Sinkhorn Divergence of Topological Signatures for Time Series Classification¹

Colin Stephen - Coventry University

ICMLA 2018

 $^{^1}$ Slides available at https://github.com/colinstephen/icmla2018

- 1. Motivation
- 2. Persistence Images
- 3. Regularized Transport
- 4. Classification Pipeline
- Results

Hénon Attractor

$$x_{n+1} = 1 - ax_n^2 + y_n$$
 and $y_{n+1} = bx_n$

Figure 1: Hénon map for a=1.4, b=0.3

Chaotic Bifurcations

Figure 2: Possible range of x is highly sensitive to a

Distinguish Trajectory Classes

Figure 3: Sequence of x values for a = 1.4, b = 0.3

Figure 4: Sequence of x values for a = 1.395, b = 0.3

Possible Applications

Quality control in PCB circuit fabrication:

Engine component failure prediction:

Practical Challenge

Given:

- Two classes of labelled z-normalized time series measured from some chaotic system
- ► An unlabelled time series from one class

Find:

A good choice of label for the unlabelled instance

Subject to:

- The underlying dynamic model is unknown
- Signal to noise ratio may be low
- Robust identification needs long time series

Many Standard Approaches

- Transformation based distances
 - dynamic time warp
 - edit distance
- Dictionary approaches
 - bag of patterns
 - SAX
- Shapelets
- Ensembles
 - ▶ COLT
 - ▶ Elastic Ensemble
- Signal decomposition approaches
 - spectral analysis
 - cepstral analysis

Topological Approaches

Q: Can topological properties distinguish time series classes?

A: Yes. Topological Data Analysis (TDA) using Takens embeddings.

Figure 5: Takens Theorem: delay embedding of time series is diffeomorphic copy of attractor (for the right embedding!)

Challenges for TDA on Time Series

- 1. Takens embedding requires dimension and delay estimation.
- 2. The embedding moves data from 1D to nD
 - has a large complexity cost for TDA methods.
 - requires subsampling and other statistical approaches
- 3. Computing metric distances on topological feature spaces has high time complexity anyway (double jeopardy).

Aim of the paper: construct a TDA pipeline that...

- does not require embeddings
- uses a metric on topological features that is fast to compute
- classifies with competitive accuracy

- 1. Motivation
- 2. Persistence Images
- 3. Regularized Transport
- 4. Classification Pipeline
- 5. Results

Persistence Diagram of a Time Series

Look at inclusions of sublevel sets $f^{-1}(-\infty, a]$ for $a \in \mathbb{R}$

Apply a precedence condition for merging sets (lives vs dies)

This gives a simple topological descriptor called the *persistence* diagram (bottom right)

Key result: (2007) a metric on the space of PDs (Wasserstein distance) is L_p -stable on large space of functions

Realistic Persistence

The number of persistence points is generally large.

Also we always have $b \le d$ so can translate $T: (b, d) \mapsto (b, d - b)$

The vertical axis d - b is the *persistence* of the feature

Persistence Surfaces

Practical concern:

- ▶ Large numbers of points in T(B)
- Suggests using KDEs instead

Constraint:

- Points near the diagonal are seen as 'topological noise'
- ▶ Suggests applying a weight function $f(b,p) \in \mathbb{R}$ that decays to zero on axis b=0

$$\rho_B(z) := \frac{1}{2\pi\sigma^2} \sum_{x \in T(B)} f(x) e^{-\frac{\|z - x\|^2}{2\sigma^2}}$$

This is the persistence surface of B

Persistence Images

- Discrete approximations of surfaces can be compared more quickly
- ▶ So divide an area of \mathbb{R}^2_+ in to a regular grid
- ▶ Integrate ρ_B over each grid cell
 - ▶ Fast in practice using convolutions

NB: scale of Gaussian and scale of grid are independent

- 1. Motivation
- 2. Persistence Images
- 3. Regularized Optimal Transport
- 4. Classification Pipeline
- 5. Results

The Optimal Transport Problem

Transport 'probability mass' between two distributions θ, r

ightharpoonup corresponds to specifying a joint probability Γ

Subject to: minimal total cost of joint probabilities assigned

• So find $\min_{\Gamma} \langle \Gamma, D \rangle = \sum_{i,j} \Gamma_{i,j} D_{i,j}$

Figure 6: Marginal and joint probabilities (left) and cost matrix (right)

Regularized Optimal Transport

- ► Standard OT problem is $O(n^3 \log n)$ for 1D histograms
- ▶ In 2D $(n \times n \text{ histograms})$ it is $O(n^6 \log n)$
- Not feasible computationally

Key result: (method 2013, complexity 2017)

Adding a regularization term to the optimization reduces 1D problem to $O(n \log n)$.

► Define regularized optimal transport distance:

$$ROT_D^{\lambda}(\theta, r) = \langle \Gamma_{\lambda}^*, D \rangle$$

Subject to:

$$\Gamma_{\lambda}^* = \operatorname{argmin}_{\Gamma}(\langle \Gamma, D \rangle - \lambda H(\Gamma))$$

▶ For some error function *H* over joint probabilities

Entropic Regularization

Choosing error penalty

$$H(\Gamma) = -\sum_{i,j} \Gamma_{i,j} \log \Gamma_{i,j}$$

finds an unbiased – maximum ignorance – choice of Γ_{λ}^* .

► The entropy regularized OT distance $ROT_D^{\lambda}(\theta, r)$ is called the Sinkhorn Divergence between the distributions.

Figure 7: Regularised OT for $\lambda \in \{0.1, 1, 10, 100\}$ (γ in figure is Γ above).

- 1. Motivation
- 2. Persistence Images
- 3. Regularized Transport
- 4. Classification Pipeline²
- 5. Results

 $^{^2}$ Python code for classifiers at: https://github.com/colinstephen/icmla2018

Training: Learn Persistence Images of Classes

Given collection of labelled time series, for each one:

Find its persistence diagram (PD)

For each class:

- Overlay its PDs
- ▶ Compute the class persistence surface (parameters are σ , f)
- ▶ Discretize to a persistence image (parameter is $d \times d$)

Here: 100×100 persistence images for Henon classes 1 and 2, and their difference.

Prediction: compute Sinkhorn Divergence

Given an unlabelled time series:

- ▶ Find its persistence diagram
- Compute its persistence image I
 - use same values for σ , $d \times d$, and f

Fix an L_p cost matrix for some p and compute:

- ► Sinkhorn divergence between *I* and class images
- Closest one wins

In practice

- ▶ all parameters including *p* set in training via cross validation
- ▶ training is $O(d^2 \log d)$
- ▶ prediction is $O(n \log n)$

- 1. Motivation
- 2. Persistence Images
- 3. Regularized Transport
- 4. Classification Pipeline
- 5. Results³

³Python code for trajectory data and benchmark classifiers also at: https://github.com/colinstephen/icmla2018

Experiments

Data in paper:

- Synthetic time series from Lorenz, Hénon, and Logistic systems
- ▶ Initial conditions uniformly distributed over intervals
- ▶ Model parameters uniformly distributed over intervals too
- ► Two classes generated per experiment
- ► Approx 1,000,000 time series classified in total

Benchmarks

Pipeline outperforms well known fequency decomposition approach:

- Euclidean distance between cepstral coefficients
- Variation on the discrete Fourier transform

Outperforms the only TDA approach that avoids embeddings:

- A decision rule for class membership based on ROC curve for 'persistent entropy' of the individual time series
- Paper actually implements an improved version of this using nearest neighbours

Also tested against DTW and Random Forests: these were not competitive.

Accuracy Profiles: Hénon time series

Accuracy vs noise for three lengths: 5000, 10000, 15000

Summary

If you wish to classify chaotic trajectories you can:

- 1. Represent topology as persistence images to give:
 - A class-based KDE of the topology
- 2. Quantify proximity using Sinkhorn divergence:
 - A fast metric on spaces of distributions

Result is fast estimation of class membership that is:

- Robust to noise topological stability result
- Effective for long series KDE over a grid; Sinkhorn algorithm
- Accurate relative to common approaches

References 1

- [1] Adams, H., et. al. *Persistence images: A stable vector representation of persistent homology*. Journal of Machine Learning Research **18**, 1 (2017), 218–252.
- [2] Altschuler, J., et. al. *Near-linear time approximation algorithms for optimal transport via Sinkhorn iteration*. In Advances in neural information processing systems (2017), pp. 1964–1974.
- [3] Cohen-Steiner, D., et. al. Lipschitz Functions Have L_p -Stable Persistence. Foundations of Computational Mathematics **10** (2010), 127–139.

References 2

- [4] Cuturi, M. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances in neural information processing systems (2013), pp. 2292–2300.
- [5] Randall, R. B. _A history of cepstrum analysis and its application to mechanical problems.__ Mechanical Systems and Signal Processing 97 (2017), 3–19.
- [6] Rucco, M., et. al. A new topological entropy-based approach for measuring similarities among piecewise linear functions. Signal Processing **134** (2017), pp.130–138.