# Applications of Quantum Annealing in Statistics

**Joint Statistical Meetings 2019** 

arXiv:1904.06819



Robert C. Foster, CCS-6 2 Aug. 2019



## LANL D-Wave 2X Quantum Computer



The D-Wave is <u>NOT</u> a universal quantum computer

The D-Wave only performs energy minimization for Ising or QUBO models.

 Rather than operating on qubits directly, it sets up a problem and lets physics manipulate the qubits towards the solution.

#### What does the D-Wave do?

The D-Wave solves exactly one (1) type of problem.....



 $Energy = \sum_{i} a_i q_i + \sum_{j>i} b_{ij} q_i q_j$ 

The  $q_i$  can be either...

1. Ising model:  $q_i \in \{-1,1\}$ 

2. QUBO model:  $q_i \in \{0,1\}$  Alternative

**Native** 

The D-Wave finds the set of  $q_i$  that minimize the energy of the system.

## **Example: QUBO Notation**



$$Energy = \sum_{i} a_i q_i + \sum_{j>i} b_{ij} q_i q_j$$

| $q_1$ | $q_2$ | $q_3$ | Energy |
|-------|-------|-------|--------|
| 0     | 0     | 0     | 0      |
| 0     | 0     | 1     | -2     |
| 0     | 1     | 0     | 1      |
| 0     | 1     | 1     | -3     |
| 1     | 0     | 0     | -1     |
| 1     | 0     | 1     | -2     |
| 1     | 1     | 0     | 1      |
| 1     | 1     | 1     | -2     |

# **Visual Metaphor for how the D-Wave Works**



#### **Simulated and Quantum Annealing**



- Sammie A. Neal climbs the entire mountain just to get to the other side
- Quentin A. Neal tunnels directly through the mountain
- Where peaks are tall and thin, Quentin will outperform Sammy
- (It's actually incredibly hard to find real problems where Quentin beats Sammie)

#### **Problem: Noise in the System**

#### What you Input

#### What the D-Wave Actually Uses



#### **Problem: Hardware Constraints**



#### **Chimera Graph Network**





- Graphs must map onto physical D-Wave hardware network.
- D-Wave uses special graph structure called Chimera, chosen to satisfy physical constraints

#### Solution: Embedding



- Qubits  $q_3$  and  $q_4$  treated as a single qubit with chain strength c chosen so that all lowest energy solutions have  $q_3 = q_4$
- Long chains can be used to create complex graph structures
- D-Wave includes automated tools to do this for you!

#### **Maximum Likelihood Estimation on the D-Wave**

We have independent data x from a model with parameters  $\theta$  and  $\phi$ 



$$x_d \sim f(x \mid \theta, \phi)$$

$$\ell(\theta, \phi \mid x) = \sum_{d=1}^{n} \log[f(x_d \mid \theta, \phi)]$$

$$(\hat{\theta}, \hat{\phi}) = \operatorname{argmax}_{\phi, \theta} \ell(\theta, \phi | x)$$

#### Assumptions:

- 1. The  $x_d$  are iid
- 2. Both  $\theta > 0$  and  $\phi > 0$  for computational simplicity

## Formulating the Problem as a

blem

The likelihood needs to be written as

Read the full paper at

arXiv:1904.06819





$$\theta = 2^{p_{1,\theta}} q_{1,\theta} + 2^{p_{2,\theta}} q_{2,\theta} + 2^{p_{3,\theta}} q_{3,\theta} + \dots$$

$$\phi = 2^{p_{1,\phi}} q_{1,\phi} + 2^{p_{2,\phi}} q_{2,\phi} + 2^{p_{3,\phi}} q_{3,\phi} + \dots$$



2. Perform a multivariate Taylor expansion on  $\ell(\theta, \phi | x_d)$ 

$$\ell(\theta, \phi \mid x_d) \approx \ell(\theta_0, \phi_0 \mid x_d) + \ell_{\theta}(\theta_0, \phi_0 \mid x_d)(\theta - \theta_0) + \ell_{\phi}(\theta_0, \phi_0 \mid x_d)(\phi - \phi_0)$$

$$+ \frac{1}{2} [\ell_{\theta\theta}(\theta_0, \phi_0 \mid x_d)(\theta - \theta_0)^2 + 2\ell_{\theta\phi}(\theta_0, \phi_0 \mid x_d)(\theta - \theta_0)(\phi - \phi_0)$$

$$+ \ell_{\phi\phi}(\theta_0, \phi_0 \mid x_d)(\phi - \phi_0)^2]$$

## **Iterating the Procedure**

Problem: The two-term Taylor series is only an approximation to the likelihood

function, and will give wrong estimates  $\hat{\theta}$ 

Solution: Iterate the procedure until

paper at

Read the full

arXiv:1904.06819

1. Choose initial values  $(\theta_0, \phi_0)$ 

2. Find maximum likelihood estimates  $(\hat{\theta}, \phi)$  as maxima of Taylor series expanded around  $(\theta_0, \phi_0)$ 

- 3. Take  $(\hat{\theta}, \hat{\phi})$  as new expansion points  $(\theta_0, \phi_0)$
- 4. Repeat 2-3 until stopping criterion met

\$

At true maximum likelihood estimates  $(\hat{\theta}, \hat{\phi})$ , should get back  $(\hat{\theta}, \hat{\phi}) = (\theta_0, \phi_0)$ 

# Example: $N(\theta, \phi^2)$



Simplest case: can a quantum computer estimate the mean and variance of a normal distribution?

Data: 
$$x = \{-2.296, -0.216, -0.082, 0.231, 1.127, 1.164, 1.189, 1.236, 1.272, 1.373\}$$

Maximum likelihood estimates:

$$\hat{\theta} = 0.4998$$
  $\hat{\phi} = 1.093$ 

Required for algorithm:

- 1. All first and second order derivatives of log-likelihood function
- 2. Starting values  $\theta_0$  and  $\phi_0$

#### **Details of Embedding**



- 8 qubits used for each of  $\theta$  and  $\phi$  (16 total), ranging from powers  $2^0$  to  $2^{-7}$
- Complete  $K_{16}$  graph embedded onto Chimera hardware configuration

# Results

| Iteration | $\widehat{m{	heta}}$ | $\widehat{oldsymbol{\phi}}$ | Energy   |
|-----------|----------------------|-----------------------------|----------|
| 1         | 0.5078125            | 0.9765625                   | -423.439 |
| 2         | 0.5                  | 1.0625                      | -422.93  |
| 3         | 0.515625             | 1.0859375                   | -420.865 |
| 4         | 0.5                  | 1.09375                     | -420.434 |
| 5         | 0.5                  | 1.0859375                   | -420.283 |
| 6         | 0.4765625            | 1.09375                     | -420.42  |
| 7         | 0.53125              | 1.09375                     | -420.263 |
| 8         | 0.484375             | 1.09375                     | -420.308 |
| 9         | 0.5                  | 1.09375                     | -420.272 |
| 10        | 0.5                  | 1.0859375                   | -420.283 |
| Truth     | 0.4998               | 1.093                       | N/A      |

Starting values of  $\theta_0 = 0$  and  $\phi_0 = 1$  used.



#### **N-Queens Problem**



Place *N* Queens on a chessboard so that none attack each other



## **Formulation as QUBO Matrix**



$$Energy = \sum_{i} a_i q_i + \sum_{j>i} b_{ij} q_i q_j$$

$$a_i = -2$$
 for all  $i$ 

 $b_{ij} = 2$  for i, j in the same row or same column

$$b_{ij} = 1$$
 for  $i, j$  in the same diagonal

# 5 x 5 Embedding and Result





## 6 x 6 Embedding and Result





## 8 x 8 Embedding and Result





#### **Example: Matrix Inversion**

$$\begin{bmatrix} A_{11} & A_{12} & A_{13} & A_{14} \\ A_{21} & A_{22} & A_{23} & A_{24} \\ A_{31} & A_{32} & A_{33} & A_{34} \\ A_{41} & A_{42} & A_{43} & A_{44} \end{bmatrix} \times \begin{bmatrix} V_{11} & V_{12} & V_{13} & V_{14} \\ V_{21} & V_{22} & V_{23} & V_{24} \\ V_{31} & V_{32} & V_{33} & V_{34} \\ V_{41} & V_{42} & V_{43} & V_{44} \end{bmatrix} = I_{4 x 4}$$

For a given column k of  $V = A^{-1}$ , define the column energy as

$$E_k = (\sum_j A_{1j} V_{jk})^2 + \dots + (\sum_j A_{kj} V_{jk} - 1)^2 + \dots + (\sum_j A_{nj} V_{jk})^2$$

The inverse is the set of  $V_{ij}$  which minimize the sum E of column energies.

Each energy  $E_k$  can be minimized independently of the others to obtain one column of the inverse matrix. This could even be done in parallel!

#### Results

#### **Problem Setup**

- 1. Goal: invert  $3 \times 3$  input matrix, 3 anneal steps
- 2. 6 qubits per  $V_{ij}$  entry, 18 qubits total

$$A = \begin{bmatrix} 1.344 & 0.418 & -0.935 \\ -1.018 & 1.095 & -0.250 \\ 0.277 & -0.384 & 0.755 \end{bmatrix}$$

$$A \times \begin{bmatrix} 0.613 & 0.037 & 0.772 \\ 0.586 & 1.068 & 1.080 \\ 0.074 & 0.531 & 1.592 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

**Truth** 

$$A \times \begin{bmatrix} 0.625 & 0.0 & 0.75 \\ 0.5 & 1.0625 & 1.1875 \\ 0.0 & 0.5625 & 1.6875 \end{bmatrix} = \begin{bmatrix} 1.049 & -0.082 & -0.073 \\ -0.088 & 1.023 & 0.116 \\ -0.019 & 0.016 & 1.025 \end{bmatrix}$$

Quantum Estimate

#### Conclusions



- Quantum computers are here, and you can use them to impress your friends and colleagues
- 2. But they're fairly limited both in problem scope and scale
- 3. Even then, the results aren't great
- 4. Look for problems with lots of local optima that you might use simulated annealing on

arXiv:1904.06819