Do all five problems. No books or other notes are allowed. You can cite results proved in class provided that you indicate clearly that you are doing so.

#1. Prove that a bipartite Eulerian graph must have an even number of edges.

#2. (a) Let G and H be connected graphs such that  $V(G) \cap V(H) = \emptyset$ , and let  $v \in V(G)$  and  $w \in V(H)$ . Let J be the graph formed from G and H by identifying the vertices v and w. Prove that  $\tau(J) = \tau(G)\tau(H)$ . (The following figure gives an example of the construction of J.)



(b) Let  $a, b \ge 2$  be integers, and let  $G_{a,b}$  be the graph formed by identifying an edge of the cycle  $C_a$  with an edge of the cycle  $C_b$ . For example,  $G_{5,6}$  is the following graph:



Use the deletion-contraction recurrence and the result of #2a to find a closed-form formula for  $\tau(G_{a,b})$  in terms of a and b.

#3. Let G be a connected simple graph with girth 4. What are the possible values for the girth of its complement  $\overline{G}$ ?

#4. Prove or disprove the statement that every tree has at most one perfect matching.

#5. (a) Prove that if G is bipartite, then

$$\alpha'(G) \ge e(G)/\Delta(G)$$
.

(As a reminder,  $\alpha'(G)$  is the size of a maximum matching in G, and  $\Delta(G)$  is the maximum degree of a vertex.)

(b) Use the result of #5a to prove that every regular bipartite graph has a perfect matching.