WEEK 11 - Implementation of BFS, DFS

```
#include <stdlib.h>
struct Node {
  int data;
  struct Node *next;
};
typedef struct Node node;
node *create(int data) {
  node *N = malloc(sizeof(node));
  N->data = data;
  N->next = NULL;
  return N;
}
struct Queue {
  int ele;
  struct Queue *next;
};
typedef struct Queue q;
q *f = NULL;
q *r = NULL;
void enqueue(int ele) {
  q *newnode = malloc(sizeof(q));
  newnode->ele = ele;
  newnode->next = NULL;
```

```
if (f == NULL \&\& r == NULL) {
    f = r = newnode;
    return;
  }
  r->next = newnode;
  r = newnode;
}
int dequeue() {
  if (f == NULL) {
    return -1; // Return -1 if the queue is empty
  }
  q *temp = f;
  f = f -> next;
  int s = temp->ele;
  free(temp);
  if (f == NULL) {
    r = NULL; // Update rear pointer if the queue becomes empty
  }
  return s;
}
void addedge(node *adj[], int u, int v) {
  node *newnode = create(v);
  newnode->next = adj[u];
  adj[u] = newnode;
}
void bfs(node *adj[], int si, int v) {
  int visited[v];
  for (int i = 0; i < v; ++i) {
```

```
visited[i] = 0;
  }
  enqueue(si);
  visited[si] = 1;
  while (f != NULL) {
    int u = dequeue();
    printf("%d ", u);
    node *temp = adj[u];
    while (temp != NULL) {
      int d = temp->data;
      if (!visited[d]) {
         visited[d] = 1;
         enqueue(d);
      }
      temp = temp->next;
    }
  }
  printf("\n");
int main() {
  int vertices = 5;
tices; ++i)
    adjList[i] = NULL;
  // Add edges to the graph
  addedge(adjList, 0, 1);
```

}

```
addedge(adjList, 0, 2);
     addedge(adjList, 1, 3);
     addedge(adjList, 1, 4);
     addedge(adjList, 2, 4);
     printf("Breadth First Traversal starting from vertex 0: ");
     bfs(adjList, 0, vertices);
     return 0;}
OUTPUT FOR BFS:-
Breadth First Traversal starting from vertex 0: 0 2 1 4 3
CODE:-
#include <stdio.h>
#include <stdlib.h>
struct Node {
  int data;
  struct Node *next;
};
typedef struct Node node;
node *create(int data) {
  node *N = malloc(sizeof(node));
  N->data = data;
  N->next = NULL;
 return N;
}
```

```
void addedge(node *adj[], int u, int v) {
  node *newnode = create(v);
  newnode->next = adj[u];
  adj[u] = newnode;
}
void dfsUtil(node *adj[], int v, int visited[]) {
  visited[v] = 1;
  printf("%d ", v);
  node *temp = adj[v];
  while (temp != NULL) {
    int d = temp->data;
    if (!visited[d]) {
      dfsUtil(adj, d, visited);
    }
    temp = temp->next;
  }
}
void dfs(node *adj[], int si, int vertices) {
  int visited[vertices];
  for (int i = 0; i < vertices; ++i) {
    visited[i] = 0;
  }
  dfsUtil(adj, si, visited);
}
int main() {
  int vertices = 5;
```

```
node *adjList[vertices];
for (int i = 0; i < vertices; ++i)
    adjList[i] = NULL;

addedge(adjList, 0, 1);
addedge(adjList, 0, 2);
addedge(adjList, 1, 3);
addedge(adjList, 1, 4);
addedge(adjList, 2, 4);

printf("Depth First Traversal starting from vertex 0: ");
dfs(adjList, 0, vertices);

return 0;
}</pre>
```

Depth First Traversal starting from vertex 0: 0 2 4 1 3