

경기대학교 컴퓨터과학과

(Department of Computer Science)

CONTENTS

- Spread Spectrum
- Frequency Hopping Spread Spectrum
- Direct Sequence Spread Spectrum
- Code Division Multiple Access

Spread spectrum overview

- Spread data over wide bandwidth
- Makes jamming and interception harder
- 2 methods
 - Frequency hoping
 - Signal broadcast over seemingly random series of frequencies
 - Direct Sequence
 - Each bit is represented by multiple bits in transmitted signal
 - Chipping code

Spread spectrum concept

- Input fed into channel encoder
 - Produces narrow bandwidth analog signal around central frequency
- Signal modulated using sequence of digits
 - Spreading code/sequence
 - Typically generated by pseudonoise/pseudorandom number generator
- Increases bandwidth significantly
 - Spreads spectrum
- Receiver uses same sequence to demodulate signal
- Demodulated signal fed into channel decoder

General Model of Spread Spectrum System

Gains

- Immunity from various noise and multipath distortion
 - Including jamming
- Can hide/encrypt signals
 - Only receiver who knows spreading code can retrieve signal
- Several users can share same higher bandwidth with little interference
 - Cellular telephones
 - Code division multiplexing (CDM)
 - Code division multiple access (CDMA)

Pseudorandom Numbers

- Generated by algorithm using initial seed
- Deterministic algorithm
 - Not actually random
 - If algorithm good, results pass reasonable tests of randomness
- Need to know algorithm and seed to predict sequence

Frequency Hopping Spread Spectrum (FHSS) Overview

- Signal broadcast over seemingly random series of frequencies
- Receiver hops between frequencies in sync with transmitter
- Eavesdroppers hear unintelligible blips
- Jamming on one frequency affects only a few bits

Basic Operation

- Typically 2^k carriers frequencies forming 2^k channels
- Channel spacing corresponds with bandwidth of input
- Each channel used for fixed interval
 - 300 ms in IEEE 802.11
 - Some number of bits transmitted using some encoding scheme
 - May be fractions of bit (see later)
 - Sequence dictated by spreading code

Frequency Hopping Example

(a) Channel assignment

(b) Channel use

FHSS System (Transmitter)

■ FHSS System (Receiver)

Slow and Fast FHSS

- Frequency shifted every T_c seconds
- Duration of signal element is T_s seconds
- Slow FHSS has $T_c >= T_s$
- Fast FHSS has T_c < T_s
- Generally fast FHSS gives improved performance in noise (or jamming)

 Slow Frequency Hop Spread Spectrum Using MFSK (M=4, k=2)

■ Fast Frequency Hop Spread Spectrum Using MFSK (M=4, k=2)

- **FHSS Performance Considerations**
 - Typically large number of frequencies used
 - Improved resistance to jamming

■ Direct Sequence Spread Spectrum (DSSS) Overview

- Each bit represented by multiple bits using spreading code
- Spreading code spreads signal across wider frequency band
 - In proportion to number of bits used
 - 10 bit spreading code spreads signal across 10 times bandwidth of 1 bit code

One method:

- Combine input with spreading code using XOR
- Input bit 1 inverts spreading code bit
- Input zero bit doesn't alter spreading code bit
- Data rate equal to original spreading code
- Performance similar to FHSS

DSSS Interference

DSSS Example

DSSS Transmitter

DSSS Receiver

DSSS Using BPSK Example

Signal energy D1 T 0 T T

Approximate Spectrum of DSSS Signal

(a) Spectrum of data signal

(b) Spectrum of pseudonoise signal

(c) Spectrum of combined signal

Code Division Multiple Access (CDMA)

- Multiplexing Technique used with spread spectrum
- Start with data signal rate D
 - Called bit data rate
- Break each bit into k chips according to fixed pattern specific to each user
 - User's code
- New channel has chip data rate kD chips per second
- E.g. k=6, three users (A,B,C) communicating with base receiver R
- Code for A = <1,-1,-1,1,-1,1>
- Code for $B = \langle 1, 1, -1, -1, 1, 1 \rangle$
- Code for $C = \langle 1, 1, -1, 1, 1, -1 \rangle$

CDMA Example

CDMA Explanation

- Consider A communicating with base
- Base knows A's code
- Assume communication already synchronized
- A wants to send a 1
 - Send chip pattern <1,-1,-1,1,-1,1>
 - A's code
- A wants to send 0
 - Send chip[pattern <-1,1,1,-1,1,-1>
 - Complement of A's code
- Decoder ignores other sources when using A's code to decode
 - Orthogonal codes

CDMA for DSSS

- *n* users each using different orthogonal PN sequence
- Modulate each user's data stream
 - Using BPSK
- Multiply by spreading code of user

CDMA in a DSSS Environment

4 Channel CDMA Encoding and Decoding

