آمار و احتمال مهندسی

نيمسال دوم ۱۴۰۱_۱۴۰۰

توزیع های احتمالاتی و توام

مسئلەي ١.

فرض کنید Xطول عمر یک دستگاه الکترونیکی و Y طول عمر یکی از اجزای آن باشد. فرض کنید با از کار افتادن این جزء دستگاه از کار بیفتد (ولی عکس آن لزوما درست نباشد.) به علاوه فرض کنید که تابع چگالی احتمال توام X و Y به صورت زیر باشد:

$$f_{X,Y}(x,y) = \begin{cases} \frac{1}{\sqrt{q}} e^{-\frac{y}{\sqrt{q}}} & & * \leq x \leq y < \infty \\ & & O.W \end{cases}$$

امیدریاضی باقیمانده طول عمر این جزء را وقتی دستگاه از کار میافتد را تعیین کنید.

حل.

خواسته مسئله به این صورت میباشد $\mathbb{E}[|Y-X|]$ و چون طبق تعریف همواره مقدار Y از مقدار X بیشتر میباشد باید مقدار $\mathbb{E}[Y-X]$ را بدست آوریم. با استفاده از Lotus داریم :

$$\mathbb{E}[Y-X] = \int_{1}^{\infty} \int_{1}^{y} (y-x)f(x,y) \, dx \, dy = \int_{1}^{\infty} \int_{1}^{y} (y-x) \frac{1}{\sqrt{2}} e^{\frac{-y}{\sqrt{2}}} \, dx \, dy = \frac{1}{\sqrt{2}} \int_{1}^{\infty} y^{2} e^{\frac{-y}{\sqrt{2}}} \, dy$$

$$= \frac{1}{V} \int_{\cdot}^{\infty} y e^{\frac{-y}{V}} dy = \int_{\cdot}^{\infty} e^{\frac{-y}{V}} dy = V$$

 \triangleright

مسئلەي ٢.

متغیر تصادفی X دارای تابع توزیع f(x) است. به ازای چه مقداری از c حاصل f(x) کمینه میشود. راهنمایی : میتوانید از تکنیک زیر برای مشتق گیری استفاده کنید. به ازای بازه ثابت R داریم :

$$\frac{\partial}{\partial x} \int_R f(x,t) \, dt = \int_R \frac{\partial}{\partial x} f(x,t) \, dt$$

حل.

با استفاده از Lotus داریم:

$$g(c) = \mathbb{E}[(X - c)^{\mathsf{Y}}] = \int_{-\infty}^{\infty} (X - c)^{\mathsf{Y}} f(x) dx$$

$$\frac{\partial}{\partial c}g(c) = \int_{-\infty}^{\infty} Y(c - X)f(x) dx = \bullet$$

$$c\int_{-\infty}^{\infty} f(x) dx = c = \int_{-\infty}^{\infty} x f(x) dx = \mathbb{E}[X]$$

نکات مهم

• پاسخ خود را در قالب یک فایل pdf با اسم [STD-Num] آپلود کنید.

موفق باشيد :)