Тензорный анализ сингулярного спектра

Хромов Никита Андреевич, Голяндина Нина Эдуардовна

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Процессы управления и устойчивость 2 апреля 2024, Санкт-Петербург

Постановка задачи

 $X=(x_1,x_2,\dots,x_N)$, $x_i\in\mathbb{R}$ — вещественный временной ряд. X=T+P+R. T — тренд, P — сезонность, R — шум.

Возможные задачи:

- **1** Выделение сигнала из ряда: нахождение S = T + P,
- Отделение компонент сигнала: нахождение Т и Р,
- 3 Нахождение парамтров сигнала в параметрической модели.

Методы, основанные на подпространстве сигнала:

- SSA (задачи 1 и 2)
 (Golyandina et al. (2001), Analysis of time series structure:
 SSA and related techiques)
- ESPRIT (задача 3)
 (Roy, Kailath (1989), ESPRIT-estimation of signal parameters via rotational invariance techniques)

Имеющиеся результаты

В работе Papy et al. (2005) была предложена тензорная модификация метода ESPRIT и экспериментально показано её преимущество для конкретной модели.

Цель: расширение предложенного Рару алгоритма для решения задачи выделения сигнала, исследование свойств тензорных модификаций методов семейства SSA с точки зрения точности выделения сигнала.

Модель одномерного сигнала

$$X = (x_0, x_1, \dots, x_{N-1}) = S + R,$$

S — сигнал, R — шум.

$$s_n = \sum_{j=1}^{R} a_j e^{-\alpha_j n} \cos(2\pi\omega_j n + \varphi_j)$$

Параметры:

 $a_j\in\mathbb{R}\setminus\{0\}$ — амплитуды, $lpha_j\in\mathbb{R}$ — степени затухания, $\omega_j\in[0,1/2]$ — частоты, $arphi_j\in[0,2\pi)$ — фазы.

Модель многомерного сигнала

$$\mathsf{X} = egin{pmatrix} \mathsf{X}_1 \\ \mathsf{X}_2 \\ dots \\ \mathsf{X}_P \end{pmatrix}$$
, $\mathsf{X}_p = \mathsf{S}_p + \mathsf{R}_p$ — одномерные ряды.

Общий случай:

$$s_n^{(p)} = \sum_{j=1}^{R(p)} a_j^{(p)} e^{-\alpha_j^{(p)} n} \cos\left(2\pi\omega_j^{(p)} n + \varphi_j^{(p)}\right)$$

Рассматриваемый случай:

$$s_n^{(p)} = \sum_{j=1}^R a_j^{(p)} e^{-\alpha_j n} \cos\left(2\pi\omega_j n + \varphi_j^{(p)}\right)$$

Описание алгоритма MSSA

 ${\sf X}-P$ -мерный временной ряд длины N с сигналом ${\sf S},\, L-$ длина окна, K=N-L+1.

Оператор вложения:

$$\mathbb{H}_{L}\left(\mathsf{X}_{p}\right) = \begin{pmatrix} x_{0}^{(p)} & x_{1}^{(p)} & x_{2}^{(p)} & \dots & x_{K-1}^{(p)} \\ x_{1}^{(p)} & x_{2}^{(p)} & \ddots & \dots & \vdots \\ x_{2}^{(p)} & \ddots & \ddots & \dots & \vdots \\ \vdots & \vdots & \vdots & \vdots & x_{N-2}^{(p)} \\ x_{L-1}^{(p)} & \dots & \dots & x_{N-2}^{(p)} & x_{N-1}^{(p)} \end{pmatrix}$$

Описание алгоритма MSSA

Параметры алгоритма: $L, R: R \leqslant L < N, K \geqslant L.$ R — число компонент, отнесённых к сигналу.

Схема алгоритма MSSA для выделения сигнала

- f 1 Вложение $f X\mapsto f H=[\mathbb H(f X_1):\mathbb H(f X_2):\cdots:\mathbb H(f X_P)]\in\mathbb R^{L imes KP},$
- f Pазложение $f H = \sum_{i=1}^d \sqrt{\lambda_i} U_i V_i^{
 m T}, \ d \leqslant L$
- $egin{align*} egin{align*} egin{align*} egin{align*} egin{align*} egin{align*} egin{align*} egin{align*} igoldsymbol{S} = igg[igli oldsymbol{S}_1 : igroup oldsymbol{S}_2 : \cdots : igroup oldsymbol{S}_P igg], & igli oldsymbol{S}_p \in \mathbb{R}^{L imes K} \ \end{array} \end{aligned}$
- f O Восстановление Матрицы $f S_p$ усредняются вдоль побочных диагоналей: $f s_n^{(p)} = \max \left\{ \left(f S_p
 ight)_{i,j} \;\middle|\; i+j-2=n
 ight\}.$

SSA для выделения сигнала

$$\mathsf{X} = (x_1, x_2, \dots, x_N) = \mathsf{S} + \mathsf{R}$$
, L - длина окна, $K = N - L + 1 \geqslant L$.

Параметры алгоритма: $L, R: R \leq L < N$. R — число компонент, отнесённых к сигналу.

Схема алгоритма SSA для выделения сигнала

- ullet Вложение ${f X}\mapsto {f X}=[X_1:X_2:\cdots:X_K]\in \mathbb{R}^{L imes K}, \ X_i=(x_i,x_{i+1},\ldots,x_{i+L})^{
 m T}$
- $\mathbf{2}$ Разложение $\mathbf{X} = \sum_{i=1}^d \sqrt{\lambda_i} U_i V_i^{\mathrm{T}}, \ d \leqslant L$
- $oldsymbol{\tilde{X}} = \sum_{i=1}^R \sqrt{\lambda_i} U_i V_i^{\mathrm{T}}$
- $oldsymbol{\mathfrak{G}}$ Восстановление Матрица $ilde{\mathbf{X}}$ усредняется вдоль побочных диагоналей $ilde{x_k} = ext{mean}\left\{ (ilde{\mathbf{X}})_{i,j} \mid i+j-1=k
 ight\}.$

Результат алгоритма $\tilde{\mathsf{X}} = (\tilde{x}_1, \tilde{x}_2, \dots, \tilde{x}_N).$

Ранг сигнала

$$X = S$$
.

S имеет ранг r, если $\forall L: r \leq \min(L, K) \quad \mathrm{rank} \, \mathbf{X} = r$. Рекомендуемый выбор параметра R в алгоритме: R = r.

Примеры

- $s_n = \cos(2\pi n\omega + \psi),$ $n \in \overline{1:N},$ $0 < \omega < \frac{1}{2}, \ \psi \in [0; 2\pi)$ r = 2.
- $s_n = a^n$, $n \in \overline{1:N}$, $a \neq 0$ r = 1.

Переход к тензорам

```
SSA: ряд X \Rightarrow матрица \mathbf{X} \Rightarrow SVD \mathbf{X}

Тепsor SSA: ряд X \Rightarrow тензор \mathcal{X} \Rightarrow тензорное разложение
```

Но существует несколько тензорных разложений, расширяющих SVD, среди них:

- High-order singular value decomposition (HOSVD)
- Canonical polyadic decomposition (CPD)

Описания этих и других тензорных разложений, а также примеры их применения в задачах обработки сигналов и машинного обучения, представлены в обзорной работе Sidiropoulos, De Lathauwer et al. (2016)

Построение тензора

L, I — параметры

Разложение и группировка

ullet HOSVD траекторного тензора ${\mathcal X}$ имеет вид

$$\mathcal{X} = \sum_{i=1}^{I} \sum_{l=1}^{L} \sum_{j=1}^{N-I-L+2} \mathcal{Z}_{i,l,j} \mathbf{U}_{i}^{(1)} \circ \mathbf{U}_{l}^{(2)} \circ \mathbf{U}_{j}^{(3)}.$$

 Тогда этап группировки в алгоритме HOSVD SSA имеет вид

$$\tilde{\mathcal{X}} = \sum_{i=1}^{R} \sum_{l=1}^{R} \sum_{i=1}^{R} \mathcal{Z}_{i,l,j} \mathbf{U}_{i}^{(1)} \circ \mathbf{U}_{l}^{(2)} \circ \mathbf{U}_{j}^{(3)},$$

 $R \leqslant \min(I, L, N - I - L + 2)$ — параметр алгоритма.

Ранг в тензорном варианте

- n-ранг тензора: размерность пространства, порождённого векторами вдоль n-го измерения.
- В отличие от матричного случая, n-ранги тензора произвольной размерности могут в общем случае не совпадать.

Утверждение

Пусть сигнал S имеет конечный ранг r в терминах SSA. Тогда для любых значений параметров I и L таких, что

$$r \leqslant \min(I, L, N - I - L + 2),$$

все n-ранги траекторного тензора $\mathcal X$ этого сигнала с параметрами I и L будут равны r.

Численное сравнение

Сигнал $s_n=30\cos(2\pi n/12)$, $n\in\overline{1:71}$. Шум гауссовский, белый с $\sigma=5$ и красный с $\delta=\sqrt{5}$, $\varphi_1=0.5$ или $\varphi_2=0.9$.

Таблица: RMSE восстановленного с помощью SSA сигнала.

12	24	30	36
.82	1.42	1.40	1.42
.31	1.03	1.01	1.03
.88	1.37	1.34	1.36
	.82	.82 1.42 .31 1.03	.82 1.42 1.40 .31 1.03 1.01

Таблица: RMSE восстановленного с помощью HOSVD SSA сигнала.

I imes L вид шума	12×12	12×24	12×30	24×24	24×30	30×36
белый шум, $\sigma=5$	1.64	1.53	1.57	1.66	1.62	1.49
красный шум, $arphi=0.5$	1.18	1.12	1.14	1.21	1.19	1.08
красный шум, $\varphi=0.9$	1.58	1.44	1.47	1.57	1.54	1.46

MSSA

Многомерный временной ряд:

$$X = (X^{(1)}, X^{(2)}, \dots, X^{(p)})^{T}, \qquad X^{(i)} = (x_1^{(i)}, x_2^{(i)}, \dots, x_N^{(i)}).$$

Траекторная матрица этого ряда:

$$\mathbf{X} = [\mathbf{X}^{(1)} : \mathbf{X}^{(2)} : \dots : \mathbf{X}^{(p)}],$$

 $\mathbf{X}^{(i)}$ — траекторная матрица $\mathbf{X}^{(i)}.$

Дальнейшие шаги алгоритма MSSA (разложение траекторной матрицы и восстановление сигнала) аналогичны стандартному SSA.

• В случаях, когда сигналы $S^{(i)}$ имеют похожую структуру, использование MSSA даёт лучшие результаты в задаче выделения сигнала, чем применение SSA к каждому ряду отдельно.

Тензорная модификация MSSA

Вместо матрицы $\mathbf{X}=[\mathbf{X}^{(1)}:\mathbf{X}^{(2)}:\ldots:\mathbf{X}^{(p)}]$ тензор $\mathcal{X}:~\mathcal{X}_{,i}=\mathbf{X}^{(i)}$

Тензорная модификация MSSA

Утверждение, позволяющее перенести понятие ранга сигнала на тензорный вариант MSSA.

Утверждение

Пусть $\mathbf{A} = [\mathbf{H}_1: \mathbf{H}_2: \ldots: \mathbf{H}_p] \in \mathbb{C}^{L imes Kp}$, её SVD имеет вид:

$$\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{V},$$

и пусть $\mathcal{A}:\mathcal{A}_{.,i}=\mathbf{H}_i\in\mathbb{C}^{L imes K imes p}$, его HOSVD имеет вид:

$$\mathcal{A} = \mathcal{Z} \times_1 \hat{\mathbf{U}}_1 \times_2 \hat{\mathbf{U}}_2 \times_3 \hat{\mathbf{U}}_3.$$

Тогда существуют такие SVD матрицы ${\bf A}$ и HOSVD тензора ${\cal A}$, что ${\bf U}=\hat{{\bf U}}_1$.

Ранги в тензорном MSSA

- ullet Если сигнал S имеет ранг r в терминах SSA, то при $r\leqslant \min(L,K)$ выполнено $\mathrm{rank}_1(\mathcal{X})=r.$
- По симметричности построения, в этих предположениях $\mathrm{rank}_2(\mathcal{X}) = r.$
- Однако ранг третьего измерения приобретает иной смысл.

В тензорном варианте алгоритма к параметрам L и R добавляется параметр $R_3.$

Примеры

$$s_n^{(m)} = a_m \cos(2\pi n\omega_m + \psi_m), \ m \in \{1, 2\}, \ n \in \overline{1:N}, \ a_m \neq 0, \ 0 < \omega_m < \frac{1}{2}, \ 0 \leqslant \psi < 2\pi$$

$$\psi_1 \neq \psi_2, \ \omega_1 = \omega_2 \implies r = r_1 = r_2 = 2, \ r_3 = 2,$$

$$\omega_1 \neq \omega_2 \implies r = r_1 = r_2 = 4, r_3 = 2.$$

Численные сравнения

$$s_n^{(m)} = a_m \cos(2\pi n\omega_m + \psi_m), n \in \overline{1:71}, a_1 = 30, a_2 = 20.$$

Шум — белый гауссовский, с параметром $\sigma=5$, RMSE было сосчитано по 500 реализациям зашумлённого ряда, сравнение проводилось на одних и тех же реализациях шума.

Численные сравнения

Таблица: RMSE восстановленных различными методами сигналов для каждого набора параметров сигнала.

Условия		12	24	36	48	60
$\omega_1 = \omega_2 = \frac{1}{12}$	MSSA	1.78	1.34	1.24	1.20	1.42
$\psi_1 = \psi_2 = 0$	HOSVD MSSA	1.35	1.10	1.10	1.10	1.35
$\omega_1 = \omega_2 = \frac{1}{12}$	MSSA	1.78	1.34	1.25	1.20	1.41
$\psi_1 = 0, \psi_2 = \frac{\pi}{4}$	HOSVD MSSA	1.41	1.19	1.20	1.19	1.41
$\omega_1 = \frac{1}{12}, \ \omega_2 = \frac{1}{8}$	MSSA	2.63	1.94	1.74	1.69	1.95
$\psi_1 = 0, \psi_2 = \frac{\pi}{4}$	HOSVD MSSA	1.95	1.67	1.69	1.67	1.95

Выводы

- HOSVD SSA и HOSVD MSSA являются прямыми обобщениями SSA и MSSA, однако устроены существенно сложнее и имеют большую трудоемкость.
- Оба расширения усложняют алгоритм необходимостью подбора дополнительного параметра.
- HOSVD SSA выделяет сигнал менее точно, чем SSA.
- HOSVD MSSA выделяет сигнал точнее, чем MSSA.