Problem Set 2

Luke Maloney

2024-01-31

```
df = read_csv('greenspace_data_share.csv')
```

2. The edited script is below

Major_Geo_Region	obs	avg
Africa	154	0.3
Asia	569	0.3
Europe	128	0.3
Latin America and the Caribbean	120	0.3
Northern America	58	0.3
Oceania	9	0.3

3. Greenspace covers 1038 cities.

```
summary(gspace$City)
```

```
## Length Class Mode
## 1038 character character
```

4. Using the following code we can see that greenspace reported 100 cases of Extremely Low, 265 of Very Low, 394 of Low, 215 of Moderate, 62 of High, and 1 of Very High.

```
table2=
    gspace |>
    group_by(indicator_2021) |>
    summarise(
        obs = n())

kable(table2, format = "markdown")
```

obs
100
62
394
215
1
265
1

5. a. I created a table that shows the number of observations from 2015 that were recorded as High or Very High. There were 66 such cases.

```
table5 = filter(gspace, indicator_2015 == "High" | indicator_2015 == "Very High") |>
    group_by(indicator_2015) |>
    summarise(
    obs = n())
kable(table5, format = "markdown")
```

indicator_2015	obs
High	62
Very High	4

5. b. There were 240 cases where a municipality scored exceptionally low.

```
table6 = filter(gspace, indicator_2010 == "Exceptionally Low" | indicator_2015 == "Exceptionally Low" |
    summarise(
    obs = n())
kable(table6, format = "markdown")
```

 $\frac{\mathrm{obs}}{240}$

5. c. There have been 225 cases in which arid urban areas became greener from 2010 to 2020.

```
gspace <- transform(gspace,
   greener = annual_weight_avg_2020 - annual_weight_avg_2010
)

table7 = filter(gspace, Climate_region == "Arid" , greener > 0) |>
   summarise(
   obs = n())
kable(table7, format = "markdown")
```

```
\frac{\mathrm{obs}}{225}
```

6. 128 urban areas became less green between 2010 and 2021. These changes are concentrated in Europe and temperate regions as seen on the charts below.

```
gspace <- transform(gspace,
  tacos = annual_avg_2021 - annual_avg_2010
)

table8 = filter(gspace, tacos < 0) |>
  summarize(
    obs = n())
kable(table8, format = "markdown")
```

 $\frac{\rm obs}{128}$

```
table3=
   gspace |>
   group_by(Major_Geo_Region) |>
   filter(tacos < 0) |>
   summarize(
      obs = n())
kable(table3, format = "markdown")
```

Major_Geo_Region	obs
Africa	25
Asia	35
Europe	47
Latin America and the Caribbean	12
Northern America	9

```
table4=
   gspace |>
   group_by(Climate_region) |>
   filter(tacos < 0) |>
   summarise(
      obs = n())
kable(table4, format = "markdown")
```

$Climate_region$	obs
Arid	12
Continental	36
Polar	1
Temperate	45

Climate_	_region	obs
Tropical		34

7. Below is a histogram that demonstrates the change in greenspace from 2010 to 2021.

```
hist(gspace$tacos, main = "Change in Greenspace from 2010 to 2021",
    xlab = "Rate of Change",
    ylab = "Frequency",
    col = "violet", border = "black")
```

Change in Greenspace from 2010 to 2021

8. Find a scatter plot of population weighted greenspace in 2021 over 2010 below.

