3

4

CLAIMS

What is claimed is:

7	٦.	A liquid crystal display device, comprising:
2		an upper electrode;
3		a lower electrode;
4		an alignment layer in contact with either of said upper electrode or said
5		lower electrode to form a lower assembly and an upper assembly;
6		and
7		a liquid crystal display material, disposed between the upper assembly
8		and the lower assembly;
9		wherein the upper assembly and the lower assembly are designed relative
10		to each other, based on at least one surface potential
11		measurement, to create a substantially predetermined surface
12		potential difference between the upper assembly and the lower
13		assembly;
14		such that an intrinsic DC offset potential in said liquid crystal display
15		device is within a designed range.
1	2.	A liquid crystal display device, as in claim 1, wherein material is selected

- 2. A liquid crystal display device, as in claim 1, wherein material is selected for said lower electrode and said upper electrode, such that a surface potential difference between the lower assembly and the upper assembly, is adjusted and the intrinsic DC offset potential in said liquid crystal display device is changed.
- A liquid crystal display device, as in claim 1, wherein material for said
 lower electrode is selected for the lower assembly, the material for said lower
- 3 electrode having a measured surface potential and material for said upper
- 4 electrode is selected for the upper assembly of said liquid crystal display device,
- 5 the material for said upper electrode having a surface potential that is
- 6 substantially similar to a surface potential of the material for said lower electrode.
- A liquid crystal display device, as in claim 1, wherein at least one of said
 upper electrode and said lower electrode, is treated such that a surface potential

2879.P046 -28- Application

- 3 difference between the lower assembly and the upper assembly, of said liquid
- 4 crystal display device, is adjusted and the intrinsic DC offset potential is
- 5 changed.
- 1 5. A liquid crystal display device, as in claim 4, wherein, at least one of said
- 2 upper electrode and said lower electrode is treated by firing in an atmosphere
- 3 selected from the group consisting of H2, N2, and combination H2/N2.
- 1 6. A liquid crystal display device, as in claim 4, wherein at least one of said
- 2 upper electrode and said lower electrode is treated by etching.
- 1 7. A liquid crystal display device, as in claim 1, wherein at least one of said
- 2 upper electrode and said lower electrode is treated, such that a surface potential
- 3 of at least one of said upper electrode and said lower electrode is changed.
- 1 8. A liquid crystal display device, as in claim 1, wherein passivation layer
- 2 material is selected and disposed on at least one of said upper electrode and
- 3 said lower electrode to form at least one of the lower assembly and the upper
- 4 assembly wherein a surface potential of an assembly formed thereby is altered,
- 5 such that a surface potential difference between the lower assembly and the
- 6 upper assembly is adjusted and the intrinsic DC offset potential in said liquid
- 7 crystal display device is changed.
- 1 9. A liquid crystal display device, as in claim 8, wherein the surface potential
- 2 of the assembly formed thereby is altered, resulting in a decrease in the surface
- 3 potential.
- 1 10. A liquid crystal display device, as in claim 8, wherein the surface potential
- 2 of the assembly formed thereby is altered, resulting in an increase in the surface
- 3 potential.
- 1 11. A liquid crystal display device, as in claim 1, wherein a passivation layer is
- 2 selected from at least one of BCB, NHC, MgO, SiO₂, Al₂O₃, SiN₂, MgF₂, and

2879.P046 -29- Application

- 3 MgAl₂O₄ and the passivation layer is disposed on at least one of said upper
- 4 electrode and said lower electrode to form an assembly, wherein the way the
- 5 passivation layer is disposed is selected from at least one of sputtering by
- 6 chemical vapor deposition (CVD), plasma-enhanced CVD, evaporation, spin-
- 7 coating, meniscus and roller-coating; such that a surface potential difference
- 8 between the assembly formed thereby and a second assembly of said liquid
- 9 crystal display device, is adjusted.
- 1 12. A liquid crystal display device, as in claim 11, wherein the passivation
- 2 layer is selected and disposed on at least one of said upper electrode and said
- 3 lower electrode to form the second assembly.
- 1 13. A liquid crystal display device, as in claim 1, wherein materials for said
- 2 alignment layer are selected and disposed on at least one of said upper
- 3 electrode and said lower electrode to form an assembly wherein a surface
- 4 potential of the assembly is altered, such that a surface potential difference
- 5 between the lower assembly and the upper assembly is adjusted and the
- 6 intrinsic DC offset potential in said liquid crystal display device is changed.
- 1 14. A liquid crystal display device, as in claim 13, wherein the surface
- 2 potential of the assembly formed thereby is altered, resulting in a decrease in the
- 3 surface potential.
- 1 15. A liquid crystal display device, as in claim 13, wherein the surface
- 2 potential of the assembly formed thereby is altered, resulting in an increase in
- 3 the surface potential.
- 1 16. A liquid crystal display device, as in claim 13, wherein the materials
- 2 selected for said alignment layer disposed on the lower assembly are different.
- 1 17. A liquid crystal display device, as in claim 13, wherein the materials
- 2 selected for said alignment layer disposed on the upper assembly are different.

2879.P046 -30- Application

8

9

10

11

12

13

14

- 1 18. A liquid crystal display device, as in claim 1, wherein said alignment layer
- 2 is treated such that a surface potential difference between the lower assembly
- 3 and the upper assembly, of said liquid crystal display device, is adjusted.
- 1 19. A method, as in claim 18, wherein said alignment layer is treated by
- 2 doping with an ionic salt, whereby the surface potential difference is changed.
- 1 20. A liquid crystal display device, comprising:
- 2 an upper electrode;
- 3 a lower electrode;
- alignment layers in contact with at least one of said upper electrode or
 said lower electrode to form an upper assembly and a lower
 assembly; and
 - a liquid crystal display material, disposed between the upper assembly and the lower assembly;
 - wherein the upper assembly and the lower assembly are designed relative to each other to create a substantially predetermined surface potential difference between the upper assembly and the lower assembly;
 - such that an intrinsic DC offset potential in said liquid crystal display device is within a designed range.
- 21. A method of measuring a surface potential of an assembly of a liquid
 2 crystal display device, said method comprising:
- connecting a terminal of an electric field measuring device to an electrode
 of the assembly of the liquid crystal display device;
- placing a measurement probe of the electric field measuring device

 proximate to a surface of the assembly of the liquid crystal display

 device; and
- 8 measuring the surface potential of the assembly of the liquid crystal 9 display device with the electric field measuring device.

2879.P046 -31- Application

display device, said method comprising:

1

22.

	2	displa	y device, said method comprising:
	3		connecting a terminal of an electric field measuring device to an electrode
	4		from an upper liquid crystal display assembly;
	5		placing a measurement probe of the electric field measuring device
	6		proximate to a surface of the upper liquid crystal display assembly
	7		that will contact a first surface of a liquid crystal layer of the liquid
	8		crystal display device when assembled;
	9		measuring a surface potential of the surface of the upper liquid crystal
	10		display assembly with the electric field measuring device; and
•	11		repeating said connecting, placing, and measuring relative to a lower
7	12		liquid crystal display assembly to obtain a surface potential of the
	13		lower liquid crystal display assembly that will contact a second
T.	14		surface of the liquid crystal layer of the liquid crystal display device
41 -	15		when assembled;
	16		such that when the surface potential of the upper liquid crystal display
	17		assembly and the surface potential of the lower liquid crystal
] . N	18		display assembly are mathematically combined, the surface
	19		potential difference is obtained.
	1	23.	A method of changing an intrinsic DC offset potential in a liquid crystal
4	2		y device, said method comprising:
	3	uispia	selecting material for a lower electrode and an upper electrode, of the
	4		liquid crystal display device, such that a surface potential difference
	5		between a lower assembly and an upper assembly, of the liquid
	6		crystal display device, is adjusted and the intrinsic DC offset
	7		potential in the liquid crystal display device is changed.
	•		potential in the liquid drystal display device is changed.
	1	24.	A method of changing an intrinsic DC offset potential in a liquid crystal

A method of measuring a surface potential difference of a liquid crystal

2879.P046 -32-Application

3		selecting lower electrode material, for a lower assembly of the liquid
4		crystal display device, wherein the lower electrode material has a
5		measured surface potential; and
6		selecting upper electrode material, for an upper assembly of the liquid
7		crystal display device, having a surface potential that is
8		substantially similar to the surface potential of the lower electrode
9		material.
1	25.	A method of changing an intrinsic DC offset potential in a liquid crystal
2	displa	ay device, said method comprising:
3		treating at least one electrode, of the liquid crystal display device, such
4		that a surface potential difference between a lower assembly and
5		an upper assembly, of the liquid crystal display device, is adjusted
6		and the intrinsic DC offset potential is changed.
1	26.	A method, as in claim 25, wherein said treating further comprises firing at
2	least	one electrode in an atmosphere selected from the group consisting of H2,
3	N2, a	and combination H2/N2.
1	27.	A method, as in claim 25, wherein said treating further comprises etching
2	at least one electrode.	
1	28.	A method of changing an intrinsic DC offset potential in a liquid crystal
2	displa	ay device, said method comprising:
3		treating at least one electrode, of the liquid crystal display device, such
4		that a surface potential of the electrode is changed subsequent to
5		said treating.
1	29.	A method of changing an intrinsic DC offset potential in a liquid crystal
2	display device, said method comprising:	

2879.P046 -33- Application

selecting passivation layer material; and

1

2

3

4

5

6

7

8

1	disposing passivation layer material on an electrode, of the liquid crystal
2	display device to form an assembly;
3	wherein a surface potential of the assembly, after said disposing
4	passivation layer material, is altered;
5	such that a surface potential difference between a lower assembly and an
6	upper assembly, of the liquid crystal display device, is adjusted and
7	the intrinsic DC offset potential in the liquid crystal display device is
8	changed.

- 1 30. A method, as in claim 29, wherein a surface potential of the assembly
- 2 after said disposing passivation layer material, is altered resulting in a decrease
- 3 in the surface potential.
- 31. A method, as in claim 29, wherein a surface potential of the assembly
 after said disposing passivation layer material, is altered resulting in an increase
 in the surface potential.
 - 32. A method of changing an intrinsic DC offset potential in a liquid crystal display device, said method comprising:
 - selecting a passivation layer from at least one of BCB, NHC, MgO, SiO2, Al2O3, SiN2, MgF2, and MgAl2O4; and
 - disposing the passivation layer on at least one electrode to form an assembly, wherein said disposing is selected from at least one of sputtering by chemical vapor deposition (CVD), plasma-enhanced CVD, evaporation, spin-coating, meniscus and roller-coating;
- such that a surface potential difference between the assembly and a
 second assembly of the liquid crystal display device, is adjusted.
- 1 33. A method, as in claim 32, further comprising said selecting a passivation 2 layer and said disposing the passivation layer to form the second assembly.

2879.P046 -34- Application

ű
D
m
Li
Tu
ļeš
<u> </u>
E
Uī
N
H
þ≟

	1	34. A method of changing an intrinsic DC offset potential in a liquid crystal	
	2	display device, said method comprising:	
	3	selecting alignment layer material; and	
	4	disposing alignment layer material on an electrode, of the liquid crystal	
	5	display device to form an assembly;	
	6	wherein a surface potential of the assembly after said disposing	
	7	alignment layer material, is altered;	
	8	such that a surface potential difference between a lower assembly and an	
	9	upper assembly, of the liquid crystal display device, is adjusted and	
	10	the intrinsic DC offset potential in the liquid crystal display device is	
	11	changed.	
esser.	1	35. A method, as in claim 34, wherein a surface potential of the assembly	
Ī	2	after said disposing alignment layer material, is altered resulting in a decrease in	
I N	3	the surface potential.	
In the them then well then the the		•	
ᇓ	1	36. A method, as in claim 34, wherein a surface potential of the assembly	
_	2	after said disposing alignment layer material, is altered resulting in an increase in	
In the two was the first	3	the surface potential.	
a in			
4	1	37. A method, as in claim 34, wherein materials selected for alignment layer	
iii.	2	disposed on the lower assembly are different	
	1	38. A method, as in claim 34, wherein materials selected for the alignment	
	2	layer disposed on the upper assembly are different.	
	1	39. A method of changing an intrinsic DC offset potential in a liquid crystal	
	2	display device, said method comprising:	
	3	treating at least one alignment layer, of the liquid crystal display device,	
	4	such that a surface potential difference between a lower assembly	
	5	and an upper assembly, of the liquid crystal display device, is	
	6	adjusted	
	_		

4

5

6

- 1 40. A method, as in claim 39, wherein said treating further comprises doping
- 2 the at least one alignment layer with an ionic salt, whereby the surface potential
- 3 difference is changed.
- 41. A method of changing an intrinsic DC offset potential in a liquid crystal
 display device, said method comprising:
- increasing the thickness of at least one layer, applied to an electrode of the liquid crystal display device, such that a surface potential difference between a lower assembly and an upper assembly, of the liquid crystal display device, is adjusted.
- 1 42. A method of changing an intrinsic DC offset potential in a liquid crystal 2 display device, said method comprising:
 - decreasing the thickness of at least one layer, applied to an electrode of the liquid crystal display device, such that a surface potential difference between a lower assembly and an upper assembly, of the liquid crystal display device, is adjusted.
- 43. A liquid crystal display device, as in claim 13, wherein the materials
 selected for said alignment layer disposed on the lower assembly are the same.
- 1 44. A liquid crystal display device, as in claim 13, wherein the materials
- 2 selected for said alignment layer disposed on the upper assembly are the same
- 1 45. A method, as in claim 34, wherein materials selected for the alignment
- 2 layer disposed on the lower assembly are the same.
- 1 46. A method, as in claim 34, wherein materials selected for the alignment
- 2 layer disposed on the upper assembly are the same.

2879.P046 -36- Application