AMENDMENTS TO THE CLAIMS

1. (Currently Amended) A conductive member[[,]] for use in an image-forming

apparatus, in the group which includes a conductive roller or a conductive belt having

comprising a conductive layer formed of a conductive polymer composition containing an ionic-

conductive addition salt,

wherein said conductive layer comprises a continuous polymer phase and at least one or

more uncontinuous discontinuous polymer phases including at least one first uncontinuous

discontinuous polymer phase;

said continuous polymer phase and said at least one uncontinuous discontinuous polymer

phase form forming a sea-island structure;

a salt capable of dissociating into cations and anions is unevenly distributed to said first

uncontinuous phase;

[[a]] the polymer composing said first uncontinuous discontinuous polymer phase has a

higher degree of affinity for said salt capable of dissociating into cations and anions than [[a]]

polymer composing said continuous polymer phase; [[and]]

the first discontinuous polymer phase comprising the salt and the polymer having the

higher degree of affinity for said salt; and

said conductive layer has a volume resistivity not less than $10^4 \frac{\Omega \cdot cm}{\Omega \cdot cm}$ nor more

than 10^{12} (Ω -cm) Ω -cm, when said volume resistivity is measured at a voltage of 100V applied to

2

said conductive polymer composition in accordance with the method specified in JIS K6911.

ADM/REG/jmb

Amendment dated February 9, 2006

Reply to Office Action of September 9, 2005

2. (Currently Amended) The conductive member according to claim 1, wherein

supposing that a volume resistivity of said polymer composing said first uncontinuous

discontinuous polymer phase to which said salt capable of dissociating into cations and anions is

unevenly distributed is ρv_1 and that said polymer composing said continuous polymer phase is

 ρv_2 , the following equation establishes:

 $0.2 \leq \log_{10}\rho v_2 - \log_{10}\rho v_1 \leq 5$.

3. (Currently Amended) The conductive member according to claim 1, wherein a

weight ratio of a weight of said polymer composing said uncontinuous discontinuous polymer

phase to a weight of said polymer composing said continuous polymer phase is set to 5:95 to

75:25.

4. (Currently Amended) The conductive member according to claim 1, wherein said

at least one uncontinuous discontinuous polymer phase consists of comprises said first

uncontinuous discontinuous polymer phase and a second uncontinuous discontinuous polymer

phase; and said salt eapable of dissociating into cations and anions is unevenly is preferentially

distributed to said first uncontinuous discontinuous polymer phase[[,]] whereas said salt capable

of dissociating into cations and anions is distributed very little to said second uncontinuous

discontinuous phase and said continuous phase;

an affinity between said salt and said polymer composing said first uncontinuous

discontinuous polymer phase is higher than an affinity between said salt and said polymer

composing said continuous polymer phase, and said affinity between said salt and said polymer

3

ADM/REG/jmb

Amendment dated February 9, 2006

Reply to Office Action of September 9, 2005

composing said continuous polymer phase is higher than an affinity between said salt and said

polymer composing said second uncontinuous discontinuous polymer phase; and

[[an]] a volume resistivity electric resistance (volume resistivity) of said first

uncontinuous discontinuous polymer phase is lower than [[an]] a volume resistivity electric

resistance of said continuous polymer phase, and said electric resistance of said continuous

polymer phase is lower than an electric resistance of said second uncontinuous discontinuous

polymer phase.

5. (Currently Amended) The conductive member according to claim 1, wherein said

salt capable of dissociating into cations and anions has a has an electric conductivity of not less

than 2.3mS/cm, when said electric conductivity is measured at a concentration of a salt of 0.1

mol/liter at 25°C in a mixed solvent of propylene carbonate (PC) and dimethyl earbonate (DME)

(mixing carbonate, wherein a ratio between [[PC]] propylene carbonate and [[DME]] dimethyl

carbonate is 1:2 in volume fraction[[)]].

6. (Currently Amended) The conductive member according to claim 1, wherein said

salt capable of dissociating into cations and anions is an anion-containing salt having fluoro

groups and sulfonyl groups.

7. (Currently Amended) The conductive member according to claim 6, wherein said

salt capable of dissociating into cations and anions is a lithium salt, a potassium salt, a quaternary

4

ammonium salt or an imidazolium salt.

ADM/REG/jmb

Amendment dated February 9, 2006

Reply to Office Action of September 9, 2005

8. (Original) The conductive member according to claim 1, wherein said conductive

polymer composition is a vulcanized or a thermoplastic elastomer composition.

9. (Currently Amended) The conductive member according to claim 1, wherein each

of polymers for use in said continuous polymer phase and said uncontinuous discontinuous

polymer phase has a glass transition temperature [[(Tg)]] Tg not more than -40°C.

10. (Currently Amended) The conductive member according to claim 1, wherein said

continuous polymer phase contains low nitrile acrylonitrile-butadiene rubber (NBR); said first

uncontinuous discontinuous polymer phase contains polyether polymer; and said second

uncontinuous discontinuous phase contains ethylene-propylene-diene copolymer (EPDM); and

said salt eapable of dissociating into cations and anions is unevenly preferentially

distributed to said polyether polymer of said first uncontinuous discontinuous polymer phase.

11. (Currently Amended) The conductive member according to claim 1, wherein said

continuous polymer phase contains low nitrile acrylonitrile-butadiene rubber (NBR); said first

uncontinuous discontinuous polymer phase contains polyether polymer; and [[said]] a second

uncontinuous discontinuous polymer phase contains ethylene-propylene-diene copolymer

(EPDM); and

a volume fraction of said continuous phase is higher than a volume fraction of said

second uncontinuous discontinuous polymer phase; and said volume fraction of said second

5

ADM/REG/jmb

Amendment dated February 9, 2006

Reply to Office Action of September 9, 2005

uncontinuous discontinuous polymer phase is higher than a volume fraction of said first

uncontinuous discontinuous polymer phase.

12. (Currently Amended) The conductive member, according to claim 11, comprising

50 wt% to 90 wt% of said low-nitrile acrylonitrile-butadiene rubber (NBR); 10 wt% to 40 wt%

of said ethylene-propylene-diene copolymer (EPDM); 0.5 wt% to 25 wt% of said polyether

polymer; and 0.1 wt% to 2 wt% of said salt eapable of dissociating into cations and anions.

13. (Currently Amended) The conductive member according to claim [[4]] 10,

wherein said polyether polymer essentially contains comprises a copolymer of ethylene oxide

(EO) propylene oxide (PO) allyl glycidyl ether (AGE) ethylene oxide-propylene oxide-allyl

glycidyl ether.

14. (Currently Amended) The conductive member according to claim 1, wherein said

conductive polymer composition has a compression set not more than 30%, when said

compression set is measured at a temperature of 70°C for 22 hours to 24 hours at a compression

rate of 25% in accordance with Permanent permanent set testing methods for rubber, vulcanized

or thermoplastic specified in JIS K6262.

15. (Currently Amended) The conductive member[[,]] according to claim 1,

consisting of wherein the conductive layer comprises a roller having said conductive layer or a

6

belt having said conductive layer.

ADM/REG/jmb

Amendment dated February 9, 2006

Reply to Office Action of September 9, 2005

16. (Currently Amended) The conductive member consisting of a conductive roller

according to claim 1, wherein the conductive member comprises a conductive roller having when

an electric resistance R [[(Ω)]] in Ω of said conductive roller is measured by applying a constant

voltage of 1000V thereto for 96 hours successively at a temperature of 23°C and a relative

humidity of 55%, wherein $\Delta \log_{10}R = \log_{10}R(t=96 \text{ hours}) - \log_{10}R(t=0 \text{ hour})$ indicating a rise

amount of said electric resistance R $[(\Omega)]$ in Ω is set to not more than 0.5.

17. (Currently Amended) The conductive member consisting of a conductive roller

according to claim 1, wherein when an electric resistance R [[(Ω)]] in Ω of said conductive roller

is measured at a temperature of 10°C and a relative humidity of 15% and at a temperature of

32.5°C and a relative humidity of 90%, wherein Δlog₁₀R=log₁₀R(temperature of 10°C and

relative humidity of 15%)-log₁₀R(temperature of 32.5°C and relative humidity of 90%)

indicating a dependence degree of said electric resistance on environment is set to not more than

1.7.

18. (Currently Amended) The conductive member eonsisting of a conductive roller

or/and a conductive belt according to claim 1, wherein said conductive layer is a conductive

roller or a conductive belt formed as a cellular material layer having an expansion ratio of not

less than 100% nor more than 500% and a hardness of not more than 60 degrees, when said

7

hardness is measured by the durometer of type E specified in JIS K6253.

ADM/REG/jmb

Amendment dated February 9, 2006

Reply to Office Action of September 9, 2005

19. (Currently Amended) The conductive member consisting of a conductive belt

according to any one of claim 1, wherein when the conductive member is a conductive belt

having a volume resistivity ρv (Ω -cm) in Ω -cm of a sample of said conductive belt that is

measured by applying a constant voltage of 1000V to said sample having a thickness of 0.25mm

for five hours successively at a temperature of 23°C and a relative humidity of 55%,

 $\Delta \log_{10}\rho v = \log_{10}\rho v(t=5 \text{ hours}) - \log_{10}\rho v(t=0 \text{ hour})$ indicating a rise amount of said volume

resistivity is set to not more than 0.5.

20. (Currently Amended) The conductive member consisting of a conductive belt

according to claim 1, wherein when the conductive member is a conductive belt having a volume

resistivity $\rho v (\Omega - cm) = \Omega \cdot cm$ of said conductive belt is measured at a temperature of 10°C and a

relative humidity of 15% and at a temperature of 32.5°C and a relative humidity of 90%.

 $\Delta \log_{10}\rho v = \log_{10}\rho v$ (temperature of 10°C and relative humidity of 15%)- $\log_{10}\rho v$ (temperature of

32.5°C and relative humidity of 90%) indicating a dependence degree of said volume resistivity

on environment is set to not more than 1.7.

21. (Currently Amended) The conductive member consisting of a flame retardant

seamless belt according to claim 1, wherein the conductive member is a flame retardant seamless

belt having said conductive polymer composition that comprises 50 to 95 parts by weight of a

polyester thermoplastic elastomer added to 100 parts by weight of an entire polymer component;

15 wt% to 40 wt% of melamine cyanurate serving as a flame-retardant additive added to 100

wt% of said conductive polymer composition; 0.01 parts by weight to 3 parts by weight of said

ADM/REG/jmb

salt, which can dissociate into cations and at least an anion shown by a chemical formula 1, added to 100 parts by weight of said entire polymer component; and not less than 5 parts by weight nor more than 50 parts by weight of a copolymer, having a polyether block, added to 100 parts by weight of said polyester thermoplastic elastomer; and

said conductive polymer composition has a volume resistivity of not less than $1.0\times10^6\Omega$ cm nor more than $1.0\times10^{12}\Omega$ cm[[.]]

Chemical Formula 1

$$X_1$$
 X_2
 N^-

Where where X_1 and X_2 denote functional group which contains C, F-, and $-SO_2$ - and in which the number of carbon atoms is one to eight.

22. (Currently Amended) The conductive member consisting of a belt according to claim 21, wherein supposing that a volume resistivity of said belt measured immediately after a constant voltage of 1000V is applied to a sample of said belt having a thickness of 250 μ m at a temperature of 23°C and a relative humidity of 55% is ρv (t=0 hour) at t=0 hour and that a volume resistivity measured after said voltage is applied to said sample for five hours successively is ρv (t=five hours) at t=five hours, the following relationship establishes:

 $\log_{10}\rho v(t=5 \text{ hours})-\log_{10}\rho v(t=0 \text{ hour}) \leq 0.5$.

23. (Currently Amended) The conductive member according to claim 21, wherein a

glass transition temperature Tg of said copolymer having said polyether block is set to not more

than

-40°C; and

a weight of said copolymer, having said polyether block, contained in a material of said

belt is 1.6 to 3333 times as large as that of said salt, which can dissociate into cations and at least

an anion shown by said chemical formula 1.

24. (Currently Amended) The conductive member according to claim 21, wherein

said X_1 - of said chemical formula 1 is $C_{n1}H_{m1}F_{(2n1-m1+1)}$ -SO₂-, and X_2 - of said chemical formula 1

is $C_{n2}H_{m2}F_{(2n2-m2+1)}$ -SO₂- [[(]] where n1 and n2 are integers not less than 1, and m1 and m2 are

integers not less than 0[[)]; and

a cation making a pair with said anion, shown by said chemical formula 1, which

constitutes said salt is a cation of any one of alkali metals including lithium, group 2A metals,

and transition metals, and amphoteric metals.

25. (Original) The conductive member according to claim 21, wherein when a volume

resistivity of said conductive member is measured at a temperature of 10°C and a relative

humidity of 15% and at a temperature of 32.5°C and a relative humidity of 90%, the following

equation establishes:

log₁₀ρν (temperature of 10°C and relative humidity of 15%)-log₁₀ρν(temperature of

32.5°C and relative humidity of 90%) \le 2.5.

Docket No.: 2927-0163P

26. (Original) The conductive member according to claim 21, having at least one

layer formed on a peripheral surface thereof.

27. (Currently Amended) [[The]] An image-forming apparatus comprising [[a]] the

conductive member according to claim 1.

28. (Currently Amended) A method of manufacturing a conductive member[[,]]

having a conductive layer[[,]] for use in an image-forming apparatus, comprising the steps of:

kneading or blending a salt eapable of dissociating into cations and anions uniformly with

a polymer composing an uncontinuous discontinuous polymer phase to which said salt capable

of dissociating into cations and anions is unevenly is preferentially distributed to form a

compound or a mixture of said salt and said polymer;

adding a polymer composing a continuous polymer phase and a polymer composing

another uncontinuous discontinuous polymer phases phase to said compound or said mixture;

and kneading a mixture of said all components to form a conductive polymer composition; and

molding or forming said conductive polymer composition by heating said conductive

polymer composition into whole or a part of said conductive member for use in an image-

forming apparatus.

29. (Currently Amended) A method of manufacturing a belt, for use in an image

forming apparatus, according to claim 21[f,]] comprising the steps of:

fusing and kneading, by an extruder, a conductive master batch containing a copolymer having a polyether block and 1 to 20 wt% of said an anion-containing salt shown by a chemical formula 1, a flame-retardant additive, and a thermoplastic composition containing not less than 50 wt% of a polyester thermoplastic elastomer to form a mixture; and

extruding said mixture from an annular die and molding said mixture into a shape of a seamless belt by using a sizing die[[.]]

Chemical Formula 1

Where X_1 and X_2 denote functional group which contains C, F-, and -SO₂- and in which the number of carbon atoms is one to eight,

wherein the belt is the conductive member according to claim 21.

30. (Original) The method of manufacturing a belt according to claim 29, wherein said flame-retardant additive and thermoplastic composition containing said polyester thermoplastic elastomer are kneaded and supplied to said extruder as a flame-retardant master batch; and said mixture of said conductive master batch and said flame-retardant master batch and other components are extruded vertically from said annular die.