11 Lecture 11: Feb 10

Last time

• Introduction of simple linear regression

Today

- HW2 posted
- The statistical model of the SLR (JF chapter 6)
- Properties of the Least-Squares estimator
- Inference of SLR model

Properties of the Least-Squares estimator

Under the strong assumptions of the simple linear regression model, the least squares coefficients $\hat{\beta}_{ls}$ have several desirable properties as estimators of the population regression coefficients β_0 and β_1 :

- The least-squares intercept and slope are *linear estimators*, in the sense that they are linear functions of the observations y_i .

 Proof:
- The sample least-squares coefficients are *unbiased estimators* of the population regression coefficients:

$$\mathbf{E}\left(\hat{\beta}_{0}\right) = \beta_{0}$$

$$\mathbf{E}\left(\hat{\beta}_1\right) = \beta_1$$

Proof:

• Both $\hat{\beta}_0$ and $\hat{\beta}_1$ have simple sampling variances:

$$\operatorname{Var}(\hat{\beta}_0) = \frac{\sigma_{\epsilon}^2 \sum x_i^2}{n \sum (x_i - \bar{x})^2}$$

$$\operatorname{Var}(\hat{\beta}_1) = \frac{\sigma_{\epsilon}^2}{\sum (x_i - \bar{x})^2}$$

Proof:

• Rewrite the formula for $Var(\hat{\beta}_1) = \frac{\sigma_{\epsilon}^2}{(n-1)S_X^2}$, we see that the sampling variance of the slope estimate will be small when

1

- The error variance σ_{ϵ}^2 is small
- The sample size n is large
- The explanatory-variable values are spread out (i.e. have a large variance, $S_X^2)$
- (Gauss-Markov theorem) Under the assumptions of linearity, constant variance, and independence, the least-squares estimators are BLUE (Best Linear Unbiased Estimator), that is they have the smallest sampling variance and are unbiased. (show this) *Proof:*
- Under the full suite of assumptions, the least-squares coefficients $\hat{\beta}_0$ and $\hat{\beta}_1$ are the maximum-likelihood estimators of β_0 and β_1 . (show this) *Proof:*
- Under the assumption of normality, the least-squares coefficients are themselves normally distributed. Summing up,

$$\hat{\beta}_0 \sim N(\beta_0, \frac{\sigma_{\epsilon}^2 \sum x_i^2}{n \sum (x_i - \bar{x})^2})$$

$$\hat{\beta}_1 \sim N(\beta_1, \frac{\sigma_{\epsilon}^2}{\sum (x_i - \bar{x})^2})$$