Arêtes communes et utilisation

Clément Legrand

14 Juin 2018

Stochastisation & results

Aléatoire

Ajout d'aléatoire dans l'opérateur CE: calcul des échanges possibles, puis choix aléatoire.

$(\lambda; \mu; \nu)$	Best known	CW	Determinist	Mean	Best
0.1;1.3;1.8	949	1493	952	1041	989
1.0;0.2;0.6	949	968	968	968	963
0.0;1.1;1.4	949	1658	1037	1026	984

Que faire des arêtes conservées ?

On suppose que l'on a obtenu ces arêtes.

Idées

- On décide de ne plus y toucher lors des opérations locales.
- On détruit les arêtes que l'on ne conserve pas, puis on reconstruit une nouvelle solution en se basant sur les arêtes conservées.

Algorithme conservant les arêtes

Description

Arêtes à conserver définies après le calcul de la solution initiale. Désormais, chaque opérateur vérifie qu'il ne modifie pas les arêtes qui doivent être conservées.

Amélioration

Changement des arêtes à conserver après chaque nouvelle amélioration ou si pas d'améliorations

Résultats

Les arêtes conservées sont choisies aléatoirement

Cas où les arêtes fixées sont non modifiables

$(\lambda; \mu; \nu)$	CW	Mean(Det)	Best(Det)	Mean(Sto)	Best(Sto)
0.8;0.0;1.0	981	976	970	977	957
1.0;0.0;0.7	1016	1004	986	1001	973
0.6;1.8;0.9	1532	1169	1078	1084	1014
1.0;0.2;0.6	968	966	957	965	957

Cas où les fixées sont changées après chaque nouvelle amélioration, et s'il n'y a pas eu d'améliorations depuis quelques tours.

$(\lambda; \mu; \nu)$	CW	Mean(Det)	Best(Det)	Mean(Sto)	Best(Sto)
0.8;0.0;1.0	981	965	957	974	957
1.0;0.0;0.7	1016	1000	983	998	960
0.6;1.8;0.9	1532	1044	972	1006	970
1.0;0.2;0.6	968	958	957	963	957

Conclusion

Il est plus intéressant de changer les arêtes conservées au cours de l'algo.

Algorithme détruisant puis reconstruisant une solution

Description

- Calcul SI
- Choix des arêtes à conserver;
- Suppression de toutes les arêtes non conservées;
- Rattacher toutes les tournées isolées au dépôt;
- Appliquer de nouveau CW;
- Application de l'heuristique habituelle.

Exemple

Choix des arêtes communes entre SI et Best (arêtes vertes):

Suppression et rattachement au dépôt:

Application de CW sur la solution:

Application de l'heuristique:

Choix des arêtes conservées

Plusieurs solutions pour choisir les arêtes à conserver:

- Utilisation des arêtes en commun entre SI et Best
- Choix aléatoire d'arêtes

Arêtes de la meilleure solution

Intérêt

Permet de savoir si prendre les arêtes communes à la SI et à la best vont avoir un intérêt.

Problème

On ne connaît pas forcément la meilleure solution au problème.

Résultats

Résultats observés sur quelques instances pour les heuristiques n'ayant pas d'aléatoire dans CE.

$(\lambda; \mu; \nu)$	CW	Det-classic	Det-cons	Det-dest
0.8;0.0;1.0	981	970	961 957	954
1.0;0.0;0.7	1016	992	998 977	962
0.6;1.8;0.9	1532	1034	1078 957	977
1.0;0.2;0.6	968	968	957 957	955

Idem pour les heuristiques ayant de l'aléatoire dans CE.

$(\lambda; \mu; \nu)$	CW	Sto-classic	Sto-cons	Sto-dest
0.8;0.0;1.0	981	980 973	972 957	963 960
1.0;0.0;0.7	1016	1001 973	993 952	987 965
0.6;1.8;0.9	1532	1033 990	1028 963	1010 973
1.0;0.2;0.6	968	968 968	965 957	988 988

Arêtes aléatoires

Intérêt

Toujours possible de les calculer

Problème

Peu de contrôle sur les résultats

Remarque: pour les algorithmes "cons" on conserve $\frac{n}{10}$ arêtes, pour les algorithmes "dest" on en conserve $\frac{n}{2}$.

Résultats

$(\lambda; \mu; \nu)$	CW	Det-classic	Det-cons	Det-dest
0.8;0.0;1.0	981	970	962 957	1019 957
1.0;0.0;0.7	1016	992	1001 975	1018 963
0.6;1.8;0.9	1532	1034	1063 963	1005 957
1.0;0.2;0.6	968	968	958 957	1016 957
$(\lambda; \mu; \nu)$	CW	Sto-classic	Sto-cons	Sto-dest
$(\lambda; \mu; \nu)$ 0.8;0.0;1.0	CW 981	Sto-classic 970	Sto-cons 975 957	Sto-dest 1042 986
· , ,				
0.8;0.0;1.0	981	970	975 957	1042 986

Conclusion

- Utilisation de l'algo Det-dest (testé avec les meilleures arêtes)
- Trouver un moyen d'approcher les meilleures arêtes