Discrete Structures: PMT 3

In part these questions have appeared in the lecturers (marked with S), students should be tested on how well they can reconstruct a correct reasoning.

- Exercise 42 1) Give examples of relations on {1,2,3,4} having the following properties:
 - a) reflexive, symmetric, not transitive.
 - Answer: **S**. For reflexivity, R should at least contain $\langle 1,1\rangle, \langle 2,2\rangle, \langle 3,3\rangle, \langle 4,4\rangle$; this would make R transitive and symmetric, so we need to break transitivity. We add $\langle 1,2\rangle$ and for symmetry we need to add $\langle 2,1\rangle$ as well; this relation is still reflexive, and symmetric, but also still transitive. So we add $\langle 2,3\rangle, \langle 3,2\rangle$ as well, but not $\langle 1,3\rangle$.
 - b) reflexive, not symmetric, not transitive.
 - Answer: S. As above, we need to add $\langle 1,1 \rangle$, $\langle 2,2 \rangle$, $\langle 3,3 \rangle$, $\langle 4,4 \rangle$; take

$$R = \{ \langle 1, 1 \rangle, \langle 2, 2 \rangle, \langle 3, 3 \rangle, \langle 4, 4 \rangle, \langle 1, 2 \rangle, \langle 2, 3 \rangle \};$$

notice that $\langle 2,1 \rangle$ is missing, which breaks symmetry and also $\langle 1,3 \rangle$ is missing, which breaks transitivity.

- c) not reflexive, not symmetric, and transitive.
- Answer: S. $R = \{\langle 1,2 \rangle\}$; not reflexive since $\langle 1,1 \rangle \notin R$, not symmetric because $\langle 2,1 \rangle \notin R$, and transitive because there is only one pair in R, so it holds vacuously.
 - d) symmetric, transitive, not reflexive.
- Answer: **S**. The empty relation on A is symmetric and transitive, but not reflexive. Another example is $R = \{\langle 2,2 \rangle, \langle 2,3 \rangle, \langle 3,2 \rangle, \langle 3,3 \rangle\}$. R is symmetric and transitive; it is not reflexive since $\langle 1,1 \rangle$ is not in R.

and explain your answers briefly.

- 2) Let $A = \{a,b,\{b\}\}$ and $B = \{\{a\},\{\phi\}\}$. How many functions are there from A to B? How many of these functions are onto? How many one-to-one? How many partial functions are there from A to B?
- Answer: a) S. |A| = 3, |B| = 2, so for every element in A there are two choices of images, which gives $2^3 = 8$ possible functions.
 - b) S. There are two functions that are not onto, those that map all elements of A to 1 or that map all elements of A to 2; that leaves 6.
 - c) S. Then we would consider $B \cup \{\bot\}$, a set with three elements. So the amount now becomes $3^3 = 27$.
 - 3) Now let A and B be arbitrary sets with |A| = m and |B| = n. How many functions are there from A to B, and how many partial functions?
- Answer: S. For each element of A, there are m independent ways of mapping it to an element of B. We can view this as establishing how many numbers we can represent with m positions in base n: the answer to this is n^m .

To express partiality, we extend B with \perp , so we add one element and the total becomes $(n+1)^m$.

- 4) Give a specific example sets A, B, and C, and of functions $f: A \rightarrow B$ and $g: B \rightarrow C$ such that $g \circ f: A \rightarrow C$ is bijective but f and g are not.
- Answer: From the lectures, the students know that g has to be onto and f has to be 1-1, so the answer should give an f that is not onto, and a g that is not 1-1.

41

Take
$$A = \{a,b\}$$
, $B = \{1,2,3\}$, $C = \{\alpha,\beta\}$, $f(a) = 1$, $f(b) = 3$, and $g(1) = \alpha$, $g(2) = \beta$, $g(3) = \beta$.

- 5) Using the (Dual) Cantor-Bernstein Theorem, show that the union of two countable infinite sets V and W is countable.
- Answer: The theorem states that there exists a bijection between two sets A and B whenever there exists functions from A to B and from B to A that are both surjective, or are both injective. The solutions must construct two surjections, or two injections, and check that both are properly defined functions.

If V, W are countable, there exist bijections $f: \mathbb{N} \to V$ and $g: \mathbb{N} \to W$. Define now h as follows:

$$h(n) = \begin{cases} f(n/2) & n \text{ is even} \\ g(n-1/2) & n \text{ is odd} \end{cases}$$

Now take $y \in V \cup W$. Then either $y \in V$, and there exists $n \in IN$ such that f(n) = y, so also h(2n) = y; or $y \in W$, and there exists $n \in IN$ such that g(n) = y, so also h(2n + 1) = y. So h is surjective.

We can also define k such that

$$k(v) = \begin{cases} f^{-1}(v) & v \in V \\ g^{-1}(w) & w \in W \setminus V \end{cases}$$

Then k is a function, defined on $V \cup W$, with only one image for the elements of $V \cap W$, and surjective on IN, since f is.

6) Show that the sets \mathbb{Z}^2 and \mathbb{N}^3 are countable.

Answer: This is a tricky one.

a) We know that \mathbb{Z} is countable; let $f: \mathbb{N} \to \mathbb{Z}$ be a bijection; also, \mathbb{N}^2 is countable; let $g: \mathbb{N} \to \mathbb{N}^2$ be a bijection. Define $h: \mathbb{N} \to \mathbb{Z}^2$ by

$$h(n) = \langle f(Left(g(n))), f(Right(g(n))) \rangle$$

We can see that h is a bijection; in fact its inverse is

$$h^{-1}(z_1, z_2) = g^{-1}(f^{-1}(z_1), f^{-1}(z_2))$$

Then h is a bijection and so \mathbb{Z}^2 is countable.

Alternatively, we can traverse the set \mathbb{Z}^2 as follows:

It is clear that this defines a bijection from \mathbb{N} to \mathbb{Z}^2 , although we do not given a formal definition of that function.

At least it is a surjection, and we can define a surjection h going back by

$$h(z_1, z_2) = \begin{cases} z_1 & z_1 \in IN \\ -z_1 & z_1 \notin IN \end{cases}$$

b) Let $g: \mathbb{N} \to \mathbb{N}^2$ be a bijection. Define $f: \mathbb{N} \to \mathbb{N}^3$ by

$$f(n) = \langle Left(g(n)), Left(g(Right(g(n)))), Right(g(Right(g(n)))) \rangle$$

The idea is that we use the correspondence between IN^3 and $IN \times IN^2$. f is a bijection with inverse

$$f^{-1}(n_1, n_2, n_3) = g^{-1}(n_1, g^{-1}(n_2, n_3))$$

7) Show that a countable union of countable sets is countable.

Answer: Also here Cantor-Bernstein is the right way to approach the problem.

Let A_i be a countable set for every $i \in \mathbb{N}$, and define $A = \bigcup_{i=0}^{\infty} A_i$. Since A_i is countable, there exists $f_i : \mathbb{N} \to A_i$ such that f_i is a bijection, for every $i \in \mathbb{N}$. When we define $g : \mathbb{N}^2 \to A$ by $g(i,j) = f_i(j)$, then clearly we can build a function $h : \mathbb{N} \to A$ as follows:

Since IN^2 is countable by Example 4.33, there exists a bijection $k: IN \to IN^2$; then take $h = g \circ k$. Notice that this function is surjective.

Now define a mapping $l: A \rightarrow IN$ by:

$$l(x) = f_i^{-1}(x) \ (x \notin \bigcup_{j=0}^i A_j)$$

Then this is a function (notice that, if $x \in A_n$ and $x \in A_m$ with $n \neq m$, then perhaps $f_n^{-1}(x) \neq f_n^{-1}(x)$; however, if n < m, so $l(x) = f_n^{-1}(x)$, and similar for m < n) that is surjective. Then by Theorem 4.26, $\mathbb{N} \approx A$.