

BRAINHACK SCHOOL 2020

Can We Identify Sex Using fMRI?

Tajwar Sultana, PhD Student NED University of Engg. & Tech. Karachi, Pakistan

INSPIRATION

PREVIOUS RESEARCH => SEX DIFFERENCE RESULTS IN FC DIFFERENCE

- <u>Functional Connectivity Predicts Gender:</u>
 <u>Evidence for Gender Differences in Resting</u>
 <u>State Connectivity</u>
- Sex Classification by Resting State Brain
 Connectivity

BOLD contrast and fMRI Time Series

Functional Connectivity

FUNCTIONAL IMAGES

- Used to determineConnectivity Matrices
- Features are built using
 Connectivity matrices

PHENOTYPIC DATA

- Used to determine Labelsfor supervised learning
- Sex Information as Target
 Data

DATA SIZE

- 155 subjects
- 84 Female
- 71 Male

EXTRACTING

Legion nterest

TIME SERIES

datasets.fetch_atlas_basc_multiscale_2015Resolution = 64

Connectivity

Connectivity

SINGLE SUBJECT

SINGLE SUBJECT

Cannectame

Features feature matrix - 0.75 20 -0.50 40 155 X 2016 0.25 60 -Subject - 0.00 100 --0.25120 --0.50140 --0.751000 250 500 750 1250 1500 1750 2000 Features

LABEL ENCODING

Dimensionality Reduction

155 x 2016

Principal Component Analysis

155 x 110

Scree Plot

Relationship between PC1 and PC2

Training and Test and Taset

CLASSIFIERS

- Logistic Regression
- K-Nearest Neighbors
- Multilayer Perceptron
- Gaussian Naive Bayes
- Decision Tree
- Random Forest

CROSS VALIDATION

10 FOLD

PERFORMANCE METRICS

- Accuracy
- ROC-AUC Curve
- F1 Score
- Confusion Matrix

Evaluation Metrics

Classification Model Metrics	Accuracy	AUC	F1 Score	True Positive	False Positive	True Negative	False Negative
Logistic Regression	0.58	0.61	0.51	25	24	38	21
K-Nearest Neighbors	0.51	0.49	0.47	23	26	32	27
Multilayer Perceptron	0.6	0.59	0.47	20	29	45	14
Gaussian Naïve Bayes	0.47	0.48	0.32	16	33	35	24
Decision Tree	0.55	0.54	0.52	25	24	30	29
Random Forest	0.55	0.52	0.35	18	31	43	16

FUTURE GOALS

- To improve classification accuracy by:
 - Selecting those networks whose connectivity differ between male and female
 - Using advanced ML algorithms like PLS
 - Choosing different atlases
 - Using different and relevant dataset
- To explore Nilearn => RegionExtractor,
 Masker, plotting, atlases, seed based FC
- To implement Containerization using Docker
- More of Interactive plotting

