Lecture 25

Agenda

Convolutional Neural Networks (CNN)

- Motivation
- Convolutions
 - Stride
 - Dilation
- Padding
 - Zero
 - Reflection
- Pooling
- Receptive Field
- LeNet

Motivation

Deep Big Simple Neural Nets Excel on Hand- written Digit Recognition

Table 1: Error rates on MNIST test set.

ID	architecture	test error for	best test	simulation	weights
	(number of neurons in each layer)	best validation [%]	error [%]	time [h]	[milions]
1	1000, 500, 10	0.49	0.44	23.4	1.34
2	1500, 1000, 500, 10	0.46	0.40	44.2	3.26
3	2000, 1500, 1000, 500, 10	0.41	0.39	66.7	6.69
4	2500, 2000, 1500, 1000, 500, 10	0.35	0.32	114.5	12.11
5	9 × 1000, 10	0.44	0.43	107.7	8.86

https://arxiv.org/abs/1003.0358

Motivation

<u>J Physiol.</u> 1959 Sep 2; 147(2): 226–238.2. doi: 10.1113/jphysiol.1959.sp006238

Single unit activity in striate cortex of unrestrained cats

D. H. Hubel

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1357023/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1557912/

Filters

https://ai.stanford.edu/~syyeung/cvweb/tutorial1.html

Convolution

 $\verb|https://indoml.com/2018/03/07/student-notes-convolutional-neural-networks-cnn-introduction/2018/03/07/student-notes-convolutional-neural-networks-cnn-introduction/2018/03/07/student-notes-convolutional-neural-networks-cnn-introduction/2018/03/07/student-notes-convolutional-neural-networks-cnn-introduction/2018/03/07/student-notes-convolutional-neural-networks-cnn-introduction/2018/03/07/student-notes-convolutional-neural-networks-cnn-introduction/2018/03/07/student-notes-convolutional-neural-networks-cnn-introduction/2018/03/07/student-notes-convolutional-neural-networks-cnn-introduction/2018/03/07/student-notes-convolutional-neural-networks-cnn-introduction/2018/03/07/student-notes-convolutional-neural-networks-cnn-introduction/2018/03/07/student-notes-convolutional-neural-networks-cnn-introduction/2018/03/07/student-notes-convolution-neural-neur$

Convolution

Convolution and Receptive Field

Source: https://youtu.be/G3VjGWTsoSA?si=pMqaaL89hA_rCvDq

Convolution with Stride

https://indoml.com/2018/03/07/student-notes-convolutional-neural-networks-cnn-introduction/

Dilated Convolution

Padding

Dimension: 6 x 6 https://indoml.com

Pooling

Shift Invariant (with max-pooling)

Learnable Filters

Learnable Filters

LeNet 1998

PROC. OF THE IEEE, NOVEMBER 1998

Gradient-Based Learning Applied to Document Recognition

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

 $\verb|http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf|$

LeNet 1998

- ► Trained on MNIST
- ► End-to-end
- Augmentation was used
- ► About 60,000 parameters
- ► Test error 0.8

