中国矿业大学 2021-2022 学年第二 学期课程考试试卷 (回忆)

考试科目:	高等	代数 (2)				_ 试卷类:	型: <u>A 卷</u>	<u>; </u>	
课程代码:	M10103		考试	_ 考试时间:100 分钟		_考试方式:闭卷			
开课学院:	果学院: 数学学院		年级专	年级专业:2021 级数学类		类专业			
学院		_ 班级 _		姓名			学号		
题号	_		三	四	五.	六	七	总分	
得分									
阅卷人									

考生承诺:

- 1. 未携带通信工具及其他各类带有拍照、摄像、接收、发送、储存等功能的设备(包括 但不限于手机、智能手表、智能眼镜,平板电脑、无线耳机)或关机与其他禁止携带物 品、资料等放置监考老师指定位置;
- 2. 已按要求清理干净整个座位(包括考生邻座)桌面和抽屉里的所有物品(无论是否属于考生本人);
- 3. 已知晓并理解《中国矿业大学学生违纪处分管理规定》等与考试相关规定,承诺在考试中自觉遵守以上规定,服从监考教师的安排,自觉遵守考场纪律,诚信考试,不违规、不作弊。如有违反,自愿按《中国矿业大学学生违纪处分管理规定》相关条款接受处理。 考生签名:
- 一、举例题(每小题 4 分, 共 20 分)
- 1. 举两个 3 阶实方阵, 使其合同但不相似。

2. 举一个 3 阶实对称阵, 使其符号差是 -1。

以下行为是严重作弊行为,学校将给予留校察看或开除学籍处分: 1. 替他人考试或由他人替考; 2. 通讯工具作弊; 3. 团伙作弊。

3. 设 V 是实数域上的 2 维行向量空间。给出子空间 $W = \{(a,0) \mid a$ 为实数 $\{a,b\}$ 在 $\{a,b\}$ 在 $\{a,b\}$ 在 $\{a,b\}$ 在 $\{a,b\}$ 不同的补空间。

4. 举例说明特征多项式相同的两个矩阵未必相似。

5. 设 V 是闭区间 [a,b] 上所有连续函数组成的欧式空间,其内积定义为 $(f,g) = \int_a^b f(x)g(x)\,\mathrm{d}x$. 写出该空间中柯西—布尼亚科夫斯基不等式的具体形式。

- 二、填空题(每小题3分,共30分)
- 1. 一个 3 阶实对称方阵 A 的特征值分别是 1,-5,7。则二次型 $f(x,y,z) = X^{T}AX$ 的规范型是_____.
- 2. 实对称矩阵 $A = \begin{pmatrix} 2 & 0 & k \\ 0 & 2022 & 0 \\ k & 0 & 2 \end{pmatrix}$ 为正定矩阵,则 k 的取值范围是______.
- 3. 记全体正实数为 R^+ ,加法定义为 $a \oplus b = ab$,数量乘法定义为 $k \circ a = a^k$,则 其成为实数域上的线性空间。该线性空间中向量 5 的负向量是_______.
- 4. 设 3 阶对角阵 $A = \operatorname{diag}(1,2,3)$,则全体与 A 可交换的矩阵组成的线性空间的维数是 .

诚信关乎个人一生,公平竞争赢得尊重。

以下行为是严重作弊行为,	学校将给予留校察看或开除学籍处分:	1. 替他人考	试或由他人替考;2	2. 通讯工具作弊; 3	. 团伙作弊。

- 5. 设 σ 是8维线性空间V上的线性变换,如果其秩是3,则其零度是_____.
- 6. 在空间 $P[x]_3$ 中,设变换 σ 为 $f(x) \to f(x+1) f(x)$,则 σ 在基 $1, x, x^2$ 下的矩阵是 ______.
- 7. 设 4 阶矩阵 A 满足 $A^2 = 2A + 3E$,它的迹等于 4,则它的行列式等于_____.
- 8. 设 $V = R^3$, W 是方程 $x_1 3x_2 + 6x_3 = 0$ 的解空间,则 W^{\perp} 有一组基是
- 9. 设 σ 是线性空间 V 上的线性变换,如果 σ 可以对角化且它的特征多项式是 $f(x) = (x-1)^2(x+2)^3$,则 σ 的最小多项式_____.
- 10. 设 $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ 是实对称矩阵 A 的特征值,则下列结论正确的有___
- A. 矩阵 A 半正定,未必有 $\lambda_n \geq 0$. B. 矩阵 A 半正定,必定有 $\lambda_n \geq 0$.
- C. 矩阵 A 不定,未必有 $\lambda_n < 0$. D. 矩阵 A 不定,必定有 $\lambda_n < 0$.
- 三、(满分15分)

设二次型 $f(x, y, z) = 2x^2 + y^2 - 4xy - 4yz$.

- (1) 写出上述二次型的矩阵;
- (2) 求一正交变换把上述二次型化为标准型。

诚信关乎个人一生,公平竞争赢得尊重。 以下行为是严重作弊行为,学校将给予留校察看或开除学籍处分:1.替他人考试或由他人替考;2.通讯工具作弊;3.团伙作弊。
以下打刀足)至旧并行刀,于仅利用了田仅尔有以开协于相及刀:1. 日他八号枫以田他八日号,2. 则机工兴旧开,5. 团队旧开。
四、(满分 10 分)
设 V 为 n 维线性空间, V 中两个子空间 V_1, V_2 的维数之和大于 n , 证明 V_1, V_2
必含有非零的公共向量。

五、(满分 20 分)

(1) 在 P[x] 中,线性变换 A 和 B 分别定义如下

$$\mathbf{A}(f(x)) = f'(x), \quad \mathbf{B}(f(x)) = xf(x).$$

证明 $\mathbf{AB} - \mathbf{BA} = \mathbf{E}$, 其中 \mathbf{E} 表示 P[x] 上的恒等变换。

- (2) 设 A 和 B 是两个 n 阶方阵,证明 AB BA 的迹等于零。
- (3) 简要说明 (1) 与 (2) 的结论不矛盾。

以下行为是严重作弊行为,学校将给予留校察看或开除学籍处分: 1. 替他人考试或由他人替考; 2. 通讯工具作弊; 3. 团伙作弊。

六、(满分5分)

证明对称变换 σ 的不变子空间的正交补也是 σ 的不变子空间。