1 NP

Berechnungsprobleme

- \bullet Sind alle Probleme in polynomieller Zeit lösbar? $(O(n^k))$
- \bullet Nein \Rightarrow Manche nur in superpolynomieller Zeit lösbar
- Polynomielle Probleme: "einfach"
- Superpolynomielle Probleme: "hart"

Abbildung 1: NP-Meme

Definition — Klasse P

- Klasse aller Polynomialzeitprobleme
- Problem ist effizient lösbar gdw. es in polynomieller Zeit lösbar ist
- Gilt für Polynome beliebigen Grades (auch n^k)
- Zeitkomplexität n^k mit großem k bedenklich, jedoch fast nie notwendig
- $\bullet \ n$ beschreibt die Länge der Eingabe

Beispiele: Binäre Addition, Kürzeste Wege, Sortieren, ...

Definition — Klasse NP

- Enthält "einfach zu verifizierende" Probleme (polynomieller Zeit)
- Enthält Probleme mit "kurzem Beweis" (Länge polynomiell in Länge der Instanz)
- Also: Klasse aller Probleme, deren Lösung in Polynomialzeit verifizierbar ist
- Beispiele: Soduko, 3D-Matching,...
- Beispiel: Faktorisierungsproblem
 - Jede nicht-Primzahl kann eindeutig als Primzahlprodukt geschrieben werden
 - $-35 = 5 \cdot 7, 117 = 3 \cdot 3 \cdot 13,...$
 - Faktorsieren auf klassischen Computern schwer
 - $-n \longrightarrow^{schwer} p, q$
 - $\overline{-n, p, q} \longrightarrow^{leicht} \text{ist } n = p \cdot q?$

Rucksackproblem auch in polynomieller Laufzeit verifizierbar

Hamilton-Kreis-Problem

Definition – Hamiltonischer Kreis Zyklus, der alle Knoten, aber nicht unbedingt alle Kanten enthält

- ullet Entscheidungsalgorithmus listet alle möglichen Permutationen der Knoten aus G auf
- Prüfung bei jeder Permutation, ob es ein Hamiltonischer Kreis ist
- Laufzeit:
 - Kodierung via Adjazenzmatrix: m Knoten \Rightarrow Matrix mit n=m x m Einträgen
 - m! mögliche Permutationen der Knoten
 - $-\Omega(m!) = \Omega(\sqrt{n}!) = \Omega(2^{\sqrt{n}})$
 - \Rightarrow superpolynomielle Laufzeit (liegt **nie** in $O(n^k)$)
- Allerdings: Einfacher, wenn nur Beweis verifiziert werden muss
 - \Rightarrow Test, ob es sich um Permutation der Knoten handelt
 - ⇒ Test, ob alle angegebenen Kanten auf Kreis im Graphen existieren
 - \Rightarrow Verifikationsalgorithmus V mit quadratischer Laufzeit
- Verifikationsalgorithmus: V(x,y) = 1/0 (1, falls Kreis bzw. 0, falls nicht)
- Damit: Hamilton-Kreis \in NP

Entscheidungsproblem vs Optimierungsproblem

- Optimierungsproblem: Lösung nimmt bestimmten Wert an
- Entscheidungsproblem: Binäre Antwort (Ja/Nein)
- Bei NP Betrachtung von Entscheidungsproblemen
- Optimierungsproblem oft in verwandtes Entscheidungsproblem umwandelbar
- Verwandtes Entscheidungsproblem: dem zu optimierenden Wert wird eine Schranke auferlegt

P versus NP

$$L \in P \longrightarrow L \in NP \longrightarrow P \subseteq NP$$

- Für viele wichtige Probleme ist jedoch unbekannt, ob sie in P (effizient) lösbar sind
- Unbekannt ob $P \neq NP$
- Intuitive Frage: Ist das Finden eines Beweises schwieriger als dessen Überprüfung?
 - \Rightarrow Ja, also $P \neq NP$ gilt
- \bullet In den letzten 50 Jahren kein Beweis für P=NP
- Eines der wichtigsten offenen Probleme der theoretischen Informatik
- Konsequenzen eines Beweises von P = NP:
 - -P = NP: dramatisch, vieles bisher schwieriges einfacher lösbar (Rucksack, Kryptographie)
 - $-P \neq NP$: **nicht dramatisch**, mgl. interessante Konsequenzen in Kryptographie

NP-Vollständigkeit

- Problem befindet sich in NP
- Problem ist so "schwer" wie jedes Problem in NP
- Beweis: Zeigen, dass kein effizienter Algorithmus existiert
- Werkzeug: Reduktionen (zum Vergleich verschiedener Probleme)

Definition — NP-Härte/NP-Schwere

- Klassifikation von Problemen als schwierig, trotz fehlender genauer Zuordnung
- Starke Indikatoren, dass Problem L nicht in P ist:
 - L ist mindestens so schwierig, wie alle anderen Probleme in NP
 - Daraus folgt, dass L nur in P, wenn P = NP (unwahrscheinlich)

Definition – NP-Schwer Problem L ist **NP-schwer**, wenn $L' \leq_p L$ für alle $L' \in NP$

Definition — NP-Vollständig Problem L ist **NP-vollständig**, wenn L sowohl NP-schwer als auch in NP ist z.B.: Hamilton-Kreis ist NP-vollständig

Reduktionen

Idee - Reduktion

- Betrachte Problem A, das wir in polynomieller Zeit lösen wollen
- Bereits bekannt: Problem B (in polynomieller Zeit lösbar)
- Benötigt wird Prozedur, die Instanzen der Probleme ineinander überführt
 - ⇒ Transformation benötigt polynomielle Zeit
 - \Rightarrow Antworten sind gleich

Beispiel:

- Intuitiv: Reduktion von A auf B, wenn Umformulierung möglich
 - ⇒ Jede Instanz A kann leicht in Instanz von B umformuliert werden
 - ⇒ Lösung der Instanz B liefert Lösung von Instanz A
- Reduktion: Lösen von linearen Gleichungen auf quadratische Gleichnungen
 - Lineare Gleichung $ax + b = 0 \Rightarrow x = \frac{-b}{a}$
 - Quadratische Gleichung $ax^2 + bx + 0 = 0 \Rightarrow x = \frac{-b}{a}, x = 0$
 - Quadratische Gleichung liefert also auch Lösung für lineare Gleichung

Formale Definition:

A lässt sich auf B in **polynomieller Zeit reduzieren**, mit Schreibweise $A \leq_p B$, wenn eine in polynomieller Zeit berechenbare Funktion $f : \{0,1\}^* \to \{0,1\}^*$ existiert, sodass für alle $x \in \{0,1\}^*$ gilt:

$$x \in A$$
 genau dann, wenn $f(x) \in B$

Travelling-Salesman Problem

Beschreibung:

- Reisender plant Rundreise durch mehrere Städte
- Start und Ziel ist eine vorgegebene Stadt
- Jede Stadt nur einmal besuchen
- Ziel: Minimale Reisekosten

Problem:

- Anzahl der verschiedenen Rundreisen (n-1)!
- Stark nach oben explodierende Zahlen
- ullet Brute-Force für große n praktisch unmöglich
- Es existiert kein effizienter Algorithmus, der das TSP effizient löst
- TSP ist NP-vollständig

Beweis NP-Vollständigkeit

• Zeigen: TSP gehört zu NP und TSP ist NP-schwer

TSP gehört zu NP

- \bullet Gegeben: Instanz des Problems TSP, Folge der n Knoten der Tour (Zertifikat)
- Verifikationsalgorithmus überprüft, ob Folge jeden Knoten genau einmal enthält
- \bullet Außerdem Aufsummieren der Kantenkosten und überprüfen, ob diese maximal k ist
- \bullet Verifikation läuft in polynomieller Laufzeit \Rightarrow gehört zu NP

TSP ist NP-schwer

- Wir zeigen $HAM KREIS \leq_p TSP$
- Start: Instanz von HAM KREIS mit G = (V, E)
- ullet Konstruiere Instanz von TSP

$$\Rightarrow G' = (V, E') \text{ mit } E' = \{(i, j) : i, j \in V \text{ und } i \neq j\}$$

- Definiere Kostenfunktion c(i,j)=0, falls $(i,j)\in E\ /\ c(i,j)=1$, falls $(i,j)\notin E$
- Instanz von TSP ist $\langle G', c, 0 \rangle$ (Konstruktion in polynomieller Zeit) (0: Kosten von 0)
- Zeige jetzt: G besitzt hamiltonischen Kreis \Leftrightarrow G' enthält Tour mit Kosten ≤ 0
- ullet \Rightarrow Graph G besitzt einen hamiltonischen Kreis h

Jede Kante von h gehört zu E und daher besitzt laut Kostenfunktion der Graph G' die Kosten 0.

Damit ist h eine Tour in G' mit den Kosten 0.

 $\bullet \ \Leftarrow \operatorname{Graph} G$ besitzt eine Tour h'mit Kosten kleiner gleich 0

Die Kosten der Kanten in E' haben die Werte 0 und 1. Die Kosten der Tour betragen exakt 0 und jede Kante muss die Kosten 0 haben.

Damit hat h' nur Kanten von E.

Damit folgt, dass h' ein Hamiltonischer Kreis des Graphen G ist.