Task1

具体的实现方式不在此介绍,可以在我的github仓库中查看到源代码。

对于few shot version, 我参照论文中的做法, 训练集抽取了了32个样本, 测试集没有改变。

Task2

在实验二中,我使用了 robert-base, bert-base-uncased, allenai/scibert_scivocab_uncased 三种预训练模型,在 restaurant_sup, acl_sup, agnews_sup 三个任务上进行微调。

每个实验更换不同的种子重复了五次,种子分别为347913、594729、162850、95842、43288。

参数设定

训练3个epoch, learning rate为2e-5,有0.01的weight decay,batch为128。

实验结果

restaurant_sup

Model	Mean Accuracy	Std.Accuracy	Mean F1	Std.F1
bert_base	0.7587	0.0175	0.5441	0.0445
roberta_base	0.7857	0.0047	0.5791	0.0166
scibert_scivocab_uncased	0.7720	0.0064	0.6201	0.0141

acl_sup

Model	Mean Accuracy	Std.Accuracy	Mean F1	Std.F1
bert_base	0.5669	0.0362	0.1820	0.0381
roberta_base	0.5698	0.0070	0.2048	0.0023
scibert_scivocab_uncased	0.6547	0.0091	0.2844	0.0110

agnews_sup

Model	Mean Accuracy	Std.Accuracy	Mean F1	Std.F1
bert-base	0.9205	0.0038	0.9190	0.0038
roberta-base	0.9197	0.0066	0.9181	0.0068
scibert_scivocab_uncased	0.9042	0.0030	0.9028	0.0032

在restaurant_sup和agnews_sup数据集上,模型都有着不错的效果,且性能差异不大。但是在acl_sup数据集上,模型的分类效果不算太好,同时scibert相较于其他两种模型有比较大的优势。

Loss图像:

restaurant_sup

acl_sup

train/loss

train/loss

Task3

restaurant_sup

Model	Mean Accuracy	Std.Accuracy	Mean F1	Std.F1
roberta_adapter	0.6500	0.0138	0.2626	0.0103
roberta_base	0.7857	0.0047	0.5791	0.0166

acl_sup

Model	Mean Accuracy	Std.Accuracy	Mean F1	Std.F1
roberta_adapter	0.5036	0.0144	0.1178	0.0103
roberta_base	0.5698	0.0070	0.2048	0.0023

agnews_sup

Model	Mean Accuracy	Std.Accuracy	Mean F1	Std.F1
roberta_adapter	0.7071	0.0603	0.7011	0.0583
roberta_base	0.9197	0.0066	0.9181	0.0068

从结果可以看出,仅仅微调adapter的效果确实比微调整个大模型更差,也许可以通过增加adapter参数量或延长训练时间来取得更好的效果。但是相较于微调完整模型,adapter微调的方法节约了相当大的显存开销。

显存分析

我们假设进行**全精度训练**,即参数存储为float32类型,占用四个字节。

大语言模型训练时的显存占用主要分为以下三个部分:

- 模型参数
- 优化器状态参数
- 梯度参数

对于模型参数而言,3B的大模型共有 3×10^9 个参数,因此共占用空间 $3 \times 10^9 \times 4$ Byte 约为12GB对于梯度而言,每一个参数都对应一个梯度,因此梯度的显存占用与模型权重相同,也为12GB而对于优化器而言,假设采用Adam优化器,仍是全精度存储,则每个权重参数需要同时存储**动量**和**方差**,需要的显存占用为模型权重的两倍,为24GB。

综上,若想完整训练一个3B的大模型,采用Adam优化器,全精度训练,则需要大概48GB的显存。

而对于PEFT方法,由于不知道adapter的参数量是多少,不方便进行估测。在我实际的训练中,Task2完整微调模型大概需要12-14G的显存,而使用adapter只需要8G-9G的显存,大概节约了30%~40%的显存占用。