Linear Regression

Linear regression

- Linear regression is a simple approach to supervised learning. It assumes that the dependence of Y on $X_1, X_2, \ldots X_p$ is linear.
- True regression functions are never linear!

• although it may seem overly simplistic, linear regression is extremely useful both conceptually and practically.

Optimization

- Learning task: minimizing or maximizing an evaluation function $J(w_1, \ldots, w_n)$ given data \mathcal{D}
- w_1, \ldots, w_n are the parameters that you need to tune.
- Simple example: Try to fit a line to the following data such that the error is minimized.
- Input: "x", desired output "y" Linear Regression!

House size in square feet

Question: How to solve the optimization problem

Set the derivative of "J" to zero and solve

$$J(w_0, w_1) = \sum_{i=1}^{m} (y_i - (w_0 + w_1 x_i))^2$$

$$\frac{\partial}{\partial w_0} J(w_0, w_1) = 0 \qquad \frac{\partial}{\partial w_1} J(w_0, w_1) = 0$$

Question: How to solve the optimization problem

$$w_{1} = \frac{m \sum_{i=1}^{m} x_{i} y_{i} - \sum_{i=1}^{m} x_{i} \sum_{i=1}^{m} y_{i}}{m \sum_{i=1}^{m} x_{i}^{2} - (\sum_{i=1}^{m} x_{i})^{2}}$$

$$w_{0} = \frac{\sum_{i=1}^{m} y_{i} - w_{1} \sum_{i=1}^{m} x_{i}}{m}$$

Homework:
Prove this!
(Messy; algebraic manipulation)

Multivariate Linear Regression

■ Input: **x** is a vector; desired output *y*.

Assuming a dummy attribute x₀=1 for all examples

It is a vector; desired output
$$y$$
. $x_0=1$ for all examples $y=h(\mathbf{x})=w_0+\sum_{j=1}^n w_jx_j=\sum_{j=0}^n w_jx_j=\mathbf{w}^T\mathbf{x}$ Inner product product (yields a number)

$$J(\mathbf{w}) = \sum_{i=1}^{m} (y_i - \mathbf{w}^T x_i)^2 \qquad \mathbf{X} = \begin{bmatrix} \mathbf{x}_1^T \\ \mathbf{x}_2^T \\ \dots \\ \mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y} \qquad \begin{bmatrix} \mathbf{x}_1^T \\ \mathbf{x}_2^T \\ \dots \\ \mathbf{x}_m^T \end{bmatrix}$$

X is a m-by-n matrix

Gradient Descent

- Closed form solution is not always possible.
- In that case, we can use the following iterative approach.
- Algorithm Gradient Descent
 - w = Any point in the weight space
 - Loop Until Convergence
 - Simultaneously update each w_i in **w** as follows:

Gradient Descent: Example

Gradient Descent: 1-D

- Remember: Derivative is the slope of the line that is tangent to the function
- Question: What if the learning rate is small? (Slow convergence)
- Question: What if the learning rate is large? (Fail to converge; even diverge)

 Rule: $W_j = W_j \alpha \frac{\partial}{\partial W_j} J(\mathbf{w})$

Polynomial Curve Fitting

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

Sum-of-Squares Error Function

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

Oth Order Polynomial

1st Order Polynomial

3rd Order Polynomial

9th Order Polynomial

Over-fitting

Root-Mean-Square (RMS) Error: $E_{\mathrm{RMS}} = \sqrt{2E(\mathbf{w}^\star)/N}$

Polynomial Coefficients

	M=0	M = 1	M = 3	M = 9
$\overline{w_0^{\star}}$	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^\star			-25.43	-5321.83
w_3^\star			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
w_9^{\star}				125201.43

Data Set Size:

N = 15

9th Order Polynomial

Data Set Size:

N = 100

9th Order Polynomial

Regularization

Penalize large coefficient values

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

Regularization:

$$\ln \lambda = -18$$

Regularization:

$$\ln \lambda = 0$$

Regularization: $E_{\rm RMS}$ vs. $\ln \lambda$

Polynomial Coefficients

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
$\overline{w_0^{\star}}$	0.35	0.35	0.13
w_1^{\star}	232.37	4.74	-0.05
w_2^\star	-5321.83	-0.77	-0.06
w_3^{\star}	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^\star	1042400.18	-45.95	-0.00
w_8^\star	-557682.99	-91.53	0.00
w_9^\star	125201.43	72.68	0.01

Over-fitting

- MLE estimate: Some weights are large because of chance (coincidental regularities)
- Regularize!!
 - Penalize high weights (complex hypothesis)
 - Minimize cost: Loss + Complexity

$$JR(\mathbf{w}) = \sum_{i=1}^{m} \left(y_i - \sum_{j=1}^{n} w_j x_{i,j} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{m} |w_j|^q$$

q=1: L1 regularization (Lasso) q=2: L2 regularization (Ridge)

Regularization

Overfitting

Modify J function to include model complexity parameter

$$J(W) = \sum_{i=1}^{m} (y_i - \sum_{j=0}^{n} w_j x_{i,j})^2 + \frac{\lambda}{2} \sum_{j=1}^{m} |w_j|^2$$

• Solve for W vector by taking derivative of J() w.r.t to W and set to zero.

$$W = (X^T X + \lambda I_n)^{-1} X^T Y$$