FPGA DESIGN

Homework 5 Report

	姓名	學號		
組員1	郭家佑	F64096114		
組員2	蔡奇佑	E24096213		
組員3	趙泓瑞	E14071025		

1. Problem1

Design introduction

■ Interface between software and hardware

Main.c 引入專案必要的標頭文件,其中引入了 xil_printf.h, xil_io.h 和 xparameters.h,提供 Zynq 的開發板上的輸出、輸入輸出操作以及相關參數和定義等功能。定義 unsigned-32 位元整數變數,用於儲存計算和輸入輸出數值及位址。依據題要求跟硬體 bram0 要指定資料到 DSP,並由 Main.c 指定 Controller 傳指令給 DSP 做指定的運算,運算完後寫入 bram1 後把 write enable 拉低。最後 Main.c 將 bram1 前 32 個地址的資料呈列。即為 Step 過程。 Step1 後,依序號加一的平方值寫給 bram1 後,Step2 完成 print 辛普森圖案後結束。

■ Instruction format

inst[30:27]	inst[30:27]	inst[26:20]	inst[19:15]	inst[14:10]	inst[9:5]	inst[4:0]
read enable	dsp alumode	dsp opmode	dsp inmode	bram1 Waddr	bram1 Raddr	bram0 Raddr

bram0_Raddr: 輸入讀取 bram0 資料的地址。

Braml_Raddr: 輸入讀取 braml 資料的地址。

Braml_Waddr: 輸入寫入 braml 資料的地址。

dsp_inmode: 選擇多工器輸入值的控制訊號。

dsp_opmode: 選擇多工器輸出值的控制訊號。

dsp alumode: 控制 DSP 邏輯運算模式的控制訊號。

read enable: 輸入是否寫入的控制訊號。

以下為 Main. c 過程中 inst 值的變化。

		inst[30:27]	inst[30:27]	inst[26:20]	inst[19:15]	inst[14:10]	inst[9:5]	inst[4:0]
		read enable	dsp_alumode	dsp_opmode	dsp_inmode	bram1_Waddr	bram1_Raddr	bram0_Raddr
step1	1	1	0000	0110011	00000	00011	00010	00000
step1	2	0	0000	0110011	00000	00011	00010	00000
step1	3	1	0000	0000101	10001	00111	00011	01011
step1	4	0	0000	0000101	10001	00111	00011	01011
step1	5	1	0000	0110101	10001	01010	00111	11111
step1	6	0	0000	0110101	10001	01010	00111	11111
step1	7	1	0011	0110101	10001	01101	00110	00001
step1	8	0	0011	0110101	10001	01101	00110	00001
step1	9	1	0001	0110101	10001	01111	11111	00000
step1	10	0	0001	0110101	10001	01111 11111		00000
step2	11	1	0000	0000101	10001	10000	00010	00000
step2	12	0	0000	0000101	10001	10000	00010	00000
step2	13	1	0000	0000101	10001	10001	01011	00011
step2	14	0	0000	0000101	10001	10001	10001 01011	
step2	15	1	0000	0110101	10001	10010	00111	11111
step2	16	0	0000	0110101	10001	10010	00111	11111
step2	17	1	0011	0110101	10001	10011 00110		00001
step2	18	0	0011	0110101	10001	10011	00110	00001
step2	19	1	0001	0110101	10001	10100	11111	00000
step2	20	0	0001	0110101	10001	10100	11111	00000

 $1, 2 \rightarrow BRAM1[3] \leftarrow BRAM0[0] * BRAM1[2]$

 $3, 4 \rightarrow BRAM1[7] \leftarrow BRAM0[11] * BRAM1[3]$

 $5, 6 \rightarrow BRAM1[10] \leftarrow BRAM0[31] * BRAM1[7] + C$

```
7, 8 \rightarrow BRAM1[13] \leftarrow C - BRAM0[1] * BRAM1[6]
9, 10 \rightarrow BRAM1[15] \leftarrow BRAM0[0] * BRAM1[31] - C - 1
11, 12 \rightarrow BRAM1[16] \leftarrow BRAM0[0] * BRAM1[2]
13, 14 \rightarrow BRAM1[17] \leftarrow BRAM0[11] * BRAM1[3]
15, 16 \rightarrow BRAM1[18] \leftarrow BRAM0[31] * BRAM1[7] + C
17, 18 \rightarrow BRAM1[19] \leftarrow C - BRAM0[1] * BRAM1[6]
19, 20 \rightarrow BRAM1[20] \leftarrow BRAM0[0] * BRAM1[31] - C - 1
```

Block Design

全

左

右

Simulation result

```
step 1.
BRAM1[0] = 23
BRAM1[1] = 1
BRAM1[2] = 1201
BRAM1[3] = 27623
BRAM1[4] = 0
BRAM1[5] = 0
BRAM1[6] = 531
BRAM1[0] = 351

BRAM1[7] = 15403c9

BRAM1[8] = 0

BRAM1[9] = 0

BRAM1[10] = 8ad37a
BRAM1[11] = ffffff23
BRAM1[12] = 0
BRAM1[13] = 94fe3
BRAM1[13] = 94163

BRAM1[14] = 0

BRAM1[16] = 0

BRAM1[17] = 0

BRAM1[18] = 0
BRAM1[19] = 0
BRAM1[20] = 0
BRAM1[21] = 0
BRAM1[22] = 0
BRAM1[23]
BRAM1[24] =
BRAM1[25] = 0
BRAM1[26] = 0
BRAM1[27] = 0
BRAM1[28]
BRAM1[29] = 0
BRAM1[30] = 0
BRAM1[31] = 2236
```

```
step 2.
Step 2.

BRAM1[0] = 23

BRAM1[1] = 1

BRAM1[2] = 1201

BRAM1[3] = 27623

BRAM1[4] = 0

BRAM1[5] = 0

BRAM1[6] = 531
BRAM1[7] = 15403c9
BRAM1[8] = 0
BRAM1[9] = 0
BRAM1[10] = 8ad37a
BRAM1[11] = ffffff23
BRAM1[12] = 0
BRAM1[13] = 94fe3
BRAM1[14] = 0
BRAM1[15] = fffb584d
BRAM1[15] = fff5584d

BRAM1[16] = 1201

BRAM1[17] = ff2273b0

BRAM1[18] = 187914

BRAM1[19] = 94050

BRAM1[20] = fff6cd21
BRAM1[21] = 0
BRAM1[22] = 0
BRAM1[23] = 0
BRAM1[24] = 0
BRAM1 [25]
BRAM1[26] = 0
BRAM1[27] = 0
BRAM1 [28]
                      = 0
BRAM1[29] = 0
BRAM1[30] = 0
 BRAM1[31] = 2236
```

2. Problem2

From the reference ,the number of RAMB36E1 in z-7020 is 220. Reference:

https://docs.xilinx.com/v/u/en-US/zynq-7000-product-selection-guide

Zynq-7000 SoC Features

- Dual ARM® Cortex[™]-A9 MPCore[™] with CoreSight[™]
- 32 KB Instruction, 32 KB Data per processor L1 Cache
- · 512 KB unified L2 Cache
- · 256 KB On-Chip Memory
- 2x UART, 2x CAN 2.0B, 2x I2C, 2x SPI, 4x 32b GPI0
- 2x USB 2.0 (OTG), 2x Tri-mode Gigabit Ethernet, 2x SD/SDIO on-chip peripherals
- 85K logic cells (13300 logic slices, each with four 6-input LUTs and 8 flip-flops)
- · 630 KB of fast block RAM
- · Four clock management tiles, each with phase-locked loop (PLL)
- 220 DSP slices
- · Internal clock speeds exceeding 450MHz
- 2x 12 bit, 1 MSPS On-chip analog-to-digital converter (XADC)

	Cost-Optimized Devices						
Device Name	Z-7007S	Z-7012S	Z-7014S	Z-7010	Z-7015	Z-7020	
Part Number	XC7Z007S	XC7Z012S	XC7Z014S	XC7Z010	XC7Z015	XC7Z020	
		Single-Core			Dual-Core ARM		
Processor Core	ARM® Cortex™-A9 MPCore™			Cortex-A9 MPCore			
	U	p to 766MH		Up to 866MHz			
Processor Extensions		N	NEON™ SIM	D Engine an	d Single/Do	uble Precisi	
L1 Cache				32K	B Instruction	n, 32KB Dat	
L2 Cache						512KB	
On-Chip Memory						256KB	
External Memory Support ⁽²⁾					DDR3, D	DR3L, DDR2	
External Static Memory Support ⁽²⁾						ad-SPI, NAN	
DMA Channels	1						
Peripherals							
Peripherals w/ built-in DMA ⁽²⁾	2x USB 2.0 (OTG), 2x Tri-mode Giga						
Security ⁽³⁾	RSA Authentication of						
,	AES and SHA 2560 Decryption and At						
Processing System to						Master, 2x A	
Programmable Logic Interface Ports	4x AXI 64b/32b M						
(Primary Interfaces & Interrupts Only)	AXI 64D				AXI 64b ACI		
7 Carica Di Fautualant	Artix®-7	Artix-7	Artix-7	Artix-7	Artix-7	16 Interrupt Artix-7	
7 Series PL Equivalent Logic Cells		55K	65K	28K	74K	85K	
Look-Up Tables (LUTs)			40,600	17.600			
Flip-Flops	,	34,400 68,800	81,200	35,200	46,200 92,400	53,200 106,400	
Total Block RAM		2.5Mb	3.8Mb	2.1Mb	3.3Mb	4.9Mb	
(# 36Kb Blocks)	(50)	(72)	(107)	(60)	(95)	(140)	
DSP Slices		120	170	80	160	220	
PCI Express®	_	Gen2 x4	_	_	Gen2 x4	_	