MATH 4338 Main Problem 6

Andy Lu

Proof. Suppose f is uniformly continuous on I_1 and I_2 . Let $\epsilon>0$. Then, $\exists \, \delta_1>0$ such that $\forall i,j\in I_1$ if $|i-j|<\delta_1$, then $|f(i)-f(j)|<\frac{\epsilon}{2}$. Similarly, $\exists \, \delta_2>0$ such that $\forall i,j\in I_2$ if $|i-j|<\delta_2$, then $|f(i)-f(j)|<\frac{\epsilon}{2}$. Consider $I_1\cup I_2$, where $I_1=[a,b]$ and $I_2=[c,d]$. If c-b>0, pick

Consider $I_1 \cup I_2$, where $I_1 = [a, b]$ and $I_2 = [c, d]$. If c - b > 0, pick $\delta = min\{\delta_1, \delta_2, (c - b)\}$. Otherwise, pick $\delta = min\{\delta_1, \delta_2\}$. As $\delta_1, \delta_2 > 0$ and c - b > 0, $\delta > 0$. Note, $\delta \in \mathbb{R}$. Suppose $i, j \in I_1 \cup I_2$. Then there are 2 cases:

Case 1: $I_1 \cap I_2 \neq \emptyset$

Let $k \in I_1 \cap I_2$. Then,

$$\begin{split} |i-j| &= \\ &= |i-k+k-j| \\ &\leq |i-k|+|-1||j-k| \qquad \text{[by Triangle Inequality]} \\ &= |i-k|+|j-k| \end{split}$$

As $k \in I_1$ and f is uniformly continuous on I_1 , then $|i-k| < \delta_1$ and $|f(i)-f(k)| < \frac{\epsilon}{2}$. As $k \in I_2$ and f is uniformly continuous on I_2 , then $|j-k| < \delta_2$ and $|f(j)-f(k)| < \frac{\epsilon}{2}$. Suppose $|i-k| < \delta$ and $|j-k| < \delta$, then,

$$|f(i) - f(k)| + |f(j) - f(k)| =$$

$$< \delta_1 + \delta_2$$

$$= \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon$$

Case 2: $I_1 \cap I_2 = \emptyset$

Without loss of generality, let $i \in I_1$ and $j \in I_2$. Suppose $|i - j| < \delta$. As $|i - j| \ge c - b$, there are two cases:

Case 1: $\delta = c - b$

This is a contradiction because $|i-j| \ge c-b$ and |i-j| < c-b.

Case 2: $\delta < c - b$

This is a contradiction because $|i - j| \ge c - b$ and $|i - j| < \delta < c - b$.

Thus our hypothesis is false and the conclusion is vacuously true.

Thus, f is uniformly continuous on $I_1 \cup I_2$.