SINGAPORE POLYTECHNIC 2019 / 2020 Semester 1 MST

Module Name: Engineering Mathematics II

Module Code: MS2216/MS4216/MS6216

Course: DCHE/DASE/DCPE/DEB/DEEE/DES/DESM/DARE/DCEP/DME/DMRO

Year: 2 FT Page 1 of 4

No.	SOLUTION
1a(i)	$\int \left[\left(4u - 1 \right)^5 + \frac{7}{2u + 5} \right] du = \frac{\left(4u - 1 \right)^6}{6(4)} + \frac{7}{2} \ln \left 2u + 5 \right + C = \frac{\left(4u - 1 \right)^6}{24} + \frac{7}{2} \ln \left 2u + 5 \right + C$
a(ii)	$\int 2\sin^2 2\theta d\theta = \int (1 - \cos 4\theta) d\theta = \theta - \frac{\sin 4\theta}{4} + C$
a(iii)	$\int \cot^2 4\theta d\theta = \int \left(\csc^2 4\theta - 1\right) d\theta = -\frac{\cot 4\theta}{4} - \theta + C$
1b	$\int_{-1}^{1} \frac{5}{e^{3x-2}} dx = \int_{-1}^{1} 5e^{-3x+2} dx = -\frac{5}{3} \left[e^{-3x+2} \right]_{-1}^{1} = -\frac{5}{3} \left(e^{-1} - e^{5} \right) = 246.74$
1c	$y = \frac{1}{\sqrt{3t+1}}$ $y_{rms} = \sqrt{\frac{1}{3-1}} \int_{1}^{3} \frac{1}{3t+1} dt = \sqrt{\frac{1}{2\times 3}} \left[\ln 3t+1 \right]_{1}^{3} = \sqrt{\frac{1}{6}} (\ln 10 - \ln 4) = 0.39$
	$\sqrt{3-1}J_1 3t+1 \qquad \sqrt{2\times3} \qquad \qquad \sqrt{3}$
2a	$\int x^2 \left(4 + x^3\right)^{20} dx = \frac{1}{3} \int u^{20} du = \frac{1}{3} \left(\frac{u^{21}}{21}\right) + C = \frac{1}{63} \left(4 + x^3\right)^{21} + C$
2b	$\int_0^1 \sqrt{e^{2x} \left(1 + e^x\right)} dx = \int_0^1 e^x \sqrt{1 + e^x} dx = \int_0^{1 + e} \sqrt{u} du = \frac{2}{3} \left[u^{\frac{3}{2}} \right]_0^{1 + e}$
	$=\frac{2}{3}\left((1+e)^{\frac{3}{2}}-(2)^{\frac{3}{2}}\right)=2.89$
3a	$\int x \cos 3x dx = \frac{1}{3} x \sin 3x + \frac{1}{9} \cos 3x + C$ $u dv$ $x \cos 3x$ $1 \frac{1}{3} \sin 3x$ $0 -\frac{1}{9} \cos 3x$

SINGAPORE POLYTECHNIC 2019 / 2020 Semester 1 MST

Module Name: Engineering Mathematics II

Module Code: MS2216/MS4216/MS6216

Course: DCHE/DASE/DCPE/DEB/DEEE/DES/DESM/DARE/DCEP/DME/DMRO

Year: 2 FT Page 2 of 4

No.	SOLUTION
3b	$\int (3x-1)\ln(3x-1)dx$ $= \frac{(3x-1)^2}{2(3)}\ln(3x-1) - \int \frac{3}{3x-1} \frac{(3x-1)^2}{2(3)}dx$ $= \frac{(3x-1)^2}{6}\ln(3x-1) - \frac{1}{2}\int (3x-1)dx$ $= \frac{(3x-1)^2}{6}\ln(3x-1) - \frac{1}{2}\frac{(3x-1)^2}{2(3)} + C$ $= \frac{(3x-1)^2}{6}\ln(3x-1) - \frac{(3x-1)^2}{2(3)} + C$
4a	$\frac{1}{x^{2}(x+1)(x^{2}+1)} = \frac{A}{x} + \frac{B}{x^{2}} + \frac{C}{x+1} + \frac{Dx+E}{x^{2}+1}$ or $\frac{1}{x^{2}(x+1)(x^{2}+1)} = \frac{Ax+B}{x^{2}} + \frac{C}{x+1} + \frac{Dx+E}{x^{2}+1}$
4b	$\frac{1}{(x+2)(x+1)^2} = \frac{A}{x+2} + \frac{B}{x+1} + \frac{C}{(x+1)^2}$ $1 = A(x+1)^2 + B(x+2)(x+1) + C(x+2)$ $x = -2: 1 = A$ $x = -1: 1 = C$ $\operatorname{Coeff} x^2: 0 = A + B \implies B = -A = -1$ $\int \frac{1}{(x+2)(x+1)^2} dx = \int \frac{1}{x+2} - \frac{1}{x+1} + \frac{1}{(x+1)^2} dx$ $= \ln x+2 - \ln x+1 - \frac{1}{x+1} + C \text{or} = \ln\left \frac{x+2}{x+1}\right - \frac{1}{x+1} + C \text{(optional)}$

SINGAPORE POLYTECHNIC 2019 / 2020 Semester 1 MST

Module Name: Engineering Mathematics II

Module Code: MS2216/MS4216/MS6216

Course: DCHE/DASE/DCPE/DEB/DEEE/DES/DESM/DARE/DCEP/DME/DMRO

Year: 2 FT Page 3 of 4

No.	SOLUTION
4c	$\int \frac{1}{x^2 + 2x + 5} dx = \int \frac{1}{(x+1)^2 + 2^2} dx = \frac{1}{2} \tan^{-1} \left(\frac{x+1}{2}\right) + C_1$
	$\int \frac{1}{10x^2 + 20x + 50} dx = \frac{1}{10} \int \frac{1}{x^2 + 2x + 5} dx$
	$= \frac{1}{10} \left(\frac{1}{2} \tan^{-1} \left(\frac{x+1}{2} \right) + C_1 \right) = \frac{1}{20} \tan^{-1} \left(\frac{x+1}{2} \right) + C_2$
5a	$A = f(x, y, z) = \frac{1}{2}z\sqrt{x^2 - \left(\frac{z}{2}\right)^2} + yz = \frac{1}{2}z\sqrt{x^2 - \frac{z^2}{4}} + yz$
	$= \frac{1}{2}z\sqrt{\frac{4x^2 - z^2}{4}} + yz = \frac{1}{4}z\sqrt{4x^2 - z^2} + yz$
5b	$\frac{\partial A}{\partial x} = f_x(x, y, z) = \left(\frac{1}{4}z\right) \left(\frac{1}{2}\right) \frac{8x}{\sqrt{4x^2 - z^2}} + 0 = \frac{xz}{\sqrt{4x^2 - z^2}}$
	$\frac{\partial A}{\partial y} = f_y(x, y, z) = 0 + z = z$
	$\frac{\partial A}{\partial z} = f_z(x, y, z) = \left(\frac{1}{4}\right) \sqrt{4x^2 - z^2} + \frac{1}{4}(z) \left(\frac{1}{2}\right) \left(\frac{-2z}{\sqrt{4x^2 - z^2}}\right) + y = \frac{1}{2} \left(\frac{2x^2 - z^2}{\sqrt{4x^2 - z^2}}\right) + y$
5c	$\frac{\partial A}{\partial x} = f_x(2,5,3) = \frac{2(3)}{\sqrt{4(4) - 3^2}} = 2.2678$
	$\frac{\partial A}{\partial y} = f_y(2,5,3) = 3$
	$\frac{\partial A}{\partial z} = f_z(2,5,3) = \frac{1}{2} \left(\frac{2(2)^2 - 3^2}{\sqrt{4(2)^2 - 3^2}} \right) + 5 = 4.8110$

SINGAPORE POLYTECHNIC 2019 / 2020 Semester 1 MST

Module Name: Engineering Mathematics II

Module Code: MS2216/MS4216/MS6216

Course: DCHE/DASE/DCPE/DEB/DEEE/DES/DESM/DARE/DCEP/DME/DMRO

Year: 2 FT Page 4 of 4

No.	SOLUTION
	Given that $\frac{dx}{dt} = 0.015$ m/s, $\frac{dy}{dt} = 0.01$ m/s and $\frac{dz}{dt} = 0.01$ m/s
	$\frac{dA}{dt} = \frac{\partial A}{\partial x}\frac{dx}{dt} + \frac{\partial A}{\partial y}\frac{dy}{dt} + \frac{\partial A}{\partial z}\frac{dz}{dt}$
	$\frac{dA}{dt}(2,5,3) = f_x(2,5,3)\frac{dx}{dt} + f_y(2,5,3)\frac{dy}{dt} + f_z(2,5,3)\frac{dz}{dt}$
	= (2.2678)(0.015) + (3)(0.01) + (4.8110)(0.01)
	= 0.034017 + 0.03 + 0.04811
	$=0.11m^2/s$