Representing Verifiable Statistical Computations as linked data

Jose Emilio Labra Gayo

WESO Research group
University of Oviedo
Spain
labra@uniovi.es

Juan Castro Fernández

WESO Research Group
University of Oviedo
Spain
juan@weso.es

Hania Farham

The Web Foundation
London
hania@webfoundation.org

Jose María Álvarez Rodríguez

Dept. Computer Science
Carlos III University
Spain
josemaria.alvarez@uc3m.es

This talk in one slide

Describe the WebIndex Project

Represents an statistical index

Data Model based

Computation and validation process

Visualization

Web Index

Measure WWW's contribution to development and human rights by country

Developed by the Web Foundation

Web page:

http://thewebindex.org

Linked data portal:

http://data.webfoundation.org/webindex/2013

Technical details

Index made from

81 countries, 5 years (2007-12

116 indicators:

84 Primary (questionnaires)

32 Secondary (external sources)

Linked data portal

Modeled on top of RDF Data Cube

Linked data: DBPedia, Organizations, etc.

Different versions

2012. Visualizations & linked data portal RDF representation based on RDF Data Cube Internal validation

No representation of computations

2013. Include data about computations

Goal: External agents can verify data & computations

2014. Currently in development

Webindex workflow

Computation process (1)

Impute Data

Simplified with one indicator, 3 years and 4 countries

impute Data					
					\Box
Со	untry	2009	2010	2011	Н
S	pain	4	5	3	
Fii	nland	4	5	6	Н
Arı	menia	1	1	1	Н
C	Chile	6	8	10.6	

iviean	
$x \downarrow i = x \downarrow i - 1 + x \downarrow i + 1$	/2

Average growth $x \nmid n \cdot x \nmid n-1 / x \nmid n-2 + \cdots$

Filter Data					
Country	2009	2010	2011	l	
Spain	4	5	3	Н	
Finland	4	5	6	Щ	
Armenia	1	1	1		
Chile	6	8	10.6	Щ	

More details can be found here: http://thewebindex.org/about/methodology/computation/

Computation Process (2)

Simplified with one indicator, 3 years and 4 countries

Normalize Data (z-scores)

Country	2009	2010	2011	H
Spain	-0.57	-0.57	-0.92	H
Finland	-0.57	-0.57	-0.14	H
Chile	1.15	1.15	1.06	μ

Adjust data

Country	А	В	С	D	
Spain	8	7	9.1	7.1	:
Finland	7	8	7.1	8	
Chile	8	9	7.6	6	

 $x \downarrow i = x \downarrow i + \delta$

Group indicators

Country	Readiness	Impact	Web	Composite
Spain	5.7	3.5	5.1	4.5
Finland	5.5	3.9	7.1	4.9
Chile	6.7	4.5	7.6	5.1

Rankings

Country	Readiness	Impact	Web	Composite
Spain	2	3	3	3
Finland	3	2	2	2
Chile	1	1	1	1

More details can be found here: http://thewebindex.org/about/methodology/computation/

WebIndex data model

Model based on RDF Data Cube
Main entity = Observation
Observations have values by years

Observations refer to indicators and countries

Countries

DataSets are published by Organizations
Datasets contain several slices
Slices group observations

Indicators are provided by Organizations

Examples

ITU = International Telecommunication Union

UN = United Nations

WB = World bank

...

Data model*

Excel → RDF (Turtle)

```
        ITU_B
        2010
        2011
        2012
        ...

        Germany
        20.34
        35.46
        37.12
        ...

        Spain
        19.12
        23.78
        25.45
        ...

        France
        20.12
        21.34
        28.34
        ...

        ...
        ...
        ...
        ...
        ...
```

```
interrelated
linked
data
```

```
4
```

```
obs:obs8165 a
                 qb:Observation ;
                 "ITU B in ESP, 2011/
rdfs:label
                 indicator:ITU B <
cex:indicator
qb:dataSet
                 dataset:DITU ;
                 "23.78"^^xsd:float :
cex:value
cex:ref-vear
                 2011;
                 country:Spain ;
cex:ref-area
                 "2013-05-30"^^xsd:date :
dc:issued
cex:computation cex:raw ;
```

```
▶indicator:ITU_B
                wf:SecondaryIndicator ;
 rdfs:label
                "Broadband subscribers %"
dataset:DITU a qb:DataSet ;
frdfs:label "ITU Dataset";
 dc:publisher org:ITU ; ____
 qb:slice
              slice:ITU10B ,
              slice:ITU11B,
slice:ITU11B a qb:\$lice ;

 qb:sliceStructure \( \psi \):sliceByYear ;
 qb:observation
                   obs:obs8165,
                   obs:obs8166,
org:ITU
               a org:Organization;
 rdfs:label
               "ITU" ;
 foaf:homepage <http://www.itu.int/>
country:Spain a wf:Country ;
 wf:iso2 "ES"; wf:iso3 "ESP";
 rdfs:label
              "Spain"
```

Computation process

First computation
 Statistics experts using Excel

2. Second computation (WESO team)

1st. approach: SPARQL Update queries

Can reuse the validation queries

Declarative approach

Problem: Efficiency & debugging

2nd. approach: Special purpose program

Performs computations and adds metadata

Computation representation

Computex Vocabulary

Describes statistical computation procedures Compatible with RDF Data Cube

Some terms:

cex:Concept	Entities that are beind indexed
cex:Indicator	Dimension whose values add information to the index
cex:Computation	Represents the different computation types It can be: cex:Raw, cex:Mean, cex:Increment, cex:Copy, cex:Z-Score, cex:Ranking, cex:AverageGrowth, cex:WeightedMean
cex:WeightSchema	Weight schema for a list of indicators

Example of a computed observation

```
obs:c39049 a
                 qb:Observation ;
                 "ITU B in ESP, 2011, Normalized";
 rdfs:label
 cex:indicator
                 indicator:ITU B ;
                                                          Normalization using z-score
 qb:dataSet
                 dataset:computed366 ;
                 "0.859"^^xsd:double ;
 cex:value
 cex:ref-year
                 2011 :
                                                                =23.78-12.816/12.766=0
                                              z=x-\mu/\sigma
 cex:ref-area
                 country:Spain ;
 cex:computation wi-comp:comp39050 ;
                           wi-comp:39050
                                          a cex:Normalize ;
                            cex:stdDesv
                                            "12.766"^^xsd:double;
                                            "12.816"^^xsd:double;
                            cex:mean
                            cex:slice
                                            wi-slice:sliceITUB 2011 ;
                            cex:observation obs:obs8165 ;
                                              wi-slice:sliceITU B 2011 a
                                                                            qb:Slice ;
                                               qb:observation obs:8471,
  obs:obs8165
                   a qb:Observation;
                                                               obs:8434, ...;
                   "23.78"^^xsd:double :
   cex:value
```

Verifying linked data contents

Once the linked data has been published How can an external agent verify it?

2 approaches:

SPARQL Queries

Shape expressions

SPARQL validation

CONSTRUCT queries like:

```
CONSTRUCT {
  [a cex:Error ; cex:errorParam # ... omitted
    cex:msg "Observation has two different values" . ]
} WHERE {
  ?obs a qb:Observation .
  ?obs cex:value ?value1 .
  ?obs cex:value ?value2 .

FILTER ( ?value1 != ?value2 )
}
```

Detects if one observation has more than 1 value

SPARQL validation

More advanced queries like:

```
CONSTRUCT {
 [ a cex:Error ; cex:errorParam # ...omitted
  cex:msg "Mean value does not match" ] .
} WHERE {
  ?obs a qb:Observation ;
   cex:computation?comp;
   cex:value ?val...
   ?comp a cex:Mean .
{ SELECT (AVG(?value) as ?mean) ?comp WHERE {
    ?comp cex:observation ?obs1.
    ?obs1 cex:value ?value ;
 } GROUP BY ?comp
FILTER (abs(?mean - ?val) > 0.0001)
```

Detects if an observation whose computation is declared as the mean is really the mean

Shape Expressions validation

Shape expressions declare the shape of RDF data

Human readable and machine processable

Shape Expressions for team communication

Developers know which triples must generate/consume

```
<Observation> {
 rdf:type
                 (qb:Observation)
 cex:value
                 xsd:float ?
 dc:issued
                 xsd:dateTime
                 xsd:string ?
 rdfs:label
 qb:dataSet
                 @<DataSet>
 cex:ref-area @<Country>
                 @<Indicator>
 cex:indicator
 cex:ref-year
                 xsd:gYear
 cex:computation @<Computation>
```

Documentation http://weso.github.io/wiDoc

Visualization tool: Wesby, Inspired by Pubby

Enables easy customization by templates

Different templates are chosen based on rdf:type

Data load on demand

SPARQL queries

Responsive design and mobile friendly

Visualization

Example: Template for Observations

http://data.webfoundation.org/webindex/v2013/observation/obs8003

Visualization

Example: Template for Countries

http://data.webfoundation.org/webindex/v2013/country/ESP

Conclusions

WebIndex:

Linked data portal (medium size ≈ 3,5 mill triples)

It adds data about computation

Computations represented as linked data

We explored some possibilities for validation

SPARQL validation: very expressive, declarative

Shape Expressions: more readable

Visualization by templates

Future work

Computex vocabulary was a first attempt

Further work to employ it in similar projects

Visualization of computations

Define wesby templates to visualize computations

Question: Was it worth the effort?

Producer/consumers balance

We produced data that can be externally verified

However, we still don't have consumers who need it

End of presentation

More info:

WESO Research group http://www.weso.es