Cecha X ma rozkład normalny $N(\mu, \sigma^2)$ Średnia μ oraz wariancja σ^2 są nieznane

$$H_0: \sigma^2 = \sigma_0^2$$

Test chi–kwadrat (poziom istotności α)

Próba: X_1, \dots, X_n Statystyka testowa

$$\chi_{\rm emp}^2 = \frac{{\rm var}X}{\sigma_0^2}$$

Wartości krytyczne

$$\chi^2(1-\tfrac{\alpha}{2};n-1),\,\chi^2(\tfrac{\alpha}{2};n-1)$$

Jeżeli

 $\chi_{\text{emp}}^2 < \chi^2 (1 - \frac{\alpha}{2}; n - 1) \text{ lub } \chi_{\text{emp}}^2 > \chi^2 (\frac{\alpha}{2}; n - 1),$ to hipotezę $H_0: \sigma^2 = \sigma_0^2$ odrzucamy.

Cecha X ma rozkład normalny $N(\mu, \sigma^2)$ Średnia μ oraz wariancja σ^2 są nieznane

$$H_0: \sigma^2 \leq \sigma_0^2$$

Test chi–kwadrat (poziom istotności α)

Próba: X_1, \ldots, X_n Statystyka testowa

$$\chi_{\rm emp}^2 = \frac{{\rm var}X}{\sigma_0^2}$$

Wartość krytyczna $\chi^2(\alpha; n-1)$

Jeżeli $\chi^2_{\text{emp}} > \chi^2(\alpha; n-1)$, to hipotezę $H_0: \sigma^2 \leq \sigma_0^2$ odrzucamy.

