aglaia norza

Linguaggi di Programmazione

appunti delle lezioni

libro del corso: non usato, integrati con le dispense del professor Cenciarelli

Contents

1	Alge	ebre induttive	3
	1.1	I numeri naturali	3
	1.2	Algebre, algebre induttive	4
	1.3	Omomorfismi, lemma di Lambek	7
2	Espi	ressioni, linguaggi	9
	2.1	Exp	9
		2.1.1 Semantica operazionale	10
	2.2	Valutazioni Eager e Lazy	12
	2.3	Scoping	14
		2.3.1 Riassunto delle regole in Exp	15
	2.4	Fun	17

1. Algebre induttive

1.1. I numeri naturali

Definition 1: Assiomi di Peano

L'insieme N dei numeri naturali si può definire mediante i cinque **assiomi di Peano**:

- 1. $0 \in \mathbb{N}$
- $2. \ n \in \mathbb{N} \ \Rightarrow \ \operatorname{succ}(n) \in \mathbb{N}$
- 3. $\not\exists n \in \mathbb{N} \mid 0 = \operatorname{succ}(n)$
- 4. $\forall n, m \operatorname{succ}(n) = \operatorname{succ}(m) \Rightarrow n = m$ (iniettività)
- 5. $\forall S \subseteq \mathbb{N} \ (0 \in S \land (n \in S \Rightarrow \text{succ}(n) \in S) \Rightarrow S = \mathbb{N})$ (assioma di induzione)

assioma di induzione

L'assioma di induzione è necessario per evitare di equiparare ai numeri naturali insiemi che, essenzialmente, contengono una struttura come quella di \mathbb{N} , e un "qualcosa in più". (Se all'interno dell'insieme A che stiamo considerando esiste un altro sottoinsieme proprio che rispetta gli altri assiomi, A non rispetterà il quinto assioma di Peano).

In più, il quinto assioma di Peano ci fornisce essenzialmente una definizione insiemistica di induzione.

Definition 2: Principio di Induzione

L'induzione può essere definita, basandosi sulle "proprietà" invece che sull' insiemistica, come segue:

$$\forall P \quad \frac{P(0), \quad P(n) \Rightarrow P(n+1)}{\forall n \ P(n)}$$

(la notazione equivale a $P(0) \wedge P(n) \wedge (P(0) \wedge (P(n) \Rightarrow P(n+1))) \Rightarrow \forall n P(n)$)

Possiamo dimostrare che il quinto assioma di Peano è equivalente al principio di induzione (in quanto i concetti di "proprietà" e "sottoinsieme" sono equivalenti).

Infatti, ad ogni proprietà corrisponde un sottoinsieme i cui elementi sono esattamente quelli che soddisfano tale proprietà

Prendiamo quindi $S = \{n \in \mathbb{N} \mid P(n) \text{ è vera}\}.$

In questo modo, dire P(0) equivale a dire $0 \in S$, e dire $P(n) \Rightarrow P(n+1)$ equivale a dire $n \in S \Rightarrow n+1 \in S$. E, allo stesso modo, dire $\forall n P(n)$ equivale a dire $\forall n, n \in S$, ovvero $S = \mathbb{N}$.

Definition 3: Numeri di von Neumann

Un altro modo di descrivere i numeri naturali viene dal matematico **John von Neumann**, che definisce i numeri naturali ("numeri di von Neumann", \mathcal{N}) in questo modo:

- $0_{\mathcal{N}} = \emptyset$ (ovvero $\{\}$)
- $1_{\mathcal{N}} = \{0_{\mathcal{N}}\}$ (ovvero $\{\{\}\}$)
- $2_{\mathcal{N}} = \{0_{\mathcal{N}}, 1_{\mathcal{N}}\}\$ (ovvero $\{\{\}, \{\{\}\}\}\}$)
- ..

I numeri di von Neumann rispettano gli assiomi di peano! (dalle dispense)

1.2. Algebre, algebre induttive

nota: insieme unità e funzione nullaria

Ci è utile definire l'**insieme unità** $\mathbb{1} = \{*\}$. $\mathbb{1}$ è un insieme formato da un solo elemento (non ci interessa quale).

Un altro concetto che ci servirà è quello di **funzione costante** o **nullaria**. Una funzione nullaria f è tale che:

$$f: \mathbb{1} \to A \mid f() = a \quad a \in A$$

(chiaramente, essa è sempre iniettiva).

nota

Una funzione nullaria su un insieme A può essere vista come un elemento di A (un qualsiasi insieme A è isomorfo a all'insieme di funzioni $\mathbb{1} \to A$ (l'insieme di funzioni $\mathbb{1} \to A$ ha la stessa cardinalità di A), il che ci permette di **trattare gli elementi di un insieme come funzioni**.

Definition 4: Algebra

Una **algebra** è una tupla (A, Γ) , dove:

- A è l'insieme di riferimento ("carrier" o "insieme sottostante")
- $\Gamma = \{\gamma_1, \gamma_2, \dots, \gamma_i\}$, è l'insieme di funzioni chiamate "operazioni fondamentali" o "costruttori" dell'algebra

la segnatura dei costruttori è: $\gamma_i:A^{\alpha_i}\times K_i\to A$.

nota

Tra le algebre, consideriamo anche le algebre eterogenee, che prendono argomenti da insiemi diversi da A.

Definition 5: Chiusura di un insieme rispetto ad un'operazione

Sia $f: A^n \times K \to A$ un'operazione su A con parametri esterni $K = (K_1 \times \cdots \times K_m)$.

Un insieme $S \subseteq A$ si dice **chiuso** rispetto ad f quando:

$$a_1, \ldots, a_n \in S \implies f(a_1, \ldots, a_n, k_1, \ldots, k_n) \in S$$

nota!

Data un'operazione f che prende solo elementi esterni all'insieme S (come per esempio la funzione nullaria $\mathbb{1} \to A$), un insieme S si dice chiuso rispetto a $f \iff \operatorname{Im}(f) \subseteq S$).

Definition 6: Algebra induttiva

Un'algebra A, Γ si dice **induttiva** quando:

- 1. tutte le $\gamma_i \in \Gamma$ sono iniettive
- 2. $\forall i, j \mid i \neq j$, $\text{Im}(\gamma_i) \cap \text{Im}(\gamma_j) = \emptyset$, ovvero tutte le γ_i hanno immagini disgiunte
- 3. $\forall S \subseteq A$, se S è chiuso rispetto a tutte le γ_i , allora S = A (ovvero il principio di induzione è rispettato)

terza condizione

La terza condizione pone quindi che A sia la più piccola sotto-algebra di se stessa (ovvero non abbia sotto-algebre diverse da se stessa).

nota

Le tre condizioni garantiscono quindi che:

- ci sia solo un modo per costruire ogni elemento dell'algebra (i, ii)
- non ci siano "elementi inutili" (iii)

Vediamo come possiamo costruire ℕ come algebra induttiva.

La definizione di algebra induttiva non considera il concetto di "elemento", quindi, per il primo assioma di Peano, usiamo una *funzione costante* 0, con segnatura:

$$1 \times \mathbb{N} : x \to 0$$

Abbiamo quindi una tupla (\mathbb{N} , {succ, \mathbb{O} }).

Per dimostrare che questa tupla sia un'algebra induttiva, dobbiamo ora verificare le tre condizioni:

- 1. tutte le γ_i sono induttive:
 - 0 è necessariamente induttiva
 - succ è induttiva per il secondo assioma di Peano
- 2. tutti i costruttori hanno immagini disgiunte:
 - ullet grazie al terzo assioma di Peano ($ot \exists n \in \mathbb{N} \mid 0 = \mathrm{succ}(n)$), sappiamo che succ e \mathbb{O} hanno immagini disgiunte
- 3. principio di induzione:
 - è verificato dal quinto assioma di Peano ($0 \in S$ corrisponde alla chiusura rispetto a 0 e $n \in \mathbb{N} \Rightarrow \operatorname{succ}(n) \in \mathbb{N}$ corrisponde alla chiusura rispetto a succ)

alberi binari come algebre induttive

L'insieme degli alberi binari finiti (B-trees, leaf, branch), dove:

- B-trees = $\{t \mid t \text{ è una foglia, oppure } t = \langle t_1, t_2 \rangle \text{ con } t_1, t_2 \in \texttt{B-trees} \}$
- leaf: $1 \rightarrow B$ -trees (foglia)
- branch: B-trees \times B-trees \to B-trees : $(t_{sx}, t_{dx}) \to t$ (costruisce rami in modo che t_{sx} e t_{dx} siano i due sottoalberi di t)

è un'algebra induttiva.

Theorem 1: numero di nodi di un albero binario

Un albero binario con n foglie ha 2n-1 nodi

proof!

Si può dimostrare per induzione strutturale sui costruttori degli alberi.

- (caso base): la proprietà è vera per l'albero formato da una sola foglia costruito con leaf (\circ) esso ha infatti n=1 foglie e 2n-1=1 nodi.
- (ipotesi induttiva): ogni argomento dei costruttori rispetta la proprietà
- dobbiamo quindi verificare che il costruttore branch, dati due argomenti che rispettano la proprietà, la mantenga
- (passo induttivo): abbiamo $t = branch(t_1, t_2)$.

Sia $n=n_1+n_2$ il numero di foglie di t, dove le foglie di t_1 sono n_1 e quelle di t_2 sono n_2 .

Per ipotesi, t_1 ha $2n_1-1$ nodi e t_2 ne ha $2n_2-1$. Dunque, t avrà $(2n_1-1)+(2n_2-1)+1$ nodi, ovvero $2(n_1+n_2)-1=2n-1$, qed.

liste finite come algebra induttiva

Dato un insieme A, indichiamo con A - list l'insieme delle liste finite di elementi di A.

La tupla (A - list, empty, cons) è un'algebra induttiva, dove:

- empty: $\mathbb{1} \to A list$ è la funzione costante che restituisce la **lista vuota** " $\langle \rangle$ ".
- cons: $A \times A list \to A list$: cons $(3, \langle 5, 7 \rangle) = \langle 3, 5, 7 \rangle$ è la funzione che **costruisce una lista** aggiungendo un elemento in testa

Si tratta di un'algebra induttiva (notiamo che i due costruttori hanno immagini chiaramente disgiunte, sono entrambi chiusi per A - list, e c'è un unico modo per costruire ogni lista).

liste infinite

Le liste infinite non possono essere un'algebra induttiva, in quanto contengono una sottoalgebra induttiva (quella delle liste finite).

i booleani come algebra non induttiva

Consideriamo l'algebra (B, not), dove $B = \{0, 1\}$ e not: $B \to B : b \to \neg b$.

Notiamo che not è sicuramente iniettiva, e che, poiché è l'unico costruttore, anche la seconda caratteristica delle algebre induttive è rispettata.

Notiamo però che l'algebra non rispetta il terzo requisito. Se consideriamo infatti $\emptyset \subseteq B$, notiamo che not è chiusa rispetto ad esso.

Infatti, l'implicazione $x \in \emptyset \Rightarrow \operatorname{not}(x) \in \emptyset$ risulta vera per falsificazione della premessa (non esistono elementi in \emptyset).

 (\emptyset, not) è quindi una sotto-algebra induttiva di B, che però è diversa da essa. L'implicazione della terza condizione $(x \in \emptyset \Rightarrow \text{not}(x) \in \emptyset) \Rightarrow \emptyset = B$ è falsa, e (B, not) non è quindi un'algebra induttiva.

1.3. Omomorfismi, lemma di Lambek

digressione - teoria delle categorie

Facciamo una piccola parentesi che introduce alcune nozioni di teoria delle categorie (perché è molto interessante).

La teoria delle categorie studia in modo astratto le strutture matematiche. Una categoria $\mathcal C$ consiste di

- una classe ob(C), i cui elementi sono chiamati **oggetti**
- una classe mor(C), i cui elementi sono chiamati **morfismi** (o mappe o frecce); ogni morfismo $f: a \to b$ ha associati un unico oggetto sorgente a e un unico oggetto destinazione b.
- per ogni terna di oggetti $a,b,c \in \mathcal{C}$, è definita una funzione $mor(b,c) \times mor(a,b) \to mor(a,c)$ chiamata **composizione di morfismi**. La composizione di $f:b\to c$ con $g:a\to b$ si indica con $f\circ g:a\to c$

la composizione deve soddisfare i seguenti assiomi:

```
(associatività): se f: a \to b, \ g: b \to a e h: c \to d, allora h \circ (g \circ f) = (h \circ g) \circ f (identità): per ogni oggetto x esiste un morfismo id_x: x \to x chiamato morfismo identità, tale che per ogni morfismo f: a \to x vale id_x \circ f = f e per ogni morfismo g: x \to b si ha g \circ \mathrm{id}_x = g.
```

Quindi, ogni oggetto è associato ad un unico morfismo identità. Questo permette di dare una definizione di categoria basata esclusivamente sulla classe dei morfismi: gli **oggetti vengono identificati con i corrispondenti morfismi identità**.

All'interno della teoria delle categorie, una funzione iniettiva $f: B \to C$ si chiama **monomorfismo**. Visto che non si possono utilizzare gli elementi per definire l'iniettività, un monomorfismo è descritto come una funzione f tale che:

$$\forall A, \ \forall h, k : A \rightarrow B, \ h \circ f = k \circ f \Rightarrow h = k$$

(se le funzioni h e k sono identiche ogni volta che vengono composte con f, significa che non ci sono valori in f che sono assunti da più di un elemento di B)

Definition 7: Algebre con la stessa segnatura

Due algebre (A, Γ_A) e (B, Γ_B) hanno la stessa segnatura se, sostituendo A con B in tutte le $\gamma_i \in \Gamma_A$, si ottiene Γ_B .

(La segnatura di un'algebra è data dalle segnature delle sue operazioni).

Definition 8: Omomorfismo

Date due algebre con la stessa segnatura (A, Γ) e $(B, \Delta = \{\delta_1, \dots, \delta_k\})$, un omomorfismo è una funzione $f : A \to B$ tale che:

$$\forall i \ f(\gamma_i(a_1,\ldots,a_k,k_1,\ldots,k_m)) = \delta_i(f(a_1),\ldots,f(a_k),k_1,\ldots,k_m)$$

 $(con k_1, \ldots, k_m parametri esterni)$

(definizione algebrica: $\forall a,b \in A$, date \circ operazione di A e \bullet operazione di B, si ha $f(a \circ b) = f(a) \bullet f(b)$)

un omomorfismo "rispetta le operazioni"

• nota: la composizione di due omomorfismi è a sua volta un omomorfismo

Definition 9: Isomorfismo

Un isomorfismo è un omomorfismo biettivo.

(Due algebre sono isomorfe (≅) quando esiste un isomorfismo tra loro)

Theorem 2: Omomorfismo tra algebre con stessa segnatura

Sia A un'algebra induttiva. Per ogni algebra B (non necessariamente induttiva) con la stessa segnatura, esiste un **unico omoformismo** $A \to B$.

Theorem 3: Lemma di Lambek

Due algebre induttive A e B con la **stessa segnatura** sono necessariamente **isomorfe**.

proof!

- Siccome A è un'algebra induttiva, \exists ! omomorfismo $f: A \to B$.
- Allo stesso modo, \exists ! omomorfismo $g: B \to A$.
- Componendo i due omomorfismi, si ottiene un omomorfismo $g\circ f$ con segnatura $A\to A$.
- Sappiamo che per ogni algebra esiste l'omomorfismo "identità".
- Sappiamo anche, per il teorema sopra, che esiste un unico omomorfismo $A \to A$.

 Ne segue necessariamente che $g \circ a = \operatorname{Id}_A$. (lo stesso discorso si applica a $f \circ g = \operatorname{Id}_B$)
- $g \circ f = \text{Id} \iff g = f^{-1}$, quindi g e f sono funzioni invertibili (= biettive) $\Rightarrow g, f$ sono isomorfismi $\Rightarrow A \cong B$

2. Espressioni, linguaggi

Definiamo un **linguaggio** L come insieme di stringhe.

Per descrivere la sintassi di linguaggi formali (la grammatica), usiamo la BNF (Backus-Naur Form), con questa sintassi:

Esempio: prendiamo come esempio questa grammatica:

$$M, N ::= 5 | 7 | M + N | M * N$$

Le espressioni che seguono questa grammatica, sono del tipo:

- "5" o "7"
- un'espressione M + N o M * N, in cui M e N rispettano a loro volta la grammatica

Introduciamo una funzione $eval: L \to \mathbb{N}$, che valuta le espressioni del linguaggio:

- eval(5) = 5
- eval(7) = 7
- eval(M + N) = eval(M) + eval(N)
- eval(M * N) = eval(M) * eval(N)

Possiamo notare subito che (L, eval) non è un'algebra induttiva. Infatti, una stringa come "5 + 7 * 5" potrebbe essere stata generata in due modi diversi: (5 + 7) * 5 e 5 + (7 * 5).

Possiamo però stipulare che sia induttiva. Ci basta infatti considerare +, *, 5 e 7 come costruttori dell'algebra. In questo modo, (5+7)*5 risulta essere un oggetto diverso da 5+(7*5). È quindi possibile dimostrare che (L,5,7,+,*) è un'algebra induttiva.

2.1. Exp

Definition 10: Linguaggio Exp

Introduciamo il linguaggio Exp, con grammatica:

$$M,N=k\mid x\mid M+N\mid let\;x=M\;in\;N$$

dove

- $k \in Val = \{0,1,\dots\}$ è una costante
- $x \in Var$ è una variabile
- $let: Var \times Exp \times Exp \rightarrow Exp$ assegna alla variabile x il valore M all'interno di N

esempi:

- let x = 3 in x + x + 2 viene valutata come 8
- let x = 3 in 12 viene valutata come 12

Questo linguaggio causa però facilmente ambiguità. Per esempio, come valutiamo un'espressione come $let \ x=3 \ in \ let \ y=x \ in \ let \ x=5 \ in \ y$?

Per esplicitare la struttura del termine, è necessario legare le occorrenze delle variabili alle dichiarazioni.

Definition 11: Variabili libere, legate, scope

Si dice che un'occorrenza di una variabile x è **libera** in un termine t quando non compare nel corpo di N nessun sottotermine di t nella forma $let\ x=M\ in\ N$ (quindi, quando non le viene assegnato un valore).

Ogni occorrenza libera di x in un termine N si dice **legata** (bound) alla dichiarazione di x nel termine $let \ x = M \ in \ N$.

Lo scope di una dichiarazione è l'insieme delle occorrenze libere di x in N.

Lo **scope di una variabile** è la porzione di programma all'interno della quale una variabile può essere riferita.

Introduciamo una funzione $free: Exp \to \mathcal{P}(Var)$, che restituisce l'insieme delle variabili libere di un'espressione:

$$free(k) = \emptyset$$

$$free(x) = \{x\}$$

$$free(M+N) = free(M) \cup free(N)$$

$$free(let x = M in N) = free(M) \cup (free(N) - \{x\})$$

(eliminiamo la x, dalle variabili libere in N perché viene dichiarata dal $let\ x$, ma non la eliminiamo da M perché potrebbe comparire al suo interno come variabile libera, e M non fa parte dello scope di $let\ x$ (esempio: in $let\ x=x\ in\ x$, la x è libera perché compare libera in =x))

esempio: $free(let \ x = 7 \ in \ x + y) = \{y\}$

2.1.1. Semantica operazionale

Vogliamo introdurre nel linguaggio Exp il concetto di "quanto fa?" (valutazione di un'espressione).

Per farlo, abbiamo bisogno di definire un ambiente all'interno del quale valutare le espressioni (stile operazionale, "structural operational semantics").

Definition 12: Ambienti

Un **ambiente** è una funzione parziale (funzione non necessariamente definita su tutti gli elementi del dominio) con dominio finito che associa dei valori ad un insieme finito di variabili.

$$E: Var \stackrel{fin}{\rightharpoonup} Val$$

Scriviamo gli ambienti come insiemi di coppie. Per esempio, l'ambiente E in cui z vale 3 e y vale 9 è indicato con $\{(z,3),(y,9)\}$.

Notiamo che, essendo E una funzione parziale, il dominio dom(E) è un sottoinsieme finito di Var.

Definition 13: Insieme di ambienti

Env è definito come l'insieme degli ambienti di Exp.

Gli ambienti si possono **concatenare** in questo modo:

$$(E_1 E_2)(x) = \begin{cases} E_2(x) & \text{se } x \in dom(E_2) \\ E_1(x) & \text{altrimenti} \end{cases}$$

Per esempio, $\{(z,3),(y,9)\}\{(z,4)\}(z)=4$ e $\{(z,3),(y,9)\}\{(z,4)\}(x)$ è indefinito.

Definition 14: Semantica operazionale di Exp

La **semantica operazionale** di Exp è una relazione

$$\leadsto \subseteq Exp \times Env \times Val$$

in cui $(M, E, v) \in \leadsto$ il programma M, nell'ambiente E, produce il valore v.

Un'asserzione di appartenenza $(M, E, v) \in \sim$ viene chiamata giudizio operazionale, e si scrive

$$E \vdash M \leadsto v$$

Questa relazione è definita dalle seguenti regole:

$$E \vdash k \leadsto k \quad [const]$$

(in ogni ambiente E, una costante k vale k)

$$E \vdash x \leadsto v \quad \text{se } v = E(x) \quad [var]$$

(una variabile x vale v se la funzione ambiente E(x) le associa il valore v)

$$\frac{E \vdash M \leadsto v \quad E \vdash N \leadsto w}{E \vdash M + N \leadsto v + w} \quad [plus]$$

(se nello stesso ambiente M vale v e N vale w, M+N varrà u+w)

$$\frac{E \vdash M \leadsto v_1 \quad E\{(x, v_1)\} \vdash N \leadsto v_2}{E \vdash let \ x = M \ in \ N \leadsto v_2} \quad [let]$$

(essenzialmente, per valutare una let, si:

- valuta M $(E \vdash M \leadsto v_1)$
- si "associa" il risultato v_1 a x, concatenando (x, v_1) all'ambiente
- e si valuta N nel nuovo ambiente)

Notiamo che si utilizza la relazione \leadsto e non una una funzione $Exp \times Env \to Val$, perché si potrebbe avere più di un risultato (per esempio nel caso del multithreading, in cui un diverso ordine di esecuzione di un programma dà output diversi), o anche nessun risultato (per esempio nel caso in cui in Exp compare una variabile x, che però Env non definisce), entrambi casi non accettati dalla definizione di funzione.

precedenza

Introduciamo un concetto di "precedenza" nella valutazione di un'espressione potenzialmente ambigua; un'espressione del tipo:

$$let x = 3 in let x = let y = 2 in x + y in x + 7 + x$$

in assenza di parentesi, va valutata "partendo dall'interno".

Corrisponde quindi a

let
$$x = 3$$
 in [let $x = (let y = 2 in x + y) in x + 7] + x$

E si ha quindi che:

- la x in x + y e quella finale (+x) sono quelle valutate dal let iniziale
- il valore della x in x + 7 è invece dato dal risultato di $let x = (let y = 2 \ in \ x + y)$

Facciamo un esempio di valutazione di un'espressione:

(copierò appena ho tempo...)

2.2. Valutazioni Eager e Lazy

La valutazione utilizzata fino a questo momento viene definita **eager**, in quanto valuta N immediatamente (anche nel caso in cui non servisse veramente valutarlo).

Se infatti consideriamo un caso del tipo let = [espressione lunghissima] in 7, notiamo immediatamente che la valutazione di <math>N non è necessaria, in quanto l'espressione farà, in ogni caso, 7.

Introduciamo quindi un approccio **lazy**, che consiste nel valutare un termine solo quando (e se) ce n'è veramente bisogno.

La valutazione di N in un termine del tipo $let\ x=N\ in\ M$ viene rimandata, quindi, al momento in cui ad M (eventualmente) servirà il suo valore.

Definition 15: Regole della semantica lazy di Exp

• I termini non valutati subito vengono conservati in un "ambiente pigro" - estendiamo quindi Env in questo modo:

$$Env = Var \stackrel{fin}{\rightharpoonup} Exp$$

(gli ambienti contengono ora anche i termini non valutati, quindi non possiamo avere come codominio Val)

• la nuova regola per le variabili è:

$$\frac{E \vdash M \leadsto v}{E \vdash x \leadsto v} \text{ se } E(x) = M$$

• la nuova regola per il let è:

$$\frac{E(x,M) \vdash N \leadsto v}{E \vdash let \ x = M \ in \ N \leadsto v}$$

Notiamo che però non sempre l'approccio lazy è più veloce: per esempio, per l'espressione let x = N in (x + x + x), N viene calcolata 3 volte con l'approccio lazy e una sola con quello eager.

Mettiamo i due approcci a confronto sull'espressione

$$let x = 2 in let y = x in let x = 7 in y \rightsquigarrow 3$$

• approccio eager:

• approccio lazy:

Notiamo che i due approcci ci danno risultati diversi.

Ciò è causato non dall'approccio valutativo, bensì dallo **scoping** utilizzato. Abbiamo infatti utilizzato quello che viene definito "scoping dinamico", il che ha causato problemi perché, in Exp, lazy dinamico e eager non sono equivalenti.

2.3. Scoping

Definition 16: Scoping

Lo **scoping** di un linguaggio è l'insieme di regole che determinano la visibilità di una variabile all'interno di un programma (ossia che consentono di associare una variabile a ciascun riferimento (= uso della variabile mediante un identificatore)).

Definition 17: Scoping statico

Quando si usa lo **scoping statico**, i riferimenti ad una variabile sono risolti in base alla **struttura sintattica** del programma (tipicamente in base ad una dichiarazione).

Ovvero, durante la valutazione viene utilizzato l'**ambiente definito a tempo di interpretazione** (e non di valutazione).

Definition 18: Scoping dinamico

Quando si usa lo **scoping dinamico**, i riferimenti ad una variabile sono risolti in base allo **stato di esecuzione** del programma (per esempio, una dichiarazione estende il suo effetto fino a che non si incontra un altra dichiarazione di variabile con lo stesso nome).

Quindi, durante la valutazione viene utilizzato l'ambiente definito a tempo di valutazione stesso.

Dobbiamo quindi mantenere, oltre alle espressioni rimaste da valutare, anche gli ambienti in cui valutarle. Per farlo, estendiamo nuovamente Env in questo modo:

$$Env_{LS} = Var \stackrel{fin}{\rightharpoonup} (Exp \times Env_{LS})$$

Definition 19: Regole della semantica lazy statica di Exp

• I termini non valutati subito vengono conservati in un "ambiente pigro" - estendiamo quindi Env in questo modo:

$$Env = Var \stackrel{fin}{\rightharpoonup} Exp$$

(gli ambienti contengono ora anche i termini non valutati, quindi non possiamo avere come codominio Val)

• la nuova regola per le variabili è:

$$\frac{E' \vdash M \leadsto v}{E \vdash x \leadsto v} \text{ se } E(x) = (M, E')$$

• la nuova regola per il let è:

$$\frac{E(x,M,E) \vdash N \leadsto v}{E \vdash let \ x = M \ in \ N \leadsto v}$$

Valutiamo la stessa espressione anche con questo approccio:

$$\frac{(x,2,\emptyset) \vdash x \leadsto 2 \qquad (x,2,\emptyset) \vdash 1 \leadsto 1}{\underbrace{(x,2,\emptyset) \vdash x + 1 \leadsto 3}_{E(x,7,E) \vdash y \leadsto 3}}$$
$$\underbrace{\frac{(x,2,\emptyset)(y,x+1,(x,2,\emptyset) \vdash \text{let } x = 7 \text{ in } y \leadsto 3}_{(x,2,\emptyset) \vdash \text{let } y = x+1 \text{ in let } x = 7 \text{ in } y \leadsto 3}$$
$$\underbrace{\emptyset \vdash \text{let } x = 2 \text{ in let } y = x+1 \text{ in let } x = 7 \text{ in } y \leadsto 3}$$

In Exp non c'è, invece, differenza tra eager statico e eager dinamico.

Essenzialmente, in Exp:

		statico	dinamico
	lazy	equiv	non equiv
-	eager	equiv (e	uguali tra loro)

"commutatività" in Exp

In Exp, si ha:

$$let x = (let y = M in N) in L \not\equiv let y = M in let x = N in L$$

- ullet nella prima espressione, y è definita solo all'interno di N
- ullet nella seconda, è definita prima, ed è quindi visibile anche in L
- \bullet quindi, le due espressioni sono equivalenti solo se y non compare libera (non ri-definita) in L

2.3.1. Riassunto delle regole in Exp

eager
$$E \vdash k \leadsto k \quad [const]$$

$$E \vdash x \leadsto v \quad \text{se } v = E(x) \quad [var]$$

$$\frac{E \vdash M \leadsto v \quad E \vdash N \leadsto w}{E \vdash M + N \leadsto v + w} \quad [plus]$$

$$\frac{E \vdash M \leadsto v_1 \quad E\{(x,v_1)\} \vdash N \leadsto v_2}{E \vdash let \ x = M \ in \ N \leadsto v_2} \quad [let]$$

$$\frac{E' \vdash M \leadsto v}{E \vdash x \leadsto v} \text{ se } E(x) = (M, E') \quad [var]$$

$$\frac{E(x, M, E) \vdash N \leadsto v}{E \vdash let \ x = M \ in \ N \leadsto v} \quad [let]$$

(lazy dinamico)

$$\frac{E \vdash M \leadsto v}{E \vdash x \leadsto v} \ \ \text{se} \ E(x) = M \quad [var]$$

$$\frac{E(x,M) \vdash N \leadsto v}{E \vdash let \; x = M \; in \; N \leadsto v} \quad [let]$$

esercizi

2.4. Fun

Introduciamo un nuovo linguaggio, Fun, che estende Exp con la nozione di **funzione**.

Definition 20: Fun

La grammatica di Fun è:

$$M, N = k \mid x \mid M + N \mid let x = M in N \mid fn x \Rightarrow M \mid MN$$

dove:

- le regole presenti in Exp (1-4) rimangono invariate, con gli appropriati cambi di dominio (es. $let: Var \times Fun \times Fun \rightarrow Fun$)
- $fn: Var \times Fun \rightarrow Fun$ è una **funzione** (anonima) con parametro x
 - una funzione $fn \ x \Rightarrow M$ si può rappresentare in maniera alternativa attraverso la sua **chiusura**, $(x, M) \in Var \times Fun$
- $\cdot : Fun \times Fun \rightarrow Fun$ è l'applicazione di funzioni

il termine sinistro (che, perché l'espressione abbia semanticamente senso, deve necessariamente essere una funzione) viene applicato al termine destro (quindi MN=M(N))

• l'insieme Val non coincide più con quello delle costanti, ma corrisponde a $Var \cup (Var \times Fun)$ (variabili \cup chiusure)