AEV: Séance 7

Benjamin Van Ryseghem

5 novembre 2012

1 Exercice 1

1.1 Question 1

- taille de la mémoire : 2^{16} - cache de 32 lignes : 2^5

– nombre de mots par bloc : $2^3\,$

Résultat:

tag	ligne	mot
8 (16-ligne-mot)	5	3

1.2 Question 2

0001000100011011:

tag	ligne	mot		
00010001	00011	011		

Donc, c'est la 3^{ème} ligne.

1100001100110100:

tag	ligne	mot		
11000011	00110	100		

Donc, c'est la 6^{ème} ligne.

1101000000011101:

$_{ m tag}$	ligne	mot		
11010000	00011	101		

Donc, c'est la 3^{ème} ligne.

1010101010101010:

tag	ligne	mot		
10101010	10101	010		

Donc, c'est la 21^{ème} ligne.

1.3 Question 3

L'octet d'adresse 0001101000011010 est rangé dans la ligne 3. Les adresses 1 et 3 de la question précédente sont rangées au même endroit.

1.4 Question 4

Son tag, pour pouvoir retrouver la donnée, et être sur qu'elle n'a pas été écrasée.

1.5 Question 5

taille effective = (taille d'un
e ligne + taille d'un tag) × nombre de lignes

Calcul de la taille effective :

taille effective = $(2^3 + 1) * 2^5$ taille effective = $2^8 + 2^5$ taille effective = 288 octets

La taille effective est donc de 288 octets.

2 Exercice 2

2.1 Question 1

– taille de la mémoire : $64K = 2^{16}$

– taille du cache : $1024:2^{10}$

– nombre de mots par bloc : $128:2^7$

- nombre de lignes : $\frac{\text{taille du cache}}{\text{nombre de mots par ligne}} = \frac{2^{10}}{2^7} = 2^3$

Résultat:

tag	ligne	mot
6 (16-ligne-mot)	3	7

2.2 Question 2

- nombre total d'accès mémoire : 25836

- nombre de défaut de cache : $10+4\times9+2=48$ - nombre d'accès au cache : 25836-48=25788

Temps d'accès moyen:

$$\frac{48M + 25788m}{25836}$$

3 Exercice 3

3.1 Question 1

- taille de la mémoire : 2^{32} - nombre de lignes : 2^{14}

– nombre de mots par bloc : $1 = 2^0$

Résultat :

tag	ligne	mot		
18 (32-ligne-mot)	14	0		

Taille totale : $(2^5 + 18) \times 2^{14}$ bits

3.2 Question 2

 $-\,$ taille de la mémoire : 2^{32}

– nombre de lignes : $2^{\left(14-4\right)}=2^{10}$

- nombre de mots par bloc : $16 = 2^4$

Résultat : $\frac{\text{tag}}{18 (32\text{-ligne-mot})} \frac{\text{ligne}}{10} \frac{\text{mot}}{4}$

Taille totale : $(16 \times 2^5 + 18) \times 2^{10}$ bits

3.3 Question 3

– taille de la mémoire : 2^{32}

– nombre de mots par bloc : $1 = 2^0$

Taille totale : $(16 \times 2^5 + 18) \times 2^{10}$ bits

3.4 Question 4

- taille de la mémoire : 2^{32}

– nombre de blocs : $2^{(14-4)} = 2^{10}$

- nombre de mots par bloc : $1 = 2^0$

Résultat : $\frac{\text{tag}}{22 (32\text{-}ligne\text{-}mot)} \frac{\text{ligne}}{10} \frac{\text{mot}}{0}$

Taille totale : $(2^5 + 32) \times 2^{14}$ bits

3.5 Question 5

– taille de la mémoire : $2^{32}\,$

- nombre d'ensemble : $2^{(14-4-3)} = 2^7$

- nombre de mots par bloc : $8 = 2^3$

Résultat : $\frac{\text{tag}}{22 (32\text{-}ligne\text{-}mot)} \frac{\text{ligne}}{7} \frac{\text{mot}}{3}$

Taille totale: $(8 \times 2^5 + 22) \times 2^{14}$ bits

4 Exercice 4

4.1 Question 1

4.1.1 a)

trace	a	b	a	c	a	b	d	b	a	c	d
default	*	*		*	*	*	*		*	*	*
cache	a	a	a	c	c	b	b	b	a	a	d
	#	b	b	b	a	a	d	d	d	c	c

Benjamin Van Ryseghem