

Gas permeation

Theresa Lohaus M.Sc.

theresa.lohaus@avt.rwth-aachen.de

AVT.CVT - Chemical Process Engineering

What is gas permeation?

Gas permeation is the art of walking through an apparently dense wall

What is gas permeation?

- Gas Permeation (GP): the separation of gases with membranes
- GP is a promising alternative to conventional techniques, like:
 - rectification at low temperatures
 - physical or chemical absorption
 - adsorption on activated carbon or zeolites
- Advantages:
 - easy, flexible, mobile, space-saving units
 - low energy consumption

Overview

- Materials & separation mechanisms
 - Mesoporous membranes
 - Microporous membranes
 - Dense membranes
- Parameters describing the transport properties
- Membranes & modules
- Plant design
- Applications
- Future directions
- Conclusion

Membrane materials

Basically all materials which you can convert to thin, stable films

- Polymers
 - polysulphone
 - polyimide
 - polyaramide
 - polycarbonate
 - cellulose acetate
 - polyphenylene oxides
 - silicones

- Inorganic Materials
 - metal
 - glass
 - ceramics

Mesoporous membranes

d_P > 20 nm: viscous flow without selectivity

Knudsen diffusion:

Transport based on the dominance of gas/wall - interactions

$$Kn = \frac{\lambda}{d_p} >> 1$$

Knudsen number >> 1

mole fluxes:

$$\dot{n}_{i}'' = \frac{4 \varepsilon d_{p}}{3 \tau \sqrt{2 \pi RT M_{i}}} \frac{\Delta p_{i}}{\delta}$$

• ideal separation factor : $\alpha_{ij} = \sqrt{\frac{M_j}{M_i}}$ $(p_{Pi,j} \to 0)$

- Separation depends on difference in molecular masses
- Ideal separation factor is rather low

$$\alpha_{O2/N2} = (28/32)^{1/2} = 0.935$$

Microporous membranes

 Molecular sieve separation based on molecule sizes & adsorption effects

$$\frac{d_{molecule}}{d_p} \approx 1$$

selectivity is very sensitive to defects/pinholes

Dense membranes

 Selective due to difference in solubility and diffusivity

Generalised Fick's Law of diffusion

$$\dot{n}_{i}^{"} = -c_{iM} \frac{D_{iM,0}}{RT} \frac{\partial \mu_{iM}}{\partial z}$$

assuming:

- 1. non-coupled permeate fluxes
- Henry's Law: c_i = S_i p_i
 chemical potential at the membrane surface equals one in the gas phase

linear mass transport equation

Solution-Diffusion-Model

- Permeance Q_i (dt. Permabilität):
 - membrane and species specific

• units:
$$\left[\frac{m^3}{m^2 \cdot h \cdot bar}\right] or [GPU]$$

$$Q_i = \frac{D_i \cdot S_i}{\delta} = \frac{\text{Diffusion coefficient } \cdot \text{ solubility coefficient}}{\text{active layer thickness of membrane}}$$

- Permeability P_i (dt. intrisische Permeabilität):
 - material specific
 - independent of membrane thickness

• units:
$$\left[\frac{m^3 \cdot m}{m^2 \cdot h \cdot bar}\right] or [barrer]$$

$$P_i = D_i \cdot S_i$$

Solution-Diffusion-Model

Selectivity (Solution-Diffusion-Model)

Selectivity:

$$\alpha_{ij} = \frac{Q_i}{Q_j} = \left[\frac{D_i}{D_j}\right] \left[\frac{S_i}{S_j}\right]$$
diffusion solubility selectivity

- Recommendations for an ideal membrane
 - $(D_i \cdot S_i)$ for component *i* as large as possible
 - $(D_i \cdot S_i)$ for component j as low as possible
 - δ as low as possible
- In general:
 - Small molecules diffuse faster
 - Large molecules are more soluble

Robeson plot - α vs. P_i

Permeablity/permeance and separation factor oppose each other

Experimental determination of Q

 Constant pressure – variable volume Constant volume – variable pressure

pure gas

Gas chromatograph

mixed gas

[1]

Overview

- Materials & separation mechanisms
- Parameters describing the transport properties
- Membranes & modules
- Plant design
- Applications
- Future directions
- Conclusion

Influencing factors

Materials

Molecular properties

Process parameters

Permeability

<u>rubbery (T > T_g)</u> selective for vapours -> solvent recovery

$$P_{rubbery} > P_{glassy}$$

glassy membranes (T<T_g) selective for permanent gases -> separation of N_2/O_2 , CH_4/CO_2

T_g - glass transition temperature

Diffusivity vs. Solubility

→ small molecules diffuse faster

→ condensabel gases are more soluble

Take home - polymers / molecules

- glassy polymers (T_{Process} < T_g)
 - high influence of molecular size on diffusion coefficient
 - diffusivity determines selectivity
 - typical applications: N_2/O_2 -separation, CH_4/CO_2 -separation
- rubbery polymers (T_{Process}>T_g)
 - D_{rubbery}/D_{glassy}: 100-100000
 - solubility determines the selectivity
 - typical applications: solvent recovery from off-gas

Permeability - operating temperature

permanent gases

vapors

$$T \uparrow = selectivity \downarrow$$

Permeability - operating pressure

Absolute pressure

- membrane compaction (mechanically):
 - $p_i \uparrow \rightarrow D_i \downarrow \rightarrow Q_i \downarrow$

Partial pressure

sorption

Ideal gas

no pressure dependence

Real gas glassy **Dual-Sorption S**. slope ≠ cst p_i

rubbery Flory-Huggins slope ≠ cst

$$p_i \uparrow \rightarrow S_i \uparrow \rightarrow Q_i \uparrow$$

Permeability - operating pressure

- membrane swelling (plasticization):
 - $p_i \uparrow \rightarrow D_i \uparrow \rightarrow Q_i \uparrow$

 mixed gas selectivity is often far below pure gas performance

$$S_{mixed} < S_{pure}$$

Overview

- Materials & separation mechanisms
- Parameters describing the transport properties
- Membranes & modules
- Plant design
- Applications
- Future directions
- Conclusion

Membrane concepts

Loeb-Sourirajan membrane:

active layer (same polymer as support)

porous support

Ward-Riley composite membrane:

active layer (different polymer than support)

porous support

coated Loeb-Sourirajan membrane:

Dense coating (silicone)
defects in active layer
active layer +support

Membrane Resistances

Serial Resistance

$$R_{tot} = R_{AL} + R_{Supp}$$

Parallel Resistance

$$\frac{1}{R_{tot}} = \frac{1}{R_{AL}} + \frac{1}{R_{pin\,hole}}$$

Membrane resistance in GP

Analogy between electrical current and flux

Flux

$$Q_i = \frac{P_i A \Delta c_i}{l}$$

Current

$$Q_i = \frac{\Delta c_i}{R_i}$$

$$I = \frac{U}{R}$$

with

$$R_i = \frac{l}{P_i A}$$

Membrane resistance in GP

Total resistance

$$R_t = \frac{R_2 R_3}{R_2 + R_3} + R_4$$

R₂: Dense membrane

R₃: Pore resistance

R₄: Porous matrix

Membrane resistance in GP

Total resistance

$$R_t = R_1 + \frac{R_2 R_3}{R_2 + R_3} + \underbrace{R_4}_{\approx 0}$$

R₁: Dense Coating

R₂: Dense membrane

R₃: Dense Coating in pores

R₄: Porous matrix

Criterias for modules

- high packing density
- small pressure loss (especially when operating with vacuum)
- mechanical, thermal, chemical stability
- economic production

Module concepts

spiral wound

cushion

specific cost/m² variety material

Overview

- Materials & separation mechanisms
- Parameters describing the transport properties
- Membranes & modules
- Plant design
 - Local mass transfer
 - Module performance
- Applications
- Future directions
- Conclusion

Plant design

Complete process-modelling (e.g. AspenPlus®, Pro2, etc.)

"Stand-alone"-calculation of module performance (e.g. Fortran, C++, Matlab, etc.)

Discretization

- Multiple component system: numerical solution for differential equations
- Two component system: analytical solution

Binary mixtures

Starting with the linear mass transfer equation... $\dot{n}_i = Q_i(x_i p_F - y_i p_P)$

...using following assumptions...

- no concentration polarisation
 no pressure drop in porous support layer
 - "unhindered" permeate flow (no influence of the flow pattern)

$$y_i = \frac{\dot{n}_i^{"}}{\dot{n}_i^{"} + \dot{n}_j^{"}}$$

... yields the local permeate composition of a binary mixture

$$y_{i} = \frac{\alpha(x_{i}\phi - y_{i})}{\alpha(x_{i}\phi - y_{i}) + (1 - x_{i})\phi - (1 - y_{i})} = f(x_{i}, \alpha, \phi)$$

- $\phi = p_{Feed} / p_{Permeate} = pressure \ ratio > 1$
- α = ideal separation factor > 1
- x_i y_i are the mole fractions of the faster permeating species in the feed and permeate

Binary mixtures

$$y_i = \frac{1}{2} \left(1 + \phi \left(x_i + \frac{1}{\alpha - 1} \right) \right) - \sqrt{\left[\frac{1}{2} \left(1 + \phi \left(x_i + \frac{1}{\alpha - 1} \right) \right) \right]^2 - \frac{\alpha \cdot \phi \cdot x_i}{\alpha - 1}}$$

pressure ratio $\Phi \uparrow$ selectivity $\alpha \uparrow$ separation \uparrow

Binary mixtures

$$\phi \to \infty$$
: $y_i = \frac{\alpha \cdot x_i}{(1 - x_i + \alpha \cdot x_i)}$

infinite selectivity

$$\alpha \to \infty$$
: $y_i = \phi \cdot x_i$

Binary mixtures - ϕ und α

• Rule of thumb for optimized operation: $\phi \approx \alpha$

Product

Product in the retentate

Product in the permeate

Good to know...

Is the product in the retentate...

...any purity x_{Ret} can be achieved with a single stage unit!

However...

• Risk of poor product recovery $\eta = \dot{n}_{i,Ret} / \dot{n}_{i,Feed}$ $A_{mem} \to \infty$ product stream $\to 0$ recovery $\eta \to 0$

- Is the product in the permeate...purity y is limited by a and ϕ !
 - for high purity y, normally multi-stage operations are required
 - increased system complexity and energy demand → high costs

Multicomponent mixtures

No analytical solution possible → iterative solution

$$1 - \sum_{i=1}^{n} y_{i} = 0 \quad \text{with} \quad y_{i} = \frac{x_{i} y_{1} \frac{Q_{i}}{Q_{1}}}{x_{1} - y_{1} \frac{p_{p}}{p_{f}} \left(1 - \frac{Q_{i}}{Q_{1}}\right)}$$

 Simplification by a quasi-binary mixture: fast/slowly permeating species are summarized in groups

average permeabilities:
$$\overline{Q_{12}} = \frac{x_1Q_1+x_2Q_2}{x_1+x_2} \qquad \overline{Q_{34}} = \frac{x_3Q_3+x_4Q_4}{x_3+x_4}$$
 for
$$Q_1>Q_2>>>Q_3>Q_4$$

Plant design

Complete process-modelling (e.g. AspenPlus®, Pro2, etc.)

"Stand-alone"-calculation of module performance (e.g. Fortran, C++, Matlab, etc.)

Module design - possible tasks

Designing a module for given process specifications

or

 Calculating the product composition and recovery for a given module

Solution 1 - numerical

Numerical solution of differential equations (1D, 2D, 3D)

Solution 1 - numerical

Information required

local mass transfer: permeances Q_i(T) for each species

flow pattern: co-/counter-current, unhindered permeate

geometry: feed/permeate channel dimensions

Encountered difficulties:

- multi-component mixtures
- non-linear concentration/temperature profiles along the membrane
- "non-idealities"
 - polarization effects
 - pressure loss
 - real gas behavior
 - Joule-Thomson effect etc.

Joule-Thomson effect

- thermodynamically: permeation = adiabatic expansion
- JT occurs at high Δp for real gases (JT-coefficients significantly above 0)

```
locally T↓ => membrane orthogonal T-profile
=> membrane axial T-profile
=> P↓, condensation (stability↓, selectivity↓)
```

Joule-Thomson effect

 JT shows in most cases a lower influence on the separation efficiency than calculating with the right pressure losses.

- JT should be considered, when dealing with...
 - high feed pressures and real gases (e.g. CO₂)
 - vapors in the feed close to condensation level

Solution 2 - mean-values

Simplified mean-value method

calculation of mole fractions with mean values

$$y_{\text{mean}} = f(x_{f/r,\text{mean}}, \Phi, \alpha)$$

Rough estimation of A_{mem} becomes possible.

Plant design

Complete process-modelling (e.g. AspenPlus®, Pro2, etc.)

"Stand-alone"-calculation of module performance (e.g. Fortran, C++, Matlab, etc.)

mass transport

Overview

- Materials & separation mechanisms
- Parameters describing the transport properties
- Membranes & modules
- Plant design
- Applications
 - N₂ from ambient air
 - CO₂-removal
 - H₂-removal
 - Air dehydration
 - Solvent recovery
- Future directions
- Conclusion

The GP-market

mem	brane	market	(US\$	million)	
		IIIGIIXOL			,

GP- market		2000	2010	2020	
•	N ₂ from air	75	100	125	
•	O ₂ from air	<1	10	30	
•	H ₂ -separation	25	60	100	
•	natural gas	30	90	220	
•	vapor/N ₂	10	30	60	
•	vapor/vapor	0	30	125	
•	other	10	30	100	
	total	150	350	760 [[8]

- 90% of the market
 - implies applications around permanent gases: N_2/O_2 -separation, CO_2/CH_4 -separation, H_2 -separation from nitrogen, argon or methane
 - is dominated by 8 polymer materials
- Companies: Air Products, Air Liquide, Parker, Praxair, Kvaerner, UOP (Honeywell),
 UBE, MTR, Cynara (NatcoGroup), GKSS licencees

Overview

- Materials & separation mechanisms
- Parameters describing the transport properties
- Membranes & modules
- Plant design
 - Local mass transfer
 - Module performance
- Applications
 - N₂ from ambient air
 - CO₂-removal
 - H₂-removal
 - Air dehydration
 - Solvent recovery
- Future directions
- Conclusion

N₂-separation - state of the art

GP is the process of choice for moderate purities and small to intermediate product stream

Process scheme

Separation performance: $x_{N2}(\eta)$

- N_2 -purity in the retentate $x_{N_2,r}$ can be determined as a function of N_2 -yield η :
 - $x_{N2,r} = f(\eta, x_f, \alpha, \phi, A)$

$$\eta = \frac{x_r \dot{n}_r}{x_f \dot{n}_f}$$

N₂-enrichment - good to know...

- GP economical for small/intermediate product streams and moderate purities (90...99 %)
- Product is in the retentate: any purity within a single stage
 - $\eta \downarrow$ with low α
 - highly selective membranes:
 - $\eta \uparrow \rightarrow$ energy demand ($P_{compressor}$) \downarrow
 - $Q \downarrow \rightarrow A_{mem} \uparrow$

- investment costs:
 - membrane modules < 20 %
 - compressor ≈70 %
 - for every membrane material, there is an optimal pressure ratio minimizing energy and membrane area

Overview

- Materials & separation mechanisms
- Parameters describing the transport properties
- Membranes & modules
- Plant design
 - Local mass transfer
 - Module performance
- Applications
 - N₂ from ambient air
 - CO₂-removal
 - H₂-removal
 - Air dehydration
 - Solvent recovery
- Future directions
- Conclusion

CO₂-depletion of natural gas

- membranes: CA, PI (glassy polmers with selectivities of 10-20)
- p_{feed}: 30-60bar
- modules: hollow fibres/spiral wound modules

CO₂-depletion of NG - system design

Selection criterias:

- selectivities and permeances of the membranes
- CO₂ concentration of the gas and the separation required
- value of the gas
- location of the plant (offshore/onshore)

capacity: 10000m³/h, depletion of 6% CO₂ in the feed to pipelinestandard of 2%

CO₂-depletion of NG - system design

Single stage plant

1 MMscfd = 1180m³/h 1 psia = 0.06895bar

for very small gas flows (<1MMscfd)

- + no rotating parts
- loss of methane

CO₂-depletion of NG - system design

Multi stage plant

1 MMscfd = 1180m³/h 1 psia = 0.06895bar

higher gas flows

- increased capital costs
- + more economic

CO₂-depletion of NG - hybrid process

Hybrid plant

1 MMscfd = 1180m³/h 1 psia = 0.06895bar

- offers a low cost alternative to all-amine / all-membrane systems
- higher complexity → limited to large plants

CO₂-depletion of biogas

- landfill gas or sewage gas: usually 2-stage process (permeat of 2nd stage flowing back to global feed)
- membranes: polyimide/ polyaramide, (CO₂/CH₄-selectivity around 20-25)
- p_{feed}: 16-20bar
- methane losses ~ 10 %

Overview

- Materials & separation mechanisms
- Parameters describing the transport properties
- Membranes & modules
- Plant design
- Applications
 - N₂ from ambient air
 - CO₂-removal
 - H₂-removal
 - Air dehydration
 - Solvent recovery
- Future directions
- Conclusion

H₂-Recovery in refineries

without membrane:

non-reacted H₂ in purge gas is "lost" (post-combusted)

with membrane:

H₂ in purge gas is recirculated.

- crude oil-intermediates are contacted with H₂ for cracking (formation of C₅₊ favored)
- methane, ethane and propane are byproducts
- purge stream to prevent the accumulation of lighter hydrocarbons
- purge-gas composition: CH₄, ethane, propane and H₂ (75-80%)

H₂-Recovery in refineries

- Other applications of H₂-membrane plants:
 - synthesis gas treatment to adjust the H₂/CO ratio e.g. for methanol production and oxosynthesis
 - H₂-recovery from purge gases at ammonium- and methanol synthesis
 - H₂-recovery from PSA- or cracker-offgas

good to know...

- H₂ is 3 times as valulable recovered than burned
- worldwide, more than 100 H₂-membrane plants after hydrocrackers are installed.
- main problems:
 - membrane fouling due to condensed hydrocarbons
 - → precaution measures: heating the feed stream (~ 80°C)

Overview

- Materials & separation mechanisms
- Parameters describing the transport properties
- Membranes & modules
- Plant design
 - Local mass transfer
 - Module performance
- Applications
 - N₂ from ambient air
 - CO₂-removal
 - H₂-removal
 - Air dehydration
 - Solvent recovery
- Future directions
- Conclusion

Pressured air dryer

- sweep gas use (partial retentate recirculation)
- easy and flexible installation
- especially drying to moderate DTP
- air losses: ~ 10 %

Pressured air dryer

- sweep gas use (partial retentate recirculation)
- easy and flexible installation
- especially drying to moderate DTP
- air losses: ~ 10 %

Overview

- Materials & separation mechanisms
- Parameters describing the transport properties
- Membranes & modules
- Plant design
 - Local mass transfer
 - Module performance
- Applications
 - N₂ from ambient air
 - CO₂-removal
 - H₂-removal
 - Air dehydration
 - Solvent recovery
- Future directions
- Conclusion

Solvent recovery from off-air (e.g. DMIA)

- membrane (PDMS) is highly selective for solvent
- strong solvent enrichment in permeate due to vacuum
- condensation is favoured by prior compression in vacuum pump

Solvent recovery from off-air

Solvent recovery - good to know...

- Profitable at
 - high solvent loads and moderate retentate purity (e.g. fuel vapour recovery)
 - low solvent loads only if solvent is expensive (recovery is driving factor, not air cleaning to legal levels)
- Air-cleaning down to "TA Luft" is possible but not profitable
 → post-processing (e.g. combustion, adsorption)
- Applications:

propene/N₂, ethene/N₂, fuel vapors, cooling agents, solvents (hexane, acetone, toluene, etc.)

Overview

- Materials & separation mechanisms
- Parameters describing the transport properties
- Membranes & modules
- Plant design
- Applications
- Future directions
- Conclusion

New membranes for future GP-modules

Objectives:

- membranes with better mechanical, thermal & chemical resistance
- higher selectivities and permeabilities to overcome the upper bond (e.g. by species-specific (chemical) transport mechanism)

```
common selectivities:

O_2/N_2 < 10, H_2/CO < 100, H_2/N_2 100-200,

CO_2/CH_4 < 100, H_2O/air > 200
```

as low-cost as nowadays polymer membranes

- Natural Gas treatment / CH₄ enrichment to pipeline quality
 - C₃₊ separation
 - Water vapor separation
 - N_2 separation

Alternative materials

porous materials?e.g. zeolites, carbon, glass, metal

dense materials?e.g. metal membranes, perovskite

mixed-matrix membranes?
 e.g. disperged particles in polymer matrix

Overview

- Materials & separation mechanisms
- Parameters describing the transport properties
- Membranes & modules
- Plant design
- Applications
- Future directions
- Conclusion

Conclusion

- Dense polymer membranes dominate the market
 - SDM describes the mass transfer
 - solubility/diffusivity selective materials
 - Robesons upper bond
 - influence of T, p, gas mixtures
- Modules/membranes:
 - permanent gases: hollow fibre / mainly glassy polymers
 - vapors: spiral wound or cushion modules / mainly rubbery polymers
- Theory of mass transport
 - limiting influence of α and ϕ

Conclusion

Applications

- N_2 -enrichment, CO_2 -depletion, H_2 -recovery, air drying and solvent recovery
- Research is focusing on
 - membranes with higher selectivity and/or higher permeability, enhanced chemical resistance (especially in natural gas or refinery applications)

Outlook

- the GP-market is growing
- with new materials further applications become more probable

Thank you for your attention

AVT.CVT - Chemical Process Engineering

Refernces

- [1] H. Czichos, T. Saito, L. E. Smith (Ed.), Handbook of Materials Measurement Methods, Springer (2006)
- [2] Yampolski et al, Materials Science of Membranes for Gas and Vapor Separation; Wiley (2006).
- [3] Freeman B. & Pinnau I., *Trend in Polymer Science* 5(5), 167-173 (1997)
- [4] Ghosal K. et al, *Macromolecules* 29, 4360-4369 (1996)
- [5] Baker R.W. & Lokhandwala, K.; Ind. & Eng. Chem. Res. 47, 2109-2121 (2008).
- [6] AKZO
- [7] ROCHEM RO-Wasserbehandlung, Hamburg (D), DT-Modul, Firmenprospekt
- [8] Baker R.W.; Ind. Eng. Res. 41, 1393-1411 (2002)
- [9] Prasad R., J. Membr. Sci. 94, 225-248 (1994)
- [10] AirLiquide/Medal
- [11] Ohlrogge K. & Ebert K., Membranen, Wiley (2006)
- [12] Zhang, Y. et al, J. Membr. Sci. 325, 28-39 (2008)

Separation mechanisms

Mesoporous Membrane

Knudsen diffusion

d_P ~ 1 ... 20 nm

based on the dominance of gas/wall - collisions

inorganic

Microporous Membrane

Permeate

 $d_P \sim 0.3 ... 10 nm$

Molecular sieve separation

based on different diffusion rates of different molecules with different molecular sizes + adsorption effects

inorganic

Dense Membrane

Permeate

gaps in polymer matrix or free lattice site

Solution-Diffusion

based on different solubility- and diffusion coefficients

mainly polymers also inorganic

d_P > 20 nm: viscous flow without selectivity

Dense membranes

$$\dot{n_k}^{"} = -c_{km}b_{km}\frac{\partial\mu_{km}}{\partial z}$$
 mit Nernst Einstein: $D_{k0}=RT\cdot b_k$ Beweglichkeit Konzentration

$$\dot{n}_{k}^{"} = -c_{km} \frac{D_{km,0}}{RT} \frac{\partial \mu_{km}}{\partial z}$$
 (Generalised Fick's Law of diffusion)

mit
$$\mu_i = \mu_i^0 + RT \ln a_i$$
 folgt $\dot{n}_k^{"} = -c_{km}D_{km,0} \frac{\partial \ln a_{km}}{\partial z}$

$$\operatorname{mit} c_{km} = S_k p_k \qquad \operatorname{folgt} \quad \dot{n}_k^{"} = -S_k D_{km,0} \frac{da_{km}}{dz}$$

... leads with following assumptions...

- 1. non-coupled permeate fluxes
- 2. Henry's Law: $c_{km} = S_k p_k$
- the chemical potential of each s at the membrane surface corresponding gas phase

...to a linear mass transport equation!

