1 Shrinkage Methods

Shrinkage methods are continuous method for retaining a subset of the predictors and discarding the rest. The shrinkage methods don't suffer much from high variability.

1.1 Ridge Regression

The ridge coefficients minimize a penalized residual sum of squares,

$$\hat{\beta}^{\text{ridge}} = \arg\min_{\beta} \left\{ \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 \right\}. \tag{1}$$

An equivalent way to write the ridge problem is

$$\hat{\beta}^{\text{ridge}} = \arg\min_{\beta} \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2,$$
subject to
$$\sum_{j=1}^{p} \beta_j^2 \le t,$$
(2)

which makes explicit the size constraint on the parameters. To find the solution of the ridge regression, we rewrite the equality in (1) in matrix form,

$$RSS(\lambda) = (\mathbf{y} - \mathbf{X}\beta)^{\top} (\mathbf{y} - \mathbf{X}\beta) + \lambda \beta^{\top} \beta.$$
(3)

Taking the gradient of (3), we are able to see that the ridge regression solutions are

$$\hat{\beta}^{\text{ridge}} = \left(\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}\right)^{-1}\mathbf{X}^{\top}\mathbf{y},\tag{4}$$

where **I** is the $p \times p$ identity matrix.

Ridge Regression as a Posterior Distribution Suppose $y_i \sim \mathcal{N}\left(\beta_0 + x_i^{\top}\beta, \sigma^2\right)$, and the parameters β_j are each distributed as $\mathcal{N}\left(0, \tau^2\right)$, independently of one another. Thenm, the neagative log-posterior density of β , with τ^2 and σ^2 assumed known, is equal to the expression in (3), with $\lambda = \sigma^2/\tau^2$. Thus, in other words, the ridge estimate is the mode of the posterior distribution; since the distribution is Gaussian, it is also the posterior mean.

1.2 The Lasso

The lasso is a shrinkage method like ridge, with subtle but imporant differences. The lasso estimate is defined by

$$\hat{\beta}^{\text{lasso}} = \underset{\beta}{\operatorname{arg\,min}} \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2$$
subject to
$$\sum_{j=1}^{p} |\beta_j| \le t.$$
(5)

We can also write the lasso problem in the equivalent Lagrangian form

$$\hat{\beta}^{\text{lasso}} = \arg\min_{\beta} \left\{ \frac{1}{2} \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \right\}.$$
 (6)

Computing the lasso solution is a quadratic programming problem. Because of the nature of the constraint, making t sufficiently small will cause some of the coefficients to be exactly zero. Thus, the lasso does a kind of continuous subset selection. If t is chosen larger than $t_0 = \sum_{j=1}^p |\hat{\beta}_j|$ (where $\hat{\beta}_j = \hat{\beta}_j^{\text{lasso}}$, the least squares estimates), then the lasso estimates are the $\hat{\beta}_j$'s.

1.3 Discussion: Subset Selection, Ridge Regrssion and the Lasso

In this subsection, we will discuss and compare three approaches for restricting linear regression model. In the case of an orthonormal input matrix \mathbf{X} the three procedures have explicit solutions. Ridge regression does a proportional shrinkage. Lasso translates each coefficient by a constant factor λ , truncating at zero. This is called "soft thresholding," and is used in the context of wavelet-based smoothing. Best-subset selection drops all variables with coefficient smaller than the Mth largest; this is a form of "hard thresholding."

For the nonorthogonal case,

From the diagram above, it suggests that lasso tends to give a sparser solution.

2 Linear Methods for Classification

In this section, we'll discuss about the classification problem using linear methods. We require some monotone transformation of δ_k or $\Pr(G = k | X = x)$ be linear for the decision boundaries to be linear. For example, if htere are two cases, a popular model for the posterior probabilities is

$$\Pr(G = 1|X = x) = \frac{\exp\left(\beta_0 + \beta^\top x\right)}{1 + \exp\left(\beta_0 + \beta^\top x\right)},$$

$$\Pr(G = 2|X = x) = \frac{1}{1 + \exp\left(\beta_0 + \beta^\top x\right)}.$$
(7)

Here the monotone transformation is the logit transformation: $\log[p/(1-p)]$, and in fact we see that

$$\log \frac{\Pr(G = 1|X = x)}{\Pr(G = 2|X = x)} = \beta_0 + \beta^{\top} x.$$
 (8)

The decision boundary is the set of points for which the log-odds are zero, and this is a hyperplane defined by $\{x|\beta_0 + \beta^{\top}x\}$. We provide two popular methods that result in linear log-odds or logits: linear discriminant analysis and linear logistic regression.

2.1 Linear Discriminant Analysis

Suppose $f_k(x)$ is the class-conditional density of X in class G = k, and let π_k be the prior probability of class k, with $\sum_{k=1}^{K} \pi_k = 1$. A simple application of Bayes theorem gives us

$$\Pr(G = k | X = x) = \frac{f_k(x)\pi_k}{\sum_{l=1}^K f_l(x)\pi_l}.$$
(9)

Suppose that we model each class density as multivariate Gaussian:

$$f_k(x) = \frac{1}{(2\pi)^{p/2} |\mathbf{\Sigma}_k|^{1/2}} \exp\left(-\frac{1}{2} (x - \mu_k)^\top \mathbf{\Sigma}_k^{-1} (x - \mu_k)\right).$$
 (10)

Linear discriminant analysis (LDA) arises in the special case when we assume that the classes have a common covariance matrix $\Sigma_k = \Sigma$ for all k. In comparing two classes k and l, it is sufficient to look at the log-ratio, and we see that

$$\log \frac{\Pr(G = k | X = x)}{\Pr(G = l | X = x)} = \log \frac{f_k(x)}{f_l(x)} + \log \frac{\pi_k}{\pi_l}$$

$$= \log \frac{\pi_k}{\pi_l} - \frac{1}{2} (\mu_k + \mu_l)^{\top} \mathbf{\Sigma}^{-1} (\mu_k - \mu_l) + x^{\top} \mathbf{\Sigma}^{-1} (\mu_k - \mu_l)$$
(11)

3 Principal Component Analysis

Consider a dataset \mathcal{D} . We want to find the subspace so we can project \mathcal{D} onto a lower dimensional dataset that accounts for the variance, $\tilde{\mathcal{D}}$. The process is as follows:

(a) Calculate the mean of the dataset \mathcal{D} .

$$\mu = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i.$$

(b) Standardize the data.

$$\tilde{\mathbf{x}}_i = \mathbf{x}_i - \mu.$$

(c) Compute the covariance matrix.

$$\mathbf{\Sigma} = \sum_{i} \tilde{\mathbf{x}}_{i} \tilde{\mathbf{x}}_{i}^{\top} = \frac{1}{N} \tilde{X}^{\top} \tilde{X}.$$

(d) Compute the eigendecomposition of Σ .

$$\Sigma = P\Lambda P^{\top}$$

where Λ is a diagonal matrix of eigenvalues sorted in a decreasing way.

(e) Project data onto the eigenvectors corresponding to the top k eigenvectors to get \mathcal{D} .

4 Gaussian Models

In this chapter, we discuss the multivariate Gaussian which is very popular for calculating the joint probability density function.

The pdf for an multivariate normal (MVN) in D dimensions is defined by

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right). \tag{12}$$

Consider the Mahalanobis distance between a data vector \mathbf{x} and the mean vector $\boldsymbol{\mu}$. Using an eigendecomposition of $\boldsymbol{\Sigma}$, we could write $\boldsymbol{\Sigma} = \mathbf{U}\boldsymbol{\Lambda}\mathbf{U}^{\top}$, where \mathbf{U} is an orthonormal matrix of eigenvalues satisfying $\mathbf{U}^{\top}\mathbf{U} = \mathbf{I}$, and $\boldsymbol{\Lambda}$ is a diagonal matrix of eigenvalues. Then, we can find the inverse of covariance matrix as follows:

$$\mathbf{\Sigma}^{-1} = \left(\mathbf{U}\mathbf{\Lambda}\mathbf{U}^{\top}\right)^{-1} = \mathbf{U}^{-\top}\mathbf{\Lambda}^{-1}\mathbf{U}^{-1} = \mathbf{U}\mathbf{\Lambda}^{-1}\mathbf{U}^{\top} = \sum_{i=1}^{D} \frac{1}{\lambda_{i}}\mathbf{u}_{i}\mathbf{u}_{i}^{\top}$$
(13)

where \mathbf{u}_i is the *i*th column of \mathbf{U} , containing the *i*th eigenvector. Now, we can rewrite the Mahalanobis distance as

$$(\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) = (\mathbf{x} - \boldsymbol{\mu})^{\top} \left(\sum_{i=1}^{D} \frac{1}{\lambda_i} \mathbf{u}_i \mathbf{u}_i^{\top} \right) (\mathbf{x} - \boldsymbol{\mu})$$

$$= \sum_{i=1}^{D} \frac{1}{\lambda_i} (\mathbf{x} - \boldsymbol{\mu})^{\top} \mathbf{u}_i \mathbf{u}_i^{\top} (\mathbf{x} - \boldsymbol{\mu})$$

$$= \sum_{i=1}^{D} \frac{y_i^2}{\lambda_i}$$
(14)

where $y_i = \mathbf{u}_i^{\top}(\mathbf{x} - \boldsymbol{\mu})$. Notice that the last equality of (14) is an equaltion of an ellipse in D dimension. In general, we can interpret the Mahalanobis distance as the distance corresponding to Euclidean distance in the transformed coordinate system, where we shift by $\boldsymbol{\mu}$ and rotate by \mathbf{U} .

4.1 Gaussian Discriminant Analysis

One application of Multivariate Normal is to define the class conditional densities in a generative classfier, i.e.,

$$\Pr\left(\mathbf{x}|y=c,\boldsymbol{\theta}\right) = \mathcal{N}\left(\mathbf{x}|\boldsymbol{\mu}_{c},\boldsymbol{\Sigma}_{c}\right). \tag{15}$$

Applying Bayes Rules, one could obtain

$$\Pr(y = c | \mathbf{x}, \boldsymbol{\theta}) = \frac{\Pr(\mathbf{x} | y = c, \boldsymbol{\theta}) \Pr(y = c | \boldsymbol{\theta})}{\sum_{k} \Pr(\mathbf{x} | y = k, \boldsymbol{\theta}) \Pr(y = k | \boldsymbol{\theta})}.$$
(16)

Then, we can classify a feature vector by following decision rule:

$$\hat{y}(\mathbf{x}) = \underset{c}{\operatorname{arg\,max}} \left(\log \Pr \left(y = c | \boldsymbol{\pi} \right) + \log \Pr \left(\mathbf{x} | \boldsymbol{\theta}_c \right) \right). \tag{17}$$

4.2 Quadratic Discriminant Analysis

Plugging in the definition of Multivariate Gaussian, we can obtain the followin equality:

$$\Pr\left(y = c | \mathbf{x}, \boldsymbol{\theta}\right) = \frac{\pi_c |2\pi \boldsymbol{\Sigma}_c|^{-1/2} \exp\left(-\frac{1}{2} \left(\mathbf{x} - \boldsymbol{\mu}_c\right)^{\top} \boldsymbol{\Sigma}_c^{-1} \left(\mathbf{x} - \boldsymbol{\mu}_c\right)\right)}{\sum_k \pi_k |2\pi \boldsymbol{\Sigma}_k|^{-1/2} \exp\left(-\frac{1}{2} \left(\mathbf{x} - \boldsymbol{\mu}_k\right)^{\top} \boldsymbol{\Sigma}_k^{-1} \left(\mathbf{x} - \boldsymbol{\mu}_k\right)\right)}.$$
(18)

4.3 Linear Discriminant Analysis

Consider a special case when the covariance matrices are shared across all classes, e.g. $\Sigma_c = \Sigma$ for all c. In this case, we can further simplify (18) to

$$\Pr(y = c | \mathbf{x}, \boldsymbol{\theta}) = \frac{\pi_c \exp\left(\boldsymbol{\mu}_c^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x} - \frac{1}{2} \mathbf{x}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x} - \frac{1}{2} \boldsymbol{\mu}_c^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_c\right)}{\sum_k \pi_k \exp\left(\boldsymbol{\mu}_k^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x} - \frac{1}{2} \mathbf{x}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x} - \frac{1}{2} \boldsymbol{\mu}_k^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_k\right)}$$

$$= \frac{\exp\left(\boldsymbol{\mu}_c^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x} - \frac{1}{2} \boldsymbol{\mu}_c^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_c + \log \pi_c\right)}{\sum_k \exp\left(\boldsymbol{\mu}_k^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x} - \frac{1}{2} \boldsymbol{\mu}_k^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_k + \log \pi_k\right)}.$$
(19)

If we define $\gamma_c = -\frac{1}{2}\boldsymbol{\mu}_c^{\top}\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu}_c + \log \pi_c$ and $\boldsymbol{\beta}_c = \boldsymbol{\Sigma}^{-1}\boldsymbol{\mu}_c$, we can further simplify the above equality to

$$\Pr\left(y = c | \mathbf{x}, \boldsymbol{\theta}\right) = \frac{\exp\left(\boldsymbol{\beta}_c^{\top} \mathbf{x} + \gamma_c\right)}{\sum_k \exp\left(\boldsymbol{\beta}_k^{\top} \mathbf{x} + \gamma_k\right)}.$$
 (20)

Note that we can further regularize the covariance matrices as follows:

$$\hat{\mathbf{\Sigma}} = \lambda \operatorname{diag}\left(\hat{\mathbf{\Sigma}}_{\mathrm{MLE}}\right) + (1 - \lambda)\,\hat{\mathbf{\Sigma}}_{\mathrm{MLE}} \tag{21}$$

where λ controls the amount of regularization.

4.4 Inference in jointly Gaussian distributions

Suppose $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2)$ is jointly Gaussian with parameters $\boldsymbol{\mu} = \begin{bmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{bmatrix}$, $\boldsymbol{\Sigma} = \begin{bmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{bmatrix}$, and $\boldsymbol{\Lambda} = \boldsymbol{\Sigma}^{-1} = \begin{bmatrix} \boldsymbol{\Lambda}_{11} & \boldsymbol{\Lambda}_{12} \\ \boldsymbol{\Lambda}_{21} & \boldsymbol{\Lambda}_{22} \end{bmatrix}$. Then, the marginal probabilities are given by

$$p(\mathbf{x}_1) = \mathcal{N}(\mathbf{x}_1 | \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_{11})$$

$$p(\mathbf{x}_2) = \mathcal{N}(\mathbf{x}_2 | \boldsymbol{\mu}_2, \boldsymbol{\Sigma}_{22})$$
(22)

and the posterior conditional is given by

$$p(\mathbf{x}_{1}|\mathbf{x}_{2}) = \mathcal{N}\left(\mathbf{x}_{1}|\boldsymbol{\mu}_{1|2}, \boldsymbol{\Sigma}_{1|2}\right)$$

$$\boldsymbol{\mu}_{1|2} = \boldsymbol{\mu}_{1} + \boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}(\mathbf{x}_{2} - \boldsymbol{\mu}_{2})$$

$$\boldsymbol{\Sigma}_{1|2} = \boldsymbol{\Sigma}_{11} - \boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}\boldsymbol{\Sigma}_{21}$$
(23)

The result of (??) follows from the Schur's Complement.