Итоговый проект Модель автомобиля

Выполнили студенты группы 9305:

Коноплев К.А. Епифанцев Е.В. Когутенко А.А.

Распределение обязанностей

	Коноплев Кирилл	Епифанцев Егор	Когутенко Андрей
Разработка ТЗ	+	+	+
Абстрактный синтез	+	+	
Структурный синтез	+	+	
Тестирование	+		+
Программная реализация			+
Создание презентации		+	

Формулировка задания

Необходимо спроектировать и реализовать конечный автомат, представляющий собой упрощенную модель автомобиля с автоматической коробкой передач со следующим набором действий:

- 1. Завести/заглушить автомобиль
- 2. Опустить/поднять ручник
- 3. Тронуться/затормозить

Техническое задание

Имеем 5 состояний автомобиля:

```
q<sub>0</sub> - машина в состоянии покоя, заглушена и на ручнике;
```

q₁ - машина в состоянии покоя и заведена;

q₂ - машина в состоянии покоя, заведена и снята с ручника;

q₃ - Машина в состоянии движения;

q₄ - Машина в нестабильном состоянии;

Техническое задание

Входной алфавит автомата:

 a_0 - завести;

a₁ - заглушить;

а₂ - опустить ручник;

а₃ - поднять ручник;

 a_{Δ} - тронуться;

а₅ - затормозить;

Выходной алфавит:

b₀ - успешно

b₁ - ошибка

 b_2 - ничего не делать

Таблица переходов и выходов

$A_{in} \setminus Q$	q_0	q_1	q_2	q_3	q_4
a_0	q_1/b_0	q_1/b_2	q_2/b_2	q_3/b_2	q_4/b_1
a_1	q_0/b_2	q_0/b_0	q_4/b_1	q_4/b_1	q_4/b_1
a_2	q_4/b_1	q_2/b_0	q_2/b_2	q_3/b_2	q_4/b_1
a_3	q_0/b_2	q_1/b_2	q_1/b_0	q_4/b_1	q_4/b_1
a_4	q_0/b_2	q_4/b_1	q_3/b_0	q_3/b_2	q_4/b_1
a_5	q_0/b_2	q_1/b_2	q_2/b_2	q_2/b_0	q_4/b_1

Диаграмма автомата

Кодирование

Q	Q_2	Q_1	Q_0
q_0	0	0	0
q_1	0	0	1
q_2	0	1	0
q_3	0	1	1
q_4	1	0	0

A_{in}	x_2	x_1	x_0
a_0	0	0	0
a_1	0	0	1
a_2	0	1	0
a_3	0	1	1
a_4	1	0	0
a_5	1	0	1

Aout	Код
b_0	00
b_1	01
b_2	10

Кодированная автоматная таблица

A _{in} \	000	001	010	011	100
$Q_2Q_1Q_0$					
000	001/00	001/10	010/10	011/10	100/01
001	000/10	000/00	100/01	100/01	100/01
010	100/01	010/00	010/10	011/10	100/01
011	000/10	001/10	001/00	100/01	100/01
100	000/10	100/01	011/00	011/10	100/01
101	000/10	001/10	010/10	010/00	100/01

Минимизация автомата

q_1	X			
q_2	X	X		
q_3	X	X	X	
q_4	X	X	X	X
-34	q_0	q_1	q_2	q_3

В полученном автомате нет эквивалентных состояний, и следовательно он уже является минимальным.

Структурный синтез

Для структурного синтеза был выбран стандартный базис, состоящий из конъюнкции, дизъюнкции и отрицания, а также 3 D-триггера, так как длина кодового слова для состояния имеет длину 3.

Функции выхода и возбуждений триггеров

Получим выражение для бита выхода y_1 :

$x_2x_1x_0Q_2Q_1Q_0$	000	001	011	010	110	111	101	100
000	0	1	1	1	~	~	~	0
001	1	0	0	0	~	~	~	0
011	1	1	0	0	~	~	~	0
010	0	0	1	1	~	~	~	0
110	~	~	~	~	~	~	~	~
111	~	~	~	~	~	~	~	~
101	1	1	0	1	~	~	~	0
100	1	0	1	0	~	~	~	0

$$y_1 = \overline{x_0} \, \overline{x_1} \, \overline{x_2} \, Q_0 \vee \overline{x_0} \, \overline{x_2} \, Q_1 \vee x_0 \overline{Q_0} \, \overline{Q_1} \, \overline{Q_2} \vee x_2 \overline{Q_0} \, \overline{Q_1} \, \overline{Q_2} \vee \overline{x_0} Q_0 Q_1 \vee x_0 x_1 \overline{Q_1} \, \overline{Q_2} \vee x_0 x_2 \overline{Q_0} \, \overline{Q_2}$$

Получим выражение для бита выхода y_0 :

$x_2x_1x_0Q_2Q_1Q_0$	000	001	011	010	110	111	101	100
000	0	0	0	0	~	~	~	1
001	0	0	1	1	~	~	~	1
011	0	0	1	0	~	~	~	1
010	1	0	0	0	~	~	~	1
110	~	~	~	~	~	~	~	~
111	~	~	~	~	~	~	~	~
101	0	0	0	0	~	~	~	1
100	0	1	0	0	~	~	~	1

Функции выхода и возбуждений триггеров

Получим выражение для триггера D_1 :

$x_2x_1x_0Q_2Q_1Q_0$	000	001	011	010	110	111	101	100
000	0	0	1	1	~	~	~	0
001	0	0	0	0	~	~	~	0
011	0	0	0	0	~	~	~	0
010	0	1	1	1	~	~	~	0
110	~	~	~	~	~	~	~	~
111	~	~	~	~	~	~	~	~
101	0	0	1	1	~	~	~	0
100	0	0	1	1	~	~	~	0

 $D_1 = \overline{x_0}Q_1 \vee \overline{x_0}x_1Q_0 \vee x_2Q_1$

Получим выражение для триггера D_0 :

$x_2x_1x_0Q_2Q_1Q_0$	000	001	011	010	110	111	101	100
000	1	1	1	0	~	~	~	0
001	0	0	0	0	~	~	~	0
011	0	1	0	1	~	~	~	0
010	0	0	1	0	~	~	~	0
110	~	~	~	~	~	~	~	~
111	2	~	~	~	~	~	~	~
101	0	1	0	0	~	~	~	0
100	0	0	1	1	~	~	~	0

 $D_0 = \overline{x_0} \, \overline{x_1} \, \overline{x_2} \, \overline{Q_1} \, \overline{Q_2} \vee \overline{x_0} \, Q_0 Q_1 \vee x_0 x_1 Q_0 \overline{Q_1} \vee x_0 x_1 \overline{Q_0} Q_1 \vee \overline{x_0} \, x_2 \, Q_1 \vee x_0 x_2 Q_0 \overline{Q_1}$

Функции выхода и возбуждений триггеров

Получим выражение для триггера D_2 :

$x_2x_1x_0Q_2Q_1Q_0$	000	001	011	010	110	111	101	100
000	0	0	0	0	~	~	~	1
001	0	0	1	1	~	~	~	1
011	0	0	1	0	~	~	~	1
010	1	0	0	0	~	~	~	1
110	~	~	~	~	~	~	~	~
111	~	~	~	~	~	~	~	~
101	0	0	0	0	~	~	~	1
100	0	1	0	0	~	~	~	1

$$D_2 = Q_2 \vee x_0 \overline{x_1} \, \overline{x_2} Q_1 \vee \overline{x_0} \, x_1 \, \overline{Q_0} \, \overline{Q_1} \vee \overline{x_0} x_2 Q_0 \overline{Q_1} \vee x_0 \overline{x_2} Q_0 Q_1$$

Модель в Logisim

Программная реализация на языке С

```
trx@trx-TUF-GAMING-FX504GD-FX80GD: ~/Desktop
                                                                           _ _ ×
File Edit View Search Terminal Help
Welcome to car driving simulator!
Current state:
    q0 - rest, on the handbrake, engine shut down
a0 - start engine
a1 - stop engine
a2 - remove handbrake
a3 - raise handbrake
a4 - drive
a5 - stop driving
a6 - exit car
Action (digit):
```