NYU TANDON SCHOOL OF ENGINEERING EL648 – Real Time Embedded Systems Quiz 1 Spring 2021 Name: Dhairya Upadhyay ID: DAU7593

Question 1:

In class we showed the difference between passing by value and passing by reference using:

```
//By value
void swap( char x, char y)
//By reference
void swap (char * x, char *y)
}
   Implement both versions of the swap functions using ARM assembly
   swapByVal:
       mov r2,r0
       mov r0,r1
       mov r1,r2
       bx lr;
   swapByRef:
      ldrb r2,[r0]
      ldrb r3,[r1]
      strb r3,[r0]
      strb r2,[r1]
      bx lr;
```

- b. Write the C code required to call each of these functions using the variables sChar and dChar. Ans.
 - swapByVal (sChar, dChar);
 - swapByRef (&sChar, &dChar);

Question 2:

Consider the following ARM assembly code segment. Describe what this function does and the contents of R0, R1, R2, and R3 for each iteration and when the function terminates. Also comment each line from __Main PROC to ENDP.

```
AREA myData, DATA
```

This study source was downloaded by 100000834646768 from CourseHero.com on 10-18-2021 10:48:37 GMT -05:00

NYU TANDON SCHOOL OF ENGINEERING EL648 – Real Time Embedded Systems Quiz 1 Spring 2021 Name: Dhairya Upadhyay ID: DAU7593

ALIGN DCB "123",0 str AREA MyFunc, CODE EXPORT __main **ALIGN ENTRY** main PROC LDR r1, =str MOVS r2, #0 loop LDRB r0, [r1], #1 CBZ r0, stop CMP r0, #0x30 BLT stop CMP r0, #0x39 BGT stop SUBS r0, r0, #0x30 ADD r3, r2, r2, LSL #2 ADD r2, r0, r3, LSL #1 B loop stop B stop **ENDP**

Ans.

The code starts at,

main PROC

LDR r1, =str //r1 is loaded with the memory location of the first byte in the string MOVS r2, #0 //r2 is equal to 0

Command/Iteration	First Iteration	Second Iteration	Third Iteration	Fourth Iteration	
LDRB	r0 = r1, r1 = r1 + 1,	r0 = r1, r1 = r1 + 1,	r0 = r1, r1 = r1 + 1,	r0 = r1, r1 = r1 + 1,	
	ro = "1"	ro = "2"	ro = "3"	ro = 0x00	
CBZ r0, stop	r0 = "1" so	r0 = "2" so	r0 = "3" so		
	condition is not met	condition is not met	condition is not met		
CMP	Performs ro-#0x30	Performs ro-#0x30	Performs ro-#0x30		
	and sets C to 1	and sets C to 1	and sets C to 1		
BLT	Not executed	Not executed	Not executed		
CMP	r0=r0-#0x39, N flag	r0= "2"-#0x39, N	r0= "3"-#0x39, N		
ŕ	sets to 1	flag sets to 1	flag sets to 1		
BGT	Not executed	Not executed	Not executed		
SUBS	r0 = r0 - #0x30 =	r0 = "2" - #0x30 =	r0 = "3" - #0x30 =		
	#0x01	#0x02	#0x03		
ADD	ADD $r3 = r2 + r2 << 2 = 0$		r3 = r2 + r2 << 2 =		
			60		
ADD	OD $r2 = r0 + r3 << 1 =$		r2 = r0 + r3 <<1 =		
	r0 =1	r0 = 12	r0 = 123		

NYU TANDON SCHOOL OF ENGINEERING	Name: Dhairya Upadhyay
EL648 – Real Time Embedded Systems	ID: DAU7593
Quiz 1 Spring 2021	

В	Go back to loop	Go back to loop	Go back to loop	Since the condition
				is met, it goes to
				stop

So, the final values in the register are as follows:

R0 = 0x00

R1 =one byte after str

R2 = 123

R3 = 60

Question 3:

In class we showed how to simply light up an LED on our STM32 microcontroller. In fact, the procedure is similar for all processors including a simpler 8-bit ATmega 328P (a.k.a Arduino Uno).

For purposes of this exercise, let's say that the ATmega328 has 3 regular GPIO ports; B, C, and D, each with 8 pins. Every GPIO port has three registers (outlined in table below):

- PORTX: used to write output on a pin on port X that is configured as an output. When a pin is configured as an input, writing a 1 to its bit in PORTX activates a pull-up resistor for that pin, and writing a 0 to its bit in PORTX de-activates the pull-up resistor for that pin.
- DDRX: is the data direction register for port X. Writing a 0 to a bit in DDRX makes the corresponding port pin an input, while writing a 1 to a bit in DDRX makes the corresponding port pin an output.
- PINX: is the input register, used to read input data on port X. If a pin is configured as an output, then reading the input register bit corresponding to that pin will give you the value that was last output on the port.

Now see the following macro below:

#define PORTB (*(volatile unsigned char *)0x25)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
Dx05 (0x25)	PORTO	PORTDT	PORTO6	PORTOS	PORTO4	PORTOS	POPETD2	PORTD1	PORTDO	52
Dr0A (0x2A)	DOMD	0007	DDD6	DODS	0004	0003	0002	0001	0000	92
0x09 (0x29)	PIND	PINDT	PINDS	PIND5	PIND4	PWD3	PINCO	PIND1	PINDO	92
0x08 (0x28)	PORTO	-	PORTO6	PORTOS	PORTO	PORTOS	PORT02	PORTO1	PORTCO	91
0x07 (0x27)	DOMG	-	DDC6	DDCs	D064	DDC3	ODG2	0001	0000	91
0x06 (0x26)	PINC	- ^	PINCS	PINCS	PINC4	PINCS	PINCS	PIN01	PINCO	92
Qx05 (Qx25)	PORTS	PORTBT	PORTE6	PORTES	PORT84	PORTBO	PORT82	PORTB1	PORTBO	91
0x04 (0x24)	DORB	0.097	DD96	DDBs	0094	0089	0090	0091	0090	91
0x08 (0x29)	PINS	PINBT	PINBS	PINBS	PINB4	PINB3	PINB2	PINS1	PW80	91
Ov02 (0v22)	Businessoft					-		-		

a. Using the chart above, write similar macros for PORTD, DDRD, and PIND. What is the purpose of the volatile keyword?

Ans.

define PORTD (*(volatile unsigned char *)0x2B)

define DDRD (*(volatile unsigned char *)0x2A)

define PIND (*(volatile unsigned char *)0x29)

b. Write C code to configure PORTD pin 3 as output and write a 1 to it, without affecting the other pins on port D. (Two lines of code total)

Ans.

DDRD = (1 << 3)

This study source was downloaded by 100000834646768 from CourseHero.com on 10-18-2021 10:48:37 GMT -05:00

NYU TANDON SCHOOL OF ENGINEERING	Name: Dhairya Upadhyay
EL648 – Real Time Embedded Systems	ID: DAU7593
Quiz 1 Spring 2021	

```
PORTD = (1 << 3)
```

c. Write C code to configure PORTD pin 6 as input (with a pullup resistor) without affecting the other pins on port D. (Two lines of code total)

Ans.

DDRD &= ~(1 << 6) PORTD |= (1 << 6)

d. Write a C main() function that sets up PORTD pin 1 as an input with pullup resistor and PORTD pin 2 as an output. The code should also blink an LED connected to pin 2 when pin 1 is high (one second period), otherwise the LED is off. (You can use wait_ms)

Ans.

a. If nothing is connected to pin 1, describe the behavior of the LED.

Ans.

The LED keeps blinking.

b. What is the purpose of the pull up resistor?

Ans.

The pull up resistor is used tto ensure a known state for a signal.

Question 4:

Write the ARM Assembly code to flash all 4 user LEDs on your STM32 discovery board. Use a flashing frequency of 1 Hz). Recall, to set GPIO pins on our board, you need to configure the MODER, OSPEEDR, OTYPER, PUPDR and ODR registers for the port. Also, don't forget to connect the clock to GPIO! The following assembly code (or similar for other ports should be helpful).

```
RCC_AHB1ENR EQU 0x40023830
GPIOD_MODER EQU 0x40020C00
GPIOD_OTYPER EQU 0x40020C04
GPIOD_OSPEEDR EQU 0x40020C08
GPIOD_PUPDR EQU 0x40020C0C
GPIOD_ODR EQU 0x40020C14
```

• • •

NYU TANDON SCHOOL OF ENGINEERING EL648 – Real Time Embedded Systems Quiz 1 Spring 2021

ID: DAU7593

Name: Dhairya Upadhyay

Ans. Helper.s

```
syntax unified
 .global asm_blink
 global asm_function
 equ DELAY_INTERVAL, 0x30C008
 equ RCC_AHB1ENR, 0x40023830
 equ GPIOD_MODER, 0x40020C00
 equ GPIOD_OTYPER, 0x40020C04
 equ GPIOD_OSPEEDR, 0x40020C08
 equ GPIOD_PUPDR, 0x40020C0C
 equ GPIOD_ODR, 0x40020C14
 asm_function:
     LDR
             R1, =RCC_AHB1ENR
             R0, [R1]
     LDR
             R0, #0x08
     ORR.W
     STR
             R0, [R1]
     LDR
             R1, =GPIOD_MODER
             R0, [R1]
     LDR
             R0, #0x55000000
     ORR.W
             R0, #0x55FFFFFF
     AND.W
     STR
             R0, [R1]
             R1, =GPIOD_OTYPER
     LDR
     LDR
             R0, [R1]
             R0, #0xFFFF0FFF
     AND.W
     STR
             R0, [R1]
     LDR
             R1, =GPIOD_OSPEEDR
             R0, [R1]
     LDR
             R0, #0x00FFFFFF
     AND.W
             R0, [R1]
     STR
             R1, =GPIOD_PUPDR
     LDR
     LDR
             R0, [R1]
             R0, #0x00FFFFFF
     AND.W
             R0, [R1]
     STR
     BX
             LR;
 asm_blink:
     turnON:
                     =GPI0D_0DR
at by 100000834646768 from CourseHero.com on 10-18-2021 10:48:37 GWH -05:00
LDR
This study source was dow
```

NYU TANDON SCHOOL OF ENGINEERING

EL648 – Real Time Embedded Systems

Quiz 1 Spring 2021

Name: Dhairya Upadhyay

ID: DAU7593

```
R0, [R1]
   LDR
   ORR.W
            R0, #0XF000
            R0, [R1]
   STR
   LDR
            R2, =DELAY_INTERVAL
delay1:
   CBZ
           R2, turnOFF
   SUBS
           R2, R2, #1
   В
            delay1
turnOFF:
   LDR
            R1, =GPIOD_ODR
   LDR
            R0, [R1]
   AND.W
           R0, #0xFFFF0FFF
   STR
            R0, [R1]
   LDR
            R2, = DELAY_INTERVAL
delay2:
   CBZ
           R2, delayDone
   SUBS
           R2, R2, #1
   В
           delay2
delayDone:
   B turnON;
```

Main.c

```
#include <mbed.h>
#include <USBSerial.h>

void test();
extern "C" void asm_blink();
extern "C" void asm_function();

int main() {

    // put your setup code here, to run once:

    while(1) {

        // put your main code here, to run repeatedly:
        test();
        wait_ms(100);
    }
}

void test(){
    asm_function();
    asm_blink();
}
```