Лабораторная работа 4

Задание для самостоятельного выполнения

Хамдамова Айжана

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение задания	7
4	Выводы	18

Список иллюстраций

3.1	скрипт для файла tcl
3.2	продолжение скрипта
3.3	График изменения размера окна ТСР на линке 1-го источника 10
3.4	График изменения размера окна ТСР на всех источниках 11
3.5	изменения размера длины очереди
3.6	размера средней длины очереди
3.7	код для gnuplot
3.8	График изменения размера окна ТСР на линке 1-го источника 15
3.9	График изменения размера окна ТСР на всех источниках 16
3.10	График изменения размера длины очереди
3.11	График изменения размера средней длины очереди

Список таблиц

1 Цель работы

Выполнить задание для самостоятельного выполнения. Построить описанную моделируемую сеть.

2 Задание

Описание моделируемой сети: — сеть состоит из N TCP-источников, N TCP-приёмников, двух маршрутизаторов R1 и R2 между источниками и приёмниками (N — не менее 20); — между TCP-источниками и первым маршрутизатором установлены дуплексные соединения с пропускной способностью 100 Мбит/с и задержкой 20 мс очередью типа DropTail; — между TCP-приёмниками и вторым маршрутизатором установлены дуплексные соединения с пропускной способностью 100 Мбит/с и задержкой 20 мс очередью типа DropTail; — между маршрутизаторами установлено симплексное соединение (R1—R2) с пропускной способностью 20 Мбит/с и задержкой 15 мс очередью типа RED, размером буфера 300 пакетов; в обратную сторону — симплексное соединение (R2—R1) с пропускной способностью 15 Мбит/с и задержкой 20 мс очередью типа DropTail; — данные передаются по протоколу FTP поверх TCPReno; — параметры алгоритма RED: qmin = 75, qmax = 150, qw = 0, 002, pmax = 0.1; — максимальный размер TCP-окна 32; размер передаваемого пакета 500 байт; время моделирования — не менее 20 единиц модельного времени.

- 1. Для приведённой схемы разработать имитационную модель в пакете NS-2.
- 2. Построить график изменения размера окна TCP (в Xgraph и в GNUPlot);
- 3. Построить график изменения длины очереди и средней длины очереди на первом маршрутизаторе.
- 4. Оформить отчёт о выполненной работе.

3 Выполнение задания

Откроем файл .tcl на редактирование, в нем построим сеть. (рис. [3.1]) Зададим N = 30 TCP-источников, N = 30 TCP-приёмников, два маршрутизатора г1 и г2 между источниками и приёмниками. Между TCP-источниками и первым маршрутизатором установим дуплексные соединения с пропускной способностью 100 Мбит/с и задержкой 20 мс очередью типа DropTail; между TCP-приёмниками и вторым маршрутизатором установлены дуплексные соединения с пропускной способностью 100 Мбит/с и задержкой 20 мс очередью типа DropTail; между маршрутизаторами установлено симплексное соединение (R1–R2) с пропускной способностью 20 Мбит/с и задержкой 15 мс очередью типа RED, размером буфера 300 пакетов; в обратную сторону - симплексное соединение (R2–R1) с пропускной способностью 15 Мбит/с и задержкой 20 мс очередью типа DropTail. Данные передаются по протоколу FTP поверх TCPReno. Зададим также параметры алгоритма RED: qmin = 75, qmax = 150, qw = 0, 002, рmax = 0.1. Также нам нужно выполнить мониторинг окна TCP и мониторинг очереди. Листинг такой программы выглядит следующим образом:(рис. [3.2])

```
**Companies of Oberta Simulator |

**Companies Oberta Simulator |

**Topic Oberta Oberta Simulator |

**Topic Oberta Ober
```

Рис. 3.1: скрипт для файла tcl

```
# Запуск хдгарh с графиками окна ТСР и очереди:

# запуск хдгарh с графиками окна ТСР и очереди:

# секс хдгарh - fg pink - bg purple - bb - tk x time - t "TCPRenoCWND" WindowVsTimeRenoOne & exec хдгарh - fg pink - bg purple - bb - tk x time - t "TCPRenoCWND" WindowVsTimeRenoAll & exec хдгарh - bb - tk x time - y queue temp. q & exec хдгарh - bb - tk x time - y queue temp. q & exec хдгарh - bb - tk x time - y queue temp. q & exec хдгарh - bb - tk x time - y queue temp. q & exec nam out.nam & exit o

# Формирование файла с даннами о размере окна ТСР:

# Oopмирование файла с даннами о размере окна ТСР:

# Oopмирование файла с даннами о размере окна ТСР:

# Oopmuposanue файла с даннами о размере окна ТСР:

# Oopmuposanue файла с даннами о размере окна ТСР:

# Set time 0.01

# set town [sn now]

# set cund [stcpSource set cwnd_]

# puts $file "snow Scund"

# sns at [expr $now+$time] "plotWindow $tcpSource $file"

# Set r1 [$ns node]

# set r2 [$ns node]

# sns simplex-link $r1 $r2 20Mb 15ms RED

# sns simplex-link $r2 $r1 15Mb 20ms DropTail

# set n1($i) [$ns node]

# sns duplex-link $n1($i) $r1 160Mb 20ms DropTail

# set tcp($i) [$ns node]

# sns duplex-link $n2($i) $r1 160Mb 20ms DropTail

# set tcp($i) [$ns create-connection TCP/Reno $n1($i) TCPSink $n2($i) $i]

# MOHUTOPUHT paamepa okha TCP:

# MOHUTOPUHT paamepa okha T
```

Рис. 3.2: продолжение скрипта

Запустив созданную программу на выполнение получим пат файл со схемой

моделируемой сети (рис. [??]). (рис. [??])

Также получим графики изменения размера окна TCP на линке 1-го источника (рис. [3.3]) и на всех источниках (рис. [3.4]). Графики построены с помощью xgraph.

Рис. 3.3: График изменения размера окна ТСР на линке 1-го источника

Рис. 3.4: График изменения размера окна ТСР на всех источниках

Еще получим графики изменения размера длины очереди (рис. [3.5]) и размера средней длины очереди (рис. [3.6]). Графики построены с помощью xgraph.

Рис. 3.5: изменения размера длины очереди

Рис. 3.6: размера средней длины очереди

Напишем программу для построения графиков в GNUPlot:(рис. [3.7])

```
*/home/openmodelica/mip/labns/lab4_2 - Mousepad
 Файл Правка Поиск Вид Документ Справка
 #!/usr/bin/gnuplot -persist
# задаём текстовую кодировку,
# тип терминала, тип и размер шрифта
set encoding utf8
set term pngcairo font "Helvetica,9"
# задаём выходной файл графика
set out 'window_1.png'
# задаём название графика
set title "Изменение размера окна TCP на линке 1-го источника при N=30"
# подписи осей графика
set xlabel "t[s]" font "Helvetica, 10"
set ylabel "CWND [pkt]" font "Helvetica, 10"
# построение графика, используя значения
# 1-го и 2-го столбцов файла WindowVsTimeRenoOne
plot "WindowVsTimeRenoOne" using ($1):($2) with lines title "Размер окна ТСР"
# задаём выходной файл графика
set out 'window_2.png'
# задаём название графика
set title "Изменение размера окна TCP на всех N источниках при N=30"
# построение графика, используя значения
# 1-го и 2-го столбцов файла WindowVsTimeRenoAll
plot "WindowVsTimeRenoAll" using ($1):($2) with lines title "Размер окна ТСР"
# задаём выходной файл графика
set out 'queue.png'
# задаём название графика
set title "Изменение размера длины очереди на линке (R1—R2)"
# подписи осей графика
set xlabel "t[s]" font "Helvetica, 10"
set ylabel "Queue Length [pkt]" font "Helvetica, 10"
# 1-го и 2-го столбцов файла temp.q
plot "temp.q" using ($1):($2) with lines title "Текущая длина очереди"
# задаём выходной файл графика
set out 'av_queue.png'
```

Рис. 3.7: код для gnuplot

Сделаем исполняемым и запустим его. Получим 4 графика. Графики изменения размера окна ТСР на линке 1-го источника (рис. [3.8]) и на всех источниках (рис. [3.9]).

Рис. 3.8: График изменения размера окна ТСР на линке 1-го источника

Рис. 3.9: График изменения размера окна ТСР на всех источниках

Графики изменения размера длины очереди (рис. [3.10]) и размера средней длины очереди (рис. [3.11]).

Рис. 3.10: График изменения размера длины очереди

Рис. 3.11: График изменения размера средней длины очереди

4 Выводы

В результате выполнения данной лабораторной работы была разработана имитационная модель в пакете NS-2, построены графики изменения размера окна TCP, изменения длины очереди и средней длины очереди.