Определение. f — допустимая функция на [a,b)

 $\int_a^b f$ — абсолютно сходится, если:

- 1. $\int_a^b f$ сходится
- 2. $\int_a^b |f| \operatorname{сходится}$

Теорема 1. f — доп. на [a,b). Тогда эквивалентны следующие утверждения:

- 1. $\int_a^b f$ абсолютно сходится
- 2. $\int_a^b |f| \operatorname{сходится}$
- 3. $\int_a^b f^+, \int_a^b f^-$ оба сходятся

Примечание. $f^+ = \max(f, 0), f^- = \max(-f, 0)$

Доказательство. $1 \Rightarrow 2$ — тривиально

$$2\Rightarrow 3:0\leq f^{\pm}\leq |f|$$

$$3 \Rightarrow 1: f = f^+ - f^- \Rightarrow \int_a^b f = \int_a^b f^+ - \int_a^b f^- \quad |f| = f^+ + f^- \Rightarrow \int_a^b |f| = \int_a^b f^+ + \int_a^b f^- \quad \Box$$

Пример.

$$\int_{10}^{+\infty} \frac{\sin x}{x} dx \stackrel{\text{to yactsm}}{=} \left[\begin{array}{cc} u = \frac{1}{x} & du = -\frac{1}{x^2} dx \\ dv = \sin x dx & v = -\cos x \end{array} \right] = -\cos \frac{1}{x} \bigg|_{10}^{+\infty} - \int_{10}^{+\infty} \frac{\cos x}{x^2} dx$$

Также можно было оставить нижнюю границу 0, но использовать $v=1-\cos x$

Первое слагаемое очевидно конечно, а второе конечно по абсолютной сходимости: $\left|\frac{\cos x}{x^2}\right| \leq \frac{1}{x}$. Тогда искомый интеграл сходится.

Пример.

$$\int_{1}^{+\infty} \frac{\sin x}{x^p} dx$$

- При каких p сходится?
- При каких p абсолютно сходится?
- 1. $p>1\Rightarrow$ абсолютно сходится, т.к. $\left|\frac{\sin x}{x^p}\right|<\frac{1}{x^{p-1}}$
- 2. $p > 0 \Rightarrow$ сходится, т.к. (по частям):

$$\int_{1}^{+\infty} \frac{\sin x}{x^{p}} = -\frac{\cos x}{x^{p}} \bigg|_{1}^{+\infty} - p \int_{1}^{+\infty} \frac{\cos x}{x^{p+1}}$$

Первое конечно, второе абсолютно сходится.

3. $p \le 0$, по критерию Коши:

$$\exists A_n,B_n o b$$
 $\int_{A_n}^{B_n}f
eq 0\Rightarrow \int_a^bf$ расходится $A_n:=2\pi n,B_n:=2\pi n+\pi$ $\int_{A_n}^{B_n}rac{\sin x}{x^p}dx\geq (2\pi n)^{-p}\int_{A_n}^{B_n}\sin x$ расходится

Итого для $p \leq 0$ расходится.

4. 0 , абсолютная сходимость?

$$\int_{1}^{+\infty} \frac{|\sin x|}{x^{p}}$$

(a) Первый способ. $A_n := \pi n, B_n := 2\pi n$

$$\int_{A_n}^{B_n} \frac{|\sin x|}{x^p} \ge \frac{1}{(2\pi n)^p} \quad \underbrace{\int_{A_n}^{B_n} |\sin x|}_{\text{Iliquially } n \text{ apok curvea}} = \frac{2n}{(2\pi n)^p} = Cn^{1-p} \not\to 0$$

(b) Второй способ.

$$\int_{1}^{+\infty} \frac{|\sin x|}{x^{p}} \ge \int_{1}^{+\infty} \frac{\sin^{2} x}{x^{p}} = \int_{1}^{+\infty} \frac{1 - \cos(2x)}{2x^{p}} = \underbrace{\int_{1}^{+\infty} \frac{1}{2x^{p}}}_{+\infty} - \underbrace{\int_{1}^{+\infty} \frac{\cos 2x}{2x^{p}}}_{\text{При } p > 0 \text{ сходится}}_{\text{как в пункте } 2}$$

Итого абсолютной сходимости нет.

Примечание. 1. $\int_a^b f - \operatorname{сходится} \not \Rightarrow f(x) \xrightarrow{x \to b - 0} 0$

$$\int_{1}^{+\infty} x \sin x^{3} dx = \left[\begin{array}{cc} t = x^{3} \\ x = \sqrt[3]{t} & dx = \frac{1}{3} t^{-2/3} dt \end{array} \right] = \frac{1}{3} \int_{1}^{+\infty} t^{-1/3} \sin t dt = \frac{1}{3} \int_{1}^{+\infty} \frac{\sin t}{t^{1/3}} dt$$

Этот интеграл сходится, но $f(x) \not\to 0$

2.
$$\int_a^b f$$
 — абсолютно сходится $\not \Rightarrow f(x) \xrightarrow{x \to b - 0} 0$

 $Упражнение. \int_1^{+\infty} x \sin x^3 dx$ не сходится абсолютно

Теорема 2. Признак Абеля-Дирихле.

$$f$$
 — допустима на $[a,b), g \in C^1[a,b)$

Если выполняется 1 или 2, то $\int_a^b fg - \operatorname{cxoдutcs}$

1. (a) $F(A) := \int_a^A f(x) dx, A \in [a, b), F$ ограничена, т.е.:

$$\exists K : \forall A \in [a,b) \quad \left| \int_a^A f \right| \le K$$

- (b) g(x) монотонна, $g(x) \xrightarrow{x \to b 0} 0$
- 2. (a) $\int_a^b f(x) dx$ сходится, необязательно абсолютно
- (b) g(x) монотонна, g(x) ограничена, т.е.: $\exists L \ \, \forall x \in [a,b) \quad |g(x)| \leq L$ 1 часть Дирихле, 2 Абель.

Доказательство. 1.

$$\int_{a}^{b} fg = F(x)g(x)\Big|_{a}^{b} - \int_{a}^{b} F(x)g'(x)dx$$

$$\lim_{x\to b-0}\underbrace{F(x)}_{\text{opp.}}\underbrace{g(x)}_{\text{б.м.}}=0\Rightarrow F(x)g(x)\Big|_a^b-\text{конечн.}$$

Покажем абсолютную сходимость, из нее следует обычная сходимость:

$$\int_a^b |F(x)g'(x)|dx \le \int_a^b K \int_a^b |g'| =$$

Можно снять модуль, т.к. g монотонна $\Rightarrow \mathrm{sign}(g') = \mathrm{const}$

$$=\pm K\int_a^b g'=\pm Kg(x)\Big|_a^b=\pm K(\underbrace{\lim_{x\to b-0}g(x)}_0-\underbrace{g(a)}_{\text{\tiny KOH.}})$$

2. $\alpha := \lim_{x \to b-0} g(x) - \text{кон.}$

$$\int_{a}^{b} fg = \underbrace{\int_{a}^{b} f\alpha}_{\text{KOH. IIO (a)}} + \underbrace{\int_{a}^{b} f(g - \alpha)}_{\text{CXOДИТСЯ IIO 1}}$$

Пояснение насчет сходимости $\int_a^b f(g-\alpha)$:

- (a) $F:A\mapsto \int_a^A f$ ограничена, т.к. $\int_a^b f$ сходится
- (b) $g \to \alpha \Rightarrow (g \alpha) \to 0$

Упражнение.

$$\int_{10}^{+\infty} \sin(x^3 - x) dx = \int_{10}^{+\infty} \underbrace{(3x^2 - 1)\sin(x^3 - x)}_{f} \underbrace{\frac{1}{3x^2 - 1}}_{2} dx$$

Сходится по признаку Дирихле.

Дальше в лекции была проверка на абсолютную сходимость.

Пример. Интеграл Дирихле.

$$\int_0^{+\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$$

Доказательство.

$$\cos x + \cos 2x + \ldots + \cos nx = \frac{\sin\left(n + \frac{1}{2}\right)x}{2\sin\frac{x}{2}} - \frac{1}{2}$$

Проверим формулу:

$$2\sin\frac{x}{2}\cos x + 2\sin\frac{x}{2}\cos 2x + \dots + 2\sin\frac{x}{2}\cos nx = \sin\left(n + \frac{1}{2}\right)x - \sin\frac{x}{2}$$

$$\sin\frac{3}{2}x - \sin\frac{1}{2}x + \dots + \sin\left(n + \frac{1}{2}\right)x - \sin\left(n - \frac{1}{2}\right)x = \sin\left(n + \frac{1}{2}\right)x - \sin\frac{x}{2}$$

$$\int_0^\pi \cos kx = \frac{1}{k}\sin kx\Big|_0^\pi = 0$$

Проинтегрируем исходное выражение по $[0, \pi]$:

$$0 = \int_0^\pi \dots = \int_0^\pi \frac{\sin\left(n + \frac{1}{2}\right)x}{2\sin\frac{x}{2}} dx - \frac{\pi}{2}$$

$$\int_0^\pi \frac{\sin\left(n + \frac{1}{2}\right)x}{2\sin\frac{x}{2}} dx = \frac{\pi}{2}$$

$$\int_0^\pi \frac{\sin\left(n + \frac{1}{2}\right)x}{x} dx = \begin{bmatrix} y = \left(n + \frac{1}{2}\right)x\\ x = \frac{1}{n + \frac{1}{2}}y \end{bmatrix} dx = \frac{1}{n + \frac{1}{2}} dy \end{bmatrix} =$$

$$= \int_0^{\left(n + \frac{1}{2}\right)\pi} \frac{\sin y}{\frac{1}{n + \frac{1}{2}}} \frac{1}{y} dy = \int_0^{\left(n + \frac{1}{2}\right)\pi} \frac{\sin y}{y} dy$$

Итого:

$$\int_0^{\pi} \frac{\sin\left(n + \frac{1}{2}\right)x}{x} dx = \int_0^{\left(n + \frac{1}{2}\right)\pi} \frac{\sin y}{y} dy$$

Проверим:

$$\int_0^\pi \frac{\sin\left(n+\frac{1}{2}\right)x}{2\sin\frac{x}{2}}dx - \int_0^\pi \frac{\sin\left(n+\frac{1}{2}\right)x}{x}dx \xrightarrow[n \to +\infty]{} 0$$

$$\int_0^\pi \sin\left(n+\frac{1}{2}\right)xh(x)dx$$

$$h(x) = \frac{1}{2\sin\frac{x}{2}} - \frac{1}{x} = \frac{x-2\sin\frac{x}{2}}{2x\sin\frac{x}{2}} = \frac{\mathcal{O}(x^3)}{x^2} \xrightarrow[x \to 0]{} 0$$

$$\int_0^\pi \sin\left(n+\frac{1}{2}\right)xh(x)dx = \left[\begin{array}{c} f = h(x) \\ g' = \sin\left(n+\frac{1}{2}\right)x \end{array}\right] =$$

$$= \frac{-1}{n+\frac{1}{2}}\cos\left(n+\frac{1}{2}\right)xh(x)\Big|_0^\pi + \frac{1}{n+\frac{1}{2}}\int_0^\pi \cos\left(n+\frac{1}{2}\right)h'(x)dx$$

$$h'(x) = -\frac{\cos\frac{x}{2}}{4\sin^2\frac{x}{2}} + \frac{1}{x^2} = \frac{x^2\cos\frac{x}{2} - 4\sin^2\frac{x}{2}}{4x^2\sin^2\frac{x}{2}} = \frac{x^2\left(1-\frac{x^2}{4} + o(x^3)\right) - 4\left(\frac{x}{2} - \frac{x^3}{48} + o(x^3)\right)}{4x^2\sin^2\frac{x}{2}} \xrightarrow[x \to 0]{} \text{const}$$

$$\Rightarrow h'(0) = \text{const} \text{ (той, которая lim) и } h \in C^1[0, \pi]$$

$$\int_0^\pi \sin\left(n+\frac{1}{2}\right)xh(x)dx = \underbrace{\frac{-1}{n+\frac{1}{2}}}_{\text{orp.}}\underbrace{\cos\left(n+\frac{1}{2}\right)x}_{\text{orp.}}\underbrace{h(x)}_{\text{orp.}}\Big|_0^\pi + \underbrace{\frac{1}{n+\frac{1}{2}}}_0\int_0^\pi \cos\left(n+\frac{1}{2}\right)\underbrace{h'(x)}_{\text{orp., t.k.} \in C^1}_{\text{orp., temp.}}dx$$

$$\underbrace{\int_0^{\left(n+\frac{1}{2}\right)\pi} \frac{\sin x}{x} dx}_{\rightarrow \text{инт. Дирихле}} = \underbrace{\int_0^{\pi} \frac{\sin \left(n+\frac{1}{2}\right) x}{x} dx - \int_0^{\pi} \frac{\sin \left(n+\frac{1}{2}\right) x}{2 \sin \frac{x}{2}} dx}_{\rightarrow 0} + \int_0^{\pi} \frac{\sin \left(n+\frac{1}{2}\right) x}{2 \sin \frac{x}{2}} dx \rightarrow \frac{\pi}{2}$$

Верхний предел и нижний предел последовательности

Определение. Частичный предел вещественной последовательности x_n — предел вдоль подпоследовательности n_k :

$$n_k \to +\infty, n_1 < n_2 < \dots \quad \lim x_{n_k} \in \overline{\mathbb{R}}$$

Пример.
$$x_n = (-1)^n, n_i = 2i$$

M3137y2019

Лекция 8

Определение. Дана последовательность x_n .

•
$$y_n := \sup(x_n, x_{n+1}, x_{n+2}, \ldots)$$

•
$$z_n := \inf(x_n, x_{n+1}, x_{n+2}, \ldots)$$

Примечание. 1. $y_n \downarrow, z_n \uparrow$

$$2. \ z_n \le x_n \le y_n$$

3. Если изменить конечное число элементов x_n , то изменится конечное число элементов y_n, z_n

Пример. 1. $x_n = (-1)^n, y_n \equiv 1, z_n \equiv -1$

2.
$$x_n = (1 + (-1)^n)n, y_n \equiv +\infty, z_n \equiv 0$$

• Верхний предел
$$x_n : \overline{\lim_{n \to +\infty}} x_n := \lim_{n \to +\infty} y_n$$

• Нижний предел
$$x_n$$
: $\lim_{n \to +\infty} x_n := \lim_{n \to +\infty} z_n$

Верхний и нижний пределы всегда существуют.

Теорема 3. Свойства верхнего и нижнего пределов

1.
$$\lim x_n \leq \overline{\lim} x_n$$

2.
$$\forall n \ x_n \leq \tilde{x}_n \Rightarrow$$
:

(a)
$$\overline{\lim} x_n < \overline{\lim} \tilde{x}_n$$

(b)
$$\underline{\lim} x_n \leq \underline{\lim} \tilde{x}_n$$

3.
$$\lambda \geq 0 \Rightarrow \overline{\lim}(\lambda x_n) = \lambda \overline{\lim} x_n; \underline{\lim} \lambda x_n = \lambda \underline{\lim} x_n$$
, считаем что $0 \cdot (\pm \infty) = 0$

4.
$$\overline{\lim} - x_n = -\underline{\lim} x_n; \underline{\lim} - x_n = -\overline{\lim} x_n$$

5.
$$\overline{\lim}(x_n+y_n) \leq \overline{\lim}x_n+\overline{\lim}y_n$$
, если правая часть имеет смысл, т.е. нет ситуации вида $+\infty-\infty$

$$\underline{\lim}(x_n + y_n) \ge \underline{\lim}x_n + \underline{\lim}y_n$$

6.
$$t_n \to l \in \mathbb{R} \Rightarrow \overline{\lim}(x_n + t_n) = \overline{\lim}x_n + l$$

7.
$$t_n \to l \in (0, +\infty) \Rightarrow \overline{\lim}(t_n x_n) = l\overline{\lim} x_n$$

Доказательство. 1. $y_n \le x_n \le z_n$, по предельному переходу тривиально.

2.
$$z_n = \sup(x_n, x_{n+1}, \ldots), \tilde{z}_n = \sup(\tilde{x}_n, \tilde{x}_{n+1}, \ldots) \Rightarrow z_n \leq \tilde{z}_n$$

3.
$$\sup \lambda E = \lambda \sup E$$

4.
$$\sup -E = -\inf E$$

5.
$$\sup(x_n + y_n, x_{n+1} + y_{n+1}, \ldots) \le \sup(x_n, x_{n+1}, \ldots) + \sup(y_n, y_{n+1}, \ldots)$$

6.
$$\forall \varepsilon>0 \ \exists N_0 \ \forall k>N_0 \ x_k+l-\varepsilon < x_k+t_k < x_k+l+\varepsilon$$
 $\lessdot N>N_0$, перейдем к sup по $k\geq N$:

$$y_N + l - \varepsilon < \sup(x_N + t_N, x_{N+1} + t_{N+1}, \ldots) \le y_N + l + \varepsilon$$

Предельный переход:

$$\overline{\lim} x_N + l - \varepsilon \le \overline{\sup}(x_N + t_N) \le \overline{\lim} x_N + l + \varepsilon$$
$$\lim(x_n + t_n) = \overline{\lim} x_n + l$$

7. То же самое.

М3137у2019 Лекция 8