Appendix

Figure 1. Density Plot of Continuous Variables Stratified by the Response.

Figure 2. Boxplots of Continuous Variables Stratified by the Response.

Figure 3. Correlation Plot of Continuous Variables.

Firgure 4. Bar Charts of Categorical Variables.

Table 1: Tuning parameters and selected values. Selection was made based on cross-validated AUC (using the train function in the 'caret' package.

Model	Tuning.Parameter	Selected.Value
Regularized Logistic	alpha lambda	0 0.234
LDA	N/A	
Naive Bayes	Kernel Bandwidth	Nonparametric 1.474
Classification Tree	Complexity parameter (cp)	0.0038
Bagging	Split rule Minimal node size	Gini impurity 40
Random Forest	Num. of Randomly selected predictors at each split Split rule Minimal node size	1 Gini impurity 25
Boosting	Number of trees Shrinkage parameter Number of splits in each tree	1370 0.015 1
Neural network	Number of hidden layer nodes Weight decay	18 6.448
SVM (linear kernel)	Cost	0.003
SVM (Radial kernel)	Cost Sigma	16.38 0.013

Related codes

data cleaning

```
heart_disease = read_csv("./data/heart.csv") %>%
    mutate(target = ifelse(target==1, 0, 1)) %>%
    mutate(target=as.factor(target)) %>%
    mutate(target=as.factor(ifelse(target==0, "absence", "presence")))%>%
    mutate(target = relevel(target, "presence"))
heart_disease = heart_disease %>%
    filter(thal != 0) %>%
    mutate(sex=as.factor(sex),
           cp=as.factor(cp),
           fbs=as.factor(fbs),
           restecg=as.factor(restecg),
           exang=as.factor(exang),
           slope=as.factor(slope),
           thal=factor(thal))
model.x <- model.matrix(target~.,heart_disease)[,-1]</pre>
model.y <- heart_disease$target</pre>
```

EDA

check missing value

```
sapply(X = heart_disease, FUN = function(x) sum(is.na(x)))
##
                           cp trestbps
                                           chol
                                                      fbs restecg thalach
        age
                 sex
##
          0
                            0
                                              0
                                                                 0
##
      exang oldpeak
                        slope
                                    ca
                                           thal
                                                   target
##
                   0
                            0
                                    0
                                              0
```

continuous

```
heart_disease %>%
    select(age, trestbps, chol, thalach, oldpeak, target) %>%
    gather(-target, key = "var", value = "value") %>%
    ggplot(aes(x = target, y = value, fill = target)) +
    geom_boxplot(alpha = 0.6) +
    facet_wrap(~ var, scales = "free") +
    theme_bw()
```


corr matrix

```
library(ggcorrplot)
heart_continu = heart_disease %>%
    select(age, trestbps, chol, thalach, oldpeak)
corr = round(cor(heart_continu), 4)

ggcorrplot(corr, hc.order = TRUE, type = "lower",
    outline.col = "white",
    ggtheme = ggplot2::theme_bw,
    lab = T,
    colors = c("#4682B4", "white", "#FF8C00"))
```


categorical

```
barplot = function(var){
    ggplot(heart_disease, aes_string(x = var, group = "target")) +
    geom_bar(aes(y = ..prop.., fill = factor(..x..)),
             stat = "count", alpha = 0.8) +
    geom_text(aes( label = scales::percent(..prop..),
                   y = ..prop..),
              stat = "count", vjust = 0, size = 2) +
    labs(y = "Percent", fill = var) +
    facet_grid(~target) +
    scale_y_continuous(labels = scales::percent) +
        theme_bw()
}
a1 = barplot("sex")
a2 = barplot("fbs")
a3 = barplot("exang")
a4 = barplot("slope")
```


tableone

```
##
                          Stratified by target
##
                           presence
                                                absence
                                                                             test
                                                                     р
##
                              137
                                                   164
     age (mean (SD))
                            56.64 (7.98)
                                                 52.49 (9.58)
                                                                     <0.001
##
                                                                      0.011
##
     trestbps (mean (SD)) 134.45 (18.79)
                                                129.31 (16.22)
##
     chol (mean (SD))
                           251.43 (49.47)
                                                242.39 (53.68)
                                                                      0.133
##
     thalach (mean (SD))
                           138.98 (22.64)
                                                158.73 (18.93)
                                                                     <0.001
##
     oldpeak (mean (SD))
                             1.59 (1.30)
                                                  0.59 (0.78)
                                                                     <0.001
     sex = 0/1 (\%)
                           24/113 (17.5/82.5)
                                               71/93 (43.3/56.7)
                                                                     <0.001
##
```

```
62/75 (45.3/54.7) 141/23 (86.0/14.0) < 0.001
##
     exang = 0/1 (%)
##
     fbs = 0/1 (\%)
                          116/21 (84.7/15.3) 141/23 (86.0/14.0)
                                                                     0.877
     slope (%)
                                                                    <0.001
##
##
                              12 (8.8)
                                                    9 (5.5)
        0
##
        1
                              90 (65.7)
                                                   49 (29.9)
##
        2
                              35 (25.5)
                                                  106 (64.6)
##
     thal (%)
                                                                    <0.001
                              12 (8.8)
##
                                                   6 (3.7)
        1
##
        2
                              36 (26.3)
                                                  130 (79.3)
##
        3
                              89 (65.0)
                                                  28 (17.1)
##
     restecg (%)
                                                                     0.005
                              79 (57.7)
                                                   67 (40.9)
##
        0
                              55 (40.1)
                                                   96 (58.5)
##
        1
##
        2
                               3 (2.2)
                                                   1 (0.6)
##
     cp (%)
                                                                    <0.001
##
        0
                            103 (75.2)
                                                   39 (23.8)
##
                               9 (6.6)
                                                   41 (25.0)
        1
        2
##
                              18 (13.1)
                                                   68 (41.5)
##
        3
                               7 (5.1)
                                                  16 (9.8)
     ca (%)
##
                                                                    <0.001
##
        0
                              44 (32.1)
                                                  129 (78.7)
##
        1
                              44 (32.1)
                                                  21 (12.8)
##
                              31 (22.6)
                                                   7 (4.3)
        2
##
                              17 (12.4)
                                                    3 (1.8)
##
                               1 (0.7)
                                                    4 (2.4)
table = as.data.frame(table)
table = table %>%
   mutate(name = rownames(table)) %>%
    select(name, everything())
mydoc <- read_docx()</pre>
mydoc = mydoc %>%
    body_add_flextable(flextable(table))
print(mydoc, target = "./table.docx")
```

[1] "C:/Users/Holly/Desktop/dsII/final/P8106-FinalProject/table.docx"

Unsupervised learning

K-means

```
set.seed(1)
model.x_scale = scale(model.x)

rownames(model.x_scale) = paste(heart_disease$target, 1:228, sep = "-")

km = kmeans(model.x_scale, centers = 2, nstart = 20)
km_vis = fviz_cluster(list(data = model.x_scale,
```

K-means


```
heart_kmeans = heart_disease
heart_kmeans$kmean = km$cluster
heart_kmeans %>% ggplot(aes(x = target, fill = target)) +
    geom_bar(alpha = 0.5) +
    facet_grid(.~kmean) +
    theme_bw()
```



```
center = t(apply(km$centers, 1, function(r)r*attr(model.x_scale,'scaled:scale') + attr(model.x_scale, '
center
```

```
##
                                         cp2
                                                    cp3 trestbps
                                                                     chol
          age
                   sex1
                               cp1
## 1 57.85612 0.7769784 0.02158273 0.1726619 0.09352518 135.1079 251.3022
## 2 51.39506 0.6049383 0.29012346 0.3827160 0.06172840 128.6790 242.3889
                             restecg2 thalach
                                                  exang1 oldpeak
          fbs1 restecg1
## 1 0.1798561 0.3884892 2.877698e-02 135.1511 0.5683453 1.797842 0.8273381
## 2 0.1172840 0.5987654 2.949030e-17 162.2593 0.1172840 0.395679 0.1481481
         slope2
                      ca
                              thal2
## 1 0.07194245 1.0431655 0.2661871 0.6258993
## 2 0.80864198 0.4691358 0.7962963 0.1851852
```

PCA

```
pca <- prcomp(model.x_scale)
fviz_eig(pca, addlabels = TRUE)</pre>
```


Hierarchical clustering

```
hd_1 = heart_disease %>%
    mutate(target = ifelse(target == "absence",1,0))
train.hc = model.x_scale %>% as.data.frame() %>%
```

Cluster Dendrogram


```
heart_disease = read_csv("./heart.csv") %>%
    mutate(target = ifelse(target==1, 0, 1)) %>%
    mutate(target=as.factor(target)) %>%
    mutate(target=as.factor(ifelse(target==0, "absence", "presence")))%%
    mutate(target = relevel(target, "presence"))
heart_disease = heart_disease %>%
    filter(thal != 0) %>%
    mutate(sex=as.factor(sex),
           cp=as.factor(cp),
           fbs=as.factor(fbs),
           restecg=as.factor(restecg),
           exang=as.factor(exang),
           slope=as.factor(slope),
           thal=factor(thal))
model.x <- model.matrix(target~.,heart_disease)[,-1]</pre>
model.y <- heart_disease$target</pre>
```

Regularized logistic

```
ctrl = trainControl(method = "cv",
                    classProbs = TRUE,
                    summaryFunction = twoClassSummary)
glmnGrid <- expand.grid(.alpha = seq(0, 0.5, length = 10),</pre>
                        .lambda = exp(seq(-10,-1, length = 100)))
set.seed(1)
model.glm <- train(x = model.x,</pre>
                   y = model.y,
                   method = "glmnet",
                   tuneGrid = glmnGrid,
                   metric = "ROC",
                   trControl = ctrl)
ggplot(model.glm, highlight = T) +
   viridis::scale_color_viridis(discrete = TRUE) +
   scale_shape_manual(values = seq(1,10))
## Scale for 'colour' is already present. Adding another scale for
## 'colour', which will replace the existing scale.
## Scale for 'shape' is already present. Adding another scale for 'shape',
## which will replace the existing scale.
```

```
0.90

(Country of the country of the
```

```
alpha \rightarrow 0.00000000 \rightarrow 0.11111111 \rightarrow 0.22222222 \rightarrow 0.3333333 \rightarrow 0.4444444 \rightarrow 0.05555556 \rightarrow 0.16666667 \rightarrow 0.27777778 \rightarrow 0.38888889 \rightarrow 0.5000000
```

model.glm\$bestTune

```
## # A tibble: 19 x 5
##
     term
                  step estimate lambda dev.ratio
##
      <chr>
                 <dbl>
                          <dbl>
                                <dbl>
                                           <dbl>
                     1 0.624
##
  1 (Intercept)
                                 0.195
                                           0.431
## 2 age
                     1 -0.00885 0.195
                                           0.431
  3 sex1
##
                     1 -0.462
                                 0.195
                                           0.431
  4 cp1
                     1 0.385
                                 0.195
                                           0.431
## 5 cp2
                     1 0.586
                                 0.195
                                           0.431
## 6 cp3
                     1 0.524
                                 0.195
                                           0.431
                                           0.431
## 7 trestbps
                     1 -0.00476 0.195
## 8 chol
                     1 -0.00120 0.195
                                           0.431
                     1 0.0693
                                           0.431
## 9 fbs1
                                 0.195
## 10 restecg1
                     1 0.246
                                 0.195
                                           0.431
## 11 restecg2
                     1 -0.198
                                 0.195
                                           0.431
## 12 thalach
                     1 0.00952 0.195
                                           0.431
## 13 exang1
                                 0.195
                                           0.431
                     1 -0.522
                     1 -0.199
## 14 oldpeak
                                 0.195
                                           0.431
## 15 slope1
                     1 -0.293
                                 0.195
                                           0.431
## 16 slope2
                     1 0.290
                                 0.195
                                           0.431
## 17 ca
                     1 -0.306
                                 0.195
                                           0.431
## 18 thal2
                     1 0.527
                                 0.195
                                           0.431
## 19 thal3
                     1 -0.526
                                 0.195
                                           0.431
```

LDA

Naive bayes

```
##Tree
```


tree.class\$bestTune

cp ## 13 0.003776539

rpart.plot(tree.class\$finalModel)

Bagging

```
set.seed(1)
bagging.class <- train(model.x, model.y,</pre>
                method = "ranger",
                tuneGrid = bagging.grid,
                metric = "ROC",
                trControl = ctrl,
                importance = "impurity")
ggplot(bagging.class, highlight = TRUE)
bagging.class$bestTune
barplot(sort(ranger::importance(bagging.class$finalModel),
             decreasing = FALSE),
las = 2, horiz = TRUE, cex.names = 0.7,
col = colorRampPalette(colors = c("darkred", "white", "darkblue"))(18))
##Random Forest
rf.grid <- expand.grid(mtry = 1:6,</pre>
                       splitrule = "gini",
                       min.node.size = seq(1,191, by = 2))
set.seed(1)
rf.class <- train(model.x, model.y,
                  method = "ranger",
                  tuneGrid = rf.grid,
                  metric = "ROC",
                  trControl = ctrl,
                  importance = "impurity")
rf.class$bestTune
ggplot(rf.class, highlight = TRUE) +
   viridis::scale_color_viridis(discrete = TRUE) +
    scale_shape_manual(values = seq(1,7))
barplot(sort(ranger::importance(rf.class$finalModel), decreasing = FALSE),
las = 2, horiz = TRUE, cex.names = 0.7,
col = colorRampPalette(colors = c("darkred", "white", "darkblue"))(18))
##Boosting
boost.grid <- expand.grid(n.trees = seq(20, 1700, by = 25),
                          interaction.depth = 1:6,
                          shrinkage = seq(0.005, 0.06, by = 0.005),
                          n.minobsinnode = 1)
set.seed(1)
# Adaboost loss function
boost.class = train(model.x, model.y,
                    tuneGrid = boost.grid,
                    trControl = ctrl,
                    method = "gbm",
                    distribution = "adaboost",
```

SVM ROC

Neural network

```
nnetGrid <- expand.grid(size = seq(from = 16, to = 30, by = 2),</pre>
                        decay = seq(from = 5, to = 8, length = 30))
set.seed(1)
cnnet.fit <- train(target~.,</pre>
                   heart_disease,
                   method = "nnet",
                   tuneGrid = nnetGrid,
                   preProcess = c("center", "scale"),
                   trControl = ctrl,
                   metric = "ROC",
                   trace = FALSE)
ggplot(cnnet.fit, highlight = TRUE) +
    viridis::scale_color_viridis(discrete = TRUE) +
    scale_shape_manual(values = seq(1,13))
cnnet.fit$bestTune
load(file = "./saved results/cnnet.rda")
load(file = "./saved_results/boost.rda")
load(file = "./saved_results/rf.rda")
load(file = "./saved results/bagging.rda")
load(file = "./saved_results/bayes.rda")
load(file = "./saved_results/svmr.rda")
resamp = resamples(list(
                        Regularized_logistic = model.glm,
                        LDA = model.lda,
                        Naive_Bayes = model.bayes,
                        Adaboost = boost.class,
                        Random_forests = rf.class,
                        Bagging = bagging.class,
                        Tree = tree.class,
                        Neural network = cnnet.fit,
                        SVM_linear = svml.fit,
```

```
SVM_gaussian = svmr.fit
                        ))
summary(resamp)
##
## Call:
## summary.resamples(object = resamp)
##
## Models: Regularized_logistic, LDA, Naive_Bayes, Adaboost, Random_forests, Bagging, Tree, Neural_netw
## Number of resamples: 10
## ROC
##
                             Min.
                                     1st Qu.
                                                Median
                                                                    3rd Qu.
                                                            Mean
## Regularized_logistic 0.8125000 0.8612839 0.8998162 0.9021715 0.9553571
## LDA
                        0.7812500 0.8463660 0.8998162 0.8981719 0.9497768
                        0.8169643 0.8725103 0.8994829 0.9097952 0.9681490
## Naive_Bayes
## Adaboost
                        0.7678571 0.8918572 0.9067752 0.9062419 0.9434086
## Random forests
                        0.8125000 0.8747424 0.9106335 0.9091185 0.9637605
## Bagging
                        0.7901786 0.8613445 0.8943924 0.8934995 0.9357224
## Tree
                        0.7626050 0.7968750 0.8471386 0.8446792 0.8771008
                        0.8125000 0.8641827 0.9010989 0.9026261 0.9553571
## Neural_network
## SVM linear
                        0.8109244 0.8605769 0.9056238 0.9043815 0.9658310
## SVM_gaussian
                        0.8214286 0.8567590 0.9012605 0.9027614 0.9497768
                             Max. NA's
## Regularized_logistic 0.9747899
                                      0
## LDA
                        0.9903846
                                      0
                                      0
## Naive_Bayes
                        0.9821429
## Adaboost
                        0.9807692
## Random_forests
                        0.9776786
                                      0
## Bagging
                        0.9776786
                                      0
## Tree
                        0.9665179
## Neural_network
                        0.9747899
                                      0
## SVM_linear
                        0.9789916
                                      0
## SVM_gaussian
                        0.9873950
                                      0
##
## Sens
##
                             Min.
                                     1st Qu.
                                                Median
                                                            Mean
                                                                    3rd Qu.
## Regularized_logistic 0.5714286 0.6923077 0.7857143 0.7950549 0.9065934
                        0.5714286 0.6978022 0.7857143 0.7725275 0.8310440
                        0.6428571 0.7857143 0.8159341 0.8258242 0.9038462
## Naive_Bayes
## Adaboost
                        0.6153846 0.6978022 0.7857143 0.7879121 0.8571429
## Random_forests
                        0.6428571 0.6923077 0.7142857 0.7659341 0.8310440
## Bagging
                        0.6428571 0.6978022 0.7500000 0.7659341 0.8310440
## Tree
                        0.6153846 0.7280220 0.7774725 0.7725275 0.8392857
## Neural_network
                        0.5714286 0.6923077 0.7857143 0.7950549 0.9065934
                        0.5714286 0.6552198 0.7500000 0.7653846 0.8543956
## SVM_linear
## SVM_gaussian
                        0.5384615 0.6401099 0.7857143 0.7653846 0.8571429
##
                             Max. NA's
## Regularized_logistic 1.0000000
                                      0
                                      0
## LDA
                        1.0000000
## Naive_Bayes
                        1.0000000
                                      0
## Adaboost
                        1.0000000
                                      0
## Random_forests
                        1.0000000
                                      0
```

0.9285714

Bagging

```
## Tree
                         0.9285714
                                      0
## Neural_network
                         1.0000000
                                      0
## SVM linear
                         1.0000000
                                      0
## SVM_gaussian
                         1.0000000
                                      0
##
## Spec
                                                Median
                                                                    3rd Qu.
##
                              Min.
                                     1st Qu.
                                                             Mean
## Regularized_logistic 0.7500000 0.8152574 0.8786765 0.8838235 0.9411765
## LDA
                         0.7500000 0.8152574 0.9099265 0.8838235 0.9411765
## Naive_Bayes
                         0.7500000 0.7500000 0.8235294 0.8470588 0.9264706
## Adaboost
                         0.6875000 0.8281250 0.9375000 0.8775735 0.9402574
## Random_forests
                         0.7058824 0.7812500 0.8786765 0.8658088 0.9402574
                         0.6875000 0.7766544 0.8235294 0.8297794 0.8621324
## Bagging
                         0.5625000 0.8152574 0.8492647 0.8349265 0.8823529
## Tree
## Neural_network
                         0.7500000 0.8152574 0.8786765 0.8838235 0.9411765
## SVM_linear
                         0.7500000 0.7766544 0.8786765 0.8658088 0.9264706
## SVM_gaussian
                         0.7500000 0.8125000 0.8492647 0.8536765 0.9237132
##
                              Max. NA's
## Regularized_logistic 1.0000000
                                      0
                         1.0000000
                                      0
## Naive_Bayes
                         1.0000000
                                      0
## Adaboost
                         0.9411765
## Random_forests
                                      0
                         1.0000000
## Bagging
                         1.0000000
## Tree
                         0.9375000
                                      0
## Neural_network
                         1.0000000
                                      0
## SVM_linear
                         1.0000000
                                      0
## SVM_gaussian
                                      0
                         0.9411765
bwplot(resamp, metric = "ROC")
```


###centered ICE

```
ice_thalach.rf = rf.class %>%
   pdp::partial(pred.var = "thalach",
            grid.resolution = 100,
            ice = TRUE,
            prob = TRUE) %>%
    autoplot(train = heart_disease, alpha = .1) +
    ggtitle("Random forest, thalach")
ice_ca.rf = rf.class %>%
   pdp::partial(pred.var = "ca",
            grid.resolution = 100,
            ice = TRUE,
            prob = TRUE) %>%
   autoplot(train = heart_disease, alpha = .1,
             xlab = "number of major vessels") +
    ggtitle("Random forest, number of major vessels")
ice_oldpeak.rf = rf.class %>%
   partial(pred.var = "oldpeak",
            grid.resolution = 100,
            ice = TRUE,
           prob = TRUE) %>%
   autoplot(train = heart_disease, alpha = .1,
             xlab = "ST depression") +
   ggtitle("Random forest, ST depression")
ice_age.rf = rf.class %>%
   pdp::partial(pred.var = "age",
            grid.resolution = 100,
            ice = TRUE,
           prob = TRUE) %>%
    autoplot(train = heart_disease, alpha = .1) +
    ggtitle("Random forest, age")
grid.arrange(ice_ca.rf, ice_oldpeak.rf,
             ice_thalach.rf, ice_age.rf, nrow = 2)
```


Variable importance

```
library(gbm)
## Loaded gbm 2.1.5
varImp(model.glm)
## glmnet variable importance
##
##
             Overall
            100.0000
## cp2
## thal2
             94.8188
## thal3
             93.4880
## exang1
             92.3686
## cp3
             87.3424
             79.4864
## sex1
## cp1
             66.9913
## slope2
             52.7207
## slope1
             52.7011
## ca
             52.4277
             42.4609
## restecg1
## restecg2
             36.5417
## oldpeak
             34.8283
## fbs1
             10.6763
## thalach
              1.4898
## age
              1.4370
## trestbps
              0.6164
## chol
              0.0000
varImp(model.lda)
```

ROC curve variable importance

```
##
##
            Importance
            100.0000
## thal2
## thalach
               95.2812
               90.1317
## thal3
## oldpeak
               89.9165
## ca
               89.7356
               76.2594
## exang1
## slope2
               73.0991
## slope1
               66.7700
## cp2
               52.2776
               51.1237
## age
## sex1
               47.3435
## cp1
               33.1353
## restecg1
               33.0578
## chol
               25.1356
## trestbps
               24.9634
              6.4669
## cp3
                0.5339
## restecg2
## fbs1
                0.0000
varImp(model.bayes)
## ROC curve variable importance
##
##
            Importance
## thal2
             100.0000
## thalach
              95.2812
## thal3
               90.1317
## oldpeak
               89.9165
## ca
               89.7356
               76.2594
## exang1
               73.0991
## slope2
## slope1
               66.7700
## cp2
               52.2776
## age
               51.1237
## sex1
               47.3435
## cp1
               33.1353
               33.0578
## restecg1
## chol
               25.1356
## trestbps
               24.9634
## cp3
               6.4669
## restecg2
               0.5339
## fbs1
                0.0000
varImp(boost.class)
## gbm variable importance
##
##
             Overall
## ca
            100.0000
## oldpeak
           79.6457
## thal2
            77.0270
## thalach 61.2231
## chol
            52.8994
```

```
## trestbps 50.8206
## age
            42.3494
## exang1 40.8228
## cp2
          28.2991
## thal3 28.0742
## sex1
          19.9508
## cp3
          19.4944
## slope2 17.4076
## slope1 9.4854
## restecg1 8.0607
## cp1
            7.8021
## fbs1
             0.9966
## restecg2 0.0000
varImp(rf.class)
## ranger variable importance
##
##
           Overall
## thal2 100.000
## ca
          94.184
## thal3 78.793
## oldpeak 77.081
## thalach 71.046
## exang1 59.586
## slope2 49.347
         48.026
## age
## cp2
          34.566
## chol
          33.949
## sex1 32.134
## slope1 31.905
## trestbps 30.498
## cp1
        15.616
## restecg1 10.725
## cp3
           8.663
## fbs1
             2.118
## restecg2 0.000
varImp(bagging.class)
## ranger variable importance
##
##
            Overall
## thal2 100.00000
## ca
        47.18886
## oldpeak 32.70738
## thalach 27.53944
          14.77607
## age
## exang1 13.43368
## trestbps 10.65010
            10.41997
## cp2
           9.60369
## thal3
## chol
            8.71625
## cp3
            5.61067
## slope2
             3.96182
```

```
## sex1
             3.24090
## restecg1 1.96555
## slope1
             1.74960
## cp1
             0.74229
## fbs1
             0.04796
## restecg2
             0.00000
varImp(tree.class)
## rpart variable importance
##
           Overall
##
## thalach 100.000
## ca
           96.684
## exang1 87.087
## thal2
            80.067
## thal3
            68.075
## oldpeak 37.514
## age
            25.951
## slope2 17.578
## cp2
          15.249
          14.902
## sex1
          13.928
## slope1
## cp3
           8.264
## chol
            7.543
## cp1
             4.269
## fbs1
             0.000
## restecg1
             0.000
## restecg2
             0.000
## trestbps
             0.000
varImp(cnnet.fit)
## nnet variable importance
##
##
           Overall
## ca
           100.000
         85.381
## thal2
## thal3
          82.923
## cp2
            82.012
## exang1
           77.280
## oldpeak 71.835
## thalach 68.244
## sex1
            65.485
## slope2
            44.568
## slope1 44.370
## cp1
            40.316
## cp3
            38.814
## restecg1 32.957
## trestbps 21.097
            21.068
## age
## chol
            12.338
## fbs1
            1.239
## restecg2 0.000
#Comparing accuracy
```

```
##Regularized logistic
ctrl2 <- trainControl(method = "cv")</pre>
glmnGrid <- expand.grid(.alpha = 0,</pre>
                          .lambda = 0.2335065)
set.seed(1)
model.glm.2 <- train(x = model.x,</pre>
                    y = model.y,
                    tuneGrid = glmnGrid,
                    method = "glmnet",
                    metric = "Accuracy",
                    trControl = ctrl2)
\#\#\mathrm{LDA}
set.seed(1)
model.lda.2 = train(x = model.x,
                   y = model.y,
                   method = "lda",
                   metric = "Accuracy",
                   trControl = ctrl2)
##Naive bayes
set.seed(1)
nbGrid = expand.grid(usekernel = TRUE,
                      fL = 1, adjust = 1.473684)
model.bayes.2 = train(x = model.x,
                     y = model.y,
                     method = "nb",
                     tuneGrid = nbGrid,
                     metric = "Accuracy",
                     trControl = ctrl2)
##Tree
set.seed(1)
tree.class.2 <- train(model.x, model.y,</pre>
                     method = "rpart",
                     tuneGrid = data.frame(cp = 0.003776539),
                     trControl = ctrl2,
                     metric = "Accuracy")
##Bagging
bagging.grid <- expand.grid(mtry = 18,</pre>
                              splitrule = "gini",
                             min.node.size = 40)
set.seed(1)
bagging.class.2 <- train(model.x, model.y,</pre>
                method = "ranger",
                 tuneGrid = bagging.grid,
                 metric = "Accuracy",
                 trControl = ctrl2,
                 importance = "impurity")
```

```
##Random Forest
rf.grid <- expand.grid(mtry = 1,
                        splitrule = "gini",
                        min.node.size = 25)
set.seed(1)
rf.class.2 <- train(model.x, model.y,</pre>
                  method = "ranger",
                  tuneGrid = rf.grid,
                  metric = "Accuracy",
                  trControl = ctrl2,
                  importance = "impurity")
##Boosting
boost.grid <- expand.grid(n.trees = 1370,</pre>
                           interaction.depth = 1,
                           shrinkage = 0.015,
                           n.minobsinnode = 1)
set.seed(1)
# Adaboost loss function
boost.class.2 = train(model.x, model.y,
                     tuneGrid = boost.grid,
                     trControl = ctrl2,
                     method = "gbm",
                     distribution = "adaboost",
                    metric = "Accuracy",
                     verbose = FALSE)
```

Neural network

SVM

svml.fit\$bestTune

```
## cost
## 11 0.002529859
```

```
0.90
ROC (Cross-Validation)
88.0 88.0 88.0 88.0
                                                        100
           0
                                 50
                                                                                150
                                           Cost

→ 0.006737947 → 0.013123729 → 0.025561533 → 0.049787068 → 0.09697
   sigma

◆ 0.009403563 
★ 0.018315639 
▼ 0.035673993 
★ 0.069483451 
◆
svmr.fit$bestTune
            sigma
## 373 0.01312373 16.37766
resamp = resamples(list(
                         glm.fit = model.glm.2,
                         lda.fit = model.lda.2,
                         bayes.fit = model.bayes.2,
                         boost = boost.class.2,
                         rf = rf.class.2,
                         bagging = bagging.class.2,
                         tree = tree.class.2,
                         cnnet.fit = cnnet.fit.2,
                         svml.fit = svml.fit.2,
                         svmr.fit = svmr.fit.2
                         ))
summary(resamp)
##
## Call:
## summary.resamples(object = resamp)
## Models: glm.fit, lda.fit, bayes.fit, boost, rf, bagging, tree, cnnet.fit, svml.fit, svmr.fit
## Number of resamples: 10
##
## Accuracy
##
                          1st Qu.
                                     Median
                                                  Mean
                                                          3rd Qu.
             0.7000000 0.8031609 0.8360215 0.8441416 0.9000000 0.9677419
## glm.fit
             0.7096774 0.7732759 0.8333333 0.8340267 0.8846774 0.9677419
## bayes.fit 0.7000000 0.7732759 0.8526882 0.8374750 0.8916667 0.9677419
                                                                                0
## boost
             0.7096774 0.7482759 0.8500000 0.8341416 0.8927419 0.9655172
                                                                                0
```

0.6774194 0.7606322 0.8032258 0.8175677 0.9066092 0.9354839

rf

```
0.6666667 0.7806452 0.8331479 0.8141268 0.8562291 0.9000000
## bagging
                                                                             0
## tree
             0.6666667 0.7789210 0.8166667 0.8066704 0.8666667 0.8709677
                                                                             0
  cnnet.fit 0.7000000 0.8031609 0.8360215 0.8441416 0.9000000 0.9677419
                                                                             0
  svml.fit 0.6774194 0.8000000 0.8360215 0.8378124 0.9155172 0.9677419
                                                                             0
   svmr.fit 0.7419355 0.8068966 0.8500000 0.8473674 0.8927419 0.9354839
                                                                             0
##
## Kappa
                         1st Qu.
                                                                     Max. NA's
##
                  Min.
                                    Median
                                                 Mean
                                                        3rd Qu.
## glm.fit
             0.3946188 0.5944980 0.6694856 0.6826138 0.8004166 0.9352818
             0.4025696\ 0.5423267\ 0.6603832\ 0.6617627\ 0.7653612\ 0.9352818
                                                                             0
## lda.fit
## bayes.fit 0.3946188 0.5469194 0.7004056 0.6724875 0.7814956 0.9352818
                                                                             0
             0.4101480 0.4940966 0.6916528 0.6626159 0.7826973 0.9307876
                                                                             0
## boost
             0.3404255 0.5082084 0.6012348 0.6283910 0.8082234 0.8697479
                                                                             0
## rf
             0.3303571 0.5478123 0.6580195 0.6220325 0.7099677 0.7963801
                                                                             0
## bagging
## tree
             0.3421053 0.5469316 0.6266968 0.6090815 0.7315396 0.7427386
                                                                             0
## cnnet.fit 0.3946188 0.5944980 0.6694856 0.6826138 0.8004166 0.9352818
                                                                             0
## svml.fit 0.3404255 0.5893826 0.6709540 0.6710978 0.8279169 0.9352818
                                                                             0
             0.4655172 0.6095944 0.6904463 0.6889089 0.7861955 0.8697479
                                                                             0
## svmr.fit
```

bwplot(resamp)

