Time series analysis and forecasting of energy demand with Recurrent neural networks

Ari JÓHANNESSON Francisco CORREIA Pedro MACEDO Raphael MENDES

Data Transformation

- Data had:
 - o 'Non-practical' format
 - Missing values
- Zone 9 removed

Zone	Year	Month	Date	h1	$h2 \cdot \cdot \cdot h24$
1	2004	1	1	16853	$16450 \cdots$
1	2004	1	2	14155	$14038 \cdots$
:	÷	÷	:	:	:
20	2008	7	7	71263	$67560 \cdots$

Date	Z1	$Z2 \cdots Z20$
2004-1-1 1:00:00	16853	$126259 \cdots 79830$
2004-1-1 2:00:00	16450	$123313\cdots77429$
:	į	:
2008-7-7 24:00:00	16690	$163029 \cdots 85887$

Data Statistics

- Relationship between energy demand and temperature
- Energy demand increases throughout the day
- Years do not differ significantly

Zone Correlation

- Temperature stations highly correlated
 - \circ r = 0.97
- Load stations correlate
 - \circ On average r = 0.84
 - \circ Except zone 8 (r = 0.4)

Correlation of temperature stations

Correlation of load stations

Energy Demand and Temperature

- Further evidence of correlation between energy demand and temperature
 - Hot/cold months have higher demand

ACF and PACF

- ACF: Correlation of a time series with delayed copy of itself as a function of delay
- PACF: Controls for other lags

-		
Lags	Time	PACF
1	1 hour	0.9709550
2	2 hours	-0.7737019
25	25 hours	-0.4934457
24	24 hours	-0.3872113
16	16 hours	0.2667820
26	26 hours	0.2520593
15	15 hours	0.2517194
3	3 hours	0.2303735
17	17 hours	0.2301514
169	7 days and 1 hour	-0.2287006
145	6 days and 1 hour	-0.2076716
144	6 days	-0.2046309
18	18 hours	0.1829837
14	14 hours	0.1710621
168	7 days	-0.1709017

Autocorrelations for lags 48 hours

Fourier Analysis - Extracting Seasonalities

Data of Zone Load 1. In the bottom left corner, showing 1 point each 1000 anothers

Fourier Analysis

Data of Load zones and temperatures stations have similar spectral patterns:

The Recency Effect

- Energy demand partially determined by temperatures of preceding hours
- Zones might be affected differently
- Lag 12 produced the most correlation
- Few load zones more correlated to all temperature stations

The Recency Effect

Article: "Electric load forecasting with recency effect: A big data approach" Pu Wang, Bidong Liu, Tao Hong

https://www.sciencedirect.com/science/article/pii/S0169207015001557?via%3Dihub

- Uses the same data (excluding zone 9)
- Basically a regression model:

$$y_t = \underbrace{\beta_0 + \beta_1 Trend + \beta_2 M_t \beta_3 W_t + \beta_4 H_t + \beta_5 W_t H_t}_{linear\ regressor} + \underbrace{\sum_d f(T_{avg(t,d)}) + \sum_h f(T_{t-h})}_{recency\ effect\ terms} + \underbrace{\sum_d f(T_{avg(t,d)}) + \sum_h f(T_{t-h})}_{recency\ effect\ terms}$$

$h \setminus d$	0	1	2	3	4	5	6	7
0	4.89	4.10	4.09	4.16	4.23	4.13	4.12	4.25
1	4.55	3.92	3.91	3.97	4.05	3.95	3.96	4.08
2	4.34	3.81	3.80	3.87	3.94	3.85	3.85	3.97
3	4.20	3.76	3.74	3.81	3.88	3.79	3.79	3.91
4	4.09	3.71	3.70	3.76	3.84	3.75	3.74	3.86
5	4.00	3.68	3.67	3.73	3.81	3.72	3.71	3.83
6	3.93	3.65	3.64	3.71	3.78	3.70	3.69	3.81
7	3.86	3.63	3.62	3.69	3.76	3.68	3.67	3.80
8	3.81	3.60	3.60	3.67	3.75	3.67	3.66	3.78
9	3.77	3.59	3.58	3.65	3.73	3.66	3.65	3.78
10	3.74	3.58	3.57	3.64	3.72	3.65	3.64	3.77
11	3.73	3.57	3.55	3.63	3.71	3.64	3.63	3.76
12	3.71	3.56	3.54	3.62	3.69	3.63	3.62	3.75
13	3.69	3.56	3.54	3.62	3.68	3.62	3.62	3.74
14	3.67	3.57	3.55	3.63	3.69	3.63	3.63	3.76
15	3.66	3.58	3.57	3.64	3.70	3.64	3.64	3.77
16	3.67	3.60	3.58	3.66	3.71	3.66	3.66	3.79
17	3.67	3.62	3.61	3.68	3.73	3.68	3.68	3.81
18	3.67	3.64	3.63	3.71	3.75	3.70	3.70	3.83
19	3.68	3.67	3.65	3.73	3.77	3.72	3.71	3.86
20	3.68	3.69	3.68	3.75	3.79	3.74	3.73	3.88
21	3.69	3.71	3.70	3.77	3.80	3.76	3.76	3.90
22	3.70	3.73	3.72	3.78	3.81	3.78	3.77	3.92
23	3.72	3.74	3.73	3.78	3.82	3.79	3.79	3.94
24	3.73	3.76	3.75	3.79	3.83	3.80	3.80	3.95
25	3.74	3.76	3.77	3.80	3.84	3.81	3.81	3.96
26	3.75	3.78	3.79	3.81	3.85	3.83	3.82	3.98
27	3.76	3.80	3.81	3.83	3.86	3.84	3.84	4.00

MAPE stats for tuning h and d hyperparameters of the model of the left

The Shiny App

- To visualize and analyse the time series
 - Temperature/Energy demand
 - Compare zone loads and station temperatures
 - See stats for some zones/ some stations
 - See overall stats
 - 3D visualizations
 - Fourier analysis
 - Make automatic Forecast using trained models
- Runs locally, once all the libraries are installed
 - Instructions in README

Shiny

Problem Formulation

Problem 1: Given a time series input X of N hours ($X \in \mathbb{R}^{1 \times N}$) to predict the values Y for the next M hours ($Y \in \mathbb{R}^{1 \times M}$)

Problem 2: Given a time series with a gap Y of M hours ($Y \in \mathbb{R}^{1 \times M}$), use the existing time series X of length N hours ($X \in \mathbb{R}^{1 \times N}$) to predict the gap values.

The models were tested on three tasks (M = 1h, 24h and 168h)

Recurrent neural networks (RNN)

Pro's

- Keeps memory

Con's

- Exploding and vanishing gradients problem
- Complex to train

Long short-term memory (LSTM)

Long short-term memory (LSTM)

$$f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f)$$

$$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$$

$$\widetilde{C}_t = tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

$$C_t = f_t * C_{t-1} + i_t * \widetilde{C}_t$$

$$o_t = \sigma(W_o \cdot [h_{t-1}, x_t] + b_o)$$

$$h_t = o_t * tanh(C_t)$$

Gated recurrent unit (GRU)

$$z_t = \sigma(W_z \cdot [h_{t-1}, x_t])$$

$$r_t = \sigma(W_r \cdot [h_{t-1}, x_t])$$

$$\widetilde{h_t} = tanh(W \cdot [r_t * h_{t-1}, x_t])$$

$$h_t = (1 - z_t) * h_{t-1} + z_t * \widetilde{h_t}$$

Bidirectional LSTM

Another approach with Bidirectional LSTM

Data Pre-Processing

$$X_{out} = \frac{(X - minX)}{(maxX - minX)}$$

```
# normalize data with min max normalization.
normalizer = MinMaxScaler(feature_range = (0, 1))
dataset = normalizer.fit_transform(data)

# Using 80% of data for training, 20% for validation.
TRAINING_PERCENT = 0.80
train_size = int(len(dataset) * TRAINING_PERCENT)
test_size = len(dataset) - train_size
train, test = dataset[0:train_size, :], dataset[train_size:len(dataset), :]
```

Keras Model Definition

```
def create_model(train_X, train_Y, window_size = 1, nstep = 1):
    vanilla_rnn = Sequential()
    # add an LSTM layer for uni-variate data input
    vanilla_rnn.add(LSTM(20, input_shape = (1, window_size)))
    # output a single decision for the load forecast
    vanilla_rnn.add(Dense(nstep))
    vanilla_rnn.compile(loss = "mean_squared_error", optimizer = "adam", metrics = ['mse', 'mae'])
    return(vanilla_rnn)
```

<pre>vanilla_rnn.summary()</pre>		
Layer (type)	Output Shape	Param #
lstm_17 (LSTM)	(None, 20)	5680
dense_17 (Dense)	(None, 1)	21
Total params: 5,701 Trainable params: 5,701 Non-trainable params: 0		

Keras Model Training

```
# train the model with early stopping and mini batches
es = callbacks.EarlyStopping(monitor='val_loss', patience=5, verbose=1)
history = vanilla_rnn.fit(train_X, train_Y, epochs = 100, batch_size = 32, verbose = 2,
    validation_split=0.15, callbacks=[es])
```


Hyper-Parameter Tuning

0.0005

0.002

0.01

rate

0.1

0.5

Naive Predictors

Table 3: Table showing test errors for naive predictors

	Loss Metric	
Architecture	MSE	MAE
Naive 1h ahead	1492.99	34.08
Naive 24h ahead	3284.90	48.00
Naive 168h ahead	5281.74	61.24

LSTM & GRU

Table 4: Table showing training and test errors for LSTM predictor

		Train Metric		Test Metric	
Architecture	Window	MSE	MAE	MSE	MAE
LSTM 1h	50	586.99	20.43	636.85	21.38
	100	655.76	22.04	702.24	22.81
LSTM 24h	50	2546.89	42.58	2737.39	44.11
	200	2429.30	41.68	2700.48	43.79
LSTM 168h	200	3530.33	51.61	4013.92	54.47
	500	3390.50	50.28	4157.22	55.25

Table 5: Table showing training and test errors for GRU predictor

		Train Metric		Test Metric	
Architecture	Window	MSE	MAE	MSE	MAE
GRU 1h	50	699.08	22.89	753.37	23.83
	100	803.77	25.00	854.61	25.74
GRU 24h	50	2535.07	42.15	2733.19	43.73
	200	2404.36	41.31	2668.59	43.45
GRU 168h	200	3527.94	51.37	4005.74	54.17
	500	3496.78	51.39	4128.64	55.38

Bidirectional LSTM for Future Prediction

Table 6: Table showing training and test errors for bidirectional LSTM predictor

		Train Metric		Test Metric	
Architecture	Window	MSE	MAE	MSE	MAE
BIDIRECTIONAL-LSTM 1h	50	688.28	22.73	739.65	23.58
	100	616.46	21.52	663.49	22.34
BIDIRECTIONAL-LSTM 24h	50	2546.81	42.70	2737.35	44.19
	200	2426.07	41.53	2722.66	43.78
BIDIRECTIONAL-LSTM 168h	200	3670.45	51.67	4209.39	54.72
	500	3426.25	50.45	4100.67	54.66

Bidirectional LSTM for Gap Prediction

Table 7: Table showing training and test errors for bidirectional LSTM for gap prediction

		Train Metric		Test Metric	
Architecture	Window	MSE	MAE	MSE	MAE
BIDIRECTIONAL-LSTM 1h gap	50	457.51	19.72	484.20	20.22
	100	311.22	15.30	330.07	15.86
BIDIRECTIONAL-LSTM 1h gap	50	1781.94	35.12	1950.23	36.83
	200	1863.56	36.66	2054.10	38.57
BIDIRECTIONAL-LSTM 1h gap	200	3074.85	47.80	3735.12	52.07
	500	2972.87	46.97	3750.16	52.29

Multivariate LSTM with Temperature Data

Table 8: Table showing training and test errors for multi variable LSTM predictor (with mean temperature)

		Train Metric		Test Metric	
Architecture	Window	MSE	MAE	MSE	MAE
LSTM 1h	50	558.16	19.94	602.18	20.78
	100	625.36	21.64	676.99	22.54
LSTM 24h	50	2392.40	41.47	2606.74	43.16
	200	2369.30	41.44	2744.64	44.29
LSTM 168h	200	3474.56	50.72	4016.03	54.04
	500	3478.85	51.10	4286.81	56.18

Conclusion

GRU is the best performing model on our future prediction task.

Gap prediction can be tackled by using bidirectional LSTM.

<u>Future work</u>

- CNN LSTM
- Alternative implementation for gap prediction