

Universidade Federal de Pernambuco Centro de Informática

Cálculo Numérico (IF215)

Profa. Maíra Santana

- Ajustamento é utilizado para encontrar relações entre variáveis medidas experimentalmente:
 - Valores tabelados;
 - Não se conhece ao certo a função que pode relacionar essas medidas.

- Qual a relação existente entre x e f(x)?
- Qual o valor de f(x) para um determinado x fora do tabelamento?

- Previsão para o estoque de determinado produto em função do histórico da sua demanda;
- · Previsão de inflação;
- · Previsão de consumo energético;
- Previsão de dados populacionais;
- Previsão de doenças;
- · Outros.

 Também chamado de regressão, o ajustamento busca modelar uma função adequada aos dados observados. A curva dessa função poderá, então, prever dados fora do intervalo de valores observados.

• Parte de um tabelamento de dados experimentais:

x_i	x_0	x_1	 x_n
$f(x_i)$	$f(x_0)$	$f(x_1)$	 $f(x_n)$

• Como podemos usar o tabelamento para calcular o valor da função f(x) desconhecida em pontos não tabelados?

· Comportamento linear ou não linear.

- Partindo de um tabelamento de dados experimentais pertencentes a um intervalo [a,b], podemos fazer o ajuste de curvas a partir de:
 - Escolher funções $G_1(x)$, $G_2(x)$, ..., $G_m(x)$ contínuas em [a,b];
 - Obter m constantes a_1, a_2, \ldots, a_m tais que a função P(x) se aproxima ao máximo de f(x).

Onde:

$$P(x) = a_1G_1(x) + a_2G_2(x) + \dots + a_mG_m(x)$$
 (combinação linear das funções G_i)

· Combinação linear de funções elementares:

$$P(x) = a_0 G_0(x) + a_1 G_1(x) + \dots + a_m G_m(x)$$
 (combinação linear das funções G_i)

$$P(x) = \sum_{j=0}^{m} a_j G_j(x)$$

 a_i : coeficientes a serem ajustados.

 G_i : funções conhecidas (sen(x), ln(x), polinômios, etc.).

• Buscamos a função P(x) que melhor se ajuste/represente o tabelamento utilizado.

- É importante ter um certo conhecimento do comportamento geral do problema para propor as funções G_i :
 - · Observa a distribuição dos pontos no plano cartesiano;
 - · Identifica se a função que mapeia os dados possui comportamento semelhante a algum já observado ou conhecido.
- Essa escolha nem sempre é trivial e não é objeto de estudo do curso de Cálculo Numérico.

Geometricamente:

- Objetivo: minimizar os resíduos $R(x_i)$;
- Idealmente: $\sum_{i=0}^{n} R(x_i) = 0$;
- Na prática, os resíduos podem ser positivos ou negativos e podem possuir magnitudes diferentes.

Geometricamente:

• Objetivo: minimizar os resíduos $R(x_i)$;

$$\sum_{i=0}^{n} R^2(x_i)$$
 mínimo

- Então, buscaremos uma função que minimize a soma dos quadrados dos resíduos;
- · Método dos Mínimos Quadrados (MMQ).

MMQ

• Queremos, portanto, encontrar os coeficientes que minimizem a soma do quadrado dos resíduos, ou seja:

$$\min(\phi(a_0, a_1, ..., a_m)) = \sum_{i=0}^{n} R^2(x_i)$$

• Se derivarmos em função de a_j , temos que:

$$\frac{\partial \phi}{\partial a_j} = 2 \sum_{i=0}^{n} R(x_i) \frac{\partial R(x_i)}{\partial a_j}$$

MMQ

$$\frac{\partial \phi}{\partial a_j} = 2 \sum_{i=0}^{n} R(x_i) \frac{\partial R(x_i)}{\partial a_j}$$

Como $R(x_i) = P(x_i) - f(x_i) = a_0 G_0(x_i) + \dots + a_j G_j(x_i) + \dots + a_m G_m(x_i) - f(x_i)$ e $f(x_i)$ é um número, temos que:

$$\frac{\partial R(x_i)}{\partial a_j} = G_j(x_i)$$

$$\frac{\partial \phi}{\partial a_j} = 2 \sum_{i=0}^n R(x_i) G_j(x_i) , \qquad j = 0,1,2,...,m$$

MMQ

$$\frac{\partial \phi}{\partial a_j} = 2 \sum_{i=0}^n R(x_i) G_j(x_i) = 0, \qquad j = 0, 1, 2, ..., m$$

$$\sum_{i=0}^{n} R(x_i) G_j(x_i) = 0, \qquad j = 0, 1, 2, ..., m$$

Expandindo $R(x_i) = P(x_i) - f(x_i)$, temos:

$$\sum_{k=0}^{m} a_k \sum_{i=0}^{n} G_k(x_i) G_j(x_i) = \sum_{i=0}^{n} f(x_i) G_j(x_i), j = 0, 1, 2, \dots, m$$

(equação geral do Sistema Normal)

• Possui solução única e ela é o ponto de mínimo de $\phi(a_0, a_1, ..., a_m)$.

Exemplo:

Considere as taxas de inflação no período de janeiro a setembro de um certo ano dada pela tabela abaixo. Faça uma previsão para os meses de outubro a dezembro desse ano considerando que **uma reta** é o tipo de curva que melhor representa esse fenômeno.

Mês	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set
Inflação	1.3	1.8	2.2	0.4	1.1	3.0	1.1	0.8	0.1

• Como trata-se de uma **reta**, teremos:

$$P(x) = a_0 G_0(x) + a_1 G_1(x)$$
, onde $G_0 = 1 e G_1 = x$

$$\sum_{k=0}^{m} a_k \sum_{i=0}^{n} G_k(x_i) G_j(x_i) = \sum_{i=0}^{n} f(x_i) G_j(x_i), j = 0,1,2,...,m$$

$$\begin{cases} a_0 \sum_{i=0}^n G_0(x_i) G_0(x_i) + a_1 \sum_{i=0}^n G_1(x_i) G_0(x_i) = \sum_{i=0}^n f(x_i) G_0(x_i) \\ a_0 \sum_{i=0}^n G_0(x_i) G_1(x_i) + a_1 \sum_{i=0}^n G_1(x_i) G_1(x_i) = \sum_{i=0}^n f(x_i) G_1(x_i) \end{cases}$$

Mês	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set
Inflação	1.3	1.8	2.2	0.4	1.1	3.0	1.1	0.8	0.1

Precisamos encontrar cada um dos coeficientes.

$$\begin{cases} a_0 \sum_{i=0}^n G_0(x_i) G_0(x_i) + a_1 \sum_{i=0}^n G_1(x_i) G_0(x_i) = \sum_{i=0}^n f(x_i) G_0(x_i) \\ a_0 \sum_{i=0}^n G_0(x_i) G_1(x_i) + a_1 \sum_{i=0}^n G_1(x_i) G_1(x_i) = \sum_{i=0}^n f(x_i) G_1(x_i) \end{cases}$$

 Para isso, vamos construir uma tabela para representar cada um dos elementos das equações.

Mês	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set
Inflação	1.3	1.8	2.2	0.4	1.1	3.0	1.1	0.8	0.1

i	x_i	$f(x_i)$	$G_0(x_i)$	$G_1(x_i)$	$G_0^2(x_i)$	$G_1^2(x_i)$	$ \begin{array}{c c} G_0(x_i) \\ * G_1(x_i) \end{array} $	$f(x_i) \\ * G_0(x_i)$	$f(x_i) \\ * G_1(x_i)$
0	1	1.3							
1	2	1.8							
2	3	2.2							
3	4	0.4							
4	5	1.1							
5	6	3.0							
6	7	1.1							
7	8	0.8							
8	9	0.1							

$$G_0 = 1 e G_1 = x$$

Mês	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set
Inflação	1.3	1.8	2.2	0.4	1.1	3.0	1.1	0.8	0.1

i	x_i	$f(x_i)$	$G_0(x_i)$	$G_1(x_i)$	$G_0^2(x_i)$	$G_1^2(x_i)$	$ \begin{vmatrix} G_0(x_i) \\ * G_1(x_i) \end{vmatrix} $	$f(x_i) \\ * G_0(x_i)$	$f(x_i) \\ * G_1(x_i)$
0	1	1.3	1	1	1	1	1	1.3	1.3
1	2	1.8	1	2	1	4	2	1.8	3.6
2	3	2.2	1	3	1	9	3	2.2	6.6
3	4	0.4	1	4	1	16	4	0.4	1.6
4	5	1.1	1	5	1	25	5	1.1	5.5
5	6	3.0	1	6	1	36	6	3.0	18.0
6	7	1.1	1	7	1	49	7	1.1	7.7
7	8	0.8	1	8	1	64	8	0.8	6.4
8	9	0.1	1	9	1	81	9	0.1	0.9

$$G_0 = 1 e G_1 = x$$

i	x_i	$f(x_i)$	$G_0(x_i)$	$G_1(x_i)$	$G_0^2(x_i)$	$G_1^2(x_i)$	$ \begin{vmatrix} G_0(x_i) \\ * G_1(x_i) \end{vmatrix} $	$f(x_i) \\ * G_0(x_i)$	$f(x_i) \\ * G_1(x_i)$
0	1	1.3	1	1	1	1	1	1.3	1.3
1	2	1.8	1	2	1	4	2	1.8	3.6
2	3	2.2	1	3	1	9	3	2.2	6.6
3	4	0.4	1	4	1	16	4	0.4	1.6
4	5	1.1	1	5	1	25	5	1.1	5.5
5	6	3.0	1	6	1	36	6	3.0	18.0
6	7	1.1	1	7	1	49	7	1.1	7.7
7	8	0.8	1	8	1	64	8	0.8	6.4
8	9	0.1	1	9	1	81	9	0.1	0.9

$$\begin{cases} a_0 \sum_{i=0}^n G_0(x_i) G_0(x_i) + a_1 \sum_{i=0}^n G_1(x_i) G_0(x_i) = \sum_{i=0}^n f(x_i) G_0(x_i) \\ a_0 \sum_{i=0}^n G_0(x_i) G_1(x_i) + a_1 \sum_{i=0}^n G_1(x_i) G_1(x_i) = \sum_{i=0}^n f(x_i) G_1(x_i) \end{cases}$$

Precisamos fazer os somatórios!

i	x_i	$f(x_i)$	$G_0(x_i)$	$G_1(x_i)$	$G_0^2(x_i)$	$G_1^2(x_i)$	$ \begin{vmatrix} G_0(x_i) \\ * G_1(x_i) \end{vmatrix} $	$ \begin{array}{c} f(x_i) \\ * G_0(x_i) \end{array} $	$f(x_i) \\ * G_1(x_i)$
0	1	1.3	1	1	1	1	1	1.3	1.3
1	2	1.8	1	2	1	4	2	1.8	3.6
2	3	2.2	1	3	1	9	3	2.2	6.6
3	4	0.4	1	4	1	16	4	0.4	1.6
4	5	1.1	1	5	1	25	5	1.1	5.5
5	6	3.0	1	6	1	36	6	3.0	18.0
6	7	1.1	1	7	1	49	7	1.1	7.7
7	8	0.8	1	8	1	64	8	0.8	6.4
8	9	0.1	1	9	1	81	9	0.1	0.9
		Σ	9	45	9	285	45	11.8	51.6

$$\begin{cases} a_0 \sum_{i=0}^{n} G_0(x_i) G_0(x_i) + a_1 \sum_{i=0}^{n} G_1(x_i) G_0(x_i) = \sum_{i=0}^{n} f(x_i) G_0(x_i) \\ a_0 \sum_{i=0}^{n} G_0(x_i) G_1(x_i) + a_1 \sum_{i=0}^{n} G_1(x_i) G_1(x_i) = \sum_{i=0}^{n} f(x_i) G_1(x_i) \end{cases} \begin{cases} 9a_0 + 45a_1 = 11.8 \\ 45a_0 + 285a_1 = 51.6 \end{cases}$$

$$\begin{cases} 9a_0 + 45a_1 = 11.8 \\ 45a_0 + 285a_1 = 51.6 \end{cases}$$

Exemplo:

Considere as taxas de inflação no período de janeiro a setembro de um certo ano dada pela tabela abaixo. Faça uma previsão para os meses de outubro a dezembro desse ano considerando que **uma reta** é o tipo de curva que melhor representa esse fenômeno.

$$\begin{cases} 9a_0 + 45a_1 = 11.8 & a_0 = 1.928 \\ 45a_0 + 285a_1 = 51.6 & a_1 = -0.123 \end{cases}$$

$$P(x) = a_0 G_0(x) + a_1 G_1(x) = 1.928 - 0.123x$$

Assim,

- Outubro: P(10) = 0.698
- Novembro: P(11) = 0.575
- Dezembro: P(12) = 0.452

Ajustamento não linear

• A princípio assumimos que P(x) é uma combinação linear de funções elementares:

$$P(x) = a_0 G_0(x) + a_1 G_1(x) + \dots + a_m G_m(x)$$

- E quando P(x) não é linear em relação aos seus coeficientes?
 - Podemos tentar transformá-la para encontrar P'(x) linear em relação aos seus parâmetros;
 - Nem sempre é possível realizar essa operação, mas ficaremos restritos aos casos em que é possível;
 - Não **garante** que vai encontrar a aproximação mínima do resíduo, mas a diferença normalmente não é muito alta.

Ajustamento não linear

• Exemplo de casos possíveis de transformação:

•
$$P(x) = ae^{bx} \rightarrow P'(x) = a' + bx$$
,
onde $a' = \ln(a) e^{y'}(x) = \ln(P(x))$

•
$$P(x) = \frac{1}{ax + bx^2 + cx^3} \to P'(x) = ax + bx^2 + cx^3$$
,
onde $P'(x) = \frac{1}{P(x)}$

•
$$P(x) = \sqrt{a + b \cos(x)} \rightarrow P'(x) = a + b \cos(x)$$
,
onde $P'(x) = P^2(x)$

Ajustamento não linear

- Exemplo de casos em que não é possível fazer a transformação:
 - $P(x)=a^2+bx\to P'(x)=a'+bx$, onde $a'=a^2\to a=\sqrt{a'}$, mas se a'<0, não dá pra aplicar o método.
 - $P(x) = a(x+b) = ax + ab \rightarrow P'(x) = ax + c$, onde c = a*b, mas em P'(x) os parâmetros $a \in c$ não são linearmente independentes.

Exemplo:

Considere as taxas de inflação no período de janeiro a setembro de um certo ano dada pela tabela abaixo. Faça uma previsão para os meses de outubro a dezembro. Para isso, encontre a curva do tipo $P(x) = a_0 e^{a_1 x}$ que melhor se ajuste a tabela usando o MMQ.

Mês	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set
Inflação	1.3	1.8	2.2	0.4	1.1	3.0	1.1	0.8	0.1

$$P(x) = a_0 e^{a_1 x}$$

Aplicando o In:

$$\ln(P(x)) = \ln(a_0 e^{a_1 x}) = \ln(a_0) + a_1 x = a_0' + a_1 x$$

onde:
$$a'_0 = \ln(a_0)$$
; $G_0(x) = 1$; $G_1(x) = x$

Precisamos também ajustar a tabela:

Mês	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set
Inflação	ln(1.3)	In(1.8)	ln(2.2)	In(o.4)	ln(1.1)	In(3.0)	ln(1.1)	In(o.8)	In(o.1)

i	x_i	$ln(f(x_i))$	$G_0(x_i)$	$G_1(x_i)$	$G_0^2(x_i)$	$G_1^2(x_i)$	$G_0(x_i)$ * $G_1(x_i)$	$\ln(f(x_i)) \\ * G_0(x_i)$	$\ln(f(x_i)) \\ * G_1(x_i)$
0	1	ln(1.3)	1	1	1	1	1	ln(1.3)	ln(1.3)*1
1	2	In(1.8)	1	2	1	4	2	In(1.8)	ln(1.8)*2
2	3	ln(2.2)	1	3	1	9	3	ln(2.2)	ln(2.2)*3
3	4	In(o.4)	1	4	1	16	4	In(o.4)	In(o.4)*4
4	5	ln(1.1)	1	5	1	25	5	ln(1.1)	ln(1.1)*5
5	6	In(3.0)	1	6	1	36	6	ln(3.0)	ln(3.0)*6
6	7	ln(1.1)	1	7	1	49	7	ln(1.1)	ln(1.1)*7
7	8	In(o.8)	1	8	1	64	8	In(o.8)	In(o.8)*8
8	9	ln(o.1)	1	9	1	81	9	ln(o.1)	ln(o.1)*9

$$G_0 = 1 e G_1 = x$$

Mês	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set
Inflação	ln(1.3)	In(1.8)	ln(2.2)	In(o.4)	ln(1.1)	In(3.0)	ln(1.1)	In(o.8)	In(o.1)

i	x_i	$ln(f(x_i))$	$G_0(x_i)$	$G_1(x_i)$	$G_0^2(x_i)$	$G_1^2(x_i)$	$G_0(x_i) * G_1(x_i)$	$ \ln(f(x_i)) \\ * G_0(x_i) $	$ \ln(f(x_i)) \\ * G_1(x_i) $
0	1	ln(1.3)	1	1	1	1	1	ln(1.3)	ln(1.3)*1
1	2	ln(1.8)	1	2	1	4	2	ln(1.8)	ln(1.8)*2
2	3	ln(2.2)	1	3	1	9	3	ln(2.2)	ln(2.2)*3
3	4	In(o.4)	1	4	1	16	4	In(o.4)	In(o.4)*4
4	5	ln(1.1)	1	5	1	25	5	ln(1.1)	ln(1.1)*5
5	6	ln(3.0)	1	6	1	36	6	ln(3.0)	In(3.0)*6
6	7	ln(1.1)	1	7	1	49	7	ln(1.1)	ln(1.1)*7
7	8	In(o.8)	1	8	1	64	8	In(o.8)	In(o.8)*8
8	9	ln(o.1)	1	9	1	81	9	ln(o.1)	ln(o.1)*9
		Σ	9	45	9	285	45	-0.515	-14.639

$$\begin{cases} a_0 \sum_{i=0}^{n} G_0(x_i) G_0(x_i) + a_1 \sum_{i=0}^{n} G_1(x_i) G_0(x_i) = \sum_{i=0}^{n} f(x_i) G_0(x_i) \\ a_0 \sum_{i=0}^{n} G_0(x_i) G_1(x_i) + a_1 \sum_{i=0}^{n} G_1(x_i) G_1(x_i) = \sum_{i=0}^{n} f(x_i) G_1(x_i) \end{cases} \begin{cases} 9a_0' + 45a_1 = -0.515 \\ 45a_0' + 285a_1 = -14.639 \end{cases}$$

Exemplo:

Considere as taxas de inflação no período de janeiro a setembro de um certo ano dada pela tabela abaixo. Faça uma previsão para os meses de outubro a dezembro. Para isso, encontre a curva do tipo $P(x) = a_0 e^{a_1 x}$ que melhor se ajuste a tabela usando o MMQ.

$$\begin{cases} 9a'_0 + 45a_1 = -0.515 & a_0' = 0.948 \\ 45a'_0 + 285a_1 = -14.639 & a_1 = -0.201 \end{cases}$$

$$a_0' = \ln(a_0) \to a_0 = e^{a_0'} = e^{0.948} = 2.581$$

$$P(x) = a_0 e^{a_1 x} = 2.581 e^{-0.201 x}$$

Assim,

- Outubro: $P(10) = 2.581e^{-0.201*10} = 0.346$
- Novembro: $P(11) = 2.581e^{-0.201*11} = 0.283$
- Dezembro: $P(12) = 2.581e^{-0.201*12} = 0.231$

Exercícios propostos

1. Determinar $P(x) = ax^2 + b$ que melhor se ajusta à tabela abaixo:

x_i	1	2	3	4
$f(x_i)$	1.2	0.9	3.1	6.1

2. Usando o MMQ, encontre a curva de cada uma das formas abaixo para a tabela anterior.

a)
$$P(x) = ax^b$$

b)
$$P(x) = 1/(ax + b)$$

Referências

• Métodos Numéricos. José Dias dos Santos e Zanoni Carvalho da Silva. (capítulo 4);

Cálculo Numérico – aspectos teóricos e computacionais.
 Márcia A. Gomes Ruggiero e Vera Lúcia da Rocha Lopes.
 (capítulo 6).