Eksamen efterår 2015 Page 1 of 12

In English Log ud Søren Kegnæs INSIDE CampusNet / 26050 Indledende kemi for biovidenskaberne E16 / Opgaver Eksamen efterår 2015 O Vis rigtige svar Side 1 Skjul rigtige svar Spørgsmål 1 Vægtning 4%: Hvad er mulige sæt af kvantetal for valenselektronerne i grundtilstanden for Ge? (4,1,1,½), (4,1,0,-½) $\qquad \qquad (4,0,0,1/2), \ (4,0,0,-1/2), \ (4,1,-1,1/2), \ (4,1,0,1/2)$ $\overbrace{(4,0,0,1/2),(4,0,0,-1/2),(4,2,-2,1/2),(4,2,-1,1/2),(4,2,0,1/2),(4,2,1,1/2),(4,2,2,1/2),(4,2,2,1/2),(4,2,2,1/2),(4,2,1/2),(4,2,1/2),(4,2,$ $(4,0,0,1/2),\ (4,0,0,-1/2),\ (4,2,-2,1/2),\ (4,2,-1,1/2),\ (4,2,-1,1/2),\ (4,2,1/2),\ (4,2,1$ Spørgsmål 2 Vægtning 3%: Hvad er elektronkonfigurationen i grundtilstanden for Br: \square [Ar] 4s 2 3d 10 4p 5 [Kr] 4s² 3d¹⁰ 4p⁵ \square 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 4 \square 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d⁸ 4p⁶ \Box 4s² 4d⁵ Spørgsmål 3 Vægtning 4%: Opstil i rækkefølge efter stigende 1. ioniseringsenergi følgende grundstoffer: Ba, Cl, Ge, S, Se 🔲 Ba, CI, Ge, S, Se Ba, Ge, Se, S, CI S, CI, Ge, Se, Ba Se, S, Ge, Ba, CI S, Ge, Ba, Se, CI

Eksamen efterår 2015 Page 2 of 12

Side 2
Molekylorbitalteori
Vedhæftet er molekylorbitaldiagrammet for B_2
Filer: MO for B2.jpg
Spørgsmål 4
Vægtning 2%:
Molekylorbitalteori:
Angiv om B_2 er stabilt og angiv de magnetiske egenskaber for B_2 .
\square B ₂ er stabilt og diamagnetisk
\square B ₂ er stabilt og paramagnetisk
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
\square B ₂ er ustabilt og paramagnetisk
\square B ₂ er stabilt og antimagnetisk
Spørgsmål 5
Vægtning 4%:
Molekylorbitalteori:
Angiv bindingsordenen for ${\rm F_2}^{2+}$
☐ Bindingsorden = 0
☐ Bindingsorden = 1
☐ Bindingsorden = 2
☐ Bindingsorden = 3
C Diadiananda 4

Eksamen efterår 2015 Page 3 of 12

Side 3
ewisstrukturer
Spørgsmål 6
ægtning 3%:
angiv hvilken af følgende forbindelser der er isoelektronisk med Kl
BaO
□ LiF
☐ Nal
□ CaO
□ NaH
Spørgsmål 7
/ægtning 2%:
ngiv antallet af lonepairs på C og hver Br for forbindelsen CBr ₄
☐ C: 0 og Br: 2
☐ C: 0 og Br: 3
☐ C: 1 og Br: 2
☐ C: 2 og Br: 3
☐ C: 2 og Br: 2
Spørgsmål 8
ægtning 2%:
angiv antallet af lonepairs på N og hver H for forbindelsen NH_3
□ N: 0 og H: 0
□ N: 0 og H: 1
N: 1 og H: 0
□ N: 1 og H: 1
☐ N: 1 og H: 3

Eksamen efterår 2015 Page 4 of 12

Side 4
Navngivning
Spørgsmål 9
Vægtning 1%: Navngiv SO ₂
☐ Svovloxid
Svovldioxid
☐ SvovIperoxid
☐ Svovlsuperoxid
☐ monosvovloxid
Spørgsmål 10
Vægtning 1%: Navngiv SrCO ₃
☐ Strontiumcarbonat
☐ Siliciumcarbonat
☐ Strontiumcarbonoxid
☐ Strontiummonocarbontrioxid
☐ Strontiumcarbonyl
Spørgsmål 11
Vægtning 1%: Navngiv CaH ₂
☐ Calciumhydrid
☐ Calciumhydrat
☐ Calciumdihydrogen
☐ Kallumhydrid
☐ Kaliumhydrat
Spørgsmål 12
Vægtning 1%: Navngiv NH₄H₂PO₄.
☐ Ammoniumdihydrogenphosphat
☐ Ammoniumdihydrogenphosphid
☐ ammoniakphosphorsyre
nitrogentetrahydriddihydrogenphosphortetraoxid
ammoniakdihydrogenphosphat

Eksamen efterår 2015 Page 5 of 12

Spørgsmål 13
Vægtning 1%:
Opskriv formlen for magnesiumnitrat.
☐ Mg(NO ₃) ₂
☐ MgNO ₃
☐ Mg(NO ₂) ₃
☐ Mg(NO₂)₂
☐ MnNO₃

Eksamen efterår 2015 Page 6 of 12

Side 5
Navngivning
Spørgsmål 14
/ægtning 1%:
Opskriv formlen for chrom(III)oxid.
☐ CrO ₃
☐ CuO₃
☐ Cr ₂ O ₃
☐ Cu(OH)₃
□ Cu ₂ O ₃

Eksamen efterår 2015 Page 7 of 12

Side 6
Kompleksforbindelser Vedhæftet er ligandfeltopsplitningen af d-orbitaler for oktaedriske komplekser (uden elektroner)
Filer: ligandfeltopsplitning.jpg
Spørgsmål 15
Vægtning 1%: Angiv centralatomets koordinationstal for de to ioniske kompleksforbindelser: a): ${\rm [Fe(H_2O)_6]^{2^+}}$ b): ${\rm [Fe(CN)_6]^{4^-}}$
a) 6 D b) 6
a) 3 D b) 3
a) 1 D b) 1
a) 0 b) 1
a) 2 b) -4
Spørgsmål 16 Vægtning 5%: Angiv antallet af d-elektroner i e_g og t_{2g} for følgende kompleks: $[Fe(CN)_{\delta}]^{4-}$
$\Box \frac{e_{g:} \ 0}{t_{2g:} \ 6}$
$\stackrel{\textbf{e_g: 3}}{\Box}_{\textbf{t_{2g: 3}}}$
e_{9} : 6 t_{29} : 0
$\Box \begin{array}{c} e_{g} : 0 \\ t_{2g} : 3 \end{array}$
Spørgsmål 17 Vægtning 3%:
Navngiv følgende kompleksforbindelse: [Cr(NH ₃) ₄ Cl ₂]Cl.
tetraammindichloridochrom(III)chlorid
tetraammindichloridochrom(I)chlorid
tetraamminchrom(III)chlorid
tetraammoniaktrichloridochrom(II)
Chrom/III)tetraammindichloridochlorid

Eksamen efterår 2015 Page 8 of 12

-
ægtning 3%:
Opskriv formlen for tetrachloridocobaltat(II)-ionen.
CoCl ₄] ²⁻
☐ [CoCl ₄] ²⁺
☐ [CuCl₄] ²⁻
☐ [CI₄CO] ²⁺
CuCl ₄] ²⁺
☐ [CuCl₄] ²⁺

Spørgsmål 18

Eksamen efterår 2015 Page 9 of 12

Side 7

Reaktionsskemaer

Spørgsmål 19

Vægtning 4%:

Færdiggør og afstem følgende reaktion, hvori kalium reagerer med stort overskud af vand.

 $K(s) + H_2O(l) \rightharpoonup ?$

- \square 2K(s) + 2H₂O(l) \rightharpoonup 2KOH(aq) + H₂(g)
- \square 2K(s) + 2H₂O(l) \rightharpoonup 2KO₂(aq) + 2H₂(g)
- $\ \ \, \underline{\ \ }\ \, 2K(s)+2H_2O(l) \rightharpoonup 2KH(s)+2OH^-(aq)$
- \square 2K(s) + 3H₂O(l) \rightharpoonup K₂O₃(s) + 3H₂(g)
- $\ \ \, \bigsqcup \ \, K(s) + 6H_2O(l) \rightharpoonup [K(H_2O)_6]^+(aq)$

Spørgsmål 20

Vægtning 4%:

Opskriv den afstemte reaktionsligning for fremstilling af $Fe_{(s)}$ ud fra $Fe_2O_{3(s)}$ og et reduktionsmiddel

- $\ \ \, \square \ \, 2Fe_2O_3(s) + 3C(s) \rightharpoonup 4Fe(l) + 3CO_2(g)$

- \square 2Fe₂O₃(s) + 2H₂(g) \rightharpoonup 4Fe(s) + 2H₂(g) + 3O₂(g)
- $\ \ \square \ Fe_2O_3(s) + 3H_2O(l) \rightharpoonup 2Fe(OH)_3(s)$

Spørgsmål 21

Vægtning 4%:

Angiv den korrekt afstemte reaktionsligning for svovldioxids reduktion af iod til iodid i sur opløsning

- $\label{eq:so2} \ \, \textstyle \ \, \textstyle \bigcap \, SO_2(aq) + I_2(aq) + 2H_2O(l) \rightharpoonup HSO_4^-(aq) + 2I^-(aq) + 3H^+(aq)$
- $\ \ \, \square \, \operatorname{SO}_2(\operatorname{aq}) + \operatorname{I}_2(\operatorname{aq}) + \operatorname{H}_2\operatorname{O}(\operatorname{l}) \rightharpoonup \operatorname{SO}_4^{2-}(\operatorname{aq}) + 2\operatorname{I}^-(\operatorname{aq}) + \operatorname{H}_2(\operatorname{aq})$
- \square SO₂(aq) + 4I₂(aq) + H₂O(l) \rightharpoonup HSO₄ (aq) + 4I⁻(aq) + H₂(g)
- $\ \ \, \square \ \, 2SO_2(aq) + I_2(aq) + H_2O(l) \rightharpoonup 2HSO_4^-(aq) + 2I^-(aq)$

Eksamen efterår 2015 Page 10 of 12

Side 8	
Støkiometri	
Spørgsmål 22	
/ægtning 7%:	
Reaktionen mellem kaliumsuperoxid, KO ₂ (s) og CO ₂ (g) bruges til at udskifte CO ₂ (g) med dioxygen, O ₂ (g), i atmosfærisk luft, som gennem udånding er blevet relativt beriget med CO ₂ (g).	
Den ikke-afstemte reaktionsligning er:	
$KO_2(s) + CO_2(g) \rightarrow K_2CO_3(s) + O_2(g)$	
ovor mange mol $O_2(g)$ dannes ved reaktion med 156 g $CO_2(g)$ og overskud af $KO_2(s)$	
☐ 5,318 mol	
☐ 4,235 mmol	
□ 0,198 mol	
☐ 3,545 mol	
☐ 48,79 mol	
Spørgsmål 23	
/ægtning 7%:	
Eddikesyreindholdet (CH ₃ COOH) i lagereddike kan bestemmes ved titrering med NaOH.	
5,00 mL lagereddike titreres med 38,08 mL 0,1000 M NaOH.	
dvad er indholdet af eddikesyre (densiteten af lagereddiken er 1,01 g/mL)?	
☐ 4,53 % w/w	
☐ 49,2 % w/w	
□ 0,41 % w/w	
□ 0.049 % w/w	

__ 1,01 % w/w

Eksamen efterår 2015

Side 9
Syre-base- og puffersystemer
Spørgsmål 24
Vægtning 7%:
Hypochlorsyrling bruges til at desinficere svømmebassiner. Det reagerer som svag syre:
$HClO(aq) \rightleftharpoons H^{+}(aq) + ClO^{-}(aq), K_a = 3, 0 \times 10^{-8}$
For at man skal kunne være i vandet uden at det svier for meget i øjnene, skal pH være 7,8.
Hvad er de respektive molprocenter af HCIO(aq) og CIO ^{-?}
☐ 67% CIO ⁻ og 33% HCIO
☐ 33% CIO ⁻ og 67% HCIO
☐ 50% CIO ⁻ og 50% HCIO
☐ 90% CIO ⁻ og 10% HCIO
☐ 10% CIO ⁻ og 90% HCIO
Spørgsmål 25
Vægtning 7%: 0,156 g Na $_2$ CO $_3$ (s) opløses i 100 mL vand. Hvad er pH i denne opløsning? Antag at volumenet er uændret: $K_a(1)=4,2\cdot 10^{-7}, K_a(2)=4,8\cdot 10^{-10}$
12,17
□ 10,74
9,30
□ 6,37
3,26

Eksamen efterår 2015 Page 12 of 12

Side 10
Ligevægte
Spørgsmål 26
$\label{eq:Vagening} Vaegtning 7\%: $$ \operatorname{Opløseligheden} \ af \ calciumsulfat, \ CaSO_4, \ i \ vand \ er \ 0,67 \ g/L. \ Beregn \ opløselighedsproduktet \ \textit{K}_{SP} \ for \ CaSO_4 \ g/L. $$ $$$
$\square 2,4 \times 10^{-5}$
$\square\ 2,2\times 10^{-1}$
□ 0,67
$\Box 4.9 \times 10^{-3}$
$\square \ 4,2\times 10^{-9}$
Spørgsmål 27
Vægtning 7%:
Isomeriseringsreaktionen mellem butan(g) og isobutan(g) er:
$butan(g) \rightleftharpoons isobutan(g)$, Ligevægtskonstanten $K = 25$
Det initielle tryk af butan er 10,0 bar og af isobutan er 0,0 bar. Hvad er trykkene ved ligevægt?
butan: 0,00 bar; isobutan: 10,0 bar
☐ butan: 0,38 bar ; isobutan: 9,6 bar
butan: 9,6 bar ; isobutan: 0,38 bar
butan: 5,0 bar ; isobutan: 5,0 bar

butan: 10,0 bar; isobutan: 0,00 bar