## Computer Networks

**Computer Network Security** 

# Threats to Switching

## Port stealing

| Forwarding Information Base |              |  |
|-----------------------------|--------------|--|
| MAC address                 | Interface No |  |
| Α                           | 1            |  |
| С                           | 3            |  |
|                             |              |  |
|                             |              |  |

Switch

Switch learns MAC addresses upon reception of any frame

#### Port stealing

| Forwarding Information Base |              |  |
|-----------------------------|--------------|--|
| MAC address                 | Interface No |  |
| A (spoofed by B)            | 2            |  |
| С                           | 3            |  |
|                             |              |  |
|                             |              |  |



If station B spoofs A's MAC address, switch will learn that A is present on port 2

#### Port stealing

| Forwarding Information Base |              |  |
|-----------------------------|--------------|--|
| MAC address                 | Interface No |  |
| A (spoofed by B)            | 2            |  |
| С                           | 3            |  |
|                             |              |  |
|                             |              |  |



Station C's responses will be forwarded to port 2 instead of port 1 if current FIB state points to port 2

#### FIB (CAM) Flooding

- Attack aiming in flooding the Forwarding Information Base table looked up in switching process
- According to switching rules, if an entry is not found in the table, frame is switched as to an unknown destination
- The aim is to fill the table with useless MAC entries so that every genuine MAC address is treated as unknown -> broadcasted to all ports
- Quite "noisy" attack large volume of unsolicited traffic may be observed and easily tracked down
- Leads to information leak

#### FIB (CAM) Flooding – mitigation

- Attack can be mitigated somehow by using encrypted traffic
- Inside LAN segment this is not popular for many protocols, excluding HTTPS

#### Selected other low-level LAN threats

- Spanning-Tree Protocol manipulation
  - many mitigation measures exist
- VLAN tagging manipulation
  - ultimate solution exist

## STP manipulation – mitigation

## VLAN tagging manipulation

#### VLAN tagging manipulation – mitigation

#### ARP spoofing

- In general aims in creating a fake entry in victim's ARP table
- The entry typically leads to an attacker station instead of a genuine one
- Typically performed against default gateways
- As a result traffic from victim's computer is switched to attacker station instead
- Attacker then inspects/manipulates the traffic and sends further to proper station
- If performed against the whole LAN segment, broadcast addresses may be used

#### Smart spoofing

- An example of Man-in-the-Middle attack (MitM)
- Performed using only unicast frames
- No broadcast manipulation is observed
- Manipulates every single victim in a LAN segment
- In the smallest case, only two nodes are manipulated the victim and the default gateway
  - this gives the attacker access to bi-directional communication channel, hence the MitM case
- Mechanics of the attack remain the same as for typical ARP spoofing

## ARP/Smart spoofing mitigation

- In general it is infeasible in many scenarios to totally mitigate the threat
- In some cases static ARP entries may help
  - no queries are performed for specific IP addresses
  - hard to manage settings on all the other network nodes
  - make network card replacement a hard task
  - the use of virtual MAC addresses may help to some extent

# Overlay security in computer networks

#### Overlay security concept

- Network solution available in lower layers may lack security measures
  - various security properties may be missing: e.g. confidentiality, availability
- An overlay security measure should be able to tolerate these imperfections
  - if a protocol can be sniffed, an encryption should be provided
  - if spoofing is possible, (mutual) authentication sholud be provided
  - if datagram removal is possible, redundancy should be provided

#### Network protocols insecurities at a glance

- The following cases are just the examples crucial protocol functionality impact; in general sniffing, spoofing and denial of service (DoS) possible in all cases
- IPv4/IPv6
  - sniffing, spoofing
- ARP
  - spoofing
- DNS
  - sniffing, spoofing
- DHCP
  - DoS
- routing
  - spoofing, DoS
- HTTP
  - spoofing

#### AAA protocols

#### • AAA:

- Authentication checking who are we talking to
- Authorization knowing to whom we talk, give them the right privileges
- Accounting to count how many various resources they've consumed

#### RADIUS

- the most popular AAA protocol
- some point out its limited authentication capabilities
- available in the majority of enterprise-grade network solutions

#### Diameter

- an upgraded version of RADIUS
- much higher functionality, improved security

#### AAA protocols

#### LDAP

- directory services oriented divides network resources into group types, allows for logical resource grouping
- not quite an AAA protocol, provides authorization in general
- sometimes used in exchange of RADIUS
- All the mentioned AAA protocols are not self-reliant
  - make use of many other protocols like EAP variants, Kerberos, etc.

#### TLS – Transport Layer Security

- An improved version of SSL protocol (Secure Socket Layer)
- Used in OSI layer 4 as an secure extension of typical protocols
  - SMTP SMTPS
  - IMAP IMAPS
  - FTP FTPS
  - HTTP HTTPS
- ALPN Application-Layer Protocol Negotiation
  - extension allowing for the generalization to other protocols
- Allows for authentication of at least one communication party
- Sometimes used directly in proposed protocols, e.g. VPN ones

#### TLS in connectionless communication

- connectionless communication makes it harder to attribute datagrams to a distinct session
- example applications
  - DNS
  - NTP
  - SNMP
  - RADIUS
  - stream traffic
  - tunneling VPN
  - HTTP over QUIC, HTTP/3
- DTLS Datagram TLS
  - solution devoted to datagram traffic, UDP in particular

#### **VPN** solutions

- VPN Virtual Private Network
- Are example of an overlay security measure
- Originally used to interconnect two LAN segments over untrusted WAN network
- May be used in one of two variants:
  - site-to-site the original applications, make use of so-called VPN gateways (devices responsible for VPN tunnel management)
  - client-to-site: between a user and VPN gateway
- Provide authenticity, confidentiality, integrity but not availability in general

#### VPN mode of action

- 1. mutual authentication
- 2. crypto-material agreement common secret as a result on both sides
- 3. data encryption encapsulation
- management of crypto material periodical exchange of stream keys etc.

#### Standarized VPN solutions

- IPsec IP security
  - many RFC documents
  - relatively complex
  - allows for precise control over security measures in every step of VPN establishment
- L2TP
  - RFC 2661, RFC 3931
  - uses UDP
  - not self-reliant at present
- GRE Generic Routing Encapsulation
  - RFC 1701, RFC 1702, RFC 2784
  - not self-reliant, does not provide authentication nor encryption
- PPTP just informative RFC 2637, originally proprietary, compromised

#### VPN – encapsulation

