WE CLAIM:

1

8

9

10

11

12

13

14

15

16

17

18

19

20

- 1 1. A method of writing product servo sectors to a disk of a disk drive, the disk drive
 2 comprising control circuitry and a head disk assembly (HDA) comprising the disk, an
 3 actuator arm, a head connected to a distal end of the actuator arm, and a voice coil motor
 4 for rotating the actuator arm about a pivot to position the head radially over the disk, the
 5 disk comprising a plurality of spiral tracks, wherein each spiral track comprises a high
 6 frequency signal interrupted at a predetermined interval by a sync mark, the method
 7 comprising the steps of:
 - (a) using the head internal to the disk drive to read the spiral tracks to generate a read signal;
 - (b) processing the read signal to detect a sync mark in a spiral track and generating an associated sync mark reliability metric, wherein the sync mark reliability metric representing a probability that the sync mark was detected accurately;
 - (c) generating a timing recovery measurement in response to the detected sync mark and the sync mark reliability metric;
 - (d) synchronizing a servo write clock in response to the timing recovery measurement;
 - (e) processing the read signal representing the high frequency signal in the spiral track to generate a position error signal (PES) used to maintain the head along a substantially circular target path; and
 - (f) using the servo write clock and the head internal to the disk drive to write the product servo sectors along the circular target path.
- The method as recited in claim 1, wherein the step of generating the sync mark reliability metric comprises the steps of:
- 3 (a) processing the read signal to generate an estimated data sequence; and
- 4 (b) correlating the estimated data sequence with a sync mark pattern.

3. The method as recited in claim 1, wherein the step of generating the sync mark reliability 1 2 metric comprises the steps of: (a) rectifying the read signal; and 3 (b) generating a DC component of the rectified read signal. 4 1 4. The method as recited in claim 1, wherein the step of generating the sync mark reliability 2 metric comprises the steps of: (a) sampling the read signal to generate a sequence of read signal sample values; 3 (b) processing the read signal sample values to generate expected sample values; and 4 5 (c) generating a mean squared error (MSE) of the difference between the expected sample values and the read signal sample values. 6 5. The method as recited in claim 1, wherein the step of generating the sync mark reliability 1 2 metric comprises the steps of: 3 (a) rectifying the read signal; (b) integrating the rectified read signal; and 4 5 (c) generating the sync mark reliability metric and the PES from the integration. 6. The method as recited in claim 1, wherein the step of generating the timing recovery 1 2 measurement comprises the steps of: (a) comparing the sync mark reliability metric to a threshold; 3 (b) if the sync mark reliability metric is above the threshold, generating the timing 4 5 recovery measurement in response to the detected sync mark; and

(c) if the sync mark reliability metric is below the threshold, ignoring the detected sync

mark.

6

7

- The method as recited in claim 6, wherein the step of generating the timing recovery
- 2 measurement further comprises the steps of:
- 3 (a) accumulating the consecutive number of ignored sync marks; and
- (b) if the accumulation exceeds a predetermined number and the sync mark reliability
 metric is below the threshold, generating the timing recovery measurement in
 response to the detected sync mark.
- 1 8. The method as recited in claim 1, wherein the control circuitry within the disk drive is
 2 used to read the spiral tracks in order to synchronize the servo write clock.
- 1 9. The method as recited in claim 1, wherein an external product servo writer is used to read
 2 the spiral tracks in order to synchronize the servo write clock.

ì	10.	A disk drive comprising:
2		(a) a disk comprising a plurality of spiral tracks, wherein each spiral track comprises a
3		high frequency signal interrupted at a predetermined interval by a sync mark;
4		(b) an actuator arm;
5		(c) a head connected to a distal end of the actuator arm;
6		(d) a voice coil motor for rotating the actuator arm about a pivot to position the head
7		radially over the disk; and
8		(e) control circuitry for writing a plurality of product servo sectors to the disk to define a
9		plurality of radially spaced, concentric data tracks by:
10		using the head internal to the disk drive to read the spiral tracks to generate a read
11		signal;
12		processing the read signal to detect a sync mark in a spiral track and generating an
13		associated sync mark reliability metric, wherein the sync mark reliability
14		metric representing a probability that the sync mark was detected accurately;
15		generating a timing recovery measurement in response to the detected sync mark
16		and the sync mark reliability metric;
17		synchronizing a servo write clock in response to the timing recovery
18		measurement;
19		processing the read signal to representing the high frequency signal in the spiral
20		track to generate a position error signal used to maintain the head along a
21		substantially circular target path; and
22		using the servo write clock and the head internal to the disk drive to write the
23		product servo sectors along the circular target path.
1	11.	The disk drive as recited in claim 10, wherein the control circuitry for detecting the sync
2		mark by:
3		(a) processing the read signal to generate an estimated data sequence; and

(b) correlating the estimated data sequence with a sync mark pattern. 4 12. 1 The disk drive as recited in claim 10, wherein the control circuitry for generating the sync mark reliability metric by: 2 (a) rectifying the read signal; and 3 (b) generating a DC component of the rectified read signal. 4 13. The disk drive as recited in claim 10, wherein the control circuitry for generating the sync 1 mark reliability metric by: 2 (a) sampling the read signal to generate a sequence of read signal sample values; 3 4 (b) processing the read signal sample values to generate expected sample values; and 5 (c) generating a mean squared error (MSE) of the difference between the expected sample values and the read signal sample values. 6 1 14. The disk drive as recited in claim 10, wherein the control circuitry for generating the sync 2 mark reliability metric by: 3 (a) rectifying the read signal; (b) integrating the rectified read signal; and 4 5 (c) generating the sync mark reliability metric and the position error signal from the 6 integration. 15. 1 The disk drive as recited in claim 10, wherein the control circuitry for generating the 2 timing recovery measurement by: (a) comparing the sync mark reliability metric to a threshold; 3 4 (b) if the sync mark reliability metric is above the threshold, generating the timing 5 recovery measurement in response to the detected sync mark; and

- 6 (c) if the sync mark reliability metric is below the threshold, ignoring the detected sync mark.
- 1 16. The disk drive as recited in claim 15, wherein the control circuitry for generating the timing recovery measurement by:
 - (a) accumulating the consecutive number of ignored sync marks; and

3

(b) if the accumulation exceeds a predetermined number and the sync mark reliability
metric is below the threshold, generating the timing recovery measurement in
response to the detected sync mark.