

Lesson 05
Logistic Regression

In the Previous Lesson

- Data Representation
- KNN
- K-Means
- Linear Regression
- Gradient Descent
- Overfitting & Underfitting

Logistic Regression

Що таке логістична регресія?

Логістична регресія (Logistic Regression) - це статистичний метод, який використовується для моделювання й передбачення ймовірностей виникнення подій в результаті впливу одного чи декількох незалежних змінних.

Types of Logistic Regression

Типи логістичної регресії:

- Двійкова логістична регресія (binary logistic regression)
- Мультиноміальна логістична регресія (multinomial logistic regression)
- Порядкова логістична регресія (ordinal logistic regression)

Чому б не використовувати лінійну регресію для класифікації?

The Logistic Model

У формулі логістичної моделі,

Коли
$$b_0+b_1x==0$$
, тоді p буде 0.5, Аналогічно, $b_0+b_1x>0$, тоді p буде йти до 1 і $b_0+b_1x<0$, тоді p буде йти до 0.

Interpretation of the Coefficients

- Інтерпретація вагів (weights) відрізняється від лінійної регресії, оскільки вихід логістичної
 регресії знаходиться в ймовірностях від 0 до 1.
- Замість того, щоб коефіцієнт нахилу (b) був швидкістю зміни p, коли x змінюється, тепер коефіцієнт нахилу інтерпретується як швидкість зміни «log odds» при зміні x.

*log odds:

- odds ratio (відношення ймовірностей)
- logit (логістична функція)

Odds Ratio and Logit

Якщо p - ймовірність події в групі порівняння, а `OR` - Odds Ratio, то відношення ймовірностей обчислюється за формулою:

$$OR = \frac{p}{1 - p}$$

Якщо OR>I, це вказує на те, що подія більш вірогідно в групі порівняння порівняно з базовою групою.

Формула для logit-функції виглядає наступним чином:

$$logit(p) = ln(\frac{p}{1-p})$$

Decision Boundary

Межа рішення - це лінія або поле, яке відокремлює класи.

Алгоритм класифікації полягає в тому, щоб знайти межу рішення, яка допомагає розрізняти класи ідеально або близькі до досконалості.

Логістична регресія вирішує належну відповідність межі рішення, щоб ми могли передбачити, якому класу відповідатимуть нові дані.

Cost Function of the Logistic Regression

Функція витрат (Cost Function) в логістичній регресії використовується для оцінки того, наскільки добре модель працює у порівнянні з реальними даними. Головна мета - мінімізувати цю функцію витрат для досягнення оптимальних значень параметрів моделі.

WikipediA

Logistic function

A logistic function or logistic curve is a common S-shaped curve (sigmoid curve) with equation

$$f(x) = \frac{L}{1 + e^{-k(x-x_0)}},$$

where

e = the natural logarithm base (also known as Euler's number),

 x_0 = the x value of the sigmoid's midpoint,

L = the curve's maximum value.

k = the logistic growth rate or steepness of the curve.^[1]

Standard logistic sigmoid function i.e.

 $L=1, k=1, x_0=0$

Основне завдання для нас - знайти найкращий параметр x у наведеному вище рівнянні, присутньому на зображенні, щоб мінімізувати помилку.

Gradient Descent in Logistic Regression

Gradient Descent - це алгоритм оптимізації, який використовується для пошуку значень параметрів (коефіцієнтів) функції, яка мінімізує функцію витрат (cost function).

Сигмоїдна функція:
$$f(x) = \frac{1}{1 + e^{-(x)}}$$
 Тут, $x = mx + b$ або $x = b_0 + b_1 x$

- lacktriangle Спочатку значення m і b будуть 0, а швидкість навчання lpha буде введена до функції.
- Потім часткова похідна обчислюється для функції вартості. Після обчислення буде досягнуто рівняння:

$$\frac{\partial}{\partial \theta_j} J(\theta) = \sum_{i=1}^m (h_{\theta}(x^i) - y^i) x_j^i$$

- Після розрахунку похідних, ваги оновлюються за допомогою наступного рівняння:

$$heta_j \leftarrow heta_j - lpha rac{\partial}{\partial heta_j} J(heta)$$
 — Що також можна записати як: $heta_j := heta_j - lpha \sum_{i=1}^m (h_{ heta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$

- Процес оновлення ваги триватиме до тих пір, поки функція вартості не досягне ідеального значення 0 або близько 0.

How Gradient Descent works.

Demo

DEMO

Check `logistic_regression.ipynb`

Thanks for your attention