Втора лабораториска вежба по предметот СКИТ

```
public static int closestLowerPrime(int n) {
    if(n <= 1)
        throw new IllegalArgumentException("The number has to be greater than 1.");

if(n%2 == 0)
    n--;

for(int i=n;i>1;i-=2) {
    boolean f=true;
    for(int j=2;j<i/2;j++) {
        if(i%j == 0) {
            f = false;
            break;
        }
    }

    if(f)
        return i;
}</pre>
```

За ова најпрво треба да се нацрта графот за текот на контрола на програмата (Control Flow Graph - CFG)

Во овој граф имаме еден почетен јазел јазелот 1, 3 терминални јазли 3,14,12.

Следно бараме usage и definition за секоја променлива

Јазел	Def	Use
1	{n}	/
6	{i}	{n}
5	{n}	{n}
8	{f,j}	/
11	{i}	{i}

12	/	{i}
14	{j}	{j}
15	{f}	/

Ребро	Use
(2,3)	{n}
(2,4)	{n}
(4,5)	{n}
(4,6)	{n}
(7,14)	{i}
(7,8)	{i}
(9,10)	{i,j}
(9,13)	{i,j}
(10,11)	{f}
(10,12)	{f}
(13,15)	{i,j}
(13,14)	{i,j}

Следно како Data Flow Criteria (DFC) ќе го користам All-du-paths coverage, како најчиесто користен критериум за покривање на тек на податоците

За таа цел, прво ќе ги најдеме сите du-pairs, односно парови од јазли каде што се дефинира променлива и јазли или ребра каде што се користи истата. Тоа ќе ни помогне за потоа да ги најдеме du-paths. Во следната табела може да ги видиме du-pairs за сите промелниви

Variable	DU Pairs
	[1,5]
	[1,6]
	[5,5]
n	[5,6]
	[1, (2, 3)]
	[1, (2, 4)]
	[1, (4, 5)]
	[1, (4, 6)]
	[6,11]
	[6,12]
	[11,11]
i	[11,12]
	[6, (7, 14)]
	[6, (7, 8)]
	[6, (9, 10)]

	[6, (9, 13)]
	[6, (13, 15)]
	[6, (13, 14)]
	[11, (7, 14)]
	[11, (7, 8)]
	[11, (9, 10)]
	[11, (9, 13)]
	[11, (13, 15)]
	[11, (13, 14)]
	[8, (10, 12)]
C	[8, (10, 11)]
\mathbf{f}	[15, (10, 12)]
	[15, (10, 11)]
	[8,14]
	[14,14]
	[8, (9, 10)]
	[8, (9, 13)]
	[8, (13, 15)]
j	[8, (13, 14)]
	[14, (9, 10)]
	[14, (9, 13)]
	[14, (13, 15)]
	[14, (13, 14)]
	L- ·, (, - ·/J

Variable	DU Paths
	[1,2,3]
n	[1,2,4,6]
	[5,6]
i	[6,7,14]
	[6,7,8,9,13,15]
	[6,7,8,9,13,14]
	[6,7,8,9,10,12]
	[11,7,8,9,10,12]
	[11,7,14]
	[11,7,8,9,13,15]
	[11,7,8,9,13,14]
f	[8,9,10,12]
	[8,9,10,11]
	[15,10,11]
	[15,10,12]

[8,9,10] [8,9,13,15] [14,9,10] [14,9,13,15]

За променливата і сите патеки што ги вклучуваат јазлите 6 и 11 заедно не се def-clear па тие не ги земаме во предвид.

За променливата ј сите патеки што ги вклучуваат јазлите 8 и 14 заедно не се def-clear па тие не ги земаме во предвид

Следната листа на патеки е дополнителнопрочистена листа од патеките кои не се јавуваат како подпатеки.

- 1. [1,2,3]
- 2. [1,2,4,6]
- 3. [5,6]
- 4. [6,7,14]
- 5. [6,7,8,9,13,15]
- 6. [6,7,8,9,13,14]
- 7. [6,7,8,9,10,11]
- 8. [6,7,8,9,10,12]
- 9. [11,7,8,9,10,12]
- 10. [11,7,14]
- 11. [11,7,8,9,13,15]
- 12. [11,7,8,9,13,14]
- 13. [8,9,10,11]
- 14. [15,10,11]
- 15. [15,10,12]
- 16. [14,9,10]
- 17. [14,9,13,15]

[1,2,3] е тест патека сама по себе

[1,2,4,5,6,7,14] ни ги покрива тест патеките 3 и 4

[1,2,4,6,7,8,9,10,11,13,15] ни ги покрива 2,5 и 13

[1,2,4,6,7,8,9,10,11,7,8,9,13,15,10,12] ни ги покрива 6,14,16 и 8

[6,7,8,9,10,11] ни го покрива 7

[1,2,4,6,7,8,9,10,11,7,8,9,13,15,9,10,12] ни ги покрива 11 и 15

[1,2,4,6,7,8,9,10,11,7,8,9,10,12] ни го покрива 9

[1,2,4,6,7,8,9,10,11,7,8,9,13,15] ни го покрива 10

[1,2,4,6,7,8,9,10,11,7,8,9,13,14]

Test Cases

1. Патека [1,2,3]

n=1

Output: Invalid Output Exception

2. Патека:[1,2,4,5,6,7,14]

n=2

Output=1

3. Патека :[1,2,4,6,7,8,9,10,11,13,15]

Infeasible Test Case

Output:NaN

4. Патека: [1,2,4,6,7,8,9,13,14,10,11,7,14]

N=2

Output 1

5. Патека: [6,7,8,9,10,11]

Infeasible Test Case

Output:NaN

6. Патека: [1,2,4,6,7,8,9,10,11,7,8,9,13,15,9,10,12]

Infeasible Test Case

Output:NaN

7. Патека: [1,2,4,6,7,8,9,10,11,7,8,9,10,12]

Infeasible Test Case

Output:NaN

8. Патека: [1,2,4,6,7,8,9,10,11,7,8,9,13,15]

Infeasible Test Case

Output:NaN

9. Патека: [1,2,4,6,7,8,9,10,11,7,8,9,13,15]

Infeasible Test Case Output:NaN