Packet 4

Packet 4.2: Sections 16.5-16.9

16.5 Curl and Divergence

Definition 1. The **curl** of a vector field $\vec{\mathbf{F}} = \langle P, Q, R \rangle$ is given by the expression

curl
$$\vec{\mathbf{F}} = \nabla \times \vec{\mathbf{F}} = \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right\rangle \times \langle P, Q, R \rangle = \langle R_y - Q_z, P_z - R_x, Q_x - P_y \rangle$$

Problem 2. Prove that if \vec{F} is conservative, then curl $\vec{F} = \vec{0}$.

Solution. \Diamond

Contributors.

Remark 3. For a vector field $\overrightarrow{\mathbf{F}}$ and direction $\overrightarrow{\mathbf{u}}$, (curl $\overrightarrow{\mathbf{F}}$) $\cdot \overrightarrow{\mathbf{u}}$ may be thought of as the tendency of $\overrightarrow{\mathbf{F}}$ to "spin" counter-clockwise around $\overrightarrow{\mathbf{u}}$.

Problem 4. Compute the curl of $\langle x+y, z^2-3, yz \rangle$ around the point (2,0,-1).

Solution.

Contributors.

Theorem 5. Green's Theorem may be rewritten in terms of curl as follows:

$$\int_{C} \overrightarrow{\mathbf{F}} \cdot d\overrightarrow{\mathbf{r}} = \iint_{D} (\operatorname{curl} \overrightarrow{\mathbf{F}}) \cdot \widehat{\mathbf{k}} \, dA$$

Problem 6. Prove the previous theorem.

Solution.

Contributors.

Definition 7. The **divergence** of a vector field $\vec{F} = \langle P, Q, R \rangle$ is given by the expression

$$\operatorname{div} \vec{\mathbf{F}} = \nabla \cdot \vec{\mathbf{F}} = \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right\rangle \cdot \left\langle P, Q, R \right\rangle = P_x + Q_y + R_z$$

Problem 8. Prove that the divergence of a curl vector field is always 0. Put another way, show that div (curl $\vec{\mathbf{F}}$) = 0.

Solution.

Contributors.

Remark 9. Divergence measures the tendency of a vector field to diverge away from a point.

Problem 10. Compute the divergence of $\langle x+y, z^2-3, yz \rangle$ away from the point (2, 0, -1).

Solution. \Diamond

Contributors.

Definition 11. The flux of a velocity vector field $\vec{\mathbf{F}}$ across a closed curve C is given by

$$\int_{C} \vec{\mathbf{F}} \cdot \vec{\mathbf{n}} \, ds$$

where $\vec{\mathbf{n}}$ yields outward unit normal vectors to C.

Remark 12. Flux measures the tendency of a vector field to flow outward from a closed and bounded region (or inward if the flux is negative).

Theorem 13. Green's Theorem may be rewritten in terms of divergence as follows:

$$\int_{C} \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{n}} \, ds = \iint_{D} \operatorname{div} \, \overrightarrow{\mathbf{F}} \, dA$$

Problem 14. Compute the flux of the velocity vector field $\langle x+y, x^2+y^2 \rangle$ across the boundary of the unit square.

Solution.

Contributors.

Auburn University April 13, 2015

16.6 Parametric Surfaces

Remark 15. Just like a curve may be parameterized by $\vec{\mathbf{r}}(t)$ for an interval $a \leq t \leq b$, a surface may be parameterized by $\vec{\mathbf{r}}(u,v)$ for a region R in the uv plane.

Theorem 16. Following are some common surface parameterizations.

• The surface z = f(x, y) may be parametrized by

$$\vec{\mathbf{r}}(x,y) = \langle x, y, f(x,y) \rangle$$

• A surface determined by a cylindrical coordinate equation may be parametrized by substituting into

$$\vec{\mathbf{r}} = \langle r\cos\theta, r\sin\theta, z \rangle$$

• A surface determined by a spherical coordinate equation may be parametrized by substituting into

$$\vec{\mathbf{r}} = \langle \rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi \rangle$$

Problem 17. Find a parameterization from the xy plane to the plane 2x - y + z = 7 in xyz space.

Solution.

Contributors.

Problem 18. Find the parameterization from the rectangle $0 \le z \le 3$ and $0 \le \theta \le 2\pi$ to the conical surface $z = \sqrt{x^2 + y^2}$ below the plane z = 3 in xyz space. (Hint: find the cylindrical coordinate equation for the surface.)

Solution.

Contributors.

Problem 19. Find the parameterization from the rectangle $0 \le \phi \le \pi$ and $0 \le \theta \le 2\pi$ to the spherical surface $x^2 + y^2 + z^2 = 9$ in xyz space. (Hint: find the spherical coordinate equation for the surface.)

Solution. \Diamond

Contributors.

April 13, 2015 Auburn University

16.7 Surface Integrals

Definition 20. The surface integral of a function f(x, y, z) over a surface S in xyz space is given by

$$\iint_{S} f(\vec{\mathbf{r}}) d\sigma = \iint_{R} f(\vec{\mathbf{r}}(u, v)) |\vec{\mathbf{r}}_{u} \times \vec{\mathbf{r}}_{v}| dA$$

where $\vec{\mathbf{r}}(u,v)$ is a parameterization from the region R in the uv plane to the surface S.

Theorem 21. The surface area of S is given by

$$\iint_{S} d\sigma = \iint_{S} 1 \, d\sigma$$

Problem 22. Use the parameterization

$$\vec{\mathbf{r}}(\phi,\theta) = \langle \sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi \rangle$$

from $0 \le \phi \le \pi, 0 \le \theta \le 2\pi$ to the unit sphere to show that the surface area of the unit sphere is 4π . (Note that this matches the formula $SA = 4\pi r^2$ used in high school geometry.)

Solution.

Contributors.

Problem 23. Show that the area of the parallelogram with vertices (0,0,0), (2,1,2), (0,2,-1), and (2,3,1) is $3\sqrt{5}$ using a surface integral. (Hint: use $\vec{\mathbf{r}}(u,v) = \langle 2u, u+2v, 2u-v \rangle$.)

Solution.

Contributors.

Auburn University