TNE: A Latent Model for Representation Learning on Networks

Abdulkadir Çelikkanat and Fragkiskos D. Malliaros

Center for Visual Computing CentraleSupélec, University of Paris-Saclay and Inria Saclay

Introduction

- Network representation learning (NRL) aims to encode a given network structure into low-dimensional vectors
- Applications in network analysis: visualization, classification, community detection and link prediction
- Proposed method:
 - TNE Topical Node Embeddings
 - Enriched feature vectors using node and community information

Problem Formulation

Objective

For a given graph $G = (\mathcal{V}, \mathcal{E})$, the goal is to find a mapping function

$$\Phi: \mathcal{V} \to \mathbb{R}^d,$$

where $\Phi(v)$ indicates the representation of the vertex v in \mathbb{R}^d

• The objective function of random walk-based methods is:

$$\max_{\Phi,\widetilde{\Phi}} \sum_{v} \sum_{u \in N_{\gamma}(v)} \log \Pr(\Phi(u) | \widetilde{\Phi}(v)),$$

where $N_{\gamma}(v)$ is the set of reachable nodes starting from node $v \in \mathcal{V}$ in at most γ steps

Approximation of the objective function:

$$\max_{\Phi,\widetilde{\Phi}} \sum_{w \in \mathcal{W}} \sum_{v_i \in w} \sum_{-\gamma \le j \le \gamma} \log \Pr(\Phi(v_{i+j}) | \widetilde{\Phi}(v_i))$$

Random Walks and Communities

Can we take advantage of the clustering structure of the graph?

Random walk-based graph topic models

- tne-LDA
 - Each random walk can be represented as random mixtures over latent communities
 - Each community can be characterized by a distribution over nodes
- tne-HMM
 - The hidden state of the current node can also be utilized towards determining the next node to visit

Network structure-based modeling

- tne-Louvain
- Community detection based on modularity opt.
- tne-BigClam
 - Overlapping community detection algorithm

Figure: Graphical representation of the LDA model

Figure: Graphical representation of non-parametric Hidden

Markov Model (HMM) model

Generate a collection of walks Learn node and community embeddings Figure: Schematic representation of the TNE model

Topical Node Embeddings (TNE)

- Let $t_v^{\boldsymbol{w}}$ be a community/topic assignment of a node vin the walk $w \in \mathcal{W}$
- The objective function to learn *topic embeddings* is:

$$\max_{\Psi,\widetilde{\Psi}} \sum_{w \in \mathcal{W}} \sum_{v_i \in w} \sum_{-\gamma \le j \le \gamma} \log \Pr(\Psi(v_{i+j}) | \widetilde{\Psi}(t_i^w))$$

• The final embedding vector is obtained by combining node and community embeddings

$$\Phi(v) \oplus \widetilde{\Psi}(k^*)$$
 where $k^* = \arg \max_k \Pr(\Phi(u) | \widetilde{\Psi}(k))$

Experimental Results

	CiteSeer	Cora	PPI	Gnutella	FB	arXiv
# Vertices	3,312	2,708	3,890	8,114	4,039	5,242
# Edges	4,660	5,278	38,739	26,013	88,234	14,496
# Clusters	6	7	50	_	_	_

Table: Networks used in the experiments

Multi-label Node Classification

Figure: Micro- F_1 scores for multi-label node classification over three different networks

		Baseline	tne-Lda	tne-Hmm	tne-BigC	tne-Louvain
ı	Deepwalk	0.554	0.590	0.565	0.591	0.589
Citeseer	Gain/Loss (%)		6.58	2.02	6.69	6.45
Cite	Node2vec	0.551	0.591	0.556	0.586	0.593
	Gain/Loss (%)		7.32	0.84	6.31	7.58
	Deepwalk	0.808	0.816	0.807	0.814	0.819
Cora	Gain/Loss (%)		1.04	-0.03	0.81	1.42
ŭ	Node2vec	0.814	0.822	0.807	0.817	0.823
	Gain/Loss (%)		0.96	-0.93	0.28	1.10
	Deepwalk	0.174	0.179	0.165	0.168	0.175
PPI	Gain/Loss (%)		2.83	-5.01	-3.14	0.80
Б	Node2vec	0.174	0.175	0.164	0.169	0.173
	Gain/Loss (%)		0.47	-5.68	-2.90	-0.47

Table: Macro- F_1 scores for node classification, where 50% of nodes are used for training

The effect of the number of topics/communities

Figure: Varying number of topics/communities over CiteSeer

Link Prediction

Table: AUC scores for the link prediction task with operators: (a) Average, (b) Weighted-L1, and (c) Weighted-L2. (dw: Deepwalk, n2v: Node2vec)

Operator	Definition
Average	$0.5 \cdot (v+u)$
Weighted-L1	$ v - u _1$
Weighted-L2	$ v-u _2$

Table: Operators for learning edge features

References

- [1] Yang Liu, Zhiyuan Liu, Tat-Seng Chua, and Maosong Sun. Topical word embeddings. In AAAI, 2015.
- [2] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representations. In KDD, 2014.
- [3] Aditya Grover and Jure Leskovec. Node2vec: Scalable feature learning for networks. In *KDD*, 2016.
- [4] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfolding of communities in large networks. J. Stat. Mech., 2008.
- [5] Jaewon Yang and Jure Leskovec. Overlapping community detection at scale: A nonnegative matrix factorization approach. In WSDM, 2013.
- [6] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed representations of words and phrases and their compositionality. In *NIPS*, 2013.