Reinforcement Learning

6. Direct Policy Search

Freek Stulp and Michèle Sebag

Université Paris-Saclay

Jan. 4th, 2016 Credit: Jan Peters's slides (ICML 2015) Marc Deisenroth's slides (MLSS 2013)

Overview

- Position of the problem
- - The model-free approach
 - Gradient-based approaches
 - Distribution-based approaches
 - Exponentially weighted approaches
 - The model-based approach
- - Search space
 - Objective
 - Evolution of morphology

Position of the problem

Notations

- State space S
- Action space \mathcal{A}
- Transition model $p(s, a, s') \mapsto [0, 1]$
- Reward r(s)

bounded

Mainstream RL: based on values

$$V^*: S \mapsto \mathbb{R} \qquad \pi^*(s) = \underset{a \in \mathcal{A}}{arg opt} \left(\sum_{s'} p(s, a, s') V^*(s') \right)$$
$$Q^*: S \times \mathcal{A} \mapsto \mathbb{R} \qquad \pi^*(s) = \underset{a \in \mathcal{A}}{arg opt} (Q^*(s, a))$$

What we want

$$\pi: \mathcal{S} \mapsto \mathcal{A}$$

Aren't we learning something more complex than needed ?... ⇒ Let us consider Direct policy search

From RL to Direct Policy Search

Direct policy search: define

- Search space (representation of solutions)
- · Optimization criterion
- · Optimization algorithm

Representation

1.Explicit representation ■ Policy space

 π is represented as a function from ${\mathcal S}$ onto ${\mathcal A}$

- Non-parametric representation, e.g. decision tree or random forest
- Parametric representation. Given a function space, π is defined by a vector of parameters θ .

$$\pi_{\theta} = \left\{ \begin{array}{l} \text{Linear function on } \mathcal{S} \\ \text{Radius-based function on } \mathcal{S} \\ \text{(deep) Neural net} \end{array} \right.$$

E.g. in the linear function case, given $s \in S = \mathbb{R}^d$ and θ in \mathbb{R}^d ,

$$\pi_{\theta}(s) = \langle s, \theta \rangle$$

Representation

2. Implicit representation: for example Trajectory generators

 $\pi(s)$ is obtained by solving an auxiliary problem. For instance,

- Define desired trajectories
 Dynamic movement primitives
- Trajectory $\tau = f(\theta)$
- Action = getting back to the trajectory given the current state s

Two approaches

- Model-free approaches
- Model-based approaches

History

- Model-free approaches were the first ones; they work well but i) require many examples; ii) these examples must be used in a smart way.
- Model-based approaches are more recent. They proceed by i) modelling the MDP from examples (this learning step has to be smart); ii) using the model as if it were a simulator.
 - Important points: the model must give a prediction **and** a confidence interval (will be very important for the exploration).

Overview

- Direct policy search in RL
 - The model-free approach
 - Gradient-based approaches
 - Distribution-based approaches Exponentially weighted approaches
 - The model-based approach
- - Search space
 - Objective
 - Evolution of morphology

The model-free approach

Algorithm

1 Explore: Generate trajectories $\tau_i = (s_{i,t}, a_{i,t})_{t=1}^T$

after π_{θ_k}

- Evaluate:
 - Compute quality of trajectories
 - Episode-based Compute quality of (state-action) pairs Step-based
- O Update: compute θ_{k+1}

Two modes

- Episode-based
 - learn a distribution D_ν over Θ
 - draw θ after \mathcal{D}_k , generate trajectory, measure its quality
 - bias D_k toward the high quality regions in Θ space
- Step-based
 - draw a_t from $\pi(s_t, \theta_k)$
 - measure $q_{\theta}(s, a)$ from the cumulative reward gathered after having visited (s,a)

Getting rid of Markovian assumption

Position of the problem Direct policy search in RL Evolutionary Robotics The model-free approach The model-based approach

Model-free Episode-based DPS. PROS

Getting rid of Markovian assumption

Rover on Mars: take a picture of region 1, region 2, ...

Hopes of scalability

- With respect to continuous state space
- No divergence even under function approximation

Tackling more ambitious goals

also see Evolutionary RL

- Partial observability does not hurt convergence (though increases computational cost)
- Optimize controller (software) and also morphology of the robot (hardware);
- Possibly consider co-operation of several robots...

Model-free Episode-based DPS. CONS

Lost the global optimum properties

- Not a well-posed optimization problem in general
- Lost the Bellman equation ⇒ larger variance of solutions

A noisy optimization problem

- Policy $\pi \to a$ distribution over the trajectories (depending on starting point, on noise in the environment, sensors, actuators...)
- $V(\theta) =_{def} \mathbb{E}\left[\sum_{t} \gamma^{t} r_{t+1} | \theta\right]$ or

$$V(\theta) =_{def} \mathbf{E}_{\theta} [J(\text{ trajectory })]$$

In practice

$$V(\theta) \approx \frac{1}{K} \sum_{i=1}^{K} J(\text{ trajectory }_i)$$

How many trajectories are needed?

Requires tons of examples

The in-situ vs in-silico dilemma

- In-situ: launch the robot in the real-life and observe what happens
- In-silico: use a simulator
 - But is the simulator realistic ???

The exploration vs exploitation dilemma

- For generating the new trajectories
- For updating the current solution θ

$$\theta_{t+1} = \theta_t - \alpha_t \nabla V(\theta)$$

Very sensitive to the learning rate α_t .

Overview

- Direct policy search in RL
 - The model-free approach
 - Gradient-based approaches
 - Distribution-based approaches Exponentially weighted approaches
 - The model-based approach
- - Search space
 - Objective
 - Evolution of morphology

The cumulative discounted value

$$V(s_0) = r(s) + \sum_{t=1}^{\infty} \gamma^t r(s_t)$$

with s_{t+1} next state after s_t for policy π_θ

The gradient

$$\frac{\partial V(s_0, \theta)}{\partial \theta} \approx \frac{V(s_0, \theta + \epsilon) - V(s_0, \theta - \epsilon)}{2\epsilon}$$

- Model $p(s_{t+1}|s_t, a_t, \theta)$ not required but useful
- Laaarge variance! many samples needed.

A trick

- Using a simulator: Fix the random seed and reset
- No variance of $V(s_0, \theta)$, much smaller variance of its gradient

No discount: long term average reward

$$V(s) = \lim_{T \to \infty} \frac{1}{T} \mathbf{E} \left[\sum_{t} r(s_t) | s_0 = s \right]$$

Assumption: ergodic Markov chain

(After a while, the initial state does not matter).

- V(s) does not depend on s
- One can estimate the percentage of time spent in state s

$$q(\theta, s) = Pr_{\theta}(S = s)$$

Yields another value to optimize

$$V(\theta) = \mathbf{E}_{\theta}[r(S)] = \sum_{s} r(s)q(\theta, s)$$

(*)

Model-free Direct Policy Search.

Algorithm

- ② Compute or estimate the gradient $\nabla V(\theta)$
- $\theta_{t+1} = \theta_t + \alpha_t \nabla V(\theta)$

Computing the derivative

 $\nabla V = \nabla \left(\sum r(s)q(\theta,s) \right) = \sum r(s)\nabla q(\theta,s)$ $= \mathbf{E}_{S,\theta} \left[r(S) \frac{\nabla q(\theta, S)}{q(\theta, S)} \right]$ $= \mathbf{E}_{S.\theta} [r(S) \nabla \log q(\theta, S)]$

Unbiased estimate of the gradient (integral = empirical sum)

$$\hat{\nabla} V = \frac{1}{N} \sum_{i} r(s_i) \frac{\nabla q(\theta, s_i)}{q(\theta, s_i)}$$

(*) Explanations next slide

Expectation and empirical averages

$$\mathbf{E}[f] = \int f(x)dp(x) = \int f(x)p(x)dx \approx \frac{1}{n}\sum_{i=1}^{n}f(x_i)$$

Expectation under different distributions

$$\int_{
ho(s)}g(s)ds=\int_{S}rac{g(s)}{
ho(s)}ds$$

Gradients

$$\frac{\nabla q(x)}{q(x)} = \nabla(\log(q(x)))$$

The Gaussian case

see CMA-ES

$$\theta \sim \mathcal{D}_k = \mathcal{N}(\mu_k, \Sigma_k)$$

- easy to adapt μ_k
- Computationally heavy to adapt Σ_k
- does not scale up to high dimensions

(> 200)

$$\mathbf{C}_{\mu} = \frac{1}{\mu} \sum \boldsymbol{y}_{i:\lambda} \boldsymbol{y}_{i:\lambda}^{\mathrm{T}}$$

 $\mathbf{C} \leftarrow (1-1) \times \mathbf{C} + 1 \times \mathbf{C}_{\mu}$

- Invariances under monotonous transform of optimization criterion and affine transf. of Θ .
- A particular case of Information Geometry Optimization

Effects of step size

Must stay close to the known regions...

In the distribution space

Adapt \mathcal{D}_k *and* stay close to the data distribution

How: add a distance term to the objective

$$\mathcal{F}(\theta) = V(\theta) + KL(\theta||q)$$

The KL divergence among distributions

$$KL(p||q) = \sum_{x} p(x) \frac{q(x)}{p(x)}$$

Information-theoretic "distance" among distributions

Positive

Identity of indiscernibles

$$KL(p||q) = 0 \Leftrightarrow p = q$$

Not symmetric

(hence not a distance)

$$KL(p||q) \neq KL(q||p)$$

Minimizing KL(p||q)

• if q = 0 must have p = 0

→ no wild exploration

KL is minimized, everything else being equal, if entropy(p) maximized

→ enforce exploration

Overview

- Direct policy search in RL
 - The model-free approach
 - Gradient-based approaches
 - Distribution-based approaches Exponentially weighted approaches
 - The model-based approach
- - Search space
 - Objective
 - Evolution of morphology

Success Matching Principle

"When learning from a set of their own trials in iterated decision problems, humans attempt to match **not the best taken action** but the **reward-weighted frequency** of their actions and outcomes" [Arrow, 1958].

Success-Matching: policy reweighting by success probability f(r)

$$\pi_{\text{new}}(\boldsymbol{a}|\boldsymbol{s}) \propto f(r(\boldsymbol{s}, \boldsymbol{a}))\pi_{\text{old}}(\boldsymbol{a}|\boldsymbol{s})$$

+ Succes (high reward) - Failure (low reward)

$$\pi_{new}(a|s) \propto \text{Success } (s, a, \theta).\pi_{old}(a|s)$$

Different computation of "Success"

- $\theta \sim \mathcal{D}_k$ generates trajectory, evaluation $V(\theta)$
- Transform evaluation into (non-negative) probability w_k
- Find mixture policy π_{k+1}

$$p(a|s) \propto \sum w_k p(a|s, \theta_k)$$

- Find θ_{k+1} accounting for π_{k+1}
- Update \mathcal{D}_k , iterate

Computing the weights

$$w_k = exp(\beta(V(\theta) - minV(\theta)))$$

 β : temperature of optimization

simulated annealing

Example

$$= \exp \left(10 \frac{V(\theta) - \min V(\theta)}{\max V(\theta) - \min V(\theta)}\right)$$

Updating the distribution

The Gaussian case

$$\mathcal{D}_k = \mathcal{N}(\mu_k, \Sigma_k)$$

Updating the mean

$$\mu_{k+1} = \frac{\sum_{i} \mathbf{w}_{k,i} \theta_{k,i}}{\sum_{i} \mathbf{w}_{k,i}}$$

Updating the covariance

$$\Sigma_{k+1} = \frac{\sum_{i} w_{k,i} (\theta_{k,i} - \mu).(\theta_{k,i} - \mu)^{t})}{\sum_{i} w_{k,i}}$$

With A^t the transpose of matrix A.

Model-free Direct Policy Search, summary

Algorithm

- Define the criterion to be optimized (cumulative value, average value)
- Define the search space (Θ : parametric representation of π)
- Optimize it: $\theta_k \to \theta_k + 1$
 - Using gradient approaches
 - Updating a distribution D_k on Θ
 - In the step-based mode or success matching case: find next best $q_{k+1}^*(s,a)$; find θ_{k+1} such that $Q^{\pi}=q_{k+1}^*$

Pros

It works

Cons

- Requires tons of examples
- Optimization process difficult to tune:
 - Learning rate difficult to adjust
 - Regularization (e.g. using KL divergence) badly needed and difficult to adjust

- **□** D 22 C1 11
- Direct policy search in RL
 - The model-free approach
 - Gradient-based approaches
 - Distribution-based approaches
 - Exponentially weighted approaches
 - The model-based approach
- Evolutionary Robotics
 - Search space
 - Objective
 - Evolution of morphology
 - Intrinsic rewards

Algorithm

- **1** Use data $\tau_i = (s_{i,t}, a_{i,t})_{t-1}^T$ to learn a forward model $\hat{p}(s'|s, a)$
- Use the model as a simulator
- Optimize policy
- (Use policy on robot and improve the model)

Learning the model

Modeling

Learning the model

Modeling and predicting

Position of the problem Direct policy search in RL Evolutionary Robotics The model-free approach The model-based approach

Learning the model

Modeling

When optimizing a model: very useful to have a measure of uncertainty on the prediction

Learning the model, 2

Gaussian Processes

http://www.gaussianprocess.org/

Prior belief about the function

Position of the problem Direct policy search in RL Evolutionary Robotics The model-free approach The model-based approach

Learning the model, 2

Gaussian Processes

http://www.gaussianprocess.org/

Posterior belief about the function

Gaussian Processes

Posterior belief about the function

Gaussian Processes

Posterior belief about the function

Gaussian Processes

Posterior belief about the function

Gaussian Processes

Posterior belief about the function

Gaussian Processes

Posterior belief about the function

Gaussian Processes

Posterior belief about the function

Gaussian Processes

Posterior belief about the function

Gaussian Processes

Posterior belief about the function

Computing the gradient

Given

Forward model

$$s_{t+1} = f(s_t, a_t)$$

Differentiable policy

$$a = \pi(s_t, \theta)$$

It comes

$$V(\theta) = \sum_{t} \gamma^{t} r_{t+1}$$

Exact gradient computation

$$\begin{split} \frac{\partial V(\theta)}{\partial \theta} &= \sum_{t} \gamma^{t} \frac{\partial r_{t+1}}{\partial \theta} \\ &= \sum_{t} \gamma^{t} \frac{\partial r_{t+1}}{\partial s_{t+1}} \cdot \frac{\partial s_{t+1}}{\partial \theta} \\ &= \sum_{t} \gamma^{t} \frac{\partial r_{t+1}}{\partial s_{t+1}} \left(\frac{\partial s_{t+1}}{\partial s_{t}} \cdot \frac{\partial s_{t}}{\partial \theta} + \frac{\partial s_{t+1}}{\partial a_{t}} \cdot \frac{\partial a_{t}}{\partial \theta} \right) \end{split}$$

Position of the problem Direct policy search in RL Evolutionary Robotics The model-free approach The model-based approach

Model-based Direct Policy Search, summary

Algorithm

- Learn a model (prediction and confidence interval)
- Derive the gradient of the policy return
- Optimize it standard gradient optimization, e.g. BFGS

Pros

- Sample efficient (= does not require tons of examples)
- Fast (standard gradient-based optimization)
- Best ever results on some applications (pendulum on a car, picking up objects, controlling throttle valves)

Cons

- Gaussian processes (modelling also the confidence interval) hardly scale up: in $O(n^3)$, with n the number of examples
- Require specific parametrizations of the policy and the reward function
- Only works if the model is good (otherwise, disaster)

Overview

- Position of the problem
- Direct policy search in RL
 - The model-free approach
 - Gradient-based approaches
 - Distribution-based approaches
 - Exponentially weighted approaches
 - The model-based approach
- Evolutionary Robotics
 - Search space
 - Objective
 - Evolution of morphology
 - Intrinsic rewards

Evolutionary Robotics

- Select the search space Θ
- ② Define the objective function $\mathcal{F}(\theta)$ in simulation or in-situ Sky is the limit: controller; morphology of the robot; co-operation of several robots.
- Optimize: Evolutionary Computation (EC) and variants
- Test the found solution reality gap

Position of the problem Direct policy search in RL Evolutionary Robotics Search space Objective Evolution of morphology Intrinsic rewards

Search Space, 1

Neural Nets

- Universal approximators; continuity; generalization hoped for.
- Fast computation
- Can include priors in the structure
- Feedforward architecture: reactive policy
- · Recurrent architecture: internal state

encoding memory (fast vanishing)

Critical issues

- Find the structure: structured EC much more difficult
- See NeuroEvolution of Augmented Topology (NEAT) and HyperNEAT Stanley Miikkulainen, 2002

Other options

- Finite state automaton (find states; write rules; optimize thresholds...)
 The Braitenberg controller.
- Genetic programming (optimization of programs)

Position of the problem Direct policy search in RL Evolutionary Robotics Search space Objective Evolution of morphology Intrinsic rewards

Example: Swarm robots moving in column formation

Robot

Robotic swarm, 2

Representation

Constants		
	l1	blind zone
	12	sensor range
	ϕ	Vision angular range
Variables(t)		·
	r(t), $s(t)$	positions
	$\theta(t)$	angular direction

Position of the problem Direct policy search in RL Evolutionary Robotics Search space Objective Evolution of morphology Intrinsic rewards

Example of a (almost manual) controller

CONTROLLER OF A ROBOT

Info. from the image sensors	Info. from the IR sensors			
into. Itom the image sensors	$0 \le x_{IR} < \beta_0$	$\beta_0 \leq x_{\rm IR} < \beta$	$\beta \leq x_{\text{IR}}$	
$0 \le x_{\text{image}} \le \alpha$	move backward or turn right	turn left		
$\alpha < x_{\rm image} < (19 - \alpha)$	move backward or turn right	stop	move forward	
$\alpha \leq x_{\text{image}} \leq 19$	move backward or turn right	turn right		
preceding robot NOT FOUND	move backward or turn right	move forward		

- The i-th robot follows the k-th robot at time t iff the center of gravity of k belongs to the perception range of i ($\mathbf{s}_k(t) \in \mathbf{A}_i(t)$).
- The *i*-th robot is a leader if i) it does not follow any other robot; ii) there exists at least one robot following it.
- A column is a subset $\{i_1, \dots i_K\}$ such that robot i_{k+1} follows robot i_k and robot i_1 is a leader.
- A deadlock is a subset $\{i_1, \dots i_K\}$ such that robot i_{k+1} follows robot i_k and robot i_1 follows robot i_K .

Overview

- Position of the problem
- Direct policy search in RL
 - The model-free approach
 - Gradient-based approaches
 - Distribution-based approaches
 - Exponentially weighted approaches
 - The model-based approach
- Evolutionary Robotics
 - Search space
 - Objective
 - Evolution of morphology
 - Intrinsic rewards

Optimization criterion

The promise: no need to decompose the goal

In practice: bootstrap

- All initial (random) individuals are just incompetent
- Fitness landscape: Needle in the Haystack? (doesn't work)
- Start with something simple
- Switch to more complex during evolution
- · Example: visual recognition

Optimization criterion, 2

Fonctional vs behavioral

state of controller vs distance walked

Implicit vs explicit

Survival vs Distance to socket

Internal vs external information

Sensors, ground truth

Co-evolution: e.g. predator/prey

performance depends on the other robots

State of art

- Standard: function, explicit, external variables
- In-situ: behavioral, implicit, internal variables
- Interactive: behavioral, explicit, external variables

Optimization criterion, 3

Fitness shaping

- Obstacle avoidance
- · Obstacle avoidance, and move!
- Obstacle avoidance, and (non circular) move !!

Finally

Floreano Nolfi 2000

$$\mathcal{F}(\theta) = \int_{T_{\text{exp.}}} A(1 - \sqrt{\Delta B})(1 - i)$$

• *A* sum of wheel speed $r_i \in [-0.5, 0.5]$

 \rightarrow move

•
$$\Delta B = |r_1 + r_2|$$

 \rightarrow ahead

• i maximum (normalised) of sensor values

→ obstacle avoidance

Behavioral, internal variables, explicit

Position of the problem Direct policy search in RL Evolutionary Robotics Search space Objective Evolution of morphology Intrinsic rewards

Result analysis

- · First generations
 - Most rotate
 - · Best ones slowly go forward
 - No obstacle avoidance
 - Perf. depends on starting point
- After ≈ 20 gen.
 - · Obstacle avoidance
 - No rotation
- · Thereafter, gradually speed up

Result analysis, 2

• Max. speed 48mm/s (true max = 80)

Inertia, bad sensors

Never stuck in a corner

contrary to Braitenberg

Going further

- Changing environment
- Changing robotic platform

Limitations

From simulation to real-world

Reality gap!

- Opportunism of evolution
- · Roboticists not impressed...

Carl Sims

Goal

- Evolve both morphology and controller
- using a grammar (oriented graph)
- Heavy computational cost simulation, several days on Connection Machine – 65000 proc.
- Evolving locomotion (walk, swim, jump)
- and competitive co-evolution (catch an object)

Position of the problem Direct policy search in RL Evolutionary Robotics Search space Objective Evolution of morphology Intrinsic rewards

The creatures, Karl Sims

Video: https://www.youtube.com/watch?v=JBgG_VSP7f8

Overview

- Position of the problem
- Direct policy search in RL
 - The model-free approach
 - Gradient-based approaches
 - Distribution-based approaches
 - Exponentially weighted approaches
 - The model-based approach
- Evolutionary Robotics
 - Search space
 - Objective
 - Evolution of morphology
 - Intrinsic rewards

Position of the problem Direct policy search in RL Evolutionary Robotics Search space Objective Evolution of morphology Intrinsic rewards

Context

Internal rewards

Delarboulas et al., PPSN 2010

Requirements

- No simulation
- On-board training
 - Frugal (computation, memory)
 - · No ground truth
- Providing "interesting results"

"Human – robot communication"

Goal: self-driven Robots: Defining instincts

Starting from (almost) nothing

Robot ≡ a data stream

$$t \rightarrow x[t] = (sensor[t], motor[t])$$

Trajectory =
$$\{x[t], t = 1 \dots T\}$$

Robot trajectory

Starting from (almost) nothing

Robot ≡ a data stream

$$t \rightarrow x[t] = (sensor[t], motor[t])$$

Trajectory =
$$\{x[t], t = 1 \dots T\}$$

Robot trajectory

Computing the quantity of information of the stream

Given $x_1, \ldots x_n$, visited with frequency $p_1 \ldots p_n$,

$$Entropy(trajectory) = -\sum_{i=1}^{n} p_i \log p_i$$

Conjecture

Controller quality ∝ Quantity of information of the stream

Building sensori-motor states

Avoiding trivial solutions...

If sensors and motors are continuous / high dimensional

- then all vectors x[t] are different
- then $\forall i, p_i = 1/T$; $Entropy = \log T$

... requires generalization

From the sensori-motor stream to clusters

Clusters in sensori-motor space (R²)

sequence of points in \mathbb{R}^d sensori-motor states

> Trajectory → $X_1 X_2 X_3 X_1 ...$

Clustering

k-Means

- Draw k points $x[t_i]$
- 2 Define a partition C in k subsets C_i

Voronoï cells

$$C_i = \{x/d(x,x[t_i]) < d(x,x[t_j]), j \neq i\}$$

ϵ -Means

- **1** Init : $C = \{\}$
- 2 For t = 1 to T
 - If $d(x[t], C) > \epsilon, C \leftarrow C \cup \{x[t]\}$

 $\Rightarrow -\frac{1}{2}$

Initial site list

loop on trajectory

Search space

Neural Net, 1 hidden layer.

Definition

- Controller F + environment → Trajectory
- Apply Clustering on Trajectory
- For each C_i, compute its frequency p_i

$$\mathcal{F}(F) = -\sum_{i=1}^{n} p_i * \log(p_i)$$

Position of the problem Direct policy search in RL Evolutionary Robotics Search space Objective Evolution of morphology Intrinsic rewards

Curiosity instinct: Maximizing Controller IQ

Properties

- Penalizes inaction: a single state → entropy = 0
- Robust w.r.t. sensor noise (outliers count for very little)
- Computable online, on-board (use ϵ -clustering)
- Evolvable onboard

Limitations: does not work if

Environment too poor

(in desert, a single state \rightarrow entropy = 0)

Environment too rich

(if all states are distinct, Fitness(controller) = log T)

both under and over-stimulation are counter-effective.

From curiosity to discovery

Intuition

- An individual learns sensori-motor states (x[t_i] center of C_i)
- · The SMSs can be transmitted to offspring
- · giving the offspring an access to "history"
- The offspring can try to "make something different"

fitness(offspring) = Entropy(Trajectory(ancestors ∪ offspring))

NB: does not require to keep the trajectory of all ancestors. One only needs to store $\{C_i, n_i\}$

From curiosity to discovery

Cultural evolution

transmits genome + "culture"

- parent = (controller genome, $(C_1, n_1), \dots (C_K, n_K)$)
- Perturb parent controller → offspring controller
- Run the offspring controller and record $x[1], \dots x[T]$
- Run ε-clustering variant.

$$Fitness(offspring) = -\sum_{i=1}^{\ell} p_i \log p_i$$

Algorithm

• Init :
$$C = \{(C_1, n_1), \dots (C_K, n_K)\}$$

 \bigcirc For t=1 to T• If $d(x[t], C) > \epsilon, C \leftarrow C \cup \{x[t]\}$

o Define $p_i = n_i / \sum_i n_i$

$$Fitness(offspring) = -\sum_{i=1}^{\ell} p_i \log p_i$$

Initial site list

loop on trajectory

Validation

Experimental setting

Robot = Cortex M3, 8 infra-red sensors, 2 motors. Controller space = ML Perceptron, 10 hidden neurons.

Medium and Hard Arenas

Validation, 2

Plot points in hard arena visited 10 times or more by the 100 best individuals.

PPSN 2010

Partial conclusions

Entropy-minimization

· computable on-board;

no need of prior knowledge/ground truth

- · yields "interesting" behavior
- · needs stimulating environment

See also

Robust Intrinsic Motivation

Baranes & Oudeyer 05,07; Oudeyer, NIPS 2012