Algebra Linear - Lista de Exercícios 9

Yuri F. Saporito

- 1. Seja B uma matriz 3×3 com autovalores $0, 1 \in 2$. Com essa informação, ache:
 - (a) o posto de $B; \rightarrow \rho$ purson mo mucleo de B
 - (b) o determinante de B^TB ;
 - (c) os autovalores de B^TB ; \Rightarrow mão e positival salur com vertiça quais rão . (d) os autovalores de $(B^2+I)^{-1}$ mas doi para salur algume cario.
- 2. Ache os autovalores das seguintes matrizes $-\lambda \Gamma$ \neq

$$\text{(a) } A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}; \text{ (b) } B = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 \\ 3 & 0 & 0 \end{bmatrix}; \text{ (c) } C = \begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix}.$$

3. Descreva todas as matrizes S que diagonalizam as matrizes A e A^{-1} :

$$A = G \Lambda G^{1} \qquad G \circ G^{-1} \cap G \circ \qquad A = \begin{bmatrix} 0 & 4 \\ 1 & 2 \end{bmatrix}.$$

4. Ache Λ e S que diagonalizem

- 5. Seja $Q(\theta)$ a matriz de rotação do ângulo θ em \mathbb{R}^2 :

$$Q(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}. \text{ at bi, and } i^2 = -1.$$

- Ache os autovalores e autovetores de $Q(\theta)$ (eles podem ser complexos)
- 6. Suponha que A e B são duas matrizes $n \times n$ com os mesmo autovalores $\lambda_1, \ldots, \lambda_n$ e os mesmos
- autovetores x_1, \ldots, x_n . Suponha ainda que $\underbrace{x_1, \ldots, x_n}$ são LI. Prove que A = B.

 7. Seja $Q(\theta)$ como na Questão 5. Diagonalize $Q(\theta)$ e mostre que

$$Q(\theta)^n = Q(n\theta)$$
. ($\cos \theta + i \operatorname{ren} \theta$) = $\cos (n\theta) + i \operatorname{ren} (n\theta)$.

8. Suponha que G_{k+2} é a média dos dois números anteriores G_{k+1} e G_k . Ache a matriz A que faz com

$$\begin{bmatrix} \mathbf{\phi} & \mathbf{\mathcal{V}} \\ G_{k+1} \\ G_{k+1} \end{bmatrix} = A \begin{bmatrix} G_{k+1} \\ G_{k} \end{bmatrix}.$$

- (a) Ache os autovalores e autovetores de A; (b) Ache o limite de A^n quando $n \to +\infty$; $\begin{bmatrix} G_{m+1} \\ G_m \end{bmatrix} = A^m \begin{bmatrix} G_n \\ G_m \end{bmatrix}$
- (c) Mostre que G_n converge para 2/3 quando $G_0 = 0$ e $G_1 = 1$.
- 9. Ache a solução do sistema de EDOs usando o método de diagonalização:

$$\begin{cases} u'_1(t) = 8u_1(t) + 3u_2(t), & A = 5 \text{ A } 5^{-1} \\ u'_2(t) = 2u_1(t) + 7u_2(t), & \dot{U}(\mathbf{k}) = 5 \text{ A } 5^{-1} \text{ U }(\mathbf{k}) \end{cases}$$
onde $\mathbf{U}(0) = (5, 10).$

$$\dot{\mathbf{U}}(\mathbf{k}) = \begin{bmatrix} \mathbf{u}_{\mathbf{k}}(\mathbf{k}) \\ \mathbf{u}_{\mathbf{z}}(\mathbf{k}) \end{bmatrix} \quad \dot{\mathbf{U}}(\mathbf{k}) = \mathbf{A} \quad \mathbf{U}(\mathbf{k}) \quad \mathbf{S}^{-1} \dot{\mathbf{U}}(\mathbf{k}) = \mathbf{A} \quad \mathbf{S}^{-1} \mathbf{U}(\mathbf{k})$$

$$1 \quad \mathbf{U}^{\mathbf{A} \mathbf{k}} \quad \mathbf{U}(\mathbf{k}) \quad \mathbf{U}(\mathbf{k}) = \mathbf{S}^{-1} \mathbf{U}(\mathbf{k})$$

$$\dot{\mathbf{V}}(\mathbf{k}) = \mathbf{S}^{-1} \mathbf{U}(\mathbf{k})$$

10. Seja $\mathcal{F}(\mathbb{R};\mathbb{R})$ o espaço vetorial das funções reais de uma variável real. Considere em $\mathcal{F}(\mathbb{R};\mathbb{R})$ o subespaço $S := \operatorname{Span} \left\{ e^{2x} \operatorname{sen} x, e^{2x} \operatorname{cos} x, e^{2x} \right\}.$

e o operador linear $D: S \to \overline{S}$ definido por D(f) = f'. Considere, ainda, as funções $f_1(x) = e^{2x} \operatorname{sen} x, f_2(x) = e^{2x} \operatorname{cos} x$ e $f_3(x) = e^{2x} \operatorname{em} \mathcal{F}(\mathbb{R}; \mathbb{R})$. Determine:

(a) a matriz de D em relação à base $\mathcal{B}=\{f_1,f_2,f_3\}$. Lembre-se de que, dada a base $\mathcal{B},$ podemos enxergar os elementos de como vetores em \mathbb{R}^3 . Por exemplo:

$$(1,2,3)_{\mathcal{B}} = \underbrace{f_1 + 2f_2 + 3f_3}.$$

- (b) os autovalores de D e as funções de S que são autovetores de D.
- $\begin{array}{c} D(f_1) \\ D(f_2) \\ D(f_3) \end{array}$ column der D ner bone D $\begin{array}{c} D(\alpha f_1 + b f_2 + c f_3) \\ \hline D(f_3) \end{array}$

Al; = i-esime coluer de A na loss canônica

A=5/A51 em retor na base dos retores

Conserte de rolta cospe un retor na
da base dos autoverses dos autoverses para a ba-