증명을 코딩하기

기계적으로 증명이 맞다는 걸 확인하는 방법

KAIST Concurrency & Parallelism Laboratory 이장건

흔한 학부생이 증명을 하는 과정

- 시험이나 과제에서 증명 문제가 나옴.
- 열심히 공부해서 배운 정리들과 mathoverflow의 힘을 합쳐서 증명함.
- 맞다는 확신을 가지고 제출하고 놀러감.
- 다시 받은 점수는 처참하게 까여있음.
 - '사용한 정리의 가정이 만족하지 않아요.'
 - '증명의 논리적 비약이 너무 심해요.'
 - '사용한 보조 정리의 증명을 안 하셨어요. 간단하지만 해야 해요.'

왜 이런 일이 일어날까?

- 수학이 문제일까?
 - 수학이 옳다고 가정하고 증명을 하는 것.
- 사람이 문제일까?
 - 기억력 짧음. 실수 자주 함. 틀린 게 맞다 생각함 등...
 - 증명이 맞다 확신하는 것이 증명한 본인임.
 - 조교 또한 사람이니 실수했을 수도 있음
- 증명을 하는 사람과 독립적으로 증명이 옳다는 확신을 얻을 수 있을까?

증명이란 무엇일까?

- '정리가 옳다고 확신하는 논리적인 주장.'
- 좀 더 엄밀하게 생각해보자.
 - 형태: A →B.
 - 목표: A가 옳다고 가정하고, B의 올바름을 보이기.
 - 방식: A를 공리를 사용해서 변환, 이미 증명한 정리를 통해 변환.
- 이러한 단계를 기계의 도움을 받아 할 수 있을까?

Proof Assistant

- 목표: 증명의 논리적인 단계들을 올바르게 했음을 검증.
 - 공리를 통한 변환.
 - 이미 증명된 정리를 통한 변환.
 - 정말 정리를 적용할 수 있는지 확인.
 - 정리의 조건들을 만족하는지 확인.
 - 증명을 까먹고 안 한 것이 없는지 확인.
- 장점: 증명 완성 = 증명의 진행의 엄밀한 과정이 완성.

예시 1: 간단한 정리의 증명

- 정리: 모든 n에 대해, n + 0 = n.
- 증명: 다음 두 요소에 대해 귀납을 진행.
 - 자연수의 귀납 정의 (0, S 0, S (S 0), ...).
 - 덧셈의 귀납 정의 (0 + n = n. Sn + m = S(n + m)).
- 실제 코드로 봐보자.

예시 2: 틀린 증명이 틀리다는걸 확인

- 정리: '모든 사람은 같은 키다'.
- 증명: 집합 크기에 대한 귀납법.
 - N = 0,1: 공집합 및 사람이 혼자임으로 자명.
 - N > 1: 집합 *P*안의 사람들을 *p₁,...p*_n이라 하자.
 - P에서 p_1 을 제거한 집합을 P_1 , p_n 을 제거한 집합을 P_2 라 하자.
 - 그럼 P_1 , P_2 의 크기는 P보다 작으므로, 귀납법에 의해서 같은 키의 사람만 있다.
 - $P_1 \cap P_2$ 는 두 집합 모두에 있는 사람이 있으므로, 모든 사람의 키는 같다.
- *N* = 2일떄 마지막 문장 성립 *X*.

Q: 그럼 Proof Assistant로 검증된 증명은 맞나요?

- 아니요!
- '대충 False가 증명 가능하다는 내용'.
- 원래 신뢰의 대상: 증명을 진행한 다양한 사람들.
- 새로운 신뢰의 대상: 증명을 확인하는 Proof Assistant의 구현.
- 임의의 불확실한 신뢰 대상 → 공통된 기계적인 신뢰 대상.

왜 수학에서 써야 할까?

- 어떠한 증명이 올바르다는걸 확신해야 할 이유가 있음.
 - 증명했지만, 리뷰를 기다려야 한다.
 - 증명했지만, 다른 사람이 받아들이기 어려운 컴퓨터의 도움을 받았다.
 - 증명했지만, 다른 사람들을 납득시키기 어렵다.
 - 증명을 이해했지만, 모든 내용을 이해했는지 모르겠다.
- Proof Assistant는 이러한 문제들을 해결할 수 있음.

Four Color Theorem (1/2)

- 어떠한 지도도 4가지 색으로 색칠이 가능하다는 정리.
- 1976년에 Kenneth Appel과 Wolfgang Haken이 '증명'.
 - 핵심: 무한한 지도를 색칠하는 게 아닌 유한한 지도를 색칠하는 게 충분하다는 걸 증명.
 - 대표 지도: 1,482개의 지도를 찾아서 컴퓨터로 >1000 시간을 걸려서 색칠.
 - 대표 지도를 찾는 과정은 400페이지 → 맞는지 확인하기 엄청 힘듦.
 - 대표 지도를 색칠하는 건 컴퓨터 알고리즘 → 사람이 쓴 코드를 믿어야함.

Four Color Theorem (1/2)

수학에서 Proof Assistant의 사용

- 한계적인 발전: 신뢰할 수 없는 프로그램을 쓴다는건 변하지 않음.
- Coq을 통한 증명: 2005년에 Benjamin Werner와 Georges Gonthier가 증명.
 - 633개의 대표 집합을 찾는 과정: 찾은 집합을 색칠하는 게 충분하다는걸 증명.
 - 633개의 집합을 색칠하는 과정: 색칠이 옳다는걸 증명.
 - 증명 소스코드: https://github.com/coq-community/fourcolor
- 400페이지의 귀찮은 수학 + 컴퓨터 프로그램 신뢰 \rightarrow Coq 구현 신뢰.

job001to106.v job107to164.v job165to189.v job190to206.v job207to214.v job215to218.v job219to222.v job223to226.v job227to230.v job231to234.v job235to238.v job239to253.v job254to270.v job271to278.v job279to282.v job283to286.v job287to290.v job291to294.v job295to298.v job299to302.v

job303to306.v

job307to310.v

Feit Thompson Theorem

- "Every finite group of odd order is solvable".
- 1962, 63년에 250 페이지 이상의 증명.
- 2012년에 6년간 노력 끝에 Coq으로 증명이 끝났음을 알림.
 - 150,000 줄의 proof script.
 - 최종 결과물.
- 수학계에선 그다지 큰 관심을 받지 못함.
- Q: 과연 proof assistant가 현대수학을 할수 있을까?

```
Theorem Feit_Thompson (gT : finGroupType) (G : {group gT}) :
   odd #|G| -> solvable G.
Proof. exact: (minSimpleOdd_ind no_minSimple_odd_group). Qed.

Theorem simple_odd_group_prime (gT : finGroupType) (G : {group gT}
   odd #|G| -> simple G -> prime #|G|.
Proof. exact: (minSimpleOdd_prime no_minSimple_odd_group). Qed.
```

증명 리뷰를 혼자서 하기 (1/2)

- December 2021: Thomas Bloom은 다음을 증명.
- "Any set $A \subset \mathbb{N}$ of positive upper density contains a finite $S \subset A$ such that $\sum_{n \in S} \frac{1}{n} = 1$ ".
- 6개월뒤 Bhavik Mehta와 Coq으로 증명.
 - 유용한 테크닉의 증명도 포함함.
- 이 논문은 아직 리뷰를 받지 않았음.

증명 리뷰를 혼자서 하기 (2/2)

- 이 일이 왜 중요한가?
 - 수학자들이 Proof Assistant에 관심이 없던 이유 중 하나는 현대수학을 할 준비가 X.
 - Proof Assistant가 현대수학을 증명할 수 있음을 보여줌.
- (희망사항) 리뷰가 단순해질 수 있음.
 - 수학 논문은 증명 검증 때문에 리뷰가 매~~우 오래 걸림 (1~2년도 가능).
 - Proof Assistant가 널리 사용되면 증명 검증에 걸리는 시간이 줄어들 수 있을 것.

프로그램이란 무엇인가?

- 알고리즘이란 무엇인가: 어떠한 수학적인 문제를 푸는 기계적인 과정.
- 프로그램은 알고리즘의 구현체.
 - 프로그램을 올바르게 작성했다는걸 어떻게 확신하는가?
 - 프로그램이 작성된 언어가 CPU에서 올바르게 실행된다는 걸 어떻게 확신하는가?
- Proof Assistant의 목적: 수학을 잘 쓰고 싶다.
 - 수학으로 올바름을 확신하고 싶다.
 - 수학을 올바르게 썻다는 것도 확신하고 싶다.

프로그램을 증명하는 방법

- 명세: 프로그램에 원하는 성질의 수학적 표현.
- 구현: 위 성질을 만족하는 알고리즘의 구현.
- 증명: 구현한 프로그램이 실제로 명세를 만족한다는 걸 보이는 것.
- 중요성: 전산의 입장에서는 '어떻게 증명했냐' 보단 '증명한게 유용하냐'가 훨씬 중요.
 - '증명'의 신뢰는 Proof Assistant로 넘김.
 - 증명한 '명세'의 유용성만 열심히 설명하면 됨.
- 얼마나 어려운가 = 얼마나 노오오동을 해야 하나.
 - 간단한 알고리즘: array에 원소 두개를 swap. (4 대 12)
 - 어려운 알고리즘: use-after-free/ABA를 방지하는 SMR 알고리즘. (140 대 2300++)

언어란 무엇인가?

- CS101에서 다들 Python으로 코딩을 해봤음.
- 자신이 쓴 Python 코드가 엄밀하게 어떠한 방식으로 작동하는지 서술할수 있을까?
 - 예: x = 1; y = x + 1가 있을때, 왜 y값은 2가 되는가?
- 필요성: 엄밀해야 언어를 해석하는 도구 만들기가 가능함.
 - assembly로 변환하는 컴파일러 (C/C++/Java/Rust)
 - 해석하는 인터프리터 (Python/Java/JavaScript)
- 자세한 내용은 CS320 Programming Languages에서

C: 모든 언어의 기본

- 처음으로 만들어진 "현대적인 프로그래밍 언어".
- 모든 OS/효율적인/사이즈가 작은/다른 언어의 컴파일러 프로그램에 필수적으로 사용.
 - 안전하게 작동해야 하는 이유가 매우 있음.
 - 써보면 알겠지만 올바르게 쓰기 매우 힘듦.
- 엄밀한 언어의 정의가 존재.
 - Q: 그럼 뭐가 문제죠?
 - A: 701페이지입니다.
- 올바른 컴파일러를 만들기가 매우 힘듦.

CompCert: 검증된 C 컴파일러

- (거의 대부분의) 구현이 검증된 C 컴파일러.
 - IR 변환의 증명.
 - 최적화의 증명.
 - 생성된 assembly가 C 코드와 '동일하게 동작'.
- 상업적으로 경쟁성이 있는 C 컴파일러.
 - 프로그램 검증이 단순히 심심풀이가 아님을 보여줌.
 - 안정성이 매우 중요한 사업 (항공, 원자로 사업 등)에서 사용중.

동시성 프로그래밍 (1/4)

- 프로그램에 주어진 일을 하나의 CPU에서 하는 것이 아닌 여러 CPU에 동시에 시키는것.
 - 예: 과제를 각자 푸는게 아닌 스터디를 만들어서 문제를 분배하기
- 현대 프로그램의 속도를 위한 핵심 요소.
 - GPU: 게임, 인공지능, 영상매체.
 - NPU/TPU: 특화된 인공지능 기능을 얼마나 동시성을 잘 살릴 것인가?
- 저희 교수님: 앞으로는 700년은 동시성 프로그램이 주가 될 것.

동시성 프로그래밍 (2/4)

전산학에서 Proof Assistant 사용

• 이상: 알아서 깔끔하게 일이 분배됨.

• 현실:

- 동시성 프로그램의 올바름은 따지기가 매우 어려움.
- 왜 그런지 더 궁금하다면 내년에 CS431에서 고통을 공부를.

동시성 프로그래밍 (3/4)

- 동시성 프로그램의 명세: 올바른게 뭔지 따지는 게 어려움.
 - 예: 학생한테 과제를 시켰는데 두명이 반씩 섞어서 제출한 후 두명 다 했다고 주장함.
- 동시성 프로그램의 구현: 올바른게 구현하는게 뭔지 따지는 게 어려움.
 - 컴파일러 최적화, 다른 함수와의 연관, OS 기능 등...
- 동시성 프로그램의 증명: 구현이 올바름을 어떻게 만족하는게 따지는 건 진짜 어려움.
 - "동시성이 있는 언어란 무엇인가"를 따지는 게 굉장히 힘들기 때문.
- Proof Assistant을 사용해서 증명한 결과물이 옳다는걸 남들도 납득시키는게 가능함.

동시성 프로그래밍 (4/4)

- 컴파일러 최적화: 프로그램의 순서를 변경해서 더 효율적인 프로그램으로 변경.
- Speculative write: 나중에 있는 write instruction을 위로 이동시키기.
 - r := y; $\rightarrow x := 1$;
 - $x := 1; \rightarrow r := y;$
- (1) 이러한 최적화가 가능한 언어를 (2) 검증하기 위한 논리 체계를 만들기.

마치며

증명을 코딩하기

- 증명을 믿는 것은 그 증명을 한 사람을 믿는 것.
- Proof Assistant는 그 신뢰를 임의의 사람이 아닌 하나의 소프트웨어로 바꿈.
- 수학에선 난이도가 높은 증명을 검증하거나 알고리즘적인 증명을 확인 가능.
- 전산학에서는 수학을 올바르게 썼다는 확신을 안겨줌.
- 수학에서 어떻게 사용하는 지가 더 자세히 궁금하면 Lean을 알아보는걸 추천.
- 전산에서 어떻게 사용하는 지가 더 자세히 궁금하면 저희 연구실로 오세요.
 - https://cp.kaist.ac.kr/join
- 슬라이드 및 코드: https://github.com/Lee-Janggun/2022-09-26-M_square

References

- Kevin Buzzard: The rise of formalism in mathematics
- CompCert
- The Four Color Theorem
- On a density conjecture about unit fractions
- A Machine-Checked Proof of the Odd Order Theorem