COMPUTATIONAL PHYSICS

PHYS 381

August 30, 2023

E/EA THOMPSON(THEY/THEM), PHYSICS AND MATH HONORS

Recap

Contents

1	Ro	ot Finding Methods	2
	1.1	Bisection Method	2
	1.2	Newton-Raphson Method	
2	No	n-Linear ODEs	4
	2.1	Euler Method	4
	2.2	Trapezoid Rule	5
	2.3	Runge-Kutta	
3	Nu	merical Fourier Analysis	8
	3.1	Fourier Series	3
	3.2	Simpson's Rule	
	3.3	Fourier Integral	
	3.4	Discrete Fourier Transform	
4	Cu	rve-fitting and Optimization 12	2
	4.1	Least Squares	2
	4.2	Finite Differences	
A	ppen	edices 15	5
	.1	Lambda Functions	5
	.2	List Comprehension	
	.3	ODE-int Solve	

Root Finding Methods

1.1 **Bisection Method**

Process 1.1.1

To find the roots of a function f we first choose a pair of initial values x_B and x_U such that $f(x_B) < 0$ and $f(x_U) > 0$. Then we perform the following iterative procedure:

- Define x_C = x_{B+x_U} and evaluate f(x_C).
 If f(x_C) > 0 set x_U = x_C
 If f(x_C) < 0 set x_B = x_C

- 4. Repeat until $|f(x_C)|$ is less than some chosen tolerance, ϵ .

Newton-Raphson Method

Process 1.2.1

Consider a real valued function f. Note that the Taylor expansion of f centered at a point x_0 and evaluated at $x_0 + \epsilon$ is

$$f(x_0 + \epsilon) = f(x_0) + f'(x_0)\epsilon + \frac{1}{2}f''(x_0)\epsilon^2 + \dots = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)\epsilon^n}{n!}$$
(1.2.1)

With the NR Method x_0 is the current estimate for the root of our function. We now truncate the series to terms linear in ϵ :

$$f(x_0 + \epsilon) = f(x_0) + f'(x_0)\epsilon + O(\epsilon^2)$$
(1.2.2)

where $O(\epsilon^2)$ indicates that the terms of order ϵ^2 and higher are omitted. We set $f(x_0 + \epsilon) = 0$. This gives

$$f(x_0) + f'(x_0)\epsilon = 0 (1.2.3)$$

from which we obtain

$$\epsilon_0 = -\frac{f(x_0)}{f'(x_0)} \tag{1.2.4}$$

setting $\epsilon = \epsilon_0$. We then let $x_1 = x_0 + \epsilon_0$ and calculate a new ϵ_1 . We extend this process and define it recursively as

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 (1.2.5)

for an indexing ineger $n \ge 0$.

Non-Linear ODEs

Remark 2.0.1

In this chapter considered the differential equation described by

$$\frac{dx}{dt} = y, \quad \frac{dy}{dt} = f(x, y, t) \tag{2.0.1}$$

2.1 Euler Method

Process 2.1.1

We first choose initial conditions $x(0) = x_0$ and $y(0) = y_0$. Consider the Taylor series expansion of a function g about a + h centered at a:

$$f(a+h) = f(a) + hf'(a) + \frac{h^2}{2!}f''(a) + O(h^3)$$
 (2.1.1)

We apply this to x(t) and y(t) to obtain

$$x(t + \Delta t) = x(t) + \Delta t \frac{dx(t)}{dt} + O(\Delta t^2)$$
 (2.1.2)

$$y(t + \Delta t) = y(t) + \Delta t \frac{dy(t)}{dt} + O(\Delta t^2)$$
(2.1.3)

where we omit terms of order Δt^2 . We shall vary t steps discretely and label $\Delta t = t_{n-1} - t_n$, so our equations of motion become

$$x_{n+1} = x_n + y_n \Delta t \tag{2.1.4}$$

$$y_{n+1} = y_n + f(x_n, y_n, t_n) \Delta t$$
 (2.1.5)

using Euler's Method for approximating integrals. In particular, for Euler's method we take

$$g(b) - g(a) = \int_a^b \frac{dg}{dt} dt \approx \sum_{i=1}^n \frac{dg(t_i)}{dt} \Delta t, t_1 = a, t_n = b - \Delta t$$
 (2.1.6)

2.2 Trapezoid Rule

Process 2.2.1

For the trapezoid rule we approximate an integral as follows

$$(b-a)\left[\frac{\frac{dg(a)}{dt} + \frac{dg(b)}{dt}}{2}\right] \approx \int_{a}^{b} \frac{dg}{dt} dt = g(b) - g(a)$$
 (2.2.1)

Then, applying this to our DE we obtain the iterative equation

$$x_{n+1} \approx x_n + \frac{\Delta t}{2} (y_n + y_{n+1})$$
 (2.2.2)

where $\Delta t = t_{n+1} - t_n$. We then approximate y_{n+1} using Euler's Method

$$y_{n+1} \approx y_n + \Delta t f(x_n, y_n, t_n)$$
 (2.2.3)

Substituting this back into our previous approximation for x_{n+1} we have

$$x_{n+1} \approx x_n + \frac{\Delta t}{2} \left[y_n + (y_n + \Delta t f(x_n, y_n, t_n)) \right]$$
 (2.2.4)

We apply this again to y_{n+1} to obtain the approximation

$$y_{n+1} \approx y_n + \frac{\Delta t}{2} \left[f(x_n, y_n, t_n) + \delta t f(x_{n+1}, y_n + \Delta t f(x_n, y_n, t_n), t_{n+1}) \right]$$
 (2.2.5)

This pair of iterative equations constitute the application of the trapezoid rule to solving our DE.

2.3 Runge-Kutta

Process 2.3.1: Second Order

We first carry out a Taylor expansion of $\frac{dx(t)}{dt}$ about the midpoints of our interval, $\Delta t/2$:

$$\frac{dx(t)}{dt} = \frac{dx(\Delta t/2)}{dt} + \frac{d^2x(\Delta t/2)}{dt^2}(t - \Delta t/2) + O\left(\frac{\Delta t^2}{2}\right)$$
(2.3.1)

We use this expansion to approximate the following integral:

$$\int_0^{\Delta t} \frac{x(t)}{dt} dt \approx \frac{dx(\Delta t/2)}{dt} \Delta t + \frac{d^2 x(\Delta t/2)}{dt^2} \int_0^{\Delta t} (t - \Delta t/2) dt = \frac{dx(\Delta t/2)}{dt} \Delta t$$
 (2.3.2)

Then, the rule to update x in an algorithmic notation is given by

$$x_{n+1} \approx x_n + y_{n+1/2}\Delta t + O\left(\frac{\Delta t^2}{2}\right)$$
 (2.3.3)

and applying the Taylor expansion to $y_{n+1/2}$ we have

$$y_{n+1/2} \approx = y_n + f(x_n, y_n, t_n) \frac{\Delta t}{2} + O\left(\frac{\Delta t^2}{2}\right)$$
 (2.3.4)

Substituing into our x_{n+1} rule we have

$$x_{n+1} \approx x_n + \left(y_n + f(x_n, y_n, t_n) \frac{\Delta t}{2}\right) \Delta t \tag{2.3.5}$$

The rule for updating y_n is given by

$$y_{n+1} = y_n + f(x_{n+1/2}, y_{n+1/2}, t_{n+1/2})\Delta t$$
 (2.3.6)

$$y_{n+1/2} = y_n + f(x_n, y_n, t_n) \frac{\Delta t}{2}$$
 (2.3.7)

$$x_{n+1/2} = x_n + y_n \frac{\Delta t}{2} \tag{2.3.8}$$

Process 2.3.2: Fourth Order

In implementing we take a series of approximations for x_n and y_n then take a weighted average of the result. In particular, we take the approximations

$$k_{1x,n} = \Delta t y_n \tag{2.3.9}$$

$$k_{1y,n} = \Delta t f(x_n, y_n, t_n)$$
 (2.3.10)

$$k_{2x,n} = \Delta t \left(y_n + \frac{k_{1y,n}}{2} \right) \tag{2.3.11}$$

$$k_{2y,n} = \Delta t f\left(x_n + \frac{k_{1x,n}}{2}, y_n + \frac{k_{1y,n}}{2}, t_n + \Delta t/2\right)$$
 (2.3.12)

$$k_{3x,n} = \Delta t \left(y_n + \frac{k_{2y,n}}{2} \right) \tag{2.3.13}$$

$$k_{3y,n} = \Delta t f\left(x_n + \frac{k_{2x,n}}{2}, y_n + \frac{k_{2y,n}}{2}, t_n + \Delta t/2\right)$$
 (2.3.14)

$$k_{4x,n} = \Delta t \left(y_n + k_{3y,n} \right)$$
 (2.3.15)

$$k_{4y,n} = \Delta t f \left(x_n + k_{3x,n}, y_n + k_{3y,n}, t_n + \Delta t \right)$$
 (2.3.16)

$$x_{n+1} = x_n + \frac{k_{1x,n} + 2k_{2x,n} + 2k_{3x,n} + k_{4x,n}}{6}$$
 (2.3.17)

$$y_{n+1} = y_n + \frac{k_{1y,n} + 2k_{2y,n} + 2k_{3y,n} + k_{4y,n}}{6}$$
 (2.3.18)

Numerical Fourier Analysis

3.1 Fourier Series

Definition 3.1.1: Fourier Series

Any periodic function f(t) with period $T=2\pi/\omega$ can be represented as a Fourier Series

$$f(t) = a_0 + \sum_{n=1}^{\infty} \left[a_n \cos(n\omega t) + b_n \sin(n\omega t) \right]$$
 (3.1.1)

The frequency ω is known as the **fundamental frequency** and $\omega_n = n\omega$ for n > 1 are the **harmonics**. The result of Fourier-analysing a signal is a set of values for these coefficients for all n.

Process 3.1.2

The Fourier coefficients for a periodic function f are evaluated using the orthogonality properties of sines and cosines:

$$\frac{2}{T} \int_0^T \sin(n\omega t) \sin(k\omega t) dt = \delta_{nk}$$
 (3.1.2)

$$\frac{2}{T} \int_0^T \cos(n\omega t) \sin(k\omega t) dt = 0 \tag{3.1.3}$$

$$\frac{2}{T} \int_0^T \cos(n\omega t) \cos(k\omega t) dt = \delta_{nk}$$
 (3.1.4)

Applying these orthogonality properties we obtain the following equations for the coefficients:

$$a_0 = \frac{1}{T} \int_0^T f(t)dt$$
 (3.1.5)

$$a_k = \frac{2}{T} \int_0^T f(t) \cos(k\omega t) dt, k \in \{1, 2, 3, ...\}$$
 (3.1.6)

$$b_k = \frac{2}{T} \int_0^T f(t) \sin(k\omega t) dt, k \in \{1, 2, 3, ...\}$$
 (3.1.7)

3.2 Simpson's Rule

Process 3.2.1

Simpson's rule is a method of numerical integration. In particular, to approximate the integral $\int_a^b f(x)dx$ we split the interval [a,b] into n steps of length h=(b-a)/n, where $n \in 2\mathbb{Z}$. The approximation is taken as

$$\int_{a}^{b} f(t)dt \approx \frac{h}{3} \left[f(x_0) + 2 \sum_{j=1}^{n/2-1} f(x_{2j}) + 4 \sum_{j=1}^{n/2} f(x_{2j-1}) + f(x_n) \right]$$
(3.2.1)

where $x_j = a + jh$ for $j \in \{0, 1, 2, ..., n - 1, n\}$. In particular $x_0 = a$ and $x_n = b$.

3.3 Fourier Integral

Remark 3.3.1

For a non-periodic function f(t) we require a Fourier integral over a continuous range of frequencies. The Fourier integral may be viewed as a limit of a Fourier series in the limit $T \to \infty$.

Process 3.3.1

For a non periodic function f(t) its Fourier integral is given by

$$f(t) = \int_0^\infty \left[a(\omega)\cos(\omega t) + b(\omega)\sin(\omega t) \right] d\omega \tag{3.3.1}$$

and the coefficient equations become functions of ω :

$$a(\omega) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(t) \cos(\omega t) dt$$
 (3.3.2)

$$b(\omega) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(t) \sin(\omega t) dt$$
 (3.3.3)

Using Euler's identity $e^{i\omega t} = \cos(\omega t) + i\sin(\omega t)$ we can rewrite this as

$$f(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(\omega) e^{i\omega t} d\omega$$
 (3.3.4)

$$F(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt$$
 (3.3.5)

where $F(\omega)$ is the Fourier Transform of f(t). If the signal has dimensions of energy, then its Fourier Transform has units of Power, and its magnitude $|F(\omega)|$ is a measure of the total power in the signal at frequency ω :

$$|F(\omega)| = \sqrt{\mathbb{R}e\{F(\omega)\}^2 + \mathbb{I}m\{F(\omega)\}^2} = \sqrt{\pi}2\sqrt{a^2(\omega) + b^2(\omega)}$$
(3.3.6)

3.4 Discrete Fourier Transform

Definition 3.4.1

In practice we approximate the Fourier integral and its other corresponding forms using finite summations, known as the Discrete Fourier Transform. Let f(t) be a non-periodic function that we have N samples of at intervals h going from t = 0 to t = (N-1)h. We define a discrete timeline by $t_m = mh$ for $m \in \{0, 1, 2, ..., N-1\}$. The time $\tau = Nh$ will become the period of our approximated function under reconstruction, and we need τ to be the longest time over which we are interested in the behaviour of f(t). We also assume

$$f(t) = f(t+\tau) \iff f(t_m) = f(t_{m+N}) \iff f_m = f_{m+N}$$
 (3.4.1)

The lowest frequency in the DFT will be $v_1 = 1/\tau = 1/(Nh)$, and this will be the fundamental frequency of our reconstructed function. The frequency spectrum is given by

$$\Lambda := \left\{ \nu_n = \frac{n}{Nh} = n\nu_1 | n \in \mathbb{N} \right\}$$
 (3.4.2)

We then discretize the integrals for the function and its Fourier transform as

$$f_m = frac1N \sum_{n=0}^{N-1} F_n e^{i2\pi \nu_n t_m} = \frac{1}{N} \sum_{n=0}^{N-1} F_n e^{i2\pi mn/N}$$
(3.4.3)

$$F_n = \sum_{m=0}^{N-1} f_m e^{-i2\pi \nu_n t_m} = \sum_{m=0}^{N-1} f_m e^{-2\pi mn/N}$$
(3.4.4)

Note that it can be shown that $F_{N/2-n} = \overline{F}_{N/2+n}$ for $n \in \{0, 1, ..., N/2\}$. The highest frequency component is thus $F_{N/2-1}$, corresponding to a frequency of

$$v_{max} = (N/2 - 1)/Nh = 1/(2h) - 1/(Nh) \approx 1/(2h), \text{ if N large}$$
 (3.4.5)

This is also known as the **nyquist frequency** $v_{Nyquist}$.

If the function has a component with frequency $v > v_{Nyquist}$ there are less than two sample points per period. This implies that there will be one or more frequencies less than $v_{Nyquist}$ for which the amplitude equals the true amplitude at the sample points, but these lower frequencies

are not in the signal although they will appear in the frequency spectrum - this is phenomenon known as aliasing. The power spectrum of the DFT is often plotted as all values

$$P_n = |F_n|^2 = \mathbb{R}e\{F_n\}^2 + \mathbb{I}m\{F_n\}^2$$
(3.4.6)

Process 3.4.2

In application we use the following summations for the components of F_n

$$\mathbb{R}e\{F_n\} = \sum_{m=0}^{N-1} f_m \cos\left(\frac{2\pi mn}{N}\right)$$
 (3.4.7)

$$\mathbb{I}m\{F_n\} = \sum_{m=0}^{N-1} f_m \sin\left(\frac{2\pi mn}{N}\right)$$
 (3.4.8)

We then reconstruct the original signal as

$$f_m = \frac{1}{N} \sum_{n=0}^{N-1} \left\{ \mathbb{R}e\{F_n\} \cos\left(\frac{2\pi mn}{N}\right) + \mathbb{I}m\{F_n\} \sin\left(\frac{2\pi mn}{N}\right) \right\}$$
(3.4.9)

Curve-fitting and Optimization

4.1 Least Squares

Process 4.1.1

Assume we have some sequence of measurements at times t_i

$$y_i = y(t_i) \tag{4.1.1}$$

and for some presumed model of the relationship

$$y = f(t; p) \tag{4.1.2}$$

expressed in terms of the independent variable t and the model parameters p. We define the distance between a data point and our model by

$$\delta_i = y_i - y_i \tag{4.1.3}$$

A general measure of the distance is

$$\sum_{i} |\delta_i|^d \tag{4.1.4}$$

For d = 2 we obtain the **chi-squared** measure

$$\chi^2 = \sum_{i} |y_i - y_i(p_1, ..., p_K)|^2$$
 (4.1.5)

The best fit is assumed to minimize χ^2 with respect to the model parameters

$$\frac{\partial \chi^2}{\partial p_l} = \sum_i 2|y_i - y_i(p_1, ..., p_K)| \frac{\partial y_i}{\partial p_l}$$
(4.1.6)

We also usually use the reduce chi-squared value

$$\chi_N^2 = \frac{\chi^2}{N} \tag{4.1.7}$$

In general we want χ^2 to scale with the uncertainty in our measurements, so we wish to minimize

$$\sum \left(\frac{expected - observed}{uncertainty}\right)^2 \tag{4.1.8}$$

Remark 4.1.1

This minimization can be done numerically using scipy.optimize package's minimize method. This package also has a curve_fit method for non-linear data sets.

4.2 Finite Differences

Process 4.2.1

Consider a real-valued function f(x) and its Taylor series about some point x = a:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$
 (4.2.1)

Consider a set of points, x_i , such that $x_{i+1} = x_i + \Delta$. Then we have that

$$f(x_{i+n}) = f(x_i) + f'(x_i)n\Delta + \frac{f''(x_i)}{2!}(n\Delta)^2 + \frac{f'''(x_i)}{3!}(n\Delta)^3 + O(\Delta^4)$$
(4.2.2)

Define $f(x_{i+n}) =: f_{i+n}$. Then for neighboring points we have

$$f_{i+1} = f_i + f_i' \Delta + \frac{f_i''}{2!} \Delta^2 + \frac{f_i'''}{3!} \Delta^3 + O(\Delta^4)$$
 (4.2.3)

$$f_i = f_i \tag{4.2.4}$$

$$f_{i-1} = f_i - f_i' \Delta + \frac{f_i''}{2!} \Delta^2 - \frac{f_i'''}{3!} \Delta^3 + O(\Delta^4)$$
 (4.2.5)

Subtracting the expression for two neighboring points we have

$$f_{i+1} - f_i = f_i' \Delta + \frac{f_i''}{2!} \Delta^2 + \frac{f_i'''}{3!} \Delta^3 + O(\Delta^4)$$
 (4.2.6)

Dividing by Δ we obtain the following **forward difference** estimate of the first derivative

$$\frac{f_{i+1} - f_i}{\Delta} = f_i' + \frac{f_i''}{2!} \Delta + \frac{f_i'''}{3!} \Delta^2 + O(\Delta^3) \approx f_i' + O(\Delta)$$
 (4.2.7)

Similarly we obtain the backward difference estimate

$$f_i' \approx \frac{f_i - f_{i-1}}{\Lambda} + O(\Delta) \tag{4.2.8}$$

We can also cancel all even terms in the expansion by

$$f_{i+1} - f_{i-1} = 2f_i' \Delta + 2\frac{f_i'''}{3!} \Delta^3 + O(\Delta^5)$$
(4.2.9)

which gives us the centered difference estimate

$$f_i' \approx \frac{f_{i+1} - f_{i-1}}{2\Delta} + O(\Delta^2)$$
 (4.2.10)

By adding terms we can cancel all odd terms and obtain

$$f_{i+1} + f_{i-1} = 2f_i + 2\frac{f_i''}{2!}\Delta^2 + O(\Delta^4)$$
(4.2.11)

We then obtain an expression for the second difference estimate

$$f_i'' = \frac{f_{i+1} - 2f_i + f_{i-1}}{\Lambda^2} + O(\Delta^2)$$
 (4.2.12)

Appendices

.1 Lambda Functions

Definition .1.1

Lambda functions are in practice one-line functions which cannot contain commands or more than one expression. In particular, a Lambda function can be created to and assigned to a variable in Python by

$$g =$$
lambda $args_{array}$: $function rule$ (.1.1)

.2 List Comprehension

Definition .2.1

List comprehension is a method of defining and filling a list all in one step. In general, list comprehension can be implemented in Python by

$$list = [item \ for \ item \ in \ old \ list \ if \ P(item) == True]$$
 (.2.1)

.3 ODE-int Solve

Definition .3.1

The scipy.integrate.odeint method can be used to numerically solve a system of differential equations. Define a method which takes the input vector of the system, a timeline, as well as any other needed parameters. Then, implement odeint by

$$result = odeint(system_function, y0, t, args = (arg_tuple))$$
 (.3.1)

where y0 is an initial state vector.