UNIT – 2 : DATA PREPROCESSING (Easy English Notes)

• 1. Why to Preprocess Data

Meaning:

- Data Preprocessing means cleaning and converting raw data into a proper format before analysis.
- Real-world data is often:
 - Incomplete (missing values),
 - Noisy (contains errors/outliers),
 - Inconsistent (spelling or format mistakes).

Examples:

- Missing value → Occupation = " "
- Error in data → Salary = "abcxy"
- Inconsistent → "Gujarat" & "Gujrat"

Purpose:

- Follows the rule: Garbage In → Garbage Out (GIGO).
 → Poor quality data = wrong results.
- Data preprocessing improves data quality for better decision-making.
- **✓ Note:** Around **90% of work** in data mining is done on data cleaning and transformation.

2. Data Cleaning

Meaning:

Cleans data by fixing missing, wrong, or duplicate information.

- Tasks in Data Cleaning:
 - 1. Fill missing values
 - 2. Identify outliers and smooth noisy data
 - 3. Correct inconsistent data
 - 4. Remove redundancy

1) Fill Missing Values

Methods:

- 1. **Ignore the tuple** delete record with missing data (if few).
- 2. **Fill manually** not practical for large data.
- 3. Use global constant replace with "Unknown" or -∞.
- 4. Use Mean/Median
 - o For normal data → use **Mean**
 - For skewed data → use Median
- 5. Use Mean/Median of same class replace within that class.
- 6. **Use most probable value** predict using **regression** or **decision tree**.

2) Identify Outliers and Smooth Noisy Data

Techniques:

- 1. **Binning** group data into bins, replace with bin mean/median/boundary.
- 2. **Regression** fit data to a line/function to find patterns.
- 3. Clustering group similar data and detect outliers.

Example (Binning)

Data: 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34 → Divide into bins (equal depth):

- Bin 1: 4, 8, 9, 15 \rightarrow Mean = 9
- Bin 2: 21, 21, 24, 25 \rightarrow Mean = 23
- Bin 3: 26, 28, 29, 34 \rightarrow Mean = 29

Replace values with bin mean.

3) Correct Inconsistent Data

- Solve spelling/grammar issues (e.g., "Gujrat" → "Gujarat").
- Use:
 - Domain knowledge
 - Standard formatting
 - o Reference tables (master data)
 - Duplicate detection tools

4) Resolve Redundancy

- Occurs when same data is stored multiple times.
- Example: Customer info stored with every purchase record.
- Solution:
 - Use Normalization
 - Use Foreign Keys
- **Result:** Data becomes accurate, consistent, and non-repetitive.

⊘ 3. Data Integration

Meaning:

Combining data from multiple sources into one consistent dataset.

© Purpose:

- Merge related data
- Remove duplicates
- Ensure same format and meaning

Schema Integration

Match attributes from different databases.

Example: A.cust_id ≡ B.cust#

* Entity Identification Problem

• Identify real-world entities across sources.

Example: cust_number = customer_id

🗱 Redundancy & Correlation Analysis

- Redundancy → storing same info twice
 Example: annual revenue = sum of monthly revenue
- **Correlation** → check relation between attributes
 - o **Positive** \rightarrow both increase (Study hours \uparrow , Marks \uparrow)
 - **Negative** \rightarrow one increases, other decreases (Temp \uparrow , Hot coffee sales \downarrow)
 - o **None** → unrelated (Shoe size vs IQ)

Ξ Chi-Square (χ²) Test for Nominal Data

Used to check if two categorical attributes are related.

Steps:

- 1. Define hypothesis (H_0 : no relation, H_1 : relation exists)
- 2. Make contingency table (Observed data)
- 3. Calculate Expected values:

$$E = \frac{(\text{Row Total}) \times (\text{Column Total})}{\text{Grand Total}}$$

4. Find $\chi^2 = \Sigma (O-E)^2 / E$

Large $\chi^2 \rightarrow$ strong relation between variables.

4. Data Transformation

Meaning:

Converting data into another useful format for analysis.

Methods:

Method Description

Smoothing Removes noise

Feature Construction Create new attributes

Aggregation Summarize data

Normalization Scale data to smaller range

Discretization Convert numeric to categorical

1) Min–Max Normalization

$$v' = \frac{v - Min(A)}{Max(A) - Min(A)} \times (NewMax - NewMin) + NewMin$$

Example:

$$Min = 16$$
, $Max = 40$

$$\rightarrow$$
 (30 - 16)/(40 - 16) = 0.58

• 2) Decimal Scaling

$$v' = \frac{v}{10^j}$$

where j = smallest integer so Max(|v'|) < 1

Example:

Max = $3 \rightarrow$ divide by $10 \rightarrow$ values between 0 and 1.

• 3) Z-Score Normalization

$$v' = \frac{v - \mu}{\sigma}$$

where μ = mean, σ = standard deviation.

Example:

$$\mu$$
 = 54,000, σ = 16,000, v = 73,600 \rightarrow z = 1.225

• 4) Discretization

Convert continuous \rightarrow discrete intervals.

Example:

Age 10–22 = Young, 23–70 = Mature, 71–100 = Senior.

• 5) Concept Hierarchy

Arrange data into levels:

Country \rightarrow State \rightarrow City \rightarrow Street

Higher level = general, lower level = detailed.

5. Data Reduction

Meaning:

Reducing data size but keeping important info.

© Purpose:

- Faster analysis
- Less storage
- Maintain data accuracy

Techniques:

Type Purpose

Dimensionality Reduction Reduce attributes

Numerosity Reduction Reduce records

Compression Compact data storage

• 1) Dimensionality Reduction

Remove irrelevant attributes.

Techniques:

• PCA (Principal Component Analysis)

Converts many variables \rightarrow few main ones capturing most information. Steps: Standardize \rightarrow Covariance \rightarrow Eigenvalues \rightarrow Sort \rightarrow Transform.

• Attribute Subset Selection

Keep only useful attributes (using forward/backward/decision tree).

• 2) Numerosity Reduction

Replace large data with smaller representation.

Techniques:

- Histograms group values into bins.
- Clustering group similar data, use cluster centers.
- **Sampling** select part of data representing full dataset.

Types of Sampling:

Type Description

SRSWOR Random selection, no repeats

SRSWR Random selection, repeats allowed

Cluster Sampling Select whole clusters randomly

Stratified Sampling Sample from each group (strata)

3) Data Compression

Store same data in smaller space.

Type Description Example

Lossless 100% recoverable ZIP, PNG

Lossy Some info lost MP3, JPEG

6. Data Discretization

Meaning:

Convert continuous numeric data \rightarrow discrete (category) data.

E.g., Age = $23 \rightarrow$ "Mature".

Techniques:

Method Description

Binning Divide into intervals, replace by mean/median

Histogram Analysis Use data distribution for bins

Clustering Group similar values

Decision Tree Auto-split intervals

Correlation Use related attributes to make bins

Used to make data simpler and more understandable.

7. Concept Hierarchy (Detailed)

Meaning:

Organize data in **multiple levels** — from detailed to summarized.

Example:

 $\mathsf{Country} \to \mathsf{State} \to \mathsf{City} \to \mathsf{Street}$

Level Example Distinct Values

1 Country 15

2 State 365

3 City 3,567

4 Street 6,74,339

Operations:

- **Roll-up:** Move up (City → State → Country)
- **Drill-down:** Move down (Country → State → City)
- Helps in summarizing, comparing, and analyzing data efficiently.

UNIT – 2 Summary Chart

Topic Key Points

Preprocessing Prepare raw data

Cleaning Fix errors, fill missing values

Integration Combine multiple data sources

Transformation Normalize, scale, convert

Reduction Make data smaller & faster

Discretization Convert numeric → category

Concept Hierarchy Arrange data levels for summary

✓ FINAL RESULT:

After all preprocessing steps: