Least-Squares Regression

In least-squares regression, the training data contains n different training pairs $(\overline{X_1}, y_1) \dots (\overline{X_n}, y_n)$, where each $\overline{X_i}$ is a d-dimensional representation of the data points, and each y_i is a real-valued target. The fact that the target is real-valued is important, because the underlying problem is then referred to as regression rather than classification. In fact, as we will see later, one can also use least-squares regression on binary targets by "pretending" that these targets are real-valued. The resulting approach is equivalent to the Widrow-Hoff learning algorithm, which is famous in the neural network literature as the second learning algorithm proposed after the perceptron.

In least-squares regression, the target variable is related to the feature variables using the relationship $\hat{y}_i = \overline{W} \cdot \overline{X}_i$.

The portion of the loss that is specific to the *i*th training instance is given by the following $L_i = e_i^2 = (y_i - \hat{y}_i)^2$.

The stochastic gradient-descent steps are determined by computing the gradient of e_i^2 with respect to \overline{W} , when the training pair $(\overline{X_i}, y_i)$ is presented to the neural network.

• This gradient can be computed as follows $\frac{\partial L_i}{\partial \overline{W}} = -e_i \overline{X_i}$.

$$\Rightarrow L_i = y_i^2 + \hat{y}_i^2 - 2y_i\hat{y}_i = y_i^2 + (\overline{W} \cdot \overline{X_i})^2 - 2y_i(\overline{W} \cdot \overline{X_i}) \Rightarrow$$
$$\Rightarrow \frac{\partial L_i}{\partial \overline{W}} = 2(\overline{W} \cdot \overline{X_i}) \cdot \overline{X_i} - 2y_i\overline{X_i} = 2(\hat{y}_i - y_i)\overline{X_i} = -2e_i\overline{X_i}$$

- Therefore, the gradient-descent updates for \overline{W} are computed using the above gradient and step-size α (hyperparameter), $\overline{W} \Leftarrow \overline{W} + \alpha e_i \overline{X_i} = \overline{W} + \alpha (y_i \hat{y}_i) \overline{X_i}$.
- $\Rightarrow \overline{W} \Leftarrow \overline{W} + 2\alpha e_i \overline{X_i}$ so we could to not take into account the 2 if we think that $\alpha \Leftarrow 2\alpha$.

With regularization, the update is as follows $\overline{W} \leftarrow \overline{W}(1 - \alpha\lambda) + \alpha(y_i - \hat{y}_i)\overline{X_i}$, where $\lambda > 0$ is the regularization parameter.