## Exhibit 16

Case 1:24-cv-01355-JDW Document 52-2 Filed 06/11/25 Page 2 of 145 PageID #: 4130



## (12) United States Patent Bishay et al.

## (10) Patent No.: US 12,285,261 B2

## (45) Date of Patent:

## \*Apr. 29, 2025

## (54) MOISTURE-RESISTANT ELECTROCARDIOGRAMY MONITOR

## (71) Applicant: **Bardy Diagnostics, Inc.**, Bellevue, WA (US)

## (72) Inventors: Jon Mikalson Bishay, Lexington, KY

(US); Jason Felix, Vashon Island, WA (US); Gust H. Bardy, Carnation, WA

(US)

## (73) Assignee: Bardy Diagnostics, Inc.

## (\*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 49 days.

This patent is subject to a terminal dis-

claimer.

## (21) Appl. No.: 18/318,641

## (22) Filed: **May 16, 2023**

## (65) Prior Publication Data

US 2023/0301576 A1 Sep. 28, 2023

## Related U.S. Application Data

(63) Continuation of application No. 17/959,174, filed on Oct. 3, 2022, now Pat. No. 11,653,869, which is a (Continued)

## (51) **Int. Cl.**

*A61B 5/05* (2021.01) *A61B 5/00* (2006.01)

(Continued)

## (52) **U.S. Cl.**

(Continued)

## (58) Field of Classification Search

CPC . A61B 5/04085; A61B 5/0006; A61B 5/6833; A61B 5/04087; A61B 5/04082; (Continued)

(56) References Cited

### U.S. PATENT DOCUMENTS

5,862,803 A 1/1999 Besson et al. 7,197,357 B2 3/2007 Istvan et al. (Continued)

## FOREIGN PATENT DOCUMENTS

| WO | WO 03/065926 A2   | 2 8/2003 |
|----|-------------------|----------|
| WO | WO 2008/005015 A  | 1/2008   |
| WO | WO 2010/104952 A2 | 9/2010   |

## OTHER PUBLICATIONS

Anand et al., "Design of the Multi-Sensor Monitoring in Congestive Heart Failure (MUSIC) Study: Prospective Trial to Assess the Utility of Continuous Wireless Physiologic Monitoring in Heart Failure", Journal of Cardiac Failure, vol. 17, No. 1, Jan. 1, 2011, pp. 11-16 (6 pages).

(Continued)

Primary Examiner — Joseph A Stoklosa Assistant Examiner — Brian M Antiskay (74) Attorney, Agent, or Firm — K&L Gates LLP

## (57) ABSTRACT

Physiological monitoring can be provided through a lightweight wearable monitor that includes two components, a flexible extended wear electrode patch and a reusable monitor recorder that removably snaps into a receptacle on the electrode patch. The wearable monitor sits centrally on the patient's chest along the sternum oriented top-to-bottom. The placement of the wearable monitor in a location at the sternal midline, with its unique narrow "hourglass"-like shape, significantly improves the ability of the wearable monitor to cutaneously sense cardiac electrical potential signals, particularly the P-wave and the QRS interval signals indicating ventricular activity in the ECG waveforms. In particular, the ECG electrodes on the electrode patch are tailored to be positioned axially along the midline of the sternum for capturing action potential propagation in an orientation that corresponds to the aVF lead used in a (Continued)



conventional 12-lead ECG that is used to sense positive or upright P-waves.

## 19 Claims, 15 Drawing Sheets

## Related U.S. Application Data

continuation of application No. 16/782,951, filed on Feb. 5, 2020, now Pat. No. 11,457,852, which is a continuation of application No. 16/404,562, filed on May 6, 2019, now Pat. No. 10,561,328, which is a continuation of application No. 16/174,122, filed on Oct. 29, 2018, now Pat. No. 10,278,606, which is a continuation of application No. 15/645,708, filed on Jul. 10, 2017, now Pat. No. 10,111,601, which is a continuation of application No. 14/488,230, filed on Sep. 16, 2014, now Pat. No. 9,700,227, which is a continuation-in-part of application No. 14/080,725, filed on Nov. 14, 2013, now Pat. No. 9,730,593.

- (60) Provisional application No. 61/882,403, filed on Sep. 25, 2013.
- (51) Int. Cl.

  A61B 5/0205 (2006.01)

  A61B 5/259 (2021.01)

  A61B 5/282 (2021.01)

  A61B 5/349 (2021.01)
- (58) Field of Classification Search

CPC ...... A61B 2018/00351; A61N 1/04; A61N 1/0484

USPC ..... 600/372, 382, 384, 386, 388, 390–393, 600/508–509

See application file for complete search history.

## (56) References Cited

## U.S. PATENT DOCUMENTS

| 7,206,630    | B1  | 4/2007  | Tarler          |            |
|--------------|-----|---------|-----------------|------------|
| 7,212,849    | B2  | 5/2007  | Zhang et al.    |            |
| 7,395,106    | B2  | 7/2008  | Ryu et al.      |            |
| 7,468,032    | B2  | 12/2008 | Stahmann et al. |            |
| 8,150,502    | B2  | 4/2012  | Kumar et al.    |            |
| 8,214,007    |     |         | Baker et al.    |            |
| 8,315,695    | B2  | 11/2012 | Sebelius et al. |            |
| 8,483,809    | B2  | 7/2013  | Kim et al.      |            |
| 8,538,503    | B2  | 9/2013  | Kumar et al.    |            |
| 8,611,980    | B2  | 12/2013 | Choe et al.     |            |
| 8,647,268    | B2  | 2/2014  | Tran            |            |
| 8,718,742    | B2  | 5/2014  | Beck et al.     |            |
| 8,926,509    | B2  | 1/2015  | Magar et al.    |            |
| 9,211,073    | B2  |         | Banet et al.    |            |
| 9,277,864    | B2  | 3/2016  | Yang et al.     |            |
| 9,510,755    | B2  |         | Fong et al.     |            |
| 9,669,212    | B2  | 6/2017  | Mueller et al.  |            |
| 10,327,660   | B2  | 6/2019  | Gallego et al.  |            |
| 10,413,251   | B2  | 9/2019  | Golda et al.    |            |
| 10,441,185   | B2  | 10/2019 | Rogers et al.   |            |
| 11,051,743   | B2  | 7/2021  | Felix et al.    |            |
| 11,116,447   | B2  | 9/2021  | Yang et al.     |            |
| 11,445,967   | B2  | 9/2022  | Felix et al.    |            |
| 2006/0111636 | A1* | 5/2006  | Jacober         | A61B 5/021 |
|              |     |         |                 | 600/490    |
|              |     |         |                 |            |

| Strother A61N 1/3787 | 11/2007  | A1*        | 2007/0270921 |
|----------------------|----------|------------|--------------|
| Guillory et al.      | 4/2008   | Δ1         | 2008/0091089 |
| Baker A61B 5/024     |          |            | 2008/0139953 |
|                      | 0/2008   | Al         | 2008/0139933 |
| 600/509              | (= = = = |            |              |
| Cross H01R 13/5224   | 11/2008  | Al*        | 2008/0288026 |
| 607/60               |          |            |              |
| Sterling et al.      | 3/2009   | A1         | 2009/0062670 |
|                      | 4/2009   | A1         | 2009/0099469 |
| Sonnenborg           | 7/2009   | <b>A</b> 1 | 2009/0177073 |
| Semler et al.        |          | A1         | 2009/0182204 |
| Shin et al.          |          | A1         | 2011/0009729 |
| Searle et al.        | 3/2011   | A1         | 2011/0054285 |
| Oster et al.         |          |            | 2011/0077497 |
| Crawford et al.      |          |            | 2011/0125040 |
| McGusty A61B 5/335   |          |            | 2011/0237924 |
| 600/391              |          |            |              |
| Moein et al.         | 12/2012  | A 1        | 2012/0323098 |
| Esposito             |          |            | 2013/0225967 |
| Kozin A61N 1/046     |          |            | 2014/0005737 |
|                      | 1/2014   | AI         | 2014/0003737 |
| 607/7                | 1/2015   | 4.1        | 2015/0022252 |
|                      | 1/2015   |            | 2015/0022372 |
| Felix et al.         |          |            | 2015/0087950 |
| Bay A61B 5/0533      | 9/2015   | A1*        | 2015/0250422 |
| 600/391              |          |            |              |
| Bennet et al.        | 7/2019   | <b>A</b> 1 | 2019/0223806 |

## OTHER PUBLICATIONS

Cesario et al., "Arrhythmia Detection with a Low-Profile Wireless Adherent Cardiac Monitor: Results from the Adam and Eve Studies", The Journal of Innovations in Cardiac Rhythm Management, 2 (2011) Sep. 2011, pp. 476-482, (7 pages).

Corventis Nuvant, "Nuvant Mobile Cardiac Telementry (MTC) System", Corventis, 2009, last printed Jul. 18, 2024, https://web.archive.org/web/20100127193736/http://corventis.com/AP/nuvant.asp.

Corventis Avivo, "Avivo Mobile Patient Management System", Corventis, 2008, lasted printed Jul. 18, 2024, https://web.archive.org/web/20100118155329/http://www.corventis.com/AP/avivo.asp.

IRhythm Zio XT Patch/Event Card, "Zio Patch", iRhythm, 2011, last printed Jul. 18, 2024, https://web.archive.org/web/20111017074139/http://irhythmtech.com/media/files/Z100A4020.04%20-%20ZIO%20PATCH%20DATA%20SHEET.pdf.

Bardy Diagnostics, Inc. v. Vital Connect, Inc., Defendant's Identification of Supplemental Prior Art References, C.A. No. 22-351 (CJV), May 22, 2024.

International Preliminary Report on Patentability and Written Opinion, PCT/US2019/064331, Jun. 8, 2021.

First Examination Report, Communication pursuant to Article 94(3) EPC, 19 828 053.9-1113, dated Apr. 15, 2024.

[Corrected] Chart CC-2 Invalidity Contentions: U.S. Pat. No. 11,445,967; Case No. 22-351-CJB (Delaware); Invalidity of U.S. Patent No. by U.S. Pat. Pub. No. 2011/0077497 ("Oster") and U.S. Pat. No. 11,116,447 ("Yang"); Oct. 25, 2023; 16 pages.

[Corrected] Chart C-2 Invalidity Contentions: U.S. Pat. No. 11,051,743; Case No. 22-351-CJB (Delaware); Invalidity of U.S. Pat. No. 11,051,743 by U.S. Pat. Pub. No. 2011/0077497 ("Oster") and U.S. Pat. No. 11,116,447 ("Yang"); Oct. 25, 2023; 22 pages.

Chart AA-1 Invalidity Contentions: U.S. Pat. No. 11,445,967; Case No. 22-351-CJB (Delaware); Invalidity of U.S. Pat. No. 11,445,967 by International Publication No. WO 2010/104952 to Mazar ("Mazar") and U.S. Pat. No. 11,116,447 ("Yang"); Oct. 25, 2023; 24 pages. Chart C-1 Invalidity Contentions: U.S. Pat. No. 11,051,743; Case No. 22-351-CJB (Delaware); Invalidity of U.S. Pat. No. 11,051,743 by International Publication No. WO 2010/104952 to Mazar ("Mazar") and U.S. Pat. No. 11,116,447 ("Yang"); Oct. 25, 2023; 32 pages. Chart B-7 Invalidity Contentions: U.S. Pat. No. 11,051,743 and U.S. Pat. No. 11,445,967; Case No. 22-351-CJB (Delaware); A Patch Comprising Adhered Layers; Oct. 25, 2023; 16 pages.

Chart B-6 Invalidity Contentions: U.S. Pat. No. 11,051,743 and U.S. Pat. No. 11,445,967; Case No. 22-351-CJB (Delaware); Hydrocolloid Adhesives on a Portion of the Backing; Oct. 25, 2023; 5 pages.

### (56) References Cited

### OTHER PUBLICATIONS

Chart B-5 Invalidity Contentions: U.S. Pat. No. 11,051,743 and U.S. Pat. No. 11,445,967; Case No. 22-351-CJB (Delaware); Conversion of Electrocardiogramals From One Format to Another; Oct. 25, 2023; 6 pages.

Chart B-4 Invalidity Contentions: U.S. Pat. No. 11,051,743 and U.S. Pat. No. 11,445,967; The Case No. 22-351-CJB (Delaware); Rounded Outer Edge of Backing Ends; Oct. 25, 2023; 5 pages.

Chart B-3 Invalidity Contentions: U.S. Pat. No. 11,051,743 and U.S. Pat. No. 11,445,967; Case No. 22-351-CJB (Delaware); Flexible Circuit Comprising a Pair of Circuit Traces to Couple Electrodes; Oct. 25, 2023; 8 pages.

Chart B-2 Invalidity Contentions: U.S. Pat. No. 11,051,743 and U.S. Pat. No. 11,445,967; Case No. 22-351-CJB (Delaware); An Electrocardiogramactrode on Each End of the Backing; Oct. 25, 2023; 8 pages.

Chart B-1 Invalidity Contentions: U.S. Pat. No. 11,051,743 and U.S. Pat. No. 11,445,967; Case No. 22-351-CJB (Delaware); Elongated Strip With Narrowed Midsection; Oct. 25, 2023; 8 pages.

Chart AA-10 Invalidity Contentions: U.S. Pat. No. 11,445,967; Case No. 22-351-CJB (Delaware); Invalidity of U.S. Pat. No. 11,445,967 by WO 2003/065926 ("Ozguz"); Oct. 25, 2023; 6 pages. Chart AA-9 Invalidity Contentions: U.S. Pat. No. 11,445,967; Case No. 22-351-CJB (Delaware); Invalidity of U.S. Pat. No. 11,445,967 by U.S. Pat. Pub. No. 2011/0009729 ("Shin"); Oct. 25, 2023; 6 pages.

Chart AA-8 Invalidity Contentions: U.S. Pat. No. 11,445,967; Case No. 22-351-CJB (Delaware); Invalidity of U.S. Pat. No. 11,445,967 by WO 2008/005015 ("Shennib"); Oct. 25, 2023; 6 pages.

Chart AA-7 Invalidity Contentions: U.S. Pat. No. 11,445,967; Case No. 22-351-CJB (Delaware); Invalidity of U.S. Pat. No. 11,445,967 by U.S. Pat. No. 7,206,630 ("Tarler"); Oct. 25, 2023; 7 pages.

Chart AA-6 Invalidity Contentions: U.S. Pat. No. 11,445,967; Case No. 22-351-CJB (Delaware); Invalidity of U.S. Pat. No. 11,445,967 by U.S. Pat. No. 9,669,212 ("Mueller"); Oct. 25, 2023; 6 pages. Chart AA-5 Invalidity Contentions: U.S. Pat. No. 11,445,967; Case No. 22-351-CJB (Delaware); Invalidity of U.S. Pat. No. 11,445,967 by U.S. Pat. No. 10,413,251 ("Golda"); Oct. 25, 2023; 6 pages.

Chart A-4 Invalidity Contentions: U.S. Pat. No. 11,445,967; Case No. 22-351-CJB (Delaware); Invalidity of U.S. Pat. No. 11,445,967 by U.S. Pat. Pub. No. 2011/0077497 ("Oster"); Oct. 25, 2023; 6 pages.

Chart A-3 Invalidity Contentions: U.S. Pat. No. 11,445,967; Case No. 22-351-CJB (Delaware); Invalidity of U.S. Pat. No. 11,445,967 by U.S. Pat. No. 10,327,660 ("Gallego"); Oct. 25, 2023; 7 pages. Chart AA-2 Invalidity Contentions: U.S. Pat. No. 11,445,967; Case No. 22-351-CJB (Delaware); Invalidity of U.S. Pat. No. 11,445,967 by U.S. Pat. No. 11,116,447 ("Yang"); Oct. 25, 2023; 14 pages. Chart AA-1 Invalidity Contentions: U.S. Pat. No. 11,445,967; Case No. 22-351-CJB (Delaware); Invalidity of U.S. Pat. No. 11,445,967 by International Publication No. WO 2010/104952 to Mazar ("Mazar"); Oct. 25, 2023; 13 pages.

Chart A-10 Invalidity Contentions: U.S. Pat. No. 11,051,743; Case No. 22-351-CJB (Delaware); Invalidity of U.S. Pat. No. 11,051,743 by WO 2003/065926 ("Ozguz"); Oct. 25, 2023; 12 pages.

Chart A-9 Invalidity Contentions: U.S. Pat. No. 11,051,743; Case No. 22-351-CJB (Delaware); Invalidity of U.S. Pat. No. 11,051,743 by U.S. Pat. Pub. No. 2011/0009729 ("Shin"); Oct. 25, 2023; 12 pages.

Chart A-8 Invalidity Contentions: U.S. Pat. No. 11,051,743; Case No. 22-351-CJB (Delaware); Invalidity of U.S. Pat. No. 11,051,743 by WO 2008/005015 ("Shennib"); Oct. 25, 2023; 12 pages.

Chart A-7 Invalidity Contentions: U.S. Pat. No. 11,051,743; Case No. 22-351-CJB (Delaware); Invalidity of U.S. Pat. No. 11,051,743 by U.S. Pat. No. 7,206,630 ("Tarler"); Oct. 25, 2023; 12 pages. Chart A-6 Invalidity Contentions: U.S. Pat. No. 11,051,743; Case No. 22-351-CJB (Delaware); Invalidity of U.S. Pat. No. 11,051,743 by U.S. Pat. No. 9,669,212 ("Mueller"); Oct. 25, 2023; 11 pages. Chart A-5 Invalidity Contentions: U.S. Pat. No. 11,051,743; Case No. 22-351-CJB (Delaware); Invalidity of U.S. Pat. No. 11,051,743 by U.S. Pat. No. 10,413,251 ("Golda"); Oct. 25, 2023; 11 pages. Chart A-4 Invalidity Contentions: U.S. Pat. No. 11,051,743; Case No. 22-351-CJB (Delaware); Invalidity of U.S. Pat. No. 11,051,743 by U.S. Pat. Pub. No. 2011/0077497 ("Oster"); Oct. 25, 2023; 11 pages.

Chart A-3 Invalidity Contentions: U.S. Pat. No. 11,051,743; Case No. 22-351-CJB (Delaware); Invalidity of U.S. Pat. No. 11,051,743 by U.S. Pat. No. 10,327,660 ("Gallego"); Oct. 25, 2023; 12 pages. Chart A-2 Invalidity Contentions: U.S. Pat. No. 11,051,743; Case No. 22-351-CJB (Delaware); Invalidity of U.S. Pat. No. 11,051,743 by U.S. Pat. No. 11,116,447 ("Yang"); Oct. 25, 2023; 19 pages. Chart A-1 Invalidity Contentions: U.S. Pat. No. 11,051,743; Case No. 22-351-CJB (Delaware); Invalidity of U.S. Pat. No. 11,051,743 by International Publication No. WO 2010/104952 to Mazar ("Mazar"); Oct. 25, 2023; 19 pages.

Bardy Diagnostics, Inc., Plaintiff v. Vital Connect, Inc.; The United States District Court for the District of Delaware; C.A. No. 22-351 (CJB); Vitalconnect's Preliminary Invalidity Contentions; filed Oct. 25, 2023.

Wolf, "The Data-Driven Life," New York Times Magazine, Apr. 28, 2010, 13 pages.

Hill, "Adventures in Self-Surveillance: Fitbit, Tracking My Movement and Sleep," Forbes, Feb. 25, 2011, 11 pages.

Mehen, "Open health with the quantified self," Opensource.com, Aug. 25, 2011, 7 pages.

"23 Personal Tools to Learn More About Yourself," Flowingdata. com, Sep. 18, 2008, 18 pages.

Puurtinen et al., "Estimation of ECG Signal of closely separated bipolar electrodes using thorax models," Proceedings of the 26th Annual International Conference of the IEEE EMBS pp. 801-804, San Francisco, Calif., USA, Sep. 1-5, 2004, 4 pages.

Trägårdh et al., How many ECG leads do we need? Cardiol Clin. Aug. 2006;24(3):317-30, vii. doi: 10.1016/j.ccl.2006.04.005. PMID: 16939826; 14 pages.

Adams et al., U.S. Appl. No. 61/755,623, filed Jan. 23, 2013, 48 pages.

Toth et al., U.S. Appl. No. 61/832,131, filed Jun. 6, 2013, 82 pages. Vishnubhotla, "Pre-processing of ECG signals for ambulatory use," Jan. 2009; 5 pages.

Chaimanonart et al., "A wireless batteryless in vivo EKG and body temperature sensing microsystem with adaptive RF powering for genetically engineered mice monitoring," Jul. 2009; 4 pages.

Alzaidi et al., "Smart Textiles Based Wireless ECG System," May 2012; 5 pages.

Saeed et al., "A Scalable Wireless Body Area Sensor Network for Health-Care Monitoring," Jun. 2009, 4 pages.

Pandian et al., "Wireless Sensor Network for Wearable Physiological Monitoring," Journal of Networks, vol. 3, No. 5, May 2008; 15 pages.

Mukala et al., "A Novel Zigbee-based Low-cost, Low-Power Wireless EKG system," IEEE, May 2010; 4 pages.

Aventyn, Inc., "Vital Connect, Aventyn Launch Wearable Biosensor Platform for Mobile Patient Monitoring", Dec. 12, 2013, 5 pages.

\* cited by examiner

Fig. 1.



Fig. 2.



Fig. 3.



U.S. Patent

Apr. 29, 2025

Sheet 3 of 15

US 12,285,261 B2

Fig. 4.



Fig. 5.



Fig. 6.



Fig. 7.



U.S. Patent

Apr. 29, 2025

Sheet 5 of 15

US 12,285,261 B2

Fig. 8.



Fig. 9.



Fig. 10.





7 5 7

Fig. 12.

<u>100</u>



Fig. 13.



Fig. 14.



Fig. 15.



Fig. 16A.

<u>150</u>



Fig. 16B.

<u>160</u>



Fig. 16C.

<u>170</u>



Fig. 17.

<u>180</u>



Fig. 18.



U.S. Patent

Apr. 29, 2025

**Sheet 15 of 15** 

US 12,285,261 B2

Fig. 19.



Fig. 20.



Fig. 21.



## **MOISTURE-RESISTANT ELECTROCARDIOGRAMY MONITOR**

### **FIELD**

This application relates in general to electrocardiographic monitoring and, in particular, to a moisture-resistant electrocardiography monitor.

### BACKGROUND

The first electrocardiogram (ECG) was invented by a Dutch physiologist, Willem Einthoven, in 1903, who used a string galvanometer to measure the electrical activity of the heart. Generations of physicians around the world have 15 since used ECGs, in various forms, to diagnose heart problems and other potential medical concerns. Although the basic principles underlying Dr. Einthoven's original work, including his naming of various waveform deflections (Einthoven's triangle), are still applicable today, ECG machines 20 have evolved from his original three-lead ECG, to ECGs with unipolar leads connected to a central reference terminal starting in 1934, to augmented unipolar leads beginning in 1942, and finally to the 12-lead ECG standardized by the American Heart Association in 1954 and still in use today. 25 Further advances in portability and computerized interpretation have been made, yet the electronic design of the ECG recording apparatuses has remained fundamentally the same for much of the past 40 years.

Essentially, an ECG measures the electrical signals emitted by the heart as generated by the propagation of the action potentials that trigger depolarization of heart fibers. Physiologically, transmembrane ionic currents are generated within the heart during cardiac activation and recovery right atrium in the sinoatrial (SA) node before spreading leftward towards the left atrium and inferiorly towards the atrioventricular (AV) node. After a delay occasioned by the AV node, the depolarization impulse transits the Bundle of His and moves into the right and left bundle branches and 40 Purkinje fibers to activate the right and left ventricles.

During each cardiac cycle, the ionic currents create an electrical field in and around the heart that can be detected by ECG electrodes placed on the skin. Cardiac electrical activity is then visually represented in an ECG trace by 45 PQRSTU-waveforms. The P-wave represents atrial electrical activity, and the QRSTU components represent ventricular electrical activity. Specifically, a P-wave represents atrial depolarization, which causes atrial contraction.

P-wave analysis based on ECG monitoring is critical to 50 accurate cardiac rhythm diagnosis and focuses on localizing the sites of origin and pathways of arrhythmic conditions. P-wave analysis is also used in the diagnosis of other medical disorders, including imbalance of blood chemistry. Cardiac arrhythmias are defined by the morphology of 55 P-waves and their relationship to QRS intervals. For instance, atrial fibrillation (AF), an abnormally rapid heart rhythm, can be confirmed by an absence of P-waves and an irregular ventricular rate. Similarly, sinoatrial block is characterized by a delay in the onset of P-waves, while junctional rhythm, an abnormal heart rhythm resulting from impulses coming from a locus of tissue in the area of the AV node, usually presents without P-waves or with inverted P-waves. Also, the amplitudes of P-waves are valuable for diagnosis. The presence of broad, notched P-waves can 65 indicate left atrial enlargement. Conversely, the presence of tall, peaked P-waves can indicate right atrial enlargement.

Finally, P-waves with increased amplitude can indicate hypokalemia, caused by low blood potassium, whereas P-waves with decreased amplitude can indicate hyperkalemia, caused by elevated blood potassium.

Cardiac rhythm disorders may present with lightheadedness, fainting, chest pain, hypoxia, syncope, palpitations, and congestive heart failure (CHF), yet rhythm disorders are often sporadic in occurrence and may not show up in-clinic during a conventional 12-second ECG. Continuous ECG monitoring with P-wave-centric action potential acquisition over an extended period is more apt to capture sporadic cardiac events. However, recording sufficient ECG and related physiological data over an extended period remains a significant challenge, despite an over 40-year history of ambulatory ECG monitoring efforts combined with no appreciable improvement in P-wave acquisition techniques since Dr. Einthoven's original pioneering work over a 110 years ago.

Electrocardiographic monitoring over an extended period provides a physician with the kinds of data essential to identifying the underlying cause of sporadic cardiac conditions, especially rhythm disorders, and other physiological events of potential concern. A 30-day observation period is considered the "gold standard" of monitoring, yet a 14-day observation period is currently pitched as being achievable by conventional ECG monitoring approaches. Realizing a 30-day observation period has proven unworkable with existing ECG monitoring systems, which are arduous to employ; cumbersome, uncomfortable and not user-friendly to the patient; and costly to manufacture and deploy. Still, if a patient's ECG could be recorded in an ambulatory setting over a prolonged time periods, particularly for more than 14 days, thereby allowing the patient to engage in activities of daily living, the chances of acquiring meaningful medical sequences. Cardiac depolarization originates high in the 35 information and capturing an abnormal event while the patient is engaged in normal activities are greatly improved.

The location of the atria and their low amplitude, low frequency content electrical signals make P-waves difficult to sense, particularly through ambulatory ECG monitoring. The atria are located posteriorly within the chest, and their physical distance from the skin surface adversely affects current strength and signal fidelity. Cardiac electrical potentials measured dermally have an amplitude of only onepercent of the amplitude of transmembrane electrical potentials. The distance between the heart and ECG electrodes reduces the magnitude of electrical potentials in proportion to the square of change in distance, which compounds the problem of sensing low amplitude P-waves. Moreover, the tissues and structures that lie between the activation regions within the heart and the body's surface alter the cardiac electrical field due to changes in the electrical resistivity of adjacent tissues. Thus, surface electrical potentials, when even capable of being accurately detected, are smoothed over in aspect and bear only a general spatial relationship to actual underlying cardiac events, thereby complicating diagnosis. Conventional 12-lead ECGs attempt to compensate for weak P-wave signals by monitoring the heart from multiple perspectives and angles, while conventional ambulatory ECGs primarily focus on monitoring higher amplitude ventricular activity that can be readily sensed. Both approaches are unsatisfactory with respect to the P-wave and the accurate, medically actionable diagnosis of the myriad cardiac rhythm disorders that exist.

Additionally, maintaining continual contact between ECG electrodes and the skin after a day or two of ambulatory ECG monitoring has been a problem. Time, dirt, moisture, and other environmental contaminants, as well as perspira-

tion, skin oil, and dead skin cells from the patient's body, can get between an ECG electrode's non-conductive adhesive and the skin's surface. These factors adversely affect electrode adhesion and the quality of cardiac signal recordings. Furthermore, the physical movements of the patient and 5 their clothing impart various compressional, tensile, bending, and torsional forces on the contact point of an ECG electrode, especially over long recording times, and an inflexibly fastened ECG electrode will be prone to becoming dislodged. Moreover, dislodgment may occur unbeknownst 10 to the patient, making the ECG recordings worthless. Further, some patients may have skin that is susceptible to itching or irritation, and the wearing of ECG electrodes can aggravate such skin conditions. Thus, a patient may want or need to periodically remove or replace ECG electrodes 15 during a long-term ECG monitoring period, whether to replace a dislodged electrode, reestablish better adhesion, alleviate itching or irritation, allow for cleansing of the skin, allow for showering and exercise, or for other purpose. Such replacement or slight alteration in electrode location actually 20 facilitates the goal of recording the ECG signal for long periods of time.

Conventionally, multi-week or multi-month monitoring can be performed by implantable ECG monitors, such as the Reveal LINQ insertable cardiac monitor, manufactured by 25 Medtronic, Inc., Minneapolis, MN. This monitor can detect and record paroxysmal or asymptomatic arrhythmias for up to three years. However, like all forms of implantable medical device (IMD), use of this monitor requires invasive surgical implantation, which significantly increases costs; 30 requires ongoing follow up by a physician throughout the period of implantation; requires specialized equipment to retrieve monitoring data; and carries complications attendant to all surgery, including risks of infection, injury or death.

Holter monitors are widely used for extended ECG monitoring. Typically, they are often used for only 24-48 hours. A typical Holter monitor is a wearable and portable version of an ECG that include cables for each electrode placed on the skin and a separate battery-powered ECG recorder. The 40 leads are placed in the anterior thoracic region in a manner similar to what is done with an in-clinic standard ECG machine using electrode locations that are not specifically intended for optimal P-wave capture. The duration of monitoring depends on the sensing and storage capabilities of the 45 monitor. A "looping" Holter (or event) monitor can operate for a longer period of time by overwriting older ECG tracings, thence "recycling" storage in favor of extended operation, yet at the risk of losing event data. Although capable of extended ECG monitoring, Holter monitors are 50 cumbersome, expensive and typically only available by medical prescription, which limits their usability. Further, the skill required to properly place the electrodes on the patient's chest precludes a patient from replacing or removing the sensing leads and usually involves moving the 55 patient from the physician office to a specialized center within the hospital or clinic.

U.S. Pat. No. 8,460,189, to Libbus et al. ("Libbus") discloses an adherent wearable cardiac monitor that includes at least two measurement electrodes and an accelerometer. 60 The device includes a reusable electronics module and a disposable adherent patch that includes the electrodes. ECG monitoring can be conducted using multiple disposable patches adhered to different locations on the patient's body. The device includes a processor configured to control collection and transmission of data from ECG circuitry, including generating and processing of ECG signals and data

4

acquired from two or more electrodes. The ECG circuitry can be coupled to the electrodes in many ways to define an ECG vector, and the orientation of the ECG vector can be determined in response to the polarity of the measurement electrodes and orientation of the electrode measurement axis. The accelerometer can be used to determine the orientation of the measurement electrodes in each of the locations. The ECG signals measured at different locations can be rotated based on the accelerometer data to modify amplitude and direction of the ECG features to approximate a standard ECG vector. The signals recorded at different locations can be combined by summing a scaled version of each signal. Libbus further discloses that inner ECG electrodes may be positioned near outer electrodes to increase the voltage of measured ECG signals. However, Libbus treats ECG signal acquisition as the measurement of a simple aggregate directional data signal without differentiating between the distinct kinds of cardiac electrical activities presented with an ECG waveform, particularly atrial (P-wave) activity.

The ZIO XT Patch and ZIO Event Card devices, manufactured by iRhythm Tech., Inc., San Francisco, CA, are wearable monitoring devices that are typically worn on the upper left pectoral region to respectively provide continuous and looping ECG recording. The location is used to simulate surgically implanted monitors, but without specifically enhancing P-wave capture. Both of these devices are prescription-only and for single patient use. The ZIO XT Patch device is limited to a 14-day period, while the electrodes only of the ZIO Event Card device can be worn for up to 30 days. The ZIO XT Patch device combines both electronic recordation components and physical electrodes into a unitary assembly that adheres to the patient's skin. The ZIO XT Patch device uses adhesive sufficiently strong to support the 35 weight of both the monitor and the electrodes over an extended period and to resist disadherence from the patient's body, albeit at the cost of disallowing removal or relocation during the monitoring period. The ZIO Event Card device is a form of downsized Holter monitor with a recorder component that must be removed temporarily during baths or other activities that could damage the non-waterproof electronics. Both devices represent compromises between length of wear and quality of ECG monitoring, especially with respect to ease of long term use, female-friendly fit, and quality of cardiac electrical potential signals, especially atrial (P-wave) signals.

Therefore, a need remains for a low cost extended wear continuously recording ECG monitor attuned to capturing low amplitude cardiac action potential propagation for arrhythmia diagnosis, particularly atrial activation P-waves, and practicably capable of being worn for a long period of time, especially in patient's whose breast anatomy or size can interfere with signal quality in both women and men.

## SUMMARY

Physiological monitoring can be provided through a light-weight wearable monitor that includes two components, a flexible extended wear electrode patch and a reusable monitor recorder that removably snaps into a receptacle on the electrode patch. The wearable monitor sits centrally (in the midline) on the patient's chest along the sternum oriented top-to-bottom. The ECG electrodes on the electrode patch are tailored to be positioned axially along the midline of the sternum for capturing action potential propagation in an orientation that corresponds to the aVF lead used in a conventional 12-lead ECG that is used to sense positive or

upright P-waves. The placement of the wearable monitor in a location at the sternal midline (or immediately to either side of the sternum), with its unique narrow "hourglass"-like shape, significantly improves the ability of the wearable monitor to cutaneously sense cardiac electrical potential signals, particularly the P-wave (or atrial activity) and, to a lesser extent, the QRS interval signals indicating ventricular activity in the ECG waveforms.

Moreover, the electrocardiography monitor offers superior patient comfort, convenience and user-friendliness. The 10 electrode patch is specifically designed for ease of use by a patient (or caregiver); assistance by professional medical personnel is not required. The patient is free to replace the electrode patch at any time and need not wait for a doctor's appointment to have a new electrode patch placed. Patients 15 can easily be taught to find the familiar physical landmarks on the body necessary for proper placement of the electrode patch. Empowering patients with the knowledge to place the electrode patch in the right place ensures that the ECG electrodes will be correctly positioned on the skin, no matter 20 the number of times that the electrode patch is replaced. In addition, the monitor recorder operates automatically and the patient only need snap the monitor recorder into place on the electrode patch to initiate ECG monitoring. Thus, the synergistic combination of the electrode patch and monitor 25 recorder makes the use of the electrocardiography monitor a reliable and virtually foolproof way to monitor a patient's ECG and physiology for an extended, or even open-ended, period of time.

In one embodiment, a moisture-resistant electrocardiog- 30 raphy monitor is provided. The monitor includes an electrocardiography monitor recorder and an extended wear electrode patch. The electrocardiography monitor recorder includes a wearable housing molded out of one or more materials and sealed against moisture; a plurality of electri- 35 cal contacts protruding from the wearable housing; a seal coupling positioned on the wearable housing and surrounding the electrical contacts; and electronic circuitry provided within the wearable housing. The electronic circuitry includes an electrocardiographic front end circuit under a 40 control of a micro-controller and adapted to sense cardiac electrical potential differentials through electrocardiographic electrodes via some of the electrical contacts, which are provided to the micro-controller as an analog signal; the micro-controller configured to sample the analog signal; and 45 a memory electrically interfaced with the micro-controller and operable to store the samples. The extended wear electrode patch includes a flexible backing including a plurality of adhesive contact surfaces; the electrocardiographic electrodes, each included on one of the adhesive 50 contact surfaces; a receptable affixed to a non-contacting surface of the flexible backing into which the wearable housing can be removable secured, the receptacle including a compartment within which a component interfaced to the electronic circuitry is positioned via some of the electrical 55 contacts; a plurality of electrical pads positioned on the receptacle, each of the pads configured to interface with one of the electrical contacts when the wearable housing is secured within the receptacle; and a moisture-resistant seal formed on the receptacle and surrounding the electrical pads, 60 wherein the moisture-resistant seal mates the seal coupling when the wearable housing is secured within the receptacle.

In a further embodiment, a moisture-resistant patient-interfacing electrocardiography monitor is provided. The monitor includes an electrocardiography monitor recorder 65 and an extended wear electrode patch. The electrocardiography monitor recorder includes a wearable housing molded

6

out of one or more materials and sealed against moisture; a waterproof patient-operable tactile feedback button positioned on an outside of the wearable housing; a plurality of electrical contacts protruding the wearable housing; a seal coupling positioned on the wearable housing and surrounding the electrical contacts; and electronic circuitry provided within the wearable housing. The electronic circuitry includes an electrocardiographic front end circuit under a control of a micro-controller and adapted to sense cardiac electrical potential differentials through electrocardiographic electrodes via some of the electrical contacts, which are provided to the micro-controller as an analog signal; the micro-controller configured to sample the analog signal; and a memory electrically interfaced with the micro-controller and operable to store the samples. The extended wear electrode patch includes: a flexible backing including a plurality of adhesive contact surfaces; the electrocardiographic electrodes, each included on one of the adhesive contact surfaces; a receptacle affixed to a non-contacting surface of the flexible backing into which the wearable housing can be removable secured, the receptacle including a compartment within which a battery, wherein the electronic circuitry is powered by the battery via at least some of the electrical contacts; a plurality of electrical pads positioned on the receptacle, each of the pads configured to interface with one of the electrical contacts when the wearable housing is secured within the receptacle; and a moisture-resistant seal formed on the receptacle and surrounding the electrical pads, wherein the moisture-resistant seal mates the seal coupling when the wearable housing is secured within the receptacle.

The monitoring patch is especially suited to the female anatomy, although also easily used over the male sternum. The narrow longitudinal midsection can fit nicely within the inter-mammary cleft of the breasts without inducing discomfort, whereas conventional patch electrodes are wide and, if adhered between the breasts, would cause chafing, irritation, discomfort, and annoyance, leading to low patient compliance.

In addition, the foregoing aspects enhance comfort in women (and certain men), but not irritation of the breasts, by placing the monitoring patch in the best location possible for optimizing the recording of cardiac signals from the atrium, particularly P-waves, which is another feature critical to proper arrhythmia and cardiac rhythm disorder diagnoses.

Still other embodiments will become readily apparent to those skilled in the art from the following detailed description, wherein are described embodiments by way of illustrating the best mode contemplated. As will be realized, other and different embodiments are possible and the embodiments' several details are capable of modifications in various obvious respects, all without departing from their spirit and the scope. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not as restrictive.

## BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1 and 2 are diagrams showing, by way of examples, an extended wear electrocardiography monitor, including an extended wear electrode patch, in accordance with one embodiment, respectively fitted to the sternal region of a female patient and a male patient.

FIG. 3 is a front anatomical view showing, by way of illustration, the locations of the heart and lungs within the rib cage of an adult human.

- FIG. 4 is a perspective view showing an extended wear electrode patch in accordance with one embodiment with a monitor recorder inserted.
- FIG. 5 is a perspective view showing the monitor recorder of FIG. 4.
- FIG. 6 is a perspective view showing the extended wear electrode patch of FIG. 4 without a monitor recorder inserted.
- FIG. 7 is a bottom plan view of the monitor recorder of FIG. 4.
- FIG. 8 is a top view showing the flexible circuit of the extended wear electrode patch of FIG. 4.
- FIG. 9 is a functional block diagram showing the component architecture of the circuitry of the monitor recorder of FIG. 4.
- FIG. 10 is a functional block diagram showing the circuitry of the extended wear electrode patch of FIG. 4.
- FIG. 11 is a schematic diagram showing the ECG front end circuit of the circuitry of the monitor recorder of FIG. 9.
- FIG. 12 is a flow diagram showing a monitor recorder-implemented method for monitoring ECG data for use in the monitor recorder of FIG. 4.
- FIG. 13 is a graph showing, by way of example, a typical ECG waveform.
- FIG. 14 is a functional block diagram showing the signal processing functionality of the microcontroller.
- FIG. 15 is a functional block diagram showing the operations performed by the download station.
- FIGS. **16**A-C are functional block diagrams respectively <sup>30</sup> showing practical uses of the extended wear electrocardiography monitors of FIGS. **1** and **2**.
- FIG. 17 is a perspective view of an extended wear electrode patch with a flexile wire electrode assembly in accordance with a still further embodiment.
- FIG. 18 is perspective view of the flexile wire electrode assembly from FIG. 17, with a layer of insulating material shielding a bare distal wire around the midsection of the flexible backing.
- FIG. 19 is a bottom view of the flexile wire electrode 40 assembly as shown in FIG. 17.
- FIG. 20 is a bottom view of a flexile wire electrode assembly in accordance with a still yet further embodiment.
- FIG. 21 is a perspective view showing the longitudinal midsection of the flexible backing of the electrode assembly 45 from FIG. 17.

## DETAILED DESCRIPTION

ECG and physiological monitoring can be provided 50 through a wearable ambulatory monitor that includes two components, a flexible extended wear electrode patch and a removable reusable (or single use) monitor recorder. Both the electrode patch and the monitor recorder are optimized to capture electrical signals from the propagation of low 55 amplitude, relatively low frequency content cardiac action potentials, particularly the P-waves generated during atrial activation. FIGS. 1 and 2 are diagrams showing, by way of examples, an extended wear electrocardiography monitor 12, including a monitor recorder 14, in accordance with one 60 embodiment, respectively fitted to the sternal region of a female patient 10 and a male patient 11. The wearable monitor 12 sits centrally, positioned axially along the sternal midline 16, on the patient's chest along the sternum 13 and oriented top-to-bottom with the monitor recorder 14 prefer- 65 ably situated towards the patient's head. In a further embodiment, the orientation of the wearable monitor 12 can be

8

corrected post-monitoring, as further described infra, for instance, if the wearable monitor 12 is inadvertently fitted upside down.

The electrode patch **15** is shaped to fit comfortably and conformal to the contours of the patient's chest approximately centered on the sternal midline **16** (or immediately to either side of the sternum **13**). The distal end of the electrode patch **15**, under which a lower or inferior pole (ECG electrode) is adhered, extends towards the Xiphoid process and lower sternum and, depending upon the patient's build, may straddle the region over the Xiphoid process and lower sternum. The proximal end of the electrode patch **15**, located under the monitor recorder **14**, under which an upper or superior pole (ECG electrode) is adhered, is below the manubrium and, depending upon patient's build, may straddle the region over the manubrium.

During ECG monitoring, the amplitude and strength of action potentials sensed on the body's surface are affected to varying degrees by cardiac, cellular, extracellular, vector of current flow, and physical factors, like obesity, dermatitis, large breasts, and high impedance skin, as can occur in dark-skinned individuals. Sensing along the sternal midline 16 (or immediately to either side of the sternum 13) significantly improves the ability of the wearable monitor 12 to cutaneously sense cardiac electric signals, particularly the P-wave (or atrial activity) and, to a lesser extent, the QRS interval signals in the ECG waveforms that indicate ventricular activity by countering some of the effects of these factors.

The ability to sense low amplitude, low frequency content body surface potentials is directly related to the location of ECG electrodes on the skin's surface and the ability of the sensing circuitry to capture these electrical signals. FIG. 3 is a front anatomical view showing, by way of illustration, the locations of the heart 4 and lungs 5 within the rib cage of an adult human. Depending upon their placement locations on the chest, ECG electrodes may be separated from activation regions within the heart 4 by differing combinations of internal tissues and body structures, including heart muscle, intracardiac blood, the pericardium, intrathoracic blood and fluids, the lungs 5, skeletal muscle, bone structure, subcutaneous fat, and the skin, plus any contaminants present between the skin's surface and electrode signal pickups. The degree of amplitude degradation of cardiac transmembrane potentials increases with the number of tissue boundaries between the heart 4 and the skin's surface that are encountered. The cardiac electrical field is degraded each time the transmembrane potentials encounter a physical boundary separating adjoining tissues due to differences in the respective tissues' electrical resistances. In addition, other nonspatial factors, such as pericardial effusion, emphysema or fluid accumulation in the lungs, as further explained infra, can further degrade body surface potentials.

Internal tissues and body structures can adversely affect the current strength and signal fidelity of all body surface potentials, yet low amplitude cardiac action potentials, particularly the P-wave with a normative amplitude of less than 0.25 microvolts (mV) and a normative duration of less than 120 milliseconds (ms), are most apt to be negatively impacted. The atria 6 are generally located posteriorly within the thoracic cavity (with the exception of the anterior right atrium and right atrial appendage), and, physically, the left atrium constitutes the portion of the heart 4 furthest away from the surface of the skin on the chest. Conversely, the ventricles 7, which generate larger amplitude signals, generally are located anteriorly with the anterior right ventricle and most of the left ventricle situated relatively close

to the skin surface on the chest, which contributes to the relatively stronger amplitudes of ventricular waveforms. Thus, the quality of P-waves (and other already-low amplitude action potential signals) is more susceptible to weakening from intervening tissues and structures than the waveforms associated with ventricular activation.

The importance of the positioning of ECG electrodes along the sternal midline 15 has largely been overlooked by conventional approaches to ECG monitoring, in part due to the inability of their sensing circuitry to reliably detect low 10 amplitude, low frequency content electrical signals, particularly in P-waves. In turn, that inability to keenly sense P-waves has motivated ECG electrode placement in other components that represent ventricular electrical activity are more readily detectable by their sensing circuitry than P-waves. In addition, ECG electrode placement along the sternal midline 15 presents major patient wearability challenges, such as fitting a monitoring ensemble within the 20 narrow confines of the inter-mammary cleft between the breasts, that to large extent drive physical packaging concerns, which can be incompatible with ECG monitors intended for placement, say, in the upper pectoral region or other non-sternal midline thoracic locations. In contrast, the 25 wearable monitor 12 uses an electrode patch 15 that is specifically intended for extended wear placement in a location at the sternal midline 16 (or immediately to either side of the sternum 13). When combined with a monitor recorder 14 that uses sensing circuitry optimized to preserve the characteristics of low amplitude cardiac action potentials, especially those signals from the atria, as further described infra with reference to FIG. 11, the electrode patch 15 helps to significantly improve atrial activation (P-wave) sensing through placement in a body location that robustly minimizes the effects of tissue and body structure.

Referring back to FIGS. 1 and 2, the placement of the wearable monitor 12 in the region of the sternal midline 13 puts the ECG electrodes of the electrode patch 15 in locations better adapted to sensing and recording low amplitude cardiac action potentials during atrial propagation (P-wave signals) than placement in other locations, such as the upper left pectoral region, as commonly seen in most conventional ambulatory ECG monitors. The sternum 13 overlies the right atrium of the heart 4. As a result, action potential signals have to travel through fewer layers of tissue and structure to reach the ECG electrodes of the electrode patch 15 on the body's surface along the sternal midline 13 when compared to other monitoring locations, a distinction that is of critical signals, such as P-waves.

Moreover, cardiac action potential propagation travels simultaneously along a north-to-south and right-to-left vector, beginning high in the right atrium and ultimately ending 55 in the posterior and lateral region of the left ventricle. Cardiac depolarization originates high in the right atrium in the SA node before concurrently spreading leftward towards the left atrium and inferiorly towards the AV node. The ECG electrodes of the electrode patch 15 are placed with the 60 upper or superior pole (ECG electrode) along the sternal midline 13 in the region of the manubrium and the lower or inferior pole (ECG electrode) along the sternal midline 13 in the region of the Xiphoid process 9 and lower sternum. The ECG electrodes are placed primarily in a north-to-south orientation along the sternum 13 that corresponds to the north-to-south waveform vector exhibited during atrial acti-

**10** 

vation. This orientation corresponds to the aVF lead used in a conventional 12-lead ECG that is used to sense positive or upright P-waves.

Furthermore, the thoracic region underlying the sternum 13 along the midline 16 between the manubrium 8 and Xiphoid process 9 is relatively free of lung tissue, musculature, and other internal body structures that could occlude the electrical signal path between the heart 4, particularly the atria, and ECG electrodes placed on the surface of the skin. Fewer obstructions means that cardiac electrical potentials encounter fewer boundaries between different tissues. As a result, when compared to other thoracic ECG sensing locations, the cardiac electrical field is less altered when sensed non-sternal midline thoracic locations, where the QRSTU 15 dermally along the sternal midline 13. As well, the proximity of the sternal midline 16 to the ventricles 7 facilitates sensing of right ventricular activity and provides superior recordation of the QRS interval, again, in part due to the relatively clear electrical path between the heart 4 and the skin surface.

> Finally, non-spatial factors can affect transmembrane action potential shape and conductivity. For instance, myocardial ischemia, an acute cardiac condition, can cause a transient increase in blood perfusion in the lungs 5. The perfused blood can significantly increase electrical resistance across the lungs 5 and therefore degrade transmission of the cardiac electrical field to the skin's surface. However, the placement of the wearable monitor 12 along the sternal midline 16 in the inter-mammary cleft between the breasts 30 is relatively resilient to the adverse effects to cardiac action potential degradation caused by ischemic conditions as the body surface potentials from a location relatively clear of underlying lung tissue and fat help compensate for the loss of signal amplitude and content. The monitor recorder 14 is thus able to record the P-wave morphology that may be compromised by myocardial ischemia and therefore make diagnosis of the specific arrhythmias that can be associated with myocardial ischemia more difficult.

During use, the electrode patch 15 is first adhered to the skin along the sternal midline 16 (or immediately to either side of the sternum 13). A monitor recorder 14 is then snapped into place on the electrode patch 15 using an electro mechanical docking interface to initiate ECG monitoring. FIG. 4 is a perspective view showing an extended wear electrode patch 15 in accordance with one embodiment with a monitor recorder 14 inserted. The body of the electrode patch 15 is preferably constructed using a flexible backing 20 formed as an elongated strip 21 of wrap knit or similar stretchable material about 145 mm long and 32 mm at the widest point with a narrow longitudinal mid-section 23 evenly tapering inward from both sides. A pair of cut-outs 22 between the distal and proximal ends of the electrode patch 15 create a narrow longitudinal midsection 23 or "isthmus" and defines an elongated "hourglass"-like shape, when viewed from above, such as described in commonly-assigned U.S. Design Patent No. D744,659, issued Dec. 1, 2015, the disclosure of which is incorporated by reference. The upper part of the "hourglass" is sized to allow an electrically non-conductive receptacle 25, sits on top of the outward-facing surface of the electrode patch 15, to be affixed to the electrode patch 15 with an ECG electrode placed underneath on the patient-facing underside, or contact, surface of the electrode patch 15; the upper part of the "hourglass" has a longer and wider profile (but still rounded and tapered to fit comfortably between the breasts) than the lower part of the "hourglass," which is sized primarily to allow just the placement of an ECG electrode of appropriate

shape and surface area to record the P-wave and the QRS signals sufficiently given the inter-electrode spacing.

The electrode patch 15 incorporates features that significantly improve wearability, performance, and patient comfort throughout an extended monitoring period. The entire 5 electrode patch 15 is lightweight in construction, which allows the patch to be resilient to disadhesing or falling off and, critically, to avoid creating distracting discomfort to the patient, even when the patient is asleep. In contrast, the weight of a heavy ECG monitor impedes patient mobility 10 and will cause the monitor to constantly tug downwards and press on the patient's body that can generate skin inflammation with frequent adjustments by the patient needed to maintain comfort.

During every day wear, the electrode patch 15 is subjected 15 to pushing, pulling, and torsional movements, including compressional and torsional forces when the patient bends forward, or tensile and torsional forces when the patient leans backwards. To counter these stress forces, the electrode patch 15 incorporates crimp and strain reliefs, such as 20 described in commonly-assigned U.S. Pat. No. 9,545,204, issued Jan. 17, 2017, the disclosure of which is incorporated by reference. In addition, the cut-outs **22** and longitudinal midsection 23 help minimize interference with and discomfort to breast tissue, particularly in women (and gynecomas- 25 tic men). The cut-outs 22 and longitudinal midsection 23 further allow better conformity of the electrode patch 15 to sternal bowing and to the narrow isthmus of flat skin that can occur along the bottom of the inter-mammary cleft between the breasts, especially in buxom women. The cut-outs 22 and 30 narrow and flexible longitudinal midsection 23 help the electrode patch 15 fit nicely between a pair of female breasts in the inter-mammary cleft. In one embodiment, the cut-outs 22 can be graduated to form the longitudinal midsection 23 as a narrow in-between stem or isthmus portion about 7 mm 35 wide. In a still further embodiment, tabs **24** can respectively extend an additional 8 mm to 12 mm beyond the distal and proximal ends of the flexible backing 20 to facilitate with adhering the electrode patch 15 to or removing the electrode patch 15 from the sternum 13. These tabs preferably lack 40 adhesive on the underside, or contact, surface of the electrode patch 15. Still other shapes, cut-outs and conformities to the electrode patch 15 are possible.

The monitor recorder 14 removably and reusably snaps into an electrically non-conductive receptacle 25 during use. 45 The monitor recorder 14 contains electronic circuitry for recording and storing the patient's electrocardiography as sensed via a pair of ECG electrodes provided on the electrode patch 15, as further described infra beginning with reference to FIG. 9. The non-conductive receptacle 25 is 50 provided on the top surface of the flexible backing 20 with a retention catch 26 and tension clip 27 molded into the non-conductive receptacle 25 to conformably receive and securely hold the monitor recorder 14 in place.

snaps into place in the non-conductive receptacle 25. FIG. 5 is a perspective view showing the monitor recorder 14 of FIG. 4. The sealed housing 50 of the monitor recorder 14 intentionally has a rounded isosceles trapezoidal-like shape 52, when viewed from above, such as described in com- 60 monly-assigned U.S. Design Patent No. D717,955, issued Nov. 18, 2014, the disclosure of which is incorporated by reference. The edges 51 along the top and bottom surfaces are rounded for patient comfort. The sealed housing 50 is approximately 47 mm long, 23 mm wide at the widest point, 65 and 7 mm high, excluding a patient-operable tactile-feedback button 55. The sealed housing 50 can be molded out of

polycarbonate, ABS, or an alloy of those two materials. The button 55 is waterproof and the button's top outer surface is molded silicon rubber or similar soft pliable material. A retention detent 53 and tension detent 54 are molded along the edges of the top surface of the housing **50** to respectively engage the retention catch 26 and the tension clip 27 molded into non-conductive receptacle 25. Other shapes, features, and conformities of the sealed housing 50 are possible.

The electrode patch 15 is intended to be disposable, while the monitor recorder 14 is designed for reuse and can be transferred to successive electrode patches 15 to ensure continuity of monitoring, if so desired. The monitor recorder 14 can be used only once, but single use effectively wastes the synergistic benefits provided by the combination of the disposable electrode patch and reusable monitor recorder, as further explained infra with reference to FIGS. 16A-C. The placement of the wearable monitor 12 in a location at the sternal midline 16 (or immediately to either side of the sternum 13) benefits long-term extended wear by removing the requirement that ECG electrodes be continually placed in the same spots on the skin throughout the monitoring period. Instead, the patient is free to place an electrode patch 15 anywhere within the general region of the sternum 13.

As a result, at any point during ECG monitoring, the patient's skin is able to recover from the wearing of an electrode patch 15, which increases patient comfort and satisfaction, while the monitor recorder 14 ensures ECG monitoring continuity with minimal effort. A monitor recorder 14 is merely unsnapped from a worn out electrode patch 15, the worn out electrode patch 15 is removed from the skin, a new electrode patch 15 is adhered to the skin, possibly in a new spot immediately adjacent to the earlier location, and the same monitor recorder 14 is snapped into the new electrode patch 15 to reinitiate and continue the ECG monitoring.

During use, the electrode patch 15 is first adhered to the skin in the sternal region. FIG. 6 is a perspective view showing the extended wear electrode patch 15 of FIG. 4 without a monitor recorder 14 inserted. A flexible circuit 32 is adhered to each end of the flexible backing 20. A distal circuit trace 33 from the distal end 30 of the flexible backing 20 and a proximal circuit trace (not shown) from the proximal end 31 of the flexible backing 20 electrically couple ECG electrodes (not shown) with a pair of electrical pads 34. In a further embodiment, the distal and proximal circuit traces are replaced with interlaced or sewn-in flexible wires, as further described infra beginning with reference to FIG. 17. The electrical pads 34 are provided within a moisture-resistant seal 35 formed on the bottom surface of the non-conductive receptacle 25. When the monitor recorder 14 is securely received into the non-conductive receptacle 25, that is, snapped into place, the electrical pads 34 interface to electrical contacts (not shown) protruding The monitor recorder 14 includes a sealed housing that 55 from the bottom surface of the monitor recorder 14. The moisture-resistant seal 35 enables the monitor recorder 14 to be worn at all times, even during showering or other activities that could expose the monitor recorder 14 to moisture or adverse conditions.

In addition, a battery compartment 36 is formed on the bottom surface of the non-conductive receptacle 25. A pair of battery leads (not shown) from the battery compartment 36 to another pair of the electrical pads 34 electrically interface the battery to the monitor recorder **14**. The battery contained within the battery compartment 35 is a direct current (DC) power cell and can be replaceable, rechargeable or disposable.

The monitor recorder 14 draws power externally from the battery provided in the non-conductive receptacle 25, thereby uniquely obviating the need for the monitor recorder 14 to carry a dedicated power source. FIG. 7 is a bottom plan view of the monitor recorder 14 of FIG. 4. A cavity 58 is 5 formed on the bottom surface of the sealed housing 50 to accommodate the upward projection of the battery compartment 36 from the bottom surface of the non-conductive receptacle 25, when the monitor recorder 14 is secured in place on the non-conductive receptacle 25. A set of electrical 10 contacts **56** protrude from the bottom surface of the sealed housing **50** and are arranged in alignment with the electrical pads 34 provided on the bottom surface of the non-conductive receptacle 25 to establish electrical connections between the electrode patch 15 and the monitor recorder 14. In 15 addition, a seal coupling 57 circumferentially surrounds the set of electrical contacts 56 and securely mates with the moisture-resistant seal 35 formed on the bottom surface of the non-conductive receptacle 25. The battery contained within the battery compartment 36 can be replaceable, 20 rechargeable or disposable. In a further embodiment, the ECG sensing circuitry of the monitor recorder 14 can be supplemented with additional sensors, including an SpO<sub>2</sub> sensor, a blood pressure sensor, a temperature sensor, respiratory rate sensor, a glucose sensor, an air flow sensor, and 25 a volumetric pressure sensor, which can be incorporated directly into the monitor recorder 14 or onto the nonconductive receptacle 25.

The placement of the flexible backing 20 on the sternal midline 16 (or immediately to either side of the sternum 13) 30 also helps to minimize the side-to-side movement of the wearable monitor 12 in the left- and right-handed directions during wear. However, the wearable monitor 12 is still susceptible to pushing, pulling, and torqueing movements, patient bends forward, and tensile and torsional forces when the patient leans backwards or twists. To counter the dislodgment of the flexible backing 20 due to compressional and torsional forces, a layer of non-irritating adhesive, such as hydrocolloid, is provided at least partially on the under- 40 side, or contact, surface of the flexible backing 20, but only on the distal end 30 and the proximal end 31. As a result, the underside, or contact surface of the longitudinal midsection 23 does not have an adhesive layer and remains free to move relative to the skin. Thus, the longitudinal midsection 23 45 forms a crimp relief that respectively facilitates compression and twisting of the flexible backing 20 in response to compressional and torsional forces. Other forms of flexible backing crimp reliefs are possible.

Unlike the flexible backing 20, the flexible circuit 32 is 50 only able to bend and cannot stretch in a planar direction. The flexible circuit 32 can be provided either above or below the flexible backing 20. FIG. 8 is a top view showing the flexible circuit 32 of the extended wear electrode patch 15 of FIG. 4 when mounted above the flexible backing 20. A distal 55 ECG electrode 38 and proximal ECG electrode 39 are respectively coupled to the distal and proximal ends of the flexible circuit 32 to serve as electrode signal pickups. The flexible circuit 32 preferably does not extend to the outside edges of the flexible backing 20, thereby avoiding gouging 60 or discomforting the patient's skin during extended wear, such as when sleeping on the side. During wear, the ECG electrodes 38, 39 must remain in continual contact with the skin. A strain relief 40 is defined in the flexible circuit 32 at a location that is partially underneath the battery compart- 65 ment 36 when the flexible circuit 32 is affixed to the flexible backing 20. The strain relief 40 is laterally extendable to

counter dislodgment of the ECG electrodes 38, 39 due to bending, tensile and torsional forces. A pair of strain relief cutouts 41 partially extend transversely from each opposite side of the flexible circuit 32 and continue longitudinally towards each other to define in 'S'-shaped pattern, when viewed from above. The strain relief respectively facilitates longitudinal extension and twisting of the flexible circuit 32 in response to tensile and torsional forces. Other forms of circuit board strain relief are possible.

ECG monitoring and other functions performed by the monitor recorder 14 are provided through a micro controlled architecture. FIG. 9 is a functional block diagram showing the component architecture of the circuitry 60 of the monitor recorder 14 of FIG. 4. The circuitry 60 is externally powered through a battery provided in the non-conductive receptable 25 (shown in FIG. 6). Both power and raw ECG signals, which originate in the pair of ECG electrodes 38, 39 (shown in FIG. 8) on the distal and proximal ends of the electrode patch 15, are received through an external connector 65 that mates with a corresponding physical connector on the electrode patch 15. The external connector 65 includes the set of electrical contacts 56 that protrude from the bottom surface of the sealed housing 50 and which physically and electrically interface with the set of pads 34 provided on the bottom surface of the non-conductive receptacle 25. The external connector includes electrical contacts 56 for data download, microcontroller communications, power, analog inputs, and a peripheral expansion port. The arrangement of the pins on the electrical connector 65 of the monitor recorder 14 and the device into which the monitor recorder 14 is attached, whether an electrode patch 15 or download station (not shown), follow the same electrical pin assignment convention to facilitate interoperability. The external connector 65 also serves as a physical interface to a downincluding compressional and torsional forces when the 35 load station that permits the retrieval of stored ECG monitoring data, communication with the monitor recorder 14, and performance of other functions. The download station is further described infra with reference to FIG. 15.

Operation of the circuitry 60 of the monitor recorder 14 is managed by a microcontroller **61**, such as the EFM32 Tiny Gecko 32-bit microcontroller, manufactured by Silicon Laboratories Inc., Austin, TX. The microcontroller **61** has flexible energy management modes and includes a direct memory access controller and built-in analog-to-digital and digital-to-analog converters (ADC and DAC, respectively). The microcontroller **61** also includes a program memory unit containing internal flash memory that is readable and writeable. The internal flash memory can also be programmed externally. The microcontroller **61** operates under modular micro program control as specified in firmware stored in the internal flash memory. The functionality and firmware modules relating to signal processing by the microcontroller 61 are further described infra with reference to FIG. 14. The microcontroller 61 draws power externally from the battery provided on the electrode patch 15 via a pair of the electrical contacts **56**. The microcontroller **61** connects to the ECG front end circuit 63 that measures raw cutaneous electrical signals using a driven reference that eliminates common mode noise, as further described infra with reference to FIG. 11.

The circuitry 60 of the monitor recorder 14 also includes a flash memory 62, which the microcontroller 61 uses for storing ECG monitoring data and other physiology and information. The flash memory **62** also draws power externally from the battery provided on the electrode patch 15 via a pair of the electrical contacts 56. Data is stored in a serial flash memory circuit, which supports read, erase and program operations over a communications bus. The flash memory 62 enables the microcontroller 61 to store digitized ECG data. The communications bus further enables the flash memory 62 to be directly accessed externally over the external connector 65 when the monitor recorder 14 is 5 interfaced to a download station.

The microcontroller **61** includes functionality that enables the acquisition of samples of analog ECG signals, which are converted into a digital representation, as further described infra with reference to FIG. 14. In one mode, the microcontroller 61 will acquire, sample, digitize, signal process, and store digitized ECG data into available storage locations in the flash memory 62 until all memory storage locations are filled, after which the digitized ECG data needs to be downloaded or erased to restore memory capacity. Data download or erasure can also occur before all storage locations are filled, which would free up memory space sooner, albeit at the cost of possibly interrupting monitoring while downloading or erasure is performed. In another 20 mode, the microcontroller 61 can include a loop recorder feature that will overwrite the oldest stored data once all storage locations are filled, albeit at the cost of potentially losing the stored data that was overwritten, if not previously downloaded. Still other modes of data storage and capacity 25 recovery are possible.

The circuitry **60** of the monitor recorder **14** further includes an actigraphy sensor **64** implemented as a 3-axis accelerometer. The accelerometer may be configured to generate interrupt signals to the microcontroller **61** by 30 independent initial wake up and free fall events, as well as by device position. In addition, the actigraphy provided by the accelerometer can be used during post-monitoring analysis to correct the orientation of the monitor recorder **14** if, for instance, the monitor recorder **14** has been inadvertently 35 installed upside down, that is, with the monitor recorder **14** oriented on the electrode patch **15** towards the patient's feet, as well as for other event occurrence analyses.

The microcontroller 61 includes an expansion port that also utilizes the communications bus. External devices, 40 separately drawing power externally from the battery provided on the electrode patch 15 or other source, can interface to the microcontroller 61 over the expansion port in half duplex mode. For instance, an external physiology sensor can be provided as part of the circuitry 60 of the monitor 45 recorder 14, or can be provided on the electrode patch 15 with communication with the microcontroller **61** provided over one of the electrical contacts **56**. The physiology sensor can include an SpO<sub>2</sub> sensor, blood pressure sensor, temperature sensor, respiratory rate sensor, glucose sensor, airflow 50 sensor, volumetric pressure sensing, or other types of sensor or telemetric input sources. In a further embodiment, a wireless interface for interfacing with other wearable (or implantable) physiology monitors, as well as data offload and programming, can be provided as part of the circuitry **60** 55 of the monitor recorder 14, or can be provided on the electrode patch 15 with communication with the microcontroller 61 provided over one of the electrical contacts 56.

Finally, the circuitry **60** of the monitor recorder **14** includes patient-interfaceable components, including a tactile feedback button **66**, which a patient can press to mark events or to perform other functions, and a buzzer **67**, such as a speaker, magnetic resonator or piezoelectric buzzer. The buzzer **67** can be used by the microcontroller **61** to output feedback to a patient such as to confirm power up and 65 initiation of ECG monitoring. Still other components as part of the circuitry **60** of the monitor recorder **14** are possible.

**16** 

While the monitor recorder 14 operates under micro control, most of the electrical components of the electrode patch 15 operate passively. FIG. 10 is a functional block diagram showing the circuitry 70 of the extended wear electrode patch 15 of FIG. 4. The circuitry 70 of the electrode patch 15 is electrically coupled with the circuitry 60 of the monitor recorder 14 through an external connector 74. The external connector 74 is terminated through the set of pads 34 provided on the bottom of the non-conductive receptacle 25, which electrically mate to corresponding electrical contacts 56 protruding from the bottom surface of the sealed housing 50 to electrically interface the monitor recorder 14 to the electrode patch 15.

The circuitry 70 of the electrode patch 15 performs three primary functions. First, a battery 71 is provided in a battery compartment formed on the bottom surface of the nonconductive receptacle 25. The battery 71 is electrically interfaced to the circuitry 60 of the monitor recorder 14 as a source of external power. The unique provisioning of the battery 71 on the electrode patch 15 provides several advantages. First, the locating of the battery 71 physically on the electrode patch 15 lowers the center of gravity of the overall wearable monitor 12 and thereby helps to minimize shear forces and the effects of movements of the patient and clothing. Moreover, the housing **50** of the monitor recorder 14 is sealed against moisture and providing power externally avoids having to either periodically open the housing 50 for the battery replacement, which also creates the potential for moisture intrusion and human error, or to recharge the battery, which can potentially take the monitor recorder 14 off line for hours at a time. In addition, the electrode patch 15 is intended to be disposable, while the monitor recorder 14 is a reusable component. Each time that the electrode patch 15 is replaced, a fresh battery is provided for the use of the monitor recorder 14, which enhances ECG monitoring performance quality and duration of use. Also, the architecture of the monitor recorder 14 is open, in that other physiology sensors or components can be added by virtue of the expansion port of the microcontroller 61. Requiring those additional sensors or components to draw power from a source external to the monitor recorder 14 keeps power considerations independent of the monitor recorder 14. This approach also enables a battery of higher capacity to be introduced when needed to support the additional sensors or components without effecting the monitor recorders circuitry 60.

Second, the pair of ECG electrodes 38, 39 respectively provided on the distal and proximal ends of the flexible circuit 32 are electrically coupled to the set of pads 34 provided on the bottom of the non-conductive receptacle 25 by way of their respective circuit traces 33, 37. The signal ECG electrode 39 includes a protection circuit 72, which is an inline resistor that protects the patient from excessive leakage current should the front end circuit fail.

Last, in a further embodiment, the circuitry 70 of the electrode patch 15 includes a cryptographic circuit 73 to authenticate an electrode patch 15 for use with a monitor recorder 14. The cryptographic circuit 73 includes a device capable of secure authentication and validation. The cryptographic device 73 ensures that only genuine, non-expired, safe, and authenticated electrode patches 15 are permitted to provide monitoring data to a monitor recorder 14 and for a specific patient.

The ECG front end circuit 63 measures raw cutaneous electrical signals using a driven reference that effectively reduces common mode noise, power supply noise and system noise, which is critical to preserving the character-

those signals from the atria. FIG. 11 is a schematic diagram 80 showing the ECG front end circuit 63 of the circuitry 60 of the monitor recorder 14 of FIG. 9. The ECG front end circuit 63 senses body surface potentials through a signal 5 lead ("Si") and reference lead ("REF") that are respectively connected to the ECG electrodes of the electrode patch 15. Power is provided to the ECG front end circuit 63 through a pair of DC power leads ("VCC" and "GND"). An analog ECG signal ("ECG") representative of the electrical activity 10 of the patient's heart over time is output, which the micro controller 11 converts to digital representation and filters, as further described infra.

The ECG front end circuit **63** is organized into five stages, a passive input filter stage **81**, a unity gain voltage follower 15 stage **82**, a passive high pass filtering stage **83**, a voltage amplification and active filtering stage **84**, and an antialiasing passive filter stage **85**, plus a reference generator. Each of these stages and the reference generator will now be described.

The passive input filter stage **81** includes the parasitic impedance of the ECG electrodes **38**, **39** (shown in FIG. **8**), the protection resistor that is included as part of the protection circuit **72** of the ECG electrode **39** (shown in FIG. **10**), an AC coupling capacitor **87**, a termination resistor **88**, and 25 filter capacitor **89**. This stage passively shifts the frequency response poles downward there is a high electrode impedance from the patient on the signal lead Si and reference lead REF, which reduces high frequency noise.

The unity gain voltage follower stage **82** provides a unity voltage gain that allows current amplification by an Operational Amplifier ("Op Amp") **90**. In this stage, the voltage stays the same as the input, but more current is available to feed additional stages. This configuration allows a very high input impedance, so as not to disrupt the body surface 35 potentials or the filtering effect of the previous stage.

The passive high pass filtering stage **83** is a high pass filter that removes baseline wander and any offset generated from the previous stage. Adding an AC coupling capacitor **91** after the Op Amp **90** allows the use of lower cost components, 40 while increasing signal fidelity.

The voltage amplification and active filtering stage 84 amplifies the voltage of the input signal through Op Amp 92, while applying a low pass filter. The DC bias of the input signal is automatically centered in the highest performance 45 input region of the Op Amp 92 because of the AC coupling capacitor 91.

The anti-aliasing passive filter stage **85** provides an anti-aliasing low pass filter. When the microcontroller **61** acquires a sample of the analog input signal, a disruption in 50 the signal occurs as a sample and hold capacitor that is internal to the microcontroller **61** is charged to supply signal for acquisition.

The reference generator in subcircuit **86** drives a driven reference containing power supply noise and system noise to 55 the reference lead REF. A coupling capacitor **87** is included on the signal lead Si and a pair of resistors **93***a*, **93***b* inject system noise into the reference lead REF. The reference generator is connected directly to the patient, thereby avoiding the thermal noise of the protection resistor that is 60 included as part of the protection circuit **72**.

In contrast, conventional ECG lead configurations try to balance signal and reference lead connections. The conventional approach suffers from the introduction of differential thermal noise, lower input common mode rejection, 65 increased power supply noise, increased system noise, and differential voltages between the patient reference and the

**18** 

reference used on the device that can obscure, at times, extremely, low amplitude body surface potentials.

Here, the parasitic impedance of the ECG electrodes 38, 39, the protection resistor that is included as part of the protection circuit 72 and the coupling capacitor 87 allow the reference lead REF to be connected directly to the skin's surface without any further components. As a result, the differential thermal noise problem caused by pairing protection resistors to signal and reference leads, as used in conventional approaches, is avoided.

The monitor recorder 14 continuously monitors the patient's heart rate and physiology. FIG. 12 is a flow diagram showing a monitor recorder-implemented method 100 for monitoring ECG data for use in the monitor recorder 14 of FIG. 4. Initially, upon being connected to the set of pads 34 provided with the non-conductive receptacle 25 when the monitor recorder 14 is snapped into place, the microcontroller 61 executes a power up sequence (step 101). During the power up sequence, the voltage of the battery 71 is checked, the state of the flash memory 62 is confirmed, both in terms of operability check and available capacity, and microcontroller operation is diagnostically confirmed. In a further embodiment, an authentication procedure between the microcontroller 61 and the electrode patch 15 are also performed.

Following satisfactory completion of the power up sequence, an iterative processing loop (steps 102-110) is continually executed by the microcontroller **61**. During each iteration (step 102) of the processing loop, the ECG frontend **63** (shown in FIG. **9**) continually senses the cutaneous ECG electrical signals (step 103) via the ECG electrodes 38, 29 and is optimized to maintain the integrity of the P-wave. A sample of the ECG signal is read (step 104) by the microcontroller 61 by sampling the analog ECG signal that is output by the ECG front end circuit 63. FIG. 13 is a graph showing, by way of example, a typical ECG waveform 120. The x-axis represents time in approximate units of tenths of a second. The y-axis represents cutaneous electrical signal strength in approximate units of millivolts. The P-wave 121 has a smooth, normally upward, that is, positive, waveform that indicates atrial depolarization. The QRS complex often begins with the downward deflection of a Q-wave 122, followed by a larger upward deflection of an R-wave 123, and terminated with a downward waveform of the S-wave 124, collectively representative of ventricular depolarization. The T-wave 125 is normally a modest upward waveform, representative of ventricular depolarization, while the U-wave 126, often not directly observable, indicates the recovery period of the Purkinje conduction fibers.

Sampling of the R-to-R interval enables heart rate information derivation. For instance, the R-to-R interval represents the ventricular rate and rhythm, while the P-to-P interval represents the atrial rate and rhythm. Importantly, the PR interval is indicative of atrioventricular (AV) conduction time and abnormalities in the PR interval can reveal underlying heart disorders, thus representing another reason why the P-wave quality achievable by the ambulatory electrocardiography monitoring patch optimized for capturing low amplitude cardiac action potential propagation described herein is medically unique and important. The long-term observation of these ECG indicia, as provided through extended wear of the wearable monitor 12, provides valuable insights to the patient's cardiac function symptoms, and overall well-being.

Referring back to FIG. 12, each sampled ECG signal, in quantized and digitized form, is processed by signal processing modules as specified in firmware (step 105), as

described infra, and temporarily staged in a buffer (step 106), pending compression preparatory to storage in the flash memory 62 (step 107). Following compression, the compressed ECG digitized sample is again buffered (step 108), then written to the flash memory 62 (step 109) using 5 the communications bus. Processing continues (step 110), so long as the monitoring recorder 14 remains connected to the electrode patch 15 (and storage space remains available in the flash memory 62), after which the processing loop is exited (step 110) and execution terminates. Still other operations and steps are possible.

The microcontroller 61 operates under modular micro program control as specified in firmware, and the program control includes processing of the analog ECG signal output by the ECG front end circuit 63. FIG. 14 is a functional 15 particularly critical to single-lead ECG monitors, where block diagram showing the signal processing functionality 130 of the microcontroller 61. The microcontroller 61 operates under modular micro program control as specified in firmware 132. The firmware modules 132 include high and low pass filtering 133, and compression 134. Other modules 20 are possible. The microcontroller **61** has a built-in ADC, although ADC functionality could also be provided in the firmware 132.

The ECG front end circuit 63 first outputs an analog ECG signal, which the ADC 131 acquires, samples and converts 25 into an uncompressed digital representation. The microcontroller 61 includes one or more firmware modules 133 that perform filtering. In one embodiment, three low pass filters and two high pass filters are used. Following filtering, the digital representation of the cardiac activation wave front 30 amplitudes are compressed by a compression module 134 before being written out to storage 135.

The download station executes a communications or offload program ("Offload") or similar program that interacts to retrieve the stored ECG monitoring data. FIG. 15 is a functional block diagram showing the operations 140 performed by the download station. The download station could be a server, personal computer, tablet or handheld computer, smart mobile device, or purpose-built programmer designed 40 specific to the task of interfacing with a monitor recorder 14. Still other forms of download station are possible, including download stations connected through wireless interfacing using, for instance, a smart phone connected to the monitor recorder **14** through Bluetooth or Wi-Fi.

The download station is responsible for offloading stored ECG monitoring data from a monitor recorder 14 and includes an electro mechanical docking interface by which the monitor recorder 14 is connected at the external connector **65**. The download station operates under program- 50 mable control as specified in software **141**. The stored ECG monitoring data retrieved from storage 142 on a monitor recorder 14 is first decompressed by a decompression module 143, which converts the stored ECG monitoring data back into an uncompressed digital representation more 55 suited to signal processing than a compressed signal. The retrieved ECG monitoring data may be stored into local storage for archival purposes, either in original compressed form, or as uncompressed.

The download station can include an array of filtering 60 modules. For instance, a set of phase distortion filtering tools 144 may be provided, where corresponding software filters can be provided for each filter implemented in the firmware executed by the microcontroller 61. The digital signals are run through the software filters in a reverse direction to 65 remove phase distortion. For instance, a 45 Hertz high pass filter in firmware may have a matching reverse 45 Hertz high

**20** 

pass filter in software. Most of the phase distortion is corrected, that is, canceled to eliminate noise at the set frequency, but data at other frequencies in the waveform remain unaltered. As well, bidirectional impulse infinite response (IIR) high pass filters and reverse direction (symmetric) IIR low pass filters can be provided. Data is run through these filters first in a forward direction, then in a reverse direction, which generates a square of the response and cancels out any phase distortion. This type of signal processing is particularly helpful with improving the display of the ST-segment by removing low frequency noise.

An automatic gain control (AGC) module **145** can also be provided to adjust the digital signals to a usable level based on peak or average signal level or other metric. AGC is physical factors, such as the tilt of the heart, can affect the electrical field generated. On three-lead Holter monitors, the leads are oriented in vertical, horizontal and diagonal directions. As a result, the horizontal and diagonal leads may be higher amplitude and ECG interpretation will be based on one or both of the higher amplitude leads. In contrast, the electrocardiography monitor 12 has only a single lead that is oriented in the vertical direction, so variations in amplitude will be wider than available with multi-lead monitors, which have alternate leads to fall back upon.

In addition, AGC may be necessary to maintain compatibility with existing ECG interpretation software, which is typically calibrated for multi-lead ECG monitors for viewing signals over a narrow range of amplitudes. Through the AGC module 145, the gain of signals recorded by the monitor recorder 14 of the electrocardiography monitor 12 can be attenuated up (or down) to work with FDA-approved commercially available ECG interpretation.

AGC can be implemented in a fixed fashion that is with the monitor recorder 14 via the external connector 65 35 uniformly applied to all signals in an ECG recording, adjusted as appropriate on a recording-by-recording basis. Typically, a fixed AGC value is calculated based on how an ECG recording is received to preserve the amplitude relationship between the signals. Alternatively, AGC can be varied dynamically throughout an ECG recording, where signals in different segments of an ECG recording are amplified up (or down) by differing amounts of gain.

> Typically, the monitor recorder 14 will record a high resolution, low frequency signal for the P-wave segment. 45 However, for some patients, the result may still be a visually small signal. Although high resolution is present, the unaided eye will normally be unable to discern the P-wave segment. Therefore, gaining the signal is critical to visually depicting P-wave detail. This technique works most efficaciously with a raw signal with low noise and high resolution, as generated by the monitor recorder 14. Automatic gain control applied to a high noise signal will only exacerbate noise content and be self-defeating.

Finally, the download station can include filtering modules specifically intended to enhance P-wave content. For instance, a P-wave base boost filter **146**, which is a form of pre-emphasis filter, can be applied to the signal to restore missing frequency content or to correct phase distortion. Still other filters and types of signal processing are possible.

Conventional ECG monitors, like Holter monitors, invariably require specialized training on proper placement of leads and on the operation of recording apparatuses, plus support equipment purpose-built to retrieve, convert, and store ECG monitoring data. In contrast, the electrocardiography monitor 12 simplifies monitoring from end to end, starting with placement, then with use, and finally with data retrieval. FIGS. 16A-C are functional block diagrams

respectively showing practical uses 150, 160, 170 of the extended wear electrocardiography monitors 12 of FIGS. 1 and 2. The combination of a flexible extended wear electrode patch and a removable reusable (or single use) monitor recorder empowers physicians and patients alike with the ability to readily perform long-term ambulatory monitoring of the ECG and physiology.

Especially when compared to existing Holter-type monitors and monitoring patches placed in the upper pectoral region, the electrocardiography monitor 12 offers superior 10 patient comfort, convenience and user-friendliness. To start, the electrode patch 15 is specifically designed for ease of use by a patient (or caregiver); assistance by professional medical personnel is not required. Moreover, the patient is free to 15 replace the electrode patch 15 at any time and need not wait for a doctor's appointment to have a new electrode patch 15 placed. In addition, the monitor recorder 14 operates automatically and the patient only need snap the monitor recorder 14 into place on the electrode patch 15 to initiate 20 ECG monitoring. Thus, the synergistic combination of the electrode patch 15 and monitor recorder 14 makes the use of the electrocardiography monitor 12 a reliable and virtually foolproof way to monitor a patient's ECG and physiology for an extended, or even open-ended, period of time.

In simplest form, extended wear monitoring can be performed by using the same monitor recorder 14 inserted into a succession of fresh new electrode patches 15. As needed, the electrode patch 15 can be replaced by the patient (or caregiver) with a fresh new electrode patch 15 throughout 30 the overall monitoring period. Referring first to FIG. 16A, at the outset of monitoring, a patient adheres a new electrode patch 15 in a location at the sternal midline 16 (or immediately to either side of the sternum 13) oriented top-tobottom (step 151). The placement of the wearable monitor in 35 a location at the sternal midline (or immediately to either side of the sternum), with its unique narrow "hourglass"-like shape, significantly improves the ability of the wearable monitor to cutaneously sense cardiac electrical potential signals, particularly the P-wave (or atrial activity) and, to a 40 lesser extent, the QRS interval signals indicating ventricular activity in the ECG waveforms.

Placement involves simply adhering the electrode patch 15 on the skin along the sternal midline 16 (or immediately to either side of the sternum 13). Patients can easily be 45 taught to find the physical landmarks on the body necessary for proper placement of the electrode patch 15. The physical landmarks are locations on the surface of the body that are already familiar to patients, including the inter-mammary cleft between the breasts above the manubrium (particularly 50 easily locatable by women and gynecomastic men), the sternal notch immediately above the manubrium, and the Xiphoid process located at the bottom of the sternum. Empowering patients with the knowledge to place the electrode patch 15 in the right place ensures that the ECG 55 electrodes will be correctly positioned on the skin, no matter the number of times that the electrode patch 15 is replaced.

A monitor recorder 14 is snapped into the non-conductive receptacle 25 on the outward-facing surface of the electrode patch 15 (step 152). The monitor recorder 14 draws power 60 externally from a battery provided in the non-conductive receptacle 25. In addition, the battery is replaced each time that a fresh new electrode patch 15 is placed on the skin, which ensures that the monitor recorder 14 is always operating with a fresh power supply and minimizing the chances 65 of a loss of monitoring continuity due to a depleted battery source.

22

By default, the monitor recorder 14 automatically initiates monitoring upon sensing body surface potentials through the pair of ECG electrodes (step 153). In a further embodiment, the monitor recorder 14 can be configured for manual operation, such as by using the tactile feedback button 66 on the outside of the sealed housing 50, or other user-operable control. In an even further embodiment, the monitor recorder 14 can be configured for remotely-controlled operation by equipping the monitor recorder 14 with a wireless transceiver, such as described in commonly-assigned U.S. Pat. No. 9,433,367, issued Sep. 6, 2016, the disclosure of which is incorporated by reference. The wireless transceiver allows wearable or mobile communications devices to wirelessly interface with the monitor recorder 14.

A key feature of the extended wear electrocardiography monitor 12 is the ability to monitor ECG and physiological data for an extended period of time, which can be well in excess of the 14 days currently pitched as being achievable by conventional ECG monitoring approaches. In a further embodiment, ECG monitoring can even be performed over an open-ended time period, as further explained infra. The monitor recorder 14 is reusable and, if so desired, can be transferred to successive electrode patches 15 to ensure continuity of monitoring. At any point during ECG moni-25 toring, a patient (or caregiver) can remove the monitor recorder 14 (step 154) and replace the electrode patch 15 currently being worn with a fresh new electrode patch 15 (step 151). The electrode patch 15 may need to be replaced for any number of reasons. For instance, the electrode patch 15 may be starting to come off after a period of wear or the patient may have skin that is susceptible to itching or irritation. The wearing of ECG electrodes can aggravate such skin conditions. Thus, a patient may want or need to periodically remove or replace ECG electrodes during a long-term ECG monitoring period, whether to replace a dislodged electrode, reestablish better adhesion, alleviate itching or irritation, allow for cleansing of the skin, allow for showering and exercise, or for other purpose.

Following replacement, the monitor recorder 14 is again snapped into the electrode patch 15 (step 152) and monitoring resumes (step 153). The ability to transfer the same monitor recorder 14 to successive electrode patches 15 during a period of extended wear monitoring is advantageous not to just diagnose cardiac rhythm disorders and other physiological events of potential concern, but to do extremely long term monitoring, such as following up on cardiac surgery, ablation procedures, or medical device implantation. In these cases, several weeks of monitoring or more may be needed. In addition, some IMDs, such as pacemakers or implantable cardioverter defibrillators, incorporate a loop recorder that will capture cardiac events over a fixed time window. If the telemetry recorded by the IMD is not downloaded in time, cardiac events that occurred at a time preceding the fixed time window will be overwritten by the IMD and therefore lost. The monitor recorder 14 provides continuity of monitoring that acts to prevent loss of cardiac event data. In a further embodiment, the firmware executed by the microcontroller 61 of the monitor recorder 14 can be optimized for minimal power consumption and additional flash memory for storing monitoring data can be added to achieve a multi-week monitor recorder 14 that can be snapped into a fresh new electrode patch 15 every seven days, or other interval, for weeks or even months on end.

Upon the conclusion of monitoring, the monitor recorder 14 is removed (step 154) and recorded ECG and physiological telemetry are downloaded (step 155). For instance, a download station can be physically interfaced to the external

Case 1:24-cv-01355-JDW Document 52-2 Filed 06/11/25 Page 31 of 145 PageID #

23

connector **65** of the monitor recorder **14** to initiate and conduct downloading, as described supra with reference to FIG. **15**.

In a further embodiment, the monitoring period can be of indeterminate duration. Referring next to FIG. 16B, a similar series of operations are followed with respect to replacement of electrode patches 15, reinsertion of the same monitor recorder 14, and eventual download of ECG and physiological telemetry (steps 161-165), as described supra with reference to FIG. 16A. However, the flash memory 62 10 (shown in FIG. 9) in the circuitry 60 of the monitor recorder 14 has a finite capacity. Following successful downloading of stored data, the flash memory 62 can be cleared to restore storage capacity and monitoring can resume once more, either by first adhering a new electrode patch 15 (step 161) 15 or by snapping the monitor recorder 14 into an alreadyadhered electrode patch 15 (step 162). The foregoing expanded series of operations, to include reuse of the same monitor recorder 14 following data download, allows monitoring to continue indefinitely and without the kinds of 20 interruptions that often affect conventional approaches, including the retrieval of monitoring data only by first making an appointment with a medical professional.

In a still further embodiment, when the monitor recorder 14 is equipped with a wireless transceiver, the use of a 25 download station can be skipped. Referring last to FIG. 16C, a similar series of operations are followed with respect to replacement of electrode patches 15 and reinsertion of the same monitor recorder 14 (steps 171-174), as described supra with reference to FIG. **16**A. However, recorded ECG 30 and physiological telemetry are downloaded wirelessly (step 175), such as described in commonly-assigned U.S. Pat. No. 9,433,367, cited supra. The recorded ECG and physiological telemetry can even be downloaded wirelessly directly from a monitor recorder **14** during monitoring while still snapped 35 into the non-conductive receptacle 25 on the electrode patch 15. The wireless interfacing enables monitoring to continue for an open-ended period of time, as the downloading of the recorded ECG and physiological telemetry will continually free up onboard storage space. Further, wireless interfacing 40 simplifies patient use, as the patient (or caregiver) only need worry about placing (and replacing) electrode patches 15 and inserting the monitor recorder 14. Still other forms of practical use of the extended wear electrocardiography monitors 12 are possible.

The circuit trace and ECG electrodes components of the electrode patch 15 can be structurally simplified. In a still further embodiment, the flexible circuit 32 (shown in FIG. 5) and distal ECG electrode 38 and proximal ECG electrode 39 (shown in FIG. 6) are replaced with a pair of interlaced 50 flexile wires. The interlacing of flexile wires through the flexible backing 20 reduces both manufacturing costs and environmental impact, as further described infra. The flexible circuit and ECG electrodes are replaced with a pair of flexile wires that serve as both electrode circuit traces and 55 electrode signal pickups. FIG. 17 is a perspective view 180 of an extended wear electrode patch 15 with a flexile wire electrode assembly in accordance with a still further embodiment. The flexible backing 20 maintains the unique narrow "hourglass"-like shape that aids long term extended 60 wear, particularly in women, as described supra with reference to FIG. 4. For clarity, the non-conductive receptable 25 is omitted to show the exposed battery printed circuit board **182** that is adhered underneath the non-conductive receptacle 25 to the proximal end 31 of the flexible backing 20. 65 Instead of employing flexible circuits, a pair of flexile wires are separately interlaced or sewn into the flexible backing 20

24

to serve as circuit connections for an anode electrode lead and for a cathode electrode lead.

To form a distal electrode assembly, a distal wire **181** is interlaced into the distal end 30 of the flexible backing 20, continues along an axial path through the narrow longitudinal midsection of the elongated strip, and electrically connects to the battery printed circuit board 182 on the proximal end 31 of the flexible backing 20. The distal wire 181 is connected to the battery printed circuit board 182 by stripping the distal wire 181 of insulation, if applicable, and interlacing or sewing the uninsulated end of the distal wire 181 directly into an exposed circuit trace 183. The distal wire-to-battery printed circuit board connection can be made, for instance, by back stitching the distal wire 181 back and forth across the edge of the battery printed circuit board **182**. Similarly, to form a proximal electrode assembly, a proximal wire (not shown) is interlaced into the proximal end 31 of the flexible backing 20. The proximal wire is connected to the battery printed circuit board 182 by stripping the proximal wire of insulation, if applicable, and interlacing or sewing the uninsulated end of the proximal wire directly into an exposed circuit trace 184. The resulting flexile wire connections both establish electrical connections and help to affix the battery printed circuit board 182 to the flexible backing 20.

The battery printed circuit board 182 is provided with a battery compartment 36. A set of electrical pads 34 are formed on the battery printed circuit board 182. The electrical pads 34 electrically interface the battery printed circuit board 182 with a monitor recorder 14 when fitted into the non-conductive receptacle 25. The battery compartment 36 contains a spring 185 and a clasp 186, or similar assembly, to hold a battery (not shown) in place and electrically interfaces the battery to the electrical pads 34 through a pair battery leads 187 for powering the electrocardiography monitor 14. Other types of battery compartment are possible. The battery contained within the battery compartment 36 can be replaceable, rechargeable, or disposable.

In a yet further embodiment, the circuit board and non-conductive receptacle 25 are replaced by a combined housing that includes a battery compartment and a plurality of electrical pads. The housing can be affixed to the proximal end of the elongated strip through the interlacing or sewing of the flexile wires or other wires or threads.

The core of the flexile wires may be made from a solid, stranded, or braided conductive metal or metal compounds. In general, a solid wire will be less flexible than a stranded wire with the same total cross-sectional area, but will provide more mechanical rigidity than the stranded wire. The conductive core may be copper, aluminum, silver, or other material. The pair of the flexile wires may be provided as insulated wire. In one embodiment, the flexile wires are made from a magnet wire from Belden Cable, catalogue number 8051, with a solid core of AWG 22 with bare copper as conductor material and insulated by polyurethane or nylon. Still other types of flexile wires are possible. In a further embodiment, conductive ink or graphene can be used to print electrical connections, either in combination with or in place of the flexile wires.

In a still further embodiment, the flexile wires are uninsulated. FIG. 18 is perspective view of the flexile wire electrode assembly from FIG. 17, with a layer of insulating material 189 shielding a bare uninsulated distal wire 181 around the midsection on the contact side of the flexible backing. On the contact side of the proximal and distal ends of the flexible backing, only the portions of the flexile wires serving as electrode signal pickups are electrically exposed

and the rest of the flexile wire on the contact side outside of the proximal and distal ends are shielded from electrical contact. The bare uninsulated distal wire 181 may be insulated using a layer of plastic, rubber-like polymers, or varnish, or by an additional layer of gauze or adhesive (or 5 non-adhesive) gel. The bare uninsulated wire 181 on the non-contact side of the flexible backing may be insulated or can simply be left uninsulated.

Both end portions of the pair of flexile wires are typically placed uninsulated on the contact surface of the flexible 10 backing 20 to form a pair of electrode signal pickups. FIG. 19 is a bottom view 190 of the flexile wire electrode assembly as shown in FIG. 17. When adhered to the skin during use, the uninsulated end portions of the distal wire **181** and the proximal wire **191** enable the monitor recorder 15 14 to measure dermal electrical potential differentials. At the proximal and distal ends of the flexible backing 20, the uninsulated end portions of the flexile wires may be configured into an appropriate pattern to provide an electrode signal pickup, which would typically be a spiral shape 20 formed by guiding the flexile wire along an inwardly spiraling pattern. The surface area of the electrode pickups can also be variable, such as by selectively removing some or all of the insulation on the contact surface. For example, an electrode signal pickup arranged by sewing insulated flexile 25 wire in a spiral pattern could have a crescent-shaped cutout of uninsulated flexile wire facing towards the signal source.

In a still yet further embodiment, the flexile wires are left freely riding on the contact surfaces on the distal and proximal ends of the flexible backing, rather than being 30 interlaced into the ends of the flexible backing 20. FIG. 20 is a bottom view 200 of a flexile wire electrode assembly in accordance with a still yet further embodiment. The distal wire 181 is interlaced onto the midsection and extends an exposed end portion 192 onto the distal end 30. The proxi-35 mal wire 191 extends an exposed end portion 193 onto the proximal end 31. The exposed end portions 192 and 193, not shielded with insulation, are further embedded within an electrically conductive adhesive 201. The adhesive 201 makes contact to skin during use and conducts skin electrical 40 potentials to the monitor recorder 14 (not shown) via the flexile wires. The adhesive **201** can be formed from electrically conductive, non-irritating adhesive, such as hydrocolloid.

The distal wire **181** is interlaced or sewn through the 45 longitudinal midsection of the flexible backing 20 and takes the place of the flexible circuit 32. FIG. 21 is a perspective view showing the longitudinal midsection of the flexible backing of the electrode assembly from FIG. 17. Various stitching patterns may be adopted to provide a proper 50 combination of rigidity and flexibility. In simplest form, the distal wire **181** can be manually threaded through a plurality of holes provided at regularly-spaced intervals along an axial path defined between the battery printed circuit board 182 (not shown) and the distal end 30 of the flexible backing 55 20. The distal wire 181 can be threaded through the plurality of holes by stitching the flexile wire as a single "thread." Other types of stitching patterns or stitching of multiple "threads" could also be used, as well as using a sewing machine or similar device to machine-stitch the distal wire 60 **181** into place, as further described infra. Further, the path of the distal wire **181** need not be limited to a straight line from the distal to the proximal end of the flexible backing **20**.

While the invention has been particularly shown and 65 replaceable without opening the wearable housing. described as referenced to the embodiments thereof, those skilled in the art will understand that the foregoing and other

**26** 

changes in form and detail may be made therein without departing from the spirit and scope.

What is claimed is:

- 1. A moisture-resistant electrocardiography monitor, comprising:
  - an electrocardiography monitor recorder, comprising:
    - a wearable housing molded out of one or more materials and sealed against moisture;
    - a plurality of electrical contacts protruding from the wearable housing;
    - a seal coupling positioned on the wearable housing and surrounding the electrical contacts; and
    - electronic circuitry provided within the wearable housing, the electronic circuitry further comprising:
      - an electrocardiographic front end circuit under a control of a micro-controller and adapted to sense cardiac electrical potential differentials through electrocardiographic electrodes via some of the electrical contacts, which are provided to the micro-controller as an analog signal;
      - the micro-controller configured to sample the analog signal; and
    - a memory electrically interfaced with the microcontroller and operable to store the samples; and an extended wear electrode patch, comprising:
      - a flexible backing comprising a plurality of adhesive contact surfaces;
      - the electrocardiographic electrodes, each comprised on one of the adhesive contact surfaces;
      - a receptacle affixed to a non-contacting surface of the flexible backing into which the wearable housing can be removably secured, the receptacle comprising a compartment within which a component interfaced to the electronic circuitry is positioned via some of the electrical contacts, wherein the component is a battery;
      - a plurality of electrical pads positioned on the receptacle, each of the pads configured to interface with one of the electrical contacts when the wearable housing is secured within the receptacle; and
      - a moisture-resistant seal formed on the receptacle and surrounding the electrical pads, wherein the moisture-resistant seal mates the seal coupling when the wearable housing is secured within the receptacle.
- 2. A monitor according to claim 1, wherein the one or more materials comprise at least one of polycarbonate and ABS.
- 3. A monitor according to claim 1, wherein the one or more materials comprise an alloy of polycarbonate and ABS.
- 4. A monitor according to claim 1, the housing further comprising a waterproof patient-operable tactile-feedback button.
- 5. A monitor according to claim 4, wherein an outer surface of the button is molded out of a soft pliable material.
- 6. A monitor according to claim 5, wherein the soft pliable material comprises silicon rubber.
- 7. A monitor according to claim 1, wherein the seal coupling and the moisture resistant seal are circular.
- **8**. A monitor according to claim **1**, wherein the battery is
- 9. A monitor according to claim 1, wherein the compartment is formed on a bottom surface of the receptacle.

- 10. A moisture-resistant patient-interfacing electrocardiography monitor, comprising:
  - an electrocardiography monitor recorder, comprising:
    - a wearable housing molded out of one or more materials and sealed against moisture;
    - a waterproof patient-operable tactile feedback button positioned on an outside of the wearable housing;
    - a plurality of electrical contacts protruding the wearable housing;
    - a seal coupling positioned on the wearable housing and surrounding the electrical contacts; and
    - electronic circuitry provided within the wearable housing, the electronic circuitry further comprising:
      - an electrocardiographic front end circuit under a control of a micro-controller and adapted to sense 15 cardiac electrical potential differentials through electrocardiographic electrodes via some of the electrical contacts, which are provided to the micro-controller as an analog signal;
      - the micro-controller configured to sample the analog 20 signal; and
    - a memory electrically interfaced with the microcontroller and operable to store the samples; and an extended wear electrode patch, comprising:
      - a flexible backing comprising a plurality of adhesive 25 contact surfaces;
      - the electrocardiographic electrodes, each comprised on one of the adhesive contact surfaces;
      - a receptacle affixed to a non-contacting surface of the flexible backing into which the wearable housing 30 can be removably secured, the receptacle comprising a compartment within which a battery, wherein the electronic circuitry is powered by the battery via at least some of the electrical contacts;

28

- a plurality of electrical pads positioned on the receptacle, each of the pads configured to interface with one of the electrical contacts when the wearable housing is secured within the receptacle; and
- a moisture-resistant seal formed on the receptacle and surrounding the electrical pads, wherein the moisture-resistant seal mates the seal coupling when the wearable housing is secured within the receptacle.
- 11. A monitor according to claim 10, wherein the one or more materials comprise at least one of polycarbonate and ABS.
- 12. A monitor according to claim 10, wherein the one or more materials comprise an alloy of polycarbonate and ABS.
- 13. A monitor according to claim 10, wherein the water-proof patient-operable tactile feedback button is positioned on a side of the housing opposite to a further side on which the electrical contacts are positioned.
- 14. A monitor according to claim 13, wherein an outer surface of the button is molded out of a soft pliable material.
- 15. A monitor according to claim 14, wherein the soft pliable material comprises silicon rubber.
- 16. A monitor according to claim 10, wherein the seal coupling and the moisture resistant seal are circular.
- 17. A monitor according to claim 10, wherein the battery is one of a replaceable, rechargeable, and disposable battery.
- 18. A monitor according to claim 10, wherein the compartment is formed on a bottom surface of the receptacle.
- 19. A monitor according to claim 10, wherein the battery is replaceable without opening the wearable housing.

\* \* \* \* \*

## Exhibit 17

Case 1:24-cv-01355-JDW Document 52-2 Filed 06/11/25 Page 35 of 145 PageID #



## (12) United States Patent Felix et al.

## (10) Patent No.: US 12,310,735 B2

## al. (45) Date of Patent:

\*May 27, 2025

## (54) EXTENDED WEAR AMBULATORY ELECTROCARDIOGRAPHY MONITOR

## (71) Applicant: Bardy Diagnostics, Inc., Bellevue, WA (US)

# (72) Inventors: Jason Felix, Vashon Island, WA (US); Jon Mikalson Bishay, Lexington, KY (US); Gust H. Bardy, Carnation, WA (US)

## (73) Assignee: Bardy Diagnostics, Inc.

## (\*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

This patent is subject to a terminal disclaimer.

## (21) Appl. No.: 18/353,407

## (22) Filed: **Jul. 17, 2023**

## (65) Prior Publication Data

US 2023/0355154 A1 Nov. 9, 2023

## Related U.S. Application Data

(63) Continuation of application No. 17/691,004, filed on Mar. 9, 2022, now Pat. No. 11,701,045, which is a (Continued)

# (51) Int. Cl. A61B 5/05 (2021.01) A61B 5/00 (2006.01) (Continued)

### 

## (58) Field of Classification Search

## (56) References Cited

## U.S. PATENT DOCUMENTS

3,215,136 A 11/1965 Holter et al. 3,569,852 A 3/1971 Berkovits (Continued)

## FOREIGN PATENT DOCUMENTS

DE 19955211 5/2001 EP 1859833 11/2007 (Continued)

## OTHER PUBLICATIONS

US 6,527,714 B2, 03/2003, Bardy (withdrawn) (Continued)

Primary Examiner — Joseph A Stoklosa

Assistant Examiner — Brian M Antiskay

(74) Attorney, Agent, or Firm — K&L Gates LLP

## (57) ABSTRACT

An electrocardiography monitor is provided. A sealed housing includes one end wider than an opposite end of the sealed housing. Electronic circuitry is provided within the sealed housing. The electronic circuitry includes an electrographic front end circuit to sense electrocardiographic signals and a micro-controller interfaced to the electrocardiographic signals. A buzzer within the housing outputs feedback to a wearer of the sealed housing.

## 20 Claims, 6 Drawing Sheets



## US 12,310,735 B2

Page 2

4,532,934 A

8/1985 Kelen

### Related U.S. Application Data 4,546,342 A 10/1985 Weaver et al. continuation of application No. 16/684,386, filed on 11/1985 Grayzel 4,550,502 A 4,580,572 A 4/1986 Granek et al. Nov. 14, 2019, now Pat. No. 11,272,872, which is a 4,635,646 A 1/1987 Gilles et al. continuation of application No. 15/676,896, filed on 3/1987 4,653,022 A Koro Aug. 14, 2017, now Pat. No. 10,478,083, which is a 4,716,903 A 1/1988 Hansen continuation of application No. 14/080,725, filed on 4,763,660 A 8/1988 Kroll et al. Nov. 14, 2013, now Pat. No. 9,730,593. 4,788,983 A 12/1988 Brink et al. 3/1989 Ascher 4,809,705 A 4,915,656 A 4/1990 Alferness Provisional application No. 61/882,403, filed on Sep. 5,007,429 A 4/1991 Treatch et al. 25, 2013. 6/1991 Albert et al. 5,025,794 A 5,107,480 A 4/1992 Naus 12/1992 Quedens et al. 5,168,876 A (51) **Int. Cl.** 6/1993 Steinhaus 5,215,098 A A61B 5/0205 (2006.01)5,231,990 A 8/1993 Gauglitz A61B 5/11 (2006.01)D341,423 S 11/1993 Bible A61B 5/259 (2021.01)11/1993 Axelgaard 5,263,481 A A61B 5/282 (2021.01)11/1993 Ferrari 5,265,579 A 5/1994 Holschbach et al. 5,312,446 A (2021.01)A61B 5/316 5,314,453 A 5/1994 Jeutter A61B 5/335 (2021.01)5,331,966 A 7/1994 Bennett et al. (2021.01)A61B 5/349 5,333,615 A 8/1994 Craelius et al. A61B 5/35 (2021.01)8/1994 Gadsby et al. 5,341,806 A 5,348,008 A 9/1994 Bornn et al. A61B 5/01 (2006.01)10/1994 Wateridge et al. 5,355,891 A A61B 5/021 (2006.01)11/1994 Leon et al. 5,365,934 A A61B 5/08 (2006.01)11/1994 Righter et al. 5,365,935 A *A61B 5/087* (2006.01)2/1995 Gudaitis 5,392,784 A A61B 5/091 (2006.01)D357,069 S 4/1995 Plahn et al. 4/1995 Faasse, Jr. 5,402,780 A A61B 5/145 (2006.01)5,402,884 A 4/1995 Gilman et al. A61B 5/1455 (2006.01)9/1995 Axelgaard 5,450,845 A G01N 27/30 (2006.01)9/1995 Senford et al. 5,451,876 A U.S. Cl. (52)5,458,141 A 10/1995 Neil 12/1995 Glazer et al. 5,473,537 A CPC ...... A61B 5/02055 (2013.01); A61B 5/1116 5,479,922 A 1/1996 Reichl (2013.01); *A61B 5/1117* (2013.01); *A61B* 1/1996 Testerman et al. 5,483,969 A *5/1118* (2013.01); *A61B 5/259* (2021.01); 4/1996 Segalowitz 5,511,553 A **A61B** 5/316 (2021.01); **A61B** 5/335 (2021.01); 5,540,733 A 7/1996 Testerman et al. **A61B** 5/349 (2021.01); **A61B** 5/35 (2021.01); 8/1996 Erickson 5,546,952 A 8/1996 Erickson 5,549,655 A A61B 5/4809 (2013.01); A61B 5/6801 5,579,919 A 12/1996 Gilman et al. (2013.01); *A61B* 5/6823 (2013.01); *A61B* 5,582,181 A 12/1996 Ruess **5/6833** (2013.01); A61B 5/01 (2013.01); A61B D377,983 S 2/1997 Sabri et al. 5/021 (2013.01); A61B 5/0816 (2013.01); 2/1997 Bledsoe et al. 5,601,089 A 4/1997 Faisandier A61B 5/087 (2013.01); A61B 5/091 (2013.01); 5,623,935 A 11/1997 Kamen 5,682,901 A A61B 5/14532 (2013.01); A61B 5/14542 12/1997 Stolte 5,697,955 A (2013.01); A61B 5/14551 (2013.01); A61B 5,724,967 A 3/1998 Venkatachalam 5/7455 (2013.01); A61B 2505/07 (2013.01); 5,749,902 A 5/1998 Olsen et al. A61B 2560/0271 (2013.01); A61B 2560/0412 8/1998 Mahoney 5,788,633 A 10/1998 Olsen et al. 5,817,151 A (2013.01); A61B 2560/045 (2013.01); A61B 10/1998 Karlsson et al. 5,819,741 A 2562/0219 (2013.01); A61B 2562/164 12/1998 Gilman et al. 5,850,920 A (2013.01); G01N 27/307 (2013.01) 5,860,918 A 1/1999 Schradi et al. Field of Classification Search (58)5,862,803 A 1/1999 Besson et al. CPC ...... A61B 5/28; A61B 5/1118; A61B 5/1117; D407,159 S 3/1999 Roberg 5,876,351 A 3/1999 Rohde A61B 2560/0468; A61B 5/02405; A61B 5/1999 Rogel 5,906,583 A 5/256; A61B 5/6804 5,951,598 A 9/1999 Bishay et al. USPC ...... 600/372, 382, 384, 386, 388, 390–393, 9/1999 Raj et al. 5,956,013 A 600/508-509 9/1999 Hartley 5,957,857 A 11/1999 Tay 5,984,102 A See application file for complete search history. 11/1999 Klein et al. 5,987,352 A 6,032,064 A 2/2000 Devlin et al. (56)**References Cited** 6,038,469 A 3/2000 Karlsson et al. 6,101,413 A 8/2000 Olsen et al. U.S. PATENT DOCUMENTS 6,115,638 A 9/2000 Groenke 6,117,077 A 9/2000 Del Mar et al. 3,602,215 A 8/1971 Parnell 10/2000 Brewer et al. 6,134,479 A 10/1972 Ota et al. 3,699,948 A 6,148,233 A 11/2000 Owen et al. 3,718,772 A 2/1973 Sanctuary 6,149,602 A 11/2000 Arcelus 7/1975 Goldberg 3,893,453 A 6,149,781 A 11/2000 Forand 10/1978 Cherry et al. 4,123,785 A 2/2001 Schulman et al. 6,185,452 B1 4/1979 Menken et al. 4,151,513 A 2/2001 Smith et al. 6,188,407 B1 5/1982 Arkans 4,328,814 A 4/2001 Thompson 6,223,080 B1 4,441,500 A 4/1984 Sessions et al. D443,063 S 5/2001 Pisani et al. 3/1985 Russell et al. 4,506,678 A

# US 12,310,735 B2 Page 3

| (56) |                              | Referen          | ces Cited                       | D606,656<br>7,672,714  |    |                   | Kobayashi et al.<br>Kuo et al.    |
|------|------------------------------|------------------|---------------------------------|------------------------|----|-------------------|-----------------------------------|
|      | U.S.                         | PATENT           | DOCUMENTS                       | 7,706,870              |    |                   | Shieh et al.                      |
|      |                              |                  |                                 | 7,756,721              |    | 7/2010            | Falchuk et al.                    |
|      | 6,238,338 B1                 | 5/2001           | DeLuca et al.                   | 7,787,943              |    |                   | McDonough                         |
|      | 6,245,025 B1                 |                  | Torok et al.                    | 7,874,993              |    | 1/2011            |                                   |
|      | 6,246,330 B1                 | 6/2001           |                                 | 7,881,785<br>D639,437  |    |                   | Nassif et al.<br>Bishay et al.    |
|      | 6,249,696 B1<br>D445,507 S   |                  | Olson et al.<br>Pisani et al.   | 7,959,574              |    | 6/2011            |                                   |
|      | 6,269,267 B1                 |                  | Bardy et al.                    | 8,108,035              |    |                   | Bharmi                            |
|      | 6,272,385 B1                 |                  | Bishay et al.                   | 8,116,841              | B2 |                   | Bly et al.                        |
|      | 6,298,255 B1                 |                  | Cordero et al.                  | 8,135,459              |    |                   | Bardy et al.                      |
|      | , ,                          |                  | Owen et al.                     | 8,150,502<br>8,160,682 |    |                   | Kumar et al.<br>Kumar et al.      |
|      | 6,304,773 B1                 |                  |                                 | 8,172,761              |    |                   | Rulkov et al.                     |
|      | 6,304,780 B1<br>6,304,783 B1 |                  | Owen et al.<br>Lyster et al.    | 8,180,425              |    |                   | Selvitelli et al.                 |
|      | 6,374,138 B1                 |                  | Owen et al.                     | 8,200,320              | B2 | 6/2012            | Kovacs                            |
|      | 6,381,482 B1                 | 4/2002           | Jayaraman et al.                | 8,214,007              |    |                   | Baker et al.                      |
|      | 6,416,471 B1                 |                  | Kumar et al.                    | 8,231,539<br>8,231,540 |    | 7/2012            | . •                               |
|      | 6,418,342 B1                 |                  | Owen et al.                     | 8,239,012              |    | 7/2012<br>8/2012  | Felix et al.                      |
|      | 6,424,860 B1<br>6,427,083 B1 |                  | Karlsson et al.<br>Owen et al.  | 8,249,686              |    |                   | Libbus et al.                     |
|      | 6,427,085 B1                 |                  | Boon et al.                     | 8,260,414              | B2 | 9/2012            | Nassif et al.                     |
|      | 6,434,410 B1                 |                  | Cordero                         | 8,266,008              |    |                   | Siegal et al.                     |
|      | 6,450,845 B1                 |                  | Snyder et al.                   | 8,277,378<br>8,285,356 |    | 10/2012           | Bardy<br>Bly et al.               |
|      | 6,454,708 B1                 |                  | Ferguson et al.                 | 8,285,370              |    |                   | Felix et al.                      |
|      | 6,456,256 B1<br>6,456,872 B1 |                  | Amundson et al.<br>Faisandier   | 8,308,650              |    |                   |                                   |
|      | 6,463,320 B1                 |                  | Xue et al.                      | 8,315,695              |    | 11/2012           | Sebelius et al.                   |
|      | 6,546,285 B1                 | 4/2003           | Owen et al.                     | 8,366,629              |    | 2/2013            | •                                 |
|      | 6,605,046 B1                 |                  | Del Mar                         | 8,374,688<br>8,412,317 |    | 4/2013            | Libbus et al.                     |
|      | 6,607,485 B2<br>6,611,705 B2 | 8/2003           | Hopman et al.                   | 8,460,189              |    |                   | Libbus et al.                     |
|      | 6,671,545 B2                 | 12/2003          | <b>-</b>                        | 8,473,047              |    |                   | Chakravarthy et al.               |
|      | 6,671,547 B2                 |                  | Lyster et al.                   | 8,478,418              |    | 7/2013            | •                                 |
|      | 6,694,186 B2                 | 2/2004           |                                 | 8,483,809<br>8,538,503 |    |                   | Kim et al.<br>Kumar et al.        |
|      | 6,704,595 B2                 | 3/2004           |                                 | 8,545,416              |    |                   | Kayyali et al.                    |
|      | 6,705,991 B2<br>6,719,701 B2 | 3/2004<br>4/2004 |                                 | 8,554,311              |    |                   | Warner et al.                     |
|      | 6,754,523 B2                 | 6/2004           |                                 | 8,560,046              |    |                   | Kumar et al.                      |
|      | 6,782,293 B2                 |                  | Dupelle et al.                  | , ,                    |    |                   | Amurthur et al.                   |
|      | 6,856,832 B1                 |                  | Matsumura et al.                | 8,594,763<br>8,600,486 |    |                   | Bibian et al.<br>Kaib et al.      |
|      | 6,860,897 B2<br>6,866,629 B2 | 3/2005<br>3/2005 |                                 | 8,611,980              |    |                   | Choe et al.                       |
|      | 6,887,201 B2                 | 5/2005           | •                               | 8,613,708              |    |                   | Bishay et al.                     |
|      | 6,893,397 B2                 | 5/2005           |                                 | 8,613,709<br>8,620,418 |    |                   | Bishay et al.<br>Kuppuraj et al.  |
|      | 6,895,261 B1                 |                  | Palamides                       | 8,626,277              |    |                   | Felix et al.                      |
|      | 6,904,312 B2<br>6,908,431 B2 | 6/2005<br>6/2005 | .*                              | 8,628,020              |    | 1/2014            |                                   |
|      | 6,913,577 B2                 | 7/2005           |                                 | 8,630,699              |    |                   | Baker et al.                      |
|      | 6,944,498 B2                 |                  | Owen et al.                     | 8,647,268              |    |                   |                                   |
|      |                              | 11/2005          |                                 | 8,668,653<br>8,684,925 |    |                   | Nagata et al.<br>Manicka et al.   |
|      | 6,970,731 B1<br>6,978,169 B1 | 12/2005          | Jayaraman et al.                | 8,688,190              |    |                   | Libbus et al.                     |
|      | 6,993,377 B2                 |                  | Flick et al.                    | 8,718,742              | B2 | 5/2014            | Beck et al.                       |
|      | 7,020,508 B2                 | 3/2006           | Stivoric et al.                 | 8,718,752              |    |                   | Libbus et al.                     |
|      | 7,027,864 B2                 |                  | Snyder et al.                   | 8,744,561<br>8,750,974 |    | 6/2014<br>6/2014  | Baker et al.                      |
|      | 7,052,472 B1<br>7,065,401 B2 |                  | Miller et al.<br>Worden         | 8,774,932              |    | 7/2014            |                                   |
|      | 7,085,601 B1                 |                  | Bardy et al.                    | 8,790,257              | B2 |                   | Libbus et al.                     |
|      | 7,104,955 B2                 | 9/2006           | •                               | 8,790,259              |    |                   | Katra et al.                      |
|      | 7,134,996 B2                 | 11/2006          |                                 | 8,795,174<br>8,798,729 |    |                   | Manicka et al.<br>Kaib et al.     |
|      | 7,137,389 B2<br>7,147,600 B2 |                  | Berthon-Jones Bardy             | 8,798,734              |    |                   | Kuppuraj et al.                   |
|      | 7,197,357 B2                 |                  | Istvan et al.                   | 8,818,478              | B2 |                   | Scheffler et al.                  |
|      | 7,206,630 B1                 | 4/2007           |                                 | 8,818,481              |    |                   | Bly et al.                        |
|      | 7,212,849 B2                 |                  | Zhang et al.                    | 8,823,490<br>8,858,432 |    |                   | Libbus et al.<br>Robertson et al. |
|      | 7,215,991 B2<br>7,248,916 B2 |                  | Besson et al.                   | 8,926,509              |    |                   | Magar et al.                      |
|      | 7,248,916 B2<br>7,257,438 B2 | 7/2007<br>8/2007 |                                 | 8,938,287              |    |                   | Felix et al.                      |
|      | 7,277,752 B2                 | 10/2007          |                                 | 8,948,935              |    |                   | Peeters et al.                    |
|      | 7,294,108 B1                 |                  | Bornzin et al.                  | 8,965,492              |    |                   | Baker et al.                      |
|      | D558,882 S                   | 1/2008           | •                               | 9,066,664<br>9,135,608 |    |                   | Karjalainen<br>Herlitz            |
|      | 7,328,061 B2<br>7,395,106 B2 |                  | Rowlandson et al.<br>Ryu et al. | 9,133,008              |    | 9/2015<br>10/2015 |                                   |
|      | 7,412,395 B2                 |                  | Rowlandson et al.               | 9,155,484              |    |                   | Baker et al.                      |
|      | 7,429,938 B1                 |                  | Corndorf                        | 9,204,813              | B2 | 12/2015           | Kaib et al.                       |
|      | 7,468,032 B2                 |                  |                                 |                        |    |                   | Banet et al.                      |
|      | 7,552,031 B2                 | 6/2009           | Vock et al.                     | 9,241,649              | В2 | 1/2016            | Kumar et al.                      |
|      |                              |                  |                                 |                        |    |                   |                                   |

# US 12,310,735 B2 Page 4

| (56)                         |        | Referen            | ces Cited                         | 2005/0058701 A1                     |                    | Gross et al.                  |  |
|------------------------------|--------|--------------------|-----------------------------------|-------------------------------------|--------------------|-------------------------------|--|
|                              | U.S. I | PATENT             | DOCUMENTS                         | 2005/0096513 A1<br>2005/0096717 A1  |                    | Ozguz et al.<br>Bishay et al. |  |
|                              |        |                    |                                   | 2005/0101875 A1                     | 5/2005             | Semler et al.                 |  |
| 9,259,154                    |        |                    | Miller et al.                     | 2005/0108055 A1<br>2005/0113661 A1  | 5/2005<br>5/2005   | Ott et al.                    |  |
| 9,277,864                    |        |                    | Yang et al.                       | 2005/0113001 A1<br>2005/0137485 A1  |                    | Cao et al.                    |  |
| 9,339,202<br>9,375,179       |        |                    | Brockway et al.<br>Schultz et al. | 2005/0151640 A1                     |                    | Hastings                      |  |
| 9,414,786                    |        |                    | Brockway et al.                   | 2005/0154267 A1                     | 7/2005             | •                             |  |
| 9,433,366                    |        |                    | Baker et al.                      | 2005/0154294 A1<br>2005/0182308 A1  | 7/2005<br>8/2005   | Uchiyama et al.               |  |
| 9,439,566 9,510,755          |        |                    | Arne et al. Fong et al.           | 2005/0182308 A1<br>2005/0182309 A1  | 8/2005             | _ •                           |  |
|                              |        |                    | Veen et al.                       | 2005/0215918 A1                     | 9/2005             | Frantz et al.                 |  |
| 9,669,212                    |        |                    | Mueller et al.                    |                                     |                    | Hadley et al.                 |  |
| 9,693,732<br>9,700,222       |        | $\frac{7}{2017}$   | Tarler<br>Quinlan et al.          | 2005/0228243 A1<br>2005/0245839 A1  |                    |                               |  |
| 9,700,222                    |        |                    | Bly et al.                        | 2005/0261564 A1                     |                    |                               |  |
| 9,877,663                    | B2     | 1/2018             | Baker et al.                      |                                     |                    | Hervieux et al.               |  |
| 10,034,614                   |        |                    | Edic et al.                       | 2006/0025696 A1<br>2006/0025824 A1  |                    | Freeman et al.                |  |
| 10,045,708                   |        | 8/2018<br>8/2018   | Chefles et al.                    | 2006/0030767 A1                     |                    | Lang et al.                   |  |
| 10,159,422                   |        |                    | Baker et al.                      | 2006/0030781 A1                     |                    | Shennib                       |  |
| 10,271,754                   |        |                    | Bahney et al.                     | 2006/0030904 A1<br>2006/0041201 A1  | 2/2006             | Quiles<br>Behbehani et al.    |  |
| 10,327,660<br>10,405,799     |        |                    | Gallego et al.<br>Kumar et al.    | 2006/0041201 A1<br>2006/0084883 A1  | 4/2006             |                               |  |
| / /                          |        |                    | Golda et al.                      | 2006/0100530 A1                     | 5/2006             | Kliot et al.                  |  |
| 10,441,185                   | B2     | 10/2019            | Rogers et al.                     | 2006/0111642 A1                     |                    | Baura et al.                  |  |
| 10,517,500                   |        |                    | Kumar et al.                      | 2006/0111943 A1<br>2006/0122469 A1  | 5/2006<br>6/2006   |                               |  |
| 10,555,683                   |        |                    | Bahney et al.<br>Baker et al.     | 2006/0124193 A1                     |                    | Orr et al.                    |  |
| 11,051,743                   |        |                    | Felix et al.                      | 2006/0167502 A1                     |                    | Haefner                       |  |
| · ·                          |        |                    | Yang et al.                       | 2006/0224072 A1<br>2006/0229522 A1  | 10/2006<br>10/2006 |                               |  |
| 11,141,091<br>11,445,967     |        |                    | Kumar et al.<br>Felix et al.      |                                     |                    | Tan et al.                    |  |
| / /                          |        |                    | Bahney et al.                     | 2006/0253006 A1                     |                    |                               |  |
| 2001/0051766                 |        |                    | Gazdzinski                        | 2006/0264730 A1<br>2006/0264767 A1  |                    | Stivoric et al.<br>Shennib    |  |
| 2002/0013538<br>2002/0013717 |        | 1/2002             | Teller Ando et al.                | 2000/0204/07 A1<br>2007/0003115 A1  |                    | Patton et al.                 |  |
| 2002/0013717                 |        |                    | Sakai et al.                      | 2007/0029961 A1                     | 2/2007             | Harita et al.                 |  |
| 2002/0072682                 |        |                    | Hopman                            | 2007/0038057 A1                     |                    | Nam et al.                    |  |
| 2002/0082867<br>2002/0103422 |        |                    | MacCarter et al.<br>Harder et al. | 2007/0050209 A1<br>2007/0078324 A1  | 3/2007<br>4/2007   | Wijisiriwardana               |  |
| 2002/0103422                 |        |                    | Khair et al.                      | 2007/0078354 A1                     |                    | Holland                       |  |
| 2002/0120310                 | A1     | 8/2002             | Linden et al.                     | 2007/0088406 A1                     |                    | Bennett et al.                |  |
| 2002/0128686                 |        |                    | Minogue et al.                    | 2007/0088429 A1<br>2007/0089800 A1  |                    | Thompson<br>Sharma            |  |
| 2002/0184055<br>2002/0193668 |        |                    | Naghavi et al.<br>Munneke         | 2007/0093719 A1                     |                    | Nichols, Jr. et al.           |  |
| 2003/0004547                 |        |                    | Owen et al.                       | 2007/0100248 A1                     |                    | Van Dam et al.                |  |
| 2003/0028811                 |        |                    | Walker et al.                     | 2007/0100667 A1<br>2007/0123801 A1  | 5/2007<br>5/2007   | Goldberger et al.             |  |
| 2003/0073916<br>2003/0083559 |        | 4/2003<br>5/2003   | Thompson                          | 2007/0125001 711<br>2007/0131595 A1 |                    | Jansson et al.                |  |
| 2003/0097078                 |        | 5/2003             | <u> </u>                          | 2007/0136091 A1                     |                    | McTaggart                     |  |
| 2003/0139785                 |        |                    | Riff et al.                       | 2007/0142722 A1<br>2007/0179357 A1  | 6/2007<br>8/2007   | _ <del>C</del>                |  |
| 2003/0149349<br>2003/0174881 |        | 8/2003<br>9/2003   | Jensen<br>Simard et al.           | 2007/0175357 AT<br>2007/0185390 A1  |                    | Perkins et al.                |  |
| 2003/0171801                 |        |                    | Galen et al.                      | 2007/0203415 A1                     | 8/2007             |                               |  |
| 2003/0211797                 |        |                    | Hill et al.                       | 2007/0203423 A1<br>2007/0208232 A1* | 8/2007             | Bardy<br>Kovacs A61B 5/14551  |  |
| 2004/0008123<br>2004/0019288 |        | 1/2004<br>1/2004   | Carrender<br>Kinast               | 2007/0200232 A1                     | J/2001             | 600/595                       |  |
| 2004/0034284                 |        |                    | Aversano et al.                   | 2007/0208233 A1                     |                    | Kovacs                        |  |
| 2004/0049120                 |        |                    | Cao et al.                        | 2007/0208266 A1                     |                    | Hadley                        |  |
| 2004/0049132<br>2004/0073127 |        |                    | Barron et al.<br>Istvan et al.    | 2007/0225611 A1<br>2007/0233198 A1  |                    | Kumar et al.<br>Ghanem et al. |  |
| 2004/0073127                 |        |                    | Green et al.                      | 2007/0244405 A1                     |                    | Xue et al.                    |  |
| 2004/0088019                 |        |                    | Rueter et al.                     | 2007/0249946 A1                     |                    | Kumar et al.                  |  |
| 2004/0093192                 |        |                    | Hasson et al.                     | 2007/0255153 A1<br>2007/0265510 A1  |                    |                               |  |
| 2004/0116784<br>2004/0148194 |        | 6/2004<br>7/2004   | Wellons et al.                    |                                     | 11/2007            | . •                           |  |
| 2004/0163034                 | A1     | 8/2004             | Colbath et al.                    |                                     | 11/2007            |                               |  |
| 2004/0167416                 |        | 8/2004             |                                   |                                     |                    | Proctor et al.                |  |
| 2004/0207530<br>2004/0210165 |        | 10/2004<br>10/2004 | Nielsen<br>Marmaropoulos et al.   | 2007/0293738 A1<br>2007/0293739 A1  | 12/2007            |                               |  |
| 2004/0216163                 |        | 11/2004            | <u> </u>                          | _                                   | 12/2007            |                               |  |
| 2004/0243435                 |        |                    | Williams                          |                                     | 12/2007            |                               |  |
| 2004/0256453                 |        | 12/2004            |                                   |                                     | 12/2007            |                               |  |
| 2004/0260188<br>2004/0260192 |        |                    | Syed et al.<br>Yamamoto           | 2007/0299325 A1<br>2007/0299617 A1  | 12/2007            | Farrell et al.<br>Willis      |  |
| 2005/0010139                 |        |                    | Aminian et al.                    | 2008/0027337 A1                     | 1/2008             |                               |  |
| 2005/0043640                 | A1     | 2/2005             | Chang                             | 2008/0027339 A1                     | 1/2008             | Nagai et al.                  |  |
|                              |        |                    |                                   |                                     |                    |                               |  |

# US 12,310,735 B2 Page 5

| (56)                               | References Cited                                   | 2010/0280366 A1<br>2010/0298720 A1 | 11/2010<br>11/2010 | Arne et al.                              |
|------------------------------------|----------------------------------------------------|------------------------------------|--------------------|------------------------------------------|
| U.S.                               | PATENT DOCUMENTS                                   | 2010/0312188 A1                    | 12/2010            | Robertson et al.                         |
| 2000/0051660 41                    | 2/2009 Dander                                      | 2010/0324384 A1<br>2011/0009729 A1 |                    | Moon et al.<br>Shin et al.               |
| 2008/0051668 A1<br>2008/0058661 A1 | 2/2008 Bardy<br>3/2008 Bardy                       | 2011/0021937 A1*                   |                    | Hugh A61B 5/0205                         |
| 2008/0088467 A1                    | 4/2008 Al-Ali et al.                               | 2011/0054205 4.1                   | 2/2011             | 600/523                                  |
| 2008/0091089 A1                    | 4/2008 Guillory et al.                             | 2011/0054285 A1<br>2011/0054286 A1 |                    | Searle et al.<br>Crosby et al.           |
| 2008/0091097 A1<br>2008/0108890 A1 | 4/2008 Linti et al.<br>5/2008 Teng et al.          | 2011/0054286 A1<br>2011/0060215 A1 |                    | Tupin, Jr. et al.                        |
| 2008/0114232 A1                    | 5/2008 Gazit                                       | 2011/0066041 A1                    | 3/2011             | Pandia et al.                            |
| 2008/0139953 A1*                   |                                                    | 2011/0077497 A1<br>2011/0082842 A1 |                    | Oster et al.<br>Groseclose, Jr. et al.   |
| 2008/0143080 A1                    | 600/509<br>6/2008 Burr                             | 2011/0002042 A1<br>2011/0105861 A1 |                    | Derchak et al.                           |
| 2008/0177168 A1                    | 7/2008 Callahan et al.                             | 2011/0112379 A1                    |                    | Li et al.                                |
| 2008/0194927 A1                    | 8/2008 KenKnight et al.                            | 2011/0125040 A1<br>2011/0144470 A1 |                    | Crawford et al.<br>Mazar et al.          |
| 2008/0208009 A1<br>2008/0208014 A1 | 8/2008 Shklarski<br>8/2008 KenKnight et al.        | 2011/0160548 A1                    |                    | Forster                                  |
| 2008/0243012 A1                    | 10/2008 Hisayuki et al.                            | 2011/0160601 A1*                   | 6/2011             | Wang A61B 5/6841                         |
| 2008/0284599 A1                    | 11/2008 Zdeblick et al.                            | 2011/0208076 A1                    | 8/2011             | Eang et al. 600/509                      |
| 2008/0288026 A1*                   | 11/2008 Cross H01R 13/5224<br>607/60               | 2011/0208070 A1<br>2011/0224564 A1 |                    | Fong et al.<br>Moon et al.               |
| 2008/0294024 A1                    | 11/2008 Cosentino et al.                           | 2011/0237922 A1                    | 9/2011             | Parker, III et al.                       |
|                                    | 12/2008 Zdeblick et al.                            | 2011/0237924 A1*                   | 9/2011             | McGusty A61B 5/335                       |
| 2008/0309481 A1<br>2008/0312522 A1 | 12/2008 Tanaka et al.<br>12/2008 Rowlandson et al. | 2011/0245699 A1                    | 10/2011            | 600/391<br>Snell et al.                  |
| 2009/0009342 A1                    | 1/2009 Kowiandson et al.<br>1/2009 Karjalainen     | 2011/0245711 A1                    |                    | Katra et al.                             |
| 2009/0012412 A1                    | 1/2009 Wiesel                                      |                                    |                    | Kaib et al.                              |
| 2009/0012979 A1<br>2009/0054737 A1 | 1/2009 Bateni et al.<br>2/2009 Magar et al.        | 2011/0313305 A1<br>2012/0003933 A1 | 1/2011             | Rantaia<br>Baker et al.                  |
| 2009/0054757 A1<br>2009/0054952 A1 | 2/2009 Magar et al.<br>2/2009 Glukhovsky et al.    | 2012/0029300 A1                    |                    | Paquet                                   |
| 2009/0062670 A1                    | 3/2009 Sterling et al.                             | 2012/0029306 A1                    |                    | Paquet et al.                            |
| 2009/0062897 A1<br>2009/0069867 A1 | 3/2009 Axelgaard<br>3/2009 KenKnight et al.        | 2012/0029307 A1<br>2012/0029314 A1 |                    | Paquet et al.<br>Paquet et al.           |
| 2009/0009307 A1<br>2009/0073991 A1 | 3/2009 Renkinght et al.                            | 2012/0029315 A1                    |                    | Raptis et al.                            |
| 2009/0076336 A1                    | 3/2009 Mazar et al.                                | 2012/0029316 A1                    |                    | Raptis et al.                            |
| 2009/0076341 A1<br>2009/0076342 A1 | 3/2009 James et al.<br>3/2009 Amurthur et al.      | 2012/0035432 A1<br>2012/0059668 A1 |                    | Katra et al.<br>Baldock et al.           |
| 2009/0076342 AT                    | 3/2009 James et al.                                | 2012/0078127 A1                    |                    | McDonald et al.                          |
| 2009/0076346 A1                    | 3/2009 James et al.                                | 2012/0079127 A1<br>2012/0088998 A1 |                    | Hadland<br>Bardy et al.                  |
| 2009/0076349 A1<br>2009/0076363 A1 | 3/2009 Libbus et al.<br>3/2009 Bly et al.          | 2012/0088998 A1<br>2012/0088999 A1 |                    | Bishay et al.                            |
| 2009/0076364 A1                    | 3/2009 Libbus et al.                               | 2012/0089000 A1                    |                    | Bishay et al.                            |
| 2009/0076397 A1<br>2009/0076401 A1 | 3/2009 Libbus et al.<br>3/2009 Mazar et al.        | 2012/0089001 A1<br>2012/0089037 A1 |                    | Bishay et al.<br>Bishay et al.           |
| 2009/0076401 A1<br>2009/0076559 A1 | 3/2009 Mazar et al. 3/2009 Libbus et al.           | 2012/0089412 A1                    |                    | Bardy et al.                             |
| 2009/0088652 A1                    | 4/2009 Tremblay                                    | 2012/0089417 A1                    |                    | Bardy et al.                             |
| 2009/0093687 A1<br>2009/0099469 A1 | 4/2009 Telfort et al.<br>4/2009 Flores             | 2012/0095352 A1<br>2012/0101358 A1 | 4/2012<br>4/2012   | Boettcher et al.                         |
| 2009/0099409 A1<br>2009/0112116 A1 | 4/2009 Lee et al.                                  | 2012/0101396 A1                    |                    | Solosko et al.                           |
| 2009/0131759 A1                    | 5/2009 Sims et al.                                 | 2012/0108993 A1<br>2012/0165645 A1 |                    | Gordon et al.<br>Russell et al.          |
| 2009/0133047 A1<br>2009/0156908 A1 | 5/2009 Lee et al.<br>6/2009 Belalcazar et al.      | 2012/0103043 A1<br>2012/0172695 A1 |                    | Kussen et al.<br>Ko et al.               |
| 2009/0177073 A1                    | 7/2009 Sonnenborg                                  | 2012/0179665 A1                    |                    | Baarman et al.                           |
| 2009/0182204 A1                    | 7/2009 Semler et al.                               | 2012/0184207 A1<br>2012/0215123 A1 | _                  | Gaines<br>Kumar et al.                   |
| 2009/0216132 A1<br>2009/0264792 A1 | 8/2009 Orbach<br>10/2009 Mazar                     | 2012/0213123 A1                    |                    | Chung                                    |
| 2009/0270708 A1                    | 10/2009 Shen et al.                                | 2012/0232929 A1                    |                    | Experton                                 |
| 2009/0270747 A1<br>2009/0292194 A1 | 10/2009 Van Dam et al.<br>11/2009 Libbus et al.    | 2012/0238910 A1<br>2012/0253847 A1 |                    | Nordstrom<br>Dell'Anno et al.            |
| 2009/0292194 A1<br>2009/0327715 A1 |                                                    |                                    |                    | Yu et al.                                |
| 2010/0007413 A1                    | 1/2010 Herleikson et al.                           |                                    |                    | Beckmann et al.                          |
| 2010/0022897 A1<br>2010/0056877 A1 | 1/2010 Parker et al.<br>3/2010 Fein et al.         | 2012/0302906 A1<br>2012/0306662 A1 |                    |                                          |
| 2010/0056877 A1<br>2010/0056881 A1 | 3/2010 Felli et al. 3/2010 Libbus et al.           |                                    |                    | Moein et al.                             |
| 2010/0076517 A1                    | 3/2010 Imran                                       |                                    |                    | Warner et al.                            |
| 2010/0081913 A1<br>2010/0137694 A1 | 4/2010 Cross et al.<br>6/2010 Irazoqui et al.      | 2012/0330126 A1<br>2013/0041272 A1 |                    | Hoppe et al.<br>Guillén Arredondo et al. |
| 2010/013/034 A1                    | 7/2010 Hsu et al.                                  | 2013/0077263 A1                    | 3/2013             | Oleson et al.                            |
| 2010/0177100 A1                    | 7/2010 Carnes et al.                               | 2013/0079611 A1                    | 3/2013             | Besko<br>Sandmore et al.                 |
| 2010/0185063 A1<br>2010/0185076 A1 | 7/2010 Bardy<br>7/2010 Jeong et al.                | 2013/0079618 A1<br>2013/0085347 A1 |                    | Manicka et al.                           |
| 2010/0103070 A1<br>2010/0191154 A1 | 7/2010 Scong et al.<br>7/2010 Berger et al.        | 2013/0085403 A1                    | 4/2013             | Gunderson et al.                         |
| 2010/0191310 A1                    | 7/2010 Bly                                         | 2013/0087609 A1                    |                    | Nichol et al.                            |
| 2010/0223020 A1<br>2010/0234697 A1 | 9/2010 Goetz<br>9/2010 Walter et al.               | 2013/0096395 A1<br>2013/0116533 A1 |                    | Katra et al.<br>Lian et al.              |
| 2010/0234057 AT                    | 9/2010 Wanter et al.<br>9/2010 Shin et al.         | 2013/0110333 AT                    | 5/2013             |                                          |
| 2010/0234716 A1                    | 9/2010 Engel                                       | 2013/0124891 A1                    |                    | Donaldson                                |
| 2010/0268103 A1                    | 10/2010 McNamara et al.                            | 2013/0131530 A1                    | 5/2013             | Brockway et al.                          |

Case 1:24-cv-01355-JDW Document 52-2 Filed 06/11/25 Page 40 of 145 PageID #: 4168

### US 12,310,735 B2

Page 6

| (56)                               | Referen            | ces Cited                              | JP       | 2004121360                                       |            | 4/2004            |                                         |
|------------------------------------|--------------------|----------------------------------------|----------|--------------------------------------------------|------------|-------------------|-----------------------------------------|
|                                    |                    |                                        | JP       | 2004129788                                       |            | 4/2004            |                                         |
| U.S.                               | PATENT             | DOCUMENTS                              | JP<br>JP | 2007082938<br>2009219554                         |            | 4/2007<br>10/2009 |                                         |
| 2013/0158361 A1                    | 6/2013             | Bardy                                  | WO       | 9852463                                          |            | 11/1998           |                                         |
| 2013/0172763 A1                    |                    | Wheeler                                | WO<br>WO | 0078213<br>0332192                               |            | 12/2000<br>4/2003 |                                         |
| 2013/0197380 A1<br>2013/0225963 A1 |                    | Oral et al.<br>Kodandaramaiah et al.   | WO       | WO 03/065926                                     | <b>A</b> 2 | 8/2003            |                                         |
| 2013/0225966 A1                    |                    | Macia Barber et al.                    | WO       | 2006009767                                       |            | 1/2006            |                                         |
| 2013/0225967 A1<br>2013/0226018 A1 |                    | Esposito<br>Kumar et al.               | WO<br>WO | 2006014806<br>2007066270                         |            | 2/2006<br>6/2007  |                                         |
| 2013/0220018 A1<br>2013/0231947 A1 |                    | Shusterman                             | WO       | 2007092543                                       |            | 8/2007            |                                         |
| 2013/0243105 A1                    |                    | Lei et al.                             | WO<br>WO | 2008010216<br>WO 2008/005015                     |            | 1/2008<br>1/2008  |                                         |
| 2013/0274565 A1<br>2013/0274584 A1 |                    | Langer et al.<br>Finlay et al.         | WO       | 2008057884                                       | AI         | 5/2008            |                                         |
| 2013/0275158 A1                    | 10/2013            |                                        | WO       | 2008092098                                       |            | 7/2008            |                                         |
| 2013/0324809 A1                    |                    | Lisogurski et al.                      | WO<br>WO | 2009036306<br>2009036313                         |            | 3/2009<br>3/2009  |                                         |
| 2013/0324855 A1<br>2013/0324856 A1 |                    | Lisogurski et al.<br>Lisogurski et al. | WO       | 2009036327                                       |            | 3/2009            |                                         |
| 2013/0325081 A1                    | 12/2013            | Karst et al.                           | WO       | 2009112976                                       |            | 9/2009            |                                         |
| 2013/0325359 A1<br>2013/0331665 A1 |                    | Jarverud et al.<br>Libbus et al.       | WO<br>WO | 2009112978<br>2009112979                         |            | 9/2009<br>9/2009  |                                         |
| 2013/0331003 A1<br>2013/0338448 A1 |                    | Libbus et al.                          | WO       | 2009142975                                       |            | 11/2009           |                                         |
| 2013/0338472 A1                    |                    | Macia Barber et al.                    | WO<br>WO | 2010066507<br>2010105045                         |            | 6/2010<br>9/2010  |                                         |
| 2014/0002234 A1<br>2014/0005502 A1 |                    | Alwan<br>Klap et al.                   | WO       | WO 2010/104952                                   | <b>A</b> 2 | 9/2010            |                                         |
| 2014/0012154 A1                    |                    | Mazar et al.                           | WO       | 2011047207                                       |            | 4/2011            |                                         |
| 2014/0031663 A1<br>2014/0056452 A1 |                    | Gallego<br>Moss et al.                 | WO<br>WO | 2012040487<br>2012112407                         |            | 3/2012<br>8/2012  |                                         |
| 2014/0030432 A1<br>2014/0088399 A1 |                    | Lian et al.                            | WO       | 2012140559                                       |            | 10/2012           |                                         |
| 2014/0107509 A1                    |                    | Banet et al.                           | WO       | 2012146957                                       |            | 11/2012           |                                         |
| 2014/0121557 A1<br>2014/0140359 A1 |                    | Gannon et al.<br>Kalevo et al.         |          |                                                  | D          |                   | ~                                       |
| 2014/0140333 A1                    |                    | Stickney et al.                        |          | OTHER                                            | . PUBI     | LICATION          | S                                       |
| 2014/0180027 A1                    | 6/2014             |                                        | Chart    | AA-1 Invalidity Cont                             | entions    | : U.S. Pat. N     | o. 11,445,967; Case                     |
| 2014/0189928 A1<br>2014/0194760 A1 | 7/2014             | Oleson et al.<br>Albert                |          | 2-351-CJB (Delaware                              |            |                   |                                         |
| 2014/0206977 A1                    | 7/2014             | Bahney et al.                          |          | ernational Publication N                         |            | •                 | ·                                       |
| 2014/0214134 A1<br>2014/0215246 A1 |                    | Peterson<br>Lee et al.                 | and U    | .S. Pat. No. 11,116,4                            | 47 ("Ya    | ng"); Oct. 2      | 5, 2023; 24 pages.                      |
| 2014/0213240 A1<br>2014/0249852 A1 | 9/2014             |                                        |          | C-1 Invalidity Conte                             |            |                   |                                         |
| 2014/0280027 A1                    |                    | Cordes et al.                          |          | 2-351-CJB (Delaware)<br>ernational Publication N |            | •                 | ·                                       |
| 2014/0296651 A1<br>2014/0297310 A1 | 10/2014<br>10/2014 | Collins, Jr.                           | •        | .S. Pat. No. 11,116,4                            |            |                   | ` ′                                     |
| 2014/0330147 A1                    | 11/2014            | Ousdigian et al.                       |          | B-7 Invalidity Conten                            | •          | • /               |                                         |
| 2014/0343390 A1<br>2014/0358193 A1 |                    | Berzowska et al.<br>Lyons et al.       |          | o. 11,445,967; Case                              |            | `                 | , .                                     |
| 2014/0364756 A1                    |                    | Brockway et al.                        | -        | rising Adhered Layer                             | •          |                   | - <del>-</del>                          |
| 2015/0018660 A1                    |                    | Thomson et al.                         |          | B-6 Invalidity Conten<br>o. 11,445,967; Case I   |            |                   | •                                       |
| 2015/0022372 A1<br>2015/0048836 A1 | 1/2015<br>2/2015   | Guthrie et al.                         |          | dhesives on a Portion                            |            | •                 | / · •                                   |
| 2015/0065842 A1                    | 3/2015             | Lee et al.                             |          | B-5 Invalidity Conten                            |            | •                 |                                         |
| 2015/0087950 A1<br>2015/0094558 A1 |                    | Felix et al.<br>Russell                |          | o. 11,445,967; Case N                            |            | `                 |                                         |
| 2015/0142090 A1                    |                    | Duijsens et al.                        |          | ctrocardiographic Sig                            | nals Fro   | om One Forn       | nat to Another; Oct.                    |
| 2015/0177175 A1                    |                    | Elder et al.                           | ·        | 23; 6 pages.<br>B-4 Invalidity Conten            | tions: U   | J.S. Pat. No.     | 11.051.743 and U.S.                     |
| 2015/0202351 A1<br>2015/0250422 A1 | 9/2015             | Kaplan et al.<br>Bay                   |          | o. 11,445,967; The Cas                           |            |                   |                                         |
| 2015/0257670 A1                    | 9/2015             | Ortega et al.                          |          | Edge of Backing End                              | •          | ·                 | 1 0                                     |
| 2015/0305676 A1<br>2015/0335285 A1 |                    | Shoshani<br>Poon et al.                |          | B-3 Invalidity Conten                            |            |                   |                                         |
| 2015/0359489 A1                    |                    | Baudenbacher et al.                    |          | o. 11,445,967; Case t Comprising a Pair o        |            | •                 | •                                       |
| 2016/0029917 A1                    |                    | Baker et al.                           |          | 5, 2023; 8 pages.                                | or enec    | ait Traces to     | Coupie Licetrodes,                      |
| 2016/0135746 A1<br>2016/0217691 A1 |                    | Kumar et al.<br>Kadobayashi et al.     |          | B-2 Invalidity Conten                            | tions: U   | J.S. Pat. No.     | 11,051,743 and U.S.                     |
| 2018/0020931 A1                    | 1/2018             | Shusterman                             |          | No. 11,445,967; Ca                               |            |                   | , , , , , , , , , , , , , , , , , , , , |
| 2019/0021671 A1<br>2019/0117068 A1 |                    | Kumar et al.<br>Thomson et al.         |          | ocardiogramactrode o                             | on Each    | n End of the      | Backing; Oct. 25,                       |
| 2019/0117008 A1<br>2019/0223806 A1 |                    | Bennet et al.                          | ·        | 8 pages.<br>B-1 Invalidity Conten                | tions: I   | LS Pat No         | 11.051 743 and U.S.                     |
| 2021/0315504 A1                    | 10/2021            | Kumar et al.                           |          | o. 11,445,967; Case 1                            |            |                   |                                         |
| EODEIG                             | N DATE             | NT DOCUMENTS                           |          | With Narrowed Midse                              |            | •                 | <i>/</i> · • •                          |
| FOREIO                             | IN FALE.           | INT DOCUMENTS                          |          | AA-10 Invalidity Co                              |            |                   | · · · ·                                 |
|                                    | 8851               | 4/2012                                 |          | No. 22-351-CJB (Do<br>5,967 by WO 2003/06        |            | · ·               |                                         |
| EP 2438                            | 8852               | 4/2012                                 | ·        | AA-9 Invalidity Cont                             | •          | ~                 |                                         |

pages.

Chart AA-9 Invalidity Contentions: U.S. Pat. No. 11,445,967; Case

No. 22-351-CJB (Delaware); Invalidity of U.S. Pat. No. 11,445,967

by U.S. Pat. Pub. No. 2011/0009729 ("Shin"); Oct. 25, 2023; 6

EP EP JP

JP

2465415

2589333

H06319711

H11188015

6/2012

5/2013

11/1994

7/1999

#### (56) References Cited

#### OTHER PUBLICATIONS

Chart AA-8 Invalidity Contentions: U.S. Pat. No. 11,445,967; Case No. 22-351-CJB (Delaware); Invalidity of U.S. Pat. No. 11,445,967 by WO 2008/005015 ("Shennib"); Oct. 25, 2023; 6 pages. Chart AA-7 Invalidity Contentions: U.S. Pat. No. 11,445,967; Case No. 22-351-CJB (Delaware); Invalidity of U.S. Pat. No. 11,445,967 by U.S. Pat. No. 7,206,630 ("Tarler"); Oct. 25, 2023; 7 pages. Chart AA-6 Invalidity Contentions: U.S. Pat. No. 11,445,967; Case No. 22-351-CJB (Delaware); Invalidity of U.S. Pat. No. 11,445,967 by U.S. Pat. No. 9,669,212 ("Mueller"); Oct. 25, 2023; 6 pages. Chart AA-5 Invalidity Contentions: U.S. Pat. No. 11,445,967; Case No. 22-351-CJB (Delaware); Invalidity of U.S. Pat. No. 11,445,967 by U.S. Pat. No. 10,413,251 ("Golda"); Oct. 25, 2023; 6 pages. Chart A-4 Invalidity Contentions: U.S. Pat. No. 11,445,967; Case No. 22-351-CJB (Delaware); Invalidity of U.S. Pat. No. 11,445,967 by U.S. Pat. Pub. No. 2011/0077497 ("Oster"); Oct. 25, 2023; 6 pages.

Chart A-3 Invalidity Contentions: U.S. Pat. No. 11,445,967; Case No. 22-351-CJB (Delaware); Invalidity of U.S. Pat. No. 11,445,967 by U.S. Pat. No. 10,327,660 ("Gallego"); Oct. 25, 2023; 7 pages. Chart AA-2 Invalidity Contentions: U.S. Pat. No. 11,445,967; Case No. 22-351-CJB (Delaware); Invalidity of U.S. Pat. No. 11,445,967 by U.S. Pat. No. 11,116,447 ("Yang"); Oct. 25, 2023; 14 pages. Chart AA-1 Invalidity Contentions: U.S. Pat. No. 11,445,967; Case No. 22-351-CJB (Delaware); Invalidity of U.S. Pat. No. 11,445,967 by International Publication No. WO 2010/104952 to Mazar ("Mazar"); Oct. 25, 2023; 13 pages.

Chart A-10 Invalidity Contentions: U.S. Pat. No. 11,051,743; Case No. 22-351-CJB (Delaware); Invalidity of U.S. Pat. No. 11,051,743 by WO 2003/065926 ("Ozguz"); Oct. 25, 2023; 12 pages.

Chart A-9 Invalidity Contentions: U.S. Pat. No. 11,051,743; Case No. 22-351-CJB (Delaware); Invalidity of U.S. Pat. No. 11,051,743 by U.S. Pat. Pub. No. 2011/0009729 ("Shin"); Oct. 25, 2023; 12 pages.

Chart A-8 Invalidity Contentions: U.S. Pat. No. 11,051,743; Case No. 22-351-CJB (Delaware); Invalidity of U.S. Pat. No. 11,051,743 by WO 2008/005015 ("Shennib"); Oct. 25, 2023; 12 pages.

Chart A-7 Invalidity Contentions: U.S. Pat. No. 11,051,743; Case No. 22-351-CJB (Delaware); Invalidity of U.S. Pat. No. 11,051,743 by U.S. Pat. No. 7,206,630 ("Tarler"); Oct. 25, 2023; 12 pages. Chart A-6 Invalidity Contentions: U.S. Pat. No. 11,051,743; Case No. 22-351-CJB (Delaware); Invalidity of U.S. Pat. No. 11,051,743 by U.S. Pat. No. 9,669,212 ("Mueller"); Oct. 25, 2023; 11 pages. Chart A-5 Invalidity Contentions: U.S. Pat. No. 11,051,743; Case No. 22-351-CJB (Delaware); Invalidity of U.S. Pat. No. 11,051,743 by U.S. Pat. No. 10,413,251 ("Golda"); Oct. 25, 2023; 11 pages. Chart A-4 Invalidity Contentions: U.S. Pat. No. 11,051,743; Case No. 22-351-CJB (Delaware); Invalidity of U.S. Pat. No. 11,051,743 by U.S. Pat. Pub. No. 2011/0077497 ("Oster"); Oct. 25, 2023; 11 pages.

Chart A-3 Invalidity Contentions: U.S. Pat. No. 11,051,743; Case No. 22-351-CJB (Delaware); Invalidity of U.S. Pat. No. 11,051,743 by U.S. Pat. No. 10,327,660 ("Gallego"); Oct. 25, 2023; 12 pages. Chart A-2 Invalidity Contentions: U.S. Pat. No. 11,051,743; Case No. 22-351-CJB (Delaware); Invalidity of U.S. Pat. No. 11,051,743 by U.S. Pat. No. 11,116,447 ("Yang"); Oct. 25, 2023; 19 pages. Chart A-1 Invalidity Contentions: U.S. Pat. No. 11,051,743; Case No. 22-351-CJB (Delaware); Invalidity of U.S. Pat. No. 11,051,743 by International Publication No. WO 2010/104952 to Mazar ("Mazar"); Oct. 25, 2023; 19 pages.

Wolf, "The Data-Driven Life," New York Times Magazine, Apr. 28, 2010, 13 pages.

Hill, "Adventures in Self-Surveillance: Fitbit, Tracking My Movement and Sleep," Forbes, Feb. 25, 2011, 11 pages.

Mehen, "Open health with the quantified self," Opensource.com, Aug. 25, 2011, 7 pages.

"23 Personal Tools to Learn More About Yourself," Flowingdata. com, Sep. 18, 2008, 18 pages.

Puurtinen et al., "Estimation of ECG Signal of closely separated bipolar electrodes using thorax models," Proceedings of the 26th

Annual International Conference of the IEEE EMBS pp. 801-804, San Francisco, Calif., USA, Sep. 1-5, 2004, 4 pages.

Trägårdh et al., How many ECG leads do we need? Cardiol Clin. Aug. 2006;24(3):317-30, vii. doi: 10.1016/j.ccl.2006.04.005. PMID: 16939826; 14 pages.

Toth et al., U.S. Appl. No. 61/832,131, filed Jun. 6, 2013, 82 pages. Vishnubhotla, "Pre-processing of ECG signals for ambulatory use," Jan. 2009; 5 pages.

Chaimanonart et al., "A wireless batteryless in vivo EKG and body temperature sensing microsystem with adaptive RF powering for genetically engineered mice monitoring," Jul. 2009; 4 pages.

Saeed et al., "A Scalable Wireless Body Area Sensor Network for Health-Care Monitoring," Jun. 2009, 4 pages.

Pandian et al., "Wireless Sensor Network for Wearable Physiological Monitoring," Journal of Networks, vol. 3, No. 5, May 2008; 15 pages.

Mukala et al., "A Novel Zigbee-based Low-cost, Low-Power Wireless EKG system," IEEE, May 2010; 4 pages.

Aventyn, Inc., "Vital Connect, Aventyn Launch Wearable Biosensor Platform for Mobile Patient Monitoring", Dec. 12, 2013, 5 pages. Anand et al., "Design of the Multi-Sensor Monitoring in Congestive Heart Failure (MUSIC) Study: Prospective Trial to Assess the Utility of Continuous Wireless Physiologic Monitoring in Heart Failure", Journal of Cardiac Failure, vol. 17, No. 1, Jan. 1, 2011, pp. 11-16 (6 pages).

Cesario et al., "Arrhythmia Detection with a Low-Profile Wireless Adherent Cardiac Monitor: Results from the ADAM and EVE Studies", The Journal of Innovations in Cardiac Rhythm Management, 2 (2011) Sep. 2011, pp. 476-482, (7 pages).

Corventis Nuvant, "Nuvant Mobile Cardiac Telementry (MTC) System", Corventis, 2009, last printed Jul. 18, 2024, https://web.archive.org/web/20100127193736/http://corventis.com/AP/nuvant.asp.

Corventis Avivo, "Avivo Mobile Patient Management System", Corventis, 2008, lasted printed Jul. 18, 2024, https://web.archive.org/web/20100118155329/http://www.corventis.com/AP/avivo.asp.

IRhythm Zio XT Patch/Event Card, "Zio Patch", iRhythm, 2011, last printed Jul. 18, 2024, https://web.archive.org/web/20111017074139/http://irhythmtech.com/media/files/Z100A4020.04%20-%20ZIO%20PATCH%20DATA%20SHEET.pdf.

International Preliminary Report on Patentability and Written Opinion, PCT/US2019/064331, Jun. 8, 2021.

First Examination Report, Communication pursuant to Article 94(3) EPC, 19 828 053.9-1113, dated Apr. 15, 2024.

Actigraphy/ Circadian Rhythm SOMNOwatch, URL <a href="http://www.somnomedics.eu/news-eventspublications/">http://www.somnomedics.eu/news-eventspublications/</a> omnowatchtm\_html> (Web page cached on Jan. 23, 2010).

Adams et al., U.S. Appl. No. 61/755,623, filed Jan. 23, 2013, 48 pages.

Alzaidi et al., "Smart Textiles Based Wireless ECG System," May 2012; 5 pages.

Anand et al., "Design of the Multi-Sensor Monitoring in Congestive Heart Failure (MUSIC) Study: Prospective Trial to Assess the Utility of Continuous Wireless Physiologic Monitoring in Heart Failure", Journal of Cardiac Failure (2011), 17(1), pp. 11-16.

Bardy Diagnostics, Inc. v. Vital Connect, Inc., Defendant's Identification of Supplemental Prior Art References, C.A. No. 22-351 (CJV), May 22, 2024.

Bardy Diagnostics, Inc., Plaintiff v. Vital Connect, Inc.; The United States District Court for the District of Delaware; C.A. No. 22-351 (CJB); Vitalconnect's Preliminary Invalidity Contentions; filed Oct. 25, 2023.

Cesario et al., "Arrhythmia Detection with a Low-Profile Wireless Adherent Cardiac Monitor: Results from the ADAM and EVE Studies", The Journal of Innovations in Cardiac Rhythm Management (2011), pp. 476-482.

[CORRECTED] Chart C-2 Invalidity Contentions: U.S. Pat. No. 11,051,743; Case No. 22-351-CJB (Delaware); Invalidity of U.S. Pat. No. 11,051,743 by U.S. Pat. Pub. No. 2011/0077497 ("Oster") and U.S. Pat. No. 11,116,447 ("Yang"); Oct. 25, 2023; 22 pages. [CORRECTED] Chart CC-2 Invalidity Contentions: U.S. Pat. No. 11,445,967; Case No. 22-351-CJB (Delaware); Invalidity of U.S.

#### (56) References Cited

#### OTHER PUBLICATIONS

Patent No. by U.S. Pat. Pub. No. 2011/0077497 ("Oster") and U.S. Pat. No. 11,116,447 ("Yang"); Oct. 25, 2023; 16 pages.

Chen et al. "Monitoring Body Temperature of Newborn Infants at Neonatal Intensive Care Units Using Wearable Sensors," BodyNets 2010, Corfu Island, Greece. Sep. 10-12, 1210.

Complaint from Case No. 1:22-cv-00351-UNA, *Bardy Diagnostics, Inc.* (Plaintiff) v. *Vital Connect, Inc.* (Defendant), filed: Mar. 18, 2022, 182 pages.

Daoud et al. "Fall Detection Using Shimmer Technology and Multiresolution Analysis." Aug. 2, 2013. URL: https://decibel.ni. com/content/docs/DOC-26652.

Dec. 26, 2022 Letter from Opposing Counsel, 1:22-cv-00351-CJB; *Bardy Diagnostics, Inc.* v\_ *Vital Connect, Inc.* D. Del.); and IPR2023-00381; *Vital Connect, Inc.* v. *Bardy Diagnostics, Inc.* (P.T.A.B.), Dec. 26, 2022.

Defendant's Answer, Defenses, and Counterclaim from Case. No. 1:22-cv-00351-CFC, *Bardy Diagnostics, Inc.* (Plaintiff) v. *Vital Connect, Inc.* (Defendant), Filed May 25, 2022, 132 pages.

Defendant's Opening Brief in Support of Its Motion to Dismiss for Failure to State a Claim from Case No. 1:22-v.00351-CFC, *Bardy Diagnostics, Inc.* (Plaintiff) v. *Vital Connect, Inc.* (Defendant), Filed: May 25, 2022, 18 pages.

Defendant's Reply Brief in Support of Its Motion to Dismiss for Failure to State a Claim from Case No. 1:22-cv-00351-CFC, *Bardy Diagnostics, Inc.* (Plaintiff) v. *Vital Connect, Inc.* (Defendant), Filed: Jun. 15, 2022, 93 pages.

Duttweiler et al., "Probability Estimation in Arithmetic and Adaptive-Huffman Entropy Coders," IEEE Transactions in Image Processing\_vol. 4, No. 3, Mar. 1, 1995, pp. 237-246.

Epstein, Andrew E. et al.; ACC/AHA/HRS 2008 Guidelines for Device-Based Therapy of Cardiac Rhythm Abnormalities. J. Am. Coll. Cardiol. 2008; 51; el-e62, 66 pages.

First Amended Complaint for Patent Infringement, 1:22-cv-00351-CJB, *Bardy Diagnostics, Inc\_* v. *Vital Connect, Inc.* D. Del.), filed Jan. 10, 2023.

Fitbit Tracker, URL <a href="http://www.fitbit.com/">http://www.fitbit.com/> (Web page cached on Sep. 10, 2008.).

Gravitz, Lauren, "When Your Diet Needs a Band-Aid," Technology Review, MIT. (May 1, 2009).

Gupta et al., "An ECG Compression Technique for Telecardiology Application," India Conference (INDICON), 2011 Annual IEEE, Dec. 16, 2011, pp. 1-4.

Harland et al., "Electric Potential Probes—New Directions in the Remote Sensing of the Human Body", Measurement Science and Technology (2002), vol. 13, pp. 163-169.

http://www.gtec.at/Products/Software/g. BSanalyze-Specs-Features (2014).

http://www.originlab.com/origin#Data\_Exploration 2015.

https://fccid.io/LF524950/User-Manual/User-Manual-1944573 © Medtronic, Inc. 2012.

https://web.archive.org/web/20130831204020/http://www .biopac.com/research .asp?Catl 0=37 &Main=Software (Aug. 2013).

Initial hands-on with sirdy activity tracker, URL <a href="http://www.dcrainmaker.com/2013/09/polar-loop-firstlook.html">http://www.dcrainmaker.com/2013/09/polar-loop-firstlook.html</a> Sep. 17, 2013). Invalidity of U.S. Pat. No. 11,051,743 by U.S. Pat. Pub. No. 2011/0077497 ("Oster"); Oct. 25, 2023; 11 pages.

*IRhythm, Inc.*v. *Welch Allyn, Inc.*, Expert Declaration of Jason Heikenfeld for U.S. Pat. No. 8,214,007, U.S. Pat. No. 8,965,492, U.S. Pat. No. 9,155,484, and U.S. Pat. No. 10,159,422 dated Dec. 20, 2024. 516 pages.

IRhythm, Inc.v. Welch Allyn, Inc., Petition for Inter Partes Review Under 35 U.S.C. § 312 and 37 C.F.R. § 42.104, Case No. IPR2025-00363 for U.S. Pat. No. 10,159,422, dated Dec. 23, 2024. 94 pages. IRhythm, Inc.v. Welch Allyn, Inc., Petition for Inter Partes Review Under 35 U.S.C. § 312 and 37 C.F.R. § 42.104, Case No. IPR2025-00374 for U.S. Pat. No. 8,965,492, dated Dec. 23, 2024. 86 pages. IRhythm, Inc.v. Welch Allyn, Inc., Petition for Inter Partes Review Under 35 U.S.C. § 312 and 37 C.F.R. § 42.104, Case No. IPR2025-00376 for U.S. Pat. No. 9,155,484, dated Dec. 23, 2024. 106 pages.

IRhythm, Inc.v. Welch Allyn, Inc., Petition for Inter Partes Review Under 35 U.S.C. § 312 and 37 C.F.R. § 42.104, Case No. IPR2025-00377 for U.S. Pat. No. 8,214,007, dated Dec. 23, 2024. 88 pages. IRhythm, Inc.v. Welch Allyn, Inc., Petition for Inter Partes Review Under 35 U.S.C. § 312 and 37 C.F.R. § 42.104, Case No. IPR2025-00378 for U.S. Pat. No. 8,214,007, dated Dec. 23, 2024. 95 pages. Ivanov, G.G., "HRV Analysis Under the Usage of Different Electrocardiopraphy Systems," Apr. 15, 2008, (Apr. 15, 2008), XP55511209, Retrieved from the Internet: URL:http://www.drkucera.eu/upload\_doc/hrv\_analysis\_methodical\_recommendations)\_pdf [retrieved on Oct. 1, 2018].

Kligfield, Paul et al., Recommendations for the Standardization and Interpretation of the Electrocardiogram: Part I. U. Am.Coll. Cardiol; 2007; 49; 1109-27, 75 Pgs.

Knight et al., U.S. Appl. No. 60/786,502, filed Mar. 29, 2006, 8 pages.

Leonard, Dwayne C., "A Framework for the Creation of a Unified Electronic Medical Record Using Biometrics", Data Fusion and Belief Theory (2007), <a href="https://dialong.proquest.com/professional/docview/304852676/17AEEF1F9382EF1C4E5/6?accountid=131444">https://dialong.proquest.com/professional/docview/304852676/17AEEF1F9382EF1C4E5/6?accountid=131444</a> (last visited Aug. 27, 2021).

Libbus, "Adherent Cardiac Monitor With Wireless Fall Detection for Patients With Unexplained Syncope." Abstracts t>f the First AMA-IEEE Medical Technology Conference on Individualized Healthcare. May 22, 2010.

Lieberman, Jonathan "How Telemedicine Is Aiding Prompt ECG Diagnosis in Primary Care," British Journal of Community Nursing, vol. 13, No. 3, Mar. 1, 2008, pp. 123-126, XP009155082, ISSN: 1462-4753.

May 2, 2022 Letter From Counsel. 1:22-cv-00351-CFC. May 2, 2022.

May 24, 2022 Letter to Opposing Counsel. 1:22-cv-00351-CFC. May 24, 2022.

McManus et al., "A Novel Application for the Detection of an Irregular Pulse using an iPhone 4S in Patients with Atrial Fibrillation," vol. 10(3), pp. 315-319 (Mar. 2013).

Nave et al., "ECG Compression Using Long-Term Prediction," IEEE Transactions on Biomedical Engineering, IEEE Service Center, NY, USA, vol. 40, No. 9, Sep. 1, 1993, pp. 877-885.

Nike+ Fuel Band, URL <a href="http://www.nike.com/us/en\_us/c/nikeplus-fuelband">http://www.nike.com/us/en\_us/c/nikeplus-fuelband</a> (Web page cached on Jan. 11, 2013).

Nov. 11, 2022, Letter from Opposing Counsel, 1:22-cv-00351-CJB; *Bardy Diagnostics, Inc.* v\_ *Vital Connect, Inc.* D.Del.), Nov. 11, 2022.

Oct. 17, 2022 Letter to Opposing Counsel, *Bardy Diagnostics, Inc\_*v\_*Vital Connect, Inc.*, No. 22-cv-00351-CFC D. Del.), Oct. 17, 2022.

P. Libby et al., "Braunwald's Heart Disease—A Textbook of Cardiovascular Medicine," Chs\_ 11, pp. 125-148 and 12, pp. 149-193 (8th ed\_ 2008), American Heart Association.

Petition for Inter Partes Review of U.S. Pat. No. 11,051,743 Pursuant to 35 U.S.C. §§ 311-319 and 37 C.F.R. § 42, Case No. IPR2023-00381, *Vital Connect, Inc.* v. *Bardy Diagnostics, Inc.* (P.T.A.B.), Dec. 21, 2022, 875 pages.

Plaintiff's Answer Brief in Opposition to Defendant's Motion to Dismiss for Failure to State a Claim from Case No. 1:22-cv-00351-CFC, *Bardy Diagnostics, Inc.* (Plaintiff) v. *Vital Connect, Inc.* (Defendant), Filed Jun. 8, 2022, 25 pages.

Plaintiffs Answer to Defendant's Counterclaim from Case No. 1:22-cv-00351-CFC, *Bardy Diagnostics, Inc.* (Plaintiff) v. *Vital Connect, Inc.* (Defendant), Filed: Jun. 15, 2022, 5 pages.

Saadi et al. "Heart Rhythm Analysis Using ECG Recorded With a Novel Sternum Based Patch Technology—A Pilot Study\_" Cardio technix 2013—Proceedings of the International Congress on Cardiovascular Technologies, Sep. 20, 2013.

Sapoznikov, Dan et al., "Comparison of Different Methodologies of Heart Rate Variability Analysis," Department of Cardiology, Hadassah University Hospital, P.O.B. 12000, Ein Kerem, Jerusalem 91120, Israel (1993).

Sittig et al., "A Computer-Based Outpatient Clinical Referral System," International Journal of Medical Informatics, Shannon, IR, vol. 55, No. 2, Aug. 1, 1999, pp. 149-158, XO004262434, ISSN: 1386-5056(99)00027-1.

#### US 12,310,735 B2

Page 9

#### (56) References Cited

#### OTHER PUBLICATIONS

Skretting et al., "Improved Huffman Coding Using Recursive Splitting," NORSIG, Jan. 1, 1999.

Sleepview, URL <a href="http://www.clevemed.com/sleepview/overview.shtml">http://www.clevemed.com/sleepview/overview.shtml</a> (Web page cached on Sep. 4, 2013).

Smith, Jawbone Up, URL <a href="http://www.businessinsider.com/fitbit-flex-vs-jawbone-up-2013-5?op=1">http://www.businessinsider.com/fitbit-flex-vs-jawbone-up-2013-5?op=1</a> (Jun. 1, 2013).

Varicrad-Kardi Software User's Manual Rev\_ 1.1, Jul. 8, 2009 (Jul. 8, 2009), XP002757888, retrieved from the Internet: URL:http://www.ehrlich.tv/KARDiVAR-Software.pdf [retrieved on May 20, 2016].

Voss, A. et al., "Linear and Nonlinear Methods for Analyses of Cardiovascular Variability in Bipolar Disorders," Bipolar Disorders, vol. 8, No. 5 p. 1, Oct. 1, 2006, pp. 441-452, XP55273826, DK ISSN: 1398-5647, DOI: 10.1111/.1399-5618-2006.00364x.

Wallot et al., "Using Complexity Metrics With R-R Intervals and BPM Heart Rate Measures," Frontiers in Physiology, vol. 4, Article 211, pp. 1-8, Aug. 13, 2013. 2013.

Zio Event Card, URL <a href="http://www.irhythmtech.com/zio-solution/zio-event/">http://www.irhythmtech.com/zio-solution/zio-event/</a> (Web page cached on Mar. 11, 2013).

Zio Patch System, URL <a href="http://www.irhythmtech.com/zio-solution/zio-system/index.html">http://www.irhythmtech.com/zio-solution/zio-system/index.html</a> (Web page cached on Sep. 8, 2013).

Bardy Diagnostics, Inc., Plaintiff v. iRhythm Technologies, Inc.; The United States District Court for the District of Delaware; Complaint against iRhythm Technologies; filed Dec. 10, 2024.

Exhibits 1-13 for *Bardy Diagnostics, Inc.*, Plaintiff v. *iRhythm Technologies, Inc.*; The United States District Court for the District of Delaware; Complaint against iRhythm Technologies; filed Dec. 10, 2024.

Bardy Diagnostics, Inc., Plaintiff v. iRhythm Technologies, Inc.; The United States District Court for the District of Delaware; C.A. No. 24-1355-RGA; First Amended Complaint against iRhythm Technologies; filed Dec. 26, 2024.

Exhibits 1-15 for *Bardy Diagnostics, Inc.*, Plaintiff v. *iRhythm Technologies, Inc.*; The United States District Court for the District of Delaware; C.A. No. 24-1355-RGA; First Amended Complaint against iRhythm Technologies; filed Dec. 26, 2024.

Bardy Diagnostics, Inc., Plaintiff v. iRhythm Technologies, Inc.; The United States District Court for the District of Delaware; C.A. No. 24-1355 (JDW); Defendant iRhythm Technologies, Inc.'s Counterclaim and Answer to Plaintiff Bardy Diagnostics, Inc.'s First Amended Complaint; filed Mar. 3, 2025.

Exhibits 1-10 for *Bardy Diagnostics, Inc.*, Plaintiff v. *iRhythm Technologies, Inc.*; The United States District Court for the District of Delaware; C.A. No. 24-1355 (JDW); Defendant iRhythm Technologies, Inc.'s Counterclaim and Answer to Plaintiff Bardy Diagnostics, Inc.'s First Amended Complaint; filed Mar. 3, 2025.

Wital Connect, Inc. v. Bardy Diagnostics, Inc., USPTO Patent Trial & Appeal Board—Patent Owner's Preliminary Response, Case No. IPR2023-00381 for U.S. Pat. No. 11,051,743, dated Apr. 24, 2023. 53 pages.

Vital Connect, Inc. v. Bardy Diagnostics, Inc., USPTO Patent Trial & Appeal Board—Decision Denying Institution of Inter Partes Review 35 U.S.C. § 314, Case No. IPR2023-00381 for U.S. Pat. No. 11,051,743, dated Jul. 11, 2023. 21 pages.

Vital Connect, Inc. v. Bardy Diagnostics, Inc., USPTO Patent Trial & Appeal Board—Order, Case No. IPR2023-00381 for U.S. Pat. No. 11,051,743, dated Oct. 3, 2023. 3 pages.

Vital Connect, Inc. v. Bardy Diagnostics, Inc., USPTO Patent Trial & Appeal Board—Declaration of Dr. Per Reinhall, Ph.D, Case No. IPR2023-00381 for U.S. Pat. No. 11,051,743, dated Apr. 21, 2023. 28 pages.

Bardy Diagnostics Statutory Disclaimer Under 35 U.S.C. 253(a) and 37 C.F.R. § 1.321(a) for U.S. Pat. No. 11,051,743, dated Apr. 21, 2023. 2 pages.

Defendant's Answer to First Amended Complaint, Defenses, and Counterclaim, 1:22-cv-00351-CJB, *Bardy Diagnostics, Inc.* v. *Vital Connect, Inc.* (D. Del.), filed Jan. 24, 2023 (227 pages).

\* cited by examiner

Fig. 1.



Fig. 2.



U.S. Patent

May 27, 2025

Sheet 2 of 6

US 12,310,735 B2

Fig. 3.



Fig. 4.



Fig. 5.



Fig. 6.



U.S. Patent

May 27, 2025

Sheet 4 of 6

US 12,310,735 B2

Fig. 7.



Fig. 8.



Fig. 9.



Fig. 10.

<u>100</u>



Fig. 11.



## EXTENDED WEAR AMBULATORY ELECTROCARDIOGRAPHY MONITOR

## PRIORITY CLAIM AND CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 17/691,004, filed Mar. 9, 2022, titled EXTENDED WEAR AMBULATORY ELECTROCARDI-OGRAPHY MONITOR, which is a continuation of U.S. patent application Ser. No. 16/684,386, filed Nov. 14, 2019, titled EXPENDED WEAR AMBULATORY ELECTRO-CARDIOGRAPHY AND PHYSIOLOGICAL SENSOR MONITOR, which is a continuation of U.S. patent application Ser. No. 15/676,896, filed Aug. 14, 2017, titled EXTENDED WEAR AMBULATORY ELECTROCARDI-OGRAPHY AND PHYSIOLOGICAL SENSOR MONI-TOR, which is a continuation of U.S. patent application Ser. No. 14/080,725, filed Nov. 14, 2013, titled EXTENDED 20 WEAR AMBULATORY ELECTROCARDIOGRAPHY AND PHYSIOLOGICAL SENSOR MONITOR, which claims priority to U.S. Provisional Patent App. No. 61/882, 403, filed Sep. 25, 2013, titled LONG-TERM WEARABLE PHYSIOLOGICAL MONITOR. The entire contents of 25 these applications are incorporated by reference herein in their entirely and relied upon.

#### **FIELD**

This application relates in general to electrocardiographic monitoring and, in particular, to an extended wear ambulatory electrocardiography monitor.

#### **BACKGROUND**

The heart emits electrical signals as a by-product of the propagation of the action potentials that trigger depolarization of heart fibers. An electrocardiogram (ECG) measures and records such electrical potentials to visually depict the electrical activity of the heart over time. Conventionally, a standardized set format 12-lead configuration is used by an ECG machine to record cardiac electrical signals from well-established traditional chest locations. Electrodes at the 45 end of each lead are placed on the skin over the anterior thoracic region of the patient's body to the lower right and to the lower left of the sternum, on the left anterior chest, and on the limbs. Sensed cardiac electrical activity is represented by PQRSTU waveforms that can be interpreted post-ECG 50 periods of time. recordation to derive heart rate and physiology. The P-wave represents atrial electrical activity. The QRSTU components represent ventricular electrical activity.

An ECG is a tool used by physicians to diagnose heart problems and other potential health concerns. An ECG is a 55 snapshot of heart function, typically recorded over 12 seconds, that can help diagnose rate and regularity of heartbeats, effect of drugs or cardiac devices, including pacemakers and implantable cardioverter-defibrillators (ICDs), and whether a patient has heart disease. ECGs are used 60 in-clinic during appointments, and, as a result, are limited to recording only those heart-related aspects present at the time of recording. Sporadic conditions that may not show up during a spot ECG recording require other means to diagnose them. These disorders include fainting or syncope; 65 rhythm disorders, such as tachyarrhythmias and bradyarrhythmias; apneic episodes; and other cardiac and related

#### 2

disorders. Thus, an ECG only provides a partial picture and can be insufficient for complete patient diagnosis of many cardiac disorders.

Diagnostic efficacy can be improved, when appropriate, through the use of long-term extended ECG monitoring. Recording sufficient ECG and related physiology over an extended period is challenging, and often essential to enabling a physician to identify events of potential concern. A 30-day observation day period is considered the "gold standard" of ECG monitoring, yet achieving a 30-day observation day period has proven unworkable because such ECG monitoring systems are arduous to employ, cumbersome to the patient, and excessively costly. Ambulatory monitoring in-clinic is implausible and impracticable. Nevertheless, if a 15 patient's ECG could be recorded in an ambulatory setting, thereby allowing the patient to engage in activities of daily living, the chances of acquiring meaningful information and capturing an abnormal event while the patient is engaged in normal activities becomes more likely to be achieved.

For instance, the long-term wear of ECG electrodes is complicated by skin irritation and the inability ECG electrodes to maintain continual skin contact after a day or two. Moreover, time, dirt, moisture, and other environmental contaminants, as well as perspiration, skin oil, and dead skin cells from the patient's body, can get between an ECG electrode, the non-conductive adhesive used to adhere the ECG electrode, and the skin's surface. All of these factors adversely affect electrode adhesion and the quality of cardiac signal recordings. Furthermore, the physical move-30 ments of the patient and their clothing impart various compressional, tensile, and torsional forces on the contact point of an ECG electrode, especially over long recording times, and an inflexibly fastened ECG electrode will be prone to becoming dislodged. Notwithstanding the cause of 35 electrode dislodgment, depending upon the type of ECG monitor employed, precise re-placement of a dislodged ECG electrode maybe essential to ensuring signal capture at the same fidelity. Moreover, dislodgment may occur unbeknownst to the patient, making the ECG recordings worthless. Further, some patients may have skin that is susceptible to itching or irritation, and the wearing of ECG electrodes can aggravate such skin conditions. Thus, a patient may want or need to periodically remove or replace ECG electrodes during a long-term ECG monitoring period, whether to replace a dislodged electrode, reestablish better adhesion, alleviate itching or irritation, allow for cleansing of the skin, allow for showering and exercise, or for other purpose. Such replacement or slight alteration in electrode location actually facilitates the goal of recording the ECG signal for long

Conventionally, Holter monitors are widely used for longterm extended ECG monitoring. Typically, they are often used for only 24-48 hours. A typical Holter monitor is a wearable and portable version of an ECG that include cables for each electrode placed on the skin and a separate batterypowered ECG recorder. The cable and electrode combination (or leads) are placed in the anterior thoracic region in a manner similar to what is done with an in-clinic standard ECG machine. The duration of a Holter monitoring recording depends on the sensing and storage capabilities of the monitor, as well as battery life. A "looping" Holter monitor (or event) can operate for a longer period of time by overwriting older ECG tracings, thence "recycling" storage in favor of extended operation, yet at the risk of losing event data. Although capable of extended ECG monitoring, Holter monitors are cumbersome, expensive and typically only available by medical prescription, which limits their usabil-

ity. Further, the skill required to properly place the electrodes on the patient's chest hinders or precludes a patient from replacing or removing the precordial leads and usually involves moving the patient from the physician office to a specialized center within the hospital or clinic.

The ZIO XT Patch and ZIO Event Card devices, manufactured by iRhythm Tech., Inc., San Francisco, CA, are wearable stick-on monitoring devices that are typically worn on the upper left pectoral region to respectively provide continuous and looping ECG recording. The location is used 10 to simulate surgically implanted monitors. Both of these devices are prescription-only and for single patient use. The ZIO XT Patch device is limited to a 14-day monitoring period, while the electrodes only of the ZIO Event Card device can be worn for up to 30 days. The ZIO XT Patch 15 device combines both electronic recordation components, including battery, and physical electrodes into a unitary assembly that adheres to the patient's skin. The ZIO XT Patch device uses adhesive sufficiently strong to support the weight of both the monitor and the electrodes over an 20 extended period of time and to resist disadherance from the patient's body, albeit at the cost of disallowing removal or relocation during the monitoring period. Moreover, throughout monitoring, the battery is continually depleted and battery capacity can potentially limit overall monitoring 25 duration. The ZIO Event Card device is a form of downsized Holter monitor with a recorder component that must be removed temporarily during baths or other activities that could damage the non-waterproof electronics. Both devices represent compromises between length of wear and quality 30 of ECG monitoring, especially with respect to ease of long term use, female-friendly fit, and quality of atrial (P-wave) signals.

Therefore, a need remains for an extended wear continuously recording ECG monitor practicably capable of being 35 worn for a long period of time in both men and women and capable of recording atrial signals reliably.

A further need remains for a device capable of recording signals ideal for arrhythmia discrimination, especially a device designed for atrial activity recording.

#### SUMMARY

Physiological monitoring can be provided through a wearable monitor that includes two components, a flexible 45 extended wear electrode patch and a removable reusable monitor recorder. The wearable monitor sits centrally (in the midline) on the patient's chest along the sternum oriented top-to-bottom. The placement of the wearable monitor in a location at the sternal midline (or immediately to either side 50 of the sternum), with its unique narrow "hourglass"-like shape, benefits long-term extended wear by removing the requirement that ECG electrodes be continually placed in the same spots on the skin throughout the monitoring period. Instead, the patient is free to place an electrode patch 55 anywhere within the general region of the sternum. In addition, power is provided through a battery provided on the electrode patch, which avoids having to either periodically open the housing of the monitor recorder for the battery replacement, which also creates the potential for moisture 60 intrusion and human error, or to recharge the battery, which can potentially take the monitor recorder off line for hours at a time. In addition, the electrode patch is intended to be disposable, while the monitor recorder is a reusable component. Thus, each time that the electrode patch is replaced, 65 a fresh battery is provided for the use of the monitor recorder.

4

One embodiment provides an extended wear electrocardiography and physiological sensor monitor recorder that includes a sealed housing configured to be removably secured into a receptacle on an electrode patch that has a battery electrically interfaced to a pair of electrical pads on the receptacle. The sealed housing also includes a set of electrical contacts that protrude from a bottom surface and correspond with further electrical pads on the receptacle. Electronic circuitry is provided within the sealed housing and includes a micro-controller operable to execute under micro-programmable control, an electrographic front end circuit electrically interfaced to the micro-controller and operable to sense electrocardiographic signals through electrocardiographic electrodes provided on the electrode patch, and a flash memory electrically interfaced with the microcontroller and operable to store samples of the electrocardiographic signals.

A further embodiment provides an electrocardiography monitor. A sealed housing includes one end wider than an opposite end of the sealed housing. Electronic circuitry is provided within the sealed housing. The electronic circuitry includes an electrographic front end circuit to sense electrocardiographic signals and a micro-controller interfaced to the electrocardiographic front end circuit to sample the electrocardiographic signals. A buzzer within the housing outputs feedback to a wearer of the sealed housing.

A still further embodiment provides an extended wear electrocardiography and physiological sensor monitor that includes an electrode patch having a flexible backing formed of an elongated strip and a pair of electrocardiographic electrodes conductively exposed on a contact surface of each end of the elongated strip. A receptacle is adhered to an outward-facing side of the elongated strip opposite the contact surface and includes a plurality of electrical pads. A battery is electrically interfaced to a pair of the electrical pads on the receptacle. A flexible circuit is affixed on each end of the elongated strip and includes a pair of circuit traces electrically coupled to the pair of electrocardiographic electrodes and another pair of the electrical pads. An electro-40 cardiography monitor includes a sealed housing configured to be removably secured into the receptacle on the electrode patch and has a set of electrical contacts that protrude from a bottom surface and correspond with further electrical pads on the receptacle. Electronic circuitry is provided within the sealed housing and includes a micro-controller operable to execute under micro-programmable control, an electrographic front end circuit electrically interfaced to the microcontroller and operable to sense electrocardiographic signals through the electrocardiographic electrodes provided on the electrode patch, and a flash memory electrically interfaced with the micro-controller and operable to store samples of the electrocardiographic signals.

The monitoring patch is especially suited to the female anatomy. The narrow longitudinal midsection can fit nicely within the intermammary cleft of the breasts without inducing discomfort, whereas conventional patch electrodes are wide and, if adhesed between the breasts, would cause chafing, irritation, frustration, and annoyance, leading to low patient compliance.

The foregoing aspects enhance ECG monitoring performance and quality facilitating long-term ECG recording, critical to accurate arrhythmia diagnosis.

In addition, the foregoing aspects enhance comfort in women (and certain men), but not irritation of the breasts, by placing the monitoring patch in the best location possible for optimizing the recording of cardiac signals from the atrium, another feature critical to proper arrhythmia diagnosis.

Still other embodiments will become readily apparent to those skilled in the art from the following detailed description, wherein are described embodiments by way of illustrating the best mode contemplated. As will be realized, other and different embodiments are possible and the embodiments' several details are capable of modifications in various obvious respects, all without departing from their spirit and the scope. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not as restrictive.

#### BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1 and 2 are diagrams showing, by way of examples, an extended wear electrocardiography and physiological sensor monitor, including a monitor recorder in accordance with one embodiment, respectively fitted to the sternal region of a female patient and a male patient.

FIG. 3 is a perspective view showing an extended wear electrode patch with a monitor recorder in accordance with one embodiment inserted.

FIG. 4 is a perspective view showing the monitor recorder of FIG. 3.

FIG. 5 is a perspective view showing the extended wear 25 electrode patch of FIG. 3 without a monitor recorder inserted.

FIG. 6 is a bottom plan view of the monitor recorder of FIG. 3.

FIG. 7 is a top view showing the flexible circuit of the <sup>30</sup> extended wear electrode patch of FIG. 3 when mounted above the flexible backing.

FIG. 8 is a functional block diagram showing the component architecture of the circuitry of the monitor recorder of FIG. 3.

FIG. 9 is a functional block diagram showing the circuitry of the extended wear electrode patch of FIG. 3.

FIG. 10 is a flow diagram showing a monitor recorder-implemented method for monitoring ECG data for use in the monitor recorder of FIG. 3.

FIG. 11 is a graph showing, by way of example, a typical ECG waveform.

#### DETAILED DESCRIPTION

Physiological monitoring can be provided through a wearable monitor that includes two components, a flexible extended wear electrode patch and a removable reusable monitor recorder. FIGS. 1 and 2 are diagrams showing, by way of examples, an extended wear electrocardiography and 50 physiological sensor monitor 12, including a monitor recorder 14 in accordance with one embodiment, respectively fitted to the sternal region of a female patient 10 and a male patient 11. The wearable monitor 12 sits centrally (in the midline) on the patient's chest along the sternum 13 55 oriented top-to-bottom with the monitor recorder 14 preferably situated towards the patient's head. In a further embodiment, the orientation of the wearable monitor 12 can be corrected post-monitoring, as further described infra. The electrode patch 15 is shaped to fit comfortably and conformal to the contours of the patient's chest approximately centered on the sternal midline 16 (or immediately to either side of the sternum 13). The distal end of the electrode patch 15 extends towards the Xiphoid process and, depending upon the patient's build, may straddle the region over the 65 Xiphoid process. The proximal end of the electrode patch 15, located under the monitor recorder 14, is below the

6

manubrium and, depending upon patient's build, may straddle the region over the manubrium.

The placement of the wearable monitor 12 in a location at the sternal midline 16 (or immediately to either side of the sternum 13) significantly improves the ability of the wearable monitor 12 to cutaneously sense cardiac electric signals, particularly the P-wave (or atrial activity) and, to a lesser extent, the QRS interval signals in the ECG waveforms that indicate ventricular activity. The sternum 13 overlies the right atrium of the heart and the placement of the wearable monitor 12 in the region of the sternal midline 13 puts the ECG electrodes of the electrode patch 15 in a location better adapted to sensing and recording P-wave signals than other placement locations, say, the upper left 15 pectoral region. In addition, placing the lower or inferior pole (ECG electrode) of the electrode patch 15 over (or near) the Xiphoid process facilitates sensing of right ventricular activity and provides superior recordation of the QRS interval.

During use, the electrode patch 15 is first adhesed to the skin along the sternal midline 16 (or immediately to either side of the sternum 13). A monitor recorder 14 is then snapped into place on the electrode patch 15 to initiate ECG monitoring. FIG. 3 is a perspective view showing an extended wear electrode patch 15 with a monitor recorder 14 in accordance with one embodiment inserted. The body of the electrode patch 15 is preferably constructed using a flexible backing 20 formed as an elongated strip 21 of wrap knit or similar stretchable material with a narrow longitudinal mid-section 23 evenly tapering inward from both sides. A pair of cut-outs 22 between the distal and proximal ends of the electrode patch 15 create a narrow longitudinal midsection 23 or "isthmus" and defines an elongated "hourglass"-like shape, when viewed from above.

The electrode patch 15 incorporates features that significantly improve wearability, performance, and patient comfort throughout an extended monitoring period. During wear, the electrode patch 15 is susceptible to pushing, pulling, and torqueing movements, including compressional 40 and torsional forces when the patient bends forward, and tensile and torsional forces when the patient leans backwards. To counter these stress forces, the electrode patch 15 incorporates strain and crimp reliefs, such as described in commonly-assigned U.S. Patent, entitled "Extended Wear 45 Electrocardiography Patch," U.S. Pat. No. 9,545,204, issued on Jan. 17, 2017, the disclosure of which is incorporated by reference. In addition, the cut-outs 22 and longitudinal midsection 23 help minimize interference with and discomfort to breast tissue, particularly in women (and gynecomastic men). The cut-outs 22 and longitudinal midsection 23 further allow better conformity of the electrode patch 15 to sternal bowing and to the narrow isthmus of flat skin that can occur along the bottom of the intermammary cleft between the breasts, especially in buxom women. The cut-outs 22 and longitudinal midsection 23 help the electrode patch 15 fit nicely between a pair of female breasts in the intermammary cleft. Still other shapes, cut-outs and conformities to the electrode patch 15 are possible.

The monitor recorder 14 removably and reusably snaps into an electrically non-conductive receptacle 25 during use. The monitor recorder 14 contains electronic circuitry for recording and storing the patient's electrocardiography as sensed via a pair of ECG electrodes provided on the electrode patch 15, as further described infra beginning with reference to FIG. 8. The non-conductive receptacle 25 is provided on the top surface of the flexible backing 20 with a retention catch 26 and tension clip 27 molded into the

•

non-conductive receptacle 25 to conformably receive and securely hold the monitor recorder 14 in place.

The monitor recorder 14 includes a sealed housing that snaps into place in the non-conductive receptacle 25. FIG. 4 is a perspective view showing the monitor recorder 14 of 5 FIG. 3. The sealed housing 50 of the monitor recorder 14 intentionally has a rounded isosceles trapezoidal-like shape 52, when viewed from above, such as described in commonly-assigned U.S. Design Patent, entitled "Electrocardiography Monitor," No. D717955, issued on Nov. 18, 2014, 10 the disclosure of which is incorporated by reference. The edges 51 along the top and bottom surfaces are rounded for patient comfort. The sealed housing **50** is approximately 47 mm long, 23 mm wide at the widest point, and 7 mm high, excluding a patient-operable tactile-feedback button **55**. The 15 sealed housing 50 can be molded out of polycarbonate, ABS, or an alloy of those two materials. The button **55** is waterproof and the button's top outer surface is molded silicon rubber or similar soft pliable material. A retention detent 53 and tension detent **54** are molded along the edges of the top 20 surface of the housing 50 to respectively engage the retention catch 26 and the tension clip 27 molded into nonconductive receptacle 25. Other shapes, features, and conformities of the sealed housing 50 are possible.

The electrode patch 15 is intended to be disposable. The 25 monitor recorder 14, however, is reusable and can be transferred to successive electrode patches 15 to ensure continuity of monitoring. The placement of the wearable monitor 12 in a location at the sternal midline 16 (or immediately to either side of the sternum 13) benefits long-term extended 30 wear by removing the requirement that ECG electrodes be continually placed in the same spots on the skin throughout the monitoring period. Instead, the patient is free to place an electrode patch 15 anywhere within the general region of the sternum 13.

As a result, at any point during ECG monitoring, the patient's skin is able to recover from the wearing of an electrode patch 15, which increases patient comfort and satisfaction, while the monitor recorder 14 ensures ECG monitoring continuity with minimal effort. A monitor 40 recorder 14 is merely unsnapped from a worn out electrode patch 15, the worn out electrode patch 15 is removed from the skin, a new electrode patch 15 is adhered to the skin, possibly in a new spot immediately adjacent to the earlier location, and the same monitor recorder 14 is snapped into 45 the new electrode patch 15 to reinitiate and continue the ECG monitoring.

During use, the electrode patch 15 is first adhered to the skin in the sternal region. FIG. 5 is a perspective view showing the extended wear electrode patch 15 of FIG. 3 50 without a monitor recorder 14 inserted. A flexible circuit 32 is adhered to each end of the flexible backing 20. A distal circuit trace 33 and a proximal circuit trace (not shown) electrically couple ECG electrodes (not shown) to a pair of electrical pads 34. The electrical pads 34 are provided within 55 a moisture-resistant seal **35** formed on the bottom surface of the non-conductive receptacle 25. When the monitor recorder 14 is securely received into the non-conductive receptacle 25, that is, snapped into place, the electrical pads 34 interface to electrical contacts (not shown) protruding 60 from the bottom surface of the monitor recorder 14, and the moisture-resistant seal 35 enables the monitor recorder 14 to be worn at all times, even during bathing or other activities that could expose the monitor recorder 14 to moisture.

In addition, a battery compartment **36** is formed on the 65 bottom surface of the non-conductive receptacle **25**, and a pair of battery leads (not shown) electrically interface the

8

battery to another pair of the electrical pads 34. The battery contained within the battery compartment 35 can be replaceable, rechargeable or disposable.

The monitor recorder 14 draws power externally from the battery provided in the non-conductive receptacle 25, thereby uniquely obviating the need for the monitor recorder 14 to carry a dedicated power source. FIG. 6 is a bottom plan view of the monitor recorder 14 of FIG. 3. A cavity 58 is formed on the bottom surface of the sealed housing 50 to accommodate the upward projection of the battery compartment 36 from the bottom surface of the non-conductive receptacle 25, when the monitor recorder 14 is secured in place on the non-conductive receptacle 25. A set of electrical contacts 56 protrude from the bottom surface of the sealed housing 50 and are arranged in alignment with the electrical pads 34 provided on the bottom surface of the non-conductive receptacle 25 to establish electrical connections between the electrode patch 15 and the monitor recorder 14. In addition, a seal coupling 57 circumferentially surrounds the set of electrical contacts 56 and securely mates with the moisture-resistant seal 35 formed on the bottom surface of the non-conductive receptacle 25.

The placement of the flexible backing 20 on the sternal midline 16 (or immediately to either side of the sternum 13) also helps to minimize the side-to-side movement of the wearable monitor 12 in the left- and right-handed directions during wear. To counter the dislodgment of the flexible backing 20 due to compressional and torsional forces, a layer of non-irritating adhesive, such as hydrocolloid, is provided at least partially on the underside, or contact, surface of the flexible backing 20, but only on the distal end 30 and the proximal end 31. As a result, the underside, or contact surface of the longitudinal midsection 23 does not have an adhesive layer and remains free to move relative to 35 the skin. Thus, the longitudinal midsection **23** forms a crimp relief that respectively facilitates compression and twisting of the flexible backing 20 in response to compressional and torsional forces. Other forms of flexible backing crimp reliefs are possible.

Unlike the flexible backing 20, the flexible circuit 32 is only able to bend and cannot stretch in a planar direction. The flexible circuit 32 can be provided either above or below the flexible backing 20. FIG. 7 is a top view showing the flexible circuit 32 of the extended wear electrode patch 15 of FIG. 3 when mounted above the flexible backing 20. A distal ECG electrode 38 and proximal ECG electrode 39 are respectively coupled to the distal and proximal ends of the flexible circuit 32. A strain relief 40 is defined in the flexible circuit 32 at a location that is partially underneath the battery compartment 36 when the flexible circuit 32 is affixed to the flexible backing 20. The strain relief 40 is laterally extendable to counter dislodgment of the ECG electrodes 38, 39 due to tensile and torsional forces. A pair of strain relief cutouts 41 partially extend transversely from each opposite side of the flexible circuit 32 and continue longitudinally towards each other to define in 'S'-shaped pattern, when viewed from above. The strain relief respectively facilitates longitudinal extension and twisting of the flexible circuit 32 in response to tensile and torsional forces. Other forms of circuit board strain relief are possible.

ECG monitoring and other functions performed by the monitor recorder 14 are provided through a micro controlled architecture. FIG. 8 is a functional block diagram showing the component architecture of the circuitry 60 of the monitor recorder 14 of FIG. 3. The circuitry 60 is externally powered through a battery provided in the non-conductive receptacle 25 (shown in FIG. 5). Both power and raw ECG signals,

which originate in the pair of ECG electrodes 38, 39 (shown in FIG. 7) on the distal and proximal ends of the electrode patch 15, are received through an external connector 65 that mates with a corresponding physical connector on the electrode patch 15. The external connector 65 includes the set of 5 electrical contacts 56 that protrude from the bottom surface of the sealed housing 50 and which physically and electrically interface with the set of pads 34 provided on the bottom surface of the non-conductive receptacle 25. The external connector includes electrical contacts 56 for data 10 download, microcontroller communications, power, analog inputs, and a peripheral expansion port. The arrangement of the pins on the electrical connector 65 of the monitor recorder 14 and the device into which the monitor recorder 14 is attached, whether an electrode patch 15 or download 15 station (not shown), follow the same electrical pin assignment convention to facilitate interoperability. The external connector 65 also serves as a physical interface to a download station that permits the retrieval of stored ECG monitoring data, communication with the monitor recorder 14, 20 and performance of other functions.

Operation of the circuitry 60 of the monitor recorder 14 is managed by a microcontroller 61. The micro-controller 61 includes a program memory unit containing internal flash memory that is readable and writeable. The internal flash 25 memory can also be programmed externally. The microcontroller 61 draws power externally from the battery provided on the electrode patch 15 via a pair of the electrical contacts **56**. The microcontroller **61** connects to the ECG front end circuit 63 that measures raw cutaneous electrical 30 signals and generates an analog ECG signal representative of the electrical activity of the patient's heart over time.

The circuitry **60** of the monitor recorder **14** also includes a flash memory 62, which the micro-controller 61 uses for information. The flash memory **62** also draws power externally from the battery provided on the electrode patch 15 via a pair of the electrical contacts **56**. Data is stored in a serial flash memory circuit, which supports read, erase and program operations over a communications bus. The flash 40 memory 62 enables the microcontroller 61 to store digitized ECG data. The communications bus further enables the flash memory 62 to be directly accessed externally over the external connector 65 when the monitor recorder 14 is interfaced to a download station.

The circuitry 60 of the monitor recorder 14 further includes an actigraphy sensor **64** implemented as a 3-axis accelerometer. The accelerometer may be configured to generate interrupt signals to the microcontroller 61 by independent initial wake up and free fall events, as well as 50 by device position. In addition, the actigraphy provided by the accelerometer can be used during post-monitoring analysis to correct the orientation of the monitor recorder 14 if, for instance, the monitor recorder 14 has been inadvertently installed upside down, that is, with the monitor recorder **14** 55 oriented on the electrode patch 15 towards the patient's feet, as well as for other event occurrence analyses.

The microcontroller 61 includes an expansion port that also utilizes the communications bus. External devices, separately drawing power externally from the battery pro- 60 vided on the electrode patch 15 or other source, can interface to the microcontroller 61 over the expansion port in half duplex mode. For instance, an external physiology sensor can be provided as part of the circuitry 60 of the monitor recorder 14, or can be provided on the electrode patch 15 65 with communication with the micro-controller **61** provided over one of the electrical contacts **56**. The physiology sensor

**10** 

can include an SpO<sub>2</sub> sensor, blood pressure sensor, temperature sensor, respiratory rate sensor, glucose sensor, airflow sensor, volumetric pressure sensing, or other types of sensor or telemetric input sources. In a further embodiment, a wireless interface for interfacing with other wearable (or implantable) physiology monitors, as well as data offload and programming, can be provided as part of the circuitry 60 of the monitor recorder 14, or can be provided on the electrode patch 15 with communication with the microcontroller 61 provided over one of the electrical contacts 56.

Finally, the circuitry 60 of the monitor recorder 14 includes patient-interfaceable components, including a tactile feedback button 66, which a patient can press to mark events or to perform other functions, and a buzzer 67, such as a speaker, magnetic resonator or piezoelectric buzzer. The buzzer 67 can be used by the microcontroller 61 to output feedback to a patient such as to confirm power up and initiation of ECG monitoring. Still other components as part of the circuitry 60 of the monitor recorder 14 are possible.

While the monitor recorder 14 operates under micro control, most of the electrical components of the electrode patch 15 operate passively. FIG. 9 is a functional block diagram showing the circuitry 70 of the extended wear electrode patch 15 of FIG. 3. The circuitry 70 of the electrode patch 15 is electrically coupled with the circuitry 60 of the monitor recorder 14 through an external connector 74. The external connector 74 is terminated through the set of pads 34 provided on the bottom of the non-conductive receptacle 25, which electrically mate to corresponding electrical contacts **56** protruding from the bottom surface of the sealed housing 50 to electrically interface the monitor recorder 14 to the electrode patch 15.

The circuitry 70 of the electrode patch 15 performs three primary functions. First, a battery 71 is provided in a battery storing ECG monitoring data and other physiology and 35 compartment formed on the bottom surface of the nonconductive receptacle 25. The battery 71 is electrically interfaced to the circuitry 60 of the monitor recorder 14 as a source of external power. The unique provisioning of the battery 71 on the electrode patch 15 provides several advantages. First, the locating of the battery 71 physically on the electrode patch 15 lowers the center of gravity of the overall wearable monitor 12 and thereby helps to minimize shear forces and the effects of movements of the patient and clothing. Moreover, the housing **50** of the monitor recorder 45 **14** is sealed against moisture and providing power externally avoids having to either periodically open the housing 50 for the battery replacement, which also creates the potential for moisture intrusion and human error, or to recharge the battery, which can potentially take the monitor recorder 14 off line for hours at a time. In addition, the electrode patch 15 is intended to be disposable, while the monitor recorder **14** is a reusable component. Each time that the electrode patch 15 is replaced, a fresh battery is provided for the use of the monitor recorder 14, which enhances ECG monitoring performance quality and duration of use. Finally, the architecture of the monitor recorder 14 is open, in that other physiology sensors or components can be added by virtue of the expansion port of the microcontroller 61. Requiring those additional sensors or components to draw power from a source external to the monitor recorder 14 keeps power considerations independent of the monitor recorder 14. Thus, a battery of higher capacity could be introduced when needed to support the additional sensors or components without effecting the monitor recorders circuitry 60.

> Second, the pair of ECG electrodes 38, 39 respectively provided on the distal and proximal ends of the flexible circuit 32 are electrically coupled to the set of pads 34

Case 1:24-cv-01355-JDW Document 52-2 Filed 06/11/25 Page 55 of 145 PageID #

11

provided on the bottom of the non-conductive receptacle 25 by way of their respective circuit traces 33, 37. The signal ECG electrode 39 includes a protection circuit 72, which is an inline resistor that protects the patient from excessive leakage current.

Last, in a further embodiment, the circuitry 70 of the electrode patch 15 includes a cryptographic circuit 73 to authenticate an electrode patch 15 for use with a monitor recorder 14. The cryptographic circuit 73 includes a device capable of secure authentication and validation. The cryptographic device 73 ensures that only genuine, non-expired, safe, and authenticated electrode patches 15 are permitted to provide monitoring data to a monitor recorder 14.

The monitor recorder 14 continuously monitors the 15 patient's heart rate and physiology. FIG. 10 is a flow diagram showing a monitor recorder-implemented method **100** for monitoring ECG data for use in the monitor recorder 14 of FIG. 3. Initially, upon being connected to the set of pads 34 provided with the non-conductive receptacle 25 20 when the monitor recorder 14 is snapped into place, the microcontroller 61 executes a power up sequence (step 101). During the power up sequence, the voltage of the battery 71 is checked, the state of the flash memory 62 is confirmed, both in terms of operability check and available capacity, 25 and microcontroller operation is diagnostically confirmed. In a further embodiment, an authentication procedure between the microcontroller 61 and the electrode patch 15 are also performed.

Following satisfactory completion of the power up 30 sequence, an iterative processing loop (steps 102-109) is continually executed by the microcontroller 61. During each iteration (step 102) of the processing loop, the ECG frontend 63 (shown in FIG. 8) continually senses the cutaneous ECG electrical signals (step 103) via the ECG electrodes 38, 29 35 and is optimized to maintain the integrity of the P-wave. A sample of the ECG signal is read (step 104) by the microcontroller 61 by sampling the analog ECG signal output front end 63. FIG. 11 is a graph showing, by way of example, a typical ECG waveform **110**. The x-axis represents time in 40 approximate units of tenths of a second. The y-axis represents cutaneous electrical signal strength in approximate units of millivolts. The P-wave 111 has a smooth, normally upward, that is, positive, waveform that indicates atrial depolarization. The QRS complex usually begins with the 45 comprising: downward deflection of a Q wave 112, followed by a larger upward deflection of an R-wave 113, and terminated with a downward waveform of the S wave 114, collectively representative of ventricular depolarization. The T wave 115 is normally a modest upward waveform, representative of 50 ventricular depolarization, while the U wave 116, often not directly observable, indicates the recovery period of the Purkinje conduction fibers.

Sampling of the R-to-R interval enables heart rate information derivation. For instance, the R-to-R interval repre- 55 sents the ventricular rate and rhythm, while the P-to-P interval represents the atrial rate and rhythm. Importantly, the PR interval is indicative of atrioventricular (AV) conduction time and abnormalities in the PR interval can reveal underlying heart disorders, thus representing another reason 60 further comprising: why the P-wave quality achievable by the extended wear ambulatory electrocardiography and physiological sensor monitor described herein is medically unique and important. The long-term observation of these ECG indicia, as provided through extended wear of the wearable monitor 12, 65 provides valuable insights to the patient's cardiac function and overall well-being.

Each sampled ECG signal, in quantized and digitized form, is temporarily staged in buffer (step 105), pending compression preparatory to storage in the flash memory 62 (step 106). Following compression, the compressed ECG digitized sample is again buffered (step 107), then written to the flash memory 62 (step 108) using the communications bus. Processing continues (step 109), so long as the monitoring recorder 14 remains connected to the electrode patch 15 (and storage space remains available in the flash memory 62), after which the processing loop is exited and execution terminates. Still other operations and steps are possible.

While the invention has been particularly shown and described as referenced to the embodiments thereof, those skilled in the art will understand that the foregoing and other changes in form and detail may be made therein without departing from the spirit and scope.

What is claimed is:

- 1. An electrocardiography monitor, comprising:
- a battery;
- a non-conductive receptable configured to house the battery;
- a housing comprising rounded edges along a top surface, wherein the housing engages the non-conductive receptacle and the non-conductive receptacle is configured to receive the housing, wherein the battery is positioned between the housing and a bottom surface of the non-conductive receptacle;
- a patient feedback button located on the top surface of the housing;
- an electrographic front end circuit to sense electrocardiographic signals;
- a distal electrocardiography electrode coupled to a distal end of a flexible circuit and a proximal electrocardiography electrode coupled to a proximal end of the flexible circuit, wherein the flexible circuit is coupled to a flexible backing and the flexible backing is configured to adhere to skin of a patient's chest; and
- a microcontroller secured by the housing, wherein the microcontroller is interfaced to the electrocardiographic front end circuit to sample the electrocardiographic signals.
- 2. The electrocardiography monitor according to claim 1,
- a seal coupling surrounding electrical contacts, wherein the electrical contacts protrude from the bottom surface of the housing to connect to the battery to power the microcontroller.
- 3. The electrocardiography monitor according to claim 1, further comprising:
  - electrical contacts to establish an electrical connection with the distal electrocardiography electrode and the proximal electrocardiography electrode for sensing the electrocardiographic signals.
- **4**. The electrocardiography monitor according to claim **1**, wherein the housing is shaped for placement over the battery.
- 5. The electrocardiography monitor according to claim 1,

circuitry for an actigraphy sensor.

- **6**. The electrocardiography monitor according to claim **5**, wherein the actigraphy sensor generates interrupt signals to the microcontroller based on a position of the housing.
- 7. The electrocardiography monitor according to claim 1, wherein the housing comprises polycarbonate, ABS, or an alloy of polycarbonate and ABS.

- **8**. The electrocardiography monitor according to claim **1**, further comprising:
  - flash memory configured to store the electrocardiographic signals.
- 9. The electrocardiography monitor according to claim 1, further comprising:
  - an expansion port via which an external device interfaces to the microcontroller.
- 10. The electrocardiography monitor according to claim 9, wherein the external device comprises a physiological 10 sensor.
- 11. An electrocardiography monitor assembly, comprising:
  - a battery compartment formed on a bottom surface of a non-conductive receptacle, wherein a battery is located in the battery compartment;
  - a housing comprising rounded edges along a top surface, wherein the non-conductive receptacle is configured to receive the housing and wherein the battery compartment is positioned between the housing and the bottom surface of the non-conductive receptacle;
  - an electrographic front end circuit to sense electrocardiographic signals;
  - a distal electrocardiography electrode coupled to a distal end of a flexible circuit and a proximal electrocardiography electrode coupled to a proximal end of the flexible circuit, wherein the flexible circuit is coupled to a flexible backing and the flexible backing is configured to adhere to skin of a patient's chest;
  - a microcontroller secured by the housing, wherein the microcontroller is interfaced to the electrocardio-graphic front end circuit to sample the electrocardio-graphic signals memory; and
  - a backing configured to receive the housing.

14

- 12. The electrocardiography monitor assembly according to claim 11, comprising:
  - a seal coupling surrounding electrical contacts.
- 13. The electrocardiography monitor assembly according to claim 11, further comprising:
  - electrical contacts to establish an electrical connection with the distal electrocardiography electrode and the proximal electrocardiography electrode for sensing the electrocardiographic signals.
- 14. The electrocardiography monitor assembly according to claim 11, wherein the housing is shaped to fit over the battery.
- 15. The electrocardiography monitor assembly according to claim 11, further comprising:
  - circuitry for an actigraphy sensor comprised within the housing.
- 16. The electrocardiography monitor assembly according to claim 15, wherein the actigraphy sensor generates interrupt signals to the microcontroller based on a position of the housing.
- 17. The electrocardiography monitor assembly according to claim 11, wherein the housing comprises polycarbonate, ABS, or an alloy of polycarbonate and ABS.
- 18. The electrocardiography monitor assembly according to claim 11, further comprising:
- flash memory configured to store the electrocardiographic signals.
- 19. The electrocardiography monitor assembly according to claim 11, further comprising:
  - an expansion port comprised in the circuitry via which an external device interfaces to the microcontroller.
- 20. The electrocardiography monitor assembly according to claim 19, wherein the external device comprises a physiological sensor.

\* \* \* \* :

#### Exhibit 18

#### Claim Chart for U.S. Patent No. 12,285,261 ("the '261 Patent")

The Accused Instrumentalities include, but are not necessarily limited to, the Next-Generation Zio Monitor by iRhythm (the "Zio Monitor"). The Accused Instrumentalities infringe at least the claims of the '261 Patent charted below either directly under 35 U.S.C. § 271(a), or indirectly under 35 U.S.C. §§ 271(b)–(c). The Accused Instrumentalities infringe such claims literally and/or under the doctrine of equivalents.

| Claim 1                                                               | Accused Instrumentalities                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1[pre]. A moisture-resistant electrocardiography monitor, comprising: | To the extent the preamble is deemed to be a limitation, the Accused Instrumentalities include a moisture-resistant electrocardiography monitoring device in accordance with this claim. The Zio Monitor satisfies 1[pre] because the Zio Monitor is an ECG monitor that is moisture-resistant. |
|                                                                       | (https://s201.q4cdn.com/653785554/files/doc_downloads/V4iRhythm_ESG_Report_2023.pdf)                                                                                                                                                                                                            |

| <u>Claim 1</u> | Accused Instrumentalities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | ZIO MONITOR SYSTEM  The Zio Monitor System is the next generation of the Zio XT System, and is a prescription-only, remote ECG monitoring system that consists of the Zio Monitor patch that records the electric signal from the heart continuously for up to 14 days and the ZEUS System, which supports the capture and analysis of ECG data recorded by the Zio Monitor patch at the end of the wear period, including specific arrhythmia events detected by the ZEUS algorithm.  (https://s201.q4cdn.com/653785554/files/doc_downloads/V4iRhythm_ESG_Report_2023.pdf)  The Zio patches include the following features:  - patented flexible, lightweight, wire-free design; - unobtrusive and inconspicuous profile; - proprietary adhesive backing designed to keep the Zio patch securely in place for the duration of the prescribed wear period; - water-resistant functionality, allowing patients to shower, sleep, and perform normal daily activities, including moderate exercise;  (https://go.irhythmtech.com/hubfs/LB10117.01%20-%20ZIO%20MONITOR%20INSTRUCTIONS%20FOR%20USE%2c%20PRINTED%20(2).pdf) |

| Claim 1 | Accused Instrumentalities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | <ul> <li>An improved form-factor for a better patient wear experience – it is 23% thinner<sup>3,4</sup>, 62% lighter<sup>3,4</sup>, 72% smaller<sup>3-5</sup> and weighs less than a pencil.<sup>6</sup></li> <li>Continued high patient compliance with prescribed wear time – Zio monitor demonstrates 99% patient compliance with prescribed wear times<sup>7</sup> to help healthcare providers make the right diagnosis the first time.</li> <li>Other features that make it easy to wear and allow patients to go about their daily lives <sup>8</sup> – it is breathable, has a hydrocolloid adhesive and a waterproof housing<sup>9,10</sup>, and requires no device or adhesive manipulation or battery change during the entire wear and monitoring period of up to 14 days.</li> <li>(https://investors.irhythmtech.com/news/news-details/2023/iRhythm-Launches-Next-Generation-Zio-Monitor-and-Enhanced-Zio-Service-Its-Smallest-Lightest-and-Thinnest-Cardiac-Monitor/default.aspx)</li> </ul> |

| <u>Claim 1</u>                                             | Accused Instrumentalities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1[a]. an electrocardiography monitor recorder, comprising: | The Accused Instrumentalities include an electrocardiography monitor recorder. The Zio Monitor satisfies 1[a] because the Zio Monitor includes an electrocardiography monitor recorder device. In an example, the Zio Monitor records patient ECG signals.                                                                                                                                                                                                                                                                                                                  |
|                                                            | ZIO MONITOR SYSTEM  The Zio Monitor System is the next generation of the Zio XT System, and is a prescription-only, remote ECG monitoring system that consists of the Zio Monitor patch that records the electric signal from the heart continuously for up to 14 days and the ZEUS System, which supports the capture and analysis of ECG data recorded by the Zio Monitor patch at the end of the wear period, including specific arrhythmia events detected by the ZEUS algorithm.  (https://s201.q4cdn.com/653785554/files/doc_downloads/V4iRhythm_ESG_Report_2023.pdf) |
|                                                            | Next-generation Zio® monitor  Long-Term Continuous Monitoring Service  Introducing the Zio monitor—designed to be lighter, smaller, and thinner, while building on the high performance of Zio XT. <sup>5-8</sup> (https://www.irhythmtech.com/providers/zio-service/zio-monitors)                                                                                                                                                                                                                                                                                          |

| Claim 1                                                                                   | Accused Instrumentalities                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1[b]. a wearable housing molded out of one or more materials and sealed against moisture; | The Accused Instrumentalities include a wearable housing molded out of one or more materials and sealed against moisture. The Zio Monitor satisfies 1[b] because the Zio Monitor includes a wearable housing. The wearable housing is molded out of one or more materials. |
|                                                                                           | (https://s201.q4cdn.com/653785554/files/doc_downloads/V4iRhythm_ESG_Report_2023.pdf)                                                                                                                                                                                       |
|                                                                                           |                                                                                                                                                                                                                                                                            |
|                                                                                           | (https://www.irhythmtech.com/providers/zio-service/zio-monitors)                                                                                                                                                                                                           |

#### Case 1:24-cv-01355-JDW Document 52-2 Filed 06/11/25 Page 63 of 145 PageID #: 4191

| Claim 1 | Accused Instrumentalities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | <ul> <li>An improved form-factor for a better patient wear experience – it is 23% thinner<sup>3,4</sup>, 62% lighter<sup>3,4</sup>, 72% smaller<sup>3-5</sup> and weighs less than a pencil.<sup>6</sup></li> <li>Continued high patient compliance with prescribed wear time – Zio monitor demonstrates 99% patient compliance with prescribed wear times<sup>7</sup> to help healthcare providers make the right diagnosis the first time.</li> <li>Other features that make it easy to wear and allow patients to go about their daily lives <sup>8</sup> – it is breathable, has a hydrocolloid adhesive and a waterproof housing<sup>9,10</sup>, and requires no device or adhesive manipulation or battery change during the entire wear and monitoring period of up to 14 days.</li> <li>(https://investors.irhythmtech.com/news/news-details/2023/iRhythm-Launches-Next-Generation-Zio-Monitor-and-Enhanced-Zio-Service-Its-Smallest-Lightest-and-Thinnest-Cardiac-Monitor/default.aspx)</li> </ul> |
|         | The Zio patches include the following features:  • patented flexible, lightweight, wire-free design;  • unobtrusive and inconspicuous profile;  • proprietary adhesive backing designed to keep the Zio patch securely in place for the duration of the prescribed wear period;  • water-resistant functionality, allowing patients to shower, sleep, and perform normal daily activities, including moderate exercise;  (https://go.irhythmtech.com/hubfs/LB10117.01%20-%20ZIO%20MONITOR%20INSTRUCTIONS%20FOR%20USE%2c%20PRINTED%20(2).pdf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| <u>Claim 1</u>                                                                 | Accused Instrumentalities                                                                                                                                                                                                                  |  |  |  |
|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1[c]. a plurality of electrical contacts protruding from the wearable housing; | The Accused Instrumentalities include a plurality of electrical contacts protruding from the wearable housing. The Zio Monitor satisfies 1[c] because the Zio Monitor includes a wearable housing with a plurality of electrical contacts. |  |  |  |
|                                                                                | (Zio Monitor Teardown)                                                                                                                                                                                                                     |  |  |  |

| Claim 1 | Accused Instrumentalities |
|---------|---------------------------|
|         |                           |
|         | (Zio Monitor Teardown)    |



| <u>Claim 1</u>                                                                                        | Accused Instrumentalities                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1[d]. a seal coupling positioned on the wearable housing and surrounding the electrical contacts; and | The Accused Instrumentalities include a seal coupling positioned on the wearable housing and surrounding the electrical components. The Zio Monitor satisfies 1[d] because the Zio Monitor includes a seal coupling positioned on the wearable housing. The seal coupling surrounds the electrical components. |
|                                                                                                       | The Zio patches include the following features:                                                                                                                                                                                                                                                                |
|                                                                                                       | <ul> <li>patented flexible, lightweight, wire-free design;</li> </ul>                                                                                                                                                                                                                                          |
|                                                                                                       | <ul> <li>unobtrusive and inconspicuous profile;</li> </ul>                                                                                                                                                                                                                                                     |
|                                                                                                       | <ul> <li>proprietary adhesive backing designed<br/>to keep the Zio patch securely in place for<br/>the duration of the prescribed wear period;</li> </ul>                                                                                                                                                      |
|                                                                                                       | <ul> <li>water-resistant functionality, allowing patients<br/>to shower, sleep, and perform normal daily<br/>activities, including moderate exercise;</li> </ul>                                                                                                                                               |
|                                                                                                       | (https://s201.q4cdn.com/653785554/files/doc_downloads/V4iRhythm_ESG_Report_2023.pdf)                                                                                                                                                                                                                           |



Page 11 of 49

#### Case 1:24-cv-01355-JDW Document 52-2 Filed 06/11/25 Page 69 of 145 PageID #: 4197



| <u>Claim 1</u>                                                                                                | Accused Instrumentalities                                                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1[e]. electronic circuitry provided within the wearable housing, the electronic circuitry further comprising: | The Accused Instrumentalities include an electronic circuitry provided within the wearable housing. The Zio Monitor satisfies 1[e] because the Zio Monitor includes electronic circuitry provided within the wearable housing. |
|                                                                                                               | ZIO MONITOR SYSTEM                                                                                                                                                                                                             |
|                                                                                                               | The Zio Monitor System is the next generation                                                                                                                                                                                  |
|                                                                                                               | of the Zio XT System, and is a prescription-only,                                                                                                                                                                              |
|                                                                                                               | remote ECG monitoring system that consists                                                                                                                                                                                     |
|                                                                                                               | of the Zio Monitor patch that records the electric                                                                                                                                                                             |
|                                                                                                               | signal from the heart continuously for up to                                                                                                                                                                                   |
|                                                                                                               | 14 days and the ZEUS System, which supports                                                                                                                                                                                    |
|                                                                                                               | the capture and analysis of ECG data recorded                                                                                                                                                                                  |
|                                                                                                               | by the Zio Monitor patch at the end of the wear                                                                                                                                                                                |
|                                                                                                               | period, including specific arrhythmia events                                                                                                                                                                                   |
|                                                                                                               | detected by the ZEUS algorithm.                                                                                                                                                                                                |
|                                                                                                               | (https://s201.q4cdn.com/653785554/files/doc_downloads/V4iRhythm_ESG_Report_2023.pdf)                                                                                                                                           |



#### Claim 1

# 1[f]. an electrocardiographic front end circuit under a control of a micro-controller and adapted to sense cardiac electrical potential differentials through electrocardiographic electrodes via some of the electrical contacts, which are provided to the microcontroller as an analog signal;

#### **Accused Instrumentalities**

The Accused Instrumentalities include an electrocardiographic front end circuit under a control of a micro-controller and adapted to sense cardiac electrical potential differentials through electrocardiographic electrodes via some of the electrical contacts, which are provided to the micro-controller as an analog signal. The Zio Monitor satisfies 1[f] because the Zio Monitor comprises a micro-controller adapted to sense cardiac electrical potential differentials through electrocardiographic electrodes.



(Zio Monitor Teardown)

| Claim 1 | Accused Instrumentalities                                                                                                                                                                                                                                                                                                                                              |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Example of Zio monitor  1 Electrode – acquires ECG data                                                                                                                                                                                                                                                                                                                |
|         | 2 Adhesive wings – adheres the Zio monitor to the upper-left chest 3 Light – momentarily flashes green when activated and orange in the event of an error.  After activation, you will not see any lights.  Refer to Troubleshooting - flashing lights on page 17.  4 Zio button – activates the Zio monitor.  The patient presses this button when a symptom is felt. |
|         | 5 Clear plastic backings – remove from back of Zio monitor and discard before applying to the chest.  (https://go.irhythmtech.com/hubfs/LB10117.01%20- %20ZIO%20MONITOR%20INSTRUCTIONS%20FOR%20USE%2c%20PRINTED%20(2).pdf)                                                                                                                                             |

| <u>Claim 1</u> | <u>Accused Instrumentalities</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | Day: From a technical viewpoint what we did was really to leverage a lot of advances not just in microprocessor efficiency, which is certainly part of it in terms of miniaturization as well as energy efficiency, but also we really challenged ourselves to figure out how to effectively fit in the smallest possible form factor, which for us was motivated a lot by the size of our battery, which is just a standard, easily available, and fortunately easily recyclable coin cell battery. We challenged ourselves to figure out how to miniaturize the device down to the level of one of those coin cells instead of the two that the Zio XT device uses. And that became feasible by the advances in microelectronic microprocessor efficiency and size as well through its miniaturization. But it also required a lot of really complicated dynamics from an electrical engineering perspective to figure out how to get all the components of a wearable medical device and a biosensor onto that small form factor. So, miniaturization was focused on very clever ways of handling some of the larger components, which for example involved moving some of the big resistors that are required on the device to the more flexible part of the patch instead of on the actual printed circuit board in the housing. And this is a patented feature that we've already received a patent on it and we're pursuing more around it, but it was the idea that these three big resistors are not too big in terms of the homage that they have but also in terms of the size that they are. So, if you put them on the circuit board, they are these pretty big components, so we realized pretty early on that we couldn't really do that and still fit the design constraints. So, we innovated a different way, which was to integrate it into the ECG tracings themselves.  (https://www.mddionline.com/cardiovascular/behind-the-design-how-irhythm-built-its-new-zio-monitor) |



| Claim 1 | Accused Instrumentalities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|         | ANALOG  DEVICES    Exhibition Rif.   Deptin Right   Resources   Deptin Right   Deptin Right   Deptin Right   Deptin Right   Resources   Deptin Right   Depti |  |
|         | General Description  The MAX30003 is a complete, biopotential, analog frontend solution for wearable applications. It offers high performance for clinical and fitness applications, with ultra-low power for long battery life. The MAX30003 is a single biopotential channel providing ECG waveforms and heart rate detection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|         | The biopotential channel has ESD protection, EMI filtering, internal lead biasing, DC leads-off detection, ultra-low power leads-on detection during standby mode, and extensive calibration voltages for built-in self-test. Soft power-up sequencing ensures no large transients are injected into the electrodes. The biopotential channel also has high input impedance, low noise, high CMRR, programmable gain, various low-pass and high-pass filter options, and a high resolution analog-to-digital converter. The biopotential channel is DC coupled, can handle large electrode voltage offsets, and has a fast recovery mode to quickly recover from overdrive conditions, such as defibrillation and electrosurgery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|         | The MAX30003 is available in a 28-pin TQFN and 30-bump wafer-level package (WLP), operating over the 0°C to +70°C commercial temperature range.  (MAX30003 Datasheet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |

| Claim 1 | Accused Instrumentalities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|         | Benefits and Features  Clinical-Grade ECG AFE with High-Resolution Data Converter  15.5 Bits Effective Resolution with 5μVp_P Noise  Better Dry Starts Due to Much Improved Real World CMRR and High Input Impedance  Fully Differential Input Structure with CMRR > 100dB  Offers Better Common-Mode to Differential Mode Conversion Due to High Input Impedance  High Input Impedance > 500MΩ for Extremely Low Common-to-Differential Mode Conversion  Minimum Signal Attenuation at the Input During Dry Start Due to High Electrode Impedance  High DC Offset Range of ±650mV (1.8V, typ) Allows to Be Used with Wide Variety of Electrodes  High AC Dynamic Range of 65mVp_P Will Help the AFE Not Saturate in the Presence of Motion/Direct Electrode Hits  Longer Battery Life Compared to Competing Solutions  85μW at 1.1V Supply Voltage  Leads-On Interrupt Feature Allows to Keep μC in Deep Sleep Mode with RTC Off Until Valid Lead Condition is Detected  Lead-On Detect Current: 0.7μA (typ) |  |
|         | <ul> <li>Start Due to High Electrode Impedance</li> <li>High DC Offset Range of ±650mV (1.8V, typ) Allows to Be Used with Wide Variety of Electrodes</li> <li>High AC Dynamic Range of 65mV<sub>P-P</sub> Will Help the AFE Not Saturate in the Presence of Motion/Direct Electrode Hits</li> <li>Longer Battery Life Compared to Competing Solutions <ul> <li>85μW at 1.1V Supply Voltage</li> </ul> </li> <li>Leads-On Interrupt Feature Allows to Keep μC in Deep Sleep Mode with RTC Off Until Valid Lead Condition is Detected</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

| <u>Claim 1</u> | Accused Instrumentalities                                                                                                                                                                                                                   |  |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                | <ul> <li>Built-In Heart Rate Detection with Interrupt Feature         Eliminates the Need to Run HR Algorithm on the         µController</li> <li>Robust R-R Detection in High Motion Environment         at Extremely Low Power</li> </ul> |  |
|                | <ul> <li>Configurable Interrupts Allows the µC Wake-Up Only on<br/>Every Heart Beat Reducing the Overall System Power</li> </ul>                                                                                                            |  |
|                | <ul> <li>High Accuracy Allows for More Physiological Data<br/>Extractions</li> </ul>                                                                                                                                                        |  |
|                | <ul> <li>32-Word FIFO Allows You to Wake Up µController<br/>Every 256ms with Full ECG Acquisition</li> </ul>                                                                                                                                |  |
|                | High-Speed SPI Interface                                                                                                                                                                                                                    |  |
|                | <ul> <li>Shutdown Current of 0.5µA (typ)</li> </ul>                                                                                                                                                                                         |  |
|                | (MAX30003 Datasheet)                                                                                                                                                                                                                        |  |

## Case 1:24-cv-01355-JDW Document 52-2 Filed 06/11/25 Page 79 of 145 PageID #: 4207

| Claim 1                                                                | Accused Instrumentalities             |
|------------------------------------------------------------------------|---------------------------------------|
| 1[g]. the micro-controller configured to sample the analog signal; and | See element 1[f] for this limitation. |

| Claim 1                                                                                                | Accused Instrumentalities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1[h]. a memory electrically interfaced with the microcontroller and operable to store the samples; and | The Accused Instrumentalities include a memory electrically interfaced with the micro-controller and operable to store the samples. The Zio Monitor satisfies 1[h] because the Zio Monitor includes a memory electrically interfaced with the micro-controller and operable to store the samples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                                                                                                        | (Zio Monitor Teardown)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                                                                                        | Echo. A. 7  Para la serie de la serie del la serie de |  |
|                                                                                                        | (Zio Monitor Teardown)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |

| <u>Claim 1</u> | Accused Instrumentalities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                | General Description  DARWIN is a new breed of low-power microcontrollers built to thrive in the rapidly evolving Internet of Things (IoT). They are smart, with the biggest memories in their class and a massively scalable memory architecture. They run forever, thanks to wearable-grade power technology. They are durable enough to withstand the most advanced cyberattacks. DARWIN microcontrollers are designed to run any application imaginable—in places where you would not dream of sending other microcontrollers.                                                                                                                                                                                                          |  |
|                | Generation UB microcontrollers are designed to handle the increasingly complex applications demanded by to-day's advanced battery-powered devices and wirelessly connected devices, while providing robust hardware security and Bluetooth <sup>®</sup> 5 Low Energy (Bluetooth LE) radio connectivity.                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                | The MAX32665/MAX32666 UB class microcontrollers are advanced systems-on-chips featuring an Arm® Cortex®-M4 with FPU CPU for efficient computation of complex functions and algorithms with integrated power management. It also includes the newest generation Bluetooth LE radio with support for long range (4x) and high throughput (2Mbps) and ADI's best-in-class hardware security suite trust protection unit (TPU). The devices offer large on-board memory with 1MB flash and 560KB SRAM. Split flash banks of 512KB each support seamless overthe-air upgrades, adding an additional degree of reliability. Memory scalability of data (SRAM) and code (Flash) space is supported by two SPI execute-in-place (SPIX) interfaces. |  |
|                | (MAX32666 Datasheet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |

| <u>Claim 1</u>                                      | Accused Instrumentalities                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1[i]. an extended wear electrode patch, comprising: | The Accused Instrumentalities include an extended wear electrode patch. The Zio Monitor satisfies 1[i] because the Zio Monitor comprises an extended wear electrode patch. Specifically, the patch can be worn up to 14 days and the patch includes electrodes, which aquire ECG data.                                                                                                                                                              |  |
|                                                     | Product Description                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                                     | The Zio® ECG Monitoring System is an ambulatory Electrocardiogram (ECG) monitoring system. The Zio ECG Monitoring System consists of two components:                                                                                                                                                                                                                                                                                                |  |
|                                                     | (1) Zio monitor                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                     | (2) proprietary algorithm software.                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                                     | The Zio monitor is a single-use ECG monitor that provides a continuous, single-channel recording for up to 14 days. The Zio monitor records ECG data without patient interaction, with the goal of improving patient compliance via simplicity of operation. Patients have the option of pressing a convenient button and filling out a log to document symptomatic events, which will support symptom-rhythm correlation in the diagnostic report. |  |
|                                                     | After conclusion of the wear period (up to 14 days), the patient removes the Zio monitor and returns it by mail to iRhythm for processing. After receipt, the data is analyzed by iRhythm's proprietary algorithm before a Certified Cardiographic Technician (CCT) reviews the results and generates a report of the key findings.                                                                                                                 |  |
|                                                     | (https://go.irhythmtech.com/hubfs/LB10117.01%20-%20ZIO%20MONITOR%20INSTRUCTIONS%20FOR%20USE%2c%20PRINTED%20(2).pdf)                                                                                                                                                                                                                                                                                                                                 |  |

| Claim 1 | Accused Inst                                                                  | trumentalities error                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Example of Zio monitor                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         | 1 2 1 2                                                                       | <ol> <li>Electrode – acquires ECG data</li> <li>Adhesive wings – adheres the Zio monitor to the upper-left chest</li> <li>Light – momentarily flashes green when activated and orange in the event of an error.         After activation, you will not see any lights.         Refer to Troubleshooting - flashing lights on page 17.     </li> <li>Zio button – activates the Zio monitor.         The patient presses this button when a     </li> </ol> |
|         | https://go.irhythmtech.com/hubfs/LB10117.01%2%20ZIO%20MONITOR%20INSTRUCTIONS% |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| <u>Claim 1</u> | Accused Instrumentalities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                | The Zio Monitor System is the next generation of the Zio XT System, and is a prescription-only, remote ECG monitoring system that consists of the Zio Monitor patch that records the electric signal from the heart continuously for up to 14 days and the ZEUS System, which supports the capture and analysis of ECG data recorded by the Zio Monitor patch at the end of the wear period, including specific arrhythmia events detected by the ZEUS algorithm.  (https://go.irhythmtech.com/hubfs/LB10117.01%20-%20ZIO%20MONITOR%20INSTRUCTIONS%20FOR%20USE%2c%20PRINTED%20(2).pdf) |  |
|                | Zio Monitor Zio XT Zio AT  Long-term continuous monitoring service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                | The new Zio monitor is designed with patients in mind by providing a more breathable, inconspicuous, and comfortable wear experience so patients can go about their daily activities. 5,15,16                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                | (https://www.irhythmtech.com/providers/zio-service/zio-monitors)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |

| Accused Instrumentalities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|-----------------------------------------------------------------------|
| The Accused Instrumentalities include a flexible backing comprising a plurality of adhesive contact surfaces. The Zio Monitor satisfies 1[j] because the Zio Monitor includes an adhesive flexible backing that sticks to the patient's skin.  The new Zio monitor: The new Zio monitor is designed to be effortless to wear with increased adherence and better patient comfort. It's small enough for patients to forget they are wearing it through exercise, showering, and sleeping. The new design is more than 50% lighter than the current generation, and includes a new breathable and waterproof outer layer. It also has an improved 'stay-put' adhesive and a more flexible design for a secure attachment. These refinements will allow for a more comfortable wear and, therefore, more complete, accurate diagnostic data.  (https://www.irhythmtech.com/company/news/irhythm-technologies-continues-to-fuel-innovation-in-cardiac-monitoring-and-unveils-two-fda-clearances-for-superior-patient-care) |  |                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  | The Zio patches include the following features:                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  | <ul> <li>patented flexible, lightweight, wire-free design;</li> </ul> |
| <ul> <li>unobtrusive and inconspicuous profile;</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |                                                                       |
| <ul> <li>proprietary adhesive backing designed<br/>to keep the Zio patch securely in place for<br/>the duration of the prescribed wear period;</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |                                                                       |
| (https://s201.q4cdn.com/653785554/files/doc_downloads/V4<br>_iRhythm_ESG_Report_2023.pdf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |                                                                       |

### Case 1:24-cv-01355-JDW Document 52-2 Filed 06/11/25 Page 86 of 145 PageID #: 4214



| <u>Claim 1</u>                                                                                     | Accused Instrumentalities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1[k]. the electrocardiographic electrodes, each comprised on one of the adhesive contact surfaces; | The Accused Instrumentalities include electrocardiographic electrodes, where each of the electrocardiographic electrodes are compised on one of the adhesive contact surfaces. The Zio Monitor satisfies 1[k] because the Zio Monitor includes a plurality of adhesive contact surfaces and the electrodes are comprised on one of the adhesive contact surfaces.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                    | Instructions Instructions Regulation Regulation Instructions Instructions Instruction Inst |  |
|                                                                                                    | (Zio Monitor Teardown)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                                                                    | STS SO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                                                                    | (Zio Monitor Teardown)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |

| Claim 1 | Accused Instrumentalities                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Claim 1 | Accused Instrumentalities  Example of Zio monitor  1 Electrode – acquires ECG data 2 Adhesive wings – adheres the Zio monitor to the upper-left chest 3 Light – momentarily flashes green when activated and orange in the event of an error.  After activation, you will not see any lights.  Refer to Troubleshooting - flashing lights on page 17.  4 Zio button – activates the Zio monitor.  The patient presses this button when a |
|         | symptom is felt.  5 Clear plastic backings – remove from back of Zio monitor and discard before applying to the chest.  (https://go.irhythmtech.com/hubfs/LB10117.01%20-%20ZIO%20MONITOR%20INSTRUCTIONS%20FOR%20USE%2c%20PRINTED%20(2).pdf)                                                                                                                                                                                              |

## Claim 1 **Accused Instrumentalities** 1[1]. a receptacle affixed to a The Accused Instrumentalities include a receptacle affixed to a non-contacting surface of the non-contacting surface of the flexible backing into which the wearable housing can be removably secured. The Zio Monitor flexible backing into which the satisfies 1[1] because the Zio Monitor includes a receptacle affixed to a non-contacting surface of the flexible backing into which the wearable housing can be removably secured. wearable housing can be removably secured, DO NOT REMOVE THE BLUE LAYER LINTIL MONITOR IS (Zio Monitor Teardown) (Zio Monitor Teardown)



| Claim 1                                                                                                                                                          | Accused Instrumentalities                                                                                                                                                                                                                                                                                                                          |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1[m]. the receptacle comprising a compartment within which a component interfaced to the electronic circuitry is positioned via some of the electrical contacts, | The Accused Instrumentalities include a receptacle comprising a compartment within which a component interfaced to the electronic circuitry is positioned via some of the electrical contacts.  The Zio Monitor satisfies 1[m] because the Zio Monitor comprises a compartment within which a component is interfaced to the electronic circuitry. |  |
|                                                                                                                                                                  | (Zio Monitor Teardown)                                                                                                                                                                                                                                                                                                                             |  |
|                                                                                                                                                                  | 373-30 O                                                                                                                                                                                                                                                                                                                                           |  |
|                                                                                                                                                                  | (Zio Monitor Teardown)                                                                                                                                                                                                                                                                                                                             |  |





Page 36 of 49

| <u>Claim 1</u>                            | Accused Instrumentalities                                                                                                                                                                                                               |                                                                                                                                        |                                                                                                                                                                                          |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1[n]. wherein the component is a battery; | The Accused Instrumentalities include battery. The Zio Monitor satisfies 1[n] because the Zio Monitor includes a battery as the component is interfaced to the electronic circuitry and positioned via some of the electrical contacts. |                                                                                                                                        |                                                                                                                                                                                          |
|                                           | Power                                                                                                                                                                                                                                   | specifications                                                                                                                         | S                                                                                                                                                                                        |
|                                           | Battery                                                                                                                                                                                                                                 | type                                                                                                                                   | 1 lithium manganese dioxide coin cell                                                                                                                                                    |
|                                           | Battery                                                                                                                                                                                                                                 | life                                                                                                                                   | > 14 days                                                                                                                                                                                |
|                                           | Pre Da a ai D                                                                                                                                                                                                                           | ecautions uring storage and patient, do not exclude humidity limitative vices exposed to                                               | S%20FOR%20USE%2c%20PRINTED%20(2).pdf)  prior to prescription for eed the temperature ions for the Zio monitor. environmental conditions d range may have degraded                        |
|                                           | • O<br>sp<br>lis<br>• C<br>lis<br>de                                                                                                                                                                                                    | bserve the temper<br>becifications for tra<br>sted on the box and<br>onfirm the expiration<br>sted on the Zio box<br>evice may cause a | ature and humidity ansportation and storage d in the instructions for use. on date for the Zio monitor or pouch. Use of an expired degradation of ECG signal attery condition. Apply the |
|                                           | (https://go.irhythmtech.com/h                                                                                                                                                                                                           | ubfs/LB10117.0                                                                                                                         |                                                                                                                                                                                          |

| <u>Claim 1</u> | Accused Instrumentalities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | The Zio Monitor, our newest model, is 72% smaller and 62% lighter relative to the previous generation. The Zio Monitor uses 1 coin-cell battery, as compared to the 2 used in Zio XT. This is the second-most environmentally impactful component of our devices (after the circuit board). While we recycle these batteries, this is still a meaningful reduction in impact.  (https://s201.q4cdn.com/653785554/files/doc_downloads/V4iRhythm_ESG_Report_2023.pdf)                                                                                                         |
|                | ZIO MONITOR SYSTEM  The Zio Monitor System is the next generation of the Zio XT System, and is a prescription-only, remote ECG monitoring system that consists of the Zio Monitor patch that records the electric signal from the heart continuously for up to 14 days and the ZEUS System, which supports the capture and analysis of ECG data recorded by the Zio Monitor patch at the end of the wear period, including specific arrhythmia events detected by the ZEUS algorithm.  (https://s201.q4cdn.com/653785554/files/doc_downloads/V4iRhythm_ESG_Report_2023.pdf) |

| <u>Claim 1</u>                                                     | <u>Accused Instrumentalities</u>                                                                                                                                                                                             |
|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1[0]. a plurality of electrical pads positioned on the receptacle, | The Accused Instrumentalities include a plurality of electrical pads positioned on the receptacle.  The Zio Monitor satisfies 1[o] because the Zio Monitor includes electrical pads, which are positioned on the receptacle. |
|                                                                    | (Zio Monitor Teardown)  (Zio Monitor Teardown)                                                                                                                                                                               |





Page 41 of 49

| <u>Claim 1</u>                                                                                                                                     | Accused Instrumentalities                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1[p]. each of the pads configured to interface with one of the electrical contacts when the wearable housing is secured within the receptacle; and | The Accused Instrumentalities include pads configured to interface with the electrical contacts when the earable housing is secured within the receptacle. The Zio Monitor satisfies 1[p] because the Zio Monitor includes two pads configured to interface with the electrodes when the wearable housing is secured to the receptacle. |



Page 43 of 49



| <u>Claim 1</u>                                                                                     | Accused Instrumentalities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1[q] a moisture-resistant seal<br>formed on the receptacle and<br>surrounding the electrical pads, | The Accused Instrumentalities include a moisture-resistant seal formed on the receptacle and surrounding the electrical pads. The Zio Monitor satisfies 1[q] because the Zio Monitor includes two pads and a moisture-resistant seal formed on the receptacle and surrounding the electrical pads.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                    | The Zio patches include the following features:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                    | <ul> <li>patented flexible, lightweight, wire-free design;</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                    | <ul> <li>unobtrusive and inconspicuous profile;</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                    | <ul> <li>proprietary adhesive backing designed<br/>to keep the Zio patch securely in place for<br/>the duration of the prescribed wear period;</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                    | <ul> <li>water-resistant functionality, allowing patients<br/>to shower, sleep, and perform normal daily<br/>activities, including moderate exercise;</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                    | (https://go.irhythmtech.com/hubfs/LB10117.01%20-%20ZIO%20MONITOR%20INSTRUCTIONS%20FOR%20USE%2c%20PRINTED%20(2).pdf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                    | <ul> <li>An improved form-factor for a better patient wear experience – it is 23% thinner<sup>3,4</sup>, 62% lighter<sup>3,4</sup>, 72% smaller<sup>3-5</sup> and weighs less than a pencil.<sup>6</sup></li> <li>Continued high patient compliance with prescribed wear time – Zio monitor demonstrates 99% patient compliance with prescribed wear times<sup>7</sup> to help healthcare providers make the right diagnosis the first time.</li> <li>Other features that make it easy to wear and allow patients to go about their daily lives <sup>8</sup> – it is breathable, has a hydrocolloid adhesive and a waterproof housing<sup>9,10</sup>, and requires no device or adhesive manipulation or battery change during the entire wear and monitoring period of up to 14 days.</li> <li>(https://investors.irhythmtech.com/news/news-details/2023/iRhythm-Launches-Next-Generation-Zio-Monitor-and-Enhanced-Zio-Service-Its-Smallest-Lightest-and-Thinnest-Cardiac-Monitor/default.aspx)</li> </ul> |



| Claim 1                                                                                                                                   | Accused Instrumentalities                                                                                                                                                                                                                                                                                                                        |  |
|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1[r] wherein the moisture-<br>resistant seal mates the seal<br>coupling when the wearable<br>housing is secured within the<br>receptacle. | The Accused Instrumentalities include moisture-resistant seal, which mates with the seal coupling when the wearable housing is secured within the receptable. The Zio Monitor satisfies 1[r] because the Zio Monitor includes a moisture-resistant seal that mates the seal coupling when the wearable housing is secured within the receptacle. |  |
|                                                                                                                                           | The Zio patches include the following features:                                                                                                                                                                                                                                                                                                  |  |
|                                                                                                                                           | <ul> <li>patented flexible, lightweight, wire-free design;</li> </ul>                                                                                                                                                                                                                                                                            |  |
|                                                                                                                                           | <ul> <li>unobtrusive and inconspicuous profile;</li> </ul>                                                                                                                                                                                                                                                                                       |  |
|                                                                                                                                           | proprietary adhesive backing designed                                                                                                                                                                                                                                                                                                            |  |
|                                                                                                                                           | to keep the Zio patch securely in place for the duration of the prescribed wear period;                                                                                                                                                                                                                                                          |  |
|                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                  |  |
|                                                                                                                                           | <ul> <li>water-resistant functionality, allowing patients<br/>to shower, sleep, and perform normal daily</li> </ul>                                                                                                                                                                                                                              |  |
|                                                                                                                                           | activities, including moderate exercise;                                                                                                                                                                                                                                                                                                         |  |
|                                                                                                                                           | (https://s201.q4cdn.com/653785554/files/doc_downloads/V4iRhythm_ESG_Report_2023.pdf)                                                                                                                                                                                                                                                             |  |



Page 48 of 49



# Exhibit 19

#### Claim Chart for U.S. Patent No. 12,310,735 ("the '735 Patent")

The Accused Instrumentalities include, but are not necessarily limited to, the Next-Generation Zio Monitor by iRhythm (the "Zio Monitor"). The Accused Instrumentalities infringe at least the claims of the '735 Patent charted below either directly under 35 U.S.C. § 271(a), or indirectly under 35 U.S.C. §§ 271(b)–(c). The Accused Instrumentalities infringe such claims literally and/or under the doctrine of equivalents.

| <u>Claim 1</u>                                      | Accused Instrumentalities                                                                                                                                                                                                                                |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1[pre]. An electrocardiography monitor, comprising: | To the extent the preamble is deemed to be a limitation, the Accused Instrumentalities include an electrocardiography monitor in accordance with this claim. The Zio Monitor satisfies 1[pre] because the Zio Monitor is an electrocardiography monitor. |
|                                                     |                                                                                                                                                                                                                                                          |
|                                                     | Zio Monitor                                                                                                                                                                                                                                              |
|                                                     | (https://s201.q4cdn.com/653785554/files/doc_downloads/V4iRhythm_ESG_Report_2023.pdf)                                                                                                                                                                     |

| Claim 1 | Accused Instrumentalities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | ZIO MONITOR SYSTEM  The Zio Monitor System is the next generation of the Zio XT System, and is a prescription-only, remote ECG monitoring system that consists of the Zio Monitor patch that records the electric signal from the heart continuously for up to 14 days and the ZEUS System, which supports the capture and analysis of ECG data recorded by the Zio Monitor patch at the end of the wear period, including specific arrhythmia events detected by the ZEUS algorithm.  (https://s201.q4cdn.com/653785554/files/doc_downloads/V4 iRhythm_ESG_Report_2023.pdf) |
|         | Next-generation Zio® monitor  Long-Term Continuous Monitoring Service  Introducing the Zio monitor—designed to be lighter, smaller, and thinner, while building on the high performance of Zio XT. 5-8  (https://www.irhythmtech.com/providers/zio-service/zio-monitors)                                                                                                                                                                                                                                                                                                     |

| Claim 1          | Accused Instrumentalities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1[a]. a battery; | <i>The Accused Instrumentalities include a battery.</i> The Zio Monitor satisfies 1[a] because the Zio Monitor includes a battery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                  | Power specifications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | Battery type 1 lithium manganese dioxide coin cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                  | Battery life > 14 days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  | (https://go.irhythmtech.com/hubfs/LB10117.01%20-%20ZIO%20MONITOR%20INSTRUCTIONS%20FOR%20USE%2c%20PRINTED%20(2).pdf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                  | Precautions  • During storage and prior to prescription for a patient, do not exceed the temperature and humidity limitations for the Zio monitor.  Devices exposed to environmental conditions outside the specified range may have degraded adhesive and battery performance.  • Observe the temperature and humidity specifications for transportation and storage listed on the box and in the instructions for use.  • Confirm the expiration date for the Zio monitor listed on the Zio box or pouch. Use of an expired device may cause a degradation of ECG signal quality and a low battery condition. Apply the device on or before expiration date.  (https://go.irhythmtech.com/hubfs/LB10117.01%20-%20ZIO%20MONITOR%20INSTRUCTIONS%20FOR%20USE%2c%20PRINTED%20(2).pdf) |

| <u>Claim 1</u> | Accused Instrumentalities                                                                                                                                                                                                                                                                                                                                                                                |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | The Zio Monitor, our newest model, is 72% smaller and 62% lighter relative to the previous generation. The Zio Monitor uses 1 coin-cell battery, as compared to the 2 used in Zio XT. This is the second-most environmentally impactful component of our devices (after the circuit board). While we recycle these                                                                                       |
|                | batteries, this is still a meaningful reduction in impact.  (https://s201.q4cdn.com/653785554/files/doc_downloads/V4iRhythm_ESG_Report_2023.pdf)                                                                                                                                                                                                                                                         |
|                | ZIO MONITOR SYSTEM  The Zio Monitor System is the next generation of the Zio XT System, and is a prescription-only, remote ECG monitoring system that consists of the Zio Monitor patch that records the electric signal from the heart continuously for up to 14 days and the ZEUS System, which supports the capture and analysis of ECG data recorded by the Zio Monitor patch at the end of the wear |
|                | period, including specific arrhythmia events detected by the ZEUS algorithm.  (https://s201.q4cdn.com/653785554/files/doc_downloads/V4iRhythm_ESG_Report_2023.pdf)                                                                                                                                                                                                                                       |

| Claim 1                                                            | Accused Instrumentalities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1[b]. a non-conductive receptacle configured to house the battery; | The Accused Instrumentalities include a non-conductive receptacle configured to house a battery. The Zio Monitor satisfies 1[b] because the Zio Monitor includes a non-conductive receptacle configured to house a battery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                    | Instructions Instructions  Instructions  Peel dear pactings  Apply in other  Apply in other  Apply in the pointing up.  (()  Instruction  Apply in the pointing up.  (()  Instruction  Apply in the pointing up.  (()  Instruction  Instruction |
|                                                                    | (Zio Monitor Teardown)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                    | SSTS SOLO DO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                    | (Zio Monitor Teardown)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

Page 5 of 38



| <u>Claim 1</u>                                                | Accused Instrumentalities                                                                                                                                                                                                                                 |
|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1[c]. a housing comprising rounded edges along a top surface, | The Accused Instrumentalities include wherein the sealed housing includes a housing comprising rounded edges along a top surface. The Zio Monitor satisfies 1[c] because the Zio Monitor includes a housing comprising rounded edges along a top surface. |
|                                                               | Zio Monitor                                                                                                                                                                                                                                               |
|                                                               | (https://s201.q4cdn.com/653785554/files/doc_downloads/V4iRhythm_ESG_Report_2023.pdf)                                                                                                                                                                      |



Page 8 of 38

| <u>Claim 1</u>                                                                                                                          | Accused Instrumentalities                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1[d]. wherein the housing engages the non-conductive receptacle and the non-conductive receptacle is configured to receive the housing, | The Accused Instrumentalities include a housing, which engages the non-conductive receptacle and the non-conductive receptacle is configured to receive the housing. The Zio Monitor satisfies 1[d] because the Zio Monitor includes the housing engages the non-conductive receptacle and the non-conductive receptacle is configured to receive the housing.  700  FIG. 12F |
|                                                                                                                                         | (https://patentimages.storage.googleapis.com/12/7b/34/ee9a6b3db2a824/US11399760.pdf)                                                                                                                                                                                                                                                                                          |

| <u>Claim 1</u> | Accused Instrumentalities                                                            |
|----------------|--------------------------------------------------------------------------------------|
|                | 640                                                                                  |
|                | 120                                                                                  |
|                | 610                                                                                  |
|                | 332                                                                                  |
|                | 160                                                                                  |
|                | 665                                                                                  |
|                | FIG. 15B                                                                             |
|                | (https://patentimages.storage.googleapis.com/12/7b/34/ee9a6b3db2a824/US11399760.pdf) |

| <u>Claim 1</u>                                                                                                    | Accused Instrumentalities                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1[e]. wherein the battery is positioned between the housing and a bottom surface of the nonconductive receptacle; | The Accused Instrumentalities include a battery positioned between the housing and a bottom surface of the non-conductive receptacle. The Zio Monitor satisfies 1[e] because the Zio Monitor includes a battery positioned between the housing and a bottom surface of the non-conductive receptacle. |
|                                                                                                                   | (Zio Monitor Teardown)                                                                                                                                                                                                                                                                                |
|                                                                                                                   | (Zio Monitor Teardown)                                                                                                                                                                                                                                                                                |



| <u>Claim 1</u> | Accused Instrumentalities                                                            |
|----------------|--------------------------------------------------------------------------------------|
|                | 640                                                                                  |
|                | 120                                                                                  |
|                | 610                                                                                  |
|                | 332                                                                                  |
|                | 160                                                                                  |
|                | 665                                                                                  |
|                | FIG. 15B                                                                             |
|                | (https://patentimages.storage.googleapis.com/12/7b/34/ee9a6b3db2a824/US11399760.pdf) |

| Claim 1                                                                    | Accused Instrumentalities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1[f]. a patient feedback button located on the top surface of the housing; | The Accused Instrumentalities include a patient feedback button located on the top surface of the housing. The Zio Monitor satisfies 1[f] because the Zio Monitor includes a patient feedback button located on the top surface of the housing.  Example of Zio monitor                                                                                                                                                                                                                                                                                                                                                      |
|                                                                            | 1 Electrode – acquires ECG data 2 Adhesive wings – adheres the Zio monitor to the upper-left chest 3 Light – momentarily flashes green when activated and orange in the event of an error. After activation, you will not see any lights. Refer to Troubleshooting - flashing lights on page 17. 4 Zio button – activates the Zio monitor. The patient presses this button when a symptom is felt. 5 Clear plastic backings – remove from back of Zio monitor and discard before applying to the chest.  (https://go.irhythmtech.com/hubfs/LB10117.01%20-%20ZIO%20MONITOR%20INSTRUCTIONS%20FOR%20USE%2c%20PRINTED%20(2).pdf) |

| <u>Claim 1</u> | Accused Instrumentalities                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | The Zio monitor is a single-use ECG monitor that provides a continuous, single-channel recording for up to 14 days. The Zio monitor records ECG data without patient interaction, with the goal of improving patient compliance via simplicity of operation. Patients have the option of pressing a convenient button and filling out a log to document symptomatic events, which will support symptom-rhythm correlation in the diagnostic report. |
|                | (https://go.irhythmtech.com/hubfs/LB10117.01%20-%20ZIO%20MONITOR%20INSTRUCTIONS%20FOR%20USE%2c%20PRINTED%20(2).pdf)                                                                                                                                                                                                                                                                                                                                 |
|                | A "symptom" is anything unusual the patient feels or experiences.                                                                                                                                                                                                                                                                                                                                                                                   |
|                | Press the button on your Zio monitor when you feel a symptom.                                                                                                                                                                                                                                                                                                                                                                                       |
|                | <ul> <li>The light does not flash when the button is pressed.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                            |
|                | If you forget to either press the button or log     a symptom, the Zio monitor is recording the     ECG data.                                                                                                                                                                                                                                                                                                                                       |
|                | (https://go.irhythmtech.com/hubfs/LB10117.01%20-%20ZIO%20MONITOR%20INSTRUCTIONS%20FOR%20USE%2c%20PRINTED%20(2).pdf)                                                                                                                                                                                                                                                                                                                                 |

| <u>Claim 1</u> | Accused Instrumentalities                                                                                           |
|----------------|---------------------------------------------------------------------------------------------------------------------|
|                | 4. Activate Zio monitor                                                                                             |
|                |                                                                                                                     |
|                | Press and release button:                                                                                           |
|                | <ul> <li>a. Press and quickly release the button on the Zio monitor.</li> </ul>                                     |
|                | <ul> <li>b. Watch the light briefly flash green to indicate the Zio monitor is<br/>recording ECG data.</li> </ul>   |
|                | (https://go.irhythmtech.com/hubfs/LB10117.01%20-%20ZIO%20MONITOR%20INSTRUCTIONS%20FOR%20USE%2c%20PRINTED%20(2).pdf) |

| <u>Claim 1</u>                                                                   | Accused Instrumentalities                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1[g]. an electrographic front end circuit to sense electrocardiographic signals; | The Accused Instrumentalities include an electrographic front end circuit to sense electrocardiographic signals. The Zio Monitor satisfies 1[g] because the Zio Monitor comprises an electrographic front end circuit to sense electrocardiographic signals. |
|                                                                                  |                                                                                                                                                                                                                                                              |

| <u>Claim 1</u> | Accused Instrumentalities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | Example of Zio monitor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                | 1 Electrode – acquires ECG data 2 Adhesive wings – adheres the Zio monitor to the upper-left chest 3 Light – momentarily flashes green when activated and orange in the event of an error.  After activation, you will not see any lights.  Refer to Troubleshooting - flashing lights on page 17.  4 Zio button – activates the Zio monitor.  The patient presses this button when a symptom is felt.  5 Clear plastic backings – remove from back of Zio monitor and discard before applying to the chest. |
|                | (https://go.irhythmtech.com/hubfs/LB10117.01%20-%20ZIO%20MONITOR%20INSTRUCTIONS%20FOR%20USE%2c%20PRINTED%20(2).pdf)                                                                                                                                                                                                                                                                                                                                                                                          |

| <u>Claim 1</u> | Accused Instrumentalities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | Day: From a technical viewpoint what we did was really to leverage a lot of advances not just in microprocessor efficiency, which is certainly part of it in terms of miniaturization as well as energy efficiency, but also we really challenged ourselves to figure out how to effectively fit in the smallest possible form factor, which for us was motivated a lot by the size of our battery, which is just a standard, easily available, and fortunately easily recyclable coin cell battery. We challenged ourselves to figure out how to miniaturize the device down to the level of one of those coin cells instead of the two that the Zio XT device uses. And that became feasible by the advances in microelectronic microprocessor efficiency and size as well through its miniaturization. But it also required a lot of really complicated dynamics from an electrical engineering perspective to figure out how to get all the components of a wearable medical device and a biosensor onto that small form factor. So, miniaturization was focused on very clever ways of handling some of the larger components, which for example involved moving some of the big resistors that are required on the device to the more flexible part of the patch instead of on the actual printed circuit board in the housing. And this is a patented feature that we've already received a patent on it and we're pursuing more around it, but it was the idea that these three big resistors are not too big in terms of the homage that they have but also in terms of the size that they are. So, if you put them on the circuit board, they are these pretty big components, so we realized pretty early on that we couldn't really do that and still fit the design constraints. So, we innovated a different way, which was to integrate it into the ECG tracings themselves. |
|                | (https://www.mddionline.com/cardiovascular/behind-the-design-how-irhythm-built-its-new-zio-monitor)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |



| Claim 1 | Accused Instrumentalities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | ANALOG DEVICES    Evaluation Kit.   Design   Tools and Models                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         | General Description  The MAX30003 is a complete, biopotential, analog frontend solution for wearable applications. It offers high performance for clinical and fitness applications, with ultra-low power for long battery life. The MAX30003 is a single biopotential channel providing ECG waveforms and heart rate detection.                                                                                                                                                                                                                                                                                                                                                                                                  |
|         | The biopotential channel has ESD protection, EMI filtering, internal lead biasing, DC leads-off detection, ultra-low power leads-on detection during standby mode, and extensive calibration voltages for built-in self-test. Soft power-up sequencing ensures no large transients are injected into the electrodes. The biopotential channel also has high input impedance, low noise, high CMRR, programmable gain, various low-pass and high-pass filter options, and a high resolution analog-to-digital converter. The biopotential channel is DC coupled, can handle large electrode voltage offsets, and has a fast recovery mode to quickly recover from overdrive conditions, such as defibrillation and electrosurgery. |
|         | The MAX30003 is available in a 28-pin TQFN and 30-bump wafer-level package (WLP), operating over the 0°C to +70°C commercial temperature range.  (MAX30003 Datasheet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| Claim 1 Accused Instrumentalities |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                   | Benefits and Features  • Clinical-Grade ECG AFE with High-Resolution Data Converter  • 15.5 Bits Effective Resolution with 5μVp_p Noise  • Better Dry Starts Due to Much Improved Real World CMRR and High Input Impedance  • Fully Differential Input Structure with CMRR > 100dB  • Offers Better Common-Mode to Differential Mode Conversion Due to High Input Impedance  • High Input Impedance > 500MΩ for Extremely Low Common-to-Differential Mode Conversion  • Minimum Signal Attenuation at the Input During Dry Start Due to High Electrode Impedance  • High DC Offset Range of ±650mV (1.8V, typ) Allows to Be Used with Wide Variety of Electrodes  • High AC Dynamic Range of 65mVp_p Will Help the AFE Not Saturate in the Presence of Motion/Direct Electrode Hits  • Longer Battery Life Compared to Competing Solutions  • 85μW at 1.1√ Supply Voltage  • Leads-On Interrupt Feature Allows to Keep μC in Deep Sleep Mode with RTC Off Until Valid Lead Condition is Detected  • Lead-On Detect Current: 0.7μA (typ) |
|                                   | (MAX30003 Datasheet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| <u>Claim 1</u> | Accused Instrumentalities                                                                                                                                                                                                                   |  |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                | <ul> <li>Built-In Heart Rate Detection with Interrupt Feature         Eliminates the Need to Run HR Algorithm on the         µController</li> <li>Robust R-R Detection in High Motion Environment         at Extremely Low Power</li> </ul> |  |
|                | <ul> <li>Configurable Interrupts Allows the µC Wake-Up Only on<br/>Every Heart Beat Reducing the Overall System Power</li> </ul>                                                                                                            |  |
|                | <ul> <li>High Accuracy Allows for More Physiological Data<br/>Extractions</li> </ul>                                                                                                                                                        |  |
|                | <ul> <li>32-Word FIFO Allows You to Wake Up μController<br/>Every 256ms with Full ECG Acquisition</li> </ul>                                                                                                                                |  |
|                | High-Speed SPI Interface                                                                                                                                                                                                                    |  |
|                | <ul> <li>Shutdown Current of 0.5μA (typ)</li> </ul>                                                                                                                                                                                         |  |
|                | (MAX30003 Datasheet)                                                                                                                                                                                                                        |  |

| Claim 1                                                                                                                                                                  | Accused Inst                                                                                            | <u>trumentalities</u>                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1[h]. a distal electrocardiography electrode coupled to a distal end of a flexible circuit and a proximal electrocardiography electrode coupled to a proximal end of the | of a flexible circuit and a proximal electrocardio flexible circuit. The Zio Monitor satisfies 1[h] bed | ectrocardiography electrode coupled to a distal end egraphy electrode coupled to a proximal end of the cause the Zio Monitor includes a flexible circuit with e proximal end each include an electrocardiography |
| flexible circuit,                                                                                                                                                        | 2                                                                                                       | Electrode – acquires ECG data                                                                                                                                                                                    |
|                                                                                                                                                                          | (1) (3) (1) (2)                                                                                         | Adhesive wings – adheres the Zio monitor<br>to the upper-left chest                                                                                                                                              |
|                                                                                                                                                                          |                                                                                                         | 3 Light – momentarily flashes green when activated and orange in the event of an error.                                                                                                                          |
|                                                                                                                                                                          |                                                                                                         | After activation, you will not see any lights.                                                                                                                                                                   |
|                                                                                                                                                                          | 5                                                                                                       | Refer to Troubleshooting - flashing lights on page 17.                                                                                                                                                           |
|                                                                                                                                                                          | 4                                                                                                       | 4 Zio button – activates the Zio monitor.<br>The patient presses this button when a<br>symptom is felt.                                                                                                          |
|                                                                                                                                                                          | 5                                                                                                       | 5 Clear plastic backings – remove from back<br>of Zio monitor and discard before applying<br>to the chest.                                                                                                       |
|                                                                                                                                                                          | (https://go.irhythmtech.com/hubfs/LB10117.01%2%20ZIO%20MONITOR%20INSTRUCTIONS%2                         |                                                                                                                                                                                                                  |

| Claim 1 | Accused Instrumentalities |
|---------|---------------------------|
|         | (Zio Monitor Teardown)    |

| <u>Claim 1</u>                                                                                                                                         | Accused Instrumentalities                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1[i]. wherein the flexible circuit is coupled to a flexible backing and the flexible backing is configured to adhere to skin of a patient's chest; and | The Accused Instrumentalities include a flexible circuit, which is coupled to a flexible backing and the flexible backing is configured to adhere to skin of a patient's chest. The Zio Monitor satisfies 1[i] because the Zio Monitor includes a flexible backing that is configured to adhere to the skin of a patient's chest. The flexible circuit is coupled to the flexible backing. |
|                                                                                                                                                        | (https://s201.q4cdn.com/653785554/files/doc_downloads/V4iRhythm_ESG_Report_2023.pdf)                                                                                                                                                                                                                                                                                                       |



| Claim 1 | Accused Instrumentalities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Example of Zio monitor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         | 1 Electrode – acquires ECG data 2 Adhesive wings – adheres the Zio monitor to the upper-left chest 3 Light – momentarily flashes green when activated and orange in the event of an error.  After activation, you will not see any lights.  Refer to Troubleshooting - flashing lights on page 17.  4 Zio button – activates the Zio monitor.  The patient presses this button when a symptom is felt.  5 Clear plastic backings – remove from back of Zio monitor and discard before applying to the chest. |
|         | (https://go.irhythmtech.com/hubfs/LB10117.01%20-%20ZIO%20MONITOR%20INSTRUCTIONS%20FOR%20USE%2c%20PRINTED%20(2).pdf)                                                                                                                                                                                                                                                                                                                                                                                          |

| Claim 1                                         | Accused Instrumentalities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1[j]. a microcontroller secured by the housing, | The Accused Instrumentalities include a microcontroller secured by the housing. The Zio Monitor satisfies 1[j] because the Zio Monitor comprises a micro-controller secured by the housing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                 | Instructions Instr |
|                                                 | (Zio Monitor Teardown)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 | (Zio Monitor Teardown)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |



Page 30 of 38

| Claim 1 | Accused Instrumentalities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (MAX    | General Description  DARWIN is a new breed of low-power microcontrollers built to thrive in the rapidly evolving Internet of Things (IoT). They are smart, with the biggest memories in their class and a massively scalable memory architecture. They run forever, thanks to wearable-grade power technology. They are durable enough to withstand the most advanced cyberattacks. DARWIN microcontrollers are designed to run any application imaginable—in places where you would not dream of sending other microcontrollers.  Generation UB microcontrollers are designed to handle the increasingly complex applications demanded by today's advanced battery-powered devices and wirelessly connected devices, while providing robust hardware security and Bluetooth® 5 Low Energy (Bluetooth LE) radio connectivity.  The MAX32665/MAX32666 UB class microcontrollers are advanced systems-on-chips featuring an Arm® Cortex®-M4 with FPU CPU for efficient computation of complex functions and algorithms with integrated power management. It also includes the newest generation Bluetooth 5 LE radio with support for long range (4x) and high throughput (2Mbps) and ADI's best-in-class hardware security suite trust protection unit (TPU). The devices offer large on-board memory with 1MB flash and 560KB SRAM. Split flash banks of 512KB each support seamless overthe-air upgrades, adding an additional degree of reliability. Memory scalability of data (SRAM) and code (Flash) space is supported by two SPI execute-in-place (SPIX) interfaces. |

| <u>Claim 1</u>                                                                                                                            | Accused Instrumentalities                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1[k]. wherein the microcontroller is interfaced to the electrocardiographic front end circuit to sample the electrocardiographic signals. | The Accused Instrumentalities include a microcontroller that is interfaced to the electrocardiographic front end circuit to sample the electrocardiographic signals. The Zio Monitor comprises a microcontroller that is interfaced to the electrocardiographic front end circuit to sample the electrocardiographic signals. |

| <u>Claim 1</u> | Accused Instrumentalities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | Example of Zio monitor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                | 1 Electrode – acquires ECG data 2 Adhesive wings – adheres the Zio monitor to the upper-left chest 3 Light – momentarily flashes green when activated and orange in the event of an error.  After activation, you will not see any lights.  Refer to Troubleshooting - flashing lights on page 17.  4 Zio button – activates the Zio monitor.  The patient presses this button when a symptom is felt.  5 Clear plastic backings – remove from back of Zio monitor and discard before applying to the chest. |
|                | (https://go.irhythmtech.com/hubfs/LB10117.01%20-%20ZIO%20MONITOR%20INSTRUCTIONS%20FOR%20USE%2c%20PRINTED%20(2).pdf)                                                                                                                                                                                                                                                                                                                                                                                          |

| <u>Claim 1</u> | Accused Instrumentalities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | Day: From a technical viewpoint what we did was really to leverage a lot of advances not just in microprocessor efficiency, which is certainly part of it in terms of miniaturization as well as energy efficiency, but also we really challenged ourselves to figure out how to effectively fit in the smallest possible form factor, which for us was motivated a lot by the size of our battery, which is just a standard, easily available, and fortunately easily recyclable coin cell battery. We challenged ourselves to figure out how to miniaturize the device down to the level of one of those coin cells instead of the two that the Zio XT device uses. And that became feasible by the advances in microelectronic microprocessor efficiency and size as well through its miniaturization. But it also required a lot of really complicated dynamics from an electrical engineering perspective to figure out how to get all the components of a wearable medical device and a biosensor onto that small form factor. So, miniaturization was focused on very clever ways of handling some of the larger components, which for example involved moving some of the big resistors that are required on the device to the more flexible part of the patch instead of on the actual printed circuit board in the housing. And this is a patented feature that we've already received a patent on it and we're pursuing more around it, but it was the idea that these three big resistors are not too big in terms of the homage that they have but also in terms of the size that they are. So, if you put them on the circuit board, they are these pretty big components, so we realized pretty early on that we couldn't really do that and still fit the design constraints. So, we innovated a different way, which was to integrate it into the ECG tracings themselves.  (https://www.mddionline.com/cardiovascular/behind-the-design-how-irhythm-built-its-new-zio-monitor) |



| Claim 1 | Accused Instrumentalities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | ANALOG DEVICES    Exablation KR. Available   Click here to ask an associate for production status of specific part numbers.   Ultra-Low Power, Single-Channel Integrated Biopotential (ECG, R-to-R Detection) AFE   MAX30003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         | General Description  The MAX30003 is a complete, biopotential, analog frontend solution for wearable applications. It offers high performance for clinical and fitness applications, with ultra-low power for long battery life. The MAX30003 is a single biopotential channel providing ECG waveforms and heart rate detection.                                                                                                                                                                                                                                                                                                                                                                                                  |
|         | The biopotential channel has ESD protection, EMI filtering, internal lead biasing, DC leads-off detection, ultra-low power leads-on detection during standby mode, and extensive calibration voltages for built-in self-test. Soft power-up sequencing ensures no large transients are injected into the electrodes. The biopotential channel also has high input impedance, low noise, high CMRR, programmable gain, various low-pass and high-pass filter options, and a high resolution analog-to-digital converter. The biopotential channel is DC coupled, can handle large electrode voltage offsets, and has a fast recovery mode to quickly recover from overdrive conditions, such as defibrillation and electrosurgery. |
|         | The MAX30003 is available in a 28-pin TQFN and 30-bump wafer-level package (WLP), operating over the 0°C to +70°C commercial temperature range.  (MAX30003 Datasheet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| Claim 1 | Accused Instrumentalities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | <ul> <li>Benefits and Features</li> <li>Clinical-Grade ECG AFE with High-Resolution Data Converter         <ul> <li>15.5 Bits Effective Resolution with 5μV<sub>P-P</sub> Noise</li> </ul> </li> <li>Better Dry Starts Due to Much Improved Real World CMRR and High Input Impedance         <ul> <li>Fully Differential Input Structure with CMRR &gt; 100dB</li> </ul> </li> <li>Offers Better Common-Mode to Differential Mode Conversion Due to High Input Impedance         <ul> <li>High Input Impedance &gt; 500MΩ for Extremely Low Common-to-Differential Mode Conversion</li> </ul> </li> </ul> |
|         | <ul> <li>Minimum Signal Attenuation at the Input During Dry         Start Due to High Electrode Impedance     </li> <li>High DC Offset Range of ±650mV (1.8V, typ) Allows         to Be Used with Wide Variety of Electrodes     </li> </ul>                                                                                                                                                                                                                                                                                                                                                              |
|         | <ul> <li>High AC Dynamic Range of 65mV<sub>P-P</sub> Will Help the<br/>AFE Not Saturate in the Presence of Motion/Direct<br/>Electrode Hits</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         | <ul> <li>Longer Battery Life Compared to Competing Solutions</li> <li>85µW at 1.1V Supply Voltage</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         | <ul> <li>Leads-On Interrupt Feature Allows to Keep μC in<br/>Deep Sleep Mode with RTC Off Until Valid Lead<br/>Condition is Detected</li> <li>Lead-On Detect Current: 0.7μA (typ)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                              |
|         | (MAX30003 Datasheet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| Claim 1 | Accused Instrumentalities                                                                                                                                                                                                                   |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | <ul> <li>Built-In Heart Rate Detection with Interrupt Feature         Eliminates the Need to Run HR Algorithm on the         µController</li> <li>Robust R-R Detection in High Motion Environment         at Extremely Low Power</li> </ul> |
|         | <ul> <li>Configurable Interrupts Allows the µC Wake-Up Only on<br/>Every Heart Beat Reducing the Overall System Power</li> </ul>                                                                                                            |
|         | <ul> <li>High Accuracy Allows for More Physiological Data<br/>Extractions</li> </ul>                                                                                                                                                        |
|         | <ul> <li>32-Word FIFO Allows You to Wake Up μController</li> <li>Every 256ms with Full ECG Acquisition</li> </ul>                                                                                                                           |
|         | High-Speed SPI Interface                                                                                                                                                                                                                    |
|         | <ul> <li>Shutdown Current of 0.5μA (typ)</li> </ul>                                                                                                                                                                                         |
|         | (MAX30003 Datasheet)                                                                                                                                                                                                                        |