Complementary function of difference equation $y_{k+2} - 6y_{k+1} + 8y_k = 0$ for $y_0 = 3$, $y_1 = 2$

$$(a) 4^k - 2^k$$

(b) a
$$4^k + b2^k$$

(d) None of these

The paricular integral of $y_{k+2} - 2y_{k+1} + y_k = 1$ is

(a) k (b) k(k-1) (c) 1 (d)
$$\frac{k(k-1)}{2}$$

(d)
$$\frac{k(k-1)}{2}$$

P.I of $y_{k+2} - 4y_{k+1} + 4y_k = 3 \cdot 2^k$ is where a and b are constant

The value of $\frac{1}{4}(5^k)$ is (a) 5^k (b) 4.5^k (c) $\frac{1}{4}5^k$ (d) 5^k log 5

The value of $\frac{1}{k}(k)$ is $\frac{1}{k}(k) = \frac{1}{k}(k) \cdot \frac{1}{k}(k) \cdot$

The value of $\frac{1}{\Delta}(e^{2k})$ is (a) e^{2k} (b) $\frac{e^{2k}}{e^2-1}$ (c) $\frac{e^{2k}}{e-1}$ (d) $\frac{e^{2k}}{2}$

The value of $\frac{1}{E}(e^{2k})$ is (a) e^{2k} (b) $\frac{e^{2k}}{e^2-1}$ (c) $\frac{e^{2k}}{e^2}$ (d) $\frac{e^{2k}}{e^2}$

The value of
$$\frac{1}{\Delta}(5^k)$$
 is (a) 5^k (b) 4.5^k (c) $\frac{1}{4}5^k$ (d) 5^k $\log 5$

The value of $\frac{1}{\Delta}(2^kk)$ is (a) $2^kk - 3$ (b) $2.2^k(k - 2)$ (c) $\frac{1}{2}k2^k$ (d) $2^k(k - 2)$

The value of $\frac{1}{E}(2^kk)$ is (a) $2^kk - 1$ (b) $2.2^k(k - 1)$ (c) $\frac{1}{2}(k - 1)2^k$ (d) $2^k(k - 2)$

The value of $\frac{1}{\Delta}(k)$ is (a) $k-1$ (b) $2.k^2$ (c) $\frac{1}{2}k^2$ (d) $\frac{(k-1)k}{2}$

The value of $\frac{1}{E}(k)$ is (a) $k-1$ (b) $2.k^2$ (c) $\frac{1}{2}k^2$ (d) $\frac{(k-1)k}{2}$

The value of $\frac{1}{E}(k)$ is (a) e^{2k} (b) $\frac{e^{2k}}{e^2-1}$ (c) $\frac{e^{2k}}{e^2}$ (d) $\frac{e^{2k}}{2}$

The value of $\frac{1}{E}(e^{2k})$ is (a) e^{2k} (b) $\frac{e^{2k}}{e^2-1}$ (c) $\frac{e^{2k}}{e^2}$ (d) $\frac{e^{2k}}{2}$

Q: The Generating function of ar = ak

$$a_{K} = a^{K}$$

$$\frac{1}{1-an} \qquad 2) \frac{1}{1+an} \qquad 3) \frac{1}{(1-an)^2} \frac{1}{(1+an)^2}$$

Q: The Generating function $\{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \dots, \}$

$$\frac{\text{Use}}{=} \frac{(1-1)^{2} + (\frac{1}{2}n)^{2} + (\frac{1}{2}n)^{3} + \cdots}{(\frac{1}{2}n)^{3} + \cdots}$$

$$= \frac{(1-1)^{2}}{(\frac{1}{2}n)^{3}}$$

$$9: G.F. of $a_{n+1} - 5a_n = 0$$$

$$9\frac{1}{1-5n}$$
 $5\frac{1}{1+5n}$ $\frac{2}{1-5n}$

- Q: $a_{n+2}-10a_{n+1}+25a_n=0$ $a_{n=?}$
- Q: If $a_0=1$ then what is the $v \cdot d \cdot e$ of a_{50} for $a_{n+1} = 50 = 0$
- Q: degree of an-3 + an-2 + 5an+1 6an = 0 ix
- 0: Which one of the following is the homogenus recurrence relation
 - $\frac{17}{127}$ $a_{n+1} + 5a_n = 6^n$ $\frac{17}{127}$ $a_{n+1} - 6a_n = 0$ $\frac{3}{127}$ $a_{n+1} - 6 = 0$
 - 4) an-6an-1+10=0