REGLA DE SIMPSON.

Otra forma de obtener una estimación más exacta de una integral consiste en usar polinomios de grado superior para unir los puntos.

Por ejemplo, si hay otro punto a la mitad entre f(a) y f(b), los tres puntos se pueden unir con una parábola. (ver figura)

Si hay dos puntos igualmente espaciados entre f(a) y f(b), los cuatro puntos se pueden unir mediante un polinomio de tercer grado

Las fórmulas que resultan de tomar las integrales bajo esos polinomios se conocen como *reglas de Simpson*

REGLA DE SIMPSON 1/3

La regla de Simpson 1/3 resulta cuando un polinomio de interpolación de segundo grado se sustituye en la ecuación:

$$I = \int_a^b f(x) dx \cong \int_a^b f_2(x) dx$$

Si se designan a y b como x_0 y x_2 , y $f_2(x)$ se representa por un polinomio de Lagrange de segundo grado, se tiene la siguiente integral:

$$I = \int_{x_0}^{x_2} \left[\frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} f(x_0) + \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} f(x_1) + \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} f(x_2) \right] dx$$

Después de la integración y de las manipulaciones algebraicas

$$I \cong \frac{h}{3}[f(x_0) + 4f(x_1) + f(x_2)]$$

REGLA DE SIMPSON 1/3

Donde, en este caso, h = (b - a)/2.

$$I \cong (b-a) \underbrace{\frac{f(x_0) + 4f(x_1) + f(x_2)}{6}}_{\text{Ancho}}$$
Altura promedio

Esta ecuación se conoce como regla de Simpson 1/3, y es la segunda fórmula de integración cerrada de Newton-Cotes. La especificación "1/3" se origina del hecho de que h está dividida entre 3 en la ecuación.

donde $a = x_0$, $b = x_2$ y $x_1 = el$ punto a la mitad entre a y b, que está dado por (b + a)/2

REGLA DE SIMPSON 1/3

Se puede demostrar que la aplicación a un solo segmento de la regla de Simpson 1/3 tiene un error de truncamiento de:

$$E_t = -\frac{1}{90} h^5 f^{(4)}(\xi)$$

como h = (b - a)/2

$$E_t = -\frac{(b-a)^5}{2\,880}\,f^{(4)}(\xi)$$

EJERCICIO BASE REGLA DE SIMPON 1/3

Integre numéricamente, la siguiente función, desde a = 0 hasta b = 0.8

$$f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$$

$$X_1 = (b + a)/2 = (0.8 + 0)/2 = 0.4$$

$$f(0) = 0.2$$
 $f(0.4) = 2.456$ $f(0.8) = 0.232$

$$I \cong (b-a) \underbrace{\frac{f(x_0) + 4f(x_1) + f(x_2)}{6}}_{\text{Ancho}}$$
Altura promedio

$$I \cong 0.8 \frac{0.2 + 4(2.456) + 0.232}{6} = 1.367467$$

Se sabe que la integral exacta es 1.640533, entonces el error absoluto seria

$$E_t = 1.640533 - 1.367467 = 0.2730667$$
 $\varepsilon_t = 16.6\%$

El Error aproximado (Error de Truncamiento), sería:

$$E_t = -\frac{(b-a)^5}{2\,880} f^{(4)}(\xi)$$

$$E_t = -\frac{(b-a)^5}{2880} f^{(4)}(\xi)$$
 $E_a = -\frac{(0.8)^5}{2880} (-2400) = 0.2730667$

donde -2 400 es el promedio de la cuarta derivada en el intervalo.

EJERCICIO BASE REGLA DEL TRAPECIO

Como lo hacemos en Octave:

```
%Cargar la libreria simbolica solo la primera vez
>>pkg load symbolic
>>syms x
>>fx=0.2+25*x -200*x^2 +675*x^3 -900*x^4 +400*x^5
>>cuarta= diff(fx,4)
>>h4 = function_handle(cuarta)
>>int4 = integral (h4, 0, 0.8)
>>int4/0.8
>>Ea=-((0.8-0)^5/2880)*int4/0.8
ans = 0.27307
```

REGLA DE SIMPSON 1/3 DE APLICACIÓN MULTIPLE

Así como en la regla del trapecio, la regla de Simpson se mejora al dividir el intervalo de integración en varios segmentos de un mismo tamaño.

$$h = \frac{b - a}{n}$$

 $h = \frac{b-a}{a}$ La integral total se puede representar como:

$$I = \int_{x_0}^{x_2} f(x) dx + \int_{x_2}^{x_4} f(x) dx + \dots + \int_{x_{n-2}}^{x_n} f(x) dx$$

Al sustituir la regla de Simpson 1/3 en cada integral se obtiene

$$I \cong 2h \frac{f(x_0) + 4f(x_1) + f(x_2)}{6} + 2h \frac{f(x_2) + 4f(x_3) + f(x_4)}{6} + \dots + 2h \frac{f(x_{n-2}) + 4f(x_{n-1}) + f(x_n)}{6}$$

Combinando términos y usando h=(b-a)/n, se tiene:

$$I \cong \underbrace{(b-a) - 4\sum_{i=1, 3, 5}^{n-1} f(x_i) + 2\sum_{j=2, 4, 6}^{n-2} f(x_j) + f(x_n)}_{\text{Ancho}}$$
Peso promedio

REGLA DE SIMPSON 1/3 DE APLICACIÓN MULTIPLE

EL error estimado en la regla de Simpson de aplicación múltiple se obtiene de la misma forma que en la regla del trapecio: sumando los errores individuales de los segmentos y sacando el promedio de la derivada para llegar a:

 $E_a = -\frac{(b-a)^5}{180n^4} \, \bar{f}^{(4)}$

promedio de la cuarta derivada en el intervalo.

NOTA: Se debe utilizar un número par de segmentos para implementar el método.

Muy importante

EJERCICIO BASE REGLA DE SIMPSON 1/3 DE APLICACIÓN MULTIPLE

Integre numéricamente, la siguiente función, desde a = 0 hasta b = 0.8 , considerando dos trozos con n=4.

$$f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$$

$$h = \frac{b-a}{n}$$
 $h = (0.8-0)/4 = 0.2$

$$f(0) = 0.2$$
 $f(0.2) = 1.288$
 $f(0.4) = 2.456$ $f(0.6) = 3.464$
 $f(0.8) = 0.232$

$$I \cong \underbrace{(b-a)}_{\text{Ancho}} \underbrace{\frac{f(x_0) + 4\sum_{i=1,3,5}^{n-1} f(x_i) + 2\sum_{j=2,4,6}^{n-2} f(x_j) + f(x_n)}{3n}}_{\text{Peso promedio}}$$

$$I = 0.8 \frac{0.2 + 4(1.288 + 3.464) + 2(2.456) + 0.232}{12} = 1.623467$$

Si el valor exacto de la integral se puede determinar en forma analítica y es 1.640533. Entonces, el Error relativo porcentual, sería:

$$E_t = 1.640533 - 1.623467 = 0.017067$$
 $\varepsilon_t = 1.04\%$

Error aproximado (Error de Truncamiento):

$$E_a = -\frac{(b-a)^5}{180n^4} \,\bar{f}^{(4)}$$

$$E_a = -\frac{(b-a)^5}{180n^4} \,\bar{f}^{(4)} \qquad E_a = -\frac{(0.8)^5}{180(4)^4} (-2\,400) = 0.017067$$

donde -2 400 es el promedio de la cuarta derivada en el intervalo.

EJERCICIO BASE REGLA DEL TRAPECIO

```
Como lo hacemos en Octave:

%VECTORIZAR LA FUNCION ORIGINAL:
>>pkg load symbolic
>>syms x
>> fx=@(x) 0.2+25*x -200*x.^2 + 675*x.^3 -900*x.^4 +400*x.^5;
>>[area] = simpson13general(fx,4,0,0.8) % n=4
vv = 1.6405
Valor aprox: 1.623466666667
Error verdadero: 0.017066666667
Error porcentual: 1.04
Error aproximado: 0.0170667
area = 1.6235
```

EJERCICIOS POR RESOLVER

Evalue la siguiente integral:

$$\int_{-2}^{4} (1 - x - 4x^3 + 2x^5) \, dx$$

Aplique la regla de Simpson 1/3), con n = 2,4,6;

EJERCICIOS POR RESOLVER

Evalue la siguiente integral:

$$\int_1^2 (x + 1/x)^2 dx$$

Aplique la regla de Simpson 1/3), con n = 2,4,6;

EJERCICIOS POR RESOLVER

Evalue la siguiente integral:

$$\int_0^3 (1 - e^{-x}) \, dx$$

Aplique la regla de Simpson 1/3), con n = 2,4,6;