

ATK-MD0280 模块使用说明

高性能 2.8'TFTLCD 电阻触摸屏模块

使用说明

正点原子

广州市星翼电子科技有限公司

修订历史

版本	日期	原因
V1.0	2022/06/25	第一次发布
V1.1	2023/02/06	新增 2.8 寸 LCD 模块型号 7789(Chip ID: 0x8552)
V1.2	2023/03/11	添加对阿波罗 STM32F429 开发板的阿波罗 STM32F767 开发 板的支持
V1.3	2023/04/15	添加对阿波罗 STM32H743 开发板的支持

目 录

1,	硬件连接	1
	1.1 正点原子 MiniSTM32F103 开发板	
	1.2 正点原子精英 STM32F103 开发板	
	1.3 正点原子战舰 STM32F103 开发板	
	1.4 正点原子探索者 STM32F407 开发板	
	1.5 正点原子 F407 电机控制开发板	
	1.6 正点原子 MiniSTM32H750 开发板	
	1.7 正点原子阿波罗 STM32F429 开发板	
	1.8 正点原子阿波罗 STM32F767 开发板	4
	1.9 正点原子阿波罗 STM32H743 开发板	4
2,	实验功能	6
	2.1 ATK-MD0280 模块测试实验(FMC&FSMC)	6
	2.1.1 功能说明	6
	2.1.2 源码解读	6
	2.1.2 源码解读	
		12
	2.1.3 实验现象	12 14
	2.1.3 实验现象	12 14
	2.1.3 实验现象 2.2 ATK-MD0280 模块测试实验(GPIO)	12 14 15

1,硬件连接

1.1 正点原子 MiniSTM32F103 开发板

ATK-MD0280 模块可直接与正点原子 MiniSTM32F103 开发板板载的 TFTLCD 模块接口进行连接,具体的连接关系,如下表所示:

模块对应开发板				į	车接关系	Ŕ				
ATK-MD0280 模块	CS	RS	WR	RD	RST	D0	D1	D2	D3	
MiniSTM32F103 开发板	PC9	PC8	PC7	PC6	RESET	PB0	PB1	PB2	PB3	
模块对应开发板		连接关系								
ATK-MD0280 模块	D4	D5	D6	D7	D8	D9	D10	D11	D12	
MiniSTM32F103 开发板	PB4	PB5	PB6	PB7	PB8	PB9	PB10	PB11	PB12	
模块对应开发板				į	车接关系	Ŕ				
ATK-MD0280 模块	D13	D14	D15	GND	BL	VDD	VDD	GND	GND	
MiniSTM32F103 开发板	PB13	PB14	PB15	GND	PC10	3.3V	3.3V	GND	GND	
模块对应开发板		连接关系								
ATK-MD0280 模块	V5	MI	MO	PEN	NC	TCS	CLK	-	-	
MiniSTM32F103 开发板	5V	PC2	PC3	PC1	-	PC13	PC0	-	-	

表 1.1.1 ATK-MD0280 模块与 MiniSTM32F103 开发板连接关系

1.2 正点原子精英 STM32F103 开发板

ATK-MD0280 模块可直接与正点原子精英 STM32F103 开发板板载的 TFTLCD 模块接口进行连接,具体的连接关系,如下表所示:

模块对应开发板				į	车接关系	Ŕ				
ATK-MD0280 模块	CS	RS	WR	RD	RST	D0	D1	D2	D3	
精英 STM32F103 开发板	PG12	PG0	PD5	PD4	RESET	PD14	PD15	PD0	PD1	
模块对应开发板		连接关系								
ATK-MD0280 模块	D4	D5	D6	D7	D8	D9	D10	D11	D12	
精英 STM32F103 开发板	PE7	PE8	PE9	PE10	PE11	PE12	PE13	PE14	PE15	
模块对应开发板				į	车接关系	Ŕ				
ATK-MD0280 模块	D13	D14	D15	GND	BL	VDD	VDD	GND	GND	
精英 STM32F103 开发板	PD8	PD9	PD10	GND	PB0	3.3V	3.3V	GND	GND	
模块对应开发板	连接关系									
ATK-MD0280 模块	V5	MI	MO	PEN	NC	TCS	CLK	-	-	
精英 STM32F103 开发板	5V	PB2	PF9	PF10	-	PF11	PB1	-	-	

表 1.2.1 ATK-MD0280 模块与精英 STM32F103 开发板连接关系

1.3 正点原子战舰 STM32F103 开发板

ATK-MD0280 模块可直接与正点原子战舰 STM32F103 开发板板载的 TFTLCD 模块接口进行连接,具体的连接关系,如下表所示:

模块对应开发板				ì	车接关系	Ŕ				
ATK-MD0280 模块	CS	RS	WR	RD	RST	D0	D1	D2	D3	
战舰 STM32F103 开发板	PG12	PG0	PD5	PD4	RESET	PD14	PD15	PD0	PD1	
模块对应开发板		连接关系								
ATK-MD0280 模块	D4	D5	D6	D7	D8	D9	D10	D11	D12	
战舰 STM32F103 开发板	PE7	PE8	PE9	PE10	PE11	PE12	PE13	PE14	PE15	
模块对应开发板				į	车接关系	Ŕ				
ATK-MD0280 模块	D13	D14	D15	GND	BL	VDD	VDD	GND	GND	
战舰 STM32F103 开发板	PD8	PD9	PD10	GND	PB0	3.3V	3.3V	GND	GND	
模块对应开发板	连接关系									
ATK-MD0280 模块	V5	MI	MO	PEN	NC	TCS	CLK	-	-	
战舰 STM32F103 开发板	5V	PB2	PF9	PF10	-	PF11	PB1	-	-	

表 1.3.1 ATK-MD0280 模块与战舰 STM32F103 开发板连接关系

1.4 正点原子探索者 STM32F407 开发板

ATK-MD0280 模块可直接与正点原子探索者 STM32F407 开发板板载的 TFTLCD 模块接口进行连接,具体的连接关系,如下表所示:

模块对应开发板				į	车接关系	Ŕ					
ATK-MD0280 模块	CS	RS	WR	RD	RST	D0	D1	D2	D3		
探索者 STM32F407 开发板	PG12	PF12	PD5	PD4	RESET	PD14	PD15	PD0	PD1		
模块对应开发板		连接关系									
ATK-MD0280 模块	D4	D5	D6	D7	D8	D9	D10	D11	D12		
探索者 STM32F407 开发板	PE7	PE8	PE9	PE10	PE11	PE12	PE13	PE14	PE15		
模块对应开发板				į	车接关系	Ŕ					
ATK-MD0280 模块	D13	D14	D15	GND	BL	VDD	VDD	GND	GND		
探索者 STM32F407 开发板	PD8	PD9	PD10	GND	PB15	3.3V	3.3V	GND	GND		
模块对应开发板				į	车接关系	Ŕ					
ATK-MD0280 模块	V5	MI	MO	PEN	NC	TCS	CLK	-	-		
探索者 STM32F407 开发板	5V	PB2	PF11	PB1	-	PC13	PB0	-	-		

表 1.4.1 ATK-MD0280 模块与探索者 STM32F407 开发板连接关系

1.5 正点原子 F407 电机控制开发板

ATK-MD0280模块可直接与正点原子F407电机控制开发板板载的TFTLCD模块接口进行连接,具体的连接关系,如下表所示:

	模块对应开发板	连接关系
--	---------	------

ATK-MD0280 模块	CS	RS	WR	RD	RST	D0	D1	D2	D3
F407 电机控制开发板	PG12	PG0	PD5	PD4	RESET	PD14	PD15	PD0	PD1
模块对应开发板		连接关系							
ATK-MD0280 模块	D4	D5	D6	D7	D8	D9	D10	D11	D12
F407 电机控制开发板	PE7	PE8	PE9	PE10	PE11	PE12	PE13	PE14	PE15
模块对应开发板	连接关系								
ATK-MD0280 模块	D13	D14	D15	GND	BL	VDD	VDD	GND	GND
F407 电机控制开发板	PD8	PD9	PD10	GND	PH9	3.3V	3.3V	GND	GND
模块对应开发板	连接关系								
ATK-MD0280 模块	V5	MI	MO	PEN	NC	TCS	CLK	-	-
F407 电机控制开发板	5V	PD11	PH8	PH7	-	PG1	PH6	_	-

表 1.5.1 ATK-MD0280 模块与 F407 电机控制开发板连接关系

1.6 正点原子 MiniSTM32H750 开发板

ATK-MD0280 模块可直接与正点原子 MiniSTM32H750 开发板板载的 TFTLCD 模块接口进行连接,具体的连接关系,如下表所示:

模块对应开发板				į	车接关系	Ŕ				
ATK-MD0280 模块	CS	RS	WR	RD	RST	D0	D1	D2	D3	
MiniSTM32H750 开发板	PD7	PE3	PD5	PD4	RESET	PD14	PD15	PD0	PD1	
模块对应开发板		连接关系								
ATK-MD0280 模块	D4	D5	D6	D7	D8	D9	D10	D11	D12	
MiniSTM32H750 开发板	PE7	PE8	PE9	PE10	PE11	PE12	PE13	PE14	PE15	
模块对应开发板				į	车接关系	Ŕ				
ATK-MD0280 模块	D13	D14	D15	GND	BL	VDD	VDD	GND	GND	
MiniSTM32H750 开发板	PD8	PD9	PD10	GND	PB5	3.3V	3.3V	GND	GND	
模块对应开发板	连接关系									
ATK-MD0280 模块	V5	MI	MO	PEN	NC	TCS	CLK	-	-	
MiniSTM32H750 开发板	5V	PD6	PB3	PB1		PC5	PB0			

表 1.6.1 ATK-MD0280 模块与 MiniSTM32H750 开发板连接关系

1.7 正点原子阿波罗 STM32F429 开发板

ATK-MD0280 模块可直接与正点原子阿波罗 STM32F429 开发板板载的 TFTLCD 模块接口进行连接,具体的连接关系,如下表所示:

1411 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1					4.13.32 -	_				
模块对应开发板		连接关系								
ATK-MD0280 模块	CS	RS	WR	RD	RST	D0	D1	D2	D3	
阿波罗 STM32F429 开发板	PD7	PD13	PD5	PD4	RESET	PD14	PD15	PD0	PD1	
模块对应开发板		连接关系								
ATK-MD0280 模块	D4	D5	D6	D7	D8	D9	D10	D11	D12	
阿波罗 STM32F429 开发板	PE7	PE8	PE9	PE10	PE11	PE12	PE13	PE14	PE15	

模块对应开发板		连接关系									
ATK-MD0280 模块	D13	D14	D15	GND	BL	VDD	VDD	GND	GND		
阿波罗 STM32F429 开发板	PD8	PD9	PD10	GND	PB5	3.3V	3.3V	GND	GND		
模块对应开发板		连接关系									
ATK-MD0280 模块	V5	MI	MO	PEN	NC	TCS	CLK	-	-		
阿波罗 STM32F429 开发板	5V	PG3	PI3	PH7	-	PI8	PH6	_	-		

表 1.7.1 ATK-MD0280 模块与阿波罗 STM32F429 开发板连接关系

1.8 正点原子阿波罗 STM32F767 开发板

ATK-MD0280 模块可直接与正点原子阿波罗 STM32F767 开发板板载的 TFTLCD 模块接口进行连接,具体的连接关系,如下表所示:

模块对应开发板				į	车接关系	Ŕ				
ATK-MD0280 模块	CS	RS	WR	RD	RST	D0	D1	D2	D3	
阿波罗 STM32F767 开发板	PD7	PD13	PD5	PD4	RESET	PD14	PD15	PD0	PD1	
模块对应开发板		连接关系								
ATK-MD0280 模块	D4	D5	D6	D7	D8	D9	D10	D11	D12	
阿波罗 STM32F767 开发板	PE7	PE8	PE9	PE10	PE11	PE12	PE13	PE14	PE15	
模块对应开发板				į	车接关系	Ŕ				
ATK-MD0280 模块	D13	D14	D15	GND	BL	VDD	VDD	GND	GND	
阿波罗 STM32F767 开发板	PD8	PD9	PD10	GND	PB5	3.3V	3.3V	GND	GND	
模块对应开发板	连接关系									
ATK-MD0280 模块	V5	MI	MO	PEN	NC	TCS	CLK	_	-	
阿波罗 STM32F767 开发板	5V	PG3	PI3	PH7	-	PI8	PH6	-	-	

表 1.8.1 ATK-MD0280 模块与阿波罗 STM32F767 开发板连接关系

1.9 正点原子阿波罗 STM32H743 开发板

ATK-MD0280 模块可直接与正点原子阿波罗 STM32H743 开发板板载的 TFTLCD 模块接口进行连接,具体的连接关系,如下表所示:

模块对应开发板	连接关系								
ATK-MD0280 模块	CS	RS	WR	RD	RST	D0	D1	D2	D3
阿波罗 STM32H743 开发板	PD7	PD13	PD5	PD4	RESET	PD14	PD15	PD0	PD1
模块对应开发板	连接关系								
ATK-MD0280 模块	D4	D5	D6	D7	D8	D9	D10	D11	D12
阿波罗 STM32H743 开发板	PE7	PE8	PE9	PE10	PE11	PE12	PE13	PE14	PE15
模块对应开发板	连接关系								
ATK-MD0280 模块	D13	D14	D15	GND	BL	VDD	VDD	GND	GND
阿波罗 STM32H743 开发板	PD8	PD9	PD10	GND	PB5	3.3V	3.3V	GND	GND
模块对应开发板	连接关系								
ATK-MD0280 模块	V5	MI	MO	PEN	NC	TCS	CLK	_	-
阿波罗 STM32H743 开发板	5V	PG3	PI3	PH7	-	PI8	PH6	-	-

表 1.9.1 ATK-MD0280 模块与阿波罗 STM32H743 开发板连接关系

2,实验功能

2.1 ATK-MD0280 模块测试实验(FMC&FSMC)

2.1.1 功能说明

在本实验中,开发板主控芯片通过 FMC 或 FSMC 接口与 ATK-MD0280 模块进行通讯,从而完成对 ATK-MD0280 模块的初始化配置以及操作 ATK-MD0280 模块的 LCD 显示各种内容,同时通过模拟 SPI 接口与 ATK-MD0280 模块进行通讯,从而获取 ATK-MD0280 模块的触摸数据。

2.1.2 源码解读

打开本实验的工程文件夹,能够在./Drivers/BSP 目录下看到 ATK_MD0280 子文件夹,该文件夹中就包含了 ATK-MD0280 模块的驱动文件,如下图所示(以 FSMC 为例):

```
./Drivers/BSP/ATK_MD0280/
|-- atk_md0280.c
|-- atk_md0280.h
|-- atk_md0280_font.h
|-- atk_md0280_fsmc.c
|-- atk_md0280_fsmc.h
|-- atk_md0280_touch.c
|-- atk_md0280_touch.c
|-- atk_md0280_touch.h
|-- atk_md0280_touch_spi.c

`-- atk_md0280_touch_spi.h
```

图 2.1.2.1 ATK-MD0280 模块驱动代码

2.1.2.1 ATK-MD0280 模块接口驱动

在图 2.1.2.1 中,atk_md0280_fsmc.c 和 atk_md0280_fsmc.h 是开发板与 ATK-MD0280 模块通讯而使用的 FSMC 驱动文件,关于 FSMC 和 FMC 的驱动介绍,请查看正点原子各个开发板对应的开发指南中 FSMC 和 FMC 对应的章节。

2.1.2.2 ATK-MD0280 模块字体文件

在图 2.1.2.1 中,atk_md0280_font.h 是驱动 ATK-MD0280 模块在 LCD 上显示 ASCII 字符时需要的字体取模文件,该文件支持字号为 12、16、24 和 32 的 ASCII 字符。

2.1.2.3 ATK-MD0280 模块触摸接口驱动

在图 2.1.2.1 中,atk_md0280_touch_spi.c 和 atk_md0280_touch_spi.h 是开发板与ATK-MD0280 模块通讯而使用的模拟 SPI 驱动文件,主要用于获取 ATK-MD0280 模块的触模状态,关于模拟 SPI 的驱动介绍,请查看正点原子各个开发板对应的开发指南中模拟 SPI 对应的章节。

2.1.2.4 ATK-MD0280 模块驱动

在图 2.1.2.1 中,atk_md0280.c 和 atk_md0280.h 是 ATK-MD0280 模块的驱动文件,包含了 ATK-MD0280 模块初始化、LCD 清屏、LCD 画点、LCD 画线、LCD 显示字符、LCD 显示字符串、LCD 显示数字等相关的 ATK-MD0280 模块操作 API 函数。函数比较多,下面仅

介绍几个重要的 API 函数。

1. 函数 atk_md0280_init()

该函数用于初始化 ATK-MD0280 模块,具体的代码,如下所示:

```
* @brief ATK-MD0280 模块初始化
* @param 无
* @retval ATK_MD0280_EOK : ATK_MD0280 模块初始化成功
         ATK_MD0280_ERROR : ATK_MD0280 模块初始化失败
*/
uint8_t atk_md0280_init(void)
  uint16 t chip id;
                                    /* ATK-MD0280 模块硬件初始化 */
  atk md0280 hw init();
  atk_md0280_fsmc_init(); /* ATK-MD0280 模块 FSMC 接口初始化 */
  chip id = atk md0280 get chip id(); /* 获取 ATK-MD0280 模块驱动器 ID */
  if ((chip_id != ATK_MD0280_CHIP_ID1) && (chip_id != ATK_MD0280_CHIP_ID2))
       return ATK MD0280 ERROR;
   else
   {
       g atk md0280 sta.chip id = chip id;
       g atk md0280 sta.width = ATK MD0280 LCD WIDTH;
       g_atk_md0280_sta.height = ATK_MD0280_LCD_HEIGHT;
  atk md0280 reg init();
  atk md0280 set disp dir(ATK MD0280 LCD DISP DIR 0);
  atk md0280 clear (ATK MD0280 WHITE);
  atk md0280 display on();
  atk_md0280_backlight_on();
#if (ATK_MD0280_USING_TOUCH != 0)
  atk md0280 touch init();
#endif
  return ATK MD0280 EOK;
```

从上面的代码中可以看出,函数 atk_md0280_init()初始化 ATK-MD0280 模块主要就是 初始化与 ATK-MD030 模块的 FSMC 通讯接口,FSMC 通讯接口初始化完成后就可以通过 FSMC 通讯接口初始化 ATK-MD0280 模块的寄存器,以完成 ATK-MD0280 模块的初始化,同时还通过宏定义 ATK_MD0280_USING_TOUCH 来使能或禁用 ATK-MD0280 模块的触摸 驱动,若使能了 ATK-MD0280 模块的触摸驱动,还会调用函数 atk_md0280_touch_init()进行触摸的相关初始化,这个函数在下面会进行介绍。

2. 函数 atk_md0280_draw_point()

该函数用于在 ATK-MD0280 模块的 LCD 上画一个点, 理论上只要通过该函数就能够完成对 ATK-MD0280 模块 LCD 的所有显示操作, 该函数的具体代码, 如下所示:

```
/**

* @brief ATK-MD0280 模块 LCD 画点

* @param x : 待画点的 X 坐标

* y : 待画点的 Y 坐标

* color : 待画点的颜色

* @retval 无

*/

void atk_md0280_draw_point(uint16_t x, uint16_t y, uint16_t color)

{
 atk_md0280_set_column_address(x, x);
 atk_md0280_set_page_address(y, y);
 atk_md0280_start_write_memory();
 atk_md0280_fsmc_write_dat(color);

}
```

从上面的代码中可以看出,在 ATK-MD0280 模块的 LCD 上画点需要三个步骤,首先就是确认待画点的位置(设置列地址和页地址),接着就是发送开始写显存命令,最后就可以写入待画点的颜色数据了。

3. 函数 atk md0280 fill()

该函数用于对 ATK-MD0280 模块 LCD 的某一区域填充指定的单一颜色,虽然画点函数 atk_md0280_draw_point()能够完成 ATK-MD0280 模块 LCD 显示的所有操作,但是对于大面积填充的场景,每画一个点都要确定点的位置和颜色,这导致用画点函数在这种场景下的效率不高。因为 ATK-MD0280 模块支持先确定一个填充区域,然后自动将连续的颜色数据顺序填充进确定好的区域,因此就有了在大面积填充的场景下效率更高的方法,函数 atk md0280 fill()的具体代码,如下所示:

```
/**
* @brief ATK-MD0280 模块 LCD 区域填充
* @param xs : 区域起始 x 坐标
              : 区域起始 Y 坐标
         ys
               : 区域终止 x 坐标
         xe
         ye : 区域终止 Y 坐标
         color : 区域填充颜色
* @retval 无
*/
void atk md0280 fill( uint16 t xs,
                    uint16 t ys,
                    uint16 t xe,
                    uint16 t ye,
                    uint16 t color)
  uint16 t x index;
  uint16 t y index;
```



```
atk_md0280_set_column_address(xs, xe);
atk_md0280_set_page_address(ys, ye);
atk_md0280_start_write_memory();
for (y_index=ys; y_index<=ye; y_index++)
{
    for (x_index=xs; x_index<= xe; x_index++)
    {
        atk_md0280_fsmc_write_dat(color);
    }
}</pre>
```

从上面的代码中可以函数,区域填充函数 atk_md0280_fill()与画点函数 atk_md0280_draw_point()很相似,只是画点函数在确定列地址和页地址时,确定的是一个点,而填充函数确定的是一个区域,画点函数在发送颜色数据的时候,发送的是一个点的颜色数据,而填充函数则是连续发送一个区域的颜色数据,这样一来,就大大地提高了大面积填充颜色的效率。

2.1.2.5 ATK-MD0280 模块触摸驱动

在图 2.1.2.1 中,atk_md0280_touch.c 和 atk_md0280_touch.h 是 ATK-MD0280 模块的触 摸驱动文件,包含了 ATK-MD0280 模块触摸初始化、校准和扫描等相关的 ATK-MD0280 模块触摸 API 函数。函数比较多,下面仅介绍几个重要的 API 函数。

1. 函数 atk md0280 touch init()

该函数用于初始化 ATK-MD0280 模块的触摸,具体的代码,如下所示:

```
/**
 * @brief ATK-MD0280 模块触摸初始化
 * @param 无
 * @retval 无
 */
void atk_md0280_touch_init(void)
{
    atk_md0280_touch_hw_init();
    atk_md0280_touch_spi_init();
    atk_md0280_touch_calibration();
}
```

从上面的代码中可以看出,函数 atk_md0280_touch_init()初始化 ATK-MD0280 模块的触 摸功能主要就是初始化与 ATK-MD030 模块触摸相关的模拟 SPI 通讯接口,模拟 SPI 通讯接口初始化完成后就可以通过模拟 SPI 通讯接口操作 ATK-MD0280 模块的触摸了,由于ATK-MD0280 模块使用的是电阻触摸,因此需要对 ATK-MD0280 模块的触摸进行校准。

2. 函数 atk md0280 touch scan()

该函数用于扫描 ATK-MD0280 模块的触摸,具体的代码,如下所示:

```
/**

* @brief ATK-MD0280 模块触摸扫描

* @param x: 扫描到触摸的 x 坐标

* y: 扫描到触摸的 Y 坐标

* @retval ATK_MD0280_TOUCH_EOK : 扫描到有效的触摸
```



```
ATK MD0280 TOUCH ERROR : 触摸坐标无效
           ATK MD0280 TOUCH EMPTY : 未扫描到有效的触摸
uint8_t atk_md0280_touch_scan(uint16_t *x, uint16_t *y)
   uint16 t x adc;
  uint16 t y adc;
   atk_md0280_lcd_disp_dir_t dir;
   uint16 t x raw;
   uint16_t y_raw;
   if (ATK MD0280 TOUCH READ PEN() == 0)
       x_adc = atk_md0280_touch_get_adc2(ATK_MD0280_TOUCH_CMD_X);
       y_adc = atk_md0280_touch_get_adc2(ATK_MD0280_TOUCH_CMD_Y);
       x_{adc} = (int16_t)(x_{adc} - g_{atk_md0280_touch_sta.center.x) /
                   g atk md0280 touch sta.fac.x + ATK MD0280 LCD WIDTH / 2;
       y raw = (int16 t) (y adc - g atk md0280 touch sta.center.y) /
                   g_atk_md0280_touch_sta.fac.y + ATK_MD0280_LCD_HEIGHT / 2;
       if((x raw >= ATK MD0280 LCD WIDTH) || (y raw >= ATK MD0280 LCD HEIGHT))
           return ATK MD0280 TOUCH ERROR;
       dir = atk md0280 get disp dir();
       switch (dir)
           case ATK MD0280 LCD DISP DIR 0:
               *x = x_raw;
               *y = y raw;
               break;
            }
           case ATK MD0280 LCD DISP DIR 90:
               *x = y raw;
               *y = atk_md0280_get_lcd_height() - x_raw;
               break;
           case ATK MD0280 LCD DISP DIR 180:
               *x = atk md0280 get lcd width() - x raw;
```



```
*y = atk_md0280_get_lcd_height() - y_raw;
break;
}
case ATK_MD0280_LCD_DISP_DIR_270:
{
    *x = atk_md0280_get_lcd_width() - y_raw;
    *y = x_raw;
    break;
}
return ATK_MD0280_TOUCH_EOK;
}
return ATK_MD0280_TOUCH_EMPTY;
}
```

从上面的代码中可以看出,函数 atk_md0280_touch_scan()首先会判断是否有触摸,如果没有触摸那么就直接返回相应的错误,如果有触摸就会获取触摸的 ADC 值,然后根据校准的值,转化为坐标值,最后在根据屏幕的旋转方向,转换为屏幕上对应旋转方向的实际坐标值。

2.1.2.6 实验测试代码

实验的测试代码为文件 demo.c,在工程目录下的 User 子目录中。测试代码的入口函数为 demo run(),具体的代码,如下所示:

```
/**
    * @brief 例程演示入口函数
    * @param 无
    * @retval 无
    */
void demo_run(void)
{
    uint8_t ret;

    /* 初始化ATK-MD0280模块 */
    ret = atk_md0280_init();
    if (ret != 0)
    {
        printf("ATK-MD0280 init failed!\r\n");
        while (1)
        {
            LED0_TOGGLE();
            delay_ms(200);
        }
    }
}
```



```
/* ATK-MD0280 模块 LCD 清屏 */
atk md0280 clear(ATK MD0280 WHITE);
/* ATK-MD0280 模块 LCD 显示字符串 */
atk md0280 show string( 10,
                        10,
                        ATK_MD0280_LCD_WIDTH,
                        32,
                        "STM32",
                        ATK MD0280 LCD FONT 32,
                        ATK_MD0280_RED);
atk md0280 show string( 10,
                        42,
                        ATK_MD0280_LCD_WIDTH,
                        24,
                        "ATK-MD0280",
                        ATK MD0280 LCD FONT 24,
                        ATK MD0280 RED);
atk md0280 show string( 10,
                        66,
                        ATK MD0280 LCD WIDTH,
                        16,
                        "ATOM@ALIENTEK",
                        ATK MD0280 LCD FONT 16,
                        ATK MD0280 RED);
while (1)
    /* 演示立方体 3D 旋转 */
    demo show cube();
```

从上面的代码中可以看出,整个测试代码的逻辑还是比较简单的,就是在 ATK-MD0280 模块的 LCD 上显示了一些实验信息,然后就调用函数 demo_show_cube()显示立方体 3D 旋转的演示,函数 demo_show_cube()实际上就是通过 LCD 画线函数在 ATK-MD0280 模块的 LCD 显示屏上画线段,画线的本质实际上也就是画点,同时根据扫描的触摸坐标值,实时的修改立方体的位置。

2.1.3 实验现象

将 ATK-MD0280 模块按照第一节"硬件连接"中介绍的连接方式与开发板连接,并将 实验代码编译烧录至开发板中,在 ATK-MD0280 模块初始化前,会先通过串口显示本实验 的相关信息,如下图所示:

图 2.1.3.1 串口调试助手显示内容

ATK-MD0280 模块的初始化过程中,会在 ATK-MD0280 模块的 LCD 上显示与触摸校准的相关内容,如下图所示:

图 2.1.3.2 ATK-MD0280 模块 LCD 显示触摸校准相关内容

接下来请根据 ATK-MD0280 模块 LCD 上的内容提示,依次点击 ATK-MD0280 模块 LCD 上显示的 5 个点,以完成 ATK-MD0280 模块的触摸校准。

初始化通过后,会在 ATK-MD0280 模块的 LCD 上显示一些实验信息,和立方体 3D 旋转的演示,如下图所示:

图 2.1.3.3 ATK-MD0280 模块 LCD 显示立方体 3D 旋转演示等信息 此时通过触摸屏幕,可以实时修改立方体的位置,如下图所示:

图 2.1.3.4 触摸修改立方体位置

2.2 ATK-MD0280 模块测试实验(GPIO)

2.2.1 功能说明

在本实验中,开发板主控芯片通过 GPIO 接口与 ATK-MD0280 模块进行通讯,从而完成对 ATK-MD0280 模块的初始化配置以及操作 ATK-MD0280 模块的 LCD 显示各种内容,

同时通过模拟 SPI 接口与 ATK-MD0280 模块进行通讯,从而获取 ATK-MD0280 模块的触摸数据。

2.2.2 源码解读

打开本实验的工程文件夹,能够在./Drivers/BSP 目录下看到 ATK_MD0280 子文件夹,该文件夹中就包含了 ATK-MD0280 模块的驱动文件,如下图所示:

```
./Drivers/BSP/ATK_MD0280/
|-- atk_md0280.c
|-- atk_md0280.h
|-- atk_md0280_font.h
|-- atk_md0280_gpio.c
|-- atk_md0280_gpio.h
|-- atk_md0280_touch.c
|-- atk_md0280_touch.spi.c
\'-- atk_md0280_touch_spi.c
```

图 2.2.2.1 ATK-MD0280 模块驱动代码

2.2.2.1 ATK-MD0280 模块接口驱动

在图 2.1.2.1 中,atk_md0280_gpio.c 和 atk_md0280_gpio.h 是开发板与 ATK-MD0280 模块通讯而使用的 GPIO 驱动文件,对于没有 FMC 或 FSMC 接口的开发板(如正点原子 MiniSTM32F103 开发板),可以使用 GPIO 直接驱动 ATK-MD0280 模块的 LCD。关于使用 GPIO 驱动 TFTLCD 的价绍,请查看正点原子各个开发板对应的开发指南中,使用 GPIO 驱动 TFTLCD 对应的章节。

其余的源码,均与第 2.1 小节 "ATK-MD0280 模块测试实验 (FMC&FSMC)"中的源码 类似,请查看第 2.1 小节 "ATK-MD0280 模块测试实验 (FMC&FSMC)"中对应的内容。

2.2.3 实验现象

本实验的实验现象与第 2.1 小节 "ATK-MD0280 模块测试实验 (FMC&FSMC)" 一致,请查看第 2.1 小节 "ATK-MD0280 模块测试实验 (FMC&FSMC)"。

3, 其他

1、购买地址:

天猫: https://zhengdianyuanzi.tmall.com

淘宝: https://openedv.taobao.com

2、资料下载

模块资料下载地址: http://www.openedv.com/docs/modules/lcd/2.8-TFT LCD-320240.html

3、技术支持

公司网址: www.alientek.com

技术论坛: http://www.openedv.com/forum.php

在线教学: www.yuanzige.com

B 站视频: https://space.bilibili.com/394620890

传真: 020-36773971 电话: 020-38271790

