

Transport Layer

Mochamad Teguh Kurniawan

STT TERPADU NURUL FIKRI
TEKNIK INFORMATIKA & SISTEM INFORMASI
2018

Introduction

Background

Network Layer

Assignment

Tanggung Jawab Pengiriman

- Transport layer bertanggung jawab untuk menangani pengiriman process-to-process
- *Process*, misalnya *application* program

Tugas Transport Layer

Berperan untuk mengirimkan sebuah pesan (*message*) dari suatu proses ke proses yang lainnya.

Layer Protokol TCP/IP

Pengalamatan di Protokol TCP/IP

Empat jenis alamat dalam implementasi protokol TCP/IP:

- Alamat specific
 Yaitu alamat yang diberikan spesifik oleh proses aplikasi.
 Bentuk dan angkanya tergantung aplikasi masing-masing.
- Alamat port
 Yaitu 16 bit (0-65535) alamat port komunikasi di komputer.
 Contoh:
 port 80 (HTTP), port 21 (FTP), port 25 (SMTP)
- Alamat logical
 Yaitu 32 bit / 4 byte alamat IPv4, atau 128 bit / 8 word alamat IPv6
 Contoh:
 192.168.1.23 (IPv4)
 2001:0db8:85a3:0042:1000:8a2e:0370:7334 (IPv6)
- Alamat physical
 Yaitu 48 bit / 6 byte MAC address network interface.
 Contoh:
 07:01:02:01:2C:4B

Komunikasi Process-to-Process

- Sistem operasi mendukung multiuser / multihost dan multiprocess
 - Karena itu local host, local process, remote host dan remote process harus didefinisikan
 - Addressing
 - Address IP adalah alamat yang diperlukan untuk pengiriman ke host
 - Alamat transport layer adalah port number (nomor port) yang diperlukan untuk pengiriman ke jenis proses

Socket Address

- Pengiriman process-to-process memerlukan dua buah pengidentifikasi, yaitu IP address dan nomor port.
- Socket address adalah kombinasi dari sebuah IP address dan sebuah nomor port.
- Sebuah protokol transport layer membutuhkan sepasang socket address yaitu socket address client dan socket address server.

IP Addresses vs. Port Numbers

Nomor port (*Port Numbers*)

Dalam model jaringan internet (TCP/IP), nomor port panjangnya 16 bits antara 0 dan 65535, disebut juga *ephemeral port number*.

Pada dasarnya nomor port ini dapat dipilih secara random oleh software yang berjalan di transport layer.

Nomor port (*Port Numbers*)

Kisaran(range) nomor port yang telah ditentukan IANA (Internet Assigned Number Authority) :

- well-known ports, range 0 sampai 1023, ditetapkan dan dikontrol oleh IANA
- registered ports, range 1024 sampai 49151, tidak ditetapkan dan dikontrol oleh IANA. Hanya didaftarkan oleh IANA agar tidak terjadi duplikasi
- dynamic ports, range 49152 sampai 65535, tidak dikontrol dan tidak didafarkan oleh IANA. Nomor-nomor port ini dapat digunakan oleh semua proses atau aplikasi. Ini yang disebut ephemeral ports.

Multiplexing dan Demultiplexing

Mekanisme addressing memungkinkan melakukan multiplexing dan demultiplexing oleh layer transport.

Reliable vs. Unreliable

Error is checked in these paths by the data link layer Error is not checked in these paths by the data link layer Transport Transport Network Network Data link Data link Physical Physical LAN WAN LAN

Connectionless vs. Connection-oriented

- Connectionless: Data dikirim langsung tanpa perlu penetapan koneksi.
- Connection-oriented: koneksi dibuat, ditetapkan, data ditransfer, koneksi dibebaskan (diakhiri).
- Beberapa jenis transport protocol sebagai berikut.
 - 1. **UDP**: User Datagram Protocol. Banyak dipakai aplikasi multimedia.
 - **2. TCP**: Transmission Control Protocol. Banyak dipakai pada aplikasi data biasa.
 - **3. SCTP**: Stream Control Transmission Protocol. Lebih jarang diimplementasikan, seringkali tidak disupport oleh O/S.

UDP

- User Datagram Protocol (UDP) bersifat connectionless, merupakan protokol transport yang tidak reliable.
- UDP tidak menambahkan apapun ke layanan IP kecuali untuk menyediakan komunikasi process-to-process bukan komunikasi host-to-host.
- UDP adalah protokol transport-layer yang sesuai untuk aplikasi yang menyediakan sendiri kontrol aliran dan kontrol error, misalnya aplikasi multimedia
- Penghitungan checksum dan memasukkannya ke dalam user datagram adalah opsional

Proses UDP

- Connectionless services
- Tidak ada kontrol aliran dan error kecuali checksum
- Encapsulation & decapsulation
- Queuing

Penggunaan UDP

- Cocok untuk sebuah proses yang membutuhkan komunikasi request-response sederhana dengan sedikit perhatian untuk kontrol aliran dan kontrol error
- Cocok untuk sebuah proses dengan mekanisme kontrol aliran dan kontrol error internal seperti TFTP
- Cocok untuk multicasting seperti aplikasi multimedia
- Digunakan untuk proses manajemen seperti SNMP
- Digunakan untuk beberapa protokol routing untuk memperbarui informasi routing seperti RIP

Contoh Well-known Ports untuk UDP

Port	Protocol	Description
7	Echo	Echoes a received datagram back to the sender
9	Discard	Discards any datagram that is received
11	Users	Active users
13	Daytime	Returns the date and the time
17	Quote	Returns a quote of the day
19	Chargen	Returns a string of characters
53	Nameserver	Domain Name Service
67	BOOTPs	Server port to download bootstrap information
68	BOOTPc	Client port to download bootstrap information
69	TFTP	Trivial File Transfer Protocol
111	RPC	Remote Procedure Call
123	NTP	Network Time Protocol
161	SNMP	Simple Network Management Protocol
162	SNMP	Simple Network Management Protocol (trap)

Checksum UDP

Checksum terdiri dari tiga section: sebuah pseudoheader, UDP header, dan data dari application layer.

JARINGAN KOMPUTER MTK

TCP

- Transmission Control Protocol (TCP) bersifat connectionoriented, protokol transport yang reliable
- Menambahkan fitur connection-oriented dan reliability pada layanan layanan IP
- Seperti UDP, TCP menggunakan nomor port sebagai alamat dalam transport-layer
- Tak seperti UDP, TCP adalah sebuah stream-oriented protocol

Contoh Well-known Ports untuk TCP

Port	Protocol	Description
7	Echo	Echoes a received datagram back to the sender
9	Discard	Discards any datagram that is received
11	Users	Active users
13	Daytime	Returns the date and the time
17	Quote	Returns a quote of the day
19	Chargen	Returns a string of characters
20	FTP, Data	File Transfer Protocol (data connection)
21	FTP, Control	File Transfer Protocol (control connection)
23	TELNET	Terminal Network
25	SMTP	Simple Mail Transfer Protocol
53	DNS	Domain Name Server
67	BOOTP	Bootstrap Protocol
79	Finger	Finger
80	HTTP	Hypertext Transfer Protocol
111	RPC	Remote Procedure Call

TCP Segment Format

Contoh Pengiriman TCP

Normal:

Contoh Pengiriman TCP

Terjadi Lost:

TERIMA KASIH

Thank you very much for your kind attention