# Introduction to Machine Learning Finding the Nearest Neighborhood

Andres Mendez-Vazquez

March 11, 2019

#### Outline

- Introduction
  - Geometric Data Structures
  - KD Trees
  - KD Tree Construction
  - Splitting
  - KD Tree Construction Complexity
  - Node Structure
  - Query Complexity
- 2 MinHashing
  - Encoding Sets
  - Finding Similar Columns
  - Min-Hashing
  - Implementation Trick
- 3 Locality Sensitive Hashing (LSH)
  - Introduction

#### Outline

- Introduction
  - Geometric Data Structures
  - KD Trees
  - KD Tree Construction
  - SplittingKD Tree Construction Complexity
  - Node Structure
  - Query Complexity
- MinHashing
  - Encoding Sets
  - Finding Similar Columns
  - Min-Hashing
  - Implementation Trick
- 3 Locality Sensitive Hashing (LSH)
  - Introduction

#### We want to have data structures for

Organization of points, lines, planes, ... to support faster processing

#### We want to have data structures for

Organization of points, lines, planes, ... to support faster processing

#### **Applications**

Astrophysical simulation - Evolution of galaxies

#### We want to have data structures for

Organization of points, lines, planes, ... to support faster processing

- Astrophysical simulation Evolution of galaxies
- Graphics computing object intersections

#### We want to have data structures for

Organization of points, lines, planes, ... to support faster processing

- Astrophysical simulation Evolution of galaxies
- Graphics computing object intersections
- Data compression

#### We want to have data structures for

Organization of points, lines, planes, ... to support faster processing

- Astrophysical simulation Evolution of galaxies
- Graphics computing object intersections
- Data compression
  - ▶ Points are representatives of 2x2 blocks in an image

#### We want to have data structures for

Organization of points, lines, planes, ... to support faster processing

- Astrophysical simulation Evolution of galaxies
- Graphics computing object intersections
- Data compression
  - ▶ Points are representatives of 2x2 blocks in an image
  - Nearest neighbor search

#### Outline

- Introduction
  - Geometric Data Structures
  - KD Trees
  - KD Tree Construction
  - Splitting
  - KD Tree Construction Complexity
  - Node Structure
  - Query Complexity
- MinHashing
  - Encoding Sets
  - Finding Similar Columns
  - Min-Hashing
  - Implementation Trick
- 3 Locality Sensitive Hashing (LSH
  - Introduction

### Invented

By Jon Bentley, 1975

#### Invented

By Jon Bentley, 1975

### Tree used to store spatial data.

• Nearest neighbor search.

Range queries

Fast look-up.

#### Invented

By Jon Bentley, 1975

### Tree used to store spatial data.

- Nearest neighbor search.
- Range queries.

#### Invented

By Jon Bentley, 1975

### Tree used to store spatial data.

- Nearest neighbor search.
- Range queries.
- Fast look-up.

### Complexity

#### Nice

KD tree are guaranteed  $\log_2 n$  depth where n is the number of points in the set.

Traditionally, KD trees store points in d-dimensional space which are equivalent to vectors in d-dimensional space.

### Complexity

#### Nice

KD tree are guaranteed  $\log_2 n$  depth where n is the number of points in the set.

#### Something Notable

Traditionally, KD trees store points in d-dimensional space which are equivalent to vectors in d-dimensional space.

# Example - Range Query



# Nearest Neighborhood Search

# Nearest Neighbor Search



Nearest neighbor is e.

#### Outline

- Introduction
  - Geometric Data Structures
  - KD Trees
  - KD Tree Construction
  - Splitting
  - KD Tree Construction Complexity
  - Node Structure
  - Query Complexity
- 2 MinHashing
  - Encoding Sets
  - Finding Similar Columns
  - Min-Hashing
  - Implementation Trick
- 3 Locality Sensitive Hashing (LSH)
  - Introduction

#### Steps

1 If there is just one point, form a leaf with that point.

#### Steps

- 1 If there is just one point, form a leaf with that point.
- ② Otherwise, divide the points in half by a line perpendicular to one of the axes.

#### Steps

- If there is just one point, form a leaf with that point.
- ② Otherwise, divide the points in half by a line perpendicular to one of the axes.
- 3 Recursively construct k-d trees for the two sets of points.

#### Steps

- 1 If there is just one point, form a leaf with that point.
- ② Otherwise, divide the points in half by a line perpendicular to one of the axes.
- Recursively construct k-d trees for the two sets of points.

#### Question?

How do we divide the points?

### **Division Strategies**

#### Criterion I

Divide points perpendicular to the axis with widest spread.

Divide in a round-robin fashion (book does it this way)

### **Division Strategies**

#### Criterion I

Divide points perpendicular to the axis with widest spread.

#### Criterion II

Divide in a round-robin fashion (book does it this way).



divide perpendicular to the widest spread.



























# Finally



# Outline

- Introduction
  - Geometric Data Structures
  - KD Trees
  - KD Tree Construction
  - SplittingKD Tree Construction Complexity
  - Node Structure
  - Query Complexity
- 2 MinHashing
  - Encoding Sets
  - Finding Similar Columns
  - Min-Hashing
  - Implementation Trick
- 3 Locality Sensitive Hashing (LSH)
  - Introduction

# We have the following

# In each dimension we have certain sorting





# The max spread is the argument that maximize the following quantities

$$\arg \max f_x - a_x$$

$$\arg \max g_y - a_y$$

- Basically
  - In the selected dimension the middle point in the list splits the data
- The
  - To build the sorted lists for the other dimensions scan the sorted list adding each point to one of two sorted lists.

# The max spread is the argument that maximize the following quantities

$$\arg \max f_x - a_x$$

$$\arg \max g_y - a_y$$

### Basically

• In the selected dimension the middle point in the list splits the data.

- Therefore
  - To build the sorted lists for the other dimensions scan the sorted list adding each point to one of two sorted lists.

# The max spread is the argument that maximize the following quantities

$$\arg \max f_x - a_x$$
$$\arg \max g_y - a_y$$

### Basically

• In the selected dimension the middle point in the list splits the data.

### Therefore

 To build the sorted lists for the other dimensions scan the sorted list adding each point to one of two sorted lists.

### Then



sorted points in each dimension



indicator for each set

scan sorted points in y dimension and add to correct set

### Outline

- Introduction
  - Geometric Data Structures
  - KD Trees
  - KD Tree Construction
  - Splitting
  - KD Tree Construction Complexity
  - Node Structure
  - Query Complexity
- MinHashing
  - Encoding Sets
  - Finding Similar Columns
  - Min-Hashing
  - Implementation Trick
- 3 Locality Sensitive Hashing (LSH
  - Introduction

# KD Tree Construction Complexity

### First sort the points in each dimension

- $O(dn \log n)$  time and dn storage.
- These are stored in matrices A[1..d, 1..n]

Into two subsets can be done in O(dn) time.

$$T\left(n,d\right) = 2T\left(\frac{n}{2},d\right) + O\left(dn\right)$$

# KD Tree Construction Complexity

### First sort the points in each dimension

- $O(dn \log n)$  time and dn storage.
- These are stored in matrices A[1..d, 1..n]

# Finding the widest spread and equally divide

Into two subsets can be done in O(dn) time.

$$T\left( n,d\right) =2T\left( \frac{n}{2},d\right) +O\left( dn
ight)$$

# KD Tree Construction Complexity

# First sort the points in each dimension

- $O(dn \log n)$  time and dn storage.
- These are stored in matrices A[1..d, 1..n]

# Finding the widest spread and equally divide

Into two subsets can be done in O(dn) time.

#### We have the recurrence

$$T(n,d) = 2T\left(\frac{n}{2},d\right) + O(dn)$$

# Constructing the KD Tree can be done in

- Time  $O(n \log n)$
- Space O(n)

### Outline

- Introduction
  - Geometric Data Structures
  - KD Trees
  - KD Tree Construction
  - SplittingKD Tree Construction Complexity
  - Node Structure
  - Query Complexity
- 2 MinHashing
  - Encoding Sets
  - Finding Similar Columns
  - Min-Hashing
  - Implementation Trick
- 3 Locality Sensitive Hashing (LSH)
  - Introduction

### Node Structure

### A node has 5 fields

- Axis (splitting axis)
- Value (splitting value)
- left (left subtree)
- right (right subtree)
- point (holds a point if left and right children are null)

### Outline

- Introduction
  - Geometric Data Structures
  - KD Trees
  - KD Tree Construction
  - Splitting
  - KD Tree Construction Complexity
  - Node Structure
  - Query Complexity
- MinHashing
  - Encoding Sets
  - Finding Similar Columns
  - Min-Hashing
  - Implementation Trick
- 3 Locality Sensitive Hashing (LSH)
  - Introduction

# Complexity

#### Theorem

A set of n points in the plane can be preprocessed in  $O\left(dn\log n\right)$  time into a data structure of  $O\left(dn\right)$  size so that any d-range query can be answered in time  $O\left(d\sqrt{n}+k\right)$ , where k is the number of answers reported

# Outline

- Introduction
  - Geometric Data Structures
  - KD Trees
  - KD Tree Construction
  - SplittingKD Tree Construction Complexity
  - Node Structure
  - Query Complexity
- MinHashing
  - Encoding Sets
  - Finding Similar Columns
  - Min-Hashing
  - Implementation Trick
- 3 Locality Sensitive Hashing (LSH)
  - Introduction

### Something Notable

 Many similarity problems can be formalized as finding subsets that have significant intersection.

# Something Notable

 Many similarity problems can be formalized as finding subsets that have significant intersection.

#### Encode sets

• Encode sets using 0/1 (bit, boolean) vectors.

### Something Notable

 Many similarity problems can be formalized as finding subsets that have significant intersection.

#### Encode sets

- Encode sets using 0/1 (bit, boolean) vectors.
  - One dimension per element in the universal set.

### Something Notable

 Many similarity problems can be formalized as finding subsets that have significant intersection.

#### Encode sets

- Encode sets using 0/1 (bit, boolean) vectors.
  - ▶ One dimension per element in the universal set.
- Interpret set intersection as bitwise AND, and set union as bitwise OR.

### Something Notable

 Many similarity problems can be formalized as finding subsets that have significant intersection.

#### Encode sets

- Encode sets using 0/1 (bit, boolean) vectors.
  - ▶ One dimension per element in the universal set.
- Interpret set intersection as bitwise AND, and set union as bitwise OR.

### Example

•  $C_1 = 10111$ ;  $C_2 = 10011$ .

### Something Notable

 Many similarity problems can be formalized as finding subsets that have significant intersection.

#### **Encode** sets

- Encode sets using 0/1 (bit, boolean) vectors.
  - ▶ One dimension per element in the universal set.
- Interpret set intersection as bitwise AND, and set union as bitwise OR.

### Example

- $C_1 = 10111$ ;  $C_2 = 10011$ .
  - ▶ Size of intersection = 3; size of union = 4, Jaccard similarity (not distance) = 3/4

### Something Notable

 Many similarity problems can be formalized as finding subsets that have significant intersection.

#### **Encode** sets

- Encode sets using 0/1 (bit, boolean) vectors.
  - ▶ One dimension per element in the universal set.
- Interpret set intersection as bitwise AND, and set union as bitwise OR.

### Example

- $C_1 = 10111$ ;  $C_2 = 10011$ .
  - Size of intersection = 3; size of union = 4, Jaccard similarity (not distance) = 3/4
  - ▶  $d(C_1, C_2) = 1$ –(Jaccard similarity) = 1/4

### Rows

• Rows are equal to elements (shingles)

### Rows

• Rows are equal to elements (shingles)

### Columns

• The Columns are equal to sets (documents)

### Rows

Rows are equal to elements (shingles)

### Columns

- The Columns are equal to sets (documents)
  - lacksquare 1 in row e and column s if and only if e is a member of s

4 D > 4 D > 4 D > 4 D > 10 P 9

#### Rows

Rows are equal to elements (shingles)

### Columns

- The Columns are equal to sets (documents)
  - lacksquare 1 in row e and column s if and only if e is a member of s
  - ► Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)

#### Rows

Rows are equal to elements (shingles)

### Columns

- The Columns are equal to sets (documents)
  - lacksquare 1 in row e and column s if and only if e is a member of s
  - ► Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
  - Typical matrix is sparse!

#### Rows

Rows are equal to elements (shingles)

### Columns

- The Columns are equal to sets (documents)
  - lacksquare 1 in row e and column s if and only if e is a member of s
  - ► Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
  - Typical matrix is sparse!

#### Each document is a column

• Example:  $sim(C_1, C_2) = ?$ 

#### Rows

Rows are equal to elements (shingles)

#### Columns

- The Columns are equal to sets (documents)
  - lacksquare 1 in row e and column s if and only if e is a member of s
  - ► Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
  - Typical matrix is sparse!

### Each document is a column

- Example:  $sim(C_1, C_2) = ?$ 
  - Size of intersection = 3; size of union = 6, Jaccard similarity (not distance) = 3/6

#### Rows

Rows are equal to elements (shingles)

#### Columns

- The Columns are equal to sets (documents)
  - lacksquare 1 in row e and column s if and only if e is a member of s
  - ► Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
  - Typical matrix is sparse!

### Each document is a column

- Example:  $sim(C_1, C_2) = ?$ 
  - Size of intersection =3; size of union =6, Jaccard similarity (not distance) =3/6
  - ▶  $d(C_1, C_2) = 1$ –(Jaccard similarity) = 3/6

# Outline

- Introduction
  - Geometric Data Structures
  - KD Trees
  - KD Tree Construction
  - SplittingKD Tree Construction Complexity
  - Node Structure
  - Query Complexity
- MinHashing
  - Encoding Sets
  - Finding Similar Columns
  - Min-Hashing
  - Implementation Trick
- 3 Locality Sensitive Hashing (LSH)
  - Introduction

# Outline: Finding Similar Columns

# So far and next goal

- So far:
  - ▶ Documents → Sets of shingles
  - Represent sets as boolean vectors in a matrix
  - Next Goal: Find similar columns, Small signatures

# Outline: Finding Similar Columns

### So far and next goal

- So far:
  - ightharpoonup Documents ightarrow Sets of shingles
  - Represent sets as boolean vectors in a matrix
  - xt Goal: Find similar columns. Small signatures
- Approach
  - Signatures of columns: small summaries of columns
- Examine pairs of signatures to find similar columns
  - Essential: Similarities of signatures & columns are related
- Optional: Check that columns with similar signatures are really similar

# Outline: Finding Similar Columns

# So far and next goal

- So far:
  - $\blacktriangleright \ \, \mathsf{Documents} \to \mathsf{Sets} \; \mathsf{of} \; \mathsf{shingles} \; \,$
  - ▶ Represent sets as boolean vectors in a matrix

### So far and next goal

- So far:
  - ightharpoonup Documents ightarrow Sets of shingles
  - ► Represent sets as boolean vectors in a matrix
- Next Goal: Find similar columns, Small signatures

- Signatures of columns: small summaries of columns
- Examine pairs of signatures to find similar columns
  - Essential: Similarities of signatures & columns are related
- Optional: Check that columns with similar signatures are really similar

## So far and next goal

- So far:
  - $\blacktriangleright \ \, \mathsf{Documents} \to \mathsf{Sets} \; \mathsf{of} \; \mathsf{shingles} \; \,$
  - Represent sets as boolean vectors in a matrix
- Next Goal: Find similar columns, Small signatures

## Approach

Signatures of columns: small summaries of columns

## So far and next goal

- So far:
  - ▶ Documents → Sets of shingles
  - Represent sets as boolean vectors in a matrix
- Next Goal: Find similar columns, Small signatures

## Approach

- Signatures of columns: small summaries of columns
- 2 Examine pairs of signatures to find similar columns

## So far and next goal

- So far:
  - ▶ Documents → Sets of shingles
  - Represent sets as boolean vectors in a matrix
- Next Goal: Find similar columns, Small signatures

## Approach

- Signatures of columns: small summaries of columns
- Examine pairs of signatures to find similar columns
  - Essential: Similarities of signatures & columns are related

## So far and next goal

- So far:
  - ▶ Documents → Sets of shingles
  - Represent sets as boolean vectors in a matrix
- Next Goal: Find similar columns, Small signatures

### Approach

- Signatures of columns: small summaries of columns
- Examine pairs of signatures to find similar columns
  - ▶ Essential: Similarities of signatures & columns are related
- Optional: Check that columns with similar signatures are really similar

## Warnings

## Comparing all pairs may take too much time: Job for Locality Sensitive Hashing (LSH)

 These methods can produce false negatives, and even false positives (if the optional check is not made)

## Key idea

ullet "Hash" each column C to a small signature h(C), such that:

 $\triangleright$  (2)  $sim(G_1, G_2)$  is the same as the "similarity" of signatures  $h(G_1, G_2)$ 

and  $n(\mathcal{O}_2)$ .

## Key idea

- ullet "Hash" each column C to a small signature h(C), such that:
  - (1) h(C) is small enough that the signature fits in RAM.

### Key idea

- "Hash" each column C to a small signature h(C), such that:
  - (1) h(C) is small enough that the signature fits in RAM.
  - ▶ (2)  $sim(C_1, C_2)$  is the same as the "similarity" of signatures  $h(C_1)$  and  $h(C_2)$ .

- Find a hash function  $h(\cdot)$  such that:
  - ▶ if  $sim(C_1, C_2)$  is high, then with high prob.  $h(C_1) = h(C_2)$ . ▶ if  $sim(C_1, C_2)$  is low then with high prob.  $h(C_1) \neq h(C_2)$
  - ▶ if  $sim(C_1, C_2)$  is low, then with high prob.  $h(C_1) \neq h(C_2)$ .

## Key idea

- ullet "Hash" each column C to a small signature h(C), such that:
  - (1) h(C) is small enough that the signature fits in RAM.
  - ▶ (2)  $sim(C_1, C_2)$  is the same as the "similarity" of signatures  $h(C_1)$  and  $h(C_2)$ .

#### Goal

• Find a hash function  $h(\cdot)$  such that:

### Key idea

- ullet "Hash" each column C to a small signature h(C), such that:
  - (1) h(C) is small enough that the signature fits in RAM.
  - ▶ (2)  $sim(C_1, C_2)$  is the same as the "similarity" of signatures  $h(C_1)$  and  $h(C_2)$ .

- Find a hash function  $h(\cdot)$  such that:
  - if  $sim(C_1, C_2)$  is high, then with high prob.  $h(C_1) = h(C_2)$ .

### Key idea

- ullet "Hash" each column C to a small signature h(C), such that:
  - (1) h(C) is small enough that the signature fits in RAM.
  - ▶ (2)  $sim(C_1, C_2)$  is the same as the "similarity" of signatures  $h(C_1)$  and  $h(C_2)$ .

- Find a hash function  $h(\cdot)$  such that:
  - if  $sim(C_1, C_2)$  is high, then with high prob.  $h(C_1) = h(C_2)$ .
  - if  $sim(C_1, C_2)$  is low, then with high prob.  $h(C_1) \neq h(C_2)$ .

### Key idea

- ullet "Hash" each column C to a small signature h(C), such that:
  - (1) h(C) is small enough that the signature fits in RAM.
  - ▶ (2)  $sim(C_1, C_2)$  is the same as the "similarity" of signatures  $h(C_1)$  and  $h(C_2)$ .

- Find a hash function  $h(\cdot)$  such that:
  - if  $sim(C_1, C_2)$  is high, then with high prob.  $h(C_1) = h(C_2)$ .
  - if  $sim(C_1, C_2)$  is low, then with high prob.  $h(C_1) \neq h(C_2)$ .

## Finally, The Buckets

#### **Buckets**

• Thus, we hash documents into buckets, and expect that "most" pairs of near duplicate docs hash into the same bucket!

## Outline

- Introduction
  - Geometric Data Structures
  - KD Trees
  - KD Tree Construction
  - SplittingKD Tree Construction Complexity
  - Node Structure
  - Query Complexity
- 2 MinHashing
  - Encoding Sets
  - Finding Similar Columns
  - Min-Hashing
  - Implementation Trick
- 3 Locality Sensitive Hashing (LSH
  - Introduction

- Find a hash function  $h(\cdot)$  such that:
  - ightharpoonup if  $sim(C_1,C_2)$  is high, then with high prob. h(C1)=h(C2)
  - $\blacktriangleright$  if  $sim(C_1,C_2)$  is low, then with high prob.  $h(C_1)\neq h(C_2)$

- Find a hash function  $h(\cdot)$  such that:
  - if  $sim(C_1, C_2)$  is high, then with high prob. h(C1) = h(C2)

#### Goal

- Find a hash function  $h(\cdot)$  such that:
  - ▶ if  $sim(C_1, C_2)$  is high, then with high prob. h(C1) = h(C2)
  - if  $sim(C_1, C_2)$  is low, then with high prob.  $h(C_1) \neq h(C_2)$

- Clearly, the hash function depends on the similarity metric
  - ▶ Not all similarity metrics have a suitable hash function.

• There is a suitable hash function for Jaccard similarity: Min-hashing

#### Goal

- Find a hash function  $h(\cdot)$  such that:
  - ▶ if  $sim(C_1, C_2)$  is high, then with high prob. h(C1) = h(C2)
  - if  $sim(C_1,C_2)$  is low, then with high prob.  $h(C_1)\neq h(C_2)$

### Similarity metric

Clearly, the hash function depends on the similarity metric:

#### Goal

- Find a hash function  $h(\cdot)$  such that:
  - ▶ if  $sim(C_1, C_2)$  is high, then with high prob. h(C1) = h(C2)
  - if  $sim(C_1, C_2)$  is low, then with high prob.  $h(C_1) \neq h(C_2)$

## Similarity metric

- Clearly, the hash function depends on the similarity metric:
  - ▶ Not all similarity metrics have a suitable hash function.

#### Goal

- Find a hash function  $h(\cdot)$  such that:
  - ▶ if  $sim(C_1, C_2)$  is high, then with high prob. h(C1) = h(C2)
  - if  $sim(C_1,C_2)$  is low, then with high prob.  $h(C_1)\neq h(C_2)$

## Similarity metric

- Clearly, the hash function depends on the similarity metric:
  - ▶ Not all similarity metrics have a suitable hash function.

#### Hash function

• There is a suitable hash function for Jaccard similarity: Min-hashing.

#### Goal

- Find a hash function  $h(\cdot)$  such that:
  - ▶ if  $sim(C_1, C_2)$  is high, then with high prob. h(C1) = h(C2)
  - if  $sim(C_1,C_2)$  is low, then with high prob.  $h(C_1)\neq h(C_2)$

## Similarity metric

- Clearly, the hash function depends on the similarity metric:
  - ▶ Not all similarity metrics have a suitable hash function.

#### Hash function

• There is a suitable hash function for Jaccard similarity: Min-hashing.

### Random permutation

Imagine the rows of the boolean matrix permuted under random permutation  $\boldsymbol{\pi}$  .

## "Hash" function $h_{\pi}(C)$

• Define a "hash" function  $h_{\pi}(C) =$  the number of the first (in the permuted order  $\pi$ ) row in which column C has value 1:

$$h_{\pi}(C) = min_{\pi}\pi(C)$$

 Use several (e.g., 100) independent hash functions to create a signature of a column

### Random permutation

Imagine the rows of the boolean matrix permuted under random permutation  $\boldsymbol{\pi}$  .

## "Hash" function $h_{\pi}(C)$

• Define a "hash" function  $h_{\pi}(C) =$  the number of the first (in the permuted order  $\pi$ ) row in which column C has value 1:

$$h_{\pi}(C) = min_{\pi}\pi(C)$$

 Use several (e.g., 100) independent hash functions to create a signature of a column

#### Random permutation

Imagine the rows of the boolean matrix permuted under random permutation  $\boldsymbol{\pi}$  .

## "Hash" function $h_{\pi}(C)$

• Define a "hash" function  $h_{\pi}(C) =$  the number of the first (in the permuted order  $\pi$ ) row in which column C has value 1:

$$h_{\pi}(C) = min_{\pi}\pi(C)$$

#### What can we do?

• Use several (e.g., 100) independent hash functions to create a signature of a column

## Min-Hashing Example



 $\bullet$  Choose a random permutation  $\pi$ 

- ullet Choose a random permutation  $\pi$
- Claim:  $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$  Why?

#### vvn

- Let X be a document (set of shingles)
- Then:  $Pr[\pi(x) = min(\pi(X))] = 1/|X|$
- ullet It is equally likely that any  $x\in X$  is mapped to the min element
- Let x be s.t.  $\pi(x) = min(\pi(C_1 \cup C_2))$
- Then either:  $\pi(x) = min(\pi(C_1))$  if  $x \in C_1$ , or  $\pi(x) = min(\pi(C_2))$  if  $x \in C_2$ • One of the two cols had to have 1 at position x
- ullet So the prob. that both are true is the prob.  $x\in C_1\cap C_2$ 
  - $Pr[min(\pi(C_1)) = min(\pi(C_2))] = \frac{|C_1| |C_2|}{|C_1| |C_2|} = sim(C_1, C_2)$

- ullet Choose a random permutation  $\pi$
- Claim:  $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$  Why?

### Why?

Let X be a document (set of shingles)

- ullet Choose a random permutation  $\pi$
- Claim:  $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$  Why?

- Let *X* be a document (set of shingles)
- Then:  $Pr[\pi(x) = min(\pi(X))] = 1/|X|$

- ullet Choose a random permutation  $\pi$
- Claim:  $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$  Why?

- Let *X* be a document (set of shingles)
- Then:  $Pr[\pi(x) = min(\pi(X))] = 1/|X|$
- $\bullet$  It is equally likely that any  $x \in X$  is mapped to the min element

- ullet Choose a random permutation  $\pi$
- Claim:  $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$  Why?

- Let *X* be a document (set of shingles)
- Then:  $Pr[\pi(x) = min(\pi(X))] = 1/|X|$
- ullet It is equally likely that any  $x \in X$  is mapped to the min element
- Let x be s.t.  $\pi(x) = min(\pi(C_1 \bigcup C_2))$

- ullet Choose a random permutation  $\pi$
- Claim:  $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$  Why?

- Let X be a document (set of shingles)
- Then:  $Pr[\pi(x) = min(\pi(X))] = 1/|X|$
- ullet It is equally likely that any  $x \in X$  is mapped to the min element
- Let x be s.t.  $\pi(x) = min(\pi(C_1 \bigcup C_2))$
- Then either:  $\pi(x) = min(\pi(C_1))$  if  $x \in C_1$  , or  $\pi(x) = min(\pi(C_2))$  if  $x \in C_2$

- Choose a random permutation  $\pi$
- Claim:  $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$  Why?

- Let X be a document (set of shingles)
- Then:  $Pr[\pi(x) = min(\pi(X))] = 1/|X|$
- ullet It is equally likely that any  $x \in X$  is mapped to the min element
- Let x be s.t.  $\pi(x) = min(\pi(C_1 \bigcup C_2))$
- Then either:  $\pi(x) = min(\pi(C_1))$  if  $x \in C_1$  , or  $\pi(x) = min(\pi(C_2))$  if  $x \in C_2$ 
  - One of the two cols had to have 1 at position x

- ullet Choose a random permutation  $\pi$
- Claim:  $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$  Why?

- Let X be a document (set of shingles)
- Then:  $Pr[\pi(x) = min(\pi(X))] = 1/|X|$
- ullet It is equally likely that any  $x \in X$  is mapped to the min element
- Let x be s.t.  $\pi(x) = min(\pi(C_1 \bigcup C_2))$
- Then either:  $\pi(x) = min(\pi(C_1))$  if  $x \in C_1$  , or  $\pi(x) = min(\pi(C_2))$  if  $x \in C_2$ 
  - lacktriangle One of the two cols had to have 1 at position x
- So the prob. that both are true is the prob.  $x \in C_1 \cap C_2$

- Choose a random permutation  $\pi$
- Claim:  $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$  Why?

- Let X be a document (set of shingles)
- Then:  $Pr[\pi(x) = min(\pi(X))] = 1/|X|$
- ullet It is equally likely that any  $x \in X$  is mapped to the min element
- Let x be s.t.  $\pi(x) = min(\pi(C_1 \bigcup C_2))$
- Then either:  $\pi(x) = min(\pi(C_1))$  if  $x \in C_1$  , or  $\pi(x) = min(\pi(C_2))$  if  $x \in C_2$ 
  - lacktriangle One of the two cols had to have 1 at position x
- So the prob. that both are true is the prob.  $x \in C_1 \cap C_2$

$$Pr[min(\pi(C_1)) = min(\pi(C_2))] = \frac{|C_1 \cap C_2|}{|C_1 \cup C_2|} = sim(C_1, C_2)$$
 (1)

## Given cols $C_1$ and $C_2$ , rows may be classified as

a = #rows of type A, etc.

Note

$$sim(C_1, C_2) = \frac{a}{a+b+c}$$

(2)

Then

• Then:  $Pr[h(C_1) = h(C_2)] = sim(C_1, C_2)$ 

## Given cols $C_1$ and $C_2$ , rows may be classified as

 $a=\# {\sf rows} \ {\sf of} \ {\sf type} \ {\sf A}, \ {\sf etc}.$ 

#### Note

$$sim(C_1, C_2) = \frac{a}{a+b+c} \tag{2}$$

Then

- Then:  $Pr[h(C_1) = h(C_2)] = sim(C_1, C_2)$ 
  - lacktriangle Look down the cols  $C_1$  and  $C_2$  until we see a 1

Given cols  $C_1$  and  $C_2$ , rows may be classified as

a = #rows of type A, etc.

## Note

$$sim(C_1, C_2) = \frac{a}{a+b+c}$$

## Then

- Then:  $Pr[h(C_1) = h(C_2)] = sim(C_1, C_2)$ 
  - Look down the cols  $C_1$  and  $C_2$  until we see a 1.
  - ▶ If it's a type-A row, then  $h(C_1) = h(C_2)$  If a type-B or type-C row, then not

Given cols  $C_1$  and  $C_2$ , rows may be classified as

a = #rows of type A, etc.

## Note

$$sim(C_1, C_2) = \frac{a}{a+b+c}$$

## Then

- Then:  $Pr[h(C_1) = h(C_2)] = sim(C_1, C_2)$ 
  - Look down the cols  $C_1$  and  $C_2$  until we see a 1.
  - If it's a type-A row, then  $h(C_1) = h(C_2)$  If a type-B or type-C row, then not

### We know

•  $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$ 

#### We know

- $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
- Now generalize to multiple hash functions

 The similarity of two signatures is the fraction of the hash functions in which they agree

#### We know

- $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
- Now generalize to multiple hash functions

### Similarity

 The similarity of two signatures is the fraction of the hash functions in which they agree

#### We know

- $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
- Now generalize to multiple hash functions

#### Similarity

 The similarity of two signatures is the fraction of the hash functions in which they agree

#### Note

 Because of the minhash property, the similarity of columns is the same as the expected similarity of their signatures

#### We know

- $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
- Now generalize to multiple hash functions

#### Similarity

 The similarity of two signatures is the fraction of the hash functions in which they agree

#### Note

• Because of the minhash property, the similarity of columns is the same as the expected similarity of their signatures

# Min-Hashing Example



 $\bullet$  Pick  $K=100\ {\rm random\ permutations\ of\ the\ rows}$ 

ullet Think of sig(C) (Signature of C) as a column vector

- ullet Pick K=100 random permutations of the rows
- ullet Think of sig(C) (Signature of C) as a column vector

```
• sig(C)[i] =according to the i-th permutation, the index of the first row that has a 1 in column C
```

ullet Note: The sketch (signature) of document C is small  $-\sim 100$  bytes

- ullet Pick K=100 random permutations of the rows
- Think of sig(C) (Signature of C) as a column vector
- sig(C)[i]=according to the i-th permutation, the index of the first row that has a 1 in column C

- Note: The Sketch (signature) of document C is small ~ 100 bytes
- We achieved our goal! We "compressed" long bit vectors into short
  - signatures

- $\bullet$  Pick K=100 random permutations of the rows
- Think of sig(C) (Signature of C) as a column vector
- sig(C)[i] =according to the i-th permutation, the index of the first row that has a 1 in column C

$$sig(C)[i] = min(\pi i(C))$$

• Note: The sketch (signature) of document C is small  $-\sim 100$  bytes!

- $\bullet$  Pick K=100 random permutations of the rows
- ullet Think of sig(C) (Signature of C) as a column vector
- sig(C)[i]=according to the i-th permutation, the index of the first row that has a 1 in column C

$$sig(C)[i] = min(\pi i(C))$$

ullet Note: The sketch (signature) of document C is small –  $\sim 100$  bytes!

 We achieved our goal! We "compressed" long bit vectors into short signatures

- $\bullet$  Pick K=100 random permutations of the rows
- Think of sig(C) (Signature of C) as a column vector
- $\bullet \ sig(C)[i] = \mbox{according to the $i$-th permutation, the index of the first row that has a <math display="inline">1$  in column C

$$sig(C)[i] = min(\pi i(C))$$

- ullet Note: The sketch (signature) of document C is small  $\sim 100$  bytes!
- We achieved our goal! We "compressed" long bit vectors into short signatures

## Outline

- Introduction
  - Geometric Data Structures
  - KD Trees
  - KD Tree Construction
  - SplittingKD Tree Construction Complexity
  - Node Structure
  - Query Complexity
- MinHashing
  - Encoding Sets
  - Finding Similar Columns
  - Min-Hashing
  - Implementation Trick
- 3 Locality Sensitive Hashing (LSH)
  - Introduction

• Permuting rows even once is prohibitive

• Permuting rows even once is prohibitive

## Row hashing!

• Pick K = 100 hash functions  $k_i$ 

Permuting rows even once is prohibitive

### Row hashing!

- Pick K = 100 hash functions  $k_i$
- Ordering under  $k_i$  gives a random row permutation!

54 / 74

Permuting rows even once is prohibitive

### Row hashing!

- Pick K = 100 hash functions  $k_i$
- Ordering under  $k_i$  gives a random row permutation!

#### One-pass implementation

 $\bullet$  For each column C and hash-function  $k_i$  keep a "slot" for the min-hash value

Permuting rows even once is prohibitive

## Row hashing!

- Pick K = 100 hash functions  $k_i$
- Ordering under  $k_i$  gives a random row permutation!

- $\bullet$  For each column C and hash-function  $k_i$  keep a "slot" for the  $\min\mbox{-} \mbox{hash value}$ 
  - Initialize all  $sig(C)[i] = \infty$

Permuting rows even once is prohibitive

## Row hashing!

- Pick K = 100 hash functions  $k_i$
- Ordering under  $k_i$  gives a random row permutation!

- $\bullet$  For each column C and hash-function  $k_i$  keep a "slot" for the  $\min\mbox{-} \mbox{hash value}$ 
  - Initialize all  $sig(C)[i] = \infty$
  - Scan rows looking for 1s

Permuting rows even once is prohibitive

## Row hashing!

- Pick K = 100 hash functions  $k_i$
- Ordering under  $k_i$  gives a random row permutation!

- $\bullet$  For each column C and hash-function  $k_i$  keep a "slot" for the min-hash value
  - Initialize all  $sig(C)[i] = \infty$
  - Scan rows looking for 1s
    - ► Suppose row *j* has 1 in column *C*

Permuting rows even once is prohibitive

### Row hashing!

- Pick K = 100 hash functions  $k_i$
- Ordering under  $k_i$  gives a random row permutation!

- $\bullet$  For each column C and hash-function  $k_i$  keep a "slot" for the min-hash value
  - Initialize all  $sig(C)[i] = \infty$
  - Scan rows looking for 1s
    - ► Suppose row *j* has 1 in column *C*
    - ▶ Then for each  $k_i$ :

• Permuting rows even once is prohibitive

## Row hashing!

- Pick K = 100 hash functions  $k_i$
- Ordering under  $k_i$  gives a random row permutation!

### One-pass implementation

- ullet For each column C and hash-function  $k_i$  keep a "slot" for the min-hash value
  - $\bullet \ \ \text{Initialize all} \ sig(C)[i] = \infty$
  - Scan rows looking for 1s
    - ► Suppose row *j* has 1 in column *C*
    - ▶ Then for each  $k_i$ :

If  $k_i(j) < sig(C)[i]$ , then  $sig(C)[i] \leftarrow k_i(j)$ 

How to pick a random hash function h(x)?

• Permuting rows even once is prohibitive

## Row hashing!

- Pick K = 100 hash functions  $k_i$
- Ordering under  $k_i$  gives a random row permutation!

### One-pass implementation

- ullet For each column C and hash-function  $k_i$  keep a "slot" for the min-hash value
  - Initialize all  $sig(C)[i] = \infty$
  - Scan rows looking for 1s
    - ► Suppose row *j* has 1 in column *C*
    - ▶ Then for each  $k_i$ :

If  $k_i(j) < sig(C)[i]$ , then  $sig(C)[i] \leftarrow k_i(j)$ 

How to pick a random hash function h(x)? Universal hashing:

• Permuting rows even once is prohibitive

## Row hashing!

- Pick K = 100 hash functions  $k_i$
- Ordering under  $k_i$  gives a random row permutation!

### One-pass implementation

- ullet For each column C and hash-function  $k_i$  keep a "slot" for the min-hash value
  - Initialize all  $sig(C)[i] = \infty$
  - Scan rows looking for 1s
    - ► Suppose row *j* has 1 in column *C*
    - ▶ Then for each  $k_i$ :

If  $k_i(j) < sig(C)[i]$ , then  $sig(C)[i] \leftarrow k_i(j)$ 

How to pick a random hash function h(x)?

Universal hashing:

$$h_{a,b}(x) = ((a \cdot x + b) \bmod p) \bmod N$$
 where:

• Permuting rows even once is prohibitive

## Row hashing!

- Pick K = 100 hash functions  $k_i$
- Ordering under  $k_i$  gives a random row permutation!

### One-pass implementation

- ullet For each column C and hash-function  $k_i$  keep a "slot" for the min-hash value
  - $\bullet \ \ \text{Initialize all} \ sig(C)[i] = \infty$
  - Scan rows looking for 1s
    - ► Suppose row *j* has 1 in column *C*
    - ▶ Then for each  $k_i$ :

If  $k_i(j) < sig(C)[i]$ , then  $sig(C)[i] \leftarrow k_i(j)$ 

How to pick a random hash function h(x)?

Universal hashing:

 $h_{a,b}(x) = ((a \cdot x + b) \bmod p) \bmod N$  where:

a, b... random integers

• Permuting rows even once is prohibitive

### Row hashing!

- Pick K = 100 hash functions  $k_i$
- Ordering under  $k_i$  gives a random row permutation!

### One-pass implementation

- ullet For each column C and hash-function  $k_i$  keep a "slot" for the min-hash value
  - Initialize all  $sig(C)[i] = \infty$
  - Scan rows looking for 1s
    - ► Suppose row *j* has 1 in column *C*
    - ▶ Then for each  $k_i$ :

If  $k_i(j) < sig(C)[i]$ , then  $sig(C)[i] \leftarrow k_i(j)$ 

How to pick a random hash function h(x)?

Universal hashing:

 $h_{a,b}(x) = ((a \cdot x + b) \bmod p) \bmod N$  where:

a, b... random integers

p... prime number (p > N)

• Permuting rows even once is prohibitive

## Row hashing!

- Pick K = 100 hash functions  $k_i$
- Ordering under  $k_i$  gives a random row permutation!

### One-pass implementation

- ullet For each column C and hash-function  $k_i$  keep a "slot" for the min-hash value
  - Initialize all  $sig(C)[i] = \infty$
  - Scan rows looking for 1s
    - ► Suppose row *j* has 1 in column *C*
    - ▶ Then for each  $k_i$ :

If  $k_i(j) < sig(C)[i]$ , then  $sig(C)[i] \leftarrow k_i(j)$ 

How to pick a random hash function h(x)?

Universal hashing:

 $h_{a,b}(x) = ((a \cdot x + b) \bmod p) \bmod N$  where:

a, b... random integers

p... prime number (p > N)

## Outline

- Introduction
  - Geometric Data Structures
  - KD Trees
  - KD Tree Construction
  - SplittingKD Tree Construction Complexity
  - Node Structure
  - Query Complexity
- 2 MinHashing
  - Encoding Sets
  - Finding Similar Columns
  - Min-Hashing
  - Implementation Trick
- 3 Locality Sensitive Hashing (LSH)
  - Introduction

#### Goal

 $\bullet$  Find documents with Jaccard similarity at least s (for some similarity threshold, e.g., s=0.8)

#### Goal

 $\bullet$  Find documents with Jaccard similarity at least s (for some similarity threshold, e.g., s=0.8)

#### LSH - General idea

• Use a function f(x,y) that tells whether x and y is a candidate pair: a pair of elements whose similarity must be evaluated.

#### Goal

 $\bullet$  Find documents with Jaccard similarity at least s (for some similarity threshold, e.g., s=0.8)

#### LSH - General idea

• Use a function f(x,y) that tells whether x and y is a candidate pair: a pair of elements whose similarity must be evaluated.

#### For MinHash matrices

ullet Hash columns of signature matrix M to many buckets.

#### Goal

 $\bullet$  Find documents with Jaccard similarity at least s (for some similarity threshold, e.g., s=0.8)

#### LSH - General idea

• Use a function f(x,y) that tells whether x and y is a candidate pair: a pair of elements whose similarity must be evaluated.

#### For MinHash matrices

- ullet Hash columns of signature matrix M to many buckets.
- Each pair of documents that hashes into the same bucket is a candidate pair.

## Trying to define LSH

#### Goal

 $\bullet$  Find documents with Jaccard similarity at least s (for some similarity threshold, e.g., s=0.8)

#### LSH - General idea

• Use a function f(x,y) that tells whether x and y is a candidate pair: a pair of elements whose similarity must be evaluated.

### For MinHash matrices

- ullet Hash columns of signature matrix M to many buckets.
- Each pair of documents that hashes into the same bucket is a candidate pair.

 $\bullet \ \mbox{Pick a similarity threshold } s \ (0 < s < 1).$ 

• Pick a similarity threshold s (0 < s < 1).

## Candidate pair

ullet Columns x and y of M are a candidate pair if their signatures agree on at least fraction s of their rows:

• Pick a similarity threshold s (0 < s < 1).

## Candidate pair

- ullet Columns x and y of M are a candidate pair if their signatures agree on at least fraction s of their rows:
  - M(i,x) = M(i,y) for at least fraction s of values of i

• Pick a similarity threshold s (0 < s < 1).

### Candidate pair

- ullet Columns x and y of M are a candidate pair if their signatures agree on at least fraction s of their rows:
  - M(i,x) = M(i,y) for at least fraction s of values of i
    - $\star$  We expect documents x and y to have the same (Jaccard) similarity as is the similarity of their signatures

## LSH for Minhash

## Big idea

• Hash columns of signature matrix M several times

### Likely to hash

 Arrange that (only) similar columns are likely to hash to the same bucket with high probability

Candidate pairs are those that hash to the same bucket

### LSH for Minhash

## Big idea

• Hash columns of signature matrix M several times

## Likely to hash

• Arrange that (only) similar columns are likely to hash to the same bucket, with high probability

Candidate pairs are those that hash to the same bucket

### LSH for Minhash

### Big idea

Hash columns of signature matrix M several times

## Likely to hash

• Arrange that (only) similar columns are likely to hash to the same bucket, with high probability

## Candidate pairs

Candidate pairs are those that hash to the same bucket



### Divide Matrix

- ullet Divide matrix M into b bands of r rows.
- For each band, hash its portion of each column to a hash table withhat buckets.
  - ightharpoonup Make k as large as possible.

### Divide Matrix

- Divide matrix M into b bands of r rows.
- ullet For each band, hash its portion of each column to a hash table with kbuckets.

### Divide Matrix

- ullet Divide matrix M into b bands of r rows.
- ullet For each band, hash its portion of each column to a hash table with k buckets.
  - ► Make *k* as large as possible.

 $\bullet$  Candidate column pairs are those that hash to the same bucket for  $\geq 1$  bands.

#### Divide Matrix

- ullet Divide matrix M into b bands of r rows.
- ullet For each band, hash its portion of each column to a hash table with k buckets.
  - ► Make *k* as large as possible.

### Candidate

 $\bullet$  Candidate column pairs are those that hash to the same bucket for  $\geq 1$  bands.

#### Divide Matrix

- Divide matrix M into b bands of r rows.
- For each band, hash its portion of each column to a hash table with k buckets.
  - ► Make *k* as large as possible.

### Candidate

• Candidate column pairs are those that hash to the same bucket for  $\geq 1$  bands.

### Catch most similar pairs

ullet Tune b and r to catch most similar pairs, but few non-similar pairs.

#### Divide Matrix

- Divide matrix M into b bands of r rows.
- For each band, hash its portion of each column to a hash table with k buckets.
  - ► Make *k* as large as possible.

#### Candidate

 Candidate column pairs are those that hash to the same bucket for > 1 bands.

### Catch most similar pairs

ullet Tune b and r to catch most similar pairs, but few non-similar pairs.

# Hashing Bands



## Simplifying Assumption

### Identical

• There are enough buckets that columns are unlikely to hash to the same bucket unless they are identical in a particular band

Then, we assume that "same bucket" means "identical in that band"

 Assumption needed only to simplify analysis, not for the correctness of algorithm

## Simplifying Assumption

### Identical

• There are enough buckets that columns are unlikely to hash to the same bucket unless they are identical in a particular band

#### Same bucket

• Then, we assume that "same bucket" means "identical in that band"

 Assumption needed only to simplify analysis, not for the correctness of algorithm

or algorithm.

## Simplifying Assumption

### Identical

 There are enough buckets that columns are unlikely to hash to the same bucket unless they are identical in a particular band

#### Same bucket

Then, we assume that "same bucket" means "identical in that band"

#### Not for correctness

 Assumption needed only to simplify analysis, not for the correctness of algorithm

## Assume the following case

- $\bullet$  Suppose 100,000 columns of M (100k docs)
- ullet Therefore, signatures take 40Mb
- Choose b = 20 bands of r = 5 integers/band

## Assume the following case

- Suppose 100,000 columns of M (100k docs)
- Signatures of 100 integers (rows)

## Assume the following case

- Suppose 100,000 columns of M (100k docs)
- Signatures of 100 integers (rows)
- ullet Therefore, signatures take 40Mb

## Assume the following case

- Suppose 100,000 columns of M (100k docs)
- Signatures of 100 integers (rows)
- $\bullet$  Therefore, signatures take 40Mb
- Choose b=20 bands of r=5 integers/band

• Find pairs of documents that are at least s=0.8 similar

## Assume the following case

- Suppose 100,000 columns of M (100k docs)
- Signatures of 100 integers (rows)
- ullet Therefore, signatures take 40Mb
- Choose b = 20 bands of r = 5 integers/band

### Goal

ullet Find pairs of documents that are at least s=0.8 similar

- ullet Find pairs of  $\geq s=0.8$  similarity, set b=20, r=5
- Assume:  $sim(C_1, C_2) = 0.8$ 
  - ▶ Since  $sim(C_1, C_2) \ge s$ , we want  $C_1$ ,  $C_2$  to be a candidate pair: We want them to hash to at least 1 common bucket (at least one band is identical)

### Assume

- ullet Find pairs of  $\geq s=0.8$  similarity, set b=20, r=5
- Assume:  $sim(C_1, C_2) = 0.8$ 
  - ▶ Since  $sim(C_1, C_2) \ge s$ , we want  $C_1$ ,  $C_2$  to be a candidate pair: We want them to hash to at least 1 common bucket (at least one band is identical)

64 / 74

- Find pairs of  $\geq s=0.8$  similarity, set b=20, r=5
- Assume:  $sim(C_1, C_2) = 0.8$ 
  - ▶ Since  $sim(C_1, C_2) \ge s$ , we want  $C_1$ ,  $C_2$  to be a candidate pair: We want them to hash to at least 1 common bucket (at least one band is identical)

- $(1-0.328)^{20} = 0.00035$  i.e., about 1/3000th of the 80%-similar column pairs are false negatives.
  - ▶ We would find 99.965% pairs of truly similar documents

#### Assume

- Find pairs of  $\geq s=0.8$  similarity, set b=20, r=5
- Assume:  $sim(C_1, C_2) = 0.8$ 
  - ▶ Since  $sim(C_1, C_2) \ge s$ , we want  $C_1$ ,  $C_2$  to be a candidate pair: We want them to hash to at least 1 common bucket (at least one band is identical)

### In one particular band

• Probability  $C_1$ ,  $C_2$  identical in one particular band:  $(0.8)^5 = 0.328$ 

#### Assume

- Find pairs of  $\geq s=0.8$  similarity, set b=20, r=5
- Assume:  $sim(C_1, C_2) = 0.8$ 
  - ▶ Since  $sim(C_1, C_2) \ge s$ , we want  $C_1$ ,  $C_2$  to be a candidate pair: We want them to hash to at least 1 common bucket (at least one band is identical)

## In one particular band

• Probability  $C_1$ ,  $C_2$  identical in one particular band:  $(0.8)^5=0.328$ 

## What is the Probability of not being similar at all?

• Probability  $C_1$ ,  $C_2$  are not similar in all of the 20 bands:  $(1-0.328)^{20}=0.00035$ 

#### Assume

- Find pairs of  $\geq s=0.8$  similarity, set b=20, r=5
- Assume:  $sim(C_1, C_2) = 0.8$ 
  - ▶ Since  $sim(C_1, C_2) \ge s$ , we want  $C_1$ ,  $C_2$  to be a candidate pair: We want them to hash to at least 1 common bucket (at least one band is identical)

## In one particular band

• Probability  $C_1$ ,  $C_2$  identical in one particular band:  $(0.8)^5=0.328$ 

## What is the Probability of not being similar at all?

- Probability  $C_1$ ,  $C_2$  are not similar in all of the 20 bands:
  - $(1 0.328)^{20} = 0.00035$ 
    - i.e., about 1/3000th of the 80%-similar column pairs are false negatives (we miss them)

#### Assume

- Find pairs of  $\geq s=0.8$  similarity, set b=20, r=5
- Assume:  $sim(C_1, C_2) = 0.8$ 
  - ▶ Since  $sim(C_1, C_2) \ge s$ , we want  $C_1$ ,  $C_2$  to be a candidate pair: We want them to hash to at least 1 common bucket (at least one band is identical)

## In one particular band

• Probability  $C_1$ ,  $C_2$  identical in one particular band:  $(0.8)^5=0.328$ 

## What is the Probability of not being similar at all?

- Probability  $C_1$ ,  $C_2$  are not similar in all of the 20 bands:
  - $(1 0.328)^{20} = 0.00035$ 
    - i.e., about 1/3000th of the 80%-similar column pairs are false negatives (we miss them)
    - ▶ We would find 99.965% pairs of truly similar documents

# $C_1$ , $C_2$ are 30% Similar

- ullet Find pairs of  $\geq s=0.8$  similarity, set b=20, r=5
- Assume:  $sim(C_1, C_2) = 0.3$ 
  - ▶ Since  $sim(C_1, C_2) < s$ we want  $C_1$ ,  $C_2$  to hash to NO common buckets (all bands should be different).

# $C_1$ , $C_2$ are 30% Similar

- ullet Find pairs of  $\geq s=0.8$  similarity, set b=20, r=5
- Assume:  $sim(C_1, C_2) = 0.3$ 
  - ▶ Since  $sim(C_1, C_2) < s$ we want  $C_1$ ,  $C_2$  to hash to NO common buckets (all bands should be different).

## $C_1, C_2$ are 30% Similar

- Find pairs of  $\geq s=0.8$  similarity, set b=20, r=5
- Assume:  $sim(C_1, C_2) = 0.3$ 
  - ▶ Since  $sim(C_1, C_2) < s$ we want  $C_1$ ,  $C_2$  to hash to NO common buckets (all bands should be different).

## $C_1$ , $C_2$ are 30% Similar

### Assume

- Find pairs of  $\geq s=0.8$  similarity, set b=20, r=5
- Assume:  $sim(C_1, C_2) = 0.3$ 
  - ▶ Since  $sim(C_1, C_2) < s$ we want  $C_1$ ,  $C_2$  to hash to NO common buckets (all bands should be different).

### Identical in one particular band

• Probability  $C_1$ ,  $C_2$  identical in one particular band:  $(0.3)^5=0.00243$ .

# $C_1$ , $C_2$ are 30% Similar

#### Assume

- ullet Find pairs of  $\geq s=0.8$  similarity, set b=20, r=5
- Assume:  $sim(C_1, C_2) = 0.3$ 
  - ▶ Since  $sim(C_1, C_2) < s$ we want  $C_1$ ,  $C_2$  to hash to NO common buckets (all bands should be different).

### Identical in one particular band

• Probability  $C_1$ ,  $C_2$  identical in one particular band:  $(0.3)^5=0.00243$ .

## **Properties**

- Probability  $C_1$ ,  $C_2$  identical in at least 1 of 20 bands:
  - 1 (1 0.00243)20 = 0.0474.

## $C_1$ , $C_2$ are 30% Similar

#### Assume

- Find pairs of  $\geq s=0.8$  similarity, set b=20, r=5
- Assume:  $sim(C_1, C_2) = 0.3$ 
  - ▶ Since  $sim(C_1, C_2) < s$ we want  $C_1$ ,  $C_2$  to hash to NO common buckets (all bands should be different).

#### Identical in one particular band

• Probability  $C_1$ ,  $C_2$  identical in one particular band:  $(0.3)^5 = 0.00243$ .

#### **Properties**

- Probability  $C_1$ ,  $C_2$  identical in at least 1 of 20 bands:
  - 1 (1 0.00243)20 = 0.0474.
    - In other words, approximately 4.74% pairs of docs with similarity 0.3% end up becoming candidate pairs.

## $C_1$ , $C_2$ are 30% Similar

#### Assume

- Find pairs of  $\geq s = 0.8$  similarity, set b = 20, r = 5
- Assume:  $sim(C_1, C_2) = 0.3$ 
  - ▶ Since  $sim(C_1, C_2) < s$ we want  $C_1$ ,  $C_2$  to hash to NO common buckets (all bands should be different).

#### Identical in one particular band

ullet Probability  $C_1$ ,  $C_2$  identical in one particular band:  $(0.3)^5=0.00243$ .

#### **Properties**

- Probability  $C_1$ ,  $C_2$  identical in at least 1 of 20 bands:
  - 1 (1 0.00243)20 = 0.0474.
    - ▶ In other words, approximately 4.74% pairs of docs with similarity 0.3% end up becoming candidate pairs.
      - $\star$  They are false positives since we will have to examine them (they are candidate pairs) but then it will turn out their similarity is below threshold s.

#### You need to pick

• The number of minhashes (rows of M).

#### You need to pick

- The number of minhashes (rows of M).
- ullet The number of bands b.

#### You need to pick

- The number of minhashes (rows of M).
- $\bullet$  The number of bands b.
- The number of rows r per band to balance false positives/negatives.

#### You need to pick

- The number of minhashes (rows of M).
- $\bullet$  The number of bands b.
- The number of rows r per band to balance false positives/negatives.

#### Example

ullet if we had only 15 bands of 5 rows, the number of false positives would go down, but the number of false negatives would go up

## Analysis of LSH - What We Want



#### What 1 Band of 1 Row Gives You



# Given that probability of two documents aggree in a row is s

## We can calculate the probability that these documents become a candidate pair as follows

lacktriangle The probability that the signatures agree in all rows of one particular band is  $s^r$ .

# Given that probability of two documents aggree in a row is s

## We can calculate the probability that these documents become a candidate pair as follows

- ① The probability that the signatures agree in all rows of one particular band is  $s^r.$
- ② The probability that the signatures disagree in at least one row of a particular band is  $1-s^r$  .

# Given that probability of two documents aggree in a row is s

## We can calculate the probability that these documents become a candidate pair as follows

- The probability that the signatures agree in all rows of one particular band is  $s^r.$
- 2 The probability that the signatures disagree in at least one row of a particular band is  $1-s^{r}$  .
- **3** The probability that the signatures disagree in at least one row of each of the bands is  $(1-s^r)^b$ .

## We can calculate the probability that these documents become a candidate pair as follows

S

- ② The probability that the signatures disagree in at least one row of a particular band is  $1-s^r$  .
- **3** The probability that the signatures disagree in at least one row of each of the bands is  $(1 s^r)^b$ .
- **4** The probability that the signatures agree in all the rows of at least one band, and therefore become a candidate pair, is  $1 (1 s^r)^b$ .

## If you fix r and b

## Something Notable



## Example: b = 20; r = 5

#### Given

ullet Similarity threshold s

#### Similarity threshold s Prob. that at least 1 band is identical

Example: b = 20; r = 5

#### Given

 $\bullet \ {\sf Similarity} \ {\sf threshold} \ s \\$ 

#### Similarity threshold s Prob. that at least 1 band is identical

| s  | $1 - (1 - s^r)^b$ |
|----|-------------------|
| .2 | 0.006             |
| .3 | 0.047             |
| .4 | 0.186             |
| .5 | 0.470             |
| .6 | 0.802             |
| .7 | 0.975             |
| .8 | 0.9996            |

## Picking r and b: The S-curve

#### Picking r and b to get the best S-curve

• 50 hash-functions (r = 5, b = 10)



## LSH Summary

#### Tune M, $\overline{b}$ , r

ullet Tune M, b, r to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures

#### Check in main m

 Check in main memory that candidate pairs really do have similar signatures

#### In another pass through data, check that the remaining candidate pairs really represent similar documents

pairs really represent similar documents

## LSH Summary

#### Tune M, b, r

ullet Tune M, b, r to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures

#### Check in main memory

 Check in main memory that candidate pairs really do have similar signatures

- In another pass through data, check that the remaining candidate pairs really represent similar documents
- pans really represent similar documents

## LSH Summary

#### Tune M, b, r

• Tune M, b, r to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures

#### Check in main memory

 Check in main memory that candidate pairs really do have similar signatures

#### **Optional**

• In another pass through data, check that the remaining candidate pairs really represent similar documents

### Shingling

- Convert documents to sets
  - We used hashing to assign each shingle an ID Min-hashing: Convert large sets to short

#### Shingling

- Convert documents to sets
  - We used hashing to assign each shingle an ID Min-hashing: Convert large sets to short

#### Shingling

- Convert documents to sets
  - ► We used hashing to assign each shingle an ID Min-hashing: Convert large sets to short

#### Min-hashing

• Convert large sets to short signatures, while preserving similarity.

#### Shingling

- Convert documents to sets
  - ► We used hashing to assign each shingle an ID Min-hashing: Convert large sets to short

#### Min-hashing

- Convert large sets to short signatures, while preserving similarity.
  - ▶ We used similarity preserving hashing to generate signatures with property  $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$ .

#### Shingling

- Convert documents to sets
  - ► We used hashing to assign each shingle an ID Min-hashing: Convert large sets to short

#### Min-hashing

- Convert large sets to short signatures, while preserving similarity.
  - ▶ We used similarity preserving hashing to generate signatures with property  $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$ .
  - ▶ We used hashing to get around generating random permutations.

### Shingling

- Convert documents to sets
  - ► We used hashing to assign each shingle an ID Min-hashing: Convert large sets to short

#### Min-hashing

- Convert large sets to short signatures, while preserving similarity.
  - ▶ We used similarity preserving hashing to generate signatures with property  $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$ .
  - ▶ We used hashing to get around generating random permutations.

#### Locality-Sensitive Hashing

• Focus on pairs of signatures likely to be from similar documents.

#### Shingling

- Convert documents to sets
  - ► We used hashing to assign each shingle an ID Min-hashing: Convert large sets to short

#### Min-hashing

- Convert large sets to short signatures, while preserving similarity.
  - ▶ We used similarity preserving hashing to generate signatures with property  $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$ .
  - ▶ We used hashing to get around generating random permutations.

#### Locality-Sensitive Hashing

- Focus on pairs of signatures likely to be from similar documents.
  - lacktriangle We used hashing to find candidate pairs of similarity  $\geq s$