Transversality

Abhishek Khetan

December 13, 2017

Contents

1	Basics	1
2	The Transversality Theorem	1
3	Transversality and Homotopy	2
4	Intersection Number Mod 2	4
5	Degree Mod 2	4

1 Basics

Definition. Let $f: M \to N$ be a smooth map from a manifold M with or without boundary to a manifold N. Let S be an embedded submanifold of N. We say that f is **transversal** to S if

$$df_p(T_pM) + T_{f(p)}S = T_{f(p)}N$$

for all
$$p \in f^{-1}(S)$$
.

Theorem 1.1. [GP10, pg. 28] Let $f: M \to N$ be a smooth map from a smooth manifold M to a smooth manifold N. If f is transversal to an embedded submanifold S of N, then $f^{-1}(S)$ is an embedded submanifold of M. Furthermore, the codimension of $f^{-1}(S)$ in M is same as the codimension of S in N.

Theorem 1.2. [GP10, pg. 60] Let $f: X \to N$ be a smooth map from a smooth manifold X with boundary to a smooth manifold N. Let S be an embedded submanifold of N such that $f: X \to N$ and $\partial f: \partial X \to N$ are both transversal to S. Then $f^{-1}(S)$ is an embedded submanifold with boundary of X. Further, $\partial (f^{-1}(S)) = f^{-1}(S) \cap \partial X$, and the codimension of $f^{-1}(S)$ in X is same as the codimension of S in N.

2 The Transversality Theorem

Theorem 2.1. The Transversality Theorem. Let M, A and N be smooth manifolds, and F: $M \times A \to N$ be a smooth map. If F is transversal to an embedded submanifold S of N, then the map $F_a: M \to N$ is transversal to S for almost all $a \in A$, where F_a is the map $M \to N$ which sends $p \in M$ to F(p,a).

Proof. We know by Theorem 1.1 that $W := F^{-1}(S)$ is a submanifold of $M \times A$. Let $\pi_A : M \times A \to A$ and $\pi_M : M \times A \to M$ be the natural projections, and let $\rho : W \to A$ denote the restriction of π_A to W. We will show that whenever $a \in A$ is a regular value ρ , then F_a is transversal to S.

Claim. If a is a regular value of ρ , and $(p,a) \in W$, then $T_{(p,a)}(M \times A) = T_{(p,a)}W + T_{(p,a)}(M \times \{a\})$. Proof. Let $v \in T_{(p,a)}(M \times A)$ be arbitrary. Let $v_A = d\pi_A|_{(p,a)}(v)$ and $v_M = d\pi_M|_{(p,a)}(v)$. Then $v = v_A + v_M$. The assumption that a is a regular value of ρ implies that there is $w \in T_{(p,a)}W$ such that $d\rho_{(p,a)}(w) = v_A$. But $d\rho_{(p,a)}(w) = d\pi_A|_{(p,a)}(w)$. Therefore $v = d\pi_A|_{(p,a)}(w) + v_M$. Split $w = w_A + w_M$, just like we had split v, and note that $d\pi_A|_{(p,a)}(w_M) = 0$ and $d\pi_A|_{(p,a)}(w_A) = w_A$. Thus we have

$$v = w_A + v_M = (w_A + w_M) + (v_M - w_M) = w + (v_M - w_M)$$

But $v_M - w_M \in T_{(p,a)}(M \times \{a\})$, and the claim is proved.

Now from the fact that F is transversal to S, for any $(p, a) \in F^{-1}(S)$, we have

$$dF_{(p,a)}(T_{(p,a)}(M \times A)) + T_s S = T_s N$$

where s = F(p, a). This gives

$$dF_{(p,a)}(T_{(p,a)}W) + dF_{(p,a)}(T_{(p,a)}(M \times \{a\})) + T_sS = T_sN$$

where we have used the claim. Now since $F(W) \subseteq S$, we have $dF_{(p,a)}(T_{(p,a)}W) \subseteq T_sS$, which leads to

$$dF_{(p,a)}(T_{(p,a)}(M \times \{a\})) + T_sS = T_sN$$

But $dF_{(p,a)}(T_{(p,a)}(M \times \{a\})) = dF_a|_p(T_pM)$. Thus

$$dF_a|_p(T_pM) + T_sS = T_sN$$

This shows that F_a is transversal to S. Now by Sard's theorem, almost all $a \in A$ are regular values of ρ , and thus we have F_a is transversal to S for almost all $a \in A$, and we are done.

By a similar reasoning as in the above, we can prove

Theorem 2.2. The Transversality Theorem (Boundary Version). Let X be a smooth manifold with boundary, and A and N be smooth manifolds, and $F: X \times A \to N$ be a smooth map. If both F and ∂F are transversal to an embedded submanifold S of N, then the maps $F_a: X \to N$ and ∂F_a are transversal to S for almost all $a \in A^1$

Corollary 2.3. General Position Lemma. Let M and S be smooth submanifolds of \mathbb{R}^n . Then for almost all $a \in \mathbb{R}^n$, we have that the manifold $M_a := \{p + a : p \in M\}$ is transversal to S.

Proof. Consider the map $F: M \times \mathbf{R}^n \to \mathbf{R}^n$ defined as F(p, a) = p + a. Then F is a submersion, and is hence transversal to S. Thus, by Theorem 2.1, we have $F_a: M \to \mathbf{R}^n$ is transversal to S for almost all $a \in \mathbf{R}^n$. This is same as saying that M_a is transversal to F_a for almost all $a \in \mathbf{R}^n$ and we are done.

3 Transversality and Homotopy

Theorem 3.1. ε -Neighborhood Theorem. Let N be a compact manifold in \mathbb{R}^n and let $\varepsilon > 0$. Let N^{ε} be the set of all the points in \mathbb{R}^n which are at a distance less than ε from N. If ε is sufficiently small, then there is a submersion $\pi: N^{\varepsilon} \to N$ such that π restricts to the identity on N.

Proof. Let $\rho: E \to N$ denote the normal bundle of N in \mathbf{R}^n . Define a map $f: E \to \mathbf{R}^n$ as f(y, v) = y + v for all $(y, v) \in E$. It is clear that df is an isomorphism at each point $(y, 0) \in E$. Further, f maps $N \times \{0\}$ diffeomorphically onto N. Thus, by the inverse function theorem, there is a neighborhood of $N \times \{0\}$ in E which maps, under f, diffeomorphically onto a neighborhood of N in \mathbf{R}^n . By compactness of N, we

¹Here F_a is the map $X \to N$ which sends $p \in X$ to F(p,a) and similarly for ∂F_a .

can choose this neighborhood to be of 'uniform thickness'.² So there exists $\varepsilon > 0$ small enough such that a neighborhood U of $N \times \{0\}$ in E maps diffeomorphically onto N^{ε} . Write h to denote $f|_{U}: U \to N^{\varepsilon}$. Since $\rho: U \to N \times \{0\}$ is a submersion, we have $\rho \circ h^{-1}: N^{\varepsilon} \to N \times \{0\}$ is also a submersion. Identifying $N \times \{0\}$ with N, we see that π is the required submersion.

Theorem 3.2. Transversality Homotopy Theorem. Let $f: M \to N$ be a smooth map between smooth manifolds and S be an embedded submanifold of N. Then there is a smooth map $g: M \to N$ homotopic to f such that $g \cap S$.

Proof. We may assume that N is embedded in \mathbb{R}^n . Since N is compact, by the ε -Neighborhood Theorem there is $\varepsilon > 0$ small enough such that $\pi : N^{\varepsilon} \to N$ is a smooth submersion which restricts to the identity on N. Let B be the unit ball in \mathbb{R}^n , and define a map $F: X \times B \to N$ as $F(x, b) = \pi(f(x) + \varepsilon b)$.

Since F is the composite of two submersions, we see that F itself is a submersion, and is therefore transversal to S. Thus, by Transversality Theorem, there is a $b \in B$ such that $g: M \to N$ defined as g(x) = F(x,b) is transversal to S. Finally, the map $H: X \times I \to N$ defined as H(x,t) = F(x,tb) is a homotopy between f and g and we are done.

Lemma 3.3. Let $f: X \to N$ be a smooth map, where X is a smooth manifold with boundary and N is a smooth manifold. Let S be a closed embedded submanifold of N. Then the set of points $x \in X$ where f is transversal to S is an open set of X.

Proof. Let $x \in X$ be such that f is transversal to S at x. There are two cases. Assume first that $x \notin f^{-1}(S)$. Since S is closed in N, $f^{-1}(S)$ is closed in X, and thus there is a neighborhood of x in X which avoids $f^{-1}(S)$, and f is vacuously transversal to S on this neighborhood.

Now assume that $x \in f^{-1}(S)$. Consider a chart $(V\psi)$ on N centered at f(x) such that ψ maps $S \cap V$ to a slice in \mathbb{R}^n , where n is the dimension of N. Compose ψ by an appropriate projection π which collapses this slice to a point. Thus $\pi \circ \psi \circ f$ is a submersion at x, and therefore it remains a submersion in a neighborhood U of x. It is easy to see that f is transversal to S on U, and we are done.

Theorem 3.4. Transversality Homotopy Theorem (Boundary Version). Let $f: X \to N$ be a smooth map from a smooth manifold with boundary X to a smooth manifold N. Assume N is compact. Let S be a closed embedded submanifold of N. If $\partial f: \partial X \to N$ is transversal to S, then there is a smooth map $g: X \to N$ homotopic to f such that $g \pitchfork S$ and $\partial g = \partial f$.

Proof. By Lemma 3.3, we see that there is a neighborhood U of ∂X in X such that $f|_U$ is transversal to S. Let $\gamma: X \to [0,1]$ be a smooth map which is identically 1 outside U and is identically 0 in a neighborhood of ∂X . Define $\tau: X \to [0,1]$ by setting $\tau = \gamma^2$.

We may assume that N is embedded in \mathbf{R}^n . Since N is compact, there is $\varepsilon > 0$ small enough such that $\pi : N^{\varepsilon} \to N$ is a smooth submersion. Let B be the unit ball in \mathbf{R}^n , and define a map $F : X \times B \to N$ as $F(x,b) = \pi(f(x) + \varepsilon b)$. Further define $G : X \times B \to N$ as $G(x,b) = F(x,\tau(x)b)$.

We show that G is transversal to S. Let $(x,b) \in G^{-1}(S)$. If $\tau(x) \neq 0$, then G is a submersion at (x,b), because the map $B \to N$ defined as $b \mapsto G(x,\tau(x)b)$ is a submersion, being the composite of the submersions $b \mapsto \tau(x)b : B \to B$ and $b \mapsto F(x,b) : B \to Y$. Thus G is transversal to S at (x,b). So we may assume $\tau(x) = 0$. Thus $d\tau_x = 0$.³ Define $\mu : X \times B \to X \times B$ as $\mu(x,b) = (x,\tau(x)b)$. Then we have $d\mu_{(x,b)}(u,v) = (v,\tau(x)w+d\tau_x(v)b)$. By the chain rule applied to $F \circ \mu$, we have $dG_{(x,b)}(v,w) = dF_{(x,0)}(v,0)$, which is same as $df_x(v)$. But since $\tau(x) = 0$, we have $x \in U$, and since $f|_U$ is transversal to S, we have conclude that G is transversal to S.

Therefore, in particular, G restricted to $(X \times S) \setminus \partial(X \times S)$ is transversal to S. Note that $(X \times S) \setminus \partial(X \times S) = (X \setminus \partial X) \times S$. Thus, by Theorem 2.1, there is a $b \in B$ such that $g: X \setminus \partial X \to N$ defined as g(x) = G(x, b) is transversal to S. Consider the extension $\tilde{g}: X \to N$ of g defined as $\tilde{g}(x) = G(x, b)$ for

²This makes sense because the normal bundle is naturally equipped with a Riemannian metric.

³This is the reason to consider the square of γ .

all $x \in X$. Since τ vanishes identically at ∂X , we see that $\partial \tilde{g} = \partial f$. Thus \tilde{g} is transversal to S. The map $H: X \times I \to N$ defined as H(x,t) = G(x,tb) is a homotopy between f and g and we are done.

4 Intersection Number Mod 2

Let M and N be smooth manifolds and S be a submanifold of N. We say that M and S are of **complementary dimension** if dim M + dim S = dim N. Now assume that S is closed in N, M is compact, and let $f: M \to N$ be a smooth map which is transversal to S. Then $f^{-1}(S)$ is a 0-dimensional closed submanifold of M, and is hence finite. We write $I_2(f, S)$ to denote $|f^{-1}(S)| \mod 2$. We call $I_2(f, S)$ the **mod 2 intersection number** of f with S.

Theorem 4.1. Let $f_0, f_1 : M \to N$ be smooth maps between smooth manifolds, both transversal to a closed submanifold S of N. Assume M is compact. If f_0 and f_1 are homotopic then $I_2(f_0, S) = I_2(f_1, S)$. **Proof.** Let $F: M \times I \to N$ be a homotopy between f_0 and f_1 . Note that ∂F is transversal to S. By the Transversality Homotopy Theorem (boundary version), we have a map $G: M \times I \to N$ homotopic to F such that G is transversal to S and $\partial G = \partial F$. Thus, by Theorem 1.2, $G^{-1}(S)$ is a compact 1-manifold K of $M \times I$ with boundary, such that

$$\partial K = G^{-1}(S) \cap \partial (M \times I) = (f_0^{-1}(S) \times \{0\}) \cup (f_1^{-1}(S) \times \{1\})$$

By classification of 1-manifolds, if $G^{-1}(S)$ has k-components, then the cardinality of $\partial G^{-1}(S)$ is 2k, which is even. Therefore $|f_0^{-1}(S)| \equiv |f_1^{-1}(S)| \pmod{2}$.

The above theorem allows us to define the mod 2 intersection number of an arbitrary smooth map $f: M \to N$ with S, where M is compact and S is a closed submanifold of N. For by the Transversality Homotopy Theorem, there is a smooth map $g: M \to N$ homotopic to f which is transversal to S. We define $I_2(f, S) := I_2(g, S)$. The above theorem guarantees that this is well defined.

Corollary 4.2. Let $f_0, f_1 : M \to N$ be any two homotopic maps from a compact smooth manifold M to a smooth manifold N. Let S be a closed submanifold of N. Then $I_2(f_0, S) = I_2(f_1, S)$.

Theorem 4.3. Boundary Theorem. Let $f: M \to N$ be a smooth map between smooth manifolds and assume that M is the boundary of some compact manifold X. If f can be extended smoothly to all of X then $I_2(f,S) = 0$ for any closed submanifold S in N of dimension complementary to M.

Proof. Let $F: X \to N$ be an extension of f. Let S be a closed embedded submanifold of N of complementary dimension to M. By the Transversality Theorem (Boundary Version), there is a map $G: X \to N$ homotopic to F such that both G and $g:=\partial G$ are transversal to S. Thus we have f is homotopic to g, so we need to show that $I_2(g,S)=0$. But by Theorem 1.2, we have $G^{-1}(S)$ is a 1-dimensional submanifold with boundary in X whose boundary is same as $G^{-1}(S) \cap M$, which is same as $G^{-1}(S)$. But the boundary of $G^{-1}(S)$ has an even number of points, and thus $I_2(g,S)=0$, and we are done.

5 Degree Mod 2

Theorem 5.1. Let M and N be smooth manifolds where M is compact and N is connected. Let $f: M \to N$ be a smooth map. If dim $M = \dim N$, then $I_2(f, \{q\})$ is same for all $q \in N$. This common value is termed as the **mod 2 degree** of f, and we denote it by $\deg_2(f)$.

Proof. Assume dim $M = \dim N > 1$. Let q and q' be two distinct points in N, and let S be the image of an embedding of a circle in N which passes through both q and q'. Let $g: M \to N$ be a map homotopic to f which is transversal to S, and well as both q and q'. Since M and N are of the same dimension, by Theorem 1.1, $g^{-1}(S)$ is an embedded submanifold of M of dimension 1. Thus $g^{-1}(S)$ is a disjoint union of

finitely many submanifolds of M, each diffeomorphic to S^1 . This reduces the problem to the case where both M and N are S^1 , in which case the proof is easy. An alternate proof can be found in [GP10, pg. 80].

Theorem 5.2. Homotopic maps have the same mod two degree.

Proof. Immediate from Theorem 4.1.

Theorem 5.3. Let M and N be smooth manifolds of the same dimension, where M is compact and N is connected. Assume that M is the boundary of a manifold X. Let $f: M \to N$ be a smooth map. If f is smoothly extendible to all of X, then $\deg_2(f) = 0$.

Proof. Immediate from the Boundary Theorem.

Corollary 5.4. S^1 is not simply-connected.

Theorem 5.5. No compact manifold other than the one point space is contractible.

Proof. Let M be a compact connected manifold of dimension at least 1. We want to show that M is not contractible. Suppose not. Fix a point $p \in M$. The contractibility of M implied that the identity map $\mathrm{Id}: M \to M$ is homotopic to the constant map $c: M \to M$ whose image if $\{p\}$. Let $q \in M$ be different from p. Clearly, both the identity map and the constant map c are transversal to $\{q\}$. Thus we have $\deg_2(\mathrm{Id}) = \deg_2(c)$. But $\deg_2(\mathrm{Id}) = I_2(\mathrm{Id}, \{q\}) = 1$, and $\deg_2(c) = I_2(c, \{q\}) = 0$. Thus we arrive at a contradiction, and therefore we must have the manifold M is not contractible.

Note. For any questions or comments please write to me at khetan@math.tifr.res.in

References

[GP10] Victor Guillemin and Alan Pollack. Differential Topology. AMS Chelsea Publishing, Providance, RI, 2010.