Rozwiązanie Zadania 4

Zadanie 4 (13 punktów) Dana jest grupa (G,\cdot) taką, że każdy jej element jest rzędu 2. Pokazać, że (G,\cdot) jest grupą abelową. Znajdź element odwrotny do x=43 w ciele $(\mathbb{Z}_{79},+,\cdot)$.

Część 1: Pokazać, że grupa (G,\cdot) jest grupą abelową, jeśli każdy jej element jest rzędu 2.

Aby grupa (G, \cdot) była grupą abelową (przemienną), musi spełniać cztery warunki: łączność, istnienie elementu neutralnego, istnienie elementu odwrotnego oraz przemienność. Trzy pierwsze warunki są spełnione z definicji grupy. Pozostaje wykazać warunek przemienności.

Z założenia, każdy element $g \in G$ ma rząd 2. Oznacza to, że jeśli element g pomnożymy przez samego siebie, otrzymamy element neutralny e. Możemy to zapisać jako: $g \cdot g = e$

Pokażmy teraz, że w tej grupie każdy element jest swoim własnym elementem odwrotnym, tzn. $g=g^{-1}$.

- 1. Zaczynamy od definicji rzędu 2 dla elementu $g\colon g\cdot g=e$
- 2. Mnożymy obie strony równania z lewej strony przez element odwrotny do g, czyli g^{-1} . (Mnożenie z lewej jest ważne dla poprawności przekształceń w grupach): $g^{-1} \cdot (g \cdot g) = g^{-1} \cdot e$
- 3. Stosujemy własność łączności działania · w grupie, czyli $(a \cdot b) \cdot c = a \cdot (b \cdot c)$. Tutaj $a = g^{-1}$, b = g, c = g: $(g^{-1} \cdot g) \cdot g = g^{-1} \cdot e$
- 4. Stosujemy **definicję elementu odwrotnego**, która mówi, że iloczyn elementu i jego elementu odwrotnego daje element neutralny $(g^{-1} \cdot g = e)$. Podstawiamy e za $g^{-1} \cdot g$ po lewej stronie równania: $e \cdot q = q^{-1} \cdot e$
- 5. Stosujemy **definicję elementu neutralnego**, która mówi, że pomnożenie dowolnego elementu przez element neutralny (z lewej lub prawej strony) daje ten sam element $(e \cdot x = x \text{ oraz } x \cdot e = x)$. Stosujemy to zarówno po lewej $(e \cdot g = g)$, jak i po prawej $(g^{-1} \cdot e = g^{-1})$ stronie równania: $g = g^{-1}$

Zatem, wykazaliśmy, że w grupie, gdzie każdy element jest rzędu 2, każdy element jest swoim własnym elementem odwrotnym.

Teraz przejdźmy do warunków grupy abelowej, skupiając się na przemienności:

- 1. Łączność (Asocjatywność): Dla każdego $a,b,c\in G,\ (a\cdot b)\cdot c=a\cdot (b\cdot c).$ Ten warunek jest spełniony z definicji grupy $(G,\cdot).$
- 2. Element neutralny: Istnieje element $e \in G$ taki, że dla każdego $a \in G$, $a \cdot e = e \cdot a = a$. Ten warunek jest spełniony z definicji grupy (G, \cdot) .
- 3. Element odwrotny: Dla każdego $a \in G$ istnieje element $a^{-1} \in G$ taki, że $a \cdot a^{-1} = a^{-1} \cdot a = e$. Ten warunek jest spełniony z definicji grupy (G,\cdot) . Co więcej, jak wykazano powyżej, dla tej grupy każdy element jest swoim własnym elementem odwrotnym, tzn. $a^{-1} = a$.
- 4. **Przemienność (Komutatywność):** Dla każdych dowolnych elementów $a,b\in G$, musimy pokazać, że $a\cdot b=b\cdot a$.
 - Weźmy dowolne elementy $a, b \in G$.
 - Z definicji grupy, jeśli $a \in G$ i $b \in G$, to również ich iloczyn $a \cdot b \in G$ (własność zamkniętości).
 - Ponieważ każdy element w grupie G ma rząd 2, element $(a \cdot b)$ również musi mieć rząd 2. Zatem: $(a \cdot b)^2 = e$ co jest równoważne: $(a \cdot b) \cdot (a \cdot b) = e$
 - Wiemy, że element odwrotny do iloczynu dwóch elementów w grupie jest iloczynem ich elementów odwrotnych w odwróconej kolejności (jedna z podstawowych własności grup): $(a\cdot b)^{-1}=b^{-1}\cdot a^{-1}$
 - Z wcześniejszych ustaleń (punkt 4 dowodu), wiemy, że w tej grupie każdy element jest swoim własnym elementem odwrotnym. Zatem, możemy podstawić $a^{-1}=a$ i $b^{-1}=b$: $b^{-1}\cdot a^{-1}=b\cdot a$
 - \bullet Z drugiej strony, ponieważ $(a\cdot b)$ jest elementem rzędu 2 (jak wyżej), to również jest swoim własnym elementem odwrotnym: $(a\cdot b)^{-1}=a\cdot b$
 - Porównując te dwa wyrażenia na $(a \cdot b)^{-1}$, otrzymujemy: $a \cdot b = b \cdot a$

Ponieważ warunek przemienności $(a \cdot b = b \cdot a)$ został wykazany dla dowolnych elementów $a, b \in G$, grupa (G, \cdot) jest grupą abelową.

Część 2: Znajdź element odwrotny do x=43 w ciele $(\mathbb{Z}_{79},+,\cdot)$.

W ciele $(\mathbb{Z}_{79}, +, \cdot)$ szukamy elementu odwrotnego do x = 43 względem mnożenia. Oznacza to, że poszukujemy takiej liczby całkowitej $y \in \{0, 1, \dots, 78\}$, dla której spełnione jest równanie kongruencji: $43 \cdot y \equiv 1 \pmod{79}$

Do znalezienia elementu odwrotnego wykorzystamy rozszerzony algorytm Euklidesa. Chcemy znaleźć takie liczby całkowite y i k, dla których spełnione jest równanie: 43y + 79k = 1

Kroki algorytmu Euklidesa dla NWD(79, 43):

- 1. $79 = 1 \cdot 43 + 36$
- $2. \ 43 = 1 \cdot 36 + 7$
- 3. 36 = 5.7 + 1 (Reszta wynosi 1, co oznacza, że NWD(79, 43) = 1, a więc element odwrotny istnieje)
- 4. $7 = 7 \cdot 1 + 0$

Teraz, cofamy się w algorytmie (podstawiamy reszty z równań w górę), aby wyrazić 1 jako kombinację liniową 79 i 43: Z równania (3): $1=36-5\cdot 7$

Z równania (2), podstawiamy $7 = 43 - 1 \cdot 36$:

$$1 = 36 - 5 \cdot (43 - 1 \cdot 36)$$

$$1 = 36 - 5 \cdot 43 + 5 \cdot 36$$

$$1 = 6 \cdot 36 - 5 \cdot 43$$

Z równania (1), podstawiamy $36 = 79 - 1 \cdot 43$:

$$1 = 6 \cdot (79 - 1 \cdot 43) - 5 \cdot 43$$

$$1 = 6 \cdot 79 - 6 \cdot 43 - 5 \cdot 43$$

$$1 = 6 \cdot 79 - 11 \cdot 43$$

Otrzymaliśmy równanie diofantyczne 1 = $-11\cdot 43+6\cdot 79.$ Odczytując je modulo 79, otrzymujemy: $-11\cdot 43\equiv 1\pmod{79}$

Elementem odwrotnym do 43 jest -11 w arytmetyce modulo 79. Aby przedstawić go jako liczbę dodatnią w zakresie od 0 do 78, dodajemy 79 do -11: -11+79=68

Zatem elementem odwrotnym do x = 43 w ciele $(\mathbb{Z}_{79}, +, \cdot)$ jest **68**.

Sprawdzenie: Aby upewnić się co do poprawności rozwiązania, wykonujemy mnożenie: 43.68 = 2924 Następnie sprawdzamy resztę z dzielenia 2924 przez 79: $2924 \div 79 = 37$ z resztą 1. Czyli, 2924 = 37.79 + 1, co oznacza $2924 \equiv 1 \pmod{79}$. Wynik jest poprawny.