

Masimo Corporation

FCC 15.247:2019
Bluetooth LE Radio

Report # MASI0553.3

NVLAP LAB CODE: 200676-0

CERTIFICATE OF TEST

Last Date of Test: July 9, 2019
Masimo Corporation
Model: MWMII

Radio Equipment Testing

Standards

Specification	Method
FCC 15.207:2019	ANSI C63.10:2013
FCC 15.247:2019	ANSI C63.10:2013, KDB 558074

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions	Yes	Pass	
6.5, 6.6, 11.12.1, 11.13.2,	Spurious Radiated Emissions	Yes	Pass	
11.6	Duty Cycle	Yes	Pass	
11.8.2	Occupied Bandwidth	Yes	Pass	
11.9.1.1	Output Power	Yes	Pass	
11.9.1.1	Equivalent Isotropic Radiated Power	Yes	Pass	
11.10.2	Power Spectral Density	Yes	Pass	
11.11	Band Edge Compliance	Yes	Pass	
11.11	Spurious Conducted Emissions	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Victor Ratinoff, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
00	None		

Report No. MASI0553.3 3/53

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB) and as a CAB for the acceptance of test data.

European Union

European Commission - Within Element, we have a EU Notified Body validated for the EMCD and RED Directives.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI - Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC - Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit: https://www.nwemc.com/emc-testing-accreditations

Report No. MASI0553.3 4/53

FACILITIES

California Labs OC01-17 41 Tesla Irvine, CA 92618 (949) 861-8918	Minnesota Labs MN01-10 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136	Oregon Labs EV01-12 6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124 (503) 844-4066	Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 98011 (425)984-6600	
		NVLAP			
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0	
	Innovation, Science and Economic Development Canada				
2834B-1, 2834B-3	2834E-1, 2834E-3	2834D-1	2834G-1	2834F-1	
	BSMI				
SL2-IN-E-1154R	SL2-IN-E-1152R	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R	
	VCCI				
A-0029	A-0109	A-0108	A-0201	A-0110	
Recognized Phase I CAB for ISED, ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA					
US0158	US0175	US0017	US0191	US0157	

Report No. MASI0553.3 5/53

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	1.2 dB	-1.2 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.1 dB	-5.1 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB

Report No. MASI0553.3 6/53

Test Setup Block Diagrams

Antenna Port Conducted Measurements

Near Field Test Fixture Measurements

Spurious Radiated Emissions

Report No. MASI0553.3 7/53

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Masimo Corporation
Address:	52 Discovery
City, State, Zip:	Irvine, CA 92618
Test Requested By:	Anami Joshi
Model:	MWMII
First Date of Test:	July 3, 2019
Last Date of Test:	July 9, 2019
Receipt Date of Samples:	July 1, 2019
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

The MWMII module (P/N 26269) uses an AzureWave AW-CM256SM radio chipset, which incorporates the Broadcom BCM43455 single chip.

Testing Objective:

To demonstrate compliance of the Bluetooth low energy radio to FCC 15.247 requirements.

Report No. MASI0553.3 8/53

CONFIGURATIONS

Configuration MASI0553- 2

Software/Firmware Running during test	
Description	Version
Firmware	7.45.100.7-mfgtest

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Masimo Wireless Module II	Masimo	MWMII (P/N: 26269)	ENG-1

Peripherals in test setup boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
Host Laptop	Hewlett-Packard	ProBook	CND638CWSR		
Laptop Power Supply	Hewlett-Packard	PPP009H	WBGSU0BL91FXO9		
DC Power Supply	TEKPOWER	TP6005E	187890		
Hawk Radio Board Debug Tool	Masimo	82403	None		
Carrier board	Masimo	26634 Rev. B	1847700024		

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
u.Fl Cable	Yes	0.1m	No	Masimo Wireless Module II	SMA Cable
AC Cable	No	1.8m	No	AC Mains	DC Power Supply
USB Cable	Yes	3.0m	No	Host Laptop	USB Hub
AC Cable	No	1.2m	No	AC Mains	Laptop Power Supply
DC Cable	Yes	1.4m	Yes	Laptop Power Supply	Host Laptop
USB Cable	Yes	2.6m	No	Host Laptop	Hawk Radio Board Debug Tool
DC Cable	Yes	1.6m	No	iMx-53 Programmer	AC Adapter (AC Mains)

Report No. MASI0553.3 9/53

CONFIGURATIONS

Configuration MASI0553-5

Software/Firmware Running during test	
Description	Version
Firmware	7.45.100.7-mfgtest

EUT				
Description	Manufacturer	Model/Part Number	Serial Number	
Masimo Wireless Module II	Masimo	MWMII (P/N: 26269)	ENG-1	
Antenna (2.4GHz-5.35GHz)	Ethertronics	1000672	N/A	

Peripherals in test setup boundary						
Description	Manufacturer	Model/Part Number	Serial Number			
Hawk Radio Board Debug Tool	Masimo	82403	None			
Battery	Masimo	23794	21826002827			
Carrier board	Masimo	26634 Rev. B	1847700024			

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
RF Cable	Yes	0.1m	No	Masimo Wireless Module II	Antenna

Configuration MASI0553-7

Software/Firmware Running during test				
Description	Version			
Firmware	7.45.100.7-mfgtest			

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Masimo Wireless Module II	Masimo	MWMII (P/N: 26269)	ENG-1
Antenna (2.4GHz-5.35GHz)	Ethertronics	1000672	N/A

Peripherals in test setup boundary						
Description	Manufacturer	Model/Part Number	Serial Number			
DC Power Supply	TEKPOWER	TP6005E	187890			
Hawk Radio Board Debug Tool	Masimo	82403	None			
Carrier board	Masimo	26634 Rev. B	1847700024			

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Cable	Yes	1.0m	No	DC Power Supply	Hawk Radio Board Debug Tool
RF Cable	Yes	0.1m	No	Masimo Wireless Module II	Antenna

Report No. MASI0553.3 10/53

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	2019-07-03	Duty Cycle	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
2	2019-07-03	Occupied Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
3	2019-07-03	Output Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
4	2019-07-03	Equivalent Isotropic Radiated Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
5	2019-07-03	Power Spectral Density	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
6	2019-07-03	Band Edge Compliance	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
7	2019-07-03	Spurious Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
8	2019-07-08	Powerline Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
9	2019-07-09	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

Report No. MASI0553.3 11/53

POWER SETTINGS

The EUT was tested using the power settings provided by the manufacturer:

SETTINGS FOR ALL TESTS IN THIS REPORT

Modulation Types	Туре	Channel	Position	Frequency (MHz)	Power Setting
		0	Low Channel	2402	Max
BLE	DTS	20	Mid Channel	2442	Max
		39	High Channel	2480	Max

Report No. MASI0553.3 12/53

TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Per the standard, an insulating material was also added to ground plane between the EUT's power and remote I/O cables. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 50ohm measuring port is terminated by a 50ohm EMI meter or a 50ohm resistive load. All 50ohm measuring ports of the LISN are terminated by 50ohm. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
LISN	Solar Electronics	9252-50-24-BNC	LIA	2019-01-08	2020-01-08
LISN	Solar Electronics	9252-50-24-BNC	LIB	2019-01-08	2020-01-08
Cable - Conducted Cable Assembly	Northwest EMC	OCP, HFP, AWC	OCPA	2018-10-05	2019-10-05
Power Supply	Pacific Power	AFX 12KVA	SMT	NCR	NCR
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFP	2019-07-02	2020-07-02

MEASUREMENT UNCERTAINTY

Description		
Expanded k=2	2.4 dB	-2.4 dB

CONFIGURATIONS INVESTIGATED

MASI0553-7

MODES INVESTIGATED

Transmitting Bluetooth LE Mid Ch 20 (2442 MHz)

Report No. MASI0553.3 13/53

EUT:	MWMII	Work Order:	MASI0553
Serial Number:	ENG-1	Date:	2019-07-08
Customer:	Masimo Corporation	Temperature:	21.3°C
Attendees:	Anami Joshi, Nghi Nguyen	Relative Humidity:	50%
Customer Project:	None	Bar. Pressure:	1019 mb
Tested By:	Nolan De Ramos	Job Site:	OC06
Power:	3.6 VDC	Configuration:	MASI0553-7

TEST SPECIFICATIONS

Specification:	Method:
FCC 15.207:2019	ANSI C63.10:2013

TEST PARAMETERS

_						
Run #:	7	Line:	Neutral	Add. Ext. Attenuation (dB):	0

COMMENTS

None

EUT OPERATING MODES

Transmitting Bluetooth LE Mid Ch 20 (2442 MHz)

DEVIATIONS FROM TEST STANDARD

None

Quasi Peak Data - vs - Quasi Peak Limit

Average Data - vs - Average Limit

Report No. MASI0553.3 14/53

RESULTS - Run #7

Quasi Peak Data - vs - Quasi Peak Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.158	38.9	20.3	59.2	65.6	-6.4
0.318	29.7	20.1	49.8	59.8	-10.0
0.278	29.7	20.1	49.8	60.9	-11.1
0.358	27.5	20.1	47.6	58.8	-11.2
0.621	14.8	20.0	34.8	56.0	-21.2
0.730	12.3	20.0	32.3	56.0	-23.7
1.215	10.1	20.0	30.1	56.0	-25.9

Average Data - vs - Average Limit								
	Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)		
	0.158	32.5	20.3	52.8	55.6	-2.8		
	0.358	18.2	20.1	38.3	48.8	-10.5		
	0.318	18.7	20.1	38.8	49.8	-11.0		
	0.278	19.5	20.1	39.6	50.9	-11.3		
	0.621	7.8	20.0	27.8	46.0	-18.2		
	0.730	5.4	20.0	25.4	46.0	-20.6		
	1.215	3.3	20.0	23.3	46.0	-22.7		

CONCLUSION

Pass

Tested By

EUT:	MWMII	Work Order:	MASI0553
Serial Number:	ENG-1	Date:	2019-07-08
Customer:	Masimo Corporation	Temperature:	21.3°C
Attendees:	Anami Joshi, Nghi Nguyen	Relative Humidity:	50%
Customer Project:	None	Bar. Pressure:	1019 mb
Tested By:	Nolan De Ramos	Job Site:	OC06
Power:	3.6 VDC	Configuration:	MASI0553-7

TEST SPECIFICATIONS

Specification:	Method:
FCC 15.207:2019	ANSI C63.10:2013

TEST PARAMETERS

_						
Run #:	8	Line:	High Line	Add. Ext. Attenuation (dB):	0

COMMENTS

None

EUT OPERATING MODES

Transmitting Bluetooth LE Mid Ch 20 (2442 MHz)

DEVIATIONS FROM TEST STANDARD

None

Quasi Peak Data - vs - Quasi Peak Limit

Average Data - vs - Average Limit

Report No. MASI0553.3 16/53

RESULTS - Run #8

Quasi Peak Data - vs - Quasi Peak Limit

Q. C.								
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)			
0.158	38.9	20.3	59.2	65.5	-6.3			
0.318	29.7	20.1	49.8	59.8	-10.0			
0.480	20.2	20.0	40.2	56.3	-16.1			
0.704	12.6	20.0	32.6	56.0	-23.4			
3.723	9.8	20.3	30.1	56.0	-25.9			
3.061	9.8	20.3	30.1	56.0	-25.9			
1.755	10.0	20.1	30.1	56.0	-25.9			

Average Data - vs - Average Limit										
Freq	Amp.	Factor	Adjusted	Spec. Limit	Margin					
(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)					
0.158	32.5	20.3	52.8	55.5	-2.7					
0.318	18.8	20.1	38.9	49.8	-10.9					
0.480	14.4	20.0	34.4	46.3	-11.9					
0.704	5.7	20.0	25.7	46.0	-20.3					
3.723	3.0	20.3	23.3	46.0	-22.7					
3.061	3.0	20.3	23.3	46.0	-22.7					
1.755	3.1	20.1	23.2	46.0	-22.8					

CONCLUSION

Pass

Tested By

SPURIOUS RADIATED EMISSIONS

PSA-ESCI 2019.05.10

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting BLE: Low Ch 0 (2402 MHz), Mid Ch 20 (2442 MHz) and High Ch 39 (2480 MHz)

Transmitting BLE: Low Ch 0 (2402 MHz) and High Ch 39 (2480 MHz)

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

MASI0553 - 5

FREQUENCY RANGE INVESTIGATED

	Start Frequency	30 MHz	Stop Fre	equency	26000 MHz
--	-----------------	--------	----------	---------	-----------

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Filter - High Pass	Micro-Tronics	HPM50111	HGQ	23-Jan-2019	12 mo
Attenuator	S.M. Electronics	SA6-20	REO	23-Jan-2019	12 mo
Amplifier - Pre-Amplifier	Miteq	JSDWK42-18004000-60-5P	PAN	20-Dec-2018	12 mo
Cable	ESM Cable Corp.	8-18GHz cables	OCY	16-Jan-2019	12 mo
Cable	ESM Cable Corp.	1-8GHz cables	OCX	16-Jan-2019	12 mo
Cable	ESM Cable Corp.	30-1GHz cables	OCW	8-May-2019	12 mo
Cable	D-Coax	None	OC4	20-Dec-2018	12 mo
Antenna - Biconilog	EMCO	3142	AXB	5-Apr-2018	24 mo
Amplifier - Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVP	16-Jan-2019	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVL	16-Jan-2019	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVJ	16-Jan-2019	12 mo
Antenna - Double Ridge	ETS Lindgren	3115	AIR	28-Jun-2018	24 mo
Antenna - Standard Gain	ETS Lindgren	3160-07	AHX	NCR	0 mo
Antenna - Standard Gain	EMCO	3160-08	AHK	NCR	0 mo
Amplifier - Pre-Amplifier	Miteq	AM-1616-1000	PAD	3-Jul-2019	12 mo
Antenna - Double Ridge	A.H. Systems, Inc.	SAS-574	AXV	15-May-2018	24 mo
Analyzer - Spectrum Analyzer	Agilent	E4446A	AAY	30-Nov-2018	12 mo

Report No. MASI0553.3 18/53

TEST DESCRIPTION

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequencies and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis if required, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

PK = Peak Detector

AV = RMS Detector

Measurements were made to satisfy the specific requirements of the test specification for out of band emissions as well as the restricted band requirements.

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

Measurements at the edges of the allowable band may be presented in an alternative method as provided for in the ANSI C63.10 Marker-Delta method. This method involves performing an in-band fundamental measurement followed by a screen capture of the fundamental and out-of-band emission using reduced measurement instrumentation bandwidths. The amplitude delta measured on this screen capture is applied to the fundamental emission value to show the out-of-band emission level as applied to the limit.

Where the radio test software does not provide for a duty cycle at continuous transmit conditions (> 98%) and the RMS (power average) measurements were made across the on and off times of the EUT transmissions, a duty cycle correction is added to the measurements using the formula of 10*LOG(dc).

Report No. MASI0553.3

SPURIOUS RADIATED EMISSIONS

12400.150

4881.525

4881.692

4801.992

4801.792

12209.060 12209.100

7439.850

7438.217

7440.292

7325.275

28.0 27.9

28.1

28.1

31.0

30.6

42.7

42.6

42.5

43.0

4.0

4.0

3.7

3.7

-3.4

-3.4

12.1

12.1

12.1

8.4

8.4

8.4

8.4

8.4

0.0

0.0

0.0

0.0

326.0

144.0

326.0

144.0

326.0

144.0

353.0

112.0

233.0

144.0

1.8 1.3 1.8 1.3

1.8 1.3 1.5

1.5

2.3

										EmiR5 2019.05.20		PSA-ESCI 2019.05.1
W	ork Order:	MAS	SI0553		Date:	9-Jul	-2019		1			
	Project:		one	Ter	nperature:		4 °C	(1000	Luis .	tlore	2
	Job Site:		C07		Humidity:		% RH	/			100000000000000000000000000000000000000	
Seria	al Number:		NG-1	Barome	tric Pres.:		mbar		Tested by	: Luis Flores	& Mark B	aytan
		MWMII		•	'				•	•		
Con	figuration:											
	Customer:	Masimo C	Corporation									
	Attendees:											
E	UT Power:	3.6 VDC										
Operat	ting Mode:	Transmitti	ing BLE: Lov	w Ch 0 (240	02 MHz), Mio	d Ch 20 (24	142 MHz) a	nd High Cl	n 39 (2480	MHz)		
C	Deviations:	None										
С	comments:	None										
not Enna	ifications						Test Meth	ad				
CC 15.24	ifications	Ļ					ANSI C63.		Ļ			
D #	I 40	Took D	istones (m)		Antonna	Haimht(a)		1 to 1/20		Besults		
Run #	48	rest D	istance (m)	3	Antenna	Height(s)	<u> </u>	1 to 4(m)		Results	Р	ass
Г												
80												+
											7	
70												++
60												
60												
											_	
50									V			
55									* 			
40		+++	+++					+				+
									🔻			
00									•			
30												
20												
10												+++
0 10	-		100			1000			10000			100000
10			100						10000			100000
						MHz				■ PK	AV	QP
							51					
			Antenna		Duty Cycle Correction	External	Polarity/ Transducer		Distance			Compared to
Freq	Amplitude	Factor	Height	Azimuth	Factor	Attenuation	Туре	Detector	Adjustment	Adjusted	Spec. Limit	Spec.
(MHz)	(dBuV)	(dB)	(meters)	(degrees)	(dB)	(dB)			(dB)	(dBuV/m)	(dBuV/m)	(dB)
42.300	31.7	12.1	1.8	326.0	8.4	0.0	Horz	AV	0.0	52.2	54.0	-1.8
0.033	31.7	12.1	1.8	326.0 144.0	8.4 8.4	0.0	Vert	AV	0.0	52.2 52.2	54.0 54.0	-1.8 -1.8
442.142	31.6	12.1	3.2	12.0	8.4	0.0	Horz	AV	0.0	52.1	54.0	-1.9
441.850	31.6	12.1	1.5	112.0	8.4	0.0	Vert	AV	0.0	52.1	54.0	-1.9
442.392	31.6	12.1	1.5	353.0	8.4	0.0	Horz	AV	0.0	52.1	54.0	-1.9
41.717	31.6	12.1	2.3	233.0	8.4	0.0	Vert	AV	0.0	52.1	54.0	-1.9
325.192	28.7	11.1	1.3	144.0	8.4	0.0	Vert	AV	0.0	48.2	54.0	-5.8
325.517	28.7	11.1	1.8	326.0	8.4	0.0	Horz	AV	0.0	48.2	54.0	-5.8
61.450	30.6	4.1	1.8	326.0	8.4	0.0	Horz	AV	0.0	43.1	54.0	-10.9
8.683	30.6	4.1 6.0	1.3	144.0	8.4	0.0	Vert	AV	0.0	43.1	54.0	-10.9
400.030 400.150	26.2 26.0	6.0 6.0	1.8 1.3	326.0 144.0	8.4 8.4	0.0 0.0	Horz Vert	AV AV	0.0 0.0	40.6 40.4	54.0 54.0	-13.4 -13.6
	20.0	0.0	1.0	174.0	0.4	0.0	v CI L	ΑV	0.0	+∪.4	J+.U	- 13.0

Report No. MASI0553.3 20/53

Vert

Horz

Vert

Horz

Horz

Vert

Horz

Vert

Vert

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

40.4

40.4

40.3

40.2

40.2

36.0

35.6

54.8

54.7

54.6

ΑV

ΑV

ΑV

ΑV

AV AV

PK PK PK PK

54.0

54.0

54.0

54.0

54.0 54.0

74.0

74.0

74.0

-13.6

-13.6

-13.7

-13.8

-13.8

-18.0

-18.4

-19.2

-19.3

-19.4

-19.9

High Ch 39, BLE, EUT on Side

Mid Ch 20, BLE, EUT on side Mid Ch 20, BLE, EUT on side

Low Ch 0, BLE, EUT on side

Low Ch 0, BLE, EUT on side

Mid Ch 20. BLE. EUT on side Mid Ch 20, BLE, EUT on side

High Ch 39, BLE, EUT Horz

High Ch 39, BLE, EUT Vert

High Ch 39, BLE, EUT Horz

Mid Ch 20, BLE, EUT on side

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
7439.692	41.9	12.1	3.2	12.0	0.0	0.0	Horz	PK	0.0	54.0	74.0	-20.0	High Ch 39, BLE, EUT Vert
7438.033	41.8	12.1	1.3	144.0	0.0	0.0	Vert	PK	0.0	53.9	74.0	-20.1	High Ch 39, BLE, EUT on Side
7442.258	41.7	12.1	1.8	326.0	0.0	0.0	Horz	PK	0.0	53.8	74.0	-20.2	High Ch 39, BLE, EUT on Side
7327.367	42.4	11.1	1.8	326.0	0.0	0.0	Horz	PK	0.0	53.5	74.0	-20.5	Mid Ch 20, BLE, EUT on side
12012.020	30.6	-5.7	1.3	144.0	8.4	0.0	Vert	AV	0.0	33.3	54.0	-20.7	Low Ch 0, BLE, EUT on side
12009.280	30.6	-5.7	1.8	326.0	8.4	0.0	Horz	AV	0.0	33.3	54.0	-20.7	Low Ch 0, BLE, EUT on side
12400.920	40.6	6.0	1.8	326.0	0.0	0.0	Horz	PK	0.0	46.6	74.0	-27.4	High Ch 39, BLE, EUT on Side
4806.483	42.8	3.7	1.8	326.0	0.0	0.0	Horz	PK	0.0	46.5	74.0	-27.5	Low Ch 0, BLE, EUT on side
12401.460	40.1	6.0	1.3	144.0	0.0	0.0	Vert	PK	0.0	46.1	74.0	-27.9	High Ch 39, BLE, EUT on Side
4882.992	41.8	4.0	1.3	144.0	0.0	0.0	Vert	PK	0.0	45.8	74.0	-28.2	Mid Ch 20, BLE, EUT on side
4881.658	41.5	4.0	1.8	326.0	0.0	0.0	Horz	PK	0.0	45.5	74.0	-28.5	Mid Ch 20, BLE, EUT on side
4803.392	41.6	3.7	1.3	144.0	0.0	0.0	Vert	PK	0.0	45.3	74.0	-28.7	Low Ch 0, BLE, EUT on side
4962.358	40.7	4.1	1.8	326.0	0.0	0.0	Horz	PK	0.0	44.8	74.0	-29.2	High Ch 39, BLE, EUT on Side
4962.492	40.6	4.1	1.3	144.0	0.0	0.0	Vert	PK	0.0	44.7	74.0	-29.3	High Ch 39, BLE, EUT on Side
12208.850	44.9	-3.4	1.8	326.0	0.0	0.0	Horz	PK	0.0	41.5	74.0	-32.5	Mid Ch 20, BLE, EUT on side
12211.030	44.8	-3.4	1.3	144.0	0.0	0.0	Vert	PK	0.0	41.4	74.0	-32.6	Mid Ch 20, BLE, EUT on side
12012.230	45.6	-5.7	1.3	144.0	0.0	0.0	Vert	PK	0.0	39.9	74.0	-34.1	Low Ch 0, BLE, EUT on side
12009.130	44.3	-5.7	1.8	326.0	0.0	0.0	Horz	PK	0.0	38.6	74.0	-35.4	Low Ch 0, BLE, EUT on side

Report No. MASI0553.3 21/53

SPURIOUS RADIATED EMISSIONS

																			EmiR5	2019.05.2)		PSA-E	SCI 2019.05.	10
W		Order		MAS	SI0553					Date:		9-Jul		9											Ì
		roject			one			Ter	mperat				6°C				T	4				_	_		
		b Site			C07				Humi			46.8			-	_	_		T					-	
Seria	ıl Nu	mber	: MWI		NG-1		Ва	arome	etric P	res.:		1019	mba	ır			leste	ed by:	: Nola	an De	Ramo	os & I	Mark	Baytar	_
Cont	figur	ration		/111																					_
COII	Cust	omer	· Mas	mo C	orporati	ion																			_
	<u>Δtter</u>	ndees	: Mike	Tran	orporati	1011																			_
			: 3.6 \																						_
Operat			Т	ransmitting BLE: Low Ch 0 (2402 MHz) and High Ch 39 (2480 MHz)										_											
D)evia	ations																							_
С	omr	nents		d Edge	е																				_
ant Cuan	ifica	41.000					_						Too	4 N/1041											=
est Spec CC 15.24														t Metl	.10:20	10									_
Run #		39	Т	ot Di	stance	(m)		3	And	tenna	Unic	ubt/c\			1 to	1(m)			ь	esults		·	Pass		_
Kuii #		39	16	St Di	Stance	(111)		<u> </u>	And	leiiiia	пец	Jiii(S)			1 10	+(111)			K	esuits	1		-a55		_
	\Box						T																		
80	+			\vdash	_	+	+-				-	+		-											
70																									
70																									
60	_	-		\vdash		_															-				
	\neg						\top																		
50 +	\top	**																				*			
40	_			\vdash		-																			
30 +																									
20	\perp			\vdash		+-	+					-									-			_	
- 1																									
10 +	+						+																	-	
0 ↓	\perp			\Box	L		\perp										\perp				-				
238	0			240	00			24	20			24	40			24	160			2	480				
											ľ	ИHz								I PK	•	ΑV	•	QP	
									Duty 0					larity/											
									Corre			ernal		sducer Type	Det	ector		tance stment	Ad	justed	Snee	c. Limit		ompared to Spec.	
Freq	Am	nplitude	Fa	etor	Antenna H	Height	Azir	muth	Fac	ctor	Atten	uation			Dell										
Freq (MHz)		nplitude dBuV)		ctor dB)	Antenna H		Azir (deg	muth rees)	Fac			uation dB)					(dB)	(dE	BuV/m)	(dB	uV/m)		(dB)	
(MHz)	(0	dBuV)	(dB)	(meter	rs)	(deg	rees)	(dl	B)	(0	dB)												(dB)	Comments
(MHz) 2389.343	(0	24.3		1.4	(meter	rs)	(deg	(3.0	(di	.4	20	0.0	L.,	/ert	A		(0.0		18.3	5	64.0		(dB)	Low Ch, BLE,
(MHz) 2389.343 2388.290	(0	dBuV)		dB)	(meter	rs)	(deg 12 0	rees)	(dl	.4 .4	20	dB)	, H		A	V	(4		5	64.0 64.0		(dB)	Low Ch, BLE, Low Ch, BLE,
(MHz) 2389.343 2388.290 2485.390 2484.840	(0	24.3 24.3 23.7 23.7		1.4 1.4 1.4 1.1	1.5 3.1 1.0 1.3	rs)	12 0 22 52	(3.0 0.0 25.0 2.0	8. 8. 8.	.4 .4 .4 .4	20 20 20 20	0.0 0.0 0.0 0.0 0.0	 	/ert Horz /ert Horz	A A A	V V V	(0.0 0.0 0.0 0.0	4	18.3 18.3 18.0 18.0	5 5 5 5	54.0 54.0 54.0 54.0		-5.7 -5.7 -6.0 -6.0	Low Ch, BLE, Low Ch, BLE, High Ch, BLE, High Ch, BLE,
(MHz) 2389.343 2388.290 2485.390 2484.840 2388.390	(0	24.3 24.3 23.7 23.7 44.7		1.4 1.4 1.1 1.1 1.1	1.5 3.1 1.0 1.3 3.1	rs)	12 0 22 52 0	(3.0 (.0 (5.0 (2.0	8. 8. 8. 8.	.4 .4 .4 .4 .4	20 20 20 20 20 20	0.0 0.0 0.0 0.0 0.0 0.0	 	/ert Horz /ert Horz Horz	A A P	V V V K	(0.0 0.0 0.0 0.0 0.0	4	18.3 18.3 18.0 18.0 50.3	5 5 5 5 7	54.0 54.0 54.0 54.0 74.0		-5.7 -5.7 -6.0 -6.0 -13.7	Low Ch, BLE, Low Ch, BLE, High Ch, BLE, High Ch, BLE, Low Ch, BLE,
(MHz) 2389.343 2388.290 2485.390 2484.840 2388.390 2484.130	(6	24.3 24.3 23.7 23.7 44.7 44.2		1.4 1.4 1.1 1.1 1.1 1.4	1.5 3.1 1.0 1.3 3.1 1.0	rs)	12 0 22 52 0 22	(3.0 (.0 (5.0 (2.0 (.0 (5.0	8. 8. 8. 8. 0.	.4 .4 .4 .4 .0	20 20 20 20 20 20	0.0 0.0 0.0 0.0 0.0 0.0 0.0	 	/ert Horz /ert Horz Horz /ert	A A P P	V V V K K	(0.0 0.0 0.0 0.0 0.0 0.0	4	18.3 18.3 18.0 18.0 50.3	5 5 5 5 7 7	64.0 64.0 64.0 64.0 74.0		-5.7 -5.7 -6.0 -6.0 -13.7 -13.9	Low Ch, BLE, Low Ch, BLE, High Ch, BLE, High Ch, BLE, Low Ch, BLE, High Ch, BLE,
(MHz) 2389.343 2388.290 2485.390 2484.840	(0	24.3 24.3 23.7 23.7 44.7		1.4 1.4 1.1 1.1 1.1	1.5 3.1 1.0 1.3 3.1	rs)	12 0 22 52 0 22 12	(3.0 (.0 (5.0 (2.0	8. 8. 8. 0. 0.	.4 .4 .4 .4 .4	20 20 20 20 20 20 20 20	0.0 0.0 0.0 0.0 0.0 0.0	 	/ert Horz /ert Horz Horz	A A P P P	V V V K		0.0 0.0 0.0 0.0 0.0	4	18.3 18.3 18.0 18.0 50.3	5 5 5 7 7 7	54.0 54.0 54.0 54.0 74.0		-5.7 -5.7 -6.0 -6.0 -13.7	Comments Low Ch, BLE, I Low Ch, BLE, I High Ch, BLE, High Ch, BLE, Low Ch, BLE, I High Ch, BLE, Low Ch, BLE, I

Report No. MASI0553.3 22/53

XMit 2019.06.11

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	E8257D	TGU	15-Feb-18	15-Feb-21
Cable	Fairview Microwave	SCA1814-0101-120	OCZ	NCR	NCR
Attenuator	Fairview Microwave	SA18H-20	TKR	20-Dec-18	20-Dec-19
Block - DC	Fairview Microwave	SD3379	AMV	3-Jan-19	3-Jan-20
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFP	2-Jul-19	2-Jul-20

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The Duty Cycle (x) of the single channel operation of the radio as controlled by the provided test software was measured for each of the EUT operating modes.

There is no compliance requirement to be met by this test, so therefore no Pass / Fail criteria.

The measurements were made using a zero span on the spectrum analyzer to see the pulses in the time domain. The transmit power was set to its default maximum.

The duty cycle was calculated by dividing the transmission pulse duration (T) by the total period of a single on and total off time.

If the transmit duty cycle < 98 percent, burst gating may have been used during some of the other tests in this report to only take the measurement during the burst duration.

Report No. MASI0553.3

EUT: MWMII
Serial Number: ENG-1
Customer: Masimo Corporation Work Order: MASI0553 Date: 3-Jul-19 Temperature: 26.4 °C
Humidity: 41.6% RH
Barometric Pres.: 1012 mbar Attendees: Anami Joshi Project: None
Tested by: Luis Flores and Mark Baytan
TEST SPECIFICATIONS Power: 3.6VDC Test Method Job Site: OC13 FCC 15.247:2019 ANSI C63.10:2013 Reference level offset: DC block + 20dB attenuator + coax cable + client provided patch cable = 23.7dB Total Offset DEVIATIONS FROM TEST STANDARD 14 64 Configuration # 2 Signature Number of Value Limit Pulse Width Period Pulses Results BLE/GFSK Low Channel, 2402 MHz BLE/GFSK Low Channel, 2402 MHz 90.268 us 624.9 us 14.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A BLE/GFSK Mid Channel, 2442 MHz BLE/GFSK Mid Channel, 2442 MHz 90.48 us 625 us N/A 14.5 N/A N/A N/A N/A 90.236 us N/A BLE/GFSK High Channel, 2480 MHz BLE/GFSK High Channel, 2480 MHz 625 us N/A 14.4 N/A N/A N/A

Report No. MASI0553.3 24/53

	BLE/GFSK Low Channel, 2402 MHz								
				Number of	Value	Limit			
		Pulse Width	Period	Pulses	(%)	(%)	Results		
l		N/A	N/A	5	N/A	N/A	N/A		

Report No. MASI0553.3 25/53

BLE/GFSK Mid Channel, 2442 MHz

Number of Value Limit

Pulse Width Period Pulses (%) (%) Results

90.48 us 625 us 1 14.5 N/A N/A

	BLE/GFSK Mid Channel, 2442 MHz									
				Number of	Value	Limit				
		Pulse Width	Period	Pulses	(%)	(%)	Results			
1	<u> </u>	N/A	N/A	5	N/A	N/A	N/A			

Report No. MASI0553.3 26/53

BLE/GFSK High Channel, 2480 MHz								
			Number of	Value	Limit			
	Pulse Width	Period	Pulses	(%)	(%)	Results		
	N/A	N/A	5	N/A	N/A	N/A		

Report No. MASI0553.3 27/53

XMit 2019.06.11

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	E8257D	TGU	15-Feb-18	15-Feb-21
Cable	Fairview Microwave	SCA1814-0101-120	OCZ	NCR	NCR
Attenuator	Fairview Microwave	SA18H-20	TKR	20-Dec-18	20-Dec-19
Block - DC	Fairview Microwave	SD3379	AMV	3-Jan-19	3-Jan-20
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFP	2-Jul-19	2-Jul-20

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The EUT was set to the channels and modes listed in the datasheet.

The 6dB occupied bandwidth was measured using 100 kHz resolution bandwidth and 300 kHz video bandwidth. The 99.0% occupied bandwidth was also measured at the same time which can be needed during Output Power depending on the applicable method.

Report No. MASI0553.3 28/53

EUT: M	1WMII		Work Order:	MASI0553				
Serial Number: E	NG-1		Date:	3-Jul-19				
Customer: M	lasimo Corporation		Temperature:	26.4 °C				
Attendees: A	nami Joshi		Humidity:	41.6% RH				
Project: N			Barometric Pres.:					
	uis Flores and Mark Baytan	Power: 3.6VDC	Job Site: OC13					
TEST SPECIFICATIO	INS	Test Method						
FCC 15.247:2019		ANSI C63.10:2013						
			_					
COMMENTS								
	et: DC block + 20dB attenuator + coax cable + client provid							
DEVIATIONS FROM T	TEST STANDARD							
DEVIATIONS FROM 1	TEST STANDARD							
		14 Byt-						
None	2	14 67+		Limit				
None	2	146,4	Value	Limit (2)	Result			
None Configuration #	2 Signature	14 GH	Value 509.074 kHz		Result Pass			
None	2 Signature	146+		(≥)				

Report No. MASI0553.3 29/53

BLE/GFSK Low Channel, 2402 MHz

Limit

Value (≥) Result

509.074 kHz 500 kHz Pass

Report No. MASI0553.3 30/53

BLE/GFSK High Channel, 2480 MHz

Limit

Value (≥) Result

506.728 kHz 500 kHz Pass

Report No. MASI0553.3 31/53

XMit 2019.06.11

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	E8257D	TGU	15-Feb-18	15-Feb-21
Cable	Fairview Microwave	SCA1814-0101-120	OCZ	NCR	NCR
Attenuator	Fairview Microwave	SA18H-20	TKR	20-Dec-18	20-Dec-19
Block - DC	Fairview Microwave	SD3379	AMV	3-Jan-19	3-Jan-20
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFP	2-Jul-19	2-Jul-20

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum.

Prior to measuring peak transmit power the DTS bandwidth (B) was measured.

The method found in ANSI C63.10:2013 Section 11.9.1.1 was used because the RBW on the analyzer was greater than the DTS Bandwidth of the radio.

Report No. MASI0553.3

TbtTx 2018.09.13 Work Order: MASIO553

Date: 3-Jul-19

Temperature: 26.4 °C

Humidity: 41.6% RH

Barometric Pres.: 1012 mbar

Job Site: OC13 EUT: MWMII

Serial Number: ENG-1

Customer: Masimo Corporation

Attendees: Anami Joshi

Project: None

Tested by: Luis Flores and Mark Baytan

TEST SPECIFICATIONS Power: 3.6VDC Test Method FCC 15.247:2019 ANSI C63.10:2013 COMMENTS Reference level offset: DC block + 20dB attenuator + coax cable + client provided patch cable = 23.7dB Total Offset DEVIATIONS FROM TEST STANDARD None Configuration # Signature Out Pwr Limit (dBm) (dBm) Result BLE/GFSK Low Channel, 2402 MHz BLE/GFSK Mid Channel, 2442 MHz 4.757 4.546 30 30 30 Pass Pass BLE/GFSK High Channel, 2480 MHz 4.466 Pass

Report No. MASI0553.3 33/53

BLE/GFSK Low Channel, 2402 MHz

Out Pwr Limit
(dBm) (dBm) Result

4.757 30 Pass

	BLE/GFSK Mid Channel, 2442 MHz									
					Out Pwr	Limit				
					(dBm)	(dBm)	Result			
l [4.546	30	Pass	l		

Report No. MASI0553.3 34/53

BLE/GFSK High Channel, 2480 MHz

Out Pwr Limit
(dBm) (dBm) Result

4.466 30 Pass

Report No. MASI0553.3 35/53

EQUIVALENT ISOTROPIC RADIATED POWER (EIRP)

XMit 2019.06.11

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	E8257D	TGU	15-Feb-18	15-Feb-21
Cable	Fairview Microwave	SCA1814-0101-120	OCZ	NCR	NCR
Attenuator	Fairview Microwave	SA18H-20	TKR	20-Dec-18	20-Dec-19
Block - DC	Fairview Microwave	SD3379	AMV	3-Jan-19	3-Jan-20
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFP	2-Jul-19	2-Jul-20

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum.

Prior to measuring peak transmit power the DTS bandwidth (B) was measured.

The method found in ANSI C63.10:2013 Section 11.9.1.1 was used because the RBW on the analyzer was greater than the DTS Bandwidth of the radio.

Report No. MASI0553.3

EQUIVALENT ISOTROPIC RADIATED POWER (EIRP)

EUT: N	MWMII				Work Order	MASI0553	
Serial Number: E	ENG-1				Date	3-Jul-19	
Customer:	Masimo Corporation				Temperature	26.4 °C	
Attendees: A	Anami Joshi				Humidity	41.6% RH	
Project: N	None			Ba	arometric Pres.	1012 mbar	
Tested by: L	Luis Flores and Mark Baytan	Power: 3.6VDC	:		Job Site:	OC13	
TEST SPECIFICATION	ONS	Test Mo	ethod				
FCC 15.247:2019		ANSI C	63.10:2013				
COMMENTS							
Reference level offse	et: DC block + 20dB attenuator + coax cable + client pr	ovided patch cable = 23.7dB Tota	I Offset				
Reference level offse	et: DC block + 20dB attenuator + coax cable + client pr	ovided patch cable = 23.7dB Tota	I Offset				
Reference level offse		rovided patch cable = 23.7dB Tota	I Offset				
		ovided patch cable = 23.7dB Tota	I Offset				
DEVIATIONS FROM		rovided patch cable = 23.7dB Tota					
DEVIATIONS FROM None	TEST STANDARD	· 		Antenna Gain (dBi)	EIRP (dBm)	EIRP Limit (dBm)	Result
DEVIATIONS FROM None	TEST STANDARD 2 Signature	· 	Out Pwr				Result Pass
DEVIATIONS FROM None Configuration #	Z Signature	· 	Out Pwr (dBm)	Gain (dBi)	(dBm)	(dBm)	
DEVIATIONS FROM None Configuration # BLE/GFSK Low Chan	TEST STANDARD 2 Signature nnel, 2402 MHz nel, 2442 MHz	· 	Out Pwr (dBm) 4.757	Gain (dBi) 2.5	(dBm) 7.3	(dBm) 36	Pass

Report No. MASI0553.3 37/53

EQUIVALENT ISOTROPIC RADIATED POWER (EIRP)

BLE/GFSK Low Channel, 2402 MHz

Out Pwr Antenna EIRP EIRP Limit
(dBm) Gain (dBi) (dBm) (dBm) Result

4.757 2.5 7.3 36 Pass

BLE/GFSK Mid Channel, 2442 MHz						
		Out Pwr	Antenna	EIRP	EIRP Limit	
		(dBm)	Gain (dBi)	(dBm)	(dBm)	Result
		4.546	2.5	7.0	36	Pass

Report No. MASI0553.3 38/53

EQUIVALENT ISOTROPIC RADIATED POWER (EIRP)

BLE/GFSK High Channel, 2480 MHz

Out Pwr Antenna EIRP EIRP Limit
(dBm) Gain (dBi) (dBm) (dBm) Result

4.466 2.5 7.0 36 Pass

0.0

Report No. MASI0553.3 39/53

XMit 2019.06.11

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	E8257D	TGU	15-Feb-18	15-Feb-21
Cable	Fairview Microwave	SCA1814-0101-120	OCZ	NCR	NCR
Attenuator	Fairview Microwave	SA18H-20	TKR	20-Dec-18	20-Dec-19
Block - DC	Fairview Microwave	SD3379	AMV	3-Jan-19	3-Jan-20
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFP	2-Jul-19	2-Jul-20

TEST DESCRIPTION

The maximum power spectral density measurements was measured using the channels and modes as called out on the following data sheets.

Per the procedure outlined in ANSI C63.10 the peak power spectral density was measured in a 3 kHz RBW

Report No. MASI0553.3

				TbtTx 2018.09.13	XMit 2019.06.11
EUT:	MWMII		Work Order:	MASI0553	
Serial Number:	ENG-1			3-Jul-19	
Customer:	Masimo Corporation		Temperature:	26.4 °C	
Attendees:	Anami Joshi		Humidity:	41.6% RH	
Project:	None		Barometric Pres.:	1012 mbar	
Tested by:	Luis Flores and Mark Baytan	Power: 3.6VDC	Job Site:	OC13	
TEST SPECIFICAT	IONS	Test Method			
FCC 15.247:2019		ANSI C63.10:2013			
COMMENTS					
	set: DC block + 20dB attenuator + coax cable + client provide ## TEST STANDARD	d patch cable = 23.7 dB lotal Offset			
	I IESI SIANDARD				
None					
Configuration #	2 Signature	45,4			
			Value dBm/3kHz	Limit < dBm/3kHz	Results
BLE/GFSK Low Cha		•	-11.789	8	Pass
BLE/GFSK Mid Cha	nnel, 2442 MHz		-12.105	8	Pass
BLE/GFSK High Ch	annel, 2480 MHz		-12.185	8	Pass

Report No. MASI0553.3 41/53

BLE/GFSK Low Channel, 2402 MHz

Value Limit

dBm/3kHz < dBm/3kHz Results

-11.789 8 Pass

Report No. MASI0553.3 42/53

BLE/GFSK High Channel, 2480 MHz

Value Limit

dBm/3kHz < dBm/3kHz Results

-12.185 8 Pass

Report No. MASI0553.3 43/53

BAND EDGE COMPLIANCE

XMit 2019.06.11

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	E8257D	TGU	15-Feb-18	15-Feb-21
Cable	Fairview Microwave	SCA1814-0101-120	OCZ	NCR	NCR
Attenuator	Fairview Microwave	SA18H-20	TKR	20-Dec-18	20-Dec-19
Block - DC	Fairview Microwave	SD3379	AMV	3-Jan-19	3-Jan-20
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFP	2-Jul-19	2-Jul-20

TEST DESCRIPTION

The spurious RF conducted emissions at the edges of the authorized bands were measured with the EUT set to low and high transmit frequencies in each available band. The channels closest to the band edges were selected. The EUT was transmitting at the data rate(s) listed in the datasheet.

The spectrum was scanned below the lower band edge and above the higher band edge.

Report No. MASI0553.3

BAND EDGE COMPLIANCE

						TbtTx 2018.09.13	XMit 2019.06.1
EUT: N	WMII				Work Order:	MASI0553	
Serial Number: E	NG-1				Date:	3-Jul-19	
Customer: N	Masimo Corporation				Temperature:	26.4 °C	
Attendees: A	Anami Joshi				Humidity:	41.6% RH	
Project: N	None				Barometric Pres.:	1012 mbar	
Tested by: L	uis Flores and Mark Baytan		Power:	3.6VDC	Job Site:	OC13	
TEST SPECIFICATION	DNS			Test Method			
FCC 15.247:2019				ANSI C63.10:2013			
COMMENTS							
	et: DC block + 20dB attenuate	or + coax cable + client p	TOVIDED PAICH CABLE = 23.	7 UD 10tal Ollset			
DEVIATIONS FROM	1ESI SIANDARD						
None							
Configuration #	2	Signature	MA	3,+-			
					Value (dBc)	Limit ≤ (dBc)	Result
BLE/GFSK Low Chan	nel, 2402 MHz				-55.55	-20	Pass
BLE/GFSK High Char	nnel, 2480 MHz				-56.01	-20	Pass

Report No. MASI0553.3 45/53

BAND EDGE COMPLIANCE

BLE/GFSK Low Channel, 2402 MHz

Value Limit

(dBc) ≤ (dBc) Result

-55.55 -20 Pass

Report No. MASI0553.3 46/53

XMit 2019.06.11

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	E8257D	TGU	15-Feb-18	15-Feb-21
Cable	Fairview Microwave	SCA1814-0101-120	OCZ	NCR	NCR
Attenuator	Fairview Microwave	SA18H-20	TKR	20-Dec-18	20-Dec-19
Block - DC	Fairview Microwave	SD3379	AMV	3-Jan-19	3-Jan-20
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFP	2-Jul-19	2-Jul-20

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The spurious RF conducted emissions were measured with the EUT set to low, medium and high transmit frequencies. The EUT was transmitting at the data rate(s) listed in the datasheet. For each transmit frequency, the spectrum was scanned throughout the specified frequency range.

Report No. MASI0553.3 47/53

	MWMII				Work Order:		
Serial Number:						3-Jul-19	
Customer:	Masimo Corporation				Temperature:	26.4 °C	
Attendees:	Anami Joshi				Humidity:	41.6% RH	
Project:					Barometric Pres.:		
	Luis Flores and Mark Baytar	n	Power: 3.6VDC		Job Site:	OC13	
TEST SPECIFICATI	IONS		Test Method				
FCC 15.247:2019			ANSI C63.10:2013				
COMMENTS							
Reference level off	set: DC block + 20dB attenua	ator + coax cable + client	provided patch cable = 23.7dB Total Offset				
DEVIATIONS FROM	/ TEST STANDARD						
DEVIATIONS FROM	I TEST STANDARD						
	A TEST STANDARD	Signature	146,4				
None		Signature	Frequency	Measured	Max Value	Limit	
None		Signature		Measured Freq (MHz)	Max Value (dBc)	Limit ≤ (dBc)	Result
None Configuration #	2	Signature	Frequency				Result N/A
None Configuration # BLE/GFSK Low Cha	2 annel, 2402 MHz	Signature	Frequency Range	Freq (MHz)	(dBc)	≤ (dBc)	
None Configuration # BLE/GFSK Low Cha BLE/GFSK Low Cha	2 annel, 2402 MHz annel, 2402 MHz	Signature	Frequency Range Fundamental	Freq (MHz) 2401.79	(dBc) N/A	≤ (dBc) N/A	N/A
None Configuration # BLE/GFSK Low Chable/GFSK Low Chable/GFS	2 annel, 2402 MHz annel, 2402 MHz annel, 2402 MHz	Signature	Frequency Range Fundamental 30 MHz - 12.5 GHz	Freq (MHz) 2401.79 2564.8	(dBc) N/A -54.61	≤ (dBc) N/A -20	N/A Pass
None Configuration # BLE/GFSK Low Cha BLE/GFSK Low Cha BLE/GFSK Low Cha BLE/GFSK Mid Cha	2 annel, 2402 MHz annel, 2402 MHz annel, 2402 MHz nnel, 2442 MHz	Signature	Frequency Range Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz	Freq (MHz) 2401.79 2564.8 24949.64	(dBc) N/A -54.61 -39.83	≤ (dBc) N/A -20 -20	N/A Pass Pass
None Configuration # BLE/GFSK Low Cha BLE/GFSK Low Cha BLE/GFSK Low Cha BLE/GFSK Mid Cha BLE/GFSK Mid Cha	2 annel, 2402 MHz annel, 2402 MHz annel, 2402 MHz nnel, 2442 MHz nnel, 2442 MHz	Signature	Frequency Range Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz Fundamental	Freq (MHz) 2401.79 2564.8 24949.64 2441.79	(dBc) N/A -54.61 -39.83 N/A	≤ (dBc) N/A -20 -20 N/A	N/A Pass Pass N/A
None Configuration # BLE/GFSK Low Che BLE/GFSK Low Che BLE/GFSK Mid Cha BLE/GFSK Mid Cha BLE/GFSK Mid Cha BLE/GFSK Mid Cha	2 annel, 2402 MHz annel, 2402 MHz annel, 2402 MHz nnel, 2442 MHz nnel, 2442 MHz	Signature	Frequency Range Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz Fundamental 30 MHz - 12.5 GHz	Freq (MHz) 2401.79 2564.8 24949.64 2441.79 6143.97	(dBc) N/A -54.61 -39.83 N/A -53.98	≤ (dBc) N/A -20 -20 N/A -20	N/A Pass Pass N/A Pass
None	2 annel, 2402 MHz annel, 2402 MHz annel, 2402 MHz nnel, 2442 MHz nnel, 2442 MHz annel, 2480 MHz	Signature	Frequency Range Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 12.5 GHz 12.5 GHz - 25 GHz	Freq (MHz) 2401.79 2564.8 24949.64 2441.79 6143.97 24949.64	(dBc) N/A -54.61 -39.83 N/A -53.98 -41.43	≤ (dBc) N/A -20 -20 N/A -20 -20 -20	N/A Pass Pass N/A Pass Pass

Report No. MASI0553.3 48/53

	BLE/GFSK Low Channel, 2	2402 MHz		
Frequency	Measured	Max Value	Limit	
Range	Freq (MHz)	(dBc)	≤ (dBc)	Result
30 MHz - 12.5 GHz	2564.8	-54.61	-20	Pass

Report No. MASI0553.3 49/53

 BLE/GFSK Low Channel, 2402 MHz

 Frequency
 Measured
 Max Value
 Limit

 Range
 Freq (MHz)
 (dBc)
 ≤ (dBc)
 Result

 12.5 GHz - 25 GHz
 24949.64
 -39.83
 -20
 Pass

BL	E/GFSK Mid Channel, 2	2442 MHz		
Frequency	Measured	Max Value	Limit	
 Range	Freq (MHz)	(dBc)	≤ (dBc)	Result
Fundamental	2441.79	N/A	N/A	N/A

Report No. MASI0553.3 50/53

 BLE/GFSK Mid Channel, 2442 MHz

 Frequency
 Measured
 Max Value
 Limit

 Range
 Freq (MHz)
 (dBc)
 ≤ (dBc)
 Result

 30 MHz - 12.5 GHz
 6143.97
 -53.98
 -20
 Pass

	BLE/GFSK Mid Channel, 2	2442 MHz		
Frequency	Measured	Max Value	Limit	
Range	Freq (MHz)	(dBc)	≤ (dBc)	Result
12.5 GHz - 25 GHz	24949.64	-41.43	-20	Pass

Report No. MASI0553.3 51/53

BLE/G	FSK High Channel,	2480 MHz		
Frequency	Measured	Max Value	Limit	
Range	Freq (MHz)	(dBc)	≤ (dBc)	Result
30 MHz - 12.5 GHz	5874.5	-54.4	-20	Pass

Report No. MASI0553.3 52/53

 BLE/GFSK High Channel, 2480 MHz

 Frequency
 Measured
 Max Value
 Limit

 Range
 Freq (MHz)
 (dBc)
 ≤ (dBc)
 Result

 12.5 GHz - 25 GHz
 24888.6
 -41.07
 -20
 Pass

Report No. MASI0553.3 53/53