Lab 7 Preparation

Lab 7 Components

Part I: Create a memory unit

Part II: Interface with the RGB Video

Part III: RGB Video animation (bonus)

Part I: Memory Unit

- Creating a mini-RAM unit.
- Make use of the built-in RAM
 - Follow lab instructions to create
 a 4-bit RAM unit with 32 words.
 - Fill the RAM with values 0-F.
- Once completed, connect this RAM to the HEX display.

Part I: Read & Write Timing

Read:

 Note slight delay after clock signal, before data appears.

Write:

 Note that only D1 and D2 are written (because of the WriteEn signal).

Part I: Filling memory

Connect address register --- and data register to RAM.

Fill all RAM locations with increasing values, starting at 0 at address 00000.

Connect output to 7-segment display.

Location

(0,0)

- The RGB Video component models the VGA display in the lab workstations.
- For this part, given input coordinates X and Y, draw a 16x16 box of coloured pixels, using X and Y as the top left corner of the box.

- The RGB Video component has 6 inputs:
 - Reset
 - Clock
 - Write Enable
 - Like lifting/dropping pen on paper.
 - X Coordinate
 - Y Coordinate
 - Data in 888 RGB (24 bit) format
 - Three sections of 8 bits, representing the RGB values for the pixel (see next slide for more detail)

- Light colours are additive.
 - As opposed to paint, which is subtractive.
 - Light is made of red, green and blue components.
 - White light is the combination of all three.
- To create a colour, set the 8-bit values for the red, green and blue components and concatenate them into a 24-bit value.
 - Black = 0×000000 , White = $0 \times FFFFFF$

- Circuit components needed:
 - RGB Video
 - built into Logisim, check the handout for input details
 - Datapath
 - Takes in:
 - X and Y (through switches)
 - control signals (reset, clock, enable etc.)
 - FSM:
 - Controls datapath to load X and Y values, and iterate through the pixel locations that need to be updated (relative to X and Y).

Parts I & II: Hints

- Play around with the memory and RGB Video components to verify that they work.
 - E.g. Draw a single pixel on the RGB Video to start.
- The "datapath" doesn't need to look like Lab 6.
 - Focus on the operations performed on X and Y.
- Consider using counters to store the offsets from X and Y that need to be displayed.
 - Maybe a single counter for both?
 - Counters can be part of your FSM as well.
- It's Lab 7. You have full freedom to implement this however you like ©

Part III: Animation (bonus)

- Note: This part is optional, but can be done for bonus marks in the course.
- Animate a box by drawing it, then waiting, then drawing another at a different location, then waiting...
- Many projects will use animation in some form, so you should try this part out!
 - Also...bonus marks! ©