

**US Army Corps
of Engineers**
Waterways Experiment
Station

AD-A269 613

Miscellaneous Paper GL-93-3
August 1993

(2)

Information Management for Installation Restoration with Focus on Aberdeen Proving Ground, Maryland

by *Joe D. Manous, Jr.*
U.S. Army Corps of Engineers

**S DTIC
ELECTE
SEP 22 1993
A D**

Approved For Public Release; Distribution Is Unlimited

93 9 21 033

93-21921
66py

Prepared for Headquarters, U.S. Army Corps of Engineers

**The contents of this report are not to be used for advertising,
publication, or promotional purposes. Citation of trade names
does not constitute an official endorsement or approval of the use
of such commercial products.**

PRINTED ON RECYCLED PAPER

DISCLAIMER NOTICE

**THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.**

Information Management for Installation Restoration with Focus on Aberdeen Proving Ground, Maryland

by Joe D. Manous, Jr.

Department of the Army
U.S. Army Corps of Engineers
Washington, DC 20314-1000

Accession For	
NTIS	CRA&I
DTIC	DAB
Unpublished	<input type="checkbox"/>
Jurisdiction	<input type="checkbox"/>
By _____	
Distribution / _____	
Availability Codes	
Dist	Avail and/or Special
A-1	

Final report

Approved for public release; distribution is unlimited

DTIC QUALITY INSPECTED A

Prepared for U.S. Army Corps of Engineers
Washington, DC 20314-1000

Monitored by Geotechnical Laboratory
U.S. Army Engineer Waterways Experiment Station
3909 Halls Ferry Road, Vicksburg, MS 39180-6199

**US Army Corps
of Engineers**
Waterways Experiment
Station

FOR INFORMATION CONTACT:
PUBLIC AFFAIRS OFFICE
U. S. ARMY ENGINEER
WATERWAYS EXPERIMENT STATION
2800 HALLS PERRY ROAD
VICKSBURG, MISSISSIPPI 39108-6100
PHONE : (601)634-5102

Waterways Experiment Station Cataloging-in-Publication Data

Manous, Joe D.

Information management for installation restoration with focus on Aberdeen Proving Ground, Maryland / by Joe D. Manous, Jr. ; prepared for U.S. Army Corps of Engineers ; monitored by Geotechnical Laboratory, U.S. Army Engineer Waterways Experiment Station.

65 p. : ill. ; 28 cm. — (Miscellaneous paper ; GL-93-3)

Includes bibliographical references.

1. Environmental engineering — Maryland — Aberdeen Proving Ground. 2. Data base management. 3. Environmental protection — Data bases. 4. Geographic information systems. I. United States. Army. Corps of Engineers. II. U.S. Army Engineer Waterways Experiment Station. III. Title. IV. Series: Miscellaneous paper (U.S. Army Engineer Waterways Experiment Station) ; GL-93-3.

TA7 W34m no.GL-93-3

Contents

Preface	iv
1—Introduction	1
General	1
Edgewood Area Project Background	1
2—Databases	3
General	3
Database Requirements	3
Discussion	4
Services Provided with IRDMIS	5
Difficulties with IRDMIS	7
Summary	7
3—Geographic Information Systems	8
General	8
GIS Requirements	8
Discussion	9
Current Status of GIS at APG	10
Specialty Graphical Systems	11
Summary	12
4—Recommendations	14
Appendix A: Abbreviations	A1
Appendix B: Addressees and Points of Contact	B1
Appendix C: Current THAMA Certified Labs	C1
Appendix D: IRDMIS General Information	D1
Appendix E: Condensed IRDMIS Data Dictionary	E1

Preface

This study was conducted as part of the U.S. Army Engineer Waterways Experiment Station (WES) preparation of work plans for the Edgewood Area of Aberdeen Proving Grounds (APG), Maryland, Installation Restoration Project and Groundwater Contamination Studies at Rocky Mountain Arsenal, Colorado, during the period 2 June 91 to 17 July 91.

The Principal Investigator and author of this report was Joe D. Manous, Jr., Major, U.S. Army Corps of Engineers. Graphics and Geographical Information System (GIS) technical support was provided by Mr. Gregory D. Comes, Earthquake Engineering and Seismology Branch (EEGD), Geotechnical Laboratory (GL-WES), and Mr. Mark Graves, Environmental Systems Division (ESD), Battlefield Environmental Group, Environmental Lab (EL-WES). Database technical support was provided by Ms. Benita Allen, Soil and Rock Mechanics Division, GL-WES and by Ms. Joann Pickett, Ms. Irene Vinsen, Ms. Laura Bremen, and Ms. Tracy Westbrook of Potomac Research, Incorporated (PRI) working under contract from the Army Environmental Center (AEC).

Direct supervision was provided by Dr. James H. May, Earthquake Engineering and Geophysics Division, EEGD, Hydrology and Site Characterization Section, GL-WES. Overall direction at WES was provided by Dr. W. F. Marcuson, III, Director, GL-WES.

At the time of publication of this report, Director of WES was Dr. Robert W. Whalin. Commander was COL Bruce K. Howard, EN.

1 Introduction

General

This study reviews and evaluates database management systems currently used for chemical and geologic data storage, retrieval, and processing. A review was also conducted of Geographic Information Systems (GIS) and their use in coordination with different database programs and data formats. In addition to review and evaluation, the study consolidated information sufficient for inexperienced user access of the systems recommended by this study.

The focus for this study is the Edgewood Area (EA), of Aberdeen Proving Grounds (APG). In addition, consideration was given concerning applicability to Aberdeen Area of APG which will be concurrently remediated. In the larger context, the system evaluations performed should prove valid with respect to similar projects not associated with APG. The establishment of a standard information system is intended to yield increased economies of analysis time and techniques, and provide customer cost savings.

Edgewood Area Project Background

EA has been the site of extensive military munitions testing and disposal for over 70 years. Onsite burial of wastes was extensive until the 1970's. Some have been removed for remediation or "safer" storage. Unfortunately, much of the buried waste has not been recovered and no collective knowledge of burial sites is available.

The remediation process will require an extensive investigative effort to locate disposal sites and determine the extent of leachate movement. Additional information will be produced as the remediation process proceeds and understanding of the subsurface becomes better developed. The cumulative result will be an enormous body of information collected over the life of the remediation project. Remediation has been investigated and conducted at RMA for a period in excess of 17 years as of this writing. Storage of information for rapid accessibility is important as a base line for comparison of contaminant locations and concentrations over time and as a source of information whose importance may not be realized during the initial data review.

Additionally, since long-term continuity of project remediation personnel is questionable, proper storage provides a means of "corporate memory" to prevent duplication of efforts. The method of storing and accessing chemical analysis and geotechnical data with the associated details of collection, handling, and analysis is the topic of this study.

Many environmentally related investigations at EA have taken place over the past 20 years. The results of these reports exist in paper copy and an assumed complete collection of these investigations is located in the offices of the EA, Director of Safety and Health (DSH). Producers of these reports include U.S. Geological Survey (USGS), Army Environmental Health Agency (AEHA), Environmental Protection Agency (EPA), WES, and private contractors. These reports are of variable usefulness and accuracy when compared with current AEC and EPA analysis standards. All reports, however, provide information useful from an investigative view point and may be the only historical records of a particular area. A portion of this information does exist in digital form in the Installation Restoration Data Management Information System (IRDMIS) operated by Army Environmental Center (AEC).

2 Databases

General

An electronic database is a means of storing information for later sorting and retrieval. Input can be generated by typing at a keyboard or through electronic transfer in a standard format such as ASCII. Output is produced as tabular data printed in hard copy or as an electronic file. Graphical interfaces for database input or output were not part of this portion of the study.

Database Requirements

The following are specific requirements for a desired level of database functionality:

- a.* The database must be capable of handling large volumes of raw data or records either directly or through relational processes.
- b.* The database should be capable of importing and exporting information electronically using standard formatting procedures and in particular ASCII.
- c.* The database should be capable of performing user-specified searches and sorts of data.
- d.* The database system should be capable of producing user-specified reports suitable for presentation.
- e.* Setup and operating costs should be kept to a minimum. The intent is for a single, integrated database system.
- f.* The database should be easy to operate and not require specialized skills or an extensive training program.
- g.* The database system should operate on an existing computer system to reduce initial costs. (Not a problem at WES since computer options range from XT computers to supercomputers.)

The following are desirable criteria which aid in database use, but do not explicitly exclude a particular database system.

- a. Predeveloped routines should be available for inexperienced users (i.e. a shell program). These routines should perform simple sorts and report production.
- b. The system should be accessible by activities other than WES for information input and output. Concurrent with this criterion is the need for a database manager to oversee and maintain the database.

Discussion

During interviews with members of the EA-DSH, Baltimore District of the Corps of Engineers (a partner with WES in EA studies), the EPA, GL-WES, and EL-WES, no database system as outlined in paragraphs 7 and 8 was found in operation. Within these organizations, the most common general purpose database program was dBase.

AEC was the exception in information management. They have created a database specifically for the purpose of managing geotechnical and chemical analysis data under a program titled "Installation Restoration Data Management Information System" (IRDMIS). This program, begun in 1975, has undergone several updates as technology and database requirements have changed. The system is maintained for AEC under contract with Potomac Research, Inc. (PRI) and is physically collocated with AEC on EA, Maryland. Data from geotechnical chemical analysis and field survey results are supplied by AEC-authorized contractors and laboratories to PRI for input into the database. The system functions within a UNIX operating environment and uses Structured Query Language (SQL) as the database management format. SQL can be embedded in "C" or a proprietary formatting program called "Report-Writer" distributed by the IRDMIS computer and software manufacturer, Ingres. Both C and Report-Writer are currently available with IRDMIS.

Similar in operation to IRDMIS is a system employed at Rocky Mountain Arsenal (RMA), Colorado, by a contracted firm, D.P. Associates, Inc. That system also manufactured by Ingres is similar, but not as versatile as IRDMIS. A recent submittal by D.P. Associates has requested funding to upgrade to an IRDMIS equivalent software and hardware configuration.

RMA has used IRDMIS until 1985, but became disenchanted due to delays in processing information requests, database information integrity, duplicate entries, and data loss. Changes in hardware, software, and overall operation of IRDMIS have largely corrected the previous problems encountered by RMA. However, it is notable that even with the problems encountered with IRDMIS, RMA has chosen to stay with an IRDMIS compatible database system and continues to use AEC's Quality Assurance (QA) program.

Using the data management systems currently available to activities involved at EA, a comparison evaluation was made between dBase and IRDMIS. Through a hands-on evaluation of these programs it was found that both adequately met the outlined database requirements (paragraph 7) with neither system showing any significant advantage or disadvantage.

In the desirable criteria area (paragraph 8), however, differences were apparent. A flexible user shell is possible for both systems and an IRDMIS shell currently exists. Changes, additions, and deletions to the IRDMIS shell must be justified, routed through AEC and placed in PRI's work schedule for action. This limits responsiveness to shell changes as could be performed in a locally operated system. An operator-defined shell could be installed within a user's directory on IRDMIS, but would not be directly supported by PRI (Academic Computing Division, USMA has such a UNIX based program). It should be noted that the greatest flexibility in database use is realized by running tailored query programs and not from a standardized shell interface. Neither dBase nor IRDMIS demonstrated a significant advantage in the use of tailored query programs.

In the second desirable criteria, a significant advantage of IRDMIS was apparent. The IRDMIS was designed and is managed to permit common access by many users for input and output. A similar input and output facility could be implemented using dBase, but would require a database manager such as PRI. Such a large and long-term commitment does not seem appropriate for GL's role at EA, nor is DSH-EA prepared to implement such a large scale project at this time. It should also be remembered that AEC provides the same database system for all Department of Defense (DoD) installations. Therefore, the IRDMIS skills and techniques employed at EA could be equally applied on similar projects at other federal installations.

Services Provided with IRDMIS

Several advantages and programs are available with IRDMIS to include program oversight by AEC and the availability of a dedicated database manager. AEC has made a long-term commitment to update and maintain the IRDMIS. How long is a matter of conjecture, but current indications are for long-term support.

AEC provides a QA program for chemical analysis labs supplying information. Tests from AEC certified labs (Appendix C) are characterized based on a combination of sampling techniques, sample holding times and other variables. The test results are then coded as to their accuracy and reliability. Data falling outside AEC-established criteria, not following AEC testing procedures, or coming from a non-AEC certified lab are coded "99." Much of the pre-1985 data in the IRDMIS is coded "99" because of current higher detection and handling standards. Unfortunately, test results from EPA's standard for chemical data collection, the Toxic Chemical Leachate Program (TCLP), are also coded "99." EPA TCLP data are a common, standardized

testing procedure which can and should be incorporated in IRDMIS. An additional qualifying code could be added to the AEC coding list to indicate that the TCLP standard for chemical data collection and analysis has been followed. This inclusion should be pursued by EA-DSH and GL-WES.

In addition to chemical analysis QA, IRDMIS has a QA program for data integrity. All data submissions are reviewed by PRI to ensure that the data are properly identified and formatted. This check is concerned with qualitative entries and not with quantitative validity. An error such as omitting an installation identification code or using an undefined response would be identified as an error during the data QA check. On the other hand, a typographical error such as entering "20" instead of "200" ft¹ for sample depth would not generate an error. The purpose of this check is to ensure sufficient information is provided to uniquely identify each record and maintain a minimum information level on each record. A MS-DOS program, "PC-Tool," was written and is maintained by PRI as the mechanism for data input. This menu-driven, interacting program checks data as they are entered for compatibility with the IRDMIS system. This is the same program used by PRI upon receipt of analytical data to again check for IRDMIS compatibility.

Chemical analysis data are not the only, nor the first entry into IRDMIS. Positional data (X, Y, Z locations) of analysis sites, wells, etc must be submitted prior to chemical analysis submissions. This process assures the completeness of the database record since the positional data and chemical data are produced by different sources. The positional data are also formatted for input using the program "PC-Tool." Universal Transverse Mercator (UTM), longitude-latitude and state planar coordinate systems are honored. A brief summary of all database record entries can be found in Appendix E and a complete description is found in the IRDMIS Data Dictionary. No QA or QC program similar to AEC's lab certification is applied to positional data.

IRDMIS is also structured to record well construction information, logging results, and groundwater elevation data. As with any database, additional information types and records can be added as required. Again, a brief summary of all database record entries can be found in Appendix E and a complete description is found in the IRDMIS Data Dictionary.

Lastly, IRDMIS provides common user access. The IRDMIS is available to any authorized user through the Defense Data Network (DDN) or by modem. Connection details can be found in Appendix D.

¹ To obtain meters, multiply feet by 0.3048.

Difficulties with IRDMIS

IRDMIS provides tremendous possibilities but is far from perfect. The major difficulty is the lack of user guidance and directions. No consolidated document or organization provides single source information concerning IRDMIS. Conceptual use and QA program questions are handled by AEC while specific hardware and software questions are handled by PRI. Input validation is physically accomplished by PRI, but AEC handles QA and sampling technique questions. Passwords are obtained through AEC, but connection details are handled through PRI. The representatives of AEC and PRI were found to be prompt and helpful with specific questions, but initial use required a personal visit to AEC and PRI along with substantial trial and error. Appendix D provides a consolidation of the basic information required for first time use of IRDMIS. Unfortunately, the lack of specific user guidance from a single source is a hindrance for potential users and will limit their desire to use this system.

As already stated, the presence of a contracted database manager provides significant advantages for this system. The presence of a contractor not directly responsible to the user also presents potential work prioritization problems. Though no difficulties were observed during this evaluation, specific requests for information, assistance, or service support could be delayed if AEC's or the PRI's work priority differs from the user.

Summary

In operability and function no significant difference was found between dBase and IRDMIS. IRDMIS provides the advantage of an established system with a dedicated database manager in place. IRDMIS also provides wide access of information by all investigative activities for most DoD sites in the United States. The use of IRDMIS will relinquish some user-control over data input as compared with a local database, but this loss should have a minimal impact on overall productivity. The major shortcomings of IRDMIS are insufficient documentation and added layers of management between the user and the data.

I recommend use of IRDMIS to store GL-WES IR data. The system is not perfect, but it is established and is capable of offering significant advantages in future IR work. I further recommend that EA-DSH contract an outside firm to review the investigative and remediation reports which have been collected for the EA. The pertinent data from each report can be reduced to digital form and submitted into IRDMIS. Finally, IRDMIS training sessions through AEC and PRI are available and should be attended by prospective IRDMIS users.

3 Geographic Information Systems

General

A GIS is a means of graphically displaying land surface, geologic, chemical analysis, and so forth in a spatial or map-type format. Output is normally previewed on a computer screen with hard copy products available upon request. A GIS is capable of performing the same types of sorts and queries as a relational database though not with the ease, flexibility, or speed provided by a database program. In comparison with a database, a GIS exchanges speed of operation for graphical input and output capability. This speed trade-off can be significant, but use of mainframe computers and recent advances in personal computers (PC's) has narrowed the difference.

GIS Requirements

The following are specific requirements required to satisfy this study's GIS objectives:

a. Functions:

- (1) Sort by attribute name and by use of logical operators applied to attributes.
- (2) Cross-sectional development capability (i.e. groundwater or geologic profiles).
- (3) Ability to distinguish, display, and plot field entries in close proximity (i.e. well clusters < 10-ft spacing).
- (4) Able to print formatted output of all or selective tabular data chosen from the GIS interface.
- (5) Able to plot scaled maps with a user selected grid system and user selected attributes.

- (6) Able to import data using X, Y, and Z coordinates as an import data field (direct input without digitizing).

b. Compatibility with common data formats:

- (1) Import and export dBase files.
- (2) Import and export ASCII files.
- (3) Import and export INFORMIX files.
- (4) Import and export Info files.

c. Operating system:

- (1) Operate adequately on a "fast" PC (preferred operating system is MS-DOS, but this is not an absolute requirement).
- (2) Able to shift system to a SUN or similar work station with *minimal data conversions*.

d. Cost:

- (1) Minimal cost is always a major consideration. Development is based on two independent users, EA-DSH and GL-WES--preferably using available software and hardware.

e. Training:

- (1) Considerable expertise will be required for system set-up and periodic system maintenance, but it is desirable that an "inexperienced user" interface be available for viewing common sorts, map plots, and tabular report generation.

Discussion

Unlike databases, a standard GIS has not evolved in installation restoration work. EA-DSH, the Corps of Engineers Baltimore District, U.S. EPA and RMA do not currently employ a GIS. EL-WES is working in ARCInfo and GL-WES has people trained and platforms available to operate ARCInfo, CAMMS, and Intergraph. Numerous Corps of Engineers District offices use Intergraph as their GIS. GRASS is widely used on U.S. military installations around the world in conjunction with the Installation Training and Management System (ITAMS). Finally, RMA has developed an elaborate computer-aided drawing (CAD) system, which is used in conjunction with a database to produce products similar to a GIS.

The following GIS systems were considered during this study; ARCInfo, Intergraph, CAMMS and GRASS. All systems could meet the functions and compatibility requirements of paragraph 27. However, ARCInfo and Intergraph met the functions requirements with the greatest ease, and ARCInfo had a distinct advantage in compatibility over all four systems. GRASS, a raster GIS, has difficulty distinguishing features in close proximity, however, vector overlays can be produced to overcome this obstacle. CAMMS required some software improvements to meet all of the requirements in paragraph 26.

Costs of GIS's ranged from extreme to no expense. Intergraph is the most expensive since all software and hardware is proprietary. ARCInfo is moderately priced and will run on most UNIX based work stations such as a SUN or a mainframe such as a VAX. A PC version of ARCInfo is now available and operates under MS-DOS using dBase files for relational data storage. This system best operates on a "fast" PC and is upwardly compatible with work station and mainframe versions of ARCInfo. GRASS software and technical support is available at no cost from the Construction Engineering Research Laboratory (CERL). GRASS operates in a UNIX environment, normally on a work station. Finally, CAMMS GIS software and limited technical support is available at no cost from the Mobility Section, GL-WES and will run on a PC.

Current Status of GIS at APG

The EL-WES has recently completed digitizing the man-made and natural features of EA. The digitized database is a compilation of different map series over the past 40 years. This work was performed on a reimbursable basis for the EA-DSH. The project includes digitization, selection of a GIS (PC version of ARCInfo) and procurement of a hardware system to support the software. During the study period, EA-DSH was not proficient in the use of ARCInfo, but is scheduled for training by EL-WES. Upon approval of the EA work, EL-WES will begin a similar digitization of the Aberdeen Area of APG.

Until completion of EL's digitization of EA, no single map series adequately represented EA. Many of the map series used in digitization were based on single coordinate systems and required conversions between longitude-latitude, state planar, or local coordinate systems into Universal Transverse Mercator (UTM) coordinates. The standard coordinate system for the completed GIS is UTM. The conversions along with inadequate survey control of some large scale maps have introduced an as yet undetermined error in positional representations. The GIS is generally a better source of information than previously available, but will require validation by ground survey before GIS products should be used in final IR assessments or in-depth development of IR work plans. Use of a global positioning system (GPS) would be ideal for the validation work.

Specialty Graphical Systems

CAD represents another approach in spatial information representation. CAD programs such as AutoCAD are common through Corps of Engineer activities to include GL-WES. These programs usually operate on "fast" PC's and provide, quality two-dimensional (2-D) and limited three-dimensional (3-D) mapping and graphic display capability. CAD programs are easily manipulated and are ideal for one of a kind projects. RMA has expanded on the CAD concept and developed a detailed CAD installation map which is managed by a private contractor. By using "layers" of information, similar to an acetate map overlay, details can be added to a base map. The result is a quality, scaled drawing. Unfortunately, CAD additions and deletions must be performed manually, often at considerable expense in time and money. A GIS is advantageous because it can quickly create new overlays by querying for desired features or attributes and then generating overlays internally. The advantage of GIS's increases as the areas under study become larger or more detailed. The contractor responsible for information management at RMA, DP Associates, has recently submitted a proposal for purchase of an ARCInfo system to transition RMA from CAD to GIS.

Graphic programs are another area of interest in spatial information displays. Most graphics programs are not GIS oriented, nor do they have the drawing flexibility of CAD. Many of these programs are aimed at interpolation of data sets and developing lines of equal concentrations, elevations, etc. This process, contouring, is a "best fit" process requiring the use of various polynomial and regression techniques applied in a trial and error fashion. These techniques can be used in analysis, but commonly the use is simply information exchange. The construction of 3-D graphical models can be a tremendous asset in conveying a concept or perception. In addition to plan, perspective, isometric or similar views, such programs also have cross-sectional capabilities which can be useful in displaying geologic profiles or contaminant plumes.

A graphical program available through AEC is Interactive Surface Modeling (ISM) developed by Dynamic Graphics. This program is accessed by telnet or modem on THAMA3 and THAMA6 logins. Though the program can be executed from any PC or equivalent terminal, a "graphics terminal, such as a Tectronix or PC with Tectronix emulation software, is required to view the plotted results on screen. The plots can be stored in a data file for later retrieval and local printing. Input for ISM is generated from reports written from IRDMIS. Standard reports exist in the IRDMIS IR menu, but tailored reports can also be written, as discussed in Part II of this report. Once generated, contaminant contours, groundwater elevations, etc can be plotted, contoured, and displayed in 2-D or 3-D.

A complete Iris work station with ISM is available at GL-WES. This system can be linked directly with IRDMIS by telnet to provide faster (local) compilation of data than remote access. Direct linkage of the GL-WES Iris to a plotter is also available.

Another common, PC based, graphic program is SURFER. Though not as fast nor elaborate as ISM, SURFER is a fully capable, 3-D graphics package which can display surface topography or similar information such as surface or groundwater levels. These displays can be viewed in 2-D as plan, contoured views, or in 3-D as perspective views. SURFER is commonly used in conjunction with CAD programs such as AutoCAD.

A recent development in graphical displays is VHS video presentations. WES has been working with video presentations which consist of multiple computer generated section and perspective views appended similar to frames of a cartoon. The result is a dynamic visual presentation offering dynamic views from several perspectives. A commercial firm, Z-Axis of Aurora, Colorado, produces similar videos, and can use animation technology to fill gaps between successive computer generated views. The application of animation technology is intended to reduce the number of required computer generated views and presumably lower production costs. Similar products of both animation and computer simulation can be produced at ITL-WES. These technologies are new, still developing and relatively expensive. The animation technology claims a savings in computational expense and development time, however, insufficient information was available to validate that claim in this study.

Summary

All of the GIS's or combination of CAD and database programs reviewed were capable of meeting the requirements as described in paragraph 27 (CAMMS would require some software enhancement). Since EA-DSH has already purchased an ARCInfo system and a digitized database through EL-WES, there is no technical reason for EA-DSH or GL-WES to implement a supplemental GIS. A copy of the ARCInfo database can be obtained from EL-WES. There is no cost involved with GL-WES operating the database on an existing ARCInfo platform. However, an additional user fee will be required for each copy of the PC version of ARCInfo obtained.

The use of a CAD program may be desirable for an individual investigator working at EA. However, a well maintained GIS should support most user's needs. A centralized approach to GIS will reduce effort and cost duplications, and provide each user with the same current information.

ISM is available at WES and through AEC. The incorporation of the data sets from the EA ARCInfo database was possible and was completed for buildings, roads, shorelines, wetlands and elevation contours as part of this study. Unfortunately, the ability to construct an adequate "gridding" file of the contour data does not currently exist. The "gridding" file is the first step in data interpolation required for 3-D graphic development. The developer of ISM, Dynamic Graphics, has been notified of this software shortcoming and is currently working on a solution.

IRDMIS data are compatible with the ARCInfo database. As part of this study, a copy of EA analytical and positional well data was downloaded from IRDMIS, converted to dBase format, and provided to EL-WES for incorporation in the ARCInfo data set they are creating for EA.

Finally, the owner of the GIS, EA-DSH, needs to provide a mechanism for the validation of the digitized data and correction of errors as they are discovered. In addition, multi-user access to the GIS and a method of producing user requested GIS products needs implementation. These services can be provided by a dedicated "in-house" GIS manager or through a contractor.

4 Recommendations

An installation policy needs implementing concerning the storage of IR analytical and geologic data for APG. This policy should be applicable to all IR work performed at APG. A unique database could be developed, but the collocation of AEC at APG and the experience of that organization with IRDMIS make new database development an unnecessary duplication of effort and cost. Designation of a mandatory data storage procedure by APG would require the establishment of direct and active communication between APG and AEC concerning IRDMIS. This interaction would be essential to ensure the needs of APG are met and supported.

In the absence of an installation directed policy concerning the storage of IR data, encouragement should be provided by DSH-EA for submittal of IR data produced at EA into IRDMIS. Whether specifically supportive of the APG IR program or not, IRDMIS is still the best available long-term repository of this information. IRDMIS data submission should be accomplished regardless of whether the information producer intends to access the data through IRDMIS or obtain it directly from an analysis lab. Reasons for IRDMIS submittal are two-fold. First, the data are part of an irreplaceable historical record, and second all data should be commonly available to each contractor and investigator working at APG. As the volume of acquired data increases over the next 10-15 years electronic access and retrieval will become essential to completely review all of the data produced. It is acknowledged that the use of IRDMIS will increase the cost of analysis processing and delay the return of analytical data (unless duplicate reports are requested for the user and AEC, which bypasses AEC's internal QA process). The long-term benefits, however, should outweigh these short-term costs.

When possible, utilize IRDMIS directly for data queries, retrieval, and development of data reports. The system is available and with use can be as easy to implement as dBase.

The EA ARCIInfo database should be validated by ground survey and/or GPS and corrected as necessary. IRDMIS well positions within the same area should be included in the validation. This should be a short-term objective.

APG should implement a full-time GIS manager responsible for EA and Aberdeen Area. This person(s) can be in-house or contracted. The utility of a GIS is directly related to two factors. First, the data must be accurate (as

stated above) and second there must be "real time" interaction between GIS client requests and GIS output. Without the successful accomplishment of both factors, the credibility of the GIS will suffer and its full potential will not develop.

Work should continue to transfer all EA ARCInfo data into an ISM compatible format. Contact with Dynamic Graphics should be maintained concerned the transfer of the digitized ARCInfo contour data into a suitable "gridding" file. This development does not hinder the addition of contaminant data into ISM, but does limit the comparison of such data with respect to the topographic surface.

APG should instigate changes through AEC concerning the incorporation of TCLP data into the IRDMIS. If the required data standard for EA remains TCLP analysis, then consideration for coding this information should be provided within IRDMIS.

EA-DSH should reduce the on-hand hard copy reports of investigative and remediation work at EA into a digital format for incorporation in IRDMIS. This work can be accomplished in-house or by contract. The information may not be of litigation quality but is an important source of historical and investigative information if placed in a format conducive to rapid query and retrieval.

Appendix A

Abbreviations

AA	Aberdeen Area, Aberdeen Proving Grounds, MD
AEC	Army Environmental Center
AEHA	Army Environmental Health Agency
APG	Aberdeen Proving Grounds, MD
ASCII	American Standard Code Information Exchange
CAD	Computer Aided Drawing
CLP	Chemical Leachate Program
DSH	Director of Safety and Health, EA APG
EA	Edgewood Area, Aberdeen Proving Grounds, MD
EL-WES	Environmental Laboratory, Waterways Experiment Station
EPA	U.S. Environmental Protection Agency
GL-WES	Geotechnical Laboratory, Waterways Experiment Station
IR	Installation Restoration
IRDMIS	Installation Restoration Data Management Information System
ISM	Interactive Surface Modeling computer program
ITL-WES	Information Technology Laboratory, Waterways Experiment Station
PRI	Potomac Research, Incorporated
QS	Quality Assurance

QC	Quality Control
RMA	Rocky Mountain Arsenal, CO
USGS	U.S. Geological Survey
WES	Waterways Experiment Station, Vicksburg, MS

Appendix B

Addresses and Points of Contact

- 1. Dynamic Graphics - Address:** **Dynamic Graphic, Inc.**
1015 Atlantic Avenue
Alameda, CA 94501

**Technical and Sales Information
(415) 522-0700**

- 2. Grafpoint - Mailing Address:** **Grafpoint, Inc.**
1485 Saratoga Avenue
San Jose, CA 95129

Sales Representative
Mr. Roy Caudill, (408) 446-1919, FAX (408) 466-0666

- 3. Ingres Corporation - Address:** Ingres Corporation
Marina Village Parkway
Alameda, CA 94501

Sales Representative
Mr. Tom Baldwin, (415) 748-2519, FAX (415) 748-2545

- 4. PRI - Mailing Address:** **Potomac Research, Inc.**
P.O. Box 14
Gunpowder Br.
Aberdeen Proving Grounds,
MD 21010

Program Manager
Mr. Warren J. Wortman, (301) 679-3030, FAX (301) 676-0802

Database Administrator
Ms. Irene Vinsen, (301) 679-3030, FAX (301) 676-0802

**5. RMA - Mailing Address:
(Installation Contractor
for Data Management)**

**DP Associates
Rocky Mountain Arsenal
Building 111
Commerce City, CO 80022**

Regional Manager
Dr. Jack C. Pantleo, (303) 287-3231

6. AEC - Mailing Address:

**USAEC
ATTN:
Aberdeen Proving Grounds,
MD 21010-5401**

*Edgewood Area, APG Data Management Supervisor
Ms. Roxann Moran, (301) 671-1544, FAX (301) 671-1548*

AEC Chemistry Branch, EA Project Officer
Mr. Doug Stevenson, (301) 671-3348

AEC Geological Branch (Also past use of ISM with IRDMIS)
Mr. Ira May, (301) 671-1516

7. WES - Mailing Address:

USAE-WES
ATTN: CEWES - - (Name)
3909 Halls Ferry Road
Vicksburg, MS 39180-6199

Report Supervisor, GL (CEWES-GG-YH)
Dr. James H. May, (601) 634-3395, FAX (601) 634-3453/3139

Silicon Graphics Use, GL (CEWES-GG-H)
Mr. Gregory D. Comes. (601) 634-3395. FAX (601) 634-3453/3139

ARCInfo based GIS Production of APG, EL (CEWES-EN-B)
Mr. Mark Graves, (601) 634-3395

8. Z-Axis Corporation: (Video Graphic Production)

**Z-Axis
10800 E. Bethany Drive
Suite 500
Aurora, CO 80014**

Vice-Present
Mr. Raymond C. Hauschel. (303) 696-9608. FAX (303) 696-0857

9. Study Investigator:

CPT Joe Manous
Department of Geography and
Environment Engineering
United States Military Academy
West Point, NY 10996

(914) 938-2472, FAX (914) 938-4175

Appendix C

Current AEC Certified Labs

Arthur D. Little, Inc.

California Analytical Laboratory, Sacramento, CA

Environmental Science and Engineering, Denver, CO

Environmental Testing and Certification, Edison, NJ

EA Engineering Science and Technology

Interpoll, Inc., Circle Pines, MN

International Technologies Corp., Knoxville, TN

Midwest Research Institute, Kansas City, MO

Pace Laboratories, Inc., Minneapolis, MN

Rocky Mountain Analytical Laboratory, Arvada, CO

Rocky Mountain Arsenal Laboratory

Datachem (Utah Biomedical Testing Laboratory)

Roy F. Weston, Lionville, PA

Roy F. Weston, Stockton, CA

Radian Corporation

VERSAR

NOTE: Some labs are not certified for the full range of AEC specified procedures.

Appendix D

IRDMIS General Information

IRDMIS (Installation Restoration Data Management Information System) is the current product of a 15-yr effort by AEC to develop a data management system. IRDMIS is currently managed by a contractor, Potomic Research Institute (PRI). PRI and AEC are collocated at Edgewood Area, APG (See Appendix B for POC's).

IRDMIS is a relational database operating on a Pyramid computer within a UNIX operating system. The database is a product of the Ingres Corporation and software support to included programming manuals is provided through that firm (See Appendix B).

IRDMIS can be accessed by either telnet or modem.

- a.** The telnet and FTP address for the "THAMA1" system is 131.92.80.11
- b.** IRDMIS can be reached by modem using VT-100 emulation at:

(301) 671-4550, 300-2400 baud Hayes compatible
(301) 671-4650, 300-1200 baud Hayes compatible
(301) 671-4750, 9600 baud Telcor

All modem connections must be made initially as a subscriber to THAMA1.

- (1)** Crosstalk communications software use: Even Parity; 8 Data Bits; 1 Stop Bit
- (2)** Procomm communications software use: Even Parity; 7 Data Bits; 1 Stop Bit
- c.** Connection to other THAMAx systems can be made by telnet from THAMA1 by using "telnet THAMAx," where "x" is the name of the system being connected.

- d. THAMA1 and THAMA3 permit access to the IR database. THAMA3 also provides access to the ISM program developed by Dynamic Graphics. Each THAMAx system requires a separate login and password.

Logins are obtained through the AEC area representative. For EA, the representative is Ms. Roxann Moran (See Appendix B). A login application form is available in Enclosure 1. Access to more than one THAMAx system must be annotated separately on the application.

Upon login, a menu of available report formats can be displayed by typing "IR" {return}. The Installation Remediation Menu of report formats will be displayed. These reports, used in conjunction with the IRDMIS data dictionary, are relatively easy to manipulate but are inflexible in their structure of queries and output. Greater flexibility can be obtained by writing specific queries in the system's database language, SQL (Structured Query Language). To implement SQL, the SQL code must be imbedded in another programming language such as C or FORTRAN. Provided by Ingres is an executable and formatting code called "Report-Writer." Report-Writer is similar to FORTRAN in usage.

IRDMIS data management is broken into three levels.

- a. Level 1 data - Input data provided from a lab or other source. Analytical data which meet AEC certification must be analyzed and submitted from a AEC certified lab (Appendix B). Survey and positional data (required for each analytical submission) are provided by the crew obtaining the sample or an independent survey crew. In all cases, the data are placed into the appropriate digital format by the submitter using "PC Tool" or other programs which produces output compatible with PC Tool. PC Tool was produced and is maintained by PRI. Submission of analytical data not meeting AEC certification (including EPA TCLP) requires direct coordination with the local AEC data management supervisor.
- b. Level 2 data - Data processing within the IRDMIS system. End users have no interaction with this data level.
- c. Level 3 data - Output data which are accessible using SQL. Details of codes, record names, tables etc. are available in the IRDMIS data dictionary. A condensed version of the data dictionary is available in Appendix E.

A PC program called "PC Link" is available to connect a PC with an Ingres database. PC Link permits direct conversion of database information into other data format types such as dBase or Lotus. PC Link is available from the Ingres Corporation.

Interactive Surface Modeling (ISM) is a software program developed by Dynamic Graphics. This program is available for remote use on the THAMA3 and THAMA6 logins. Input for ISM can be generated from

standard query reports available from the IR User Menu or tailored query reports generated with SQL. The input format is ASCII. ISM provides spatial plotting capability for the tabular data generated from the IR database. The data can be contoured and/or displayed in 3-D perspective presentations. The results can be viewed on screen or sent to a hard copy printing device using HPGL graphic output. Viewing on screen requires a graphic terminal such as an Iris work station, Tectronix terminal, or use of a graphic terminal emulation package on a PC. One possible emulation package is marked by Graphpoint, Inc. In addition to plotted data, annotation files (roads, elevation contours, water, etc) can be produced to enhance the visual interpretation of the plotted data. Annotation files are not part of the contouring or 3-D development and are used only for presentation enhancement.

Documentation available concerning the use of IRDMIS and associated utilities is as follows:

- a. **Ingres/Reports: Report-Writer Reference Manual, release 6.3, November 1989.**

Available from: Ingres Corp. Cost: \$25.00

GSA Contract GS00K91AGS5822

- b. **Ingres/SQL Reference Manual**

Available from: Ingres Corp. Cost: \$55.00

GSA Contract GS00K91AGS5822

- c. **USATHAMA Quality Assurance Program, USATHAMA PAM 11-41, January 1990.**

Available from: AEC Cost: No Charge

- d. **USATHAMA User's Guide, produced by PRI, November 1989.**

Available from: AEC Cost: No Charge

- e. **THAMA User's Manual, PC Data Entry and Validation Subsystem (IRDMIS PC Tool), version 4.2, produced by PRI, April 1991.**

Available from: AEC Cost: No Charge

- f. **PC Tool Software, version 4.2, produced by PRI.**

Available from: AEC Cost: No Charge

**g. THAMA User's Manual, Data Dictionary, version 1991.2, produced by
PRI, April 1991.**

Available from: AEC

Cost: No Charge

h. PC Link Software

Available from: Ingres Corp.

Cost: \$130.00

GSA Contract GS00K91AGS5822

i. Grafpoint Emulation Software

Available from: Grafpoint, Inc

Cost: \$746.25

GSA Contract GS00K90AG55259PS01

Appendix E

Condensed IRDMIS Data Dictionary

Pages E-2 and E-3 contain a two-page summary of key level 3 data record descriptions contained in IRDMIS. This summary is sufficient for the beginning user to extract information from IRDMIS using either the existing IR MENU or tailored queries using SQL. See the IRDMIS Data Dictionary for a detailed listing of IRDMIS data record descriptions.

Page E-4 is a current listing of data tables contained in IRDMIS. Also annotated are field names contained in each table and the key fields required for relating different tables during queries.

Page E-5 through E-35 contain a selected extract of the IRDMIS Data Dictionary.

The complete IRDMIS Data Dictionary is available through AEC. See Appendix D for details.

CODE SUMMARY SHEET

for
The Installation Restoration Data Management Information System (IRDMIS)
System Owner - Toxic and Hazardous Materials Agency (THAMA)
System Operator - Potomac Research, Inc (PRI)

1. Installation Code (inst) - Identifies installation from which the data were collected.

Common Examples: AA = Aberdeen Area, Aberdeen Proving Ground, Md
CR = Crane Naval Weapons Support Center, IN
EA = Edgewood Area, Aberdeen Proving Ground, Md
RK = Rocky Mountain Arsenal, CO (data after 1984)
RM = Rocky Mountain Arsenal

2. File Type or Media Type (media_type) - Code identifying the type of data.

Common Examples: CGW = Chemical Ground Water
(Currently the CSW = Chemical Surface Water
only terms in CSE = Chemical Sediment
use) CSO = Chemical Soil

3. Site Type (site_type) - Represents a type of landmark, feature or construction.

Common Examples: FBLK = Field Blank WELD = Dry Well
FELD = Field WELL = Completed Well
SPTK = Septic Tank PLUG = Shovel Sample
SUMP = Sump BORE = Bore Hole

4. Depth (depth) - Depth to the nearest foot from the topographic surface to the interval being sampled. [-9999.0 is used to indicate no data was recorded, since an entry of 0 is possible. Well locations (x, y, & z coordinates) are relative to a local datum].

5. Sample Date (samp_date) - Date sample was taken in the field. The date of actual testing of the sample (anly_date) is also available.

6. Analysis Type (anly_type) - Code representing the certification level of the analysis.

Common Examples: C1, 1A, 1B, & C2 can all indicate a competent analysis level. (see data dictionary for details)

00 = Analytes not requiring certification
99 = Quality level of analysis unknown or very poor

7. Analysis Accuracy (anly acc) - Decimal number representing the standard error of the best-fit linear regression line of Found vs Target values for QC standard additions data.

8. Value (value) - Numerical value of analysis result (6 digit floating decimal precision).

Prepared by CPT Joe Manous for GL-WES 27 Jun 91

9. Measurement Boolean (meas_bool) - Indicator that a measured quantity is not within the certified range, or that the test used does not yield quantitative results.

Common Examples: EQ = Equal to certified reporting or detection limit
LT = < Certified reporting or detection limit.
GT = > Certified reporting or detection limit.
blank = Within acceptable range.
ND = Not Detectable.

10. Unit of Measurement (unit_meas) - Units of measured value.

Common Examples: UGL = micrograms/liter
UGG = micrograms/gram
PPM = parts/million

11. Flagging Code (i_s_c) - Code to indicate other-than-usual conditions or results.

Common Examples: D = Duplicate sample or test name.
E = Element run with background corrections.
H = Out of control, but data accepted due to high recoveries.
blank = No special conditions apply to the results.

12. Prime Contractor (lab_prime) - Organization conducting or orchestrating a given data collection action.

Common Examples: AL = Arthur D. Little
TH = THAMA
AH = Army Environmental Hygiene Agency (AEHA)
GS = US Geological Survey
WE = WES

13. Test Name (analyte) - Parameter being measured.

Common Examples:

11DCE	= 1,1-Dichloroethylene	HG	= Mercury
111TCE	= 1,1,1-Trichloroethane	MEXCLR	= Methoxychlor
12DCLE	= 1,2-Dichloroethane	NO3	= Nitrate
AS	= Arsenic	PCB1016	= PCB 1016 (etc)
C6H6	= Benzene	PH	= pH
CD	= Cadmium	SE	= Selenium
CMONOX	= Carbon Tetrachloride	AG	= Silver
CLDEN	= Chloride	STYR	= Styrene
CR	= Chromium	SO4	= Sulfate
CU	= Copper	MEC6H5	= Toluene
ENDRN	= Endrin	TXPHEN	= Toxaphene
FE	= Iron	TRCLE	= Trichloroethylene
PB	= Lead	C2H3CL	= Vinyl Chloride
LIN	= Lindane	XYLEN	= Xylenes
MN	= Manganese	ZN	= Zinc

LEVEL 3 FILE FORMATS

IRDMIS Level 3 Data Record Tables

Installation

inst_id ⁽¹⁾	00	inst_name [*]	00	inst_ip [*] IP Address	00	inst_x [*] Latitude X UTM Coordinates	00	inst_y [*] Longitude Y UTM Coordinates	00	inst_z [*] Altitude Z UTM Coordinates	00
inst_x [*] Maximum X UTM Coordinates	01	inst_y [*] Maximum Y UTM Coordinates	01	inst_z [*] Maximum Altitude Z UTM	01	inst_x [*] Minimum Latitude X UTM	01	inst_y [*] Minimum Longitude Y UTM	01	inst_z [*] Minimum Altitude Z UTM	01
inst_type [*]	02	inst_type [*] Module Type	02								

chem

analyst_id ⁽¹⁾	00	sample_no [*] File Type	00	sample_no [*] File Type	00	sample_no [*] File Type	00	sample_no [*] File Type	00	sample_no [*] File Type	00
sample_no [*] Sample Date	01	sample_no [*] Sample Date	01	sample_no [*] File Type	01						
sample_no [*] Method Number	02	sample_no [*] Sample Technique	02	sample_no [*] File Type	02						
sample_no [*] Data Entered Date	03	sample_no [*] Data Entered Date	03	sample_no [*] File Type	03						

chem2

sample_no [*] File No. Sample Date	00	sample_no [*] Field Sample Number	00	sample_no [*] Sample Preparation Date	00	sample_no [*] Analytic Date	00	sample_no [*] Laboratory Analytic Number	00	sample_no [*] Analytic Accuracy	00
sample_no [*] Undercoded Value	01	sample_no [*] Chlorine Factor	01	sample_no [*] Method Number	01	sample_no [*] Analytic Type	01	sample_no [*] Data Entry	01	sample_no [*] Data Entered Date	01

sample_loc

sample_no [*] Site-Specific Code	00	sample_no [*] Site Type	00	sample_no [*] Site Identification	00	sample_no [*] Site Identification	00	sample_no [*] Site Identification	00	sample_no [*] Site Name	00
sample_no [*] Site-Specific Code	01	sample_no [*] V Coordinates	01	sample_no [*] Coordinate Accuracy Code	01	sample_no [*] Bottom Elevation	01	sample_no [*] Elevation Accuracy Code	01	sample_no [*] Elevation	01
sample_no [*] Site-Specific Code	02	sample_no [*] Coordinates Ref Number	02								

999

inst_id ⁽¹⁾	00	inst_type [*] File Type	00	inst_x [*] File Identification	00	inst_y [*] File Identification	00	inst_z [*] File Identification	00	inst_ip [*] File Identification	00
inst_ip [*] File Identification	01										

gwc

inst_id ⁽¹⁾	00	inst_type [*] File Type	00	inst_x [*] File Identification	00	inst_y [*] File Identification	00	inst_z [*] File Identification	00	inst_ip [*] File Identification	00
inst_ip [*] File Identification	01										
inst_ip [*] File Identification	02										

cqc

inst_id ⁽¹⁾	00	sample_no [*] File Type	00								
inst_ip [*] File Type	01										
inst_ip [*] File Type	02										
inst_ip [*] File Type	03										
inst_ip [*] File Type	04										
inst_ip [*] File Type	05										
inst_ip [*] File Type	06										
inst_ip [*] File Type	07										
inst_ip [*] File Type	08										
inst_ip [*] File Type	09										
inst_ip [*] File Type	10										
inst_ip [*] File Type	11										

gfd

inst_id ⁽¹⁾	00	inst_ip [*] File Identification	00								
inst_ip [*] File Identification	01										
inst_ip [*] File Identification	02										

hv2_log

inst_id ⁽¹⁾	00	inst_ip [*] File Identification	00								
inst_ip [*] File Identification	01										

LEGEND

(*) - Key Field (*x) - Secondary Indices c - character i - integer f - float d - date field

1 April 1991

ELEMENT IS USED IN THE FOLLOWING IR RECORDS AND DATA BASE TABLES

Record	Level 1 Category	Record	Level 2 Category	Table(s)	Level 3 Category
File	II	**CCM	II	**CMB	
World Setting	II	**CRRN	II	**CMB	
**Commander Command	II	**CSCS	II	**CMB	
**Data Communication	II	**CCMC	II	**CMB	
Map	II	**CCMB	II	**CMB	

*Indicates in the source

**Record implemented entirely in Level-3 data base by Control One

***Entry created and updated by data base load and the source programs

ELEMENT SIZE AND CHARACTERISTICS:

3 alphanumeric characters, left justified. Only the first two characters are presently defined.

ELEMENT DESCRIPTION:

Code identifying the name of the installation from which data is being collected.

ACCEPTABLE CRITERIA:

- Required in File Name and in records indicated above

ACCEPTABLE ENTRIES:

(Listed alphabetically by Installation Code; see also 11.04 Installation Name)

1A	1st Army Recreation Area, Lewes, DE
A9	AMSA US Army Reserve
AA	Aberdeen Area, Aberdeen Proving Ground, MD
AC	Ammunition Center & School
AD	Fort Amador, Panama
AF	US Army Fuels and Lubricant Research Facility
AH	Arlington Hall Station, VA
AL	Alabama AAP, AL
AM	Army Material Technology Lab, MA
AN	Antennas AD, AL
AO	USA AFA 4901A Orlando, FL
AP	Nike, Aberdeen Proving Ground, MD

1 April 1981

9.11-1

ACCEPTABLE ENTRIES: (Cont.)

AH	Albuquerque Munitions Command Command
AN	1st Army Signalhead CMD PAR Mountain, ND
AT	USAARL, Aspinwall, NC
BA	Raleigh AAP, NC
BR	Training Battalions, MI
BD	USAIRL, Beaufort, NC
BN	Ft Benning, GA
BG	Blue Grass Area, Lexington Blue Grass DA, KY
BH	Ft Braggman Harrison, IN
BK	Ft Baker
BK	Ft Bliss, TX
BM	USA Brillmore Maintenance
BN	Brilliant Army National Guard Facility, CO
BP	Blossom Point Ordnance Works, MD
BR	Brooklyn Military Ocean Terminal
BT	Fed Regional Center, Brookfield, Brookline, WA
BU	Ft Burham, PR
BV	Ft Bragg, VA
BY	Bayonet Military Ordnance Terminal, NJ
C1	Family Housing Plainville, CT
C2	Family Housing Fairfield, CT
C3	Family Housing Windsor, CT
C4	Family Housing Ansonia, CT
C5	Family Housing Middlebury, CT
C6	Family Housing Orange, CT
C7	Family Housing Portland, CT
CA	Cadet Barracks
CB	Camp Bullis
CC	Corps Christi AD, TX
CD	Cold Regions Defense Command Supply Center
CF	Cold Regions Research & Engineering Laboratory, NH
CH	Charleston Army DA
CI	Family Housing Pitts 42 Elizabeth, PA
CM	Commissary Station, VA
CP	Ft Carson, CO
CO	Combustible AAP, NE
CP	Camp Parks, Livermore, CA
CR	Camp Novel Weapons Support Center, IN
CS	Camp Sims
CT	Ft Clayton
CV	Camp Army Ammunition Activity

1 April 1981

9.11-2

ACCEPTABLE ENTRIES: (Cont.)

CX	Cancer River Annex, AL
CY	Canyon Lake Recreational Area, New Braunfels, TX
DA	Desert Amend, MI
DE	Fort Des Moines, IA
DF	Defender Mapping Agency, VA
DI	Defence Ind Plant Equip Fuz, Atchison, KS
DM	Defense Status Directorate, Frederick, MD
DO	Fort Douglas, UT
DR	Fort Drum, NY
DT	Fort Detrick, MD
DU	Dugway Proving Ground, UT
DV	Fort Devens, MA
DX	Fort Dix, NJ
EA	Edgewood Area, Aberdeen Proving Ground, MD
EP	Engelhard Proving Ground, Fort Belvoir, VA
ET	Edsel Albin Firing Range, VT
EU	Fort Eustis, VA
FA	Fairchild Arsenal, PA
FB	Fort Bragg, NC
FC	Fort Campbell, KY
FD	Fort Drury
FL	Fort Monmouth, Evans Area, NJ
FG	Fort Gadsden, GA
FH	Fort Hood, TX
FI	Fitzsimons General Hospital
FJ	Fort Jackson, SC
FK	Fort Kilder
FM	Fort Meade, VA
FN	Fort Meigs
FO	Fort Ord, CA
FR	US Army Forward Supp Cn, Mt. Clemens, MI
FS	Fort Story, VA
FT	Fort Totten
FW	Fort Wainwright DA, NM
GA	Goldsberg Hhr (Fort Meade), MD
GG	Cape St. George, FL
GM	USA AMSA 47C/Niami, FL
GO	Fort Gordon, GA
GR	Fort Greely, AK
GT	Grovewood River Test Site, AK
GU	Fort Goliad
GW	Gateway AAP

1 April 1981

9.11-3

ACCEPTABLE ENTRIES: (Cont.)

H1	Family Housing Hall MA 36
H2	USAIRC Hickam, NC
H3	Hawker Bae Middle Market, Savannah, GA
H4	Hawthorne AAP, NV
H5	Ft Holabird, MD
HD	Heavy Damaged Laboratories
HE	Heilbrunn Military Reservation
HK	HC Rad Santa Rosa, Paso Robles, CA
HI	Fort A. P. Hill, VA
HL	Fort Huachuca Lippert, CA
HM	Fort Huachuca
HN	Fort Huachuca
HO	Holmes AAP, TN
HS	Fort Hayes
HT	Hannibal Army Airfield, CA
HU	Fort Huachuca, AZ
HY	Hynes AAP, PA
I1	Family Housing USAIRC Addison, IL
I2	Family Housing Worth, IL
I4	Iowa AAP, IA
IC	Fort Indianapolis Gap, PA
IN	Indiana AAP, IN
IR	Fort Irwin
IV	Iron Support Div Annex, McHenry, PA
J1	Family Housing NWRK Phile 41/43 Clemmons, NC
J2	Family Housing NWRK NY 78 80 Longview, NJ
J3	Family Housing NWRK NY 93 94 Ft. Leaven, NJ
J4	Family Housing NWRK NY 40 Old Bridge, NJ
J5	Family Housing NWRK NY 54 Holmdel, NJ
JB	Jackson Barracks LD7
JF	Jackson Proving Ground, IN
JO	Joker AAP, IL
KA	Kansas AAP, KS
KB	Kings Bay Military Ordnance Terminal
KC	Near Kansas City 35, MO
KD	Kingsford Military Reservation, IN
KK	Fort Knox, KY
LA	Lorillard AAP
LB	Lorray Dam, Baltimore, MD
LC	Lake City AAP, MO
LD	Fort Leonard Wood, MO
LE	Fort Leroy, VA

1 April 1981

9.11-4

0.11

Installation Code

ACCEPTABLE ENTRIES (Cont.)

- 1H Langley AAF, VA
- 1I Lewis Army Medical Center
- 1K Letterkenny, AL
- 1L Lake Lanier North Units Site 1
- 1N Lincoln Support Facility, Smithfield, RI
- 1O Louisiana AAF, LA
- 1T Los Star AAF, TX
- 1U Fort Lawton
- 1V USARC, Lumberton, NC
- 1W Fort Leavenworth, KS
- 1X Fort Lewis, WA
- 1Z Lexington Area, Lexington-Blue Grass DA, KY
- M1 Family Housing Topsfield, MA
- M2 Family Housing Randolph, MA
- M3 Family Housing Beverly, MA
- M4 Family Housing Wakefield, MA
- M5 Family Housing Dedham, MA
- M6 Family Housing Bedford, MA
- M7 Family Housing Somers, MA
- M8 Family Housing MIRE Wash Bldg 35 Cross, MD
- M9 Family Housing SLASC Wherry, MO
- MA Family Housing Manchester CT 25
- MC Fort McRae, AL
- MD Fort Meade, MD
- ME Memphis Defense Depot
- MH Michigan AAF
- MI Milan AAF, TN
- ML McAlester AAF, OK
- MN Fort Monmouth Main Post, NJ
- MN Fort McPherson
- MO Family Housing Milford CT 17
- MW Fort McPherson, GA
- MR Fort Myer
- MS Mississippi AAF, MS
- MT Fort MacArthur
- MU Fort Meade, Fort Meade, MT
- MV Material Development and Readiness
- MW Massachusetts AD, WI
- MY Fort McCoy, WI
- MZ Maine Army Depot
- NA Nevada AD, AZ
- NB Family Housing New Britain CT 57

1 April 1997

0.11-6

0.11

Installation Code

ACCEPTABLE ENTRIES (Cont.)

- N1 New Cumberland AAF, PA
- N1 Family Housing Nahant MA 17
- N1 Fort Belvoir Standby R-NFG RSL 1
- NB North HIBT, MA
- NP Newbury AAF, IN
- N2 New Ulmors Military Ocean Terminal, LA
- NV NV Brattan USAF Center
- OD Oakdale Support Center
- OQ Oakdale Defense Depot, UT
- OK Oakdale Army Base
- P1 Family Housing PFTT 03 Duncansville, PA
- P2 Family Housing PFTT 37 Hermitage, PA
- P3 Family Housing PFTT 02 Rural Range, PA
- P4 Family Housing PFTT 01 Drexell Hill, PA
- P5 Family Housing PFTT 25 Monaca, PA
- P6 Family Housing PFTT 52 Fairless Hills, PA
- P7 Family Housing Campsie 71 (PI 71L), PA
- P8 Family Housing Campsie 72 (PI 71C), PA
- P9 Family Housing PFTT 43 Elkins, PA
- PB Fort Shafter, AK
- PD Phenix Development Works, AL
- PH Philadelphia Defense Personnel Support Center, PA
- PR Parrot Arsenal, NJ
- PK Fort Pickett, VA
- PL Fort Polk, LA
- PM Presidio of Monterey, CA
- PN Pantex Storage Facility, MI
- PS Presidio of San Francisco, CA
- PU Pueblo DA, CO
- PX Pease Military Reservation, MD
- QH Quarry Heights
- R1 Family Housing Davierville, RI
- R2 Family Housing N Smithfield, RI
- RA Redstone Arsenal, AL
- RB Riverbank AAF, CA
- RC Richmond Defense General Supply Center
- RD Redford AAF, VA
- RH Fort Rucker
- RJ Rock Island Arsenal, IL
- RK Rocky Mountain Arsenal, CO (date after 1964)
- RM Rocky Mountain Arsenal, CO
- RJ Red River AD, TX

1 April 2001

0.11

Installation Code

ACCEPTABLE ENTRIES: (Cont.)

- RS Fort Richardson & Eagle River Plant, AK
- RT Rosecrans ASARC
- RU Fort Rueter, AL
- RV Ravenna AAF, OH
- RY Fort Riley, KS
- S1 Sargent Annex, Newburgh, NY
- S2 Family Housing Station CT 74
- SA Sierra AD, CA
- SB Schofield Barracks, HI
- SC Sacramento AD, CA
- SD Sudbury Annex, MA
- SE Seven AD, NY
- SF Sanjour AAF, KS
- SG Sanjour Annex, Aircrew Plant
- SH Sharp AD, CA
- SI Fort Sill, OK
- SJ Smallwood Army Ensign Plant, CT
- SL St. Louis Ordnance Plant & AAF, MO
- SM Fort Soto Henssler, TX
- SN Fort Sheridan, IL
- SO Fort Custer, Penn Belvoir, CA
- SP Somer Power Midterm Ocean Terminal
- SR Sycamore AAF, MO
- SS St. Louis Area Support Center, MO
- ST Fort Shafter
- SU Smallwood Intermediate Tower, Smallwood, MD
- SV Sycamore AD, IL
- SW Fort Stewart, GA
- SY Sycamore ASARC Center
- SZ Smallwood USARC
- TA Tarean
- TC Tarean Cities AAF, MN
- TP Tarean Support Activity - Selfridge
- TI Tahlequah AAF, NC
- TI Fort Tarnet
- TM USAMBC Tech McCord 62
- TR Tonopah AD, NV (North area)
- TO Tonopah Warplane, PA
- TP Thirty Army Medical Center
- TR Tracy DP
- TR Tonopah AD, UT (South area)
- TT Tonopah Test Center

1 April 1997

0.11-7

Installation Code

ACCEPTABLE ENTRIES: (Cont.)

- TW Twin Cities AAF, MN (date before 1966)
- TY Tolyakovo AD, PA
- UA US Soldiers and Armor House
- UC US Army Corps Center
- UH US Army Housing Armed Forces Center
- UM Usamilla AD, OR
- US US Military Academy, West Point, NY
- UT USARC Tampa 4815 W, FL
- V1 Family Housing Woodbridge, VA
- V2 Family Housing MIRE Hatchell BS P. Henry, VA
- V3 Family Housing Manassas, VA
- VC Vancouver Barracks, Vancouver, WA
- VF Valley Forge General Hospital, PA
- VH Viet HB Form Station, VA
- VL Various Locations
- VN Van Nuys Maintenance Shop, Los Angeles, CA
- VO Volunteer AAF, TN
- W1 Family Housing Midway Family Housing, WA
- W2 Family Housing Youngs Lake, WA
- W3 Family Housing Sun Prairie, WI
- WA Waterloo Arsenal, NY
- WB Woodbridge Research Facility, VA
- WI White Sands Missile Range, NM
- WL USARC Wilson, NC
- WN Fort Wainwright, AK
- WP Family Housing Newport CT 73
- WR Walter Reed Medical Center, DC
- WS Welles Spring Chemical Plant & Training Area, MO
- WT Warrens Training Center
- WW West Virginia Ordnance Works, WV
- XY Fort Wedderburn
- Y1 Family Housing Manhattan Beach, NY
- Y2 Family Housing MIRE NY 01 Tappan, NY
- Y3 Family Housing MIRE NY 25 Bronx Post, NY
- Y4 Family Housing Dry Hill, NY
- Y5 Family Housing MIRE NY 99 Spring Valley, NY
- YX Yuma Proving Ground
- YU Yuma Proving Ground, AZ

1 April 2001

9.09

File Type**ELEMENT IS USED IN THE FOLLOWING IR RECORD AND DATA BASE TABLES**

Record	Level 1 Column	Record	Level 2 Column	Column	Level 3 or Column
Sample	8.7	"SOCM"	8.7	"THERM, IRG"	sample_type
Post Drilling	+	"SOCD"	8.7	"CHROMATOP"	sample_type
Geostatistical Suggestion	+	"SOCS"	8.7	"IRG"	sample_type
and Confirmation	+	"SOCSIC"	8.7	"IRG"	sample_type
Map	+	"SOCSMA"	8.7	"IRG"	sample_type

* Indicated in file name

** Implied by table name

*** Entry created and updated by Data-Gene Land and File Status programs

ELEMENT SIZE AND CHARACTERISTICS:

3 upper-case alphabetical characters, full field

ELEMENT DESCRIPTION:

Code identifying the type of data.

ACCEPTABLE CRITERIA:

- Required for all records (explicitly or implicitly as indicated above)

ACCEPTABLE ENTRIES:

(* File Type not currently in use)

CAP Chemical Analysis Paste
 CAR Chemical Air
 CAT Chemical Animal Tissue
 CBD* Chemical Building Decontamination
 CBN* Chemical Bench
 CBI Chemical Building - Interior
 CBS Chemical Building Survey
 CBT Chemical Bits
 CBV Chemical Building - Exterior
 CCP* Chemical Composite Samples
 CCO* Chemical Concrete
 CDM Chemical Drums
 CDR* Chemical Drums
 CDT* Chemical Drums
 CGW Chemical Ground Water

31 August 1990

0.09-1

0.09

File Type**ACCEPTABLE ENTRIES (CONT.)**

CHW* Chemical Inhibition Water
 CMU* Chemical Methods Inventory
 CPC Chemical Process Control
 CPT Chemical Plant Tissue
 CPW Chemical Powder Write
 CQX* Chemical Quality Control
 CQS* Chemical QC Primary Standard
 CSO Chemical Standards Development
 CSE Chemical Soils
 CSM Chemical Survey Material
 CSO Chemical Soil
 CSR Chemical Sewer
 CSS Chemical Stainless Steel
 CSU Chemical Sump
 CSW Chemical Surface Water
 CTF Chemical Transformer
 CTI* Chemical Tile
 CV* Chemical Vest
 CWD* Chemical Wood
 DTT Decon Traceability Matrix
 EGO* Ecological General Observations
 EMO* Ecological Macroinvertebrate Observations
 EOC* Ecological Organism Col.
 ESP* Ecological Sample Preparation File
 EVS* Ecological Hedge Vegetation
 EWV* Ecological Woodland Vegetation
 GAO Geotechnical Aquifer Analysis
 GEL* Geotechnical Elevation File
 GFD Geotechnical Field Drilling
 GGS Geotechnical Ground Water Sulfidized
 GMA Geotechnical Map
 GMD* Geotechnical Methods Description
 GMS* Geotechnical Methods Summary
 GOR* Geotechnical Origin
 GPA Geotechnical Physical Analysis
 GWC Geotechnical Well Construction
 PAT* Pollution Abatement Treatment
 RAT Radiological Animal Tissue
 RBT Radiological Building Interior
 REX Radiological Building Exterior
 RGW Radiological Ground Water
 RPT* Radiological Plant Tissue

31 August 1990

0.09-2

9.09

File Type**ACCEPTABLE ENTRIES: (CONT.)**

RQC* Radiological Quality Control
 RSE Radiological Sediment
 RSS* Radiological Survey Instrument
 RSO Radiological Soil
 RSR Radiological Sewer
 RSW Radiological Surface Water
 RWT* Radiological Surface Wippings
 TOP Treatment Operations
 USS USCM/Metal Objects

31 August 1990

0.09-3

9.17

Site Type

ELEMENT IS USED IN THE FOLLOWING IR RECORDS AND DATA BASE TABLES:

Record	Level 1 Column	Record	Level 2 Column	Table	Level 3 60 Column
Sample	0.11	SRC	0.11	None	000-type
Pond Drilling	0.10	SCDSD	0.11	SDP	000-type
Groundwater Disposal	0.10	SCDSD	0.11	SDP	000-type
Soil Disposal	0.10	SCDSD	0.11	SDP	000-type
Soil-Aspir	0.10	SCDSD	0.11	SDP	000-type
Soil-Cores	0.10	SCDSD	0.11	SDP	000-type

ELEMENT SIZE AND CHARACTERISTICS:

4 upper-case alphanumeric characters, left justified.

ELEMENT DESCRIPTION:

A standardized code representing a type of landmark, feature, or construction.

ACCEPTABLE CRITERIA:

- Required on all records
- Must match one of the acceptable codes below
- Must match the site-type of the corresponding map record except for QC records
- Level 1 QC records must be blank

ACCEPTABLE ENTRIES:

(The site types are listed by data type for ease of use.)

Chemical or Radiological Data:**Chemical Analyte Point (CAP)**

BLDG	building
FRLK	field blank
RNSW	reservoir
SURF	surfaces in general
TRIP	trip blank

Site Type

9.17

ACCEPTABLE ENTRIES (Cont.)**Chemical or Radiological Data: (Cont.)****Air (CAR):**

ARMO	air monitoring station
BLDG	building
CMPG	composite grab sample
CMPH	composite sample taken from multiple locations
CSDT	chemical sludge disposal trenches
FRLK	field blank
OLSP	old lounge dredge pile
RNSW	reservoir
TRIP	trip blank
TURL	tunnel
UNKG	unknown grab sample
WOOD	wood

Animal Tissue (CAT or RAT):

BNDL	biological sample
CMPH	composite sample taken from multiple locations
CHEK	check
FRLK	field blank
LAKE	lake
POWD	pond
RNSW	reservoir
RIVER	river
STRM	stream
SURF	surfaces in general
TRIP	trip blank
TURL	tunnel

Building Interior (CBI or RBI):

ASPH	asphalt
BATT	battery
BLDG	building
CASE	case
CMPH	composite sample taken from multiple locations
CONC	concrete
CTIL	coring tile
FRLK	field blank

1 April 1991

9.17-1

1 April 1991

9.17

Site Type**ACCEPTABLE ENTRIES: (Cont.)****Chemical or Radiological Data: (Cont.)****Building Interior (CBI or RBI): (Cont.)**

FELD	field
GEDA	gasoline or sludge disposal area
LAKL	lakeside
PLAS	plaster
RNSW	reservoir
SHRL	sheet rock
THSI	thermal system insulation
TRIP	trip blank
VFT	vinyl floor tile
WHS	wall insulation
WPE	wipe
WLBD	wall board
WOOD	wood
WTL	wall tile

Building Survey (CBS):

BATT	battery
BLDG	building
CASE	case
CMPH	composite sample taken from multiple locations
FRLK	field blank
RNSW	reservoir
TRIP	trip blank
TURL	tunnel

Chemical Block (CBT):

BNDL	biological sample
FRLK	field blank
RNSW	reservoir

9.17-2

9.17

ACCEPTABLE ENTRIES: (Cont.)**Chemical or Radiological Data: (Cont.)****Building Exterior (CEX or REB):**

ASPH	asphalt
BATT	battery
BLDG	building
CASE	case
CMPH	composite board
CMPH	composite sample taken from multiple locations
CONC	concrete
FRLK	field blank
GEDA	gasoline or sludge disposal area
RNSW	reservoir
ROOF	roofing material
SHCL	shingle
SDG	sliding
TRIP	trip blank
WPE	wipe

Drum (CDM):

DRUM	drum
FRLK	field blank
RNSW	reservoir
TANK	tank
TRIP	trip blank
UPS	unlabeled unlabeled substance

Groundwater (CGW or RGW):

CMPH	composite sample taken from multiple locations
DRAWM	drilling water source
FRLK	field blank
FELD	field
FLPL	flapdoor
LYSM	lysimeter
OTBL	outfall
RNSW	reservoir
SPRG	spring
SPTK	sight tank
SUMP	sump

9.17-3

1 April 1991

1 April 1991

9.17	Site Type	Site Type	9.17
ACCEPTABLE ENTRIES (Cont.)			
Chemical or Radiological Data (Cont.)			
Groundwater (CGW or RGW): (Cont.)			
SWAP	swamp		
SWR	seep		
TANK	tank		
TAPW	tap water source		
TPSE	treatment plant		
TRIP	trip blank		
TUNL	tunnel		
UNKG	unknown grab sample		
WELL	dry well (old-fashioned-type well)		
WELL	completely well		
WIFI	wire		
WOOD	wood		
Process Control (CPC):			
CLGN	cagoon process		
CMPH	composite sample taken from multiple locations		
ENDL	endline		
FBLK	field blank		
FELD	field		
GWTS	groundwater treatment system		
INCH	incinerator		
IWTP	industrial waste treatment plant		
RNSW	reservoir		
TANK	tank		
TAPW	tap water source		
TPSE	treatment plant		
TRAN	transformer		
TRIP	trip blank		
TUNL	tunnel		
UNKG	unknown grab sample		
Plant Tissue (CPT or RPT):			
RH	bioassay sample		
CMPH	composite sample taken from multiple locations		
FBLK	field blank		
IWTP	industrial waste treatment plant		
LAKE	lake		
PLUG	shovel sample		
POND	pond		
RNSW	reservoir		
SURF	surface in general		
TRIP	trip blank		
TUNL	tunnel		
WOOD	wood		
Standards Development (SD):			
EVAL	evaluation		
FBLK	field blank		
RNSW	reservoir		
TEST	test		
TRIP	trip blank		
TUNL	tunnel		
UNKG	unknown grab sample		
Sediment (CSE or DSE):			
BASN	basin		
BASU	bayou		
BORE	bore hole		
CIST	cistern		
CMPH	composite sample taken from multiple locations		
CREX	creek		
DRUM	drum		
DITCH	ditch or drainage		
FBLK	field blank		
FELD	field		
FLPL	flatsplain		
GSDA	grave or dredge disposal area		
IWTP	industrial waste treatment plant		
1 April 1991 9.17-4 9.17-4 1 April 1991			
9.17	Site Type	Site Type	9.17
ACCEPTABLE ENTRIES: (Cont.)			
Chemical or Radiological Data: (Cont.)			
Sediment (CSE or DSE): (Cont.)			
LAPL	landfill		
LAGO	lagoon		
LAKE	lake		
MAHO	manhole		
MT	marshy area		
OTFL	outfall		
PLUG	shovel sample		
POND	pond		
PRSW	process sewer		
RNSW	reservoir		
RSVR	reservoir		
RVER	river		
SKUL	sink hole		
SPRG	spring		
STP	secondary treatment plant		
STRM	stream		
STSW	storm sewer		
STWA	standing water		
SUMP	sump		
SURF	surface in general		
SWAP	swamp		
SWER	sewer		
TANK	tank		
TPSE	treatment plant		
TRIP	trip blank		
TUNL	tunnel		
UNKG	unknown grab sample		
WASS	solid waste		
WELL	dry well (old-fashioned-type well)		
WIFI	wire		
WOOD	wood		
Sorbity Material (CM):			
FBLK	field blank		
RNSW	reservoir		
TRIP	trip blank		
UNKG	unknown grab sample		
Soil (CSD or RSD):			
AREA	area of land		
BASN	basin		
BLDG	building		
BORE	bore hole		
BURG	boring ground		
CD	coastal-deciduous woodland		
CMPH	composite sample taken from multiple locations		
COMP	composite soil sample taken within 100m diameter		
CREX	creek		
CSUT	chemical sludge disposal trenches		
DEMO	demolition area		
DITCH	ditch or drainage		
DW	deciduous woodland		
FBLK	field blank		
FELD	field		
FLPL	flatsplain		
GRAB	grab sample		
GSDA	grave or dredge disposal area		
LARL	landfill		
LAGO	lagoon		
MT	marshy area		
OLSP	old sewage sludge pit		
OTFL	outfall		
PIT	pit/over spuds		
PLUG	shovel sample		
RNSW	reservoir		
SKUL	sink hole		
STRW	storm sewer		
SUMP	sump		
SURF	surface in general		
SWAP	swamp		
1 April 1991 9.17-4 9.17-4 1 April 1991			

Site Type	
ACCEPTABLE ENTRIES (Cont.)	
Chemical or Radiological Data: (Cont.)	
Soil (CSO or RSO): (Cont.)	
TANK	tank
TPSE	treating plant
TRIP	trip blank
TRST	tree stand
TURL	uncont.
UNIG	unknown grab sample
WASS	solid waste
WIPE	wipe
WT	wetdry core
Sewer (CSR or RSW):	
CMPH	composite sample taken from multiple locations
FBLX	field blank
GSDA	green or sludge disposal area
MAMO	manure
RNSW	reservoir
SASW	sanitary sewer
SPTR	septic tank
STP	sanitary treatment plant
SWER	sewer
TRIP	trip blank
TURL	uncont.
UNIG	unknown grab sample
Stainless Steel (CSB):	
FBLX	field blank
RNSW	reservoir
TRIP	trip blank
UNIG	unknown grab sample
Surface Water (CSW or RSW):	
BASN	basin
BAYU	bayou
BLDG	building
CST	creek

1 April 2007 0.17-4

Site Type	
ACCEPTABLE ENTRIES (Cont.)	
Chemical or Radiological Data: (Cont.)	
Surface Water (CSW or RSW): (Cont.)	
CMPH	composite sample taken from multiple locations
CREEK	creek
DAM	dam
DTCH	ditch or drainage
FBLX	field blank
FELD	field
GSDA	green or sludge disposal area
IWTP	industrial waste treatment plant
LAFL	landfill
LAGO	lagoon
LAKE	lake
MT	marshy area
OTFL	outfall
POND	pond
RNSW	river water
RSVR	reservoir
RVER	river
SDHL	salt hole
SPRG	spring
STP	sanitary treatment plant
STRM	stream
STSW	storm sewer
STWA	storage water
SUMP	sump
SWAP	swamp
SWER	sewer
TANK	tank
TAPW	tap water source
TPSE	treating plant
TRIP	trip blank
TURL	uncont.
UNIG	unknown grab sample
WASH	liquid waste
WIPE	wipe

1 April 2007 0.17-5

Site Type	
ACCEPTABLE ENTRIES: (Cont.)	
Chemical or Radiological Data: (Cont.)	
Transformers (CTP):	
FBLX	field blank
RNSW	reservoir
TRAN	transformer
TRIP	trip blank
Decommission Data:	
Decommission Treatment Technology (DTT):	
DDCN	decommission
Geotechnical Data:	
Groundwater Stabilized (GGS):	
BASN	basin
BAYU	bayou
CREEK	creek
DTCH	ditch or drainage
LAGO	lagoon
LAKE	lake
LYSN	lysimeter
MT	marshy area
OTFL	outfall
POND	pond
RSVR	reservoir
SPRG	spring
STRM	stream
STSW	storm sewer
SUMP	sump
SWAP	swamp
SWER	sewer
WELL	compiled well

1 April 2007 0.17-6

Site Type	
Feld Drilling (GDS):	
BORE	bore
(This field is not contained in the Level 3 grid table above the only compatible Site_Type for Field drilling data is "BORE".)	
Well Construction (GWC):	
WELL	completed well
LYSN	lysimeter
Map Data (GMA):	
All Site_Types (except QC) are allowable entries for the map file. The Site_Type used in the data file must match exactly that used in the map file.	
Other Data:	
Unexploded Ordnance/Metal Object (UOO):	
UNIG	unknown grab sample

1 April 2007 0.17-7

8.05**Depth (Chemical)**

ELEMENT IS USED IN THE FOLLOWING IN RECORDS AND DATA BASE TABLES:

Record	Level 1	Column	Record	Level 1	Column	Record	Level 1	Column
Sample	00-40	00000	00-40	00000	00000			

ELEMENT SIZE AND CHARACTERISTICS:

Level 1 and 2: Decimal (5 digits plus decimal point)

Level 3: Plus 4

ELEMENT DESCRIPTION:

A number to express as the nearest tenth of a foot the depth from the topographic surface to the top of the material being sampled.

ACCEPTABLE CRITERIA:

- Required on all chemical records except QC records that do not originate in the field
- Entry of "0" is not allowed
- Must be a decimal to the nearest tenth of a foot
- For buildings and other samples above the topographic surface, use a "+" (minus sign) and 3 digits plus decimal point to express the sample height above the topographic surface.

ACCEPTABLE ENTRIES:

Depth:

Minimum value	0.0
Maximum value	9999.9

Height:

Minimum value	-99.9
Maximum value	0.0

21 August 1990

8.05-1

8.19**Sample Date**

ELEMENT IS USED IN THE FOLLOWING IN RECORDS AND DATA BASE TABLES:

Record	Level 1	Column	Record	Level 1	Column	Record	Level 1	Column
Sample	00-07	00000	00-04	00000	00000			

ELEMENT SIZE AND CHARACTERISTICS:

Level 1: 8 characters - format (MM/DD/YY)

Level 2: Julian date (YYDDD)

Level 3: Output date format (DD-mm-YYYY)

ELEMENT DESCRIPTION:

Date on which the sample was taken

ACCEPTABLE CRITERIA:

Valid date

ACCEPTABLE ENTRIES:

Minimum:	>= 1 Jan 75
Maximum:	<= Sample Preparation Date
	<= Analysis Date
	<= Current Date

14 December 1990

8.19-1

9.19

Unit of Measurement

ELEMENT IS USED IN THE FOLLOWING IR RECORDS AND DATA BASE TABLES:

Record	Level 1	Definition	Record	Level 1	Definition	Records	Level 1	Definition
LST	10-10		SGD90	00-00	slumpage	SGD	00	SGD
Plant Setting	00-00		SGD90	00-00	gpm	SGD	00	SGD
Plant Conductance	00-00		SGD90	00-00	gpm	SGD	00	SGD

ELEMENT SIZE AND CHARACTERISTICS:

4 alphanumeric character, left justified (no embedded blank)

ELEMENT DESCRIPTION:

Code representing the Unit of Measurement of the Value.

Prefix Code	Prefix	Power of 10
A	one	-10
F	thousand	-15
P	per	-12
N	none	-9
U	micro	-6
M	milli	-3
K	KILO	+3
ME	MEG	+6
G	GRAN	+9
T	THOU	+12
PT	PT	+15
E	EMI	+18

ACCEPTABLE CRITERIA:

- Required on all records that contain an unconverted machine value
- Blank for records where the Measurement Boolean is "NIN" or "PP"
- Blank for records where Test Name is "PH"
- Must match one of the codes listed below

1 April 1991 9.19-1

Unit of Measurement

9.19

ACCEPTABLE ENTRIES:**Chemical Data:**

UNIT	MEDIA	DESCRIPTION
UGL	liquid, drum	micrograms/liter
UGC	solid, drum	micrograms/green
MGH2	gas	micrograms/cubic meter
MGH3	gas	micrograms/cubic meter
UGC2	surface	micrograms/square centimeter

Special Cases (Method 00):

UNIT	DESCRIPTION	TEST NAME(S)
BLANK	unlisted	PH
C	Color	TEMP
CHAL	color/100 ml	TOTCOL
CU	color unit	COLOR
PCMD	liter/cubic centimeter	ASBEST (and other asbestos Test Names)
HTU	hydrometric turbidity unit	TURBID
PCT	percent	ASBEST (and other asbestos Test Names)
TDN	total dissolved index number	TASTE
TON	threshold odor number	ODOR
UMKC	microsiemens/cm-conductivity	COND

Quality Control Data:

UNIT	DESCRIPTION
BLANK	pH
MOLP	mole percent
PC	percent
PCTP	percent phosphorus
PPB	parts/billion
PPM	parts/thousand
PPM	parts/million
PPPT	parts/billion
UMHO	microho-conductivity

1 April 1991 9.19-2

9.19-2

1 April 1991

9.19

Unit of Measurement**ACCEPTABLE CRITERIA: (CONT.)****Radiological Data:**

UNIT	DESCRIPTION
CMGP	picocuries/square centimeter
CPV	curies/meter
CTS	curies
DMRQ2	disintegrations/meters/square meter
DPM	disintegrations/meters
DPMQ2	disintegrations/meters/cubic meter
DRPA	disintegrations/meters/100 square cm
FCL	disintegrations/liter
PGC	disintegrations/green
PGL	disintegrations/liter
MMR	milliroentgen
MCH	millicurie/meter
MTHM	milliroentgen/milliroentgen
MGGA	micrograys/green-ash
MRAD	milliroentgen
MRH	milliroentgen/hour
MRRA	milliroentgens/milliroentgen
MCL	milliroentgen/liter
MRCG	milliroentgens/milliroentgen
MRCU	milliroentgens/green dry
MCL	milliroentgens/liter
PCC	picocuries
PGG	picocuries/green
PGGA	picocuries/green-ash
PGCD	picocuries/green-dry
PGCV	picocuries/green-wet
PCL	picocuries/liter
PGQZ	picocuries/square meter
PCML	picocuries/milliliter
UC	microcuries
UDGA	microcuries/green ash
UDGD	microcuries/green dry
UDGW	microcuries/green wet
UL	microcuries/liter
UDGM	microcuries/milliliter
UGG	microcuries/green

Unit of Measurement

9.19

ACCEPTABLE CRITERIA: (CONT.)**Generalized Data:****Gold Mining Data:**

UNIT	DESCRIPTION	ACCEPTABLE ENTRIES
BL	barrier layer	BARL
PT	part	SGRL, DPTOT, GROWT, RECV, SPUL,
L	part	BALY
MW	mass	BALY, RECV, TMS (depending on Method)
PS	pseudo/square inch	MMPS
SEC	seconds	TIME (depending on Method)
Min		ADML, BPLL, BSTAT, CAVL, COLOR, CONSL, DRVL, GRNL, MMW, MRCG, MMWT, SAMPL, SURF, TOPO, UICS

Well Construction Data:

UNIT	DESCRIPTION	ACCEPTABLE ENTRIES
PT	part	CABL, CABD, CABE, CABL, DPTOT, LYSP, RECV,
L	part	STPL
MW	mass	BALY, RECV
PS	psi	BPLL, BSTAT, CAVL, COLOR, CONSL, DRVL, GRNL, MMW, MRCG, MMWT, SAMPL, SURF, TOPO, USTAT

1 April 1991

9.19-3

1 April 1991

8.06

Flagging Code**ELEMENT IS USED IN THE FOLLOWING IR RECORDS AND DATA BASE TABLES.**

Report	Level 1 Category	Report	Level 2 Category	Report	Level 3 Category
Analyte	00	REC001	000	REC001	000

ELEMENT SIZE AND CHARACTERISTICS:

- I upper-case alphabetical character, full field or blank

ELEMENT DESCRIPTION:

Code to indicate other-than-usual analytical conditions or results.

ACCEPTABLE CRITERIA:

- B Analyte found in blank as well as sample. This flagging code is to be used for analytes which are found and quantitated above the Certified Reporting Limit (CRL) or at higher-than-normal background levels in the method blank and also in analytical samples.
- C Analysis was confirmed. This flagging code is to be used when a confirmational analysis bears out the reported results. The confirmational analysis must involve a different column or analytical technique.
- D Duplicate sample or test name. This flagging code is to be used to distinguish analytical results when duplicate analyses are reported. This flagging code should be used for the second (duplicate) sample only.
- E Element run with background correction. This flagging code is to be used to identify reported results from ICP or AA analyses when background correction is not the normal mode of analysis.
- F Sample (blown before analysis). This flagging code is to be used when the results of filtered samples are to be differentiated from non-filtered samples, or where (required) filtering of samples is a deviation from the SOP.
- G Reported results are altered by interferences or high background. This flagging code is to be used when levels of analyte at or near the CRL cannot be accurately quantified to the actual CRL due to interferences. (This will allow the laboratory to report a different CRL, rather than defaulting to the Methods table.)

20 May 2000

0.00-1

8.06

Flagging Code**ACCEPTABLE CRITERIA: (CONT.)**

- S Results based on internal standard. This flagging code is to be used in conjunction with methods which use an internal standard. Compounds for which no confirmation data exist are quantitated by direct comparison to the internal standard. Cannot be used with a bracket, since there is (implied) quantitation.
- T Analyzed for but not reported. This flagging code is to be used for multi-OCW's multi-analyte methods to report components that are a normal part of the methodology but for which no confirmation data exists.
- U Analysis is unconfirmed. This flagging code is to be used when a confirmational analysis is done but does not verify the reported results obtained from the initial analysis.
- V Sample subjected to unusual storage conditions. This flagging code is to be used when the sample storage conditions may affect the analytical results.
- W Sample analyzed required from a multi-analyte method. This flagging code is to be used where only one sample from a multi-analyte method is to be reported. This flagging code is used when splitting ratios remain above that can sample of interest for the method.
- X Analyte recovery outside of certified range but within acceptable limits. This flagging code is to be used when analyte recoveries exceed the upper limit of the certified range by less than 15% and the laboratory feels a citation is not warranted.

ACCEPTABLE ENTRIES:

- B Analyte found in blank as well as sample.
- C Analysis was confirmed.
- D Duplicate sample or Test Name.
- E Element run with background correction.
- F Sample (blown before analysis).
- G Reported results altered by interferences or high background.
- H Out of control but data accepted due to high recoveries.
- I Out of control, data accepted due to low recoveries.
- J Mixed holding time, acceptable based on holding-time stack.
- K Mixed holding times for extraction and preparation.
- L Mixed holding time for analysis.
- M Duplicate (high) spike analysis not within control limits.
- N Low spike recovery is not within control limits.

20 May 2000

0.00-0

Flagging Code

8.06

ACCEPTABLE CRITERIA: (CONT.)

- H Out of control but data accepted due to high recoveries. This flagging code is to be used when control analyses show higher-than-normal recoveries, ensuring USATHAMA that if a contamination was found in the sample at or near the CRL, it would have been reported.
- I Out of control, data rejected due to low recoveries. This flagging code is to be used when recoveries of the control analyses are depressed so that there is no assurance that values at or near the CRL are accurate.
- J Mixed holding time, acceptable based on the results of the holding-time study. This flagging code is to be used when holding times are mixed but data is not believed to be affected based on the year EPA-USATHAMA study.
- K Mixed holding time for extraction and preparation. This flagging code is to be used when extraction and/or preparation times are not met but data quality is not believed to be affected.
- L Mixed holding time for analysis. This flagging code is to be used when extraction and/or preparation times have been met but analytical hold times have been mixed and the data quality is not believed to be affected.
- M Duplicate (high) spike analysis not within control limits. This flagging code is to be used when one of the duplicate spikes gives significantly different results, placing the spike average outside of control limits.
- N Low spike recovery is not within control limits. This flagging code is to be used when the low spike recovery (one the three-day average) falls outside of control limits and the analytical data is potentially biased.
- P Results less than CRL but greater than Criteria of Detection (COD). This flagging code is to be used when the laboratory can quantity results which would normally fall below the CRL.
- Q Recovery markedly different from historical data. This flagging code is to be used when the recovery of a surrogate is markedly different from historical data.
- R Analyzer required for reporting purposes but not currently certified. This flagging code is used to identify GC/MS analyses for which no certification data exists but are a normal part of the EPA methodology. This also signifies that the analysis was not quantitated (must be used in conjunction with a Citation of ND).

0.00-2

20 May 2000

Flagging Code

8.06

ACCEPTABLE ENTRIES: (CONT.)

- P Results less than CRL but greater than COD.
- Q Recovery markedly different from historical data.
- R Analyzer required for reporting purposes but not currently certified.
- S Results based on internal standard.
- T Analyzed for but not confirmed.
- U Analyte is unconfirmed.
- V Sample subjected to unusual storage conditions.
- W Single analysis required from a multi-analyte method.
- X Analyte recovery outside of certified range but within acceptable limits.

0.00-4

20 May 2000

9.15

Prime Contractor

ELEMENT IS USED IN THE FOLLOWING IR RECORDS AND DATA BASE TABLES:

Record	Level 1	Definition	Record	Level 1	Definition	Table	Level 1	Definition
IR	IR-00	00000	IR-00	IR-00	100-101	IR-00	IR-00	IR-00
IR	IR-01	00000	IR-01	IR-01	101-102	IR-01	IR-01	IR-01
IR	IR-02	00000	IR-02	IR-02	102-103	IR-02	IR-02	IR-02
IR	IR-03	00000	IR-03	IR-03	103-104	IR-03	IR-03	IR-03

ELEMENT SIZE AND CHARACTERISTICS:

2 alphabetic characters, full field

ELEMENT DESCRIPTION:

Code to identify the prime contractor (i.e., the organization directly responsible to USEPA/DOE via a contract or vendor agreement)

ACCEPTABLE CRITERIA:

- Required on all chemical and geoscientific records.

ACCEPTABLE ENTRIES:

(alphabetical by code)

AC Ace Well Drilling, Inc.
 AD Acre Drilling Co.
 AE Acre Technical Services, Inc.
 AG Agri Science
 AH Army Environmental Hygiene Agency (AEHA)
 AL Arthur D. Little
 AH Aquarion Laboratories
 AP Alabama AAP
 AQ Aquafac, Inc., Stowmead, IL
 AR Atlantic Research, Inc.
 AS Allstar Technologies (formerly Heavywell)
 AT ATBC and Associates, Inc.
 BA Baker and Associates
 KC Bechtel, Columbus, OH
 BH B & H Drilling, No. 2
 BM Besser-Moraine
 BH Besser-Moraine
 CA Calgon, Pittsburgh, PA

1 April 1991

8.16-1

Prime Contractor

ACCEPTABLE ENTRIES: (Cont.)

CE Concrete for Environmental Pollution
 CI Crowley Refining Co. Lab.
 CH Colorado State Health Department
 CL California Analytical Laboratories, Inc.
 LM Liver-Moraine Environmental Services, Inc., CL
 CO CorvusTech AAP
 CQ Central Quality Assurance Laboratory
 CR Concepts-Rexxon Assoc.
 CS Chemical Research, Development & Engineering Center
 CW California Water Lab., Inc.
 DA Donahue and Associates
 DI Developers International Services Corp
 DM Damon and Moore, Inc.
 DP Processing Associates (RMA only)
 EM Environmental Protection Agency, Bay St. Louis, MS
 EO Elmetco
 EC Edgewood Chemical Laboratory
 ED Environmental Science and Engineering, Inc., Denver, CO
 ES Envirodyne Engineers, Inc.
 EG E.G.C., Atlanta, GA
 EH Environmental Health Laboratory, Monroe, GA
 EL Earth Sciences, Inc.
 EX Engineering Tech. Assoc., Illinois City, MD
 GL Geology & Geokinetics, Inc., Lancaster, NY
 HM Environmental Assessment Management, Inc., Exton, PA
 HS Environmental Testing and Certification Corp., Edison, NJ
 SO ERICO-CAL, West Sacramento, CA
 SP Environmental Protection Systems, Inc.
 ST ESTEC, Inc.
 SS Environmental Science & Engineering, Inc., Galesburg, IL
 ET EA Engineering, Science & Technology, Inc.
 EZ Engineering Science, Inc., Pasadena, CA
 PA Federal Analytics, Philadelphia, PA
 PC Federal Consulting Corp.
 PD Fort Detrick Field Lab
 PZ Foss Drilling
 SA Geologic Associates, Inc.
 GD Grove Drilling Co.
 GM Gregory and Miller, Inc.
 GS US Geological Survey
 HD Hatch Drilling, Inc.
 HE Hanger Drilling, Inc.

8.15

1 April 1991

Prime Contractor

ACCEPTABLE ENTRIES: (Cont.)

RW Rocky Mountain/WES Combination (RMA only)
 SC Shell Chemical, Rocky Mountain Amend.
 ED Sibley Drilling
 ED Soil Remediation
 SH Schmitt, Hamann & Bruckhoff
 BL Schmitz Laboratories
 ST SEDCO, Inc., Minneapolis, MN
 SE Self Probe Services
 SV ShredTech Technologies, Inc.
 SW ShredTech Environmental Laboratories
 TC Tencor Instruments, Inc.
 TD Test Drilling
 TE Testline
 TH THARWADIA
 TI Testing Incorporated
 TU Texas Army Depot, UT
 US U.S. Geosciences, Inc.
 UC University of Georgia
 UL University of Colorado, CO
 UT University of Texas, Arlington, TX
 VR Verner, Inc., Springfield, VA
 WA Water & Air Research, Inc.
 WE Waterways Experiment Station (WES)
 WF Water Flood Control
 WT Western Services, Inc., Norcross, GA
 WL Western Laboratory
 WH Ray F. Weston, Westerville, PA
 WD Woodward Clyde Federal Services, Washington, DC
 WP West Peter
 WZ Ray F. Weston, Inc.
 WT Ray F. Weston, Stockholm CA
 WZ Wimpy Engineering, Inc.

8.16

(listed alphabetically by contractor name)

AC Ace Well Drilling, Inc.
 AE Acre Technical Services, Inc.
 AG Agri Service
 AP Alabama AAP
 AS Allstar Technologies (formerly Heavywell)

AA
 AG
 AP
 AS

1 April 1991

8.16-2

1 April 1991

9.15

Prime Contractor

ACCEPTABLE ENTRIES: (Cont.)

Aquash, Inc., Streamwood, IL	AO
Argonne Laboratories	AN
Arco Environmental Hygiene Agency (AEHA)	AH
Arrow Drilling Co.	AD
Arthur D. Little	AL
ATEC and Associates, Inc.	AT
Atmosic Research, Inc.	AR
B & H Drilling, No. 2	BH
Bassett, Columbus, OH	BC
Bassett Northwest	BN
Bawer-Murphy	BM
Bergen and Associates	BA
Caliper, Pittsburgh, PA	CA
California Analytical Laboratories, Inc.	CL
California Water Lab., Inc.	CO
Catalyst Quality Assurance Laboratory	CP
Century Refining Co. Lab.	CR
Chem-Nature Environmental Services, Inc., CO	CS
Chemical Research, Development & Engineering Center	CT
Colorado State Health Department	CI
Colorado-Swiss Assoc.	CS
Controls for Environmental Pollution	CO
Corporation AAF	CO
Davis and Moore, Inc.	DM
DataCheck, Inc.	DS
Developers, International Services Corp.	DI
Dowdell and Associates	DA
E G & G, Inc., TN	EG
E.C. Jordan Co., Portland, ME	JO
EA Engineering, Science & Technology, Inc.	ET
Lanth Services, Inc.	EL
Fisher	ER
Ecology & Environment, Inc., Lancaster, NY	EL
Edgewood Chemical Laboratory	EC
Engineering Sciences, Inc., Pasadena, CA	E7
Engineering Test Assoc., Ellicott City, MD	EA
ENSCO-CAL, West Sacramento, CA	ED
Envirodyne Sciences, Inc.	EE
Environmental Science & Engineering, Inc., Gainesville, FL	ES
Environmental Health Laboratory, Moran, GA	EH
Environmental Protection Agency, Bay St. Louis, MS	EA
Environmental Protection Systems, Inc.	EP

1 April 1991

9.16-6

Prime Contractor

ACCEPTABLE ENTRIES: (Cont.)

Environmental Resources Management, Inc., Exton, PA	EM
Environmental Survey and Engineering, Inc., Union, NJ	ED
Environmental Testing and Consultation Corp., Edison, NJ	EN
ERI, Inc.	ER
Federal Computer Corp.	FC
Fertig Molding Field Lab.	FM
Fett Drilling	FX
Frankland Animal, Philadelphia, PA	FA
Grainger Associates, Inc.	GA
Gregory and Miller, Inc.	GM
Grove Drilling Co.	GD
Harvey Hall	HH
Hatch Drilling, Inc.	HD
Hennings Drilling, Inc.	HE
Hoffman Associates	HI
ICP Technology, Fairfax, VA	IC
International Technology Corp., Knoxville, TN	IT
Inraproducts	IP
J. Klinefield	JF
Javelin Engineering Group, Inc., Pasadena, CA	JE
James Montgomery Engineering, Inc.	JM
JAYCOR, Vienna, VA	JA
JTC Environmental Contractors, Inc.	JW
Lake Western	LN
Lang Engineering	LG
Low Engineering	LO
Lumexx AAF (Thermal)	LM
Meredith Laboratory, Inc., Baltimore, MD	MC
MCI Environmental Engineers	ME
Monsanto, Inc., St. Louis, MO	MO
Monell & Eddy, Inc., Columbus, OH	MP
Midwest Research Institute	MR
Milan AAF (Marion-Marietta)	MM
Miller Drilling	MD
Minnesota State, Department of Health Laboratory	MN
Missouri River District - Kansas City	MR
Missouri River District - Omaha	MO
Mosby and Associates	MA
O. H. Materials Corp., Findlay, OH	OH
Oak Ridge National Laboratory	OR
Olin Corporation	OL
PA Dept. of Environmental Resources	PN

9.15

9.16-4

1 April 1991

9.16

Prime Contractor

ACCEPTABLE ENTRIES: (Cont.)

Pearl Laboratories, Inc., Minneapolis, MN	PK
Petroleum Assured	PI
Pew Sheet Assured	PS
Perchard Drilling	PT
Petroleum of New York, Inc.	PO
(Polymer) Applications, (DNA only)	PO
R.L. Smith & Associates, Inc., Denver, CO	RS
Radonics Management Corp., (RADCO)	RC
Raderh Scientific Services	RT
Rademar Assured	RA
Reedrod	RE
Rehberg International Laboratories	RJ
Rocky Mountain Arsenic	RK
Rocky Mountain/WELS Continuous (DNA only)	RK
Ray F. Weston, Inc.	WS
Ray F. Weston, Sacramento CA	WT
Ray F. Weston, Worcester, PA	WH
Reeves, Memphis & Barkwell	SH
Reeves Chemical, Reeve Mountain Arsenic	SK
Soil Testing Engineers	SE
Soil Testing Services	ST
Southwest Laboratory	SD
Southwestern Laboratories	SW
Sophomore Drilling	SD
Sorenson Laboratories	SZ
STS Consultants, Inc., Minneapolis, MN	SV
Stevens Technology, Inc.	TE
Tetracon Consultants, Inc.	TC
Test Drilling	TD
Testing, Incorporated	TI
Tourist Area Dept., UT	TD
UNC, Grand Junction, CO	CG
University of Georgia	CG
University of Texas, Arlington, TX	CG
US Geological Survey	CG
USATHAMA	TH
Wexler, Inc., Springfield, VA	WP
Water Flood Drillers	WF
Wescon Engineering, Inc.	WZ
Wexxar & Air Research, Inc.	WA
Wetware Equipment Systems (WES)	WA

1 April 1991

9.16-7

Prime Contractor

ACCEPTABLE ENTRIES: (Cont.)

West Point	WP
Western Laboratory	WL
Western Services, Inc., Norcross, GA	WI
Woodard Cycle Federal Services, Washington, DC	WO

9.16

1 April 1991

Test Name (Analyte) 8.24

ELEMENT IS USED IN THE FOLLOWING IR RECORDS AND DATA BASE TABLES:

Record	Level 1	Category	Record	Level 1	Category	Records	Level 1	Category
Analyte	0-7	60000	IR000	0-60	60000	IR000	0-60	60000

ELEMENT SIZE AND CHARACTERISTICS:

6 alphanumeric character, left justified

ELEMENT DESCRIPTION:

Code to identify the analyte or parameter being measured.

ACCEPTABLE CRITERIA:

- Required on all chemical and toxicological records
- Must match one of the acceptable codes listed below
- For unknowns, must be within the range of UN0001 through UN0999
- Lab must be certified for the specific Test Name except when one of the following conditions exists:

Method is nonquantitative screening

Method is non-USATRANA approved

Method is "99"

Method is "00", which is valid for the following Test Names:

ACIDT	COD	REACTY
ALK	COLI	SALINE
ALBIC	COLOR	SALINI
ALICAR	COND	SEOL
ALISYD	CORRTY	TASTE
ALIPHE	CROCO	TDS
ALPHAG	DO	TEMP
AMOS	DOC	TOC
ANPHO	EPTOX	TOX
ARREST	HARD	TPHC
BETAG	IGNIT	TREACT
BOD	ODOR	TSOLID
CHARD	ORGR	TSS
CHRYS	PH	TURBD

Test Name (Analyte) 8.24

NOTE: For unknown compounds, use the code "UN0001" where "0001" represents the number assigned by the field lab to the unknowns from 601 thru 999. The numbers are full field, so "unknown 0001" would be expressed as "UN0001" with the zeros deleted. The description of what "UN0001" represents will be defined in the commercial's report and other documentation and be consistent within the same institution. Therefore "UN0001" can only represent one unique known for each institution.

ACCEPTABLE ENTRIES:

Chemical and Toxicological Data:

(Sorted alphabetically by Test-Name code)

61NHCL	6.1H Hydrochloric acid
62UDIM	10-Cyanoheptadecenoic acid, methyl ester
63BROM	10-Bromo
64MUDIM	10-Methylheptadecenoic acid, methyl ester
65BORM	10-Bromocaproic acid, methyl ester
66TCZ	1,1,1-Trichloroethane
67TCZ	1,1,2-Trichloroethane
68BROM	1,1,3-Triethylphthalate
69CIPS	1,1-Dichloro-1-propan
70DCS	1,1-Dichloroethene / 1,1-Dichloroethane
71DCLE	1,1-Dichloroethane
72OMED	(1,1-Dimethyl-1-oxane)
73DPH	1,1-Diphenylphosphine
74MCPE	1,1-Dimethylcyclopropane
75OMES	1,2,3,6-Tetrahydrophthalate
76COPR	1,2,3-Triethylcyclopropane
77OMCH	1,2,3-Triethylcyclohexane
78TCZ	1,2,3-Triethylbenzene
79TMBS	1,2,3-Triethylbenzene
80MCCH	1,2,4-Triethylbenzene
81TCZ	1,2,4-Triethylbenzene
82TMBS	1,2,4-Triethylbenzene
83BOMD	1,2-Dimethoxybenzene-D4
84BOMS	1,2-Dimethoxybenzene
85BOMS	1,2-Dimethoxybenzene-D4
86BOMS	1,2-Dimethoxybenzene
87DCS	1,2-Dimethoxyethene / 1,2-Dichloroethylene (cis and trans isomers)
88DCLE	1,2-Dimethylethane
89DCLP	1,2-Dimethylpropene

1 April 1991

0.24-1

1 April 1991

Test Name (Analyte) 8.24

ACCEPTABLE ENTRIES: (Cont.)

1204M	1,2-Dimethylbenzene / o-Xylene
1204AP	1,2-Dimethylbenzene
1207P	1,2-Diphenoxybenzene
1207PH	1,2-Diphenoxyphenol
1207CH	Cyclohexene oxide / 1,2-Cyclohexanediene
1207S	1,2-Cyclohexanediene / Soybean oxide
1207CE	1,2-Dimethylcyclohexene
1207DM	12-Methylundecanoic acid, methyl ester
1207CP	1,1,2,2-Tetrachloroethylcyclopropane
1207CH	1,3,5-Triaminocyclohexane
1207MS	1,3,5-Triaminotriazine
1207HS	1,3,5-Triaminotriazine
1207CPD	1,3-Cyclopentadiene
120804	1,3-Dimethylbenzene-D4
1208CL	1,3-Dimethylbenzene
1208CP	1,3-Dimethylbenzene
1208CE	1,3-Dimethylbenzene
1208S	1,3-Dimethylbenzene
1209P	1,3-Dimethylbenzene
1209M	1,3-Dimethylbenzene / m-Xylene
1209HS	(1,3-Dimethylbenzene) hexamer
1209CH	1,3-Dimethylbenzene
1209AP	1,3-Dimethylbenzene
1209H	1,3-Dimethylbenzene
1209PR	1,3-Dimethylbenzene
1209P	1,3-Dimethylbenzene
1209MS	1,3-Dimethylbenzene / 1,3-Diphenoxybenzene
1209CE	1,3-Dimethylbenzene
1209AM	1,3-Tetrahydroxanthine
1209ED	1,4-Dimethyl-3-dihydroxanthine
1209CD	1,4-Dimethylxanthine
1209DA	1,4-Dimethylxanthine-D4
1209CRU	1,4-Dimethylxanthine
1209CL	1,4-Dimethylxanthine
1209P	1,4-Dimethylxanthine
1209K	1,4-Dimethylxanthine
1209HS	1,4-Dimethylxanthine / p-Ribose
1209CH	1,4-Dimethylxanthine
1209MP	1,4-Dimethyl-1,4-dihydroxanthine
1209FA	1,4-Dimethylxanthine
1209E	1,4-Ethandiamine

0.24-2

Test Name (Analyte)

ACCEPTABLE ENTRIES: (Cont.)

1407ME	14-Methylpentadecanoic acid, methyl ester
15DMAP	1,5-Dimethylphthalate
15BROM	15-Methylbenzoic acid, methyl ester
167TMW	1,6,7-Triisobutylbenzene
160MEN	1,6-Dimethylbenzene
160MAP	1,6-Dimethylphthalate
1649ME	16-Methylpentadecanoic acid, methyl ester
179TCZ	17-Pentadecene
180MAP	1,8-Dimethylbenzene
1804SD	1,2,3,4,4A,5,6,6A-octahydronaphthalene-1,4,5,6-dimethyl-naphthalene-2-ol
182MPZ	1-Acetyl-3-methyl-3-pyrrolidine
1849MS	1-Acetyl-4-(1-hydroxy-1-methylbutyl) benzene
1874HS	1-Bromo-4-hydroxybenzaldehyde
1CBL	1-Propenal
1C4L	1-Butanal
1CD4MPZ	1-Cyclohexenyl-3,5-dimethyl-3-pyrrolidine
1CH	1-Chloroethane
1CL24H	1-Chloro-2,4-hexadiene
1CLOC	1-Chlorocyclohexane
1CMAP	1-Chloromethylbenzene
1DDOC	1-Dodecanol
1E340B	1-Ethyl-2,4-dimethylbenzene
1E34B	1-Ethyl-2-methylbenzene
1E9B	1-Ethylbenzene
1EPB	1-Ethylpropylbenzene
1PPMAP	1-Phenylpropanoic acid
1PPDOL	1-Phenylpropanoic acid
1HEDOL	1-Hexadecanol
1HES	1-Hexene
1HPS	1-Hydroxy-2-(3-pyropropyl) cyclohexene
1H74HS	1-Hydroxy-7-(1-oxidoethyl) naphthalene
1H84AH	1-Hydroxyl-4(A) naphthalene
1HCPME	1-Hydroxyl-4-methylbenzene
1H94ME	1-Hydroxyl-4-methylbenzene
1H94CH	1-Hydroxyl-4-methylbenzene
1H94CP	1-Hydroxyl-4-methylbenzene
1H94D	1-Hydroxyl-4-methylbenzene
1H94P	1-Hydroxyl-4-methylbenzene
1H94F	1-Hydroxyl-4-methylbenzene
1H94B	1-Hydroxyl-4-methylbenzene
1H94D	1-Hydroxyl-4-methylbenzene
1H94P	1-Hydroxyl-4-methylbenzene

0.24-3

1 April 1991

Test Name (Analyte)	8.24	Test Name (Analyte)	
ACCEPTABLE ENTRIES: (Cont.)			
1M1PYR	1-Methylpyrrole	246TNR	2,4,6-Triisopropenyl / Snyper acid
1M1XPF	1-Methoxy-1-propane	246TMT	2,6-n-Tetramethyl- / alpha, beta-isotoluene
1NWXNF	1-Nero-2-oxime	247HDX	2,2,4,4,7,7-Hexamethyltralvaluro 1H azide
1NAPA	1-Naphthoquinone	247TMQ	2,4,7-Triisobutylene
1NHP	1-Nitroheptane	24D	2,4-Dibromophenoxyacetate acid
1NKCL	1,0N Potassium chloride solution	240B	4-(2-Ethylbenzophenone)butyric acid / 2,4-DB
1NPN	1-Norbornane	240CB	2,4-Dichlorobiphenyl
1OCTOL	1-Octanol	240CLP	2,4-Dibromoacetone
1PECHX	1-Propenylcyclohexane	240MCS	2,4-Dimethylacetone
1PNAP	1-Phenylpropionic acid	240MD	2,4-Dimethylacetone
1TBCHA	1,4-Bis(4-chlorophenyl)carboxylic acid	240MHX	2,4-Dimethylbenzene
210DMU	2,10-Dimethylbenzene	240MPN	2,4-Dimethylbenzene
225SCB	2,2,5,5-Tetrachlorobiphenyl	240NP	2,4-Dimethylbenzene
225TCB	2,2,5-Trichlorobiphenyl	240NT	2,4-Dimethylbenzene
226TMO	2,2,6-Trimethylacetone	2402PL	2,4-Dimethyl-2-propanol
226MC4	2,2-Dimethylbenzene	240PD3	2,4-Dimethylbenzene-D3
234SCB	2,2,4,5-Tetrachlorobiphenyl	24113P	2,2,4-Tetrahydro-1,3-pyranediol
2346CP	2,2,4,6-Tetrachlorophenol	2567MD	2,5,6-Triisobutylene
2354CP	2,2,5,6-Tetrachlorophenol	25C14D	2,5-Cyclohexadiene-1,4-dione
235TCP	2,2,5-Trichlorophenol	25DCLP	2,5-Dichlorophenol
235TMD	2,2,5-Tetramethylacetone	250MPP	2,5-Dimethylbenzene
236TMN	2,2,6-Tetramethylacetone	250MPA	2,5-Dimethylbenzene
237TMO	2,2,7-Tetramethylacetone	250THF	2,5-Dimethylhexahydronaphthalene
23C1PE	2,2-Dichloro-1-propane	25ETHF	2,5-Dimethylhexahydronaphthalene
23D2HL	2,3-Dimethyl-2-butanone	25HPCB	2,2,3,4,5,6-Hexamethylbenzophenyl
23DCLP	2,3-Dichlorophenol	25HOCB	2,2,3,4,5,6-Hexamethylbenzophenyl
23DMC4	2,3-Dimethylbenzene	250CCB	2,2,3,4,5,5'-Oxidobisbenzophenyl
23DMCS	2,3-Dimethylcinnamene	26111MD	2,6,11-Tetramethyldecane
23DMP	2,3-Dimethylchamomile	2628M4P	2,6-Dimethyl-4-tert-butylphenol / 2,6-Di-tert-butyl-4-cresol
23DHAP	2,3-Dimethylisophthalate	26DCLP	2,6-Dichlorophenol
23TMP	2,2,3,5-Tetramethylacetone	260MHO	2,6-Dimethylacetone
24SPCB	2,2,4,5-Pentachlorobiphenyl	260MP	2,6-Dimethylbenzene
245T	2,4,5-Trichlorobenzoic acid	260NST	2,6-Dimethylbenzene
245TCP	2,4,5-Trichlorophenol	260NUD	2,6-Dimethylbenzene
245TP	2-(2,4,5-Trichlorophenyl) Propionic Acid	260NA	2,6-Dimethylbenzene
246MPT	2,4,6-Tetramethylpyridine	260NT	2,6-Dimethylbenzene
246TBP	2,4,6-Tribromophenol	260PCB	2,2,3,4,5,6-Hexamethylbenzophenyl
246TCA	2,4,6-Trichlorophenol	27DHO	2,7-Dimethylocetone
246TCP	2,4,6-Trichlorophenol	290KUD	2,9-Dimethylundecane
246TMO	2,4,6-Tetramethylacetone	246DA	2-Amino-4,6-dimethylacetone
246TNP	2,4,6-Tribromophenol / Picric acid		
1 April 1991	8.24-4	1 April 1991	8.24-4

Test Name (Analyte)	8.24	Test Name (Analyte)	
ACCEPTABLE ENTRIES: (Cont.)			
246DT	2-Amino-4,6-dimethylacetone	2HYP	2-Hydroxybiphenyl
249NT	2-Amino-4-nitroacetone	2M1DOL	2-Methyl-1-decanol
381CP	2-Bromo-1-chloropropane	2M1PME	2-Methyl-1-pentene
381COL	2-Butoyl-1-octenol	2M24P	2-Methyl-2,4-pentanediol
384MFU	2-(1-Butyl)-4-methylbenzene	2M2RDA	2-Methyl-2-bromoanisole
385ETO	2-(2-Methylpropenyl) ethanol	2M2CXL	2-Methyl-2-propenol / vanillin
386MDE	2,2-Dimethylbenzyl benzoate	2M2H2OB	2-Methyl-2-hydroxy-3-butene
386MFR	2,2-Dimethylbenzyl propionate	2M2H2SE	2-Methyl-2-hexene
388MMW	2,2-Di(2-methylpropyl) acetate, methyl ester	2M2PHO	2-Methyl-3-pentanone
389HZA	2-Hexanone-3-hydroxyacid	2M2RA	2-Methylbenzyl alcohol
389JTHF	2-Hexylbenzylbenzene	2M4C	2-Methylbenzene / Isobutane
389JZL	2-Hexylcyclohexane	2M4CA	2-Methylbenzene / Isopentane
3C4E	2-Hexene	2M4CZ	2-Methylbenzene / Isopentane
2CBW72	2-Chloro-6-methoxy-10H-phthalimidine	2M4CT	2-Methylbenzene / Isopentane
2CTO	2-Hydroxy- / Methylpropenyl ketone	2M4CT	2-Methylbenzene / Isopentane
2CBW4H	2-Chloro-2-methylbenzoic acid	2M4CPHE	2-Methylcyclopentanone
2CBG10	2-(2-Chlorovinyl) cyclohexene	2M4CYPR	2-Methylcyclopropanone
2CBH4D	2-Cyclohexyl-4,6-dimethylphenol	2M4DEC	2-Methyldecanoate
3CMAE	2-Cyclohexene-1-hexadecanoic acid, ethyl ester	2M4DD	2-Methyldecanoate
2TWF1L	2-Cyclohexene-1-ol	2M4EAP	2-(1-Acetoxyethyl) naphthalene
2CH610	2-Cyclohexene-1-ole	2M4EDE	2-Methyldecanoic acid, methyl ester
2CLIP	2-Chloro-2-phenyl	2M4FEN	2-Methylfuran
2CLEV	2-(Chlorovinyl) ethene / 2-Chlorovinylvinyl ether	2M4MCO	2-Methyl-3-(1-methylethoxy-2-cyclohexen-1-ene)
2CLP	2-Chloropropene	2M4KAP	2-Methylphthalate
2CLP/D4	2-Chlorophenol-D4	2M4P	2-Methylphenol / 2-Cresol
2LT	2-Chlorotoluene	2M4PAIE	2-Acetylphenol
2M4CHO	2-(Cyanomethyl) cyclohexene	2M4PAIT	2-Methylphenolacetic acid, 3-hydroxy-2,4,4-trimethyl-1,3-propanediol ester
2M4CP	2-Chlorophenolacetic acid	2M4PAME	2-Methylphenolacetic acid, methyl ester
2M4PEN	2,2-Dimethylbenzene	2M4PFR	2-Methylphenol
2EH10L	2-Ethyl-1-hexanol	2M4PTD	2-Methylphenolamine
2EH3PD	2-Ethyl-2-hydroxyethyl-1,3-propanediol	2M4THF	2-Methylphenylbenzene
2EM4PL	2-Ethyl-4-methyl-1-pentene	2M4THPM	2-Methyl-4-hydroxyphenylmethine
2FOMA	2-Ethylenemethanol	2M4TPE	2-Methoxy-1-propanol
2FCYBL	2-Ethylenobenzol	2M4XZL	2-(2-Methylpropyl) ethanol / Diethylhexylated monooether ester
2EP	2-Ethylenepropyl	2M5DTM	2-Methoxy-2,2,2-trifluoroethane
2FP	2-Fluorophenol	2M6C	2-Methyl-3-phenylpropanoate
2FMAP	2-Fluorophenolacetic acid	2M6HNL	2-Mercapto-
2FP	2-Fluorophenol	2M6PA	2-Mercaptoacetate
2HEDOM	2-Hydroxybutenedioic acid, diethyl ester	2M6ZL2	2-Mercaptoacetate
2HEDOL	2-Hydroxybenzaldehyde / Salicylaldehyde	2M6ZL	2-MH Potassium chloride solution
2HEDOL	2-Hydroxybenzaldehyde / Salicylaldehyde		
1 April 1991	8.24-4	1 April 1991	8.24-4

Test Name (Analyte)	0.24
---------------------	------

ACCEPTABLE ENTRIES: (Cont.)

2HIDPA 2-Meth-N-oxodiphenylamine
 2HODCO 2-Nitrodecanone
 2NP 2-Nitropenol
 2NPN 2-Nitropiperate
 2NT 2-Nitrostearate
 2OSEL 2,2-Dioxol(ethane) (obsolete - see DEGLYC)
 2PETOH 2-Phenoxyethanol
 2PHZEL 2-Phenoxyhexanol
 2PCO 2-Picolone
 2PHAP 2-Phenoxyphthalide
 2PROL 2-Propanol
 2PREG 2-(Phenylisopropyl) ethanol
 2SMAO 2-tert-Butyl-4-hydroxypheophytol
 2TOLEA 1,1,1,2-Tetraethylbenzene
 2TMHPD 2,6,10,14-Tetramethylpentadecane
 2XCBG 3,7-Dimethylbenzidine
 32DMIX 3,3-Dimethylbenzene
 32DMPN 3,3-Dimethylphenone
 34TPE 3,4,4-Triisopropyl-2-pentene
 34ST1H 3,4,5-Triisopropyl-1-hexene
 34BZTA 3,4-Bis(isopropylamino)
 34CDB6 3,7,4,4-Tetramethyl-2-phenyl-4-hexenyl-D6
 34O1DE 3,4-Dimethyl-1-decene
 34OCLP 3,4-Dichlorophenol
 34OMP 3,4-Dimethylphenol
 34DMP 3,5-Dimethylphenol
 34DMA 3,5-Dimethylaniline
 35DMH 3,5-Dimethylphenol
 35DMT 3,5-Dimethyltoluene
 35MABL 3,5-Dimethyl-3-branched
 34DPMO 3,6-Dimethylbenzen-3-one
 36THRA 3,6-Dimethylbenzene
 37DMHN 3,7-Dimethylbenzene
 38DMUD 3,8-Dimethylbenzene
 38PTTH 3-Dimethylbenzyl ether
 SCHCE 3-Chloro-1-propanol / Allyl chloride
 SCHD 3-Chloroacetone
 SCJF 3-Chloropropanol
 SCJT 3-Chlorostyrene

1 April 1991 0.24-0

Test Name (Analyte)	0.24
---------------------	------

ACCEPTABLE ENTRIES: (Cont.)

3LMAH 4-(1,Adamantyl)-cyclohexane
 3L1HEO 3,5-Dimethyl-2-cyclohexene-1-one
 3L22MP 3-Ethyl-2,2-dimethylpropane / 3-(1-Butyl)-propane
 3E2SDH 3-Ethyl-2,5-dimethyl-3-hexene
 3EEDBO 3-Epoxy-3-methyl-2-butene
 3EEDBO 3-Ethyl-2-(2-ethylbutyl)-octadecane
 3EHDTE 3-Ethyl-1,4-butanediol
 3EP 3-Ethylenephenol
 3HDMPL 3-(Hydroxymethyl)-2,4-dimethylpropanal
 3HDMPT 3-Hydroxy-2,7-dimethyl-4-(2H)-pyranone
 3A2EZO 3-Isoamyl-3-one
 3A1YBA 3-Hydroxybenzaldehyde
 3A1PL 3-Methyl-1-pentanol
 3A2C10 3-Methoxy-2-cyclopenten-1-one
 3A2CSE 3-Methyl-3-pentene
 3A2CHO 3-Methyl-2-cyclohexen-1-one
 3A2CHOL 3-Methyl-2-hexanol
 3A5SPH 3-Methyl-5-oxopyrrolidine
 3A6BP 3-Methyl-6-heptene
 3A6CA 3-Methylheptane
 3A6CHRY 3-Methylheptane
 3A6DEC 3-Methylhexane
 3A6PEN 3-Methylhexane
 3MP 3-Methylphenol / 3-Cresol
 3MPAH 3-Methylphenol-formal
 3MUND 3-Methylindane
 3M02M2 3-Methylisobutane
 3A2T 3-Methoxybutane
 3A4HNL 3-Mineral oil
 3MT 3-Minterolene
 3OCTOL 3-Octanol
 3OPFAE 3-Oxo-3-phenylpropanoic acid, ethyl ester
 3PCAC 3-Phenylacetyl chloride/Hydrazinomethyl chloride
 3PT 3-Propylbenzene
 3SE5L 3,3-Dimethyl-3-ox-3-ol
 3TRUP 3-(1-Butyl)-phenol
 3TCMBO 3,5,5-Trimethyl-2-cyclohexen-1-one
 41MEHP 4-(1-Methyl-1-phenyl)-heptane
 44DCB2 4,4-Dichlorobutene
 44DFBZ 4,4-Difluorobutene

1 April 1991 0.24-10

Test Name (Analyte)	0.24
---------------------	------

ACCEPTABLE ENTRIES: (Cont.)

44DMPF 4,4-Dimethyl-2-pentene
 44DMUD 4,4-Dimethylundecane
 44ETIH 4,5,6-Triisopropyl-1-hexene
 44H2C 2-Methyl-4-*alpha*-dihydroxy- / 4,5-Dihydro-2-methyl
 47DMUD 4,7-Dimethyldecane
 48DMHD 4,8-Dimethyldecane
 4A2MT 4-Amino-2-methylpropane
 4A2OT 4-Amino-3,5-dimethylhexane
 4ABP 4-Anisobutyryl
 4AMCPB 4-Anisylmethylphenol
 4B2ZD 4-Bromo-3-penten-2-one
 4BTS 4-Bromobutene
 4BZPPE 4-Bromophenylpropyl ether
 4CMBE 4-Chloro-2-methyl-1-hexene
 4CML 4-Chloroaldehyde
 4CCBL 4-Chlorocyclohexane
 4CLIC 2-Methyl-4-chlorophenol / 4-Chloro-2-methyl
 4CLIC 3-Methyl-4-chlorophenol / 4-Chloro-3-methyl
 4CLPF 4-Chlorophenylpropyl ether
 4CLT 4-Chlorotoluene
 4DM2PL 4,4-Dimethyl-2-pentene
 4E2OC 4-Ethyl-2-octene
 4ETMHP 4-Ethyl-2,2,6,6-tetramethylheptane
 4FANL 4-Fluorotoluene
 4FT 4-Fluorotoluene
 4KCSBA 4-Hydroxy-2,5-dimethylhexanaldehyde
 4KOMBA 4-Hydroxy-3-methylhexanaldehyde / Vanillin
 4NAZOB 4-Hydroxyacetone
 4NTBA 4-Hydroxybenzaldehyde
 4NOQO 4-Nitrobenzaldehyde
 4OCPYL 4-Methyl-2-propyl-1-pentanol
 4MF 4-Methylfuran
 4MBSA 4-Methylbenzoic acid/malonic acid
 4AC7 4-Methylheptane
 4MDSFU 4-Methylidibutene
 4MISPA 4-(1-Methyl-2-*p*-phenylbutyl)
 4MPLAS 4-Methyl-2-fluoro
 4MMBME 4-Methyl-1-(1-methylbutyl)-benzyl[2,1,0]buto-3-one
 4MF 4-Methylbenzene / 4-Cresol
 4MPPM 4-Methylphenacetone
 4MPTA 4-Methylpyruvate

1 April 1991 0.24-11

Test Name (Analyte)	0.24
---------------------	------

ACCEPTABLE ENTRIES: (Cont.)

4AOCHL 4-Methoxyphenol
 4AOCP 4-Methoxyphenol
 4AANL 4-Nitroaniline
 4AP 4-Nitrophenol
 4BT 4-Nitrotoluene
 4TBUDC 2-Methyl-4-(1-butyl)-phenol / 4-Ethyl-2-methyl
 4TOP 4-*tert*-Octyl
 5E150A 50% Hexane - 50% acetone
 5E150A 50% Methylene chloride - 50% acetone
 5EPRW 50% Water - 25% Methanol - 25% acetonitrile
 5CLC 5-Chloro-3-methyl-2-methyl-3-chlorophenol
 5E2BIP 5-Ethyl-3-methylphenol
 5E3MD 5-Ethyl-3-methylbenzene
 5A2HGD 5-Methyl-2-bromene
 5A2SHAL 5-Methyl-2-hydroxyhexanoic acid lactone
 5SHOL 5-Methoxy-2-ol
 5PTBD 5-Propylbenzene
 6CLIC 5-Methyl-4-chlorophenol / 4-Chloro-3-methyl
 6EAMPV 6-Ethyl-4-methylphenol
 6A3HPL 6-Methyl-2-bromene
 6A6DD 6-Methylbenzene
 6A6PUS 6-Methylphenol
 6ATRUD 6-Methylphenol
 7120MA 2-Methyl-4-(1-butyl)-phenol / 4-Ethyl-2-methyl
 "MTRD" 7,13-Dimethylbicyclo[4.2.2]octane
 7MHDOL 7-Methylbicyclo
 8MHDOL 8-Methyl-1,3-dimethylol
 9FLERU 9-Fluorene
 9HFLRE 9-Hydroxy-9-ene
 9MBAAN 9-Methylbicyclo[4.2.2]octane
 9MHDOL 9-Methylphenol
 AAOCHS Anisole, cyclohexyl ether
 AADMP α , α -Dinitrophenylmethanol
 ABHC α , α -Bis(hydroxymethyl)cyclohexane
 AL Hydrogen cyanide / Hydrocyanic acid
 AC2RS Anticorrosive 220
 ACDBMV Acids (high molecular weight)
 ACET Acetone
 ACHE Acetylacetone
 ACIDIT Acidity
 ACDAM α -Chloro

1 April 1991 0.24-12

Test Name (Analyte)	8.24
ACCEPTABLE ENTRIES (Cont.)	
AI:HM	alpha-Ulidane (isobutene- <i>tert</i> -butyl acetal)
AI:NTHO	Arenophenone DIH
AI:PHN	Arenophenone
AI:RNH	Acetone
AI:RYLO	Arvionol
AI:SP	Anamone dihydro phosphor
AI:SLF	alpha-Fadoullan / Endosulfan I
AG	Silver
AI:	Aluminum
ALAL	Aliphatic alcohols
ALDEHY	Aldehydes
ALDRN	Aldrin
ALHC	Aliphatic hydrocarbons
ALHMW	Alcohols (high molecular weight)
ALK	Alkalinity
ALKBC	Alkalinity - bicarbonate
ALKCAR	Alkalinity - carbonate
ALKHYD	Alkalinity - hydroxide
ALKH	Alkynes
ALKPHE	Alkalinity - phosphophthalimide
ALKPF	Alpha-gross-field
ALKPL	Alpha-gross-lab
ALKPLA	Alpha-gross-soluble acid fraction
ALKPLW	Alpha-gross-soluble water fraction
ALKPHG	Alpha-gross
ALKPHM	alpha-Pinen
AMGD	Aminoguanidine
AMOS	Aminic esters
ANAPNE	Arenophenone
ANAPYL	Acenaphthylene
ANELNT	Ammonium
ANIL	Aniline
ANPHO	Anthephylene esters
ANTRC	Anthracene
ANTRCH	9-Aanthracencarboxanic
ANTRQU	9,10-Anthracenedione / Anthraquinone
AS	Aromatic
ASBEST	Asbestos
ASEXT	Aromatic esterable
ASTOT	Aromatic total
ATMSA	2,4,6-Trinitrobenzaldehyde

1 April 1991 0.24-13

Test Name (Analyte)	8.24
ACCEPTABLE ENTRIES (Cont.)	
ATHT	alpha-Triisobutylene (obutene - use 246/TNT)
ATZ	Atazone
AI	Gold
ATLETH	Allyl ether
AZCN	Azacyclononine
AZM	Azomethine methyl
B	Boron
B2C10H	Bis (2-chloroethyl) methane
B2CPE	Bis (2-chloroethyl) ether
B2CL8	Bis (2-chlorovinyl) ether
B2SHP	Bis (2-hydroxyethyl) phthalate
BA	Banana
BAANTR	Benzal (Alkanesulfone)
BAC	Benzene chloride
BAITZ	Benzene acid, 1-hexyl ester
BAPYR	Benzoyl (Alkyphenone)
BAFANT	Benzyl (Benzeneether)
BAFLRE	Benzyl (Benzene)
BAHC	Beta-Benzenecarboxylic / beta-Hexachlorocyclohexane
BAHNW	Benzyl (Benzene)(2,3-Dihydro
BAHTHP	Benzyl (Benzene)(1,2-Dihydrophen
BAZP	Benzylidene phthalate
BCPPO	Bicyclo[2.2.1]hepta-2,5-diene
BCLDAN	Bicyclohexane
BCLM	Bis (chloromethyl) ether
BCMOS	Bis (methoxymethyl) sulfone
BCM502	Bis (methoxymethyl) sulfone
BCPHZ	2,2-Bis (chloromethyl)chloroethylcar (DOT related)
BCTPHX	Bicyclo[2.2.1]heptane
BDOMRE	Bromonic acid, dimethyl ester
BOEANT	7H-Benz[DE]anthracen-7-one
BO	Beryllium
BE7	Beryllium 7
BEETO	1-(2-Bromoethyl) ethanol
BEIGC	Beta gamma goss
BNLSL	Beta-Endosulfan / Endosulfan II
BNZA	Benzothiophene
BNZAL	Benzaldehyde
BNZDIO	Benzidine
BNZDA	Benzic acid
BP	2-Bromopentan phenyl

1 April 1991

Test Name (Analyte)	8.24
ACCEPTABLE ENTRIES: (Cont.)	
BEPYR	Bromo(2-pyrine
BETAC	Beta pinene
BETCF	Beta pinene-field
BETOL	Beta pinene- <i>tert</i> -butyl
BETOLW	Beta pinene-soluble acid fraction
BF2ANT	Benzimidazoles
BCHFA	Benzofuran
BCHPY	Benzofuran(2,3,4,5-tetrahydro)
BHC	BHC - unspecific
BI	Bisenes
BI212	Bisenes 212
BI214	Bisenes 214
BICTD	Bicyclohexane
BITIN	1,5-Bis (1,1-dimethylbuto-3,3-dimethylbicyclo[3.1.0]hexane-2-one
BRMAP	Bromopropyl
BRAINT	Bromo(2-phenylhexane
BRKATT	Bromo(2-phenylhexane
BLDX	Blane
BRP	Bromylidene phthalate
BOO	Biochemical oxygen demand
BOLS	Bolane
BPBG	Boryl(bis(hydroxyethyl)) bis(glycine)
BR	Bromane
BRCAHS	Bromoacetamide
BRCLM	Bromoacetoxymethane
BRDCLM	Bromoacetylacetone
BRICOL	Bromanol
BTAZUN	3-(1-Methylbuto-1H-2,3-benzodioxole-4-C(=O)-eno-2,3-diolide / BORTAZON
BTG	Brotenecholide
BTMSOA	Bu (methylbuto) oxalic acid
BTZ	Bromothiophane
BUCHIS	Burylbenzene
BURETH	Burylbenzene
EZ	Burylbenzene
EZAL2M	3-Quinolinolines
EZALC	alpha, alpha-Dimethylbenzylidene
EZAPAN	Benzyl chloral
EZCPAN	Benz(C)phenanthrene
EZPANT	Benzphenanthrene

1 April 1991 0.24-15

Test Name (Analyte)	8.24
ACCEPTABLE ENTRIES: (Cont.)	
BZKHUN	Bromo(2-pyridine
BZOME	Bromo acid, methyl ester / Methyl bromoate
BZONH4	Bromo acid, ammonium salt
BZTWP	Bromo(2-phenylhexane)
BZTRUP	Bromo(2-phenylhexane)
BZTRZ	1H-Benzotetrazole / 1,2,3-Oxadiazole
BZPA	Bromophosphoric acid
BZYLBR	Bromyl benzene / alpha-Bromostyrene
BZYLCL	Bromyl chloride
C10	Decane
C11	Hendecane
C12	Dodecane
C12AHM	6-Methyldecanic acid, methyl ester
C12OC	ca-12-Dichlorooctahydron / ca-1,2-Dichlorooctane
C13	Tetradecane
C13DCP	ca-13-Dichloropropylene / ca-1,3-Dichloropropene
C14	Tetradecane
C14A	Tetradecanoic acid / Myristic acid
C14AME	Tetradecanoic acid, methyl ester
C15	Pentadecane
C15A	Penta-decane
C16	Hexadecane
C16ABE	Penta-decenoic acid / Palmitic acid
C16ADM	Hexadecanoic acid, methyl ester
C16ASH	Hexadecanoic acid, bis (2-ethylhexyl) ester
C16AME	Hexadecanoic acid, methyl ester
C16AT	Summed hydrocarbons (C16)
C17	Heptadecane
C17A	Heptadecenoic acid, methyl ester
C18	Octadecane
C18PP	Bu (pentadecylphenoxy) phenyl phosphine
C18A	C18 alkanes
C18ABE	Octadecenoic acid, methyl ester
C18AME	Octadecanoic acid, methyl ester
C18ADD	Octadecanoic acid, octadecyl ester
C18AWS	C18400 Unknown
C19	Nonadecane
C19A	Nonadecanoic acid

1 April 1991

Test Name (Analyte)	8.24
ACCEPTABLE ENTRIES: (Cont.)	
C1ADMF	Carboxylic acid, dimethyl ester
C20	Eicosane
C21	Heptadecane
C21AINS	C22H40O. Unknown
C21B	1-Pentadecene
C21EES	Acrylic acid, ethyl ester / Ethyl acetate
C21AVE	Acrylic acid, vinyl ester / Vinyl acetate
CH1NCL	Chloroform
CH1SLL	Vinyl chloride
CH3AME	Chloroethane
CH3AME	Trichloroacetic acid, methyl ester
CH3AME	Pentamericane
CH3AME	Hexamericane
CH3AME	Heptamericane
CH3AME	Pentameric acid, 2-methylbutyl ester
C4	Butane
C4XIL	cis-4-Hexene-1-ol
C5A	Pentanoic acid / Valeric acid
C6D6	Benzene-D6
CH46	Bromo
CH4OH	Cyclohexanol
CH7	Heptane
CH7A	Heptanoic acid
CPH8I	Naphthalene-isobutene
C8	Octane
C8A	cis-8-Alkene
CR4ME	Octanoic acid, methyl ester
C9	Nonane
CA	Octane
CAAH	Chloroacetylhydride
CACO2S	Calcium carbonate solution
CALLMW	Hydrocarbons (all molecular weights)
CAMBN	3-Amino-2,5-dichlorobenzoic acid / CHLORAMBEN
CANE	Carboxylic acid, methyl ester
CAMP	Caprolactam
CAPLT	Captopril / D-Alpha-alanocysteine acid lactone
CARBAZ	9H-Carbazole
CATOL	Catol
CBA	α-Chlorobenzaldehyde
CBCH	cis-1-Bromo-2-chlorovicinalene
CBDA	α-Chlorobenzoic acid
CCJ	ICOC

1 April 1991 0.24-17

Test Name (Analyte)	8.24
ACCEPTABLE ENTRIES: (Cont.)	
C141B2	Urbilactam
C141F	Trichlorofluoromethane
C144	Carbon tetrachloride
C1DAN	ne-Cladane
CLLF2	Chlorodifluoromethane
CLLF3	Chlorodifluoromethane
CD	Cedrene
CD2CL2	Methylene chloride-D2
CDACH	cis-1,2-Dimercyclohexane
CDCBU	cis-1,4-Dichlore-2-butene
CDCL3	Chloroform-D
CDMNS	Chlorodimethylbenzene isomer
CE	Cetane
CE141	Cetane 141
CE144	Cetane 144
CEC	Cetane exchange capacity
CG	Phosphate / Carbonate chloride
CH2BR2	Methylamine isomeric
CH2CL2	Methylene chloride
CH3BR	Bromomethane
CH3CL	Chloromethane
CH3CN	Acetonitrile
CH4	Methane
CHARD	Cetulated Hardness
CHBR3	Bromomethane
CHCL3	Chloroform
CHNO	Isobutanol
CHNO2	Dibutanolamine
CHO	1,2-Cyclobutanone oxide
CHOLA	Chloroacetone
CHONE	Cyclohexene
CHRY	Chrysene
CHYS	Cycloolefin isomers
CI	Oxygen chloride
CJ	Chlorine
CL2ACH	Dichloroacetonitrile
CL2BP	Dichlorobiphenyl
CL2BZ	Dichlorobenzene
CL2CH2	Dichloromethane

0.24-18 1 April 1991

Test Name (Analyte)	8.24
ACCEPTABLE ENTRIES: (Cont.)	
CL2MAP	Dichloromethanes
CL3BP	Trichlorobiphenyl
CL3C6	Trichlorocyclohexene
CL3MAP	Trichloromethanes
CL4BP	Tetrachlorobiphenyl
CL4MAP	Tetrachloromethanes
CL5BP	Pentachlorobiphenyl
CL5MAP	Pentachloromethanes
CL6BP	Hexamethylbenzene
CL6MAP	Hexamethylbenzenes
CL7BP	Heptachlorobiphenyl
CL7MAP	Heptachloromethanes
CL7CA	Chloroacetic acid
CL8D5	Chlorobenzene-D5
CLCM5	Chlorobenzene
CLCYMH	Chlorocyclohexane
CLD	Chloroform
CLDM	Chlorodimethane
CLDN	Chloroform
CLDN	Chloroform
CLNAF	Chloromethylbenzenes
CLOO	Chloroform
CLP	Chlorophenols
CLVRA	2-Chloro-5-oxo-5-oxo acid
CLVB	Chlorinated benzene
CLZMAP	Chlorotetrahydrofuran
CM4	Chloromethyl methyl ether
CHONOX	Carboxylic nitrile
CI	Chloroform
CO	Carboxylic acid
CO2	Carboxylic diacid
CO3	Carboxylic triacid
CO57	Cobalt 57
CO60	Cobalt 60
COO	Chemical oxygen demand
COU	Fecal coliform
COLOR	Color
COND	Specific conductivity

0.24-19 1 April 1991

Test Name (Analyte)	8.24
ACCEPTABLE ENTRIES: (Cont.)	
COND-F	Specific conductivity as tested in the field
CORRTY	Conductivity (tendency to corrode)
COURT	Cortenaphene
COLUMN	2,3-Dihydro-2H-pyran-2-one / Cognacine
COPIAL	Copiphatic acid
CPMS	p-Chlorophenylmethyl sulfide
CPMSO	p-Chlorophenylmethyl sulfone
CPMSO2	p-Chlorophenylmethyl sulfone
CPV	Cyclopentene
CPYR	Chrysene
CR	Chlorine
CRHEX	Hexamethyl chloroethane
CR04	Crystalline adhesives
CR0CO	Cryofiles
CRYOF	Cryogen
CS	Cetane
CS134	Cetane 134
CS137	Cetane 137
CS2	Carbon dioxide
CSL	Cresole
CT	Chloroethane
CU	Copper
CURST	Copper extractable
CUTOT	Copper total
CX	Phosphate ester / Dichlorotetraether
CYDDOC	Cyclododecanes
CYNK	Cyclohexane
CYNB	Cyclohexylbenzene / Phenylcyclohexane
CYRE	Cyclohexene
CYNM	Ammonium cyanide
CYTF	Cryofiles, free form
CYCTE	Cyclohexene oxide
CYFD	Cycloformal
CYHE	Cyclohexene
CYH2	Cyclohexane
CYH12	Cyclohexane-D12
DALA	2,2-Dihydroxyacrylic acid / Dalapon
DBABA	Dibenz(A,B)anthracene
DBABA	Dibenz(A)anthracene
DBAM	Dibenz(A)phenanthrene
DBATT	2,4-Dihydroxybenzoic acid, bis-methoxyl

0.24-20 1 April 1991

Test Name (Analyte)	8.24	Test Name (Analyte)	
ACCEPTABLE ENTRIES: (Cont.)			
DBCP	Dibenzochloropropane	DCP	2-(2,4-Di-methylphenyl)propanoic acid / DICHLOROPROP
DBK	delta-Bromo-ketone / delta-Hexachlorocyclohexane	DBDP	Diacetyl dimethyl diphenophenone
DBRCLM	Dibromochloromethane	DR(21)	Demineralized water
DBRCM	Dibromochloromethane	DRMP	Diacetyl methylphosphonate
DBSTP	4,5-Dimethyl-2,6-he (trimethylsilyl)ether (pyridine)	DRNO	2,6-Dinitro-4-tert-butylphenol / DNOSes ¹
DBUCLE	Dibutylchloroether	DROP	Diacetyl phthalate
DBZIFUR	Dibenzofuran	DRPETI	Diacetyl ether
DBZTHP	Dibenzothiophene	DRPK	Diacetyl ketone / Dimethyl-2-propanone
DCAA	2,4-Dichloroaniline acetic acid / DCAA	DRPUR	Diacetyl urea
DCAMBA	Dicamba / 2-Methoxy-3,6-dichlorobenzoic acid	DRTH	Dihydro
DCBPH	Dichlorobenzophenone	DLJHPG	dL-2-(3-Hydroxyphenyl) glycine
DCHP	Dicyclohexyl phthalate	DLDRN	Dieldrin
DCLS	Dichlorobenzene - nonspecific	DM	Dimarrene
DCMF	5,7-Dichloro-2-methylbenzofuran	DM1ACH	2,2-Dimethyl-1-acrylcisolethane
DCMPX	Decamethylcyclopentadecane	DM1ACH	Demethylidene (obsolet - use NDMDA)
DCPA	2,3,5,6-Tetrachloro-1,4-benzenedicarboxylic acid dimethyl ester / Dacthal	DMACAR	Demethyl dibenzocoumarin
DCPD	Dicyclohexadiene	DMACP	Dimethylcyclopropane - nonspecific
DCPL	Dichlorophenolictic	DMCDE	1,2-Dimethylcyclopentadiene
DDVP	Vapona	DMDS	Dimethyl disulfide
DEA	Diethylamine	DMESO	4-(1,1-Dimethylidyl)benzoic acid
DECYLB	Decylbenzene	DMETOA	N,N-Dimethyl-1,2-ethanodiamine
DEDMP	Decylidemethyl diphenophenone	DMETH	Dimethyl ether
DEETH	Decylid ether	DMPP	Dimethyl imidophosphate
DEGLYC	2,2-Oxybis(ethanol) / Diethylene glycol	DMQATE	Dimethyl etherate
DEMBCA	N,N-Dimethyl-3-methylbenzoate	DMQH	Dimethyl phthalate
DEMO	Demeton-O	DMQH	3-O-Carboxyphenyl cyclohexane
DEMS	Demeton-S	DMQH	Dimethyl phenol / Dimethylhydroxy benzene
DEP	Diethyl phthalate	DMQH	2,2-Dimethyl-5-(1-methylpropyl) tetrahydrofuran
DEPD4	Diethyl phthalate-D4	DMQHMS	Dimethoxymethylsulfide
DEPDPV	3,4-Dihydro-2H-1-benzopyran	DNBEE	1,1-Di-n-butylethylene / 1,1-Di-n-butylethylene
DHDIMAC	9,10-Dihydro-9,9-dimethylfluorene	DNBP	Di-n-butyl phthalate
DIACAL	Diacetone alcohol / 4-Hydroxy-4-methyl-3-pentanone	DNOP	Di-n-ethyl phthalate
DIADS	Diisopropylbenzyl sulfide	DNOPD4	Di-n-ethyl phthalate-D4
DIAMEL	Diisopropylbenzyl ethanol	DNPP	Di-n-pentyl phthalate
DIAP	5-Diisopropylaminomethyl methylphosphonothioate	DNTSO	Dimethanesulfone isomer
DIATT	Diisopropylaminomethyl ether	DO	Dissolved oxygen
DIAS	Diisopropylaminomethyl etherulfide	DOAD	Diethyl adipate / Hexanedioic acid, diethyl ester
DIASO2	Diisopropylaminomethyl etherulfone	DOAZ	Diethyl azodicarboxylate
DIAZ	Diazepam	DOC	Dissolved organic carbon
DISP	Dioxabutyl phthalate	DOOBGS	Dodecybenzene
DICLP	Dichlorophenols		

1 April 1991 8.24-31

1 April 1991 8.24-32

Test Name (Analyte)	8.24	Test Name (Analyte)
---------------------	------	---------------------

Test Name (Analyte)	8.24	Test Name (Analyte)	
ACCEPTABLE ENTRIES: (Cont.)			
DORTH	Diethyl ether	ETHION	Ethione
DCPAM	4-C-Aminobutyl pyruvate-D / Dapsone	ETHOPA	Ethoprop
DPA	Diphenylamine	ETHPOH	Ethyl phosphite / Phosphoric acid, triethyl ester
DPTH	Diphenthene	ETHPOH	Ethyl phosphotungstate
DTBTH	4,4'-Bis(2-hydroxyethyl)biphenol	ETHPOH	Ethyl phosphotungstate
DPM	Diphosphonate - nonspecific	ETBHQ	Ethyl hydroperoxide
DPMT	Diphospatidyl	ETBHQ	Ethyl hydroperoxide
DPTLL	Diphthalate	ETBHQ	Ethyl hydroperoxide
DPSD	Diphthaloyldiisopropyl	ETBHQ	Ethyl hydroperoxide
DPSUL	1,1-Thiodiethane-1,1-dioxide	F	Ethylene
DSMM	Dimethyl malonate	F100P	Fluoride
DSODN	Dimethyl oxalate	FAMPE	Decamethylbenzene
DSOW	Dimethyl oxime	FANOC	Fatty acid, beta-phenoxyethyl ester
DTBHC	2,6-Di-tert-butyl-4-methyl (obsolet - use 26DQMP)	FANOC	Fatty acid, cyclohexyl ester
DTCHSO	1-alpha,(E)-Alkene, 1-(1,4-Dihydroxy-2,5-dimethyl-2-cyclohexen-1-ene)	FANT	Fatty acids
DURS	Durone	FATAN	Fatty acids
DTSCAN	GC-425 dye stain	FC2A	Phenoxycetic acid
EA192	3,2-Diisopropylbenzyl methylphosphonic acid	FE	Iodo
FBPGI	1-Ethyl-2,6-di-(4-chlorophenyl) glycerol	FIRENE	Phenene
ED	Decahydronaphthalene	FMT	Phenanthrene
EDBAS	3-Phenylpropanoate	FORM	Formamide
EGMEE	Ethyleneglycol, monomethyl ether / 1,1-Oxybis(2-ethoxy) ethane	FREON	Perchloroethylene
ECOGL	1-Linoleate	FREON112	Perchloroethylene
EMFUR	3-Ethyl-4-oxohexanoate	FST	Perfluorooctane
EMPA	Ethyl methylphosphonic acid / Ethyl methylphosphonate	FURANS	Thiophene - nonspecific
EMS	Ethyl methionine	GA	Toluene / Ethyl-N,N-dimethyl phosphoramidoether
ENDRN	Endrin	GALM	Gamma-gamma
ENDRHA	Endrin aldehyde	GAMAG	Gamma-gamma
ENDRKH	Endrin ketone	GB	Gamma-gamma / Gamma-gamma
ENRIETH	Ethyl-3-hydroxy ether	GBHC	Seric / Isopropyl methylphosphonofluoride
EPHEN	Ethyl phenol / Ethylhydroxy benzene	GCOLOR	gamma-Hexamethylcyclotriphosphazene (obsolet - use CCLDA)
EPFOR	Extraction procedure toxic organics	GOLDAN	gamma-Chloride
ESPO4	Endosulfan ester	GO	Selen / Phenyl methylphosphonofluoride
ET2482	1-Ethyl-3-methoxybenzene	GRINDY	Germanium
ET4082	1-Ethyl-4-methoxybenzene	GUNIT	Goren dye
ETBD10	Ethyldiisobutyl-D10	H	Gossypol nitrile
ETCH15	Ethyldiisobutyl	H2O	Lovastatin standard
ETCYH	Ethylychloroform	H2S	Water
ETHBR	Bromethane / Ethyl bromide	H2PO4	Hydrogen sulfide
ETHER	Ether - nonspecific	HARD	Phosphate acid
			Total hardness

1 April 1991 8.24-33

1 April 1991 8.24-34

Test Name (Analyte)	8.24
ACCEPTABLE ENTRIES. (Cont.)	
HCBD	Hexachlorobutadiene
HCBP	Hexachloropropene
HCI(1)	6n hydrochloric
HD	Dihydroxydeuterium gas (2-chloroethyl) sulfide
HEDOLIA	N,N'-Bis(2-hydroxyethyl)dodecanamide
HEXAC	Hexameric acid / Caprylic acid
HEXANE	Hexane
HG	Mercury
HGXET	Mercury extractable
HGTOT	Mercury total
HMTCHC	2,6,10,15,19,23-Hexamethyl-2,6,10,14,18,22-hexacosahexane
HMIX	Cyclohexanehexylhexacosahexane
HN	Hexogen mustard
HO	Helium
HPCl	Heptachlor
HPClE	Heptachlor epoxide
HPLC2O	HPLC-grade water
HPO4	Hydrolyzable phosphate
HTH	Hypercobalt
HWD13	Halogen 1013
HWT099	Halogen 1099
HXA2E	Hexanoic acid, bis (2-ethylbutyl) ester
HXDAD6	Hexanoic acid, dibutyl ester / Dimethyl adipate
HXDAD6E	Hexanoic acid, dimethyl ester / Dimethyl adipate
HXDAD6E	Hexanoic acid, diethyl ester (obsolet - use DOAD)
HXCS	Hexaneone
HXMHAZ	4,5,6,7,8,9-Hexamethyl-2-(1H)-indene
HXMETA	1,3,5,7-Tetramethylcyclotriphosphazene / Hexamethylene terephthalamide
HXTNTX	Hexamethyldiethoxysilane
HYDRIN	1H-Imines, oxadiazole / Hydrazine
HYDRI2	Hydrazine
HTNG	7-Hydroxymethylnaphthalimide
ICDPYR	Imidole 1,2,3-C,D-pyrene
IGHT	Ignamesterol
IMP	Isopropyl methylphosphinic acid / Isopropyl methylphosphonate
INDAN	1-Hydroxy-2,3-methylene indan (N.W.146)
INDEXL	Indole / 2,3-Benzopropenoate
IPA	Isopropanamine
ISODR	Indane
ISOP2	Isopropylbenzene / Cumene

1 April 1991

242

Test Name (Analyte)	
ACCEPTABLE ENTRIES: (Cont.)	
Y51P91R	Isophthalic
X51Q31N	Isopropenol
K	Potassium
K40	Potassium 40
X51Q31N	2-Diisopropylbenzimidazole
KEND	Kendomide
L	Leverate
LA	Lanthanum
LA140	Lanthanum 140
LACYNS	Lactic acid, cyclic hemiacetal
LAURIC	Lauryl acid
Li	Lithium
LIN	Linole / gamma-Brancasterchlide / gamma-Hexachloroheptane
LIPID	Lipids, prevalence
LO	Lorandrol
LT	1,2-Diisopropylbenzene/2-methylphenol
LT-A	1,2-Diisopropylbenzene/2-methylphenone
MALO	Malonic acid
MABDOE	3-Methylbutanoic acid, 3,3-dimethyl-2,6-oxanoyl ester
MABES	Fouling agents / Methylene blue active substance
MBOH	alpha-Methylbenzyl alcohol
ME2ZA	alpha-Methylbenzyl acetate
ME2ZAC	3-Methylbenzyl Chloride
ME2ZL	alpha-Methylbenzyl-2-chloroacetate
MCPA	4-Chloro-2-methylphenoxyacetic acid / MCPA
MCPB	2-(4-Chloro-2-methylphenoxy)propanoic acid / MCPB
MDCI	2-Methylbenzimidazole / 2-Methylbenzimid
MDZARA	Dimethyl carboxylic acid
ME2C11	Dimethylbenzene
ME3HG	Dimethyl mercury
ME3HPS	Methyl-2-hydroperoxide
ME3HPO	Methyl-2-phosphonate
ME3NAP	Dimethylbenzylamine
MECH3O	Trimethylphosphate
MEC11	Trimethylbenzene
ME3O	Trimethyl borane
ME3NAP	Trimethylphthalate
MEAOA	Methyl acetoic acid
MEPP	1,1'-Methylenediphenylidine
MECD8	Tellurite-Cl
MECWMS	Tellurite

1-1-2022

Test Name (Analyte)	8.34
ACCEPTABLE ENTRIES: (Cont.)	
M2CCA	Methylcyclohexane
M2CYCH	Methylcyclohexane
M2CYDC	Methylcyclohexene
M2CYPE	Methylcyclopentene
M2ENIG	Methylcyclohexene
M2HOCCL	Methyl methyl vinylidene
M2K	Methylcyclohexene / 2-Butanone
MELAN	Melanine / 1,3,5-Triacet-2,4,6-hexane
MIOH	Methanol
MIRHEN	Methylbenzyl phenol / Methylhydroxybenzyl benzene
MIVON	2-Methylphenol
MIRP	Mirphene
MISL	Methyl sulfide / Thioisobutene
MESTOK	Mestox amide / 4-Methyl-3-penta-2-one
MFTLAP	Methylpentadecanes
MIVIN	Mivaprene
MIXCLA	Mixoclase
MC	Mycophenolic acid
MITYDRZ	Methylhydroxide
MICCON	Methyl Isobutyl carbamate (4-methyl-3-pentene)
MIPK	Methylpentyl ketone
MIRCH	Methylpropylbenzene
MLTNN	Mltane
MN	Mnathan
MNT24	Methyl methacrylonitrile
MNSK	Mnepatene
MO	Mangan
MP	Mangan
MPA	Manganic acid
MPDOD	2-(4-Chlorophenoxy)-3-(p-chlorophenoxy)-1,1-dichloroethane
MPK	Methylpropyl benzene / 2-Pentanone
MPTHTH	Pentamethyl
MQYDIO	MTB-Q-Dioxane water
MRCAN	GC-MS organic ester
MTRTH	Methyl triethane
MTE22L	Mtrene / Cardiac
MUEJEL	Murexide by Kirschbaum Method
MA	Sodium
MZEE	Sodium 23

2020-03-20

1000

Test Name (Analyte)	8.24	Test Name (Analyte)	
ACCEPTABLE ENTRIES: (Cont.)			
NNDNPA	N-Nitrosodi-N-propylamine	PCB214	Lead 214
NNPDA	N-Nitrosodipropylamine	PCB31Y	Lead styphnate
NNPIP	N-Nitroso-piperazine	PCB316	PCB 1016
NNPRA	N-Nitrosopropylidene-diamine	PCB321	PCB 1221
NO2	Nitrate	PCB329	PCB 1252
NI-11	None	PCB342	PCB 1242
NPMPHE	Methyl phenol (any isomer)	PCB344	PCB 1248
NPDX	Nonpolarizable organic halides	PCB354	PCB 1254
NPO	Naphthoquinone	PCB360	PCB 1260
NO	Nitroquinoline	PCB362	PCB 1262
NTMBSA	N,N,N',N'-Tetramethylbenzene sulfonamide	PCB37H	Pentachlorobenzene
O2	Oxygen	PCB37R	Dimethyl-2,2,3,3,5-pentaalkyl acid / PICLORAM
OCADMF	Octadecenoic acid, diisobutyl ester	PCNB	Pentachloronitrobenzene
ODAPOM	Octadecenoic acid, (2-phenyl-1,3-dioxolan-4-yl) methyl ester	PCP	Pentachlorophenol
ODECA	Octadecanoic acid, Stearic acid	PCYMEH	4-(1-Methylethyl) valene / p-Cymene
ODIMNSX	Octadecanoylchrysanthemic acid	PD	Dichlorophenol ester
ODOR	Odor	PDMSAB	p-Dimethylaminostyrene
OEPM	O-Ethyl methylphosphonate	PDMSLX	Polydimethyl siloxane / Dimethylpoly siloxane
OLGR	Oils & greases	PEGE	Polyethylene glycol ethers
OMCTSX	Octamethylcyclotetrasiloxane	PERAMO	N-Pentamide
OPDDO	2-(o-Chlorophenyl)-2-(p-chlorophenyl)-1,1-dichloroethane	PENTAN	Pentane
OPDDE	2-(o-Chlorophenyl)-2-(p-chlorophenyl)-1,1-dichloroethene	PERTHIN	Pentane
OPUDT	2-(o-Chlorophenyl)-2-(p-chlorophenyl)-1,1-dichloroethane	PETDXL	Petroleum distillates
OPD4	Organophosphates	PETH	Pentacyclohexane
OXAL	Oxalic Acid	PF	Pentafluorophenol
OXAT	1,4-Oxathiane	PH-F	pH or tested in the field
OXCH	Oxychlorosilanes	PHAD10	Phenanthrene-D10
OZONE	Ozone	PHANTR	Phenanthrene
P4	Phosphorus	PHENIA	Phenoxazin
PA234	Phenoxazin 234	PHENAA	Phenylic acid
PA23DE	Phenonic acid, 2-hydroxyethyl ester	PHENDS	Phenol-D5
PA2MB	Phenonic acid, 2-methylbutyl ester	PHEND6	Phenol-D6
PA24HE	Phosphoric acid, diethyl-4-nitrophenyl ester	PHENLC	Phenolics - nonspecific
PAH	Polymerized aromatic hydrocarbons	PHENOL	Phenol
PACDPE	Phosphoric acid, oxydiphenyl ester	PHOR	Phenote
PARTIC	Particulates	PHTHA	1,2-Dimethoxyethoxylic acid / Phthalic acid
PATBUE	Propionic acid, t-butyl ester	PHTHBL	Phthalic acid
PATYE	Phosphoric acid, triphenyl ester	PHZAA	Phenoxycetic acid
PB	Lead	PHZCP	1,2,3,4,5-Pentahydroxycyclopentane
PC211	Lead 211	PHZTH	1,1-(1,3-Phenylene)ethane
PC212	Lead 212		
1 April 1991	0.24-00	0.24-00	1 April 1991
ACCEPTABLE ENTRIES: (Cont.)			
PIPER	Piperidine	SCH	Thieryne
PNPA	Propyl methylphosphonic acid	SE	Selenum
PO4	Phosphate	SPOTEP	Sulfopoly / Thiodiphosphoric acid, trimethyl ester
PO4ORT	Orthophosphate	S	Silica
PPDDO	2,2-Bis [(p-chlorophenyl)-1,1-dichloroethane]	SPLE	Silicon
PPDE	2,2-Bis [(p-chlorophenyl)-1,1-dichloroethene]	SPLEX	Siloxane
PPDT	2,2-Bis [(p-chlorophenyl)-1,1-dichloroethane]	SPN	Tin
PTIDE	2,2-Bis [(p-chlorophenyl)-2-phenoxy]-1,1-dichloroethane	SO2	Sulfur Dioxide
PRCHS	Pyridoxine	SO3	Sulfur
PROMET	Prostrenes / Prostan / 2,4-Bis(isopropylamino)-4-methoxy-1,3,5-trisnor	SO4	Sulfur
PRONA	Prostaglandins	SPERO	(1',5-trans)-7-Chloro-4-hydroxy-2',4-dimethoxy-4-methyl spiro (decanone-3-COO-1'-CDI-cyclononane)-3,4-diene
PROPOS	Propylene oxide / Methyl oxirane	SQUAL	Squalene
PTDNH	Putrescine	SR	Sterane
PL238	Phenomen 238 Isotope	SR90	Sterane-90
PL239	Phenomen 239 Isotope	SSOL	Steroidal acids
PLD12	Pyridine-D12	STB	Super tropical bleach
PTV	Pyrene	STERO	Steroids
PYRD10	Pyrene-D10	STIGMA	Sigmatole
PYRDIN	Pyridine	STR	Sterophenol / Terephlorivinylbenzene
QA	2-Diisopropylaminomethyl methylphosphonate	STYPH	Systeine ion
QB	2-Diisopropylaminomethyl ethyl methylphosphonate	STYPA	Systeic acid (absolute - see 246TM8)
QUINO	Quinoline / Benzol[B]pyridine	STYR	Styrene
RA	Radium	SUADME	Sulfuric acid, dimethyl ester
RA223	Radium 223	SUFID	Sulfide
RAZ26	Radium 226	SUPONA	Supona / 2-Chloro-1-(2,4-dichlorophenyl) vinylidene phosphide
RAZ28	Radium 228	T12DCX	tmc-1,2-Dichloroethane / mca-1,2-Dichloroethylene
RDX	Cyclotriphosphazene-1,3,5-tris(1,3,4-trisubstituted	T13DCP	mca-1,3-Dichloropropane
REACTY	Reactivity	T13EC	mca-1-Bromo-3-hydroxypropanoate
REDDY	Red dye	TA	mca-2-Done
RESACI	Resin acids	TASTE	Tannins
RESO	Resorcinol / 1,3-Benzenediol	TBA	Tetrabutylamine
ROW	Rosene	TRASDE	Thiobutyric acid, 5-ethyl ester
RU103	Ruthenium 103	TRICAR	2,2-Dimethyl-1-propanol / tert-Butylcarbinol N-nonyl alkyl
RU106	Ruthenium 106	TRIP	Titanium phosphate
S	Sulfur	TCB	Tetrachlorobenzene
SDCL2	Sulfur monochloride	TCB1	1,2,4,5-Tetrachlorobenzene
SALINE	Saltwater	TCB2	1,2,3,4-Tetrachlorobenzene
SALINI	Salinity	TCB3	1,2,3,5-Tetrachlorobenzene
SB	Aromatic	TCDD	2,3,7,8-Tetrachlorodibenzo-p-dioxin / Dioxin
SC	Screandium		
1 April 1991	0.24-01	0.24-00	1 April 1991

Test Name (Analyte)	8.24	Test Name (Analyte)	
ACCEPTABLE ENTRIES (Cont.)			
TCDF	2,3,7,8-Tetrachlorodibenzofuran		
TCHOTS	trans-1,2-Vinylenebenzene sulfone		
CLDAN	trans-Diisobutylene		
TCLFA	1,1,2-Tetrachloroethane		
TELE	Trichloroethylene / Trichloroethanol		
TCLTF	1,1,2-Trichloro-1,2-difluoroethane		
TON	Trichloroform		
TCOS	Tetraacetoxy		
TCP	Tetrahydropropane		
TCSAME	15-Tetrasubstituted arid. methyl ester		
TGST	Tetrahydroxyethanes		
TCVN	Total cyanide		
TDCBU	trans-1,4-Dichloro-2-butene		
TDGCL	Thiodiglycol		
TDMHSX	Thiodiglycolic acid		
TDOOTL	Tetradecamethyl hexanesane		
TDS	tert-Dodecanethiol		
TE	Total dissolved solids		
TGLME	Tellurite		
TEGLYC	Terephylene glycol, methyl ether		
TEMP	2,2-(1,1-Ethanediyl(eny)) bis(ethanol) / Terephylene glycol		
TEMP-F	Temperature		
TEPO4	Temperature as tested in the field		
TEPT	Tetraethyl phosphor		
TETR	Tetramere		
TETRYL	Nitramine / N-Methyl-N,2,4,6-tetramethoxy / Tetryl		
TFDCE	Triethoxysilane, 1,5-pentanediyl ester		
TGLYME	1,1,2-Trifluoro-1,2-dichloroethane		
TH	Tetrahydne		
TH227	Thorium 227		
TH230	Thorium 230		
TH232	Thorium 232		
TH234	Thorium 234		
THCDD	Total hexachlorobromo-p-dioxins		
THCDF	Total hexachlorobenzene-form		
THF	Tetrahydrofuran		
THMAP	1,2,3,4-Tetrahydroxaphthalene / Tetralin		
THP2ML	Tetrahydroxypropyl-2-methanol		
THPCDD	Total heptachlorobromo-p-dioxins		
1 April 1989			
8.24			
ACCEPTABLE ENTRIES (Cont.)			
TMF-10	Total heptachlorobenzene-form		
TI	Titanium		
TI	Thallium		
TLC-10	Thallium 208		
TRATL	2,3,4-Triethyl-3-pivaloyl		
TMFFET	2,2-(1,1,1,3,3-pentaethyl)phenoxylethane		
TMFTDO	3,3,3-Triethyl-1,5-heptadien-4-one		
TMHAL	3,5,5-Triethyl-1-hexanol		
TMKT	Total monomericresins		
TMODEO	2,2,7,7-Tetramethyl-4,5-oxadiazole-3-one		
TMF	Trimethyl phosphor		
TMPIAH	Tetramethylphosphorothioate		
TMPO2	Trimethyl phosphor		
TMPO3	Trimethyl phosphor		
TMPO4	1-trimethyl phosphor (butoxide - see TMF)		
TMTCON	3,5,24-Triethylhexacosane		
TMUR	Trematolyhexa		
TMBSO	Trimethobenzene isomer		
TMTSO	Trimethosulfone isomer		
TOC	Total organic carbon		
TODD	Total octachlorobromo-p-dioxins		
TOCF	Total octachlorobenzene-form		
TOKU	Toluene / Phenophtalein		
TOTCOL	Total coliform		
TOTDDT	Total value of all DDT, DDE, DDD isomers		
TOTGAF	Total grammatic acid fraction		
TOTHG2	Total mercury		
TOTPCB	Total PCBs		
TOX	Total organic halogen		
TPCDD	Total pentachlorobromo-p-dioxins		
TPCDF	Total pentachlorobenzene-form		
TPH	Thiophene		
TPHC	Total petroleum hydrocarbons		
TPO4	Total phosphates		
TRICL	Trichloroethylene / Trichloroethane		
TREACT	Trichloro-esther solvents		
TRBZ	Trichlorobenzenes		
TRMBZ	Trichlorobenzenes		
TRIP	Trichlorocyclohexane		
TRITI	Trition		
TRITH	Trithione		
6.24-84			
1 April 1989			
8.24			
ACCEPTABLE ENTRIES (Cont.)			
Chemical and Radiological Data:			
(Sorted alphabetically by Test Name)			
(1,1-Dimethyl-3-phenyl)benzene		TMPS	
(1,1-Dimethyl-3-phenyl)benzene		SPRO	
(1,3-diene)-7-Chloro-6-hydroxy-2,4-dimethoxy-4-methyl		110MDS	
spiro(bisepoxide-2-(3H)-1-(2)-cyclohexene)-3,4-diene		120MBS	
(1,1-Dimethylbutyl) benzene		2CLVE	
(1,1-Dimethylbutyl) benzene		3SSXL	
(2-Chlorobenzyl) ether		BEETO	
(Benzyl)-Silyl-5-ene-3-ol		01NWL	
0.1N Hydrochloric acid		1A4MP2	
1-(2-Bromophenoxy) ethanol		1A4MP3	
1-Arryl-2-methyl-5-pyrazoline		1A4MP9	
1-Arryl-4-(1-bromo-1-methylethyl)benzene		1B4M9	
1-Benzyl-4-hydroxybenzimidazoles		1C4L	
1-Benzol		1CD4P2	
1-Carbonyl-3,5-dimethyl-2-pyrroline		1CL4H	
1-Chloro-2,6-heptadiene		1CH	
1-Chlorobenzene		1CHAP	
1-Chloromethylbenzene		1CLOC	
1-Chlorovinylbenzene		1DDCL	
1-Dodecanol		1ECSL	
1-Eicosane		1E2ME	
1-Ethyl-2-methylbenzene		1E2ME	
1-Ethyl-2,4-dimethylbenzene		1E3ME2	
1-Ethyl-3-methylbenzene		1E4ME3	
1-Ethyl-4-methylbenzene		1E5E	
1-Ethylbenzene		1EP1	
1-Ethylbenzene		1FH4J	
1-Ethylbenzene		1HPDQ	
1-Ethylbenzene		1HSQD	
1-Ethylbenzene		1HVS	
1-Hydroxy-2,3-dimethyl inden (M.W.146)		1MDA1	
1-Mercapto-1-propan		1MDP1	
1-Mercapto-2-(2-propenyl)cyclopentene		1MCPE	
1-Mercapto-7-(1-mercaptoethyl) naphthalene		1M7ME1	
1-Mercapto-9H-Quinone		1MFRL	
1-Mercaptoethane (A) anhydride		1MSAA	
1-Mercaptoethane		1MCW	
6.24-85			
1 April 1989			

1.000 000

200

卷之三

100

11

1400

Test Name (Analyte)	8.24	Test Name (Analyte)
ACCEPTABLE ENTRIES (Cont.)		ACCEPTABLE ENTRIES (Cont.)
o-Methoxyacetone	646EPUR	Acid(s) (high molecular weight)
o-Methoxyacetate	646TRH	Acid(s) (low molecular weight)
o-Nitro-2-propanol	6TR17	Acetone
7-Hydroxyacetonephenone	HTM8	Acrylonitrile
7-Oxopropylbenzene	HMT10	Acrylate, Zn ²⁺
7,12-Dihydrofuran (Aldobeta, etc)	712DFAA	Adenosine
7H-Benz[DE]anthracene-7-one	8DEANT	Alcohol(s) (high molecular weight)
8-Methyl-1,8-nanose	B8NPHL	Aldehydes
8-Methyldecanoic, eric, methyl ester	C12AMM	Aldol
9-Anthracenehexaenoate	ANTHCN	Aliphatic alcohol
9-Fluorene	9FLZNO	Aliphatic hydrocarbons
9-Methoxyphenol	9MBAAN	Alkali
9-Methyl-9H-Azulene	9MBAAN	Alkali anion
9,10-Anthracenedione	ANTROU	Alkane
9,10-Dibydro-9,9-dimethylanthracene	D9DMAC	Alkene
9H-Carbazole	CARBAZ	Alkene chloride
9H-Pheophytin	9PHURE	Allyl ether
10-Cyclohexeneoic acid, methyl ester	NCUDM	alpha, alpha-Dimethylbenzoic acid
10-Methyldecanoic acid, methyl ester	NMUDM	alpha, alpha-Dimethylbenzyl alcohol
10-Oxodecanoic acid, methyl ester	NODEM	alpha, Dimethylbenzylchloride
10P, 10R, Menthane	NMEOH	alpha, Dimethylbenzene
17-Methylbundecanoic acid, methyl ester	12MTDM	alpha-Chloro-
13-Tetradecenoic acid, methyl ester	13TDDAM	alpha-Chloro-
14-Methylpentadecanoic acid, methyl ester	14MPAME	alpha-Chloride
15-Methylhexadecanoic acid, methyl ester	15MHAME	alpha-Eicosane
15-Tetradecenoic acid, methyl ester	TCBAME	alpha-Hexadecene, cyclohexane
16-Methylpentadecanoic acid, methyl ester	16MPAMES	alpha-Methylbenzyl-2-chloroacetamide
17-Pentadecanoic acid	17PTC2	alpha-Methylbenzyl acetate
20% 1M NaOH - 30% Methanol	NAOHME	alpha-Methylbenzyl alcohol
20% H ₂ O ₂ - 30% acetone	S2H2A	alpha-Phenol
20% Methylene chloride - 50% acetone	S2K2OA	alpha-Thiophenol
20% Water - 25% Methanol - 25% ammonia	SEWMAN	Alpha green
Arenaphthene	ANAPHE	Alpha green-faded
Arenaphthene-D10	ACHD10	Alpha green-faded
Arenaphthylene	ANAPYL	Alpha green-stable water fraction
Acetic acid, cyclohexyl ester	AACK12	Alkanes
Acetic acid, ethyl ester	CIALE	Amendola cyanide
Acetic acid, vinyl ester	CIAVE	Amesoporphyrin
Acetone	ACLT	Ammonia
Acetone	CHUN	Ammonium nitrogen
Acetophenone	ACPN	Ammonium

Test Name (Analyte)	8.24	Test Name (Analyte)	
ACCEPTABLE ENTRIES: (Cont.)			
Bis-(dihydroxyacetone) methylphosphonate	L1 A	LAPLACET	CAMI
Bis-(dihydroxyacetone) methylphosphonate	L1	Larhamer, n-n. Butyl ester	LBIA
Bis-(hydroxyacetone) etherether	DIAFF	Larhamer	LCIS
Bis-(hydroxyacetone) ethanol	DIHAL	Larson	LCIS
Bis-(hydroxyacetone) ethylenebis	DIAHS	Larson, acylidide	LCIS
Bis-(hydroxyacetone) glycidyl ether	DIASOC	Carbox, monoxide	CDKNA2
Bis-(hydroxyacetone) phenyl phosphate	C185PP	Carbox, anhydride	CL14
Bis-(triisobutyl) oxalic acid	BTASOA	Carbox	CO1
Bismuth	Bi	Carbox, anil, diisopropyl ester	CIADAM
Bismuth 212	Bi212	Carboxyl chloride	CG
Bismuth 214	Bi214	Carboxyl diamide	MTRZI
Blades	BLDX	Carboxyl	CATO
Boats	BOLS	Carboxyl, Labeled	CL14
Boron	B	Larson exchange capacity	CE
Boron 21	BRM21	Crown	CE141
Boron 214	BR	Crown 141	CE144
Borox	BRCHMS	Crown 144	CS
Bromochloroform	BRCLFM	Crown	CS134
Bromochloromethane	BRDCLM	Crown 134	CS137
Bromochloroform	ETHBR	Crown 137	CXO
Bromodiform	CMBR2	Chemical oxygen demand	CAMBEN
Bromomercurane	CH3BR	CHLORAMPH	Chlorine
Bromo	C4	Chloride	CLD
Bromocarboxylic acid, dimethyl ester	BOADME	Chloride	CLDN
Bromocarboxylic acid, 1-alkyl ester	BAHKE	Chloride	CLDEN
Bromofluorane	BUCHMS	Chloride	CL
Bromochloroform	BRCLFM	Chlorinated benzenes	CLXMAP
Bromochloromethane	BRDCLM	Chlorinated naphthalenes	CL2
Bromothane	ETHBR	Chlorine	CLD
Bromoform	CBR	Chlorine demand	CAAH
Bromomercurane	CH3BR	Chloroacetaldehyde	CLCJA
Bromo	C4	Chloroacetate	CLCJA2
Bromoform	CH3Br	Chloroacetonitrile	CLCJA3
Bromocarboxylic acid, dimethyl ester	BOADME	Chloroacetoformate	CLCJA4
Bromocarboxylic acid, 1-alkyl ester	BAHKE	Chloroacetone	CLCJA5
Bromofluorane	BUCHMS	Chloroacetonitrile-D5	CLCJA6
Bromylchloride	BRCP	Chloroacetonitrile	CLCJA7
Bromylchloride	BRETH	Chloroacetonitrile isomer	CLCJA8
Bromylchloride	BMP	Chloroacetonitrile	CLCJA9
Bromylchloride	BRC	Chloroacetonitrile	CLCJA10
C17 alkane	C17A	Chloroacetonitrile	CLCJA11
C18 alkane	C18A	Chloroacetonitrile	CLCJA12
C181300 Unknown	C18LNS	Chloroacetonitrile	CLCJA13
C221400 Unknown	C22LNS	Chloroacetonitrile	CLCJA14
C6 alkane	CA	Chloroform	CH3CL
Catheter	CD	Chloroform	CH3CL1
Calculus	CA	Chloroform	CH3CL2
Calcium carbonate solution	CACO3	Chloroform	CH3CL3
Calibrated hardness	CHARD	Chloroform	CH3CL4
Capillary	CAMP	Chloroform	CH3CL5
Caproic acid	HEXAC	Chloroform	CH3CL6
1 April 1991	0.24-63	1 April 1991	0.24-64
Test Name (Analyte)	8.24	Test Name (Analyte)	8.24
ACCEPTABLE ENTRIES: (Cont.)			
Chloroform	CHCl3	Chloramine	CYH
Chloroform-D	CDCl3	Chloramin	CHOH
Chloromethane	CH3Cl	Chloramine	CHONE
Chloromethyl methyl ether	CHAME	Chloramine	CHNE
Chloromethylphenylmethane	CHAMP	Chloramine water	CHSWT
Chlorophenol	CLP	Chloramphenicol	CHBIS
Chloropyridine	CPY	Chloride	RDX
Chlorosulfone	CT	Chloroacetamide	CYOTE
Cholestane	CHOL	Chloroacetone	CYPO
Chromate	CR	Chloroacetone	OPCAL
Chromane	CR	Chloroacetone	CPO
Chrysene	CRH	Chloroacetone	CYTH
Chylene	CYD12	Chloroacetylbenzene	HMX
Chylene-012	CHYD12	Chloroacetylbenzene	DIPHTL
Chylene sulfide	CHYS	D-1-Pivalyl isomer	DOPA
cis-1-Bromo-2-chlorovinylbenzene	CHCCH	Daridol	DALA
cis-1,2-Dimethylbenzene	CDCH	Dalogen	DCAA
cis-1,2-Dimethylbenzene	C12DCE	DCAA	F168P
cis-1,3-Dichloropropene	C13DCP	Davallia	DCHPSI
cis-1,3-Dichloropropene	C13DCP'	Davallia	C10
cis-1,4-Dichloro-2-butene	C14CIL	Davydovite	DECYL
cis-4-Hexene-1-ol	COLDAN	Dawsonite	DHGO
cis-Chloride	CO	Dawsonite water	DHMC
Cobalt	CO57	dibeta-D-mannosidase	DHMC
Cobalt 57	CO57	dibeta-D-mannosidase	DEMO
Cobalt 60	CO60	Dawsonite	DEMS
Cobalt	COLOR	D-E-Isopropyl phthalate	DNPB
Copper	CU	D-E-Isopropyl phthalate	DNPB4
Copper enacarbil	CUDFT	D-E-Isopropyl phthalate-D4	DACAL
Copper total	CUDOT	D-E-Isopropyl phthalate	DAZ2
Cosmetology (reference to cosmete)	COSITY	Dawsonite circlet	DEBABA
Cosmetoph	COURMA	Dawsonite	DEBABA
Cosmeto	COLUMN	Dibenz(A,H)anthracene	DEBFR
Cosette	CSX	Dibenz(A,H)anthracene	DEBFR12
Corticosteroid sulfonate	CRXLO	Dibenzophenone	FURANS
Cyclclo	CRYW	Dibenzophenone - complex	DEBTFW
Cyclclo	ROPW	Dibenzophenone	DEBTLW
Cyclclo	CYN	Dibenzophenone	DEBCLM
Cyclclo	CYWF	Dibenzophenone	DELP
Cyanide, free form	CS	Dibenzophenone	DEBOMC
Cyanogen chloride	CYODDC		
1 April 1991	0.24-63	1 April 1991	0.24-65

1 April 1991

650

ACCEPTABLE ENTRIES (Cont.)	Test Name (Analyte)
Isomeric carboxylic acid	MZALIA
Isomeric diisopropyl	IMDPN
Isomeric dichloroethane	DAKAI
Isomeric ether	IMHII
Diethyl isopropylalcohol	-DIMP
Isomeric ketone	MECHG
Diethyl methylphosphates	DIMPEN
Diethyl phenol	DIMPEN
Diethyl phthalate	DIMPEN
Diethyl-2-propanone	DIMPEN
Diethyl-2,3,5,6-tetrahydrophenoxy acid	DIPLOM
Diethylbenzene	NDMDA
Diethylchloropropene - nonspecific	DNACP
Diethylchloromethyl benzene	DAPHEN
Diethylchlorophosphates	MEZMAP
Diethylglycidyl ether	POASLX
Diethylketone	MEZCH
Diisobutylene isomer	DITISO
DITOSOB	DINO
Diethyl adipate	DOAD
Diethyl acetoate	DOAZ
Diethyl ether	DOETH
Dioxin	TCDD
Diphenyl	DPHRY
Diphenyl ether	DPETH
Diphenyl sulfide	DPSO
Diphenyl sulfone	DPA
Diphenoxyacetate	DPH
Diphenylbenzodioxine - nonspecific	DEEDIN
Diphenyl diisopropyl	DOC
Dissolved organic carbon	DO
Dissolved oxygen	HD
Dissolved mustard	DSTON
Dithiobenzen	DITHI
Dithiane	DL2HP
(4-2-O-Hydroxyphenyl) glycos	C12
Dodecane	DODECD
Dodecyldimercaptan	DOPAM
Dopamine	DOPAM
Dosimeter	C20
Eicosane	

1 April 1997

1400 1991

1

ACCEPTABLE ENTRIES: (Cont.)	Test Name (Analyte)
Phenoxamic acid	PCIA
Quinone epoxide	QMAS
Perchloric acid	FORM
Polycy. acid, hexa-phenyl-subst. over Sulph. acid, cyclohexyl over	PARPES
Pron	PACRDE
Pron 112	PRISON
Collins	PRIN112
gamma-Glutamyltranspeptidase	GALM
gamma-Cholinesterase	LIM
gamma-Hexanoylcholinesterase	GOLDAN
Gammaglob.	LIN
Gammaglob.	CAMAG
Gammaglob.	GAMMAS
Gammaglob.	GAMMAS
Gammaglob.	DYZCAN
Gammaglob.	MSDCAN
Gold	GE
Green dye	AU
Guadalupe snake	GRASOVY
Habenaria 1013	GUNNT
Habenaria 1099	HABEN1013
Henderson	HABEN1099
Hericium	C11
Hericium	C21
Hericium	NPLC
Hericium spissae	CL79P
Hericium blanchetii	CL79B
Hericium erinaceus	CL79E
Hericium erinaceus var. erinaceus	C17
Hericium erinaceus	C17AM
Hericium erinaceus, methyl ester	C7
Hepane	C7A
Hepane	CL82Z
Hepane	CL82P
Hepane	MONO
Hepane	CL42Y
Hepane	CL42T
Hepane	MONO
Hepane	NICO
Hepane	C1A

100

1 April 1991

	Test Name (Analyte)
1,1AA	1,1-azobis-
1AFU	1,4-azifluorene
1ARF	1,4-azifluorene
1ADM	1-aminodimethylamine
165ME	1,6-hexamethylene diisocyanate
RDX	1,3,5-trinitro-1,3,5-triazine
DMTSX	1,3-dimethyl-2-sulfoniophenyl sulfide
META	1,3-methane
XANE	1,4-diazepane
KABO	1,4-diazepane
LEAD	Lead
Lend	Lead 211
TADRE	Lead 212
ADME	Lead 214
DOAD	Lead triphosphate
HEXAC	Leucene mustard
C36	Leucine
QUREX	Leucine oxide
HO	Leucine
H2O2	Liquid, percentage
HYDRZ	Lidocaine
DAND	m-Tyrosine
LLMW	Lignosulfonate
PC3AC	Lindane
AC	Linoleic acid
AC	Linoleic acid
M25	Linoperoxide 54
NPOA	LOPA
HTH	LOPO
IGNIT	Mabinazine
IDENE	Macerite
COPRA	Mercury convertible
DOOLE	Mercury total
PE	Mephazine
2MC3	Methyl oxide
ISOTR	Methane
2MK6	Methanol
2AC7	Methoxychlor
2MC4	Methyl-2-heptenoate
OPHR	Methyl-3-heptenoate
IMPFA	Methyl aldehyde
IMPFA	Methyl amine acid
GB	Methyl benzene

3 April 1997

Test Name (Analyte)	SLN
ACCEPTABLE ENTRIES: (Cont.)	
Methyl isobutyl carbamate (4-methyl-2-pentanone)	MISCOM
Methyl mercury	MENG
Methyl methanesulfonate	MENCLL
Methyl nitrite	MINS
Methyl orthioate	PROFOOL
Methyl-N-butyl Levor	MES
Methylylchlorobutane	MTRITH
Methylylchloroform	MTRKX
Methylylchlorobutane	MTCYRU
Methylylchloropropene	MTCYDC
Methylene bromide	MBCA
Methylene chloride	MBCB2
Methylene chloride-D2	MBCD2
Methylethanol ketone	COCOL2
Methylethanol phenol	MEX
Methylethylbenzene, benzene	MEPHEN
Methylethyldiazine	MEPHEN
Methylethyldiethyl ketone	MENDRZ
Methylethylketone, 1-ketone	MISK
Methylethylphthalimide	MIPK
Methylisopropyl ketone	METLAP
Methylketone	SCIO
Methylphosphonate, acid	MP
Methylpropyl ketone	MPAFA
Methylvinyl blue active substance	MPKPL
Menzol	MRAAS
Mervaphos	MTRZL
Milk-Q-filtered water	MREVIN
Mix	MROGO
Molybdenum	MUDU
Mystic acid	MO
N-(2-Hydroxyethyl)-decanamide	C14A
N-(4-Chlorophenyl)-3-phenyl-2-propanone	NHEDCA
N-Buyl-4-methylbenzeneethoxylate	NUPPAB
N-Buyl ether	NHESSA
N-Ethyl-2-propanemide	NHEUTIN
N-Ethylpyrrolidinecarboxamide	NEPLAT
N-Methyl-4-nitroacetanilide	NEONDA
N-Methyl-N,N,N-trimethylurea	NETRINA

1 AUG 2001

1887-1937

Test Name (Analyte)	8.24	Test Name (Analyte)	
ACCEPTABLE ENTRIES: (Cont.)			
Nitroimidazole propanoate	NINIPA	p-Tributylbenzene	141149
Nonadecane	C19	Palmitic acid	C19A
Nonanoic acid, 2-hd	C19A	Paracetamol	PHL115
Nonanoic acid	C9	Parabutyl methyl	MPH115
Nonadecane, 2-hd, dibutyl ester	NAWADP	Parahydrazide	PARTH
Nonadecane, organo halides	NPOX	PCB 1010	PCB010
Nonadecane (an isomer)	NOMPHE	PCB 1221	PCB121
Nonadecane	NOLN	PCB 1232	PCB122
o-Chlorobenzaldehyde	CBIA	PCB 1242	PCB242
o-Chlorobenzoic acid	COBA	PCB 1246	PCB246
o-Chlorobenzylidene malononitrile	2CBMM	PCB 1254	PCB254
O-Ethyl methylphosphonate	OEMP	PCB 1260	PCB260
O-Ethyl S-(2-ethylhexanoate) methylphosphonothioate	VM	PCB 1272	PCB272
O-Ethyl	VX	Pentachlorobenzene	CL58
Oxidecamycin hydrochloride	12DAMH	Pentachlorophenyl	CL5BP
Oxidecamycin	ODAMHX	Pentachloroethane	CLSET
Oxidecamycin	C18	Pentachloroether	PCB
Oxidecamycin	ODECA	Pentachlorotetraenoate	PCB8
Oxidecamycin	ODAPOM	Pentachlorophenol	PCP
Oxidecamycin, 2-hd	C18AE	Pentachloroether	C25
Oxidecamycin, 2-hd, ester	C18AME	Pentachloroether	C15
Oxidecamycin, 2-hd, methyl ester	C18ACD	Pentachloroether	C15A
Oxidecamycin, 2-hd, octyl ester	C18CTX	Pentachlorophenol tetramine	PCBN
Oxidecamycin	C9	Pentachlorophenol	PENTAN
Oxidecamycin, 2-hd, dimethyl ester	OCADME	Pentachloric acid	CSA
Oxidecamycin, 2-hd, methyl ester	CMAME	Pentachloric acid, 2-methylbutyl ester	PAZMBE
Oxidecamycin	ODOR	Pentachloroethane	C55
Oxidecamycin	OPO4	Perfume	PERTHM
Oxidecamycin	POHOT	Perylene-D12	PYLD12
Oxidecamycin	QCN	Perylene distillates	PETOIL
Oxidecamycin	DIAL	pH	PH
Oxidecamycin	O2	pH as tested in the field	PH-F
Oxidecamycin	OZOMT	Phenacite	PHENA
Oxidecamycin	CPMS	Phenanthrene	PHANTR
Oxidecamycin	CPMSO	Phenanthrene-D10	PHAD10
Oxidecamycin	PCYME	Phenol	PHENOL
Oxidecamycin	PDMSB	Phenol-D5	PHEND5
Oxidecamycin	TSAPB	Phenols - aromatic	PHEND6
Oxidecamycin		Phenoxycylic acid	PHENLC
Oxidecamycin			PHENAA
1 April 1991	0.0448	1 April 1991	

Test Name (Analyte)	8.24	Test Name (Analyte)	
ACCEPTABLE ENTRIES: (Cont.)			
Phenylacetic acid	PHENAA	Quinoline	QUINO
Phenylacetonitrile	CYNS	Radium	RA
Phenol	PHOR	Radium 223	RA223
Phenol	CG	Radium 226	RA226
Phenol, 4-Cl	RC24	Radium 228	RA228
Phenolp	PO4	Acidity	REACTY
Phosphoric acid	KPO4	Red dye	REDDY
Phosphoric acid, diethyl 4-nitrophenyl ester	PADAME	Ravin acids	RESACI
Phosphoric acid, acrylaphenyl ester	PAGDPE	Resorcinol	RESO
Phosphoric acid, methyl ester	ETHPO4	Rosanol	RON
Phosphoric acid, triethyl ester	PATPE	Ruthenium 103	RU103
Phosphorus	P4	Ruthenium 190	RU190
Phthalic anhydride	PTAH	S-2-Diisopropylaminomethyl methylphosphonic acid	EAS192
Phthalic anhydride	PTHA	S-2-Diisopropylaminomethyl methylphosphonothioate	DIASEP
Phthalic anhydride	PTOLUR	Salicylaldehyde	2HBNZL
Phthalic anhydride	240TNP	Saler	SALINE
Phthalic anhydride	GD	Salinity	SALINI
Phthalic anhydride	PIPER	Sarin	GB
Phthalic anhydride	PL208	Saturated hydrocarbons (C16)	C16SAT
Phthalic anhydride	PL239	Sesquim	SC
Phthalimide	POMSLX	Sesquim	SE
Phthalimide	PGCE	Sesquim	SSOL
Phthalimide	PAH	Sesquibutyl solid	SI
Phthalimide	K	Silica	SIL
Phthalimide	K40	Silver	AU
Phthalimide	PROMET	Silver	SILVER
Phthalimide	PROKA	Sodium	NA
Phthalimide, 2-hydroxyethyl ester	PASHDE	Sodium 22	NA22
Phthalimide, 2-methylbutyl ester	CL239B	Sodium hypochlorite	NACL
Phthalimide, methyl ester	CMAME	Sodium	GD
Phthalimide, t-butyl ester	PATBE	Specific conductivity	COND
Propyl methylphosphonate acid	PMPA	Specific conductivity as tested in the field	COND-F
Propylbenzene	PMPS	Spirane	SQUAL
Propylbenzene	PROPOX	Spirane	ODECA
Propylbenzene	PAZ34	Spirane	STERO
Propylbenzene	TOM	Spirane	STIGMA
Propylbenzene	PTA	Spirane	SR
Propylbenzene	PTA	Spirane	SPHO
Propylbenzene	PTD10	Spirane	STYPHI
Propylbenzene	PTUIN	Spirane	246TMR
1 April 1991	0.0447	1 April 1991	

Test Name (Analyte)	8.24	Test Name (Analyte)	8.24
ACCEPTABLE ENTRIES: (Cont.)			
Sterane	STYR	Tetraethylphenanthrene	TMPHAN
Sterane oxide	12EPBS	Tetraethylthiuram	TMUR
Sulfate	SIM	Tetrazine	TT TR
Sulfide	SULFD	Thallium	TL
Sulfide, 1,2-dihydro-4H-1,3-dioxin-2-one	SOD	Thalidomide	TL5001
Sulfidepp	SPOTEP	Thiamine	MES
Sulfite	S	Thiomolybdate	TBASD
Sulfur Disulfide	SO2	Thiophene	SCN
Sulfur monochloride	SZCL2	Thiophenol	TDGCL
Sulfuric acid, dimethyl ester	SUADME	Thiophenoxy acid	TDGLA
Super tropical Mecrof	STB	Thiophosphoric acid, ethoxyethyl ester	SPOTEP
Supona	SUPONA	Thiophene	TPH
Toben	GA	Thiuron	TH
Tannum	TA	Thiuron 227	TH227
Tare	TASTE	Thiuron 230	TH230
Tellurite	TE	Thiuron 232	TH232
Temperature	TEMP	Thiuron 234	TH234
Temperature as tested in the field	TEMP-F	Tin	Sn
Tephryl-D14	TRPD14	Tinethione	TI
tert-Butanol	2M2C9L	Toluene	TOKU
tert-Butylcarbinol	TBCARS	Toluene-DB	MEC6HS
tert-Butoxyethyl ether	2M0MC3	Total chlorine	MECAB
tert-Decanoyl ester	TOOTL	Total cyanide	TOTCOL
Tercchloroacetates	TCB	Total dissolved solids	TCY
Tercchloroalkylphosphates	CLAP	Total gravimetric, acid fraction	TDS
Tercchlorocyclopropanes	TESTP	Total hardness	TOTGAF
Tercchlorofluorocarbons	FRH112	Total heptachlorobutene-formers	HARD
Tercchloroformates	TCLES	Total heptachlorobutene-p-dioxins	THPCDF
Tercchloromethylphosphates	CL4MAP	Total hexachlorobutene-formers	THPCDD
Tercchlorophenol	TTCF	Total hexachlorobutene-p-dioxins	THHDF
Tercchlorophosphates	STIR	Total mercury	THHDC
Tercconane	TCOS	Total methanesulfonates	TOTHCl
Tercdecamethyl hemisiloxane	TDMSX	Total octachlorobutene-formers	TMNT
Tericfuran	C14	Total octachlorobutene-p-dioxins	TOCDF
Tericfuranic acid	C14A	Total organic halogen	TOCD
Tericfuranic acid, methyl ester	C14AME	Total PCBs	TOCPB
Tericlycane	TGLYME	Total pentachlorobutene-formers	TPCDF
Tericlycane	THF	Total pentachlorobutene-p-dioxins	TPCDD
Tericlycylmethyl-2-methanol	THP2MCL	Total pentachloro hydrocarbons	TPHC
Tetraa	THNAP		

1 April 1991

8.24-40

1 April 1991

Test Name (Analyte)	8.24	Test Name (Analyte)	8.24
ACCEPTABLE ENTRIES: (Cont.)			
Total phosphorus	TP04	Trichloro phosphates	TPP
Total solids	TSOLO	Trichloro phosphate	TPC03
Total sulfur	TS	Trichloro phosphite	TPB02
Total suspended solids	TSS	Trichloro sulfide	MEDC10
Total trichloroethylenes	TCETP	Trichloroethane	TCETAP
Total uranium	TU	Trichloroethanes	TMPO
Total value of all DDT, DDE, DDD isomers	TOTDOT	Trichloroethene	MEDC11
Total volatile solids	TVS	Trichloroethenes	TMESO
Tetaphene	TIPHEN	Trichloroethene isomer	TMESO
Tetra- <i>alpha</i> -methyl ester	TRACT	Trichloroethene isomers	TRAPEN
trans-1-Bromo-2-methylpropane	TIBMC	Trichloroform	TRITH
trans-1,2-Cyclohexanediol, cyclic sulfide	TIBDC3	Titanium	TRITU
trans-1,2-Dichloroethane	TIBDC2	Titanium	W
trans-1,2-Dichloroethylene	TIBDC	Titanium	TURNO
trans-1,3-Dichloropropane	TIDCP	Unknown	UNOCXX
trans-1,4-Dichloro-2-butene	TICBU	Unknown 234	UDMH
trans-2-Octene	T2OEC	Unknown 235	U234
trans-Chloro-	TCLDN	Unknown 236	U235
Tetraoctaneic acid, methyl ester	COA8	Urea	UREA
Trichloro phosphate	TRP	Valetox acid	VAHT
Trichloroform	TRA	Vanillin	VAHT
Trichloroformate	TRIF2	Vanillin	CAVE
Trichlorophenyls	CLCP	Vapene	CHCl
Trichlorocyclopentane	TRCP	Various hydrocarbons with increasing M.W.	CHCl
Trichloroethylene	TRCL	Varif exomer	VFA
Trichlorofluoromethane	CLCF	Vinyl chloride	H2O
Trichloroformates	CLCP	Vinyl formate	WP
Trichloropropene	TOP	Water	CC
Trichloropropane	CLCP	White phosphorus	XLYP
Trichlorostyrene	TCT	ZDDP	ZTLYN
Tidocene	C13	Zinc	ZN
Tidetyl phosphate	TERP	Zirconium	ZR
Tridiphene glycol	TEGTC	Zirconium 95	ZRS95
Tridiphene glycol, methyl ester	TGLYME		
Tidostearic acid, 1,5-pentaenyl ester	TVAPE		
Tidostearic acid, methyl ester	CCP3		
Tidostearate	TRGET		
Tidostearate	MEXO		

1 April 1991

8.24-41

1 April 1991

REPORT DOCUMENTATION PAGE

*Form Approved
OMB No. 0704-0188*

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)			2. REPORT DATE August 1993		3. REPORT TYPE AND DATES COVERED Final report	
4. TITLE AND SUBTITLE Information Management for Installation Restoration with Focus on Aberdeen Proving Ground, Maryland			5. FUNDING NUMBERS			
6. AUTHOR(S) Joe D. Manous, Jr.						
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Army Engineer Waterways Experiment Station Geotechnical Laboratory 3909 Halls Ferry Road Vicksburg, MS 39180-6199			8. PERFORMING ORGANIZATION REPORT NUMBER Miscellaneous Paper GL-93-3			
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S. Army Corps of Engineers Washington, DC 20314-1000			10. SPONSORING/MONITORING AGENCY REPORT NUMBER			
11. SUPPLEMENTARY NOTES This report is available from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.						
12a. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution is unlimited.			12b. DISTRIBUTION CODE			
13. ABSTRACT (Maximum 200 words) This report reviews and evaluates database management systems which are currently being used for chemical and geologic data storage, retrieval, and processing. A review was also conducted of the Geographic Information Systems (GIS) and their use in coordination with different database and data formats. In addition to review and evaluation, the study consolidated information sufficient for inexperienced user access of the systems recommended by this study. The focus for this study is the Edgewood Area (EA) of Aberdeen Proving Ground.						
14. SUBJECT TERMS Aberdeen Proving Ground Database management systems Geologic data storage					15. NUMBER OF PAGES 65	
					16. PRICE CODE	
17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED	18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT			

Destroy this report when no longer needed. Do not return it to the originator.