REMARKS

The present Preliminary Amendment is submitted to replace Table 4 on page 120 and Table 6 on page 139 of the specification, in order to correct minor informalities in the second column from the left in each table. A marked-up copy of the tables is attached and entitled "Version with Markings to Show Changes Made".

Further, claims 15 and 16 have been amended to delete the reference numeral "2" after "the second dielectric layer". No new matter has been added.

Respectfully submitted,

Rie KOJIMA et al.

Michael S. Huppert

Registration No. 40,268 Attorney for Applicants

MSH/kjf Washington, D.C. 20006-1021 Telephone (202) 721-8200 Facsimile (202) 721-8250 March 23, 2006

Version with Marking Show Changes Made

Table 6

	Composition of the s	Composition of the second recording layer	Era	Erase ratio	. <u>e</u>		∆ia			oi A	
	Medium Information	(%lom)					1			1	
<u>a</u>	layer	Composition of the first recording layer	;	c		,		,	,	,	,
Į.		(%lom)	×	×,	X ——— X	×	×	4 X	×	×.	4 ×
	Second	(GeTe) ₉₃ [(In ₂ Te ₃) _{0.5} (Bi ₂ Te ₃) _{0.5}],	S	S	<	<	<	S	S	⋖	<
. –	Second- First	(GeTe) ₉₃ [(In ₂ Te ₃) _{0.5} (Bi ₂ Te ₃) _{0.5}],	S	S	⋖	∢	<	S	S	4	<
47	First	$(GeTe)_{93}[(In_2Te_3)_{0.5}(Bi_2Te_3)_{0.5}]_7$	S	S	∢	⋖	∢	S	S	⋖	<
""	Second	[(SnTe) ₀₁ (GeTe) _{0,9}] ₉₃ [(In ₂ Te ₃) _{0,5} (Bi ₂ Te ₃) _{0,5}] ₇	S	S	٧	⋖	∢	S	S	∢	∢
A.J	First	(GeTe) ₉₃ [(In ₂ Te ₃) _{0.5} (Bi ₂ Te ₃) _{0.5}],	S	S	∢	∢	⋖	S	S	⋖	<
백	Second	$[(SnTe)_{0.3}(GeTe)_{0.7}]_{93}[(In_2Te_3)_{0.9}(Bi_2Te_3)_{0.1}]_7$	S	S	S	⋖	∢	S	S	∢	4
√)	First Seond	(GeTe) ₉₃ (In ₂ Te ₃),	၁	0	ပ	ı	ı	ı	1	1	1
1 -	to the second	(GeTe) ₉₃ (Bi ₂ Te ₃),	S	S	S	ပ	O	ပ	S	S	S

Version with Markings to Show Changes Made

Table 4

Frase ratio Jing layer Jing	Erase ratio Λ γ γ 1x 2x 4x 4x<
Erase ratio O	Composition of second recording layer (mol%) Composition of first recording layer (GeTe) ₉₁ [(In ₂ Te ₃) _{0.3} (Bi ₂ Te ₃) _{0.7}] ₃ (GeTe) ₉₁ [(In ₂ Te ₃) _{0.3} (Bi ₂ Te ₃) _{0.7}] ₃ (GeTe) ₉₁ [(In ₂ Te ₃) _{0.3} (Bi ₂ Te ₃) _{0.7}] ₃ (GeTe) ₉₁ [(In ₂ Te ₃) _{0.3} (Bi ₂ Te ₃) _{0.7}] ₃ (GeTe) ₉₁ [(In ₂ Te ₃) _{0.3} (Bi ₂ Te ₃) _{0.7}] ₃ (GeTe) ₉₁ [(In ₂ Te ₃) _{0.3} (Bi ₂ Te ₃) _{0.7}] ₃ (GeTe) ₉₁ [(In ₂ Te ₃) _{0.3} (Bi ₂ Te ₃) _{0.7}] ₃ (GeTe) ₉₁ [(In ₂ Te ₃) _{0.3} (Bi ₂ Te ₃) _{0.7}] ₃ (GeTe) ₉₁ (In ₂ Te ₃) _{0.3} (Bi ₂ Te ₃) _{0.1}] ₃ (GeTe) ₉₁ (In ₂ Te ₃) _{0.3} (Bi ₂ Te ₃) _{0.7}] ₃ (GeTe) ₉₁ (In ₂ Te ₃) _{0.3} (Bi ₂ Te ₃) _{0.7}] ₃ (GeTe) ₉₁ (In ₂ Te ₃) _{0.3} (Bi ₂ Te ₃) _{0.7} (GeTe) ₉₁ (In ₂ Te ₃ (In ₂ Te ₃) _{0.7} (GeTe) ₉₁ (In ₂ Te ₃ (In ₂
Erase ratio 1x 2x 4x 4x 1x 2x 4x 4x 4x 1x 2x 4x 4x <td>Composition of second recording layer (mol%) Composition of first recording layer (GeTe)₉₇[(In₂Te₃)_{0.3}(Bi₂Te₃)_{0.7}]₃ (GeTe)₉₇[(In₂Te₃)_{0.3}(Bi₂Te₃)_{0.7}]₃ (GeTe)₉₇[(In₂Te₃)_{0.3}(Bi₂Te₃)_{0.7}]₃ (GeTe)₉₇[(In₂Te₃)_{0.3}(Bi₂Te₃)_{0.7}]₃ (GeTe)₉₇[(In₂Te₃)_{0.3}(Bi₂Te₃)_{0.7}]₃ (GeTe)₉₇[(In₂Te₃)_{0.3}(Bi₂Te₃)_{0.1}]₃ (GeTe)₉₇[(In₂Te₃)_{0.3}(Bi₂Te₃)_{0.1}]₃ (GeTe)₉₇[(In₂Te₃)_{0.3}(Bi₂Te₃)_{0.1}]₃ (GeTe)₉₇[(In₂Te₃)_{0.3}(Bi₂Te₃)_{0.1}]₃ (GeTe)₉₇(In₇Te₃)_{0.3}(Bi₂Te₃)_{0.1}]₃ (GeTe)₉₇(In₇Te₃)_{0.3}(Bi₂Te₃)_{0.1}]₃ (GeTe)₉₇(In₇Te₃)_{0.3}(Bi₂Te₃)_{0.1}]₃ (GeTe)₉₇(In₇Te₃)_{0.3}(Bi₂Te₃)_{0.1}]₃ (GeTe)₉₇(In₇Te₃)_{0.3}(Bi₂Te₃)_{0.1}]₃</td>	Composition of second recording layer (mol%) Composition of first recording layer (GeTe) ₉₇ [(In ₂ Te ₃) _{0.3} (Bi ₂ Te ₃) _{0.7}] ₃ (GeTe) ₉₇ [(In ₂ Te ₃) _{0.3} (Bi ₂ Te ₃) _{0.7}] ₃ (GeTe) ₉₇ [(In ₂ Te ₃) _{0.3} (Bi ₂ Te ₃) _{0.7}] ₃ (GeTe) ₉₇ [(In ₂ Te ₃) _{0.3} (Bi ₂ Te ₃) _{0.7}] ₃ (GeTe) ₉₇ [(In ₂ Te ₃) _{0.3} (Bi ₂ Te ₃) _{0.7}] ₃ (GeTe) ₉₇ [(In ₂ Te ₃) _{0.3} (Bi ₂ Te ₃) _{0.1}] ₃ (GeTe) ₉₇ [(In ₂ Te ₃) _{0.3} (Bi ₂ Te ₃) _{0.1}] ₃ (GeTe) ₉₇ [(In ₂ Te ₃) _{0.3} (Bi ₂ Te ₃) _{0.1}] ₃ (GeTe) ₉₇ [(In ₂ Te ₃) _{0.3} (Bi ₂ Te ₃) _{0.1}] ₃ (GeTe) ₉₇ (In ₇ Te ₃) _{0.3} (Bi ₂ Te ₃) _{0.1}] ₃ (GeTe) ₉₇ (In ₇ Te ₃) _{0.3} (Bi ₂ Te ₃) _{0.1}] ₃ (GeTe) ₉₇ (In ₇ Te ₃) _{0.3} (Bi ₂ Te ₃) _{0.1}] ₃ (GeTe) ₉₇ (In ₇ Te ₃) _{0.3} (Bi ₂ Te ₃) _{0.1}] ₃ (GeTe) ₉₇ (In ₇ Te ₃) _{0.3} (Bi ₂ Te ₃) _{0.1}] ₃
Erase ratio 1x 0 <	Composition of second recording layer (mol%) Composition of first recording layer (mol%) (GeTe) ₉₁ [(In ₂ Te ₃) _{0,3} (Bi ₂ Te ₃) _{0,1}] ₃ (GeTe) ₉₁ [(In ₂ Te ₃) _{0,3} (Bi ₂ Te ₃) _{0,1}] ₃ (GeTe) ₉₁ [(In ₂ Te ₃) _{0,3} (Bi ₂ Te ₃) _{0,1}] ₃ (GeTe) ₉₁ [(In ₂ Te ₃) _{0,3} (Bi ₂ Te ₃) _{0,1}] ₃ (GeTe) ₉₁ [(In ₂ Te ₃) _{0,3} (Bi ₂ Te ₃) _{0,1}] ₃ (GeTe) ₉₁ [(In ₂ Te ₃) _{0,3} (Bi ₂ Te ₃) _{0,1}] ₃ (GeTe) ₉₁ [(In ₂ Te ₃) _{0,3} (Bi ₂ Te ₃) _{0,1}] ₃ (GeTe) ₉₁ [(In ₂ Te ₃) _{0,3} (Bi ₂ Te ₃) _{0,1}] ₃ (GeTe) ₉₁ (In ₂ Te ₃) _{0,3} (Bi ₂ Te ₃) _{0,1}] ₃ (GeTe) ₉₁ (In ₂ Te ₃) _{0,3} (Bi ₂ Te ₃) _{0,1}] ₃ (GeTe) ₉₁ (In ₂ Te ₃) _{0,3} (Bi ₂ Te ₃) _{0,1}] ₃ (GeTe) ₉₁ (In ₂ Te ₃) _{0,3} (Bi ₂ Te ₃) _{0,1}] ₃ (GeTe) ₉₁ (In ₂ Te ₃) _{0,3} (Bi ₂ Te ₃) _{0,1}] ₃
Erase ratio X	Composition of second recording layer (mol%) Composition of first recording layer (GeTe) ₉₇ [(In ₂ Te ₃) _{0,3} (Bi ₂ Te ₃) _{0,7}] ₃ (GeTe) ₉₇ [(In ₂ Te ₃) _{0,3} (Bi ₂ Te ₃) _{0,7}] ₃ (GeTe) ₉₇ [(In ₂ Te ₃) _{0,3} (Bi ₂ Te ₃) _{0,7}] ₃ (GeTe) ₉₇ [(In ₂ Te ₃) _{0,3} (Bi ₂ Te ₃) _{0,7}] ₃ (GeTe) ₉₇ [(In ₂ Te ₃) _{0,3} (Bi ₂ Te ₃) _{0,5}] ₃ (GeTe) ₉₇ [(In ₂ Te ₃) _{0,3} (Bi ₂ Te ₃) _{0,1}] ₃ (GeTe) ₉₇ [(In ₂ Te ₃) _{0,3} (Bi ₂ Te ₃) _{0,1}] ₃ (GeTe) ₉₇ (Bi ₂ Te ₃) ₃ (GeTe) ₉₇ (In ₂ Te ₃) _{0,3} (Bi ₂ Te ₃) _{0,1}] ₃ (GeTe) ₉₇ (Bi ₂ Te ₃) ₃
Erase ratio Columbia	Composition of second recording layer (mol%) Composition of first recording layer (GeTe) ₉₇ [(In ₂ Te ₃) _{0.3} (Bi ₂ Te ₃) _{0.7}] ₃ (GeTe) ₉₇ [(In ₂ Te ₃) _{0.3} (Bi ₂ Te ₃) _{0.7}] ₃ (GeTe) ₉₇ [(In ₂ Te ₃) _{0.3} (Bi ₂ Te ₃) _{0.7}] ₃ (GeTe) ₉₇ [(In ₂ Te ₃) _{0.3} (Bi ₂ Te ₃) _{0.7}] ₃ (GeTe) ₉₇ [(In ₂ Te ₃) _{0.3} (Bi ₂ Te ₃) _{0.7}] ₃ (GeTe) ₉₇ [(In ₂ Te ₃) _{0.3} (Bi ₂ Te ₃) _{0.7}] ₃ (GeTe) ₉₇ [(In ₂ Te ₃) _{0.8} (Bi ₂ Te ₃) _{0.7}] ₃ (GeTe) ₉₇ (In ₇ Te ₃) ₃
Erase ration of the control of the c	Composition of second recording layer (mol%) Composition of first recording layer (GeTe) ₉₇ [(In ₂ Te ₃) _{0,3} (Bi ₂ Te ₃) _{0,7}] ₃ (GeTe) ₉₇ [(In ₂ Te ₃) _{0,3} (Bi ₂ Te ₃) _{0,7}] ₃ (GeTe) ₉₇ [(In ₂ Te ₃) _{0,3} (Bi ₂ Te ₃) _{0,7}] ₃ (GeTe) ₉₇ [(In ₂ Te ₃) _{0,3} (Bi ₂ Te ₃) _{0,7}] ₃ (GeTe) ₉₇ [(In ₂ Te ₃) _{0,3} (Bi ₂ Te ₃) _{0,5}] ₃ (GeTe) ₉₇ [(In ₂ Te ₃) _{0,3} (Bi ₂ Te ₃) _{0,1}] ₃ (GeTe) ₉₇ [(In ₂ Te ₃) _{0,3} (Bi ₂ Te ₃) _{0,1}] ₃ (GeTe) ₉₇ (In ₂ Te ₃) _{0,3} (Bi ₂ Te ₃) _{0,1}] ₃ (GeTe) ₉₇ (In ₇ Te ₃) _{0,3} (Bi ₂ Te ₃) _{0,1}] ₃ (GeTe) ₉₇ (In ₇ Te ₃) _{0,3} (Bi ₂ Te ₃) _{0,1}] ₃
	Composition of second recording layer (mol%) Composition of first recording layer (mol%) (GeTe) ₉₇ [(In ₂ Te ₃) _{0.3} (Bi ₂ Te ₃) _{0.7}] ₃ S (GeTe) ₉₇ [(In ₂ Te ₃) _{0.3} (Bi ₂ Te ₃) _{0.7}] ₃ S [(SnTe) _{0.1} (GeTe) _{0.9}] ₉₇ [(In ₂ Te ₃) _{0.5} (Bi ₂ Te ₃) _{0.7}] ₃ S (GeTe) ₉₇ [(In ₂ Te ₃) _{0.3} (Bi ₂ Te ₃) _{0.7}] ₃ S (GeTe) ₉₇ (In ₂ Te ₃) _{0.9} (Bi ₂ Te ₃) _{0.1}] ₃ S (GeTe) ₉₇ (In ₂ Te ₃) ₃ (GeTe) ₉₇ (In ₂ Te ₃) ₃
	Composition of second recording layer (mol%) Composition of first recording layer (mol%) (GeTe) ₉₇ [(In ₂ Te ₃) _{0.3} (Bi ₂ Te ₃) _{0.7}] ₃ S (GeTe) ₉₇ [(In ₂ Te ₃) _{0.3} (Bi ₂ Te ₃) _{0.7}] ₃ S [(SnTe) _{0.1} (GeTe) _{0.9}] ₉₇ [(In ₂ Te ₃) _{0.5} (Bi ₂ Te ₃) _{0.7}] ₃ S (GeTe) ₉₇ [(In ₂ Te ₃) _{0.3} (Bi ₂ Te ₃) _{0.7}] ₃ S (GeTe) ₉₇ (In ₂ Te ₃) _{0.9} (Bi ₂ Te ₃) _{0.1}] ₃ S (GeTe) ₉₇ (In ₂ Te ₃) ₃ (GeTe) ₉₇ (In ₂ Te ₃) ₃
Composition of second recording layer (mol%) Composition of first recording layer (mol%) (GeTe) ₉₇ [(In ₂ Te ₃) _{0.3} (Bi ₂ Te ₃) _{0.7}] ₃ (GeTe) ₉₇ [(In ₂ Te ₃) _{0.3} (Bi ₂ Te ₃) _{0.7}] ₃ (GeTe) ₉₇ [(In ₂ Te ₃) _{0.3} (Bi ₂ Te ₃) _{0.7}] ₃ (GeTe) ₉₇ [(In ₂ Te ₃) _{0.3} (Bi ₂ Te ₃) _{0.7}] ₃ (GeTe) ₉₇ [(In ₂ Te ₃) _{0.3} (Bi ₂ Te ₃) _{0.7}] ₃ (GeTe) ₉₇ [(In ₂ Te ₃) _{0.9} (Bi ₂ Te ₃) _{0.1}] ₃ (GeTe) ₉₇ (In ₇ Te ₃) _{0.9} (Bi ₂ Te ₃) _{0.7}] ₃	
	Information layer Second Second First Second