point-neuron-network-simulator

хуу

May 17, 2016

1 Simulator Overview

• simple

Spike interaction happens at the end of each dt. Poisson input still injected at the exact timing.

• SSC

Spike-spike correction.

• SSC-Sparse

Spike-spike correction, optimized for sparse network.

• SSC-Sparse2

Spike-spike correction, optimized for sparse network, version 2.

• big-delay

Network with constant delay. The delay must larger than 1dt (hence the name "big"). Use option "-synaptic-delay" to set the delay.

• big-net-delay

Network with delay. The delay is set by a "delay matrix", by passing a text numerical matrix file path to the option "—synaptic-net-delay".

• cont-syn

Simulate the network with continuous synaptic interaction. Specially for model "HH-GH-cont-syn".

• auto

Auto choose a simulator according to the neuronal model.

Table 1: Compatibility matrix

	simple	SSC/SSC-Sparse/	cont-syn	big-delay	big-net-delay	auto
		SSC-Sparse2				
LIF-G/LIF-GH	y	у	-	-	-	SSC
НН-G/НН-GН	у	У	-	-	-	SSC
HH-GH-cont-syn	-	-	у	-	-	cont-syn
-synaptic-delay	-	-	-	У	-	big-delay
-synaptic-net-delay	-	-	-	-	У	big-net-delay
-sine						
-extI						

$\mathbf{2}$ Neuron Model Used

HH-GH 2.1

It is the classical Hodgkin-Huxley (HH) neuron model. For neuron i, its membrane potential V_i obey

$$\begin{cases}
C \frac{\mathrm{d}V_i}{\mathrm{d}t} = -(V_i - V_{\mathrm{Na}})G_{\mathrm{Na}}h_i m_i^3 - (V_i - V_{\mathrm{K}})G_{\mathrm{K}}n_i^4 - (V_i - V_{\mathrm{L}})G_{\mathrm{L}} + I_i^{\mathrm{input}} \\
\frac{\mathrm{d}m_i}{\mathrm{d}t} = (1 - m_i)\alpha_m(V_i) - m_i\beta_m(V_i) \\
\frac{\mathrm{d}h_i}{\mathrm{d}t} = (1 - h_i)\alpha_h(V_i) - h_i\beta_h(V_i) \\
\frac{\mathrm{d}n_i}{\mathrm{d}t} = (1 - n_i)\alpha_n(V_i) - n_i\beta_n(V_i)
\end{cases} \tag{1}$$

where

$$\alpha_n(V_i) = \frac{0.1 - 0.01V_i}{\exp(1 - 0.1V_i) - 1} \qquad \beta_n(V_i) = 0.125 \exp(-V_i/80)$$

$$\alpha_m(V_i) = \frac{2.5 - 0.1V_i}{\exp(2.5 - 0.1V_i) - 1} \qquad \beta_m(V_i) = 4 \exp(-V_i/18)$$

$$\alpha_h(V_i) = 0.07 \exp(-V_i/20) \qquad \beta_h(V_i) = \frac{1}{\exp(3 - 0.1V_i) + 1}$$

 $V_i, m_i, n_i, h_i, I_i^{\mathrm{input}}$ are functions of t, and others are constants: $V_{\mathrm{Na}} = 115\,\mathrm{mV}, V_{\mathrm{K}} = -12\,\mathrm{mV}, V_{\mathrm{L}} = 10.6\,\mathrm{mV}$ (resting potential set to $0\,\mathrm{mV}$), $G_{\mathrm{Na}} = 120\,\mathrm{mS}\cdot\mathrm{cm}^{-2}, G_{\mathrm{K}} = 36\,\mathrm{mS}\cdot\mathrm{cm}^{-2}, G_{\mathrm{L}} = 0.3\,\mathrm{mS}\cdot\mathrm{cm}^{-2}$ and membrane capacity $C = 1 \,\mu\text{F} \cdot \text{cm}^{-2}$.

The interaction between neurons and external inputs come from I_i^{input}

$$I_i^{\text{input}} = I_i^{\text{E}} + I_i^{\text{I}},\tag{2}$$

$$I_i^{\rm E} = -(V_i - V_G^{\rm E})G_i^{\rm E}, \quad I_i^{\rm I} = -(V_i - V_G^{\rm I})G_i^{\rm I}$$
 (3)

 $I_i^{\rm E},~I_i^{\rm I}$ are excitatory and inhibitory input respectively, and $V_G^{\rm E},~V_G^{\rm I}$ is their reversal potential. conductances G_i^Q ($Q \in \{{\rm E},{\rm I}\}$) evolves according to The

$$\frac{\mathrm{d}G_i^Q}{\mathrm{d}t} = -\frac{G_i^Q}{\sigma_r^Q} + H_i^Q,\tag{4}$$

$$\frac{\mathrm{d}H_i^Q}{\mathrm{d}t} = -\frac{H_i^Q}{\sigma_d^Q} + \sum_k F_i^Q \delta(t - T_{i,k}^F) + \sum_{j \neq i} S_{ij} \delta(t - T_j^S)$$
(5)

where F_i^Q is the strength of external input to neuron i, $T_{i,k}^F$ is its time of k-th input event, which is a Poisson process with rate μ_i . We call this term the Poisson input. S_{ij} is the coupling strength from j-th neuron to i-th neuron. σ_r^Q , σ_d^Q are the fast rising and slow decaying timescales in the α function. $V_G^{\rm E}=65\,{\rm mV},\,V_G^{\rm I}=-15\,{\rm mV},\,\sigma_c^F=0.5,\,\sigma_d^E=3.0,\,\sigma_r^I=0.5,\,\sigma_d^I=7.0.$ We use adjacency matrix $A=(A_{ij})$ to denote the neural network structure, i.e. $S_{ij}=A_{ij}S^{Q_iQ_j}$, and $S^{Q_iQ_j}$ is one of $S^{\rm EE},\,S^{\rm EI},\,S^{\rm IE},\,S^{\rm II}$, depends on the type of corresponding neuron pair (E for excitatory, I

for inhibitory). $A_{ij} \neq 0$ means there is a direct affection to i-th neuron from j-th neuron.

 $F, \mu, A, S^{Q_i Q_j}, \sigma_r^Q, \sigma_d^Q$ are parameters relate to synaptic and input to neurons. For all neurons $F_i^{\rm E} = F, F_i^{\rm I} = 0, \mu_i = \mu$. During one simulation, these parameters are all constant.

The time delay due to long dendrite or axion are ignored. The threshold is 20 mV above resting potential $(0 \,\mathrm{mV})$.

In numerical simulation, we use explicit fourth-order Runge-Kutta method with time step 1/32 ms. When we talk about spike train data, we mean $x_t = 1$ if $V_i(t)$ just pass through the threshold from low to high, otherwise $x_t = 0$.

2.2 HH-G

Eq. (4)(5) change to

$$\frac{\mathrm{d}G_i^Q}{\mathrm{d}t} = -\frac{G_i^Q}{\sigma_r^Q} + \sum_k F_i^Q \delta(t - T_{i,k}^F) + \sum_{j \neq i} S_{ij} \delta(t - T_j^S),\tag{6}$$

2.3 HH-GH-cont-syn

Eq. (5) change to

$$\frac{\mathrm{d}H_i^Q}{\mathrm{d}t} = -\frac{H_i^Q}{\sigma_d^Q} + \sum_k F_i^Q \delta(t - T_{i,k}^F) + \sum_{j \neq i} S_{ij} g(V_j^{\mathrm{pre}}),\tag{7}$$

$$g(V_j^{\text{pre}}) = 1/\left(1 + \exp(-(V_j^{\text{pre}} - 85 \,\text{mV})/2)\right).$$
 (8)

 V_i^{pre} is the (presynaptic) membrane potential of j-th neuron.

Note: In this model, the voltage is scaled as V/10.

3 Neuron Properties

3.1 Single neuron property (HH-G, HH-GH, HH-GH-cont-syn)

3.1.1 Setting threshold

A common setting for threshold is 15 mV above the resting state.

From Fig.(1) we can see that there is some non-spike been counted as spike.

Figure 1: Threshold= $-65 + 15 \,\text{mV}$, HH-GH, pr= $10.0 \,\text{kHz}$, ps= $0.05 \,\Omega^{-1} \text{ms}^{-2}$ (strong input, 97 Hz)

Figure 2: Threshold= $-65 + 15 \,\text{mV}$, HH-GH, pr= $2.0 \,\text{kHz}$, ps= $0.05 \,\Omega^{-1} \text{ms}^{-2}$ (median input, $52 \,\text{Hz}$)

Figure 3: Threshold= $-65 + 15 \,\text{mV}$, HH-GH, pr= $1.0 \,\text{kHz}$, ps= $0.04 \,\Omega^{-1} \text{ms}^{-2}$ (low input, 24 Hz)

Figure 4: Threshold= $-65 + 15 \,\text{mV}$, HH-GH, pr= $1.0 \,\text{kHz}$, ps= $0.02 \,\Omega^{-1} \text{ms}^{-2}$ (tiny input, $1.4 \,\text{Hz}$)

3.1.2 Higher threshold

Use 20 mV above resting as threshold.

(Fig.(5)) Compare to Fig.(1), we see no mis-counted spikes, and the timing is more accurate.

Figure 5: Threshold= $-65 + 20 \,\text{mV}$, HH-GH, pr= $10.0 \,\text{kHz}$, ps= $0.05 \,\Omega^{-1} \text{ms}^{-2}$ (strong input, 97 Hz).

Use $84\,\mathrm{mV}$ above resting as threshold.

Reason: In "HH-GH-cont-syn" model, only when volt above around 85 mV will the synaptic transmit a signal. In function Eq.(8), $g(84 \,\mathrm{mV}) \approx 0.0067$, $g(85 \,\mathrm{mV}) = 0.5$.

Figure 6: Threshold= $-65 + 84 \,\mathrm{mV}$. Strong input, (see Fig. (1)). Essentially all spikes are "missed".

Figure 7: Threshold= $-65 + 84 \,\text{mV}$.

3.1.3 Discussion of the "threshold"

The concept of the threshold actually has two distinct meanings:

- 1. Once the voltage pass it (from low to high), then the neuron will fire (sooner or later).
- 2. The neuron will sent a signal to it down stream around this time.

A related fact is that (in this model, with Poisson input), the action potential is not in a fixed size, there are big and small action potentials. This is what makes the above two concepts differ.

In the simulation and exact understanding of spiking dynamics. The concept 2 is desired. The proper timing should be the peak time.

5