Dirac's Electron Sea

- ▶ Energy levels of electrons are $\mathbb{Z} + 1/2$, e.g. 1/2, -7/2, 101/2.
- Each energy level is either filled or empty
- Vacuum is when every negative energy state is filled, no positive levels filled
- ► A missing negative energy state corresponds to a positron with that energy
- ▶ A *state* is finite number of electrons and positrons

Visualize states as Maya Diagrams

Charge 0, energy n states $\stackrel{1:1}{\longleftrightarrow}$ partition of n

Cells, hooks, arms and legs in fermionic viewpoint?

Cells, hooks, arms, and legs in fermionic viewpoint!

- ▶ A cell \square ∈ λ is determined by its hand and foot.
- ▶ Given an E in boundary that appears before an S in boundary path, there's a cell that has that E as its hand, and that S as its foot. Such a pair (E, S) is called an *inversion*
- In fermionic viewpoint, an inversion is a pair of energy levels $e_1 > e_2$, with e_1 filled, and e_2 empty.
- Moving the electron with energy e_1 to e_2 corresponds to removing the rim hook of \square so $h(\square) = e_1 e_2$
- ▶ $a(\Box)$ is the number of empty states between e_1 and e_2
- \blacktriangleright $\ell(\Box)$ is the number of filled states between e_1 and e_2

Abacus

To analyze hook length divisible by k, spread the electrons over k runners:

