Taller III

Bourbaki

23 de noviembre de 2024

1. Demuestre que $A \subset \mathbb{C}$ es compacto si y solo si es acotado y cerrado.

Demostración. Supongamos que A es compacto, si A no es acotado entonces para todo n ∈ \mathbb{N} , existe $z_n \in A$ tal que $|z_n| > n$, por tanto $\{z_n\}$ no tiene punto de acumulación ya que... suponga que z_0 es un punto de acumulación, sea $m > 2|z_0|$, es claro que $|z_0| > 0$ ya que en caso contrario $z_0 = 0$, así pues $|z_n - z_0| = |z_n| > n$ y por lo tanto z_0 no sería punto de acumulación. En este caso $|z_m - z_0| \ge |z_m| - |z_0| > 2|z_0| - |z_0| = |z_0|$, contradice que ese coso es punto límite. Entonces es acotado.

Sea $z_0 \in \overline{A}$, dado n, existe $z_n \in A$ tal que $|z_n - z_0| < \frac{1}{n}$, así $\{z_n\}$ converge a z_0 . Como A es compacto existe una subsucesión convergente en A, es claro que este límite debe ser z_0 , así $z_0 \in A$, con lo cual A es cerrado.

Recíprocamente, sea $\{z_n\} = \{x_n\} + i\{y_n\} \subseteq A$, entonces existe un M>0 tal que $|z_n| \le M$ para todo n, en particular $\{x_n\} \le M$ y $\{y_n\} \le M$ por lo tanto tienen una subsucesión convergente ya que son sucesiones de números reales, digamos $\{x_{n_1}\} \to \alpha$ y $\{y_{n_2}\} \to b$, aplicamos el teorema de Bolzano en \mathbb{R} , esto es z_n tiene una subsucesión convergente a $\alpha+bi$.

2. Sea $K \subset \mathbb{C}$ compacto. Sean $K_1 \supseteq K_2 \supseteq K_3 \supseteq \cdots$ una sucesión de subconjuntos de K no vacíos, tales que $K_n \supseteq K_{n+1}$. Demostrar que la intersección de todos los K_n , $n=1,2,3,\ldots$ es no vacía.

Pues lo que pasa es que eso siempre es fácil allí porque usted llega y coge el conjunto $\left(0,\frac{1}{n}\right)$ $n \in \mathbb{N}$, note que ese conjunto está contenido en [0,1] que es compacto, y pues si usted considera la intersección de esos coyos, eso le da vacío siono?

3. Encontrar la imagen de las regiones:

$$1 < |\text{Im}(z)| < 2$$

|z| < 1

bajo las aplicaciones:

a)
$$f(z) = z^2$$

Sea z=x+yi, entonces $z^2=x^2-y^2+2xyi$, sean $u(x,y)=x^2-y^2$ y v(x,y)=2xy las funciones parte real e imaginaria, esto es

$$x = \frac{v}{2y}$$

reemplazando en la ecuación de arriba se obtiene que

$$u = \frac{v^2}{4y^2} - y^2$$

si uno reemplaza en -2 y -1 obtiene las ecuaciones de dos parábolas, pero pues usted tiene que girar la cabeza para verlo bien

$$u = \frac{v^2}{16} - 4$$
 $u = \frac{v^2}{4} - 1$

Para el caso |z|<1 nos deja la misma bola porque dado $z=re^{i\theta}$ entonces $z^2=r^2e^{i2\theta}$ por lo que nos queda la misma circunferencia, dado que si $0 \le r < 1$ entonces $0 \le r^2 < 1$

$$b) f(z) = \frac{2z + i}{z + 1}$$

Esto lo irá a hacer su madre y con su madre me refiero al Santiago xd.

- 4. Sea $f(z) = \frac{z i}{z + i}$, hallar la imagen por f de:
 - *a*) El semiplano superior.
 - *b*) La semirecta it; $t \ge 0$.
 - *c*) La recta it; $t \in \mathbb{R}$.
 - d) |z-1|=1.
 - e) |z| = 2; $Im(z) \ge 0$.
- 5. Sea $A = \{z \in \mathbb{C} : -\infty < \operatorname{Im}(z) \le \alpha\}$. Si $f(z) = e^z$, hallar f(A).
- 6. Sea $A = \{z \in \mathbb{C} : |\operatorname{Re}(z)| < \frac{\pi}{2}, \operatorname{Im}(z) > 0\}$. Si $f(z) = \sin(z)$, hallar f(A).
- 7. Determine completamente la proyección estereográfica (que lleva la esfera de Riemann en el plano complejo). Es decir, hallar explícitamente T y T^{-1} .

Primero que todo hagamos el muñeco

El vector director de la recta es D = (x, y, 0) - N = (x, y, -1), entonces la recta es

$$(\hat{x}, \hat{y}, \hat{z}) = (0, 0, 1) + t(x, y, -1)$$
 $t \ge 0$

de esto se sigue que

$$\begin{cases} \hat{x} = tx \\ \hat{y} = ty \\ \hat{z} = 1 - t. \end{cases}$$

Reemplazando esto en la ecuación de la esfera obtenemos $(tx)^2+(ty)^2+(1-t)^2=1$, esto es $t^2(x^2+y^2+1)=2t$, esto es $t=\frac{2}{x^2+y^2+1}$, reemplazando en las ecuaciones de antes se sigue que

$$\begin{cases} \hat{x} = \frac{2x}{x^2 + y^2 + 1} \\ \hat{y} = \frac{2y}{x^2 + y^2 + 2} \\ \hat{z} = \frac{x^2 + y^2 - 1}{x^2 + y^2 + 1} \end{cases}$$

Por otro lado $t=1-\hat{z}$, esto es $x=\frac{\hat{x}}{1-\hat{z}}$, $y=\frac{\hat{y}}{1-\hat{z}}$, con esto podemos definir los mapeos:

$$\begin{split} T: & S \mapsto C \cup \{\infty\} = \widetilde{\mathbb{C}} \\ & (\hat{x}, \hat{y}, \hat{z}) \mapsto \left(\frac{\hat{x}}{1 - \hat{z}}, \frac{\hat{y}}{1 - \hat{z}}\right) \\ T^{-1}: & \widetilde{\mathbb{C}} \mapsto S \\ & \infty \to (0, 0, 1) \\ & (\hat{x}, \hat{y}, \hat{z}) \mapsto \left(\frac{2x}{x^2 + y^2 + 1}, \frac{2y}{x^2 + y^2 + 1}, \frac{x^2 + y^2 - 1}{x^2 + y^2 + 1}\right). \end{split}$$

8. Demostrar que la proyección estereográfica preserva círculos. La imagen directa o inversa de una circunferencia es una circunferencia.

Demostración. Dada $A(x^2+y^2)+Bx+Cy+D=0$ la ecuación de la circunferencia, tenemos que $\hat{x}^2+\hat{y}^2=1-\hat{z}^2$, esto nos da que

$$\begin{split} 0 &= A \left(\frac{\hat{x}^2}{(1 - \hat{z})^2} + \frac{\hat{y}^2}{(1 - \hat{z})^2} \right) + B \frac{\hat{x}}{1 - \hat{z}} + C \frac{\hat{y}}{1 - \hat{z}} + D \\ &= A \left(\frac{1 - \hat{z}^2}{(1 - \hat{z})^2} \right) + B \frac{\hat{x}}{1 - \hat{z}} + C \frac{\hat{y}}{1 - \hat{z}} + D \\ &= \frac{1}{1 - \hat{z}} \left(A(1 + \hat{z}) + B\hat{x} + C\hat{y} + D(1 - \hat{z}) \right). \end{split}$$

Esto da que una circunferencia en $\mathbb C$ la envía en una circunferencia en S, una recta en $\mathbb C$ la manda en una circunferencia que pasa por el polo N. Recíprocamente si $(\hat x,\hat y,\hat z)\in S$, como $\hat x^2+\hat y^2+\hat z^2=1$ y $D=R^2-(A^2+B^2+C^2)$, entonces aquí yo no entiendo de donde sale esa ecuación D, pero pues luego les pregunto xd

$$\hat{x}^2 + \hat{y}^2 + \hat{z}^2 - 2B\hat{y} - 2C\hat{z} - D = 0$$

reemplazando los valores de \hat{x} , \hat{y} y \hat{z} se obtiene la ecuación

$$(x^2 + y^2)(1 - 2C - D) - 4Ax - 4By + (1 + 2C - D) = 0.$$

Y eso es una circunferencia en \mathbb{C} a menos que 1-2C-D=0 y eso es si la circunferencia pasa por el polo, en ese caso da una recta y fechó. me toca creer unas cosas porque yo no me sé las ecuaciones de esas vainas