

Prof. Dr.-Ing. Frank Neitzel, Dr.-Ing. Sven Weisbrich

Exercise 7: Adjustment Calculation - part II - Linear adjustment problem -				
Group:	Surname, First name:	Matriculation number:	Signature*:	
* With my signature I declare that I was involved in the elaboration of this homework.				
Submission until: 15.12.2024				

Objective

This exercise deals with the adjustment of the parameters of a straight line which is represented by four measured points as depicted in Figure 1 and the adjustment of the parameters of a parabola which is represented by five measured points as depicted in Figure 2.

Table 1: Coordinates of the four points

Point	Х	v
	[m]	[m]
1	1.0	0.1
2	2.0	1.1
3	3.0	1.8
4	4.0	2.4

Figure 1: Four given points and adjusted straight line

Task 1:

Table 1 contains the coordinates of four points, where the x-coordinates are error free (fixed values) and the y-coordinates are measurements which are subject to random errors. The objective of this task is the determination of the unknown parameters of the straight line via least-squares adjustment using matrix notation. The measurements are uncorrelated and were obtained with the standard deviations listed in Table 2.

- 1. Set up an appropriate functional model as well as the observation equations.
- 2. Set up the stochastic model.
- 3. Determine the normal equations for the condition $\sum p_i v_i^2 \rightarrow \min$.
- 4. Solve the normal equation system and determine the estimated parameters of the straight line.
- 5. Calculate the residuals.

Table 2: Standard deviations for the **y**-coordinates

Point	$oldsymbol{\sigma_{y_i}}{}$ [cm]
1	2
2	1
3	4
4	2

Task 2 (Homework):

Table 3 contains the coordinates of five points, where the x-coordinates are error free (fixed values) and the y-coordinates are measurements which are subject to random errors. The objective of this task is the determination of the unknown parameters of the parabola as depicted in Figure 2 via least-squares adjustment applying matrix notation. The measurements are uncorrelated and were obtained with the a standard deviation of $\sigma_{v_i} = 0.02 \, \mathrm{m}$.

- 1. Set up an appropriate functional model as well as the observation equations.
- 2. Set up the stochastic model.
- 3. Why is it a linear adjustment problem? Please give a short explanation.
- 4. Solve the normal equation system and determine the estimated parameters of the parabola as well as their standard deviations.
- 5. Plot the five points and the resulting estimated parabola.
- 6. Calculate the residuals as well as their standard deviations.
- 7. Calculate the adjusted observations as well as their standard deviations.

Figure 2: Five given points and adjusted parabola

Table 3: Co	ordinates of the	five points
Point	х	у

	[m]	[m]
1	1.000	1.112
2	2.000	0.880
3	3.000	0.768
4	4.000	0.830
5	5.000	1.175