Polyg0nA 2025-09-24

Machine Learning Homework 2

ID: 112652011

Reading and Explaining Lemmas

Your task is to read the following paper:

Ryck et al., On the approximation of functions by tanh neural networks

Focus on Lemma 3.1 and Lemma 3.2.

Lemma 3.1

Let $k\in N_0$ and $s\in 2N-1$. Then it holds that for all $\epsilon>0$ there exists a shallow tanh neural network $\Psi_{s,\epsilon}:[-M,M]\to R^{\frac{s+1}{2}}$ of width $\frac{s+1}{2}$ such that

$$\max_{p \le s, p \text{ odd}} \left\| f_p - (\Psi_{s, \epsilon})_{\frac{p+1}{2}} \right\|_{W^{k, \infty}} \le \epsilon$$

Moreover, the weights of $\Psi_{s,\epsilon}$ scale as $O(\epsilon^{-s/2}(2(s+2)\sqrt{2M})^{s(s+3)})$ for small ϵ and large s.

Explanation

This lemma states that for any odd power monomials (i.e. $y^1, y^3, y^5, ...$), we are able to construct a tanh neural network with single hidden layer (**shallow**) to approximate the function y^p with an error less than ϵ in the $W^{k,\infty}$ norm, with the width of $\frac{s+1}{2}$ (the # of neurons in the hidden layer).

The reason why this works is because tanh() is an odd function. Its Taylor series expansion around zero contains only odd-power terms. The paper use some method to isolate and scale these derivatives, eventually creating an approximation of the monomial y^p .

Meaning of symbols

- p: The power of the monomial. In this lemma, p is an odd integer.
- s: The highest power of the monomial we want to approximate. •
- $f_p(y) := y^p$: The object function.
- $\Psi_{s,\epsilon}$: The shallow N.N. we constructed. It is a multi-output network designed to approximate all odd-degree monomials from power 1 to s
- $(\Psi_{s,\epsilon})_{\frac{p+1}{2}}$: The $\frac{p+1}{2}$ -th output of the neural network $\Psi_{s,\epsilon}$. This index maps the sequence of odd powers (1, 3, 5, ...) to a sequence of consecutive integer indices (1, 2, 3, ...). For example, the 1st output approximates y^1 , the 2nd output approximates y^3 , and so on.
- $\|\cdot\|_{W^{k,\infty}}$: **Sobolev norm**. It measures the maximum error not only for the function itself but also for all its derivatives up to order k.
- ϵ : Maximum acceptable error
- $\max_{p \le s, p \text{ odd}}$: It takes the maximum error across all the approximations for the odd monomials from y^1 up to y^s .

Lemma 3.2

Let $k \in \mathbb{N}_0$, $s \in 2\mathbb{N}-1$ and M>0. For every $\epsilon>0$ there exists a shallow tanh neural network $\Psi_{s,\epsilon}:[-M,M] \to \mathbb{R}^s$ of width $\frac{3(s+1)}{2}$ such that

$$\max_{p \le s} \left\| f_p - (\Psi_{s,\epsilon})_p \right\|_{W^{k,\infty}} \le \epsilon$$

Explanation

This lemma extends the result of Lemma 3.1 to cover all integer-power monomials (both even and odd) up to a degree s. It proves that a shallow tanh network can still approximate any monomial y^p (for $p \le s$) to an arbitrary precision ϵ in the strong $W^{k,\infty}$ norm.

The main challenge is that tanh is an odd function, so it cannot directly represent even functions like y^2 or y^4 . The authors overcome this with a clever **recursive construction**. The core idea is based on an algebraic identity (Eq. 25 in the paper) which expresses an even-degree monomial y^{2n} in terms of:

- 1. Two **odd-degree** monomials: $(y + \alpha)^{2n+1}$ and $(y \alpha)^{2n+1}$.
- 2. A series of **lower-order even-degree** monomials: y^{2k} for $k \le n$.

This creates a recursive path.

For example,

- If we want to approximate y^4 , we need to approximate $(y+\alpha)^5$, $(y-\alpha)^5$ and y^0,y^2
- If we want to approximate y^2 , we need to approximate $(y+\alpha)^3$, $(y-\alpha)^3$ and y^0

Since we are already able to approximate the odd-degree function, so we can approximate the even-degree function, too.