Introduction to SAS

Part 2

Goals

- Data manipulation
- Important procedures
- Saving SAS results in a data set

Original CHDAGE data set

Obs	id	age	chd
1	1	20	0
2	2	23	0
3	3	24	0
4	4	25	0
5	5	25	1
Etc.			

Data manipulation

libname sdat 'C:\ERHS642';

data chdage; set sdat.chdage;

* Create a categorical age variable with 4 categories *;

```
if 20<=age<=30 then a=1;
else if 30< age<=40 then a=2;
else if 40< age<=50 then a=3;
else if 50< age<=70 then a=4;
```

Continued on next slide

Data manipulation

Continued from previous slide

```
* Create the square root of age *;

sqrt_age=sqrt(age);

* Create the natural log of age *;

ln_age = log(age);

* Create age squared *;

age_sq=age**2;

run;
```

CHDAGE data set with original and new variables

proc print data=chdage; run;

Obs	id	age	chd	а	sqrt_age	In_age	age_sq
1	1	20	0	1	4.47214	2.99573	400
2	2	23	0	1	4.79583	3.13549	529
3	3	24	0	1	4.89898	3.17805	576
4	4	25	0	1	5.00000	3.21888	625
5	5	25	1	1	5.00000	3.21888	625

CHDAGE data set with only new variables

proc print data=chdage;
var a sqrt_age In_age age_sq;
run;

Obs	а	sqrt_age	In_age	age_sq
1	1	4.47214	2.99573	400
2	1	4.79583	3.13549	529
3	1	4.89898	3.17805	576
4	1	5.00000	3.21888	625
5	1	5.00000	3.21888	625

Commonly used procedures

Creating descriptive statistics

- proc means
- proc univariate

Creating frequency tables

proc freq

Logistic regression

proc logistic

Creating graphs

proc gplot

proc means, default output

proc means data=chdage; var age; run;

Analysis Variable : age age

 N
 Mean
 Std Dev
 Minimum
 Maximum

 100
 44.38000
 11.7213265
 20.00000
 69.00000

If the var statement is omitted, results are shown for <u>all</u> variables in the data set

proc means, user-specified output

proc means data=chdage

n mean min median max std;

var age; run;

Other options are possible

Analysis Variable: age age

N	Mean	Min	Median	Max	Std Dev
100	44.3800	20.00	44.0000	69.00	11.7213265

proc univariate, basic stats

proc univariate data=chdage; var age; run;

Basic Statistical Measures						
Location		Variability				
Mean	44.38000	Std Deviation	11.72133			
Median	44.00000	Variance	137.38949			
Mode	30.00000	Range	49.00000			
		Interquartile Range	20.50000			

proc univariate, more basic stats

Moments			
N	100	Sum Weights	100
Mean	44.38	Sum Observations	4438
Std Deviation	11.7213	Variance	137.389
Skewness	-0.00814	Kurtosis	-0.98353
Uncorrected SS	210560	Corrected SS	13601.56
Coeff Variation	26.411	Std Error Mean	1.17213

proc univariate, basic tests

Tests for Location: Mu0=0							
Test	est Statistic						
Student's t	t	37.86261	Pr > t	<.0001			
Sign	M	50	Pr >= M	<.0001			
Signed Rank	S	2525	Pr >= S	<.0001			

proc univariate, quantiles

Quantiles							
Quantile	Estimate						
100% Max	69.0						
99%	67.0						
95%	62.5						
90%	59.5						
75% Q3	55.0						
50% Median	44.0						
25% Q1	34.5						
10%	29.5						
5%	25.5						
1%	21.5						
0% Min	20.0						

proc univariate, highest and lowest observations

Extreme Observations						
Lowest		Highest				
Value	Obs	Value	Obs			
20	1	63	96			
23	2	64	97			
24	3	64	98			
25	5	65	99			
25	4	69	100			

proc freq, table for chd

proc sort data=chdage; by descending chd; run;

proc freq data=chdage order=data; tables chd a a*chd;

run;

chd							
chd	Frequency	Percent	Cumulative Frequency	Cumulative Percent			
1	43	43.00	43	43.00			
0	57	57.00	100	100.00			

proc freq, table for chd and a

```
proc sort data=chdage;
by descending chd;
run;
proc freq data=chdage order=data;
tables chd a;
run;
```

proc freq, table for chd and a

cho	t							
cho	d Frequency		Percent		Cumulative Frequency		Cumulative Percent	
0		57		57.00		57		57.00
1		43		43.00	43.00 100		100.00	
а	Fr	Frequency Per		ercent Cumulative Frequency			Cumulative Percent	
1	16	6	16	6.00	16		16.00	
2	2 23 23.00		3.00	39		39.00		
3	28	3	28	3.00	67	•	67.	00
4	33	33.00 100		0	100	0.00		

proc freq, table for chd by a

```
proc sort data=chdage;
by descending chd;
run;
proc freq data=chdage order=data;
tables chd a a*chd;
run;
```

proc freq, table for chd by a

	a	Table of a by chd chd(chd)			
_		1	0	Total	
Frequency	1	2	14	16	
Percent		2.00	14.00	16.00	
		12.50	87.50		
Row Pct	_	4.65	24.56		
Col Pct	2	5	18	23	
Correct		5.00	18.00	23.00	
		21.74	78.26		
		11.63	31.58		
	3	11	17	28	
		11.00	17.00	28.00	
		39.29	60.71		
		25.58	29.82		
	4	25	8	33	
		25.00	8.00	33.00	
		75.76	24.24		
		58.14	14.04		
\	Total	43	57	100	
		43.00	57.00	100.00	

proc freq, table for chd, a and chd by a

```
proc sort data=chdage;
by descending chd;
run;

proc freq data=chdage order=data;
tables chd a a*chd;
run;
```

proc logistic, basic information

proc logistic descending data=chdage; model chd=age;

run;	Model Information				
	Data Set WORK.CHDAGE				
	Response Variable	chd	chd		
	Number of Response Levels	2			
	Model	binary logit			
	Optimization Technique	Fisher's scoring			

proc logistic, # of observations, response profile and prob. modeled

Number of Observations Read

Number of Observations Used

100

Response Profile				
Ordered chd Total Value Frequency				
1	1	43		
2	0	57		

Probability modeled is chd=1.

proc logistic, convergence status and fit statistics

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics			
Criterion	Intercept Only	Intercept and Covariates	
AIC	138.663	111.353	
SC	141.268	116.563	
-2 Log L	136.663	107.353	

proc logistic, global tests

Testing Global Null Hypothesis: BETA=0					
Test	Test Chi-Square DF Pr > ChiSq				
Likelihood Ratio	29.3099	1	<.0001		
Score	26.3989	1	<.0001		
Wald	21.2541	1	<.0001		

proc logistic, estimated coefficients

Analysis of Maximum Likelihood Estimates					
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept	1	-5.3095	1.1337	21.9350	<.0001
age	1	0.1109	0.0241	21.2541	<.0001

proc logistic, estimated odds ratios

Odds Ratio Estimates				
Effect	Point Estimate	95% Wald te Confidence Limits		
age	1.117	1.066	1.171	

proc logistic, observed/predicted

Association of Predicted Probabilities and Observed Responses			
Percent 79.0 Somers' D 0.600 Concordant			
Percent Discordant	19.0	Gamma	0.612
Percent Tied	2.0	Tau-a	0.297
Pairs	2451	С	0.800

proc gplot, preparation

```
axis1 minor=none label=(f=swiss h=2.5 'Age');

axis2 minor=none label=(f=swiss h=2.5 a=90 'Coronary Heart Disease');

goptions FTEXT=swissb HTEXT=2.0 HSIZE=6 in VSIZE=6 in;

symbol1 c=black v=dot;
```

proc gplot

```
proc gplot data=chdage;
    plot chd*age/haxis=axis1 vaxis=axis2;
run; quit;
```


Saving SAS output in a data set

- There are two options
 - Output statements
 - ODS
- Here, we'll discuss output statements
- We may discuss ODS later in the semester

Example 1

- Save the probabilities, π̂, predicted by the logistic regression model
- Add them to an existing graph

Example 1, saving the probabilities

proc logistic descending data=chdage; model chd=age;

output out=pdat p=pihat; Variable name

run; Data set name

proc print data=pdat;
 var age CHD pihat;
run;

Obs	age	chd	pihat
1	20	0	0.04348
2	23	0	0.05962
Etc.			

Example 1, adding the probabilities to an existing graph, preparation

```
axis1 minor=none label=(f=swiss h=2.5 'Age');
```

axis2 minor=none label=(f=swiss h=2.5 a=90 'Coronary Heart Disease');

goptions FTEXT=swissb HTEXT=2.0 HSIZE=6 in VSIZE=6 in;

symbol1 c=black v=dot;

symbol2 c=black v=circle;

Example 1, adding the probabilities to an existing graph, proc gplot

proc gplot data=pdat;

plot (chd pihat)*age/overlay haxis=axis1 vaxis=axis2; run; quit;

Example 1 cont.

Logistic regression predicts the proportion with CHD for each age

Example 2

- Create 4 age categories
- Determine the proportion with CHD in each age category
- Save the proportions in a data set
- Add the proportions to an existing graph

(Hopefully this example will help you better understand pihat $(\widehat{\pi})$)

Example 2, create 4 age categories

```
libname sdat 'C:\ERHS642';

data chdage; set sdat.chdage;

* Create a categorical age variable with 4 categories *;

if 20<=age<=30 then a=1;

else if 30< age<=40 then a=2;

else if 40< age<=50 then a=3;

else if 50< age<=70 then a=4;

run;
```

Example 2, determine the proportion with CHD in each age category

```
Note: For a 0/1 variable like CHD, the mean equals the proportion with CHD

proc sort data=chdage; by a; run;

proc means noprint mean data=chdage;

by a;

var chd;

Contains 4 proportions (proportion with CHD in each age category) but no actual ages

output out=s_means mean=proportion;

run;

Data set name

Variable name
```

Example 2, add ages to saved data set

```
data s_means;
 set s_means;
      if a=1 then age=25;
                               Age interval midpoints
 else if a=2 then age=35;
 else if a=3 then age=45;
 else if a=4 then age=60;
                               Nuisance variables
 drop _type_ _freq_ a; ←
run;
                                   Obs
                                         proportion age
proc print data=s_means; run;
                                         0.12500
                                                  25
                                   2
                                         0.21739
                                                  35
                                   3
                                         0.39286
                                                  45
                                         0.75758
                                                  60
```

Example 2, merge new data set with data set containing pihat values

```
data plotdat;
merge pdat s_means;
by age;
run;
proc print data=plotdat;
var id age chd pihat proportion;
run;
```

Example 2, add the proportions to the graph, preparation

```
axis1 minor=none label=(f=swiss h=2.5 'Age');

axis2 minor=none label=(f=swiss h=2.5 a=90 'Coronary Heart Disease');

goptions FTEXT=swissb HTEXT=2.0 HSIZE=6 in VSIZE=6 in;

symbol1 c=black v=dot;

symbol2 c=black v=circle;

symbol3 c=black v=star h=2;
```

Example, add the proportions to the graph

```
proc gplot data=plotdat;

plot (chd pihat prop)*age
     /overlay haxis=axis1 vaxis=axis2;
run; quit;
```

Example, add the proportions to the graph

- Logistic regression predicts the probability $(\hat{\pi})$ of CHD for each age
- We can approximate this by calculating the proportion with CHD in different age categories

Complete program

```
libname sdat 'C:\ERHS642';

data chdage; set sdat.chdage;

* Create a categorical age variable with 4 categories *;

if 20<=age<=30 then a=1;
else if 30< age<=40 then a=2;
else if 40< age<=50 then a=3;
else if 50< age<=70 then a=4;
```

```
* Create the square root of age *;

sqrt_age=sqrt(age);

* Create the natural log of age *;

ln_age = log(age);

* Create age squared *;

age_sq=age**2;

run;
```

Complete program, cont.

```
proc print data=chdage; run;
proc means data=chdage; var age; run;
proc means data=chdage
    n mean min median max std; var age; run;
proc univariate data=chdage; var age; run;
```

```
proc freq data=chdage; tables chd a a*chd; run;
proc logistic descending data=chdage;
model chd=age;
run;
proc logistic descending data=chdage;
model chd=age;
output out=pdat p=pihat;
run;
proc print data=pdat; var age CHD pihat; run;
```

Complete program, cont.

```
proc sort data=chdage; by a; run;

proc means noprint mean data=chdage;
  by a;
  var chd;
  output out=s_means mean=proportion; run;

proc print data=s_means; run;
```

```
data s_means; set s_means;
    if a=1 then age=25;
    else if a=2 then age=35;
    else if a=3 then age=45;
    else if a=4 then age=60;
    drop _type_ _freq_ a;
    run;

proc print data=s_means; run;
    data plotdat; merge pdat s_means; by age; run;
    proc print data=plotdat; var id age chd pihat prop; run;
```

Complete program, cont.

```
proc gplot data=plotdat;

plot (chd pihat prop)*age
    /overlay haxis=axis1 vaxis=axis2;
run; quit;
```