Diabetic Retinopathy Classification Using Deep Learning DL CCP

Dawood Shahzad (034)

Hassam Azam Siddiqui (035)

Bilal Ahmed (028)

Contents

Introduction	2
Dataset	2
Model: - ConvNeXt	4
Approach	4
-Data Preprocessing	4
Model Architecture	4
-ConvNeXt	4
Training Process	5
-Training Configuration	5
-Training Results	5
Workflow	6
Comparative Analysis	10
Enhancements Over Traditional Architectures	12
ConvNeXt Innovations	12
Results	13
Conclusion	14
References	14
Code Implementation	14

Introduction

Diabetic retinopathy (DR) is a diabetes complication that affects the eyes, potentially leading to blindness if left untreated. Early detection and classification of DR stages are crucial for effective treatment. This report presents a deep learning approach to classify retinal images into different stages of DR using state-of-the-art architectures: ConvNeXt.

The study aims to analyze and compare the performance of these models in terms of classification accuracy, robustness, and generalization to demonstrate the impact of recent innovations in deep learning. By implementing and comparing these state-of-the-art techniques, we provide insights into how they enhance traditional architectures, ensuring better outcomes in the early and accurate detection of Diabetic Retinopathy.

Dataset

The APTOS 2019 Blindness Detection dataset was used for this project, which contains:

- 3,662 training images
- 1,928 test images
- 5 classes of DR stages:
 - a. No DR
 - b. Mild
 - c. Moderate
 - d. Severe
 - e. Proliferative DR

STAGES OF DIABETIC RETINOPATHY

The dataset had class imbalance

This class imbalance was handled by selecting a curated sample of images from each class, keeping it close to equal distribution

Final distribution was like this

Original Training Dataset: 3662 Images

Balanced Training Dataset: 1500 Images

Testing Dataset: 600 Images (from the leftover training images)

Model 01: - ConvNeXt -

Approach

-Data Preprocessing

The following preprocessing steps were applied:

- Image resizing to 224x224 pixels
- Normalization using ImageNet statistics
- Data augmentation techniques:
 - > Horizontal and vertical flips
 - > Random rotations
 - > Elastic transformations
 - > Brightness and contrast adjustments

Model Architecture

-ConvNeXt

ConvNeXt-tiny was used as the base model with the following modifications:

- Pretrained weights enabled
- Custom classification head:
 - ightharpoonup Linear layer (1280 ightharpoonup 512)
 - > ReLU activation
 - > Dropout (0.3)
 - \succ Linear layer (512 \rightarrow 5)

Training Process

-Training Configuration

The model was trained with the following settings:

• Optimizer: AdamW

• Learning rate: 1e-4

• Weight decay: 1e-4

• Batch size: 32

• Number of epochs: 10

• Learning rate scheduler: ReduceLROnPlateau

• Loss function: Cross Entropy Loss

-Training Results

The models were evaluated based on:

- Training accuracy
- Validation accuracy
- Confusion matrix
- Class-wise performance metrics

Model checkpoints were saved based on validation accuracy to prevent overfitting.

Workflow

Model 02: - ConvNeXt + CNN -

Approach

-Data Preprocessing

The same preprocessing steps were applied as the previous model:

- Image resizing to 224x224 pixels
- Normalization using ImageNet statistics
- Data augmentation techniques:
 - Horizontal and vertical flips
 - > Random rotations
 - > Elastic transformations
 - > Brightness and contrast adjustments

Hybrid Model Architecture

-ConvNeXt x CNN

ConvNeXt-tiny was used as the base model with the following modifications:

- Pretrained weights enabled (IMAGENET1K_V1)
- ConvNext used as a feature extractor
- Custom classification head:
 - \triangleright Linear layer (768 \rightarrow 512)
 - Conv2d Blocks:
 - Batch Normalization
 - ReLU activation
 - Dropout (0.3)
 - Adaptive Average Pooling
 - \triangleright Linear layer (256 \rightarrow 5)

Training Process

-Training Configuration

The model was trained with the same settings as the previous model:

• Optimizer: AdamW

• Learning rate: 1e-4

• Weight decay: 1e-4

• Batch size: 32

• Number of epochs: 10

• Learning rate scheduler: ReduceLROnPlateau

• Loss function: Cross Entropy Loss

-Training Results

The models were evaluated based on:

- Training accuracy
- Validation accuracy
- Confusion matrix
- Class-wise performance metrics

Model checkpoints were saved based on validation accuracy to prevent overfitting.

Workflow

Comparative Analysis

Calibration					
Model	Training Loss	Training Accuracy	Validation Loss	Validation Accuracy	
ConvNext	0.4798	82.20%	0.4000	84.64%	
ConvNext + CNN	0.0079	91.71%	0.0192	81.42%	

Testing				
Model	Precision	Recall	F1-Score	Test Accuracy
ConvNext	0.86	0.85	0.84	84.97%
ConvNext + CNN	0.85	0.84	0.84	84.15%

Test Accuracy: 84.97%					
Classification Report:					
		precision	recall	f1-score	support
no	DR	0.98	0.99	0.98	199
mild	DR	0.67	0.60	0.63	30
moderate	DR	0.67	0.90	0.77	87
severe	DR	0.43	0.18	0.25	17
proliferative	DR	1.00	0.45	0.62	33
accura	icy			0.85	366
macro a	vg	0.75	0.62	0.65	366
weighted a	vg	0.86	0.85	0.84	366

Test Accuracy: 84.15%				
Classification R	recall	f1-score	support	
no DR mild DR moderate DR severe DR proliferative DR	0.64 0.71 0.37	0.98 0.53 0.83 0.41 0.52	0.98 0.58 0.76 0.39 0.65	199 30 87 17 33
accuracy macro avg weighted avg	0.72	0.65 0.84	0.84 0.67 0.84	366 366 366

Model 01 Model 02

Confusion matrix (Model 01):

ROC Curve (model 01)

Confusion matrix (Model 02 Hybrid):

ROC Curve (model 02)

Enhancements Over Traditional Architectures

ConvNeXt Innovations

ConvNeXt brings several key improvements over traditional CNN architecture:

- Modernized ResNet Design:
 - ConvNeXt re-examines and updates the design choices in the classic ResNet architecture, incorporating modern techniques to enhance performance.
- Depthwise Convolutions:
 - It uses depthwise convolutions, which are more efficient than standard convolutions. This helps in reducing the number of parameters and computational complexity while maintaining performance.
- LayerNorm Instead of BatchNorm:
 - It replaces Batch Normalization (BatchNorm) with Layer Normalization (LayerNorm). LayerNorm is more stable and performs better in various settings, especially with smaller batch sizes.
- GELU Activation Function:
 - ➤ It uses the Gaussian Error Linear Unit (GELU) activation function instead of the traditional ReLU. GELU provides smoother gradients and often leads to better performance in deep networks.
- Stochastic Depth:
 - It incorporates stochastic depth, a regularization technique that randomly drops layers during training. This helps in preventing overfitting and improves generalization.

Results

ConvNeXt Training Performance:

ConvNeXt + CNN Training (Hybrid) Performance:

Conclusion

This study demonstrates the significant impact of modern deep learning architectures in diabetic retinopathy classification. Through our comprehensive evaluation, ConvNeXt has proven to be a good choice for this critical medical imaging task. The model's exceptional performance, combined with its practical advantages, makes it an ideal solution for real-world clinical applications.

References

- 1. Z. Liu, H. Mao, C. -Y. Wu, C. Feichtenhofer, T. Darrell and S. Xie. A ConvNet for the 2020s. (2022).
- 2. K. O'Shea, R. Nash. An Introduction to Convolutional Neural Networks (2015)
- 3. APTOS 2019 Blindness Detection Dataset.
- 4. Diabetic Retinopathy Detection Guidelines.

Code Implementation

The complete implementation is available in the Jupyter notebook, including:

- Data preprocessing pipeline
- Model architecture
- Training loops
- Evaluation metrics
- Prediction functions