1. • Prove that $T(n) = 1000n^4 + 65n^3 + 3n^2 + 10n$ is both $O(n^4)$ and $O(n^5)$.

• Determine the asymptotic relationship between $f(n) = n \ln(7n)$ and $g(n) = 10n^2$ using limit rule.

2. Let $T(n) = (n^{0.01} + \log_2 n)^2$ be processing time of an algorithm for input of size n. Which is the asymptotic time complexity of this algorithm, $\Theta(n^{0.02})$ or $\Theta((\log n)^2)$? Please show your working to justify your answer.

3.	What is the minimum and maximum number of comparisons needed when merging two nonempty sorted lists of size n into a single list?							
4.	Determine the order of the list after partitioning [41, 30, -1, 20, 15, 77, 10]. Assume the pivot is 20. Please show your working to justify your answer.							
5.	Use Quickselect to find the 3-rd largest element of the list [25, 65, 50, 21, 2, 67, 70, 31, 15, 8]. Show the state of the list after each step. Assume the first element is taken as the pivot.							
6.	Consider the following maximum heap: [41, 19, 37, 18, 8, 30, 10, 3, 17].							
	(A) insert 25 to the heap.(B) delete 41 from the heap derived from previous step.							

7. Given the binary search tree below:

Describe the process and the outcome of the following deletion operations on the above BST.

- (A) Delete node 48 in the tree.
- (B) Delete node 16 in the tree.
- (C) Delete node 12 in the tree by using the minimum key in the right subtree.
- (D) Delete node 12 in the tree by using the maximum key in the left subtree.

8.	(A)	Perform	the line	ar time	algorithm	to co	onstruct	a maximum	heap o	on the	following
		array. P	lease sho	ow the h	neap struct	ure a	after each	iteration.			

$$A = [0, 54, 93, 2, 12, 32, 40, 16, 25, 51].$$

- (B) Consider the same array A above. Is A a minimum heap? Justify your answer by briefly explaining the min-heap property. If A is not a min-heap, then restore the min-heap property and show the restored array A'.
- (C) Given the array A' with min-heap property, delete the min value of A'. Please describe the heapification process and the outcome of the deletion operations on the min-heap constructed using A'.
- (D) Prove that the height of a complete binary tree with n nodes is exactly $\lceil \lg(n+1) \rceil 1$ using mathematical induction.