Your report needs to explain at least the following:

- Which heuristics did you use for the A* algorithm?
 - We used the heuristic of determining the amount of boxes that are not in their place
 - For the inconsistent we used a random value for each node that can be either good or bad
- Test your program with a couple of different problems. Increase the size of the
 problem to test the limits of your program. Make a table comparing how many
 nodes are searched to find the answer for each problem. For this table, you should
 compare a number of different problems (at least 3) to avoid a statistical bias.
 Which of the three algorithms (UCS, A with consistent and and A with an
 inconsistent heuristic) searches the least nodes and which one take the most?

Max	Initial	Goal State	UCS	A*	A*
	State		visited	consistent	inconsistent
				visited	visited
4	(A, B); (C,	(A, B, C);	17		
	D); ();	X; X			
3	(); (A, C);	(B); (A);			
	(B);	(C);			

Why does this happen?

 \circ

- Which algorithms are optimal? Why?
 - UCS is optimal because it does all the comparisons and looks always for the optimal result, but having an heuristic it is supposed to make things faster
- In your opinion, what are the benefits of simpler algorithms versus more complex ones?
 - Simpler algorithms are easier to understand and to program, more complex ones require more time to think of for example in a good heuristic that makes the program better and require also to think on limitations of the tools used.