

EE/CSCI 451: Parallel and Distributed Computation

Lecture #1

8/18/2020

Viktor Prasanna

prasanna@usc.edu

ceng.usc.edu/~prasanna

University of Southern California

Outline

- Course information
- Parallelism everywhere, technology trends
- Data science and big data
- Course outline

Policies and Procedures

- All classes are recorded and accessible on Blackboard
- Recordings should be used appropriately (https://policy.usc.edu/scampus-part-c/)
- Specify your current time zone (and your background info.)
 - Please fill the Google form: https://forms.gle/yqxoUa7NC7bMq5yv6

Course Info. (1)

- When & Where
- Lecture: Tuesday, Thursday 3:30 4:50 PM, Online at: https://usc.zoom.us/j/92090885346?pwd=Ty9PZmFxL2dPVDR3ekNZNmdnVFJ0QT09
 - Meeting ID: 920 9088 5346
- Lab: Friday, 3:30 4:50 PM, Online at: https://usc.zoom.us/j/93866326251
 - Meeting ID: 938 6632 6251
- Office Hours
 - Tuesday 11:00-12:00 Noon
 - Thursday 10:00-11:00 AM
 - Meeting ID: <u>usc.zoom.us/my/prasanna.zoom</u>

Course Info. (2)

- TA & TA's office hours
 - Meng Yuan
 - Email: ymeng643@usc.edu
 - Office hours:
 - Friday 11:00 AM-1:00 PM or By appointment
 - Meet Yuan at: https://usc.zoom.us/j/8629150353
 - Meeting ID: 862 915 0353

Course Info. (3)

- Prerequisite: Some exposure to High level programming
- Textbook: Introduction to Parallel Computing (2nd Ed.), Grama, Gupta, Karypis, Kumar, Addison-Wesley
 - Options to buy or rent
 - Amazon: https://www.amazon.com/Introduction-Parallel-Computing-Ananth-Grama/dp/0201648652
- Reference book: Introduction to Parallel Computing, Zbigniew Czech, Cambridge
 - Free online access
 - Cambridge: https://www.cambridge.org/core/books/introduction-to-parallel-computing/F2170BB15F769C874CD62B3DB5255080
- Hands-on programming exercises
- Students are responsible for understanding all the materials covered in the class (only)

Course Info. (4)

- Course Objectives
 - Understand the key architectural concepts of multi-core, many core and GPU platforms for parallel programming
 - Develop simple parallel algorithms to solve computational problems
 - Implement key algorithms in the field on multi-core, many-core and GPU platforms
 - Understand and determine the computational complexity of simple parallel algorithms
 - Write parallel programs using message passing and shared memory paradigms

Course Info. (5)

- Course Objectives (cont.)
 - Select an appropriate basic data structure (e.g., arrays) and access methods (e.g., pointers) to optimize performance
 - Understand communication and coordination issues in parallel computing
 - Understand basic principles of Cloud computing and Data Science processing
 - Perform Data Science analytics using distributed computing frameworks

Course Info. (6)

Grading

• Homework	10%
 Homeworks must be done independently 	
 10% late penalty per day will be assessed with no credit received after the 	ne third day
 Programming Assignments 	10%
Course Project	15%
 Midterm I (Sept 25 in lab session, 2 hours) 	20%
 Midterm II (Oct 23 in lab session, 2 hours) 	20%
Final Exam	25%

Course Info. (7)

- Class Participation
 - Attend the class
 - Visit during office hours
 - Participate in online discussion forum
 - Asking or answering questions

Course Info. (8)

- Academic Integrity
 - Cheating will not be tolerated
 - Grade of F will be assigned
 - Cheaters will be reported to USC Student Judicial Affairs and Community Standards (SJACS)

Course Info. (9)

- Communicating with me
 - Visit during office hours via zoom
 - Via email <u>prasanna@usc.edu</u>
 - Subject field: EE451

Course Info. (10)

• Lab

- Time: 3:30 4:50 PM, Friday
- Discussion of material covered in the lecture
- Homework
- Programming languages
- Programming assistance
- Course project discussion
- Midterms (Sep 25 and Oct 23 in lab session, 330-530pm)
- Course project presentation

Course Info. (11)

- Piazza
 - EE/CSCI 451 Parallel and Distributed Computation Fall 2020
 - Enroll via piazza.com/usc/fall2020/eecsci451
- Lecture notes (ppt) will be uploaded to Piazza one hour before the lecture
- Homework assignments will be uploaded to Piazza
- Please upload finished homework on Blackboard

Programming Languages and Platforms

- Lower level languages (?)
 - Pthreads
 - MPI
 - OpenMP
 - CUDA/OpenCL
- Platforms
 - Intel/AMD Multicore
 - Nvidia GPU
 - Microsoft Azure Cloud
 - Amazon EC2 Cloud

- Domain Specific Languages
 - Giraph (Graph Processing)
 - TensorFlow (Machine Learning)
 - PyTorch (Machine Learning)
- High Level Languages
 - MapReduce
 - Hadoop
 - Spark

Sample Programming Assignments

- Dense and sparse matrix computations on multi-core and GPU platforms
- Parallel sorting on multi-core
- Real-time rendering on GPU
- Social Network analytics using Hadoop
- Parallelizing signal processing kernels (FFT, dense algebra,..)
- Graph embedding using graph convolutional network on GPU

• ...

Course Project (1)

- Large software project
 - Scientific computing
 - Graph analytics
 - Data science
 - ...
- Sample course projects
 - Multi-core implementation of data plane kernels for software defined networking (e.g., traffic classification, packet classification, etc.)
 - Accelerating Deep Neural Networks (CNN, LSTM, etc; Inference, Training, etc.) using GPU
 - Big data analytics using Spark (e.g., graph analysis, log processing, etc.)
 - ...
- Students can work in teams

Course Project (2)

- Project timeline
 - Week 5-8: Identify team members and project topic
 - Week 9: Project proposal due
 - Weeks 12-13: Student Project Presentations
 - Week 13: Project final report due (Sunday Midnight AOE)
- Grading breakdown for the course project
 - Project Proposal: 25%
 - Project presentation: 25%
 - Project final report: 50%

Jobs

- Data Centers, HPC Centers, Networking, Communications equipment vendors, Data Scientists...
- Opportunities at

•		B		V	1
---	--	---	--	---	---

- Nvidia
- Intel
- AMD
- Microsoft
- Amazon
- Facebook

- Google
- National Labs
- Electronic Arts
- Juniper
- Cisco
- Xilinx
- Micron

Parallelism Everywhere (0)

(Parallel) Computing Platforms

• Edge Devices

• Multi-core processors

Graph Processing Units

FPGAs

• System-on-Chip

Supercomputers

Parallelism Everywhere (1)

- Cellphone processors
- Apple A13
 - iPhone 11, 11 Pro/Pro Max, SE (2nd generation)
 - Up to 2.65 GHz ARMv8.4-A six-core CPU
 - Semiconductor: 7nm (N7 Pro)
 - L1 Cache: 128KB (Data)/128KB (Instruction)
 - L2 Cache: 8 MB
 - Memory Technology: LPDDR4X
- Snapdragon 865 (Qualcomm)
 - Galaxy S20/S20+/S20 Ultra
 - Up to 2.84 GHz eight-core ARM cortex-A77/A55
 - Semiconductor: 7nm N7P
 - L1 Cache: 256KB/512KB
 - L2 Cache: 1.8 MB
 - Memory Technology: LPDDR4X-2133

Parallelism Everywhere (2)

- Multi-core processors
- Intel
 - Ex. Intel Xeon Platinum 9282
 - Cores: 56
 - Threads: 112
 - Frequency: 2.6 GHz
 - L1 Cache: 1.75 MB (Data)/1.75 MB (Instruction)
 - L2 Cache: 56 MB
 - L3 Cache: 77 MB
 - DDR4: 2 TB
 - Maximum memory bandwidth: 262 GB/s
 - Thermal Design Power: 400 W

Parallelism Everywhere (3)

- FPGA family Xilinx
- Virtex Ultrascale+ family
 - 9 million logic cells
 - 16 nm FinFET
 - Up to 500Mb of on-chip memory integration
 - Up to 128-33G transceivers deliver 8.4 Tb of serial bandwidth
 - 460GB/s HBM bandwidth, and 2,666 Mb/s DDR4 in a mid-speed grade
- For high-performance computing
 - 5.5 M logic cells for massively parallel processing
 - DSP48E slices for fixed- and floating-point acceleration
 - 150 Gb/s chip-to-chip interconnect

Parallelism Everywhere (4)

- Programmable SoC family Zynq UltraScale+ MPSoC
- Efficient ARM + FPGA
- Processing System
 - Quad-core ARM Cortex-A53 processor
 - Running at 1 GHz
 - 71 dedicated DDR controller I/Os
 - 54 dedicated memory/peripheral I/Os
 - L1 Cache 32KB/32KB (per Core)
 - L2 Cache 512KB Unified
- Programmable Logic
 - 16 nm Xilinx FPGA fabric
 - Virtex UltraScale+ or Kintex UltraScale+ based
 - Up to 16 12.5Gbps high-speed transceivers
 - Up to 150 1.8V high performance I/Os

Parallelism Everywhere (5)

- Floating-point FPGA Stratix 10
- First delivery of hardened floating-point operators within a DSP block
- Up to 10 tera floating point operations per second (TFLOPS)
- Applications
 - Industrial video
 - Broadcast systems
 - Wireless systems
 - Medical imaging
 - Military radar
 - High-performance computing

Stratix 10 FPGA and SoC Variable-Precision DSP Block, Floating-Point Mode

Parallelism Everywhere (6)

ACAP

- Vector and scalar processing unit tightly coupled with programmable logics, tied with high bandwidth Network-on-Chip
- Arm Cortex processors
- DSP Engines
- High-bandwidthnnetwork-on-chip
- Al Engines
 - Array of VLIW SIMD vector processors programmable using C/C++

Vissers, Kees. "Versal: The Xilinx Adaptive Compute Acceleration Platform (ACAP)." *Proceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays*. ACM, 2019.

Parallelism Everywhere (7)

- Heterogeneous Computing Platform
 - CPU+FPGA (e.g. Intel Xeon Server processor + Stratix 10 data-center FPGA)
 - Cache Coherent Interconnect (e.g. UPI, CXL)
 - Unified Programming Interface: OneAPI
 - Deploy applications across heterogeneous architectures: CPUs, GPUs and FPGAs
 - Data Parallel C++ Compiler and libraries

Parallelism Everywhere (8)

- GPU family Nvidia
- A100 Tensor Core GPU
 - 108 Streaming Multiprocessors
 - 40 MB L2 cache
 - 40 GB high bandwidth memory
 - 1.6 TB/s peak bandwidth
 - 600 GB/s inter-GPU communication bandwidth
 - 54.2 billion transistors

Parallelism Everywhere (9)

- Data center
- Servers
- Storage
- Network devices
- Power distribution systems
- Cooling systems
- Ex. Google data centers
 - > 2.5 million servers
 - 13 in the US
 - 1 in South America
 - 5 in Europe
 - 2 in Asia

Parallelism Everywhere (10)

- Supercomputer
- Fastest high-performance system
- Used to solve problems which are
- too massive for standard computers
- Typically multi-core+GPU
- Ex. Columbia supercomputer (2004-2013)
 - 10,240 processors
 - 20 TB of memory
 - 440 TB of online storage
 - 10,000 TB of tape data storage

Parallelism Everywhere (11)

Fugaku

— The world's fastest supercomputer (as of Jun. 2020)

Location: RIKEN Center, Japan

Processor: A64FX 48C 2.2GHz

• 7,299,072 cores

Power: 28.33 MW

— Memory: 4.9 PB

— Performance: 416 PFLOPS

— Mega 10⁶

— Giga 10⁹

— Tera 10¹²

— Peta 10¹⁵

Data Science and Big Data

- Big data is a term to describe the large volume of data both structured and unstructured – that are too large or complex for traditional data processing applications to deal with
- Data mining huge amounts of data:
 - Google: 5.8 billion searches per day
 - Facebook: 70 billion photos are uploaded per year
- Data science refers to the techniques and systems to extract knowledge and insights from big data
- Key components
 - Modeling: Consumer behavior
 - Classification: Label consumers
 - Prediction: Energy consumed over next few hours
 - Optimization: Minimize total energy consumed
 - Data Mining: Fraud detection
 - Machine Learning: Image classification

Outline

- Course information
- Parallelism everywhere, technology trends
- Data science and big data
- Course outline

33

Course Outline (1)

	Topics/Lecture Activities	HW/Exam Due Dates
Week 1	Course overview (Aug. 18) Parallel computing architectures (Aug. 20)	
Week 2	Parallel computing architectures (Aug. 25) shared memory programming model (Aug. 27)	Homework 1 out
Week 3	Shared memory programming model and OpenMP (Sept. 1 and 3)	Homework 1 due Homework 2 out
Week 4	Message Passing programming model	Homework 2 due Homework 3 out
Week 5	Interconnection networks	Homework 3 due Homework 4 out
Week 6	Communication cost in parallel machines, message passing, routing in interconnection networks, Program and data mapping: graph embedding	Midterm 1 (Sept. 25) 2 hrs. Homework 4 due Homework 5 out

Course Outline (2)

	Topics/Daily Activities	HW/ Exams Due Dates
Week 7	Analytical Modeling of Parallel Systems	Homework 5 due
	Communication Primitives P1	Homework 6 out
Week 8	Communication primitives P2	Homework 6 due
	GPU Architecture CUDA P1	Homework 7 out
Week 9	GPU Architecture CUDA P2	Homework 7 due
	Parallel algorithm design, dependency graph	Homework 8 out
Week 10	Graph partitioning, mapping, parallel algorithm models	Midterm 2 (Oct 23) 2 hrs.
	Map Reduce, Distributed Computing on Cloud	Homework 8 due
		Homework 9 out
Week 11	Data Science, Parallel Graph Analytics & Parallel Sorting,	Homework 9 due
	Supercomputers (Oct. 27 and 29)	Homework 10 out
Week 12	PRAM Part 1 & Part 2 (Nov. 3 and 5)	Homework 10 due
		Homework 11 out
Week 13	Project Presentations	Homework 11 due
FINALS WK	Final Exam	Nov 17 - Nov 24

Course Outline (3)

	Topics/Lab Activities	Readings and Homework
Week 1	Account setup and Lab overview (Aug 21)	Programming HW 1 out
Week 2	Pthreads Part1 (Aug 28)	Programming HW 1 due
Week 3	Pthreads Part2, Data Science Basics (Sep 4)	Programming HW 2 out
Week 4	OpenMP Part1 (Sep 11)	Programming HW 2 due
Week 5	OpenMP Part2 (Sep 18)	Programming HW 3 out
Week 6	Midterm 1 2 hours	Programming HW 3 due
Week 7	MPI (Oct 2)	Programming HW 4 out
Week 8	Project Discussion, CUDA (Oct 9)	Programming HW 4 due
Week 9	CUDA (Oct 16)	Programming HW 5 out
Week 10	Midterm 2 2 hours	Programming HW 5 due
Week 11	Spark, MapReduce (Oct 30)	Programming HW 6 out
Week 12	Course project presentation (Nov 6)	Programming HW 6 due
Week 13	Course project presentation (Nov 13)	

Acknowledgement

- Lecture notes compiled over the years
- My research team
- Course TA and mentors during Spring '14, '15, '16, '17, '18, '19
- EE451 Students in Spring '14, '15, '16, '17, '18, '19
- Introduction to Parallel Computing (2nd Ed.), Vipin Kumar, Ananth Grama

•

Research

- Research Projects
 - High Performance Networking
 - Big Data Analysis
 - Social Network Analysis
 - Energy Efficient Computing
 - Accelerated Machine Learning
- Webpages
 - ceng.usc.edu/~prasanna/
 - http://fpga.usc.edu/
 - http://dslab.usc.edu/