Exercises.

Solution to Question 1. Let
$$(\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3) = (\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix})$$
. Then

$$T(\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3) = (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3) \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

and

$$(\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3) = (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & -1 & 1 \end{bmatrix}.$$

So

$$T(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}) = T(\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & -1 & 1 \end{bmatrix}^{-1} = T(\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$
$$= (\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}) \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} = (\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}) \begin{bmatrix} 2 & 2 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$

Therefore,

$$[T]_{\mathcal{S} \leftarrow \mathcal{S}} = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$

Similarly,

$$T(\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}) = (\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}) \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

$$= (\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

$$= (\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}) \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}.$$

Therefore,

$$[T]_{\mathcal{B} \leftarrow \mathcal{B}} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}.$$

Solution to Question 2. We may check that for any $c_1, c_2 \in \mathbb{F}$ and $f, g \in V$,

$$T_{\alpha}(c_{1}f+c_{2}g)=(c_{1}f+c_{2}g)(\alpha)=c_{1}f(\alpha)+c_{2}g(\alpha)=c_{1}T_{\alpha}(f)+c_{2}T_{\alpha}(f).$$

So T_{α} is a linear transformation.

By definition,

$$ker(T_{\alpha})=\{f\in Fun(X,V): f(\alpha)=0\}.$$

We know T_{α} is surjective, because for any $\nu \in V$, there exists $f \in Fun(X,V)$ such that $f(\alpha) = \nu$. Hence, $Im(T_{\alpha}) = V$.

Now assume that $X = \{x_1, x_2, \dots, x_n\}$. Let T be a linear transformation defined by

$$T: Fun(X, V) \to \bigoplus_{i=1}^{n} V$$

$$f \mapsto (f(x_1), f(x_2), \dots, f(x_n)).$$

Claim: T is an isomorphism between vector spaces.

Reason: Since T is already a linear transformation, we only need to show that T is a bijection.

First of all, T is injective, because if f(x) = g(x) for all $x \in X$, then f = g.

Next, T is surjective: For any $(\nu_1, \nu_2, \dots, \nu_n) \in \bigoplus_{i=1}^n V$, there exists $f \in \text{Fun}(X, V)$ such that $f(x_i) = \nu_i$.

Therefore, we have proved that Fun(X, V) is isomorphic to $\bigoplus_{i=1}^{n} V$.

Hence,

$$\dim \operatorname{Fun}(X, V) = \dim \bigoplus_{i=1}^{n} V = n \dim V.$$

Because

$$\dim \operatorname{Im}(T_{\alpha}) = \dim V,$$

so

$$\dim \ker(T_\alpha) = \dim \operatorname{Fun}(X,V) - \dim \operatorname{Im}(T_\alpha) = (n-1)\dim V.$$

Solution to Question 3.

- (a) Because $d_i \circ d_{i+1} = 0$, so $im(d_{i+1}) \subseteq ker(d_i)$.
- (b) Since $\ker(T) \subseteq V$, f is the inclusion. g is defined by g(v) = T(v). Therefore, $\operatorname{im}(f) = \ker(T) = \ker(g)$. Also notice that f is injective, i.e. $\ker(f) = 0 = \operatorname{im}(0)$ and that $\operatorname{im}(g) = \operatorname{im}(T) = \ker(0)$. Hence this is an exact chain complex.
- (c) If the chain complex

$$0 \rightarrow V \xrightarrow{T} W \xrightarrow{S} U \rightarrow 0$$

is an exact sequence, then

$$ker(T) = im(0) = 0,$$

which means T is an inclusion. So

$$ker(S) = im(T) = V,$$

and

$$im(S) = ker(0) = U$$
.

Hence,

$$\dim W = \dim \ker(S) + \dim \operatorname{im}(S) = \dim V + \dim U.$$

(d) We want to show that if C is an exact sequence, then

$$\sum_{i=0}^{p} (-1)^{i} \dim V_{i} = 0.$$
 (1)

For p = 1, the exact sequence is

$$0 \to V_1 \xrightarrow{d_1} V_0 \to 0.$$

So d_1 both injective and surjective, i.e., $V_1 \simeq V_0$. Hence dim $V_1 = \dim V_0$. For p = 2, by part (c), ,

$$\dim V_2 - \dim V_1 + \dim V_0 = 0.$$

Now we assume for $p \le n - 1$, the equation (1) always holds. Now take

$$0 \to V_n \xrightarrow{d_n} V_{n-1} \cdots \to V_1 \xrightarrow{d_1} V_0 \to 0.$$

We may break it into two exact sequences

$$0 \rightarrow \ker(d_{n-2}) \rightarrow V_{n-2} \xrightarrow{d_{n-2}} V_{n-3} \rightarrow \cdots \rightarrow V_1 \xrightarrow{d_1} V_0$$

and

$$0 \rightarrow V_n \xrightarrow{d_n} V_{n-1} \xrightarrow{d_{n-1}} im(d_{n-1}) \rightarrow 0.$$

By induction hypothesis, we have

$$(-1)^{n-1}\dim\ker(d_{n-2})+\sum_{i=0}^{n-2}\dim V_i=0 \tag{2}$$

and

$$(-1)^2 \dim V_n + (-1) \dim V_{n-1} + \dim \operatorname{im}(d_{n-1}) = 0. \tag{3}$$

Notice that $im(d_{n-1}) = ker(d_{n-2})$, so by adding $(-1)^{n-2}$ (3) to (2), we have

$$\sum_{i=0}^{n} (-1)^{i} \dim V_{i} = 0.$$

This completes the induction step.

Solution to Question 4.

(a) For any $v \in V$, we want to prove that v = u + w such that $u \in \ker(T)$ and $w \in \ker(T - 1_V)$. In fact, let $u = (1_V - T)v$ and w = Tv. Because $T^2 - T = 0$, so

$$Tu = T \circ (1_V - T)v = 0_V v = 0.$$

and

$$(T - 1_V)w = (T - 1_V) \circ Tv = 0.$$

Hence, $u \in \ker(T)$, $w \in \ker(T - 1_V)$ and v = u + w. This implies $V = \ker(T) + \ker(T - 1_V)$. To prove that it is a direct sum, notice that if $v \in \ker(T) \cap \ker(T - 1_V)$, then Tv = 0 and $(T - 1_V)v = 0$, which implies v = 0. So $\ker(T) \cap \ker(T - 1_V) = \{0\}$.

(b) We only need to show that for any $v \in V$, $(T^2 - T)v = 0$. Because $V = \ker(T) + \ker(T - 1_V)$, so each $v \in V$ can be written as v = u + w with $u \in \ker(T)$ and $w \in \ker(T - 1_V)$. Therefore,

$$(T^2 - T)v = (T^2 - T)u + (T^2 - T)w = 0 + T \circ (T - 1_V)w = 0.$$

(c) Choose $V = \mathbb{R}^2$. Take T given by

$$T(\begin{pmatrix}1\\0\end{pmatrix})=\begin{pmatrix}0\\-1\end{pmatrix},\ T(\begin{pmatrix}0\\1\end{pmatrix})=\begin{pmatrix}1\\0\end{pmatrix}.$$

Then

$$T^2(\begin{pmatrix}1\\0\end{pmatrix})=T(\begin{pmatrix}0\\-1\end{pmatrix})=-\begin{pmatrix}1\\0\end{pmatrix}$$

and

$$T^2(\begin{pmatrix}0\\1\end{pmatrix})=T(\begin{pmatrix}1\\0\end{pmatrix})=-\begin{pmatrix}0\\1\end{pmatrix}.$$

Hence, $T^2 = -1_V$.

(d) If $T \circ T = 0_V$, then $im(T) \subseteq ker(T)$. By problem 3,

$$\dim V = \dim \ker(T) + \dim \operatorname{im}(T) \ge 2 \dim \operatorname{im}(T) = 2\operatorname{rank}(T).$$

Extended Glossary.

For any vector spaces V and W over field \mathbb{F} , we define the **the external direct product** $V \times W$ as the set of ordered pairs (v, w) with $v \in V$ and $w \in W$. We also define + on $V \times W$ by

$$(v_1, w_1) + (v_2, w_2) = (v_1 + v_2, w_1 + w_2)$$

and the scalar multiplication

$$c(v, w) = (cv, cw)$$
 for any $c \in \mathbb{F}$,

so that $V \times W$ is a vector space.

Now assume that V and W are both finite dimensional vector spaces, and that $(v_1, ..., v_n)$ is a basis for V, while $(w_1, ..., w_m)$ is basis for W. Then

$$((u_1, 0), \dots, (u_n, 0), (0, w_1), \dots, (0, w_n))$$

is a basis for $V \times W$. Hence, $\dim V \times W = \dim V + \dim W$.

Theorem 1. *There exists a short exact sequence*

$$0 \to V \xrightarrow{i_V} V \times W \xrightarrow{p_W} W \to 0. \tag{4}$$

Proof. Define i_V by $i_V(v) = (v, 0)$ and p_W by $p_W(v, w) = w$. Then we may check that

- i_V is injective, so $ker(i_V) = 0$.
- p_W is surjective, so $im(p_W) = W$.
- $im(i_V) = ker(p_W)$. This is because both of them are equal to

$$\{(v,0)\in V\times W:v\in V\}.$$

Therefore, (4) is a short exact sequence.

Use the notation as in Theorem 1. Because $V \simeq i_V(V)$ as vector spaces, so we may just consider V as a subspace of $V \times W$. Similarly, W may be considered as a subspace of $V \times W$, too. Then we may talk about V + W and $V \cap W$ as subspaces of $V \times W$. It is easy to check that $V \cap W = (0,0)$.

Theorem 2. As subspaces of $V \times W$,

$$V\times W\simeq V\oplus W.$$

Proof. Define a map

$$h: V \times W \rightarrow V + W,$$

 $(v, w) \mapsto v + w.$

This map is a linear map. Clearly, it is surjective.

To prove it is also injective, notice that as subspaces of $V \times W$, $V \cap W = \{(0,0)\}$. If h(v,w) = v + w = 0, then v = 0 and w = 0. So h is injective.

Hence,
$$V \times W \simeq V + W = V \oplus W$$
.