Feature engineering w problemie klasyfikacji wierzchołków dla danych grafowych

Sebastian Zając

AI SPRING. SZTUCZNA INTELIGENCJA W NAUKACH EKONOMICZNYCH 08.05.2024

Motywacja

Machine Learning Classification Output Node Classification

Cel: przypisanie etykiety dla wierzchołków.

Zastosowania: systemy rekomendacyjne, wskazywanie nowych kontaktów, analizy sieci społecznościowych ...

Feature enginering - Zmienne

Klasyczne miary

oznaczenie	nazwa
lcc	local clustering coefficient
bc	betweenness centrality
СС	closeness centrality
dc	degree centrality
ndc	average degree centrality of neighbours
ec	eigenvector centrality
eccen	node eccentricity
core	node coreness
n2v	16-dim node2vec embedding
s2v	16-dim struc2vec embedding

Podział grafu na community

Identyfikacja communities w sieci realizowana może być w sposób nienadzorowany. Wykonywana często jako EDA.

Rozpatrujemy zmienne, które skupiają swoją uwagę na strukturze communities.

Community features literatura:

Podział A = $\{A_1, A_2, \dots, A_{\ell}\}$ zbioru wierzchołków V na ℓ communities

Każda część A_i ($i \in [\ell]$) jest gesta w porównaniu do gestości całego grafu.

 $\deg_{A_i}(v)$: liczba sąsiadów wierzchołka $v \le A_i$

Participation coefficient wierzchołka v

$$p(v) = 1 - \sum_{i=1}^{\ell} \left(\frac{\deg_{A_i}(v)}{\deg(v)} \right)^2$$

Anomaly score CADA

$$\operatorname{cd}(v) = \frac{\operatorname{deg}(v)}{d_{\mathsf{A}}(v)}$$

gdzie $d_A(v)$ max liczba sąsiadów należących do tego samego COMMUNITY. T.J. Helling et all, A community-aware approach for identifying node anomalies in complex networks.2019

Community-aware features

Znormalizowany anomaly score wierzchołka v

$$\overline{\operatorname{cd}}(v) = \frac{\deg_{A_i}(v)}{\deg(v)}$$

Normalized within-module degree wierzchołka v

$$z(v) = \frac{\deg_{A_i}(v) - \mu(v)}{\sigma(v)}$$

gdzie $\mu(v)$ i $\sigma(v)$ to , średnia i odchylenie $\deg_{A_i}(u)$ ze wszystkich u wewnątrz community do którego należy v.

Nasze Community-aware features

Community Association Strength

Dla każdego wierzchołka $v \in A_i$, definiujemy the community association strength jako:

$$\beta^*(v) = 2\left(\frac{\deg_{A_i}(v)}{\deg(v)} - \lambda \frac{\operatorname{vol}(A_i) - \deg(v)}{\operatorname{vol}(V)}\right).$$

Mniejsza wartość $\beta^*(v)$, mniejsza przynależność wierzchołka v do community.

S. Zając

FE w procesie klasyfikacji

Community-aware node features w eksperymencie

abbreviation	symbol	name
CADA	cd(v)	anomaly score CADA
CADA*	$\overline{\operatorname{cd}}(v)$	normalized anomaly score
WMD	z(v)	normalized within-module degree
CPC	p(v)	participation coefficient
CAS	$\beta^*(v)$	community association strength
CD_L11	$L_1^1(v)$	L ¹ norm for the 1st neighbourhood
CD_L21	$L_1^2(v)$	L ² norm for the 1st neighbourhood
CD_KL1	$kl_1(v)$	Kullback–Leibler div. 1st neigh.
CD_HD1	$h_1(v)$	Hellinger distance for the 1st neighbourhood
CD_L12	$L_2^1(v)$	L ¹ norm for the 2nd neighbourhood
CD_L22	$L_2^2(v)$	L ² norm for the 2nd neighbourhood
CD_KL2	$kl_2(v)$	Kullback–Leibler div. for the 2nd neighb.
CD_HD2	$h_2(v)$	Hellinger distance for the 2nd neighbourhood

Eksperymentalne dane

Syntetyczne grafy ABCD + o

Artificial Benchmark for Community Detection with Outliers 4 sieci z różnym poziomem szumu: $\chi \in \{0.3, 0.4, 0.5, 0.6\}$ N = 10,000 wierzchołków z 1,000 outlierów.

Empirical Graphs

zbiór	# nodes	śr. deg	# liczba	target
			klastrów	
Reddit	10,980	14.30	12	3.661%
Grid	13,478	2.51	78	0.861%
LastFM	7,624	7.29	28	20.619%
Facebook	22,470	15.20	58	25.670%
Amazon	9,314	37.49	39	8.601%

ABCD+o

The Artificial Benchmark for the Community Detection graph is a random model with community structure and power-law distribution for degrees and community sizes. It has been recently augmented to allow for the generation of outlier nodes (ABCD+o).

ABCD+o graphs with (ξ = 0.2, left) and (ξ = 0.4, right)

See also: ABCD graph generator in Julia programming language - https://github.com/bkamins/ABCDGraphGenerator.jl

B. Kamiński, P. Prałat, F. Théberge: "Mining Complex Networks", CRC Press (2022) or Outliers in the ABCD Random Graph Model with Community Structure (ABCD+o).

Eksperyment 1

 $Wszystkie\ reprodukowalne\ kody:\ https://github.com/sebkaz/BetaStar$

Pytanie: czy nowe zmienne mogą być modelowane klasycznymi zeminnymi?

Modele: Regresja

Linear regression, Ridge regression, Random forest, XGBoost, Lightgbm.

Miary weryfikacyjne:

Kendall correlation, spearnman correlation, and R^2 score.

Wyniki 1 - ABCD +o

target	$\xi = 0.3$	$\xi = 0.4$	$\xi = 0.5$	$\xi = 0.6$
CADA	0.3305	0.2541	0.2292	0.1766
CADA*	0.3613	0.2877	0.2772	0.1713
CPC	0.3540	0.3568	0.3231	0.3106
CAS	0.4205	0.3584	0.3138	0.2167
CD_L21	0.4539	0.4043	0.3823	0.3313
CD_L22	0.6265	0.5589	0.5009	0.4492
CD_L11	0.5935	0.5571	0.5834	0.5648
CD_L12	0.6503	0.5799	0.5464	0.5188
CD_KL1	0.6991	0.6411	0.5918	0.4929
CD_HD1	0.6809	0.6334	0.6170	0.5584
CD_KL2	0.7453	0.6602	0.6090	0.5471
CD_HD2	0.7546	0.7119	0.6815	0.6352
WMD	0.7670	0.7288	0.6915	0.6387

Wyniki 1 - Rzeczywiste grafy

target	Amazon	Facebook	Grid	LastFM	Reddit
CADA	0.5830	0.5666	0.2156	0.4815	0.6826
CADA*	0.6058	0.5828	0.2174	0.5058	0.6867
CPC	0.6338	0.5992	0.2193	0.5175	0.7193
CAS	0.6538	0.6257	0.2999	0.5594	0.7306
CD_L21	0.7052	0.6464	0.3496	0.5698	0.7574
CD_L22	0.7554	0.7355	0.3557	0.6295	0.7941
CD_L11	0.7251	0.7041	0.6978	0.6220	0.7735
CD_L12	0.7794	0.7785	0.6447	0.6884	0.7810
CD_KL1	0.7176	0.7516	0.7394	0.6289	0.7755
CD_HD1	0.7383	0.7482	0.7168	0.6459	0.7853
CD_KL2	0.7706	0.7826	0.7292	0.6853	0.8097
CD_HD2	0.8212	0.8173	0.6930	0.7369	0.8221
WMD	0.8447	0.8456	0.8488	0.8531	0.7638

Eksperyment 2: jakość przewidywania zmiennej celu.

Weryfikacja użyteczności nowych zmiennych w procesie klasyfikacji z określonym targetem.

Models: Klasyfikacja binarnej zmiennej

Logistic regression, Random forest, XGBoost, Lightgbm.

Miary jakości modelu:

ROC AUC score, Average Precision Score.

ABCD + o Wyniki

S. Zając FE w procesie klasyfikacji

Wyniki dane empiryczne

Najważniejsze wyniki:

Zweryfikowano:

- nowe zmienne bazujące na informacji o community niosą informacje, których nie da się odtworzyć na podstawie standardowych zmiennych lub wykorzystując zanurzenia.
- ② Utworzenie nowych zmiennych bazujących na community, dla dużych grafów (> 100K) jest mniej czasochłonne niż korzystanie z metod embeddingów.
- Istnieją procesy klasyfikacyjne wierzchołków dla których zastosowanie nowych zmiennych opartych o community poprawia jakość predykcyjną modeli.

Dziękuję za uwagę! sebastian.zajac@sgh.waw.pl