# A new approach of Community Detection Based on Seed Node



A thesis in partial fulfilment for the degree of **Masters of Computer Applications (MCA)** 

Under The Supervision of:

Dr. Prasenjit Choudhury

Assistant Professor NIT Durgapur

Submitted By: Bheem kumar (15/CA/639)

#### Outline

- Community
  - Types of community
  - Community detection
- Seed Node
- Clustering Coefficient
- Moudularity
- Basic Seed centric Algorithm
- Our Algorithm
- Experimental results
- Comparision
- Conclusion
- References

# Community

A community is a small or large unit (a group of living or non-living things) who have something in common, such as religion, values, identity etc.



### **Types of Community**



**Overlapping Communities** 



**Disjoint Communities** 

# **Community Detection**

Discovering groups in a network where individual group or membership are not given explicitly.



#### **Seed Node**



#### **Clustering Coefficient**



(a) No pairs formed among neighbors:  $C = \theta$ 



(b) One pair formed among neighbors: C = 1/3



(c) Three pairs formed among neighbors: C = 3/3

#### **Modularity**

- Modularity[1] is one of the measure structure of networks or graphs.
- Designed to measure the strength of division of a network into modules.
- The value of the modularity lies in the range [-1, 1].
- The network partition is as much good as Modularity of network is close to 1.

#### **Basic seed-centric Algorithm**

**Algorithm 1** General seed-centric community detection algorithm

```
Require: G = \langle V,E \rangle a connected graph, C \leftarrow \emptyset

S \leftarrow compute \ seeds(G)

for s \in S \ do

Cs \leftarrow compute \ local \ com(s,G)

C \leftarrow C + Cs

end for

return compute community(C)
```

#### **Our Seed-centric Community Detection**

#### **Notations:**

**CC** - Clustering Coefficient of all the node available in the graph G.

**Deg** - Degree of all the nodes available in the graph G

**CCMD** - Clustering Coefficient Multiplied by Degree of corresponding node

**LC** - Local Community

**LOC** - List of Community

**RN** - Remaining Nodes

**a** - node id

#### Our Algorithm

ALGORITHM 2 Our algorithm for seed node and community detection

```
Require: G = \langle V,E \rangle a connected graph
output = seed node and communities
RN = 0
while(True)
    CC = Clustering Coefficient of all the node in graph G
    Deg = degree of all the nodes in graph G
    CCMD = CC * Deg
    seed = max CCMD in CCMD list
    Deg = degree of seed in Deg list
    if(neighbors of seed < threshold1 or CCMD of seed < threshold2) then
        RN = remaining nodes in graph G
        break the loop
    else
        LC = seed + neighbors of seed
        LOC = LOC + LC
        G = G - LC
    end if
    if( G is empty ) then
        break the loop
    end if
end while
```



#### Our Algorithm

ALGORITHM 3 Our algorithm to Seed set expansion

```
Input = RN

Output = communities

while( length of RN > 0 )

for each node a \in RN

find the neighbors of a in each community(LOC)

put the node a in that community, which have maximum number of neighbors of a

end for

RN = RN - a

end while
```



# **Experimental Results**

Table 1. Real World Dataset

| Networks        | No. of nodes | No. of edges | References |
|-----------------|--------------|--------------|------------|
| Karate Club     | 34           | 78           | [2]        |
| Dolphins        | 62           | 159          | [3]        |
| Political Books | 105          | 445          | [4]        |



Size Distribution vs Modularity class



Zachary's karate club Network



Size Distribution vs Modularity class



**Dolphins social network** 

Size Distribution vs Modularity class



Table 2. Real World Dataset experiments result

| Networks           | #Nodes | #Edges | #Community | Modularity | References |
|--------------------|--------|--------|------------|------------|------------|
| Karate Club        | 34     | 78     | 2          | 0.371      | [2]        |
| Dolphins           | 62     | 159    | 5          | 0.505      | [3]        |
| Political<br>Books | 105    | 441    | 4          | 0.524      | [4]        |

| Name of Network | Algorithms    | Community | Modularity |
|-----------------|---------------|-----------|------------|
| Karate Club     | Newman[1]     | 5         | 0.40       |
|                 | Lovain[5]     | 4         | 0.41       |
|                 | Walktrap[6]   | 5         | 0.35       |
|                 | Licod[7]      | 3         | 0.24       |
|                 | Yasca[8]      | 2         | 034        |
|                 | Our Algorithm | 2         | 0.37       |
| Dolphins        | Newman        | 5         | 0.51       |
|                 | Lovain        | 4         | 0.52       |
|                 | Walktrap      | 4         | 0.50       |
|                 | Licod         | 6         | 0.42       |
|                 | Yasca         | 3         | 0.24       |
|                 | Our Algorithm | 4         | 0.52       |
| Political Books | Newman        | 5         | 0.52       |
|                 | Lovain        | 5         | 0.51       |
|                 | Walktrap      | 4         | 0.51       |
|                 | Licod         | 2         | 0.48       |
|                 | Yasca         | 3         | 0.35       |
|                 | Our Algorithm | 5         | 0.50       |

Comparision
between some
popular existed
community
detection algorithm
and our algorithm

#### Visual Comparision based on Modularity



#### Conclusion

- A new seed-centric community detection algorithm
- We compare the proposed algorithm with existing seedcentric community detection algorithm.
- Experimental results show that our proposed algorithm out performed the existing seed-centric community detection algorithm

#### References

- [1] Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. PNAS 99(12), 7821–7826 (2002)
- [2] Zachary, W.W.: An information flow model for conflict and fission in small groups. Journal of Anthropological Resea33, 452–473 (1977)
- [3] Lusseau, D., Schneider, K., Boisseau, O.J., Haase, P., Slooten, E., Dawson, S.M.:The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations. Behavioral Ecology and Sociobiology 54, 396–405 (2003)
- [4] Krebs, V.: Political books network, http://www.orgnet.com/
- [5] Blondel, V.D., Guillaume, J.I., Lefebvre, E.: Fast unfolding of communities in large networks, pp. 1–12 (2008)
- [6] Pons, P., Latapy, M.: Computing communities in large networks using random walks. J. Graph Algorithms Appl. 10(2), 191–218 (2006)
- [7] Kanawati, R.: Licod: Leaders identification for community detection in complex networks. In: SocialCom/PASSAT, pp. 577–582 (2011)
- [8] Kanawati, R.: Yasca: A collective intelligence approach for community detection in complex networks. CoRR abs/1401.4472 (2014)

# THANK YOU