Организация памяти вычислительных систем

Статические оперативные запоминающие устройства (SRAM). ней элементарная ячейка представляется конденсаторами, не статическими триггерами на биполярных или МДП - транзисторах. Число состояний триггера равно двум, что позволяет использовать его для хранения двоичной единицы информации. Статические ОЗУ Специального Асинхронные Синхронные Энергонезависимые применения кэш-памяти конвейеризацией Среднескоростные Высокоскоростные запаздывающей Низкоскоростные чередованием Многопортовые Двухпортовые **BSRAM** записью адресов **NVRAM** FIFO DDR ZBT 3 Теговое Виды статических ОЗУ

Динамические оперативные запоминающие устройства (DRAM).

Микросхемы динамических ОЗУ отличаются от микросхем статических ОЗУ большей информационной ёмкостью, что обусловлено меньшим числом компонентов в одном элементе памяти и, следовательно, более плотным их размещением в полупроводниковом кристалле.

Классификация динамической ОЗУ: а — микросхемы для основной памяти; б — микросхемы для видеоадаптеров.

Постоянные запоминающие устройства

Программируемые Однократно программируемые Многократно при изготовлении после изготовления (PROM, программируемые (EPROM, (ROM) ОТР EPROM) ЕЕРROМ, флеш-память)

Специальные типы оперативной памяти

В ряде практических задач более выгодным оказывается использование специализированных архитектур ОЗУ, где стандартные функции (запись, хранение, считывание) сочетаются с некоторыми дополнительными возможностями или учитывают особенности применения памяти.

Память для Память с множественным память типа очереди видеоадаптера доступом (многопортовое (ОЗУ типа FIFO)

Два последних типа относятся к статическим ОЗУ

Стековая память

Стековая память обеспечивает такой режим работы, когда информация записывается и считывается по принципу «последним записан - первым считан» (LIFO).

КЭШ - память

Кэш-память - это быстродействующая память, располагаемая между ЦП и ОП емкостью 1/1000-1/500 емкости ОП с временем доступа 1/5-1/10 от ОП. Вместе с ОП кэш-память образуют иерархическую структуру, и ее действие эквивалентно быстрому доступу к ОП.

Выделяют 4 способа размещения данных в кэш-памяти или механизма преобразования адресов строк:

- 1. Полностью ассощиативное распределение.
- 2. Прямое распределение.
- 3. Частично-ассоциативное распределение.
- 4. Распределение секторов.

Массивы магнитных дисков с избыточностью RAID

Дисковый массив - это набор дисковых устройств, работающих вместе, чтобы повысить скорость и надежность системы ввода/вывода.

RAID уровня 0

преимущества:

- повышается пропускная способность последовательного ввода/вывода за счет одновременной загрузки нескольких интерфейсов.
- снижается латентность случайного доступа; несколько запросов к различным небольшим сегментам информации могут выполнятся одновременно.

Недостаток: уровень RAID 0 предназначен исключительно для повышения производительности, и не обеспечивает избыточности данных.

Контроллер Массива					
SCSI 1	SCSI 2	SCSI 3	SCSI 4	SCSI 5	
Диск 1	Диск 2	Диск 3	Диск 4	Диск 5	
Сегмент 1	Сегмент 2	Сегмент 3	Сегмент 4	Сегмент 5	
Сегмент 6	Сегмент 7	Сегмент 8	Сегмент 9	Сегмент 10	

RAID уровня 1

Уровень RAID 1 хорошо подходит для приложений, которые требуют высокой надежности, низкой латентности при чтении, а также если не требуется минимизация стоимости.

	Диск 1 (данные)	Диск 2 (копия диска 1)	Диск 3 (данные)	Диск 4 (копия диска 3)	Диск 5 (свободный)	
\	Сегмент 1	Сегмент 1	Сегмент 2	Сегмент 2		
	Сегмент 3	Сегмент 3	Сегмент 4	Сегмент 4		

RAID уровней 2 и 3

Эта архитектура требует хранения битов четности для каждого элемента информации, распределяемого по дискам. Отличие RAID 3 от RAID 2 состоит только в том, что RAID 2 использует для хранения битов четности несколько дисков, тогда как RAID 3 использует только один. RAID 2 используется крайне редко.

Диск 1 (данные)	Диск 2 (данные)	Диск 3 (данные)	Диск 4 (данные)	Диск 5 (информация четности)
Байт 1	Байт 2	Байт 3	Байт 4	Байт четности
Байт 5	Байт 6	Байт 7	Байт 8	Байт четности

RAID уровней 4 и 5

Данная технология хорошо подходит для приложений, которые работают с небольшими объемами данных, например, для систем обработки транзакций.

\int	Диск 1	Диск 2	Диск 3	Диск 4	Диск 5
	Сегмент четности	Сегмент 1	Сегмент 2	Сегмент 3	Сегмент 4
\ \	Сегмент 5 Сегмент четности		Сегмент 6	Сегмент 7	Сегмент 8
	Сегмент 9 Сегмент 10		Сегмент четности	Сегмент 11	Сегмент 12

Преимущества и недостатки основных уровней RAID

-					
	Уровень RAID	Механизм обеспечения надежности	Эффективная емкость массива	Производительность	Область применения
	0	-	100%	приложения без существенн требований к надежно	
_	1	зеркалиро- вание	50%	высокая или средняя	приложения без существенных требований к стоимости
	3	четность	80%	средняя	приложения, работающие с большими объемами данных (графика, CAD/CAM и пр.)
\ 	5	четность	80%	средняя	приложения, работающие с небольшими объемами данных (обработка транзакций)