METHOD AND APPARATUS FOR EXPOSURE

Patent number: JP5217856 Publication date: 1993-08-27

Inventor: KAWAKAMI KENICHI
Applicant: FUJITSU LTD

Classification:

- international: G03F7/20; G03F7/20; (IPC1-7): G03F7/20; H01L21/027

- european: G03F7/20T; G03F7/20T18 Application number: JP19920017072 19920131 Priority number(s): JP19920017072 19920131

Report a data error here

Abstract of JP5217856

PURPOSE:To provide a method and an apparatus for exposure using two-dimensional interference exposure which efficiently forms a desired repeated pattern with no mask. CONSTITUTION:A sample face 11 is irradiated in three or more directions with light I1-Im of plane wave whose angle of incidence, amplitude and phase are adjusted. A two-dimensional interference fringe of repeated pattern is formed on the sample face 11.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号 特開平5-217856

(43)公開日 平成5年(1993)8月27日

(51)Int.Cl. ⁵	識別記号	庁内整理番号	FI	技術表示箇所
H 0 1 L 21/027				
G 0 3 F 7/20	521	7818-2H		
		7352-4M	HOLI 21/30	3 1 1 W

審査請求 未請求 請求項の数2(全 7 頁)

(21)出願番号	特顯平4-17072	(71)出願人 000005223			
(00) III 85 H	平成4年(1992)1月31日	富士通株式会	_		
(22)出願日	十成 4 年(1992) 1 月31日	神奈川県川崎市中原区上小田中1015			
		(72)発明者 川上 研一			
			市中原区上小田中1015番地		
		富士通株式会	社内		
		(74)代理人 弁理士 伊東	忠彦 (外2名)		

(54) 【発明の名称】 露光方法及び露光装置

(57) 【要約】

【目的】 本発明は二次元の干渉露光を利用した露光方 法及び露光装置に関し、マスクを用いることなく所望の 周期的パターンを効率的に形成できる露光方法及び露光 装置を実現することを目的とする。

【構成】 試料面11上に三つ以上の方向から入射角、 振幅及び位相の調節された平面波の光 $I_1 \sim I_m$ を照射 する。試料面11上には二次元の繰り返しパターンの干 渉縞を形成する。

本発明の原理説明図

【特許請求の範囲】

【請求項1】 レジストを盤布した試料面 (11) 上に、三の以上の方向から入射角、振幅及び位相の調節された平面嵌の光 (1、一1。) を照射し、該試料面 (1) 上に二次元の繰り返しパターンの干渉箱を形成して露光することを特徴とする震光方法。

【請求項2】 可干渉な光を放射する三つ以上の光源 (21a~21e)と、

該光源($21a\sim21e$)の各々に対応して設けられ、 該光源(12, ~12 _m)からの光の振幅及び位相を調 飾する第1の調節手段($22a\sim22e$, $23a\sim23$ e)と、

三つ以上の鉄第1の調節手段 (22a~22e, 23a ~23e) の各々に対応して設けられ、鉄第1の調節手 段 (22a~22e, 23a~23e)からかを失々 平面波に変換すると共に、その光軸を互いに独立して調 節して入射例が調節された平面波を試料面 (11)上へ 限射する第2の調節手段 (24a~24b)とを有する ことを特徴とする露光装置

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は露光方法及び露光装置に 係り、特に二次元の干渉露光を利用した露光方法及び露 光装置に関する。

【0002】大規模半導体集積回路(LSI)は近年、 益々高密度化、高集積化の傾向にあるため、また量子網 線や量子箱においても、周期的パターンをミクロン以下 の超微網に形成できることが必要とされる。

[0003]

【従来の技術】従来よりパターンを試料面上に形成する 離光方法としては、フォトリングラフィ、電子線(E B) 腐光方法、一次元の干渉席光方法などが知られてい る。フォトリングラフィは評望のパターンが形成されて いるマスクを通して試料面上のフォトレジストに例えば 紫外線を照射し、その後現象処理、エッチング及びレジ スト除去処理等の工程を経て、試料面上に所望のパター ンを形成する、

【0004】また、電子線塞光方法は電子ビームを試料 面上に照射して推画する方法で、フォトリソグラフィに 比しより機能なパターンを推画できる。更に、干渉露光 方法はマスタを使わずに2つの光源からの光を試料面上 のフォトレジストに夫々一定角度で入射し、それら2つ の光の干渉経により露光も方が定する。

[0005]

【発明が解決しようとする課題】しかるに、前記フォト リソグラフィは形成しようとするパターン毎にマスクが 必要になり、マスクの作製に手間と時間とコストをかけ なければならない。また、前記電子線露光方法は通常は 矩形のショットをつなげてパターンを補画するが、アット数が マンが微細になるほど単位演響等りの震光ショット数が 増加し、スループットが低下する。

【0006】また、電子線鑑光方法では、パターンが近接した場合に互いにパターン間で影響を及ぼし合い、パターンの位置や幅の変化等の精度低下をもたらす(近接) 効果)。前型した干渉線光方法では、二つの光顔からの光の干渉線を利用しているので、露光できるパターンがラインアンドスペースに限られてしまうという問題があ

【0007】本発明は以上の点に鑑みなされたもので、 マスクを用いることなく所望の周期的パターンを効率的 に形成できる露光方法及び露光装置を提供することを目 的レオス。

[0008]

【課題を解決するための手段】図1は本無明の原理説明 図を示す。本発明の驚光力法は図1に示すように、レジ ストを整布 Lた談料面11比に、三つ以上の方向から入 射角、振幅及び位相の調節された平面波の光 I₁~ I_n を照射し、談料面11比に二次元の繰り返しパターンの 干渉箱を形成して驚光する。

【0009】また、本発明装置では、可干渉な光を放射 する三つ以上の光源と、光源の各々に対応して設けら 、光源からの光の振幅及び位相を調節する第1の調節 手段と、三つ以上の第1の調節手段の各々に対応して設 けられ、第1の調節手段からの光を夫々平面波に変換す ると共に、その光軸を互いに独立して調節して入射角が 開節された平面波を試料面上へ照射する第2の調節手段 とを有する。

[0010]

【作用】図1に示す3つ以上の光顔12,~12。のうち、任節の2つの光顔12, 12,からの可干渉で強度の等しい光が図1に示すか1入射角9. - で沈料面11上に入射されるものとする。ここで、光顔12, 12, によって沈料前11上にできる複楽振幅を失々 E_1 (x), E_2 (x)、波長をなとすると、 E_3 (x)、 E_3 (x)、次分表で表さされる。

[0011] E_1 (x) = A · exp { i (k x + ϕ_1) }

 E_2 (x) = A · exp { i (-kx+ ϕ_2) } $\hbar \tilde{\kappa}$ L, k = 2 $\pi \tan \theta / \lambda$

上式中、Aは電界頻度、 ϕ_1 , ϕ_2 は夫々光源 12_i , 12_j からの光の位相である。ここで、 $\phi_1 = \phi_2 = 0$ とすると数料面 11 上に結像する電界頻度の複素振幅 E (ψ) は

 $E(x) = E_1(x) + E_2(x)$ = 2 A cos (k x)

となり、干渉縞が形成される。

【0012】従来の干渉縮光法では、φ₁,φ₂が制御 されていないため干渉縮の形成される位置を制御できな い。また、光源が2つしかないので、ラインアンドスペ ースしか療光できない。

【0013】これに対して、本発明では光源が図1に1 2,~12 で示したように3つ以上あるため、試料面 11上に形成される干渉縞は二次元的に配列され、また 入射角を調節することにより、二次元の繰り返しパター ンを試料面11に結像させることができる。しかも、本 発明では光の振幅及び位相を調節しているため、結像す ろパターンを制御することができる...

【0014】また、本発明装置では、所望のパターンを 結像するために必要な各々の平面波の振幅、位相及び入 射角を第1、第2の調節手段で調整しているため、効率 的に露光を行なうことができる。

[0015]

【実施例】図3は本発明の一実施例の構成図を示す。同 図中、21 a~21 eは夫々光源で、前記した光源12 ,~12m(ただし、ここではm=5)に相当し、可干 渉な光を放射する。光源21a~21eの各々から放射 された光 (球面波) は、振幅制御素子22a~22e、 位相制御素子23 a~23 eを夫々通してレンズ24 a ~ 2 4 e に入射され、ここで平面波に変換された後、試 料面11と同一平面上にあるCCD (チャージ・カップ ルド・デバイス) 25に入射される。

【0016】CCD25は周知の如く振像素子で、試料 面11をもつ試料(サンプル)と共に同じX-Yステー ジ26に載置されており、X-Yステージ26と一体的 に移動変位される。計算機27は端末28に接続される。 一方、振幅制御素子22a~22e、位相制御素子23 a~23eを夫々互いに独立して制御する。

【0017】振幅制御素子22a~22eと位相制御素

子23a~23eは、前記した第1の調節手段を構成し

ており、計算機27からの制御信号に応じて、対応して 設けられた光源21a~21eからの光の振幅及び位相 を夫々調節する。また、レンズ24a~24eは前記し た第2の調節手段を構成しており、図示しない移動機構 により計算機27からの制御信号に応じて移動制御さ れ、レンズ24a~24eを透過する平面波の光軸を可 変することにより、入射角を可変する。なお、入射角の 制御はレンズ24a~24eの移動と共に、光源21a ~21eの位置を移動させて行なってもよい。

【0018】次に本実施例の動作について説明する。ま ず、端末28よりオペレータが露光したいパターン (パ ターンの周期、一周期のパターンデータ)を計算機27 へ入力する。すると、計算機27はこの入力パターンデ 一タを基にして夫々の光の振幅、位相、入射角を計算 し、制御する。

【0019】例えば設計したパターンデータが図4に示 す如くx軸方向のパターンの周期L、、y軸方向のパタ ーンの周期L...よりなり、8×8の矩形よりなるパター ンであるものとする。この場合、光源の数は21 a~2 1 e の 5 個ではなく、全部で 6 4 個必要になり、その各 々に対応して振幅制御素子22、位相制御素子23、レ ンズ24が設けられる。

【0020】計算機27は上記のパターンデータから図 5に示す如き電界強度分布を設計し、これをFFT(デ ィジタルフーリエ変換) することにより、各光源からの 光の振幅を表1に示す如く、また光の位相を表2に示す 如く計算する。

[0021]

【表1】

振幅(単位は任義)

i	1	2	. 3	4	5	6	7	8
1	2, 828	1.657	2, 828	0.0	2, 828	1.657	2, 828	0.0
2	4, 00	4.00	4, 00	0.0	4. 00	4.00	4.00	0.0
3	2, 828	9. 647	2, 828	0, 0	2, 828	9, 657	2, 828	0.0
4	3, 314	4.00	19. 31	0.0	19. 31	4. 00	3, 314	0.0
5	2, 828	9, 657	2, 828	0.0	2, 828	9, 657	2, 828	0.0
6	4, 00	4.00	4.00	0.0	4.00	4.00	4, 00	0. 0
7	2, 828	1.657	2. 828	0.0	2, 828	1.657	2. 828	0.0
8	0, 0	4. 00	0.0	0.0	0.0	4, 00	0.0	0.0

[0022]

位相 単位: [rad]

j	1	2	3	4	5	6	7	8
1	$-\frac{\pi}{2}$	<u>π</u> 2	$\frac{\pi}{2}$	0	$-\frac{\pi}{2}$	$-\frac{\pi}{2}$	<u>π</u> 2	0
2	$\frac{\pi}{2}$	<u>π</u> 2	$-\frac{\pi}{2}$	0	<u>π</u> 2	$-\frac{\pi}{2}$	$-\frac{\pi}{2}$	0
3	$\frac{\pi}{2}$	$-\frac{\pi}{2}$	$-\frac{\pi}{2}$	0	$\frac{\pi}{2}$	$\frac{\pi}{2}$	$-\frac{\pi}{2}$	0 ·
4	$\frac{\pi}{2}$	$-\frac{\pi}{2}$	<u>π</u> 2	0	$-\frac{\pi}{2}$	$\frac{\pi}{2}$	$-\frac{\pi}{2}$	0
5	$\frac{\pi}{2}$	$-\frac{\pi}{2}$	$-\frac{\pi}{2}$	0	$\frac{\pi}{2}$	$\frac{\pi}{2}$	$-\frac{\pi}{2}$	0
6	<u>π</u> 2	$\frac{\pi}{2}$	$-\frac{\pi}{2}$	0	$\frac{\pi}{2}$	$-\frac{\pi}{2}$	$-\frac{\pi}{2}$	0
7	$-\frac{\pi}{2}$	$\frac{\pi}{2}$	$\frac{\pi}{2}$	0	$-\frac{\pi}{2}$	$-\frac{\pi}{2}$	$\frac{\pi}{2}$	0
8	0	$-\frac{\pi}{2}$	0	0	0	$\frac{\pi}{2}$	0	0

平行な平面上でφなる角度で表わされ、横方向に i 番目、縦方向に j 番目の矩形の二次元干渉霧光部分の入射 \hat{q} $(0, j, \phi_{i,j})$ は表3に示す如くになる。 $\begin{bmatrix} 0 & 0 & 2 & 4 \end{bmatrix}$ 【表3

X	1	2	3		5	- 6	1	1
Ī,	(-sin " 3 2	(-sia -: 2 a	(-sin -/ A	· • .	(sin "	(sin -1 2 x	(sin -1 3 1	(sis -1 4 2
Ľ	-sin -1 12	-sin = (3 Å)	-sia -1 - 3 i	-sin -1 3 Å	-sin -1 - 3 J	-sin -1 -3 Å)	-sin (1)	-sin -1 3 A
2	(-sin 3 t	(-sin - 2)	(-sin ** - L.,	٠٠.	(sin -1 Lr.	(sin = 1 2)	(sia -1 1 i	(ein -
Ĺ	-tin -1 -2 / L.	-sin -: 21	-sin *1 21	-sin ** 2.1 L.	-sie " (2)	nin -1 -2 λ L,	-sin -1 2 / L.	-sin -1 2 1
,	(-sin 3 1	(-sin -1 - 2)	(-ein **	(O .	(sia -: 1 L.,	(sin = 2 Å	(ais = 1 l	(sin -1 4 2
Ĺ	-sin -1 1)	-sin *1 4)	-eia -1 1)	-ein -1 $\frac{\lambda}{L_r}$)	-nin -1 1)	-sin 1	-sin → - } Lv	-ain -: A
	(-sin 1 / L.,	(-sin ^1 2)	(-sin -1 L.,	٠,	{ sin → ² L, ,	(ain-1 2) L.,	(sin - 1 3 2 Lx.	(sin → 42 L,
	• ,	0)	a)	•)	•)	0)	•)	0)
5	(-sin ~ 3 1 L-,	(-sin 2 / L	(-sin -1 2 L	٠ .	(sin ⁻ j	(sin = 1 2 A	(pin " 32	(sin " (L
	sin ⁻¹	sin -1 1 L,	sin " (L.)	sin "	sin = 1	sin ~ 1)	sin -1 -1)	sin -1 -k)
	(-sin = 3 A	(-sin 2 J	(-ain ** 1	٠٠.	(sin -1 L.,	(sin -1 - 2.2	(sin = 3 t	(sin -1 (2)
	sin = Z X }	sin " (21)	sin = 2 l L,	sin " (2)	sin = 2 l	sin -1 21 L,	ein ** 21 L,	sin -1 (1)
,	(-sin -: 3 A	(-sin ** Z J	(-ein -1)	٠٠.	(sin " L. ,	(sie -1 2 /	(sin **	Calm 1 - 61 Les
	ein -1 3 d)	oin -1 3 4)	ain *1 3 / L.	sis ** 3 k	sia * (1 / L,	sin -1 3 Å	sin (3)	tin -: 11)
	(-sin 31	(-sin -1 2 1	(-sin L.,	٠ ,	(sin = 1 La.	(sin -1 2 1	(sin - 3 2	(sin - 4 &
	sin " (4.4)	sin **	sin = (4)	sin " (1)	sin " (4.2)	sis *1 4 4)	sin " (1)	(in " ()

【0025】計算機27は表しの計算結果と基づいて振 幅制期素于22a~22。等の振幅制御素于12なので表 調整を行ない。表2の計算結果に基づいて23a~23 e等の位相制御素子による位相調整を行ない、また表3 の計算結果に基づいて24a~24e等のレンズを移動 して光のCCD25への入射角(θ, ₀)の調整を行な う。

【0026】このようにして、各光源からの光江CCD 25に入射され、ここで機像される。CCD25は頻像 した光に応じた電気信号を生成して計算機27へ入力す る。計算機27は前記光学系(図3では5つ、図4、図 5の例では64)のうちの所定の一の光学系を基準とし て、この基準光学系と他の一の光学系のみによってCC D25の髪像底にできる干渉線の振幅、位相、周期を桁 所する。同様にして、計算機27は上記の基準光学系と 残りの光学系との間の1つ1つについて、CCD25の 機像底にできる干渉線の振幅、位相、周別を桁する。 上記解析の結果、計算機27は脱差が最小となるよう に、光の海礁、位相及び入身前の微調整を行なう。

【0027】上記の微調整終了後、X-Yステージ26

が図示しないステージ移動機構によって移動され、それ までCCD23の機像面が位置していた場所に終料面 1 1が位置するようにする。これにより、所室の周期的バ ターンがレジストを整角した終料面 1 1上に二次元干等 顔光される。このとき、終料面 1 1上には所望の周期的 パターンがマスクを用いることなく一括転写をれる。

[0028]

【発明の効果】上述の如く、本発明によれば、マスクを 用いることなく二次元の繰り返しパターンを一括して試 料面に露光することができるため、フォトリソグラフィ に比しマスクが不要な分手限と時間を不要にでき、電子 線離光力法に比しスループットを向上でき、また一次元 の干渉離光力法に比し二次元の繰り返しパターンも離光 でき、また本発明装置では効率的に露光を行なうことが でき、以上より半導体製造技術に著与するところ大であ る等の特を含するものである。

【図面の簡単な説明】

【図1】本発明の原理説明図である。

【図2】本発明の作用説明図である。

【図3】本発明の一実施例の構成図である。

- 【図4】バターンデータの一例を示す図である。 【図5】電界強度分布の一例を示す図である。
- 【図6】入射角の説明図である。
- 【符号の説明】
- 11 試料面

- $12_1\sim 12_m$, $21a\sim 21e$ 光源
- 23a~23e 位相制御素子 24a~24e レンズ
- 27 計算機
- [2]

本発明の原理説明図

本発明の作用説明図

【図4】

パターンデータの一例

【図6】

入射角の説明図

【図3】

本発明の一実施例の構成図

