World Happiness Report

X Æ A-Xii

6.12.2021.

Motivacija i opis problema

World Happiness Report je publikacija Mreže rješenja za održivi razvoj Ujedinjenih naroda koja sadrži podatke o osjećaju sreće pojedinih nacija. Podatci su dobiveni kroz ankete koje provode Gallup i Lloyd's Register Foundation. Prvi je izvještaj objavljen 2012. godine, a od 2016. se objavljuje na Međunarodni dan sreće 20. ožujka.

Učitavanje podataka o svjetskom bogatstvu 2021. godine

```
wealth <- read_excel("C:/Users/Sara/Documents/My Fax/SAP/whr-sap/files/credit_suisse_global_wealth_data
```

```
## New names:
## * '' -> ...6
## * '' -> ...7
## * '' -> ...8
## * '' -> ...9

dim(wealth)

## [1] 169 10
```

```
head(wealth)
```

```
## # A tibble: 6 x 10
     'Country name' 'Adults (thousands)' 'Mean wealth per adu~ 'Median wealth per ~
##
##
     <chr>
                                    <dbl>
                                                           <dbl>
                                                                                 <dbl>
## 1 <NA>
                                       NA
                                                              NA
                                                                                    NA
## 2 Afghanistan
                                    18356
                                                            1744
                                                                                   734
## 3 Albania
                                     2187
                                                           30524
                                                                                 15363
## 4 Algeria
                                    27620
                                                                                  2302
                                                            8871
## 5 Angola
                                    14339
                                                            3529
                                                                                  1131
## 6 Argentina
                                    30799
                                                            7224
                                                                                  2157
## # ... with 6 more variables:
     Distribution of adults (%) by wealth range (USD) <chr>, ...6 <chr>,
       ...7 <chr>, ...8 <chr>, ...9 <chr>, Gini (%) <dbl>
```

Učitavanje podataka o globalnoj sreći 2020. godine

You can also embed plots, for example:

```
whr2020 <- read_excel("C:/Users/Sara/Documents/My Fax/SAP/whr-sap/files/WHR_2020.xlsx")
dim(whr2020)</pre>
```

[1] 153

head(whr2020)

```
## # A tibble: 6 x 9
##
     'Country name' 'Regional indicator' 'Ladder score' 'Logged GDP per capita'
                                                  <dbl>
##
## 1 Finland
                    Western Europe
                                                   7.81
                                                                           10.6
## 2 Denmark
                    Western Europe
                                                   7.65
                                                                           10.8
## 3 Switzerland
                    Western Europe
                                                   7.56
                                                                           11.0
## 4 Iceland
                    Western Europe
                                                   7.50
                                                                           10.8
## 5 Norway
                    Western Europe
                                                   7.49
                                                                           11.1
## 6 Netherlands
                    Western Europe
                                                   7.45
                                                                           10.8
## # ... with 5 more variables: Social support <dbl>,
      Healthy life expectancy <dbl>, Freedom to make life choices <dbl>,
      Generosity <dbl>, Perceptions of corruption <dbl>
```

Učitavanje podataka o globalnoj sreći 2021. godine

You can also embed plots, for example:

```
whr2021 <- read_excel("C:/Users/Sara/Documents/My Fax/SAP/whr-sap/files/WHR_2021.xlsx")
dim(whr2021)</pre>
```

[1] 149 11

head(whr2021)

```
## # A tibble: 6 x 11
##
     'Country name' 'Regional indicator' 'Ladder score' 'Logged GDP per capita'
     <chr>
                    <chr>>
                                                   <dbl>
                                                                           <dbl>
                                                                            10.8
                                                   7.84
## 1 Finland
                    Western Europe
## 2 Denmark
                    Western Europe
                                                   7.62
                                                                            10.9
## 3 Switzerland
                    Western Europe
                                                   7.57
                                                                            11.1
## 4 Iceland
                    Western Europe
                                                   7.55
                                                                            10.9
## 5 Netherlands
                    Western Europe
                                                   7.46
                                                                            10.9
## 6 Norway
                    Western Europe
                                                   7.39
                                                                            11.1
## # ... with 7 more variables: Social support <dbl>,
      Healthy life expectancy <dbl>, Freedom to make life choices <dbl>,
## #
       Generosity <dbl>, Perceptions of corruption <dbl>, Income Gini <dbl>,
## #
      Wealth Gini <dbl>
```

Je li razina sreće veća u 2020. ili 2021. godini?

Ovo pitanje ćemo provjeravati uparenim t-testom. Podaci koje koristimo su razlike rezultata WHR-a u 2021. i 2020. godini za iste države.

Prvo ćemo napraviti dva boxplota kako bi vizualizirali podatke za pojedinu godinu.

boxplot(whr2020\$`Ladder score`, whr2021\$`Ladder score`, names = c("Ladder scores in 2020.", "Ladder score

Vidimo da su srednje vrijednosti rezultata za obje godine otprilike jednake.

Sada ćemo prikazati razlike rezultata pomoću histograma kako bismo se uvjerili u normalnost podataka, budući da je to uvjet za provođenje uparenog t-testa.

Također ćemo ih prikazati pomoću boxplota, da lakše uoćimo stršeće vrijednosti.

```
whr_merged = merge(whr2021, whr2020, by="Country name")
ladderScore_differences = whr_merged$`Ladder score.x`- whr_merged$`Ladder score.y`
hist(ladderScore_differences, xlab="Ladder score difference", main="Histogram of the differences between
```

Histogram of the differences between ladder scores in 2021. and 202

boxplot(ladderScore_differences, main="Boxplot of the differences between ladder scores in 2021. and 20

Boxplot of the differences between ladder scores in 2021. and 2020

Mogli bismo otprilike reći da podaci jesu normalno distribuirani, no da su ipak više zbijeni oko sredine.

 ${\bf S}$ ciljem povećavanja normalnosti, izbacit ćemo stršeće vrijednosti te ponovno prikazati histogram i boxplot dobivenih podataka.

ladderScore_differences_no_outliers = ladderScore_differences[!ladderScore_differences %in% boxplot.sta
length(ladderScore_differences) - length(ladderScore_differences_no_outliers)

[1] 8

hist(ladderScore_differences_no_outliers, xlab="Ladder score difference", main="Histogram of ladder score

Histogram of ladder score differences without outliers

boxplot(ladderScore_differences_no_outliers, main="Boxplot of ladder score differences without outliers

Boxplot of ladder score differences without outliers

Uočavamo da su nam sadašnji podaci distribuirani puno više normalno, nego što su prije bili, a izbacili smo samo 8 vrijednosti.

Da bismo se uvjerili u normalnost podataka, možemo je provjeriti i pomoću qq-plota.

```
qqnorm(ladderScore_differences_no_outliers, pch = 1, frame = FALSE, main="Differences between ladder sc
qqline(ladderScore_differences_no_outliers, col = "steelblue", lwd = 2)
```

Differences between ladder scores in 2021, and 2020.

Kao i histogram, qq-plot nam upućuje na normalnost podataka. Jeini podaci koji se ne ravnaju savršeno po normalnoj distribuciji su oni rubni.

Još da budemo sasvim sigurni u normalnost naših podataka, provest ćemo Kolmogorov-Smirnovljev test. Hipoteze su nam sljedeće:

 H_0 : podaci su normalno distribuirani $H_1: {\it podaci nisu normalno distribuirani}$

ks.test(ladderScore_differences_no_outliers, "pnorm", mean(ladderScore_differences_no_outliers), sd(ladderScore_differences_no_outliers)

```
## Warning in ks.test(ladderScore_differences_no_outliers, "pnorm",
## mean(ladderScore_differences_no_outliers), : ties should not be present for the
## Kolmogorov-Smirnov test
##
## One-sample Kolmogorov-Smirnov test
##
## data: ladderScore_differences_no_outliers
## D = 0.04168, p-value = 0.9681
## alternative hypothesis: two-sided
```

Budući da je p-vrijednost znatno veća od 0.05, ne odbijamo nul hipotezu o normalnosti podataka te možemo krenuti s obostranim t-testom.

Hipoteze nam glase ovako:

 $H_0: \mu_{2021} = \mu_{2020}$ $H_1: \mu_{2021} \neq \mu_{2020}$ t.test(whr_merged\$`Ladder score.x`, whr_merged\$`Ladder score.y`, paired=TRUE, alternative="two.sided",c

```
##
## Paired t-test
##
## data: whr_merged$'Ladder score.x' and whr_merged$'Ladder score.y'
## t = 2.0746, df = 147, p-value = 0.03977
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.001230481 0.050664122
## sample estimates:
## mean of the differences
## 0.0259473
```

Budući da smo dobili p-vrijednost manju od 0.05, odbijamo hipotezu o jednakosti rezultata WHR-a u 2020. i 2021. godini u korist alternativne hipoteze.

Provest ćemo još jedan t-test, no ovaj put jednostrani sa sljedećim hipotezama:

```
H_0: \mu_{2021} \le \mu_{2020}

H_1: \mu_{2021} > \mu_{2020}
```

t.test(whr_merged\$`Ladder score.x`, whr_merged\$`Ladder score.y`, paired=TRUE, alternative="greater",con

Zbog p-vrijednosti manje od 0.05, odbijamo nul hipotezu i prihvaćemo alternativnu, odnosno da je razina sreće veća u 2021. nego što je bila u 2020. godini.

Možemo li temeljem drugih dostupnih variabli predvidjeti sreću neke nacije?

Koja je od njih najbolji prediktor sreće?

Jedna nacija u našem data setu jednaka jednom retku, te nam je dana varijabla Ladder score, tj. razina sreće, pa imamo podatak o razini sreće svake države. Stoga naslućujemo da je linearna regresija način kako odgovoriti na ova pitanja. Prvo ćemo nadopuniti nedostajuće vrijednosti, a onda se pozabaviti linearnom regresijom.

Nadopunjavanje nedostajućih vrijednosti

S obzirom da u stupcima Income Gini i Wealth Gini nedostaju neke vrijednosti, te ćemo vrijednosti nadopuniti prosječnim vrijednostima tih stupaca pomoću paketa imputeTS.

```
whr2021$`Wealth Gini` <- na_mean(whr2021$`Wealth Gini`)
whr2021$`Income Gini` <- na_mean(whr2021$`Income Gini`)</pre>
```

Kako bi znali predvidjeti razinu sreće, možemo ispitati različite varijable koje bi mogle utjecati na sreću:

- GDP
- socijalna podrška
- očekivanje trajanja života
- sloboda donošenja odluka
- darežljivost
- percepcija korupcije
- dohodak
- bogatstvo

Kad promatramo utjecaj samo jedne nezavisne varijable X na neku zavisnu varijablu Y, grafički je moguće dobiti jako dobar dojam o njihovom odnosu - tu je najčešće od pomoći scatter plot. Pogledajmo kako izgledaju scatter plot-ovi naših varijabli:

```
plot(whr2021$`Logged GDP per capita`, whr2021$`Ladder score`) #graficki prikaz podataka
```


plot(whr2021\$`Healthy life expectancy`, whr2021\$`Ladder score`) #graficki prikaz podataka

plot(whr2021\$`Freedom to make life choices`, whr2021\$`Ladder score`) #graficki prikaz podataka

plot(whr2021\$`Generosity`, whr2021\$`Ladder score`) #graficki prikaz podataka

plot(whr2021\$`Perceptions of corruption`, whr2021\$`Ladder score`) #graficki prikaz podataka

plot(whr2021\$`Income Gini`, whr2021\$`Ladder score`) #graficki prikaz podataka

plot(whr2021\$`Wealth Gini`, whr2021\$`Ladder score`) #graficki prikaz podataka

Kao što smo već ranije spomenuli, modelom linearne regresije pokušati ćemo predviditi sreću neke nacije pa napišimo stoga što smo dosad naučili o linearnoj regresiji.

Linearna regresija

Linearna regresija korisna je u raznim istraživačkim i praktičnim situacijama, a daje odgovore na nekoliko bitnih pitanja, od kojih nas zanimjaju sljedeća:

- Postoji li veza između ulazne varijable (ili više ulaznih varijabli) regresora, i izlazne varijable (reakcije), unašem slučaju razine sreće?
- Koliko je jaka ta veza?
- Koje ulazne varijable najviše utječu na izlaznu varijablu i koliko je jak taj efekt?

Model linearne regresije i estimacija parametara

Model linearne regresije pretpostavlja linearnu vezu između ulaznih i izlaznih varijabli:

$$Y = \beta_0 + \sum_{j=1}^{p} \beta_j x_j + \epsilon$$

Pretpostavke modela:

- linearnost veze X i Y
- pogreške nezavisne, homogene i normalno distribuirane s $\epsilon \sim \mathcal{N}(0, \sigma^2)$

Iz podataka je moguće dobiti procjenu modela:

$$\hat{Y} = b_0 + \sum_{j=1}^{p} b_j x_j + e,$$

odnosno:

$$\hat{\mathbf{v}} = \mathbf{X}\mathbf{b} + \mathbf{e}$$

u matričnom zapisu.

Procjena je zasnovana na metodi najmanjih kvadrata, tj. minimizaciji tzv. "sum of squared errors":

$$SSE = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2 = (\mathbf{y} - \mathbf{X}\mathbf{b})^T (\mathbf{y} - \mathbf{X}\mathbf{b})$$

Pogledajmo onda sada za koje od ponuđenih varijabli očekujemo da bi mogle biti dobar prediktor razine sreće.

Iz grafova se vidi da GDP, socijalna podrška, očekivanje trajanja života i sloboda donošenja odluka imaju utjecaja na razinu sreće. Darežljivost, percepcija korupcije, dohodak i bogatstvo su slabiji kandidati za modeliranje razine sreće.

Pomoću modela jednostavne regresije, ispitati ćemo pojedinačni utjecaj svake varijable.

```
fit.gdp = lm(formula = whr2021$`Ladder score`~whr2021$`Logged GDP per capita`,data=whr2021) #linearni m fit.supp = lm(formula = whr2021$`Ladder score`~whr2021$`Social support`,data=whr2021) #linearni model fit.hle = lm(formula = whr2021$`Ladder score`~whr2021$`Healthy life expectancy`,data=whr2021) #linearni fit.frd = lm(formula = whr2021$`Ladder score`~whr2021$`Freedom to make life choices`,data=whr2021) #line fit.gen = lm(formula = whr2021$`Ladder score`~whr2021$`Generosity`,data=whr2021) #linearni model ocjene fit.corr = lm(formula = whr2021$`Ladder score`~whr2021$`Perceptions of corruption`,data=whr2021) #linearni fit.inc = lm(formula = whr2021$`Ladder score`~whr2021$`Income Gini`,data=whr2021) #linearni model ocjene fit.wlth = lm(formula = whr2021$`Ladder score`~whr2021$`Wealth Gini`,data=whr2021) #linearni model ocjene fit.wlth = lm(formula = whr2021$`Ladder score`~whr2021$`Wealth Gini`,data=whr2021) #linearni model ocjene fit.wlth = lm(formula = whr2021$`Ladder score`~whr2021$`Wealth Gini`,data=whr2021) #linearni model ocjene fit.wlth = lm(formula = whr2021$`Ladder score`~whr2021$`Wealth Gini`,data=whr2021) #linearni model ocjene fit.wlth = lm(formula = whr2021$`Ladder score`~whr2021$`Wealth Gini`,data=whr2021) #linearni model ocjene fit.wlth = lm(formula = whr2021$`Ladder score`~whr2021$`Wealth Gini`,data=whr2021) #linearni model ocjene fit.wlth = lm(formula = whr2021$`Ladder score`~whr2021$`Wealth Gini`,data=whr2021) #linearni model ocjene fit.wlth = lm(formula = whr2021$`Ladder score`~whr2021$`Wealth Gini`,data=whr2021) #linearni model ocjene fit.wlth = lm(formula = whr2021$`Ladder score`~whr2021$`Ladder score`) #graficki prikaz podataka
```


plot(whr2021\$`Social support`, whr2021\$`Ladder score`) #graficki prikaz podataka lines(whr2021\$`Social support`,fit.ssupp\$fitted.values,col='red') #graficki prikaz procijenjenih vrijed

plot(whr2021\$`Healthy life expectancy`, whr2021\$`Ladder score`) #graficki prikaz podataka lines(whr2021\$`Healthy life expectancy`,fit.hle\$fitted.values,col='red') #graficki prikaz procijenjenih

plot(whr2021\$`Freedom to make life choices`, whr2021\$`Ladder score`) #graficki prikaz podataka lines(whr2021\$`Freedom to make life choices`,fit.frd\$fitted.values,col='red') #graficki prikaz procijen

plot(whr2021\$`Generosity`, whr2021\$`Ladder score`) #graficki prikaz podataka lines(whr2021\$`Generosity`,fit.gen\$fitted.values,col='red') #graficki prikaz procijenjenih vrijednosti

plot(whr2021\$`Perceptions of corruption`, whr2021\$`Ladder score`) #graficki prikaz podataka lines(whr2021\$`Perceptions of corruption`,fit.corr\$fitted.values,col='red') #graficki prikaz procijenje

plot(whr2021\$`Income Gini`, whr2021\$`Ladder score`) #graficki prikaz podataka lines(whr2021\$`Income Gini`,fit.inc\$fitted.values,col='red') #graficki prikaz procijenjenih vrijednosti

plot(whr2021\$`Wealth Gini`, whr2021\$`Ladder score`) #graficki prikaz podataka lines(whr2021\$`Wealth Gini`,fit.wlth\$fitted.values,col='red') #graficki prikaz procijenjenih vrijednost

Nagibi pravaca linearne regresije nam pokazuju utjecaj pojedinih varijabli na izlaznu varijablu. Kako bismo usporedili i analizirali dobivene modele, provjeriti ćemo da pretpostavke modela nisu narušene. Pritom su najbitnije pretpostavke o regresorima (u multivarijatnoj regresiji regresori ne smiju biti međusobno jako korelirani) i o rezidualima (normalnost reziduala i homogenost varijance).

Provjera normalnosti

Normalnost reziduala provjeriti ćemo grafički pomoću histograma i kvantil-kvantil plota te statistički s Kolmogorov-Smirovljevim testom i Lillieforsovom korekcijom.

plot(fit.gdp\$residuals) #gledajuci reziduale na ovaj nacin tesko je suditi o normalnosti

Provjera normalnosti GDP-a

hist((fit.gdp\$residuals))

Histogram of (fit.gdp\$residuals)

hist(rstandard(fit.gdp))

Histogram of rstandard(fit.gdp)


```
qqnorm(rstandard(fit.gdp))
qqline(rstandard(fit.gdp))
```

Normal Q-Q Plot

plot(fit.gdp\$fitted.values,fit.gdp\$residuals)


```
ks.test(rstandard(fit.gdp),'pnorm')
##
    One-sample Kolmogorov-Smirnov test
##
##
## data: rstandard(fit.gdp)
## D = 0.057746, p-value = 0.7031
## alternative hypothesis: two-sided
require(nortest)
## Loading required package: nortest
lillie.test(rstandard(fit.gdp))
##
   Lilliefors (Kolmogorov-Smirnov) normality test
##
##
## data: rstandard(fit.gdp)
## D = 0.057295, p-value = 0.2706
```

plot(fit.ssupp\$residuals) #gledajuci reziduale na ovaj nacin tesko je suditi o normalnosti

Provjera normalnosti socijalne podrške

hist((fit.ssupp\$residuals))

Histogram of (fit.ssupp\$residuals)

hist(rstandard(fit.ssupp))

Histogram of rstandard(fit.ssupp)


```
qqnorm(rstandard(fit.ssupp))
qqline(rstandard(fit.ssupp))
```

Normal Q-Q Plot

plot(fit.ssupp\$fitted.values,fit.ssupp\$residuals)


```
ks.test(rstandard(fit.ssupp), 'pnorm')

##

## One-sample Kolmogorov-Smirnov test

##

## data: rstandard(fit.ssupp)

## D = 0.063546, p-value = 0.5842

## alternative hypothesis: two-sided

lillie.test(rstandard(fit.ssupp))

##

## Lilliefors (Kolmogorov-Smirnov) normality test

##

## data: rstandard(fit.ssupp)

## D = 0.063637, p-value = 0.1475
```

plot(fit.hle\$residuals) #gledajuci reziduale na ovaj nacin tesko je suditi o normalnosti

Provjera normalnosti očekivanja trajanja života

hist((fit.hle\$residuals))

Histogram of (fit.hle\$residuals)

hist(rstandard(fit.hle))

Histogram of rstandard(fit.hle)


```
qqnorm(rstandard(fit.hle))
qqline(rstandard(fit.hle))
```

Normal Q-Q Plot

plot(fit.hle\$fitted.values,fit.hle\$residuals)


```
ks.test(rstandard(fit.hle),'pnorm')

##

## One-sample Kolmogorov-Smirnov test

##

## data: rstandard(fit.hle)

## D = 0.057528, p-value = 0.7075

## alternative hypothesis: two-sided

lillie.test(rstandard(fit.hle))

##

## Lilliefors (Kolmogorov-Smirnov) normality test

##

## data: rstandard(fit.hle)

## D = 0.057051, p-value = 0.2765
```

plot(fit.frd\$residuals) #gledajuci reziduale na ovaj nacin tesko je suditi o normalnosti

Provjera normalnosti slobode donošenja odluka

hist((fit.frd\$residuals))

Histogram of (fit.frd\$residuals)

hist(rstandard(fit.frd))

Histogram of rstandard(fit.frd)


```
qqnorm(rstandard(fit.frd))
qqline(rstandard(fit.frd))
```

Normal Q-Q Plot

plot(fit.frd\$fitted.values,fit.frd\$residuals)


```
ks.test(rstandard(fit.frd),'pnorm')

##

## One-sample Kolmogorov-Smirnov test

##

## data: rstandard(fit.frd)

## D = 0.051932, p-value = 0.8165

## alternative hypothesis: two-sided

lillie.test(rstandard(fit.frd))

##

## Lilliefors (Kolmogorov-Smirnov) normality test

##

## data: rstandard(fit.frd)

##

## data: rstandard(fit.frd)

## D = 0.051823, p-value = 0.4228
```

plot(fit.gen\$residuals) #qledajuci reziduale na ovaj nacin tesko je suditi o normalnosti

Provjera normalnosti darežljivosti

hist((fit.gen\$residuals))

Histogram of (fit.gen\$residuals)

hist(rstandard(fit.gen))

Histogram of rstandard(fit.gen)


```
qqnorm(rstandard(fit.gen))
qqline(rstandard(fit.gen))
```

Normal Q-Q Plot

plot(fit.gen\$fitted.values,fit.gen\$residuals)


```
ks.test(rstandard(fit.gen), 'pnorm')

##

## One-sample Kolmogorov-Smirnov test

##

## data: rstandard(fit.gen)

## D = 0.043052, p-value = 0.9452

## alternative hypothesis: two-sided

lillie.test(rstandard(fit.gen))

##

## Lilliefors (Kolmogorov-Smirnov) normality test

##

## data: rstandard(fit.gen)

##

## data: rstandard(fit.gen)

## D = 0.042407, p-value = 0.7372
```

plot(fit.corr\$residuals) #gledajuci reziduale na ovaj nacin tesko je suditi o normalnosti

${\bf Provjera\ normalnosti\ korupcije}$

hist((fit.corr\$residuals))

Histogram of (fit.corr\$residuals)

hist(rstandard(fit.corr))

Histogram of rstandard(fit.corr)


```
qqnorm(rstandard(fit.corr))
qqline(rstandard(fit.corr))
```

Normal Q-Q Plot

plot(fit.corr\$fitted.values,fit.corr\$residuals)


```
ks.test(rstandard(fit.corr),'pnorm')

##

## One-sample Kolmogorov-Smirnov test

##

## data: rstandard(fit.corr)

## D = 0.10407, p-value = 0.07932

## alternative hypothesis: two-sided

lillie.test(rstandard(fit.corr))

##

## Lilliefors (Kolmogorov-Smirnov) normality test

##

## data: rstandard(fit.corr)

## D = 0.10286, p-value = 0.0005636
```

plot(fit.inc\$residuals) #gledajuci reziduale na ovaj nacin tesko je suditi o normalnosti

${\bf Provjera\ normalnosti\ dohotka}$

hist((fit.inc\$residuals))

Histogram of (fit.inc\$residuals)

hist(rstandard(fit.inc))

Histogram of rstandard(fit.inc)


```
qqnorm(rstandard(fit.inc))
qqline(rstandard(fit.inc))
```

Normal Q-Q Plot

plot(fit.inc\$fitted.values,fit.inc\$residuals)


```
ks.test(rstandard(fit.inc),'pnorm')

##

## One-sample Kolmogorov-Smirnov test

##

## data: rstandard(fit.inc)

## D = 0.047272, p-value = 0.8932

## alternative hypothesis: two-sided

lillie.test(rstandard(fit.inc))

##

## Lilliefors (Kolmogorov-Smirnov) normality test

##

## data: rstandard(fit.inc)

## D = 0.046873, p-value = 0.5864
```

plot(fit.wlth\$residuals) #gledajuci reziduale na ovaj nacin tesko je suditi o normalnosti

Provjera normalnosti prihoda

hist((fit.wlth\$residuals))

Histogram of (fit.wlth\$residuals)

hist(rstandard(fit.wlth))

Histogram of rstandard(fit.wlth)


```
qqnorm(rstandard(fit.wlth))
qqline(rstandard(fit.wlth))
```

Normal Q-Q Plot

plot(fit.wlth\$fitted.values,fit.wlth\$residuals)


```
ks.test(rstandard(fit.wlth),'pnorm')

##

## One-sample Kolmogorov-Smirnov test

##

## data: rstandard(fit.wlth)

## D = 0.051508, p-value = 0.8241

## alternative hypothesis: two-sided

lillie.test(rstandard(fit.wlth))

##

## Lilliefors (Kolmogorov-Smirnov) normality test

##

## data: rstandard(fit.wlth)

## D = 0.051536, p-value = 0.4318
```

Iz dobivenih histograma reziduala i QQ-plota, možemo zaključiti da svi osim varijable Perception of corruption približno zadovoljavaju zahtjev o normalnosti reziduala.

Koja je od dostupnih varijabli najbolji prediktor razine sreće?

Ocjena kvalitete modela i statističko zaključivanje o procijenjenom modelu

Ako pretpostavke modela nisu (neprihvatljivo) prekršene, moguće je primijeniti različite statističke testove o procijenjenim koeficijentima i modelu.

t-test koeficijenata modela Budući da vrijedi $B_i \sim N(\mu_{B_i}, \sigma_{B_i}), \, \mu_{B_i} = \beta_i$, statistika

$$T = \frac{B_i - \beta_i}{SE(B_i)}$$

ima t-distribuciju sn-k-1 stupnjeva slobode, gdje je k broj parametara. Većina programskih paketa, pa tako i R, pri estimiranju koeficijenata linearne regresije automatski testira $\beta_i = 0$. One koeficijente za koje možemo odbaciti $H_0: \beta_i = 0$ u korist $H_1: \beta_i \neq 0$ zovemo **značajni koeficijenti**.

Mjere kvalitete prilagodbe modela podatcima

SSE Mjera koju minimiziramo estimiranjem parametara modela ("fitanjem na podatke") je SSE:

$$SSE = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

 ${f R^2}$ Vrlo česta mjera kvalitete prilagodbe modela je koeficijent deteminacije, definiran kao:

$$R^2 = 1 - \frac{SSE}{SST},$$

gdje je: $SST = \sum_{i=1}^{N} (y_i - \bar{y}_i)^2$ tzv. "total corrected sum of squares". Koeficijent determinacije R^2 je za linearne modele po definiciji $R^2 \in [0,1]$ i opisuje koji postotak varijance u izlaznoj varijabli Y je estimirani linearni model objasnio/opisao.

Adjusted R² Prilagođeni koeficijent determinacije penalizira dodatne parametre u modelu:

$$R_{adj}^2 = 1 - \frac{SSE/(n-k-1)}{SST/(n-1)}.$$

F-test

Za ispitivanje signifikantnosti čitavog modela koristi se F-statistika:

$$f = \frac{SSR/k}{SSE/(n-k-1)},$$

gdje je
$$SSR = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$
.

Sve navedene mjere vidjet ćemo pozivanjem summary() za modele jednostavne regresije, koje smo dosad napravili.

summary(fit.gdp)

```
##
## Call:
## lm(formula = whr2021$'Ladder score' ~ whr2021$'Logged GDP per capita',
      data = whr2021)
## Residuals:
                     Median
                 10
                                   30
## -2.32205 -0.46197 0.08219 0.50811 1.32615
##
## Coefficients:
##
                                  Estimate Std. Error t value Pr(>|t|)
                                   -1.3719
                                               0.4456 -3.078 0.00248 **
## (Intercept)
## whr2021$'Logged GDP per capita' 0.7320
                                               0.0469 15.609 < 2e-16 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 0.661 on 147 degrees of freedom
## Multiple R-squared: 0.6237, Adjusted R-squared: 0.6211
## F-statistic: 243.6 on 1 and 147 DF, p-value: < 2.2e-16
summary(fit.ssupp)
##
## lm(formula = whr2021$'Ladder score' ~ whr2021$'Social support',
      data = whr2021)
##
## Residuals:
       Min
                 1Q
                     Median
## -1.99388 -0.37152 0.02153 0.46039 1.82052
## Coefficients:
##
                           Estimate Std. Error t value Pr(>|t|)
                            -0.2318
                                       0.4145 - 0.559
## (Intercept)
                                                          0.577
## whr2021$'Social support'
                            7.0756
                                        0.5038 14.045
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7041 on 147 degrees of freedom
## Multiple R-squared: 0.573, Adjusted R-squared: 0.5701
## F-statistic: 197.3 on 1 and 147 DF, p-value: < 2.2e-16
summary(fit.hle)
##
## lm(formula = whr2021$'Ladder score' ~ whr2021$'Healthy life expectancy',
##
      data = whr2021)
##
## Residuals:
       Min
                 1Q
                     Median
                                   3Q
## -1.67985 -0.49034 0.09193 0.56415 1.58813
##
```

```
## Coefficients:
##
                                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                    -2.394987
                                                0.548098
                                                         -4.37 2.34e-05 ***
## whr2021$'Healthy life expectancy' 0.121980
                                                0.008388
                                                          14.54 < 2e-16 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 0.6901 on 147 degrees of freedom
## Multiple R-squared: 0.5899, Adjusted R-squared: 0.5871
## F-statistic: 211.5 on 1 and 147 DF, p-value: < 2.2e-16
summary(fit.frd)
##
## Call:
## lm(formula = whr2021$'Ladder score' ~ whr2021$'Freedom to make life choices',
      data = whr2021)
##
##
## Residuals:
       Min
                 1Q
                     Median
                                   3Q
## -2.72397 -0.46161 0.05457 0.62788 1.57557
## Coefficients:
##
                                         Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                           0.9736
                                                      0.4964
                                                               1.962
                                                                       0.0517 .
## whr2021$'Freedom to make life choices'
                                           5.7597
                                                      0.6208
                                                               9.278
                                                                       <2e-16 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 0.8557 on 147 degrees of freedom
## Multiple R-squared: 0.3693, Adjusted R-squared: 0.365
## F-statistic: 86.09 on 1 and 147 DF, p-value: < 2.2e-16
summary(fit.gen)
##
## lm(formula = whr2021$'Ladder score' ~ whr2021$Generosity, data = whr2021)
##
## Residuals:
       Min
                 1Q Median
                                   3Q
                                           Max
## -3.02089 -0.69621 -0.02025 0.69882 2.29880
##
## Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
##
                      5.53091
                                 0.08871 62.347
                                                   <2e-16 ***
## (Intercept)
## whr2021$Generosity -0.12666
                                 0.58785 -0.215
                                                     0.83
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 1.077 on 147 degrees of freedom
## Multiple R-squared: 0.0003157, Adjusted R-squared: -0.006485
## F-statistic: 0.04643 on 1 and 147 DF, p-value: 0.8297
```

```
summary(fit.corr)
##
## Call:
## lm(formula = whr2021$'Ladder score' ~ whr2021$'Perceptions of corruption',
      data = whr2021)
##
## Residuals:
      Min
               1Q Median
                               3Q
                                      Max
## -3.5321 -0.5989 0.1103 0.7941 1.8833
## Coefficients:
##
                                      Estimate Std. Error t value Pr(>|t|)
                                                  0.3357 21.944
## (Intercept)
                                        7.3675
                                                                   <2e-16 ***
## whr2021$'Perceptions of corruption' -2.5219
                                                   0.4482 -5.627
                                                                     9e-08 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 0.9774 on 147 degrees of freedom
## Multiple R-squared: 0.1772, Adjusted R-squared: 0.1716
## F-statistic: 31.66 on 1 and 147 DF, p-value: 8.996e-08
summary(fit.inc)
##
## Call:
## lm(formula = whr2021$'Ladder score' ~ whr2021$'Income Gini',
##
      data = whr2021)
##
## Residuals:
                 1Q
                     Median
                                   3Q
## -3.00993 -0.73327 0.00267 0.75265 2.13284
## Coefficients:
                        Estimate Std. Error t value Pr(>|t|)
                                    0.4451 17.011 < 2e-16 ***
## (Intercept)
                          7.5713
## whr2021$'Income Gini' -5.4742
                                     1.1746 -4.661 7.01e-06 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 1.006 on 147 degrees of freedom
## Multiple R-squared: 0.1287, Adjusted R-squared: 0.1228
## F-statistic: 21.72 on 1 and 147 DF, p-value: 7.012e-06
summary(fit.wlth)
##
## lm(formula = whr2021$'Ladder score' ~ whr2021$'Wealth Gini',
      data = whr2021)
##
##
```

```
## Residuals:
##
      Min
                1Q Median
                                30
                                       Max
##
  -3.2100 -0.6338 -0.1228 0.6908
                                   2.3261
##
## Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                           9.2527
                                      0.9374
                                               9.871 < 2e-16 ***
## whr2021$'Wealth Gini'
                         -4.8349
                                      1.2135 -3.984 0.000106 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.024 on 147 degrees of freedom
## Multiple R-squared: 0.09747,
                                    Adjusted R-squared:
## F-statistic: 15.87 on 1 and 147 DF, p-value: 0.0001061
```

Zaključak 2. pitanja s pojavom novog pitanja

Dosad smo iz grafičkih prikaza mogli vidjeti kako najviše varijabla GDP, pa onda i varijable Social Support, Healthy life expectancy te Freedom to make life choices imaju vrlo jak efekt na Ladder score, tj. razinu sreće. Vidimo da su za točno te varijable i najveće vrijednosti R2). Dakle, te varijable su onda i najbolji prediktori razine sreće, a s obzirom da varijabla GDP ima najveći R2, zaključujemo da je ona najbolji prediktor sreće.

Zbog daljnje analize, prisjetimo se da varijabla Perception of Corruption ne zadovoljava pretpostavku o normalnosti reziduala, te primijetimo da je za varijablu Generosity udio varijance blizu nuli te nam F-test pokazuje da taj model nije statistički značajan.

Također, iako nisu svi modeli jednako kvalitetni, u svim ostalim slučajevima, osim varijabli Percepction of Corruption i Generosity, koeficijenti uz zavisnu varijablu su značajni, te F-testovi upućuju na to i da su svi modeli značajni (objašnjavaju značajno više varijance od nul modela). Zaključujemo da čak i varijable Income gini i Wealth gini nisu suvišne u modeliranju.

No, postavlja nam se prirodno pitanje - mogu li sve varijable višestrukom regresijom bolje predvidjeti razinu sreće od varijable GDP i kojom kombinacijom tih varijabli? U nastavku se bavimo tim pitanjem.

NAPOMENA: pogledati valja li ovaj zaključak i na temelju gore danih t-testa

##itd proučiti to još malo prije slanja i prokomentirati

Dodatno pitanje: Može li višestruka regresija bolje predvidjeti razinu sreće od varijable GDP per Capital?

Koje će varijable biti uključene?

Višestruka regresija

Call:

```
fit.multi = lm(formula=whr2021$`Ladder score`~whr2021$`Logged GDP per capita`+whr2021$`Social support`+
summary(fit.multi)
##
```

lm(formula = whr2021\$'Ladder score' ~ whr2021\$'Logged GDP per capita' +

```
whr2021$'Social support' + whr2021$'Healthy life expectancy' +
##
       whr2021$'Freedom to make life choices' + whr2021$'Income Gini' +
##
       whr2021$'Wealth Gini', data = whr2021)
##
##
##
  Residuals:
        Min
                                    3Q
##
                  1Q
                       Median
                                            Max
   -1.86501 -0.33337
                      0.05079 0.38774
##
##
  Coefficients:
##
                                          Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                           -2.28228
                                                       0.87070
                                                               -2.621 0.00972 **
## whr2021$'Logged GDP per capita'
                                                       0.08721
                                                                 3.338
                                           0.29106
                                                                        0.00108 **
                                                       0.66663
## whr2021$'Social support'
                                           2.09146
                                                                 3.137
                                                                        0.00207 **
## whr2021$'Healthy life expectancy'
                                                       0.01395
                                                                        0.03851 *
                                           0.02915
                                                                 2.089
## whr2021$'Freedom to make life choices'
                                           2.56419
                                                       0.46953
                                                                 5.461 2.06e-07 ***
## whr2021$'Income Gini'
                                           -0.73233
                                                       0.77888
                                                                -0.940
                                                                        0.34869
## whr2021$'Wealth Gini'
                                           -0.37103
                                                       0.80046
                                                               -0.464
                                                                        0.64370
##
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 0.551 on 142 degrees of freedom
## Multiple R-squared: 0.7474, Adjusted R-squared: 0.7368
## F-statistic: 70.04 on 6 and 142 DF, p-value: < 2.2e-16
```

plot(fit.multi)

Residuals vs Fitted 0 0 0 8 00 Residuals 0 0 0 0 0 0 00 0139 1290 -2.0 0146 3 5 6 4 7

Theoretical Quantiles Im(whr2021\$`Ladder score` ~ whr2021\$`Logged GDP per capita` + whr2021\$`Soci .

Fitted values Im(whr2021\$`Ladder score` ~ whr2021\$`Logged GDP per capita` + whr2021\$`Soci .

lm(whr2021\$`Ladder score` ~ whr2021\$`Logged GDP per capita` + whr2021\$`Soci .

Kovarijacijska matrica

0.78974762

0.75696748

##

[2,]

[3,]

Regresija s jako koreliranim ulaznim varijablama će uglavnom dati neke rezultate, ali na temelju njih ne možemo donositi nikakve zaključke. U slučaju savršene linearne zavisnosti ili koreliranosti ulaznih varijabli, procjena regresijskog modela će biti nestabilna i barem jedan koeficijent će biti NA. Stoga je potrebno odabrati onaj podskup varijabli za koje smatramo da objašnjavaju različite efekte u podatcima i nisu međusobno (previše) korelirane.

Gledat ćemo matricu Pearsonovih koeficijenata korelacije, a ne kovarijacijsku matricu jer podatci u varijablama nisu na jednakim skalama. UMETNUTI OVDJE FORMULU PEARSONOVIH KOEFICIJENATA AKO JE OVAJ DIO UOPCE BITAN Ako je koeficijent korelacije = 1, vektori varijabli leže na istom pravcu i imaju istu orijentaciju, a ako koeficijent korelacije = -1, suprotnu orijentaciju. Ako je koeficijent korelacije = 0, vektori su neovisni.

NAPOMENA: Pogledati treba li ova kovarijacijska matrica uopće??

0.7852911

1.0000000

1.0000000

0.7852911

```
M <- cbind(whr2021$`Ladder score`,whr2021$`Logged GDP per capita`,whr2021$`Social support`,whr2021$`Hea
cor(M)
##
                 [,1]
                             [,2]
                                        [,3]
                                                    [,4]
                                                                 [,5]
                                                                              [,6]
          1.0000000
                       0.7897476
                                   0.7569675
                                               0.7680603
                                                          0.60773272 -0.01776866
##
    [1,]
```

0.8594858

0.7232477

0.43231011 -0.19938590

0.48307259 -0.11496782

```
[4,] 0.76806029 0.8594858 0.7232477 1.0000000 0.46136792 -0.16181509
    [5,] 0.60773272 0.4323101 0.4830726 0.4613679 1.00000000 0.16945077
##
##
    [6,] -0.01776866 -0.1993859 -0.1149678 -0.1618151 0.16945077
    [7,] -0.42097416 -0.3422316 -0.2034292 -0.3642919 -0.40103339 -0.16389962
##
##
     \hbox{\tt [8,]} \quad \hbox{\tt -0.35879747} \quad \hbox{\tt -0.3714221} \quad \hbox{\tt -0.3277160} \quad \hbox{\tt -0.3858341} \quad \hbox{\tt -0.13904290} \quad \hbox{\tt -0.02564794} 
    [9,] -0.31219754 -0.3133797 -0.3118741 -0.3959141 -0.08324258 0.04599525
##
##
                 [,7]
                              [,8]
                                            [.9]
    [1,] -0.4209742 -0.35879747 -0.31219754
##
##
    [2,] -0.3422316 -0.37142211 -0.31337971
##
   [3,] -0.2034292 -0.32771597 -0.31187410
   [4,] -0.3642919 -0.38583413 -0.39591408
##
    [5,] -0.4010334 -0.13904290 -0.08324258
    [6,] -0.1638996 -0.02564794 0.04599525
##
   [7,] 1.0000000 0.23986922 0.07718160
   [8,] 0.2398692 1.00000000
##
                                    0.51824277
##
    [9,] 0.0771816
                       0.51824277
                                     1.00000000
```

Primijetimo da varijable Logged GDP per capita, Social support i Healthy life expectancy imaju koeficijent korelacije veći od 0.75 s varijablom Ladder score - razinom sreće. Pogledajmo to malo detaljnije, kao i njihove međusobne koeficijente korelacije:

```
cor.test(whr2021$`Ladder score`,whr2021$`Logged GDP per capita`)
##
##
   Pearson's product-moment correlation
##
## data: whr2021$'Ladder score' and whr2021$'Logged GDP per capita'
## t = 15.609, df = 147, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.7204370 0.8434382
## sample estimates:
##
         cor
## 0.7897476
cor.test(whr2021$`Ladder score`,whr2021$`Social support`)
##
##
   Pearson's product-moment correlation
##
## data: whr2021$'Ladder score' and whr2021$'Social support'
## t = 14.045, df = 147, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.6787901 0.8181785
## sample estimates:
##
         cor
## 0.7569675
cor.test(whr2021$`Ladder score`, whr2021$`Healthy life expectancy`)
```

##

```
## Pearson's product-moment correlation
##
## data: whr2021$'Ladder score' and whr2021$'Healthy life expectancy'
## t = 14.542, df = 147, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.6928273 0.8267529
## sample estimates:
##
         cor
## 0.7680603
#2.Logged GDP per capita vs. 3.Social Support
cor.test(whr2021$`Logged GDP per capita`,whr2021$`Social support`)
##
## Pearson's product-moment correlation
## data: whr2021$'Logged GDP per capita' and whr2021$'Social support'
## t = 15.378, df = 147, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.7147454 0.8400180
## sample estimates:
##
         cor
## 0.7852911
#2.Logged GDP per capita vs. 4.Healthy life expectancy
cor.test(whr2021$`Logged GDP per capita`,whr2021$`Healthy life expectancy`)
##
## Pearson's product-moment correlation
##
## data: whr2021$'Logged GDP per capita' and whr2021$'Healthy life expectancy'
## t = 20.386, df = 147, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.8107335 0.8963987
## sample estimates:
         cor
## 0.8594858
#3. Social support vs. 4. Healthy life expectancy
cor.test(whr2021$`Social support`,whr2021$`Healthy life expectancy`)
##
## Pearson's product-moment correlation
## data: whr2021$'Social support' and whr2021$'Healthy life expectancy'
## t = 12.698, df = 147, p-value < 2.2e-16
\#\# alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.6364678 0.7919458
```

```
## sample estimates:
## cor
## 0.7232477
```

Vidimo da varijable Logged GDP per capita, Social support i Healthy life expectancy međusobno imaju visok koeficijent korelacije, dakle za pretpostaviti je da sigurno treba izbaciti dvije, a ostaviti jednu. Također, varijable Social support i Healthy life expectancy imaju jako velik koeficijent korelacije s varijablom GDP per capita, a manji međusobno, pa bi pretpostavka bila da možda izbacimo GDP, a gledamo samo te druge dvije varijable. No, s obzirom da nam je GDP najbolje modelirao razinu sreće, pretpostavljamo da će naš model ipak biti bolji s uključenom varijablom GDP.

Pogledajmo kako izgleda regresija bez varijable GDP.

Višestruka regresija bez varijable GDP per capita

```
fit.nogdp = lm(formula=whr2021$`Ladder score`~whr2021$`Social support`+whr2021$`Healthy life expectancy
#without GDP
summary(fit.nogdp)
##
## Call:
## lm(formula = whr2021$'Ladder score' ~ whr2021$'Social support' +
##
       whr2021$'Healthy life expectancy' + whr2021$'Freedom to make life choices' +
       whr2021$'Income Gini' + whr2021$'Wealth Gini', data = whr2021)
##
##
## Residuals:
##
                  1Q
                       Median
                                    3Q
## -1.54319 -0.33172 0.05234 0.41099
                                       1.35996
## Coefficients:
##
                                          Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                                      0.89856 -2.780 0.00617 **
                                          -2.49788
## whr2021$'Social support'
                                           3.11790
                                                      0.61206
                                                                5.094 1.09e-06 ***
## whr2021$'Healthy life expectancy'
                                                                5.625 9.45e-08 ***
                                           0.06032
                                                      0.01072
## whr2021$'Freedom to make life choices'
                                           2.48388
                                                      0.48525
                                                                5.119 9.75e-07 ***
## whr2021$'Income Gini'
                                          -0.99809
                                                      0.80180 -1.245 0.21524
## whr2021$'Wealth Gini'
                                          -0.03201
                                                      0.82166 -0.039 0.96898
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 0.5702 on 143 degrees of freedom
## Multiple R-squared: 0.7276, Adjusted R-squared: 0.7181
## F-statistic: 76.4 on 5 and 143 DF, p-value: < 2.2e-16
plot(fit.nogdp)
```


Fitted values Im(whr2021\$`Ladder score` ~ whr2021\$`Social support` + whr2021\$`Healthy lif ...

Theoretical Quantiles Im(whr2021\$`Ladder score` ~ whr2021\$`Social support` + whr2021\$`Healthy lif ...

Fitted values Im(whr2021\$`Ladder score` ~ whr2021\$`Social support` + whr2021\$`Healthy lif ...

Možemo primijetiti da je R2 ipak veći kada je varijabla GDP uključena. U nastavku ćemo još vidjeti možemo li transformirati podatke da dobijemo bolji model.

Transformacije podataka, dodavanje interakcijskih članova

Promatranjem scatter plotova s početka, zaključujemo da bismo mogli probati modificirati varijable Income Gini i Social support, dodavanjem kvadrata tih ulaznih varijabli. Potencijalno, s obzirom na sličnost grafova GDP i HLE s grafom varijable Social Support, naknadno ćemo ispitati ima li njihova transformacija utjecaja na R2 modela.

Pogledajmo sada kako izgleda model predikcije razine sreće transformiranom varijablom Social Support.

```
# moguce je provjeriti gore navedenu tvrdnju prvo na primjeru samo Social Support
fit.ssupp.sq = lm(formula=whr2021$`Ladder score`~ whr2021$`Social support` + I(whr2021$`Social support`
summary(fit.ssupp.sq)
```

```
##
## Call:
  lm(formula = whr2021$'Ladder score' ~ whr2021$'Social support' +
       I(whr2021$'Social support'^2), data = whr2021)
##
##
## Residuals:
##
        Min
                  1Q
                       Median
                                     3Q
                                             Max
                      0.02724 0.51420
  -2.09453 -0.39457
                                         1.11166
## Coefficients:
```

```
##
                                 Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                    7.252
                                               1.989
                                                       3.647 0.000369 ***
## whr2021$'Social support'
                                  -13.134
                                               5.285
                                                      -2.485 0.014074 *
## I(whr2021$'Social support'^2)
                                   13.268
                                               3.455
                                                       3.840 0.000183 ***
## Signif. codes:
                  0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 0.6734 on 146 degrees of freedom
## Multiple R-squared: 0.6122, Adjusted R-squared: 0.6069
## F-statistic: 115.2 on 2 and 146 DF, p-value: < 2.2e-16
```

Vidimo da je R2 ovakvog modela veći od R2 linearnog modela na netransformiranim podatcima.

Prikažimo grafički tu nelinearnu krivulju:

```
f = function(x, coeffs)
return(coeffs[[1]] + coeffs[[2]] * x + coeffs[[3]] * x^2)
plot(whr2021$`Social support`,whr2021$`Ladder score`)
curve(f(x, fit.ssupp.sq$coefficients), add = TRUE, col = "red")
```


Pogledajmo sada za Income Gini:

```
# moguce je provjeriti gore navedenu tvrdnju prvo na primjeru samo Social Support
fit.inc.sq = lm(formula=whr2021$`Ladder score`~ whr2021$`Income Gini` + I(whr2021$`Income Gini`^2), dat
summary(fit.inc.sq)
```

```
##
## Call:
  lm(formula = whr2021$'Ladder score' ~ whr2021$'Income Gini' +
       I(whr2021$'Income Gini'^2), data = whr2021)
##
##
  Residuals:
##
                       Median
       Min
                  1Q
                                            Max
   -2.91878 -0.74117 -0.02322 0.69929
                                        2.11252
##
  Coefficients:
##
##
                              Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                10.419
                                            1.614
                                                    6.456 1.49e-09 ***
  whr2021$'Income Gini'
                               -20.263
                                                             0.0140 *
                                            8.145
                                                   -2.488
  I(whr2021$'Income Gini'^2)
                                18.522
                                           10.097
                                                    1.834
                                                             0.0686 .
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 0.9978 on 146 degrees of freedom
## Multiple R-squared: 0.1484, Adjusted R-squared: 0.1367
## F-statistic: 12.72 on 2 and 146 DF, p-value: 8.1e-06
plot(whr2021$`Income Gini`,whr2021$`Ladder score`)
curve(f(x, fit.inc.sq$coefficients), add = TRUE, col = "red")
```


Model predikcije sreće s transformiranom varijablom Healthy life expectancy:

```
# moguce je provjeriti gore navedenu tvrdnju prvo na primjeru samo Social Support
fit.hle.sq = lm(formula=whr2021$`Ladder score`~ whr2021$`Healthy life expectancy` + I(whr2021$`Healthy
summary(fit.hle.sq)
##
## Call:
## lm(formula = whr2021$'Ladder score' ~ whr2021$'Healthy life expectancy' +
       I(whr2021$'Healthy life expectancy'^2), data = whr2021)
##
## Residuals:
               1Q Median
                               3Q
##
      Min
                                      Max
## -1.9255 -0.4126 0.1375 0.5104 1.3662
## Coefficients:
##
                                          Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                                     4.523444
                                                                2.219 0.02805 *
                                          10.036170
```

-0.275909

0.143997 -1.916 0.05731 .

2.768 0.00638 **

```
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6749 on 146 degrees of freedom
## Multiple R-squared: 0.6104, Adjusted R-squared: 0.605
## F-statistic: 114.4 on 2 and 146 DF, p-value: < 2.2e-16

plot(whr2021$`Healthy life expectancy`,whr2021$`Ladder score`)
curve(f(x, fit.hle.sq$coefficients), add = TRUE, col = "red")</pre>
```

whr2021\$'Healthy life expectancy'

I(whr2021\$'Healthy life expectancy'^2) 0.003145 0.001136

Model predikcije sreće s transformiranom varijablom Logged GDP per capita:

```
# moguce je provjeriti gore navedenu tvrdnju prvo na primjeru samo Social Support
fit.gdp.sq = lm(formula=whr2021$`Ladder score`~ whr2021$`Logged GDP per capita` + I(whr2021$`Logged GDP
summary(fit.gdp.sq)
```

```
##
## Call:
  lm(formula = whr2021$'Ladder score' ~ whr2021$'Logged GDP per capita' +
       I(whr2021$'Logged GDP per capita'^2), data = whr2021)
##
##
  Residuals:
##
##
        Min
                  1Q
                       Median
                                            Max
   -2.21176 -0.41625 -0.01271 0.50384
                                        1.31724
##
## Coefficients:
##
                                        Estimate Std. Error t value Pr(>|t|)
  (Intercept)
                                         7.26442
                                                    3.28557
                                                               2.211
                                                                      0.02859 *
## whr2021$'Logged GDP per capita'
                                        -1.16978
                                                    0.71857
                                                              -1.628
                                                                      0.10570
  I(whr2021$'Logged GDP per capita'^2)
                                                                      0.00888 **
                                        0.10301
                                                    0.03884
                                                               2.652
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6479 on 146 degrees of freedom
## Multiple R-squared: 0.641, Adjusted R-squared: 0.6361
## F-statistic: 130.3 on 2 and 146 DF, p-value: < 2.2e-16
```

```
plot(whr2021$`Logged GDP per capita`,whr2021$`Ladder score`)
curve(f(x, fit.gdp.sq$coefficients), add = TRUE, col = "red")
```


Uključivanjem ovako transformiranih varijabli moguće je dodatno poboljšati ukupni model višestruke regresije. Budući da vidimo da je, nakon kvadratne transformacije varijabli GDP, Social Support, Healthy life expectancy i Income Gini, postignuto povećanje R2 u njihovim modelima razine sreće, uključit ćemo ih u višestruku regresiju.

fit.multi.sq = lm(formula=whr2021\$`Ladder score`~whr2021\$`Logged GDP per capita`+I(whr2021\$`Logged GDP
summary(fit.multi.sq)

```
##
## Call:
  lm(formula = whr2021$'Ladder score' ~ whr2021$'Logged GDP per capita' +
##
       I(whr2021$'Logged GDP per capita'^2) + whr2021$'Social support' +
##
       I(whr2021$'Social support'^2) + whr2021$'Healthy life expectancy' +
##
       I(whr2021$'Healthy life expectancy'^2) + whr2021$'Freedom to make life choices' +
##
       whr2021$'Income Gini' + I(whr2021$'Income Gini'^2) + whr2021$'Wealth Gini',
##
       data = whr2021)
##
##
## Residuals:
##
        Min
                  1Q
                       Median
                                     3Q
                                             Max
##
  -1.66299 -0.20454
                      0.07102 0.32546
## Coefficients:
```

```
##
                                        Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                       11.798625 3.969721
                                                            2.972 0.00349
## whr2021$'Logged GDP per capita'
                                       -0.892542  0.762502  -1.171  0.24380
## I(whr2021$'Logged GDP per capita'^2)
                                        0.060083 0.041739
                                                             1.439 0.15227
                                       -3.878645 4.727423 -0.820 0.41337
## whr2021$'Social support'
## I(whr2021$'Social support'^2)
                                                            1.386 0.16784
                                        4.361640 3.145884
## whr2021$'Healthy life expectancy'
                                       -0.203877 0.140733 -1.449 0.14970
## I(whr2021$'Healthy life expectancy'^2) 0.001879 0.001137 1.653 0.10060
                                        2.499563 0.455178
## whr2021$'Freedom to make life choices'
                                                             5.491 1.86e-07
## whr2021$'Income Gini'
                                        0.700427 4.720163 0.148 0.88225
## I(whr2021$'Income Gini'^2)
                                       -1.580214 5.740703 -0.275 0.78352
## whr2021$'Wealth Gini'
                                        ## (Intercept)
                                        **
## whr2021$'Logged GDP per capita'
## I(whr2021$'Logged GDP per capita'^2)
## whr2021$'Social support'
## I(whr2021$'Social support'^2)
## whr2021$'Healthy life expectancy'
## I(whr2021$'Healthy life expectancy'^2)
## whr2021$'Freedom to make life choices' ***
## whr2021$'Income Gini'
## I(whr2021$'Income Gini'^2)
## whr2021$'Wealth Gini'
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.5271 on 138 degrees of freedom
## Multiple R-squared: 0.7754, Adjusted R-squared: 0.7591
## F-statistic: 47.64 on 10 and 138 DF, p-value: < 2.2e-16
```


Im(whr2021\$`Ladder score` ~ whr2021\$`Logged GDP per capita` + I(whr2021\$`Lo .

Theoretical Quantiles Im(whr2021\$`Ladder score` ~ whr2021\$`Logged GDP per capita` + I(whr2021\$`Lo .

Im(whr2021\$`Ladder score` ~ whr2021\$`Logged GDP per capita` + I(whr2021\$`Lo .

Residuals vs Leverage

Im(whr2021\$`Ladder score` ~ whr2021\$`Logged GDP per capita` + I(whr2021\$`Lo .

Pogledajmo kako izgleda model s varijablama Social Support i HLE, ali bez varijable GDP.

```
fit.sh.sq = lm(formula=whr2021$`Ladder score`~whr2021$`Social support`+I(whr2021$`Social support`^2)+wh
#bez GDP
summary(fit.sh.sq)
##
## Call:
  lm(formula = whr2021$'Ladder score' ~ whr2021$'Social support' +
       I(whr2021$'Social support'^2) + whr2021$'Healthy life expectancy' +
##
       I(whr2021$'Healthy life expectancy'^2) + whr2021$'Freedom to make life choices' +
##
       whr2021$'Income Gini' + I(whr2021$'Income Gini'^2) + whr2021$'Wealth Gini',
##
##
       data = whr2021)
##
## Residuals:
##
        Min
                       Median
                                     3Q
                                             Max
                  1Q
   -1.43637 -0.25181
                      0.07338
                               0.32870
##
##
  Coefficients:
##
                                             Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                                       3.8138031
                                                                    3.596 0.000448
                                           13.7127850
                                                       4.4603972
## whr2021$'Social support'
                                           -6.3339448
                                                                  -1.420 0.157819
## I(whr2021$'Social support'^2)
                                            6.3610698
                                                       2.9824759
                                                                    2.133 0.034684
## whr2021$'Healthy life expectancy'
                                           -0.3660137
                                                       0.1191494
                                                                   -3.072 0.002557
## I(whr2021$'Healthy life expectancy'^2)
                                            0.0033555
                                                                    3.562 0.000504
                                                       0.0009421
## whr2021$'Freedom to make life choices'
                                            2.5169170 0.4602100
                                                                    5.469 2.02e-07
```

```
## whr2021$'Income Gini'
                                         -1.1982546 4.7366039 -0.253 0.800657
## I(whr2021$'Income Gini'^2)
                                          0.3745125 5.7758806 0.065 0.948393
## whr2021$'Wealth Gini'
                                          0.6978076 0.7913722
                                                               0.882 0.379413
##
## (Intercept)
## whr2021$'Social support'
## I(whr2021$'Social support'^2)
## whr2021$'Healthy life expectancy'
                                          **
## I(whr2021$'Healthy life expectancy'^2) ***
## whr2021$'Freedom to make life choices' ***
## whr2021$'Income Gini'
## I(whr2021$'Income Gini'^2)
## whr2021$'Wealth Gini'
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.5365 on 140 degrees of freedom
## Multiple R-squared: 0.7639, Adjusted R-squared: 0.7504
## F-statistic: 56.62 on 8 and 140 DF, p-value: < 2.2e-16
```

Kao što smo naslutili, rezultati upućuju na to da varijabla Logged GDP per capita daje dosta korisnu informaciju u modelu, čak i kad koristimo R_{adj}^2 . Pogledajmo sada kako izgleda model sa svim varijablama osim Wealth Gini i Income Gini s obzirom da one imaju najmanji utjecaj na model.

```
fit.s.sq = lm(formula=whr2021$`Ladder score`~whr2021$`Logged GDP per capita`+I(whr2021$`Logged GDP per
#bez GDP
summary(fit.s.sq)
##
## Call:
## lm(formula = whr2021$'Ladder score' ~ whr2021$'Logged GDP per capita' +
       I(whr2021$'Logged GDP per capita'^2) + whr2021$'Social support' +
##
       I(whr2021$'Social support'^2) + whr2021$'Healthy life expectancy' +
##
##
       I(whr2021$'Healthy life expectancy'^2) + whr2021$'Freedom to make life choices',
       data = whr2021)
##
##
## Residuals:
##
       Min
                  1Q
                     Median
                                   3Q
                                           Max
## -1.74445 -0.20810 0.06919 0.33133 1.11759
## Coefficients:
##
                                          Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                         11.967401
                                                     3.781248
                                                                3.165
                                                                        0.0019
## whr2021$'Logged GDP per capita'
                                                     0.749349 -1.279
                                         -0.958425
                                                                        0.2030
## I(whr2021$'Logged GDP per capita'^2)
                                          0.063856
                                                     0.040899
                                                                1.561
                                                                        0.1207
## whr2021$'Social support'
                                                     4.575976 -0.878
                                         -4.019484
                                                                        0.3812
## I(whr2021$'Social support'^2)
                                          4.445226
                                                     3.024569
                                                               1.470
                                                                        0.1439
## whr2021$'Healthy life expectancy'
                                         -0.193209
                                                     0.136449 -1.416
                                                                        0.1590
## I(whr2021$'Healthy life expectancy'^2) 0.001804
                                                     0.001096
                                                               1.646
                                                                        0.1019
## whr2021$'Freedom to make life choices' 2.476156
                                                     0.446162
                                                               5.550 1.37e-07
##
## (Intercept)
                                          **
## whr2021$'Logged GDP per capita'
```

```
## I(whr2021$'Logged GDP per capita'^2)
## whr2021$'Social support'
## I(whr2021$'Social support'^2)
## whr2021$'Healthy life expectancy'
## I(whr2021$'Healthy life expectancy'^2)
## whr2021$'Freedom to make life choices' ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5227 on 141 degrees of freedom
## Multiple R-squared: 0.7743, Adjusted R-squared: 0.7631
## F-statistic: 69.1 on 7 and 141 DF, p-value: < 2.2e-16</pre>
```

Rezultati upućuju na to da varijable Wealth Gini i Income Gini ipak sadrže korisne informacije za predviđanje sreće u modelu.

NAPOMENA: Razmisliti treba li ubaciti kategoriJsku varijablu regija ili ?? DOVRŠITI DO KRAJA ZAKLJUČAK

Zaključak 2. pitanja i dodatnog pitanja

Ranije smo zaključili da je od ponuđenih varijabli, varijabla Logged GDP per capita najbolji prediktor sreće jednostavnom regresijom. No, što je s višestrukom regresijom? Rezultati višestruke regresije nam pak upućuju da je za bolje predviđanje razine sreće ipak bolje uključiti više varijabli.

Postoje li razlike u iskazanoj sreći medu različitim regijama?

Na ovo pitanje ćemo odgovoriti korištenjem jednofaktorskom ANOVA metodom.

U sljedećem isječku ćemo prikazati box plot dijagrame sreće po pojedinim regijama.

```
par(mar=c(15,5,1,1))
boxplot(`Ladder score`~`Regional indicator`,data = whr2021, las = 2, xlab = "" )
```


Boxplot nas upućuje da postoje razlike u iskazanim srećama po regijama. To ćemo potvrditi ANOVA metodom.

Uvjeti za ANOVA-u su normalnost i nezavisnost podataka, te homogenost varijanci među regijama. Nezavisnost podataka možemo pretpostaviti. Normalnost podataka po regijama ćemo provjeriti s Kolmogorov-Smirnovim testom. Hipoteze su nam sljedeće:

 H_0 : podaci su normalno distribuirani H_1 : podaci nisu normalno distribuirani

te

 $\alpha = 0.05$

```
ks.test(whr2021$`Ladder score`[whr2021$`Regional indicator`=='Central and Eastern Europe'], "pnorm", me

##
## One-sample Kolmogorov-Smirnov test
##
## data: whr2021$'Ladder score'[whr2021$'Regional indicator' == "Central and Eastern Europe"]
## D = 0.15266, p-value = 0.7689
## alternative hypothesis: two-sided

hist(whr2021$`Ladder score`[whr2021$`Regional indicator`=='Central and Eastern Europe'])
```

whr2021\$`Ladder score`[whr2021\$`Regional indicator` == "Central and

whr2021\$`Ladder score`[whr2021\$`Regional indicator` == "Central and Eastern Europ

```
ks.test(whr2021$`Ladder score`[whr2021$`Regional indicator`=='Commonwealth of Independent States'], "pn

##
## One-sample Kolmogorov-Smirnov test
##
## data: whr2021$'Ladder score'[whr2021$'Regional indicator' == "Commonwealth of Independent States"]
## D = 0.1077, p-value = 0.9962
## alternative hypothesis: two-sided

hist(whr2021$`Ladder score`[whr2021$`Regional indicator`=='Commonwealth of Independent States'])
```

021\$`Ladder score`[whr2021\$`Regional indicator` == "Commonwealth c

r2021\$`Ladder score`[whr2021\$`Regional indicator` == "Commonwealth of Independent

```
ks.test(whr2021$`Ladder score`[whr2021$`Regional indicator`=='East Asia'], "pnorm", mean(whr2021$`Ladde

##
## One-sample Kolmogorov-Smirnov test
##
## data: whr2021$'Ladder score'[whr2021$'Regional indicator' == "East Asia"]
## D = 0.21724, p-value = 0.8868
## alternative hypothesis: two-sided

hist(whr2021$`Ladder score`[whr2021$`Regional indicator`=='East Asia'])
```

ogram of whr2021\$`Ladder score`[whr2021\$`Regional indicator` == "Ea

whr2021\$`Ladder score`[whr2021\$`Regional indicator` == "East Asia"]

```
ks.test(whr2021$`Ladder score`[whr2021$`Regional indicator`=='Latin America and Caribbean'], "pnorm", m

##
## One-sample Kolmogorov-Smirnov test
##
## data: whr2021$'Ladder score'[whr2021$'Regional indicator' == "Latin America and Caribbean"]
## D = 0.20631, p-value = 0.3171
## alternative hypothesis: two-sided

hist(whr2021$`Ladder score`[whr2021$`Regional indicator`=='Latin America and Caribbean'])
```

vhr2021\$`Ladder score`[whr2021\$`Regional indicator` == "Latin Americ

whr2021\$`Ladder score`[whr2021\$`Regional indicator` == "Latin America and Caribbe

```
ks.test(whr2021$`Ladder score`[whr2021$`Regional indicator`=='Middle East and North Africa'], "pnorm", f
##
## One-sample Kolmogorov-Smirnov test
##
## data: whr2021$'Ladder score'[whr2021$'Regional indicator' == "Middle East and North Africa"]
## D = 0.25437, p-value = 0.186
## alternative hypothesis: two-sided
```

hist(whr2021\$`Ladder score`[whr2021\$`Regional indicator`=='Middle East and North Africa'])

whr2021\$`Ladder score`[whr2021\$`Regional indicator` == "Middle East

whr2021\$`Ladder score`[whr2021\$`Regional indicator` == "Middle East and North Africation"

```
ks.test(whr2021$`Ladder score`[whr2021$`Regional indicator`=='North America and ANZ'], "pnorm", mean(wh
##
## One-sample Kolmogorov-Smirnov test
##
## data: whr2021$'Ladder score'[whr2021$'Regional indicator' == "North America and ANZ"]
## D = 0.17678, p-value = 0.9972
## alternative hypothesis: two-sided
hist(whr2021$`Ladder score`[whr2021$`Regional indicator`=='North America and ANZ'])
```

of whr2021\$`Ladder score`[whr2021\$`Regional indicator` == "North Am

whr2021\$`Ladder score`[whr2021\$`Regional indicator` == "North America and ANZ'

```
ks.test(whr2021$`Ladder score`[whr2021$`Regional indicator`=='South Asia'], "pnorm", mean(whr2021$`Ladd
##
## One-sample Kolmogorov-Smirnov test
##
## data: whr2021$'Ladder score'[whr2021$'Regional indicator' == "South Asia"]
## D = 0.26133, p-value = 0.6354
## alternative hypothesis: two-sided
hist(whr2021$`Ladder score`[whr2021$`Regional indicator`=='South Asia'])
```

gram of whr2021\$`Ladder score`[whr2021\$`Regional indicator` == "Soi

whr2021\$`Ladder score`[whr2021\$`Regional indicator` == "South Asia"]

```
ks.test(whr2021$`Ladder score`[whr2021$`Regional indicator`=='Southeast Asia'], "pnorm", mean(whr2021$`
##
## One-sample Kolmogorov-Smirnov test
##
## data: whr2021$'Ladder score'[whr2021$'Regional indicator' == "Southeast Asia"]
## D = 0.16447, p-value = 0.9367
## alternative hypothesis: two-sided
hist(whr2021$`Ladder score`[whr2021$`Regional indicator`=='Southeast Asia'])
```

am of whr2021\$`Ladder score`[whr2021\$`Regional indicator` == "South

whr2021\$`Ladder score`[whr2021\$`Regional indicator` == "Southeast Asia"]

```
ks.test(whr2021$`Ladder score`[whr2021$`Regional indicator`=='Sub-Saharan Africa'], "pnorm", mean(whr20
##
## One-sample Kolmogorov-Smirnov test
##
## data: whr2021$'Ladder score'[whr2021$'Regional indicator' == "Sub-Saharan Africa"]
## D = 0.1039, p-value = 0.7942
## alternative hypothesis: two-sided
hist(whr2021$`Ladder score`[whr2021$`Regional indicator`=='Sub-Saharan Africa'])
```

n of whr2021\$`Ladder score`[whr2021\$`Regional indicator` == "Sub-Sa

whr2021\$`Ladder score`[whr2021\$`Regional indicator` == "Sub-Saharan Africa"]

```
ks.test(whr2021$`Ladder score`[whr2021$`Regional indicator`=='Western Europe'], "pnorm", mean(whr2021$``
##
## One-sample Kolmogorov-Smirnov test
##
## data: whr2021$'Ladder score'[whr2021$'Regional indicator' == "Western Europe"]
## D = 0.16103, p-value = 0.5918
## alternative hypothesis: two-sided
hist(whr2021$`Ladder score`[whr2021$`Regional indicator`=='Western Europe'])
```

am of whr2021\$`Ladder score`[whr2021\$`Regional indicator` == "Weste

whr2021\$`Ladder score`[whr2021\$`Regional indicator` == "Western Europe"]

P-vrijednosti na svim testovima su nam veće od kritične vrijednosti te ne odbijamo nul hipotezu.

Sada trebamo analizirati homogenost varijanci regija što ćemo napraviti s Bartlettovim testom. Hipoteze su nam sljedeće:

$$H_0: \sigma_1^2 = \sigma_2^2 = \ldots = \sigma_k^2$$

 $H_1: \neg H_0.$

te

$$\alpha = 0.05$$

bartlett.test(whr2021\$`Ladder score` ~ whr2021\$`Regional indicator`)

```
##
## Bartlett test of homogeneity of variances
##
## data: whr2021$'Ladder score' by whr2021$'Regional indicator'
## Bartlett's K-squared = 21.976, df = 9, p-value = 0.008955
```

P-vrijednost je manja od kritične vrijednosti tako da ne odbacujemo nul hipotezu.

Sada možemo napraviti jednofaktorsku ANOVA-u. Hipoteze su nam sljedeće:

$$H_0: \mu_1 = \mu_2 = \ldots = \mu_k$$

 $H_1: \neg H_0.$

te

$$\alpha=0.05k=10$$

```
luck = aov(whr2021$`Ladder score` ~ whr2021$`Regional indicator`)
summary(luck)
```

Kao što je sugerirano u grafu s početka, ANOVA potvrđuje da postoji razlika u iskazanoj sreći među regijama.