Model Question Paper-I with effect from 2022 (CBCS Scheme)

USN

First Semester B.E Degree Examination

Mathematics-I for Electrical Engineering Stream (BMATE101)

TIME: 03 Hours Max. Marks: 100

Note:

- 1. Answer any **FIVE** full questions, choosing atleast **ONE** question from each **MODULE**
- 2. VTU Formula Hand Book is Permitted
- **3.** M: Marks, L: RBT levels, C: Course outcomes.

		Module - 1	M	L	C
Q.1	a	With usual notations prove that $\tan \phi = r \frac{d\theta}{dr}$.	6	L2	CO1
	b	Find the angle between the curves $r = a(1 + \cos \theta)$ and $r = b(1 - \cos \theta)$.	7	L2	CO1
	c	Show that the radius of curvature at any point of the cycloid $x = a(\theta + \sin \theta)$, $y = a(1 - \cos \theta)$ is $4a \cos \left(\frac{\theta}{2}\right)$.	7	L3	CO1
		OR	<u> </u>		
Q.2	a	With usual notations prove that for the curve $r = f(\theta)$, $\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^4} \left(\frac{dr}{d\theta}\right)^2$.	7	L2	CO1
	b	Find the pedal equation of the curve $r^m = a^m (\cos m\theta + \sin m\theta)$.	8	L2	CO1
	c	Using modern mathematical tool write a program/code to plot the sine and cosine curve.	5	L3	CO5
		Module 2	1	ı	I
Q.3	a	Expand $e^{\sin x}$ by Maclaurin's series up to the term containing x^6 .	6	L2	CO1
	b	If $u = f(2x - 3y, 3y - 4z, 4z - 2x)$, show that $6\frac{\partial u}{\partial x} + 4\frac{\partial u}{\partial y} + 3\frac{\partial u}{\partial z} = 0$.	7	L2	CO1
	c	Show that the function $f(x, y) = x^3 + y^3 - 3xy + 1$ is minimum at point (1, 1).	7	L3	CO1
		OR			
Q.4	a	If $u = \tan^{-1} \left(\frac{y}{x} \right)$ then find the value of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$.	7	L2	CO1
	b	If $x + y + z = u$, $y + z = uv$, $z = uvw$ find $\frac{\partial(x, y, z)}{\partial(u, v, w)}$.	8	L3	CO1
	c	Using modern mathematical tool write a program/code to evaluate $\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x$.	5	L3	CO5
		Module – 3			

Q.5	a	Solve $x \frac{dy}{dx} + y = x^3 y^6$.	6	L2	CO2
	b	Find the orthogonal trajectories of the family of curves $\frac{x^2}{a^2} + \frac{y^2}{b^2 + \alpha} = 1 \text{ where } \alpha \text{ is a parameter.}$	7	L3	CO2
	7	L2	CO2		
		OR			
Q.6	a	Solve $\left(x^2 + y^2 + x\right)dx + xydy = 0$	6	L2	CO2
	b	Show that a differential equation for the current i in an electrical circuit containing an inductance L and resistance R in series and acted on by an	7	L3	CO2
		electromotive force $E \sin \omega t$, satisfies the equation $\frac{di}{dt} + Ri = E \sin \omega t$.			
		Find the value of the current at any time t, if initially there is no current in the circuit.			
	c	Find the general and singular solution of the equation	7	L2	CO2
		$(px-y)(py+x)=a^2p$ reducing into Clairaut's form, using the			
		substitution $X = x^2$, $Y = y^2$			
		Module – 4		I	
Q.7	a	Evaluate $\int_{-c}^{c} \int_{-a}^{b} \int_{-a}^{a} (x^2 + y^2 + z^2) dx dy dz.$	6	L2	CO3
	b	Change the order of integration and evaluate $\int_{0}^{1} \int_{\sqrt{y}}^{y} dx dy$.	7	L2	CO3
	С	Prove that $\int_{0}^{\frac{\pi}{2}} \sqrt{\sin \theta} d\theta \times \int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{\sin \theta}} d\theta = \pi.$	7	L2	CO3
		OR		I	
Q.8	a	Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-y^2}} (x^2 + y^2) dxdy$ by changing to polar coordinates.	6	L2	CO3
	b	Derive the relation between beta and gamma function.	7	L2	CO3
	С	Using double integration find the area between the parabolas $y^2 = 4ax$, $x^2 = 4ay$.	7	L3	CO3
	<u> </u>	Module – 5	l .	1	'
Q.9	a	[2 1 -1 3]	6	L2	CO4
		Find the rank of the matrix $\begin{bmatrix} 1 & 2 & 4 & 3 \\ 3 & 6 & 12 & 9 \\ 3 & 3 & 3 & 6 \end{bmatrix}$.			

	b	Solve the system of equations by Jordan method. $x + y + z = 10$, $2x - y + 3z = 19$, $x + 2y + 3z = 22$.	7	L3	CO4				
	Using Rayleigh's power method find the dominant eigenvalue and the corresponding eigenvector of $\begin{bmatrix} 4 & 1 & -1 \end{bmatrix}$								
		$\begin{bmatrix} 2 & 3 & -1 \\ -2 & 1 & 5 \end{bmatrix}$ by taking $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$ as the initial eigenvector [carry out 6]							
		iterations].							
		OR							
Q.10	a	Find the rank of the matrix $\begin{bmatrix} 11 & 12 & 13 & 14 \\ 12 & 13 & 14 & 15 \end{bmatrix}$.	7	L2	CO4				
		13 14 15 16 14 15 16 17							
	b	8	L3	CO4					
	c	Using modern mathematical tool write a program/code to test the consistency of the equations, x+2y-z=1, 2x+y+4z=2, 3x+3y+4z=1.	5	L3	CO5				

Model Question Paper-II with effect from 2022 (CBCS Scheme)

USN

First Semester B.E Degree Examination

Mathematics-I for Electrical Engineering Stream (BMATE101)

TIME: 03 Hours Max. Marks: 100

Note:

- 1. Answer any **FIVE** full questions, choosing atleast **ONE** question from each **MODULE**
- 2. VTU Formula Hand Book is Permitted
- **3.** M: Marks, L: RBT levels, C: Course outcomes.

	Module - 1	M	L	C
Q.1	Derive the radius of curvature in Cartesian form.	6	L2	CO1
	b Find the angle between the curves $r = a \log \theta$, $r = \frac{\theta}{\log \theta}$.	7	L2	CO1
	Find the radius of curvature for the cardioids $r = a(1 + \cos \theta)$.	7	L3	CO1
	OR			
Q.2	Show that the curves $r^n = a^n \cos n\theta$ and $r^n = b^n \sin n\theta$ cut each other orthogonally.	7	L2	CO1
	Find the pedal equation of the curve $r^n = a^n \cos n\theta$.	8	L2	CO1
	Using modern mathematical tool write a program/code to plot the curve $r = 2 \cos 2\theta $.	5	L3	CO5
	Module – 2			
Q.3	Expand $\sqrt{1 + \sin 2x}$ by Maclaurin's series up to the term containing x^5 .	6	L2	CO1
	b If $u = \tan^{-1}\left(\frac{y}{x}\right)$, where $x = e^t - e^{-t}$, $y = e^t + e^{-t}$ find the total	7	L2	CO1
	derivative $\frac{du}{dt}$ using partial differentiation.			
	If $u = \frac{yz}{x}$, $v = \frac{xz}{y}$, $w = \frac{yx}{z}$, Show that $\frac{\partial(u, v, w)}{\partial(x, y, z)} = 4$	7	L3	CO1
	OR			
Q.4	Evaluate (i) $\lim_{x\to 0} (a^x + x)^{\frac{1}{x}}$ (ii) $\lim_{x\to \frac{\pi}{2}} (tanx)^{tan2x}$.	7	L2	CO1

	b	If $u = f\left(\frac{y-x}{xy}, \frac{z-x}{xz}\right)$ then find the value of	8	L2	CO1
		$x^{2} \frac{\partial u}{\partial x} + y^{2} \frac{\partial u}{\partial y} + z^{2} \frac{\partial u}{\partial z} = 0.$			
	c	Using modern mathematical tool write a program/code to show that $u_{xx} + u_{yy} = 0$ given $u = e^x(x \cos y - y \sin y)$.	5	L2	CO5
	1	Module – 3	T		
Q.5	a	Solve $\frac{dy}{dx} + y \tan x = y^3 \sec x$.	6	L2	CO2
	b	When a resistance R Ohms connected in series with an inductance Henries with an emf of E volts, the current <i>i</i> amperes at time <i>t</i> is given by	7	L3	CO2
		$L\frac{di}{dt} + Ri = E$. If $E = 100$ sint volts and $i = 0$ when $t = 0$, find i as a function of t .			
	c	Solve $p^3 + 2xp^2 - y^2p^2 - 2xy^2p = 0$.	7	L2	CO2
		OR			
Q.6	a	Solve $(x^2 + y^3 + 6x)dx + xy^2dy = 0$.	6	L2	CO2
	b	Prove that the system of parabolas $y^2 = 4a(x+a)$ is self-orthogonal.	7	L3	CO2
	c	Find the general and singular solution of $xp^2 + xp - yp + 1 - y = 0$.	7	L2	CO2
		Module – 4			
Q.7	a	Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2-y^2}} xyz dx dy dz.$	6	L2	CO3
	b	Evaluate $\int_{-2}^{2} \int_{0}^{\sqrt{4-x^2}} (2-x) dy dx.$	7	L2	CO3
	С	Define beta and gamma functions and show that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$.	7	L2	CO3
		OR			
Q.8	a	Evaluate by changing the order of integration $\int_{0}^{a} \int_{0}^{2\sqrt{ax}} x^{2} dy dx, \ a > 0$	6	L2	CO3

	b	Evaluate $\int_{0}^{1} x^{\frac{3}{2}} (1-x)^{\frac{1}{2}} dx$ by expressing in terms of beta and gamma	7	L2	CO3
		functions.			
	c	Find the volume bounded by the cylinder $x^2 + y^2 = 4$ and the planes $y + z = 4$ and $z = 0$.	7	L3	CO3
		Module – 5			
Q.9	a	Find the rank of the matrix $\begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix}$.	6	L2	CO4
	b	Solve the system of equations by Gauss elimination method $3x + y + 2z = 3$, $2x - 3y - z = -3$, $x + 2y + z = 4$.	7	L3	CO4
	c	Using the Gauss-Seidel iteration method, solve the equations $83x + 11y - 4z = 9$, $3x + 8y + 29z = 71$,	7	L3	CO4
		7x + 52y + 13z = 104 Carry out four iterations, starting with the initial approximations $(0, 0, 0)$.			
		OR			
Q.10	a	Test for consistency and solve $5x + 3y + 7z = 4$, $3x + 26y + 2z = 9$, $7x + 2y + 10z = 5$.	7	L2	CO4
	b	Using Gauss Jordan method, solve $x + y + z = 11$, $3x - y + 2z = 12$, $2x + y - z = 3$.	8	L3	CO4
	c	Using modern mathematical tool write a program/code to find the largest eigen value of $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ by power method.	5	L3	CO5

Model Question Paper-I with effect from 2022 (CBCS Scheme)

USN					

First Semester B.E Degree Examination

Mathematics-I for Electrical and Electronics Engineering Stream (22MATE11)

TIME: 03 Hours Max. Marks: 100

Note: Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**.

		Module -1	Marks
Q.01	a	With usual notations prove that $\tan \varphi = r \frac{d\theta}{dr}$	06
	b	Find the angle between the curves $r = a(1 + \cos \theta)$ and $r = b(1 - \cos \theta)$	07
	С	Show that the radius of curvature at any point of the cycloid $x = a(\theta + \sin \theta), \ y = a(1 - \cos \theta) \text{ is } 4a \cos \left(\frac{\theta}{2}\right)$	07
Q.02	a	OR If p be the perpendicular from the pole on the tangent, then show that $ \frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^4} \left(\frac{dr}{d\theta}\right)^2 $	06
	b	Find the pedal equation of the curve $r^m = a^m(\cos m\theta + \sin m\theta)$	07
	С	Find the radius of curvature of the curve $x^3 + y^3 = 3xy$ at $\left(\frac{3}{2}, \frac{3}{2}\right)$	07
	•	Module-2	
Q. 03	a	Expand e^{sinx} by Maclaurin's series up to the term containing x^4	06
	b	If $u = f(2x - 3y, 3y - 4z, 4z - 2x)$, show that $6u_x + 4u_y + 3u_z = 0$	07
	С	Show that the function $f(x,y) = x^3 + y^3 - 3xy + 1$ is minimum at the point $(1, 1)$	07
		OR	
Q.04	a	Evaluate (i) $\lim_{x \to 0} \left(\frac{\tan x}{x}\right)^{\frac{1}{x^2}}$ (ii) $\lim_{x \to 0} (\cos x)^{\frac{1}{x^2}}$	06
	b	If $u = tan^{-1}(y/x)$ then find the value of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$	07
	С	If $x + y + z = u$, $y + z = uv$ and $z = uvw$, find $\frac{\partial(x,y,z)}{\partial(u,v,w)}$	07
		Module-3	
Q. 05	a	Solve $x \frac{dy}{dx} + y = x^3 y^6$	06
	b	Find the orthogonal trajectories of the family of curves $\frac{x^2}{a^2} + \frac{y^2}{b^2 + \alpha} = 1$, where α is a parameter	07
	С	Solve $xyp^2 - (x^2 + y^2)p + xy = 0$	07
	1	OR	
Q. 06	a	Solve $(x^2 + y^2 + x)dx + xydy = 0$	06

	b	Show that a differential equation for the current i in an electrical circuit containing an inductance L and resistance R in series and acted on by an electromotive force $E sin\omega t$, satisfies the equation $\frac{di}{dt} + Ri = E sin\omega t$. Find the value of the current at any time t, if initially there is no current in the circuit.	07
	С	Find the general solution of the equation $(px - y)(py + x) = a^2p$ by reducing into Clairaut's form, taking the substitution $X = x^2$, $Y = y^2$	07
	1	Module-4	
Q. 07	a	Evaluate $\int_{-c}^{c} \int_{-b}^{b} \int_{-a}^{a} (x^2 + y^2 + z^2) dx dy dz$	06
	b	Change the order of integration and evaluate $\int_0^1 \int_{\sqrt{y}}^y dx dy$	07
	С	Prove that $\int_0^{\frac{\pi}{2}} \sqrt{\sin\theta} d\theta \times \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{\sin\theta}} = \pi$	07
		OR	
Q. 08	a	Evaluate $\int_0^1 \int_0^{\sqrt{1-y^2}} (x^2 + y^2) dx dy$ by changing to polar coordinates.	06
	b	Derive the relation between beta and gamma function	07
	С	Using double integration find the area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$	07
		Module-5	
Q. 09	а	Find the rank of the matrix $\begin{bmatrix} 2 & 1 & -1 & 3 \\ 1 & 2 & 4 & 3 \\ 3 & 6 & 12 & 9 \\ 3 & 3 & 3 & 6 \end{bmatrix}$	06
	b	Solve the system of equations by Jordan method	
		x + y + z = 10 $2x - y + 3z = 19$ $x + 2y + 3z = 22$	07
	С	Using Rayleigh's power method find the dominant eigenvalue and the corresponding eigenvector of $\begin{bmatrix} 4 & 1 & -1 \\ 2 & 3 & -1 \\ -2 & 1 & 5 \end{bmatrix}$ by taking $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$ as initial eigenvector [carry out 6 iterations]	07
		OR	
Q. 10	а	Find the rank of the matrix $\begin{bmatrix} 11 & 12 & 13 & 14 \\ 12 & 13 & 14 & 15 \\ 13 & 14 & 15 & 16 \\ 14 & 15 & 16 & 17 \end{bmatrix}$	06
	b	For what values λ and μ the system of equations $x + y + z = 6$; $x + 2y + 3z = 10$; $x + 2y + \lambda z = \mu$ has (i) no solution (ii) a unique solution and (iii) infinite number of solutions	07

Solve the system of equations 2x - 3y + 20z = 25

$$2x - 3y + 20z = 25$$

$$20x + y - 2z = 17$$
$$3x + 20y - z = -18$$

$$3x + 20y - z = -18$$

Using the Gauss-Seidel method, taking (0, 0, 0) as an initial approximate. (Carry out 4 iterations).

Q.1 Q.2	(a)	Lever arrachen	y Course		Program Outcom	
		Level attached		Outcome CO 01	PO 01	
Q.2	In	L2		CO 01	PO 01	
Q.2	(b) (c)	L3		CO 01	PO 02	
Ų.2	(a)	L1		CO 01	PO 01	
	(b)	L2		CO 01	PO 01	
	(c)	L3		CO 01	PO 02	
Q.3	(a)	L2		CO 02	PO 01	
Ų.J	(b)	L2		CO 02	PO 01	
	(c)	L3		CO 02	PO 03	
Q.4	(a)	L2		CO 02	PO 01	
ζ· <u>τ</u>	(b)	L2		CO 02	PO 01	
	(c)	L3		CO 02	PO 02	
Q.5	(a)	L2		CO 03	PO 02	
Q.o	(b)	L3		CO 03	PO 03	
	(c)	L2		CO 03	PO 01	
Q.6	(a)	L2		CO 03	PO 02	
Į.0	(b)	L3		CO 03	PO 03	
	(c)	L2		CO 03	PO 01	
Q.7	(a)	L2		CO 04	PO 01	
•	(b)	L2		CO 04	PO 01	
	(c)	L2		CO 04	PO 01	
Q.8	(a)	L2		CO 04	PO 01	
•	(b)	L2		CO 04	PO 01	
	(c)	L2		CO 04	PO 01	
Q.9	(a)	L2		CO 05	PO 01	
	(b)	L3		CO 05	PO 01	
	(c)	L3		CO 05	PO 01	
Q.10	(a)	L2		CO 05	PO 01	
	(b)	L3		CO 05	PO 01	
	(c)	L3		CO 05	PO 01	
		Lo	wer order t	hinking skills		
Bloom's		emembering	Understand	ding	Applying	
Faxonoi Levels	my (F	Knowledge): L ₁		ension): L ₂ rder thinking skills	(Application): L ₃	

Model Question Paper-II with effect from 2022 (CBCS Scheme)

USN

First Semester B.E Degree Examination

Mathematics-I for Electrical & Electronics Engineering Stream (22MATE11)

TIME: 03 Hours

Max. Marks: 100

Note: Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**.

		Module -1	Marks
Q.01	a	With usual notations prove that $\rho = \frac{(1+y_1^2)^{3/2}}{y_2}$	06
	b	Find the angle between the curves $r = alog\theta$ and $r = \frac{a}{log\theta}$	07
	С	Find the radius of curvature for the cardioids $r = a(1 + \cos \theta)$	07
		OR	
Q.02	a	Show that the curves $r^n = a^n \cos n\theta$ and $r^n = b^n \sin n\theta$ cut each other orthogonally.	06
	b	Find the pedal equation of the curve $r^n = a^n \cos n\theta$	07
	С	Show that the radius of curvature at $(a, 0)$ on the curve $y^2 = \frac{a^2(a-x)}{x}$ is $\frac{a}{2}$	07
		Module-2	
Q. 03	a	Expand $\sqrt{1 + \sin 2x}$ by Maclaurin's series upto the term containing x^5	06
	b	If $u = tan^{-1}\left(\frac{y}{x}\right)$, where $x = e^t - e^{-t}$ and $y = e^t + e^{-t}$, find the total derivative	
		$\frac{du}{dt}$ using partial differentiation	07
	С	If $u = \frac{yz}{x}$, $v = \frac{zx}{y}$, $w = \frac{xy}{z}$, show that $\frac{\partial(u,v,w)}{\partial(x,y,z)} = 4$	07
	1	OR	
Q.04	a	Evaluate (i) $\lim_{x\to 0} (a^x + x)^{\frac{1}{x}}$ (ii) $\lim_{x\to \frac{\pi}{2}} (\tan x)^{\tan 2x}$	06
	b	If $u = f\left(\frac{y-x}{xy}, \frac{z-x}{xz}\right)$, show that $x^2 \frac{\partial u}{\partial x} + y^2 \frac{\partial u}{\partial y} + z^2 \frac{\partial u}{\partial z} = 0$	07
	С	Find the maximum and minimum value of $x^3 + y^3 - 3axy$	07
		Module-3	
Q. 05	a	Solve $\frac{dy}{dx} + ytanx = y^3 secx$	06
	b	When a resistance R Ohms connected in series with an inductance L henries with	
		an emf of E volts, the current <i>i</i> amperes at time <i>t</i> is given by $L\frac{di}{dt} + Ri = E$.	07
		If $E = 100$ sint volts and $i = 0$ when $t = 0$, find i as a function of t .	
	С	Solve $p^3 + 2xp^2 - y^2p^2 - 2xy^2p = 0$	07
		OR	

Q. 06	a	Solve $(x^2 + y^3 + 6x)dx + y^2xdy = 0$	06
	b	Prove that the system of parabolas $y^2 = 4a(x + a)$ is self orthogonal	07
	Find the general and singular solution of $xp^2 + xp - yp + 1 - y = 0$	07	
		Module-4	
Q. 07	a	$ \frac{\text{Module-4}}{\text{Evaluate } \int_0^1 \int_0^{\sqrt{1-x^2}} \int_0^{\sqrt{1-x^2-y^2}} xyzdzdydx} $	06
	b	Evaluate $\int_{-2}^{2} \int_{0}^{\sqrt{4-x^2}} (2-x) dy dx$	07
	С	Define beta and gamma functions and show that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$	07
		OR	
Q. 08	a	Evaluate by changing the order of integration $\int_0^a \int_0^{2\sqrt{ax}} x^2 dy dx$, $a > 0$	06
	b	Evaluate $\int_0^1 x^{\frac{3}{2}} (1-x)^{\frac{1}{2}} dx$, by expressing in terms of beta and gamma functions	07
	С	Find the volume bounded by the cylinder $x^2 + y^2 = 4$ and the planes $y + z = 4$ and $z = 0$.	07
		Module-5	
Q. 09	a	Find the rank of the matrix $\begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix}$	06
	b	Solve the system of equations by Gauss elimination method $3x + y + 2z = 3,$ $2x - 3y - z = -3,$ $x + 2y + z = 4$	07
	С	Using the Gauss-Seidel iteration method, solve the equations $83x + 11y - 4z = 9$ $3x + 8y + 29z = 71$ $7x + 52y + 13z = 104$ Carry out four iterations, starting with the initial approximations $(0, 0, 0)$	07
		OR	
Q. 10	a	Test for consistency and solve 5x + 3y + 7z = 4, $3x + 26y + 2z = 9$, $7x + 2y + 10z = 5$	06
	b	Using Gauss Jordan method, solve $x + y + z = 11$ $3x - y + 2z = 12$ $2x + y - z = 3$	07

Find the largest eigenvalue and the corresponding eigenvector of $\begin{bmatrix} -2 & 0 & -1 \\ 1 & -1 & 1 \\ 2 & 2 & 0 \end{bmatrix}$

$$\begin{bmatrix} -2 & 0 & -1 \\ 1 & -1 & 1 \\ 2 & 2 & 0 \end{bmatrix}$$

with the initial approximate eigenvector $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$

Ques	tion				Program Outcome	
0.4		Level attached		Outcome	PO 04	
Q.1	(a)	L1	CO 01	PO 01		
	(b)			CO 01	PO 01	
	(c)	L3		CO 01	PO 02	
Q.2	(a)	L1		CO 01	PO 01	
	(b)			CO 01	PO 01	
	(c)			CO 01	PO 02	
Q.3	(a)			CO 02	PO 01	
	(b)	L2		CO 02	PO 01	
	(c)	L3		CO 02	PO 02	
Q.4	(a)	L2		CO 02	PO 01	
	(b)	L2		CO 02	PO 01	
	(c)	L3		CO 02	PO 03	
Q.5	(a)	L2		CO 03	PO 02	
	(b)	L3		CO 03	PO 03	
	(c)	L2		CO 03	PO 02	
Q.6	(a)	L2		CO 03	PO 02	
	(b)	L3		CO 03	PO 03	
	(c)			CO 03	PO 02	
Q.7	(a)	L2		CO 04	PO 02	
•	(b)			CO 04	PO 02	
	(c)	·		CO 04	PO 01	
Q.8	(a)			CO 04	PO 01	
	(b)			CO 04	PO 02	
	(c)	L2		CO 04	PO 02	
Q.9	(a)			CO 05	PO 01	
	(b)			CO 05	PO 01	
	(c)			CO 05	PO 02	
Q.10	(a)			CO 05	PO 01	
	(b)			CO 05	PO 01	
	(c)			CO 05	PO 02	
	(-)			1	1	
		Lov	ver order	thinking skills		
Bloom's		Remembering(Remembering(Understa		Applying (Application)	
Taxonom		knowledge):L ₁	Comprehension): L ₂ L ₃			
y Levels		Higher order thinking skills Analyzing (Analysis):L4 Valuating (Evaluation): L5 Creating (Synthesis				