordance with a particular embodiment of the present invention; and Figure 6 illustrates a flow diagram of a method for controlling multicast group subscriptions in accordance with a particular embodiment of the present invention.

Detailed Description of a Preferred Embodiment of the Invention

[0011] Generally, the present invention provides a method and apparatus for controlling multicast group subscriptions in a multicast distribution circuit. When a router included in the multicast circuit receives notification to terminate support of a particular multicast group (group leave request), data flow with respect to that multicast group is initially maintained on the communication link coupling the router to the hosts. Queries are issued to hosts on the communication link to determine whether continued support of the particular group is desired by any hosts coupled to the communication link. If, while waiting for a positive response to the queries issued, a request to join an additional multicast group is received, bandwidth availability on the communication link is examined to determine if adequate bandwidth is available for supporting the newly requested group addition. If adequate bandwidth is available, the newly requested group is added to those groups supported on the communication link. However, if adequate bandwidth for support of the newly requested group is not available, one or more groups that are pending termination (group specific queries have been issued for these groups) are selected for early termination in order to make enough bandwidth available to support the newly requested group addition. The selection criteria utilized to determine the groups to be terminated may be based on a variety of selection parameters. For example, the iden-

tity of the host requesting the addition of the new multicast group or the identity of the host requesting that support of the particular group be terminated. Other selection parameters may include prior usage characteristics

5 corresponding to the groups, a best fit comparison that makes an amount of bandwidth available that is substantially similar to that required for support of the newly requested group, the time a group join or group leave request was received, the contents of the groups being joined or terminated, or an inherent prioritization scheme that prioritizes the various multicast groups in terms of their likelihood of termination.

[0012] By maintaining data flow with respect to groups for which requests to terminate support have been received, interruption of such data flow with respect to other hosts that do not wish to terminate support is eliminated. By intelligently determining when an adequate bandwidth is available for inclusion of newly requested groups, and only prematurely terminating selected termination groups that are pending termination when bandwidth requirements dictate, available bandwidth on the communication link to the plurality of hosts is efficiently utilized in a manner that minimizes interruptions or delays in receiving multicast groups by the hosts.

[0013] The invention can be better understood with reference to Figures 1-6. Figure 1 illustrates a block diagram of a multicast distribution circuit 5 that includes an Asymmetrical Digital Subscriber Line (ADSL) connection 32 that provides multicast groups to a subscriber. A splitter 26 is coupled to an ADSL modem 22 that provides and receives data, such as the data for the multicast groups, and a central office 24 that provides and receives voice information or similar data. The splitter 26 combines and separates the data carried over the ADSL connection 32 depending on the direction of data flow.

[0014] A similar splitter 28 provides voice data service to a telephone 36 or similar apparatus and also provides a link between the ADSL modem 30 and the ADSL connection 32. The ADSL modem 30 is also coupled to a Local Area Network (LAN) 40 or similar network that allows a plurality of hosts 51-55 to interact with the ADSL modem 30 to receive the multicast group transmissions and make requests to receive or not receive particular multicast groups.

[0015] The ADSL modem 22 receives the multicast groups that it provides to the ADSL connection 32 via a router 20 that may be included in a communication network. The ADSL modem 22 may be coupled to a port of the router 20. One or more sources provide a plurality of multicast transmission groups (programming channels) to the network for distribution to a plurality of routers such as the router 20. The router 20 receives at least a portion of the plurality of multicast transmissions, and provides a selected set of this portion of the plurality of multicast transmissions to the plurality of hosts 51-55 via the communication link that includes the ADSL connection 32. Note that a router may have a plurality of

communication links coupled to a plurality of ports such that a plurality of sets of hosts may be supported by a single router, where each set of hosts is serviced via a separate communication link.

[0016] The multicast transmissions provided to the plurality of hosts 51-55 may include multimedia type content, such as video programming, audio programming, and/or text information streams. Each of the hosts 51-55 may select to receive one or more of the multicast transmissions. As is illustrated, one of the hosts may be a set top box 55 that is coupled to the LAN 40. The set top box 55 can be used to provide multicast group transmissions to the television 64. The set top box 55 issues one or more requests to the router 20 via the communication link such that the set top box 55 receives the multicast transmissions corresponding to programming information required by users of the television 64. Thus, if a person watching the television 64 changes channels, the set top box 55 relays information concerning the channel change to the router 20. Essentially, the set top box 55 will indicate previously viewed channel is no longer required, and that a new multicast data stream corresponding to the channel to which the television user has now selected is required.

[0017] Similarly, one of the hosts may be a personal computer 54 as is illustrated. The personal computer, which is coupled to the LAN 40, may request multicast groups in a similar manner as the set top box 55. Each of the hosts 51-55 may be active or inactive at various points in time, and each of the hosts 51-55 may request one or more multicast groups when active.

[0018] In other embodiments, the communication link between the hosts and the router 20 may be a broadband communication link such as an alternate digital subscriber line protocol (e.g. VDSL), Ethernet connection, local multipoint data service (LMDS), or a synchronous transfer mode (ATM) passive optical network (APON). Although such broadband interfaces typically have adequate bandwidth for supporting such applications, when a number of hosts 51-55 are tied to a shared communication link, the bandwidth limitations of the communication link may limit the number of multicast groups that can be supported over the communication link. As such, the router 20 must ensure that efficient use of the available bandwidth of the communication link occurs.

[0019] As described earlier, when a request to leave (terminate support of) a particular multicast group is received by the router 20, it is undesirable to immediately terminate data transmission along the communication link for that particular group. Therefore, the router 20 preferably issues group specific queries pertaining to the group prior to termination. These group specific queries enable any host coupled to the communication link to return a positive response indicating that termination of that particular group should not occur. If such a positive response is received, the router 20 will maintain support of the group such that other hosts that are uti-

lizing data in that multicast group receive uninterrupted service.

[0020] When a group leave request is received from a host on the communication link and a group specific query is issued, the identity of the group to which the group specific query corresponds is added to a set of groups pending termination, which may be referred to as the membership verification set of groups. If a request to add a group to those groups supported on the communication link is received and inadequate bandwidth remains on the communication link to support the addition of the requested group, the membership verification set of groups is examined to select one or more termination groups that will be terminated before the group specific querying process for those particular groups has run to completion. The groups selected for termination are preferably selected in a manner that reduces the likelihood that additional hosts on the communication link will be adversely affected by the termination of the selected groups. This selection process is described in further detail below.

[0021] Once the groups to be terminated are selected, the router terminates support of these groups such that data corresponding to those groups is no longer provided via the communication link. As the bandwidth associated with the terminated groups is made available, the support of the requested group is initiated.

[0022] The technique for managing multicast groups disclosed herein is advantageous over prior art attempts in that it ensures that premature termination of a group does not occur unless bandwidth limitations force such termination. In addition, any premature termination of a particular group is based on some form of prioritization such that in many instances, groups terminated in order to increase available bandwidth are those groups that are unlikely to result in a degradation in service to any of the plurality of hosts 51-55 coupled to the communication link. Therefore, the method and apparatus provided herein provides for more efficient use of bandwidth in a multicast transmission system such that multimedia applications can be implemented in a more cost efficient and reliable manner.

[0023] Figures 2-4 illustrates various group classifications associated with the technique for multicast group management described in the discussion of Figure 1. The example system illustrated in Figures 2-4 is greatly simplified in order to promote understanding of the general concepts of the multicast group subscription management technique. The group table 70 of Figure 2 illustrates a plurality of multicast groups, or channels, and their associated data types and bandwidth requirements. Note that no units are included in the bandwidth requirement, and the numbers indicated in the group table 70 are merely for illustrative purposes, and are not necessarily representative of any particular system. The group table 70 indicates that a plurality of video channels A-D, a plurality of audio channels E and F, and a plurality of text channels G and H are available to hosts

51-55 via the network. Note that the bandwidth requirements for the video channels are shown to be significantly greater than those for the audio and text channels.

[0024] Assuming that the communication link is only capable of delivering 30 units of bandwidth to the hosts 51-55 at any one time, the number of channels included in the group table 70 that can be supported on the communication link at any one time is limited. As such, transitions concerning support of various channels must be performed in an efficient and timely manner in order to ensure that the hosts 51-55 receive reliable and prompt service.

[0025] At a particular point in time, the selected set 80 indicates the multicast groups that are supported over the communication link. The selected set 80 as illustrated in Figure 2 indicates that video channels A and C, audio channel E, and text channel G are supported at this particular point in time. The total bandwidth requirements of these channels is 24 bandwidth units. Note that this is within the bandwidth capabilities (30 units) of the communication link.

[0026] The membership verification set 90 indicates that group leave requests corresponding to audio channel E and text channel G have been received. As such, group specific queries corresponding to these two channels pending termination have been issued. However, because they are still included in the membership verification set, no positive response has yet been received from the group specific queries. The presence of the channels in the membership verification set 90 also indicates that the querying procedure for the channels has not yet been exhausted, for if it had been, the support of these groups would simply have terminated and they would be absent from both the selected set 80 and the membership verification set 90.

[0027] Thus, the selected set 80 and the membership verification set 90 of Figure 2 illustrate the state of the system in Figure 1 at a particular point in time. If subsequent to that point in time, a leave group, or group termination request is received for channel A, channel A will be added to the membership verification set 90, and a group specific query corresponding to group A will be issued. If, prior to receipt of a positive response to the group specific query with respect to channel A, a group membership report is received from a host coupled to the communication link requesting that channel B be added to the selected set 80, a bandwidth limitation is encountered. Group A has not yet been terminated, nor have groups E and G. As such, support of channel B in addition to the channels currently included in the selected set 80 of Figure 2 would require 34 bandwidth units on the communication link. As indicated earlier, in this particular example only 30 bandwidth units are available over the communication link. Therefore, in order to add support for channel B, one or more channels in the membership verification set 90 (which now also includes channel A) must be terminated prior to expiration of their

querying processes.

[0028] As stated earlier, the choice of channels to terminate prematurely may be based on a number of different factors. These factors may include identity of the host requesting that support of the particular channel be terminated, a best fit comparison between the additional bandwidth required to support the channel to be added and the bandwidth of the particular channels included in the membership verification set, a prioritization scheme that prioritizes the channels based on factors which may include previous usage characteristics, program content, etc.

[0029] In one example, channel A is selected as the termination group. The cause of the selection of channel A may be that the host 51 is the source of both the termination request with respect to channel A and the add channel request with respect to channel B. This may correspond to a simple channel change performed by the user of the television set 64. Noting that the requests to drop channel A and the request to add channel B were sourced from the same host may provide an indication that a simple channel change has occurred. As such, prematurely dropping channel A is a reasonable choice that may not have any consequences with respect to other hosts. As such, channel A may be preferentially selected as the termination group.

[0030] Another reason that channel A may be chosen as the termination group is that it is the only video channel currently residing in the membership verification set. Therefore, the content of the channel selected as the termination group may be matched with the content of the group to be added. In either case, when channel B is added, and channel A is prematurely terminated, the resulting selected set 80 and membership verification set 90 are shown in Figure 3, which represents the classification of the various channels at a time sequence subsequent to that illustrated in Figure 2. As can be seen, channel B is now included in the selected set 80 which is supported. Channels E and G remain in the membership verification set 90, as they have not yet been terminated.

[0031] In another example, channels E and G may be selected as the channels to prematurely terminate. This corresponds to a "best fit" bandwidth comparison, where it can be observed that termination of channels E and G will make just enough bandwidth available to enable channel B to be included in the selected set 80. The resulting selected set 80 and membership verification set 90 corresponding to this example are illustrated in Figure 4. Note that the selected set 80 now includes channels A, B and C, which total 30 bandwidth units which is within the limitations of the communication link. The membership verification set 90 only includes the channel A, as channels E and G have been terminated.

[0032] Once again, it is emphasized that the example illustrated using Figures 1-4 is a greatly simplified example. However, the general principles applied with respect to the examples given are applicable in more com-

plex systems that include many more hosts, many more channels, and a wider variety of multicast group types that may be supported. What is emphasized is that premature termination of support of any particular multicast group, or channel, does not occur until bandwidth limitations become a limiting factor on the provision of channels to the hosts within the system. When bandwidth limitations do become a factor, intelligent decisions as to which channels to eliminate from the selected set supported are utilized to determine how the limited bandwidth available is most efficiently utilized. Thus, the modifications to the IGMP protocols described herein provide a technique to maximize effective bandwidth usage over limited resources.

[0033] Figure 5 illustrates a multicast distribution processor 120 that may be included in a router in a multicast distribution circuit such as that illustrated in Figure 1. The multicast distribution processor 130 may be used to perform the method, or a portion of the method, illustrated in Figure 6 that describes a method for controlling multicast groups subscriptions. The multicast distribution processor 120 includes a processing module 122 and memory 124. The processing module 122 may be a single processing device or a plurality of processing devices. Such a processing device may be a microprocessor, microcontroller, digital signal processor, microcomputer, state machine, logic circuitry, or any device that processes information based on operational or programming instructions.

[0034] The memory 124 may be a single memory device or a plurality of memory devices. Such a memory device may include a read only memory device, random access memory device, floppy disk, hard drive memory, or any device that stores digital information. Note that when the processing module 122 has one or more of its functions performed by a state machine or logic circuitry, the memory containing the corresponding operational instructions is embedded within the state machine or logic circuitry.

[0035] The memory 124 stores programming or operational instructions that, when executed by the processing module 122, cause the processing module 122 to perform at least a portion of the steps of the method illustrated in Figure 6. Note that the multicast distribution processor 120 may implement some of the functions of the method of Figure 6 through the use of software stored in the memory 124, whereas other portions of the method of Figure 6 may be implemented using hardware or circuitry included within the multicast distribution processor 120. Thus, in some embodiments, a mix of hardware and software may be used to perform the method illustrated in Figure 6.

[0036] Figure 6 illustrates a method for controlling multicast groups subscriptions. The multicast groups associated with the method of Figure 6 may include groups such as video programming information, audio programming information and text programming information. The video programming information may be en-

coded in a video encoding format such as the MPEG standard. The method of Figure 6 may be used in a router that utilizes a communication link of limited bandwidth to provide the multicast groups, or channels, to a plurality of hosts.

5 [0037] The method of Figure 6 begins at step 102 where a group leave request is received from a first host of the plurality of hosts supported. The group leave request received at step 102 corresponds to a first selected group of a plurality of multicast groups, where the first host is included in a set of hosts supported along a connection. Such a connection may be maintained across the communication link of limited bandwidth as described earlier. At step 104, a group specific query

10 15 corresponding to the first selected group is issued to the set of hosts on the connection.

[0038] Typically, the group specific query includes a response time parameter. The response time parameter included in the group specific query determines a time period after issuance of the group specific query in which a host response is accepted. Thus, the response time parameter dictates to the hosts the time period within which they may respond to request that termination of support of a particular channel does not occur.

20 25 30 [0039] A query interval parameter, or timer, determines temporal spacing between group specific queries when a plurality of group specific queries are issued in response to the group leave request. Thus, the initial group specific query will be issued a short time after the group leave request is received. The query interval parameter determines when a subsequent group specific query will be issued assuming that a positive response is not received to the initial group specific query before that time.

35 [0040] In prior art IGMP systems, the group specific query interval parameter and the group specific response time parameter were combined in a single "Last Member Query Interval" parameter that allowed hosts to respond at any time between group specific queries.

40 45 50 For example, in such prior art systems, if the spacing between group specific queries was one second, a host could respond at any time within that one-second period and request that support of the group pending termination be maintained. In such an example, the time at which a host provided such a response was based on a pseudorandom delay within a range of 0-1 second. During this time period, group join requests may be received that could result in premature termination of the group for which group specific query has been issued. Therefore, allowing hosts a long response period can result in temporary termination of groups that is undesirable. Although faster responses can be solicited from the hosts by setting the "Last Member Query Interval" to a smaller interval, this results in group specific queries being generated much more frequently than is appropriate.

55 [0041] By separating the "Last Member Query Interval" of prior art IGMP systems into independently configured query interval and response time parameters,

responses from hosts can be forced to occur within a much shorter time period after issuance of a group specific query. For example, the query interval parameter may be set at one second, while the response time parameter is set to one-tenth of a second. This would force hosts to respond within one-tenth of a second while maintaining the temporal spacing of group specific queries to a reasonable level.

[0042] In order to ensure that group leave requests are not lost in transit resulting in continued support of unwanted groups, when a host issues a group leave request, the host may start a timer or record a time stamp corresponding to the time the group leave request was issued. If a group specific query corresponding to the group leave request is not received by the host within a selected time period, an additional group leave request may be issued. The selected time period may be configured based on a time period parameter setting. Issuance of additional group leave requests may be repeated a number of times up to a maximum number determined by an additional group leave request parameter that can be configured to suit the needs of the particular system in which the method is employed.

[0043] At step 106, the first selected group is added to a membership verification set of groups as a result of the issuance of the group specific query. The membership verification set of groups includes groups of the plurality of multicast groups that have currently issued groups specific queries. Thus, groups included in the membership verification set of groups are groups that are pending termination, and which will be terminated if their querying processes expire before a positive response to a corresponding group specific query is received.

[0044] While waiting for a positive response for the group specific query issued in response to the group leave request from the first host, group join requests (membership reports) may be received. At step 107, a group join request corresponding to a second selected group of the plurality of multicast groups is received via a membership report from a second host of the set of hosts. In some embodiments, processing of group join requests after issuance of a group specific query may be delayed by a predetermined time period in order to allow hosts to respond to the group specific query. This delay prevents interruption of service to hosts when a number of hosts are receiving the same multicast channel and one of those hosts requests a new channel very quickly after sending a group leave request corresponding to the multicast channel, which might occur in a channel changing scenario. The predetermined time period during which processing of group join requests may be configurable to suit the needs of a particular multicast system. Note that the predetermined time period may be based on the response time parameter in the system in order to limit the delay incurred in processing group join requests. If no response is received to the group specific query during the predetermined time period dur-

ing which processing of any received group join requests is delayed, such join requests are processed once the predetermined time period has expired.

At step 108, it is determined if bandwidth optimization is enabled. The inclusion of step 108 allows the optimization features described herein to be enabled or disabled. If bandwidth optimization is disabled, the method proceeds to step 124 and normal IGMP processing is followed. If bandwidth optimization is determined to be enabled at step 108, the method proceeds to step 109 where it is determined if bandwidth comparison is enabled. If it is not, the method proceeds to step 110 where service for all of the groups in the membership verification set is terminated prior to adding service for the second selected group at step 124.

[0045] Thus, in one embodiment of the invention, all of the groups included in the membership verification set of groups may simply be terminated or disconnected when a new group join request is received. This provides a simple and easy to implement technique that only terminates groups prematurely when a join request is received. Enabling bandwidth comparison allows for selective termination of groups to enable join requests to be serviced, which further enhances the efficiency with which the available bandwidth is utilized. If bandwidth comparison is determined to be enabled at step 109, the method proceeds to step 111.

[0046] At step 111 it is determined whether or not there is adequate bandwidth to support the second selected group without terminating any currently supported groups. If it is determined at step 111 that adequate bandwidth is available for supporting the second selected group, the method proceeds to step 124 where the second group is added to the set of groups supported along the connection.

[0047] If it is determined at step 111 that adequate bandwidth for supporting the second selected group is not currently available, the method proceeds to step 112. At step 112 it is determined if there are groups in the membership verification set that can be terminated to provide enough bandwidth for the second selected group to be added. If there are groups in the membership verification set that can be terminated in order to make enough bandwidth available, the method proceeds to step 114. Otherwise, the method proceeds to step 116.

[0048] At step 114, at least one termination group is selected from the membership verification set of groups. As was described earlier with respect to Figures 1-4, the selection of the group, or groups to be terminated may be based on host identities corresponding to group leave requests that caused groups to be included in the membership verification set of groups, a best fit comparison between bandwidth usage of groups in the membership verification set of groups and the bandwidth requirements of the second selected group, or some other type of prioritization scheme that prioritizes groups in the membership verification set of groups

based on parameters such as group data content, previous usage characteristics, etc. An example prioritization scheme may maintain time stamp data for when a group is added to the membership verification set such that those that have been there the longest are terminated first. If hosts are provided with a short time in which to respond to group specific queries, this example prioritization scheme is further enhanced. In another embodiment selection of the at least one termination group includes selecting a particular group included in the membership verification set that was placed in the membership verification set due to a group leave request issued by a particular host which also issued a group join request that initiated support of the particular group by the connection. Thus, if a host request to join a new group and has also requested to leave another group, the group that that host has requested to leave may be selected as the termination group. After step 114, the method proceeds to step 122.

[0049] At step 116, it is determined if the system is configured to reject join requests when adequate bandwidth cannot be made available through the termination of groups in the membership verification set. This may be determined via a configuration parameter that makes this a configurable option in the system. If the configuration parameter indicates that such join requests should not be acted upon when the bandwidth cannot be made available through the termination of groups in the membership verification set, the method proceeds to step 118 where the join request is rejected. Rejection of the join request may or may not include notifying the host that issued the join request, and such notification to the host may include an indication that the request was rejected because bandwidth was not available. In other embodiments, join requests that may not be serviced immediately because of lack of bandwidth may be queued such that they can be processed at a subsequent point in time when adequate bandwidth becomes available.

[0050] Note that the method may not include this configuration parameter such that the option to reject join requests may be fixed in one state or the other. Thus, a simplified version of the method illustrated may not include a step such as step 116 and would instead include one of the two possible paths that can be taken based on the determination performed at step 116.

[0051] If the system is configured such that new join requests are not rejected, the method proceeds from step 116 to 120. At step 120, at least one termination group is selected from the set of groups that are currently being supported. Thus, even though a group is not pending termination (is not included in the membership verification set) it may be selected for termination. If there are some groups included in the membership verification set that will provide some bandwidth if terminated (but not enough to support the second group), these groups may be selected as termination groups at step 114 along with at least one group not in the membership

verification set. Thus, enough groups are selected as termination groups at step 120 such that when they are terminated, adequate bandwidth will be available for the second selected group.

5 [0052] The selection of termination groups at step 120 may be advantageous as it relies on recent host requests to determine which groups are supported. In the case where a group leave request corresponding to a currently supported group is lost, enabling the termination of groups not included in the membership verification set ensures that group join requests will not be rejected while the group that should have been terminated is allowed to continue to consume bandwidth. As was described above with respect to step 114, the selection

10 of the group, or groups to be terminated may be based on a variety of selection parameters. After step 120, the method proceeds to step 122.

[0053] At step 122, the termination groups selected at either step 112 or 120 are terminated. Termination of a group implies that support of the group over the connection no longer exists. As such, the bandwidth utilized by these groups that have now been terminated is made available. Because the groups for termination were selected such that an adequate amount of bandwidth

15 would be available for supporting the second selected group, the method can proceed to step 124 where the second selected group is added to the set of groups supported by the particular connection.

[0054] By utilizing the method of Figure 6, the control

20 of multicast group subscriptions in a multicast distribution circuit can be performed in a manner that maximizes the efficient use of the bandwidth available in the system. Such a method is advantageous over prior art systems in that it does not require premature termination of

25 groups, or channels, pending termination unless the bandwidth limitations of the system so dictate. When premature termination of one or more groups is required, those groups are selected based on a prioritization scheme that ensures that adequate bandwidth is made available while attempting to minimize any adverse effects resulting from the premature termination of certain groups.

[0055] It should be understood that the implementation of variations and modifications of the invention in its **30** various aspects should be apparent to those of ordinary skill in the art, and that the invention is not limited to the specific embodiments described. It is therefore contemplated to cover by the present invention any and all modifications, variations, or equivalents that fall within the spirit and scope of the basic underlying principles disclosed and claimed herein.

Claims

55

1. A method for controlling multicast group subscriptions, comprising:

receiving a group leave request from a first host, wherein the group leave request corresponds to a first selected group of a plurality of multicast groups, wherein the first host is included in a set of hosts supported along a connection;

issuing at least one group specific query to the set of hosts, wherein the at least one group specific query corresponds to the first selected group, wherein the first selected group is added to a membership verification set of groups as a result of the at least one group specific query, wherein the membership verification set of groups includes groups of the plurality of multicast groups that have currently issued group specific queries:

while waiting for a response to the at least one group specific query:

receiving a group join request from a second host in the set of hosts, wherein the group join request corresponds to a second selected group of the plurality of multicast groups:

when bandwidth along the connection is available to support bandwidth requirements of the second selected group, adding the second selected group to a set of groups supported by the connection; and

when bandwidth along the connection is not available to support the bandwidth requirements of the second selected group:

selecting at least one termination group from the membership verification set of groups;

terminating support of the at least one termination group such that available bandwidth along the connection is increased to meet the bandwidth requirements of the second selected group, wherein terminating support of the at least one termination group removes the at least one termination group from the set of groups supported by the connection; and

adding the second selected group to the set of groups supported by the connection.

2. The method of claim 1, wherein receiving a group join request further comprises delaying processing.

of the group join request for a predetermined time period following issuance of a first group specific query.

- 5 3. The method of claim 1, wherein selecting the at least one termination group further comprises selecting the at least one termination group based on host identities of group leave requests corresponding to groups in the membership verification set of groups.
- 10 4. The method of claim 3, wherein when identity of the first host matches identity of the second host, the first selected group is preferentially selected as a termination group.
- 15 5. The method of claim 1, wherein selection of the at least one termination group includes selecting a particular group included in the membership verification set that was placed in the membership verification set due to a group leave request issued by a particular host which also issued a group join request that initiated support of the particular group by the connection.
- 20 6. The method of claim 1, wherein selecting the at least one termination group further comprises selecting the at least one termination group based on a best fit comparison between bandwidth usage of groups in the membership verification set of groups and the bandwidth requirements of the second selected group.
- 25 7. The method of claim 1, wherein selecting the at least one termination group further comprises selecting the at least one termination group based on a prioritization scheme that prioritizes groups in the membership verification set of groups for termination.
- 30 8. The method of claim 7, wherein the prioritization scheme is configured based on previous usage characteristics of each of the plurality of multicast groups.
- 35 9. The method of claim 7, wherein the prioritization scheme is configured based on data content included in each of the plurality of multicast groups.
- 40 10. The method of claim 1, wherein selecting the at least one termination group further comprises selecting the at least one termination group based on duration of time spent by each group in the membership verification set.
- 45 11. The method of claim 1, wherein selecting the at least one termination group further comprises selecting all of the groups included in the membership

- verification set of groups as termination groups.
12. The method of claim 1, wherein each group specific query includes a response time parameter, wherein the response time parameter determines a time period after issuance of the group specific query within which a host response is accepted, wherein a query interval parameter determines temporal spacing between group specific queries when a plurality of group specific queries are issued in response to the group leave request. 5
13. The method of claim 1, wherein data streams associated with at least a portion of the plurality of multicast groups include video data. 10
14. The method of claim 13, wherein data streams associated with at least a portion of the plurality of multicast groups include MPEG data. 15
15. A multicast distribution circuit, comprising:
 a communication link;
 a plurality of hosts operably coupled to the communication link; and
 a router that includes a port, wherein the port is operably coupled to the communication link, wherein the router receives data corresponding to a plurality of multicast groups and provides a selected set of the plurality of multicast groups to the plurality of hosts via the communication link, 20
 25
 30
 35
 40
 45
 50
 wherein, when a first host of the plurality of hosts issues a group leave request corresponding to a first selected group in the selected set, the router adds the first selected group to a set of groups pending termination and issues at least one group specific query to the plurality of hosts, wherein while the router is waiting for a response to the at least one group specific query, when a second host of the plurality of hosts issues a group join request that corresponds to a second selected group of the plurality of multicast groups and available bandwidth of the communication link cannot support bandwidth requirements of the second selected group, the router selects at least one termination group from the set of groups pending termination, wherein the at least one termination group is removed from the selected set such that the available bandwidth of the communication link is increased to meet the bandwidth requirements of the second selected group, wherein when the available bandwidth of the communication link can support the second selected multicast group, the second selected multicast group is added to the corresponding selected set for the communication link.
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95
 100
 105
 110
 115
 120
 125
 130
 135
 140
 145
 150
 155
 160
 165
 170
 175
 180
 185
 190
 195
 200
 205
 210
 215
 220
 225
 230
 235
 240
 245
 250
 255
 260
 265
 270
 275
 280
 285
 290
 295
 300
 305
 310
 315
 320
 325
 330
 335
 340
 345
 350
 355
 360
 365
 370
 375
 380
 385
 390
 395
 400
 405
 410
 415
 420
 425
 430
 435
 440
 445
 450
 455
 460
 465
 470
 475
 480
 485
 490
 495
 500
 505
 510
 515
 520
 525
 530
 535
 540
 545
 550
 555
 560
 565
 570
 575
 580
 585
 590
 595
 600
 605
 610
 615
 620
 625
 630
 635
 640
 645
 650
 655
 660
 665
 670
 675
 680
 685
 690
 695
 700
 705
 710
 715
 720
 725
 730
 735
 740
 745
 750
 755
 760
 765
 770
 775
 780
 785
 790
 795
 800
 805
 810
 815
 820
 825
 830
 835
 840
 845
 850
 855
 860
 865
 870
 875
 880
 885
 890
 895
 900
 905
 910
 915
 920
 925
 930
 935
 940
 945
 950
 955
 960
 965
 970
 975
 980
 985
 990
 995
 1000
 1005
 1010
 1015
 1020
 1025
 1030
 1035
 1040
 1045
 1050
 1055
 1060
 1065
 1070
 1075
 1080
 1085
 1090
 1095
 1100
 1105
 1110
 1115
 1120
 1125
 1130
 1135
 1140
 1145
 1150
 1155
 1160
 1165
 1170
 1175
 1180
 1185
 1190
 1195
 1200
 1205
 1210
 1215
 1220
 1225
 1230
 1235
 1240
 1245
 1250
 1255
 1260
 1265
 1270
 1275
 1280
 1285
 1290
 1295
 1300
 1305
 1310
 1315
 1320
 1325
 1330
 1335
 1340
 1345
 1350
 1355
 1360
 1365
 1370
 1375
 1380
 1385
 1390
 1395
 1400
 1405
 1410
 1415
 1420
 1425
 1430
 1435
 1440
 1445
 1450
 1455
 1460
 1465
 1470
 1475
 1480
 1485
 1490
 1495
 1500
 1505
 1510
 1515
 1520
 1525
 1530
 1535
 1540
 1545
 1550
 1555
 1560
 1565
 1570
 1575
 1580
 1585
 1590
 1595
 1600
 1605
 1610
 1615
 1620
 1625
 1630
 1635
 1640
 1645
 1650
 1655
 1660
 1665
 1670
 1675
 1680
 1685
 1690
 1695
 1700
 1705
 1710
 1715
 1720
 1725
 1730
 1735
 1740
 1745
 1750
 1755
 1760
 1765
 1770
 1775
 1780
 1785
 1790
 1795
 1800
 1805
 1810
 1815
 1820
 1825
 1830
 1835
 1840
 1845
 1850
 1855
 1860
 1865
 1870
 1875
 1880
 1885
 1890
 1895
 1900
 1905
 1910
 1915
 1920
 1925
 1930
 1935
 1940
 1945
 1950
 1955
 1960
 1965
 1970
 1975
 1980
 1985
 1990
 1995
 2000
 2005
 2010
 2015
 2020
 2025
 2030
 2035
 2040
 2045
 2050
 2055
 2060
 2065
 2070
 2075
 2080
 2085
 2090
 2095
 2100
 2105
 2110
 2115
 2120
 2125
 2130
 2135
 2140
 2145
 2150
 2155
 2160
 2165
 2170
 2175
 2180
 2185
 2190
 2195
 2200
 2205
 2210
 2215
 2220
 2225
 2230
 2235
 2240
 2245
 2250
 2255
 2260
 2265
 2270
 2275
 2280
 2285
 2290
 2295
 2300
 2305
 2310
 2315
 2320
 2325
 2330
 2335
 2340
 2345
 2350
 2355
 2360
 2365
 2370
 2375
 2380
 2385
 2390
 2395
 2400
 2405
 2410
 2415
 2420
 2425
 2430
 2435
 2440
 2445
 2450
 2455
 2460
 2465
 2470
 2475
 2480
 2485
 2490
 2495
 2500
 2505
 2510
 2515
 2520
 2525
 2530
 2535
 2540
 2545
 2550
 2555
 2560
 2565
 2570
 2575
 2580
 2585
 2590
 2595
 2600
 2605
 2610
 2615
 2620
 2625
 2630
 2635
 2640
 2645
 2650
 2655
 2660
 2665
 2670
 2675
 2680
 2685
 2690
 2695
 2700
 2705
 2710
 2715
 2720
 2725
 2730
 2735
 2740
 2745
 2750
 2755
 2760
 2765
 2770
 2775
 2780
 2785
 2790
 2795
 2800
 2805
 2810
 2815
 2820
 2825
 2830
 2835
 2840
 2845
 2850
 2855
 2860
 2865
 2870
 2875
 2880
 2885
 2890
 2895
 2900
 2905
 2910
 2915
 2920
 2925
 2930
 2935
 2940
 2945
 2950
 2955
 2960
 2965
 2970
 2975
 2980
 2985
 2990
 2995
 3000
 3005
 3010
 3015
 3020
 3025
 3030
 3035
 3040
 3045
 3050
 3055
 3060
 3065
 3070
 3075
 3080
 3085
 3090
 3095
 3100
 3105
 3110
 3115
 3120
 3125
 3130
 3135
 3140
 3145
 3150
 3155
 3160
 3165
 3170
 3175
 3180
 3185
 3190
 3195
 3200
 3205
 3210
 3215
 3220
 3225
 3230
 3235
 3240
 3245
 3250
 3255
 3260
 3265
 3270
 3275
 3280
 3285
 3290
 3295
 3300
 3305
 3310
 3315
 3320
 3325
 3330
 3335
 3340
 3345
 3350
 3355
 3360
 3365
 3370
 3375
 3380
 3385
 3390
 3395
 3400
 3405
 3410
 3415
 3420
 3425
 3430
 3435
 3440
 3445
 3450
 3455
 3460
 3465
 3470
 3475
 3480
 3485
 3490
 3495
 3500
 3505
 3510
 3515
 3520
 3525
 3530
 3535
 3540
 3545
 3550
 3555
 3560
 3565
 3570
 3575
 3580
 3585
 3590
 3595
 3600
 3605
 3610
 3615
 3620
 3625
 3630
 3635
 3640
 3645
 3650
 3655
 3660
 3665
 3670
 3675
 3680
 3685
 3690
 3695
 3700
 3705
 3710
 3715
 3720
 3725
 3730
 3735
 3740
 3745
 3750
 3755
 3760
 3765
 3770
 3775
 3780
 3785
 3790
 3795
 3800
 3805
 3810
 3815
 3820
 3825
 3830
 3835
 3840
 3845
 3850
 3855
 3860
 3865
 3870
 3875
 3880
 3885
 3890
 3895
 3900
 3905
 3910
 3915
 3920
 3925
 3930
 3935
 3940
 3945
 3950
 3955
 3960
 3965
 3970
 3975
 3980
 3985
 3990
 3995
 4000
 4005
 4010
 4015
 4020
 4025
 4030
 4035
 4040
 4045
 4050
 4055
 4060
 4065
 4070
 4075
 4080
 4085
 4090
 4095
 4100
 4105
 4110
 4115
 4120
 4125
 4130
 4135
 4140
 4145
 4150
 4155
 4160
 4165
 4170
 4175
 4180
 4185
 4190
 4195
 4200
 4205
 4210
 4215
 4220
 4225
 4230
 4235
 4240
 4245
 4250
 4255
 4260
 4265
 4270
 4275
 4280
 4285
 4290
 4295
 4300
 4305
 4310
 4315
 4320
 4325
 4330
 4335
 4340
 4345
 4350
 4355
 4360
 4365
 4370
 4375
 4380
 4385
 4390
 4395
 4400
 4405
 4410
 4415
 4420
 4425
 4430
 4435
 4440
 4445
 4450
 4455
 4460
 4465
 4470
 4475
 4480
 4485
 4490
 4495
 4500
 4505
 4510
 4515
 4520
 4525
 4530
 4535
 4540
 4545
 4550
 4555
 4560
 4565
 4570
 4575
 4580
 4585
 4590
 4595
 4600
 4605
 4610
 4615
 4620
 4625
 4630
 4635
 4640
 4645
 4650
 4655
 4660
 4665
 4670
 4675
 4680
 4685
 4690
 4695
 4700
 4705
 4710
 4715
 4720
 4725
 4730
 4735
 4740
 4745
 4750
 4755
 4760
 4765
 4770
 4775
 4780
 4785
 4790
 4795
 4800
 4805
 4810
 4815
 4820
 4825
 4830
 4835
 4840
 4845
 4850
 4855
 4860
 4865
 4870
 4875
 4880
 4885
 4890
 4895
 4900
 4905
 4910
 4915
 4920
 4925
 4930
 4935
 4940
 4945
 4950
 4955
 4960
 4965
 4970
 4975
 4980
 4985
 4990
 4995
 5000
 5005
 5010
 5015
 5020
 5025
 5030
 5035
 5040
 5045
 5050
 5055
 5060
 5065
 5070
 5075
 5080
 5085
 5090
 5095
 5100
 5105
 5110
 5115
 5120
 5125
 5130
 5135
 5140
 5145
 5150
 5155
 5160
 5165
 5170
 5175
 5180
 5185
 5190
 5195
 5200
 5205
 5210
 5215
 5220
 5225
 5230
 5235
 5240
 5245
 5250
 5255
 5260
 5265
 5270
 5275
 5280
 5285
 5290
 5295
 5300
 5305
 5310
 5315
 5320
 5325
 5330
 5335
 5340
 5345
 5350
 5355
 5360
 5365
 5370
 5375
 5380
 5385
 5390
 5395
 5400
 5405
 5410
 5415
 5420
 5425
 5430
 5435
 5440
 5445
 5450
 5455
 5460
 5465
 5470
 5475
 5480
 5485
 5490
 5495
 5500
 5505
 5510
 5515
 5520
 5525
 5530
 5535
 5540
 5545
 5550
 5555
 5560
 5565
 5570
 5575
 5580
 5585
 5590
 5595
 5600
 5605
 5610
 5615
 5620
 5625
 5630
 5635
 5640
 5645
 5650
 5655
 5660
 5665
 5670
 5675
 5680
 5685
 5690
 5695
 5700
 5705
 5710
 5715
 5720
 5725
 5730
 5735
 5740
 5745
 5750
 5755
 5760
 5765
 5770
 5775
 5780
 5785
 5790
 5795
 5800
 5805
 5810
 5815
 5820
 5825
 5830
 5835
 5840
 5845
 5850
 5855
 5860
 5865
 5870
 5875
 5880
 5885
 5890
 5895
 5900
 5905
 5910
 5915
 5920
 5925
 5930
 5935
 5940
 5945
 5950
 5955
 5960
 5965
 5970
 5975
 5980
 5985
 5990
 5995
 6000
 6005
 6010
 6015
 6020
 6025
 6030
 6035
 6040
 6045
 6050
 6055
 6060
 6065
 6070
 6075
 6080
 6085
 6090
 6095
 6100
 6105
 6110
 6115
 6120
 6125
 6130
 6135
 6140
 6145
 6150
 6155
 6160
 6165
 6170
 6175
 6180
 6185
 6190
 6195
 6200
 6205
 6210
 6215
 6220
 6225
 6230
 6235
 6240
 6245
 6250
 6255
 6260
 6265
 6270
 6275
 6280
 6285
 6290
 6295
 6300
 6305
 6310
 6315
 6320
 6325
 6330
 6335
 6340
 6345
 6350
 6355
 6360
 6365
 6370
 6375
 6380
 6385
 6390
 6395
 6400
 6405
 6410
 6415
 6420
 6425
 6430
 6435
 6440
 6445
 6450
 6455
 6460
 6465
 6470
 6475
 6480
 6485
 6490
 6495
 6500
 6505
 6510
 6515
 6520
 6525
 6530
 6535
 6540
 6545
 6550
 6555
 6560
 6565
 6570
 6575
 6580
 6585
 6590
 6595
 6600
 6605
 6610
 6615
 6620
 6625
 6630
 6635
 6640
 6645
 6650
 6655
 6660
 6665
 6670
 6675
 6680
 6685
 6690
 6695
 6700
 6705
 6710
 6715
 6720
 6725
 6730
 6735
 6740
 6745
 6750
 6755
 6760
 6765
 6770
 6775
 6780
 6785
 6790
 6795
 6800
 6805
 6810
 6815
 6820
 6825
 6830
 6835
 6840
 6845
 6850
 6855
 6860
 6865
 6870
 6875
 6880
 6885

19. The circuit of claim 15, wherein data for at least a portion of the multicast groups includes video data.
20. The circuit of claim 19, wherein the video data is MPEG encoded video data. 5
21. The circuit of claim 15, wherein when identity of the first host matches identity of the second host, the router preferentially selects the first selected group as a termination group. 10
22. The circuit of claim 15, wherein the router delays processing of the group join request for a predetermined time period after issuing a first group specific query corresponding to the group leave request for the first selected group. 15
23. The circuit of claim 15, wherein the router selects the at least one termination group based on a best fit comparison between bandwidth usage of groups in the set of groups pending termination and the bandwidth requirements of the second selected group. 20
24. The circuit of claim 15, wherein the router issues group specific queries to the plurality of hosts such that the group specific query includes a response time parameter in which a host response is accepted, and wherein group specific queries are temporally spaced based on a query interval timer. 25
25. A multicast distribution processor, comprising:
a processing module; and
memory operably coupled to the processing module, wherein the memory stores operating instructions that, when executed by the processing module, cause the processing module to perform a set of functions that includes:
receiving a group leave request from a first host, wherein the group leave request corresponds to a first selected group of a plurality of multicast groups, wherein the first host is included in a set of hosts supported along a connection; 35
issuing at least one group specific query to the set of hosts, wherein the at least one group specific query corresponds to the first selected group, wherein the first selected group is added to a membership verification set of groups as a result of the at least one group specific query, wherein the membership verification set of groups includes groups of the plurality of multicast groups that have currently issued group 40
specific queries;
while waiting for a response to the at least one group specific query:
receiving a group join request from a second host in the set of hosts, wherein the group join request corresponds to a second selected group of the plurality of multicast groups; 45
when bandwidth along the connection is available to support bandwidth requirements of the second selected group, adding the second selected group to a set of groups supported by the connection;
when bandwidth along the connection is not available to support the bandwidth requirements of the second selected group:
selecting at least one termination group from the membership verification set of groups;
terminating support of the at least one termination group such that available bandwidth along the connection is increased to meet the bandwidth requirements of the second selected group, wherein terminating support of the at least one termination group removes the at least one termination group from the set of groups supported by the connection; and 50
adding the second selected group to the set of groups supported by the connection.
26. A method for controlling multicast group subscriptions, comprising:
receiving a group join request that corresponds to a selected group of a plurality of multicast groups;
when bandwidth along a connection is available to support bandwidth requirements of the selected group, adding the selected group to a set of groups supported by the connection;
when bandwidth along the connection is not available to support the bandwidth re-

- uirements of the selected group:
- when a membership verification set of groups, which includes groups pending termination, includes groups pending termination that, if terminated, would enable the connection to support the bandwidth requirements of the selected group, terminating at least a portion of the groups pending termination such that adequate bandwidth is made available on the connection to meet the bandwidth requirements of the second group; and
- adding the selected group to the set of groups supported by the connection.
27. The method of claim 26 further comprises, when the membership verification set of groups does not include groups that, if terminated, would enable the connection to support the bandwidth requirements of the selected group, rejecting the group join request when a configuration parameter indicates that group join requests can be rejected.
28. The method of claim 26 further comprises, when the membership verification set of groups does not include groups that, if terminated, would enable the connection to support the bandwidth requirements of the selected group, queuing the group join request for subsequent servicing when bandwidth becomes available.
29. The method of claim 26 further comprises, when the membership verification set of groups does not include groups that, if terminated, would enable the connection to support the bandwidth requirements of the selected group:
- selecting at least one termination group from the set of groups supported by the connection that is not included in the membership verification set of groups;
- terminating the at least one termination group and groups included in the membership verification set of groups such that adequate bandwidth is made available on the connection to meet the bandwidth requirements of the second group; and
- adding the selected group to the set of groups supported by the connection.
30. A method for requesting termination of support of a group in a multicast system, comprising:
- issuing a group leave request corresponding to the group to a router that controls support of groups in the multicast system;
- determining if a group specific query is issued within a selected time period by the router in response to the group leave request; and
- when it is determined that the group specific query has not been issued within the selected time period, issuing an additional group leave request corresponding to the group.
31. The method of claim 30, wherein the selected time period is determined based on a time period parameter setting.
32. The method of claim 30 further comprises continuing to periodically issue additional group leave requests until a group specific query is received in response to one of the group leave requests.
33. The method of claim 32, wherein a maximum number of additional group leave requests is determined based on an additional group leave request parameter setting.

Figure 1.

Group Table
70

Channels	Type	Bandwidth Requirement
A	Video	10
B	Video	10
C	Video	10
D	Video	15
E	Audio	3
F	Audio	3
G	Text	1
H	Text	2

Selected Set 80		
A	Video	10
C	Video	10
E	Audio	3
G	Text	1

Membership Verification Set 90		
E	Audio	3
G	Text	1

Figure 2.

Selected Set 80		
B	Video	10
C	Video	10
E	Audio	3
G	Text	1

Membership Verification Set 90		
E	Audio	3
G	Text	1

Figure 3.

Selected Set 80		
A	Video	10
B	Video	10
C	Video	10

Membership Verification Set 90		
A	Video	10

Figure 4.

Figure 5.

Figure 6.