Question	Answer	Marks	Guidance
(a)	$4 \times 0^2 - 0 + \frac{1}{2}k^2 = 0 - a$	M1	Equating the equations of curve and line and substituting $x = 0$. Condone slight errors e.g. \pm sign errors.
	$4 \times \left(\frac{3}{4}\right)^2 - \frac{3}{4}k + \frac{1}{2}k^2 = \frac{3}{4} - a$	M1	Equating the equations of curve and line and substituting $x = \frac{3}{4}$. Condone slight errors e.g. \pm sign errors.
	k=2, a=-2	A1 A1	WWW
	Alternative method for question 5(a)		
	$(x-0)\left(x-\frac{3}{4}\right) = 0 \text{ or } x(4x-3) = 0 \implies 4x^2 - 3x = 0$	*M1	Use 0, $\frac{3}{4}$ to form a quadratic equation. Do not allow
			$\left(x+0\right)\left(x+\frac{3}{4}\right)=0.$
	$4x^{2} - kx + \frac{1}{2}k^{2} = x - a \text{leading to} 4x^{2} - (k+1)x + \frac{1}{2}k^{2} + a[=0]$	DM1	Equating the equations of curve and line and rearranging so that terms are all on same side. Condone slight errors e.g. \pm sign errors.
	k=2, a=-2	A1 A1	WWW
	Alternative method for question 5(a)		
	$-\frac{b}{a} = \frac{3}{4} + 0 \text{ and } \frac{c}{a} = 0 \times \frac{3}{4}$	*M1	Using sum and product of roots. Condone \pm sign errors.
	$\frac{k+1}{4} = \frac{3}{4}$ and $\frac{\frac{1}{2}k^2 + a}{4} = 0$	DM1	Equating the equations of curve and line and equating to $\frac{3}{4}$ and 0.
	k = 2, a = -2	A1 A1	WWW
		4	

Question	Answer	Marks	Guidance
(b)	$4x^2 - kx + \frac{1}{2}k^2 = x + \frac{7}{2} \implies 4x^2 - kx - x + \frac{1}{2}k^2 - \frac{7}{2}[=0]$	*M1	OE Substitute $a = -\frac{7}{2}$ and rearrange so that terms are all on same
	2 2 2		side, condone \pm sign errors. Watch for multiples.
	$(k+1)^2 - 4 \times 4\left(\frac{1}{2}k^2 - \frac{7}{2}\right)$	*DM1	Use of $b^2 - 4ac$ with the coefficients from <i>their</i> 3-term quadratic. Both coefficients 'b' and 'c' must consist of two components.
	$\Rightarrow 7k^2 - 2k - 57$	A1	OE
	(k-3)(7k+19) or other valid method	DM1	Factorising or use of the formula or completing the square. Must be evidence of an attempt to solve for this mark. Dependent upon both previous method marks.
	$k=3, k=-\frac{19}{7}$	A1	OE e.g. AWRT -2.71. No ISW if inequalities used. SC: If second DM1 not scored, SC B1 available for correct final answers.
	Alternative method for question 5(b)		
	$8x - k = 1$ and $4x^2 - kx + \frac{1}{2}k^2 = x + \frac{7}{2}$	*M1	Equating gradients and equating line and curve.
	$4x^2 - (8x - 1)x + \frac{1}{2}(8x - 1)^2 = x + \frac{7}{2}$ or	*DM1	Forming an equation in x or k only.
	$4\left(\frac{k+1}{8}\right)^2 - k\left(\frac{k+1}{8}\right) + \frac{1}{2}k^2 = \frac{k+1}{8} + \frac{7}{2}$		
	$28x^2 - 8x - 3$ or $7k^2 - 2k - 57$	A1	OE A correct 3 term quadratic in x or k only.
	(14x+3)(2x-1) or $(k-3)(7k+19)$ or other valid method	DM1	OE Factorising or use of the formula or completing the square. Must be evidence of an attempt to solve for this mark. Dependent upon both previous method marks.
(b)	$k = 3, k = -\frac{19}{7}$	A1	OE e.g. AWRT - 2.71. No ISW if inequalities used. SC: If second DM1 not scored, SC B1 available for correct final answers.
		5	