Applied Epidemiology I: Data clearance A review of using Stata

Enoch Yi-Tung Chen

Department of Medical Epidemiology and Biostatistics, Karolinska Insitutet

January 28, 2021

Acknowledgements

This course material is based on my learning from Anastasia Lam's teachings in last year's Applied Epidemiology I lab sessions, and readings from *Epidemiology* by Gordis [1], *A First Course in Probability and Statistics* by Goldsman and Goldsman [2], *Principles of Biostatistics* by Pagano and Gauvreau [3], and *Biostatistics I* by Gabriel and Frumento [4]. I especially want to thank Marlene Stratmann for reviewing the slides and Prof. Paul Dickman for providing me with suggestions to improving the teaching.

Outline

- Set up working directory
- Import and save data Import Save
- Manage datasets
 Merge
 Append

- 4 Get to know the data
 - Summarize
 - Describe
 - Codebook
 - List
- 6 Manage variables
 - Numeric and string
 - Drop/Keep
 - Label
 - Rename, recode, generate,
 - replace
 - Sort, by, if, in
 - Operators
- 6 References

Set up working directory

 Working directory is the folder where all your files are stored, and should be set each time you start.

Set up working directory

- Working directory is the folder where all your files are stored, and should be set each time you start.
- Where is it?
 - . cd /Users/Desktop
 - . pwd
 /Users/Desktop

Set up working directory

- Working directory is the folder where all your files are stored, and should be set each time you start.
- Where is it?
 - . cd /Users/Desktop
 - . pwd
 /Users/Desktop

- Change working directory
 - cd "/Users/Download"
 - Click File Change Working Directory

Import and save data: Import

- Excel (.xls or .xlsx)
 import excel filename, clear firstrow
- Delimited (.csv) or text (.txt)
 import delimited filename, clear
 infile filename, clear
- Stata (.dta)
 use filename, clear
- SAS (.xpt)
 fdause filename, clear

Import and save data: Save

- Save your dataset as a Stata file .dta
- The replace option lets you overwrite the existing dataset.
 save "filename", replace

Manage datasets: Merge

merge adds new variables from a second dataset to your existing dataset. (Make the dataset wider)

```
. sysuse cancer, clear
(Patient Survival in Drug Trial)
```

- . gen id = $_n$
- . keep id
- . merge 1:1 id using cancer

```
Result # of obs.
-----
not matched 0
matched 48 (_merge==3)
```

Manage datasets: Append

append adds new observations to existing variables in your current dataset. (Make the dataset longer)

```
. use cancer_drug12, clear
(Patient Survival in Drug Trial)
```

. append using cancer_drug3.dta // append patients using drug 3

Get to know the data: Summarize

summarize gives summaries for all your variables, such as number of observations, mean, standard deviation, etc.

```
. sysuse cancer, clear
(Patient Survival in Drug Trial)

. keep if drug ==1 | drug == 2
(14 observations deleted)
```

. summarize age // One variable only (age)

Variable	Obs	Mean	Std. Dev.	Min	Max
age	34	56.41176	6.010686	47	67

Get to know the data: Describe

describe gives descriptions for all your variables, such as storage type and labels.

```
. describe age
```

```
storage display value
variable name type format label variable label
-----age byte %8.0g Patient's age at start of exp.
```

Get to know the data: Codebook

codebook is a combination of summarize and describe and will give a detailed summary of all your variables, including mean, sd, range, percentiles, missing, frequency, etc.

```
. codebook age
                                                                         Patient's age at start of exp.
                 type: numeric (byte)
                range:
                       [47,67]
                                                      units: 1
        unique values: 15
                                                 missing .: 0/34
                 mean:
                         56.4118
              std dev:
                         6.01069
          percentiles:
                              10%
                                        25%
                                                   50%
                                                             75%
                                                                       90%
```

51

61

65

Get to know the data: List

list lists the observations of specified variables.

. list age if age < 50

```
| age |
|-----|
| 12. | 49 |
| 15. | 49 |
| 18. | 49 |
| 25. | 49 |
| 33. | 47 |
```

+----+

Manage variables: Numeric and string

- Numeric variables: have values that are numbers
- String variables: have variables that contain not just numbers

Manage variables: Numeric and string

- Numeric variables: have values that are numbers
- String variables: have variables that contain not just numbers

```
// Make age (numeric) into a string variable.
tostring age, replace
// convert string into numeric
destring age, replace
```

Manage variables: Drop/Keep

- drop is used to delete variables or observations.
- keep is used to keep variables or observations.

```
. sysuse cancer, clear
(Patient Survival in Drug Trial)
. drop if drug ==1 | drug == 2
(34 observations deleted)

. sysuse cancer, clear
(Patient Survival in Drug Trial)
. keep if drug ==1 | drug == 2 // So drug == 3 will be dropped
(14 observations deleted)
```

Manage variables: Label

- label helps you keep track of your dataset and variables, and helps others understand your data.
- . // Label a dataset
- . label data "cancerdata"

- . // Label variable in the "Variables" window
- . label variable drug "1=placebo, 2=mild, 3=strong"

Manage variables: Label

- . // Label define claims the value label
- . label define drug_label 1 "placebo" 2 "mild" 3 "strong"
- . // Label value then assigns the label to the variables
- . label values drug drug_label

drug[1]			1
	studytime	died	drug
1	1	1	placebo
2	1	1	placebo

Manage variables: Rename, recode, generate, replace

- rename changes the name of a variable.
 - . rename died death
- recode changes variable values.
 - . recode drug (3=4)
- generate creates a new variable.
 - . generate placebo = 1 if drug == 1
- replace replaces existing variables (or variable values).
 - . replace placebo = 0 if drug != 1

Manage variables: Sort, by, if, in

- sort orders observations in ascending order.
 - . sort death
- by executes a command within a specified variable (e.g. by age group), but data should be sorted first.
 - . by death: summarize
- bysort combines the by and sort commands into one.
 - . bysort death: summarize // by death, sort: summarize
- if is used to select by a condition.
 - . list age if death == 1
- in is used to select by observations.
 - $. gen id = _n$
 - . list id 1/10

Manage variables: Operators

Operator	Purpose	Example
=	Sets equal operator	$generate\;sex=1$
==	Tests for equality	summarize if sex==1
$\sim=$ or $!=$	Indicates 'not equal'	summarize if sex!=0
<,<= >,>=	Less than (equal to) or greater than (equal to)	summarize if age<35
&	Indicates 'and'	summarize outcome if sex==1 & age>=60
	Indicates 'or'	gen x=1 if a==1 & $(b==1 \mid c==1)$

References¹

- 1. Gordis L. Epidemiology. Philadelphia, PA: Elsevier/Saunders, 2014. ISBN 9781455737338.
- David Goldsman PG. A First Course in Probability and Statistics. Georgia Institute of Technology, 2020.
- Marcello Pagano KG. Principles of Biostatistics. Cengage Learning, Inc, 2000. ISBN 0534229026.
- 4. Erin Gabriel PF. Epidemiology PhD program, Karolinska Institutet, 2020.