## Homework 1 Report - PM2.5 Prediction

學號:b03901109 系級:電機四 姓名:陳緯哲

1. (1%) 請分別使用每筆 data9 小時內所有 feature 的一次項(含 bias 項)以及每筆 data9 小時內 PM2.5 的一次項(含 bias 項)進行 training,比較並討論這兩種模型的 root mean-square error(根據 kaggle 上的 public/private score)。

|               | 所有 feature | PM2.5 PM10 O3 NOx NO2 NO | PM2.5 |
|---------------|------------|--------------------------|-------|
| Public score  | 8.23       | 6.01                     | 8.75  |
| Private score | 7.89       | 6.31                     | 8.40  |
| Training Loss | 4.63       | 4.73                     | 5.25  |

如果我們只使用 PM2.5 來進行 Training,儘管他的 Training Loss 看起來不錯,但 Test 的結果卻十分糟糕,但他參數太少,因此我覺得這應該不是 OverFitting,而是過少的參數讓前處理的效果(請見第4題)沒有顯現出來,就算對 test data 也進行了一樣的前處理,依舊沒辦法將 PM2.5 的特性顯現出來。

而如果採用了所有 Feature 並進行 Normalization,則會導致 Overfitting 的問題,有以下可能兩種原因

- (1) 資料的前處理:當資料遇到連續的 0 時,前處理會將不採用這些資料,而這個方式採用了所有資料,勢必得進行標準化,而此時的標準化也會讓前處理失去效果,無法找出那些無效的資料。
- (2) 資料的特性:在觀測站所測得的所有資料,不見得都跟 PM2.5 的趨勢有很大的關係,而為了 fit training data,這些資料可能會讓 PM2.5 的預測失準

綜合以上兩者,在取用 training data 時,必須使用數量足夠多且必須跟 PM2.5 有關的參數,我在實作此次作業時,便是使用 PM2.5、PM10、O3、NOx、NO2、NO 等參數進行訓練,這些參數與 PM2.5 作圖就算直接用人眼看出其趨勢的相關,因此拿來進行訓練所得出的結果十分的不錯。

2. (2%) 請分別使用至少四種不同數值的 learning rate 進行 training(其他參數需一致),作圖並且討論其收斂過程。



右圖為針對不同 Learning rate 所訓練出的 training error,以下說明各顏色所代表之 Learning Rate:

紅色: 0.001
黄色: 0.01
綠色: 0.1
藍色: 1

隨著 Learning Rate 的增加,可以看到 Training Loss 的收斂變快,在第 2000 次 epoch 的時候,豪瑟的 Training Loss 在 10 左右,黄色的則約下降到 6,而綠色與藍色皆已收斂到 5,說明了 Learning Rate 越大,其收斂速度越快;但 Learning Rate 的增加會產生飽和的效果,也就是儘管一樣是增加 10 倍的 Learning Rate,其收斂速度卻幾乎不會改善,如上圖的藍線與綠線,兩者的 Learning Rate 相差了 10 倍,但兩線幾乎是重合的。

這是不是說明了 Learning Rate 越大越好,不管再怎麼大頂多也只是飽和呢?其實不是的,左圖的 Learning Rate 是 10^17,為了方便觀察收斂速度,因此將他以同樣的量尺呈現。他的收斂速度十分的緩慢,直到第 10000 次 epoch 左右才降到 10,因此若 Learning Rate 太大,也會讓訓練的結果變得更差,甚至找不到合適的 Minimum Valley



3. (1%) 請分別使用至少四種不同數值的 regulization parameter λ 進行 training(其他參數需一致), 討論其 root mean-square error(根據 kaggle 上的 public/private score)。

|          | 0    | 10   | 100  | 1000 | 10000 | 100000 | 1000000 |
|----------|------|------|------|------|-------|--------|---------|
| Public   | 6.01 | 6.02 | 6.02 | 6.05 | 6.32  | 7.56   | 10.20   |
| Private  | 6.31 | 6.31 | 6.31 | 6.32 | 6.43  | 7.29   | 9.86    |
| Training | 4.73 | 4.73 | 4.74 | 4.74 | 4.89  | 5.83   | 7.89    |

當 $\lambda$  於 0-1000 之間時,對 Training 與 Test 的影響並不會很大,儘管有小幅度的改善 Test 的結果,但其改善幅度約在小數點後 3 位,實在是以此無法認定 Regularization 的效果,而 $\lambda$  大於 1000 後,便會使 Loss 逐漸增加。

4. (1%) 請這次作業你的 best\_hw1.sh 是如何實作的?(e.g. 有無對 Data 做任何 Preprocessing? Features 的選用有無任何考量?訓練相關參數的選用有無任何依據?)

本次作業是以手刻 Linear Regression 進行實作,Epoch = 120000,Learning Rate = 1,並使用 Adagrad 的演算法,選用了 PM2.5、PM10、O3、NOx、NO2、NO 作為 Feature 進行Training,之所以是使用這幾個參數主要是因為我利用 excel 對資料作圖,發現以上幾個參數的趨勢與 PM2.5 的趨勢十分相像,因此使用了這幾個參數。

而選用好以上幾個參數後,會發現以下兩件事情:

- (1) 資料常常有一大段的 0
- (2) 一筆為 0 的資料, 他前後資料的大小十分奇怪, 如 100、0、102

發現以上兩件事情後,我便到網路上查詢相關資料,發現觀測站所測得的資料,有時可能也是無效的,因此我進行 Data 的 Preprocessing,只要有任何以每 9 小時為一組的 Feature,內有 PM2.5 小於 0 的資料,便刪除這個 Feature;而當 Test Data 遇到小於 0 的資料時,由於不能像 Training data 一樣捨棄,只能用內插法希望能重現此筆無效的資料。經過測試後 Test Score 下降了許多,說明了這樣的處理是必須的;

另外一件值得一提的是,由於 Test 的上傳次數有限,因此必須實作 Data Validation 讓自己在 Local 端也能進行測試,我將 Training Data 分為 10 份,並選出一份作為 Test Data, 其他的資料

作為 Training Data;過程中,當我選用第 3 份 data 作為 test 的時候,與其他 validation dataset 相比,Training Loss 下降了許多,Test score 卻是上升,於是我更細部的找出這些 error 是哪些資料所導致的,將範圍縮小到 200 筆後,將這些資料刪除,成功的讓我的 Test Score 從 8.4 下降到 6.3,後來仔細檢視這些資料,這些資料都異常的大,極有可能是無效的,因此將他們刪除應該是正確的選擇。