# Database Management Systems (DBMS)

Lec 15: Relational database design (Contd.)

Ramesh K. Jallu

**IIIT Raichur** 

Date: 23/03/21

#### Recap

- Normal forms based on primary key and corresponding normalization
  - 1<sup>st</sup> normal form
    - Relation should not have multivalued attributes or nested relations
  - 2<sup>nd</sup> normal form
    - No nonkey attribute should functionally dependent on a part of the primary key
  - 3<sup>rd</sup> normal form
    - No transitive dependency of a nonkey attribute on the primary key

### Today's overview

- General definitions of 2NF and 3NF
- Properties of normalization
- Boyce-Codd normal form

#### General definitions of 2NF and 3NF

- The discussed 2NF and 3NF are for a given database where primary keys have already been defined
- They do not take other candidate keys of a relation, if any, into account
- we now give the more general definitions of 2NF and 3NF that take all candidate keys of a relation into account
- The PD, FD, and TD are now considered w.r.t all candidate keys

#### 1. General definition of 2NF

• A relation schema R is in 2NF if every nonprime attribute in R is fully functionally dependent on every key of R



#### 1. General definition of 2NF (Contd.)



Candidate key  $\{B,C\}$ 

$$A \to \{B, C, D, E, F\}$$
  
$$\{B, C\} \to \{A, D, E, F\}$$
  
$$B \to F$$
  
$$D \to E$$





#### 2. General definition of 3NF

• A relation schema R is in 3NF if, whenever a nontrivial functional dependency  $X \to A$  (i.e., A is not a subset of X) holds in R, either (a) X is a superkey of R, or (b) A is a prime attribute of R



## 2. General definition of 3NF (Contd.)



## Boyce-Codd normal form (BCNF)

- Certain FDs escape 3NF test even though they may be potentially problematic FDs
- BCNF is a simpler form of 3NF, but is stricter than 3NF
- A relation schema R is in BCNF if whenever a nontrivial functional dependency  $X \rightarrow A$  holds in R, then X is a superkey of R
- Every relation in BCNF is also in 3NF; however, converse not necessarly be true

#### An example



| $\overline{A}$ | B | C     | D | $\overline{E}$                                                   |
|----------------|---|-------|---|------------------------------------------------------------------|
|                |   | $c_1$ |   | $ \begin{array}{c c} E \\ \hline e_3 \\ \hline e_4 \end{array} $ |
|                |   | $c_2$ |   |                                                                  |
|                |   | $c_1$ |   | $e_1$                                                            |
|                |   | $c_2$ |   | $e_5$                                                            |
|                |   | •••   |   | \$\v                                                             |
|                |   | $c_2$ |   | $e_4$ $e_5$                                                      |
|                |   | $c_2$ |   | $e_5$                                                            |
|                |   | $c_1$ |   | $egin{array}{c} e_2 \ e_5 \end{array}$                           |
|                |   | $c_2$ |   | $\overline{e}_5$                                                 |
| ·              |   |       |   |                                                                  |

## An example (Contd.)

$$R$$

$$A B C D E$$

$$C = \{c_1, c_2\}$$

$$E = \{e_1, e_2, e_3, e_4, e_5\}$$

$$R_1$$
  $R_2$   $E C$ 

| $\underline{E}$ | C                |
|-----------------|------------------|
| $e_1$           | $c_{\mathrm{I}}$ |
| $e_2$           | $c_1$            |
| e 3             | $c_1$            |
| $e_4$           | C2               |
| £5              | C2               |

#### Decomposition of Relations not in BCNF

#### **TEACH**

| Course            | Instructor                                                                                       |
|-------------------|--------------------------------------------------------------------------------------------------|
| Database          | Mark                                                                                             |
| Database          | Navathe                                                                                          |
| Operating Systems | Ammar                                                                                            |
| Theory            | Schulman                                                                                         |
| Database          | Mark                                                                                             |
| Operating Systems | Ahamad                                                                                           |
| Database          | Omiecinski                                                                                       |
| Database          | Navathe                                                                                          |
| Operating Systems | Ammar                                                                                            |
|                   | Database Database Operating Systems Theory Database Operating Systems Database Database Database |

FD1: {Student, Course} → Instructor

FD2: Instructor → Course

- 1.  $R_1$  (Student, Instructor) and  $R_2$ (Student, Course)
- 2.  $R_1$  (Course, **Instructor**) and  $R_2$ (**Course**, **Student**)
- 3.  $R_1$  (Instructor, Course) and  $R_2$ (Instructor, Student)

#### Properties of normalization

#### 1. The nonadditive join or lossless join property

• which guarantees that the *spurious tuple generation problem* does not occur with respect to the relation schemas created after decomposition

#### 2. The dependency preservation property

 which ensures that each functional dependency is represented in some individual relation resulting after decomposition

#### Spurious tuple generation problem





## Spurious tuple generation problem





## Nonadditive Join Test for Binary (NJB) Decompositions

A decomposition  $D = \{R_1, R_2\}$  of R has the lossless (nonadditive) join property with respect to a set of functional dependencies F on R if and only if either

- i. The FD  $((\mathbf{R}_1 \cap \mathbf{R}_2) \rightarrow (\mathbf{R}_1 \mathbf{R}_2))$  is in  $\mathbf{F}^+$ , or
- ii. The FD  $((R_1 \cap R_2) \rightarrow (R_2 R_1))$  is in  $F^+$

#### Algorithm to achieve NJ decomposition

- A relation *R* not in BCNF can be decomposed to meet the nonadditive join property by decomposing *R* successively into a set of relations that are in BCNF:
- Let R be the relation not in BCNF, let  $X \subseteq R$ , and let  $X \to A$  be the FD that causes a violation of BCNF. R may be decomposed into two relations:
  - 1. R-A
  - 2. XA
  - 3. If either R A or XA is not in BCNF, repeat the process

## Thank you!