COMISSIÓ GESTORA DE LES PROVES D'ACCÉS A LA UNIVERSITAT

COMISIÓN GESTORA DE LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD

PROVES D'ACCÉS A LA UNIVERSITAT

PRUEBAS DE ACCESO A LA UNIVERSIDAD

CONVOCATÒRIA:	JULIOL 2022	CONVOCATORIA:	JULIO 2022
Assignatura: MATEMÀTIQUES II		Asignatura: MATEMÁTICAS II	

CRITERIS DE CORRECCIÓ / CRITERIOS DE CORRECCIÓN

En les respostes heu d'escriure tots els passos del raonament utilitzat.

Problema 1. Donat el sistema d'equacions:

$$\begin{cases} ax + y = 1\\ x + z = 1\\ x + ay + (a - 1)z = a \end{cases}.$$

a) Discutiu el sistema en funció del paràmetre real a.

(5 punts)

b) Trobeu totes les solucions del sistema quan aquest siga compatible.

(5 punts)

Solució:

a) El determinant del sistema és $\Delta = -(a+2)(a-1)$. Si $a \neq -2$ i $a \neq 1$, es tracta d'un SCD. Si a =-2, es tracta d'un SI. Si a = 1, es tracta d'un SCI.

b) Si $a \neq -2$ i $a \neq 1$, la solució és $x = \frac{1}{a+2}$, $y = \frac{2}{a+2}$, $z = \frac{a+1}{a+2}$. Si a = 1, la solució és $x = 1 - \lambda$, $y = \lambda$,

Problema 2. Donada la matriu $A = \begin{pmatrix} a+b & 1 \\ 0 & a-b \end{pmatrix}$:

a) Calculeu els valors dels paràmetres a i b perquè es complisca $A^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$. (4 punts)

b) Per als valors a i b obtinguts en l'apartat anterior, calculeu A^3 i A^4 . (3 punts)

c) Calculeu $\det(A^{-50})$ quan $a^2 - b^2 \neq 0$. (3 punts)

Solució:

a)
$$a = 1, b = 0$$
.
b) $A^3 = \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}, A^4 = \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix}$.
c) $\det(A^{-50}) = \frac{1}{\det(A)^{50}} = \frac{1}{(a^2 - b^2)^{50}}$.

Problema 3. Donats els punts A = (2,0,0) i B = (0,1,0), i la recta s: $\frac{x-1}{2} = \frac{y-1}{3} = z$:

a) Trobeu l'equació de la recta r que passa pels punts A i B. (2 punts)

(4 punts) b) Determineu l'equació implícita del pla que conté la recta s i és paral·lel a la recta r.

c) Calculeu la distància del punt A a la recta s. (4 punts)

Solució:

a)
$$\begin{cases} x + 2y = 2 \\ z = 0 \end{cases}$$
.
b) $x + 2y - 8z - 3 = 0$.

c) Distància = $\sqrt{\frac{27}{14}}$ = 1.389.

Problema 4. Donats els punts A = (2,1,-2) i B = (3,2,3), i el plànol π definit per l'equació 2x + 2y + z = 3. obteniu:

a) El punt de tall C entre el pla π i la recta perpendicular a π que passa per B. (5 punts)

b) L'àrea del triangle els vèrtexs del qual són A, B i C. (5 punts)

Solució:

a) La recta perpendicular a π que passa per B és $(x, y, z) = (3,2,3) + \lambda(2,2,1)$. El punt és $\left(\frac{7}{9}, -\frac{2}{9}, \frac{17}{9}\right)$.

b) Area = $\sqrt{50}$.

Problema 5.

a) Calculeu, indicant tots els passos, la integral indefinida següent: (5 punts)

$$\int \frac{18}{x^2 - 5x - 14} \, dx.$$

(2 punts)

 b) Determineu, en funció de t, el valor ∫₈^t 18/(x²-5x-14) dx.
 c) Determineu el valor de t major que 8 perquè ∫₈^t 18/(x²-5x-14) dx siga igual a ln 25/4. (3 punts)

Solució:

a) $2 \ln(|x-7|) - 2 \ln(|x+2|) + C$.

b) $2 \ln(|t-7|) - 2 \ln(|t+2|) + 2 \ln(10)$.

c) t = 10.

Problema 6. Considereu la funció $f(x) = e^{-x^2}$ per als valor positius de x. Per cada punt M = (x, f(x)) de la gràfica de f es tracen dues rectes paral·leles als eixos de coordenades, OX i OY. Aquestes dues rectes, juntament amb els eixos de coordenades, defineixen un rectangle.

a) Determineu l'àrea del rectangle en funció de x. (3 punts)

b) Trobeu el punt M que proporciona major àrea i calculeu aquesta àrea. (7 punts)

Solució:

a) Àrea= xe^{-x^2} .

b) L'àrea màxima és $\frac{1}{\sqrt{2e}}$ i s'obté per al valor $x = \frac{1}{\sqrt{2}}$.

En las respuestas se deben escribir todos los pasos del razonamiento utilizado.

Problema 1. Dado el sistema de ecuaciones:

$$\begin{cases} ax + y = 1\\ x + z = 1\\ x + ay + (a - 1)z = a \end{cases}.$$

a) Discutir el sistema en función del parámetro real a.

(5 puntos)

b) Encontrar todas las soluciones del sistema cuando este sea compatible.

(5 puntos)

Solución:

a) El determinante del sistema es $\Delta = -(a+2)(a-1)$. Si $a \neq -2$ y $a \neq 1$ se trata de un SCD. Si a =-2 se trata de un SI. Si a = 1 se trata de un SCI.

b) Si $a \neq -2$ y $a \neq 1$ la solución es $x = \frac{1}{a+2}$, $y = \frac{2}{a+2}$, $z = \frac{a+1}{a+2}$. Si a = 1 la solución es $x = 1 - \lambda$, $y = \frac{1}{a+2}$

Problema 2. Dada la matriz $A = \begin{pmatrix} a+b & 1 \\ 0 & a-b \end{pmatrix}$:

- a) Calcular los valores de los parámetros a y b para que se cumpla $A^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$. (4 puntos)
- b) Para los valores a y b obtenidos en el apartado anterior, calcular A^3 y A^4 . c) Calcular $\det(A^{-50})$ cuando $a^2 b^2 \neq 0$. (3 puntos)
- (3 puntos)

Solución:

a)
$$a = 1, b = 0$$
.

b)
$$A^3 = \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}$$
, $A^4 = \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix}$.

b)
$$A^3 = \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}$$
, $A^4 = \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix}$.
c) $\det(A^{-50}) = \frac{1}{\det(A)^{50}} = \frac{1}{(a^2 - b^2)^{50}}$.

Problema 3. Dados los puntos A = (2,0,0) y B = (0,1,0), y la recta s: $\frac{x-1}{2} = \frac{y-1}{3} = z$:

- a) Hallar la ecuación de la recta r que pasa por los puntos A y B. (2 puntos)
- b) Determinar la ecuación implícita del plano que contiene a la recta s y es paralelo a la recta r. (4 puntos)
- c) Calcular la distancia del punto A a la recta s.

(4 puntos)

Solución:

$$a) \begin{cases} x + 2y = 2 \\ z = 0 \end{cases}.$$

a)
$$\begin{cases} x + 2y = 2 \\ z = 0 \end{cases}$$
.
b) $x + 2y - 8z - 3 = 0$.

c) Distancia
$$\sqrt{\frac{27}{14}} = 1.389$$
.

Problema 4. Dados los puntos A = (2,1,-2) y B = (3,2,3), y el plano π definido por 2x + 2y + z = 3, obtener:

- a) El punto de corte C entre el plano π y la recta perpendicular a π que pasa por B. (5 puntos)
- b) El área del triángulo cuyos vértices son A, B y C. (5 puntos)

Solución:

a) La recta perpendicular a π que pasa por B es $(x, y, z) = (3,2,3) + \lambda(2,2,1)$. El punto es $\left(\frac{7}{9}, -\frac{2}{9}, \frac{17}{9}\right)$.

3

b) Área $\sqrt{50}$.

Problema 5.

a) Calcular, indicando todos los pasos, la siguiente integral indefinida:

(5 puntos)

$$\int \frac{18}{x^2 - 5x - 14} \, dx.$$

- b) Determinar, en función de t, el valor \$\int_8^t \frac{18}{x^2 5x 14} dx\$.
 c) Determinar el valor de t mayor que 8 para que \$\int_8^t \frac{18}{x^2 5x 14} dx\$ sea igual a \$\ln \frac{25}{4}\$. (2 puntos)
- (3 puntos)

Solución:

a)
$$2 \ln(|x-7|) - 2 \ln(|x+2|) + C$$
.

b)
$$2 \ln(|t-7|) - 2 \ln(|t+2|) + 2 \ln(10)$$
.

c)
$$t = 10$$
.

Problema 6. Considerar la función $f(x) = e^{-x^2}$ para los valores positivos de x. Por cada punto M = (x, f(x))de la gráfica de f se trazan dos rectas paralelas a los ejes de coordenadas, OX y OY. Estas dos rectas, junto con los ejes de coordenadas, definen un rectángulo.

a) Determinar el área del rectángulo en función de x.

(3 puntos)

b) Encontrar el punto M que proporciona mayor área y calcular esta área.

(7 puntos)

Solución:

- a) área= xe^{-x^2} .
- b) El área máxima es $\frac{1}{\sqrt{2e}}$ y se obtiene para el valor $x = \frac{1}{\sqrt{2}}$.