Machine Learning

Università Roma Tre Dipartimento di Ingegneria Anno Accademico 2021 - 2022

Dimostrazioni Formali Lasso

Sommario

Dimostrazione della formula di aggiornamento dei coefficienti nell'algoritmo coordinate descent per LASSO

Ottimizzazione Lasso

Come sappiamo, la Funzione Obiettivo per il Lasso da ottimizzare mediante Coordinate Descent è la seguente:

RSS(**w**) +
$$\lambda \cdot ||\mathbf{w}||_1 = \sum_{i=1}^{N} [y_i - \sum_{j=0}^{D} w_j \phi_j(\mathbf{x}_i)]^2 + \lambda \sum_{j=0}^{D} |w_j|$$

Vediamo come calcolare le derivate parziali dei due termini presenti nell'espressione rispetto ai pesi w_i.

Derivazione del termine RSS

RSS(**w**) +
$$\lambda \cdot ||\mathbf{w}||_1 = \sum_{i=1}^{N} [y_i - \sum_{j=0}^{D} w_j \phi_j(\mathbf{x}_i)]^2 + \lambda \sum_{j=0}^{D} |w_j|$$

$$\frac{\partial \text{RSS}(\mathbf{w})}{\partial w_j} = -2 \sum_{i=1}^{N} \phi_j(\mathbf{x}_i) [y_i - \hat{y}_i(\mathbf{w})] = -2 \sum_{i=1}^{N} \phi_j(\mathbf{x}_i) [y_i - \sum_{j=0}^{D} w_j \phi_j(\mathbf{x}_i)] = \\
= -2 \sum_{i=1}^{N} \phi_j(\mathbf{x}_i) [y_i - \sum_{k \neq j} w_k \phi_k(\mathbf{x}_i) - w_j \phi_j(\mathbf{x}_i)] = \\
= -2 \sum_{i=1}^{N} \phi_j(\mathbf{x}_i) [y_i - \sum_{k \neq j} w_k \phi_k(\mathbf{x}_i)] + 2w_j \sum_{i=1}^{N} \phi_j^2(\mathbf{x}_i) = \\
= -2 \rho_j + 2w_j z_j$$

Derivazione del termine L₁ penalty

• In questo caso c'è il problema del calcolo della derivata parziale:

RSS(
$$\mathbf{w}$$
) + $\lambda \cdot ||\mathbf{w}||_1 = \sum_{i=1}^{N} [y_i - \sum_{j=0}^{D} w_j \phi_j(\mathbf{x}_i)]^2 + \lambda \sum_{j=0}^{D} |w_j|$

$$\lambda \cdot \frac{\partial |w_j|}{\partial w_j} = ?$$

Subgradiente di Funzioni Convesse

- I metodi che conosciamo (e.g., Gradient Descent, Coordinate Descent) richiedono che la funzione da ottimizzare sia differenziabile.
- E' possibile però generalizzare la discussione andando al di là delle funzioni differenziabili.
- E' possibile ad esempio mostrare come i precedenti algoritmi possano essere applicati anche per funzioni non differenziabili, utilizzando il subgradiente anziché il gradiente.

Subgradiente di Funzioni Convesse

Un vettore **S** che soddisfa la:

$$g(\mathbf{w}) \ge g(\mathbf{v}) + \mathbf{S}^T(\mathbf{w} - \mathbf{v})$$

è detto subgradiente di g in v.

L'insieme dei subgradienti di g in \mathbf{v} è chiamato "differential set" e indicato: $\partial g(\mathbf{v})$

 $g: \mathbb{R} \to \mathbb{R}$

Subgradiente della funzione Valore Assoluto

Nel punto non derivabile della funzione "valore assoluto" i subgradienti variano da -1 a +1:

Subgradiente della funzione Valore Assoluto

• Il "differential set" è dunque il seguente per i vari punti:

$$\partial_{w_j} |w_j| = \begin{cases} \{-1\} & \text{se } w_j < 0 \\ [-1,1] & \text{se } w_j = 0 \\ \{1\} & \text{se } w_j > 0 \end{cases}$$

Subgradiente di L1 term

Nel caso del Lasso abbiamo:

$$\lambda \cdot \partial_{w_j} |w_j| = \begin{cases} -\lambda & \text{se } w_j < 0\\ [-\lambda, \lambda] & \text{se } w_j = 0\\ \lambda & \text{se } w_j > 0 \end{cases}$$

Differential set della funzione di costo Lasso

• Il differential set rispetto al generico peso w_i è pertanto il seguente:

$$\partial_{w_j}[\text{costo_lasso}] = 2z_j w_j - 2\rho_j + \lambda \cdot \partial_{w_j} |w_j|$$

$$\partial_{w_j}[\text{costo_lasso}] = 2z_j w_j - 2\rho_j + \begin{cases} -\lambda & \text{se } w_j < 0 \\ [-\lambda, \lambda] & \text{se } w_j = 0 \\ \lambda & \text{se } w_j > 0 \end{cases}$$

Differential Set della funzione di costo Lasso

Abbiamo pertanto la seguente espressione finale:

$$\partial_{w_j}[\text{costo_lasso}] = \begin{cases} 2z_j w_j - 2\rho_j - \lambda & \text{se } w_j < 0\\ [-2\rho_j - \lambda, -2\rho_j + \lambda] & \text{se } w_j = 0\\ 2z_j w_j - 2\rho_j + \lambda & \text{se } w_j > 0 \end{cases}$$

Se uguagliamo a zero la precedente espressione, abbiamo tre casi:

• caso 1 (w_j < 0):
$$2z_j \hat{w}_j - 2\rho_j - \lambda = 0$$

da cui otteniamo:

$$\hat{w}_j = \frac{2\rho_j + \lambda}{2z_j} = \frac{\rho_j + \frac{\lambda}{2}}{z_j}$$

Poiché $\hat{\mathbf{w}}_{j} < 0$, abbiamo:

$$\hat{w}_j = \frac{\rho_j + \frac{\lambda}{2}}{z_j} < 0 \iff \rho_j + \frac{\lambda}{2} < 0 \iff \rho_j < -\frac{\lambda}{2}$$

o caso 2 (w_j = 0): l'intervallo $[-2\rho_j - \lambda, -2\rho_j + \lambda]$ deve contenere 0

Abbiamo dunque:

$$-2\rho_j - \lambda \le 0 \quad \Leftrightarrow \quad \rho_j \ge -\frac{\lambda}{2}$$
$$-2\rho_j + \lambda \ge 0 \quad \Leftrightarrow \quad \rho_j \le \frac{\lambda}{2}$$

In definitiva:

$$-\frac{\lambda}{2} \le \rho_j \le \frac{\lambda}{2}$$

• caso 3 (w_j > 0):
$$2z_j \hat{w}_j - 2\rho_j + \lambda = 0$$

da cui otteniamo:

$$\hat{w}_j = \frac{2\rho_j - \lambda}{2z_j} = \frac{\rho_j - \frac{\lambda}{2}}{z_j}$$

Poiché $\hat{\mathbf{w}}_{j} > 0$, abbiamo:

$$\hat{w}_j = \frac{\rho_j - \frac{\lambda}{2}}{z_j} > 0 \iff \rho_j - \frac{\lambda}{2} > 0 \iff \rho_j > \frac{\lambda}{2}$$

In conclusione:

$$\partial_{w_j}[\text{costo_lasso}] = \begin{cases} 2z_j w_j - 2\rho_j - \lambda & \text{se } w_j < 0\\ [-2\rho_j - \lambda, -2\rho_j + \lambda] & \text{se } w_j = 0\\ 2z_j w_j - 2\rho_j + \lambda & \text{se } w_j > 0 \end{cases}$$

$$\hat{w}_j = \begin{cases} \frac{\rho_j + \frac{\lambda}{2}}{z_j} & \text{se } \rho_j < -\frac{\lambda}{2} \\ 0 & \text{se } \rho_j \in [-\frac{\lambda}{2}, \frac{\lambda}{2}] \\ \frac{\rho_j - \frac{\lambda}{2}}{z_j} & \text{se } \rho_j > \frac{\lambda}{2} \end{cases}$$

Algoritmo Coordinate Descent per Lasso

Iversione con feature non normalizzatel

- calcola: $z_j = \sum_{i=1}^N \phi_j(\mathbf{x}_i)^2$
- Inizializza $\hat{\mathbf{w}} = 0$ (o in altro modo)
- while not converged:

for
$$j = 0, 1, ..., D$$
:

calcola:
$$\rho_j = \sum_{i=1}^N \phi_j(\mathbf{x}_i) [y_i - \hat{y}_i(\hat{\mathbf{w}}_{-j})]$$
set:
$$\hat{w}_j = \begin{cases} \frac{\rho_j + \frac{\lambda}{2}}{z_j} & \text{se } \rho_j < -\frac{\lambda}{2} \\ 0 & \text{se } \rho_j \in [-\frac{\lambda}{2}, \frac{\lambda}{2}] \\ \frac{\rho_j - \frac{\lambda}{2}}{z_j} & \text{se } \rho_j > \frac{\lambda}{2} \end{cases}$$

Coefficienti per LS, Ridge e Lasso

$$\hat{w}_j = \begin{cases} \frac{\rho_j + \frac{\lambda}{2}}{z_j} & \text{se } \rho_j < -\frac{\lambda}{2} \\ 0 & \text{se } \rho_j \in [-\frac{\lambda}{2}, \frac{\lambda}{2}] \\ \frac{\rho_j - \frac{\lambda}{2}}{z_j} & \text{se } \rho_j > \frac{\lambda}{2} \end{cases}$$

soft thresholding

Riferimenti

- Watt, J., Borhani, R., Katsaggelos, A.K. Machine Learning Refined, 2nd edition, Cambridge University Press, 2020.
- James, G., Witten, D., Hastie, T., Tibishirani, R. An Introduction to Statistical Learning, Springer, 2013.
- Ross, S.M. Probabilità e Statistica per l'Ingegneria e le Scienze, Apogeo, 2015.
- Machine Learning: Regression, University of Washington Coursera, 2015.
- Flach, P. Machine Learning The Art and Science of Algorithms that Make Sense of Data, Cambridge University Press, 2012.
- Murphy, K.P. Machine Learning A Probabilistic Approach, The MIT Press, 2012.