

Semigroups and Monoids

Prof.dr. Ferucio Laurențiu Țiplea

Spring 2022

Department of Computer Science "Alexandru Ioan Cuza" University of Iași Iași 700506, Romania

e-mail: ferucio.tiplea@uaic.ro

Outline

Definition and examples

Word semigroups

Cyclic semigroups

Free semigroups and monoids

Reading and exercise guide

Definition and examples

Semigroups

Definition 1

A semigroup is a pair (S, \circ) which consists of a set S and an associative binary operation \circ on S.

Definition 2

A semigroup (S, \circ) is called commutative if \circ is a commutative operation.

Remark 3

- Associativity of a binary operation means that the order of evaluation of an expression a₁ ○ a₂ ○ a₃, without changing the order of the terms, is immaterial. In other words, no parenthesis is required for an associative operation;
- Commutativity of a binary operation \circ means that the order of the operands in expressions like $a_1 \circ a_2$ is immaterial.

Examples of semigroups

Example 4

- 1. $(\mathbb{N},+)$, $(\mathbb{Z},+)$, $(\mathbb{Q},+)$, $(\mathbb{R},+)$, and $(\mathbb{C},+)$ are (additive) semigroups;
- 2. (\mathbb{N},\cdot) , (\mathbb{Z},\cdot) , (\mathbb{Q},\cdot) , (\mathbb{R},\cdot) , and (\mathbb{C},\cdot) are (multiplicative) semigroups;
- 3. Let $n \in \mathbb{Z}$ and $n\mathbb{Z} = \{n \cdot x | x \in \mathbb{Z}\}$. Then, $(n\mathbb{Z}, +)$ and $(n\mathbb{Z}, \cdot)$ are semigroups;
- 4. Let $m \in \mathbb{Z}$. Then, $(\mathbb{Z}_m, +)$ and (\mathbb{Z}_m, \cdot) , where + and \cdot are the addition and multiplication modulo m, are semigroups.

All semigroups in Example 4 are commutative.

Monoids

Definition 5

A monoid is a triple (M, \circ, e) which consists of a set M, an associative binary operation \circ on M, and an element $e \in M$ such that

$$x \circ e = e \circ x = x$$
,

for any $x \in M$. e is called the identity element or the unity of M.

Remark 6

The identity of any monoid (M, \circ, e) is unique. For, if we assume that e' is an identity too, then $e = e \circ e' = e'$.

The identity of a monoid (M, \circ, e) is usually denoted by 1_M or even 1.

Definition 7

A monoid (M, \circ, e) is called commutative if its binary operation \circ is commutative.

Examples of monoids

Example 8

- 1. $(\mathbb{N},+,0)$, $(\mathbb{Z},+,0)$, $(\mathbb{Q},+,0)$, and $(\mathbb{R},+,0)$ are commutative monoids;
- 2. $(\mathbb{N},\cdot,1)$, $(\mathbb{Z},\cdot,1)$, $(\mathbb{Q},\cdot,1)$, and $(\mathbb{R},\cdot,1)$ are commutative monoids;
- 3. $(n\mathbb{Z}, +, 0)$ is a commutative monoid and $(n\mathbb{Z}, \cdot)$ is a commutative semigroup. $(n\mathbb{Z}, \cdot)$ has unity only if n = 0 or n = 1 and, in such a case it becomes commutative monoid;
- 4. $(\mathbb{Z}_m, +, 0)$ and $(\mathbb{Z}_m, \cdot, 1)$ are commutative monoids. When m = 1, $\mathbb{Z}_1 = \{0\}$ and the multiplicative unity of this monoid is 0.

Some basic notations

- 1. Let (S, \circ) be a semigroup, $A, B \subseteq S$, and $a \in S$. Define:
 - $AB = \{a \circ b | a \in A \land b \in B\};$
 - $A^1 = A$ and $A^{n+1} = A^n A$, for all $n \ge 1$;
 - $aB = \{a \circ b | b \in B\};$
 - $a^1 = a$ and $a^{n+1} = a^n \circ a$, for all $n \ge 1$.
- 2. If (M, \circ, e) is a monoid, $A \subseteq M$, and $a \in M$, we also define:
 - $A^0 = \{e\};$
 - $a^0 = e$.
- 3. For any monoid (M, \circ, e) define $S_M = M \{e\}$.

Ideals

Definition 9

Let (S, \circ) be a semigroup and I a non-empty subset of S.

- 1. *I* is called a left ideal of (S, \circ) if $SI \subseteq I$.
- 2. I is called a right ideal of (S, \circ) if $IS \subseteq I$.
- 3. I is called an ideal of (S, \circ) if I is a left and a right ideal of (S, \circ) .
- 4. The least (left, right) ideal of (S, \circ) which includes I is called the (left, right) ideal of (S, \circ) generated by I. It is denoted by $\langle I \rangle$.
- 5. If $I = \{a\}$, then $\langle I \rangle$ is called a (left, right) principal ideal of (S, \circ) . It is also denoted by $\langle a \rangle$.

(Left, Right) Ideals of monoids are defined in a similar way.

Example 10

The principal ideal of $(\mathbb{Z}, \cdot, 1)$ generated by $n \in \mathbb{Z}$ is $n\mathbb{Z}$.

Sub-semigroups and generators

Definition 11

- 1. A semigroup (S', \circ') is a sub-semigroup of a semigroup (S, \circ) , denoted $(S', \circ') \leq (S, \circ)$, if $S' \subseteq S$ and $\circ' = \circ|_{S'}$.
- 2. A monoid (M', \circ', e') is a sub-monoid of a monoid (M, \circ, e) , denoted $(M', \circ', e') \leq (M, \circ, e)$, if $M' \subseteq M$ and $\circ' = \circ|_{M'}$ and e' = e.
- 3. The least subsemigroup (monoid) of a semigroup (monoid) which includes a given subset A, denoted $\langle A \rangle$, is called the sub-semigroup (sub-monoid) generated by A.
- 4. A semigroup (monoid) is generated by a subset A of it if it coincides with the sub-semigroup (sub-monoid) generated by A.

The set A in Definition 11(3)(4) is called a set of generators and its elements are called generators.

Sub-semigroups and closures

Remark 12

The sub-semigroup (sub-monoid) of a semigroup (monoid), generated by a subset A, is the closure of A under the operation(s) of the host semigroup (monoid):

• If (S, \circ) is a semigroup and $A \subseteq S$, then the sub-semigroup generated by A is the set of all products

$$a_1 \circ \cdots \circ a_n$$
,

where $n \geq 1$ and $a_1, \ldots, a_n \in A$;

• If (M, \circ, e) is a monoid and $A \subseteq M$, then the sub-monoid generated by A is obtained as above by including supplementary the unity e of the monoid.

Examples of sub-semigroups

Example 13

- $(\mathbb{N},+) \leq (\mathbb{Z},+) \leq (\mathbb{Q},+) \leq (\mathbb{R},+);$
- $(\mathbb{N}, +, 0) \le (\mathbb{Z}, +, 0) \le (\mathbb{Q}, +, 0) \le (\mathbb{R}, +, 0);$
- $(\mathbb{N},\cdot) \leq (\mathbb{Z},\cdot) \leq (\mathbb{Q},\cdot) \leq (\mathbb{R},\cdot);$
- $(\mathbb{N},\cdot,1) \leq (\mathbb{Z},\cdot,1) \leq (\mathbb{Q},\cdot,1) \leq (\mathbb{R},\cdot,1);$
- The sub-monoid of $(\mathbb{Z},+,0)$, generated by $n\in\mathbb{Z}$, is $(n\mathbb{N},+,0)$;
- A semigroup (monoid) may have more than one set of generators. For instance, $(\mathbb{Z}, +, 0)$ can be generated by $\{-1, 1\}$ and by $\{-3, 2\}$.

Order of an element

Definition 14

- 1. The order of a semigroup (monoid) is the number of its elements if the semigroup (monoid) is finite, and ∞ , otherwise.
- 2. The order of an element *a* of a semigroup (monoid) is the order of the sub-semigroup (sub-monoid) generated by *a*.

Example 15

- $(\mathbb{Z},+,0)$ has the order ∞ ;
- $(\mathbb{Z}_m, +, 0)$ has the order m, if $m \neq 0$. For m = 0, $(\mathbb{Z}_m, +, 0)$ has the order ∞ .

Homomorphisms

Definition 16

- 1. A function $f: S \to S'$ is a homomorphism from a semigroup (S, \circ) to a semigroup (S', \circ') if
 - $f(a \circ b) = f(a) \circ' f(b)$, for any $a, b \in S$.
- 2. A function $f: M \to M'$ is a homomorphism from a monoid (M, \circ, e) to a monoid (M', \circ', e') if
 - $f(a \circ b) = f(a) \circ' f(b)$, for any $a, b \in M$;
 - f(e) = e'.

Related concepts:

- injective homomorphism = monomorphism;
- surjective homomorphism = epimorphism;
- bijective homomorphism = isomorphism;

Homomorphisms

- Homomorphism from a semigroup (monoid) to the same semigroup (monoid) = endomorphism;
- Isomorphism from a semigroup (monoid) to the same semigroup (monoid) = automorphism.

Example 17

- The function $f(x) = 2^x$, for any $x \in \mathbb{N}$, is a homomorphism from $(\mathbb{N}, +, 0)$ to $(\mathbb{N}, \cdot, 1)$. Indeed,
 - $f(0) = 2^0 = 1$;
 - $f(x+y) = 2^{x+y} = 2^x \cdot 2^y = f(x) \cdot f(y)$, for any x, y.

Moreover, f is injective but not surjective. Therefore, f is a monomorphism (but not an epimorphism).

Word semigroups

Alphabet

Definition 18

An alphabet is any non-empty set. The elements of an alphabet are called letters or symbols.

Example 19

The following sets are alphabets:

- $\Sigma_1 = \{a, b, c\};$
- $\Sigma_2 = \{0, 1, 2, 3\};$
- $\Sigma_3 = \{ \text{begin}, \text{end}, \text{if}, \text{then}, \text{else}, \text{while}, \text{do} \}.$

All letters of an alphabet are assumed indivisible.

Words

Definition 20

Let Σ be an alphabet. A word of length $k \geq 1$ over Σ is any function $w:\{1,\ldots,k\} \to \Sigma$. The empty function from \emptyset into Σ is called the empty word over Σ and its length is 0.

We usually denote the word w by $w = w(1) \cdots w(k)$, if k > 0, and its length k by |w|. The empty word is usually denoted by λ .

Example 21

- w = abaa is a word of length 4 over $\Sigma_1 = \{a, b, c\}$;
- 011033 is a word of length 6 over $\Sigma_2 = \{0, 1, 2, 3\}$;
- begin end is a word of length 2 over
 Σ₃ = {begin, end, if, then, else, while, do}.

Word equality

Let Σ be an alphabet. Denote:

- $\Sigma^0 = \{\lambda\};$
- $\Sigma^+ = \bigcup_{k>1} \Sigma^k$,
- $\Sigma^* = \bigcup_{k>0} \Sigma^k = \Sigma^+ \cup \{\lambda\}.$

Words of length 1 are usually identified with letters. Therefore, we may write $\Sigma^1=\Sigma$.

Definition 22

Two words u and v over the same alphabet Σ are called equal if they have the same length k and u(i) = v(i), for each $1 \le i \le k$.

Concatenation of words

Definition 23

Let Σ be an alphabet. The binary operation $\cdot: \Sigma^* \times \Sigma^* \to \Sigma^*$ given by

$$w_1 \cdot w_2 : \{i | 1 \le i \le |w_1| + |w_2|\} \to \Sigma$$

where

$$(w_1 \cdot w_2)(i) =$$

$$\begin{cases} w_1(i), & \text{if } 1 \leq i \leq |w_1| \\ w_2(i-|w_1|), & \text{otherwise,} \end{cases}$$

for any i, is called the concatenation or catenation operation on Σ^* .

Example 24

- abba · bbaa = abbabbaa;
- $\lambda \cdot w = w \cdot \lambda = w$, for any w.

The concatenation operation symbol is usually omitted. That is, we write uv instead of $u \cdot v$.

Word semigroups

Theorem 25

Let Σ be an alphabet. Then:

- 1. (Σ^+, \cdot) is a semigroup generated by Σ ;
- 2. $(\Sigma^*, \cdot, \lambda)$ is a monoid generated by Σ ;
- 3. $(\Sigma^*, \cdot, \lambda)$ is a monoid with simplification;
- 4. $I: \Sigma^* \to \mathbb{N}$ given by I(w) = |w|, for any $w \in \Sigma^*$, is a homomorphism from $(\Sigma^*, \cdot, \lambda)$ to the additive monoid $(\mathbb{N}, +, 0)$. Moreover, $I^{-1}(0) = {\lambda}$;
- 5. The group of units of the monoid $(\Sigma^*, \cdot, \lambda)$ is trivial.

It is a good exercise for you to prove Theorem 25 (textbook [1], page 212).

Sub-words

Definition 26

Let Σ be an alphabet and $u, v \in \Sigma^*$.

- 1. u is called a prefix or left factor of v if v = uw for some word w.
- 2. u is called a suffix or right factor of v if v = wu for some word w.
- 3. u is called a sub-word of v if v = xuy for some words x and y.

Theorem 27 (Levi's Theorem)

Let x, y, u, and v be words over Σ such that xy = uv.

- 1. If |x| < |u|, then there exists a unique $z \in \Sigma^*$ such that u = xz.
- 2. If |x| = |u|, then x = u and y = v.
- 3. If |x| > |u|, then there exists a unique $z \in \Sigma^*$ such that x = uz.

It is a good exercise for you to prove Theorem 27 (textbook [1], page 212).

Lexicographic order on words

Definition 28

- (1) A pair (Σ, \prec) which consists of an alphabet Σ and a total order \prec on Σ is called an ordered alphabet.
- (2) Let (Σ, \prec) be an ordered alphabet. The binary relation $\leq_{(\Sigma, \prec)}$ given by

$$x \leq_{(\Sigma, \prec)} y$$

iff

- x is a prefix of y, or
- x = uav, y = ubw, and $a \prec b$, for some $u, v, w \in \Sigma^*$ and $a, b \in \Sigma$ with $a \neq b$,

is called the direct lexicographic order on (Σ, \prec) .

In a similar way one can define the inverse lexicographic order on ordered alphabets.

Lexicographic order on words

λ	λ
a	а
aa	b
aaa	aa
• • •	ab
aaaab	ba
aaab	bb
aab	aaa
ab	aab
• • •	
b	bbb
a)	b)

- a) Lexicographic order
- b) Lexicographic order on words of the same length.

Cyclic semigroups

Cyclic semigroups

If $\mathbb{S} = (S, \circ)$ is a semigroup and $a \in S$, then

$$\langle a \rangle_{\mathbb{S}} = \{a, a^2, \dots, a^n, \dots\}$$

If $\mathbb{M} = (M, \circ, e)$ is a monoid $a \in M$, then

$$\langle a \rangle_{\mathbb{M}} = \{ e = a^0, a, a^2, \dots, a^n, \dots \}$$

Definition 29

A semigroup (monoid) generated by one of its elements is called a cyclic semigroup (cyclic monoid).

 \mathbb{S} cyclic semigroup $\Rightarrow S = \{a, a^2, \dots, a^n, \dots\}$, for some $a \in S$.

 \mathbb{M} cyclic monoid $\Rightarrow M = \{e = a^0, a, a^2, \dots, a^n, \dots\}$, for some $a \in M$.

Theorem of cyclic semigroups

Theorem 30

Let a be an element of a semigroup (S, \circ) . Then, exactly one of the following two properties is satisfied:

- (1) $a^n \neq a^m$ for any $n \neq m$, and the semigroup generated by a is isomorphic with $(\mathbb{N} - \{0\}, +)$;
- (2) there exists m > 0 and r > 0 such that :
 - (a) $a^m = a^{m+r}$:
 - (b) $a^{m+u} = a^{m+v}$ iff $u \equiv v \mod r$, for any $u, v \in \mathbb{N}$:
 - (c) $\langle a \rangle = \{a, a^2, \dots, a^{m+r-1}\}$ has exactly m + r 1 elements:
 - (d) $K(a) = \{a^m, \ldots, a^{m+r-1}\}\$ is a cyclic subgroup of $\langle a \rangle$.

Proof.

See textbook [1], pages 219-220.

order = index + period - 1

The number m in Theorem 30(2) is called the index of a, and r is called the period of a, in (S, \circ) . The following property holds true:

$$order(a) = index(a) + period(a) - 1$$

Definition 31

A semigroup (monoid) is called periodic if each element of it has a finite order.

Clearly, finite semigroups (monoids) are periodic.

Free semigroups and monoids

Free semigroups and monoids

Remark 32

• The monoid $(\mathbb{N}, +, 0)$ can be generated by $\{1\}$. Moreover, any number $n \in \mathbb{N} - \{0\}$ can uniquely be written as a finite combination of 1's under +, namely,

$$n = \underbrace{1 + 1 + \cdots + 1}_{n \text{ times}}.$$

We say that $\{1\}$ freely generates the monoid.

Definition 33

A semigroup (S, \circ) is freely generated by a subset $X \subseteq S$ if any element $s \in S$ can uniquely be written as a finite combination of elements in X,

$$s = x_1 \circ \cdots \circ x_n$$

where $x_1, \ldots, x_n \in X$ and $n \ge 1$.

Free generators

Definition 34

A monoid (M, \circ, e) is freely generated by a subset $X \subseteq M$ if (S_M, \circ) is freely generated by X.

Definition 35

A free semigrup (free monoid) is a semigroup (monoid) which can be freely generated by some subset of it.

If X freely generates a semigroup, then it is called a set of free generators of the semigroup (monoid).

Example 36

- $(\mathbb{N}, +, 0)$ is a free monoid.
- X⁺ (X*) together with the concatenation operation is a free semigroup (monoid), for any non-empty set X.
- $(\mathbb{Z}, +, 0)$ is not a free monoid.

The universality property

Theorem 37 (The universality property)

If (S, \circ) is a semigroup freely generated by X, then for any semigroup (T, *) and any function $f: X \to T$, there exists a unique homomorphism $h: S \to T$ which extends f (that is, h(x) = f(x), for any $x \in X$).

Proof.

See textbook [1], page 225.

The universality property can be similarly formulated for free monoids.

Corollary 38

Any free semigroup (monoid) is isomorphic with a word semigroup (monoid).

Proof.

See textbook [1], page 225.

Free semigroups and monoids

The universality property allows us to define homomorphisms from free semigroups (S, \circ) to semigroups (T, *) just by defining them on sets of free generators of (S, \circ) .

Example 39

To define a homomorphism from $(\mathbb{N},+,0)$ to $(\mathbb{N},\cdot,1)$ it is sufficient to consider an arbitrary function from $\{1\}$, which freely generates $(\mathbb{N},+,0)$, to $(\mathbb{N},\cdot,1)$. For example, if we consider the function f(1)=10, then the unique homomorphism induced by f is:

- h(0) = 1;
- h(1) = f(1) = 10;
- $h(2) = h(1+1) = h(1) \cdot h(1) = 10^2$;
- $h(3) = h(1+1+1) = h(1) \cdot h(1) \cdot h(1) = 10^3$;
- $h(n) = 10^n$, for any $n \ge 0$.

Free semigroups and monoids

How many sets of free generators may have a free semigroup or monoid?

Proposition 40

If a semigroup (S, \circ) (monoid (M, \circ, e)) is free, then it has a unique set of free generates, and this set is $S - S^2$ $(S_M - S_M^2)$.

Proof.

First, show that any set of generators should include $S-S^2$ $(S_M-S_M^2)$.

Then, show that any set X of generators should be a subset of $S - S^2$ $(S_M - S_M^2)$.

Reading and exercise guide

Reading and exercise guide

It is highly recommended that you do all the exercises marked in red from the slides.

Course readings:

1. Pages 203-235 from textbook [1].

References

[1] Ferucio Laurențiu Țiplea. Algebraic Foundations of Computer Science. "Alexandru Ioan Cuza" University Publishing House, Iași, Romania, second edition, 2021.