Cover Sheet for Submission of Maths Examinations Summer 2020

We would advise preparing your coversheets with your CID, Module Name and Code and Date, before the exams are due to take place.

CID: 01738166

Module Name: An Introduction to Applied Maths

Module Code: MATH40007

Date: 18/05/2020

Questions Answered (in the file):

Please tick next to the question or questions you have answered in this file.

Q1	
Q2	
Q3	✓
Q4	
Q5	
Q6	

(Note: this is a coversheet for all students - not all students will have exams with 6 questions. Please tick the boxes which are appropriate for your exam and/or the file you are submitting).

(Optional) Page Numbers for each question;

Page	Question
Number	Answered

If handwritten, please complete in CAPITAL Letters, in Blue or Black Ink, ensuring the cover sheet is legible.

0 1738166 MATH40007 Question 3 Page 1

(a)
$$\frac{1}{3} = \frac{2}{3} = \frac{1}{4}$$
 $\frac{1}{3} = \frac{1}{1} = \frac{1}{3} = \frac{1}{1}$

Let $\hat{X} = \begin{bmatrix} x_1(1), x_2(1), x_4(1) \end{bmatrix}^T$

Let $\hat{X} = \begin{bmatrix} x_1(1), x_2(1), x_4(1) \end{bmatrix}$

$$w_{1}^{2} = 1 \Rightarrow w_{1} = \pm 1 , e_{1} = (1)$$
 $w_{2}^{2} = 4 \Rightarrow w_{3} = \pm 2 , e_{2} = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, e_{3} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$

$$X_{1}(+)=0$$
; $d = \begin{bmatrix} r_{1} & 0 & 0 & 1 \end{bmatrix}^{T} \rightarrow external torces$

$$\Phi = \begin{bmatrix} x_{1} \\ y_{2} \end{bmatrix} \qquad \text{on the right possibles}$$

We have
$$\hat{J} - \hat{K} = \frac{d^2}{dt^2} \left[\frac{d}{dt} \right]$$

$$=)\hat{k}\Phi = \hat{j} - \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Re1 = e1; Re2 = 4e2, 12e3 = 4e3 We have $(e_1-e_2+2e_3)=\begin{bmatrix}0\\0\end{bmatrix}=)$ $\frac{1}{3}e_1-\frac{1}{3}e_2+\frac{2}{3}e_3=\hat{f}$ コラ 13 んとり + 12 んとり + 4 1 んとり = カ コ ん (3を1-12とり-12

$$=$$
 $\left[\frac{1}{3} + \frac{1}{12} + \frac{1}{4} \frac{1}{3} - \frac{1}{6} \right]$

01738166 MATH 40007 Question 3 Page 3

=>
$$a_1 = \frac{1}{3}$$
, $a_2 = -\frac{1}{12}$, $a_3 = \frac{1}{6}$

(d)

 $\phi = \frac{1}{3}e_1 - \frac{1}{12}e_2 = \frac{1}{6}e_3 = \frac{1}{3}(\frac{1}{1}) - \frac{1}{12}(\frac{1}{0}) + \frac{1}{6}(\frac{1}{0})$

= $(\frac{1}{4})^{\frac{1}{4}} = \frac{1}{12}$
 $= \frac{1}{12}e_1 - \frac{1}{12}e_2 = \frac{1}{6}e_3 = \frac{1}{3}(\frac{1}{1}) - \frac{1}{12}(\frac{1}{0}) + \frac{1}{6}(\frac{1}{0})$

mass $3 = \frac{1}{4}$

mass $4 = \frac{1}{2}$

$$mpss_{2}^{2} = \frac{1}{4}$$
 $mpss_{3} = 1/4$
 $mpss_{3} = 1/2$