МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра математического обеспечения и применения ЭВМ

ОТЧЕТ

по домашнему заданию №2 по дисциплине «Элементы функционального анализа»

Студент гр. 8383	 Киреев К.А.
Преподаватель	 Коточигов А.М

Санкт-Петербург 2021

Выполнение работы.

Вариант 8

$$f(3) = 2, f(6) = 4, f(13) = 5, f(16) = 8$$

$$g(3) = 0, g(9) = 4, g(11) = 6, g(16) = 9$$

Построим графики функций:

f(x)

g(x)

Мера, порожденная возрастающей функцией F(x):

- \circ Если функция непрерывна, то концы интервала не влияют на меру $m_F([c,d]) = F(d) F(c)$
- \circ Модификация определения, существенная только в точках разрыва $m_F\bigl((c,d)\bigr)=F(d)-F(c+0)$ $m_F\bigl((c,d]\bigr)=F(d+0)-F(c+0)$
- \circ Обозначим через m меру Лебега, и через δ_a дельта меру единичную нагрузку в точке a:

$$\delta_a(E) = 1, a \in E,$$

 $\delta_a(E) = 0, a \notin E$

Подберем коэффициенты β_i так, чтобы для любого измеримого множества A

$$m_g(A) = \sum_i \beta_i \delta_{ai}(A)$$

Функция g имеет разрывы в точках 3,9,11, к которым производится «стягивание» отрезков:

$$\beta_1 = g(9) - g(3) = 4 - 0 = 4$$

 $\beta_2 = g(11) - g(9) = 6 - 4 = 2$
 $\beta_3 = g(16) - g(11) = 9 - 6 = 3$

$$\circ \int f(x) dm_g$$

$$\int f(x) d\delta_a = f(a), m_g(A) = \sum_i \beta_i \delta_{ai}(A) \to \int f(x) dm_g = \sum_i \beta_i f(a_i)$$

$$\int f(x) dm_g = 4 * f(3) + 2 * f(9) + 3 * f(11) =$$

$$= 4 * 2 + 3 * 4.43 + 3 * 4.72 = 35.45$$

 \circ Проведем аналогичное описание меры m_f , $m_f(A) = \sum_i \alpha_i \ m(A \cap B_i)$

На каждом из промежутков [3,6], [6,13], [13,16] функция f(x)=kx+b Тогда, например, $\forall (c,d) \subset [6,13] \rightarrow m_f\big((c,d)\big) = f(d) - f(c) = k(d-c)$ $\forall E \ E = (E \cap [3,6)) \cup (E \cap [6,13)) \cup (E \cap [13,16))$ $\alpha_1 = \frac{f(6) - f(3)}{6 - 3} = \frac{2}{3}$ $\alpha_2 = \frac{f(13) - f(6)}{13 - 6} = \frac{1}{7}$ $\alpha_3 = \frac{f(16) - f(13)}{16 - 13} = \mathbf{1}$

 \forall (c,d) \subset [6,13], где $g|_{(c,d)} = const$

 $\circ \int g(x) dm_f$

$$\int_{(c,d)} \mathbf{g}(x) d\mathbf{m}_{f} = \int_{(c,d)} const \ dm_{f} = const(f(d) - f(c))$$

$$\int g(x) \ dm_{f} = \alpha_{1} \int_{3}^{6} g(x) dm + \alpha_{2} \left(\int_{6}^{9} g(x) dm + \int_{9}^{11} g(x) dm + \int_{11}^{13} g(x) dm \right)$$

$$+ \alpha_{3} \left(\int_{13}^{16} g(x) dm \right) =$$

$$= \frac{2}{3} * 4 * (4 - 2) + \frac{1}{7} (4 * (4.43 - 4) + 6 * (4.72 - 4.43) + 9 * (5 - 4.72))$$

$$+ 1 * 9 * (8 - 5) \approx 33.2$$

 \circ Подберите постоянные c_1, c_2 такие, что $\forall E : c_1 m(E) \leq m_f(E) \leq c_2 m(E)$ Из определений меры Лебега и меры, порожденной возрастающей функцией:

$$c_1 = \min(a_i) = \frac{1}{7}$$
$$c_2 = \max(a_i) = 1$$

Тогда для $\forall E \ E = (E \cap [3,6)) \cup (E \cap [6,13)) \cup (E \cap [13,16))$

$$c_1 m(E) \le m_f(E) \le c_2 m(E)$$

Для m_g невозможно подобрать ограничение сверху.

 \circ Опишите все множества A такие, что $m_g(A)=0$ $m_g(A)=0$ на множествах, на которых нет разрыва функции g(x):

$$\forall A$$
, кроме $A = 3, 9, 11$

 \circ Вычислите норму функции f в пространстве $L^{\infty}ig([a,b],m_gig)$

$$||f||_{\infty} = \sup_{E} \left(\sup_{x} (|f(x)|; x \in E) : m_g([a, b] \setminus E) = 0 \right) = f(11) \approx 4.72$$