

All pairs

shortest

path

- The problem: find the shortest path between every pair of vertices of a graph
- The graph: may contain negative edges but no negative cycles
- A representation: a weight matrix where W(i,j)=0 if i=j. W(i,j)=∞ if there is no edge between i and j. W(i,j)="weight of edge"
- Note: we have shown principle of optimality applies to shortest path problems

The weight matrix and the graph

5 5 3

3

The subproblems

- How can we define the shortest distance $d_{i,i}$ in terms of "smaller" problems?
- One way is to restrict the paths to only include vertices from a restricted subset.
- · Initially, the subset is empty.
- Then, it is incrementally increased until it includes all the vertices.

The subproblems

- Let $D^{(k)}[i,j]$ =weight of a shortest path from v_i to v_i using only vertices from $\{v_1, v_2, ..., v_k\}$ as intermediate vertices in the path

 - $-D^{(n)}=D$ which is the goal matrix
- How do we compute $D^{(k)}$ from $D^{(k-1)}$?

The Recursive Definition:

Case 1: A shortest path from v_i to v_j restricted to using only vertices from $\{v_1, v_2, ..., v_k\}$ as intermediate vertices does Then $D^{(k)}[i,j] = D^{(k-1)}[i,j]$. not use v_k .

Case 2: A shortest path from v_i to v_i restricted to using only vertices from $\{v_1, v_2, ..., v_k\}$ as intermediate vertices does use v_k . Then $D^{(k)}[i,j] = D^{(k-1)}[i,k] + D^{(k-1)}[k,j]$.

Shortest path using intermediate vertices $\{V_1, \ldots, V_k\}$

Shortest Path using intermediate vertices { $V_{1,...}$ V_{k-1} }

5

CS333 / class 22

6

9

11 12

CS333 / class 22

Floyd's Algorithm: Using 2 D matrices

```
Floyd
  1. D \leftarrow W // initialize D array to W[]
  2. P \leftarrow 0 // initialize P array to [0]
  3. for k \leftarrow 1 to n
        // Computing D' from D
          do for i \leftarrow 1 to n
              do for j \leftarrow 1 to n
  5.
                   if (D[i, j] > D[i, k] + D[k, j])
  6.
                       then D'[i, j] \leftarrow D[i, k] + D[k, j]
  8.
                               P[i,j] \leftarrow k;
                        else D'[i,j] \leftarrow D[i,j]
  9.
  10. Move D' to D.
```

13 14

Can we use only one D matrix?

- D[i,j] depends only on elements in the kth column and row of the distance matrix.
- We will show that the kth row and the kth column of the distance matrix are unchanged when D^k is computed
- This means D can be calculated in-place

The main diagonal values

- Before we show that kth row and column of D remain unchanged we show that the main diagonal remains 0
- $D^{(k)}[j,j] = \min\{ D^{(k+1)}[j,j], D^{(k+1)}[j,k] + D^{(k+1)}[k,j] \}$ = $\min\{ 0, D^{(k+1)}[j,k] + D^{(k+1)}[k,j] \}$ = 0
- · Based on which assumption?

15 16

The kth column

- kth column of D^k is equal to the kth column of D^{k-1}
- Intuitively true a path from i to k will not become shorter by adding k to the allowed subset of intermediate vertices

```
 \begin{split} \bullet & \text{ For all } i, \ D^{(k)}[i,k] = \\ & = \min \{ \ D^{(k-1)}[i,k], \ D^{(k-1)}[i,k] + D^{(k-1)}[k,k] \, \} \\ & = \min \{ \ D^{(k-1)}[i,k], \ D^{(k-1)}[i,k] + 0 \, \} \\ & = D^{(k-1)}[i,k] \end{split}
```

The kth row

• kth row of D^k is equal to the kth row of D^{k-1}

```
For all j, D^{(k)}[k,j] =
= min{ D^{(k+1)}[k,j], D^{(k+1)}[k,k] + D^{(k+1)}[k,j] }
= min{ D^{(k+1)}[k,j], 0 + D^{(k+1)}[k,j] }
= D^{(k+1)}[k,j]
```

17 18

CS333 / class 22

Printing intermediate nodes on shortest path from q to r path(index q, r) if (P[q, r]!=0) 0 3 0 path(q, P[q, r]) **printin**("v"+ P[q, r]) P = 20 0 1 path(P[q, r], r) 0 0 return; //no intermediate nodes else return Before calling path check $D[q, r] < \infty$, and print node q, after the call to path print node r

20

21

CS333 / class 22