

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.01 Информатика и вычислительная техника

ОТЧЕТ

	по домашн	ему заданию №_1_								
Название: Поток в транспортной сети. Алгоритм Форда-Фалкерсона										
Дисциплина: Дискретная математика										
Студент	ИУ6-42б	14.05.2021	И.С. Марчук							
	(Группа)	(Подпись, дата)	(И.О. Фамилия)							
Преподаватель			В.В. Гуренко							

(Подпись, дата)

(И.О. Фамилия)

Вариант 17

Задание:

Сеть в виде взвешенного орграфа задана матрицей Ω пропускных способностей ориентированных ребер. При помощи алгоритма Форда — Фалкерсона определить максимальный поток ϕmax , доставляемый от источника s=x 1 к стоку t=x 12 и указать минимальный разрез, отделяющий t от s.

Оптимизационную часть алгоритма реализовать в виде коррекции потока хотя бы на одном увеличивающем маршруте.

	Вариант 17.											
	x_1	x_2	x_3	x_4	x_5	x_6	<i>x</i> ₇	<i>x</i> ₈	x_9	<i>x</i> ₁₀	<i>x</i> ₁₁	<i>x</i> ₁₂
x_1	_	15	20	25	ı	-	-	-	-	1	ı	-
x_2	-	I	I	I	6	9	-	17	-	1	ı	_
x_3	-	16	ı	ı	-	10	14	-	-	-	ı	_
x_4	_	ı	35	ı	ı	-	5	-	-	-	ı	-
x_5	-	ı	1	1	-	-	-	12	1	-	1	-
x_6	-	-	-	-	5	-	-	-	11	_	1	2
x_7	_	-	_	_	-	8	-	-	-	6	1	-
x_8	-	-	-	-	-	-	-	-	-	-	31	-
x_9	-	-	-	-	-	-	13	3	-	_	9	6
x_{10}	_	ı	ı	ı	-	-	-	-	7	-	ı	4
x_{11}	-	1	-	-	-	-	-	-	-	-	1	44
x_{12}	_	-	_	_	-	-	-	-	-	_	1	-

Рисунок 1 — Матрица Ω

Теоремы:

Теорема 1

Если (s,x1,...,xk,t) – путь от источника к стоку, состоящий только из ненасыщенных дуг, то значение потока на этом пути и, следовательно, во всей сети можно увеличить на

 δ *=min { δ (xi,xj)}; δ (xi,xj)=c(xi,xj)- ϕ (xi,xj). по всем дугам (xi,xj) пути.

Теорема 2

Если (s,xn,...,xk,t) – увеличивающий маршрут, то значение потока на его прямых дугах можно увеличить, а на обратных – уменьшить на величину

$$\varepsilon^* = \min\{\delta^*, \phi^*\}$$
, где
$$\delta^* = \min \text{ по прямым дугам } \{\delta(xi,xj)\} =$$

$$\min \text{ по прямым дугам } \{c(xi,xj)-\phi(xi,xj)\},$$

$$\phi^* = \min \text{ по обратным дугам } \{\phi(xi,xj)\}.$$
 При этом величина потока в сети возрастает на ε^* .

Теорема 3

Поток в сети достигает максимального значения тогда и только тогда, когда в сети не существует увеличивающего маршрута.

Теорема 4 (Форда-Фалкерсона)

Для любой сети с одним источником и одним стоком величина максимального потока, доставляемого от источника к стоку, равна пропускной способности минимального разреза:

 ϕ max = c min

Решение:

Составим взвешенный орграф (рисунок 1) заданный матрицей. Начальный поток во всех дугах возьмем за 0.

Рисунок 2 – Начальная сеть

Используя теорему 1, достигнем полного потока:

1) Возьмем путь (x1-x2-x8-x11-x12), $\delta^* = \min\{15\text{-}0, 17\text{-}0, 31\text{-}0, 44\text{-}0\} = 15$

Ребро x1-x2 стало насыщенным. Значение потока φ в сети стало равным 15. Результат показан на рисунке 3.

Рисунок 3 – Путь 1

2) Возьмем путь (x1-x3-x2-x8-x11-x12), $\delta^* = \min\{20\text{-}0, 16\text{-}0, 17\text{-}15, 31\text{-}15, 44\text{-}15\} = 2$

Ребро x2-x8 стало насыщенным. Значение потока φ в сети стало равным 17. Результат показан на рисунке 4.

Рисунок 4 – Путь 2

3) Возьмем путь (x1-x3-x2-x5-x8-x11-x12), $\delta^* = \min\{20\text{-}2, 16\text{-}2, 6\text{-}0, 12\text{-}0, 31\text{-}17, 44\text{-}17}\} = 6$

Ребро x2-x5 стало насыщенным. Значение потока φ в сети стало равным 23. Результат показан на рисунке 5.

Рисунок 5 – Путь 3

4) Возьмем путь (x1-x3-x6-x9-x12), $\delta^* = \min\{20\text{-}8, 10\text{-}0, 11\text{-}0, 6\text{-}0\} = 6$

Ребра (x9, x12) стали насыщенными. Значение потока φ в сети стало равным 29. Результат показан на рисунке 6.

Рисунок 6 – Путь 4

5) Возьмем путь (x1-x4-x3-x7-x6-x9-x11-x12), $\delta^* = \min\{25\text{-}0, 35\text{-}0, 14\text{-}0, 8\text{-}0, 11\text{-}6, 9\text{-}0, 44\text{-}23\} = 5$

Ребро x6-x9 стало насыщенным. Значение потока ф в сети стало равным 34 Результат показан на рисунке 7.

Рисунок 7 – Путь 5

6) Возьмем путь (x1-x4-x3-x6-x5-x8-x11-x12), $\delta^* = \min\{25\text{-}5,\,35\text{-}5,\,10\text{-}6,\,5\text{-}0,\,12\text{-}6,\,31\text{-}23,\,44\text{-}28\} = 4$

Ребро x3-x6 стало насыщенным. Значение потока ф в сети стало равным 38 Результат показан на рисунке 8.

Рисунок 8 – Путь 6

7) Возьмем путь (x1-x4-x7-x10-x12), δ * = min{25-9, 5-0, 6-0, 4-0} = 4

Ребро x10-x12 стало насыщенным. Значение потока φ в сети стало равным 42 Результат показан на рисунке 9.

Рисунок 9 – Путь 7

8) Возьмем путь (x1-x4-x7-x6-x5-x8-x11-x12), $\delta^* = \min\{25\text{-}13, 5\text{-}4, 8\text{-}5, 5\text{-}4, 12\text{-}10, 31\text{-}27, 44\text{-}32}\} = 1$

Ребра (x4, x7) и (x6, x5) стали насыщенными. Значение потока ф в сети стало равным 43 Результат показан на рисунке 10.

Рисунок 10 – Путь 8

9) Возьмем путь (x1-x4-x3-x7-x6-x12), $\delta^* = \min\{25\text{-}14, 35\text{-}9, 14\text{-}5, 8\text{-}6,2\text{-}0\} = 2$

Ребра (x7, x6) и (x6, x12) стали насыщенными. Значение потока ф в сети стало равным 45 Результат показан на рисунке 11.

Рисунок 11 – Путь 9

10) Возьмем путь (x1-x4-x3-x7-x10-x9-x11-x12), $\delta^* = \min\{25\text{-}16, 35\text{-}11, 14\text{-}7, 6\text{-}4, 7\text{-}0, 9\text{-}5, 44\text{-}33}\} = 2$

Ребро (x7, x10) стало насыщенным. Значение потока ф в сети стало равным 47 Результат показан на рисунке 12.

Рисунок 12 – Путь 10

В сети путей больше нет. Больше нельзя построить путь, состоящих из ненасыщенных рёбер орграфа от источника к стоку. Это хорошо видно, если удалить вершины графа, из которых идут только насыщенные ребра (рисунок 13). Следовательно полный поток в сети равен 47.

Рисунок 13 – граф без вершин, из которых идут только насыщенные ребра

Используя теорему 2, найдём максимальный поток в сети.

1) Пометим вершины, чтобы найти маршрут от источника к стоку (рисунок 14).

Рисунок 14 – Помеченные по теореме 2 вершины

Вершину x12 пометить не удалось, значит увеличивающего маршрута нет и по теореме 3 максимальная величина потока в сети равна 47.

Зададим множество А, состоящие из помеченных верши, а множество А' из не помеченных.

$$A = \{x1, x2, x3, x4, x6, x7\}$$
$$A' = \{x5, x8, x9, x10, x11, x12\}$$

Минимальный срез по определению содержит дуги исходящие из множества A в множество A' (Это проиллюстрировано на рисунке 15).

$$(A \rightarrow A') = \{(x2, x8), (x2, x5), (x6, x5), (x6, x9), (x6, x12), (x7, x10)\}$$

Рисунок 15 – Минимальный срез

По теореме 4 максимальный поток в сети равен пропускной способности минимального разреза.

$$c(A \rightarrow A') = 17+6+5+11+2+6 = 47$$

Так как максимальны поток по теореме 4 совпал с потоком, найденным на прошлом шаге, то можно сделать вывод, что задача решена верно.

Ответ:

$$(A \rightarrow A') = \{(x2, x8), (x2, x5), (x6, x5), (x6, x9), (x6, x12), (x7, x10)\};$$
 $\varphi max = 47;$

Вывод: Я изучил 4 теоремы, использующиеся в алгоритме Форда-Фалкерсона. А также применил полученные знания для поиска максимального потока в сети и минимального среза.