Computer Science and Artificial Intelligence

Content

- ☐ History of AI
- □ Basic terminology

History of AI 1956 1966 1972 1974-1980 1980 First First Al Birth of Al: First Chatboat: Expert Intellgence winer Ststem Dartmouth **ELIZA** Robot: Conference WABOT-1 2002 2011 2012 2014 2015 Al in Home: IBM s Watson: Google now Chatbot Eugene Amazon

Second Al Winer

1943

Evolution of

Artificial

neurons

1987-1993

IBM Deep blue : first computer to beat a world chess champion

1950

Turing

Machine

1997

Roomba

Wins a quiz show

Goostman:Wines a "Turing test

Echo

1956 Dartmouth Conference: The Founding Fathers of AI

John MacCarthy

Marvin Minsky

Claude Shannon

Ray Solomonoff

Alan Newell

Herbert Simon

Arthur Samuel

Oliver Selfridge

Nathaniel Rochester

Trenchard More

Turing Test

■ Turing test (proposed by Alan Turing in 1950) has served as a benchmark in measuring progress in the field of artificial intelligence.

https://www.youtube.com/watch?v=3wLqsRLvV-c

Turing Test

- Test setup: Human interrogator communicates with test subject by typewriter.
- Test: Can the human interrogator distinguish whether the test subject is human or machine?

Research fields related to Al

7

Al and related concepts

Seurce: https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/

Machine learning

- Machine learning (ML) is a subset of Al that uses computer algorithms to analyze data and make intelligent decisions based on what it has learned, without being explicitly programmed
- ML algorithms:
 - □ Trained with large sets of data
 - They learn from examples
 - Do not follow rules-based algorithms

Artificial neural networks

 Take inspiration from biological neural networks

Inputs

Neural network: a collection of small computing units called neurons that take incoming data and learn to make decisions over time.
Hidden

Output(s)

Deep learning

- Deep learning is a specialized subset of Machine Learning that uses layered neural networks to simulate human decisionmaking.
- Deep learning algorithms:
 - Can label and categorize information and identify patterns.
 - Enables AI systems to continuously learn on the job, and improve the quality and accuracy of results

Deep learning

- Deep learning become more efficient as the datasets increase in volume, as opposed to other machine learning algorithms that may plateau as data increases
- Reason for Deep learning rise
 - More Data (Big data)
 - Better hardware (GPU)Simple Neural Network

Input Layer

Deep Learning Neural Network

Data Science

- Data science is the process and method for extracting knowledge and insights from large volumes of disparate data.
- Related field:
 - Mathematics
 - Statistical analysis
 - Data visualization
 - Machine learning

Data Science

- Data Science use AI techniques to derive insight from data.
 - Use machine learning algorithms and deep learning models to extract meaning and draw inferences from data.
- □ There is some intersection between AI and data science, but one is not a subset of the other.
- Both AI and Data Science can involve the use of big data that is significantly large volumes of data.

Robotics

- Robotics means building and programming robots so that they can operate in complex, realworld scenarios.
- In a way, robotics is the ultimate challenge of Al since it requires a combination of virtually all areas of Al

Robotics

- Robotics means building and programming robots so that they can operate in complex, realworld scenarios.
- In a way, robotics is the ultimate challenge of Al since it requires a combination of virtually all areas of AI:
 - Computer vision and speech recognition
 - Natural language processing, information retrieval, and reasoning under uncertainty
 - Cognitive modeling and affective computing (systems that respond to expressions of human feelings or that mimic feelings)

Is the following an application of Machine Learning and AI: A machine that beats human in a game in which all rules and moves have been pre-programmed into the machine - true or false?

A. TRUE

B. FALSE

- Data Science is a subset of AI that uses machine learning algorithms to extract meaning and draw inferences from data.
 - TRUE
 - ☐ FALSE

Where to put: AI, machine learning, computer science, data science, and deep learning.

- \square A
- ПВ
- \Box C

Determine which Al-related fields are involved in them

	Statistics	Robotics	Machine learning
Autonomous car			
Steering a rocket into orbit			
Online ad optimization			
Customer service chatbot			
Summarizing voting results			

Machine Learning

- Build model to classify and make predictions from provided data.
 - Do no follow rules-based algorithms
 - Train with large set of data

Machince learning

Problem: Determine if heart will fail

Source: https://www.coursera.org/learn/introduction-to-ai/lecture/39OeD/machine-learning

Machince learning

☐ Traditional programing:

Source: https://www.soursera.org/learn/introduction-to-ai/lecture/39OeD/machine-learning

Machince learning

Source: https://www.coursera.org/learn/introduction-to-ai/lecture/39OeD/machine-learning

Types of machine learning

Source: https://www.ceralytics.com/3-types-of-machine-learning/

Supervised learning

- □ Task of learning a function that maps an input to an output based on example input-output pairs.
- An algorithm trained on human-labeled data. The more samples you provide a supervised learning algorithm, the more precise it becomes in classifying new data.

Supervised learning

□ Learn a function that maps an input to an output based on examples, which are pairs of input-output values.

Supervised learning: Examples

□ Spam detection

									١
	"m	noney''	"pills"	"Mr."	bad spelling	known-sender	spam?		
		Υ	Ν	Υ	Υ	Ν	Y		
		Ν	Ν	Ν	Y	Y	N		
		Ν	Y	N	N	N	Y		
e	xample	Υ	Ν	Ν	Ν	Y	N	label	
		Ν	Ν	Y	Ν	Y	N		
		Υ	Ν	Ν	Y	Ν	Y		
		Ν	Ν	Y	Ν	Ν	N		
							1		/

Reasonable RULES

- Predict SPAM if unknown AND (money OR pills)
- Predict SPAM it 2money + 3pills 5 known > 0

Spam

Not Spam

Linearly separable

Classification vs. Regression

- Train a model to predict a categorical dependent variable
- Case studies: predicting disease, classifying images, predicting customer churn, buy or won't buy, etc.

Classification vs. Regression

- Train a model to predict a continuous dependent variable
- Case studies: children, predic stock prices, etc.

predicting height of

What is the temperature going to be tomorrow?

Classification

Will it be Cold or Hot tomorrow?

Unsupervised Learning

- Learns from test data that has not been labeled, classified or categorized.
- Unsupervised learning identifies commonalities in the data and reacts based on the presence or absence of such commonalities in each new piece of data.

Unsupervised learning

- Infer a function to describe hidden structure from "unlabeled" data
 - □ A classification (or categorization) is not included in the observations

Unsupervised Learning Algorithm

Reinforcement learning

☐ The agent learns from the environment by interacting with it and receives rewards for performing actions.

cdio

Learning to ride a bike requires trial and error, much like reinforcement learning. (Video courtesy of Mark Harris, who says he is "learning reinforcement" as a parent.)

Reinforcement learning: Examples

- Which of the following are attributes of Machine Learning?
 - A. Takes data and answers as input and use these inputs to create a set of rules that determine what the Machine Learning model will be
 - B. Machine learning algorithms can be continuously trained and used in the future to predict values
 - C. Defines behavioral rules by comparing large data sets to find common patterns
 - D. In Machine Learning models, when we submit inputs, we get answers based on predefined rules

- We can use reinforcement learning to teach a machine to play chess.
 - A. TRUE
 - B. FALSE

Reference

□ 1. Introduction to Artificial Intelligence (AI), coursera.

