msk_top_regs address map

Absolute Address: 0x0Base Offset: 0x0Size: 0x90

MSK Modem Configuration and Status Registers

Offset	Identifier	Name
0x00	Hash ID Low	Pluto MSK FPGA Hash ID - Lower 32-bits
0x04	Hash_ID_High	Pluto MSK FPGA Hash ID - Upper 32-bits
0x08	MSK_Init	MSK Modem Initialization Control
0x0C	$MSK_Control$	MSK Modem Control
0x10	MSK_Status	MSK Modem Status 0
0x14	Tx_Bit_Count	MSK Modem Status 1
0x18	Tx_Enable_Cour	ntMSK Modem Status 2
0x1C	$Fb_FreqWord$	Bitrate NCO Frequency Control Word
0x20	TX_F1_FreqWo	rdIx F1 NCO Frequency Control Word
0x24	TX_F2_FreqWo	rdIx F2 NCO Frequency Control Word
0x28	RX_F1_FreqWo	r&x F1 NCO Frequency Control Word
0x2C	RX_F2_FreqWo	rdx F2 NCO Frequency Control Word
0x30	LPF_Config_0	PI Controller Configuration and Low-pass Filter
		Configuration
0x34	LPF_Config_1	PI Controller Configuration Configuration Register 1
0x38		Modem Tx Input Data Width
0x3C		Modem Rx Output Data Width
0x40		PRBS Control 0
0x44		caPRBS Control 1
0x48		aPRBS Control 2
0x4C		asRRBS Control 3
0x50	PRBS_Bit_Cour	
0x54	PRBS_Error_Co	
0x58		F1 PI Controller Accumulator
0x5C		F2 PI Controller Accumulator
0x60		MSK Modem Status 3
0x64		caRdx Sample Discard
0x68	LPF_Config_2	PI Controller Configuration Configuration Register 2
0x6C	f1_nco_adjust	F1 NCO Frequency Adjust
0x70	f2_nco_adjust	F2 NCO Frequency Adjust
0x74	f1_error	F1 Error Value
0x78	f2_error	F2 Error Value
0x7C	Tx_Sync_Ctrl	Transmitter Sync Control
0x80	Tx_Sync_Cnt	Transmitter Sync Duration
0x84	-	olExponential Moving Average Alpha
0x88		olæ⊋ponential Moving Average Alpha
0x8C	rx_power	Receive Power

Hash_ID_Low register

• Absolute Address: 0x0

• Base Offset: 0x0

• Size: 0x4

	Bits	Identif	ier	Access	Reset	Name		
31:0	hash_	_idlo	r	0xAAAA	5555	Hash ID	Lower 3	32-bits

hash_id_lo field Lower 32-bits of Pluto MSK FPGA Hash ID

Hash_ID_High register

• Absolute Address: 0x4

• Base Offset: 0x4

• Size: 0x4

	Bits	Iden	tifier	Access	Reset	Name		_
31:0	hash_	_idh	i r	0x5555A	AAA	Hash ID	Upper	32-bits

hash_id_hi field Upper 32-bits of Pluto MSK FPGA Hash ID

MSK_Init register

• Absolute Address: 0x8

• Base Offset: 0x8

• Size: 0x4

Synchronous initialization of MSK Modem functions, does not affect configuration registers.

Bits	Identifier	Ac	ccess	Reset	Name
1	txrxinit txinit rxinit	rw	0x1	Tx Ini	

txrxinit field 0 -> Normal modem operation 1 -> Initialize Tx and Rx

txinit field $0 \rightarrow Normal Tx operation <math>1 \rightarrow Initialize Tx$

rxinit field $0 \rightarrow Normal Rx operation <math>1 \rightarrow Initialize Rx$

MSK_Control register

• Absolute Address: 0xC

• Base Offset: 0xC

• Size: 0x4

MSK Modem Configuration and Control

Bits	Identifier	Acce	ess Res	et Name
0	ptt	rw	0x0	Push-to-Talk Enable
1	loopback_ena	rw	0x0	Modem Digital Tx -> Rx Loopback
				Enable
2	rx_invert	rw	0x0	Rx Data Invert Enable
3	$clear_counts$	rw	0x0	Clear Status Counters
4	diff_encoder_loop	banok	0x0	Differential Encoder -> Decoder
				Loopback Enable

ptt field $0 \rightarrow PTT$ Disabled $1 \rightarrow PTT$ Enabled

 $\begin{array}{ll} \textbf{loopback_ena field} & 0 -> \text{Modem loopback disabled 1 -> Modem loopback enabled} \end{array}$

 \mathbf{rx} _invert field 0 -> Rx data normal 1 -> Rx data inverted

 $\label{lem:coder_loopback} \begin{array}{ll} \textbf{diff_encoder_loopback field} & 0 -> \text{Differential Encoder} -> \text{Decoder loopback} \\ \text{disabled 1 -> Differential Encoder} -> \text{Decoder loopback enabled} \end{array}$

MSK_Status register

Absolute Address: 0x10Base Offset: 0x10

• Size: 0x4

Modem status bits

Bits	Identifier	Access	Reset	Name
0	$\operatorname{demod_sync_}$	loak	0x0	Demodulator Sync Status
1	tx_enable	\mathbf{r}	0x0	AD9363 DAC Interface Tx Enable Input
				Active
2	rx_enable	r	0x0	AD9363 ADC Interface Rx Enable Input
				Active
3	tx_axis_valid	r	0x0	Tx S_AXIS_VALID

 ${\bf demod_sync_lock\ field} \quad {\rm Demodulator\ Sync\ Status\ -\ not\ currently\ implemented}$

tx_enable field 1-> Data to DAC Enabled 0-> Data to DAC Disabled

 \mathbf{rx} _enable field 1-> Data from ADC Enabled 0-> Data from ADC Disabled

 $\label{eq:tx_axis_valid} \textbf{tx} _ \textbf{axis} _ \textbf{valid field} \quad 1 -> \\ \textbf{S} _ \textbf{AXIS} _ \textbf{VALID Enabled} \quad 0 -> \\ \textbf{S} _ \textbf{AXIS} _ \textbf{VALID Disabled}$

Tx_Bit_Count register

• Absolute Address: 0x14

• Base Offset: 0x14

• Size: 0x4

Modem status data

Bits	Iden	tifier	Access	I	Reset	Name	
31:0) tx	_bit_	_counter	r	_	Tx Bit Count	

Tx_Enable_Count register

• Absolute Address: 0x18

• Base Offset: 0x18

• Size: 0x4

Modem status data

Bits	Identifier	Access	Reset	Name
31:0	tx_ena_coi	inter r	0x0	Tx Enable Count

tx_ena_counter field Number of clocks on which Tx Enable is active

Fb_FreqWord register

• Absolute Address: 0x1C

• Base Offset: 0x1C

• Size: 0x4

Set Modem Data Rate

	Bit	s Id	e	ntifier	A	cc	cess	Res	et	Name		
31:	0	config	r_	_data	rw	7	0x0	Fre	equ	ency Con	trol	Word

config_data field Sets the center frequency of the NCO as $FW = Fn * 2^32/Fs$, where Fn is the desired NCO frequency, and Fs is the NCO sample rate

TX_F1_FreqWord register

Absolute Address: 0x20Base Offset: 0x20

• Size: 0x4

Set Modulator F1 Frequency

	Bit	s Io	le	ntifier		Ac	cess	Re	eset	Naı	me	
31:	0	confi	r 5–	_data	r	w	0x0	F	requ	iency	Control	Word

config_data field Sets the center frequency of the NCO as FW = Fn * 2 3 2/Fs, where Fn is the desired NCO frequency, and Fs is the NCO sample rate

$TX_F2_FreqWord\ register$

• Absolute Address: 0x24

• Base Offset: 0x24

• Size: 0x4

Set Modulator F2 Frequency

]	Bits	s Ide	ntifier	Access		Reset	Name	_
31:0) ($\operatorname{config}_{_}$	_data	rw	0x0	Frequ	ency Control W	Vord

config_data field Sets the center frequency of the NCO as $FW = Fn * 2^32/Fs$, where Fn is the desired NCO frequency, and Fs is the NCO sample rate

RX_F1_FreqWord register

• Base Offset: 0x28

• Size: 0x4

Set Demodulator F1 Frequency

	Bit	s Io	le	ntifier	Ac	cess	Reset	Name	
31:	0	confi	g_	_data	rw	0x0	Frequ	iency Cor	trol Word

config_data field Sets the center frequency of the NCO as $FW = Fn * 2^32/Fs$, where Fn is the desired NCO frequency, and Fs is the NCO sample rate

RX_F2_FreqWord register

• Absolute Address: 0x2C

Base Offset: 0x2CSize: 0x4

Set Demodulator F2 Frequency

	Bit	s Ide	entifier	Ac	cess	Reset	Name	_
31:	0	config	_data	rw	0x0	Frequ	ency Control V	- Vord

config_data field Sets the center frequency of the NCO as FW = Fn * 2^32/Fs, where Fn is the desired NCO frequency, and Fs is the NCO sample rate

LPF_Config_0 register

• Absolute Address: 0x30

• Base Offset: 0x30

• Size: 0x4

Configure PI controller and low-pass filter

	Bits Iden	tifier	Acc	ess Reset Name
0	lpf_freeze	rw	0x0	Freeze the accumulator's current value
1	lpf_zero	rw	0x0	Hold the PI Accumulator at zero
7:2	$prbs_reserved$	rw	0x0	Reserved
31:8	lpf_alpha	rw	0x0	Lowpass IIR filter alpha

 $lpf_freeze field 0 -> Normal operation 1 -> Freeze current value$

 $lpf_zero\ field\ 0 -> Normal\ operation\ 1 -> Zero\ and\ hold\ accumulator$

lpf_alpha field Value controls the filter rolloff

LPF_Config_1 register

Absolute Address: 0x34Base Offset: 0x34

• Size: 0x4

Configures PI Controller I-gain and divisor

Bits	Identifier	A	ccess	Reset	Name
	_			_	al Gain Value al Gain Bit Shift

i_gain field Value m of 0-16,777,215 sets the integral multiplier

i_shift field Value n of 0-32 sets the integral divisor as 2^-n

Tx_Data_Width register

• Base Offset: 0x38

• Size: 0x4

Set the parallel data width of the parallel-to-serial converter

	Bits	Identifier		Access		Reset	t Name		
7:0	data_	width	rw	0x8	Me	odem i	input/output	data	width

data_width field Set the data width of the modem input/output

$Rx_Data_Width register$

• Absolute Address: 0x3C

• Base Offset: 0x3C

• Size: 0x4

Set the parallel data width of the serial-to-parallel converter

	Bits Identi		ifier	er Access		Reset	Name		
7:0	data_	width	rw	0x8	Μ	odem in	put/output	data	width

data_width field Set the data width of the modem input/output

PRBS_Control register

Absolute Address: 0x40Base Offset: 0x40

• Size: 0x4

Configures operation of the PRBS Generator and Monitor

	Bits Identifier	Access	Rese	et Name
0	prbs_sel	rw	0x0	PRBS Data Select
1	$prbs_error_insert$	w	0x0	PRBS Error Insert
2	$prbs_clear$	\mathbf{w}	0x0	PRBS Clear Counters
3	prbs_manual_sync	W	0x0	PRBS Manual Sync
15:4	$prbs_reserved$	rw	0x0	Reserved
31:16	$prbs_sync_threshold$	rw	0x0	PRBS Auto Sync Thres

prbs_sel field 0-> Select Normal Tx Data 1-> Select PRBS Tx Data

prbs_error_insert field $0 \rightarrow 1$: Insert bit error in Tx data (both Normal and PRBS) $1 \rightarrow 0$: Insert bit error in Tx data (both Normal and PRBS)

prbs_clear field $0 \rightarrow 1$: Clear PRBS Counters $1 \rightarrow 0$: Clear PRBS Counters

prbs_manual_sync field $0 \to 1$: Synchronize PRBS monitor $1 \to 0$: Synchronize PRBS monitor

 ${\bf prbs_sync_threshold}$ field ~0: Auto Sync Disabled N >0: Auto sync after N errors

PRBS_Initial_State register

Absolute Address: 0x44Base Offset: 0x44

• Size: 0x4

PRBS Initial State

Bits	Ide	entifier	Acc	ess	Reset	Name
31	:0	config_	_data	rw	0x0	PRBS Seed

config_data field Sets the starting value of the PRBS generator

PRBS_Polynomial register

• Absolute Address: 0x48

Base Offset: 0x48Size: 0x4

PRBS Polynomial

Bits	Identifier	Access	Res	et Name
31:0	config_data	rw	0x0	PRBS Polynomial

config_data field Bit positions set to '1' indicate polynomial feedback positions

PRBS_Error_Mask register

• Absolute Address: 0x4C

• Base Offset: 0x4C

• Size: 0x4

PRBS Error Mask

Bits	Identifier	Access	Res	et N	Vame
31:0	config_data	rw	0x0	PRB	S Error Mask

config_data field Bit positions set to '1' indicate bits that are inverted when a bit error is inserted

${\bf PRBS_Bit_Count\ register}$

• Absolute Address: 0x50

• Base Offset: 0x50

• Size: 0x4

PRBS Bits Received

Bits	Identifier	Acce	ess	Reset	Name
31:0	status_data	r	0x0	PRE	BS Bits Received

status_data field Number of bits received by the PRBS monitor since last BER can be calculated as the ratio of received bits to errored-bits

PRBS_Error_Count register

Absolute Address: 0x54Base Offset: 0x54

• Size: 0x4

PRBS Bit Errors

Bits	Identifie	r A	Access		set	Name
31:0	status_	_data	r	0x0	PF	RBS Bit Errors

status_data field Number of errored-bits received by the PRBS monitor since last sync BER can be calculated as the ratio of received bits to errored-bits

LPF_Accum_F1 register

• Absolute Address: 0x58

• Base Offset: 0x58

• Size: 0x4

Value of the F1 PI Controller Accumulator

	Bits	Identif	ier	Acce	ess	Reset	Name	
31:0	status	_data	r	0x0	PΙ	Control	ler Accumul	ator Value

status_data field PI Controller Accumulator Value

LPF_Accum_F2 register

• Absolute Address: 0x5C

• Base Offset: 0x5C

• Size: 0x4

Value of the F2 PI Controller Accumulator

	Bits	Identif	ier	Acce	ess	Reset	Name		
31:0	status	_data	r	0x0	ΡI	Control	ler Accur	mulator	Value

status_data field PI Controller Accumulator Value

axis_xfer_count register

• Base Offset: 0x60

• Size: 0x4

Modem status data

Bits	Identifier	Acce	ss R	leset	Name
31:0	xfer_cou	nt r	0x0	S_	AXIS Transfers

xfer_count field Number completed S_AXIS transfers

Rx_Sample_Discard register

• Absolute Address: 0x64

• Base Offset: 0x64

• Size: 0x4

Configure samples discard operation for demodulator

	Bits	Identifier	Acc	ess	Reset	Name
_	_ 1	_				ample Discard Value CO Sample Discard Value

rx_sample_discard field Number of Rx samples to discard

rx_nco_discard field Number of NCO samples to discard

LPF_Config_2 register

• Absolute Address: 0x68

• Base Offset: 0x68

• Size: 0x4

Configures PI Controller I-gain and divisor

B	its	Identif	ier	Access	Reset	Name	
23:0	I	o_gain	rw	0x0	Proporti	onal Gain	Value
31:24	l r	_shift	rw	0x0	Proporti	onal Gain	Bit Shift

p_gain field Value m of 0-16,777,215 sets the proportional multiplier

p_shift field Value n of 0-32 sets the proportional divisor as 2^-n

f1_nco_adjust register

Absolute Address: 0x6CBase Offset: 0x6C

• Size: 0x4

Frequency offet applied to the F1 NCO

Bits	Identi	fier	Acc	cess	Reset	Name	
31:0	data	r	0x0	F1	NCO I	Frequency Adjus	- st

data field Frequency offet applied to the F1 NCO

$f2_nco_adjust\ register$

• Absolute Address: 0x70

• Base Offset: 0x70

• Size: 0x4

Frequency offet applied to the F2 NCO

Bits	Identi	fier	Acc	ess	Reset	Name	
31:0	data	r	0x0	F2	NCO I	Frequency Adjus	t

data field Frequency offet applied to the F2 NCO

f1_error register

• Absolute Address: 0x74

• Base Offset: 0x74

• Size: 0x4

Error value of the F1 Costas loop after each active bit period

Bits	Identifier		Access		Reset	Name
	31:0	data	r	0x0	F1 Eı	ror Value

f2_error register

• Absolute Address: 0x78

• Base Offset: 0x78

• Size: 0x4

Error value of the F2 Costas loop after each active bit period

Bits	Identifier		Access		Reset	Name
	31:0	data	r	0x0	F2 Eı	rror Value

Tx_Sync_Ctrl register

Absolute Address: 0x7CBase Offset: 0x7C

• Size: 0x4

Provides control bits for generation of transmitter synchronization patterns

Bi	its	Identi	fier	Access	Re	eset	Name
0	tx_	_sync_	_ena	rw	0x0	Tx	Sync Enable
1	tx_{-}	_sync_	_force	rw	0x0	Tx	Sync Force
2	tx_{-}	_sync_	_f1	rw	0x0	Tx	F1 Sync Enable
3	tx_{-}	_sync_	_f2	rw	0x0	Tx	F2 Sync Enable

 $\mathbf{tx_sync_ena}$ field 0 -> Disable sync transmission 1 -> Enable sync transmission when PTT is asserted

tx_sync_force field 0 : Normal operation) 1 : Transmit synchronization pattern)

 tx_sync_f1 field Enables/Disables transmission of F1 tone for receiver synchronization 0: F1 tone transmission disabled 1: F1 tone transmission enabled Both F1 and F2 can be enabled at the same time

 tx_sync_f2 field Enables/Disables transmission of F2 tone for receiver synchronization 0: F2 tone transmission disabled 1: F2 tone transmission enabled Both F1 and F2 can be enabled at the same time

Tx_Sync_Cnt register

• Absolute Address: 0x80

• Base Offset: 0x80

• Size: 0x4

Sets the duration of the synchronization tones when enabled

Bits	Identifier	Access	Reset	Name
23:0	tx_sync_c	nt rw	0x0	Tx sync duration

tx_sync_cnt field Value from 0x00_0000 to 0xFF_FFFF. This value represents the number bit-times the synchronization signal should be sent after PTT is asserted.

lowpass_ema_alpha1 register

• Absolute Address: 0x84

• Base Offset: 0x84

• Size: 0x4

Sets the alpha for the EMA

Bits	Ident	ifier	Access	Res	set Name
	17:0	alpha	rw	0x0	EMA alpha

alpha field Value from 0x0_0000 to 0x3_FFFF represent the EMA alpha

$lowpass_ema_alpha2$ register

• Absolute Address: 0x88

• Base Offset: 0x88

• Size: 0x4

Sets the alpha for the EMA

Bits	Ident	ifier	Access	Res	set Name
	17:0	alpha	rw	0x0	EMA alpha

alpha field Value from $0x0_0000$ to $0x3_FFFF$ represent the EMA alpha

$rx_power register$

• Absolute Address: 0x8C

• Base Offset: 0x8C

• Size: 0x4

Receive power computed from I/Q samples

Bits	Identifier	Access	Reset	Name
22:0	rx_power	r	0x0	Receive Power

 ${\bf rx_power}$ field Value that represent the RMS power of the incoming I;