# 3. Testes de Hipóteses

## **ANADI**

Licenciatura em Engenharia Informática

Instituto Superior de Engenharia do Porto

Ano letivo 2018/2019

# Testes de Hipóteses

Um teste de hipóteses ou teste estatístico é um processo estatístico usado para se tirar uma conclusão do tipo sim ou não sobre o parâmetro (ou parâmetros) de uma (ou mais) populações, a partir de uma (ou mais) amostras dessas populações.

Uma hipóteses estatística é uma conjetura sobre a distribuição de uma ou mais populações.

O teste de hipóteses consiste em formular duas hipóteses sobre esse(s) parâmetro(s) e averiguar se são ou não aceitáveis:

- H<sub>0</sub>: Hipótese nula é a hipótese que julgamos inverosímil (geralmente, contém =).
- $H_1$ : Hipótese alternativa é a hipótese que julgamos verosímil e que se pretende verificar (geralmente, contém >, < ou  $\neq$ ).

É sobre a hipótese nula (ou fundamental) que vamos tomar a decisão de rejeição ou não.

#### **Testes**

bilateral unilateral à direita unilateral à esquerda

 $H_0: \theta = \theta_0$   $H_0: \theta = \theta_0$   $H_0: \theta = \theta_0$   $H_1: \theta > \theta_0$   $H_1: \theta < \theta_0$ 

Uma estatística de teste é uma função das observações amostrais cujo valor vai determinar a conclusão a retirar do teste estatístico. Por outras palavras, permite quantificar a informação contida na amostra de forma a optar-se entre as duas hipóteses estatísticas,  $H_0$  e  $H_1$ .

Os valores críticos determinam o conjunto de valores da estatística de teste que conduz à rejeição da hipótese nula. Este conjunto de valores denomina-se região crítica.

A regra de decisão estatística é o princípio que determina a conclusão a retirar (rejeitar ou não  $H_0$ ) a partir da comparação do valor da estatística de teste com um ou mais valores críticos.

Um erro de inferência consiste em tirar a conclusão errada num teste estatístico a partir da informação contida na amostra.

| Tipo de erro de inferência         | H <sub>0</sub> verdadeira | $H_0$ falsa       |
|------------------------------------|---------------------------|-------------------|
| Não rejeitar <i>H</i> <sub>0</sub> | Decisão correta           | Erro tipo II      |
|                                    | risco $1-\alpha$          | risco $\beta$     |
| Rejeitar <i>H</i> <sub>0</sub>     | Erro tipo I               | Decisão correta   |
|                                    | risco $lpha$              | risco $1-\beta$   |
|                                    | Nível de significância    | Potência de teste |

O nível de significância  $\alpha$  (0 <  $\alpha$  < 1) é a probabilidade ou risco de se cometer um erro de tipo I, isto é,

$$\alpha = P(\text{erro tipo I}) = P(\text{rejeitar } H_0|H_0 \text{ verdadeira}).$$

A potência do teste  $1-\beta$  ( $0<\beta<1$ ) é a probabilidade ou risco de rejeitar  $H_0$  quando  $H_0$  é falsa, isto é,

$$1 - \beta = P(\text{rejeitar } H_0 | H_0 \text{ falsa}).$$

## Relação entre $\alpha$ e $\beta$

### Vamos testar a hipótese:

$$H_0$$
:  $\theta = \theta_0$   
 $H_1$ :  $\theta > \theta_0$ 



### Observações

- Alargar a região de não rejeição de  $H_0$ , faz diminuir o risco  $\alpha$ , mas aumenta o risco  $\beta$ .
- Aumentar o tamanho da amostra, diminui a variância da estatística de teste, reduzindo simultaneamente os riscos  $\alpha$  e  $\beta$ .

#### Pressupostos

- A hipótese nula contém sempre uma igualdade,  $H_0: \theta = \theta_0$ .
- A hipótese alternativa é da forma  $H_1: \theta > \theta_0$ ,  $H_1: \theta < \theta_0$  ou  $H_1: \theta \neq \theta_0$ .
- A distribuição da estatística de teste é definida no pressuposto de que a hipótese nula é verdadeira.
- Se o valor da estatística de teste estiver na zona de rejeição da hipótese nula, H<sub>0</sub>, então o teste é conclusivo, i.e., aceitamos que H<sub>1</sub> é verdadeira.
- Se o valor da estatística de teste estiver na zona de não rejeição de  $H_0$ , então o teste é inconclusivo, i.e., conclui-se que não há evidência para rejetar  $H_0$ .
- A regra de decisão é escolhida de forma a que  $P(E_I) = \alpha$ .

## Metodologia dos testes

Usaremos duas metodologias para realizar um teste de hipóteses:

- Com base na região de rejeição (Região Crítica).
- Através do valor de prova (p-value).

## Região crítica (R.C.)

#### Procedimento:

- **1** Identificar o parâmetro de interesse e formular  $H_0$  e  $H_1$ .
- ② Especificar o nível de significância  $\alpha$ .
- **©** Escolher a estatística de teste T com distribuição conhecida (supondo  $H_0$  verdadeira).
- Determinar a região crítica R.C..
- O Calcular o valor da estatística de teste tobs a partir dos dados da amostra.
- **1** Decidir rejeitar  $H_0$  se  $t_{obs}$  estiver na R.C.; caso contrário, não rejeitar  $H_0$ .

## Tipos de teste vs Região crítica



## Valor de prova (p-value)

O valor de prova é o menor nível de significância que nos conduz à rejeição de  $H_0$  com a amostra observada.

Assim, o valor de prova é dado pela probabilidade da estatística de teste T tomar um valor mais desfavorável, na direção da rejeição, do que o valor observado  $\hat{\theta}$ , quando  $H_0$  é verdadeira, ou seja,

- valor- $p = P(|\hat{\Theta}| \ge \hat{\theta}|H_0 \text{ verdadeira})$ , se o teste é bilateral;
- ② valor- $p = P(\hat{\Theta} \ge \hat{\theta} | H_0 \text{ verdadeira})$ , se o teste é unilateral à direita;
- ullet valor- $p=P(\hat{\Theta}\leq \hat{\theta}|H_0 \text{ verdadeira})$ , se o teste é unilateral à esquerda.

Portanto, se o teste tem nível de significância  $\alpha$ , então:

- **1** se valor- $p > \alpha$ , então  $H_0$  não é rejeitada;
- 2 se valor- $p \le \alpha$ , então  $H_0$  é rejeitada.