09-18-00

PTO/SB/05 (2/98)

Aprroved for use through 09/30/00. OMB 0651-0032

Panerwo	rk Reduction Act of 1995, no person	s are required to respond to a coll	ection of infor	r mation unless it	dientand Trad	d OMB contr	ol number	PARTMENT OF COMI	MERCE		
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Reduction Act of 1995, no persons are required to respond to a collection of information of the collection of the collec										
= :	PATENT APPLICATION										
So.		THE A NICE ATTORNALY				ned Inventor or Application Identifier Corbin, David R. ACILLUS THURINGIENSIS CHROMOSOMAL GENOME SEQUENCES AND					
ally for ne	(Apply for new nonprovisional applications under 37 CFR 1 53 (b))			ES THEREOF	(1101121313)	GENORE SEQUENCES AND					
₽ ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩			Express M	Iail Label No.	EK016827222US				L _O		
APPLICATION ELEMENTS											
See MBED				ADDDE	00 TO			ommissioner for Pate			
See MPEP chapter 600 concerning utility patent application contents				ADDRE				t Application Don, DC 20231			
						wa	sinington	, DC 20231	900		
	e Transmittal Form (Form PTO	•		6.	Microf	iche Compi	uter Prog	ram (Appendix)	Ö		
(Sul	(Submit an original and a duplicate for fee processing)					7. Nucleotide and/or Amino Acid Sequence Submission					
2. X Spe	cification	[Total Pages 3	12]	(if applicable, all necessary)							
(pre	ferred arrangement set forth be	low)		a. X Computer Readable Copy							
- De	escriptive title of the Invention			b. Paper Copy (identical to computer copy)							
I -	oss References to Related Appli				=		•	. 177			
ı	atement Regarding Fed sponsor			а	ı ;	Statement v	erifying	identity of above cop	ies		
l .	ference to Microfiche Appendix	K		ACCO	ACCOMPANYING APPLICATION PARTS						
	ckground of the Invention			8.							
	ief Summary of the Invention ief Description of the Drawings	(if filed)		0.	Assign	ппст тарс	13 (COVCI	succe document(s))			
E .	tailed Description	(II IIIeu)		9.	37 CF	R 3.73(b) S	tatement	Power of	î		
. I.m.	aims				(when	there is an as	signee)	Attorney			
- Al	ostract of the Disclosure			10.	Englis	sh Translati	on Docur	ment (if applicable	e)		
	wing(s) (35 USC 113)	[Total Sheets		11.	Inform	nation Disc	losure	Copies o	f IDS		
4. Oath or De	eclaration	[Total Pages	1	ľ	Staten	nent (IDS)	PTO-1449				
a.				12.	Prelin	ninary Ame	ndment				
a.	Newly executed (original or co	opy)		13.		•					
b.	b. Copy from a prior application (37 CFR 1.63(d))					-		MPEP 503) (Two)			
	(for continuation/divisional with Box 17 completed					i be specifica Il Entity	иу нетіге	a) Statement filed in pr	mi o m		
[Note Box 5 below]				14.		nent(s)	نـــا	application, status st			
					o accoun	ileni(B)		proper and desired			
					15. Certified Copy of Priority Document (s)						
Signed statement attached deleting inventor(s) named in the prior application, see 37 CFR 1.63(d)(2) and 1.33(b).				(If foreign priority is claimed)							
5. Incorporation By Reference (useable if Box 4b is checked)				16.	16. Other:						
The entire disclosure of the prior application, from which a copy of the											
oath	or declaration is supplied under	Box 4b, is considered as being									
	e disclosure of the accompanyin	g application and is hereby		*NOTE FOR	ITEMS 1 and 14	IN ORDER T	O BE ENT	ITLED TO PAY SMALL E	NTItY		
meor	incorporated by reference therein.			FEES, A SMALL ENTITY STATEMENT IS REQUIRED (37 C F R §1 27), EXCEP ONE FILED IN A PRIOR APPLICATION IS RELIED UPON (37 C.F R §1 28)							
If a CON	TINUING APPLICATION,	check appropriate box and	cumply the re			LICATION	, KEELED (OF ON (57 C.F R §1 28)			
	i		nuation-in-pa	ırt (ClP)	of prior app	plication No):				
Prior A	Prior Application Information: Examıner: Group/Art Unit:										
		18. CORRESPO	ONDENCE .	ADDRESS							
Customer Number or Bar Code Label Or X Correspondence address below											
Customer Number or Bar Code Label (Insert Customer No. or attach Bar Code Label here)											
NAME	VAME Timothy K. Ball, PhD										
ADDRESS											
CITY	CITY St. Louis STATE		Missouri		ZIP CODE			63167			
COUNTRY US TELEPHONE		TELEPHONE	(314) 7	37-7387	FAX (31			(314) 737-6047			
Name (Print/Typ	pe) Timothy K. Ba	all, PhD	Ī	Registration	No.			42287			
Signature Timothy K. Ball, 12/2				<u> </u>		Date:	S	ept. 15, 2001	<u></u>		

Burden Hour Statement This form is estimated to take 2 hours to completed Time will vary depending pon the needs of the individual cases. Any comments on the amount of time you required to completed this form should be sent to the Office of Assistance Quality and Enhancement Division, Patent and Trademark Office, Washington, DC 20231, and to the Office of Information and Regulatory Affairs, Office of Management and Budget (Project 0651-0037), Washington, DC 20503. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS, SEND TO Assistant Commissioner for Patents, Washington, DC 20231

Sending Se

PTO/SB/17 (6/99)

Approved for use through 09/30/2000. OMB 0651-0032

Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number

FEE TRANS	MITTAL	Complete if Known						
FEL INANS		Application Number		O.				
for FY 1	999	Filing Date		⁴ ⊘ 1				
Patent fees are subject to a	nnual revision.	First Named Inventor	David R. Corbin					
Small Entity payments <u>must</u> be supported otherwise large entity fees must be paid.	l by a small entity statement,	Examiner Name	To Be Assigned	29				
See 37 C.F.R. §§ 1.2	and 1.28.	Group / Art Unit		80				
TOTAL AMOUNT OF PAYMENT	(\$) 1,906.00	Attorney Docket No.	38-21(51376)B	j. j.				

METHOD OF PAYMENT (check one)	FEE CALCULATION (continued)								
1. The Commissioner is hereby authorized to charge indicated fees and credit any over payments to	3. ADDITIONAL FEES Large Entity Small Entity								
indicated fees and credit any over payments to	Large Fee	Entity Fee	Smal Fee	I Entity Fee		escription		Fee Paid	
Deposit Account 13-4125	Code	,	Code	,		•	1	0.00	
Number 13-4123	105	130	205	65	Surcharge - late filing fee or oath Surcharge - late provisional filing fee or			0.00	
Deposit	127	50	227	25	Surcharge - late pr cover sheet	ovisionai tiiii	ig iee or	0.00	
Account Name	139	130	139	120	Non-English specif	0.00			
Charge Any Additional Fee Required		2,520		2,520	• .	For filing a request for reexamination			
Under 37 CFR §§ 1.16 and 1.17		920*		920*	Requesting publica	0.00			
2. Payment Enclosed:		Examiner action							
Check Money Other	113 1	113 1,840* 113 1,840* Requesting publication of SIR after Examiner action					aner	0.00	
FEE CALCULATION	115	110	215	55	Extension for reply	within first r	nonth	0.00	
	116	380	216	190	Extension for reply	within seco	0.00		
1. BASIC FILING FEE Large Entity Small Entity	117	870	217	435	Extension for reply	within third	month	0.00	
Fee Fee Fee Fee Description	118 1	1,360	218	680	Extension for reply			0.00	
σοαε (ψ) σοαε (ψ)	128 1	1,850	228	925	Extension for reply	y within fifth r	month	0.00	
101 760 201 380 Utility filing fee 690.00 106 310 206 155 Design filing fee	119	300	219	150	Notice of Appeal		1	0.00	
107 480 207 240 Plant filing fee	120	300	220	150	Filing a brief in sup		ppeai	0.00	
108 760 208 380 Reissue filing fee	121	260	221		Request for oral h Petition to institute	_	nroceeding	0.00	
114 150 214 75 Provisional filing fee	138 1	•		1,510	Petition to revive -			0.00	
SUBTOTAL (1) (\$) 690.00		110	240	55	Petition to revive -			0.00	
	1	,	241		Utility issue fee (or	•	0.00		
2. EXTRA CLAIM FEES Fee from	142 · 143	430	242 243	215	Design issue fee		0.00		
Extra Claims below Fee Paid Total Claims 50 -20** = 30 × 18 = 540	144	580	244	290	Plant issue fee			0.00	
Independent 10 - 3** - 7 x 78 - 546	122	130		130	Petitions to the Co	ommissioner			
Claims 10 - 7 × 70 - 1340	123	50	123	50	Petitions related to	o provisional	applications	130.00	
**or number previously paid, if greater; For Reissues, see below	126	240	126	240	Submission of Info	ormation Dis	closure Stmt	0.00	
Large Entity Small Entity	581	40	581	40	Recording each p	0.00			
Fee Fee Fee Fee Description Code (\$) Code (\$)					property (times nu			0.00	
103 18 203 9 Claims in excess of 20	146	760	246	380	Filing a submission (37 CFR § 1.129)		rejection	0.00	
102 78 202 39 Independent claims in excess of 3 104 260 204 130 Multiple dependent claim, if not paid	149	760	249	380	For each addition			0.00	
104 260 204 130 Multiple dependent claim, if not paid 109 78 209 39 ** Reissue independent claims					examined (37 CF	M 8 1 128(b)	,		
over original patent	Other f	fee (sp	ecify)	·				0.00	
110 18 210 9 ** Reissue claims in excess of 20 and over original patent	Other f	Other fee (specify)							
SUBTOTAL (2) (\$) 1,086.00	Reduced by Basic Filing Fee Paid SUBTOTAL (3) (\$) 130.00						0.00		
SUBMITTED BY						Complete (#	f applicable)		
Name (Print/Type) Jian S. Zhou	Registration No. (Attorney/Agent) 41,422 Telephone 314-69			314-694-	8908				
Signature Signature		MILLIAN	cyrnge	,,, ,	-,	Date	Sept. 1		

Burden Hour Statement: This form is estimated to take 0.2 hours to complete Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS SEND TO Assistant Commissioner for Patents, Washington, DC 20231.

Signature

Inventors: David R. Corbin et al.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of:

David R. Corbin et al.

Appln. No.: To Be Assigned

Filed:

For:

Bacullus thuringiensis Chromosomal

Genome Sequences and Uses thereof

Art Unit:

To Be Assigned

Examiner:

To Be Assigned

Atty. Docket: 38-21(51376)B

I hereby verify this transmittal together with the patent application referred to below is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.10 Express Mail Label No. EK016827222US on the date indicated and is addressed to: Commissioner for Patents, Washington, D.C. 20231

Jian S. Zhou

Registration No. 41, 422

Date: Sept. 15, 2000

TRANSMITTAL OF NON-PROVISIONAL PATENT APPLICATION

Commissioner for Patents Washington, D.C. 20231

Box Patent Application

Sir:

Transmitted herewith for filing under 37 C.F.R. §1.53(b) is the complete patent application of:

BACILLUS THURINGIENSIS CHROMOSOMAL GENOME SEQUENCES AND USES THEREOF

Inventors:

David R. CORBIN

Thomas M. Malvar

Hridayabhiranjan Shukla

The following documents are forwarded herewith for appropriate action by the U.S. Patent and Trademark Office:

- Utility Patent Application Transmittal (PTO/SB/05); 1.
- Form PTO-1082 (in duplicate); 2.

3. U.S. Utility Patent Application entitled:

BACILLUS THURINGIENSIS CHROMOSOMAL GENOME SEQUENCES AND USES THEREOF

and naming as inventors:

David R. CORBIN, Thomas M. MALVAR, and Hridayabhiranjan SHUKLA the application consisting of:

- a. A specification containing:
 - (i) 304 pages of a description prior to the claims;
 - (ii) ______7 pages of claims (50 claims); and
 - (iii) a one (1) page abstract;
- 4. A CD-ROM containing the Sequence Listing;
- 5. Petition to Suspend Sequence Rules (in duplicate); and
- 6. Two (2) return postcards.

It is respectfully requested that the two attached prepaid postcards be stamped with the filing date and unofficial application number and returned as soon as possible.

Respectfully submitted,

Jamshy &

Timothy K. Ball, PhD Esq (Reg. No. 42,287)

Jian S. Zhou, PhD (Reg. No. 41,422)

Enclosures

Date: Sept. 15, 2000

Patent Department, E2NA Monsanto Company St. Louis, MO 63167

Tel: 636-737-7387 Fax: 636-737-6047

APPLICATION FOR PATENT

FOR

${\it BACILLUS\ THURINGIENSIS\ CHROMOSOMAL\ GENOME\ SEQUENCES\ AND\ USES}$ ${\it THEREOF}$

by

David R. Corbin, Thomas M. Malvar, and Hridayabhiranjan Shukla

I hereby verify the above-identified patent application is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.10 Express Mail Label No. EK016827222US on the date indicated and is addressed to:

Commissioner for Patents, Washington, D.C. 20231

Jian S. Zhou

Registration No. 41, 422

Date:

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority under 35 U.S.C §119(e) of U.S. Provisional Application Serial No. 60/154,678 filed on September 17, 1999, the entire content of which is incorporated herein by reference.

5

10

15

20

25

30

FIELD OF THE INVENTION

The present invention relates to nucleic acid sequences from *Bacillus thuringiensis* and, in particular, to chromosomal genomic DNA sequences. The invention encompasses nucleic acid molecules present in non-coding regions as well as nucleic acid molecules that encode proteins and fragments of proteins. Nucleic acid sequences that encode proteins and/or enzymes and homologues and fragments thereof are encompassed by the invention including but not limited to insect inhibitory proteins, proteins capable of conferring antibiotic resistance, microbial inhibitory proteins including bactericidal, bacteriostatic, fungicidal, and fungistatic proteins, polyketide synthases, transposons and mobile genetic elements and their corresponding transposases, excisases and integrases, phage and phage particle proteins, other useful protein homologues, ribosomal RNA (rRNA), and transfer RNA (tRNA). In addition, proteins and fragments thereof so encoded and antibodies capable of binding the proteins are encompassed by the present invention. The invention also relates to methods of using the disclosed nucleic acid molecules, proteins, fragments of proteins, and antibodies, for example, for gene identification and analysis, preparation of constructs, transformation of cells with nucleotide compositions disclosed herein to produce *Bacillus thuringiensis* proteins or fragments thereof, in particular novel insect inhibitory, bactericidal, fungicidal and nematicidal proteins.

BACKGROUND OF THE INVENTION

Bacillus thuringiensis is a spore-forming Gram-positive bacterium. During sporulation, B. thuringiensis produces proteinaceous inclusions which are composed of proteins known as insecticidal crystal proteins (ICPs), Cry proteins, or delta-endotoxins. These proteins are toxic to a variety of insect species including orders Lepidoptera, Coleoptera, Diptera, Hemoptera, Hymenoptera, Orthoptera, and Mallophaga and to nematodes, mites, and protozoa (Beegle and Yamamoto, Can. Entomol. 124:587-616; Feitelson, Advanced Engineered Pesticides (L. Kim, ed.), Marcel Dekker, Inc., New York (1993), pp. 63-71; Feitelson, et al., Bio/Technology 10:271-275; U.S. Patent No. 4,948,734 (1990)). Due to their high specificity for particular insect pests and their safety for man and the environment, ICPs have been used as biopesticides for the last three decades. Using molecular genetic techniques, numerous delta-endotoxin

half the the the tree con

THE HIM AM

1,71

13 1,3 genes have been isolated and their DNA sequences determined. The cloning and sequencing of a number of δ-endotoxin genes from a variety of B. thuringiensis strains has been described and are summarized by Schnepf et al. (Microbiol. Mol. Biol. Rev. 62:775-806, Bacillus thuringiensis And Its Pesticidal Crystal Proteins, 1998). The nomenclature and appearance of newly identified genes is summarized and regularly updated at http://www.biols.susx.ac.uk/Home/Neil_Crickmore/Bt/. These genes have been used to develop certain genetically engineered B. thuringiensis products that are in commercial use. Recent developments have seen new δ-endotoxin delivery systems developed, including genetically engineered plants that contain and express δ -endotoxin genes. Bacillus thuringiensis is a key source of genes, which when modified can be used for transgenic expression to provide pest resistance in plants.

5

15

20

25

30

B. thuringiensis strains are classified into subspecies or varieties, based on biochemical and serological criteria (de Barjac, Entomophaga 7: 5-61 (1962); de Barjac, Proceedings of the IIIrd International Colloquium on Invertebrate Pathology (C.C. Payne and H.D. Burges, eds.), Society for Insect Pathology, U.K., 451-453 (1982)). Each subspecies may produce one or several insecticidal protein toxins. To date, approximately 172 δ-endotoxins belonging to 28 classes have been identified. There is also a nonprotein toxin, the β -exotoxin, secreted by some B. thuringiensis strains. This toxin, which is assayed on house fly larvae (Sêbesta et al., "Thuringiensin, the β -exotoxin of Bacillus thuringiensis," in W.H. Burgess (ed.), Microbial Control of Pests and Plant Diseases, 1970-1980, Academic Press, Inc., New York, pp. 249-281 (1981)), is not as selective as the δ -endotoxins.

Extensive studies have been carried out with B. thuringiensis subspecies that produce proteinaceous inclusions during sporulation. The inclusions are often bipyramidal, but some are cuboidal or multifaceted, and there is a wide variety of other morphologies. Some strains contain more than one type of inclusion in each cell. These inclusions are present within the mother cell adjacent to the spore, but in a few subspecies, they are localized within the exosporium (Aronson et al., Bacteriol. Rev. 40:360-402 (1976)). Inclusions are released, as is the spore, upon cell lysis.

Bacillus strains can have a chromosomal genome size of 2.4 to 5.7 Mbp (Carlson, et al., Appl. Environ. Microbiol. 60: 1719-1725 (1994)). Physical maps of chromosomes of two B. thuringiensis strains, B. thuringiensis subsp. Berliner 1715 and B. thuringiensis subsp. Thuringiensis HD2, have been constructed and are estimated to be between 5.4 and 5.7 Mbp (Carlson, et al., Microbiol. 142: 1625-1634 (1996); Carlson and Kolstø, J. Bacteriol. 175: 1053-1060 (1993)). The total genomes of each of these two strains consist of one or more chromosomes, and a more variable component comprised of extrachromosomal elements (Carlson and Kolstø, Mol. Microbiol. 13:161-169 (1994)).

10

15

20

25

30

Most *B. thuringiensis* isolates have several extrachromosomal elements, some of them circular plasmids and others linear (Carlson, *et al.*, *Microbiol. 60*: 1719-1725 (1994)). In general, crystal-protein genes are localized on large plasmids (*ca.* 40 to 200 Mda) of *B. thuringiensis* (Gonzalez, *et al.*, *Plasmid 5*: 351-365 (1981); Carlton and Gonzalez, Molecular Biology of Microbial Differentiation, American Society for Microbiology, Washington, D.C. 246-252 (1985), Kronstad, et al., J Bacteriol. 154: 419-428 (1983)), and in some cases, more than one gene is present on a given plasmid (Aronson *et al.*, *Bacteriol. Rev. 40*:360-402 (1976); Carlton *et al.*, "The genetics and molecular biology of *Bacillus thuringiensis*," *in* D.A. Dubnau (ed.), *The Molecular Biology of the Bacilli*, Vol. II, Academic Press, Inc., New York, pp. 211-249 (1985)). However, chromosomal crystal-protein genes have been reported in some *B. thuringiensis* strains (Carlson and Kolstø, J. Bacteriol. 175: 1053-1060 (1993), Klier, et al., EMBO J 1: 791-799 (1982), Kronstad, et al., J Bacteriol. 154: 419-428 (1983)).

Bacillus thuringiensis strains often contain multiple epigenetic elements which are known to harbor genes expressing vegetative insecticidal proteins (VIP's) and Bt crystalline insecticidal and nematocidal proteins. It is believed that many other Bt insecticidal / nematocidal genes are present within these sequences, some of which may only be expressed under conditions which cannot be artificially simulated, some of which may be cryptic, and some of which may be actively expressed but which have not been previously identified due to their limited availability as a result of very low levels of expression. Identification of whole or substantial portions of DNA sequences of individual plasmids would greatly facilitate identification of genes encoding novel insect inhibitory proteins. However, when one tries to isolate and purify plasmid DNA of a B. thuringiensis species for constructing genomic DNA libraries used in sequencing, it would be difficult to eliminate the contamination of chromosomal DNA. Such contamination would complicate greatly the sequencing effort of individual plasmids and subsequently hinder construction of genetic maps of individual plasmids of the B. thuringiensis species. Thus, it would be desirable to generate the complete DNA sequence of the chromosomal genome exclusive of epigenetic sequences of a B. thuringiensis species, because the complete DNA sequence of the chromosome could be used as a background to significantly minimize the interference of chromosomal DNA sequences in identification of whole or a substantial portion of individual plasmids and of novel genes encoding insect inhibitory proteins.

Furthermore, although it is unexpected that the complete DNA sequence of the *Bacillus* thuringiensis chromosomal genome exclusive of epigenetic sequences would provide a substantial number of Bt crystalline insecticidal / nematocidal and VIP genes for second generation insect / pest control in crop species, comparison of the open reading frames present within the *Bacillus thuringiensis* chromosomal genome with other bacterial genome sequences, in particular other *Bacillus* species

10

15

20

25

30

genomic sequences would allow the subtraction of common sequences and thus the identification of sequences novel and unique to *Bacillus thuringiensis*, and which may play a role in the regulation of expression or activity of genes encoding insecticidal proteins, and may also provide a plethora of useful genes for future insect resistance management technologies and applications. Therefore, it is advantageous to generate the complete DNA sequence of the chromosomal genome exclusive of epigenetic sequences of a *B. thuringiensis* species.

Chromosomal genome sequence information from *B. thuringiensis* allows comparisons of those sequences with sequences from other *B. thuringiensis* strains as well as comparisons with DNA sequences from other organisms, including plants, mammals such as humans, bacteria, and fungi such as yeasts. In addition, genome sequencing and mapping provides increased opportunities for identification and isolation of agents of commercial interest, as well as insight into mechanisms of genome interactions.

SUMMARY OF THE INVENTION

The present invention provides an isolated and purified nucleic acid molecule having a first nucleotide sequence, wherein: (1) the first nucleotide sequence hybridizes under stringent conditions to a second nucleotide sequence selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 8283 or complement thereof, wherein the hybridizing portion of the second nucleotide sequence is at least 50 nucleotides in length; (2) the first nucleotide sequence is a portion of third nucleotide sequence selected from the group consisting of SEQ ID NO:1 through SEQ ID NO: 8283; or (3) the first nucleotide sequence is the complement of (1) or (2).

In a preferred embodiment, the hybridizing portion of the second nucleotide sequence is at least 100 nucleotides in length. In a more preferred embodiment, the hybridizing portion of the second nucleotide sequence is at least 200 nucleotides in length. In a further more preferred embodiment, the hybridizing portion of the second nucleotide sequence encodes any polypeptide or protein or set forth in Table 1.

The present invention also provides an isolated and purified nucleic acid molecule comprising a nucleotide sequence, wherein: (1) the nucleotide sequence encodes any polypeptide or protein set forth in Table 1; or (2) the nucleotide sequence is the complement of (1).

The present invention, in another aspect, provides a substantially purified polypeptide or protein comprising an amino acid sequence, wherein the amino acid sequence is defined as follows: (1) the amino acid sequence is encoded by a first nucleotide sequence which specifically hybridizes to the complement of a second nucleotide sequence selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 8283; or (2) the amino acid sequence is encoded by a third nucleotide sequence

10

15

20

25

30

that is at least 50% identical to a portion of the complement of a sequence selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 8283. In alternative embodiments, the above described third nucleotide sequence is at least 55% identical, at least 60% identical, at least 65% identical, at least 70% identical, at least 80% identical, at least 85% identical, at least 90% identical, or at least 95% identical to a portion of a sequence selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 8283; and, the above described third nucleotide sequence is identical to a portion of a sequence selected from SEQ ID NO: 1 through SEQ ID NO: 8283.

The present invention also provides a recombinant construct comprising: (A) a promoter region which functions in a host cell to cause the production of an mRNA molecule; which is operably linked to (B) a structural nucleotide sequence, wherein the structural nucleotide sequence encodes a polypeptide or protein set forth in Table 1; which is operably linked to (C) a 3' non-translated sequence that functions in said cell to cause termination of transcription.

The present invention also provides a recombinant construct comprising: (A) a promoter region which functions in a host cell to cause the production of an mRNA molecule wherein the promoter region is selected from the group consisting of promoter sequences located within SEQ ID NO: 1 through SEQ ID NO: 8283 or complements thereof; which is linked to (B) a structural nucleotide sequence encoding a polypeptide; which is linked to (C) a 3' non-translated sequence that functions in said cell to cause termination of transcription.

The present invention also provides a transformed cell having an exogenous nucleic acid molecule which comprises: (A) a promoter region which functions in said cell to cause the production of an mRNA molecule; which is operably linked to (B) a structural nucleic acid molecule, wherein the structural nucleotide encodes any polypeptide or protein set forth in Table 1; which is operably linked to (C) a 3' non-translated sequence that functions in said cell to cause termination of transcription.

The present invention also provides a transformed cell having an exogenous nucleic acid molecule which comprises: (A) a promoter region which functions in said cell to cause the production of an mRNA molecule wherein the promoter region is selected from the group consisting of promoter sequences located within SEQ ID NO: 1 through SEQ ID NO: 8283 or complements thereof; which is operably linked to (B) a structural nucleotide sequence encoding a polypeptide; which is operably linked to (C) a 3' non-translated sequence that functions in said cell to cause termination of transcription.

The present invention also provides a plant cell, a mammalian cell, a bacterial cell, an algal cell, an insect cell and a fungal cell transformed with an isolated nucleic acid molecule of the present invention.

10

15

20

25

30

The invention also provides isolated nucleic acid molecules comprising nucleotide sequences encoding polypeptides or proteins exhibiting insect inhibitory activity, wherein said activity is manifested by inhibiting the growth or development of, or contributing substantially to, or causing the death of a Coleopteran, a Dipteran, a Lepidopteran, a Hemipteran, a Hymenopteran, or a sucking and piercing insect or insect larvae thereof. Also provided are nucleotide sequences encoding novel proteins comprising polypeptides which augment the activity of polypeptides exhibiting insect inhibitory activity when fed to Coleopteran, Dipteran, Lepidopteran, Hemipteran, Hymenopteran, or sucking and piercing insects or insect larvae thereof.

The present invention also provides a method for using insect inhibitory proteins for controlling target insect pests, i.e. also known as insect pest control.

The present invention also provides a computer readable medium having recorded thereon one or more nucleotide sequences, wherein each of the nucleotide sequences is selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 8283 or complements thereof.

The present invention also provides a computer readable medium having recorded thereon one or more of the nucleotide sequences encoding a protein or fragment thereof set forth in Table 1.

The present invention also provides a method for using the computer media of the present invention in isolating/identifying nucleic acids encoding insect inhibitory proteins, or proteins involved in biosynthesis of antibiotics.

The present invention also provides a method for identifying one or more genes encoding insect inhibitory proteins in the sequences of one or more plasmids of a *Bacillus* thuringiensis, wherein the method of the present invention comprises the steps of: a) isolating and purifying plasmid DNA; b) constructing a DNA library from the isolated and purified plasmid DNA; c) sequencing the DNA library to obtain a set of plasmid DNA sequences; d) comparing the set of DNA sequences with a set of chromosomal DNA sequences, wherein the set of chromosomal DNA sequences comprises the group consisting of SEQ ID No: 1 through SEQ ID No: 8283; e) identify common sequences, which are identified both in the set of plasmid DNA sequences and in the set of chromosomal DNA sequences; f) subtracting the common sequences from the set of plasmid DNA sequences to obtain a subtracted set of plasmid DNA sequences; g) assembling the subtracted set of DNA sequences to obtain contigs and sequence assemblies; h) determining open reading frames in the contigs and sequence assemblies; and h) identifying one or more genes encoding insect inhibitory proteins in the sequences of one or more plasmids of said *Bacillus* thuringiensis.

The present invention also provides a method for identifying plasmid DNA sequences of a Bacillus species, the method comprising the steps of a) identifying a Bacillus species strain which does THE RESERVE SEED OF THE PERSON OF THE PERSON

5

10

15

20

25

30

not contain plasmid DNA; b) generating a library of chromosomal genomic DNA from said Bacillus species strain which does not contain plasmid DNA; c) obtaining the nucleotide sequence of said chromosomal genomic DNA; d) identifying a Bacillus species strain which contains plasmid DNA; e) generating a library of said Bacillus species plasmid DNA; f) obtaining the nucleotide sequence of said plasmid DNA; g) subtracting any common sequences identified in the plasmid DNA which are also identified in the chromosomal genomic DNA; and h) constructing a contig sequence or sequence assemblies of said plasmid DNA, wherein said contig sequence or sequence assemblies comprise the plasmid DNA sequence of said Bacillus species.

DETAILED DESCRIPTION OF THE INVENTION

Agents of the Present Invention

Nucleic Acid Molecules

One aspect of the present invention relates to an isolated nucleic acid molecule having a first nucleotide sequence, wherein: (1) the first nucleotide sequence hybridizes under stringent conditions to a second nucleotide sequence selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 8283 or complements thereof, wherein the hybridizing portion of the second nucleotide sequence is at least 50 nucleotides in length; (2) the first nucleotide sequence is a portion of any sequence selected from the group consisting of SEQ ID NO:1 through SEQ ID NO: 8283; or (3) the first nucleotide sequence is the complement of (1) or (2).

The term "nucleic acid" means a single or double-stranded polymer of deoxyribonucleotide or ribonucleotide bases read from the 5' to the 3' end. Nucleic acids may also optionally contain synthetic, non-natural or altered nucleotide bases that permit correct read through by a polymerase and do not alter expression of a polypeptide encoded by that nucleic acid.

The term "an isolated nucleic acid" refers to a nucleic acid that is no longer accompanied by some of materials with which it is associated in its natural state or to a nucleic acid the structure of which is not identical to that of any of naturally occurring nucleic acid. Examples of an isolated nucleic acid include but are not limited to: (1) DNAs which have the sequence of part of a naturally occurring genomic DNA molecules but are not flanked by two coding sequences that flank that part of the molecule in the genome of the organism in which it naturally occurs; (2) a nucleic acid incorporated into a vector or into the genomic DNA of a prokaryote or eukaryote in a manner such that the resulting molecule is not identical to any naturally occurring vector or genomic DNA; (3) a separate molecule such as a cDNA, a genomic fragment, a fragment produced by polymerase chain reaction (PCR), or a restriction fragment;

the territory and the territory to the territory and the territory

5

10

15

20

25

30

(4) recombinant DNAs; and (5) synthetic DNAs. An isolated nucleic acid may also be comprised of one or more segments of cDNA, genomic DNA or synthetic DNA.

It is also contemplated by the inventors that the isolated nucleic acids of the present invention may also include known types of modifications, for example, labels which are known in the art, methylation, "caps", substitution of one or more of the naturally occurring nucleotides with an analog. Other known modifications include inter-nucleotide modifications, for example, those with uncharged linkages (methyl phosphonates, phosphotriesters, phosphoamidates, carbamates, etc.) and with charged linkages (phosphorothioates, phosphorodithioates, etc.), those containing pendant moieties, such as, proteins (including nucleases, toxins, antibodies, signal peptides, poly-L-lysine, etc.), those with intercalators (acridine, psoralen, etc.), those containing chelators (metals, radioactive metals, boron, oxidative metals, etc.), those containing alkylators, and those with modified linkages.

The term "nucleotide sequence" refers to both the sense and antisense strands of a nucleic acid as either individual single strands or in the duplex. It includes, but is not limited to, self-replicating plasmids, chromosomal sequences, and infectious polymers of DNA or RNA.

A nucleotide sequence is said to be the "complement" of another nucleotide sequence if they exhibit complete complementarity. As used herein, molecules are said to exhibit "complete complementarity" when every nucleotide of one of the sequences is complementary to a nucleotide of the other.

A "coding sequence" or "structural nucleotide sequence" is a nucleotide sequence which is translated into a polypeptide, usually via mRNA, when placed under the control of appropriate regulatory sequences. The boundaries of the coding sequence are determined by a translation start codon at the 5'-terminus and a translation stop codon at the 3'-terminus. A coding sequence can include, but is not limited to, genomic DNA, cDNA, and recombinant polynucleotide sequences.

The term "recombinant DNAs" refers to DNAs that contains a genetically engineered modification through manipulation via mutagenesis, restriction enzymes, and the like.

The term "synthetic DNAs" refers to DNAs assembled from oligonucleotide building blocks that are chemically synthesized using procedures known to those skilled in the art. These building blocks are ligated and annealed to form DNA segments which are then enzymatically assembled to construct the entire DNA. "Chemically synthesized", as related to a sequence of DNA, means that the component nucleotides were assembled in vitro. Manual chemical synthesis of DNA may be accomplished using well established procedures, or automated chemical synthesis can be performed using one of a number of commercially available machines.

10

15

20

25

30

The term "stringent conditions" or "stringent hybridization conditions" refers to conditions under which a probe will hybridize to its target sequence, to a detectable greater degree than other sequences (e.g., at least 2 fold over background). Stringent conditions are sequence dependent and will be different in different circumstances. By controlling the stringency of the hybridization and/or washing conditions, target sequences can be identified which are 100% complementary to the probe (homologous probing). Alternatively, stringency conditions can be adjusted to allow some mismatching in sequences so that lower degrees of complementary to the probe are detected (heterologous probing).

Typically, stringent conditions will be those in which the salt concentration is less than about 1.5 M monovalent cation (e.g., Na⁺), typically about 0.01 to 1.0 M monovalent cation concentration at pH 7.0 to 8.3 and the temperature is at least about 30°C for short probes (e.g., 10 to 50 nucleotides) and at least about 60°C for long probes (e.g., greater than 50 nucleotides). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide. Exemplary low stringency conditions include hybridization with a buffer solution of 30 to 35% formamide, 1 M NaCl, 1% SDS (sodium dodecyl sulfate) at 37°C, and a wash in 1X to 2X SSC (20X SSC = 3.0 M NaCl/0.3 M trisodium citrate) at 50 to 55°C. Exemplary moderate stringency conditions include hybridization in 40 to 45% formamide, 1 M NaCl, 1% SDS at 37°C, and a wash in 0.5X to 1 X SSC at 55 to 60°C. Exemplary high stringency conditions include hybridization in 50% formamide, 1 M NaCl, 1% SDS at 37°C, and a wash in 0.1 X SSC at 60 to 65°C.

Specificity is typically the function of post-hybridization washes, the critical factors being the ionic strength and temperature of the final wash solution. For DNA-DNA hybrids, the T_m , can be approximated from the equation of Meinkoth and Wahl, *Anal. Biochem.*, 138:267-284 (1984): $T_m = 81.5^{\circ}\text{C} + 16.6 (\log M) + 0.41 (\% GC) - 0.61 (\% form) - 500/L; where M is the molarity of monovalent cations, %GC is the percentage of guanosine and cytosine nucleotides in the DNA, % form is the percentage of formamide in the hybridization solution, and L is the length of the hybrid in base pairs. The Tm is the temperature (under defined ionic strength and pH) at which 50% of a complementary target sequence hybridizes to a perfectly matched probe. Tm is reduced by about 1°C for each 1 % of mismatching; thus, <math>T_m$ hybridization and/or wash conditions can be adjusted to hybridize to sequences of the desired identity. For example, if sequences with >90% identity are sought, the T_m can be decreased 10°C. Generally, stringent conditions are selected to be about 5°C lower than the thermal melting point (T_m) for the specific sequence and its complement at a defined ionic strength and pH. However, severely stringent conditions can utilize a hybridization and/or wash at 1, 2, 3, or 4°C lower than the thermal melting point (T_m) ; moderately stringent conditions can utilize a hybridization and/or wash at 6, 7, 8, 9, or 10°C lower than the thermal melting point (T_m) ; low stringency conditions can utilize a hybridization

10

15

20

25

30

and/or wash at 11, 12, 13, 14, 15, or 20°C lower than the thermal melting point (T_m). Using the equation, hybridization and wash compositions, and desired T_m those of ordinary skill will understand that variations in the stringency of hybridization and/or wash solutions are inherently described. If the desired degree of mismatching results in a T_m of less than 45°C (aqueous solution) or 32°C (formamide solution) it is preferred to increase the SSC concentration so that a higher temperature can be used. Appropriate stringent conditions are known to those skilled in the art or can be found in *Current Protocols in Molecular Biology*, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6.

The hybridization portion of the two hybridizing nucleic acids is usually at least 40 nucleotides in length, more usually at least about 75 nucleotides in length, more particularly at least 100 nucleotides in lengths. The hybridizing portion of the hybridizing nucleic acid is at least 80%, at least 90%, or at least 98% identical to the sequence of a portion of a sequence set forth in SEQ ID NO: 1 to SEQ ID NO: 8283.

Another aspect of the present invention relates to an isolated nucleic acid molecule comprising one or more open reading frames listed in Table 1. An "open reading frame" (ORF) is a region of a nucleotide sequence which encodes a polypeptide. This region may represent a portion of a coding sequence or a total coding sequence. Table 1 sets forth a list of open reading frames identified in the isolated nucleic acid molecules, wherein the open reading frames encode *Bacillus thuringiensis* proteins or polypeptide or fragments thereof which are homologues of known proteins or unknown proteins, or of tRNA's or rRNA's or fragments thereof which are homologues of known tRNA's or rRNA's.

Open reading frames in genomic sequences can be screened for the presence of protein homologues utilizing a number of different search algorithms that have been developed, one example of which is the suite of programs referred to as BLAST programs. There are five implementations of BLAST, three designed for nucleotide sequences queries (BLASTN, BLASTX, and TBLASTX) and two designed for protein sequence queries (BLASTP and TBLASTN) (Coulson, *Trends in Biotechnology 12:76-80* (1994); Birren *et al.*, *Genome Analysis 1:543-559* (1997)). Other examples of suitable programs that can be utilized are well known in the art. In addition, unidentified reading frames may be screened for by gene prediction software such as GenScan, which is located at http://gnomic.stanford.edu/GENSCANW.html. Novel genes, i.e., with no known homologs, can be predicted with the program GeneMark, which calculates the probability of a gene based on the presence of a gene-like 'grammar' in the DNA sequence (i.e., start and stop signals, and a significant open reading frame) and statistical analyses of protein-coding potential through biases in putative codon usage (see http://genemark.biology.gatech.edu/GeneMark for details).

The present invention also provides an isolated nucleic acid molecule comprising a first nucleotide sequence, wherein: (1) the first nucleotide sequence hybridizes under stringent conditions to a

10

15

20

25

30

second nucleotide sequence, wherein the hybridizing portion of the second nucleotide sequence encodes any polypeptide or protein set forth in Table 1; or (2) the first nucleotide sequence is the complement of (1) or (2).

In one embodiment, an isolated nucleic acid molecule comprises a nucleotide sequence, wherein the nucleotide sequence encodes any polypeptide or protein set forth in Table 1.

The term "polypeptide" or "protein" refers to a linear polymer composed of amino acids connected by peptide bonds.

By "substantial identical" or "substantially identical" as used in reference to two amino acid sequences, it is meant that one amino acid sequence is identical to the other amino acid sequence or has at least 50% sequence identity, at least 70% sequence identity, preferably at least 80%, more preferably at least 90%, and most preferably at least 95% identity when compared to the other amino acid sequence as a reference sequence using the programs described herein; preferably BLAST using standard parameters, as described below.

"Percentage of sequence identity" is determined by comparing two optimally aligned sequences over a comparison window, wherein the portion of the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison and multiplying the result by 100 to yield the percentage of sequence identity.

Polypeptides which are "substantially similar" share sequences as noted above except that residue positions which are not identical may differ by conservative amino acid changes. Conservative amino acid substitutions refer to the interchangeability of residues having similar side chains. "Conservative amino acid substitutions" refer to substitutions of one or more amino acids in a native amino acid sequence with another amino acid(s) having similar side chains, resulting in a silent change. Conserved substitutes for an amino acid within a native amino acid sequence can be selected from other members of the group to which the naturally occurring amino acid belongs. For example, a group of amino acids having aliphatic side chains is glycine, alanine, valine, leucine, and isoleucine; a group of amino acids having aliphatic-hydroxyl side chains is serine and threonine; a group of amino acids having amide-containing side chains is asparagine and glutamine; a group of amino acids having aromatic side chains is phenylalanine, tyrosine, and tryptophan; a group of amino acids having basic side chains is lysine, arginine, and histidine; and a group of amino acids having sulfur-containing side chains is cysteine and

10

15

20

25

30

methionine. Preferred conservative amino acids substitution groups are: valine-leucine, valine-isoleucine, phenylalanine-tyrosine, lysine-arginine, alanine-valine, aspartic acid-glutamic acid, and asparagine-glutamine.

Optimal alignment of sequences for comparison can use any means to analyze sequence identity (homology) known in the art, e.g., by the progressive alignment method of termed "PILEUP" (Morrison, Mol. Biol. Evol. 14:428-441 (1997), as an example of the use of PILEUP); by the local homology aligorithm of Smith & Waterman (Adv. Appl. Math. 2: 482 (1981)); by the homology alignment algorithm of Needleman & Wunsch (J. Mol. Biol. 48:443 (1970)); by the search for similarity method of Pearson (Proc. Natl. Acad. Sci. USA 85: 2444 (1988)); by computerized implementations of these algorithms (e.g., GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, WI); ClustalW (CLUSTAL in the PC/Gene program by Intelligenetics, Mountain View, California, described by, e.g., Higgins, Gene 73: 237-244 (1988); Corpet, Nucleic Acids Res. 16:10881-10890 (1988); Huang, Computer Applications in the Biosciences 8:155-165 (1992); and Pearson, Methods in Mol. Biol. 24:307-331 (1994); Pfam (Sonnhammer, Nucleic Acids Res. 26:322-325 (1998); TreeAlign (Hein, Methods Mol. Biol. 25:349-364 (1994); MES-ALIGN, and SAM sequence alignment computer programs; or, by manual visual inspection.

Another example of algorithm that is suitable for determining sequence similarity is the BLAST algorithm, which is described in Altschul et al, J. Mol. Biol. 215: 403-410 (1990). Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (NCBI), http://www.ncbi.nlm.nih.gov/; see also Zhang, Genome Res. 7:649-656 (1997) for the "PowerBLAST" variation. This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence that either match or satisfy some positive valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al, J. Mol. Biol. 215: 403-410 (1990)). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T and X determine the sensitivity and speed of the alignment. The BLAST program uses as defaults a wordlength (W) of 11, the BLOSUM62 scoring matrix (see Henikoff, Proc. Natl. Acad. Sci. USA 89:10915-10919(1992)) alignments (B) of 50, expectation (E) of 10, M=5, N=-4, and a comparison of both strands.

10

15

20

25

30

The term BLAST refers to the BLAST algorithm which performs a statistical analysis of the similarity between two sequences; see, e.g., Karlin, Proc. Natl. Acad. Sci. USA 90:5873-5787 (1993). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a reference sequence if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.1, more preferably less than about 0.01, and most preferably less than about 0.001.

One skilled in the art will recognize that these values of sequence identity can be appropriately adjusted to determine corresponding sequence identity of two nucleotide sequences encoding the proteins of the present invention by taking into account codon degeneracy, conservative amino acid substitutions, reading frame positioning and the like. Substantial identity of nucleotide sequences for these purposes normally means sequence identity of at least 40%, preferably at least 60%, more preferably at least 90%, and most preferably at least 95%.

The term "codon degeneracy" refers to divergence in the genetic code permitting variation of the nucleotide sequence without effecting the amino acid sequence of an encoded polypeptide. The skilled artisan is well aware of the "codon-bias" exhibited by a specific host cell in usage of nucleotide codons to specify a given amino acid. Therefore, when synthesizing a gene for expression in a host cell, it is desirable to design the gene such that its frequency of codon usage approaches the frequency of preferred codon usage of the host cell.

The present invention also includes an isolated nucleic acid comprising a nucleotide sequence encoding a polypeptide set forth in Table 1, wherein the an amino acid sequence of the protein or polypeptide contains one or more conservative amino acid substitutions.

In a preferred embodiment of the present invention, the isolated nucleic acid molecule comprising a nucleotide sequence which encodes an insect inhibitory protein or polypeptide or fragment thereof.

In a preferred embodiment of the present invention, the isolated nucleic acid molecule comprising a nucleotide sequence encoding all or substantial portion of a sigma factor homologue listed in Table 2.

The term "insect inhibitory protein" refers to any polypeptide or protein or a substantial portion thereof that exhibits insect inhibitory activity, wherein said activity is manifested by inhibiting the growth or development of, or contributing substantially to, or causing the death of a Coleopteran, a Dipteran, a Lepidopteran, a Hemipteran, a Hymenopteran, or a sucking and piercing insect or insect larvae thereof.

10

15

20

N. N.

25

30

The term "insect inhibitory protein" also refers to any polypeptide or protein with modified amino acid sequence, such as sequence which has been mutated, truncated, increased and the like and which maintains at least the insect inhibitory activity associated with the native protein. Accordingly, the isolated nucleic acids encoding those polypeptide or protein with such modification are also within the scope of the present invention.

In a preferred embodiment of the present invention, the isolated nucleic acid molecule comprising a nucleotide sequence which encodes whole or a portion of a protein homologue capable of conferring antibiotic resistance or resistance to heavy metals or other chemicals, wherein the nucleotide sequence is any sequence set forth in SEQ ID NOs: 33, 98, 145, 162, 180, 204, 275, 298, 361, 397, 421, 423, 579, 613, 624, 692, 726, 862, 930, 950, 986, 995, 1005, 1023, 1130, 1188, 1190, 1208, 1226, 1227, 1240, 1246, 1246, 1257, 1272, 1302, 1339, 1355, 1374, 1393, 1426, 1460, 1471, 1526, 1854, 1914, 1923, 2151, 2179, 2211, and 2304 (Table 4).

In a preferred embodiment of the present invention, the isolated nucleic acid molecule comprising a nucleotide sequence which encodes whole or a portion of a transposon or transposase homologue, wherein the nucleotide sequence is any sequence set forth in SEQ ID Nos: 2, 64, 226, 379, 383, 387, 410, 416, 546, 555, 603, 642, 644, 660, 691, 691, 781, 799, 980, 1002, 1045, 1072, 1098, 1190, 1207, 1214, 1252, 1273, 1275, 1305, 1317, 1330, 1340, 1353, 1354, 1362, 1378, 1378, 1380, 1383, 1386, 1388, 1391, 1392, 1549, 1573, 1611, 1698, 1725, 1739, 1804, 1869, 1902, 1965, 2041, 2049, 2130, 2135, 2153, 102, 1340, 1795, 1797, 1989, 2055, 2057, 2248, 14, 296, 722, 834, 834, and 999 (Table 3).

In a preferred embodiment of the present invention, the isolated nucleic acid molecule comprising a nucleotide sequence encodes whole or a portion of a toxin or toxin homologue listed in Table 5.

In a preferred embodiment of the present invention, the isolated nucleic acid molecule encodes a *B. thuringiensis* protein or fragment thereof that is a homologue of another *Bacillus* protein. In another preferred embodiment of the present invention, the nucleic acid molecule encodes a *B. thuringiensis* protein or fragment thereof that is a homologue of a fungal protein. In another preferred embodiment of the present invention, the nucleic acid molecule encodes a *B. thuringiensis* protein or fragment thereof that is a homologue of a plant protein. In another preferred embodiment of the present invention, the nucleic acid molecule encodes a *B. thuringiensis* protein or fragment thereof that is a homologue of mammalian protein. In another preferred embodiment of the present invention, a *B. thuringiensis* protein or fragment thereof of the present invention is a homologue of a non-*Bacillus* bacterial protein. In another preferred embodiment of the present invention, the nucleic acid molecule encodes a *B. thuringiensis* protein or fragment thereof that is a homologue of an algal protein.

10

15

20

25

30

In a preferred embodiment of the present invention, the nucleic acid molecule of the present invention encodes a *B. thuringiensis* homologue protein or fragment thereof where the *B. thuringiensis* homologue protein exhibits a BLASTP probability score of greater than 1E-12, preferably a BLASTP probability score of between about 1E-30 and about 1E-12, even more preferably a BLASTP probability score of greater than 1E-30 with its homologue. In a preferred embodiment of the present invention, the nucleic acid molecule of the present invention encodes a *B. thuringiensis* homologue protein or fragment thereof exhibits an aat_nap score of less than 200, preferably an aat_nap score of between about 200 to about 400, even more preferably an aat_nap score of greater than 400.

It is understood that certain amino acids may be substituted for other amino acids in a protein structure without appreciable loss of interactive binding capacity with structures such as, for example, antigen-binding regions of antibodies or binding sites on substrate molecules. Because it is the interactive capacity and nature of a protein that defines that protein's biological functional activity, certain amino acid sequence substitutions can be made in a protein sequence and, of course, its underlying DNA coding sequence and, nevertheless, obtain a protein with like properties. It is thus contemplated by the inventors that various changes may be made in the peptide sequences of the proteins or fragments of the present invention, or corresponding DNA sequences that encode said peptides, without appreciable loss of their biological utility or activity. It is understood that codons capable of coding for such amino acid changes are known in the art.

In making such changes, the hydropathic index of amino acids may be considered. The importance of the hydropathic amino acid index in conferring interactive biological function on a protein is generally understood in the art (Kyte and Doolittle, *J. Mol. Biol. 157*, 105-132 (1982)). It is accepted that the relative hydropathic character of the amino acid contributes to the secondary structure of the resultant protein, which in turn defines the interaction of the protein with other molecules, for example, enzymes, substrates, receptors, DNA, antibodies, antigens, and the like.

Each amino acid has been assigned a hydropathic index on the basis of its hydrophobicity and charge characteristics (Kyte and Doolittle, 1982); these are isoleucine (+4.5), valine (+4.2), leucine (+3.8), phenylalanine (+2.8), cysteine/cystine (+2.5), methionine (+1.9), alanine (+1.8), glycine (-0.4), threonine (-0.7), serine (-0.8), tryptophan (-0.9), tyrosine (-1.3), proline (-1.6), histidine (-3.2), glutamate (-3.5), glutamine (-3.5), aspartate (-3.5), asparagine (-3.5), lysine (-3.9), and arginine (-4.5).

In making such changes, the substitution of amino acids whose hydropathic indices are within ± 2 is preferred, those which are within ± 1 are particularly preferred, and those within ± 0.5 are even more particularly preferred.

10

15

20

25

30

It is also understood in the art that the substitution of like amino acids can be made effectively on the basis of hydrophilicity. U.S. Patent 4,554,101, incorporated herein by reference in its entirety, states that the greatest local average hydrophilicity of a protein, as govern by the hydrophilicity of its adjacent amino acids, correlates with a biological property of the protein.

As detailed in U.S. Patent 4,554,101, the following hydrophilicity values have been assigned to amino acid residues: arginine (+3.0), lysine (+3.0), aspartate (+3.0 \pm 1), glutamate (+3.0 \pm 1), serine (+0.3), asparagine (+0.2), glutamine (+0.2), glycine (0), threonine (-0.4), proline (-0.5 \pm 1), alanine (-0.5), histidine (-0.5), cysteine (-1.0), methionine (-1.3), valine (-1.5), leucine (-1.8), isoleucine (-1.8), tyrosine (-2.3), phenylalanine (-2.5), and tryptophan (-3.4).

In making such changes, the substitution of amino acids whose hydrophilicity values are within ± 2 is preferred, those which are within ± 1 are particularly preferred, and those within ± 0.5 are even more particularly preferred.

Another aspect of the present invention relates to a class of isolated nucleic acid molecules comprising promoter sequences or regulatory elements, particularly those found within SEQ ID NO: 1 through SEQ ID NO: 8283 or complements thereof.

The term "promoter sequence" means a nucleotide sequence that is capable of, when located in cis to a structural nucleotide sequence encoding a polypeptide or protein, functioning in a way that directs expression of one or more mRNA molecules that encodes the polypeptide or protein. Such promoter regions are typically found upstream of the trinucleotide ATG sequence at the start site of a protein coding region. Promoter sequences can also include sequences from which transcription of transfer RNA (tRNA) or ribosomal RNA (rRNA) sequences are initiated. Transcription involves the synthesis of an RNA chain representing one strand of a DNA duplex. By "representing" it is meant that the RNA is identical in sequence with one strand of the DNA; it is complementary to the other DNA strand, which provides the template for its synthesis. Transcription takes place by the usual process of complementary base pairing, catalyzed and scrutinized by the enzyme RNA polymerase. The reaction can be divided into three stages described as initiation, elongation and termination. Initiation begins with the binding of RNA polymerase to the double stranded (DS or ds) DNA. The sequence of DNA required for the initiation reaction defines the promoter. The site at which the first nucleotide is incorporated is called the startsite or startpoint of transcription. Elongation describes the phase during which the enzyme moves along the DNA and extends the growing RNA chain. Elongation involves the disruption of the DNA double stranded structure in which a transiently unwound region exists as a hybrid RNA-DNA duplex and a displaced single strand of DNA. Termination involves recognition of the point at which no further bases should be added to the chain. To terminate transcription, the formation of phosphodiester

bonds must cease and the transcription complex must come apart. When the last base is added to the RNA chain, the RNA-DNA hybrid is disrupted, the DNA reforms into a duplex state, and the RNA polymerase enzyme and RNA molecule are both released from the DNA. The sequence of DNA required for the termination reaction is called the terminator.

5

10

Generally, for bacteria the optimal promoter is a sequence consisting of a -35 hexamer separated by about 17 base pairs from a -10 hexamer and lies from about 7 to about 10 base pairs upstream of the startpoint of transcription, but these sequences can vary among and between sequences which are recognized by the RNA polymerase. The startpoint of transcription generally lies from about 20 to about 50 base pairs upstream of the startpoint of translation of one or more open reading frames which comprise the entire length of an mRNA transcript. Some promoters can be recognized by RNA polymerase alone and in these cases, an accessible promoter will always be transcribed. Promoter availability may be determined by extraneous proteins, which either may act directly at the promoter to block access by RNA polymerase, or may function indirectly by controlling the structure of the genome in the region. Other promoters are not by themselves adequate to support transcription initiation and thus ancillary protein and or RNA factors are required to further initiation. The additional protein or RNA factors usually act by recognizing sequences of DNA that are close to, or overlap with, the sequence bound by RNA polymerase itself. Additionally, some of these ancillary factors must touch and concern the RNA polymerase in order to effect efficient transcription initiation as well as transcription elongation.

THE STATE OF THE S

15

20

25

disappearance of accessory factors known as sigma factors which touch and concern both the DNA sequences flanking the promoter site as well as the RNA polymerase in order to effect efficient transcription initiation and elongation. Such factors are required for effecting transcription from various classes of promoters and along with other factors expressed from spoO genes affect both the temporal regulation of expression from promoters as well as the spatial distribution of patterns of expression within the cell during differentiation and development of the *Bacillus* cell from spore activation, vegetative growth and proliferation, and sporulation. Examples of sigma factors which are known to function in this manner are δA , δB , δC , δD , δE , δF , δG , δH , δI , and δK . In addition, the sporulation factors which function for temporal and spatial regulatory gene expression include gene products in the classes of SpoO, SpoOI, and SpoOII.

Promoters in particular in Bacillus species are highly regulated by the appearance and

30

Thus, in *Bacillus*, in many circumstances a consensus promoter may be sufficient for expression, however additional sequences may act to further regulate expression, for example, in response to biochemical, developmental or environmental signals. In a preferred embodiment of the present

10

15

20

25

30

invention, the promoter is upstream of a nucleic acid sequence that encodes a *B. thuringiensis* protein or fragment thereof.

Promoters of the present invention can be included within sequences up to 10 kb upstream of the trinucleotide ATG sequence at the start site of a protein coding region, tRNA, or rRNA. Promoters of the present invention can preferably be included within sequences up to 5 kb upstream of the trinucleotide ATG sequence at the start site of a protein coding region, tRNA or rRNA. Promoters of the present invention can more preferably be included within sequences up to 2kb upstream of the trinucleotide ATG sequence at the start site of a protein coding region, tRNA or rRNA. Promoters of the present invention can most preferably be included within sequences up to 500 bp upstream of the trinucleotide ATG sequence at the start site of a protein, tRNA, or rRNA coding region. While in many circumstances a 300 bp promoter may be sufficient for expression, additional sequences may act to further regulate expression, for example, in response to biochemical, developmental or environmental signals. In a preferred embodiment of the present invention, the promoter is upstream of an nucleic acid sequence that encodes a *Bacillus thuringiensis* protein or fragment thereof.

The term "regulatory element" is intended to mean a series of nucleotides that determines if, when, and at what level a particular gene is expressed. Regulatory DNA sequences specifically interact with regulatory or other proteins. Many regulatory elements act in cis ("cis elements") and are believed to affect DNA topology, producing local conformations that selectively allow or restrict access of RNA polymerase to the DNA template or that facilitate selective opening of the double helix at the site of transcriptional initiation, i.e., the transcriptional startsite referred to above. Cis elements occur within, near to, adjacent to, or at a distance from a particular promoter, but remain linked to the promoter sequence along the sequence of phosphodiester bonds which comprise the nucleotide sequence within which the promoter resides. Cis elements are not limited to promoters, but may be imparted to RNA sequences derived from transcription from DNA sequences of the present invention, wherein such RNA cis elements are involved in post transcriptional regulation of gene expression. For example, elements which are known as inverted repeat sequences can assist in the formation of hairpin structures which prevent, inhibit, or otherwise modulate the translational efficiency of the RNA sequence, or which regulate the survival of the RNA sequence. Other elements may function to bind ribosomes or components which enhance or suppress translational efficiency. Cis elements can be identified using known cis elements as a target sequence or target motif in the BLAST. Promoters of the present invention include homologues of cis elements known to effect gene regulation that show homology with the nucleic acid molecules of the present invention.

5

10

15

20

25

30

The isolated nucleic acid molecules of the present invention also include nucleic acid sequences that encode ribosomal RNA (rRNA), transfer RNA (tRNA) molecules, or other nucleic acid molecules which function to regulate gene expression, transcription, translation by acting alone or in combination with other cellular components in activating, inhibiting, terminating or anti-terminating gene expression functions, or by acting alone or in combination with other structural molecules to form or assist in the formation of said structural molecules.

It is contemplated by the inventors that the isolated nucleic acid molecules of the present invention also include those comprising a substantial portion of a nucleotide sequence selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 8283 or complements thereof.

A "substantial portion" of a nucleotide sequence comprises enough of the sequence to afford specific identification and/or isolation of a nucleic acid fragment comprising the sequence. In general, gene specific oligonucleotide probes comprising 20-30 contiguous nucleotides may be used in sequence-dependent methods of gene identification (e.g., Southern hybridization) and isolation (e.g., in situ hybridization of bacterial colonies or bacteriophage plaques). In addition, short oligonucleotides of 12-15 bases may be used as amplification primers in PCR in order to obtain a particular nucleic acid fragment comprising the primers. The skilled artisan, having the benefit of the sequences as reported herein, may now use all or a substantial portion of the disclosed sequences for purposes known to those skilled in this art. Accordingly, the instant invention comprises the complete sequences as reported in the accompanying Sequence Listing, as well as substantial portions of those sequences as defined above.

It is also contemplated by the inventors that the isolated nucleic acid molecules of the present invention also include known types of modifications, for example, labels which are known in the art, methylation, "caps", substitution of one or more of the naturally occurring nucleotides with an analog. Other known modifications include internucleotide modifications, for example, those with uncharged linkages (methyl phosphonates, phosphotriesters, phosphoamidates, carbamates, etc.) and with charged linkages (phosphorothioates, phosphorodithioates, etc.), those containing pendant moieties, such as, proteins (including nucleases, metabolic toxins, antibodies, signal peptides, poly-L-lysine, etc.), those with intercalators (acridine, psoralen, etc.), those containing chelators (metals, radioactive metals, boron, oxidative metals, etc.), those containing alkylators, and those with modified linkages.

The nucleic acids of the present invention may be used to isolate nucleic acids encoding homologous proteins from the same or other species. Isolation of homologous genes using sequence-dependent protocols is well known in the art. Examples of sequence-dependent protocols include, but are not limited to, methods of nucleic acid hybridization, and methods of DNA and RNA amplification as

THE PERSON AND THE PE

5

10

15

20

25

30

exemplified by various uses of nucleic acid amplification technologies (e.g., polymerase chain reaction, ligase chain reaction).

For example, genes encoding homologous proteins, either as cDNAs or genomic DNAs, could be isolated directly by using all or a portion of the nucleic acids of the present invention as DNA hybridization probes to screen cDNA or genomic libraries from any desired organism employing methodology well known to those skilled in the art. Methods for forming such libraries are well known in the art. Specific oligonucleotide probes based upon the nucleic acids of the present invention can be designed and synthesized by methods known in the art. Moreover, the entire sequences of the nucleic acids can be used directly to synthesize DNA probes by methods known to the skilled artisan such as random primer DNA labeling, nick translation, or end-labeling techniques, or RNA probes using available in vitro transcription systems. In addition, specific primers can be designed and used to amplify a part or all of the sequences. The resulting amplification products can be labeled directly during amplification reactions or labeled after amplification reactions, and used as probes to isolate full length cDNA or genomic DNAs under conditions of appropriate stringency.

Alternatively, the nucleic acids of interest can be amplified from nucleic acid samples using amplification techniques. For instance, the disclosed nucleic acids may be used to define a pair of primers that can be used with the polymerase chain reaction (Mullis, et al., Cold Spring Harbor Symp. Quant. Biol. 51:263-273 (1986); Erlich et al., EP 50,424; EP 84,796, EP 258,017, EP 237,362; Mullis, EP 201,184; Mullis et al., US 4,683,202; Erlich, US 4,582,788; and Saiki, R. et al., US 4,683,194) to amplify and obtain any desired nucleic acid or fragment directly from mRNA, from cDNA, from genomic libraries or cDNA libraries. PCR and other in vitro amplification methods may also be useful, for example, to clone nucleic acid sequences that code for proteins to be expressed, to make nucleic acids to use as probes for detecting the presence of the desired mRNA in samples, for nucleic acid sequencing, or for other purposes.

In addition, two short segments of the nucleic acids of the present invention may be used in polymerase chain reaction protocols, for example, the RACE protocol (Frohman et al., Proc. Natl. Acad. Sci. USA 85:8998 (1988)), to amplify longer nucleic acids encoding homologous genes from DNA or RNA from other sources.

Nucleic acids of interest may also be synthesized, either completely or in part, especially where it is desirable to provide plant-preferred sequences, by well-known techniques as described in the technical literature. See, e.g., Carruthers et al., Cold Spring Harbor Symp. Quant. Biol. 47:411-418 (1982), and Adams et al., J. Am. Chem. Soc. 105:661 (1983). Thus, all or a portion of the nucleic acids of the present invention may be synthesized using codons preferred by a selected plant host. Plant-preferred codons

The same grown man are great in the last of the company of the last of the las

5

10

15

20

25

30

may be determined, for example, from the codons used most frequently in the proteins expressed in a particular plant host species. Other modifications of the gene sequences may result in mutants having slightly altered activity.

Availability of the nucleotide sequences encoding *Bacillus thuringiensis* proteins facilitates immunological screening of DNA expression libraries. Synthetic polypeptides representing portions of the amino acid sequences of *Bacillus thuringiensis* proteins may be synthesized. These polypeptides can be used to immunize animals to produce polyclonal or monoclonal antibodies with specificity for polypeptides or proteins comprising the amino acid sequences. These antibodies can be then be used to screen expression libraries to isolate genes of interest (Lemer, Adv. ImmunoL 36: 1 (1984); Sambrook et al., Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, (1989)). It is understood that people skilled in the art are familiar with the standard resource materials which describe specific conditions and procedures for the construction, manipulation and isolation of antibodies (see, for example, Harlow and Lane, In *Antibodies: A Laboratory Manual*, Cold Spring Harbor Press, Cold Spring Harbor, New York (1988)).

Another aspect of the present invention relates to a method for obtaining a nucleic acid comprising a nucleotide sequence encoding a *Bacillus thuringiensis* protein homologue listed in Table 1. In a preferred embodiment, the method of the present invention for obtaining a nucleic acid encoding all or a substantial portion of the amino acid sequence of a *Bacillus thuringiensis* protein homologue comprising: (a) probing an expression library with a hybridization probe comprising a nucleotide sequence encoding a polypeptide listed in Table 1; (b) identifying a DNA clone that hybridizes to the hybridization probe; (c) isolating the DNA clone identified in step (b); and (d) sequencing the DNA fragment that comprises the clone isolated in step (c) wherein the sequenced nucleic acid molecule encodes all or a substantial portion of the amino acid sequence of the *Bacillus thuringiensis* protein homologue.

In another preferred embodiment, the method of the present invention for obtaining a nucleic acid molecule encoding a substantial portion of an amino acid sequence of a *Bacillus thuringiensis* protein homologue comprising: (a) synthesizing a first and a second oligonucleotide primers corresponding to a portion of the coding sequence of a second nucleic acid molecule set forth in SEQ ID NO: 1 through SEQ ID NO: 8283; and (b) amplifying a DNA insert present in a cloning vector using the first and second oligonucleotide primers of step (a) wherein the amplified nucleic acid molecule encodes all or a substantial portion of the amino acid sequence of the *Bacillus thuringiensis* protein homologue.

10

15

20

25

30

Protein and Polypeptide Molecules

The present invention, in another aspect, provides a substantially purified protein or polypeptide molecule comprising an amino acid sequence, wherein the amino acid sequence is defined as follows: (1) the amino acid sequence is encoded by a first nucleotide sequence which specifically hybridizes to the complement of a second nucleotide sequence set forth in SEQ ID NO: 1 through SEQ ID NO: 8283; or (2) the amino acid sequence is encoded by a third nucleotide sequence that is at least 50% identical to all or a substantial portion of a coding sequence located within SEQ ID NO: 1 through SEQ ID NO: 8283. In alternative embodiments, the third nucleotide sequence is at least 55% identical, at least 60% identical, at least 65% identical, at least 70% identical, at least 75% identical, at least 80% identical, at least 85% identical, at least 90% identical, at least 90% identical to all or a substantial portion of a coding sequence located within SEQ ID NO: 1 through SEQ ID NO: 8283. In a preferred embodiment, the third nucleotide sequence is 100% identical to all or a substantial portion of a coding sequence located within SEQ ID NO: 8283.

The term "substantially purified protein or polypeptide molecule" refers to a protein or polypeptide molecule separated from substantially all other molecules normally associated with it in its native state. More preferably a substantially purified protein or polypeptide molecule is the predominant species present in a preparation. A substantially purified molecule may be greater than 60% free, preferably 75% free, more preferably 90% free, and most preferably 95% free from the other molecules (exclusive of solvent) present in the natural mixture.

It is well known in the art that proteins or polypeptides may undergo modification, including post-translational modifications, such as, but not limited to, disulfide bond formation, glycosylation, phosphorylation, or oligomerization. Thus, as used herein, the term "protein molecule" or "polypeptide molecule" includes any protein molecule that is modified by any biological or non-biological process. The terms "amino acid" and "amino acids" refer to all naturally occurring L-amino acids. This definition is meant to include norleucine, ornithine, homocysteine, and homoserine.

The polypeptides or proteins of the present invention may be produced via chemical synthesis, or more preferably, by expression in a suitable bacterial or eukaryotic host. Suitable methods for expression are described by Sambrook, et al., (In: Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Press, Cold Spring Harbor, New York (1989)), or similar texts.

The polypeptides or protein molecule of the present invention may also include fusion protein or polypeptide molecules. A protein or polypeptide molecule that comprises one or more additional polypeptide regions not derived from that protein molecule is a "fusion" protein or polypeptide molecule. Such molecules may be derivatized to contain carbohydrate or other moieties (such as keyhole limpet

The first control of the first

5

10

15

20

25

30

hemocyanin, etc.). Fusion protein or polypeptide molecules of the present invention are preferably produced via recombinant means.

The protein or polypeptide molecules of the present invention may also include protein or polypeptide molecules encoded by all or a substantial portion of protein-encoding sequences in SEQ ID NO: 1 through SEQ ID NO: 8283 or complements thereof or, fragments or fusions thereof in which conservative, non-essential, or not relevant, amino acid residues have been added, replaced, or deleted. An example of such a homologue is the homologue protein from different strains or species. Such a homologue can be obtained by any of a variety of methods. For example, as indicated above, one or more of the disclosed sequences (all or a substantial portion of the protein-encoding sequences in SEQ ID NO: 1 through SEQ ID NO: 8283 or complements thereof) will be used to define a pair of primers that may be used to isolate the homologue-encoding nucleic acid molecules from any desired species. Such molecules can be expressed to yield homologues by recombinant means.

Antibodies

Another aspect of the present invention concerns antibodies, single-chain antigen binding molecules, or other proteins that specifically bind to one or more of the protein or polypeptide molecules of the present invention and their homologues, fusions or fragments. Such antibodies may be used to quantitatively or qualitatively detect the protein or polypeptide molecules of the present invention. As used herein, an antibody or polypeptide is said to "specifically bind" to a protein or polypeptide molecule of the present invention if such binding is not competitively inhibited by the presence of non-related molecules. In a preferred embodiment the antibodies of the present invention bind to protein or polypeptide molecules of the present invention, in a more preferred embodiment of the antibodies of the present invention bind to protein or polypeptide molecules derived from *Bacillus thuringiensis*.

Nucleic acid molecules that encode all or part of the protein or polypeptide of the present invention can be expressed, via recombinant means, to yield protein or polypeptides that can in turn be used to elicit antibodies that are capable of binding the expressed protein or polypeptide. Such antibodies may be used in immunoassays for that protein or polypeptide. Such protein or polypeptide-encoding molecules, or their fragments may be "fusion" molecules (*i.e.*, a part of a larger nucleic acid molecule) such that, upon expression, a fusion protein is produced. It may be desirable to derivatize the obtained antibodies, for example with a ligand group (such as biotin) or a detectable marker group (such as a fluorescent group, a radioisotope or an enzyme). Such antibodies may be used in immunoassays for that protein. In a preferred embodiment, such antibodies can be used to screen DNA expression libraries to isolate clones containing full-length insert of genes (Lemer, Adv. ImmunoL 36: 1 (1984); Sambrook et

that had a read by the last that the last then then then then and and that then

5

10

15

20

25

30

al., Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, (1989)).

The antibodies that specifically bind proteins and protein fragments of the present invention may be polyclonal or monoclonal, and may comprise intact immunoglobulins, or antigen binding portions of immunoglobulins (such as (F(ab'), F(ab')₂ fragments), or single-chain immunoglobulins producible, for example, via recombinant means). It is understood that practitioners are familiar with the standard resource materials which describe specific conditions and procedures for the construction, manipulation and isolation of antibodies (see, for example, Harlow and Lane, *Antibodies: A Laboratory Manual*, Cold Spring Harbor Press, Cold Spring Harbor, New York (1988)).

In a preferred embodiment, the antibodies of the present invention specifically bind to one or more of the insect inhibitory polypeptides or proteins of the present invention. Such antibodies may be used to detect the presence of such insect inhibitory polypeptides or proteins in a sample.

The present invention also provide a method for detecting an insect inhibitory polypeptide or protein in a biological sample, the method generally comprising: (1) obtaining a biological sample; (2) contacting the sample with an antibody that specifically binds to the polypeptide or protein, under conditions effective to allow the formation of complexes; and (3) detecting the complexes so formed.

Microbial Constructs and Transformed microbial Cells

The nucleotide sequences of the present invention may be introduced into a wide variety of prokaryotic and eukaryotic microorganism hosts to express the *B. thuringiensis* polypeptide or protein of interest, particularly the insect inhibitory polypeptides or proteins of the present invention. The term "microorganism" includes prokaryotic and eukaryotic microbial species such as bacteria and fungi. Fungi include yeast and filamentous fungi. Illustrative prokaryotes, both Gram-negative and Gram-positive, include *Enterobacteriaceae*, such as *Escherichia, Erwinia, Shigella, Salmonella*, and *Proteus;* Bacillaceae; Rhizobiceae, such as Rhizobium; Spirillaceae, such as photobacterium, Zymomonas, Serratia, Aeromonas, Vibrio, Desulfovibrio, Spirillum; Lactobacillaceae; Pseudomonadaceae, such as Pseudomonas and Acetobacter; Azotobacteraceae, Actinomycetales, and Nitrobacteraceae. Among eukaryotes are fungi, such as *Phycomycetes* and Ascomycetes, which includes yeast, such as Saccharomyces and Schizosaccharomyces; and Basidiomycetes yeast, such as Rhodotorula, Aureobasidium, Sporobolomyces, and the like.

For the purpose of plant protection against insects, a large number of microorganisms known to inhabit the phylloplane (the surface of the plant leaves) and/or the rhizosphere (the soil surrounding plant

10

15

20

25

30

roots) of a wide variety of important crops may also be desirable host cells for manipulation, propagation, storage, delivery and/or mutagenesis of the disclosed recombinant constructs. These microorganisms include bacteria, algae, and fungi. Of particular interest are microorganisms, such as bacteria, e.g., genera Bacillus (including the species and subspecies B. thuringiensis kurstaki HD-1, B. thuringiensis kurstaki HD-73, B. thuringiensis sotto, B. thuringiensis berliner, B. thuringiensis thuringiensis, B. thuringiensis tolworthi, B. thuringiensis dendrolimus, B. thuringiensis alesti, B. thuringiensis galleriae, B. thuringiensis aizawai, B. thuringiensis subtoxicus, B. thuringiensis entomocidus, B. thuringiensis tenebrionis and B. thuringiensis san diego); Pseudomonas, Erwinia, Serratia, Klebsiella, Zanthomonas, Streptomyces, Rhizobium, Rhodopseudomonas, Methylophilius, Agrobacterium, Acetobacter, Lactobacillus, Arthrobacter, Azotobacter, Leuconostoc, and Alcaligenes; fungi, particularly yeast, e.g., genera Saccharomyces, Cryptococcus, Kluyveromyces, Sporobolomyces, Rhodotorula, and Aureobasidium. Of particular interest are such phytosphere bacterial species as Pseudomonas syringae, Pseudomonas fluorescens, Serratia marcescens, Acetobacter xylinum, Agrobacterium tumefaciens, Rhodobacter sphaeroides, Xanthomonas campestris, Rhizobium melioti, Alcaligenes eutrophus, and Azotobacter vinlandii; and phytosphere yeast species such as Rhodotorula rubra, R. glutinis, R. marina, R. aurantiaca, Cryptococcus albidus, C. diffluens, C. laurentii, Saccharomyces rosei, S. pretoriensis, S. cerevisiae, Sporobolomyces roseus, S. odorus, Kluyveromyces veronae, and Aureobasidium pollulans.

It is well known that exogenous nucleic acids encoding polypeptides of interest can be introduced into a microbial host cell, such as a bacterial cell or a fungal cell, using a recombinant contruct. The present invention also relates to a fungal or bacterial recombinant construct comprising a structural nucleotide sequence encoding a *B. thuringiensis* protein or polypeptide. In a preferred embodiment, the structural nucleotide sequence encodes an insect inhibitory protein or polypeptide of the present invention. The present invention also relates to a bacterial or fungal cell comprising a bacterial or fungal recombinant vector. The present invention also relates to methods for obtaining a recombinant bacterial or fungal host cell, comprising introducing into a bacterial or fungal host cell an exogenous nucleic acid molecule.

The bacterial recombinant vector may be any vector which can be conveniently subjected to recombinant DNA procedures. The choice of a vector will typically depend on the compatibility of the vector with the bacterial host cell into which the vector is to be introduced. The vector may be a linear or a closed circular plasmid. The bacterial recombinant vector may be a linear or a closed circular plasmid. The vector system may be a single vector or plasmid or two or more vectors or plasmids which together contain the total DNA to be introduced into the genome of the bacterial host. In addition, the bacterial vector may be an expression vector. Nucleic acid molecules encoding *B. thuringiensis* proteins or

polypeptide can, for example, be suitably inserted into a replicable vector for expression in a bacterium under the control of a suitable promoter for that bacterium. Many vectors are available for this purpose, and selection of the appropriate vector will depend mainly on the size of the nucleic acid to be inserted into the vector and the particular host cell to be transformed with the vector. Each vector contains various components depending on its function (amplification of DNA or expression of DNA) and the particular host cell with which it is compatible. The vector components for bacterial transformation generally include, but are not limited to, one or more of the following: a signal sequence, an origin of replication, one or more selectable marker genes, and an inducible promoter allowing the expression of exogenous DNA.

.

5

10

15

20

25

30

In general, plasmid vectors containing replicon and control sequences that are derived from species compatible with the host cell are used in connection with bacterial hosts. The vector ordinarily carries a replication site, as well as marking sequences that are capable of providing phenotypic selection in transformed cells. For example, *E. coli* is typically transformed using pBR322, a plasmid derived from an *E. coli* species (see, e.g., Bolivar *et al.*, *Gene 2*:95 (1977)). pBR322 contains genes for ampicillin and tetracycline resistance and thus provides easy means for identifying transformed cells. The pBR322 plasmid, or other microbial plasmid or phage, also generally contains, or is modified to contain, promoters that can be used by the microbial organism for expression of the selectable marker genes.

Nucleic acid molecules encoding B. thuringiensis proteins or polypeptides may be expressed not only directly, but also as a fusion with another polypeptide, preferably a signal sequence or other polypeptide having a specific cleavage site at the N-terminus of the mature polypeptide. In general, the signal sequence may be a component of the vector, or it may be a part of the polypeptide encoding DNA that is inserted into the vector. The heterologous signal sequence selected should be one that is recognized and processed (i.e., cleaved by a signal peptidase) by the host cell. For bacterial host cells that do not recognize and process the native polypeptide signal sequence, the signal sequence is substituted by a bacterial signal sequence selected, for example, from the group consisting of the alkaline phosphatase, β -lactamase, , or heat-stable enterotoxin Π leaders and the like.

Both expression and cloning vectors contain a nucleotide sequence that enables the vector to replicate in one or more selected host cells. Generally, in cloning vectors this sequence is one that enables the vector to replicate independently of the host chromosomal DNA, and includes origins of replication or autonomously replicating sequences. Such sequences are well known for a variety of bacteria.

Expression and cloning vectors also generally contain a selection gene, also termed a selectable marker. This gene encodes a protein necessary for the survival or growth of transformed host cells grown

10

15

20

25

30

in a selective culture medium. Host cells not transformed with the vector containing the selection gene will not survive in the culture medium. Typical selection genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g., ampicillin, neomycin, methotrexate, or tetracycline, (b) complement auxotrophic deficiencies, or (c) supply critical nutrients not available from complex media, e.g., the gene encoding D-alanine racemase for *Bacilli*. One example of a selection scheme utilizes a drug to arrest growth of a host cell. Those cells that are successfully transformed with a heterologous protein homologue or fragment thereof produce a protein conferring drug resistance and thus survive the selection regimen.

The expression vector for producing a polypeptide can also contains an inducible promoter that is recognized by the host bacterial organism and is operably linked to the nucleic acid encoding, for example, the nucleic acid molecule encoding the *B. thuringiensis* protein or polypeptide of interest. Inducible promoters suitable for use with bacterial hosts include the β-lactamase, *E. coli* λ phage P_L and P_R, and *E. coli* galactose, arabinose, alkaline phosphatase, tryptophan (trp), and lactose operon promoter systems and variations thereof (Chang *et al.*, *Nature 275*:615 (1978); Goeddel *et al.*, *Nature 281*:544 (1979); Guzman *et al.*, *J. Bacteriol. 174*:7716-7728 (1992); Goeddel, *Nucleic Acids Res. 8*:4057 (1980); EP 36,776) and hybrid promoters such as the tac promoter (deBoer *et al.*, *Proc. Natl. Acad. Sci. (USA) 80*:21-25 (1983)). However, other known bacterial inducible promoters are suitable (Siebenlist *et al.*, *Cell 20*:269 (1980)).

The term "operably linked", as used in reference to a regulatory sequence and a structural nucleotide sequence, means that the regulatory sequence causes regulated expression of the operably linked structural nucleotide sequence. "Expression" refers to the transcription and stable accumulation of sense or antisense RNA derived from the nucleic acid of the present invention. Expression may also refer to translation of mRNA into a polypeptide or protein. "Sense" RNA refers to RNA transcript that includes the mRNA and so can be translated into protein by the cell. "Antisense RNA" refers to a RNA transcript that is complementary to all or part of a target primary transcript or mRNA and that blocks the expression of a target gene (U.S. Pat. No. 5,107,065, incorporated herein by reference). The complementarity of an antisense RNA may be with any part of the specific gene transcript, i.e., at the 5' non-coding sequence, 3' non-translated sequence, introns, or the coding sequence. "RNA transcript" refers to the product resulting from RNA polymerase-catalyzed transcription of a DNA sequence. When the RNA transcript is a perfect complementary copy of the DNA sequence, it is referred to as the primary transcript or it may be a RNA sequence derived from post-transcriptional processing of the primary transcript and is referred to as the mature RNA.

10

15

20

25

30

"Regulatory sequences" or "control elements" refer to nucleotide sequences located upstream (5' non-coding sequences), within, or downstream (3' non-translated sequences) of a structural nucleotide sequence, and which influence the transcription, RNA processing or stability, or translation of the associated structural nucleotide sequence. Regulatory sequences may include promoters, translation leader sequences, introns, and polyadenylation recognition sequences.

The promoter sequence may consist of proximal and more distal upstream elements, the latter elements often referred to as enhancers. Accordingly, an "enhancer" is a DNA sequence which can stimulate promoter activity and may be an innate element of the promoter or a heterologous element inserted to enhance the level or tissue-specificity of a promoter. Promoters may be derived in their entirety from a native gene, or be composed of different elements derived from different promoters found in nature, or even comprise synthetic DNA segments. It is understood by those skilled in the art that different promoters may direct the expression of a gene in different tissues or cell types, or at different stages of development, or in response to different environmental conditions.

Promoters for use in bacterial systems also generally contain a Shine-Dalgarno (S.D.) sequence or a consensus sequence thereof operably linked to the DNA encoding the polypeptide of interest. The promoter can be removed from the bacterial source DNA by restriction enzyme digestion and inserted into the vector containing the desired DNA coding sequence, or vice versa.

Alternatively, the expression constructs can be integrated into the bacterial genome with an integrating vector. Integrating vectors typically contain at least one sequence homologous to the bacterial chromosome that allows the vector to integrate. Integrations appear to result from recombinations between homologous DNA in the vector and the bacterial chromosome. For example, integrating vectors constructed with DNA from various Bacillus strains integrate into the Bacillus chromosome (E.P.O. Pub. No. 127,328). Integrating vectors may also be comprised of bacteriophage or transposon sequences.

Construction of suitable vectors containing one or more of the above-listed components employs standard recombinant DNA techniques. Isolated plasmids or DNA fragments are cleaved, tailored, and re-ligated in the form desired to generate the plasmids required. Examples of available bacterial expression vectors include, but are not limited to, the multifunctional *E. coli* cloning and expression vectors such as BluescriptTM (Stratagene, La Jolla, CA), in which, for example, a *B. thuringiensis* protein or polypeptide of the present invention, may be ligated into the vector in frame with sequences for the amino-terminal Met and the subsequent 7 residues of β-galactosidase so that a hybrid protein is produced; pIN vectors (Van Heeke and Schuster *J. Biol. Chem. 264*:5503-5509 (1989)); and the like. pGEX vectors (Promega, Madison Wis.) may also be used to express foreign polypeptides as fusion proteins with glutathione S-transferase (GST). In general, such fusion proteins are soluble and can easily

10

15

20

25

30

be purified from lysed cells by adsorption to glutathione-agarose beads followed by elution in the presence of free glutathione. Proteins made in such systems are designed to include heparin, thrombin or factor XA protease cleavage sites so that the cloned polypeptide of interest can be released from the GST moiety at will.

It is, of course, necessary to select the appropriate bacteria taking into consideration replicability of the replicon in the cells of a bacterium. For example, *E. coli*, *Serratia*, or *Salmonella* species can be suitably used as the host when well known plasmids such as pBR322, pBR325, pACYC177, or pKN410 are used to supply the replicon. *E. coli* strain W3110 is a preferred host or parent host because it is a common host strain for recombinant DNA product fermentations. Preferably, the host cell should secrete minimal amounts of proteolytic enzymes.

Expression vectors for B. thuringiensis and related bacilli contain an origin of DNA replication and associated replication factors and a selectable marker gene that will be expressed in Bacillus and allow selection of transformed cells. These Bacillus-specific plasmid functions may also be present on an E. coli or other broad host range cloning vector, forming a plasmid that can replicate and be selected in either E. coli or B. thuringiensis, and thus comprising a shuttle vector. Such vectors are well known in the art and usually also contain a B. thuringiensis δ^E promoter adjacent to one or more convenient cloning sites to allow cloning and expression of exogenous genes during sporulation. Such a promoter is typically found associated with many δ -endotoxin genes.

Host cells are transfected and preferably transformed with the above-described vectors and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences.

Numerous methods of transfection are known to the ordinarily skilled artisan, for example, calcium phosphate and electroporation. Depending on the host cell used, transformation is done using standard techniques appropriate to such cells. The calcium treatment employing calcium chloride, as described in section 1.82 of Sambrook *et al.*, *Molecular Cloning: A Laboratory Manual*, New York: Cold Spring Harbor Laboratory Press, (1989), is generally used for bacterial cells that contain substantial cell-wall barriers. Another method for transformation employs polyethylene glycol/DMSO, as described in Chung and Miller (Chung and Miller, *Nucleic Acids Res. 16*:3580 (1988)). Yet another method is the use of the technique termed electroporation. In addition, bacterial cells can be readily transformed using various forms of phages (i.e., transducing, temperate, lytic and lysogenic), suicide vectors for inserting DNA directly into the chromosome, and through homologous recombination using either phages, suicide vectors or linear DNA.

10

15

20

25

30

Bacterial cells used to produce the polypeptide of interest for purposes of this invention are cultured in suitable media in which the promoters for the nucleic acid encoding the heterologous polypeptide can be artificially induced as described generally, e.g., in Sambrook *et al.*, *Molecular Cloning: A Laboratory Manual*, New York: Cold Spring Harbor Laboratory Press, (1989). Examples of suitable media are given in U.S. Pat. Nos. 5,304,472 and 5,342,763.

A yeast recombinant construct can typically include one or more of the following: a promoter sequence, fusion partner sequence, leader sequence, transcription termination sequence, a selectable marker. These elements can be combined into an expression cassette, which may be maintained in a replicon, such as an extrachromosomal element (e.g., plasmids) capable of stable maintenance in a host, such as yeast or bacteria. The replicon may have two replication systems, thus allowing it to be maintained, for example, in yeast for expression and in a procaryotic host for cloning and amplification. Examples of such yeast-bacteria shuttle vectors include YEp24 (Botstein et al., Gene, 8:17-24 (1979)), pCl/1 (Brake et al., Proc. Natl. Acad. Sci USA, 81:4642-4646 (1984)), and YRp17 (Stinchcomb et al., J. Mol. Biol., 158:157 (1982)). In addition, a replicon may be either a high or low copy number plasmid. A high copy number plasmid will generally have a copy number ranging from about 5 to about 200, and typically about 10 to about 150. A host containing a high copy number plasmid will preferably have at least about 10, and more preferably at least about 20.

Useful yeast promoter sequences can be derived from genes encoding enzymes in the metabolic pathway. Examples of such genes include alcohol dehydrogenase (ADH) (E.P.O. Pub. No. 284044), enolase, glucokinase, glucose-6-phosphate isomerase, glyceraldehyde-3-phosphate-dehydrogenase (GAP or GAPDH), hexokinase, phosphofructokinase, 3-phosphoglycerate mutase, and pyruvate kinase (PyK) (E.P.O. Pub. No. 329203). The yeast PHO5 gene, encoding acid phosphatase, also provides useful promoter sequences (Myanohara et al., Proc. Natl. Acad. Sci. USA, 80:1 (1983)). In addition, synthetic promoters which do not occur in nature also function as yeast promoters. Examples of such hybrid promoters include the ADH regulatory sequence linked to the GAP transcription activation region (U.S. Pat. Nos. 4,876,197 and 4,880,734). Other examples of hybrid promoters include promoters which consist of the regulatory sequences of either the ADH2, GAL4, GAL10, or PHO5 genes, combined with the transcriptional activation region of a glycolytic enzyme gene such as GAP or PyK (E.P.O. Pub. No. 164556). Furthermore, a yeast promoter can include naturally occurring promoters of non-yeast origin that have the ability to bind yeast RNA polymerase and initiate transcription. Examples of such promoters include, inter alia, (Cohen et al., Proc. Natl. Acad. Sci. USA, 77:1078 (1980); Henikoff et al., Nature 283:835 (1981); Hollenberg et al., Curr. Topics Microbiol. Immunol., 96:119 (1981); Mercerau-Puigalon et al., Gene, 11:163 (1980); and Panthier et al., Curr. Genet., 2:109 (1980)).

10

15

20

25

30

Intracellularly expressed fusion proteins provide an alternative to direct expression of the polypeptides of interest. Typically, a DNA sequence encoding the N-terminal portion of a stable protein, a fusion partner, is fused to the 5' end of heterologous structural nucleotide sequence encoding the desired polypeptide. Upon expression, this construct will provide a fusion of the two amino acid sequences. The DNA sequence at the junction of the two amino acid sequences may or may not encode a cleavable site. See, e.g., E.P.O. Pub. No. 196056. Another example is a ubiquitin fusion protein. Such a ubiquitin fusion protein preferably retains a site for a processing enzyme (e.g. ubiquitin-specific processing protease) to cleave the ubiquitin from the polypeptide of the present invention. Through this method, therefore, a mature polypeptide can be isolated [see, P.C.T. WO 88/024066].

Alternatively, polypeptides or proteins can also be secreted from the cell into the growth media by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provides for secretion in yeast of the polypeptides. Preferably, there are processing sites encoded between the leader fragment and the polypeptide-encoding sequence fragment that can be cleaved either in vivo or in vitro. The leader sequence fragment typically encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell.

DNA encoding suitable signal sequences can be derived from genes for secreted yeast proteins, such as the yeast invertase gene (E.P.O. Pub. No. 12873; J.P.O. Pub. No. 62,096,086) and the A-factor gene (U.S. Pat. No. 4,588,684). Alternatively, leaders of non-yeast origin, such as an interferon leader, exist that also provide for secretion in yeast (E.P.O. Pub. No. 60057).

A preferred class of secretion leaders are those that employ a fragment of the yeast alpha-factor gene, which contains both a "pre" signal sequence, and a "pro" region. The types of alpha-factor fragments that can be employed include the full-length pre-pro alpha factor leader (about 83 amino acid residues) as well as truncated alpha-factor leaders (typically about 25 to about 50 amino acid residues) (U.S. Pat. Nos. 4,546,083 and 4,870,008; and E.P.O. Pub. No. 324274). Additional leaders employing an alpha-factor leader fragment that provides for secretion include hybrid alpha-factor leaders made with a pre-sequence of a first yeast, but a pro-region from a second yeast alpha factor. See, e.g., P.C.T. WO 89/02463.

Examples of transcription terminator sequence and other yeast-recognized termination sequences, such as those coding for glycolytic enzymes, are known to those of skill in the art.

Alternatively, the expression constructs can be integrated into the yeast genome with an integrating vector. Integrating vectors typically contain at least one sequence homologous to a yeast chromosome that allows the vector to integrate, and preferably contain two homologous sequences flanking the expression construct. Integrations appear to result from recombinations between homologous

10

15

20

25

30

DNA in the vector and the yeast chromosome (Orr-Weaver et al., Methods in Enzymol., 101:228-245 (1983)). An integrating vector may be directed to a specific locus in yeast by selecting the appropriate homologous sequence for inclusion in the vector. See Orr-Weaver et al., supra. One or more expression constructs may integrate, possibly affecting levels of recombinant protein produced (Rine et al., Proc. Natl. Acad. Sci. USA, 80:6750 (1983)). The chromosomal sequences included in the vector can occur either as a single segment in the vector, which results in the integration of the entire vector, or as two segments homologous to adjacent segments in the chromosome and flanking the expression construct in the vector, which results in the stable integration of only the expression construct.

Expression and transformation vectors, either extrachromosomal replicons or integrating vectors, have been developed for transformation into many yeasts. For example, expression vectors have been developed for, inter alia, the following yeasts: *Candida albicans* (Kurtz, et al., Mol. Cell. Biol., 6:142 (1986)), *Candida maltosa* (Kunze et al., J. Basic Microbiol., 25:141 (1985)); *Hansenula polymorpha* (Gleeson et al., J. Gen. Microbiol. 132:3459 (1986); Roggenkamp et al., Mol. Gen. Genet. 202:302 (1986)); *Kluyveromyces fragilis* (Das et al., J. Bacteriol. 158:1165 (1984)); *Kluyveromyces lactis* (De Louvencourt et al., J. Bacteriol. 154:737 (1983); Van den Berg et al., Bio/Technology 8:135 (1990)); *Pichia guillerimondii* (Kunze et al., J. Basic Microbiol. 25:141 (1985)); *Pichia pastoris* (Cregg et al., Mol. Cell. Biol. 5:3376 (1985); U.S. Pat. Nos. 4,837,148 and 4,929,555); *Saccharomyces cerevisiae* (Hinnen et al., Proc. Natl. Acad. Sci. USA 75:1929 (1978); Ito et al., J. Bacteriol. 153:163 (1983)); *Schizosaccharomyces pombe* (Beach and Nurse, Nature 300:706 (1981)); and *Yarrowia lipolytica* (Davidow, et al., Curr. Genet. 10:380471 (1985); and Gaillardin et al., Curr. Genet. 10:49 (1985)).

Methods of introducing exogenous nucleic acids into yeast hosts are well-known in the art, and typically include either the transformation of spheroplasts or of intact yeast cells treated with alkali cations. Transformation procedures usually vary with the yeast species to be transformed. See e.g., Kurtz et al., Mol. Cell. Biol. 6:142 (1986); Kunze et al., J. Basic Microbiol. 25:141 (1985) for *Candida*. See, e.g., Gleeson et al., J. Gen. Microbiol. 132:3459 (1986); Roggenkamp et al., Mol. Gen. Genet. 202:302 (1986) for *Hansenula*. See, e.g., Das et al., J. Bacteriol. 158:1165 (1984); De Louvencourt et al., J. Bacteriol. 154:1165 (1983); Van den Berg et al., Bio/Technology 8:135 (1990) for *Kluyveromyces*. See, e.g., Cregg et al., Mol. Cell. Biol. 5:3376 (1985); Kunze et al., J. Basic Microbiol. 25:141 (1985); U.S. Pat. Nos. 4,837,148 and 4,929,555 for *Pichia*. See, e.g., Hinnen et al., Proc. Natl. Acad. Sci. USA 75:1929 (1978); Ito et al., J. Bacteriol. 153:163 (1983) for *Saccharomyces*. See, e.g., Beach and Nurse, Nature 300:706 (1981) for *Schizosaccharomyces*. See, e.g., Davidow et al., Curr. Genet. 10:39 (1985); Gaillardin et al., Curr. Genet. 10:49 (1985) for *Yarrowia*.

A TABLE CONTROL OF THE STATE OF

5

10

15

20

25

30

In order to obtain expression polypeptides or proteins of interest, recombinant microbial host cells derived from the transformants are incubated under conditions which allow expression of the recombinant polypeptide-encoding sequence. These conditions will vary, dependent upon the host cell selected. However, the conditions are readily ascertainable to those of ordinary skill and knowledge in the art.

Detection of polypeptides expressed in the transformed host cell may be performed by several methods. For example, a polypeptide or protein may be detected by its immunological reactivity with antibodies.

Polypeptides or proteins of the present invention may be isolated from the cell by lysis, if formed intracellularly, or isolated from the culture medium, if secreted, by conventional methods.

Plant Constructs and Plant Transformants

Nucleic acid molecules of the present invention may be used in plant transformation or transfection. Exogenous genetic material may be transferred into a plant cell and the plant cell regenerated into a whole, fertile or sterile plant. Such genetic material may be transferred into either monocotyledons and dicotyledons including but not limited to the plants, alfalfa, *Arabidopsis*, barley, *Brassica*, broccoli, cabbage, citrus, cotton, garlic, oat, oilseed rape, onion, canola, flax, maize, an ornamental plant, pea, peanut, pepper, potato, rice, rye, sorghum, soybean, strawberry, sugarcane, sugarbeet, tomato, wheat, poplar, pine, fir, eucalyptus, apple, lettuce, lentils, grape, banana, tea, turf grasses, sunflower, oil palm, *Phaseolus* etc. Particularly preferred plants would include, *Arabidopsis*, barley, cotton, oat, oilseed rape, rice, maize, soybean, canola, ornamentals, sugarcane, sugarbeet, tomato, potato, wheat and turf grasses (*See specifically*, Chistou, *Particle Bombardment for Genetic Engineering of Plants*, Biotechnology Intelligence Unit, Academic Press, San Diego, CA (1996) and generally Chistou, *Particle Bombardment for Genetic Engineering of Plants*, Biotechnology Intelligence Unit, Academic Press, San Diego, CA (1996)).

The present invention also relates to a transformed plant cell or plant comprising in its genome an exogenous nucleic acid encoding one or more *B. thuringiensis* proteins or polypeptides of the present invention. The present invention also relates to methods for creating a transgenic plant in which one or more *B. thuringiensis* proteins or polypeptides of the present invention are overexpressed.

As used herein, the term exogenous genetic material means any genetic material, whether naturally occurring or otherwise, from any source that is capable of being inserted into any organism. In a preferred embodiment the exogenous genetic material includes an isolated nucleic acid molecule or fragment thereof of the present invention. In another preferred embodiment of the present invention

10

15

20

25

30

exogenous genetic material includes a regulatory element, promoter or partial promoter of the present invention. In a more preferred embodiment of the present invention exogenous genetic material includes a regulatory element, promoter or partial promoter of the present invention and a nucleic acid molecule encoding a *B. thuringiensis* protein or fragments thereof. In a further more preferred embodiment of the present invention exogenous genetic material includes a regulatory element, promoter or partial promoter of the present invention and a nucleic acid molecule of the present invention having a sequence encoding a polypeptide or protein or fragment thereof set forth in Table 1.

One skilled in the art understands that an exogenous nucleic acid can be a heterologous nucleic acid derived from a different species than the species into which the nucleic acid is introduced or can be a nucleic acid derived from the same species as the species into which it is introduced.

The term "overexpression" refers to the expression of a polypeptide or protein encoded by an exogenous nucleic acid introduced into a host cell, wherein said polypeptide or protein is either not normally present in the host cell, or wherein said polypeptide or protein is present in said host cell at a higher level than that normally expressed from the endogenous gene encoding said polypeptide or protein. By "endogenous gene" refers to a native gene in its natural location in the genome of an organism.

The term "genome" as it applies to plant cells encompasses not only chromosomal DNA found within the nucleus, but organelle DNA found within subcellular components of the cell. DNAs of the present invention introduced into plant cells can therefore be either chromosomally integrated or organelle-localized. The term "genome" as it applies to bacteria encompasses both the chromosome and plasmids within a bacterial host cell. Encoding DNAs of the present invention introduced into bacterial host cells can therefore be either chromosomally integrated or plasmid-localized.

Transfer of a nucleic acid molecule that encodes for a protein can result in overexpression of that protein in a transformed cell or transgenic plant. One or more of the proteins or fragments thereof encoded by nucleic acid molecules of the present invention may be overexpressed in a transformed cell or transformed plant. Such overexpression may be the result of transient or stable transfer of the exogenous material. In a preferred embodiment of the present invention, one or more of the *B. thuringiensis* proteins or fragments thereof are overexpressed in a transformed cell or transgenic plant.

Exogenous genetic material may be transferred into a plant cell by the use of a DNA vector or construct designed for such a purpose. Vectors have been engineered for transformation of large DNA inserts into plant genomes. Binary bacterial artificial chromosomes have been designed to replicate in both *E. coli* and *A. tumefaciens* and have all of the features required for transferring large inserts of DNA into plant chromosomes Choi and Wing, http://genome.clemson.edu/protocols2-nj.html, July, 1998.

Ð.,

5

10

15

20

25

30

ApBACwich system has been developed to achieve site-directed integration of DNA into the genome. A 150 kb cotton BAC DNA is reported to have been transferred into a specific *lox* site in tobacco by biolistic bombardment and *Cre-lox* site specific recombination.

A construct or vector may also include a plant promoter to express the protein or protein fragment of choice. A number of promoters which are active in plant cells have been described in the literature. These include the nopaline synthase (NOS) promoter (Ebert et al., Proc. Natl. Acad. Sci. U.S.A. 84:5745-5749 (1987)), the octopine synthase (OCS) promoter (which are carried on tumorinducing plasmids of Agrobacterium tumefaciens), the caulimovirus promoters such as the cauliflower mosaic virus (CaMV) 19S promoter (Lawton et al., Plant Mol. Biol. 9:315-324 (1987)) and the CaMV 35S promoter (Odell et al., Nature 313:810-812 (1985)), the figwort mosaic virus 35S-promoter, the light-inducible promoter from the small subunit of ribulose-1,5-bis-phosphate carboxylase (ssRUBISCO), the Adh promoter (Walker et al., Proc. Natl. Acad. Sci. U.S.A. 84:6624-6628 (1987)), the sucrose synthase promoter (Yang et al., Proc. Natl. Acad. Sci. U.S.A. 87:4144-4148 (1990)), the R gene complex promoter (Chandler et al., The Plant Cell 1:1175-1183 (1989)), and the chlorophyll a/b binding protein gene promoter, etc. These promoters have been used to create DNA constructs which have been expressed in plants; see, e.g., PCT publication WO 84/02913.

Promoters which are known or are found to cause transcription of DNA in plant cells can be used in the present invention. Such promoters may be obtained from a variety of sources such as plants and plant viruses. It is preferred that the particular promoter selected should be capable of causing sufficient expression to result in the production of an effective amount of protein to cause the desired phenotype. In addition to promoters which are known to cause transcription of DNA in plant cells, other promoters may be identified for use in the current invention by screening a plant cDNA library for genes which are selectively or preferably expressed in the target tissues or cells.

For the purpose of expression in source tissues of the plant, such as the leaf, seed, root or stem, it is preferred that the promoters utilized in the present invention have relatively high expression in these specific tissues. For this purpose, one may choose from a number of promoters for genes with tissue- or cell-specific or -enhanced expression. Examples of such promoters reported in the literature include the chloroplast glutamine synthetase GS2 promoter from pea (Edwards et al., Proc. Natl. Acad. Sci. U.S.A. 87:3459-3463 (1990)), the chloroplast fructose-1,6-biphosphatase (FBPase) promoter from wheat (Lloyd et al., Mol. Gen. Genet. 225:209-216 (1991)), the nuclear photosynthetic ST-LS1 promoter from potato (Stockhaus et al., EMBO J. 8:2445-2451 (1989)), the phenylalanine ammonia-lyase (PAL) promoter and the chalcone synthase (CHS) promoter from B. thuringiensis thaliana. Also reported to be active in photosynthetically active tissues are the ribulose-1,5-bisphosphate carboxylase (RbcS) promoter from

10

15

20

25

30

eastern larch (*Larix laricina*), the promoter for the *cab* gene, cab6, from pine (Yamamoto *et al.*, *Plant Cell Physiol.* 35:773-778 (1994)), the promoter for the Cab-1 gene from wheat (Fejes *et al.*, *Plant Mol. Biol.* 15:921-932 (1990)), the promoter for the CAB-1 gene from spinach (Lubberstedt *et al.*, *Plant Physiol.* 104:97-1006 (1994)), the promoter for the cab1R gene from rice (Luan *et al.*, *Plant Cell.* 4:971-981 (1992)), the pyruvate, orthophosphate dikinase (PPDK) promoter from maize (Matsuoka *et al.*, *Proc. Natl. Acad. Sci. U.S.A.* 90:9586-9590 (1993)), the promoter for the tobacco Lhcb1*2 gene (Cerdan *et al.*, *Plant Mol. Biol.* 33:245-255. (1997)), the *A. nidulans thaliana* SUC2 sucrose-H⁺ symporter promoter (Truernit *et al.*, *Planta.* 196:564-570 (1995)), and th *spergillus thaliana* SUC2 sucrose-H⁺ symporter promoter (Truernit *et al.*, *Planta.* 196:564-570 (1995)), and the promoter for the thylakoid membrane proteins from spinach (psaD, psaF, psaE, PC, FNR, atpC, atpD, cab, rbcS). Other promoters for the chlorophyll a/b-binding proteins may also be utilized in the present invention, such as the promoters for LhcB gene and PsbP gene from white mustard (*Sinapis alba*; Kretsch *et al.*, *Plant Mol. Biol.* 28:219-229 (1995)).

For the purpose of expression in sink tissues of the plant, such as the tuber of the potato plant, the fruit of tomato, or the seed of maize, wheat, rice, and barley, it is preferred that the promoters utilized in the present invention have relatively high expression in these specific tissues. A number of promoters for genes with tuber-specific or -enhanced expression are known, including the class I patatin promoter (Bevan et al., EMBO J. 8:1899-1906 (1986); Jefferson et al., Plant Mol. Biol. 14:995-1006 (1990)), the promoter for the potato tuber ADPGPP genes, both the large and small subunits, the sucrose synthase promoter (Salanoubat and Belliard, Gene. 60:47-56 (1987), Salanoubat and Belliard, Gene. 84:181-185 (1989)), the promoter for the major tuber proteins including the 22 kd protein complexes and proteinase inhibitors (Hannapel, Plant Physiol. 101:703-704 (1993)), the promoter for the granule bound starch synthase gene (GBSS) (Visser et al., Plant Mol. Biol. 17:691-699 (1991)), and other class I and II patatins promoters (Koster-Topfer et al., Mol. Gen. Genet. 219:390-396 (1989); Mignery et al., Gene. 62:27-44 (1988)).

Other promoters can also be used to express a fructose 1,6 bisphosphate aldolase gene in specific tissues, such as seeds or fruits. The promoter for β -conglycinin (Chen *et al.*, *Dev. Genet. 10*:112-122 (1989)) or other seed-specific promoters such as the napin and phaseolin promoters, can be used. The zeins are a group of storage proteins found in maize endosperm. Genomic clones for zein genes have been isolated (Pedersen *et al.*, *Cell 29*:1015-1026 (1982)), and the promoters from these clones, including the 15 kD, 16 kD, 19 kD, 22 kD, 27 kD, and gamma genes, could also be used. Other promoters known to function, for example, in maize, include the promoters for the following genes: *waxy, Brittle, Shrunken* 2, Branching enzymes I and II, starch synthases, debranching enzymes, oleosins, glutelins, and sucrose

10

15

20

25

30

synthases. A particularly preferred promoter for maize endosperm expression is the promoter for the glutelin gene from rice, more particularly the Osgt-1 promoter (Zheng et al., Mol. Cell Biol. 13:5829-5842 (1993)). Examples of promoters suitable for expression in wheat include those promoters for the ADPglucose pyrophosphorylase (ADPGPP) subunits, the granule bound and other starch synthases, the branching and debranching enzymes, the embryogenesis-abundant proteins, the gliadins, and the glutenins. Examples of such promoters in rice include those promoters for the ADPGPP subunits, the granule bound and other starch synthases, the branching enzymes, the debranching enzymes, sucrose synthases, and the glutelins. A particularly preferred promoter is the promoter for rice glutelin, Osgt-1. Examples of such promoters for barley include those for the ADPGPP subunits, the granule bound and other starch synthases, the branching enzymes, the debranching enzymes, sucrose synthases, the hordeins, the embryo globulins, and the aleurone specific proteins.

Root specific promoters may also be used. An example of such a promoter is the promoter for the acid chitinase gene (Samac *et al.*, *Plant Mol. Biol. 25*:587-596 (1994)). Expression in root tissue could also be accomplished by utilizing the root specific subdomains of the CaMV35S promoter that have been identified (Lam *et al.*, *Proc. Natl. Acad. Sci. (U.S.A.) 86*:7890-7894 (1989)). Other root cell specific promoters include those reported by Conkling *et al.*, *Plant Physiol. 93*:1203-1211 (1990)).

Additional promoters that may be utilized are described, for example, in U.S. Patent Nos. 5,378,619; 5,391,725; 5,428,147; 5,447,858; 5,608,144; 5,608,144; 5,614,399; 5,633,441; 5,633,435 and 4,633,436, all of which are herein incorporated in their entirety. In addition, a tissue specific enhancer may be used (Fromm *et al.*, *The Plant Cell 1*:977-984 (1989)). It is further understood that one or more of the promoters of the present invention may be used.

Constructs or vectors may also include, with the coding region of interest, a nucleic acid sequence that acts, in whole or in part, to terminate transcription of that region. For example, such sequences have been isolated including the Tr7 3' sequence and the nos 3' sequence (Ingelbrecht et al., The Plant Cell 1:671-680 (1989); Bevan et al., Nucleic Acids Res. 11:369-385 (1983)), or the like. It is understood that one or more sequences of the present invention that act, to terminate transcription may be used.

A vector or construct may also include other regulatory elements. Examples of such include the Adh intron 1 (Callis et al., Genes and Develop. 1:1183-1200 (1987)), the sucrose synthase intron (Vasil et al., Plant Physiol. 91:1575-1579 (1989)) and the TMV omega element (Gallie et al., The Plant Cell 1:301-311 (1989)). These and other regulatory elements may be included when appropriate. It is also understood that one or more of the regulatory regions of the present invention may be used.

10

15

20

25

30

A vector or construct may also include a selectable marker. Selectable markers may also be used to select for plants or plant cells that contain the exogenous genetic material. Examples of such include, but are not limited to, a neo gene (Potrykus et al., Mol. Gen. Genet. 199:183-188 (1985)) which codes for kanamycin resistance and can be selected for using kanamycin, G418, etc.; a bar gene which codes for bialaphos resistance; a mutant EPSP synthase gene (Hinchee et al., Bio/Technology 6:915-922 (1988)) which encodes glyphosate resistance; a nitrilase gene which confers resistance to bromoxynil (Stalker et al., J. Biol. Chem. 263:6310-6314 (1988)); a mutant acetolactate synthase gene (ALS) which confers imidazolinone or sulphonylurea resistance (European Patent Application 154,204 (Sept. 11, 1985)); and a methotrexate resistant DHFR gene (Thillet et al., J. Biol. Chem. 263:12500-12508 (1988)).

A vector or construct may also include a transit peptide. Incorporation of a suitable chloroplast transit peptide may also be employed (European Patent Application Publication Number 0218571). Translational enhancers may also be incorporated as part of the vector DNA. DNA constructs could contain one or more 5' non-translated leader sequences which may serve to enhance expression of the gene products from the resulting mRNA transcripts. Such sequences may be derived from the promoter selected to express the gene or can be specifically modified to increase translation of the mRNA. Such regions may also be obtained from viral RNAs, from suitable eukaryotic genes, or from a synthetic gene sequence. For a review of optimizing expression of transgenes, see Koziel *et al.*, *Plant Mol. Biol.* 32:393-405 (1996).

A vector or construct may also include a screenable marker. Screenable markers may be used to monitor expression. Exemplary screenable markers include a β-glucuronidase or uidA gene (GUS) which encodes an enzyme for which various chromogenic substrates are known (Jefferson, *Plant Mol. Biol, Rep. 5:*387-405 (1987); Jefferson *et al., EMBO J. 6:*3901-3907 (1987)); an R-locus gene, which encodes a product that regulates the production of anthocyanin pigments (red color) in plant tissues (Dellaporta *et al.*, Stadler Symposium *11:*263-282 (1988)); a β-lactamase gene (Sutcliffe *et al., Proc. Natl. Acad. Sci. (U.S.A.)* 75:3737-3741 (1978)), a gene which encodes an enzyme for which various chromogenic substrates are known (e.g., PADAC, a chromogenic cephalosporin); a luciferase gene (Ow *et al., Science 234:*856-859 (1986)) a xylE gene (Zukowsky *et al., Proc. Natl. Acad. Sci. (U.S.A.)* 80:1101-1105 (1983)) which encodes a catechol dioxygenase that can convert chromogenic catechols; an α-amylase gene (Ikatu *et al., Bio/Technol. 8:*241-242 (1990)); a tyrosinase gene (Katz *et al., J. Gen. Microbiol. 129:*2703-2714 (1983)) which encodes an enzyme capable of oxidizing tyrosine to DOPA and dopaquinone which in turn condenses to melanin; an α-galactosidase, which will turn a chromogenic α-galactose substrate.

THE COLUMN THE STATE OF THE STA

5

10

15

20

25

30

Included within the terms "selectable or screenable marker genes" are also genes which encode a secretable marker whose secretion can be detected as a means of identifying or selecting for transformed cells. Examples include markers which encode a secretable antigen that can be identified by antibody interaction, or even secretable enzymes which can be detected catalytically. Secretable proteins fall into a number of classes, including small, diffusible proteins detectable, *e.g.*, by ELISA, small active enzymes detectable in extracellular solution (*e.g.*, α -amylase, β -lactamase, phosphinothricin transferase), or proteins which are inserted or trapped in the cell wall (such as proteins which include a leader sequence such as that found in the expression unit of extension or tobacco PR-S). Other possible selectable and/or screenable marker genes will be apparent to those of skill in the art.

There are many methods for introducing nucleic acid molecules into plant cells. Suitable methods are believed to include virtually any method by which nucleic acid molecules may be introduced into a cell, such as by *Agrobacterium* infection or direct delivery of nucleic acid molecules such as, for example, by PEG-mediated transformation, by electroporation or by acceleration of DNA coated particles, etc. (Potrykus, *Ann. Rev. Plant Physiol. Plant Mol. Biol. 42*:205-225 (1991); Vasil, *Plant Mol. Biol. 25*:925-937 (1994). For example, electroporation has been used to transform maize protoplasts (Fromm *et al.*, *Nature 312*:791-793 (1986)).

Technology for introduction of DNA into cells is well known to those of skill in the art. Four general methods for delivering a gene into cells have been described: (1) chemical methods (Graham and van der Eb, Virology 54:536-539 (1973)); (2) physical methods such as microinjection (Capecchi, Cell 22:479-488 (1980), electroporation (Wong and Neumann, Biochem. Biophys. Res. Commun. 107:584-587 (1982); Fromm et al., Proc. Natl. Acad. Sci. (U.S.A.) 82:5824-5828 (1985); U. S. Patent No. 5,384,253; and the gene gun (Johnston and Tang, Methods Cell Biol. 43:353-365 (1994); (3) viral vectors (Clapp, Clin. Perinatol. 20:155-168 (1993); Lu et al., J. Exp. Med. 178:2089-2096 (1993); Eglitis and Anderson, Biotechnique 6:608-614 (1988)); and (4) receptor-mediated mechanisms (Curiel et al., Hum. Gen. Ther. 3:147-154 (1992); Wagner et al., Proc. Natl. Acad. Sci. (U.S.A.) 89:6099-6103 (1992)).

Acceleration methods that may be used include, for example, microprojectile bombardment and the like. One example of a method for delivering transforming nucleic acid molecules to plant cells is microprojectile bombardment. This method has been reviewed by Yang and Christou, eds., *Particle Bombardment Technology for Gene Transfer*, Oxford Press, Oxford, England (1994)). Non-biological particles (microprojectiles) that may be coated with nucleic acids and delivered into cells by a propelling force. Exemplary particles include those comprised of tungsten, gold, platinum, and the like.

A particular advantage of microprojectile bombardment, in addition to it being an effective means of reproducibly, and stably transforming monocotyledons, is that neither the isolation of protoplasts

10

15

20

25

30

(Cristou et al., Plant Physiol. 87:671-674 (1988)) nor the susceptibility of Agrobacterium infection is required. An illustrative embodiment of a method for delivering DNA into maize cells by acceleration is a biolistics alpha-particle delivery system, which can be used to propel particles coated with DNA through a screen, such as a stainless steel or Nytex screen, onto a filter surface covered with corn cells cultured in suspension. Gordon-Kamm et al, describes the basic procedure for coating tungsten particles with DNA (Plant Cell 2:603-618 (1990)). The screen disperses the tungsten nucleic acid particles so that they are not delivered to the recipient cells in large aggregates. A particle delivery system suitable for use with the present invention is the helium acceleration PDS-1000/He gun which is available from Bio-Rad Laboratories (Bio-Rad, Hercules, CA) Sanford et al., Technique 3:3-16 (1991)).

For the bombardment, cells in suspension may be concentrated on filters. Filters containing the cells to be bombarded are positioned at an appropriate distance below the microprojectile stopping plate. If desired, one or more screens are also positioned between the gun and the cells to be bombarded.

Alternatively, immature embryos or other target cells may be arranged on solid culture medium. The cells to be bombarded are positioned at an appropriate distance below the macroprojectile stopping plate. If desired, one or more screens are also positioned between the acceleration device and the cells to be bombarded. Through the use of techniques set forth herein one may obtain up to 1000 or more foci of cells transiently expressing a marker gene. The number of cells in a focus which express the exogenous gene product 48 hours post-bombardment often range from one to ten and average one to three.

In another alternative embodiment, plastids can be stably transformed. Methods suitable for plastid transformation in higher plants include particle gun delivery of DNA containing a selectable marker and targeting of the DNA to the plastid genome through homologous recombination (Svab *et al. Proc. Natl. Acad. Sci. (U.S.A.)* 87:8526-8530 (1990): Svab and Maliga *Proc. Natl. Acad. Sci. (U.S.A.)* 90:913-917 (1993); Staub and Maliga, *EMBO J.* 12:601-606 (1993), U.S. Patents 5, 451,513 and 5,545,818).

In bombardment transformation, one may optimize the prebombardment culturing conditions and the bombardment parameters to yield the maximum numbers of stable transformants. Both the physical and biological parameters for bombardment are important in this technology. Physical factors are those that involve manipulating the DNA/microprojectile precipitate or those that affect the flight and velocity of either the macro- or microprojectiles. Biological factors include all steps involved in manipulation of cells before and immediately after bombardment, the osmotic adjustment of target cells to help alleviate the trauma associated with bombardment, and also the nature of the transforming DNA, such as linearized DNA or intact supercoiled plasmids. It is believed that pre-bombardment manipulations are especially important for successful transformation of immature embryos.

ť

5

10

15

20

25

30

Accordingly, it is contemplated that one may wish to adjust various aspects of the bombardment parameters in small scale studies to fully optimize the conditions. One may particularly wish to adjust physical parameters such as gap distance, flight distance, tissue distance, and helium pressure. One may also minimize the trauma reduction factors by modifying conditions which influence the physiological state of the recipient cells and which may therefore influence transformation and integration efficiencies. For example, the osmotic state, tissue hydration and the subculture stage or cell cycle of the recipient cells may be adjusted for optimum transformation. The execution of other routine adjustments will be known to those of skill in the art in light of the present disclosure.

Agrobacterium-mediated transfer is a widely applicable system for introducing genes into plant cells because the DNA can be introduced into whole plant tissues, thereby bypassing the need for regeneration of an intact plant from a protoplast. The use of Agrobacterium-mediated plant integrating vectors to introduce DNA into plant cells is well known in the art. See, for example, the methods described (Fraley et al., Biotechnology 3:629-635 (1985); Rogers et al., Meth. Enzymol. 153:253-277 (1987). Further, the integration of the Ti-DNA is a relatively precise process resulting in few rearrangements. The region of DNA to be transferred is defined by the border sequences, and intervening DNA is usually inserted into the plant genome as described (Spielmann et al., Mol. Gen. Genet. 205:34 (1986)).

Modern Agrobacterium transformation vectors are capable of replication in E. coli as well as Agrobacterium, allowing for convenient manipulations as described (Klee et al., In: Plant DNA Infectious Agents, Hohn and Schell, eds., Springer-Verlag, New York, pp. 179-203 (1985)). Moreover, recent technological advances in vectors for Agrobacterium-mediated gene transfer have improved the arrangement of genes and restriction sites in the vectors to facilitate construction of vectors capable of expressing various polypeptide coding genes. The vectors described have convenient multi-linker regions flanked by a promoter and a polyadenylation site for direct expression of inserted polypeptide coding genes and are suitable for present purposes (Rogers et al., Methods Enzymol. 153:253-277 (1987)). In addition, Agrobacterium containing both armed and disarmed Ti genes can be used for the transformations. In those plant strains where Agrobacterium-mediated transformation is efficient, it is the method of choice because of the facile and defined nature of the gene transfer.

A transgenic plant formed using Agrobacterium transformation methods typically contains a single insert on one chromosome. Such transgenic plants can be referred to as being heterozygous for the added gene. More preferred is a transgenic plant that is homozygous for the added structural gene; i.e., a transgenic plant that contains two added genes, one gene at the same locus on each chromosome of a chromosome pair. A homozygous transgenic plant can be obtained by sexually mating (selfing) an

wie ,

5

10

15

20

25

30

independent segregant transgenic plant that contains a single added gene, germinating some of the seed produced and analyzing the resulting plants produced for the gene of interest.

It is also to be understood that two different transgenic plants can also be mated to produce offspring that contain two independently segregating added, exogenous genes.

The present invention also provides for parts of the plants of the present invention. Plant parts, without limitation, include seed, endosperm, ovule and pollen. In a particularly preferred embodiment of the present invention, the plant part is a seed.

Transformation of plant protoplasts can be achieved using methods based on calcium phosphate precipitation, polyethylene glycol treatment, electroporation, and combinations of these treatments. See for example (Potrykus et al., Mol. Gen. Genet 205:193-200 (1986); Lorz et al., Mol. Gen. Genet. 199:178, (1985); Fromm et al., Nature 319:791,(1986); Uchimiya et al., Mol. Gen. Genet. 204:204 (1986); Callis et al., Genes and Development 1183 (1987); Marcotte et al., Nature 335:454 (1988)).

Application of these systems to different plant strains depends upon the ability to regenerate that particular plant strain from protoplasts. Illustrative methods for the regeneration of cereals from protoplasts are described (Fujimura et al., Plant Tissue Culture Letters 2:74 (1985); Toriyama et al., Theor Appl. Genet. 205:34 (1986); Yamada et al., Plant Cell Rep. 4:85 (1986); Abdullah et al., Biotechnology 4:1087 (1986)).

To transform plant strains that cannot be successfully regenerated from protoplasts, other ways to introduce DNA into intact cells or tissues can be utilized. For example, regeneration of cereals from immature embryos or explants can be effected as described (Vasil, *Biotechnology 6*: 397 (1988)). In addition, "particle gun" or high-velocity microprojectile technology can be utilized (Vasil *et al.*, *Bio/Technology 10*:667, (1992)).

Using the latter technology, DNA is carried through the cell wall and into the cytoplasm on the surface of small metal particles as described (Klein et al., Nature 328:70 (1987); Klein et al., Proc. Natl. Acad. Sci. (U.S.A.) 85:8502-8505 (1988); McCabe et al., Biotechnology 6:923 (1988)). The metal particles penetrate through several layers of cells and thus allow the transformation of cells within tissue explants.

Other methods of cell transformation can also be used and include but are not limited to introduction of DNA into plants by direct DNA transfer into pollen (Hess et al., Intern Rev. Cytol. 107:367 (1987); Luo et al., Plant Mol. Biol.. Reporter 6:165 (1988)), by direct injection of DNA into reproductive organs of a plant (Pena et al., Nature 325:274 (1987)), or by direct injection of DNA into the cells of immature embryos followed by the rehydration of desiccated embryos (Neuhaus et al., Theor. Appl. Genet. 75:30 (1987)).

10

15

20

25

30

The regeneration, development, and cultivation of plants from single plant protoplast transformants or from various transformed explants is well known in the art (Weissbach and Weissbach, In: *Methods for Plant Molecular Biology*, (Eds.), Academic Press, Inc. San Diego, CA, (1988)). This regeneration and growth process typically includes the steps of selection of transformed cells, culturing those individualized cells through the usual stages of embryonic development through the rooted plantlet stage. Transgenic embryos and seeds are similarly regenerated. The resulting transgenic rooted shoots are thereafter planted in an appropriate plant growth medium such as soil.

The development or regeneration of plants containing the foreign, exogenous gene that encodes a protein of interest is well known in the art. Preferably, the regenerated plants are self-pollinated to provide homozygous transgenic plants, as discussed before. Otherwise, pollen obtained from the regenerated plants is crossed to seed-grown plants of agronomically important lines. Conversely, pollen from plants of these important lines is used to pollinate regenerated plants. A transgenic plant of the present invention containing a desired polypeptide is cultivated using methods well known to one skilled in the art.

There are a variety of methods for the regeneration of plants from plant tissue. The particular method of regeneration will depend on the starting plant tissue and the particular plant species to be regenerated.

Methods for transforming dicots, primarily by use of Agrobacterium tumefaciens, and obtaining transgenic plants have been published for cotton (U. S. Patent No. 5,004,863; U.S. Patent No. 5,159,135; U.S. Patent No. 5,518,908); soybean (U. S. Patent No. 5,569,834; U. S. Patent No. 5,416,011; McCabe et al., Biotechnology 6:923 (1988), Christou et al., Plant Physiol. 87:671-674 (1988)); Brassica (U. S. Patent No. 5,463,174); peanut (Cheng et al., Plant Cell Rep. 15:653-657 (1996), McKently et al., Plant Cell Rep. 14:699-703 (1995)); papaya (Yang et al., (1996)); pea (Grant et al., Plant Cell Rep. 15:254-258, (1995)).

Transformation of monocotyledons using electroporation, particle bombardment, and Agrobacterium have also been reported. Transformation and plant regeneration have been achieved in asparagus (Bytebier et al., Proc. Natl. Acad. Sci. (U.S.A.) 84:5345 (1987)); barley (Wan and Lemaux, Plant Physiol 104:37 (1994)); maize (Rhodes et al., Science 240:204 (1988), Gordon-Kamm et al., Plant Cell 2:603 (1990), Fromm et al., Bio/Technology 8:833 (1990), Koziel et al., Bio/Technology 11:194 (1993), Armstrong et al., Crop Science 35:550-557 (1995)); oat (Somers et al., Bio/Technology 10:1589 (1992)); orchardgrass (Horn et al., Plant Cell Rep. 7:469 (1988)); rice (Toriyama et al., Theor Appl. Genet. 205:34 (1986); Park et al., Plant Mol. Biol.32:1135-1148 (1996); Abedinia et al., Aust. J. Plant Physiol. 24:133-141 (1997); Zhang and Wu, Theor. Appl. Genet. 76:835 (1988); Zhang et al. Plant Cell

10

15

20

25

30

Rep. 7:379 (1988); Battraw and Hall, Plant Sci. 86:191-202 (1992); Christou et al., Bio/Technology 9:957 (1991)); sugarcane (Bower and Birch, Plant J. 2:409 (1992)); tall fescue (Wang et al., Bio/Technology 10:691 (1992)), and wheat (Vasil et al., Bio/Technology 10:667 (1992); U. S. Patent No. 5,631,152.

Assays for gene expression based on the transient expression of cloned nucleic acid constructs have been developed by introducing the nucleic acid molecules into plant cells by polyethylene glycol treatment, electroporation, or particle bombardment (Marcotte et al., Nature 335:454-457 (1988); Marcotte et al., Plant Cell 1:523-532 (1989); McCarty et al., Cell 66:895-905 (1991); Hattori et al., Genes Dev. 6:609-618 (1992); Goff et al., EMBO J. 9:2517-2522 (1990)). Transient expression systems may be used to functionally dissect gene constructs (See generally, Mailga et al., Methods in Plant Molecular Biology, Cold Spring Harbor Press (1995)).

Any of the nucleic acid molecules of the present invention may be introduced into a plant cell in a permanent or transient manner in combination with other genetic elements such as vectors, promoters, enhancers etc. Further any of the nucleic acid molecules encoding a *B. thuringiensis* protein or fragment thereof of the present invention may be introduced into a plant cell in a manner that allows for over expression of the protein or fragment thereof encoded by the nucleic acid molecule.

Antibodies have been expressed in plants (Hiatt et al., Nature 342:76-78 (1989); Conrad and Fielder, Plant Mol. Biol. 26:1023-1030 (1994)). Cytoplasmic expression of a scFv (single-chain Fv antibodies) has been reported to delay infection by artichoke mottled crinkle virus. Transgenic plants that express antibodies directed against endogenous proteins may exhibit a physiological effect (Philips et al., EMBO J. 16:4489-4496 (1997); Marion-Poll, Trends in Plant Science 2:447-448 (1997)). For example, expressed anti-abscisic antibodies reportedly result in a general perturbation of seed development (Philips et al., EMBO J. 16:4489-4496 (1997)).

Antibodies that are catalytic may also be expressed in plants (abzymes). The principle behind abzymes is that since antibodies may be raised against many molecules, this recognition ability can be directed toward generating antibodies that bind transition states to force a chemical reaction forward (Persidas, *Nature Biotechnology 15*:1313-1315 (1997); Baca *et al.*, *Ann. Rev. Biophys. Biomol. Struct.* 26:461-493 (1997)). The catalytic abilities of abzymes may be enhanced by site directed mutagenesis. Examples of abzymes are, for example, set forth in U.S. Patent No: 5,658,753; U.S. Patent No. 5,632,990; U.S. Patent No. 5,631,137; U.S. Patent 5,602,015; U.S. Patent No. 5,559,538; U.S. Patent No. 5,576,174; U.S. Patent No. 5,500,358; U.S. Patent 5,318,897; U.S. Patent No. 5,298,409; U.S. Patent No. 5,258,289 and U.S. Patent No. 5,194,585, all of which are herein incorporated in their entirety.

10

15

20

25

30

It is understood that any of the antibodies of the present invention may be expressed in plants and that such expression can result in a physiological effect. It is also understood that any of the expressed antibodies may be catalytic.

Exemplary Uses of the Agents of the Present Invention

Nucleic acid molecules and fragments thereof of the present invention may be employed to obtain other nucleic acid molecules from the same species. Such nucleic acid molecules include the nucleic acid molecules that encode the complete coding sequence of a protein and promoters and flanking sequences of such molecules. In addition, such nucleic acid molecules include nucleic acid molecules that encode for other isozymes or gene family members. Such molecules can be readily obtained by using the above-described nucleic acid molecules or fragments thereof to screen genomic libraries obtained from *B. thuringiensis*. Methods for forming such libraries are well known in the art.

Nucleic acid molecules and fragments thereof of the present invention may also be employed to obtain other nucleic acid molecules such as nucleic acid homologues. Such homologues include the nucleic acid nucleic acid homologues of non-B. thuringiensis species including the nucleic acid molecules that encode, in whole or in part, protein homologues of other species or other organisms, sequences of genetic elements such as promoters and transcriptional regulatory elements. Such molecules can be readily obtained by using the above-described nucleic acid molecules or fragments thereof to screen cDNA or genomic libraries. Methods for forming such libraries are well known in the art. Such homologue molecules may differ in their nucleotide sequences from those found in one or more of SEQ ID NO: 1 through SEQ ID NO: 8283 or complements thereof because complete complementarity is not needed for stable hybridization. The nucleic acid molecules of the present invention therefore also include molecules that, although capable of specifically hybridizing with the nucleic acid molecules may lack "complete complementarity." In a particular embodiment, methods or 3' or 5' RACE may be used (Frohman, M.A. et al., Proc. Natl. Acad. Sci. (U.S.A.) 85:8998-9002 (1988); Ohara, O. et al., Proc. Natl. Acad. Sci. (U.S.A.) 86:5673-5677 (1989)) to obtain such sequences.

Any of a variety of methods may be used to obtain one or more of the above-described nucleic acid molecules (Zamechik et al., Proc. Natl. Acad. Sci. (U.S.A.) 83:4143-4146 (1986); Goodchild et al., Proc. Natl. Acad. Sci. (U.S.A.) 85: 5507-5511 (1988); Wickstrom et al., Proc. Natl. Acad. Sci. (U.S.A.) 85:1028-1032 (1988); Holt et al., Molec. Cell. Biol. 8:963-973 (1988); Gerwirtz et al., Science 242: 1303-1306 (1988); Anfossi et al., Proc. Natl. Acad. Sci. (U.S.A.) 86:3379-3383 (1989); Becker et al., EMBO J. 8:3685-3691 (1989)). Automated nucleic acid synthesizers may be employed for this purpose. In lieu of such synthesis, the disclosed nucleic acid molecules may be used to define a pair of primers that can be

10

15

20

25

30

used with the polymerase chain reaction (Mullis et al., Cold Spring Harbor Symp. Quant. Biol. 51:263-273 (1986); Erlich et al., European Patent 50,424; European Patent 84,796, European Patent 258,017; European Patent 237,362; Mullis, European Patent 201,184; Mullis et al., U.S. Patent 4,683,202; Erlich, U.S. Patent 4,582,788; and Saiki et al., U.S. Patent 4,683,194) to amplify and obtain any desired nucleic acid molecule or fragment.

The nucleic acid molecules of the present invention may be used for physical mapping. Physical mapping, in conjunction with linkage analysis, can enable the isolation of genes. Physical mapping has been reported to identify the markers closest in terms of genetic recombination to a gene target for cloning. Once a DNA marker is linked to a gene of interest, the chromosome walking technique can be used to find the genes via overlapping clones. For chromosome walking, random molecular markers or established molecular linkage maps are used to conduct a search to localize the gene adjacent to one or more markers. A chromosome walk (Bukanov and Berg, *Mo. Microbiol. 11:*509-523 (1994); Birkenbihl and Vielmetter *Nucleic Acids Res. 17:*5057-5069 (1989); Wenzel and Herrmann, *Nucleic Acids Res. 16:*8323-8336 (1988) is then initiated from the closest linked marker. Starting from the selected clones, labeled probes specific for the ends of the insert DNA are synthesized and used as probes in hybridizations against a representative library. Clones hybridizing with one of the probes are picked and serve as templates for the synthesis of new probes; by subsequent analysis, contigs are produced.

The degree of overlap of the hybridizing clones used to produce a contig can be determined by comparative restriction analysis. Comparative restriction analysis can be carried out in different ways all of which exploit the same principle; two clones of a library are very likely to overlap if they contain a limited number of restriction sites for one or more restriction endonucleases located at the same distance from each other. The most frequently used procedures are, fingerprinting (Coulson et al, Proc. Natl. Acad. Sci. (U.S.A.) 83:7821-7821, (1986); Knott et al., Nucleic Acids Res.. 16:2601-2612 (1988); Eiglmeier et al., Mol. Microbiol. 7:197-206 (1993), 1993), restriction fragment mapping (Smith and Birnstiel, Nucleic Acids Res.. 3:2387-2398 (1976)); or the "landmarking" technique (Charlebois et al. J. Mol. Biol. 222:509-524 (1991)).

It is understood that the nucleic acid molecules of the present invention may in one embodiment be used in physical mapping. In a preferred embodiment, nucleic acid molecules of the present invention may in one embodiment be used in the physical mapping of *B. thuringiensis*.

Nucleic acid molecules of the present invention can be used in comparative mapping.

Comparative mapping within families provides a method to assess the degree of sequence conservation, gene order, ploidy of species, ancestral relationships and the rates at which individual genomes are evolving. Comparative mapping has been carried out by cross-hybridizing molecular markers across

And the time who had tall the face of the time t

5

10

15

20

25

30

species within a given family. As in genetic mapping, molecular markers are needed but instead of direct hybridization to mapping filters, the markers are used to select large insert clones from a total genomic DNA library of a related species. The selected clones, each a representative of a single marker, can then be used to physically map the region in the target species. The advantage of this method for comparative mapping is that no mapping population or linkage map of the target species is needed and the clones may also be used in other closely related species. By comparing the results obtained by genetic mapping in model organisms, with those from other species, similarities of genomic structure among species can be established. Cross-hybridization of RFLP markers has been reported and conserved gene order has been established in many studies. Such macroscopic synteny is utilized for the estimation of correspondence of loci among these organisms. It is understood that markers of the present invention may in another embodiment be used in comparative mapping. In a preferred embodiment the markers of present invention may be used in the comparative mapping of spore-forming Gram-positive bacteria.

In an aspect of the present invention, one or more of the agents of the present invention may be used to detecting the presence, absence or level of an organism, preferably a Bacillus, and more preferably a B. thuringiensis in a sample. In another aspect of the present invention, one or more of the nucleic molecules of the present invention are used to determine the level (i.e., the concentration of mRNA in a sample, etc.) or pattern (i.e., the kinetics of expression, rate of decomposition, stability profile, etc.) of the expression encoded in part or whole by one or more of the nucleic acid molecule of the present invention (collectively, the "Expression Response" of a cell or tissue). As used herein, the Expression Response manifested by a cell or tissue is said to be "altered" if it differs from the Expression Response of cells or tissues of organisms not exhibiting the phenotype. To determine whether a Expression Response is altered, the Expression Response manifested by the cell or tissue of the organism exhibiting the phenotype is compared with that of a similar cell or tissue sample of a organism not exhibiting the phenotype. As will be appreciated, it is not necessary to re-determine the Expression Response of the cell or tissue sample of organisms not exhibiting the phenotype each time such a comparison is made; rather, the Expression Response of a particular organism may be compared with previously obtained values of normal organism. As used herein, the phenotype of the organism is any of one or more characteristics of an organism.

Nucleic acid molecules of the present invention can be used to monitor expression. A microarray-based method for high-throughput monitoring of gene expression may be utilized to measure gene-specific hybridization targets. This 'chip'-based approach involves using microarrays of nucleic acid molecules as gene-specific hybridization targets to quantitatively measure expression of the corresponding genes (Schena *et al.*, *Science 270*:467-470 (1995); Shalon, Ph.D. Thesis, Stanford

10

15

20

25

30

University (1996)). Every nucleotide in a large sequence can be queried at the same time. Hybridization can be used to efficiently analyze nucleotide sequences.

Several microarray methods have been described. One method compares the sequences to be analyzed by hybridization to a set of oligonucleotides or cDNA molecules representing all possible subsequences (Bains and Smith, *J. Theor. Biol. 135*:303 (1989)). A second method hybridizes the sample to an array of oligonucleotide or cDNA probes. An array consisting of oligonucleotides or cDNA molecules complementary to subsequences of a target sequence can be used to determine the identity of a target sequence, measure its amount, and detect differences between the target and a reference sequence. Nucleic acid molecules microarrays may also be screened with protein molecules or fragments thereof to determine nucleic acid molecules that specifically bind protein molecules or fragments thereof.

The microarray approach may also be used with polypeptide targets (U.S. Patent No. 5,445,934; U.S. Patent No. 5,143,854; U.S. Patent No. 5,079,600; U.S. Patent No. 4,923,901). Essentially, polypeptides are synthesized on a substrate (microarray) and these polypeptides can be screened with either protein molecules or fragments thereof or nucleic acid molecules in order to screen for either protein molecules or fragments thereof or nucleic acid molecules that specifically bind the target polypeptides (Fodor *et al.*, *Science 251*:767-773 (1991)).

It is understood that one or more of the molecules of the present invention, preferably one or more of the nucleic acid molecules or protein molecules or fragments thereof of the present invention may be utilized in a microarray based method. In a preferred embodiment of the present invention, one or more of the *B. thuringiensis* nucleic acid molecules or protein molecules or fragments thereof of the present invention may be utilized in a microarray based method. A particular preferred microarray embodiment of the present invention is a microarray comprising nucleic acid molecules encoding genes or fragments thereof that are homologues of known genes or nucleic acid molecules that comprise genes or fragments thereof that elicit only limited or no matches to known genes. A further preferred microarray embodiment of the present invention is a microarray comprising nucleic acid molecules having genes or fragments thereof that are homologues of known genes and nucleic acid molecules that comprise genes or fragment thereof that elicit only limited or no matches to known genes.

In a preferred embodiment, the microarray of the present invention comprises at least 10 nucleic acid molecules that specifically hybridize under high stringency to at least 10 nucleic acid molecules encoding *B. thuringiensis* protein or fragments thereof set forth in Table 1. In a more preferred embodiment, the microarray of the present invention comprises at least 100 nucleic acid molecules that specifically hybridize under high stringency to at least 100 nucleic acid molecules that encode a *B. thuringiensis* protein or fragment thereof set forth in Table 1. In an even more preferred embodiment, the

microarray of the present invention comprises at least 1,000 nucleic acid molecules that specifically hybridize under high stringency to at least 1,000 nucleic acid molecules that encode a B. thuringiensis protein or fragment thereof set forth in Table 1. In a further even more preferred embodiment, the microarray of the present invention comprises at least 2,500 nucleic acid molecules that specifically hybridize under high stringency to at least 2,500 nucleic acid molecules that encode a B. thuringiensis protein or fragment thereof set forth in Table 1. While it is understood that a single nucleic acid molecule may encode more than one protein homologue or fragment thereof, in a preferred embodiment, at least 50%, preferably at least 70%, more preferably at least 80%, even more preferably at least 90% of the nucleic acid molecules that comprise the microarray contain one protein or fragment thereof.

10

15

20

THE CASE THE PROPERTY AND THE SECOND SECOND

5

In a preferred embodiment, the microarray of the present invention comprises at least 10 nucleic acid molecules that specifically hybridize under high stringency to at least 10 nucleic acid molecules selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 8283 or fragment thereof or complement of either. In a more preferred embodiment, the microarray of the present invention comprises at least 100 nucleic acid molecules that specifically hybridize under high stringency to at least 100 nucleic acid molecules that encode a B. thuringiensis protein or fragment thereof set forth in Table 1. In an even more preferred embodiment, the microarray of the present invention comprises at least 1,000 nucleic acid molecules that specifically hybridize under high stringency to at least 1,000 nucleic acid molecules that encode a B. thuringiensis protein or fragment thereof set forth in Table 1. In a further even more preferred embodiment, the microarray of the present invention comprises at least 2,500 nucleic acid molecules that specifically hybridize under high stringency to at least 2,500 nucleic acid molecules that encode a B. thuringiensis protein or fragment thereof set forth in Table 1. While it is understood that a single nucleic acid molecule may encode more than one protein homologue or fragment thereof, in a preferred embodiment, at least 50%, preferably at least 70%, more preferably at least 80%, even more preferably at least 90% of the nucleic acid molecules that comprise the microarray contain one protein homologue or fragment thereof.

30

Nucleic acid molecules of the present invention may be used in site directed mutagenesis. Sitedirected mutagenesis may be utilized to modify nucleic acid sequences, particularly as it is a technique that allows one or more of the amino acids encoded by a nucleic acid molecule to be altered (e.g. a threonine to be replaced by a methionine). Three basic methods for site-directed mutagenesis are often employed. These are cassette mutagenesis (Wells et al., Gene 34:315-23 (1985)); primer extension (Gilliam et al., Gene 12:129-137 (1980)); Zoller and Smith, Methods Enzymol. 100:468-500 (1983); and Dalbadie-McFarland et al., Proc. Natl. Acad. Sci. (U.S.A.) 79:6409-6413 (1982)) and methods based upon PCR (Scharf et al., Science 233:1076-1078 (1986); Higuchi et al., Nucleic Acids Res. 16:7351-7367

10

15

20

25

30

(1988)). Site-directed mutagenesis approaches are also described in European Patent 0 385 962, European Patent 0 359 472, and PCT Patent Application WO 93/07278.

Site-directed mutagenesis strategies have been applied to plants for both *in vitro* as well as *in vivo* site-directed mutagenesis (Lanz et al., J. Biol. Chem. 266:9971-9976 (1991); Kovgan and Zhdanov, Biotekhnologiya 5: 148-154, No. 207160n, Chemical Abstracts 110: 225 (1989); Ge et al., Proc. Natl. Acad. Sci. (U.S.A.) 86:4037-4041 (1989), Zhu et al., J. Biol. Chem. 271:18494-18498 (1996), Chu et al., Biochemistry 33:6150-6157 (1994), Small et al., EMBO J. 11:1291-1296 (1992), Cho et al., Mol. Biotechnol. 8:13-16 (1997), Kita et al., J. Biol. Chem. 271:26529-26535 (1996), Jin et al., Mol. Microbiol. 7:555-562 (1993), Hatfield and Vierstra, J. Biol. Chem. 267:14799-14803 (1992), Zhao et al., Biochemistry 31:5093-5099 (1992)).

Any of the nucleic acid molecules of the present invention may either be modified by site-directed mutagenesis or used as, for example, nucleic acid molecules that are used to target other nucleic acid molecules for modification. It is understood that mutants with more than one altered nucleotide can be constructed using techniques that practitioners skilled in the art are familiar with such as isolating restriction fragments and ligating such fragments into an expression vector (see, for example, Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press (1989)). In a preferred embodiment of the present invention, one or more of the nucleic acid molecules or fragments thereof of the present invention may be modified by site-directed mutagenesis.

In addition to the above discussed procedures, practitioners are familiar with the standard resource materials which describe specific conditions and procedures for the construction, manipulation and isolation of macromolecules (e.g., DNA molecules, plasmids, etc.), generation of recombinant organisms and the screening and isolating of clones, (see for example, Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press (1989); Mailga et al., Methods in Plant Molecular Biology, Cold Spring Harbor Press (1995); Birren et al., Genome Analysis: Analyzing DNA, 1, Cold Spring Harbor, New York).

(a) Computer Media

The nucleotide sequence provided in SEQ ID NO: 1, through SEQ ID NO: 8283 or fragment thereof, or complement thereof, or a nucleotide sequence at least 90% identical, preferably 95%, identical even more preferably 99% or 100% identical to the sequence provided in SEQ ID NO: 1 through SEQ ID NO: 8283 or fragment thereof, or complement thereof, can be "provided" in a variety of mediums to facilitate use. Such a medium can also provide a subset thereof in a form that allows a skilled artisan to examine the sequences.

LICE AND THE TANK OF THE SECOND SECON

5

. 10

15

20

25

30

In one application of this embodiment, a nucleotide sequence of the present invention can be recorded on computer readable media. As used herein, "computer readable media" refers to any medium that can be read and accessed directly by a computer. Such media include, but are not limited to: magnetic storage media, such as floppy discs, hard disc, storage medium, and magnetic tape: optical storage media such as CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media. A skilled artisan can readily appreciate how any of the presently known computer readable mediums can be used to create a manufacture comprising computer readable medium having recorded thereon a nucleotide sequence of the present invention.

As used herein, "recorded" refers to a process for storing information on computer readable medium. A skilled artisan can readily adopt any of the presently known methods for recording information on computer readable medium to generate media comprising the nucleotide sequence information of the present invention. A variety of data storage structures are available to a skilled artisan for creating a computer readable medium having recorded thereon a nucleotide sequence of the present invention. The choice of the data storage structure will generally be based on the means chosen to access the stored information. In addition, a variety of data processor programs and formats can be used to store the nucleotide sequence information of the present invention on computer readable medium. The sequence information can be represented in a word processing text file, formatted in commercially-available software such as WordPerfect and Microsoft Word,, or represented in the form of an ASCII file, stored in a database application, such as DB2, Sybase, Oracle, or the like. A skilled artisan can readily adapt any number of data processor structuring formats (e.g. text file or database) in order to obtain computer readable medium having recorded thereon the nucleotide sequence information of the present invention.

By providing one or more of nucleotide sequences of the present invention, a skilled artisan can routinely access the sequence information for a variety of purposes. Computer software is publicly available which allows a skilled artisan to access sequence information provided in a computer readable medium. The examples which follow demonstrate how software which implements the BLAST (Altschul et al., J. Mol. Biol. 215:403-410 (1990)) and BLAZE (Brutlag et al., Comp. Chem. 17:203-207 (1993)) search algorithms on a Sybase system can be used to identify open reading frames (ORFs) within the genome that contain homology to ORFs or proteins from other organisms. Such ORFs are protein-encoding fragments within the sequences of the present invention and are useful in producing commercially important proteins such as enzymes used in amino acid biosynthesis, metabolism, transcription, translation, RNA processing, nucleic acid and a protein degradation, protein modification, and DNA replication, restriction, modification, recombination, and repair.

10

15

20

25

30

The present invention further provides systems, particularly computer-based systems, which contain the sequence information described herein. Such systems are designed to identify commercially important fragments of the nucleic acid molecule of the present invention. As used herein, "a computer-based system" refers to the hardware means, software means, and data storage means used to analyze the nucleotide sequence information of the present invention. The minimum hardware means of the computer-based systems of the present invention comprises a central processing unit (CPU), input means, output means, and data storage means. A skilled artisan can readily appreciate that any one of the currently available computer-based system are suitable for use in the present invention.

As indicated above, the computer-based systems of the present invention comprise a data storage means having stored therein a nucleotide sequence of the present invention and the necessary hardware means and software means for supporting and implementing a search means. As used herein, "data storage means" refers to memory that can store nucleotide sequence information of the present invention, or a memory access means which can access manufactures having recorded thereon the nucleotide sequence information of the present invention. As used herein, "search means" refers to one or more programs which are implemented on the computer-based system to compare a target sequence or target structural motif with the sequence information stored within the data storage means. Search means are used to identify fragments or regions of the sequence of the present invention that match a particular target sequence or target motif. A variety of known algorithms are disclosed publicly and a variety of commercially available software for conducting search means are available can be used in the computer-based systems of the present invention. Examples of such software include, but are not limited to, MacPattern (EMBL), BLASTIN and BLASTIX (NCBIA). One of the available algorithms or implementing software packages for conducting homology searches can be adapted for use in the present computer-based systems.

The most preferred sequence length of a target sequence is from about 10 to 100 amino acids or from about 30 to 300 nucleotide residues. However, it is well recognized that during searches for commercially important fragments of the nucleic acid molecules of the present invention, such as sequence fragments involved in gene expression and protein processing, may be of shorter length.

As used herein, "a target structural motif," or "target motif," refers to any rationally selected sequence or combination of sequences in which the sequences the sequence(s) are chosen based on a three-dimensional configuration which is formed upon the folding of the target motif. There are a variety of target motifs known in the art. Protein target motifs include, but are not limited to, enzymatic active sites and signal sequences. Nucleic acid target motifs include, but are not limited to, promoter sequences, cis elements, hairpin structures and inducible expression elements (protein binding sequences).

10

15

20

25

30

Thus, the present invention further provides an input means for receiving a target sequence, a data storage means for storing the target sequences of the present invention sequence identified using a search means as described above, and an output means for outputting the identified homologous sequences. A variety of structural formats for the input and output means can be used to input and output information in the computer-based systems of the present invention. A preferred format for an output means ranks fragments of the sequence of the present invention by varying degrees of homology to the target sequence or target motif. Such presentation provides a skilled artisan with a ranking of sequences which contain various amounts of the target sequence or target motif and identifies the degree of homology contained in the identified fragment.

A variety of comparing means can be used to compare a target sequence or target motif with the data storage means to identify sequence fragments sequence of the present invention. For example, implementing software which implement the BLAST and BLAZE algorithms (Altschul et al., J. Mol. Biol. 215:403-410 (1990)) can be used to identify open frames within the nucleic acid molecules of the present invention. A skilled artisan can readily recognize that any one of the publicly available homology search programs can be used as the search means for the computer-based systems of the present invention.

The present invention also provides, in another aspect, a method for identifying one or more genes encoding insect inhibitory proteins in the sequences of one or more plasmids of a Bacillus thuringiensis, wherein the method of the present invention comprises the steps of: a) isolating and purifying plasmid DNA; b) constructing a DNA library from the isolated and purified plasmid DNA; c) sequencing the DNA library to obtain a set of plasmid DNA sequences; d) comparing the set of DNA sequences with a set of chromosomal DNA sequences, wherein the set of chromosomal DNA sequences comprises sequences depicted in SEQ ID No: 1 through SEQ ID No: 8283; e) identify common sequences, which are identified both in the set of plasmid DNA sequences and in the set of chromosomal DNA sequences: f) subtracting the common sequences from the set of plasmid DNA sequences to obtain a subtracted set of plasmid DNA sequences; g) assembling the subtracted set of DNA sequences to obtain contigs and sequences; h) determining open reading frames in the contigs and sequences; and h) identifying one or more genes encoding insect inhibitory proteins in the sequences of one or more plasmids of said Bacillus thuringiensis.

Methods for isolating and purifying plasmid DNA are well known in the art. For example, DNA samples comprising endogenous plasmids from Bacillus thuringiensis strains can be isolated and purified using the method of Hansen and Olsen (J. Bacteriology, Vol. 135, pp. 227-238 (1978)). Methods for constructing a DNA library are well known in the art.

10

15

20

25

30

As used herein, "a contig" refers to a contiguous nucleotide sequence that is assembled from two or more constituent nucleotide sequences that share common or overlapping regions of sequence homology. For example, the nucleotide sequences of two or more nucleic acid fragments can be compared and aligned in order to identify common or overlapping sequences. Where common or overlapping sequences exist between two or more nucleic acid fragments, the sequences (and thus their corresponding nucleic acid fragments) can be assembled into a single contiguous nucleotide sequence.

It is well known to a person skilled in the art that the sequence data from a large scale shotgun sequencing project can be processed and assembled into contigs, which represent a reconstruction of the original chromosomal genome sequence from the cloned fragments. Programs are available in the public domain that can analyze the sequence output and assemble the sequences into larger sequence regions representing contiguous sequences of the target genome. Examples of such programs can be found at, for example, http://genome.wustl.edu/gsc, http://genome.wustl.edu/gsc, http://www.sanger.ac.uk, and http://www.mbt.washington.edu. An example of a sequence reading program is Phred (http://www.mbt.washington.edu). Phred reads DNA sequencer trace data, calls bases, assigns quality values to the bases, and writes the base calls and quality values to output files.

The process of assembling DNA sequence fragments generally involves three phases; the overlap phase, the layout phase and the multi-alignment, or consensus, phase. In the overlap phase, each fragment is compared against every other fragment to determine if they share a common subsequence, an indication that they were potentially sampled from overlapping stretches of the original DNA strand. Pairs of fragments are compared in two ways; 1) with both fragments in the same relative orientation, and 2) with one of the fragments having been reverse complemented. In the layout phase, a series of alternate assemblies or layouts of the fragments based on the pairwise overlaps is generated. A layout specifies the relative locations and orientations of the fragments with respect to each other and is typically visualized as an arrangement of overlapping directed lines, one for each fragment. The general criterion for the layout phase is to produce plausible assemblies of maximum likelihood. In this manner, it can be determined if there is more than one way to put the pieces together and if different solutions appear equally plausible. In such a case, one would return to the lab and obtain additional information to resolve the ambiguity. The multi-alignment, or consensus, phase uses more information than just the pairwise alignments in the layout. The sequences of all the fragments in a layout are simultaneously aligned, giving a final set of contigs representing regions of the target genome. An example of an assembly program is PHRAP, which can be found at http://chimera.biotech.washington.edu/UWGC/tools/phrap.htm.

10

15

20

25

30

A characteristic feature of a DNA sequence is that it can be compared with other known DNA sequences. Sequence comparisons can be undertaken by determining the similarity of the test or query sequence with sequences in publicly available or propriety databases ("similarity analysis") or by searching for certain motifs ("intrinsic sequence analysis") (e.g. cis elements) (Coulson, Trends in Biotechnology 12:76-80 (1994); Birren, et al., Genome Analysis 1:543-559 (1997)).

Similarity analysis includes database search and alignment. Examples of public databases include the DNA Database of Japan (DDBJ) (http://www.ddbj.nig.ac.jp/); Genebank (http://www.ncbi.nlm.nih.gov/web/Genbank/Index.htlm); and the European Molecular Biology Laboratory Nucleic Acid Sequence Database (EMBL) (http://www.ebi.ac.uk/ebi_docs/embl_db.html). A number of different search algorithms have been developed, one example of which are the suite of programs referred to as BLAST programs. There are five implementations of BLAST, three designed for nucleotide sequences queries (BLASTN, BLASTX, and TBLASTX) and two designed for protein sequence queries (BLASTP and TBLASTN) (Coulson, Trends in Biotechnology 12:76-80 (1994); Birren et al., Genome Analysis 1:543-559 (1997)).

BLASTN takes a nucleotide sequence (the query sequence) and its reverse complement and searches them against a nucleotide sequence database. BLASTN was designed for speed, not maximum sensitivity, and may not find distantly related coding sequences. BLASTX takes a nucleotide sequence, translates it in three forward reading frames and three reverse complement reading frames, and then compares the six translations against a protein sequence database. BLASTX is useful for sensitive analysis of preliminary (single-pass) sequence data and is tolerant of sequencing errors (Gish and States, *Nature Genetics 3:*266-272 (1993)). BLASTN and BLASTX may be used in concert for analyzing sequence data (Coulson, *Trends in Biotechnology 12:*76-80 (1994); Birren *et al.*, *Genome Analysis 1:*543-559 (1997).

Given a nucleotide coding sequence and the predicted protein which may be produced from that sequence, it is often preferable to use the protein as the query sequence to search a database because of the greatly increased sensitivity to detect more subtle relationships. This is due to the larger alphabet of proteins (20 amino acids) compared with the alphabet of nucleic acid sequences (4 bases), where it is far easier to obtain a match by chance. In addition, with nucleotide alignments, only a match (positive score) or a mismatch (negative score) is obtained, but with proteins, the presence of conservative amino acid substitutions can be taken into account. Here, a mismatch may yield a positive score if the non-identical residue has physical/chemical properties similar to the one with which it aligns. Various scoring matrices are used to supply the substitution scores of all possible amino acid alignments. A general purpose scoring system is the BLOSUM62 matrix (Henikoff and Henikoff, *Proteins 17:*49-61 (1993)), which is

10

15

20

25

30

currently the default choice for BLAST programs. BLOSUM62 is tailored for alignments of moderately diverged sequences and thus may not yield the best results under all conditions. Altschul, *J. Mol. Biol.* 36:290-300 (1993), uses a combination of three matrices to cover all contingencies. This may improve sensitivity, but at the expense of slower searches. In practice, a single BLOSUM62 matrix is often used but others (PAM40 and PAM250) may be attempted when additional analysis is necessary. Low PAM matrices are directed at detecting very strong but localized sequence similarities, whereas high PAM matrices are directed at detecting long but weak alignments between very distantly related sequences.

Homologues in other organisms are available that can be used for comparative sequence analysis. Multiple alignments are performed to study similarities and differences in a group of related sequences. CLUSTAL W is a multiple sequence alignment package that performs progressive multiple sequence alignments based on the method of Feng and Doolittle, J. Mol. Evol. 25:351-360 (1987). Each pair of sequences is aligned and the distance between each pair is calculated; from this distance matrix, a guide tree is calculated, and all of the sequences are progressively aligned based on this tree. A feature of the program is its sensitivity to the effect of gaps on the alignment; gap penalties are varied to encourage the insertion of gaps in probable loop regions instead of in the middle of structured regions. Users can specify gap penalties, choose between a number of scoring matrices, or supply their own scoring matrix for both the pairwise alignments and the multiple alignments. CLUSTAL W for UNIX and VMS systems is available at: ftp.ebi.ac.uk. Another program is MACAW (Schuler et al., Proteins, Struct. Func. Genet. 9:180-190 (1991), for which both Macintosh and Microsoft Windows versions are available. MACAW uses a graphical interface, provides a choice of several alignment algorithms, and is available by anonymous ftp at: ncbi.nlm.nih.gov (directory/pub/macaw).

Sequences or an entire database for subtle patterns. With motifs, it is sometimes possible to detect distant relationships that may not be demonstrable based on comparisons of primary sequences alone. Currently, the largest collection of sequence motifs in the world is PROSITE (Bairoch and Bucher, *Nucleic Acid Research* 22:3583-3589 (1994)). PROSITE may be accessed via either the ExPASy server on the World Wide Web or anonymous ftp site. Many commercial sequence analysis packages also provide search programs that use PROSITE data.

A resource for searching protein motifs is the BLOCKS E-mail server developed by S. Henikoff, *Trends Biochem Sci. 18:*267-268 (1993); Henikoff and Henikoff, *Nucleic Acid Research 19:*6565-6572 (1991); Henikoff and Henikoff, *Proteins 17:*49-61 (1993). BLOCKS searches a protein or protein encoding nucleotide sequence against a database of protein motifs or "blocks." Blocks are defined as short, ungapped multiple alignments that represent highly conserved protein patterns. The blocks

10

15

20

25

30

themselves are derived from entries in PROSITE as well as other sources. Either a protein or nucleotide query can be submitted to the BLOCKS server; if a nucleotide sequence is submitted, the sequence is translated in all six reading frames and motifs are sought in these conceptual translations. Once the search is completed, the server will return a ranked list of significant matches, along with an alignment of the query sequence to the matched BLOCKS entries.

Conserved protein domains can be represented by two-dimensional matrices, which measure either the frequency or probability of the occurrences of each amino acid residue and deletions or insertions in each position of the domain. This type of model, when used to search against protein databases, is sensitive and usually yields more accurate results than simple motif searches. Two popular implementations of this approach are profile searches (such as GCG program ProfileSearch) and Hidden Markov Models (HMMs) (Krough et al., J. Mol. Biol. 235:1501-1531 (1994); Eddy, Current Opinion in Structural Biology 6:361-365 (1996)). In both cases, a large number of common protein domains have been converted into profiles, as present in the PROSITE library, or HHM models, as in the Pfam protein domain library (Sonnhammer et al., Proteins 28:405-420 (1997)). Pfam contains more than 500 HMM models for enzymes, transcription factors, signal transduction molecules, and structural proteins. Protein databases can be queried with these profiles or HMM models, which will identify proteins containing the domain of interest. For example, HMMSW or HMMFS, two programs in a public domain package called HMMER (Sonnhammer et al., Proteins 28:405-420 (1997)) can be used.

PROSITE and BLOCKS represent collected families of protein motifs. Thus, searching these databases entails submitting a single sequence to determine whether or not that sequence is similar to the members of an established family. Programs working in the opposite direction compare a collection of sequences with individual entries in the protein databases. An example of such a program is the Motif Search Tool, or MoST (Tatusov et al., Proc. Natl. Acad. Sci. 91:12091-12095 (1994).) On the basis of an aligned set of input sequences, a weight matrix is calculated by using one of four methods (selected by the user); a weight matrix is simply a representation, position by position in an alignment, of how likely a particular amino acid will appear. The calculated weight matrix is then used to search the databases. To increase sensitivity, newly found sequences are added to the original data set, the weight matrix is recalculated, and the search is performed again. This procedure continues until no new sequences are found.

The present invention also further provides, in another aspect, a method for identifying plasmid DNA sequences of a *Bacillus* species, the method comprising the steps of a) identifying a *Bacillus* species strain which does not contain plasmid DNA; b) generating a library of chromosomal genomic DNA from said *Bacillus* species strain which does not contain plasmid DNA; c) obtaining the nucleotide

sequence of said chromosomal genomic DNA; d) identifying a *Bacillus* species strain which contains plasmid DNA; e) generating a library of said *Bacillus* species plasmid DNA; f) obtaining the nucleotide sequence of said plasmid DNA; g) subtracting any common sequences identified in the plasmid DNA which are also identified in the chromosomal genomic DNA; and h) constructing contigs and sequences of said plasmid DNA, wherein said contigs and sequences comprise the plasmid DNA sequence of said *Bacillus* species.

Insect inhibitory protein-encoding nucleic acids of the present invention will find particular uses in the plant protection against insects. For instance, insect-resistant trangenic plants can be generated by introducing the exogenous nucleic acids encoding an insect inhibitory polypeptide or protein or insect inhibitory fragment thereof listed in Table 1. Another example is to engineer transgenic microorganism (bacteria or fungi) to express insect inhibitory polypeptides or proteins of the present invention and then to apply them to the insect food source or allow them to reside in soil surrounding plant roots or on the surface of plant leaves.

The transgenic microorganisms of the present invention may be used to produce *B. thuringiensis* polypeptides or proteins of interest., particularly insect inhibitory polypeptides or proteins. Insect inhibitory polypeptides or proteins or insect inhibitory fragments thereof may be secreted, for example as in bacterial systems, meaning targeted to either the periplasm as for gram negative bacteria or localized to the extracellular space for gram negative or any other type of bacterium, or localized to the intracellular spaces within the cytoplasm. Such compositions may be administered to insects according to methods well known in the art. For example, insect inhibitory polypeptides or proteins of the present invention may be formulated as sprayable compositions or as a bait matrix.

Having now generally described the invention, the same will be more readily understood through reference to the following examples which are provided by way of illustration, and are not intended to be limiting of the present invention, unless specified.

Example 1

The DNA library designated LIB3237 (Monsanto Company, St. Louis, Missouri, United States of America) was prepared from purified chromosomal DNA of *Bacillus thuringiensis* strain EG10650. *B. thuringiensis* EG10650 is a derivative of strain EG10368 (U.S. Patent No. 5759538; June 2, 1998) that is deficient in neutral protease and alkaline protease activities and contains only one known extrachromosomal plasmid element of 7.5 kb. Deletion mutations in both the alkaline protease and neutral protease genes which were constructed first in strain EG10368 to produce strains EG10654 and EG10624 were combined to produce strain EG10650. Strain EG10650 provides the value described in

5

10

15

20

25

30

THE CONTROL OF THE STATE OF THE

5

10

15

20

25

30

US 5,759,538 in which microorganisms containing these modifications exhibit markedly lower proteolytic activity with respect to counterpart microorganisms containing non-disabled protease genes. The result of the reduced proteolytic activity is that the microorganisms expressing insecticidal crystal protein genes and which contain such disabled protease genes produce higher levels of insecticidal crystal proteins and produce crystal proteins having increased stability during storage.

To assure the availability of materials to those interested members of the public upon issuance of a patent on the present application, deposits of the microorganisms listed above were made prior to filing the present application with the ARS Patent Collection, Agricultural Research Service Culture Collection (NRRL), 1815 North University Street, Peoria, Ill. 61604. These microorganism deposits were made under the provisions of the "Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure". EG10654 (NRRL Accession Number NRRL B-21344) and EG10624 (NRRL Accession Number NRRL B-21347) are currently available without restriction. All restrictions on the availability to the public of EG10650 (NRRL Accession Number NRRL B-30217) will be irrevocably removed upon issuance of a United States Patent based on this application. The DNA preparation, chromosomal DNA purification and library construction are described below.

DNA Preparation:

Bacillus thuringiensis EG10650 was grown under standard conditions in Brain Heart Infusion medium (Difco). Bacterial DNA was prepared in Agarose Plugs, according to the following procedure:

- 1. Single colony or loop full of bacteria was inoculated in 5 ml of plain Brain Heart Infusion medium and allowed to grow for overnight at 37 ° C;
- 2. One ml of above culture was inoculated in 20 ml of plain Brain Heart Infusion medium and allowed to grow till 0.6 OD600;
- 3. 180 μg/μl Chloramphenicol was added into the culture and the culture is allowed to grow for one more hour;
- 4. Cells were harvested by centrifuging at 5,000 g for 10 minutes at 4° C and the harvested cells were washed with 10 ml Solution A and then re-suspended in 1 ml of cold Solution A;
- 5. The re-suspended cells were brought to room temperature and quickly mixed with equal volume of 2% Seaplaque (FMC Corp.) agarose which was prepared in Solution A and kept at 50° C. The mixture of the cells and agarose was casted as 100 ul plugs in a mold placed on ice;

20

25

30

- 6. After 1 hour or solidification, the plugs were carefully removed from mold and placed in a tube containing 2 ml of Solution B. The plugs were incubated in a bath at 50°C for 12-16 hours with occasional shaking;
- 7. Proteinase K (0.5 mg/ml) was added in the tube and incubation was carried out for 16-24 hours; and
- 8. Finally the above solution was carefully replaced with 2 ml Solution C with 75 ug/ml Rnase.
 Incubation with Rnase was carried out for 16-24 hours. The plugs were stored at 4° C in the same solution untill they were needed.

Solution A: 1M NaCl, 50mMTris HCl (pH7.5)

Solution B: 50mMTris HCl (pH7.5), 100 mM EDTA, 100 mM NaCl and 2% lysozyme.

10 Solution C: 50mMTris HCl (pH7.5), 100 mM EDTA, 100 mM NaCl and 1% SDS.

Separation of Chromosomal DNA from Plasmid DNA:

High molecular weight plasmid DNA was removed from chromosomal DNA for obtaining desired DNA in plugs. Plasmids were removed By CHEF electrophoresis gel. Plugs were subjected to a electrical field of 6 V/cm at an angle of 120 degree in 0.5 X TBE buffer and 1% agarose gel. Initial switch time of 0.47 seconds and final switch time 44.69 seconds with linear ramping was used for 15 hours. After 15 hours plugs were retrieved form gel and were used for isolation of chromosomal DNA by standard methods.

Library Construction:

Purified chromosomal DNA of *Bacillus thringiensis* strain EG 10650 was sheared to a desired size before size selecting by regular agarose gel electrophoresis. Ends of sheared and size selected DNA were repaired by PFU Polymerase (Stratagene). Repaired DNA was ligated to pSTBlue-1 vector at EcoR V site (Novagen) by using standard reagents and conditions recommended by manufacturer of DNA ligase enzyme (Life Technology). After ligation DNA was introduced by electroporation into commercially available *E. coli* DH10B cells (Life Technology). Transformants were plated on LB agar plate with amplicillin for selection of plasmids. Plasmid DNA was prepared by standard procedure for sequencing by T7 and SP6 primers.

Example 2

Two basic methods can be used for DNA sequencing, the chain termination method of Sanger et al., Proc. Natl. Acad. Sci. (U.S.A.) 74:5463-5467 (1977) and the chemical degradation method of Maxam and Gilbert, Proc. Natl. Acad. Sci. (U.S.A.) 74:560-564 (1977). Automation and advances in technology

10

15

20

30

such as the replacement of radioisotopes with fluorescence-based sequencing have reduced the effort required to sequence DNA (Craxton, *Method*, 2:20-26 (1991); Ju *et al.*, *Proc. Natl. Acad. Sci. (U.S.A.)* 92:4347-4351 (1995); Tabor and Richardson, *Proc. Natl. Acad. Sci. (U.S.A.)* 92:6339-6343 (1995)). Automated sequencers are available from, for example, Pharmacia Biotech, Inc., Piscataway, New Jersey (Pharmacia ALF), LI-COR, Inc., Lincoln, Nebraska (LI-COR 4,000) and Millipore, Bedford, Massachusetts (Millipore BaseStation).

In addition, advances in capillary gel electrophoresis have also reduced the effort required to sequence DNA and such advances provide a rapid high resolution approach for sequencing DNA samples (Swerdlow and Gesteland, *Nucleic Acids Res. 18*:1415-1419 (1990); Smith, *Nature 349*:812-813 (1991); Luckey et al., *Methods Enzymol. 218*:154-172 (1993); Lu et al., *J. Chromatog. A. 680*:497-501 (1994); Carson et al., *Anal. Chem. 65*:3219-3226 (1993); Huang et al., *Anal. Chem. 64*:2149-2154 (1992); Kheterpal et al., *Electrophoresis 17*:1852-1859 (1996); Quesada and Zhang, *Electrophoresis 17*:1841-1851 (1996); Baba, *Yakugaku Zasshi 117*:265-281 (1997)).

A number of sequencing techniques are known in the art, including fluorescence-based sequencing methodologies. These methods have the detection, automation and instrumentation capability necessary for the analysis of large volumes of sequence data. Currently, the 377 DNA Sequencer (Perkin-Elmer Corp., Applied Biosystems Div., Foster City, CA) allows the most rapid electrophoresis and data collection. With these types of automated systems, fluorescent dye-labeled sequence reaction products are detected and data entered directly into the computer, producing a chromatogram that is subsequently viewed, stored, and analyzed using the corresponding software programs. These methods are known to those of skill in the art and have been described and reviewed (Birren et al., Genome Analysis: Analyzing DNA,1, Cold Spring Harbor, New York).

Example 3

25 Generation and Assembly of Bacillus thuringiensis Chromosomal Sequence

This example serves to illustrate the generation of the contigs and singletons listed in the Sequence Listing.

PHRED (phragment editor), which is developed by Phil Green at the University of Washington, was used to call the bases from the sequence trace files and to assign quality scores to the bases. PHRED uses Fourier methods to examine the four base traces in the region surrounding each point in the data set in order to predict a series of evenly spaced predicted locations. That is, it determines where the peaks would be centered if there were no compressions, dropouts, or other factors shifting the peaks from their "true" locations. Next, PHRED examines each trace to find the centers of the actual, or observed peaks

10 🕝

15

20

25

30

and the areas of these peaks relative to their neighbors. The peaks are detected independently along each of the four traces so many peaks overlap. A dynamic programming algorithm is used to match the observed peaks detected in the second step with the predicted peak locations found in the first step. Default parameters were used in the base calling.

After the base calling is completed, sequence preprocessing is performed. Quality assessment and trimming is performed by determining the maximum scoring segment of PHRED quality score > 10. Cloning sequences are removed by utilizing cross_match (http://www.mbt.washington.edu) and searching a database of relevant cloning sequences. Contaminating sequences (E. coli, yeast, vector, linker) are then removed from the dataset by utilizing cross_match to search a database of contamination sequences.

The preprocessed sequences are then assembled into contigs, or groups of overlapping sequences. Contigs are assembled using PHRAP (phragment assembly program), also developed by Green at the University of Washington (http://www.mbt.washington.edu) using default assembly parameters. This program takes a file of shotgun sequences and compiles consensus contig sequences. Alignments are influenced by quality scores, based on Green's algorithm. Singletons are the remaining sequences without sufficient overlaps with others after the assembly.

A total of 8283 contigs and singletons were obtained. Contig sequences are recognized as those sequences whose designations begin with . Singleton sequences are recognized as those having designations which begin with. All contig and singleton sequences were run through the annotation and gene selection processes as described in Example 4.

Example 4

Identification of Bacillus thuringiensis Genes

This example illustrates the identification of genes within the contig and singleton sequences assembled as described in Example 3. The genes and partial genes embedded in such contigs and singletons were identified through a series of informatic analyses.

Contigs and singletons are interrogated using AAT-NAP and BLASTP. AAT_NAP is a program used for constructing a global alignment of a DNA sequence and a protein sequence (Huang, X. et al. Genomics 46:37-45 (1997), the entirety of which is herein incorporated by reference). The alignment model of NAP accommodates introns and frameshifts within codons. The scheme for scoring an alignment has several features that allow NAP to identify the exact locations of introns. A nucleotide insertion gap of length $\leq k$ is given a linear penalty, and a nucleotide insertion gap of length > k is penalized as a gap of length k, where the value for k is the default value. The NAP program reports the starting and ending coordinates of predicted genes. The input to the NAP program includes the query

sequence, the protein database and a coordinate file produced by AAT_EXT (an adapter between a database search program and a sequence alignment program) from the output of AAT_DPS (a program computing high-scoring chains of segment pairs between a query DNA sequence and the public non-redundant protein database from NCBI) The NAP program scans the protein database and finds the protein sequence for each coordinate record. Then for each coordinate record, NAP locates the query region, extends the region in both directions by a certain number of bases, and computes an alignment of the extended region and the protein sequence. NAP corrects frameshifts in the query sequence.

5

10

15

20

the three first first first fact that

The fact that

i, M

BLASTP is used to validate the amino acid sequences and hits reported by the AAT_NAP program and to assign BLAST scores and p values to each sequence/hit pair. The AAT_NAP generated amino acid sequences are compared with the public non-redundant protein database (nr.aa from NCBI) using the default BLASTP parameters except that the V parameter is set to 1000000 (to report up to 1000000 hits that exceed the BLASTP default report cutoff) If the hit reported by AAT_NAP for a particular amino acid sequence is not reported by BLASTP, that particular amino acid sequence is removed. Protein encoding regions in the *Bacillus thuringiensis* nucleic acid molecules of the present invention are listed in Table 1.

Coding sequences identified in Table 1 encode many useful *B. thuringiensis* polypeptides or proteins or fragments thereof, including but not limited to insect inhibitory polypeptides or proteins, polypeptides or proteins capable of conferring antibiotic resistance, cytotoxin proteins which may be used as microbial inhibitory proteins including bactericidal, bacteriostatic, fungicidal, and fungistatic polypeptides or proteins, polyketide synthases, polypeptides or proteins capable of conferring resistance to heavy metals or other chemicals, transposons and mobile genetic elements and their corresponding transposases, excisases, integrases, and invertases, phage and phage particle proteins, transcription regulatory proteins, translation regulatory proteins, and other useful proteins homologous to proteins.

-	
le	
a	
Ë	

	NCBI gi description	PREPROTEIN TRANSLOCASE SECA SUBUNIT [Bacillus firmus]	TRANSPOSASE FOR INSERTION SEQUENCE ELEMENT IS232 [Insertion sequence IS232]	(D87026) glycogen phosphorylase [Bacillus stearothermophilus]	ALANYL-TRNA SYNTHETASE (ALANINETRNA TIGASE) (ALARS) [Pacillus subtilis]	D-ALANYL-D-ALANINE CARBOXYPEPTIDASE PRECIESOR (DD-PEPTIDASE) (DD-	CARBOXYPEPTIDASE) (CPASE) (PBP5) [Bacillus subtilis]	respiratory nitrate reductase alpha chain - Bacillus subtilis	[Bachius subtins] (AF064522) major autolysin [Moraxella sp. CK-1]	(Z99120) similar to two-component response regulator	[Bacillus subtilis] (700106) similarto banothatical protaine [Bacillus subtilis]	(299100) Shifinal to hypometrical proteins [Davinus succins]	(X88849) ceut. [Campylobacter coll.]	Cooait transport Arr - Omemig process of moreograms of the Mothenococcus isnuaschii [Methanococcus iannaschii]	PURINE NUCLEOSIDE PHOSPHORYLASE (INOSINE	PHOSPHORYLASE) (PNP) [Bacillus stearothermophilus]	(AB008120) phosphopentomutase [Bacillus stearothermophilus]	(Z99120) similar to hypothetical proteins [Bacillus subtilis]	30S RIBOSOMAL PROTEIN S2 (BS1) (VEGETATIVE	PROTEIN 209) (VEG209) [Bacillus subtins] PROBABLE INTEGRASE/RECOMBINASE RIPX	HYPOTHETICAL 9.2 KD PROTEIN IN RECR-BOFA	INTERGENIC REGION [Bacillus subtilis] RECOMBINATION PROTEIN RECR [Bacillus subtilis]	dehydratase,D-Ser [Escherichia coli]	(Z99112) uridylate kinase [Bacillus subtilis]
;	% Cvrg	26 1	33	16 (15	32		4	49	31	t	- 0	3 5	C	31	,	. 55	44	<i>L</i> 9	53	66	23	21	51
	% Ident C	42	34	34	38	55		63	31	65	5	70	33	75	70	,	76	53	87	72	50	8	6	82
4	BlastP- Prob Id	2.10E-19	2.30E-09	4.30E-11	8.90E-15	1.20E-35		6.40E-12	2.70E-09	6.70E-19	100	9.30E-09	0.00022	1.60E-24	1.70E-22		2.60E-33	3.60E-36	1.00E-61	4.60E-59	1.60E-15	3 00E-16	5.70E-16	4.80E-41
!	BlastP Score	238	145	165	200	385		175	140	227	;	143	660	780	261		363	390	631	909	195	202	206	436
	nap Score	196	150	112	152	365		173	58	211	,	140	87	730	312		354	417	756	584	191	187	125	504
,	NCBI gi	g3122850	g2497382	g1944414	g3122886	g585034	ů.	g2117582	g4835715	g2635805	1	g2632778	g1107529	g2127819	g2494052	.	g2558482	g2635675	g3123268	g1710383	g586863	2585801	022333	g2634023
	Position	371-1	1-422	1-388	387-1	426-1		144-1	1-461	524-329		1-296	1-296	615-1	260-1	: 	545-279	496-1	1-501	1-469	351-130	200 260	580-308	370-1
	Gene Id	Bt1G1	Bt1G2	Bt1G3	Bt1G4	Bt1G5		Bt1G6	Bt1G9	Bt1G10		Bt1G13	Bt1G14	Bt1G15	Bt1G16		Bt1G17	Bt1G18	Bt1G20	Bt1G21	Bt1G22	D41633	B+1G25	Bt1G26
	Contig Id	Bt1Gc8697	Bt1Gc8696	Bt1Gc8693	4 Bt1Gc8695	Bt1Gc4		Bt1Gc3	Bt1Gc6	Bt1Gc12		Bt1Gc10	Bt1Gc10	Bt1Gc16	Bt1Gc18		Bt1Gc18	Bt1Gc19		Bt1Gc20	Bt1Gc22	6,0		
Ç		_	7	æ	4	8		9	7	· 00		6	6	10	Ξ	,	11	12	13	14	15	4	C1 71	17

Table 1

NCBI gi description	ELONGATION FACTOR TS (EF-TS) [Bacillus subtilis]	(Z99119) yuaE [Bacillus subtilis]	FORMAMIDASE (FORMAMIDE AMIDOHYDROLASE)	[Methylophilus methylotrophus]	(M21305) unknown protein [Homo sapiens]	(M21305) unknown protein [Homo sapiens]	(D90905) transketolase [Synechocystis sp.]	(Z79580) putative orf [Bacillus subtilis]	(Z94043) hypothetical protein [Bacillus subtilis]	DNAJ PROTEIN [Streptococcus pneumoniae]	(Y14083) hypothetical protein [Bacillus subtilis]	PROBABLE UDP-N-ACETYLGLUCOSAMINE 1- CARBOXYVINYLTRANSFERASE (ENOYLPYRUVATE	TRANSFERASE) (UDP-N-ACETYLGLUCOSAMINE ENOLPYRUVYL TRANSFERASE) (EPT) [Bacillus	subtilis	HYPOTHETICAL 41.2 KD PROTEIN CY277.09	[Mycobacterium tuberculosis]	HYPOIHEIICAL 40./ ND PROIDIN IN FENTANCE	INTERGENIC REGION [Bacillus subtilis]	(Z93940) asparagine synthetase [Bacillus subtilis]	HEMOLYSIN PRECURSOR [Bacillus cereus]	(D86417) YfmL [Bacillus subtilis]	HYPOTHETICAL 39.0 KD PROTEIN IN GLNQ-ANSR	INTERGENIC REGION [Bacillus subtins] LYSINE DECARBOXYLASE (LDC) [Bacillus subtilis]	MULTIDRUG RESISTANCE-LIKE ATP-BINDING	PROTEIN MDL [Escherichia coli]	(Z75208) hypothetical protein [Bacillus subtilis]	(AE000768) protoporphyrinogen oxidase [Aquifex	aeolicus]	(U93874) formate dehydrogenase chain A [Bacillus subtilis]	(AE001165) spermidme/purcescine ABC transporter, permease protein (potB) [Borrelia burgdorferi]
% Cvrg	6	_	27		86	86	15	16	4	37	36	37			, 11		40		16	22	43	42	48	19		42	39		12	41
% Ident C	78	35	34		65	65	35	42	47	95	71	11			99	,	33		26	48	28	36	89	50		72	53		53	37
	.05	191	84		11	17	9	-10	-33	-61	-50	-62			60	!	-72		-27	-12	49	-18	-75	-22		-58	-13		·-18	7-15
BlastP- Prob	1.20E-05	0.00061	0.0084		0.00017	0.00017	9.80E-06	4.60E-10	1.20E-33	2.70E-61	3.70E-50	1.50E-62			2.30E-09		1.80E-25		4.80E-27	5.70E-17	6.90E-49	2.90E-18	1.10E-75	2.10E-22		1.60E-58	6.10E-13		1.90E-18	1.00E-15
BlastP Score	108	87	84		91	91	114	152	366	627	522	639			144		289		311	216	510	222	263	273		601	178		235	197
aat H nap Score	87	111	69		203	203	176	76	427	689	517	605			126		213		253	157	481	186	840	250		596	26		305	157
NCBI gi	g3123214	g2635587	g3913682		g1196398	g1196398	g1652388	g1620930	g1945711	g3122013	g2226238	g1171068			£2493270)	g1730885		g1934835	g3334367	g2443255	g1731087	0118334	9266515		g1770012	g2984251	1	g1934609	g2688563
Position	524-446	1-240	1-493		501-345	501-345	41-346	1-346	1-551	392-1	401-1	478-1			1-129		1-502		1-511	1-326	27-513	128-563	1-712	1-618)	458-1	529-1		1-358	1-333
Gene Id	Bt1G27	Bt1G30	Bt1G31		Bt1G32	Bt1G33	Bt1G34	Bt1G35	Bt1G38	Bt1G39	Bt1G40	Bt1G41			Bt1G42	-	Bt1G43		Bt1G44	Bt1G46	Bt1G47	Bt1G49	B+1/350	Br1G51		Bt1G53	Bt1G54		Bt1G55	Bt1G57
Contig Id	Bt1Gc29	Bt1Gc34	Bt1Gc32		Bt1Gc30	Bt1Gc30	Bt1Gc36	Bt1Gc36	Bt1Gc44	Bt1Gc45	Bt1Gc43	Bt1Gc50		,•	Bt1Gc48		Bt1Gc52		Bt1Gc56	Bt1Gc58	Bt1Gc59		D+1 G-643			Bt1Gc66				Bt1Gc72
SEQ NO	17	18	19		20	20	21	21	22	23	24	25			90	-	27		28	29	30	31	33	33	3	34	35		36	37

Table 1

		:-DAPB	rococcus	us subtilis]		F00033	permease)	idium		<u>[s</u>	ns		X-AMYE	subtilis]	coD of E.	i	AC-FHUC	ō.	rases	TYRATE	ı leprae		
	NCBI gi description	HYPOTHETICAL 23,6 KD PROTEIN IN QCRC-DAPB INTERGENIC REGION [Bacillus subtilis]	(AP000003) 314aa long hypothetical protein [Pyrococcus horikoshiil	(Z99121) similar to hypothetical proteins [Bacillus subtilis]	domonas aeruginosa]	(AE001272) L. lactis predicted coding region ORF00033	Lactococcus racus] (Z99121) similar to ABC transporter (amino acid permease) [Bacillus subtilis]	tetB(P) protein - Clostridium perfringens [Clostridium perfringens]	Sacillus subtilis]	(AJ010132) hypothetical protein [Bacillus cereus]	(U68399) putative ABC transporter [Haemophilus		HYPOTHETICAL 41.5 KD PROTEIN IN AMHX-AMYE INTERGENIC REGION Bacillus subtilis	(Z82044) hypothetical 54.4 kd protein [Bacillus subtilis]	(D50453) homologue of copper export protein PcoD of E.		HYPOTHETICAL 25.7 KD PROTEIN IN GERAC-FHUC INTERGENIC REGION [Bacillus subtilis]	(AJ010302) mg protoporphyrin methyltransferase (Rhodobacter sphaeroides]	(AF125448) contains similarity to methyltransferases [Caenorhabditis elegans]	GABA PERMEASE (4-AMINO BUTYRATE TRANSPORT CARRIER) (GAMA-AMINOBUTYRATE PERMEASE) (Bacillus subtilis)	probable transport protein abc1 - Mycobacterium leprae [Mycobacterium leprae]	Methanobacterium	[Bacillus subtilis]
									•			influenzae]				coli [Bacillus subtilis]		_	_	• • •			_
	% Cvrg	55	26	50	32	87	16	25	2,7	8	45		32	30	61		84	43	41	38	38	88	90
	% Ident	71	52	9	40	33	63	45	26	48	40		11	33	40		34	30	30	57	57	27	48
TOTAL	BlastP- Prob I	3.20E-19	6.40E-46	8.40E-44	2.40E-22	6.10E-09	1.20E-22	2.10E-33	1.10E-25	4.00E-37	1.00E-13		2.70E-47	1.60E-18	2.50E-51		2.90E-27	2.60E-10	3.90E-13	1.90E-46	2.40E-21	1.10E-11	1.30E-24
	BlastP Score	156	482	462	263	133	267	370	291	399	178		495	230	533		306	146	178	487	250	159	281
	aat_B nap_S Score	425	459	481	239	<i>L</i> 9	248	351	274	389	156		479	189	550		282	68	104	511	292	102	234
	NCBI gi	g1176701	g3257185	g2635913	g1545847	g3582242	g2635847	g1075972	g121563	g4584100	g2909666)	g2495457	g1673402	g1805464))	g3123166	g4490571	g4226092	g2828523	g2145962	g2621742	g2612883
	Position	365-1	530-1	1-463	417-1	59-505	223-446	1-494	1-299	6-503	1-290		1-377	1-441	1-987		35-611	1-527	1-527	572-35	1-297	566-93	396-1
	Gene Id	Bt1G58	Bt1G59	Bt1G60	Bt1G61	Bt1G62	Bt1G63	Bt1G64	Bt1G65	Bt1G66	Bt1G68		Bt1G69	Bt1G70	Bt1G72] }	Bt1G73	Bt1G74	Bt1G75	Bt1G76	Bt1G77	Bt1G78	Bt1G79
	Contig Id	Bt1Gc73	Bt1Gc76	Bt1Gc77	Bt1Gc75	Bt1Gc79	Bt1Gc82	Bt1Gc84	Bt1Gc87	Bt1Gc88	Bt1Gc90		Bt1Gc91	Bt1Gc93	Bt1Gc92		Bt1Gc95	Bt1Gc97	Bt1Gc97	Bt1Gc98	Bt1Gc99	Bt1Gc101	56 Bt1Gc100
	SEQ NO	38	39	40	41	42	43	44	45	46	47	:	48	49	20	3	51	52	52	53	54	55	26

_	
Table	

	RCBI gi description	(Z99112) signal recognition particle (docking protein) [Bacillus subtilis]	(AE000804) ferritin like protein (RsgA) [Methanobacterium thermoautotrophicum]	PTS SYSTEM, GLUCOSE-SPECIFIC IIABC COMPONENT (EIIABC-GLC) (GLUCOSE-PERMEASE IIABC COMPONENT) (PHOSPHOTRANSFERASE ENZYME II, ABC COMPONENT) (EII-GLC / EIII-GLC) [Bacillus stearothermophilus]	TPP-dependent acetoin dehydrogenase alpha chain - Clostridium magnum [Clostridium magnum]	DNA-DIRECTED RNA POLYMERASE ALPHA CHAIN (TRANSCRIPTASE ALPHA CHAIN) (RNA POLYMERASE ALPHA SUBUNIT) [Bacillus subtilis]	HYPOTHETICAL 37.6 KD PROTEIN IN GNTR-HTPG INTERGENIC REGION [Bacillus subtilis]	HYPOTHETICAL TRANSCRIPTIONAL REGULATOR IN HEMY-GLTT INTERGENIC REGION (ORFA) [Bacillus subtilis]	(AF047044) putative transposase [Anabaena PCC7120]	(AB005149) orf2 [Exiguobacterium acetylicum]	DNA binding protein HU [Bacillus caldolyticus]	(D90900) hypothetical protein [Synechocystis sp.]	(AL022374) putative ATP-dependent DNA helicase [Streptomyces coelicolor]	(AL021287) hypothetical protein Rv2994 [Mycobacterium tuberculosis]	HYPOTHETICAL PROTEIN UL125 [human herpesvirus 5]	(AL049478) putative DNA polymerase III alpha chain [Mycobacterium leprae]	(U67061) pullulanase [Bacteroides thetaiotaomicron]	(AJ010138) hypothetical protein [Bacillus cereus]	MBL PROTEIN [Bacillus cereus]	alpha-latroinsectotoxin precursor - black widow spider
	% Cvrg	23	82	20	23	8	36	81	36	66	4	98	11	41	66	24	34	52	6 ;	13
	% Ident C	75	46	09	51	88	33	22	22	36	83	37	23	23	100	20	51	96	91	53
I and	BlastP- Prob I	5.50E-63	2.20E-27	2.30E-48	1.90E-21	3.90E-110	3.00E-10	1.40E-05	4.30E-09	3.80E-16	1.20E-12	1.40E-20	1.70E-20	0.00019	4.60E-52	6.90E-72	1.70E-52	6.30E-07	1.70E-09	1.30E-09
	BlastP Score	643	307	505	251	1088	151	103	140	201	168	243	252	107	540	734	544	114	144	135
	aat_B nap_S Score	604	345	484	233	1123	111	68	93	204	152	228	234	125	533	629	209	116	116	125
	NCBI gi	g2633967	g2621200	g1172714	g2148094	g133395	g1176967	g418449	g3005554	g2641974	g227370	g1651880	g3036880	g2791591	g137016	g4539136	g1561763	g4584138	g417314	g419952
	Position	524-1	114-553	1-488	1-234	55-820	425-1	62-523	663-318	592-168	1-121	553-146	245-1	549-1	141-447	843-1	1-687	68-1	591-498	1-731
	Gene Id	Bt1G80	Bt1G81	Bt1G82	Bt1G84	Bt1G85	Bt1G86	Bt1G87	Bt1G88	Bt1G89	Bt1G90	Bt1G91	Bt1G92	Bt1G94	Bt1G95	Bt1G96	Bt1G97	Bt1G98	Bt1G99	Bt1G100
	Contig Id	Bt1Gc103	Bt1Gc104	Bt1Gc105	Bt1Gc114	Bt1Gc112	62 Bt1Gc110	Bt1Gc115	Bt1Gc111		Bt1Gc118	Bt1Gc118	Bt1Gc119	Bt1Gc124	Bt1Gc123	Bt1Gc131	Bt1Gc136	Bt1Gc135		Bt1Gc117
	SEQ NO ID	57	28	59	09	61	62	63	4	65	99	99	<i>L</i> 9	89	69	70	71	72	72	73

_	
<u>e</u>	
ڡؚ	
<u>.</u>	
٦,	

	NCBI gi description	(fragment) [Latrodectus tredecimguttatus] (AL035591) ABC excision nuclease subunit C			HYPOTHETICAL 15.6 KD PROTEIN IN PURA-DNAC INTERGENIC REGION [Bacillus subtilis]		HYPOTHETICAL TRANSPORT PROTEIN IN NDHF- CSGA INTERGENIC REGION (ORF1) [Bacillus subtilis]			HOMOLOG [Bacillus subtilis] (Z97025) product similar to E. coli PhoH protein [Bacillus				_	(AJ010112) spore germination protein, GerPF [Bacillus		HYPOTHETICAL 17.9 KD PROTEIN IN OLING-MISH INTERGENIC REGION [Bacillus subtilis]	_	_	_	_	S BRANCHED-CHAIN AMINO ACID TRANSPORT SYSTEM CARRIER PROTEIN (BRANCHED-CHAIN	AMINO ACID UPTAKE CARRIER) [Bacillus subtilis]		•-	5 GID PROTEIN [Bacillus subtilis]
	% Cvrg	13	22	24	97	45	. 58	12	75	55	<u>*</u>	2	39	73	97	ì	4/	88	35	92	17	26		46	31	36
	% Ident	89	<i>L</i> 9	99	57	<i>L</i> 9	69	57	26	92	40	}	8	9	7	;	4	34	20	26	65	43		9/	86	82
rapre r	BlastP-	1.50E-29	3.20E-14	1.30E-22	7.00E-40	1.80E-80	2.70E-47	3.60E-06	2.10E-56	5.30E-90	0.00012	70000	6.40E-30	1.50E-60	1.60E-08	1	4.40E-22	5.70E-22	1.20E-29	5.00E-14	3.40E-32	2.80E-43		5.20E-67	2.20E-52	3.00E-64
	BlastP	336	188	262	425	808	495	114	581	868	5	3	331	620	129	,	257	256	329	181	357	457		681	543	655
	aat_B nap_S Score	331	242	262	398	785	480	79	596	961	8	7,	313	597	120		255	186	482	105	338	478	-	671	527	672
	NCBI gi	g4468689	g118716	g1730988	g586809	g730600	g3123299	94321580	g3915055	g2224770	~1261240	81301340	g132987	g1903038	g4584153	ı	g1731085	g4584494	g606198	g1001794	g2226166	g3023410		g121562	g3183562	g3183519
	Position	290-1	1-242	274-501	120-525	1-635	1-392	808-557	1-595	732-1	107	1-001	1-210	590-1	317-416		1-349	48-636	1-518	595-130	1-290	1-737		509-1	1-361	1-468
	Gene Id	Bt1G101	Bt1G102	Bt1G103	Bt1G104	Bt1G105	Bt1G107	R41G108	Bt1G109	Rr1G110		1110111	Bt1G112	Bt1G113	Bt1G114		Bt1G115	Bt1G116	Bt1G117	Bt1G118	Bt1G120	Bt1G121		Bt1G122	Bt1G123	Bt1G124
	Contig Id	Bt1Gc137	Bt1Gc134	Bt1Gc134	Bt1Gc139	Bt1Gc145	Bt1Gc153	Rt1Gc153				Bil Gel 3/	Bt1Gc159	Bt1Gc152	Bt1Gc163		Bt1Gc165	Bt1Gc166						Bt1Gc176	Bt1Gc177	Bt1Gc179
	SEQ ID	74	75	75	76	77	78	78	7 67	2 08	3 6	8	82	83	8 48		85	98	87	88	8	96		91	92	93

	NCBI gi description	6-AMINOHEXANOATE-DIMER HYDROLASE (NYLON OLIGOMERS DEGRADING ENZYME EII')	[Flavobacterium sp.] (AB017508) fus homologue (identity of 87% to B. subtilis)	[Bacillus halodurans] AMINO ACID CARRIER PROTEIN ALST [Bacillus	subtilis] ADENYLOSUCCINATE SYNTHETASE (IMP	ASPARIATE LICASE) [Dadinus subtins] (AJ235272) BICYCLOMYCIN RESISTANCE PROTEIN (bcr1) [Rickettsia prowazekii]	(X76640) hypothetical protein [Myxococcus xanthus]	(AB000617) YeeF [Bacillus subtilis]	(AF008220) YtbD [Bacillus subtilis]	D-ALANYL-D-ALANINE CARBOXYPEPTIDASE (DD- PEPTIDASE) (DD-CARBOXYPEPTIDASE) [Transposon	Tn15461	HYPOTHETICAL 49.0 KD PROTEIN IN CSPB-GLPP	INTERGENIC REGION [Bacillus subtilis]	(D50453) homologue of proline permease of E. coli [Racillus subtilis]	(Z94043) hypothetical protein [Bacillus subtilis]	_	PROTEIN) [Bacillus subtilis]	$\overline{}$	[Streptomyces coelicolor] (Y14084) hypothetical protein [Bacillus subtilis]	(AB000617) YeeE [Bacillus subtilis]	(AF027507) primase [Mycobacterium smegmatis]	(Z99105) similar to sodium/proton-dependent alanine	transporter [Bacillus subtilis]		•		
	% Cvrg	42	39	26	39	17	15	49	46	16		33		18	41	29		92	13	85	6	18	. 5	3 6	7	41	
. ~	% Ident (25	73	55	80	33	43	22	32	29	`	62		73	37	98		24	49	89	41	80	0	8 2	54	52	
Table 1	BlastP- Prob I	4.80E-18	2.20E-98	2.40E-24	1.30E-70	4.80E-06	2.00E-14	1.10E-36	3.00E-17	1.90E-13		1.50E-22		9.60E-24	5.00E-14	4.50E-61		1.50E-12	6.50E-06	1.50E-53	9.90E-07	1.40E-34	100 TOC 1	4.20E-81	1.70E-06	1.80E-32	
	BlastP Score	223	717	282	715	114	193	395	216	178		266	 	276	181	625		167	112	554	123	375	-	814	121	355	
	aat B nap S Score	94	1020	307	712	104	170	434	239	178		493	<u> </u>	310	129	654		95	82	601	116	375	6	0 I 0	97	357	
	NCBI gi	g129003	g4512401	g2500890	g266864	g3861147	g4467970	g2415743	g2293329	g586206		ø1724006		g1805394	ø1945654	g116230	0	g121879	g2226255	g2415742	g2739100	g2632528	,	g1165306	g730959	g135723	
	Position	717-203	919-97	1-367	505-1	215-1	385-619	1-393	1-543	1-147		1-468		247-1	1-339	1-477		1-684	1-148	491-1	173-1	1-252		1-525	1-137	1-404	
	Gene Id	Bt1G125	Bt1G127	Bt1G128	Bt1G129	Bt1G130	Bt1G131	Bt1G132	Bt1G133	Bt1G134		Rf1G135		Bt1G136	Br1G137	Bt1G138	}	Bt1G139	Bt1G140	Bt1G141	Bt1G142	Bt1G143		Bt1G144	Bt1G145	Bt1G146	
	Contig Id	Bt1Gc180	95 Bt1Gc183	Bt1Gc186		Bt1Gc189	Bt1Gc190		Bt1Gc195	Bt1Gc196		103 Br1Gc199		Bt1Gc197	R+1/3c201			Bt1Gc198	Bt1Gc206						Bt1Gc217	114 Bt1Gc218	
	SEQ B C	8	95	96	67	86	66	100	101	102		103	3	104	105	106	2	107	108	109	110	111		112	113	114	

_
ble
<u> </u>

	NCBI gi description	(THREONINE DEAMINASE) [Escherichia coli]	HYPOTHETICAL PROTEIN HI0105 [Haemophilus influenzae Rd]	HYPOTHETICAL 22.0 KD PROTEIN IN FLIT-SECA INTERGENIC REGION [Bacillus subtilis]	(AL021529) putative NTP pyrophosphohydrolase (Streptomyces coelicolor)	HYPOTHETICAL ABC TRANSPORTER ATP-BINDING PROTEIN IN IDH 3'REGION [Bacillus subtilis]	Iglucosamine 1- Bacillus subtilis]	(Z99105) similar to sodium/proton-dependent alanine transporter [Bacillus subtilis]	(Z94043) hypothetical protein [Bacillus subtilis]	ıs subtilis]	HYPOTHETICAL 80.1 KD PROTEIN IN SODA-COMGA DIFFER CENTS BESTON BESTON FOR SUMMISSION	IN [Dacillus subtilis]	(Y 14080) hypometical protein [bacillus suotuis]	glucan endo-1,3-beta-D-glucosidase (EC 3.2.1.37) precursor - Bacillus circulans (strain IAM1165) [Bacillus circulans]	flagellin B chain - Bacillus thuringiensis [Bacillus	 flagellin chain A - Bacillus thuringiensis (subsp. alesti) [Bacillus thuringiensis alesti]	(AB001488) SIMILAR TO ENZYMES WHICH ACT VIA	AN ATP-DEPENDENT COVALENT BINDING OF AMP	TE. [Bacillus subtilis]	(U58131) PhoR [Clostridium acetobutylicum]	N [Bacillus subtilis]	CYTIDYLATE KINASE (CK) (CYTIDINE MONOPHOSPHATE KINASE) (CMP KINASE) [Bacillus	1.111	
			16 HYPOTHETICAL PRO influenzae Rd]	76 HYPOTHETICAL 22.0 KD PROTEIN IN I INTERGENIC REGION (Bacillus subtilis)	46 (AL021529) putative NTF (Streptomyces coelicolor)	23 HYPOTHETICAL ABO PROTEIN IN IDH 3'RE	18 (Z81356) UDP-N-acetylglucosamine 1-carboxvvinyltransferase [Bacillus subtilis]	40 (Z99105) similar, to sodium/p transporter [Bacillus subtilis]	74 (Z94043) hypothetical p	100 (Z99105) ycgJ [Bacillus subtilis]	35 HYPOTHETICAL 80.1 KD PROTEIN IN A STATEMENT OF THE CONTROL OF T			12 glucan endo-1,3-beta-D- Bacillus circulans (stra	68 flagellin B chain - Baci	14 flagellin chain A - Bacillus th [Bacillus thuringiensis alesti]	55 (AB001488) SIMILAR		TO THEIR SUBSTRATE. [Bacillus subtilis]	49 (U58131) PhoR [Clost 91 HYDOTHETICAL 16.3		17 CYTIDYLATE KINASE (CK) (CYTIDINE MONOPHOSPHATE KINASE) (CMP KIN		ST LINCHALL / X6/X/) YE
	% 1t Cvrg		62	, 19	35	52	89	23	33	32 1	20			32	26		34			23	:	11	(7
è	% Ident																					11	:	
	BlastF-		2.70E-13	2.60E-33	1.20E-28	3.00E-11	6.40E-09	6.60E-44	2.10E-15	2.40E-30	3.20E-60	1	5.70E-45	4.10E-09	1.70E-91	3.30E-10	3.70E-41			1.20E-08	1./05-43	1.40E-11	!	
•	Brore		175	363	319	156	141	463	194	335	617	į	473	147	912	145	437	2		139	6/4	158		
99†		,	161	373	303	128	220	531	171	338	584	ì	514	72	968	129	379			128	4/0	142	:	
	NCBI gi		g2495571	g732321	g2815343	g1176995	g1648861	g2632528	g1945676	g2632602	g1731017	,	g2226166	g484466	g98515	g2127278	01881228	8100174		g3025461	g1/31001	g585351		(1) (i)
	Position		1-138	409-1	500-1	301-473	386-158	562-1	381-1	1-682	1-746		1-564	1-453	1-574	655-740	1-754			1-669	352-1	115-1		
	Gene Id		Bt1G147	Bt1G148	Bt1G149	Bt1G150	Bt1G151	Bt1G152	Bt1G153	Bt1G154	Bt1G156		Bt1G157	Bt1G158	Bt1G159	Bt1G160	D+1/C161	Diroioi		Bt1G162	Bt1G163	Bt1G164		
	Contig Id		115 Bt1Gc219	Bt1Gc221	Bt1Gc226	Bt1Gc225	Bt1Gc223	120 Bt1Gc230	Bt1Gc232	Bt1Gc233	Bt1Gc237		Bt1Gc238	Bt1Gc240	Bt1Gc239	Bt1Gc239	D+11Gc244	P110074			Bt1Gc251	Bt1Gc252		
Cala	<u> </u>)	115	116	117	118	119	120	121	122	123		124	125	126	126	127	171		. 128	129	130		

₹		4	
_	9	4	
-			
E	-	4	

	NCBI gi description	[Bacillus subtilis] PROBABLE D-SERINE DEHYDRATASE (D-SERINE DEAMINASE) [Bacillus subtilis]	(Z73234) YneB [Bacillus subtilis]	(AE000833) 5-methylcytosine-specific restriction enzyme McrB related protein [Methanobacterium	thermoautotrophicum]	(AF008220) YtfP [Bacillus subtilis]	(Z99117) similar to protease [Bacillus subtilis]	(299105) similar to sodium/proton-dependent alanine transporter [Bacillus subtilis]	(Z83337) ywpE [Bacillus subtilis]	(U70055) macrolide-efflux protein [Streptococcus	pyogenes] H.NIIC - human [Homo sanjens]		URACIL PERMEASE (URACIL TRANSPORTER)	Bacillus caldolyticus	(M80628) hypothetical product [Streptomyces griseus]	HYPOTHETICAL 11.6 KD PROTEIN IN COTD-KDUD	INTERGENIC REGION [Bacillus subtilis]	ISOLEUCYL-TRNA SYNTHETASE, MUPIROCIN	RESISTANT (ISOLEUCINETRNA LIGASE) (ILERS) (MUPIROCIN RESISTANCE PROTEIN) [Staphylococcus	aureus]	(U87792) CinA [Bacillus subtilis]	(Z99112) similar to hypothetical proteins [Bacillus subtilis]	HYPOTHETICAL 25.7 KD PROTEIN IN SIGG-DIVIVA	INTERGENIC REGION [Bacillus subtilis]	(U18997) pantothenate permease [Escherichia coll]	(U87792) unknown [Bacillus subtilis]	(AJ006274) acetyltransferase-like protein [Lactobacillus	sakei]	HYPOTHETICAL 20.5 KD PROTEIN IN TIME 3 REGION [Bacillus subtilis]	PROBABLE ENDONUCLEASE IV	
	% Cvrg	26 H	•	34	•	_		42	94	99	-		37			66		17			36		:59	;	33	85	81	9	47	70	
	% Ident C	47	64	78		73	72	63	39	52	22	ů	72		53	71		25			57	47	49	,	41	32	62		36	79	
T and T	BlastP- Prob Id	7.60E-23	2.60E-72	1.20E-08		5.00E-62	1.40E-64	3.30E-65	2.90E-11	2.10E-10	11000	0.0011	6.30E-39	!	2.60E-09	1.60E-33		1.30E-49			5.90E-43	2.80E-20	3.80E-32		1.40E-24	2.10E-22	8.80E-49	!	1.40E-11	2.40E-87	
	BlastP Score	268	731	140		634	859	664	155	154	Š	8	416		141	365		526			454	240	352		285	260	209		158	873	
	aat_Bl nap Score	196	727	22		661	723	653	185	212	ę	98	561		157	321	-	499			454	218	300		276	336	603		88	824	
	NCBI gi	g1711354	g1405445	g2621572		g2293312	g2635181	g2632528	g1763706	g1669857	70000	g2133320	g730437		g1110441	g1730957		g1174516	ı		g1842440	g2633910	g3183467	ı	g606198	g1842438	g3688416		g1730267	g1706650	
	Position	609-1	189-839	1-574		41-583	1-536	1-602	290-1	821-1	,	242-1	477-1		1-562	397-65		513-1			453-1	1-287	296-703		1-467	838-63	683-159		1-342	1-632	
	Gene Id	Bt1G167	Bt1G168	Bt1G169		Bt1G170	Bt1G172	Bt1G173	Bt1G174	Bt1G175	(Bt1G176	Bt1G177		Bt1G179	Bt1G180		Bt1G181			Bt1G182	Bt1G184	Bt1G185		Bt1G186	Bt1G187	Bt1G188		Bt1G189	Bt1G190	
	Contig Id	Bt1Gc257	Bt1Gc255	Bt1Gc256		Bt1Gc258	Bt1Gc259	Bt1Gc261	Bt1Gc263			Bt1Gc272	Bt1Gc270		Bt1Gc276	Bt1Gc279		Bt1Gc280			Bt1Gc283				Bt1Gc284				Bt1Gc290	Bt1Gc292	
	SEQ ES	133	134	135		136	137	138	139	140	,	141	142		143	144		145			146	147	147		148	149	150		151	152	

NCBI gi description		(ENDODEOXYRIBONUCLEASE IV) [Bacillus subtilis]	(AF065404) pXO1-97 [Bacillus anthracis]	(AJ000325) putative membrane protein [Lactococcus lactis]	(Y09322) membrane bound protein LytR [Bacillus cereus]	(D10594) chitinase D precursor [Bacillus circulans]	(AF041468) ompR homolog [Guillardia theta]	(Z99120) similar to hypothetical proteins [Bacillus subtilis]	hypothetical protein 4 - Clostridium pasteurianum	irianum]	(Z99117) similar to folate metabolism [Bacillus subtilis]	(Z98682) YIbN protein [Bacillus subtilis]	(Z98682) YlbM protein [Bacillus subtilis]	(Z82987) unknown similar to quinolon resistance protein	btilis]	(AF053927) probable spore germination protein F [Bacillus		PROBABLE 1,4-DIHYDROXY-2-NAPHTHOATE	OCTAPRENYL TRANSFERASE (DHNA-	OCTAPRENYL TRANSFERASE) [Bacillus subtilis]	PYRUVATE DEHYDROGENASE E1 COMPONENT,	ALPHA SUBUNIT (S COMPLEX, 42 KD SUBUNIT)	(VEGETATIVE PROTEIN 220) (VEG220) [Bacillus		HYPOTHETICAL 28.6 KD PROTEIN IN RECQ-CMK	INTERGENIC REGION PRECURSOR [Bacillus subtilis]	HYPOTHETICAL TRANSCRIPTIONAL REGULATOR	IN ICDC-MINE INTERGENIC REGION [Escherichia con]	(AJ002571) YkhA [Bacillus subtilis]	(AB017186) cardiolipin synthase [Clostridium pertringens]	(Z99107) alternate gene name: yerS; similar to RNA	[Bacillus subtilis]	(AF036967) putative response regulator [Lactobacillus	sakeı] ORF 18231C (Bacillus thuringiensis)	AT DELA AMVI AGE DRECTIRSOR (1 4.AI PHA.D.
Ş	a.	(ENDODEOXYRI)	99 (AF065404) pXO1-	61 (AJ000325) putativ	98 (Y09322) membrar			31 (Z99120) similar to	47 hypothetical protein			59 (Z98682) YlbN prc		56 (Z82987) unknown		99 (AF053927) probal		48 PROBABLE 1,4-D	OCTAPRENYLTR	OCTAPRENYLTR	48 PYRUVATE DEH	ALPHA SUBUNIT	(VEGETATIVE PI	subtilis]	58 HYPOTHETICAL	INTERGENIC RE	25 HYPOTHETICAL		_	_	53 (Z99107) alternate	methyltransferase [Bacillus subtilis]	47 (AF036967) putati	saketj 9 ORF IS231C (Bac	
o % ant Cyro			37 6	28				74	-					37		68		9			75				39		37		49	34	70		46	86	5 5
BlastP- % Prob Ident			1.00E-24	3.70E-18	1.60E-15	2.50E-83	5.30E-26	9.80E-50	1.60E-08		1.40E-25	1.40E-18	1.00E-05	4.00E-28		2.80压-29		7.10E-47			2.20E-61				1.90E-23		4.30E-08		1.50E-12	4.70E-23	5.30E-90		1.00E-22	1 40F-15	001 701 0
BlastP	2 102		282	220	195	835	294	518	129		290	224	111	314		325		491			628				270		128		167	271	868		263	203	5 6
aat_B	•		215	209	223	815	233	513	94		297	211	93	432		300		492			589				260		100		159	.168	891		229	187	107
NCBI gi			g4894313	g2407933	g2073397	g3821797	g3602952	g2635763	g481591)	g2635183	g2340010	g2340009	g1684651	ı	g2984723		g732327)		e3123238	0			g1730889	ı	g3025068		g2632024	g4240001	g2632987	0	g4104605	033260	8223333
Position			620-120	755-190	254-595	910-1	957-297	427-1	530-799		16-552	308-1	462-553	1-659		479-694		451-1			125-670				1-456		471-655		1-216	1-1128	1-726	 	1-324	402 608	402-323
Gene Id			Bt1G191	Bt1G192	Bt1G193	Bt1G194	Bt1G195	Bt1G196	Bt1G197		Bt1G198	Bt1G199	Bt1G200	Bt1G201		Bt1G202		Bt1G203			Bt1G204				Bt1G205		Bt1G206		Bt1G207	Bt1G208	Bt1G209		Bt1G210	D41/C011	DI10211
Contig Id	l		Bt1Gc285	Bt1Gc293				Bt1Gc298	Bt1Gc299		Bt1Gc296	Bt1Gc300				Bt1Gc302	,	164 Bt1Gc303			165 Bt1Gc305				166 Bt1Gc308		Bt1Gc308	3.	Bt1Gc310				Bt1Gc312	2410,010	Bt10c317
SEQ ID	02) :	153	154	155	156	157	158	159		160	161	161	162		163		164			165	3			166		166		167	167	168) •	169	0)1	109

_	
<u>e</u>	
엹	
Ë	

							I and			-
SEQ EQ	Contig Id	Gene Id	Position	NCBI gi	aatn nap Score	BlastP Score	BlastP- Prob	% Ident C	% Cvrg	NCBI gi description
,										GLUCAN GLUCANOHYDROLASE) [Bacillus amyloliquefaciens]
171	Bt1Gc309	Bt1G213	1159-1	g1075972	806	880	4.30E-88	46	29	tetB(P) protein - Clostridium perfringens [Clostridium perfringens]
172	Bt1Gc316	Bt1G214	721-1	g2635792	235	297	7.50E-26	28	47	(Z99120) similar to oligoendopeptidase [Bacillus subtilis]
173		Bt1G215	191-1	g1730911	212	228	1.10E-18	69	17	HYPOTHETICAL 42.6 KD PROTEIN IN BSAA-ILVD INTERGENIC REGION [Bacillus subtilis]
174	Bt1Gc319	Bt1G216	1-506	g1706795	374	332	5.00E-30	45	43	FERRICHROME TRANSPORT PERMEASE PROTEIN FHUB [Bacillus subtilis]
175	Bt1Gc317	Bt1G217	787-1	g2127819	261	363	2.60E-33	31	94	cobalt transport ATP-binding protein O homolog - Methanococcus jannaschii [Methanococcus jannaschii]
176	Bt1Gc322	Bt1G218	424-1	g2618995	333	336	1.90E-30	46	85	(AF027868) putative alanine acetyl transferase [Bacillus subtilis]
177	Bt1Gc321	Bt1G219	24-762	g466778	841	869	8.20E-69	63	50	(M89774) lysine specific permease [Escherichia coli]
178		Bt1G220	1-318	g4155453	285	257	1.30E-21	48	23	(AE001517) putative SODIUM/ALANINE SYMPORTER
179	Bt1Gc327	Bt1G221	744-542	g2649585	124	179	1.00E-13	45	24	[Hencobacter pyion 1991] (AE001034) ABC transporter, ATP-binding protein
			1-243	91945096	183	197	1 70E-14	45	19	[Archaeoglobus fulgidus] (D88802) S. lividans chloramphenicol resistance protein;
2	DIIOC330		C+7-1	81742020	3				ì	P31141 (492) transmembrane [Bacillus subtilis]
181	Bt1Gc328	Bt1G223	548-1	g96807	509	561	1.20E-53	58	20	Mg2+-transporting ATPase (EC 3.6.1) mgtB - Salmonella
182	Bt1Gc329	Bt1G224	1-428	g2633471	539	260	3.50E-54	73	34	(Z99109) similar to 3-oxoacyl- acyl-carrier protein synthase
183		Bt1G225	609-1	g2499210	684	869	8.20E-69	<i>L</i> 9	76	[Bacillus subtilis] PUTATIVE NAD(P)H NITROREDUCTASE YDGI
3			922-634	g1881373	227	245	8.30E-21	49	59	[Bacillus subtilis] (AB001488) SIMILAR TO SALMONELLA
})						TYPHIMURIUM SLYY GENE REQUIRED FOR SURVIVAL IN MACROPHAGE. [Bacillus subtilis]
184	Bt1Gc333	Bt1G227	1-381	g548832	114	113	1.80E-13	29	9/	RNA POLYMERASE SIGMA-H FACTOR (SIGMA-30)
185	Bt1Gc334	Bt1G228	1-549	g2633168	446	493	4.40E-47	51	58	[Pseudomonas aeruginosa] (Z99108) similar to iron(III) dicitrate transport permease [Paggillug guldtilig]
186 187	Bt1Gc335 Bt1Gc336	Bt1G229 Bt1G230	1033-782 1-400	g225559 g549496	409 154	409	3.50E-38 4.90E-16	98	17	

	ý						rapie i			
SEQ D	Contig Id	Gene Id	Position	NCBI gi	aat nap	BlastP Score	BlastP. Prob	% 9	% Cvrg	NCBI gi description
188	Bt1Gc337	Bt1G231	1-824	g1731076	695	723	1.80E-71	20	50]	INTERGENIC REGION [Escherichia coli] HYPOTHETICAL 61.8 KD PROTEIN IN GLNQ-ANSR
60		041	370 073	0220030	717	417	4 OOF-39	09	_ 14	INTERGENIC REGION (Bacıllus subtilis) (X57583) mccF (Escherichia coli)
190	Bt1Gc339	Bu G232 Rt1G233	60-313	g062770 g144312	125	143	5.30E-10	38	_	(J01566) 13.8 kd ORF [Plasmid ColE1]
191		Bt1G234	813-82	g140635	610	280	2.60E-56	47	91	HYPOTHETICAL 28.6 KD PROTEIN IN FABB-MEPA
193	B+1 Gc342	Br1G235	1-410	93023262	461	498	1.30E-47	29	35]	INTERGENIC REGION [Escherichia coli] PROBABLE NADH-DEPENDENT BUTANOL
122									, ,	DEHYDROGENASE 1 [Bacillus subtilis]
193		Bt1G236	1-394	g2634307	424	334 400	3.10E-30	\$ 5	† <u>'</u>	(299114) SHILIM to Hypometrial proteins [Euching Success] propart Final H-Dependent RUTANOL
193	Bt1Gc347	Bt1G23/	21/-/10	g3023203	700	+ 77	3.00L-10	6		DEHYDROGENASE 2 [Bacillus subtilis]
194	Bt1Gc350	Bt1G238	684-1	g1507711	484	481	8.10E-46	46	40	(L80006) indolepyruvate decarboxylase [Erwinia herbicola]
195		Bt1G239	431-1	g1661219	366	423	1.10E-39	52	78	(U75904) ProP [Escherichia coli]
196		Bt1G240	674-285	g2897873	285	287	2.90E-25	44	9	(U81516) unknown [Myxococcus xanthus]
197		Bt1G241	711-168	g732998	307	348	1.00E-31	36	66	(U01945) streptothricine-acetyl-transferase [Campylobacter
										(I) TO THE
198	Bt1Gc353	Bt1G242	645-1	g1881359	111	167	1.50E-12	24	94	(AB001488) SIMILAR TO YDFS GENE PRODUCT OF THIS FNTRY (YDFS BACSU). [Bacillus subtilis]
199	Bt1Gc356	Bt1G243	584-273	g585113	140	175	2.20E-13	54	23	EXODEOXYRIBONUCLEASE [Bacillus subtilis]
200		Bt1G244	1-554	g2293447	544	550	4.00E-53	57	48	(AF008930) ATPase [Bacillus subtilis]
201		Bt1G245	566-130	g2633223	335	312	6.60E-28	20	65	(Z99108) yhbJ [Bacillus subtilis]
202		Bt1G246	1-418	g2443255	192	123	4.40E-07	43	36	(D86417) YfmL [Bacillus subtilis]
203		Bt1G247	1-697	g2119798	268	396	8.30E-37	39	4	penicillin binding protein 5 - Bacillus subtilis (fragment)
										[Bacillus subtilis]
204	Bt1Gc364	Bt1G248	179-1	g3308998	138	135	3.80E-09		29	(AB015998) CBP21 precursor [Serratia marcescens]
204		Bt1G249	959-432	g136472	237	284	6.10E-25	33	66	ACETYL TRANSFERASE (TABTOXIN RESISTANCE
Č		9,000	110 1	2015064	7	127	0 00E-08		28	PROTEIN) [Pseudomonas syringae] SMF PROTEIN [Bacillus subtilis]
607		DC70119	1-01+	E3713007	5 ;		2007.7		3	TISTOCHITETICAL 22 0 VD DBOTTEIN IN NITCH. A BOD
206	Bt1Gc368	Bt1G251	1-397	g1730977	119	144	4.20E-10		6	HTFOIHEILCAL ZE, AND TROITEN IN NOCE TRICE INTERGENIC REGION [Bacillus subtilis]
206	Bt1Gc368	Bt1G252	576-447	g2239276	178	147	2.20E-09		∞	(L77763) neutral protease A [Bacillus thuringiensis]
207		Bt1G253	10-210	g2493761	348	348	1.00E-31		66	
208		Bt1G254	605-442	g1405460	104	138	1.80E-09	57	36	(Z73234) YneT [Bacillus subtilis]

-
<u>e</u>
ā
Ë

							I anic I			
SEQ EQ	Contig Id	Gene Id	Position	NCBI gi	aat nap Score	BlastP Score	BlastP- Prob	% % Ident Cvrg	%.	NCBI gi description
209	Bt1Gc370 Bt1Gc372	Bt1G256 Bt1G257	576-92 1-205	g2635763 g3880839	705	728	5.50E-72 2.60E-11	88 48	35 (23 (23 (14 (14 (14 (14 (14 (14 (14 (14 (14 (14	(Z99120) similar to hypothetical proteins [Bacillus subtilis] (AL031633) predicted using Genefinder; similar to Alcohol/other dehydrogenases, short chain type, Short chain dehydrogenase/reductase C-terminus; cDNA EST EMBL:C08550 comes from this gene [Caenorhabditis elegans]
211	Bt1Gc374	Bt1G258	1-633	g4033506	714	754	9.60E-75	70	73	FRUCTOSE-BISPHOSPHATE ALDOLASE [Bacillus stearothermophilus]
212	Bt1Gc376 Bt1Gc376	Bt1G259 Bt1G260	1-126 239-567	g1945051 g2507017	152	153 263	2.50E-10 1.00E-22	. 79 68	11 (29	(U63928) L1 protein [Bacillus cereus] HEMOLYSIN BL BINDING COMPONENT PRECURSOR
213		Bt1G261	1-646	g3256693	139	214	9.30E-17	26	45	(ENTEROTOXIN 40 KD SUBUNIT) [Bacillus cereus] (AP000001) 484aa long hypothetical protein [Pyrococcus
214 215	Bt1Gc380 Bt1Gc379	Bt1G262 Bt1G263	463-1 1-589	g2633757 g3123227	231	288 744	2.30E-25 1.10E-73	50	31 39	(Z99111) similar to Xaa-Pro dipeptidase [Bacillus subtilis] GMP SYNTHASE (GLUTAMINE-HYDROLYZING) (GLUTAMINE AMIDOTRANSFERASE) (GMP
216 217	Bt1Gc373 Bt1Gc382	Bt1G264 Bt1G265	1-721 1-1117	g2226222 g1169000	309	369 1181	6.00E-34 5.40E-120	42 57	34	Y 14082) hypothetical protein [Bacillus subtilis] MICROBIAL COLLAGENASE PRECURSOR (120 KD COLLAGENASE) [Clostridium perfringens]
218 219 220	Bt1Gc383 Bt1Gc388 Bt1Gc387	Bt1G266 Bt1G267 Bt1G268	791-27 642-1 671-1	g3688826 g2293198 g2501678	336 445 931	277 443 857	4.50E-24 8.70E-42 1.20E-85	30 42 78	61 40 74	(AF084104) NatB [Bacillus firmus] (AF008220) YtgP [Bacillus subtilis] HYPOTHETICAL 33.7 KD PROTEIN IN LSP-PYRR
221		Bt1G269	1-510	g1706797	308	355	1.80E-32	42	51	INTERGENIC REGION (ORF-X) [] FERRICHROME TRANSPORT PERMEASE PROTEIN FHUG [Bacillus subtilis]
222 223 224		Bt1G270 Bt1G271 Bt1G272	570-1 1-578 679-1	g2274944 g1934809 g1708643	575 461 456	469 409 500	1.50E-44 3.50E-38 7.90E-48 2.40E-07	58 47 43 85	36 35 96	(AJ000346) NapC protein [Enterococcus hrae] (Z93937) unknown [Bacillus subtilis] (U51115) YebA [Bacillus subtilis] STAGE V SPORULATION PROTEIN M [Bacillus subtilis]
225 226 226 226	Bt1Gc393 Bt1Gc396 Bt1Gc396	Bt1G274 Bt1G274 Bt1G275 Bt1G276	879-244 151-697 432-697	g2337809 g4877899 g549114	492 226 374	516 301 410	1.60E-49 9.70E-27 2.70E-38	47 46 80	100 41 19	(Y13937) YloS protein [Bacillus subtilis] (AF138876) unknown [Bacillus thuringiensis] TRANSPOSASE FOR INSERTION SEQUENCE EI EMENT IS231F [Bacillus thuringiensis]
227	7 Bt1Gc398	Bt1G277	1-453	g3183519	099	609	2.20E-59	84	35	GID PROTEIN [Bacillus subtilis]

\$ 4⁶/₂ |

	NCBI gi description	(AF008220) branch-chain amino acid transporter [Bacillus subtilis]		5 DEOXYRIBONUCLEOSIDE REGULATOR [Bacillus subtilis]			8 HYPOTHETICAL 13.7 KD PROTEIN IN BCSA-DEGR INTERGENIC REGION [Bacillus subtilis]	B HYPOTHETICAL 7.2 KD PROTEIN IN BCSA-DEGR							7	[Haemophilus influenzae Rd] 5 FERRICHROME-BINDING PROTEIN PRECURSOR			FHUB [Bacillus subtilis] 5 (Z99121) similar to heavy metal-transporting ATPase		36 (Y 12602) acid phosphatase [Sureptococcus equisumins] Proposition AMINO ACID TRANSPORT		glutamicum]	33 HYPOTHETICAL 32.9 KD PROTEIN IN BLTR-SPOIIIC INTERGENIC REGION [Bacillus subtilis]
	% Cvrg	71	13	55	47	66	89	86	81	31	96		18	4	22	55	,	20	25	Ì	36	•		33
	% Ident	44	49	72	99	38	40	48	99	59	9		69	38	36	36	3	33	53		45 25	ţ		64
1 41016 1	BlastP- Prob I	3.60E-59	9.40E-10	6.20E-64	1.00E-70	2.50E-05	2.50E-12	9.40E-13	3.40E-86	1.90E-28	5.40E-49		1.50E-35	3.50E-29	1.30E-16	1 20E-26	07-707:1	1.30E-15	4.50E-54	!	4.60E-20	4.305-4		1.50E-30
	BlastP Score	209	151	652	716	66	165	169	862	317	511		384	324	214	300	8	201	560		238	133		337
	aat_B nap_S Score	638	169	645	764	180	154	164	828	238	493		373	306	147	1761	707	177	575		225	133		337
	NCBI gi	g2293322	g1173414	g732390	g2635801	g1730948	g1730905	g1730906	g2499158	04894226	g1705506	0	g3445480	g118797	g1176478	~<0<127	g303132	g1706795	g2635863)	g1944618	g3023407		g1731127
	Position	1129-176	227-1	759-240	1-654	608-237	1-247	242-421	1-757	898-1415	809-352		1-284	494-1	250-608	1 511	110-1	459-1026	613-1		1-312	102-1		1-294
	Gene Id	Bt1G278	Bt1G279	Bt1G280	Bt1G281	Bt1G282	Bt1G283	Bt1G284	Bt1G285	B+1G286	Bt1G287		Bt1G288	Bt1G289	Bt1G290	1000	B11G291	Bt1G292	Bt1G293		Bt1G294	Bt16295		Bt1G296
	Contig Id	Bt1Gc400	Bt1Gc402	Bt1Gc404	Bt1Gc405	Bt1Gc395	Bt1Gc408	Bt1Gc408	Bt1Gc410	B+1G-410			Bt1Gc411	Bt1Gc409			B11 GC4 12	Bt1Gc412	Bt1Gc417			Bt1Gc420		243 Bt1Gc422
	SEQ NO D	228	229	230	231	232	233	233	234	227	235	3	236	237	238	ć	667	239	240	: I	241	242		243

_	
Table	

	_	
ī	_	
	9	
-	<u> </u>	
_	æ	
Į	-	

	NCBI gi description	(AE000933) dTDP-glucose 4,6-dehydratase [Methanobacterium thermoautotrophicum]	(Z94043) hypothetical protein [Bacillus subtilis]	(AJ007510) 5-methylcytosine-specific restriction enzyme [Bacillus cereus]	PROBABLE D-SERINE DEHYDRATASE (D-SERINE DEAMINASE) [Bacillus subtilis]	HYPOTHETICAL 14.0 KD PROTEIN IN LYSA 3'REGION (ORF3) [Bacillus methanolicus]	HYPOTHETICAL 21.0 KD PROTEIN IN RIBT-DACB INTERGENIC REGION (ORFX6) [Bacillus subtilis]	CHROMOSOMAL REPLICATION INITIATOR PROTEIN DNAA [Bacillus subtilis]	SUCCINYL-COA SYNTHETASE BETA CHAIN (SCS- ALPHA) (VEGETATIVE PROTEIN 63) (VEG63)	[Bacillus subtilis]	(Z93934) unknown [Bacillus subtilis]	PROBABLE RNA HELICASE IN CCCA-SODA	INTERGENIC REGION [Bacillus subulis]	(Z98682) YIbP protein [Bacillus subtilis]	(Z75208) hypothetical protein [Bacillus subtilis]	HYPOTHETICAL 41.8 KD PROTEIN (ORFM) []	(AF027868) YocH [Bacillus subtilis]	(AJ010111) pyruvate carboxylase [Bacillus cereus]	(X92868) mercuric resistance operon regulatory protein [Racillus enhtilis]	(AC005967) putative carbonyl reductase [Arabidopsis thaliana]	AQUAPORIN Z (BACTERIAL NODULIN-LIKE INTRINSIC PROTEIN) [Escherichia coli]	SUCCINYL-COA SYNTHETASE ALPHA CHAIN (SCS-ALPHA) (VEGETATIVE PROTEIN 239) (VEG239)	[Bacillus subtilis] GMP SYNTHASE (GLUTAMINE-HYDROLYZING) (GLUTAMINE AMIDOTRANSFERASE) (GMP
	% Cvrg	36 (_	37 (36 I	93 I	57 I	99	49 9			59						-	41	59	99	52	41
	% Ident C	20	42	39	64	53	30	79	83		23	63	i	22	70	71	46	94	41	30	40	82	84
ande 1	BlastP- Prob IG	1.10E-32	1.70E-27	9.00E-24	8.50E-51	1.20E-28	8.40E-12	1.10E-119	1.20E-67		1.90E-21	6.90E-88	1	4.90E-39	1.30E-16	3.10E-101	2.80E-29	5.40E-81	6.10E-09	2.00E-11	9.10E-15	2.80E-68	3.00E-94
	BlastP Score	357	308	273	528	319	160	1178	289		178	878		417	209	1004	325	813	133	160	188	693	938
	aat_B nap S Score	317	251	197	491	308	144	1219	908		154	860		391	203	1058	316	811	116	105	245	989	913
	NCBI gi	g2622920	g1945654	g4584112	g1711354	g732151	g141355	g118704	g3183562		g1934789	g1731006		g2340013	g1770012	g2828499	g2619050	g4584148	g2108269	g4115379	g2506860	g3915596	g3123227
	Position	600-238	152-643	145-510	751-262	1-335	660-362	1-890	1-565		917-173	786-1		562-109	648-825	845-1	742-79	493-1	175-1	918-462	599-162	1-464	1-628
	Gene Id	Bt1G316	Bt1G317	Bt1G318	Bt1G319	Bt1G320	Bt1G321	Bt1G322	Bt1G323		Bt1G324	Bt1G326		Bt1G327	Bt1G328	Bt1G329	Bt1G330	Bt1G331	Bt1G332	Bt1G333	Bt1G334	Bt1G335	Bt1G336
	Contig Id	Bt1Gc443	Bt1Gc451	Bt1Gc449	264 Bt1Gc452	Bt1Gc446	Bt1Gc446	Bt1Gc458	Bt1Gc459	=	Bt1Gc460	Bt1Gc455		Bt1Gc469	Bt1Gc465	Bt1Gc470	Bt1Gc471	Bt1Gc475	Bt1Gc476	Bt1Gc476	Bt1Gc467	277 Bt1Gc477	278 Bt1Gc472
	SEQ NO NO	261	262	263	264	265	265	266	267		268	269		270	271	272	273	274	275	275	276	277	278

_	
<u>e</u>	
ap	

																									•			
	NCBI gi description	SYNTHETASE) [Bacillus subtilis] (AB001488) SIMILAR TO ACYL-COA DEHYDROGENASE, [Bacillus subtilis]	(AE000330) orf, hypothetical protein [Escherichia coli]	collagenase - Clostridium histolyticum [Clostridium	histolyticum] (Y11141) microbial collagenase precursor [Bacillus cereus]	(Y14079) hypothetical protein [Bacillus subtilis]	THREONINE DEHYDRATASE CATABOLIC (THREONINE DEAMINASE) [Escherichia coli]	(AJ000346) NapB protein [Enterococcus hirae]	(Z99120) alternate gene name: yutA [Bacillus subtilis]	_	_		(Z99107) yetG [Bacillus subtilis]	_	_	(AB001488) FUNCTION UNKNOWN, CONTAINS MUTT MOTIF SIMILAR PRODUCTS IN SYNECHOCYSTIS.	[Bacillus subtilis]	_	(U66669) 3-hydroxyisobutyryl-coenzyme A hydrolase	[Homo sapiens] HYPOTHETICAL PROTEASE IN ROCR-PURA	INTERGENIC REGION [Bacillus subtilis]	_	(Z16422) unknown [Staphylococcus aureus]	(U77495) putative integrase [Leuconostoc oenos				(Z82987) unknown, similar to cytolysin SlyA from
	% Cvrg	32	54	27	66	52	23	79	23	61	76	40	66	22	48	54		97	41	46		39	66	32	29	48		71
	% % Ident Cv	59	58	36	54	52	49	45	75	36	43	48	55	62	55	32		40	35	50		41	56	32	49	38		34
	BlastP- Prob Io	8.20E-30	2.30E-09	1.20E-48	3.30E-33	4.80E-09	7.50E-08	3.80E-25	2.70E-31	1.10E-25	1.90E-53	1.20E-14	1.40E-32	3.20E-19	6.60E-12	2.00E-10		1.20E-37	1.50E-23	2.40E-37		1.60E-22	4.20E-17	1.20E-12	8.50E-22	2.00E-26		2.10E-08
•	BlastP Score	330	137	517	362	134	129	286	344	291	553	187	356	230	161	147		404	271	401	i)	267	210	173	260	298	,	128
	aat_B nap_S Score	345	82	493	345	164	162	281	340	218	462	171	341	186	142	112		357	237	407	<u>:</u>	330	128	95	308	383		163
	NCBI gi	g1881262	g1788774	g2127339	e2462122	g2226142	g135723	£2274943	g2635731	g2635732	g2632020	g4514328	g2633028	g2635751	g2635737	g1881243		g2633719	g3320120	01731364		g585372	g671632	g4098413	9606198	g1684651	ı	g1684652
	Position	1-371	903-298	841-1	608-1036	857-598	1-230	480-836	1-240	749-280	1001-293	1001-800	100-468	865-129	166-1	288-1		395-1109	709-232	1-551		1-779	698-41	911-293	407-832	571-1		886-593
•	Gene Id	Bt1G337	Bt1G338	Bt1G339	Bt1G340	Bt1G341	Bt1G342	Bt1G343	Bt1G344	Bt1G345	Bt1G346	Bt1G347	Bt1G348	Bt1G349	Bt1G350	Bt1G351		Bt1G352	Bt1G353	B+1G354		Bt1G355	Bt1G356	Bt1G357	B+1(3358	Bt1G359		Bt1G360
~	Contig Id	Bt1Gc479	Br1Gc481	Bt1Gc482	Bt1Gc484	Bt1Gc483	Bt1Gc485	Bt1Gc485	Bt1Gc486	Bt1Gc486	Bt1Gc478	Bt1Gc478	Bt1Gc488	Bt1Gc489				Bt1Gc497				Bt1Gc499			B+16.505			Bt1Gc494
	SEQ NO ID	279	280	281	282	283	284	284	285	285	286	286	287	288	289	290		291	292	203	C 6.7	294	295	296	707	298		298

	NCBI gi description	Salmonella typhimurium [Bacillus subtilis] 45 (AJ010135) ribosomal protein S2 [Bacillus cereus]		99 HYPOTHETICAL 12.3 KD PROTEIN IN CWLA-CISA	INTERGENIC REGION [Bacilius subtilis]		18 HYPOTHETICAL 38.3 KD PROTEIN IN CWLA-CISA INTERGENIC REGION [Bacillus subtilis]	14 HYPOTHETICAL 132.7 KD PROTEIN IN CSPB-GLPP BITTED CENTS DEGION (Pacilly subtilial	23 ENDOGLUCANASE PRECURSOR (ENDO-1,4-BETA-	GLOCANASE) (CELLOLASE) [Closulation] acetobutylicum]	92 S-LAYER PROTEIN PRECURSOR (SURFACE LAYER	PROTEIN) [Bacillus thuringlensis] 80 HYPOTHETICAL TRANSCRIPTIONAL REGULATOR IN SMAI RESTRICTION SYSTEM 5'REGION [Serratia	89 ASPARTATE-SEMIALDEHYDE DEHYDROGENASE (ASA DEHYDROGENASE) [Bacillus subtilis]	_		75 HYPOTHETICAL 27.7 KD PROTEIN IN GPSA-SPOIVA	INTERGENIC REGION (ORFI) [Bacillus subtilis]		[Bacillus megaterium] 99 HYPOTHETICAL 17.8 KD PROTEIN IN SERS-DNAH	INTERGENIC REGION [Baculus subulis] 51 lysine-specific permease - Escherichia coli []	45 (AL049754) putative ABC transporter ATP-binding protein	[Streptomyces coelicolor] 76 (M16158) unknown protein [Bacillus thuringiensis]	
	% it Cvrg	94			5		83 1	32 1	28 2		6 9/	38 8	62	-	72 3	53 7	Ç		74 9	59	72 ,		
	% Ident																						
I anie I	BlastP- Prob	2.90E-09	2.20E-68	5.90E-43	1 CT CT	5.10E-53	4.50E-17	1.80E-17	1.10E-08		1.50E-93	1.90E-07	5.90E-98	5.80E-41	3.40E-63	1.20E-51	1 200 30	1.30E-29 2.70E-21	2.50E-51	4.30E-79	6.70E-11	1.20E-108	5.60E-102
	BlastP Score	136	69	454	,	44	212	227	139		579	119	973	442	645	536	000	258	533	795	156	1074	101
	aat_B nap_S Score	120	801	448	i	900 400	266	145	77		1161	106	981	339	638	507	Ċ	30 / 406	619	779	121	1064	1046
	NCBI gi	04584128	g3123214	g1176769		g11/6//0	g1176771	g1724012	g121841		g548931	g141422	g416901	g2635858	g2266425	g1730917	001000	g2833192 g118721	g g112703	g538771	g4753857	g1124822	g2811132
	Position	Ian-01	198-814	182-496	4	560-994	1016-1205	1-1052	524-815		1-1082	202-1	1-926	1-839	497-1	648-101	,	423-1 503-87	707-225	1-735	801-379	1089-1	1-975
	Gene Id	B#1G361	Bt1G362	Bt1G363	4	Bt1G364	Bt1G365	Bt1G366	Bt1G367		Bt1G368	Bt1G369	Bt1G370	Bt1G371	Bt1G372	Bt1G373	i i	Bt1G375		Bt1G378	Bt1G379	Bt1G380	Bt1G382
	Contig Id	D+17.0500				Bt1Gc511	Bt1Gc511	Bt1Gc512	Bt1Gc512		302 Bt1Gc513	Bt1Gc514	Bt1Gc504	Bt1Gc515				Bt1Gc521 Bt1Gc523		Bt1Gc528			Bt1Gc533
	SEQ SO B	000	299	300		300	300	301	301		302	303	304	305	306	307		308	310	311	312	313	314

_	
ę	
[ab]	
Ξ	

	NCBI gi description		METHYLPHOSPHOTRIESTER-DNA ALKYLTRANSFERASE [Bacillus subtilis]						INDOLE-3-PYRUVATE DECARBOXYLASE	(INDOLEFING VATE DECANDON LASE) [Enterobacter cloacae]	(AF053927) probable spore germination protein F [Bacillus	cereus] HYPOTHETICAL 33.3 KD PROTEIN SLL 1263	_	_	_			(AF081810) viral enhancing factor 1 [Lymantria dispar		(AF027868) YoaR [Bacillus subtilis]	_	(AB015998) CBP21 precursor [Serratia marcescens]		INTERGENIC REGION [Bacillus subtilis]	MG(2+) TRANSPORT ATPASE, P-TYPE 1 [Escherichia		
	% Cvrg	74	61	. 93	78	38	4	66	41	•	46	62		92	47	31	*	36	9	9/	13	75	13		21	50	
	% Ident (39	52	44	89	63	32	63	20		79	33		40	51	42		23	56	31	43	9	2/		43	97	
I ADIC I	BlastP. Prob I	0.0041	2.00E-35	2.60E-33	1.10E-103	3.10E-46	6.00E-06	1.40E-32	8.00E-55		8.70E-10	1.60E-24		8.40E-28	3.00E-16	3.30E-41		8.60E-23	4.00E-21	5.30E-26	6.90E-19	5.20E-44	9.50E-14		3.40E-33	1.20E-62	
	BlastP Score	78	383	363	1027	485	112	356	999		141	280		311	202	443		274	248	294	238	464	181		372	640	:
	aat_B nap_S Score	118	377	337	066	533	95	351	554		125	282		282	182	338		115	272	250	184	451	165		339	638) }
	NCBI gi	g167521	g113333	g113335	g2507017	g1172036	g418336	g2635865	g118333		g2984723	g2501575)	g1750129	g2226190	g1881236		g3822300	22293285	£2619029	g1434920	£3308998	g586817		g728913	g2497392	1////
	Position	769-975	1-385	381-880	881-1	1-501	676-532	489-187	682-1		1-100	451-1019		423-1	845-640	1-711		1-847	1-279	876-185	1-310	1-440	661-784		615-1	901-523	70.107
	Gene Id	Bt1G383	Bt1G384	Bt1G385	Bt1G386	Bt1G387	Bt1G388	Bt1G389	Bt1G390		Bt1G391	Bt1G392		Bt1G393	Bt1G394	Bt1G395		Bt1G396	Bt1G397	Bt1G398	Bt1G399	Br1G400	Bt1G401		Bt1G402	R+1G403	
	Contig Id	Bt1Gc533	Bt1Gc537	Bt1Gc537	Bt1Gc538	Bt1Gc540	Bt1Gc540	Bt1Gc522	Bt1Gc542		320 Bt1Gc539	Bt1Gc539		Bt1Gc543				Bt1Gc546	Bt1Gc547					-	Bt1Gc550	Br1Gc553	
	SEQ NO ID	314	315	315	316	317	317	318	319		320	320		321	321	322		323	324	325	326	327	327		328	320	740

			snqc							Ź	₹												ED				
	NCBI gi description	BINDING PROTEIN [Insertion sequence IS232] ORF IS231C [Bacillus thuringiensis]	(AE001068) conserved hypothetical protein [Archaeoglobus fulgidus]	(AB014075) Orf5u [Clostridium histolyticum]	rol lipase [Bacillus	thermocatenulatus] HYPOTHETICAL 42.6 KD PROTEIN IN BSAA-ILVD	INTERGENIC REGION [Bacillus subtilis] (D88802) S. lividans glycosyl transferase; JS0636 (311)		Lactobacillus sp.]	SIGMA-K FACTOR PROCESSING REGULATORY	FASS-OF-FONESFONE FNOTEIN	HYPOTHETICAL PROTEIN MJ0912 [Methanococcus	!	(AL031350) putative secreted protein [Streptomyces	coelicolor] GTP_RINDING PROTEIN TYPA/BIPA HOMOLOG		llus subtilis]	ıs subtilis []	llus subtilis]	HYPOTHETICAL 10.4 KD PROTEIN IN NUSA-INFB	INTERGENIC REGION (ORF3) [Bacillus subtilis]	PROBABLE RIBOSOMAL PROTEIN IN NUSA-INFB INTERGENIC REGION (ORF4) [Bacillus subtilis]	PROTEIN P60 PRECURSOR (INVASION-ASSOCIATED	innocua]	IIIUS SUDUINS]	(AB001488) SIMILAR TO YQFU, YXKD, Y11B OF B. SUBTILIS. [Bacillus subtilis]	beta-lactamase (EC 3.5.2.6) precursor - Bacillus cereus [Bacillus cereus]
-	SV S√				(X95309) triacylglycerol lipase [Bacillus						PROTEIN BOFA (BY From the subtilis]							codV protein - Bacillus subtilis []									
	% Cvrg	15	16	63	78	82	70		30	66	-	61		17	28	3	30	63	13	66		66	18			19	11
	% Ident	66	24	30	44	62	51	3	27	4		35		58	08	3	58	52	55	59		61	37	Č	35	4	92
Table 1	BlastP- Prob 1	7.70E-34	2.00E-19	2.90E-34	6.50E-69	3.70E-89	2.20E-75		1.20E-11	1.30E-13		2.30E-18		2.40E-07	0 50E 139	0.301-130	1.40E-34	9.30E-45	1.90E-06	1.50E-21		1.50E-28	7.50E-09	, , , , , , , , , , , , , , , , , , ,	7.80E-09	5.50E-06	1.40E-10
_	BlastP Score	368	232	372	669	890	760	8	168	177		222		128	1240	1349	375	471	117	252		318	141	,	132	111	153
	aat I nap	368	140	320	564	924	746	P.	83	173		178		74	1410	1410	340	534	85	290		309	65	;	114	97	137
	NCBI gi	022556	g2650107	23868868	g1321706	g1730911	21045088	81242060	g473953	g141373		g3024926)	g3451437	20100105	g5105105	g3183519	g2126912	g2634032	g418461		g418462	g266724		g2633659	g1881335	g80073
	Position	391-612	833-165	1-889	1072-91	1148-233	020.115	C11-076	503-1	775-515		665-1096		698-009	1027	1-10/4	1-395	458-1026	1-136	148-420		418-717	621-374		266-44	161-1	1443-1338
	Gene Id	B+1G404	Bt1G405	Bt1G406	Bt1G407	Bt1G408	D+1,0400	DII 0409	Bt1G410	Bt1G411		Bt1G412		Bt1G413	7.7	B11G414	Bt1G415	Bt1G416	Bt1G417	Bt1G418		Bt1G419	Bt1G420		Bt1G421	Bt1G422	Bt1G423
	Contig Id	B+16.557	Bt1 Gc554	Bt1Gc556	Bt1Gc555		0410,5660	D0C2D119	Bt1Gc559	Bt1Gc563		338 Bt1Gc565		Bt1Gc567		Bt1Gc267	Bt1Gc568	Bt1Gc568				Bt1Gc570	Bt1Gc541		Bt1Gc569	Bt1Gc572	345 Bt1Gc572
	SEQ NO	330	331	332	333	334	400	CCC	336	337		338)	339	•	340	341	341	342	342		342	343		344	345	345

	NCBI gi description	(Z95324) mgtE [Mycobacterium tuberculosis] (U57065) ZmaR [Bacillus cereus] pre evertem GH HOOSE-SPECIFIC HABC	COMPONENT (EIIABC-GLC) (GLUCOSE-PERMEASE IIABC COMPONENT) (PHOSPHOTRANSFERASE ENZYME II, ABC COMPONENT) (EII-GLC / EIII-GLC) [Mycoplasma genitalium]	HYPOTHETICAL 39.0 KD PROTEIN IN GLNQ-ANSR INTERGENIC REGION [Bacillus subtilis]	HYPOTHETICAL 58.3 KD PROTEIN IN GLPD-CSPB INTERGENIC REGION [Bacillus subtilis]	HYPOTHETICAL TRANSPORT PROTEIN IN NDHF- CSGA INTERGENIC REGION (ORF1) [Bacillus subtilis]	HYPOTHETICAL 18.9 KD PROTEIN IN CYPA-AADK INTERGENIC REGION [Bacillus subtilis]	(AE001229) T. pallidum predicted coding region TP0544 [Trennems nallidum]	D-SERINE DEHYDRATASE (D-SERINE DEAMINASE) [Escherichia coli]	(AL009204) hypothetical protein SC9B10.17 [Streptomyces	COCINEDIO J HYPOTHETICAL TRANSCRIPTIONAL REGULATOR IN FEUA-SIGW INTERGENIC REGION (ORF3) [Bacillus subtilis]	(U67196) histidine protein kinase [Thermotoga maritima]	(Z99113) similar to alcohol dehydrogenase [Bacıllus subtilis]	(Z99114) yoaS [Bacillus subtilis]	(Z99114) similar to transcriptional regulator [Bacillus subtilis]	PROTON/SODIUM-GLUTAMATE SYMPORT PROTEIN (GLUTAMATE-ASPARTATE CARRIER PROTEIN) (Facillus stearothermophilus)	
	% Cvrg	89		41	46	26	66	28	63	82	24	13	83	57	66	63	9/
	% Ident C	39	87	37	36	88	62	27	61	27	31	53	59	62	9/	81	26
I anic I	BlastP. Prob Id	1.00E-47 1.40E-32	2.40E-14	1.60E-19	1.40E-34	1.00E-45	8.00E-55	4.70E-34	8.90E-88	2.50E-19	4.50E-14	1.00E-09	1.40E-87	4.30E-24	5.70E-29	1.60E-71	2.30E-09
	BlastP Score	499 356	<u>47</u>	233	375	480	999	375	877	231	190	148	875	276	322	420	137
,	aat_B nap S Score	711	52 2	185	395	572	999	196	881	138	105	114	862	267	308	1081	86
	NCBI gi	g2094843 g1354814	g1346893	g1731087	g3915990	g3123299	g3915543	g3322837	g2507445	g2661703	g732405	g1575578	g2634226	g2634266	g2634267	g121467	g2909586
	Position	1386-101 910-1	1-762	1-1424	1016-1	361-1	538-38	1-1009	839-1	252-1031	1072-132	1-165	278-1101	1-275	289-540	1-798	480-1
	Gene Id	Bt1G424 Bt1G425	Bt1G426	Bt1G427	Bt1G428	Bt1G429	Bt1G430	Bt1G431	Bt1G432	Bt1G433	Bt1G434	Bt1G435	Bt1G436	Bt1G437	Bt1G438	Bt1G439	Bt1G440
	Contig Id		Bt1Gc571	Bt1Gc577	Bt1Gc575	Bt1Gc578	Bt1Gc566	Bt1Gc579	Bt1Gc583	Bt1Gc584	Bt1Gc585	Bt1Gc582	Bt1Gc582	Bt1Gc590	Bt1Gc590	Bt1Gc588	360 Bt1Gc591
	SEQ S D S	346	348	349	350	351	352	353	354	355	356	357	357	358	358	359	360

-
e
읖
Ξ

	60 (AJ235272) BICYCLOMYCIN RESISTANCE PROTEIN (bcr1) [Rickettsia prowazekii]	99 (AE000813) conserved protein [Methanobacterium	thermoautotrophicum]	•			_			100 CYTOCHROME C-TYPE BIOGENESIS PROTEIN CCDA [Racillus embfilis]	49 hynothetical protein gamma - Streptococcus pyogenes		16 (AE001239) lysyl-tRNA synthetase (lysS-1) [Treponema		14 (AF027868) fatty acid desaturase [Bacillus subtilis]	100 (D87979) YfnK [Bacillus subtilis]	88 HYPOTHETICAL 14.7 KD PROTEIN IN IDH-DEOR		41 (AE001495) short-chain fatty acids transporter		55 PHOSPHOGLYCERATE MOTASE 1 (PHOSPHOGLYCEROMITASE 1) (PGAM 1) (BPG-	DEPENDENT PGAM 1) [Escherichia coli]	89 PETP PROTEIN [Rhodobacter capsulatus]	80 HYPOTHETICAL 21.0 KD PROTEIN IN LYSS-MECB		64 PENICILLIN-BINDING PROTEIN 3 (PBP 3) [Bacillus subtilis]	99 (AL035161) conserved hypothetical protein [Streptomyces	coelicolorj 62 BACILLOLYSIN PRECURSOR (NEUTRAL PROTEASE)	
% Cvrg						•			-													-							
% Ident	27	34	,	70	50 14		38	52	40	65	40	:	51		49	29	45		28	,	89		36	41		40	42	31	
BlastP. Prob	4.30E-17	1.20E-19	00 000	2.20E-20 2.20E-20	6.90E-49		4.00E-21	3.20E-51	1.90E-52	3.70E-57	1 70F-52		2.90E-20		1.10E-06	1.90E-131	1.00E-08		3.20E-51		6.00E-50		2.10E-22	8.70E-26		1.60E-79	6.30E-23	9.60E-43	
BlastP Score	215	234	5	147	510	3	248	532	545	588	544	;	247		119	1289	131		532	,	220		260	292		799	265	452	
aat_ B nap s Score	199	187	Ġ	797	80 585	3	177	519	518	864	500	<u> </u>	215		79	1253	174		286		521		248	312		758	240	249	i I
NCBI gi	g3861147	g2621332		g25//968	g2635584 0586703		g2633752	g548909	g3914084	g1168824	9908690	8040700	g3322943	ı	g2619012	g2116973	g1731305)	g4155188		g400802		g400755	g586898	•	g1175719	g4154073	g1171759	
Position	1030-35	1182-336	,	1-431	830-70	27-70	305-724	1-618	807-1	784-80	1058 1	10001	247-1		853-174	1545-479	1996-1665		1-567		416-1		1037-588	1-443		1-1251	486-887	1083-1	· > >
Gene Id	Bt1G441	Bt1G442	3	Bt1G443	Bt1G444	CHO110	Bt1G446	Bt1G447	Bt1G448	Bt1G450	D+1C451	1040110	Bt1G452		Bt1G453	Bt1G454	Bt1G455		Bt1G456		Bt1G457		B#1G458	Bt1G459		Bt1G460	Bt1G461	Bt1G462	
Contig Id	Bt1Gc593	Bt1Gc592		Bt1Gc596	Bt1Gc596	DII OCO	Bt1Gc599	Bt1Gc601		Bt1Gc606	D41 C 4602		Bt1Gc607		Bt1Gc608				Bt1Gc605		374 Bt1Gc613		374 Br1Gc613	Bt1Gc612		Bt1Gc614	Bt1Gc617	378 Bt1Gc616	Direction
SEQ NO NO	361	362		363	363	t o	365	366	367	368	020	309	370		371	372	372	1	373	,	374		374	375	! !	376	377	378	, י

_	4
٥	2
3	-
٥	4
-	4

		<u> </u>			Z	CISA	subtilis]	.		\BRB	acterium		SPOIIQ	[Bacillus			subtilis]					
	NCBI gi description	(L77763) neutral protease A [Bacillus thuringiensis] HYPOTHETICAL TRANSPOSASE-LIKE PROTEIN	HYPOTHETICAL 31.5 KD PROTEIN IN GLVBC 3'REGION [Bacillus subtilis]	(D90917) hypothetical protein [Synechocystis sp.] HYPOTHETICAL 43.7 KD PROTEIN IN KATB	J'REGION [DACHUS SUDUINS] HYPOTHETICAL TRANSPOSASE-LIKE PROTEIN H11721 [Haemophilus influenzae Rd]	HYPOTHETICAL 38.3 KD PROTEIN IN CWLA-CISA INTERGENIC REGION [Bacillus subtilis]	PUTATIVE ARSENATE REDUCTASE [Bacillus subtilis]	(AF119621) Ditt [Pseudomonas abietaniphila]	[Bacillus firmus]	HYPOTHETICAL 43.8 KD PROTEIN IN XPAC-ABRB INTERGENIC REGION [Bacillus subtilis]	(AL021897) hypothetical protein Rv1072 [Mycobacterium tuberculosis]	TRANSPOSASE FOR INSERTION SEQUENCE ELEMENT IS231E [Bacillus thuringiensis]	HYPOTHETICAL 21.7 KD PROTEIN IN NRGB-SPOIIQ INTERGENIC REGION [Bacillus subtilis]	(AJ011526) D-stereospecific peptide hydrolase cereus]					_		(D88802) H. influenzae, ribosomal protein alanine acetyltransferase; P44305 (189) [Bacillus subtilis]	
	cvrg	63	. 94	82 10	57	21	73	63	3	37	22	21	74	88	100	21	100	37	0	78	66	34
	% Ident (32	39	33	36	82	77	23	Ç	25	46	72	35	70	35	20	38	41	91	42	26	40
TOTAL	BlastP- Prob J	4.00E-37 4.10E-19	5.20E-51	2.00E-19 6.90E-09	3.30E-17	4.40E-22	3.00E-39	2.00E-12	1.00E-31	1.80E-08	3.90E-07	7.50E-26	5.80E-20	1.50E-122	8.90E-40	7.00E-17	2.00E-42	7.00E-08	1.10E-14	1.90E-60	2.00E-10	3.70E-07
	BlastP Score	399 229	530	232 140	211	257	419	168	040	136	121	296	237	1205	424	215	449	123	195	619	147	121
	aat_ E nap g Score	264 184	441	227 118	171	306	409	176	275	134	132	337	256	1277	375	129	395	85	195	919	78	120
	NCBI gi	g2239276 g2497400	g1723610	g1653921 g1177016	g2497400	g1176771	g1168520	g4455080	85088811	g586865	g2896709	g549113	g3025311	g4127525	g1945654	g225559	g2635861	g1665854	g225559	g2226258	g1945109	g2415396
	Position	1083-1 919-484	74-926	899-422 529-651	778-402	1-223	252-563	1-926	600-076	1-434	1-182	1199-904	1-433	1-1038	520-1285	1049-686	195-845	223-382	867-139	1-1010	288-756	1-1141
-	Gene Id	Bt1G463 Bt1G464	Bt1G465	Bt1G466 Bt1G467	Bt1G468	Bt1G469	Bt1G470	Bt1G471	Bt1G4/2	Bt1G473	Bt1G474	Bt1G475	Bt1G476	Bt1G477	Bt1G478	Bt1G479	Bt1G480	Bt1G481	Bt1G482	Bt1G483	Bt1G484	Bt1G485
	Contig Id	Bt1Gc616 Bt1Gc619	Bt1Gc623	Bt1Gc622 Bt1Gc624	Bt1Gc625	Bt1Gc627			Bt1Gc620	Bt1Gc628	Bt1Gc629	Bt1Gc629	Bt1Gc631	Bt1Gc630	Bt1Gc610	Bt1Gc634	Bt1Gc636	Bt1Gc632	Bt1Gc637	Bt1Gc635	Bt1Gc640	Bt1Gc640
	SEQ NO	378 379	380	381 382	383	384	384	385	382	386	387	387	388	389	390	391	392	393	394	395	396	396

	%
	%
	aat Risetp Risetp.
	RlactD
7	aat

							Laure			
SEQ EQ	Contig Id	Gene Id	Position	NCBI gi	aat nap Score	BlastP Score	BlastP-	% % Ident C	% Cvrg	NCBI gi description
397	Bt1Gc642	Bt1G486	953-286	g1705428	604	909	5.90E-59	59	84 H	BACITRACIN RESISTANCE PROTEIN (PUTATIVE UNDECAPRENOL KINASE) [Escherichia coli]
398	Bt1Gc644	Bt1G487	1-396	g2127182	141	202	9.10E-16	29	37 r	rap60 protein - Bacillus subtilis plasmid pTA1060 [Bacillus subtilis]
398	Bt1Gc644	Bt1G488	968-625	g2497392	570	584	9.90E-57	86	46 I	INSERTION SEQUENCE IS232 PUTATIVE ATP-BINDING PROTEIN [Insertion sequence IS232]
399	Bt1Gc645	Bt1G489	1-702	g1176282	621	653	4.80E-64	54	67 1	HYPOTHETICAL OXIDOREDUCTASE IN GNTR-GGT INTERGENIC REGION [Escherichia coli]
400	Bt1Gc646	Bt1G490	616-1	g2226164	435	461	· 1.10E-43	44		(Y14080) hypothetical protein [Bacillus subtilis]
401	Bt1Gc648	Bt1G491	Jan-66	g3122932	111	111	9.10E-06	98	9	QUEUINE TRNA-RIBOSYL I RANSFERASE (1 KNA- GUANINE TRANSGL YCOSYLASE) (GUANINE INSEPTION FNZYME) (Bacillus subtilis)
401	Bt1Gc648	B#1G492	94-357	g2635235	265	196	1.30E-15	62	66	(Z99118) similar to hypothetical proteins [Bacillus subtilis]
401		Bt1G493	766-391	22635234	228	238	4.60E-20	33	83	(Z99118) yrzE [Bacillus subtilis]
402		Bt1G494	442-1	g3599371	402	348	1.00E-31	57	_	(AF082668) CsrR [Streptococcus pyogenes]
403		Bt1G495	21-1317	g1723608	200	140	1.10E-09	45	78	HYPOTHETICAL PROTEIN IN GLVBC 3'REGION
707		B+1G496	948-109	02624002	619	664	3.30E-65	49	100	[Bacillus subtilis] (Z93941) YuxA [Bacillus subtilis]
405		Bt1G497	1138-919	22688589	173		6.20E-16		_	(AE001167) phosphoglycerate mutase (gpmA) [Borrelia
406		Bt1G498	262-1	g3256746	113	135	3.80E-09	43	26	burgdorferi] (AP000002) 109aa long hypothetical protein [Pyrococcus
407	D+10°654	B+16400	1-473	91345692	500	514	2.60E-49	53	_ 22	horikoshii] CHLORAMPHENICOL ACETYLTRANSFERASE (CAT)
408			678-346	513.1302	313		7.90E-32			[Clostridium butyricum] SINGLE-STRAND BINDING PROTEIN (SSB) (HELIX-
Ě) 					DESTABILIZING PROTEIN) [Bacillus subtilis]
409	Bt1Gc657	Bt1G501	721-1	g231698	1086		1.90E-110			CATALASE []
410) Bt1Gc658	Bt1G502	915-676	g2127290	57	123	1.80E-07	34	32	transposase (insersion sequence 18231) - Bacillus
410) Bt1Gc658	Bt1G503	1336-1194	g2507017	126	156	1.10E-10	09	13	thuringiensis [Bacillus thuringiensis] HEMOLYSIN BL BINDING COMPONENT PRECURSOR CENTED CTOXIN 40 KD SUBLINITY (Bacillus cereus]
411	Rt1Gc652	B+1G504	1-417	g1346454	65	130	5.40E-08	31	28	LIPASE 1 PRECURSOR (TRIACYLGLYCEROL LIPASE)
412			335-1	g3915460	357		2.00E-33	28	51	[Psychrobacter immobilis] PUTATIVE NAD(P)H NITROREDUCTASE YFKO
										[Bacillus suoulis]

_	
<u>e</u>	
a	
Ë	

							I GOTO I			
SEQ S B S	Contig Id	Gene Id	Position	NCBI gi	aat_ nap Score	BlastP Score	BlastP- Prob	% % Ident C	% Cvrg	NCBI gi description
412	Bt1Gc653	Bt1G506	485-838	g586816	373	398	5.10E-37	61	6	HYPOTHETICAL 14.7 KD PROTEIN IN COTF-TETB INTERGENIC REGION [Bacillus subtilis]
413	Bt1Gc661	Bt1G507	462-1	g1730956	540	540	4.60E-52	49	85	HYPOTHETICAL 21.1 KD PROTEIN IN COTD-KDUD BATTED CENIC PECION (Bacillus enhilis)
413	Bt1Gc661	Bt1G508	948-684	g116956	137	189	7.10E-15	47	66	SPORE COAT PROTEIN D [Bacillus subtilis]
414		Bt1G509	1-201	g2226145	149	171	4.40E-12	20	13	(Y14079) hypothetical protein [Bacillus subtilis]
414		Bt1G510	1134-765	g1263187	102	161	1.40E-11	30	43	(U24215) HOMODA hydrolase [Pseudomonas putida]
415		Bt1G511	1-1090	g2415704	81	123	5.20E-07	32	16	(AJ001361) proline iminopeptidase [Propionibacterium
416	Bt1Gc665	Bt1G512	1-759	g2497382	537	570	4.40E-57	85	29	freudenreichii subsp. snermannij TRANSPOSASE FOR INSERTION SEQUENCE Et EMENT 1933 Insertion sequence 193321
416	Bt1Gc665	Bt1G513	759-455	g225559	490	501	6.20E-48	86	21	ORF IS231C [Bacillus thuringiensis]
417		Bt1G514	11-927	g2493595	512	558	5.60E-54	38	92	PUTATIVE POTASSIUM CHANNEL PROTEIN MJ0138.1
					,			t	٠, ۶	[Methanococcus jannaschii]
418	Bt1Gc670	Bt1G515	393-16	g1763703	193	525	4.10E-19	3/	ž	(Z63337) similar to inyutoxyinyiisooyi-(acyi cariici process) dehvdratase [Bacillus subtilis]
418	Bt1Gc670	Bt1G516	1586-469	g1001578	752	784	6.30E-78	39	95	(D64000) aspartate aminotransferase [Synechocystis sp.]
419		Bt1G517	1-548	g2340009	463	481	8.10E-46	48	44	(Z98682) YlbM protein [Bacillus subtilis]
420		Bt1G518	727-1014	g465650	192	176	1.70E-13	38	66	HYPOTHETICAL 11.0 KD PROTEIN IN HSP18
Ç		0130130	10201	~1174624	03	168	2 10E-12	96	9	3'REGION (ORFA1) [Clostridium acetobutylicum] TELLI IRITE RESISTANCE PROTEIN TEHB HOMOLOG
471	61000/3	6100119	1000-1	£11/4054	S	2	71.701.7			[Haemophilus influenzae Rd]
422	Bt1Gc674	Bt1G520	26-280	g418608	212	223	1.80E-18	48	66	HYPOTHETICAL 9.8 KD PROTEIN IN SPOVFA
422	Bt1Gc674	Bt1G521	448-1218	g417830	814	814	4.20E-81	09	98	JANSOLON (CAN'Z) [Davinus Sucums] DIPICOLINATE SYNTHASE, A CHAIN [Bacillus
			1 1030	27522167	320		7 KOR-26	25	8	subtilis] (799108) similar to multidrug resistance protein [Bacillus
423 424	Bt1Gc676	Bt1G523	1-756	g585648	500		1.10E-52		35	subtilis] PENICILLIN-BINDING PROTEIN 2B (PBP-2B) [Bacillus
3))			Į O		ć	subtilis]
424	Bt1Gc676	Bt1G524	1-752	g2149903	241		8.20E-31		33	(U94/0/) penicilin-binding protein [Enterococcus faccalis]
425	Bt1Gc679	Bt1G525	965-621	g3116222	140		3.90E-07		57 5	(AB00/122) transporter [Artinobacter sp.]
426	Bt1Gc681	Bt1G526	1-341	g1945711	277		1.10E-25		17	(Z94043) nypometical protein [Dactifus sucuris]
426	Bt1Gc681	Bt1G527	463-748	g2635928	274	308	1.70E-27	20	23	(Z99121) similar to maltodextrin transport system permease [Bacillus subtilis]

	NCBI gi description	(Z79580) putative ORF [Bacillus subtilis] (AF015825) hypothetical glycosyl transferase [Bacillus subtilis]	(D88802) S. lividans glycosyl transferase; JS0636 (311) [Bacillus subtilis]	SIGNAL PEPTIDASE I P (SPASE I) (LEADER PEPTIDASE I) [Bacillus subtilis]	(AF098220) asparagine synthase [Bacillus subtilis] (AF094575) putative N-acetyl-mannosamine transferase	Cps19aF (Streptococcus pneumoniae) HYPOTHETICAL 42.0 KD PROTEIN IN DAPB-PAPS BYTEPGENIC REGION (Bacillus subtilis)	PHOSPHOCARRIER PROTEIN HPR (HISTIDINE-CONTAINING PROTEIN) [Bacillus subtilis]	(AJ005075) enzyme I [Bacillus megaterium]	horikoshii] (AE000962) A. fulgidus predicted coding region AF2041		_	HYPOTHETICAL 30.7 KD PROTEIN IN MCPC-KINA INTERGENIC REGION [Bacillus subtilis]		HYPOTHETICAL 23.4 KD FROTEIN IN AAFA-510 V INTERGENIC REGION [Bacillus subtilis]		mortierum J 1-PHOSPHATIDYLINOSITOL PHOSPHODIESTERASE PRECURSOR (PHOSPHATIDYLINOSITOL-SPECIFIC PROCESSION IN A ST. C. AM. Ph. C. A. D. C. Albertandeline of the procession of t		
	% Cvrg	88	79	8	56	83	66	29	6	69	54	43	35	7,6	75	9	78	79
	% Ident (49 25	51	41	96 36	29	72	77	× ×	46	37	09	55	35	44	95	49	59
rable r	BlastP. Prob I	1.90E-55 8.10E-17	9.00E-24	9.20E-22	2.60E-129 1.60E-26	4.80E-21	2.90E-25	1.00E-45	1.10E-23	1.80E-48	7.90E-32	2.40E-37	2.70E-22	3.90E-23	4.50E-84	6.70E-05	1.10E-55	4,90E-39
	BlastP Score	572 212	273	254	1269 299	248	287	480	27.	506	349	401	259	267	842	102	574	417
	aat_B nap_S Score	629	261	277	1264 271	187	316	641	175	452	319	381	245	588	787	98	909	406
	NCBI gi	g1620923 g2612894	g1945088	g4033455	g2293165 g3907604	g1730929	g131533	g3021327	g3230630	92632226	g2634067	g3183454	g3023490	g3183496	g1769558	g130298	g1731065	g1731066
	Position	1365-620 564-1	301-1	1042-606	1-1072 588-1	1554-619	15-278	281-780	1-107	1-606	1-636	668-1043	1-256	576-1	1061-1	1320-1259	1-759	779-1200
	Gene Id	Bt1G528 Bt1G529	Bt1G530	Bt1G531	Bt1G532 Bt1G533	Bt1G534	Bt1G535	Bt1G536	Dt10557	Br1G539	Bt1G540	Bt1G541	Bt1G542	Bt1G543	Bt1G544	Bt1G545	Bt1G546	Bt1G547
	Contig Id	Bt1Gc682 Bt1Gc680	Bt1Gc683	Bt1Gc683	Bt1Gc684 Bt1Gc685	Bt1Gc685	Bt1Gc677	Bt1Gc677	D+1C2687			Bt1Gc691		Bt1Gc689	Bt1Gc692	Bt1Gc692	440 Bt1Gc693	440 Bt1Gc693
	SEQ NO NO	~ ~	429	429	430	431	432	432	455	435	436	436	437	438	439	439	440	440

-
ble
La

NCBI gi description	(Z99120) alternate gene name: yutA [Bacillus subtilis] PHOSPHOENOLPYRUVATE CARBOXYKINASE [Bacillus subtilis]	(AF027868) putative transporter [Bacillus subtilis]	urf120 - Paracoccus denitrificans []	SUPEROXIDE DISMUTASE (MN) [Bacillus caldotenax]	PKOLOPOKPH I KLINOGEN OAIDASE (FFO) [Dazimus subtilis]	INSERTION SEQUENCE IS232 PUTATIVE ATP-BINDING PR®TEIN [Insertion sequence IS232]	(AF053927) probable spore germination protein F [Bacillus	cereus] (AE000188) orf, hypothetical protein [Escherichia coli]	(AF027868) YocH [Bacillus subtilis]	HYPOTHETICAL 9.7 KD PROTEIN IN CCCA-SODA	INTERGENIC REGION [Bacillus subtilis]	HYPOI HEI I CAL 32.3 KD PROTEIN IN COCA-30DA	INTERGENIC REGION [Bacillus subtilis]	Comment (C. 1.) TOVITION NATIONALISM	(U93364) EpsX [Lactococcus lactis cremoris]	ANTHRANILATE SYNTHASE COMPONENT I	[Clostridium thermocellum]	(AF027868) putative transporter [Bacillus subtilis]	PROTEIN DLTD PRECURSOR [Bacillus subtilis]	(Z99120) similar to two-component response regulator	[Dacinus sacture] (V13937) VIoV protein [Bacillus subtilis]	inition to inon (III) dioptrate transmost nermease	(239 108) similar to non(111) dictitate dansport portions. (Bacillus subtilis)	D-ALANINE AMINOTRANSFERASE (D-ASPARTATE	AMINOTRANSFERASE) (D-AMINO ACID	
ដ	82 (Z99120) alternat69 PHOSPHOENOIIBacillus subtilis				36 PROTOPUS subtilis]	46 INSERTIOI BINDING I	99 (AF053927	cereus] 99 (AE000188		79 HYPOTHE		65 НҮРОІНЕ		subtilis	99 (U93364) E	37 ANTHRAN	[Clostridiu	_		86 (Z99120) similar (Racillus enhtilis)	38 (V13937) 85	_	98 (299108) similar [Bacillus subtilis]	22 D-ALAND	AMINOTR	
% % Ident Cvrg	52 72		33		37	26	49	54	49	40	(89	-	1	30	30		63	44	37	99	3 5	4 8	4		
BlastP- Prob Id	4.00E-76 1.80E-128	4.20E-49	9.40E-13	1.20E-74	2.70E-31	2.40E-46	1.80E-09	1.10E-25	5.20E-28	5.90E-11	, ,	1.10E-48	5	/.40E-24	2.20E-13	1.80E-18		1.90E-62	9.00E-63	1.30E-31	7 OOF 48	7.201.70	5.50E-72	9.80E-12		
BlastP	767 1261	512	169	753	344	486	138	291	313	152	6	208	Ċ	8/7	175	230		638	641	347	908	200	728	162		
aat_B nap_S Score	697 1348	908	152	753	319	265	1117	271	280	150		654	į	(57	131	169		813	627	335	707	020	754	119		
NCBI gi	g2635731 g3123253	g2619019	g281486	g134649	g417115	g2497392	g2984723	01787091	g2619050	g1731007	D.	g1731008	,	g41/115	ø2072437	g-136321		g2619056	g729343	g2635798	200070010	8233/013	g2633168	g1706292		
Position	32-885 237-1332	1-911	930-1263		642-140	1-343	1556-1342	461-147	1016-69	199-1	•	346-914	. !	427-1	839-255			204-938	1369-487		00	99-138	1-950	1097-1290		
Gene Id	Bt1G548 Bt1G549	Bt1G550	Bt1G551	Bt1G552	Bt1G553	Bt1G554	Bt1G555	B+16556	Bt1G557	Bt1G558		Bt1G559	; ; ;	Bt1G560	Br16561	Br1G562		Bt1G563	Bt1G564	Bt1G565	0.75	Bt1G200	Bt1G569	Bt1G570		
Contig Id	Bt1Gc694 Bt1Gc698	Bt1Gc697	Bt1Gc697	Bt1Gc695	Bt1Gc701	Bt1Gc700	Bt1Gc700	B+1Gc703		Br1Gc705		Bt1Gc705		Bt1Gc708	B+1/3-706		20017	Bt1Gc707					Bt1Gc717	Bt1Gc717		
SEQ ID	- 2	443	443	444	445	446	446	747		449	}	449		450	451	452	70	453	454	455		426	457	457		

_
9
3
্র

	Ť				**					κά				_						SI	[-	,		Ę	70 20
	cription	IC REGION [Bacillus	or (Lacl family) [Bacillus	1.1.1.3) - Methanococcus	emotaxis protein [Bacillus	OTEIN IN DAE-TYRZ	OTEIN IN LYSA-PPIB (19) [Bacillus subtilis]	ANS ISOMERASE B [Bacillus subtilis]	[Bacillus subtilis]	tor (DeoR family) [Bacillus	kinase [Bacillus subtilis]	[Bacillus subtilis]	yticum [Clostridium	s vdhO gene(53%-identity)		s subtilis]	ıbtilis]	m tuberculosis]	OTEIN IN ACDA-NARI	nus suounsj side cotransporter [Bacillus	hetical protein [Bacillus sp.	whetical protein [Bacillus		ous pyogenes]	Temprane nucleotine omenie
	NCBI gi description	IN SPOIIIE-PGSA INTERGENIC REGION [Bacillus subtilis]	(Z99121) transcriptional regulator (Lacl family) subtilis]	homoserine dehydrogenase (EC 1.1.1.3) iannaschii [Methanococcus iannaschii]	(AB011838) metyl-accepting chemotaxis protein [Bacillus halodurans]	HYPOTHETICAL 24.6 KD PROTEIN IN DAE-TYRZ INTERGENIC REGION (Bacillus subtilis)	HYPOTHETICAL 31.3 KD PROTEIN IN LYSA-PPIB INTERGENIC REGION (ORFX19) [Bacillus subtilis]	PEPTIDYL-PROLYL CIS-TRANS ISOMERASE B (PPIASE B) (ROTAMASE B) [Bacillus subtilis]	(D50098) multidrug transporter [Bacillus subtilis]	(Z99111) transcriptional regulator (DeoR family) [Bacillus	sucums] (Z99111) fructose-1-phosphate kinase [Bacillus subtilis]	(Y14081) hypothetical protein [Bacillus subtilis]	collagenase - Clostridium histolyticum [Clostridium	histolyticum] (AB011838) similar to B.subtilis ydhO gene(53%-identity)	[Bacillus halodurans]	(AF015825) unknown [Bacillus subtilis]	(AF027868) YoaR [Bacillus subtilis]	(Z95324) mgtE [Mycobacterium tuberculosis]	HYPOTHETICAL 45.8 KD PROTEIN IN ACDA-NARI	INTERGENIC REGION [Bacillus subuns] (Z99120) similar to Na+/nucleoside cotransporter [Bacillus	subtilis]	_			(AL034446) putative integral memorane nucleouse onionig
	% Cvrg		38	100	29	92	28	66	83	100	39	41	30	7.9	•	48	35	87	49	84	00	80	? {	2 (63
	% Ident C		53	35	38	45	20	73	63	53	53	40	42	30))	99	29	40	42	50	39	3 6	5 8	3 :	44
-	BlastP- Prob I		4.10E-10	1.40E-48	2.60E-21	1.70E-45	4.00E-37	7.90E-48	3.90E-110	2.00E-67	4.60E-20	1.30E-06	8.80E-68	6 50F-21		8.20E-14	2.70E-31	9.60E-59	2.40E-39	2.40E-69	7 200 76	CF 400.7	77-700:+	9.40E-27	4.40E-47
	BlastP Score		151	507	259	478	399	200	1088	685	238	111	692	246	2	179	344	603	420	703	ţ	1 5	671	303	493
	aat_ F nap g Score		101	413	350	461	389	556	1383	959	276	8	089	213	3	160	271	737	403	813	000	100	671	313	464
	NCBI gi		g2635910	g2117451	g4512389	g732328	g466196	g461900	g1856977	g2633809	02633810	£2226190	g2127339	2787	84717701	g2612886	g2619029	g2094843	g1176955	g2635715	0020000	83278300	06001008	g3599372	g4007698
	Position		428-1	1497-479	1-579	582-1	507-1	692-1123	1-1277	275-1024	1024-1370	866-1036	1-929	310 011	0+7-0//	1-185	869-1	1198-1	338-926	10-1018		741-67/	030-1301	1100-1	687-1
	Gene Id		Bt1G572	Bt1G573	Bt1G574	Bt1G575	Bt1G576	Bt1G577	Bt1G578	Bt1G579	B+1G580	Bt1G581	Bt1G582	D41/2402	DITATION	Bt1G584	Bt1G585	Bt1G586	Bt1G587	Bt1G588		Bul 0309	Bt1G590	Bt1G591	Bt1G592
	Contig Id		459 Bt1Gc716	Bt1Gc716	460 Bt1Gc719	Bt1Gc721	Bt1Gc720	Bt1Gc720	Bt1Gc722		B+1/3-723					Bt1Gc729		Bt1Gc732		Br1Gc730					Bt1Gc718
	SEQ EQ	2	459	459	460	461	462	462	463	464	777	465	466		40 /	468	469	470	471	477		5/4	4/3	474	475

_
je
a
Ξ

NCBI gi description	protein [Streptomyces coelicolor] XAA-PRO DIPEPTIDYL-PEPTIDASE (X-PRO DIPEPTIDYL-PEPTIDASE) (X-PROLYL-DIPEPTIDYL AMINOPEPTIDASE) (X-PDAP) [Lactococcus lactis]	(Z99110) similar to lytic transglycosylase [Bacillus subtilis]	(Z98682) YlbL protein [Bacillus subtilis]	(Z98682) YlbK protein [Bacillus subtilis]	HEMOLYSIN BL BINDING COMPONENT PRECURSOR (ENTEROTOXIN 40 KD SUBUNIT) [Bacillus cereus]	(U77778) putative membrane protein [Staphylococcus	(AF009352) ATPase [Bacillus subtilis]	(Z99124) pyrimidine-nucleoside transport protein [Bacillus	subtilis]	PYKIMIDINE-NUCLEOSIDE FIIOSFIION I EASE Decilia mbellol	[bacillus subtills] (AP000006) 166aa long hypothetical protein [Pyrococcus	horikoshii		HYPOTHETICAL PROTEIN IN PEPC 5'REGION (ORF 2)	[Lactococcus lactis]		sakei] AMINOACYL-HISTIDINE DIPEPTIDASE (XAA-HIS		ALANYL-HISTIDINE DIPEPTIDASE) (CARNOSINASE)	(PEPTIDASE D) [Escherichia coli]	(D90899) regulatory protein PchR [Synechocystis sp.]		-	HYPOTHETICAL 18.8 KD PROTEIN IN GNTR-GGT			HYPOTHETICAL 34.0 KD PROTEIN IN RHO-MURA
% Cvrg	35	66	2	4 8	86 88	89	12	54	ć	3	66		63	66		54	28				31	27	16	26		3	84
% Ident C	42	40	47	51	86	31	09	80	ć	2	24	I	35	40		63	4				43	34	45	36	ţ	11	26
BlastP. Prob Ic	2.70E-54	1.40E-34	2.10E-77	1.10E-27	2.20E-178	7.60E-27	1.90E-10	4.80E-80	100	1.30E-38	6 10E-09		1.80E-48	1.10E-36		3.60E-36	3 80E-14				2.30E-18	5.80E-36	4.50E-100	4.50E-13	j.	3.10E-85	7.30E-77
BlastP Score	561	375	417	310	1732	302	154	804		413	133)	206	395		390	190	}			222	388	993	172	,	853	774
aat_B nap S Score	451	3,18	785	308	1829	187	138	<i>1</i> 98		378	9	3	536	338		377	173				195	407	928	169	,	806	741
NCBI gi	g118908	g2633511	g2340008	g2340007	g2507017	g2196513	g2271389	g2636487		g730287	43258042	B-00000	g1856977	g732240)	g4104605	0120700	614/1/			g1651667	g3116222	g1381682	g1176283		g729418	g418587
Position	804-1	183-843	1020-1	1372-1025	1-1101	1-1086	1137-1278	1-643	!	683-979	102.587	105-201	1-973	637-41		844-1209	1,090	1-007			1-302	422-1100	1310-1	1-275		945-293	1-819
Gene Id	Bt1G593	Bt1G594	Bt1G595	Bt1G596	Bt1G597	Bt1G598	Bt1G599	Bt1G600		Bt1G601	D+1(260)	DEI 0007	Bt1G603	Bt1G604	 	Bt1G605	D+1/2606	DITORO			Bt1G607	Bt1G608	Bt1G609	Bt1G610		Bt1G611	Bt1G612
Contig Id	Bt1Gc738	Bt1Gc740	Bt1Gc742		Bt1Gc741	Bt1Gc744	Bt1Gc744	Bt1Gc746		Bt1Gc746	D+1C-720		Bt1Gc750	Bt1Gc751		Bt1Gc751	D41/20757	D1100/37			Bt1Gc748	Bt1Gc748				Bt1Gc755	490 Bt1Gc747
SEQ EQ	476	477	478	478	479	480	480	481		481	6	407	483	484	•	484	106	10			486	486	487	488		489	490

_
<u>е</u>
<u>ā</u>
E E
Γ,

		vtlis] PARTATE	'DGI	licus] 286B)		udomonas	rotein	tase C	cillus		[silis]	ase [Bacillus	illus subtilis]	TAGE III Iisl	RECURSOR			acillus	
	NCBI gi description	INTERGENIC REGION (ORFQ) [Bacillus subtilis] D-ALANINE AMINOTRANSFERASE (D-ASPARTATE AMINOTRANSFERASE) (D-AMINO ACID AMINOTRANSFERASE) (D-AMINO ACID TRANSAMINASE) (Racillus subtilis)	PUTATIVE NAD(P)H NITROREDUCTASE YDGI	(AE000670) hypothetical protein [Aquifex aeolicus] CODY PROTEIN (VEGETATIVE PROTEIN 286B) (VEG286B) [Bacillus subtilis]	codX protein - Bacillus subtilis [] (AB013367) unknown [Bacillus halodurans]	ARGININE/ORNITHINE ANTIPORTER [Pseudomonas	aeruginosa] (AE001506) putative osmoprotection binding protein	[Helicobacter pylori 199] (D50453) response-regulator aspartate phosphatase C	[Bacillus subtilis] (Z81356) aspartyl-phosphate phosphatases [Bacillus	subtilis] (U93875) YraL [Bacillus subtilis]	(AF027868) putative transporter [Bacillus subtilis]	(Z99114) similar to macrolide glycosyltransferase [Bacillus	subtilis] (Z99112) similar to hypothetical proteins [Bacillus subtilis]	RNA POLYMERASE SIGMA-G FACTOR (STAGE III SPORITATION PROTEIN G) [Bacillus subtilis]	RNA POLYMERASE SIGMA-35 FACTOR PRECURSOR	[Bacillus thuringiensis] (Y11477) endolysin [Bacteriophage Bastille]	(U63928) L2 protein [Bacillus cereus]	aspartate carbamoyltransferase (EC 2.1.3.2) - Bacillus	caldolyticus [] PLATELET-ACTIVATING FACTOR
	% Cvrg	8	32]	4 8 7	39 (74		41	93	93	39	33	100	66	100	89	78	98	88	50
	% Ident C	43	40	41	\$2	57	39	25	22	69	58	40	40	86	96	51	86	63	24
I anic I	BlastP- Prob IC	3.40E-47	3.80E-09	6.90E-33 6.10E-73	1.90E-76 9.70E-82	1.50E-85	1.40E-41	5.70E-29	1.90E-20	1.00E-08	1.50E-30	4.80E-57	1.80E-11	2.30E-119	4.90E-71	2.70E-63	2.10E-173	1.20E-90	6.80E-16
	BlastP Score	494	135	359 737	770	856	441	322	243	131	337	287	157	1175	719	646	1685	904	130
	aat_Bl nap S. Score	459	84	287 823	754	668	400	254	202	131	401	550	100	1164	755	592	1844	868	69
	NCBI gi	g3121979	g2499210	g2982791 g729175	g2126915 a4514323	g114116	g4155319	g1805447	g1648857	e1934629	g2619056	g2634335	g2633909	g133475	g133289	g1865711	g1945050	g2117698	g2497686
	Position	1-714	813-1242	1-1039 608-1	1229-689	895-1	1817-1127	1018-1	1018-1	105-1	914-478	468-1334	270-40	1216-440	1864-1377	1-1260	1149-1	1-816	1421-1
	Gene Id	Bt1G613	Bt1G614	Bt1G615 Bt1G616	Bt1G617	Bt1G619	Bt1G620	Bt1G621	Bt1G622	Bt1G623	Bt1G624	Bt1G625	Bt1G626	Bt1G627	Bt1G628	Bt1G629	Bt1G630	Bt1G631	Rt1G632
	Contig Id	Bt1Gc756	Bt1Gc756	Bt1Gc757 Bt1Gc759	Bt1Gc759				Bt1Gc763				Bt1Gc765		Bt1Gc765			Bt1Gc768	503 Bt1Gc771
	SEQ BD		491	492 493	493	495	495	496	496	497	497	498	499	499	499	200	501	502	503

_	
ble	
I I	

	NCBI gi description	ACETYLHYDROLASE) (PAF 2-ACYLHYDROLASE) (LDL-ASSOCIÀTED PHOSPHOLIPASE A2) (LDL-PLA(2)) (2-ACETYL-1-ALKYLGLYCEROPHOSPHOCHOLINE ESTERASE) (1-ALKYL-2-ACETYLGLYCEROPHO [Cavia porcellus]	31 OLIGOPEPTIDE TRANSPORT ATP-BINDING PROTEIN OPPF [Bacillus subtilis]	47 (Z99110) oligopeptide ABC transporter (ATP-binding protein) [Bacillus subtilis]	32 (AB001488) PROBABLE TRANSPORT PROTEIN, SIMILAR PRODUCT IN MYCOBACTERIUM LEPRAE. [Bacillus subtilis]		84 (Arougou) 300aa long nypomencal ODI-gucose 4- epimerase [Pyrococcus horikoshii]	49 TRANSKETOLASE [Bacillus subtilis]			98 kinB protein - Bacillus subtilis []	99 HYPOTHETICAL TRANSCRIPTIONAL REGULATOR	IN PRKA-CSPB IN I ERUENIC REGION [Davinus subtilis]				99 HYPOTHETICAL 22.0 KD PROTEIN IN RECQ-CMK INTERGENIC REGION [Bacillus subtilis]	93 DEOXYRIBOSE-PHOSPHATE ALDOLASE (PHOSPHODEOXYRIBOAL DOLASE)		46 PYRIMIDINE NUCLEOSIDE IRANSPORI PROTEIN [Bacillus subtilis]			28 SHORT-CHAIN FATTY ACIDS TRANSPORTER
	% t Cvrg															58 4	43 9	74 9		72 4			41 2
	% Ident		4 72	. 67	5 33		30	1 65				8 31											
TANIA	BlastP. Prob		6.00E-34	5.10E-60	1.80E-25	1.80E-15	Z.00E-26	1.00E-111	3.30E-42	1.20E-67	5.70E-45	1.00E-08		9.50E-155	1.00E-06	7.80E-41	7.90E-32	8.80E-65	!	5.60E-54	3.20E-60	1.20E-28	5.90E-26
	BlastP Score		369	615	300	202	298	1103	447	687	473	131		1509	112	434	349	099		558	617	319	295
	aat_B nap S Score		369	597	284	184	217	1171	417	627	447	121		1603	112	408	387	745		685	969	245	285
	NCBI gi	i	g129188	g2633500	g1881371	g225559	g3258173	g2507484	g225559	g2511725	g421510	g1724000		g3021327	g4894289	g1770032	g1730886	g1706363		g1709415	g2073393	g1750116	g1175305
	Position		291-1	775-266	27-1037	1037-904	241-1020	987-1	1294-1011	1-1298	1976-757	965-1333		1216-1	532-266	1085-634	42-900	1-593		735-1277	989-350	1524-1031	1211-1588
	Gene Id		Bt1G633	Bt1G634	Bt1G635	Bt1G636	Bt1G637	Bt1G638	Bt1G639	Bt1G640	Bt1G641	Bt1G642		Bt1G643	Bt1G644	Bt1G645	Bt1G646	Bt1G647		Bt1G648	Bt1G649	Bt1G650	Bt1G651
	Contig Id		Bt1Gc769	Bt1Gc769	Bt1Gc774		Bt1Gc773	Bt1Gc776	Bt1Gc779	Bt1Gc775	Bt1Gc778	Bt1Gc780		Bt1Gc782	Bt1Gc788		, ,	Bt1Gc786		Bt1Gc786	Bt1Gc785	Bt1Gc785	Bt1Gc783
	SEQ NO	2	504	504	505	505	206	507	508	509	510	511	,	512	513	513	514	515		515	516	516	517

% % NCBI gi description Ident Cvrg		54 87 (26 60 (65 38	72 67	37 40	(cpdB) [Helicobacter pylori 26695]	66 92	2	2 43 99 (Z99119) similar to hypothetical proteins from B. subtilis	[Bacillus subtilis] 7 33 98 PROBABLE ARGINYL-TRNA SYNTHETASE,		,	23 100	Č	25 44	cc c/	58 74	53 29	[Clostridium perfringens] 73 92 SPO0B-ASSOCIATED GTP-BINDING PROTEIN	ų	22 00	39 100]	8	92 38	97 100		aeolicus] 54 59 99 (799120) vueE [Bacillus subtilis]	73 99
BlastP- Prob		2.20E-27 2.20E-13		1.00E-15	5.60E-157	8.00E-35	1 605 42	1.00E-42 4.20F-49	707	1.20E-12	6.20E-87			3.40E-63		2.30E-08	9.30E-93	2.80E-45	5.40E-17	8.80E-152	r L	3.90E-02	4.80E-41	0 10 1	4.50E-00	9.10E-158	2.20E-45	2 10E-54	
BlastP Score		307		197	1530	380	750	\$10	410	168	698			645	,	118	924	476	209	1481	(633	436	,	9	1135	477	<i>C95</i>	
	Score	302 104		197	1506	359	7.0	454	20	159	778	2		633	į	76	918	498	169	1524	i	160	448	ć	3	1875	495	550	260
NCBI gi		g2634340 g3256904)	g2634339	g137192	g2313187	2030000	g2000323	F711C/19	g2635515	02501051			g1176993		g1825622	g2634058	g2634057	g2127359	g129021		g1352513	g131027	01001	g1146349	g1945051	g2982764	82955900	g1770028
Position		1-306 223-723		559-723	1351-125	705-1	10/2 113	557.78	0/1/00	824-621	1-1737			1440-753	,	1-487	684-1	1307-787	957-1	1-1178	,	I-1083	497-1366	i	74-1	1331-183	1-995	718-101	1104-892
Gene Id		Bt1G652 Bt1G653		Bt1G654	Bt1G655	Bt1G656	2300130	D+105659	prioces	Bt1G659	B+1G460			Bt1G661	· · · · · · · · · · · · · · · · · · ·	Bt1G662	Bt1G663	Bt1G664	Bt1G665	Bt1G666	1	Bt1G667	Bt1G668		Bt1G669	Bt1G670	Bt1G671	D+1 G670	Bt1G673
Contig Id		Bt1Gc790 Bt1Gc790		Bt1Gc790	Bt1Gc791	Bt1Gc793		B11Gc/94		Bt1Gc798				524 Bt1Gc797			Bt1Gc799	Bt1Gc799	Bt1Gc800	Bt1Gc802		Bt1Gc803	Bt1Gc805			Bt1Gc806	Bt1Gc807	D+1/2,000	
SEQ ID	0	, 518 518	! !	518	519	520	Č	175	222	522	533	C#C		524		525	226	526	527	528	,	529	530	ì	531	531	532	533	533

<u>•</u>
뎔
La
Γ.

	NCBI gi description	(Z75208) hypothetical protein [Bacillus subtilis]	PEPTIDASE T (AMINOTRIPEPTIDASE) (TRIPEPTIDASE) [Bacillus subtilis]	3-methyladenine DNA glycosylase - Bacillus subtilis []	(AE001237) exonuclease (sbcC) [Treponema pallidum]	HYPOTHETICAL 36.3 KD PROTEIN IN RECQ-CMK INTERGENIC REGION [Bacillus subtilis]	ACONTATE HYDRATASE (CITRATE HYDRO-LYASE)	(ACONITASE) [Bacillus subtilis]	flagellin B chain - Bacillus thuringiensis [Bacillus	thuringiensis alesti]	REGIT ATOR SIMILAR TO REGULATOR OF	ANTIBIOTIC TRANSPORT COMPLEXES IN	STREPTOMYCES HYGROSCOPICUS. [Bacillus subtilis]	MICROBIAL COLLAGENASE PRECURSOR (120 KD	COLLAGENASE) [Clostridium perfringens]	Mg2+-transporting ATPase (EC 3.6.1) mgtB - Salmonella	typhimurium [Salmonella typhimurium]	HYPOTHETICAL 80.1 KD PROTEIN IN SODA-COMGA	INTERGENIC REGION [Bacillus subtilis]	(Z99117) similar to protease [Bacillus subtilis]	(U51115) YeaC [Bacillus subtilis]	(Z99118) similar to hypothetical proteins [Bacillus subtilis]	(Z99111) similar to hypothetical proteins [Bacillus subtilis]	(Z99111) similar to hypothetical proteins [Bacillus subtilis]	HYPOTHETICAL 30.7 KD PROTEIN IN MCPC-KINA	INTERGENIC REGION [Bacillus subtilis]	TRANSPOSASE FOR INSERTION SEQUENCE	ELEMENT [S232 [Insertion sequence 18232]	ORF IS231C [Bacillus thuringlensis]	(D86346) crystal protein [Bacillus thuringiensis]	(Y14083) hypothetical protein [Bacillus subtilis]	(AB007637) function unknown [Bacillus subtilis]	(U50744) BSMA [Bacillus stearothermophilus]	
	% Cvrg	17 (17 (100	41 (100	77		90					19	_	21	_	40		93	46	66	77	66	41		31			∞	35	66	83	
	% Ident C	62	71	52	27	75	60	6	93		6			36		41		48		78	33	43	58	69	63		4	1	24	36	72	29	64	
1 41010 1	BlastP- Prob Id	1.20E-08	1.80E-112	5.50E-79	9.80E-42	1.10E-112	4 20E-104	+7707:+	1.70E-102		0.00E-13			5.60E-31		8.70E-32		2.10E-54		4.50E-164	1.70E-20	9.70E-27	6.60E-12	1.10E-64	5.80E-36		9.00E-63		1.10E-43	0.00031	3.90E-46	2.50E-44	3.30E-184	
	BlastP Score	133	1110	794	453	1112	1031	1031	1016	,	108			353		359		562		1597	242	301	161	629	388		641	;	461	101	484	467	1787	
	aat_B nap S Score	133	1110	836	340	1225	1046	1040	1116	Š	107			262		569		645		1637	205	283	140	643	353		909		447	107	452	464	1768	
	NCBI gi	g1770029	g1709639	g477274	g3322922	g1730898	20606121	16100678	g98515	•	g1881339			g1169000)	g96807)	g1731017	0	g2635180	g1708641	g2635382	g2633732	g2633733	g3183454)	g24973 8 2		g225559	g1434920	g2226238	g2522004	g1255196	
	Position	1220-1345	1-872	1828-917	1605-1	273-1253	1710	914-1	747-1		1-859			1829-1		525-1092		875-1		1303-117	1164-728	102-485	1-142	141-671	1963-1612		848-101		565-848	198-1	951-585	581-234	1-1465	
	Gene Id	Bt1G674	Bt1G675	Bt1G676	Bt1G677	Bt1G678	027070	61100/9	Bt1G680	; ;	Bt1G681			Bt1G682		Bt1G683		Bt1G684	-	Bt1G685	Bt1G686	Bt1G687	Bt1G688	Bt1G689	Bt1G690		Bt1G691		Bt1G692	Bt1G693	Bt1G694	Bt1G695	Bt1G696	
	Contig Id	Bt1Gc808	Bt1Gc809	Bt1Gc809	Bt1Gc804	Bt1Gc812	010	Bt1 Gc810	Bt1Gc811		Bt1 Gc814			539 Bt1Gc814		Bt1Gc813		Bt1Gc817		Bt1Gc815	Bt1Gc816	Bt1Gc818	Bt1Gc819	Bt1Gc819	Bt1Gc819		Bt1Gc820		Bt1Gc820	Bt1Gc821	Bt1Gc821	Bt1Gc823	Bt1Gc824	
	SEQ NO ID	533	534	534	535	536	Ċ	23/	538		539			539		540	<u>.</u>	541	:	542	543	544	545	545	545	!	546		546	547	547	548	549	

-	-
3	2
7	₹
	-

		lus subtilis]		coelicolor]		[Bacillus subtilis]	ij				m]	:C7120]	scherichia		Q-CMK		[Bacillus	-			otomyces	; ;	B-GROES		ferase			r-1E1B	Chrontomycee	a chroma ces	bacterium			
	NCBI gi description	(Z99119) similar to hypothetical proteins [Bacillus subtilis]	(AB008120) phosphopentomutase [Bacillus stearothermophilus]	(AL049863) hypothetical protein [Streptomyces coelicolor]	(D64126) unknown [Bacillus subtilis]	DNA POLYMERASE III, BETA CHAIN [Bacill	mutator protein mutT - Methanococcus jannaschii	Methanococcus jannaschii]	(L25828) ORF 12 [Erwinia amylovora]	(AJ000005) orf1 [Bacillus megaterium]	(AJ000005) glucose kinase [Bacillus megaterium]	(AF047044) putative transposase [Anabaena PCC7120]	MG(2+) TRANSPORT ATPASE, P-TYPE 1 [Escherichia		HYPOTHETICAL 51.2 KD PROTEIN IN RECQ-CMK	INTERGENIC REGION [Bacillus subtilis]	(D63645) spore cortex-lytic enzyme prepeptide []	[SI]	(Y14084) hypothetical protein [Bacillus subtilis]	(Y14084) hypothetical protein [Bacillus subtilis]	ImbK protein - Streptomyces lincolnensis [Streptomyces	lincolnensis]	HYPOTHETICAL 17.9 KD PROTEIN IN PHOB-GROES	INTERGENIC REGION [Bacillus subtilis]	(Z99113) tRNA isopentenylpyrophosphate transferase	Bacillus subtilis]	(AFUZ/808) I OCH [Dacillus subulis]	HYPOTHETICAL 34.0 KD PROTEIN IN COLF-TETB INTERGENIC REGION (Bacillus subtilis)	- a		(AF041061) beta-lactamase-like protein [Mycobacterium	smegmatis]	HETTI DROTTEIN [1]	
				_	_				_	_	_			coli]			_	_	_	_			26 HYI	Z	_		_		147 00		29 (AF			
	% Cvrg		72	88	100	24					84		26		82		99			-	75				27			%					00	
	% Ident	48	4	33	53	39	78		30	53	69		51		59		8				34		36		9		70		ć		34		30	
T CHOIC T	BlastP. Prob	6.20E-64	1.40E-114	1.90E-14	8.50E-67	1.50E-13	2.20E-11		3.70E-18	5.30E-10	1.00E-70	4.00E-06	1.30E-125		2.90E-112		1.50E-76		2.30E-20	3.90E-39	2.60E-17		5.50E-08		2.90E-25	; ;	1.20E-28	1.00E-100	00000	Z.00E-55	3.30E-09		6 OOF-18	0.001710
	BlastP Score	652	1130	185	619	182	156		220	143	716	113	1234		1108		771	,	131	418	212		124		287	1	319	666	0)0	202	138		210	017
	aat nap	668	1125	127	687	168	35		195	124	266	98	1323	-	1129		833	!	432	344	134		47		264	1	117	866	5	107	80		121	171
	NCBI gi	g2635600	g2558482	g4835313	g1644210	g118797	g2129134)	g1181177	g2274866	g2274867	g3005554	g728913		g1730904		g1644192		g2226257	g2226256	g629241)	g3915419		g2634117		g2619050	g586817		g>>>>00	g4874247)	0505050	270777
	Position	1-1074	854-1	1-800	687-1455	274-1	712-351		1459-1034	1-149	158-972	1083-878	1929-420		1110-1		1639-1129		41-598	686-1308	643-251		1162-1		256-1		1152-751	1246-468	1100	1106-203	488-710		100 1201	176-1371
	Gene Id	Bt1G697	Bt1G698	Bt1G699	Bt1G700	Bt1G702	Bt1G703		Bt1G704	Bt1G705	Bt1G706	Bt1G707	Bt1G708	,	Bt1G709		Bt1G710		Bt1G711	Bt1G712	Bt1G713		Bt1G714		Bt1G715		Bt1G716	Bt1G717	0.7	Bt1G/18	Bt1G719		D+1C700	27/5119
	Contig Id		Bt1Gc822	Bt1Gc826	Bt1Gc826	Bt1Gc829	Bt1Gc829		Bt1Gc829	Bt1Gc830	Bt1Gc830	Bt1Gc833	Bt1Gc828		Bt1Gc834	`	Bt1Gc834			Bt1Gc835			Bt1Gc836		Bt1Gc839		Bt1Gc839	Bt1Gc838		Bt1 Gc840	Bt1Gc841		2717.040	
	SEQ S e S	550	551	552	552	553	553		553	554	554	555	556		557		557		558	558	559		559		560		260	561	,	795	563		173	200 400

-
<u>e</u>
5
Ë

		-/'ta -								∢						_					_					_	_				
	NCBI gi description	INTERGENIC REGION [Bacillus subtilis] (AF027868) PEP synthase [Bacillus subtilis]		_			(D90784) Phosphinothricin acetyltransferase (EC 2.3.1). [Escherichia coli]		INTERGENIC REGION [Bacillus subtilis]		INTERGENIC REGION [Bacinus subtins] (799111) vktB [Bacillus subtilis]			_				_	CATABOLISM (MOCR) GENE OF RHIZOBIUM	 _		stearothermophilus]						. —	3 (Z98682) YlbJ protein [Bacillus subtilis]	_	•
	% Cvrg	52	53	~	8	73	74	66		91	67	66	29	100		100		12		8	45	Ö		80	46	S	G	45	83	100	
	% Ident	69	53		%	72	32	53		26	45	55	7	36		37		40		29	88	è	0,7	5	54	, ,	70	54	58	33	
1 2122	BlastP- Prob I	6.20E-167	7.90E-32		2.40E-46	9.40E-100	1.20E-21	3.60E-08		4.80E-96	0 10F-31	1.00E-22	5.20E-51	1.70E-29		1.50E-37		1.90E-07		2.10E-182	1.30E-56	02 000 0	9.00E-30	7.80E-20	9.00E-79	1 400 00	1.40E-09	2.10E-31	1.50E-101	9.00E-55	
	BlastP Score	1624	349		486	066	253	80		955	330	263	530	327		403		128		1770	583	702	4,0	240	797	1 6	139	345	1007	349	
	aat_ l nap Score	1606	269		541	1153	201	132		1139	327	260	537	281	1	390		103		1890	582	7	460	206	803	3.5	711	345	966	638	
	NCBI gi	ø2619033	g113673		g132678	g421457	g1742360	£1176958	0	g1731015	95855900	02633835	ø118334	91865705	0	g2636560	,	g1881344		g2226165	g4033506		g/4561/	g139993	9223165	62277107	g3258280	£2340007	£2340006	g1684651	
	Position	1-1371	1-416		1-381	384-1333	710-1	1152-619		1-1178	707	£25-392	1134-1562	1263-522		10-717		1309-1477		1879-1	393-1	i d	/09-7/6	1174-1537	871-1	1-1/0	1239-1567	354-1	465-1486	1507-326	
	Gene Id	B#1G722	Bt1G723		Bt1G724	Bt1G725	Bt1G726	Bt1G727		Bt1G728	D+1/2700	Br1G730	B#1G731	Bt1G732		Bt1G733		Bt1G734		Bt1G735	Bt1G737		Bt1G/38	Bt1G739	B+1G740	0F/07/10	Bt1G741	Bt1G742	Bt1G743	Br1G744	
	Contig Id	Rt1Gc846			Bt1Gc844		Bt1Gc847	Bt1Gc832		Bt1Gc845	D+10,057	Bt1Gc854			-	Bt1Gc857		Bt1Gc857		Bt1Gc853	Bt1Gc855			Bt1Gc855	D+1/20848		Bt1Gc858	Br1Gc863			
	SEQ ID	395	567		268	268	269	570		571	7	415	57.5	573	2	574		574		575	276	ļ	2/6	216	77.3		577	578	578	579	,

_
e
ð
Ξ

	NCBI gi description	L-TRNA SYNTHETASE iASE) (ASNRS)	[Synechocystis sp.] (Z99114) similar to macrolide glycosyltransferase [Bacillus	subtilis]	(AJ002571) YKMA [Bacillus subtilis]	HEMA INTERGENIC REGION (ORFX) [Bacillus subtilis]	ACIDCOA LIGASE OA SYNTHETASE)	ierichia coli]	otilis]	SPECIFIC IIABC	COMPONENT (EIIABC-GLC) (GLUCOSE-PERMEASE IIABC COMPONENT) (PHOSPHOTRANSFERASE ENZYME II, ABC COMPONENT) (EII-GLC/ EIII-GLC)		subtilis]	Yersinia enterocolitica]	(AP000006) 197aa long hypothetical protein [Pyrococcus	horikoshii] HVDOTHETICAI 23 6 KD PROTEIN IN OCRC-DAPB	acillus subtilis]	lasmodium falciparum	cc) [Treponema pallidum]	(AE001237) exonuclease, putative [Treponema pallidum]	N-ACETYLMURAMOYL-L-ALANINE AMIDASE XYLA	L HYDKOLASE) btilis]	PROTEIN IN NFO-FRUA
		Nord [Bacillus subtilis] PROBABLE ASPARAGINYL-TRNA SYNTHETASE (ASPARAGINETRNA LIGASE) (ASNRS)		Subtilisj (AJ002571) YkmA			MEDIUM-CHAIN-FATTY-ACIDCOA LIGASE (MEDIUM-CHAIN ACYL-COA SYNTHETASE)	[Pseudomonas oleovorans] ACETYL ESTERASE [Escherichia coli]		PTS SYSTEM, GLUCOSE-SPECIFIC IIABC	COMPONENT (EIIABC-GLC) (GLUCOSE-PERME IIABC COMPONENT) (PHOSPHOTRANSFERASE ENZYME II, ABC COMPONENT) (EII-GLC / EIII-	[Bacillus subtilis]		. (M29945) ORF 2; putative [Yersinia enterocolitica]	_			liver stage antigen LSA-1 - Plasmodium falciparum [Plasmodium falciparum]	(AE001237) exonuclease (sbcC) [Treponema pallidum]			PRECURSOR (CELL WALL HYDROLASE) (AUTOLYSIN) [Bacillus subtilis]	
	% Cvrg	65	100		99		88	49		46			9/	94	66	77		20	38	77	42		100
	% Ident	63	42	20	51	,	42	92	52	73			33	54	37	7	•	19	24	24	55		30
I GOIV I	BlastP- Prob	1.10E-112	4.60E-59	3.30E-33	7.70E-34	1.00E-13	1.90E-108	3.30E-11	3.90E-23	3.50E-109			2.30E-50	2.70E-31	7.80E-25	4 OOE 37	4.70C.F	8.90E-11	5.40E-26	1.70E-18	9.80E-18		9.00E-24
	BlastP Score	1112	909	362	368	3	1072	159	267	1079			524	344	283	241	100	185	306	227	216		273
	aat_B nap_S Score	1120	570	342	319	138	1013	27	289	1182			452	334	191	222	CCC	86	230	100	303		244
	NCBI gi	g1711644	g2634335	g2632035	g2632036	g380/34	g416605	02506820	£2632453	g131493)		g2632042	g1197032	g3257896	~1176701	g11/0/01	g627059	g3322922	g3322921	g731171		g465600
	Position	1269-263	366-1224	315-756	780-1190	1490-1239	1437-1	495-1	1486-1108	1-968			1-1141	1-353	435-1100	1414 1130	1414-1130	2061-1	1243-1	2128-1249	389-1		475-1152
	Gene Id	Bt1G745	Bt1G746	Bt1G747	Bt1G748	Bt1G/49	Bt1G750	B+1G751	Bt1G752	Bt1G753	~		Bt1G754	Bt1G755	Bt1G756	0410767	Drid/2/	Bt1G758	Bt1G759	Bt1G760	Bt1G761		Bt1G762
	Contig Id	580 Bt1Gc860	Bt1Gc866	Bt1Gc867	Bt1Gc867	Bt1Gc86/	Bt1Gc861	B+1/3-2868	Bt1Gc868	Bt1Gc869			Bt1Gc862	Bt1Gc871	Bt1Gc871		D11000/1	Bt1Gc872	Bt1Gc872		Bt1Gc873		590 Bt1Gc874
	SEQ NO DE	580	581	582	582	282	583	785	584	585			586	587	587	100	707	588	588	588	589		590

, m.s.,

_
<u>e</u>
٦
E

NCBI gi description	STAGE IV SPORULATION PROTEIN A [Bacillus subtilis]	(D88802) B. subtilis alkaline phosphatase IIIA; P19405 secretory [Bacillus subtilis]	HYPOTHETICAL 70.5 KD PROTEIN IN IDH 3'REGION	[Bacillus suotilis] (D14399) hypothetical protein [Bacillus subtilis]	(AF008220) transporter [Bacillus subtilis]	(AL049485) hypothetical protein [Streptomyces coelicolor]	(AF015775) YodC [Bacillus subtilis]	30S RIBOSOMAL PROTEIN S1 HOMOLOG [Bacillus	(Y08953) cytidylate kinase-like protein [Bacillus cereus]	(Z99112) vmfL [Bacillus subtilis]	(U87792) unknown [Bacillus subtilis]	(AE000675) NADH dehydrogenase (ubiquinone) [Aquifex	aeolicus]	(Z75208) hypothetical protein [Bacillus subtilis]	(AE000682) transcriptional regulator (TetR/AcrR family)	[Aquifex aeolicus]	(Z99117) glutamine ABC transporter (integral membrane	 -			(AP000001) 289aa long hypothetical protein [Pyrococcus horikoshii]	_	_			BINDING PROTEIN [Insertion sequence IS232]	PROBABLE ABC TRANSPORTER PERMEASE PROTEIN (ORFL) [Bacillus subtilis]		
% Cvrg	100	97	91	100	73	.73	100	61	51	66	66	45		10	73		83	99	(89	100	100	28	65	32		100	23	
% % Ident Cvrg	%	4	38	41	20	28	52	96	86	54	73	25		69	31		99	73		23	29	25	53	54	66		61	37	
BlastP. Prob I	1.60E-216	1.90E-140	1.30E-68	7.70E-50	2.30E-48	5.30E-19	8.10E-46	4.80E-112	9.10E-47	2 80F-20	8.60E-58	3.20E-10		4.30E-08	1.50E-12		1.50E-51	2.80E-68	!	4.00E-53	1.20E-30	2.20E-27	2.60E-09	2.10E-47	1.70E-38		7.10E-63	2.20E-10	
BlastP Score	2092	1374	969	519	505	228	481	1106	490	240	595	150		132	167		535	693	į	220	338	307	142	496	412	!	642	152	
aat_B nap_S Score	2244	1423	<i>LLL</i>	655	468	155	542	1102	487	223	995	104		116	84		619	693		520	241	152	79	499	412	!	864	136	
NCBI gi	g464794	g1945090	g1731300	g709994	g2293177	g4539178	g2415385	g3122814	01945144	02634062	91842437	g2982870)	g1770012	g2982980)	g2635190	g2635189		g114636	g3256528	g1741967	g3005554	92116766	g2497392		g732410	g732409	
Position	1705-234	1-1341	1744-1	1744-512	2285-1737	216-788	103-708	699-1	1340-1037	446-172	921-446	586-1003		1-106	752-1		541-1	1155-610		587-1	267-1121	151-1295	1-270	497-1	880-641		1006-179	1250-1012	
Gene Id	Bt1G763	Bt1G764	Bt1G765	Bt1G766	Bt1G767	Bt1G768	Bt1G769	Bt1G770	B+1G771	D+1G772	B#1G773	Bt1G774		Bt1G775	Bt1G776		Bt1G777	Bt1G778		Bt1G779	Bt1G780	Br1G781	B#1G782	B+1G783	Br1G784		Bt1G785	Bt1G786	
Contig Id	Bt1Gc876	Bt1Gc877	Bt1Gc875	Bt1Gc875	Bt1Gc875			Bt1Gc882	D+1G-882			Bt1Gc881		Bt1Gc884	Bt1Gc884		Bt1Gc885	Bt1Gc885		Bt1Gc888	Bt1Gc889	B#16-889					Bt1Gc890	605 Bt1Gc890	
S e S	591	592	593	593	593	594	595	969	206	203	597	598		599	599		009	009		601	602	602	603	604	604	5	605	605	

_	4
	Ŋ
3	5
(₹
	=

	llus subtilis]		[Bacillus subtilis]	t (TPP-	Ž		D-CSPB	C-GDH		illus subtilis]	l [Bacillus		s subtilis]	aver				;	s]	is]	S'REGION	;	-GALK		us subtilis	•				3) [Borrelia	!	OR OR
NCBI gi description	(ORFK) [Bacillus subtilis] (Z99110) similar to hypothetical proteins [Bacillus subtilis]		(Z75208) autolysin response regulator [Bacillus		dependent alpha subunit) [Bacillus subtilis]		HYPOTHETICAL 58.3 KD PROTEIN IN GLPD-CSPB INTERGENIC REGION [Recillus subtilis]	. , ,	INTERGENIC REGION [Bacillus subtilis]		(Z99107) similar to acriflavin resistance protein [Bacillus			(AF025433) tyrosine/dopa decarboxylase [Papaver				_			HYPOTHETICAL 55.7 KD PROTEIN IN PLC 5'REGION		HYPOTHETICAL 47.6 KD PROTEIN IN EPR-GALK INTERGENIC REGION [Bacillus subtilis]				_	_				NODULATION PROTEIN NOLG PRECURSOR
% Cvrg	100	86	97	94	00	2	83	53		66	99	,	62	8	(8	i	91	100	25	8		28	0	5	֓֞֞֜֜֞֜֜֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֡֓֓֓֓֓֡֓֜֓֡֓֡֓֡֓֜֡֓֡֓֡֓֡֓֡֓֡)	91	16	27		39
% Ident	36	8 69	28	79	36	3	4	39		9/	37	,	38	27	Č	34	;	9	85	81	62		42	42	43	1		54	27	22		29
BlastP. Prob	1 60E-43	4.00E-147	2.30E-18	1.90E-133	4 00E 16	4.30E-10	1.70E-75	3.00E-07		2.30E-09	2.30E-96		5.20E-51	3.70E-50	, ,	1.00E-24		1.70E-52	6.70E-40	4.90E-32	6.10E-144	-	5.70E-38	3 40E-10	4 00F-37	10010	1.10E-57	6.10E-41	2.40E-15	1.70E-13		3.40E-11
BlastP Score	435	1437	222	1308	Š	700	761	117		137	958		530	522		58 5		544	235	351	1407		407	157	300		593	435	192	189		157
aat_B nap_S Score	£00	1445	189	1329	701	130	954	102		318	1127		480	436	1	259		613	1026	344	1384	,	450	118	260	000	958	9/9	47	183		132
NCBI gi	5032896	g2415746	g1770002	g2633130	1001003	81001293	g3915990	g3183248	1	g1174408	g2632985)	g1673402	g3282523		g3334798		g2635899	g1162917	g1731004	g549806)	g732331	21760010	G1102712	84106413	g2632005	g2635735	g282243	g2688027	,	g128506
Position	44-072	1-1177	1396-2083	1-946	7	1-404	1549-241	1-151		614-357	1-2094		748-1623	1344-46	;	461-1		1306-747	177-908	1001-1244	1318-1		1412-649	1 000	1.405.1	1-00-1	1-760	895-1625	1-1676	822-1		825-503
Gene Id	B+1/5787	Bt1G788	Bt1G789	Bt1G790	1000	B(10/91	Bt1G792	Bt1G793		Bt1G794	Bt1G795		Bt1G796	Bt1G797	,	Bt1G798		Bt1G799	Bt1G800	Bt1G801	Bt1G802		Bt1G803	D+1C904	D41C804	Dellago	Bt1G806	Bt1G807	Bt1G808	Bt1G809		Bt1G810
Contig Id	B+1/2,004	Bt1Gc893	Bt1Gc893	Bt1Gc895	0	Bt1 Gc897	Bt1Gc896	Bt1Gc900		Bt1Gc901	Bt1Gc898		Bt1Gc899	Bt1Gc902		Bt1Gc903		Bt1Gc904	Bt1Gc905	Bt1Gc905	Bt1Gc909		Bt1Gc907	D+1C.011	D41G2011	D1100111		Bt1Gc912	Bt1Gc913	Bt1Gc910		624 Bt1Gc910
SEQ NO	200	607	607	809	Š	609	610	611		612	613		614	615		919		617	618	618	619		620	103	170	170	622	622	623	624		624

	NCBI gi description	component HtxC	onas stutzeri]	PROTEIN E [Bacillus subtilis]	UDP-N-ACETYLMURAMOYLALANINED- GLUTAMATE LIGASE (UDP-N-ACETYLMURANOYL-	L-ALANYL-D-GLUTAMATE SYNTHETASE) (D-GLUTAMIC ACID ADDING ENZYME) [Bacillus subtilis]	PHOSPHO-N-ACETYLMURAMOYL-PENTAPEPTIDE- TRANSFERASE (UDP-MURNAC-PENTAPEPTIDE	PHOSPHOTRANSFERASE) [Bacillus subtilis] (AJ010111) cytochrome aa3 controlling protein [Bacillus	olosa (Racillus carens)	(AE000593) osmoprotection protein (proV) [Helicobacter		ction histidine kinase	utotrophicum]	s subtilis]	(Z99111) similar to hypothetical proteins [Bacillus subtilis]	bisphosphate carboxylase	C PARKET D	UDP-N-ACELY LMUKAMOY LALANYL-D- CIVITANYATE 3 & DIAMINODIMEI ATE 1 IGASE (TIDD-	N-ACETYLMURAMYL-TRIPEPTIDE SYNTHETASE)		PHOSPHO-N-ACETYLMURAMOYL-PENTAPEPTIDE- TRANSERRASE (TIDP-MIRNAC-PENTAPEPTIDE	(Bacillus subtilis)	RIBONUCLEASE P PROTEIN COMPONENT (PROTEIN	ıbtilis] N 1 24 Ebecillus		
		[Rhizobium meliloti] (AF061267) inner membrane component HtxC			-	L-ALANYL-D-GLUTAMATE SYNTHETASE) (D-GLUTAMIC ACID ADDING ENZYME) [Bacillus			cereus]			_		_		0 (Z99111) similar to ribulose-bisphosphate carboxylase			N-ACETYLMURAMYL-TR	[Bacillus subtilis]		PHOSPHOTRANSFERASE) [Bacillus subtilis]		C5) (RNASE P) [Bacillus subtilis]	stearothermophilus	
à	Cyrg Cyrg	06	98	16	100		34	26		8 5		22		47	78	100		83			29		95			
;	% Ident	37	37	69	55		85	75	5	25	i	53		39	53	9	!	27			89		59		71	1
Tank	BlastP. Prob	6.60E-28	1.00E-29	5.00E-12	1.30E-132		1.30E-36	1.60E-24	100 HO	5.70E-18		1.20E-40		8.00E-39	2.30E-50	2.50E-131	!	3.90E-117			1.50E-62		1.60E-33		1.80E-10	
!	BlastP	312	329	168	1300		394	280	i C	c/17	}	436		415	524	1288		1154			639		365	Š	707	
	nap Score	428	412	213	1279		475	274	9	119	1	217		380	550	1212		1188			764		337		204	
	NCBI gi	g3114663	g3127079	g134774	g417327		g417313	g4584149		g4584148 o7313950		g2621914	1	g1684650	g2633731	g2633730)	g417328			g417313		g585905	,	g132902	
	Position	1-762	1-720	177-1	1611-262		1942-1615	1-243	•	1801-334		1-1657		684-1361	554-1	1813-554		1-1227			1246-1901		469-115		680-549	
	Gene Id	Bt1G811	Bt1G812	Bt1G813	Bt1G814		Bt1G815	Bt1G816	1	Bt1G817		Bt1G819		Bt1G820	Bt1G821	Bt1G822		Bt1G823			Bt1G824		Bt1G825		Bt1G826	
	Contig Id	Bt1Gc915	Bt1Gc915				626 Bt1Gc919	627 Bt1Gc917		Bt1Gc917		Bt1Gc921		Bt1Gc922				Bt1Gc924			Bt1Gc924		Bt1Gc928		Bt1Gc928	
C		625	625	626	626		979	627		627	970	629		630	631	631	i i	632			632		633		633	

-
<u>e</u>
q
Ë

					•		T able T			
S E S	Contig Id	Gene Id	Position	NCBI gi	aat_ nap Score	BlastP Score	BlastP. Prob	% Ident C	% Cvrg	NCBI gi description
635	Bt1Gc927	Bt1G828	1521-955	g3322295	169	101	0.0018	27	54	21.0 KD lipoprotein [Bacillus subtilis] (AE001189) regulatory protein (pfoS/R) [Treponema
636	Bt1Gc929	Bt1G829	31-402	g2632455	492	435	6.10E-41	11	66	(Z99104) ybcI [Bacillus subtilis]
636		Bt1G830	1001-1548	g1171678	630	526	1.40E-50	69	36	NADH DEHYDROGENASE SUBUNIT 5 (NADH- UBIQUINONE OXIDOREDUCTASE CHAIN 5) [Bacillus
										subtilis]
637	Bt1Gc931	Bt1G831	1033-1274	g1176282	156	198	1.80E-15	46	23	HYPOTHETICAL OXIDOREDUCTASE IN GNTR-GGT INTERGENIC REGION [Escherichia coli]
638	Bt1Gc930	Bt1G832	1142-876	g1161061	196	216	9.80E-18	49	66	(L43135) dioxygenase [Methylobacterium extorquens]
638		Bt1G833	1142-210	g2632008	753	789	1.90E-78	49	100	(AJ002571) YkcA [Bacillus subtilis]
639		Bt1G834	418-1	g2896708	240	282	1.00E-24	40	40	(AL021897) echA9 [Mycobacterium tuberculosis]
639	Bt1Gc934	Bt1G835	1441-1720	g548899	187	198	1.30E-15	39	53	EXONUCLEASE SBCD HOMOLOG []
640	Bt1Gc932	Bt1G836	1833-874	g2619033	1064	1026	1.40E-103	99	37	(AF027868) PEP synthase [Bacillus subtilis]
641	Bt1Gc916	Bt1G837	Jan-09	g1709698	2674	2655	3.40E-276	83	8	POLYRIBONUCLEOTIDE
<u>:</u>				b						NUCLEOTIDYLTRANSFERASE (POLYNUCLEOTIDE DHOSDHORVI A SE) (PNPASE) (VEGETATIVE
										PROTEIN 15) (VEG15) [Bacillus subtilis]
642	Bt1Gc935	Bt1G838	427-750	g2495742	85	114	1.10E-06	26	20	HYPOTHETICAL PROTEIN MJ0014 [Methanococcus
										jannaschii]
642	Bt1Gc935	Bt1G839	710-1774	g1002992	320	441	1.40E-41	35	8	(U34772) ORF375 [Dichelobacter nodosus]
642	Bt1Gc935	Bt1G840	704-1774	g3426013	288	362	3.30E-33	58	82	[st
642	Bt1Gc935	Bt1G841	1487-1774	g1149666	269	271	1.50E-23	27	78	(X86498) IS1136 DNA [Clostridium perfringens]
643	Bt1Gc933	Bt1G842	1-1193	g2633857	1676	1578	4.60E-162	79	35	(Z99111) pyruvate carboxylase [Bacillus subtilis]
644	Bt1Gc936	Bt1G843	1-169	g1789981	110	135	1.10E-08	4	70	(AE000433) IS150 putative transposase [Escherichia coli]
645	Bt1Gc939	Bt1G844	389-1	g1709639	441	458	2.20E-43	63	32	PEPTIDASE T (AMINOTRIPEPTIDASE) (TRIPEPTIDASE) [Bacillus subtilis]
646	Bt1Gc937	Bt1G845	738-1	g1805447	231	279	2.10E-24	28	92	(D50453) response-regulator aspartate phosphatase C [Bacillus subtilis]
647	Br1Gc938	Bt1G846	1282-1026	g2114014	84	108	3.20E-05	32	16	(Z95558) hypothetical protein Rv0552 [Mycobacterium
<u> </u>					· !					tuberculosis]
648	Bt1Gc941	Bt1G847	701-1	g732327	720	605	5.90E-59	09	75	PROBABLE 1,4-DIHYDROXY-2-NAPHTHOATE
										OCTAPRENYLTRANSFERASE (DHNA- OCTAPRENYLTRANSFERASE) [Bacillus subtilis]
649	649 Bt1Gc914	Bt1G848	1587-1	g2116756	1609	1628	2.30E-167	59	84	(D86418) YfinR [Bacillus subtilis]

		8SAA-ILVD	;	[Bacillus subtilis]	ise system	ıcterium		1	ORD-SAPB	nm]			ana]	EM	subtilis]	t ATPase	E II SE) [Bacillus	ENCE	32]		SPO0A-MMGA	 DNAC-RPLI		GLNQ-ANSK 	EAK s subtilis]	acterium
	NCBI gi description	HYPOTHETICAL 23.1 KD PROTEIN IN BSAA-ILVD INTERGENIC REGION [Bacillus subtilis]	SAPB PROTEIN [Bacillus subtilis]	(U93876) hypothetical protein YrdP [Bacill	(Z83337) highly similar to phosphotransferase system regulator [Bacillus subtilis]			_	HYPOTHETICAL 66.6 KD PROTEIN IN PURD-SAPB INTERGENIC REGION [Bacillus subtilis]	_	_	_	_	•	_	(D50453) glycine betain/L-proline transport ATPase [Bacillus subtilis]		•		_		INTERGENIC REGION [Bacillus subtilis] HYPOTHETICAL 10.2 KD PROTEIN IN DNAC-RPLI			(AB001488) FUNCTION UNKNOWN, WEAK SIMILARITY TO YEEF_ECOLI. [Bacillus subtilis]	(AE000808) conserved protein [Methanobacterium
	% Cvrg	100	100	23	100	66	64	47	8	50	26	34	80	100	-	84	100	4	2	9	100	76		. 59	100	100
	% Ident	41	47	43	31	58	49	45	20	32	26	49	46	59		9	86	8	2	48	43	38		30	99	24
	BlastP- Prob I	2.20E-36	3.30E-49	8.20E-16	6.80E-26	2.20E-13	4.20E-33	2.30E-57	3.30E-145	2.80E-26	1.10E-39	5.80E-52	5.10E-37	4.00E-60		2.00E-97	8.80E-120	2 400 07	3.40E-07	9.00E-08	1.70E-43	5.20E-12		2.10E-22	3.40E-173	4.40E-15
	BlastP	392	513	201	293	175	361	290	1419	301	423	539	398	919		896	1179	7	77	122	459	162		260	1683	191
	aat_ Enap	353	260	153	263	75	358	554	1425	311	402	455	418	801		1037	1294	9	103	116	495	135		171	2068	150
	NCBI gi	g1730910	g2833393	g1934657	g1763710	g2621392	g1934810	g1934809	g3915461	g3059028	g2811132	g4894306	g4914333	g1171920		g1805370	g115022	0,000	g249/362	g2634845	g1731058	g586811)	g1731087	g1881242	g2621255
	Position	2231-1580	201-889	1-465	235-1010	552-1549	456-1	1210-453	1552-1	2158-1397	432-1	1281-1	1797-1221	880-34		1891-839	439-1209	3001 0101	1/10-1/82	1-140	918-208	842-1098		Jan-16	66-1889	1386-708
	Gene Id	Bt1G849	Bt1G850	Bt1G851	Bt1G852	Bt1G853	Bt1G854	Bt1G855	Bt1G856	Bt1G857	Bt1G858	Bt1G859	Bt1G860	Bt1G861		Bt1G862	Bt1G863	7000	BEI G804	Bt1G865	Bt1G866	Bt1G867		Bt1G868	Bt1G869	Bt1G870
	Contig Id	Bt1Gc914	Bt1Gc942	Bt1Gc943	Bt1Gc947	Bt1Gc947	Bt1Gc945	Bt1Gc945	Bt1Gc944	Bt1Gc949	Bt1Gc948		Bt1Gc951	Bt1Gc946		Bt1Gc946	Bt1Gc953		BtlGc955	Bt1Gc954	Bt1Gc954	Bt1Gc954		Bt1Gc957	Bt1Gc956	Bt1Gc958
	SEQ NO ID	649	650	651	652	652	653	653	654	655	929	656	657	658		658	629	,	000	661	661	.661		662	663	664

NCBI gi description		thermoautotrophicum] (799110) similar to hynothetical proteins [Bacillus subtilis]	(AE000681) hypothetical protein [Aquifex aeolicus]	TRANSCRIPTIONAL ACTIVATOR TENA [Bacillus	subtilis]	MOLITLIKE PROLEIN (OKF134) [Suepromyces ambofaciens]	(Z75208) hypothetical protein [Bacillus subtilis]		INTERGENIC REGION [Bacillus subtilis]	HYPOTHETICAL PROTEIN (ORF3) [Bacillus cereus]	pheromone cAD1 binding protein precursor - Enterococcus	faecalis plasmid pAD1 [Plasmid pAD1] HYPOTHETICAL 32.5 KD PROTEIN IN PEPE-LYSC	INTERGENIC REGION [Escherichia coli]	(D83967) TreC [Bacillus subtilis]	(AF084104) maltose transportor ATP-binding protein	[Bacillus firmus]	OLIGO-1, 6-GLUCOSIDASE (SUCRASE-ISOMALTASE)	(LIMIT DEXTRINASE) (ISOMALTASE) (DEATRIN 9-ALPHA-D-GLUCANOHYDROLASE) [Bacillus cereus]	gyrb protein - Streptococcus pneumoniae (fragment)	[Streptococcus pneumoniae]	(Z99114) similar to transcriptional regulator [Bacillus subtilis]	_	HYPOTHETICAL PHOSPHOTRANSFERASE ENZYME	II, A COMPONENT IN PONA-COTD INTERGENIC REGION (F143) [Pacillus subtilis]	, , ,	TYROSINE-PHOSPHATASE [Bacillus subtilis]	HYPOTHETICAL LACA/RPIB FAMILY PROTEIN IN SPOIIR-GLYC INTERGENIC REGION [Bacillus subtilis]		(Z99106) similar to hypothetical proteins [Bacillus subtilis]
%2	.	ŗ	66	71	,	0	66	100		86	4	8	3	58	42		32		76		81	66	84		66		30	100	100
% Ident		39	22	26	6	38	23	59		95	38	42		65	8		6		30		79	74	54		43		65	71	54
BlastP-		1 60E_08	1.10E-09	1.20E-49		1.00E-08	1.00E-15	3.50E-61		6.00E-121	3.00E-39	1 80E-66		3.60E-123	4.90E-55		3.70E-279		3.30E-10		2.20E-27	2.40E-55	1.10E-39		2.90E-27		6.40E-14	2.40E-156	4.90E-55
BlastP	9	000	140	517	,	131	197	626	,	1190	419	929	2	1211	568		2683		145		307	571	423		306		180	1524	568
aatB	. 43	000	671 86	488	:	103	164	625		1327	385	309		1161	604		2733		80		296	618	423		279		180	1600	564
NCBI gi		V030000	g2982976	g135583	,	g417332	g1770039	g732345	•	g3183483	g1075694	- 0418534	E410004	g2626830	g3688811)	g129005		g2126635	b	g2634267	g2634266	g1730951		9732386		g732387	g421457	g2632848
Position		-	428-906	987-486		88-1361	1136-552	340-939		1-836	1246-1917	1.080	12000	105-1084	458-1		721-2268		1-398)) !	1313-1076	1806-1327	1-426		675-1115		1210-1347	41-1336	885-268
Gene Id		100	Bt1G872	Bt1G873		Bt1G874	Bt1G875	Bt1G876		Bt1G877	Bt1G878	D+1/29/70	6/0011G	Bt1G880	Bt1G881		Bt1G882		Bt1G883		Bt1G884	Bt1G885	Bt1G886		Rt1G887		Bt1G888	Bt1G889	Bt1G890
Contig Id	ı		Bt1Gc961			Bt1Gc963	Bt1Gc963			Bt1Gc965	Bt1Gc965	D+17.020	DITCOOR	Bt1Gc967			Bt1Gc966		Bt1Gc970		Bt1Gc970	Bt1Gc970			674 Bt1Gc972		Bt1Gc972	Bt1Gc971	
SEQ ID	ON		665	999		L 99	299	899		699	699	013	0/0	671	672		672		673	5	673	673	674		674	·	674	675	9/9

_	4
Table	

NCBI gi description	,	EIN HI0883 [Haemophilus	llus subtilis]	[Bacillus subtilis]	AMINO-ACID PERMEASE ROCC [Bacillus subtilis]	(Z99117) glutamine ABC transporter (integral membrane	S]	(299117) gutamine AbC transporter (integral memorane protein) [Bacillus subtilis]	O ACYL-COA	3acillus subtilis]	hypothetical 12K protein - Thermus aquaticus [Thermus	aquaticus] (Z99120) similar to diaminopimelate epimerase [Bacillus		(Z99120) similar to hypothetical proteins [Bacillus subtilis]	D-ALANYL-D-ALANINE CARBOXYPEPTIDASE (DD-	BOXYPEPTIDASE)	MICROBIAL COLLAGENASE PRECURSOR (120 KD	tridium perfringens]	(AF050754) glucose 6-phosphate isomerase [Giardia	The selection of the	N-ACE I L'OLOGOMMINE-UTINOSI IN LE DEACETYLASE)		PROTEIN EXPORT PROTEIN PRSA PRECURSOR	;	ıs subtilis]	HYPOTHETICAL LIPOPROTEIN YUFN PRECURSOR	;	otein [Bacillus subtilis]	(U67196) histidine protein kinase [Thermotoga maritima]	(AF006075) TPP-dependent acetoin dehydrogenase, El beta-subunit [Bacillus subtilis]
			influenzae Kd] (AF027868) YoaT [Bacillus subtilis]	(AB007638) peroxidase [Bacillus subtilis]						DEHYDROGENASE. [Bacillus subtilis]			subtilis]	_	_	PEPTIDASE) (DD-CARBOXYPEPTIDASE)		_		. ,		[Bacillus subtilis]			_	,		_	_	
%	Cvrg	74	8	100	38	100		<u>.</u>	63		88	100			71		38		47		3		92			100				2
%	Ident Cvrg	53	62	39	99	89	;	4	48		2	99		44	41		26		4	,	4		42		49	55		38	31	8 2
	Prob	2.50E-67	6.60E-83	4.40E-54	6.80E-58	8.10E-62	, ,	1.40E-32	1.90E-62		2.10E-24	1.20E-92		3.10E-05	2.80E-36	•	1.60E-134		1.60E-19	, C	3.30E-/4		2.20E-43		3.10E-21	5.90E-75		2.10E-40	1.30E-29	6.80E-129
BlastP	Score	684	831	559	595	632	ì	356	638		279	923		86	391		1318		233	ţ	/4/		458	_	249	756		430	328	1265
	Score	891	814	546	899	733		396	633		337	1008		166	299		1250		189	i	111/		398		246	806		346	303	1399
NCBI of	,	g1175322	0001900	g2522022	g730600	g2635191		g2635190	g1881262)	g420808	g2635714)	g2635713	g2497586		g1169000		g4105715	0	g3122425		g131027	1	g401655	g3915557		g2226222	g1575578	g2245638
Position		1013-1	1-706	1800-813	542-1	1394-747		1388-738	841-1566		266-1	53-904		952-1159	709-116		1-1415		360-1	4	1510-353		812-1		324-1	174-1223		1862-135	1862-1034	1-965
Cene Id		Bt1G891	B+1 G897	Bt1G893	Bt1G894	Bt1G895	,	Bt1G896	Bt1G897		Bt1G898	Bt1G899		Bt1G900	Bt1G901		Bt1G902		Bt1G903	1	Bt1G904		Bt1G905		Bt1G906	Bt1G907		Bt1G908	Bt1G909	Bt1G910
Contig Id	nt Sumo	Bt1Gc975	B+16-076	Bt1Gc976	Bt1Gc974	Bt1Gc974		Bt1Gc974	Bt1Gc979		Bt1Gc980	Bt1Gc981		Bt1Gc981	Bt1Gc982		684 Bt1Gc984		Bt1Gc983		Bt1Gc983		686 Bt1Gc985		Bt1Gc987	Bt1Gc988		Bt1Gc986	Bt1Gc986	Bt1Gc989
SEQ	3 S	<i>LL</i> 9	829	678	629	629		629	089) 	681	682	}	682	683		684		685		685		989		289	889		689	689	069

-	
bje	
E	

	NCBI gi description	(Z99108) acetoin dehydrogenase E2 component (dihydrolipoamide acetyltransferase) [Bacillus subtilis]	(Y09450) transposase [Pseudomonas putida]	transposase tnpA - Enterococcus faecalis plasmid pAD2	transposon Tn917 [Transposon Tn917]	HYPOTHETICAL 14.8 KD PROTEIN IN HOM-MRGA INTERGENIC REGION [Bacillus subtilis]	bacitracin resistance protein homolog bacA - Mycobacterium	leprae [Mycobacterium leprae]	(AB000617) RapJ [Bacillus subtilis]	(D17312) diarrheal toxin [Bacillus cereus]	D-ALANINED-ALANINE LIGASE B (D-	ALANYLALANINE SYNTHETASE) [Escherichia con]	TRANSCRIPTIONAL ACTIVATOR TENA [Bacillus subtilis]	(Z99117) similar to folate metabolism [Bacillus subtilis]	(Z99117) similar to caffeoyl-CoA O-methyltransferase		(U63928) L1 protein [Bacillus cereus]	(U63928) L2 protein [Bacillus cereus]	_	HYPOTHETICAL 28.1 KD PROTEIN IN PHOD-PCP	INTERGENIC REGION (ORF19) [Bacillus subtilis]	HYPOTHETICAL 10.2 KD PROTEIN IN ILVA 3'REGION	[Bacillus subtilis]	(AF078790) No definition line found [Caenorhabditis	(U96166) ATP-binding cassette protein [Streptococcus crista]	(U87792) CinA [Bacillus subtilis]		HYPOTHETICAL 28.3 KD PROTEIN IN COMGG-SINR	INTERGENIC REGION [Bacillus subtilis]		PEPTIDASE I) [Bacillus suolilis]
	% Cvrg	46	37	34		66	66		94	93	100		33	20	100		98	89	100	8		66		43	100	41	100	38		66	
	% Ident C	53	36	26		73	78	-	24	95	37		26	28	50		84	72	30	47		31		25	45	53	83	22		4	
1 01018	BlastP- Prob Io	1.50E-35	1.70E-61	2.70E-25		2.20E-43	4.20E-10		2.10E-22	4.70E-169	5.40E-49		2.90E-18	2.20E-11	2.60E-56		1.20E-104	2.00E-90	1.10E-18	8.80E-49		2.60E-08		4.80E-09	2.00E-51	8.70E-42	2.60E-143	3.10E-14		1.20E-33	
	BlastP Score	384	635	536		458	144		260	1644	511		221	162	580))	904	902	225	509		127		140	534	443	1401	183		366	
	aat_ B nap S Score	376	597	194		496	117		210	1623	452		195	193	559		1399	1074	170	541		127		52	490	406	1470	204		414	
	NCBI gi	g2633132	g1694898	g79972	1	g3915567	g2145816)	g2415733	g1665720	g118407		g135583	£2635183	92635182		g1945051	g1945050	22983883	g3183575	0	g1730936)	g3329623	g2822199	g1842440	g72992	g1731038)	g1731037	
	Position	1002-1545	1-1128	1-1128		1231-1602	1984-2267		1-1020	1228-211	52-945		1278-1509	1-214	406-1053		992-1	1943-1032	723-151	1-650) } }	995-1243		1-1405	1077-415	1-514	662-1705	739-1	,	1357-787	
	Gene Id	Bt1G911	Bt1G912	Bt1G913		Bt1G914	Bt1G915		Bt1G916	Bt1G917	Bt1G918		Bt1G919	Bt1G920	Rf1G921	170000	Bt1G922	Bt1G923	Bt1G924	Bt1G925		Bt1G926		Bt1G927	Bt1G928	Bt1G929	Bt1G930			Bt1G932	
	Contig Id	Bt1Gc989	Bt1Gc992	Bt1Gc992		Bt1Gc990	Bt1Gc990		Bt1Gc993		Bt1Gc995		Bt1Gc995	Bt1Gc997			Bt1Gc998		698 Bt1Gc1001	B#1Gc1000		699 Bt1Gc1000		700 Bt1Gc1002	Bt1Gc996	Bt1Gc999				703 Bt1Gc1003	
	SEQ NO NO	069	691	691		692	692		693	694	695		695	969	969		269	697	869	669		669	, ,	700	701	702	702	703		703	

-,	cription	s] NE DEHYDROGENASE	acinus suotinis 3 CHAIN [Bacillus subtilis]	VT-SPOIIIAA	[s]	um histolyticum]	(nhaC-1) [Borrelia	DOREDUCTASE IN	GION [Bacillus subtilis]	otilis]	lactate denydrogenase	ST EMBL: C12233 collies	2. comes from this gene:	es f []	rococcus hirae]	ensis]	2 PUTATIVE ATP-	sequence IS232]	<u>S</u>	OTEIN IN KINC-ADEC	(Bacillus subtilis)	acillus subtilis]	ococcus aureus]	binding oxidoreductase	(NEUTRAL PROTEASE)		ridium paraputrificum	tota drayme Kacillis	All Cheyma Lawmen
	NCBI gi description	(Y13917) yngK [Bacillus subtilis] ASPARTATE-SEMIALDEHYDE DEHYDROGENASE	(ASA DEHYDKOGENASE) [Bacillus subtilis] DIPICOLINATE SYNTHASE, B CHAIN [Bacillus subtilis]	PUTATIVE PEPTIDASE IN GCVT-SPOIIIAA	INTERGENIC REGION [Bacinus suching] (D86418) YftiC [Bacillus subtilis]	(AB014075) GTPase [Clostridium histolyticum]	(AE001165) Na+/H+ antiporter (nhaC-1) [Borrelia	burgdorferi] HYPOTHETICAL 39.4 KD OXIDOREDUCTASE IN	HOM-MRGA INTERGENIC REGION [Bacillus subtilis]	(AJ002571) YkkD [Bacillus subtilis]	(Z74031) Similarity to Yeast D-lactate denydrogenase	(SW:DLDI_YEASI); cDNA ESI EMBL:C12233 comes	mom this gene; chira est embercizzo comes from this gene;	cDNA EST EMBL: C10979 comes f	(AJ000346) NapC protein [Enterococcus hirae]	ORF IS231C [Bacillus thuringiensis]	INSERTION SEQUENCE IS232 PUTATIVE ATP-	BINDING PROTEIN [Insertion sequence IS232]	(Z99121) yvgS [Bacillus subtilis]	HYPOTHETICAL 31.7 KD PROTEIN IN KINC-ADEC	INTERGENIC REGION (ORF3) [Bacillus subtilis]	(AF027868) RecQ homolog [Bacillus subtilis]	(AF051917) unknown [Staphylococcus aureus]	(AL023517) putative iron-sulfur binding oxidoreductase	[Streptomyces coelicolor] BACII LOLYSIN PRECURSOR (NEUTRAL PROTEASE)	Bacillus brevis]	(AB001874) chitinase B [Clostridium paraputrificum]	(AJ010140) DNA alkylation repair enzyme [bacillus	
		100 (Y	고 18 18	51 PU	57 (D	_	100 (A	ъ 100 Н			48 (2	2 4	Ĭį Š	စ် ဒ	54 (4	24 0	59 IN	B	26 (Z	29 H	4	18 (/	7) 66	49 (7	23 23 E2		_	100 100	
	% % Ident Cvrg	65 1	74	65	53	23	37	71		53	43				46	86	86		38	34		52	22	56	35	1	44	92	
TANNE	BlastP- 9 Prob Id	3.30E-184 1.30E-86	9.00E-79	2.20E-59	2.90E-57	1.10E-05	6.60E-60	6 50F-140		1.20E-19	1.00E-79				1.30E-45	1.90E-55	1.20E-74		7.60E-32	6.30E-09		7.60E-23	1.00E-08	4.10E-18	7 30E-77		3.10E-15	8.00E-71	
	BlastP Score	1787 866	792	609	589	113	614	1369		234	801				479	572	753		358	137		272	131	227	774	:	204	717	
	aat_ Bl nap S Score	1738	785	209	613	82	642	1350))	224	802				529	260	754		278	9/		236	86	142	501	8	166	949	!
	NCBI gi	g2266421 g416901	g417831	g1731048	92116761	23868866	g2688567	2015568	67717700	g2632030	g3876615				g2274944	g225559	g2497392	0	g2635858	g732400)	g2619051	g3676415	g3130015	01171750	5111117	g2696017	04584144	
	Position	1772-225 772-1	1531-932	1691-1151	690-1	1272-893	167-1478	1425 272	C20-001	1821-1563	1245-1				1-646	347-1	1794-1349		1832-1	1770-1535		2462-2141	135-548	167-2407	1 1506	0001-1	1598-1864	23-711	4 4 - }
	Gene Id	Bt1G933 Bt1G934	Bt1G935	Bt1G936	Br1G037	Bt1G938	Bt1G939	D+1/2040	or Cond	Bt1G941	Bt1G942				Bt1G943	Bt1G944	Bt1G945		Bt1G946	Bt1G947		Bt1G948	Bt1G949	Bt1G950	D+1/2041	1CCO11CI	Bt1G952	P+1/3053	Dilovo
	Contig Id	Bt1Gc1005 Bt1Gc1006	Bt1Gc1006	Bt1Gc1007	7 B#1Gc1008	707 Bt1Gc1008	3 Bt1Gc1004	200 D41021000	Dilocioo	710 Bt1Gc1010	711 Bt1Gc1011				2 Bt1Gc1012	3 Bt1Gc1013	3 Bt1Gc1013		714 Bt1Gc1014	4 Bt1Gc1014		4 Bt1Gc1014	5 Bt1Gc1015	6 Bt1Gc1017) bildcivio	7 Bt1Gc1016	9 D+1C-1018	O DITALIATO
	SEQ ES	704 705	705	706	707	70,7	708		9	710	711				712	713	713	:	714	714		714	715	716	:	11	717	718	17/

	NCBI gi description .	(Z98682) YlbH protein [Bacillus subtilis] (Z98682) YlbI protein [Bacillus subtilis]	(Z99107) similar to hypothetical proteins from B. subtilis [Bacillus subtilis]	(AF027868) putative alanine acetyl transferase [Bacillus subtilis]	(Z75208) hypothetical protein [Bacillus subtilis]	(Z99107) alternate gene name: yerS; similar to RNA	(AL035707) putative integrase [Streptomyces coelicolor]	(U59229) PhoC [Rhizobium meliloti]	(U59229) PhoD precursor [Rhizobium meliloti]	(D83967) YfkN [Bacillus subtilis]	30S RIBOSOMAL PROTEIN S15 (BS18) [Bacillus	Subtilis)	(Z80835) ribotiavin kinase [Bacillus suotilis]	(Z99111) yktD [Bacillus subtilis]	(AL049707) hypothetical protein [Streptomyces coelicolor]	REGULATORY PROTEIN VANRB [Enterococcus	faecalis]	SENSOR PROTEIN VANSB (VANCOMYCIN B-TYPE	RESISTANCE PROTEIN VANSB) (VANCOMYCIN	HISTIDINE PROTEIN KINASE) [EDICIOCOCCUS IACCALIS] PENICIT I IN-BINDING PROTEIN 3 (PBP 3) [Bacillus	subtilis]	DNA POLYMERASE III, BETA CHAIN [Bacillus subtilis]	CTP SYNTHASE (UTPAMMONIA LIGASE) (CTP	SYNTHETASE) [Bacillus subtilis]	(Z99108) similar to iron(III) dicitrate transport permease	(799108) similar to iron(III) dicitrate transport permease	[Bacillus subtilis]	(U51115) unknown protein [Bacillus subtilis]	(D63645) spore cortex-lytic enzyme prepeptide [Bacillus	cereus]
	% Cvrg	99 (100	66	66	9	100	54	63	13	66	Ę	73	69	78	77		100		6		35	81		100	~	5	100	47	
	% Ident C	69	20	20	26	71	59	38	77	36	84	į	54	29	53	48		78		44	:	46	83		28	52) }	99	86	
ranie i	BlastP- Prob Ic	9.80E-50 1.10E-27	2.20E-59	1.90E-37	1.00E-22	7.10E-14	1.10E-41	4.60E-20	2.80E-10	9.00E-26	9.20E-38		4.50E-68	2.20E-75	4.70E-34	0.0003		1.20E-37		9 00E-95		3.00E-23	3.90E-197		4.50E-77	8 40E-58		7.60E-105	6.60E-60	
	BlastP Score	518	609	405	263	187	442	238	150	306	405	Ş	691	760	370	93		404		043	7	268	1909		9//	504		812	614	
	aat_B nap_S Score	517	595	426	245	172	364	231	62	199	405	ì	664	761	146	118		396		863	3	242	1903		926	683	90	1504	298	
	NCBI gi	g2340004 g2340005	g2633027	g2618995	g1770024	g2632987	g4490997	g1399821	g1399822	g2626826	g2507327	1	g1592690	g2633840	g4678913	g2500744)	g2500765		01175710	£1117117	g118797	g131733	200	g2633169	2633170	8400010	g2239289	g1644192	
	Position	1110-1601	144-839	1317-824	1580-1338	1-140	1357-187	445-1	2269-532	1014-2269	508-242	:	1330-636	1-635	339-1971	1-148	`	159-1589		1457 212	717-/CH	1-398	252-1559		211-1210	1736 2074	1,02-0621	89-1408	2107-2476	
	Gene Id	Bt1G955	Bt1G957	Bt1G958	Bt1G959	Bt1G960	Bt1G961	Bt1G962	Bt1G963	Bt1G964	Bt1G965		Bt1G966	Bt1G967	Bt1G968	Bt1G969		Bt1G970		D+1/2071		Bt1G972	Rt1G973		Bt1G974	D+1/2075		Bt1G976	Bt1G977	
	SEQ D Contig Id NO	719 Bt1Gc1019	720 Bt1Gc1021	721 Bt1Gc1023	721 Bt1Gc1023	722 Bt1Gc1025	722 Bt1Gc1025	723 Bt1Gc1024	723 Bt1Gc1024	723 Bt1Gc1024	724 Bt1Gc1027		724 Bt1Gc1027	725 Bt1Gc1031	725 Bt1Gc1031	726 Bt1Gc1029		726 Bt1Gc1029		201 Det Co. 1020	77/ DIIOC1037	728 Bt1Gc1034	729 Br1Gc1039	(2)	730 Bt1Gc1036	720 D410 1026	/30 DUIDCI030	731 Bt1Gc1028	732 Bt1Gc1038	
	SE	7	7.	7.	7.	7.	<i>ì</i> -		7.	į,	7.		7	7	7.	7	•	7		Ċ	`	7	. [-	•	7	. t	•	7	r	•

_
<u>e</u>
亘
~

	NCBI gi description	STAGE V SPORULATION PROTEIN R [Bacillus subtilis] (Z99108) yftl. [Bacillus subtilis]	CHITOOLIGOSACCHARIDE DEACETYLASE ANODIT ATTON PROTEIN B) [Rhizohium galegae]	(AE001011) conserved hypothetical protein [Archaeoglobus	fulgidus] HYPOTHETICAL 51.7 KD PROTEIN IN DNAJ-RPSU PATERDECENIC PECION (Bodiline cultilie)	INTERECEINIC RECION [Dazumas sucums] (AF010184) coenzyme A transferase PsecoA [Pseudomonas	(Z75208) autolysin response regulator [Bacillus subtilis] ROD SHAPE-DETERMINING PROTEIN MREB [Bacillus	subtilis] DNA REPAIR PROTEIN RADC HOMOLOG (ORFB)	MAF PROTEIN [Bacillus subtilis] STAGE III SPORULATION PROTEIN J PRECURSOR	[Bacillus subtilis] JAG PROTEIN (SPOIIIJ ASSOCIATED PROTEIN)	Bacillus subtilis XAA-PRO AMINOPEPTIDASE (X-PRO AMINOPEPTIDASE) (AMINOPEPTIDASE P II) (APP-II) (AMINOACYI PROLINE AMINOPEPTIDASE)	[Haemophilus influenzae Rd] (Y09476) YisX [Bacillus subtilis] ALS OPERON REGULATORY PROTEIN [Bacillus	subtilis] DNA photolyase [Bacillus firmus] (AC000104) Match to Arabidopsis photolysase (PHH1) gene (gb X99061) and cryptochrome 2 apoprotein (CRY2) (gb U43397). ESTs gb W43661 and gb Z25638 come from	this gene. [Arabidopsis thaliana] (D64005) hypothetical protein [Synechocystis sp.] AMINOACYL-HISTIDINE DIPEPTIDASE (XAA-HIS
		43 STAGE V SF 99 (Z99108) yfh	100 CHITOOLIG	100 (AE001011)	fulgidus] 96 HYPOTHET	100 (AF010184) of servicings	54 (Z75208) aut 41 ROD SHAPE	subtilis] 100 DNA REPAIR PF [Pooi][15]	56 MAF PROTI 88 STAGE III S	Hacillus subulis 71 JAG PROTEIN (Bacillus subtilis 91 XAA-PRO AMIN AMINOPEPTIDA	[Haemophilu 100 (Y09476) Yi 100 ALS OPERC	subtilis] 100 DNA photoly 80 (AC000104) (gb X99061) (gb U43397)	this gene. [4] (D64005) hy 70 AMINOAC
	% % Ident Cvrg	30 %		25	81	61 1	33	65 1	54 70	42	33	33 1 53 1	34 1	31 1
T SIDIC T	BlastP- % Prob Iden	1.40E-87 2.80E-13	1.50E-30	3.80E-25	9.50E-194	5.20E-154	6.40E-14 3.10E-62	5.90E-75	3.20E-28 1.50E-62	3.90E-30	6.40E-46	1.50E-28 5.40E-81	8.30E-76 1.20E-85	2.20E-29 4 80F-48
	BlastP	875	337	286	1877	1502	180	756	315 639	333	482	318	764 857	326
	aat_ B nap s Score	868	262	131	1868	1582	141 599	774	304 879	305	491	328 798	670 753	277
	NCBI gi	g586024	g1709315	g2649231	g1730990	g3249555	g1770002 g266568	g400964	g401655 g267022	g400078	g1168447	g2145390 g461503	g746118 g2341035	g1001807
	Position	1-607	1464-787	339-1292	1-1300	1499-9	2094-1636 421-1	1274-582	1635-1315 1-709	709-1153	1-1154	1935-1297 1509-611	2820-348 1772-1	2676-1848
	Gene Id	Bt1G978	Bt1G980	Bt1G981	Bt1G982	Bt1G983	Bt1G984 Bt1G985	Bt1G986	Bt1G987 Bt1G988	Bt1G989	Bt1G990	Bt1G991 Bt1G992	Bt1G993 Bt1G994	Bt1G995
	SEQ ID Contig Id NO	733 Bt1Gc1033	734 Bt1Gc1037	735 Br1Gc1035	736 Bt1Gc1040	737 Bt1Gc1041	737 Bt1Gc1041 738 Bt1Gc1043	738 Bt1Gc1043	738 Bt1Gc1043 739 Bt1Gc1042	739 Bt1Gc1042	740 Bt1Gc1045	740 Bt1Gc1045 741 Bt1Gc1047	742 Bt1Gc1046 742 Bt1Gc1046	742 Bt1Gc1046

_
6
ap
Ë

	NCBI gi description	ALANYL-HISTIDINE DIPEPTIDASE) (CARNOSINASE) (PEPTIDASE D) [Haemophilus influenzae Rd] IMMUNE INHIBITOR A PRECURSOR [Bacillus	thuringiensis] (Z98682) YlbG protein [Bacillus subtilis]	(Z98682) YIbF protein [Bacillus subtilis]	(Y14084) hypothetical protein [Bacillus subtilis]		GTP CYCLOHYDROLASE 1 (GTP-CH-1) [Baculus subtilis]	PROBÁBLE HEPTAPRENYL DIPHOSPHATE SYNTHASE COMPONENT I (HEPPP SYNTHASE)	(SPORE GERMINATION PROTEIN C1) [Bacillus subtilis] (D50453) homologues to nitrile hydratase region 3'-hypothetical protein P47K of P. chlororaphis [Bacillus	subtilis] (D50453) homologue of unidentified protein of E. coli	[Bacillus subtilis] (Z99112) similar to hypothetical proteins from B. subtilis	[Bacillus subtilis] (Z99112) similar to 3-oxoacyl- acyl-carrier protein reductase	[Dacillus subulis] (Z99112) similar to processing protease [Bacillus subtilis] (D50453) homologue of hypothetical protein in a rapamycin	synthesis gene cluster of Streptomyces hygroscopicus [Bacillus subtilis] (D50453) homologue of hypothetical protein in a rapamycin	synthesis gene cluster of Streptomyces hygroscopicus [Bacillus subtilis] beta-lactamase (EC 3.5.2.6) precursor - Bacillus	thuringiensis [Bacillus thuringiensis] HYPOTHETICAL 80.1 KD PROTEIN IN SODA-COMGA	INTERGENIC REGION [Bacillus subtilis] PROTEIN DLTD PRECURSOR [Bacillus subtilis] (Z99110) similar to hypothetical proteins [Bacillus subtilis]
	-	ALA) (PEP	thurir (Z986	(Z98¢							_						
	% Cvrg	47	37	66	66	66	66	86	80	36	66	100	38	100	98	71	29
	% Ident	74	89	59	38	44	7	42	49	52	54	52	50	39	95	52	53 34
I GOIN I	BlastP- Prob I	2.60E-200	7.80E-09	6.50E-37	1.70E-29	1.80E-16	5.50E-79	3.00E-32	2.20E-100	3.60E-27	1.30E-22	6.10E-57	1.10E-39 9.30E-45	1.10E-66	1.10E-130	5.10E-124	1.10E-25 2.00E-12
	BlastP Score	1939	132	397	327	204	794	353	966	305	262	586	423 471	829	1282	1219	291 166
	aat_B nap_S Score	2075	132	462	321	204	790	370	1061	293	254	613	403	834	1278	1198	286
	NCBI gi	g124464	97340003	g2340002	g2226254	g2340001	g127481	g399774	g1805408	g1805397	g2634060	g2634059	g2634058 g1805443	21805444	g1084221	g1731017	g729343 g2633558
	Position	1533-1	102-1	678-235	1368-790	1690-1454	25-594	778-1562	950-1	1239-1560	265-11	1054-344	1639-1158 474-1	1919-492	803-1	2535-609	348-1 2153-647
	Gene Id	Bt1G997		Br1G999			Bt1G1002	Bt1G1003	Bt1G1004	Bt1G1005	Bt1G1006	Bt1G1007	Bt1G1008 Bt1G1009	Bt1G1010	Bt1G1011	Bt1G1012	Bt1G1013 Bt1G1014
	Contig Id	744 Bf1Gc1048	D+10201040	745 Br1Gc1049	5 Bt1Gc1049	5 Bt1Gc1049	5 Bt1Gc1053	746 Bt1Gc1053 Bt1G1003	747 Bt1Gc1050 Bt1G1004	747 Bt1Gc1050 Bt1G1005	748 Bt1Gc1051 Bt1G1006	748 Bt1Gc1051	748 Bt1Gc1051 749 Bt1Gc1054	749 Bt1Gc1054 Bt1G1010	750 BrtGc1052 BrtG1011	750 Bt1Gc1052 Bt1G1012	751 Bt1Gc1057 Bt1G1013 751 Bt1Gc1057 Bt1G1014
	SEQ ID	744	376	745	745	745	746	746	747	747	748	748	748	749	75(75(751

					0 BRANCHED-CHAIN AMINO ACID TRANSPORT SYSTEM CARRIER PROTEIN (BRANCHED-CHAIN AMINO ACID UPTAKE CARRIER) [Bacillus subtilis]	_	_	_	_	1 HYPOTHETICAL 14.3 KD PROTEIN CY427.14		99 (299113) sililiai to phage-related protein (Davierreprings end.)	-	•			_	_	75 HYPOTHETICAL 30.5 KD PROTEIN IN GABF-GUAA INTERGENIC REGION [Bacillus subtilis]	92 (D83967) YfkF [Bacillus subtilis]	98 (U51115) unknown [Bacillus subtilis]		99 (AE000929) unknown [Methanobacterium	thermoautotrophicum]	00 (D83026) homologous to jojC gene product (B. subtilis; prf:2111327a); hypothetical [Bacillus subtilis]	21 TRYPSIN-RESISTANT SURFACE T6 PROTEIN PRECURSOR [Streptococcus pyogenes]
	% Cvrg	82 23 100	-	93	100	66	53	32	100	51	?	S '	ò	81	77	?	5 1	S.	7				6		100	
	% Ident	38 59.		53	20	71	56	49	35	39		07	Ę	. T	26	5	91	33	36	46	58	33	51		69	29
I and I	BlastP- Prob I	8.50E-83 6.70E-19 5.80E-100		1.20E-177	2.70E-86	1.30E-36	1.10E-36	2.00E-08	1.00E-38	2.30E-09	ļ	4.40E-13	1	7.30E-45	1.30E-120		8.70E-81	9.10E-43	3.70E-34	2,30E-66	4.90E-16	1.00E-07	1.40E-20		1.20E-74	3.30E-09
	BlastP	830 227 992		1725	863	394	395	131	414	137	,	191	į	472	1187	ì	811	453	371	675	200	122	243		753	145
	aat_ English	745 226 992		1593	1071	382	477	159	447	129	;	133	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	469	1200		808	439	330	874	195	09	228		1031	61
	NCBI gi	g2632017 g3282095 g1709566		g1731017	g3023410	g2851549	g773349	g1788760	g1881234	g1722938	o .	g2634575		g3913081	g132256		g4584100	g1708643	g2829805	. 52626818	g2239294	g1001758	g2622856)	g1783243	g135566
	Position	2633-1275 198-1 1034-204		164-2198	78-1394	1481-1807	1273-750	1499-2618	1021-221	1446-1653		728-186	;	1-362	630-1962		453-950	1699-1	1821-1205	1-1083	1088-1282	1-704	863-1135		1466-2299	1001-1
	Gene Id	Bt1G1015 Bt1G1016 Bt1G1017		Bt1G1018	Bt1G1019	Bt1G1020			Bt1G1023			Bt1G1025		Bt1G1026	Bt1G1027		Bt1G1028	Bt1G1029	Bt1G1030	R+1G1031					Bt1G1035	Bt1G1036
	Contig Id	751 Bt1Gc1057 752 Bt1Gc1058 752 Bt1Gc1058		753 Bt1Gc1059 Bt1G1018	754 Bt1Gc1061 Bt1G1019	Bt1Gc1061	Bt1Gc1063	Bt1Gc1062	757 Bt1Gc1064	Bt1Gc1064		Bt1Gc1065		759 Bt1Gc1066 Bt1G1026	759 Bt1Gc1066 Bt1G1027		760 Bt1Gc1070 Bt1G1028	761 Bt1Gc1069	Bt1Gc1069	762 B#1Gc1071	762 Bt1Gc1071	763 Bt1Gc1074	Bt1Gc1072		764 Bt1Gc1072 Bt1G1035	765 Bt1Gc1073 Bt1G1036
	SEQ NO	751 752 752		753	754	754	755	756	757	757	2	758		759	759		760	761	761	<i>C9L</i>	767	763	764		764	765

-
ble
Ha

							I adic i			
SEQ ED	Contig Id	Gene Id	Position	NCBI gi	aat nap Score	BlastP Score	BlastP-	% Ident C	% Cvrg	NCBI gi description
777 778	777 Bt1Gc1087 Bt1G1059 778 Bt1Gc1088 Bt1G1060	Bt1G1059 Bt1G1060	619-1738 418-1	g2634950 g2499952	1140	1103 638	1.00E-111 1.90E-62	59 86	100 ((Z99116) similar to hypothetical proteins [Bacillus subtilis] URACIL PHOSPHORIBOSYLTRANSFERASE (UMP PYROPHOSPHORYLASE) (UPRTASE) []
778	778 Bt1Gc1088 Bt1G1061	Bt1G1061	1932-688	g729608	1744	1752	1.70E-180	80	100	SERINE HYDROXYMETHYLTRANSFERASE (SERINE METHYLASE) (SHMT) [Bacillus subtilis]
779	779 Bt1Gc1085 Bt1G1062	Bt1G1062	740-1648	g1724002	762	732	2.10E-72	20	100	HYPOTHETICAL ABC TRANSPORTER ATP-BINDING PROTEIN 2 IN GLPD-CSPB INTERGENIC REGION
779	779 Bt1Gc1085 Bt1G1063	Bt1G1063	1635-2579	g1724003	372	414	1.00E-38	30	100	[Bacillus subtilis] HYPOTHETICAL 34.9 KD PROTEIN IN GLPD-CSPB INTERGENIC REGION [Bacillus subtilis]
780	780 Bt1Gc1089	Bt1G1064	201-794	g3308998	473	516	1.60E-49	51	66	(AB015998) CBP21 precursor [Serratia marcescens]
78(780 Bt1Gc1089	Bt1G1065	1-1546	g1708084	293	431	2.50E-39	34	*	EXOCELCANASE B FACCONSON (EXOCELLOBIOHYDROLASE B) (1,4-BETA- CELLOBIOHYDROLASE B) (CBP120) [Cellulomonas
78.1	781 B+1Gc1090	R+1G1066	1-1484	o1881239	140	228	4.20E-18	33	23	fimi] (AB001488) FUNCTION UNKNOWN. [Bacillus subtilis]
781	Br1Gc1090	Br1G1067	1305-550	g1176064	427	473	5.70E-45	37	100	HYPOTHETICAL PROTEIN HI1664 []
. 8 <u>/</u>	781 Bt1Gc1090		2300-2003	g1789981	276	299	1.60E-26	54	35	(AE000433) ISI50 putative transposase [Escherichia coli]
782	2 Bt1Gc1091	Bt1G1069	634-188	g1730120	643	643	5.50E-63	∞	66	FERRIC UPTAKE REGULATION PROTEIN HUMOLOG
			1		0.7	.00	36 900 0	70	100	2 [Bacillus subtilis] STACE II SPORTII ATION PROTEIN M [Bacillus subtilis]
782	782 Bt1Gc1091	Bt1G10/0	1590-752	g380019 c2280407	100	361 124	2.50E-07	70 70	8	(AB005554) probable glucose 1-dehydrogenase [Bacillus
ó '	DUIDCI094	Dri o i o	8/1-/6/			į	£ 00E 11	76	8	subtilis]
Š Š	784 Bt1Gc1096 Bt1G1072	Bt1G1072	294-11/3	g3849/9	707	734 734	1.20E-11		37	(D64000) ABC transporter [Synechocystis sp.]
C8/	/85 Bt1Gc1095	Bt1G1073	1785-1	02293324	259	321	7.30E-29	34	89	(AF008220) LysR family transcription regulator [Bacillus
Ó			2001							subtilis]
78	785 Bt1Gc1093	Bt1G1075	1896-2252	g2635785	176	222	2.30E-18	40	90	(Z99120) similar to acyloate catabolism [Bacillus subtilis]
78	786 Bt1Gc1092		311-1	g586169	200	185	1.90E-14		37	
78	786 Bt1Gc1092	Bt1G1077	925-314	g586172	782	709	5.60E-70		9	
786	6 Bt1Gc1092		1626-946	g586171	471	473	5.70E-45	42	100	
786	6 Bt1Gc1092		2065-1622	g586170	310	321	7.30E-29		66	UREASE ACCESSORY PROTEIN UREE [Bacillus sp.]
787	7 Bt1Gc1097		1151-1	g1168442	157	300	1.20E-26	29	64	BETA-LACTAMASE PRECURSOR CEPH AI OSPORINASE) [Yersinia enterocolitica]
78	787 Bt1Gc1097 Bt1G1081	Bt1G1081	1605-1431	g2226127	261	280	1.60E-24	88	18	(Y14078) Hypothetical protein [Bacillus subtilis]
•)						

NCBI gi description	HYPOTHETICAL 138.1 KD PROTEIN IN MOLR-BGLX INTERGENIC REGION [Escherichia coli]		_		_	_	_	(AE001539) HISTIDYL-TRNA SYNTHETASE [Helicobacter pylori 199]	_	subtilis] (Z99110) similar to ribosomal-protein-alanine N-		-	horikoshii]		_	—	INTERGENIC REGION PRECURSOR [Bacillus subtilis]	beta-lactamase (EC 3.5.2.6) III precursor - Bacillus cereus []	(AF065404) pXO1-138 [Bacillus anth	-	_	8 INSERTION SEQUENCE IS232 PUTATIVE ATP-	BINDING PROTEIN [Insertion sequence 18232]				_	56 (AB000617) YeeF [Bacillus subtilis]	78 (AB000617) YeeG [Bacillus subtilis]
% Cvrg	17	51	75	79	66	66	66	72	66	83	}	100	č	3	43	51		81	8	74	10	~		3	29				
% Ident	31	32	73	33	57	52	62	35	51	26	ì	49	į	80	28	45		86	2	83	79	91	ŗ	Ć	30	89	71	59	41
BlastP. Prob	1.40E-17	4.20E-26	1.80E-89	1.00E-55	4.60E-43	1.70E-45	5.70E-22	3.90E-39	2.90E-41	1 40E-11		1.80E-82		2.40E-46	1.50E-09	7.80E-09		7.50E-107	7.30E-29	5.20E-202	6.50E-25	5.10E-05	1000	2.20E-29	2.80E-37	1.20E-33	1.40E-107	4.30E-24	4.40E-86
BlastP Score	228	295	893	553	455	478	256	418	438	158	2	827	•	486	139	132		1057	321	1955	294	101	è	370	411	366	1064	276	861
aat B nap S	192	211	991	493	434	469	247	382	435	116	211	943	,	491	95	86		1059	321	2092	324	101	,	243	358	349	1063	431	847
NCBI gi	g2507582	g2634067	g72992	g2688588	g1175629	g2632232	g2632231	g4155714	g2633560	C)6335/13	ECC.CO.23	g3258354	,	g1730265	g2619009	g1731301	6	g67770	g4894353	g3914289	g2558947	g2497392		g79959	g1694898	g2635198	g2635199	g2415743	g2415744
Position	2536-745	699-1	782-1	1-1250	1740-1311	608-93	1310-1077	942-1	1274-1750	1 451	174-1	2172-860		530-1	289-1	881-699))	2084-2868	985-1275	1-1452	1454-1695	Jan-66		944-309	1192-2078	563-230	857-1738	1-434	550-1819
Gene Id	Bt1G1082	Bt1G1083	Bt1G1084						Bt1Gc1106 Bt1G1090	D+1C1001		Bt1G1092		Bt1G1093	Bt1G1094	Bt1G1095		Bt1G1096			Bt1G1099			B t1G1101	Bt1G1102				
Contig Id	Bt1Gc1098 Bt1G1082	Bt1Gc1099							Bt1Gc1106	7006	/94 BIIGGI093	794 Bt1Gc1095		795 Bt1Gc1101	796 Rt1(3c1110	796 Bt1Gc1110		796 Bt1Gc1110	797 Bt1Gc1111	798 Bt1Gc1109	798 Bt1Gc1109	Bt1Gc1108		799 Bt1Gc1108 Bt1G1101	799 Bt1Gc1108	800 Bt1Gc1112	800 Bt1Gc1112	801 Bt1Gc1113	Bt1Gc1113
SEQ ID	788	789	790	791	791	792	792	793	793	Š	<u>¥</u>	794	·	795	706	796		796	797	798	798	799		799	799	800	008	801	801

SEQ D Contig Id	Gene Id	Position	NCBI gi	aat nap Score	BlastP Score	BlastP- Prob I	% Ident C	% Cvrg	NCBI gi description
~ 3	Bt1Gc1115 Bt1G1107	644-1195	g2266414	681	681	5.20E-67	70	66	(Y10549) N-formylmethionylaminoacyl-tRNA deformylase [Bacillus stearothermophilus]
807 B+1Gc1115	Br1G1108	1790-1259	g2633826	427	452	9.60E-43	48	89	(Z99111) similar to hypothetical proteins [Bacillus subtilis]
802 BriGe1119		1053-1	23688818	744	009	3.40E-71	45	95	(AF084104) hypothetical protein [Bacillus firmus]
804 Br1Gc1116		1637-1	24894306	480	612	1.10E-59	43	42	(AF065404) pXO1-90 [Bacillus anthracis]
805 Bt1Gc1118		1-1457	g2833392	1119	1184	2.60E-120	47	87	HYPOTHETICAL 61.5 KD PROTEIN IN ADEC-PDHA
)						INTERGENIC REGION [Bacillus subtilis]
806 Bt1Gc1117	, Bt1G1112	25-738	g141397	846	758	3.60E-75	70	100	HYPOTHETICAL OXIDOREDUCTASE IN KIP-PELB INTERGENIC REGION (ORF238) [Bacillus subtilis]
806 Bt1Gc1117	, Bt1G1113	1032-1790	g)12961	541	501	6.20E-48	42	88	AMINOGLYCOSIDE 6-ADENYLYLTRANSFERASE
807 B+1G-1125	; Pr1G1114	1-1310	/p1881343	687	549	5.10E-53	20	87	(AB001488) FUNCTION UNKNOWN, SIMILAR
90/ Dilocitz.							1	. !	PRODUCT IN E. COLI. [Bacillus subtilis]
807 Bt1Gc1125 Bt1G1115	5 Bt1G1115	932-1416	g121839	240	555	1.20E-53	65	3.7	GLUCANASE) (CELLULASE) (ENDO-K) [Bacillus sp.]
808 Bt1Gc1122 Bt1G1116	Bt1G1116	510-1	g2635805	521	535	1.50E-51	61	81	(Z99120) similar to two-component response regulator [Bacillus subtilis]
808 Bt1Gc1122 Bt1G1117	2 Bt1G1117	1562-487	g2635806	704	634	5.00E-62	45	100	(Z99120) similar to two-component sensor histidine kinase
			,	,			7	9	[Bacillus subtilis]
808 Bt1Gc1122 Bt1G1118	2 Bt1G1118	2289-1565	g2635807	286		6.00E-18	31	3	
809 Bt1Gc1120) Bt1G1119	1616-215	g1731094	1894	1603	1.00E-164	78	100	
810 Br1Gc1124	4 Br1G1120	1-1041	g2337813	1000	839	9.40E-84	57	62	(Y13937) YloV protein [Bacillus subtilis]
810 Bt1Gc1124	4 Bt1G1121	1335-1941	g3914611	623	637	2.40E-62	28	30	ATP-DEPENDENT DNA HELICASE RECG (Bacillus
00117014 10111.0144 110	1 74171177	1427 250	23338838	313	527	1 10E-50	38	8	-
811 BUGG1121 812 Bt1Gc1126	6 Bt1G1123	1385-1	g586703	283		8.40E-20	46	33	
812 Bt1Gc1126 Bt1G1124	6 Bt1G1124	1599-870	g2499154	503	514	2.60E-49	42	71	HYPOTHETICAL 37.7 KD PROTEIN IN GRPA subscious Constitution (ORFA). Recipility firmus!
813 Bt1Gc112	Bt1Gc1123 Bt1G1125	970-1	g3122129	1287	1223	1.90E-124	73	95	
813 Bt1Gc112	Bt1Gc1123 Bt1G1126	1644-1089	g3183497	480	207	1.40E-48	99	94	
814 Bt1Gc1130 Bt1G1127	0 Bt1G1127	503-225	g2128793	115	159	1.10E-11	36	66	

							-			
SEQ EQ	Contig Id	Gene Id	Position	NCBI gi	aat_ nap Score	BlastP Score	BlastP- Prob	% Ident (% Cvrg	NCBI gi description
2									z -	[Methanococcus jannaschii]
814	Bt1Gc1130	Bt1G1128	1026-1942	g1076106	369	379	6.40E-35	32	% %	schC protein - Streptomyces halstedii []
815	Bt1Gc1132	Bt1G1129	1159-938	g2049348	1/	5	3.30E-10	ຄ	S	(historial)
815	Bt1Gc1132	Bt1G1130	1435-1	g2634950	84	130	7.50E-08	33	23	(Z99116) similar to hypothetical proteins [Bacillus subtilis]
816	Bt1Gc1133	Bt1G1131	1-1026	g1708267	842	891	2.90E-89	53	84	FLAVOHEMOPROTEIN (HAEMOGLOBIN-LIKE
									!	PROTEIN) (FLA VOHEMOGLOBIN) [Bacillus suotins]
817	817 Bt1Gc1128	Bt1G1132	1-855	g2465008	344	471	9.30E-45	42	11	(AJ001445) ripening-induced protein [Hagaria Vesca]
818		Bt1G1133	147-1600	g2493592	647	572	1.90E-55	40	100	HYPOTHETICAL 43.7 KD PROTEIN IN NPKE-PTCA
								(,	INTERGENIC REGION [Bacillus suoulis]
818	818 Bt1Gc1131	Bt1G1134	859-1963	g3913213	150	245	2.50E-20	87	5	5-CHLONOBENZOATE 5,4-ELOATE ELATED OXYGENASE SUBUNIT [Alcaligenes sp.]
819	Bt1Gc1129	Bt1G1135	324-2325	g225714	1796	1388	7.40E-167	54	98	urease [Canavalia ensiformis]
820	820 Bt1Gc1135	Bt1G1136	1859-1	g1213021	578	477	2.20E-45	44	63	(X84710) ORF492, surface antigen gene [Methanosarcma
ŝ)				,	,	mazei]
821	821 Bt1Gc1136 Bt1G1137	Bt1G1137	306-1	g3257514	146	142	4.30E-09	34	25	(AP000005) 403aa long nypometical macromeserinas determinant [Pvrococcus horikoshii]
	D41Cc1126	D+1C1138	1746-1922	02633135	132	135	3.80E-09	47	86	(Z99108) yfjU [Bacillus subtilis]
170			1018-1	2724051	813	•	9.30E-77	46	91	(AJ000758) hypothetical protein [Bacillus megaterium]
822	5 BUIGGI 140		1-273	01172978	364		2.00E-33	79	75	50S RIBOSOMAL PROTEIN L18 [Bacillus subtilis]
670		B+1G1141	208-705	01173265	748		4.10E-74	90	66	30S RIBOSOMAL PROTEIN S5 (BS5) [Bacillus subtilis]
623		BriG1142	812-997	g4512422	221		8.60E-19	73	86	(AB017508) rpmD homologue (identity of 82% to B.
70		2010117		0						subtilis) [Bacillus halodurans]
823	3 Bt1Gc1143	Bt1G1143	1028-1139	g4512423	158	96	5.10E-05	95	25	(AB017508) rplO homologue (identity of 84% to B. subtilis a Racillus halodurans)
ć	074 D+1C-01138	D+1G1144	775-1	03688825	638	212	1.40E-66	51	80	(AF084104) NatA [Bacillus firmus]
47 0	+ DilOCI138 DilO11++	Br1G1145	1103-1609	g1944618	285		1.70E-29		61	(Y12602) acid phosphatase [Streptococcus equisimilis]
825	5 Bt1Gc1142	Bt1G1146	1017-1	g2851670	952		6.40E-85		78	HYPOTHETICAL 49.0 KD PROTEIN IN BLTD-TRKA PATTED CENIC PECION (Recillus subtilis)
					ì		1 705 1	ç	7	(708268) hymothetical profein Rv1686c [Mycobacterium
82	826 Bt1Gc1134	Bt1G1147	1-369	g2326729	<u>cc1</u>	0/1	1./UE-13		<u> </u>	(250200) II/Pomencial process [255] tuberculosis]
82	826 Bt1Gc1134	Bt1G1148	442-1047	g1770039	126	91 169	9.40E-13		66	
826	6 Bt1Gc1134	Bt1G1149	1709-1872	g2621999	128	145	1.20E-09	47	17	(AE000866) photoreactivation-associated protein [Methanobacterium thermoautotrophicum]
82,	827 Br1Gc1141 Bt1G1150	Bt1G1150	387-749	g2633753	294	358	8.80E-33		58	_
9	, Det cont.	ni citi	:	0						

NCBI gi description	subtilis]	(Z99105) ycbO [Bacillus subtilis]		_	tuberculosis] MUTATOR MUTT PROTEIN (7,8-DIHYDRO-8-	DGTPASE) (DGTP PYROPHOSPHOHYDROLASE)	_ •	•	phosphandynanistrase [wycobaccinum repract] (Z97025) ylaI [Bacillus subtilis]		_	(AL049754) putative oxidoreductase [Streptomyces	coelicolor]	_	_	[Rattus norvegicus]		_	_			_	polymerase [Thermotoga maritima]				(Z99105) similar to thioredoxin reductase [Bacillus subtilis]
% Vrg	00	8	100	100	66		82	43	57	94	66	100		100	71		95	95	66	66	30	7	80	5 5	3	16	92
% % Ident Cvrg	1	33	52	34	34		43	34	09	66	66	38		33	36		29	30	42	29	89	32	90	3 6	Ç	96	41
BlastP- Prob Io	76 308 7	4.80E-23 8.40E-12	6.60E-99	8.50E-35	8.80E-17		5.00E-30	9.20E-15	6.10E-09	6,10E-160	1.70E-61	2.60E-49		3.30E-26	1.30E-54		3.20E-35	2.40E-30	8.70E-26	1.60E-40	1.20E-69	2.10E-09	7C 300 C	2.30E-27	0.90E-1/	1.10E-34	7.30E-61
BlastP Score	300	160	982	377	207		332	189	133	1558	629	514	•	296	564		381	335	292	431	902	152	200	9 6	9 07	376	623
aat_Bl nap_Score		217	946	334	118		311	140	107	1561	629	491		248	504		294	321	271	510	817	72	ò	900	707	360	578
NCBI gi	44.500	g2032344 c2622544	g2032344 9132565	g2117240	g730088		g585393	g4154045	97774768	9417314	g4584136	g4753870	0	g1653142	g3913969)	g1881291	g166159	g4126639	g1881290	g2632778	g3930535		g2493/04	g2649993	g225559	g2632613
Position	0	479-39	2448-1366	230-988	1696-1216		2299-1851	383-1	1805-1927	944-1	1476-1108	985-170		1668-1036	2652-1704		990-1	993-1	1451-1011	480-31	1566-860	269-1		705-669	1106-1816	1991-2222	1-941
Gene Id	,	Bt1G1151	B(101152 R(101153	Bt1G1154	Bt1G1155		Bt1G1156	Bt1G1157	D+1C1158					Bt1G1162	Bt1G1163		Bt1G1164	Bt1G1165	Bt1G1166		Bt1G1168			Bt1G1170	Bt1G1171	Bt1G1172	Bt1G1173
Contig Id			B(1)G(1)45	Bt1Gc1150	830 Bt1Gc1150 Bt1G1155		830 Bt1Gc1150 Bt1G1156	Bt1Gc1154 Bt1G1157	D41 G011 &	Bt1 Gc1153	Bt1Gc1153	Bt1Gc1146		833 Bt1Gc1146 Bt1G1162	Bt1Gc1146 Bt1G1163		Bt1Gc1152	Bt1Gc1152	Bt1Gc1152	Bt1Gc1147	Bt1Gc1147	Bt1Gc1148		836 Bt1Gc1148 Bt1G11/0	836 Bt1Gc1148	836 Bt1Gc1148 Bt1G1172	837 Bt1Gc1151 Bt1G1173
SEQ ID		828	878	830	830		830	831	6	931	832	833		833	833) 	834	834	834	835	835	836)	830	836	836	837

eg Recogni

SEQ NO NO	Contig Id	Gene Id	Position	NCBI gi	aat_ nap nap Score	BlastP Score	BlastP- Prob	% Ident C	% Cvrg	NCBI gi description GENERAL, STRESS PROTEIN 20U (GSP20U) (DPS
838	838 Bt1Gc1156 Bt1G1174	Bt1G11/4	420-1	g518331/	4	† †	7.707.0	3	, ,	PROTEIN HOMOLOG) [Bacillus subtilis]
838	838 Bt1Gc1156 Bt1G1175	Bt1G1175	670-1715	g2633742	607	453	7.50E-43	41	100	(Z99111) similar to hypothetical proteins from D. submis [Bacillus subtilis]
839	839 Bt1Gc1157 Bt1G1176	Bt1G1176	1-298	g1709688	330	338	1.20E-30	65	26	PUTATIVE PEPTIDE METHIONINE SULFOXIDE REDUCTASE (PEPTIDE MET(0) REDUCTASE) [Bacillus subtilis]
840	840 Bt1Gc1160 Bt1G1177	Bt1G1177	680-1	g2493592	302	256	9.40E-22	34	28	HYPOTHETICAL 43.7 KD PROTEIN IN NPRE-PYCA INTERGENIC REGION [Bacillus subtilis]
840	840 Bt1Gc1160 Bt1G1178	Bt1G1178	1090-812	g2224773	352	352	3.80E-32	73	66	(Z97025) ylaN [Bacillus subtilis]
840	840 Bt1Gc1160 Bt1G1179	Bt1G1179	1249-1740	g2224771	265	296	3.30E-26	37	66	(Z97025) ylaL [Bacillus subtilis]
840	Bt1Gc1160 Bt1G1180	Bt1G1180	1995-1778	g2224770	231	254	2.70E-21	71	16	(297025) product similar to E. con ruon protein [Davinus subtilis]
841	841 Br1Gc1163 Br1G1181	Br1G1181	1-1488	g2226166	1160	1066	4.00E-110	46	85	(Y14080) hypothetical protein [Bacillus subtilis]
842	842 Bt1Gc1161 Bt1G1182	Bt1G1182	160-1	g4512355	149	185	1.90E-14	69	41	(AB011836) similar to B.subtilis ywgB gene(27%-1dentity) [Bacillus halodurans]
842	842 Bt1Gc1161 Bt1G1183	Bt1G1183	2389-1016	g2245640	1402	1350	6.70E-138	57	100	(AF006075) dihydrolipoamide dehydrogenase [Bacillus enhilis]
842	842 Bt1Gc1161 Bt1G1184	Bt1G1184	2983-2411	g2633132	544	548	6.50E-53	55	48	(Z99108) acetoin dehydrogenase E2 component (dihydrolipoamide acetyltransferase) [Bacillus subtilis]
843	843 Bt1Gc1159	Bt1G1185	1132-221	g2633815	763	707	9.20E-70	49	100	(Z99111) similar to thiamin biosynthesis [Bacillus subtilis]
844	844 Bt1Gc1162	Bt1G1186	1160-189	g2612898	812	711	3.50E-70		100	(AF015825) YisP-like protein [Bacillus subtilis]
845	845 Bt1Gc1164		1-251	g2635785	156	166	2.00E-12	41	63	(Z99120) similar to acyloate catabolism [Bacillus subtilis]
846	Bt1Gc1165		1-856	g3328409	314	281	2.50E-23	30	58	(AE001277) Isoleucyl-tRNA Synthetase [Chlamydia trachomatis]
846	846 Bt1Gc1165 Bt1G1189	Bt1G1189	1-853	g3257481	229	237	1.30E-18	29	26	
. 847	847 Bt1Gc1168	Bt1G1190	586-1	24514331	135	207	8.80E-17	27	73	
847	Bt1Gc1168	Bt1G1191	1324-744	g466186	451	492	5.60E-47	20	66	
847	847 Bt1Gc1168 Bt1G1192	Bt1G1192	2223-1473	g466185	738	869	8.20E-69	28	100	
848	848 Bt1Gc1171 Bt1G1193	Bt1G1193	1192-1	g1711644	244	341	8.40E-31	39	37	PROBABLE ASPARAGINYL-TRNA SYNTHETASE (ASPARAGINETRNA LIGASE) (ASNRS) [Synechocystis sp.]

							4 22 4			
SEQ ED	Contig Id	Gene Id	Position	NCBI gi	aat_nap	BlastP Score	BlastP- Prob	% Ident (% Cvrg	NCBI gi description
848	848 Bt1Gc1171 Bt1G1194	Bt1G1194	1570-881	g3123292	899	909	5.90E-59	55	78	PHENYLALANYL-TRNA SYNTHETASE BETA CHAIN (PHENYLALANINETRNA LIGASE BETA CHAIN) (PHERS) [Bacillus subtilis]
849	849 Bt1Gc1172 Bt1G1195	Bt1G1195	Jan-88	g2735510	97	106	4.50E-06	<i>L</i> 9	53	(U96108) (3R)-hydroxymyristoyl acyl carrier protein dehydrase homolog [Staphylococcus carnosus]
849	849 Bt1Gc1172 850 Bt1Gc1173	Bt1G1196 Bt1G1197	439-1116 1856-1	g1495280 g730965	568 2463	599 2273	2.50E-58 3.50E-237	51	89	(Z71928) hypothetical protein [Bacillus subtilis] DNA TOPOISOMERASE I (OMEGA-PROTEIN) (RELAXING ENZYME) (UNTWISTING ENZYME) (SWIVELASE) [Bacillus subtilis]
850	Bt1Gc1173	Bt1G1198	2540-1293	g3915864	407	428	3.40E-40		63	SMF PROTEIN [Bacillus subtilis]
851	Bt1Gc1169		198-1	g448837	203	Ì	3.30E-17	59	33	superoxide dismutase [Bacillus stearothermophilus]
851	Bt1Gc1169	Bt1G1200	500-1501 351-34	g2443235 g1881265	376	380	1.30E-102 4.10E-35	28	8	(AB001488) PROBABLE THIOREDOXIN. [Bacillus
				14110	Ę		7 00E-08	42	37	subtilis] HYPOTHETICAL P20 PROTEIN [Bacillus licheniformis]
852	Bt1Gc1175	Bt1G1202	2147-609	g141180	12.1	13.1	1.00E-08		2	
823	Bt1Gc11/8 Bt1G1203	B(1G1203	984-7096	81403422 o2649155	155		2.40E-21	32	2	(AE001006) aspartate aminotransferase (aspC)
6		D1101204	0/07-10/	2017.00						[Archaeoglobus fulgidus]
854	Bt1Gc1176 Bt1G1205	Bt1G1205	857-1	g2633600	484	487	1.90E-46	53	59	(Z99110) N-acetylmuramoyl-L-alanine amidase [Bacillus subtilis]
854	854 Bt1Gc1176 Bt1G1206	Bt1G1206	1276-884	g141088	185	194	2.10E-15	34	66	HYPOTHETICAL 14.9 KD PROTEIN IN NAGH
	• • • • • • • • • • • • • • • • • • •	i d		7000	010	760	2 500 76	40	100	3'REGION (ORFD) [Clostriatum perringens] (V14081) hynothetical protein [Bacillus subtilis]
855	855 Bt1Gc1177	Bt1G1207	1634-417	g222618/ c2226188	818 878		2.30E-75 2.80E-75		92	(Y14081) hypothetical protein [Bacillus subtilis]
258	856 Br1Gc1182		815-1545	g3845215	48		0.72		7	(AE001402) hypothetical protein [Plasmodium falciparum]
857	Bt1Gc1183		40-1492	g2635246	1379	1230	3.50E-125		100	(Z99118) similar to sodium/proton-dependent alanine carrier protein (Bacillus subtilis)
750	7 B+11Gc1183	B+1G1211	1617-1993	92635768	358	306	2.90E-27	55	66	(Z99120) yurZ [Bacillus subtilis]
857	7 Bt1Gc1183		2404-2210	g2337807	70		9.90E-07		22	(Y13937) YloQ protein [Bacillus subtilis]
858	3 Bt1Gc1180		1-641	g2635801	855		3.00E-87	_	46	(Z99120) fumarate hydratase [Bacillus subtilis]
829	9 Bt1Gc1184		2223-695	g3258180	537	702	3.10E-69	35	100	(AP000007) 482aa long hypothetical D-nopalme dehydrogenase [Pyrococcus horikoshii]
)98	860 Bt1Gc1185 Bt1G1215	Bt1G1215	373-1	g4584100		228	5.30E-19		74	
98	860 Bt1Gc1185	Bt1G1216	1568-674	g121839	1279	1268	3.30E-129	8	2	ENDOGLUCANASE PRECURSOR (ENDO-1,4-BETA-GLUCANASE) (CELLULASE) (ENDO-K) [Bacillus sp.]

	ption	C REDUCTASE IRON- ON-SULFUR PROTEIN)	C REDUCTASE acillus subtilis]	C REDUCTASE [Bacillus subtilis]	rotein [Arthrobacter	[Bacillus cereus]	inant [Streptococcus	tor (TetR/AcrR family)	ıcillus subtilis]	;	a borgpetersenii]		TEIN 3 PRECURSOR	Escherichia colij	roteins [Bacillus subtilis]	105 [Haemophilus	ASE (METHIONINE	Ilus subtilis]	r nodosus]	s licheniformis]	TEIN IN COID-KDUD RSOR [Bacillus subtilis]	rate-independent	is]	in [Streptomyces	
	NCBI gi description	MENAQUINOL-CYTOCHROME C REDUCTASE IRON-SULFUR SUBUNIT (RIESKE IRON-SULFUR PROTEIN) [Bacillus stearothermophilus]	MENAQUINOL-CYTOCHROME C REDUCTASE CYTOCHROME B SUBUNIT [Bacillus subtilis]	MENAQUINOL-CYTOCHROME C REDUCTASE CYTOCHROME B/C SUBUNIT [Bacillus subtilis]	(AF043609) aluminum resistance protein [Arthrobacter	viscosus] REGULATORY PROTEIN GLNR [Bacillus cereus]	_		[Aquifex aeolicus] (Z94043) hypothetical protein [Bacillus subtilis]	_	_		_		_	, ,	INTIUGEIZAE KU]				HYPOTHETICAL 43.5 KD PROTEIN IN COLD-KDUD INTERGENIC REGION PRECURSOR [Bacillus subtilis]	-	phosphogrycerate mutase [Daemus megaconana) (Z99121) enolase [Bacillus subtilis]		Frozograpa
	% Cvrg	70	100	100	100	66	100	66	Ξ	100	.69	100	100	38	22	100	5	76	30	66	100	54	73	58	
	% Ident (73	8	73	78	95	23	22	53	8	31	30	43	27	47	25	ī	ţ	43	34	69	78	78	38	
T GIOTO T	BlastP- Prob Id	6.40E-46	1.10E-114	1.10E-96	7.80E-183	6.50E-53	5.50E-24	6.60E-12	7.10E-10	4.40E-189	2.50E-35	1.00E-38	7.10E-47	4.70E-34	2.60E-33	2.30E-18	1000	9.00E-240	4.30E-24	9.00E-08	3.40E-143	8.60E-106	2.10E-127	4.80E-73	
	BlastP Score	482	1131	961	1774	548	275	161	150	1833	382	414	491	370	363	222		7311	276	122	1400	1047	1251	738	
	aat_B] nap S Score	482	1120	1033	1774	581	271	127	124	1932	320	338	496	355	324	95		4/67	208	111	1427	1132	1282	718	
	NCBI gi	g2500507	g1168648	g1168649	g2827439	g140715	g1800301	g2982980	01945675	£1303913	g4234795	g2116764	g1170788	g2506097	g2633171	g2495571	4	09098cg	g1002992	g2160199	g1730958	g4589056	07635903	g2815318	
	Position	1-360	367-1037	1084-1848	70-1335	1526-1909	1413-185	2109-1564	1-151	688-2037	1689-1	1608-721	25-807	823-1210	1-472	780-1594	:	452-2266	1-682	1001-1291	584-1735	1-830	864.1817	1-1516	
	Gene Id	Bt1G1217	Bt1G1218	Bt1G1219	Bt1G1220	Bt1G1221		Bt1G1223	B+1G1224				Bt1G1228	Bt1G1229	Bt1G1230	Bt1G1231		Bt1G1232	Bt1G1233	Bt1G1234		Bt1G1236	D+1C1237	Bt1G1238	
-	Contig Id	861 Bt1Gc1186 Bt1G1217	861 Bt1Gc1186 Bt1G1218	861 Bt1Gc1186 Bt1G1219	862 Bt1Gc1188	862 Bt1Gc1188	Bt1Gc1192	863 Bt1Gc1192 Bt1G1223	964 B+1G01180	865 Br1Gc1190	866 Br1Gc1193	866 Bt1Gc1193	867 Bt1Gc1191	867 Bt1Gc1191	868 Bt1Gc1195	3 Bt1Gc1195		869 Bt1Gc1196 Bt1G1232	870 Bt1Gc1198	870 Bt1Gc1198	1 Bt1Gc1200	872 Bt1Gc1199	22 D+1G 0011201744 CE0	873 Bt1Gc1197	
	SEQ ID	861	861	861	862	862	863	863	798	865	998	866	867	867	898	898		\$98	870	870	871	872	6	873	

	NCBI gi description	CHLORAMPHENICOL ACETYLTRANSFERASE (CAT) [Clostridium butyricum]	HYPOTHETICAL 21.6 KD PROTEIN IN ILVA 3'REGION IBacillus subtilis	(AL031515) hypothetical protein SC5C7.08 [Streptomyces coelicolor]	(Z79580) putative ORF [Bacillus subtilis]	(Z92953) periplasmic substrate-binding protein [Bacillus martis]	TRANSALDOLASE-LIKE PROTEIN (20 KD PHOSPHOPROTEIN ORFU) (CSI9) [Bacillus subtilis]	(AF102174) glycine betaine transporter BetL [Listeria	monocytogenes] (Z99108) similar to hypothetical proteins from B. subtilis [Bacillus subtilis]	(Z99111) similar to hypothetical proteins [Bacillus subtilis]	ribosomal protein L7/L12 - Bacillus subtilis []	HYPOTHETICAL 22.5 KD PROTEIN IN KPLL-KPOB	INTERGENIC REGION (F29) (ON 25) [SEGMENT SECOND] DNA-DIRECTED RNA POLYMERASE BETA CHAIN	(TRANSCRIPTASE BETA CHAIN) (RNA POLYMERASE	BETA SUBUNIT) [Bacillus subtilis]	30S RIBOSOMAL PROTEIN S4 (BS4) [Bacilius suoulis]	METHIONINE GAMMA-L'I ASE (L-METHIOMINASE) [Peendomonas mitida]	(U63928) L1 protein [Bacillus cereus]	(U24657) saframycin Mx1 synthetase B [Myxococcus	xanthus] (793940) unknown [Bacillus subtilis]	(M57689) sporulation protein [Bacillus subtilis]	(D10594) chitinase D precursor [Bacillus circulans]	MEMBRANE-BOILIND PROTEIN LYTR [Bacillus subtilis]	IIDP-GLIJCOSE 4-EPIMERASE	(GALACTOWALDENASE) (UDP-GALACTOSE 4-EPIMERASE) [Bacillus subtilis]	
	مخ	23 CHI [Clo	35 HYI IBac	74 (AL		100 (Z9) (29)	36 TRA	100 (AF	moi 67 (Z9 [Ba	35 (Z9	85 ribo	100 HY					93 ME	186 G	42 (Ü.	xar 74 (79		_				
	nt Cvrg	53 2	44	45		58 1(74	48 10	32	62		64	92			8 2	45	39 1	42	73	£ &	3.5	, ₁		}	
	% Ident								60	35	11	52	26) 		%	98-	38	45	77	ခု ရ	2 2	. 09	စု ဗ	3	
1 2121	BlastP- Prob	2.20E-11	1.70E-13	7.30E-61	1.80E-09	2.00E-90	2.40E-21	2.80E-116	3.80E-09	5.20E-35	2.20E-11	1.30E-52	1 30E-56			1.70E-84	5.60E-86	3.50E-38	6.80E-145	2 20E	00-305.2 0 60E-00	0.70E-19	0.40E 68	9.40E-00	777	
	BlastP Score	156	176	623	142	905	250	1146	135	379	156	545	403)		846	860	409	1416	363	6/0	923	667	1042	101	
	aat_B nap_S	142	167	550	122	923	241	1222	11	408	358	878	277	5		846	804	511	1336	i i	111	150) S	858	1040	
	NCBI gi	g1345692	g1730937	g3559998	g1620923	g1894757	g141471	g4835822	g2633180	g2633808	g71129	g586914	000000	87000 S		g133949	g1708975	01945051	o1171128		g1934838	g551/2/	g3821/9/	g400209	g1/30193	
	Position	1993-2142	207-1	724-1475	2186-1862	96-1016	1057-1257	65-1612	1355-1	1656-1236	1-308	388-984	3770 0001	C+01-6/71		575-1	963-2056	1342-218	1-2170		1-1008	1852-1211	3163-681	959-39	1/82-1086	
	Gene Id		Bt1G1240	Bt1G1241				Bt1G1245	Bt1G1246	B+1G1247	Bt1G1248	Bt1G1249		BUG1230		Bt1G1251	Bt1G1252	D+1/C1752	B+1G1254						: Bt1G1259	
	EQ Contig Id	40 873 Bt1Gc1197 Bt1G1239	874 Bt1Gc1174 Bt1G1240	874 Bt1Gc1174 Bt1G1241	874 Bt1Gc1174 Bt1G1242	875 Bt1Gc1202	875 Bt1Gc1202 Bt1G1244	876 Bt1Gc1205 Bt1G1245	877 Bt1Gc1204 Bt1G1246	977 D+1 Gc1204	878 Bt1Gc1206	878 Bt1Gc1206		8/8 BUIGGIZUO BUIGIZZU		879 Bt1Gc1207 Bt1G1251	879 Bt1Gc1207 Bt1G1252	000 D41C-1700 D41C1753	880 Bt1Gc1209	001 DITTOTT	882 Bt1Gc1210	882 Bt1Gc1210	883 Bt1Gc1211		884 Bt1Gc1212	
	SEQ ID	873	87,	728	87,	87.	87.	87	. .	0	0 0	& 6 6	į	×		8	8	Ġ	8 8	8	∞	※	∞	≈	∞	

		٠				Table 1			
						Table			
SEQ ID Contig Id NO	Gene Id	Position	NCBI gi	aat nap Score	BlastP Score	BlastP. Prob	% Ident (% Cvrg	NCBI gi description
885 Bt1Gc1215 Bt1G1260	Bt1G1260	1-351	g1176955	270	242	3.60E-20	43	29	HYPOTHETICAL 45.8 KD PROTEIN IN ACDA-NARI NATER GENIC PEGION (Becilius cubtilis)
885 Bt1Gc1215 Bt1G1261	Bt1G1261	387-1493	g1176954	261	302	7.60E-27	59	32	HYPOTHETICAL 36.9 KD PROTEIN IN ACDA 5/REGION (Pacilles subtilis)
885 Bt1Gc1215 Bt1G1262	Bt1G1262	1493-787	g225559	639	919	1.80E-66	85	33	ORF IS231C [Bacillus thuringiensis]
886 Bt1Gc1216 Bt1G1263	Bt1G1263	881-222	g544315	423	346	1.60E-31	38	100	FLAGELLAR BIOSYNTHETIC PROTEIN FLIP [Bacillus
886 Bt1Gc1216 Bt1G1264	Bt1G1264	2155-1333	g4322005	110	166	2.00E-12	26	66	subtilis] (AF069392) polar flagellar switch protein [Vibrio
886 Bt1Gc1216 Bt1G1265	Bt1G1265	2659-1645	g120344	261	362	3.30E-33	27	100	parahaemolyticus] FLAGELLAR MOTOR SWITCH PROTEIN FLIM
887 Bt1Gc1214 Bt1G1266	Bt1G1266	394-1	g1730930	175	238	4.60E-20	36	89	[Bacillus subtilis] HYPOTHETICAL 23.7 KD PROTEIN IN ILVD-THYB
887 B+1G-1214 B+1G1267	B+1G1267	7300.1875	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	700	706	1 30E 47	2	5	INTERGENIC REGION [Bacillus subtilis]
888 Bt1Gc1217 I	Bt1G1268	1161-278	g4104606	485	526	1.40E-50	37	7 52	(AF036967) putative histidine kinase [Lactobacillus sakei]
	Bt1G1269	2083-1812	g4481749	200	223	1.80E-18	45	35	(AF007865) BacR [Bacillus licheniformis]
889 Bt1Gc1219 I	Bt1G1270	1455-1	g1169981	1362	1314	4.40E-134	54	94	GLUCONOKINASE (GLUCONATE KINASE) [Bacillus
890 Bt1Gc1222 B	Bt1G1271	69-1463	91352421	795	831	6.60E-83	39	100	licheniformis] MENA OLINONE-SPECIFIC ISOCHORISMA TE
					;		3)) (SYNTHASE [Bacillus subtilis]
891 Bt1Gc1224 Bt1G1272	Bt1G1272	1261-3034	g1731038	198	143	1.10E-09	48	40	HYPOTHETICAL 28.3 KD PROTEIN IN COMGG-SINR INTERGENIC PECION (Becilius cultilic)
891 Bt1Gc1224 Bt1G1273	Bt1G1273	2251-1925	g134504	354	342	4.40E-31	<i>L</i> 9	66	SINK PROTEIN [Bacillus subtilis]
892 Bt1Gc1220 Bt1G1274	Bt1G1274	1-803	g1171678	973	920	2.50E-92	20	53	NADH DEHYDROGENASE SUBUNIT 5 (NADH-
									UBIQUINONE OXIDOREDUCTASE CHAIN 5) [Bacillus subtilis]
892 Bt1Gc1220 Bt1G1275	Bt1G1275	1043-3313	g2632452	2706	2610	2.00E-271	69	100	(Z99104) ybcD [Bacillus subtilis]
893 Bt1Gc1223 Bt1G1276	Bt1G1276	1926-1	g3122874	398	501	6.20E-48	34	71	D-3-PHOSPHOGLYCERATE DEHYDROGENASE
803 B+1Gc1223 B+1G1277	R+1G1277	2205_1123	93660126	051	067	5 30E-07	9	5	(PGDH) [Methanococcus jannaschii]
	1770	777	E 2000140	100		0.3000	3	3	Subsp. Alkalophilus []
894 Bt1Gc1221 Bt1G1278	Bt1G1278	121-2103	g730002	1481	1259	2.90E-128	46	100	METHYL-ACCEPTING CHEMOTAXIS PROTEIN MCPA
895 Bt1Gc1213 Bt1G1279	Bt1G1279	1607-957	g586859	782	785	5.00E-78	65	100	(H1) [Bacillus subtilis] HYPOTHETICAL 25.4 KD PROTEIN IN SERS-DNAZ INTERGENIC REGION [Bacillus subtilis]

_	
Table	

NCBI gi description	HYPOTHETICAL 24.1 KD PROTEIN IN SERS-DNAZ INTERGENIC REGION [Bacillus subtilis]		HYPOTHETICAL 9.4 KD PROTEIN IN SODA-COMGA INTERGENIC REGION (Bacillus subtilis)	COMG OPERON PROTEIN 1 [Bacillus subtilis]		_	_		Influentate Ruj (Z99105) similar to transcriptional regulator (AraC/XylS		_			COMG OPERON PROTEIN 4 PRECURSOR [Bacillus	subtilis] COMG OPERON PROTEIN 3 PRECURSOR [Bacillus				•	typhimurium] /799113) vmaF [Bacillus subtilis]	_	SIMILAR PRODUCT IN MYCOBACTERIUM LEPRAE.	[Bacillus subtilis]						
% Cvrg	100	66	66	97	22	100	49	4	39		37	28	66	66	66	İ	84	76	17	100	2	~	89	7.6	1	77	100	201	3
% Ident	50	53	63	56	80	78	74	43	35		53	47	45	31	43	;	32	23	4	7	36		ζ	1 6	3	7.9	5 5	7 6	17
BlastP- Prob I	1.20E-53	1.60E-47	1.60E-24	2.90E-105	3.20E-35	1.70E-171	6.30E-110	2.40E-14	3.00E-16		4.00E-11	1.00E-22	5.70E-22	9.40E-13	2.10E-08		4.90E-32	1.70E-84	5.30E-20	1 80E-80	2.50E-99		4 20E 17	1.202.17	1./UE-43	4 40E-47	1 00 1 147	1-1-40V.1	3.40E-24
BlastP	555	497	280	1042	381	1667	1086	184	202		158	263	256	169	128		351	846	249	000	986		,,,	177	424	403	1440) t (117
aat_B nap_S Score	554	490	271	1029	297	1651	1149	143	å. ₹	· · ·	108	219	287	159	176		469	813	147	Y C	1009		6	ָר עָרָ פיי	272	777	1461	1401	770
NCBI gi	g586860	g586862	g1731032	g1352095	g225559	g2293242	g2293243	g1175980	92632518		g1652543	g2462116	g2443243	g121511	g g121510)	g116546	g1730895	g543864	~2524100	g2034109 g1881371	o ′	00000000	26166028	g5525554	30799000	82200423	C7+00778	g4456867
Position	2254-1634	2925-2383	310-68	1337-2371	308-1	874-2079	2079-2970	247-587	958-2850		2888-3421	1455-1744	2155-2499	1352-906	1630-1340		2490-1648	951-54	1444-1098	2227 1520	2653-340		0,00	1-2249	813-2065	116.1	410-1	13//-450	2431-1815
Gene Id	Bt1G1280	Bt1G1281	Bt1G1282	Bt1G1283	Bt1G1284	Bt1G1285	Bt1G1286	Bt1G1287	R+1G1288		Bt1G1289	Bt1G1290	Bt1G1291	Bt1G1292			Bt1G1294	Bt1G1295	Bt1G1296	70010	Bt1G1298		900	BUIG1299	Bt1G1300	D+1C1201	54101301		Bt1G1303
Contig Id	Bt1Gc1213 Bt1G1280	Bt1Gc1213	896 Bt1Gc1225	Bt1Gc1225	Bt1Gc1226	897 Bt1Gc1226	897 Bt1Gc1226 Bt1G1286	Bt1Gc1230 Bt1G1287	808 B+1G-1230 B+1G1288		898 Bt1Gc1230 Bt1G1289	899 Bt1Gc1228 Bt1G1290	899 Bt1Gc1228	Bt1Gc1232	900 Bt1Gc1232		900 Bt1Gc1232 Bt1G1294		Bt1Gc1227		: Bt1Gc1231 Bt1G129/ 3 Bt1Gc1233 Bt1G1298			904 Burger 238 Burger 99	4 Bt1Gc1238	. 2410.1004	905 BUIGG1234	905 Bt1Gc1234	5 Bt1Gc1234
SEQ EQ	895	895	968	968	897	897	897	868	808	5	868	899	899	006	006		906	901	901	8	206) \	Š	₹ ;	904	9	3	₹ ;	905

~ e., v.

_	
Table	

ription	OWN. [Bacillus subtilis]	N LYTR [Bacillus subtili	egulator [Bacillus subtilis	ULATORY PROTEIN	: similar to response	latory systems; Method:	TEIN VAGI (Bhizohium	management is a vitte of	-	fied protein of E. coli			lanine amidase [Bacillus		age phi-105]	18 alanine acetyltransferas		ASE [Bacillus subtilis]	lus firmus]	ytogenes]	A [Listeria	n [Lactococcus lactis			TEIN IN RPH-ILVB	us subtilis]	Sacillus subtilisj	lease - Bacillus subtilis []	OTEIN IN FNR-NARG	encented of the control of the contr
NCBI gi description	(AB001488) FUNCTION UNKNOWN. [Bacillus subtilis]	MEMBRANE-BOUND PROTEIN LYTR [Bacillus subtilis]	(AF008220) signal transduction regulator [Bacillus subtilis]	TRANSCRIPTION STATE REGULATORY PROTEIN	ABRB [Bacillus subtilis] ([140158] orfx: function unknown: similar to response	regulators of two-component regulatory systems; Method:	carnosus] HVBOTEHETICA I 102 & VD DROTEIN VAGI IRbizobium		sp. NGK434] (D50453) yegQ [Bacillus subtilis]	(D50453) homologue of unidentified protein of E. coli	[Bacillus subtilis]	(AF110737) RhsC [Sinorhizobium meliloti]	(Z99110) N-acetylmuramoyl-L-alanine amidase	subtilis]	(AB016282) ORF45 [bacteriophage phi-105]	(AE001054) ribosomal protein S18 alanine acetyltransferase	[Archaeoglobus fulgidus]	PUTATIVE ALANINE RACEMASE	(U91841) MotB homolog [Bacillus firmus]	(X76170) cheY [Listeria monocytogenes]	CHEMOTAXIS PROTEIN CHEA [Listeria	monocytogenes] (X89922) maturase-related protein [Lactococcus lactis	lactis]	(U66480) YnaD [Bacillus subtilis]	HYPOTHETICAL 19.2 KD PROTEIN IN RPH-ILVB	INTERGENIC REGION [Bacillus subtilis]	(Z75208) hypothetical protein [Bacillus subtilis]	phosphate-dependent exoribonuclease - Bacillus subtilis	HYPOTHETICAL 27.6 KD PROTEIN IN FNR-NARG Intergenic Region [Bacillie enhille]	IN LENGEINIC NEGLOIN [Davinus subtinus]
% Cvrg	100			66	36		ζ.		100	62		100	54		<i>L</i> 9	72		66	78	66	<i>L</i> 9	100		66	78		8	23	100	
% Ident C	45	45	48	49	31		7	,	27	9		34	26		30	28		43	46	74	29	42		82	51	!	27	62	43	
BlastP- Prob IC	8.50E-51	2.20E-52	1.10E-20	1.20E-21	1 00E-06		77 000	/.00E-44	5.50E-24	2.30E-34		4.30E-79	3.10E-46		2.10E-08	3.40E-08		6.40E-85	5.80E-13	5.90E-43	5.90E-114	1.30E-116		1.20E-76	8.50E-35		1.00E-47	7.20E-38	5.10E-53	
BlastP Score	528	543	244	253	112	:	į	4/1	275	373		795	485		128	126		850	171	454	1124	1149		772	377		499	406	549	
aat_B nap S Score	527	516	243	265	79	5	Č	362	244	329		653	482		129	54		771	153	441	1130	1041		692	362		547	379	536	
NCBI gi	g1881346	g400209	g2293270	g113009	007300	9		g2490033	g1805396	g1805397	,	g4151933	g2633600		g4126631	g2649875)	g3913040	g2738159	g620085	g2500757	g1296829		g1750115	g2501608		g1770060	g322197	g1176948	
Position	2302-1625	19-966	2416-2724	698-411	3000 3000	0077-0007	• •	1072-1	1947-1105	2542-2008		172-1981	1799-1		2062-1790	1-1020		2440-1284	1-223	351-710	846-2229	507-2318		2827-3336	400-1		1025-426	1420-1031	2021-1308	
Gene Id	Bt1G1323	Bt1G1324	Bt1G1325	Bt1G1326	D+1/21297	770000		Bt1G1328	Bt1G1329	Bt1G1330		Bt1G1331	Bt1G1332		Bt1G1333	Bt1G1334		Bt1G1335	Bt1G1336	Bt1G1337	Bt1G1338	Bt1G1339		Bt1G1340	Bt1G1341		Bt1G1342	Bt1G1343	Bt1G1344	
Contig Id	Bt1Gc1244	Bt1Gc1246	916 Bt1Gc1246 Bt1G1325	Bt1Gc1248	7,512,1248 D+1/21397	511001248		918 Bt1Gc1249 Bt1G1328	918 Bt1Gc1249 Bt1G1329	Bt1Gc1249 Bt1G1330		919 Bt1Gc1247 Bt1G1331	Bt1Gc1251		Bt1Gc1251	Bt1Gc1254		Bt1Gc1254 Bt1G1335	Bt1Gc1253 Bt1G1336	Bt1Gc1253	Bt1Gc1253			Bt1Gc1256 Bt1G1340	Bt1Gc1257 Bt1G1341		924 Bt1Gc1257 Bt1G1342	924 Bt1Gc1257 Bt1G1343	Bt1Gc1258	
SEQ NO D	915	916	916	917	7	116		816	918	918		919	920		920	921		921	922	922	922	923	,	923	924		924	924	925	

_	
ble	
La	

NCBI gi description	SPOIIIAA INTERGENIC REGION [Bacillus subtilis] (Y08256) orf c06001 [Sulfolobus solfataricus]	(D90907) hypothetical protein [Synechocystis sp.]	NODULATION PROTEIN V [Bradyrhizobium japonicum]	(Z99110) similar to hypothetical proteins [Bacillus subtilis]	(Y14084) competence transcription factor [Bacillus subtilis]	(Y14081) hypothetical protein [Bacillus subtilis]	THREONYL-TRNA SYNTHETASE 2 (THREONINE	IRNA LIGASE) (THRRS) [Bacillus subtilis]	(AF008220) transporter [Bacillus subtilis]	VANCOMYCIN B-1YPE KESISTANCE PROTEIN	VANW [Enterococcus faecalis]	(M37169) APase I [Bacillus lichenitormis]	(U25453) phosphotidyl inositol-specific phospholipase C	[Listeria monocytogenes]	CHITINASE A1 PRECURSOR [Bacillus circulans]	(AB015998) CBP21 precursor [Serratia marcescens]	HYPOTHETICAL 23.4 KD PROTEIN IN AAPA-SIGV	INTERGENIC REGION [Bacillus subtilis]	PROBABLE METHYLMALONATE-SEMIALDEHYDE	DEHYDROGENASE [Bacillus subtilis]	HYPOTHETICAL 31.0 KD PROTEIN IN RNPB-SOHA	INTERGENIC REGION (ORF 2) [Escherichia con]	(Z99120) similar to butyryl-CoA dehydrogenase [Bacillus subtilis]	(Z99110) similar to hypothetical proteins [Bacillus subtilis]	(Z99110) similar to hypothetical proteins [Bacillus subtilis]	HYPOTHETICAL 29.3 KD PROTEIN IN CCPA	3'REGION (ORF1) [Bacillus megaterium]	(AF065404) pXO1-137 [Bacillus anthracis]	(X92946) macrolide efflux protein [Lactococcus lactis]	GTP-BINDING PROTEIN ERA HOMOLOG (BEX	PROTEIN) [Bacillus subtilis]	(U61949) Similar to cytidine deaminase. [Caenorhabditis elegans]	
	SPOI (Y08)	(D)	NOD	(Z991	(Y14)	(Y14)	THR	TRN	(AF0	VAN			(U25	[Liste	_	_		INTE									3'RE)
% Cvrg	100	100	29	71	100	100	100	,	င္တ	100		99	82		34	66	65		100		95		63	66	100	33.		86	72	100		8	
% Ident	80	47	22	36	39	49	99		21	29		7,	35		4	51	35		57		35		43	81	49	33		22	25	74		42	
BlastP- Prob I	1.60E-47	2.90E-105	1.20E-12	6.70E-74	4.20E-33	4.40E-54	2.90E-231		1.60E-56	3.70E-34		1.30E-100	1.80E-32		4.30E-39	1.60E-49	1.20E-21		7.20E-141		2.20E-45		3.50E-54	2.40E-55	8.30E-37	2.40E-12		3.20E-12	6.40E-06	4.50E-116		9.40E-29	
BlastP Score	497	1042	180	746	361	559	2231		582	371		866	355		423	516	253		1378		477		260	571	396	166		164	113	1144		320	
aat_B nap_S Score	365	971	72	747	316	536	2316		564	335		866	203		339	465	239		1464		407		641	571	550	361		159	82	1210		248	
NCBI gi	01707680	g1652676	g128494	g2633696	g2226262	g2226177	g135176	•	g2293177	g2499116		g143324	g887872)	g116300	g3308998	g3183496	ı	g1170977)	g140739		g2635778	g2633504	g2633505	£1170997	D.	g4894352	g2467222	g1168646	ı	g1397290	
Position	2085-1297	3345-2111	1-2428	1-2428	534-1160	1480-2101	340-2256		2515-3146	1121-297		2867-2104	1-905		2171-1447	2781-2179	1-399		1936-470		2865-1972		3925-2873	1128-1520	2247-1591	750-1		1780-1598	3057-3401	1009-107		1429-830	
Gene Id	B+1G1346					Bt1G1351			Bt1G1353	Bt1G1354	,	Bt1G1355			Bt1G1357	. Bt1G1358	Bt1G1359		Bt1G1360		Bt1Gc1262 Bt1G1361		Bt1G1362	Br1Gc1266 Bt1G1363	Bt1G1364	, Bt1G1366		, Bt1G1367	/ Bt1G1368	Bt1G1369) Bt1G1370	
Contig Id	B+1Gc1250	Bt1Gc1259	Bt1Gc1261	Bt1Gc1261	Bt1Gc1252	Bt1Gc1252	Bt1Gc1260		Bt1Gc1260	930 Bt1Gc1263		930 Bt1Gc1263	Bt1Gc1264		Bt1Gc1264		Bt1Gc1262		932 Bt1Gc1262 Bt1G1360		: Bt1Gc1262		932 Bt1Gc1262 Bt1G1362	3 Br1Gc1266	933 Bt1Gc1266 Bt1G1364	4 Bt1Gc1267		934 Bt1Gc1267 Bt1G1367	934 Bt1Gc1267	5 Bt1Gc1269		935 Bt1Gc1269 Bt1G1370	
SEQ D	300	926	927	927	928	928	929		929	930		930	931		931	931	932		932	 	932		932	933	933	934	r 1	934	934	935		93;	

Contig Id Gene Id Position NCBI gi Imp Score Score Prob Ident Cyrg BLIGGI269 BLIGI371 1847-1506 g1708628 276 202 3.00E-16 49 99 BLIGGI269 BLIGI372 2320-1850 g1730999 117 134 7.60E-08 63 5 BLIGGI270 BLIGI373 2443-2326 g1730999 117 134 7.60E-08 63 5 BLIGGI270 BLIGI374 482-1 g2492839 1522 1507 1.50E-134 47 100 BLIGGI270 BLIGI376 2315-1815 g1730934 203 2.30E-16 70 98 BLIGGI270 BLIGI377 2487-2320 g1730934 203 2.30E-16 70 98 BLIGGI270 BLIGI377 2487-2320 g1730934 203 2.30E-16 70 98 BLIGGI270 BLIGI381 258-2034 g2633543 160 212 2.00E-17 38 99 BLIGGI270	CHO				-	- 1 88	Ę	Table 1	à	· `	
BLIGG1269 BLIG1371 1847-1506 g1708628 276 202 3.00E-16 49 99 BLIGG1269 BLIG1372 2320-1850 g1731000 528 367 9.80E-34 64 99 BLIGG1269 BLIG1372 2443-2326 g1730999 117 134 7.60E-08 63 5 BLIGG1270 BLIG1374 482-1 g2492839 1522 1507 1.50E-154 77 100 BLIGG1270 BLIG1375 215-1815 g1730934 203 203 2.30E-16 70 98 BLIGG1270 BLIG1377 2487-2320 g1730934 203 203 2.30E-16 70 98 BLIGG1272 BLIG1378 462-1 g2633171 430 448 2.60E-47 38 99 BLIGG1272 BLIG1378 2554-2034 g2633543 160 212 2.60E-17 28 99 BLIGG1272 BLIG1380 2564-2034 g141186 240 259 2.70E-22 33 99 BLIGG1272 BLIG1381 2948-2720 g462484 131 169 9.30E-12 43 14 BLIGG1272 BLIG1382 490-1 g1731048 378 397 6.50E-37 49 47 BLIGG1268 BLIG1383 2556-841 g2462963 1851 1601 1.70E-164 62 100 BLIGG1278 BLIG1384 2656-3247 g2337795 581 568 1.80E-54 60 22 BLIGG1278 BLIG138 773-63 g1934806 516 395 1.10E-36 48 100 BLIGG1278 BLIG138 1630-851 g1730928 334 382 2.50E-35 30 100 BLIGG1278 BLIG1388 1144-1 g461914 317 400 3.10E-35 30 100 BLIGG1277 BLIG1389 1-398 g3183185 517 488 1.50E-46 77 22	3 a 2	Contig Id	Gene Id	Position	=		BlastP			%Vrg	NCBI gi description
BLIGG1269 BLIGG1270 BLIGG1373 2443-2326 BLIGG1270 BLIGG1374 482-1 g729356 394 366 1.20E-33 45 69 BLIGG1270 BLIGG1375 1787-612 g2492839 1522 1507 1.50E-154 77 100 BLIGG1270 BLIGG1377 2487-2320 g1730934 203 2.0E-17 38 99 BLIGG1270 BLIGG1377 2487-2320 g1730934 203 2.0E-47 38 99 BLIGG1272 BLIGG1378 462-1 g2633543 160 212 2.0E-42 39 BLIGG1272 BLIGG1381 2558-2034 g2633543 160 212 2.0E-42 39 BLIGG1272 BLIGG1382 490-1 g1731048 378 397 6.50E-37 49 47 BLIGG1268 BLIGG1388 L1G1387 256-3247 g2334806 <td< td=""><td>935</td><td>Bt1Gc1269</td><td>Bt1G1371</td><td>1847-1506</td><td>g1708628</td><td>276</td><td>202</td><td>3.00E-16</td><td>49</td><td></td><td>DIACYLGLYCEROL KINASE (DAGK) (DIGLYCERIDE KINASE) (DGK) [Bacillus subtilis]</td></td<>	935	Bt1Gc1269	Bt1G1371	1847-1506	g1708628	276	202	3.00E-16	49		DIACYLGLYCEROL KINASE (DAGK) (DIGLYCERIDE KINASE) (DGK) [Bacillus subtilis]
BLIGG1269 BLIGG1269 BLIGG1269 BLIGG1269 BLIGG1270 BLIGG1270 <t< td=""><td>935</td><td>Bt1Gc1269</td><td>Bt1G1372</td><td>2320-1850</td><td>g1731000</td><td>528</td><td>367</td><td>9.80E-34</td><td>4 .</td><td></td><td>HYPOTHETICAL 17.8 KD PROTEIN IN PHOH-DGKA INTERGENIC REGION (Bacillus subtilis)</td></t<>	935	Bt1Gc1269	Bt1G1372	2320-1850	g1731000	528	367	9.80E-34	4 .		HYPOTHETICAL 17.8 KD PROTEIN IN PHOH-DGKA INTERGENIC REGION (Bacillus subtilis)
BLIGGIZ70 BLIGI374 482-1 g729356 394 366 1.20E-33 45 69 BLIGGIZ70 BLIGI375 1787-612 g2492839 1522 1507 1.50E-134 77 100 BLIGGIZ70 BLIGI376 2315-1815 g1730935 188 210 4.20E-17 38 99 BLIGGIZ70 BLIGI377 2487-2320 g1730934 203 2.30E-16 70 98 BLIGGIZ72 BLIGI378 462-1 g2633171 430 448 2.60E-42 53 52 BLIGGIZ72 BLIGI380 2564-2034 g141186 240 259 2.70E-22 33 99 BLIGGIZ72 BLIGI381 2946-2484 131 169 9.30E-12 43 14 BLIGGIZ72 BLIGI382 490-1 g1731048 378 397 6.50E-37 49 47 BLIGGIZ68 BLIGI382 2556-841 g2462963 1851 1601 1.70E-164 62 100	935	Bt1Gc1269	Bt1G1373	2443-2326	g1730999	117	134	7.60E-08	63		HYPOTHETICAL 79.2 KD PROTEIN IN PHOH-DGKA INTERGENIC REGION (Bacillus subtilis)
BtIGc1270 BtIGI375 1787-612 g2492839 1522 1507 1.50E-154 77 100 BtIGc1270 BtIGI376 2315-1815 g1730935 188 210 4.20E-17 38 99 BtIGc1270 BtIGI377 2487-2320 g1730934 203 2.30E-16 70 98 BtIGc1272 BtIGI378 462-1 g2633543 160 212 2.60E-42 53 52 BtIGc1272 BtIGI378 462-1 g2633543 160 212 2.60E-17 28 99 BtIGc1272 BtIGI380 2564-2034 g141186 240 259 2.70E-22 33 99 BtIGc1272 BtIGI381 2948-2720 g462484 131 169 9.30E-17 28 99 BtIGc1268 BtIGG1382 490-1 g1731048 378 397 6.50E-37 49 47 BtIGc1268 BtIGG1383 256-841 g2462963 1851 160 9.30E-12 49	936	Bt1Gc1270		482-1	g729356	394	366	1.20E-33	45		DNA REPLICATION PROTEIN DNAD [Bacillus subtilis]
2315-1815 g1730935 188 210 4.20E-17 38 99 2487-2320 g1730934 203 2.03 2.30E-16 70 98 462-1 g2633171 430 448 2.60E-42 53 52 2558-2034 g2633543 160 212 2.60E-17 28 99 2564-2034 g141186 240 259 2.70E-22 33 99 2948-2720 g462484 131 169 9.30E-12 43 14 490-1 g1731048 378 397 6.50E-37 49 47 2556-841 g2462963 1851 1601 1.70E-164 62 100 2656-3247 g2337795 581 568 1.80E-54 60 22 24-1874 g1339850 2621 2479 1.50E-257 79 100 1630-851 g1730928 334 382 2.50E-35 30 100 1144-1 g461914 317 400 3.10E-37 33 81 1-398 g3183185 </td <td>936</td> <td>Bt1Gc1270</td> <td>Bt1G1375</td> <td>1787-612</td> <td>g2492839</td> <td>1522</td> <td>1507</td> <td>1.50E-154</td> <td>11</td> <td>. –</td> <td>ASPARTATE AMINOTRANSFERASE (TRANSAMINASE A) (ASPAT) [Bacillus</td>	936	Bt1Gc1270	Bt1G1375	1787-612	g2492839	1522	1507	1.50E-154	11	. –	ASPARTATE AMINOTRANSFERASE (TRANSAMINASE A) (ASPAT) [Bacillus
2487-2320 g1730934 203 2.30E-16 70 98 2487-2320 g1730934 203 2.30E-16 70 98 2558-2034 g2633171 430 448 2.60E-42 53 52 2564-2034 g141186 240 259 2.70E-22 33 99 2948-2720 g462484 131 169 9.30E-12 43 14 490-1 g1731048 378 397 6.50E-37 49 47 2556-841 g2462963 1851 1601 1.70E-164 62 100 2656-3247 g2337795 581 568 1.80E-54 60 22 24-1874 g1339850 2621 2479 1.50E-257 79 100 1630-851 g1730928 334 382 2.50E-35 30 100 1144-1 g461914 317 400 3.10E-37 33 81 1-398 g3183185 517 488 1.50E-46 77 22	0				10000	9	5	1000	ć		stearothermophilus]
2487-2320 g1730934 203 203 2.30E-16 70 98 462-1 g2633171 430 448 2.60E-42 53 52 2558-2034 g2633543 160 212 2.60E-17 28 99 2564-2034 g141186 240 259 2.70E-22 33 99 2948-2720 g462484 131 169 9.30E-12 43 14 490-1 g1731048 378 397 6.50E-37 49 47 2556-841 g2462963 1851 1601 1.70E-164 62 100 2656-3247 g2337795 581 568 1.80E-54 60 22 24-1874 g1339850 2621 2479 1.50E-257 79 100 1630-851 g1730928 334 382 2.50E-35 30 100 1144-1 g461914 317 400 3.10E-37 33 81 1-398 g3183185 517 488 1.50E-46 77 22	936	Bt1Gc12/0	Bt1G1370	2315-1815	g1/30933	188	710	4.20E-17	90		INTERGENIC REGION [Bacillus subtilis]
BrIGc1272 BrIGG1272 BrIGG1273 AP AP AP AP BrIGG1278 BrIGG1383 2556-841 g2462963 1851 1601 1.70E-164 62 100 BrIGG1268 BrIGG1384 2656-3247 g2337795 581 568 1.80E-54 60 22 BrIGG1278 BrIGG1386 2756-841 g2462963 1851 1601 1.70E-164 62 100 BrIGG1278 BrIGG1384 2556-3247 g2337795 581 568 1.80E-54 60 22 BrIGG1278 BrIGG1386 1144-1 g461914 317 400 3.10E-37 33 81 BrIGG1277	936	Bt1Gc1270	Bt1G1377	2487-2320	g1730934	203	203	2.30E-16	70		HYPOTHETICAL 6.6 KD PROTEIN IN DING-ASPB
Bt1Gc1272 Bt1G1380 2554-2034 g2633543 160 212 2.60E-17 28 99 Bt1Gc1272 Bt1G1380 2564-2034 g2633543 160 212 2.60E-17 28 99 Bt1Gc1272 Bt1G1381 2948-2720 g462484 131 169 9.30E-12 43 14 Bt1Gc1268 Bt1G1382 490-1 g1731048 378 397 6.50E-37 49 47 Bt1Gc1268 Bt1G1383 2556-841 g2462963 1851 1601 1.70E-164 62 100 Bt1Gc1268 Bt1G1384 2656-3247 g2337795 581 568 1.80E-54 60 22 Bt1Gc1273 Bt1G1384 2656-3247 g2337795 581 568 1.80E-54 60 22 Bt1Gc1276 Bt1G1387 1630-851 g1730928 334 382 2.50E-357 79 100 Bt1Gc1278 Bt1G1388 1144-1 g461914 317 400 3.10E-37 33 81 Bt1Gc1277 Bt1G1389 1-398 g3183185 517 488 1.50E-46 77 22		C. 1070		1 034	27622171	730	776	CV 408 C	. 5	ç	INTERGENIC REGION [Bacillus subulis] (700108) similar to hynothetical proteins [Bacillus subtilis]
2564-2034 g141186 240 259 2.70E-22 33 99 2948-2720 g462484 131 169 9.30E-12 43 14 490-1 g1731048 378 397 6.50E-37 49 47 2556-841 g2462963 1851 1601 1.70E-164 62 100 224-1874 g1339850 2621 2479 1.50E-257 79 100 737-63 g1934806 516 395 1.10E-36 48 100 1630-851 g4730-28 334 382 2.50E-35 30 100 1144-1 g461914 317 400 3.10E-37 33 81 1-398 g3183185 517 488 1.50E-46 77 22	707	DUIGG12/2		402-1	84033171 27432473	160	5 5	2.00E-12) (100	(700110) similar to ribosomal-protein-alanine N-
2564-2034 g141186 240 259 2.70E-22 33 99 2948-2720 g462484 131 169 9.30E-12 43 14 490-1 g1731048 378 397 6.50E-37 49 47 2556-841 g2462963 1851 1601 1.70E-164 62 100 2656-3247 g2337795 581 568 1.80E-54 60 22 24-1874 g1339850 2621 2479 1.50E-257 79 100 737-63 g1934806 516 395 1.10E-36 48 100 1630-851 g1730928 334 382 2.50E-35 30 100 1144-1 g461914 317 400 3.10E-37 33 81 1-398 g3183185 517 488 1.50E-46 77 22	756	BUGG12/2		4507-0557	82033343	100	717	4.00th 17	9	3	acetyltransferase [Bacillus subtilis]
2948-2720 g462484 131 169 9.30E-12 43 14 490-1 g1731048 378 397 6.50E-37 49 47 2556-841 g2462963 1851 1601 1.70E-164 62 100 2656-3247 g2337795 581 568 1.80E-54 60 22 24-1874 g1339850 2621 2479 1.50E-257 79 100 1630-851 g1730928 334 382 2.50E-35 30 100 1144-1 g461914 317 400 3.10E-37 33 81 1-398 g3183185 517 488 1.50E-46 77 22	937	Bt1Gc1272	Bt1G1380	2564-2034	g141186	240	259	2.70E-22	33		HYPOTHETICAL P20 PROTEIN [Bacillus licheniformis]
490-1 g1731048 378 397 6.50E-37 49 47 2556-841 g2462963 1851 1601 1.70E-164 62 100 2656-3247 g2337795 581 568 1.80E-54 60 22 24-1874 g1339850 2621 2479 1.50E-257 79 100 737-63 g1934806 516 395 1.10E-36 48 100 1630-851 g1730928 334 382 2.50E-35 30 100 1144-1 g461914 317 400 3.10E-37 33 81 1-398 g3183185 517 488 1.50E-46 77 22	937	Bt1Gc1272	Bt1G1381	2948-2720	g462484	131	169	9.30E-12	43	14	LONG-CHAIN-FATTY-ACIDCOA LIGASE (LONG-
490-1 g1731048 378 397 6.50E-37 49 47 2556-841 g2462963 1851 1601 1.70E-164 62 100 2656-3247 g2337795 581 568 1.80E-54 60 22 24-1874 g1339850 2621 2479 1.50E-257 79 100 737-63 g1934806 516 395 1.10E-36 48 100 1630-851 g1730928 334 382 2.50E-35 30 100 1144-1 g461914 317 400 3.10E-37 33 81 1-398 g3183185 517 488 1.50E-46 77 22		_									CHAIN ACYL-COA SYNTHETASE) [Escherichia coli]
2556-841 g2462963 1851 1601 1.70E-164 62 100 2656-3247 g2337795 581 568 1.80E-54 60 22 24-1874 g1339850 2621 2479 1.50E-257 79 100 737-63 g1934806 516 395 1.10E-36 48 100 1630-851 g1730928 334 382 2.50E-35 30 100 1144-1 g461914 317 400 3.10E-37 33 81 1-398 g3183185 517 488 1.50E-46 77 22	938	Bt1Gc1268	Bt1G1382	490-1	g1731048	378	397	6.50E-37	49	47	PUTATIVE PEPTIDASE IN GCVT-SPOIIIAA INTERGENIC REGION [Bacillus subtilis]
Bt1G1384 2656-3247 g2337795 581 568 1.80E-54 60 22 Bt1G1385 24-1874 g1339850 2621 2479 1.50E-257 79 100 Bt1G1386 737-63 g1934806 516 395 1.10E-36 48 100 Bt1G1387 1630-851 g1730928 334 382 2.50E-35 30 100 Bt1G1388 1144-1 g461914 317 400 3.10E-37 33 81 Bt1G1389 1-398 g3183185 517 488 1.50E-46 77 22	938	Bt1Gc1268	Bt1G1383	2556-841	g2462963	1851	1601	1.70E-164	62		(AJ000974) putative fibronectin-binding protein [Bacillus subtilis]
Bt1G1388 24-1874 g1339850 2621 2479 1.50E-257 79 100 Bt1G1386 737-63 g1934806 516 395 1.10E-36 48 100 Bt1G1387 1630-851 g1730928 334 382 2.50E-35 30 100 Bt1G1388 1144-1 g461914 317 400 3.10E-37 33 81 Bt1G1389 1-398 g3183185 517 488 1.50E-46 77 22 62 63 63 63 64 64 65 65 65 65 65 65 65 65 65 65 65 65 65	000	070170170		FACC 3330	3077550	401	260	1 80E 54	9	22	(V13037) mitative Pacl protein [Bacillus subtilis]
Bt1G1386 737-63 g1934806 516 395 1.10E-36 48 100 Bt1G1387 1630-851 g1730928 334 382 2.50E-35 30 100 Bt1G1388 1144-1 g461914 317 400 3.10E-37 33 81 Bt1G1389 1-398 g3183185 517 488 1.50E-46 77 22 0	800	D11G51200		2030-3247	82331193	201	97.7	1 500 257	8 8	100	(D85547) expectations covidase submit I [Bacillus sn]
Bt1Gc1277 Bt1G1389 1-398 g3183185 517 488 1.50E-46 77 22	25.0	Bt1Gc12/3		727 63	g1339830 ~1024906	2021	205	1.30E-237 1.10E-36	48	3 5	(D0254) Cytocaronae Contrast subtilies (704046) unknown (Racillus subtilis)
Bt1Gc1278 Bt1G1388 1144-1 g461914 317 400 3.10E-37 33 81 Bt1Gc1277 Bt1G1389 1-398 g3183185 517 488 1.50E-46 77 22	940	Bt1Gc1276		1630-851	g1730928	334	382	2.50E-35	30,	100	HYPOTHETICAL 30.6 KD PROTEIN IN QCRC-DAPB
1144-1 g461914 317 400 3.10E-37 33 81 1-398 g3183185 517 488 1.50E-46 77 22	2				i i	1					INTERGENIC REGION PRECURSOR [Bacillus subtilis]
1-398 g3183185 517 488 1.50E-46 77 22	941	, Bt1Gc1278	Bt1G1388	1144-1	g461914	317	400	3.10E-37	33	81	PENICILLIN-BINDING PROTEIN 5* PRECURSOR (D-ALANYL-D-ALANINE CARBOXYPEPTIDASE) (DD-
1-398 g3183185 517 488 1.50E-46 77 22											PEP11DASE) (DD-CAKBOA Y FEF11DASE) (FBF-3°) [Bacillus subtilis]
	942	9 Bt1Gc1277	Bt1G1389	1-398	g3183185	517		1.50E-46		22	GTP-BINDING PROTEIN TYPA/BIPA HOMOLOG [Bacillus subtilis]

_
able
Ε

	NCBI gi description	(Z97025) ylaH [Bacillus subtilis] (Z97025) ylaI [Bacillus subtilis]	(Z97025) product similar to E. coli PhoH protein [Bacillus subtilis]	recM protein - Bacillus subtilis []	HYPOTHETICAL 11.8 KD PROTEIN IN DNAZ-RECR INTERGENIC REGION [Bacillus subtilis]	DNA-directed DNA polymerase (EC 2.7.7.7) III chain dnaX - Bacillus subfilis [Bacillus subfilis]	DNA-DIRECTED RNA POLYMERASE BETA' CHAIN TRANSCRIPTASE BETA' CHAIN) (RNA	POLYMERASE BETA' SUBUNIT) []	(AJ005255) OxyR [Erwinia chrysanthemi]	(AP000001) 373aa long hypothetical sugar-binding transport	ATP-binding protein [Pyrococcus horikoshii]	NOCLECTIVE BINDING INCITED EAT 2 [Learned subtilis]	HYPOTHETICAL SENSOR-LIKE HISTIDINE KINASE	IN IDH 3'REGION [Bacillus subtilis] METHIONINE AMINOPEPTIDASE (MAP) (PEPTIDASE	M) [Bacillus subtilis]	ADENYLATE KINASE (ATP-AMP	TRANSPHOSPHORY LASE) [Bacillus stearoutermophilus] PREPROTEIN TRANSLOCASE SECY SUBUNIT	[Bacillus stearothermophilus]	(Z99108) transcriptional regulator [Bacillus subtilis]	MMGE PROTEIN [Bacillus subtilis]	HYPOTHETICAL 33.1 KD PROTEIN IN MMGE- BFMBAA INTERGENIC REGION [Bacillus subtilis]	(Z99120) similar to butyryl-CoA dehydrogenase [Bacillus subtilis]	(U50978) kanamycin/gentamycin-resistance protein [Cloning vector pFW13]	(U93876) hypothetical protein YrdC [Bacillus subtilis] (AE000245) alcohol dehydrogenase [Escherichia coli]
-		6Z) 66		46 recl	99 HY INI	100 DN	36 DN	<u> </u>	100 (AJ	45 (AF	AT 100 MI		70 HY	100 N M		100 AD	TR 63 PR	Ba			100 HY BF	30 (Zg	42 (U:	99 (Q 19 (A)
	% % Ident Cvrg	52	83	98	08	60	11		24	49		00	46	08		75]	81				73	48	41	32
ranic i	BlastP- '	1,20E-28 8,40E-12	2.30E-57	4.00E-44	3.00E-32	6.90E-175	2.00E-168		1.00E-22	1.40E-41	17000	2.20E-1/8	1.70E-54	6 30F-110	2000	4.90E-87	1.70E-22		4.60E-162	1.20E-200	1.50E-110	1.00E-45	1.80E-34	1.30E-17 4.00E-18
	BlastP Scoré	319	290	465	353	1699	1638		263	441	2	1/32	563	1086		870	261		1578	1942	1092	480	374	215 221
	aat_B nap_S Score	312	574	449	443	1746	1575		258	350	9	1833	516	1086		998	260		1483	1991	1139	446	374	1.79
	NCBI gi	g2224767	g2224770	g98442	g141372	g98292	g2507344	,	g4583559	g3256407	707000	g2828494	g1176994	a112730	8113137	g125158	g134408	0	g2633134	g1709059	g1731059	g2635778	g1277135	g1934645 g1787753
	Position	547-861	2233-2660	301-1	642-322	2356-671	1379-88		2443-1528	2577-3092	•	1854-210	2977-2306	780.45	01	1439-789	1690-1502		417-2277	150-1565	1587-2489	2642-3186	121-2539	686-1675 2294-2094
	Gene Id	Bt1G1390	Bt1G1392	Bt1G1393	Bt1G1394	Bt1G1395	Bt1G1396		Bt1G1397	Bt1G1398		Bt1G1399	Bt1G1400	D+1C1401	D1101401	Bt1G1402	Bt1G1403		Bt1G1404	Bt1G1405	Bt1G1406	Bt1G1407	Bt1G1408	Bt1G1409 Bt1G1410
	Contig Id	Bt1Gc1277	Bt1Gc1277	Bt1Gc1271	Bt1Gc1271	943 Bt1Gc1271	944 Bt1Gc1279 Bt1G1396		945 Bt1Gc1274 Bt1G1397	945 Bt1Gc1274 Bt1G1398	1	946 Bt1Gc1280 Bt1G1399	946 Bt1Gc1280 Bt1G1400	047 P+1021275 D+101401	C/712011G	947 Bt1Gc1275 Bt1G1402	947 Bt1Gc1275 Bt1G1403		Bt1Gc1282 Bt1G1404	949 Bt1Gc1281 Bt1G1405	Bt1Gc1281	Bt1Gc1281 Bt1G1407	950 Bt1Gc1283 Bt1G1408	950 Bt1Gc1283 Bt1G1409 951 Bt1Gc1285 Bt1G1410
	SEQ NO	942	942	943	943	943	944		945	945		946	946	242	Ì	947	947	:	948	949	949	949	950	950 951

NCBI gi description	(Y14080) hypothetical protein [Bacillus subtilis] (Y14080) hypothetical protein [Bacillus subtilis] (AB001488) FUNCTION UNKNOWN, SIMILAR PRODUCTS IN SYNECHOCYSTIS AND H. INFLUENZAE. [Bacillus subtilis]	(Z75208) hypothetical protein [Bacillus subtilis] (Z92952) unknown [Bacillus subtilis] (Z92952) unknown [Bacillus subtilis] (U82598) enterochelin esterase [Escherichia coli] 5-METHYLTETRAHYDROPTEROYLTRIGLUTAMATE-HOMOCYSTEINE METHYLTRANSFERASE (METHIONINE SYNTHASE, VITAMIN-B12 INDEPENDENT ISOZYME) (COBALAMIN-INDEPENDENT METHIONINE SYNTHASE) (SUPEROXIDE-INDUCIBLE PROTEIN 9) (SOI9)	[Dachlus Subtilis] (Z94043) hypothetical protein [Bacillus subtilis] (U57060) ScdA [Staphylococcus aureus] (AF065404) pXO1-86 [Bacillus anthracis] HYPOTHETICAL 137.4 KD PROTEIN IN BCSA-DEGR INTERGENIC REGION [Bacillus subtilis]	HYPOTHETICAL ABC TRANSPORTER ATP-BINDING PROTEIN 1 IN GLVBC 3'REGION [Bacillus subtilis] HYPOTHETICAL 22.0 KD PROTEIN IN HXT11-HXT8 INTERGENIC REGION [Saccharomyces cerevisiae] hypothetical protein 2 (downstream of hydrogenase cluster) -	Anabaena variabilis [Anabaena variabilis] (D86417) YflK [Bacillus subtilis] (AP000006) 215aa long hypothetical protein [Pyrococcus horikoshii] (AP000006) 215aa long hypothetical protein [Pyrococcus	horikoshii] (Z92952) product similar to Bacillus subtilis YxiD protein [Bacillus subtilis] (Z92952) unknown [Bacillus subtilis] GLYCINE BETAINE-BINDING PROTEIN PRECURSOR
Cvrg	99 100 100	100 80 58 66	100 41 41	78 99 100	48	29 65 62
% Ident	61 79 50	76 39 28 51	33 34 56 35	30 28 28	51 32 29	31 33 38
BlastP. Prob	1.60E-47 2.40E-124 3.30E-58	2.20E-59 3.40E-40 3.70E-20 2.60E-136	1.90E-37 1.80E-11 9.00E-24 8.70E-81	4.00E-60 4.70E-18 1.40E-32	4.80E-25 1.90E-06	1.30E-35 1.60E-08 5.80E-36
BlastP	497 1222 598	609 42 8 242 1335	402 157 273 815	616 219 356	285 112 167	388 129 388
	Score 532 1624 921	881 358 132 1317	362 123 231 756	806 123 282	241	335 87 316
NCBI gi	g2226150 g2226151 g1881258	g1770004 g1894745 g1778501 g3334472	g1945654 g1575061 g4894302 g1730891	g1723606 g731965 g2126561	g2443233 g3258025	g1894748 g1894749 g1171921
Position	281-772 771-1994 1173-121	2187-1494 669-1 3313-1189 1203-2724	325-1125 3083-3367 300-1 862-2345	1343-1 2168-1551 3092-2208	3699-3373 1424-1741 2964-3704	1-2553 2549-2858 622-1162
Gene Id	Bt1G1411 Bt1G1412 Bt1G1413	Bt1G1414 Bt1G1415 Bt1G1416 Bt1G1417	Bt1G1418 Bt1G1419 Bt1G1420 Bt1G1421	Bt1G1422 Bt1G1423	Bt1G1425 Bt1G1426	Bt1G1428 Bt1G1429 Bt1G1430
Contig Id	Bt1Gc1287 Bt1Gc1287 Bt1Gc1284	Bt1Gc1284 Bt1G1414 Bt1Gc1288 Bt1G1415 Bt1Gc1288 Bt1G1416 Bt1Gc1290 Bt1G1417	956 Bt1Gc1291 956 Bt1Gc1291 957 Bt1Gc1292 957 Bt1Gc1292	958 Bt1Gc1289 Bt1G1422958 Bt1Gc1289 Bt1G1423958 Bt1Gc1289 Bt1G1424	958 Bt1Gc1289 Bt1G1425 959 Bt1Gc1294 Bt1G1426 050 Bt1Gc1204 Bt1G1427	960 Bt1Gc1295 Bt1G1428 960 Bt1Gc1295 Bt1G1429 961 Bt1Gc1297 Bt1G1430
SEQ ID	NO 952 953 953	953 954 955 955	956 956 957 957	958 958	958	960 960 961

_
<u>e</u>
q
Ë

Ē	-				•		I anic I			
3 8	Contig Id	Gene Id	Position	NCBI gi	nap Score	BlastP Score	BlastP. Prob	% Ident (% Cvrg	NCBI gi description
961	961 Bt1Gc1297 Bt1G1431	Bt1G1431	622-2491	g1171921	319	393	1.70E-36	38	65	[Bacillus subtilis] GLYCINE BETAINE-BINDING PROTEIN PRECURSOR FRacillus subtilis]
961	961 Bt1Gc1297 Bt1G1432	Bt1G1432	1796-1205	g3287962	637	283	1.30E-56	49	86	ATP-DEPENDENT CLP PROTEASE PROTEOLYTIC SUBUNIT (ENDOPEPTIDASE CLP) (CASEINOLYTIC
961	961 Bt1Gc1297 Bt1G1433	Bt1G1433	1900-3641	g4262236	382	381	3.20E-35	39	100	PROTEASE) (PROTEASE TI) [Bacillus subtilis] (AC006200) putative ribose 5-phosphate isomerase
961	961 Bt1Gc1297 Bt1G1434	Bt1G1434	3749-4189	g586830	433	447	3.30E-42	26	66	HYPOTHETICAL 16.6 KD PROTEIN IN COTF-TETB INTERGENIC REGION (Bacillus subtilis)
962	962 Bt1Gc1298	Bt1G1435	1268-42	g1176567	1601	1601	1.70E-164	74	100	HYPOTHETICAL PROCESSING PROTEASE (ORFP)
962	962 Bt1Gc1298 Bt1G1436	Bt1G1436	2294-1355	g2634042	839	870	4.90E-87	52	86	[Bacillus subtilis] (Z99112) alternate gene name: ymxl; similar to deacetylase
963	963 Bt1Gc1299 Bt1G1437	Bt1G1437	1541-1	g2983239	296	348	7.70E-31	53	16	[Bacillus subtilis] (AE000699) penicillin binding protein 1A [Aquifex
963	963 Bt1Gc1299	Bt1G1438	1414-28	g4582371	100	148	1.60E-10	31	86	aeolicus] (AL049573) MutT-like protein [Streptomyces coelicolor]
963	Bt1Gc1299	Bt1G1439	2331-1615	g2632998	1040	916	2.90E-98	85	100	(Z99107) similar to hypothetical proteins [Bacillus subtilis]
964	Bt1Gc1296		819-1	g586024	1096	846	6.70E-106	79	57	STAGE V SPORULATION PROTEIN R [Bacillus subtilis]
964	964 Bt1Gc1296	Bt1G1441	1512-943	g2633172	277	310	1.10E-27	32	8	(Z99108) similar to hypothetical proteins [Bacillus subtilis]
965	Bt1Gc1301	Bt1G1442	1222-1	g2293322	829	756	5.90E-75	4	93	(AF008220) branch-chain amino acid transporter [Bacillus
270	065 B#1G01301	B+1G1443	2000-1443	90222800	890	890	3 70F-89	68	66	subturs] COTIC PROTEIN [Bacillus subtilis]
965	965 Bt1Gc1301	Bt1G1444	2331-2025	g2833395	263	205	1.40E-16	52	66	
965	965 Bt1Gc1301	Bt1G1445	2526-2278	g2833394	239	276	4.30E-24	52	66	COTJA PROTEIN [Bacillus subtilis]
996	Bt1Gc1293	Bt1G1446	3385-2391	g1657534	398	438	2.90E-41	31	100	(U73857) cyn operon transcriptional activator [Escherichia
ì			1		,	9	Į,	4	ç	COli]
966	966 Bt1Gc1293		3457-3670	g2443233	169	188	9.10E-13	4 ¢	7 6	(D8041/) THE [Bachius subtins] EDVITUDOMYCIN ECTERASE TVPE II [Fscherichia coli]
196	967 Bt1Gc1303		7081-8077	g11954/	150	757	0.20E-19	2 5	7 8	ENTITINGMICH ESTENASE TITETI [ESSENTAME CON]
896	Bt1Gc1305	Bt1G1449	1284-1	g/32119	131	270	1.90E-23	17	××××××××××××××××××××××××××××××××××××××	INTERGENIC REGION (0357) [Escherichia coli]
896	968 Bt1Gc1305 Bt1G1450	Bt1G1450	1482-983	g2828809	211	269	2.40E-23		66	(AF002191) YhzA homolog [Bacillus subtilis]
596	969 Bt1Gc1304	Bt1G1451	1-468	g1171068	599	809	2.80E-59	74	36	PROBABLE UDP-N-ACETYLGLUCOSAMINE 1- CARBOXYVINYL TRANSFERASE (ENOYLPYRUVATE TRANSFERASE) (UDP-N-ACETYLGLUCOSAMINE

	NCBI gi d	
See See	% Cvrg	
	% % Ident Cvrg	
Table 1	BlastP. Prob	
	BlastP Score	
	aat_ nap	2
	NCBI gi	
	Position	
	Gene Id	
	tig Id	

							1 anic 1		د ليم د	
SEQ D	Contig Id	Gene Id	Position	NCBI gi	aat_] nap Score	BlastP Score	BlastP. Prob	% Ident C	% Cvrg	NCBI gi description
										ENOLPYRUVYL TRANSFERASE) (EPT) [Bacillus subtilis]
696	969 Bt1Gc1304 Bt1G1452	Bt1G1452	588-1553	g418587	1414	1427	4.60E-146	98	100	HYPOTHETICAL 34.0 KD PROTEIN IN RHO-MURA
(0		0001	40,404	6	400	100	6	5	INTERGENIC REGION (ORFQ) [Bacillus subtilis]
969	969 Bt1Gc1304		1823-3102	g143434	2081	1825	3.10E-188 1.60E.33	8 4 6 7	3 8	(MY/0/6) Kno factor [Dacinus sucums] (AE008220) V常T [Bacillus subtilis]
970 070	9/0 Bt1Gc1306	Bt1G1454	1139-1519	g2293237 91731010	356 103	66	1.00E-53 2.50E-05	31	6 6	(AT 000220) 1 the Library Submins Submins HYPOTHETICAL 13.9 KD PROTEIN IN CCCA-SODA
2			(T) (C) (2 1 1 1 2	3	\ \				INTERGENIC REGION [Bacillus subtilis]
970	970 Bt1Gc1306 Bt1G1456	Bt1G1456	2923-1589	g2635594	1350	1307	2.40E-133	25	100	(Z99119) similar to Na+-transporting ATP synthase [Bacillus subtilis]
971	971 Bt1Gc1307 Bt1G1457	Bt1G1457	2523-664	g2633811	1841	1557	7.70E-160	09	100	(Z99111) phosphotransferase system (PTS) fructose-specific
										enzyme IIBC component [Bacillus subtilis]
971	Bt1Gc1307	Bt1G1458	2711-2540	g2633810	110	126	1.30E-07	47	19	(Z99111) fructose-1-phosphate kinase [Bacillus subtilis]
972	Bt1Gc1308	Bt1G1459	1-1093	g2634337	1017	912	1.70E-91	54	81	(Z99114) similar to hypothetical proteins [Bacillus subtilis]
972	972 Bt1Gc1308	Bt1G1460	2185-3107	g3080755	149	193	3.10E-15	25	88	(AF016483) APH(2")-Id [Enterococcus casseliflavus]
973	Bt1Gc1309	Bt1G1461	263-1	g2829805	167	186	1.50E-14	41	, 32	HYPOTHETICAL 30.5 KD PROTEIN IN GABP-GUAA
)						INTERGENIC REGION [Bacillus subtilis]
973	973 Bt1Gc1309	Bt1G1462	1606-647	g1708641	1018	1035	1.60E-104	62	100	(U51115) YeaC [Bacillus subtilis]
974	Bt1Gc1310	Bt1G1463	1612-83	g1075130	302	144	1.00E-15	27	100	periplasmic-binding-protein-dependent iron transport protein
										(stub) itoinotog - rraemophilius intructizae (stram rva rva et) [Haemophilus influenzae Rd]
074	074 Bt1Gc1310 Bt1G1464	B+1G1464	1736-910	07766195	239	211	3.30E-17	25	100	(U75349) putative permease BhiE [Brachyspira
			01/00/1		ì	;		ì		hyodysenteriae]
974	974 Bt1Gc1310 Bt1G1465	Bt1G1465	2251-1745	g4337125	66	148	1.60E-10	26	66	(U75349) periplasmic-iron-binding protein BhiA
							`			[Brachyspira hyodysenteriae]
974	974 Bt1Gc1310 Bt1G1466	Bt1G1466	2752-706	g4894577	98	159	4.20E-11	27	22	(AF117273) iron-binding protein precursor [Ehrlichia
										chaffeensis]
974	974 Bt1Gc1310 Bt1G1467	Bt1G1467	3248-1609	g2766194	175	231	4.50E-19	44	58	(U75349) putative ABC transporter BhiD [Brachyspira
976	075 Bt1Gc1311 Bt1G1468	B+1G1468	1-1361	C08068Co	599	380	2.70E-65	34	100	hyodysenteriae] HYPOTHETICAL 53.3 KD PROTEIN IN SFP-GERKA
2										INTERGENIC REGION [Bacillus subtilis]
975	975 Bt1Gc1311 Bt1G1469	Bt1G1469	2060-1767	g4894353	218	194	2.10E-15	48	66	(AF065404) pXO1-138 [Bacillus anthracis]
926	Bt1Gc1314	Bt1G1470	1-1563	g3323079	518	258	1.40E-19	30	8	(AE001248) conserved hypothetical integral membrane
								,		
926	976 Bt1Gc1314 Bt1G1471	Bt1G1471	2268-1634	g2226252	471	458	2.20E-43	46	49	(Y14084) hypothetical protein [Bacillus subtilis]

_
ple
Ë

NCBI gi description	(Z99109) similar to 3-hydroxbutyryl-CoA dehydratase [Bacillus subtilis]	HYPOTHETICAL 13.0 KD PROTEIN IN QCRC-DAPB INTERGENIC REGION [Bacillus subtilis]	DIHYDRODIPICOLINATE REDUCTASE [Bacillus	suotilis] METHYLGLYOXAL SYNTHASE [Bacillus subtilis]	HYPOTHETIÇAL 24.8 KD PROTEIN IN DAPB-PAPS INTERGENIC PEGION [Bacillus embilis]	HYPOTHETICAL 42.0 KD PROTEIN IN DAPB-PAPS	INTERGENIC REGION [Bacillus subtilis]	(D64000) hypothetical protein [Synechocystis sp.]	ASPARTATEAMMONIA LIGASE (ASPARAGINE	SYNTHETASE A) [Lactobacillus delbrueckii]	(Y09946) transposase [Bacillus thuringiensis]	(AE000677) aldehyde dehydrogenase [Aquifex aeolicus]	(Z99120) yuel [Bacillus subtilis]	histidine protein kinase (Tn5401) - Bacillus thuringiensis	[Bacillus thuringiensis]	(AP000007) 284aa long hypothetical cobalt transport ATP-	binding protein [Pyrococcus horikoshii]	(Z99104) ybaF [Bacillus subtilis]	INSERTION SEQUENCE IS232 PUTATIVE ATP-	BINDING PROTEIN [Insertion sequence IS232]	(L40490) urease [Ureaplasma urealyticum]	PUTATIVE TRANSPORTER PROTEIN AMIS2	[Rhodococcus sp. R312]	(AE001470) HIGH-AFFINITY NICKEL-TRANSPORT	PROTEIN [Helicobacter pylori 199]	HYPOTHETICAL P20 PROTEIN [Bacillus licheniformis]	(D84432) BltD [Bacillus subtilis]	(Z37980) ORF14 [Escherichia coli]	DAUNORUBICIN RESISTANCE TRANSMEMBRANE	PROTEIN [Streptomyces peucetius]
% Cvrg	100	66	100	66	100	Ξ	50	57	100		52	100	66	3		48		46	47		28	100		100		74	66	100	85	-
% Ident C	45	7.1	65	89	61	09	27	2 2	51		46	46	39	100		34		30	96		29	34		40		36	43	37	25	
BlastP- Prob I	8.60E-58	8.40E-44	1.40E-87	2.10E-47	2.50E-67	2.80E-08	3 70E-50	1.60E-15	2.80E-84		4.90E-32	1.20E-106	9.00E-24	1.80E-05		3.80E-16		6.70E-10	7.80E-57		7.70E-18	1.50E-14		6.80E-41		6.40E-14	2.60E-24	5.30E-42	2.60E-17	
BlastP	594	462	875	496	684	134	400	202	844		351	1055	273	108		201		145	585		217	186		277		180	278	445	212	
aat_B nap_S Score	551	462	901	475	899	119	\$16	57	779		308	1090	267	108		174		82	584	-	201	257		504		187	255	376	246	
NCBI gi	g2633324	g1176702	g1706300	g1176703	g1176704	g1730929	37617808	g1001551	g1703442	0	g1749770	g2982907	g2635672	g2127280	ı	g3258251		g2632414	g2497392		g1204036	£2498126)	g4154878)	g141186	g1303698	g953179	g399406)
Position	1916-387	214-546	549-1352	1370-1783	1777-2442	2475-2604	1.573	614-3114	834-1815		2345-1881	382-1809	2304-1909	2555-2614		397-1		2326-532	2455-2102		1-493	515-1135		1149-2097		3766-4160	236-679	2601-1080	2757-2050	
Gene Id	Bt1G1472	Bt1G1473	Bt1G1474	Bt1G1475	Bt1G1476	Bt1G1477	D+1C1/78				Bt1G1481	Bt1G1482	Bt1G1483	Bt1G1484		Bt1G1485		Bt1G1486	Bt1G1488		Bt1G1489	Bt1G1490		Bt1G1491		Bt1G1492	Bt1G1493	Bt1G1494	Bt1G1495	
Contig Id	977 Bt1Gc1313	978 Bt1Gc1316	978 Bt1Gc1316	978 Bt1Gc1316	978 Bt1Gc1316 Bt1G1476	978 Bt1Gc1316 Bt1G1477	D+1/201200	979 Br1Gc1302	980 Bt1Gc1315		980 Bt1Gc1315	981 Bt1Gc1312	981 Bt1Gc1312	Bt1Gc1312		982 Bt1Gc1318 Bt1G1485		982 Bt1Gc1318 Bt1G1486	Bt1Gc1317 Bt1G1488		984 Bt1Gc1319 Bt1G1489	984 Bt1Gc1319		984 Bt1Gc1319 Bt1G1491		984 Bt1Gc1319	Bt1Gc1322	985 Bt1Gc1322	Bt1Gc1325	
SEQ NO B	116	978	826	978	978	978	070	07.0	086))	086	981	981	981		982		982	983		984	984		984		984	985	985	986	

	NCBI gi description	GTP-BINDING PROTEIN LEPA [Bacillus subtilis]	(U77778) putative membrane protein [Staphylococcus epidermidis]	(Z99107) similar to hypothetical proteins from B. subtilis [Bacillus subtilis]	(AE000624) conserved hypothetical integral membrane protein [Helicobacter mylori 26695]	(AE001152) conserved hypothetical integral membrane	protein [Borrelia burgdorferi]	SIMIL AR TO MIL TIDRIG-EFFLUX TRANSPORTER	REGULATORS IN B.SUBTILIS. [Bacillus subtilis]	HYPOTHETICAL ABC TRANSPORTER ATP-BINDING PROTEIN YDIF [Bacillus subtilis]	(Z99111) yktD [Bacillus subtilis]	(AE001001) ABC transporter, ATP-binding protein	[Archaeoglobus fulgidus]	(D84648) exo-alpha-1,4-glucosidase [Bacillus	stearothermophilus]	(Z82044) hypothetical 54.4 kd protein [Bacillus subtilis]	INSERTION SEQUENCE IS232 PUTATIVE ATP-	BINDING PROTEIN [Insertion sequence IS232]	(U93874) YrhO [Bacillus subtilis]	HYPOTHETICAL 26.1 KD PROTEIN IN PROX-MPRA	INTERGENIC REGION [Escherichia coli]	(Z99106) yczH [Bacillus subtilis]	(Z99114) yoaS [Bacillus subtilis]	(Y14084) hypothetical protein [Bacillus subtilis]	HYPOTHETICAL PROTEIN AF0433 [Archaeoglobus	fulgidus]	HYPOTHETICAL 25.2 KD PROTEIN IN LYSK-AKAE INTERGENIC REGION [Fscherichia coli]	NAD-DEPENDENT METHANOL DEHYDROGENASE	(MEDH) [Bacillus sp.]	HYPOTHETICAL 48.3 KD PROTEIN IN KATB
	% Cvrg		92	100	100	100	. 6			93]	37 (100		66		29	13	•	93	100		66	51	66	41		9	100		4
	% Ident C	85	35	35	32	21	ć	67		37	58	40		29		42	26		32	27		39	52	54	26		55	36		09
+ 21011	BlastP. Prob Ic	4.70E-240	8.80E-33	2.60E-26	4.40E-47	2.60E-11	1 400	1.405-27		7.30E-93	1.30E-31	1.10E-39		1.50E-213		9.30E-27	3.20E-12		7.90E-32	6.50E-21		3.10E-30	4.20E-17	5.10E-37	1.40E-13		4.70E-66	3.00E-54	1	1.00E-86
	BlastP Score	2314	358	297	493	182	Š	20%		925	347	423		2064		304	164		349	246		334	210	398	182		672	364	i	298
	aat_B nap_S Score	2457	169	293	620	175	Ç	707		696	314	444		2084		214	148		264	200		293	198	389	112		663	604		880
	NCBI gi	g1708794	g2196513	g2633027	g2314344	g2688416		g1881333		g3025120	g2633840	g2649101	•	g1321625	,	g1673402	g2497392	•	g1934619	g3123142		g2632703	g2634266	g2226251	g3915359	,	g140681	9462590	0	g1177018
	Position	1687-1	2119-287	1447-2142	3526-2140	3536-2177	000	4330-3080		2698-1	342-1	3122-2445		1656-1		1795-2273	2273-2177		1-1319	785-1513		3131-2570	248-1	870-424	1346-1		2124-1438	3488-2337	2	4532-3635
	Gene Id		Bt1G1497	Bt1G1498	Bt1G1499	Bt1G1500	,	Bt1G1501		Bt1G1502	Bt1G1503	Bt1G1504		Bt1G1505		Bt1G1506	Bt1G1507		Bt1G1508	Bt1G1509		Bt1G1510	Bt1G1511	Bt1G1512			Bt1G1514	Rt1G1515		Bt1G1516
	Contig Id	Bt1Gc1323	Bt1Gc1326	Bt1Gc1326 Bt1G1498	988 Bt1Gc1326 Bt1G1499	988 Bt1Gc1326 Bt1G1500		988 BilGel326 BilGl301		989 Bt1Gc1321 Bt1G1502	990 Bt1Gc1324 Bt1G1503	990 Bt1Gc1324 Bt1G1504		Bt1Gc1327		991 Bt1Gc1327 Bt1G1506	Bt1Gc1327		: Bt1Gc1330	Bt1Gc1330		9 Bt1Gc1330	Bt1Gc1329	3 Bt1Gc1329			Bt1Gc1329 Bt1G1514	R P#1Gc1329 R#1G1515		993 Bt1Gc1329 Bt1G1516
	SEQ NO ID	284	886	886	886	886		988 88		686	066	66		991		991	991	ŭ	992	992		992	993	993	993		993	993	,	993

_	
Table	

			`	-		I anie i			
SEQ ID Contig Id NO	Id Gene Id	Position	NCBI gi	aatn nap Score	BlastP Score	BlastP- Prob 1	% Ident C	% Cvrg	NCBI gi description
994 Bt1Gc1331 Bt1G1517	31 Bt1G1	35-481	g123762	442	462	8.40E-44	28	66	3'REGION [Bacillus subtilis] HUT OPERON POSITIVE REGULATORY PROTEIN Racillus cubtilis
994 Bt1Gc1331 Bt1G1518	331 Bt1G1	588-2111	g123758	1825	1777	3.80E-183	20	100	HISTIDINE AMMONIA-LYASE (HISTIDASE) [Bacillus
994 Bt1Gc1331 Bt1G1519	331 Bt1G1	2129-2659	g1170427	721	. 646	2.70E-63	11	32 1	sudtilis] UROCANATE HYDRATASE (UROCANASE) (IMIDAZOLONEPROPIONATE HYDROLASE) [Bacillus
995 Bt1Gc1332 Bt1G1520	332 Bt1G1	1618-1	g1174516	1843	1846	1.80E-190	28	53	subtilis] ISOLEUCYL-TRNA SYNTHETASE, MUPIROCIN RESISTANT (ISOLEUCINETRNA LIGASE) (ILERS) (MUPIROCIN RESISTANCE PROTEIN) [Staphylococcus
995 Bt1Gc1332 Bt1G1521	332 Bt1G1	3494-97	g2388582	122	197	1.60E-14	27	27	aureus] (AC000098) Contains similarity to Rattus O-GlcNAc
996 Bt1Gc1333	333 Bt1G1522	304-1008	g3608398	446	482	6.40E-46	46	100	(AF071085) putative glycosyl transferase [Enterococcus
997 Bt1Gc1335	335 Bt1G1523	2008-200	g1865711	458	597	4.20E-58	35	100	faecalis] (Y11477) endolysin [Bacteriophage Bastille]
998 Bt1Gc1334	334 Bt1G1524	1231-2361	g1730252	1640	1579	3.60E-162	98		GCPE PROTEIN HOMOLOG [Bacillus subtilis]
998 Bt1Gc1334	334 Bt1G1525	2842-2408	g1730119	496	472	7.30E-45	63	66	FERRIC UPTAKE REGULATION PROTEIN HOMOLOG
998 Br1Gc1334 Br1G1526	334 Bt1G1	3686-2862	e3758894	356	373	2.30E-34	31	100	(Z71552) AdcB protein [Streptococcus pneumoniae]
998 Bt1Gc1334 Bt1G1527	334 Bt1G1		g2415737	403	480	1.00E-45	39	100	(AB000617) YcdI [Bacillus subtilis]
998 Bt1Gc1334	334 Bt1G1528		g1731008	442	458	2.20E-43	81	37	HYPOTHETICAL 32.5 KD PROTEIN IN CCCA-SODA
000 B+1G+1337 B+1G-1590	237 B#1G3	1283-150	01926326	603	402	1 40F-71	30	100	INTERGENIC REGION [Baculus subtins] (X98106) integrase [Bacteriophage phig1e]
1000 Bt1Gc1338 Bt1G1530	338 Bt1G1		g1864009	692	705	1.50E-69	49	100	(D85892) homlogue of rdmC protein of Streptomyces
)						purpuras [Escherichia coli]
1000 Bt1Gc1338 Bt1G1531	338 Bt1G	3071-1803	g3256593	453	504	3.00E-48	53	100	(AP000001) 428aa long hypothetical protein [Pyrococcus
1000 Bt1Gc1338 Bt1G1532	338 Bt1G1	3233-1844	g2293169	113	162	5.20E-12	59	88	norkosnii] (AF008220) transcription regulator [Bacillus subtilis]
1000 Bt1Gc1338	338 Bt1G1533	3373-4292	g1176933	190	336	1.90E-30	79	100	HYPOTHETICAL 34.4 KD PROTEIN IN TRPA
)						3'REGION [Buchnera aphidicola]
1001 Bt1Gc1336 Bt1G1534	336 Bt1G	1707-907	g1706796	269	287	4.80E-57	42	100	FERRICHROME TRANSPORT ATP-BINDING PROTEIN BHITC (Bacillus cubrilis)
1001 Bt1Gc1336 Bt1G1535	336 Bt1G	2686-1694	g2126200	545	515	2.00E-49	38	100	hemin permease - Yersinia enterocolitica []

	NCBI gi description	(AF015825) NodB-like protein		, ,	HI1721 [Haemophilus influenzae Rd]		(Y13937) YlpC protein [Bacillus subtilis]	ATP-DEPENDENT DNA HELICASE RECG [Bacillus	subtilis]	_		_	_	protein (MerR) [Listeria monocytogenes]	7 (Z74020) hypothetical protein Rv1544 [Mycobacterium		_	BKD OPERON TRANSCRIPTIONAL REGULATOR		 (AE001068) conserved hypothetical protein [Archaeoglobus fuloidus] 	٠				-) (Z83337) similar to B. subtilis YcsE hypothetical protein		2 (Z99119) similar to transcriptional regulator (AraC/XylS				[Synechocystis sp.]
	% Cvrg	48	66	57		49	66	57	`	48	100	97	45		77		8	66		33	50	×	<u> </u>	66	66	100	100		22	16	•	3	
	% Ident	27	27	40		69	73	9/		37	36	20	37		33		41	37	,	32	7,	47	:	49	61	53	32		29	65	5	43	
I GIOTA	BlastP- Prob	1.20E-13	3.20E-35	2.50E-19		6.50E-76	9.40E-68	7.50E-146		8.40E-12	4.60E-52	1.20E-69	3.30E-10		9.50E-20		8.40E-28	8.00E-23		4.30E-07	3 40F-25	1 ROF-240		9.00E-24	2.80E-59	4.70E-137	7.00E-40		1.50E-14	8.10E-50	ļ	2.40E-46	
	BlastP Score	185	381	231		765	889	1425		160	540	90/	145		235		311	264		121	787	23.18	21.73	273	809	1342	425		197	526	Š	486	
	aat_B nap_S Score	104	380	183		742	685	1516		160	445	756	110		150		304	270		122	312	2254	-	371	297	1491	393		159	526		517	
	NCBI gi	g2612882	g116904	g2497400	ì	g2337818	g2337817	g3914611)	g4585854	g3183577	g4514327	g2879772)	g1403498)	g2983780	g1168677)	g2650107	0421510	011710	B 1107000	g421055	g2635812	g466195	g1763711)	g2635499	g1168550		g2833487	
	Position	1768-1	962-1339	1768-1415		633-1	1217-654	2488-1315		14-1712	1295-363	2820-3798	531-335		638-2439		2006-1474	2575-2096		2796-3085	1-646	3020-1017	1101-07/6	4805-4367	662-87	2578-806	291-1136		1-2439	1-444		520-1215	
	Gene Id		Bt1G1537	Bt1G1538		Bt1G1544	Bt1G1545	Bt1G1546		Bt1G1547	Bt1G1548	Bt1G1549	Bt1G1550		Bt1G1551		Bt1G1552	Bt1G1553		Bt1G1554	B+101555	B+1G1556	octona.	Bt1G1557	Bt1G1558	Bt1G1559	Bt1G1560		Bt1G1561	Bt1G1562		Bt1G1563	
	SEQ Dontig Id NO	1002 Bt1Gc1341	1002 Bt1Gc1341	1002 Bt1Gc1341		1003 Bt1Gc1342	1003 Bt1Gc1342	1003 Bt1Gc1342		1004 Bt1Gc1343	1004 Bt1Gc1343	1004 Bt1Gc1343	1005 Bt1Gc1344 Bt1G1550		1005 Bt1Gc1344 Bt1G1551		1005 Bt1Gc1344 Bt1G1552	1005 Bt1Gc1344		1005 Bt1Gc1344 Bt1G1554	1006 Bt1Gc1345 Bt1G1555	1006 B+1Gc1345 B+1G1556	1000 1010 1001	1006 Bt1Gc1345 Bt1G1557	1007 Bt1Gc1346 Bt1G1558	1007 Bt1Gc1346	1008 Bt1Gc1347		1009 Bt1Gc1349 Bt1G1561	1010 Br1Gc1350 Bt1G1562		1010 Bt1Gc1350 Bt1G1563	

	
je	
ab	
L	

			,		-		1 41016			
SEQ No	Contig Id	Gene Id	Position	NCBI gi	aat_ nap Score	BlastP Score	BlastP- Prob	% Ident C	% Cvrg	NCBI gi description
010	1010 Bt1Gc1350 Bt1G1564	Bt1G1564	2488-1247	g1731071	1108	1080	2.70E-109	21	100	HYPOTHETICAL 47.0 KD PROTEIN IN GLNQ-ANSR INTERGENIC REGION [Bacillus subtilis]
011	1011 Bt1Gc1351 Bt1G1565	Bt1G1565	1335-258	g3023206	909	199	1.60E-65	45	100 i	PUTATIVE 1-AMINOCYCLOPROPANE-1- CARBOXYLATE DEAMINASE (ACC DEAMINASE) [Escherichia coli]
012	1012 Bt1Gc1352		2586-3611	g4378847	370	482	6.40E-46	30	100	(AF124349) unknown [Zymomonas mobilis]
012	1012 Bt1Gc1352		4800-3647	g1651216	949	668	4.10E-90	47	19	(D88209) Pz-peptidase [Bacillus lichenitormis]
1013 1013	1013 Bt1Gc1355 1013 Bt1Gc1355	Bt1G1568 Bt1G1569	1258-1 3711-2250	g2632729 g2811053	616 70.	686	1.50E-67 8.30E-06	35 26	74 28	(Z99106) ydaL [Bacıllus subtilis] DI-/TRIPEPTIDE TRANSPORTER [Lactobacillus helveticus]
014	1014 Bt1Gc1353	Bt1G1570	139-1	g1731093	117	133	6.10E-09	55	25	HYPOTHETICAL 21.0 KD PROTEIN IN GLNQ-ANSR INTERGENIC REGION [Bacillus subtilis]
014	1014 Bt1Gc1353	Bt1G1571	441-1355	g1731092	950	963	6.80E-97	09	100	HYPOTHETICAL OXIDOREDUCTASE IN ANSR-BMRU INTERGENIC REGION [Bacillus subtilis]
014	1014 Bt1Gc1353	Bt1G1572	2249-1419	g2635853	874	897	6.70E-90	9	100	(Z99121) alternate gene name: yvsB; similar to plantmetabolite dehydrogenase [Bacillus subtilis]
014	1014 Bt1Gc1353 Bt1G1573	Bt1G1573	3135-2312	g1731087	367	445	5.30E-42	38	72	HYPOTHETICAL 39.0 KD PROTEIN IN GLNQ-ANSR INTERGENIC REGION [Bacillus subtilis]
014	1014 Bt1Gc1353 Bt1G1574	Bt1G1574	3135-2962	g1731091	111	89	0.046	36	11	HYPOTHETICAL 9.1 KD PROTEIN IN GLNQ-ANSR INTERGENIC REGION [Bacillus subtilis]
015	1015 Bt1Gc1356 Bt1G1575	Bt1G1575	327-1302	g3123125	714	576	7.00E-56	45	100	HYPOTHETICAL 35.3 KD PROTEIN IN CSPC-NAP INTERGENIC REGION [Bacillus subtilis]
015	1015 Bt1Gc1356 Bt1G1576	Bt1G1576	1310-2007	g2829657	170	179	8.20E-14	25	100	HYPOTHETICAL TRANSCRIPTIONAL REGULATOR IN DCP-NOHA INTERGENIC REGION [Escherichia coli]
015	1015 Bt1Gc1356 Bt1G1577	Bt1G1577	3298-2374	g1934656	793	653	4.80E-64	20	100	(U93876) cation transport protein YrdO [Bacillus subtilis]
910	1016 Bt1Gc1357 Bt1G1578	Bt1G1578	1840-993	g2632519	1138	1151	8.20E-117	71	88	(Z99105) similar to hypothetical proteins [Bacillus subtilis]
017	1017 Bt1Gc1358	Bt1G1579	1355-786	g2635871	258	270	1.90E-23	31	66	(Z99121) yvaF [Bacillus subtilis]
1017	Bt1Gc1358	Bt1G1580	2516-1638	g98344	465	386	9.50E-36	34	100	hypothetical protein (comG 5' region) - Bacillus subtilis (fracment) [Bacillus subtilis]
018	1018 Bt1Gc1348 Bt1G1581	Bt1G1581	1393-1	g1168885	788	784	6.30E-78	37	22	PUTATIVE CEL OPERON REGULATOR [Bacillus subtilis]
018	1018 Bt1Gc1348	Bt1G1582	2433-1479	g2689897	<i>L</i> 99	721	3.00E-71	45	86	(AE000792) outer surface protein, putative [Borrelia hurodorferi]
019	1019 Bt1Gc1359 Bt1G1583	Bt1G1583	682-1	g1731364	340	425	7.00E-40	39	55	

Table 1	BlastP BlastP- % % NCBI gi description Score Prob Ident Cvrg	493 4.40E-47 43 100 (2) 321 7.30E-29 36 96 (3)	protein [Lactococcus lactis] 5 779 2.10E-77 30 80 (U73336) anaêrobic ribonucleotide reductase [Lactococcus	lactis] 8 552 2.40E-53 44 81 HYPOTHETICAL 33.2 KD PROTEIN IN GERAC-FHUC	858 9.10E-86 74 100	270 1.90E-23 32 100	234 3.70E-19	1337 1.00E-137 83 100	217 1.40E-25 79 87	1121 1.20E-113 55 100 (AJ222587) YkuI protein [Bacillus subtilis]	2 784 6.30E-78 66 100 HYPOTHETICAL OXIDOREDUCTASE IN CHEV-MOBA INTERGENIC REGION [Bacillus subtilis]	765 6.50E-76 50 100	171		681 5.20E-67 63 26	-HOMOCYSTEINE METHYLTRANSFERASE (METHIONINE SYNTHASE, VITAMIN-B12	INDEPENDENT ISOZYME) (COBALAMIN-	INDEPENDENT METHIONINE SYNTHASE)	(SUPEROXIDE-INDUCIBLE PROTEIN 9) (SU19) [Racillus subtilis]	185 1.90E-14 30 99	451 1.20E-42 57 99	
	NCBI gi nap Score	g3236110 460 g4098082 212	g4098081 555	g3334448 528	g2619032 857			g261 <i>29</i> 01 1/00	g2612900 490	g2632230 1196	g3915503 872	£2632226 748								g112708 149	g1171856 445	
)				1044-652 g11		
•	Position	4 1575-895 5 3097-1510	6 3758-1504	7 1-713		31		1838-003	2 2249-1883	3 1309-95	4 2328-1567	5 2558-3415		7 2-1581							00 1500-1063	
	Gene Id	Bt1G1584 Bt1G1585	Bt1G1586	Bt1G1587	Bt1G1588	Bt1G1589	Bt1G159	BUGISA	Bt1G159	Bt1G159	Bt1G1594	Bt1G1595			Bt1G159					Bt1G159	Bt1G1600	
	Contig Id	1019 Bt1Gc1359 1019 Bt1Gc1359	1019 Bt1Gc1359	1020 Bt1Gc1361	1020 Bt1Gc1361	1020 Bt1Gc1361	1021 Bt1Gc1360 Bt1G1590	1021 BtiGe1360 BtiG1391	1021 Bt1Gc1360 Bt1G1592	1022 Bt1Gc1363 Bt1G1593	Bt1Gc1363	Bt1Gc1363	Bt1Gc1367	Bt1Gc1367	1024 Bt1Gc1368 Bt1G1598					1024 Bt1Gc1368 Bt1G1599	1024 Bt1Gc1368	
	SEQ D	1019	1019	1020	1020	1020	1021	1021	1021	1022	1022	1022	1023	1023	1024					1024	1024	

able
_

NCBI gi description	[Bacillus subtilis] DNA/PANTOTHENATE METABOLISM FLAVOPROTEIN HOMOLOG [Methanococcus	jannaschii] (Z99115) similar to aminoglycoside N3'-acetyltransferase	[Bacteriophage SPBc2] (AF027868) aldehyde dehydrogenase [Bacillus subtilis] (TF9433) 3-ketoacyl-acyl carrier protein reductase [Bacillus	subtilis] DIHYDROOROTASE (DHOASE) [Bacillus caldolyticus]	CARBAMOYL-PHOSPHATE SYNTHASE, PYRIMIDINE, SPECIFIC, SMALL, CHAIN	(CARBAMOYL-PHOSPHATE SYNTHETASE GLUTAMINE CHAIN) [Bacillus caldolyticus]	PYRUVATE KINASE (PK) [Thermococcus litoralis]		_	acyl-carrier protein reductase [Bacillus subtilis]	(PANTOTHENATE SYNTHETASE) (PANTOATE	ACTIVATING ENZYME) [Bacillus subtilis]	ASPARTATE 1-DECARBOXYLASE PRECURSOR (ASPARTATE ALPHA-DECARBOXYLASE) [Bacillus	subtilis]	PROBABLE ATP-DEPENDENT HELICASE DING	HOMOLOG [Bacillus subtilis]					HYPOTHETICAL 39.8 KD PROTEIN IN OSMY-DEOC INTERGENIC REGION (0357) [Escherichia coli]	. –	(AL049754) putative two-component system regulator
% Cvrg	57	100	83	93	100		88	100	100	ć	C		66		66	4	58		66	8	73	9	100
% Ident	29	99	78	71	71		37	59	48	ų.	CC		74		39	35	27		51	61	25	30	35
BlastP- Prob	9.40E-22	1.40E-73	4.10E-177	3.10E-149	1.70E-141		3,30E-33	2.50E-35	4.50E-61		/.50E-59		1.30E-45		1.60E-184	1 000 23	2.80E-45		1.50E-46	8.30E-37	2.20E-20	1.90E-28	3.10E-30
BlastP	256	743	1720	1457	1384		362	382	625	,	904		479		1790	Č	483		488	396	241	317	334
aat_ F nap g	173	789	1716	1506	1364	•	344	243	555		384		479		1653	6	346	<u>:</u>	446	384	112	238	290
NCBI gi	g3023642	g2634583	g2619016	g1172784	g1705597		g4033437	g4126634	g2633552		g1/09569		g1709570		g1706437	1001505	g1001363		g2633163	g2633601	g732119	e1817534	g4753877
Position	3364-1743	3230-2417	1-1233	1-1196	1202-2291		580-1	411-2310	4209-3436	;	1-031		631-1011		1143-3912	,	1-490	1	2499-3027	4000-3629	3317-4900	1-834	738-1462
SEQ Dontig Id Gene Id	1025 Bt1Gc1364 Bt1G1603	1025 Bt1Gc1364 Bt1G1604	1026 Bt1Gc1365 Bt1G1605	1027 Bt1Gc1369 Bt1G1607	1027 Bt1Gc1369 Bt1G1608		1028 Bt1Gc1371 Bt1G1609	1028 Bt1Gc1371 Bt1G1610			1029 Bt1Gc1372 Bt1G1612		1029 Bt1Gc1372 Bt1G1613	_	1029 Bt1Gc1372 Bt1G1614		1030 Bt1Gc13/4 Bt1G1613		1030 Bt1Gc1374 Bt1G1617	1030 Bt1Gc1374 Bt1G1618	1030 Bt1Gc1374 Bt1G1619	1031 Bt1Gc1373 Bt1G1620	1031 Bt1Gc1373 Bt1G1621

_
le
q
<u></u>
•

NCBI gi description	[Streptomyces coelicolor] beta-lactamase (EC 3.5.2.6) precursor - Bacillus sp. (strain	1/0) [bacillus sp.] HYPOTHETICAL 31.8 KD PROTEIN IN GABP-GUAA INTERGENIC REGION (ORFX) [Bacillus subtilis]	hypothetical protein 2 - Bacillus megaterium [Bacillus megaterium]	(D89936) sporulation-control protein (spo0M) [Bacillus enhtitis]	suctins] (Z99105) similar to protein kinase [Bacillus subtilis] (Z96072) hypothetical protein Rv2688c [Mycobacterium	[Bacillus subtilis]	(Z99117) similar to hypothetical proteins [Bacillus subtilis]	(AE000722) hypothetical protein [Aquifex aeolicus]	(Z93940) asparagine synthetase [Bacillus subtilis]	cetylglucosamine 1-	carboxyvinyltransferase [Bacillus subtilis]	acilius subdilisj	HYPOIHEIICAL 41.3 KD PROTEIN IN AMINA-AMIE	INTERGENIC REGION [Bacillus subtilis]	(283864) menu [Mycobacterium moerculosis]	FEMICILLIN-BINDING FRO LEGAS 15/1B (FBF1) [Bacillus subtilis]	HYPOTHETICAL 24.0 KD PROTEIN IN PONA-COTD	INTERGENIC REGION (ORF I) [Bacillus subtilis]	HYPOTHETICAL 38.5 KD PROTEIN IN PONA-COLD INTERGENIC REGION (ORFX) [Bacillus subtilis]	(L36381) orfA; putative [Neisseria gonorrhoeae]	HYPOTHETICAL ABC TRANSPORTER ATP-BINDING	PROTEIN 2 IN GLABC 3 REGION [Bachius subtins]	(Z99113) simitar to nypotnetical proteins from D. subtilis [Racillus subtilis]	(Z82044) hypothetical 28.3 kd protein [Bacillus subtilis]	DNA-DIRECTED RNA POLYMERASE ALPHA CHAIN
	[Streptomyces coelicolor]	170) [Bacillus sp.] 100 HYPOTHETICAL 3 INTERGENIC REG	100 hypothetical protein	megacomuni 100 (D89936) sporulation subtilisi	300 (Z99105) similar to 1 100 (Z96072) hypothetic	tuberculosis] 86 (Y08559) [Inknown [Bacillus subtilis]	_	_	_	67 (Z81356) UDP-N-acetylglucosamine 1			61 HYPOTHEIICAL 4			04 PENICILLIN-BIND [Bacillus subtilis]	100 HYPOTHETICAL 2		100 HYPOTHETICAL 3 INTERGENIC REG	74 (L36381) orfA; puta	100 HYPOTHETICAL A		100 (299113) similar to Racillus subtilis	82 (Z82044) hypothetic	27 DNA DIRECTED B
% t Cvrg						45				9 9/			99			00	63 10		46 I(28	46 10		7.3	29 8	80
% Ident	81	51	7 31	41	33 37			3 23																	
BlastP- Prob	7.80E-128	1.70E-61	9.70E-27	1.10E-50	1.20E-35 4.60E-43	2 70F-47	3.30E-07	2.40E-08	1.50E-149	6.80E-113	•	0.094	2.10E-70	101.0	9.40E-29	1.50E-142	2.30E-66	•	4.80E-73	7.60E-11	6.40E-133	1	8.50E-154	4.00E-28	0 20E-38
BlastP Score	1255	629	301	527	385 455	495	118	139	1460	1114	,	65	713	ć	320	1394	675	1	738	151	1303	,	1500	314	705
	1257	754	290	471	374 437	422	4	42	1444	1143	-	101	8 42	7	310	1360	645	,	889	93	1389	1	1758	199	380
NCBI gi	g80141	g2828522	g322157	g3522984	g2632489 g2181979	91502705	g2635194	g2983568	g1934835	g1648861		g2636203	g2495457		g1781103	g/302/5	g732244		g1730944	g790865	g1723607		g2634220	g1673400	g122205
Position	3375-2427	297-1172	1820-1174	2651-1876	3450-2651 1347-2228	3005.3814	482-247	1047-247	3582-1756	876-1		1774-1678	724-1		1152-1622	1/66-1	2432-1815		2590-3543	933-1	299-2116		546-1931	2698-927	1 250
Gene Id	Bt1G1622	Bt1G1623	Bt1G1624	Bt1G1625	Bt1G1626 Bt1G1628	B+1/31620			Bt1G1632	Bt1G1633			Bt1G1635			Bt1G1637	Bt1G1638		Bt1G1639	Bt1G1640	Bt1G1641		Bt1G1642	Bt1G1643	D4101644
Contig Id	NO 1031 Bt1Gc1373 Bt1G1622	1032 Bt1Gc1376 Bt1G1623	1032 Bt1Gc1376 Bt1G1624	Bt1Gc1376 Bt1G1625	1032 Bt1Gc1376 Bt1G1626 1033 Bt1Gc1375 Bt1G1628	1022 B+1Go1275	1034 Bt1Gc1378	1034 Bt1Gc1378	1035 Bt1Gc1377	Bt1Gc1379		1036 Bt1Gc1379	1037 Bt1Gc1383	3	1037 Bt1Gc1383	1038 Bt1Gc1382	1038 Bt1Gc1382 Bt1G1638		1038 Bt1Gc1382	1039 Bt1Gc1380 Bt1G1640	1040 Bt1Gc1370		1041 Bt1Gc1384 Bt1G1642	1041 Bt1Gc1384 Bt1G1643	D+1/C-1201
SEQ ID	1031	1032	1032	1032	1032	1033	1034	1034	1035	1036		1036	1037	1	1037	1038	1038		1038	1039	1040		1041	1041	707

_	4
4	2
3	Ξ.
٥	3
	'

	% % NCBI gi description Ident Cvrg	(TRANSCRIPTASE ALPHA CHAIN) (RNA POLYMERASE ALPHA SUBUNIT) [Bacillus subtilis] *** 99 50S RIBOSOMAL PROTEIN L17 (BL15) (BL21) [Bacillus	subtilis] 60 100 HYPOTHETICAL ABC TRANSPORTER ATP-BINDING	FROLEIN YBXA [Bacillus subtilis] 61 95 (D64126) unknown [Bacillus subtilis]	9/	29 99 SHIKIMATE KINASE (SK) [Erwinia chrysanthemi]	38	41 100 (AF082668) CsrR [Streptococcus pyogenes]	16	licheniformis] 91 45 TRANSPOSASE FOR INSERTION SEQUENCE	ELEMENT IS232 [Insertion sequence IS232]	_	66	INTERGENIC REGION (O162) [Escherichia coli]	33 48 DIHYDRODIPICOLINATE SYNTHASE (DHDPS) (VEGETATIVE PROTEIN 81) (VEG81) [Bacillus subtilis]	25 73 HYPOTHETICAL 39.5 KD OXIDOREDUCTASE IN	FIMT 3'REGION (DADA*) (ORFZ) [Pseudomonas	6	48 80 (U0048U) IIIDA [Bacillus suotinis]	43	(35 62 METHYL-ACCEPTING CHEMOTAXIS PROTEIN MCFA (III) [Becilling embrilled]	(AT) (Dacinus sucting) 46 37 (AF065404) pXO1-90 [Bacillus anthracis]	99 100 STAGE 0 SPORULATION PROTEIN A [Bacillus	thuringiensis] 64 100 (U68235) SpoIVB [Bacillus subtilis]
I dinie I	BlastP. Prob Id	8.50E-51	8.00E-87	6.20E-80	1.70E-29	1.50E-14	1.90E-23	2.10E-38	6.80E-150	2.60臣-88		5.60E-17	2.90E-09		1.10E-23	5.60E-20		1000	2.20E-61	1.40E-103 4.60E-27	,	1.90E-25	1.10E-48	1.30E-134	6.30E-142
	BlastP Score	528	898	803	327	186	270	411	1485	882		210	136		272	238		ç	979	304		227	508	1319	1388
	aat_ l nap Score	528	831	852	222	187	247	432	1392	912		210	86		248	157		Ş	634	689		595	428	1303	1365
	NCBI gi	g132718	g3915966	g1644203	g3763917	g114199 52524000	g2034900 g1731039	93599371	g2982194	e2497382		g2226185	g1176283		g416876	g3915984		i	g1750108	g2220233 g1881327	0	g730002	g4894306	g1711477	g1553038
	Position	298-657		1621-2405		1305-1811	3872-3575	993-313	1-4206	3617-4206		225-1	941-426		421-1	3305-2440			889-1	3253-2695		1-1531	1977-2709	1760-968	3337-2057
	Gene Id	Bt1G1645	Bt1G1646	Bt1G1647	Bt1G1648	Bt1G1649	Bt1G1651	B#1G1652	Bt1G1653	Bt1G1654		Bt1G1655	Bt1G1656		Bt1G1657	Bt1G1658				Bt1G1660 Bt1G1661		Bt1G1662	Bt1G1663	Bt1G1664	Bt1G1665
	Contig Id	1042 Bt1Gc1381 Bt1G1645	1042 Bt1Gc1381 Bt1G1646	Bt1Gc1381	Bt1Gc1388	Bt1Gc1388	Bt1Gc1388	1044 Br1Gc1386 Bt1G1652	Bt1Gc1385 Bt1G1653	1045 Br1Gc1385 Bt1G1654		1046 Bt1Gc1390 Bt1G1655	Bt1Gc1390		1047 Bt1Gc1387 Bt1G1657	1047 Bt1Gc1387 Bt1G1658				Bt1Gc1391 Bt1Gc1391		1049 Bt1Gc1392 Bt1G1662	1049 Bt1Gc1392 Bt1G1663	1050 Bt1Gc1393 Bt1G1664	1050 Bt1Gc1393 Bt1G1665
	SEQ Seq	1042	1042	1042	1043	1043	1043	1044	1045	1045		1046	1046		1047	1047		•	1048	1048))	1049	1049	1050	1050

<u>,</u>

	NCBI gi description	(AF055996) Recon homolog [Bacillus anthracis]	(UZO744.2) Bir A protein [Bacinus suotins] POI V(A) POI VMERASE (PAP) [Bacillus subtilis]	HYPOTHETICAL 42.0 KD PROTEIN IN DAPB-PAPS	INTERGENIC REGION [Bacillus subtilis]	(AF008220) putative cysteine synthase [Bacillus subtilis]	DNA-DIRECTED RNA POLYMERASE BETA CHAIN (TRANSCRIPTASE BETA CHAIN) (RNA POLYMERASE	BETA SUBUNIT) [Bacillus subtilis]	PHENYLALANYL-TRNA SYNTHETASE ALPHA	CHAIN (PHENYLALANINEIRNA LIGASE ALPHA CHAIN) (PHERS) [Bacillus subtilis]	PHENYLALANYL-TRNA SYNTHETASE BETA CHAIN	(PHENYLALANINETRNA LIGASE BETA CHAIN) (PHERS) [Bacillus subtilis]	(Z99112) initiation factor IF-2 [Bacillus subtilis]	HYPOTHETICAL 10.7 KD PROTEIN IN INFB-RPSO	INTERGENIC REGION (ORF5) [Bacillus subtilis]	RIBOSOME-BINDING FACTOR A (P15B PROTEIN)	[Bacillus subtilis]	TRNA PSEUDOURIDINE SYNTHASE B (TRNA	PSEUDOURIDINE 55 SYNTHASE) (PSI55 SYNTHASE)	(PSEUDOURIDYLATE SYNTHASE) (UKACIL	HYDROLYASE) [Bacillus suoulis]	HYPOTHETICAL 41.2 KD PROTEIN CY277.09 [Mycobacterium tuberculosis]	(AJ000758) hypothetical protein [Bacillus megaterium]	(Y14084) hypothetical protein [Bacillus subtilis]	HYPOTHETICAL PROTEIN IN PDHA 5'REGION (ORF1)	[Bacillus stearothermophilus]		3-DEHYDROQUINATE SYNTHASE [Bacillus subtilis]	CHORISMATE SYNTHASE (5- ENOLPYRUVYL SHIKIMATE-3-PHOSPHATE	PHOSPHOLYASE) (VEGETATIVE PROTEIN 216)
	% Cvrg	5. 5				100	43		100		71	-	91	66		66		100				09	100	66	66	6	77	100	9	
	% Ident (80	00 44	F 9	3	<i>L</i> 9	87		9/		65		73	61		80		26				41	37	30	51	Ş	ي 8	45	83	
Table 1	BlastP- Prob I	2.00E-33	1.40E-34	1.80E-98		1.10E-91	1.00E-237		4.00E-131		1.80E-183		1.80E-242	2.90E-27		6.40E-46		4.80E-96				3.50E-38	3.60E-68	7.10E-15	6.90E-17	i i	9.80E-50	7.60E-82	2.90E-42	
	BlastP Score	364	3/3 878	978	2	914	2292		1286		1780		2321	306		482		955				409	692	189	208		518	821	432	
	aat_B nap_S Score	335	415 019	1030	201	1032	2283		1411		1865		2375	306		482		616				397	099	150	193	;	205	785	604	
	NCBI gi	g4106732	g//3349 c1700570	g1/093/0 o1730979	6113072	g2293314	g585920		g2507429		g3123292		£2634035	g418463)	g418464)	g3183559	ı			g2493270	g3724051	g2226254	g141235	b	g225559	g399057	g399058	
	Position	3793-3523	434-1	224-C101 2507-1617	1101-1777	573-1496	1-1529		331-1362		1384-3108		Jan-58	1958-2233		2252-2602		2692-3609				1-1847	825-1934	2015-2611	3104-3391		1-314	1621-536	2134-1686	
	Gene Id	Bt1G1666	Bt1G1667			Bt1G1670	Bt1G1671		Bt1G1672		Bt1G1673		Bt1G1674	Bt1G1675		Bt1G1676		Bt1G1677				Bt1G1678	Bt1G1679	Bt1G1680	Bt1G1681	i i 	Bt1G1682	Bt1G1683	Bt1G1684	
	Contig Id	Bt1Gc1393	Bt1Gc1395	B+1G-1305		Bt1Gc1396 Bt1G1670	Bt1Gc1398 Bt1G1671		1054 Bt1Gc1397 Bt1G1672		1054 Bt1Gc1397 Bt1G1673	*	1055 Bt1Gc1394 Bt1G1674	1055 Bt1Gc1394 Bt1G1675		1055 Bt1Gc1394 Bt1G1676		1055 Bt1Gc1394 Bt1G1677				1056 Bt1Gc1399 Bt1G1678	1056 Bt1Gc1399 Bt1G1679	1056 Bt1Gc1399 Bt1G1680	Bt1Gc1399		1057 Bt1Gc1401 Bt1G1682	1057 Bt1Gc1401 Bt1G1683	Bt1Gc1401	
	SEQ ID NO	1050	1051			1052	1053		1054		1054		1055	1055		1055		1055	,			1056	1056	1056	1056	; ;	1057	1057	1057	

	
Table	

-	in)	molg		inding	aeolicus]			CTION (- 	SOR	snuns			sp.					or	DOTTIO		ıs subtilis]	I	ytogenes]	ne]
NCBI gi description	(VEG216) [Bacillus subtilis] (Z99112) signal recognition particle (docking protein)			(AP000003) 597aa long hypothetical oligopeptide binding protein APPA [Pvrococcus horikoshiil		_	_	HYPOTHETICAL 27.2 KD SENSORY TRANSDUCTION PROTEIN IN ROCR-PURA INTERGENIC REGION		 ALKALINE PHOSPHATASE SYNTHESIS SENSOR PROTEIN PHOR [Bacillus subtilis] 			 hypothetical protein 3 - Clostridium perfringens [Clostridium perfringens] 		_	DECIVITY OF STATE OF THE PROPERTY OF THE PROPE	INFLUENZAE. [Bacillus subtilis]			[Bacillus subtilis]			_) THYMIDYLATE SYNTHASE (TS) [Artificial gene]
% Cvrg	32	8	100	87	65	16	100	100		47	66		37	100		100	-	001	48	2	100	100	42	66	100
% % Ident Cvrg	77	53	24	33	40	26	29	40		38	74		38	<i>L</i> 9		52		99	29	ì	00	40	47	09	70
BlastP. Prob	2.00E-33	5.60E-276	5.50E-40	9.70E-66	1.20E-33	4.10E-35	7.30E-164	5.10E-35		3.90E-39	4.90E-32		1.10E-16	5.20E-131		4.80E-64		7.80E-112	8.60E-74	1000	3.00E-31	4.30E-40	7.30E-29	4.30E-56	4.00E-124
BlastP Score	364	2653	426	699	366	380	1595	354		418	351		206	1285		653		1104	745	ţ	31/	427	321	578	1220
aat B nap S Score	392	2758	233	467	332	364	1775	433	-	408	408		171	1316		928		1132	731	Ċ	Ç8/	337	293	216	1217
NCBI gi	g2633967	g2633966	g129179	g3257217	g2983140	g225559	g1945644	g586808		g130130	g420808	-	g2127359	g1075793	•	g1881258		g126054	g2619006		g1/31129	g400209	g2226252	g971590	g136612
Position	316-1	3924-341	186-1890	174-1852	2005-2925	2693-2925	50-1816	1893-2573		2844-3643	551-252		762-2556	3318-2092		930-1967		2977-2021	3274-3917	1	47-808	2645-1635	2993-3410	503-18	1473-526
Gene Id	Bt1G1685	Bt1G1686	Bt1G1687	Bt1G1688	Bt1G1689	Bt1G1690	Bt1G1691	Bt1G1692		Bt1G1693	Bt1G1694		Bt1G1695	Bt1G1696		Bt1G1697		Bt1G1698	Bt1G1699	1	Bt1G1/00	Bt1G1701	, Bt1G1702	5 Bt1G1703	Bt1G1704
Contig Id	1058 Bt1Gc1400 Bt1G1685	1058 Bt1Gc1400 Bt1G1686	1059 Bt1Gc1403 Bt1G1687	1059 Bt1Gc1403 Bt1G1688	Bt1Gc1403	1059 Bt1Gc1403	1060 Bt1Gc1402	1060 Bt1Gc1402		1060 Bt1Gc1402 Bt1G1693	1061 Bt1Gc1405 Bt1G1694	-	1061 Bt1Gc1405 Bt1G1695	1061 Bt1Gc1405 Bt1G1696		1062 Bt1Gc1404 Bt1G1697		1062 Bt1Gc1404 Bt1G1698	1062 Bt1Gc1404 Bt1G1699	1	1063 Bt1Gc1407 Bt1G1700	1063 Bt1Gc1407	1063 Bt1Gc1407	1064 Bt1Gc1406	1064 Bt1Gc1406
SEQ NO P	1058	1058	1059	1059	1059	1059	1060	1060		1060	1061		1061	1061		1062		1062	1062	;	1063	1063	1063	1064	1064

_
<u>•</u>
互
<u>_</u> 4
_

NCBI gi description	(Z95210) hypothetical protein Rv0907 [Mycobacterium tuberculosis]	(D90907) phosphoglycolate phosphatase [Synechocystis	sp.] HYPOTHETICAL 23.7 KD PROTEIN IN ILVD-THYB INTERGENIC REGION [Bacillus subtilis]	(Y09212) putative malate oxidoreductase [Bacillus cereus]	(Y09212) Aspartate ammonia-lyase [Bacillus cereus]	(Y09212) proton /sodium-glutamate symport protein	[Bacillus cereus] (AJ010739) pyrroline-5-carboxylate reductase [Clostridium	sticklandii] GLUTAMATE 5-KINASE (GAMMA-GLUTAMYL KINASE) (GK) [Racillus subtilis]	(A1002571) gamma-glutamylphosphate reductase [Bacillus	subtilis] (AE000848) conserved protein [Methanobacterium	thermoautotrophicum]	(D86417) YfmI [Bacillus subtilis]	(U64312) amidase [Bacillus firmus]	(AB001488) ATP-DEPENDENT RNA HELICASE DEAD	HOMOLOG. [Bacillus subtilis]	(AJ009627) pyruvate-formate lyase activating enzyme	[Listeria monocytogenes] FORMATE ACETYLTRANSFERASE 1 (PYRUVATE	FORMATE-LYASE 1) [Escherichia coli]	(AF027868) putative alanine acetyl transferase [Bacillus	subtilis] HYPOTHETICAL 45.7 KD PROTEIN IN MUTT-GSIB	INTERGENIC REGION [Bacillus subtilis]	(AJ000394) transcriptional regulatory protein CelR	[Bacillus cereus] (Y09476) YisO [Bacillus subtilis]	(AF047044) putative transposase [Anabaena PCC7120]	(Z99111) similar to aspartate aminotransferase [Bacillus
% Vrg	6	100	17	24	100	9	100	100	100	66		100	100	75		100	41		66	100		8	74	41	96
% % Ident Cvrg	24	34	53	95	66	8	99	09	65	32	,	33	20	49		29	89		53	73		86	40	24	89
BlastP- Prob	3.60E-43	3.60E-36	3.40E-08	1.60E-31	5.60E-228	4.50E-155	2.40E-71	7.10E-102	2.60E-143	2.30E-16	-	6.10E-57	2.40E-117	5.10E-92		2.30E-80	7.60E-114		3.80E-48	1.20E-124		2.00E-209	2 90F-89	1.60E-11	2.40E-142
BlastP	456	390	126	346	2200	1512	722	1010	1401	203		286	1156	917		807	1123		503	1225		2025	801	162	1392
aat_B nap_g Score	311	365	122	332	2378	1733	793	1112	1401	176		979	1092	806		800	1093		493	1603		2122	845	105	1389
NCBI gi	g3261758	g1652645	g1730930	g2072371	g2072370	g2072369	g3688282	g3183548	g2632033	g2621778)	g2443252	g1813489	g1881268)	g4914622	g129879		g2618995	g3025117	ì	g4584200	02145380	03005554	g2633729
Position	507-3114	5156-4497	5367-5260	224-1	1685-249	2777-1713	1354-557	2046-3152	3166-4410	496-56		761-1976	3498-2035	2394-3543		981-238	1979-1048		1398-904	2875-1601		1352-2647	1,1203	3570-3169	1146-1
Gene Id	Bt1G1705	Bt1G1706	Bt1G1707	Bt1G1708		Bt1G1710	Bt1G1711	Bt1G1712	Bt1G1713	Bt1G1714		Bt1G1715	Bt1G1716	Bt1G1717		Bt1G1718	Bt1G1719		Bt1G1720	Bt1G1721		Bt1G1722	B+1G1723	Br1G1724	Bt1G1725
SEQ ID Contig Id NO	1064 Bt1Gc1406 Bt1G1705	1064 Bt1Gc1406 Bt1G1706	1064 Bt1Gc1406 Bt1G1707	1065 Bt1Gc1408	1065 Bt1Gc1408	1065 Bt1Gc1408	1066 Bt1Gc1409 Bt1G1711	1066 Bt1Gc1409 Bt1G1712	1066 Bt1Gc1409 Bt1G1713	1067 Bt1Gc1410 Bt1G1714		1067 Bt1Gc1410 Bt1G1715	1067 Bt1Gc1410 Bt1G1716	1068 Bt1Gc1411		1069 Bt1Gc1413	1069 Bt1Gc1413 Bt1G1719		1070 Bt1Gc1412 Bt1G1720	1070 Bt1Gc1412 Bt1G1721		1071 Bt1Gc1415 Bt1G1722	1072 B+1C+1416 B+1G1723	1072 BriGe1416 Br1G1724	1073 Bt1Gc1414

	(ORF73) [Bacillus subtilis] 100 PROBABLE ABC TRANSPORTER PERMEASE PROTEIN IN SODA-COMGA INTERGENIC REGION	100 PROBABLE ABC TRANSPORTER PERMEASE PROTEIN IN SODA-COMGA INTERGENIC REGION	99 (Z99110) similar to hypothetical proteins from B. subtilis		100 (Z99110) similar to enoyl- acyl-carrier protein reductase		[Bacillus thuringiensis] 22 SPORE COAT POLYSACCHARIDE BIOSYNTHESIS	FROENZ TME (Bacinus Subuns) 100 RNA POLYMERASE SIGMA-28 FACTOR PRECURSOR	100 PHOSPHATIDYLSERINE DECARBOXYLASE	INTERGENIC REGION [Bacillus subtilis] 99 HYPOTHETICAL 20.1 KD PROTEIN IN NUCB-AROD INTERGENIC REGION [Bacillus subtilis]	100 HYPOTHETICAL 41.0 KD PROTEIN IN NUCB-AROD	_	100 (Z93937) unknown [Bacillus subtilis]	_		OPUBD INTERGENIC REGION [Bacillus subtilis] 86 (AF024713) ParC [Bacillus subtilis]	100 HYPOTHETICAL OXIDOREDUCTASE IN FHUD-	INTERGENIC REGION [Bacillus subtilis] 7 ORF IS231C [Bacillus thuringiensis]	64 HYPOTHETICAL 38.9 KD PROTEIN IN DAT-SPO0E	_	subtilis] 100 (Z99111) similar to hypothetical proteins [Bacillus subtilis]	NCBI gi description	3
																						Cvrg	,
43	49	52	47	27	70		42	100	43	<i>L</i> 9	89	89	59	63	46	<i>L</i> 9	42	97	58	54	55	/o Ident	;
2.10E-56	5.80E-52	1.70E-70	2.20E-13	4.10E-05	3.10E-101		8.80E-17	1.00E-118	7.80E-57	3.80E-55	6.70E-138	4.80E-167	2.10E-95	4.00E-92	2.10E-22	8.80E-239	1.10E-78	2.40E-11	7.60E-66	1.10E-103	2.70E-77	Prob	I anne I
581	539	714	175	101	1004		213	1169	585	569	1350	1625	946	918	260	2302	791	164	670	1027	778	Score	:
586	669	962	274	94	982		157	1169	577	638	1340	1711	1069	1058	254	2407	772	143	625	1027	758	-	***
g1177033	g1177034	g1177035	g2633533	g2633527	g2633526)	g730820	g133282	g729365	g1730980	g1730981	g1934812	g1934813	g1934814	g2634056	g2558947	g3915578	g225559	g3183453	g2633727	g2633728	NCBI gi	
2811-1894	2040-959	953-75	2542-2895	1497-1897	412-1216		1-1792	4000-3290	3009-2221	1627-1112	1102-2	4276-2793	2782-1739	1738-782	473-144	4314-2231	1987-926	4389-4288	3509-4389	2307-3497	1242-2021	Position	
Bt1G1746	Bt1G1745	Bt1G1744) Bt1G1743) Bt1G1742) Bt1G1741) Bt1G1740	Bt1G1739	Bt1G1738) Bt1G1737	Bt1G1736	Bt1G1735				, Bt1G1731	, Bt1G1730	Bt1G1729		Bt1G1727	Bt1G1726	Gene Id	
10/8 Bt1Gc1421 Bt1G1/45	1078 Bt1Gc1421 Bt1G1745	1078 Bt1Gc1421 Bt1G1744	1077 Bt1Gc1420 Bt1G1743	1077 Bt1Gc1420 Bt1G1742	1077 Bt1Gc1420 Bt1G1741		1077 Bt1Gc1420 Bt1G1740	1076 Bt1Gc1419 Bt1G1739	1076 Bt1Gc1419 Bt1G1738	1076 Bt1Gc1419 Bt1G1737	1076 Bt1Gc1419	1075 Bt1Gc1418	1075 Bt1Gc1418	1075 Bt1Gc1418	1075 Bt1Gc1418	1074 Bt1Gc1417	1074 Bt1Gc1417 Bt1G1730	1073 Bt1Gc1414	1073 Bt1Gc1414	1073 Bt1Gc1414	1073 Bt1Gc1414	ID Contig Id	C
		-																				•	•

-
e
ā
2
٠.

						TANNET			
SEQ ID Contig Id NO	Gene Id	Position	NCBI gi	aat land	BlastP Score	BlastP- Prob	% Ident C	% Cvrg	NCBI gi description
1078 Br1Gc1421 Br1G1747	B#1G1747	3342-3566	02622470	\$8	901	4.50E-06	29	68	IN SODA-COMGA INTERGENIC REGION PRECURSOR (ORF108) [Bacillus subtilis] (AE000899) unknown [Methanobacterium
1078 Bt1Gc1421 Bt1G1748	Bt1G1748	3584-3895	g2498377	332	332	3.30E-29	9		thermoautotrophicum] FERROUS IRON TRANSPORT PROTEIN B HOMOLOG
1079 Bt1Gc1422	Bt1G1749	1-363	g1575061	173	218	6.00E-18	34	53	[Methanococcus jannaschii] (U57060) ScdA [Staphylococcus aureus]
1079 Bt1Gc1422		581-2992	g1171661	2412	2397	7.50E-249	57		NITRITE REDUCTASE (NAD(P)H) [Bacillus subtilis]
1079 Bt1Gc1422	Bt1G1751	3002-3319	g1171662	289	303	5.90E-27	4	3	ASSIMILATORY MITKLIE KEDOCIASE (MAD(F)H) SMALL SUBUNIT [Bacillus subtilis]
1079 Bt1Gc1422 Bt1G1752	Bt1G1752	3384-3709	g2462960	225	266	4.90E-23	46	45	(AJ000974) putative S-adenosyl L-methionine: uroporphyrinogen III methyltransferase [Bacillus subtilist]
1080 Bt1Gc1423 Bt1G1753	Bt1G1753	469-1458	g135188	1325	1325	3.00E-135	74	100	TRYPTOPHANYL-TRNA SYNTHETASE (TRYPTOPHANTRNA LIGASE) (TRPRS) [Bacillus
	1	1		. !	Ċ	, i	É		subtilis]
1080 Bt1Gc1423 Bt1G1754	Bt1G1754	2488-1745	g2633495 c2633489	355	286 270	3.20E-99 5.20E-35	2 %	3 5	(299110) yJoA [Bacillus suotins] (799110) viaZ. [Bacillus subtilis]
1081 Bt1Gc1424	Bt1G1756	1731-1	£2621399	169	135	1.20E-12	23		(AE000819) succinoglycan biosynthesis transport protein
			b						[Methanobacterium thermoautotrophicum]
1081 Bt1Gc1424 Bt1G1757	Bt1G1757	1728-1	g2650029	95	176	1.20E-12	27	42	(AE001064) polysaccharide biosynthesis protein, putative
		0000	7000	74.0	\A.	10 TOE 0	7	g	[Archaeoglobus fulgidus] (AD015600) untracum [Bacillus cubrilis]
1081 Bt1Gc1424 Bt1G1758	Bt1G1758	2438-1909	g2454556	346	344	2.70E-51	‡ 8	3 5	(AFU13009) unknown [Dacinus sucuns]
1081 Bt1Gc1424 Bt1G1759	Bt1G1759	3818-2410	9495280	9. 79.	313	2.00E-12 5.20E-28	3.1	3 5	(Z/1928) hypometical protein [bacillus subtills] (799952) product similar to Staphylococcus aureus CapA
		C+0C-C01C	£167771	ì			3		protein [Bacillus subtilis]
1082 Bt1Gc1425	Bt1G1761	2661-1516	g1730908	1064	1077	5.70E-109	54	100	HYPOTHETICAL 43.6 KD PROTEIN IN CPSD-METB INTERGENIC REGION (Bacillus subtilis)
1083 Bt1Gc1427 Bt1G1762	Bt1G1762	545-3017	g2492945	632	703	2.40E-69	32	96	ARGININOSUCCINATE LYASE (ARGINOSUCCINASE)
000		-	0003070	1167	050	30 30E C	ç	92	(ASAL) [Methanococcus jannaschii]
1084 Btigc1428 Btig1/03	CO/ IDI19	1-990	8702377.0	/011	978	2.305.2	3	2	[Bacillus subtilis]
1084 Bt1Gc1428 Bt1G1764	Bt1G1764	994-1839	g1945713	860	823	4.70E-82	28	100	(Z94043) hypothetical protein [Bacillus subtilis]
1084 Bt1Gc1428		2112-3110	g2656094	554	623	7.30E-61	40	100	
1084 Bt1Gc1428		4311-3130	g98327	1240	1280	1.70E-130	61	9 2	
1085 Bt1Gc1431	Bt1G1768	411-1482	g728897	1374	1292	9.30E-132	2	90	PHOSPHO-2-DEHYDRO-3-DEOAYHEFTONATE

_	ı
e	
<u>a</u>	
	ı

		7.																					
	NCBI gi description	ALDOLASE (PHOSPHO-2-KETO-3- DEOXYHEPTONATE ALDOLASE) (DAHP SYNTHETASE) (3-DEOXY-D-ARABINO- HEPTULOSONATE 7-PHOSPHATE SYNTHASE) / CHORISMATE MUTASE [Bacillus subtilis]		HISTIDINOL-PHOSPHATE AMINOTRANSFERASE (IMIDAZOLE ACETOL-PHOSPHATE TRANSAMINASE) [Bacillus subtilis]	_	0 (Z99117) yrrS [Bacillus subtilis]		TRANSCRIPTION ELONGATION FACTOR GREA	(IRAINSCEAFT CLEAVAGE FACTOR CICA) (GENERAL STRESS PROTEIN 20M) (GSP20M) [Bacillus cubrilis]	-			_	CARBOXYVINYLIRANSFERASE (5- ENOLPYRUVYLSHIKIMATE-3-PHOSPHATE	SYNTHASE) (EPSP SYNTHASE) [Bacillus subtilis]				0 (AE000629) aliphatic amidase (aimE) [Helicobacter pylori				stearothermophilus]
	% Cvrg	¥.	100	100	66	9 5	3	66		.6	8 6		100			84	77	66	100		100	66	
	% Ident		75	49	49	31	ţ	80		69	38		99			48	38	51	75		47	62	
Table 1	BlastP- Prob I		1.60E-115	1.60E-90	5.80E-13	7.90E-16	/.30E-132	5.70E-61		1 20E-69	1.40E-27		1.20E-149			2.10E-77	6.70E-51	7.90E-32	5.60E-141		1.60E-65	5.40E-33	
	BlastP Score		683	903	171	198	6671	624		706	306	;	1461			779	529	349	1379		<i>L</i> 99	360	
	aat_B nap_S Score		1430	698	149	274	1224	615		889	324	 	1429			762	509	348	1398		752	331	
	NCBI gi		g399058	g3123224	g2635175	g2635176	g20351//	g3183527		07138170	g1168679	0	g114169			g136591	g2339999	g2339997	g2314402	•	g2339996	g1841880	
	Position		1770-2877	2961-4019	115-321	1031-368	2893-1148	4295-3822		8157-6315	588-16		3434-2154			4402-3464	818-1	1002-1361	2415-1417		3548-2640	3964-3632	
	Gene Id			Bt1G1770	Bt1G1771		Bt1G1//3	Bt1G1774		D+1C1775	Bt1G1776		Bt1G1777			Bt1G1778	Bt1G1779	Bt1G1780	Bt1G1781		bt1G1782	Bt1G1783	
	Contig Id		1085 Bt1Gc1431 Bt1G1769	1085 Bt1Gc1431 Bt1G1770	1086 Bt1Gc1435	1086 Bt1Gc1435	1086 Bt1Gc1435	1086 Bt1Gc1435 Bt1G1774		1086 D+1G-1435 D+1G1775	1087 BriGe1434		1087 Bt1Gc1434 Bt1G1777			1087 Bt1Gc1434 Bt1G1778	8 Bt1Gc1429	8 Bt1Gc1429	8 Bt1Gc1429		1088 Bt1Gc1429 Bt1G1782	8 Bt1Gc1429	
	SEQ B P S		108;	108;	1080	1080	108	108		100	100	2	108			108	1088	1088	1088		108	1088	

-
0
_
엹
Ë
-

NCBI gi description	(Z98682) cytochrome c oxidase subunit III, aa3 type	SOS REGULATORY PROTEIN LEXA/DINR [Bacillus subtilis]	30S RIBOSOMAL PROTEIN S14 HOMOLOG [Bacillus	sphaericus] GLUTAMINE SYNTHETASE (GLUTAMATE AMMONIA ŁIGASE) [Bacillus cereus]	(AE000792) outer surface protein, putative [Borrelia	burgdorferi] HYPOTHETICAL 47.6 KD PROTEIN IN EPR-GALK BYTTER CINES BY COM PROJECT CONTROLL OF COMMENT OF COMME	INTERGENIC REGION [Bacinus suctins] PTS SYSTEM, CELLOBIOSE-SPECIFIC IIB COMPONENT (EIIB-CEL) (CELLOBIOSE-PERMEASE	IIB COMPONENT) (PHOSPHOTRANSFERASE ENZYME II, B COMPONENT) [Bacillus subtilis] PTS SYSTEM, CELLOBIOSE-SPECIFIC IIA	COMPONENT (EILA-CEL) (CELLOBIOSE-FERMEASE IIA COMPONENT) (PHOSPHOTRANSFERASE ENZYME II, A COMPONENT) (EIII-CEL) [Bacillus	subtilis] PUTATIVE CEL OPERON REGULATOR [Bacillus cubtilis]	LIPOPROTEIN SIGNAL PEPTIDASE (PROLIPOPROTEIN SIGNAL PEPTIDASE) (SIGNAL					(D90914) negative aliphatic amidase regulator
% Cvrg	59	35	66	100	100	100	6	66		27	66	66	100	66	100	26
% Ident	81	61	32	86	41	41	20	50		33	99	29	74	70	44 58	27
BlastP- Prob 1	1.20E-44	5.80E-20	3.50E-13	2.70E-237	2.50E-67	2.20E-61	4.40E-22	1.60E-24		3.40E-23	8.50E-35	4.00E-05	0	5.10E-60	9.90E-57 9.00E-24	4.90E-07
BlastP Score	470	237	173	2288	684	628	257	280		276	377	97	3712	615	584 273	134
aat B nap S	544	206	155	2288	989	767	247	260		257	539	97	3685	594	559 257	89
NCBI gi	g2339994	g399378	g730644	g121357	g2689897	g732331	g1172709	g1172708		g1168885	g2497629	g3183580	g3123287	g1518680	g1518679 g2633913	g1653574
Position	4334-3968	1-213	1974-1660	3924-2593	1165-80	2722-1415	3111-2806	3439-3110		4057-3538	461-3	984-539	3836-1074	4689-4192	5550-4782 5832-5565	1176-460
Gene Id	Bt1G1784	Bt1G1785	Bt1G1786	Bt1G1787	Bt1G1788	Bt1G1789	Bt1G1790	Bt1G1791		Bt1G1792	Bt1G1793	Bt1G1794	Bt1G1795	Bt1G1796	Bt1G1797 Bt1G1798	Bt1G1799
SEQ Contig Id	1088 Bt1Gc1429 Bt1G1784	1089 Bt1Gc1433 Bt1G1785	1089 Bt1Gc1433 Bt1G1786	1089 Bt1Gc1433 Bt1G1787	1090 Bt1Gc1426 Bt1G1788	1090 Bt1Gc1426 Bt1G1789	1090 Bt1Gc1426 Bt1G1790	1090 Bt1Gc1426 Bt1G1791		1090 Bt1Gc1426 Bt1G1792	1091 Bt1Gc1430 Bt1G1793	1091 Bt1Gc1430 Bt1G1794	1091 Bt1Gc1430 Bt1G1795	1091 Bt1Gc1430 Bt1G1796	1091 Bt1Gc1430 Bt1G1797 1091 Bt1Gc1430 Bt1G1798	1092 Bt1Gc1432

\$.

						Table 1			
SEQ Contig Id NO	ld Gene Id	Position	NCBI gi	aat nap Score	BlastP Score	BlastP- Prob	% Ident (% Cvrg	NCBI gi description *
1092 Bt1Gc1432 Bt1G1800	32 Bt1G1800	2351-1497	g2982874	211	342	4.40E-31	29	100	[Synechocystis sp.] (AE000675) cobalamin synthesis related protein CobW
1092 Bt1Gc1432	32 Bt1G1801	3196-2464	g2619006	853	875	1.40E-87	99	55	[Aquifex aeolicus] (AF027868) putative L-amino acid oxidase precursor
1093 Bt1Gc1437 Bt1G1802	37 Bt1G1802	165-587	* g1730943	133	148	1.60E-10	28	66	[Bacillus subtilis] HYPOTHETICAL TRANSCRIPTIONAL REGULATOR IN UVRX-ILVA INTERGENIC REGION [Bacillus
1093 Bt1Gc1437 Bt1G1803	37 Bt1G1803	736-1911	g1001709	880	698	6.20E-87	43	100	
1093 Bt1Gc1437 Bt1G1804	37 Bt1G1804	3654-2830	g1170787	410	349	7.90E-32	38	100	_
1093 Bt1Gc14	Bt1Gc1437 Bt1G1805	4229-3676	g401471	364	213	2.00E-17	40	85	(FLZ) [Fasteurena naemolyuca] HYPOTHETICAL ABC TRANSPORTER PERMEASE PROTEIN YAEE [Escherichia coli]
1094 Bt1Gc14	1094 Bt1Gc1436 Bt1G1806	1912-1148	g3257647	464	502	4.80E-48	37	100	_
1094 Bt1Gc14	1094 Bt1Gc1436 Bt1G1807	2719-2931	g3219982	208	222	2.30E-18	61	66	protein [Pyrococcus horikoshii] HYPOTHETICAL TRANSCRIPTIONAL REGULATOR
1094 Bt1Gc14	1094 Br1Gc1436 Bt1G1808			253	274	7.00E-24	35	. 02	AF1627 [Archaeoglobus fulgidus] HYPOTHETICAL 25.3 KD PROTEIN IN RIMI-PRFC
	}								INTERGENIC REGION [Escherichia coli]
1095 Bt1Gc14	1095 Bt1Gc1439 Bt1G1809	1-1181	g4103625	1155	_	1.00E-109	57	87	(AF026470) gluconate permease [Pseudomonas aeruginosa]
1095 Bt1Gc14	1095 Bt1Gc1439 Bt1G1810	1203-2090	g1/309/0	666	766	1.00E-92		3	INTERGENIC REGION [Bacillus subtilis]
1095 Bt1Gc1439 Bt1G1811	139 Bt1G1811	2845-2171	g732332	615	577	5.50E-56	49	100	HYPOTHETICAL 25.9 KD PROTEIN IN EPR-GALK INTERGENIC REGION [Bacillus subtilis]
1095 Bt1Gc14	1095 Bt1Gc1439 Bt1G1812	3099-5292	g1208461	87	113	5.90E-06	46	15	(D64004) hypothetical protein [Synechocystis sp.]
1095 Bt1Gc14	1095 Bt1Gc1439 Bt1G1813	5626-5860		183		4.50E-13	51	45	(Y14079) hypothetical protein [Bacillus subtilis]
1096 Bt1Gc1441	41 Bt1G1814	163-861	g399775	921		1.90E-92		100	PROBABLE MENAQUINONE BIOSYNTHESIS METHLYTRANSFERASE (SPORE GERMINATION
									PROTEIN C2) [Bacillus subtilis]
1096 Bt1Gc14	1096 Bt1Gc1441 Bt1G1815	412-1868	g399776	1062	1056	9.50E-107	, 61	100	PROBABLE HEPTAPRENYL DIPHOSPHATE
)	,					SYNTHASE COMPONENT II (HEPPP SYNTHASE) (SPORE GERMINATION PROTEIN C3) [Bacillus subtilis]
		1				1	•	8	ATTACE TO CONTROL DEDITION TO VINIA OF ATTACK

99 NUCLEOSIDE DIPHOSPHATE KINASE (NDK) (NDP

58 CHORISMATE SYNTHASE (5-KINASE) [Bacillus subtilis]

11

6.50E-76

765

873

1096 Bt1Gc1441 Bt1G1817 2706-3343 g399058

1096 Bt1Gc1441 Bt1G1816 1993-2439 g400405

72

5.50E-56

577

577

_
je
윱
\vdash

Č				~		1	Table T		,	
2 A S	Contig Id	Gene Id	Position	NCBI gi	nap Score	BlastP	BlastP- Prob	% Ident Cv	Cvrg	NCBI gi description
										ENOLPYRUVYLSHIKIMATE-3-PHOSPHATE PHOSPHOLYASE) (VEGETATIVE PROTEIN 216) (VEG216) [Racillus subtilis]
1097	1097 Bt1Gc1443 Bt1G1818	Bt1G1818	1523-974	g2634185	249	325	2.80E-29	38	66	(Z99113) similar to thiol:disulfide interchange protein
1098	1098 Bt1Gc1444 Bt1G1819	Bt1G1819	4251-4545	g2497382	424	470	1.20E-44	94	23	[Dakhings Subtina] TRANSPOSASE FOR INSERTION SEQUENCE FI FMFNT 18732 [Insertion sequence 18232]
1099	1099 Bt1Gc1442 Bt1G1820	Bt1G1820	179-1	g1730193	238	253	1.20E-21	78	17 1	UDP-GLUCOSE 4-EPIMERASE COAT ACTIONIA INDIVIDUAL ACTIONS 4.
									~ ~	(GALACTOWALDENASE) (ODF-GALACTOSE 4- EPIMERASE) [Bacillus subtilis]
1099	1099 Bt1Gc1442 Bt1G1821	Bt1G1821	2916-1780	g1177010	1408	1290	1.50E-131	72	79]	PROBABLE RNA HELICASE IN WAPA-LICT INTERGENIC REGION [Bacillus subtilis]
1099	1099 Bt1Gc1442	Bt1G1822	3367-3049	g225559	501	531	4.10E-51			ORF IS231C [Bacillus thuringiensis]
1100	1100 Bt1Gc1445	Bt1G1823	794-2077	g548909	1082	1028	8.80E-104			SERINE TRANSPORTER [Escherichia coli]
1100	1100 Bt1Gc1445	Bt1G1824	2541-3027	g267523	208	227	6.70E-19	32	66	HYPOTHETICAL 18.2 KD PROTEIN IN PMI S'REGION
				1	;			Č		(ORF1) [Rhizobium meliloti]
1100	1100 Bt1Gc1445 Bt1G1825	Bt1G1825	3487-4081	g>86554	777	309	1.40E-27	5	2	INTERCEDICAL ZIII NO I KOTEIN IN I OST-AGI I
1100	1100 Bt1Gc1445 Bt1G1826	Bt1G1826	5444-3290	g2635881	295	304	4.60E-27	40	97	(Z99121) similar to hypothetical proteins [Bacillus subtilis]
1100	1100 Bt1Gc1445	Bt1G1827	3535-5551	g4377189	224	275	7.40E-24	36	36	(AE001667) GTP Cyclohydratase & DHBP Synthase
				, .)						[Chlamydia pneumoniae]
1101	1101 Bt1Gc1447		1127-1	g2635874	1381	1316	2.70E-134		48	(Z99121) similar to hypothetical proteins [Bacillus subtilis]
1101	Bt1Gc1447	7 Bt1G1829	2019-1279	g729450	1082	1082	1.70E-109	&	100	CARBOXYLESTERASE PRECURSOR [Bacillus
				1		1	ļ		8	stearothermophilus]
1101	1101 Bt1Gc1447 Bt1G1830	7 Bt1G1830	2411-2184	g2635876	262	145	3.30E-10		35	(Z991Z1) yval. [Bacilius suouins]
1101	1101 Bt1Gc1447		3563-2668	g2636549	525	461	1.10E-43		90	(Z99124) similar to hypothetical proteins [Bacillus subtilis]
1101	1101 Bt1Gc1447	7 Bt1G1832	4058-4560	g4584100	418	449	2.00E-42	54	6	(AJ010132) hypothetical protein [Bacillus cereus]
1101	Bt1Gc1447	7 Bt1G1833	5074-4921	g3152725	151	167	9.50E-12	63	12	(AF065394) enolase [Staphylococcus aureus]
1102	: Bt1Gc1446	5 Bt1G1834	922-1	g580888	1336	1296	3.50E-132		23	(X51477) partial dnaK gene (AA 572) [Bacillus subtilis]
1102	: Bt1Gc1446	Bt1Gc1446 Bt1G1835	1512-952	g121635	588	563	1.70E-54	62	66	GRPE PROTEIN [Bacillus subtilis]
1102	2 Bt1Gc1446	5 Bt1G1836	2646-1618	g3122229	1123	1143	5.80E-116	. 65	100	HEAT-INDUCIBLE TRANSCRIPTION REPRESSOR
									•	HRCA [Bacillus stearothermophilus]
1102	1102 Bt1Gc1446 Bt1G1837	5 Bt1G1837	3742-2780	g2104798	963	696	1.60E-97	28	100	(Y09446) coproporphyrinogen III oxidase [Bacillus
1103	1103 Br1Gc1449 Br1G1838) Br1G1838	736-515	g2924355	341	341	5.60E-31	95	66	stearothermophilus] (AJ223964) GerE [Bacillus subtilis]
5		7,777	,	0	ļ 1	:				

_	
ē	
<u>ब</u>	
2	

	NCBI gi description	HYPOTHETICAL 50.0 KD PROTEIN IN UNG-ROCA INTERGENIC REGION [Bacillus subtilis]	HYPOTHETICAL 50.5 KD PROTEIN IN BETT-PRPR INTERGENIC REGION [Escherichia coli]	GLYCEROPHOSPHORYL DIESTER PHOSPHODIESTERASE (GLYCEROPHOSPHODIESTER PHOSPHODIESTERASE) [Bacillus subtilis]	(D90905) hypothetical protein [Synechocystis sp.] (AB001488) SIMILAR TO THE RHIZOPINE CATABOLISM (MOCR) GENE OF RHIZOBIUM	MELLICIT. [JAKINGS SUCHES] GLYCEROL UPTAKE OPERON ANTITERMINATOR REGULATORY PROTEIN [Bacillus subtilis]	hypothetical protein 3 - Clostridium perfringens	[Closuform permagns] (AF027868) YoaN [Bacillus subtilis]	(Y14078) Hypothetical protein [Bacillus subtilis]	LIPASE 3 FRECORSON (INACIEDE I CENOE EU ASE) [Momento] en 1	LMULANDIA SP.1 PRISMANE PROTEIN HOMOLOG [Methanobacterium	thermoautotrophicum] (AE001272) conserved hypothetical protein [Lactococcus	lactis] hypothetical protein 4 - Streptomyces antibioticus	-	FERRICHROME TRANSPORT ATP-BINDING PROTEIN	FHUC [Bacillus subtilis] IRON-UPTAKE SYSTEM PROTEIN FEUC [Bacillus		SUDULIS] IRON-UPTAKE SYSTEM BINDING PROTEIN PRECTIRSOR [Bacillus subtilis]	
	% Cvrg	100	100	100	99	86 /	39	100	8 8	ဝ	73	66	69	100	100	100	100	46	77
	% Ident (33	38	49	30	55	35	79	46	37	49	35	47	4	22	48	58	50	9/
-	BlastP- Prob I	9.80E-50	5.20E-83	3.20E-74	2.30E-18 1.50E-163	6.30E-55	2.80E-13	4.60E-178	3.60E-11	1.60E-14	2.00E-90	1.80E-18	1.70E-52	1.20E-60	2.10E-77	2.10E-63	1.40E-91	3.70E-73	4.70E-66
	BlastP Score	518	832	749	222 1592	292	174	1729	154	188	905	223	544	621	417	647	913	739	672
	aat_B nap_S Score	. 570	763	721	222 1562	556	119	1727	162	135	889	208	508	556	179	942	1034	749	639
	NCBI gi	g732364	g2495515	g585208	g1652383 g1881344	g232174	g2127359	g2619026	g2226126	g126303	g3914433	g3582220	g419694	g2635698	g1706796	g1706787	g729484	g729483	g282367
	Position	2170-688	4251-2319	1571-2434	3382-3945 5363-3917	568-1	1112-1	2700-1525	4317-3123	5619-3331	1-1051	3698-4039	4630-5294	2398-620	2296-1490	3309-1239	4331-3329	5251-4361	515-1
	Gene Id	Bt1G1839	Bt1G1840	Bt1G1841	Bt1G1842 Bt1G1843	Bt1G1844	Bt1G1845	Bt1G1846	Bt1G1847	Bt1G1848	Bt1G1849	Bt1G1850	Bt1G1851	Bt1G1852	Bt1G1853	Bt1G1854	Bt1G1855	Bt1G1856	Bt1G1857
	Contig Id	Bt1Gc1449 Bt1G1839	1103 Bt1Gc1449 Bt1G1840	1104 Bt1Gc1448 Bt1G1841	1104 Bt1Gc1448 Bt1G1842 1104 Bt1Gc1448 Bt1G1843	1105 Bt1Gc1451 Bt1G1844	1105 Bt1Gc1451 Bt1G1845	1105 Bt1Gc1451	Bt1Gc1451	Bt1Gc1451	1106 Bt1Gc1450	1106 Bt1Gc1450 Bt1G1850	1106 Bt1Gc1450 Bt1G1851	1107 Bt1Gc1452	1107 Bt1Gc1452	1107 Bt1Gc1452 Bt1G1854	1107 Bt1Gc1452 Bt1G1855	1107 Bt1Gc1452 Bt1G1856	1108 Bt1Gc1438 Bt1G1857
	SEQ NO	1103	1103	1104	1104	1105	1105	1105	1105	1105	1106	1106	1106	1107	1107	1107	1107	1107	1108

م المضار معادر

	NCBI gi description	[Bacillus megaterium] HYPOTHETICAL 19.7 KD PROTEIN IN CYSS 3'REGION [Bacillus subfilis]	HYPOTHETICAL TRNA/RRNA METHYLTRANSFERASE YACO [Bacillus subtilis]	(299104) similar to hypothetical proteins [Bacillus subtilis]	CYSTEINYL-1RNA SYN 1HE IASE (CYSTEINE1RNA LIGASE) (CYSRS) [Bacillus subtilis]	(AJ002571) YkbA [Bacillus subtilis]	STAGE III SPORULATION PROTEIN J PRECURSOR	[Bacillus subtilis] (Y09322) membrane bound protein LytR [Bacillus cereus]	PYRIMIDINE NUCLEOSIDE TRANSPORT PROTEIN	[Bacillus subtilis]	ORF IS231C [Bacillus thuringiensis]	ATP SYNTHASE PROTEIN I [Bacillus subtilis]	ATP SYNTHASE A CHAIN (PROTEIN 6) [Bacillus	megaterium] ATP SYNTHASE C CHAIN (LIPID-BINDING PROTEIN)	[thermophilic bacterium PS3]	ATP SYNTHASE B CHAIN [Bacillus megaterium]	ATP SYNTHASE DELTA CHAIN [Bacillus	stearothermophilus]	SIGNAL PEPTIDASE I P (SPASE I) (LEADER	PEPTIDASE I) [Bacillus subtilis]	HYPOTHETICAL 28.2 KD PROTEIN IN USHA-TESA	INTERGENIC REGION []	825) nypotnetical ABC transporter [Dacillus	(Z99120) similar to NADH dehydrogenase [Bacillus subtilis]	(Z99120) yuzB [Bacillus subtilis]	(Z99121) similar to hypothetical proteins [Bacillus subtilis]	SMALL PROTEIN B HOMOLOG [Bacillus subtilis]	
	-		_ ; ,,	_		_				[Baci	6 ORF									PEP								
	% Cvrg	66	100		31		100	96	100			66	100	66		66	66	3			100		<u> </u>	, 100	66	48		
	% Ident	56	69	55	9	63	41	92	<i>L</i> 9		8	39	70	81		61	46	93	45		34		32	<i>L</i> 9	89			
TANCE	BlastP. Prob	4.80E-48	9.00E-95	5.60E-31	6.70E-35	2.90E-73	3.30E-49	9.30E-45	3.20E-99		3.10E-07	4.40E-15	3.20E-67	4.50E-13		9.20E-38	4.20E-42	0 30E-77	1.20E-37		3.40E-31	1	1.20E-28	3.90E-117	2.30E-25	5.20E-138	1.80E-57	
	BlastP Score	502	943	341	378	740	513	471	985		126	191	683	172	l i	405	446	773	404	:	343	,	319	1154	288	1335	591	1
	aat_ Inap c	494	940	374	463	852	466	553	1306		109	184	998	284	: !	503	444	773	369	}	356	. !	226	1181	288	1359	639	
	NCBI gi	g586909	g586908	g2632362	g549024	g2632007	g267022	92073397	g1709415)	g225559	g584819	g114432	9114678	0	g114616	g1168584	~114510	04033455)) () ()	g3915949)	g2612897	g2635717	92635716	02635874	63334327	
	Position	1079-570	1835-1089		2667-2236	790-1	3072-2284	1824-1471	3340-2165		3442-3524	338-727	735-1454	1514-1729		1850-2365	2365-2898	2010 2410	817-1363	2001	1077-286		2557-888	3256-2264	3606-3839	1-1105	1331-1798	
	Gene Id	Bt1G1858	Bt1G1859	Bt1G1860	Bt1G1861	Bt1G1862	Bt1G1863	Br1G1864	Bt1G1865		Bt1G1866	Bt1G1867	Bt1G1868	B+1G1869		Bt1G1870	Bt1G1871	241019	Bt1G1873		Bt1Gc1456 Bt1G1874		Bt1Gc1456 Bt1G1875	; Bt1G1876	Rf1G1877	B+1G1878	B#1G1879	
	SEQ ID Contig Id NO	1108 Bt1Gc1438 Bt1G1858	1108 Bt1Gc1438 Bt1G1859	1108 Bt1Gc1438	1108 Bt1Gc1438 Bt1G1861	1109 Bt1Gc1454	1109 Bt1Gc1454	1110 Bt1Gc1457 Bt1G1864	1110 Bt1Gc1457 Bt1G1865		1110 Bt1Gc1457	1111 Bt1Gc1453	1111 Bt1Gc1453	1111 BrtGc1453		1111 Bt1Gc1453	1111 Bt1Gc1453	1111	1111 Bt1Gc1455	2017	1113 Bt1Gc1456		1113 Bt1Gc1456	1113 Bt1Gc1456 Bt1G1876	1113 Bt1Gc1456 Bt1G1877	1114 B41Gc1460 B41G1878	1114 Br1Gc1460	1)

_	
ole	
国	
Ε.	

	NCBI gi description	ORF IS231C [Bacillus thuringiensis]	(AF007865) bacitracin synthetase 1; BacA [Bacillus licheniformis]	(AB016966) bacitracin synthetase 3 (BA3) [Bacillus licheniformis]	CYTOCHROME P450(MEG) (STEROID 15-BETA- HYDROXYI ASE) (STEROID 15-BETA-	MONOOXYGENASE) [Bacillus megaterium]	30S RIBOSOMAL PROTEIN S14 HOMOLOG [Bacillus sphaericus]	(AF015628) streptogramin A acetyl transferase (Staphylococcus cohniil	(AJ222587) YkuC protein [Bacillus subtilis]	CYTOCHROME P450 [Bacillus subtilis]	(Z99110) similar to hypothetical proteins [Bacillus subtilis]	(Z99110) similar to ATP-dependent DNA helicase [Bacillus	[S]	(Y14080) hypothetical protein [Bacillus subtilis]	(AF084104) hypothetical protein [Bacillus firmus]	SMALL, ACID-SOLUBLE SPORE PROTEIN 1 (SASP)	[Sporosarcina halophila]	(Z92952) ywqM [Bacillus subtilis]	QUINONE OXIDOREDUCTASE (NADPH:QUINONE	REDUCTASE) [Pseudomonas aeruginosa]	HEMK PROTEIN HOMOLOG [Synechocystis sp.]	PROBABLE PHOSPHOGLYCERATE MUTASE 2 (PHOSPHOGLYCEROMUTASE 2) (PGAM 2) (BPG-	DEPENDENT PGAM 2) []	HYPOTHETICAL 20.0 KD PROTEIN IN FECI-FIMB	INTERGENIC REGION (F181) [Escherichia coli]	methy-accepting chemotaxis transducer MCPB - Bacillus	Subtring L1 (Z80360) Unknown, highly similar to B. subtilis RapA and	RapB aspartyl-phosphate phosphatases [Bacillus subtilis]	(L33181) CDP-D-glucose-4,6-dehydratase [Yersinia
		-				MON				_				_	-		[Spor			REDI			DEPE					RapB	
	% Cvrg	11	25	66	100		66	100	100	100	84	82		100	66	71		100	100		91	100		61		100	100		100
	% Ident	92	35	31	47		24	65	23	28	55	36		38	31	87		62	39		29	25		35		45	26		52
* ***	BlastP- 1	3.60E-20	3.30E-222	9.70E-66	6.40E-101		1.30E-06	1.50E-69	5.80E-18	7.40E-123	5.70E-29	2.80E-91		1.20E-81	2.60E-08	5.30E-19		8.90E-88	2.70E-47		2.20E-20	2.30E-16		2.80E-13		2.70E-118	9.40E-29		8.60E-90
	BlastP Score	245	2163	699	1001		111	705	145	1208	322	910		819	127	228		877	495		241	203		174		1165	320		968
	aat_ I nap	223	2021	650	959		81	753	251	1232	313	804		833	110	228		893	464	•	157	106		105		1405	241		942
	NCBI gi	g225559	g2982194	g4126805	g729203	,	g730644	g3660657	g2632224	g2811064	g2633538	g2633536	x	g2226160	g3688810	g134229)	g1894751	g1172802	-	g2829611	g548530		g732075	ı	g1075867	g1565245	Ď	g609642
	Position	3882-4040	1-4368	2982-4368	1250-48		1381-1706	2876-2238	4092-2833	5633-4401	1-354	599-2528		787-2154	2509-2255	2967-3122		1551-667	1672-2637		4785-2904	4643-3969		5150-4228		1861-3843	5278-4158		7479-6403
	Gene Id	Bt1G1880	Bt1G1881	Bt1G1882	Bt1G1883		Bt1G1884	Bt1G1885	Bt1G1886	Bt1G1887	Bt1G1888	Bt1G1889		Bt1G1890	Bt1G1891			Bt1G1893	Bt1G1894		Bt1G1895	Bt1G1896		Bt1G1897		Bt1G1898	B+1G1899	; ; ; ;	Bt1G1900
	VQ D Contig Id O	1114 Bt1Gc1460	1115 Bt1Gc1455	1115 Bt1Gc1455	1116 Bt1Gc1461 Bt1G1883		1116 Bt1Gc1461 Bt1G1884	1116 Bt1Gc1461 Bt1G1885	1116 Bt1Gc1461	1116 Bt1Gc1461	1117 Bt1Gc1462	1117 Bt1Gc1462		1118 Bt1Gc1465	1118 Bt1Gc1465	1118 Bt1Gc1465		1119 Bt1Gc1463 Bt1G1893	1119 Bt1Gc1463		1119 Bt1Gc1463 Bt1G1895	1119 Bt1Gc1463		1119 Bt1Gc1463 Bt1G1897		1120 Bt1Gc1464 Bt1G1898	1120 Bt1Gc1464 Bt1G1899		1120 Bt1Gc1464 Bt1G1900
	SEQ ES		=	11	11		11			Ξ	Ξ	11		11	Ξ	=	i	11	1			7		Ξ		_	-	4	1

SEQ		,			BlastP	Table I BlastP-	%	%	NCBI of description	
Contig 1d	Gene Id	Fosition		nap Score	Score	Prob	Ident (Cvrg		
Bt1Gc1467	1121 Bt1Gc1467 Bt1G1901	228-1118	g2735505	528	565	1.00E-54	38	100	pseudotuberculosis] (U96107) N5,N10-methylenetetrahydromethanopterin	
Bt1Gc1467	1121 Bt1Gc1467 Bt1G1902	1716-3119	g2829796	1459	1422	1.60E-145	59	100	reductase homolog [Staphylococcus carnosus] CYTOCHROME D UBIQUINOL OXIDASE SUBUNIT I	
B#1Gc146	1121 Bt1Gc1467 Bt1G1903	3106-4119	£2829797	939	206	5.90E-91	20	100	[Bacillus subtilis] CYTOCHROME D UBIQUINOL OXIDASE SUBUNIT II	
Bt1Gc146	1121 Bt1Gc1467 Bt1G1904	4128-4501	g2829798	201	215	1.00E-16	34	22	[Bacillus subtilis] TRANSPORT ATP-BINDING PROTEIN CYDC [Bacillus	•
Bt1Gc146	1122 Bt1Gc1468 Bt1G1905	461-6	g1730924	242	283	7.80E-25	37	66	subtilis] HYPOTHETICAL 17.3 KD PROTEIN IN QCRA-AROE	
Bt1Gc146	1122 Bt1Gc1468 Bt1G1906	1152-616	g1730923	661	999	2.60E-65	49	66	INTERGENIC REGION [Bacillus subtilis] HYPOTHETICAL 21.4 KD PROTEIN IN QCRA-AROE	
Bt1Gc146	1122 Bt1Gc1468 Bt1G1907	2491-1225	g1730922	856	772	1.20E-76	42	100	INTERGENIC REGION [Bacillus subtilis] HYPOTHETICAL 48.3 KD PROTEIN IN QCRA-AROE	•
Bt1Gc146	1122 Bt1Gc1468 Bt1G1908	3929-2853	g3123224	1126	1063	1.70E-107	59	100	INTERGENIC REGION [Bacillus subtilis] HISTIDINOL-PHOSPHATE AMINOTRANSFERASE	
Rt1Gc146	1122 Bt1Gc1468 Bt1G1909	4073-4396	g225559	541	541	3.60E-52	86	22	[Bacillus subtilis] ORF IS231C [Bacillus thuringiensis]	
1123 Bt1Gc146	Bt1Gc1466 Bt1G1910	942-292	g3170570	371	395	1.10E-36	39	100	(AF058302) FrnE [Streptomyces roseofulvus]	
1123 Bt1Gc1466	6 Bt1G1911	2396-1130	g1731090	216	277	3.40E-24	24	80	HYPOTHETICAL 34.6 KD PROTEIN IN GLNQ-ANSR INTERGENIC REGION [Bacillus subtilis]	
Bt1Gc146	i 1124 Bt1Gc1469 Bt1G1912	2792-1133	23688808	1790	1835	2.70E-189	9	100	(AF084104) AcsA [Bacillus firmus]	
1124 Bt1Gc1469	9 Bt1G1913	4906-3124	g2634204	2041	2090	2.60E-216	89	100	(Z99113) similar to propionyl-CoA carboxylase [Bacillus subtilis]	
1124 Bt1Gc146	Rt1Gc1469 Bt1G1914	5447-4668	92266427	747	674	2.90E-66	61	100	(Y13917) yngF [Bacillus sybtilis]	
1124 Bt1Gc146	Br1Gc1469 Br1G1915	6369-5473	g2266426	847	850	6.40E-85	54	100	(Y13917) yngG [Bacillus subtilis]	
1124 Bt1Gc1469	9 Bt1G1916	6599-6391	24584148	106	145	7.70E-09	40	7	(AJ010111) pyruvate carboxylase [Bacillus cereus]	
1124 Bt1Gc1469	9 Br1G1917	6864-6645	g2266425	178	194	1.10E-14	51	16	(Y13917) yngH [Bacillus subtilis]	
1125 Bt1Gc145	Bt1Gc1459 Bt1G1918	957-1	g2894238	283	357	1.10E-32	30	78	(AL021841) sigJ [Mycobacterium tuberculosis]	
1125 Bt1Gc1459	9 Bt1G1919	2278-1	g2749982	87	136	3.20E-08	4	13	(AF036705) Similar to phytoene desaturase; coded for by C. elegans cDNA CEESX74F; coded for by C. elegans cDNA yk303f4.3; coded for by C. elegans cDNA yk257d4.3; coded for by C. elegans cDNA yk303f4.5; coded for by C. elegans	
									cDNA yk257d4.5; []	

P BlastP- % % NCBI gi description	8 5.30E-19 52 73 HYPOTHETICAL 11.9 KD PROTEIN IN HMP 3'REGION	2.40E-07 32 48 ([Aquifex aeolicus] 4 6.30E-78 48 100 (Z99111) similar to transcriptional regulator (LacI family)	2.10E-38 60 99	6	1 60E-96 55 96	1.10E-103 87 27 1	5.80E-36 46 49	9.20E-70 55 100	3.60E-36 39 100	5.80E-12 28 49	5.70E-45 39 76	vo 4.70E-34 31 73 (AF147448) penicillin-binding protein 5 [Pseudomonas	aeruginosa]	8.50E-35 44 99	3.30E-10 23 99	acetyltransferase [Bacillus subtilis]	3.70E-98 /0 /0	1.20E-21 48 99	1.20E-26 28 100	S2 9,00E-150 43 83 PENICILLIN-BINDING PROTEINS 1A/1B (PBP1)		8.105-62 75 99	6.60E-12 31 60 (1.10E-221 71 100 ASPARTYL-TRNA SYNTHETASE (ASPARTATE-
BlastP Score	228	118	784	411			-				182	473	370		377	145				300	3 1462		_	7 161	3 2133
aat_ nap Score	223	57	752	403	1000	1110	1075	479	838	359	85	503	231		293	74	,	1017	251	412	1388	*	622	117	2183
NCBI gi	g1730269	g2984362	g2633758	g1731041	92634887	22002170	03123286	9548909	g2337815	g2337814	g3861083	g4104606	g4887207)	g1934836	g2633543	,	g116465	g1405458	g1652918	æ730275		g2635218	g3256441	g3122885
Position	248-1	930-1	1973-1000	3242-2865	3419-4252	1 1166	1625-2286	625-1	1842-937	2523-1861	5531-2937	519-1420	1446-3762		3591-2615	4794-4231	•	826-1	1545-1261	3563-1525	5805-2078		705-220	999-1	3258-1486
Gene Id) Bt1G1921) Bt1G1922) Bt1G1923) Bt1G1924	Br1G1925	7001.017d	BilG1927	; Br1G1928	5 Bt1G1929			4 Bt1G1932	4 Bt1G1933		4 Bt1G1934	4 Bt1G1935		8 Bt1G1936	8 Bt1G1937	8 Bt1G1938	8 Bt1G1939		2 Bt1G1940	Bt1Gc1472 Bt1G1941	2 Bt1G1942
SEQ Contig Id	1126 Bt1Gc1470 Bt1G1921	1126 Bt1Gc1470 Bt1G1922	1126 Bt1Gc1470 Bt1G1923	1126 Br1Gc1470 Br1G1924	1126 Bt1Gc1470 Bt1G1925	30010140 1671-0140 5011	1127 Bt1Gc1471 Bt1G1927	112, Bt1Gc147, Bt1G1928	1128 Bt1Gc1475	1128 Bt1Gc1475	1128 Bt1Gc1475	1129 Bt1Gc1474	1129 Bt1Gc1474		1129 Bt1Gc1474 Bt1G1934	1129 Bt1Gc1474		1130 Bt1Gc1478 Bt1G1936	1130 Bt1Gc1478 Bt1G1937	1130 Bt1Gc1478	1130 Bt1Gc1478 Bt1G1939		1131 Bt1Gc1472 Bt1G1940	1131 Bt1Gc1472	1131 Bt1Gc1472 Bt1G1942

NCBI gi description	LIGASE) (HISRS) [Bacillus subtilis]			aquancus]		INTERGENIC REGION [Bacillus subtilis]	(D90903) glutamate decarboxylase [Synechocystis sp.]	(AB001488) FUNCTION UNKNOWN. [Bacillus subtilis]	SPORE PHOTOPRODUCT LYASE [Bacillus subtilis]		,	thuringiensis]		_		, ,	SUCCINOCARBOXAMIDE SYNTHASE (SAICAR	SYNTHETASE) (VEGETATIVE PROTEIN 286A)	_	-	-	PHOSPHORIBOSYLAMINOIMIDAZOLE CAPROXY1 ASE ATPASE SUBIENTY (AIR	CARBOXYLASE) (AIRC) [Bacillus subtilis]		CARBOXYLASE CATALYTIC SUBUNIT (AIR	_			STAGE V SPORULATION PROTEIN AE [Bacillus subtilis]	
% Cvrg	001	2 2	66	18	4	(100	48	100	66	100	5	3	99	98	19				100		100		66		7	f	100	100	
% Ident (2	59	74	35	36	;	54	43	83	36	93	92	Š	09	44	61				8		27		78		30	2	29	61	
BlastP- Prob I	6 105 60	3.10E-60 1.70E-93	4.90E-32	6.10E-09	2.40E-37		6.50E-140	2.30E-18	8.90E-159	7.70E-18	0	100 104	2.10E-134	8.10E-78	1.60E-49	7.50E-10				1.20E-195		5.90E-114		2.10E-63		0 10E 10	2.10E-12	8.60E-145	3.60E-107	
BlastP Score	212	931	351	140	401		1369	222	1547	217	3205		/101	783	516	143				1895		1124		647		160	001	1415	1060	
aat_B nap S Score	. 0	930	408	75	302		1320	199	1547	157	3426	-	141/	730	564	125				1883		1095		642		105	COI	1493	1001	
NCBI gi	700070	g3088820 g2226131	g420808	92635804	g1731309	.	g1652140	g1881234	g586030	g421525	g124464		g/37307	g3341854	g3341855	g131631)			g131635		g131644		g131626)	1000	g1 8 94770	g1304006	g730786	
Position	010	3718-2480 4607-3714	5542-5841	2433-276	3503-1582		3817-2421	4103-5909	5763-4738	6026-4799	199-2262	1000	2431-3801	4027-4763	5009-5751	136-1				1526-228		2677-1538		3156-2671		1001	1894-30	2425-947	3337-2378	
Gene Id		Bt1G1944 Bt1G1945		R+1G1947	Bt1G1948		Bt1G1949	Bt1G1950	Bt1G1951	Bt1G1952	Bt1G1953		Bt1G1954	Bt1G1955	Bt1G1956	Bt1G1957				Bt1G1958		Bt1G1959		Bt1G1960			B[[G]96]	Bt1G1962	Bt1G1963	
SEQ Contig Id ID CONTIG ID		1132 Bt1Gc14/3		1133 B+1Gc1476 B+1G1947	1133 Bt1Gc1476 Bt1G1948		1133 Bt1Gc1476		1133 Bt1Gc1476	1133 Bt1Gc1476	1134 Bt1Gc1479		1134 Bt1Gc1479 Bt1G1954	1134 Bt1Gc1479	1134 Bt1Gc1479	1135 Bt1Gc1477				1135 Bt1Gc1477 Bt1G1958		1135 Bt1Gc1477 Bt1G1959		1135 Bt1Gc1477 Bt1G1960			1136 Btigc1480 Btig1961	1136 Bt1Gc1480 Bt1G1962	1136 Bt1Gc1480	
-																														

		*																	~		
	NCBI gi description	STAGE V SPORULATION PROTEIN AD [Bacillus subtilis]	STAGE V SPORULATION PROTEIN AC [Bacillus subtilis]	(AP000001) 216aa long hypothetical alanyl-tRNA synthetase [Pyrococcus horikoshii]		,		_		aeolicus] (U66480) YnaD [Bacillus subtilis]	_		_	(AB001488) SIMILAR TO THE RHIZOPINE CATABOLISM (MOCR) GENE OF RHIZOBIUM	HYPOTHETICAL 32.5 KD PROTEIN IN CCCA-SODA INTERGENIC REGION (Bacillus subtilis)		. — .	, – –		HYPOTHETICAL 17.1 KD PROTEIN IN DNAG/DNAE S'REGION (P17) [Listeria monocytogenes]	_
	% Cvrg	100	9	. 73	19	3	100	100	4	8	100	8	36	100	82	25	100	100		66	66
*	% % Ident Cvrg	89	79	31	32	07	37	32	20	76	58	č	34	45	30	20	27	36		42	92
	BlastP. Prob I	1.20E-113	1.40E-34	1.10E-11	1.60E-10	7.10E-32	6.50E-108	4.90E-52	4.20E-07	1.10E-07	7.90E-16	; ;	5.30E-19	1.20E-97	3.50E-22	6.30E-07	2.30E-32	1.90E-85		1.10E-25	1.90E-28
	BlastP	1121	375	159	159)	1067	334	120	121	198	(228	970	258	114	354	855		291	317
	aat_B nap_S Score	1215	375	. 8	4 5	167	1048	542	98	93	8 5		191	986	308	114	309	759		263	303
	NCBI gi	g730785	g730784	g3256494	g600725	g344314	g544312	g544313	g2984202	91750115	g2352096	b	g2226205	g1881332	g1731008	g1731085	g2650107	g1881344	-	g1731102	g2636123
	Position	4357-3341	4646-4374	479-1	1364-948	2917-1413	4792-2738	5898-4831	6232-5888	1784-1251	3686-2219		4303-3881	4430-5825	6705-5951	120-1	2030-1155	2158-3600		3819-4271	4665-4360
	Gene Id	Bt1G1964	Bt1G1965	Bt1G1966		Bt1G1968	1137 Bt1Gc1482 Bt1G1969	1137 Bt1Gc1482 Bt1G1970	1137 Bt1Gc1482 Bt1G1971 6232-5888	B+1G1972	Br1G1973		5 Bt1G1974	5 Bt1G1975	1138 Bt1Gc1485 Bt1G1976	Bt1G1977	1139 Bt1Gc1484 Bt1G1978	1139 Bt1Gc1484 Bt1G1979		1139 Bt1Gc1484 Bt1G1980	1139 Bt1Gc1484 Bt1G1981
	Contig Id	1136 Bt1Gc1480 Bt1G1964	1136 Bt1Gc1480 Bt1G1965	1137 Bt1Gc1482	Bt1Gc1482	1137 BtlGc1482	Bt1Gc1482	Bt1Gc1482	Bt1Gc1482	1138 Rt1Gc1485	1138 Bt1Gc1485		1138 Bt1Gc1485	Bt1Gc1485	Bt1Gc1485	1139 Bt1Gc1484 Bt1G1977	bt1Gc1484	Bt1Gc1484		Bt1Gc1484	Bt1Gc1484
	SEQ NO D	1136	1136	1137	1137	1137	1137	1137	1137	1138	1138	,	1138	1138	1138	1139	1139	1139		1135	1135

_
0
Ĭ
7
Ξ

NCBI gi description		(AJ007731) 3-ketoacyl-ACP/CoA redutase [Streptomyces coelicolor]	PUTATIVE BRANCHED-CHAIN AMINO ACID ** AMINOTRANSFERASE (TRANSAMINASE B) (BCAT)	[Archaeoglobus fulgidus] (Z75208) acetolactate synthase large subunit [Bacillus subtilis]	KETOL-ACID REDUCTOISOMERASE (ACETOHYDROXY-ACID ISOMEROREDUCTASE) (ALPHA-KETO-BETA-HYDROXYLACIL DEDITCHOISOMERASE) (Racillus subtilis)	REPLICATIVE DNA HELICASE [Bacillus subtilis]	50S RIBOSOMAL PROTEIN L9 (BL17) []	HYPOTHETICAL 74.3 KD PROTEIN IN RPLI-COTF	INTERGENIC REGION [Bacilius subtilis] HYPOTHETICAL 34.5 KD PROTEIN IN RPLI-COTF BATTER CENT PECTON [Bacilius subtilis]	IN LEKUENIC KEGION [Bacinus subtins] 30S RIBOSOMAL PROTEIN S18 (BS21) []	SINGLE-STRAND BINDING PROTEIN (SSB) (HELIX-	DESTABILIZING PROTEIN) [Bacillus subtilis]	KIBUSUMAL FROIEIN 30 (D39) [Davinus suutins]	Z99109) similar to 3-oxoacyl- acyl-carrier protein synthase Bacillus subtilis]	(Z99109) similar to 3-oxoacyl- acyl-carrier protein synthase [Bacillus subtilis]	(Z99109) yjzA [Bacillus subtilis]	(D86376) unnamed protein product [Bacillus subtilis]	(AF016634) ClpB chaperone homolog [Lactococcus lactis	subsp. cremoris]	(U62055) orfR gene product [Bacillus subtilis]	(U75364) putative ABC transporter subunit	Khodopseudomonas painsuris]	Pseudomonas aeruginosa]	(AE001047) branched-chain amino acid ABC transporter,	
	d.C	100 (AJ(100 PUT AM	[Arc 100 (Z7: subt	100 KEJ (AC (AL	100 REI		100 HY	100 HY	1N1 99 30S	-	, ,	•	54 (Z9 [Ba	100 (Z9 [Ba	6Z) 86	100 (D8	19 (AF		_	57 (U)	Z [KB	_	100 (AE	
%	t Cvrg					78 10		62 10	32 10	88				73 5	71 1(54 9	43 1(46			31	, 08		39 1(
%;	Ident	3 55	7 58	1 55	3 61																				
BlastP.	Prob	1.20E-58	8.00E-87	2.20E-171	1.20E-113	9.00E-182	3.50E-32	6.40E-204	1.70E-36	4.20E-26	4.50E-61	101	4.10E-35	1.10E-82	1.60E-118	1.20E-12	1.40E-48	4.00E-33		6.80E-26	1.50E-20	€ 70E 33	J.101.0	7.50E-43	
BlastP	Score	602	898	1666	1121	1764	263	1973	393	295	625	Ġ	380	829	1167	168	507	371		293	251	770	F	453	
	Score	661	849	1620	1099	1823	995	2094	457	353	633	ć	380	881	1207	162	489	364		217	316	423	74	413	
NCBI gi	,	g3425862	g3122275	g1770066	g585314	g585057	g133029	g586814	g586815	£585939	g586039		g585949	g2633471	g2633470	g2633468	g2564028	g3150046		g1772644	g2190588	22644001	g2044001	g2649779	
Position		805-74	1770-2642	2680-4392	4640-5667	1395-34	1869-1423	3839-1869	4853-3924	5167-4934	5725-5216		6042-5758	674-1	1638-709	2196-2008	3884-3153	4737-4253		621-2484	2471-1478	9261 2636	3301-2030	4813-3364	
Gene Id		Bt1G1982	Bt1G1983	Bt1G1984	Bt1G1985	Bt1G1986		Bt1G1988	Bt1G1989	Bt1G1990			Bt1G1992	Bt1G1993	Bt1G1994	Bt1G1995	Bt1G1996			Bt1G1998	Bt1G1999		BLI G2000	Bt1G2001	
Contio Id		Bt1Gc1481	1140 Bt1Gc1481	1140 Bt1Gc1481 Bt1G1984	1140 Bt1Gc1481 Bt1G1985	1141 Bt1Gc1487	Bt1Gc1487	Bt1Gc1487	1141 Bt1Gc1487	1141 Bt1Gc1487	1141 Bt1Gc1487		1141 Bt1Gc1487 Bt1G1992	1142 Bt1Gc1486	1142 Bt1Gc1486 Bt1G1994	1142 Bt1Gc1486 Bt1G1995	1142 Bt1Gc1486	Bt1Gc1486		1143 Bt1Gc1483	Bt1Gc1483	707.1700	1143 BIIGC1483	1143 Bt1Gc1483 Bt1G2001	
SEQ	9 g	_	1140	1140	1140	1141	1141	1141	1141	1141	1141		1141	1142	1142	1142	1142	1142		1143	1143	,	1145	1143	

J. .

_
<u>e</u>
9
2
•

	NCBI gi description	ATP-binding protein (braF-2) [Archaeoglobus fulgidus] 2 5-METHYLTETRAHYDROFOLATEHOMOCYSTEINE METHYLTRANSFERASE (METHIONINE SYNTHASE, VITAMIN-B12 DEPENDENT) (MS) [Homo sapiens]	_ , , _	(FHS) (FTHFS) [Streptococcus mutans] 74 (AE001068) chloroplast inner envelope membrane protein [Archaeoglobus fulgidus]	99 (AF008220) YtfJ [Bacillus subtilis] 52 HYPOTHETICAL PROTEIN M11236 [Methanococcus	-	. –	63 HYPOTHETICAL 32.9 KD PROTEIN IN BLTR-SPOIIIC INTERGENIC REGION [Bacillus subtilis]	99 HYPOTHETICAL 20.7 KD PROTEIN IN BLTR-SPOIIIC INTERGENIC REGION (Bacillus subtilis)	98 HYPOTHETICAL 7.0 KD PROTEIN IN BLTR-SPOIIIC INTERGENIC REGION [Bacillus subtilis]	99 HYPOTHETICAL 14.6 KD PROTEIN IN GCVT- SPOIIIAA INTERGENIC REGION [Bacillus subtilis]	_	100 EXTRACELLULAR METALLOPROTEASE PRECURSOR [Bacillus subtilis]	29 (U52844) putative glycosyltransferase [Serratia marcescens]35 (Z71928) hypothetical protein [Bacillus subtilis]	100 PUTATIVE UDP-GLUCOSE 4-EPIMERASE (GALACTOWALDENASE) (UDP-GALACTOSE 4-FPIMERASE) [Methanococcus iannaschii]
٠.	% cvrg	45 22	50 93 63 100	7 7	54 9 24 5	43 99 23 100	34 100	72 6	44 9	6 19	33 9	39 100	45 10	35 2 42 3	33 10
	% Ident														
Table	BlastP- Prob	1.40E-49	3.90E-149 2.10E-173	3.20E-12	8.50E-35 1.20E-19	3.80E-25 1.10E-16	4.60E-38	8.00E-71	5.30E-42	6.00E-18	3.50E-13	3.30E-72	1.30E-68	5.30E-12 1.50E-11	2.00E-42
	BlastP Score	528	1456 1685	164	377 243	286 206	236	717	445	218	173	730	969	168	449
	aat 1 nap Score	461	1433 1854	80	399 84	334 113	348	708	416	209	133	772	298	2 6	418
	NCBI gi	g2842762	g2145402 g2501186	g2650105	g2293237 g2496166	g2116755 g1731074	g3080402	g1731127	g1731125	g1731123	g1731041	g2792490	g730056	g4753135 g1495283	g2494668
	Position	796-1	2451-735 1742-75	2535-915	5259-4828 1-2246	2453-2037 6156-5242	3374-4288	567-1	1400-849	1686-1495	2323-1950	3602-2265	5271-4309	1224-2246	4192-3269
	Gene Id	Bt1G2002	Bt1G2003 Bt1G2004	Bt1G2005	Bt1G2006 Bt1G2007	Bt1G2008 Bt1G2009	Bt1G2010	Bt1G2011	Bt1G2012	Bt1G2013	Bt1G2014	Bt1G2015	Bt1G2016	Bt1G2017	Bt1G2019
	Contig Id	1144 Bt1Gc1488 Bt1G2002	1144 Bt1Gc1488 Bt1G2003 1145 Bt1G&1489 Bt1G2004	1145 Bt1Gc1489 Bt1G2005	Bt1Gc1489 Bt1Gc1495	1146 Bt1Gc1495 Bt1G2008 1146 Bt1Gc1495 Bt1G2009	1147 Bt1Gc1494 Bt1G2010	1148 Bt1Gc1492 Bt1G2011	1148 Bt1Gc1492 Bt1G2012	1148 Bt1Gc1492 Bt1G2013	1148 Bt1Gc1492 Bt1G2014	1148 Bt1Gc1492 Bt1G2015	1148 Bt1Gc1492 Bt1G2016	1149 Bt1Gc1493 Bt1G2017	Bt1Gc1493
	S E S	1144	1144	1145	1145	1146	1147	1148	1148	1148	1148	1148	1148	1149	1149

	m et.		ır KdgR	3PC	ı	ν.,		ACY		protein)	•	cystis		OT A) IM	icum]	[mma]	lus	<u> </u>	S T		llus	ıns	lus	Inc	2
	C	IVE ATP IS232]	n repressons]	SIPU-PE	[sis]	TIDASE (JTAMYL	ans) arbtilis]	TYRZ-S	is subtilis.	P-binding	,	Synecho	[Cullil TE D CHA	cetobuty	icetoouty 1	AG [Bacillus	Toodling			AD [Bacillus	AC [Bacillus	AB [Bacillus	subtilis]	1
	cription	2 PUTAT sequence	legradatio lus subtili	OTEIN IN lus subtili	lla pertus	ATE PEP YROGLI	Racillus s	OTEIN IN) [Bacilly	orter (AT)	ıbtilis]	N KDPD	1.40.40.40.1	cetobulty	G A LFAG etridium s	strictions ubtilis]	OTEIN A	, Manager	OIEIN	ubtilis]	ROTEIN A	ROTEIN A	ROTEIN A	OTEIN	
	NCBI gi description	VCE IS23. [Insertion	of pectin of Ibacil	8 KD PRO	[Bordete	SBOXYL DASE) (F	uus amyu I protein	3 KD PR	N (ORF1	BC transp	Bacillus si	PROTE			SPORTIN	Hacillus s	ATION PI	Id IdOnt	A HOUN PI	Bacillus s	ATION PI	ATION PI	ATION PI	M TION P	
	Z	SEQUEI ROTEIN	mologue urysanther	ICAL 63. IC'REGIO	unknown	ONE-CAL	, 1) [Dati.	ICAL 27	IC REGIC	nilar to A tilis]	YvmA [SENSOR	0.5		M-1KAN VIODO	OIIIAH	PORUL/	Hada	PORULA	olliaE	SPORUL,	SPORUL.	SPORUL,	ШаОах	
		INSERTION SEQUENCE IS232 PUTATIVE ATP-BINDING PROTEIN [Insertion sequence IS232]	(D50453) homologue of pectin degradation repressor KdgR of Erwinia chrysanthemi [Bacillus subtilis]	HYPOTHETICAL 63.8 KD PROTEIN IN SIPU-PBPC INTERGENIC REGION [Bacillus subtilis]	(AF006000) unknown [Bordetella pertussis]	PYRROLIDONE-CARBOXYLATE PEPTIDASE (5- OXOPROLYL-PEPTIDASE) (PYROGLUTAMYL-	FEFTIDASE I) [Datinus annyronductavions] (V14082) hymothetical protein [Bacillus subtilis]	HYPOTHETICAL 27.3 KD PROTEIN IN TYRZ-SACY	INTERGENIC REGION (ORF1) [Bacillus subtilis]	(Z99111) similar to ABC transporter (ATP-binding protein) [Bacillus subtilis]	(AF017113) YvmA [Bacillus subtilis]	PUTATIVE SENSOR PROTEIN KDPD (Synechocystis	sp.]	(U44892) Kapc [Clostrialum acciooutylicum]	POLASSIUM-IKANSPOKIING ALFASE B CHAIN (F BIJOSPITOHVDBOI ASE [Clostridium acetobutylicum]	(D84432) SpolIIAH (Bacillus subtilis)	STAGE III SPORULATION PROTEIN AG	subtilis]	SIAGE III SPORULATION FROTEIN AF	Subdins J (U35252) SpolIIAE [Bacillus subtilis]	STAGE III SPORULATION PROTEIN AD	subtilis] STAGE III SPORULATION PROTEIN AC	subtilis] STAGE III SPORULATION PROTEIN AB	subtilis]	
	% Cvrg	.52 IP BI	100 (T) to	100 H	_	100 P.O.	2 S			100 E		100 P			00 P. G	100			2001 2001	100 (I	99 S	rs 66	s 66		
	% 9	66	25	39	53	55	71	33	}	62	40	45	į	7.4	90	41	42	1	3	59	99	56	54		
-		99-	-64	101	89-7	7-62	62	335		3-74	3-70	3-87	,	46	.141	12-5	3-39	•	5-73	3-74	3-35	3-17	F-43	6	
I and	BlastP- Prob	7.60E-66	1.10E-64	8.20E-101	1.10E-68	1.50E-62	100	6.70E-35		2.00E-74	1.70E-70	3.80E-87	•	5.00E-46	2.70E-141	2 40E-21	3.90E-39	,	1.10E-23	7.80E-74	8.50E-35	2.60E-17	9.60E-43		
	BlastP	0/9	629	1000	269	639	2 2 2	378))	751	714	871	9	483	1382	250	418	į	272	423	377	212	452		
	aat B nap S Score	899	929	944	684	612	701	355))	738	781	772	;	444	1537	335	426		300	1204	447	208	200		
	ig	7392	g1805478	5716	g2290993	2045	7	g2220221 0141438		13807	8848	2316	,	75251	21784	a1303011	g1710826		g1710825	0363	g1710823	10822	10821		
	NCB	g2497	g180	g11757	g229	g1172(Č	g2220 91414	à	g2633	g2618	g3122		g2275	g3121′	g 13(g17]			g1000					
	Position	5034-4644	41-778	799-2508	2521-3279	4981-5628		3710-0452 1958-1251	1001-001	3267-3956	84-1906	2725-1305		3076-2492	4450-3094	1000 501	1898-1233		2529-1903	3711-2545	4123-3725	4335-4132	4865-4353		
	pI a		2021	2022							2028					2022									
	Gene Id	Bt1G	Bt1G	Bt1G	Bt1G	Bt1G	Ç	D114 D174		Bt1G	Bt1G	Bt1G		Bt1G	Bt1G	D+10	Bt1G2033		Bt1G	Brig	B£1G	R#1G	B+10		
	Contig Id	1149 Bt1Gc1493 Bt1G2020	1150 Bt1Gc1496 Bt1G2021	1150 Bt1Gc1496 Bt1G2022	1150 Bt1Gc1496 Bt1G2023	1150 Bt1Gc1496 Bt1G2024	,	1150 Bt1Gc1496 Bt1G2025	1001	1151 Bt1Gc1491 Bt1G2027	1152 Bt1Gc1490 Bt1G2028	1152 Bt1Gc1490 Bt1G2029		1152 Bt1Gc1490 Bt1G2030	Bt1Gc1490 Bt1G2031	1152 B41C21400 B41C2022	Bt1Gc1499		1153 Bt1Gc1499 Bt1G2034	1153 Br1Gc1499 Br1G2035	Bt1Gc1499	Bt1Gc1499 Bt1G2037	1152 Bt1Gc1490 Bt1G2038	occasing command com	
Ü	SEQ DO C	149 Bt	150 Bt	150 Bt.	150 Bt	150 Bt	, ,	150 bt	10.101	151 Bt	152 Bt	152 Bt		152 Bt	1152 Bt	152 D4	1153 Bt		153 Bt	153 Bt	1153 Bt	1153 Rt	153 pg		
	S - Z	1	1	-	_	-	•	⊣ ←	-1	 1	_	Т			7	-		•	_	_	-	, ,	• •	•	•

	NCBI gi description	HYPOTHETICAL P20 PROTEIN [Bacillus licheniformis]	(AL009204) thiosulfate sulfurtransferase [Streptomyces coelicolor]	HYPOTHETICAL 9.9 KD PROTEIN IN BCSA-DEGRINTERGENIC REGION [Bacillus subtilis]	(Z99121) similar to hypothetical proteins from B. subtilis [Bacillus subtilis]	HYPOTHETICAL 137.4 KD PROTEIN IN BCSA-DEGR INTERGENIC REGION [Bacillus subtilis]	(AF008220) YtvI [Bacillus subtilis]	(AF008220) YtwI [Bacillus subtilis]	CITRATE SYNTHASE II [Bacillus subtilis]	(Y13358) isocitrate dehyrogenase [Bacillus Israeli]	MALATE DEHYDROGENASE [Bacillus israeli]	HYPOTHETICAL ABC TRANSPORTER ATP-BINDING PROTEIN IN COTE, TETR INTERGENIC REGION	[Bacillus subtilis]	PREPROTEIN TRANSLOCASE SECA SUBUNIT [Bacillus subtilis]	(AF027868) transcription regulator [Bacillus subtilis]	HYPOTHETICAL 19.6 KD PROTEIN IN ACDA	5'REGION [Bacillus subtilis]	(AF049873) sensor protein [Lactococcus lactis]	30S RIBOSOMAL PROTEIN S1 HOMOLOG [Bacillus	cereus] HYDOTHETICAL 22 6 KD PROTEIN IN CMK-GPSA	INTERGENIC REGION [Bacillus subtilis]	HYPOTHETICAL 32.9 KD PROTEIN IN CMK-GPSA DESTRUCTION PROBLEMS SUBJECTION PROBLEMS	HYPOTHETICAL 48,8 KD GTP-BINDING PROTEIN IN	CMK-GPSA INTERGENIC REGION [Bacillus subtilis]	GLYCEROL-3-PHOSPHATE DEHYDROGENASE		
	% Cvrg	86	100	66	66	59	100	66	100	100	100	94		46	100	66		84	30	100	3	100	100)	100	66	66
	% Ident (25	35	51	54	29	43	89	73	98	85	45		78	24	50		4	93	09	3	61	70	•	4	45	55
1 41010	BlastP- Prob I	5.90E-11	6.30E-39	4.70E-18	1.60E-40	9.60E-72	2.20E-61	2.70E-38	2.70E-125	6.00E-185	4.40E-125	8.40E-44		8.40E-163	4.40E-22	1.40E-41		9.20E-70	8.40E-44	7 900 6	5.00E-04	1.40E-82	\$ 30F-177		3.80E-119	2.90E-18	4.80E-09
	BlastP Score	152	416	219	431	733	628	410	1231	1794	1229	462		1585	257	441	:	707	462	737	50	828	1719	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1173	221	134
	aat_B nap_S Score	91	316	217	401	603	794	522	1413	1917	1362	421		1585	155	460	3	698	514	737	934	927	1838		1154	195	191
	NCBI gi	g141186	g2661707	g1730892	g2635902	g1730891	g2293327	g2293266	g3123196	g2168132	g2497856	g586824		g134396	g2619048	01176952	5110707	g3687664	g3122814	1,70000	g1/30909	g1730914	01730015	61120113	g1169997	g2633535	g1730916
	Position	6270-6921	2352-1510	2624-2370	3937-2657	5658-2476	1183-71	1746-2207	2628-3743	3898-5172	5217-6152	1231-1894		2932-4098	2409-1474	2521-3039	7777	4247-3080	1-346	4	//3-1408	2574-3467	2777.5081	1000-1110	5103-6141	6193-6492	6269-6529
	Gene Id	Bt1G2040	Bt1G2041	Bt1G2042	Bt1G2043	Bt1G2044	Bt1G2045	Bt1G2046	Bt1G2047	Bt1G2048	Bt1G2049	Bt1G2050	-	Bt1G2051	Br1G2052	B+1G2053		Bt1G2054	Bt1G2055		Dt102050	Bt1G2057	D+1/22/058	DEI 02036	Bt1G2059	Bt1G2060	
	SEQ ID Contig Id NO	1153 Bt1Gc1499 Bt1G2040	1154 Bt1Gc1497 Bt1G2041	1154 Bt1Gc1497	1154 Bt1Gc1497 Bt1G2043	1154 Bt1Gc1497	1155 Bt1Gc1500	1155 Bt1Gc1500	1155 Bt1Gc1500	1155 Bt1Gc1500	1155 Bt1Gc1500	1156 Bt1Gc1501		1156 Bt1Gc1501 Bt1G2051	1157 Rt1Gc1498	1157 B#1Gc1498	15) Dilding	1157 Bt1Gc1498 Bt1G2054	1158 Bt1Gc1502		1158 BtlGc1502 Bt1G2050	1158 BtlGc1502	1150 D+1C31500 D+1C3058	1130 DIIOCI307	1158 Bt1Gc1502	1158 Bt1Gc1502	1158 Bt1Gc1502
	S H Z	_	-		-	1		_	_	_	-	-		1	-	-	-	_	1	•	-	-	-	-	1	_	. —

_	4
7	-
٥	ť
H	4

SEQ Contig Id	Gene Id	Position	NCBI gi		BlastP Score	BlastP-	% Ident C	Cvrg	NCBI gi description
				Score				· ***	INTERGENIC REGION [Bacillus subtilis]
1159 Bt1Gc1503 Bt1G2062	Bt1G2062	1707-1249	g1881322	633	562	2.10E-54	82	82 99	(AB001488) SIMILAR TO TRANSCRIPTION FACTOR OF MYXOCOCCUS XANTHUS. [Bacillus subtilis]
1159 Bt1Gc1503 Bt1G2063	Bt1G2063	2942-1980	g1170422	776	821	7.60E-82	49	100	FORMIMINOGLUTAMASE (FORMIMINOGLUTAMATE HYDROLASE) [Bacillus
1159 Bt1Gc1503 Bt1G2064	Bt1G2064	4198-2933	g1170424	1334	1319	1.30E-134	62	100	subtilis] IMIDAZOLONEPROPIONASE (IMIDAZOLONE-5-
1159 Bt1Gc1503 Bt1G2065	Bt1G2065	5116-4205	g1170427	1196	1076	7.20E-109	72	. 52	PROPIONATE HYDROLASE) [Bacillus subtilis] UROCANATE HYDRATASE (UROCANASE) (IMIDAZOLONEPROPIONATE HYDROLASE) [Bacillus
1160 Bt1Gc1504 Bt1G2066	Bt1G2066	183-2148	g3329623	47	138	3.00E-07	23	69	subtilis] (AF078790) No definition line found [Caenorhabditis
1160 Bt1Gc1504 Bt1G2067	Bt1G2067	1329-907	g1176526	381	410	2.70E-38	54	66	elegans] HYPOTHETICAL 16.2 KD PROTEIN IN CHEV
1160 Bt1Gc1504 Bt1G2068	. Bt1G2068	1525-4004	g2313368	286	457	2.80E-43	26	06	(AE000546) guanosine pentaphosphate phosphohydrolase
1160 Bt1Gc1504	Bt1G2069	3154-5287	g1001781	1418		2.10E-143	46	100	(gppA) [Helicobacter pylori 20093] (D64005) polyphosphate kinase [Synechocystis sp.]
1161 Bt1Gc1505	Bt1G2070	951-1	g3913544	933	883	2.00E-88	28	%	1-DEOXY-D-XYLULOSE 5-PHOSPHATE REDUCTOISOMERASE (DXP REDUCTOISOMERASE)
1161 Bt1Gc1505 Bt1G2071	Bt1G2071	1344-2339	g1711656	348	440	1.80E-41	35	100	[Bacillus subtilis] TRYPTOPHANYL-TRNA SYNTHETASE (TRYPTOPHANTRNA LIGASE) (TRPRS) [Escherichia
1161 Bt1Gc1505 Bt1G2072	Bt1G2072	4571-2333	g1177029	104	186	7.10E-14	29	37	coli] HYPOTHETICAL 45.4 KD PROTEIN IN THIAMINASE I STREGION II
1161 Bt1Gc1505 Bt1G2073	Bt1G2073	5646-5959 1-424	g4539176 g1176978	68	129	5.50E-08 1.30E-22	34 42	37	(AL049485) hypothetical protein [Streptomyces coelicolor] HYPOTHETICAL 18.1 KD PROTEIN IN GNTR-HTPG
1162 Bt1Gc1507 Bt1G2075	n Bt1G2075	527-2951	g2495406	266	325	2.80E-29	31	100	INTERGENIC REGION [Bacillus subtilis] SUCROSE OPERON REPRESSOR (SCR OPERON REGITI ATORY PROTEIN) [Strentococcus mutans]
1162 Bt1Gc1507	7 Bt1G2076	2737-1421	g2635701 g1644225	1411	1137	2.50E-115 3.70E-50	63) 001 100	
1162 Bt1Gc1507		6177-3207	g1724012	1021		6.00E-121		45	HYPOTHETICAL 132.7 KD PROTEIN IN CSPB-GLPP INTERGENIC REGION [Bacillus subtilis]

_
ë
ģ
Н

																					-		
	NCBI gi description	HYPOTHETICAL 44.9 KD PROTEIN IN HOM-MRGA INTERGENIC REGION [Bacillus subtilis]	XANTHINE PHOSPHORIBOSYLTRANSFERASE [Bacillus subtilis]	(AB017508) map homologue (identity of 81% to B. subtilis)	[Bacillus halodurans] HYPOTHETICAL 58.2 KD PROTEIN IN KDGT-XPT INTERGENIC REGION (Bacillus subtilis)	PROBABLE ATP-DEPENDENT HELICASE IN COTD-KDUD INTERGENIC REGION [Bacillus subtilis]	(Z95209) hypothetical protein Rv0939 [Mycobacterium	tuberculosis] 4-HYDROXYPHENYLPYRUVATE DIOXYGENASE	(4HPPD) (HPD) [Sureptomyces averations] UDP-GLUCOSE 4-EPIMERASE (GAI ACTOWAI DENASE) (HDP-GAI ACTOSE 4-	(CALACTOWALDENASE) (CALACTOSE 7 EPIMERASE) [Bacillus subtilis]	(ZYZYZZ) product similar to resendomonas acruginosa ODE- mannose 6-dehydrogenase protein [Bacillus subtilis]	(AF015609) unknown [Bacillus subtilis]	(AE001062) LPS biosynthesis protein, putative	[Archaeoglobus fulgidus] RIBONUCLEASE PH (RNASE PH) (ERNA	NUCLEOTIDYLTRANSFERASE) [Bacillus subtilis]	GERMINATION PROTEIN GERM [Bacillus subtilis]	(Y09719) putative glutamate racemase protein [Bacillus	HYPOTHETICAL 24.2 KD PROTEIN C11D3.13 IN	CHROMOSOME I [Schizosaccharomyces pombe]	THIOREDOXIN (TRX) [Bacillus subtilis]	ELECTRON TRANSFER FLAVOPROTEIN ALPHA- SUBUNIT (ALPHA-ETF) (ELECTRON TRANSFER	FLAVOPROTEIN LARGE SUBUNIT) (ETFLS) [Bacillus subtilis]	
	% Cvrg	62]	66	100	100	100	47	100	100		201	100	62	34			100	69	ζ	3 8	100		
	% Ident C	61	99	48	61	61	41	55	80	;	63	55	30	62		52	24	32	Ş	3 52	73		
l able 1	BlastP- Prob Id	2.50E-60	1.50E-55	6.90E-65	1.90E-172	1.80E-201	1.10E-52	5.30E-97	2.90E-153	!	1.50E-149	7.50E-75	2.60E-19	3.10E-21		2.10E-93	4.00E-131	4.20E-17	00 H D D D	2.30E-34	1.10E-119		
	BlastP Score	618	573	199	1676	1950	546	964	1495	;	1460	755	232	249	ì I	930	1286	210	9	373	1178		
	aat_B nap_S Score	798	622	099	1663	2000	416	954	1489		1452	748	123	232] }	874	1342	151	200	425	1253		
	NCBI gi	g3334447	g1175028	g4512426	g1730961	g1730960	g3261756	g3334227	g1730193		g1894744	g2454562	g2650003	0133188		g2507032	g2462086	g1351709	100	g137192 g135765	g2494399		
	Position	807-1	1398-817	2471-1728	4661-3153	6703-4772	2396-1499	3581-2466	1341-325		2813-1494	3640-2885	5239-4559	254-1	-	1440-389	2426-1620	3153-2717	7007	400-1 864-553	2052-1079		
	Gene Id	Bt1G2079	Bt1G2080	Bt1G2081	Bt1G2082	Bt1G2083	Bt1G2084	Bt1G2085	Bt1G2086		Bt1G2087	Bt1G2088	Bt1G2089	B+1G2090	0070110	Bt1G2091	Bt1G2092	Bt1G2094	000	Bt1G2095	Bt1G2097		
	SEQ ID Contig Id NO	1163 Bt1Gc1508 Bt1G2079	1163 Bt1Gc1508 Bt1G2080	1163 Bt1Gc1508 Bt1G2081	1163 Bt1Gc1508 Bt1G2082	1163 Bt1Gc1508 Bt1G2083	1164 Bt1Gc1506 Bt1G2084	1164 Bt1Gc1506 Bt1G2085	1165 Bt1Gc1510 Bt1G2086	=	1165 Bt1Gc1510 Bt1G2087	1165 Bt1Gc1510 Bt1G2088	1165 Bt1Gc1510 Bt1G2089	1166 B+1G~1512 B+1G2090	21010110110111	1166 Bt1Gc1512 Bt1G2091	1166 Bt1Gc1512	1166 Bt1Gc1512 Bt1G2094		1167 Bt1Gc1509 Bt1G2095	1167 Bt1Gc1509		

_	4
9	2
2	5
,	4
-	7

% NCBI gi description	Cvrg	100		3 5	8	100 LONG-CHAIN-FATTY-ACIDCOA LIGASE (LONG-CHAIN ACYL-COA SYNTHETASE) [Bacillus subtilis]	100	9	901	100	33 HYPOTHETICAL 132.7 KD PROTEIN IN CSPB-GLPP INTERGENIC REGION [Bacillus subtilis]	100 PUTATIVE NON-HEME CHLOROPEROXIDASE	-	100	INTERGENIC REGION [Escherichia coli]	100	100 HYPOTHETICAL OXIDOREDUCTASE IN PBPC-LRPC	INTERGENIC REGION [Bacillus subtilis]	99 (AB001488) PROBABLE ACETYL TRANSFERASE.	[Bacillus subtilis]	100	100	100	2 48 (Z95389) hypothetical protein Rv3447c [Mycobacterium	,	16	5 100 NEGATIVE REGULATOR OF GENETIC COMPETENCE MECB [Bacillus subtilis]	89	7 62 GLYCEROL-3-PHOSPHATE TRANSPORTER (G-3-P
% ;	Ident	74	(70	65	9	45	,6	3	22	47	52		63		42	59		78		96	59	23	22		*************************************	9	63	<i>L</i> 9
	Prob	1.50E-83		9.20E-54	2.20E-61	4.50E-187	5.50E-63		1.10E-10/	6.50E-108	2.10E-95	6.30E-71		2.50E-67		2.20E-45	2.70E-95		4.10E-19		8.50E-257	3.90E-101	1.80E-34	1.00E-41		2.80E-146	0	4.20E-58	1.90E-85
BlastP	Score	837	ì	226	628	1814	643	,	1631	1067	949	718		684		477	948		229		2472	1003	374	440		1429	3291	597	855
	Score	776	,	648	625	1805	642	ļ	1/68	1137	894	721		699		420	948		191		2469	1015	264	266		1410	3535	577	626
NCBI 91		g2494401		g17/0040	g1770039	g2829810	g2497513	,	g135811	g2635723	g1724012	g3914460	b	g140338		g4324613	g1175720)	g1881232)	g2462090	g732353	g1665848	g2104368		g1665846	g586900	g2127105	g585209
Position		2862-2092		3715-2944	4317-3736	6115-4436	3615-2749		4679-3624	5964-4678	1172-1	2503-1673		2997-3623		2979-3656	571-1470		2061-1504		3615-2161	4104-5102	3770-5142	5644-7543		5846-7543	974-3406	3505-4036	1-834
Gene Id		Bt1G2098			Bt1G2100	Bt1G2101	Bt1G2102			Bt1G2104	Bt1G2105	Bt1G2106		Bt1G2107		Bt1G2108	Bt1G2109		Bt1G2110		Bt1G2111	Bt1G2112	Bt1G2114	Bt1G2115		Bt1G2116	Bt1G2117	Bt1G2118	Bt1G2119
Contig Id	9440	1167 Bt1Gc1509 Bt1G2098			1167 Bt1Gc1509	1167 Bt1Gc1509	1168 Bt1Gc1513			1168 Bt1Gc1513	Bt1Gc1516	1169 Br1Gc1516 Br1G2106		1169 Bt1Gc1516 Bt1G2107	,	1169 Bt1Gc1516 Bt1G2108	Bt1Gc1515		1170 Bt1Gc1515		1170 Bt1Gc1515 Bt1G2111	1170 Bt1Gc1515 Bt1G2112	Bt1Gc1517 Bt1G2114	Bt1Gc1517		1171 Bt1Gc1517 Bt1G2116	Bt1Gc1518	1172 Bt1Gc1518 Bt1G2118	1173 Bt1Gc1514 Bt1G2119
SEQ	Ş	1167		1167	1167	1167	1168		1168	1168	1169	1169		1169		1169	1170) !	1170		1170	1170	1171	1171		1171	1172	1172	1173

\blacksquare
Table

Cono Id	Dosition	NCBIG		BlastP	BlastP-	%	%	NCBI gi description
Position		NCBI gi	nap Score	Score	Prob	Ident (Cvrg	
		,						TRANSPORTER) (G-3-P PERMEASE) [Bacillus subtilis]
2836-1282		g2226168	121	140	1.10E-09	31	53	(Y14080) hypothetical protein [Bacillus subtilis]
		g2632425	315	260	8.00E-22	38	4 5	(299104) similar to hypometical proteins [bacinus suotins]
4073-4738		g3687663	624	628	2.20E-61	22	99	(AF0498/3) response protein [Lactococcus lactis]
129-569		g2633784	426	426	5.50E-40	26	8	(Z99111) ykul. [Bacillus subtilis]
780-1643 g	S	g2632234	823	828	9.10E-86	55	100	(AJ222587) YkuM protein [Bacillus subtilis]
1709-2416 g	OI	g2632238	975	669	6.50E-69	80	100	(AJ222587) YkuQ protein [Bacillus subtilis]
2495-3616 g	50	g2632239	1244	1175	2.30E-119	63	100	
3863-5794 g	60	g4514629	195	151	5.60E-17	28	83	(AB016894) bd-type quinol oxidase subunit II [Bacillus stearothermophilus]
4830-5492 g	ಯ	g732401	824	830	8.50E-83	73	100	HYPOTHETICAL 24.3 KD PROTEIN IN KINC-ADEC
7197-5533 0	ď	02833392	2561	2491	8.20E-259	87	÷ 00	INTERGENIC REGION (ORF4) [Bacinus subtins] HYPOTHETICAL 61.5 KD PROTEIN IN ADEC-PDHA
	D)		; }			1		INTERGENIC REGION [Bacillus subtilis]
7414-7208 g	ò	g2633825	202	202	3.00E-16	57	66	(Z99111) ykzG [Bacillus subtilis]
) Si	g2633826	208	224	1.40E-18	57	26	(Z99111) similar to hypothetical proteins [Bacillus subtilis]
	. 2 9	g2635222	228	328	2.90E-29	29	28	(Z99118) similar to N-acetylmuramoyl-L-alanine amidase
								[Bacillus subtilis]
2746-1893 g3	83	g3121979	559	604	7.50E-59	45	100	D-ALANINE AMINOTRANSFERASE (D-ASPARTATE AMINOTRANSFERASE) (D-AMINO ACID
								AMINOTRANSFERASE) (D-AMINO ACID
								TRANSAMINASE) [Bacillus subtilis]
5262-3415 gl		g1731026	1653	1585	8.40E-163	51	95	HYPOTHETICAL 73.2 KD PROTEIN IN SODA-COMGA INTERGENIC REGION [Bacillus subtilis]
1-271 g	òò	g2634117	276	306	2.90E-27	63	30	(Z99113) tRNA isopentenylpyrophosphate transferase (Racillus suhtilis)
314-535	٥	92634118	319	337	1.50E-30	85	96	(Z99113) similar to host factor-1 protein [Bacillus subtilis]
9	u) Q	04894234	897	006	3.20E-90		100	(AF065404) pXO1-18 [Bacillus anthracis]
	0 0	g134777	1119	1141	9.40E-116	89	100	STAGE V SPORULATION PROTEIN K [Bacillus subtilis]
) bi	£2635859	674	561	2.70E-54	62	100	(Z99121) similar to hypothetical proteins [Bacillus subtilis]
) b	g1750108	269	251	1.90E-21	55	33	(U66480) YnbA [Bacillus subtilis]
) 6	g118334	359	357	1.10E-32	62	23	LYSINE DECARBOXYLASE (LDC) [Bacillus subtilis]
.9) pi	g2851451	397	415	8.00E-39	35	100	TGL PROTEIN [Bacillus subtilis]
4478-3069 g) (1)	g118672	1964	1833	4.40E-189	79	100	LIPOAMIDE DEHYDROGENASE COMPONENT OF

, ()

_
le
엹
Ë

- 100 --

250	NCBI gi description	PYRUVATE DEHYDROGENASE COMPLEX (E3) (DIHYDROLIPOAMIDE DEHYDROGENASE) (S COMPLEX, 50 KD SUBUNIT) [Bacillus subtilis] 100 DIHYDROLIPOAMIDE ACETYLTRANSFERASE COMPONENT OF PYRUVATE DEHYDROGENASE COMPLEX (E2) (S COMPLEX, 48 KD SUBUNIT)	[Bacillus subtilis] 100 PYRUVATE DEHYDROGENASE E1 COMPONENT, BETA SUBUNIT (S COMPLEX, 36 KD SUBUNIT)	[Bacillus subtilis] 46 PYRUVATE DEHYDROGENASE EI COMPONENT, ALPHA SUBUNIT (S COMPLEX, 42 KD SUBUNIT) (VEGETATIVE PROTEIN 220) (VEG220) [Bacillus	subtilis] 38 HYPOTHETICAL 23.2 KD PROTEIN IN SODA-COMGA INTERGENIC REGION [Bacillus subtilis]		99 (AF031382) PagR protein [Bacillus anthracis]100 (Z99110) similar to cystathionine beta-lyase [Bacillus	subtilis] 100 (Z99110) similar to cystathionine gamma-synthase [Bacillus	SUDULIS] 100 HYPOTHETICAL 29.3 KD PROTEIN IN BEX- DNAG/DNAE INTERGENIC REGION (ORF3) [Bacillus	subtilis] 100 (799116) similar to hypothetical proteins [Bacillus subtilis]		DNAG/DNAE IN ERGENIC NEGLON [Datamas submiss] 99 HYPOTHETICAL 17.1 KD PROTEIN IN DNAG/DNAE 5/REGION (P17) [Listeria monocytogenes]	100 DNA PRIMASE [Bacillus subtilis]	79 RNA POLYMERASE SIGMA FACTOR RPOD (SIGMA- A) (SIGMA-43) (Bacillus subrilis)		52 (Z99111) similar to two-component sensor nisuame kinase
	% it Cvrg	75 10	87 10	48			37 9 61 10	65 10	55 10	73 1		34	48 1	84		38
	% Ident															
	BlastP- Prob	2.60E-152	3.60E-146	7.10E-63	1.80E-18	1.40E-34	5.00E-14 1.10E-128	2.60E-129	2.00E-67	6.20E-80	4.10E-90	5.40E-17	1.80E-144	9.60E-130	9.40E-29	1.20E-62
	BlastP Score	1486	1428	642	223	375	181 1263	1269	685	603	668	209	1412	1273	320	640
	aat_ H nap g	1564	1477	739	200	240	154 1248	1248	727	907	954	158	1422	1246	530	579
	NCBI gi	g129054	g129068	g3123238	g1731031	g1001535	g2642588 g2633542	g2633541	g1731106	F307070	g1731001	g1731102	g130904	g133466	g1620924	g2633724
	Position	5772-4487	6843-5869	7361-6850	1-241	180-2393	1794-1495 4075-2906	5178-4062	200-965	1054 1500	1716-2524	2896-3336	3389-5181	5257-6135	1455-2276	1227-4443
	Gene Id	Bt1G2144	Bt1G2145	Bt1G2146	Bt1G2147	Bt1G2148	Bt1G2149 Bt1G2150	Bt1G2151	Bt1G2152	63100150	Bt1G2154	Bt1G2155	Bt1G2156	Bt1G2157	Bt1G2158	Bt1G2159
	Contig Id	1177 Bt1Gc1520 Bt1G2144	1177 Bt1Gc1520 Bt1G2145	1177 Bt1Gc1520 Bt1G2146	1178 Bt1Gc1521 Bt1G2147	1178 Bt1Gc1521	1178 Bt1Gc1521 1178 Bt1Gc1521	1178 Bt1Gc1521 Bt1G2151	1179 Bt1Gc1522 Bt1G2152		1179 Bt1Gc1522 Bt1G2153	1179 Bt1Gc1522	1179 Bt1Gc1522 Bt1G2156	9 Bt1Gc1522	1180 Bt1Gc1526 Bt1G2158	1180 Bt1Gc1526
	SEQ ID	1177	1177	1175	1178	1178	1178	1178	1179	Ì	1179	117	117	1179	118	118

_
<u> </u>
互
<u>_</u> 42
Г

(;				7		1 01011		٠.	P*&
SEQ ID Contig Id NO	Id Gene Id	Position	NCBI gi	aat_ nap nap Score	BlastP Score	BlastP. Prob	% Ident C	% Cvrg	NCBI gi description
1100 D+1/2015	1180 D41C21496 D41C3140	5080-4484	c02415303	654	899	1 20E-65	9	9	[Bacillus subtilis] (AF015775) YodD [Bacillus subtilis]
1180 Bt1Gc1526 Bt1G2161	26 Bt1G2161	5965-5120	g1881356	1280	1280	1.70E-130	8 8	8	(AB001488) SIMILAR TO PENTACHLOROPHENOL- INDUCED PERIPLASMIC PROTEIN IN
							ì	,	FLAVOBACTERIUM SP [Bacillus subtilis]
1181 BtlGc15	1181 Bt1Gc1525 Bt1G2162	4205-2478	g1881244	1621	1551	3.30E-159	%	100	(AB001488) SIMILAR TO PYRUVATE UXIDASE AND ACETOLACTATE SYNTHASE. [Bacillus subtilis]
1181 Bt1Gc1525	525 Bt1G2163	5069-4358	g2984109	68	146	3.50E-10	23	100	(AE000757) hypothetical protein [Aquifex aeolicus]
1181 Bt1Gc1525	525 Bt1G2164	7779-7200	g4510346	9	153	1.40E-10	25	61	(AC006921) hypothetical protein [Arabidopsis thaliana]
1182 Bt1Gc1527	327 Bt1G2165	4351-3712	g3947454	219	276	4.30E-24	32	100	(AJ006589) gp35 [Bacteriophage phi-C31]
1183 Bt1Gc1530	330 Bt1G2166	1-200	g4584200	337	354	2.30E-32	66	14	(AJ000394) transcriptional regulatory protein CelR
			•	1			ć	ć	[Bacillus cereus]
1183 Bt1Gc1530	530 Bt1G2167	921-511	g4584201	298	455	4.60E-43	83	<u></u>	(AJ000394) hypothetical protein [Bacillus cereus]
1183 Bt1Gc1530	530 Bt1G2168	1109-2287	g4584202	1903	1674	3.10E-172	93	100	(AJ000394) chromate transport protein [Bacillus cereus]
1183 Bt1Gc1530	530 Bt1G2169	3033-2332	g4584203	1150	1036	1.30E-104	94	100	(AJ000394) ydjC-like protein [Bacillus cereus]
1183 Bt1Gc1530	530 Bt1G2170	4267-3086	g1168884	1603	1604	8.10E-165	11	68	PROBABLE 6-PHOSPHO-BETA-GLUCOSIDASE
			,						[Bacillus subtilis]
1184 Bt1Gc1529	529 Bt1G2171	1003-2275	g3915990	1152	1084	1.00E-109	52	7	HYPOTHETICAL 58.3 KD PROTEIN IN GLPD-CSPB
)						INTERGENIC REGION [Bacillus subtilis]
1184 Bt1Gc1529	529 Bt1G2172	3072-6263	g2116974	4203	4166	0	92	100	(D87979) YfnJ [Bacillus subtilis]
1185 Bt1Gc1528		861-1	g113368	1034	1064	1.40E-107	70	84	ALCOHOL DEHYDROGENASE I (ADH I) [Zymomonas
									mobilis]
1185 Bt1Gc15	1185 Bt1Gc1528 Bt1G2174	2012-574	g2506666	212	301	9.70E-27	29	100	_
				;	,	!	- (9	INTERGENIC REGION (ORFB) [Escherichia coli]
1185 Bt1Gc15	1185 BtiGc1528 BtiG2175	3466-2186	g141086	340	366	1.20E-33	37	3	-
1185 Br1Gc1528	528 Br1G2176	3871-3230	g2226141	509	496	2.10E-47	49	100	(Y14079) hypothetical protein [Bacillus subtilis]
1185 Bt1Gc1528		5004-3871	g2226140	888	839	9.40E-84	49	100	(Y14079) hypothetical protein [Bacillus subtilis]
1185 Bt1Gc1528		6049-5210	g2626815	538	427	4.30E-40	42	100	(D83967) YfkC [Bacillus subtilis]
1185 Bt1Gc1528		6804-6365	g462323	210	234	1.20E-19	37	66	18 KD HEAT SHOCK PROTEIN (HSP 18) [Clostridium
)						acetobutylicum]
1185 Bt1Gc1528	528 Bt1G2180	7699-7151	g2635671	929	675	2.30E-66	99	66	(Z99120) similar to pyrazinamidase/nicotinamidase [Racillus subtilis]
1186 Bt1Gc15	1186 Bt1Gc1531 Bt1G2181	190-1344	g1098508	1190	982	6.60E-99	58	100	
· · · · · · · · · · · · · · · · · · ·		i i	<u>.</u>						[Bacillus megaterium]

-
<u>e</u>
q
Ë

OF I

_	
ble	
<u>E</u>	

, Ref			0 UDP-N-ACETYLENOLPYRUVOYLGLUCOSAMINE REDUCTASE (UDP-N-ACETYLMURAMATE DEHYDROGENASE) [Bacillus subtilis]			_		100 (Y09476) YisU [Bacillus subtilis]100 (Z99109) similar to multidrug resistance protein [Bacillus subtilis]	99 SMALL, ACID-SOLUBLE SPORE PROTEIN C5 (SASP)[Bacillus megaterium]	28 (AE000980) long-chain-fatty-acidCoA ligase (fadD-7) [Archaeoglobus fulgidus]	 68 (AF110737) RhsF [Sinorhizobium meliloti] 18 TRANSPOSASE FOR INSERTION SEQUENCE ELEMENT IS232 [Insertion sequence IS232] 	_	99 (AJ002271) TKOM [Bacillus subtins] 100 HYPOTHETICAL 26.3 KD PROTEIN IN GNTR-GGT INTERGENIC REGION (F231) [Escherichia coli]	100 NEUTRAL PROTEASE B PRECURSOR [Bacillus subtilis]99 (Z79580) putative orf [Bacillus subtilis]		100 (299105) yegr [Dacillus suotilis]
	% Cvrg	100	100	100	100	100	100	01	9,						-	
	% Ident	35	99	62	81	37	20	47	71	28	76	59	3 6	51	77	55
I able I	BlastP- Prob I	6.70E-35	3.00E-110	2.80E-116	1.70E-86	1.10E-43	3.70E-128	9.10E-47 3.10E-78	3.90E-23	2.80E-12	2.10E-47 9.10E-26	7.30E-61	3.90E-07 6.30E-39	1.00E-150 1.40E-18	5.00E-62	1.60E-33
	BlastP Score	378	1089	1146	865	461	1258	490 787	267	174	496 292	623	116 416	1471	634	365
	aat_B nap_S Score	386	1086	1190	1251	434	1233	479 931	259	106	370 286	616	101 ; 387	1386	673	351
	NCBI gi	g118667	g140583	g585531	g580938	g2337837	g1881344	g2145387 g2633434	g134241	g2648777	g4151936 g2497382	g2634202	g2632052 g1176281	g730171	g2619033	g2632595
	Position	4100-3303	5092-4184	6399-5311	7375-6506	18-985	2742-1296	2821-3479 4774-3504	5213-4995	10092-7477	9948-8717 10032-10265	1-565	1226-167 8 1706-2401	2564-4207	523-1	1932-1309
	Gene Id		Bt1G2205		Bt1G2207	Bt1G2208	Bt1G2209	Bt1G2210 Bt1G2211	Bt1G2212			Bt1Gc1538 Bt1G2216	Bt1Gc1538 Bt1G2217 Bt1Gc1538 Bt1G2218	Bt1Gc1538 Bt1G2219	Bt1G2221	Bt1Gc1536 Bt1G2222
	Contig Id	1189 Bt1Gc1533 Bt1G2204	1189 Bt1Gc1533 Bt1G2205	1189 Bt1Gc1533 Bt1G2206	1189 Bt1Gc1533 Bt1G2207	1190 Bt1Gc1535	1190 Bt1Gc1535 Bt1G2209	1190 Bt1Gc1535 Bt1G2210 1190 Bt1Gc1535 Bt1G2211	1190 Bt1Gc1535 Bt1G2212	1190 Bt1Gc1535 Bt1G2213	1190 Bt1Gc1535 Bt1G2214 1190 Bt1Gc1535 Bt1G2215	Bt1Gc1538	Bt1Gc1538 Bt1Gc1538	Bt1Gc1538	Bt1Gc1536 Bt1G2221	
	SEQ NO	1189	1189	1189	1189	1190	1190	1190	1190	1190	1190	1191	1191	1191	1192	1192

_	ı
e	
a	
Ξ	ı

_
<u>د</u>
$\mathbf{\bar{q}}$
2
F

				•		* 21711			
SEQ ID Contig Id NO	Gene Id	Position	NCBI gi	aat nap Score	BlastP Score	BlastP- Prob	% Ident C	% Cvrg	NCBI gi description
1196 Bt1Gc1541 Bt1G2244	1 Bt1G2244 1 Bt1G2245	1277-102 2260-1331	g2415747 g1176985	969	844 734	2.80E-84 1.30E-72	49 45	100	(AB000617) YeeJ [Bacillus subtilis] IOLS PROTEIN (VEGETATIVE PROTEIN 147)
1196 Bt1Gc1541 Bt1G2246	1 Bt1G2246	2367-2675	g2632689	245	269	2.40E-23	49	66	(759106) similar to transcriptional regulator (ArsR family) [Racillus subtilis]
1196 Bt1Gc1541	1 Bt1G2247	3643-2675	g2118109	974	686	1.20E-99	58	100	microbial serine proteinase (EC 3.4.21) ispQ - Bacillus sp
1196 Bt1Gc1541 1196 Bt1Gc1541	1 Bt1G2248 1 Bt1G2249	4226-3945 6222-4360	g39805 g1731300	258 910	259 762	2.70E-22 1.40E-75	53 36	100	[Bacilius sp.] (X61953) abrB [Bacillus subtilis] HYPOTHETICAL 70.5 KD PROTEIN IN IDH 3'REGION
1196 Bt1Gc1541 Bt1G2250	1 Bt1G2250	6498-7313	g129288	1099	1099	2.60E-111	78	100	LBACHUS SUOLLIS) NH(3)-DEPENDENT NAD(+) SYNTHETASE (SPORE OUTGROWTH FACTOR B) (SPORULATION PROTEIN
1106 B41Ge1541 B41G2751	1 B+1G22 \$ 1	7761-7369	01177029	173	233	4.50E-19	36	33	OUTB) (GENERAL STRESS PROTEIN 38) (GSP38) [Bacillus subtilis] HYPOTHETICAL 45.4 KD PROTEIN IN THIAMINASE I
1197 Bt1Gc1542 Bt1G2252	2 Bt1G2252		g3913073	386	434	7.80E-41	38	80	SREGION [] PROBABLE 2-DEHYDROPANTOATE 2-REDUCTASE
1107 BriGe1542 BriG2253	2 Bt1G2253	856-2469	02633883	1085	1123	7.60E-114	41	100	(KETUPANTOATE KEDUCTASE) (NFA KEDUCTASE) [Bacillus subtilis] (Z99111) yllA [Bacillus subtilis]
1197 Bt1Gc1542	2 Bt1G2254	2842-3774	g1730600	1268	1202	3.20E-122	79	100	HYPOTHETICAL 35.3 KD PROTEIN IN FTSL S'REGION
1197 Bt1Gc1542 Bt1G2255 1197 Bt1Gc1542 Bt1G2256	2 Bt1G2255 2 Bt1G2256	3771-4170 4171-6294	g2149892 g585648	149 1623	176 1691	1.70E-13 4.90E-174	27	99	(UKFB) [Bachius subtins] (U94706) cell division protein [Staphylococcus aureus] PENICILLIN-BINDING PROTEIN 2B (PBP-2B) [Bacillus
1197 Bt1Gc1542 Bt1G2257	2 Bt1G2257	6406-8343	g586022	2382	2318	1.80E-240	69	100	subtilis] STAGE V SPORULATION PROTEIN D (SPORULATION SPECIFIC PENICILLIN-BINDING PROTEIN) [Bacillus
1198 Bt1Gc1544 Bt1G2258	4 Bt1G2258	2485-101	g730776	2423	1822	1.90E-225	63	100	subtilis] STAGE III SPORULATION PROTEIN E [Bacillus subtilis] (M17448) ORF X [Bacillus subtilis]
1198 Bt1Gc1544	4 Bt1G2260	5300-3753	g145561 g2634050	1652	_	3.70E-160	3 9	100	(Z99112) similar to hypothetical proteins [Bacillus subtilis]
1198 Bt1Gc1544		7032-6166	g416876	926	814	4.20E-81	61	100	DIHYDRODIPICOLINATE SYNTHASE (DHDPS) AFFORTATIVE PROTEIN \$1) (VEG\$1) [Bacillis subtilis]
1198 Bt1Gc1544 Bt1G2262	4 Bt1G2262	8279-7068	g416595	1382	1382	2.70E-141	<i>L</i> 9	100	(ASPARTATE KINASE 1) [Bacillus subtilis]

							I able I			
SEQ E	Contig Id	Gene Id	Position	NCBI gi	aat_ nap Score	BlastP Score	BlastP. Prob	% Ident C	% Cvrg	NCBI gi description
1199	Bt1Gc1545	Bt1G2263	377-1	g1731101	462	474	4.50E-45	74	46	HYPOTHETICAL 29.7 KD PROTEIN IN FOLD-AHRC INTERGENIC REGION [Bacillus subtilis]
1199	1199 Bt1Gc1545	Bt1G2264	2273-376	g1731052	2603	2568	5.70E-267	77	100	PROBABLE 1-DEOXYXYLULOSE-5-PHOSPHATE SYNTHASE (DXP SYNTHASE) [Bacillus subtilis]
1199	1199 Bt1Gc1545 Bt1G2265	Bt1G2265	3468-2578	g585326	865	808	1.40E-80	57	100	GERANYL TRANSTRANSFERASE (FARNESYL- DIPHOSPHATE SYNTHASE) (FPP SYNTHASE)
1199	1199 Bt1Gc1545 Bt1G2266		3620-3459	g1706724	147	154	3.60E-11	54	- 86	[Bacillus stearothermophilus] PUTATIVE EXODEOXYRIBONUCLEASE SMALL SUBUNIT (EXONUCLEASE VII SMALL SUBUNIT) Racillus subtilis!
1199	1199 Bt1Gc1545 Bt1G2267	Bt1G2267	5046-3700	g1706723	1226	1168	1.30E-118	54	100	PUTATIVE EXODEOXYRIBONUCLEASE LARGE SUBUNIT (EXONUCLEASE VII LARGE SUBUNIT)
1199	1199 BtlGc1545 Bt1G2268	Bt1G2268	5930-5082	g1706886	1003	975	3.70E-98	<i>L</i> 9	100	[Bacillus subtilis] METHYLENETETRAHYDROFOLATE DEHYDROGENASE /
1199	1199 Bt1Gc1545 Bt1G2269	Bt1G2269	6346-5948	g1709418	342	378	6.70E-35	54	66	CYCLOHYDROLASE [Bacillus subtilis] N UTILIZATION SUBSTANCE PROTEIN B HOMOLOG ONISE PROTEIN) [Bacillus subtilis]
1200	1200 Bt1Gc1543 Bt1G2270	Bt1G2270	1-8387	g2982196	3841	4102	0	35	43	(AF007865) bacitracin synthetase 3; BacC [Bacillus
1201		Bt1G2271	1-354	g4160472	399	383	2.00E-35	64	800	IICREILIOTHIS] (AF109909) PhaQ [Bacillus megaterium] (D8825) ORF3 [Aeromonas caviae]
1201	Bt1Gc1546 Bt1G2273	Bt1G2272 Bt1G2273	1626-1820	g2333033 g134237	229		4.60E-20	72	86	SMALL, ACID-SOLUBLE SPORE PROTEIN C3 (SASP)
1201		Bt1G2274	1911-3242	g2635594	1192	916	6.50E-92	53	100	[Bacillus megaterium] (Z99119) similar to Na+-transporting ATP synthase
1201 1201	Bt1Gc1546 Bt1G2275 Bt1Gc1546 Bt1G2276	Bt1G2275 Bt1G2276	3541-5356 4538-5305	g4160468 g732355	956 641	804 528	4.80E-80 8.50E-51	73	96	
120	1201 Bt1Gc1546 Bt1G2277	Bt1G2277	6460-5717	g116906	356	311	8.40E-28	35	100	
1201	1201 Bt1Gc1546 Bt1G2278	Bt1G2278 Bt1G2279	7292-6573 8710-7280	g2635916 g2635917	603	609	2.20E-59 1.50E-181	48	100	[Bacillus subtilis] (Z99121) similar to hypothetical proteins [Bacillus subtilis] (Z99121) similar to hypothetical proteins [Bacillus subtilis]
							,			•

_
e
엹
Ë

	NCBI gi description	(Z94043) hypothetical protein [Bacillus subtilis]	(Z99121) similar to transcriptional regulator (GntR family) [Bacillus subtilis]	OVIDUCT-SPECIFIC GLYCOPROTEIN PRECURSOR (OVIDICTAL GLYCOPROTEIN) (OVIDUCTIN)	(ESTROGEN-DEPENDENT OVIDUCT PROTEIN) [Mus musculus]	(U88974) ORF42 [Streptococcus thermophilus temperate	Datteriopings O12021 NADP-DEPENDENT GLYCERALDEHYDE-3-	PHOSPHATE DEHYDROGENASE (NON- PHOSPHORYLATING GLYCERALDEHYDE 3-	PHOSPHATE DEHYDROGENASE)	DEHYDROGENASE (NADP+)) (TRIOSEPHOSPHATE	DEHYDROGENASE) [Streptococcus mutans]	_	$\overline{}$			CATALASE []	ORF IS231C [Bacillus thuringiensis]	•	_		PENICILLIN-BINDING PROTEIN DACF PRECURSOR (D. 41 ANY) - D-ALANINE CARBOXYPEPTIDASE) (DD-	PEPTIDASE) (DD-CARBOXYPEPTIDASE) [Bacillus		•	ANTI-SIGMA F FACTOR (STAGE II SPORULATION PROTEIN AB) (Bacillus licheniformis)	
,	%rg	100	89	35	, •*	10	100					40	100		100	15	23	12	26	69	100			8.	66	100
	% % Ident Cvrg	74	43	25		36	55					37	29		29	29	94	27	35	24	62			72	79	83
	BlastP- Prob I	1.60E-95	1.30E-17	7.70E-17		7.70E-14	2.50E-138					1.50E-14	5.40E-152		2.60E-42	9.10E-15	2.00E-49	3.30E-09	8.10E-94	1.00E-08	3.50E-116			1.60E-40	1.80E-57	3.00E-103
	BlastP Score	950	215	218		192	1354					186	1483		448	195	515	148	934	147	1145			431	591	1023
	aat_B nap_S Score	950	230	26		83	1338					91	1477		469	153	503	<i>L</i> 9	816	53	1214			431	591	1071
	NCBI gi	g1945722	g2635931	g2493678		g2444121	g2494077	,				g1709184	g2635847	,	g1706578	g231698	g225559	g128494	g2633696	g1763702	g585035			g3287912	g134757	g464690
	Position	9446-8733	9973-9615	3544-1338		4729-1097	7-1437					4524-2737	3391-4797		4876-6074	6248-6453	327-1	717-4011	1-2399	1062-3089	2777-3964			4137-4484	4488-4925	4941-5699
	Gene Id	Bt1G2280	Bt1G2281	Bt1G2282		Bt1G2283	Bt1G2284		,			Bt1G2285	Bt1G2286		Bt1G2287	Bt1G2288	Bt1G2289	Bt1G2290	Bt1G2291	Bt1G2292	Bt1G2293			Bt1G2294	Bt1G2295	1205 Bt1Gc1549 Bt1G2296
	Contig Id	1201 Bt1Gc1546 Bt1G2280	1201 Bt1Gc1546	1202 Bt1Gc1547 Bt1G2282		1202 Bt1Gc1547 Bt1G2283	1203 Bt1Gc1523 Bt1G2284					1203 Bt1Gc1523 Bt1G2285	Bt1Gc1523		Bt1Gc1523	Bt1Gc1523	Bt1Gc1550	Bt1Gc1550	Bt1Gc1550	1204 Bt1Gc1550	Bt1Gc1549	•	,	1205 Bt1Gc1549 Bt1G2294	1205 Bt1Gc1549 Bt1G2295	Bt1Gc1549
	SEQ No en	1201	1201	1202		1202	1203					1203	1203		1203	1203	1204	1204	1204	1204	1205			1205	1205	1205

۳	-
	ن
-	
-	200
t	٠.
t	_

							1 0100			
SEQ	Contig Id	Gene Id	Position	NCBI gi	nap Score	BlastP Score	BlastP. Prob	% Ident (% Cvrg	NCBI gi description
1205	1205 Bt1Gc1549 Bt1G2297	Bt1G2297	5832-7304	g2648543	1132	1006	1.90E-101	47	100	FACTOR) [Bacillus megaterium] (AE000965) sodium- and chloride-dependent transporter
1205	1205 Bt1Gc1549 Bt1G2298	Bt1G2298	7572-8172	g730782	419	298	2.00E-26	43	100	[ANCHACOSTOTICS IMPLIATION PROTEIN AA [Bacillus cubtilis]
1206	1206 Bt1Gc1548	Bt1G2299	1965-554	g728922	2035	1969	1.70E-203	98	100	ATP SYNTHASE BETA CHAIN [Bacillus caldotenax]
1206	1206 Bt1Gc1548 Bt1G2300	Bt1G2300	3067-2210	g114636	1052	1070	3.10E-108	22	100	ATP SYNTHASE GAMMA CHAIN [Bacillus megaterium]
1206	1206 Bt1Gc1548		4331-3361	g114510	1429	1413	1.40E-144	98	64	ATP SYNTHASE ALPHA CHAIN [Bacillus megaterum]
1207	Bt1Gc1551	Bt1G2302	320-1	g2497382	532	548	6.50E-53	66	25	TRANSPOSASE FOR INSEKTION SEQUENCE ELEMENT IS232 [Insertion sequence IS232]
1207	1207 Bt1Gc1551	Bt1G2303	1586-1992	g3257497	63	126	3.40E-08	27	66	(AP000004) 132aa long hypothetical protein [Pyrococcus horikoshii]
1207	1207 Bt1Gc1551	Bt1G2304	4121-4587	g2370586	85	133	6.10E-09	4	25	(Y11313) hypothetical protein [Xanthomonas campestris]
1208	1208 Bt1Gc1552		400-1	g2612891	306	311	8.40E-28	41	78	(AF015825) MutT homolog [Bacillus subtilis]
1208	1208 Bt1Gc1552		1702-617	g1929335	1142	1149	1.30E-116	26	100	(Z93767) ywrH [Bacillus subtilis]
1208	Bt1Gc1552		3069-2433	g1001645	201	213	2.00E-17	28	100	(D64002) hypothetical protein [Synechocystis sp.]
1208	Bt1Gc1552		4061-3630	g2634168	44 44	462	8.40E-44	59	66	(Z99113) similar to fosfomycin resistance protein [Bacillus
										subtilisj
1208	Bt1Gc1552	Bt1G2309	5782-4124	g468461	761	806	4.60E-91	36	100	(D28859) TraC [Enterococcus faecalis]
1208	Bt1Gc1552	Bt1G2310	8931-6873	g2935421	294	355	1.80E-32	49	38	(AF047839) adaptive response regulatory protein
									-	[Pseudoalteromonas sp. S9]
1208	1208 Bt1Gc1552	Bt1G2311	7462-8475	g1731075	1158	1162	5.60E-118	65	100	PROBABLE NADH-DEPENDENT FLAVIN OXIDOREDUCTASE YQIM [Bacillus subtilis]
1208	Bt1Gc1552	Bt1G2312	9233-7520	g3043927	212	259	2.70E-22	34	85	(AF039103) Tat-interacting protein TIP30 [Homo sapiens]
1208	Bt1Gc1552	Bt1G2313	9596-9487	g225559	155	161	5.10E-11	98	∞	ORF IS231C [Bacillus thuringiensis]
1209	Bt1Gc1556	Bt1G2314	639-3659	g2622469	1087	1282	1.10E-130	43	6	(AE000899) ferrous iron transport protein B
1200		B+1G2315	3833_5640	03123076	797	276	4.30E-24	34	87	[Methanobacterium thermoautotrophicum] HYPOTHETICAL 28.9 KD PROTEIN SLL0617
1407					ì)				[Synechocystis sp.]
1210	1210 Bt1Gc1555	Bt1G2316	218-1021	g2635730	1155	1162	5.60E-118		100	_
1210	1210 Bt1Gc1555	Bt1G2317	3526-2762	g2226236	422	416	6.30E-39		100	_
1210	1210 Bt1Gc1555	Bt1G2318	3669-4409	g1592700	478	528	8.50E-51	40	100	_
1210	1210 Bt1Gc1555	Bt1G2319	5016-4415	g2635729	189	242	1.70E-20		100	_
1210	Bt1Gc1555	Bt1G2320	5129-5434	g2635728	377	390	3.60E-36	62	66	(Z99120) yutD [Bacillus subtilis]

_
ble
La

NCBI gi description	HYPOTHETICAL 33.7 KD PROTEIN IN LSP-PYRR INTERGENIC REGION (ORF-X) []							O CHEMOTAXIS MOTA PROTEIN (MOTILITY PROTEIN A) [Pacillus subtilis]								7 HYPOTHETICAL 32.8 KD PROTEIN IN NUCB-AROD INTERGENIC REGION [Bacillus subtilis]	9 HYPOTHETICAL 16.0 KD PROTEIN IN COTF-TETB INTERGENIC REGION [Bacillus subtilis]	99 rfbO protein - Vibrio cholerae [Vibrio cholerae]	, -	[Mycobacterium tuberculosis] 10 TRANSPORT ATP-BINDING PROTEIN CYDD [Bacillus subtilis]
% Cvrg	30	52	100	100	100	66	100	100	82	100	66	100	100	100	100	<i>L</i> 9	66	9.	100	100
% Ident	27	4	71	82	82	20	44	51	45	55	39	62	2	46	51	82	37	4	30	47
BlastP- Prob	4.80E-08	4.90E-16	1.20E-81	3.50E-267	1.00E-118	1.70E-36	3.00E-55	1.20E-65	5.30E-42	5.70E-77	3.60E-11	7.30E-116	1.30E-175	9.60E-75	8.30E-53	2.80E-84	3.30E-26	1.90E-39	4.80E-48	5.60E-141
BlastP Score	130	200	819	2570	1169	393	570	899	445	775	154	1142	1706	754	547	844	296	421	502	1397 1379
aat E	71	168	811	2563	1160	353	208	692	526	819	137	1106	1712	1017	511	842	291	407	397	1397
NCBI gi	g2501678	g1176915	g118620	g1071812	g118613	g140720	g2529473	g127247	g127250	g586827	g1176942	g2632022	g121516	g4103625	g2982855	g1730976	g586818	g280166	g2496480	g2829799
Position	6176-4268	230-1	525-1130	1165-2922	2951-3709	3808-4258	5800-4288	5337-6148	6133-6780	1593-757	1771-2016	3064-2011	4735-3194	6213-4875	7256-6585	7963-7369	834-391	1903-1346	3122-1896	8715-6985
Gene Id	5 Bt1G2321	l Bt1G2322	t Bt1G2323	1 Bt1G2324	t Bt1G2325	1211 Bt1Gc1554 Bt1G2326	Bt1Gc1554 Bt1G2327	Bt1Gc1554 Bt1G2328	1211 Bt1Gc1554 Bt1G2329	1212 Bt1Gc1553 Bt1G2330	1212 Bt1Gc1553 Bt1G2331	1212 Bt1Gc1553 Bt1G2332	3 Bt1G2333	3 Bt1G2334			1213 Bt1Gc1557 Bt1G2337	1213 Bt1Gc1557 Bt1G2338	1213 Bt1Gc1557 Bt1G2339	1213 Bt1Gc1557 Bt1G2340
Contig Id	1210 Bt1Gc1555 Bt1G2321	1211 Bt1Gc1554 Bt1G2322	1211 Bt1Gc1554 Bt1G2323	1211 Bt1Gc1554 Bt1G2324	1211 Bt1Gc1554 Bt1G2325	Bt1Gc1554	Bt1Gc1554	Bt1Gc1554	Bt1Gc1554	2 Bt1Gc1553	2 Bt1Gc1552	3 Bt1Gc1553	1212 Bt1Gc1553	1212 Bt1Gc1553	1212 Bt1Gc1553	2 Bt1Gc1553	3 Bt1Gc1557	3 Bt1Gc1557	3 Bt1Gc155	3 Bt1Gc155'
SEQ NO	1210	1211	1211	1211	1211	1211	1211	1211	1211	1212	1212	1212	121	1212	1212	1212	121	121	121:	121

_	4
2	2
5	3
F	ě

	NCBI gi description	TRANSPORT ATP-BINDING PROTEIN CYDC [Bacillus subtilis]	HYPOTHETICAL PROTEIN IN GLVBC 3'REGION [Bacillus subtilis]	HYPOTHETICAL 31.5 KD PROTEIN IN GLVBC	PHENYLALANINE-4-HYDROXYLASE (PAH) (PHE-4-	MONOOXYGENASE) [] TRANSPOSASE FOR INSERTION SEQUENCE	ELEMENT IS232 [Insertion sequence IS232] (AF068902) undecaprenyl-PP-MurNAc-pentapeptide- UDPGICNAc GlcNAc transferase [Streptococcus	pneumoniae] (AF009955) oxidoreductase Rmd [Pseudomonas	actuginosa. capsular polysaccharide biosynthesis protein D homolog - Methanococcus jannaschii [Methanococcus jannaschii]	hypothetical protein (212 aa) (pon A operon) - Bacillus	subtilis (fragment) [Bacillus subtilis] (D86418) YfinQ [Bacillus subtilis]	(Z99124) similar to hypothetical proteins [Bacillus subtilis]	(AB001488) SIMILAR 10 1 HE RHIZOFINE CATABOLISM (MOCR) GENE OF RHIZOBIUM	MELILOTI. [Bacillus subtilis] 53 (BS-B) [Bacillus 43) (BS-B) [Bacillus 44)	subtilis] HYPOTHETICAL 16.8 KD PROTEIN IN RPSU-PHOH	INTEREGENIC REGION [Bacillus subtilis]	(AJZZ4829) OKF3 [Dacinus inegaterium] (AJZ24829) sporulation protein [Bacillus megaterium]	(AJ224829) ORF4 [Bacillus megaterium]	HYPOTHETICAL 79.2 KD PROTEIN IN PHOH-DGKA	INTERGENIC REGION [Bacillus subtilis]
		79 TRANSPORT AT subtilis	99 HYPOTHETICAI	100 HYPOTHETICAL 31.5 KD I	100 PHENYLALAND	MONOOXYGENASE) [] 24 TRANSPOSASE FOR IN	ELEMENT IS232 77 (AF068902) unde UDPGICNAC GICI	pneumoniae] 89 (AF009955) oxide	actuganosaj 100 capsular polysacci Methanococcus ja	100 hypothetical prote	subtilis (fragment) [Bacillus subtilis] 99 (D86418) YfmQ [Bacillus subtilis]		81 (AB001488) SIM CATABOLISM (MELILOTI. [Bacillus subtilis] 98 30S RIBOSOMAL PROTEIN	subtilis] 99 HYPOTHETICA	, , ,	99 (AJ224829) UNE 100 (AJ224829) sport		87 HYPOTHETICA	INTERGENIC R
	% % Ident Cvrg	21	38	42 1	29 1	66	38	29	43 1	44	47	36 1	36	86	19	9	20 00		46	ć
1 2725	BlastP- % Prob Iden	7.80E-112	4.10E-12	2.10E-54	1.10E-36	1.70E-52	1.10E-48	1.10E-23	1.70E-68	9.90E-41	9.80E-34	9.10E-32	1.40E-64	1.80E-16	9.00E-24	700	7.00E-24 3.80E-96	1.10E-121	2.00E-138	
	BlastP	1104	163	562	395	544	508	272	695	433	367	217	658	204	273	č	956	1197	1355	1
	aat B nap S Score	1184	199	475	299	528	451	174	620	444	339	461	593	272	477	ć	333 1071	1194	1488	0
	NCBI gi	g2829798	g1723608	g1723610	g1172469	g2497382	g4009481	g3249547	g2127789	g2126959	g2116755	g2636549	g1881344	21710750	g 1730992	1	g3947509 o3947510	g3947511	g1730999	
	Position	10060-8706	11-388	446-1285	3412-2433	6453-6769	815-1	1927-1222	3130-2149	3531-4184	5410-4992	6485-5596	7684-6516	87-257	276-716		1633-1914	3297-4268	4439-6303	
-	Gene Id		Bt1G2342	Bt1G2343	Bt1G2344	Bt1G2345	Bt1G2346	Bt1G2347	Bt1G2348	Bt1G2349	Br1G2350	Bt1G2351	Bt1G2352	Bt1G2353	Bt1G2354		Bt1G2355 Bt1G2356	Bt1G2357	Bt1G2358	
٠	SEQ Contig Id NO	1213 Bt1Gc1557 Bt1G2341	1214 Bt1Gc1558 Bt1G2342	1214 Bt1Gc1558	1214 Bt1Gc1558 Bt1G2344	1214 Bt1Gc1558	1215 Bt1Gc1561 Bt1G2346	1215 Bt1Gc1561 Bt1G2347	1215 Bt1Gc1561 Bt1G2348	1215 Bt1Gc1561 Bt1G2349	1215 Br1Gc1561	Bt1Gc1561	1215 Bt1Gc1561	1216 Bt1Gc1564 Bt1G2353	1216 Bt1Gc1564 Bt1G2354		1216 Bt1Gc1564	1216 Dilicil 564	1216 Bt1Gc1564	

ription	PERMËASE PROTEIN	DOLASE [Escherichia	TEIN IN DAT-SPOOE as subtilis]	I SDUCTASE C22 PROTEIN 22) [Bacillus	tor IF3 [Bacillus subtilis]	ASE 1 (THREONINE	illus subtilis] TEIN IN DNAI-THRS 81) [Racillus subtilis]	I [Bacillus subtilis]	ND MEMBRANE	Cillus subtilis]	[SIIIS]	-		tilis	enzyme [Bacillus subtilis]	OTEIN IN EPR-GALK 🗼 us subtilisl	lus subtilis]	Bacillus subtilis]	YLTRANSFERASE.	AT ANIMIE I IGASE	ALANINE	nsj filisj	tyostelium discoideum)	
NCBI gi description	FERRICHROME TRANSPORT PERMÉASE PROTEIN FHIG Fracillus subtilisl	L-FUCULOSE PHOSPHATE ALDOLASE	COUL HYPOTHETICAL 38.9 KD PROTEIN IN DAT-SPO0E INTERGENIC REGION [Bacillus subtilis]	(Z99111) ykrT [Bacillus subtilis] ALKYL HYDROPEROXIDE REDUCTASE C22 PROTEIN (GENERAL STRESS PROTEIN 22) [Bacillus	subtilis] (Z75208) translation initiation factor IF3 [Bacillus subtilis]	THREONYL-TRNA SYNTHETASE I (THREONINE	TRNA LIGASE) (THRRS) [Bacillus subtilis] HYPOTHETICAL 33.3 KD PROTEIN IÑ DNAI-THRS PATED CENIC DECION (OR F. 281) [Racillus subtilis]	PRIMOSOMAL PROTEIN DNAI [Bacillus subtilis]	REPLICATION INITIATION AND MEMBRANE	ATTACHMENT PROTEIN [Bacillus subtuis]	(AF008220) YtcG [Bacillus subtilis]	(X98455) SINF [Bacillus cereus]	(X98455) orfl [Bacillus cereus]	(AB006424) ybgK [Bacillus subtilis]	(AF008220) putative malolactic enzyme [Bacillus subtilis]	HYPOTHETICAL 25.8 KD PROTEIN IN EPR-GALK INTERGENIC REGION (Bacillus subtilis)	(D88802) transmembrane [Bacillus subtilis]	(Y14080) hypothetical protein [Bacillus subtilis]	(AB001488) PROBABLE ACETYL TRANSFERASE	[Bacillus subtilis]	CUDF-N-ACETYLMURANOYL-L-ALANINE	SYNTHETASE) [Bacillus subtilis]	protein kinase - slime mold (Dictyostelium discoideum)	
% Vrg	100 F	100 I	100 F	100 (88 / H	s 95 (100	100	100 I	100	•	_	_	_	_	_	100	100	_			3	5		
% % Ident Cvrg	42	37	49	37	98	80	31	51	47		75	55	91	44	20	20	55	3 4	40	i	4	7	27	
BlastP- 9	1.40E-50	1.80E-32	6.40E-85	8.90E-72 3.70E-66	2.10E-54	6.20E-277	1,00E-38	2.60E-81	9.70E-114		2.80E-52	0	8.00E-142	5.00E-62	3.70E-169	3.30E-42	2 20E-40	3.70E-82	2.40E-30	1	8.00E-174	1 500 104	1.00E-184 0.078	
BlastP Score	526	355	850	726 673	562	2662	414	816	1122		542	5081	1387	634	1645	447	513	824 824	335	;	1689	5	1 /90 87	
aat Bl nap S	736	315	817	618 671	729	2706	378	806	1038		619	5149	1440	824	1859	559	715	C1/ C87	364		1685	7 2 2 2	231	
NCBI gi	g1706797	g120586	g3183453	g2633727 g1703216	01770007	g135175	g140017	ø140025	g118711		g2293279	g1769947	g1769946	g3599667	g2293209	g732337	2007707	g1745065	g1881232	· 0	g3183540	210000	g2293215 g1076839	
Position	482-1483	2173-1526	3273-2215	4524-3295 5104-5599	403.1	2809-876	3998-3141	5403-4468	6843-5452		7460-7005	3333-142	4384-3455	5579-4447	7297-5768	246-964	1066	7246.6727	1161-616		2654-1359		6687-4105 7425-5506	
Gene Id	Bt1G2360	Bt1G2361	Bt1G2362	Bt1G2363 Bt1G2364	D+1G2365	Bt1G2366	Bt1G2367	B+162368	Bt1G2369		Bt1G2370	Bt1G2371	Bt1G2372	Bt1G2373		Bt1G2375	1000	D+1/22277	Bt1G2378		Bt1G2379	9	Bt1G2380 Bt1G2381	
Contig Id	NO 1217 Bt1Gc1559 Bt1G2360	1217 Bt1Gc1559	1217 Bt1Gc1559	1217 Bt1Gc1559 Bt1G2363 1217 Bt1Gc1559 Bt1G2364	1018 D+10-1569 D+100365	1218 Bt1Gc1562	1218 Bt1Gc1562	1218 Bt1Gc1562 Bt1G2368	1218 Bt1Gc1562			1219 Bt1Gc1563	1219 Bt1Gc1563	1219 Bt1Gc1563	1219 Bt1Gc1563	Bt1Gc1560		1220 Bt1Gc1360 Bt1G2376	Bt1Gc1565		1221 Bt1Gc1565 Bt1G2379		1221 Bt1Gc1565 Bt1G2380 1221 Bt1Gc1565 Bt1G2381	
SEQ ES	1217	1217	1217	1217 1217	1210	12.18	1218	1219	1218		1218	1219	1219	1219	1219	1220	(222	1220		1221		1221	

_
<u> </u>
Ω
`@

SEQ ID	Contig Id	Gene Id	Position	NCBI gi	aatn nap Score	BlastP	BlastP- Prob	% Ident (% Cvrg	NCBI gi description
1222	Bt1Gc1566 Bt1G2382	Bt1G2382	81-791	g1169717	669	714	1.70E-70	26	100	ANAEROBIC REGULATORY PROTEIN [Bacillus subtilis]
1222	: Bt1Gc1566 Bt1G2383	Bt1G2383	7220-3656	g2117582	5360	5206	0	81	97	respiratory nitrate reductase alpha chain - Bacillus subtilis [Bacillus subtilis]
1223	Bt1Gc1569	Bt1G2384	1-2186	g2633696	938	1071	2.50E-108	39	11	(Z99110) similar to hypothetical proteins [Bacillus subtilis]
1223	Bt1Gc1569	Bt1G2385	2348-2205	g2127281	208	208	6.90E-17	83	86	hypothetical 5.3K protein - Bacillus thuringiensis [Bacillus thuringiensis]
1223	1223 Bt1Gc1569 Bt1G2386	Bt1G2386	3295-2441	g2127289	1255	1255	7.80E-128	83	100	transcriptional activator plcR - Bacillus thuringiensis
1223	1223 Bt1Gc1569 Bt1G2387	Bt1G2387	2264-5170	g128529	220	423	1.10E-39	33	53	BACILLOLYSIN PRECURSOR (NEUTRAL PROTEASE)
1224	1224 Bt1Gc1568 Bt1G2388	Bt1G2388	5658-5278	g732333	339	351	4.90E-32	52	66	Paenibacilius polymyxa HYPOTHETICAL 14.4 KD PROTEIN IN EPR-GALK
1224	1 Bt1Gc1568	Bt1G2389	6293-9003	g2506893	55	175	5.50E-12	27	18	INTERGENIC REGION [Bacilius suomis] HYPOTHETICAL PROTEIN KIAA0083 [Homo sapiens]
1224			8358-9549	g2894215	545	554	1.50E-53	35	100	(AL021841) amiB [Mycobacterium tuberculosis]
1224	4 Bt1Gc1568		10146-9892		178	179	8.20E-14	35	66	(Z99107) similar to transcriptional regulator (Lrp/AsnC family) [Bacillus subtilis]
1224	1224 Bt1Gc1568 Bt1G2392	Bt1G2392	10332-10964 g4240	1 g4240421	463	476	2.80E-45	47	82	(AF080235) reductase homolog [Streptomyces cyanogenus]
122	1225 Bt1Gc1567 Bt1G2393	Bt1G2393	1-869	g730103	848	797	2.70E-79	57	82	NARA PROTEIN [Bacillus subtilis]
1225	5 Bt1Gc1567	Bt1G2394	890-1903	g2633798	927	998	1.30E-86	51	100	(Z99111) molybdopterin biosynthesis protein [Bacillus
122:	1225 Bt1Gc1567 Bt1G2395	Bt1G2395	1947-3236	g2633799	1328	1332	5.40E-136	61	100	subtilis] (Z99111) molybdopterin biosynthesis protein [Bacillus
122:	1225 Bt1Gc1567 Bt1G2396	. Bt1G2396	3287-3762	g2633801	423	456	3.60E-43	54	66	Subtring (Z99111) molybdopterin converting factor (subunit 2) [Bacillus subtilis]
122	1225 Bt1Gc1567 Bt1G2397	, Bt1G2397	3700-3930	g2633802	184	184	2.40E-14	47	66	(Z99111) molybdopterin converting factor (subunit 1) [Bacillus subtilis]
122	1225 Bt1Gc1567 Bt1G2398	, Bt1G2398	4011-5195	g1171655	1391	1001	6.40E-101	65	100	NITRITE EXTRUSION PROTEIN (NITRITE FACILITATOR) [Bacillus subtilis]
122	1225 Bt1Gc1567 Bt1G2399	, Bt1G2399	6528-6055		224	218	6.00E-18	33	96 5	(AJ000974) YInF protein [Bacillus subtilis]
1225	5 Bt1Gc1567 5 Bt1Gc1567	Bt1Gc1567 Bt1G2400 Br1Gc1567 Bt1G2401	8467-7948	g2402901 e267052	479		1.00E-38		73	UROPORPHYRIN-III C-1
				0						(UROGEN III METHYLASE) (SUMT) (UROPORPHYRINOGEN III METHYLASE) (UROM)

, ,35,

	,									
SEQ C	Contig Id	Gene Id	Position	NCBI gi	aatn napScore	BlastP Score	BlastP- Prob]	% Ident C	% Cvrg	NCBI gi description
(c)	Bt1Gc1570	Bt1G2402	303-1016	g4481749	918	922	1.50E-92	74	100	(AF007865) BacR [Bacillus licheniformis]
1226 Bt]		Bt1G2403	997-2031	g4481748	771	761	1.70E-75	52	100	(AF007865) BacS [Bacillus licheniformis]
1226 Btl	Bt1Gc1570	Bt1G2404	2097-3014	g1168621	1276	1231	2.70E-125	79	100	BACITRACIN TRANSPORT ATP-BINDING PROTEIN BCRA [Bacillus licheniformis]
1226 Bti	1226 Bt1Gc1570	Bt1G2405	3121-3744	g1168622	611	492	5.60E-47	54	100	BACITRACIN TRANSPORT PERMEASE PROTEIN
			9	1	1	Š	i c	Ų	5	BCRB [Bacillus licheniformis]
1226 Bt.	1Gc1570	1226 Bt1Gc1570 Bt1G2406	3756-4556	g1705428	713	201	2./0E-54	ç	3	DACHRACIN RESISTANCE INCLEIN (FOLKLING UNDECAPRENOL KINASE) [Escherichia coli]
1227 Bt	1Gc1572	1227 Bt1Gc1572 Bt1G2407	281-1	g1881228	159	173	2.40E-12	36	20	(AB001488) SIMILAR TO ENZYMES WHICH ACT VIA
				•						AN AIF-DEFENDENT COVALENT BINDING OF ANY TO THEIR SUBSTRATE. [Bacillus subtilis]
1227 Bt.	1Gc1572	1227 Bt1Gc1572 Bt1G2408	958-17	g3183273	412	208	1.10E-48	48	66	PUTATIVE NAD(P)H OXIDOREDUCTASE YDEQ
				1	i			Ş	8	[Bacillus subtilis]
1227 Bt		Bt1G2409	1070-1448	g2293276	297	340	7.10E-31	70	3, 3	(AFU06220) IUCD [Dacillus subtilis]
1227 Bt	Bt1Gc1572	Bt1G2410	2134-1841	g4894353	142	173	3.50E-13	37	8	(AF065404) pXOI-138 [Bacilius animacis]
1227 Bt	Bt1Gc1572	Bt1G2411	6788-3625	g3721552	209	321	5.40E-28	34	35	(AB010958) xylanase [Clostridium thermocellum]
1227 Bt	Bt1Gc1572	Bt1G2412	5640-4477	g2635915	265	367	9.80E-34	25	100	(Z99121) similar to hypothetical proteins [Bacillus subtilis]
1227 Bt	Bt1Gc1572	Bt1G2413	7319-6021	g2633717	321	296	3.30E-26	25	100	(Z99111) ykrI [Bacillus subtilis]
1227 Bt	Bt1Gc1572	Bt1G2414	8043-7318	g2633716	595	287	4.80E-57	49	100	(Z99111) similar to RNA polymerase sigma factor [Bacillus
1001		D+1/C2/41\$	0330 6003	σ1160804	7.	116	3 40E-06	4,	19	subtilis] MINOR TEICHOIC ACIDS BIOSYNTHËSIS PROTEIN
1771 DI	7/61301	C1470110	000-000	5110/0/1	•	4			ì	GGAA [Bacillus subtilis]
1228 Bt	1Gc1574	1228 Bt1Gc1574 Bt1G2416	142-405	g1710749	250	254	9.20E-22	58	66	30S RIBOSOMAL PROTEIN S20 (BS20) [Bacillus
)						subtilis]
1228 Bt	1228 Bt1Gc1574	Bt1G2417	4636-1999	g1303798	1185	1229	4.40E-125	36	100	(D84432) ComEC [Bacillus subtilis]
1228 Bt	1228 Bt1Gc1574	Bt1G2418	4899-4331	g418361	641	661	6.90E-65	65	66	COME OPERON PROTEIN 2 [Bacillus subtilis]
1228 Bt	1228 Bt1Gc1574	Bt1G2419	5562-4966	g729154	320	365	1.60E-33	40	100	COME OPERON PROTEIN 1 [Bacillus subtilis]
1228 Bt	1228 Bt1Gc1574	Bt1G2420	5640-6458	g1303795	815	763	1.10E-75	55	100	(D84432) ComED [Bacillus subtilis]
1228 Bt	Bt1Gc1574	Bt1G2421	7389-6631	g1730986	541	598	3.30E-58	48	100	HYPOTHETICAL 28.3 KD PROTEIN IN AROD-COMER
										INTERGENIC REGION [Bacillus subtilis]
1228 Bt	t1Gc1574	1228 Bt1Gc1574 Bt1G2422	7742-7389	g1730985	436	368	7.70E-34	69	66	HYPOTHETICAL 13.3 KD PROTEIN IN AROD-COMER INTERGENIC REGION [Bacillus subtilis]
1228 Bt	t1Gc1574	1228 Bt1Gc1574 Bt1G2423	8308-7751	g1730984	609	611	1.40E-59	63	66	HYPOTHETICAL 21.3 KD PROTEIN IN AROD-COMER INTERGENIC REGION (Bacillus subtilis)
1228 Bt	:1Gc1574	1228 Bt1Gc1574 Bt1G2424	8864-8301	g3323048	196	239	3.60E-20	29	100	, -
				•						

_
•
3
<u>च्</u>
Ë

					•					
OF CE	Contig Id	Gene Id	Position	NCBI gi	nap Score	BlastP	BlastP. Prob	% Ident (Cvrg	NCBI gi description
1228 Bt	1228 Bt1Gc1574 Bt1G2425	Bt1G2425	9298-9011	g1730982	397	397	6.50E-37	79	66	pallidum] HYPOTHETICAL 10.8 KD PROTEIN IN AROD-COMER INTERGENIC REGION [Bacillus subtilis]
1228 Bt	1228 Bt1Gc1574	Bt1G2426	9523-9298	g1703404	100	145	8.20E-10	32	56	SHIKIMATE 5-DEHYDROGENASE [Bacillus subtilis]
1229 Bt	1229 Bt1Gc1573	Bt1G2427		g1781143	172	145	3.30E-10	33	66	(Z83866) hypothetical protein Rv3070 [Mycobacterium
1229 Rt	1229 Br1Gc1573	B+1G2428	1320-949	g2983116	158	101	1.50E-05	32	66	tuberculosis] (AE000690) hypothetical protein [Aquifex aeolicus]
1229 Bt		Bt1G2429	_	g4512389	286	247	5.10E-20	56	48	(AB011838) metyl-accepting chemotaxis protein [Bacillus
1220 Rt	1220 B#1Gc1\$73	B+1G2430		92447088	92	142	6.80E-10	30	66	halodurans] (U42580) A612L [Paramecium bursaria Chlorella virus 1]
1229 Bt		Bt1G2431	4384-6159	g1653724	442		4.10E-51	38	100	(D90916) hypothetical protein [Synechocystis sp.]
1229 Bt		Bt1G2432	6532-7199	g494692	. 089		6.50E-69	58	70	Tyrosyl-Transfer Rna Synthetase (E.C.6.1.1.1) Mutant With
					Š		37 000 7	7	001	Thr 51 Replaced By Pro (T51p) []
1230 Bt	1230 Bt1Gc1571	Bt1G2433	47-751	g1945055	020	100	0.90E-03	2.4	3 5	
1230 Bt	1230 Bt1Gc1571	Bt1G2434	747-1808	g1945656	040	9440	2.10E-47	9 6	3 5	(2) 1043) hypothetical protein [Bacillus subtilis]
1230 Bt	1230 Bt1Gc1571	Bt1G2435	26/1-4596	g1945058	006	841	3.80E-04	2 6		(274042) II) poutetieu protein [Davines Sacrins]
1230 Bt	1230 Bt1Gc1571	Bt1G2436	4643-6562	g1945658	702	410	2.50E-52	67 9	200	(294043) hypometical protein [Dacillus Subtains]
1230 Bt	1230 Bt1Gc1571	Bt1G2437	6656-7501	g130048	836	825	2.90E-82	29	100	PREPHENATE DEHYDRATASE (PDI) [Bacillus suotinis]
1230 Bt	1230 Bt1Gc1571	Bt1G2438	8266-7613	g2443233	428	460	1.40E-43	40	100	(D86417) YflK [Bacillus subtilis]
1230 Bt	Bt1Gc1571	Bt1G2439	8874-8344	g732258	521	536	1.20E-51	26	66	HYPOTHETICAL 19.7 KD PROTEIN IN PHEA-NIFS
)		,				INTERGEINC REGION (ORF1) [Bacillus subtilis]
1231 Bt	1231 Bt1Gc1578	Bt1G2440	1807-2193	g80103	292	311	8.40E-28	41	66	beta-lactamase repressor protein - Bacillus licheniformis
				ı		1	<u> </u>	8	į	[Bacillus licheniformis]
1231 Bi	t1Gc1578	1231 Bt1Gc1578 Bt1G2441	2241-5046	g2791915	147	313	2.50E-27	73	25	(Y 13095) MecKI protein [Staphytococcus scient]
1231 Bt	Bt1Gc1578	Bt1G2442	4320-4892	g418449	625	539	5.80E-52	63	86	HYPOTHETICAL TRANSCRIPTIONAL REGOLATOR IN HEMY-GLTT INTERGENIC REGION (ORFA)
										[Bacillus subtilis]
1231 B	t1Gc1578	1231 Bt1Gc1578 Bt1G2443	5118-8432	g2851530	1363	1362	3.60E-139	38	100	HYPOTHETICAL 84.1 KD PROTEIN IN HEMY-GLTT INTERGENIC REGION (ORFB) [Bacillus subtilis]
600	7 1 2 1 7 1 7	777777	113 1611	~4514333	2104	2155	3 30E-223	83	100	(AB013369) unknown [Bacillus halodurans]
1232 B	1232 Bt1Gc1575	Bt1G2444 Bt1G2445	2687-1665	g+314332 g1787795	1031		7.20E-109		901	(AE000249) putative LACI-type transcriptional regulator
7 7071	0.012011									[Escherichia coli]
1232 B	1232 Bt1Gc1575	Bt1G2446	3694-2705	g3025114	671	483	5.00E-46	41	100	HYPOTHETICAL ABC TRANSPORTER PERMEASE PROTEIN VIDE Recharichia colil
1222 B	+10.01575	1232 B+1Gc1575 B+1G2447	6137-4629	93025112	894	806	4.60E-91	37	100	, , ,
U 2621	277777	DUINET	(T)	9	;		 - - -			

							*			
SEQ ED CC	Contig Id	Gene Id	Position	NCBI gi	aat_ nap nap Score	BlastP Score	BlastP. Prob	% Ident C	%. Cvrg	NCBI gi description
1232 Btl	IGc1575	1232 Bt1Gc1575 Bt1G2448	6296-7237	g3025110	455	520	6.00E-50	38	100	PROTEIN YDEX [Escherichia coli] HYPOTHETICAL TRANSCRIPTIONAL REGULATOR IN HIPB-UXAB INTERGENIC REGION [Escherichia
1232 Bt]	IGc1575	1232 Bt1Gc1575 Bt1G2449	6401-8806	g2493485	1432	1394	1.50E-142	54	100	coli] HYPOTHETICAL SUGAR KINASE IN HIPB-UXAB INTERGENIC REGION (Escherichia coli]
1232 Bt]	1Gc1575	1232 Bt1Gc1575 Bt1G2450	9114-9986	g2495606	507	586	6.10E-57	41	100	HYPOTHETICAL 31.9 KD PROTEIN IN HIPB-UXAB INTERGENIC REGION (Facherichia coli)
1233 Bt	1Gc1576	1233 Bt1Gc1576 Bt1G2451	1-721	g1724006	827	663	4.20E-65	69	23	HYPOTHETICAL 49.0 KD PROTEIN IN CSPB-GLPP INTERGENIC REGION [Bacillus subtilis]
1233 Bt	1Gc1576	1233 Bt1Gc1576 Bt1G2452	4649-3587	g4009481	809	604	7.50E-59	40	100	(AF068902) undecaprenyl-PP-MurNAc-pentapeptide- UDPGIcNAc GlcNAc transferase [Streptococcus
1233 Bt	1Gc1576	1233 Bt1Gc1576 Bt1G2453	7301-4674	g3122390	1258	1110	4.40E-143	37	78	pneumoniae] 5-METHYLTETRAHYDROFOLATEHOMOCYSTEINE METHYLTRANSFERASE (METHIONINE SYNTHASE, VITAMIN-B12 DEPENDENT ISOZYME) (MS)
1234 Bt	1Gc1577	1234 Bt1Gc1577 Bt1G2454	1-1185	g1169253	1085	1021	4.90E-103	57	06	[Mycobacterium tuberculosis] ANAEROBIC C4-DICARBOXYLATE TRANSPORTER DCITE [Haemonhilus influenzae Rd]
1234 Bt	1Gc1577	1234 Bt1Gc1577 Bt1G2455	1962-1297	g732341	999	592	1.40E-57	59	100	THIAMIN-PHOSPHATE PYROPHOSPHORYLASE (TMP PYROPHOSPHORYLASE) (TMP-PPASE) (THIAMIN-PROSPHORYLASE) (TMP-PPASE) (THIAMIN-PROSPHATE SYSTEMASE) (Posillas subtilis)
1234 Bt	1Gc1577	1234 Bt1Gc1577 Bt1G2456	2787-1975	g732340	804	819	1.20E-81	09	100	HOSPHATE STRIFFASE) [Davinus suomis] HYDROXYETHYLTHIAZOLE KINASE (4-METHYL-5-BETA-HYDROXYETHYLTHIAZOLE KINASE) (THZ
1234 Bt	1Gc1577	1234 Bt1Gc1577 Bt1G2457	3199-4691	g1881236	1658	1645	3.70E-169	49		AINASE) (111 MINASE) [COMMING SUCCESSION (AB001488) PROBABLE DNA TOPOISOMERASE III [Bacillus subtilis]
1235 Bt	1Gc1580	1235 Bt1Gc1580 Bt1G2458	1001-1	g2293322	888	833	4.10E-83	25	75	(AF008220) branch-chain amino acid transporter [Bacillus enhtilis]
1235 Bt	t1Gc1580	1235 Bt1Gc1580 Bt1G2459	2188-323	g418534	554	603	9.60E-59	48	86	HYPOTHETICAL 32,5 KD PROTEIN IN PEPE-LYSC INTERGENIC REGION [Escherichia coli]
1235 Bt 1235 Bt 1235 Bt 1235 Bt	1235 Bt1Gc1580 1235 Bt1Gc1580 1235 Bt1Gc1580 1235 Bt1Gc1580	Bt1G2460 Bt1G2461 Bt1G2462 Bt1G2463	4726-2369 6458-4749 7059-6526 7324-7070	g3914084 g1770035 g1770034 g1770033	2531 1974 387 269	2282 1733 352 236	1.20E-236 1.70E-178 3.80E-32 7.50E-20	63 65 45 58	100 100 99 99	

_	1
Table	1

	NCBI gi description	(AJ001118) monoglyceride lipase [Mus musculus] (AJ224767) hypothetical protein [Acinetóbacter sp. ADP1]	HYPOTHETICAL 43.9 KD PROTEIN IN MSYB-HTRB INTERGENIC REGION (ORF1) [Escherichia coli]	(AJ007788) hypothetical protein [Bacillus cereus]	(AJ007788) hypothetical protein [Bacillus cereus]	(AJ007788) related sequence M24150 [Bacillus cereus]	(AJ007788) threonine dehydratase [Bacillus cereus]	DIHYDROXY-ACID DEHYDRATASE (DAD) (VEGETATIVE PROTEIN 110) (VEG110) [Bacillus	subtilis	PROTOPORPHYRINOGEN OXIDASE (PPO) [Bacillus subtilis]	FERROCHELATASE (PROTOHEME FERRO-LYASE)		[Bacillus subtilis]	PENICILLIN-BINDING PROTEIN 1A (PBP-1A) [Bacillus	subtilis] HYPOTHETICAL 18.8 KD PROTEIN IN ECSC-PBPF	INTERGENIC REGION [Bacillus subtilis]		CELL DIVISION PROTEIN FTSH HOMOLOG [Bacillus	subtilis] HYPOXANTHINE-GUANINE	PHOSPHORIBOSYLTRANSFERASE (HGPRT)	(HGPRTASE) [Bacillus subtilis]			HYPOTHETICAL 14.2 KD PROTEIN IN DIVIC-SPOILE	INTERGENIC REGION [Bacillus subtilis] CELT DIVISION PROTEIN DIVIC [Bacillus subtilis]		
	%rg	57 100	100	100	100	100	100	100		100	100	100		100	66	\ \	100	43	<u> </u>		5	3	100	66	- 6	2 5	<u> </u>
	% % Ident Cvrg	32	45	75	95	95	86	69	*	%	22	72		49	30	3	30	74	79		ţ	5	55	88	-	11	. 4
lable 1	BlastP. Prob Ic	1.90E-21 1.00E-38	2.50E-83	4.60E-114	6.30E-78	4.80E-183	3.40E-214	6.70E-193		2.90E-121	3.60E-123	2.10E-143		2.60E-191	7 00E-40	2	1.10E-50	3.90E-94	8.60E-74		(·	1.40E-112	1.10E-209	5.60E-54	31 700 0	2.30E-10	1.50E-35
	BlastP	251 414	835	1125	784	1776	2070	1869		1193	1211	1402		1854	425	Ì	527	937	745		1		1654	558	ć	202	384
	aat_B nap_S Score	106	930	1109	1109	1827	2130	2074		1366	1204	1382		1806	340	2	468	1031	745	!	,	1052	2291	523	Ċ	/17	412
	NCBI gi	g2632162 2959337	g140388	04584123	g4584122	g4584121	g4584120	g1708465		g417115	g417116	9416890	a a	g585645	286801	g200001	g1881270	g585159	9585264			g586892	g586018	g586889	4	g585054	g586888
	Position	1532-1	2808-1585	3874-7955	4547-3834	4752-5852	7478-6219	9189-7525		2424-1024	3373-2444	4437-3379		6938-4597	1354	0//1=/304	8967-7549	831-1	1459-920	2		2913-1459	5588-3108	6649-6167	i (7105-6731	7746-7114
	Gene Id	Bt1G2464 Bt1G2465		B+1G2467				Bt1G2471		Bt1G2472	Bt1G2473	Pt1G2474		Bt1G2475	201CO476	5 DIIO24/0	Bt1G2477		Br1G2479			9 Bt1G2480) Bt1G2481	9 Bt1G2482		9 Bt1G2483	9 Bt1G2484
	SEQ Contig Id	1236 Bt1Gc1581	1236 Bt1Gc1581	1236 B+1Gc1581	1236 Bt1Gc1581	1236 Bt1Gc1581	1236 Bt1Gc1581	1236 Bt1Gc1581		1237 Bt1Gc1582 Bt1G2472	1237 Bt1Gc1582	1237 Bt1Gc1582	1271 1111 1521	1237 Bt1Gc1582	1021 C 1400	125/ BUGGI382	1237 Bt1Gc1582	1238 Bt1Gc1579	1238 Bt1Gc1579 Bt1G2479	7,6150137 9,671		1238 Bt1Gc1579 Bt1G2480	1238 Bt1Gc1579 Bt1G2481	1238 Bt1Gc1579		1238 Bt1Gc1579 Bt1G2483	1238 Bt1Gc1579 Bt1G2484
		9	1236 E	1236 B	1236 E	1236 B	1236 E	1236 E		1237 E	1237 E	1737 E	1 / (7)	1237 E		1 / 671	1237	1238 E	1238	0071		1238 1	1238 1		1258	1238 1	1238

_	4
7	=
	2
	_

							I GIOTA				
SEQ ED	Contig Id	Gene Id	Position	NCBI gi	aatn nap Score	BlastP Score	BlastP- Prob	% Ident C	% Cvrg	NCBI gi description	
1238	1238 Bt1Gc1579 Bt1G2485	Bt1G2485	8051-7746	g586887	339	301	9.70E-27	<i>L</i> 9	66	HYPOTHETIČAL 11.4 KD PROTEIN IN MFD-DIVIC INTERGENIC REGION [Bacillus subtilis]	
1238	1238 Bt1Gc1579 Bt1G2486	Bt1G2486	8385-8128	g586886	344	347	1.30E-31	79	66	HYPOTHETICAL 9.7 KD PROTEIN IN MFD-DIVIC INTERGENIC REGION [Bacillus subtilis]	
1238	1238 Bt1Gc1579 Bt1G2487	Bt1G2487	8718-8397	g586885	250	291	3.10E-25	22	22	HYPOTHETICAL 56.1 KD PROTEIN IN MFD-DIVIC INTERGENIC REGION [Bacillus subtilis]	
1239	1239 Bt1Gc1583 Bt1G2488	Bt1G2488	659-1351	g3183122	853	806	3.00E-80	70	100	5'-METHYL THIOADENOSINE / S- ADENOSYL HOMOCYSTEINE NUCLEOSIDASE (MTA/SAH NUCLEOSIDASE) (P46) [Bacillus subtilis]	
1239	1239 Bt1Gc1583	Bt1G2489	1437-2357	g1934605	1005	946	4.30E-95	62	100	(U93874) cysteine synthase [Bacillus subtilis]	
1239	Bt1Gc1583		2364-3500	g1934606	1341	1307	2.40E-133	89	2 2	(U93874) cystathionine gamma-lyase [bacillus suotilis]	
1239) Bt1Gc1583	Bt1G2491	3777-6365	g2492/37	7439	7967	1.30E-243	9	3	ALCETALDEHYDE DEHYDROGENASE (ACDH)	
										[Entamoeba histolytica]	
124(1240 Bt1Gc1586 Bt1G2492	Bt1G2492	1-556	g2293243	649	671	6.00E-66	L 9	40	(AF008220) arginine succinate lyase [Bacillus subtilis]	
124(1240 Br1Gc1586 Bt1G2493	Bt1G2493	2521-2099	g2622094	162	191	4.40E-15	32	66	(AE000872) conserved protein [Methanobacterium	
1				0			1001	0,	Ş	thermoautotrophicum]	
124	1240 Bt1Gc1586 Bt1G2494	Bt1G2494	2711-3472	g2293244	919		1.30E-93	e i	3 3	(Al 000220) J-Motorcyl-field formonics [Enforcement]	
124	1240 Bt1Gc1586 Bt1G2495	Bt1G2495	3685-4815	g4803749	1419	1442	1.20E-147	74	100	(AB013821) alanine denydrogenase [Enteropacter	
,	7031777744	20405	0923 6673	x1881251	376	390	3 60E-36	. 29	66	aerogenes] (AB001488) FUNCTION UNKNOWN. [Bacillus subtilis]	
174	1240 Bt1Gc1380 Bt1G2490	DI1G2490	3422-3700	51001271	2 6		1.40E 41		100		
124	1240 Bt1Gc1586 Bt1G2497	Bt1G2497	5745-6527	g1881342	392	441	1.40E-41	4.	3		
124	1241 Bt1Gc1585 Bt1G2498	Bt1G2498	1302-482	g120474	815	829	1.10E-82	28	100	FORMAMIDOPYRIMIDINE-DNA GLYCOSTLASE (FAPY-DNA GLYCOSYLASE) [Bacillus firmus]	
7,7	1241 B+1G-1585 B+1G2490	B+1/52409	3954-1318	02293272	3115	2861	5.10E-298	69	100	(AF008220) DNA-polymerase I [Bacillus subtilis]	
1241	1 Bt1Gc1585	Bt1G2500	5997-4234	g130130	1344		6.70E-138	51	100	ALKALINE PHOSPHATASE SYNTHESIS SENSOR DECTEIN DEOP (Recilling subtiling)	
124	1241 Br1Gc1585 Bt1G2501	Bt1G2501	6709-5993	g2293270	906	911	2.20E-91	74	100		
1242	2 Bt1Gc1584	Bt1G2502	1-1246	g135736	418	959	2.30E-64	38	72	THERMOLYSIN PRECURSOR (THERMOSTABLE	
)						NEUTRAL PROTEINASE) [Bacillus stearothermophilus]	
124	1242 Bt1Gc1584 Bt1G2503	Bt1G2503	3715-5196	g1730175	1200	1244	1.10E-126	48	100	GLUCOSE-6-PHOSPHATE 1-DEHYDROGENASE (G6PD) (VEGETATIVE PROTEIN 11) (VEG11) [Bacillus	
									,	subtilis]	

_
<u>e</u>
de
Ë

	NCBI gi description	TRANSKETOLASE [Bacillus subtilis] PHOSPHO-2-DEHYDRO-3-DEOXYHEPTONATE ALDOLASE (PHOSPHO-2-KETO-3- DEOXYHEPTONATE ALDOLASE) (DAHP SYNTHETASE) (3-DEOXY-D-ARABINO- HEPTULOSONATE 7-PHOSPHATE SYNTHASE) / CHORISMATE MUTASE [Bacillus subtilis]	HYPOTHETICAL 12.4 KD PROTEIN IN MURC-AROA INTERGENIC REGION (ORF2) (ORF3) [Bacillus subtilis]	HYPOTHETICAL 15.7 KD PROTEIN IN MURC-AROA INTERGENIC REGION (ORF1) [Bacillus subtilis]	AMINOPEPTIDASE AMPS [Bacillus subtilis]	(U78600) putative ptsG protein [Streptococcus mutans]	phage infection protein precursor - Lactococcus lactis subsp. lactis (strain C2) []	(AB001488) PROBABLE DNA TOPOISOMERASE III [Bacillus subtilis]	HYPOTHETICAL 21.4 KD PROTEIN IN DACA-SERS INTERGENIC REGION [Bacillus subtilis]	31.5 KD GUANYLYLATED PROTEIN IN DACA-SERS INTERGENIC REGION (SUPEROXIDE-INDUCIBLE PROTEIN 7) (SOI7) [Bacillus subtilis]	D-ALANYL-D-ALANINE CARBOXYPEPTIDASE PRECURSOR (DD-PEPTIDASE) (DD- CARBOXYPEPTIDASE) (CPASE) (PBP5) [Bacillus	subtilis] IMP dehydrogenase - Bacillus subtilis [Bacillus subtilis]	HYPOTHETICAL 38.0 KD PROTEIN IN GIRA-GUAB INTERGENIC REGION [Bacillus subtilis]	TRANSALDOLASE-LIKE PROTEIN (20 KD PHOSPHOPROTEIN ORFU) (CS19) [Bacillus subtilis]	IMMUNE INHIBITOR A PRECURSOR [Bacillus thurinoiensis]	MULTIDRUG RESISTANCE PROTEIN 1 (MULTIDRUG- EFFLUX TRANSPORTER 1) [Bacillus subtilis]
														65 TRA PHO		100 MUL EFFI
	% Cvrg	100	66	66	30	26	100	52	86	100	100	100	100	9	100	
	% % Ident Cvrg	57	44	20	39	53	32	63	89	86	54	79	45	72	70	23
	BlastP. Prob I	1.60E-182 7.70E-121	7.20E-22	1.10E-20	2.70E-16	6.30E-55	7.40E-123	7.10E-118	3.50E-61	2.10E-125	5.60E-118	2.80E-210	7.90E-64	4.90E-39	8.90E-262	4.30E-24
•	BlastP Score	1771	255	244	208	267	1208	1161	979	1232	1162	2033	651	417	2519	276
	aat_ Bl nap S Score	and a second	268	355	83	541	266	1183	629	1291	1165	2029	652	464	2632	168
	NCBI gi	g2507484 g728897	g732304	g732301	g2507254	g4098489	g538903	g1881236	g586858	g586857	g585034	92127114	g586856	g141471	g124464	g461637
	Position	5257-7245 1475-404	3106-2783	3618-3199	4439-5326	Jan-79	1675-4626	5797-4670	582-1	1485-604	2965-1652	4533-3070	4655-5626	1-366	1176-3239	5444-4022
	Gene Id	Bt1G2504 Bt1G2505	Bt1G2506	Bt1G2507	Bt1G2508	Bt1G2509		Bt1G2511	Bt1G2512	Bt1G2513	Bt1G2514	Bt162515	Bt1G2516	Bt1G2517	1246 Bt1Gc1587 Bt1G2518	1246 Bt1Gc1587 Bt1G2519
	Contig Id	Bt1Gc1584 Bt1Gc1591	1243 Bt1Gc1591 Bt1G2506	1243 Bt1Gc1591	Bt1Gc1591	1244 Br1Gc1588	1244 Bt1Gc1588	3 1244 Bt1Gc1588	1245 Bt1Gc1589 Bt1G2512	1245 Bt1Gc1589 Bt1G2513	1245 Bt1Gc1589 Bt1G2514	1245 B+1G+1580 B+1G2515	Bt1Gc1589	1246 Bt1Gc1587 Bt1G2517	Bt1Gc1587	Bt1Gc1587
	SEQ NO	0 m	1243	1243	1243	1244	1244	3.1244	1245	1245	1245	377	1245	1246	1246	1246

_	4
_	2
4	3
É	7
•	

		-					TANNE			
SEQ EQ	Contig Id	Gene Id	Position	NCBI gi	aat_ l nap Score	BlastP Score	BlastP. Prob	% Ident C	% Cvrg	NCBI gi description
1246	1246 Bt1Gc1587 Bt1G2520	Bt1G2520	5456-4265	g728970	180	293	6.80E-26	21	100	MULTIDRUG RESISTANČE PROTEIN 2 (MULTIDRUG-EFFLUX TRANSPORTER 2) [Bacillus subtilis]
1246 1247	1246 Bt1Gc1587 1247 Bt1Gc1594	Bt1G2521 Bt1G2522	5650-6699 1720-425	g2522016 g2851670	1099 1340	1107	3.80E-112 6.00E-121	64 59	100	(AB007638) dehydrogenase [Bacillus subtilis] HYPOTHETICAL 49.0 KD PROTEIN IN BLTD-TRKA INTERGENIC REGION [Bacillus subtilis]
1247	Bt1Gc1594	Bt1G2523	2274-1840 3387-4166	g2226212 g1197640	204	194 893	2.10E-15 1.80E-89	36 61	99	(Y14082) hypothetical protein [Bacillus subtilis] (U46859) DdhA [Yersinia enterocolitica (type 0:8)]
1247	Bt1Gc1594			g421277	843	901	2.50E-90	4	100	CDP-glucose-4,6-dehydratase - Yersinia pseudotuberculosis [Yersinia pseudotuberculosis]
1247 1248	1247 Bt1Gc1594 Bt1G2526 1248 Bt1Gc1590 Bt1G2527	Bt1G2526 Bt1G2527	5161-6451 1475-159	g1651978 g585605	910 1420	903 1365	1.60E-90 1.70E-139	45	100	(D90901) hypothetical protein [Synechocystis sp.] LIPOAMIDE ACYLTRANSFERASE COMPONENT OF BRANCHED-CHAIN ALPHA-KETO ACID
		-				}*- ₹ [*]				DEHYDROGENASE COMPLEX (E2) (DIHYDROLIPOAMIDE BRANCHED CHAIN
1248	1248 Bt1Gc1590 Bt1G2528	Bt1G2528	2474-1494	g585607	1540	1540 1540	4.90E-158	68	100	TRANSACYLASE) [Bacillus subtilis] 2-OXOISOVALERATE DEHYDROGENASE BETA SUBUNIT (BRANCHED-CHAIN ALPHA-KETO ACID
1248	1248 Bt1Gc1590 Bt1G2529	Bt1G2529	3480-2491	g585606	1423	1286	4.00E-131	80	100	DEHYDROGENASE COMPONENT BETA CHAIN (E1)) (BCKDH ET-BETA) [Bacillus subtilis] 2-OXOISOVALERATE DEHYDROGENASE ALPHA SUBUNIT (BRANCHED-CHAIN ALPHA-KETO ACID DEHYDROGENASE COMPONENT ALPHA CHAIN
124{	1248 Bt1Gc1590 Bt1G2530	Bt1G2530	4938-3520	g1706441	1795	1743	1.50E-179	73	100	(E1)) (BCKDH E1-ALPHA) [Bacillus subtilis] LIPOAMIDE DEHYDROGENASE COMPONENT OF BRANCHED-CHAIN ALPHA-KETO ÁCID DEHYDROGENASE COMPLEX (E3)
,	() ()		1017	-1056413	1069	1720	A 10E-177	100	100	(DIHYDROLIPOAMIDE DELITIONOLIMASE) (ET DEVOAL) [] VAL) [] ([151099] lencine dehydrogenase LeuDH [Bacillus cereus]
1248	1248 Bt1Gc1590 Bt1G2531 1248 Bt1Gc1590 Bt1G2532	Bt1Gc1590 Bt1G2531 Bt1Gc1590 Bt1G2532	7234-0137 8168-7263	g1236412 g1709891	819 819		-	59	00	PROBABLE PHOSPHATE BUTYRYLTRANSFERASE (PHOSPHOTRANSBUTYRYLASE) [Bacillus subtilis]
124	1248 Bt1Gc1590 Bt1G2533	Bt1G2533	10381-8367	g1731060	2059	2038	8.30E-211	61	97	PUTATIVE SIGMA L-DEPENDENT TRANSCRIPTIONAL REGULATOR IN MMGE- REMRAA INTERGENIC REGION [Bacillus subtilis]
124	1249 Bt1Gc1592 Bt1G2534	Bt1G2534	1-1080	g584749	1048	883	8.90E-98	57	86	N-ACYL-L-AMINO ACID AMIDOHYDROLASE

_	
Table	

							T CHOICE			
SEQ EQ	Contig Id	Gene Id	Position	NCBI gi	aat I nap	BlastP Score	BlastP. Prob	% Ident C	% Cvrg	NCBI gi description
2										(AMINOACYLASE) [Bacillus stearothermophilus]
1249	1249 Bt1Gc1592	Bt1G2535 Bt1G2536	1349-2815	g2226174 g2634159	1780 992	1416 935	6.80E-145 6.30E-94	67 40	100	(Y14081) hypothetical protein [Bacillus subtilis] (Z99113) similar to spore germination protein [Bacillus
1249	1249 Bt1Gc1592		4534-5631	g2634160	350	198	4.30E-14	25	100	subtilis] (Z99113) similar to spore germination protein [Bacillus
1249	1249 Br1Gc1592	B+1G2538	5624-6160	94514336	200	234	1.20E-19	32	66	subtilis] (AB013370) YndF1 [Bacillus halodurans]
1249	Bt1Gc1592		8821-7020	g2498377	352 *		1.20E-49	29	85	FERROUS IRON TRANSPORT PROTEIN B HOMOLOG
1240	1240 B+16-1502	B+1G2540	8821-6209	92621259	329	494	3.40E-47	32	59	[Methanococcus jannaschii] (AE000808) ferrous iron transport protein B
124	D(1001072	2000		ů,			1 000	?	5	[Methanobacterium thermoautotrophicum] by track trive (3) yellogy TRANSERASE H10868
125(1250 Bt1Gc1593	Bt1G2541	2547-880	g3123077	7007	100	4.90E-32	, †	3	Haemonhilus influenzae Rdl
1250	1250 Bt1Gc1593 Bt1G2542	Bt1G2542	3966-2215	g3256824	279	302	7.60E-27	25	100	(AP000002) 432aa long hypothetical lipopolysaccharide O-
										side chain biosynthesis protein (C-antigen danspow) [Pyrococcus horikoshii]
125(1250 Bt1Gc1593 Bt1G2543	Bt1G2543	4659-4121	g2454556	452	509	8.80E-49	53	66	(AF015609) unknown [Bacillus subtilis]
125(1250 Bt1Gc1593	Bt1G2544	5552-4680	g585225	1195	1149	1.30E-116	80	100	UTPGLUCOSE-1-PHOSPHATE
										URIDYLYLIRANSFERASE (UDF-GLOCOSE PYROPHOSPHORYLASE) (UDPGP) (ALPHA-D-
										GLUCOSYL-1-PHOSPHATE
				-						URIDYLYLTRANSFERASE) (URIDINE
-							,			DIPHOSPHOGLUCOSE PYROPHOSPHORYLASE)
					,					(GENERAL STRESS PROTEIN 33) (GSP33) [Bacıllus cubtilis]
1361	1 1041 / 21502	D+1/22545	6465,5801	01804743	778	671	6.00E-66	54	100	_
C7 1	1230 Bilde1393 Bild243	C+C7D11Q		S10717013	2					
125(1250 Bt1Gc1593	Bt1G2546	7369-6664	g1894742	615	593	1.10E-57	55	100	(Z92952) product similar to Staphilococcus aureus CapB
125	1250 B+1Co1503	B+1G2547	8111-7371	o1894741	614	297	4.20E-58	20	100	
C71	certabile o	11020110	1/6/-1110							protein [Bacillus subtilis]
125	1251 Bt1Gc1595 Bt1G2548	Bt1G2548	1-932	g2226226	954	552	5.50E-67		<i>L</i> 9	
1251	1 Bt1Gc1595	Bt1G2549	2098-1469	g98423	L69	617	3.20E-60	62	100	orotate phosphoribosyltransferase (EC 2.4.2.10) - Bacillus
125	1251 Bt1Gc1595 Bt1G2550	Bt1G2550	3725-2787	g1172785	1320	1332	5.40E-136	08	100	
1	- C.									

-
ble
Tal

NCBI gi description	~	INTERGENIC REGION (ORF2) [Bacillus caldolyticus] CARRAMOYIPHOSPHATE SYNTHASE.		AMMONIA CHAIN) [Bacillus subtilis] † HYPOTHETICAL 36.9 KD PROTEIN IN ACDA 5'REGION [Bacillus subtilis]		1 (Y14084) hypothetical protein [Bacillus subtilis]		S'REGION [] 0 (AP000007) 404aa long hypothetical alanyl-tRNA				_			9 50S RIBOSOMAL PROTEIN L27 (BL50) (BL24) [Bacinus subtilis]		9 50S RIBOSOMAL PROTEIN L21 (BL20) [Bacillus		[Fscherichia coli]
9	100 H3	Z Z		4 H H	100 日	51 (Y		5.1 100 (A				5 5 5 5	33 Å)66 86	66 66	99 5(100 (1	1.00 COLUMN A TO TO THE A TOTAL TO THE PROPERTY OF THE PROPERT
ent one	09	17	=	26	66	51	8 14	29	ì	40	99	33	79	40	∞	49	80	34	:
Prob Ident	1.00E-77	c	-	9.90E-73	6.60E-250	6.40E-62	4.10E-99 4.30E-14	1 50E-37		1.70E-93	4.80E-09	4.40E-31	6.40E-117	9.80E-18	9.90E-41	3.80E-25	4.40E-31	6.30E-64	
Score	782	2007	4004	735	2407	633	188	403	3	931	134	342	1152	216	433	286	342	528	
	Score 837		4086	889	2449	630	1014	308	3	942	123	275	1207	147	433	283	422	576	
NCBI gi	01176556	116000	g115626	g1176954	g136144	g2226256	g2226255 g1177029	2258413	g7270417	g1731082	g1621448	g2507080	g2506131	g134740	g132830	g141394	g132771	g606187	
Position	4501-3725		7610-4504	2640-683	1472-2907	1-757	759-1841	4232 3030	4232-3039	4846-6075	6784-6638	7288-7900	8381-9274	1362-1	671-390	1019-684	1339-1034	2918-1250	
Gene Id				Bt1G2553	Bt1G2554	Bt1G2555	Bt1G2556 Br1G2557	03260174	DI102330	Bt1G2559	Bt1G2560	Bt1G2561	Bt1G2562	Bt1G2563	Bt1G2564	Bt1G2565	Bt1G2566	Bt1G2567	
	NO 🐇 1251 B+1G21505 B+1G2551		1251 Bt1Gc1595 Bt1G2552	1252 Bt1Gc1598 Bt1G2553	1252 Bt1Gc1598	1253 Bt1Gc1596 Bt1G2555	1253 Bt1Gc1596 Bt1G2556 1253 Bt1Gc1596 Bt1G2557		1255 Bilde1390 Bild2330	1253 Bt1Gc1596 Bt1G2559	1253 Bt1Gc1596 Bt1G2560	1253 Bt1Gc1596	1253 Bt1Gc1596 Bt1G2562	1254 Bt1Gc1600 Bt1G2563	1254 Bt1Gc1600 Bt1G2564	1254 Bt1Gc1600 Bt1G2565	1254 Bt1Gc1600 Bt1G2566	1254 Bt1Gc1600 Bt1G2567	

Ţ	-
	به
_	3
_	<u>a</u>
Ī	_

V.F.

							I and				
SEQ Cont	Contig Id	Gene Id	Position	NCBI gi	aat_ nap Score	BlastP Score	BlastP- Prob	% Ident C	% Cvrg	NCBI gi description;	
	,		, 2000		207	723	1 10E_30	48	77	subtilis] STAGE IV SPORITLATION PROTEIN FA [Bacillus	
1254 Bt1G	c1600	1254 Bt1Gc1600 Bt1G2569 4425-3823	4425-3823	g134//0	/ 8 C	472	1.105-39	ř		subtilis]	
1254 Bt1Gc1600 Bt1G2570	c1600	Bt1G2570	5497-4700	g400260	1015	875	1.40E-87	71	100	SEPTUM SITE-DETERMINING PROTEIN MIND	7
1254 Bt1Gc1600 Bt1G2571	c1600	Bt1G2571	6186-5506	g400259	650	899	1.20E-65	09	100	SEPTUM SITE-DETERMINING PROTEIN MINC	
1254 Bt1Gc1600 Bt1G2572	c1600	Bt1G2572	6755-6240	g266570	307	182	3.90E-14	35	66	[Bacillus subtilis] ROD SHAPE-DETERMINING PROTEIN MRED [Bacillus	
1254 Bt1Gc1600 Bt1G2573	c1600	Bt1G2573	7621-6773	g266569	623	909	4.60E-59	46	100	subtilis] ROD SHAPE-DETERMINING PROTEIN MREC [Bacillus	
1254 Bt1Gc1600 Bt1G2574	01600	Rt1G2574	8797-6867	2266568	407	307	2.20E-27	79	31	stearothermophilus] ROD SHAPE-DETERMINING PROTEIN MREB [Bacillus	
211-G 23C1	D41C21507	D+162575	340-077	01405459	288	554	1.50E-53		66	subtilis] (Z73234) YneS [Bacillus subtilis]	
1255 Bri Gc 1597		Bt1G2576	1051-1335	g1405458	277	277	3.40E-24	51	66	(Z73234) YneR [Bacillus subtilis]	
1255 BriG		Bt1G2577	1736-1374	g1405456	406	406	7.20E-38	55	66	(Z73234) YneP [Bacillus subtilis]	
1255 Brig		Bt1G2578	2325-1960	g1149666	433	433	9.90E-41	64	66	(X86498) IS1136 DNA [Clostridium perfringens]	
1255 Et 1G	Bt1Gc1597	Br1G2579	3078-873	g1787702	322	,	8.40E-37	31	86	(AE000240) putative virulence protein [Escherichia coli]	
1255 Bt1G		Bt1G2580	3406-4686	g586861	1120	7	4.00E-108	49	100	HYPOTHETICAL 48.6 KD PROTEIN IN SERS-DNAZ INTERGENIC REGION [Bacillus subtilis]	
1255 Bt1G	ic1597	1255 Bt1Gc1597 Bt1G2581	6392-2362	g80261	221	292	2.70E-24	37	13	DNA-directed DNA polymerase (EC 2.7.7.7) III alpha chain	
				•				;	((version 1) - Bacillus subtilis []	
1255 Bt1G	ic1597	1255 Bt1Gc1597 Bt1G2582	7117-6539	g2634185	346	422	1.50E-39	45	99	(299113) similar to thiol:disumde interchange protein [Bacillus subtilis]	
1255 Bt1G	ic1597	1255 Bt1Gc1597 Bt1G2583	10276-7909	g1652519	317	350	2.50E-31	25	83	(D90906) ABC transporter [Synechocystis sp.]	
1255 Bt1G	ic1597	Bt1Gc1597 Bt1G2584	10276-9732		756	771	1.50E-76	80	20	ACONITATE HYDRATASE (CITRATE HYDRO-LYASE)	_
			1		i		, C	ī	8	(ACONITASE) [Bacillus subtilis] ET ONG A TION EACTOR D (EE-P) [Bacillus subtilis]	
1256 Bt1G	ic1602	1256 Bt1Gc1602 Bt1G2585	811-257	g1706593	721		3.00E-71	4 ,	y 5		
1256 Bt1Gc1602	ic1602	Bt1G2586	1891-836	g1731048	1223	1130	1.40E-114	3	3		
1256 Bt1G	jc1602	1256 Bt1Gc1602 Bt1G2587	2339-1894	g1703004	443	392	2.20E-36	59	66	PUTATIVE CATABOLIC 3-DEHYDROQUINATE DEHYDRATASE (3-DEHYDROQUINASE) [Bacillus	
1256 Bt1C	jc1602	1256 Bt1Gc1602 Bt1G2588	3399-2398	g1731047	269	245	8.30E-21	34	, 6	subtilis] HYPOTHETICAL 20.2 KD PROTEIN IN GCVT- SPOIIIAA INTERGENIC REGION [Bacillus subtilis]	

200

•	4
2	2
2	2
7	3
	=

NCBI gi description	HYPOTHETICAL 36.0 KD PROTEIN IN GCVT-SPOIIIAA INTERGENIC REGION [Bacillus subtilis]			HYPOTHETICAL 16.7 KD PROTEIN IN GCVT-SPOIIIAA INTERGENIC REGION [Bacillus subtilis]		-		MULTIDRUG RESISTANCE PROTEIN 2 (MULTIDRUG- EFFLUX TRANSPORTER 2) [Bacillus subtilis]	_					[Lactococcus lactis] (D83967) YfkM [Bacillus subtilis]		_	•	_	_	_	[Sureptoniyess Coencolor] 4 (Z94043) hypothetical protein [Bacillus subtilis]	_			7 (D50453) spore germination protein GerKA [Bacullus
% Cvrg	100	66	100	66	38	8	66	100	66	66	100	39	100	66	52	62	8	<u>5</u>) (6/	9	100	75	88	97
% Ident (99	32	44	79	40	43	39	72	43	38	29	29	31	89	46	<i>L</i> 9	(78	46	24	30	43	39	25	37
BlastP- Prob I	8.10E-110	3.80E-09	2.80E-43	2.50E-58	1.10E-08	4.90E-23	1.40E-34	2.30E-121	1.60E-19	2.60E-33	2.50E-67	2.20E-20	1.10E-48	5.10E-60	9.70E-82	1.80E-73		6.70E-19	6.90E-65	7.50E-24	1.50E-14	1.20E-106	2.20E-29	2.40E-23	1.50E-60
BlastP Score	1085	135	457	299	137	266	375	1194	233	363	684	248	208	615	820	742		227	661	279	186	1055	326	269	620
	Score 1087	133	448	299	104	246	350	1488	200	325	524	131	522	. 609	773	862		163	645	202	119	1184	263	214	872
NCBI gi	g1731046	g1731045	g1724017	g1731043	g586030	g3582220	ø1945679	g728970	g1622733	ە730008	g2226188	g2648784	g2126617	\$ C89 C9 Co	£1060858	g1881327	•	g1817539	g1652657	g4678633	01945649	g2634164	g2634163	g80410	g1805440
Position	3122-4073	4125-4523	5188-4532	5668-5243	7536-5816	6232-6574	137-721	942-2141	2514-2187	3271-3816	5620-3894	5264-3281	5722-6966	8066-7551	9134-8087	791-1		3302-2649	6023-3521	7761-5353	2021-7579	8861-7224	9821-8858	1022-1	2579-982
Gene Id	Bt1G2589	Bt1G2590	Bt1G2591	Bt1G2592	Bt1G2593	Bt1G2594	B+1/52595	Bt1G2596	Bt1G2597	R+1/37598				B+1/32602				Bt1G2606	Bt1G2607	Bt1G2608	B+1/37600	Br1G2610	Bt1G2611	Bt1G2612	Bt1G2613
Contig Id	NO 1256 Bt1Gc1602 Bt1G2589	1256 Bt1Gc1602	1256 Bt1Gc1602	1256 Bt1Gc1602 Bt1G2592	1256 Bt1Gc1602		1257 Bt1Gc1603 Bt1G2595	1257 Bt1Gc1603 Bt1G2596	1257 Bt1Gc1603 Bt1G2597	1257 B+1G+1603	1257 Br1Gc1603	Bt1Gc1603	1257 Bt1Gc1603	1957 D+1 G-1603	1257 Br1Gc1603	1258 Bt1Gc1599		1258 Bt1Gc1599	1258 Bt1Gc1599	1258 Bt1Gc1599	1259 B+1G-1500 B+1G2600	1258 Br1Gc1599	1258 Bt1Gc1599	1259 Bt1Gc1607	1259 Bt1Gc1607
SEQ	NO 1256	1256	1256	1256	1256	1256	1257	1257	1257	1257	1051	1257	1257	1361	1221	1258		1258	1258	1258	1256	1255	1258	1259	1259

· ·

NCBI gi description	subtilis] (Z99117) similar to formate dehydrogenase [Bacillus subtilis]			, .		(D88802) ydiH [Bacillus subtilis]			(D88802) H. influenzae, ribosomal protein alanine		[bachilus suouns] (AE001257) conserved hypothetical protein [Treponema				subtilis] 1 HYPOTHETICAL TRANSCRIPTIONAL REGULATOR 1 HYPOTHETICAL REGULATOR 1		Bacillus megaterium [bacillus megaterium] phosphoglycerate kinase (EC 2.7.2.3) / triose-phosphate isomerase (EC 5.3.1.1) - Thermotoga maritima []	. •	69 (X89230) DNA-directed RNA polymerase [Bacillus	46 DNA-DIRECTED RNA POLYMERASE BETA CHAIN
% Cvrg	100	66	66	100	61	100	99	100	66	100	66	11	58	100	100	100	100	37		
% Ident	83	57	99	55	9	9/	90	75	52	61	43	37	31	42	65	81	55	11	100	88
BlastP. Prob I	0	1.40E-41	7.80E-41	7.50E-75	1.10E-64	3.00E-80	2.10E-208	1.70E-132	2.00E-42	4.80E-73	8.70E-26	9.50E-115	4.10E-35	1.90E-85	1.60E-95	3.60E-114	1.10E-187	2.70E-77	0	7.50E-249
BlastP Score	4352	441	434	755	629	806	1937	1299	449	738	292	1152	380	855	950	1126	1801	778	3612	2397
aat B nap S	4439	491	428	731	646	836	2151	1337	442	738	282	996	260	835	1113	1386	1748	751	3744	2484
NCBI gi	g2635168	g3915537	g3915538	g730100	g730103	g1945113	g3025120	g3025119	g1945109	g1945108	03373187	0.000000	2585251	g133292	g465642	g421459	g2120367	g4589058	g1495275	g585920
Position	2849-5786	5805-6284	6403-6768	6761-7552	7569-8191	964-317	1146-3077	4579-3547	5022-4570	5722-5036	6167-5769	766.4031	4989-5863	3025-4329	4723-5745	5775-6779	6922-8903	8888-9454	2196-1	3826-2191
Gene Id	Bt1G2614	Bt1G2615	Bt1G2616	Bt1G2617	Bt1G2618		Bt1G2620	Bt1G2621	Bt1G2622	Bt1G2623	B+1G2624	B+162625	Bt1G2626	Bt1G2627		Bt1G2629	Bt1G2630	Bt1G2631	Bt1G2632	Bt1G2633
Contig Id	1259 Bt1Gc1607 Bt1G2614	1259 Bt1Gc1607	1259 Bt1Gc1607 Bt1G2616	Bt1Gc1607	1259 Bt1Gc1607	1260 Bt1Gc1604	1260 Bt1Gc1604	1260 Bt1Gc1604 Bt1G2621	1260 Bt1Gc1604 Bt1G2622	1260 Bt1Gc1604 Bt1G2623	1260 B+1G-1404 B+1G2624	1200 Bildeloo4 Bildes24	1201 BUIGG1609 BUIG2625	Bt1Gc1606	Bt1Gc1606	1262 Bt1Gc1606 Bt1G2629	1262 Bt1Gc1606 Bt1G2630	1262 Bt1Gc1606 Bt1G2631	1263 Bt1Gc1608 Bt1G2632	1263 Bt1Gc1608 Bt1G2633
SEQ	1259	1259	1259	1259	1259	1260	1260	1260	1260	1260	1260	1261	1021	1262	1262	1262	1262	1262	1263	1263

	NCBI gi description	(TRANSCRIPTASE BETA CHAIN) (RNA POL YMERASE BETA SUBUNIT) [Bacillus subtilis]			[Bacillus subtilis] SPORE GERMINATION PROTEIN GERD PRECURSOR		HYPOTHETICAL 38.6 KD PROTEIN IN CWLD-GERD INTERGENIC REGION (Pacillus subtilis)		ALANINE AMIDASE (CELL WALL HYDROLASE) (AUTOLYSIN) [Bacillus subtilis]				-	(PSEUDOURIDYLATE SYNTHASE I)	(FSECUCIONALIMES STRUCTORY) (STATES HYDROLYASE) [Bacillus subtilis]	(Z99104) ybaF [Bacillus subtilis]	-) (AE001145) prolyl-tRNA synthetase (proS) [Borrella burgdorferi]			nucleotides 17-19, followed by a second ATG codon 52	codons downstream. And the second A I of codon is potential) PROBABLE GLYCINE DEHYDROGENASE
	% Cvrg		100	66	06	`	100	100		66	66	66	100			72	66		66		100		23	·		36		100
	% Ident		53	22	42	1	99	59		29	82	82	26			89	89	9	36		48		27			85		98
I able I	BlastP- Prob		8.00E-71	7.20E-54	6 10E-41	0.10171	1.20E-113	1.90E-60		7.10E-15	6.50E-53	1.20E-60	2.40E-69			1.70E-52	6.20E-64	1.60E-56	7.80E-25		2.90E-114	3.50E-06	1.20E-19			2 70E-34	0.70	2.70E-221
	BlastP Score		717	557	125	ţ	1121	619		189	548	621	703			544	652	582	283		1127	107	246			271	3/1	2137
	aat_B nap_S Score		725	557	Ş	+ 7 +	1238	727	į	204	548	621	718			699	708	649	292		1163	116	101		,	. 103	201	2232
	NCBI gi		g1644216	g1708617	101100	8171132	g1723296	01706210		g1723295	02507325	g2500252	g3915172	.		£2632414	g2415741	g2415740	g141085)	g2688299	g2633006	£219944	b		1100011	g11//011	g1730257
	Position		474-1235	1967-1374	7000	7107-7017	3963-2902	4824-4111		5316-4891	5871-5482	6330-5896	7223-6486			7814-7244	632-54	1256-663	1924-1385		4938-3523	5691-5307	4116-7623				/102-/073	2231-768
	Gene Id		Bt1G2634	Bt1G2635		Bt102030	Bt1G2637	B+1G2638		Bt1G2639	B+1G2640	Br1G2641	Bt1G2642			Bt1G2643	Bt1Gc1610 Bt1G2644	Bt1G2645	Bt1G2646) Bt1G2648	Bt1G2649	Br1G2650			2000) Bt1G2051	Bt1G2652
	SEQ Contig.Id	2	1264 Bt1Gc1605 Bt1G2634	1264 Bt1Gc1605		1264 Bt1Gc1605	1264 Bt1Gc1605 Bt1G2637	1264 B+1G21605 B+1G2638	C00120119 107	1264 Bt1Gc1605 Bt1G2639	126/ B+1G-1605 B+1G2640	1264 Br1Gc1605	1264 Bt1Gc1605			1264 Br1Gc1605 Br1G2643	1265 Bt1Gc1610	1265 Bt1Gc1610	1265 Bt1Gc1610		1265 Bt1Gc1610 Bt1G2648	1265 Br1Gc1610 Bt1G2649	1265 Br1Gc1610 Br1G2650			\(\frac{1}{2}\)	1265 Bt1Gc1610 Bt1G2651	1266 Bt1Gc1611 Bt1G2652
	22 H 2	4			•		-	-	-		*-	- -		•		_		_		•		-		,				

_	
	?
	ē
F	-

		` .				Table I		٠ ۽	
SEQ Dontig Id	Gene Id	Position	NCBI gi	aat_ nap	BlastP Score	BlastP- Prob	% Ident C	% Cvrg	NCBI gi description
- -									(DECARBOXYLATING) SUBUNIT 2 (GLYCINE DECARBOXYLASE) (GLYCINE CLEAVAGE SYSTEM P-PROTEIN) [Bacillus subtilis]
1266 Bt1Gc1611 Bt1G2653	Bt1G2653	3571-2227	g1730256	1689	1600	2.20E-164	73	100	PROBABLE GLYCINE DEHYDROGENASE (DECARBOXYLATING) SUBUNIT 1 (GLYCINE DECARBOXYLASE) (GLYCINE CLEAVAGE SYSTEM
1266 Bt1Gc1611 Bt1G2654 4686-3601	Bt1G2654		g1730258	1274	1243	1.50E-126	. 67	100	P-PROTEIN) [Bacillus subtilis] PROBABLE AMINOMETHYLTRANSFERASE (GLYCINE CLEAVAGE SYSTEM T PROTEIN) [Bacillus subtilis]
1266 Bt1Gc1611 Bt1G2655	Bt1G2655	5083-6753	g1731040	1976	1996	2.30E-206	29	100	HYPOTHETICAL HELICASE IN SINI-GCVT INTERGENIC REGION [Bacillus subtilis]
1266 Bt1Gc1611 Bt1G2656	Bt1G2656	6752-7236	g1731039	449	475	3.50E-45	51	61	HYPOTHETICAL 30.8 KD PROTEIN IN SINI-GCVT INTERGENIC REGION [Bacillus subtilis]
1267 Bt1Gc1612 Bt1G2657	Bt1G2657	295-1089	g3025279	873	716	1.00E-70	100	HYPOTHETICAL 28.5 KD PROTEIN IN SIGV-GREA INTERGENIC REGION [Bacillus subtilis]
1267 Bt1Gc1612 Bt1G2658	2 Bt1G2658	1099-2115	g2633798	686	950	1.60E-95	55	100	(Z99111) molybdopterin biosynthesis protein [Bacillus subtilis]
1267 Bt1Gc1612 Bt1G2659	2 Bt1G2659	2130-3419	g2633799	1359	1348	1.10E-137	19	100	100 (Z99111) molybdopterin biosynthesis protein [Bacillus subtilis]
1267 Bt1Gc1612 Bt1G2660	2 Bt1G2660	3427-3897	g2633801	532	206	1.80E-48	29	66	(Z99111) molybdopterin converting factor (subunit 2) (Bacillus subtilis)
1267 Bt1Gc1612 Bt1G2661	2 Bt1G2661	3890-4123	g2633802	167	185	1.90E-14	48	66	(Z99111) molybdopterin converting factor (subunit 1) [Bacillus subtilis]
1267 Bt1Gc1612 Bt1G2662	2 Bt1G2662	4199-5259	g1723296	715	962	3.40E-79	4	100	HYPOTHETICAL 38.6 KD PROTEIN IN CWLD-GERD. INTERGENIC REGION [Bacillus subtilis]
1267 Bt1Gc1612	2 Bt1G2663	6110-6365	g1770010	181	169	9.40E-13	43	66	(Z75208) hypothetical protein [Bacillus subtilis]
1267 Bt1Gc1612	2 Bt1G2664	6460-7257	g2634341	675	899	1.20E-65		100	(Z99114) similar to hypothetical proteins [Bacillus suotilis]
1267 Bt1Gc1612		7466-7906	g1652288	262	209	5.40E-17	0 4 4	ر و 5	(D90904) hypometical protein [59/18cmocysus 5p.] (AF027868) squalene-hopene cyclase [Bacillus subtilis]
126/ Bt1Gc1612 1268 B+1Gc1613	2 Bt1G2667	7548-7934	92415388	128		7.00E-08		66	(AF015775) YodI [Bacillus subtilis]
1268 Bt1Gc1613		8691-7981	g2415387	317	330	8.20E-30		100	(AF015775) YodH [Bacillus subtilis]
1268 Bt1Gc1613		10465-8792		811	846	1.70E-84		66	(AJ002571) DppE [Bacillus subtilis]
1269 Bt1Gc1615	5 Bt1G2670	1379-966	g120294	226	278	2.60E-24	43	86	FLAGELLAR BASAL-BODY ROD PROTEIN FLGC [Bacillus subtilis]

SEQ NO C	Contig Id	Gene Id	Position	NCBI gi	aat_ nap Score	BlastP Score	BlastP- Prob	% Ident	% Cvrg	NCBI gi description
1269 B	1269 Br1Gc1615	B+1G2671	1814-1398	g1272365	82	163	4.10E-12	78	66	(U51896) LfgB [Vibrio parahaemolyticus]
1269 B		Bt1G2672	5083-4221	g2829830	236	299	1.60E-26	27	100	FLAGELLAR HOOK-ASSÖCIATED PROTEIN 3 (HAP3) [Bacillus subtilis]
1269 B	1269 Bt1Gc1615	Bt1G2673	6439-4138	g2314271	120	208	6.70E-16	24	36	(AE000618) flagellar hook-associated protein 1 (HAP1)
1269 B	1269 Bt1Gc1615	Bt1G2674	6436-3613	g3322960	126	269	1.90E-22	23	54	(AE001240) flagellar hook-associated protein 1 (flgK) [Treponema pallidum]
1269 B	1269 Bt1Gc1615	Bt1G2675	8074-8850	g143805	595	616.	4.00E-60		100	(M80245) CheR [Bacillus subtilis]
1269 B	t1Gc1615		11350-10272	g2983912	113	91	0.00017	33	66	(AE000745) flagellar switch protein FliN [Aquitex
,	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		0767321000011603010	~155270	623	780	1 70E-77	80	- 66	aeolicus] (Y08031) cheD [Bacillus cereus]
1269 E	1269 BilGc1615	Bt1G2677	12502-11939 g1556378 12502-11939 e1556378	g1556378	833	•	1.70E-77	8	6	(Y08031) cheD [Bacillus cereus]
1269 E		Br1G2679	13200-12837	22500757	258	•	4.30E-24	54	19	CHEMOTAXIS PROTEIN CHEA [Listeria
			1 805	ر 1610836	063	881	3 30E-88	79	71	monocytogenes] (U67921) REP [Bacillus thuringiensis israelensis]
12/0 E	12/0 Bt1Gc1014 Bt1G2680	Bt1G2681	4123-5322	91012650 980336	439	•	3.40E-40		100	Mob protein - Bacillus sp. plasmid pTB19 [Plasmid pTB19]
10701	Br1Gc1614		7349-8116	g1619836	553		1.70E-36		53	(U67921) REP [Bacillus thuringiensis israelensis]
1271 B	Bt1Gc1617		267-1151	g4160473	306		1.50E-35	37	100	
1271 B	Bt1Gc1617		912-1652	g4160474	911	782	1.00E-77	73	100	(AF109909) 3-ketoacyl-CoA reductase PhaB [Bacillus
				0						megaterium]
1271 E	1271 Bt1Gc1617 Bt1G2685	Bt1G2685	3295-3897	g2492902	385	391	2.80E-36	39	100	HYPOTHETICAL 21.7 KD PROTEIN IN BETT-PRPR INTERGENIC REGION [Escherichia coli]
	F121-013	20207140 P121-7140 1501	0000 7367	20753705	433	473	5 70E-45	37	100	(Z83337) vwpD [Bacillus subtilis]
1771 F	Bt1Gc1617	Bt1G2687	5741-5009	g1652287	269		1.30E-28		27	(D90904) sensory transduction histidine kinase
	110010110			0						[Synechocystis sp.]
1272 I	3t1Gc1618	1272 Bt1Gc1618 Bt1G2688	1127-219	g4056456	247	400	3.10E-37	32	100	(AC005990) Strong similarity to gb U20808 auxin-induced protein from Vigna radiata and a member of the zinc-binding
								-		dehydrogenase family PF 00107. ESTs gb T43674, gb H77006 and gb AA395179 come from this gene.
									- ([Arabidopsis thaliana]
1272 I	3t1Gc1618	1272 Bt1Gc1618 Bt1G2689	1127-1	g3080402	204	392	2.20E-36	33	92	(AL022603) putative NADFH quinone oximiculcuse [Arabidopsis thaliana]
1 2721	1272 Bt1Gc1618	Bt1G2690	2140-3546	g1620930	1363	1389	4.90E-142	58	100	
1272	1272 Bt1Gc1618	Bt1G2691	3585-4076	g1620931	401	405	9.20E-38	42	66	
1272 I	Bt1Gc1618		6024-7226	g1881374	892	804	4.80E-80	46	100	(AB001488) SIMILAR TO BICYCLOMYCIN

	NCBI gi description	RESISTANCE PROTEIN. [Bacillus subtilis] (Z99105) similar to transcriptional regulator (AraC/XylS family) [Bacillus subtilis]	(AF047044) putative transposase [Anabaena PCC7120]	(X61953) abrB [Bacillus subtilis]	(Z99108) similar to iron(III) dicitrate transport permease Racillus subtilis	(X93081) sigma F/sigma G transcribed gene [Bacillus	suctins] (Z99118) quinolinate synthetase [Bacillus subtilis]	PROBABLE NICOTINATE-NUCLEOTIDE PYROPHOSPHORYLASE (CARBOXYLATING)	(QUINOLINATE PHOSPHORIBOSYLTRANSFERASE (DECARBOXYLATING)) (QAPRTASE) (GENERAL	STRESS PROTEIN 70) (GSP70) [Bacillus subtilis]	L-ASPARTATE OXIDASE (QUINOLINATE SYNTHETASE R) [Bacillus subrilis]	NIFS PROTEIN HOMOLOG [Bacillus subtilis]	(Y11477) endolysin [Bacteriophage Bastille]	(AF015825) unknown [Bacillus subtilis]	_	butyricum] TRANSPOSASE B (TRANSPOSON TN554)	[Staphylococcus aureus]			_		_	_	S'REGION (ORFB) [Clostridium perfringens] HYPOTHETICAL PROTEIN HI0143 [Haemophilus influenzae Rd]
	% Cvrg	100	37	6	100	66	100	100			100	42	87	100	66	100	5	3	100	86	80	100	100	100
	% Ident	51	24	53	32	35	29	57			43	50	47	63	34	29	Ĉ	07	37	24	51	49	27	27
	BlastP- Prob Io	4.10E-74	7.20E-09	1.50E-21	5.10E-37	7.80E-25	4.20E-129	5.50E-79			1.80E-114	3.10E-37	2.30E-73	7.70E-50	2.00E-10	6.30E-71	i i	/.20E-/0	1.60E-63	5.60E-31	5.20E-67	8.40E-60	6.40E-30	1.80E-25
	BlastP Score	748	138	252	398	283	1267	794			1129	400	741	519	147	718	ţ	Š Š	648	341	681	613	331	289
	aat_B nap_S Score	778	100	218	280	240	1329	843			1051	388	009	828	156	459		4/8	555	275	854	712	308	244
	NCBI gi	g2632518	g3005554	£39805	g2633168	g1941918	92635250	g3183539			g585537	9585557	g1865711	g2612912	g481913	9135956	0	g481912	g224807	g4512351	ø1256135	92632437	g141086	
~	Position	8717-9610	1-367	7479-7201	12-950	1503-1000	6453-5350	7317-6448			8866-7021	9022-9516	123-2195	2499-3260	4568-4197	6597-4642		6610-4600	7670-6579	8057-9110	1075-1	1990-1079	3140-2301	3152-2292
	Gene Id	Bt1G2693	Bt1G2694			Bt1G2697	B+1G2698	Bt1G2699	-		Bt1G2700	B#1G2701	Bt1G2702			B+1G2705		Bt1G2706	Bt1G2707	Bt1G2708				. Bt1G2712
	SEQ ID Contig Id	1272 Bt1Gc1618 Bt1G2693	1273 Br1Gc1619	1273 Bt1Gc1619	1274 Bt1Gc1620	1274 Bt1Gc1620 Bt1G2697	1274 B+1Gc1620 B+1G2698	1274 Bt1Gc1620 Bt1G2699			1274 Bt1Gc1620 Bt1G2700	1274 B+1Gc1620 B+1G2701	1275 Br1Gc1621	1275 Bt1Gc1621	1275 Bt1Gc1621	1275 Bt1Gc1621 Bt1G2705		1275 Bt1Gc1621 Bt1G2706	1275 Bt1Gc1621 Bt1G2707	1275 Bt1Gc1621	1276 B#1Gc1624	1276 Bt1Gc1624	1276 Bt1Gc1624	1276 Bt1Gc1624 Bt1G2712

	NCBI gi description	(U17283) putative spore germination apparatus protein [Bacillus megaterium]	(Z99107) similar to metabolite transporter [Bacillus subtilis]	(Z99110) similar to alkaline phosphatase [Bacillus subtilis]	2,3-DIHYDRO-2,3-DIHYDROXYBENZOATE DEHYDROGENASE (COLD SHOCK PROTEIN CSI14)	[Bacillus subtilis]	ISOCHORISMATE SYNTHASE DHBC [Bacillus subtilis]	2,3-DIHYDROXYBENZOATE-AMP LIGASE (DIHYDROXYBENZOIC ACID-ACTIVATING	ENZYME) [Bacillus subtilis]	(AL035640) CDA peptide synthetase I [Streptomyces	coelicolor] (AF124138) Cda-orfX [Streptomyces coelicolor]	HYPOTHETICAL 51.5 KD PROTEIN IN RBSR-RRSC,	INTERGENIC REGION [Escherichia coli]	(Z99120) similar to multidrug-efflux transporter [Bacillus	subtilis] DIDGE ODERON REDRESSOR (Bacillus subtilis)		MIDUMINASE [Davidas suctins]	HIGH AFFINITY KIBOSE INANSFORT INOTERN MESS	Bacillus subtilis]		(Z92953) membrane transport protein [Bacillus subtilis]	(AB002150) YbbL [Bacillus subtilis]	ARGINYL-TRNA SYNTHETASE (ARGININE1KNA 11GASE) (ARGRS) [Bacillus subtilis]	CACACAA Dooilling enbtiliel	(L9/024) ywnd (Datanus Suchins)	(AFUZ/868) Yoch [Bacilius subtilis]	regulatory protein pfoR - Clostridium perfringens []	(Z80360) Unknown, highly similar to several agmatinases	[Bacillus supulies]	(Z80360) Unknown, highly similar to several spermionie cynthases (Bacillus subtilis)	(Y08559) Unknown [Bacillus subtilis]	•
		100 (_	100	29 2 I	7 -		01 02 01		30	66			100	5			3	- 4	100	91	4	100	8	8	100	100	100	,	100	100	
	% % Ident Cvrg	28	57	55	20		29	2		43	52	4	. `	73	ζ	1 1	<u>'</u> C	9	,	61	69	78	75	č		22	28	80	;	84	69	
Laure 1	BlastP- Prob Id	2.00E-81	4.10E-138	9.20E-54	6.80E-26		3.80E-112	2.20E-201		0	6.00E-18	3.60E-21		8.60E-177	000	1.00E-/0	1.30E-69	5.80E-36		3.80E-158	1.60E-77	1.80E-16	2.30E-222	,	1.10E-20	4.70E-89	1.30E-61	5.70E-125		2.30E-121	1.40E-71	
	BlastP Score	817	1352	556	293		1107	1949		2965	218	254	}	1717	·	/10	3	388		1541	628	204	2147	;	244	886	400	1228		1194	724	
	aat_B nap_S Score	1159	1445	604	277		1121	2036		4029	206	202	ļ	2066		080	814	388		1523	1014	169	2249	,	196	910	1029	1221		1259	770	
	NCBI gi	g1098508	g2633047	£2633697	g1169301		g1169303	g1169324		£4481934	61337034	g401630	0010Fg	£2635784		g2851638	g3915836	g548707		g1894759	g1894758	g1256141	g2851477	,	g2224755	g2619011	g280310	g1565242		g1565241	g1592698	מָּלְיִי
	Position	4745-3591	5001-6371	4	1-230		256-1440	1471-3087		4039-10381	11102 11405 64337034	11412-11752	7C/11-C1+11	368-1990		2128-3105	3113-3997	4006-4398		4420-5901	5873-6757	522-1	2540-873		2968-2538	3180-4163	4787-5815	7044-6174		8092-7265	54-689	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	Gene Id	Bt1G2713	Bt1G2714	Bt1G2715	Bt1G2716		Bt1G2717	Bt1G2718						R+1G2723		Bt1G2724	Bt1G2725	Bt1G2726		Bt1G2727	Bt1G2728				Bt1G2731	Bt1G2732	Bt1G2733	Bt1G2734		Bt1G2735	Pt1G2736	DITOF 130
	Contig Id	1276 Bt1Gc1624 Bt1G2713	1276 Bt1Gc1624		1277 Bt1Gc1616		1277 Bt1Gc1616 Bt1G2717	1277 Bt1Gc1616 Bt1G2718		1277 Br1Gc1616 Br1G2719		BUIGGIO10	12// Bilge1010 Bilg2/22	1278 Br1 Gc1622 Br1G2723	77010513	1278 Bt1Gc1622	1278 Bt1Gc1622	Bt1Gc1622		1278 Bt1Gc1622	1278 Bt1Gc1622	1279 Bt1Gc1625	Bt1Gc1625		1279 Bt1Gc1625 Bt1G2731	1279 Bt1Gc1625 Bt1G2732	1279 Bt1Gc1625	Bt1Gc1625		1279 Bt1Gc1625 Bt1G2735	1280 B+1Gc1623 B+1G2736	חואסוועם ו
	SEQ E	1276	1276	1276	1277	-	1277	1277		1277		1771	1711	1278	17/0	1278	1278	1278		1278	1278	1279	1279		1279	1279	1279	1279		1279	1280	1700

									ì	
SEQ CO	Contig Id	Gene Id	Position	NCBI gi	aat_ nap Score	BlastP Score	BlastP. Prob	% % Ident Cvrg	% Vrg	NCBI gi description
1280 Bt	1280 Bt1Gc1623	Bt1G2737	6379-5540	g2293328	1137	1062	2.20E-107	9/	100	(AF008220) putative morphine dehydrogenase [Bacillus subtilis]
1280 Bt	1280 Br1Gc1623	Bt1G2738	7580-6393	g2293329	1541	1270	2.00E-129	75	100	(AF008220) YtbD [Bacillus subtilis]
1280 Bt		Bt1G2739	7944-8318	g2293276	414	421	1.90E-39	70	66	(AF008220) YtcD [Bacillus subtilis]
1281 Bt		Bt1G2740	1-1158	g1934815	1385	1202	3.20E-122	<i>L</i> 9	98	(Z93937) unknown [Bacillus subtilis]
1281 Bt		Bt1G2741	1227-2824	g2293261	1234	1170	7.90E-119	62	100	(AF008220) YtsJ [Bacillus subtilis]
1281 Bt		Bt1G2742	4344-3419	g401589	445	494	3.40E-47	33	100	HYPOTHETICAL 33.1 KD PROTEIN IN SELC-NLPA PATTED CENIC DECION (Recharichia coli)
1281 Bt	1Gc1628	1281 Bt1Gc1628 Bt1G2743	4471-5859	g1881332	922	937	3.90E-94	43	100	IN LEKGENIC REGION (ESCIENCINA CON) (AB001488) SIMILAR TO THE RHIZOPINE CATAROLISM (MOCR) GENE OF RHIZOBIUM
										MELILOTI. [Bacillus subtilis]
1281 Bt	1Gc1628	Bt1Gc1628 Bt1G2744	8025-6562	g3687664	819	837	1.50E-83	38	100	(AF049873) sensor protein [Lactococcus lactis]
1281 Bt	11Gc1628	1281 Bt1Gc1628 Bt1G2745	8661-8076	g3687663	327	414	1.00E-38	42	85	(AF049873) response protein [Lactococcus lactis]
1282 Bt	t1Gc1629	Bt1Gc1629 Bt1G2746	454-1	g133449	360	285	4.80E-25	20	8	DNA-DIRECTED RNA POLYMERASE DEL 1A SURINIT (Bacillus subtilis)
1000	D+1/2-1620	D+1/227/17	1220-1	2083006	95	154	3.60E-11	30	61	(AE000683) putative protein [Aquifex aeolicus]
	Br1Gc1629		2444-1308	g1168281	1587	1443	9.30E-148	80	100	ACYL-COA DEHYDROGENASE [Bacillus subtilis]
1282 E	Bt1Gc1629		3590-2457	g1168282	1275	1250	2.60E-127	99	100	ACYL-COA DEHYDROGENASE [Bacillus subtilis]
1282 B	Bt1Gc1629		4521-3661	g1170972	958	965	4.20E-97	64	100	PROBABLE 3-HYDROXYBUTYRYL-COA
	})						DEHYDROGENASE (BETA-HYDROXYBUTYRYL-COA
				,						DEHYDROGENASE) (BHBD) [Bacıllus subtilis]
1282 B	t1Gc1629	1282 Bt1Gc1629 Bt1G2751	5752-4574	g1303931	1252	1172	4.90E-119	61	100	(D84432) YqiL [Bacillus subtilis]
1282 Bi	Bt1Gc1629	Bt1G2752	7975-5858	g1176956	2906	2931	1.90E-305	77	90	HYPOTHETICAL 79.2 KD PROTEIN IN ACDA S'REGION IBacillus subtilis
1282 B	+1Gc1627	B#1Gc1627 B#1G2753	3015-348	e2337795	1509	1630	1.40E-167	40	100	(Y13937) putative PacL protein [Bacillus subtilis]
1283 D	+1Gc1627	BriGc1627 Br1G2754	7495-6035	669868	1565		8.00E-158	9	100	catalase (EC 1.11.1.6) - Listeria seeligeri []
1265 D	Re1Ge1627	Br1G2755	8514-7591	9417116	1045		7.50E-107	61	100	FERROCHELATASE (PROTOHEME FERRO-LYASE)
	11001027	D1102133	1/01-1-100	0						(HEME SYNTHETASE) [Bacillus subtilis]
1284 B	1284 Bt1Gc1631	Bt1G2756	494-59	g1770003	426	373	2.30E-34	62	66	_
1284 B	1284 Bt1Gc1631	Bt1G2757	1367-630	g1770002	797	827	1.80E-82	99	100	_
1284 B	1284 Bt1Gc1631	Bt1G2758	3114-1348	g1770001	1944	1747	5.70E-180		100	
1284 B	Bt1Gc1631	Bt1G2759	3466-4734	g1074652	668	809	1.40E-80	4	100	hypothetical protein HI1104 - Haemophilus influenzae
1284 B	#1Gc1631	1284 Bt1Gc1631 Bt1G2760	6267-4331	g4835822	632	617	3.20E-60	33	95	

!					*				•	
SEQ EQ	Contig Id	Gene Id	Position	NCBI gi	nap Score	BlastP Score	BlastP- Prob	% Ident (% Cvrg	NCBI gi description
1285	1285 Bt1Gc1630 Bt1G2761	Bt1G2761	79-1322	g732364	807	735	9.90E-73	43	91	HYPOTHETICAL 50.0 KD PROTEIN IN UNG-ROCA INTERGENIC REGION [Bacillus subtilis]
1285	1285 Bt1Gc1630 Bt1G2762	Bt1G2762	1591-2394	g401595	456	412	1.70E-38	37	100	HYPOTHETICAL 29.7 KD PROTEIN IN IBPA-GYRB INTERGENIC REGION [Escherichia coli]
1285	1285 Bt1Gc1630 Bt1G2763	Bt1G2763	3634-2960	g731058	770	770	1.90E-76	64	100	URACIL-DNA GLYCOSYLASE (UDG) [Bacillus subtilis]
1285	1285 Bt1Gc1630 Bt1G2764	Bt1G2764		g1724002	701	743	1.40E-73	47	100	HYPOTHETICAL ABC TRANSPORTER ATP-BINDING PROTEIN 2 IN GLPD-CSPB INTERGENIC REGION
1005	1206 D+1021620 D+102765	D+1/22765	8955-0029	01730938	278	348	1.00E-31	31	100	[Bacillus subtilis] HYPOTHETICAL 28.9 KD PROTEIN IN ILVA 3'REGION
1285	1285 Bt1Gc1630 Bt1G2766	B#1G2766	7422-5558	92633758	643	637	2.40E-62	04	100	[Bacillus subtilis] (Z99111) similar to transcriptional regulator (LacI family)
1285	1285 Bt1Gc1630 Bt1G2767	Br1G2767		g118592	1513	1452	1.00E-148	89	100	[Bacillus subtilis] HOMOSERINE DEHYDROGENASE (HDH) [Bacillus
		07/2007140		~7624258	151	791	5 20E-12	52	86	subtilis] (Z99114) vozD [Bacillus subtilis]
1286	1286 Bt1Gc1632 Bt1G2/66 1286 Bt1Gc1632 Bt1G2769	Bt1G2769	1466-816	62415400	392	410	2.70E-38	38	100	(AF015775) YodN [Bacillus subtilis]
1286	1286 Br1Gc1632		1932-1714	g2634360	163	185	1.90E-14	49	66	(Z99114) yozE [Bacillus subtilis]
1286	1286 Bt1Gc1632		2301-2008	g2529468	310	270	1.90E-23	99	66	(AF006665) YokU [Bacillus subtilis]
1286	Bt1Gc1632	Bt1G2772	3698-2286	g4033499	2025	1949	2.20E-201	11	100	HYPOTHETICAL 54.1 KD PROTEIN IN DEOD-ARGE
		-				i	r co	Ç	001	INTERGENIC REGION [Bacillus subtilis]
1286	1286 Bt1Gc1632 Bt1G2773	Bt1G2773	5294-3909	g1064808	843	8 /0 (£	4.90E-67	7 6	3 2	
1286	1286 Bt1Gc1632	Bt1G2774	6584-5522	g2415402	434	7/4	7.30E-43	37	3 5	
1286	1286 Bt1Gc1632		7623-6322	g2529465	1371	1508	1.90E-133 5.80E-88	9 9 9	8 9	
0871	DII GC 1027	0//7DIIQ:	10042-7020	64001011	Ĉ	3		3		
1284	1286 B#1Gc1632 B#1G2777		10291-8990	£2529462	1096	1076	7.20E-109	51	100	-
12%	. Bt1Gc1632		13091-12027		1831		7.10E-189	100	95	_
5 6	1287 Et1Gc1633 Bt1G2779		66-659	017	430	352	3.80E-32	45	66	[Bacillus thuringiensis] HYPOTHETICAL 21.4 KD PROTEIN IN SODA-COMGA
071	Dilocios	DII 04/17	77-700	21/21/21	2					INTERGENIC REGION [Bacillus subtilis]
128	1287 Bt1Gc1633 Bt1G2780	Bt1G2780	3346-1570	g1653786	880	942	1.10E-94	32	71	(D90916) mannose-1-phosphate guanyltransferase
					è				90	[Synechocystis sp.]
128	1287 Bt1Gc1633 Bt1G2781	3 Bt1G2781	4334-3667	g2983430	320	780	3.80E-23	6	Ç,	
128′	1287 Bt1Gc1633 Bt1G2782	Bt1G2782	5393-4638	g3024474	887	890	3.70E-89	65	100	
						_				

_
ē
ap
Ë

								-										j.								
	NCBI gi description					[Synechocystis sp.] HYPOTHETICAL 80.1 KD PROTEIN IN SODA-COMGA INTERGENIC REGION [Bacillus subtilis]				INTERGENIC REGION [Bacillus subtilis] STAGE II SPORUL ATION PROTEIN R [Bacillus subtilis]					-				_	OXIDASE AA3-600, SUBUNII QUXB) (UXIDASE AA(3) SUBUNIT I) [Bacillus subtilis]	(Z99123) cytochrome aa3 quinol oxidase (subunit II) [Racillus subtilis]			HYPOTHETICAL 33.0 KD PROTEIN IN XPAC-ABRB INTERGENIC REGION (Bacillus subtilis)		
	% Cvrg		100	100	100	97	100	66	100	100	2 5	100		8	66	19	100	100	100		100	100	80	100	100	
	% Ident (43	45	30	53	2 2	55	62	Ç	1 (% %	}	69	73	73	58	53	72		47	61	79	62	73	
Labica	BlastP. Prob le		7.80E-57	2.00E-67	4.60E-43	6.70E-177	2.30E-57	1.10E-25	1.00E-111	€ 40E-40	2.404.	1.20E-6/ 1.90E-149		3.80E-71	7.30E-29	4.40E-31	2.60E-113	5.50E-143	7.30E-235		3.60E-68	1.60E-143	1.10E-27	8.00E-87	1.80E-98	
	BlastP Score		585	685	455	1718	590	291	1103	111	110	1459		720	321	342	1118	1398	2265		692	1403	310	898	8/6	
	aat_B nap_S Score		548	655	428	1750	578	497	1091	900	020	758		720	321	337	1325	1537	2555		705	1542	310	914	717	
	NCBI gi		g2649217	g2649218	g2498946	g1731017	g1929333	g732385	g732384		8/30//0	g1170229	81112707	g729902	g4193373	g2293166	92293313	g2633518	g464512		g2636352		g39805	g586874	g586873	
	Position		6309-5472	7222-6347	8239-7262	10639-8562	601-1209	2695-2146	3809-2775	0000	2789-4437	6256-5396	1320-0227	8174-7590	8528-8286	273-1	560-1852	5312-3486	8404-6461		9310-8357	10999-9602	1-227	1129-257	2115-1375	
	Gene Id		Bt1G2783		Bt1G2785		Bt1G2787	Bt1G2788	Bt1G2789		Bt1G2/90	Bt1G2791		Bt1G2793	Bt1G2794	B#1G2795	B+1G2796	Bt1G2797	Bt1G2798		Bt1G2799	Bt1G2800	Bt1G2801		Bt1G2803	
	Contig Id	,	1287 Bt1Gc1633 Bt1G2783	1287 Bt1Gc1633 Bt1G2784	1287 Bt1Gc1633 Bt1G2785	1287 Bt1Gc1633	1288 Bt1Gc1636 Bt1G2787	1288 Bt1Gc1636	1288 Br1Gc1636 Bt1G2789		1288 Bt1Gc1636	1288 Bt1Gc1636	1288 BUGG1030	1288 Bt1Gc1636 Bt1G2793	1288 Bt1Gc1636	1289 Bt1Gc1626 Bt1G2795	1280 Bt1Gc1Gc Bt1G2796	1289 Br1Gc1626 Br1G2797	Bt1Gc1626		1289 Bt1Gc1626 Bt1G2799	1289 Bt1Gc1626 Bt1G2800	1290 Bt1Gc1637	Bt1Gc1637	1290 Bt1Gc1637 Bt1G2803	
	SEQ ID	2	1287	1287	1287	1287	1288	1288	1288		1288	1288	1788	1288	1288	1280	1280	1280	1289		1289	1289	1290	1290	1290	

NCBI gi description	HYPOTHETICAL 14.1 KD PROTEIN IN XPAC-ABRB INTERGENIC REGION [Bacillus subtilis]	HYPOTHETICAL 31.2 KD PROTEIN IN XPAC-ABRB INTERGENIC REGION [Bacillus subtilis]	DNA POLYMERASE III, DELTA' SUBUNIT [Bacillus subtilis]	Succine] THYMIDYLATE KINASE (DTMP KINASE) [Bacillus subtilis]	HYPOTHETICAL 53.2 KD PROTEIN IN XPAC-ABRB: INTERGENIC REGION [Bacillus subtilis]	DNA REPAIR PROTEIN RADA HOMOLOG (DNA REPAIR PROTEIN SMS HOMOLOG) [Bacillus subtilis]	HYPOTHETICAL 40.7 KD PROTEIN IN MECB-GLTX INTERGENIC REGION [Bacillus subtilis]	HYPOTHETICAL 40.9 KD PROTEIN IN MECB-GLTX INTERGENIC REGION [Bacillus subtilis]	hypothetical protein - Bacillus subtilis [Bacillus subtilis]	HYPOTHETICAL 17.1 KD PROTEIN IN MECB-GLIX	INTERGENIC REGION [Bacilius subtilis] GLUTAMYL-TRNA SYNTHETASE (GLUTAMATE	TRNA LIGASE) (GLURS) [Bacillus subtilis]	CYSTEINYL-TRNA SYNTHETASE (CYSTEINETRNA LIGASE) (CYSRS) [Bacillus subtilis]	(U69493) PhnW [Salmonella typhimurium]	(AF030979) phosphonoacetaldehyde hydrolase [Bacillus	cereus] (U05042) afuB gene product [Actinobacillus	pleuropneumoniae] (AL031035) ABC transporter integral membrane protein	[Streptomyces coelicolor] (AF077856) PotA [Actinobacillus actinomycetemcomitans]	(U05042) afuA gene product [Actinobacillus	pleuropneumoniae] (Z99111) similar to Na+-transporting ATP synthase [Bacillus subtilis]
, 60	YH 66	100 HY	100 DN	100 TH	100 HY	63 DN RE	100 HX	100 HY	100 hy	99 HY	Z 5		6 2 3	D) 95	A) 66	G €	100 Ple A	[S 71 (A	100 (U	100 (Z El
% it Cvrg	9	76 10	53 10	52 1	49 1	81	63 1	70 1		9/	74		82	48	86	25	22	48		09
% Ident																				
BlastP- Prob	2.10E-38	2.20E-116	2.60E-81	1.80E-57	3.50E-109	4.10E-122	4.90E-110	1.50E-126	9.60E-59	2.10E-63	\$ 70E-196		2.30E-128	9.90E-41	2.20E-61	6.10E-42	1.00E-22	5.30E-58	8.00E-39	1.10E-105
BlastP Score	411	1147	816	591	1079	1201	1087	1243	603	647	1808	16/0	1260	433	628	448	288	596	415	1046
	378	1147	862	579	1006	1183	1136	1252	579	645	1027	776	1258	452	603	356	193	628	361	1396
NCBI gi	g586872	g586871	g586870	g586867	g586866	g586901	g586902	g586903	g2127058	g549577	~125106	8133100	g549024	g1763079	g2623262	g1469285	e3319739	03341854	g1469286	g2633721
Position	2545-2198	3387-2563	4376-3396	5038-4403	6452-4943	1-863	870-1940	2104-3210	3227-3919		4502 5041	4393-0041	7141-7984	622-1	1432-1048	4517-1454	3178-1475	4231-2116	5274-4249	7566-6217
Gene Id						Bt1G2809	Bt1G2810	Bt1G2811	Bt1G2812	Bt1G2813	7100017	B1102014	Bt1G2815	Bt1G2816	Bt1G2817	Bt1G2818	B+1G2819	B+1/32820	Bt1G2821	Bt1G2822
Contig Id	NO 1290 Bt1Gc1637 Bt1G2804	1290 Bt1Gc1637 Bt1G2805	1290 Bt1Gc1637 Bt1G2806	1290 Bt1Gc1637 Bt1G2807	1290 Bt1Gc1637 Bt1G2808	1291 Bt1Gc1638 Bt1G2809	1291 Bt1Gc1638 Bt1G2810	1291 Bt1Gc1638 Bt1G2811	1291 Br1Gc1638 Bt1G2812	1291 Bt1Gc1638 Bt1G2813		1291 Bt1Gc1038 Bt1G2814	1291 Bt1Gc1638 Bt1G2815	1202 Bt1Gc1634 Bt1G2816	Bt1Gc1634 Bt1G2817	1292 Br1Gc1634 Bt1G2818	1292 Bt1Gc1634 Bt1G2819	1202 1001 1001	Bt1Gc1634	1292 Bt1Gc1634 Bt1G2822
<u>.</u> .	NO 1290 I	1290 1	1290 1	1290	1290	1291	1291	1291	1291	1291		1671	1291	1292	1292	1292	1202	12021	1292	1292

	NCBI gi description	(AF109909) PHA synthase PhaC [Bacillus megaterium]	(Z99121) yvbH [Bacillus subtilis]	TRIGGER FACTOR (TF) (VEGETATIVE PROTEIN 2) (VEG2) [Bacillus subtilis]	(X95306) ClpX protein [Bacillus subtilis]	ATP-DEPENDENT PROTEASE LA HOMOLOG [Bacillus		ATP-DEPENDENT PROTEASE LA 1 [Bacıllus subtilis]	HYPOTHETICAL GTP-BINDING PROTEIN IN LONA- HEMA INTERGENIC REGION (ORFX) [Bacillus subtilis]	(D86417) YfmD [Bacillus subtilis]	(D86417) YfinF [Bacillus subtilis]	HYPOTHETICAL 44.4 KD PROTEIN IN EPR-GALK INTERGENIC REGION [Bacillus subtilis]	HYPOTHETICAL 25.8 KD SENSORY TRANSDUCTION	PROTEIN (ORF11) [Bacillus subtilis]	(AF007865) BacS [Bacillus licheniformis]	HYPOTHETICAL 31.7 KD PROTEIN IN GLTP-CWLJ INTERGENIC REGION (ORF13) [Bacillus subtilis]	(A POODOO3) 381aa long hynothetical protein [Pyrococcus	iil	III]	(Z99108) similar to cell-division innibitor [Dacifius subtins]) yfhH [Bacillus subtilis]	(Z99108) yfhP [Bacillus subtilis]	(Z99108) similar to A/G-specific adenine glycosylase (Racillus subtilis)	(Z99108) yfhS [Bacillus subtilis]	(Z82044) hypothetical 12.2 kd protein [Bacillus subtilis]	(Z82044) unidentified transporter-ATP binding [Bacillus		(Z82044) hypothetical 40.7 kd protein [Bacillus subtilis]	(Z99112) chromosome segregation SMC protein homolg [Bacillus subtilis]	(X98606) potential coding region [Clostridium difficile]	
		(AF1099)	(Z99121)	TRIGGE (VEG2)	(X95306)	ATP-DE	subtilis	ATP-DE	HYPOTH HEMA I	(D86417)	(D86417	HYPOTE	HYPOTI	PROTEI	(AF0078	HYPOTI	(A POOOL	horikochiil	HOLINOSII	(299108	(Z99108	(Z99108) yfhH	(Z99108	(Z99108 [Bacillus	(Z99108	(Z82044	(Z82044	subtilis]	(Z82044	(Z99112 [Bacillu)0986X)	
	% Vrg	100		100	100	100		100	49	100	100	100	100		100	73	07		,	100	100	66	100	100	66	66	100		90	15	100	
	% % Ident Cvrg	70	99	71	87	72		73	11	33	45	64	65		27	61	35	Ç	,	48	40	22	28	28	62	74	9		20	71	44	
-	BlastP- Prob Id	1.90E-140	2.60E-08	1.90E-140	6.10E-183	5.10E-211		1.40E-277	6.50E-37	2.40E-46	2.10E-54	4.60E-114	1.10E-75		4.70E-34	9.70E-66	C2 303 V	4.00E-32	1	3.90E-78	3.90E-46	3.00E-23	1.90E-92	2.30E-112	1.30E-24	1.30E-38	3.20E-177		4.90E-71	3.50E-60	1.10E-112	
	BlastP	1374	127	1374	1775	2040		2668	397	486	562	1125	763		370	699	9	240	,	786	484	268	921	1109	281	413	1721) -	719	626	1112	
	aat_B nap_S Score	1419	124	1577	1835	2089		2995	378	507	576	1318	750		314	628	777	40 1		741	508	246	1006	1142	281	30%	1905		811	586	1137	
	NCBI gi	g4160475	g2635899	g2829689	01296452	g1708857		g585415	g586754	g2443247	g2443249	g732334	g1175624	0	g4481748	g3183506	00000	7771C7¢8		g2633175	g2633176	g2633177	g2633185	g2633186	02633187	01673391	91673392	0.00	g1673393	g2633966	g1418413	
	Position	9964-8879		2381-3652	3973-5179			7148-9469	9469-9757	4796-5794	5784-6581	8061-9242	9842-10516		10424-11470 g4481748	11646-12259	· C	10/9-1		2127-1219	2209-3012	3038-3349	5156-4179	5300-6409	6663-6442	7702-8107	8352-10116	21121 7000	11135-10170 g1673393	82-4639	1225-3058	
	Gene Id	Bt1G2823			B+162826			Bt1G2828		Bt1G2830					Bt1G2834	Bt1G2835		Bt1G2836		Bt1G2837	Bt1G2838	Bt1G2839	Bt1G2840	Bt1G2841	D+1C21640 B+1C2842	Dt1 G2842	Bt1G2844	11070110	Bt1G2845	Bt1G2846	1296 Bt1Gc1641 Bt1G2847	
	Contig Id	Bt1Gc1634		Bt1Gc1635	B+16-1635	Bt1Gc1635		Bt1Gc1635	Bt1Gc1635	Br1Gc1639	Br1Gc1639	Bt1Gc1639	1204 Rt1Gc1639 Rt1G2833	750100117	1294 Bt1Gc1639	Bt1Gc1639	1	1295 Bt1Gc1640 Bt1G2836		1295 Bt1Gc1640 Bt1G2837	1295 Bt1Gc1640 Bt1G2838	Bt1Gc1640 Bt1G2839	Bt1Gc1640 Bt1G2840	Bt1Gc1640	D+1/201640	1295 Bildelotto Bildest2 1206 Bildest40 Bild2843	B+1Gc1640		1295 Bt1Gc1640 Bt1G2845	Bt1Gc1641	Bt1Gc1641	
	SEQ EQ	_		1293	1202	1293		1293	1293	1294		1294	1204	1671	1294	1294	1	1295		1295	1295	1295	1295	1295	3001	1205	1293	1273	1295	1296	1296	

				•				-		
SEQ ID Contig Id NO	Id Gene Id	d Position	NCBI gi	aat_ nap Score	BlastP Score	BlastP. Prob	% Ident C	% Cvrg	NCBI gi description	
6 Bt1Gc10	1296 Bt1Gc1641 Bt1G2848	48 3174-4640	10 g4322642	445	295	2.10E-54	37	88	(AF093246) NAD(P)H-dependent 2-cyclohexen-1-one reductase Ncr [Pseudomonas syringae pv. glycinea]	
1296 Bt1Gc1641	641 Bt1G2849	49 4131-5699	9 g2577963	1223	1216	1.10E-123	45	_	(Y15254) YerD protein [Bacillus subtilis]	
1297 Br1Gc1642		50 893-1	£2634032	1204	1148	1.70E-116	81	08	(Z99112) nusA [Bacillus subtilis]	
1297 Bt1Gc1642				558	435	6.10E-41	69	66	HYPOTHETICAL 17.6 KD PROTEIN IN NUSA 5. REGION (P15A) (ORF1) [Bacillus subtilis]	
1297 Bt1Gc1642	642 Bt1G2852	52 6019-1721	21 g118793	5710	5507	0	75	100	DNA POLYMERASE III, ALPHA CHAIN [Bacillus	
1207 Bt1Gc1642	642 Bt1G2853			2086	2089	3.30E-216	69	100	subtilis] (Z99112) prolyl-tRNA synthetase [Bacillus subtilis]	
1297 Bt1Gc1642				1305	1264	8.70E-129	9		(Z99112) similar to hypothetical proteins [Bacillus subtilis]	
1297 Bt1Gc1642	642 Bt1G2855	55 10370-9211	11 g3913544	1272	1276	4.60E-130	89	8	I-DEOX Y-D-X YLULOSE 3-FHOSFHATE REDUCTOISOMERASE (DXP REDUCTOISOMERASE)	
Ç Ç		201 101 102	204 ~2121041	750	681	5 20E-67	55	100	[Bacillus subtilis] PHOSPHATIDATE CYTIDYLYLTRANSFERASE (CDP-	
/ Bticci	642 BIIG26	129/ BtiGc1642 BtiGz830 11194-10394 g31z164		2		· · · · · · · · · · · · · · · · · · ·))		DIGLYCERIDE SYNTHETASE) (CDP-DIGLYCERIDE DAY OF SEPENDE DAYS OF SEPENDE OF SE	
	,								SYNTHASE) (CDS) (CTP:PHOSPHATIDATE	
									CYIDYETEIRANSFERASE) (CM-DAG STATES) [Bacillus subtilis]	
7 Bt1Gc1	642 Bt1G28	357 11985-112	1297 Bt1Gc1642 Bt1G2857 11985-11206 g3183468	905	96.	3.40E-79	65	100	HYPOTHETICAL 29.8 KD PROTEIN IN FRR-CDSA	
		10/00 10	020000000000000000000000000000000000000	. 712	÷	6.40E-62	75	60	INTERGENIC REGION [Bacillus subtilis] RIBOSOMF RECYCLING FACTOR (RIBOSOME	
7 BtlGel	642 Bt1G28	228 12022-120	1297 Bt1Gc1642 Bt1Gz838 1262z-12008 g312z / 02	†		20-101-0	2	`	RELEASING FACTOR) (RRF) (VEGETATIVE PROTEIN	
				,		100	0	Ç	[28] (VEG128) [Bacillus subulis]	
7 Bt1Gc1	642 Bt1G28	859 12980-12	1297 Bt1Gc1642 Bt1G2859 12980-12628 g2634023	510		1.80E-50	ر م	2 2	(299112) HILLY MILLY ALL AT 7 KD PROTEIN IN METS-KSGA	
8 Bt1Gc1	644 Bt1G2	860 3552-110	63 g586876	740	784	9.30E-23	70	70	INTERGENIC REGION [Bacillus subtilis]	
98 Bt1Gc1	1298 Bt1Gc1644 Bt1G2861	861 431-3640	40 g3256896	258	309	1.30E-26	27	39	(AP000002) 739aa long hypothetical chemotaxis protein	
		0000 0116 0200		717	711	3 50F-70	35	100	[Pyrococcus horikoshii] (Al 009204) FAD-dependent oxidoreductase [Streptomyces	
% Buide	1298 BUGG1044 BUG2807			7) }	coelicolor	
98 Bt1Gc1	1298 Bt1Gc1644 Bt1G2863	863 9274-8078	178 g3581864	622	673	3.70E-66	36	100	_	
98 Bt1Gc1	1644 Bt1G2	864 11284-93	1298 Bt1Gc1644 Bt1G2864 11284-9358 g2126777	2954	. 2928	4.00E-305	. 93	100	coencolor] phospholipase C (EC 3.1.4.3) - Bacillus cereus (strain IAM 1208) [Bacillus cereus]	

NCBI of description			ACETYL-COENZYME A SYNTHETASE (ACETATE-COA LIGASE) (ACYL-ACTIVATING ENZYME) (ACETYT-COA SYNTHASE) [Bacillus subtilis]	•	ACETOIN UTILIZATION ACUB PROTEIN [Bacillus enbritis]				DNA GYRASE SUBUILLA [Bacillus subtilis]					_		INTERGENIC REGION (ORF1) [Bacillus subtilis]	_	_		 (AE000326) putative 2-component transcriptional regulator [Escherichia coli] 	_	_		-		_
%	Cvrg	97	40	100	100	100	100	76	3 5	9 5	3 5	100	8 3	2	100		8	71		71	100	66		8	. 57	75
%	Ident	63	49	69	49	. 65	42	32	8 2	£ ;	ခွ း	75	35	29	61		43	34		32	43	9	,	75	43	26
BlastP-		7.50E-20	3.70E-82	1.60E-74	1.30E-52	3.10E-133	1.40E-50	1.30E-40	0	1.30E-258	6.90E-120	3.20E-147	6.60E-28	6.60E-28	1.10E-87		7.60E-27	2.50E-37		1.40E-16	4.00E-69	6.80E-16		4.70E-121	4.80E-25	1.40E-55
BlastP	Score	236	824	752	545	1306	526	432	3249	2489	1180	1438	312	312	876		302	381		205	701	151		1191	285	421
aat_B	nap S Score	792	804	794	534	1400	485	390	3337	2707	1309	1414	286	277	066	1	320	348		180	089	380		1180	262	356
	NCBI gi	g420808	g728788	g728799	g728800	g728801	g4481749	g4104606	g121881	g121887	g132246	g118797	g1001205	g729326	g732393	0	g1881269	g3036999	,)	g1788724	2984656	g1763704)	g115950	g115692	g2622173
	Position	11626-11911	692-1	869-1498	1519-2160	2157-3320	5561-4850	7734-5337	2990-528	4995-3085	6170-5061	7668-6526	25-579	8164-8931	9002-9932		10177-10627	1902-1		7096-7623	8284-9207	9339-9731		12149-11225	1-353	6820-1254
	Gene Id	Bt1Gc1644 Bt1G2865 11626-11911	Bt1G2866	Bt1G2867	Bt1G2868	Bt1G2869	Bt1G2870		Bt1G2872			Bt1G2875	Bt1G2876	Bt1G2877	Bt1G2878	0.02013	1301 Bt1Gc1646 Bt1G2879 10177-10627 g1881269	Bt1G2880		Bt1G2881	Bt1G2882	Bt1G2883		1302 Bt1Gc1649 Bt1G2884 12149-11225 g115950	. Bt1G2885	1303 Bt1Gc1647 Bt1G2886
	Contig Id	Bt1Gc1644	1299 Bt1Gc1643 Bt1G2866	1299 Bt1Gc1643 Bt1G2867	1299 Bt1Gc1643	1299 Bt1Gc1643 Bt1G2869	Bt1Gc1643	1299 Bt1Gc1643	Bt1Gc1645	Bt1Gc1645	Bt1Gc1645	Bt1Gc1645	Bt1Gc1646	Bt1Gc1646		OFOTA DITO	Bt1Gc1646	Bt1Gc1649		Bt1Gc1649 Bt1G2881	1302 Br1Gc1649 Br1G2882	Bt1Gc1649		Bt1Gc1649	1303 Bt1Gc1647 Bt1G2885	Bt1Gc1647
SEQ	<u>a</u> 2	00	1299	1299	1299	1299	1299	1299	1300	1300	1300	1300	1301	1301	1301	1001	1301	1302		1302	1302	1302	}	1302	1303	1303

_
e
aþ
H

	[Bacillus subtilis]	subtilis]	subtilis]	berculosis]	Mycobacterium	[Racillus enhtilis]	MED DIVIC	is]	cystis sp.]	(DO-1,4-BETA-	ASE) [Bacillus sp.] inidase			E IN APRE-COMF	[lus subtilis]	N GLNQ-ANSK	[SI]	s from B. subtilis	enhtiliel	sections]	משויים בוומי	erIC [Bacillus	ierIA [Bacillus		occus halophilus]	N KATB	1	POLICIOCOCCIIS INCIIS
NCBI gi description	thermoautotrophicum]	(Y14080) hypothetical protein [Bacillus subtilis]	(Y14080) hypothetical protein [Bacillus subtilis]	(AL021309) fadD13 [Mycobacterium tuberculosis]	(Z98268) hypothetical protein Rv1707 [Mycobacterium	moerchosis) crace va epopuli arton profesi Becillus subtilis	SIAGE V SPONDEATION I NOTETIN DECEMBED SECTION OF THE SECTION OF T	INTERGENIC REGION [Bacillus subtilis]	(D90902) hypothetical protein [Synechocystis sp.]	ENDOGLUCANASE PRECURSOR (ENDO-1,4-BETA-	GLUCANASE) (ALKALINE CELLULASE) [Bacillus sp.] (AJ010312) endo-beta-N-acetylglucosaminidase	[Streptococcus pneumoniae]	_	_		_	INTERGENIC REGION [Bacillus subtilis]	(Z99121) similar to hypothetical proteins from B. subtilis		(* 14079) hypometical protein (Pacinus succins) (* 1507645) snore germination protein Gerl Billis		-	cereus] (AR067645) snore germination profein GerlA [Bacillus				3'REGION [Bacillus subtilis]	
% Cvrg	5	8 8	100	100	100	5	3 5	χ Σ	100	24	39		93	100		66		66	S	3 5	3	100	70	0	100	91	S	
% Ident (ξ	⁴ 5	9/	35	27	ć	5 6	67	28	22	36		65	89		34		28	ζ.	4 5 5	39	30	6	40	38	71	(ĉ
BlastP- Prob I	2 10E 47	7.40E-36	2.00E-138	8.10E-78	1.50E-99	100	2.90E-34	8.10E-46	3.00E-32	2.00E-14	8.30E-38		2.30E-96	5.00E-101		1.10E-25		2.10E-38	101	1.10E-18	4.50E-68	4.20E-33	70000	3.30E-12	9.90E-41	1.40E-112		· · ·
BlastP Score	404	387	1355	783	886	i	372	481	353	197	410	•	958	1002		291		411	6	572	691	361	Š	/30	433	1111	,	
aat Bl nap S	157	45 <i>/</i> 362	1394	642	1465	i	58]	416	245	115	27.4	1	1329	974	· •	218		385	0	222	775	356	Š	00 %	342	1258		***
NCBI gi	0003000	g2033079	g2226152	£2808436	g2326750		g267023	g586884	g1652052	g121838	04218533	217.9	g2293313	g3123307	0	g1731066		g2635860		g2226143	g3290176	g3290177		g3290175	£2098612	g1177016)	97005120
Position	9	/991-8/43 145-643	~		5064-6536		6865-8397	6847-8144	8532-9587	8773-10408	9337_11407	/o+11-/cce	1201-1	1404-2267		2340-2897	•	4647-4238		5069-4830	6860-5772	7959-6880		10964-7959	10452-9646	12176-11080		10221_1226
Gene Id	i de la companya de l	Bt1G2887 Bt1G2888	Bt1G2889	Bt1G2890	Bt1G2891		Bt1G2892	Bt1G2893	Bt1G2894	Bt1G2895			Bt1G2897	Bt1G2898		Bt1G2899		Bt1G2900		Bt1G2901	Bt1G2902	Bt1G2903	1	Bt1G2904	Br1G2905			70000
Contig Id		Bt1Gc1647 J					1304 Bt1Gc1648	1304 Bt1Gc1648	Bt1Gc1648	Bt1Gc1648	1204 D+1C-1648 D+1C2806	D110C1040	1305 Bt1Gc1651	Rt1Gc1651	100120110	1305 Bt1Gc1651		1305 Bt1Gc1651		Bt1Gc1651	Bt1Gc1651	Bt1Gc1651		1305 Bt1Gc1651	1305 Bt1Gc1651	Bt1Gc1651		1206 D+1C-1663 D+1C-2007 10231-12365
SEQ B		1303					1304	1304	1304	1304	200	150	1305	1305	1001	1305		1305		1305	1305	1305		1305	1305	1305		1006

\$

					-					
SEQ PO	Contig Id	Gene Id	Position	NCBI gi	aat_ nap Score	BlastP Score	BlastP- Prob	% Ident (% Cvrg	NCBI gi description
1307	1307 Bt1Gc1657 Bt1G2909	Bt1G2909	2474-3088	g586851	484	501	6.20E-48	48	100	RPSF-SPO0J INTERGENIC REGION [Bacillus subtilis] HYPOTHETICAL 22.5 KD PROTEIN IN RPSF-SPO0J NTERGENIC REGION [Bacillus subtilis]
1307	Bt1Gc1657	Bt1G2910	4696-3938	g586852	1061	1061	2.80E-107	81	100	SOJ PROTEIN [Bacillus subtilis]
1307	Bt1Gc1657	Bt1G2911	5759-4896	g586854	940	696	1.60E-97	<i>L</i> 9	100	HYPOTHETICAL 32.8 KD PROTEIN IN SPO0J-GIDB
1307	1307 Bt1Gc1657 Bt1G2912	Bt1G2912	6584-5868	g121190	887	796	3.40E-79	70	100	INTERGENIC REGION [Bacilius suotus] GLUCOSE INHIBITED DIVISION PROTEIN B [Bacillus
1307	1307 Bt1Gc1657 Bt1G2913	Bt1G2913	8495-6612	g121187	2703	2703	2.80E-281	82	100	subtilis] GLUCOSE INHIBITED DIVISION PROTEIN A [Bacillus
1307	1307 Bt1Gc1657 Bt1G2914	Bt1G2914	9912-8545	g135725	1709	1604	8.10E-165	73	100	subtins] POSSIBLE THIOPHENE AND FURAN OXIDATION PROTEIN THDF [Bacillus subtilis]
1308	1308 Bt1Gc1652 Bt1G2915	Bt1G2915	1-716		1099	999	1.00E-100	96	36	(X67138) flagellin [Bacillus thuringiensis]
1308	1308 Bt1Gc1652 Bt1G2917	Bt1G2917	308	g3322003	450		4 40F-47		100	[Treponema pallidum] FLAGELLAR MOTOR SWITCH PROTEIN FLIG
1309	1309 Bt1Gc1654 Bt1G2919	Bt1G2919	1065-139	g127029	812		5.20E-83		100	[Borrelia burgdorferi] HOMOSERINE O-SUCCINYLTRANSFERASE (HOMOSERINE O-TRANSSUCCINYLASE) [Escherichia
1309	Bt1Gc1654	1309 Bt1Gc1654 Bt1G2920	2374-1073	g1835113	1006	1076	7.20E-109	48	100	coli] (Y10744) O-acetylhomoserine sulfhydrylase [Leptospira
1309	1309 Bt1Gc1654 Bt1G2921	Bt1G2921 Bt1G2927	4836-4145	g2116760 9465600	794	718	6.30E-71 1.60E-40	4 4 5	97	meyeri] (D86418) YfnB [Bacillus subtilis] HYPOTHETICAL 25.3 KD PROTEIN IN NFO-FRUA
1309	1309 Bt1Gc1654 Bt1G2923	Bt1G2923	6303-5680	g2619052	992		1.50E-67		100	
1309	1309 Bt1Gc1654 Bt1G2924	Bt1G2924	7168-6483	g4753864	460	501	6.20E-48	44	100	subtilis] (AL049754) putative two-component system regulator
1309	Bt1Gc1654 Bt1Gc1654	1309 Bt1Gc1654 Bt1G2925 1309 Bt1Gc1654 Bt1G2926	8731-7142 8869-9678	g2226140 g732357	877	853	3.10E-85 2.80E-91	48	100	
1309	Bt1Gc1654	1309 Bt1Gc1654 Bt1G2927	10838-9774	g1724005	391	343	3.40E-31	31	100	

NCBI gi description	HYPOTHETICAL 7.7 KD PROTEIN IN MRR-TSR INTERGENIC REGION (F67) [Escherichia coli]		. –	_	_	_	_			PROTEIN Y40S [Rhizobium sp. NGR234]		 HYPOTHETICAL 45.5 KD PROTEIN IN BOLS-NATE INTERGENIC REGION [Bacillus subtilis]			,		 (AP000003) 230aa long hypothetical protein [Pyrococcus horikoshii] 			SPOIIM INTERGENIC REGION [Bacillus subtilis]	 (U47860) amidohydrolase AmhX from B. subtilis [Bacillus subtilis] 	. , ,		54 HYPOTHETICAL 45.5 KD PROTEIN IN BGLS-KATB INTERGENIC REGION [Bacillus subtilis]			0 METHYL-ACCEPTING CHEMOTAXIS PROTEIN MCPA
% Cvrg	66	100				,			100		100	38	17	100	66		100	100			100	86			100	100	100
% Ident	37	60	95	95	59	46	59	36	47		38	2	41	79	42		25	35	38		20	98		65	41	34	4
BlastP.	1.80E-09	4.70E-185 9.10E-173	7.30E-93	4.90E-16	9.10E-47	3.00E-185	8.40E-115	3.20E-28	8.80E-65		1.00E-31	1.90E-53	4.30E-08	6.40E-133	1.50E-30		1.70E-22	2 10E-53	1.10E-66		1.70E-100	1.90E-204		1.10E-71	6.80E-42	4.70E-82	7.20E-125
BlastP Score	138	1795 1679	925	200	490	1112	1132	315	099		348	553	132	1303	337		261	551	678		997	1978		725	444	823	1227
aat_ Enap	131	2207 1789	1398	577	480	1743	1087	317	740		342	604	107	1354	245		122	245	841 841		284	2239	Ì	765	444	756	_
NCBI gi	g732103	g2506997 g2633756	g4584097	g4584098	g2626822	g2337795	g2415745	g3913256	g2492593)	g2492902	g1177013	g224807	92633127	g465586)	g3257120	0100070	g2032019 g1731094)	g1323764	0118580	61100	g1177013	g2443239	g1705888	g730002
Position	Bt1G2928 11187-10987	13243-11163 269-2182	3248-2382	3447-3819	4288-3827	4882-7560	8845-7751	2744-1924	9450-8338		11325-10723	Bt1G2939 13146-13639	178-1	841-1815	2187-2984		2795-3565	7077	8299-6903		8584-9726	12077-1055	1201-11021	1-691	1422-742	3813-1427	
Gene Id	Bt1G2928	Bt1G2929 Bt1G2930	Bt1G2931		Bt1G2933		Bt1G2935	Bt1G2936	Bt1G2937		Bt1G2938		B+1G2940	B+1G2941	Bt1G2942) Bt1G2943	77000	Bt1G2945 Bt1G2945) Bt1G2946	B+1G2947	onorth of	9 Bt1G2948	9 Bt1G2949	9 Bt1G2950	9 Bt1G2951
SEQ Contig Id	1309 Bt1Gc1654	1309 Bt1Gc1654 Bt1G2929 1310 Bt1Gc1650 Bt1G2930	1310 Bt1Gc1650	1311 Bt1Gc1658	1311 Bt1Gc1658		1311 Bt1Gc1658 Bt1G2938 11325-10723 g2492	1311 Bt1Gc1658	1312 B+1Gc1660 B+1G2940	1312 Bilde1660 Bilde241	1312 Bt1Gc1660		1312 Bt1Gc1660 Bt1G2943		1312 Bt1Gc1660 Bt1G2944		1312 Bt1Gc1660 Bt1G2946	1312 B+1G-1660 B+1G2947 12077-10552	1312 Buldeloo	1313 Bt1Gc1659 Bt1G2948	1313 Br1Gc1659	1313 Bt1Gc1659	1313 Bt1Gc1659				

+ 41				•		Table 1	· . · · · · · · · · · · · · · · · · · ·		
SEQ Contig Id	Gene Id	Position	NCBI gi	aat_ I nap	BlastP Score	BlastP. Prob	% Ident (%, Cvrg	NCBI gi description
1313 Bt1Gc1659 Bt1G2952	Bt1G2952	6981-5413	g3915560	1584	1109	2.30E-112	64	76	(H1) [Bacillus subtilis] HYPOTHETICAL 56.0 KD PROTEIN IN GLGB-GBSB INTERGENIC REGION [Bacillus subtilis]
1313 Bt1Gc1659 Bt1G2953	Bt1G2953	7542-7016	g2635586	271	188	4.90E-17	37	66	(Z99119) yuaF [Bacillus subtilis]
1313 Bt1Gc1659 Bt1G2954	Bt1G2954	10755-6797	g4760825	2056	2183	3.60E-226	43	92	(D87215) collagenase [Clostridium histolyticum]
1314 Bt1Gc1655	Bt1G2955	1-752	g4768683	190	330	8.20E-30	8 . 4.	72	(AF115385) putative ferric enterobactin periplasmic binding
1314 D+1C-1666 D+1C-3066	D+1/22056	921_1770	g1107528	637	462	8 40F-44	30	100	protein [17035011a gonormodae] (X88849) ttg start [Campylobacter coli]
1314 Bt1Gc1655 Bt1G2957	Bt1G2957	1899-2843	g1805451	497	467	2.50E-44	33	100	(D50453) homologue of ferric anguibactin transport system
			,)						permerase protein FatC of V. anguillarum [Bacillus subtilis]
1314 Bt1Gc1655 Bt1G2958	Bt1G2958	2840-3595	g1805452	596	602	1.20E-58	46	100	(D50453) homologue of iron dicitrate transport ATP-binding protein FecE of E. coli [Bacillus subtilis]
1314 Bt1Gc1655	Bt1G2959	4059-5511	g3334367	2327	2373	2.60E-246	94	100	HEMOLYSIN PRECURSOR [Bacillus cereus]
1314 Bt1Gc1655		8219-8626	g2460264	370	250	2.40E-21	51	86	(AF020807) Mig-7 [Salmonella typhimurium]
1314 Bt1Gc1655		8769-9323	g1742583	642	616	4.00E-60	63	66	(D90799) Spermidine N1-acetyltransferase (EC 2.3.1.57)
)						(Diamine acetyltransferase) (SAT). [Escherichia coli]
1314 Bt1Gc1655	Bt1G2962	9725-11269	g2443256	1083	1039	6.00E-105	47	100	(D86417) YfmM [Bacillus subtilis]
1314 Bt1Gc1655	Bt1G2963	11275-12479	g1800301	532	451	1.20E-42	32	100	(U83667) macrolide-efflux determinant [Streptococcus
									pneumoniae]
1315 Bt1Gc1656 Bt1G2964	Bt1G2964	1-604	g2626830	563	595	6.80E-58	26	36	(D83967) TreC [Bacillus subtilis]
1315 Bt1Gc1656 Bt1G2965	Bt1G2965	1282-917	g2072375	589	589	2.90E-57	96	66	(Y09254) hypothetical protein [Bacillus cereus]
1315 Bt1Gc1656	Bt1G2966	4383-2791	g1805440	865	988	9.90E-89	35	100	(D50453) spore germination protein GerKA [Bacillus
									subtilis
1315 Bt1Gc1656 Bt1G2967	Bt1G2967	4509-5942	g2577967	335	459	1.70E-43	30	100	(Y15254) Yerl protein [Bacillus subtilis]
1315 Bt1Gc1656	Bt1G2968	5649-7106	g2635246	1757	1727	7.50E-178	89	100	(Z99118) similar to sodium/proton-dependent alanine carrier
			ı					;	protein [Bacillus subtilis]
1315 Bt1Gc1656 Bt1G2969	Bt1G2969	7245-7970	g2635188	972	898	8.00E-87	74	100	(Z99117) glutamine ABC transporter (A1P-binding protein) [Bacillus subtilis]
1316 Bt1Gc1662 Bt1G2970	Bt1G2970	682-899	g2707959	183	193	2.70E-15	49	66	(Z97974) Tec protein [Lactobacillus bacteriophage phi adh]
1316 Bt1Gc1662	Bt1G2971	2946-3806	g1926335	165	291	1.10E-25	28	100	(X98106) zinc finger protein [Bacteriophage phig1e]
1316 Bt1Gc1662		9654-9938	g2634222	146	164	3.20E-12	38	66	(Z99113) yoeC [Bacillus subtilis]
1316 Bt1Gc1662	Bt1G2973	9651-10196		205	246	6.50E-21	29	66	
1317 Bt1Gc1661	Bt1G2974	1-368	g2497392	575	592	1.40E-57	93	49	INSERTION SEQUENCE IS232 PUTATIVE ATP-

100 (AE000218) putative dihydroxyacetone kinase (EC 2.7.1.2)

40

2.10E-69

562

624

g1787450

1317 Bt1Gc1661 Bt1G2975 3965-2943

BINDING PROTEIN [Insertion sequence IS232]

	NCBI gi description	[Escherichia coli] (AE000218) putative dihydroxyacetone kinase (EC 2.7.1.2) [Escherichia coli]	HYPOTHETICAL 23.4 KD PROTEIN IN AAPA-SIGV INTERGENIC REGION [Bacillus subtilis]			[Archaeoglobus fulgidus] (Z75208) acetolactate synthase large subunit [Bacillus	subtilis] ACETOLACTATE SYNTHASE SMALL SUBUNIT	(AHAS) (ACETOHYDROXY-ACID SYNTHASE SMALL SUBUNIT) (ALS) [Bacillus subtilis] KETOL-ACID REDUCTOISOMERASE (ACETOHYDR@XY-ACID ISOMEROREDUCTASE)		,	subtilis] 3-ISOPROPYLMALATE DEHYDRATASE (ISOPROPYLMALATE ISOMERASE) (ALPHA-IPM			[Methanococcus Jannaschri] INTERNALIN A PRECURSOR [] HYPOTHETICAL 45.3 KD PROTEIN IN PRKA-CSPB INTERGENIC REGION (ORF4) [Bacillus subtilis]
	% Cvrg	100	100	100	100	100	66	100	100	100	100	89 100	49	63
	% Ident (35	33	29	22	64	63	69	56	55	48	33	46	28
TAMMI	BlastP- Prob Ic	1.90E-52	1.20E-26	4.10E-35 7.20E-38	2.90E-82	4.60E-194	5.60E-47	2.60E-127	1.50E-147	2.00E-99	2.10E-173	1.70E-52 1.50E-46	2.80E-43	2.10E-44 5.20E-154
	BlastP Score	421	300	380	825	1880	492	1250	1441	286	1208	544 488	457	474 1502
	aat_B nap_S Score	463	313	419	803	1908	524	1235	1410	927	1487	457 455	405	371
	NCBI gi	g1787450	g3183496	g1742730	g3122275	g1770066	g1170549	g585314	g2492784	g1770070	g3122355	g2618864 g3122204	g3122231	g3123226 g3915989
	Position	4670-5701	6523-5918	10089-11255 g1742730	392-1264	1580-3292	3295-3804	3831-4856	4843-6379	6441-7513	7487-9799	9774-11949 11003-11644	1318 Bt1Gc1663 Bt1G2989 11635-12268 g3122231	2305-1 3660-2478
	Gene Id	1317 Bt1Gc1661 Bt1G2976 4670-5701	Bt1G2977	Bt1G2978	Bt1G2980	Bt1G2981	Bt1G2982	Bt1G2983	Bt1G2984	1318 Bt1Gc1663 Bt1G2985	1318 Bt1Gc1663 Bt1G2986 7487-9799	1318 Bt1Gc1663 Bt1G2987 1318 Bt1Gc1663 Bt1G2988	Bt1G2989	Bt1G2990 Bt1G2991
	Contig Id	Bt1Gc1661	1317 Bt1Gc1661 Bt1G2977	1317 Bt1Gc1661	1318 Bt1Gc1663	1318 Br1Gc1663 Bt1G2981	1318 Bt1Gc1663 Bt1G2982	1318 Bt1Gc1663 Bt1G2983	1318 Bt1Gc1663 Bt1G2984	Bt1Gc1663	Bt1Gc1663	Bt1Gc1663 Bt1Gc1663	Bt1Gc1663	1319 Bt1Gc1666 Bt1G2990 1319 Bt1Gc1666 Bt1G2991
	SEQ NO EI	1317	1317	1317	1318	1318	1318	1318	1318	1318	1318	1318	1318	1319

ŕ			بہ		,	Ð			NO		~		llis]
NCBI gi description	— .		3'REGION (ORF4) [Bacillus stearothermophilus] (Z93102) hypothetical 48.5 kd protein [Bacillus subtilis] S-LAYER PROTEIN PRECURSOR (SURFACE LAYER PROTEIN) [Bacillus lichaniformis]			APPC [Bacillus subtilis] HYPOTHETICAL ABC TRANSPORTER ATP-BINDING PROTEIN CY50.01 [Mycobacterium tuberculosis]	. – –		HYPOTHETICAL ABC TRANSPORTER FERMEASE PROTEIN H10355 [Haemophilus influenzae Rd] HYPOTHETICAL 10.7 KD PROTEIN IN VIRR 5'REGION		8 COLD SHOCK-LIKE PROTEIN CSPC [Bacillus cereus] 9 COMF OPERON PROTEIN 1 [Bacillus subtilis]	(Y14079) hypothetical protein P54 PROTEIN PRECURSOR	
% Cvrg	100 58	99	99	100	90	100	001	22	8 8	66	98 100	42 6	2 9 5
% Ident (88 32	42 42	64 49	39	4	43	91	32	33 46	99	100	47	63
BlastP-	3.50E-306 3.40E-63	1.50E-60 2.20E-59	1.50E-131 1.00E-31	2.80E-29	8.10E-46	1.20E-124	4.80E-270 8.10E-46	1.30E-22	9.20E-38 1.80E-18	6.50E-53	5.60E-31 2.50E-44	1.00E-26 1.40E-05	2.20E-29 1.80E-87
BlastP Score	2938 645	620 609	1290 358	325	481	1225	2597 481	262	405	548	341	304	326
	2938 589	619	1401 317	235	623	1230	2736	173	405	554	341	240	259
NCBI gi	g730399 g3659614	g1381681 g418441	g1903044 g1351072	g2634853	g1168474		g2149596 g1477569	g1175228	g2501390	g732321	g2493763 g729159	g2226145 g2226145	g2635881 g729311
Position	6008-4116 9541-6407	9080-8610 10023-9130	11474-10060 1-411	712-1370	/340-6464 8440-9336	9378-11166	3970-6284 7393-6641	8874-7864	9137-8403	3267-2725	3786-3592 4617-3916	6446-6094	7963-7511 8984-8145
Gene Id	Bt1G2992 Bt1G2993	Bt1G2994 Bt1G2995	Bt1G2996 Bt1G2997	Bt1G2998	Bt1G3000	Bt1G3001	Bt1G3003	Bt1G3005	Bt1G3006	Bt1G3008	Bt1G3009 Bt1G3010	Bt1G3011 Bt1G3012	Bt1G3014 Bt1G3015
Contig Id	Bt1Gc1666 Bt1Gc1666	1319 Bt1Gc1666 Bt1G2994 1319 Bt1Gc1666 Bt1G2995	1319 Bt1Gc1666 Bt1G2996 11474-10060 1320 Bt1Gc1664 Bt1G2997 1-411	1320 Bt1Gc1664 Bt1G2998	1320 Bt1Gc1664 Bt1G2999	1320 Bt1Gc1664 Bt1G3001	Bt1Gc1665 Bt1Gc1665	Bt1Gc1665	1321 Bt1Gc1665 Bt1G3006	1322 Bt1Gc1669	1322 Bt1Gc1669 Bt1G3009		2 Bildel669 Bild3013 2 Bildel669 Bild3014 2 Bildel669 Bild3015
SEQ ID	NO 1319 1319	1319	1319 1320	1320	1320	1320	1321	1321	1321	1322	1322	1322	1322 1322 1322

NCBI gi description	INTERGENIC REGION [Bacillus subtilis] (U56901) putative transcriptional regulator [Bacillus enhilis]				-	(AF008220) YtcI [Bacillus subtilis]				_	. , .			_	subtilis] HYPOTHETICAL 20.3 KD PROTEIN IN PRC-PPHA		_	U	I nermoanaerobacterium saccharolyticum [strain borray] [Thermoanaerobacterium saccharolyticum]	_	9 (AE001635) 3-methyladenine DNA glycosylase [Chlamydia	pneumoniae]		. •
% Cvrg	100	100	100	100	72	100	8 5	3	100	100	100		100	100	66		53	15		100	66	100	1	100
% Ident	40	70	54	63	36	49 5	301	3	48	36	25		39	45	42		54	34		50	45	6	3	63
BlastP- Prob	1.60E-63	3.90E-142	4.40E-125	6.50E-76	2.90E-34	3.20E-186	1.30E-20	1.10E-69	1.10E-89	5.30E-97	2.10E-24		7.80E-57	1.00E-47	2.00E-35		5.30E-42	8.10E-17		8.00E-71	1.30E-36	3 80E-71	J.00.C	4.40E-189
BlastP Score	648	1390	1229	765	372	1806	518	693	895	964	279		585	499	383		445	221		717	394	000	27	1833
aat_B nap_S	999	1368	1210	1140	280	1795	318	1049	920	957	179	`	689	481	340	<u>`</u>	338	125		669	318	000	3	1888
NCBI gi	g1762327	g732324	g1894744	g2582651	g2226222	g2293232	g134231	221016g	g2293229	g2293228	g732339		g1934659	g2293227	03015450		g4126632	g538957		g3688821	g4376792	2070705	g343/93	g1929340
Position	9939-11080	1322 Bt1Gc1669 Bt1G3018 12213-11069 g732324	1322 Bt1Gc1669 Bt1G3019 13616-12300 g1894744	1322 Bt1Gc1669 Bt1G3020 14146-15216 g2582651	15549-16135	2597-996 g2293232	29/1-2/83	4269-3196	5422-4283	7501-5819	8563-6993		8688-9650	10285-9667	D+1C3030 10400-10948 g3915450	21.001.001	646-2561	1144-1674		5976-5097	6074-6693	7975 7111	/8/3-/111	9577-7869
Gene Id		Bt1G3018	Bt1G3019	Bt1G3020		Bt1G3022	Bt1G3023	Bt1G3024	Bt1G3025		Bt1G3027		Bt1G3028	Bt1G3029	B+1G3030	COCTIO	Bt1G3031			Bt1G3033	Bt1G3034	30000	B11G3033	Bt1G3036
Contig Id	1322 Bt1Gc1669 Bt1G3017	Bt1Gc1669	Bt1Gc1669	Bt1Gc1669	1322 Bt1Gc1669 Bt1G3021	Bt1Gc1670	Bt1Gc1670	1323 Bt1Gc16/0 Bt1G3024	1323 Bt1Gc1670	1323 Bt1Gc1670	Bt1Gc1670		1323 Bt1Gc1670 Bt1G3028	Bt1Gc1670	1222 D+1/201670	Directory	1324 Bt1Gc1671	1324 Bt1Gc1671		1324 Bt1Gc1671 Bt1G3033	1324 Bt1Gc1671		1324 BUGG10/1 BUG3033	1324 Bt1Gc1671 Bt1G3036
SEQ ID	I322	1322	1322	1322	1322	1323	1323	1323	1323	1323	1323		1323	1323	1333	1323	1324	1324		1324	1324	9	1524	1324

SEQ ID Contig Id	Gene Id	Position	NCBI gi	nap	BlastP	BlastP-	% % Ident Cyra	%.	NCBI gi description
)				Score	2006	7011		00	
									[Bacillus subtilis]
1324 Bt1Gc1671	Bt1G3037	11468-11326 g2226157	g2226157	124	143	5.30E-10	99	40	(Y14080) hypothetical protein [Bacillus subtilis]
1325 Bt1Gc1672		378-1	g2635185	457	438	2.90E-41	69	91	(Z99117) similar to hypothetical proteins [Bacillus subtilis]
Bt1Gc1672	Bt1G3039	3367-731	g3122886	3462	3311	0	75	100	ALANYL-TRNA SYNTHETASE (ALANINETRNA
)						LIGASE) (ALARS) [Bacillus subtilis]
1325 Bt1Gc1672	Bt1G3040	5324-4266	g2635187	848	298	3.30E-58	4	100	(Z99117) similar to hypothetical proteins [Bacillus subtilis]
1325 Bt1Gc1672	Bt1G3041	8558-6213	g2635193	2289	2240	3.30E-232	26	100	(Z99117) similar to conjugation transfer protein [Bacillus
			ì						subtilis]
1325 Bt1Gc1672	Bt1G3042	9283-8666	g2635194	260	561	2.70E-54	53	100	(Z99117) similar to hypothetical proteins [Bacillus subtilis]
1325 Bt1Gc1672		10538-9432	g3122977	1509	1522	4.00E-156	75	100	PROBABLE TRNA (5-METHYLAMINOMETHYL-2- THIOTIBIDYI A TENMETHYL TRANSFERASE II
1325 Br1Gc1672	B+1G3044	11391-10666 \$2635197	92635197	841	843	3.50E-84	4	70	(Z99117) similar to NifS protein homolog [Bacillus subtilis]
1326 Br1Gc1673	Bt1G3045	3431-245	g1652490	661	771	1.50E-76	36	65	(D90905) hypothetical protein [Synechocystis sp.]
1326 Bt1Gc1673		2967-4490	g2952028	1063	1084	1.00E-109	41	100	(U88888) cardiolipin synthase [Bacillus firmus]
1326 Bt1Gc1673		4588-5505	g2634332	869	890	3.70E-89	58	100	(Z99114) similar to nitric-oxide reductase [Bacillus subtilis]
1326 Bt1Ge1673		5450-7398	g2634331	1155	1217	8.30E-124	40	100	(Z99114) yojO [Bacillus subtilis]
1326 Bt1Gc1673		9997-8016	g1458327	592	689	7.40E-68	43	59	(U64847) F08F3.4 gene product [Caenorhabditis elegans]
Bt1Gc1673	Bt1G3050	10121-8931	g3256681	1057	1119	2.00E-113	55	100	(AP000001) 398aa long hypothetical 5-aminolevulinic acid
					Y				synthase (8 amino-7-oxonenanoate synthase) [Pyrococcus
									horikoshii]
Bt1Gc1673	Bt1G3051	1326 Bt1Gc1673 Bt1G3051 10338-11069 g1175329	g1175329	254	300	1.20E-26	31	100	HYPOTHETICAL PROTEIN HI0912 [Haemophilus
									influenzae Rd]
1326 Bt1Gc1673	Bt1G3052	Bt1G3052 11918-11094 g2635790	. g2635790	1030	957	3.00E-96	71	100	(Z99120) similar to iron(III) dicitrate transport permease reacillus subtilis!
1327 Br1Gc1674	Br1G3053	1-1502	ø2293198	1226	1147	2.20E-116		93	(AF008220) YtgP [Bacillus subtilis]
1327 Br1Gc1674	Bt1G3054	1824-2291	g3915559	420		2.60E-40	54	66	HYPOTHETICAL 17.7 KD PROTEIN IN AMYX-OPUD
			i i						INTERGENIC REGION [Bacillus subtilis]
1327 Bt1Gc1674	Bt1G3055	2607-2389	g2635486	291	291	1.10E-25	74	66	(Z99119) similar to transcriptional regulator (DeoR family) [Bacillus subtilis]
1327 Bt1Gc1674	Bt1G3056	2974-4368	g2293201	1400	1397	7.00E-143	58	100	_
1327 Bt1Gc1674	Bt1G3057	4472-6397	g1075814	317	398	5.10E-37	37	<i>L</i> 9	hypothetical protein 3 - Bacillus stearothermophilus [Bacillus stearothermophilus]
Rt1Gc1674	1327 Br1Gc1674 Br1G3058	5394-7373	9228654	1823	1774	7.80E-183	54	100	thermostable pullulanase [Bacillus stearothermophilus]
Bt1Gc1674	Bt1G3059	7595-8403	g2293206	772		9.60E-75		100	(AF008220) YtmP [Bacillus subtilis]
-									

NCBI gi description	(Z99119) ytzH [Bacillus subtilis]	(AF008220) YtmQ [Bacillus subtilis]	(AF008220) YtnP [Bacillus subtilis]	(Z99119) ytzB [Bacillus subtilis]	(AF008220) YtoP [Bacillus subtilis]	HYPOTHETICAL PROTEIN MJ0261 [Methanococcus	jannaschii]	(AF008220) putative thioredoxin [Bacillus subtilis]	(AF074855) RNA polymerase sigma B [Listeria	monocytogenes] (D90910) regulatory components of sensory transduction	system [Synechocystis sp.]	(Z94043) hypothetical protein [Bacillus subtilis]	CHEMOTAXIS PROTEIN METHYLTRANSFERASE	[Bacillus subtilis] (AL031031) putative sensory histidine kinase [Streptomyces	coelicolor]	(AE000188) orf, hypothetical protein [Escherichia coli]	(Z94043) hypothetical protein [Bacillus subtilis]	(Z75208) hypothetical protein [Bacillus subtilis]	(Z75208) hypothetical protein [Bacillus subtilis]	(Z99111) similar to hypothetical proteins from B. subtilis	[Bacillus subtilis]	HYPOTHETICAL 33.7 KD PROTEIN IN CSPB-GLPP INTERGENIC REGION (Bacillus subtilis)	(Z95398) unknown [Mycobacterium leprae]		megaterium]	SPERMIDINE/PUTRESCINE-BINDING FERIFLASMIC PROTEIN 2 PRECITION (SPRP) []	-,	PERMEASE PROTEIN POTC []			(U88974) ORF42 [Streptococcus thermophilus temperate	
% Cvrg	66	100	100	66	100	100	,	98	100	51.		89	100	40		66	20	100	100	100		100	62	100		001	100		32	78	7	
% Ident	54	65	62	36	74	27		54	23	37		31	56	35		55	53	75	89	51		46	28	31		32	40		25	20	37	
BlastP- Prob I	1.40E-20	1.10E-66	2.20E-82	7.40E-13	3.50E-148	3.70E-18		3.20E-28	3.00E-71	2.10E-13		4.80E-41	7.60E-27	1.20E-99		7.60E-27	1.00E-24	1.80E-183	8.20E-156	6.50E-53		3.30E-72	7.30E-55	1.70E-22		6.90E-49	1.90E-37		5.60E-09	1.10E-29	1.60E-10	
BlastP Score	243	8/9	826	170	1447	220		315	721	151		436	302	737		302	282	1780	1519	548		730	419	261		510	402		139	362	161	
aat B nap S	279	739	887	171	1446	103		314	711	164	•	363	227	905		282	244	1847	1622	521		726	466	254		564	526		93	130	53	
NCBI gi	g2635475	\$2293207	g2293208	g2635471	g2293210			g2293211			0		g584925	g3294236		g1787091	g1945709	g1770026	g1770025	g2633768)	g1724014	£2104606	g322157)	g1172561	7 g1172564)	g3005554	g1850913	g2444121	
Position	8680-8405	8909-9547	9707-10474	11036-10719	11185-12255	12396-13051		Bt1G3066 13132-13409 g229321	7614-8411	9054-11223		8005-10219	11071-10292	16729-11142		15716-16030	334-1	5171-6580	6577-7908	8374-9198		10868-9963	13196-9890 £2104606	Bt1G3079 14449-13799		1329 Bt1Gc1675 Bt1G3080 15552-14512 g1172561	1329 Bt1Gc1675 Bt1G3081 16391-15627 g1172564	•	1-307	10864-1	4731-3283	•
Gene Id	Bt1G3060	Br1G3061	Bt1G3062						Bt1G3067			Bt1G3069	Bt1G3070	Bt1G3071		Bt1G3072	Bt1G3073					Bt1G3077	Bt1G3078	Bt1G3079		Bt1G3080	Bt1G3081		Bt1G3082	Bt1G3083	Bt1G3084	
Contig Id	B#1Gc1674	1327 Bt1Gc1674	Bt1Gc1674	Bt1Gc1674	1327 Bt1Gc1674	Rt1Gc1674		1327 Bt1Gc1674	1328 Bt1Gc1676	1228 Pt1Go1676 Bt1G3068		1328 Bt1Gc1676 Bt1G3069	Bt1Gc1676	1328 Bt1Gc1676		1328 Bt1Gc1676	Bt1Gc1675	Bt1Gc1675	Bt1Gc1675	Bt1Gc1675		1329 Bt1Gc1675	1329 Br1Gc1675 Bt1G3078	1329 Bt1Gc1675		Bt1Gc1675	Bt1Gc1675		1330 Bt1Gc1677	1330 Bt1Gc1677	Bt1Gc1677	
SEQ ID	1327	1327	1327	1327	1327	1327		1327	1328	1336	0701	1328	1328	1328		1328	1329	1329	1329	1329		1329	1329	1329		1329	1329		1330	1330	1330	

_
<u>e</u>
a
Ξ

NCBI gi description	bacteriophage O1205]	(X97918) gene 18.1 [Bacteriophage SPP1]	cell division protein tms26 - Bacillus subtilis [Bacillus subtilis]	(U76387) PRPP synthetase [Corynebacterium	ammoniagenes]	(STAGE V SPORULATION PROTEIN C) [Bacillus	subtilis]	HYPOTHETICAL 8.8 KD PROTEIN IN SPOVC-MFD INTERGENIC REGION (Racillus subtilis)	TRANSCRIPTION-REPAIR COUPLING FACTOR	(TRCF) [Bacillus subtilis]	-	(AF023181) low temperature requirement B protein	[Listeria monocytogenes]	INTERGENIC REGION (Bacillus subtilis)	. –		GSP PROTEIN [Brevibacillus brevis]	(AF004835) tyrocidine synthetase 3 [Brevibacillus brevis]	(Z99113) yoeD [Bacillus subtilis]	SPORE COAT PROTEIN B [Bacillus subtilis]	_	(Z99111) similar to two-component sensor histidine kinase	[Bacillus subtilis]	(ALOZZOUS) hypometical protein for 1/10 [hypometrium tuberculosis]	(D50453) ycgL [Bacillus subtilis]	(AF009224) benzoate transport protein [Acinetobacter sp.	•	_	_	(Y14078) Hypothetical protein [Bacillus subtilis]
cvrg		100	100	100	S	6		66	100		66	100	ţ	70	.100) }	100	<i>L</i> 9	93	<i>L</i> 9	100	33	;	0 1	100	100		57	21	81
% Ident		26	72	100	,	3		47	89		11	36	;	01	42	!	42	39	89	35	40	38	ò	70	48	35		26	66	71
BlastP-		3.60E-52	2.80E-178	2.60E-152	400	4.40E-70		1.00E-15	0		7.00E-72	5.70E-61	,	3.10E-92	4 20E-49		1.60E-47	0	2.70E-22	3.70E-34	2.20E-45	4.30E-46		2.90E-12	1.10E-57	1.80E-71		1.30E-93	3.40E-47	5.30E-97
BlastP Score		541	1731	1486	į	AI/		197	4003		727	624	i	917	512		497	7957	259	371	477	487	1	166	593	723		932	494	964
	Score	347	1731	1583	Š	5		180	4146		727	745		912	491	1	434	6940	257	261	468	420		100	651	694		891	478	965
NCBI gi		g2764873	g2126905	g2289093		g>86021		g586882	9585481		g586883	g4090864		g586885	0412668	64140000	g1170075	g2623773	g2634223	g2815495	g1929337	g2633724	:	g3261548	g1805391	g2352826)	g2226259	g225559	g2226127
Position		10492-7187	14-1381	1415-2365		2441-3004		3072-3293	3402-6932		7069-7602	7851-9440		9450-10287	1770-568	17.00	1988-1275	17853-1	1-215	55-3110	1595-2260	4439-5156		6439-5945	7968-8747	10053-8453		11071-10212 g2226259	11501-11204 g225559	767-1
Gene Id			Bt1G3086	Bt1G3087		Bt1G3088		Bt1G3089	B+1G3090		Bt1G3091			Bt1G3093	D+1/3004		Bt1G3095							Bt1G3101	Bt1G3102			Bt1G3104	Bt1G3105	Bt1G3106
Contig Id	•	1330 Bt1Gc1677 Bt1G3085	1331 Bt1Gc1667 Bt1G3086	1331 Bt1Gc1667 Bt1G3087		1331 Bt1Gc1667 Bt1G3088		1331 Bt1Gc1667 Bt1G3089	1331 Bt1Gc1667 Bt1G3090		1331 Bt1Gc1667	Bt1Gc1667		Bt1Gc1667 Bt1G3093	1222 D+1C-01660	D11001000	Bt1Gc1668	Bt1Gc1668	Bt1Gc1679	Bt1Gc1679	1333 Bt1Gc1679	Bt1Gc1679		1333 Bt1Gc1679	1333 Br1Gc1679	1333 Bt1Gc1679		1333 Bt1Gc1679	1333 Bt1Gc1679	1334 Bt1Gc1682
SEQ ID	ON O	1330	1331	1331		1331		1331	1331		1331	1331		1331	1,2,2	7661	1332	1332	1333	1333	1333	1333		1333	1333	1333		1333	1333	1334

-	NCBI gi description	(Y14078) Hypothetical protein [Bacillus subtilis] (Y14078) Hypothetical protein [Bacillus subtilis]		(D86417) YflJ [Bacillus subtilis]	HYPOTHETICAL 37.2 KD PROTEIN IN IDH-DEOR	INTERGENIC REGION [Bacillus subtilis] (Z83857) ppsC [Mycobacterium tuberculosis]	(AF033674) unknown [Pseudomonas marginalis pv.	UXU OPERON TRANSCRIPTIONAL REGULATOR	[Escherichia coli]	CYANATE TRANSPORT PROTEIN CYNX [synthetic construct]	ORF IS231C [Bacillus thuringiensis]	(AE001295) hypothetical protein [Chlamydia trachomatis]	PROTEIN ECSC [Bacillus subtilis]	ACETATE KINASE (ACETOKINASE) [Bacillus subtilis]	HYPOTHETICAL 37.4 KD PROTEIN IN ACKA-SSPA	INTERGENIC REGION [Bacillus subtilis]	(AF008220) YtgI [Bacillus subtilis]	(AF008220) YtfJ [Bacillus subtilis]	(Y11170) BC541A protein [Bacillus cereus]	(AF008220) YtcJ [Bacillus subtilis]	(Y13937) putative CfxE protein [Bacillus subtilis]	(Y13937) YloQ protein [Bacillus subtilis]	(Y13937) putative Pkn2 protein [Bacillus subtilis]	(Y13937) putative Ptc1 protein [Bacillus subtilis]	HYPOTHETICAL 41.6 KD PROTEIN IN FMT-SPOVM INTER CENIC REGION (Bacilling emptilis)	SUN PROTEIN [Bacillus subtilis]	(Y13937) putative Fmt protein [Bacillus subtilis]	POLYPEPTIDE DEFORMYLASE (PDF)	(FORMYLMETHIONINE DEFORMYLASE) [Bacillus	subtins
	% Cvrg	100	_	86	100	4	_	100		100	18	78	100	100	100		66	66	66	100	100	100	100	100	100	100	100	66		
	% Ident C	26	41	62	47	26	37	25	-	27	66	30	23	81	25		89	20	91	48	11	49	51	49	78	59	69	57		
I and	BlastP. Prob Ic	1.20E-113	1.20E-81	7.60E-11	4.20E-81	1.30E-28	1.00E-29	5.80E-20		6.00E-34	7.00E-40	5.30E-19	1.70E-10	8.10E-165	5.40E-88		1.50E-55	6.10E-25	7.60E-82	1.40E-128	8.20E-85	1.70E-102	4.30E-159	1.70E-61	1.00E-157	3.40E-143	6 40E-117	3.90E-46		
	BlastP	1121	819	151	814	335	329	237		369	425	228	155	1604	879		573	284	821	1262	849	1016	1550	629	1537	1400	1152	484		
	aat_B nap_S Score	932	801	151	817	200	255	159		386	409	140	134	1687	856		290	370	857	1275	828	995	1553	647	1537	1385	1145	451	-	
	NCBI gi	g2226128	\$2220128 \$2226129	g2443232	g1731309	03242253	g2961083	e731090	D	g2506999	g225559	g3328629	g1706579	g584719	g3916031	,	g2293238	g2293237	g2462088	g2293233	g2337808	g2337807	g2337806	g2337805	g3287951	02015867	62337802	g2499922)	
	Position	3742-833	_			7366-10511	8427-10077	8433-9485		9196-10349	1-257	950-3340	2938-2183	5504-4320	6793-5807		7489-6989	8022-7600	8876-9427	11482-9920	939-292	1823-945	4043-2070	4804-4046	5900-4812	7730,5005	8177_7777	8674-8192		
	Gene Id	Bt1G3107				D+1/31112	Bt1G3113	Bt1G3114		Bt1G3115	Bt1G3116	Bt1G3117	Bt1G3118	Bt1G3119	Bt1G3120		Bt1G3121	Bt1G3122	Bt1G3123	Bt1G3124	Bt1G3125	Bt1G3126	Bt1G3127	Bt1G3128	Bt1G3129	D+1/23130	D41G2121	Bt1G3132		
	SEQ Contig Id NO	1334 Bt1Gc1682	1334 Br1Gc1682	1334 Bt1Gc1682	1334 Bt1Gc1682	1234 B+1/G-1682	1334 BtIGc1682	1334 Br1Gc1682 Br1G3114		1334 Bt1Gc1682	1335 Bt1Gc1680 Bt1G3116	1335 Bt1Gc1680 Bt1G3117	1335 Bt1Gc1680 Bt1G3118	1335 Bt1Gc1680	1335 Bt1Gc1680		1335 Bt1Gc1680 Bt1G3121	1335 Bt1Gc1680 Bt1G3122	1335 Bt1Gc1680 Bt1G3123	1335 Bt1Gc1680 Bt1G3124	1336 Bt1Gc1678	1336 Bt1Gc1678	1336 Bt1Gc1678	1336 Bt1Gc1678	1336 Bt1Gc1678	1226 D41C21670	1226 DELICETO/8	1336 Bt1Gc1678	; ; ;	

					,				- ·									ļ	Ä						
	NCBI gi description	PRIMOSOMAL PROTEIN N' (REPLICATION FACTOR Y) [Bacillus subtilis]	(Y13937) putative Dfp protein [Bacillus subtilis]	(Y13937) putative Gink protein [Bacillus suotilis]	(Y13937) YioC protein [Bacillus subtilis]	(Y13937) putative Fact protein [Bacillus subulis]	UKIDYLA IE KINASE (UK) (UKIDINE MONOPHOSPHATE KINASE) (UMP KINASE)	[Synechocystis sp.]	INTERGENIC REGION [Bacillus subtilis]	(D78508) YfiL [Bacillus subtilis]	GLUTAMYL-TRNA REDUCTASE (GLUTR) [Bacillus cultilis]	(AF064058) Hem X [Bacillus stearothermophilus]			UROPORPHYRINOGEN-III SYN I HASE (UROS) (UROPORPHYRINOGEN-III COSYNTHETASE) (HYDROXYMETHYLBILANE HYDROLYASE	(CYCLIZING)) [Bacillus subtilis]	DELTA-AMINOLEVULINIC ACID DEHYDRATASE POR PHOBII INOGEN SYNTHASE) (ALADH)		GLUTAMATE-1-SEMIALDEHYDE 2,1-AMINOMUTASE (GSA) (GLUTAMATE-1-SEMIALDEHYDE	AMINOTRANSFERASE) (GSA-AT) [Bacillus subtilis]	normal spore coat assembly spoVID - Bacillus subtilis []		HYPOTHETICAL 40.6 KD PROTEIN IN SPOVID SIDECTON (ODES) [Bacillus subtilis]		stearothermophilus []
	% Cvrg	100	100	2 3	90 3	8	3	5	3	100	24	100	2 2	8	100		100		100		37	47	9	100	
	% Ident (59	63	89	45	ę ;	40	ţ) C	45	99	3,6	2 4	S	31		75		80		36	33	30	78	
7 21011	BlastP- Prob I	8.60E-248	1.20E-133	1.80E-82	2.00E-58	1.70E-249	9.80E-50	101	1.10E-08	5.20E-67	1.90E-156	6 30F-78	0.2002	3.70E-105	2.90E-18		1.40E-130		6.10E-183		5.50E-30	5.50E-30	8.30E-53	0	
	BlastP Score	2387	1310	827	009	2403	518	į	60	681	1525	787	100	1041	221		1281		1775		319	319	247	3739	
,	aat_ 1 nap Score	2513	1279	812	637	2618	484	Š	693	649	1494	900	070	1027	248		1279		1810		291	286	486	3783	
	NCBI gi	g3183549	g2337799	g2337797	g2337796	g2337795	g2497492		g11/6955	g1817536	g122819	2177300	25117372	g122839	g399875	-	g399870		g399784		g421533	g421533	g586918	g68538	
	Position	11091-8689	12293-11085 g2337799	13418-12684 g2337797	14518-13646 g2337796	16875-14669 g2337795	2360-3145		4411-3218	8755-7827	91-2455	1460 0073	1432-7713	2289-3230	3215-3988		4000-4971		4986-6275	•	6378-7022	6378-8447	7446-8478	8980-11622	
	Gene Id		Bt1G3134	Bt1G3135	Bt1G3136	Bt1G3137	Bt1G3138	,	Bt1G3139	Bt1G3140	Bt1G3141	77777	Bt1G3142	Bt1G3143	Bt1G3144		Bt1G3145		Bt1G3146		Bt1G3147	Bt1G3148	Bt1G3149	Bt1G3150	
	Contig Id	1336 Bt1Gc1678 Bt1G3133	1336 Bt1Gc1678	Bt1Gc1678	Bt1Gc1678	1336 Bt1Gc1678	Bt1Gc1681	2	1337 Bt1Gc1681 Bt1G3139	1337 Bt1Gc1681	1338 Bt1Gc1684	7071.01	1338 Bt1Gc1684 Bt1G3142	Bt1Gc1684 Bt1G3143	1338 Bt1Gc1684 Bt1G3144		1338 Bt1Gc1684 Bt1G3145		1338 Bt1Gc1684 Bt1G3146		1338 Bt1Gc1684	1338 Bt1Gc1684	Bt1Gc1684	1338 Bt1Gc1684 Bt1G3150	
,	S E S	1336	1336	1336	1336	1336	1337		1337	1337	1338	000	1338	1338	1338		1338		1338		1338	1338	1338	1338	

2.87

1.

9

_	
<u>0</u>	
چ	
Z,	

ıtion	THASE (FOLYLPOLY-TASE) (FPGS)	yltransferase WaaV					steins from B. subtilis	ance protein [Bacillus	55 [Haemophilus	EIN IN TRANSPOSON	1 SEQUENCE	nce IS232]	RBOXYKINASE	WN, SIMILAR	sublinaj EIN IN GLNQ-ANSR	subtilis]	se [Bacillus subtilis]	dransferase system	se [Bacillus subtilis]	t sensor histidine kinase		n meliloti]	oteins [Bactllus subtilis]	acillus subtilis]
NCBI gi description	FOLYLPOLYGLUTAMATE SYNTHASE (FOLYLPOLY-GAMMA-GLUTAMATE SYNTHETASE) (FPGS)	[Bacillus subtilis] (AF019746) putative beta1,3-glucosyltransferase WaaV [Escherichia coli]	_	_	-		<u> </u>	[Bacillus subtilis] (Z99107) similar to acriflavin resistance protein [Bacillus subtilis]			TN4556 [Transposon Tn4556] TRANSPOSASE FOR INSERTION SEQUENCE	, ,	PHOSPHOENOLPYRUVATE CARBOXYKINASE		PRODUCT IN E. COLT. [Baching Suburns] HYPOTHETICAL 11.8 KD PROTEIN IN GLNQ-ANSR			 (Z83337) highly similar to phosphotransferase system regulator [Bacillus subtilis] 		(Z99111) similar to two-component sensor histidine kinase [Bacillus subtilis]) (U86377) (p)ppGpp synthetase [Bacillus subtilis]
% Cvrg	100	85	100	100	100	100	100	100	78	29	100		32	100	66	`	100	100	100	31	100	_		100
% Ident	49	23	28	58	55	26	38	63	44	32	100	! !	<i>L</i> 9	24	31	5	25	41	33	40	41			77
BlastP- Prob	1.70E-107	1.50E-23	5.50E-49	5.50E-49	3.70E-89	3.60E-146	1.00E-45	3.20E-256	1.50E-62	1.40E-08	2.90E-231		1.70E-61	1.20E-14	2 50E-12		1.10E-18	8.80E-49	2.00E-26	1.20E-39	1.60E-58	6.00E-82	6.30E-39	5.00E-307
BlastP Score	1063	271	529	529	890	1428	480	2412	639	136	2231		629	191	165	3	225	509	298	429	601	822	416	2946
aat 1 nap	1057	145	610	610	970	1535	490	3348	554	74	2231		611	209	148	<u> </u>	169	502	291	354	584	711	415	2972
NCBI gi	g585155	g3821837	g2633184	g2633184	g2498262	g2443256	g2635800	g2632985	g1351814	g141450	02497382	90000	g3123253	g1881343	21721088	81731000	g2618860	g1763710	g2618860		g2145391	g1658371	g2635223	g2739435
Position	INO 1338 Bt1Gc1684 Bt1G3151 11719-13008 g5851	1-840	2792-5287	2792-5287	5402-6829	6506-8056	8986-8114	9088-12252	1339 Bt1Gc1683 Bt1G3159 13116-12280 g135	165-2224	2590-1298	0/71-0/07	1-519	2679-1759	2200 2002	2300-2763	5258-4623	6019-5246	6116-6766	14867-7457	10189-11001 g214		1024-668	3305-1125
Gene Id	Bt1G3151	Bt1G3152	Bt1G3153	Bt1G3154			Bt1G3157	Bt1G3158	Bt1G3159	Bt1G3160	B+1G3161	DII 03101	Bt1G3162	Bt1G3163	12100120	P0102104	Bt1G3165	Bt1G3166	R+1G3167	Bt1Gc1686 Bt1G3168	Br1Gc1686 Bt1G3169	Bt1Gc1686 Bt1G3170	Bt1G3171	Bt1G3172
Contig Id	Bt1Gc1684	1339 Bt1Gc1683 Bt1G3152	1339 Bt1Gc1683	1339 Bt1Gc1683	Bt1Gc1683	Bt1Gc1683	Bt1Gc1683	1339 Bt1Gc1683 Bt1G3158	Bt1Gc1683	1340 Bt1Gc1688	1240 D+1/201688	DEI GC1088	Bt1Gc1686 Bt1G3162	1341 Bt1Gc1686 Bt1G3163	- 1/0/E	1341 BUGC1080 BUG3104	1341 Bt1Gc1686 Bt1G3165	1341 Bt1Gc1686	1341 Bt1Gc1686 Bt1G3167		Bt1Gc1686	Bt1Gc1686	Bt1Gc1689	
SEQ D	1338	1339	1339	1339	1339	1339	1339	1339	1339	1340	1340	1340	1341	1341		1341	1341	1341	1341	1341	1341	1341	1342	1342

_	4
2	Lablo

Car				- tee	2	Laure		}	
SEC Contig Id	d Gene Id	Position	NCBI gi	nap Score	BlastP	BlastF- Prob	% Ident C	% Cvrg	NCBI gi description
1342 Bt1Gc1689 Bt1G3173	39 Bt1G3173	4028-3519	g2580524	718	693	4.20E-65	82	66	(U86377) adenine phosphoribosyltransferase; Apt [Bacillus subtilis]
1342 Bt1Gc1689 Bt1G3174	39 Bt1G3174	6415-4067	g2635226	2077	2013	3.70E-208	22	100	(Z99118) similar to single-strand DNA-specific exonuclease [Bacillus subtilis]
1342 Bt1Gc1689 Bt1G3175	39 Bt1G3175	7407-6520	g1881354	571	490	9.10E-47	37	100	(AB001488) FUNCTION UNKNOWN, SIMILAR PRODUCT IN SYNECHOCYSTIS AND E. COLI. [Bacillus subtilis]
1342 Bt1Gc1689 Bt1G3176	89 Bt1G3176 89 Bt1G3177	9825-7606 10570-12123	g3220156	2085	1942 1348	1.20E-200 1.10E-137	60	100 100	(AF024506) SecDF protein [Bacillus subtilis] STAGE V SPORULATION PROTEIN B [Bacillus subtilis]
1342 Bt1Gc1689	89 Bt1G3178		g2635233	457	480	1.00E-45	48	84	(Z99118) similar to hypothetical proteins from B. subtilis [Bacillus subtilis]
1343 Bt1Gc1687 Bt1G3179	87 Bt1G3179	1915-2685	g1177019	\$63°	893	1.80E-89	99	100	HYPOTHETICAL OXIDOREDUCTASE IN PEPT-KATB INTERGENIC REGION [Bacillus subtilis]
1343 Bt1Gc1687 Bt1G3180 10573-12003 g2494	87 Bt1G3180	10573-12003	s g2494077	1323	1317	2.10E-134	55	100	NADP-DEPENDENT GLYCERALDEHYDE-3- PHOSPHATE DEHYDROGENASE (NON- PHOSPHORYT ATING GLYCERALDEHYDE 3-
			-					_	PHOSPHATE DEHYDROGENASE) (GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE (NADP+)) (TRIOSEPHOSPHATE
									DEHYDROGENASE) [Streptococcus mutans]
1343 Bt1Gc1687 Bt1G3181 1343 Bt1Gc1687 Bt1G3182	87 Bt1G3181 87 Bt1G3182	12623-13728 g479960 15053-14131 g318345	s g479960 i g3183453	369 409	497	1.60E-47 2.80E-43	29 59	56 43	NADH oxidase - Thermoanaerobacter brockii [] HYPOTHETICAL 38.9 KD PROTEIN IN DAT-SPO0E INTERGENIC REGION [Bacillus subtilis]
1343 Bt1Gc1687 Bt1G3183 14644-15053 1344 Bt1Gc1685 Bt1G3184 1531-2589	87 Bt1G3183 85 Bt1G3184	14644-15053 1531-2589	3 g225559 g2829831	646	661	6.90E-65 1.20E-124	96	2 8 100	ORF IS231C [Bacillus thuringiensis] D-ALANINED-ALANINE LIGASE (D-
1344 Bt1Gc1685 Bt1G3185	85 Bt1G3185	2655-4043	g3024202	1276	1321	7.90E-135	56	100	ALANYLALANINE SYNTHETASE) [Bacinus suomis] UDP-N-ACETYLMURAMOYLALANYL-D- GLUTAMYL-2,6-DIAMINOPIMELATED-ALANYL-D- ALANYL LIGASE (UDP-MURNAC-PENTAPEPTIDE SYNTHETASE) (D-ALANYL-D-ALANINE-ADDING
1344 Bt1Gc1685 Bt1G3186	85 Bt1G3186	3971-5806	g1881268	1765	1616	4.30E-166	70	100	ENZYME) [Bacillus subtilis] (AB001488) ATP-DEPENDENT RNA HELICASE DEAD HOMOLOG. [Bacillus subtilis]
1344 Bt1Gc1685 Bt1G3187	85 Bt1G3187	6009-6971	g1176954	548	548	6.50E-53	. 37	100	HYPOTHETICAL 36.9 KD PROTEIN IN ACDA 5'REGION [Bacillus subtilis]

_	-
_	2
4	3
Ė	~

•	NCBI gi description	(AB001488) FUNCTION UNKNOWN, SIMILAR PRODUCT IN H. INFLUENZAE AND SYNECHOCYSTIS. [Bacillus subtilis]	(AB001488) FUNCTION UNKNOWN, SIMILAR PRODUCT IN E. COLI AND MYCOPLASMA PNEUMONIAE. [Bacillus subtilis]	(AB001488) FUNCTION UNKNOWN. [Bacillus subtilis]	ALANINE RACEMASE []	(AB001488) FUNCTION UNKNOWN: [Dacinus sucuins]	PRODUCT IN MYCOBACTERIUM TUBERCULOSIS AND STAPHYLOCOCCUS AUREUS. [Bacillus subtilis]	_	(AB001488) SIMILAR TO YQFU, YXKD, YITB OF SUBTILIS. IBacillus subtilisl	_		_	[Bacillus subtilis]	(AF008220) Yth	(AF008220) YtjA	_	_	_		PROTEIN MJ0412 [Methanococcus jannaschii] (AF008220) YtlB· [Bacillus subtilis]	-				GLUTAMATE-1-SEMIALDEHYDE 2,1-AMINOMUTASE 2 (GSA) (GLUTAMATE-1-SEMIALDEHYDE AMINOTRANSFERASE) (GSA-AT) [Bacillus subtilis]
	% Vrg	66	66	100	100	3, 8		26	80	100		100	ć	66	66	66	66	100	100	66	100)	98	66	100
	% % Ident Cvrg	32	54	52	56	χ S	S	29	78	36		44	ļ	99	75	82	61	62	40	5	3	}	79	49	80
	BlastP- Prob Ic	1.60E-17	4.80E-25	7.30E-93	9.40E-116	5.40E-17	4.00L-22	6.20E-135	1.30E-70	1.70E-45		2.90E-98	1	1.40E-59	1.00E-29	3.10E-69	1.20E-49	1.50E-62	3.40E-47	3 30E-26	3 10E-62		5.00E-46	4.40E-38	2.80E-178
	BlastP Score	214	285	925	1141	503	1	1322	715	478		916	;	611	329	702	517	639	494	206	263	2	483	408	1731
,	aat_B nap_S Score	249	304	975	1115	227	240	1293	893	504		666		693	327	702	514	858	453	707	283	960	522	385	1802
	NCBI gi	g1881271	g1881272	g1881273	g2506170	g1881275	g18812/0	g2632778	g1881335	93928722		g2829796	ı -	g2293156	g2293294	g2293157	g2293161		g249257	7003307	2223231	8772730	g3913706	g2983147	g2829488
	Position	8412-6973	7630-7986	7971-9093	9220-10392	10692-10976	10984-11331	11411-12719	697-1	4017-3001		5362-3982		5590-6150	6386-6162	6515-6985	8745-9218	12653-11844	13444-12646	12416	13/24-13410	1441/	377-1	1133-663	4374-5660
	Gene Id	Bt1G3188	Bt1G3189	Bt1G3190	Bt1G3191	Bt1G3192	Bt1G3193	Bt1G3194	1345 Bt1Gc1690 Bt1G3195 697-1 g1881335	R#1G3196		Bt1G3197		Bt1G3198	Bt1G3199	Bt1G3200		Bt1G3202	Bt1G3203	7000	B11G3204	DI103203	Bt1G3206	Bt1G3207	
-	Contig Id	1344 Bt1Gc1685 Bt1G3188	1344 Bt1Gc1685 Bt1G3189	1344 Bt1Gc1685	1344 Bt1Gc1685	Bt1Gc1685	Bt1Gc1685	Bt1Gc1685	Bt1Gc1690	1345 Bt1Gc1690 Bt1G3196		1345 Bt1Gc1690 Bt1G3197		1345 Bt1Gc1690	1345 Bt1Gc1690	Bt1Gc1690	Bt1Gc1690	1345 Bt1Gc1690	Bt1Gc1690		Bt1Gt1690	Bt1 Gc1090	1346 Bt1Gc1691	1346 Bt1Gc1691	1346 Bt1Gc1691
	SEQ EQ	1344	1344	1344	1344	1344	1344	1344	1345	1345	CF CT	1345		1345	1345	1345	1345	1345	1345	, , ,	1343	1343	1346	1346	1346

	NCBI gi description	(AB024708) glutamine 2-oxoglutarate aminotransferase large subunit [Corynebacterium glutamicum]	(AE000746) glutamate synthase large subunit [Aquifex aeolicus]	(AB024708) glutamine 2-oxoglutarate aminotransferase large subunit [Corynebacterium glutamicum]	POTASSIUM-TRANSPORTING ATPASE A CHAIN (ATP PHOSPHOHYDROLASE [Clostridium acetobutylicum]	(Z99110) similar to phosphomethylpyrimidine kinase [Bacillus subtilis]	(Z99110) similar to thiamin biosynthesis [Bacillus subtilis]	(Z99110) similar to thiamin biosynthesis [Bacillus subtilis]	(Z99110) similar to sarcosine oxidase [Dacinus subtinis]	REGULATORY PROTEIN TENT [Bacillus subtilis]	(AE001081) ABC transporter permease [Cinamy and	pneumoniae] HYPOTHETICAL ABC TRANSPORTER ATP-BINDING	PROTEIN MJ0412 [Methanococcus jannaschii]	(AE000633) transcriptional regulator (tenA) [Helicobacter	Pytot 20023] (A F000754) Jinoprotein NlpD fragment [Aquifex aeolicus]	(Z98682) YIbB protein [Bacillus subtilis]	LYSYL-TRNA SYNTHETASE (LYSINETRNA	LIGASE) (LYSRS) [Bacillus subtilis]	HYPOTHETICAL 37.1 KD PROTEIN IN FOLK-LYSS INTERGENIC REGION [Bacillus subtilis]	2-AMINO-4-HYDROXY-6-	HYDROXYMETHYLDIHYDROPTERIDINE PYROPHOSPHOKINASE (7,8-DIHYDRO-6-	HYDROXYMETHYLPTERIN-PYROPHOSPHOKINASE)	(HPPK) (6-HYDROXYMETHYL-7,8-DIHYDROPTERIN	PYROPHOSPHOKINASE) (FFFA) [Dacinus sucums] DIHYDRONEOPTERIN ALDOLASE (DHNA) [Bacillus	**************************************	dihydropteroate pyrophosphorylase - Bacillus subtilis
		(AB024708) large subunit	(AE000746) aeolicus]	(AB024708) large subunit	POTASSIUM PHOSPHOH		(Z99110) sin	_			-						• •	LIGASE) (L			HYDROXY PYROPHOS	HYDROXY	(HPPK) (6-F			
	% Cvrg	100	100	100	100	100	100	100	200	99 5	100	100	,	100	52	8	100		100	66				66		100
	% Ident (29	59	29	53	26	58	80	33	43	70	39		47	44	. 64	80		81	59				62		62
TATOM	BlastP- Prob I	1.80E-125	7.10E-129	1.80E-125	6.90E-136	3.20E-60	2.30E-103	1.10E-103	6.00E-50	3.60E-43	3.10E-46	4.20E-42		1.50E-44	6.70E-19	6.60E-28	3.20E-209		1.30E-143	3.80E-48				8.30E-37		9.40E-84
	BlastP Score	657	806	657	1331	617	1024	1027	520	456	485	446		469	777	312	2023		1404	503				396		839
	aat_B nap_S Score	812	874	812	1433	788	985	1027	524	446	434	391		562	143	350	2144	 	1395	516				439		903
	NCBI gi	g4521156	g2983926	g4521156	g3121769	g2633525	g2633524	g2633523	g2633521	g135587	g4377342	e2492576		g2314455	000000000000000000000000000000000000000	67339998	2586058	Ď.	g586896	g585263	ò			g141435		g2126927
	Position	5322-10311	5916-10331	5322-10311	2027-366	4506-3691	5541-4525	6310-5543	7635-6510	8242-7628	10003-7522	1347 Bt1Gc1693 Bt1G3220 11440-10027 £2492576		1347 Bt1Gc1693 Bt1G3221 11422-10772 g2314455	10070 10100	15684-15241	1985-489		3137-2142	3831-3319				4190-3831		5039-4186
	Gene Id		Bt1G3211	Bt1G3212	Bt1G3213	Bt1G3214	Bt1G3215	Bt1G3216	Bt1G3217		Bt1G3219	B+1G3220		Bt1G3221		Bt1G3222	B41G3224		Bt1G3225	Br1G3226				Bt1G3227		Bt1G3228
	Contig Id	1346 Bt1Gc1691 Bt1G3210	1346 Bt1Gc1691	1346 Bt1Gc1691	1347 Bt1Gc1693	1347 Bt1Gc1693	Bt1Gc1693	1347 Bt1Gc1693	1347 Bt1Gc1693	1347 Bt1Gc1693	1347 Bt1Gc1693	Rt1Gc1693	20120110	Bt1Gc1693	0174	134/ Bt1Gc1093	Bt1Gc1694		1348 Bt1Gc1694	1348 Br1Gc1694 Br1G3226				1348 Bt1Gc1694 Bt1G3227		1348 Bt1Gc1694 Bt1G3228
	SEQ EQ	1346	1346	1346	1347	1347	1347	1347	1347	1347	1347	1347	1	1347		1347	1347	OLC I	1348	1348				1348		1348

	NCBI gi description	[Bacillus subtilis] 4-AMINO-4-DEOXYCHORISMATE LYASE (ADC	LTASE) [BACHUS SUCHES] PARA-AMINOBENZOATE SYNTHASE GLUTAMINE AMIDOTRANSFERASE COMPONENT II (ADC	SYNTHASE) / ANTHRANILATE SYNTHASE COMPONENT II [Bacillus subtilis]	PARA-AMINOBENZOATE SYNTHASE COMPONENTT (ADC SYNTHASE) [Bacillus subtilis]	CYSTEINE SYNTHASE (O-ACETYLSERINE SULFHYDRYLASE) (O-ACETYLSERINE (THIOL)-15 A 5 GP (CEASE) (STIDED OYIDE-INDITCHELF PROTEIN		HYPOTHETICAL 51.8 ND FNOTEIN IN FISH CLISIN INTERGENIC REGION [Bacillus subtilis]			subtilis] (Y14081) hypothetical protein [Bacillus subtilis]	(Y14083) hypothetical protein	(Y14083) hypothetical protein		(AF098509) putative sulfur-binding protein [Enterobacter	cloacae] SULFATE TRANSPORT SYSTEM PERMEASE PROTEIN CVST (Recharichia coli)				(Z99111) similar to coenzyme PQQ synthesis [Bacillus		
	% Cvrg	100	66		100	100	,	3	100	50	8	100	100	100	100	100	100	100	99	100	66	
	% Ident (49	11		28	81	;	79	70	79	36	59	22	28	89	51	48	95	82	2	35	
* 200	BlastP. Prob Ic	5.30E-74	7.10E-79		2.10E-125	8.40E-115		7.50E-91	5.30E-90	1,30E-125	6 90F-49	1.70E-75	7.60E-130	8.90E-159	9.70E-114	2.60E-56	9.20E-70	2.10E-109	2.10E-47	4.10E-83	3.00E-16	
	BlastP Score	747	793		1232	1132	,	906	868	1234	\$10	761	1274	1547	1122	580	707	1081	496	833	202	
	aat_B nap_S Score	710	789		1384	1268		923	892	1303	480	756	1264	1559	1187	733	725	1142	496	818	147	
	NCBI gi	g129533	g129521		g129527	g585031		g586894	g586893	g585159	2000	g2220165 g2226165	g2226243	g2226245	g4323056	g118163	g118165	g2462099	g2633746	g2633745	g1175542	
	Position	5895-5024	6479-5898		7882-6482	9031-8111		10014-9137	10812-10114	12007-11045	1 065	1241-1972	1985-2971	3866-5392	5982-6968	6997-7827	7857-8732	9088-9786	330-1	1068-352	1459-1079	
	Gene Id	Bt1G3229	Bt1G3230		Bt1G3231	Bt1G3232		Bt1G3233	Bt1G3234	Bt1G3235	70000 Tra				Bt1G3240	Bt1G3241	Bt1G3242	Bt1G3243	Bt1G3244	Bt1Gc1696 Bt1G3245	Bt1G3246	
	SEQ ID Contig Id NO	1348 Bt1Gc1694 Bt1G3229	1348 Bt1Gc1694 Bt1G3230		1348 Bt1Gc1694 Bt1G3231	1348 Bt1Gc1694 Bt1G3232		1348 Bt1Gc1694 Bt1G3233 10014-9137 g586894	1348 Bt1Gc1694 Bt1G3234 10812-10114 g586893	1348 Bt1Gc1694 Bt1G3235 12007-11045 g585159	10012 Old 0101	1349 BUGG1097	1349 Bt1Gc1697	1349 Bt1Gc1697	1349 Bt1Gc1697		1349 Bt1Gc1697 Bt1G3242	1349 Bt1Gc1697 Bt1G3243	1350 Bt1Gc1696 Bt1G3244	1350 Bt1Gc1696	1350 Bt1Gc1696 Bt1G3246	

_
e
ap
Ξ
-

				-											_								a		_		
*	NCBI gi description		pallidum] (Z99111) similar to transcriptional regulator (MarR family) (Racilius subtilis)		/	_	(AF002404) pAO 1-54 [Bachins annuavis] INTERNATINA PRECTIRSOR []		subtilis]		_	(Z99112) similar to hypothetical proteins			. 1	-	_	_	_		_		subtilis] HYPOTHETICAL 73.2 KD PROTEIN IN SODA-COMGA INTERGENIC REGION [Bacillus subtilis]) (Z99120) similar to hypothetical proteins [Dacinus subtilis]) (Z99120) similar to hypothetical proteins [Bacillus subtilis]	
	% Cvrg	100	66	100	100	100	200	10%		58	93	100	66	100	100	S	9	100	66	8	100	100	86	100	•	100) 1
	% Ident (71 45	54	37	30	36	25	8 8		59	88	22	92	47	34	ć	8	78	99	28	65	9	51	99	;	8 6	3
	BlastP- Prob I	3.80E-87 5.20E-138	8.80E-33	3.30E-97	2.70E-31	3.10E-37	3.70E-41	3.10E-21		7.10E-63	5.40E-191	4.90E-103	6.60E-28	2.20E-59	1.60E-83	ļ	2.20E-59	6.40E-220	3.10E-46	7.90E-48	2.00E-287	8.60E-188	2.10E-173	3.20E-115		1.30E-45 3.10E-78	0.10E-10
	BlastP Score	871 1257	358	996	344	400	437	249		642	1851	1021	312	609	709	Ç	609	2124	485	200	2761	1248	1685	1136		479	è
	aat_B nap_S Score	862 1325	381	914	264	372	335	421 23 8		596	2120	1021	382	583	297	1	609	2124	484	562	2799	1927	1650	1170		773	17.
	NCBI gi	g2633743 g3323354	g2633738	g2633737			g4894270	g5125220 g2633809		g1763079	g2634068	g2634069	g1174408	g2062103	g2129427	,	g2462119	g2634073	g2634074	g116957	g2634076		g1731026	2635771	6	g2635770	20100078
	Position	2211-1555 6361-4667	6937-6503	7130-8650	9441-10271	11764-11144	13141-9996	15593-14213		17461-16819	1-1444	1610-2401	2554-2811	3023-3793	4027-5787		6269-6628	7062-8588	8595-9023	9153-9692	9876-12539	12557-14497	Bt1Gc1698 Bt1G3268 20161-18279 g1731026	324-1346		1339-2004	C1 / C-0C07
	Gene Id	Bt1G3247 Bt1G3248	Bt1G3249	Bt1G3250			Bt1G3253			Bt1G3256	Bt1G3257		Bt1G3259	Bt1G3260	Bt1G3261		Bt1G3262	Bt1G3263	Bt1G3264	Bt1G3265			Bt1G3268	Bt1G3269		Bt1G3270	BTIC32/1
	Contig Id	1350 Bt1Gc1696 Bt1G3247 1350 Bt1Gc1696 Bt1G3248	1350 Bt1Gc1696 Bt1G3249	1350 Bt1Gc1696	1350 Bt1Gc1696 Bt1G3251	1350 Bt1Gc1696 Bt1G3252	1350 Bt1Gc1696	1350 Bt1Gc1696 Bt1G3254 1350 Bt1Gc1696 Bt1G3255	Direction of	Bt1Gc1696				Bt1Gc1698	Bt1Gc1698		Bt1Gc1698	Bt1Gc1698	Bt1Gc1698	Bt1Gc1698				1352 Br1Gc1699 Bt1G3269		1352 Bt1Gc1699 Bt1G3270	1352 Bt1Gc1699
	SEQ NO	1350 1350	1350	1350	1350	1350	1350	1350	200	1350	1351	1351	1351	1351	1351		1351	1351	1351	1351	1351	1351	1351	1352		1352	1327

	NCBI gi description	VEGETATIVE PROTEIN 296 (VEG296) [Bacillus subtilis]	(Z99120) similar to hypothetical proteins [Bacillus subtilis]	(Z99120) similar to NitS protein homolog [Bacillus subtilis]	(Z99120) similar to hypothetical proteins [Bacillus subtilis]	(Z99120) similar to hypothetical proteins [Bacillus subtilis]	(Z99120) yunC [Bacillus subtilis]	TRANSPOSASE FOR INSERTION SEQUENCE	ELEMENT IS231C [Bacillus thuringiensis]	(D87026) glycogen phosphorylase [Bacillus stearothermophilus]	GLYCOGEN SYNTHASE (STARCH (BACTERIAL	GLYCOGEN) SYNTHASE) [Bacillus stearothermophilus]	GLYCOGEN BIOSYNTHESIS PROTEIN GLOD [Bacillus	Stear Outcomplants) GITTOSE-1-PHOSPHATE ADENYLYLTRANSFERASE	(ADP-GLUCOSE SYNTHASE) (ADP-GLUCOSE	PYROPHOSPHORYLASE) [Bacillus subtilis]		stearothermophilus [Bacillus stearothermophilus]		-	(AF007865) BacR [Bacillus licheniformis]	(AF008220) YtfD [Bacillus subtilis]	(X86498) IS1136 DNA [Clostridium perfringens]	(AB016803) transposase [Deinococcus radiodurans]	(U34772) ORF375 [Dichelobacter nodosus]	HYPOTHETICAL PROTEIN MJ0014 [Methanococcus	•		_	SUBTILIS]			(Z99120) yunr [Bacıllus subtilis]	
	% Cvrg		8	100	100	100	66	15		100	100	,	9	100	•		100		100	100	100	100	66	94	100	100	- (- ak	100	00 100	5	3 8	3	9	
	% Ident (06	67	78	91	45	70	94		71	62	;	21	5	:		65		99	34	45	24	99	30	34	40	ì	21	84	ζ	£ ,	9	20	
I and	BlastP- Prob 1	3.10E-124	9.80E-137	3.10E-172	3.40E-221	7.90E-103	6.20E-32	7.10E-31		6.60E-305	3.10E-165		1.20E-92	4 20E-152	707-707-1		2.80E-235		2.30E-112	2.60E-49	8.30E-53	3.20E-106	3.70E-34	6.90E-49	1.40E-43	3.90E-39		1.10E-121	2.60E-113	100	1.00E-54	3.90E-133	1.30E-77	
	BlastP Score	1221	1339	1674	2136	1019	350	340		2926	1608		923	1404	† †		2269		1109	514	547	1051	371	510	460	418		1197	1118	1	262	1305	781	
	aat_ Inap	1221	1445	1726	2232	1027	345	316		2976	1589		992	1 475	Cit		2370		1137	427	539	1034	367	330	318	390		1263	1233		208	1355	932	
-	NCBI gi	g3183561	g2635766	g2635765	22635763	g2635734	g2635733	g136144) -	g1944414	g2811062	<u>į</u>	g2811061	2700500	8147004		g98191			g282286	g4481749	g2293150	g1149666	g3426013	g1002992	g2495742)	g2293149	g2293148		g2293147	g2293146	g2635736	
	Position	3957-4739	4758-6047	6050-7267	7740-9134	9816-11195	11285-11587	1-214		4477-2081	5926-4478		7075-6050	0707 0100	0710-10120		10106-8187		12485-11529	1640-260	2067-1354	3432-2323	3965-3600	4747-2525	4741-3576	5349-4059		6837-5386	7817-7005		8721-7896	10426-8711	1376-2221	
	Gene Id	Bt1G3272	Bt1G3273	Bt1G3274	Bt1G3275		Bt1G3277	Bt1G3278		Bt1G3279	Bt1G3280		Bt1G3281	2000	D1103202		Bt1G3283		Bt1G3284	Bt1G3285	Bt1G3286	Bt1G3287	Bt1G3288	Bt1G3289	Bt1G3290			Bt1G3292	Bt1G3293		Bt1G3294	Bt1G3295	Bt1G3296	
	Contig Id	Bt1Gc1699	Bt1Gc1699	Bt1Gc1699	Bt1Gc1699					Bt1Gc1700 Bt1G3279	Bt1Gc1700 Bt1G3280		Bt1Gc1700		1353 BUIGGI/00 BUIG3282		1353 Bt1Gc1700 Bt1G3283		Bt1Gc1700	Bt1Gc1692	Bt1Gc1692	Bt1Gc1692		Bt1Gc1692	Bt1Gc1692	Bt1Gc1692	=	1354 Bt1Gc1692 Bt1G3292	1354 Bt1Gc1692		1354 Bt1Gc1692 Bt1G3294	1354 Bt1Gc1692	5 Bt1Gc1695	
	SEQ NO D	1352	1352	1352	1352	1352	1352	1353		1353	1353		1353	0	1333		1353	-	1353	1354	1354	1354	1354	1354	1354	1354		1354	1354		1354	1354	1355	

•							******			
SEQ ID Con	Contig Id	Gene Id	Position	NCBI gi	aat nap Score	BlastP Score	BlastP- Prob	% Ident (Cvrg	NCBI gi description
1355 Bt1Gc1695 Bt1G3297	1695	Bt1G3297	5772-3403	g2500765	301	395	1.10E-36	29	<i>L</i> 9	SENSOR PROTEIN VANSB (VANCOMYCIN B-TYPE RESISTANCE PROTEIN VANSB) (VANCOMYCIN HISTIDINE PROTEIN KINASE) [Enterococcus faecalis]
1355 Bt1Gc1695 Bt1G3298	ic1695	Bt1G3298	6227-5523	g2126871	923	941	1.50E-94	78	100	purine nucleoside phosphorylase (EC 2.7) II - Bacillus stearothermophilus [Bacillus stearothermophilus]
1355 Bt1G	Bt1Gc1695]	Bt1G3299	9033-7195	g2804528	1551	1492	6.00E-153	51	100	(D85082) YfiX [Bacillus subtilis]
1355 Bt1G		Bt1G3300	9777-9019	g2633166	430	415	8.00E-39	38	100	(Z99108) yfiW [Bacillus subtilis]
1355 Bt1G	Bt1Gc1695	Bt1G3301	10320-10859		332	366	1.20E-33	41	66	HYPOTHETICAL 20.4 KD PROTEIN IN KIB1-DACB INTERGENIC REGION (ORFX9) [Bacillus subtilis]
1355 Bt1G	Bt1Gc1695]	Bt1G3302	10983-11882	g2619018	762	752	1.60E-74	52	100	(AF027868) superoxide dismutase [Bacillus subtilis]
1355 Bt1G		Bt1G3303	11989-13124	g461914	851	266	3.40E-79	48	100	PENICILLIN-BINDING PROTEIN 5* PRECURSOR (D- ALANYI,-D-ALANINE CARBOXYPEPTIDASE) (DD-
		•								PEPTIDASE) (DD-CARBOXYPEPTIDASE) (PBP-5*) (Bacillus subtilis)
1355 B#16	ic1695	Bt1G3304	1355 Bt1Gc1695 Bt1G3304 13115-13702 g466188	2466188	705	. 654	3.80E-64	29	66	SPORE MATURATION PROTEIN A [Bacillus subtilis]
1355 Bt1Gc1695	301695	Bt1G3305	13708-14241	g466189	578	٠	6.60E-60	99	66	SPORE MATURATION PROTEIN B [Bacillus subtilis]
1355 Bt1G		Bt1G3306	14528-15214	g466190	826	831	6.60E-83	69	100	RIBOSOMAL LARGE SUBUNIT PSEUDOURIDINE
										SYNTHASE B (PSEUDOUKIDY LATE SYNTHASE) (URACIL HYDROLYASE) [Bacillus subtilis]
1355 Bt1Gc1695	3c1695	Bt1G3307	15353-15896 g466191	g466191	427	462	8.40E-44	46	66	RESA PROTEIN [Bacillus subtilis]
1355 Bt1Gc1695		Bt1G3308	16009-17641	g466192	1836	1807	2.50E-186	63	100	RESB PROTEIN [Bacillus subtilis]
1355 Bt1Gc1695			17744-18800 g466193	g466193	1286	1293	7.30E-132		100	RESC PROTEIN [Bacillus subtilis]
1355 Bt1C		Bt1G3310	19101-19820	g466194	965	844	2.80E-84	77	100	TRANSCRIPTIONAL REGULATORY PROTEIN RESD
										[Bacillus subtilis]
1356 Bt1Gc1702	3c1702	Bt1G3311	438-1631	g2636487	775	675	2.30E-66	42	100	(Z99124) pyrimidine-nucleoside transport protein [Bacillus maktilist
1356 Bt1Gc1702		Bt1G3312	4121-5350	g2507254	1410	1415	8.60E-145		100	SWOUNDS AMINOPEPTIDASE AMPS [Bacillus subtilis]
1356 Bt10			7838-6396	g120777	1413	1330	8.80E-136	95	100	SUCCINATE-SEMIALDEHYDE DEHYDROGENASE (NADP+) (SSDH) [Escherichia coli]
1356 Bt1Gc1702	3c1702	Bt1G3314	9231-7852	g1072970	797	788	2.40E-78	39	100	dhlR protein - Xanthobacter autotrophicus [Xanthobacter
)					1	autotrophicus]
1356 Bt1Gc1702	Gc1702	Bt1G3315	10660-9353	g1805459	1472	1374	1.90E-140	63	100	(D50453) homologue of 4-ammobutyrate annicularisterase GabT of E. coli [Bacillus subtilis]
1356 Bt1Gc1702	3c1702	Bt1G3316	Bt1G3316 12624-11719 g2632986) g2632986	1023		7.70E-105		100	
1356 Bt1Gc1702			Bt1G3317 14612-13188 g258	s g2589196	2081	2090	2.60E-216	98	100	(AF008553) Glu-tRNAGln amidotransferase subunit B

7	-
	ē
,	<u>_</u>
ļ	<u>ಡ</u>

- 1/2)-			S	<u>S</u>		,	z		-'	7						SI	<u> </u>	ž	Z O							ase	
NCBI gi description	[Bacillus subtilis] (Z99107) alternate gene name: yedB; similar to amidase	[bacilius suotilis] hypothetical protein 1 - Bacillus megaterium [Bacillus	megaterium] (AB001488) FUNCTION UNKNOWN. [Bacillus subtilis]	(AB001488) FUNCTION UNKNOWN. [Bacillus subtilis]		PROTEIN ECSB [Bacillus subtilis]	ABC-TYPE TRANSPORTER ATP-BINDING PROTEIN	ECSA [Bacillus subtilis] HIT PROTEIN [Bacillus subtilis]	(Y14077) Hypothetical protein [Bacillus subtilis]	PROTEASE PRODUCTION REGULATORY PROTEIN	HPR [Bacillus subtilis]	(Y14077) Hypothetical protein [Bacillus subtilis]	PROTEIN EXPORT PROTEIN PRSA PRECURSOR		_	RNA POLYMERASE SIGMA FACTOR SIGV [Bacillus	subtilis] RNA POLYMERASE SIGMA-H FACTOR (SIGMA-30)		HYPOTHETICAL 27.2 KD SENSORY IRANSDUCTION PROTEIN IN ROCR-PURA INTERGENIC REGION	[Bacillus subtilis] (D78193) homologous to sn:PHOR BACSU [Bacillus			_	HYPOTHETICAL PROTEASE IN ROCK-FURA INTERGENIC REGION [Bacillus subtilis]	. –		[התיוותם פתה הייים
Cvrg	100	100	100	66	100	100	100	66	66	100	,	66	100		100	66	66		100	100	3	100	100	100	66	35	
% Ident (80	42	32	43	49	36	89	99	31	9		36	45		46	25	26		2	7.4	Ç	26	71	48	77	36	
BlastP- Prob I	1.60E-193	5.80E-36	3.00E-64	2.60E-33	1.60E-47	1.70E-59	5.00E-85	7.10E-47	1.30E-17	1.10E-64		8.60E-19	5.00E-33		4.40E-189	6.90E-17	4.50E-13		2.10E-86	1 40E 160	1.40E-102	2.60E-40	5.20E-99	2.70E-93	1.20E-62	1.70E-43	
BlastP Score	1875	388	655	363	497	610	851	491	215	629		226	284		1833	208	172		864	1640	1049	429	983	929	640	436	
	Score 2025	384	530	359	594	609	892	524	214	615		210	564	•	1830	156	157		957	7071	10%	264	616	929	640	353	
NCBI gi	g2632982	g322156	g1881270	g1881269	g1706579	g1706578	g1706577	o3023940	g2226119	g132549)	g2226121	g131027)	g2635858	g3024615	2548832	ò	g586808	10/4012	g1004813	g2636586	g1064810	g1731364	g1064795	g2633	
Position	NO 1356 Bt1Gc1702 Bt1G3318 16084-14630 g2632982	1680-1026	3329-1881	3792-3316	5664-4954	6895-5169	7625-6885	8194-8628	8805-9158	9467-11001		10368-10030 g2226121	11096-11980 g131027		1357 Bt1Gc1701 Bt1G3330 12396-14729 g2635858	16936-16415 g3024615	1357 Bt1Gc1701 Bt1G3332 16972-16412 £548832		438-1139	0000	1140-2990	2984-4291	5107-5910	5962-7146	7439-7915	6807-10716	
Gene Id	Bt1G3318 1	Bt1G3319		Bt1G3321	Bt1G3322	Bt1G3323	Bt1G3324	B+1G3325	Bt1G3326	Bt1G3327		Bt1G3328	Bt1G3329		Bt1G3330	Bt1G3331	B#1G3332		Bt1G3333		Bt1G3334	Bt1G3335	Bt1G3336	Bt1G3337	Bt1G3338	Bt1G3339	
Contig Id	Bt1Gc1702	1357 Bt1Gc1701		1357 Br1Gc1701	1357 Bt1Gc1701	1357 Bt1Gc1701	Bt1Gc1701	1357 B#1Gc1701	1357 Br1Gc1701	1357 Bt1Gc1701		Bt1Gc1701	1357 Bt1Gc1701		Bt1Gc1701	1357 Bt1Gc1701	B#1Gc1701		1358 Bt1Gc1704 Bt1G3333	1	1358 Bt1Gc1/04 Bt1G3334	1358 Bt1Gc1704	1358 Bt1Gc1704	Bt1Gc1704	1358 Bt1Gc1704 Bt1G3338	Bt1Gc1704	
SEQ ID	NO 1356	1357	1357	1357	1357	1357	1357	1357	1357	1357		1357	1357		1357	1357	1357		1358	•	1358	1358	1358	1358	1358	1358	

													ė	A.	•					
	NCBI gi description	(AE001484) putative [Helicobacter pylori J99]		ORF IS231C [Bacillus thuringiensis]	_	_		(UROPORPHYRINOGEN III METHYLASE) (UROM) [Bacillus megaterium]	FERREDOXINNITRITE REDUCTASE [Syntering 18 Syntem Special Syntem Special Syntem Special Syntem Special Syntem Special Syntem Special Specia					CDP-DIACYLGLYCEROLSERINE O-PHOSPHATIDYLTRANSFERASE (PHOSPHATIDYLSERINE SYNTHASE) [Helicobacter				AMINOIMIDAZOLE CARBOXAMIDE RIBOTIDE ISOMERASE IBacillus subtilis		
-(%	100	100 26	21	100	66	100		100	100	100	86	100	100	100	100	100		100	
	% % Ident Cvrg	29	88	76	99	35	9/		42	89	59	62	55	34	45	50	63		49	
	BlastP- Prob Io	1.10E-23	3.50E-148 3.40E-40	1.50E-46	1.60E-106	4.50E-29	3.20E-90		3.50E-93	1.10E-137	4.70E-82	5.90E-146	2.90E-185	8.20E-30	1.80E-73	1.20E-46	2.00E-83 7.40E-52		6.20E-48	
	BlastP Score	272	1447 428	488	1054	323	006		928	1348	823	1426	1797	330	742	489	836)	501	
	aat_B nap_S Score	207	1518 376	467	1319	321	284		857	1364	821	1411	1826	300	732	493	812) }	485	
	NCBI gi	g4155054	g1934831 g1177010	0225450	g2226203	g2462962	g267052		g730154	g2462958	g2462956	g1075836	11354-13254 g1731026	9 g2493570	6 g3257003	5 g3913834	5 g3913862		5 g399894	
	Position	10318-11100	12896-11919 13379-14084	13779-14084	1450-98	2483-1998	3991-3278		5903-4369	7672-6524	8407-7709	10252-8945		1359 Bt1Gc1703 Bt1G3352 13420-14109 g2493570	1359 Bt1Gc1703 Bt1G3353 15751-14146 g3257003	1359 Bt1Gc1703 Bt1G3354 17194-16575 g3913834	1359 Bt1Gc1703 Bt1G3355 17936-17175 g3913862		1359 Bt1Gc1703 Bt1G3357 19257-18655 g399894	
	Gene Id		Bt1G3341 Bt1G3342	D+1C33/13					1359 Bt1Gc1703 Bt1G3347	1359 Bt1Gc1703 Bt1G3348	3 Bt1G3349	1359 Bt1Gc1703 Bt1G3350	3 Bt1G3351	3 Bt1G3352	3 Bt1G3353	3 Bt1G3354	3 Bt1G3355		3 Bt1G3357	
	Contig Id	Bt1Gc1704	Bt1Gc1704 Bt1Gc1704	1250 D+1Cc1704	Bt1Gc1703	Br1Gc1703	Bt1Gc1703		Bt1Gc1703	Bt1Gc1703	1359 Bt1Gc1703	Bt1Gc1703	1359 Bt1Gc1703	Bt1Gc1703) Bt1Gc1703) Bt1Gc170) Bt1Gc170;	bulge1/03) Bt1Gc170.	
	SEQ ED	1358	1358 1358	1250	1350	1350	1359		1359	1359	1359	1359	1359	1359	1359	1359	1355	1559	1359	

							* .	•												r+'	1			,		
NCBI gi description	_	HISTIDINOL DEHYDROGENASE (HDH) [Bacillus subtilis]	(Z99120) similar to N-acetyl-glucosamine catabolism [Bacillus subtilis]	. — —		<u> </u>		_							_	_	[Bacillus subtilis] GLICOSAMINE—FRUCTOSE-6-PHOSPHATE		(HEXOSEPHOSPHATE AMINOTRANSFERASE) (D-	FRUCTOSE-0-FRUSFIRATE ANNIEUR TRANSPIRATE	AMIDOTRANSFERASE) (GLUCOSAMINE-6-PH	[Bacillus subtilis]			acyl-carrier protein reductase [Dachius Sucuris] HYPOTHETICAL ABC TRANSPORTER PERMEASE	
Cvrg	66	26	100	92	66	66	100	66		66	100	8	100	100	100	100	100	•					100	100	100	
% Ident	51	57	69	37	37	<i>L</i> 9	41	89	^	47	31	54	74	89	29	79	74	•					76	54	4	!
BlastP- Prob I	2.70E-47	4.30E-63	8.00E-87	7.70E-34	1.80E-25	6.00E-50	3.80E-71	2.90E-34		1.30E-24	2.90E-34	1.10E-91	1.50E-115	1.80E-98	7.40E-36	2.90E-185	6 30F-229						6.30E-59	1.40E-71	2 50F-24	70007
BlastP Score	495	644	898	368	289	520	720	372	·	281	372	914	1139	8/6	387	1797	2200	7					411	724	236	007
aat B nap S Score	495	999	200	343	180	582	705	347		257	297	958	1118	8/6	304	1857	7777	1					420	653	747	Ì
NCBI gi		g3122219	g2635726	g1175888	g1695869	g2635725	g2635724	g2635719)	g2635718		g1176961	g1703387	g1944009	g3892894	g2632444	31160010	g1102717					g2635720	g2633552	0.0401471	84014/1
Position	1359 Bt1Gc1703 Bt1G3358 19836-19255 g2618867	Bt1G3359 20555-19836 g31222	14-781	1631-1036	6376-4777	7725-7228	7834-8850	9641-9313		1360 Bt1Gc1705 Bt1G3366 9733-10062	10124-10903 g4894249		1245-2132	2384-3202	3207-4163	4678-6021	6511 0210	0100-1100					8601-10517	1361 Bt1Gc1708 Bt1G3375 12205-12978 g26335	12670 12006	1361 Bt1GC1/08 Bt1G53/0 130/0-13020 g4014/1
Gene Id	Bt1G3358		Bt1G3360	Bt1G3361	Bt1G3362	Bt1G3363	Br1G3364	Bt1G3365		Bt1G3366	1360 Bt1Gc1705 Bt1G3367		Bt1G3369	Bt1G3370			04100040	DII (133/3					1361 Bt1Gc1708 Bt1G3374	8 Bt1G3375	7ECC0714G	8 BUG33/0
Contig Id	Bt1Gc1703	1359 Bt1Gc1703	1360 Bt1Gc1705	1360 Bt1Gc1705 Bt1G3361	1360 Bt1Gc1705	1360 Bt1Gc1705 Bt1G3363	1360 B#1Gc1705 B#1G3364	1360 Bt1Gc1705 Bt1G3365		Bt1Gc1705	Bt1Gc1705	Bt1Gc1708	1361 Bt1Gc1708	1361 Bt1Gc1708	1361 Bt1Gc1708	Bt1Gc1708		1301 BUGG1/00 BUG33/3					Bt1Gc1708	Bt1Gc1708	0001	Btige1/05
SEQ EQ	1359	1359	1360	1360	1360	1360	1360	1360		1360	1360	1361	1361	1361	1361	1361		1301					1361	1361		130

(

NCBI at description	INCBI graescription	PROTEIN YAEE [Escherichia coli]	(AE000655) ABC transporter, ATP-binding protein (abc) (Helicobacter pylori 26695)	TRANSPOSASE FOR INSERTION SEQUENCE ELEMENT IS232 [Insertion sequence IS232]	(Z82044) hypothetical 54.4 kd protein [Bacillus subtilis]	hypothetical protein 176 (SAGP 5' region) - Streptococcus	pyogenes [] (Y17554) carbamate kinase [Bacillus licheniformis]	(Y17554) permease [Bacillus licheniformis]	(Y17554) ornithine carbamoyltransferase [Bacillus licheniformis]	(Y17554) arginine deiminase [Bacillus licheniformis]	(AJ010954) arginine repressor [Bacillus	stearothermophilus] (AB011838) metyl-accepting chemotaxis protein [Bacillus	halodurans]	(AE001058) glutamine ABC transporter, ATP-binding	protein (glnQ) [Archaeoglobus fulgidus]	(D90907) glutamme-binding peripiasimy provint	[Synechocystis sp.]	(D90910) hypothetical protein [Synechocystis sp.]	(Y14084) hypothetical protein [Bacilius subfilis]	ORF IS231C [Bacillus thuringiensis]	(AE000696) anthranilate synthase component 1 [Aquitex		(CONTAINS: GLUTAMINE AMIDOTRANSFERASE; ANTHRANILATE PHOSPHORIBOSYLTRANSFERASE	[Thermotoga maritima]		(IGPS) [Bacillus megaterium]	TRYPTOPHAN SYNTHASE BETA CHAIN [Lactococcus lactis]		
%	Cvrg		49	53	19	66	100	100	100	100	66	8	,	100	,	3		100	20	77	70	100			96		100	100	
%	=		38	95	51	38	9	69	73	69	46	77	ì	26	6	33		27	47	86	48	45			42		99	40	
BlastP-			2.00E-26	9.30E-61	1.10E-23	6.20E-32	5.80E-84	1.70E-148	2.20E-132	3.20E-161	4.20E-26	5 KOE-34	10000	1.50E-62	!	3.10E-62		1.10E-34	1.80E-57	1.00E-54	3.50E-84	6.60E-115			4.00E-44		3.20E-147	1.80E-41	
BlastP	Score		298	622	277	350	841	1450	1298	1570	295	306	027	639	:	929		376	591	565	843	1133			465		1438	440	
aatB	nap S		223	616	229	337	696	1700	1320	1563	336	750	5	657		205		262	009	549	792	1132			415		1429	511	
	NCBI gi	l	g2314761	g2497382	01673402	g80034	93687419	g3687418	g3687417	g3687416	g4127534	4610000	84314309	£2649950	.	g1652664	1	g1652983	g2226259	g225559	g2983197	0586124			°2499065		g267168	g267167	
	Position		1361 Bt1Gc1708 Bt1G3377 14192-13690 g2314761	384-1	470-720	0		4982-3570	6077-5085	7349-6111	8061-7615	11014 0011	11214-8211	9706-10432		1362 Bt1Gc1707 Bt1G3388 10247-12148 g1652664		13284-11512 g1652983			1-1035	9090-228			2626-3380		3986-5191	5189-5947	
	Gene Id		Bt1G3377	Bt1G3378	D+1/32270					Bt1G3384	Bt1G3385	7000	1362 Bt1Gc1/0/ Bt1G3380	Bt1G3387		Bt1G3388		Bt1G3389	Bt1G3390			D+1/33303			B+1G3394	1	Bt1G3395	1363 Bt1Gc1711 Bt1G3396	
	Contig Id	-	Bt1Gc1708	1362 Bt1Gc1707 Bt1G3378	D41C21707	Bt1Gc1707	1362 B+1Gc1707	Bt1Gc1707	Bt1G¢1707	1362 Bt1Gc1707	1362 Bt1Gc1707	()	BtlGcI/0/	1362 B#1Gc1707 B#1G3387		Bt1Gc1707		Bt1Gc1707	1362 Bt1Gc1707	Bt1Gc1707	Bt1Gc1711	1362 D41Co1711	Direct in		1363 Bt1Gc1711 Bt1G3394	DEI 001/11	1363 Bt1Gc1711	3 Bt1Gc1711	
SEO	<u>e</u> §	2	1361	1362	1260	1362	1367	1362	1362	1362	1362	,	1362	1362	1001	1362		1362	1362	1362	1363	1262	COCI		1263	100	1362	1362	

427

3.7

NCBI gi description		llis]	water-10mmig (nox) [Domesia	[Bacillus subtilis]	onent response regulator		(Z99120) similar to two-component sensor histidine kinase		(AE001272) positive transcriptional activator [Lactococcus	. FBacillus subtilis	(A 1010320) RNA nolymerase sigma factor [Streptomyces		tilis]	n [Methanobacterium		DEOTETN FAOR 5 2 IN	TOTELLA L'AODOLE ILA	habditis elegans]	(D90770) ORF ID:0260#11; similar to [Escherichia coll]	illus cereus]	SFERASE (ORNITHINE	OXO-ACID AMINOTRANSFERASE) [Bacillus subtilis]	otilis]		germination protein A [Bacillus	Property of Proper		Bodine		germination protein D [Bacillus		germination protein E Bacillus	
	II actococcis lactic			burgdorferij (V14083) hvnothetical protein (Bacillus subtilis)		_				lactisj VY14082) hymothetical protein [Bacillus subtilis]			_				-	_	_		_	OXO-ACID AMINOTRANS	_	_	9 (AF053927) probably spore germination protein A		_	_	0 (AFUS3921) probable spore germmation protein C	98 (AF053927) probable spore germination protein D		99 (AF053927) probable spore germination protein E cereus]	
Cvrg	ı	66	3	100	1 5	7	100	,	100	00	\ \	5	100	100	₹	i	CC		100	78	100		100	86	66		66		8				
% Ident		46	39	7	7 4	CC	38	,	36	9	2 6	ì	5.5	3 6	73	į	27		42	39	75		54	93	66	,	66	•	<u> </u>	100		100	
BlastP-		5.90E-27	4.00E-92	1 20E 117	1.202.1	1.20E-09	8.30E-108		1.40E-43	00 000	2.30E-26 1 00E-14	770/1	6 40E-101	1007.00	1.20E-28	,	1.20E-14		8.40E-60	3.60E-52	2.30E-167		4.80E-80	1.80E-25	7.70E-34		5.10E-21		2.70E-95	9.40E-29		2.30E-64	
BlastP Score		303	918	1150	1132	90	1066		460		185	61	1001	1001	319		201		613	541	1628		804	289	368		247		948	320		929	
	Score	301	880	11.66	0011	920	1068		331		747	3	000	100	197	,	137		537	486	1617	; i i	698	289	368		327		1047	320		959	
NCBI gi	_	g1665854	g2688656	F100000	g2222041	g2635819	g2635818	, •	g3582223		g2220208	82000240	1045004	g1242024	g2622286		g2496971	,)	5 g1742172	9 g1930114	0730217	0	£2145376	£2984717	g2984718		g2984719		g2984720	g2984721)	g2984722	
Position		8333-8771	12532-13866 g26886	40000	1489-212	3338-4115	4131-5847		7419-6588		7641-8124	0010-0/0/	1000 2001	1020-9291	11508-10392		12821-8950		12577-11656 g1742	13556-15849	1-1203		2529-1633	2776-2952	3052-3270		3288-3491		3562-4173	4183-4374		4393-4776	
Gene Id	-	Bt1G3397	Bt1G3398			Bt1G3400	Bt1G3401		Bt1G3402	1	Bt1G3403	BT1G3404		Bt103403	Bt1G3406		Bt1G3407		Bt1G3408	Br1G3409			Bt1G3411				Bt1G3414		Bt1G3415	Bt1G3416		Bt1G3417	
Contig Id		1363 Bt1Gc1711	1363 Bt1Gc1711	1	1364 Bt1Gc1709	1364 Bt1Gc1709	1364 Bt1Gc1709 Bt1G3401		1364 Bt1Gc1709 Bt1G3402		1364 Bt1Gc1709	1364 Btl Gel /09 Btl G3404	() ()	1364 Bti Gc1/09 Bt1 G3403	1364 Bt1Gc1709 Bt1G3406 11508-10394 g2622286		1364 Bt1Gc1709 Bt1G3407 12821-8950 g2496971		1364 Br1Gc1709 Bt1G3408	1364 B#1Gc1709	1364 Bil Gel 707	D11 OC1 / 17	1365 B#1Gc1712	1365 Br1Ge1712	Bt1Gc1712		1365 Bt1Gc1712		1365 Bt1Gc1712 Bt1G3415	1365 Bt1Gc1712		1365 Bt1Gc1712 Bt1G3417	
SEQ ID	NO N	1363	1363	,	1364	1364	1364		1364		1364	1364	,	1364	1364		1364		1364	1364	1365	000	1365	1365	1365		1365		1365	1365		1365	

J.

SEQ Conti	Contig Id	Gene Id	Position	NCBI gi	aat nap	BlastP Score	BlastP. Prob	% Ident (% Cvrg	NCBI gi description
Bt1Gc	:1712	NO 1365 Bt1Gc1712 Bt1G3418	4822-5034	g2984723	Score 366	292	8.70E-26	100	66	(AF053927) probable spore germination protein F [Bacillus
Bt1Gc	:1712	1365 Bt1Gc1712 Bt1G3419	9194-5484	g113345	3258	3322	0	54	100	cereus] ATP-DEPENDENT NUCLEASE SUBUNIT A [Bacillus
Bt1Gc	01712	1365 Bt1Gc1712 Bt1G3420	12712-9191	g113346	2954	2990 1	2990 1.1e-311	50	100	subtilis] ATP-DEPENDENT NUCLEASE SUBUNIT B [Bacillus mbtilis]
5 Bt1Gc	c1712	Bt1G3421	1365 Bt1Gc1712 Bt1G3421 13305-12841 g729934	g729934	543	546	1.10E-52	63	85	SIGNAL PEPTIDASE I (SPASE I) (LEADER PEPTIDASE
6 Bt1Ga	c1713	1366 Bt1Gc1713 Bt1G3422	1021-1470	g730784	459	468	1.90E-44	57	66	1) [Bacillus caldolylicus] STAGE V SPORULATION PROTEIN AC [Bacillus subtilis]
1366 Bt1Gc1713		Bt1G3423	1474-2490	g730785	805	831	6.60E-83	48	100	STAGE V SPORULATION PROTEIN AD [Bacillus cultified]
6 Bt1G	c1713	1366 Bt1Gc1713 Bt1G3424	2490-2843	g730786	335	385	1.20E-35	57	37	SUCCIONAL STORULATION PROTEIN AE [Bacillus subtilis]
1366 Bt1Gc1713	c1713	Bt1G3425	3091-3792	g1881360	348	370	4.70E-34	34	100	(AB001488) SIMILAR TO YDFR GENE PRODUCT OF THIS ENTRY (YDFR_BACSU). [Bacillus subtilis]
5 Bt1G	c1713	1366 Bt1Gc1713 Bt1G3426	4189-4779	g3287962	877	883	2.00E-88	88	66	ATP-DEPENDENT CLP PROTEASE PROTEOLYTIC SUBUNIT (ENDOPEPTIDASE CLP) (CASEINOLYTIC
5		D41 C2497	5346 5000	g1045653	- ²	259	2.70E-22	67	66	PROTEASE) (PROTEASE TI) [Bacillus subtilis] (Z94043) hypothetical protein [Bacillus subtilis]
1366 Bt1Gc1713		Bt1G3428	6320-5373	g1945652	1320		1.00E-134		100	(Z94043) hypothetical protein [Bacillus subtilis]
1366 Bt1Gc1713	c1713	Bt1G3429	7406-6406	g2635989	1063		3.60E-107		100	_
1366 Bt1Gc1713	ic1713	Bt1G3430	8252-7369	g2811049	1026	1049	5.30E-106	89	200	HYPOTHETICAL 33.9 KD FROTEIN IN CART-TAXAS INTERGENIC REGION [Bacillus subtilis]
1366 Bt1Gc1713		Bt1G3431	8734-8261	g1945649	578	592	1.40E-57		66	
1366 Bt1Gc1713		Bt1G3432	9755-8952	g2688692	182	148	4.00E-10	29	100	(AE001175) B. burgdorferi predicted coding region BBU/39 [Borrelia burgdorferi]
6 Bt1G	ic1713	1366 Bt1Gc1713 Bt1G3433	10883-9936	g3123300	1411	1411	2.30E-144	84	100	
1366 Bt1Gc1713	ic1713	Bt1G3434	12480-10972 g1945645	g1945645	692	745	8.60E-74	36	100	
1366 Bt1Gc1713 1366 Bt1Gc1713 1366 Bt1Gc1713	ic1713	Bt1G3436 Bt1G3437		g2618860 g3122350	717		5.40E-65 2.30E-80		100	
										I KANSFEKASE (SPORE GERMINATION INCLESS) GERF) [Bacillus subtilis]

NCBI gi description		99 (AF017113) YvID [Bacillus subtilis]	44 EXCINUCLEASE ABC SUBUNIT A [Bacillus subtilis]	_	[Staphylococcus aureus]		[Bacillus subtilis]	99 HYPOTHETICAL TRANSCRIPTIONAL REGULATOR IN DDZ A CCDB INTERGENIC REGION (Bacillus	subtilis]	100 (AE000627) ABC transporter, ATP-binding protein (yhcG)		100 (AB001488) PROBABLE INANSFONI AIL DINDING		77 (AB001488) PROBABLE TRANSCRIPTIONAL	REGULATOR, SIMILAR TO LEU RESPONSIVE	KEGULATOR. [Bacilius subtilis]	_	100 (AJ002571) YkfA [Bacillus subtilis]	100 (U93875) 2-nitropropane dioxygenase [Bacillus subtilis]	100 PROTEIN DLTD PRECURSOR [Bacillus subtilis]	99 (D86240) D-alanyl carrier protein [Staphylococcus aureus]	100 DLTB PROTEIN [Bacillus subtilis]	100 D-ALANINE-ACTIVATING ENZYME (DAE) (D-	ALANINE-D-ALANYL CARRIER PROTEIN LIGASE)	_	100 N-ACYL-L-AMINO ACID AMIDOHY DROLASE	_	99 (AJ222587) YkuP protein [Bacillus subtilis]	100 PYRUVATE KINASE (PK) [Bacillus stearothermophilus]	100 6-PHOSPHOFRUCTOKINASE	(PHOSPHOFRUCTOKINASE)	100 ACETYL-COENZYME A CARBOXYLASE CARBOXYL	
% Cvrg	100	9		100		90														•							•					72	
% Ident	75	51	82	64		22		42		42		46		44			52	43	40	48	69	59				51		44	70	98			
BlastP- Prob	5.00E-117	3.00E-16	2.10E-189	1.40E-233	1	1.00E-95		1.10E-23		1.40E-43	!	3.90E-60		4.30E-40			6.40E-46	3.40E-47	4.80E-57	6.20E-103	1.80E-25	2.70E-109	1.50E-149			8.60E-90		4.50E-29	2.70E-173	1.00E-134		4.30E-111	
BlastP Score	1153	202	1836	2253		952		272		460		393		427			482	494	587	1020	289	1080	1460			968		323	1684	1320		1097	
aat I nap	1211	311	1815	2358		892		266		495		684		357			470	442	588	1013	288	1164	1435	 		893		350	2029	1422		1245	
NCBI gi	g3122218	22618847	g3915204	g4490609) -	g1710395	-	g1724000		g2314379)	g1881259	i	g1881235	ŀ		g1934645	g2632018	g1934639	g729343	ø1405337	o779341	g729340	0		g584749)	g2632237	2585371	g125125	0	g3121736	
Position	15652-14723 23122218	16192-15821 g2618847	18080-16814	1146-3297		3443-4873		5078-5440		5461-6147		6947-7863		11088-9393			10372-10935 g1934645					16240-15065 o729341	17751-16240			18245-19347		19817-20665 g2632237	1831-74	~		3947-2973	
Gene Id	Rt1G3438	Bt1G3439	Bt1G3440	Bt1G3441		Bt1G3442		Bt1G3443		Bt1G3444		Bt1G3445		Bt1G3446			Bt1G3447									1 Bt1G3454		1 Bt1G3455	5 Br1G3456	S Br1G3457		5 Bt1G3458	
SEQ Contig Id	NO 1366 Br1Gc1713	1366 Br1Ge1713	1366 Br1Gc1713	1367 Bt1Gc1714		1367 Bt1Gc1714 Bt1G3442		1367 Bt1Gc1714 Bt1G3443		1367 Bt1Gc1714 Bt1G3444		1367 Bt1Gc1714		1367 Bt1Gc1714 Bt1G3446			1367 Br1Gc1714	1367 Rt1Gc1714	1367 Br1Gc1714	1367 Bt1Gc1714	1267 D#1Gc1714	1267 Dt1Gc1714	1367 BriGe1714	13013G /0CI		1367 Bt1Gc1714 Bt1G3454 18245-19347 g584749		1367 Bt1Gc1714 Bt1G3455	1368 Bt1Gc1706 Bt1G3456	1368 Br1Gc1706	SOLIDO INC.	1368 Bt1Gc1706 Bt1G3458	

-	4
	2
	7

																					*		
NCBI gi description	TRANSFERASE SUBUNIT ALPHA [Bacillus subtilis] (AF008220) acetyl-CoA carboxylase subunit [Bacillus subtilis]	. –		(AF008220) DNA-polymerase III alpha-chain [Bacillus subtilis]		_	_	_	(AE001017) conserved hypothetical protein [Archaeoglobus	fulgidus] (Z99111) similar to Xaa-Pro dipeptidase [Bacillus subtilis]			ENZYME II, A COMPONENT) (EIII-CEL) [Bacillus enhtilis]		COMPONENT (EIIC-CEL) (CELLOBIOSE-PERMEASE IIC COMPONENT) (PHOSPHOTRANSFERASE	 PTS SYSTEM, CELLOBIOSE-SPECIFIC IID COMPONENT (FIIB-CEL) (CELLOBIOSE-PERMEASE)	IIB COMPONENT) (PHOSPHOTRANSFERASE	ENZYME II, B COMPONEN I) [Bacillus stearothermonhilus]		COMPONENT (EIIC-CEL) (CELLOBIOSE-PERMEASE	ENZYME II, C COMPONENT) [Bacillus	9 PTS SYSTEM, CELLOBIOSE-SPECIFIC IIB COMPONENT (EIIB-CEL) (CELLOBIOSE-PERMEASE	
% Cvrg	100	4	100	100	00	100	66	100	100	100	6			100		66			100			66	
% % Ident Cvrg	73	38	83	51	36	61	42	89	46	58	55	}		4		9			65			62	
BlastP. Prob Io	1.40E-98	3.10E-14	3.10E-163	1.50E-307	1 AOE.20	1.40E-20	1.40E-16	6.50E-163	7.40E-52	9 40E-116	4 60F-27			1.80E-98		2.50E-28			1.50E-142			3.40E-31	
BlastP Score	626	183	1589	2951	242	1035	205	1586	538	1141	304	5		876		316			1394	-		343	
aat_Bl nap_S	971	142	1727	2861	300	1029	203	1567	468	1135	207			933		316			1515			332	
NCBI gi	g2293262	g1945709	g2293261	g2293260	300000	g2293320 g2203250	02293325	92293258	g2649315	2	82033131 ~1173708	811/7/08		g1172710	0	g2499992			2499991	b		g1172709	
Position	4717-3932	5577-3921				10/6/-1126/ g2293326 1775/-11316 g7293759	12434-11310 g223323 12414-12713 o229332	1368 Bildel/00 Bild3465 12414-12701 g2293258	Br1G3467 15643-14325	15706 16884 20632757	13/90-1000-	co-76c		1881-174		2200-1901			4184-2838			4492-4187	
Gene Id		Br1G3460	Bt1G3461	Bt1G3462		Bt1G3463	B+1G3465	Br1G3466	Bt1G3467			B11G3409		Bt1G3470		: Bt1G3471			1360 B+1Gc1715 B+1G3477			1369 Bt1Gc1715 Bt1G3473	
Contig Id	NO 1368 Bt1Gc1706 Bt1G3459	368 Bt1Gc1706	1368 Br1Gc1706 Br1G3461	1368 Bt1Gc1706	1	1368 Bt1Gc1706 Bt1G3463	1368 BUI GCI / 106 BUI G3464	Bt1Gc1706	B#1Gc1706		1368 Bt1Gc1/06 Bt1G3408	1369 Bt1Gc1/13 Bt1G3409		1360 Rt1Gc1715 Rt1G3470		1369 Bt1Gc1715 Bt1G3471			D+1Gc1715	Tri Cori V		9 Bt1Gc171!	'n
SEQ EQ	NO 1368	1368	1368	1368		1368	1368	1269	1368		1308	1369		1360) CT	1369			1360	CT.		1369	

	NCBI gi descrip	
,	% % Ident Cvrg	
Table 1	BlastP. % Prob Ide	
	BlastP Score	•
	aat_ NCBI gi nap Score	
	Position	
	d Gene Id	
	p Id	

i					-	ı	Laure	, `		
SEQ B P S	Contig Id	Gene Id	Position	NCBI gi	aat_ nap Score	BlastP Score	BlastP. Prob	% Ident (% Cvrg	NCBI gi description
1369	1369 Bt1Gc1715 Bt1G3474	Bt1G3474	4711-5952 g12146	g121467	328	370	4.70E-34	25	100	IIB COMPONENT) (PHOSPHOTRANSFERASE ENZYME II, B COMPONENT) [Bacillus subtilis] PROTON/SODIUM-GLUTAMATE SYMPORT PROTEIN (GLITAMATE-ASPARTATE CARRIER PROTEIN)
1369 1369	1369 Bt1Gc1715 Bt1G3475 1369 Bt1Gc1715 Bt1G3476	Bt1G3475 Bt1G3476	7279-7650 9691-7700	g2633029 g2851530	150 766	210	4.20E-17 1.60E-58	35 32	99	[Bacillus stearothermophilus] (Z99107) similar to hypothetical proteins [Bacillus subtilis] HYPOTHETICAL 84.1 KD PROTEIN IN HEMY-GLTT
1369	1369 Bt1Gc1715 Bt1G3477	Bt1G3477	9835-10716	g4757086	502	523	2.90E-50	38	100	INTERGENIC REGION (ORFB) [Bacillus subtilis] (AL049763) putative transcriptional regulator
1369	1369 Bt1Gc1715	Bt1G3478	12816-10764 g2632727	Lg2632727	455	511	5.40E-49	35	100	[Streptomyces coelicolor] (Z99106) ydaJ [Bacillus subtilis]
1369	1369 Bt1Gc1715			g2293292 g2293292	814	696	2.00E-120 1.30E-68	4 4	3 20	(AF008220) TrnA [Bacillus subtilis] (AF008220) YthB [Bacillus subtilis]
1369	1369 Bt1Gc1715	Bt1G3481	15178-16506 g1929338	i g1929338	1337	1136	3.20E-115	58	100	(Z93767) similar to ArsB integral membrane protein
				• •						presumably containing the arsenate-arsenite-antimony transmembrane channel [Bacillus subtilis]
1369	Bt1Gc1715	Bt1G3482	1369 Bt1Gc1715 Bt1G3482 18377-16617 g30417	g3041750	2468	2439	2.70E-253	78	100	THIAMIN BIOSYNTHESIS PROTEIN THIC [Bacillus
1370	1370 Bt1Gc1717		1332-382	g80325	785	746	6.70E-74	46	100	subuns.] L-lactate dehydrogenase (EC 1.1.1.27) - Bacillus subtilis []
1370	Bt1Gc1717		3989-3291	g2619046	739	681	5.20E-67	29	100	(AF027868) YobT [Bacillus subtilis]
1370	Bt1Gc1717	Bt1G3485	5913-4132	g2635778	2319	2093	1.20E-216	92	100	(Z99120) similar to butyryl-CoA dehydrogenase [Bacillus
1370	1370 Bt1Gc1717 Bt1G3486	Bt1G3486	7430-6261	g2635779	1564	1574	1.20E-161	79	100	subtilis] (Z99120). similar to acetyl-CoA C-acyltransferase [Bacillus
1370	1370 Bt1Gc1717 Bt1G3487	Bt1G3487	9910-7455	g2635780	2861	2800	1.50E-291	89	100	subtilis] (Z99120) similar to 3-hydroxyacyl-CoA dehydrogenase
1270	D41001717	D4177480	10001	100000	Č	6		;		[Bacillus subtilis]
1370	Bt1Gc1717	Bt1G3488	1370 Bt1Gc1717 Bt1G3488 103Z1-1Z466 g130399/ 1370 Bt1Gc1717 Bt1G3489 12073-11168 22635781	g1303997	/97	302	7.60E-27	45 6	4 6	(D84432) Dack [Bacillus subtilis]
	1100110	St. Co. 137	00111-07071	84022701	100	<u>+</u>	4./UE=78	3		(227120) sunnar to promie denythrogenase [Dacinus subtilis]
1370	Bt1Gc1717	Bt1G3490	1370 Bt1Gc1717 Bt1G3490 12681-12397 g2635789	g2635789	283	254	9.20E-22	58	66	(Z99120) yusU [Bacillus subtilis]
1370	Bt1Gc1717	Bt1G3491	12990-12676	g3023656	271	292	8.70E-26	54	66	HYPOTHETICAL 12.1 KD PROTEIN IN GLKA
1370	Bt1Gc1717	Bt1G3492	1370 Bt1Gc1717 Bt1G3492 15068-13077 g1708962	g1708962	756	753	1.20E-74	31	100	3'REGION (ORF2) [Staphylococcus xylosus] METHYL-ACCEPTING CHEMOTA XIS PROTEIN MCPC
,								! !		[Bacillus subtilis]
1370	Bt1Gc1717	Bt1G3493	1370 Bt1Gc1717 Bt1G3493 15165-13077 g2626835	g2626835	427	524	2.30E-50	27	83	(D86947) chemotactic transducer [Pseudomonas

-	-
_	2
-	2
ŀ	-

															_		7																
	NCBI gi description	aeruginosa] (L77763) neutral protease A [Bacillus thuringiensis]	(D29674) DNA-binding protein [Lactobacillus sp.]	(Z99120) similar to nicotinate phosphoribosyltransferase	[Bacillus subtilis]	(E27121) suntil to many mean amprocess recommendation (Bacillus subtilis)		[Synechocystis sp.] (D86418) Yfn A [Bacillus subtilis]	•			INTERGENIC REGION [Bacillus subtilis]	-						_	_	_	_	_	HYPOTHETICAL 39.9 KD PROTEIN IN AMYLAND 3/PRION [Pacillus acidomulhulyticus]		_	_	_	_	_	_) (AF008220) probable lysophospholipase [Bacillus subtilis]	
	% Cvrg	89	100	100	5	3	66	100	100	100	66		100	,	3	74	100	i	53		100	8	100	100	20	3 8	3	9	100	100	100	100	
	% Ident C	72	6	20	77	8	36	ç	3 5	28	45		72	\$	23	37	40		37		11	62	49	27	Ţ	: !	2	23	5 6	26	58	52	
anie 1	BlastP- Prob Ic	2.00E-121	1.20E-211	6.70E-193	ט בט מוטיר נ	3.30E-239	1.30E-22	1 00E-101	3 70E-144	1.70E-22	9.40E-29		0		9.90E-73	6.10E-96	8.50E-112		1.60E-39		2.10E-118	2.90E-50	3.70E-66	5.80E-84	100	2.50E-138	1.30E-56	4.80E-64	4.80E-33	4.80E-33	1.60E-111	9.90E-73	
	BlastP Score	834	2046	1869	,	7300	262	1006	1400	196	320	i i	3768	!	735	954	927		425		1166	523	673	841		1354	583	653	256	256	1101	735	
	aat_ Bl nap S Score	1101			6	7757	247	1220	1400	201	354		3878		693	863	1061		366		1577	511	643	993	•	1344	564	624	300	300	1153	735	
	NCBI gi	97.05.00	g473955	g2635670		g2635862	g2495428	011/0360	821107	81165118	3915537		3 22635168)) g730100	g2633696	9 g400640)	0 g3861319		g2226151	g2226150	g2293177	g418336							5 g2293168	2 g2293167)
	Position	842_1	2546-1275	2739-4208		6772-4415	7199-6804	0110	10722 0511	10/23-9011 g116515 1188/1-11180 02226218	13607-13103	.2101-70001	Bt1G3503 16554-13618 g26351		16849-17640 g730100	5032-1783			11328-1515		1530-307	2022-1531	5601-4843	6985-5951		7662-8627	8618-9202	9547-10209	10365-11693	10365-11693			
	Gene Id	D+1/33/07	Bt1G3495	Bt1G3496	~	Bt1G3497	Bt1G3498			Bt1G3500	B(103501		Bt1G3503		Bt1G3504	Bt1G3505			1372 Bt1Gc1716 Bt1G3507 11328-15150 g3861319		3 Bt1G3508	3 Bt1G3509	3 Bt1G3510	8 Bt1G3511			3 Bt1G3513	8 Bt1G3514	8 Bt1G3515				
	Contig Id Gene Id	D+1 G-1730 D+1 G3404		1371 Bt1Gc1720 Bt1G3496		1371 Bt1Gc1720 Bt1G3497	1371 Bt1Gc1720 Bt1G3498	1	Bt1Gc1720	13/1 Bt1Gc1/20	Bt1Ge1720		Bt1Gc1720		1371 Bt1Gc1720	1372 Bt1Gc1716	Bt1Gc1716		Bt1Gc1716		1373 Bt1Gc1718 Bt1G3508	1373 Bt1Gc1718	1373 Bt1Gc1718	Bt1Gc1718		1373 Bt1Gc1718	1373 Bt1Gc1718	3 Bt1Gc1718					
	SEQ BO	5 5	1371	1371		1371	1371	İ	1371	1371	1271	17/1	1371		1371	1372	1372		1372		1373	1373	1373	1373		1373	1373	1373	1373	1373	1373	1373	:

	NCBI gi description	(AF008220) YtoA [Bacillus subtilis]	(D63999) hypothetical protein [Synechocystis sp.]	(Z99111) molybdopterin-guanine dinucleotide biosynthesis protein A [Bacillus subtilis]	(AF008220) putative molibdenum cofactor biosynthesis protein [Bacillus subtilis]	(AF008220) SAM synthase [Bacillus subtilis]	HYPOTHETICAL 12.0 KD PROTEIN IN UNG-ROCA INTERGENIC REGION [Bacillus subtilis]	HYPOTHETICAL 20.3 KD PROTEIN IN UNG-ROCA	INTERGENIC REGION [Bacillus subtilis]	CELL WALL HYDROLASE CWLJ [Bacillus subtilis]	D-ALANYL-D-ALANINE CARBOXYPEPTIDASE	PRECURSOR (DD-PEPTIDASE) (DD-	CAKBOAY PEPTIDASE) (CPASE) (FBF3) [Dacinus	stearomermopnins) HVPOTHETTCAL 29 5 KD PROTEIN IN ROCC-PTA	INTERGENIC REGION [Bacillus subtilis]	PROBABLE PHOSPHATE ACETYLTRANSFERASE	(PHOSPHOTRANSACETYLASE) (VEGETATIVE	PROTEIN 43) (VEG43) [Bacillus subtilis]	HYPOTHETICAL 31.4 KD PROTEIN IN PTA 3'REGION	[Bacillus subtilis]	Bacillus subtilis]	(Z99123) ywzC [Bacillus subtilis]	FERRICHROME TRANSPORT PERMEASE PROTEIN	FHUB [Bacillus subtilis]	FERRICHROME IRANSPORT FERMEASE FROTEIN FHUG [Bacillus subtilis]	FERRICHROME TRANSPORT ATP-BINDING PROTEIN	FHUC [Bacillus subtilis]	(Z99108) similar to iron(111) dicitrate transport permease [Bacillus subtilis]	HYPOTHETICAL 51.0 KD PROTEIN IN PTA 3'REGION
	% Cvrg			66 0	66	8	99 F	99 F			100 I	ш \	,	S 1001		100 E	_	_	100 I	_ 651		66	100		3	100		001	100
	% Ident C	75	35	35	61	84	2	40		61	46			13	3	79			61	7	ž	77	51	i	7	65	ê	58	71
TADICT	BlastP- Prob I	7.00E-56	1.80E-64	1.50E-30	1.20E-53	6.70E-154	7.10E-31	1.70E-20		4.10E-35	4.70E-98			1 50E 04	10-700:1	2.80E-130			4.40E-86	1000	1.90E-00	7.30E-29	3.00E-96		2.80E-68	3.80E-87	i i	5.00E-30	2.20E-171
	BlastP Score	576	657	337	555	1501	340	242		380	974			170	Į.	1278			861	5	407	321	957	;	693	871	,	332	1666
	aat I nap	648	568	305	551	1525	322	259		470	879			033	726	1278			845	į	5/C	321	963	,	954	922		205	1659
	NCBI gi	g2293300	g1001478	g2633797	g2293241	g2293164	g732365	g732366		g1175629	g461913		,	320000	8/323/0	g730415			g732378		g/32380	g2636297	g1706795		g1706797	g1706796	,	g2633168	g2506579
	Position	14713-15225	15222-17057 g1001478	17938-17335	18447-17938 g2293241	1373 Bt1Gc1718 Bt1G3523 20714-19636 g2293164	443-779	1395-847		1722-1294	3187-1881			4100 0010	4120-3370	4366-5334			6234-5398	1	7055-6363	7337-7558	6884-8922		8931-9938	9957-10763		1374 Bt1Gc1719 Bt1G3536 10962-11897 g263	1374 Bt1Gc1719 Bt1G3537 12043-13341 g2506579
	Gene Id	Bt1Gc1718 Bt1G3519		Bt1Gc1718 Bt1G3521	1373 Bt1Gc1718 Bt1G3522	Bt1G3523	Bt1Gc1719 Bt1G3524	Bt1G3525		Bt1G3526	Bt1G3527			00300170	D1103328	Bt1G3529			Bt1G3530		Bt1G3531	Bt1G3532	Bt1G3533		Bt1G3534	1374 Bt1Gc1719 Bt1G3535		Bt1G3536	Bt1G3537
	Contig Id			Bt1Gc1718	Bt1Gc1718	Bt1Gc1718	Bt1Gc1719	1374 Bt1Gc1719 Bt1G3525		1374 Bt1Gc1719 Bt1G3526	Bt1Gc1719 Bt1G3527				13/4 BIIGGI/19 BIIG3328	1374 Bt1Gc1719 Bt1G3529			1374 Bt1Gc1719 Bt1G3530		1374 Bt1Gc1719 Bt1G3531	1374 Br1Gc1719 Br1G3532	1374 Bt1Gc1719 Bt1G3533	-	1374 Bt1Gc1719 Bt1G3534	Bt1Gc1719		HBt1Gc1719	Bt1Gc1719
	SEQ NO ID	1373	1373	1373	1373	1373	1374	1374		1374	1374				13/4	1374			1374		1374	1374	1374		1374	1374		1374	1374

_	
Table	

							I GIVE I			
SEQ NO DE	Contig Id	Gene Id	Position	NCBI gi	aat_ l nap Score	BlastP	BlastP. Prob	% Ident C	% Cvrg	NCBI gi description
1374	Bt1Gc1719	Bt1G3538	1374 Bt1Gc1719 Bt1G3538 13572-13387 g1565	g1565237	238	243	1.40E-20	°,	86	[Bacillus subtilis] (Z80360) Unknown, highly similar to Pseudomonas putida 4-oxalocrotonate tautomerase [Bacillus subtilis]
1374	Bt1Gc1719	Bt1G3539	13685-14347 g1565238	g1565238	620	552	2.40E-53	. 53	100	(Z80360) Unknown [Bacillus subtilis]
1374	Bt1Gc1719	Bt1G3540	14382-14897	g1565239	069	654	3.80E-64	9/	66	(Z80360) Unknown [Bacillus subtilis]
1374	Bt1Gc1719	Bt1G3541	16978-15047	g1565240	1740	1741	2.50E-179	23	100	(Z80360) unknown, highly similar to penicillin binding protein [Bacillus subtilis]
1374	Bt1Gc1719	Bt1G3542	1374 Bt1Gc1719 Bt1G3542 17799-17089 g1731	g1731058	434	453	7.50E-43	38	100	HYPOTHETICAL 27.0 KD PROTEIN IN SPO0A-MMGA PATTED CENTY PEGION (Pagilling cultilist)
1374	Bt1Gc1719	Bt1G3543	17952-18356 g2116754	g2116754	260	283	7.80E-25	39	66	(D86418) Yfmp [Bacillus subtilis]
1374	Bt1Gc1719	Bt1G3544	Bt1G3544 18365-19456 g4914	g4914624	1071	920	2.50E-92	57	35	(AJ009627) multidrug resistance transporter [Listeria
1375	1375 Bt1Gc1721 Bt1G3545	Bt1G3545	3447-4426	g4530143	383	354	2.30E-32	41	100	monocytogenes] (AF085222) putative scaffolding protein [Streptococcus
1375	Bt1Gc1721	Bt1G3546	6889-7482	g4126620	187	207	8.80E-17	31	100	thermophilus bacteriophage D11] (AB016282) ORF34 [bacteriophage phi-105]
1375	Bt1Gc1721		8579-11745	g3947462	234	346	1,30E-30	25	57	(AJ006589) gp43 [Bacteriophage phi-C31]
1375	1375 Bt1Gc1721	Bt1G3548	11990-13839	g4126623	200	230	3.20E-19	32	79	(AB016282) ORF37 [bacteriophage phi-105]
1376	Bt1Gc1722	Bt1G3549	156-1067	g1731090	830	715	1.30E-70	53	100	HYPOTHETICAL 34.6 KD PROTEIN IN GLNQ-ANSR
										INTERGENIC REGION [Bacillus subtilis]
1376	1376 Bt1Gc1722 Bt1G3550	Bt1G3550	2475-3557	g132565	1005	1006	1.90E-101	54	100	RIBOFLAVIN-SPECIFIC DEAMINASE [Bacillus subtilis]
1376	1376 Bt1Gc1722	Bt1G3551	3566-4204	g132633	959	618	2.50E-60	61	100	RIBOFLAVIN SYNTHASE ALPHA CHAIN [Bacillus
										subtilis]
1376	1376 Bt1Gc1722 Bt1G3552	Bt1G3552	4223-5413	g121062	1532	1541	3.80E-158	73	100	GTP CYCLOHYDROLASE II / 3,4-DIHYDROXY-2- BUTANONE 4-PHOSPHATE SYNTHASE (DHBP
	-									SYNTHASE) [Bacillus subtilis]
1376	1376 Bt1Gc1722 Bt1G3553	Bt1G3553	5432-5893	g2497762	288	416	6.30E-39	73	66	6,7-DIMETHYL-8-RIBITYLLUMAZINE SYNTHASE (DMRL SYNTHASE) (LUMAZINE SYNTHASE)
									-	(RIBOFLAVIN SYNTHASE BETA CHAIN) [Bacillus amvloliquefaciens]
1376	1376 Bt1Gc1722 Bt1G3554	Bt1G3554	7401-6399	g1705464	1012	1031	4.20E-104	59	100	BIOTIN SYNTHASE (BIOTIN SYNTHETASE) [Bacillus subtilis]
1376	1376 Bt1Gc1722 Bt1G3555	Bt1G3555	10108-8939	g115009	776	789	1.90E-78	43	100	8-AMINO-7-OXONONANOATE SYNTHASE (7-KETO-8-AMINO-PELARGONIC ACID SYNTHETASE) (7-KAP SYNTHETASE) (L-ALANINEPIMELYL COA LIGASE)
										[Bacillus sphaericus]

_
=
ap

NCBI gi description	DETHIOBIOTIN SYNTHETASE (DETHIOBIOTIN SYNTHASE) (DTB SYNTHETASE) (DTBS) [Bacillus subtilis]		– –		. ,					PYKKOLINE-5-CAKBOA I LA 1E NEDOC 1ASE HOMOLOG 2 [Bacillus subtilis]	_	(Y13937) putative YhaQ protein [Bacillus subtilis]		(AE000933) dTDP-glucose 4,6-dehydratase
% Cvrg	100	100	100 44 100	100	100	100	100	100	100	100	100	98		63
% Ident	4	59	41 48 58	54	48	09	53	26	47	4 8	72	59	3	4
BlastP- Prob l	6.00E-50	5.20E-138	4.00E-92 1.30E-173 7.70E-89	1.60E-97	4.70E-50	2.10E-127	4.90E-87	2.20E-68	1.70E-75	7.50E-59	2.00E-90	1.30E-63	1.201-22	8.00E-71
BlastP Score	520	1351	918 1663 887	696	521	1251	870	694	761	604	905	649	707	717
aat B nap S	495	1416	1001 1450 924	1032	543	1233	196	730	902	644	1072	671	404	699
NCBI gi	g1705466	g1705460	g3287970 g2626826 g129265	g543846	g584767	; g584771	g80340	g1731078	g1731077	g1709791	g2337815	g2337814	81/310/3	g2622920
Position	1376 Bt1Gc1722 Bt1G3556 10814-10119 g1705466	1376 Bt1Gc1722 Bt1G3557 12163-10814 g1705460	1376 Bt1Gc1722 Bt1G3558 13315-14694 g3287970 1376 Bt1Gc1722 Bt1G3559 17072-15133 g2626826 1376 Bt1Gc1722 Bt1G3560 20682-19729 g129265	1376 Bt1Gc1722 Bt1G3561 21852-20699 g54384	1376 Bt1Gc1722 Bt1G3562 22619-21852 g584767	1376 Bt1Gc1722 Bt1G3563 23854-22634 g584771	1376 Bt1Gc1722 Bt1G3564 24893-23859 g80340	1376 Bt1Gc1722 Bt1G3565 26125-25337 g17310	1376 Bt1Gc1722 Bt1G3566 27097-25719 g1731077	1376 Bt1Gc1722 Bt1G3567 27263-28099 g1709791	1376 Bt1Gc1722 Bt1G3568 29022-28112 g2337815	Bt1G3569 29700-29041 g2337814	31493-30363	647-1
Gene Id	Bt1G3556	Bt1G3557	Bt1G3558 Bt1G3559 Bt1G3560	Bt1G3561	Bt1G3562	Bt1G3563	Bt1G3564	Bt1G3565	Bt1G3566	Bt1G3567	Bt1G3568		B(1033/0	Bt1G3571
Contig Id	Bt1Gc1722	Bt1Gc1722	1376 Bt1Gc1722 1376 Bt1Gc1722 1376 Bt1Gc1722	Bt1Gc1722	Bt1Gc1722	Bt1Gc1722	Bt1Gc1722	Bt1Gc1722	Bt1Gc1722	Bt1Gc1722	Bt1Gc1722	1376 Bt1Gc1722	13/6 BUGG1/22	1377 Bt1Gc1723 Bt1G3571
SEQ EQ	1376	1376	1376 1376 1376	1376	1376	1376	1376	1376	1376	1376	1376	1376	13/0	1377

1	-	
	<u>ම</u>	
,	<u> </u>	
,	æ	
į	-	

					`										_					r						
NCBI gi description	[Methanobacterium thermoautotrophicum] (AF071085) dTDP-4-dehydrorhamnose 3,5-epimerase	[Enterococcus faecalis] SPORE COAT POLYSACCHARIDE BIOSYNTHESIS	PROTEIN SPSI [Bacillus subtilis]			[Mycobacterium tuberculosis]	(AF147448) rod-shape-determi	aeruginosa] (Z99110) similar to diadenosine tetraphosphatase [Bacillus		_		INTERGENIC REGION [Bacillus subtilis]) (Z99110) similar to hypothetical proteins [Bacillus subtilis]) (Z99110) similar to GTP pyrophosphokinase [Bacillus	(Z99110) yjbL [Bacillus subtilis]	(Z99110) yjbK	(Z99110) yjbī [Bacillus subtilis]	_) NEGATIVE REGULATOR OF GENETIC COMPETENCE	MECA [Bacillus subtilis]			[Methanococcus jannaschii]	oxoglutarate dehydrogenase (lipoamide) (EC 1.2.4.2) -	
% Cvrg	66	100	2	100	100	,	100	100		31	100		100	100	66	66	66	100	100	20		41	66		100	100
% Ident	56	52	30	8 4	47	5	32	57		30	54		72	65	39	20	<i>L</i> 9	43	70	51		52	27		23	99
BlastP. Prob	2.20E-52	4.30E-63	4 COE 10	1.70E-61	2.00E-51	1000	3.60E-18 6.40E-46	1.50E-76		2.10E-25	5.40E-81		4.30E-95	3.00E-71	1.80E-11	3.40E-40	2.20E-43	2.90E-50	4.60E-226	3.90E-30		1.70E-27	5.30E-19		1.10E-268	1.00E-125
BlastP	543	644	,	629	534	ć	482 482	771		299	813		946	721	157	428	458	523	2182	333		308	228		2584	1235
aat_ H nap g Score	517	899	160	574	528	``	337	753		100	803		1046	707	210	429	438	591	2312	299		280	199		2494	1347
NCBI gi	g3608395	g730818	2,000,00	g303643	22829568	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	g1651989 g4887204	g 22633517)	g4126627	g3915487		g2633515	g2633514	g2633513	g2633512	g2633510	g2633509	g1651216	g585473)	g1749770	g2128207	ı	g1071810	g129041
Position	1205-648	1951-1220	4015 1042	6500-7345	7667-8281	07.00	8298-8649 9451-10617	1377 Bt1Gc1723 Bt1G3579 10697-11431 g2633517		1377 Bt1Gc1723 Bt1G3580 12074-13384 g4126627	1377 Bt1Gc1723 Bt1G3581 13843-12995 g39154		1377 Bt1Gc1723 Bt1G3582 14703-13906 g2633515	1377 Bt1Gc1723 Bt1G3583 15363-14728 g2633514	Bt1G3584 15762-15394 g2633513	15907-16479 g2633512	16653-17051 g2633510	17126-17956 g2633509	23082-18475 g1651216	23784-23307 g58547		1-369	3443-3196		4215-7040	7219-8475
Gene Id	Bt1G3572	Bt1G3573	Z E S C C F S C	Bt1G3575	Bt1G3576		Bt1G3578	Bt1G3579		Bt1G3580	Bt1G3581		Bt1G3582	Bt1G3583			Bt1G3586	Bt1G3587	Bt1G3588	Bt1G3589		Bt1G3590	Bt1G3591		Bt1G3592	Bt1G3593
Contig Id	1377 Bt1Gc1723 Bt1G3572	1377 Bt1Gc1723	2007	1377 Bt1Gc1723	1377 Bt1Gc1723		1377 Bt1Gc1723 Bt1G3578 1377 Bt1Gc1723 Bt1G3578	Bt1Gc1723		Bt1Gc1723	Bt1Gc1723		Bt1Gc1723	Bt1Gc1723	1377 Bt1Gc1723	1377 Bt1Gc1723	1377 Bt1Gc1723	1377 Bt1Gc1723	1377 Bt1Gc1723	Bt1Gc1723		1378 Bt1Gc1724 Bt1G3590	1378 Bt1Gc1724 Bt1G3591		1378 Bt1Gc1724 Bt1G3592	1378 Bt1Gc1724 Bt1G3593
SEQ NO	1377	1377		1377	1377	į	1377	1377		1377	1377		1377	1377	1377	1377	1377	1377	1377	1377	!	1378	1378		1378	1378

_
e
م
ਟੁ
_

	NCBI gi description	DEHYDROGENASE COMPLEX (E2) [Bacillus subtilis] (AJ011500) gra-orf12 [Streptomyces violaceoruber]	HYPOTHETICAL TRANSPOSASE-LIKE PROTEIN	(Z93936) unknown [Bacillus subtilis]	(Z93936) unknown [Bacillus subtilis]	GLUCOSE-6-PHOSPHATE ISOMERASE A (GPI A) RHOSPHOGI ITCOSE ISOMERASE A) [Pacillus	stearothermophilus]	(Z99120) yuzA [Bacillus subtilis]	GENERAL STRESS PROTEIN 13 (GSP13) [Bacillus	subtilis]	(Z93934) unknown [Bacillus subtilis]	(Z93934) unknown [Bacillus subtilis]	(Z94043) hypothetical protein [Bacillus subtilis]	(Z93934) unknown [Bacillus subtilis]	PUTATIVE AMINOTRANSFERASE B [Bacillus subtilis]	(AE000679) superoxide dismutase (Cu/Zn) [Aquifex		KINASE-ASSOCIATED PROTEIN B [Bacillus subtilis]	(Z93933) unknown [Bacillus subtilis]	(AP000007) 424aa long hypothetical protein [Pyrococcus	horikoshii]	(AJ010128) hypothetical protein [Bacillus cereus]	(AJ010128) DNA alkylation repair enzyme [Bacillus	cereus]	(AJ010128) glycyl-tRNA synthetase [Bacillus cereus]	PROBABLE GLYCYL-TRNA SYNTHETASE (GLYCINE-	-TRNA LIGASE) (GLYRS) [Methanococcus jannaschii]	(D78016) TRAC [Enterococcus taecalis]	(Z99121) alternate gene name: yvsB; similar to plant-	metabolite dehydrogenase [Bacillus subtilis] byddolinie s capboyyi are Bedictase	HOMOLOG 2 [Bacillus subtilis]
	50	DE 50 (AJ	57 HY	43 (Z9	6Z) 66	100 GL	stea		OB GE		-	-	_	100 (Z9		99 (AI				100 (AI	hor	81 (A)	100 (AJ			100 PR			100 (ZS	me 100 pv	
	% % Ident Cvrg	30	38	39	45	85 1		74	52							37			,	50 1		06	93 1			32 1			74	23	
rapie r	BlastP- 9 Prob Id	6.10E-34	4.10E-19	8.40E-28	9.10E-31	2.00E-207		1.80E-18	1.90E-23	1	3.90E-110	9.30E-45	1.30E-86	2.70E-77	2.70E-93	2.10E-31		2.80E-36	3.10E-62	6.90E-88		9.60E-75	2.60E-120		1.90E-117	1.50E-90		4.50E-100	7.00E-111	2 400 40	3.40E-40
	BlastP Score	377	229	311	339	2006		223	270	,	1088	471	998	778	929	345		391	989	878		754	1184	-	1157	207	;	993	1095	900	974
	aat_ B nap S Score	171	187	242	316	2051		284	274	;	1073	551	901	760	913	317		379	989	973		711	1184		1157	401		892	1093	900	390
	NÇBI gi	g4218544	g2497400	g1934805	g1934804	g120717		g2635634	g3123231		g1934791	g2125791	g1945659	g1934789	g585644	g2982937	ı	g585341		g3258354		g4584088	g4584089		g4584090	g2500998		g1041115	g2635853	1700701	g1/09/91
	Position	11311-12462	15151-14771	1-1338	1088-684	2545-1199		2823-3053	3510-3161		4951-3885	5451-4954	5708-6562	6675-7502	8001-9146	9885-9379		Bt1Gc1726 Bt1G3607 10301-10684 g58534	Bt1Gc1726 Bt1G3608 11345-10731	11657-12964		Bt1Gc1726 Bt1G3610 13497-11889 g4584088	13615-14325		14675-15325	14669-16048		4134-454	5357-4530	6156 5001	0130-3331
	Gene Id	Bt1G3594	Bt1G3595	Bt1G3596	Bt1G3597	Bt1G3598		Bt1G3599	Bt1G3600			Bt1G3602	Bt1G3603	Bt1G3604	Bt1G3605	Bt1G3606		Bt1G3607	Bt1G3608	Bt1G3609		Bt1G3610	Bt1G3611		Bt1G3612	Bt1Gc1726 Bt1G3613		Bt1G3614	Bt1G3615	71707170	51103010
	SEQ ID Contig Id NO	1378 Bt1Gc1724 Bt1G3594 11311-12462 g4218544	1378 Bt1Gc1724	1379 Bt1Gc1726 Bt1G3596	1379 Bt1Gc1726 Bt1G3597	1379 Bt1Gc1726		1379 Bt1Gc1726 Bt1G3599	1379 Bt1Gc1726		1379 Bt1Gc1726	1379 Bt1Gc1726	1379 Bt1Gc1726	1379 Bt1Gc1726	1379 Bt1Gc1726 Bt1G3605	1379 Bt1Gc1726		1379 Bt1Gc1726	1379 Bt1Gc1726	1379 Bt1Gc1726		1379 Bt1Gc1726	1379 Bt1Gc1726		1379 Bt1Gc1726 Bt1G3612 14675-15325 g4584090	1379 Bt1Gc1726		1380 Bt1Gc1728 Bt1G3614	1380 Bt1Gc1728	1000 001	1380 BUGG1/28 BUG3010

-
able

	NCBI gi description	(D50453) homologues to hypothetical 30.5 kDa protein gdh1 5' region of B. megateruim [Bacillus subtilis]	(Z99121) alternate gene name: yvsC; similar to molybdenum	transport permease [Dacinus suouns] (Z99121) alternate gene name: yvsD; similar to molybdate-	binding protein [Bacillus subtilis]	(U62055) orfR gene product [Bacillus subtilis]	(U93876) hypothetical protein YrdR [Bacillus subtilis]	(Y14082) hypothetical protein [Bacillus subtilis]	(Z99111) similar to transcriptional regulator (Lacl family)	Bacillus subtilis	(D83026) nomotogous to Joje gene product (D. sacturs,	pri:211132/aj, nypometicat [Dacinus subuns] (AE000433) IS150 putative transposase [Escherichia coli]	(AB001488) FUNCTION UNKNOWN, SIMILAR	PRODUCT IN MANY BACTERIA. [Bacillus subtilis]	(AF102174) glycine betaine transporter BetL [Listeria	monocytogenes] 7700127) similar to SNE2 helicase [Bacillus subtilis]	(799111) similar to hypothetical proteins [Bacillus subtilis]	(AJ223978) putative ABC transporter, YvrO [Bacillus	subtilis]	(Z99111) similar to hypothetical proteins from B. subtilis	Bacillus subtilis]	GLYCEROL-3-PHOSPHATE TRANSPOKTER (G-3-P	TRANSPORTER) (G-3-P PERMEASE) [Bacillus subtilis] A TP-RINDING PROTFIN A RC (Fscherichia coli)	1-PVRROI INE-5-CARBOXYI ATE DEHYDROGENASE	P5C DEHYDROGENASE) [Bacillus subtilis]	(Z99107) similar to DNA ligase [Bacillus subtilis]	(Y15254) PerA protein [Bacillus subtilis]	(Y15254) PcrB protein [Bacillus subtilis]	PHOSPHORIBOSYLAMINEGLYCINE LIGASE (GARS) (GLYCINAMIDE RIBONUCLEOTIDE SYNTHETASE) (PHOSPHORIBOSYI GI VCINAMIDE SYNTHETASE)
į	Cvrg	100 () 66	100 (_	_	_	100		3	100 (83 (_	100	100	_	_		100		100	2	•	_	100	100	100	100
	% Ident C	62	59	57		74	89	25	4	i	20	52	37		54	9	3 6	62		53		46	9	3 9	2	69	89	63	63
	BlastP- Prob Io	9.70E-82	1.80E-48	6.10E-73		9.50E-107	3.90E-110	9.80E-50	1.40E-73		2.40E-71	3.00E-80	5.30E-58		1.10E-123	0 400 250	4 50F-77	4.30E-72		3.40E-31		2.70E-93	1 905 92	1.00E-205	707-700-1	3.40E-237	2.70E-269	8.70E-81	4.30E-143
!	BlastP Score	820	206	737	*	1056	1088	518	743		777	806	596		1216	2406	776	729	į	343		929	700	1000	200	2287	2590	811	1399
	nap Score	935	538	700		1133	1177	515	701	ì	90/	796	995		1317	22.10	1012	718) 	471		1011	000	1000	000	2359	2592	793	1376
	NCBI gi	g1805461	g2635852	g2635851		g1772644	g1934659	g2226210	g2633758		g1783243	21789981	g1881240	0	g4835822	20000150	22630133			g2633806		g585209	700203C	g2300097	8130330	g2632976		22577964	g131611
	Position	7302-6448	8175-7613	9070-8289		11458-10595	11586-12554	13210-13806	14282-15256		15871-16707	17837-18685	1-1035		6530-1675	10404 10055	DUIG3626 1046/-13233 g2030133 D+173630 18484-17788 «7633808	19161-18475		Bt1Gc1727 Bt1G3631 20321-19164 g2633806		21925-20600 g585209	1126 133	1130-123	23.13-2423	8217-6211	10485-8236	11184-10498	14452-13190
	Gene Id	Bt1G3617	Bt1G3618	Bt1G3619		Bt1G3620	Bt1G3621	Bt1G3622	Bt1G3623		Bt1G3624	Bt1G3625	Bt1G3626		Bt1G3627	90,00		Bt1G3630		Bt1G3631	* *	Bt1G3632	77777	D4162624		Bt1G3635	Bt1G3636	Bt1G3637	
	Contig Id	1380 Bt1Gc1728	1380 Bt1Gc1728	1380 Bt1Gc1728		1380 Bt1Gc1728	1380 Bt1Gc1728	1380 Bt1Gc1728	1380 Bt1Gc1728		1380 Bt1Gc1728 Bt1G3624 15871-16707 g1783243	1380 Bt1Gc1728 Bt1G3625 17837-18685 g1789981	1381 Bt1Gc1727 Bt1G3626		1381 Bt1Gc1727 Bt1G3627		1381 BUIGG1/2/	1 Br1Gc1727		1 Bt1Gc1727		1381 Bt1Gc1727 Bt1G3632	2000 14d 3071 - 2014 2001	2 DilGe1725	2 bilde1/23	2 Bt1Gc1725	2 Bt1Gc1725	2 Bt1Gc1725	2 Bt1Gc1725
Č		1380	1380	1380		1380	1380	1380	138(138(1380	1381		1381		1301	1381		1381		138	,	130,	7001	1382	1382	1382	1382

_
je
<u>_</u>
[

							I and			
SEQ ID Contig Id NO	ig Id	Gene Id	Position	NCBI gi	aat_ nap Score	BlastP Score	BlastP-	% Ident C	% Cvrg	NCBI gi description
1382 Bt1Gc	c1725	Bt1G3639	1382 Bt1Gc1725 Bt1G3639 16413-14878 g131638	g131638	1999	2007	1.60E-207	92	100	[Bacillus subtilis] PHOSPHORIBOSYLAMINOIMIDAZOLECARBOXAMID E FORMYLTRANSFERASE (AICAR TRANSFORMYLASE) / IMP CYCLOHYDROLASE (INOSINICASE) (IMP SYNTHETASE) (ATIC) [Bacillus
1382 Bt1Gc	c1725	Bt1G3640	1382 Bt1Gc1725 Bt1G3640 18059-17022 g131624	g131624	1254	1169	1.00E-118	<i>L</i> 9	100	subtilis] PHOSPHORIBOSYLFORMYLGLYCINAMIDINE CYCLO-LIGASE (AIRS) (PHOSPHORIBOSYL- AMINOIMIDAZOLE SYNTHETASE) (AIR SYNTHASE)
1382 Bt1Gc	c1725	Bt1G3641	1382 Bt1Gc1725 Bt1G3641 21784-19559 g131646	g131646	2967	2949	2.40E-307	92	100	PHOSPHORIBOSYLFORMYLGLYCINAMIDINE SYNTHASE II (FGAM SYNTHASE II) [Bacillus subtilis]
1382 Bt1Gc	c1725	Bt1G3642	1382 Bt1Gc1725 Bt1G3642 22451-21777 g409753	g4097532	772	787	3.10E-78	63	100	(U64311) phosphoribosylformylglycinamidine synthetase I [Lactococcus lactis]
1382 Bt1Gc	c1725	Bt1G3643	1382 Bt1Gc1725 Bt1G3643 23292-22698 g13163	g131631	899	671	6.00E-66		82	PHOSPHORIBOSYLAMINOIMIDAZOLE- SUCCINOCARBOXAMIDE SYNTHASE (SAICAR SYNTHETASE) (VEGETATIVE PROTEIN 286A) (VEG286A) [Bacillus subtilis]
1383 Bt1Gc1729 Bt1G3644	c1729	Bt1G3644	558-1	g1945721	598	532	3.20E-51	65	93	(Z94043) hypothetical protein [Bacillus subtilis]
1383 Bt1Gc 1383 Bt1Gc	Bt1Gc1729	Bt1G3645	2420-1689	g1945/20 g1945719	677	69	5.80E-68	5 4	100	(Z94043) hypothetical protein [Bacillus subtilis]
1383 Bt1Gc	Bt1Gc1729	Bt1G3647	3322-2423	g1945718	746	764	8.30E-76	49	100	(Z94043) hypothetical protein [Bacillus subtilis]
1383 Bt1Gc1729 1383 Bt1Gc1729	Bt1Gc1729 Bt1Gc1729	Bt1G3648 Bt1G3649	3525-4268 11449-11692	g2443229 g135254	8 91 124	918 149	4.00E-92 7.80E-10	69 41	001 19	(D86417) YfiG [Bacillus subtilis] TYPE III RESTRICTION-MODIFICATION SYSTEM
1383 Bt1Gc	c1729	Bt1G3650		g135254	134	149	7.80E-10	39	21	ENZYME RES [Bacillus cereus] TYPE III RESTRICTION-MODIFICATION SYSTEM
1383 Bt1Gc	c1729	Bt1G3651	1383 Bt1Gc1729 Bt1G3651 12289-12550 g135254	g135254	170	189	3.30E-14	49	22	ENZYME RES [Bacillus cereus] TYPE III RESTRICTION-MODIFICATION SYSTEM
1383 Bt1Gc	c1729	Bt1G3652	1383 Bt1Gc1729 Bt1G3652 12289-12549 g135254	g135254	159	190	2.60E-14	49	21	ENZYME RES [Bacillus cereus] TYPE III RESTRICTION-MODIFICATION SYSTEM
1383 Bt1G	c1729	Bt1G3653	1383 Bt1Gc1729 Bt1G3653 12850-13123 g135254	g135254	226	263	1.70E-22	09	23	ENZYME KES [Bacillus cereus] TYPE III RESTRICTION-MODIFICATION SYSTEM ENTRYME DES PROGIUG GERMIN
1383 Bt1G	c1729	Bt1G3654	1383 Bt1Gc1729 Bt1G3654 12850-13402 g13525	g135254	222	262	2.20E-22	64	20	ENZYME RES [Bacillus cereus] ENZYME RES [Bacillus cereus]

_
ë
đ
Tab

							I GIOTA			
SEQ NO D	Contig Id	Gene Id	Position	NCBI gi	aat_ nap Score	BlastP Score	BlastP. Prob	% Ident (% Cvrg	NCBI gi description
1383	Bt1Gc1729	Bt1G3655	1383 Bt1Gc1729 Bt1G3655 12850-13963 g135254	g135254	220	270	2.60E-23	<i>L</i> 9	20	TYPE III RESTRICTION-MODIFICATION SYSTEM ENZYME RES [Bacillus cereus]
1383	Bt1Gc1729	Bt1G3656	1383 Bt1Gc1729 Bt1G3656 12850-14245 g135254	g135254	219	569	3.30E-23	11	16	TYPE III RESTRICTION-MODIFICATION SYSTEM ENZYME RES [Bacillus cereus]
1383	Bt1Gc1729	Bt1G3657	1383 Bt1Gc1729 Bt1G3657 12850-14524 g135254	g135254	221	277	3.60E-24	99	21	TYPE III RESTRICTION-MODIFICATION SYSTEM ENZYME RES. (Bacillus cerents)
1383	Bt1Gc1729	Bt1G3658	1383 Bt1Gc1729 Bt1G3658 12850-14803	g135254	224	269	3.30E-23	55	26	TYPE III RESTRICTION-MODIFICATION SYSTEM ENTRYME DES PRESIDENTS
1383	Bt1Gc1729	Bt1G3659	1383 Bt1Gc1729 Bt1G3659 12850-15085 g135254	g135254	221	260	3.80E-22	69	19	ENZ I ME RES [Bacillus cercus] TYPE III RESTRICTION-MODIFICATION SYSTEM ENZYME RES [Bacillus cercus]
1383	Bt1Gc1729	Bt1G3660	1383 Bt1Gc1729 Bt1G3660 13129-15364 g135254	g135254	98	130	9.00E-08	54	11	TYPE III RESTRICTION-MODIFICATION SYSTEM ENZYME RES [Bacillus cereus]
1383	Bt1Gc1729	Bt1G3661	1383 Bt1Gc1729 Bt1G3661 14022-15447 g732329	g732329	525	691	4.50E-68	35	100	HYPOTHETICAL 49.5 KD PROTEIN IN DAE-TYRZ INTERCENIC PECION PRECTIRSOR (Bacillus subtilis)
1383	1383 Bt1Gc1729	Bt1G3662	Bt1G3662 16317-15469 g1789981	g1789981	852	809	1.40E-80	54	100	(AE000433) IS150 putative transposase [Escherichia coli]
1384	1384 Bt1Gc1730	Bt1G3663	1-484	g2635700	376		1.50E-21	47	81	(Z99120) similar to biotin metabolism [Bacillus subtilis]
1384	1384 Bt1Gc1730	Bt1G3664	1420-545	g585225	1229	1161	7.10E-118	8	9	UTFGLUCOSE-1-FINOSEIRATE TRIDVI VI TRANSFERASE (TDP-GLUCOSE
										PYROPHOSPHORYLASE) (UDPGP) (ALPHA-D-
										GLUCOSYL-1-PHOSPHATE
			<u>}</u>							URIDYLYLTRANSFERASE) (URIDINE DIPHOSPHOGLIICOSE PYROPHOSPHORYLASE)
										(GENERAL STRESS PROTEIN 33) (GSP33) [Bacillus
					,			`	•	subtilis]
1384	1384 BtlGc1/30 BtlG3663	51103005		g2831333	1938	-	2.30E-202	8	3	[Bacillus subtilis]
1384	1384 Bt1Gc1730 Bt1G3666	Bt1G3666	3393-3990	g3169326	341	386	4.60E-36	38	66	(AF026147) YojJ [Bacillus subtilis]
1384	1384 Bt1Gc1730	Bt1G3667	5660-4164	g2635702	1481	1472	7.90E-151	58.	100	(Z99120) similar to leucyl aminopeptidase [Bacillus
1307	1304 D+1/C-1720 D+1/C2660	D+1C3K6	6116, 5870	407353Cp	533	\$0\$	2 30F-48	7	9	subtilis] (799120) similar to hypothetical proteins [Bacillus subtilis]
1387	1384 Bt1Gc1730	B+1G3660		07635705	310		1.30E-15	54	66	(Z99120) similar to hypothetical proteins from B. subtilis
1961					3			•	1	[Bacillus subtilis]
1384	1384 Bt1Gc1730 Bt1G3670	Bt1G3670	7455-6949	g2129134	116	229	4.10E-19	30	66	mutator protein mutT - Methanococcus jannaschii
1384	1384 Bt1Gc1730 Bt1G3671	Bt1G3671	8691-7480	g1934829	1256	1230	3.50E-125	62	100	[Methanococcus jannaschii] (Z93939) unknown [Bacillus subtilis]

LADIC I	BlastP- % % NCBI gi description Prob Ident Cvrg	74 100	26 64 NF-180 - sea lamprey [Ferromyzon marmus]	4.50E-29 5/ 99 (AFO2/808) DIVA-DIMING PROVIDE LOCALITIES SUCCESS. 8 OOF-29 57 99 (AB002150) YbbK [Bacillus subtilis]	36 99	34 100	49 99	INTERGENIC REGION [Bacillus subtilis] 3 40E-40 34 100 (Y09476) YitH [Bacillus subtilis]	24 31	[Cryptosporidium parvum] 2.00E-60 23 72 (AE000878) putative membrane protein [Methanobacterium	thermoautotrophicum] 5.90E-27 25 90 HYPOTHETICAL 42.0 KD PROTEIN IN DAPB-PAPS	9 20E-38 36 100 PUTATIVE GLYCOSYL TRANSFERASE H10868	; ;	20 72	31 99	28 100	2.80E-20 26 100 (AL023861) putative 1S element transposase [Sureptomyces	coencolor] 7.30E-29 39 99 (AB016282) ORF17 [bacteriophage phi-105]	4.50E-29 31 100 HYPOTHETICAL 24.0 KD PROTEIN IN PONA-COTD INTERGENIC REGION (ORF1) [Bacillus subtilis]	1.50E-23 24 84 (D90903) hypothetical protein [Synechocystis sp.]		•	2.80E-59 35 100 (1114/8) probabily site-specific recombinate of the resolvase family of enzymes [Bacteriophage TP21]	1.60E-232 66 100 (Z93940) asparagine synthetase [Bacillus subtilis]	3 50F-20 23 75 (AF010496) hymothetical protein [Rhodobacter capsulatus]	C 7
	BlastP	1287		2/1 323 410 415				409 428		321 649	171 303	387 405		` '			169 240	317 321		122 271			521 608	2207, 2243	109 244	
	aat_ Position NCBI gi nap Score	9147-10142 g1934830	26525-7739 g2133786	20695-21171 g2619047	761-267 e1922884	937-1809 \$282295	1876-2271 g1730902	5080 4735 07145400	4975-24258 g4063042	73				1-685 g3005554 1	1157-1437 g2392827	2338-4026 g3128374	6002-5310 g3218350	7031-7444 94126654	9373-8583 g732244	46	9		Bt1G3692 19441-21005 g1865708 5	22446-20601 g1934835	2648-329 g3128293	
-	SEQ ID Contig Id Gene Id	4 Bt1Gc1730	Bt1Gc1730	1384 Bt1Gc1730 Bt1G3674	1384 Bt1Gc1/30 Bt1G36/5	Bt1Gc1731	Bt1Gc1731	1206 Dil Calmat Del Cascho		1385 Bt1Gc1731 Bt1G3681 14392-19516 g26221	1385 Bt1Gc1731 Bt1G3682 24094-22005 g1730929	1306 D41021121 D4103682 22836.23087 62123077	COCCUIT IC/IONING COCI	1386 Bt1Gc1732 Bt1G3684	1386 Bt1Gc1732 Bt1G3685		1386 Bt1Gc1732 Bt1G3687	1386 Bt1Gc1732 Bt1G3688	1386 Bt1Gc1732 Bt1G3689	1386 Bt1Gc1732 Bt1G3690 11248-10047 g16521	1386 Bt1Gc1732 Bt1G3691		1386 Bt1Gc1732 Bt1G3692	1386 Bt1Gc1732 Bt1G3693		

*						Lable				
Contig Id	Gene Id	Position	NCBI gi	aatn nap Score	BlastP Score	BlastP- Prob	% % Ident Cvrg	° Fi	NCBI gi description	
						1 (7	(CWLA PRECURSOR (CELL WALL HYDROLASE) (AUTOLYSIN) [Bacillus sp.]	
3t1Gc1733	1387 Bt1Gc1733 Bt1G3696	3428-3036	g141088	180	189	7.10E-15	35	<u>y</u>	HTFOIREILCAL 14.3 NO FROIEM IN MAGII 3'REGION (ORFD) [Clostridium perfringens]	
1387 Bt1Gc1733	Bt1G3697	3770-3473	g2160199	76	133	6.10E-09	34		(D13377) XpaF1 protein [Bacillus licheniformis]	
1387 Bt1Gc1733	Bt1G3698	12383-10534	g4126623	194	231	2.50E-19	31	_	(AB016282) ORF37 [bacteriophage phi-105]	
1387 Bt1Gc1733	Bt1G3699	16615-12628	g3947462	240	364	1.40E-32	27	_	(AJ006589) gp43 [Bacteriophage phi-C31]	
1387 Bt1Gc1733	Bt1G3700	16154-13023 g4249699	g4249699	75	193	5.10E-13	19	_	(AF097906) myosin heavy chain [Rana catesbeiana]	
1387 Bt1Gc1733	Bt1G3701	19546-18938	g320252	258	326	2.20E-29	34	98	promoter inhibitor protein BpL - Lactococcus lactis phage BK5-T []	
1387 Bt1Gc1733	Bt1G3702	20104-19580	g320251	126	180	6.40E-14	42	99 1	hypothetical protein 1 (bpi 5' region) - Lactococcus lactis phage BK5-T (fragment) []	
1387 Bt1Gc1733		Bt1G3703 20831-19158 g4530143	g4530143	166	236	7.50E-20	27	88	(AF085222) putative scaffolding protein [Streptococcus thermophilus bacteriophage DT1]	
1388 Bt1Gc1739	Bt1G3704	1-353	g3005554	76	135	1.50E-08	54	36 ((AF047044) putative transposase [Anabaena PCC7120]	
1388 Bt1Gc1739	Bt1G3705	4302-2520	g2444121	62	138	4.40E-08	45	9	(U88974) ORF42 [Streptococcus thermophilus temperate bacteriophage O1205]	
Bt1Gc1739	1388 Bt1Gc1739 Bt1G3706	8733-6448	g2764873	342	411	5.60E-38	30	47	(X97918) gene 18.1 [Bacteriophage SPP1]	
1388 Bt1Gc1739	Bt1G3707	10634-7189		307	440	1.40E-61		_	(AF009630) 116 [bacteriophage bIL170]	
Bt1Gc1739	Bt1G3708	16049-14381	g4530143	251	257	4.40E-22	31	2	(AF085222) putative scaffolding protein [Streptococcus thermophilus bacteriophage DT1]	
Rt1Gc1739	B#1G3709	1388 B#1Gc1739 B#1G3709 20871-21284 g412665	. g4126654	319	323	4.50E-29	39	66	(AB016282) ORF17 [bacteriophage phi-105]	
1388 Bt1Gc1739	Bt1G3710	23214-22413	g732244	227	329	1.00E-29	32	100	HYPOTHETICAL 24.0 KD PROTEIN IN PONA-COTD INTERGENIC REGION (ORF!) [Bacillus subtilis]	
300 D+1Co1730	B+1G3711	26202-23643 01652146	01652146	116	266	4.90E-23	22	84	(D90903) hypothetical protein [Synechocystis sp.]	
1389 Br1Gc1734		958-524	g2634157	495	506	1.80E-48	63	66	(Z99113) yndB [Bacillus subtilis]	
1389 Bt1Gc1734		2418-2876	g1881322	412	348	1.00E-31	55	66	(AB001488) SIMILAR TO TRANSCRIPTION FACTOR OF MYXOCOCCITS XANTHIS. [Bacillus subtilis]	
D+1 C-1724	200 D+1/C-01/72/ D+1/C2/71/	3755_2073	g770478	1198	1198	8.50E-122	80	100	GLUCOSE 1-DEHYDROGENASE [Bacillus megaterium]	
1389 Bt1Gc1734	Bt1G3715	4626-3772	g731355	1227	1100	2.10E-111		100	HYPOTHETICAL 30.5 KD PROTEIN IN GDHI 5'REGION (ORF 2) [Bacillus megaterium]	
1389 Bt1Gc1734	Bt1G3716	5870-5405	g2633801	505	514	2.60E-49	61	66	(Z99111) molybdopterin converting factor (subunit 2) [Bacillus subtilis]	
Bt1Gc1734	1389 Bt1Gc1734 Bt1G3717	7647-6358	g2633799	1392	1334	3.30E-136	63	100	(Z99111) molybdopterin biosynthesis protein [Bacillus subtilis]	

_
je
ap

,~**		-	S			-	-			Ţ.	• ′											
		(D88802) E. coli moaC protein; P30747 (368) [Bacillus subtilis]			(Z99119) similar to hypothetical proteins from B. subtilis	[Bacillus subtilis] (AF067645) homoserine O-acetyltransferase homolog	[Bacillus cereus] (AF067645) spore germination protein GerIA [Bacillus	cereus] (AF067645) spore germination protein GerIB [Bacillus	•	 LIGASE) (LEURS) [Bacillus subtilis] pyruvate formate-lyase (pfl) homolog - Haemophilus influenzae (strain Rd KW20) [Haemophilus influenzae Rd] 	. –				IN LEKGENIC REGION [Bacillus subtilis] 0 (Z99112) similar to acetylornithine deacetylase [Bacillus	subtilis] AMINO-ACID PERMEASE ROCE [Bacillus subtilis]			(PSEUDOURIDYLATE SYNTHASE 1) (PSEUDOURIDINE SYNTHASE I) (URACIL HYDROI VASE) (Racillus sn 1	. –	-	cereus] 0 (AJ010139) polysaccharide deacetylase-like protein
	Cvrg	66	100	100	9	100	100	100	71	26	100	100	100	100	100	100	100	100		100	100	100
	% Ident (89	55	57	99	8	95	92	77	55	41	48	61	26	63	85	57	62		99	93	66
I divise I	BlastP- Prob	9.20E-54	3.60E-91	8.70E-97	7.20E-22	1.70E-123	1.00E-237	2.60E-168	9.50E-242	9.20E-50	5.80E-84	1.20E-85	1.60E-120	3.50E-93	6.00E-153	3 40F-143	1.50E-142	9.30E-77		1.00E-157	1.70E-146	9.10E-134
-	BlastP Score	556	606	962	255	1214	2273	1637	2330	521	841	857	1186	928	1492	1400	1394	773		1537	1431	1311
	aat_ l nap Score	583	919	1008	243	1214	3186	1738	2411	578	176	825	1358	928	1485	1510	1348	813		1632	1431	1375
	NCBI gi	g1945112	g2633524	g730103	g2635515	g3290174	g3290175	g3290176	g3123286	g1075196	g3256832	92634067	92443228	g245	g2633908	730601	g/30001 g1064808	g3915176		g2633126) g4584142	\$ g4584141
	Position	7731-8248	9267-8257	10306-9287	15462-15259	Bt1Gc1734 Bt1G3722 17124-16435 g329	1389 Bt1Gc1734 Bt1G3723 17276-19498 g329	1389 Bt1Gc1734 Bt1G3724 19518-20609 g329	1389 Bt1Gc1734 Bt1G3725 25860-24146 g312	597-1	4722-2534	6669-7578	9993-8491	10319-11245	Bt1Gc1736 Bt1G3731 14829-13552 g263	1000 TATE OF THE PARTY OF THE P	1390 Bt1Gt1/30 Bt1G3/32 10333-14332 g/30001 1390 Bt1Gt1/36 Bt1G3/33 17016-18407 g1064808	19530-18796 g391		1390 Bt1Gc1736 Bt1G3735 20972-19581 g2633126	1390 Bt1Gc1736 Bt1G3736 21840-20980 g4584142	1390 Bt1Gc1736 Bt1G3737 22682-21903 g4584141
	Gene Id	Bt1G3718	Bt1G3719	Bt1G3720	Bt1G3721	Bt1G3722	Bt1G3723	Bt1G3724	Bt1G3725	Bt1G3726	Bt1G3727	B+1G3728	Br1G3729		Bt1G3731	D41/G2720	Bt1G3733	Bt1Gc1736 Bt1G3734		Bt1G3735	Bt1G3736	Bt1G3737
	Contig Id	1389 Bt1Gc1734 Bt1G3718	Bt1Gc1734 Bt1G3719	Bt1Gc1734	Bt1Gc1734	B#1Gc1734	Bt1Gc1734	Bt1 Gc1734	Bt1Gc1734	1390 Bt1Gc1736 Bt1G3726	1390 Bt1Gc1736 Bt1G3727	1390 Bt1Gc1736 Bt1G3728	1390 Br1Gc1736 Br1G3729	Bt1Gc1736	Bt1Gc1736	70110	Bt1Gc1736	Bt1Gc1736		Bt1Gc1736	Bt1Gc1736) Bt1Gc1736
	SEQ NO PI	1389	1389	1389	1389	1389	1389	1389	1389	1390	1300	1300	1390	1390	1390	1200	1390	1390		1390	1390	1390

•1,

<u>e</u>
a
Ξ

~. ,	,							,	<u>æ</u>		r In					7.		_									*	
NCBI gi description	[Bacillus cereus] FUMARATE HYDRATASE CLASS I, AEROBIC (FUMARASE) [Bacillus stearothermophilus]	(D83967) YfkA [Bacillus subtilis]		(D83967) YfkD		-	subtilis] (799105) similar to alkaline phosphatase [Bacillus subtilis]	_	(AF026470) gluconate permease [Pseudomonas aeruginosa]	_		PROTEIN IN IDH 3'REGION [Bacillus subtilis]	HYPOTHETICAL 70.5 KD PROTEIN IN IDH 3'REGION	[Bacillus subtilis] HYPOTHETICAL SENSOR-LIKE HISTIDINE KINASE			PROTEIN IN IDH 3'REGION [Bacillus subtilis]	(Z99121) similar to transcriptional regulator (ArsR family) [Bacillus subtilis]			_		_	PHOSPHORIBOSYLTRANSFERASE (HGPRT)	(HGFK1ASE) [bacillus suotilis]			(D90720) Hypothetical ABC transporter ATP-binding protein in bcr 5'region. [Escherichia coli]
% Cvrg	100	66	66	100	100	66	6	100	100	100	100	~	100	100		100		66	100		100	100	66		100		41	93
% Ident (77	80	71	54	73	38	41	51	49	39	61		36	80	1	55		<i>L</i> 9	11		54	39	46		30		35	47
BlastP. Prob	3.30E-223	6.70E-67	4.30E-56	1.10E-71	7.10E-102	5.30E-26	1 30E-22	9.90E-73	4.50E-93	6.10E-57	5.00E-85		4.60E-75	1 00E-61		6.90E-65		1.90E-30	3.60E-123		2.70E-70	1.20E-58	1.40E-43		3 60E-36	0.000.0	7.30E-34	1.10E-144
BlastP	2155	089	578	725	1010	294	263	735	927	586	851		757	631		661		336	1211		712	602	460		200	260	372	1414
aat F nap Score	2132	089	576	721	1306	285	340	735	1050	598	835		857	366	3	657		333	1211		707	582	447		25	}	306	1252
NCBI gi	g417009	g2626813		5 g2626816	2 g2626817	5 g2829682	1 ~7637514		g4103625		1 g1176995		8 g1731300	3 91176904	S 1110771	5 g1176993)	0 g2635892	8 g1881325	ì	5 g2293177				71575677	11001018	4 g466195	g4062401
Position	1390 Bt1Gc1736 Bt1G3738 24330-22813	24929-25390	25589-26047		28021-26972 g2626817				6570-7908	11833-10575			Bt1G3749 16606-12618 g1731	1201 D+1C21728 D+1C2750 17773_16743 g1176004	1101-07/11	1391 Bt1Gc1738 Bt1G3751 18421-17735 g1176993		1391 Bt1Gc1738 Bt1G3752 18631-18900 g2635892	1391 Bt1Gc1738 Bt1G3753 21117-20248 g1881		21427-22185	29515-28628			27530 2272	1391 BUIGU1/36 BUIGS/3/ 32336-33239 BUS/3	1391 Bt1Gc1738 Bt1G3758 32736-35074 g466195	3545-497
Gene Id	Bt1G3738	Bt1G3739	Bt1G3740				D41C2744							D+1/32750	oc/com	Bt1G3751		Bt1G3752	Bt1G3753		3 Bt1G3754	3 Bt1G3755			D41 C2767	c/come	\$ Bt1G3758	5 Bt1G3759
Contig Id	Bt1Gc1736	1390 Bt1Gc1736	1390 Bt1Gc1736	1390 Bt1Gc1736	1390 Bt1Gc1736	1390 Bt1Gc1736	7001-0170	1390 Br1Gc1738	1391 Bt1Gc1738	1391 Bt1Gc1738	1391 Bt1Gc1738		1391 Bt1Gc1738	D+1C-1728	DEI ONI / O	Bt1Gc1738		Bt1Gc1738	Bt1Gc1738		Bt1Gc1738	1391 Bt1Gc1738	Bt1Gc1738		0777	15(15C1)3	Bt1Gc1738	: Bt1Gc1735
SEQ ID	1390	1390	1390	1390	1390	1390	200	1301	1391	1391	1391	,	1391	1301	1221	1391		1391	1391		1391	1391	1391		,	1391	1391	1392

NCBI gi description	ORT SYSTEM PERMEASE subtilis!	[Treponema denticola] RTION SEQUENCE	(Z99119) similar to cysteine dioxygenase [Bacillus subtilis]	(AF027868) transcription antiterminator [Bacillus subtilis]	PROTEIN IN SKFA4-SFF RF8) [Bacillus subtilis]	EXCINUCLEASE ABC SUBUNIT A [Bacillus subtilis]	EXCINUCLEASE ABC SUBUNIT B (DINA PROTEIN)	HAYPOTHETICAL TRANSCRIPTIONAL REGULATOR IN MMR-PTA INTERGENIC REGION [Bacillus subtilis]	stance protein VgaB		HON [Bacilius suotilis]	se [Bacillus subtilis]	otein [Bacillus subtilis]	(AF017113) cell division ATP-binding protein [Bacillus		[Bacillus subtilis]	CASE SECA SUBUNIT	[Bacillus firmus] HYPOTHETICAL ABC TRANSPORTER ATP-BINDING PROTEIN 2 IN G1 PD-CSPR INTERGENIC REGION	ion motoin Gorl A [Bocillus	(AFUO/043) spore germination protein Certs [Datames cereus]	ASE (GENERAL STRESS	acinus suctinis] e [Cloning vector]	oorter [Bacillus subtilis]
	OLIGOPEPTIDE TRANSPORT SYSTEM PERMEASE PROTEIN OPPC (Bacillus subtilis)			_) HYPOTHETICAL 50.8 KD PROTEIN IN SKFA4-SFP INTERGENIC REGION (ORF8) [Bacillus subtilis]				_		PROTEIN IN ACDA S'REGION [ES	_			subtilis]		70 PREPROTEIN TRANSLOCASE SECA SUBUNIT	[Bacillus firmus] 30 HYPOTHETICAL ABC TRANSPORTER ATP-BIND DEATERN 2 IN GI PD. CSPR INTERGENIC REGION		11 (AFU0/042) spore germmat, cereus!	23 THIOREDOXIN REDUCTASE (GENERAL STRESS	PROTEIN 53) (USF33) [Dacinus subtins] 27 (U13871) lacZ alpha peptide [Cloning vector]	33 (U93876) amino acid transporter [Bacillus subtilis]
% Cvrg	100	3 8 100			100	58	100	100	100	100	2					1							
% Ident	39	46 100	34	33	55	79	83	45	37	72	36	3 5	3 6	3, 4		81	89	4	Ĭ	8	26	9	65
BlastP- Prob	8.40E-44	1.50E-30 1.00E-251	1.90E-23	1.30E-52	3.10E-133	3.40E-237	1.20E-259	1.30E-63	3.90E-85	7.20E-228	6 70E 61	2.70E-01	4 00F-69	4.60E-75		7.60E-153	1.00E-118	2.90E-11		5.70E-22	7.10E-17	8.70E-10	6.50E-37
BlastP Score	462	337 2424	270	545	1306	2287	2499	649	852	2199	7	1340	707	757		1491	1169	159	,	265	208	141	397
	538	285 2443	242	531	1290	2286	2821	642	955	2189	727	1225	000	752		1560	1195	139	;	244	191	122	478
NCBI gi	g129184	g3757815 g136144	g2635598	g2618997	4 g731354	g3915204	g3123297	g732377	g2769708	5 g1176951	700170	\$ 82018630 \$ ~2618834	3 g2010634	5 g2018833 5 g2618833	b	9 g2331287	5 g3122850	g1724002		g3290175	g3123300	g595780	g1934652
Position	3362-2421	3714-3348 7255-3852	8072-8539	8846-9980	11562-10234	1656-1	3644-1671	7813-8709	9943-11574	13770-12040	1,000	15228-14038 g201 16771 15235 @261	17790 1690	17700-10093 g2010033 18459-17776 g2618833		Bt1Gc1737 Bt1G3775 20607-19509 g2331287	Bt1Gc1737 Bt1G3776 21742-20755	1-282		212-1	1-222	270-117	47-478
Gene Id	Bt1G3760	Bt1G3761 Bt1G3762	Bt1G3763	Bt1G3764	Bt1G3765	Bt1G3766	Bt1G3767	Bt1G3768		Bt1G3770			5//CD11d	Bt1G3774		Bt1G3775	Bt1G3776	Bt1G3777	,	Bt1G3778	Bt1G3779	Bt1G3780	Bt1G3781
Contig Id	Bt1Gc1735	1392 Bt1Gc1735 1392 Bt1Gc1735	Bt1Gc1735	1392 Bt1Gc1735 Bt1G3764	Bt1Gc1735	Bt1Gc1737	1393 Bt1Gc1737	1393 Bt1Gc1737 Bt1G3768	1393 Bt1Gc1737 Bt1G3769	1393 Bt1Gc1737 Bt1G3770 13770-12046 g1176951				Bt1Gc1/3/		Bt1Gc1737	Bt1Gc1737	1394 Bt1Gc1758 Bt1G3777		1395 Bt1Gc1762 Bt1G3778	1396 Bt1Gc1765 Bt1G3779	1397 Br1Gc1763 Br1G3780	1398 Bt1Gc1767 Bt1G3781
SEQ U	NO 1392	1392 1392	1392	1392	1392	1393	1393	1393	1393	1393	•	1393	1393	1393		1393	1393	1394		1395	1396	1397	1398

*						ſτ	 1	la]			-	ā						<u> </u>						3	•	;	18		м	
NCBI gi description	(AF010496) hypothetical ABC transporter ATP-binding protein [Rhodobacter capsulatus]			(AJ010139) fumarate hydratase [Bacillus		thuringiensis] 50S RIBOSOMAL PROTEIN L10 (BL5) (COLD	PROTEIN 300) (VEG300) [Bacillus subtilis]	_			(KETO-ACID FORMATE-LYASE) [Escherichia coll]		•		_		[Bacillus stearothermophilus]	(AF053927) probable spore germination protein r [bacillus	_	INTERGENIC REGION [Bacillus subtilis]	(D86418) YfnA [Bacillus subtilis]	3 (AF067645) spore germination protein GerlA [Bacillus			_			_	_	aeoncusi
% Cvrg		50	29	21	7	55		30	19	18		82		23	23	41	•	66	22		17	∞	i	S	18	ж Ж	38	66	22	
% Ident	49	38	99	53	9	99		21	39	76		74	,	54	33	80	1	28	47		36	46	i	99	42	38	33	54	32	
BlastP- Prob I	1.00E-05	4.00E-05	5.70E-22	1.90E-10	3.20E-10	1.60E-24		7.70E-06	3.60E-13	6.90E-09		1.00E-54		5.50E-11	8.00E-10	1.20E-69		2.10E-15	2.10E-10		9.10E-09	9.60E-06	!	3.90E-46	1.00E-06	2.10E-25	3.20E-12	5.00E-14	3.10E-13	
BlastP Score	110	76	256	150	156	280		113	181	144		2 65		159	151	206		194	153		140	114		484	120	293	170	181	183	
aat_B nap_S	94	102	234	116	135	277		73	154	86		562		203	92	169		190	132		124	8		462	65	242	152	172	128	
NCBI gi	g3128280	g321919	g4584140	g4584140	g124464	g1172949		g4323583	g2462090	g1172446	ĸ.	g3401958		g143324	g2619017	£2501426	~)	g2984723	g586902)	g2116759	g3290175	ı	g2635490	g2117766	g3401988	g118797	g4584092	g2983101	
Position	122-1	13-231	239-1	176-1	137-1	1-276		416-1	281-1	1-388		41-488		267-1	397-1	534-1		274-62	1-235		61-299	169-1		1-508	1-224	515-1	1-436	117-323	1-381	
Gene Id	Bt1G3783	Bt1G3784	Bt1G3785	Bt1G3787	Bt1G3788			Bt1G3790				Bt1G3794		Bt1G3795	Bt1G3796	Bt1G3798		Bt1G3799	Bt1G3800		Bt1G3801	Bt1G3802		Bt1G3803	Bt1G3804	Bt1G3805			Bt1G3808	
Contig Id	NO 1399 Bt1Gc1804 Bt1G3783	1400 Bt1Gc1822	1401 Bt1Gc1818	1402 Bt1Gc1828	3 Bt1Gc1832	1404 Bt1Gc1771		1405 Bt1Gc1845	1406 Bt1Gc1849	1407 Bt1Gc1862		1408 Bt1Gc1869 Bt1G3794		1409 Bt1Gc1866 Bt1G3795	1410 Bt1Gc1876 Bt1G3796	1411 Bt1Gc1891		1412 Bt1Gc1896 Bt1G3799	1413 Bt1Gc1898 Bt1G3800		1414 Bt1Gc1894	5 Bt1Gc1917		1416 Bt1Gc1960 Bt1G3803	1417 Bt1Gc1981	8 Bt1Gc1983	9 Br1Gc1979	1420 Bt1Gc1989	1 Bt1Gc1991	
SEQ U	NO 1399	1400	1401	1402	1403	1404		140	1406	140,		140		140	141(141	:	141	141	! !	141,	1415		141	141	1418	1419	142	1421	

NCBI gi description	DIHYDROXY-ACID DEHYDRATASE (DAD) (VEGETATIVE PROTEIN 110) (VEG110) [Bacillus	suotilis] (J01566) 13.8 kd ORF [Plasmid ColE1]	STAGE V SPORULATION PROTEIN E [Bacillus subtilis]	UDP-N-ACETYLENOLPYRUVOYLGLUCOSAMINE REDUCTASE (UDP-N-ACETYLMURAMATE	DEHYDROGENASE) [Bacillus subtilis]	(AF043609) aluminum resistance protein [Arthrobacter	viscosus] (Z94043) hypothetical protein [Bacillus subtilis]	ALANINE DEHYDROGENASE [Bacillus	stearothermophilus] (AB001488) ATP-DEPENDENT RNA HELICASE DEAD	HOMOLOG. [Bacillus subtilis] (D64002) acyl- [Synechocystis sp.]	(Z99107) alternate gene name: yerS; similar to RNA	methyltransferase [Bacillus subtilis]	(AE000249) putative LACI-type transcriptional regulator	[Escherichia coli] Bacillus Licheniformis Alpha-Amylase []	(799110) similar to hypothetical proteins [Bacillus subtilis]	TOPOISOMERASE IV SUBUNIT B [Bacillus subtilis]	(D49784) sodium-coupled branched-chain amino acid	carrier [Clostridium perfringens] HYPOTHETICAL 15.9 KD PROTEIN IN ILVD-THYB	INTERGENIC REGION [Bacillus subtilis]	ALANINE DEHYDROGENASE [Bacillus sphaericus]	(U93876) amino acid transporter [Bacillus subtilis]	PUR OPERON REPRESSOR [Bacillus subtilis]	(AF015825) NADH dehydrogenase-like protein [Bacillus	sucting) (D20674) DNA-binding protein II actobacillus sp.1	(DE20/4) DIVIN Officers of Expectation of Fig.	104) ABC datapolica [15] decinos sus april Entretos esporters erect HOMOLOG [Becillis	CELL DIVISION PROTEIN FISH HOMOLOG (Baching
	DIHY (VEG	Subtilis] (J01566	STAG	UDP-1	DEHY	(AF04	Viscosus (Z94043)	ALAD	stearo (AB00	HOM (D640	(Z991	methy	(AEO	[Esch Bacill	(Z991	TOPC	(D49)	carrie HYP(INTE	A[A]							
Cyrg	18	46	4	33		17	84	16	16	58	25	,	<u>×</u>	4	4	12	41	85		23	26	37	58	ç	7 6	200	27
% Ident (20	53	42	46		46	35	37	53	42	4	•	300	45	36	4	31	71		52	40	36	52	9	? ?	70	4
BlastP-	-20	7.00E-08	2.30E-16	3.70E-18		3.70E-09	4.40E-15	1.40E-05	7.80E-08	3.30E-14	4.10E-22		1.70E-07	3 20E-11	1 00E-13	1.40E-10	2.30E-13	9.90E-41		1.10E-11	3.30E-16	7.10E-15	6,20E-18	1 40E 10	1.40E-10 4.60E-07	4.60E-U/	3.10E-16
BlastP	250	123	207	220		143	191	109	132	184	262		126	163	178	159	179	433		165	208	189	222	771	130	119	212
aat_B	Score 220	114	181	204		122	168	79	136	181	212		66	140	155	126	162	419		148	197	171	188	105		104	222
NCBI gi	g1708465	g144312	g134774	g140583		g2827439	g1945649	g118516	g1881268	g1001657	£2632987		g1787795	24600775	5156365	g3914289	g1220104	g1730918	0	g118515	g1934652	g586880	g2612901	230000	g4/3933	g1001739	g3122117
Position	309-1	1-167	1-491	423-117		1-212	397-1	186-1	249-1	255-1	160-507		1-195	1 217	1 252	243-1	1-423	371-1	· ·	270-1	340-1	316-1	328-1	•	1-280	441-220	541-1
Gene Id	Bt1G3809	Bt1G3810		Bt1G3812		Bt1G3813	Bt1G3814	Bt1G3815	Bt1G3816	Bt1G3817			Bt1G3819					B+1G3825		Bt1G3826							Bt1G3832
Contig Id	Bt1Gc1992	1423 Bt1Gc2025	1424 Bt1Gc2027	Bt1Gc2028		1426 Bt1Gc2038 Bt1G3813	1427 Bt1Gc2029 Bt1G3814	1428 Bt1Gc2057	1429 Bt1Gc2060 Bt1G3816	1430 Bt1Gc2067	Bt1Gc2077		1432 Bt1Gc2081	1422 D41 C-0100	D11C2111	1434 Bulgeziii 1435 Brigezii7	Bt1Gc2110	1437 Bt1Gc2120 Bt1G3825		1438 Bt1Gc2122	1439 Bt1Gc2134	1440 Bt1Gc2138	Bt1Gc2158	3	1442 Bt1Gc2162	1443 Bt1Gc2141	Bt1Gc2171
SEQ ID	NO 1422	1423	1424	1425		1426	1427	1428	1429	1430	1431		1432	1 4 2 2 2	1433	1434	1436	1437		1438	1439	1440	1441	,	1442	1443	1444

,	_
•	ple
ı	8

	% % NCBI gi description Ident Cvrg	firmus] 17 ORF 1S231C [Bacillus thuringiensis]	57	9	37	,	11 DNA-DIRECTED RNA POLYMERASE BETA CHAIN (TRANSCRIPTASE BETA CHAIN) (RNA POLYMERASE	٥	•	74	stearothermophilus] 11 (D86418) YfmR [Bacillus subtilis]	51		25	18	78	17 (53	2 20 (M18327) kanamycin resistance protein [cloning vectors]	88	pZC320] 2 18 (Z93940) asparagine synthetase [Bacillus subtilis]	23	27			24	0 15 GMP SYNTHASE (GLUTAMINE-HYDROLYZING) (GLITAMINE AMIDOTRANSFERASE) (GMP
.		3.70E-22 60		3.10E-15 54	4.80E-25 61		1.00E-27 57	1 20 0 0 0		8.60E-06 38	1.80E-11 49		3.40E-14 37	0.014 32	4.30E-06 33	7.00E-24 71	2.20E-08 34	2.10E-07 34	1.30E-07 52	3.20E-12 39	1.50E-09 32		1.70E-19 42				7.10E-19 50
ranie	BlastP BlastP- Score Prob)L'E E9C					323 1.00		V2:1 C21	110 8.6	167 1.80				115 4.3					164 3.2	149 1.5	-					234 7.1
	aat Bl nap Score	000	398	185	256		298		110	108	147	127	146	136	87	261	75	106	104	70	114	07	184	215	i	104	216
	NCBI gi	022440	g4514362	g482286	03915460		g585920	,	g1661230	g285621	92116756	g2636203	g2635801	g2454562	g1770025	g207999	g1652657	g3955201	g994737	g847865	01034835	02635183	9225559	o 1894750	6	g2226150	g3123227
	Position	248-1	1-542	256-1	1-251	1	1-388	, ,	108-1	228-1	305-101	161-278	366-1	1-419	248-1	1-229	53-419	290-1	158-1	1-315	1-378	1-252	1-389	285-1		107-228	1-237
	Gene Id	D+1/23833	Bt1G3835	Bt1G3836	B+1/53837	2000	Bt1G3838	, c	Bt1G3839	Bt1G3840	B+1G3841	Bt1G3842	Bt1G3843	Bt1G3844	Bt1G3845	Bt1G3846	Bt1G3847	Bt1G3848	Bt1G3849	Bt1G3850	D+1/32841	Bt1G3852	B#1G3853	Br1G3854		Bt1G3855	Bt1G3856
	Contig Id	1445 D+1C02172				2F2200 13G 81	1449 Bt1Gc2247 Bt1G3838	1	1450 Bt1Gc2251 Bt1G3839	1451 Bt1Gc2249 Bt1G3840	52 Bt1Gc2264	1453 Bt1Gc2266	1454 Bt1Gc2252	1455 Bt1Gc2284	1456 Bt1Gc2298	1457 Bt1Gc2294	1458 Bt1Gc2301	1459 Bt1Gc2302	1460 Bt1Gc2300	1461 Bt1Gc2305		1462 Bt1Gc2311	1464 Br11Gc2337	1464 Dtl Gc2337/		1466 Bt1Gc2368 Bt1G3855	1467 Bt1Gc2378
	SEQ NO		147	14	; }	<u> </u>	14,	,	<u>4</u>	14,	1452	1 7	14	14	4	4	4	4	4	4.	7	<u> </u>	1 7	14	-	14	14

`.\.

_
<u>e</u>
9
ై

NCBI gi description	(Z75208) hypothetical protein [Bacillus subtilis]	HYPOTHETICAL 13.2 KD PROTEIN IN FFH 5'REGION [Bacillus subtilis]	(Z99112) signal recognition particle (docking protein) [Bacillus subtilis]	POTASSIUM-TRANSPORTING ATPASE B CHAIN (ATP PHOSPHOHYDROLASE [Clostridium acetobutylicum]	(Z99108) similar to multidrug resistance protein [Bacillus subtilis]	(AB011836) similar to B.subtilis yerN gene(87% identity) [Bacillus halodurans]	ARGINYL-TRNA SYNTHETASE (ARGININETRNA LIGASE) (ARGRS) [Bacillus subtilis]	HYPOTHETICAL 41.5 KD PROTEIN IN AMHX-AMYE BYTED CENIG DEGION (Reciling cubrilis)	HYPOTHETICAL 30.3 KD PROTEIN IN GLYS- DNAG/DNAE INTERGENIC REGION [Bacillus subtilis]	POTASSIUM-TRANSPORTING ATPASE B CHAIN (ATP PHOSPHOHYDROLASE [Clostridium acetobutylicum]	(L48553) vir.A gene product [Bacillus anthracis]	(ABO1/308) rpsC nomologue (identity of 6/70 to 2). such as [Bacillus halodurans]	50S RIBOSOMAL PROTEIN L5 []	(Z93937) unknown [Bacillus subtilis]	ASPARTOKINASE 2 ALPHA AND BETA SUBUNITS	(ASPANIA IE MINASE 2) [Daylins seasons morning] (Z99120) similar to two-component response regulator	Bacillus subtilis]	(AEU01003) asparate racemase [Archaeogrous mughtus]	(AB017508) rpoB homologue (identity of 8/% to B. subtilis [Bacillus halodurans]	(D78193) yydA [Bacillus subtilis]	GLUTAMYL-TRNA SYNTHETASE (GLUTAMATE TRNA LIGASE) (GLURS) [Bacillus subtilis]	(D87026) glycogen phosphorylase [Bacillus
% Cvrg		35 H E	28 (Z) 田	9 P. P. P. P. P. P. P. P. P. P. P. P. P.	44 (Z) su	12 (A	14 A	34 H	37 H D	6 조 교		* *	9 20	29 (2	18 A	33 (2			? %	D 89	19 G T	5 (1
% Ident C	36	83	69	59	25	47	25	43	42	51	9 5		2	33	45	39	;	35	54	20	48	57
BlastP- Prob Ic	6.30E-17	9.40E-13	1.70E-29	5.30E-32	1.40E-10	4.00E-07	7.30E-16	1.40E-21	1.20E-14	9.20E-05	1.40E-18	2.80E-59	2.80E-36	1.20E-13	2.80E-10	1.60E-18		3.60E-20	7.60E-09	1.70E-20	4.20E-16	3.30E-05
BlastP Score	217	169	327	358	156	125	207	254	187	105	224	809	391	186	153	926		239	146	242	208	110
aat_B nap_S Score	180	166	298	364	161	101	171	222	161	132	179	605	359	135	125	190		194	125	196	190	68
NCBI gi	g1770035	g586617	g2633967	g3121784	g2633162	g4512347	g2851477	g2495457	g1731001	g3121784	g1162915	g4512410	g132987	g1934809	g1703223	07635819		g2649148	g4512396	g1064795	g135106	g1944414
Position	1-341	120-1	534-254	389-1	558-1	178-1	235-1	1-407	309-1	1-188	156-371	66-533	377-1	461-1	1-224	367-1		457-1	1-187	402-74	1-288	1-117
Gene Id	Bt1G3857	Bt1G3858	Bt1G3859	Bt1G3860	Bt1G3861	Bt1G3862	Bt1G3863	Bt1G3864	Bt1G3865	Bt1G3866	Bt1G3867	Bt1G3868	Bt1G3869	Bt1G3870	Bt1G3871	B+1G3877	7,000	Bt1G3873	Bt1G3874	Bt1G3875	Bt1G3876	Bt1G3877
Contig Id	Bt1Gc2402	Bt1Gc2406	1469 Bt1Gc2406 Bt1G3859	1470 Bt1Gc2410 Bt1G3860	1471 Bt1Gc2412	1472 Bt1Gc2413 Bt1G3862	1473 Bt1Gc2425 Bt1G3863	1474 Bt1Gc2428 Bt1G3864	1475 Bt1Gc2431	1476 Bt1Gc2465 Bt1G3866	1477 Bt1Gc2467	Bt1Gc2471	1479 Bt1Gc2472	1480 Bt1Gc2480 Bt1G3870	Bt1Gc2482	1482 B+1G-3407 B+1G3872	17172D117	1483 Bt1Gc2506 Bt1G3873	1484 Bt1Gc2510 Bt1G3874	1485 Bt1Gc2511 Bt1G3875	1486 Bt1Gc2507 Bt1G3876	1487 Bt1Gc2535 Bt1G3877
SEQ NO DE	00	1469	1469	1470	1471	1472	1473	1474	1475	1476	1477	1478	1479	1480	1481	1482	7041	1483	1484	1485	1486	1487

				~			Laure I			
SEQ EQ	Contig Id	Gene Id	Position	NCBI gi	aat_ nap	BlastP	BlastP- Prob	% % Ident C	% Cvrg	NCBI gi description
1488	1488 Bt1Gc2532 Bt1G3878	Bt1G3878	20-387	g321919	152	166	2.00E-12	38	83 1	stearothermophilus] hypothetical 16.9K protein - Salmonella typhimurium
1489	1489 Bt1Gc2536 Bt1G3879	Bt1G3879	1-221	g1724002	129	139	4.90E-09	44	25]	HYPOTHETICAL ABC TRANSPORTER ATP-BINDING PROTEIN 2 IN GLPD-CSPB INTERGENIC REGION
1490	1490 Bt1Gc2559 Bt1G3880	Bt1G3880	1-351	g2500058	259	252	1.80E-20	54	16]	[Bacillus subtilis] FORMATE ACETYLTRANSFERASE (PYRUVATE
1491	1491 Bt1Gc2560 Bt1G3881	Bt1G3881	457-1	g1730908	210	139	8.20E-09	35	40	FORMA 1E-L 1 ASE) [CIOSUIGIUII PASICUI FAILLY PASICUI FAIL 43.6 KD PROTEIN IN CPSD-METB INTERGENIC REGION [Bacillus subtilis]
1492	1492 Bt1Gc2563 1493 Bt1Gc2567	Bt1G3882 Bt1G3883	455-1 388-1	g2635675 g2293298	428 173	386 213	9.50E-36 2.00E-17	56 41	41 56	(Z99120) similar to hypothetical proteins [Bacillus subtilis] (AF008220) putative transcription regulator [Bacillus
1494	1494 Bt1Gc2577	Bt1G3885	1-298	g130130	162	134	5.70E-08	43	17	SUCLINS ALKALINE PHOSPHATASE SYNTHESIS SENSOR DROTTEIN PHOR (Recillus surhfilis)
1495	1495 Bt1Gc2578 Bt1G3886	Bt1G3886	1-267	g1730943	131	149	1.20E-10	39	09	HYPOTHETICAL TRANSCRIPTIONAL REGULATOR IN UVRX-ILVA INTERGENIC REGION [Bacillus
1496	1496 Bt1Gc2570 Bt1G3887	Br1 G3887	1-289	g132246	105	74	0.085	31	56	subtilis] RECF PROTEIN [Bacillus subtilis]
1497	1497 Bt1Gc2593		1-234	g3821797	88	139	1.40E-08	46 37	<u>4</u> 7	(D10594) chitinase D precursor [Bacillus circulans] PHOSPHOFNOL PYRUVATE CARBOXYKINASE (ATP)
1498	1498 B11G62594 B11G3889	Bt1G3800	1-327	62635780	, 42	•	6.20E-18		19	[Staphylococcus aureus] (Z99120) similar to 3-hydroxyacyl-CoA dehydrogenase
1500	1500 Bt1Gc2613 Bt1G3891	Bt1G3891	390-1	g2634117	137		4.20E-10		41	[Bacillus subtilis] (Z99113) tRNA isopentenylpyrophosphate transferase
1501	1501 Br1Gc2617	Rt1G3892	1-317	g1205984	180	127	5.60E-07	47	12	[Bacillus subtilis] (U33536) DNA polymerase I [Bacillus stearothermophilus]
1502	1502 Bt1Gc2622		1-441	g2337795	270	-	1.40E-16		16	(Y13937) putative PacL protein [Bacillus subtilis]
1503	Bt1Gc2629		1-245	g4584142	147	190	5.60E-15	20	58	(AJ010139) DNA alkylation repair enzyme [Bacillus
1504	1504 Bt1Gc2631 Bt1G3895	Bt1G3895	383-1	g1730999	247	305	3.20E-26	49	17	cereus) HYPOTHETICAL 79.2 KD PROTEIN IN PHOH-DGKA INTERGENIC REGION (Bacillus subtilis)
1505	1505 Bt1Gc2632 Bt1G3896	Bt1G3896	1-322	g133732	431		1.40E-41		76	30S RIBOSOMAL PROTEIN S12 (BS12) []
1506	1506 Bt1Gc2639	Bt1G3897	1-403	g1072499	251	214	3.50E-17	1) c	pnospno-n-acetynnuanioy-penapepuae a massa (2002.7.8.13) - Bacillus subtilis [Bacillus subtilis]

						rapie i			
SEQ Contig Id	Gene Id	Position	NCBI gi	aat_n nap Score	BlastP Score	BlastP- Prob	% Ident C	Cvrg	NCBI gi description
1507 Bt1Gc2641 Bt1G3898	Bt1G3898	73-413	g121466	419	352	3.80E-32	72	27]	PROTON/SODIUM-GLUTAMATE SYMPORT PROTEIN (GLUTAMATE-ASPARTATE CARRIER PROTEIN) [Bacillus caldotenax]
1508 Bt1Gc2647 Bt1G3899	Bt1G3899	330-1	g1170998	132	144	4.20E-10	27	50	HYPOTHETICAL 24.6 KD PROTEIN IN CCPA 3'REGION (ORF2) [Bacillus megaterium]
1509 Bt1Gc2648 Bt1G3900	Bt1G3900	549-233	g267497	146	154	2.80E-10	37	23	HYPOTHETICAL 50.9 KD PROTEIN IN KATA 3'REGION (ORF A) [Bacillus firmus]
1510 Bt1Gc2652	Bt1G3901	1-180	g2116973	135	169	3.50E-12	62	17	(D87979) YfnK [Bacillus subtilis]
1511 Bt1Gc2656		424-1	g2619006	240	284	1.10E-24	40	30	(AF027868) putative L-amino acid oxidase precursor [Bacillus subtilis]
1512 Bt1Gc2677	Bt1G3903	1-215	g2635763	121	141	7.10E-09	20		(Z99120) similar to hypothetical proteins [Bacillus subtilis]
1513 Bt1Gc2681	Bt1G3904	185-1	g3183561	112	145	6.30E-10	26		VEGETATIVE PROTEIN 296 (VEG296) [Bacillus subtilis]
1514 Bt1Gc2678	Bt1G3905	1-255	g225559	214	237	2.70E-19	54		ORF IS231C [Bacillus thuringiensis]
1515 Bt1Gc2685	Bt1G3906	19-265	g4584149	2/	11	0.032	39	76	(AJ010111) cytochrome aa3 controlling protein [Bacillus
1516 Bt1Gc2696	Bt1G3907	1-238	g2337799	97	125	3.10E-07	36	19	cereus] (Y13937) putative Dfp protein [Bacillus subtilis]
1517 Bt1Gc2679	Bt1G3908	7-248	g4584150	155	177	2.70E-13	48	76	(AJ010111) cytochrome caa3 oxidase assembly factor
0050140 005000 Dt-103000	D+1/23000	1_220	27404761	150	224	1.00E-17	4	20	[Bacillus cereus] CTP SYNTHASE (UTPAMMONIA LIGASE) (CTP
1318 BUGGZ/00	DEI (1330)	CCC-1	101171		1		!	į	SYNTHETASE) [Synechocystis sp.]
1519 Bt1Gc2725	Bt1G3911	220-440	g2634068	149	87	0.0055	25	14	(Z99112) similar to hypothetical proteins [Bacillus subtilis]
1520 Bt1Gc2733	Bt1G3912	348-1	g1769944	88	143	5.50E-09	35	21	(X98626) SNF2 [Bacillus cereus]
1521 Bt1Gc2746		353-1	g1770026	206	226	4.20E-18	45	25	(Z75208) hypothetical protein [Bacillus subtilis]
1522 Bt1Gc2734	Bt1G3914	1-136	g732324	66	112	7.00E-06	48	12	PUTATIVE UDP-N-ACETYLGLUCOSAMINE 2- EPIMERASE (UDP-GLCNAC-2-EPIMERASE) [Bacillus
									subtilis]
1523 Bt1Gc2748 Bt1G3915	Bt1G3915	188-1	g1934606	121	141	4.90E-09		16	(U93874) cystathionine gamma-lyase [Bacillus subtilis]
1524 Bt1Gc2747	7 Bt1G3916	1-159	g585920	153	156	6.60E-10	62	4	DNA-DIRECTED RNA POL YMERASE BETA CHAIN (TRANSCRIPTASE BETA CHAIN) (RNA POL YMERASE
									BETA SUBUNIT) [Bacillus subtilis]
1525 Bt1Gc2755 Bt1G3917	3 Bt1G3917	1-410	g3915673	118	182	1.20E-12	32	1	PROBABLE SERINE ACTIVATING ENZYME [Bacillus
1				70.		2 70E 12	35	7	subtilis] DIMETHYI ADENOSINE TRANSFERASE (S-
1526 Bt1Gc2765 Bt1G3918	5 BtlG3918	397-1	g>8>3/5	971	1/0	2./UE-13		}	ADENOSYLMETHIONINE-6-N', N'-ADENOSYL(RRNA) DIMETHYL TRANSFERASE) (16S RRNA

					-		^		~			-								-	-	. <u>s</u>		tor		
	NCBI gi description	DIMETHYLASE) (HIGH LEVEL KASUGAMYCIN RESISTANCE PROTEIN KSGA) (KASUGAMYCIN DIMETHYLTRANSFERASE) [Bacillus subtilis]	(Y11193) transcription antiterminator [Bacillus subtilis]					(AL021246) clpX [Mycobacterlum tuberculosis]	_				5'REGION (ORFB) [Bacillus subtilis]	_	HYPOTHETICAL 31.7 KD PROTEIN IN GLTP-CWLJ INTERGENIC REGION (ORF13) [Bacillus subtilis]	. –	CARBAMOYL-PHOSPHATE SYNTHASE,	PYRIMIDINE-SPECIFIC, LARGE CHAIN	(CARBAMOYL-PHOSPHATE SYNTHETASE	, ,		respiratory nitrate reductase alpha chain - Bacillus subtilis [Bacillus subtilis]		plasmid N L F 10 [] (U12390) beta-galactosidase alpha peptide [cloning vector		(U01849) ORF1 [Trypanosoma brucei]
	% Cvrg		42	6	19	70	,	4 .	29	76	01	89		24	52	43	6			4	5	4	75	81	1	91
, 1	% Ident (9	53	69	20	37	,	89 7	28 28	9	1	30		76	35	69	4			5	21	63	34	38	;	40
Table 1	BlastP- Prob I	20 TO 0	8.00E-00 1.50E-23	1.00E-16	6.00E-20	3.40E-15		2.90E-15	3.50E-09 1.70E-05	1 000	1.30E-11	6.60E-12		3.60E-05	3.00E-16	6.30E-39	3.50E-10			1 201	1.20E-09	3.30E-05	5.30E-10	6.60E-12		0.28
	BlastP	,	271	216	246	192		199	138		100	161		107	202	416	158				141	112	143	161		49
	aat_ I nap	, , , , , , , , , , , , , , , , , , ,	343	198	270	160		172	120		C71	180		11	132	525	139			,	071	133	79	120		125
*	NCBI gi		g2635181 c2154723	g2149596	g135175	g140338	b	g2791497	g4584097		g121357	g732300	0	g1093432	g3183506	01750108	ø1168772	1		1	g1881355	g2117582	g321919	0531829	600106	g436923
	Position		212-108	182-1	371-1	452-1	1	1-182	145-1	7 .	1-212	505-1		1-351	433-1	1-437	305-1			1	357-1	145-1	357-18	1-372	7/6-1	770-58
	Gene Id	-	Bt1G3919			Bt1G3923			Bt1G3925	07650110	Bt1G3927	B+1G3928		Bt1G3929	Bt1Gc2850 Bt1G3930	B+1/33031	Br1G3937			1) Bt1G3933	5 Bt1G3934	3 Bt1G3935	2 B+1/33037		1545 Bt1Gc2910 Bt1G3938
	Contig Id		Bt1Gc2770 Bt1G3919	1528 Bt1Gc2766	Bt1Gc2789	1531 Bt1Gc2791 Bt1G3923		1532 Bt1Gc2797	Bt1Gc2824	D11002040	Bt1Gc2835	1536 Bt1Gc2842 Bt1G3928		1537 Bt1Gc2843 Bt1G3929	Bt1Gc2850	1520 D+1C-028/1	1539 Bt1Gc2841	DII 002002			1541 Bt1Gc2859 Bt1G3933	1542 Bt1Gc2865 Bt1G3934	1543 Bt1Gc2878 Bt1G3935	1544 B+1C20013	• DUI GC271.	3 Bt1Gc2910
	SEQ D	2	1527	1520	1530	1531		1532	1533	1 554	1535	1536		1537	1538	1620	1540	1740			1541	1542	1543	1511	1345	1545

_
$\overline{}$
9
国
ਢ
Ε

WCDI of description	Ident Cvrg	19 LIPOAMIDE DEHYDROGENASE COMPONENT OF PYRUVATE DEHYDROGENASE COMPLEX (E3) (DIHYDROLIPOAMIDE DEHYDROGENASE) (S	57	93	46	31	81	18	25	23	41	23	40 22 HYPOTHETICAL 53.2 KD PROTEIN IN XPAC-ABRB INTERGENIC REGION [Bacillus subtilis]	42 23 HYPOTHETICAL 53.2 KD PROTEIN IN XPAC-ABRB INTERGENIC REGION [Bacillus subtilis]	35 28 HYPOTHETICAL 39.0 KD PROTEIN IN GLNQ-ANSR INTERGENIC REGION [Bacillus subtilis]
%	dent	38	76	29	28	41	53	43	51	38	45	41	4	4	ćή
BlastP.		7.30E-09	4.70E-89	2.90E-11	2.30E-07	6.10E-22	3.50E-10	8.50E-10	1.50E-15	1.70E-07 5.80E-68	1.40E-11	9.60E-13	2.30E-06	5.50E-12	3.20E-12
BlastP	Score	141	889	155	120	259	150	149	200	128	158	177	118	170	169
aat_Bl		128	863	127	92	261	128	133	210	129 670	139	155	98	157	119
	NCBI gi	g118672	g2914486	g3256661	g2497400	g3122219	g399870	g399784	g2507017	g1945050 g3023262	g267052	9989858	9586866	g586866	g1731087
	Position	274-1	514-1	24-414	400-103	395-1	1-173	188-423	288-1	97-400 1-505	293-1	329-1	324-1	331-1	290-1
	Gene Id	Bt1G3939	Bt1G3940	Bt1G3941	Bt1G3942	Bt1G3943	Bt1G3944	Bt1G3945	Bt1G3948	Bt1G3950 Bt1G3951	Bt1G3952	Bt1G3953	Bt1G3954	Bt1G3955	Bt1G3956
	Contig Id	1546 Bt1Gc2918 Bt1G3939	1547 Bt1Gc2923 Bt1G3940	1548 Bt1Gc2925 Bt1G3941	1549 Bt1Gc2927 Bt1G3942	1550 Bt1Gc2928 Bt1G3943	1551 Bt1Gc2997 Bt1G3944	1551 Bt1Gc2997 Bt1G3945	1552 Bt1Gc3013 Bt1G3948	1553 Bt1Gc3012 Bt1G3950 1554 Bt1Gc3034 Bt1G3951	1555 Bt1Gc3033 Bt1G3952	1556 Bt1Gc3043 Bt1G3953	1557 Bt1Gc3046 Bt1G3954	1558 Bt1Gc3049 Bt1G3955	1559 Bt1Gc3054 Bt1G3956
SEQ	<u>a</u> §	1546	1547	1548	1549	1550	155]	155]	1552	155: 155 ⁴	155:	155	155	155	155

			-								SE					
	NCBI graescription	(Z92952) product similar to Staphilococcus aureus CapB protein [Bacillus subtilis]	(D29674) DNA-binding protein [Lactobacillus sp.] (D50453) homologue of unidentified protein of E. coli [Bacillus subtilis]			–			(AJ010139) DNA alkylation repair enzyme [Bacillus cereus]			ORF IS231C [Bacillus thuringiensis]				(D87979) YfnJ [Bacillus subtilis]
	% Vrg	35	30	16	29	39	18	20	46	86 21	12	17	9	14	26	∞
	% % Ident Cvrg	37	52 57	48 36	39	42 26	43	49	50	46 43	47	43	41	53	28	39
	BlastP- Prob Io	1.00E-08	5.20E-28 3.00E-32	1.60E-10 1.10E-10	5.30E-19 7.10E-21	2.20E-20 3.20E-12	7.20E-10	8.60E-11	2.30E-25	4.50E-29 4.60E-13	3.10E-26	1.80E-06	5.30E-10	2.60E-19	7.80E-07	1.10E-08
•	BlastP	133	313 353	155	234 257	241 164	149	156	288	323 179	309	119	143	240	122	144
	aat_B nap_S Score	117	285 447	133	203	187 119	115	145	238	312 153	290	86	01 140	206	82	100
	NCBI gi	g1894742	g473955 g1805397	g2293164 g1703066	g2226226 g68538	g126054 g2982937	g732334	g3122129	g4584142	g2633128 g2497382	g1350849	g225559	g233128/ g4584201	g1731052	g4204103	g2116974
	Position	1-251	379-1 1-486	191-1 1-300	1-398	1-379	219-1	205-1	1-395	1-387 268-1	410-1	328-114	269-103 1-248	334-1	364-1	1-271
	Gene Id	Bt1G3957	Bt1G3958 Bt1G3959	Bt1G3960 Bt1G3961	Bt1G3962 Bt1G3963	Bt1G3964 Bt1G3965	Bt1G3966	Bt1G3967	Bt1G3968	Bt1G3969 Bt1G3970	Bt1G3971	Bt1G3972	Bt1G39/3 Bt1G3974	Bt1G3975) Bt1G3976	5 Bt1G3977
	Contig Id	1560 Bt1Gc3055 Bt1G3957	Bt1Gc3057 Bt1Gc3060	1563 Bt1Gc3070 Bt1G3960 1564 Bt1Gc3087 Bt1G3961	1565 Bt1Gc3088 Bt1G3962 1566 Bt1Gc3096 Bt1G3963	1567 Bt1Gc3100 Bt1G3964 1568 Bt1Gc3101 Bt1G3965	1569 Bt1Gc3086 Bt1G3966	1570 Bt1Gc3098 Bt1G3967	1571 Bt1Gc3116 Bt1G3968	1572 Bt1Gc3115 1573 Bt1Gc3132	1574 Bt1Gc3134 Bt1G3971	1575 Bt1Gc3135 Bt1G3972	1576 Bt1Gc3140 1577 Bt1Gc3146	1578 Bt1Gc3152	1579 Bt1Gc3149 Bt1G3976	1580 Bt1Gc3156 Bt1G3977
	SEQ B D	1560	1561	1563	1565 1566	1567 1568	1569	1570	1571	1572 1573	1574	1575	1576	1578	1579	1580

				ASE					SE	2	~ -	_					ē					D.						_	,TE		
		tilis]		CHAIN	[**;1;**]		ED OF D.	as subtili	EPTIDA	ne embtili	ms sacar	us cereus	[sn		<u>~</u>	1	ATE			otem	mont mon	III CIII DI AII	ASE			<u> </u>	ASE) (D.	FERASE	HOSPH	6-PH	
	a ·	cillus sub ıbtilis]		SE BETA RNA PO	F	acillus su	ZY,	e [Bacillı	(MAP) (I	· · [Becilli		n [Bacill	illus cere	•	us subtili	ASE	(PANTC subtilisl	-	•	nsport pr	. [00000]	(mtegrai	PHORYI	:	[] 	IOSPHA ING	ANCEER	TRANS	OSE-6-P	AMINE-	
	NCBI gi description	GTP-BINDING PROTEIN LEPA [Bacillus subtilis] CITRATE SYNTHASE II [Bacillus subtilis]	subtilis]	DNA-DIRECTED RNA POLYMERASE BETA CHAIN (TRANSCRIPTASE BETA CHAIN) (RNA POLYMERASE	subtilis]	(Z99122) similar to SNF2 helicase [Bacillus subfilis]	(AB001488) SIMILAK 10 IQFO, IAKD, IIIB OF B. SUBTILIS. [Bacillus subtilis]	(X92868) NAD alcohol dehydrogenase [Bacillus subtilis]	METHIONINE AMINOPEPTIDASE (MAP) (PEPTIDASE	10 to 20 to 10 to	(X92868) INALD alcohol deliyul ogenlase [Dacilius sucuris]	(AJ010138) stage II sporulation protein [Bacillus cereus]	(AJ000394) hypothetical protein [Bacillus cereus]	1	(Z75208) hypothetical protein [Bacillus subtilis]	PANTOATEBETA-ALANINE LIGASE	(PANTOTHENATE SYNTHETASE) (PANTOATE ACTIVATING ENZYME) (Bacillus subtilis)	1.4315	ubtilisj	(Z99108) similar to divalent cation transport protein	1	(Z99117) glutamine ABC transporter (integral internorate protein) [Bacillus subtilis]	PYRIMIDINE-NUCLEOSIDE PHOSPHORYLASE	-	hypothetical protein - Bacillus subtilis []	GLUCOSAMINEFRUCTOSE-9-FRUSFRATE	AMINOIKANSFERASE (ISOMENIZIAG)	(HEAOSEFIOSFIA LE AMINO INAINSI LIXASE) (E EPITCTOSE-6-PHOSPHATE AMIDOTRANSFERASE)	(GFAT) (L-GLUTAMINE-D-FRUCTOSE-6-PHOSPHATE	AMIDOTRANSFERASE) (GLUCOSAMINE-6-PH.	
	VCBI gi (ASE II	Bacillus	INA POL BETA (Bacillus	SNF2 he	AK 10 Y 18 subtilis	ohol dehy	IINOPEP	[S]	onoi deiry	sporulati	etical pro		cal protei	A-ALAN	SYNTE ZYME)		Bacillus s	divalent	,	s ABC uta subtilis]	CLEOSII	sniiudom	ı - Bacillı Tari	FKUCIC	KASE (L	OSPHAT	AMINE-I	RASE) (
	-	SYNTHA) DppE	ECTED F RIPTASE	(TINDE	imilar to	8) SIMIL . [Bacill	NAD alco	VINE AN	lus subtil		stage II	i) hypoth	OTEIN [hypotheti	TE-BET	HENAT		YtmM	similar to	isman;	glutamin Bacillus s	INE-NU	stearother	al proteir	AMINE-	KANSFE	SE-6-PH	L-GLUT	RANSFE	subtilis
		TP-BINE ITRATE	(AJ002571) DppE [Bacillus subtilis]	NA-DIRI FRANSCI	BETA SUBUNIT) [Bacillus subtilis]	299122) s	(AB001488) SIMILAK 10 YO SUBTILIS. [Bacillus subtilis]	(89826X	TETHIO	M) [Bacillus subtilis]	x37808)	AJ010138	AJ000394	RECF PROTEIN []	Z75208) I	ANTOA	PANTOT		(D86417) YfmM [Bacillus subtilis]	Z99108) similar 1	Dacillus	(Z99117) glutamine ABC 1 protein) [Bacillus subtilis]	YRIMID	Bacillus stearothermophilus	ypothetic	iLUCOS	AMINOL	HEAUSI	GFAT)	AMIDOT	[Bacillus subtilis]
	% Vrg	7 G 16 C		ν Ο Ο			27 S		33 N			_	_			42 P	<u> </u>	•		36 (31 T	14 H			77	•	_		7.	
	% % Ident Cvrg	76 47	49	48		30	44	34	46	•	42	89	39	27	26	40	-	,	56	45		46	55		9	26					
I ante I	BlastP- Prob I	4.40E-10	2.00E-35	1.00E-11		6.40E-05	1.10E-27	1.50E-12	1.30E-07		2.60E-15	1.80E-06	5.60E-15	3.90E-05	4.30E-08	2.00E-17			1.00E-07	6.30E-23		2.70E-08	4.40E-07		2.90E-08	7.50E-22					
		4	7.	-:							•				-																
	BlastP Score	154	383	173		108	310	173	124		198	111	190	105	125	213			131	265		128	124		136	263					
	aat_ F nap Score	145	343	140		74	294	148	134	,	139	258	179	104	119	195			96	247		88	144		115	324					
	NCBI gi	g1708794	g2632017	g585920		g2636153	g1881335	g2108273	g113739		g2108273	g4584135	g4584201	g1710069	g1770039	g1709569			g2443256	g2633124		g2635191	g2501426		g629038	g1169919					
	Ž	g17	226	g58		g 26	g18	g21	<u>s</u>)	<u>2</u>	g45	<u>4</u>	<u>5</u>	, <u>5</u>	g)		g27	ž					86.	13					
	Position	1-126	459-1	14-266		391-54	1-233	354-1	282-39		295-1	293-39	1-329	368-1	107-250	362-1			1-328	341-1		433-235	478-300		1-230	469-95					
	Gene Id	Bt1G3978	Bt1G3980	Bt1G3981		Bt1G3982	Bt1G3983	Bt1G3984	Bt1G3985		Bt1G3986	Bt1G3987	Bt1G3988	Bt1G3989	Bt1G3990	Bt1G3991			G3992	Bt1G3993		G3994	G3995		966ED	Bt1G3997					
																			8 Bt1	5 Btl		8 Btl	0 Bt1		5 Bt1						
	Contig Id	Bt1Gc3183	Bt1Gc3192	Bt1Gc3198		1585 Bt1Gc3208	Bt1Gc3210	Bt1Gc3211	1588 Bt1Gc3214		Bt1Gc3207	Bt1Gc3227	Bt1Gc3234	Bt1Gc3248	Bt1Gc3251	Bt1Gc3252			1595 Bt1Gc3258 Bt1G3992	1596 Bt1Gc3295		1597 Bt1Gc3298 Bt1G3994	1598 Bt1Gc3300 Bt1G3995		1599 Bt1Gc3305 Bt1G3996	1600 Bt1Gc3310					
	-	.	1583 Bt	1584 Bt		385 Bt	1586 Bt	1587 Bt	388 Bt		1589 Bt	1590 Bt	1591 Bt			1594 Rt			595 Bi	596 Bi		597 B	598 B		599 B	600 B					
	SEQ U	15	15	12		15	17	4.	15	i	77	1.5	· 💾	-	. —	i -	i		~	-			Ä		–	Ā					

						T CHOICE			
SEQ Contig Id	Id Gene Id	Position	NCBI gi	aat_ nap Score	BlastP Score	BlastP. Prob	% Ident C	% Cvrg	NCBI gi description
1601 Bt1Gc33	1601 Bt1Gc3313 Bt1G3998	1-184	g629265	66	103	2.70E-05	45	26	aldehyde dehydrogenase - Mycoplasma capricolum (SGC3)
1607 B+1G-23	1602 B+1Gc3326 B+1G3999	227-1	¢2415403	152	181	2.90E-13	49	17 ((Iragilletti) [Infycophashina capareonam.] (AF015775) acetylornitine deacetylase [Bacillus subtilis]
1603 Bt1Gc3333	33 Bt1G4000	380-1	g2462099	285	303	5.90E-27	52	55 ((Y10908) sulfate transport ATP-binding protein [Bacillus
1604 B+1G-23335	235 B#1G4001	1-244	47196776	8	127	2.50E-07	33	17	cereus] (Y14081) hypothetical protein [Bacillus subtilis]
1605 Bt1Gc3353		359-1	g2274944	134	153	2.70E-10	33	_	(AJ000346) NapC protein [Enterococcus hirae]
1606 Bt1Gc3359		501-7	g3915568	185	204	5.20E-16	33	4	HYPOTHETICAL 39.4 KD OXIDOREDUCTASE IN HOM MPGA INTERGENIC REGION [Bacillas subtilis]
1607 B#1Gr33	1607 B+1Gc3360 B+1G4004	290-1	g148683	327	267	3.90E-23	63	52	(M55343) open reading frame [Frankia sp.]
1608 Bt1Gc32	1608 Bt1Gc3373 Bt1G4005	4	g118262	398	398	5.10E-37	06	66	DNA-BINDING PROTEIN II (HB) (HU) [Bacillus
1609 Bt1Gc3	1609 Bt1Gc3378 Bt1G4006	1-294	g3915989	189	247	8.70E-21	58	24	STEATOURE INOPINIUS HAY POTEIN IN PRKA-CSPB TATED CENIC PECION (ORF4) [Racillus subtilis]
1610 Bt1Gc3	1610 Bt1Gc3382 Bt1G4007	127-1	g4063787	136	69	0.067	63	27	(AB008550) orf14; similar to S general completion
1611 Br1Gc3	1611 Br1Gc3396 Bt1G4009	1-223	g2497382	129	139	1.00E-08	49	17	[Pseudomonas aeruginosa phage phi CLA] TRANSPOSASE FOR INSERTION SEQUENCE
1612 Br1Gc3	1612 Bt1Gc3412 Bt1G4010		g134396	263	132	1.60E-07	20	15	ELEMENT IS232 [Insertion sequence IS232] PREPROTEIN TRANSLOCASE SECA SUBUNIT
1612 B+1Go2/	1612 Bt1Gc3427 Bt1G4011		0129521	130	145	3.30E-10	33	59	[Bacillus subtilis] PARA-AMINOBENZOATE SYNTHASE GLUTAMINE
CIOI CIOI	17.		i i						AMIDOTRANSFERASE COMPONENT II (ADC SYNTHASE)/ ANTHRANILATE SYNTHASE
									COMPONENT II [Bacillus subtilis]
1614 Bt1Gc3	1614 Bt1Gc3430 Bt1G4012	1-339	g2293322	118	114	5.50E-06	33	25	(AF008220) branch-chain amino acid transporter [Bacillus subtilis]
1615 Bt1Gc3	1615 Bt1Gc3434 Bt1G4013	368-1	g2833392	188	177	1.30E-12	43	22	HYPOTHETICAL 61.5 KD PROTEIN IN ADEC-PDHA PITTED CENT PECION (Recillus subtilis)
1616 Bt1Gc3	1616 Bt1Gc3445 Bt1G4014	1 442-1	g586866	177	203	1.40E-15	38	31	INTERGENIC REGION [Bacillus subtilis] HYPOTHETICAL 53.2 KD PROTEIN IN XPAC-ABRB INTERGENIC REGION [Bacillus subtilis]
1617 Bt1Gc3	1617 Bt1Gc3450 Bt1G4015	321-42	g121190	139	184	2,40E-14	43	38	
1618 Bt1Gc3	1618 Bt1Gc3463 Bt1G4016	5 129-458	g1706797	249	189	1.70E-14	40	32	
1619 Bt1Gc3	1619 Bt1Gc3494 Bt1G4017	7 291-1	g2293328	134	175	2.70E-13	42	35	

, °\$

SEQ Contig Id	Gene Id	Position	NCBI gi	aat_ nap Score	BlastP Score	BlastP- Prob	% % Ident Cvrg	% Vrg	NCBI gi description
2				-				sn	subtilis]
1620 Bt1Gc3517 Bt1G4018	7 Bt1G4018	1-484	g2619056	450	432	1.30E-40	56	36 ((AF027868) putative transporter [Bacillus subtilis]
1621 Bt1Gc3514	4 Bt1G4019	1-345	g2633471	720	0/7	Z.60E-23	¥.		(29109) sunitar to 3-oxonoyi moyi carrie process symmetrics (Bacillus subtilis)
1622 Bt1Gc3523	3 Bt1G4020	1-469	g466137	74	109	4.90E-06	34	38	HYPOTHETICAL 25.6 KD PROTEIN IN PLCB-LDH
				,	,	Į.	,		INTERGENIC REGION (ORFA) [Listeria monocytogenes]
1623 Bt1Gc3532	2 Bt1G4021	219-1	g994736	102	106	4.50E-06	9		(M1852/) LacOF2-alpha pepude nom poez, pudave [cloning vectors]
1624 Bt1Gc3551 Bt1G4022	1 Bt1G4022	372-1	g1169253	136	178	6.20E-13	38	28	ANAEROBIC C4-DICARBOXYLATE TRANSPORTER
1625 Bt1Gc3553 Bt1G4023	3 Bt1G4023	1-411	g113346	132	190	1.50E-13	35	=	DCOB [Haemophinas minerizae Nu.] ATP-DEPENDENT NUCLEASE SUBUNIT B [Bacillus enhitis]
1626 Bt1Gc3555 Bt1G4024	5 Bt1G4024	337-1	g2127795	123	180	2.20E-13	38	31	carbamoyl-phosphate synthase, small chain (EC 6.3) -
	2000	-	1700707	210	340	3 30E-31	G	×	GTP-BINDING PROTEIN LEPA [Bacillus subtilis]
1627 Bt1Gc3566 Bt1G4025	6 Bt1G4025	1-333	g1/06/94	216		7.30E-31	3 6		HVPOTHETICAL 56.1 KD PROTEIN IN MFD-DIVIC
1628 Bt1Gc3574 Bt1G4026	4 Bt1G4026	1-210	8280882	180		2.10E-08	3		INTERGENIC REGION [Bacillus subtilis]
1620 Rt1Gc360	Rt1Gc3603 Bt1G4027	245-1	g130904	148	79	0.00063	43	13	
1630 Br1Gc3597	7 Bt1G4028	256-1	g1346795	98		5.80E-10	36	14	DNA PRIMASE [Listeria monocytogenes]
1631 Br1Gc3652	2 Bt1G4029	212-464	g132246	137		1.80E-10	35	23	RECF PROTEIN [Bacillus subtilis]
1637 B#1Gc3680		66-405	g3688823		196	1.30E-15		95	(AF084104) hypothetical protein [Bacillus firmus]
	Br1Gc3690 Bt1G4032	258-1	g2632519		185	4.00E-14			(Z99105) similar to hypothetical proteins [Bacillus subtilis]
1634 Bt1Gc3709	9 Bt1G4034	1-301	g232186	107	127	3.40E-06	31	7	GRAMICIDIN S SYNTHETASE II (GRAMICIDIN S BIOSYNTHESIS GRSB PROTEIN) [Brevibacillus brevis]
1635 Bt1Gc3713	3 B#1G4035	380-145	g2829479	276	281	1.30E-24	73	59	50S RIBOSOMAL PROTEIN L11 [Bacillus
1/00177 (001			0						stearothermophilus, Peptide, 133 aa]
1636 Bt1Gc3721 Bt1G4036	1 Bt1G4036	1-310	g1934609	93				10	(U93874) formate dehydrogenase chain A [Bacillus subtilis]
1637 Bt1Gc3719 Bt1G4037	9 Bt1G4037	1-278	g1169919	162	202	2.90E-15	41	15	GLUCOSAMINEFRUCTOSE-0-FRUSFITATE
									AMINOTRAINSFERASE (BOUNDAMINO) (HEXOSEPHOSPHATE AMINOTRANSFERASE) (D-
									FRUCTOSE-6-PHOSPHATE AMIDOTRANSFERASE)
									(GFAT) (L-GLUTAMINE-D-FRUCTOSE-6-FHOSFHATE AMIDOTRANSFERASE) (GLUCOSAMINE-6-PH
									[Bacillus subtilis]
1638 Bt1Gc3743 Bt1G4038	13 Bt1G4038	530-89	g1731017	208	3 250	2.80E-20	43	20	HYPOTHETICAL 80.1 KD PROTEIN IN SODA-COMGA

SEQ Contig Id Gene Id NO SEQ CONTIG Id Gene Id NO 1639 Bt1Gc3747 Bt1G4039 1640 Bt1Gc3759 Bt1G4040	Gene Id 7 Bt1G4039 8 Bt1G4040	Position 1-135 141-1	NCBI gi g3290175 g1708641		BlastP Score 135		% Ident C' 61		NCBI gi description INTERGENIC REGION [Bacillus subtilis] (AF067645) spore germination protein GerIA [Bacillus cereus] (U51115) YeaC [Bacillus subtilis]
1641 Bt1Gc3761 Bt1G4041 1642 Bt1Gc3760 Bt1G4042 1643 Bt1Gc3772 Bt1G4043	Bt1G4041 Bt1G4042 Bt1G4043	1-427 500-177 411-1	g4558012 g2501575 g1078767	178 121 238	173 140 266	1.60E-12 4.00E-09 7.60E-22	36 26 37	37 35 16	Chain A, Alanine Racemase with Dound Fropionale Inhibitor [] HYPOTHETICAL 33.3 KD PROTEIN SLL1263 [Synechocystis sp.] acetaldehyde dehydrogenase (acetylating) (EC 1.2.1.10) / alcohol dehydrogenase (EC 1.1.1.1) - Entamoeba histolytica
1644 Bt1Gc3779 Bt1G4044) Bt1G4044 5 Bt1G4045	1-556	g127481 g629038	203		2.70E-22 3.50E-07	32 48	97	[Entamoeba histolytica] GTP CYCLOHYDROLASE I (GTP-CH-I) [Bacillus subtilis] hypothetical protein - Bacillus subtilis []
1646 Bt1Gc3796 Bt1G4046 1647 Bt1Gc3798 Bt1G4047 1648 Bt1Gc3817 Bt1G4049	6 Bt1G4046 8 Bt1G4047 7 Bt1G4049	1-275 262-1 290-1	g732376 g2635763 g4584150	173 153 269	206 213 285	1.10E-16 4.80E-25	44 44 59	31 31	
1649 Bt1Gc3812 Bt1G4050 1650 Bt1Gc3819 Bt1G4051	2 Bt1G4050 9 Bt1G4051	319-1	g994736 g3345481	78	91	0.00017 5.40E-14	54 44	57 15	(M18327) LacOPZ-alpha peptide from pUC9; putative [cloning vectors] (AB016285) phosphotransferase system enzyme I [Bacillus sn.]
1651 Bt1Gc3821 Bt1G4052 1652 Bt1Gc3822 Bt1G4053	1 Bt1G4052 2 Bt1G4053	59-294 445-1	g1730925 g1172699	178 376	186	1.50E-14 1.30E-34	43 54	45	
1653 Bt1Gc3826 Bt1G4054 1654 Bt1Gc3830 Bt1G4055	6 Bt1G4054 0 Bt1G4055	1-259 270-1	g4584148 g3025180	210	225	6.70E-18 0.00048	54	20	
1655 Bt1Gc3841 1656 Bt1Gc3844 1657 Bt1Gc3850	11 Bt1G4057 14 Bt1G4058 30 Bt1G4059	1-503 518-1 1-344	g1945051 g2293156 g321919	157 183 184	229	9.00E-19 5.80E-20 0.004	35 36 49	43 91 77	(U63928) L1 protein [Bacillus cereus] (AF008220) YtiB [Bacillus subtilis] hypothetical 16.9K protein - Salmonella typhimurium plasmid NTP16 []

															•											' ;	
38-21(515/0)B		NCBI gi description	THIAMIN BIOSYNTHESIS PROTEIN THIC [Bacillus subtilis]	ACETOIN UTILIZATION ACUC PROTEIN [Bacillus subtilis]	(U63928) L1 protein [Bacillus cereus]		(AE000986) 2-nydroxy-0-0x0-0-phenymexa-2, r-menox acid hydrolase (pcbD) [Archaeoglobus fulgidus]			(AB001488) ATP-DEPENDENT KNA HELICASE DEAD HOMOLOG. [Bacillus subtilis]	(U89796) chitinase [Bacillus thuringiensis]	(Z99120) similar to arsenate reductase [Bacillus subtilis]				HYPOTHETICAL 61.5 KD PROTEIN IN ADEC-FURA INTERGENIC REGION [Bacillus subtilis]		[Enterobacteriaceae]				subtilis] (Z99124) pyrimidine-nucleoside transport protein [Bacillus subtilis]		HYPOTHETICAL 29.8 KD PROTEIN IN INTERGENIC REGION [Bacillus subtilis]		TRIGGER FACTOR (TF) (VEGETATIVE PROTEIN 2)	
	. : -	% Cvrg	15	29	28	13	26	32	36	26	11	92	61	25	23	26	22	9	2	21	97	47	35	25	_	28	
		% Ident C	4	41	33	7 5	9	47	23	48	51	99	33	45	45	34	86	6	78	36	73	29		42	22	40	
	Table 1	BlastP- Prob	1.60E-22	9.20E-11	9.30E-12	9.50E-29	8.80E-17	4.30E-08	6.90E-17	3.80E-23	1.00E-13	5.80E-36	8.20E-14	3.00E-13	2.50E-12	1.50E-15	3.10E-37	100	4./0E-18	8.10E-08	1.50E-30	4.80E-64	9.20E-11	9.20E-07	2.80E-10	9.80E-14	
		BlastP Score	269	157	166	333	207	125	208	273	188	388	179	180	171	204	400		219	130	337	653	,,	117	167	185	
	•	aat_ 1 nap	259	174	152	240	163	101	224	263	162	374	161	136	153	155	402	•	201	66	440	651	117	113	165	168	
		NCBI gi	g3041750	g728801	g1945051	g126295	g2648849	g3023940	g4584097	g1881268	e2149596	22635777	g1064900	g2117766	g1730252	g2833392	g125524		g141263	g2633542	g133719	g2636487	g3123214	g3183468	g2982196	g2829689	,
		Position	1-266	1-341	1-317	1-491	79-490	1-140	310-1	1-407	1-206	330-1	445-1	301-1	1-263	435-1	238-1		403-252	251-1	1-385	1-559	1-306	282-88	1-187	1-357	
		Gene Id	2 Bt1G4060	5 Bt1G4061	6 Bt1G4063	7 Bt1G4064	Bt1Gc3870 Bt1G4065	Br1Gc3900 Bt1G4066	9 Bt1G4067	1 Bt1G4068	7 Br1G4069						59 Bt1G4075		70 Bt1G4076	1674 Bt1Gc3974 Bt1G4077	1675 Bt1Gc3978 Bt1G4078	81 Bt1G4079	82 Bt1G4080	83 Bt1G4081	1679 Bt1Gc3998 Bt1G4082	1680 Bt1Gc4008 Bt1G4083	
		Contig Id	1658 Bt1Gc3852	1659 Bt1Gc3855	1660 Bt1Gc3866	Bt1Gc3877	. Bt1Gc387	Bt1Gc3900	1664 Bt1Gc3929	1665 Bt1Gc3931	1666 Bt1 Gc3017	1667 Br1Gc3953	1668 Bt1Gc3959	9 Bt1Gc3960	1670 Bt1Gc3964	1 Bt1Gc3966	2 Bt1Gc3969		1673 Bt1Gc3970	4 Bt1Gc397	5 Bt1Gc397	1676 Bt1Gc3981	1677 Bt1Gc3982	1678 Bt1Gc3983	9 Bt1Gc399	0 Bt1Gc400	
		SEQ EQ	1658	1659	1660	1661	1662	1663	1664	166	166	1,00	1,00	1669	167	1671	1672		167	167	167	167	167	167	167	168	

_	4
7	_
Ë	3

				· 🐝	-		-				,	_							
NCBI gi description	(VEG2) [Bacillus subtilis] respiratory nitrate reductase alpha chain - Bacillus subtilis					(Y17332) proline-rich protein [Lea mays]			NUCLEOTIDYL TRANSFERASE (POLYNUCLEOTIDE PHOSPHORYLASE) (PNPASE) (VEGETATIVE PROTEN 15) (VEG15) [Bacillus subtilis]				0 HYDROXYETHYLTHIAZOLE KINASE (4-METHYL-5-RETA-HYDROXYETHYLTHIAZOLE KINASE) (THZ		(ORF73) [Bacillus subtilis]	- , .	INTERGENIC REGION [Bacillus subtilis] 4 TRANSPOSASE FOR INSERTION SEQUENCE		4 ACETYL-COENZYME A SYNTHETASE (ACETATE- COA LIGASE) (ACYL-ACTÎVATING ENZYME)
% Cvrg	9	32	25 14	18	48	25	19	10		12	32	86	50	34		16 36	24	t	24
% Ident (53	32	36	28	39	27	43	63		33	73	26	31	34		44 48	44		51
BlastP- Prob Io	8.20E-12	7.30E-07	4.40E-16 7.70E-13	1.10E-15	7.80E-05	0.42 6 80E-18	1.60E-23	2.80E-14		3.40E-15	1.20E-19	4.80E-09	7.40E-10	9.60E-07		9.80E-12 8.80E-17	1 50E-17		8.30E-32
BlastP	174	120	210	204	63	49	281	194		204	234	134	145	118		170 207	220		353
aat_B nap_S Score	148	6	159	201	162	95	230	177		160	237	195	116	112		172 208	177		303
NCBI gi	g2117582	g2633967	g730399 g2633966	g4512347	g3913859	g4138732	g2034070 04218500	g1709698	0	g543864	o1173058	o1174408	g732340	g1177035		g2226165 g3183454	27407287	20C17723	g728788
Position	227-1	316-1	464-1	1-254	108-476	1-284	1-419 446-1	1-203		348-1	1-175	360-108	407-1	299-1		1-317	204.1	304-1	1-410
Gene Id	Bt1G4084	Bt1G4085	Bt1G4086	Bt1G4088	Bt1G4089	Bt1G4090	Bt1G4091	Br1G4094		Bt1G4095	D+11G/1006			Bt1G4099		Bt1G4100 Bt1G4101	24	DII 04 102	Bt1G4103
Contig Id	1681 Bt1Gc4006 Bt1G4084	1682 Bt1Gc4011	Bt1Gc4023	1685 Bt1Gc4027 Bt1G4088	1686 Bt1Gc4033	1687 Bt1Gc4039	1688 Bt1Gc4040	1690 Br1Gc4060		1691 Br1Gc4075 Br1G4095	D+1024077	1692 BIIGC40// 1602 B±1Gc4090	Bt1Gc4091	1695 Bt1Gc4097 Bt1G4099		1696 Bt1Gc4132 Bt1G4100		1698 BUGG4133 BUG4102	1699 Bt1Gc4146 Bt1G4103
SEQ D	1681	1682	1683	1685	1686	1687	1688	1690		1691	1031	1692	1694	1695		1696		1098	1699

_	4
d d	4
E	3

	NCBI gi description		5 GLUCONOKINASE (GLUCONATE KINASE) [Bacillus subtilis]		(CARBAMOYL-PHOSPHATE SYNTHETASE AMMONIA CHAIN) [Bacillus caldolyticus]		3 UROCANATE HYDRATASE (UROCANASE) (IMIDAZOLONEPROPIONATE HYDROLASE)		7 ISOLEUCYL-TRNA SYNTHETASE (ISOLEUCINE TRNA LIGASE) (ILERS) [Bacillus subtilis]	5 HYPOTHETICAL 51.5 KD PROTEIN IN CITA-SSPB INTER CENIC REGION (Bacillus subtilis)	16 TOPOISOMERASE IV SUBUNIT B [Bacillus subtilis]	6 DNA-DIRECTED RNA POLYMERASE BETA CHAIN (TRANSCRIPTASE BETA CHAIN) (RNA POLYMERASE	BETA SUBUNIT) [Bacillus subtilis]	7 ATP SYNTHASE BETA CHAIN (VEGETATIVE PROTEIN 31) (VEG31) [Bacillus subtilis]	14 (Z99120) similar to hypothetical proteins [Bacillus subtilis]	11 EXCINUCLEASE ABC SUBUNIT B (DINA PROTEIN)	[Bacillus subtilis] 27 DIHYDROOROTATE DEHYDROGENASE ELECTRON	-		6 EXCINUCLEASE ABC SUBUINT A LITTERITUS	uteriniopinius) 60 HYPOTHETICAL PROTEIN UL 127 [human herpesvirus	5] 23 HYPOTHETICAL HELICASE IN SINI-GCVT	INTERGENIC REGION [Bacilius subtilis]
	Cvrg	74	16	6		29	13			35	16			27									
	% Ident	39	35	46		35	51		48	42	41	46		43	69	40	36		45	25	9	35	
LADICI	BlastP- Prob	6.30E-07	2.90E-08	9.10E-15		1.00E-08	9.50E-09		2.10E-09	1.30E-15	2.50E-14	1.10E-07		2.20E-14	7.60E-10	1.20E-08	3.20E-06		7.90E-13	1.80E-07	3.20E-35	0.069	
•	BlastP Score	114	136	201		137	141		150	203	194	135		192	150	141	112	1	170	132	381	77	
		106	105	146		107	46		86	252	163	139		218	132	112	07	;	131	114	ે 367	142	
	aat_i nap	5				£0			7		6				9	<u></u>	_		<u>∞</u>	4	~~	2	
	NCBI gi	g144312	g121516	g1168772		g207237.	g123765		g3123287	g3025181	03914289	g585920		g584808	g2635763	g3123297	0141320	8141747	g1853968	g2492564	g137018	g1731040	ı
	Position	123-395	1-248	1-299		293-1	242-459		189-1	539-41	313-1	1-204		378-1	197-1	1-213	1-700	1-/07	1-254	164-1	1-235	380-1	
-	Gene Id	3+1G4104	3t1G4105	3t1G4106		Bt1G4107	Bt1G4108		Bt1G4109	Bt1G4110	B#164111	Bt1G4112		Bt1G4113	Br1G4114	Bt1G4115	D+1C/4116	51104110	Bt1G4117	Bt1G4118	Bt1G4119	Bt1G4120	
	Contig Id	NO 1700 Brl Ge4142 Brl G4104	1701 Bt1Gc4150 Bt1G4105	1702 Bt1Gc4144 Bt1G4106		1703 Bt1Gc4153 Bt1G4107	1704 Bt1Gc4154 Bt1G4108	-	1705 Bt1Gc4160 Bt1G4109	1706 Bt1Gc4172 Bt1G4110	1707 B+113c4174	1708 Bt1Gc4177		1709 Bt1Gc4179 Bt1G4113	1710 Bt1Gc4188 Bt1G4114	1711 Bt1Gc4194	777	1/12 BUG64198 BUG4110	1713 Bt1Gc4200 Bt1G4117	1714 Bt1Gc4193	1715 Bt1Gc4201 Bt1G4119	1716 Bt1Gc4203 Bt1G4120	
	SEQ ID	ON 1700	1701	1702		1703	1704		1705	1706	1707	1708		1709	1710	1711		1/17	1713	1714	1715	1716	! !

_
<u>e</u>
9
2
_

							-			
SEQ	Contig Id	Gene Id	Position	NCBI gi	aat_ nap Score	BlastP	BlastP- Prob	% Ident C	Cvrg	NCBI gi description
1717	1717 Bt1Gc4232 Bt1G4121	Bt1G4121	249-1	g1805393	127	147	1.90E-09	42	16	(D50453) 68% identity protein to 1-pyrroline-5-carboxylate dehydrogenase of B. subtilis [Bacillus subtilis]
1718	1718 Bt1Gc4228 Bt1G4122	Bt1G4122	183-1	g3122350	113	130	3.50E-08	42	23	PROLIPOPROTEIN DIACYLGLYCERYL TRANSFERASE (SPORE GERMINATION PROTEIN
1719	1719 Bt1Gc4238 Bt1G4123	Bt1G4123	1-288	g2462959	191	177	1.30E-13	38	48	GERF) [Bacillus subtilis] (AJ000974) putative adenosine 5-phosphosulfate kinase [Bacillus subtilis]
1720 1721	1720 Bt1Gc4241 Bt1G4124 1721 Bt1Gc4240 Bt1G4125	Bt1G4124 Bt1G4125	231-29 1-253	g2497856 g133466	116	131 114	4.00E-08 4.10E-06	41	21 23	MALATE DEHYDROGENASE [Bacillus israeli] RNA POLYMERASE SIGMA FACTOR RPOD (SIGMA- A) (SIGMA-43) [Bacillus subtilis]
1722	1722 Bt1Gc4254 Bt1G4127	Bt1G4127	280-1	g2497392	181	199	6.20E-16	49	37	INSERTION SEQUENCE IS232 PUTATIVE ATP-BINDING PROTEIN [Insertion sequence IS232]
1723 1724	1723 Bt1Gc4255 Bt1G4128 1724 Bt1Gc4253 Bt1G4129	5 Bt1G4128 8 Bt1G4129	79-248 1-235	g3915204 g595768	123	160 118	1.90E-10 2.40E-07	61 42	, 6 47	EXCINUCLEASE ABC SUBUNIT A [Bacillus subtilis] (U13866) non-functional lacZ alpha peptide [Cloning
1725	1725 Bt1Gc4264 Bt1G4130	Bt1G4130	187-1	g2497382	115	159	6.90E-11	52	14	TRANSPOSASE FOR INSERTION SEQUENCE FI. EMENT 1S232 [Insertion sequence IS232]
1726	1726 Bt1Gc4262 Bt1G4131) Bt1G4131	352-1	g2635778	154	180	6.70E-13	39	20	(Z99120) similar to butyryl-CoA dehydrogenase [Bacillus
1727	1727 Bt1Gc4263 Bt1G4132	Bt1G4132	242-1	g417332	87	127	2.60E-08	34	51	sucturs] MUTT-LIKE PRÓTEIN (ORF154) [Streptomyces ambofaciens]
1728	1728 Bt1Gc4301 Bt1G4133	l Bt1G4133	1-314	g3290177	133	175	7.90E-13	38	30	(AF067645) spore germination protein GerIC [Bacillus cereus]
1729	1729 Bt1Gc4281	Bt1G4134	355-1	g135811 g3183561	153	200	1.20E-15 9.30E-06	44 89	34	THREONINE SYNTHASE [Bacillus sp.] VEGETATIVE PROTEIN 296 (VEG296) [Bacillus subtilis]
173	1731 Bt1Gc4332		1-229	g2239276	386	• • • •	4.00E-37	95	13	(L77763) neutral protease A [Bacillus thuringiensis] CDP-DIACYLGL YCEROLGL YCEROL-3-PHOSPHATE
1/32	2 BUGC453 /	/ Bt10413/	1-/67	g11/210						3-PHOSPHATIDYLTRANSFERASE (PHOSPHATIDYLGLYCEROPHOSPHATE SYNTHASE) (PGP SYNTHASE) [Bacillus subtilis]
173	1733 Bt1Gc4340 1734 Bt1Gc4341	1733 Bt1Gc4340 Bt1G4138 1734 Bt1Gc4341 Bt1G4139	190-319 1-287	g2633489 g585481	75 252	115	1.60E-06 6.90E-16	5 41	8 8	(Z99110) yjaZ [Bacillus subtilis] TRANSCRIPTION-REPAIR COUPLING FACTOR (TRCF) [Racillus subtilis]
173	5 Bt1Gc435	1735 Bt1Gc4351 Bt1G4140	1-219	g2500053	121	148	1.20E-09	45	16	DNA REPAIR PROTEIN RADA HOMOLOG (DNA REPAIR PROTEIN SMS HOMOLOG) [Listeria

	uo)	VOLOG (BEX	TIVE PROTEIN 2)	[Caenorhabditis	SEQUENCE e IS232]	N IN KATA sj	ansferase [Cloning	A HELICASE DEAD	REDUCTASE acillus subtilis]	i] eins from B. subtilis	FERASE (ORNITHINE HINE	AMINO-ACID YYLGLUTAMATE othermophilus]	A SYNTHETASE ASNRS)	regulatory element	lydrogenase [Bacillus] er [Bacillus subtilis]
	NCBI gi description	monocytogenes] GTP-BINDING PROTEIN ERA HOMOLOG (BEX DEOTEIN) (Racillus subtilis)	TRIGGER FACTOR (TF) (VEGETATIVE PROTEIN 2) (VEG2) [Racillus subtilis]	(AF078790) No definition line found [Caenorhabditis	TRANSPOSASE FOR INSERTION SEQUENCE ELEMENT IS232 [Insertion sequence IS232]	HYPOTHETICAL 50.9 KD PROTEIN IN KATA 3'REGION (ORF A) [Bacillus firmus]	(AF083408) kanamycin 3'-phosphotransferase [Cloning	vector p3455-mil2] (AB001488) ATP-DEPENDENT RNA HELICASE DEAD HOMOLOG. [Bacillus subtilis]	MENAQUINOL-CYTOCHROME C REDUCTASE CYTOCHROME B/C SUBUNIT [Bacillus subtilis]	(Z93936) unknown [Bacillus subtilis] (Z99116) similar to hypothetical proteins from B. subtilis	LBACIIUS SUOUNS GLUTAMATE N-ACETYLTRANSFERASE (ORNITHINE ACETYLTRANSFERASE) (ORNITHINE	TRANSACETYLASE) (OATASE) / AMINO-ACID ACETYLTRANSFERASE (N-ACETYLGLUTAMATE SYNTHASE) (AGS) [Bacillus stearothermophilus]	PROBABLE ASPARAGINYL-TRNA SYNTHETASE (ASPARAGINETRNA LIGASE) (ASNRS)	[Synechocystis sp.] (AF078105) site-1 protease of sterol regulatory element binding proteins [Cricetulus griseus]	(Z99120) similar to butyryl-CoA dehydrogenase [Bacillus enhtilis]	(AF008220) YtpR [Bacillus subtilis] (Z99105) multidrug-efflux transporter NARA PROTEIN [Bacillus subtilis]
	% Cvrg	31 (24.5	792	29	26	38	21	4	47 46	29		6	m	17	61 23 25
	% Ident C	14	47	27	49	33	47	36	43	39	30		62	94	37	75 41 36
ranie r	BlastP- 9 Prob Id	2.90E-08	6.40E-20	0.43	7.20E-24	9.30E-14	6.10E-06	3.20E-06	2.00E-17	1.20E-09 7.70E-18	8.00E-06		4.80E-08	0.00015	5.10E-06	5.00E-46 8.50E-06 2.40E-10
	BlastP	132	241	99	276	186	110	117	213	140 217	112		134	105	116	483 112 152
	aat_Blanap Score	133	221	108	270	137	184	129	182	104	91		115	154	<i>L</i> 9	479 175 145
	NCBI gi	g1168646	g2829689	g3329623	g2497382	g267497	g3777577	g1881268	g1168649	g1934806 g2634887	g584771	-	g1711644	g3892204	g2635778	g2293213 g2632593 g730103
	Position	1-278	309-1	1-264	379-1	1-403	1-311	320-1	1-333	345-32 1-389	388-28		132-1	1-102	286-1	1-367 1-302 474-217
	Gene Id	Bt1G4141	Bt1G4143	Bt1G4144	Bt1G4145	Bt1G4146	Bt1G4147	Bt1G4148	Bt1G4149	Bt1G4150 Bt1G4151	Bt1G4152		Bt1G4153	Bt1G4154	Bt1G4155	Bt1G4156 Bt1G4157 Bt1G4158
	Contig Id	1736 Bt1Gc4355 Bt1G4141	1737 Bt1Gc4354 Bt1G4143	1738 Bt1Gc4358 Bt1G4144	1739 Bt1Gc4360 Bt1G4145	1740 Bt1Gc4368 Bt1G4146	1741 Bt1Gc4367 Bt1G4147	1742 Bt1Gc4370 Bt1G4148	1743 Bt1Gc4381 Bt1G4149	1744 Bt1Gc4382 Bt1G4150 1745 Bt1Gc4384 Bt1G4151	1746 Bt1Gc4391 Bt1G4152		1747 Bt1Gc4407 Bt1G4153	1748 Bt1Gc4416 Bt1G4154	1749 Bt1Gc4432 Bt1G4155	1750 Bt1Gc4436 1751 Bt1Gc4441 1752 Bt1Gc4443
	SEQ NO	1736	1737	1738	1739	1740	1741	1742	1743	1744	1746		1747	1748	1749	1750 1751 1752

,	_	•
-	2	
ŀ		ŧ

es ...

NCBI gi description	stearothermophilus] (U93876) hypothetical protein YrdR [Bacillus subtilis] (AB007638) function unknown [Bacillus subtilis] (Z99118) similar to single-strand DNA-specific exonuclease	[Bacillus subtilis] METHYLMALONATE-SEMIALDEHYDE DEHYDROGENASE (ACYLATING) (MMSDH)	Pseudomonas acruginosa HYPOTHETICAL 36.3 KD PROTEIN IN RECQ-CMK INTERGENIC REGION [Bacillus subtilis]	(D88802) transmembrane [Bacillus subtilis] ACONITATE HYDRATASE (CITRATE HYDRO-LYASE)	HYPOTHETICAL 13.0 KD PROTEIN IN QCRC-DAPB INTERGENIC REGION [Bacillus subtilis]	(AF008553) Glu-tRNAGIn amidotransferase subunit A Racillus subtilis!	GMP SYNTHASE (GLUTAMINE-HYDROLYZING) (GLUTAMINE AMIDOTRANSFERASE) (GMP SYNTHETASE) [Bacillus subtilis]	(Y11140) homology to M. leprae B2235_C2_195 and H. influenzae GB:U00019_14 [Bacillus cereus]	PYRUVATE KINASE (PK) [Synechocystis sp.] IRON-UPTAKE SYSTEM PROTEIN FEUB [Bacillus subtilis]	(AF007865) BacR [Bacillus licheniformis] (D87979) YfnJ [Bacillus subtilis]	STAGE V SPORULATION PROTEIN I [Bacillus subtilis] (U13871) lacZ alpha peptide [Cloning vector]	(AJ224964) preprotein translocase [Phormidium	(Z75208) hypothetical protein [Bacillus subtilis] NODULIN 21 (N-21) [Glycine max] CATALASE [] (AF008220) SAM synthase [Bacillus subtilis]	
50	stea 15 (U9) 99 (AB) 12 (Z9)	Ba 12 ME DEI		62 (D8 12 AC	24 E	18 (AF	27 GP SY GE	37 (Y.) infl	33 PY 36 IR(sub	45 (A) (D) (A)	28 ST 52 (U	21 (A. Isu	35 (Z 57 NC 21 C/	
% It Cvrg	46 1 41 9 41 1	44	48	40 6 45 1	48	09	26	72	33	49	70 45	34	50 31 38 60	3
% Ident											12	90	110	21.
BlastP- Prob	6.50E-05 1.20E-10 1.00E-09	0.0085	2.90E-15	2.40E-23 1.00E-15	1.20E-14	4.90E-20	8.30E-37	1.20E-28	3.10E-15 9.00E-18	6.70E-19 2.00E-23	4.10E-12 1.90E-06	3.00E-06	5.40E-17 3.30E-10 6.30E-08	1.001
BlastP Score	102 149 152	85	195	269 209	187	244	396	319	200 217	227 282	163	118	209 145 132	067
aat Bi nap S	80 112 124	107	165	287 171	152	202	379	317	181	206	158	115	191 102 125	167
NCBI gi	g1934659 g2522020 g2635226	g127210	g1730898	g1945117 g2506131	g1176702	g2589195	g3123227	g2462120	g2497534 g729484	g4481749 e2116974	g586883	g3288585	g1770029 g128405 g231698	g2293104
Position	1-148 125-337 1-286	1-186	1-247	1-459 1-334	1-258	271-1	1-429	1-253	472-1 377-18	291-1	148-1	4-371	1-270 1-373 1-287	I-240
Gene Id	Bt1G4179 Bt1G4180 Bt1G4181	Bt1G4182	Bt1G4183	Bt1G4184 Bt1G4185	Bt1G4186	Bt1G4187	Bt1G4188	Bt1G4189	Bt1G4190 Bt1G4191	Bt1G4192	Bt1G4194) Bt1G4197 7 Bt1G4198 5 Bt1G4199) Bt1G4200
Contig Id	1772 Bt1Gc4596 Bt1G4179 1773 Bt1Gc4598 Bt1G4180 1774 Bt1Gc4610 Bt1G4181	1775 Bt1Gc4644 Bt1G4182	1776 Bt1Gc4657 Bt1G4183	1777 Bt1Gc4659 Bt1G4184 1778 Bt1Gc4670 Bt1G4185	1779 Bt1Gc4674 Bt1G4186	1780 Bt1Gc4673 Bt1G4187	1781 Bt1Gc4679 Bt1G4188	1782 Bt1Gc4681 Bt1G4189	1783 Bt1Gc4687 1784 Bt1Gc4691	1785 Bt1Gc4695 Bt1G4192	1787 Bt1Gc4701	1/88 Bt1Gc4/03 1789 Bt1Gc4714	1790 Bt1Gc4719 Bt1G4197 1791 Bt1Gc4737 Bt1G4198 1792 Bt1Gc4746 Bt1G4199	3 Bt1Gc4750
SEQ ID	1772 1773 1773	1775	1776	1777 1778	1779	1780	1781	1782	1783 1784	1785	1787	1789	1790 1791 1792	1793

NCBI gi description	(AF008220) YtmQ [Bacillus subtilis]	(J01829) unknown protein [Transposon Tn10]	(Z99110) similar to hypothetical proteins [Bacillus subtilis]	(J01829) unknown protein [Transposon Tn10]	(AJ001805) carbomylphosphate synthetase large subunit	Bacillus stearothermophilus]	cryptochrome 2 apoprotein - Arabidopsis thaliana []	GLUTAMATE-1-SEMIALDEHYDE 2,1-AMINOMUTASE	(GSA) (GLUTAMATE-1-SEMIALDEHYDE	AMINOTRANSFERASE) (GSA-A1) [Bacillus subtilis]	(Z98682) YlbI protein [Bacillus subtilis]	(AE001270) oligoendopeptidase f., putative [1 reponema	pallidum	(Z81356) UDP-N-acetylglucosamine 1-	carboxyvinyltransferase [Bacillus subtilis]	TRANSPOSASE FOR INSERTION SEQUENCE	ELEMEN I 18232 [Insertion sequence 18232]	(X98455) SNF [Bacillus cereus]	PUTATIVE BRANCHED-CHAIN-FALLY-ACID KINASE	[Bacillus subtilis]	(Z93940) asparagine synthetase [Bacillus subtilis]	(Z99105) similar to hypothetical proteins [Bacillus subtilis]	ATP SYNTHASE ALPHA CHAIN [Bacillus megaterium]	NADP-DEPENDENT GLYCERALDEHYDE-3-	PHOSPHATE DEHYDROGENASE (NON-	PHOSPHORYLATING GLYCERALDEHYDE 3-	PHOSPHATE DEHYDROGENASE)	(GLYCERALDEHYDE-3-PHOSPHATE	DEHYDROGENASE (NADP+)) (TRIOSEPHOSPHATE	DEHYDROGENASE) [Zea mays]	N-ACETYL-GAMMA-GLUTAMYL-PHOSPHATE	REDUCTASE (AGPR) (N-ACETYL-GLUTAMATE	SEMIALDEHYDE DEHYDROGENASE) (NAGSA	DEHYDROGENASE) [Bacillus stearothermophilus]	(299121) similar to ABC transporter (animo acta portrease)	
% Cvrg	38 (24 (11 (18 (14 (لسا	10 c	36 (_	٠,	_	76		25 (-	55	_		41		_	30	14	78							23		-	•	29	
% Ident C	36	55	30	51	31		37	58			9/	53		44	;	26		47	42		34	42	46	53							47			ļ	37	
BlastP- Prob Io	9.70E-08	2.50E-16	2.40E-05	3.00E-13	9.60E-13		2.30E-05	2.90E-34			6.30E-23	3.50E-11		9.20E-18		1.10E-20		2.70E-07	2.50E-28		8.60E-09	4.70E-17	6.30E-09	5.50E-11							3.40E-07				2.10E-14	
BlastP Score	123	208	111	180	182		110	372	!		265	164		222		248		131	316		142	210	142	161							122				192	
aat_Bl nap So Score	110	220	72	160	131	;	80	372			246	134		199		213		109	322		119	173	124	126			•••				145	! :			196	
NCBI gi	\$2293207	g1196998	92633696	g1196998	92661433		92129564	5399784			g2340005	g3323354		g1648861	i i	g2497382		g1769947	g1705442	0	g1934835	g2632519	g114510	02494075	0						0584768				g2635847	
Position	1-249	131-423	336-87	254-31	453-1		185-1	1-470			1-208	1-460		155-480	2	1-287		228-39	1-449	•	1-259	1-290	1-213	1-415							205-2				406-1	
ig Id Gene Id	4730 Bt1G4201						4781 B+1G4206				1801 Bt1Gc4795 Bt1G4208	Bt1Gc4798 Bt1G4209		1803 B+1G-64804 B+1G4210		1804 Bt1Gc4802 Bt1G4211		1805 Bt1Gc4808 Bt1G4212	c4809 Br1G4213	C121-0117 (00L)	c4851 Bt1G4214			04850 Dt104213							1911 D#1G2/862 B#1G4218	013101101101010101010101010101010101010			1812 Bt1Gc4876 Bt1G4219	
SEQ Contig Id	1704 B+1 G-4730	1795 Bt11Gc4759	1796 B+1Gc4763	1797 Bt1Gc4773	1798 Bt1Gc4779	1/30 DIIO	1700 D+1C0/181	1/99 DIIQC4/81	1000 1001		1801 Bt1Gc	1802 Bt1Gc		1803 B+1G	1907 2001	1804 Bt1G		1805 Bt1G	1806 B+1G-04809	1900 711	1807 Bt1Gc4851	1808 Br1Gc4855	1800 Bt1Gc4856	1910 Dt1Ge4860	Ioid Dial						1011 D41G	חם וופו			1812 Bt1G	

	NCBI gi description	[Bacillus subtilis] (D83706) pyruvate carboxylase [Bacillus					_			_	AMINOTRANSFERASE (ISOMERIZING)	(HEACOSEFHOSFHATE AMINOTRANSFERASE)	(GFAT) (L-GLUTAMINE-D-FRUCTOSE-6-PHOSPHATE	AMIDOTRANSFERASE) (GLUCOSAMINE-6-PH		(M16158) unknown protein [bacillus unu lighensis]				_	_			_	_	_			6 EXCINUCLEASE ABC SUBUNIT B (DINA PRULEIN) [Bacillus subtilis]	
%	Cvrg	9	,	17	10	46	19	23	24	15					17	14 20	ટ	18		70	42	37	33	20	49	10	36		16	
70	+	48	! !	8	43	36	40	25	9	38					46	9 8	8	40		46	43	47	19	34	33	54	33		54	
Diest		1.50E-05		2.60E-12	5.40E-13	2.40E-14	7.60E-23	3.00E-29	3.10E-16	1.50E-09					2.00E-10	1.50E-16	5.20E-67	2.70E-05		2.70E-06	9.50E-20	0.00025	1.30E-07	3.50E-21	1.10E-11	2.20E-21	8.20E-09		1.60E-18	
ָרָ מָּלְיָּהָ מַלְיִיהָ	Score	115	:	173	183	184	273	332	202	149					156	212	189	106		113	235	92	128	259	160	263	135		233	
aat n		133	3	169	145	170	231	388	115	145	`				112	182	679	96		95	225	104	86	207	138	224	107		203	
	NCBI gi	G1605686	B 10/2000	g225559	g4033397	g2501371	g2116767	g2116767	g2635181	g1169919)				g2988346	g1124822	g2127273	g732384	0	99806Zg	g3328184	0595780	92635600	£2635858	g1945657	g2116974	g732355)	g3123297	
	Position	1,224	+77-1	1-169	245-1	384-1	1-377	1-458	1-227	1-262					1-186	203-1	420-21	1-189		160-1	20-379	206-1	1-388	1-461	383-1	1-306	279-1	: 	327-1	
	Gene Id	D+1/2/220	DII 04220	Bt1G4221	Bt1G4222	Bt1G4223	Bt1G4224	Bt1G4225				-			Bt1G4228		Bt1G4230	Br1G4231		Bt1G4232	Bt1G4233	D+1G4234) Bt1G4240	
	Contig Id	100 1017 P416.4001 P416.4020	3 BUI GC4001	1814 Bt1Gc4884 Bt1G422	1815 Bt1Gc4890 Bt1G4222	1816 Bt1Gc4894 Bt1G4223	1817 Bt1Gc4895	1818 Br1Gc4903	9 Bt1Gc4905	0 Bt1Gc4914		-	-		21 Bt1Gc4920	1822 Bt1Gc4921	23 Bt1Gc4954	1824 Bt1Gc4056 Bt1G4231	occionin to	1825 Bt1Gc4962 Bt1G4232	1826 Bt1Gc4997	1027 D41 G05000	1827 Bt1Gc5002	1829 Bt1Gc5003	1830 Bt1Gc5005	1831 Br1Gc5021	1832 Bt1Gc5027		1833 Bt1Gc5039 Bt1G4240	
Cao			181	181	181	181	181	181	1819	1820				-	1821	182	1823	282	707	187	187	9	ġ è		<u>×</u>	×	ò) -	18	

NCBI gi description	(U67921) collagen-like protein [Bacillus thuringiensis	samma-synthase [Bacillus cystathionine gamma-synthase [Bacillus	subtilis] (Y15254) PcrA protein [Bacillus subtilis]	DLTB PROTEIN [Bacillus subtilis]	ORF IS231C [Bacillus thuringiensis]	(AF027868) fatty acid desaturase [Bacillus subtilis]	ROD SHAPE-DETERMINING PROTEIN MREC [Bacillus	stearothermophinus] DDV DDOTTEIN (Bacillus subtilis]	HANDATHETICAL 40 9 KD PROTEIN IN CITA-SSPB	NTERGENIC REGION [Bacillus subtilis]	D-ALANINE-ACTIVATING ENZYME (DAE) (D-	ALANINE-D-ALANYL CAKKIEK PROTEIN LIGASE)	(DCL) [Bacillus subtilis]	HYPOTHETICAL PROTEASE IN ROCK-PURA	INTERGENIC REGION [Bacillus subtilis]	(Z991.20) nomoserine denjuriogenase [Dacinus sucuris]	(Y09927) phosphogiucosamine inuiase [Stapinytovocasa)	A CLEAN CONTRACTOR OF THE PARTY	DNA-DIRECTED RNA POLYMERASE BETA CHAIN	(TRANSCRIPTASE BETA CHAIN) (KNA POL YMEKASE	BETA SUBUNIT) [Bacillus subtilis]	HYPOTHETICAL 45.8 KD PROTEIN IN ACDA-NARI	INTERGENIC REGION [Bacillus subtilis]	(Y14080) hypothetical protein [Bacilius sublins]	phosphotransferase system enzyme II (EC 2.7.1.69),	glucose-specific, factor IIB - Staphylococcus carnosus	Staphylococcus carnosus]	(1111) DCS-42A protein [Security Control of the subtilis]	(L) 1120) sunna ta ni Promonen Franco (L) 170 VfT (Racillus subtilis)	(D88802) S. lividans chloramphenicol resistance protein;	P31141 (492) transmembrane [Bacillus subtilis]
,	(U67921) c	(Z99110)	Subtilis] (Y15254)	DLTB PI	ORF IS2.	(AF0278	ROD SH	stearoune			D-ALAN	ALANIL	(DCL)	HYPOT				aureus]	_	(TRAN)	BETA S				phospho	glucose					
% Cvrg	39	37	11	21	56	39	32	ć	2 6	20	24	-		37	(<u>0</u>	19		10			32		7	7		Č	77	2 %	35	
% Ident C	39	40	48	34	48	61	41	9	9	8	35			37	1	70	34		62			40		43	4		ć	S .	‡ %	59	
BlastP- 9 Prob Ide	0.00064	4.00E-20	1.40E-14	1.10E-08	2.60E-17	4.80E-41	2.50E-10	, ,	1.505-50	2.30E-30	2.30E-17			3.70E-20		2.10E-07	1.50E-09		5.50E-32			2.90E-19		9.40E-17	1.30E-05		100	1.20E-07	9.20E-09	7.20E-38	
BlastP]	29	240	197	138	219	436	150	;	44.5	524	220			242		127	147		363			234		212	113		•	130	140	406	:
aat_B nap_S Score	141	184	186	86	277	411	171		377	224	136			194		87	111		326			212		182	86			76	11.	, o 446	<u>-</u>
NCBI gi	g1619837	g2633541	\$3677570	o729341	g225559	g2619012	g266569	1	g730399	g3025180	g729340			g1731364		g2635723	g1729789)	g585920)		g1176955)	g2226151	g2144427)	1	g2462090	g2635763	g2445245 o1945096	B17777
Position	1-358	1-421	960-25	314-63	400-26	114-522	34-321		1-379	489-1	1-369			1-446		1-395	1-256		374-1			1-386		67-362	1-139			1-386	220-1	1-300 450-1	100
Gene Id	Bt1G4241	Bt1G4242	B+1G4243	B+1G4244	Br1G4245	Bt1G4246			Bt1G4248	Bt1G4249	Bt1G4250			Bt1G4251		Bt1G4252	Bt1G4253		Bt1G4254			Bt1G4255) 	Bt1G4256	Bt1G4257			; Bt1G4258		Bt1G4260	
Contig Id	1834 Bt1Gc5047 Bt1G4241	1835 Bt1Gc5056 Bt1G4242	1036 D+1G25065	1837 B+1Gc5069	1838 Bt1Gc5070	1839 Bt1Gc5073	1840 Bt1Gc5081		1841 Bt1Gc5080	Bt1Gc5087 Bt1G4249	1843 Bt1Gc5098 Bt1G4250			1844 Bt1Gc5114 Bt1G4251		1845 Bt1Gc5130 Bt1G4252	1846 Bt1Gc5131 Bt1G4253		1847 Bt1Gc5144 Bt1G4254			1848 Bt1Gc5150 Bt1G4255		1849 Bt1Gc5159 Bt1G4256	1850 Bt1Gc5161			1851 Bt1Gc5162 Bt1G4258	1852 Bt1Gc5166	1853 Bt1Gc5171	1854 BUIGC5185
SEQ D	1834	1835	1026	1027	1838	1839	1840		1841	1842]	1843			1844		1845	1846		1847			1848		1849	1850			1851	1852	1853	1834

, "<u>.</u>

	NCBI gi description	6-PHOSPHOFRUCTOKINASE (PHOSPHOFRUCTOKINASE) (PHOSPHOHEXOKINASE) [Bacillus subtilis]	S-LAYER PROTEIN PRECURSOR (SURFACE LAYER PROTEIN) [Bacillus thuringiensis]	(AF008220) YmM [Bacillus subtilis]	superoxide dismutase [Bacillus stearothermophilus]	PYRIMIDINE NUCLEOSIDE TRANSPORT PROTEIN (Bacillus subtilis)	ACYL-COA DEHYDROGENASE [Bacillus subtilis]	HYPOTHETICAL PROTEIN (ORF3) [Bacillus cereus]	PROBABLE METHYLMALONATE-SEMIALDEHYDE PROBASPO CEDNASE (Recillus subtilis)	HIT PROTEIN [Bacillus subtilis]	ATP-DEPENDENT NUCLEASE SUBUNIT A [Bacillus	subtilis]	(AF065404) pXO1-35 [Bacillus anthracis]	hypothetical 16.9K protein - Salmonella typnimurium	plasmid IN 1P 10 []	L-LACTATE DEHYDROGENASE P [Bacillus	psychrosaccharolyticus]	HPK(SEK) KINASE [Bacillus suotinis]	TRANSPOSASE FOR INSERTION SEQUENCE	ELEMEN I 1523 IF [Bacillus unumgrensis]	MNNA PROTEIN [Saccharomyces cerevisiae]	50S RIBOSOMAL PROTEIN L//L12 (MAI/MAZ) []	50S RIBOSOMAL PROTEIN L//L12 (BL9) (A 11 FE) (VEGETATIVE PROTEIN 341) (VEG341) [Bacillus	subtilis]	(Y11170) BC541A protein [Bacillus cereus]	ATP SYNTHASE GAMMA CHAIN PRECURSOR	[thermophilic bacterium PS3]	(X65335) lacZ [Cloning vector pSV-beta-Galactosidase Control]		
	% Cvrg	31	56			25	23	40	19	74	12		17	42	1	22	į	24	5 6		6	67	48		62	21		33	19	
	% Ident C	49	09	99	27	39	40	57	41	28	34		54	4		36	;	21	58		19	51	48	`	37	55		36	46	
T 21016 T	BlastP- Prob Id	1.50E-15	1.40E-14	2.70E-54	3.20E-12	6.20E-14	2.40E-10	6.40E-30	1.50E-07	9.30E-06	4.70E-06		1.30E-09	3.00E-07		8.70E-26	!	1.60E-17	5.10E-11		1.90E-05	2.40E-14	2.60E-08		1.20E-14	1.00E-11		5.10E-08	5.00E-31	
	BlastP Score	197	192	561	164	186	153	331	129	103	120		148	117		292		214	161		114	184	127		187	162		125	351	
	aat_Bl nap Sc Score	193	238	593	145	159	76	319	165	95	145		144	70		262		177	93		101	166	121		170	142		103	340	
	NCBI gi	g3122295	g548931	g2293257	g448837	g1709415	g1168281	g3183483	g1170977	93023940	g113345		g4894251	g321919		g126053		g3122218	g549114		g3915759	g133083	g1173064		£2462088	g114646)	g987050	g121881)
	Position	297-1	1-302	533-1	1-146	84-376	16-281	379-1	274-1	450-127	511-1	i i	52-293	1-248		527-1		1-229	383-1		1-322	1-238	1-180		99-457	1-184		1-205	469-1	
	Gene Id	Bt1G4262	Bt1G4263	Bt1G4264	Bt1G4265	Bt1G4266	Bt1G4267			B#1G4271	Bt1G4272		Bt1G4273) Bt1G4275	v	3 Bt1G4276	9 Bt1G4277		Dt1G4278	1 Bt1G4279			3 Br1G4281	0 Bt1G4282		1875 Bt1Gc5369 Bt1G4284	1876 Bt1Gc5388 Bt1G4285	
	Contig Id	1855 Bt1Gc5212 Bt1G4262	1856 Bt1Gc5214 Bt1G4263	1857 Bt1Gc5225	1858 Bt1Gc5227 Bt1G4265	1859 Bt1Gc5246 Bt1G4266	1860 Bt1Gc5247	1860 Dt1 Gc5251	1862 Bt1Gc5284	1063 D+1Go\$300	1864 Br1Gc5292	DII 0002/2	1865 Bt1Gc5309	Bt1Gc5328		1867 Bt1Gc5329		1868 Bt1Gc5333	1869 Bt1Gc5339		1870 Bt1Gc5340	Bt1Gc5341	2 Bt1Gc5342		1873 Rt1Gc5359 Bt1G4281	4 Bt1Gc5360		5 Bt1Gc5369	5 Bt1Gc538	; ; !
	SEQ B	1855	1856	1857	1858	1859	1860	1861	1862	1062	1864	501	1865	1866		1867		1868	1869		1870	1871	1872		1873	1874	2	187:	1876	1

		<i>,</i> •				-	ST		ū	1		•		⊢ ⊋		[is]	
NCBI gi description	(Z99111) similar to transcriptional regulator (MarR family)	PROBABLE NADH-DEPENDENT FLAVIN OXIDOREDUCTASE YQIM [Bacillus subtilis]	ALCOHOL DEHYDROGENASE 2 (ADH) / ALCETALDEHYDE DEHYDROGENASE (ACDH) [Entamoeba histolytica]	(AF017113) putative protease [Bacillus subtilis] (Z99120) similar to nicotinate phosphoribosyltransferase (Bacillus subtilis]	(Z99108) similar to iron(III) dicitrate transport permease (Bacillus subtilis)	HYPOTHETICAL 21.4 KD PROTEIN IN DACA-SERS	INTERGENIC REGION [Dactilius subulis] GLYCOGEN BIOSYNTHESIS PROTEIN GLGD [Bacillus	subtilis] PYRIMIDINE-NUCLEOSIDE PHOSPHORYLASE	[Bacillus stearothermophilus] (U63928) L2 protein [Bacillus cereus]	GLUCOSE-1-PHOSPHATE ADENYLYLIKANSFEKASE (ADP-GLUCOSE SYNTHASE) (ADP-GLUCOSE PYROPHOSPHORYLASE) [Bacillus subtilis]	(Z99112) nusA [Bacillus subtilis]	ORF IS231C [Bacillus thuringiensis]	LEUCYL-1RNA SYN 1HE 1A3E (LEUCINE-11227) 1. IGASE) (LEURS) [Bacillus subtilis]	HYPOTHETICAL 40.1 KD GTP-BINDING PROTEIN IN RPSF-SPO0J INTERGENIC REGION [Bacillus subtilis]	GLUCOSE 1-DEHYDROGENASE II (GLCDH-II) [Bacillus megaterium]	STAGE III SPORULATION PROTEIN E [Bacillus subtilis] (U66480) YnaD [Bacillus subtilis]	PRISMANE PROTEIN HOMOLOG [Memanobacterium thermoautotrophicum]
% Cvrg	98	38 P	16 A	22 (2	29 (9 (24 1	38	21]		23	13		<u>∞</u>	53	42	13	19
% Ident C	46	29	37	33	47	62	21	62	32	38	53	63	31	34	32	49 36	42
BlastP- Prob Ic	2.30E-16	3.00E-10	8.80E-18	1.60E-12 2.20E-13	6.50E-18	2.30E-13 1.60E-08	6.30E-08	9.70E-27	4.60E-07	7.80E-08	1.20E-07	2.20E-45	1.20E-10	7.90E-17	1.10E-09	5.40E-17 1.60E-08	1.40E-15
BlastP Score	203	151	228	175 183	219	184 129	130	301	124	130	128	477	161	211	143	220 129	203
	Score 203	138	187	171	244	184	. 99	255	117	109	102	458	144	1117	108	200	115
NCBI gi	g2633738	g1731075	g2492737	g2618834 g2635670	g2633170	g1009035 g586858	ø729583	g2501426	g1945050	g729582	g2634032	g225559	g3123286	g586848	g729325	g730776 g1750115	g3914433
Position	490-130	382-1	1-419	388-1 366-1	596-295	159-1 1-144	1-388	278-1	269-1	1-255	1-152	465-1	447-1	600-1	420-90	306-1 322-1	1-449
Gene Id	Bt1G4286	Bt1G4287	Bt1G4288	Bt1G4289 Bt1G4290	Bt1G4291	Bt1G4292 Bt1G4293	B+1G4294	Bt1G4295	Bt1G4296	Bt1G4297	Bt1G4298	Bt1G4299	Bt1G4300	Bt1G4301	Bt1G4302	Bt1G4303	Bt1G4306
SEQ Contig Id	NO 1877 Bt1Gc5386 Bt1G4286	1878 Bt1Gc5406 Bt1G4287	1879 Bt1Gc5411 Bt1G4288	1880 Bt1Gc5412 Bt1G4289 1881 Bt1Gc5442 Bt1G4290	1882 Bt1Gc5453	1883 Bt1Gc5464 Bt1G4292 1884 Bt1Gc5466 Bt1G4293	1885 B#1Gc5472 B#1G4294	1886 Bt1Gc5473 Bt1G4295	1887 Bt1Gc5454	1888 Bt1Gc5467	1880 Rt1Gc5486 Rt1G4298	1890 Bt1Gc5488 Bt1G4299	1891 Bt1Gc5498	1892 Bt1Gc5501 Bt1G4301	1893 Bt1Gc5521 Bt1G4302	1894 Bt1Gc5527 Bt1G4303 1895 Bt1Gc5536 Bt1G4304	1896 Bt1Gc5563

. .

Ŧ	-
	ē
_	
r	ď
t	_

					,	~ ~ *	•							_	_					
	NCBI gi description	DNA POLYMERASE III, ALPHA CHAIN [Bacillus subtilis]				[Bacillus subtilis] LIPOAMIDE DEHYDROGENASE COMPONENT OF PYRUVATE DEHYDROGENASE COMPLEX (E3) (DIHYDROLIPOAMIDE DEHYDROGENASE) (S		DNA GYRASE SUBUNIT B [Bacillus subtilis]			cereus] CIRCUMSPOROZOITE PROTEIN PRECURSOR (CS) Plasmodium bergheil				5 (AJ223781) thioredoxin reduciase [Staphylococous amous]			IIC COMPONENT) (PHOSPHOTRANSFERASE ENZYME II. C COMPONENT) [Bacillus subtilis]	6 (U62929) multidrug resistance protein 1 [Filobasidiella	
	% Cvrg	œ	- 23	25	6		28		> 0	19	41	8 81			5 45			•		
	% Ident	55	46	52	46	46	35	9 ;	43	41 58	30		61 49			4 6			37	
ranie i	BlastP-	2.70E-24	5.60E-10	7.10E-11	1.10E-06	1.50E-08	3.80E-25	9.20E-06	0.00014	2.70E-05 3.00E-32	0.79	1.30E-17	4.40E-28 1.70E-22		6.70E-19	1.20E-06	0.0018 4.90E-12		0.85	
7	BlastP Score	292	146	152	121	138	286	114	103	106 353	62	215	321 261		227	117	83 170		89	
	aat_B nap_S	302	127	145	119	125	258	92	98	380	170	222	300 275	ì	231	95	158		130	
	NCBI gi	g118793	g3777577	g2462104	g121415	g118672	g1789981	g121887	g1709188	g2522016 g115022	g117576	g4584100	g4033396 o3123300		g4379428	g1524023	g2635723 g1172710		g2668553	
	Position	356-1	190-1	186-1	148-5	1-188	1-496	171-1	1-150	1-199 22-481	1-415	1-409	319-1	171	1-421	161-1	272-1 282-1		1-275	
	Gene Id	Bt1G4307	Bt1G4308	Bt1G4309	Bt1G4310	Bt1G4311	Br1G4312	Bt1G4313	Bt1G4314	Bt1G4315 Bt1G4317	Bt1G4318	Bt1G4320	Bt1G4321				Bt1G4325Bt1G4326		5 Bt1G4327	
	Contig Id	NO 1897 Bt1Gc5568 Bt1G4307	1898 Bt1Gc5574 Bt1G4308	1899 Bt1Gc5585 Bt1G4309	1900 Bt1Gc5590 Bt1G4310	1901 Bt1Gc5592 Bt1G4311	1902 Bt1Gc5609 Bt1G4312	1903 Bt1Gc5627 Bt1G4313	Bt1Gc5637	1905 Bt1Gc5636 Bt1G4315 1906 Bt1Gc5642 Bt1G4317	1907 Bt1Gc5647 Bt1G4318	1908 Bt1Gc5656 Bt1G4320	1909 Bt1Gc5662	1910 BUGG50/1) Bt1Gc5671	1911 Bt1Gc5675	2 Bt1Gc5677 3 Bt1Gc5681		1914 Bt1Gc5686 Bt1G4327	
	SEQ ID	NO 1897	1898	1899	1900	1901	1907	1903	1904	1905 1906	1907	1908	1905	1916	1910	191	1912		161	

_	
ble	
Tak	

NCBI gi description	neoformans] (AB017508) truA homologue (identity of 62% to B. subtilis) [Bacillus halodurans]	DIHYDRODIPICOLINATE REDUCTASE [Bacillus	sucunsj (AB015670) A2-5a orf21; hypothetical protein [Bacillus sp.]	INOSINE-5'-MONOPHOSPHATE DEHYDROGENASE (IMP DEHYDROGENASE) (IMPDH) (IMPD) (SUPEROXIDE-INDUCIBLE PROTEIN 12) (SOI12) [Bacillus subtilis]	HYPOTHETICAL 26.2 KD PROTEIN IN FTSH-CYSK INTERGENIC REGION [Bacillus subtilis]	_	PROBABLE UDP-N-ACETYLGLUCOSAMINE 1- CARBOXYVINYL TRANSFERASE (ENOYLPYRUVATE TRANSFERASE) (UDP-N-ACETYLGLUCOSAMINE ENOLPYRUVYL TRANSFERASE) (EPT) [Bacillus			_	_		PENICILLIN-BINDING FRO IEIN 3. TRECONSON (2. ALANYL-D-ALANINE CARBOXYPEPTIDASE) (DD-PEPTIDASE) (PBP-5*) [Bacillus subtilis]		_		,
Cvrg	35	32	45	27	31	14	32	,	25	18	25	55	21	59	91	'	24
% Ident (28	53	40	37	38	54	51		45	55	59	22	35	51	45	20	51
BlastP-	3.40E-06	9.80E-18	1.10E-07	0.0016	4.20E-09	0.0035	1.50E-30		2.40E-13	1.80E-10	1.30E-24	3.90E-30	2.20E-08	4.40E-15	4.10E-19	1.80E-07	2.40E-14
BlastP	112	216	121	92	136	55	337		185	153	282	333	135	191	229	133	188
aat_ Bi nap S Score	8	197	141	204	131	153	256		331	133	276	276	11	228	198	117	176
NCBI gi	g4512436	g1706300	g3318590	g124423	g586893	g225559	g1171068		g4512389	g115950	g143434	g1834395	g461914	g2635774	g2635773	g1350849	g3122229
Position	282-1	380-125	1-240	411-1	212-1	1-205	1-417		1-500	254-70	319-1	1-459	263-1	1-262	21-553	1-182	1-244
Contig Id Gene Id	1915 Bt1Gc5715 Bt1G4330	1916 Bt1Gc5727 Bt1G4332	1917 Bt1Gc5732 Bt1G4333	1918 Bt1Gc5748 Bt1G4334	1919 Bt1Gc5751 Bt1G4335	1920 Bt1Gc5761 Bt1G4336			1922 Bt1Gc5768 Bt1G4338	1923 Bt1Gc5767 Bt1G4339	1924 Bt1Gc5772 Bt1G4340	1925 Bt1Gc5779 Bt1G4341	Bt1Gc5777 Bt1G4342	1927 Bt1Gc5796 Bt1G4344	1927 Bt1Gc5796 Bt1G4345	Bt1Gc5802 Bt1G4346	1929 Bt1Gc5808 Bt1G4347
 SEQ ED C	1915 Bt	1916 Bt	1917 Bt	1918 Bt	1919 Bt	1920 Bt	1921 Bi		1922 B	1923 B	1924 B	1925 B	1926 B	1927 B	1927 B	1928 B	1929 B

		~										-		-				rel			?	3							
	NCBI gi description	HRCA [Bacillus stearothermophilus] ACETATE KINASE (ACETOKINASE) [Bacillus subtilis]			(AF0157/75) acetylormitine deacetylase			(HEME SYNTHETASE) [Bacillus subtilis]		BRANCHED-CHAIN AMINO ACID TRANSPORT	AMINO ACID UPTAKE CARRIER) [Bacillus subtilis]		(AC007195) putative blue copper-binding protein II	- `					I) [Bacillus caldolyticus]			ACONITATE HYDRAIASE (CITRATE HTDRO-LIASE) (ACONITASE) [Bacillus subtilis]			_	[Bacillus subtilis]		3 ORF IS231C [Bacillus thuringlensis]	
	% Cvrg	30	> ∞	•	70	40	4		10	27		61	58	5	2	26	ì	55	7	/1	27	4	16	25	25		9	23	7
	% Ident (45	35	:	4	38	28		63	63		46	98	ć	38	45		50	ò	80	75	62	53	20	45		41	63	C
	BlastP- Prob Ic	1 805-16	1.80E-15	!	9.00E-17	5.30E-19	6.60E-10		3.60E-13	6.70E-35		1.20E-21	7.60E-27	ļ	2.40E-0/	2 90E-19	77	3.40E-24	7	1.80E-18	3.30E-42	2.70E-33	6.00E-15	1.10E-15	1.50E-27		2.20E-20	7.10E-29	2.10E-08
1	BlastP Score	900	113		213	228	147		181	378		253	302	,	118	233	CC4	277		223	447	373	199	204	310	:	241	322	135
	aat_Blanap Score	, ,	213 71		238	190	1111	i I	152	337		198	265	,	115	180	107	566		223	415	314	696	246	292		213	296	108
	. 19 20 11 25				3				47	01		m			15					4	=	31	9	2 ~	. 4	:	17	6	∞
	NCBI g	. 0	g584/19 g541317)	g241540	g417116	0417116	۵	g212714′	g302341		ø1805463	g4589971		g263551	2505017	g202041	g729934		g4514314	g4309751	g250613	01755196	22222	92635847		g1162917	g225559	g399058
	Position	•	1-365 475-1		345-1	1-368	406.1	2	1-151	1-395		377-1	98-268		115-318	1 000	1-967	1-301		325-471	520-191	387-1	15,375	1 355	355-1	1-000	1-437	1-333	186-1
	Gene Id	į	Bt1G4348 Bt1G4349		Bt1G4350	Bt1G4351	B+1G4352	2001010	Bt1G4353	Bt1G4354		B+164355	Bt1G4357		Bt1G4359	0,000	Bt1G4360	Bt1G4361		Bt1G4362	Bt1G4363	Bt1G4364	D+1C4365	D11C4366			Bt1G4368	Bt1G4369	Bt1G4370
	Contig Id	, , ,	1930 Bt1Gc5818 Bt1G4348 1931 Bt1Gc5837 Bt1G4349		1932 Bt1Gc5838 Bt1G4350	Bt1Gc5835	1024 D+1Go5841 B+1GA352	D1100041	1935 Bt1Gc5877 Bt1G4353	1936 Bt1Gc5882 Bt1G4354		D41/205880	1938 Bt1Gc5899 Bt1G4357		1939 Bt1Gc5903 Bt1G4359	t c	1940 Bt1Gc5917 Bt1G4360	1941 Bt1Gc5918 Bt1G4361		1941 Bt1Gc5918 Bt1G4362	1942 Bt1Gc5913	Bt1Gc5939	044 D410-6040 D410-4365	511GC3944	1945 BUIGC5948	DII GC3949	1947 Bt1Gc5937 Bt1G4368	1948 Bt1Gc5953	1949 Bt1Gc5968
	SEQ UD		1930 1931		1932	1933	1004	1934	1935	1936		1027	1938		1939	,	1940	1941		1941	1942	1943	770	1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1945	1940	1947	1948	1949

ë
ap
Ë

				377							織																
	NCBI gi description		(U938/4) cytochrome F430 102 [Bachius suchins] (U61168) spore germination protein C2 [Bacillus firmus]	DIHYDROOROTATE DEHYDROGENASE (DIHYDROOROTATE OXIDASE) (DHODEHASE)	[Bacillus subtilis]	CHORISMATE SYNTHASE (5- ENOLPYRUVYLSHIKIMATE-3-PHOSPHATE	PHOSPHOLYASE) (VEGETATIVE PROTEIN 216) (VFG216) [Racillus subtilis]		[Synechocystis sp.]			PUTATIVE EXODEOXYRIBONUCLEASE LARGE SUBUNIT (EXONUCLEASE VII LARGE SUBUNIT)	[Bacillus subtilis]	_	_	_	_		_	_	_	•	ELEMENT IS232 [Insertion sequence IS232]		cereus) PENICH J.IN-BINDING PROTEIN 3 (PBP 3) [Bacillus		6 HYPOTHETICAL 40.7 KD PROTEIN IN MECB-GLTX INTERGENIC REGION [Bacillus subtilis]
	cvrg		38 10	31		30		41	-	1	27	23		28	29		21	31	51	24	20	40		91	28	ί	26
	% Ident	;	32	31		51		37	Ċ	38	34	32		9	33		43	25	38	74	3,	36		2	46	2	38
I anic I	BlastP- Prob I		2.70E-10 4.40E-07	5.00E-07		8.00E-23		1.60E-11	ţ	5.50E-12	4.60E-15	2.60E-10		3.20E-44	5.20E-17		7.00E-14	1.10E-16	6.10E-09	3.60E-59	5.30E-15	1.10E-15		5.80E-13	1 50E 44	7001	6.10E-12
-	BlastP F		159	121		264		163	į	172	. 198	154		* 466	216		184	206	133	209	201	203		171	760	è	167
	nap	1026	110	95		216		175	1	137	124	126		465	182		150	170	110	584	195	218		169	141	F	107
-	NCBI gi		g1934614	g131720		g399058		g2492538	b	g3025120	g2226226	g1706723		g4512352	g2829796)	g2522016	g3183561	g2618861	g2632105	g2577965	g2497382)	g2984721	01000	811/2/13	g586902
	Position		1-319	1-291		1-358		450-1	!)	1-332	1-385	1-307		19-441	477-66		217-1	246-1	264-1	1-471	450-1	515-1		192-17		1335-1	277-1
	Gene Id		Bt1G4371	Bt1 G43 72 Bt1 G43 73		Bt1G4374		Br1G4375		Bt1G4376	Bt1G4377	Bt1G4378		Bt1G4379	Bt1G4380		Bt1G4381	Bt1G4382						Bt1G4387		Bt1G4388	Bt1G4389
	Contig Id		1950 Bt1Gc5970	Bt1Gc5971 Bt1Gc5979		1953 Bt1Gc5992 Bt1G4374		1054 Bt1Gc5990 Bt1G4375		1955 Bt1Gc5995	1956 Bt1Gc5998	1957 Bt1Gc6014		1958 Br1Gc6030 Bt1G4379	1959 Br1Gc6035		1960 Bt1Gc6038 Bt1G4381	1961 Bt1Gc6047	1962 Bt1Gc6046	1963 Bt1Gc6053	1964 B+1G-6055	5 Br1Gc6057	70000	1966 Bt1Gc6071 Bt1G4387		1967 Bt1Gc6069 Bt1G4388	1968 Bt1Gc6083 Bt1G4389
	SEQ	2	1950	1951 1952		1953		1054	1001	1955	1956	1957		1958	1959	1001	1960	1961	1967	1963	1064	1965	Š	1966		1967	1968

						* *****			
SEQ Contig Id	Gene Id	Position	NCBI gi	aat_ nap Score	BlastP Score	BlastP- Prob I	% % Ident Cvrg		NCBI gi description
1969 Bt1Gc6086 Bt1G4390	Bt1G4390	1-371	g1350848	201	278	7.30E-23	51	9 DNA-DIRECTED RNA POLYMERA (TRANSCRIPTASE BETA CHAIN) (BETA SUBUNIT) [Spiroplasma citri]	DNA-DIRECTED RNA POLYMERASE BETA CHAIN (TRANSCRIPTASE BETA CHAIN) (RNA POLYMERASE BETA SUBUNIT) [Spiroplasma citri]
1970 Bt1Gc6097 Bt1G4391	, Bt1G4391	1-356	g2633807	158	174	2.80E-13	33	52 (Z99111) similar to AF [Bacillus subtilis]	(Z99111) similar to ABC transporter (ATP-binding protein) [Bacillus subtilis]
1971 Bt1Gc6103 Bt1G4392	Bt1G4392	1-321	g730959	95	118	3.60E-06	24	16 METHYL-ACCEPTIN [Bacillus subtilis]	METHYL-ACCEPTING CHEMOTAXIS PROTEIN TLPB [Bacillus subtilis]
1972 Bt1Gc6108 Bt1G4393	Bt1G4393	1-2 <i>77</i> 332-1	g2529473 g124423	173	191 159	4.40E-15 9.60E-11	43 50	34 (AF006665) YokZ [Bacillus subtilis] 22 INOSINE-5'-MONOPHOSPHATE D (IMP DEHYDROGENASE) (IMPDE (SUPEROXIDE-INDUCIBLE PROT	(AF006665) YokZ [Bacillus subtilis] INOSINE-5'-MONOPHOSPHATE DEHYDROGENASE (IMP DEHYDROGENASE) (IMPDH) (IMPD) (SUPEROXIDE-INDUCIBLE PROTEIN 12) (SOI12)
1974 Bt1Gc6119 Bt1G4395 1975 Bt1Gc6143 Bt1G4396	9 Bt1G4395 3 Bt1G4396	1-233 1-334	g4557058 g585481	93 258	140 283	3.80E-08 1.90E-23	50.	4 (AC007154) aldehyde oxic 9 TRANSCRIPTION-REPA	(AC007154) aldehyde oxidase [Arabidopsis thaliana] TRANSCRIPTION-REPAIR COUPLING FACTOR
1976 Bt1Gc6164 Bt1G4397	4 Bt1G4397	1-367	g3915673	111	166	6.20E-11	32	(INCF) LEACHINGS SEE 10 PROBABLE SERINE subtilis!	(INCY) [Dazinus succina] PROBABLE SERINE ACTIVATING ENZYME [Bacillus subfilis]
1077 D+1C-6184 D+1C4308	A D41G4308	1-183	o2117766	105	117	2.20E-06	43	15 orthinine aminotransfe	orthinine aminotransferase rocD - Bacillus subtilis []
1978 Bt1Gc6197	4 BUG4398 7 Bt1G4399	566-391	£2245063	270	188	1.50E-14	86		(Z97342) hypothetical protein [Arabidopsis thaliana]
1979 Bt1Gc6210	0 Bt1G4402	270-460	g1730905	112	125	4.30E-08	40	52 HYPOTHETICAL 13.7 KD PROTEIN IN I INTERGENIC REGION [Bacillus subtilis]	HYPOTHETICAL 13.7 KD PROTEIN IN BCSA-DEGK INTERGENIC REGION [Bacillus subtilis]
1980 Bt1Gc6215 Bt1G4403	5 Bt1G4403	1-366	g3913544	252	258	4.00E-22	43	31 1-DEOXY-D-XYLUI REDUCTOISOMER/ [Bacillus subtilis]	1-DEOXY-D-XYLULOSE 5-PHOSPHATE REDUCTOISOMERASE (DXP REDUCTOISOMERASE) [Bacillus subtilis]
1981 Bt1Gc6217 Bt1G4404	7 Bt1G4404	394-1	g68538	117	164	6.30E-11	33	15 valinetRNA ligase (EC 6.1.1.9) - Bacillus stearothermophilus []	3C 6.1.1.9) - Bacillus
1982 Bt1Gc6231 Bt1G4405	1 Bt1G4405	1-177	g584768	112	110	7.20E-06	42	20 N-ACETYL-GAMM. REDÚCTASE (AGPI SEMIALDEHYDE D	N-ACETYL-GAMMA-GLUTAMYL-PHOSPHATE REDUCTASE (AGPR) (N-ACETYL-GLUTAMATE SEMIALDEHYDE DEHYDROGENASE) (NAGSA DEHYDROGENASE) [Bacillus stearothermophilus]
1983 Bt1Gc6239 Bt1G4406	9 Bt1G4406	1-529	g2982194	165	239	5.30E-18	78	3 (AF007865) bacitraci licheniformis]	(AF007865) bacitracin synthetase 1; BacA [Bacillus licheniformis]
1984 Bt1Gc6242 Bt1G4407	2 Bt1G4407	114-299	g2996158	232			63		(AF051753) GASA5-like protein [Picea mariana]
1985 Bt1Gc6248 Bt1G4408	18 Bt1G4408	1-218	g3395452	121	159	1.10E-11 3.60E-15	24 2	30 (X92496) UBIR-IIKE 5 (AF077408) contains	(X92490) UDIT-like protein [Azospumini organizarior] (AF077408) contains similarity to Vicia faba
1986 Bt1Gc6252	2 Bt1G4410	309-1	g3319360			J.000L	5		•

ţŁ.

							1 2121			
	Contig Id	Gene Id	Position	NCBI gi	aat_ nap_ coors	BlastP Score	BlastP. Prob	% '	% Cvrg	NCBI gi description
									- *	retrotransposon-like gene (GB:AB007467) [Arabidopsis
1987 Bt1Gc6265 Bt1G4411	c6265 B	%1G4411	1-482	g2342692	159	322	3.70E-28	99	4	mananaj (AC000106) Similar to Nicotiana protein kinase (gblD26601). [Arabidopsis thaliana]
1088 Bt1Gc6274		Rt1G4412	1-401	g4432807	595	619	4.50E-59	88	∞	(AC006570) putative polyprotein [Arabidopsis thaliana]
1989 Bt1Gc6275		Bt1G4413	382-1	g4309763	475	494	6.20E-46	. 75	10	(AC006217) putative retrotransposon polyprotein [Arabidopsis thaliana]
1000 B#1G	B+11G-CK277 B	R+1G4414	24-183	91556378	110	154	3.60E-11	57	27	(Y08031) cheD [Bacillus cereus]
1990 Bilde		Br1G4415	514-1	g3080399	372	376	7.50E-34	28	23	(AL022603) VP1 like protein [Arabidopsis thaliana]
1992 Br1Gc	c6287 E	Br1Gc6287 Bt1G4417	128-1	g225559	116	138	1.60E-08	65	6	ORF IS231C [Bacillus thuringiensis]
1993 Bt1Gc	Bt1Gc6286 E	Bt1G4419	300-1	g1708181	202	207	2.30E-16	41	27	PROBABLE OXYGEN-INDEPENDENT
										COFROPORPHYRINOGENASE) (COPROGEN OXIDASE) [1
1994 B#1G	Rt1Gc6294 F	Bt1G4420	558-1	£228654	431	470	1.20E-44	46	28	thermostable pullulanase [Bacillus stearothermophilus]
1995 B#1G		Bt1G4421	426-178	g2392192	236		3.40E-15	54	36	Metallo-Beta-Lactamase From Bacillus Cereus 569H9 []
1996 Bt1G		Bt1G4422	326-1	g730776	185	•	3.30E-17	43	14	STAGE III SPORULATION PROTEIN E [Bacillus subtilis]
1997 Bt1G		Bt1G4424	1-161	g540914	233		1.30E-06		37	host-lethality protein klbB - plasmid KKZ [Plasmid KKZ]
1997 Bt1G		Bt1G4425	167-457	g540915	480	487	1.90E-46		93	trbD protein - plasmid RK2 [Plasmid RK2]
		Bt1G4426	1-442	g118716	562	514	2.60E-49		36	DNAJ PROTEIN [Bacillus subtilis]
		Bt1G4427	54-230	g2984717	139	48	0.013		86	(AF053927) YisI homolog [Bacillus cereus]
2000 Bt1G		Bt1G4428	1-283	g3122814	88	124	3.50E-07	40	25	30S RIBOSOMAL PROTEIN ST HOMOLOG [Bacillus
				ı					,	cereus]
2001 Bt1G	Bt1Gc6362 1	Bt1G4429	475-1	g1934609	312	•	2.10E-28		9 ;	(U938/4) Iormate deliymogenase chanic a [Lawring success]
2002 Bt1G		Bt1G4430	1-274	g3288585	168	152	6.70E-10	45	16	(AJ224964) preprotein translocase [rnormium]
					İ		,		,	laminosum) va roziteze) DNA Beces [Bacillus stearothermonhilus]
2003 Bt1Gc6380 Bt1G4431	3c6380	Bt1G4431	1-207	g3688229	9/		0.14		2;	(AJULIO/O) DINA ligase [Davinius secure constructions]
2004 Bt1Gc6386	3c6386	Bt1G4432	423-1	g1945657	221	C1	2.10E-22		4	(Z94043) hypothetical protein [Bachins such 113]
2005 Bt1Gc6389		Bt1G4433	1-163	g1770035	109		0.034		6	(Z75208) hypothetical protein [Bacillus subulis]
2006 Bt1Gc6401		Bt1G4434	1-214	g225559	142		5.80E-13		15	ORF IS231C [Bacillus fuuringlensis]
2007 Bt1G		Bt1G4435	308-1	g2415397	158	139	1.90E-09	38	4	(AF015775) purme nucleoside phosphorylase [Davillus
2008 Bt1Gc6405 Bt1G4436	3c6405	Bt1G4436	54-350	g1731036	117	144	3.10E-09	36	22	SUBTILIS HYPOTHETICAL 50.0 KD PROTEIN IN SODA-COMGA
i										INTERGENIC REGION [Bacillus suotins]

	NCBI gi description	purine nucleoside phosphorylase (EC 2.7) II - Bacillus stearothermophilus	nitrate reductase delta chain - Bacillus subtilis []	NADH dehydrogenase 2-like ORF 180 [Nicotiana tabacum]	(U72725) receptor kinase-like protein [Oryza	longistaminataj	(X02441) gtg start [Nicotiana tabacum]	(AC006250) putative Athila retroelement OKF1 protein	[Arabidopsis triatiana] aspartate-semialdehyde dehydrogenase (EC 1.2.1.11) -	Bacillus subtilis []		(AC005966) Strong similarity to gb AF'061286 gamma- adaptin 1 from Arabidopsis thaliana. EST gb H37393 comes		DEHYDROGENASE (COLD SHOCK PROTEIN CSI14)	[Bacillus subtilis]	_			_	subtilis]	-	_	TRYPIOPHANYL-IRNA SYNTHEIASE (TRYPTOPHAN-TRNA LIGASE) (TRPRS) [Bacillus	subtilis]				HYPOTHETICAL ABC TRANSPORTER ATP-BINDING PROTEIN 2 IN GLVBC 3'REGION [Bacillus subtilis]	
	% Cvrg	99	59	29	5 6	,	86	7	40		15	m	52			15	11	42	20		45	18	77		25	14	25	18	6
	% Ident	45	30	65	44		98	88	32		8	83	89			86	54	39	35		45	63	45		41	35	71	30	,
1 01001	BlastP- Prob I	4.90E-32	7.00E-08	1.50E-05	1.10E-22		2.40E-14	1.60E-26	6.80E-15		1.50E-51	4.30E-07	1.90E-39			6.20E-83	4.00E-11	2.90E-18	6.90E-07		2.00E-12	5.30E-10	1.30E-10		8.00E-19	4,20E-13	0.023	3.40E-07	
	BlastP Score	351	123	102	271		184	310	193		540	128	421	•		834	163	221	124		166	146	154		233	184	9/	127	
	aat_Bi nap_S Score	338	109	121	223		167	305	148) :	548	92	445	2		961	87	141	136		130	101	121		187	106			
	NCBI gi	g2126871	g1075873	2225268	g2586081		g1334366	g4263543	0538921	, , , ,	g2642163	g4249386	91169301	6110/201		g3063448	g4539351	22226127	g1673392)	g2462088	g4773910	g135188		g2127147	04033397	g2245111	g1723607	
	Position	463-1	362-37	471-310	86-532		219-92	1-201	1-433		74-436	1-463	1.411			556-1	138-422	395-1	1-347		162-412	1-218	47-267		1-375	1-354	1-266	327-1	
	Gene Id	Bt1G4437	Bt1G4438				Bt1G4441	Bt1G4442	D+1C4443	CLLCTTO	Bt1G4444		D+1/24446	D11C+++1		Bt1G4447					Bt1G4451	, Bt1G4452	Bt1G4453		; Bt1G4454	P+1G4455			
	SEQ Contig Id	2009 Bt1Gc6415 Bt1G4437	2010 Br1Gc6419	2013 Et1Gc6420	2012 Bt1Gc6421		2013 Bt1Gc6428 Bt1G4441	2014 Bt1Gc6433	2015 D+1C26427 B+1C4443	CLIOCOLO CIOZ	2016 Bt1Gc6443	2017 Bt1Gc6445	DATE DATES	2018 BUIGG944/		2019 Br1Gc6449	2012 Et1Gc6452	2020 Dt1Gc6435	2021 Diloco455		2023 Bt1Gc6460 Bt1G4451	2024 Bt1Gc6457 Bt1G4452	2025 Bt1Gc6465		2026 Bt1Gc6466 Bt1G4454	2002 D+1/206/178	2027 DilGc6487	2029 Bt1Gc6491	

NCBI gi description	(AL049711) 5B protein like protein [Arabidopsis thaliana]	DNA TOPOISOMERASE I (OMEGA-PROTEIN) (RELAXING ENZYME) (UNTWISTING ENZYME)	(SWIVELASE) [Bacillus subtilis]	STAGE II SPORULATION PROTEIN D [Bacillus subtilis]	(AC005313) kinetochore (SKP1p)-like protein [Arabidopsis thaliana]	(AF017113) YvpB [Bacillus subtilis]	(AC006841) putative ubiquitin [Arabidopsis thaliana]	HYPOTHETICAL 73.2 KD PROTEIN IN SODA-COMGA	INTERGENIC REGION [Bacilius suomis]	PHOTOSYSTEM 1 P/00 CHLONOFILLE A	APOPKO LEIN A.1 [Fishin sativani] (AFOOGGAS) Voks [Racillus subtilis]		_				-	_	_	_	subtilis]	_	stearothermophilus]		. –		TRANSPOSASE FOR INSERTION SEQUENCE	•				(AJ010139) fumarate hydratase [Bacillus cereus]	
% Cvrg	78	17		22	45	51	78	14	,	19		1,	14	•	20		69	23	38	36		17	į	10	20		22					34	
% Ident	61	53		48	84	45	83	35		48	5	1 1	84	,	99		49	30	54	52		44	•	95	32		35	ć	25	47	55	38	
BlastP- Prob I	6.80E-26	4.00E-16		2.00E-35	9.40E-29	9 40E-29	1.90E-30	2.60E-09		7.20E-28	טה מוסה ה	2.20D-27	4.20E-31		4.10E-27		3.80E-48	8.00E-07	4.30E-40	4.00E-21		6.00E-21	, ,	4.50E-06	2.30E-06		2.40E-10		1.70E-05	1.60E-26	1.30E-15	7.10E-10	
BlastP	293	211		383	320	320	336	147		321	Č	270	345		307		503	122	427	248		257		106	118		154	,	112	299	196	145	
aat_ Bi nap S Score	230	214		341	294	256	353	148		240	Ü	007	256		766		504	101	470	242		242		8	77		119			254	130	130	
NCBI gi	g4678942	g730965		g134761	g3548811	27619863	24567262	g1731026		g131137		g727740/	g4678307)	g136144)	g1703404	g2314492	g4835229	g2293148		g1944414)	g321919	g4530241	0	g2497382		g2293215	g2293212	g2286111	g4584140	
Position	400-102	352-1		1-540	515-286	1 400	360-1	1-277		1-430	•	1-305	1-408		1-290		584-1	317-1	1-590	292-1		404-1		293-69	1-294	ì	1-283		478-1	66-431	463-262	279-1	
Gene Id	Bt1C4460			Bt1G4464	Bt1G4465	777777				Bt1G4469		Bt1G4471	Bt1G4472		Bt1G4473		Bt1G4474	Bt1G4476	Bt1G4478			Bt1G4481))	Bt1G4482	Bt1G4483		Bt1G4484		Bt1G4485	Bt1G4486		Bt1G4492	
SEQ D Contig Id	2031 Br1Gc6513	2032 Bt1Gc6527		2033 Bt1Gc6566 Bt1G4464	2034 Bt1Gc6570 Bt1G4465		2035 Bt1Gc65/2	2037 Bt1Gc6560		2038 Bt1Gc6573 Bt1G4469		2039 Bt1Gc6587 Bt1G4471	2040 Bt1Gc6590		2041 Bt1Gc6588		2042 Bt1Gc6599	2043 Bt1Gc6617 Bt1G4476	2044 Bt1Gc6675	2045 Bt1Gc6628		2046 Bt1Gc6638		2047 Bt1Gc6641 Bt1G4482	2048 Br1Gc6639 Br1G4483	2046 BU 0000	2049 Bt1Gc6651 Bt1G4484		2050 Bt1Gc6652	2051 Bt1Gc6654	2052 Bt1Gc6673	2053 Bt1Gc6675	**
AS E S	,	8 8		20	8	ć	3 8	3 8		20		20	20	វ	20	i	20	í	์ ก็	ر ا	រ៍	20	í	73	7	1	ন		ন	7		ίō	ัลลั

NCBI gi description		mays] 6 leukotoxin B - Pasteurella haemolytica []		_	SUDTINS A CROSA17 VERN (Docillis cubtilis)	-	63 (Z99120) Similar to INITO protein nomong Lawring	subtilis] 7 DNA-directed DNA polymerase (EC 2.7.7.7) III alpha chain	(version 2) - Bacillus subtilis []	29 GLYCOGEN SYNTHASE (STARCH (BACTERIAL GLYCOGEN) SYNTHASE) [Bacillus stearothermophilus]	19 (AF074376) beta lactamase precursor [Cloning vector	p(E500051) 24 (AL049863) putative transcriptional regulator		17 PROBABLE 1-DEOXYXYLULOSE-5-PHOSPHATE			30 HYPOTHETICAL 66.6 KD PROTEIN IN PUKD-SAPB	INTERGENIC REGION [Bacillus subtilis]	7 EXCINUCLEASE ABC SUBUNIT A [Bacillus subtilis]	45 (U86347) beta-lactamase [Cloning vector pCALnFLAG]	18 EXCINUCLEASE ABC SUBUNIT B (DINA PROTEIN)		19 (AC005489) F14N25.29 [Arabidopsis unamana]		26 (U24189) RRM-type RNA binding protein [Caenornabouns				51 (AJ010820) Fts Y homolog [Arabidopsis manana]	
% Cvrg	25 14	·	1,	27						-											-									
% Ident	63	51	51	35	6	39	39	41		35.	29	38		32		43	37		48	37	37	•	43	26	38				72	
BlastP. Prob I	2.00E-13 1.60E-20	9.60E-05	4.20E-13	6.10E-07	i .	1.90E-17	3.30E-10	6.40E-15		7.60E-13	4.00E-10	9.40E-06		9.00E-09		4.30E-09	8.50E-27		3.20E-05	8.10E-14	4.90E-09		2.70E-34	5.60E-15			6.90E-17	2.00E-56	3.40E-63	
BlastP Score	183 251	105	184	121	į	221	145	204		178	148	109		142		141	308		111	180	118		384	190	26		208	265	645	
	Score 367 235	96	254	119		205	103	. 169		126	139	102	707	68		135	272	-	95	148	130		310	174	93		163	557	655	
· 5 0			41	23		1256	764	98		1062	184	305	3	1052		210	5461		204	129	297		343	340	2380		371	943	3548	
NCBI	g2832244 g479357	g97193	g2130141	g729583		g24432	g2635764	048228	0	g2811(g3328184	04835375	g-107.	g1731	0	g2293210	g3915)	g3915204	g1840	g3123297		g4914343	g2529340	g1002		g3646371	g3522943	04583	1
Position	1-347	120-1	1-592	1-275		374-1	287-1	797-1	1	1-435	1-169	161_373	101-3/3	406-1		214-1	525-1		207-1	1-392	1-342		1-630	508-403	129-405		1-605	1-629	1-564	
Gene Id	Bt1G4493 Bt1G4494	Br1G4495	Br1G4496	Bt1G4499		Bt1G4500	Bt1G4501	B+1G4502	20CL01101	Bt1G4503	Bt1G4504	77104608	D11G4503	Bt1G4506		Bt1G4507	Bt1G4508		Rt1G4513	Bt1G4514			Bt1G4516				Bt1G4522	Bt1G4524	D+1G1525	1
Contig 1d	Bt1Gc6691 Bt1Gc6686	Br1Gc6700	Bt1Gc6703	Bt1Gc6709]		2059 Bt1Gc6724]	2060 Bt1Gc6729	D+1G26754 B+1G4502	FC/OODING 1	2062 Bt1Gc6777 Bt1G4503	2063 Bt1Gc6786 Bt1G4504	02.01.01	2064 Bt1Gc6//8 Bt1G4303	2065 Br1Gc6798 Bt1G4506	o recent o	2066 Bt1Gc6802	2067 Bt1Gc6801		2068 Br1Gc6836	2008 Dt1Gc6819	2070 Bt1Gc6837		1 Bt1Gc6842	2 Bt1Gc6849	3 Bt1Gc6871		2074 Bt1Gc6872 Bt1G4522	5 Bt1Gc6867	2015 B+1Co6876 B+1C4525	
SEQ ID	NO 2054 2055	2056	2020	2058		2059	2060	1700	7007	2062	2063	3	7007	206	202	206	2067		3000	2007	207		2071	2072	2073	I	207	2075	200	1

		3 (AC006068) putative ch-TOG protein [Arabidopsis thaliana]	15 (AC006234) putative leucine rich protein kinase [Arabidopsis thaliana]	52 HYPOTHETICAL 22.6 KD PROTEIN IN EPR-GALK INTERGENIC REGION [Bacillus subtilis]	-			7 DNA-directed DNA polymerase (EC 2.1.1.1) III alpha chiam	(Version 2) - Dataines subtrus II 53 (AC005967) putative carbonyl reductase [Arabidopsis	thaliana] 54 (AJ237751) aquaglyceroporin [Nicotiana tabacum]		45 (AL021960) putative protein [Arabidopsis thaliana]	30 (Y09252) phosphoribosylaminoimidazolecarboxamide		29 (Z81356) UDP-N-acety/glucosamine 1-	carboxyvinylitatisterase [Davinus succins]		7 ORF IS231C [Bacillus thuringiensis]	35 STAGE V SPORULATION PROTEIN T [Bacillus subtilis]	24 ORF IS231C [Bacillus thuringiensis]		16 PREPROTEIN TRANSLOCASE SECA SUBUNIT	[Bacillus subtilis] 31 VACUOLAR ATP SYNTHASE CATALYTIC SUBUNIT	A (V-ATPASE 69 KD SUBUNIT) [Zea mays]	subtilisi	21 (AF067645) spore germination protein GerIB [Bacillus cereus]	Enterior Control of the Control of t
	% % Ident Cvrg	46	39	39	53	34	99	48	40	20	49	38	59		48	ç	7	71	44	71	98	30	4	;	4 I	37	,
* ATOM *	BlastP- 9 Prob Id	0.00031	4.70E-07	1.00E-13	4.30E-08	2.10E-15	2.80E-75	1.10E-15	5.30E-26	4.20E-26	0.00085	8.00E-31	1.10E-25		2.60E-26	7 700 60	/./UE-30	1.80E-06	7.80E-09	5.80E-36	4.80E-80	3.80E-06	1.00E-47		6.00E-03	1.50E-06	
	BlastP Score	105	127	178	138	194	759	211	294	295	97	254	291		297	4	919	119	132	388	804	119	499	•	901	118	
	aat B nap S Score	70	113	149	101	148	719	141	201	280	57	184	246		295	Ş	407	104	106	372	738	128	515	;	25	105	
	NCBI gi	g4263790	g4454463	g732345	g2959781	g3341694	g4056432	g482286	o4115379	0.0000000000000000000000000000000000000	04539386	g2911073	£2072373		g1648861		g3954807	9225559	258683	g225559	g2529340	g134396	g1352830	0	g2635778	g3290176	
	Position	529-367	1-652	1-310	1-409	280-571	1-619	286-1	142-630	100 613	275-012	251-652	1-308		377-1		1-625	100-1	1-188	19-362	1-536	1-401	1-522		267-1	225-1	
	Gene Id	Bt1G4537	Bt1G4539	Bt1G4542	Bt1G4544	Bt1G4545	Bt1G4546	Bt1G4548	B+1G4540	03460110	Dt104550	Bt1G4553	Bt1G4558		Bt1G4561	!	Bt1G4562	B+164564	Bt1G4565	Br1G4567			Br1G4573		Bt1Gc7023 Bt1G4574	Bt1G4575	
	SEQ Contig Id	2078 Bt1Gc6890 Bt1G4537	2079 Bt1Gc6891	2080 -Bt1Gc6902	2081 Bt1Gc6909	2082 Bt1Gc6910	2083 Bt1Gc6912	2084 Bt1Gc6922	2005 D+1C26027 B+1G4549	77000 DEL CON	2080 BIIGC0923 BIIG45390	208/ Bilocoszs Bilotssi 2088 Bt1Gc6025 Bt1G4553	2089 Br1Gc6956	0000 DIT (000	2090 Bt1Gc6951 Bt1G4561		2091 Bt1Gc6957 Bt1G4562	2002 B+1G-6965 B+1G4564	2092 Bt1Gc6980	2022 Et1Gc6974	2024 Bt1Gc6994	2002 Et1Gc7002	2097 Bt1Gc7015 Bt1G4573		2098 Bt1Gc7023	2099 Bt1Gc7037 Bt1G4575	

faecalis plasmid pAD1 [Plasmid pAD1] 15 MALATE SYNTHASE, GLYOXYSOMAL [Neurospora crassa] 21 (AF029224) NarH [Staphylococcus carnosus] 23 ATP-DEPENDENT CLP PROTEASE ATP-BINDING SUBUNIT CLPX [Bacillus subtilis] 55 HYPOTHETICAL 36.3 KD LIPOPROTEIN PRECURSOR (ORFK) [Bacillus subtilis] 35 (D90901) hypothetical protein [Synechocystis sp.] 16 (D90915) lipoprotein NlpD [Synechocystis sp.]
1.70E-45 59 7.00E-11 29 3.30E-19 48
1.70E-45 7.00E-11 3.30E-19
159 7.
2

						Lable			
SEQ Contig Id	Gene Id	Position	NCBI gi	aatn nap Score	BlastP Score	BlastP- Prob	% Ident C	% Cvrg	NCBI gi description
2123 Bt1Gc7295 Bt1G4600 2124 Bt1Gc7286 Bt1G4601	Bt1G4600 Bt1G4601	1-356 1-370	g2618835 g4584142	203	166 349	4.10E-12 7.90E-32	42 57	6 4	(AF017113) cell division protein [Bacillus subtilis] (AJ010139) DNA alkylation repair enzyme [Bacillus
2125 Bt1Gc7312 Bt1G4602	: Bt1G4602	203-1	g114646	86	110	6.80E-06	38	24	cereus] ATP SYNTHASE GAMMA CHAIN PRECURSOR thermonhilic bacterium PS31
2126 Bt1Gc7322	2 Bt1G4603	214-391	g114510	110	174	2.20E-12 2.50E-08	37	11 37	ATP SYNTHASE ALPHA CHAIN [Bacillus megaterium] ATP SYNTHASE GAMMA CHAIN [Bacillus megaterium]
212/ Bt1Gc/323 2128 Bt1Gc/324		229-1	g114646	119	128	7.00E-08	40	27	ATP SYNTHASE GAMMA CHAIN PRECURSOR
2129 Bt1Gc7337 Bt1G4606	7 Bt1G4606	1-236	g4584142	169	145	8.90E-10	47	27	[thermophilic bacterium PS3] (A1010139) DNA alkylation repair enzyme [Bacillus
2130 Bt1Gc7350 Bt1G4607) Bt1G4607	1-174	g2497382	130	155	1.90E-10	26	13	TRANSPOSASE FOR INSERTION SEQUENCE ELEMENT IS232 [Insertion sequence IS232]
2131 Bt1Gc7345	Bt1Gc7345 Bt1G4608	1-430	g2149596	87	139	1.90E-08	47	13	(U89796) chitinase [Bacillus thuringiensis]
2132 Bt1Gc7347	Bt1Gc7347 Bt1G4609	1-375	g1175720	152	202	3.00E-16	37	42	HYPOTHETICAL OXIDOREDUCTASE IN PBPC-LRPC INTERGENIC REGION [Bacillus subtilis]
2133 Bt1Gc7352	Bt1Gc7352 Bt1G4610	438-1	g482286	263	285	1.50E-23	44	10	DNA-directed DNA polymerase (EC 2.7.7.7) III alpha chain (version 2) - Bacillus subtilis []
2134 Bt1Gc7357 Bt1G4611	7 Bt1G4611	1-489	g1352095	212	174	1.00E-12	38	46	COMG OPERON PROTEIN 1 [Bacillus subtilis]
2135 Bt1Gc7361 Bt1G4612	1 Bt1G4612	1-351	g2497382	174	229	1.50E-18	49	27	TRANSPOSASE FOR INSERTION SEQUENCE FIGERENT 18232 [Insertion sequence IS232]
2136 Bt1Gc7375 Bt1G4613	5 Bt1G4613	345-1	g1346442	95	130	1.40E-07	29	22	2-ISOPROPYLMALATE SYNTHASE (ALPHA-ISOPROPYLMALATE SYNTHASE) (ALPHA-IPM
	>								SYNTHETASE) [Anabaena PCC7120]
2137 Bt1Gc7374 Bt1G4614	4 Bt1G4614	218-1	g2492562	140	116	3.90E-07	38	53	EXCINUCLEASE ABC SUBUNIT A [Streptococcus material
2138 Br1Gc7397 Br1G4615	7 Bt1G4615	248-48	g3955202	115	99	0.081	39	39	(AF022796) MoaB [Staphylococcus carnosus]
2139 Bt1Gc7396	6 Bt1G4616	1-308	g482286	186	220	1.30E-16	46	7	DNA-directed DNA polymerase (EC 2.7.7.7) III alpha chain (version 2) - Bacillus subtilis []
2140 Bt1Gc7405 Bt1G4617	5 Bt1G4617	334-1	g2635763	227	265	2.00E-22		24	(Z99120) similar to hypothetical proteins [Bacillus subtilis]
2141 Bt1Gc7400	0 Bt1G4618	530-1	g2415745	211		1.30E-24		47	(AB000617) YeeH [Bacillus subtilis]
2142 Bt1Gc7426	6 Bt1G4619	403-1	g2492639	140	210	2.50E-16	38	58	3-ISOPROPYLMALATE DEHYDRATASE LARGE SUBUNIT (ISOPROPYLMALATE ISOMERASE) (ALPHA-IPM ISOMERASE) (IPMI) [Actinoplanes
									teichomyceticus]

	_	_	_	_	_	TRNA LIGASE) (GLURS) [Bacillus subtilis]		PROBABLE CALCIUM-TRANSPORTING ATPASE	[Schizosaccharomyces pombe]				resistance protein [Schizosaccharomyces pombe]	۲.	[Methanococcus jannaschii] TRANSPOSASE FOR INSERTION SEOUENCE					(ACETYL-COA SYNTHASE) [Bacillus subtilis]		_	_		S ALANINE DEHYDROGENASE (STAGE V CDORIT ATTON PROTEIN N) [Bacillus subtilis]	18 (799120) similar to hypothetical proteins [Bacillus subtilis]			39 TRANSCRIPTION ELONGATION FACTOR GREA	(TRANSCRIPT CLEAVAGE FACTOR GREA) (GENER AL STRESS PROTEIN 20M) (GSP20M) [Bacillus	subtilis]	30 60 KD CHAPERONIN (PROTEIN CPN60) (GROEL	
% Cvrg	26	4	22	14	19		45	12		8	12	31		18	7	}	13	15					26		23								
% % Ident Cvrg	49	46	53	22	43		35	58		82	88	53		47	, 7	5	41	50))		4	20	40		39	ΨV	2 6	00	40			86	
BlastP- Prob	5.10E-08	2.60E-26	1.90E-14	9.20E-07	9.80E-09		1.50E-16	3.70E-49		2.90E-34	2.20E-23	5.00E-13		1.70E-10	6 JOE 14	0.202-14	5.10E-18	6.00E-16			1.20E-14	9.10E-15	1.10E-15		8.40E-10	0.00E-12	2.000.7	6.80E-18	1.50E-07			4.40E-47	
BlastP	131	297	191	119	140		205	525		372	276	181		155	101	101	230	208	}		197	188	204		148	177	77	777	120			493	
aat_ B nap S Score	179	262	144	100	161		120	504		373	247	238		124	5	130	192	177			216	128	184		106	166	001	168	104			723	
NCBI gi	g72992	g1731004	g2293164	g1934831	g135106	D	o549706	01351995	0	g1945118	g2119971	g3925779	b	g2501412	04000	g249/302	92815006	0778788	9010719		g3914289	g2636123	g3122850	b	g585047	()13()()	g2032/03	g2633126	g3183527)		g584920	
Position	1-272	1-423	1-264	143-1	1-268	2	1.547	1-533		1-275	317-504	1-540		1-223	,	108-1	1-311	1.590	1-007		421-1	62-274	363-1	! ! !	255-1		7-4-1	416-1	1-186			492-1	
ig Id Gene Id	Bt1Gc7429 Bt1G4620						B+1G-7488 B+1G4625		0701010101010	Rt1Gc7495 Bt1G4627	c7495 Bt1G4628	Br1Gc7500 Br1G4629		2152 Bt1Gc7508 Bt1G4630		2153 Bt1Gc/50/ Bt1G4631	B+1 Gc7583 B+1 G4632				2156 Bt1Gc7590 Bt1G4634	2157 Bt1Gc7597 Bt1G4635	Br1Gc7616 Bt1G4636		ic7619 Bt1G4637			ic7651 Bt1G4639	2162 Bt1Gc7653 Bt1G4640			2163 Bt1Gc7654 Bt1G4641	-
SEQ ID Contig Id NO	60		2145 Bt1Gc7392		2142 Et1Gc7473		2148 B+1G	2140 Dt1G	VIII 2417	2150 Br1G	2150 Br1Gc7495	2151 Br1G	0117	2152 Bt1G		2153 Bt1G	2154 Br1G	2154 Dild	Ding cci7		2156 Br1G	2157 Bt1G	2158 Br1G) III	2159 Bt1Gc7619		2160 Bt1Gc/625	2161 Bt1Gc7651	2162 Bt1G			2163 Bt1G	

_
e
虿
Œ
Ļ

	NCBI gi description	PROTEIN) [Bacillus stearothermophilus]	(Z99112) similar to hypothetical proteins [Bacillus subtliis]	(Z99112) similar to hypothetical proteins [Bacillus subulis]	(Y10927) glutamate racemase [Bacillus cereus]	(L29404) ORFB; putative [Escherichia coli]	DNA-DIRECTED RNA POLYMERASE BETA' CHAIN (TRANSCRIPTASE BETA' CHAIN) (RNA	POLYMERASE BETA' SUBUNIT) []	ALKALINE PHOSPHATASE SYNTHESIS TRANSCRIPTIONAL REGULATORY PROTEIN PHOP	[Bacillus subtilis]	ASPARTYL-TRNA SYNTHETASE (ASPARTATE-	IKNA LIGASE) (ASFRS) [Bacillus suoulis]	(AJUU/629) INpti [Clothing vector porcent]	(ABOI /508) Tus nomologue (menuty of 6/70 to 15; subtries)	[Bacillus halodurans]	LACTOSE PERMEASE [Kluyveromyces lactis]	HYPOTHETICAL TRANSIHYREIIN-LIKE PROTEIN	R09H10.3 IN CHROMOSOME 1V [Caenorhabditis	elegans]	PROBABLE PHOSPHOMANNOMUTASE (PMM)	[Bacillus subtilis]	(U51115) unknown protein [Bacillus subtilis]	NITROGEN ASSIMILATION TRANSCRIPTION	FACTOR NIKA [Emericella niduians]	(D50453) L-lactate dehydrogenase [Bacillus subtilis]	(Z99107) similar to acriflavin resistance protein [Bacillus	subtilis]	(AJ005075) enzyme I [Bacillus megaterium]	(D78193) yydk [Baculus subtilis]	GTP-BINDING PROTEIN TYPA/BIPA HOMOLOG	[Bacillus subtilis]	(U24659) JadR1 [Streptomyces venezuelae]	(AB011836) similar to E.subulls ywgp gene(2170-neurary) [Bacillus halodurans]	Lutatilius limiowaranaj
	% Cvrg			66	47	4	9		22		∞			0		21	71			15		14	∞		70	Ξ		∞	45	71		39	49	
	% Ident C		37	40	36	81	4		33		52	•	Q 4	3		50	33			36		42	35		44	30		89	58	63		40	42	
1 41714 1	BlastP- Prob Id		6.00E-11	4.90E-23	2.80E-13	1.00E-24	2.90E-08		2.50E-12		1.50E-06		2.20E-08	1.70E-14		1.30E-15	2.90E-09			2.40E-07		1.10E-08	6.40E-11		8.90E-07	9.60E-05		2.10E-08	7.50E-06	4.30E-40		6.40E-10	3.90E-07	
	BlastP Score		154	266	174	282	140		165		121	•	132	196		205	136			128		139	164		119	107		138	108	427		143	116	
	aat_B nap S Score		131	221	95	439	116		122		66	!	82	196		168	92			115		127	94		111	86		116	101	400		80	102	
	NCBI gi		g2634069	g2633912	g2462097	g460277	g2500611		g400783		g3122885		g3402 8 16	g4512401		g125935	g3915194	ı		g2851553		g2239289	g128340		g1805377	g2632985)	g3021327	g1064785	g3183185)	g886038	g4512355	
	Position		1-296	446-2	413-52	101-479	184-1		1-383		147-1		1-194	257-376		471-1	542-271			259-1		188-1	1-561		1-190	1-348		1-131	1-327	1-384		381-82	198-1	
	Gene Id	-	Bt1G4643	Bt1G4644					Bt1G4648		Bt1G4649		Bt1Gc7716 Bt1G4650	Bt1G4651		Bt1Gc7717 Bt1G4652	Bt1G4653			Bt1G4654		Bt1G4655) Bt1G4657		3 Bt1G4658	7 Bt1G4659		8 Bt1G4660	9 Bt1G4661	1 Bt1G4662		4 Bt1G4663	9 Bt1G4664	
	SEQ Contig Id	2	2164 Bt1Gc7674	2165 Bt1Gc7677	2166 Bt1Gc7693	2167 Bt1Gc7699	2168 Bt1Gc7707		2169 Bt1Gc7708 Bt1G4648	-	2170 Bt1Gc7713 Bt1G4649		2171 Bt1Gc7716	2172 Bt1Gc7715		2173 Bt1Gc7717	2174 Bt1Gc7723			2175 Bt1Gc7719 Bt1G4654		2176 Bt1Gc7743 Bt1G4655	2177 Bt1Gc7760 Bt1G4657		2178 Bt1Gc7773 Bt1G4658	2179 Bt1Gc7777		2180 Bt1Gc7778	2181 Bt1Gc7789	2182 Bt1Gc7791		2183 Bt1Gc7804 Bt1G4663	2184 Bt1Gc7809	
	2 H 2	4	7	~	10	10	7		7		7		7	7		7	7	l		7		N	(1		(A		•	"	. 4	• 1		. 4	. 1	

SEQ Contig Id	d Gene Id	Position	NCBI gi	aatn nap Score	BlastP Score	BlastP. Prob	% Ident C	% Cvrg	NCBI gi description
2185 Bt1Gc7767 Bt1G4665	7 Bt1G4665	285-1	g586022	185	208	7.50E-16	46	15	STAGE V SPORULATION PROTEIN D (SPORULATION SPECIFIC PENICILLIN-BINDING PROTEIN) [Bacillus
2186 Bt1Gc7814	4 Bt1G4666	1-314	g132246	131	159	5.00E-11	35	78	subtilis] RECF PROTEIN [Bacillus subtilis]
2187 Bt1Gc7793		•	g2633216	228	170	7.40E-13	42	73	(Z99108) rRNA methylase homolog [Bacillus subtilis]
2188 Bt1Gc7823			g585648	390	457	8.20E-43	42	30	PENICILLIN-BINDING PROTEIN 2B (PBP-2B) [Bacillus
							•	,	subtilis]
2189 Bt1Gc7828	28 Bt1G4669	384-1	g225559	74	86	0.00032	34	<u>×</u>	ORF IS231C [Bacillus thurmglensis]
2190 Bt1Gc7836	36 Bt1G4670	163-1	g2632519	100	124	2.50E-07	4	17	(Z99105) similar to hypothetical proteins [Exacilius sublins]
2191 Bt1Gc7852	52 Bt1G4673	1-269	g1709188	151	163	4.90E-11	40	14	DNA MISMATCH REPAIR PROTEIN MUTL [Bacillus
			7777	101	150	1 405.10	ç	œ	subtilis] IMMI INF INHIBITOR A PRECURSOR [Bacillus
2192 Bt1Gc/853	55 BTIG40/4	1-104	g124404	/CI	103	21.700.1		,	thuringiensis]
2103 B+1Gc784	D+10-7856 B+10-4675	1-387	02582651	188	241	2.20E-20	45	34	(AJ004803) putative undecaprenyl-phosphate N-
4122 Dil 00/6.				 					acetylglucosaminyltransferase [Bacillus subtilis]
2194 Bt1Gc7858 Bt1G4676	58 Bt1G467¢	5 1-254	g732387	353	360	5.40E-33	78	26	HYPOTHETICAL LACA/RPIB FAMILY PROTEIN IN SPOIIR-GLYC INTERGENIC REGION [Bacillus subtilis]
2105 Bt1Gc7854 Bt1G4677	54 Bt1G4677	7 120-258	ø115626	81	128	5.60E-07	49	S	CARBAMOYL-PHOSPHATE SYNTHASE,
2130 mi 0612			0	1					PYRIMIDINE-SPECIFIC, LARGE CHAIN
									(CARBAMOYL-PHOSPHATE SYNTHETASE
									AMMONIA CHAIN) [Bacillus subtilis]
2196 Bt1Gc7868 Bt1G4678	68 Bt1G4678	8 372-547	g1708267	170	186	6.50E-14	49	15	FLAVOHEMOPROTEIN (HAEMOGLOBIN-LIKE PROTEIN) (Bacillus subtilis]
	20101010		~2634201	ŏ	116	1 60F-06	77	37	(799113) similar to UTP-glucose-1-phosphate
219/ btlGc/865 btlG46/9	03 BUG407.	333-1	8403+401	8		70		1	uridylyltransferase [Bacillus subtilis]
2198 Bt1Gc7879 Bt1G4680	79 Bt1G468(0 1-210	g132760	245	252	1.50E-21	0/	58	50S RIBOSOMAL PROTEIN L20 [Bacillus
									stearothermophilus]
2199 Bt1Gc7916 Bt1G4681	16 Bt1G468	1 474-1	g2633814	554	582	2.70E-59	73	29	
						,		([Bacillus subtilis]
2200 Bt1Gc7934 Bt1G4682	34 Bt1G468.	2 1-361	g1723607	173	192	3.50E-14	37	20	
2201 Bt1Gc7951 Bt1G4683	51 Bt1G468	3 123-1	g586900	115	134	9.00E-08	8 62	S	NEGATIVE REGULATOR OF GENETIC COMPETENCE MECB [Bacillus subtilis]
2202 Bt1Gc7956 Bt1G4685	56 Bt1G468.	5 268-1	g1731040	110	132	8.90E-08	3 39	16	HYPOTHETICAL HELICASE IN SINI-GCVT INTERGENIC REGION [Bacillus subtilis]

_
e
a
Ë

																											€.	•	
	NCBI gi description	hypothetical 16.9K protein - Salmonella typhimurium plasmid NTP16 []			5'-phosphoribosyl-glycinamide synthetase (EC 6.3.4.13) (fragment) - Listeria monocytogenes [Listeria	monocytogenes]	(U23149) DNA polymerase [Bacillus stearothermophilus]	SUCCINYL-COA SYNTHETASE BETA CHAIN (SCS-ALPHA) (VEGETATIVE PROTEIN 63) (VEG63)	[Bacillus subtilis]		subtilis] (Z99112) similar to hypothetical proteins [Bacillus subtilis]					STAGE V SPORULATION PROTEIN D (SPORULATION SPECIFIC PENICILLIN-BINDING PROTEIN) [Bacillus	subtilis							[Clostridium acetobutylicum] PROBABLE PHOSPHOMANNOMUTASE (PMM)					PROBABLE 1,4-DIHYDROXY-2-NAPHTHOATE
	% Cvrg	99	31	70	66	,-	13 (30		77	42	24	1	36)	17		70	32	20	(7	42	15	,	9	12	13	41
	% Ident C	35	65	63	47		47	43		33	30	30	5	63	}	37		45	51	42	Ş	C	55	36	2	35	46	47	09
+ 2000	BlastP. Prob I	1.20E-05	9.10E-15	4.70E-18	1.00E-15		1.00E-23	5.90E-15		9.00E-11	3 20E-19	2 40E 06	2.401-00	2.00E-26		4.70E-13		1.30E-08	1.70E-13	2.90E-15		4.10E-07	1.50E-12	1 30E-05		1.60E-06	2.70E-07	1.10E-11	1.50E-35
	BlastP	102	188	219	197	***	284	195		160	230	115	CH	208	ì	182		130	176	200	,	126	167	113	711	125	126	169	384
	aat_B nap_S Score	103	179	174	178		247	148		138	203	5 5	101	272	1	176		109	166	187	,	104	144	78	2	89	91	159	355
	NCBI gi	g321919	g2632453	g3183561	g2145613		g755588	g3183562		g1770066	~ ~7622017	84000014 4416400	g4410407	g133475	(K10018)	g586022		g2632231	g2633523	g417115		g1929340	g2127299	~7041443	84671777	g226781	g3152725	g730399	g732327
	Position	61-312	78-239	1-212	62-332		1-383	67-468		1-388	173	443-1	1-877	1.286	1-200	335-1		1-168	19-267	289-1		164-1	200-21	7.52	1-667	310-1	1-179	256-1	1-383
	Gene Id	Bt1G4686	Bt1G4687	Bt1G4688	Bt1G4689		Bt1G4690			Bt1G4692	77777	DUI 04094	Bt1G4695	D+1/24606	DEI 04030	Bt1G4697		Bt1G4698	Bt1G4699	Bt1G4700		Bt1G4701	Bt1G4702	247.74	DIIG4/03	Bt1G4704	Bt1G4705	Bt1G4706	5 Bt1G4707
	Q Contig Id	2203 Bt1Gc7954 Bt1G4686	2204 Bt1Gc7965	2205 Bt1Gc7990 Bt1G4688	2206 Bt1Gc8000 Bt1G4689		2207 Bt1Gc8012	2208 Bt1Gc8013		2209 Bt1Gc8024 Bt1G4692	1000 Dist 0100	110 bil Gc8044	2211 Bt1Gc8055 Bt1G4695	30315150 0400 DITE CICC	212 DUGG040	2213 Bt1Gc8064 Bt1G4697	,	2214 Bt1Gc8067 Bt1G4698	2215 Bt1Gc8059	2216 Bt1Gc8071		2217 Bt1Gc8074 Bt1G4701	2218 Bt1Gc8076 Bt1G4702	6000	2219 BUGG8083 BUG4/03	2220 Bt1Gc8099 Bt1G4704	2221 Bt1Gc8098	2222 Bt1Gc8102	2223 Bt1Gc8106
	SEQ NO	22	22	22	22		22	22		22	6	77	22	ć	7	22		22	1 23	22		52	22	6	7	27	27	7	. 73

							-			
SEQ Contig Id		Gene Id	Position	NCBI gi	aat_ nap_ Score	BlastP Score	BlastP. Prob	% % Ident Cvrg	%rg	NCBI gi description
2		-								OCTAPRENYL TRANSFERASE (DHNA-OCTAPRENYL TRANSFERASE) [Bacillus subtilis]
2224 Bt1Gc8109 Bt1G4708	8109 Btl	G4708	283-1	g1351.856	99	114	1.40E-05	35	10	ACONITATE HYDRATASE, CYTOPLASMIC (CITRATE HYDRO-LYASE) (ACONITASE) [Cucurbita sp.]
2225 Bt1Gc8124 Bt1G4709	8124 Btl	G4709	377-1	g399891	82	152	5.90E-11	31	9	ATP PHOSPHORIBOSYLTRANSFERASE [Lactococcus
2226 Bt1Gc8120 Bt1G4710	8120 Btl	G4710	449-1	g2829488	253	300	1.20E-26	47	35 (GLUTAMATE-1-SEMIALDEHYDE 2,1-AMINOMUTASE 2 (GSA) (GLUTAMATE-1-SEMIALDEHYDE
2227 Bt1Gc8130 Bt1G4711	8130 Btl	G4711	437-1	g1710618	96	. 28	0.0041	40	46	AMINOTRANSFERASE) (GSA-AT) [Bacillus subtilis] PROBABLE RIBONUCLEASE PH (RNASE PH) (TRNA NUCLEOTIDYLTRANSFERASE) [Mycobacterium
2228 Bt1Gc8133 Bt1G4712	8133 Btl	G4712	223-80	g4512408	241	241	2.20E-20	92	51	tuberculosis] (AB017508) rpsS homologue (identity of 87% to B. subtilis) [Bacillus halodurans]
2229 Bt1Gc8140 Bt1G4713	8140 Bt1	G4713	1-287	g1351054	85	106	9.20E-05	27	11	PREPROTEIN TRANSLOCASE SECA SUBUNIT
2230 Bt1Gc8172		Bt1G4716	372-432	g1255196	93	109	2.80E-05	06		[Listeria monocytogenes] (U50744) BSMA [Bacillus stearothermophilus]
2231 Bt1Gc8177		Bt1G4717	293-1	g1945649	118	145	3.30E-10	32		(Z94043) hypothetical protein [Bacillus subtilis]
2232 Bt1Gc8178		Bt1G4718	1-240	g729328	259	269	2.40E-23	49		GLUCOSE 1-DEHYDROGENASE [Bacullus megaterium]
2233 Bt1Gc8186		Bt1G4719	360-1	g2500058	147	137	3.80E-08	34	16	FORMATE ACETYLTRANSFERASE (PYRUVATE
	9000	0.00	1 226	~17790	77	123	2 40E-08	77	30	FORMATE-LYASE) [Clostridium pasteurianum] histidine protein kinase (Tn5401) - Bacillus thuringiensis
2234 BUGG8199 BUG4720	38199 BII	07/450	1-330	84141400			i	i		[Bacillus thuringiensis]
2235 Bt1Gc8222 Bt1G4721	:8222 Bt1	G4721	389-1	g135196	192	224	4.80E-18	39	31	TYROSYL-TRNA SYNTHETASE (TYROSINE-TRNA) LIGASE) (TYRRS) [Bacillus caldotenax]
2236 Bt1Gc8230 Bt1G4723	28230 Bt1	G4723	1-550	g1075694	293	349	1.60E-31	38	34	pheromone cAD1 binding protein precursor - Enterococcus faecalis plasmid pAD1 [Plasmid pAD1]
2237 Bt1Gc8231 Bt1G4724	:8231 Btl	G4724	206-1	g4582216	218	227	7.70E-18	<i>L</i> 9	10	(AJ237696) elongation factor G (EF-G) [Staphylococcus
2238 Bt1Gc8242 Bt1G4725	c8242 Btl	G4725	260-1	g464794	104	204	1.20E-15	48	18	aureus] STAGE IV SPORULATION PROTEIN A [Bacillus subtilis]
2239 Bt1Gc8243 Bt1G4726	58243 Bt1	G4726	280-1	g2116761	196	103	7.50E-05		23	(D86418) YfnC [Bacillus subtilis]
2240 Bt1Gc8245	c8245 Bt	Bt1G4727	450-1	g2960100	83	124	9.10E-08	22	29	(AL022121) hypothetical protein Rv3676 [Mycobacterium mherenlosis]
2241 Bt1Gc8244 Bt1G4728	c8244 Bt]	1G4728	335-1	g2635766	135	183	1.70E-13	41	26	(Z99120) similar to hypothetical proteins [Bacillus subtilis]

| ` | | | | | | | | | | |

 | | | | | |

 | |
 | | | | | | | | |
 | | |
|---------------------|--|---|--|--|--|--|---|--|--|--
--
--
--	---	---
--
---|---
---|---|--|---|--|---|--
---|---|---|---|--|
| NCBI gi description | IMMUNE INHIBITOR A PRECURSOR [Bacillus thuringiensis] | (Z92952) ywqM [Bacillus subtilis] | (Z99120) similar to butyryl-CoA denydrogenase [Bacillus subtilis] | (AF027868) putative transporter [Bacillus subtilis] | | | | (J01829) unknown protein [Transposon Tn10] | _ | [Burkholderia sp.] | -

 | | | CITOCHROME B/C SOBORATION SUCCESSION (CONTROL OF CONTROL | | (GLUTAMINE AMIDUIKAINSFERASE) (UMIT

 | SYNTHETASE) [Bacillus subtilis] | | |
 | | | | | _ | | | | (X99545) uracii phosphoribosyltransierase [baciilus
 |
| vrg | 18 | 37 | 15 | 10 | ∞ | 7 | 2 | 11 | 14 | ξ | 77 0

 | 7 : | 49 | ; | 41 | 13 |

 | | 17
 | 52 | | 70 | 29 | | 31 | 34 | 7 |
 | 24 | 25 |
| % 'dent C | 78 | 40 | 53 | 78 | 40 | 30 | à | 61 | 40 | t | <u> </u>

 | 4 | 38 | ò | 30 | 22 |

 | | 53
 | 31 | | 39 | 43 | <u> </u> | 30 | 34 | 26 |
 | 26 | 46 |
| BlastP-
Prob I | 9.80E-50 | 9.80E-18 | 2.20E-15 | 0.001 | 3.10E-10 | 1 20E-08 | 1.202-10 | 1.70E-06 | 7.30E-09 | 10
10
10 | 2./0E-13

 | 1.005-13 | 3.90E-14 | 1000 | 9.90E-09 | 2.50E-06 |

 | | 5.90E-10
 | 2.50E-08 | | 3.50E-14 | 1 50F-13 | | 3.80E-08 | 4.00E-12 | 5.10E-11 |
 | 2.90E-15 | 1.80E-06 |
| lastP
core | 518 | 216 | 203 | 93 | 160 | 5 | 74. | 118 | 142 | , | 185

 | 707 | 182 | , | 133 | 118 |

 | | 151
 | 130 | | 194 | 181 | | 134 | 171 | 165 |
 | 200 | 112 |
| | 475 | 199 | 168 | 161 | 135 | 166 | 61 | 108 | 1111 | , | 108

 | // | 154 | , | 112 | 180 |

 | | 209
 | 96 | | 119 | 163 | 8 | 53 | 132 | 115 |
 | 288 | 91 |
| NCBI gi | g124464 | g1894751 | g2635778 | g2619056 | g482286 | 0003030 | 82033700 | g1196998 | g1575605 | | g3024353

 | g3688229 | g1168649 | 1 | g2116760 | g3123227 |

 | | g2293166
 | g1346148 |) | g586900 | x3025110 | E-04-01-11/ | g1825778 | g729157 | £2506131 | ,
 | g730600 | g1765902 |
| Position | 423-45 | 322-1 | 1-279 | 124-256 | 355-1 | 107 | I-404 | 154-22 | 388-155 | | 1-463

 | 386-1 | 382-1 | | 1-293 | 1-205 |

 | | 436-193
 | 366-1 | | 1-485 | 1 206 | 00C-T | 412-1 | 1-475 | 176-1 | í
)
 | 1-340 | 160-1 |
| Gene Id | Bt1G4729 | Bt1G4730 | Bt1G4731 | | | | bt1C4/34 | | Bt1G4736 | |

 | | Bt1G4739 | | Bt1G4740 | Bt1G4742 |

 | | Bt1G4743
 | Bt1G4744 | | Bt1G4745 | D+1C4746 | Dt/40170 | Bt1G4747 | | |
 | Bt1G4750 | Bt1Gc8420 Bt1G4751 |
| SEQ ID Contig Id | Ν | 2243 Bt1Gc8258 | 2244 Bt1Gc8263 | 2245 Rt1Gc8282 | 2245 Bt1Gc8280 | | 224/ Bt1Gc8290 | 2248 Bt1Gc8286 | 2249 Bt1Gc8308 | | 2250 Bt1Gc8319

 | 2251 Bt1Gc8318 | 2252 Bt1Gc8335 | | 2253 Bt1Gc8347 | 2254 Bt1Gc8353 |

 | | 2255 Bt1Gc8358
 | 2256 Bt1Gc8368 | | 2257 Bt1Gc8372 | 0000-0170 | 7730 DIIQC0320 | 2259 Bt1Gc8392 | 7260 Rt1Gc8397 | 2261 Br1Gc8391 |
 | 2262 Bt1Gc8415 | 2263 Bt1Gc8420 |
| | aat_ BlastP BlastP- % % Contig Id Gene Id Position NCBI gi nap Score Prob Ident Cvrg Score | Contig Id Gene Id Position NCBI gi nap Score Prob Ident Cvrg Score Score Score Prob Ident Cvrg Bt1Gc8252 Bt1G4729 423-45 g124464 475 518 9.80E-50 78 18 | Contig Id Gene Id Position NCBI gillow NCBI gillow NCBI gillow Score Prob Ident Cvrg Matter Cvrg Bt1Gc8252 Bt1G4729 423-45 g124464 475 518 9.80E-50 78 18 Bt1Gc8258 Bt1G4730 322-1 g1894751 199 216 9.80E-18 40 37 | Contig Id Gene Id Position NCBI gillow NCBI gillow NCBI gillow Score Prob ident Ment Cvrg ident % % BtiGc8252 BtiG4729 423-45 g124464 475 518 9.80E-50 78 18 BtiGc8258 BtiG4730 322-1 g1894751 199 216 9.80E-18 40 37 BtiGc8263 BtiG4731 1-279 g2635778 168 203 2.20E-15 53 15 | Contig Id Gene Id Position NCBI gi aat_ score BlastP. Prob Ident Cvrg % % Score % % Ident Cvrg Bt1Gc8252 Bt1G4729 423-45 g124464 475 518 9.80E-50 78 18 Bt1Gc8258 Bt1G4730 322-1 g1894751 199 216 9.80E-18 40 37 Bt1Gc8263 Bt1G4731 1-279 g2635778 168 203 2.20E-15 53 15 Bt1Gc8282 Bt1G4732 124-256 g2619056 161 93 0.001 78 10 | Contig Id Gene Id Position NCBI gi aat BlastP % % Bt1Gc8252 Bt1G4729 423-45 g124464 475 518 9.80E-50 78 18 Bt1Gc8258 Bt1G4730 322-1 g1894751 199 216 9.80E-18 40 37 Bt1Gc8263 Bt1G4731 1-279 g2635778 168 203 2.20E-15 53 15 Bt1Gc8282 Bt1G4732 124-256 g2619056 161 93 0.001 78 10 Bt1Gc8280 Bt1G4733 355-1 g482286 135 160 3.10E-10 40 8 | Contig Id Gene Id Position NCBI gi aat_ score BlastP score Prob Ident Cvrg Acros Ident Cvrg Bt1Gc8252 Bt1G4729 423-45 g124464 475 518 9.80E-50 78 18 Bt1Gc8258 Bt1G4730 322-1 g1894751 199 216 9.80E-18 40 37 Bt1Gc8263 Bt1G4731 1-279 g2635778 168 203 2.20E-15 53 15 Bt1Gc8282 Bt1G4732 124-256 g2619056 161 93 0.0001 78 10 Bt1Gc8280 Bt1G4733 355-1 g482286 155 140 3.10E-10 40 8 | Contig Id Gene Id Position NCBI gillos aat Score Score BlastP- Score % Score Score Prob Ident Cvrg % % Score % % % Score % % % Score % % % % % % % % % % % % % % % % % % % | Contig Id Gene Id Position NCBI gillow NCBI gillow NCBI gillow Score Prob Ident % % Bt1Gc8252 Bt1G4729 423-45 g124464 475 518 9.80E-50 78 18 Bt1Gc8258 Bt1G4730 322-1 g1894751 199 216 9.80E-18 40 37 Bt1Gc8263 Bt1G4731 1-279 g2635778 168 203 2.20E-15 53 15 Bt1Gc8280 Bt1G4733 355-1 g482286 161 93 0.001 78 10 Bt1Gc8280 Bt1G4733 355-1 g482286 135 160 3.10E-10 40 8 Bt1Gc8290 Bt1G4734 1-404 g2635780 165 1.30E-08 39 16 Bt1Gc8286 Bt1G4735 154-22 g1196998 108 118 1.70E-06 61 11 | Contig Id Gene Id Position NCBI gillow NCBI gillow NCBI gillow Score Prob Ident Cvrg % % Bt1Gc8252 Bt1G4729 423-45 g124464 475 518 9.80E-50 78 18 Bt1Gc8258 Bt1G4730 322-1 g1894751 199 216 9.80E-18 40 37 Bt1Gc8263 Bt1G4731 1-279 g2635778 168 203 2.20E-15 53 15 Bt1Gc8280 Bt1G4732 124-256 g2619056 161 93 0.001 78 10 Bt1Gc8280 Bt1G4733 355-1 g482286 155 160 3.10E-10 40 8 Bt1Gc8280 Bt1G4734 1-404 g26357780 165 142 1.30E-08 39 16 Bt1Gc8286 Bt1G4735 154-22 g1196998 108 118 1.70E-06 40 14 Bt1Gc8286 Bt1G4736 388-155 g1575605 111 14 | Contig Id Gene Id Position NCBI gi aat_ score BlastP- score % % % Bt1Gc8252 Bt1G4729 423-45 g124464 475 518 9.80E-50 78 18 Bt1Gc8258 Bt1G4730 322-1 g1894751 199 216 9.80E-18 40 37 Bt1Gc8263 Bt1G4731 1-279 g2635778 168 203 2.20E-15 53 15 Bt1Gc8280 Bt1G4732 124-256 g2619056 161 93 0.001 78 10 Bt1Gc8280 Bt1G4733 355-1 g482286 135 160 3.10E-10 40 8 Bt1Gc8280 Bt1G47734 1-404 g2635780 165 142 1.30E-08 39 16 Bt1Gc8286 Bt1G4736 388-155 g1575605 111 142 7.30E-09 40 14 Bt1Gc8308 Bt1G4736 388-155 g1575605 111 142 7.30E-09 40 14 <th>Contig Id Gene Id Position NCBI gi nap Score Score Prob Ident Cvrg % % Score % % Score % % Score % % Ident Cvrg Bt1Gc8252 Bt1G4729 423-45 g124464 475 518 9.80E-50 78 18 Bt1Gc8258 Bt1G4730 322-1 g1894751 199 216 9.80E-18 40 37 Bt1Gc8263 Bt1G4731 1-279 g2635778 168 203 2.20E-15 53 15 Bt1Gc8280 Bt1G4733 355-1 g482286 161 93 0.001 78 10 Bt1Gc8280 Bt1G4733 154-25 g2635780 165 142 1.30E-08 39 16 Bt1Gc8286 Bt1G4735 154-22 g1196998 108 118 1.70E-06 61 11 Bt1Gc8308 Bt1G4736 388-155 g1575605 111 142 7.30E-09 40 14 Bt1Gc8319 Bt1G4737 1-463 g3024353 1</th> <th>Contig Id Gene Id Position NCBI gia aat Score Score BlastP Ident Prob Map Ident
Ident Ident</th> <th>Contig Id Gene Id Position NCBI gi nap Score nap Score Prob Ident % % % Bt1Gc8252 Bt1G4729 423-45 g124464 475 518 9.80E-50 78 18 Bt1Gc8252 Bt1G4731 1-279 g2635778 168 203 2.20E-15 53 15 Bt1Gc8263 Bt1G4732 124-256 g2619056 161 93 0.001 78 15 Bt1Gc8280 Bt1G4733 355-1 g482286 155 160 3.10E-10 40 8 Bt1Gc8280 Bt1G4733 1-404 g2635780 165 142 1.30E-08 39 16 Bt1Gc8286 Bt1G4734 1-404 g2635780 165 142 7.30E-08 39 16 Bt1Gc8286 Bt1G4735 154-22 g1196998 108 118 1.70E-06 40 11 Bt1Gc8218 Bt1G4735 1-463 g3024355 116 7.30E-09 40</th> <th>Contig Id Gene Id Position NCBI gi aat score BlastP score % score</th> <th>Contig Id Gene Id Position NCBI ginap Score Score Prob Ident Math Cvrg Score Prob Ident % % % % % % % % % % % % % % % % % % %</th> <th>Contig Id Gene Id Position NCBI gi nap score
Accore Score
Accore Prob Ident % <t< th=""><th>Contig Id Gene Id Position NCBI ginap Acore Score BlastP score Prob Ident</th><th>Contig Id Gene Id Position NCBI ginap Acore Score BlastP score Prob Ident</th><th>Contig Id Gene Id Position NCBI gi aat BlastP %</th><th>Contig Id Gene Id Position NCBI gi aat score BlastP score Prob score Frob score Frob score Ident score % % Bt1Gc8252 Bt1G4729 423-45 g124464 475 518 9.80E-36 78 18 Bt1Gc8258 Bt1G4730 322-1 g1894751 199 216 9.80E-18 40 37 Bt1Gc8263 Bt1G4731 1-279 g2635778 168 203 2.20E-15 53 15 Bt1Gc8280 Bt1G4733 355-1
 g482286 161 93 0.001 78 10 Bt1Gc8280 Bt1G4733 154-25 g1196998 106 112 170E-06 61 11 Bt1Gc8286 Bt1G4736 146 g2635780 165 142 7.30E-09 40 18 Bt1Gc8286 Bt1G4736 1463 g3024353 168 185 2.70E-13 37 22 Bt1Gc8318 Bt1G4739 386-1 g168649 <</th><th>Contig Id Gene Id Position NCBI gi nap Score Score Prob Ident Cvrg % % BtIGe8252 BtIG4729 423-45 g124464 475 518 9.80E-50 78 18 BtIGe8252 BtIG4730 322-1 g1894751 199 216 9.80E-18 40 37 BtIGe8263 BtIG4731 1-279 g2635778 168 203 2.20E-15 53 15 BtIG68280 BtIG4733 124-256 g2619056 161 93 0.001 78 10 BtIG68280 BtIG4733 154-22 g1196998 108 118 1.70E-08 39 16 BtIG68286 BtIG4736 154-22 g1196998 108 118 1.70E-08 39 16 BtIG68280 BtIG68318 BtIG4736 38-155 g1575605 111 142 7.30E-09 40 19 BtIG68318 BtIG4738 386-1 g168649 154 182</th><th>Contig Id Gene Id Position NCBI of Score NCBI of Score Inap of Score Score Prob Ident Cyrg BtIGGe8252 BtIG4729 423-45 g124464 475 518 9.80E-50 78 18 BtIGGe8252 BtIG4730 322-1 g1894751 199 216 9.80E-18 40 37 BtIGGe8263 BtIG4731 1-279 g2635778 168 203 2.20E-15 53 15 BtIGGe828 BtIG4733 124-256 g2619056 161 93 0.001 78 10 BtIGGe828 BtIG4733 15-42 g182286 165 142 1.30E-09 39 16 BtIG68280 BtIG4734 1-404 g2635780 165 142 1.30E-09 39 16 BtIG68290 BtIG4735 158-155 g115669 177 207 1.00E-15 40 14 BtIG68318 BtIG4743 386-1 g3688229 177 207</th><th>Contig Id Gene Id Position NCBI ginab Score Score Prob Ident Cvrg Prob Ident Cvrg Score % % Score % Score</th><th>Contig Id Gene Id Position NCBI sinap Acres Score Blastp score Prob Ident Cvrg BtIGc8252 BtIG4729 423-45 g124464 475 518 9.80E-50 78 18 BtIGc8252 BtIG4730 322-1 g1894751 199 216 9.80E-18 40 37 (15) BtIGc8263 BtIG4731 1-279 g2635778 168 203 2.20E-15 53 15 (15) BtIGc8280 BtIG4733 124-256 g2619056 161 93 0.001 78 10 BtIGc8280 BtIG4734 1-404 g2635780 165 142 1.0E-08 39 16 BtIGc8286 BtIG4734 1-404 g2635780 165 142 1.0E-08 39 16 BtIGc8286 BtIG4735 1-404 g2635780 165 142 1.0E-08 39 16 BtIGc8286 BtIG4739 38-15 g1868429 177 207 1.0E-19 39 14</th><th>Countig Id Gene Id Position NCBI gi and score accore BlastP score % over prob Prob Ident Cvrg BtiGc8252 BtiG4729 423-45 g124464 475 518 9.80E-50 78 18 BtiGc8252 BtiG4731 1-279 g2635778 168 203 2.20E-15 53 15 BtiGc8263 BtiG4731 1-279 g2619056 161 93 0.001 78 16 BtiGc8280 BtiG4733 355-1 g482286 155 142 1.0E-10 40 8 BtiGc8280 BtiG4733 154-22 g119698 106 1.20E-10 3.10E-10 40 8 BtiGc8280 BtiG4734 1-404 g2635780 165 142 1.30E-09 40 14 BtiGc8280 BtiG4735 38-155 g1186649 173 1.70E-06 61 11 BtiGc8319 BtiG4743 382-15 g1186649 154 182 1.70E-01 3.0E-1</th><th>Contig Id Gene Id Position NCBI gi and score BlastP score Prob Ident Lorg % % BtiGcg252 BtiG4729 423-45 g124464 475 518 9.80E-50 78 18 BtiGcg252 BtiG4729 423-45 g124464 475 518 9.80E-50 78 18 BtiGcg263 BtiG4731 1-279 g2635778 168 203 2.0E-15 53 15 BtiGcg280 BtiG4732 124-256 g2619056 161 93 0.001 78 10 BtiGcg280 BtiG4733 154-22 g119698 105 142 1.30E-08 39 16 BtiGcg280 BtiG4734 1-404 g2635780 165 142 1.30E-09 40 14 BtiGcg290 BtiG4736 388-155 g116698 106 116 117 11 BtiGcg290 BtiG4733 386-1 g3628229 116 17 1.30E-09 40</th><th>Countig Id Gene Id Position NCBI gi and score Score Prob Ident Cvrg BLIGe8252 BLIG4729 423-45 g124464 475 518 9.80E-50 78 18 BLIGe8252 BLIG4731 1279 g2635778 168 203 2.20E-15 53 15 BLIGe8288 BLIG4731 1-279 g2635778 168 203 2.20E-15 53 15 BLIGe8280 BLIG4733 355-1 g482286 161 93 0.001 78 10 BLIG68280 BLIG4733 154-22 g119698 108 118 1.70E-06 61 11 BLIG68280 BLIG4734 1-404 g2635780 165 142 1.30E-08 39 16 BLIG68290 BLIG4735 154-22 g119698 108 118 1.70E-08 39 16 BLIG68310 BLIG4734 1-404 g2635780 165 142 1.30E-08 39 16 <</th><th>Countig Id Gene Id Position NCBI gi aat ap score BlastP prob Ident Cvrg %
% % % % % % % % % %</th><th>Contig Id Gene Id Position NCBI gi and position NCBI gi and position NCBI gi and position NCBI gi and position NCBI gi A175 518 BlastP- prob %</th></t<></th> | Contig Id Gene Id Position NCBI gi nap Score Score Prob Ident Cvrg % % Score % % Score % % Score % % Ident Cvrg Bt1Gc8252 Bt1G4729 423-45 g124464 475 518 9.80E-50 78 18 Bt1Gc8258 Bt1G4730 322-1 g1894751 199 216 9.80E-18 40 37 Bt1Gc8263 Bt1G4731 1-279 g2635778 168 203 2.20E-15 53 15 Bt1Gc8280 Bt1G4733 355-1 g482286 161 93 0.001 78 10 Bt1Gc8280 Bt1G4733 154-25 g2635780 165 142 1.30E-08 39 16 Bt1Gc8286 Bt1G4735 154-22 g1196998 108 118 1.70E-06 61 11 Bt1Gc8308 Bt1G4736 388-155 g1575605 111 142 7.30E-09 40 14 Bt1Gc8319 Bt1G4737 1-463 g3024353 1 | Contig Id Gene Id Position NCBI gia aat Score Score BlastP Ident Prob Map Ident | Contig Id Gene Id Position NCBI gi nap Score nap Score Prob Ident % % % Bt1Gc8252 Bt1G4729 423-45 g124464 475 518 9.80E-50 78 18 Bt1Gc8252 Bt1G4731 1-279 g2635778 168 203 2.20E-15 53 15 Bt1Gc8263 Bt1G4732 124-256 g2619056 161 93 0.001 78 15 Bt1Gc8280 Bt1G4733 355-1 g482286 155 160 3.10E-10 40 8 Bt1Gc8280 Bt1G4733 1-404 g2635780 165 142 1.30E-08 39 16 Bt1Gc8286 Bt1G4734 1-404 g2635780 165 142 7.30E-08 39 16 Bt1Gc8286 Bt1G4735 154-22 g1196998 108 118 1.70E-06 40 11 Bt1Gc8218 Bt1G4735 1-463 g3024355 116 7.30E-09 40 | Contig Id Gene Id Position NCBI gi aat score BlastP score % score | Contig Id Gene Id Position NCBI ginap Score Score Prob Ident Math Cvrg Score Prob Ident % % % % % % % % % % % % % % % % % % % | Contig Id Gene Id Position NCBI gi nap score
Accore Score
Accore Prob Ident % <t< th=""><th>Contig Id Gene Id Position NCBI ginap Acore Score BlastP score Prob Ident
Ident Ident</th><th>Contig Id Gene Id Position NCBI ginap Acore Score BlastP score Prob Ident</th><th>Contig Id Gene Id Position NCBI gi aat BlastP %</th><th>Contig Id Gene Id Position NCBI gi aat score BlastP score Prob score Frob score Frob score Ident score % % Bt1Gc8252 Bt1G4729 423-45 g124464 475 518 9.80E-36 78 18 Bt1Gc8258 Bt1G4730 322-1 g1894751 199 216 9.80E-18 40 37 Bt1Gc8263 Bt1G4731 1-279 g2635778 168 203 2.20E-15 53 15 Bt1Gc8280 Bt1G4733 355-1 g482286 161 93 0.001 78 10 Bt1Gc8280 Bt1G4733 154-25 g1196998 106 112 170E-06 61 11 Bt1Gc8286 Bt1G4736 146 g2635780 165 142 7.30E-09 40 18 Bt1Gc8286 Bt1G4736 1463 g3024353 168 185 2.70E-13 37 22 Bt1Gc8318 Bt1G4739 386-1 g168649 <</th><th>Contig Id Gene Id Position NCBI gi nap Score Score Prob Ident Cvrg % % BtIGe8252 BtIG4729 423-45 g124464 475 518 9.80E-50 78 18 BtIGe8252 BtIG4730 322-1 g1894751 199 216 9.80E-18 40 37 BtIGe8263 BtIG4731 1-279 g2635778 168 203 2.20E-15 53 15 BtIG68280 BtIG4733 124-256 g2619056 161 93 0.001 78 10 BtIG68280 BtIG4733 154-22 g1196998 108 118 1.70E-08 39 16 BtIG68286 BtIG4736 154-22 g1196998 108 118 1.70E-08 39 16 BtIG68280 BtIG68318 BtIG4736 38-155 g1575605 111 142 7.30E-09 40 19 BtIG68318 BtIG4738 386-1 g168649 154 182</th><th>Contig Id Gene Id Position NCBI of Score NCBI of Score Inap of Score Score Prob Ident Cyrg BtIGGe8252 BtIG4729 423-45 g124464 475 518 9.80E-50 78 18 BtIGGe8252 BtIG4730 322-1 g1894751 199 216 9.80E-18 40 37 BtIGGe8263 BtIG4731 1-279 g2635778 168 203 2.20E-15 53 15 BtIGGe828 BtIG4733 124-256 g2619056 161 93 0.001 78 10 BtIGGe828 BtIG4733 15-42 g182286 165 142 1.30E-09 39 16 BtIG68280 BtIG4734 1-404 g2635780 165 142 1.30E-09 39 16 BtIG68290 BtIG4735 158-155 g115669 177 207 1.00E-15 40 14 BtIG68318 BtIG4743 386-1 g3688229 177 207</th><th>Contig Id Gene Id Position NCBI ginab Score Score Prob Ident Cvrg Prob Ident Cvrg Score % % Score % Score</th><th>Contig Id Gene Id Position NCBI sinap Acres Score Blastp score Prob Ident Cvrg BtIGc8252 BtIG4729 423-45 g124464 475 518 9.80E-50 78 18 BtIGc8252 BtIG4730 322-1 g1894751 199 216 9.80E-18 40 37 (15) BtIGc8263 BtIG4731 1-279 g2635778 168 203 2.20E-15 53 15 (15) BtIGc8280 BtIG4733 124-256 g2619056 161 93 0.001 78 10 BtIGc8280 BtIG4734 1-404 g2635780 165 142 1.0E-08 39 16 BtIGc8286 BtIG4734 1-404 g2635780 165 142 1.0E-08 39 16 BtIGc8286 BtIG4735 1-404 g2635780 165 142
1.0E-08 39 16 BtIGc8286 BtIG4739 38-15 g1868429 177 207 1.0E-19 39 14</th><th>Countig Id Gene Id Position NCBI gi and score accore BlastP score % over prob Prob Ident Cvrg BtiGc8252 BtiG4729 423-45 g124464 475 518 9.80E-50 78 18 BtiGc8252 BtiG4731 1-279 g2635778 168 203 2.20E-15 53 15 BtiGc8263 BtiG4731 1-279 g2619056 161 93 0.001 78 16 BtiGc8280 BtiG4733 355-1 g482286 155 142 1.0E-10 40 8 BtiGc8280 BtiG4733 154-22 g119698 106 1.20E-10 3.10E-10 40 8 BtiGc8280 BtiG4734 1-404 g2635780 165 142 1.30E-09 40 14 BtiGc8280 BtiG4735 38-155 g1186649 173 1.70E-06 61 11 BtiGc8319 BtiG4743 382-15 g1186649 154 182 1.70E-01 3.0E-1</th><th>Contig Id Gene Id Position NCBI gi and score BlastP score Prob Ident Lorg % % BtiGcg252 BtiG4729 423-45 g124464 475 518 9.80E-50 78 18 BtiGcg252 BtiG4729 423-45 g124464 475 518 9.80E-50 78 18 BtiGcg263 BtiG4731 1-279 g2635778 168 203 2.0E-15 53 15 BtiGcg280 BtiG4732 124-256 g2619056 161 93 0.001 78 10 BtiGcg280 BtiG4733 154-22 g119698 105 142 1.30E-08 39 16 BtiGcg280 BtiG4734 1-404 g2635780 165 142 1.30E-09 40 14 BtiGcg290 BtiG4736 388-155 g116698 106 116 117 11 BtiGcg290 BtiG4733 386-1 g3628229 116 17 1.30E-09 40</th><th>Countig Id Gene Id Position NCBI gi and score Score Prob Ident Cvrg BLIGe8252 BLIG4729 423-45 g124464 475 518 9.80E-50 78 18 BLIGe8252 BLIG4731 1279 g2635778 168 203 2.20E-15 53 15 BLIGe8288 BLIG4731 1-279 g2635778 168 203 2.20E-15 53 15 BLIGe8280 BLIG4733 355-1 g482286 161 93 0.001 78 10 BLIG68280 BLIG4733 154-22 g119698 108 118 1.70E-06 61 11 BLIG68280 BLIG4734 1-404 g2635780 165 142 1.30E-08 39 16 BLIG68290 BLIG4735 154-22 g119698 108 118 1.70E-08 39 16 BLIG68310 BLIG4734 1-404 g2635780 165 142 1.30E-08 39 16 <</th><th>Countig Id Gene Id Position NCBI gi aat ap score BlastP prob Ident Cvrg %</th><th>Contig Id Gene Id Position NCBI gi and position NCBI gi and position NCBI gi and position NCBI gi and position NCBI gi A175 518 BlastP- prob %</th></t<> | Contig Id Gene Id Position NCBI ginap Acore Score BlastP score Prob Ident | Contig Id Gene Id Position NCBI ginap Acore Score BlastP score Prob Ident | Contig Id Gene Id Position NCBI gi aat BlastP % %
 % % | Contig Id Gene Id Position NCBI gi aat score BlastP score Prob score Frob score Frob score Ident score % % Bt1Gc8252 Bt1G4729 423-45 g124464 475 518 9.80E-36 78 18 Bt1Gc8258 Bt1G4730 322-1 g1894751 199 216 9.80E-18 40 37 Bt1Gc8263 Bt1G4731 1-279 g2635778 168 203 2.20E-15 53 15 Bt1Gc8280 Bt1G4733 355-1 g482286 161 93 0.001 78 10 Bt1Gc8280 Bt1G4733 154-25 g1196998 106 112 170E-06 61 11 Bt1Gc8286 Bt1G4736 146 g2635780 165 142 7.30E-09 40 18 Bt1Gc8286 Bt1G4736 1463 g3024353 168 185 2.70E-13 37 22 Bt1Gc8318 Bt1G4739 386-1 g168649 < | Contig Id Gene Id Position NCBI gi nap Score Score Prob Ident Cvrg % % BtIGe8252 BtIG4729 423-45 g124464 475 518 9.80E-50 78 18 BtIGe8252 BtIG4730 322-1 g1894751 199 216 9.80E-18 40 37 BtIGe8263 BtIG4731 1-279 g2635778 168 203 2.20E-15 53 15 BtIG68280 BtIG4733 124-256 g2619056 161 93 0.001 78 10 BtIG68280 BtIG4733 154-22 g1196998 108 118 1.70E-08 39 16 BtIG68286 BtIG4736 154-22 g1196998 108 118 1.70E-08 39 16 BtIG68280 BtIG68318 BtIG4736 38-155 g1575605 111 142 7.30E-09 40 19 BtIG68318 BtIG4738 386-1 g168649 154 182 | Contig Id Gene Id Position NCBI of Score NCBI of Score Inap of Score Score Prob Ident Cyrg BtIGGe8252 BtIG4729 423-45 g124464 475 518 9.80E-50 78 18 BtIGGe8252 BtIG4730 322-1 g1894751 199 216 9.80E-18 40 37 BtIGGe8263 BtIG4731 1-279 g2635778 168 203 2.20E-15 53 15 BtIGGe828 BtIG4733 124-256 g2619056 161 93 0.001 78 10 BtIGGe828 BtIG4733 15-42 g182286 165 142 1.30E-09 39 16 BtIG68280 BtIG4734 1-404 g2635780 165 142 1.30E-09 39 16 BtIG68290 BtIG4735 158-155 g115669 177 207 1.00E-15 40 14 BtIG68318 BtIG4743 386-1 g3688229 177 207 | Contig Id Gene Id Position NCBI ginab Score Score Prob Ident Cvrg Prob Ident Cvrg Score % % Score % Score | Contig Id Gene Id Position NCBI sinap Acres Score Blastp score Prob Ident Cvrg BtIGc8252 BtIG4729 423-45 g124464 475 518 9.80E-50 78 18 BtIGc8252 BtIG4730 322-1 g1894751 199 216 9.80E-18 40 37 (15) BtIGc8263 BtIG4731 1-279 g2635778 168 203 2.20E-15 53 15 (15) BtIGc8280 BtIG4733 124-256 g2619056 161 93 0.001 78 10 BtIGc8280 BtIG4734 1-404 g2635780 165 142 1.0E-08 39 16 BtIGc8286 BtIG4734 1-404 g2635780 165 142 1.0E-08 39 16 BtIGc8286 BtIG4735 1-404 g2635780 165 142 1.0E-08 39 16 BtIGc8286 BtIG4739 38-15 g1868429 177 207 1.0E-19 39 14 | Countig Id Gene Id Position NCBI gi and score accore BlastP score % over prob Prob Ident Cvrg BtiGc8252 BtiG4729 423-45 g124464 475 518 9.80E-50 78 18 BtiGc8252 BtiG4731 1-279 g2635778 168 203 2.20E-15 53 15 BtiGc8263 BtiG4731 1-279 g2619056 161 93 0.001 78 16 BtiGc8280 BtiG4733 355-1 g482286 155 142 1.0E-10 40 8 BtiGc8280 BtiG4733 154-22 g119698 106 1.20E-10 3.10E-10 40 8 BtiGc8280 BtiG4734 1-404 g2635780 165 142 1.30E-09 40 14 BtiGc8280 BtiG4735 38-155 g1186649 173 1.70E-06 61 11 BtiGc8319 BtiG4743 382-15 g1186649 154 182 1.70E-01 3.0E-1 | Contig Id Gene Id Position NCBI gi and score BlastP score Prob Ident Lorg % % BtiGcg252 BtiG4729 423-45 g124464 475 518 9.80E-50 78 18 BtiGcg252 BtiG4729 423-45 g124464 475 518 9.80E-50 78 18 BtiGcg263 BtiG4731 1-279 g2635778 168 203 2.0E-15 53 15 BtiGcg280 BtiG4732 124-256 g2619056 161 93 0.001 78 10 BtiGcg280 BtiG4733 154-22 g119698 105 142 1.30E-08 39 16 BtiGcg280 BtiG4734 1-404 g2635780 165 142 1.30E-09 40 14 BtiGcg290 BtiG4736 388-155 g116698 106 116 117 11 BtiGcg290 BtiG4733 386-1 g3628229 116 17 1.30E-09 40 | Countig Id Gene Id Position NCBI gi and score Score Prob Ident Cvrg BLIGe8252 BLIG4729 423-45 g124464 475 518 9.80E-50 78 18 BLIGe8252 BLIG4731 1279 g2635778 168 203 2.20E-15 53 15 BLIGe8288 BLIG4731 1-279 g2635778 168 203 2.20E-15 53 15 BLIGe8280 BLIG4733 355-1 g482286 161 93
0.001 78 10 BLIG68280 BLIG4733 154-22 g119698 108 118 1.70E-06 61 11 BLIG68280 BLIG4734 1-404 g2635780 165 142 1.30E-08 39 16 BLIG68290 BLIG4735 154-22 g119698 108 118 1.70E-08 39 16 BLIG68310 BLIG4734 1-404 g2635780 165 142 1.30E-08 39 16 < | Countig Id Gene Id Position NCBI gi aat ap score BlastP prob Ident Cvrg % | Contig Id Gene Id Position NCBI gi and position NCBI gi and position NCBI gi and position NCBI gi and position NCBI gi A175 518 BlastP- prob % |

	NCBI gi description	caldolyticus] HYPOTHETICAL 47.3 KD PROTEIN IN WAPA-LICT INTERGENIC REGION [Bacillus subtilis]	(AF000309) putative serine/threonine kinase	(AF082072) ABC transporter protein AtrC [Emericella	nidulans] OUTER DENSE FIBER PROTEIN (RT7 PROTEIN) (RTS 5/1) (Rattus norvegicus]	(AF067645) spore germination protein GerIC [Bacillus	(L40632) ankyrin 3 [Mus musculus]	1 KOS IL-IKNA SI NIMBIASE (1 INOSME-11MA) I IGASE) (TYRRS) [1	(AL023794) putative proline oxidase precursor	[Schizosaccharomyces pombe] (AF008220) YtiB [Bacillus subtilis]	ACETYL-COENZYME A SYNTHETASE (ACETATE-	COA LIGASE) (ACYL-ACTIVATING ENZYME) (ACETYL-COA SYNTHASE) [Bacillus subtilis]	(Z70310) predicted using Genefinder; Similarity to Mouse ankyrin (PIR Acc. No. S37771); cDNA EST EMBL:T01923	comes from this gene; cDNA EST EMBL:D32335 comes from this gene; cDNA EST EMBL:D32723 comes from this	gene; cDNA EST E []	HYPOTHETICAL 69.1 KD PROTEIN (ORF4)	[Corynepacterium gludamicum] (X89442) peptide synthetase [Metarhizium anisopliae]	(AB000617) YeeH [Bacillus subtilis]	transcriptional repressor korFII - plasmid RK2 []	(Y13937) putative Ptc1 protein [Bacillus subtilis]	LYSYL-TRNA SYNTHETASE (LYSINETRNA	LIGASE) (LYSRS) [Bacillus subtilis]	(AB010451) teet [Staphtyrococcus amous] (Y13917) vngH [Bacillus subtilis]	
	% Cvrg	31 1	23 (13 (32	59		<u>.</u>	27	29	23		9			16	m	40	93	55	78	ζ	29	ì
	% Ident C	65	33	26	41	48	32	41	37	29	4		34			80	42	42	86	46	43	5	2 4	2
rapre r	BlastP- Prob Id	8.00E-39	2.20E-12	3.20E-81	0.88	7.90E-13	3.00E-06	7.70E-05	1.10E-19	5.70E-06	2.30E-21		2.20E-12			8.50E-40	4.70E-24	2.40E-23	2.80E-75	1.10E-06	2.00E-21	100	1.20E-08 3.50E-18	7:20E-10
•	BlastP Score	415	176	822	. 26	175	124	103	241	106	258		183			427	296	269	759	116	257		130	217
	aat_B nap S Score	440	122	820	121	204	63	175	177	88	217		122			419	252	218	821	24	139	,	108	170
	NCBI gi	g1177011	g2209087	g4587971	g2506915	g3290177	g710552	g135197	g3192023	g2293156	g728788	,	g3879121			g1730878	02342601	g2415745	g96497	g2337805	g586058		g4126672	g2200423
	Position	1-405	555-1	514-1	350-109	317-1	361-1	1-387	571-1	377-1	393-1		1-434			1-317	458-1	1-436	1-493	166-1	1-434	:	425-1	390-1
	g Id Gene Id	2264 Bt1Gc8417 Bt1G4752	2265 Bt1Gc8427 Bt1G4753	2266 Bt1Gc8433 Bt1G4754	8431 Bt1G4755	2268 Bt1Gc8435 Bt1G4756	2269 Bt1Gc8438 Bt1G4757	2270 Bt1Gc8444 Bt1G4758	2271 Bt1Gc8439 Bt1G4760	2272 Bt1Gc8457 Bt1G4762	2273 Bt1Gc8470 Bt1G4764		2274 Bt1Gc8468 Bt1G4765			2275 Bt1Gc8475 Bt1G4766	8476 Bt1G4767	8480 Br1G4768						3515 Bt1G4//3
	SEQ Contig Id NO	2264 Bt1Gc8	2265 Bt1Gc8	2266 Bt1Gc8	2267 Bt1Gc8431	2268 Bt1Gc8	2269 Bt1Gc8	2270 Bt1Gc	2271 Bt1Gc8	2272 B#1Ge8	2273 Bt1Ge		2274 Bt1Gc			2275 Bt1Gc	2276 B+1G-8476	2270 Bt1Gc8480	2278 Bt1Gc8491	2279 Bt1Gc8497	2280 Bt1Gc8484		2281 Bt1Gc	2282 Bt1Gc8513

\$

NCBI gi description	(AE001145) prolyl-tRNA synthetase (proS) [Borrelia	burgdorferi] (AB001488) PROBABLE DNA TOPOISOMERASE III [Bacillus subtilis]	PUTATIVE TRANSPORTER C11D3.18C	[Schizosaccharomyces pombe] (AJ236899) hypothetical protein [Streptococcus gordonii]	(AL023589) hypothetical protein [Schizosaccharomyces	pombe] REGULATORY PROTEIN SIR2 (SILENT INFORMATION REGULATOR 2) [Saccharomyces	cerevisiae] GMP SYNTHASE (GLUTAMINE-HYDROLYZING) (GLUTAMINE AMIDOTRANSFERASE) (GMP SYNTHETASE) (Bacillus subtilis]	TRAM PROTEIN [Escherichia coli]	FORMAMIDOPYRIMIDINE-DNA GLYCOSYLASE (FAPV-DNA GLYCOSYLASE) [Bacillus firmus]	MULTIFUNCTIONAL AMINOACYL-TRNA	SYNTHETASE [Drosophila melanogaster]	UNA-directed DNA polyliterase (EC 2) III alpin Citati (version 1) - Bacillus subtilis []	(AF008220) YtpQ [Bacillus subtilis]	(AF008220) putative morphine dehydrogenase [Bacillus	SUCLING PHOSPHORIBOSYLFORMYLGLYCINAMIDINE SYNTHASE II (FGAM SYNTHASE II) [Bacillus subtilis]	ATP SYNTHASE B CHAIN [Bacillus subtilis]	DNA-DIRECTED RNA POLYMERASE BETA CHAIN APP ANSCRIPTASE RETA CHAIN) (RNA POLYMERASE	BETA SUBUNIT) [Bacillus subtilis]	(U61226) RfbB [Leptospira interrogans]	DNA-directed DNA polymerase (EC 2.7.7.7) III alpha cham		
Cyro		19	35	41	34	23	31	23	34	∞	t	_	22	35	14	41	11		41	6	30	
% Ident C	39	42	22	40	59	42	09	76	36	26	č	35 4	61	44	31	40	42		40	40	28	
BlastP-	90-	8.50E-15	3.80E-13	2.40E-07	6.60E-14	4.90E-22	5.60E-47	1.20E-12	8.10E-06	8.30E-08		4.60E-09	9.10E-15	4.60E-20	1.30E-07	2.60E-08	2.40E-15		1.10E-20	1.30E-16	5.70E-18	
BlastP	119	199	181	118	187	264	492	168	109	138	!	149	188	238	132	. 127	207		244	220	228	
aat_Bl	. √	172	112	95	86	149	487	168	133	70		111	187	218	26	103	138		221	163	124	
NCBI gi	g2688299	g1881236	g1351714	g4584073	g3135999	g134506	g3123227	g464933	g120474	g135103		g80261	g2293212	g2293328	g131646	2584815	g585920		g1666507	g482286	g2498389	
Position	1-207	417-1	576-1	1-206	561-1	1-500	1-482	1-105	280-1	408-1	1))	304-1	1-181	297-1	304-1	1-208	397-1		428-1	406-1	1-659	
d Gene Id	Bt1Gc8540 Bt1G4774	11 Bt1G4775	11 Bt1G4776	52 Bt1G4778	7 Bt1G4779	i8 Bt1G4780	74 Bt1G4781	75 Bt1G4782	76 Bt1G4783	Br1Gc8580 Br1G4784		90 Bt1G4785	39 Bt1G4786	94 Bt1G4787	10 Bt1G4788	17 Br1G4789	19 Bt1G4790		27 Bt1G4791	46 Bt1G4792	54 Bt1G4793	
SEQ Contig Id	_ თ	2284 Bt1Gc8531	2285 Bt1Gc8541	2286 Bt1Gc8552	2287 Bt1Gc8567 Bt1G4779	2288 Bt1Gc8568 Bt1G4780	2289 Bt1Gc8574 Bt1G4781	2290 Br1Gc8575 Br1G4782	2291 Bt1Gc8576	2292 Br11Gc858	2000110 7/77	2293 Bt1Gc8590	2294 Bt1Gc8589 Bt1G4786	2295 Bt1Gc8594	2296 Bt1Gc8610 Bt1G4788	2207 Rt1Gc8617 Bt1G4789	2298 Bt1Gc8619		2299 Bt1Gc8627 Bt1G4791	2300 Bt1Gc8646	2301 Bt1Gc8654 Bt1G4793	

Table 1

SEQID NO:

A sequential SEQ ID NO: is assigned to each contig or singleton and the SEQ ID NO: corresponds to that set forth in the sequence listing.

Contig ID

Contigs or singletons are assigned an arbitrary contig ID. Contigs are assembled according to the procedure set forth in Example 2.

Gene ID

Refers to an arbitrarily assigned Gene ID number.

Position

If the first numeral under the position heading is lower than the second numeral, it designates the nucleotide position which forms part of numeral under the position heading is higher than that found in the corresponding second position it designates the nucleotide position which the codon that encodes the N-most terminal amino acid of the coding sequence of the B. thuringiensis protein or fragment thereof. If the first In cases where the first numeral is higher than its corresponding second numeral, the B. thuringiensis protein or fragment thereof is encoded by forms part of the codon that encodes the C-most terminal amino acid of the coding sequence of the B. thuringiensis protein or fragment thereof. the complement of the sequence set forth in the sequence listing.

GenBank Identifier) number. In this table, the NCBI gi number which is associated (in the same row) with a given contig or singleton refers to the Each sequence in the GenBank public database is arbitrarily assigned a unique NCBI gi (National Center for Biotechnology Information particular GenBank sequence which is the best match for that sequence.

aat nap score

The aat_nap score is reported by the nap program in the aat package. It is an alignment score in which each match and mismatch is scored based on the BLOSUM62 scoring matrix.

Blastp-Prob

The entries in the "Blastp-Prob" column refer to the probability that such matches occur by chance.

BlastP Score

Each entry in the "BlastP Score" column of the table refers to the BLASTP score that is generated by sequence comparison of the designated clone with the designated GenBank sequence.

% Iden

The entries in the "%Iden" column of the table refer to the percentage of identically matched nucleotides (or residues) that exist along the length of that portion of the sequences which is aligned by the BLAST comparison to generate the statistical scores presented

% cvrg

The %coverage is the percent of hit sequence length that matches to the query sequence (%coverage = (match length / hit total length) x 100

NCBI gi description
The "NCBI gidesc" column provides a description of the NCBI gi referenced in the "NCBI gi" column.

The following tables, Table 2 through Table 5, are offered by way of illustration and not by way of limitation. It is to be understood that the present invention is not limited to the particular proteins or polypeptides or particular coding nucleotide sequences listed in Table 2 through 5.

Table 2. Sigma Factor Homologs

SEQ ID NO		NCBI gi	aat nap	BlastP Score	BlastP- Prob	% Ident	% Cvrg	NCBI gi description
184	4 Bt1G227	g548832	Score 114	113	1.80E-13	29	76	RNA POLYMERASE SIGMA-H FACTOR (SIGMA-30) [Pseudomonas
33'	7 Bt1G411	g141373	173	177	1.30E-13	44	99	aeruginosa] SIGMA-K FACTOR PROCESSING REGULATORY PROTEIN BOFA (BYPASS-OF-FORESPORE PROTEIN)
49	9 Bt1G627	g133475	1164	1175	2.30E-119	89	100	[Bacillus subtilis] RNA POLYMERASE SIGMA-G FACTOR (STAGE III SPORULATION
49	9 Bt1G628	g133289	755	719	4.90E-71	96	68	PROTEIN G) [Bacillus subtilis] RNA POLYMERASE SIGMA-35 FACTOR PRECURSOR [Bacillus
107	6 Bt1G1739	g133282	1169	1169	1.00E-118	100	100	thuringiensis] RNA POLYMERASE SIGMA-28 FACTOR PRECURSOR [Bacillus
110	8 Bt1G1857	g282367	639	9 672	4.70E-66	5 76	5 77	thuringiensis] 7 transcription initiation factor sigma H - Bacillus megaterium [Bacillus
117	9 Bt1G2157	g133466	1240	6 1273	9.60E-130	84	1 79	megaterium] PRNA POLYMERASE SIGMA FACTOR RPOD (SIGMA-A) (SIGMA-43) [Bacillus
118	89 Bt1G2201	g134763	16′	7 119	8.20E-07	7 5 8	3 17	subtilis] 7 SPORULATION SIGMA-E FACTOR PROCESSING PEPTIDASE (STAGE II SPORULATION PROTEIN GA) [Bacillus
120	95 Bt1G2294	g3287912	2 43	1 431	1.60E-40) 72	2 99	subtilis] 9 ANTI-SIGMA F FACTOR ANTAGONIST (STAGE II SPORULATION PROTEIN AA) [Bacillus coagulans]
120)5 Bt1G2295	g134757	59	1 591	1.80E-5	7 79	9 99	9 ANTI-SIGMA F FACTOR (STAGE II SPORULATION PROTEIN AB) [Bacillus licheniformis]
120)5 Bt1G2296	g464690	107	1 1023	3.00E-10	3 8:	3 10	0 RNA POLYMERASE SIGMA-F FACTOR (STAGE II SPORULATION PROTEIN AC) (SPORULATION SIGMA FACTOR)
122	27 Bt1G2414	g263371	6 5 ⁶	5 587	4.80E-5	7 49	9 10	[Bacillus megaterium] 0 (Z99111) similar to RNA polymerase sigma factor [Bacillus subtilis]

SEQ ID NO	Gene Id	NCBI gi	aat nap	BlastP Score	BlastP- Prob	% Ident	% Cvrg	NCBI gi description
1248	Bt1G2533	g1731060	Score 2059	2038	8.30E-211	61	97	PUTATIVE SIGMA L-DEPENDENT TRANSCRIPTIONAL REGULATOR IN MMGE-BFMBAA INTERGENIC
1262	Bt1G2627	g133292	835	855	1.90E-85	42	100	REGIÓN [Bacillus subtilis] RNA POLYMERASE SIGMA-54 FACTOR [Bacillus subtilis]
1274	Bt1G2697	g1941918	240	283	7.80E-25	35	99	(X93081) sigma F/sigma G transcribed gene [Bacillus subtilis]
1328	Bt1G3067	g3386359	711	721	3.00E-71	53	100	(AF074855) RNA polymerase sigma B
135	7 Bt1G3331	g3024615	156	208	6.90E-17	25	99	[Listeria monocytogenes] RNA POLYMERASE SIGMA FACTOR SIGV [Bacillus subtilis]
135′	7 Bt1G3332	g548832	157	172	4.50E-13	26	99	RNA POLYMERASE SIGMA-H FACTOR (SIGMA-30) [Pseudomonas
136	4 Bt1G3404	g3688548	86	5 185	1.90E-14	28	8 81	aeruginosa] (AJ010320) RNA polymerase sigma factor [Streptomyces coelicolor]
172	1 Bt1G4125	g133466	99	114	4.10E-06	33	3 23	RNA POLYMERASE SIGMA FACTOR RPOD (SIGMA-A) (SIGMA-43) [Bacillus subtilis]
176	4 Bt1G4171	g133481	172	2 203	2.30E-16	5 50	7 1	POSSIBLE RNA POLYMERASE SIGMA- G FACTOR (ORF3) [Bacillus thuringiensis]
221	2 Bt1G4696	g133475	27	2 298	2.00E-26	5 63	3 30	5 RNA POLYMERASE SIGMA-G FACTOR (STAGE III SPORULATION PROTEIN G) [Bacillus subtilis]

20

25

SEQID NO: A sequential SEQ ID NO: is assigned to each contig or singleton and the SEQ ID NO: corresponds to that set forth in the sequence listing.

Gene ID: Refers to an arbitrarily assigned Gene ID number.

NCBI gi: Each sequence in the GenBank public database is arbitrarily assigned a unique NCBI gi (National Center for Biotechnology Information GenBank Identifier) number. In this table, the NCBI gi number which is associated (in the same row) with a given contig or singleton refers to the particular GenBank sequence which is the best match for that sequence.

<u>aat nap score</u>: The <u>aat nap</u> score is reported by the nap program in the aat package. It is an alignment score in which each match and mismatch is scored based on the BLOSUM62 scoring matrix.

10 Blastp-Prob: The entries in the "Blastp-Prob" column refer to the probability that such matches occur by chance.

BlastP Score: Each entry in the "BlastP Score" column of the table refers to the BLASTP score that is generated by sequence comparison of the designated clone with the designated GenBank sequence.

% Iden: The entries in the "%Iden" column of the table refer to the percentage of identically matched nucleotides (or residues) that exist along the length of that portion of the sequences which is aligned by the BLAST comparison to generate the statistical scores presented

 $\frac{\% \text{ cvrg:}}{\% \text{ coverage}}$ The %coverage is the percent of hit sequence length that matches to the query sequence (%coverage = (match length / hit total length) x 100).

NCBI gi description: The "NCBIgidesc" column provides a description of the NCBIgi referenced in the "NCBIgi" column.

Table 3. Transposases, Integrases, and Transposons

SEQ Gene Id ID NO	NCBI gi	aat nap	BlastP Score	BlastP- Prob	% Ident	% Cvrg	NCBI gi description
2 Bt1G2	g2497382	Score 150	145	2.30E-09	34	33	TRANSPOSASE FOR INSERTION SEQUENCE ELEMENT IS232 [Insertion sequence IS232]
64 Bt1G88	g3005554	93	140	4.30E-09	22	36	(AF047044) putative transposase [Anabaena PCC7120]
226 Bt1G276	g549114	374	410	2.70E-38	80	19	TRANSPOSASE FOR INSERTION SEQUENCE ELEMENT IS231F [Bacillus thuringiensis]
379 Bt1G464	g2497400	184	229	4.10E-19	38	60	HYPOTHETICAL TRANSPOSASE-LIKE PROTEIN HI1721 [Haemophilus influenzae Rd]
383 Bt1G468	g2497400	171	211	3.30E-17	36	57	HYPOTHETICAL TRANSPOSASE-LIKE PROTEIN H11721 [Haemophilus influenzae Rd]
387 Bt1G475	g549113	337	7 296	7.50E-26	72	21	TRANSPOSASE FOR INSERTION SEQUENCE ELEMENT IS231E [Bacillus thuringiensis]
410 Bt1G502	g2127290	57	7 123	1.80E-07	34	32	transposase (insersion sequence IS231) - Bacillus thuringiensis [Bacillus thuringiensis]
416 Bt1G512	g2497382	53′	7 570	4.40E-57	85	29	TRANSPOSASE FOR INSERTION

	EQ Gene Id D NO	NCBI gi	aat nap	BlastP Score	BlastP- Prob	% Ident	% Cvrg	NCBI gi description
		- 40	Score		9.00E-63	94	21	SEQUENCE ELEMENT IS232 [Insertion sequence IS232] TRANSPOSASE FOR INSERTION
	546 Bt1G691	g2497382	606	641	9.00E-03			SEQUENCE ELEMENT IS232 [Insertion sequence IS232]
	555 Bt1G707	g3005554	86	113	4.00E-06			(AF047044) putative transposase [Anabaena PCC7120]
•	603 Bt1G782	g3005554	79		2.60E-09			(AF047044) putative transposase [Anabaena PCC7120]
	642 Bt1G840	g3426013	288		3.30E-33			(AB016803) transposase [Deinococcus radiodurans]
	644 Bt1G843	_	110		1.10E-08			(AE000433) IS150 putative transposase [Escherichia coli] TRANSPOSASE FOR INSERTION
	660 Bt1G864	g2497382	109	125	3.40E-07	96		SEQUENCE ELEMENT IS232 [Insertion sequence IS232]
	691 Bt1G912	g1694898	597	7 635	1.70E-61			7 (Y09450) transposase [Pseudomonas putida]
	691 Bt1G913	g79972	194	4 299	2.70E-25	26		transposase tnpA - Enterococcus faecalis plasmid pAD2 transposon Tn917 [Transposon Tn917]
	781 Bt1G1068	3 g1789981	270		1.60E-26			5 (AE000433) IS150 putative transposase [Escherichia coli]
	799 Bt1G1102	2 g1694898			2.80E-37			(Y09450) transposase [Pseudomonas putida]
	980 Bt1G148				4.90E-32			2 (Y09946) transposase [Bacillus thuringiensis]
	1002 Bt1G153	8 g2497400			2.50E-19			7 HYPOTHETICAL TRANSPOSASE-LIKE PROTEIN H11721 [Haemophilus influenzae Rd]
•	1045 Bt1G165	4 g2497382	2 91	2 882	2.60E-88	8 91		5 TRANSPOSASE FOR INSERTION SEQUENCE ELEMENT IS232 [Insertion sequence IS232]
	1072 Bt1G172	4 g3005554	1 10	5 162	1.60E-1	1 24		1 (AF047044) putative transposase [Anabaena PCC7120]
	1098 Bt1G181	9 g2497382	2 42	4 470	1.20E-4	4 94	. –	3 TRANSPOSASE FOR INSERTION SEQUENCE ELEMENT IS232 [Insertion sequence IS232]
	1190 Bt1G221	5 g2497382	2 28	36 292	9.10E-2	6 70		8 TRANSPOSASE FOR INSERTION SEQUENCE ELEMENT IS232 [Insertion sequence IS232]
	1207 Bt1G230	2 g2497382	2 53	548	6.50E-5	3 9	9 2	5 TRANSPOSASE FOR INSERTION SEQUENCE ELEMENT IS232 [Insertion sequence IS232]
	1214 Bt1G234	5 g249738	2 52	28 544	1.70E-5	2 9		4 TRANSPOSASE FOR INSERTION SEQUENCE ELEMENT IS232 [Insertion sequence IS232]
*	1252 Bt1G255	i4 g136144	244	19 2407	6.60E-25	0 9	9 10	TRANSPOSASE FOR INSERTION SEQUENCE ELEMENT IS231C [Bacillus thuringiensis]

SEQ ID NO	Gene Id	NCBI gi	aat nap	BlastP Score	BlastP- Prob	% Ident	% Cvrg	NCBI gi description
1273	Bt1G2694	g3005554	Score 100	138	7.20E-09	24	37	(AF047044) putative transposase [Anabaena PCC7120]
1275	Bt1G2705	g135956	459	718	6.30E-71	29	100	TRANSPOSASE B (TRANSPOSON TN554) [Staphylococcus aureus]
1305	Bt1G2905	g2098612	342	433	9.90E-41	38		(U66614) putative transposase [Marinococcus halophilus]
1317	Bt1G2979	g1789981	387	406	7.20E-38	52	50	(AE000433) IS150 putative transposase [Escherichia coli]
1330	Bt1G3082	g3005554	93	139	5.60E-09	25		(AF047044) putative transposase [Anabaena PCC7120]
1340	Bt1G3161	g2497382	2231	2231	2.90E-231	100		TRANSPOSASE FOR INSERTION SEQUENCE ELEMENT IS232 [Insertion sequence IS232]
1353	Bt1G3278	g136144	316	340	7.10E-31	94	15	TRANSPOSASE FOR INSERTION SEQUENCE ELEMENT IS231C [Bacillus thuringiensis]
1354	Bt1G3289	g3426013	330	510	6.90E-49	30	94	(AB016803) transposase [Deinococcus radiodurans]
1362	2 Bt1G3378	g2497382	610	6 622	9.30E-61	. 95	29	TRANSPOSASE FOR INSERTION SEQUENCE ELEMENT IS232 [Insertion sequence IS232]
1378	8 Bt1G3590	g1749770	28	0 308	1.70E-27	7 52		(Y09946) transposase [Bacillus thuringiensis]
1378	8 Bt1G3595	5 g2497400	18	7 229	4.10E-19	38		7 HYPOTHETICAL TRANSPOSASE-LIKE PROTEIN HI1721 [Haemophilus influenzae Rd]
138	0 Bt1G3625	5 g1789981	79	6 806	3.00E-80	52	100	(AE000433) IS150 putative transposase [Escherichia coli]
138	3 Bt1G3662	2 g1789981	85	2 809	1.40E-80	0 54		0 (AE000433) IS150 putative transposase [Escherichia coli]
138	6 Bt1G3684	4 g3005554	11	7 208	7.90E-1	7 20		2 (AF047044) putative transposase [Anabaena PCC7120]
138	6 Bt1G368	7 g3218350) 16	9 240	2.80E-2	0 26		0 (AL023861) putative IS element transposase [Streptomyces coelicolor]
138	8 Bt1G370	4 g3005554	9	7 135	1.50E-0	8 24		6 (AF047044) putative transposase [Anabaena PCC7120]
139	1 Bt1G374	5 g1749770	73	5 735	9.90E-7	3 5		0 (Y09946) transposase [Bacillus thuringiensis]
139	2 Bt1G376	2 g136144	244	3 2424	1.00E-25	1 100) 10	0 TRANSPOSASE FOR INSERTION SEQUENCE ELEMENT IS231C [Bacillus thuringiensis]
154	9 Bt1G394	2 g2497400	0 9	2 120	2.30E-0	7 2	8 4	6 HYPOTHETICAL TRANSPOSASE-LIKE PROTEIN HI1721 [Haemophilus influenzae Rd]
157	/3 Bt1G397	0 g2497382	2 15	53 179	4.60E-1	3 4	3 2	1 TRANSPOSASE FOR INSERTION SEQUENCE ELEMENT IS232 [Insertion sequence IS232]
161	1 Bt1G400	9 g249738	2 12	29 139	0 1.00E-0	8 4	9 1	7 TRANSPOSASE FOR INSERTION SEQUENCE ELEMENT IS232 [Insertion sequence IS232]

CEO.	Como Id	NCDI ai	, გე. იი 4		DlostD	9/	0/	NCBI gi description
SEQ ID NO	Gene Id	NCBI gi	aat nap Score	BlastP Score	BlastP- Prob	% Ident	% Cvrg	NCDI gi description
1698	Bt1G4102	g2497382	177	220	1.50E-17	44	24	TRANSPOSASE FOR INSERTION SEQUENCE ELEMENT IS232 [Insertion sequence IS232]
1725	Bt1G4130	g2497382	115	159	6.90E-11	52	14	TRANSPOSASE FOR INSERTION SEQUENCE ELEMENT IS232 [Insertion sequence IS232]
1739	Bt1G4145	g24973 8 2	270	276	7.20E-24	49	29	TRANSPOSASE FOR INSERTION SEQUENCE ELEMENT IS232 [Insertion sequence IS232]
1804	Bt1G4211	g2497382	213	248	1.10E-20	56	22	TRANSPOSASE FOR INSERTION SEQUENCE ELEMENT IS232 [Insertion sequence IS232]
1869	Bt1G4277	g549114	93	161	5.10E-11	28	26	TRANSPOSASE FOR INSERTION SEQUENCE ELEMENT IS231F [Bacillus thuringiensis]
1902	Bt1G4312	g1789981	258	286	3.80E-25	35	58	(AE000433) IS150 putative transposase [Escherichia coli]
1965	Bt1G4386	g2497382	218	203	1.10E-15	36	40	TRANSPOSASE FOR INSERTION SEQUENCE ELEMENT IS232 [Insertion sequence IS232]
2041	Bt1G4473	g136144	266	307	4.10E-27	66	20	TRANSPOSASE FOR INSERTION SEQUENCE ELEMENT IS231C [Bacillus thuringiensis]
2049	Bt1G4484	g2497382	119	154	2.40E-10	35	22	TRANSPOSASE FOR INSERTION SEQUENCE ELEMENT IS232 [Insertion sequence IS232]
2130	Bt1G4607	g2497382	130	155	1.90E-10	56	13	TRANSPOSASE FOR INSERTION SEQUENCE ELEMENT IS232 [Insertion sequence IS232]
2135	Bt1G4612	g2497382	174	229	1.50E-18	49	27	TRANSPOSASE FOR INSERTION SEQUENCE ELEMENT IS232 [Insertion sequence IS232]
2153	Bt1G4631	g2497382	130	187	6.20E-14	61	13	TRANSPOSASE FOR INSERTION SEQUENCE ELEMENT IS232 [Insertion sequence IS232]
102	Bt1G134	g586206	178	178	1.90E-13	67	16	D-ALANYL-D-ALANINE CARBOXYPEPTIDASE (DD- PEPTIDASE) (DD- CARBOXYPEPTIDASE) [Transposon Tn1546]
1340	Bt1G3160	g141450	74	136	1.40E-08	32	29	HYPOTHETICAL 37.1 KD PROTEIN IN TRANSPOSON TN4556 [Transposon Tn4556]
1795	Bt1G4202	g1196998	220	208	2.50E-16	55	24	(J01829) unknown protein [Transposon Tn10]
1797	Bt1G4204	g1196998	160	180	3.00E-13	51	18	(J01829) unknown protein [Transposon Tn10]
1989	Bt1G4413	g4309763	475	494	6.20E-46	75	10	(AC006217) putative retrotransposon polyprotein [Arabidopsis thaliana]
2055	Bt1G4494	g479357	235	251	1.60E-20	65	14	hypothetical protein 612 - maize transposon MuA2 [Zea mays]

SEQ ID NO	Gene Id	NCBI gi	aat nap	BlastP Score	BlastP- Prob	% Ident	% Cvrg	NCBI gi description
			Score					
2057	Bt1G4496	g2130141	254	184	4.20E-13	51	14	mudrA protein - maize transposon MuDR [Zea mays]
2248	Bt1G4735	g1196998	108	118	1.70E-06	61	11	(J01829) unknown protein [Transposon Tn10]
14	Bt1G21	g1710383	584	606	4.60E-59	72	53	PROBABLE INTEGRASE/RECOMBINASE RIPX [Bacillus subtilis]
296	Bt1G357	g4098413	95	173	1.20E-12	32	32	(U77495) putative integrase [Leuconostoc oenos bacteriophage 10MC]
722	Bt1G961	g4490997	364	442	1.10E-41	29	100	(AL035707) putative integrase [Streptomyces coelicolor]
834	Bt1G1164	g1881291	294	381	3.20E-35	29	95	(AB001488) PROBABLE INTEGRASE. [Bacillus subtilis]
834	Bt1G1165	g166159	321	335	2.40E-30	30	95	(M34832) integrase (int) [Bacteriophage phi-11]
999	Bt1G1529	g1926326	693	724	1.40E-71	39	100	(X98106) integrase [Bacteriophage phig1e]

SEQID NO: A sequential SEQ ID NO: is assigned to each contig or singleton and the SEQ ID NO: corresponds to that set forth in the sequence listing.

Gene ID: Refers to an arbitrarily assigned Gene ID number.

è, 🍱

į, la

i, M

10

į. ž

M

25

5

NCBI gi: Each sequence in the GenBank public database is arbitrarily assigned a unique NCBI gi (National Center for Biotechnology Information GenBank Identifier) number. In this table, the NCBI gi number which is associated (in the same row) with a given contig or singleton refers to the particular GenBank sequence which is the best match for that sequence.

<u>aat_nap score</u>: The aat_nap score is reported by the nap program in the aat package. It is an alignment score in which each match and mismatch is scored based on the BLOSUM62 scoring matrix.

Blastp-Prob: The entries in the "Blastp-Prob" column refer to the probability that such matches occur by chance.

BlastP Score: Each entry in the "BlastP Score" column of the table refers to the BLASTP score that is generated by sequence comparison of the designated clone with the designated GenBank sequence.

15 <u>% Iden:</u> The entries in the "%Iden" column of the table refer to the percentage of identically matched nucleotides (or residues) that exist along the length of that portion of the sequences which is aligned by the BLAST comparison to generate the statistical scores presented

<u>% cvrg:</u> The %coverage is the percent of hit sequence length that matches to the query sequence (%coverage = (match length / hit total length) \times 100).

NCBI gi description: The "NCBIgidesc" column provides a description of the NCBIgi referenced in the "NCBIgi" column.

Table 4. Antibiotic, Chemical, and Heavy Metal Resistance

SEQ Gene	Id NCBI gi	aat	BlastP	BlastP-	%	%	NCBI gi description
ID NO		nap	Score	Prob	Ident	Cvrg	
		Score		·			

SEQ Gene Id ID NO	NCBI gi		BlastP Score	BlastP- Prob	% Ident	% Cvrg	NCBI gi description
33 Bt1G51	g266515	250	273	2.10E-22	29	19	MULTIDRUG RESISTANCE-LIKE ATP-BINDING PROTEIN MDL [Escherichia coli]
98 Bt1G130	g3861147	104	114	4.80E-06	-33	17	(AJ235272) BICYCLOMYCIN RESISTANCE PROTEIN (bcr1) [Rickettsia prowazekii]
145 Bt1G181	g1174516	499	526	1.30E-49	55	17	ISOLEUCYL-TRNA SYNTHETASE, MUPIROCIN RESISTANT (ISOLEUCINETRNA LIGASE) (ILERS) (MUPIROCIN RESISTANCE PROTEIN) [Staphylococcus aureus]
162 Bt1G201	g1684651	432	314	4.00E-28	37	56	(Z82987) unknown similar to quinolon resistance protein NorA [Bacillus subtilis]
180 Bt1G222	g1945096	183	192	1.70E-14	54	19	(D88802) S. lividans chloramphenicol resistance protein; P31141 (492) transmembrane [Bacillus subtilis]
204 Bt1G249	g136472	237	284	6.10E-25	33	99	ACETYLTRANSFERASE (TABTOXIN RESISTANCE PROTEIN) [Pseudomonas syringae]
275 Bt1G332	g2108269	€ 11 6	133	6.10E-09	41	41	(X92868) mercuric resistance operon regulatory protein [Bacillus subtilis]
298 Bt1G359	g1684651	383	298	2.00E-26	38	48	(Z82987) unknown similar to quinolon resistance protein NorA [Bacillus subtilis]
361 Bt1G441	g3861147	199	215	4.30E-17	27	60	(AJ235272) BICYCLOMYCIN RESISTANCE PROTEIN (bcr1) [Rickettsia prowazekii]
397 Bt1G486	g1705428	604	605	5.90E-59	59	84	BACITRACIN RESISTANCE PROTEIN (PUTATIVE UNDECAPRENOL KINASE) [Escherichia coli]
421 Bt1G519	g1174634	93	168	2.10E-12	26	60	TELLURITE RESISTANCE PROTEIN TEHB HOMOLOG [Haemophilus influenzae Rd]
423 Bt1G522	g2633162	329	245	7.60E-26	25	83	(Z99108) similar to multidrug resistance protein [Bacillus subtilis]
579 Bt1G744	g1684651	638	349	9.00E-55	33	100	(Z82987) unknown similar to quinolon resistance protein NorA [Bacillus subtilis]
613 Bt1G795	g2632985	1127	958	2.30E-96	37	66	(Z99107) similar to acriflavin resistance protein [Bacillus subtilis]
624 Bt1G809	g2688027	183	189	1.70E-13	22	27	(AE001125) acriflavine resistance protein (acrB) [Borrelia burgdorferi]
692 Bt1G915	g2145816	117	144	4.20E-10	28	99	bacitracin resistance protein homolog bacA - Mycobacterium leprae [Mycobacterium leprae]
726 Bt1G970	g2500765	396	404	1.20E-37	28	100	SENSOR PROTEIN VANSB (VANCOMYCIN B-TYPE RESISTANCE PROTEIN VANSB) (VANCOMYCIN HISTIDINE PROTEIN KINASE) [Enterococcus faecalis]
862 Bt1G1220	g2827439	1774	1774	7.80E-183	78	100	(AF043609) aluminum resistance protein [Arthrobacter viscosus]

SEQ O	Gene Id	NCBI gi	nap	BlastP Score	BlastP- Prob	% Ident	% Cvrg	NCBI gi description
930 E	3t1G1354	g2499116	Score 335	371	3.70E-34	29	100	VANCOMYCIN B-TYPE RESISTANCE PROTEIN VANW [Enterococcus faecalis]
950 F	3t1G1408	g1277135	374	374	1.80E-34	41	42	(U50978) kanamycin/gentamycin- resistance protein [Cloning vector pFW13]
986 E	3t1G1495	g399406	246	212	2.60E-17	25	85	DAUNORUBICIN RESISTANCE TRANSMEMBRANE PROTEIN
995 I	3t1G1520	g1174516	1843	1846	1.80E-190	58	53	[Streptomyces peucetius] ISOLEUCYL-TRNA SYNTHETASE, MUPIROCIN RESISTANT (ISOLEUCINETRNA LIGASE) (ILERS) (MUPIROCIN RESISTANCE PROTEIN) [Staphylococcus aureus]
1005 F	3t1G1550	g2879772	110	145	3.30E-10	37	45	(Y07640) putative mercury resistance operon regulatory protein (MerR) [Listeria monocytogenes]
1023 I	Bt1G1597	g1945096	952	778	2.70E-77	46	100	(D88802) S. lividans chloramphenicol resistance protein; P31141 (492) transmembrane [Bacillus subtilis]
1130 H	Bt1G1938	g1652918	412	300	1.20E-26	28	100	(D90909) quinolene resistance protein
1188 F	Bt1G2199	g585375	1044	1054	1.60E-106	70	100	NorA [Synechocystis sp.] DIMETHYLADENOSINE TRANSFERASE (S-
								ADENOSYLMETHIONINE-6-N', N'- ADENOSYL(RRNA) DIMETHYLTRANSFERASE) (16S RRNA DIMETHYLASE) (HIGH LEVEL KASUGAMYCIN RESISTANCE PROTEIN KSGA) (KASUGAMYCIN DIMETHYLTRANSFERASE) [Bacillus subtilis]
1190 I	Bt1G2211	g2633434	931	787	3.10E-78	42	100	(Z99109) similar to multidrug resistance protein [Bacillus subtilis]
1208 F	Bt1G2308	g2634168	444	462	8.40E-44	59	99	(Z99113) similar to fosfomycin resistance protein [Bacillus subtilis]
1226 F	Bt1G2406	g1705428	713	561	2.70E-54	55	100	BACITRACIN RESISTANCE PROTEIN (PUTATIVE UNDECAPRENOL KINASE) [Escherichia coli]
1227 I	Bt1G2407	g1881228	159	173	2.40E-12	36	20	(AB001488) SIMILAR TO ENZYMES WHICH ACT VIA AN ATP- DEPENDENT COVALENT BINDING OF AMP TO THEIR SUBSTRATE. [Bacillus subtilis]
1240 F	Bt1G2497	g1881342	392	441	1.40E-41	34	100	(AB001488) SIMILAR TO BACILLUS CEREUS ZWITTERMICIN A- RESISTANCE GENE. [Bacillus subtilis]
1246 I	Bt1G2519	g461637	168	276	4.30E-24	23	100	MULTIDRUG RESISTANCE PROTEIN 1 (MULTIDRUG-EFFLUX TRANSPORTER 1) [Bacillus subtilis]
1246 E	Bt1G2520	g728970	180	293	6.80E-26	21	100	MULTIDRUG RESISTANCE PROTEIN 2 (MULTIDRUG-EFFLUX TRANSPORTER 2) [Bacillus subtilis]

SEQ ID NO	Gene Id	NCBI gi	aat nap	BlastP Score	BlastP- Prob	% Ident	% Cvrg	NCBI gi description
1257	Bt1G2596	g728970	Score . 1488	1194	2.30E-121	72	100	MULTIDRUG RESISTANCE PROTEIN 2 (MULTIDRUG-EFFLUX TRANSPORTER 2) [Bacillus subtilis]
1272	Bt1G2692	g1881374	892	804	4.80E-80	46	100	(AB001488) SIMILAR TO BICYCLOMYCIN RESISTANCE PROTEIN. [Bacillus subtilis]
1302	Bt1G2884	g115950	1180	1191	4.70E-121	75	92	GLUCOSE-RESISTANCE AMYLASE REGULATOR (CATABOLITE CONTROL PROTEIN) [Bacillus subtilis]
1339	Bt1G3158	g2632985	3348	2412	3.20E-256	63		(Z99107) similar to acriflavin resistance protein [Bacillus subtilis]
1355	Bt1G3297	g2500765	301	395	1.10E-36	29	67	SENSOR PROTEIN VANSB (VANCOMYCIN B-TYPE RESISTANCE PROTEIN VANSB) (VANCOMYCIN HISTIDINE PROTEIN KINASE)
1374	Bt1G3544	g4914624	107	920	2.50E-92	57	92	[Enterococcus faecalis] (AJ009627) multidrug resistance transporter [Listeria monocytogenes]
1393	Bt1G3769	g2769708	955	852	3.90E-85	37	100) (U82085) pristinamycin resistance protein VgaB [Staphylococcus aureus]
1420	6 Bt1G3813	g2827439	122	2 143	3.70E-09	49	17	(AF043609) aluminum resistance protein [Arthrobacter viscosus]
146) Bt1G3849	g994737	104	125	1.30E-07	52) (M18327) kanamycin resistance protein [cloning vectors]
147	1 Bt1G3861	g2633162	2 16	1 156	1.40E-10	25		4 (Z99108) similar to multidrug resistance protein [Bacillus subtilis]
	6 Bt1G3918		120					TRANSFERASE (S- ADENOSYLMETHIONINE-6-N', N'- ADENOSYL(RRNA) DIMETHYLTRANSFERASE) (16S RRNA DIMETHYLASE) (HIGH LEVEL KASUGAMYCIN RESISTANCE PROTEIN KSGA) (KASUGAMYCIN DIMETHYLTRANSFERASE) [Bacillus subtilis]
185	4 Bt1G4261	l g194509	6 44	6 406	7.20E-38	8 59		5 (D88802) S. lividans chloramphenicol resistance protein; P31141 (492) transmembrane [Bacillus subtilis]
191	4 Bt1G4327	7 g266855	3 13	0 68	0.83	5 3′		6 (U62929) multidrug resistance protein 1 [Filobasidiella neoformans]
192	3 Bt1G4339	9 g115950	13	3 153	1.80E-1	0 5:		8 GLUCOSE-RESISTANCE AMYLASE REGULATOR (CATABOLITE CONTROL PROTEIN) [Bacillus subtilis]
215	1 Bt1G4629	9 g392577	9 23	8 181	5.00E-1	3 29	9 3	1 (AL034353) putative major facilitator family multi-drug resistance protein [Schizosaccharomyces pombe]
217	9 Bt1G465	9 g263298	5 9	08 107	7 9.60E-0	5 3	0 1	1 (Z99107) similar to acriflavin resistance protein [Bacillus subtilis]
221	1 Bt1G469	5 g441648	2 10)1 115	5 2.40E-0	6 3	8 2	4 (AF125999) daunorubicin resistance protein A [Mycobacterium avium]

SEQ Gene Id ID NO	NCBI gi		BlastP Score	BlastP- Prob	% Ident	% Cvrg	NCBI gi description
2304 Bt1G4796	g115950	204	269	2.40E-23	51		GLUCOSE-RESISTANCE AMYLASE REGULATOR (CATABOLITE CONTROL PROTEIN) [Bacillus subtilis]

SEQID NO: A sequential SEQ ID NO: is assigned to each contig or singleton and the SEQ ID NO: corresponds to that set forth in the sequence listing.

Gene ID: Refers to an arbitrarily assigned Gene ID number.

NCBI gi: Each sequence in the GenBank public database is arbitrarily assigned a unique NCBI gi
(National Center for Biotechnology Information GenBank Identifier) number. In this table, the NCBI gi
number which is associated (in the same row) with a given contig or singleton refers to the particular
GenBank sequence which is the best match for that sequence.

<u>aat nap score</u>: The aat nap score is reported by the nap program in the aat package. It is an alignment score in which each match and mismatch is scored based on the BLOSUM62 scoring matrix.

10 Blastp-Prob: The entries in the "Blastp-Prob" column refer to the probability that such matches occur by chance.

BlastP Score: Each entry in the "BlastP Score" column of the table refers to the BLASTP score that is generated by sequence comparison of the designated clone with the designated GenBank sequence.

% Iden: The entries in the "%Iden" column of the table refer to the percentage of identically matched nucleotides (or residues) that exist along the length of that portion of the sequences which is aligned by the BLAST comparison to generate the statistical scores presented

<u>% cvrg:</u> The %coverage is the percent of hit sequence length that matches to the query sequence (%coverage = (match length / hit total length) \times 100).

NCBI gi description: The "NCBIgidesc" column provides a description of the NCBIgi referenced in the "NCBIgi" column.

25

BOW SAN STAN

W. W.

The same of

15

20

Table 5. Toxins and Toxin Homologs

SEQ ID NO	Gene Id	NCBI gi	aat nap Score	BlastP Score	BlastP- Prob	% Ident	% Cvrg	NCBI gi description
73	Bt1G100	g419952	125	135	1.30E-09	29	13	alpha-latroinsectotoxin precursor - black widow spider (fragment) [Latrodectus tredecimguttatus]
212	2 Bt1G260	g2507017	330	263	1.00E-22	68	29	HEMOLYSIN BL BINDING COMPONENT PRECURSOR (ENTEROTOXIN 40 KD SUBUNIT) [Bacillus cereus]
316	Bt1G386	g2507017	990	1027	1.10E-103	68	78	HEMOLYSIN BL BINDING COMPONENT PRECURSOR (ENTEROTOXIN 40 KD SUBUNIT) [Bacillus cereus]
410	Bt1G503	g2507017	126	156	1.10E-10	60	13	HEMOLYSIN BL BINDING COMPONENT PRECURSOR (ENTEROTOXIN 40 KD SUBUNIT)

SEQ ID NO	Gene Id	NCBI gi	aat nap Score	BlastP Score	BlastP- Prob	% Ident	% Cvrg	NCBI gi description
479	Bt1G597	g2507017	1829	1732	2.20E-178	98	98	[Bacillus cereus] HEMOLYSIN BL BINDING COMPONENT PRECURSOR (ENTEROTOXIN 40 KD SUBUNIT)
	Bt1G917 Bt1G3948	•	1623 210		4.70E-169 1.50E-15	95 51		[Bacillus cereus] (D17312) diarrheal toxin [Bacillus cereus] HEMOLYSIN BL BINDING COMPONENT PRECURSOR (ENTEROTOXIN 40 KD SUBUNIT)
2056	Bt1G4495	g97193	96	105	9.60E-05	51	6	[Bacillus cereus] leukotoxin B - Pasteurella haemolytica []

SEQID NO: A sequential SEQ ID NO: is assigned to each contig or singleton and the SEQ ID NO: corresponds to that set forth in the sequence listing.

Gene ID: Refers to an arbitrarily assigned Gene ID number.

Sali Rafi

i, M

10

Last then the time and

Ţ

In

13

- NCBI gi: Each sequence in the GenBank public database is arbitrarily assigned a unique NCBI gi (National Center for Biotechnology Information GenBank Identifier) number. In this table, the NCBI gi number which is associated (in the same row) with a given contig or singleton refers to the particular GenBank sequence which is the best match for that sequence.
 - <u>aat_nap score</u>: The aat_nap score is reported by the nap program in the aat package. It is an alignment score in which each match and mismatch is scored based on the BLOSUM62 scoring matrix.
 - **Blastp-Prob:** The entries in the "Blastp-Prob" column refer to the probability that such matches occur by chance.
 - <u>BlastP Score</u>: Each entry in the "BlastP Score" column of the table refers to the BLASTP score that is generated by sequence comparison of the designated clone with the designated GenBank sequence.
- 15 <u>% Iden:</u> The entries in the "%Iden" column of the table refer to the percentage of identically matched nucleotides (or residues) that exist along the length of that portion of the sequences which is aligned by the BLAST comparison to generate the statistical scores presented
 - <u>% cvrg:</u> The %coverage is the percent of hit sequence length that matches to the query sequence (%coverage = (match length / hit total length) \times 100).
- 20 NCBI gi description: The "NCBIgidesc" column provides a description of the NCBIgi referenced in the "NCBIgi" column.

What is claimed is:

- 1. An isolated nucleic acid molecule having a first nucleotide sequence, wherein: (1) the first nucleotide sequence hybridizes under stringent conditions to a second nucleotide sequence selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 8283, wherein the hybridizing portion of the second nucleotide sequence is at least 50 nucleotides in length; (2) the first nucleotide sequence is a portion of the third nucleotide sequence selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 8283 and is at least 50 nucleotides in length; (3) the first nucleotide sequence encodes a *B. thuringiensis* polypeptide or protein, wherein the *B. thuringiensis* polypeptide or protein is any polypeptide or protein set forth in Table 1; or (4) the first nucleotide sequence is the complement of (1), (2) or (3).
- 2. The isolated nucleic acid molecule of claim 1, wherein: (1) the first nucleotide sequence hybridized under stringent conditions to the second nucleotide sequence, wherein the hybridizing portion of the second nucleotide sequence is at least 100 nucleotides in length; or (2) the first nucleotide sequence is the complement of (1).
- 3. The isolated nucleic acid molecule of claim 2, wherein the hybridizing portion of the second nucleotide sequence is at least 200 nucleotides in length.
- 4. The isolated nucleic acid molecule of claim 1, wherein: (1) the first nucleotide sequence is the portion of the third nucleotide sequence selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 8283 and is at least 50 nucleotides in length; or (2) the first nucleotide sequence is the complement of (1).
- 5. The isolated nucleic acid molecule of claim 4, wherein the portion of the third nucleotide sequence is a regulatory sequence.
- 6. The isolated nucleic acid molecule of claim 4, wherein the portion of the third nucleotide sequence is a promoter or partial promoter sequence.
- 7. The isolated nucleic acid molecule of claim 1, wherein: (1) the first nucleotide sequence encodes a B. thuringiensis polypeptide or protein, wherein the B. thuringiensis polypeptide or protein is

any polypeptide or protein set forth in Table 1; or (2) the first nucleotide sequence is the complement of (1).

- 8. The isolated nucleic acid molecule of claim 7, wherein the first nucleotide sequence encodes a B. thuringiensis polypeptide or protein which is any one set forth in Table 1.
- 9. The isolated nucleic acid molecule of claim 8, wherein the *B. thuringiensis* polypeptide or protein is an insect inhibitory protein or polypeptide homologue.
- 10. The isolated nucleic acid molecule of claim 8, wherein the *B. thuringiensis* protein or polypeptide is a sigma factor homologue.
- 11. The isolated nucleic acid molecule of claim 8, wherein the amino acid sequence of the *B. thuringiensis* polypeptide or protein is selected from the group consisting of SEQ ID Nos: 33, 98, 145, 162, 180, 204, 275, 298, 361, 397, 421, 423, 579, 613, 624, 692, 726, 862, 930, 950, 986, 995, 1005, 1023, 1130, 1188, 1190, 1208, 1226, 1227, 1240, 1246, 1246, 1257, 1272, 1302, 1339, 1355, 1374, 1393, 1426, 1460, 1471, 1526, 1854, 1914, 1923, 2151, 2179, 2211, and 2304.
- 12. The isolated nucleic acid molecule of claim 8, wherein the *B. thuringiensis* polypeptide or protein is a transposase homologue.
- 13. The isolated nucleic acid molecule of claim 8, wherein the *B. thuringiensis* polypeptide or protein is an integrase homologue.
- 14. The isolated nucleic acid molecule of claim 8, wherein the *B. thuringiensis* polypeptide or protein is selected from the group consisting of 2, 64, 226, 379, 383, 387, 410, 416, 546, 555, 603, 642, 644, 660, 691, 691, 781, 799, 980, 1002, 1045, 1072, 1098, 1190, 1207, 1214, 1252, 1273, 1275, 1305, 1317, 1330, 1340, 1353, 1354, 1362, 1378, 1378, 1380, 1383, 1386, 1386, 1388, 1391, 1392, 1549, 1573, 1611, 1698, 1725, 1739, 1804, 1869, 1902, 1965, 2041, 2049, 2130, 2135, 2153, 102, 1340, 1795, 1797, 1989, 2055, 2057, 2248, 14, 296, 722, 834, 834, and 999.
- 15. The isolated nucleic acid molecule of claim 8, wherein the *B. thuringiensis* protein or polypeptide has antibiotic, heavy metal, or other chemical resistance properties.

- 16. The isolated nucleic acid molecule of claim 8, wherein said nucleic acid molecule further comprises a promoter or partial promoter region.
- 17. A substantially purified *B. thuringiensis* polypeptide or protein comprising an amino acid sequence, wherein the amino acid sequence is defined as follows: (1) the amino acid sequence is encoded by a first nucleotide sequence which specifically hybridizes to the complement of a second nucleotide sequence selected from the group consisting of SEQ ID No: 1 to SEQ ID No: 8283; or (2) the amino acid sequence is encoded by a third nucleotide sequence that is at least 50% identical to an open reading frame set forth in Table 1.
- 18. The substantially purified *B. thuringiensis* polypeptide or protein of claim 17, wherein the *B. thuringiensis* polypeptide or protein is any protein or polypeptide set forth in Table 1.
- 19. The substantially purified *B. thuringiensis* protein or polypeptide of claim 18, wherein the *B. thuringiensis* protein or polypeptide is an insect inhibitory protein.
- 20. The substantially purified *B. thuringiensis* protein or polypeptide of claim 18, wherein the *B. thuringiensis* protein or polypeptide is a sigma factor homologue.
- 21. The substantially purified *B. thuringiensis* protein or polypeptide of claim 18, wherein the *B. thuringiensis* protein or polypeptide is a transposase homologue.
- 22. The substantially purified *B. thuringiensis* protein or polypeptide of claim 18 wherein the *B. thuringiensis* protein or polypeptide is an integrase homologue.
- 23. The substantially purified *B. thuringiensis* protein or polypeptide of claim 18, wherein the *B. thuringiensis* protein or polypeptide is a toxin or toxin homologue.
- 24. The substantially purified *B. thuringiensis* protein or polypeptide of claim 18, wherein the *B. thuringiensis* protein or polypeptide has antibiotic, heavy metal, or other chemical resistance properties.

- 25. A transformed cell comprising an exogenous nucleic acid molecule which comprises:
 - a) an exogenous promoter region which functions in said cell to cause the production of an mRNA molecule; which is operably linked to
 - b) a structural nucleotide sequence, wherein said structural nucleotide sequence encodes a *B.*thuringiensis protein or polypeptide which is any protein or polypeptide set forth in Table 1;

 which is operably linked to-
 - c) a 3' non-translated sequence that functions in said cell to cause termination of transcription.
- 26. The transformed cell according to claim 25, wherein the *B. thuringiensis* protein or polypeptide is an insect inhibitory protein or polypeptide.
- 27. The transformed cell according to claim 25, wherein said *B. thuringiensis* protein or polypeptide is a sigma factor homologue.
- 28. The transformed cell according to claim 25, wherein said *B. thuringiensis* protein or polypeptide is a transposase homologue.
- 29. The transformed cell according to claim 25, wherein said *B. thuringiensis* protein or polypeptide an integrase.
- 30. The transformed cell according to claim 25, wherein said *B. thuringiensis* protein or polypeptide is a protein homologue having antibiotic resistance properties.
- 31. The transformed cell according to claim 25, wherein said *B. thuringiensis* protein or polypeptide is a toxin or toxin homologue.
- 32. The transformed cell according to claim 26, wherein said cell is selected from the group consisting of a bacterial cell, a plant cell, an algal cell, a mammalian cell, an insect cell and a fungal cell.
- 33. A transformed plant comprising an exogenous nucleic acid which comprises:

- a) an exogenous promoter region which functions in a plant cell to cause the production of an mRNA molecule; which is operably linked to
- b) a structural nucleotide sequence encoding a polypeptide or protein set forth in Table 1; which is operably linked to
- a 3' non-translated sequence that functions in said plant cell to cause termination of transcription and addition of polyadenylated ribonucleotides to the 3' end of said mRNA molecule.
- 34. The transformed plant of claim 33, wherein the polypeptide or protein is an insect inhibitory polypeptide or protein.
- 35. The transformed plant according to claim33, wherein said plant is a monocot or a dicot plant.
- 36. A computer readable medium having recorded thereon one or more nucleotide sequences, wherein each of the nucleotide sequences is selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 8283 or complements thereof.
- 37. The computer readable medium according to claim 36, wherein each of the nucleotide sequences or complements thereof encodes a *B. thuringiensis* protein or polypeptide.
- 38. A method for generating a transgenic plant comprising the steps of: a) introducing into the genome of the plant an exogenous nucleic acid, wherein the exogenous nucleic acid comprises in the 5' to 3' direction i) a promoter that functions in the cells of said plant, said promoter operably linked to; ii) a structural nucleotide sequence encoding a polypeptide or protein set forth in Table 1, said structural nucleic acid sequence operably linked to; iii) a 3' non-translated nucleic acid sequence that functions in said cells of said plant to cause transcriptional termination; b) obtaining transformed plant cells containing the nucleic acid sequence of step (a); and c) regenerating from said transformed plant cells a transformed plant in which said polypeptide or protein is overexpressed.
- 39. The method of claim 38, wherein the protein or polypeptide is an insect inhibitory polypeptide or protein.

- 40. A method for identifying one or more genes encoding insect inhibitory proteins in the sequences of one or more plasmids of a *Bacillus* thuringiensis, the method comprising the steps of:
 - a) isolating and purifying plasmid DNA;
 - b) constructing a DNA library from the isolated and purified plasmid DNA;
 - c) sequencing the DNA library to obtain a set of plasmid DNA sequences;
 - d) comparing the set of DNA sequences with a set of chromosomal DNA sequences, wherein the set of chromosomal DNA sequences comprises the group consisting of SEQ ID No: 1 through SEQ ID No: 8283;
 - e) identify common sequences, which are identified both in the set of plasmid DNA sequences and in the set of chromosomal DNA sequences;
 - subtracting the common sequences from the set of plasmid DNA sequences to obtain a subtracted set of plasmid DNA sequences;
 - g) assembling the substracted set of DNA sequences to contigs and sequences;
 - h) determining open reading frames in the contigs and sequences; and
 - i) identifying one or more genes encoding insect inhibitory proteins in the sequences of one or more plasmids of said *Bacillus* thuringiensis.
- 41. A method for identifying plasmid DNA sequences of a *Bacillus* species, the method comprising the steps of:
 - a) identifying a Bacillus species strain which does not contain plasmid DNA;
 - b) generating a library of chromosomal genomic DNA from said Bacillus species strain which does not contain plasmid DNA;
 - c) obtaining the nucleotide sequence of said chromosomal genomic DNA;
 - d) identifying a Bacillus species strain which contains plasmid DNA;
 - e) generating a library of said Bacillus species plasmid DNA;
 - f) obtaining the nucleotide sequence of said plasmid DNA;
 - g) subtracting any common sequences identified in the plasmid DNA which are also identified in the chromosomal genomic DNA; and
 - h) constructing contigs and sequences of said plasmid DNA; wherein said contigs and sequences comprise the plasmid DNA sequence of said Bacillus species.

- 42. The method according to claim 41 wherein said Bacillus species is selected from the group consisting of *Bacillus thuringiensis*, *Bacillus subtilis*, *Bacillus cereus*, and *Bacillus anthracis*.
- 43. The method according to claim 42 wherein said Bacillus species is Bacillus thuringiensis.
- 44. The method of claim 41 wherein the nucleotide sequence of said chromosomal genomic DNA comprises the sequences selected from the group consisting of SEQ ID NO:1 through SEQ ID NO:8283.
- 45. The method of claim 41 wherein said Bacillus species strain contains less than two naturally occurring plasmids.
- 46. The method according to claim 45 wherein said Bacillus species strain is EG 10650.
- 47. The method of claim 45 wherein said less than two naturally occurring plasmids is selectively tagged with an identifiable marker gene.
- 48. The method according to claim 46 wherein said marker gene is selected from the group consisting of an antibiotic resistance gene, a gene encoding an essential metabolic or catabolic protein or functional homologue thereof, a gene conferring bioluminescence properties, and a gene encoding an enzyme which catalyzes the metabolism of a substrate which imparts a colored product deposited on or within the Bacillus species strain.
- 49. An isolated and purified nucleic acid sequence selected from the group consisting of SEQ ID NO:1 through SEQ ID NO:8283
- 50. An isolated and purified *Bacillus thuringiensis* protein or polypeptide which is selected from the group consisting of proteins or polypeptides identified in Table 1.

10

Abstract

The present invention relates to nucleic acid sequences from *Bacillus thuringiensis* and, in particular, to genomic DNA sequences. The invention encompasses nucleic acid molecules present in non-coding regions as well as nucleic acid molecules that encode proteins, fragments of proteins, tRNA's, fragments of tRNA's, rRNA's and fragments of rRNA's. In addition, proteins and fragments of proteins so encoded and antibodies capable of binding the proteins are encompassed by the present invention. The invention also relates to methods of using the disclosed nucleic acid molecules, proteins, fragments of proteins, RNA's, and antibodies, for example, for gene identification and analysis, and preparation of constructs.