Questão G

Elástico

Suponha um conjunto de pontos no plano 2D, aonde em cada um dos pontos foi fixado um pino. A seguir, extende-se um elástico em torno de todos os pontos, e ao se soltar o elástico, temos um contorno de menor perímetro que cobre todos os pontos em seu interior. Essa ideia pode ser visualizada na figura abaixo, com o círculo em preto indicando o elástico esticado, e o contorno em azul a posição final do elástico.

Você deve criar um programa que recebe como entrada um número *n* de pontos (*x,y*) e a seguir computa esse envoltório dos pontos. Esse problema tem uma série de aplicações em variadas áreas, servindo, por exemplo, como uma fase de pré-processamento do problema do Caixeiro Viajante.

Entrada

A entrada é um arquivo contendo na primeira linha o valor *n*. A seguir, as demais *n* linhas contém as coordenadas, uma por linha, com os valores *x* e *y* separados por um único espaço. Todas as coordenadas são valores inteiros.

Saída

A saída deve conter na primeira linha o número *h* de pontos do envoltório, seguido de *h* linhas com as coordenadas de cada ponto do envoltório, começando com o ponto com as menores coordenadas. (Ordene as

coordenadas de forma lexicográfica – comparar coordenada x primeiro, e a seguir a coordenada y somente se os valores de x forem iguais). A partir desta menor coordenada, deve-se exibir a lista de vértices da envoltória no sentido **anti-horário**.

A figura abaixo mostra um caso de teste com 52 pontos.

Exemplos

Entrada	Saída
52	8
565 575	25 185
25 185	1530 5
345 750	1740 245
945 685	1605 620
845 655	1150 1160
880 660	580 1175
25 230	145 665
525 1000	25 230
580 1175	
650 1130	
1605 620	
1220 580	
1465 200	
1530 5	
845 680	
725 370	
145 665	
415 635	
510 875	
560 365	
300 465	
520 585	
480 415	
835 625	
975 580	
1215 245	
1320 315	
1250 400 660 180	
410 250	
420 555	
575 665	
1150 1160	
700 580	
685 595	
685 610	
770 610	
795 645	
720 635	
760 650	
475 960	
95 260	
875 920	
700 500	
555 815	

830 485	
1170 65	
830 610	
605 625	
595 360	
1340 725	
1740 245	

Considerações finais

Você deve construir um programa com complexidade máxima $O(n \log n)$, onde n é o número de pontos do plano 2D. Você também não deve assumir que os pontos da entrada estão ordenados.