Relational Algebra and SQL

Relational Query Languages

- Languages for describing queries on a relational database
- Structured Query Language (SQL)
 - Predominant application-level query language
 - Declarative
- Relational Algebra
 - Intermediate language used within DBMS
 - Procedural

What is an Algebra?

- A language based on operators and a domain of values
- Operators map values taken from the domain into other domain values
- Hence, an expression involving operators and arguments produces a value in the domain
- When the domain is a set of all relations (and the operators are as described later), we get the *relational algebra*
- We refer to the expression as a *query* and the value produced as the *query result*

Relational Algebra

- *Domain*: set of relations
- *Basic operators*: select, project, union, set difference, Cartesian product
- Derived operators: set intersection, division, join
- *Procedural*: Relational expression specifies query by describing an algorithm (the sequence in which operators are applied) for determining the result of an expression

Relational Algebra in a DBMS

DBMS

Schema for Student Registration System

Student (Id, Name, Addr, Status)
Professor (Id, Name, DeptId)
Course (DeptId, CrsCode, CrsName, Descr)
Transcript (StudId, CrsCode, Semester, Grade)
Teaching (ProfId, CrsCode, Semester)
Department (DeptId, Name)

Relational Algebra

- Five operators:
 - Selection: σ
 - Projection: Π
 - Cartesian Product: ×
 - Union: \cup
 - Difference: -
- Derived or auxiliary operators:
 - Intersection, complement
 - Joins (natural, equi-join, theta join, semi-join)
 - Renaming: ρ

Set Operators

- Relation is a set of tuples, so set operations should apply: \cap , \cup , (set difference)
- Result of combining two relations with a set operator is a relation => all its elements must be tuples having same structure
- Hence, scope of set operations limited to union compatible relations

Select Operator

• Produce table containing subset of rows of argument table satisfying condition

$$\sigma_{condition}$$
 relation

• Example:

Person

Id	Name	Address	Hobby
1123	John	123 Main	stamps
1123	John	123 Main	coins
5556	Mary	7 Lake Dr	hiking
9876	Bart	5 Pine St	stamps

Id	Name	Address	Hobby
1123	John	123 Main	stamps
9876	Bart	5 Pine St	stamps

1.Select (σ)

- Returns all tuples which satisfy a condition
- Notation: $\sigma_c(R)$

SSN	Name	Salary
1234545	John	200000
5423341	Smith	600000
4352342	Fred	500000

- Examples
 - $-\sigma_{Salary > 40000}$ (Employee)

SSN	Name	Salary
5423341	Smith	600000
4352342	Fred	500000

SSN	Name	Salary
5423341	Smith	600000

The condition c can be =, <, \leq , >, \geq , <>

Selection Condition

- Operators: $\langle, \leq, \geq, \rangle, =, \neq$
- Conditions:
 - <attribute> operator <constant>
 - <attribute> operator <attribute>
 - <condition> AND <condition>
 - <condition> OR <condition>
 - NOT < condition>

Select - Examples

- $\sigma_{Id>3000 \text{ Or } Hobby=\text{'hiking'}}$ (Person)
- $\sigma_{Id>3000 \text{ AND } Id < 3999}$ (Person)
- $\sigma_{\text{NOT}(Hobby='hiking')}$ (Person)

Person

• $\sigma_{Hobby \neq 'hiking'}$ (Person)

Id	Name	Address	Hobby
1123	John	123 Main	stamps
1123	John	123 Main	coins
5556	Mary	7 Lake Dr	hiking
9876	Bart	5 Pine St	stamps

2. Project (Π)

Produces table containing subset of columns of argument table

 $\Pi_{attribute\ list}(relation)$

Example 1:

Person

Id	Name	Address	Hobby
1123	John	123 Main	stamps
1123	John	123 Main	coins
5556	Mary	7 Lake Dr	hiking
9876	Bart	5 Pine St	stamps

$\Pi_{Name, Hobby}(Person)$

Name	Hobby
John	stamps
John	coins
Mary	hiking
Bart	stamps

Project Operator

•Example 2:

Person

Id	Name	Address	Hobby
1123	John	123 Main	stamps
		123 Main	*
5556	Mary	7 Lake Dr	hiking
9876	Bart	5 Pine St	stamps

$\Pi_{Name,Address}(Person)$

Name	Address
John	123 Main
Mary	7 Lake Dr
Bart	5 Pine St

Result is a table (no duplicates)

Expressions

 $\Pi_{Id, Name} (\sigma_{Hobby='stamps'}) \circ (Person)$

Id	Name	Address	Hobby
1123	John	123 Main	stamps
1123	John	123 Main	coins
5556	Mary	7 Lake Dr	hiking
9876	Bart	5 Pine St	stamps

Id	Name
1123	John
9876	Bart

Result

Person

3. Union Operation (U)

- Fetch data from two relations(tables) or temporary relation(result of another operation).
- Relations(tables) specified should have same number of attributes(columns) and compatible.
- Duplicate tuples are eliminated from the result.

Syntax: R1 ∪ R2

where R1 and R2 are relations.

 $\prod_{\text{StdiD,Name,StdCourse}} (R1) \cup \prod_{\text{StdiD,Name,StdCourse}} (R2)$

StdID	Name	StdCourse	
4352342	John	EC201	
4352500	Smita	CS200	
5423341	Krishna	CS101	

StdID	Name	StdCourse
5423341	Krishna	CS101
4352342	John	EC201

R1

StdID	Name	Stdcourse
5423341	Krishna CS10	
4352500	Smita	CS200

4. Difference Operation (-)

- Attribute name in relation R1 has to match with attribute name in R2.
- Both Relations should be compatible

• Resultant relation will have tuples present in one relation and not present in the second relation.

Syntax: R1 - R2

where R1 and R2 are relations.

 $\prod_{Stdid,Name,StdCourse}(R1) - \prod_{Stdid,Name,Stdcourse}(R2)$

StdID	Name	StdCourse
4352342	John EC201	

StdID	Name	StdCourse
5423341	Krishna	CS101
4352342	John	EC201

R1

StdID	Name	Stdcourse
5423341	Krishna CS10	
4352500	Smita	CS200

4. Intersection Operation (Ω)

- Attribute name in relation R1 has to match with attribute name in R2.
- Both Relations should be compatible
- Resultant relation will have tuples present in both relations

•

Syntax: R1 - R2

where R1 and R2 are relations.

 $\prod_{Stdid, Name, StdCourse} (R1) \cap \prod_{Stdid, Name, StdCourse} (R2)$

StdID	Name	StdCourse
5423341	Krishna	CS101
4352342	John	EC201

R1

StdID	Name	StdCourse	
5423341	Krishna	CS101	

StdID	Name	Stdcourse
5423341	Krishna	CS101
4352500	Smita	CS200

5. Cartesian Product (X)

- If R1 and R2 are two relations, $R1 \times R2$ is the set of all concatenated tuples $\langle x, y \rangle$, where x is a tuple in R1 and y is a tuple in R2
 - (R1 and R2 need not be union compatible)
- $R1 \times R2$ is expensive to compute:

 $R1 \times R2$

Cartesian Product

- Concatenation of every tuple of one relation with every tuple of a second relations.
- Relation A (having *m* tuples) and relation B (having *n* tuples) has *m* times *n* tuples.
- Denoted A X B or A TIMES B.

Notation: $R1 \times R2$

Example: Student × Credit

Result: $R1 \times R2$

R1

StdID	Name	Stdcourse
5423341	Krishna	CS101
4352500	Smita	CS200

Id	Credit	Dep
5423341	4	CS
4352300	3	CE

StdID	Name	Stdcourse	Id	Credit	Dep
5423341	Krishna	CS101	5423341	4	CS
5423341	Krishna	CS101	4352300	3	CE
4352500	Smita	CS200	5423341	4	CS
4352500	Smita	CS200	4352300	3	CE

$$\sigma_{Credit = '4'}(R1 \ X \ R2)$$

6. Rename (ρ)

Changes the schema, not the instance

Notation: $\rho_{B1,...,Bn}$ (R)

Example:

Old Schema:

Student(StdID,Name,StdCourse)

- ρ_{id, StudentName} (Student)

New schema:

Student(Id, StudentName)

StdID	Name	Stdcourse	
5423341	Krishna	CS101	
4352500	Smita	CS200	

id	id StudentName	
5423341	Krishna	CS101
4352500	Smita	CS200

Rename (p)

- Result of expression evaluation is a relation
- Attributes of relation must have distinct names. This is not guaranteed with Cartesian product
 - e.g., suppose in previous example a and c have the same name
- Renaming operator tidies this up. To assign the names $A_1, A_2, ... A_n$ to the attributes of the n column relation produced by expression expr use $expr [A_1, A_2, ... A_n]$

Join and Rename

• **Problem**: *R1* and *R2* might have attributes with the same name – in which case the Cartesian product is not Possible

• Solution:

- Rename attributes prior to forming the product and use new names in *join-condition*.
- Common attribute names are qualified with relation names in the result of the join

Relational Algebra and SQL

Which of the two expression is more easy to understand?

```
\pi_{CrsName} \sigma_{C\_CrsCode=T\_CrsCode\ AND\ Sem=`S2000'}
(Course [C_CrsCode, DeptId, CrsName, Desc]
× Teaching [ProfId, T_CrsCode, Sem])
equivalent to:
```

SELECT C.CrsName FROM Course C, Teaching T WHERE C.CrsCode=T.CrsCode AND T.Sem='S2000'

SELECT is simple evaluation algorithm.

Derived Operation: Join

The expression:

$$\sigma_{join\text{-}condition} (R1 \times R2)$$

where *join-condition* is a *conjunction* of terms:

 A_i oper B

 A_i is an attribute of R1, B_i is an attribute of R2, and oper is one of =, <, >, $\ge \ne$, \le , is referred to as the (theta) join of R1 and R2 and denoted:

R1 join-condition R2

Theta Join

A join that involves a predicate

$$R1 \times |_{\theta} R2 = \sigma_{\theta} (R1 \times R2)$$

• Here θ can be any condition

Theta Join

A (general or theta) join of R1 and R2 is the expression

$$R1 \bowtie R2$$

where join-condition c is a conjunction of terms:

$$A_i$$
 oper B_i

Where A_i is an attribute of R1; B_i is an attribute of R2; and oper is one of =, <, >, $\geq \neq$, $\leq \bullet$

Q: Any difference between join condition and selection condition? The meaning is:

$$\sigma_c(R1 \times R2)$$

Where join-condition c becomes a select condition c except for possible renamings of attributes

Theta Join – Example

Output the names of all employees that earn more than their managers.

 $\Pi_{\text{Employee.}Name}$ (Employee \bowtie Manager)

The join yields a table with attributes:

Employee. Name, Employee. Id, Employee. Salary, Employee. MngId, Manager. Name, Manager. Id, Manager. Salary

Natural Join

- Special case of equijoin:
 - join condition equates all and only those attributes with the same name (condition doesn't have to be explicitly stated)
 - duplicate columns eliminated from the result

Transcript (StudId, CrsCode, Sem, Grade)
Teaching (ProfId, CrsCode, Sem)

```
Transcript Teaching = \pi_{StudId, Transcript.CrsCode, Transcript.Sem, Grade, ProfId} (
Transcript \bowtie_{CrsCode=CrsCode \text{ AND } Sem=\text{Sem}} \text{Teaching})
```

Natural Join (con't)

Notation:

$$R1 \bowtie R2 = \pi_{attr-list} (\sigma_{join-cond} (R1 \times R2))$$

where

 $attr-list = attributes (R1) \cup attributes (R2)$ (duplicates are eliminated) and join-cond has the form:

$$A_1 = A_1 \text{AND} \dots \text{AND} A_n = A_n$$

where

$$\{A_1 \dots A_n\} = attributes(R1) \cap attributes(R2)$$

Natural Join

Notation: R1 \times R2

Meaning: R1 \times R2 = $\Pi_A(\sigma_C(R1 \times R2))$

Where:

- The selection σ_C checks equality of all common attributes
- The projection eliminates the duplicate common attributes

Natural Join

• R1=	A	В
	X	Y
	X	Z
	Y	Z
	Z	V

R2	<u></u> В	С
	Z	U
	V	W
	Z	V

- D1 . D4	A	В	С
• R1 × R2	z = X	Z	U
	X	Z	V
	Y	Z	U
	Y	Z	V
	Z	V	W

Natural Join: Examples

- Given the schemas R1(A, B, C, D), R2(A, C, E), what is the schema of R \times S?
- Given R1(A, B, C), R2(D, E), what is R1 \times R2?
- Given R1(A, B), R2(A, B), what is R1 \times R2?