

Program	Bachelor of Technology (BTech) Semester -	· 4
Type of Course	Professional Core	
Prerequisite	Data Structure	
Course Objective	This course introduces various methods to design and analyze algorithms. Students will learn different algorithms for given computational tasks and evaluate their relative merits based on the performance measures.	

Teaching Scheme (Contact Hours)					Exa	mination Scho	eme	
Lastura	Tutovial	Dreatical	0	Theory Marks		Practical Marks		Total
Lecture	Tutorial	Practical	Credit	SEE	CIA	SEE	CIA	Marks
3	0	2	4	70	30	25	25	150

SEE - Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.)

	rse Content	T - Teaching Hours W	- Wei	ghtage
Sr.	Topics		Т	W
1	Introduction to	Algorithms and Mathematics and Analysis of Algorithm:	10	20
	Relations, Line Analysis of Alg statement, Sor	gorithm, Characteristics of Algorithm, Algorithm design techniques, Mathematics for algorithmic sets, Fu ar inequalities, and Linear equations orithm : Algorithm Analysis, Average, best and worst case analysis, Asymptotic Notations, Analysing cont ting Algorithms and Performance analysis: Bubble sort, Selection sort, Insertion sort, Shell sort, Heap sort c, and Counting sort	rol	
2	Divide and Con	quer Algorithm	9	20
		ences, Substitution Method, Recurrence Tree Method, Master's Method, Linear, and binary searching, Mer tiplying Large Integers, Matrix Multiplication.	ge soi	1,
3	Greedy Algorit	nm	9	20
3	General Charac	nm eteristics of greedy algorithms, Make a change problem, Activity selection problem, Minimum Spanning Tr rim's Algorithm, Single source shortest path dijkstra's Algorithm, Knapsack Problem, Huffman Code, Job S	ee, Kr	ushka
4	General Charac	eteristics of greedy algorithms, Make a change problem, Activity selection problem, Minimum Spanning Tr rim's Algorithm, Single source shortest path dijkstra's Algorithm, Knapsack Problem, Huffman Code, Job S	ee, Kr	ushka
	General Charac 's Algorithm, Problem Dynamic Progr The Principle opair shorted pa	eteristics of greedy algorithms, Make a change problem, Activity selection problem, Minimum Spanning Tr rim's Algorithm, Single source shortest path dijkstra's Algorithm, Knapsack Problem, Huffman Code, Job S	ee, Kr Sched	ushka uling 20 n, All

Printed on: 03-01-2024 08:46 AM Page 1 of 4

Total 45

100

Cou	rse Content	T - Teaching Hours W - Wei	ghtac
Sr.	Topics	Т	W
	An introduction using graphs, Sorting.	Directed and Undirected graphs, Graph Traversal: DFS, BFS, Articulation Point, and Topological	
	Branch and bound: Introduction	on, The Eight queens problem, Knapsack problem using branch and bound Min-Max Principle.	
	String Matching: Introduction automata, The Knuth-Morris-F	n, The naive string matching algorithm, The Rabin-Karp algorithm, String Matching with finite Pratt algorithm.	
	NP-Completeness: Computat	3	

Suggested Distri	bution Of Theory M	larks Using Bloom'				
Level	Remembrance	Understanding	Application	Analyze	Evaluate	Create
Weightage	15	25	25	25	10	0

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Cours	se Outcomes	
At the	end of this cours	se, students will be able to:
CO1	discuss the bas	ics of algorithmic techniques.
C02	apply the time o	omplexity and their notations in problem-solving.
CO3	analyse the gen	eral strategies of algorithms.
C04	implementation	of algorithmic problems.
CO5	describe the cla	sses P, NP, and NP Complete.

Refe	rence Books	
1.	Fundamental of By Gills Brassar	f Algorithms d, Paul Bratley PHI
2.	Introduction to By Thomas H. C	Algorithms Formen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein PHI
3.	Fundamentals of By E. Horowitz	•

List of Practical

- 1. Implement various problems using iterative and recursive approach
 - 1. Write a recursive program for calculation of factorial of an integer.
 - 2. Write a program to print the first 50 natural numbers using recursion.
 - 3. Write a program to calculate the sum of numbers from 1 to n using recursion.
- 2. Implement various array operations using recursion
 - 1. Write a program to print the array elements using recursion.
 - Write a program to count the digits of a given number using recursion.
 - 3. Write a program to calculate the power of any number using recursion.
- 3. Implement matrix transpose, addition and multiplication operations
 - 1. Write a program to print the transpose of a matrix.
 - 2. Write a program to find the sum of all diagonal elements of a matrix.

Printed on: 03-01-2024 08:46 AM Page 2 of 4

	3. Write a program to print the lower triangle of a matrix. 4. Write a program to print the program of a matrix.
_	4. Write a program to print the maximum element from a matrix.
4.	Implementing various data structures like stack, queue and linked list
	 Write a program to implement stack operations (PUSH, POP, PEEP, CHANGE & DISPLAY) Write a program to implement queue operations (INSERT, DELETE, DISPLAY)
	Write a program to implement singly linked list operations (INSERT, DELETE, DISPLAY)
5.	Implement and Analyse time complexity of Bubble and Insertion sort
	1. Write a program to sort array elements using bubble sort.
	Write a program to sort array elements using insertion sort.
6.	Implement and Analyse time complexity of Selection sort and Heap sort
	Write a program to sort array elements using selection sort.
	2. Write a program to sort array elements using heap sort.
7.	Implementation and Time analysis of Linear and Binary search algorithm
	Write a program to implement linear search algorithm. Write a program to implement binary search algorithm.
0	
8.	Implement and Analyse time complexity of Quick sort and Merge sort
	Write a program to implement quick sort algorithm. Write a program to implement merge sort algorithm.
9.	Implementation of Kruskal's and Prim's algorithms using Greedy algorithm
	Write a program to study and implement minimum spanning tree using Kruskal's algorithm.
	Write a program to study and implement minimum spanning tree using Prim's algorithm.
10.	Implementation of Dijkstra's and Huffman code algorithms using Greedy algorithm
	1. Write a program to study and implement Dijkstra's algorithm.
	Write a program to study and implement Huffman code algorithm.
11.	Implementation of Making a change problem and Largest Common Sub-sequence using Dynamic programming
	Write a program to implement making a change problem using dynamic programming.
	2. Write a program to implement Largest Common Sub-sequence.
12.	Implementation of a Knapsack problem using Greedy approach and Dynamic programming
	 Implement knapsack problem using greedy approach Implement 0/1 knapsack problem using dynamic programming.
13.	Implementation of DFS and BFS algorithms
	Write a program to implement the DFS algorithm.
	2. Write a program to implement the BFS algorithm.
14.	Implementation of Rabin-Karp string matching algorithm
	1. Write a program to implement Rabin-Karp method for pattern searching
15.	Illustrating Various Algorithms using HTML and JavaScript
	Create a visual application using HTML and JavaScript that demonstrates one of the various algorithms.

Printed on: 03-01-2024 08:46 AM Page 3 of 4

Miscellaneous

Useful Links

GCC, JAVA

W1: https://www2.cs.duke.edu/courses/fall10/cps130/lectures.htm W2: https://www.isical.ac.in/~arijit/courses/spring2017/daa-mtech.html

W3: http://www.cs.umd.edu/class/fal2015/cmsc451/

Printed on: 03-01-2024 08:46 AM Page 4 of 4