

μPC4557 DUAL HIGH-PERFORMANCE OPERATIONAL AMPLIFIER

Description

The μ PC4557 is a dual operational amplifier which features higher output drive current than that of the μ PC4558. This feature allows driving of headphone speakers directly. Other characteristics of this device are low noise and no crossover distortion, which make it the ideal choice for audio applications.

Features

- ☐ Internal frequency compensation
- ☐ Large common-mode and differential input voltage ranges
- ☐ No latch-up
- □ Low noise

Ordering Information

UPC4557C Plastic DIP 0°C to +70°C	Part Number	Package	Operating Temperature Range	
	μPC4557C	Plastic DIP	0°C to +70°C	

Pin Configuration

Equivalent Circuit

Absolute Maximum Ratings

 $T_A = 25^{\circ}C$

Vollage Between V+ and V-	36 V 700 mW		
Power Dissipation (Note 1)			
Differential Input Voltage	±30 V		
Input Voltage (Note 2)	±15 V		
Output Short Circuit Duration	5 8		
Operating Temperature Range	0 to +70°C		
Storage Temperature Range	-55 to +125°C		

Notes: 1. When the ambient temperature is more than 25 °C, derate linearly at 7 mW/°C, $(T_{Jmax}) = 125$ °).

For supply voltages less than ±15 V, the absolute maximum input voltage is equal to the supply voltage.

Comment: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Noise Measurement Circuit

Electrical Characteristics

 $T_A = 25$ °C, $V \pm = \pm 15$ V

1A = 25 °C,			Limits	1		Test
Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions
Input Offset Voltage	Vio		0.5	6.0	mV	R _S ≤ 10 kΩ
Input Offset Current	lio	·	5	200	пА	
Input Blas Current	lb		180	500	пА	
Large Signal Voltage Gain	Avol	86	100		dB	$\begin{array}{l} {\rm R_L} \geq 2 \; {\rm k}\Omega, \\ {\rm V_0} = \pm 10 \; {\rm V} \end{array}$
Power Dissipation	PD		90	170	mW	Both channels
Common Møde Rejection Ratio	CMRR	70	90		dB	R _S ≤ 10 kΩ
Supply Voltage Rejection Ratio	SVAR		30	150	μ\/\	R _S \leq 10 k Ω
Output Voltage Swing	Vom	±12	±14		٧	$R_L \ge 2 k\Omega$
Output Voltage Swing	V _{om}	±10	±11.5		V	I ₀ = ±25 mA
Common Mode Input Voltage Range	V _{icm}	±12	±14		V	
Slew Rate	SR		1.0		V/µs	Av = 1
Input Noise Voltage	en		6		μ\ρ.ρ	$R_S = 1 \text{ k}\Omega,$ $f = 1 \text{ Hz}$ $to 1 \text{ kHz}$
Channel Separation	CS		105		dB	f = 1 kHz

Channel Separation Measurement Circuit

3-84

Operating Characteristics $T_A = 25\,^{\circ}\mathrm{C}$

3-85

www.DataSheet4U

Operating Characteristics (Cont.)

 $T_A = 25$ °C

Application Circuit

Head Phone AMP

3-86

ا الرابع المرابع المرابع والمرابع المرابع المرابع الموسود المرابع الم