Final Project

DLCV Fall 2023

Update

- 11/30
 - Challenge videos are uploaded. [link1] [link2]
- 12/2
 - Team up results [link]
 - TA discussion available time slot [link]

Overview

- STAR:
 - Situated Reasoning (Video Question Answering)

- VQ2D:
 - Visual Queries 2D Localization

Timeline & Deadlines (GMT+8)

Teaming-up Form Completion	2023/12/01 23:59
Announcement of teaming-up	2023/12/02
Choose when to meet with TAs	2023/12/05 23:59
Project Discussion with TAs	2023/12/13~12/15
Poster Submission	2023/12/25 11:59
CodaLab/Eval AI Submission	2023/12/28 07:59
On-Site Presentation	2023/12/28 13:00-17:00
GitHub Code Commit	2023/12/28 23:59

Outline

- General Rules
 - Teaming up
 - GitHub / CodaLab or Eval Al / Poster / Presentation
 - Grading
- Challenges
 - Challenge 1 Situated Reasoning in Real-World Videos (STAR Benchmark)
 - Challenge 2 Visual Queries 2D Localization (Ego4D Challenge)

Teaming Up and Challenge Selection

- Please fill in this <u>form</u> before 2023/12/01 23:59
 - Each team should have 4 members
 - Team name
 - English letters (lowercase and uppercase) and numbers only; no spaces
 - You must use the same team name for GitHub/CodaLab/Eval Al
 - Team leader
 - Responsible for GitHub team creation and poster/code submission
- We will split the teams equally between the two challenges
 - Your topic choice will be determined by the order of form submissions

Discussion with TAs

- We will announce more details on 2023/12/02 after teaming-up done.
- Please choose when to meet with TAs before 2023/12/05 23:59
- Each team will have 20 mins to discuss.
- Note that if you do not show on the meeting time, you will lose some points!

GitHub

- Join the GitHub group assignments (for each challenge) with your team name
 - You must use the same team name for GitHub/CodaLab/Eval Al
 - The team leader creates the team first, and the team members join afterwards

Eval Al / CodaLab

- You need to participate in the CodaLab/ Eval AI challenge with your team name
 - Eval AI for Challenge 1
 - CodaLab for Challenge 2
- Maximum Daily Submissions: 5 times (for each team)
 - CodaLab and Eval AI will be reset every day
- Submission Deadline: 2023/12/28 07:59

Poster for On-Site Presentation

- PDF format of size A1 (Portrait, 84.1 cm x 59.4 cm)
- TAs will print it out for your on-site presentation only if you submit it before the deadline.
- Submission Deadline: 2023/12/25 11:59
 - Submitted to the root directory of the team's GitHub repository (format: poster.pdf)
 - You can leave some blank areas on your poster for further experiment results and fill them up right before the final presentation.
- If you do not submit your poster before the above deadline, you will need to print it out on your own.
- Write your name and student ID on the poster!

On-Site Presentation

• Schedule: 2023/12/28 13:00-17:00

• Location: 電二142

● 休息室: 電二144

13:00 - 13:20	Challenge #1 (STAR) - Poster Readying
13:20 - 14:40	Challenge #1 - Presentation
14:40 - 15:00	Tea Break / Challenge #2 (VQ2D) - Poster Readying
15:00 - 15:10	Challenge #1 - Awarding Ceremony
15:10 - 16:30	Challenge #2 - Presentation
16:30 - 16:50	Tea Break
16:50 - 17:00	Challenge #2 - Awarding Ceremony

On-Site Presentation

Poster Readying

- 13:00-13:20 for Challenge-1 and 14:40-15:00 for Challenge-2
- Prepare your posters (i.e., pasting them onto to the boards) in the given time slots

Presentation

- Proceed team-by-team according to the **Team ID** for each challenge (<u>Excel</u>)
- Time Limit 5 mins per team
 - Each team will be given a maximum of 4 minutes for presentation
 - An additional 1 minute will be reserved for Q&A from the lecturer and the TAs
 - As we have a tight schedule, we will control your time strictly!
- For each team, if no members show up for the final presentation, all team members will receive 0 points for this part (0 out of 25 points)

Code Submission

- Code Submission Deadline: 2023/12/28 23:59
- Submit all the training/testing code to your team's Github repository
- Provide a detailed **README.md** file with example scripts for TAs to reproduce your results (including model training and inference)
- If TAs cannot reproduce your results, you will receive 0 points in the code part (unless minor errors)

Grading

- Model Performance CodaLab / Eval Al
 - Baseline
 - Relative ranking
- Approach & Presentation
 - Discussion with TAs
 - Novelty and Technical Contributions
 - Completeness of Experiments
 - Poster & Oral Presentation
 - o Bonus Intra / Inter-Team Evaluation

Grading - Intra/Inter-Team Evaluation

- Intra-Team Evaluation
 - You must participate and work with your team member
 - We might adjust your final scores based on the evaluation
- Inter-Team Evaluation
 - The top 3 teams selected by (lecturer, guest, & TA) judges will receive cash prizes
 - The most-voted teams for each challenge will receive bonus points (or gifts)

Challenge 1 -STAR Benchmark

A Benchmark for Situated Reasoning in Real-World Videos

Github classroom link

Eval.ai leaderboard link

(Do not join them until we announce the final topics for your teams)

STAR Benchmark - Task (1/2)

- Multiple choice video questions answering
 - Input: Video + question + hypergraph(training only) + bounding box(training only)
 - output: Multiple choice answer.

STAR Benchmark - Task (2/2)

- Webpage link, Github link.
- 4 Question Types, <u>example</u>.
 - Interaction
 - Sequence
 - Prediction
 - Feasibility

Interaction

Q: What did the person do with the bottle?

Q: [V]; S: [P,V, O]

a: Put down. b: Washed.

c: Took. d: Ate.

Prediction

Q: Which object would the person put down next?

Q: [O]; S: [T_R, P, V, O]

a: The towel b: The bottle c: The table d: The book

Sequence

Q: What object did the person take after the person put down the bottle?

Q: [0]; S: [T_R, P, V, 0]

a: The book.
c: The phone.
b: The towel.
d: The table.

Feasibility

Q: Which object is possible to be took when the person is in front of the table?

Q: [O]; S: [P, V, S_R, V, O]

a: The phone b: The bottle c: The book d: The bag

STAR Benchmark - Dataset (1/4)

Data Format

- 9848 raw videos from Charades (scaled to 480p) ~16 G (~70G in frame-wise .png)
- Train/val/test annotation files
- Train: 45731/ val: 7098 / test: 7377

```
{"question_id": "Interaction_T1_31",
    "question": "Which object was thrown by the person?",
    "video_id": video_name, "start": start_time, "end": end_time,
    "choices": ..., # options to answer the given question
    "answer": ...,
    "situations": ... # relations, bounding boxes, ...
}, ...
```

Not given in testing data

STAR Benchmark - Dataset (2/4, optional)

- situations
- You can generate new questions base on situations (optional).
 - O Question Templates (.csv), QA Programs (.csv)

STAR Benchmark - Dataset (3/4, optional)

Annotations

- Classes Files (.zip)
- Actions, objects, relationships, verbs

```
1 a000 hold some clothes
                                                                               1 r000 on
                                                                                                                 1 v000 close
                                               1 o000 person
 2 a001 put clothes somewhere
                                                                               2 r001 behind
                                                                                                                 2 v001 drink
                                              2 0001 broom
 3 a002 take some clothes from somewhere
                                                                               3 r002 in front of
                                              3 o002 picture
                                                                                                                 3 v002 eat
4 a003 throw clothes somewhere
                                                                               4 r003 on the side of
                                              4 o003 closet/cabinet
                                                                                                                 4 v003 grasp
 5 a004 tidy some clothes
                                                                               5 r004 above
                                              5 o004 blanket
 6 a005 wash some clothes
                                                                                                                 5 v004 hold
                                                                               6 r005 beneath
 7 a006 close a door
                                              6 0005 window
                                                                                                                 6 v005 lie
8 a007 open a door
                                                                               7 r006 drinking from
                                              7 o006 table
9 a008 sit on a table
                                                                                                                 7 v006 open
                                                                               8 r007 have it on the back
                                              8 o007 paper/notebook
10 a009 sit at a table
                                                                                                                 8 v007 put
                                                                               9 r008 wearing
                                              9 o008 refrigerator
11 a010 tidy up a table
                                                                                                                 9 v008 sit
                                                                              10 r009 holding
12 a011 wash a table
                                             10 0009 pillow
                                                                              11 r010 lying on
                                                                                                                10 v009 stand
13 a012 hold a phone/camera
                                             11 o010 cup/glass/bottle
                                                                              12 r011 covered by
14 a013 put a phone/camera somewhere
                                                                                                                11 v010 take
                                             12 o011 shelf
15 a014 take a phone/camera from somewhere
                                                                              13 r012 carrying
                                                                                                                12 v011 throw
                                             13 o012 shoe
16 a015 open a bag
                                                                              14 r013 eating
                                                                                                                13 v012 tidy
                                             14 o013 medicine
                                                                              15 r014 leaning on
                                                                                                                14 v013 turn
                                             15 o014 phone/camera
                                             16 0015 box
                                             17 o016 sandwich
```

STAR Benchmark - Dataset (4/4, optional)

- Bounding boxes
 - Object Bounding Boxes (.pkl).
 - Human Bounding Boxes (.pkl).

STAR Benchmark - Evaluation (1/2)

Metrics

- Accuracies of 4 types of questions and overall accuracy.
 - Interaction
 - Sequence
 - Prediction
 - Feasibility

STAR Benchmark - Evaluation (1/2)

- Website
- Submission
 - 20 times per day / 150 times per month
 - Format: <u>link</u>
 - Example

```
"Interaction": [{"question_id": "Interaction_T1_0", "answer": 0}],
    "Sequence": [{"question_id": "Interaction_T1_29", "answer": 1}],
    "Prediction": [{"question_id": "Prediction_T2_555", "answer": 3}],
    "Feasibility": [{"question_id": "Feasibility_T6_1466", "answer": 2}]
}
```

STAR Benchmark - Grading (1/2)

- Final 34% (Bonus up to 3%)
 - Model Performance Eval.ai 9%
 - Baseline **4**%
 - Relative ranking in class 5%
 - Approach & Presentation 25% + 3%
 - Discussion with TAs 2%
 - Novelty and technical contributions 10%
 - Completeness of experiments 8%
 (e.g., ablation study, visualization, etc.)
 - Poster & Oral Presentation 5%
 - Bonus (intra / inter-team evaluation) up to 3%

Points	Team Ranking
5	top 0% - 20%
4.5	top 20% - 40%
4	top 40% - 60%
3.5	top 60% - 80%
3	top 80% - 100%

STAR Benchmark - Grading (2/2)

Baseline

Rank	Participant team 🍦	Int_Acc (↑) \$	Seq_Acc (↑) \$	Pre_Acc (↑) \$	Fea_Acc (↑) \$	Mean (↑) \$	Last submission at \$
1	Fudan Nebula (Work in progress (submitted to)	68.47	72.08	60.06	50.09	62.67	2 months ago
2	wade (TgMoE)	63.92	69.29	62.57	52.52	62.08	4 months ago
3	Q (mPLUG)	60.42	65.62	57.54	49.57	58.29	1 year ago
4	ASTAR I2R Visual-Language Team (Method 1.2 merge)	60.93	62.75	56.56	50.78	57.76	1 year ago
5	hk_reporter (naive)	59.33	63.09	55.31	45.91	55.91	1 year ago
6	docdoc (CoVGT)	46.23	50.34	45.11	43.13	46.20	1 year ago
7	VQA_ON_STAR (instructBLIP)	39.85	44.71	45.39	47.30	44.31	15 minutes ago
8	antoine77340 (Flamingo 32-shot)	42.15	44.56	40.64	41.57	42.23	2 years ago

STAR Benchmark - Rules

- Feel free to use any pretrained video/visual-language model.
- Your results need to be reproducible with your submitted code and models.
- Please use python3 instead of python for your scripts.
- Any violation would result in 0 score for your final project.

Challenge 2 - Visual Queries 2D Localization Task

(Ego4D Challenge)

Github classroom link
CodaLab leaderboard link
(Do not join them until we announce the final topics for your teams)

VQ2D

Task

- Given a **short clip** and an **image query**, predict the last time the object appeared in the clip
- Predict the bounding box for each frame

Query: When did I last see this object?

VQ2D

Definitions

- clip: a short video
- image query: an image cropped from the clip, defined by visual_crop

image query

- o response_track: a consecutive window when the object last appeared; the ground truth
- query_frame: the timestep when I ask "When did I last see object X?"

Task description

- Your task is to predict the response_track
- Find the specific object in the image query
 - If there are multiple trash cans in the video, only the one in the image query counts

```
"0e7fba95-22d9-4ab0-9815-4bb7880d8557": {
 "annotations": [
     "query_sets": {
       "1": {
         "is_valid": true,
         "query_frame": 91,
         "response_track": [
             {"frame_number": 53, "x": 560.46, "y": 127.76, "
             {"frame_number": 54, "x": 535.53, "y": 38.24, "w
             {"frame_number": 55, "x": 499.17, "y": 0.02, "wid
             {"frame_number": 56, "x": 445.86, "y": 0.04, "wid
             {"frame_number": 57, "x": 378.45, "y": 0.05, "wid
             {"frame_number": 58, "x": 426.04, "y": -0.01, "wi
         "object_title": "remote control",
         "visual crop": {
             "frame_number": 126, "x": 411.31, "y": 254.65, "\"
```

VQ2D - Dataset (1/4)

Data Format

- 1462 short clips (~30GB totally)
- ~300 secs for each clip
- Train/val/test annotation files
- o Train: 1171/ val: 146 / test: 145
- You have to output pred.json based on vq_test_unannotated.json
- o Dataset link

```
VQ2D/
vq_train.json
vq_val.json
vq_test_unannotated.json
clips/
{clip_uid}.mp4
...
```

VQ2D - Dataset (2/4)

Annotation files

annotation_uid (string)

response_track is the ground truth

```
"0e7fba95-22d9-4ab0-9815-4bb7880d8557": {
 "annotations": [
     "query_sets": {
       "1": {
         "is_valid": true,
         "query_frame": 91,
         "response track": [
             {"frame_number": 53, "x": 560.46, "y": 127.76, "width": 54.54, "height": 75.49, "original_width": 640, "original_height": 360}
             {"frame_number": 54, "x": 535.53, "y": 38.24, "width": 53.42, "height": 82.99, "original_width": 640, "original_height": 360},
             {"frame_number": 55, "x": 499.17, "y": 0.02, "width": 51.03, "height": 83.62, "original_width": 640, "original_height": 360},
             {"frame_number": 56, "x": 445.86, "y": 0.04, "width": 45.98, "height": 66.28, "original_width": 640, "original_height": 360},
             {"frame_number": 57, "x": 378.45, "y": 0.05, "width": 47.87, "height": 72.64, "original_width": 640, "original_height": 360},
             {"frame_number": 58, "x": 426.04, "y": -0.01, "width": 41.19, "height": 12.05, "original_width": 640, "original_height": 360}
         "object_title": "remote control",
             "frame_number": 126, "x": 411.31, "y": 254.65, "width": 47.94, "height": 82.73, "original_width": 640, "original_height": 360
         "is_valid": true,
         "query_frame": 313,
         "response_track": [
             {"frame_number": 269, "x": 607.54, "y": 255.7, "width": 32.46, "height": 78.65, "original_width": 640, "original_height": 360},
             {"frame_number": 270, "x": 598.59, "y": 231.82, "width": 41.44, "height": 87.45, "original_width": 640, "original_height": 360}
             {"frame_number": 271, "x": 577.18, "y": 266.43, "width": 62.86, "height": 83.72, "original_width": 640, "original_height": 360}
             {"frame_number": 272, "x": 552.24 ,"y": 274.33, "width": 40.0, "height": 85.35, "original_width": 640,"original_height": 360},
             {"frame_number": 273, "x": 538.63, "y": 282.6, "width": 78.88, "height": 74.56, "original_width": 640, "original_height": 360},
             {"frame_number": 274, "x": 543.08, "y": 275.71, "width": 78.5, "height": 72.78, "original_width": 640, "original_height": 360},
             {"frame_number": 275, "x": 560.19, "y": 285.25, "width": 79.84, "height": 74.74, "original_width": 640, "original_height": 360}
             {"frame_number": 276, "x": 602.98, "y": 220.67, "width": 37.14, "height": 69.01, "original_width": 640, "original_height": 360}
         "object_title": "cup",
         "visual_crop": {
             "frame number": 165, "x": 456.13, "y": 272.85, "width": 88.52, "height": 86.09, "original width": 640, "original height": 360
```

VQ2D - Dataset (3/4)

Annotation files

vq_test_unannotated.json

```
clip_uid> (string)

annotations (array)
query_sets
"1"
query_frame (int)
visual_crop
frame_number (int)
x
y
width
height
original_width
original_height
"2" ...
"3" ...
annotation uid (string)
```

```
"05fa0b5d-5afb-4cf8-9f91-a997ded19177": {
    "annotations": [
            "query_sets": {
                "1": {
                    "is_valid": true,
                    "query_frame": 21,
                    "object_title": "jug",
                    "visual_crop": {
                        "frame_number": 50, "x": 345, "y": 37, "width": 108, "height": 95,
                       "original_width": 480, "original_height": 360
               "3": {
                    "is_valid": true,
                    "query_frame": 71,
                    "object_title": "kitchen towel",
                    "visual_crop": {
                        "frame_number": 431, "x": 354, "y": 280, "width": 69, "height": 72,
                       "original width": 480, "original height": 360
                    "is_valid": true,
                    "query_frame": 95,
                    "object_title": "container",
                    "visual crop": {
                        "frame_number": 183, "x": 397, "y": 309, "width": 22, "height": 35,
                        "original_width": 480, "original_height": 360
            "annotation_uid": "33a8265d-c515-41e4-aee4-6ebfdcaa34b1"
```

VQ2D - Dataset (4/4)

Output file pred.json

```
    <cli>clip_uid> (string)
    predictions (array)
    query_sets
    "1"
    bboxes
    x1
    y1
    x2
    y2
    fno
    score (float)
    "2" ...
    "3" ...
```

```
x2 = x1 + predicted width

y2 = y1 + predicted height

fno: frame number
```

```
"0e7fba95-22d9-4ab0-9815-4bb7880d8557": {
   "predictions": [
           "query_sets": {
               "1": {
                    "bboxes": [
                       {"x1": 0.00, "y1": 0.00, "x2": 1.00, "y2": 1.00, "fno": 53},
                       {"x1": 0.00, "y1": 0.00, "x2": 1.00, "y2": 1.00, "fno": 54},
                       {"x1": 0.00, "y1": 0.00, "x2": 1.00, "y2": 1.00, "fno": 55},
                       {"x1": 0.00, "y1": 0.00, "x2": 1.00, "y2": 1.00, "fno": 56}
                   "score": 0.9
               "2": {
                    "bboxes": [
                       {"x1": 0.00, "y1": 0.00, "x2": 1.00, "y2": 1.00, "fno": 267},
                       {"x1": 0.00, "y1": 0.00, "x2": 1.00, "y2": 1.00, "fno": 268},
                       {"x1": 0.00, "y1": 0.00, "x2": 1.00, "y2": 1.00, "fno": 269},
                       {"x1": 0.00, "y1": 0.00, "x2": 1.00, "y2": 1.00, "fno": 270}
                       {"x1": 0.00, "y1": 0.00, "x2": 1.00, "y2": 1.00, "fno": 271},
                       {"x1": 0.00, "y1": 0.00, "x2": 1.00, "y2": 1.00, "fno": 272},
                       {"x1": 0.00, "y1": 0.00, "x2": 1.00, "y2": 1.00, "fno": 273},
                       {"x1": 0.00, "y1": 0.00, "x2": 1.00, "y2": 1.00, "fno": 274}
                   "score": 0.3
               "3": {
                   "bboxes":
                       {"x1": 0.00, "y1": 0.00, "x2": 1.00, "y2": 1.00, "fno": 715},
                       {"x1": 0.00, "y1": 0.00, "x2": 1.00, "y2": 1.00, "fno": 716},
                       {"x1": 0.00, "y1": 0.00, "x2": 1.00, "y2": 1.00, "fno": 717}
                   "score": 1.0
           "query_sets": {
               "1": {
                   "bboxes":
```

VQ2D - Evaluation (1/4)

Spatio-temporal AP (stAP):

mAP of object bounding tube (bounding boxes in contiguous frames) (with IoU threshold = 0.25)

$$STT\text{-IOU} = \frac{\text{volume of overlap}}{\text{volume of union}} = \frac{1}{\text{volume of union}}$$

VQ2D - Evaluation (2/4)

- Create an account and participate the competition (with your team name)
 - CodaLab Link
 - All members in a team should use the same account.
 - (i.e. one team, one account)
 - Your team name should start with "English letter"
 - (e.g. X1abc a1bc)

VQ2D - Evaluation (3/4)

Submission

- 5 times per day / 100 in total
- You should submit your zip file to the CodaLab competition
- Please note that the zip file should ONLY contain pred.json

Submission format

- sample_submission.zip
 - pred.json
- The **zip** file name is arbitrary, but the **json** file name should be **pred.json**

VQ2D - Evaluation (4/4)

- Submit your **zip** file in the "Submit/View Results" page.
- You can check your score and ranking in the "Results" page
- To upload the zip file to the "Submit/View Results" page:
 - Click the "Submit" button to choose your zip file
 - Wait for the evaluation
 - STATUS should go as "Submitting" → "Submitted" → "Running" → "Finished"
 - If it has been stuck at the "Submitted" status for a long time (more than 1~2 hours), you can e-mail TAs to re-run your submission.

VQ2D Benchmark - Grading (1/2)

- Final 34% (Bonus up to 3%)
 - Model Performance CodaLab 9%
 - Baseline **4**%
 - Relative ranking in class 5%
 - Approach & Presentation 25% + 3%
 - Discussion with TAs 2%
 - Novelty and technical contributions 8%
 - Completeness of experiments 10%
 (e.g., ablation study, visualization, etc.)
 - Poster & Oral Presentation 5%
 - Bonus (inter-team evaluation) up to 3%

Points	Team Ranking
5	top 0% - 20%
4.5	top 20% - 40%
4	top 40% - 60%
3.5	top 60% - 80%
3	top 80% - 100%

VQ2D Benchmark - Grading (2/2)

Baseline

VQ2D Benchmark - Rules

- Your results need to be reproducible with your submitted code and models.
- Please use **python3** instead of python for your scripts.
- Any violation would result in 0 score for your final project.