OSU Wireless

Suppose OSU Wireless will not available if we are outside of a building. Given the campus map, if we want to visit all the buildings on campus, how many times at least will we lose Wi-Fi connection?

Easy version

None of the buildings is surrounded by any other building(s).
Which means you can reach any building from the outside.
(It is true according to campus map)

Easy version

The optimal way to visit all the buildings:

- Starting from one of them
- Visiting them one by one
- N 1 Wi-Fi loses for N buildings

- Counting buildings
 - Connected components
 - DFS or BFS
- Simply output N 1

. XXX . . XXX . . . XXX . .XXXX.XXXX.XXX. .XXX...XXXXXXXX. . . . X . XXX . . . XXXX . . X . X . XXX . . . XXXX . . X . X . XXX . . . XXX . . .

```
.111..222...222.
.1111.2222...222.
.111...22222222.
...1.222...2222.
.3.1.222...2222.
.3.1.222...222..
```

Connected Components

- Loop through the map
 - Find an "X" not visited before
 - Find all connected "X" with it
 - Mark them as visited
 - Count as one building

Connected Components

```
for i = 0, 1, ..., height - 1
    for j = 0, 1, ..., width - 1
        if map[i][j] == 'x'
            if not visited[i][j]
                dfs(i, j)
                count += 1
loses = max(count - 1, 0)
```

Find all connected "X" procedure dfs(i, j) if map[i][j] == 'X' visited[i][j] = true dfs(i, j - 1)dfs(i, j + 1)dfs(i - 1, j)dfs(i + 1, j)

Hard version

No restriction

- A building can be in another building
- Buildings can be in other buildings
- Recursively

```
X.X.X.X.X.X.X.X.X.X.X.X.X.X
_ _ _ _ XXXXXXXXXX XXXXXXXXX
```

```
. . . . . XXXXXXXXXXX . XXXXXX . . .
X.X.X.X.X.X.X.X.X.X.X.X.X.X
XXXXX.X.XXXXXX.X.XXXXXXXX
. . . . . XXXXXXXXXXX . . . XXXXXXX
```


Graph

We can view the map as a graph:

A vertex = A building itself

An edge = A pair of neighbor buildings

Graph

We can view the map as a graph:
A vertex = A building itself
An edge = A pair of neighbor buildings
Adjacent to the same open space

Hamiltonian Path

- Visiting all the vertices
- Finding the shortest one
 - Similar to TSP (Travelling Salesman Problem)
 - Actually shortest Hamiltonian Path
 - Repeat visitings are allowed

- Creating the graph
- Finding the shortest path between each pair of vertices
- Finding the shortest Hamiltonian Path
- Answer = Length of the path

- Creating the graph
 - Find buildings (vertices)
 - Find open spaces (edges)
 - DFS or BFS for both
 - Find all adjacency relationship
 - Between a vertex and an edge

- Finding the shortest path between each pair of vertices
 - Needed by the next step
 - Floyd-Warshall
 - Do you remember it? :-)

- Finding the shortest Hamiltonian Path
 - Dynamic Programming
 - Table-driven cache
 - Starting vertex, end vertex
 - Set of visited vertices

- Finding the shortest Hamiltonian Path
 - Dynamic Programming
 - Initialize table[v_i][v_i][{v_i}]
 - Fill table[v_i][v_i][{ $v_0...v_{n-1}$ }]
 - Complexity O(2ⁿ * n³)

Faster Algorithms?

This problem is Metric TSP (Delta TSP). For the exact solution, it is still NP-hard.

But, several considerable fast approximation algorithms exist.

Faster Algorithms?

Further restriction on the graph:

- 4-color for vertices + edges
- Plane (2D) graph
- NP-Hard, NP, or even P? It is still an open question.