

SVM KERNELS (CONT.)

SYRACUSE UNIVERSITYSchool of Information Studies

KERNEL FUNCTIONS

SVM algorithm maximizes the margin between the two separating hyperplanes by finding the maximum of the function:

$$W(\) = \int_{i=1}^{l} \frac{1}{2} \int_{i=1}^{l} \int_{j=1}^{l} y_{i} y_{j} K(x_{i}, x_{j})$$

Subject to the constraints:

$$_{i}^{l}y_{i}=0, \quad _{i} \quad 0, i=1,2,...,l$$

SVM: KERNEL FUNCTIONS

Linear kernel: $K(X_i, X_j) = X_i \cdot X_j$ (cosine similarity)

Higher rank kernels: Instead of computing on the transformed data tuples, it is mathematically equivalent to instead applying a kernel function $K(X_i, X_j)$ to the original data, i.e., $K(X_i, X_j) = \Phi(X_i) \Phi(X_j)$

Typical kernel functions:

Polynomial kernel of degree
$$h: K(X_i, X_j) = (X_i \cdot X_j + 1)^h$$

Gaussian radial basis function kernel :
$$K(X_i, X_j) = e^{-\|X_i - X_j\|^2/2\sigma^2}$$

Sigmoid kernel:
$$K(X_i, X_j) = \tanh(\kappa X_i \cdot X_j - \delta)$$