Let K=2, show that (b1, b2) in p. 29 of slides in Ch 5 reduces to the formula of (b1, b2) in (2.7) - (2.8) $X = \begin{bmatrix} 1 & x_{1,2} & \cdots & x_{1,K} \\ 1 & x_{2,2} & \cdots & x_{2,K} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{M,2} & \cdots & x_{M,K} \end{bmatrix}, \Rightarrow X = \begin{bmatrix} 1 & X_{1,2} \\ \vdots & X_{2,2} \\ \vdots & \vdots & \vdots \\ 1 & X_{M,2} & \cdots & x_{M,K} \end{bmatrix}$

$$X = \begin{bmatrix} 1 & x_{2,2} & \cdots & x_{2,K} \\ 1 & x_{2,2} & \cdots & x_{N,K} \end{bmatrix} = \begin{bmatrix} 1 & x_{2,2} \\ 1 & x_{2,2} \\ 1 & x_{N,2} & \cdots & x_{N,K} \end{bmatrix}$$

$$b = (X'X)^{-1}(X'Y)$$

$$b = (X'X)^{-1}(X'Y) = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & x_{N,N} & x_{N,N} \end{bmatrix}$$

$$= \begin{bmatrix} A & \sum_{i=1}^{N} X_i \\ \sum_{i=1}^{N} X_i & \sum_{i=1}^{N} X_i^* \end{bmatrix}^{-1} \begin{bmatrix} A & A & A \\ A & A & A \\ A & A & A \end{bmatrix}$$

$$= \begin{bmatrix} \lambda & \bigvee_{i=1}^{N} X_{i} \\ \bigvee_{i=1}^{N} X_{i} & \bigvee_{i=1}^{N} X_{i}^{2} \end{bmatrix}^{-1} \begin{bmatrix} \sum_{i=1}^{N} Y_{i} \\ \bigvee_{i=1}^{N} X_{i} & \bigvee_{i=1}^{N} X_{i}^{2} \end{bmatrix}$$

$$= \frac{1}{1 + \frac{N}{N}} \sum_{i=1}^{N} \frac{1}{N} \sum_{i=1}^{N} \frac{1}{N}$$

$$= \frac{1}{N(\frac{N}{\log}X_{i}^{2}) - (\frac{N}{\log}X_{i})^{2}} \begin{bmatrix} \sum_{i=1}^{N} \chi_{i}^{2} & \sum_{i=1}^{N} \chi_{i}^{2} \\ -\sum_{i=1}^{N} \chi_{i}^{2} & \sum_{i=1}^{N} \chi_{i}^{2} \end{bmatrix} \begin{bmatrix} \sum_{i=1}^{N} \chi_{i}^{2} \\ \sum_{i=1}^{N} \chi_{i}^{2} & \sum_{i=1}^{N} \chi_{i}^{2} \end{bmatrix} \\ = \frac{1}{N(\frac{N}{\log}X_{i}^{2}) - (\frac{N}{\log}X_{i})^{2}} \begin{bmatrix} \sum_{i=1}^{N} \chi_{i}^{2} & \sum_{i=1}^{N} \chi_{i}^{2} \\ \sum_{i=1}^{N} \chi_{i}^{2} & \sum_{i=1}^{N} \chi_{i}^{2} \end{bmatrix} \begin{bmatrix} \sum_{i=1}^{N} \chi_{i}^{2} \\ \sum_{i=1}^{N} \chi_{i}^{2} & \sum_{i=1}^{N} \chi_{i}^{2} \end{bmatrix}$$

$$N\left(\sum_{i=1}^{M} x_{i}^{2}\right) - \left(\sum_{i=1}^{M} x_{i}\right)^{2} \left[N\left(\sum_{i=1}^{M} x_{i}y_{i}\right)\right]$$

$$N\left(\sum_{i=1}^{M} x_{i}^{2}\right) - \left(\sum_{i=1}^{M} x_{i}^{2}\right)^{2} \left[N\left(\sum_{i=1}^{M} x_{i}y_{i}\right)\right]$$

$$N\left(\sum_{i=1}^{M} x_{i}^{2}\right) - \left(\sum_{i=1}^{M} x_{i}\right)^{2} \left[N\left(\sum_{i=1}^{M} x_{i}y_{i}\right)\right]$$

$$= \begin{bmatrix} \frac{1}{N} \times_{i}^{1} \frac{1}{N} Y_{i} - \frac{1}{N} \times_{i} (\frac{1}{N} \times_{i} Y_{i}) \\ N(\frac{1}{N} \times_{i}^{1}) - (\frac{1}{N} \times_{i}^{1})^{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{N} \times_{i}^{1} \frac{1}{N} Y_{i} - N X(\frac{1}{N} \times_{i} Y_{i}) \\ N(\frac{1}{N} \times_{i}^{1}) - \frac{1}{N} \times_{i} \frac{1}{N} Y_{i} - N X(\frac{1}{N} \times_{i} Y_{i}) - N X Y \end{bmatrix} = \begin{bmatrix} \frac{1}{N} \times_{i}^{1} \times_{i}^{1} Y_{i} - N X(\frac{1}{N} \times_{i} Y_{i}) \\ N(\frac{1}{N} \times_{i}^{1}) - \frac{1}{N} \times_{i} \frac{1}{N} Y_{i} - N X Y \end{bmatrix} = \begin{bmatrix} \frac{1}{N} \times_{i}^{1} \times_{i}^{1} Y_{i} - N X(\frac{1}{N} \times_{i} Y_{i}) \\ \frac{1}{N} \times_{i}^{1} \times_{i}^{1} Y_{i} - N X(\frac{1}{N} \times_{i} Y_{i}) - N X(\frac{1}{N} \times_{i} Y_{i}) \\ \frac{1}{N} \times_{i}^{1} \times_{i}^{1} Y_{i} - N X(\frac{1}{N} \times_{i} Y_{i}) - N X(\frac{1}{N} \times_{i} Y_{i}) \\ \frac{1}{N} \times_{i}^{1} \times_{i}^{1} Y_{i} - N X(\frac{1}{N} \times_{i} Y_{i}) - N X(\frac{1}{N} \times_{i} Y_{i}) \\ \frac{1}{N} \times_{i}^{1} \times_{i}^{1} Y_{i} - N X(\frac{1}{N} \times_{i} Y_{i}) - N X(\frac{1}{N} \times_{i} Y_{i}) \\ \frac{1}{N} \times_{i}^{1} \times_{i}^{1} Y_{i} - N X(\frac{1}{N} \times_{i} Y_{i}) \\ \frac{1}{N} \times_{i}^{1} \times_{i}^{1} Y_{i} - N X(\frac{1}{N} \times_{i} Y_{i}) \\ \frac{1}{N} \times_{i}^{1} \times_{i}^{1} Y_{i} - N X(\frac{1}{N} \times_{i} Y_{i}) \\ \frac{1}{N} \times_{i}^{1} \times_{i}^{1} Y_{i} - N X(\frac{1}{N} \times_{i} Y_{i}) \\ \frac{1}{N} \times_{i}^{1} \times_{i}^{1} Y_{i} - N X(\frac{1}{N} \times_{i} Y_{i}) \\ \frac{1}{N} \times_{i}^{1} \times_{i}^{1} Y_{i} - N X(\frac{1}{N} \times_{i} Y_{i}) \\ \frac{1}{N} \times_{i}^{1} \times_{i}^{1} Y_{i} - N X(\frac{1}{N} \times_{i} Y_{i}) \\ \frac{1}{N} \times_{i}^{1} \times_{i}^{1} Y_{i} - N X(\frac{1}{N} \times_{i} Y_{i}) \\ \frac{1}{N} \times_{i}^{1} \times_{i}^{1} Y_{i} - N X(\frac{1}{N} \times_{i} Y_{i}) \\ \frac{1}{N} \times_{i}^{1} \times_{i}^{1} Y_{i} - N X(\frac{1}{N} \times_{i} Y_{i}) \\ \frac{1}{N} \times_{i}^{1} \times_{i}^{1} Y_{i} - N X(\frac{1}{N} \times_{i} Y_{i}) \\ \frac{1}{N} \times_{i}^{1} \times_{i}^{1} Y_{i} - N X(\frac{1}{N} \times_{i} Y_{i}) \\ \frac{1}{N} \times_{i}^{1} \times_{i}^{1} Y_{i} - N X(\frac{1}{N} \times_{i} Y_{i}) \\ \frac{1}{N} \times_{i}^{1} \times_{i}^{1} Y_{i} - N X(\frac{1}{N} \times_{i} Y_{i}) \\ \frac{1}{N} \times_{i}^{1} \times_{i}^{1} Y_{i} - N X(\frac{1}{N} \times_{i} Y_{i}) \\ \frac{1}{N} \times_{i}^{1} \times_{i}^{1} Y_{i} - N X(\frac{1}{N} \times_{i} Y_{i}) \\ \frac{1}{N} \times_{i}^{1} \times_{i}^{1} Y_{i} - N X(\frac{1}{N} \times_{i} Y_{i}) \\ \frac{1}{N} \times_{i}^{1} \times_{i}^{1} Y_{i} - N X(\frac{1}{N} \times_{i} Y_{i}) \\ \frac{1}{N} \times_{i}^{1} Y_{i} - N X(\frac{1}{N} \times_{i} Y_{i}) \\ \frac{1}{N} \times_{i}^{1} Y_{i}$$

$$\frac{1}{\sqrt{\left(\frac{1}{8}X_{1}^{2}\right)\left(\frac{1}{8}X_{1}^{2}\right)\left(\frac{1}{8}X_{1}^{2}\right)}}$$

$$\frac{N(\frac{1}{N} \times i) - \frac{1}{N} \times i \frac{1}{N}}{N(\frac{1}{N} \times i) - \frac{1}{N} \times i \frac{1}{N} \times i \frac{1}{N}}$$

 $b_{2} = \frac{\sum (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum (x_{i}^{2} - \overline{x})^{2}} : \frac{\sum (x_{i}^{2} + \overline{x}y_{i}^{2} - \overline{y}x_{i} + \overline{x}\overline{y})}{\sum (x_{i}^{2} - 2\overline{x}x_{i} + \overline{x}^{2})} = \frac{\sum x_{i}y_{i} - \overline{x}y_{i} - \overline{y}y_{i} + y_{i}\overline{y}}{\sum x_{i}^{2} - 2\overline{x}y_{i} + y_{i}\overline{y}} = \frac{\sum x_{i}y_{i} - y_{i}\overline{x}}{\sum x_{i}^{2} - 2\overline{x}y_{i}} = \frac{\sum x_{i}y_{i} - y_{i}\overline{x}}{\sum x_{i}^{2} - y_{i}\overline{x}} = \frac{\sum x_{i}y_{i} - y_{i}\overline{x}}{\sum x_{i}^{2} - y_{i}\overline{x}}$

 $b_1 = \overline{y} - b_2 \overline{x} = \overline{y} - \left(\frac{2\chi_1^2 y_1^2 - N \overline{\chi} \overline{y}}{2\chi_1^2 - N \overline{\chi}^2}\right) \overline{\chi} = \frac{(2\chi_1^2) \overline{y} - N \overline{\chi} \overline{y} - (2\chi_1^2 y_1) \overline{\chi} + N \overline{\chi} \overline{y}}{2\chi_1^2 - N \overline{\chi}^2} = \frac{\overline{y} \times \chi_1^2 - \overline{\chi} \times \chi_1^2}{2\chi_1^2 - N \overline{\chi}^2} = \frac{\overline{y} \times \chi_1^2 - \overline{\chi} \times \chi_1^2}{2\chi_1^2 - N \overline{\chi}^2}$

$$\frac{|\hat{x}| - \sqrt{|\hat{x}|} \times \sqrt{y}}{-\sqrt{|\hat{x}|^2}}$$

$$\sum |x_i| = \sum |x_i| =$$

$$=\begin{bmatrix} \frac{N(\frac{2}{\log}X;\gamma_i) - \frac{2}{\log}X;\frac{2}{\log}Y_i}{N(\frac{2}{\log}X;\frac{2}{3}) - \frac{2}{\log}X;\frac{2}{3}} \\ \frac{N(\frac{2}{\log}X;\frac{2}{3}) - \frac{2}{\log}X;\frac{2}{3}}{N(\frac{2}{\log}X;\frac{2}{3}) - \frac{2}{\log}X;\frac{2}{3}} \end{bmatrix} = \begin{bmatrix} \frac{N(\frac{2}{\log}X;\gamma_i) - \frac{N}{2}X \cdot \frac{N}{2}}{N(\frac{2}{\log}X;\frac{2}{3}) - \frac{N}{2}X;\frac{2}{3}} \\ \frac{N(\frac{2}{\log}X;\frac{2}{3}) - \frac{N}{2}X;\frac{2}{3}}{N(\frac{2}{\log}X;\frac{2}{3}) - \frac{N}{2}X \cdot \frac{N}{2}} \end{bmatrix} = \begin{bmatrix} \frac{N(\frac{2}{\log}X;\gamma_i) - \frac{N}{2}X \cdot \frac{N}{2}}{N(\frac{2}{\log}X;\frac{2}{3}) - \frac{N}{2}X \cdot \frac{N}{2}} \\ \frac{N(\frac{2}{\log}X;\frac{2}{3}) - \frac{N}{2}X \cdot \frac{N}{2}}{N(\frac{2}{\log}X;\frac{2}{3}) - \frac{N}{2}X \cdot \frac{N}{2}} \\ \frac{N(\frac{2}{\log}X;\frac{2}{3}) - \frac{N}{2}X \cdot \frac{N}{2}}{N(\frac{2}{\log}X;\frac{2}{3}) - \frac{N}{2}X \cdot \frac{N}{2}} \\ \frac{N(\frac{2}{\log}X;\frac{2}{3}) - \frac{N}{2}X \cdot \frac{N}{2}}{N(\frac{2}{\log}X;\frac{2}{3}) - \frac{N}{2}X \cdot \frac{N}{2}} \end{bmatrix} = \begin{bmatrix} \frac{N(\frac{2}{\log}X;\frac{2}{3}) - \frac{N}{2}X \cdot \frac{N}{2}}{N(\frac{2}{\log}X;\frac{2}{3}) - \frac{N}{2}X \cdot \frac{N}{2}} \\ \frac{N(\frac{2}{\log}X;\frac{2}{3}) - \frac{N}{2}X \cdot \frac{N}{2}}{N(\frac{2}{\log}X;\frac{2}{3}) - \frac{N}{2}X \cdot \frac{N}{2}} \\ \frac{N(\frac{2}{\log}X;\frac{2}{3}) - \frac{N}{2}X \cdot \frac{N}{2}}{N(\frac{2}{\log}X;\frac{2}{3}) - \frac{N}{2}X \cdot \frac{N}{2}} \\ \frac{N(\frac{2}{\log}X;\frac{2}{3}) - \frac{N}{2}X \cdot \frac{N}{2}}{N(\frac{2}{\log}X;\frac{2}{3}) - \frac{N}{2}X \cdot \frac{N}{2}} \\ \frac{N(\frac{2}{\log}X;\frac{2}{3}) - \frac{N}{2}X \cdot \frac{N}{2}}{N(\frac{2}{\log}X;\frac{2}{3}) - \frac{N}{2}X \cdot \frac{N}{2}} \\ \frac{N(\frac{2}{\log}X;\frac{2}{3}) - \frac{N}{2}X \cdot \frac{N}{2}}{N(\frac{2}{\log}X;\frac{2}{3}) - \frac{N}{2}X \cdot \frac{N}{2}} \\ \frac{N(\frac{2}{\log}X;\frac{2}{3}) - \frac{N}{2}X \cdot \frac{N}{2}}{N(\frac{2}{\log}X;\frac{2}{3}) - \frac{N}{2}X \cdot \frac{N}{2}} \\ \frac{N(\frac{2}{\log}X;\frac{2}{3}) - \frac{N}{2}X \cdot \frac{N}{2}}{N(\frac{2}{\log}X;\frac{2}{3}) - \frac{N}{2}X \cdot \frac{N}{2}} \\ \frac{N(\frac{2}{\log}X;\frac{2}{3}) - \frac{N}{2}X \cdot \frac{N}{2}}{N(\frac{2}{\log}X;\frac{2}{3}) - \frac{N}{2}X \cdot \frac{N}{2}} \\ \frac{N(\frac{2}{\log}X;\frac{2}{3}) - \frac{N}{2}X \cdot \frac{N}{2}}{N(\frac{2}{\log}X;\frac{2}{3}) - \frac{N}{2}X \cdot \frac{N}{2}} \\ \frac{N(\frac{2}{\log}X;\frac{2}{3}) - \frac{N}{2}X \cdot \frac{N}{2}}{N(\frac{2}{2}X;\frac{2}{3})} \\ \frac{N(\frac{2}{2}X;\frac{2}{3}) - \frac{N}{2}X \cdot \frac{N}{2}}{N(\frac{2}{2}X;\frac{2}{3})} \\ \frac{N(\frac{2}{2}X;\frac{2}{3}) - \frac{N}{2}X \cdot \frac{N}{2}}{N(\frac{2}{2}X;\frac{2}{3})} \\ \frac{N(\frac{2}{2}X;\frac{2}{3}) - \frac{N}{2}X \cdot \frac{N}{2}}{N(\frac{2}{2}X;\frac{2}{3})}$$

(2.7)

(2.8)

Let K=2, show that
$$cov(b1, b2)$$
 in p. 30 of slides in Ch 5 reduces to the formula of in (2.14) - (2.16) .

$$Vay(b) = \sigma^{2} \left(\chi' \chi \int_{1}^{1} \frac{\chi_{1}}{\chi_{2}} \frac{\chi_{2}}{\chi_{1}} \right)^{-1}$$

$$= \sigma^{2} \left[\left(\frac{1}{\chi_{1}} \frac{\chi_{2}}{\chi_{2}} \frac{\chi_{2}}{\chi_{2}} \right) \left(\frac{1}{\chi_{2}} \frac{\chi_{2}}{\chi_{2}} \right) \right]^{-1}$$

$$= \sigma^{2} \left[\frac{N}{\sum_{i=1}^{N} \chi_{i}^{i}} \frac{\chi_{i}^{N}}{\sum_{i=1}^{N} \chi_{i}^{N}} \right]^{-1}$$

$$= \sigma^{2} \frac{1}{N\sum_{i=1}^{N} \chi_{i}^{N} - \left(\sum_{i=1}^{N} \chi_{i}^{N}\right)} \left(-\sum_{i=1}^{N} \chi_{i}^{N} - \sum_{i=1}^{N} \chi_{i}^{N} \right) \left(\frac{1}{\chi_{2}} \frac{\chi_{2}^{N}}{\sum_{i=1}^{N} \chi_{i}^{N}} - \sum_{i=1}^{N} \chi_{i}^{N} \right)$$

$$= \sigma^{2} \frac{1}{N\sum_{i=1}^{N} \chi_{i}^{N} - \left(\sum_{i=1}^{N} \chi_{i}^{N}\right)} \left(-\sum_{i=1}^{N} \chi_{i}^{N} - \sum_{i=1}^{N} \chi_{i}^{N} \right) \left(\frac{1}{\chi_{2}} \frac{\chi_{2}^{N}}{\sum_{i=1}^{N} \chi_{i}^{N}} - \sum_{i=1}^{N} \chi_{i}^{N} \right)$$

$$= \sigma^{2} \frac{1}{N \sum_{i=1}^{N} x_{i}^{2} - \left[\sum_{i=1}^{N} x_{i}^{2}\right]} \begin{bmatrix} \sum_{i=1}^{N} x_{i}^{2} - \sum_{i=1}^{N} x_{i}^{2} \\ -\sum_{i=1}^{N} x_{i}^{2} - \left[\sum_{i=1}^{N} x_{i}^{2}\right] \end{bmatrix} \begin{bmatrix} \sum_{i=1}^{N} x_{i}^{2} - \sum_{i=1}^{N} x_{i}^{2} \\ -\sum_{i=1}^{N} x_{i}^{2} - \left[\sum_{i=1}^{N} x_{i}^{2}\right] \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{N} x_{i}^{2} - \sum_{i=1}^{N} x_{i}^{2} \\ N \sum_{i=1}^{N} x_{i}^{2} - \left[\sum_{i=1}^{N} x_{i}^{2} - \left(\sum_{i=1}^{N} x_{i}^{2}\right)\right] \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{N} x_{i}^{2} - \sum_{i=1}^{N} x_{i}^{2} \\ N \sum_{i=1}^{N} x_{i}^{2} - \left(\sum_{i=1}^{N} x_{i}^{2}\right) \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{N} x_{i}^{2} - \sum_{i=1}^{N} x_{i}^{2} \\ N \sum_{i=1}^{N} x_{i}^{2} - \left(\sum_{i=1}^{N} x_{i}^{2}\right) \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{N} x_{i}^{2} - \sum_{i=1}^{N} x_{i}^{2} \\ N \sum_{i=1}^{N} x_{i}^{2} - \left(\sum_{i=1}^{N} x_{i}^{2}\right) \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{N} x_{i}^{2} - \sum_{i=1}^{N} x_{i}^{2} \\ N \sum_{i=1}^{N} x_{i}^{2} - \left(\sum_{i=1}^{N} x_{i}^{2}\right) \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{N} x_{i}^{2} - \sum_{i=1}^{N} x_{i}^{2} \\ N \sum_{i=1}^{N} x_{i}^{2} - \left(\sum_{i=1}^{N} x_{i}^{2}\right) \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{N} x_{i}^{2} - \sum_{i=1}^{N} x_{i}^{2} \\ N \sum_{i=1}^{N} x_{i}^{2} - \left(\sum_{i=1}^{N} x_{i}^{2}\right) \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{N} x_{i}^{2} - \sum_{i=1}^{N} x_{i}^{2} \\ N \sum_{i=1}^{N} x_{i}^{2} - \left(\sum_{i=1}^{N} x_{i}^{2}\right) \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{N} x_{i}^{2} - \sum_{i=1}^{N} x_{i}^{2} \\ N \sum_{i=1}^{N} x_{i}^{2} - \left(\sum_{i=1}^{N} x_{i}^{2}\right) \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{N} x_{i}^{2} - \sum_{i=1}^{N} x_{i}^{2} \\ N \sum_{i=1}^{N} x_{i}^{2} - \left(\sum_{i=1}^{N} x_{i}^{2}\right) \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{N} x_{i}^{2} - \sum_{i=1}^{N} x_{i}^{2} \\ N \sum_{i=1}^{N} x_{i}^{2} - \left(\sum_{i=1}^{N} x_{i}^{2}\right) \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{N} x_{i}^{2} - \sum_{i=1}^{N} x_{i}^{2} \\ N \sum_{i=1}^{N} x_{i}^{2} - \left(\sum_{i=1}^{N} x_{i}^{2}\right) \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{N} x_{i}^{2} - \sum_{i=1}^{N} x_{i}^{2} \\ N \sum_{i=1}^{N} x_{i}^{2} - \left(\sum_{i=1}^{N} x_{i}^{2}\right) \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{N} x_{i}^{2} - \sum_{i=1}^{N} x_{i}^{2} \\ N \sum_{i=1}^{N} x_{i}^{2} - \left(\sum_{i=1}^{N} x_{i}^{2}\right) \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{N} x_{i}^{2} - \sum_{i=1}^{N} x_{i}^{2} \\ N \sum_{i=1}^{N} x_{i}^{2} - \left(\sum_{i=1}^{N} x_{i}^{2}\right) \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{N} x_{i}^{2} - \sum_{i=1}^{N} x_{i}^{2} \\ N \sum_{i=1}^{N} x_{i}^{2} - \sum_{i=1}^{N} x_{i}^{2} \end{bmatrix} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{N} x_{i}^{2} - \sum_{i=1}^{N} x_{i}^{2}$$

$$\left(\mathbf{Z}\left(\mathbf{X}_{i}^{2}-\mathbf{\overline{X}}\right)^{2}=\mathbf{Z}\left(\mathbf{X}_{i}^{2}-2\mathbf{\overline{X}}\mathbf{X}_{i}+\mathbf{\overline{X}}^{2}\right)=\mathbf{Z}\mathbf{X}_{i}^{2}-2\mathbf{\overline{X}}\mathbf{N}\mathbf{\overline{X}}+\mathbf{N}\mathbf{\overline{X}}^{2}=\mathbf{Z}\mathbf{X}_{i}^{2}-\mathbf{N}\mathbf{\overline{X}}^{2}\right)$$

$$\operatorname{var}(b_{1}|\mathbf{x})=\sigma^{2}\left[\frac{\sum x_{i}^{2}}{N\sum(x_{i}-\overline{x})^{2}}\right]$$
(2.14)

$$\operatorname{var}(b_{2}|\mathbf{x}) = \frac{\sigma^{2}}{\sum (x_{i} - \overline{x})^{2}}$$

$$\operatorname{cov}(b_{1}, b_{2}|\mathbf{x}) = \sigma^{2} \left[\frac{-\overline{x}}{\sum (x_{i} - \overline{x})^{2}} \right]$$
(2.15)

5.3 Consider the following model that relates the percentage of a household's budget spent on alcohol *WALC* to total expenditure *TOTEXP*, age of the household head *AGE*, and the number of children in the household *NK*.

$$WALC = \beta_1 + \beta_2 \ln(TOTEXP) + \beta_3 NK + \beta_4 AGE + e$$

This model was estimated using 1200 observations from London. An incomplete version of this output is provided in Table 5.6.

TABLE 5.6 Output for Exercise 5.3

Dependent Variable: WALC Included observations: 1200 Variable Coefficient Std. Error t-Statistic Prob. 0.6592 C2.2019 1.4515 0.5099 ln(TOTEXP)2.7648 0.4842 5.7103 0.0000-1.4549 NK0.3695 -3.93760.0001 AGE-0.15030.0235 -6.40190.00000.0575 R-squared Mean dependent var 6.19434 S.E. of regression S.D. dependent var 6.39547

a. Fill in the following blank spaces that appear in this table.

46221.62

- i. The *t*-statistic for b_1 .
- ii. The standard error for b_2 . iii. The estimate b_3 .
- iv. R^2 .

Sum squared resid

**

a. (i)
$$t_{b_1} = \frac{1.4515}{2.2019} = 0.6592$$

(ii)
$$se(b_2) = \frac{2.7648}{5.7143} = 0.4842$$

(iii)
$$\hat{b}_3 = -3.9376 \times 0.3695 = -1.4549$$

(iV) $\hat{g}^2 = 1 - \frac{46.221.62}{(6.39547)^{\frac{1}{2}}(1200-1)} = 0.0575$

$$(V.) \hat{G} = \sqrt{\frac{\sum \hat{e}_{i}^{2}}{N-K}} = \sqrt{\frac{4b_{j}2^{2}|.b^{2}}{|200-4|}} \Rightarrow b.2|b|$$

- b. Interpret each of the estimates b₂, b₃, and b₄.
 b₂: 在其他 変数 保持不変下, 暫客庭 總支出 増加 1% 時, 酒額支出 化 總支出 的 百分比 尚 约 億 加 0 0027648 個 五分間と
 - 百分點。 b3:在其他象數保持不變下,饱家處多一名孩童,酒颗支出佔總支出的百分比將降低1.4549個百分點。 bu:在其他复數保持不變下,當戶主年齡增加一歲時,酒類支出佔總支出的百分比將降低0.1503個
- c. Compute a 95% interval estimate for β_4 . What does this interval tell you?

$$-0.1503 - 1.96 \times 0.0235 = -0.1964$$

-0.1503 + 1.96 × 0.0235 = -0.1042

- 引 The 介5% interval estimate = [-0.1964, -0.10+2] 有 95%的信心水啤,真正母體的人4 會落在這個區間,且這個區間意味著,若戶主年酸增加 | 歲,則估計酒類出在總支出中所占的出來會下降 0.1042至 0.1964 個百分點。
- d. Are each of the coefficient estimates significant at a 5% level? Why? 除了截距頂外,所有的迴歸係數估計在5%的顯著水準下都和 愛顯著不同,因為它們的p值都小於0.05。
- e. Test the hypothesis that the addition of an extra child decreases the mean budget share of alcohol by 2 percentage points against the alternative that the decrease is not equal to 2 percentage points. Use a 5% significance level.

 $H_0: \beta_3 = -2$ $H_1: \beta_3 \neq -2$

百分贴。

$$t = \frac{-1.4549 - (-2)}{0.3695} = 1.4752 < 1.96 = 無法拒絕什o (to.975,1196)$$

因此沒有足夠證據顯示,家庭多一名小孩對酒類支出估比所造成的路低幅度和2個百分點有顯著差異。[沒有證據持受 H.)

5.23 The file cocaine contains 56 observations on variables related to sales of cocaine powder in northeast-ern California over the period 1984–1991. The data are a subset of those used in the study Caulkins, J. P. and R. Padman (1993), "Quantity Discounts and Quality Premia for Illicit Drugs," *Journal of the American Statistical Association*, 88, 748–757. The variables are

PRICE = price per gram in dollars for a cocaine sale QUANT = number of grams of cocaine in a given sale QUAL = quality of the cocaine expressed as percentage purity TREND = a time variable with 1984 = 1 up to 1991 = 8 Consider the regression model

$$PRICE = \beta_1 + \beta_2 QUANT + \beta_3 QUAL + \beta_4 TREND + e$$

- **a.** What signs would you expect on the coefficients β_2 , β_3 , and β_4 ?
- 尽:預期為負號,因隨著每華>易克數增加,每克價格應該會降低,因為量大會有折扣 的現象。

為: 預期為正,隨 cocaine 的 纯度愈高,價格款愈高。

/4: 符號取決於需求與供給在時間上的變動情况。 以為無常固定,但供給增加,則價格會下降。

b. Use your computer software to estimate the equation. Report the results and interpret the coefficient estimates. Have the signs turned out as you expected?

```
Call:
lm(formula = price ~ quant + qual + trend, data = cocaine)
Residuals:
           1Q Median
   Min
-43.479 -12.014 -3.743 13.969 43.753
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 90.84669 8.58025 10.588 1.39e-14 ***
quant -0.05997 0.01018 -5.892 2.85e-07 ***
          0.11621 0.20326 0.572 0.5700
-2.35458 1.38612 -1.699 0.0954 .
qual
trend
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 20.06 on 52 degrees of freedom
Multiple R-squared: 0.5097,
                              Adjusted R-squared: 0.4814
F-statistic: 18.02 on 3 and 52 DF, p-value: 3.806e-08
```

PRICE = 90.8467-0.06 QUANT+0.1162 QUAL-2.3546 TREND 及=-0.06 = 執在其他條件不製下,當數量增加 | 單位,平均 壓格會下降 0.06 B= 0.1162 = 表示在其他條件不製下,當 免息提高 | 單位時,平均 壓格會上刊 0.1162 B4=-23546 > 表示在其他條件不製下, 時間每增加 | 年,平均 壓格 戰會降低 2.3546, 低供給的成長速度快於需求的成長速度。

ラAII係数都符合預期。

c. What proportion of variation in cocaine price is explained jointly by variation in quantity, quality, and time?

d. It is claimed that the greater the number of sales, the higher the risk of getting caught. Thus, sellers are willing to accept a lower price if they can make sales in larger quantities. Set up H_0 and H_1 that would be appropriate to test this hypothesis. Carry out the hypothesis test.

$$H_{0}^{2}/2_{0} = H_{1}^{2}/2_{0} = H_{0}^{2}/2_{0} = H_{0}^{2}$$

e. Test the hypothesis that the quality of cocaine has no influence on expected price against the alternative that a premium is paid for better-quality cocaine.

$$H_0:\beta_3 \le 0$$
 $H_1:\beta_3 > 0$ $t=0.572 < t_{(0.95,52)}=1.675$) 無法把絕H₀,代表效有充分證據顯示較高的 $Cocaine$ 种度 會得到 20 外的 價格 溢價。

f. What is the average annual change in the cocaine price? Can you suggest why price might be changing in this direction?

为便格下降的可能原因之一,可能是因隨蓋時間故術處步,因此供給者能在相同時間內產出更多 Co caine, 導致 供給大於需求, 故平均便格隨時間下降。