University of the Witwatersrand, Johannesburg

Course or topic No(s) MATH2001 Course or topic name(s) Basic Analysis Paper number & title Examination/Test* to be held during month(s) of June (*delete as applicable) Year of study Second Year (Art & Sciences leave blank) Degrees/Diplomas for which Bsc, Bcom, BA this course is prescribed (BSc (Eng) should indicate which branch) Faculty/ies presenting Science candidates Internal examinar(s) Mr A Blecher Ext 76202 & Dr S Bau Ext 76215 and telephone number(s) External examiner(s) Dr I Naidoo - UNISA Calculator policy Time allowance Course MATH2001 Time 90 Nos

Instruction to candidates (Examiners may wish to use this space to indicate, inter alia, the contribution made by this examination or test towards the year mark, if appropriate)

Answers to All questions must be legible.

Total : 90 marks Duration : 1h30

Internal Examiners or Heads of Department are requested to sign the Declaration overleaf

Math2001-Basic Analysis Examination June 2010

Time: 90 minutes Total marks: 90 marks

SECTION A Multiple choice

Answer the multiple choice questions on the computer card provided. There is ONLY ONE correct answer to each question. Please ensure that your student number is entered on the card, by pencilling in the requisite digit for each block.

Which of the following is false?

- A. f(x) is continuous on the left at x = 0.
- B. f(x) is continuous on the left at $x = \pi$.
- C. f(x) is not continuous on the left at x = 0.
- D. f(x) is continuous on the right at x = 0.
- E. f(x) is not continuous on the right at $x = \pi$.

- A. f(x) is either an increasing function or a decreasing function.
- B. If f(x) is an increasing function then $\lim_{x\to a^+} f(x) = -\infty$ or $\lim_{x\to a^+} f(x) = \inf\{f(x): x\in(a,b)\}.$
- C. If f(x) is an increasing function then $\lim_{x\to b^-} f(x) = \sup\{f(x) : x \in (a,b)\}.$
- D. f(x) is not decreasing because this would be in contradiction to the given information that it is not bounded above.
- E. f(x) is necessarily an increasing function.

Question 3..... Let the sequence (a_n) be defined by $a_1 = 1, \ a_n = \sqrt{1 + a_{n-1}} \ (n \ge 2).$ Then as $n \to \infty$, $a_n \to$ A. $\sqrt{2}$. B. $\frac{\sqrt{5}}{2}$. C. $\frac{1+\sqrt{5}}{2}$. D. ∞ . E. None of the above. Question $4 \dots \dots$ Which statement is false? A. If a series is absolutely convergent then it is convergent. B. The series $\sum_{n=1}^{\infty} \frac{1}{n^s}$ is divergent for $s \leq 1$. C. $\sum_{r=1}^{\infty} \frac{1}{n^s}$ is convergent for s > 1. D. The condition $\lim_{n\to\infty}\frac{1}{n}=0$ guarantees that $\sum_{n=1}^{\infty}\frac{1}{n}$ is convergent. E. $a_n \not\to 0$ implies that $\sum_{n=1}^{\infty} a_n$ is divergent. $\textbf{Question} \ 5 \dots \dots \dots$ Suppose that the series $\sum_{n=1}^{\infty} a_n$ is convergent. Then A. the series $\sum_{n=1}^{\infty} |a_n|$ is convergent. B. the series $\sum_{n=1}^{\infty} a_n^2$ is convergent. C. the series $\sum_{n=1}^{\infty} \sqrt{a_n}$ is convergent. D. the series $\sum_{n=1}^{\infty} \sqrt{a_n}$ is divergent. E. if $a_n > 0$ for all $n \in \mathbb{N}$ then $\sum_{n=1}^{\infty} \log a_n$ is divergent.

Question 6	[2 points]
If $\sum_{n=1}^{\infty} a_n$ converges and $\sum_{n=1}^{\infty} b_n$ diverges. Then	
A. $\sum_{n=1}^{\infty} (a_n + b_n)$ converges.	
B. $\sum_{n=1}^{\infty} (a_n - b_n)$ converges.	
C. $\sum_{n=1}^{\infty} (a_n + b_n)$ diverges.	
D. $\sum_{n=1}^{\infty} (b_n - a_n)$ converges.	
E. None of the above	
SECTION B	
Answer this section in the answer book provided.	
Question 7	[6 points g definitions
(a) $\lim_{x \to c^+} f(x) = -\infty.$	(2)
(b) $\lim_{x \to c^{-}} f(x) = L$.	(2)
(c) $\lim_{x \to -\infty} f(x) = L$.	(2)
	. [20 points
(a) $\lim_{x \to 2^+} \frac{1}{2 - x} = -\infty$.	(6)
(b) For $f(x) = \begin{cases} x^2 + 2x + 1 & \text{if } x \ge 0 \\ -2 & \text{if } x < 0, \end{cases}$	
$f(x) \to 4 \text{ as } x \to 1^$	(8
(c) $\lim_{x \to -\infty} \frac{x \cos x}{x^2 - 1} = 0.$	

(Hint: $x \to -\infty$ means x is eventually negative.)

(6)

Question 9	[18 points]
(a) Prove the Intermediate Value Thereom on $[a, b]$ and if $f(a) < 0 < f(b)$ then there	n: If a real valued function $f(x)$ is continuous
(b) Use the Intermediate Value Theorem to on [0, 2] then there exists at least one number of the control of the	to show that if $f:[0,2]\to [0,2]$ is continuous mber $c\in [0,2]$ such that $f(c)=c$.
	(4)
(c) Let $f(x) = \sqrt{2x}$. Show that there example assume that $\sqrt{2x}$ is continuous on $[0, 2]$.)	ists $c \in (0,2)$ such that $\sqrt{2c} = c$. (You may (2)
Question 10	[12 points]
(a) State the definition of conditional conformation of a conditionally convergent series.	an example (4)
(b) Suppose that if (a_n) is a nonincreasi	ng sequence of positive real numbers which
converges to zero. Show that series $\sum_{n=1}^{\infty} (-1)^n$	(8)
Question 11 Determine whether each of the following vergent also determine whether it is absolute.	series is convergent or divergent, and if con- utely convergent or conditionally convergent.
(a) $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$	(4)
(b) $\sum_{n=1}^{\infty} \sin n$	(4)
(c) $\sum_{n=1}^{\infty} \frac{n^3}{2^n}$	(4)
$(d) \sum_{n=1}^{\infty} \frac{(-1)^n}{n}$	(4)
Question 12 Find the intervals of convergence of the	following series:
(a) $\sum_{n=1}^{\infty} \frac{x^n}{n^n}$	(3)
(b) $\sum_{n=0}^{\infty} \frac{2^n x^n}{n}$	(3)