Ensemble Learning

6주차 담당:14기 박상준

z. Ensemble Models Random Forest

Adaboost
GBM
XgBoost

3. Coding Session

< Voting >	< Stacking >
Hard Voting	Meta level learning
Soft Voting	
Weighted Voting	
< Bagging >	< Boosting >

Hard Voting

Soft Voting

Classifier 1 A: 0.7 B: 0.3 Classifier 2 A: 0.1 B: 0.9 B A: 2 B: 1 A Classifier 3 A: 0.6 B: 0.4 A

Weighted Voting

Soft Voting + Weighted Voting

< Voting >	< Stacking >
Hard Voting	Meta level learning
Soft Voting	
Weighted Voting	
< Bagging >	< Boosting >

Stacking

개별 모델이 예측한 결과를 다시 input data로 사용

< Voting >	< Stacking >
Hard Voting	Meta level learning
Soft Voting	
Weighted Voting	
< Bagging >	< Boosting >

Bagging

Sampling with Replacement

Random Forest

Random Forest

Random Forest

장점

- 어디에 가져다 놓아도 중간 이상 가는 알고리즘
- 병렬 학습 방식으로 학습 속도가 빠른 편
- 입력 변수가 많아도 잘 작동함

단점

• 트리 개수, 깊이 같은 초모수를 잘못 설정할 경우 Overfitting의 가능성이 매우 높음

Coding Session

Random Forest

sklearn.ensemble.RandomForestClassifier

class sk learn .ensemble .RandomForestClass if ier(n_estimators=100, *, criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features='sqrt', max_leaf_nodes=None, min_impurity_decrease=0.0, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None, ccp_alpha=0.0, max_samples=None) [source]

- n_estimators: 복원 추출 횟수
- Max_features(sqrt, log2, None): 최적의 분할 기준 찾을 때 사용할 feature 개수
- criterion(gini, entropy, log loss): 트리 분할 기준 metric
- max_depth: Tree의 깊이(None이면 계속 갈라짐)
- min_samples_split: 노드 분할하기 위한 최소 sample 수
- min_samples_leaf: 리프 노드에 있는 최소 sample 수
- max_leaf_nodes: 리프 노드 최대 개수

< Voting >	< Stacking >
Hard Voting	Meta level learning
Soft Voting	
Weighted Voting	
< Bagging >	< Boosting >

ppt 제목

< Normal >	< Bagging >	< Boosting >	
학생 A	학생 B	학생 [학생 D
: 10개년 6,9,수능 문제 1회독	: 10개년 6,9,수능 전체 문제에서 80% 랜덤 복원 추출	: 10개년 6,9,수능 전체 문제에서 80% 랜덤 복원 추출	:10개년 6,9,수능 전체 문제 1회독 -> <mark>틀린 문제만 뽑아서 다시 1회독</mark>
-> 10번 반복	이때, 틀린 문제는 반드시 포함해서 추출	-> 다시 틀린 문제만 뽑아서 l회독 -> 다시 틀린 문제만 뽑아서 l회독 ·	
		->10번 반복	· 안틀릴때까지 반복

16/n

This Week

Adaptive Boosting (AdaBoost)

Gradient Boosting Machine (GBM)

Extreme Gradient Boosting Machine (XgBoost)

Next Week

Light Gradient Boosting Machine (LGBM)

Categorical Boosting Machine (CatBoost)

Adaptive Boosting (Adaboost)

- 각 단계에서 새로운 base learner를 학습하여 이전 단계의 base learner의 단점을 보완
- Training error가 큰 관측치의 선택 확률(가중치)을 높이고, training error가 작은 관측치의 선택 확률을 낮춤
 - ✓ 오분류한 관측치에 보다 집중!
- 앞 단계에서 조정된 확률(가중치)을 기반으로 다음 단계에서 사용될 training dataset를 구성
- 다시 첫 단계로 감
- 최종 결과물은 각 모델의 성능지표를 가중치로 하여 결합 (앙상블)

AdaBoost algorithm

I. Set $W_i = \frac{1}{n}$, i = 1, 2, ..., n (impose equal weight initially)

2. for j = 1 to m (m: number of classifiers)

Step 1: Find $h_i(x)$ that minimizes L_i (weighted loss function)

$$L_j = \frac{\sum_{i=1}^n w_i \, l(y_i \neq h_j(x))}{\sum_{i=1}^n w_i}$$

Step 2: Define the weight of a classifier: $\alpha_j = \log\left(\frac{1-L_j}{L_j}\right)$

Step 3: Update weight: $W_i \leftarrow W_i \, e^{\alpha_j l \left(y_i \neq h_j(x)\right)}, i=1,2,\dots,n$ endfor

3. Final boosted model: $h(x) = sign[\sum_{i=1}^{m} \alpha_i h_i(x)]$

$$L_3 = \frac{\sum_{i=1}^n W_i \, I(y_i \neq h_2(x))}{\sum_{i=1}^n W_i} = \frac{0.1 \times 3}{0.1 \times 4 + 0.14 \times 3 + 0.15 \times 3} = 0.24$$
 10개중 3개 오분류

$$\alpha_3 = \log\left(\frac{1 - 0.24}{0.24}\right) \approx 0.5$$

$$h(x) = sign \left[\sum_{i=1}^{m=3} \alpha_{j} h_{j}(x) \right]$$

$$h_{1}(x) = sign \left[\begin{array}{c} h_{1}(x) \\ 0 \\ 0 \\ 0 \end{array} \right] + 0.43 \left[\begin{array}{c} h_{2}(x) \\ 0 \\ 0 \end{array} \right] + 0.5 \left[\begin{array}{c} h_{3}(x) \\ 0 \\ 0 \end{array} \right] + 0.5 \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right] = 0.5$$

- 순차적 학습

- 오답 노트

Coding Session

AdaBoost

sklearn.ensemble.AdaBoostClassifier

class sk | earn | ensemble | AdaBoostClass if ier (base_estimator=None, *, n_e stimators=50, learning_rate=1.0, algorithm='SAMME.R', random_state=None)

[source]

- base_estimator: 학습할 때 사용할 estimator 종류 (Tree Model이 default)
- n_estimators: 복원 추출 횟수
- learning_rate: 가중치의 갱신 변동폭
- algorithm: 손실함수 종류

- Gradient boosting = Boosting with gradient decent
- 첫번째 단계의 모델 treel을 통해 Y를 예측하고, Residual을 다시 두번째 단계 모델 tree2를 통해 예측하고, 여기서 발생한 Residual을 모델 tree3로 예측
- 점차 residual 작아 짐
- Gradient boosted model = tree1 + tree2 + tree3

- Gradient boosting = Boosting with gradient decent
- 첫번째 단계의 모델 treel을 통해 Y를 예측하고, Residual을 다시 두번째 단계 모델 tree2를 통해 예측하고, 여기서 발생한 Residual을 모델 tree3로 예측
- 점차 residual 작아 짐
- Gradient boosted model = tree1 + tree2 + tree3

· Main idea

• GBM Regression Example 3

· How is this idea related to the gradient?

√ Loss function of the ordinary least square (OLS)

$$\min L = \frac{1}{2} \sum_{i=1}^{n} (y_i - f(\mathbf{x}_i))^2$$

✓ Gradient of the Loss function

$$\frac{\partial L}{\partial f(\mathbf{x}_i)} = f(\mathbf{x}_i) - y_i$$

✓ Residuals are the negative gradient of the loss function

$$y_i - f(\mathbf{x}_i) = -\frac{\partial L}{\partial f(\mathbf{x}_i)}$$

- · Gradient Boosting: Algorithm
 - 1. Initialize $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} L(y_i, \gamma)$.
 - 2. For m=1 to M:
 - 2.1 For $i = 1, \ldots, N$ compute

$$g_{im} = \left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f(x_i) = f_{m-1}(x_i)}$$

- 2.2 Fit a regression tree to the targets g_{im} giving terminal regions $R_{jm}, j=1,\ldots,J_m$.
- 2.3 For $j = 1, \ldots, J_m$ compute

$$\gamma_{jm} = \arg\min_{\gamma} \sum_{x_i \in R_{jm}} L(y_i, f_{m-1}(x_i) + \gamma)$$

- **2.4** Update $f_m(x) = f_{m-1}(x) + \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm})$
- 3. Output $\hat{f}(x) = f_M(x)$.

장점

- 최근 유명한 모델들 모두 GBM 기반 (성능 좋음)
- Variable Importance 계산 가능

단점

- Over Fitting 가능성
- 연산 속도가 오래 걸림

√ Variable importance of Gradient boosting

$$Influence_{j} = \frac{1}{M} \sum_{k=1}^{M} Influence_{j}(T_{k})$$

Overfitting problem in GBM

Overcoming GBM

Coding Session

GBM

sklearn.ensemble.GradientBoostingRegressor

 $class \ sk \ learn. ensemble. \textbf{GradientBoostingRegressor}(*, loss='s quared_error', learning_rate=0.1, n_estimators=100, subsample=1.0, criterion='friedman_mse', min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_depth=3, min_impurity_decrease=0.0, init=None, random_state=None, max_features=None, alpha=0.9, verbose=0, max_leaf_nodes=None, warm_start=False, validation_fraction=0.1, n_iter_no_change=None, tol=0.0001, ccp_alpha=0.0) [source]$

- n_estimators: 복원 추출 횟수
- loss: 손실함수 종류
- subsample: 개별 트리가 학습에 사용하는 샘플링 비율

+Early Stopping

Split Finding Algorithm

Previous Tree Models - Basic exact greedy algorithm

Value																					
l ahel	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	

Split Finding Algorithm

Global Variant

Local Variant

Algorithm 2: Approximate Algorithm for Split Finding

for k = 1 to m do

Propose $S_k = \{s_{k1}, s_{k2}, \cdots s_{kl}\}$ by percentiles on feature k.

Proposal can be done per tree (global), or per split(local).

end

for k = 1 to m do $G_{kv} \leftarrow = \sum_{j \in \{j \mid s_{k,v} \geq \mathbf{x}_{jk} > s_{k,v-1}\}} g_j$ $H_{kv} \leftarrow = \sum_{j \in \{j \mid s_{k,v} \geq \mathbf{x}_{jk} > s_{k,v-1}\}} h_j$

end

Follow same step as in previous section to find max score only among proposed splits.

Value	1.8		1.1	0.7		2.3	0.3		1.5	3.3	0.2	0.9
Label	1	0	1	0	0	01	0	0	1	1	0	0
							ı					
Malica												
Value	0.2		0.3	0.7		0.9	1.1		1.5	1.8	2.3	3.3
Label	0	0	0	0	0	0	1	0	1	1	1	1
						'						
Value	0.2	0.3	0.7	0.9	1.1	1.5	1.8	2.3	3.3			
Label	0	0	0	0	1	1	1	1	1	0	0	0
Lanei												

자료 구조 및 하드웨어 처리

과적합 규제

Coding Session

XgBoost

```
class xgboost.XGBClassifier(*, objective='binary:logistic', use_label_encoder=False, **kwargs) %
Bases: xgboost.sklearn.XGBModel , sklearn.base.ClassifierMixin
```

- eta: learning rate
- min_child_weight: 한 리프 노드에 필요한 인스턴스의 가중치 합
- tree_method (exact, approx, hist, gpu hist): 트리 분할 방법론

