Übungen QM I Vorbereitungskurs

Blatt 3

Aufgabe 1) Operatoren in Matrixdarstellung

Die Energieeigenfunktionen $\psi_n(x)$ des eindimensionalen harmonischen Oszillators bilden eine Basis für um x=0 lokalisierte Zustände zum Potential $V(x)=\frac{1}{2}m\omega^2x^2$.

a) Berechnen Sie die Matrixelemente des Operators \hat{x} und des Impulsoperators \hat{p} in der Basis der Oszillatoreigenzustände.

Hinweis: Man kann diese Aufgabe lösen, indem man die bekannten Wellenfunktionen im Ortsraum und folgende Beziehungen ansetzt:

$$\psi_{n}(x) = \left(\frac{\alpha}{\sqrt{\pi}2^{n}n!}\right)^{\frac{1}{2}} H_{n}(z) exp\left(-\frac{1}{2}z^{2}\right) , \quad z = \alpha x = \sqrt{\frac{m\omega}{\hbar}}$$

$$\int_{-\infty}^{\infty} dz exp(-z^{2}) H_{n}(z) H_{m}(z) = \delta_{mn} 2^{n} n! \sqrt{\pi}$$

$$\frac{d}{dz} H_{n}(z) = 2z H_{n}(z) - H_{n+1}(z) = 2n H_{n-1}(z)$$

$$H_{n+1}(z) = 2z H_{n}(z) - 2n H_{n}(z)$$

Ersparen Sie sich dies, denn **wesentlich schneller** geht es, wenn man die auf Blatt 1 verwendeten Operatoren a^+ und a verwendet.

- b) Bestimmen Sie die Erwartungswerte $\langle \hat{x} \rangle$ und $\langle \hat{p} \rangle$ für den n-ten angeregten Zustand ψ_n
- c) Benutzen Sie eine Darstellung von \hat{x} und \hat{p} um die Ortsunschärfe $(\Delta x)^2 = \langle (\hat{x} \langle \hat{x} \rangle)^2 \rangle = \langle \hat{x}^2 \rangle \langle \hat{x} \rangle^2$ und die Impulsunschärfe
- $(\Delta p)^2 = \langle (\hat{p} \langle \hat{p} \rangle)^2 \rangle = \langle \hat{p}^2 \rangle \langle \hat{p} \rangle^2$ für den *n*-ten Zustand zu berechnen.
- d) Was ergibt sich für das Produkt $(\Delta x)_n(\Delta p)_n$ für den n-ten Eigenzustand? Vergleichen Sie mit der Heisenbergschen Unbestimmtheitsrelation!

Aufgabe 2) Drehimpulsalgebra

Es seien $|l,m\rangle$ die Eigenzustände der Drehimpulsoperatoren $\hat{\mathbf{L}}^2$ und \hat{L}_z :

$$\hat{\mathbf{L}}^2 | l, m \rangle = \hbar^2 l(l+1) | l, m \rangle$$
 $\hat{L}_z | l, m \rangle = \hbar m | l, m \rangle$

- a) Wie lautet die Kommutatorrelation für die Drehimpulsoperatoren \hat{L}_x und \hat{L}_y ? Bilden Sie die Kombinationen $\hat{L}_{\pm} = \hat{L}_x \pm i\hat{L}_y$ und zeigen Sie, daß $\left[\hat{L}_+,\hat{L}_-\right] = 2\hbar L_z$.
- b) Mit Hilfe der Drehimpulsalgebra und der Normierung der Zustände $|l,m\rangle$ kann man zeigen, dass

$$\hat{L}_{\pm} |l, m\rangle = \hbar \sqrt{l(l+1) - m(m \pm 1)} |l, m \pm 1\rangle$$

Benutzen Sie die Operatoren \hat{L}_+ und \hat{L}_- , um für den Fall l=1 die Ausdrücke $\hat{L}_x | l, m \rangle$ für alle zulässigen Werte von m zu berechnen. (Wieviele mögliche Werte gibt es?)

c) Geben Sie mit dem Ergebnis von b) die Matrixdarstellung von \hat{L}_x bezüglich der $|l,m\rangle$ mit l=1 an und bestimmen Sie die Eigenwerte und die Eigenvektoren. Geben Sie die normierten Eigenvektoren als Linearkombination der Zustände $|l,m\rangle$ mit l=1 an.

Aufgabe 3) Spin-1-Teilchen im Magnetfeld

Es werde ein Spin in einem Magnetfeld betrachtet :

$$\hat{H} = -\vec{\mu}\vec{B} \quad \vec{\mu} = \frac{ge}{2m_e}\vec{s} \quad \vec{s} = \frac{\hbar}{2}\vec{\sigma}$$

wobei $e = -e_0$ und g = 2 für ein Elektron. Außerdem soll das B-Feld in z-Richtung zeigen. a) Man bestimme die Zeitabhängigkeit des Zustandes

$$\chi(t) = \left(\begin{array}{c} a(t) \\ b(t) \end{array}\right)$$

durch Lösen der zeitabhängigen Schrödingergleichung, wenn der Spin zur Zeit t=0 Eigenzustand zum Spinoperator s_x mit Eigenwert $\frac{\hbar}{2}$ war!

b) Wie groß ist der Erwartungswert von σ_z in diesem Zustand?

Aufgabe 4) Spin-Bahn-Kopplung

Man berechne die Energieverschiebung ΔE der 1s-, 2s-, und 2p-Niveaus im Wasserstoffatom, die durch die Spin- Bahn- Wechselwirkung sowie ein externes Magnetfeld hervorgerufen wird. Zunächst sei $B_{ext}=0$. Der Hamiltonoperator lautet:

$$\hat{H} = \hat{H}_0 + \hat{H}_1, \quad \hat{H}_0 = -\frac{\hbar^2}{2m} \vec{\nabla}^2 + V(r)$$

$$\hat{H}_1 = \frac{1}{2m^2 c^2 r} \frac{dV}{dr} \vec{L} \vec{s}, \quad V(r) = -\frac{e^2}{r}$$

- a) Zeigen Sie, dass die Drehimpulsoperatoren \vec{J}^2 , \vec{L}^2 , \vec{s}^2 und J_z mit H kommutieren, wobei $\vec{J} = \vec{L} + \vec{s}$ gilt.
- **b)** $|j, l, s, m_i\rangle$ ist gemeinsamer Eigenzustand von \vec{J}^2 , J_z , \vec{L}^2 und \vec{s}^2 :

$$\vec{J}^{2} | j, l, s, m_{j} \rangle = \hbar^{2} j (j+1) | j, l, s, m_{j} \rangle \qquad \vec{L}^{2} | j, l, s, m_{j} \rangle = \hbar^{2} l (l+1) | j, l, s, m_{j} \rangle$$

$$\vec{s}^{2} | j, l, s, m_{j} \rangle = \hbar^{2} s (s+1) | j, l, s, m_{j} \rangle \qquad J_{z} | j, l, s, m_{j} \rangle = \hbar m_{j} | j, l, s, m_{j} \rangle$$

Berechnen Sie $\vec{L} \cdot \vec{s} |j, l, s, m_i\rangle$!

c) Berechnen Sie $\Delta E = \langle n, j, l, s, m_j | H_1 | n, j, l, s, m_j \rangle$ $Hinweis: \int_0^\infty dr r^n e^{-\alpha r} = n! / \alpha^{n+1} \text{ und } R_{2p}(r) = (r/\sqrt{24}a_0^{5/2})e^{-r/(2a_0)}$

d) Nun wird ein konstantes Magnetfeld in z-Richtung eingeschalten ($\vec{B} = (0, 0, B)$). Die Wechselwirkung mit dem Magnetfeld wird durch einen Zusatzterm H_2 im Hamiltonoperator beschrieben:

$$\hat{H}_2 = \frac{e}{2mc}\vec{B}(\vec{L} + 2\vec{s}) \quad (e > 0)$$

Die Spin-Bahn-Kopplung sorgt dafür, dass die Energieeigenfunktionen mittels der Spin-Kugelfunktionen beschrieben werden:

$$\begin{split} \Psi_{nljm_j}(r,\theta,\phi) &= R_{n,l}(r) \Lambda_{l,j,m_j}(\theta,\phi) \\ &= R_{n,l}(r) \sum_{m_l,m_s} \left\langle l, m_l, \frac{1}{2}, m_s | j, m_j \right\rangle Y_{l,m_l}(\theta,\phi) \chi_{\frac{1}{2},m_s} \end{split}$$

Für den Fall $j = l - \frac{1}{2}$ gilt:

$$\Lambda_{l,j,m_j}(\theta,\phi) = -\left(\frac{l-m_j + \frac{1}{2}}{2l+1}\right)^{\frac{1}{2}} Y_{l,m_j - \frac{1}{2}}(\theta,\phi) \chi_{\frac{1}{2},\frac{1}{2}} + \left(\frac{l+m_j + \frac{1}{2}}{2l+1}\right)^{\frac{1}{2}} Y_{l,m_j + \frac{1}{2}}(\theta,\phi) \chi_{\frac{1}{2},-\frac{1}{2}}$$

Bestimmen Sie in Störungstheorie 1. Ordnung die Energieaufspaltung durch \hat{H}_2 zwischen den beiden möglichen Werten für m_j für den ersten angeregten Zustand mit $l=1,\ j=\frac{1}{2}$. Die Wellenfunktion dieses 2p-Zustandes ist gegeben durch:

$$\Psi_{2p,j=\frac{1}{2},m_j} = R_{21}(r)\Lambda_{l=1,j=\frac{1}{2},m_j}(\theta,\phi)$$

$$R_{21}(r) = \frac{1}{\sqrt{3}} \left(\frac{\beta}{2}\right)^{3/2} (\beta r) exp(-\beta r/2)$$