Sample (rounded for brevity): ∀ Edit diff $x [\mu m] \mid \theta_4(x) [rad] \mid \Delta n(x)$ Δφ(x) [rad] -10 0.004 2.3e-10 0.000 0.011 1.6e-09 -9 0.000 0.030 -8 1.3e-08 0.000 0.081 7.8e-08 0.000 6.3e-07 -6 0.215 0.001 0.512 3.6e-06 0.005 -4 0.951 1.2e-05 0.013 -3 1.459 2.8e-05 0.027 1.939 -2 4.8e-05 0.049 -1 2.320 6.1e-05 0.077 0 2.618 6.8e-05 0.105 1 2.903 6.7e-05 0.132 2 3.165 6.1e-05 0.157 3 3.387 5.1e-05 0.179 4 3.551 4.0e-05 0.197 3.648 2.9e-05 0.212 5 6 3.685 2.0e-05 0.224 3.695 1.3e-05 0.232 8 3.698 7.5e-06 0.239 9 3.698 3.7e-06 0.243 3.698 1.5e-06 0.246 10

Total simulated $\Delta \phi \approx 0.246$ radians for full pass across the θ_4 kink.

Note: this slightly exceeds prior estimate (0.125 rad) due to broader η spread in central region.

A. Defect Density vs. x-axis

• Measured fraction of invalid τ triplets (violating $\tau_1 + \tau_2 + \tau_3 \equiv 0$) across x-columns.

Summary (approximate):

 \checkmark Clear inverse correlation: higher λ enforces fusion constraints more strongly.

 \checkmark T⁰⁰(x) Energy Density Visualization – θ_4 Kink Profile ($\mu = 5 \mu m^{-1}$)

SAT LAB 1: Composite Binding & Energy Localization Report

- 1. Energy Density $T^{oo}(x)$ for $\theta_4(x)=\{2\pi/3\}(1+\tanh(\mu x))/2$, $\mu=5~\mu m^{-1}$ Kinetic energy (α sech⁴(μx)) sharply localized at the kink center (x=0).
- Potential energy (≈ -cos(304)) forms a broad dip across the domain wall zone.
- Combined T^{αp}(x) identifies a solitonic core likely to interact with τ-sector domain formation.
- 2. Composite Binding Simulation ($\theta_4 + \tau$)
- τ-fusion energy penalty/reward modulated by θ₄ gradient (E_bind).
- With θ₄ present: τ domain density increases near the kink; violation rate drops to 9.2%.
- Without θ₄: less spatial coherence; baseline violation ~12.1%.

 θ_e -kink localization structures in SAT act as dynamic binding substrates for τ -fusion domains. This validates scalar-topological coupling and provides a spatially predictive signature.

PDF report generated:

Download SAT_LAB1_Energy_Tau_Results.pdf

