Instituto de Informática

Universidade Federal de Rio Grande do Sul

Prof. Horacio Fortunato e Manuel M. Oliveira

1° Trabalho de Implementação

Total de Pontos do Trabalho: 100

Objetivo:

O objetivo deste trabalho é familiarizar os estudantes com algumas operações importantes envolvendo imagens de Alta faixa dinâmica (HDR). Mais especificamente, ao completar este trabalho você terá aprendido:

- Calibração da curva de resposta de uma câmera digital utilizando HDR Shop
- Geração de imagens HDR a partir de imagens LDR utilizando HDR Shop
- Leitura, Gravação e Exibição de arquivos de imagem HDR utilizando Matlab

Escreva um relatório descrevendo de forma ilustrada (*i.e.*, contendo imagens mostrando os resultados obtidos) e que deverá ser disponibilizado até o dia 22/04/2011 no Moodle da disciplina.

No relatório, indique, para cada etapa do trabalho em questão, se você a completou satisfatoriamente. Em caso de não tê-la completado, explique porque não conseguiu fazê-la. Além disso, liste as dificuldades que você enfrentou e, em retrospecto, descreva o que você faria diferente de modo a minimizar ou evitar as dificuldades experimentadas.

Para todas as tarefas utilize as imagens disponibilizadas no arquivo "arquivos_hdr.zip": "office_1.jpg" .."office_6.jpg"

Tarefa 1: Construa uma tabela com a informação do tempo de exposição e abertura para cada imagem. Para isso, utilize algum programa de visualização de imagens que permita acessar a informação "EXIF metadata" da imagem. Por exemplo, no programa "FastStone Image viewer" (gratuito para uso não comercial), utilize a opção "View -> Image Properties ...".

Pesquise o que significa "EXIF metadata" e que informações são armazenadas nestes campos.

Calcule os "stops" relativos para a sequência de imagens disponibilizada. Em uma sequência de imagens com valores de exposição X_0 , X_1 X_n temos:

stop relativo da i-ésima exposição (sr_i): $X_i = 2^{sri} X_{i-1}$

Tarefa 2: Utilize as imagens "**office_1.jpg**" ..."**office_6.jpg**" para calibrar a curva de resposta da câmera utilizando a versão livre do programa HDR Shop (disponível em http://www.hdrshop.com/ (Versão 1). Para tal, utilize a opção "*Create -> Calibrate Camera Curve ...*". Salve a curva obtida para ser utilizada nas Tarefas 5 e 6;

Tarefa 3: Crie uma imagem HDR partindo das imagens "office_1.jpg" .."office_6.jpg" utilizando a versão livre do programa HDR Shop. Para tal, utilize a opção "Create -> Assemble HDR from image sequence...". Utilize a imagem gerada e explore todas as opções do menu "View -> Exposure ...";

Tarefa 4: O script "hdr_tone_map_01.m" serve de exemplo para ler, modificar e exibir imagens HDR armazenadas como matrizes do Matlab. Para exibir as imagens o script apresenta um par de opções muito simples de tone mapping global: **mapeamento linear** e **logarítmico**. Os arquivos "Office.mat", "bigFogMap_oDAA.mat", "dani_belgium_oC65.mat", "memorial_o876.mat" e "nave_o366.mat contêm imagens HDR armazenadas como matrizes do Matlab. Execute os algoritmos para as distintas imagens modificando o valor dos parâmetros **min_value** e **max_value** para o mapeamento linear, e o valor de **alpha** para o mapeamento logarítmico.

Tarefa 5 (40 Pontos): Escreva um algoritmo em Matlab para construir uma imagem HDR partindo das imagens "office_1.jpg" .."office_6.jpg". Para tanto, utilize os tempos de exposição da tabela $EXIF_Values$ construída para a tarefa 1, e a curva de calibração da tarefa 2. Seja $I_k(i,j)$ o pixel com coordenadas (i,j) associado à k-ésima imagem de entrada. O conteúdo de $I_k(i,j)$ corresponde à exposição modificada pela curva de calibração. Portanto, utilize o valor de $I_k(i,j)$ como entrada para a tabela de calibração, obtendo, assim, oo valor de exposição (X) de $I_k(i,j) = E * T$, onde E é a irradiancia sobre o pixel e T é o tempo de exposição. Utilizando o tempo de exposição da imagem k, obtenha E. Note que os pixels com coordenadas (i,j) das várias imagens podem levar a diferentes valores de E. Descarte os valores saturados e sub-expostos, e calcule a média dos demais valores.

Tarefa 6: Crie uma imagem HDR partindo das imagens "office_1.jpg" .. "office_6.jpg" utilizando o comando makehdr Matlab;

Tarefa 7: Utilize a funções: *hdrread, hdrwrite, tonemap* do Image processing toolbox do Matlab para ler e exibir a imagem HDR criada na tarefa 4, descreva o que cada função faz;

Tarefa 8: - Pesquise outros algoritmos de tone mapping e implemente e descreva um algoritmo global e um algoritmo local;

Tarefa 9: - Escreva um algoritmo em Matlab para aproximar a curva de calibração da tarefa 2 por uma curva de correção gama. $p = X^{\gamma}$, p é o valor do pixel e X é o valor de exposição correspondente.

Obs.: As tarefas 6 a 9 são opcionais (mas recomendadas) para os alunos matriculados em INF01066 e obrigatórias para os alunos matriculados em CMP561. A realização destas tarefas requer o uso de versão do Matlab R2007a ou superior.

	Pontuação	
Tarefa	INF01066	CMP561
1	10	5
2	10	5
3	10	5
4	10	5
5	60	40
6		5
7		5
8		20
9		10