Analysis Tools for Data Structures and Algorithms

Hsuan-Tien Lin

Dept. of CSIE, NTU

March 24, 2020

Asymptotic Notation

Representing "Rough" by Asymptotic Notation

- goal: rough rather than exact steps
- why rough? constant not matter much
- -when input size large

compare two complexity functions f(n) and g(n)

growth of functions matters
—when n large, n^3 eventually bigger than 1126n

rough ⇔ asymptotic behavior

Asymptotic Notations: Rough Upper Bound

big-O: rough upper bound

- f(n) grows slower than or similar to g(n): f(n) = 0• n grows slower than n^2 : $n = O(n^2)$

 - 3n grows similar to n: 3n = O(n)
- asymptotic intuition (rigorous math later):

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} \le c$$

$$f(n) = O(g(n))$$

big-O: arguably the most used "language" for complexity

More Intuitions on Big-O

$$f(n) = O(g(n)) \Leftarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} \leq c$$
 (not rigorously, yet)

- "= O(;)" more like "€")
 - n = O(n)
 - n = O(10n)
 - n = O(0.3n)
 - $n = O(n^5)$
- "= $O(\cdot)$ " also like (\leq ")
 - $n = O(n^2)$
 - $n^2 = \hat{O}(n^{2.5})$
 - $n = O(n^{2.5})$
- $1\underline{126}n = O(n)$: coefficient not matter

$$(n)+\sqrt{n}+\sqrt{n}=O(n)$$
: lower-order term not matter

exact int

intuitions (properties) to be proved later

H.-T. Lin (NTU CSIE)

Analysis Tools for DSA

1

Formal Definition of Big-
$$O$$

$$(im) \frac{f}{g} \leq C \qquad g(m) 70$$

Consider positive functions f(n) and g(n),

$$f(n) = O(g(n))$$
, iff exist $c(n_0)$ such that $f(n) \le c \cdot g(n)$ for all $n \ge n_0$

- covers the lim intuition if limit exists
- covers other situations without "limit" $e.g.(|\sin(n)|) = O(1)$

next: prove that lim intuition ⇒ formal definition

H.-T. Lin (NTU CSIE)

Analysis Tools for DSA

11/

For positive functions f and g, if $\lim_{n\to\infty}\frac{f(n)}{g(n)}\leq c$, then f(n)=O(g(n)).

- with definition of limit, there exists ϵ , n_0 such that for all $n \ge n_0$, $|\frac{f(n)}{g(n)} c| < \epsilon$.
- $|\frac{f(n)}{g(n)} c| < \epsilon.$ That is, for all $n \neq n_0$, $\frac{f(n)}{g(n)} < c + \epsilon$.
- Let $c' = c + \epsilon$, $n'_0 = n_0$, big-O definition satisfied with (c', n'_0) . QED.

important to not just have intuition (building), but know definition (building block)

H.-T. Lin (NTU CSIE)

Analysis Tools for DSA

12/

More on Asymptotic Notations

Asymptotic Notations: Definitions

f(n) grows slower than or similar to g(n): (" \leq ")

$$f(n) = O(g(n))$$
, iff exist c, n_0 such that $f(n) \le c \cdot g(n)$ for all $n \ge n_0$

f(n) grows faster than or similar to g(n): (" \geq ")

$$f(n) \neq \Omega(g(n))$$
, iff exist c , n_0 such that $f(n) \geq c \cdot g(n)$ for all $n \geq n_0$ $f(n)$ grows similar to $g(n)$: (" \approx ")

$$f(n) = \Theta(g(n))$$
, iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$

The Seven Functions as g f(n) = 0 (1)

- g(n) = ?
 - 1: constant
 - log n: logarithmic (does base matter?)
 - *m*.linear
 - $n \log n$
 - n²: square_
 - n³: cubic
 - 2ⁿ: exponential (does base matter?)

fin = Ollogn)

will often encounter them in future classes

Analysis of Sequential Search

```
Sequential Search

for i \leftarrow 0 to n-1 do

if list[i] == num

return i

end if

end for

return -1
```

- best case (e.g. num at 0): time $\Theta(1)$
- worst case (e.g. num at last or not found): time $\Theta(n)$

often just say O(n)-algorithm (linear complexity)

H.-T. Lin (NTU CSIE)

Analysis Tools for DSA

16/23

Analysis of Binary Search

Binary Search

```
left \leftarrow 0, right \leftarrow n - 1
while left \leq right do
   mid \leftarrow floor((left + right)/2)
   if list[mid] > num
      left \leftarrow mid + 1
   else if list[mid] < num
      right \leftarrow mid - 1
   else
      return mid
   end if
end while
return -1
```

- best case (e.g. num at mid): time ⊖(1)
- worst case (e.g. num not found):
 because range (right left)
 halved in each WHILE,
 needs time Θ(log n) iterations

to decrease range to 0

often just say $O(\log n)$ -algorithm (logarithmic complexity)

Sequential and Binary Search

- Input: any integer array list with size n, an integer num
- Output: if num not within list, -1; otherwise, +1126

DIRECT-SEQ-SEARCH (list, n, num)

```
for i \leftarrow 0 to n-1 do
if list[i] == num
return +1126
end if
end for
return -1
```

```
SORT-AND-BIN-SEARCH (list, n, num)
```

```
SEL-SORT(list, n)
return
BIN-SEARCH(list, n, num) > 0? + 1126 : -1
```

- DIRECT-SEQ-SEARCH: O(n) time
- SORT-AND-BIN-SEARCH: $O(n^2)$ time for SEL-SORT and $O(\log n)$ time for BIN-SEARCH

next: operations for "combining" asymptotic complexity

H.-T. Lin (NTU CSIE)

Analysis Tools for DSA

18/23

Properties of Asymptotic Notations

Some Properties of Big-O I

Theorem (封閉律)

if
$$f_1(n) = O(g_2(n))$$
, $f_2(n) = O(g_2(n))$ then $f_1(n) + f_2(n) = O(g_2(n))$

- **V** When $n \ge n_1$, $f_1(n) \le c_1 g_2(n)$ **∨**
- **∨** When $n \ge n_2$, $f_2(n) \le c_2 g_2(n)$ **∨**
 - So, when $n \ge \max(n_1, n_2)$, $f_1(n) + f_2(n) \le (c_1 + c_2)g_2(n)$

RED

Theorem (遞移律)

if
$$f_1(n) = O(g_1(n))$$
, $g_1(n) = O(g_2(n))$ then $f_1(n) = O(g_2(n))$

- When $n \ge n_1$, $f_1(n) \le c_1 g_1(n)$
- When $n \ge n_2$, $g_1(n) \le c_2 g_2(n)$
- So, when $n \ge \max(n_1, n_2)$, $f_1(n) \le c_1 c_2 g_2(n_1)$

H.-T. Lin (NTU CSIE)

Analysis Tools for DSA

Some Properties of Big-O II

sel-sort is
$$O(\underline{n}^2)$$

Theorem (併吞律)

if
$$f_1(n) = O(g_1(n))$$
, $f_2(n) = O(g_2(n))$ and $g_1(n) = O(g_2(n))$ then $f_1(n) + f_2(n) = O(g_2(n))$

Proof: use two theorems above.

is 0(n2)

Theorem

If
$$f(n) = a_m(n^m) + \cdots + a_1 n + a_0$$
, then $f(n) = O(n^m)$

Proof: use the theorem above.

similar proof for Ω and Θ

$$\frac{f_1 + f_2}{\text{sel-4.4t-bia-search}} = O(n^2)$$

Some More on Big-O

RECURSIVE-BIN-SEARCH is $O(\log n)$ time and $O(\log n)$ space

- by 遞移律, time also O(n)
- time also O(n log n)
- time also O(n²)
- also O(2ⁿ)

prefer the tightest Big-O!

H.-T. Lin (NTU CSIE) Analysis Tools for DSA

Practical Complexity

some input sizes are time-wise infeasible for some algorithms

when 1-billion-steps-per-second							
n	n	$n\log_2 n$	p^2	n ³	n^4	n ¹⁰	2 ⁿ
10	0.01 <i>μs</i>	$0.03 \mu s$	0.1 <i>μs</i>	1 μ s	10 <i>μs</i>	10 <i>s</i>	1 <i>μ</i> s
20	$0.02\mu s$	$0.09 \mu s$	$0.4 \mu s$	8 μ s	160 μ s	2.84 <i>h</i>	1 <i>ms</i>
30	$0.03\mu s$	$0.15\mu s$	$0.9\mus$	27 μ s	810 μ s	6.83 <i>d</i>	1 <i>s</i>
40	$0.04\mu s$	0.21 μ s	1.6 μ s	64 μ s	2.56 <i>ms</i>	1 <u>21<i>d</i></u>	18 <i>m</i>
50	$0.05 \mu s$	$0.28\mus$	2.5 μ s	125 μ s	6.25 <i>ms</i>	3.1 <i>y</i>	13 <i>d</i>
100	$0.10 \mu s$	$0.66\mu s$	10µs	1 <i>ms</i> _	100 <i>ms</i>	3171 <i>y</i>	$4 \cdot 10^{13} y$
10 ³	1 μ s	$9.96 \mu s$	1ms	1 <i>s</i>	16.67 <i>m</i>	$3 \cdot 10^{13} y$	$3 \cdot 10^{284}$ y
10 ⁴	10 μ s	130 <i>us</i>	100 <i>ms</i>	1000s	115.7 <i>d</i>	$3 \cdot 10^{23} y$	
10 ⁵	100 μs	1.66 <i>ms</i>	10 <i>s</i>	11.57d	3 171 <i>y</i>	$3 \cdot 10^{33} y$	
10 ⁶	1ms	19.92 <i>ms</i>	16.67 <i>m</i>	32 <i>y</i>	$3 \cdot 10^7 y$	$3\cdot 10^{43}y$	

note: similar for space complexity, e.g. store an N by N double matrix when N=50000?

10000