String Matching

Algoritmos y Estructuras de Datos I

1

Ejemplo

a b a b a c a

a | b | b | x | c | a

Strings

- ► Llamamos un string a una secuencia de Char.
- ► Los strings no difieren de las secuencias sobre otros tipos, dado que habitualmente no se utilizan operaciones particulares de los **Char**s.
- ► Los strings aparecen con mucha frecuencia en diversas aplicaciones.
 - 1. Palabras, oraciones y textos.
 - 2. Nombres de usuario y claves de acceso.
 - 3. Secuencias de ADN.
 - 4. Código fuente!
 - 5. ...
- ► El estudio de algoritmos sobre strings es un tema muy importante.

2

Búsqueda de un patrón en un texto

- **Problema:** Dado un string t (texto) y un string p (patrón), queremos saber si p se encuentra dentro de t.
- ▶ **Notación:** La función subseq(t, d, h) denota al substring de t entre d y h 1 (inclusive).
- ▶ proc contiene(in $t, p : seq\langle Char \rangle$, out result : Bool){

 Pre {True}

 Post {result = true $\leftrightarrow (\exists i : \mathbb{Z})(0 \le i \le |t| |p|$ $\land_L subseq(t, i, i + |p|) = p)$ }
- ► ¿Cómo resolvemos este problema?

.

Función Auxiliar matches

- ► Implementemos una función auxiliar con la siguiente especificación:
- ▶ proc matches(in $s : seq\langle Char \rangle$, in $i : \mathbb{Z}$, in $r : seq\langle Char \rangle$, out result : Bool){

 Pre $\{0 \le i < |s| |r| \land |r| \le |s|\}$ Post $\{result = true \leftrightarrow subseq(s, i, i + |r|) = r\}$ }

Función Auxiliar matches

```
bool matches(string &s, int i, string &r) {
  bool result = true;
  for (int k = 0; k < r.size(); k++) {
    if (s[i+k]!=r[k]) {
      result = false;
    }
  }
  return result;
}
¿Se puede hacer que sea más eficiente?</pre>
```

6

Función Auxiliar matches

```
bool matches(string &s, int i, string &r) {
    int k = 0;
    while (k < r.size() && s[i+k] == r[k]) {
        k++;
    }
    return k == r.size();
}</pre>
```

Este programa se interrumpe tan pronto como detecta una desigualdad.

Función Auxiliar matches

```
bool matches(string &s, int i, string &r) {
    for (k = 0; k < r.size() && s[i+k] == r[k]; k++) {
        // skip
    }
    return k == r.size();
}</pre>
```

Este programa se interrumpe tan pronto como detecta una desigualdad.

¿Cuál es la complejidad?

En peor caso, el for se ejecuta |r|+1 veces y las demás son operaciones elementales. Por lo tanto $T_{matches}(s,i,r) \in O(|r|)$

Búsqueda de un patrón en un texto

▶ **Algoritmo sencillo:** Recorrer las posiciones i de t donde podría empezar p y verificar si subseq(t, i, i + |p|) = p.

▶ matches es la función auxiliar definida anteriormente.

9

Algoritmo de Knuth, Morris y Pratt

- ► En 1977, Donald Knuth, James Morris y Vaughan Pratt propusieron un algoritmo más eficiente.
- ► Idea: Tratar de no volver a inspeccionar todo el patrón cada vez que avanzamos en el texto.
- ► Mantenemos dos <u>índices</u> / (left) y r (right) a la secuencia, con el siguiente invariante:

```
1. 0 \le l \le r \le |t|
```

- 2. subseq(t, l, r) = subseq(p, 0, r l)
- 3. No hay apariciones de p en subseq(t, 0, r).

Búsqueda de un patrón en un texto

► ¿Cuál es el tiempo de ejecución en peor caso de para la función contiene?

- ▶ El for se ejecuta |t| |p| veces en peor caso.
- ► La comparación matches(t,i,p) requiere realizar |p| comparaciones entre chars.
- $ightharpoonup T_{contiene}(t,p) \in O(|p|) * O(|t|) = O(|p| * |t|)$

10

Algoritmo de Knuth, Morris y Pratt

- ▶ Planteamos el siguiente esquema para el algoritmo.
- ▶ bool contiene_kmp(string &t, string &p) {
 int l = 0, r = 0;
 while(r < t.size()) {
 // Aumentar l o r
 // Verificar si encontramos p
 }
 return // resultado
 }</pre>
- ▶ ¿Cómo aumentamos / o r preservando el invariante?

- ▶ Si r I = |p|, entonces encontramos p en t.
- ▶ Si r l < |p|, consideramos los siguientes casos:
 - 1. Si t[r] = p[r l], entonces encontramos una nueva coincidencia, y entonces incrementamos r para reflejar esta nueva situación.
 - 2. Si $t[r] \neq p[r-l]$ y l=r, entonces no tenemos un prefijo de p en el texto, y pasamos al siguiente elemento de la secuencia avanzando l y r.
 - Si t[r] ≠ p[r I] y I < r, entonces debemos avanzar I.
 ¿Cuánto avanzamos I en este caso? ¡Tanto como podamos! (más sobre este punto a continuación)

13

Algoritmo de Knuth, Morris y Pratt

- ► Si $t[r] \neq p[r-l]$ y l < r, ¿cuánto podemos avanzar 1?
- ► El invariante implica que subseq(t, l, r) = subseq(p, 0, r l), pero esta condición dice que $subseq(t, l, r + 1) \neq subseq(p, 0, r + 1 l)$.
- ► Ejemplo:

► ¿Hasta donde puedo avanzar /?

Algoritmo (parcial) de Knuth, Morris y Pratt

```
bool contiene_kmp(string &t, string &p) {
  int 1 = 0, r = 0;
  while( r < t.size() && r-1 < p.size()) {
    if( t[r] == p[r-1] ){
      r++;
    } else if( 1 == r ) {
      r++;
      l++;
    } else {
      l = // avanzar l
    }
  }
  return r-1 == p.size();
}</pre>
```

1.

Bifijos: Prefijo y Sufijo simultáneamente

- ▶ **Definición:** Una cadena de caracteres b es un bifijo de s si $b \neq s$, b es un prefijo de s y b es un sufijo de s.
- ► Ejemplos:

S	bifijos
а	$\langle \rangle$
ab	$\langle \rangle$
aba	⟨⟩,a
abab	$\langle angle$,ab
ababc	$\langle \rangle$
aaaa	$\langle angle$,a, aa, aaa, aaa
abc	$\langle \rangle$
ababaca	$\langle \rangle$,a

▶ **Observación:** Sea una cadena *s*, su máximo bifijo es único.

KMP: Función π

- ▶ **Definición:** Sea $\pi(i)$ la longitud del máximo bifijo de subseq(p, 0, i)
- ► Por ejemplo, sea *p*=abbabbaa:

i	subseq(p, 0, i)	Máx. bifijo	$\pi(i)$
1	a	⟨⟩	0
2	ab	⟨⟩	0
3	abb	$\langle \rangle$	0
4	abba	а	1
5	abbab	ab	2
6	abbabb	abb	3
7	abbabba	abba	4
8	abbabbaa	а	1

17

Algoritmo de Knuth, Morris y Pratt

► **Ejemplo:** Supongamos que ...

		1					r					
		\downarrow					\downarrow					
 	 	а	b	а	b	а	b	а	С	а	b	b
	•	=	=	=	=	=	?					
		а	b	а	b	а	С	а				

- ► En este caso, podemos avanzar I hasta la posición ababa $(\pi(r-I)=\pi(5)=3)$, dado que no tendremos coincidencias en las posiciones anteriores.
- ▶ Por lo tanto, en este caso fijamos $l' = r \pi(r l)$.

KMP: Función π

- ▶ **Definición:** Sea $\pi(i)$ la longitud del máximo bifijo de subseq(p,0,i)
- ightharpoonup Otro ejemplo, sea p=ababaca:

i	subseq(p, 0, i)	Máx. bifijo	$\pi(i)$
1	а	⟨⟩	0
2	ab	⟨⟩	0
3	aba	а	1
4	abab	ab	2
5	ababa	aba	3
6	ababac	⟨⟩	0
7	ababaca	a	1

1

Algoritmo de Knuth, Morris y Pratt

► **Ejemplo:** Supongamos que ...

- ► En este caso, podemos avanzar I hasta la posición ababa $(\pi(r-I)=\pi(5)=3)$, dado que no tendremos coincidencias en las posiciones anteriores.
- ▶ Por lo tanto, en este caso fijamos $l' = r \pi(r l)$.

- ▶ Podemos calcular $\pi(i)$ usando una función auxiliar.
- Supongamos que ya tenemos una función auxiliar calcular_pi(p) que retorna una secuencia de enteros con los valores de π.
- lacktriangle Asumamos que su tiempo de ejecución de peor caso $\in O(|p|)$
- ► Implementemos ahora contieneKMP

21

Algoritmo de Knuth, Morris y Pratt

Recordemos el invariante para el algoritmo KMP:

- 1. $0 \le l \le r \le |t|$
- 2. subseq(t, l, r) = subseq(p, 0, r l)
- 3. No hay apariciones de p en subseq(t, 0, r).
- ► ¿Se cumplen los tres puntos del teorema del invariante?
 - 1. El invariante vale con l = r = 0.
 - 2. Cada caso del if... preserva el invariante.
 - 3. Al finalizar el ciclo, el invariante permite retornar el valor correcto.
- ▶ ¿Cómo es una función variante para este ciclo?
 - Notar que en cada iteración se aumenta / o r (o ambas) en al menos una unidad.
 - Entonces, una función variante puede ser:

$$fv = (|t| - I) + (|t| - r) = 2 * |t| - I - r$$

Es fácil ver que se cumplen los dos puntos del teorema de terminación del ciclo, y por lo tanto el ciclo termina.

Algoritmo (parcial) de Knuth, Morris y Pratt

```
bool contiene_kmp(string &t, string &p) {
    int I = 0, r = 0;
    while( r < t.size() && r-I < p.size()) {
        if( t[r] == p[r-I] ){
            r++;
        } else if( I == r ) {
            r++;
            I++;
        } else {
            vector<int> pi = calcular_pi(p);
            I = r - pi[r-I];
        }
    }
    return r-I == p.size();
}
```

2

Algoritmo de Knuth, Morris y Pratt

- ▶ Para completar el algoritmo debemos calcular $\pi(i)$.
- ► Para este cálculo, recorremos *p* con dos índices *i* y *j*, con el siguiente invariante:

```
1. 0 \le i < j \le |p|
```

- 2. $pi[k] = \pi(k+1)$ para k = 0, ..., j-1 (vector empieza en 0)
- 3. i es la longitud del máximo bifijo para subseq(p, 0, j).
- 4. $0 \le \pi(j) \le i + 1$

```
vector<int> calcular_pi(string &p) {
  vector<int> pi(p.size(),0); // inicializado en 0
  int i = 0;
  for(int j=1; j < p.size();j++) {
      // Si no coincide busco bifijo mas chico
      while(i>0 && p[i]!= p[j])
      i = pi[i-1];

      // Si coincide, aumento tama~no bifijo
      if( p[i] == p[j] )
        i++;

      pi[j] = i;
    }
  return pi;
}
Veamos como funciona calcular_pi() con el patrón
    ⟨a, b, a, b, a, c, a⟩
```

► .Cá.

Algoritmo de Knuth, Morris y Pratt

- ► ¡Es importante observar que sin el invariante, es muy difícil entender este algoritmo!
- ► ¿Cómo es una función variante adecuada para el ciclo?
 - 1. ¿Para el loop interno? $f_V = i$
 - 2. ¿y para el externo? $f_V = |p| j$.
- ► ¿Y el tiempo de ejecución de peor caso?
 - 1. siempre se incrementa *j*
 - 2. i disminuye a lo sumo |p|-veces sumando todas las j iteraciones!
- ► Entonces, el tiempo de ejecución de peor caso de calcular_pi $\in O(|p| + |p|) = O(|p|)$

27

Algoritmo (completo) de Knuth, Morris y Pratt

```
bool contiene_kmp(string &t, string &p) {
   int 1 = 0, r = 0;
   vector<int> pi = calcular_pi(p);
   while( r < t.size() && r-1 < p.size()) {
      if( t[r] == p[r-1] ){
        r++;
      } else if( 1 == r ) {
        r++;
      1++;
      } else {
        1 = r - pi[r-1];
      }
   }
   return r-1 == p.size();
}</pre>
Tiene tiempo de ejecución de peor caso ∈ O(|t| + |p|)
```

Algoritmo de Knuth, Morris y Pratt

¿Es realmente mejor la eficiencia de KMP en comparación con la solución trivial?

 $Veamos\ como\ funciona\ cada\ algoritmo\ en\ la\ computadora$

http://whocouldthat.be/visualizing-string-matching/

- ▶ ¿Es realmente mejor la eficiencia de KMP en comparación con la solución trivial?
 - ► El algoritmo naïve tiene tiempo de ejecución de peor caso $\in O(|t|*|p|)$
 - ► El algoritmo KMP tiene tiempo de ejecución de peor caso $\in O(|t| + |p|)$
- ► Por lo tanto, el tiempo de ejecución de peor caso del algoritmo KMP crece asintóticamente mas despacio que el tiempo de ejecución de peor caso del algoritmo naïve.
- Existen más algoritmos de búsqueda de strings (o string matching):
 - ► Rabin-Karp (1987)
 - ▶ Boyer-Moore (1977)
 - ► Aho-Corasick (1975)

Bibliografía

- ► David Gries The Science of Programming
 - ► Chapter 16 Developing Invariants (Linear Search, Binary Search)
- ► Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein- Introduction to Algorithms, 3rd edition
 - ► Chapter 32.1 The naive string-matching algorithm
 - ► Chapter 32.4 The Knuth-Morris-Pratt algorithm

3: