

Mechanical Properties of Metals

Strength

- is a inherent property of the material (depends on treatment & processing)
- ability of the material to resist the external forces without breaking

The internal resistance per unit area offered by a part to an externally applied force is called Stress

- Stress is depends on geometry of the component, independent of material & its processing

Elasticity

ability of the material to regain its original shape and size after the deformation when external forces are removed.

- ability of the material to retain the deformation produced under the load on permanent basis.

ability of the material to resist deformation under the action of external load.

Modulus of Elasticity is the measure of Stiffness

20 January 2023

Machine Design

Mechanical Properties of Metals

- ability of the material to deform to a greater extent before the sign of crack, when it is subjected to tensile force.

Ductility is measured by means of % elongation & % reduction of area in tensile test

- Brittleness is that property of the material which shows negligible plastic deformation before fracture takes place.
 - Is the property opposite to ductility.

Ductile materials	Brittle materials
- deform to a greater extent before fracture in tension test	- show negligible plastic deformation prior to fracture
- Tensile strain > 5% at fracture (approx.)	- Tensile strain < 5% at fracture (approx.)
- Failure takes place by gradual yielding	- Fails by sudden fracture
- Energy absorbed before fracture in tension test is more	- Energy absorbed before brittle fracture is Negligible

20 January 2023 Machine Design

Mechanical Properties of Metals

Toughness is measured by the Izod & Charpy Impact test

Toughness decreases as the temperature increases

Resilience	Toughness
- Is the ability of the material to absorb energy within elastic range	- Is the ability to absorb energy within elastic & plastic range
- Modulus of resilience is the area below stress-strain curve in tension test up to elastic limit	- Modulus of toughness is the total area below stress-strain curve
- Resilience is essential in spring applications	 Toughness is required for components subjected to bending, twisting, stretching or to impact loads
- Example : spring steels are resilient	- Example : structural steel are tough

20 January 2023 Machine Design 9

Cast Iron (CI)

- is primarily an alloy of Iron & Carbon
- Carbon contents in cast iron varies from 2% to 4.5% (approx.)
- It also contains small amount of Silicon (1-3%),

Manganese (0.5-1%),

Sulphur (upto 0.1%),

Phosphorous (upto 0.1%)

- Cast Iron is a brittle material

Other Element	Effect
Silicon	provides formation of free graphite which makes soft & easily machinable, produces sound casting because of its high affinity for ${\rm O}_2$
Sulphur	makes CI hard & brittle, Too much sulphur gives unsound casting
Manganese	makes CI white & hard, helps to exert a controlling influence over the harmful effect of sulphur
Phosphorous	aids fusibility & fluidity in CI, but induces brittleness

20 January 2023 Machine Design

Cast Iron

Advantages

- ✓ CI has a higher compressive strength (3 to 5 times that of steel)
- ✓ CI has an excellent ability to damp vibrations --- used for m/c tool bed, frames, guide
- ✓ CI has more resistance to wear even under the conditions of boundary lubrication
- ✓ CI has good casting characteristics --- complex shape can be manufactured without involving costly operations & tooling

Disadvantages

- > CI has poor tensile strength if compared to steel
- > CI is brittle & has poor impact resistance
- > The machinability of CI parts is poor if compared to steel parts
- ➤ CI doesn't offer any plastic deformation before failure & exhibits no yield point. The failure of CI parts is sudden & total

20 January 2023

Machine Design

9	Cast Iron						
Type of Cast Iron	B.I.S	I.S Designation	Tensile Strength [Min.] (MPa)	BHN	Applications	Remarks	
Grey CI	IS 210 -	FG 150	150	130-180	Auto-parts : cylinder block,		
	1993	FG 200	200	160-220	brake drum, clutch plate, cylinder head, housing of		
		FG 300	300	180-230	gearbox, flywheel, m/c bed, frame & guide		
		FG 400	400	207-270	name & guide		
Malleable	IS 14329 -	WM 400	400	220 (Max)	Brake shoe, lever, wheel hub,	Whiteheart	
	1995	BM 350	350	150 (Max)	housing & door hinges, pipe fittings, fitting for motor cycle	Blackheart	
		PM 700	700	240-290	frame	Pearlitic	
Spheroidal	IS 1865 -	SG 900/2	900	280-360	Crank shaft, heavy duty		
Graphite	1991	SG 600/3	600	190-270	gears, furnace components, pipelines & its fitting		
		SG 400/15	400	130-180			
		SG 350/22	350	150 (Max)			

Steel

Steel

- is primarily an alloy (solid solution) of Iron & Carbon
- Carbon contents in steel is upto 1.5%
- It also contains small amount of Silicon, Manganese, Sulphur, Phosphorous
- Steel is a ductile material

According to Indian Standard [IS : 1762 (Part-I)-1974], Steels are designated on the following two basis:

- -- On the basis of Mechanical Properties (Tensile Strength)
- -- On the basis of Chemical Composition
 - Carbon content
 - Composition of alloying elements

20 January 2023

Machine Design

Steel					
Plain Carbon Steel					
Type of Carbon Steel	Carbon content (approx.)	Remarks			
Low Carbon Steel or Mild Steel	C < 0.3%	- are soft & very ductile, can be machined & welded easily, unresponsive to heat treatment due to low C - content			
Medium Carbon Steel	0.3% \le C < 0.6%	- are stronger & tougher as compared with low C –Steel, respond readily to heat treatment, easily hardened by heat treatment			
High Carbon Steel	0.6% ≤ C < 1.5%	- respond readily to heat treatment, heat treated high C-steel have very high strength combined with hardness,			
		- do not have much ductility as compared with low & high C-steel, difficult to weld, excessive hardness often accompanied by excessive brittleness			
20 January 2023	M	achine Design			

Free Cutting Steels

- steel of this group include carbon steel with higher sulphur content than plain C-steel & phosphorous content.
- Carbon contents vary from 0.1 to 0.45% & sulphur from 0.08 to 0.3%
- the machinability of these steels is improved due to addition of sulphur
- **40C10S18**: C:- 0.35-0.45%; Mn:- 0.8-1.2%; S:-0.14-0.22%

Limitations of Plain Carbon Steel

- ➤ The tensile strength of plain carbon steels cannot be increased beyond 700 MPa without substantial loss in ductility & impact resistance
- > Plain C Steel have low corrosion resistance
- ➤ Plain C Steel are not deep hardenable
- > Plain C Steel have poor impact resistance at low temperatures

20 January 2023

Machine Design

21

Alloy Steel

Alloy Steels

- steel to which one or more elements other than carbon are added in significant amount to produce an improvement in properties (strength, wear & corrosion resistance etc.)
- Carbon contents in steel is upto 1.5%
- The chief alloying elements used in steel are Silicon, Manganese, Nickel, Chromium, Molybdenum, Tungsten, Cobalt, Vanadium

Advantages of Alloy Steels

- ✓ Alloy steel have higher Strength, Hardness & Toughness
- ✓ High values of hardness & strength can be achieved for components will large section thickness
- ✓ Alloy steels retain their strength & hardness at elevated temperatures
- ✓ Alloy steel have higher resistance to corrosion & oxidation compared with plain carbon steels

20 January 2023

Machine Design

Effects of	Chief Alloying Elements on Steel	
Alloying Element	Effects	Remarks
Silicon	- Increases strength & hardness w/o lowering the ductility	
Manganese	- Increases strength, hardness & depth of hardening	
Nickel	- Increases strength, hardness & toughness w/o sacrificing ductility, increases hardenability & impact resistance at low temperature	25% Ni – boiler tube, IC engine valve, spark plug. 36% Ni – Invar – precision measuring instrument
Chromium	- Increases hardness & wear resistance, retain strength & hardness at high temperature, Excellent corrosion resistance (Cr > 4%)	- 0.5-2% Cr - balls, rollers & races for bearing, - nickel-chrome steel (3.25% Ni, 1.5% Cr) for crank shaft, axle, gears

Lileuts of t	Chief Alloying Elements on Steel	
Alloying Element	Effects	Remarks
Molybdenum	- Increases wear resistance & hardness, resists softening of steel during tempering & heating	-used for air-plane fuselage & auto-parts
Tungsten	- Increases depth of hardening & retain hardness at elevated temperature	- Mainly used in cutting tools, die, tap etc.
Vanadium	- Increases tensile strength & elastic limit	
Cobalt	- Increases hot hardness	

Alloy Steel

Indian Standard designation of Alloy Steel [IS: 1762 (Part-I)- 1993]

The designation of Low & Medium Alloy Steel (total alloying element <10%) consists of the following quantities:

- (i) figure indicating 100 times the average % of Carbon
- (ii) Chemical symbol for alloying elements each followed by the figure for its average % content multiplied by a factor as given below

Element	Multiplying factor
Cr, Co, Ni, Mn, Si & W	4
Al, V, Pb, Cu, Nb, Ti, Mo,	10
S	100

IS designation	Average % Com			Composition		
	С	Ni	Cr	Мо	V	
25Cr4Mo2	0.25		1	0.2		
40Ni8Cr8V2	0.40	2	2		0.2	
40Ni8Cr8V2 20 January 2023	0.40	2 M:	2 achine Design		0.2	

Alloy Steel

The designation of High Alloy Steel (total alloying element >10%) consists of the following quantities:

- (i) a Letter 'X'
- (ii) a figure indicating 100 times the average % of Carbon
- (ii) Chemical symbol for alloying elements each followed by the figure for its average % content round off to nearest integer

IS designation	Aver	Average % Composition			
	С	Ni	Cr		
X15Cr25Ni12	0.15	12	25		
X20Cr18Ni2	0.20	2	18		

20 January 2023

Machine Design

Overseas Equivalent Designations of Steel

India	British	USA		German
I.S	En	S.A.E	A.I.S.I	D.I.N
10C4	32 A	1012	C 1012	17155
45C8	43 B	1045	C 1045	17200
60C4	43 D	1060	C 1060	17200
65C6	42 B	1064	C 1064	17222
35Ni5Cr2	111	3140	3140	1662

20 January 2023

Machine Design

27

Heat Treatment of Steels

Heat treatment process consists of controlled heating & cooling of plain C-Steel or alloy steel in the solid state for the purpose of changing their *metallurgical structure* in order to obtain certain desirable properties (like hardness, strength, ductility etc.) without changing in chemical composition.

Aims of heat treatment

- > To increase strength & hardness of metals
- > To improve ductility of metals
- > To relieve the stresses set up in the metal after hot or cold working
- > To improve machinability
- > To increase the qualities of a metal to provide better resistance to heat, corrosion & wear
- > To improve its electrical & magnetic properties.

20 January 2023

Machine Design

Annealing

- Heating the steel component to a temperature 30° to 50°C above the critical temperature or transformation temperature, holding it at this temperature for sometime (approx. 3 to 4 min. for each mm of thickness of the largest section), followed by cooling slowly in the furnace. The rate of cooling varies from 30 to 200°C per hour depending upon the composition of steel.

Normalising

- Heating the steel component to a temperature 30° to 50°C above the critical temperature or transformation temperature, holding it at this temperature for about 15 min. & then allowed to cool down in air.

Quenching / Hardening

- Heating the steel component to a temperature slightly above the critical temperature, holding it at this temperature for sometime & then cooling it rapidly in water, oil or brine.

Tempering

- reheating the quenched/ hardened steel component to a temperature below the critical temperature, followed by cooling at a desired rate.

The recommended hardening & tempering treatments & temperature ranges can be obtained from the standards

20 January 2023

Machine Design

	Plastics		
Advantages		Disadva	antages
	esistance	✓ Mecha consider region✓ Susce deform	ensile strength anical properties vary lerably with temp. in ambient eptible to time-dependent nation when the stress level is ained constant.
Plastics (trade name)	Application		
Polyamide (Nylon)	Gears, conveyor roller, cooling fan	bearing,	- Excellent toughness & wear resistance
Acetal (Delrin)	Cams, gears, self-lubricating bearing		- High wear resistance
Polyurethane (Texin)	Gears, gaskets, seals, bearings		- tough, abrasion resistant & impact resistant
PTFE (Teflon)	self-lubricating bearing		- Low coeff. of friction & self-lubricating
Polyethylene (Polythene)	Gasket, washers, pipes		-flexible & tough
Phenolic	pulleys		

