Test Plot 1#: GSM 850_Head Flat_Middle

DUT: Mobile Phone; Type: 3G Flip; Serial: 17022400520;

Communication System: GSM; Frequency: 836.6 MHz; Duty Cycle: 1:8

Medium parameters used: 836.6 MHz; $\sigma = 0.894$ S/m; $\varepsilon_r = 40.896$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

DASY5 Configuration:

• Probe: EX3DV4 - SN7441; ConvF(10.22, 10.22, 10.22); Calibrated: 2016/11/15;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn379; Calibrated: 2016/10/4

Phantom: SAM 1; Type: QD000P40CC; Serial: TP:1412

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (91x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.313 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.257 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.327 W/kg

SAR(1 g) = 0.229 W/kg; SAR(10 g) = 0.154 W/kg

Maximum value of SAR (measured) = 0.294 W/kg

0 dB = 0.294 W/kg = -5.32 dBW/kg

Test Plot 2#: GSM 850_Body Worn Back_Low

DUT: Mobile Phone; Type: 3G Flip; Serial: 17022400520;

Communication System: GSM; Frequency: 824.2 MHz; Duty Cycle: 1:8

Medium parameters used: 824.2 MHz; $\sigma = 0.964$ S/m; $\varepsilon_r = 55.532$; $\rho = 1000$ kg/m³;

Phantom section: Right Section

DASY5 Configuration:

• Probe: EX3DV4 - SN7441; ConvF(9.85, 9.85, 9.85); Calibrated: 2016/11/15;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn379; Calibrated: 2016/10/4

• Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130

Measurement SW: DASY52, Version 52.8 (8);

Area Scan (91x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 2.89 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 35.35 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 3.11 W/kg

SAR(1 g) = 1.35 W/kg; SAR(10 g) = 0.901 W/kg

Maximum value of SAR (measured) = 2.35 W/kg

0 dB = 2.35 W/kg = 3.71 dBW/kg

Test Plot 3#: GSM 850_Body Worn Back_Middle

DUT: Mobile Phone; Type: 3G Flip; Serial: 17022400520;

Communication System: GSM; Frequency: 836.6 MHz; Duty Cycle: 1:8

Medium parameters used: 836.6 MHz; $\sigma = 0.977$ S/m; $\varepsilon_r = 55.411$; $\rho = 1000$ kg/m³;

Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(9.85, 9.85, 9.85); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (91x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 3.00 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 36.36 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 3.11 W/kg

SAR(1 g) = 1.38 W/kg; SAR(10 g) = 0.904 W/kg

Maximum value of SAR (measured) = 2.31 W/kg

0 dB = 2.31 W/kg = 3.64 dBW/kg

Test Plot 4#: GSM 850_Body Worn Back_High

DUT: Mobile Phone; Type: 3G Flip; Serial: 17022400520;

Communication System: GSM; Frequency: 848.8 MHz; Duty Cycle: 1:8

Medium parameters used: 848.8 MHz; $\sigma = 0.971$ S/m; $\varepsilon_r = 55.208$; $\rho = 1000$ kg/m³;

Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(9.85, 9.85, 9.85); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (91x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 2.62 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 35.87 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 2.74 W/kg

SAR(1 g) = 1.24 W/kg; SAR(10 g) = 0.797 W/kg

Maximum value of SAR (measured) = 2.12 W/kg

0 dB = 2.12 W/kg = 3.26 dBW/kg

Test Plot 5#: GSM 850_Body Back_Low

DUT: Mobile Phone; Type: 3G Flip; Serial: 17022400520;

Communication System: GPRS-2 slots; Frequency: 824.2 MHz;Duty Cycle: 1:4 Medium parameters used: 824.2 MHz; σ = 0.964 S/m; ϵ_r = 55.532; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(9.85, 9.85, 9.85); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (91x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 2.36 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 31.53 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 2.75 W/kg

SAR(1 g) = 1.19 W/kg; SAR(10 g) = 0.639 W/kg

Maximum value of SAR (measured) = 2.10 W/kg

0 dB = 2.10 W/kg = 3.22 dBW/kg

Test Plot 6#: GSM 850_Body Back_Middle

DUT: Mobile Phone; Type: 3G Flip; Serial: 17022400520;

Communication System: GPRS-2 slots; Frequency: 836.6 MHz;Duty Cycle: 1:4 Medium parameters used: 836.6 MHz; σ = 0.977 S/m; ϵ_r = 55.411; ρ = 1000 kg/m 3 ; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(9.85, 9.85, 9.85); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (91x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 2.50 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 32.72 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 2.80 W/kg

SAR(1 g) = 1.25 W/kg; SAR(10 g) = 0.684 W/kg

Maximum value of SAR (measured) = 2.15 W/kg

Test Plot 7#: GSM 850_Body Back_High

DUT: Mobile Phone; Type: 3G Flip; Serial: 17022400520;

Communication System: GPRS-2 slots; Frequency: 848.8 MHz;Duty Cycle: 1:4 Medium parameters used: 848.8 MHz; σ = 0.971 S/m; ϵ_r = 55.208; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(9.85, 9.85, 9.85); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (91x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 2.36 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 31.98 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 2.62 W/kg

SAR(1 g) = 1.19 W/kg; SAR(10 g) = 0.653 W/kg

Maximum value of SAR (measured) = 2.06 W/kg

Test Plot 8#: GSM 1900_Head Flat_Middle

DUT: Mobile Phone; Type: 3G Flip; Serial: 17022400520;

Communication System: GSM; Frequency: 1880 MHz; Duty Cycle: 1:8

Medium parameters used: 1880 MHz; $\sigma = 1.396$ S/m; $\varepsilon_r = 39.01$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(8.48, 8.48, 8.48); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: SAM 1; Type: QD000P40CC; Serial: TP:1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (91x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0831 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.291 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 0.0970 W/kg

SAR(1 g) = 0.056 W/kg; SAR(10 g) = 0.034 W/kg

Maximum value of SAR (measured) = 0.0806 W/kg

0 dB = 0.0806 W/kg = -10.94 dBW/kg

Test Plot 9#: GSM 1900_Body Worn Back_Middle

DUT: Mobile Phone; Type: 3G Flip; Serial: 17022400520;

Communication System: GSM; Frequency: 1880 MHz; Duty Cycle: 1:8

Medium parameters used: 1880 MHz; $\sigma = 1.505$ S/m; $\varepsilon_r = 52.721$; $\rho = 1000$ kg/m³;

Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(7.95, 7.95, 7.95); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (91x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.02 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.149 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 1.17 W/kg

SAR(1 g) = 0.583 W/kg; SAR(10 g) = 0.268 W/kg

Maximum value of SAR (measured) = 0.937 W/kg

0 dB = 0.937 W/kg = -0.28 dBW/kg

Test Plot 10#: GSM 1900_Body Back_Low

DUT: Mobile Phone; Type: 3G Flip; Serial: 17022400520;

Communication System: GPRS-3 slots; Frequency: 1850.2 MHz; Duty Cycle: 1:2.66 Medium parameters used: 1850.2 MHz; σ = 1.477 S/m; ϵ_r = 53.172; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(7.95, 7.95, 7.95); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (91x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.965 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.332 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 1.30 W/kg

SAR(1 g) = 0.622 W/kg; SAR(10 g) = 0.284 W/kgMaximum value of SAR (measured) = 0.954 W/kg

Test Plot 11#: GSM 1900_Body Back_Middle

DUT: Mobile Phone; Type: 3G Flip; Serial: 17022400520;

Communication System: GPRS-3 slots; Frequency: 1880 MHz;Duty Cycle: 1:2.66 Medium parameters used: 1880 MHz; σ = 1.505 S/m; ϵ_r = 52.721; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(7.95, 7.95, 7.95); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (91x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.35 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.152 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.79 W/kg

SAR(1 g) = 0.866 W/kg; SAR(10 g) = 0.398 W/kg

Maximum value of SAR (measured) = 1.35 W/kg

Test Plot 12#: GSM 1900_Body Back_High

DUT: Mobile Phone; Type: 3G Flip; Serial: 17022400520;

Communication System: GPRS-3 slots; Frequency: 1909.8 MHz; Duty Cycle: 1:2.66 Medium parameters used: 1909.8 MHz; σ = 1.534 S/m; ϵ_r = 52.716; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(7.95, 7.95, 7.95); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (91x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.71 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.326 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 2.23 W/kg

SAR(1 g) = 1.09 W/kg; SAR(10 g) = 0.505 W/kg

Maximum value of SAR (measured) = 1.72 W/kg

Test Plot 13#: WCDMA Band 2_Head Flat_Middle

DUT: Mobile Phone; Type: 3G Flip; Serial: 17022400520;

Communication System: WCDMA; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: 1880 MHz; σ = 1.396 S/m; ϵ_r = 39.01; ρ = 1000 kg/m³;

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(8.48, 8.48, 8.48); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: SAM 1; Type: QD000P40CC; Serial: TP:1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (91x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.128 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.984 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 0.149 W/kg

SAR(1 g) = 0.086 W/kg; SAR(10 g) = 0.052 W/kg

Maximum value of SAR (measured) = 0.124 W/kg

0 dB = 0.124 W/kg = -9.07 dBW/kg

Test Plot 14#: WCDMA Band 2_Body Back_Low

DUT: Mobile Phone; Type: 3G Flip; Serial: 17022400520;

Communication System: WCDMA; Frequency: 1852.4 MHz;Duty Cycle: 1:1 Medium parameters used: 1852.4 MHz; σ = 1.48 S/m; ϵ_r = 53.152; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(7.95, 7.95, 7.95); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (91x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.847 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.618 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.26 W/kg

SAR(1 g) = 0.617 W/kg; SAR(10 g) = 0.288 W/kg

Maximum value of SAR (measured) = 1.03 W/kg

Test Plot 15#: WCDMA Band 2_Body Back_Middle

DUT: Mobile Phone; Type: 3G Flip; Serial: 17022400520;

Communication System: WCDMA; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: 1880 MHz; σ = 1.505 S/m; ϵ_r = 52.721; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(7.95, 7.95, 7.95); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (91x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.43 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.847 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 2.06 W/kg

SAR(1 g) = 1.01 W/kg; SAR(10 g) = 0.478 W/kg

Maximum value of SAR (measured) = 1.71 W/kg

0 dB = 1.71 W/kg = 2.33 dBW/kg

Test Plot 16#: WCDMA Band 2_Body Back_High

DUT: Mobile Phone; Type: 3G Flip; Serial: 17022400520;

Communication System: WCDMA; Frequency: 1907.6 MHz;Duty Cycle: 1:1 Medium parameters used: 1907.6 MHz; σ = 1.532 S/m; ϵ_r = 52.721; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(7.95, 7.95, 7.95); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (91x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.28 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.048 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 1.79 W/kg

SAR(1 g) = 0.891 W/kg; SAR(10 g) = 0.424 W/kg

Maximum value of SAR (measured) = 1.49 W/kg

Test Plot 17#: WCDMA Band 5_Head Flat_Middle

DUT: Mobile Phone; Type: 3G Flip; Serial: 17022400520;

Communication System: WCDMA; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium parameters used: 836.6 MHz; σ = 0.894 S/m; ϵ_r = 40.896; ρ = 1000 kg/m³;

Phantom section: Flat Section

DASY5 Configuration:

• Probe: EX3DV4 - SN7441; ConvF(10.22, 10.22, 10.22); Calibrated: 2016/11/15;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn379; Calibrated: 2016/10/4

• Phantom: SAM 1; Type: QD000P40CC; Serial: TP:1412

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (91x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0695 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.566 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.0750 W/kg

SAR(1 g) = 0.054 W/kg; SAR(10 g) = 0.038 W/kg

Maximum value of SAR (measured) = 0.0681 W/kg

0 dB = 0.0681 W/kg = -11.67 dBW/kg

Test Plot 18#: WCDMA Band 5_Body Back_Low

DUT: Mobile Phone; Type: 3G Flip; Serial: 17022400520;

Communication System: WCDMA; Frequency: 826.4 MHz;Duty Cycle: 1:1 Medium parameters used: 826.4 MHz; σ = 0.96 S/m; ϵ_r = 55.454; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(9.85, 9.85, 9.85); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (91x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.61 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.11 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 1.72 W/kg

SAR(1 g) = 0.771 W/kg; SAR(10 g) = 0.413 W/kg

Maximum value of SAR (measured) = 1.33 W/kg

Test Plot 19#: WCDMA Band 5_Body Back_Middle

DUT: Mobile Phone; Type: 3G Flip; Serial: 17022400520;

Communication System: WCDMA; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium parameters used: 836.6 MHz; σ = 0.977 S/m; ϵ_r = 55.411; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(9.85, 9.85, 9.85); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (91x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 2.06 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 28.53 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 2.00 W/kg

SAR(1 g) = 0.938 W/kg; SAR(10 g) = 0.562 W/kg

Maximum value of SAR (measured) = 1.50 W/kg

Test Plot 20#: WCDMA Band 5_Body Back_High

DUT: Mobile Phone; Type: 3G Flip; Serial: 17022400520;

Communication System: WCDMA; Frequency: 846.6 MHz; Duty Cycle: 1:1 Medium parameters used: 846.6 MHz; σ = 0.981 S/m; ϵ_r = 55.297; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(9.85, 9.85, 9.85); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (91x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 2.06 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.99 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 2.21 W/kg

SAR(1 g) = 1 W/kg; SAR(10 g) = 0.541 W/kg

Maximum value of SAR (measured) = 1.71 W/kg

