L3: cours Graphes I6S3 Chapitre III : coloration de graphe

Olivier Togni, IEM/LE2I olivier.togni@u-bourgogne.fr

Modifié le 7 mars 2019

Plan

- 1. Éléments de base de coloration de graphes
 - Motivation et applications
 - Définitions et propriétésGraphes planaires
 - Graphes parfaits
 - Coloration d'arêtes
 - Coloration totale
- 2. Aspects algorithmiques
 - Complexité
 - heuristiques
 - algorithmes exacts
- 3. Élements avancés
 - Coloration fractionnaire
 - Coloration circulaire
 - Coloration par listes

Pourquoi la coloration de graphe

- 1. Problème central en théorie des graphes :
 - problème de coloration de cartes en au plus 4 couleurs (De Morgan, 1852)
 - conjecture des graphes parfaits (Berge, 1963)
- 2. Nombreux champs d'application, notamment pour les STIC :
 - ▶ optimisation avec contraintes : ordonnancement, planning
 - > systèmes : allocation de registres, ordonnancement de tâches
 - réseaux : allocation de ressources
 - cryptographie, sécurité, tatouage
 - tests de circuits VLSI
 - reconnaissance de motifs
 - analyse des données biologiques et archéologiques

De l'allocation de registres...

```
for (i=0;i<ng;i++)
{
   tab[i]=tabg[i];
}
tab[ng]=pivot;
for (j=0;j<nd;j++)
   {
   tab[j+ng+1]=tabd[j];
}
    pivot
   j
   nd
   s
   i
</pre>

    pas de conflit avec 3
    registres
```

aux réseaux radio maillés...

en passant par le Sudoku

	3		4		5		7	
6	2			8		4		
7					1			9
2	4	6			3	8		
						2		3
	1	3	6			9	5	
		8		4	7			
1			9					6
		9		5		3	8	2

Le sudoku est un cas particulier de carré latin Completer la grille de sudoku est équivalent à completer la coloration d'un graphe de 81 sommets précoloré

Nombre de grilles 9×9 ayant une unique solution : 6,670,903,752,021,072,936,960

Coloration de graphes

Définition

Une k-coloration d'un graphe non orienté G=(V,E) est une application $f:V\to C$, où C est un ensemble de k couleurs (que l'on peut prendre égal à $\{1,2,\ldots k\}$) telle que pour toute arête $xy\in E$, on ait $f(x)\neq f(y)$ (condition de propreté).

Un graphe qui admet une k-coloration est dit k-coloriable.

Remarque : une k-coloration est une partition de V(G) en k ensembles indépendants (stables).

Nombre chromatique

Définition

Le nombre chromatique $\chi(G)$ d'un graphe G est le plus petit entier k tel que G soit k-coloriable.

Si $\chi(G) = k$, G est dit k-chromatique.

Encadrement du nombre chromatique

Propriété

Pour tout graphe G d'ordre n,

$$\max\left\{\omega(G), \frac{n}{\alpha(G)}\right\} \leq \chi(G) \leq \Delta(G) + 1.$$

$$\omega = 4, \alpha = 4, \Delta = 5$$

Algorithme de coloration glouton

- 1. Définir un ordre quelconque x_1, x_2, \ldots, x_n des sommets de G
- 2. Pour i de 1 à n, faire colorier x_i avec la plus petite couleur non utilisée par un de ses voisins déjà colorié.

Cet algorithme colorie tout graphe G en au plus $\Delta(G)+1$ couleurs, où $\Delta(G)$ est le degré maximum des sommets de G. En pratique, il vaut mieux commencer par les sommets de plus gros degrés.

Théorème de Brooks

Théorème

Pour tout graphe G, $\chi(G) = \Delta(G) + 1$ si et seulement si G est un cycle impair ou un graphe complet (autrement, $\chi(G) \leq \Delta(G)$).

Théorème

 $\chi(G) = 2$ si et seulement si G ne contient pas de cycle impair (G est biparti).

Nombre chromatique et cliques

Théorème (Zykov, 1949)

Pour tout k, il existe des graphes k-chromatiques sans triangle.

Coloration des graphes planaires

Théorème (Appel & Haken, 1976)

Tout graphe planaire est 4-coloriable.

Idées de la preuve :

- il existe un ensemble de 1482 configurations inévitables, c'est à dire que tout graphe planaire triangulé contient nécessairement l'une de ces configurations comme sous-graphe.
- ces configurations sont réductibles, c'est à dire qu'une 4-coloration d'un graphe planaire contenant l'une de ses configurations peut toujours être obtenue à partir d'une 4-coloration d'un graphe planaire plus petit.

Coloration des graphes planaires

Théorème (Grötzsch, 1959)

Tout graphe planaire sans triangle est 3-coloriable.

Théorème (Askionov, 1974)

Tout graphe planaire avec au plus trois triangles est 3-coloriable.

Graphes de genre g

Définition

Une surface orientable de genre g est homéomorphe à une sphère possédant g "trous". Le genre d'un graphe est alors le genre minimum d'une surface sur laquelle G est représentable (sans croisement d'arêtes). Une surface orientable de genre 1 est un tore.

Théorème (Heawood, 1890, Ringel & Young, 1968)

Tout graphe de genre g peut être colorié en utilisant $\lfloor \frac{7+\sqrt{1+48g}}{2} \rfloor$ couleurs (ce nombre est appelé nombre de Heawood).

Graphes parfaits

Définition

Un graphe G est parfait si pour tout sous-graphe induit H de G on a $\chi(H)=\omega(H)$.

Théorème (Lovàsz, 1972)

Un graphe G est parfait si et seulement si le complémentaire de G est parfait.

Théorème (Chudnovsky, Robertson, Seymour et Thomas, 2002)

Un graphe G est parfait si et seulement si ni lui ni son complémentaire ne contiennent de cycle impair induit de longueur au moins cinq.

Exemples de graphes parfaits

- graphes bipartis
- graphes d'intervalles
- graphes de comparabilité
- graphes triangulés
- **.**..

Coloration d'arêtes

Définition

L'indice chromatique $\chi'(G)$ d'un graphe G est le plus petit entier k tel que l'on puisse colorier les arêtes de G en k couleurs de sorte que deux arêtes incidentes à un même sommet aient des couleurs différentes.

Graphe représentatif des arêtes d'un graphe

Définition

Le graphe représentatif des arêtes L(G) d'un graphe G est le graphe où les sommets sont les arêtes de G; deux sommets sont reliés dans L(G) si les arêtes correspondantes de G sont incidentes à un même sommet.

Propriétés

Propriété

Pour tout graphe G, $\chi(L(G)) = \chi'(G)$.

Théorème (Vizing, 1963)

Pour tout graphe G de degré maximum Δ , $\Delta \leq \chi'(G) \leq \Delta + 1$.

Définition

Un graphe est de classe 1 si $\chi'(G) = \Delta(G)$, de classe 2 sinon $(\chi'(G) = \Delta(G) + 1)$.

Déterminer la classe d'un graphe est un problème NP-complet.

L3: cours Graphes I6S3 Chapitre III : coloration de graphe

Coloration d'arêtes

Exemples

Théorème (König-Hall)

Tout graphe biparti est de classe 1.

Les graphes complets d'ordre pair sont aussi de classe 1

Les graphes complets impairs, les cycles de longueur impaire sont de classe 2.

Coloration totale (sommets + arêtes)

Définition

Le nombre chromatique total $\chi''(G)$ d'un graphe G est le plus petit entier k tel que l'on puisse colorier les sommets et arêtes de G en k couleurs de sorte que deux sommets adjacents, deux arêtes incidentes à un même sommet, un sommet et une arête incidente aient des couleurs différentes.

Le graphe total de G

Propriétés

Conjecture (Bezhad et Vizing, 1963)

Pour tout graphe G de degré maximum Δ ,

$$\Delta + 1 \leq \chi''(G) \leq \Delta + 2$$
.

Définition

Un graphe est de type 1 si $\chi''(G) = \Delta + 1$; de type 2 sinon.

Déterminer le type d'un graphe est un problème NP-complet. Exemples de graphes de type 1: les graphes complets d'ordre impair, les complets bipartis $K_{n,n}$, les cycles de longueur multiple de trois, ...

Comment aborder ces problèmes en informatique?

Pour un graphe donné, les problèmes de déterminer $\omega, \alpha, \chi, \chi', \chi''$ sont tous NP-complets.

- 1. Graphes quelconques:
 - algorithmes exacts
 - heuristiques pour résoudre le problème général
- 2. Si on connait (en partie) la structure du graphe :
 - algorithmes efficaces (en temps polynomial) pour trouver solution optimale
 - ▶ algorithmes d'approximation ⇒ garantir le facteur d'approximation

Algorithme d'approximation

Définition

Un algorithme A pour un problème de minimisation est une c-approximation si la solution qu'il trouve est au maximum à un facteur c de la solution optimale.

Par exemple, il existe un algorithme A de 1.1-approximation pour colorier les arêtes d'un multigraphe, c'est-à-dire que

$$\forall G, \frac{\chi_A'(G)}{\chi'(G)} \leq 1.1,$$

où $\chi'_A(G)$ est le nombre de couleurs utilisées par l'algorithme A pour colorier le multigraphe G.

Méthodes des contractions

▶ contraction de deux sommets : $G \rightarrow G/x, y$

▶ ajout d'arête : $G \rightarrow G + xy$

Théorème (Zykov, 1952)

Pour tout graphe G et tous sommets x et y non adjacents,

$$\chi(G) = \min\{\chi(G/x, y), \chi(G + xy).\}$$

 \Rightarrow Arbre (de Zykov) par applications multiples de ce théorème. Les feuilles de cet arbre sont des graphes complets $G_i = (V_i, E_i)$ et $\chi(G) = \min_i |V_i|$.

└ Heuristiques

Algorithmes basés sur l'arbre de Zykov

Algorithme de Corneil & Graham (1973) : parcours en profondeur de l'arbre de Zykov

Amélioration en sélectionnant les paires de sommets x, y dans la contraction fera diminuer le plus le nombre d'arêtes : $vc(x,y) = |E(G)| - |E(G \setminus x, y)|$: nombre de voisins communs à x et à y

Algorithme de Brigham & Dutton (1981):

- 1. choisir deux sommets x, y tels que vc(x, y) est maximum
- 2. contracter y en x
- 3. si le graphe n'est pas complet alors retour au 1.

Algorithme RLF (Recursive Largest-First, Leighton, 1979)

- 1. choisir un sommet x de degré maximum
- 2. choisir un sommet y non voisin de x tel que vc(x, y) est maximum et contracter y en x
- 3. répéter 2. jusqu'à que x soit voisin de tous les autres sommets
- 4. enlever le sommet x et reprendre à l'étape 1.
- \Rightarrow tous les sommets contractés en x feront parti de la même classe de couleur que x (auront la même couleur)

Algorithme de Welsh & Powell (1967)

- 1. Ordonner les sommets suivant un ordre décroissant de leur degrés. Soit x_1, x_2, \ldots, x_n cet ordre. Soit c = 1.
- 2. S'il reste des sommets non coloriés, colorier tous les sommets possibles avec la couleur c suivant l'ordre x_1, x_2, \ldots, x_n
- 3. c = c + 1 et retour à 2.

Rem : c'est aussi un algorithme glouton

Algorithme DSATUR (Daniel Brèlaz, 1979)

Basé sur un recalcul de l'ordre des sommets à chaque itération **Degré de saturation :**

- ▶ Si aucun voisin de v n'est colorié alors DSAT(v) = degré(v)
- sinon DSAT(v) = le nombre de couleurs différentes utilisées par le voisinage de v
- Choisir un sommet non encore colorié avec DSAT maximum.
 Si conflit choisir celui de degré maximum.
- 2. Colorier ce sommet par la plus petite couleur possible
- 3. Si tous les sommets sont coloriés alors stop. Sinon aller en 1.

Algorithme Glouton itéré

Coloration produite par algo glouton (et DSATUR) vérifie : chaque sommet y de couleur j est voisin avec au moins un sommet de couleur i pour toute couleur i < j

Par contre il est possible que pour j > i, il y ait un sommet x de couleur i qui ne soit voisin avec aucun sommet de couleur $j \Rightarrow$ relancer l'algo glouton apres avoir permuté les couleurs i et j permet parfois de diminuer le nombre de couleurs utilisées.

Algorithme exact basique

```
colore(sommet i, entier k)
{
  si i=n alors { afficher(couleur); stop;}
  pour c de 1 à k faire
    si convient(i,c) alors
    {//couleur c non utilisée par les voisins de i
        couleur[i]=c;
        colore(i+1,k);
    }
}
```

Algorithme BSC (Backtracking Sequential Coloring)

BSC= DSATUR + retours arrière

BSC(k) donne une coloration en au plus k couleurs (si possible, sinon indique impossibilité)

- 1. Ordonner les sommets par ordre décroissant de degrés.
- 2. Colorier un sommet de degré maximum avec la couleur 1.
- Choisir un sommet x non encore colorié avec DSAT maximum. Si conflit choisir celui de degré maximum.
- Soit FREE(x) ⊂ {1,2,...k} l'ensemble des couleurs non utilisées par les voisins de x.
 Si FREE(x) non vide, colorier le sommet x par la plus petite couleur de FREE(x); sinon retour arrière.
- 5. Si tous les sommets sont coloriés alors stop. Sinon aller en 3.

Temps d'exécution et espace mémoire

Pour un graphe d'ordre n, meilleur temps d'exécution (dans le pire des cas) pour les algorithmes exacts :

- \bullet $\Theta(2,4423^n)$ [Lawler, 1976]
- \bullet $\Theta(2,4151^n)$ [Eppstein, 2001]
- \bullet $\Theta(2,4023^n)$ [Byskov, 2005]

Mais espace mémoire $\Theta(2^n)$...

Si espace mémoire polynomial alors $\Omega(5,283^n)$ [Bodlaender& Kratsch, 2006]

- ▶ 3-coloration : $\Theta(1,3289^n)$ [Beigel & Eppstein, 2005]
- 4-coloration : $\Theta(1,7504^n)$ [Byskov, 2004]
- ▶ 5-coloration : $\Theta(2, 1020^n)$ [Byskov & Eppstein, 2005]

Autres types d'algorithmes

- algorithmes probabilistes
- meta-heuristiques (recuit simulé, recherche tabu, ...)
- algorithmes génétiques
- + Algorithmes spécifiques suivant les problèmes considérés

Coloration et homomorphismes de graphes

Définition

Un homomorphisme d'un graphe G vers un graphe H est une application $h: V(G) \to V(H)$ telle que pour toute arête xy de G, h(x)h(y) est une arête de H.

On notera $G \to H$ s'il existe un homomorphisme de G vers H et $G \not\to H$ s'il n'en existe pas

Relation entre homomorphisme et coloration

Proposition

- G est k-coloriable $\Leftrightarrow G \to K_k$
- G est k-chromatique $\Leftrightarrow G \to K_k$ et $G \not\to K_{k-1}$

Si $G \rightarrow H$, on dit que G est H-coloriable.

Coloration généralisée

Coloration = affectation de **couleurs** aux **éléments** qui respecte certaines **contraintes**

Éléments sommets arêtes faces sous-structures ex. cycles, chemins ... Couleurs
une par élément
un nombre fixé k
un nombre variable
parmi une liste
une fraction
un intervalle

Contraintes
propreté
acyclicité
k-distance
équité
...

Coloration fractionnaire

Coloration fractionnaire

Définition

Une (a, b)-coloration d'un graphe G est une application qui associe b couleurs parmi un ensemble de a couleurs à chaque sommet de G, de sorte que deux sommets adjacents aient des ensembles de couleurs disjoints.

Le nombre chromatique fractionnaire $\chi_f(G)$ est le minimum du ratio $\frac{a}{b}$ pour lequel il existe un (a,b)-coloration de G.

Relation avec le nombre chromatique : pour tout graphe G d'ordre n,

$$\max\{\omega(G), \frac{n}{\alpha(G)}\} \le \chi_f(G) \le \chi(G)$$

Coloration fractionnaire

Exemple de coloration fractionnaire

$$C_5$$
 est $(5,2)$ -coloriable (et $\chi_f(C_5) = \frac{5}{2}$)

Coloration fractionnaire et homomorphisme

Propriété

G est (a,b)-coloriable ssi $G \to K_a^b$, où K_a^b est le graphe de Kneser, i.e. les sommets sont les ensembles à b éléments parmi a et les arêtes joignent les sommets dont les ensembles sont disjoints.

Exemple : $K_a^1 = K_a$, $K_5^2 = P$, le graphe de Petersen.

Coloration fractionnaire et graphes planaires

Maille impaire = longueur du plus petit cycle impair

Théorème (Dvorak, Skrekovski & Valla, 2005)

Tout graphe planaire G de maille impaire au moins 9 est (5,2)-coloriable.

Question (Dvorak, Skrekovski & Valla, 2005)

Existe-t-il un graphe planaire G de maille impaire au moins 7 tel que $\chi_f(G) > \frac{5}{2}$?

Conjecture (Heckman & Thomas, 2002)

Tout graphe planaire G sans triangle et de degré maximum 3 vérifie $\chi_f(G) \leq \frac{8}{3}$.

Coloration circulaire

Définition

Une [a, b]-coloration d'un graphe G est une application f qui associe une couleur parmi un ensemble de a couleurs à chaque sommet de G, de sorte que l'on ait

$$b \le |f(x) - f(y)| \le a - b$$

pour tous sommets adjacents x et y.

Le nombre chromatique circulaire $\chi_c(G)$ est le minimum du ratio $\frac{a}{b}$ pour lequel il existe un [a,b]-coloration de G.

Relation avec le nombre chromatique :

$$\max\{\chi(G) - 1, \chi_f(G)\} \le \chi_c(G) \le \chi(G)$$

Coloration circulaire

Exemple de coloration circulaire

$$\chi_c(C_5)=\tfrac{5}{2}$$

Exemple d'application de la coloration circulaire

Optimisation des feux rouges à un carrefour

- Sommets = flots de traffic
- Arêtes = incompatibilité entre les flots (leurs séquences de feux vert ne doivent pas se chevaucher)
- Trouver une séquence périodique optimale d'intervalles rouge-vert pour tous les feux du carrefour = trouver le nombre chromatique circulaire du graphe correspondant

Coloration circulaire

Coloration circulaire et homomorphisme

Propriété

 $\chi_c(G) = \frac{a}{b} ssi \ G \to K_{[a,b]}$, où $K_{[a,b]}$ est le complémentaire de la puissance b-1 du cycle de longueur a, i.e.

$$V(K_{[a,b]}) = \{0,1,\ldots,a-1\}$$
 et $E(K_{[a,b]}) = \{ij,b \le |i-j| \le a-b\}.$

Conjecture (X. Zhu, 2000)

Tout graphe planaire G sans triangle et de degré maximum 3 vérifie $\chi_c(G) \leq \frac{20}{7}$.

Rem : le dodécahèdre D vérifie $\chi_c(G) = \frac{20}{7}$

Radio-coloration

Définition

Une $L(d_1, d_2, \dots d_k)$ -coloration d'un graphe G est une application $f: V(G) \to \{1, \dots, c\}$ telle que l'on ait

$$|f(x)-f(y)|\geq d_i$$

pour tous sommets x et y à distance i.

- ▶ Une L(1)-coloration est une coloration propre
- ▶ L(2,1)-coloration : $\lambda_{2,1}(G)$ est l'entier minimum c pour lequel on a une L(2,1)-coloration de G

└─ Complexité des variantes

Complexité

Le problème de décision de savoir, étant donné un graphe G et un entier k si G est k-coloriable est un problème NP-complet pour $k \geq 3$.

Complexité de différentes variantes :

	sommets	arêtes	totale
entière	NP-complet	NP-complet	NP-complet
fractionaire	NP-complet	Polynomial	NP-complet?
circulaire	NP-complet	NP-complet	NP-complet