Лабораторная работа 17

Задания для самостоятельной работы

Кудряшов Артём Николаевич

Содержание

1	Цель работы	4			
2	Задание	5			
3	3.1 Моделирование работы вычислительного центра	6			
	3.2 Модель работы аэропорта	9 12			
4	Выводы	21			

Список иллюстраций

3.1	Модель работы вычислительного центра	7
3.2	Отчёт по модели работы вычислительного центра	8
3.3	Отчёт по модели работы вычислительного центра	8
3.4	Модель работы аэропорта	10
3.5	Отчёт по модели работы аэропорта	11
3.6	Отчёт по модели работы аэропорта	12
3.7	Модель работы морского порта	13
3.8	Отчет по модели работы морского порта	14
3.9	Модель работы морского порта с оптимальным количеством при-	
	чалов	15
3.10	Отчет по модели работы морского порта с оптимальным количе-	
	ством причалов	16
3.11	Модель работы морского порта	17
	Отчет по модели работы морского порта	18
3.13	Модель работы морского порта с оптимальным количеством при-	
	чалов	19
3.14	Отчет по модели работы морского порта с оптимальным количе-	
	ством причалов	20

1 Цель работы

Реализовать с помощью gpss модели работы вычислительного центра, аэропорта и морского порта.

2 Задание

Реализовать с помощью gpss:

- модель работы вычислительного центра;
- модель работы аэропорта;
- модель работы морского порта.

3 Выполнение лабораторной работы

3.1 Моделирование работы вычислительного центра

На вычислительном центре в обработку принимаются три класса заданий A, B и C. Исходя из наличия оперативной памяти ЭВМ задания классов A и B могут решаться одновременно, а задания класса C монополизируют ЭВМ. Задачи класса C загружаются в ЭВМ, если она полностью свободна. Задачи классов A и B могут дозагружаться к решающей задаче.

Смоделируем работу ЭВМ за 80 ч. и определим её загрузку.

Построим модель (рис. [3.1]).

🎇 model 17_1.gps ram STORAGE 2 ;моделирование заданий класса А GENERATE 20,5 QUEUE class A ENTER ram, 1 DEPART class A ADVANCE 20,5 LEAVE ram, 1 TERMINATE 0 ;моделирование заданий класса В GENERATE 20,10 QUEUE class A ENTER ram, 1 DEPART class A ADVANCE 21,3 LEAVE ram, 1 TERMINATE 0 ;моделирование заданий класса С GENERATE 28,5 QUEUE class A ENTER ram, 2 DEPART class A ADVANCE 28,5 LEAVE ram, 2 TERMINATE 0 ; таймер GENERATE 4800 TERMINATE 1 START 1

Рис. 3.1: Модель работы вычислительного центра

Задается хранилище ram на две заявки. Затем записаны три блока: первые два обрабатывают задания класса A и B, используя один элемент ram, а третий обрабатывает задания класса C, используя два элемента ram. Также есть блок

времени генерирующий 4800 минут (80 часов).

После запуска симуляции получаем отчёт (рис. [3.2], [3.3]).

model 17_	1.1.1 - REPORT				
	START TIME	END TIM	E BLOCKS	FACILITIES	STORAGES
	0.000	4800.00	0 23	0	1
	NAME		VALUE		
	CLASS A	1	0001.000		
	RAM	_	0000.000		
	ran.	-	0000.000		
LABEL	LOC	BLOCK TYPE	ENTRY COU	NT CURRENT C	OUNT RETRY
	1	GENERATE	240	0	
	2	QUEUE	240	4	0
	3	ENTER	236	0	0
	4	DEPART	236	0	0
	5	ADVANCE	236	1	0
	6	LEAVE	235	0	0
	7	TERMINATE	235	0	0
	8	GENERATE	236	0	0
	9	QUEUE	236	5	0
	10	ENTER	231	0	0
	11	DEPART	231	0	0
	12	ADVANCE	231	1	0
	13	LEAVE	230	0	0
	14	TERMINATE	230	0	0
	15	GENERATE	172	0	-
	16	QUEUE	172	172	0
	17	ENTER	0	0	0
	18	DEPART	0	0	0
	19	ADVANCE	0	0	0
	20	LEAVE	0	0	0
	21	TERMINATE	0	0	0
	22	GENERATE	1	0	0
	23	TERMINATE	1	0	0

Рис. 3.2: Отчёт по модели работы вычислительного центра

QUEUE CLASS_A							AVE.(-0) RETRY 688.354 0
STORAGE RAM		CAP. REM. 2 0				AVE.C. UTI 1.988 0.9	L. RETRY DELAY 94 0 181
FEC XN						PARAMETER	VALUE
650		4803.512			1		
636	0	4805.704	636	5	6		
651	0	4807.869	651	0	15		
	0	4810.369	637	12	13		
637							
637 652	0	4813.506	652	U	8		

Рис. 3.3: Отчёт по модели работы вычислительного центра

Из отчета увидим, что загруженность системы равна 0.994.

3.2 Модель работы аэропорта

Самолёты прибывают для посадки в район аэропорта каждые 10 ± 5 мин. Если взлетно-посадочная полоса свободна, прибывший самолёт получает разрешение на посадку. Если полоса занята, самолет выполняет полет по кругу и возвращается в аэропорт каждые 5 мин. Если после пятого круга самолет не получает разрешения на посадку, он отправляется на запасной аэродром.

В аэропорту через каждые 10 ± 2 мин к взлетно -посадочной полосе выруливают готовые к взлёту самолёты и получают разрешение на взлёт, если полоса свободна. Для взлета и посадки самолёты занимают полосу ровно на 2 мин. Если при свободной полосе одновременно один самолёт прибывает для посадки, а другой – для взлёта, то полоса предоставляется взлетающей машине.

Требуется:

- выполнить моделирование работы аэропорта в течение суток;
- подсчитать количество самолётов, которые взлетели, сели и были направлены на запасной аэродром;
- определить коэффициент загрузки взлетно-посадочной полосы.

Построим модель (рис. [3.4]).

```
model 17_2.gps
 GENERATE 10,5,,,1
 ASSIGN 1,0
 QUEUE arrival
 landing GATE NU runway, wait
 SEIZE runway
 DEPART arrival
 ADVANCE 2
 RELEASE runway
 TERMINATE 0
 ; ожидание
 wait TEST L p1,5,goaway
 ADVANCE 5
 ASSIGN 1+,1 ;если значение атрибута меньше 5,
 ;то счетчик прибавляет 1 (круг) и идет попытка приземления
 TRANSFER 0, landing
 goaway SEIZE reserve
 DEPART arrival
 RELEASE reserve
 TERMINATE 0
 GENERATE 10,2,,,2
 QUEUE takeoff
 SEIZE runway
 DEPART takeoff
 ADVANCE 2
 RELEASE runway
 TERMINATE 0
 :таймер
 GENERATE 1440
 TERMINATE 1
 START 1
```

Рис. 3.4: Модель работы аэропорта

Блок для влетающих самолетов имеет приоритет 2, для прилетающий приоритет 1 (чем выше значение, тем выше приоритет). Происходит проверка: если полоса пустая, то заявка просто отрабатывается, если нет, то происходит переход в блок ожидания. При ожидании заявка проходит в цикле 5 раз, каждый раз проверяется не освободилась ли полоса, если освободилась – переход в блок обработки, если нет – самолет обрабатывается дополнительным обработчиком отправления в запасной аэродром. Время задаем в минутах – 1440 (24 часа).

После запуска симуляции получаем отчёт (рис. [3.5], [3.6]).

model 17	2.4.1 - REPORT						
	суб	бота, июня 15,	, 2024	19:09:52			
	START TIME				FACILITIES		
	0.000	1440	0.000	26	1	(0
	NAME			ALUE			
	ARRIVAL			2.000			
	GOAWAY			4.000			
	LANDING			4.000			
	RESERVE			ECIFIED			
	RUNWAY			1.000			
	TAKEOFF		1000	0.000			
	WAIT		1	0.000			
LABEL	LO		EN		CURRENT		
	1 2	GENERATE ASSIGN		146 146		0	0
	3	OUEUE		146		0	0
LANDING	4	GATE		184		0	0
LANDING	5	SEIZE		146		0	0
	6	DEPART		146		0	0
	7	ADVANCE		146		0	0
	8	RELEASE		146		0	0
	9	TERMINATE		146		0	0
WAIT	10	TEST		38		0	0
	11	ADVANCE		38		0	0
	12	ASSIGN		38		0	0
	13	TRANSFER		38		0	0
GOAWAY	14	SEIZE		0		0	0
	15	DEPART		0		0	0
	16	RELEASE		0		0	0
	17	TERMINATE		0		0	0
	18	GENERATE		142		0	0
	19	QUEUE		142		0	0
	20	SEIZE		142		0	0
	21	DEPART		142		0	0
	22 23	ADVANCE RELEASE		142		0	0
	23	TERMINATE		142		0	0
	25	GENERATE		142		0	0
	25 26	TERMINATE		1		0	0
	20	IERMINALE		1		U	U

Рис. 3.5: Отчёт по модели работы аэропорта

FACILITY RUNWAY		ENTRIE 288		IL. .400	AVE. TIME 2.00	E AVAIL.	OWNER 0	PEND 0	INTER 0	RETRY 0	DELAY 0
QUEUE TAKEOFF ARRIVAL		MAX 1 2	0	142	ENTRY(0) 114 114	0.01	7	0.173	3	0.880	0
290	PRI 2 1 0	1445	.749	ASSE 290 291 292	0	NT NEXT 18 1 25	PARA	METER	VAI	LUE	

Рис. 3.6: Отчёт по модели работы аэропорта

Взлетело 142 самолета, село 146, а в запасной аэропорт отправилось 0. В запасной аэропорт не отправились самолеты, поскольку процессы обработки длятся всего 2 минуты, что намного быстрее, чем генерации новых самолетов. Коэффициент загрузки полосы равняется 0.4, полоса большую часть времени не используется.

3.3 Моделирование работы морского порта

Морские суда прибывают в порт каждые $[\alpha \pm \delta]$ часов. В порту имеется N причалов. Каждый корабль по длине занимает M причалов и находится в порту $[b\pm \varepsilon]$ часов. Требуется построить GPSS-модель для анализа работы морского порта в течение полугода, определить оптимальное количество причалов для эффективной работы порта.

Рассмотрим два варианта исходных данных:

1)
$$a=20$$
 ч, $\delta=5$ ч, $b=10$ ч, $\varepsilon=3$ ч, $N=10$, $M=3$;

2)
$$a=30$$
 ч, $\delta=10$ ч, $b=8$ ч, $\varepsilon=4$ ч, $N=6$, $M=2$.

Первый вариант модели

Построим модель для первого варианта (рис. [3.7]).

model 17_3.gps pier STORAGE 10 GENERATE 20,5 ;моделирование занятия причала QUEUE arrive ENTER pier,3 DEPART arrive ADVANCE 10,3 LEAVE pier,3 TERMINATE 0 ;таймер GENERATE 24 TERMINATE 1 START 180

Рис. 3.7: Модель работы морского порта

После запуска симуляции получаем отчёт (рис. [3.8]).

	START T	IME	E	ND TIME	BLOCKS	FACILITIES	STORAGES	
	0.	000	4	320.000	9	0	1	
	NAME							
	ARRIVE			100				
	PIER			100	000.000			
LABEL		LOC	BLOCK TY	PE I	ENTRY COU	JNT CURRENT	COUNT RETRY	
		1	GENERATE		215		0 0	
		2	QUEUE		215		0 0	
		3	ENTER		215		0 0	
		4	DEPART		215		0 0	
		5	ADVANCE		215		1 0	
		6	LEAVE		214		0 0	
		7	TERMINAT	E	214		0 0	
		8	GENERATE	2	180		0 0	
		9	TERMINAT	Œ	180		0 0	
							ME AVE. (-0)	
ARRIVE		1	0 21	.5 21	0.0	0.0	0.000) 0
STODACE		CND	DEM MIN	MAY I	NTDIES 7	AVE C	UTIL. RETRY	DELYA
PIER							0.148 0	
			, ,		0.0	1 1.100	0.110	•
FEC XN	PRI	BDT	ASS	EM CURI	RENT NEX	T PARAMETE	R VALUE	
	0							
396	0	4335.	233 39	6 () 1			
397	0	4344.	000 39	7 (8 (

Рис. 3.8: Отчет по модели работы морского порта

При запуске с 10 причалами видно, что судна обрабатываются быстрее, чем успевают приходить новые, так как очередь не набирается. Кроме того загруженность причалов очень низкая. Соответственно, установив наименьшее возможное число причалов – 3 (рис. [3.9]), получаем оптимальный результат, что видно на отчете (рис. [3.10]).

model 17_3.gps pier STORAGE 3 GENERATE 20,5 ;моделирование занятия причала QUEUE arrive ENTER pier,3 DEPART arrive ADVANCE 10,3 LEAVE pier,3 TERMINATE 0 ;таймер GENERATE 24 TERMINATE 1 START 180

Рис. 3.9: Модель работы морского порта с оптимальным количеством причалов

			END TIME				
	0.0	000	4320.000	9	0	1	
	NAME ARRIVE			VALUE 001.000			
	PIER		10	000.000			
LABEL		LOC BLO	CK TYPE	ENTRY COU	NT CURRENT (COUNT RETRY	
		1 GEN	ERATE	215	(0	
		2 QUE	JE	215	(0	
		3 ENT	ER	215	(0	
		4 DEP		215		0	
		5 ADV	ANCE	215	1	L 0	
		6 LEA		214	(0	
			MINATE	214		0	
		8 GEN		180		0	
		9 TER	MINATE	180	(0	
QUEUE		MAX CONT.	ENTRY ENTRY	(0) AVE.C	ONT. AVE.TIM	ME AVE.(-0)	RETRY
ARRIVE						0.000	
STORAGE		CAP. REM.	MIN. MAX.	ENTRIES A	VL. AVE.C.	UTIL. RETRY	DELAY
PIER		3 0	0 3	645	1 1.485	0.495 0	0
FEC XN	PRI	BDT	ASSEM CUR	RENT NEX	T PARAMETE	R VALUE	
395			395				
396	0	4335.233	396	0 1			
397			397				

Рис. 3.10: Отчет по модели работы морского порта с оптимальным количеством причалов

Второй вариант модели

Построим модель для второго варианта (рис. [3.11]).

```
model 17_3.gps

pier STORAGE 6
GENERATE 30,10

;моделирование занятия причала
QUEUE arrive
ENTER pier,2
DEPART arrive
ADVANCE 8,4
LEAVE pier,2
TERMINATE 0

;таймер
GENERATE 24
TERMINATE 1
START 180
```

Рис. 3.11: Модель работы морского порта

После запуска симуляции получаем отчёт (рис. [3.12]).

	3.3.1 - REPO									
	START T	IME		END	TIME	BLOCKS	FA	CILITIES	STORAGES	
	0.0	000		432	0.000	9		0	1	
	NAME					VALUE				
	ARRIVE				100	01.000				
	PIER				100	000.000				
LABEL		LOC	BLOCK	TYPE	E	NTRY CO	UNT	CURRENT C	OUNT RETR	ď
		1	GENER	ATE		143		0	0	
		2	QUEUE			143		0	0	
		3	ENTER			143		0	0	
		4	DEPAR	T		143		0	0	
						143		_	. 0	
			LEAVE			142		0	0	
						142		0	0	
		8	GENER	ATE		180		0	0	
		9	TERMI	NATE		180		0	0	
		MAX C	ONT. E	NTRY	ENTRY ((0) AVE.	CONT	. AVE.TIM	E AVE.(-0) RETRY
ARRIVE		1	0	143	143	0.	000	0.00	0.0	0 0 0
STORAGE		CAP.	REM. M	TN. M	AX. F	NTRIES	AVI	AVE.C.	UTIL. RET	RY DELAY
PIER									0.087	
		-	-		_		_			-
FEC XN	PRI	BDT		ASSEM	CURR	ENT NE	хт	PARAMETER	VALUE	
	0									
324) 1				
325					0					

Рис. 3.12: Отчет по модели работы морского порта

При запуске с 6 причалами видно, что судна обрабатываются быстрее, чем успевают приходить новые, так как очередь не набирается. Кроме того загруженность причалов очень низкая. Соответственно, установив наименьшее возможное число причалов – 2 (рис. [3.13]), получаем оптимальный результат, что видно из отчета (рис. [3.14]).

model 17_3.gps pier STORAGE 2 GENERATE 30,10 ;моделирование занятия причала QUEUE arrive ENTER pier,2 DEPART arrive ADVANCE 8,4 LEAVE pier,2 TERMINATE 0 ;таймер GENERATE 24 TERMINATE 1 START 180

Рис. 3.13: Модель работы морского порта с оптимальным количеством причалов

model 17	_3.6.1 - REPO	DRT
		TIME END TIME BLOCKS FACILITIES STORAGES 000 4320.000 9 0 1
	NAME ARRIVE PIER	10001.000
LABEL		LOC BLOCK TYPE ENTRY COUNT CURRENT COUNT RETRY 1 GENERATE 143 0 0 2 QUEUE 143 0 0 3 ENTER 143 0 0 4 DEPART 143 0 0 5 ADVANCE 143 1 0 6 LEAVE 142 0 0 7 TERMINATE 142 0 0 8 GENERATE 180 0 0 9 TERMINATE 180 0 0
QUEUE ARRIVE		MAX CONT. ENTRY ENTRY(0) AVE.CONT. AVE.TIME AVE.(-0) RETRY 1 0 143 143 0.000 0.000 0.000 0
STORAGE PIER		CAP. REM. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY DELAY 2 0 0 2 286 1 0.524 0.262 0 0
FEC XN 322 324 325	0	BDT ASSEM CURRENT NEXT PARAMETER VALUE 4325.892 322 5 6 4336.699 324 0 1 4344.000 325 0 8

Рис. 3.14: Отчет по модели работы морского порта с оптимальным количеством причалов

4 Выводы

В результате выполнения данной лабораторной работы я реализовал с помощью gpss:

- модель работы вычислительного центра;
- модель работы аэропорта;
- модель работы морского порта.