1 Implementing Delay Times

1.1 Dynamical Friction

The dynamical friction timescale is given by

$$T_{\text{dyn_fr}} = \max\left(T_{\text{df},1}, T_{\text{df},2}\right) \tag{1}$$

where $T_{df,1}$ and $T_{df,2}$ are the timescales for the orbital decay of the SMBH of the primary (larger bulge mass) and secondary galaxy, respectively. They are given in the following equations:

$$T_{\rm df,1} = 0.06 \frac{2}{\ln \Lambda'} \left(\frac{R_{\rm eff}}{10 \rm kpc}\right)^2 \left(\frac{\sigma}{300 \rm kms^{-1}}\right) \left(\frac{10^8 M_{\odot}}{M_{\rm bulge}}\right) \rm Gyr \tag{2}$$

$$T_{\rm df,2} = 0.15 \frac{2}{\ln \Lambda'} \left(\frac{R_{\rm eff}}{10 \rm kpc} \right) \left(\frac{\sigma}{300 \rm kms^{-1}} \right)^2 \left(\frac{100 \rm kms^{-1}}{\sigma_{\rm s}} \right)^3 \rm Gyr \tag{3}$$

where

• σ and σ_s are the velocity dispersion of stars of the primary and secondary galaxy, respectively and are given by the following $M - \sigma$ relation (see [Arxiv1211.2816])

$$\log_{10}(M_{\rm BH}) = 8.32 + 5.64 \log_{10} \left(\frac{\sigma}{200 \,\mathrm{kms}^{-1}}\right) \tag{4}$$

From (4) we see that

$$\sigma = (200 \text{kms}^{-1}) \left(\frac{M_{\text{BH}}}{10^{8.32}}\right)^{1/5.64}$$

• The Coulomb logarithm Λ' is given by

$$\Lambda' = 2^{2/3} \frac{\sigma}{\sigma_s} \tag{5}$$

• R_{eff} is the effective radius of the main galaxy (see [Arxiv1505.02062])

$$R_{\text{eff}} = \max\left(2.95 \left(\frac{M_{\text{stars}}}{10^6 M_{\odot}}\right)^{0.596}; 34.8 \left(\frac{M_{\text{stars}}}{10^6 M_{\odot}}\right)^{0.399}\right) \text{pc}$$
 (6)

for elliptical galaxies, and

$$R_{\text{eff}} = 2.95 \left(\frac{M_{\text{stars}}}{10^6 M_{\odot}}\right)^{0.596} \text{pc}$$
 (7)

for bulges of spirals.

1.1.1 Distribution of galaxies across morphological type as a function of stellar mass

The type of a galaxy exhibits a dependence on the ratio between bulge and total (stellar) mass. In particular, we have (see [Arxiv0508046])

- If $\frac{M_{\text{bulge}}}{M_*} \geq 0.7$ then we have *elliptical* galaxies
- If $0.03 \ge \frac{M_{\text{bulge}}}{M_{*}} < 0.7$ then we have normal spirals
- If $\frac{M_{\text{bulge}}}{M_*} < 0.03$ then we have pure disks

1.2 Hardening

This phase can be dominated either by stellar or gas hardening. The shortest timescale contributes to the total merger time.

1.2.1 Dehnen Profile

We model the galaxy with a Dehnen density profile (see [Dehnen, 1993])

$$\rho(r) = \frac{(3-\gamma)M_{\text{stars}}}{4\pi} \frac{r_0}{r^{\gamma} (r+r_0)^{4-\gamma}}$$
(8)

where $\gamma \in [0,3)$ and r_0 is a scale radius. For now we set $\gamma = 1$ (Hernquist profile) The scale radius is related to the effective radius, R_{eff} , defined in (6), by the following expression

$$r_0 = \frac{4}{3} \left(2^{\frac{1}{3-\gamma}} - 1 \right) R_{\text{eff}}$$
 (9)

Since in the following computations we'll be interested in quantities defined at the influence radius, r_{inf} , here we give the expressions.

The influence radius, r_{inf} , is defined as the distance at which the mass in stars equals twice the mass of the binary

$$M_{\rm stars}(r < r_{\rm inf}) = 2M$$

where $M = M_1 + M_2$ is the total mass of the binary.

Given a Dehnen profile

$$r_{\rm inf} = \frac{r_0}{\left(\frac{M_{\rm stars}}{2M}\right)^{\frac{1}{3-\gamma}} - 1} \tag{10}$$

Given (9) and (10) it is straightforward to compute $\rho(r_{\rm inf})$. For a Dehnen profile the velocity dispersion is given by

$$\sigma_{\rm r}^2 = G M_{\rm stars} r^{\gamma} \left(r + r_0 \right)^{4-\gamma} \int_r^{\infty} dr' \frac{r'^{1-2\gamma}}{\left(r' + r_0 \right)^{7-2\gamma}} \tag{11}$$

For $\gamma = 1$, things simplify and we have

$$\sigma_{\rm r}^2 = \frac{GM_{\rm stars}}{12r_0} \left\{ \frac{12r\left(r+r_0\right)^3}{r_0^4} \ln\left(\frac{r+r_0}{r}\right) - \frac{r}{r+r_0} \left[25 + 52\frac{r}{r_0} + 42\left(\frac{r}{r_0}\right)^2 + 12\left(\frac{r}{r_0}\right)^3 \right] \right\}$$
(12)

which is the formula we implement in the calculation for the time being.

1.2.2 Stellar Hardening and GW emission

The binary separation varies with time according to

$$\frac{da}{dt} = \frac{da}{dt}\Big|_{3b} + \frac{da}{dt}\Big|_{GW} = -Aa^2 - \frac{B}{a^3} \tag{13}$$

with

$$A = \frac{GH\rho_{\text{inf}}}{\sigma_{\text{inf}}}; \qquad B = \frac{64G^3M_1M_2MF(e)}{5c^5}$$
 (14)

We take the hardening rate H = 15, and

$$F(e) = \frac{1}{(1 - e^2)^{7/2}} \left(1 + \frac{73}{24} e^2 + \frac{37}{96} e^4 \right)$$
 (15)

Setting $a_{\text{hard-GW}}$ to be the separation at which the two contributions are equal, we'll have that for $a > a_{\text{hard-GW}}$ stellar hardening will prevail, and for $a < a_{\text{hard-GW}}$ till coalescence the GW contribution will take over.

$$a_{\text{hard-GW}} = \left(\frac{64G^2 \sigma_{\text{inf}} M_1 M_2 M F(e)}{5c^5 H \rho_{\text{inf}}}\right)^{1/5} \tag{16}$$

Given that, the 3-body encounters will shrink the separation according to

$$\left. \frac{da}{dt} \right|_{3b} = -\frac{GH\rho_{\rm inf}}{\sigma_{\rm inf}} a^2 \tag{17}$$

Integrating between $a_{\text{initial}} = r_{\text{inf}}$ and $a_{\text{hard-GW}}$ we get

$$t_{\text{stellar-hard}} = \frac{\sigma_{\text{inf}}}{GH\rho_{\text{inf}}} \left(\frac{1}{a_{\text{hard,GW}}} - \frac{1}{r_{\text{inf}}} \right)$$
 (18)

From now on GW emission prevails and a shrinks down to zero according to

$$\frac{da}{dt}\Big|_{GW} = -\frac{64}{5} \frac{G^3}{c^5} M^3 \frac{q}{(1+q)^2} F(e) \frac{1}{a^3}$$
(19)

where q is the mass ratio.

Integrating from $a_{\text{initial}} = a_{\text{hard-GW}}$ to $a_{\text{final}} = 0$, we get

$$t_{\rm GW} = \frac{5}{256} \frac{c^5}{G^3} \frac{a_{\rm hard-GW}^4}{M^3} \frac{(1+q)^2}{q}$$
 (20)

1.3 Gas Interaction and GW emission

Considering a steady circumbinary disk ($\dot{m} = const$), we can derive the shrinking of the separation a over time by equating

$$\frac{dL_{\text{disk}}}{dt} = \frac{dL_{\text{BHB}}}{dt} \tag{21}$$

where L_{disk} is the gaseous disk angular momentum

$$L_{\rm disk} = m\sqrt{GMr_{\rm gap}} \tag{22}$$

with $r_{\rm gap} = 2a$ and $L_{\rm BHB}$ is the black hole binary angular momentum

$$L_{\rm BHB} = \mu \sqrt{GMa} \tag{23}$$

with μ the reduced mass $(\mu = \frac{M_1 M_2}{M_1 + M_2})$.

Developing (21) and assuming that there is no gas leaking $(\dot{\mu} = 0 = \dot{M})$:

$$\frac{dL_{\text{disk}}}{dt} = \frac{dL_{\text{BHB}}}{dt}$$

$$-\dot{m}\sqrt{2}\sqrt{GMa} = \dot{\mu}\sqrt{GMa} + \mu \frac{1}{2\sqrt{GMa}}Ga\dot{M} + \mu \frac{1}{2\sqrt{GMa}}GM\dot{a}$$

$$-\dot{m}\sqrt{2}\sqrt{GMa} = \mu \frac{1}{2\sqrt{GMa}}GM\dot{a}$$

$$-2\sqrt{2}\dot{m} = \mu \frac{\dot{a}}{a}$$
(24)

Then

$$\implies \left. \frac{da}{dt} \right|_{\text{gas}} = -2\sqrt{2} \frac{\dot{m}}{M} a \frac{(1+q)^2}{q} \tag{25}$$

where we used

$$\mu = M \frac{q}{\left(1+q\right)^2}$$

GW emission overtakes the process when

$$\left. \frac{da}{dt} \right|_{\text{gas}} = \left. \frac{da}{dt} \right|_{\text{GW}} \tag{26}$$

where $\frac{da}{dt}\Big|_{GW}$ is as in (19).

Solving for a_{gas-GW} we obtain

$$a_{\text{gas-GW}} = \left(\frac{16\sqrt{2}}{5} \frac{G^3}{c^5} M^4 \frac{q^2}{(1+q)^4} F(e) \frac{1}{\dot{m}}\right)^{1/4}$$
 (27)

Using

$$\dot{m} = \frac{L}{\epsilon c^2} = \frac{L/L_{\rm Edd}L_{\rm Edd}}{\epsilon c^2} = \frac{f_{\rm Edd}L_{\rm Edd}}{\epsilon c^2}$$
 (28)

where L is the luminosity, $L_{\rm Edd}$ is the Eddington luminosity given by

$$L_{\rm Edd} = \frac{4\pi G c m_{\rm p} M}{\sigma_{\rm T}}$$

with $m_{\rm p}$ proton mass and $\sigma_{\rm T}$ Thompson cross section, and

$$f_{\rm Edd} = \frac{L}{L_{\rm Edd}}$$

and ϵ the radiation efficiency (we can assume $\epsilon \sim 0.1$). Substituting in (27) we obtain

$$a_{\text{gas-GW}} = \left(\frac{4\sqrt{2}}{5} \frac{G^2}{c^4} \frac{\sigma_{\text{T}}}{m_{\text{p}}} \epsilon\right)^{1/4} M^{3/4} \frac{q^{1/2}}{1+q} (F(e))^{1/4} (f_{\text{Edd}})^{-1/4}$$
 (29)

Substituting the values of the constants, we get

$$a_{\text{gas-GW}} \sim 0.01 \text{pc} \left(\frac{M}{10^8 M_{\odot}}\right)^{3/4} \frac{q^{1/2}}{1+q} \left(F(e)\right)^{1/4} \left(f_{\text{Edd}}\right)^{-1/4}$$
 (30)

Integrating the equation (25) for $\frac{da}{dt}\Big|_{\text{gas}}$ from $a_{\text{initial}} = r_{\text{inf}}$ to $a_{\text{final}} = a_{\text{gas-GW}}$ one gets

$$t_{\rm gas} = \frac{\sqrt{2}}{16} \frac{\epsilon c \sigma_{\rm T}}{\pi G m_{\rm p}} \frac{q}{(1+q)^2} \ln \left(\frac{r_{\rm inf}}{a_{\rm gas-GW}} \right)$$
(31)

GW emission prevails from $a_{\text{initial}} = a_{\text{gas-GW}}$ down to zero and its governed by (19). Integrating

$$t_{\rm GW} = \frac{5}{256} \frac{c^5}{G^3} \frac{a_{\rm gas-GW}^4}{M^3} \frac{(1+q)^2}{q}$$
 (32)