Questio	Answer		Mark
n Number			
16(a)	Resolves velocity to find vertical component Use of $v = u + a t$	(1) (1)	
	Time to max height = 3.3 (s)	(1)	3
	Example of calculation $u_v = 50 \text{ m s}^{-1} \sin (40^\circ) = 32.1 \text{ m s}^{-1}$		
	v = u + a t with $v = 0$		
16(b)	$t = 32.1 \text{ m s}^{-1} \div 9.81 \text{ m s}^{-2} = 3.28 \text{ s}$ Use of $v_H = v \cos \theta$	(1)	
10(1)	Use of $s = u t$ to calculate horizontal distance	(1)	
	Use of $s = u t + \frac{1}{2}a t^2$ to calculate maximum height or other <i>suvat</i>	(1)	
	equation	(1)	
	Maximum height = 53 m (allow ecf from (a))	(1)	
	Use of tan $ heta$ to calculate vertical height of hill	(1)	
	Compares height of hill with maximum height (accept conclusion based on candidate's values).		
	Or		
	Use of $v_H = v \cos \theta$	(1)	
	Use of $s = u t$ to calculate horizontal distance	(1)	
	Use of $s = u t + \frac{1}{2} a t^2$ to calculate maximum height or other suvat	(1)	
	equation	(1)	
	Maximum height = 53 m (allow ecf from (a))	(1) (1)	
	Use of $\tan \theta$ to calculate minimum angle of hill for a hit Compares angle of hill with minimum angle (accept conclusion based on candidate's values).	(1)	
	Or	(4)	
		(1) (1)	
	Use of $v_H = v \cos \theta$	(1)	
	Use of $s = u t$ to calculate horizontal distance	(1)	
	Use of $s = u t + \frac{1}{2} a t^2$ to calculate maximum height or other <i>suvat</i>	(1)	
	equation	(1)	6
	Maximum height = 53 m (allow ecf from (a))		
	Use of tan θ to calculate horizontal distance to 52.6 m height along hill Compares horizontal distances (accept conclusion based on		
	candidate's values).		
	Example of calculation		
	$v_H = 50 \text{ m s}^{-1} \times \cos (40^\circ) = 38.3 \text{ m s}^{-1}$ $s_H = v_H \times t$		
	$s_H = 38.3 \text{ m s}^{-1} \times 3.28 \text{ s} = 125 \text{ m}$		
	maximum height of rock = $s_V = u_V t + \frac{1}{2} a t^2$ with $a = -g$		

Total for question 16	9	
45.7 m < 52.6 m, so no		
= 45.7 m		
vertical height of hill at horizontal distance of 125 m = 125 m \times tan (20°)		
$s_V = 32.1 \text{ m s}^{-1} \times 3.28 \text{ s} - \frac{1}{2} \times 9.81 \text{ m s}^{-2} \times (3.28 \text{ s})^2 = 52.6 \text{ m}$		