Markov Decision Processes Chapter 17

Mausam

Planning Agent

Search Algorithms

Stochastic Planning: MDPs

MDP vs. Decision Theory

- Decision theory episodic
- MDP -- sequential

Markov Decision Process (MDP)

S: A set of states factored **Factored MDP** 4. A set of actions 7(s,a,s'): transition model C(s,a,s'): cost model absorbing/ **G**: set of goals non-absorbing s₀: start state y: discount factor $\mathcal{R}(s,a,s')$: reward model

Objective of an MDP

- Find a policy $\pi: \mathcal{S} \to \mathcal{A}$
- which optimizes
 - minimizes discounted or expected cost to reach a goal expected reward
 - maximizes undiscount. expected (reward-cost)
- given a ____ horizon
 - finite
 - infinite
 - indefinite
- assuming full observability

Role of Discount Factor (γ)

- Keep the total reward/total cost finite
 - useful for infinite horizon problems
- Intuition (economics):
 - Money today is worth more than money tomorrow.
- Total reward: $r_1 + \gamma r_2 + \gamma^2 r_3 + ...$
- Total cost: $c_1 + \gamma c_2 + \gamma^2 c_3 + ...$

Examples of MDPs

- Goal-directed, Indefinite Horizon, Cost Minimization MDP
 - $<\mathcal{S}$, \mathcal{A} , \mathcal{T} , \mathcal{C} , \mathcal{G} , $s_0>$
 - Most often studied in planning, graph theory communities
- Infinite Horizon, Discounted Reward Maximization MDP
 - <S, A, T, R, γ>
 most popular
 - Most often studied in machine learning, economics, operations research communities
- Oversubscription Planning: Non absorbing goals, Reward Max. MDP
 - $\langle S, A, T, G, R, s_0 \rangle$
 - Relatively recent model

Acyclic vs. Cyclic MDPs

$$C(a) = 5$$
, $C(b) = 10$, $C(c) = 1$

Expectimin works

- V(Q/R/S/T) = 1
- V(P) = 6 action a

Expectimin doesn't work •infinite loop

- V(R/S/T) = 1
- Q(P,b) = 11
- Q(P,a) = ????
- suppose I decide to take a in P
- Q(P,a) = 5 + 0.4*1 + 0.6Q(P,a)
- **→** = 13.5

Brute force Algorithm

- Go over all policies π
 - How many? /A//S/_____ finite
- Evaluate each policy how to evaluate?
 - V^π(s) ← expected cost of reaching goal from s
- Choose the best
 - We know that best exists (SSP optimality principle)
 - $V^{\pi*}(s) \leq V^{\pi}(s)$

Policy Evaluation

- Given a policy π : compute V^{π}
 - V^{π} : cost of reaching goal while following π

Deterministic MDPs

• Policy Graph for π

$$\pi(s_0) = a_0; \pi(s_1) = a_1$$

- $V^{\pi}(s_0) = 6$

add costs on path to goal

Acyclic MDPs

• Policy Graph for π

•
$$V^{\pi}(s_2) = 4$$

•
$$V^{\pi}(s_0) = 0.6(5+1) + 0.4(2+4) = 6$$

backward pass in reverse topological order

General MDPs can be cyclic!

- $V^{\pi}(s_1) = 1$
- $V^{\pi}(s_2) = ??$ (depends on $V^{\pi}(s_0)$)
- $V^{\pi}(s_0) = ??$ (depends on $V^{\pi}(s_2)$)

General SSPs can be cyclic!

a *simple* system of linear equations

•
$$V^{\pi}(g) = 0$$

•
$$V^{\pi}(s_1) = 1 + V^{\pi}(s_a) = 1$$

•
$$V^{\pi}(s_2) = 0.7(4 + V^{\pi}(s_q)) + 0.3(3 + V^{\pi}(s_0))$$

$$V^{\pi}(s_0) = 0.6(5 + V^{\pi}(s_1)) + 0.4(2 + V^{\pi}(s_2))$$

Policy Evaluation (Approach 1)

Solving the System of Linear Equations

$$V^{\pi}(s) = 0 \quad \text{if } s \in \mathcal{G}$$
 $=$

- |S| variables.
- $O(|S|^3)$ running time

Iterative Policy Evaluation

Policy Evaluation (Approach 2)

$$V^{\pi}(s) = \sum_{s' \in \mathcal{S}} \mathcal{T}(s, \pi(s), s') \left[\mathcal{C}(s, \pi(s), s') + V^{\pi}(s') \right]$$

iterative refinement

$$(V_n^{\pi}(s)) \leftarrow \sum_{s' \in \mathcal{S}} \mathcal{T}(s, \pi(s), s') \left[\mathcal{C}(s, \pi(s), s') + (V_{n-1}^{\pi}(s')) \right]$$

Iterative Policy Evaluation

Convergence & Optimality

For a proper policy π

Iterative policy evaluation converges to the true value of the policy, i.e.

$$\lim_{n\to\infty} V_n^{\pi} = V^{\pi}$$

irrespective of the initialization V_0

Policy Evaluation → Value Iteration (Bellman Equations for MDP₁)

- $<\mathcal{S}$, \mathcal{A} , \mathcal{T} , \mathcal{C} , \mathcal{G} , $s_0>$
- Define V*(s) {optimal cost} as the minimum expected cost to reach a goal from this state.
- V* should satisfy the following equation:

Bellman Equations for MDP₂

- $<\mathcal{S}$, \mathcal{A} , \mathcal{T} , \mathcal{R} , s_0 , $\gamma>$
- Define V*(s) {optimal value} as the maximum expected discounted reward from this state.
- V* should satisfy the following equation:

$$V^*(s) = \max_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} \mathcal{T}(s, a, s') \left[\mathcal{R}(s, a, s') + \gamma V^*(s') \right]$$

Fixed Point Computation in VI

$$V^*(s) = \min_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} \mathcal{T}(s, a, s') \left[\mathcal{C}(s, a, s') + V^*(s') \right]$$

iterative refinement

$$V_n(s) \leftarrow \min_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} \mathcal{T}(s, a, s') \left[\mathcal{C}(s, a, s') + V_{n-1}(s') \right]$$

non-linear

Example

Bellman Backup

Value Iteration [Bellman 57]

No restriction on initial value function

```
1 initialize V_0 arbitrarily for each state
                                                                                                 iteration n
 n \leftarrow 0
 3 repeat
          n \leftarrow n + 1
         for each s \in \mathcal{S} do
                compute V_n(s) using Bellman backup at s
                compute residual<sub>n</sub>(s) = |V_n(s) - V_{n-1}(s)|
          end
                                                                                              \epsilon-consistency
 9 until \max_{s \in \mathcal{S}} \operatorname{residual}_n(s) < \epsilon;
10 return greedy policy: \pi^{V_n}(s) = \operatorname{argmin}_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} \mathcal{T}(s, a, s') \left[ \mathcal{C}(s, a, s') + V_n(s') \right]
                                                                                            termination
                                                                                              condition
```

Example

(all actions cost 1 unless otherwise stated)

n	$V_n(s_0)$	$V_n(s_1)$	$V_n(s_2)$	$V_n(s_3)$	$V_n(s_4)$
0	3	3	2	2	1
1	3	3	2	2	2.8
2	3	3	3.8	3.8	2.8
3	4	4.8	3.8	3.8	3.52
4	4.8	4.8	4.52	4.52	3.52
5	5.52	5.52	4.52	4.52	3.808
20	5.99921	5.99921	4.99969	4.99969	3.99969

Comments

- Decision-theoretic Algorithm
- Dynamic Programming
- Fixed Point Computation
- Probabilistic version of Bellman-Ford Algorithm
 - for shortest path computation
 - MDP₁: Stochastic Shortest Path Problem
- Time Complexity
 - one iteration: $O(|\mathcal{S}|^2|\mathcal{A}|)$
 - number of iterations: poly(|S|, |A|, $1/\epsilon$, $1/(1-\gamma)$)
- Space Complexity: O(|S|)

Changing the Search Space

- Value Iteration
 - Search in value space
 - Compute the resulting policy
- Policy Iteration
 - Search in policy space
 - Compute the resulting value

Policy iteration [Howard'60]

• assign an arbitrary assignment of π_0 to each state.

- searching in a finite (policy) space as opposed to uncountably infinite (value) space ⇒ convergence in fewer number of iterations.
- all other properties follow!

Modified Policy iteration

- assign an arbitrary assignment of π_0 to each state.
- repeat
 - Policy Evaluation: compute V_{n+1} the *approx*. evaluation of π_n
 - Policy Improvement: for all states s
 - compute $\pi_{n+1}(s)$: $\operatorname{argmin}_{a \in Ap(s)} Q_{n+1}(s,a)$
- until $\pi_{n+1} = \pi_n$

Advantage

probably the most competitive synchronous dynamic programming algorithm.

VI → Asynchronous VI

- Is backing up all states in an iteration essential?
 - No!

- States may be backed up
 - as many times
 - in any order
- If no state gets starved
 - convergence properties still hold!!

Applications

- Stochastic Games
- Robotics: navigation, helicopter manuevers...
- Finance: options, investments
- Communication Networks
- Medicine: Radiation planning for cancer
- Controlling workflows
- Optimize bidding decisions in auctions
- Traffic flow optimization
- Aircraft queueing for landing; airline meal provisioning
- Optimizing software on mobiles
- Forest firefighting

- ...

Extensions

- Heuristic Search + Dynamic Programming
 - AO*, LAO*, RTDP, ...
- Hierarchical MDPs
 - hierarchy of sub-tasks, actions to scale better
- Reinforcement Learning
 - learning the probability and rewards
 - acting while learning connections to psychology
- Partially Observable Markov Decision Processes
 - noisy sensors; partially observable environment
 - popular in robotics