ADS 506 - Time Series

Fall 2023 - Week 4 OH

Dave Hurst

Agenda

- Follow-up on ARIMA
 - Last week OH questions
 - Last week assignment
 - model intuition
- Iteration in R
- Assignment 4.1 Hints
- Quiz and Assignment prep ->Erin

ARIMA Questions / Intuitions

- How is PACF calculated?
- How are they interpreted?

AR Models

Generalized AR(p) model:

$$Y_t = c + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \cdots + \phi_p Y_{t-p} + \epsilon_t$$

Special case: AR(1) model:

$$Y_t = c + \varphi_1 Y_{t-1} + \epsilon_t$$

AR Models - As code

Special case: AR(1) model:

$$Y_t = c + \varphi_1 Y_{t-1} + \epsilon_t$$

▼ Code

```
1 arl model(phi = 0.8, c = 0)
# A tsibble: 100 x 2 [1]
       X
   <int> <dbl>
          0
       2 - 0.899
       3 - 0.138
       4 0.138
      5 0.353
      6 1.04
       7 0.789
       8 1.69
         1.43
10
          0.983
# i 90 more rows
```

AR(1) Models

```
1 arl_model(phi = 0.8, c = 0) |>
2    gg_tsdisplay(y, plot_type = 'partial')
```


AR(1) Models

White noise

$$AR(1): \varphi = 0, c = 0$$

```
1 ar1_model(phi = 0, c = 0) |>
2 autoplot(y)
```


Random walk

$$AR(1): \varphi = 1, c = 0$$

```
1 ar1_model(phi = 1, c = 0) |>
2 autoplot(y)
```


AR(1) Models (repeat w/ different seed) White noise Random walk

$$AR(1): \varphi = 0, c = 0$$


```
AR(1): \varphi = 1, c = 0
```

```
1 ar1_model(phi = 1, c = 0) |>
2 autoplot(y)
```


4 Random Walks

► Code

AR(1) Models - ACF / PACF

$$AR(1): \varphi = 0, c = 0$$

$$AR(1): \varphi = 1, c = 0$$

```
1 arl_model(phi = 1, c = 0) |>
2     gg_tsdisplay(y, plot_type = 'partial')
```


Inferred ARIMA Models

AR(1) Models - ACF / PACF (change seed)

$$AR(1): \varphi = 0, c = 0$$


```
AR(1) : \varphi = 1, c = 0
```

```
1 arl_model(phi = 1, c = 0) |>
2     gg_tsdisplay(y, plot_type = 'partial')
```


Calculating ACF / PACF

With a side note on iteration in R (w/ purrr)

{r}

```
1 ar1_506 <- ar1_model(phi = 0, c = 0, seed =
2 ar1_506 |> gg_tsdisplay(y, plot_type =
```



```
1 ar1 506 | > ACF(y) |
# A tsibble: 20 x 2 [1]
        lag
                  acf
   <cf lag>
                <dbl>
              0.0810
              0.123
              0.153
              0.144
              0.244
              0.128
           7 - 0.00765
              0.0424
           9 - 0.0595
              0.0201
10
          11 - 0.106
             -0.0253
12
```

Calculating ACF

ACF lags(1-5): 0.081, 0.123, 0.153, 0.144, 0.244

@lag1

... as a function ...

```
1 acf_lag <- function(y, lag = 1) {
2    cor(y, lag(y, n = lag),
3         use = "complete.obs")
4 }
5    6 acf_lag(ar1_506$y, 1)
[1] 0.08105321</pre>
```

@lags 1-5

With a traditional for loop

```
1 # traditional for loop
2 acf_vals <- numeric(length = 5)
3 for (i in 1:length(acf_vals)) {
4     acf_vals[i] <- acf_lag(ar1_506$y, i)
5 }
6 acf_vals</pre>
```

[1] 0.08105321 0.12668603 0.15797526 0.14879380 0.25368453

With purrr::map_...

```
1 map_dbl(1:5, ~acf_lag(ar1_506$y, .x))
[1] 0.08105321 0.12668603 0.15797526
0.14879380 0.25368453
```

Calculating PACF (using lm)

ACF lags(1-5): 0.081, 0.1176, 0.1373, 0.1152, 0.2088

@lag1

```
1 with (ar1_506, lm(y \sim lag(y, n = 1)))
Call:
lm(formula = y \sim lag(y, n = 1))
Coefficients:
  (Intercept) lag(y, n = 1)
     -0.01846 0.08112
 1 pacf lag <- function(y, lag = 1) {</pre>
        lm(y \sim lag(y, n = lag))$coef[2] |> as.1
 5 pacf lag(ar1 506$y, 1)
[1] 0.08111736
```

@lags 1-5

```
1 purrr::map_dbl(1:5, ~pacf_lag(ar1_506$y, .:
[1] 0.08111736 0.12578046 0.15568567
0.14664894 0.25040847
```

Calculating PACF (using ARIMA(1,0,0))

ACF lags(1-5): 0.081, 0.118, 0.137, 0.115, 0.209

@lag1

```
1 ar1_506_ar1 <- ar1_506 |>
2    model(ARIMA(y ~ pdq(1, 0, 0)))
3 ar1_506_ar1 |>
4    report()

Series: y
Model: ARIMA(1,0,0)
```

```
Coefficients:
    arl
    0.0816
s.e. 0.0992

sigma^2 estimated as 0.2485: log
likelihood=-71.79
AIC=147.57 AICc=147.7 BIC=152.78
```

@lags 1-5

```
pacf lag <- function(y, lag = 1) {</pre>
        ar1 < -tsibble(x = 1:length(y),
                        y = y, index = x) | >
            model(ARIMA(y \sim pdq(lag, 0, 0)))
        ar1 |> coef() |> pull(estimate) |> _[lant]
 6
 7 }
 9 pacf lag(ar1 506$y, 1)
[1] 0.08160791
 1 purrr::map_dbl(1:5, ~pacf_lag(ar1_506$y, .;
[1] 0.08160791 0.12173879 0.14033962
0.11544244 0.21337158
```

ARIMA Models

Using arima.sim() for more general ARIMA models

```
generate arima plot <- function(</pre>
            diff order = 1,
            ar coefficient = c(0.8, -0.4),
            ma coefficient = c(0.4, -0.8),
            period = 20, #set period to 1 for no seasonality
            error sd = 0.5,
            seed = NULL,
            length = 200,
           burnin = 0
10
        if(! is.null(seed)) set.seed(seed)
11
12
13
       model order <- c(length(ar coefficient),</pre>
14
                          diff order,
                          length(ma coefficient))
15
16
17
18
        # Generate the time series
```

ARIMA Models - "error"

```
1  generate_arima_plot(
2     diff_order = 1,
3     ar_coefficient = c(0.8, -0.8),
4     ma_coefficient = c(0.),
5     period = 1,
6     error_sd = 0.5,
7     seed = 506
8 )
```



```
1  generate_arima_plot(
2     diff_order = 1,
3     ar_coefficient = c(0.8, -0.8),
4     ma_coefficient = c(0.),
5     period = 1,
6     error_sd = 0.0,
7     seed = 506
```


ARIMA Models - "error"

```
1  generate_arima_plot(
2     diff_order = 1,
3     ar_coefficient = c(0.8, -0.8),
4     ma_coefficient = c(0.),
5     period = 1,
6     error_sd = 0.5,
7     seed = 506
8 )
```


ARIMA Models - parameters

```
1  generate_arima_plot(
2     diff_order = 1,
3     ar_coefficient = c(0.4, 0.4),
4     ma_coefficient = c(0.),
5     period = 1,
6     error_sd = 0.5,
7     seed = 506
8 )
```


ARIMA Models Inference

```
1 arima_211a_plt <- generate_arima_plot(
2     diff_order = 1,
3     ar_coefficient = c(0.8, -0.8),
4     ma_coefficient = c(0.7),
5     period = 1,
6     error_sd = 0.5,
7     seed = 506, length = 50
8 )
9 arima_211a <- arima_211a_plt$data
10
11 arima_211a |>
        gg_tsdisplay(y, plot_type = "partial")
```



```
1 arima_211a |>
2 model(ARIMA(y))
```

Assignment 3.1 - Retrospective

```
wsld72 <- read_csv("WalmartStore1Dept72.csv", show_col_types = FALSE) |>
mutate(Date = mdy(Date)) |>
as_tsibble(index = Date)
wsld72 |>
autoplot(Weekly_Sales) +
labs("Weekly Sales in Department #27 of Walmart Store 1",
y = "") +
theme_minimal()
```


Assignment 3.1 – restricted training set

```
1 ws1d72_trn <- ws1d72 |> filter_index("2011-11-04" ~ "2012-10-26")
2 ws1d72_trn |>
3          gg_tsdisplay(
4          Weekly_Sales |> difference() ,
5          plot_type = "partial", lag_max = 55)
```


Assignment 3.1 Hints - ARIMA model selection

```
wsld72_trn_fit <- wsld72_trn |>
model(

x2_ar3 = ARIMA(Weekly_Sales ~ pdq(3, 1, 0) + 1 +

Unemployment + Temperature),

x2_mal = ARIMA(Weekly_Sales ~ pdq(0, 1, 1) + 1 +

Unemployment + Temperature),

auto_arima = ARIMA(Weekly_Sales),

auto_arima_x2 = ARIMA(Weekly_Sales ~ 1 +

Unemployment + Temperature)

Unemployment + Temperature)
```

Code

.model	.type	RMSE
x2_ma1	Training	22122.77
x2_ar3	Training	22305.41
auto_arima_x2	Training	22511.44
auto_arima	Training	24622.78

Code

Assignment 3.1 Better Hints – faux seasonality

```
wsld72_trn_fit2 <- wsld72_trn |>
model(

auto_arima = ARIMA(Weekly_Sales),

auto_holiday = ARIMA(Weekly_Sales ~ 1 + IsHoliday),

mal_holiday = ARIMA(Weekly_Sales ~ pdq(0, 1, 1) + 1 + IsHoliday),

ar3_holiday = ARIMA(Weekly_Sales ~ pdq(3, 1, 0) + 1 + IsHoliday)

)
```

Code

.model	.type	RMSE
auto_arima	Training	24622.78
auto_holiday	Training	18393.43
ma1_holiday	Training	19429.49
ar3_holiday	Training	20131.32

Code

Assignment 3.1 – True seasonality (model selection)

```
1 ws1d72 |>
2 mutate(d1 = Weekly_Sales |>
3 difference(lag = 1)) |>
4
5 gg_tsdisplay(d1, plot_type = "partial")
```

```
1 ws1d72 |>
2 mutate(d1 = Weekly_Sales |>
3 difference(lag = 1) |>
4 difference(lag = 52)) |>
5 gg_tsdisplay(d1, plot_type = "partial"
```


Assignment 3.1 – True Seasonality

```
1 wsld72_fit <- wsld72 |>
2    model(
3         auto_arima = ARIMA(Weekly_Sales),
4         mal_12 = ARIMA(Weekly_Sales ~ pdq(0,1,1) + PDQ(0,1,0, period = 52) ),
5         ar1_12 = ARIMA(Weekly_Sales ~ pdq(1,0,0) + PDQ(0,1,0, period = 52) ),
6         auto_12 = ARIMA(Weekly_Sales ~ pdq() + PDQ(period = 52) )
7    )
```

Code

.model	.type RMSE	
auto_arima	Training	22042.148
ma1_12	Training	7648.828
ar1_12	Training	7396.473
auto_12	Training	7396.473

▶ Code

Assignment 4.1 - Hints

```
pme_history <-
read_csv("PowderyMildewEpidemic.csv",

col_types = cols(Outbreak = col_factor(levels = c("No", "Yes"))))</pre>
```

Year	Outbreak	MaxTemp	RelHumidity
1987	Yes	30.14	82.86
1988	No	30.66	79.57
1989	No	26.31	89.14
1990	Yes	28.43	91.00
1991	No	29.57	80.57
1992	Yes	31.25	67.82
1993	No	30.35	61.76
1994	Yes	30.71	81.14
1995	No	30.71	61.57
1996	Yes	33.07	59.76
1997	No	31.50	68.29
2000	No	29.50	79.14

- treat 2000 as if it were 1998
- sliding window for training periods

```
forecast_year <- function(yr) {
    trn <- pme_history |> filter(Year < yr)
    tst <- pme_history |> filter(Year == yr) |> select(Actual
    Outbreak)
    ... fit model using trn
    ... forecast tst$Predicted using tst
    return(tst)
}

pyears <- c(1996:1998, 2000)
outbreaks <- purrr::map_dfr(pyears, forecast_year)
outbreaks</pre>
```