Why Do Bigger Firms Pay More For Performance?

Performance-based versus Market-based incentive

Bo Hu

May 30, 2018

VU University Amsterdam and Tinbergen Institute

Introduction

Executive Labor Market and Contract incentive

 No. 1 compensation philosophy for named executive officers in Amazon

"to attract and retain the highest caliber employees by providing above industry-average compensation ..."

Apple Inc.'s 2016 proxy statement

"experienced personnel in the technology industry are in high demand, and competition for executive talent is intense ... "

Their executives contract incentives are designed

"to attract and retain a talented executive team and align executives interests with those of shareholders ..."

Motivating Facts

A typical executive compensation package:

```
fixed salary + performance-based pays
(bonus, stocks, options, etc.)
30% 70%
```

• Performance-based incentive:

$$\mathtt{delta} = \frac{\Delta \mathtt{Wealth(in\ dollars)}}{\Delta \mathtt{Firm\ Value(in\ percentage)}}$$

• Firm size premium in performance-based incentive delta increases in firm size,

Motivating Facts

• A typical executive compensation package:

```
fixed salary + performance-based pays
(bonus, stocks, options, etc.)
30% 70%
```

• Performance-based incentive:

$$\mathtt{delta} = \frac{\Delta \mathtt{Wealth(in\ dollars)}}{\Delta \mathtt{Firm\ Value(in\ percentage)}}$$

Firm size premium in performance-based incentive
 delta increases in firm size, controlling for total compensations

Motivating Fact: Size Premium

Motivating Fact: Size Premium

Table 1: Incentive Pays Increase with Firm Size

	$\log(delta)$				
	(1)	(2)	(3)	(4)	
log(Firm Size)	0.578*** (250.03)	0.295*** (112.20)	0.274*** (104.10)	0.273*** (103.68)	
log(tdc1)		0.7159*** (176.18)			
tdc1 Dummies (50)		(Yes		
tdc1 Dummies (100)				Yes	
Year FEs	Yes	Yes	Yes	Yes	
Industry FEs	Yes	Yes	Yes	Yes	
$Year \times Industry \ FEs$	Yes	Yes	Yes	Yes	
Observations	129458	129184	129185	129185	

Motivating Fact: Size Premium and Labor Market

Table 2. Marke	set Forces and Market Incentives						
	$\log(delta)$						
	(1)	(2)	(3)	(4)			
log(Firm Size)	0.340*** (35.18)	0.372*** (68.97)	0.254*** (23.82)	0.247*** (17.45)			
$log(Firm Size) \times External CEO$	0.121*** (4.27)						
Firm_Number		0.000331*** (3.67)					
$log(Firm~Size) \times Firm_Number$.0000151 (2.55)					
Size-Dist-CV			-2.652*** (-14.01)				
$log(Firm Size) \times Size-Dist-CV$			0.220*** (10.23)				
Size-Dist-Gini				-5.743*** (-11.60)			
$log(Firm\ Size) \times Size\text{-}Dist\text{-}Gini$				0.462***			
log(tdc1)	0.589*** (106.98)	0.589*** (106.91)	0.652*** (146.40)	(8.11) 0.651*** (146.23)			
age	-0.116*** (-28.35)	-0.116*** (-28.31)	-0.119*** (-33.38)	-0.119*** (-33.36)			
age^2	0.00149***	0.00149***	0.00151***	0.00151***			

Table 2: Market Forces and Market Incentives

Summary

Motivating Facts:

- Size premium exists controlling for total compensations.
- Size premium is larger in industries where the executive labor market is more active.

Summary

Motivating Facts:

- Size premium exists controlling for total compensations.
- Size premium is larger in industries where the executive labor market is more active.

Research Question:

• Why do larger firms pay more for performance?

What do I do?

- 1. Modeling: executive labor market and contract incentive
 - how do career concerns and performance-based incentive interact
 - firm size premium in performance-based incentive
- 2. Estimation: take the model to US executives data (ExecuComp)
- 3. Evaluation: work on counter-factual
 - regulations on executive compensation
 - contagion effect of corporate governance on executive compensation

Key Elements in the Model

Key Elements in the Model

Key Elements in the Model

Market competition generates incentive

- taking effort today improves managerial skills
- higher managerial skills leads to higher market values

Market-based incentive is lower in larger firms

- firm size is a 'search capital', larger firm executives have higher expected value increase
- by diminishing marginal utility, market-based incentive is lower for them

Related Literature

- Assignment Models
 - Edmans, Gabaix and Landier (2009), Edmans and Gabaix (2011)
 - executives in larger firms value leisure more $u(w \times g(e))$.
- Moral Hazard Models
 - Margiotta and Miller (2000), Gayle and Miller (2009), Gayle, Golan and Miller (2015)
 - moral hazard problem is more severe
 - the quality of signal (about effort) is poorer in larger firms
- Dynamic contract literature
 - moral hazard: Spear and Srivastava (1987), etc.
 - limited commitment: Thomas Worrall (1988, 1990), etc.
- Labor search literature
 - sequential auction: Postel-Vinay and Robin (2002)

Illustrative Model

Two-period Model

Period 1: Moral Hazard Period

• the firm provides incentive pays

Period 2: Market Competition Period

- no moral hazard problem
- executives receive offers from outside firms randomly
- incumbent and outside firms bid for the executive

Moral Hazard Problem

- risk averse executives, u(w)-c(e), where $e\in\{0,1\}$, c(1)=c, c(0)=0
- ullet effort stochastically increases manager's productivity $z\in\mathcal{Z}$
- z follows $\Gamma(z)$ when e=1, and $\Gamma^s(z)$ when **S**hirks
- once first period z is realized, it becomes a constant
- likelihood ratio $g(z) = \Gamma^s/\Gamma$ decreases in z

$$\sum_{z'} u(z')\Gamma(z') - \sum_{z'} u(z')\Gamma^{s}(z') \ge c$$
$$\sum_{z'} u(z')(1 - g(z'))\Gamma(z') \ge c$$

- one-manager firm
- production $f(s, z) = \alpha sz$ where s is firm size

Market Competition

Outside firms poach the executives

ullet for simplicity, with $\lambda \in (0,1)$ get an offer from s'>s

Bertrand competition

ullet since s'>s, executive transits to s' and gets a pay of lpha sz

Contracting Problem

The firm maximizes

$$\int_{z} \left\{ \left[\alpha sz - w(z) \right] + \beta \left[(1 - \lambda) \left(\alpha sz - w_{2}(z) \right) + \lambda \times 0 \right] \right\} d\Gamma(z)$$

subject to

$$\lambda: \int_{z} \left\{ \left[u(w(z)) - c \right] + \beta \left[(1 - \lambda)u(w_{2}(z)) + \lambda u(\alpha s z) \right] \right\} d\Gamma(z) = u_{0}$$

$$\mu: \int_{z} \left\{ u(w(z)) + \beta \left[(1 - \lambda)u(w_{2}(z)) + \lambda u(\alpha s z) \right] \right\} (1 - g(z)) d\Gamma(z) \ge c$$

Optimal Contract

The optimal contract follows

$$w(z) = w_2(z) = \lambda + \mu(1 - g(z)),$$

where μ determines the pay-for-performance incentive

$$\underbrace{\int_{z} \left[u(w(z))s + \beta(1-\lambda)u(w_{2}(z)) \right] (1-g(z))d\Gamma(z)}_{\text{Performance-based incentive}} \\ + \underbrace{\int_{z} \left[\beta \lambda \underbrace{u(\alpha sz)} \right] (1-g(z))d\Gamma(z)}_{\text{Market-based incentive}} \geq c$$

How binding IC is depends on how large market incentive are.

Compare Market Incentive between $s_1 < s_2$

Market Incentive Decreases in Firm Size

Proposition

In the two-period model, the market-based incentive decreases with firm size iff the utility function has a relative risk aversion larger than 1

$$-\frac{wu''(w)}{u'(w)}>1.$$

Towards a Dynamic Model

Why go dynamics?

- Match the data.
 - Two-period model is too simple to generate the moments.
- Job ladder equilibrium effect.

The maximum values a firm is willing to bid depends on the market competition that it faces, in particular the bidding values of those firms higher on the job ladder.

• Study the contagion effects.

Because of the equilibrium effect, we can study how do large firms' improvement in corporate governance change the incentive compensations in the whole industry.

Towards a Dynamic Model

Two-period Model

- no moral hazard in period 2
- $z_2 = z_1$
- only one outside firm s' > s
- no or static equilibrium

Dynamic Model

- dynamic moral hazard
- persistent productivity $\Gamma(z, z')$
- outside firm follows F(s')
- equilibrium contagion effects

Dynamic Model

Set Up

Executives:

- risk averse, u(w) c(e), $e \in \{0, 1\}$, c(1) = c, c(0) = 0
- ullet effort increases individual productivity $z \in \mathcal{Z}$
- z' follows a Discrete Markov Chain Process $\Gamma(z,z')$ if e=1, $\Gamma^s(z,z')$ if e=0 likelihood ratio $g(z,z')=\Gamma^s/\Gamma$ decreases in z'
- die with $\delta \in (0,1)$, the match break up, job disappears

Firms:

- firm size $s \in \mathcal{S}$, exogenous and permanent
- production $y(s, z) = \alpha sz$

Set Up

Search Market:

- on the job search
- with $\lambda_1 \in (0,1)$ sample an outside firm from F(s)

Sequential Auction:

- Bertrand competition between current and outside firms
- Each firm has a bidding frontier, $\bar{W}(z,s)$, defined by $\Pi(z,s,\bar{W}(z,s))=0$
- $\bar{W}(z,s)$ increases in z and s

Timing

Dynamic Contract

- State at t $h_t = (z_t', s_t, s_t')$, history $h^t = (h_1, h_2, ..., h_t)$
- A feasible contract is a plan that stipulates

$$\{e_t(h^{t-1}), w_t(h^{t-1}), I_t(h^t)\}_{t=0}^{\infty},$$

- Simplifications $\to \{w_t(h^{t-1})\}_{t=0}^{\infty}$
 - e = 1 is always optimal.
 - exclude firing, to be extended.
- ullet Use the executive's beginning-of-period expected utility, V, as a co-state variable

$$\sigma \equiv \{w(V), W(z', s', V)|z' \in \mathbb{Z} \text{ and } V \in \Phi\},$$

Contracting Problem

Firms maximize profits

$$\Pi(z, s, V) = \max_{w, W(z', s')} \sum_{z' \in \mathbb{Z}} \left[\alpha s z' - w + \tilde{\beta} \sum_{s' \in \mathbb{S}} \Pi(z', s, W(z', s')) \tilde{F}(s') \right] \Gamma(z, z')$$

subject to

$$\lambda : V = u(w) - c + \tilde{\beta} \sum_{z' \in \mathbb{Z}} \sum_{s' \in \mathbb{S}} W(z', s') \tilde{F}(s') \Gamma(z, z'), \quad \text{(Promise-K)}$$

$$\mu : \tilde{\beta} \sum_{z' \in \mathbb{Z}} \sum_{s' \in \mathbb{S}} W(z', s') \tilde{F}(s') (1 - g(z, z')) \Gamma(z, z') \ge c. \quad \text{(IC)}$$

$$\mu_0 : W(z', s') \ge \min\{\overline{W}(z', s'), \overline{W}(z', s)\} \quad \text{(PC-Executive)}$$

$$\mu_1 : W(z', s') < \overline{W}(z', s). \quad \text{(PC-Firm)}$$

Optimal Contract

The Optimal Contract

Given the beginning of the period state (z, s, V), the current period compensation is given by w,

$$w:\frac{\partial\Pi(z,s,V)}{\partial V}=-\frac{1}{u'(w)},$$

and the continuation utility follows

$$W(z',s') = \begin{cases} \overline{W}(z',s) & \text{if } \overline{W}(z',s') \ge \overline{W}(z',s) \\ \overline{W}(z',s') & \text{if } \overline{W}(z',s) > \overline{W}(z',s') > W(z') \\ W(z') & \text{if } \overline{W}(z',s) > W(z') \ge \overline{W}(z',s') \end{cases}$$

where W(z') satisfies

$$\frac{\partial \Pi(z',s,W(z'))}{\partial W(z')} = \frac{\partial \Pi(z,s,V)}{\partial V} - \mu(1-g(z,z')).$$

Contracting Problem

Insert in the optimal contract, the participation constraint becomes

$$V = u(w) - c + \tilde{\beta} \sum_{z'} \left[\lambda_1 \sum_{s' \in \mathcal{M}_1} F(s') \overline{W}(z', s) + \lambda_1 \sum_{s' \in \mathcal{M}_2} F(s') \overline{W}(z', s') + \left(1 - \lambda_1 \sum_{s' \in \mathcal{M}_1 \cup \mathcal{M}_2} F(s') \right) W(z') \right] \Gamma(z, z'),$$

$$(PKC')$$

and the incentive compatibility constraint becomes

$$\widetilde{\beta} \sum_{z'} \left[\lambda_1 \sum_{s' \in \mathcal{M}_1} F(s') \overline{W}(z', s) + \lambda_1 \sum_{s' \in \mathcal{M}_2} \overline{W}(z', s') F(s') \right. \\
+ \left. \left(1 - \lambda_1 \sum_{s' \in \mathcal{M}_1 \cup \mathcal{M}_2} F(s') \right) W(z') (1 - g(z, z')) \right] \Gamma(z, z') \ge c. \quad (IC')$$

The Optimal Contrct in terms of wage w

For exhibition, impose $u(w) = \log(w)$, then

$$w(z',s') = \begin{cases} \overline{w}(z',s) & \text{if } \overline{w}(z',s') \ge \overline{w}(z',s) \text{ or } w(z') > w(z',s) \\ \overline{w}(z',s') & \text{if } \overline{w}(z',s) > \overline{w}(z',s') > w(z') \\ w(z') & \text{if } \overline{w}(z',s) > w(z') \ge \overline{w}(z',s') \end{cases}$$

where $w(z') = w(z) + \mu(1 - g(z, z').$

$$\bar{w}(z', s')$$
 $w(z')$ $\bar{w}(z', s)$ $w(z', s) = \max\{\min\{w(z), w(\bar{z'}, s)\}, w(\bar{z'}, s')\}$

$$ar{w}(z',s)$$
 $ar{w}(z',s')$ $w(z',s')=w(ar{z}',s)$

Optimal Contract

No Moral Hazard, Full Commitment

Only Moral Hazard

Only Limited Commitment

Market-based incentive

Proposition

The market-based incentive decrease with firm size iff the utility function has a relative risk aversion

$$-\frac{wu''(w)}{u'(w)}>1.$$

Bidding frontier is more flat as firm size becomes larger

Market-based incentive for executive in firm s₂

Market-based incentive for executive in firm s₂

Market-based incentive for executive in firm s_3

Market-based incentive for executive in firm s_3

Estimation

Moments and Estimation

Moments	Target	Model	Estimates	Standard Error	
Exit Rate	0.0691	0.0691	$\delta = 0.0691$	0.0012	
EE Rate	0.0523	0.055	$\lambda_1 = 0.2759$	0.0017	
$\hat{ ho_z}$	0.8111	0.5499	$ ho_z=0.7$	0.0036	
Mean(z)	0.1284	0.1763	$\mu_z^w = 0.06$	0.0006	
Var(z)	0.0141	0.0141	$\sigma_z = 0.12$	0.0014	
Mean(log(wage))	7.17714	6.5241	$\mu_{\rm s} = 1.7847$	0.228385	
Mean(log(size))	7.44379	8.7934	$\sigma_s = 1.3982$	0.0314657	
$eta_{ extsf{wage-size}}$	0.370295	0.3196			
Mean(log(delta))	4.01842	3.8080			
$eta_{ extsf{delta}- extsf{size}}$	0.297673	0.2941	c = 1.91385	0.0259	
$eta_{ extit{delta-wage}}$	0.717209	2.1228	$\sigma = 2.50748$	0.0046	
Mean(delta > 0)	0.994725	0.9844			

Model Predictions on the Whole Distribution

Model Predictions on the Whole Distribution

Quantitative Analysis

Quantitative Analysis: Plan

Decompose the contributions

• market-based v.s. performance-based incentives

Work on contagion effect of corporate governance

• less entrenchment (lower α) v.s. better monitoring (lower c)

And more? ...

Conclusion

Summary

- Executives are motivated by performance-based incentive and market-based incentive.
- Market-based incentive are smaller in larger firms. So larger firms need more performance-based pays.
- The model can fit the size premium very well and generate the reasonable delta over firm size and total compensation.

Questions?

```
CEO's of "Small Firms" in S&P 500
._____
```

ALASKA AIR GROUP INC

ACUITTY BRANDS INC.

ANSYS INC

tdc1: total compensation delta: dollar-percentage incentive Company Market Cap tdc1 delta | millions 000's 000's/%|

INCYTE CORP 446.408 2432.9734 60.939838 | WESTROCK CO 547.828 2800.668 130.96215 | ENVISION HEALTHCARE CORP 678.6906 1777.991 217.729 | PRICELINE GROUP INC 1775.531 165.73476 I 886.0817

HOLOGIC INC 1276.448 2709.708

1328.171

1368.129

GARTNER INC 1474.909 8945.338

889.9763 2602.093 LKQ CORP 473.70974 I REGENERON PHARMACEUTICALS 897.3801 3094.134 566.14187 SKYWORKS SOLUTIONS INC 1113.547 2638.243 128.10688 I

1194.977 950.098

CENTENE CORP 1130.155 344.02299 I 4584.605

1102.528

3738.803

99.525198 I

428.10996

133.42285 |

431.01562 |

158.65569

```
CEO's of "Large Firms" in S&P 500
```

dc1: tota lelta: dol		rcentage inc			
 		Company	Market Cap	tdc1	 delta
			millions	000's	000's/%
 	ттмі	WARNER INC	79965.89	18545.215	 1212.9513
	COI	NOCOPHILLIPS	80163.26	35442.729	4520.5571
UNITED	PARCEL	SERVICE INC	82439.55	3120.042	340.01132
VERIZON	COMMUN	CATIONS INC	83233.88	19425	861.09722
	HOI	ME DEPOT INC	86128.2	35750.103	2014.3633

COCA-COLA CO 95494.39 12781.61

121238.6

126749.6

94944.89 17283.529

97836.48 15268.415

129381.2 21693.615

147738.2 6101.835

192048.2 16652.894

EXXON MOBIL CORP 344490.6 48922.808 3843.027 |

16269.85

13125.882

1666.3201

425.62199 I

2919.7995 I

5981.3853 | 1106.8351 |

1298.8777

1874.5755 I

1465.7708 I

AT&T INC

PEPSICO INC

CHEVRON CORP

INTEL CORP

CISCO SYSTEMS INC

WAL-MART STORES INC

INTL BUSINESS MACHINES CORP

+-----