HDFS(Hadoop Distributed File System)

Agenda

- What is HDFS?
- HDFS Concepts
- Namenode & Datanode
- Files and Blocks
- Block Replication

What is HDFS?

- HDFS is a filesystem designed for storing very large files with streaming data access patterns, running on clusters of commodity hardware.
- Appears as a single disk
- Runs on top of a native filesystem
 - Ext3,Ext4,XFS
- Based on Google's Filesystem GFS

HDFS Concepts

HDFS works well with

Very large Files

 Files that are hundreds of megabytes, gigabytes, or terabytes in size.

Streaming data access

- Write-once, read-many-times pattern.
- The time to read the whole dataset is more important than the latency in reading the first record.

Commodity hardware

- It doesn't require expensive, highly reliable hardware.

HDFS is not a good fit for-

Low-latency data access

- HDFS is optimized for delivering a high throughput of data.
- Not good for applications that require low-latency access to data(ms response).
- HBase is currently a better choice for low-latency access.

Lots of small files

 Namenode holds filesystem metadata in memory, governing the limit to the number of files.

Multiple writers, arbitrary file modifications

 No support for multiple writers or for modifications at arbitrary offsets in the file.

Namenodes and Datanodes (Master-Worker)

HDFS Daemons

Namenode

- manages the File System's namespace/meta-data/file blocks
- Runs on 1 machine to several machines

Datanode

- Stores and retrieves data blocks
- Reports to Namenode
- Runs on many machines

Secondary Namenode

- It periodically merges the namespace image with the edit log to prevent the edit log from becoming too large.
- Requires similar hardware as Namenode machine
- Not used for high-availability not a backup for Namenode

Namenode

- It maintains the filesystem tree and the metadata for all the files and directories in the tree.
- This information is stored persistently on the local disk in the form of two files:
 - namespace image
 - edit log.
- It also knows the datanodes on which all the blocks for a given file are located.

Datanode

- Datanodes are the workhorses of the filesystem.
- They store and retrieve blocks when they are told to (by clients or the namenode).
- They report back to the namenode periodically with lists of blocks that they are storing.

Files and Blocks

- Files are broken into blocks
- Block- the minimum amount of data that it can read or write.
 - 128 MB by default

Files and Blocks

Files and Blocks

- File smaller than single block does not occupy a full block's worth of underlying storage.
- Uses replication for providing fault tolerance and availability.

Block Replication

- Namenode determines replica placementReplica placements are rack aware
 - 1st replica on the local rack
 - 2nd replica on the local rack but different machine
 - 3rd replica on the different rack

Block Replication

Resources

Hadoop: The Definitive Guide

- Tom White (Author)
- O'Reilly Media; 4th Edition.

