EICO009 | COMPLEMENTOS DE MATEMÁTICA | 1º ANO - 2º SEMESTRE

Prova sem consulta. Duração: 2h.

2ª Prova de Avaliação

- * Todas as folhas devem ser identificadas com o <u>nome completo</u>. Justifique adequadamente todos os cálculos que efetuar;
- * A entrega da prova e a desistência só serão possíveis após 1 hora do início da prova;
- * Não se pode utilizar telemóveis, máquinas de calcular gráficas e microcomputadores;
- * Resolva cada um dos dois grupos utilizando folhas de capa distintas.

GRUPO I

- 1. [3,0] Considere a curva, C, intersecção das superfícies $x^2 + y^2 + z^2 = 2$ e z = 1, percorrida no sentido direto. Calcule $\int_C -xzdx + ydy + ydz$.
- **2.** [4,5] Considere o campo vetorial $\vec{f}(x,y) = (2y^3 + \beta yx^2 + 2, \alpha xy^2 + x^3 + 1)$, em que α e β são constantes reais. Seja a curva, C, fronteira da região limitada por y = 1, $y = x^3$ e $0 \le x \le 1$, percorrida no sentido direto.
 - a) Seja $\alpha = \beta = 0$. Esboce a curva, C, e calcule $\int_C \vec{f} \cdot d\vec{r}$ usando, se possível, o teorema de Green.
 - b) Determine os valores de α e β de modo que o campo $\vec{f}(x,y)$ seja gradiente.
 - c) Para os valores de α e β obtidos em b), obtenha o campo escalar, $\varphi(x,y)$, tal que $\vec{f} = \nabla \varphi$ e calcule $\int_C \vec{f} \cdot d\vec{r}$ entre os pontos O = (0,0) e P = (1,1).
- **3.** [3,0] Seja a superfície $z = \sqrt{x^2 + y^2}$, $1 \le z \le 4$. Faça o seu esboço e calcule a sua área.

GRUPO II

- **4.** [3,0] Considere o campo vetorial $\vec{f}(x,y,z) = (y,x,z)$ e a superfície z = xy, definida em $D: x^2 + y^2 \le 1$.
 - a) Obtenha uma parametrização, $\vec{r}(u,v)$, para a superfície e indique um versor, $\vec{n}(u,v)$, do vetor fundamental.
 - **b**) Determine $\iint_S (\vec{f} \cdot \vec{n}) dS$.

.....(continua no verso)

Prova sem consulta. Duração: 2h.

2ª Prova de Avaliação

- 5. [4,5] Considere o integral triplo $\int_{-2}^{2} \int_{0}^{\sqrt{4-x^2}} \int_{x^2+v^2-4}^{4-x^2-y^2} dz dy dx$.
 - a) Esboce o domínio de integração.
 - b) Calcule o valor do integral usando uma mudança de coordenadas apropriada.
 - c) Reescreva-o de modo que a primeira integração se faça em ordem a y.
- 6. [2,0] Seja $\vec{r}(u,v)$ uma representação paramétrica regular de uma superfície, S, em \mathbb{R}^3 . Mostre que o vetor fundamental associado a essa representação é, em qualquer ponto de S, um vetor normal à superfície.

(2)
$$\bar{f}(x,y) = (P,Q) = (2y^3 + Byx^2 + 2, xxy^2 + x^3 + 1)$$

C: $y=1$, $y=x^3$, $0 \le x \le 1$ (directo)

$$\frac{1}{\sqrt{10}} = \frac{1}{\sqrt{10}} =$$

b)
$$\frac{\partial l}{\partial y} = 6y^2 + \beta x^2$$
 $\frac{\partial Q}{\partial x} = xy^2 + 3x^2$
 $\frac{\partial l}{\partial y} = \frac{\partial Q}{\partial x} \implies x = 6 A \beta = 3$

c)
$$\frac{\partial \Psi}{\partial x} = \ell = 2y^3 + 3yx^2 + 2 \Rightarrow \Psi(x,y) = 2xy^3 + yx^3 + 2x + \phi_1(y) + k_1$$

 $\frac{\partial \Psi}{\partial y} = Q = 6xy^2 + x^3 + 1 \Rightarrow \Psi(x,y) = 2xy^3 + yx^3 + y + \phi_2(x) + k_2$
 $\Psi(x,y) = 2xy^3 + yx^3 + 2x + y + K$

$$\int \int \int d\tau = \Psi(1,1) - \Psi(0,0) = 2 + 1 + 2 + 1 + K - K = 6$$

$$\frac{3}{2}$$
 $\frac{1}{2} = \sqrt{x^2 + y^2}$, $1 \le z \le 4$

Stray 2 \$ 5 x2+y2 5 42

$$\frac{9\hat{r}}{3\hat{y}}$$
 = $\left(0, 1, \frac{y}{\sqrt{x^2+y^2}}\right)$

$$\overline{N}(x,4) = \left(\frac{-x}{\sqrt{x^2+y^2}}, \frac{-y}{\sqrt{x^2+y^2}}, 1 \right)$$

$$NN(\alpha, y)N = \sqrt{\frac{x^2 + y^2}{x^2 + y^2} + 1} = \sqrt{2}$$

$$\int_{-1}^{2} \int_{0}^{4-x^{2}} \frac{4-x^{2}-y^{2}}{x^{2}+y^{2}-4} dz dy dx$$

$$\pi = \frac{1}{2} + \frac{1}{r} = \frac{1}{r} =$$

$$2\pi 2 \int_{0}^{2} 4r - r^{3} dr = 2\pi \left(2r^{2} - \frac{4}{4}r^{4} \right)_{0}^{2} = 8\pi$$

1211-251652 A 05 + 64-x2

121-24K62 1 22-46250

$$0 \le y \le \sqrt{4+2-x^{2}}$$

$$2 = 4-x\sqrt{4-x^{2}-2}$$

$$2 = 0 = \sqrt{4+2-x^{2}}$$

$$3 = 0 = \sqrt{4+2-x^{2}}$$

$$3 = 0 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0 = 0$$

$$4 = 0$$

$$4 = 0$$

$$4 = 0$$

$$4 = 0$$

$$4 = 0$$

$$4 = 0$$

$$4 = 0$$

$$4 = 0$$

$$4 = 0$$

$$4 = 0$$

$$4 = 0$$

$$4 = 0$$

$$4 = 0$$

$$4 = 0$$

$$4 = 0$$

$$4 = 0$$

$$4 = 0$$

$$4 = 0$$

$$4 = 0$$

$$4 = 0$$

$$4 = 0$$

$$4 = 0$$

$$4 = 0$$

$$4 = 0$$

$$4 = 0$$

$$4 = 0$$

$$4 = 0$$

$$4 = 0$$

$$4 = 0$$

$$4 = 0$$

$$4 = 0$$

$$4 = 0$$

$$4$$

$$4-x^{2}-y^{2}=2$$
 $y^{2}=4-x^{2}-2$
 $y^{2}=4-x^{2}-2$
 $x^{2}+y^{2}-4=2$
 $y^{2}=4+2-x^{2}$
 $y^{2}=4+2-x^{2}$