The perceptron

Types of learning

- 1. Learning with a teacher: supervised learning.
- 2. Learning with a critic: reinforcement learning.
- 3. Learning on your own: unsupervised learning.
- How we study learning in neural networks:

1/16

The perceptron (Rosenblatt 1957)

Training set

 Sample
 x_1 x_2 t

 $\mu = 1$ 0
 0
 0

 $\mu = 2$ 0
 1
 0

 $\mu = 3$ 1
 0
 0

 $\mu = 4$ 1
 1
 1

Notation:

- x_i : activity of input unit i (binary or [0,1]).
- *w_i* synaptic weight from unit *i*.
- $z = \sum_i w_i x_i$ total input to the output unit.
- y: activity of output unit.
- t: desired output (of use later). (μ superscript denotes training sample.)
- $f(\cdot)$: transfer function; y = f(z).

Transfer function

Given total weighted input to neuron, what is its output?

- 1. identity: f(z) = z.
- 2. threshold: $f(z, \theta) = \begin{cases} 1 & \text{if } z \geq \theta \\ 0 & \text{otherwise} \end{cases}$
- 3. sigmoidal: $f(z) = \frac{1}{1 + \exp(-kz)}$
- 4. tanh: f(z) = tanh(z)
- 5. rectified linear unit (ReLU): f(z) = max(0, z)

How to choose? One key property: differentiable.

Linearly separable problems and the perceptron

Learning involves adjusting the values of w and θ so that the decision plane can correctly divide the two classes.

Perceptron decisions

Whether a perceptrons output is 0 or 1 depends on whether $\sum_{i=1}^{N} w_i x_i$ is less or greater than θ .

The equation

$$\sum_{i=1}^{N} w_i x_i = \theta$$

defines a hyperplane in N-dimensional space.

This hyperplane cuts the space in two.

 θ/w_1

This is an equation for a straight line.

6/16

Threshold & Bias

5/16

7/16

The threshold, θ , can be treated as just another weight from a new input unit which always has a value of +1 (or -1). This new input unit is called the bias unit.

Instead of comparing $\sum_{i=1}^{N} w_i x_i$ with θ , we compare $\sum_{i=0}^{N} w_i x_i$ with 0, or

$$y = \begin{cases} 1 & \text{if } \sum_{i=0}^{N} w_i x_i > 0, \\ 0 & \text{if } \sum_{i=0}^{N} w_i x_i \leqslant 0. \end{cases}$$

Now, learning is about jiggling weights only.

Intuitively... (positive valued inputs)

$$y^{\mu} = \operatorname{step}\left(\sum_{i=0}^{N} w_i x_i^{\mu}\right)$$

Consider w_i 's contribution to $\sum_i w_i x_i^{\mu}$ in different cases:

- 1. $y^{\mu} = t^{\mu}$ Perceptron has classified input μ correctly change nothing
- 2. $x_i^{\mu} = 0$ Changing w_j will not affect the $\sum_i w_i x_i^{\mu}$ change nothing
- 3. $x_i^\mu \neq 0, y^\mu < t^\mu$ The sum $\sum_i w_i x_i^\mu$ is too low so increase it
- 4. $x_i^{\mu} \neq 0$, $y^{\mu} > t^{\mu}$ The sum $\sum_i w_i x_i^{\mu}$ is too high so decrease it

The local rule:

$$\Delta w_j \propto (t^\mu - y^\mu) x_j^\mu$$

Example of a perceptron learning

Perceptron learning rule

$$y = f(\mathbf{w} \cdot \mathbf{x})$$
 e.g. $f(z) = 1/(1 + \exp(-z))$, $f(z) = z$

$$E = \frac{1}{2}(t - y)^2$$
 $t \text{ is target output}$

$$\Delta w_j = -\epsilon \frac{\partial E}{\partial w_j} = -\epsilon \frac{\partial E}{\partial y} \frac{\partial y}{\partial w_j} =$$

10/16

This is the method of gradient descent with learning-rate parameter ϵ .

Perceptron pros and cons

9/16

- The perceptron convergence theorem (Dayan and Abbott, page 327) guarantees that solution will be found iff there is a linearly separable solution.
- Many complex problems are not linearly separable, e.g. XOR problem.

x_1	x_2	У
0	0	0
0	1	1
1	0	1
1	1	0

11/16