# The beta-binomial model

Giorgio Corani

Bayesian Data Analysis and Probabilistic Programming

#### References

- The Beta-Binomial model: Ch. 3 of Bayes Rules! An Introduction to Applied Bayesian Modeling
  - https://www.bayesrulesbook.com/chapter-3.html#chapter-3
  - Alicia A. Johnson, Miles Q. Ott, Mine Dogucu

#### The bias $\theta$ of a coin

- A coin falls tails with probability  $\theta \in [0, 1]$
- $\blacksquare$   $\theta$  is the bias of the coin
  - $\theta$  =0: it always lands tails
  - $\blacksquare$   $\theta$  =1: it always lands heads
- lacksquare  $\theta \in (0,1)$  is a continuous parameter

#### The bias $\theta$ of a coin

- First we choose a model of our prior beliefs for each possible value of  $\theta$  (prior).
- Then we collect some data and we express the probability of observing the data given each value of  $\theta$  (likelihood).
- Eventually we use Bayes' rule to obtain the posterior distribution of  $\theta$  given the data.

### The coin problem

- The methodology shown in the following can be used in applications such as estimating:
  - the proportion of supporters of a political party
  - the click-through rate of an online advertisement.

# **Setting the prior**

## The Beta prior

- The prior for a continuous parameter is specified by a *probability* density function (pdf), denoted by  $f(\theta)$ .
- The pdf specifies all possible values of  $\theta$  and the relative plausibility of each.
- It accounts for all possible values of the parameter and it integrates to 1.
- For  $\theta$ , the pdf is limited on (0,1)

# Properties $f(\theta)$

- $= f(\theta) >= 0$
- $P(a < \theta < b) = \int_a^b f(\theta) d\theta$
- The underlying area between a and b is the probability of  $\theta$  being in this range.

# Density vs probability

- $\blacksquare$  A continuous pdf is not a probability; we can also have  $f(\theta)>1$  in some points.
- Probabilities are obtained by integrating the pdf over an interval.
- lacksquare f( heta) is used to compare the plausibility of different values of heta
  - $lue{}$  the greater  $f(\theta)$ , the more plausible the corresponding value of  $\theta$ .

# The Beta pdf

- Beta(a,b), is a pdf restricted to the [0,1] interval.
- Its parameters are a>0 and b>0. Parameters used in prior models are referred to as *hyperparameters*.
- The pdf is:

$$f(\theta) = \frac{1}{\underbrace{B(a,b)}} \theta^{a-1} (1-\theta)^{b-1} \propto \theta^{a-1} (1-\theta)^{b-1} \qquad a,b>0$$
 normalizing constant

- lacksquare  $\theta$  is raised to the power of a-1 (not a)
- $\blacksquare 1 \theta$  is raised to the power of b 1 (not b)

## **Central tendency**

■ The **mean** or **expected value** of  $\theta$  is a weighted average: each possible  $\theta$  value is weighted by its pdf:

$$E[\theta] = \int_{x} x \cdot f(x) dx$$

■ The **mode** is the value of  $\theta$  at which the pdf is highest.

$$\operatorname{Mode}(\theta) = \operatorname{arg\,max}_{\theta} f(\theta)$$

## Measures of variability

■ The variance measures the expected squared distance of possible  $\theta$  values from their mean:

$$\mathrm{Var}(\theta) = E((\theta - E(\theta))^2) = \int (\theta - E(\theta))^2 \cdot f(\theta) d\theta.$$

#### **Standard deviation**

- The variance has squared units; the standard deviation, which measures the typical unsquared distance of  $\pi$  values from  $E(\pi)$ , is easier to interpret.
- The standard deviation measures the expected distance of possible  $\theta$  values from their mean:

$$SD(\pi) := \sqrt{Var(\pi)}$$

# **Central tendency measures of the Beta**

$$E(\theta) = \frac{\alpha}{\alpha+\beta}$$
 
$$\mathrm{Mode}(\theta) = \frac{\alpha-1}{\alpha+\beta-2} \quad \text{when } \alpha,\beta>1.$$

# Variability measures for Beta pdf

$$VAR(\theta) = \frac{ab}{(a+b)^2(a+b+1)}$$
$$SD(\theta) = \sqrt{\frac{ab}{(a+b)^2(a+b+1)}}$$

## **Effect of the parameters**



Figure 1: Mean: solid. Mode: dashed.

## **Quiz yourself**

- When  $\alpha = \beta$ , the pdf is:
  - Right-skewed, with a mode smaller than 0.5.
  - Symmetric with mode 0.5.
  - Left-skewed with mode greater than 0.5.
- Using the same options as above, discuss the pdf when  $\alpha > \beta$ .
- Which pdf has greater variability: Beta(20,20) or Beta(5,5)?

#### Effect of a and b

- **a** > b: the distribution is right-skewed, the mode is larger than 0.5; vice versa for b > a.
- $\blacksquare$  a=b: symmetric distribution with mean 0.5.
- lacksquare Increasing a and b decreases the variance.

### Uniform distribution: a = b = 1

$$f(\theta) \propto \theta^{a-1} (1-\theta)^{b-1}$$
$$= \theta^0 (1-\theta)^0$$
$$= 1$$

- This a uniform distribution: all values in (0,1) are equally probable.
- $E(\theta) = \frac{a}{a+b} = 0.5.$



### Increasing a and b the prior becomes more concentrated

If we increase both a and b while keeping a=b, the prior becomes more concentrated around the expected value  $\theta=0.5$ 



## If we think the coin is rigged towards tails

- If we suspect the coin to be 70% rigged towards heads, we set  $a = \frac{7}{3}b$ .
- We represent more confidence in this statement by:
  - increasing b
  - keeping  $a = \frac{7}{3}b$ .



#### Which Beta?

Recognize Beta(0.5,0.5), Beta(1,1), Beta(2,2), Beta(6,6), Beta(6,2), Beta(0.5,6).



## Tuning a and b

- The support for a politician is at about 70 percentage points, though he recently polled as low as 45 and as high as 90 percentage points.
- We set the ratio a/b as follows: **RIVEDI**

$$\frac{a}{a+b} = .7$$

$$a = .7a + .7b$$

$$a = \frac{9}{11}b$$

## Tuning a and b

We try different couples (a, b) with the same expected value in order to set correctly the variance of the prior.

| (a,b)          | (7, 3) | (28, 12) | (70, 30) |
|----------------|--------|----------|----------|
| 5-th quantile  | 0.45   | 0.58     | 0.62     |
| 95-th quantile | 0.90   | 0.81     | 0.77     |

■ The choice (7, 3) captures the mean and the variability of the polls and it is appropriate.

## Tune a Beta prior!

- Tune a Beta prior for the cases below:
  - John applies to a job. He thinks I has a 40% chance of getting the job, but he is pretty unsure; he expresses his uncertainty by putting his chance between 20% and 60%.
  - A scientist has created a new test for a disease. He expects that the test is accurate 80% of the time with a variance of 0.05.
- Usually there is no single right answer, but multiple reasonable answers.

# The likelihood function

#### The Binomial data model

- After having defined the prior pdf, the second step of our Bayesian analysis is to collect data.
- We need defining the likelihood function, which will be used within Bayes' rule.
- In our example, the data collection is done by tossing the coin n times and observing the number y of heads.

### Likelihood: assumptions

- Each observation takes a binary value (head or tail; also referred to as success and insuccess)
- The success usually refer to the rarer event among the two.
- The flips are independent: the probability of *heads* at the next flip does not depend on the outcome of the previous flips.
- The success probability  $\theta$  is constant in all flips.

#### The binomial likelihood

#### Given $\theta$ , a single flip takes:

- $\blacksquare$  heads with probability  $\theta$
- $\blacksquare$  tails with probability  $1 \theta$
- Assuming a constant  $\theta$  and the independence of the flips, the sequence H T T H H has probability  $\theta(1-\theta)(1-\theta)\theta\theta=\theta^2(1-\theta)^3$
- A sequence containing y heads in n flips has probability  $\theta^y (1-\theta)^{n-y}$

#### **Binomial likelihood**

- We can get  $\binom{n}{y} = \frac{n!}{k!(n-y)!}$  sequences containing y successes in n trials.
- $lue{}$  The probability of observing y successes in n trials is:

$$p(y \mid \theta) = \binom{n}{y} \theta^y (1 - \theta)^{1 - y}$$

■ This is probability of the observing y tails within n flips, given the value of  $\theta$ .

#### The Beta-binomial model

$$\theta \sim \text{Beta}(\alpha, \beta).$$
 $y|\theta \sim \text{Bin}(n, \theta)$ 

- This model has vast applications, applying to any setting where parameter  $\theta$  lies in [0,1]
  - requires tuning of a Beta prior
  - assumes data y to be the number of "successes" in n fixed, independent trials with constant probability of success  $\theta$ .

### **Binomial likelihood**

- Assume we observe y=6 in n=10 flips.
- The likelihood measures the relative compatibility of the observed data with different  $\theta \in [0,1]$ .
- According to the data  $\theta$ =0.6 is ten times more plausible than  $\theta$ =0.3:

$$\begin{aligned} & \mathrm{Bin}(y=6,\; n=10\;\theta=0.6) = \binom{10}{6} 0.6^6 (0.4)^4 = 0.35 \\ & \mathrm{Bin}(y=6,\; n=10\;\theta=0.3) = \binom{10}{6} 0.3^6 (0.7)^4 = 0.037 \end{aligned}$$

#### **Binomial likelihood**

$$p(y \mid \theta) = \binom{n}{y} \theta^y (1 - \theta)^{1 - y}$$

- This a likelihood function if interpreted in this way:
  - the probability is a function of  $\theta$ .
  - the observation y are fixed
- The likelihood function shows how the probability of the observed data varies with  $\theta$ .
- It does not integrate to 1!
- It integrates to 1 if  $\theta$  is fixed, providing a pdf over possible observations y.

#### **Posterior**

Adopting a beta prior and a binomial *likelihood*, Bayes' rule yields a beta *posterior* distribution with updated parameters:

$$\begin{split} p(\theta) &\propto \theta^{a-1} (1-\theta)^b \\ p(y \mid \theta) &= \theta^y (1-\theta)^{n-y} \\ p(\theta \mid y) &\propto \theta^{y+a-1} (1-\theta)^{n-y+b-1} \end{split}$$

The beta prior is *conjugate* with the binomial likelihood, as we obtain a beta posterior.

## Conjugacy

According to Bayes' theorem, the posterior is the product of the likelihood and the prior:

$$p(\theta \mid y) \propto p(y \mid \theta)p(\theta)$$

In our case:

$$\begin{split} p(\theta \mid y) &\propto \theta^{y} (1-\theta)^{n-y} \theta^{a-1} (1-\theta)^{b-1} \\ p(\theta \mid y) &\propto \theta^{y+a-1} (1-\theta)^{n-y+b-1} \end{split}$$

which is a Beta distribution (without expressing the normalization constant).

# The posterior is a compromise of prior and likelihood

■ Given the prior Beta(a,b), the prior mean of  $\theta$  is:

$$\frac{a}{a+b}$$

- Having observed y tails in n flips, the posterior distribution of  $\theta$  is Beta(y + a, n y + b).
- The posterior mean is:

$$E_{\mathrm{post}}[\theta] = \frac{a+y}{a+y+b+n-y} = \frac{a+y}{a+b+n}$$

### The posterior is a compromise of prior and likelihood

Rearranging:

$$\underbrace{\frac{a+y}{a+b+n}}_{\text{posterior}} = \underbrace{\frac{y}{n}}_{\text{observed proportion}} \underbrace{\frac{n}{n+a+b}}_{\text{weight}} + \underbrace{\frac{a}{a+b}}_{\text{prior mean of } \theta \text{ weight of the prior}} \underbrace{\frac{a+b}{n+a+b}}_{\text{prior mean of } \theta \text{ weight of the prior}}$$

- The posterior mean is a weighted average of the prior mean and the observed proportion.
- The weight of the observed proportion increases with n; the weight of the prior mean increases with a and b.

### **Sequential updating**

- Based on some theoretical studies, a scientist summarizes its belief in the chance  $\theta$  of a new drug being able to cure a disease as Beta(1,10) distribution.
- In an experimental trial, the drug cures 13/20 persons.
- In a second experiment, the drug cures 20/40 persons.
- What's the posterior distribution of  $\theta$  after the first experiment?
- What's the posterior distribution of  $\theta$  after the second experiment?

### **Sequential updating**

- Prior: Beta(1,10),  $E[\theta] = \frac{1}{11} = 0.09$
- After first experiment: Beta(1+13,10+20),  $E[\theta] = \frac{14}{44} = 0.32$ 
  - Thus Beta(14,30) becomes the prior before analyzing the data of the second experiment.
- After second experiment: Beta(14+20,30+40),  $E[\theta] = \frac{34}{104} = 0.33$

### Conjugacy

- The Beta-binomial model is conjugate.
- The prior is conjugated with the likelihood if the posterior has the same functional form of the prior.
- Historically, problems in Bayesian statistics were restricted to the use of conjugate priors, because of mathematical tractability.
- Modern computational techniques allow Bayesian analysis without conjugacy, allowing the resurgence of Bayesian statistics in recent years.

Aggiungere esercizio da Bayes rule!!

### Computation == RIVEDERE DA QUI

- In the course we will see how to use computational methods to compute the posteriori even with non-conjugate priors.
- In the following we exploit conjugacy in order to explor the sensitivity of the posterior on the prior.

### Impact of the prior on the posterior

- We can start from different priors depending on subjective beliefs (priors might be used to encode domain expertise, and different experts would provide you with reasonable but different assessment)
- Let us consider different priors



# The posterior depends on the priors when observations are few (y=1 tails, n=2, heads=1)



- The Beta(2,8) represents the following beliefs:
  - $\blacksquare$  expected value =  $\frac{2}{2+8} = 0.2$

```
from scipy.stats import beta
quantiles=[0.05, 0.25, 0.5, 0.75, 0.95]
q = beta.ppf(quantiles, a=2, b=8)
print(q)
```

# The posterior becomes similar as we observe more data (10 tails, 12 heads)



# When the number of observations is large, the posterior is the same whatever the prior



### The posterior means $E_{\text{post}}[\theta]$ are practically identical for any prior:

$$\frac{500+2}{500+2+495+8} = \frac{502}{1005} = 0.499$$

$$\frac{500+5}{500+5+495+5} = \frac{505}{1005} = 0.502$$

Also the posterior variances are practically identical.

### The posterior mean is just part of the information

- Bayesian analysis yields the posterior distribution of  $\theta$ , **not** a single value.
- The dispersion of the posterior is a measure of our uncertainty.
- The uncertainty decreases when we have more data.

### Sensitivity to the prior

- With a large amount of data, the posterior is practically the same with any prior, but how much data is needed varies with the problem.
- If we only have few data, the posterior can differ depending on the adopted prior; it makes sense to repeat the analysis with different priors (sensitivity).
- This is sensible: the prior encodes our previous knowledge and different experts could have different priors.

#### Discussion

- Priors and likelihood are assumptions which are part of the model.
- Flat priors provide no information (uninformative priors) and should be avoided.
- Slightly informative priors are recommended.
- In many cases we known that the parameter can only be positive, or its order of magnitude, etc.
- For instance a Beta(1,1) prior is flat but limits the possible values of  $\theta$  between 0 and 1.

#### **Conclusions**

- We have seen how Bayesian inference works when Bayes' rule can be solved analytically (conjugacy).
- Only simple likelihood functions have conjugate priors.
- Complex models have no conjugate priors and requires numerical Markov chain Monte Carlo (MCMC) to get the posterior.