Road Traffic Accidents

About Dataset

Context

This data set is collected from Addis Ababa Sub city police departments for Masters research work.

Content ¶

The data set has been prepared from manual records of road traffic accident of the year 2017-20. All the sensitive information have been excluded during data encoding and finally it has 32 features and 12316 instances of the accident.

Acknowledgements

Bedane, Tarikwa Tesfa (2020), "Road Traffic Accident Dataset of Addis Ababa City", Mendeley Data, V1, doi: 10.17632/xytv86278f.1

```
In [1]: # import libraries
import pandas as pd
import numpy as np

In [2]: #import data

df = pd.read_csv(r'C:\Users\16476\Documents\RTA Dataset.csv')
```

1/30

```
In [3]: | # show the data
          df.head()
Out[3]:
                 Time Day_of_week Age_band_of_driver Sex_of_driver Educational_level Vehicle_driver_relation Driving_experience Type_of_vehi
           0 17:02:00
                                                  18-30
                                                                        Above high school
                                                                                                      Employee
                                                                                                                                        Automo
                             Monday
                                                                  Male
                                                                                                                             1-2yr
                                                                                                                                        Public (>
           1 17:02:00
                             Monday
                                                  31-50
                                                                  Male
                                                                        Junior high school
                                                                                                      Employee
                                                                                                                        Above 10yr
           2 17:02:00
                                                  18-30
                                                                                                                                   Lorry (41?10)
                             Monday
                                                                  Male
                                                                        Junior high school
                                                                                                      Employee
                                                                                                                             1-2yr
                                                                                                                                        Public (>
              1:06:00
                                                                        Junior high school
                                                                                                      Employee
                                                                                                                            5-10yr
           3
                             Sunday
                                                   18-30
                                                                  Male
                                                                                                                                             sea
                                                  18-30
              1:06:00
                             Sunday
                                                                  Male
                                                                        Junior high school
                                                                                                      Employee
                                                                                                                             2-5yr
                                                                                                                                              ٨
          5 rows × 32 columns
In [4]:
          # shape of the data
          df.shape
Out[4]: (12316, 32)
```

Data Cleaning

Checking the null values

In [5]: # null values df.isna().sum() Out[5]: Time 0 Day_of_week 0 Age_band_of_driver 0 Sex of driver 0 Educational level 741 Vehicle_driver_relation 579 Driving_experience 829 Type of vehicle 950 Owner of vehicle 482 Service_year_of_vehicle 3928 Defect of vehicle 4427 Area accident occured 239 Lanes or Medians 385 Road allignment 142 Types of Junction 887 Road surface type 172 Road surface conditions 0 Light conditions 0 Weather_conditions 0 Type of collision 155 Number of vehicles involved 0 Number of casualties 0 Vehicle movement 308 Casualty_class 0 Sex_of_casualty 0 Age_band_of_casualty 0 Casualty_severity 0 Work of casuality 3198 Fitness of casuality 2635 Pedestrian movement 0 Cause of accident 0 Accident severity 0 dtype: int64

Time	0.00
Day_of_week	0.00
Age_band_of_driver	0.00
Sex_of_driver	0.00
Educational_level	6.02
Vehicle_driver_relation	4.70
Driving_experience	6.73
Type_of_vehicle	7.71
Owner_of_vehicle	3.91
Service_year_of_vehicle	31.89
Defect_of_vehicle	35.95
Area_accident_occured	1.94
Lanes_or_Medians	3.13
Road_allignment	1.15
Types_of_Junction	7.20
Road_surface_type	1.40
Road_surface_conditions	0.00
Light_conditions	0.00
Weather_conditions	0.00
Type_of_collision	1.26
Number_of_vehicles_involved	0.00
Number_of_casualties	0.00
Vehicle_movement	2.50
Casualty_class	0.00
Sex_of_casualty	0.00
Age_band_of_casualty	0.00
Casualty_severity	0.00
Work_of_casuality	25.97
Fitness_of_casuality	21.39
Pedestrian_movement	0.00
Cause_of_accident	0.00
Accident_severity	0.00
dtype: float64	

Deleting the columns (having missing values > 2000)

There are quite a number of missing values in the dataset. Lets try to find out a way to clean the dataset.

Let us delete the columns that have missing values more than 2000.

For example: These columns Service_year_of_vehicle - 3928 Defect_of_vehicle - 4427

Work_of_casuality - 3198 Fitness_of_casuality - 2635 have missing values. So let us drop these columns.

In [9]: | df.describe(include="all")

Out[9]:

	Time	Day_of_week	Age_band_of_driver	Sex_of_driver	Educational_level	Vehicle_driver_relation	Driving_experience	Type_o
count	12316	12316	12316	12316	11575	11737	11487	
unique	1074	7	5	3	7	4	7	
top	15:30:00	Friday	18-30	Male	Junior high school	Employee	5-10yr	A
freq	120	2041	4271	11437	7619	9627	3363	
mean	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
std	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
min	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
25%	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
50%	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
75%	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
max	NaN	NaN	NaN	NaN	NaN	NaN	NaN	

11 rows × 28 columns

•

Listing the unique values and missing values for each column

```
In [10]: #Let us study the unique values, missing values and the value counts of each variable

for col in df:

    print('_'*50)
    print(f"Column: {col}")
    print('_'*50)
    print(df[col].value_counts())
    print("missing values:", df[col].isna().sum())
    print('\n')
```

Column: Ti	me				
15:30:00	120				
17:10:00	110				
18:30:00	103				
11:30:00	99				
17:00:00	98				
1:08:00	1				
14:31:00	1				
3:30:00	1				
19:22:00	1				
20:36:00	1				
Name: Time missing va	. •	1074,	dtype:	int64	

Column: Day_of_week						
Friday	2041					
Thursday	1851					
Wednesday	1840					
Tuesday	1770					
Monday	1681					
Saturday	1666					
Sunday	1467					
Name: Day_of_week, dtype: int64						
missing val	ues: 0					

Column: Ag	e_band_of	_drive	<u> </u>		
18-30	4271				
31-50	4087				
Over 51	1585				
Unknown	1548				
Under 18	825				
Name: Age_	band_of_d	lriver,	dtype:	int64	
missing va	lues: 0				

Column: Sex_of_driver

Male 11437 Female 701 Unknown 178

Name: Sex_of_driver, dtype: int64

missing values: 0

Column: Educational level

Junior high school 7619
Elementary school 2163
High school 1110
Above high school 362
Writing & reading 176
Unknown 100
Illiterate 45

Name: Educational_level, dtype: int64

missing values: 741

Column: Vehicle driver relation

Employee 9627 Owner 1973 Other 123 Unknown 14

Name: Vehicle_driver_relation, dtype: int64

missing values: 579

Column: Driving_experience

5-10yr	3363	
2-5yr	2613	
Above 10yr	2262	
1-2yr	1756	

Below 1yr 1342 No Licence 118 unknown 33

Name: Driving experience, dtype: int64

missing values: 829

Column: Type_of_vehicle

Automobile 3205 Lorry (41?100Q) 2186 Other 1208 Pick up upto 10Q 811 Public (12 seats) 711 Stationwagen 687 Lorry (11?40Q) 541 Public (13?45 seats) 532 Public (> 45 seats) 404 Long lorry 383 Taxi 265 Motorcycle 177 Special vehicle 84 Ridden horse 76 Turbo 46 29 Bajaj Bicycle 21 Name: Type_of_vehicle, dtype: int64

missing values: 950

Column: Owner of vehicle

Owner 10459 Governmental 1041 Organization 312 Other 22

Name: Owner_of_vehicle, dtype: int64

missing values: 482

Column: Area_accident_occured

Other	3819
Office areas	3451
Residential areas	2060
Church areas	1060
Industrial areas	456
School areas	415
Recreational areas	327
Outside rural areas	218
Hospital areas	121
Market areas	63
Rural village areas	44
Unknown	22
Rural village areasOffice are	eas 20
Recreational areas	1
Name: Area_accident_occured,	dtype: int64

missing values: 239

Column: Lanes_or_Medians

	_
Two-way (divided with broken lines road marking)	4411
Undivided Two way	3796
other	1660
Double carriageway (median)	1020
One way	845
Two-way (divided with solid lines road marking)	142
Unknown	57

Name: Lanes_or_Medians, dtype: int64

missing values: 385

Column: Road_allignment

Tangent road with flat terrain	 10459
Tangent road with mild grade and flat terrain	501
Steep grade downward with mountainous terrain	429
Tangent road with mountainous terrain and	396
Gentle horizontal curve	163
Escarpments	113

Sharp reverse curve

57

Tangent road with rolling terrain

37

Steep grade upward with mountainous terrain

19

Name: Road_allignment, dtype: int64

missing values: 142

Column: Types_of_Junction

Y Shape	4543		
No junction	3837		
Crossing	2177		
Other	445		
Unknown	191		
0 Shape	164		
T Shape	60		
X Shape	12		
	c	44	

Name: Types_of_Junction, dtype: int64

missing values: 887

Column: Road_surface_type

Asphalt roads 1	1296
Earth roads	358
Gravel roads	242
Other	167
Asphalt roads with some distress	81
Name: Road surface type, dtype: int64	

missing values: 172

Column: Road surface conditions

Dry	9340
Wet or damp	2904
Snow	70
Flood over 3cm. deep	2

Name: Road_surface_conditions, dtype: int64

missing values: 0

Column: Light_conditions

Daylight 8798
Darkness - lights lit 3286
Darkness - no lighting 192
Darkness - lights unlit 40
Name: Light_conditions, dtype: int64

missing values: 0

Column: Weather_conditions

Normal	10063		
Raining	1331		
Other .	296		
Unknown	292		
Cloudy	125		
Windy	98		
Snow	61		
Raining and Windy	40		
Fog or mist	10		
		_	

Name: Weather_conditions, dtype: int64

missing values: 0

Column: Type_of_collision

Vehicle with vehicle collision	8774
Collision with roadside objects	1786
Collision with pedestrians	896
Rollover	397
Collision with animals	171
Collision with roadside-parked vehicles	54
Fall from vehicles	34
Other	26
Unknown	14
With Train	9

Name: Type_of_collision, dtype: int64

missing values: 155

```
Column: Number_of_vehicles_involved

2 8340
1 1996
3 1568
4 363
6 42
7 7
Name: Number_of_vehicles_involved, dtype: int64
missing values: 0
```

Column: Number_of_casualties Name: Number_of_casualties, dtype: int64

missing values: 0

C <mark>olumn: Vehicle_move</mark> m	ent	
Going straight	8158	
Moving Backward	985	
Other	937	
Reversing	563	
Turnover	489	
Getting off	339	
Entering a junction	193	
Overtaking	96	
Unknown	88	

Stopping 61 U-Turn 50 Waiting to go 39 Parked 10

Name: Vehicle_movement, dtype: int64

missing values: 308

Column: Casualty_class

Driver or rider 4944
na 4443
Pedestrian 1649
Passenger 1280

Name: Casualty_class, dtype: int64

missing values: 0

Column: Sex_of_casualty

Male 5253 na 4443 Female 2620

Name: Sex_of_casualty, dtype: int64

missing values: 0

Column: Age_band_of_casualty

na	4443
18-30	3145
31-50	2455
Under 18	1035
Over 51	994
5	244

Name: Age_band_of_casualty, dtype: int64

missing values: 0

Column: Casualty severity

3 7076 na 4443 2 771 1 26

Name: Casualty_severity, dtype: int64

missing values: 0

Column: Pedestrian movement

Not a Pedestrian

11390

Crossing from nearside - masked by parked or statioNot a Pedestrianry vehicle

337

Unknown or other

293

Crossing from driver's nearside

140

Crossing from offside - masked by parked or statioNot a Pedestrianry vehicle

72

In carriageway, statioNot a Pedestrianry - not crossing (standing or playing)

46

Walking along in carriageway, back to traffic

18

In carriageway, statioNot a Pedestrianry - not crossing (standing or playing) - masked by parked or statioNo

t a Pedestrianry vehicle 13

Walking along in carriageway, facing traffic

7

Name: Pedestrian_movement, dtype: int64

missing values: 0

Column: Cause_of_accident	
No distancing	2263
Changing lane to the right	1808

Changing lane to the left	1473
Driving carelessly	1402
No priority to vehicle	1207

Moving Backward	1137	
No priority to pedestrian	721	
Other Other	456	
Overtaking	430	
Driving under the influence of drugs	340	
Driving to the left	284	
Getting off the vehicle improperly	197	
Driving at high speed	174	
Overturning	149	
Turnover	78	
Overspeed	61	
Overloading	59	
Drunk driving	27	
Improper parking	25	
Unknown	25	
Name: Cause_of_accident, dtype: int64		
missing values: 0		

Column: Accident_severity

Slight Injury 10415 Serious Injury 1743 Fatal injury 158

Name: Accident_severity, dtype: int64

missing values: 0

Dealing with Missing Values

As we know, the Mean of the numerical column data is used to replace null values when the data is normally distributed.

Median is used if the data comprised of outliers.

Mode is used when the data having more occurences of a particular value or more frequent value.

Let us replace the nulls or missing values using mode i.e. with most frequent values in the cases where the proportion of top most frequent value of a variable is high comparable to other values.

Replacing missing values using mode

```
Junior high school
dtype: object
Null values in 0
/n
0
     Employee
dtype: object
Null values in 0
/n
    Automobile
0
dtype: object
Null values in 0
/n
    Owner
dtype: object
Null values in 0
/n
    0ther
dtype: object
Null values in 0
/n
    Tangent road with flat terrain
dtype: object
Null values in 0
/n
    Asphalt roads
dtype: object
Null values in 0
/n
    Vehicle with vehicle collision
dtype: object
Null values in 0
/n
    Going straight
dtype: object
Null values in 0
/n
```

In [12]:	<pre># validate df.isna().sum()</pre>	
Out[12]:	Time	0
	Day_of_week	0
	Age_band_of_driver	0
	Sex_of_driver	0
	Educational_level	0
	Vehicle_driver_relation	0
	Driving_experience	829
	Type_of_vehicle	0
	Owner_of_vehicle	0
	Area_accident_occured	0
	Lanes_or_Medians	385
	Road_allignment	0
	Types_of_Junction	887
	Road_surface_type	0
	Road_surface_conditions	0
	Light_conditions	0
	Weather_conditions	0
	Type_of_collision	0
	Number_of_vehicles_involved	0
	Number_of_casualties	0
	Vehicle_movement	0
	Casualty_class	0
	Sex_of_casualty	0
	Age_band_of_casualty	0
	Casualty_severity	0
	Pedestrian_movement	0
	Cause_of_accident	0
	Accident_severity	0
	dtype: int64	

So in columns like Driving_experience, Lanes_or_Medians and Types_of_Junction, the above method i.e. replacing the missing values with mode could be done, however, in these columns the proportion of the top most frequent value of the variable is in propotion is not very high from second top value,

```
eg: In case of Driving_experience
```

Name: Driving_experience, dtype: object

5-10yr - 3363

2-5yr - 2613

Above 10yr - 2262

1-2yr - 1756

Below 1yr - 1342

No Licence - 118

unknown - 33

missing values: 829

we can see that there is not a huge difference in the no of times values 5-10yr and 2-5yr are repeated, , so if we would replace all 829 missing values with 5-10yr, then it would just increase the difference, thus would eventually devaite our data. So a better way of dealing this would be either just removing the missing values all together or just replacing it with Unknown

```
# validate
In [14]:
         df.isna().sum()
Out[14]: Time
                                         0
         Day_of_week
                                         0
         Age_band_of_driver
                                         0
         Sex of driver
                                         0
         Educational level
                                         0
         Vehicle_driver_relation
                                         0
         Driving_experience
                                         0
         Type_of_vehicle
                                         0
         Owner_of_vehicle
                                         0
         Area_accident_occured
                                         0
         Lanes_or_Medians
                                         0
         Road_allignment
                                         0
         Types of Junction
                                         0
         Road_surface_type
                                         0
         Road_surface_conditions
                                         0
         Light_conditions
                                         0
         Weather_conditions
                                         0
         Type_of_collision
                                         0
         Number_of_vehicles_involved
                                         0
         Number of casualties
                                         0
         Vehicle movement
                                         0
         Casualty_class
                                         0
         Sex_of_casualty
                                         0
         Age_band_of_casualty
                                         0
         Casualty_severity
                                         0
         Pedestrian_movement
                                         0
         Cause_of_accident
                                         0
         Accident severity
                                         0
         dtype: int64
```

Checking for duplicates

```
In [15]: df.duplicated().sum()
Out[15]: 0
```

Age_band_of_casualty

We can see that there are some discrepancies in this column, we can replace 5 with Under 18 and na with Unknown

Area_accident_occured

There are many discrepancies in this column Area_accident_occured

There are values like Rural village areasOffice areas which seems like it was misentered.

So we can replace Rural village areasOffice areas this with just Rural village areas.

We could have kept the column Rural village areasOffice areas as it is, as well, however, I chose to replace it with Rural village areas

Also remove the extra spacing in front of the values.

```
In [18]: df['Area_accident_occured'] = df['Area_accident_occured'].replace('Rural village areasOffice areas', 'Rural v
illage areas')

In [19]: df['Area_accident_occured'] = df['Area_accident_occured'].replace(' Recreational areas', 'Recreational area
s')
    df['Area_accident_occured'] = df['Area_accident_occured'].replace(' Church areas', 'Church areas')
    df['Area_accident_occured'] = df['Area_accident_occured'].replace(' Industrial areas', 'Industrial areas')
    df['Area_accident_occured'] = df['Area_accident_occured'].replace(' Outside rural areas', 'Outside rural areas')
    df['Area_accident_occured'] = df['Area_accident_occured'].replace(' Hospital areas', 'Hospital areas')
    df['Area_accident_occured'] = df['Area_accident_occured'].replace(' Market areas', 'Market areas')
```

```
In [20]: #validate
         df['Area_accident_occured'].value_counts()
Out[20]: Other
                                 4058
         Office areas
                                 3451
         Residential areas
                                 2060
         Church areas
                                 1060
         Industrial areas
                                 456
         School areas
                                  415
         Recreational areas
                                  328
         Outside rural areas
                                  218
         Hospital areas
                                  121
         Rural village areas
                                  64
         Market areas
                                   63
         Unknown
                                  22
         Name: Area_accident_occured, dtype: int64
```

Type_of_vehicle

Putting all the values that contains Lorry (41?100Q), Lorry (11?40Q), Long Lorry and Pick up upto 10Q into one category of Lorry

also Public (12 seats), Public (13?45 seats) and Public (> 45 seats) into Public

```
In [21]: # validate
         df['Type_of_vehicle'].value_counts()
Out[21]: Automobile
                                  4155
         Lorry (41?100Q)
                                 2186
         Other
                                  1208
         Pick up upto 10Q
                                  811
         Public (12 seats)
                                  711
                                  687
         Stationwagen
         Lorry (11?40Q)
                                  541
         Public (13?45 seats)
                                  532
         Public (> 45 seats)
                                  404
                                  383
         Long lorry
         Taxi
                                  265
         Motorcycle
                                  177
         Special vehicle
                                   84
         Ridden horse
                                   76
         Turbo
                                   46
         Bajaj
                                   29
         Bicycle
                                    21
         Name: Type_of_vehicle, dtype: int64
In [22]: df['Type of vehicle'] = df['Type of vehicle'].replace({'Lorry (41?1000)': 'Lorry',
                                                             'Lorry (11?40Q)': 'Lorry',
                                                             'Long lorry': 'Lorry',
                                                             'Pick up upto 10Q': 'Lorry',
                                                             'Public (12 seats)': 'Public',
                                                             'Public (13?45 seats)': 'Public',
                                                             'Public (> 45 seats)': 'Public'
                                                              })
```

26/30

```
In [23]: #validate
         df['Type_of_vehicle'].value_counts()
Out[23]: Automobile
                             4155
         Lorry
                             3921
         Public
                             1647
         0ther
                             1208
         Stationwagen
                              687
         Taxi
                              265
         Motorcycle
                              177
         Special vehicle
                               84
         Ridden horse
                               76
         Turbo
                               46
         Bajaj
                               29
         Bicycle
                               21
         Name: Type_of_vehicle, dtype: int64
```

Driving_experience

Replacing unknown with Unknown

```
In [24]: df['Driving_experience'].value_counts()
Out[24]: 5-10yr
                       3363
         2-5yr
                       2613
                       2262
         Above 10yr
         1-2yr
                       1756
         Below 1yr
                       1342
         Unknown
                        829
         No Licence
                        118
         unknown
                         33
         Name: Driving_experience, dtype: int64
In [25]: df['Driving experience']=df['Driving experience'].replace('unknown', 'Unknown')
```

```
In [26]: df['Driving_experience'].value_counts()
Out[26]: 5-10yr
                       3363
         2-5yr
                       2613
         Above 10yr
                       2262
         1-2yr
                       1756
         Below 1yr
                       1342
         Unknown
                        862
         No Licence
                        118
         Name: Driving_experience, dtype: int64
```

Casualty_severity

Replacing na with Unknown

```
In [27]: df['Casualty_severity'].value_counts()
Out[27]: 3
               7076
               4443
         na
                771
         2
         1
                 26
         Name: Casualty_severity, dtype: int64
In [28]: | df['Casualty_severity'] = df['Casualty_severity'].replace('na', 'Unknown')
         df['Casualty_severity'].value_counts()
Out[28]: 3
                    7076
         Unknown
                    4443
         2
                     771
                      26
         Name: Casualty severity, dtype: int64
```

Time

Converting Time into Categorical Variable containing time buckets like

Early Morning , Morning , Afternoon , Evening and Night

```
In [29]: df['Time'].value_counts()
Out[29]: 15:30:00
                     120
         17:10:00
                     110
         18:30:00
                     103
                      99
         11:30:00
         17:00:00
                      98
         1:08:00
                       1
         14:31:00
                       1
         3:30:00
                       1
         19:22:00
                       1
         20:36:00
                       1
         Name: Time, Length: 1074, dtype: int64
In [30]: # converting into datetime format to extract hour of the day
         df['Time'] = pd.to_datetime(df['Time'])
In [31]: # Extracting the hour of the day
         df["hour"] = df['Time'].dt.hour
```

```
In [32]: df['hour']
Out[32]: 0
                  17
         1
                  17
         2
                  17
         3
                   1
         4
                   1
         12311
                  16
         12312
                  18
         12313
                  13
         12314
                  13
         12315
                  13
         Name: hour, Length: 12316, dtype: int64
In [33]: b = [0,4,8,12,16,20,24]
         1 = ['Late Night', 'Early Morning', 'Morning', 'Afternoon', 'Evening', 'Night']
         df['Time of accident'] = pd.cut(df['hour'], bins=b, labels=l, include lowest=True)
In [34]: df['Time of accident'].value counts()
Out[34]: Evening
                           3496
         Afternoon
                           3206
         Morning
                           2353
         Early Morning
                           1650
         Night
                           1012
                            599
         Late Night
         Name: Time of accident, dtype: int64
In [35]: # Let us export this clean dataframe into a csv file
         #df.to csv(r'C:\Users\16476\Downloads\RTA Dataset1.csv')
In [ ]:
```