Missing Data Project Results

Anindro Bhattacharya

Winter 2022

1 NeuMiss Architecture

1.1 Real Missing Data

The NeuMiss architecture was trained on a diabetes dataset containing missing values with the following hyperparameters:

- depth = 9
- # of epochs = 100
- batch size = 10
- learning rate = 0.01/8

	Log Loss (Binary Cross Entropy Loss)
Neumann with residual connections	10.673
Neumann without residual connections	28.960

Table 1: Log loss for NeuMiss applied to diabetes dataset containing missing values

1.2 Masking a Complete Dataset

The NeuMiss architecture was trained on a diabetes dataset containing no missing values with the following hyperparameters:

- depth = 9
- # of epochs = 100
- batch size = 10
- learning rate = 0.01/4

Random Forest Classifier was trained with $n_{informative=4}$, $n_{redundant=0}$, $max_{depth=8}$ using sklearn.

Log Loss (Binary Cross Entropy Loss)	AUROC
5.589	0.5
38.149	0.536
31.169	0.5
	38.149

Table 2: Log loss and AUROC for NeuMiss and Random Forest Classifier applied to diabetes dataset without any data amputation

	MCAR	MAR	MNAR
Neumann with residual connections	0.457	0.588	0.597
Neumann without residual connections	0.506	0.503	0.707

Table 3: AUROC for NeuMiss applied to diabetes dataset masked with various mechanisms of missingness

1.3 Estimating $(\Sigma_{obs(m)})^{-1}$

The actual covariance matrix is given below:

The following is the estimated covariance matrix with MCAR masking:

The following is the estimated covariance matrix with MAR masking:

The following is the estimated covariance matrix with MNAR masking:

	MCAR	MAR	MNAR
MSE	0.245	0.160	0.241

Table 4: Mean squared error (MSE) of estimated $(\Sigma_{obs(m)})^{-1}$ with MCAR, MAR and MNAR masking