Minimal Perfect Hashing and K-Mer String Dictionaries

Giulio Ermanno Pibiri ISTI-CNR

Agenda

- 0. About Me (5 minutes)
- 1. Minimal Perfect Hashing (15 minutes)
- 2. K-Mer String Dictionaries (15 minutes)

About Me — Short CV

Education

- + Nov. 2015 Oct. 2018: PhD Degree in Computer Science (INF/01), University of Pisa
- + 2012 2014: Master Degree in Computer Science and Networking, University of Pisa
- + 2009 2012: Bachelor Degree in Computer Engineering, University of Florence

Research Positions — Academic Age: 2017-present (almost 5 years)

- + Nov. 2018 present: Postdoc Research Fellow in Computer Science, ISTI-CNR
- + Nov. 2015 Oct. 2018: PhD Student in Computer Science, University of Pisa

+ 3 european projects

- + 1 collaboration with
- eBay (California)

Visiting Student

- + May 2018 Oct. 2018: The University of Melbourne, Melbourne, Australia
- + Apr. 2018: RIKEN AIP, Tokyo, Japan

Teaching

- + April 2022 Data Compression Course, PhD Program in Ingegneria dell'Informazione, University of Pisa
- + Feb. 2016 June 2020, University of Pisa

Committees

- + Program: SIGIR'22, ECIR'22, WSDM'22, AICT'21, CIKM'21, SIGIR'21, ECIR'21, WSDM'21, CIKM'20, SIGIR'20, SIGIR'19
- + Organizing: ESA'20, CPM'19, SPIRE'17, SIGIR'16

Awards

2 x Young Researcher Award (ISTI-CNR), Master Degree Award (Scuola Superiore Sant'Anna), Best Master Thesis (EATCS)

About Me — Research Activity

Keywords: Data Structures, Algorithms, Data Compression, Indexing, Efficiency

Design compressed data structures and algorithms to index and search large quantities of data.

Efficiency is the key to:

- + **build better applications** in terms of reduced latency to access information (enhanced user experience);
- + save computer resources (power and storage machines).

About Me — Research Activity

Keywords: Data Structures, Algorithms, Data Compression, Indexing, Efficiency

Design compressed data structures and algorithms to index and search large quantities of data.

Efficiency is the key to:

- + **build better applications** in terms of reduced latency to access information (enhanced user experience);
- + save computer resources (power and storage machines).

Some Example Problems

- Inverted Indexes (TOIS'17, WSDM'19, TKDE'19, CSUR'20)
- Language Modeling (SIGIR'17, TOIS'19)
- RDF Triples (TKDE'20)
- Query Auto-Completion (SIGIR'20, collaboration with eBay)
- Prefix-Sums (SPE'20)
- Bitmap Compression (DCC'21)
- Rank/Select Queries (INFOSYS'21)
- Minimal Perfect Hashing (SIGIR'21)

https://github.com/jermp

Part 1 Minimal Perfect Hashing

Minimal Perfect Hashing (MPH)

MPHF. Given a set S of n distinct keys, a function f that bijectively maps the keys of S into the range $\{0, ..., n-1\}$ is called a minimal perfect hash function for S.

- Lower bound of 1.44 bits/key.
- Built once and evaluated many times.
- Many algorithms available, like:
 - FCH (1992)
 - CHD (2009)
 - EMPHF (2014)
 - GOV (2016)
 - BBHash (2017)
 - RecSplit (2019)
 - PTHash (2021)

Context and Motivations

Space-efficient and fast retrieval of $\langle key, value \rangle$ pairs from a static set.

Some examples:

- Reserved words in programming languages.
- Garbage collectors.
- Command names in interactive systems.
- Lexicon of inverted indexes.
- Indexing of q-grams for language models.
- Web page URLs: DNS, page ranking, ecc.

Indeed MPH: Fast and Compact Immutable Key-Value Stores

PTHash — Overview

- Flexibility: minimal and non-minimal perfect hash functions
- Space/Time Efficiency: fast lookup within compressed space
- External-Memory Scaling: use disk if not enough RAM is available
- Parallel Construction: use more threads to speed up construction
- Configurable: can offer different trade-offs (between construction time, lookup time, and space effectiveness)
- C++ code available at: https://github.com/jermp/pthash

FCH Construction

Fox, Chen, and Heath, SIGIR'92

- Distribute keys into m buckets using hashing and compute a displacement d_i for bucket i such that $f(x) = (h(x) + d_i) \mod n$, and no collisions occur.
- Use $m = \lceil cn/\log_2 n \rceil$ buckets for n keys and a given parameter c.
- One memory access per lookup.

$$d_0$$
 0 tkde d_1 5 sigir spe tois d_2 2 icde d_3 5 csur wsdm

FCH Construction — Remarks

• To guarantee that all positions in the table are tested with *uniform probability*, displacements have to be tried at random \rightarrow the best we can hope for is $\lceil \log_2 n \rceil$ bits per bucket.

For $\lceil cn/\log_2 n \rceil$ buckets, it costs cn total bits. Large space for large c.

• Up to *n* trials to "fit" a pattern.

If a successful displacement is not found for a bucket \rightarrow rehash.

Slow for small c.

Example. For 10^8 64-bit random keys and c=3.0, FCH takes 1h 10m: other techniques can do the same in 1m or less.

Extremely fast lookup.

PTHash — Intuition

- If the table of displacements were **compressible**, we could afford to use a parameter c' > c and run the search faster, such that the size of the compressed table is $\approx cn$ bits.
- Now, how to achieve compression? Re-design the search step.

PTHash — From Displacements to Pilots

$$f(x) = (h(x) + d_i) \bmod n \qquad \longrightarrow \qquad f(x) = (h(x) \oplus h(k_i)) \bmod n$$

PTHash — From Displacements to Pilots

$$f(x) = (h(x) + d_i) \bmod n \qquad \longrightarrow \qquad f(x) = (h(x) \oplus h(k_i)) \bmod n$$

- The bitwise XOR between two random fingerprints is another random fingerprint → displacement of keys at random.
- New random patterns generated with every tried pilot, even when pilots are tried in order, that is:

$$k_i = 0, 1, 2, 3, \dots$$

→ Pilots will be small on average and repetitive, hence compressible.

 $\chi =$ "A View From the Top of the World"

$$k_i = 0$$

 χ = "A View From the Top of the World"

$$k_i = 0$$


```
\chi = "A View From the Top of the World"
```

$$k_i = 0$$

PTHash — Entropy

$$n = 10^6$$
 keys, $c = 3.5$ (1.76 × 10^5 buckets)

$c \rightarrow$	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0
FCH	16.69	16.85	16.93	16.93	16.87	16.77	16.65	16.49	16.32	16.14
PTHash	13.42	11.68	10.32	9.29	8.48	7.82	7.27	6.82	6.45	6.11

Empirical entropy of the tables, for $n = 10^6$ keys

PTHash — Example

- For 10^8 64-bit random keys and c=3.0 (3 bits/key), FCH takes 1h 10m.
- PTHash with $\alpha = 0.99$, c = 6.8, and Front-Back Dictionary-based compression achieves the same space (3 bits/key) but builds in 37s (114×).
- Both functions evaluate in 35-37 nanosec/key.

Benchmark with 1B 64-bit random keys

- Processor: Intel i9-9900K @ 3.6 GHz,
 32 KiB of L1, 256 KiB of L2 cache
- OS: Ubuntu 20
- Compiler: gcc 9.2.1, with flags -march=native -03
- construction in internal memory
- construction is single-threaded

	$n = 10^9$				
Method	constr.	space	lookup		
	(secs)	(bits/key)	(ns/key)		
FCH, $c = 3$	_	_	_		
FCH, $c=4$	15904	4.00	35		
FCH, $c = 5$	2937	5.00	35		
FCH, $c = 6$	2133	6.00	35		
FCH, $c=7$	1221	7.00	35		
CHD, $\lambda = 4$	1972	2.17	419		
CHD, $\lambda = 5$	5964	2.07	417		
CHD, $\lambda = 6$	23746	2.01	416		
EMPHF	374	2.61	199		
GOV	875	2.23	175		
BBHash, $\gamma = 1$	253	3.06	170		
BBHash, $\gamma = 2$	152	3.71	143		
BBHash, $\gamma = 5$	100	6.87	113		
RecSplit, ℓ =5, b =5	233	2.95	220		
RecSplit, ℓ =8, b =100	936	1.80	204		
RecSplit, ℓ =12, b =9	5700	2.23	197		
PTHash					
(i) C-C, α =0.99, c =7	1042	3.23	37		
(ii) D-D, α =0.88, c =11	308	3.94	64		
(iii) EF, α =0.99, c =6	1799	2.17	101		
(iv) D-D, α =0.94, c =7	689	2.99	55		

Benchmark with 1B 64-bit random keys

- Processor: Intel i9-9900K @ 3.6 GHz,
 32 KiB of L1, 256 KiB of L2 cache
- OS: Ubuntu 20
- Compiler: gcc 9.2.1, with flags -march=native -03
- construction in internal memory
- construction is single-threaded

	$n = 10^9$				
Method	constr.	space	lookup		
	(secs)	(bits/key)	(ns/key)		
FCH, $c = 3$	_	_	_		
FCH, $c = 4$	15904	4.00	35		
FCH, $c = 5$	2937	5.00	35		
FCH, $c = 6$	2133	6.00	35		
FCH, $c = 7$	1221	7.00	35		
CHD, $\lambda = 4$	1972	2.17	419		
CHD, $\lambda = 5$	5964	2.07	417		
CHD, $\lambda = 6$	23746	2.01	416		
EMPHF	374	2.61	199		
GOV	875	2.23	175		
BBHash, $\gamma = 1$	253	3.06	170		
BBHash, $\gamma = 2$	152	3.71	143		
BBHash, $\gamma = 5$	100	6.87	113		
RecSplit, ℓ =5, b =5	233	2.95	220		
RecSplit, ℓ =8, b =100	936	1.80	204		
RecSplit, ℓ =12, b =9	5700	2.23	197		
PTHash					
(i) C-C, α =0.99, c =7	1042	3.23	37		
(ii) D-D, α =0.88, c =11	308	3.94	64		
(iii) EF, α =0.99, c =6	1799	2.17	101		
(iv) D-D, α =0.94, c =7	689	2.99	55		

Part 2 K-Mer String Dictionaries*

*Ongoing work!

Problem Definition

K-Mer. A k-mer is a string of length k over the alphabet {A,C,G,T}. Example: "ACGGTAGAACCGA" is a k-mer of length 13 (k=13).

K-Mer String Dictionary Problem. Given a large string over the alphabet {A,C,G,T} (e.g., a genome or a pan-genome), index all its *distinct n* k-mers, so that the following two operations are supported efficiently:

- (1) i = Lookup(k-mer), where $i \in [0,n)$ if the k-mer belongs to the dictionary or i = -1 otherwise;
- (2) k-mer = Access(i). (plus also iteration and *stateful* membership queries).

Problem Definition

K-Mer. A k-mer is a string of length k over the alphabet {A,C,G,T}. Example: "ACGGTAGAACCGA" is a k-mer of length 13 (k=13).

K-Mer String Dictionary Problem. Given a large string over the alphabet {A,C,G,T} (e.g., a genome or a pan-genome), index all its *distinct n* k-mers, so that the following two operations are supported efficiently:

- (1) i = Lookup(k-mer), where $i \in [0,n)$ if the k-mer belongs to the dictionary or i = -1 otherwise;
- (2) k-mer = Access(i). (plus also iteration and *stateful* membership queries).

Like a MPHF but exact detection of out-of-set keys.

Example: The human genome has >2.5B distinct k-mers for k=31.

Preliminary Observations

- The algorithmic literature about *(compressed) string dictionaries* is rich of solutions (e.g., Front-Coding, path-decomposed tries, double-array tries, Bonsai, ecc.), but are relevant for "generic strings":
 - + variable-length strings;
 - + larger alphabets (e.g., ASCII);
 - + (usually) no particular properties of the strings to aid compression.
- Since k-mers are extracted *consecutively* from DNA, a k-mer following another one shares k-1 symbols (very low entropy).

```
Example for k = 13.

ACGGTAGAACCGA

ACGGTAGAACCGA

CGGTAGAACCGAT

GGTAGAACCGATT

GTAGAACCGATTC

TAGAACCGATTCA

AGAACCGATTCA

AGAACCGATTCAA

AACCGATTCAAA

AACCGATTCAAA
```

. . .

Equivalence between a set of k-mers and a de Bruijn graph.

Equivalence between a set of k-mers and a de Bruijn graph.

Equivalence between a set of k-mers and a de Bruijn graph.

- Equivalence between a set of k-mers and a de Bruijn graph.
- There are efficient software tools to run the following pre-processing flow.

- + no duplicate k-mers
- + heuristic method to minimise the number of symbols

Minimizers

Minimizer. Given a k-mer and an order relation h, its minimizer of length m < k is its smallest m-mer according to the order h.

Example. Given "ACGGTAGAACCGA" and m = 4 (k-m+1=13-4+1=10 4-mers):

```
ACGGTAGAACCGA
ACGG
CGGT
GGTA
GTAG
TAGA
AGAA
GAAC

AACC ← If h is the lexicographic order.
ACCG
CCGA
```

Super-k-mers

Property. Consecutive k-mers share the same minimizer \rightarrow there are *far less* minimizers than k-mers ($\approx (k-m+1)/2$ times less minimizers) \rightarrow *sparse* indexing.

```
Example:
ACGGTAGAACCGATTCAAATTCGA ...
ACGGTAGAACCGAT
GGTAGAACCGATT
GTAGAACCGATTC
TAGAACCGATTCA
AGAACCGATTCA
AGAACCGATTCAA
AACCGATTCAAA
AACCGATTCAAA
```

Super-k-mer. Let a *super-k-mer* be a *maximal* list of consecutive k-mers sharing the same minimizer.

Super-k-mers

Property. Consecutive k-mers share the same minimizer \rightarrow there are *far less* minimizers than k-mers ($\approx (k-m+1)/2$ times less minimizers) \rightarrow *sparse* indexing.

```
Example:
ACGGTAGAACCGATTCAAATTCGA ...
ACGGTAGAACCGAT
CGGTAGAACCGAT
GGTAGAACCGATT
GTAGAACCGATTC
TAGAACCGATTCA
AGAACCGATTCA
AGAACCGATTCAA
AACCGATTCAAA
AACCGATTCAAA
```

Super-k-mer. Let a *super-k-mer* be a *maximal* list of consecutive k-mers sharing the same minimizer.

Example: "ACGGTAGAACCGATTCAAA" is a super-k-mer from the above string.

Super-k-mers

Observation. A super-k-mer of length s is a **space-efficient** representation of the set of its constituent s - k + 1 k-mers because it costs 2s/(s - k + 1) bits/k-mer which is ≈ 2 bits/k-mer if s is sufficiently large and/or we have *long chains of super-k-mers*. Much better than 2k bits/k-mer.

```
Example for k=13:

ACGGTAGAACCGATTCAAA (2x19=38 bits for 7 k-mers, i.e., 5.43 bits/k-mer vs. 2x13=26 bits/k-mer)

ACGGTAGAACCGA

CGGTAGAACCGAT

GGTAGAACCGATT

GTAGAACCGATTC

TAGAACCGATTCA

AGAACCGATTCAA

GAACCGATTCAA
```

How to index super-k-mers?

Our Solution — Overview

Idea 1. Conceptually, partition the unitigs into super-k-mers by a left-to-right parse of the unitigs. Call a bucket for a minimizer the set of its super-k-mers. To lookup a k-mer, we will inspect the bucket of its minimizer.

Idea 2. Do not break the unitigs as to preserve the chains of super-k-mers (every time we break a string, we pay 2(k-1) bits): build an inverted index on minimizers to locate super-k-mers in the unitigs.

Our Solution — Overview

Idea 1. Conceptually, partition the unitigs into super-k-mers by a left-to-right parse of the unitigs. Call a bucket for a minimizer the set of its super-k-mers. To lookup a k-mer, we will inspect the bucket of its minimizer.

Idea 2. Do not break the unitigs as to preserve the chains of super-k-mers (every time we break a string, we pay 2(k-1) bits): build an inverted index on minimizers to locate super-k-mers in the unitigs.

Example for k=13 and m=4:

ACGGTAGAACCGATTCAAATTCGA ...

AACCGATTCAAATTCGA ...

Our Solution — Overview

Idea 1. Conceptually, partition the unitigs into super-k-mers by a left-to-right parse of the unitigs. Call a bucket for a minimizer the set of its super-k-mers. To lookup a k-mer, we will inspect the bucket of its minimizer.

Idea 2. Do not break the unitigs as to preserve the chains of super-k-mers (every time we break a string, we pay 2(k-1) bits): build an inverted index on minimizers to locate super-k-mers in the unitigs.

Idea 3. Exploit the *skew* distribution of minimizers to keep good space effectiveness and make searches very fast.

Super-k-mer Partitioning + Inverted Index

Input: some (stitched) unitigs

```
AGATGATGAACCTGAAAACATCCTGAAAATCGTCAA
AGAATGGCGGCGTTCACAGGGGCTACCCTTGTTTAA
AGACTCTAAATAAAGTA
ATTTTCAGGATGTTTTCAGGTTCATCATCTCCCTTC
TTTGCAGGATAGTAGATAAGATCGCTCATCAACGGA
TGTTGTGTAATTCTGGTAAGATGTTCTTCTAGATCA
TCCCAATATTTGTCAAGCACTTCCCCTTTTAATTGA
GCGTTATCCCCGG
AGATGATGAACCTGAAAACATCCTGAAAATTGTCAA
AGAATGGCGGCGTTCACAGGGGCTA
ATTGTCAAAGAATGGCGGCGTTCACAGGGGTTACCC
TTGTTTAAAGACTCTAAATAAAGTAGATAATAAAAC
TATATATGGAACATCATCGCATCTGG
```

Super-k-mer Partitioning + Inverted Index

Input: some (stitched) unitigs

```
AGATGATG<mark>AACCTGAA</mark>AACATCCTGAAAATCGTCAA
AGAATGGCGGCGTTCACAGGGGCTACCCTTGTTTAA
AGACTCTAAATAAAGTA
ATTTTCAGGATGTTTTCAGGTTCATCATCTCCCTTC
TTTGCAGGATAGTAGATAAGATCGCTCATCAACGGA
TGTTGTGTAATTCTGGTAAGATGTTCTTCTAGATCA
TCCCAATATTTGTCAAGCACTTCCCCTTTTAATTGA
GCGTTATCCCCGG
AGATGATGAACCTGAAAACATCCTGAAAATTGTCAA
AGAATGGCGGCGTTCACAGGGGCTA
ATTGTCAAAGAATGGCGGCGTTCACAGGGGTTACCC
TTGTTTAAAGACTCTAAATAAAGTAGATAATAAAAC
TATATATGGAACATCATCGCATCTGG
```

Inverted index + MPHF

TCGTCAAA: 29 CATCCCAA: 172 ATCGTCAA: 20 **GACTCTAA:** 50 329 AACCTGAA: 0 246 ATCCTGAA: 9 255 GAACATCA: 364 GCAGGATA: 105 AGGGGCTA: 30 CTTGTTTA: 319 GAGCGTTA: 208 TTTAAAGA: 323 CTTCTAGA: 169 GGCTACCC: 33 CGTTATCC: 211 AGCACTTC: 189 AAGATCGC: 119 AACTATAT: 353 CCTTCTTT: 97 TTCAGGTT: 89 ACGGATGT: 143 ACAGGGGT: 310

TGTCAAAG: 266 307

TAATTCTG: 157

- k=31 and m=8:
 285 k-mers and 24 minimizers
- Lookup(k-mer):
 - 1. Calculate minimizer
 - 2. Retrieve its super-k-mers from the inverted index
 - 3. Search the k-mer (scan at most k-m+1 k-mers)

Example:

GAACCTGAAAACATCCTGAAAATTGTCAAAG

Super-k-mer Partitioning + Inverted Index

Input: some (stitched) unitigs

```
AGATGATG<mark>AACCTGAA</mark>AACATCCTGAAAATCGTCAA
AGAATGGCGGCGTTCACAGGGGCTACCCTTGTTTAA
AGACTCTAAATAAAGTA
                               119
ATTTTCAGGATGTTTTCAGGTTCATCATCTCCCTTC
TTTGCAGGATAGTAGATAGATCGCTCATCAACGGA
TGTTGTGTAATTCTGGTAAGATGTTCTTCTAGATCA
TCCCAATATTTGTCAAGCACTTCCCCTTTTAATTGA
GCGTTATCCCCGG
AGATGATGAACCTGAAAACATCCTGAAAATTGTCAA
AGAATGGCGGCGTTCACAGGGGCTA
ATTGTCAAAGAATGGCGGCGTTCACAGGGGTTACCC
TTGTTTAAAGACTCTAAATAAAGTAGATAATAAAAC
TATATATGGAACATCATCGCATCTGG
```

Inverted index + MPHF

TCGTCAAA: 29 CATCCCAA: 172 ATCGTCAA: 20 **GACTCTAA:** 50 329 AACCTGAA: 0 246 ATCCTGAA: 9 255 GAACATCA: 364 GCAGGATA: 105 AGGGGCTA: 30 CTTGTTTA: 319 GAGCGTTA: 208 TTTAAAGA: 323 CTTCTAGA: 169 GGCTACCC: 33 CGTTATCC: 211 AGCACTTC: 189 AAGATCGC: 119 AACTATAT: 353 CCTTCTTT: 97 TTCAGGTT: 89 ACGGATGT: 143 ACAGGGGT: 310

TGTCAAAG: 266 307

TAATTCTG: 157

- k=31 and m=8:
 285 k-mers and 24 minimizers
- Lookup(k-mer):
 - 1. Calculate minimizer
 - 2. Retrieve its super-k-mers from the inverted index
 - 3. Search the k-mer (scan at most k-m+1 k-mers)

Example:

GAACCTGAAAACATCCTGAAAATTGTCAAAG GATAGTAGATAAGATCGCTCATCAACGGATG

Property. Minimizers have a (very) skew distribution for sufficiently large m.

Property. Minimizers have a (very) skew distribution for sufficiently large m.

Example on the human genome (GRCh38), for k=31 and m=20. 2,505,445,761 k-mers 421,845,806 minimizers 388,018,280 (91.98%) only appear once! (buckets of size 1)

Property. Minimizers have a (very) skew distribution for sufficiently large m.

Example on the human genome (GRCh38), for k=31 and m=20. 2,505,445,761 k-mers 421,845,806 minimizers 388,018,280 (91.98%) only appear once! (buckets of size 1)

Idea 3. Choose a threshold T and build a MPHF for all the k-mers belonging to buckets of size > T. If a k-mer belongs to a bucket of size s, then we only spend $\lceil \log_2 s \rceil$ bits/k-mer to indicate its super-k-mer.

We only pay the cost for the MPHF for a *small* fraction of the total k-mers but guarantee that each lookup scans at most T super-k-mers.

Property. Minimizers have a (very) skew distribution for sufficiently large m.

```
Example on the human genome (GRCh38), for k=31 and m=20. 2,505,445,761 k-mers 421,845,806 minimizers 388,018,280 (91.98%) only appear once! (buckets of size 1)
```

Idea 3. Choose a threshold T and build a MPHF for all the k-mers belonging to buckets of size > T. If a k-mer belongs to a bucket of size s, then we only spend $\lceil \log_2 s \rceil$ bits/k-mer to indicate its super-k-mer. We only pay the cost for the MPHF for a *small* fraction of the total k-mers but guarantee that each lookup scans *at most* T super-k-mers.

```
Continuing the example above: For T = 4, only 0.64% of buckets of size > 4.

num_kmers belonging to buckets of size > 4 and <= 8: 44487258 (num_bits_per_pos = 3)

num_kmers belonging to buckets of size > 8 and <= 16: 35434987 (num_bits_per_pos = 4)

num_kmers belonging to buckets of size > 16 and <= 32: 29555882 (num_bits_per_pos = 5)

...

num_kmers belonging to buckets of size > 1024 and <= 2048: 4430407 (num_bits_per_pos = 11)

num_kmers belonging to buckets of size > 2048 and <= 4096: 2764374 (num_bits_per_pos = 12)

num_kmers belonging to buckets of size > 4096 and <= 36256: 2923517 (num_bits_per_pos = 16)

num_kmers 194505733 (7.76%)
```

Skew Hashing — Example

If the bucket for minimizer "AACCTGAA" has size 7 and is

and the kmer "GAACCTGAAAACATCCTGAAAATTGTCAAAG" is present in the super-k-mer of position 281301, then it will be costly to scan all the 7 super-k-mers. Thus, we lookup the k-mer in a MPHF f.

If f("GAACCTGAAAACATCCTGAAAATTGTCAAAG") = p, then we store 6 in a compact array A at position p.

The array A is **compact** because it stores integers v that are $2^2 \le v < 2^3$, thus requiring $\lceil \log_2 2^3 \rceil = 3$ bits each.

Some Experiments — Setting

- Implementation: C++
- Processor: Intel(R) Core(TM) i9-9940X
 CPU @ 3.30GHz
- Compiler and OS: gcc version 11.2.0 (Ubuntu 11.2.0-7ubuntu2)
- Compilation flags: -03 -march=native

Dataset	Number of distinct k-mers (k = 31)		
Human Chr 14	82,465,393		
Human Chr 1+2+3	595,463,222		
Whole Human	2,505,445,761		

Space, Lookup, and Access

	Minimizer size (m)	Avg. bits/k-mer		Avg. Lookup time in nanosec		Avg. Access
Dataset		without skew index	with skew index	without skew index	with skew index	time in nanosec
Human Chr 14	17	6.25	6.74	1106	594	295
Human Chr 1+2+3	20	7.67	8.03	1753	928	440
Whole Human	20	8.07	8.58	3680	1209	615

- The skew hash-based index grants 2-3X better (average) lookup time for only +0.5 bits/k-mer.
- The impact grows for larger datasets.

Comparison against the FM-index

- The FM-index (Ferragina, Manzini, 2000) is a full-text index based on the Burrows-Wheeler transform of the text.
- Massive impact in bioinformatics. Can be built on the stitched unitigs to provide membership data structures for k-mer sets (Chikhi et al., 2014; Rahman, Medvedev, 2021).
 C++ code: https://github.com/jts/dbgfm

Dataset	Avg. bit	s/k-mer	Avg. Lookup time in nanosec		
	without skew index	with skew index	without skew index	with skew index	
Human Chr 14	6.25	6.74	1106	594	
Human Chr 1+2+3	7.67	8.03	1753	928	

Dataset	Avg. bit	s/k-mer	Avg. Lookup time in nanosec		
	sampling rate 32	sampling rate 64	sampling rate 32	sampling rate 64	
Human Chr 14	5.94	4.22	6601	8999	
Human Chr 1+2+3	6.03	4.27	8348	11859	

Comparison against Blight and Pufferfish

• **Blight** (Marchet et al., 2021) and **Pufferfish** (Almodaresi et al., 2018) are two recent indexes for k-mer sets optimized for *stateful membership queries*. C++ code:

https://github.com/Malfoy/Blight https://github.com/COMBINE-lab/pufferfish

- Benchmark: for the whole Human genome, query all k-mers from SRA accessions.
 - + SRR5833294 34,129,891 reads, each of length 76 bases, 91.65% hits;
 - + SRR5901135 4,628,576 reads, variable length, 0.002% hits.

Index	Avg. bits/k-mer	SRR5833294 (total time in minutes)	SRR5901135 (total time in minutes)
Blight dense	20.17	11.4	12.2
Blight sparse (b=4)	16.11	26.3	35.9
Pufferfish dense	45.04	10.6	5.8
Pufferfish sparse (e=2)	26.10	16.3	9.8
Our	10.13	6.3	2.6

Thank you for the attention!

References

- Giulio Ermanno Pibiri and Roberto Trani. "PTHash: Revisiting FCH Minimal Perfect Hashing". In Proceedings of the 44th International Conference on Research and Development in Information Retrieval (SIGIR). 2021.
- Giulio Ermanno Pibiri and Roberto Trani. "Parallel and External-Memory Construction of Minimal Perfect Hash Functions with PTHash". ArXiv. 2021
- Chikhi, Rayan, Antoine Limasset, Shaun Jackman, Jared T. Simpson, and Paul Medvedev. "On the representation
 of de Bruijn graphs." In International conference on Research in computational molecular biology, pp. 35-55.
 Springer, Cham, 2014.
- Ferragina, Paolo, and Giovanni Manzini. "Opportunistic data structures with applications." In *Proceedings 41st Annual Symposium on Foundations of Computer Science*, pp. 390-398. IEEE, 2000.
- Rahman, Amatur, and Paul Medevedev. "Representation of k-mer sets using spectrum-preserving string sets." Journal of Computational Biology 28, no. 4 (2021): 381-394.
- Marchet, Camille, Mael Kerbiriou, and Antoine Limasset. "BLight: Efficient exact associative structure for k-mers." Bioinformatics (2021).
- Almodaresi, Fatemeh, Hirak Sarkar, Avi Srivastava, and Rob Patro. "A space and time-efficient index for the compacted colored de Bruijn graph." *Bioinformatics* 34, no. 13 (2018): i169-i177.