

	Mumber System	(10) P	bar -10
- Bênary	Numbe	2 Conversions	6 < C < 9
, Deimal	inal	so number re	pr Www.
53	prover of 2	1010	1011.
10 ³ 10 ² 1000 1000 1000 1000	10' 10° 10 ⁻¹	Barr Exponent	" o < C < b1'

= 16+5=P)

LSB = 1 V (5321.2) MSB = 5 Fixed Bit Computer System "64-B2+" $\frac{500}{500}$ Ls $\frac{50$ 1)63 DO LSB Pic 3, 141----. 3141

Benary Decimal Binary =127 Hez. 10011010.00 0 L93 MG

(754.2) (10 8/ 459 X 8 ?),6 (\$54.2)₁₀ × 16 Binny w Devined

Binary to octal ()256 $\left(\right)_{32}$ 60/10/011-011000 --> (3)8 ~(5) Bits Voccinal + 0x2+ 01x2 +1x2 3+0x24 0×2+ 1×2 + 1×25 + 1 ×26 +1×23+ 0×24+ 1×25+1×26 - ? ()₁₀ 8(.7-)8 Dévision 2 multin $(153.30)_{8}$ After school fration fration $0, 1, 2, \dots, 7$ $\log_2(32) = ?$ $lug_2(256)$ = $lug_2(28)$

number ob = log (N) 1 -7 001 2 -> 010 Bits 3 -> 011 N = maximum number that can be +1, 9 -) 100 represented to the number System 1001 AB- 1011 Binary to Hex.

octal to to Hex.

$$(876 4.3)_{8} = (?)_{16} (7.3)_{8} = (?)_{16} (7.3)_{8} = (1.3)_{8} = (1.3)_{8} (1.3)_{8} = (1.3)_{8$$

Hex to octay 8-B2+ 0 to 255 (AEC.D), - (?)8 + (0 to 127) Sign Number Representation X(-16) en a 4-Bit Computer? -> Stign volgniture repro
1'5 comprenent form in Miss. *"St'so"* my. o

24 = 167 (4-BEH) magnetude. +000000 n= number of BEHS to your computer $-(2^{n-1}-1)+0+(2^{n-1}-1)$ Range: -7, -6, -5, -3...0,1,2...7

complement form Sogn Bit

7's Complement 2) complet 15108. (2'S complemt) 2) Complet € 4-BiL 1 1 0 0 < 1's war. 01 < 25 bypret 1 1 1 \(\alpha \) urg. pium 1 0 0 0 0

7's complement form Szgn. Representation -> Unique o represent \rightarrow Range! $\left(-2^{n-1}\right)$ to $\left(+2^{n-1}-1\right)$ "8-Bêt", lange: (-128 to +127) Total numbers = 256 and we know upony & BEH 28 = 255