2進数とその簡単な計算

情報ネットワーク工学入門

只木進一 (理工学部)

10進数とその演算

- ▶ {0,1,2,3,4,5,6,7,8,9}の10種類の記号
- →加法
 - ■10×10通りの加法規則と桁上がり
- ●乗法
 - ■10×10通りの乗算規則
- ■減法・徐法
 - ■加法・乗法の逆演算

2進数とその演算

- ▶ {0,1}の2種類の記号
- ■加法・乗法
 - ■2×2の演算規則
- ■減法・除法
 - ■補数を使った加算への置き換え
- ■規則が単純
- ■論理回路で容易に実装可能

- ■2進数一けた[0,1]をbitと呼ぶ
- ■2進数8桁[0,255]をbyteと呼ぶ
 - ►ASCIIコード: 7bitで数字やアルファベットを表現
 - ■日本語コード: JIS、SJIS、EUCは2バイト
 - ■多言語混在: UTF-8など

10進数⇔2進数

$$53 = 32 + 16 + 4 + 1 = 2^{5} + 2^{4} + 2^{2} + 2^{0}$$

$$= (00110101)_{2}$$

$$130 = 128 + 2 = 2^{7} + 2^{1}$$

$$= (10000010)_{2}$$

$$163 = 128 + 32 + 2 + 1 = 2^{7} + 2^{5} + 2^{1} + 2^{0}$$

$$= (10100011)_{2}$$

2で割った商と余りを求めるこれを0になるまで繰り返す

余りを下から上に読む

$$53 = (00110101)_2$$

2ⁿはある程度覚えよう

$$2^{0} = 1$$
 $2^{1} = 2$
 $2^{2} = 4$
 $2^{3} = 8$
 $2^{4} = 16$
 $2^{5} = 32$
 $2^{6} = 64$
 $2^{7} = 128$
 $2^{8} = 256$
 $2^{9} = 512$
 $2^{10} = 1024$

- ▶素子が簡単にできる
 - ▶状態はオンとオフの二つ
- ■演算規則が簡素

а	b	a+b
0	0	0
0	1	1
1	0	1
1	1	10

а	b	$a \times b$
0	0	0
0	1	0
1	0	0
1	1	1

二進数の計算の例 加法・乗法

$$(101)_{2} + (11)_{2} = (1000)_{2}$$

$$(101)_{2} \times (11)_{2} = (101)_{2} \times (1)_{2} + (101)_{2} \times (10)_{2}$$

$$= (101)_{2} + (1010)_{2} = (1111)_{2}$$

减法

- ■8ビットと考える[0,256) 9-5=(0001001)₂-(00000101)₂ =(00000100)₂=4
- ●引き算は、上の桁から「借りる」操作 が必要
 - ■処理が複雑になる

- ▶5に対して2の補数を計算
 - ■ビットを反転して1を加える:((256 1) -5) + 1
 - $(111111010)_2 + (00000001) = (11111011)_2$

減算:続き

- ▶加算して8ビット部分を計算
- -9 + ((256 1) 5) + 1 = 256 + (9 5)
- $(00001001)_2 + (111111011)_2 = (100000100)_2$
- ■8bit部分
 - $(00000100)_2 = 4$

減算:続き

5-9

- ■9 = (00001001)₂に対する「2の補数」
 - $(11110110)_2 + (00000001)_2 = (11110111)_2$
- $-5 9 = (00000101)_2 + (11110111)_2 = (111111100)_2$
- これは、4に対する「2の補数」
- ■「2の補数」は対応するマイナスの数

- 2進のため、順次、減算を 行う
- 減算の際に、補数を利用する
- 例:65÷11=
 (01000001)₂÷
 (00001011)₂
- $\begin{array}{c} \bullet \quad (01000001)_2 = \\ (01000001)_2 \times \\ (00000101)_2 + \\ (00001010)_2 = 11 \times 5 + \\ 10 \end{array}$

101
1011)01000001
1011
10101
1011
1010

負の数

- ■8bitのうち、最上位を符号として扱う
- ■例: $0-1=(111111111)_2$
 - ▶1の「2の補数」に相当
- →プログラミング言語では (java)
 - ■int型:32bit
 - ■最上位は符号bit
 - $-[-2^{31}, 2^{31} 1]$

小数

- $(0.101)_2 = 2^{-1} + 2^{-3} = \frac{1}{2} + \frac{1}{8} = \frac{5}{8} = 0.625$
- ■コンピュータは、浮動小数(floating point numbers)として保持している
 - $-(0.101)_2 = 2^{-1} \times (1 + (0.01)_2)$

接頭辞:3桁每

- $-1k = 10^3$, $1M = 10^3k$, $1G = 10^3M$, $1T = 10^3G$, $1P = 10^3T$
- $-1m = 10^{-3}$, $1\mu = 10^{-3}m$, $1n = 10^{-3}\mu$

- = 2進の場合には、1000の代わりに $2^{10} = 1024$ を使う
- ■正確に2¹⁰毎の場合
 - ■1ki (kilobinary), 1Mi (Megabinary)などと使う

10進数、2進数、8進数、16進 数

- <u>n</u>進数:使える記号がn個
- ▶ 10進数: {0,1,2,3,4,5,6,7,8,9}
 - -9+1=10
- ▶ 2進数: {0,1}
 - -1+1=10
- ▶ 8進数: {0,1,2,3,4,5,6,7}
 - \rightarrow 7+1=10
- 16進数: {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}
 - -F+1=10

- ■16進数は良く利用される
- ▶文字コード
 - 1Byte⇔8bit⇔[0,255]⇔[00,ff]
 - ●日本語は2Byte
 - http://www.unicodetables.com/
- ■MACアドレス
 - ■8bit×6, 16進で表記

▶ 「佐」のUnicodeは4F50

$$\bigcirc$$
 0x4F = 4 × 16 + 15 = 64 + 15 = 79

$$-0x50 = 5 \times 16 + 0 = 80$$

● "Ox"は16進であることを表す記号