NEURONALE NETZE

Handschriftliche Zahlen erkennen

Jasper Gude

2.1 Modellierung des Problems

2.2 Modellierung des Problems

2.3 Modellierung des Problems

3.1 Überführung auf eine Netzstruktur

28px × 28px

3.2 Überführung auf eine Netzstruktur

Modellierung

Künstliche Neuronen

Trainir

3.3 Überführung auf eine Netzstruktur

3.4 Überführung auf eine Netzstruktur

3.5 Überführung auf eine Netzstruktur

4.1 Gewichtungen setzen

Modellierung > Künstliche Neuronen > Training

4.2 Gewichtungen setzen

♦ Modellierung

Künstliche Neuronen

Training

4.3 Gewichtungen setzen

Künstliche Neuronen

4.4 Gewichtungen setzen

Künstliche Neuronen

5 Zahlenbereich begrenzen

6.1 Alles zusammen setzen

Aktivierungsfunktion

$$a_0^{(1)} = \sigma(w_{0,0}a_0^{(0)} + w_{0,1}a_1^{(0)} + \dots + w_{0,n}a_n^{(0)} - b_0)$$

6.2 Alles zusammen setzen

Aktivierungsfunktion

$$a_0^{(1)} = \sigma(w_{0,0}a_0^{(0)} + w_{0,1}a_1^{(0)} + \dots + w_{0,n}a_n^{(0)} - b_0)$$

$$\begin{bmatrix} a_0^{(1)} \\ a_1^{(1)} \\ \vdots \\ a_k^{(1)} \end{bmatrix} = \sigma \left(\begin{bmatrix} w_{0,0} & w_{0,1} & \cdots & w_{0,n} \\ w_{1,0} & w_{1,1} & \cdots & w_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ w_{k,0} & w_{k,1} & \cdots & w_{k,n} \end{bmatrix} \begin{bmatrix} a_0^{(0)} \\ a_1^{(0)} \\ \vdots \\ a_n^{(0)} \end{bmatrix} + \begin{bmatrix} b_0 \\ b_1 \\ \vdots \\ b_k \end{bmatrix} \right)$$

Aktivierungsfunktion

$$\vec{a^{(1)}} = \sigma(W\vec{a^{(0)}} + \vec{b})$$

$$\begin{bmatrix} a_0^{(1)} \\ a_1^{(1)} \\ \vdots \\ a_k^{(1)} \end{bmatrix} = \sigma \left(\begin{bmatrix} w_{0,0} & w_{0,1} & \cdots & w_{0,n} \\ w_{1,0} & w_{1,1} & \cdots & w_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ w_{k,0} & w_{k,1} & \cdots & w_{k,n} \end{bmatrix} \begin{bmatrix} a_0^{(0)} \\ a_1^{(0)} \\ \vdots \\ a_n^{(0)} \end{bmatrix} + \begin{bmatrix} b_0 \\ b_1 \\ \vdots \\ b_k \end{bmatrix} \right)$$

7.1 Fehler bestimmen

7.2 Fehler bestimmen

$$C_{3}(\vec{W}) = Summe$$

((0.75) 0	-	$\left(0.00\right)^2$
$\left(\begin{array}{c} 0.48 \end{array}\right)$ 1	-	(0.00)
$\left(\begin{array}{c} 0.57 \end{array}\right)$ 2	-	(0.00)
(0.75)3	-	$\left(1.00\right)^2$
$\left(\begin{array}{c} \hline 0.11 \end{array}\right)$ 4	-	(0.00)
$\left(\begin{array}{c} \hline 0.41 \end{array}\right)$ 5	-	$\left(0.00\right)^2$
$\left(\begin{array}{c} \hline 0.41 \end{array}\right)$ 6	-	(0.00)
$\left(\begin{array}{c} \hline 0.80 \end{array}\right) 7$	-	$\left(0.00\right)^2$
(0.74)8	-	$\left(0.00\right)^2$
((0.92) 9	_	$\left(0.00\right)^2$

7.3 Fehler bestimmen

Dataset D

Fehlerfunktion: Mean Squared Error

m: Anzahl der Einträge in Dd: Eintrag (Pixelvektor) in D

$$C_D(\vec{W}) = \frac{1}{m} \sum_{d \in D} (\sum_{i=0}^{9} (a_i^{(3,d)} - s_i^{(d)})^2)$$

8.1 Fehler minimieren

Globales Minimum durch Ableiten

8.2 Fehler minimieren

Zwei lokale Minima; globales Minimum durch Vergleich

8.3 Fehler minimieren

Finden lokaler Minima durch Ableiten nicht möglich

8.4 Fehler minimieren

Gradient Descent

 $abla C(\vec{W})$: Gradient der Fehlerfunktion C an Stelle \vec{W} Vektor in Richtung des größten Anstiegs

$$\vec{W_{neu}} = \vec{W} - \nabla C(\vec{W})$$

 w_0

Jasper Gude

Hockenheim, 2. Dezember 2023