(P-1-2 MATH 239, Winter 2021) Let n be a positive integer. How many binary strings of length 2n + 1 have more 1's than 0's?

Solution: We show that there exists a bijection between the set \mathscr{P} , the set of all binary strings that have more 1's than 0's, and the set \mathscr{H} , the set of all subsets of $\{1,\ldots,2n\}$. Let $f:\mathscr{H}\to\mathscr{P}$ be the function which assings to some k-element subset $S\in\mathscr{H}$, the string $f(S)=a_1\cdots a_{2n+1}$, where $a_i=0\iff i\in S$. Clearly $f(S)\in\mathscr{P}$ since f(S) will have at most 2n zero bits. It remains to show that \mathscr{P} is the image of f. We define the inverse function $f^{-1}:\mathscr{P}\to\mathscr{H}$ by each mapping each binary string $\alpha=a_1\cdots a_{2n+1}\in\mathscr{P}$ to the subset S, where if $a_i=0$ then $i\in S$. Clearly there must be at most 2n zero bits in α , hence S is at most a 2n-element set. Hence we have proven that $\mathscr{P}\leftrightarrow\mathscr{H}$, which implies that $|\mathscr{P}|=|\mathscr{H}|=2^{2n}=4^n$.

1