

Computer Vision Systems Programming UE Introduction

Christopher Pramerdorfer
Computer Vision Lab, Vienna University of Technology

Course Topics

Motivation

- Computer Vision (CV) knowledge is important
- As is to be able to put this knowledge to use

This course encourages you to

- Explore a CV topic of your choice
- Get used to software packages and libraries
- Improve your CV programming skills

Your Task

Select, implement, and present a CV project of your choice

- In any programming language you like
- Using any publicly available libraries you want
- As long as the required effort is appropriate

Matlab, Python, or C++ recommended

Project Topics

Choose any CV topic you want, as long as you learn something

- Choose something that is new and interesting to you
- ► Finalize topic and scope in consultation with lecturers

Don't know what topic to choose? How about these ...

Project Topics Proposal – Balloon Tracking

Involve concert audience by letting them control sound aspects

Accomplished by moving a balloon above their heads

Project Topics Proposal – Balloon Tracking

Task: detect and track the balloon in 3D

- ► Camera parameters and balloon size are known
- ▶ Pose estimation problem

Extensions

- Detect balloon color
- Track multiple balloons simultaneously

http://www.caa.tuwien.ac.at/cvl/teaching/praktika/ballonerkennung/

Project Topics Proposal – Meal Composition Recognition

Unhealthy nutrition is a problem in our society

Often there is little knowledge of the composition of meals

 $Image\ by\ Vichaya\ Kiatying-Angsulee\ /\ {\tt freedigitalphotos.net}$

Project Topics Proposal – Meal Composition Recognition

Task: estimate share of carbs, proteins, vegetables in meals

From photos taken with smartphone cameras

http://www.caa.tuwien.ac.at/cvl/teaching/praktika/food/

Project Topics Proposal – Sitting Posture Recognition

Bad sitting posture can cause health problems

Task: recognize good or bad posture using a Kinect sensor

Project Topics

Send a short project proposal to lecturers (cvsp@caa.tuwien.ac.at)

- ▶ What topic do you want to cover
- ▶ What is the scope (what are you going to implement?)
- What language and libraries do you plan to use

Do so as soon as possible (deadline: 26.10.)

Syllabus

- 1. Select a CV topic according to your interests
 - ► Lecturers will help you define topic and scope
- 2. Give a short presentation on your topic (5 minutes)
 - Explain what you are going to work on
- 3. Implement and test your application
 - Sensor hardware is provided
- 4. Write a short report (around 5 pages)
- 5. Give a final presentation (10-15 minutes)

Syllabus

Available Sensor Hardware

Available sensors

- ► Kinect depth sensors
- ▶ IP camera network with overlapping views (stationary)
- Thermal imaging camera (stationary)
- Android tablets with cameras

Or use your own digital camera, smartphone, ...

Syllabus Short report and Final Presentation

Report and presentation should include

- A brief explanation of your topic
- How you implemented it (language, libraries)
- Problems you faced during development
- Tests and results

Course Location and Schedule

There are no regular lectures but two presentation meetings

Location: Seminarraum 183/2, Favoritenstr. 9

Time: Wed 10:15 – 11:45 s.t.

Schedule: http://www.caa.tuwien.ac.at/cvl/teaching/

 $wintersemester/cvsp_lu/index.html$

Course Assistance

Assistance mainly via mail (cvsp@caa.tuwien.ac.at)

Weekly timeslot for personal support

- ▶ By appointment (cvsp@caa.tuwien.ac.at)
- ► **Time**: Wed 11:45 12:30 s.t. (after VO)
- ► **Location**: room HA04-10

http://www.caa.tuwien.ac.at/cvl/contact/floorplan.html

We expect to stay in touch with you throughout the semester

Prerequisites

You must be able to develop software on your own

▶ This is **not** a general programming course

Basic image processing and computer vision knowledge

Grading

Initial presentation: 5%

Implementation and report: 80%

Final presentation: 15%

Presentations are mandatory!

Associated Lecture

We recommend the associated lecture that covers

- CV software and resources
- Selected CV applications

