Inhaltsverzeichnis

1.	Einführung		2
	1.1.	Algebra	2
		Geschichtlicher Überblick	
	1.3.	Polynomielle Gleichungen	3
	1.4.	Zahlentheorie	4
		1.4.1. Kurze Diskussion zu ggT	5
	1.5.	Geometrie	5
2.	Kommutative Ringe		6
	2.1.	Ringe	6
	2.2.	Einheiten, Teilbarkeit, Quotientenkörper (Seite 34)	9
	2.3.	Ring der Polynome (Seite 41)	11
	2.4.	Ideale und Faktorringe	16
	2.5.	Charakteristik eines Körpers	21
	2.6.	Primideale und Maximalideale	22
Δ	Διις	wahlaxiom und das Zornsche Lemma	24

1. Einführung

1.1. Algebra

Was ist Algebra?

- 1. Gruppen und Wirkungen
- 2. Ringe und Module
- 3. Körpertheorie

Wozu ist Algebra gut? Zentrale Grundlage für die reine Mathematik.

Was sind die möglichen Ziele dieser Vorlesung? Grundlagen schaffen. Viele tolle Sätze und Zusammenhänge schaffen.

1.2. Geschichtlicher Überblick

Algebra vom Arabischen al-gabr, "das Zusammenfügen gebrochener Teile" (Äquivalenzumformungen).

Epochen:

- 1. Babylonier ca. 2000 v.Chr.
- 2. Griechen 600 v. 300 v.Chr.
- 3. Inder 5. 7. Jhdt.
- 4. Araber 8. 13. Jhdt.
- 5. Italiener 16. Jhdt.
- 6. Leibniz
- 7. Lineare Algebra
- 8. E. Galois
- 9. E. Noether (~ 1930)

1.3. Polynomielle Gleichungen

Quadratische Gleichung

$$x^{2} + px + q = 0 \Rightarrow x^{2} + 2\frac{p}{2}x + \frac{p^{2}}{4} = \frac{p^{2}}{4} - q \Rightarrow (x + \frac{p}{2})^{2} = \frac{p^{2}}{4} - q \Rightarrow x = -\frac{p}{2} \pm \sqrt{\frac{p^{2}}{4} - q}$$

Kubische Gleichung a, b, c gegeben.

$$x^3 + ax^2 + bx + c = 0$$

Wir setzen $x = y - \frac{a}{3}$, dann ist

$$x^{3} = (y - \frac{a}{3})^{3} = y^{3} - 3\frac{a}{3}y^{2} + 3(\frac{a}{3})^{3}y - (\frac{a}{3})^{3}$$
$$ax^{2} = a(y - \frac{a}{3})^{2} = a(y^{2} - 2\frac{a}{3}y + (\frac{a}{3})^{2})$$
$$bx = \dots$$

$$y^3 + py + q = 0$$

Ansatz: y = g + h.

$$g^{3} + 4g^{2}h + 4gh^{2} + h^{3} + p(g+h) + q = 0$$

$$\underbrace{g^{3} + h^{3} + q}_{=0} + \underbrace{(3gh+p)}_{=0}(g+h) = 0$$

$$g^{3} + h^{3} = -q \quad \text{und} \quad gh = -\frac{p}{3}.$$

Sei $G = g^3$, $H = h^3$. Dann folgt G + H = -q und $GH = -(\frac{p}{3})^3$ Folgt $G(-q - G) = -\frac{p^3}{27}$. Dies können wir mit der Quadratischen Gleichung lösen. Die sich daraus ergebende Formel wird auch die Cardano-Formel genannt. Hat eine Kubischegleichung drei reelle Lösungen so verwendet jede Lösungsformel zur Berechnung dieser Komplexe Zahlen (Casus Irreduzibiles).

Quadratische Gleichung Diese wurde kurz danach von Ferrari gelöst. Herleitung siehe Buch.

Gleichung 5. Grades 1824 Abel: es kann keine Formel mit Wurzelausdrücken geben. 1830 Galois: Vollständige Erklärung und Erfindung der Gruppentheorie zu diesem Zweck.

1.4. Zahlentheorie

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$$

wobei $\mathbb N$ die 0 enthält. In $\mathbb N$ und in $\mathbb Z$ gibt es Primzahlen.

Satz. Es gibt in \mathbb{Z} eine eindeutige Primfaktorzerlegung. Jede Zahl $n \in \mathbb{Z} \setminus \{0\}$ lässt sich als Produkt

$$n = \varepsilon \cdot p_1^{k_1} \cdot \ldots \cdot p_l^{k_l}.$$

schreiben, wobei $\varepsilon = \pm 1, l \in \mathbb{N}, p_1, \dots, p_l > 0$ Primzahlen sind und $k_1, \dots, k_l \in \mathbb{N}_{>0}$ sind. Diese Darstellung ist bis auf die Reihenfolge der Primzahlen eindeutig.

Welche Zahle in N sind Summen von zwei Quadratzahlen? z.B. 3 geht nicht, 5 = 4 + 1

Was sind die Primzahlen in $\mathbb{Z}[i] = \{a+ib : a, b \in \mathbb{Z}\} \subseteq \mathbb{C}$? z.b. 5 = (2+i)(2-i) ist keine Primzahl in $\mathbb{Z}[i]$, 3 ist eine.

Sehr nützlich für diese Frage ist:

Definition. Wir schreiben für $a, b, m \in \mathbb{Z}$, dass $a \equiv b \mod m$ falls m die Differenz b - a teilt (also falls es ein $k \in \mathbb{Z}$ gibt mit b - a = km)

Dies definiert eine Äquivalenzrelation (für festes $m \in \mathbb{Z}$). Der Quotientenraum wird mit

$$\mathbb{Z}_m = \mathbb{Z}/\mathbb{Z}_m = \{a + \mathbb{Z}_m : a \in \mathbb{Z}\}\$$

bezeichnet.

Lemma. Addition und Multiplikation auf \mathbb{Z} definieren auch wohldefinierte Addition und Multiplikation auf \mathbb{Z}_m . D.h. für festes m gilt: $a_1 \equiv a_2$ und $b_1 \equiv b_2 \mod m \Rightarrow a_1 + b_1 \equiv a_2 + b_2$ und $a_1 \cdot b_1 \equiv a_2 \cdot b_2$ modulo m.

Beweis. Nach Annahme gilt

$$a_2 - a_1 = km$$

 $b_2 - b_1 = lm$
 $a_2 + b_2 - (a_1 + b_1) = (k + l)m$

was bedeutet $a_1 + b_1 \equiv a_2 + b_2 \mod m$. Multiplikation analog.

Lemma. Die einzigen Quadratzahlen in \mathbb{Z}_4 sin 0 und 1. Daher sind die Zahlen 3, 7, 11, 15, 19, . . . keine Summen von zwei Quadratzahlen in \mathbb{N} .

Beweis. $0^2 \equiv 0, 1^2 \equiv 1, 2^2 \equiv 0, 3^2 \equiv 1 \mod 4$. Wenn $n = k^2 + l^2$ dann gilt modulo 4, dass

$$n \equiv k^2 + l^2 \equiv \begin{cases} 0 \\ 1 \end{cases} + \begin{cases} 0 \\ 1 \end{cases} \equiv 0, 1, 2 \mod 4.$$

Also können die Zahlen $3,7,11,\ldots \equiv 3 \mod 4$ keine Summen von zwei Quadratzahlen sein.

1.4.1. Kurze Diskussion zu ggT

Proposition. Für je zwei natürliche Zahlen $a, b \in \mathbb{N}_{>0}$ gibt es einen größten gemeinsamen Teiler d > 0. Dieser erfüllt $\mathbb{Z}a + \mathbb{Z}b = \mathbb{Z}d$.

Beweis. Wir bemerken zuerst, dass $I = \mathbb{Z}a + \mathbb{Z}b = \{ka + lb : k, l \in \mathbb{Z}\}$ unter Addition und Multiplikation mit Elementen in \mathbb{Z} abgeschlossen ist. Da \mathbb{N} wohlgeordnet ist gibt es in $I \cap \mathbb{N}_{>0}$ ein kleinstes Element d > 0. Sei nun $m \in I$. Dann können wir in \mathbb{Z} Division mit Rest verwenden, d.h.

$$\underbrace{m}_{\in I} = k \underbrace{d}_{\in I} + r \quad k \in \mathbb{Z}, r \in \{0, \dots, d-1\}.$$

Also ist auch $k \cdot d$ in I und daher $r = m - kd \in I$, $r \ge 0$ und r < d. Folgt r = 0 wegen der Definition von $d \in I \cap \mathbb{N}_{>0}$ als das kleinste Element. Somit ist $I \subseteq \mathbb{Z} d \subseteq I \Rightarrow I = \mathbb{Z} d$. Wir überprüfen noch, dass d der größte gemeinsame Teiler von a und b ist.

$$a \in I = \mathbb{Z}d \Rightarrow a = kd$$
, also $d|a$.

$$b \in I = \mathbb{Z}d \dots$$
, also $d|b$.

Also ist d gemeinsamer Teiler. Angenommen f ist ein weiterer gemeinsamer Teiler von a und b. Da $d \in I$ gibt es $k, l \in \mathbb{Z}$ mit d = ka + lb. Folgt f|a und f|b und daher f|d, somit $f \leq d$.

1.5. Geometrie

Alte Griechen sahen Geometrie und Zahlentheorie getrennt.

Descartes (1986-1649): Kann man $\sqrt[3]{2}$ oder 20° mit Zirkel und lineal konstruieren.

Klassifikation von Geometrie im Erlanger Programm Klein 1872

2. Kommutative Ringe

2.1. Ringe

Definition. Ein Ring ist eine Menge R ausgestattet mit Elementen $0 \in R$, $1 \in R$ und drei Abbildungen

$$\begin{cases} +: R \times R \to R \\ -: R \to R \\ \cdot: R \times R \to R \end{cases}$$

so dass folgende Axiome gelten.

(R, +) ist eine abelsche Gruppe mit neutralem Element 0 und Inversem - d.h.

$$(a+b) + c = a + (b+c)$$
$$0 + a = a$$
$$(-a) + a = 0$$
$$a + b = b + a$$

für alle $a, b, c \in R$.

 (R,\cdot) : Assoziativität $(a\cdot b)\cdot c=a\cdot (b\cdot c)$ und Einselement $1\cdot a=a=a\cdot 1$.

Distributivität: a(b+c) = ab + ac und (b+c)a = ba + ca.

Falls zusätzlich Kommutativität von \cdot gilt: ab = ba, dann sprechen wir von einem kommutativen Ring.

Bemerkung. • 0 ist eindeutig durch die Axiome bestimmt.

- Ebenso ist -a durch die Axiome für jedes $a \in R$ eindeutig bestimmt.
- $0 \neq 1$ wurde nicht verlangt.
- $0 \cdot a = 0$ für jedes $a \in R$:

$$0 \cdot a = (0+0) \cdot a = 0 \cdot a + 0 \cdot a \Rightarrow 0 = 0 \cdot a.$$

Konvention. • Klammern bei + (und ebenso bei ·) lassen wir auf Grund der Assoziativität der Addition (Mult.) weg also a + b + c + d.

- Punktrechnung vor Strichrechnung, d.h. $a \cdot b + c = (a \cdot b) + c$.
- Den Multiplikationspunkt lässt man oft weg.

Notation.

$$0 \cdot a = 0$$
 $1 \cdot a = a$ $2 \cdot a = a + a$ $3 \cdot a = a + a + a$ $(n+1) = n \cdot a + a, (-n) \cdot a = -(n \cdot a)$ für $n \in \mathbb{N}$.

Dies definiert eine Abbildung $\mathbb{Z} \times R \to R$, $(n, a) \mapsto n \cdot a$. Diese erfüllt: $(m+n) \cdot a = m \cdot a + n \cdot a$, $n \cdot (a+b) = n \cdot a + n \cdot b$.

Ebenso definieren wir

$$a^0 = 1_R$$
 $a^1 = a$ $a^2 = a \cdot a$ $a^{n+1} = a^n \cdot a$ für $n \in \mathbb{N}$

Diese erfüllt

$$a^{m+n} = a^m + a^n$$
 $(a^m)^n = a^{m \cdot n}$ $(ab)^n = a^n b^n$

in kommutativen Ringen.

Definition. Angenommen R, S sind Ringe und $f: R \to S$ ist eine Abbildung. Wir sagen f ist ein Ringhomomorphismus falls

$$f(1_R) = 1_S$$
 $f(a+b) = f(a) + f(b)$ $f(a \cdot b) = f(a) \cdot f(b)$

für alle $a, b \in R$. Falls f invertierbar ist, so nennen wir f einen Ringisomorphismus.

Bemerkung.
$$f(0_R = 0_S \text{ denn } f(0_R) = f(0+0) = f(0) + f(0) \ge 0_S = f(0_R).$$
 $f(-a) = -f(a)$ für $a \in R$ (ähnlicher Beweis).

Definition. Sei R ein Ring und $S \subseteq R$ auch ein Ring. Wir sagen S ist ein *Unterring*, falls id : $S \to R$, $s \mapsto s$ ein Ringhomomorphismus ist.

Beispiel (Ringe). (1) $R = \{0\}$. Hier ist 0 = 1.

- (2) $\mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$ sind jeweils Unterringe.
- (3) Sei V ein Vektorraum, dann ist

$$\operatorname{End}(V) = \{ f : V \to V \text{ linear} \}$$

ein Ring, wobei + punkteweise definiert wird und \cdot die Verknüpfung ist.

- (4) $\operatorname{Mat}_{n,n}(\mathbb{Q})$ bzw. $\mathbb{R}, \mathbb{C}, \mathbb{Z}$.
- (5) Sei $m \geq 1$. Dann ist $Z_m = \mathbb{Z}/Z_m$ ein Ring. Wenn dies die Übersicht erhöht können wir die Restklasse $[a]_{\equiv \mod m}$ einer Zahl a einfach mit \overline{a} . In dieser Notation haben wir

$$\overline{a} + \overline{b} = \overline{a+b} \quad \overline{a} \cdot \overline{b} = \overline{ab}.$$

(6) \mathbb{Z} -adjungiert- $i : \mathbb{Z}[i] = \{a + ib : a, b \in \mathbb{Z}\} \subseteq \mathbb{C}$. \mathbb{Z} -adjungiert- $\sqrt{2} : \mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbb{Z}\} \subseteq \mathbb{R}$.

$$(a + b\sqrt{2})(c + d\sqrt{2}) = ac + 2bd + (ad + bc)\sqrt{2}.$$

(7) Sei X eine Menge und $R = \mathbb{Z}^X = \{f : X \to \mathbb{Z}\}$ mit punktweise Operationen. Dies ist ein kommutativer Ring z.B. $C([0,1]) = \{f : [0,1] \to \mathbb{C} \text{ stetig}\}.$

Antibeispiel: $C_0(\mathbb{R}) = \{ f : \mathbb{R} \to \mathbb{C} \text{ stetig und } \lim_{|x| \to \infty} f(x) = 0 \}$ ist kein Ring

Beispiel (Ringhomomorphismen). (1) $R = \{0\} \xrightarrow{f} \mathbb{Z}, 0 \mapsto 0, 0_R = 1_R \mapsto f(1_R) = f(0_R) = 0_{\mathbb{Z}} \neq 1_{\mathbb{Z}}$

- (2) $R \to \{0\}, a \mapsto 0$ ist ein Ringhomomorphismus.
- (3) $\mathbb{Z} \to R, n \mapsto n \cdot 1_R$ ist ein Ringhomomorphismus.
- (4) $\mathbb{Z} \to \mathbb{Q} \to \mathbb{R} \to \mathbb{C}$ da Unterringe.
- (5) $\mathbb{R} \to \operatorname{Mat}_{n,n}(\mathbb{R}), t \mapsto tI_n$. Umgekehrt geht nicht.
- (6) $C([0,1] \to \mathbb{C}, f \mapsto f(x_0)$ für ein festes $x_0 \in [0,1]$
- (7) $\mathbb{Z} \to \mathbb{Z}_m, a \mapsto \overline{a}$
- (8) $\operatorname{Mat}_{n,n}(\mathbb{C}) \to \operatorname{End}(\mathbb{C}^n), A \mapsto (x \in \mathbb{C}^n \mapsto Ax)$ ist ein RIngisomorphismus.

Lemma. Falls in einem Ring R gilt 0 = 1, dann ist $R = \{0\}$.

Beweis. Sei
$$a \in R$$
. Dann gilt $a = a \cdot 1 = a \cdot 0 = 0$

Lemma (Binomialformel). Sei R ein Ring und $a, b \in R$ mit ab = ba (z.B. weil R kommutativ ist). Dann gilt für jedes $n \in \mathbb{N}$ $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$.

Beweis. Die Eigenschaften von $\binom{n}{k}$ sind bekannt, und damit funktioniert der übliche Beweis.

Falls n = 2 ist und $(a + b)^2 = a^2 + 2ab + b^2$ gilt. Dann folgt ab = ba.

Achtung. Ab nun werden wir nur kommutative Ringe betrachten.

2.2. Einheiten, Teilbarkeit, Quotientenkörper (Seite 34)

Beispiel. In \mathbb{Z}_{15} gilt $\overline{3} \cdot \overline{15} = \overline{15} = \overline{0}$ aber $\overline{3} \neq \overline{0} \neq \overline{5}$.

Definition. Sei R ein Ring. Ein Element $a \in \mathbb{R} \setminus \{0\}$ heißt ein Nullteiler falls es ein $b \in \mathbb{R} \setminus \{0\}$ mit ab = 0 gibt.

Definition. Ein kommutativer Ring heißt ein Integritätsbereich falls $0 \neq 1$ und falls aus ab = ac und $a \neq 0$ b = c folgt (Kürzen).

Lemma. Sei R ein kommutativer Ring mit $0 \neq 1$. Dann ist R ein Integritätsbereich gdw. R keine Nullteiler besitzt.

Beweis. Angenommen R ist ein Integritätsbereich und $a \in R \setminus \{0\}, b \in R$ erfüllt $a \cdot b = 0 \Rightarrow a \cdot b = a \cdot 0 \Rightarrow b = 0$. Also kann es keine Nullteiler geben.

Angenommen R hat keine Nullteiler und $a,b,c\in R, a\neq 0$ erfüllen $ab=ac\Rightarrow ab-ac=0, a(b-c)=0\Rightarrow b=c.$

Beispiel. 1. $\mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$

- 2. Antibeispiel: C([0,1]) ist kein Integritätsbereich.
- 3. Wann ist \mathbb{Z}_m ein Integritätbereich?

Definition. Sei R ein kommutativer Ring und $a, b \in R$. Wir sagen a teilt b, a|b [in R] falls es ein c in R gibt mit $b = a \cdot c$.

Definition. Wir sagen $a \in R$ ist eine *Einheit* falls $a|1 \Leftrightarrow \exists b \text{ mit } ab = 1 \Leftrightarrow \exists a^{-1} \in R$. Einheiten mit $R^x = \{a \in R \mid a|1\}$

Bemerkung. R^x bildet eine Gruppe, $1 \in R^x$, $a, b \in R^x \Rightarrow (ab)(a^{-1}b^{-1}) = aa^{-1}bb^{-1} = 1 \Rightarrow ab \in R^x$.

Beispiel. 1. $\mathbb{C}^x = \mathbb{C} \setminus \{0\}$

- 2. $\mathbb{Z}^x = \{\pm 1\}$
- 3. $\mathbb{Z}[i]^x = \{1, -1, i, -i\}$
- 4. $\mathbb{Z}[\sqrt{2}]^x = ?$. Aufjedenfall enthält es $(1+\sqrt{2})(\sqrt{2}-1)=1$.

Definition. Ein Körper (field) K ist ein kommutativer Ring in dem $0 \neq 1$ und jede Zahl ungleich Null eine multiplikative Inverse besitzt.

Lemma. Ein Körper ist ein Integritätsbereich.

Beweis. Angenommen $a \neq 0, b, c \in R$.

$$ab = ac \stackrel{a^{-1}}{\Rightarrow} a^{-1}ab = a^{-1}ac \Rightarrow b = c.$$

Proposition. Sei $m \geq 1$ eine natürliche Zahl. Dann ist \mathbb{Z}_m ein Körper genau dann wenn m eine Primzahl ist.

Beweis. Falls m=1 ist, dann ist $\mathbb{Z}_1 = \{\overline{0}\}$ sicher kein Körper (da $0 \neq 1$ gelten muss). Falls m=ab mit a,b < m, dann ist $\overline{0} = \overline{m} = \overline{a}\overline{b}$ mit $\overline{a} \neq 0 \neq \overline{b}$. Also hat \mathbb{Z}_m Nullteiler, ist kein Integritätsbereich und kein Körper.

Sei nun m eine Primzahl und $\overline{a} \neq 0$. Sei $d = \operatorname{ggT}(m,a)$. Nahc Definition ist $d \geq 1$ ein Teiler von m. Falls d = m wäre, dann folgt $m|a \Rightarrow \overline{a} = \overline{0} \nleq$. Also ist d = 1. Nach dem Lemma vom letzten Mal folgt daraus, dass es $k, l \in \mathbb{Z}$ mit $1 = k \cdot m + l \cdot a$. Modulo m ist die $\overline{1} = \overline{l} \cdot \overline{a}$. Dies zeigt, dass $\overline{a} \neq 0$ die multiplikative Inverse l besitzt.

Satz (Quotientenkörper (S.38)). Sei R ein Integritätsbereich. Dann gibt es einen Körper K, der R enthält und so dass $K = \{\frac{p}{q} : p, q \in R, q \neq 0\}$. z.B. für $R = \mathbb{Z}$ haben wir $K = \mathbb{Q}$.

Beweis. Wir definieren die Relation \sim auf $X = R \times (R \setminus \{0\})$:

$$(a,b) \sim (p,q) \Leftrightarrow aq = pb \quad [\text{in } R] \quad [\text{versteckt wollen wir } \frac{a}{b} = \frac{p}{q}].$$

Äquivalenzrelation:

- $(a,b) \sim (a,b)$ denn ab = ab.
- $(a,b) \sim (p,q) \Rightarrow (p,q) \sim (a,b)$ denn aq = pb ist pb = aq.
- $(a,b) \sim (p,q)$ und $(p,q) \sim (m,n)$. aq = pb und pn = mq. Multipliziere erste mit n und zweite mit b.

$$aqn = pbn = pnb = mqb \Rightarrow aqn = mqb \stackrel{q \neq 0}{\Rightarrow} an = mb.$$

und somit $(a,b) \sim (m,n)$.

Wir definieren $K = X/\sim$ und die Elemente $0_K = [(0,1)]_{\sim}$ und $1_K = [(1,1)]_{\sim}$. und die Operationen + und ·:

$$[(a,b)]_{\sim} + [(p,q)]_{\sim} = [(aq+pb,bq)]_{\sim}$$

 $[(a,b)]_{\sim} \cdot [(p,q)]_{\sim} = [(ap,bp)]_{\sim}.$

Diese Operationen sind wohldefiniert (für + siehe Buch).

Angenommen $(a,b) \sim (a',b'), (p,q) \sim (p',q')$ somit ab' = a'b und pq' = p'q. Schließlich multipliziere beide Gleichungen (ap)(b'q') = (a'p')(bq) und somit $(ap,bq) \sim (a'p',b'q')$.

Wir überprüfen Schritt für Schritt die Axiome eines Körpers:

• Kommutativität der Addition:

$$[(a,b)]_{\sim} + [(p,q)]_{\sim} = [(aq+pb,bp)]_{\sim} = [(pq+aq,qb)]_{\sim} = [(p,q)]_{sim} + [(a,b)]_{\sim}.$$

unter Verwendung der Kommutativität der Addition und Multiplikation in R.

K ist sogar ein Körper.

$$[(0,1)]_{\sim} \neq [(1,1)]_{\sim} \text{ da } 0 \cdot 1 \neq 1 \cdot 1 \text{ in } R$$

Falls $[(a,b)]_{\sim}\neq[(0,1)]_{\sim},$ dann ist $[(a,b)]_{\sim}^{-1}=[(b,a)]_{\sim},$ da

$$[(a,b)]_{\sim} \cdot [(b,a)]_{\sim} = [(ab,ab)]_{\sim} = [(1,1)]_{\sim}$$

Ab sofort schreiben wir $\frac{a}{b} = [(a,b)]_{\sim}$. Wir identifizieren $a \in R$ mit $\frac{a}{1} \in K$. Hierzu bemerken wir, dass $\iota : a \in R \mapsto \frac{a}{1} \in K$ ein injektiver Ringhomomorphismus ist.

Beweis. Angenommen $a \neq 0$, dann gilt $\frac{a}{1} \neq \frac{0}{1}$. Also gilt Ker $\iota = \{0\}$ und ι ist injektiv.

$$\iota(1) = \frac{1}{1} = 1_K$$
 und $\iota(a+b) = \frac{a+b}{1} = \frac{a}{1} + \frac{b}{1} = \iota(a) + \iota(b)$ sowie $\iota(ab) = \frac{a \cdot b}{1 \cdot 1} = \iota(a)\iota(b)$

Definition. Sei K ein Körper und $L \subseteq K$ ein Unterring der auch ein Körper ist. Dann nennen wir L auch einen $Unterk\"{o}rper$.

Übung. Verwenden sie SageMath um herauszufinden für welche $p=2,3,\ldots,100$ er ein $g\in(\mathbb{Z}/p\mathbb{Z})^X$ mit

$$(\mathbb{Z}/p\mathbb{Z})^X = \{g^k : k = 0, 1, \ldots\}$$

gibt (k ?

2.3. Ring der Polynome (Seite 41)

Im Folgenden ist R immer ein kommutativer Ring. Wir wollen einen neuen Ring, den Ring R[X] der Polynome in der Variablen X und Koeffizienten in R definieren.

Beispiel. Sei $K = \mathbb{F}_2 = {\overline{0}, \overline{1}} = \mathbb{Z}/2\mathbb{Z}$. Dann soll $X^2 + X$ nicht das Nullpolynom sein, obwohl die zugehörige Polynomfunktion gleich 0 ist:

$$0 \in \mathbb{F}_2 \mapsto 0^2 + 0 = 0$$

 $1 \in \mathbb{F}_2 \mapsto 1^2 + 1 = 1 + 1 = 0$

Wir verwenden die Koeffizienten um Polynome zu definieren.

Definition. Sei R ein kommutativer Ring. Wir definieren den $Ring\ der\ formalen\ Potentreihen$ (in einer Variable über dem Ring R) als

1. die Menge aller Folgen $(a_n)_{n=0}^{\infty} \in \mathbb{R}^{\mathbb{N}}$

2.
$$0 = (0)_{n=0}^{\infty}, 1 = (1, 0, 0, \ldots)$$

3.
$$+: (a_n)_{n=0}^{\infty} + (b_n)_{n=0}^{\infty} = (a_n + b_n)_{n=0}^{\infty}$$

4.
$$(a_n)_{n=0}^{\infty} \cdot (b_n)_{n=0}^{\infty} = (c_n)_{n=0}^{\infty}$$
 wobei

$$c_n = \sum_{i=0}^n a_i b_{n-i} = \sum_{\substack{i+j=n\\i,j>0}}^{\infty} a_i b_j.$$

Die Menge aller Folgen mit $a_n = 0$ für alle hinreichend großen $n \ge 0$ wird als der *Polynomring* (in einer Variable und über R) bezeichnet.

Beweis. Wir überprüfen die Axiome welche die Multiplikation betreffen und überlsassen die anderen dem Leser.

1.
$$a \cdot b = b \cdot a$$
 gilt, denn $\sum_{i+j=n} a_i b_j = \sum_{i+j=n} b_i a_j$.

2.
$$(1 \cdot a)_n = \sum_{i+j=n} 1_i a_j = a_n$$
, da $1_i = 0$ außer wenn $i = 0$.

3.
$$\underbrace{(ab)c}_{-d} = a(bc)$$
 gilt, denn

$$d_n = \sum_{i+j=n} \underbrace{(ab)_i}_{=\sum_{k+l=i} a_k b_l} c_i = \sum_{i+j+k=n} a_i b_j c_k$$

ohne Klammern wegen Assoziativität von \cdot in R. Rechts ergibt sich dieselbe Antwort.

4.

$$((a+b)\cdot c)_n = \sum_{i+j=n} \underbrace{(a+b)_i c_j}_{a_i c_j + b_i c_j} = \sum_{i+j=n} a_i c_j + \sum_{i+j=n} b_i c_j = (ac+bc)_n$$

Des Weiteren überprüfen wir, dass der Polynomring unter + und \cdot abgeschlossen ist: Angenommen a,b sind Polynome, so dass $a_i=0$ für i>I und $b_j=0$ für j>J. Draus folgt

$$(a+b)_n = 0$$
 für $n > \max(I, J)$ $(a \cdot b)_n = 0$ für $n > I+J$

denn $(a \cdot b)_n = \sum_{i+j=n} \underbrace{a_i b_j}_{=0}$. Falls $a_i b_j \neq 0$ wäre, dann würde $a_i \neq 0$ und $b_j \neq 0$ folgen, was widerum $i \leq I, j \leq J$ und damit $n = i + j \leq I + J$ impliziert.

Notation. Wir ühren ein neues Symbol, eine Variable, z.B. X ein und identifizieren X mit

$$X^0 = 1 = (1, 0, 0, ...)$$
 $X^1 = (0, 1, 0, 0, ...)$ $X^2 = (0, 0, 1, 0, ...)$

Allgemeiner: Sei a ein Polynom, dann ist

$$X \cdot a = (0, a_0, a_1, a_2, \ldots)$$

denn $(X \cdot a)_n = \sum_{i+j=n} X_i a_j = a_{n-1}$ da X = 0 außer wenn i = 1 ist. $(X \cdot a)_0 = X_0 \cdot a_0 = 0$.

Wir schreiben $R[X] = \{\sum_{i=0}^{n} a_i X^i : n \in \mathbb{N}, a_0, \dots, a_n \in R\}$ (*R*-adjungiert-*X*) für den *Ring der Polynome in der Variablen X* und $R[X] = \{\sum_{n=0}^{\infty} a_i X^i : a_0, a_1, \dots \in R\}$ für den *Ring der formalen Potenzreihen in der Variable X*

Definition. Sei $p \in R[X] \setminus \{0\}$. Der Grad von $p \deg(p)$ ist gleich $n \in \mathbb{N}$ falls $p_n \neq 0$ ist und $p_k = 0$ für k > n. In diesem Fall nennen wir p_n auch den führenden Koeffizienten. Wir definieren $\deg(0) = -\infty$.

Proposition. Sei R ein Integritätsbereich. Dann ist R[X] auch ein Integritätsbereich. Des weiteren gilt für $p, q \in R[X] \setminus \{0\}$

- deg(pq) = deg(p) + deg(q) und der führende Koeffizient von pq ist das Produkt der führenden Koeffizienten von p und q.
- $deg(p+q) \le max(deg(p), deg(q))$
- Falls $p \mid q$, dann gilt $\deg(p) \leq \deg(q)$.

Beweis. Sei $f = p \cdot q$, also $f_n = \sum_{i+j} p_i p_i$ für alle $n \in \mathbb{N}$.

- Angenommen $n > \deg(p) + \deg(q) \Rightarrow p_i p_j = 0$ für alle $i + j = n \Rightarrow f_n = 0$.
- Angenommen $n = \deg(p) + \deg(q)$. Behauptung: $f_n = p_{\deg(p)}q_{\deg(q)}$ (führende Koeffizienten $\in R \setminus \{0\}$) da

$$f_n = \sum_{i+j = \deg(p) + \deg(q)} p_i q_j$$

Falls $i < \deg(p)$ ist, so ist $j > \deg(q) \Rightarrow q_i = 0$ und vize versa.

Somit ist $f_n \neq 0$, da R ein Integritätsbereich ist.

Diese beiden Punkte beweisen $\deg(f) = \deg(p \cdot q) = \deg(p) + \deg(q)$ also die erste Behauptung in der Proposition.

Angenommmen $p \mid q$, dann gibt es ein Polynom g so dass $q = p \cdot g$ ist $\deg(q) = \deg(p) + \underbrace{\deg(g)}_{>0} \ge \deg(p)$. Beweise die dritte Aussage in der Proposition.

Angenommen $p = \sum_{n=0}^{\deg(p)} p_n X^n, q = \sum_{n=0}^{\deg(q)} q_n X^n,$ dann ist

$$p+q = \sum_{n=0}^{\max(\deg(p),\deg(q))} (p_n + q_n) X^n.$$

Daraus folgt $deg(p+q) \le max(deg(p), deg(q))$.

Definition. Sei K ein Körper. Dann wird der Quotientenkörper von K[X] als der Körper der rationalen Funktionen $K(X) = \{\frac{f}{g} : f, g \in K[x], g \neq 0\}$ bezeichnet.

Wenn wir obige Konstruktion (des Polynomrings) iterieren, erhalten wir den Ring der Polynome in mehreren Variablen

$$R[X_1, X_2, \dots, X_d] := (R[X_1])[X_2][X_3] \dots [X_d].$$

Falls R = K ein Körper ist, definieren wir auch

$$K(X_1, X_2, \dots, X_d) = \operatorname{Quot}(K[X_1, \dots, X_d]).$$

Bemerkung. Auf $R[X_1, \ldots, X_d]$ gibt es mehrere Grad-Funktionen

$$\deg(x_1), \deg(x_2), \ldots \deg(x_d)$$

 $\deg_{\text{total}}(f) = \max\{m_1 + \ldots + m_d \mid f_{m_1, \ldots, m_d} \neq 0\}$

für $f = \sum_{m_1,...,m_d} f_{m_1,...,m_d} X_1^{m_1} \dots X_d^{m_d}$. z.B.

$$\deg_{\text{total}}(1 + X_1^3 + X_2 X_3) = 3 \qquad \deg_{X_2}(1 + X_1^3 + X_2 X_3) = 1.$$

Satz. Seien R, S zwei kommutative Ringe. Ein Ringhomomorphismus Φ von R[x] nach S ist eindeutig durch seine Einschränkung $\varphi = \Phi \mid_R$ und durch das Element $x = \Phi(X) \in S$ bestimmt. Des weiteren definiert

$$\Phi(\sum_{n=0}^{\infty} a_n X^n = \sum_{n=0}^{\infty} \phi(a_n) x^n \tag{*}$$

einen Ringhomomorphismus falls $\varphi:R\to S$ ein Ringhomomorphismus ist und $x\in S$ beliebig ist.

Beweis. Sei $\Phi:R[X]\to S$ ein Ringhomomorphismus, $\varphi=\Phi\mid_R, x=\Phi(X)\in S$. Dann gilt

$$\Phi(\sum_{n=0}^{\infty} a_n X^n = \sum_{n=0}^{\infty} \Phi(a_n X^n) = \sum_{n=0}^{\infty} \varphi(a_n x^n)$$

wie im Satz behauptet. Dies zeigt bereits den ersten Teil des Satzes, da die rechte Seite der Formel nur φ und $x = \Phi(X)$ benötigt.

Sei nun $\varphi: R \to S$ ein Ringhomomorphismus und $x \in S$ beliebig. Wir verwenden (*) um Φ zu definieren $\Phi: R[X] \to S$ ist nun definiert.

•
$$\Phi(1) = \phi(1_R) \underbrace{x^0}_{=1_S} = 1_S.$$

 $\Phi(a+b) = \Phi(\sum_{n=0}^{\infty} (a_n + b_n) X^n = \sum_{n=0}^{\infty} \varphi(a_n + b_n) x^n$ $= \sum_{n=0}^{\infty} \varphi(a_n) x^n + \sum_{n=0}^{\infty} \varphi(b_n) x^n = \Phi(a) + \Phi(b)$

$$\Phi(a \cdot b) = \Phi(\sum_{n=0}^{\infty} (\sum_{i+j=n} a_i b_j) X^n) = \sum_{n=0}^{\infty} \varphi(\sum_{i+j=n} a_i b_j) x^n$$

$$\sum_{i+j=n} \varphi(a_i \varphi(b_j) x^{i+j}) = (\sum_{i=0}^{\infty} \varphi(a_i) x^i) (\sum_{j=0}^{\infty} \varphi(b_j) x^j) = \Phi(a) \Phi(b).$$

Also ist Φ in der Tat ein Ringhomomorphismus von R[X] nach S.

Notation. Wir schreiben für zwei kommutative Ringe R, S

$$\operatorname{Hom}_{Ring}(R, S = \{ \varphi : R \to S \mid \varphi \text{ ist ein Ringhomomorphismus} \}$$

in dieser Notation können wir obigen Satz in der Form

$$\operatorname{Hom}_{Ring}(R[X], S) \cong \operatorname{Hom}_{Ring}(R, S) \times S$$

schreiben. Dies kann iteriert werden:

$$\operatorname{Hom}_{Ring}(R[x_1,\ldots,x_d],S) \cong \operatorname{Hom}_{Ring}(R,S) \times \underbrace{S \times \ldots \times S}_{d-\text{mal}}.$$

Beispiel. Falls wir R = S und $\varphi = id$ setzen, so erhalten wir für jedes $a \in R$ die entsprechende Auswertungsabbildung

$$\operatorname{ev}_a: f \mapsto f(a) = \sum_{n=0}^{\infty} f_n a^n.$$

Wenn wir $a \in R$ variieren, ergibt sich auch eine Abbildung

$$\Psi: f \in R[X] \to \left(f(\cdot) : \begin{cases} R \to R \\ a \mapsto f(a) \end{cases} \right) \in R^R.$$

Wir statten \mathbb{R}^R mit den punktweise Operationen aus, womit $\Psi:\mathbb{R}[X]\to\mathbb{R}^R$ ein Ringhomomorphismus ist.

Falls $|R| < \infty$ und $R \neq \{0\}$, so kann Ψ nicht injektiv sein.

Beispiel. Sei $R = \mathbb{Z}$ und $S = \mathbb{Z}/m\mathbb{Z}[X]$ für ein $m \geq 1$. Dann gibt es einen Ringhomomorphismus

$$f \in \mathbb{Z}[X] \mapsto \overline{f} = \sum_{n=0}^{\infty} (f_n \mod m) X^n \in \mathbb{Z}/m\mathbb{Z}[X^n].$$

Hier ist $\varphi : \mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}[X], a \mapsto a \mod m$.

Beispiel. $R = \mathbb{C}, S = \mathbb{C}[X], \varphi(a) = \overline{a}, a \in \mathbb{C}.$

$$f \in \mathbb{C}[X] \mapsto \sum_{n=0}^{\infty} \overline{f_n} X^n \in \mathbb{C}[X].$$

ist sogar ein Ringautomorphismus.

2.4. Ideale und Faktorringe

Definition. Sei R ein kommutativer Ring. Ein Ideal in R ist eine Teilmenge $I \subseteq R$ so dass

- (i) $0 \in I$
- (ii) $a, b \in I \Rightarrow a + b \in I$
- (iii) $a \in I, x \in R \Rightarrow xa \in I$

Beispiel. Seien R, S zwei kommutative Rine und $\varphi : R \to S$ ein Ringhomomorphismus. Dann ist

$$Ker(\varphi) = \{a \in R \mid \varphi(a) = 0\}$$

ein Ideal.

Beweis von (iii): Falls $a \in \text{Ker}(\varphi), x \in R$ dann gilt $\varphi(xa) = \varphi(x) \underbrace{\varphi(a)}_{=0} = 0 \Rightarrow xa \in \text{Ker}(\varphi)$.

Satz. Sei R ein kommutativer Ring un $I \subseteq R$ ein Ideal.

- 1. Die Relation $a \sim b \Leftrightarrow a b \in I$ ist eine Äquivalenzrelation auf R. Wir schreiben auch $a \equiv b \mod I$ für die Äquivalenzrelation und R/I für den Quotienten, den wir Faktorring nennen wollen.
- 2. Die Addition, Multiplikation, das Negative induzieren wohldefinierte Abbildungen

$$R/I \times R/I \rightarrow R/I$$
 bzw. $R/I \rightarrow R/I$.

3. Mit diesen Abbildungen, $0_{R/I} = [0]_{\sim}, 1_{R/I} = [1]_{\sim}$ ist R/I ein Ring und die kanoische Projektion $p: R \to R/I$ mit $a \in R \mapsto [a]_{\sim} = a + I$ ist ein surjektiver Ringhomomorphismus.

Beweis. 1):

- 1. $a \sim a \operatorname{dann} a \cdot a = 0 \in I$.
- 2. $a \sim b \Rightarrow b \sim a \text{ denn } b a = \underbrace{(-1)}_{\in R} \underbrace{(a b)}_{\in I} \in I$
- 3. $a \sim b \text{ und } b \sim c \Rightarrow a \sim c \text{ denn } a c = \underbrace{(a b)}_{\in I} + \underbrace{(b c)}_{\in I} \in I$

Also ist \sim eine Äquivalenzrelation und wir können den Quotienten $R/\sim = R/I$ betrachten.

2): Wir zeigen, dann $+: R/I \times R/I \to R/I$ wohldefiniert ist:

$$[a]_{\sim} + [b]_{\sim} = [a+b]_{\sim}$$

über die Identifikation $[a]_{\sim} \rightsquigarrow a, [b]_{\sim} \rightsquigarrow b$ und $(a,b) \mapsto a+b \mapsto [a+b]_{\sim}$.

Also müssen wir zeigen: $a \sim a'$, $b \sim b' \Rightarrow a + b \sim a' + b'$. Dies gilt da $a - a' \in I$, $b - b' \in I \Rightarrow (a + b) - (a' - b') \in I$ wegen Eigenschaft (ii) von Idealen.

Angenommen $a \sim a', b \sim b' \Rightarrow ab \sim a'b'$.

$$ab - a'b' = ab - a'b + a'b - a'b' = b\underbrace{(a - a')}_{\in I} + a'\underbrace{(b - b')}_{\in I} \in I.$$

wegen (iii) in der Def von Idealen Dies zeigt, dass die Multiplikation von Restklassen

$$[a]_{\sim} \cdot [b]_{\sim} = [a \cdot b]_{\sim}$$

wohldefiniert ist. Der Beweis für -a ist analog, oder ergibt sich aus der Multiplikation mit $[-1]_{\sim}$. Dies beweist 2).

3): Da die Ringaxiome nur Gleichungen enthalten, sind die Ringaxiome in R/I direkte Konsequenzen der Ringaxiome in R: z.B. Kommutativität von + in R/I

$$[a] + [b] = [a + b] = [b + a] = [b] + [a]$$

wobei das zweite Gleich wegen der Kommutativität in R gilt.

Alle anderen Axiome folgen auf dieselbe Weise. Des Weiteren gilt für die Projektion $p:R\to R/I, a\mapsto [a]_{\sim}$

$$\begin{split} p(0) &= [0]_{\sim}, p(1) = [1]_{\sim} \\ p(a+b) &= [a+b]_{\sim} = [a]_{\sim} + [b]_{\sim} = p(a) + p(b) \\ p(a\cdot b) &= [a\cdot b]_{\sim} = [a]_{\sim} \cdot [b]_{\sim} = p(a) \cdot p(b) \end{split}$$

Also ist $p: R \to R/I$ ein Ringhomomorphismus.

Beispiel. • $I = \mathbb{Z}_m \subseteq \mathbb{Z}$ ist ein Ideal

• $I = R, I = \{0\}$ (Nullideal) sind Ideale in einem beliebigen kommutativen Ring.

Lemma. Sei $I \subseteq R$ ein Ideal in einem kommutativen Ring. Dann gilt

$$I = R \Leftrightarrow 1 \in I \Leftrightarrow I \cap R^X \neq \varnothing.$$

Beweis. " \Leftarrow ": Angenommen $u = v^{-1} \in I$ und $v \in R, a \in R$. Dann gilt

$$a = a \cdot \underbrace{v \cdot u}_{-1} \in I.$$

Da $a \in R$ beliebig war folgt also I = R.

Beispiel. Welche Ideale gibt es in einem Körper? Nur $\{0\}$ und K. Da jede andere Teilmenge von K eine Einheit besitzt (Lemma).

Definition. Sei R ein kommutativer Ring und seien $a_1, \ldots, a_n \in R$. Dann wird

$$I = (a_1, \dots, a_n) = \{x_1 a_1 + x_2 a_2 + \dots + x_n a_n : x_1, \dots, x_n \in R\}$$

das von a_1, \ldots, a_n erzeugte Ideal genannt.

Für $a \in I$ wird I = (a) = Ra das von a erzeugte Hauptideal genannt.

Lemma. Sei R ein kommutativer Ring.

- 1) $(a) \subseteq (b) \Leftrightarrow b \mid a$
- 2) Falls R ein Integritätsbereich ist, dann gilt $(a) = (b) \Leftrightarrow \exists u \in R^x \text{ mit } b = ua$

Beweis. Angenommen $(a) \subseteq (b)$ wie in 1). Da $a = 1 \cdot a \in (a)$ folgt $a \in (b) = Rb$. Also gilt $a = x \cdot b$ für ein $x \in R$, also $b \mid a$.

Falls umgekehrt $b \mid a$, dann ist $a \in (b) \Rightarrow (a) = Ra \subseteq (b)$.

Die Implikation \Leftarrow in 2) folgt aus 1). Also nehmen wir nun and, dass (a) = (b). Dies impliziert a = xb und b = ya für $x, y \in R$. Daraus folgt a = xb = xya.

Falls a = 0 ist, so ist auch b = 0 und wir setzen u = 1.

Falls $a \neq 0$, so können wir kürzen und erhalten 1 = xy also $x, y \in R^X$ und wir setzen u = y.

Beispiel. Sei $R = C_{\mathbb{R}}([0,3])$.

$$a = \begin{cases} -x+1 & \text{für } x \in [0,1] \\ 0 & \text{für } x \in (1,2) \\ x-2 & \text{für } x \in [2,3] \end{cases} \qquad b = \begin{cases} x-1 & \text{für } x \in [0,1] \\ 0 & \text{für } x \in (1,2) \\ x-2 & \text{für } x \in [2,3] \end{cases}$$

Behauptung: (a) = (b) aber $b \notin R^X a$. Es gilt $a \in (b)$, denn $a = b \cdot f$ und $b = a \cdot f$ für

$$f = \begin{cases} -1 & \text{für } x \in [0, 1] \\ 2x - 3 & \text{für } x \in (1, 2) \\ 1 & \text{für } x \in [2, 3] \end{cases}$$

 $b \notin R^X a$ folgt aus dem Zwischenwertsatz.

Falls $I \subseteq R$ ein Ideal ist und $a \in R$, dann ist die Restklasse für Äuivalent modulo I gleich

$$[a]_N = \{x \in R : x \sim a\} = a + I.$$

Satz (Erster Isomorphiesatz). Angenommen R, S sind kommutative Ringe und $\varphi : R \to S$ ist ein Ringhomomorphismus.

1. Dann induziert φ einen Ringisomorphismus

$$\overline{\varphi}: R/\mathrm{Ker}(\varphi) \to \mathrm{Im}(\varphi) = \varphi(R) \subseteq S$$

so dass $\varphi = \overline{\varphi} \circ p$ wobei $p: R \to R/\mathrm{Ker}(\varphi)$ die kanonische Projektion ist (Diagramm links).

2. Sei $I \subseteq \operatorname{Ker}(\varphi)$ ein Ideal in R. Dann induziert φ einen Ringhomomorpismus $\overline{\varphi}$: $R/I \to S$ mit $\varphi = \overline{\varphi} \circ p_I$ (Diagramm rechts). Des weiteren gilt $\operatorname{Ker}(\overline{\varphi}) = \operatorname{Ker}(\varphi)/I$ und $\operatorname{Im}(\overline{\varphi}) = \operatorname{Im}(\varphi)$

$$R \xrightarrow{\varphi} S \qquad \qquad R \xrightarrow{\varphi} S$$

$$\downarrow^{p} \qquad \qquad \downarrow^{p_{I}} \qquad \qquad \downarrow^{p_{I}} \qquad \qquad \downarrow^{p_{I}} \qquad \qquad \downarrow^{R/I}$$

$$R/I \qquad \qquad \qquad \downarrow^{R/I} \qquad \qquad \qquad \downarrow^{R/I} \qquad \qquad \downarrow^$$

Beweis. Wir beginnen mit 2) und definieren $\overline{\varphi}(x+I) = \varphi(x)$. Dies ist wohldefiniert: Falls x+I=y+I ist, so ist $x-y\in I\subseteq \mathrm{Ker}(\varphi)$. Daher gilt $\varphi(x)-\varphi(y)=\varphi(x-y)=0$. Da φ ein Ringhomomorphismus ist, gilt

$$\varphi(1_R) = 1_S \Rightarrow \overline{\varphi}(1+I) = 1_S$$

$$\varphi(x+y) = \varphi(x) + \varphi(y) \Rightarrow \overline{\varphi}(X+I+y+I) = \varphi(x+I) + \varphi(y+I)$$

$$\varphi(xy) = \varphi(x)\varphi(y) \Rightarrow \overline{\varphi}((x+I)(y+I) = \overline{\varphi}(xy+I) = \varphi(xy) = \varphi(x)\varphi(y) = \overline{\varphi}(x+I)\overline{\varphi}(y+I)$$

 $\varphi = \overline{\varphi} \circ p_I$ denn für $x \in R$ gilt $p_I(x) = x + I$, $\overline{\varphi} \circ p_I(x) = \overline{\varphi}(x + I) = \varphi(x)$ nach Definition von $\overline{\varphi}$. Da dies für alle $x \in R$ gilt ergibt sich obiges und das kommutative Diagramm.

$$\operatorname{Ker}(\overline{\varphi}) = \{x + I : \underbrace{\varphi(x)}_{\overline{\varphi}(x+I)} = 0\} = \operatorname{Ker}(\varphi/I)$$
$$\operatorname{Im}(\overline{\varphi}) = \{\overline{\varphi}(x) : x \in R/I\} = \{\varphi(x) : x \in R\} = \operatorname{Im}(\varphi)$$

Dies beweist 2) vom Satz.

Wir wollen nun 1) beweisen und wenden 2) für $I = \text{Ker}(\varphi)$ an. Also ist $\overline{\varphi}(x + \text{Ker}(\varphi)) = \varphi(x)$ für $x + \text{Ker}(\varphi) \in {}^R/\text{Ker}(\varphi)$ ein Ringhomomorphismus mit Bild $\text{Im}(\varphi)$.

Hier gilt $\operatorname{Ker}(\overline{\varphi}) = \operatorname{Ker}(\varphi)/\operatorname{Ker}(\varphi) = \{0 + \operatorname{Ker}(\varphi)\}$, also ist $\overline{\varphi}$ injektiv. Daher ist $\overline{\varphi}$ ein Ringhomomorphismus von $R/\operatorname{Ker}(\varphi)$ nach $\operatorname{Im}(\varphi)$ wie in 1) behauptet.

Bemerkung. Sei $I_0 \subseteq R$ ein Ideal in einem kommutativen Ring. Dann gibt es eine Korrespondenz (kanonische Bijektion) zwischen Idealen in R/I_0 und Idealen in R, die I_0 enthalten.

$$I \subseteq R, I_0 \subseteq I \quad \mapsto \quad I/I_0 = \{x + I_0 : x \in I\} \subseteq R/I_0$$

$$J \subseteq R/I_0 \quad \mapsto \quad p_{I_0}^{-1}(J) \subseteq R \qquad (p_{I_0} : \begin{cases} R \to R/I_0 \\ x \mapsto x + I_0 \end{cases}).$$

Definition. Wir sagen zwei Ideale I, J in einem kommutativen Ring sind *coprim*, falls I + J = R ist. D.h. $\exists a \in I, b \in J$ mit 1 = a + b.

Beispiel. I=(p) und $J=(q)\subseteq\mathbb{Z}=R$ falls p,q verschiedene (positive) Primzahlen sind.

Proposition (Chinesischer Restsatz). Sei R ein kommutativer Ring und seien I_1, \ldots, I_n paarweise coprime Ideale. Dann ist der Ringhomomorphismus $\varphi: R \to R/I_1 \times \ldots \times R/I_n$ mit $x \mapsto (x + I_1, \ldots, x + I_n)$ surjektiv mit $\text{Ker}(\varphi) = I_1 \cap \ldots \cap I_n$.

Dies induziert einen Ringisomorphismus $R/I_1 \cap ... \cap I_n \to R/I_1 \times ... \times R/I_n$.

Beweis. Dass der Kern $\operatorname{Ker}(\varphi)$ genau $I_1 \cap \ldots \cap I_n$ ist, ergibt sich aus den Definitionen. Wir zeigen, dass φ surjektiv ist. Hierfür wollen wir für jedes $i \in \{1, \ldots, n\}$ ein $x_i \in R$ finden so dass

$$\varphi(x_i) = (0 + I_1, \dots, \underbrace{1 + I_i}_{i \text{-te Stelle}}, \dots, 0 + I_n).$$

Zur Vereinfachung der Notation betrachten wir den Fall i = 1.

Behauptung: I_1 und $I_2 \cap ... I_n$ sind coprim, d.h. es existieren $a \in I_1$ und $b \in I_2 \cap ... I_n$ so dass a + b = 1.

Aus der Behauptung folgt, dass $x_1 = b$ erfüllt:

$$\varphi(x_1) = (b + I_1, b + I_2, \dots, b + I_n) = (1 + I_1, 0 + I_2, \dots, 0 + I_n)$$

wegen der Definiton von b und a + b = 1.

Wir zeigen die Behauptung mittels Induktion nach n:

 $n=2:I_1$ und I_2 sind coprim. Dies gilt nach Annahme in der Proposition.

Induktionsschritt $(n-1 \to n)$: Wir nehmen an, dass I_1 und $I_2 \cap \dots I_{n-1}$ coprim sind, d.h. es gibt $a \in I_1, b \in I_2 \cap \dots, I_{n-1}$ mit a+b=1. Des weiteren ist I_1 coprim zu I_n , d.h. es gibt $c \in I_1, d \in I_n$ mit c+d=1.

$$\Rightarrow a + b(\underbrace{c + d}) = 1 \Rightarrow \underbrace{a + bc}_{\in I_1} + \underbrace{bd}_{\in I_2 \cap \dots I_{n-1} \cap I_n} = 1.$$

Folgt I_1 ist coprim zu $I_2 \cap ... \cap I_n$, Also haben wie die Behauptung mittels Induktion gezeigt.

Wir können x_1, \ldots, x_n wie oben verwenden um die Surjektivität zu zeigen: Sei $(a_1 + I_1, \ldots, a_n + I_n) \in {}^R/I_1 \times \ldots \times {}^R/I_n$ beliebig. Dann gilt

$$\varphi(a_1x_1+\ldots+a_nx_n)=(a_1x_1+\ldots+a_nx_n+I_1,\ldots,a_1x_1+\ldots+a_nx_n+I_n)=(a_1+I_1,a_2+I_2,\ldots,a_n+I_n).$$

da x_i modulo I_i gleich 1 ist und ansonsten $x_i \in I_j$ $(j \neq i)$ gilt und daher x_i modulo I_j gleich 0 ist.

2.5. Charakteristik eines Körpers

Sei K ein Körper. Dann gibt es einen Ringhomomorphismus $\varphi: \mathbb{Z} \to K$ mit $\begin{cases} n \in \mathbb{N} \mapsto \underbrace{1 + \ldots + 1}_{n-\text{mal}} \\ -n \in \mathbb{N} \mapsto -(\underbrace{1 + \ldots + 1}_{n-\text{mal}}) \end{cases}$

Sei $I = \operatorname{Ker}(\varphi)$ so, dass $\mathbb{Z}/I \equiv \operatorname{Im}(\varphi) \subseteq K$. Da K ein Körper ist, ist $\operatorname{Im}(\varphi)$ ein Integritätsbereich.

Lemma. Sei $I \subseteq \mathbb{Z}$ ein Ideal. Dann gilt I = (m) für ein $m \in \mathbb{N}$. Der Quotient ist ein Integritätsbreich genau dann wenn m = 0 oder m eine Primzahl ist.

Beweis. Falls $I \cap \mathbb{N}_{>0} = \{\}$ ist, so ist I = (0). Ansonsten können wir das kleinste Element m in $I \cap \mathbb{N}_{>0}$ finden . Falls $n \in I$ ist, so können wir Division mit Rest anwenden und erhalten $n = \underbrace{k \cdot m}_{\in I} + r$ für $k \in \mathbb{Z}, r \in \{0, \dots, m-1\}$. Folgt $r \in I \Rightarrow r = 0$ da m das kleinste Element von $I \cap \mathbb{N}_{>0}$ war. Da $n \in I$ beliebig war, folgt I = (m).

Falls $m = a \cdot b$ für a, b < m ist, so ist $\mathbb{Z}/(m)$ kein Integritätsbereich, da (a + (m))(b + (m)) = ab + (m) = 0 + (m) ist. Falls m > 0 eine Primzahl ist, so ist $\mathbb{Z}/(m)$ ein Körper und damit auch ein Integritätsbereich.

Definition. Sei K ein Körper. Wir sagen, dass K Charakteristik 0 hat, falls $\varphi : \mathbb{Z} \to K$ injektiv ist. Wir sagen, dass K Charakteristik $p \in N_{>0}$ hat falls $\varphi : \mathbb{Z} \to K$ den Kern (p) hat.

Beispiel. Charakteristik 0: $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \dots$ Wenn K Charakteristik 0 hat, dann enthält K eine isomorphe Kopie von \mathbb{Q} .

Charakteristik $p: \mathbb{F}_p = \mathbb{Z}/(p), \mathbb{F}_p(X)$

Proposition. Sei K ein Körper mit Charakteristik p > 0. Dann ist die Frobeniusabbildung $F: x \in K \to x^p \in K$ ein Ringhomomorphismus. Falls $|K| < \infty$, dann ist F ein Ringautomorphismus.

Beweis. Es gilt $F(0) = 0^p$, $F(1) = 1^p = 1$, $F(xy) = (xy)^p = x^p y^p = F(x)F(y)$. Wir müssen noch F(x+y) = F(x) + F(y) zeigen.

$$(x+y)^p = x^p + \underbrace{\binom{p}{1}}_{=p \cdot 1_K = 0} x^{p-1} y + \binom{p}{2} x^{p-2} y^2 + \ldots + \binom{p}{p-1} x y^{p-1} + y^p = x^p + y^p \quad [\text{in } K].$$

Behauptung: Für 0 < k < p gilt $p \mid \binom{p}{k}$

$$\binom{p}{k} = \frac{p!}{k!(p-k)!} = \frac{p(p-1)\dots(p-k+1)}{k!} \Rightarrow k! \binom{p}{k} = p(p-1)\dots(p-k+1) = 0 \mod p.$$

aber $k! \mod p \neq 0$. Da Rechnen modulo p einen Körper definiert, erhalten wir $k! \not\equiv 0, k! \binom{p}{k} \equiv 0 \mod p \Rightarrow \binom{p}{k} \equiv 0 \mod p$. Folgt $p \mid \binom{p}{k}$.

Wenn $|K| < \infty$, dann ist F auch surjektiv! Warum: $\operatorname{Ker}(f) \subseteq K$ ist ein Ideal $\Rightarrow \operatorname{Ker}(F) = \{0\}$ und F ist injektiv. Wenn $|K| < \infty$, folgt aus der Injektivität auch die Surjektivität.

2.6. Primideale und Maximalideale

Definition. Sei R ein kommutativer Ring, und sei $I \subseteq R$ ein Ideal. Wir sagen I ist ein Primideal, falls R/I ein Integritätsbreich ist. Wir sagen I ist ein Maximalideal, falls R/I ein Körper ist.

Proposition. Sei $I \subseteq R$ ein Ideal in einem kommutativen Ring.

- 1) Dann ist I ein Primideal genau dann wenn $I \neq R$ und für alle $a, b \in R$ gilt $ab \in I \Rightarrow ain I$ oder $b \in I$.
- 2) Dann ist I ein Maximalideal genau dann wenn $I \neq R$ und es gibt kein Ideal J mit $I \subsetneq J \subsetneq R$.
- Beweis. 1) I ist ein Primideal $\Leftrightarrow R/I \neq \{0+I\}$ und $([a][b] = 0 \Rightarrow [a] = 0$ oder $[b] = 0 \Leftrightarrow I \neq R$ und $(ab \in I \Rightarrow a \in I \text{ oder } b \in I.$
- 2) I ist ein Maximalideal $\Leftrightarrow R/I$ ist ein Körper $\Leftrightarrow I \neq R$ und es gibt kein Ideal $J \subseteq R$ mit $I \subseteq J \subseteq R$.

Letztes "genau dann wenn": \Rightarrow : Sei $J\subseteq R$ ein Ideal un $I\subseteq J$ un $x\in J\setminus I$. Dann ist $x+I\in R/I\setminus \{0+I\}$ ist invertierbar in R/I, also $(x+I)^{-1}=y+I$ Daraus folgt $x \in J$ also $x \in J$

 \Leftarrow : Angenommen $x+I \neq 0+I$, dann können wir J=(x)+I definieren. Dies ist ein Ideal $I \subsetneq J \subseteq R$. Also ist J=R und es gibt ein $y \in R$ mit xy+I=1+I

Beispiel. In $R = \mathbb{Z}$ gilt:

- I = (m) ist ein Primideal $\Leftrightarrow m = 0$ oder $m = \pm p$ eine Primzahl ist.
- I = (m) ist ein Maximalideal $\Leftrightarrow m = \pm p$ eine Primzahl ist.

z.B. $(0) \le (2)$ mit (0) Primideal und (2) Prim- und Maximalideal.

Beispiel. Sei K ein Körper und $a_1, \ldots, a_n \in K$. Wir definieren dass Ideal

$$I = (X_1 - a_1, \dots, X_n - a_n) \subseteq K[X_1, \dots, X_n]$$

Dann ist I ein Maximalideal, und ist gleich dem Kern $\operatorname{Ker}(\operatorname{ev}_{a_1,\dots,a_n})$ des Auswertungshomomorphismus

$$ev_{a_1,...,a_n}(f) = f(a_1,...,a_n).$$

Beweis. $I \subseteq \text{Ker}(ev_{a_1,\dots,a_n})$ da $ev(X_j - a_j) = a_j - a_j = 0$ für $j = 1,\dots,n$. Sei nun $f \in \text{Ker}(ev_{a_1,\dots,a_n})$.

$$f = \sum a_{(k_1, \dots, k_n)} X_1^{k_1} \dots X_n^{k_n}$$

Wir schreiben $X_{j}^{k_{j}} = (a_{j} + X_{j} - a_{j})^{k_{j}} = a_{j}^{k_{j}} + \underbrace{k_{j}a_{j}^{k_{j}-1}(X_{j} - a_{j}) + \dots}_{\in I}$

Also gilt $X_j^{k_j} + I = a_j^{k_j} + I$

$$\Rightarrow f + I = \underbrace{\sum a_{(k_1, \dots, k_n)} a_1^{k_1} \dots a_n^{k_n}}_{f(a_1, \dots, a_n) = 0} + I \in I$$

Weiters folgt $I = Ker(ev_{a_1,...,a_n})$

$$\Rightarrow K[X_1,\ldots,X_n]/I = K[X_1,\ldots,X_n]/\mathrm{Ker}(\mathrm{ev}_{a_1,\ldots,a_n}) \cong K$$

ist ein Körper $\Rightarrow I$ ist ein Maximalideal.

Bemerkung. Der Hilbert'sche Nullstellensatz besagt, dass jedes Maximalideal in $\mathbb{C}[X_1,\ldots,X_n]$ von dieser Gestalt ist.

Satz. Sei R ein kommutativer Ring, und $I \subseteq R$ ein Ideal. Dann existiert ein Maximalideal $m \supseteq I$. Insbesondere existiert in jedem Ring $R \ne [0]$ ein Maximalideal.

Beweis. Wir werden das Zornsche Lemma verwenden. Hierzu definieren wir

$$X = \{J \subsetneq R \mid J \text{ ist ein Ideal und } I \subseteq J\}$$

und betrachten die Inklusion von Teilmengen als unsere Relation auf X. Wir müssen zeugen, dass jede Kette K in X eine obere schranke besitzt. Falls $K = \emptyset$, dann ist $I \in X$ eine obere Schranke. Sei nun K eine nichtleere Kette in X.

Wir behaupten, dass $\widetilde{J} = \bigcup_{J \in K} J$ eine obere Schranke von K in X darstellt. Für jedes $J \in K$ gilt $J \subseteq \widetilde{J}$ nach Definition von \widetilde{J} . Weiters gilt:

- $\widetilde{J} \neq R$ weil $(J \in K \Rightarrow 1 \not\in J)$ gilt $1 \not\in \widetilde{J}$
- $\tilde{J}\supseteq I$, weil $K\neq\varnothing$, also ein $J\in K$ existiert, welches nach Definition von $X\supseteq K$ I enthalten muss.
- \widetilde{J} ist auch ein Ideal.
 - $-0 \in \widetilde{J} \text{ da } 0 \in I \subset \widetilde{J}$
 - Sei $x \in R$ und $a \in \widetilde{J}$, dann gibt es ein $J \in K$ mit $a \in J$. Dies impliziert $xa \in J \subseteq \widetilde{J}$.
 - Sei un $a, b \in \widetilde{J}$, dann gibt es ein $J_a \in K$ mit $a \in J_a$ und $J_b \in K$ mit $b \in J_b$, Da K eine Kette ist, gilt $J_a \subseteq J_b$ oder $J_a \supseteq J_b$ also entweder $a, b \in J_b \Rightarrow a+b \in J_b \subseteq \widetilde{J}$ oder $a, b \in J_a \Rightarrow a+b \in J_a \subseteq \widetilde{J}$.

Somit ist \widetilde{J} eine obere Schranke in X. Zusammenfassend folgt X ist induktiv geordnet, also existiert nach dem Zorn'schen Lemma ein maximales Element in X, d.h. es existiert ein Ideal m, welches I enthält, nicht gleich R ist und so sodass es zwischen m und R kein weiteres Ideal gibt.

A. Auswahlaxiom und das Zornsche Lemma

Auswahlaxiom (in der Mengenlehre)

Sei I eine nichtleere Menge und seien X_i für $i \in I$ nichtleere Mengen. Dann ist $\prod_{i \in I} X_i \neq \emptyset$, d.h. es existiert eine Funktion

$$f: I \to \bigcup_{i \in I} X_i$$

mit $f(i) \in X_i$ für alle $i \in I$.

Bemerkung. • unabhängig von den anderen ZF-Axiomen der Mengenlehre

- kritisiert wegen der Nichtkonstruktivität des Axioms und mancher scheinbar paradoxen Folgerung
- notwendig für einen großen Teil der Mathematik

Häufig wird nicht das Auswahlaiom sondern ein dazu äquivalentes Lemma, das Zornsche Lemma, verwendet. Für dieses benötigen wir etwas mehr Begriffe:

Definition. Sei X eine Menge. Eine Ordnung auf X ist eine Relation \leq so dass

- 1) reflexivität: $x \leq x$
- 2) antisymmetrie: $x \leq y$ und $y \leq x$
- 3) transitivität: $x \leq y$ und $y \leq z \Rightarrow x \leq z$ für alle $x, y, z \in X$.

Die Ordnung heißt total oder linear falls zusätzlich

4) linearität: $x \le y$ oder $y \le x$

gilt. Ansonsten heißt sie partiell.

Beispiel. • \leq in \mathbb{R} ist total

- | in \mathbb{Z} partiell, da 2X3 und 3X2.
- \subseteq auf $\mathcal{P}(A) = \{B \subseteq A\}$

Definition. Sei \leq eine Ordnung auf einer Menge X. Ein Element $x \in X$ heißt maximal falls für alle $y \in X$ gilt $x \leq y \Rightarrow x = y$. Ein Element $m \in X$ ein Maximum falls $x \leq m$ für alle $x \in X$ gilt.

Definition. Sei \leq eine Ordnung auf einer Menge X und sei $A \subseteq X$. Ein Element $x \in X$ heißt eine obere Schranke von A falls $a \leq x$ für alle $a \in A$. Analog definiert man untere Schranke von A.

Definition. Sei \leq eine Ordnung auf einer Menge X. Eine Teilmenge $K \subseteq X$ heißt eine Kette falls für alle $x, y \in K$ gilt $x \leq y$ oder $y \leq x$. Wir sagen die Ordnung \leq sei induktiv falls jede Kette in X eine obere Schranke besitzt.

Satz (Zornsches Lemma). Sei \leq eine induktive Ordnung auf einer Menge X. Dann existiert ein maximales Element in X.

Typische Anwendung: Jeder Vektorraum über K hat eine Hamel-Basis.

Beweisidee. Ausgehend von der leeren Menge (die eine Kette darstellt) wollen wir Elemente einer immer Länger werdenden Kette finden, wobei wir immer wieder eine obere Schranke hinzufügen wollen - sofern dies möglich ist.

. .

⇒ eine Art Induktion

Problem: Die Vereinigung von Ketten muss keine Kette sein.

Vorerst einige Definitionen und Lemmata:

Definition. Für eine Teilmenge $C \subseteq X$ definieren wir

$$\widehat{C} = \{ x \in X \setminus C \mid x \text{ ist eine obere Schranke} \}.$$

Um die Beweisidee umzusetzen verwenden wir eine Auswahlfunktion auf der Menge $\{\hat{C}: C \subseteq X \text{ s.d. } \hat{C} \neq \emptyset\}$

Definition. Eine Teilkette $K \subseteq X$ heißt eine f-Kette falls für jede Teilmenge $C \subseteq K$ mit $\widehat{C} \cap K \neq \emptyset$ das Element $f(\widehat{C})$ zu K gehört und eine minimale obere Schranke von C in K ist, also $f(\widehat{C}) \leq y$ für alle $y \in \widehat{C} \cap K$ gilt. Dies vermeidet "unnötige Zwischenschritte", die zu Problemen bei einer Vereinigung von Ketten führen würde.

Beispiel. $K_{min} = \emptyset$, $\widehat{K}_{min} = X$ ist eine f-Kette, die in jeder anderen f-Kette enthalten ist.

 $K_1 = \{f(\widehat{K}_{min})\} = K_{min} \cup \{f(\widehat{K}_{min})\}$ ist eine weitere f-Kette, die in jeder anderen nichtleeren f-Kette enthalten ist.

- $\widehat{\varnothing} = X \Rightarrow f(x) \in X$ ist definiert
- K_{min} ist eine f-Kette: $C=\varnothing$ und $f(\widehat{\varnothing})\in K_{min}$ ist minimal $C=K_{min}$ erfüllt $\widehat{C}\cap K_{min}=\varnothing$
- Falls K eine f-Kette ist, so können wir $C = \emptyset$ in der Definition verwenden und erhalten $f(\widehat{\emptyset}) \in K$, also $K_{min} \subseteq K_1 \subseteq K$.

Lemma (Verlängerung). Falls K eine f-Kette ist und $\widehat{K} \neq \emptyset$ ist, so ist $K_{neu} = K \cup \{f(\widehat{K})\}$ wieder eine f-Kette.

Beweis. Sei $C \subseteq K_{neu}$.

- Falls $\widehat{C} \cap K \neq \emptyset$ ist, so gilt $C \subseteq K$, $f(\widehat{C}) \in K$ und $f(\widehat{C})$ ist eine minimales Element von $\widehat{C} \cap K$ (da K eine f-Kette ist). Damit ist aber auch $f(\widehat{C}) \in K_{neu}$ und $f(\widehat{C})$ ist ein minimales Element von $\widehat{C} \cap K_{neu}$ (da $f(\widehat{K})$ eine obere Schranke von K ist).
- Falls $C \subseteq K$ und $\widehat{C} \cap K = \emptyset$, dann ist $\widehat{C} = \widehat{K}$, da K eine Kette ist gilt $\widehat{C} \supseteq \widehat{K}$. Sei $x \in \widehat{C}, k \in K \Rightarrow k \neq \widehat{C}$, also existiert ein $c \in C$ mit $k \leq c \leq x \Rightarrow x$ ist eine obere Schranke von K und $x \notin K$ also $x \in \widehat{K}$ und somit $\widehat{C} \in \widehat{K}$. Folglich isst $f(\widehat{C}) = f(\widehat{K}) \in K_{new}$ eine minimale obere Schranke von C in K_{new} .
- Falls $f(\widehat{K}) \in C$, so ist $\widehat{C} \cap K_{neu} = \emptyset$ und es gibt nichts zu beweisen.

Lemma (Zwei f-Ketten). Angenommen K, K' sind zwei f-Ketten und $K' \setminus K \neq \emptyset$. Dann ist $K \subseteq K'$ und es gilt $x \leq x'$ für alle $x \in K$ und $x' \in K' \setminus K$. Informell: "K ist eine Anfangsabschrift von K'".

Beweis. Sei $x' \in K' \setminus K$. Wir definieren

$$C = \{x \in K \cap K' : x < x'\} \subseteq K' \cap K$$

und verwenden, dass K' eine f-Kette ist. Da $x' \in \hat{C} \cap K'$ ist, folgt $f(\hat{C}) \in K'$ und $f(\hat{C}) \leq x'$.

Falls $\widehat{\widehat{C}} \cap K \neq \emptyset$ wäre, so wäre $f(\widehat{C}) \in K$ (da K eine f-Kette ist) womit aber $f(\widehat{C}) \in C \cap \widehat{C}$ der Definition von \widehat{C} widerspricht.

Also ist $\widehat{C} \cap K = \emptyset$. In anderen Worten bedeutet dies, dass es zu jedem $x \in K$ ein $c \in C$ mit $x \leq c$ geben muss. Nach Definition von C folgt daher $x \leq c \leq x'$. Also $x \leq x'$ für alle $x \in K$.

Unsere Annahmen an K und K' war bloss, dass es $x' \in K' \setminus K$ gibt. Daraus folgt nun auch $K \subseteq K'$, denn ansonsten könnten wir die Rollen von K und K' vertauschen.

Lemma (Vereinigung). Wir definieren $K_{max} = \bigcup_{\substack{K \text{ ist eine} \\ f-\text{Kette}}} K$. Dann ist K_{max} eine f-Kette.

Beweis. Da für je zwei Ketten K, K' $K \subseteq K'$ oder $K' \subseteq K$ gilt, sehen wir, dass K_{max} wieder eine Kette ist. Wir müssen noch zeigen, dass K_{max} eine f-Kette ist und nehmen hierzu eine Teilmenge $C \subseteq K_{max}$ mit $\widehat{C} \cap K_{max} \neq \emptyset$. Sei $x' \in \widehat{C} \cap K_{max}$ und sei K' eine f-Kette mit $x' \in K'$.

Behauptung: $C \subseteq K'$.

Sei also $x \in C$, dann existiert eine f-Kette K mit $x \in K$. Nach obigem Lemma gilt $K \subseteq K'$ ($\Rightarrow x \in K' \checkmark$) oder $K' \subseteq K$. Woraus folgt K' enthält wegen obigem Lemma alle Elemente von K unterhalbt von x'. Da $x' \in \hat{C}$ und $x \in C$ folgt $x \le x'$ und $x \in K'$.

Beweis vom Zornschen Lemma. K_{max} ist nach Definition eine größte f-Kette in X. Insbesondere ist also das erste Lemma nicht anwendbar, d.h. $\widehat{K}_{max} = \emptyset$.

Des Weiteren ist aber K_{max} eine Teilkette, die nach Annahme an \leq eine obere Schranke x_{max} besitzen muss. Es folgt also $x_{max} \in K_{max}$ ist ein Maximum von K_{max} und auch, dass x_{max} ein maximales Element von X ist.