Particle spectrograph

Wave operator and propagator

$ au_{1^{-}}^{\#2}{}_{lpha}$	0	0	0	$-\frac{2ik(t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2t_5(t_1+t_3))}$	$\frac{i\sqrt{2}k(6k^2r_5+t_1+4t_3)}{(1+2k^2)^2(3t_1t_3+2k^2r_5(t_1+t_3))}$	0	$\frac{2 k^2 (6 k^2 r_5 + t_1 + 4 t_3)}{(1 + 2 k^2)^2 (3 t_1 t_3 + 2 k^2 r_5 (t_1 + t_3))}$
${\mathfrak r}_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^{-}\alpha}^{\#2}$	0	0	0	$-\frac{\sqrt{2} (t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2t_5(t_1+t_3))}$	$\frac{6k^2r_5+t_1+4t_3}{(1+2k^2)^2(3t_1t_3+2k^2r_5(t_1+t_3))}$	0	$-\frac{i\sqrt{2}k(6k^2r_5+t_1+4t_3)}{(1+2k^2)^2(3t_1t_3+2k^2r_5(t_1+t_3))}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{2(t_1+t_3)}{3t_1t_3+2k^2r_5(t_1+t_3)}$	$-\frac{\sqrt{2} (t_1-2t_3)}{(1+2 k^2) (3t_1 t_3+2 k^2 r_5 (t_1+t_3))}$	0	$\frac{2ik(t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2r_5(t_1+t_3))}$
$\tau_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_5+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$		$\frac{-2k^2r_5+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1 + k^2 t_1}$	0	0	0	0
'	$\sigma_1^{\#1} \dagger^{lphaeta}$	$\sigma_{1}^{\#2} + \alpha^{\beta}$	$t_1^{#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_{1}^{#2} + \alpha$

	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1^{+}\alpha\beta}^{\#2}$	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1}^{\sharp 1}{}_{lpha}$	$\omega_{1-\alpha}^{\#2}$	$f_{1-\alpha}^{\#1}$	$f_{1-\alpha}^{\#2}$
$\omega_1^{\sharp 1} \dagger^{lpha eta}$	$k^2 r_5 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2} \dagger^{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$f_{1+}^{\#1}\dagger^{\alpha\beta}$	$\frac{i kt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\#1} \dagger^{\alpha}$	0	0	0	$\frac{1}{6} \left(6 k^2 r_5 + t_1 + 4 t_3 \right)$	<u>t₁-2t₃</u> 3 √2	0	$\frac{1}{3}$ i k (t ₁ - 2 t ₃)
$\omega_1^{#2} \dagger^{\alpha}$	0	0	0	$\frac{t_1-2t_3}{3\sqrt{2}}$	<u>t1+t3</u> 3	0	$\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)$
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	$-\frac{1}{3}ik(t_1-2t_3)$	$-\frac{1}{3}i\sqrt{2}k(t_1+t_3)$	0	$\frac{2}{3}k^2(t_1+t_3)$

$\omega_{2}^{\#1}{}_{lphaeta}f_{2}^{\#1}{}_{lphaeta}\omega_{2}^{\#1}{}_{lphaeta\chi}$	0	0	<u>†1</u> 2
$f_{2}^{\#1}_{\alpha\beta}$	$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0
	$\frac{t_1}{2}$	$\frac{ikt_1}{\sqrt{2}}$	0
,	$\omega_2^{\#1} + ^{\alpha\beta}$	$f_2^{#1} + \alpha \beta$	$\omega_2^{\#1} +^{lphaeta\chi}$

$\sigma_{0^{\text{-}}}^{\#1}$	0	0	0	$\frac{1}{k^2 r_2 - t_1}$
$\tau_{0}^{\#2}$	0	0	0	0
$\tau_{0}^{\#1}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$\sigma_{0}^{\#1}$	$\frac{1}{(1+2k^2)^2t_3}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	0	0
	$\sigma_{0}^{\#1}$ †	$\tau_{0}^{\#1} +$	$\tau_{0}^{\#2}$ †	$\sigma_{0}^{\#1}\dagger$

	$\omega_{0}^{\#1}$	$f_{0}^{#1}$	$f_{0+}^{#2}$	$\omega_0^{\#1}$
$\omega_{0^+}^{\sharp 1}\dagger$	t_3	$-i \sqrt{2} kt_3$	0	0
$f_{0}^{#1}\dagger$	$i \sqrt{2} kt_3$	$2k^2t_3$	0	0
$f_{0+}^{#2}\dagger$	0	0	0	0
$\omega_{0}^{\sharp 1}$ †	0	0	0	$k^2 r_2 - t_1$

	$\sigma_{2^{+}lphaeta}^{\#1}$	$ au_2^{\#1}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#1} \dagger^{lphaeta\chi}$	0	0	$\frac{2}{t_1}$

Source constraints/gauge generator				
SO(3) irreps	Multiplicities			
$\tau_{0+}^{#2} == 0$	1			
$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	1			
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3			
$\tau_{1}^{\#1}{}^{\alpha} == 0$	3			
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3			
$\tau_{2+}^{\#1\alpha\beta} - 2 i k \sigma_{2+}^{\#1\alpha\beta} == 0$	5			
Total constraints:	16			

Massive and massless spectra

Massive partic	le
Pole residue:	$\frac{6t_1t_3(t_1+t_3)-3r_5(t_1^2+2t_3^2)}{2r_5(t_1+t_3)(-3t_1t_3+r_5(t_1+t_3))} > 0$
Polarisations:	3
Square mass:	$-\frac{3t_1t_3}{2r_5t_1+2r_5t_3} > 0$
Spin:	1
Parity:	Odd

	Massive particle				
	Pole residue:	$-\frac{1}{r_2} > 0$			
9	Polarisations:	1			
- ?	Square mass:	$\frac{t_1}{r_2} > 0$			
	Spin:	0			
	Parity:	Odd			

(No massless particles)

Unitarity conditions

 $r_2 < 0 \&\& r_5 < 0 \&\& t_1 < 0 \&\& 0 < t_3 < -t_1$