Context-aware factorization methods for implicit feedback based recommendation problems

(Kontextus-vezérelt faktorizációs módszerek implicit feedback alapú ajánlási problémákra)

Hidasi Balázs

Nyilvános vita 2016. 06. 28.

Témavezető: Dr. Magyar Gábor

Külső konzulens: Dr. Tikk Domonkos

Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Informatikai Tudományok Doktori Iskola

Tartalom

- Terület áttekintése
 - Ajánlórendszerek
 - Ajánlóalgoritmusok
 - Interakciók (főbb) típusai
 - Context-awareness
- Kiértékelés
- Mátrixfaktorizáció inicializálása (1. téziscsoport)
- Context-aware faktorizáció implicit adatokon
 - iTALS (2. téziscsoport)
 - iTALSx (3. téziscsoport)
 - Algoritmusok összehasonlítása (4. téziscsoport)
- ALS skálázódásának javítása (5. téziscsoport)
- GFF General Factorization Framework (6. téziscsoport)
- Összefoglalás

Ajánlórendszerek

- Information overload
- Ajánlórendszer: Olyan információszűrő szolgáltatás, ami segíti a felhasználót az information overload probléma kezelésében, azáltal, hogy automatikusan (a felhasználó aktív beavatkozása nélkül is) releváns (azaz nekik tetsző, hasznos) termékeket/tartalmat jelenít meg számukra.
 - Több komponenst tartalmaz
 - A lelke az ajánló algoritmus
- Top-N ajánlás:
 - Termékek sorrendezése (becsült) relevancia szerint a felhasználóknak
 - Az első néhány (N) elem kiajánlása

Ajánlóalgoritmusok

- Collaborative filtering (CF)
 - Szomszéd módszerek
 - Modell alapú módszerek
 - Mátrixfaktorizáció

- Content-based filtering (CBF)
- Demografikus
- Tudásbázis alapú
- Szociális háló alapú
- Hibrid

Interakciók főbb típusai

- Explicit feedback:
 - Értékelések
 - Explicite kódolják a preferenciát
 - Felhasználói hozzájárulást igényelnek
 - Kis(ebb) mennyiségben érhető el (ha egyáltalán)
- Implicit feedback
 - Felhasználó passzív monitorozásával gyűjtött interakciók
 - Preferenciára következtetni kell
 - Zajos pozitív preferencia
 - Negatív preferencia a "hiányzó" eseményekben
 - Gyenge negatív jelzés
 - Nagy mennyiségben elérhető
 - A gyakorlatban fontos eset

Context-awareness

- Context: bármilyen olyan további információ, ami rendelkezésre áll az interakciókról.
 - Az eseményhez rendelt információ, nem a termékhez vagy a felhasználóhoz külön-külön.
- Context-awareness: Context információ felhasználása az ajánláskor.
 - Contextual modeling: A contextet közvetlenül kezelő algoritmusok csoportja.
- Context figyelembe vételével jobb ajánlások adhatóak
 - Viselkedés pontosabb modellezése
 - Magas fokú adaptációs képesség

Context típusok

- Szezonalitás
 - Periodikus viselkedésmintázatok jellemzőek.
 - Szezon (periódus)
 - Időszakok a szezonon belül
 - Context értéke az aktuális időszak
 - Példa: szezon nap; időszakok: reggel, délelőtt, ...
- Szekvenciális context
 - Felhasználó előző interakciójának terméke
 - Asszociációs szabály szerű összefüggések
 - Kiegészítő termékek
 - Hasonló termékek
 - Általam javasolt
- Hely
- Eszköz

Kiértékelés

- 5 valós életből származó implicit adatbázis
 - +1 implicité alakított explicit adatsor (csak az 1. téziscsoportnál)
- Offline kiértékelés
 - Idő alapú szétosztás tanító és teszt adatokra
 - Teszt adatok eseményei: adott felhasználó releváns termékei a tesztidőszakban
 - Fő mérték: recall@N
 - Releváns és kiajánlottak száma a relevánsokhoz képest
 - Gyakorlatban hasznos mérték
 - N kicsi (10-50, általában 20)

Mátrixfaktorizáció inicializálása

Feature mátrixok inicializálása

- MF véletlenszerű mátrixokból indul ki
- Betanított feature mátrixokban a hasonló termékek jellemzővektorai hasonlóak
- Indítsuk az MF módszereket olyan feature vektorokból, ahol a valamilyen szempontból hasonló termékek (vagy felhasználók) feature vektorai hasonlóak
 - Ezzel külső információt vihetünk az MF-be
 - Nem teljesen context-aware megoldás
- 3 javasolt módszer
 - Közös rész:
 - Leíró mátrix: ritka vektorok az egyes termékekhez rendelve
 - Metaadatok
 - Context állapotokban való előfordulásaik száma
 - Faktorizáljuk ezt a mátrixot
 - (1) Használjuk az így kialakult termékjellemzőket
 - (2) SimFactor: Módosítsuk úgy a termékjellemzőket, hogy a skalárszorzatuk a leíróvektorok hasonlóságát közelítse
 - (3) Sim²Factor: Definiáljuk a termékek hasonlóságát úgy, mint a többi termékkel vett hasonlóságokból kialakult vektorok hasonlóságát; és módosítsuk úgy a feature vektorokat, hogy a skalárszorzatuk ezt az értéket közelítse

SimFactor algoritmus

- Hasonlóság: (transzformált) leírómátrix és a transzponáltjának szorzata
- Leírómátrix közelítését behelyettesítve hatékonyan ki tudunk számolni olyan feature vektorokat, amelyek skalárszorzata a hasonlóságokat közelíti
- Az eredeti faktorizáláshoz képest ennek az ideje elhanyagolható
- Sim²Factor hasonló, csak 4-szer szorzom a leíró mátrixot önmagával

Eredmények

- SimFactor valóban jobban közelíti a hasonlóságok
 - aktuális értékét
 - hasonlóságok rendszerét (sorrendezés)
- Inicializálásnál, adatsortól függően más módszer a legjobb
 - Mindhárom módszer jól teljesít a véletlenszerű inicializáláshoz képest
- Context alapú leíróvektorokból jobb inicializálás lesz, mint metaadatokból (top5-be az utóbbi nem került be)
- Több információ együttes használata inicializáláskor
 - Leírók összefűzése: nem javít
 - Feature vektorok súlyozott összegének használata: további néhány százalék javulás

- Javasoltam, hogy a mátrix faktorizációs módszerek inicializálásához használjunk fel egyéb, a termékekről (vagy a felhasználókról) rendelkezésre álló információt, hogy megnöveljük az ajánlások pontosságát.
 - 1.1. tézis: Javasoltam, hogy a mátrix faktorizációt a szokásos véletlenszerű kiindulási mátrixok helyett az entitások hasonlóságát kihasználó mátrixokból indítsuk. Az így kapott inicializáló séma általános és bármilyen mátrix faktorizáció esetén felhasználható. A séma két lépése a következő: (1) rendeljünk leíróvektorokat az entitásokhoz; (2) tömörítsük a leíróvektorokat, hogy a tömörített információ mérete megegyezzen a jellemzővektorokéval. Az implicit ALS módszeren és öt adatsoron alkalmazva megmutattam, hogy az inicializáló séma jelentősen megnöveli az ajánlási pontosságot (recall és MAP mérőszámok tekintetében).
 - 1.2. tézis: Javasoltam a SimFactor algoritmust, ami olyan jellemzővektorok előállítására képes, amelyek jobban megőrzik az entitások közötti hasonlóságokat. A SimFactor nem igényli a gyakorlatban nehezen kiszámítható teljes hasonlóságmátrix kiszámítását. Öt adatsoron megmutattam, hogy a módszer által létrehozott jellemzővektorok jobban közelíti a hasonlóságokat, mint a leíróvektorok egyszerű tömörítésével kapottak. Megmutattam, hogy az így kapott vektorok általában az inicializálás során is jobban teljesítenek.
 - 1.3. tézis: Javasoltam a Sim²Factor algoritmust, ami olyan jellemző vektorok előállítására képes, amik az entitások egymáshoz való hasonlósága alapján definiált hasonlóság értékeket képesek közelíteni. A Sim²Factor nem igényli a gyakorlatban nehezen kiszámítható teljes hasonlóságmátrix kiszámítását. Megmutattam, hogy az így kapott jellemzővektorok hasznosak az inicializáláskor.
 - 1.4. tézis: Javasoltam, hogy az entitások leírásához használjuk a kontextust. Megmutattam, hogy a kontextus alapú leírók jobbak az inicializáláshoz, mint a metaadat alapúak. Megmutattam, hogy a kontextus és metaadat alapú inicializálások kombinálása tovább javítja az ajánlási pontosságot.
- Kapcsolódó publikációk:
 - B. Hidasi & D. Tikk: Enhancing matrix factorization through initialization for implicit feedback databases. CaRR 2012.
 - B. Hidasi & D. Tikk: Initializing matrix factorization methods on implicit feedback databases.
 Journal of Universal Computer Science, 19(12): 1834–1853, June 2013.

Context-aware faktorizáció implicit adatokon

iTALS – 2. téziscsoport

iTALSx – 3. téziscsoport

Algoritmusok összehasonlítása – 4. téziscsoport

Modellezés

- N_D dimenzió: felhasználók, termékek, contextus1, ...
 - $(u, i, c^{(1)}, ...)$ ennesek a tanítóhalmazban
- Események tenzorba szervezése

•
$$r_{u,i,c^{(1)},\dots} = \begin{cases} 1 & \text{, ha } (u,i,c^{(1)},\dots) \in Tr \\ 0 & \text{egyébként} \end{cases}$$

- Súlyfüggvény
 - $\mathcal{W}: (u, i, c^{(1)}, \dots) \to \mathbb{R}$
 - $\mathcal{W}(u, i, c^{(1)}, \dots) = \begin{cases} w^1(u, i, c^{(1)}, \dots) \gg w^0 &, \text{ ha } (u, i, c^{(1)}, \dots) \in Tr \\ w^0 & \text{egyébként} \end{cases}$
- Pontszerű preferencia becslés
 - Célfüggvény: $L = \sum_{u,i,c^{(1)},\dots}^{S_U,S_I,S_C(1),\dots} \mathcal{W}(u,i,c^{(1)},\dots) (r_{u,i,c^{(1)},\dots} \hat{r}_{u,i,c^{(1)},\dots})^2 + \text{REG}$
 - Értelmezés
 - Esemény megléte → erős jelzés pozitív preferenciára
 - Esemény hiánya → gyenge jelzés negatív preferenciára

Célfüggvény optimalizálása

- Alternating Least Squares (ALS)
 - Iteratív optimalizáló eljárás
 - Egy kivételével az összes feature mátrixot fixáljuk
 - Egy időben egy feature mátrixot számítjuk ki
 - Lineáris modellek esetén a célfüggvény konvex egy adott feature mátrix paramétereiben, ha a többi értéke fix
 - Legkisebb négyzetes megoldás létezik és kiszámolható
- Számítások okos szeparálása
 - A feature mátrixok naív kiszámolása rosszul skálázódna
 - Előre kiszámolható statisztikák
 - Alacsony számításigényű frissítések

iTALS

- N-way model:
 - $\hat{r}_{u,i,c} = 1^T (M^{(U)} \circ M^{(I)} \circ M^{(C)})$
- Tanítás skálázódása:
 - $O(N^+K^2 + (S_U + S_I + S_C)K^3)$
 - Események számában lineáris
 - Köbös a faktorok számában
 - Gyakorlatban négyzetes
- Eredmények
 - Szezonalitással
 - Szekvenciális contexttel
 - iALS MF-hez hasonlítva
 - Jelentős javulás

Data	K	iALS	iTALS (S)	iTALS (Q)
Grocery	20	0.0649	0.0990 (+52.59%)	0.1220 (+88.02%)
	40	0.0714	0.1071 (+50.01%)	0.1339 (+87.59%)
	80	0.0861	0.1146 (+33.04%)	0.1439 (+67.05%)
	20	0.1189	0.1167 (-1.85%)	0.1417 (+19.15%)
TV1	40	0.1111	0.1235 (+11.20%)	0.1515 (+36.38%)
	80	0.0926	0.1167 (+25.99%)	0.1553 (+67.60%)
	20	0.2162	0.1734 (-19.82%)	0.2322 (+7.40%)
TV2	40	0.2161	0.2001 (-7.41%)	0.3103 (+43.60%)
	80	0.2145	0.2123 (-1.02%)	0.2957 (+37.82%)
	20	0.0448	0.0674 (+50.56%)	0.1556 (+247.57%)
LastFM	40	0.0623	0.0888 (+42.61%)	0.1657 (+166.07%)
	80	0.0922	0.1290 (+39.90%)	0.1864 (+102.18%)
	20	0.0633	0.0778 (+22.79%)	0.1039 (+64.07%)
VoD	40	0.0758	0.0909 (+19.96%)	0.1380 (+82.18%)
	80	0.0884	0.0996 (+12.73%)	0.1723 (+94.99%)

2. Téziscsoport - iTALS

- Javasoltam az iTALS algoritmust az implicit feedback alapú kontextusvezérelt ajánlási problémára.
 - 2.1. tézis: Kifejlesztettem az iTALS algoritmust, egy tenzor faktorizációs algoritmust, ami pontszerű preferenciabecslést végez azáltal, hogy a négyzetes hiba súlyozott négyzetösszegére optimalizál. A preferenciákat az N-utas modellel, azaz dimenziónként egy-egy jellemző vektor elemenkénti szorzatában lévő elemek összegével közelíti. Megmutattam, hogy az iTALS jól használható az implicit feedback alapú kontextus-vezérelt problémára úgy, hogy egyeseket használunk a pozitív és nullákat a hiányzó események esetén, mint preferencia értéket, miközben az előbbieket jelentősen felülsúlyozzuk.
 - 2.2. tézis: Megmutattam, hogy az iTALS jelentősen jobban teljesít a recallal kifejezett ajánlási pontosság szempontjából, mint a kontextust figyelembe nem vevő implicit mátrix faktorizáció, valamint egy előszűrésre építő kontextus-vezérelt módszer.
 - 2.3. tézis: Megmutattam, hogy az iTALS hatékonyan tanítható ALS-sel az implicit feedback alapú kontextus-vezérelt ajánlási problémán. Megmutattam, hogy az iTALS a gyakorlatban is hatékonyan tanítható, mivel lineárisan skálázódik az események számával, és négyzetesen a gyakorlatban használt tartományon a látens jellemzők számával.
- Kapcsolódó publikáció
 - B. Hidasi & D. Tikk: Fast ALS-based tensor factorization for context-aware recommendation from implicit feedback. ECML-PKDD 2012.

iTALSx

•
$$r_{u,i,c} = (M^{(U)})^T M^{(I)} + (M^{(U)})^T M^{(C)} + (M^{(I)})^T M^{(C)}$$

Context

Preference

tensor (R)

Items

- Tanítás skálázódása:
 - $O(N^+K^2 + (S_U + S_I + S_C)K^3)$
 - Események számában lineáris
 - Köbös a faktorok számában
 - Gyakorlatban négyzetes
- Eredmények
 - Szezonalitással
 - Szekvenciális contexttel
 - iALS MF-hez hasonlítva
 - Jelentős javulás

Data	K	iALS	iTALSx (S)	iTALSx (Q)
	20	0.0649	0.1027 (+58.35%)	0.1182 (+82.29%)
Grocery	40	0.0714	0.1164 (+63.07%)	0.1299 (+81.92%)
	80	0.0861	0.1406 (+63.23%)	0.1431 (+66.14%)
	20	0.1189	0.1248 (+4.92%)	0.1524 (+28.18%)
TV1	40	0.1111	0.1127 (+1.46%)	0.1417 (+27.53%)
	80	0.0926	0.0942 (+1.67%)	0.1295 (+39.77%)
TV2	20	0.2162	0.2220 (+2.69%)	0.2393 (+10.68%)
	40	0.2161	0.2312 (+6.98%)	0.2866 (+32.61%)
	80	0.2145	0.2223 (+3.62%)	0.3006 (+40.12%)
	20	0.0448	0.0503 (+12.33%)	0.1675 (+274.35%)
LastFM	40	0.0623	0.0599 (-3.85%)	0.1869 (+200.18%)
	80	0.0922	0.0928 (+0.67%)	0.1984 (+115.18%)
VoD	20	0.0633	0.0790 (+24.69%)	0.0821 (+29.67%)
	40	0.0758	0.0916 (+20.87%)	0.1068 (+40.93%)
	80	0.0884	0.0990 (+11.99%)	0.1342 (+54.88%)

User feature matrix

User-item relation

Item feature matrix

relation

 \rightarrow

User-contex

18/32

3. Téziscsoport - iTALSx

- Javasoltam az iTALSx algoritmust, mint egy alternatív megoldást az implicit feedback alapú kontextus-vezérelt ajánlási problémára.
 - 3.1. tézis: Kifejlesztettem az iTALSx algoritmust, egy tenzor faktorizációs algoritmust, ami pontszerű preferencia becslést végez azáltal, hogy a négyzetes hiba súlyozott négyzetösszegére optimalizál. A preferenciákat a páronkénti interakció modellel, azaz dimenziópáronként a megfelelő jellemzővektorok skalárszorzatainak összegével közelíti. Megmutattam, hogy az iTALSx jól használható az implicit feedback alapú kontextus-vezérelt problémára úgy, hogy egyeseket használunk a pozitív és nullákat a hiányzó események esetén, mint preferencia értéket, miközben az előbbieket jelentősen felülsúlyozzuk.
 - 3.2. tézis: Megmutattam, hogy az iTALSx jelentősen jobban teljesít a recallal kifejezett ajánlási pontosság szempontjából, mint a kontextust figyelembe nem vevő implicit mátrix faktorizáció, valamint egy előszűrésre építő kontextus-vezérelt módszer.
 - 3.3. tézis: Megmutattam, hogy az iTALSx hatékonyan tanítható ALS-sel az implicit feedback alapú kontextus-vezérelt ajánlási problémán. Megmutattam, hogy az iTALSx a gyakorlatban is hatékonyan tanítható, mivel lineárisan skálázódik az események számával, és négyzetesen a gyakorlatban használt tartományon a látens jellemzők számával.
- Kapcsolódó publikáció:
 - B. Hidasi: Factorization models for context-aware recommendations. Infocommunications Journal, VI(4):27–34, 2014.

Összehasonlítások

- iTALS és iTALSx
 - iTALS: felhasználó-termék reláció átsúlyozása context függő súlyvektorral
 - Erősebb leíróerő
 - Érzékenyebb a zajokra kis faktorszám esetén (jellemzők összemosódása)
 - iTALSx: felhasználó-termék, felhasználó-context és termékcontext interakciók összessége
 - Gyengébb leíróerő
 - Kis faktorszám esetén is jól teljesít
 - iTALS előnyös, ha az adat sűrűbb (komplexebb) és/vagy magasabb faktorszámot használunk; ellenkező esetben az iTALSx használata javasolt
- Szezonalitás és szekvenciális context
 - Szekvenciális context mindkét algoritmussal jobb eredményeket ad, mint a szezonalitás

- Kísérleteket folytattam iTALS és iTALSx algoritmusokkal, összehasonlítottam őket, valamint meghatároztam egy könnyen használható kontextus dimenziót.
 - 4.1. tézis: Javasoltam egy újszerű kontextus dimenzió, szekvenciális kontextus, használatát ajánlási problémáknál. Egy esemény szekvenciális kontextusa az ugyanezen felhasználó előző eseményének terméke. Megindokoltam, hogy a kontextus széles körben elérhető a gyakorlatban, hiszen csak az események sorrendezhetőségére épít, ami a legtöbb esetben adott. Megmutattam, hogy a szekvenciális kontextus használatával az ajánlás pontossága széles körben (különböző adatsorok, algoritmusok, modellek, jellemző számok esetén) jelentősen megnövelhető a kontextust nem, valamint a szezonalitást használó esetekhez képest.
 - 4.2. tézis: Összehasonlítottam az iTALS (N-utas modell) és az iTALSx (páronkénti modell) algoritmusokat. Az N-utas modell használata megfelelőbb akkor, ha a jellemzők száma magas és/vagy az adatsor sűrűbb; egyébként pedig a páronkénti modell használatát javaslom.

ALS skálázódásának javítása

Közelítő módszerek ALS-re

- Faktorszámban való négyzetes skálázódás
 - Magas faktorszámú modellek használata nem hatékony
 - Ezek általában pontosabbak
- Szűk keresztmetszet az ALS-ben: $K \times K$ méretű lineáris egyenletrendszer megoldása
 - Használjunk közelítő módszereket
- ALS-CD: egyszerre egy feature értéket számoljunk ki, minden más legyen rögzítve
 - Mátrix invertárlás helyett osztás
 - Kihívás: negatív példák hatalmas száma
 - Megoldás: információ tömörítése K + 1 virtuális példába
 - Skálázódás: $O(N_DK^3 + N_DN^+N_IK + K^2\sum_i S_i)$
 - Gyakorlatban: lineáris K-ban
- ALS-CG: LS megoldás közelítése konjugált gradienssel
 - Hatékonyság az együttható mátrix és egy tetszőleges vektor szorzásának hatékonyságán múlik
 - Ez a szorzás megoldható hatékonyan
 - Skálázódás: $O(N_D N^+ N_I K + N_I K^2 \sum_i S_i)$
 - Gyakorlatban: lineáris K-ban

Eredmények

Pontosság

Módszer	ALS-hez hasonló pontosságú	ALS-nél gyengébben teljesít	ALS-nél jobban teljesít	Nem ad eredményt
CG	62 (82.67%)	10 (13.33%)	3 (4%)	0 (0%)
CD	57 (76%)	7 (9.33%)	2 (2.67%)	9 (12%)

- Összehasonlítás
 - CG gyorsabb
 - CG jobban skálázódik
 - CG stabilabb
 - CG jobban közelíti az ALS-t
- Belső iterációszám
 - N_I = 2 jó kompromisszum a futási idő és a pontosság között
 - Pontosságban jelentős különbség csak az 1 és 2 között van

Skálázódás

Trade-off

- Javasoltam két közelítő módszert az ALS tanítás felgyorsítására.
 - 5.1. tézis: Javasoltam egy konjugált gradiens alapú ALS közelítést, ami általánosan használható ALS alapú faktorizációs algoritmusokban. Megmutattam, hogy a módszer a gyakorlatban használt értékek esetén lineárisan skálázódik a látens jellemzők számával. Megmutattam, hogy a megoldás lehetővé teszi magas számú látens jellemző használatát és jobb kompromisszumok felfedezését a futási idő és a pontosság között. Megmutattam, hogy a módszer csak minimálisan módosítja az ajánlások pontosságát az ALS-hez hasonlítva.
 - 5.2. tézis: Javasoltam egy jellemzőnkénti optimalizálásra építő ALS variánst, ami általánosan használható ALS alapú faktorizációs algoritmusokban. Megmutattam, hogy a módszer a gyakorlatban használt értékek esetén lineárisan skálázódik a látens jellemzők számával. Megmutattam, hogy a megoldás lehetővé teszi magas számú látens jellemző használatát és jobb kompromisszumok felfedezését a futási idő és a pontosság között. Megmutattam, hogy a módszer csak minimálisan módosítja az ajánlások pontosságát az ALS-hez hasonlítva.
 - 5.3. tézis: Több szempont szerint is összehasonlítottam a konjugált gradiensre és a
 jellemzőnkénti optimalizálásra építő közelítő megoldásokat. Megmutattam, hogy a konjugált
 gradiens alapú módszer jobb, mivel (a) a pontossága jobban közelíti az ALS-ét; (b) gyorsabb;
 (c) jobban skálázódik; és (d) stabilabb.
 - **5.4. tézis:** Meghatároztam egy jó kompromisszumot a futási idő és az ajánlás pontossága között a közelítő módszerekhez. Ennek eléréséhez azt javasoltam, hogy a belső iterációk számát állítsuk 2-re.
- Kapcsolódó publikáció:
 - B. Hidasi & D. Tikk: Speeding up ALS learning via approximate methods for context-aware recommendations. Knowledge and Information Systems.

GFF – General Factorization Framework

Flexibilis modellezés

- Különféle modellek más szituációban hasznosak
- Az irodalomban két modellt használnak
 - N-way
 - Pairwise
- Ezek szimmetrikusak, ajánlásnál van két kitűntetett dimenzió
- Alap GFF:
 - Tenzorba szervezhető adatokon (SA-MDM) dolgozik
 - A preferenciamodell az algoritmus bemenete
 - Tetszőleges lineáris modell lehet
 - Pointwise veszteségfüggvény
 - Súlyozott négyzetes hibák összege
 - Súlyfüggvényen keresztül egyéb ismeretek is bevihetőek a tanulásba (pl. decay, missing not at random, stb.)
 - Jól skálázódó ALS-CG tanulás

Új modellek

Modell komponensek				
UI	Felhasználó-termék interakció			
USI / UQI / USQI	Context-függően súlyozott felhasználó-termék interakció			
US / UQ	Context-függő felhasználó bias			
IS / IQ	Context-függő termék bias			
SQ	Context interakció, teljes pairwise modellhez			

- Context interakciók nem hasznosak
- Lehetséges modellek száma magas
- Új modellek nem szimmetrikusak
- Léteznek konzisztensen jól teljesítő modellek
 - Interaction model
 - Context-interaction model
 - Modellek sorrendje a faktorszámtól is függ
- State-of-the-art módszerekkel szemben is jól teljesítenek

Grocery	TV1	TV2	LastFM	VoD
0.1504	0.1551	0.2916	0.1984	0.1493
0.1669	0.1482	0.3027	0.2142	0.1509
0.1390	0.1315	0.2009	0.1906	0.1268
0.1390	0.1352	0.2388	0.1884	0.0569
0.1619	0.0903	0.1399	0.1993	0.0335
0.1364	0,1266	0.2819	0.1871	0.1084
0.1388	0.1344	0.2323	0.1873	0.0497
0.1389	0.1352	0.2427	0.1866	0.0558
	0.1504 0.1669 0.1390 0.1390 0.1619 0.1364 0.1388	0.1504 0.1551 0.1669 0.1482 0.1390 0.1315 0.1390 0.1352 0.1619 0.0903 0.1364 0,1266 0.1388 0.1344	0.1504 0.1551 0.2916 0.1669 0.1482 0.3027 0.1390 0.1315 0.2009 0.1390 0.1352 0.2388 0.1619 0.0903 0.1399 0.1364 0,1266 0.2819 0.1388 0.1344 0.2323	0.1504 0.1551 0.2916 0.1984 0.1669 0.1482 0.3027 0.2142 0.1390 0.1315 0.2009 0.1906 0.1390 0.1352 0.2388 0.1884 0.1619 0.0903 0.1399 0.1993 0.1364 0,1266 0.2819 0.1871 0.1388 0.1344 0.2323 0.1873

Data	GFF N-way	GFF Pairwise	GFF Best	LibFM	BPR
Grocery	0.1390	0.1388	0.1669	0.0912	0.1412
TV1	0.1315	0.1344	0.1551	0.1683	0.1365
TV2	0.2009	0.2323	0.3027	0.3081	0.1957
LastFM	0.1906	0.1873	0.2142	0.0652	0.2002
VoD	0.1268	0.0497	0.1509	0.1151	0.0539

Kiterjesztett GFF

- Képes az MDM adatmodell kezelésére
 - DATA = $D_1 \times \cdots \times D_N$, $D_i = A_{i,1} \times \cdots \times A_{i,N_i}$
 - Egy dimenzió több attribútumot is tartalmazhat
- Alkalmazás
 - Termék metaadat felhasználása (M)
 - Sessionben megnézett többi termék felhasználása (X)
- Kiterjesztés
 - Lehetséges attribútum értékekhez feature vektor (másodlagos feature vektor)
 - Ezek súlyozott összege az elsődleges feature vektor
 - A súlyvektor eseményenként fix (nem tanult)
- Tanítás: nem összetett dimenziók számolása változatlan
 - Két fázisú:
 - Súlyozás → elsődleges feature mátrix
 - Többi dimenzió kiszámolása ALS-CG-vel
 - Elsődleges feature vektorok újraszámolása
 - Az eltérés visszaterjesztése a másodlagos featureökre SGD-vel
 - Egy fázisú
 - Másodlagos feature vektorok közvetlen számolása
 - Közelítő számolás: feature vektorokat függetlennek tekintem
 - Valójában nem azok
 - Kell a hatékony számoláshoz

Modell	Eredmény
UI	0.1013
ΧI	0.2248 (+121.97%)
UI+XI	0.2322 (+129.36%)
UM	0.0614 (-39.34%)
UI+UM	0.2166 (+113.87%)
XM	0.2154 (+112.77%)

- Javasoltam egy rugalmas algoritmust (GFF), ami lehetővé teszi, hogy kísérletezzünk újszerű preferencia modellekkel.
 - 6.1. tézis: Kifejlesztettem az általános faktorizációs keretrendszert (General Factorization Framework -- GFF), egy rugalmas faktorizációs algoritmust az implicit feedback alapú kontextus-vezérelt ajánlási problémára. A GFF rugalmassága abban rejlik, hogy a preferencia modell megadható, mint az algoritmus bemenete. A modell tetszőleges számú dimenziót képes kezelni, valamint a köztük lévő lehetséges interakciók halmazának bármely részhalmazát. Bemutattam, hogy ez a rugalmasság lehetővé teszi, hogy kísérletezzünk újszerű preferencia modellekkel. A GFF az egy attribútumos MDM adatmodellre épít, ami megfelelő a gyakorlatban előforduló kontextus-vezérelt problémákhoz.
 - 6.2. tézis: Különféle, újszerű preferencia modelleket javasoltam a kontextus-vezérelt ajánlási problémára. Egy négy dimenziós kontextus-vezérelt ajánlási problémán kiértékeltem az új modelleket ajánlási pontosság szempontjából. A felhasznált kontextus dimenziók olyanok, hogy minden a gyakorlatban előforduló adatsornál létrehozhatóak, amennyiben az események rendelkeznek időbélyeggel, és emiatt különösen fontosak. Megmutattam, hogy több újszerű modell is jobban teljesít, mint az irodalomban megtalálható tradicionális modellek.
 - 6.3. tézis: Megmutattam, hogy a javasolt modellek egyike, az interakció modell, általában is jól teljesít. Ez a
 modell a felhasználó--termék (UI) és a kontextustól függően súlyozott felhasználó--termék (UCI) relációk
 összessége. Öt adatsorból négy esetén ezt volt a legjobb modell, a maradék egy esetben pedig második helyen
 végzett. Az utóbbi adatsoron a legjobb modell a kontextus interakció modell volt, ami közeli rokonságban áll az
 interakció modellel.
 - **6.4. tézis:** Összehasonlítottam a GFF-fel legjobban teljesítő újszerű modelleket a legkorszerűbb faktorizációs módszerekkel. A GFF az újszerű modellekkel jelentősen jobbnak bizonyult, mint a vizsgált módszerek öt adatsorból háromnál és hasonlóan teljesített egyen.
 - 6.5. tézis: Kiterjesztettem a GFF algoritmust, hogy teljesen kompatibilis legyen a többdimenziós adattér modellel (Multidimensional Dataspace Model -- MDM) és így képes legyen további információt, mint például az aktuális session eseményeit vagy termék metaadatokat, is hatékonyan figyelembe venni. Előzetes kísérleteimmel megmutattam, hogy a session események figyelembe vétele jelentősen megnöveli az ajánlási pontosságot.
- Kapcsolódó publikáció:
 - B. Hidasi & D. Tikk: General factorization framework for context-aware recommendations. Data Mining and Knowledge Discovery

Összefoglalás

- Gyakorlatban fontos probléma (top-N ajánlás, implicit adatokból) megoldása faktorizációval
- Pontosabb ajánlások context segítségével
- Context, implicit feedback és faktorizáció összehozása
 - Saját fejlesztésű algoritmusok
- Gyakorlati szempontok, különösen a skálázódás szem előtt tartása
 - Minden módszer lineárisan skálázódik az események számával
 - ALS további gyorsítása közelítő módszerekkel
- Flexibilis modellezés problémájára a GFF a válasz
- Gyakorlati alkalmazások
 - Gravity Research & Development Zrt.-nél
 - Kiterjedt alkalmazás offline POC-kben, ügyfélprojektekben, versenyeken
 - Éles rendszerben is alkalmaztuk
 - "CrowdRec" FP7-es EU projekt

Publikációk

- Tézisekhez kapcsolódó publikációk
 - **B. Hidasi** & D. Tikk: Speeding up ALS learning via approximate methods for context-aware recommendations. Knowledge and Information Systems (KAIS). July 2015.
 - B. Hidasi & D. Tikk: General Factorization Framework for Context-aware Recommendations.
 Data Mining and Knowledge Discovery (DMKD). May 2015.
 - B. Hidasi: Factorization models for context-aware recommendations. Infocommunications Journal. Volume VI. Issue 4. Pages 27-34. December 2014.
 - **B. Hidasi** & D. Tikk: *Initializing Matrix Factorization Methods on Implicit Feedback Databases*. Journal of Universal Computer Science (J.UCS). Volume 19. Issue 12. Pages 1834-1853. October 2013.
 - B. Hidasi: Context-aware preference modeling with factorization Doctoral Symposium at RecSys'15. Vienna, Austria, September 2015.
 - **B. Hidasi** & D. Tikk: Fast ALS-based tensor factorization for context-aware recommendation from implicit feedback. ECML/PKDD. Bristol, United Kingdom, September 2012.
 - **B. Hidasi** & D. Tikk: *Enhancing matrix factorization through initialization for implicit feedback databases.* 2nd Workshop on Context-awareness in Retrieval and Recommendation. Lisbon, Portugal, February 2012.
- További ajánlórendszerekhez kapcsolódó publikációk
 - **B. Hidasi**, M. Quadrana, A. Karatzoglou, D. Tikk: *Parallel Recurrent Neural Network Architectures for Feature-rich Session-based Recommendations.* 10th ACM Conference on Recommender Systems, RecSys 2016.
 - B. Hidasi, A. Karatzoglou, L. Baltrunas, D. Tikk: Session-based recommendations with recurrent neural networks. International Conference on Learning Representations (ICLR). San Juan, Puerto Rico, May, 2016.
 - B. Kille, F. Abel, B. Hidasi, S. Albayrak. Using interaction signals for job recommendations. Mobile Computing, Applications and Services: 7th International Conference, MobiCASE2015., Berlin, Germany, November 12-13, 2015.
 - B. Hidasi & D. Tikk: Approximate modeling of continuous context in factorization algorithms.
 4th Workshop on Context-awareness in Retrieval and Recommendation. Amsterdam, The Netherlands, April 2014.
 - **B. Hidasi** & D. Tikk: *Context-aware item-to-item recommendation within the factorization framework* at 3rd Workshop on Context-awareness in Retrieval and Recommendation. Rome, Italy, February 2013.
 - B. Hidasi & D. Tikk: Context-aware recommendations from implicit data via scalable tensor factorization. arXiv preprint.
 - D. Zibriczky, B. Hidasi, Z. Petres, D. Tikk: Personalized recommendation of linear content on interactive TV platforms: beating the cold start and noisy implicit user feedback. Workshop on TV and multimedia personalization (TVMMP). Montreal, Canada, July 2012.
- További publikációk
 - B. Hidasi, Cs. Gáspár-Papanek: ShiftTree: An Interpretable Model-Based Approach for Time Series Classification. ECML/PKDD. Athens, Greece, September 2011.
 - B. Hidasi: Újfajta, automatikus, döntési fa alapú adatbányászati módszer idősorok osztályozására. Végzős Konferencia. Budapest, Hungary, May 2009.
- Dolgozatok
 - **B. Hidasi:** *Modell alapú idősor-osztályozó fejlesztése és kiterjesztése*. M.Sc. Thesis, Budapest University of Technology and Economics, Department of Telecommunications and Mediainformatics.
 - **B. Hidasi:** Újfajta, automatikus, döntési fa alapú adatbányászati módszer idősorok osztályozására. B.Sc. Thesis, Budapest University of Technology and Economics, Department of Telecommunications and Mediainformatics.
 - B. Hidasi: Az idősor-osztályozás problémájának megoldása új, döntési fa alapú adatbányászati algoritmussal. XXIX. National Students' Scientific Conference (OTDK), Debrecen, 2009.
- Független hivatkozások száma: 72 (Google Scholar alapján, 2016. 06. 27.)

Köszönöm a figyelmet!