

Who am I?

Raphaël Lüthi Machine Learning & Al Lead @ Groupe Mutuel

LinkedIn

2010 EPFL

Engineering MSE

2016

Totaljobs

Data Scientist

2019

⇔ SBB CFF FFS

Data Scientist

2020

groupemutuel

Machine Learning & Al Lead

Today

Agenda

- 1. Into: How to Create Value as a Data Scientist?
- 2. The SHAP Explainable AI Method
- 3. Demo: My Workflow on the California Housing Dataset
- 4. Successful Applications in a Business Setting

How to Create Value as a Data Scientist?

Agenda

- 1. Into: How to Create Value as a Data Scientist?
- 2. The SHAP Explainable AI Method
- 3. Demo: My Workflow on the California Housing Dataset
- 4. Successful Applications in a Business Setting

Data to Insights in Theory

Using Shap Values to Extract Insights From Data as Proposed by Lundberg et al. 2020

Explainable AI for Trees: From Local Explanations to Global Understanding

Scott M. Lundberg¹, Gabriel Erion^{1,2}, Hugh Chen¹, Alex DeGrave^{1,2}, Jordan M. Prutkin³, Bala Nair^{4,5}, Ronit Katz⁶, Jonathan Himmelfarb⁶, Nisha Bansal⁶, and Su-In Lee^{1,*}

Shapley Additive exPlanations

Local Explanation with SHAP Values

Lundberg et al. 2020 :

Explainable AI (XAI)

Global Explanation with SHAP Values

Lundberg et al. 2020 :

Global Insights with SHAP Values

Lundberg et al. 2020 :

Source: https://www.nature.com/articles/s42256-019-0138-9

SHAP Summary Plots

Lundberg et al. 2020 :

Magnitude

SHAP Dependence Plot

Lundberg et al. 2020 :

Source: https://www.nature.com/articles/s42256-019-0138-9

SHAP Explanation Embedding and Clustering

Lundberg et al. 2020 :

Explanation Embedding

Explanation Clustering (semi-supervised)

Source: https://www.nature.com/articles/s42256-019-0138-9

Agenda

- 1. Into: How to Create Value as a Data Scientist?
- 2. The SHAP Explainable AI Method
- 3. Demo: My Workflow on the California Housing Dataset
- 4. Successful Applications in a Business Setting

Follow Along the DEMO:

My Workflow on the California Housing Dataset

GitHub

Google colab

https://github.com/rluthi
/pydata-london-2023

https://colab.research.google.com/github/rluthi
 /pydata-london-2023/blob/main/01 Data-to Insights-Demo PyData-London-23.ipynb

Data to Insights in Practice

My Battle Tested Workflow Using Open-Source Tools

A Calm Way to Organise Your Data Wrangling

pandas pipe

Full tutorial: calmcode.io/pandas-pipe/introduction.html

```
data = (
   data raw.pipe(start pipeline)
   .pipe(query, query="MedInc <= 10")
   .pipe(query, query="AveRooms <=10")
   .pipe(query, query=("0.8 <= AveBedrms <=1.4"))
   .pipe(query, query=("Population <= 5000"))
   .pipe(query, query=("AveOccup <= 6"))
   .pipe(query, query=("MedHouseVal <= 5"))</pre>
   .assign(west of lon120=lambda d: d["Longitude"] <= -120)
   .assign(north of lat36=lambda d: d["Latitude"] >= 36)
start pipeline
                                         20,640
                                                  cols:
                                         20,332
                                                                    0.0s | args: query: MedInc <= 10
                                                  cols:
query
                                         20,116
                                                  cols:
                                                           9 | t:
                                                                    0.0s | args: query: AveRooms <=10
query
                                 rows:
                                         19,619
                                                  cols:
                                                                    0.0s | args: query: 0.8 <= AveBedrms <=1.4
                                                           9 | t:
query
                                 rows:
                                         19,317
                                                  cols:
                                                                    0.0s | args: query: Population <= 5000
query
                                 rows:
                                                                    0.0s | args: query: AveOccup <= 6
                                         19,232 | cols:
query
                                         18,562 | cols:
                                                                    0.0s | args: query: MedHouseVal <= 5
query
                                                           9 | t:
```


Automate Your EDA

ydata-profiling

github.com/ydataai/ydata-profiling

from ydata_profiling import ProfileReport

profile = ProfileReport(df)
profile.to_file("your_report.html")

Alternatives

DataPrep: github.com/sfu-db/dataprep#eda
 Sweetviz: github.com/fbdesignpro/sweetviz

Variables

MedInc

Real number (R)

Distinct	11684
Distinct (%)	62.9%
Missing	0
Missing (%)	0.0%
Infinite	0
Infinite (%)	0.0%
Mean	3.6745204

0.4999
9.9055
0
0.0%
0
0.0%
290.0 KiB

More details

Data Viz.

Explainable AI (XAI)

Insights

Explore Your Data Across Many Dimensions

HiPlot

HiPlot

facebookresearch.github.io/hiplot

import hiplot

hiplot.Experiment.from dataframe(df).display()

Ingestion

Pre-Processing

Feature Engineering

Highlight Patterns With Data Visualisation

PyGWalker

github.com/Kanaries/pygwalker

PyGWalker

```
import pygwalker

pygwalker.walk(df, axis=1))
```

seaborn

seaborn.pydata.org/tutorial.html

import seaborn as sns
sns.relplot(data=df, ...)
sns.displot(data=df, ...)
sns.catplot(data=df, ...)

Insights from Explainable Al

II

Highlight the patterns
with SHAP

Capture Nonlinear Patterns With Gradient

Boosted Decision Trees

Decision Tree

Gradient BoostedDecision Trees

- + Best algorithm for most tabular datasets (benchmarks & Kaggle)
- + Captures nonlinear patterns
- + Great black-box predictors
- Difficult to explain

More info: Pedro Tabacof - Unlocking the Power of Gradient-Boosted Trees (using LightGBM) | PyData London 2022

Capture Nonlinear Patterns With Gradient Boosted Decision Trees

Popular open-source implementations:

LGBM

LightGBM

lightgbm.readthedocs.io/en/latest

XGBoost

eXtreme Gradient Boosting
xgboost.readthedocs.io/en/stable

More info: Pedro Tabacof - Unlocking the Power of Gradient-Boosted Trees (using LightGBM) | PyData London 2022

Tracking experiments with MLflow

import mlflow

. . .

with mlflow.start run():

mlflow.log_param("x", 1)

mlflow.log metric("y", 2)

```
import mlflow
mlflow.autolog()
```

- Scikit-learn
- XGBoost
- LightGBM
- Keras
- Gluon
- Statsmodels
- Spark
- Fastai
- Pytorch

```
Data

Ingestion

Pre-
Processing

Pre-
Engineering

Tidy
Data Viz.

Explainable AI (XAI)

Insights
```


Insights from XAI: SHAP Summary Plot

Source: https://shap.readthedocs.io/en/latest/index.html

Insights from XAI: SHAP Dependence Plots

Insights from XAI: SHAP Dependence Plots

Insights from XAI: SHAP Dependence Plots

Managing the Complexity & Extracting Business Relevant Insights

Agenda

- 1. Into: How to Create Value as a Data Scientist?
- 2. The SHAP Explainable AI Method
- 3. Demo: My Workflow on the California Housing Dataset
- 4. Successful Applications in a Business Setting

Successful Applications of XAI as a Product

Success stories:

- 1. Which populations were receptive to our marketing campaign ?
- 2. Which populations churn ? And what can we do about them ?
- 3. What are the different user patters on our app?
- 4. Why is this ML model performing suspiciously well?

Common business applications:

- Diving into a new dataset and find non-linear patterns
- 2. Segmenting a population by some outcome, we wish to understand or influence
- 3. Reduce the uncertainty of a machine-learning projects

Data to Insights

Let's Conclude...

What Should You <u>Take Away</u> From This Talk?

These mature open-source tools will boost your productivity working with tabular data:

- panadas pipe
- Ydata profiling
- HiPlot / PyGWalker / Seaborn
- XGBoost / LightGBM
- MLFlow
- SHAP

You can extract insights by using SHAP (XAI) on Gradient Boosted Decision Trees, resulting in:

- 1. Great model performance
- 2. Transparency in what non-linear patterns are being picking up by the model in the data

Thank You for Your Attention!

Raphaël Lüthi Machine Learning & Al Lead @ Groupe Mutuel

Get in touch!

LinkedIn

Great resources to stay up to date:

- Ian Ozsvald's newsletter:
 - ✓ notanumber.email
- Jesper Dramsch's newsletter:
 - ✓ <u>buttondown.email/jesper</u>
- Vincent Warmerdam's tutorials:
 - ✓ calmcode.io
- Laszlo Sragner's code quality for data science community:
 - ✓ <u>laszlo.substack.com</u>
 - ✓ youtube.com/watch?v=FL6-X1RP7ZE
 - ✓ cq4ds.com
- Avi Chawla's daily blog:
 - √ blog.dailydoseofds.com

Thank You for Your Attention!

