Expansion detected by cycles

Kai Renken Dmitry Kozlov January 29, 2020

Abstract

1 On the hitting number of sets

Definition 1.1. Let S be a set and $\mathcal{F} \subseteq 2^S$ a family of subsets. Then

$$\tau(\mathcal{F}) := \min\{|P| : P \subseteq S, P \cap F \neq \emptyset, \textit{for all } F \in \mathcal{F}\}$$

is called the **hitting number** of \mathcal{F} .

Definition 1.2. Let S be a set and $\mathcal{F} \subseteq 2^S$ a family of subsets. Then

$$\Delta_{\mathcal{F}} := \left\{ S \subseteq \mathcal{F} : \bigcap_{F \in S} F \neq \emptyset \right\}$$

is called the **cut complex** of \mathcal{F} .

Definition 1.3. Let X be a simplicial complex on the vertex set V and $S \subseteq X$ a set of simplices of X. Then S is called a **covering** of X if for every vertex $v \in V$ there exists a simplex $\sigma \in S$, such that $v \in \sigma$.

Proposition 1.1. Let S be a set and $\mathcal{F} \subseteq 2^S$ a family of subsets. Then we have:

$$\tau(\mathcal{F}) = \min\{|S| : S \text{ is a covering of } \Delta_{\mathcal{F}}\}$$

Proof.

References