*Note: Code was worked on independently

Problem 1

Data was partitioned as specified (10,000 validation images for MNIST, 20% as validation samples for spam, and 5,000 validation images for CIFAR-10). See code, provided in the appendix, for evidence. Partitioning was accomplished by calling the partition function defined in HW01_utils.py module.

Problem 2

The linear SVM was trained on all three datasets. The score (accuracy) of the method was calculated for a range of samples. For each data set–MNIST, spam, and CIFAR-10–the error (error = 1-accuracy) is plotted as a function of N samples used for training.

MNIST

Accuracy of MNIST training for 100, 200, 500, 1,000, 2,000, 5,000, and 10,000 training samples.

Spam

Accuracy of spam/ham training for 100, 200, 500, 1,000, 2,000, and all (4,132) training samples.

CIFAR-10

Accuracy of CIFAR-10 training for 100, 200, 500, 1,000, 2,000, and 5,000 training samples.

Problem 3

For the MNIST data set, the best value of C was found to be $7.84759970351 \times 10^{-7}$, giving an accuracy of 92.98%. All accuracies for a range of C values (all trained on 10,000 samples) are given below.

10,000 samples	
\mathbf{C}	Accuracy
1.0000 E-08	0.8935
4.2813E-08	0.9147
1.8330E-07	0.9255
$7.8476\mathrm{E}\text{-}07$	0.9298
3.3598E-06	0.9229
1.4384E-05	0.9118
6.1585 E-05	0.9071

2.6367E-04	0.906
0.0011288	0.906
0.0048329	0.906
0.0206914	0.906
0.0885867	0.906
0.3792690	0.906
1.6237767	0.906
6.9519280	0.906
29.763514	0.906
127.42750	0.906
545.55948	0.906
2335.7215	0.906
10000.0	0.906

Full results for all sample counts are provided in the appendix.

Problem 4

For the spam/ham data sets, best value of C was found to be 100, giving an accuracy of 80.75%. This value was found using a K-Fold Cross-Validation scheme where k=5. Below are all accuracies for a range of C values when the SVM was trained on 2,000 samples.

2,000 samples

\mathbf{C}	Accuracy
1.0000 E-08	0.710058
3.3598E- 08	0.710058
1.1288E-07	0.710058
3.7927E-07	0.710058
1.2743E-06	0.710058
4.2813E-06	0.710058
1.4384E-05	0.710058
4.8329E-05	0.710058
0.00016238	0.717215
0.00054556	0.734429
0.00183298	0.750097
0.00615848	0.768279
0.02069138	0.779304
0.06951928	0.793617
0.23357215	0.8
0.78475997	0.802515
2.63665090	0.804836
8.85866790	0.805029
29.7635144	0.807350
100.0	0.807544

Problem 5

My Kaggle Leaderboard name: \mathbf{mitch}

My Kaggle username: **mnegus**

Kaggle Scores:

MNIST: 0.93360 Spam: 0.84085

Appendix

Below are all accuracies tabulated for tested range of hyperparameter C for N training samples.

Table 1: MNIST

3.71 ~	47.00	47.00	4 07 05						0.001100	0.004000
$N \setminus C$	1E-08	4E-08	1.8E-07	7.8E-07	3.36E-06	1.44E-05	6.16E-05	0.000264	0.001129	0.004833
100	0.1119	0.2301	0.6438	0.7169	0.7133	0.7133	0.7133	0.7133	0.7133	0.7133
200	0.0963	0.425	0.7747	0.8005	0.7947	0.7947	0.7947	0.7947	0.7947	0.7947
500	0.3171	0.7527	0.865	0.8635	0.8552	0.8548	0.8548	0.8548	0.8548	0.8548
1000	0.5782	0.85	0.8867	0.8909	0.8815	0.881	0.881	0.881	0.881	0.881
2000	0.7981	0.8824	0.9043	0.9086	0.895	0.8926	0.8926	0.8926	0.8926	0.8926
5000	0.8721	0.9038	0.9183	0.9202	0.9135	0.9041	0.903	0.903	0.903	0.903
10000	0.8935	0.9147	0.9255	0.9298	0.9229	0.9118	0.9071	0.906	0.906	0.906
$N \backslash C$	0.020691	0.088587	0.379269	1.623777	6.951928	29.76351	127.4275	545.5595	2335.721	10000
<u>N\C</u> 100	0.020691	0.088587	0.379269 0.7133	1.623777 0.7133	6.951928 0.7133	29.76351 0.7133	127.4275 0.7133	545.5595 0.7133	2335.721 0.7133	10000 0.7133
										-
100	0.7133	0.7133	0.7133	0.7133	0.7133	0.7133	0.7133	0.7133	0.7133	0.7133
100 200	0.7133 0.7947									
100 200 500	0.7133 0.7947 0.8548									
100 200 500 1000	0.7133 0.7947 0.8548 0.881									
100 200 500 1000 2000	0.7133 0.7947 0.8548 0.881 0.8926									

Table 2: **Spam**

				1.	able 2. Spe	am				
$N \backslash \mathbf{C}$	1E-08	3E-08	1.1E-07	3.8E-07	1.27E-06	4.28E-06	1.44E-05	4.83E-05	0.000162	0.000546
100	0.710058	0.710058	0.710058	0.710058	0.710058	0.710058	0.710058	0.709865	0.710445	0.710638
200	0.710058	0.710058	0.710058	0.710058	0.710058	0.710058	0.710058	0.710058	0.710251	0.711025
500	0.710058	0.710058	0.710058	0.710058	0.710058	0.710058	0.710058	0.710058	0.710058	0.713926
1000	0.710058	0.710058	0.710058	0.710058	0.710058	0.710058	0.710058	0.710058	0.711412	0.725725
2000	0.710058	0.710058	0.710058	0.710058	0.710058	0.710058	0.710058	0.710058	0.717215	0.734429
4138	0.710058	0.710058	0.710058	0.710058	0.710058	0.710058	0.710058	0.712186	0.725338	0.743327
$N \setminus C$	0.001833	0.006158	0.020691	0.069519	0.233572	0.78476	2.636651	8.858668	29.76351	100
100	0.711605	0.716828	0.728433	0.74236	0.754932	0.770406	0.777756	0.786074	0.775629	0.781044
200	0.716441	0.730174	0.745261	0.758801	0.767892	0.782592	0.789555	0.798066	0.792456	0.786847
500	0.731141	0.745261	0.763636	0.77176	0.783172	0.791876	0.793424	0.793037	0.792456	0.792456
1000	0.741199	0.761896	0.7706	0.784139	0.790135	0.792843	0.797099	0.798646	0.79942	0.798453
2000	0.750097	0.768279	0.779304	0.793617	0.8	0.802515	0.804836	0.805029	0.80735	0.807544
4138	0.763056	0.774855	0.789362	0.794971	0.79942	0.801354	0.802128	0.802901	0.802708	0.802515
	1									

Table 3: ${\bf CIFAR-10}$

1	I			Tabl	e 3: CIFA	R-10				
$N \backslash \mathbf{C}$	1E-08	4E-08	1.8E-07	7.8E-07	3.36E-06	1.44E-05	6.16E-05	0.000264	0.001129	0.004833
100	0.111	0.1658	0.1834	0.1838	0.1826	0.1826	0.1826	0.1826	0.1826	0.1826
200	0.1026	0.2272	0.2622	0.2466	0.2466	0.2466	0.2466	0.2466	0.2466	0.2466
500	0.2202	0.295	0.3008	0.2842	0.2708	0.2714	0.2714	0.2714	0.2714	0.2714
1000	0.2632	0.3164	0.3306	0.3148	0.2934	0.2934	0.2934	0.2934	0.2934	0.2934
2000	0.3	0.3476	0.345	0.321	0.3016	0.291	0.2906	0.2906	0.2906	0.2906
5000	0.353	0.3736	0.3752	0.3518	0.3216	0.3066	0.2992	0.2998	0.2998	0.2998
$N \setminus C$	1									
1 V \C	0.020691	0.088587	0.379269	1.623777	6.951928	29.76351	127.4275	545.5595	2335.721	10000
100	0.020691	$\frac{0.088587}{0.1826}$	0.379269 0.1826	$\frac{1.623777}{0.1826}$	6.951928 0.1826	29.76351 0.1826	$\frac{127.4275}{0.1826}$	545.5595 0.1826	2335.721 0.1826	0.1826
100	0.1826	0.1826	0.1826	0.1826	0.1826	0.1826	0.1826	0.1826	0.1826	0.1826
100 200	0.1826 0.2466									
100 200 500	0.1826 0.2466 0.2714									
100 200 500 1000	0.1826 0.2466 0.2714 0.2934									

Included on the following pages is the code used for this project: namely the 3 Jupyter notebooks and 2 python modules:

CS289A_HW01_MNIST

January 30, 2017

```
In [16]: %load_ext autoreload
The autoreload extension is already loaded. To reload it, use:
  %reload ext autoreload
In [17]: %autoreload 2
In [18]: import numpy as np
         import HW01_utils as utils
         import trainfunctions as tf
In [46]: _LOCAL_PATH = r"C:\Users\Mitch\Documents\Cal\2 - 2017 Spring\COMPSCI 289A
         _DATA_PATH = "Data\hw01_data"
         _DATA_DIR = _LOCAL_PATH + "\\" + _DATA_PATH
         trainpath = r"mnist\train.mat"
In [20]: valsetsize = 10000
         samples = np.array([100, 200, 500, 1000, 2000, 5000, 10000])
         hyperparams = np.logspace(-8, 4, num=20)
In [21]: # Load MNIST training data
         mnist = utils.loaddata(trainpath,_DATA_DIR,'trainX')
         # Shuffle data before splitting
         np.random.shuffle(mnist)
In [22]: trainset, valset = utils.partition(valsetsize, mnist)
         trainsetarrays,trainsetlabels = utils.separatelabels(trainset)
         valsetarrays, valsetlabels = utils.separatelabels(valset)
In [23]: Accs = np.empty((len(samples),len(hyperparams)))
         i = 0 # sample index counter
         for nsamples in samples:
             print(nsamples, 'samples')
             j = 0 # hyperparameter index counter
             for hp in hyperparams:
                 acc = tf.TrainAndScoreNsamples(trainsetarrays[:nsamples],trainset]
```

```
print('\tC =',hp,'\tAccuracy:',acc)
                 Accs[i,j] = acc
                 i+=1
             i+=1
         print (Accs)
100 samples
        C = 1e-08
                          Accuracy: 0.1119
        C = 4.28133239872e-08
                                       Accuracy: 0.2301
        C = 1.83298071083e-07
                                       Accuracy: 0.6438
        C = 7.84759970351e-07
                                       Accuracy: 0.7169
        C = 3.35981828628e-06
                                      Accuracy: 0.7133
        C = 1.43844988829e-05
                                      Accuracy: 0.7133
        C = 6.15848211066e-05
                                      Accuracy: 0.7133
        C = 0.000263665089873
                                      Accuracy: 0.7133
        C = 0.00112883789168
                                     Accuracy: 0.7133
        C = 0.00483293023857
                                     Accuracy: 0.7133
        C = 0.0206913808111
                                    Accuracy: 0.7133
                                   Accuracy: 0.7133
        C = 0.088586679041
        C = 0.379269019073
                                   Accuracy: 0.7133
        C = 1.62377673919
                                   Accuracy: 0.7133
        C = 6.95192796178
                                  Accuracy: 0.7133
        C = 29.7635144163
                                  Accuracy: 0.7133
        C = 127.42749857
                                 Accuracy: 0.7133
        C = 545.559478117
                                  Accuracy: 0.7133
        C = 2335.72146909
                                   Accuracy: 0.7133
        C = 10000.0
                            Accuracy: 0.7133
200 samples
        C = 1e-08
                          Accuracy: 0.0963
        C = 4.28133239872e-08
                                       Accuracy: 0.425
        C = 1.83298071083e-07
                                       Accuracy: 0.7747
        C = 7.84759970351e-07
                                       Accuracy: 0.8005
        C = 3.35981828628e-06
                                       Accuracy: 0.7947
        C = 1.43844988829e-05
                                      Accuracy: 0.7947
        C = 6.15848211066e-05
                                      Accuracy: 0.7947
        C = 0.000263665089873
                                      Accuracy: 0.7947
        C = 0.00112883789168
                                     Accuracy: 0.7947
        C = 0.00483293023857
                                     Accuracy: 0.7947
        C = 0.0206913808111
                                    Accuracy: 0.7947
        C = 0.088586679041
                                    Accuracy: 0.7947
        C = 0.379269019073
                                   Accuracy: 0.7947
        C = 1.62377673919
                                   Accuracy: 0.7947
        C = 6.95192796178
                                  Accuracy: 0.7947
        C = 29.7635144163
                                  Accuracy: 0.7947
        C = 127.42749857
                                 Accuracy: 0.7947
        C = 545.559478117
                                  Accuracy: 0.7947
        C = 2335.72146909
                                   Accuracy: 0.7947
        C = 10000.0
                           Accuracy: 0.7947
```

```
500 samples
        C = 1e-08 Accuracy: 0.3171
        C = 4.28133239872e-08
                                      Accuracy: 0.7527
        C = 1.83298071083e-07
                                      Accuracy: 0.865
        C = 7.84759970351e-07
                                      Accuracy: 0.8635
        C = 3.35981828628e-06
                                      Accuracy: 0.8552
        C = 1.43844988829e-05
                                      Accuracy: 0.8548
        C = 6.15848211066e-05
                                      Accuracy: 0.8548
        C = 0.000263665089873
                                     Accuracy: 0.8548
        C = 0.00112883789168
                                     Accuracy: 0.8548
        C = 0.00483293023857
                                     Accuracy: 0.8548
        C = 0.0206913808111
                                    Accuracy: 0.8548
                                   Accuracy: 0.8548
        C = 0.088586679041
        C = 0.379269019073
                                   Accuracy: 0.8548
        C = 1.62377673919
                                  Accuracy: 0.8548
        C = 6.95192796178
                                  Accuracy: 0.8548
        C = 29.7635144163
                                  Accuracy: 0.8548
        C = 127.42749857
                                 Accuracy: 0.8548
        C = 545.559478117
                                  Accuracy: 0.8548
        C = 2335.72146909
                                  Accuracy: 0.8548
        C = 10000.0
                            Accuracy: 0.8548
1000 samples
        C = 1e-08
                          Accuracy: 0.5782
        C = 4.28133239872e-08
                                      Accuracy: 0.85
        C = 1.83298071083e-07
                                      Accuracy: 0.8867
        C = 7.84759970351e-07
                                      Accuracy: 0.8909
        C = 3.35981828628e-06
                                      Accuracy: 0.8815
        C = 1.43844988829e-05
                                      Accuracy: 0.881
        C = 6.15848211066e-05
                                      Accuracy: 0.881
        C = 0.000263665089873
                                     Accuracy: 0.881
        C = 0.00112883789168
                                     Accuracy: 0.881
        C = 0.00483293023857
                                    Accuracy: 0.881
        C = 0.0206913808111
                                   Accuracy: 0.881
        C = 0.088586679041
                                   Accuracy: 0.881
        C = 0.379269019073
                                   Accuracy: 0.881
                                  Accuracy: 0.881
        C = 1.62377673919
        C = 6.95192796178
                                  Accuracy: 0.881
        C = 29.7635144163
                                  Accuracy: 0.881
        C = 127.42749857
                                 Accuracy: 0.881
        C = 545.559478117
                                  Accuracy: 0.881
        C = 2335.72146909
                                  Accuracy: 0.881
        C = 10000.0
                            Accuracy: 0.881
2000 samples
       C = 1e-08
                          Accuracy: 0.7981
        C = 4.28133239872e-08
                                      Accuracy: 0.8824
        C = 1.83298071083e-07
                                      Accuracy: 0.9043
        C = 7.84759970351e-07
                                      Accuracy: 0.9086
        C = 3.35981828628e-06
                                      Accuracy: 0.895
```

```
C = 1.43844988829e-05
                                      Accuracy: 0.8926
        C = 6.15848211066e-05
                                      Accuracy: 0.8926
        C = 0.000263665089873
                                      Accuracy: 0.8926
        C = 0.00112883789168
                                     Accuracy: 0.8926
        C = 0.00483293023857
                                     Accuracy: 0.8926
        C = 0.0206913808111
                                    Accuracy: 0.8926
        C = 0.088586679041
                                   Accuracy: 0.8926
        C = 0.379269019073
                                   Accuracy: 0.8926
        C = 1.62377673919
                                  Accuracy: 0.8926
        C = 6.95192796178
                                  Accuracy: 0.8926
        C = 29.7635144163
                                  Accuracy: 0.8926
        C = 127.42749857
                                 Accuracy: 0.8926
                                  Accuracy: 0.8926
        C = 545.559478117
        C = 2335.72146909
                                  Accuracy: 0.8926
        C = 10000.0
                            Accuracy: 0.8926
5000 samples
        C = 1e-08
                          Accuracy: 0.8721
        C = 4.28133239872e-08
                                       Accuracy: 0.9038
        C = 1.83298071083e-07
                                       Accuracy: 0.9183
        C = 7.84759970351e-07
                                       Accuracy: 0.9202
        C = 3.35981828628e-06
                                       Accuracy: 0.9135
        C = 1.43844988829e-05
                                      Accuracy: 0.9041
        C = 6.15848211066e-05
                                      Accuracy: 0.903
        C = 0.000263665089873
                                      Accuracy: 0.903
        C = 0.00112883789168
                                     Accuracy: 0.903
        C = 0.00483293023857
                                     Accuracy: 0.903
        C = 0.0206913808111
                                    Accuracy: 0.903
        C = 0.088586679041
                                   Accuracy: 0.903
        C = 0.379269019073
                                   Accuracy: 0.903
        C = 1.62377673919
                                  Accuracy: 0.903
        C = 6.95192796178
                                  Accuracy: 0.903
        C = 29.7635144163
                                  Accuracy: 0.903
        C = 127.42749857
                                 Accuracy: 0.903
        C = 545.559478117
                                  Accuracy: 0.903
        C = 2335.72146909
                                  Accuracy: 0.903
        C = 10000.0
                            Accuracy: 0.903
10000 samples
        C = 1e-08
                          Accuracy: 0.8935
        C = 4.28133239872e-08
                                       Accuracy: 0.9147
        C = 1.83298071083e-07
                                       Accuracy: 0.9255
        C = 7.84759970351e-07
                                       Accuracy: 0.9298
        C = 3.35981828628e-06
                                       Accuracy: 0.9229
        C = 1.43844988829e-05
                                      Accuracy: 0.9118
                                      Accuracy: 0.9071
        C = 6.15848211066e-05
        C = 0.000263665089873
                                      Accuracy: 0.906
        C = 0.00112883789168
                                     Accuracy: 0.906
        C = 0.00483293023857
                                     Accuracy: 0.906
        C = 0.0206913808111
                                    Accuracy: 0.906
```

```
Accuracy: 0.906
       C = 1.62377673919
       C = 6.95192796178
                                Accuracy: 0.906
       C = 29.7635144163
                                Accuracy: 0.906
       C = 127.42749857
                                Accuracy: 0.906
       C = 545.559478117
                                 Accuracy: 0.906
       C = 2335.72146909
                                 Accuracy: 0.906
       C = 10000.0
                          Accuracy: 0.906
[[ \ 0.1119 \ \ 0.2301 \ \ 0.6438 \ \ 0.7169 \ \ 0.7133 \ \ 0.7133 \ \ 0.7133 \ \ 0.7133 \ \ 0.7133
   0.7133 \quad 0.7133
   0.7133 0.7133]
 [ \ 0.0963 \ \ 0.425 \ \ \ 0.7747 \ \ 0.8005 \ \ 0.7947 \ \ 0.7947 \ \ 0.7947 \ \ 0.7947 \ \ 0.7947
   0.7947 \quad 0.7947 \quad 0.7947 \quad 0.7947 \quad 0.7947 \quad 0.7947 \quad 0.7947
                                                          0.7947 0.7947
   0.7947 0.7947]
 0.8548 \quad 0.8548
   0.8548 0.8548]
 0.881
                                                                 0.881
   0.881 0.881 0.881 0.881 0.881
                                                  0.881
                                                          0.881 0.881
   0.881 0.881 ]
 [ 0.7981  0.8824  0.9043  0.9086  0.895
                                          0.8926 0.8926 0.8926 0.8926
  0.8926 0.8926 0.8926 0.8926 0.8926 0.8926 0.8926 0.8926 0.8926
  0.8926 0.8926]
 [ 0.8721  0.9038  0.9183  0.9202  0.9135  0.9041  0.903
                                                          0.903
                                                                  0.903
                                                          0.903
  0.903 0.903 0.903 0.903 0.903
                                                  0.903
                                                                  0.903
   0.903 0.903 ]
 [ 0.8935 \quad 0.9147 \quad 0.9255 \quad 0.9298 \quad 0.9229 \quad 0.9118 \quad 0.9071 \quad 0.906 
                                                                  0.906
   0.906 0.906
                 0.906 0.906 0.906 0.906
                                                  0.906
                                                          0.906
                                                                  0.906
   0.906 0.906 ]]
In [28]: # Find the index of the maximum value in the accuracies table
        maxindex = np.array([int(len(Accs)*np.argmax(Accs)/(len(Accs.flatten())))),
        print('The index of the maximum accuracy ('+str(Accs[maxindex[0], maxindex
        besthp = hyperparams[maxindex[1]]
        bestns = samples[maxindex[0]]
         # Determine which sample count-hyperparameter combination this corresponds
        print('This corresponds to a hyperparameter of C = '+ str(besthp) + ' when
The index of the maximum accuracy (0.9298) is: [6 3]
This corresponds to a hyperparameter of C = 7.84759970351e-07 when training on 1000
In [29]: besthp = 7.84759970351e-07
        bestns = 10000
In [30]: # Load test data
        testpath = r"mnist\test.mat"
```

Accuracy: 0.906

Accuracy: 0.906

C = 0.088586679041

C = 0.379269019073

```
mnist_test = utils.loaddata(testpath,_DATA_DIR,'testX')
         predictions = tf.TrainAndPredictNsamples(trainsetarrays[:bestns],trainset]
In [27]: IDs = np.arange(len(predictions))
         numpycsv = np.c_[IDs,predictions]
         np.savetxt(_LOCAL_PATH+r'\MNIST_testpredictions.csv',numpycsv,fmt='%i',del
In [31]: from matplotlib import pyplot as plt
In [32]: hpC1 = 13
In [33]: errors = np.ones_like(Accs[:,hpC1])-Accs[:,hpC1]
In [42]: fig = plt.figure()
         plt.plot(samples, errors)
         plt.title('Error on Datasets of Varying Size')
         plt.xlabel('# Training Samples')
         plt.ylabel('Error')
         plt.text(8000, 0.275, 'C = '+str(round(hyperparams[hpC1], 4)))
Out[42]: <matplotlib.text.Text at 0x23b99f887f0>
In [43]: plt.show()
```


In [47]: fig.savefig(_LOCAL_PATH+r'\Figures\MNIST_SampleAcc.jpg')

CS289A_HW01_spam

January 30, 2017

```
In [1]: %load_ext autoreload
In [2]: %autoreload 2
In [3]: from scipy import io as spio
        import numpy as np
        import HW01_utils as utils
        import trainfunctions as tf
In [10]: def loaddata_spam(shortpath,_DATA_DIR):
         # Load data
             data_dict = spio.loadmat(_DATA_DIR+"\\"+shortpath)
             data = np.array(data_dict['training_data'])
             labels = np.array(data_dict['training_labels'])
             return data, labels
In [5]: def kfoldPartition(k, data):
            # Partition the shuffled data into k sets
            subsetlen = int(len(data)/k) #NOTE: This will neglect a few data po
            subsets = np.empty((k, subsetlen, len(data[0])))
            for i in range(k):
                subsets[i] = data[i*subsetlen:(i+1)*subsetlen]
            return subsets
In [76]: _LOCAL_PATH = r"C:\Users\Mitch\Documents\Cal\2 - 2017 Spring\COMPSCI 289A
         _DATA_PATH = "Data\hw01_data"
         _DATA_DIR = _LOCAL_PATH + "\\" + _DATA_PATH
         datafilepath = r"spam\spam_data.mat"
In [11]: # Load spam training data (w/ features extracted)
         spamdata,labels = loaddata_spam(datafilepath,_DATA_DIR)
         # Append labels to the corresponding data (to prevent loss of association
         spam = np.c_[spamdata,labels[0]]
         #spam_testdata = np.array(spam_dict['test_data'])
         # Shuffle data before splitting
         np.random.shuffle(spam)
```

```
In [12]: valsetpercent = 20
         valsetsize = int(len(spam)*valsetpercent/100)
In [13]: trainset, valset = utils.partition(valsetsize, spam)
         trainsetarrays,trainsetlabels = utils.separatelabels(trainset)
         valsetarrays, valsetlabels = utils.separatelabels(valset)
In [14]: samples = [100, 200, 500, 1000, 2000, len(trainset)]
         hyperparams = np.logspace(-8,2,num=20) #100 was chosen as highest C value
In [15]: def kfoldCrossVal(k, data, nsamples, hyperparam):
         # Implementation of k-fold Cross-Validation
             spamsets = kfoldPartition(k,data)
             scores = np.zeros(k)
             for i in range(k):
                 trainset = spamsets[np.arange(len(spamsets))!=i]
                 trainset = np.concatenate(trainset[:])
                 valset = spamsets[i]
                 scores[i] = tf.TrainAndScoreNsamples(trainset[:nsamples,:-1],train
             average = np.sum(scores)/len(scores)
             return average
In [84]: AccsNoK = np.empty((len(samples)))
         i = 0 # sample index counter
         for nsamples in samples:
             print(nsamples, 'samples')
             acc = tf.TrainAndScoreNsamples(trainsetarrays[:nsamples],trainsetlabel
             print('\tC =',hp,'\tAccuracy:',acc)
             AccsNoK[i] = acc
             i+=1
         print (AccsNoK)
100 samples
       C = 1
                      Accuracy: 0.772727272727
200 samples
        C = 1
                      Accuracy: 0.788201160542
500 samples
       C = 1
                      Accuracy: 0.785299806576
1000 samples
       C = 1
                      Accuracy: 0.784332688588
2000 samples
       C = 1
                      Accuracy: 0.802707930368
4138 samples
                      Accuracy: 0.797872340426
[ 0.77272727  0.78820116  0.78529981  0.78433269  0.80270793  0.79787234]
In [93]: Accs = np.empty((len(samples),len(hyperparams)))
         i = 0 # sample index counter
```

```
for nsamples in samples:
             print(nsamples, 'samples')
             j = 0 # hyperparameter index counter
             for hp in hyperparams:
                 acc = kfoldCrossVal(5, spam, nsamples, hp)
                 print('\tC =', hp, '\tAccuracy:', acc)
                 Accs[i,j] = acc
                 j+=1
             i+=1
         print (Accs)
100 samples
        C = 1e-08
                          Accuracy: 0.710058027079
        C = 3.35981828628e-08
                                       Accuracy: 0.710058027079
        C = 1.12883789168e-07
                                       Accuracy: 0.710058027079
        C = 3.79269019073e-07
                                       Accuracy: 0.710058027079
        C = 1.2742749857e-06
                                      Accuracy: 0.710058027079
        C = 4.28133239872e-06
                                       Accuracy: 0.710058027079
        C = 1.43844988829e-05
                                      Accuracy: 0.710058027079
        C = 4.83293023857e-05
                                       Accuracy: 0.709864603482
        C = 0.000162377673919
                                      Accuracy: 0.710444874275
        C = 0.000545559478117
                                      Accuracy: 0.710638297872
        C = 0.00183298071083
                                      Accuracy: 0.711605415861
        C = 0.00615848211066
                                      Accuracy: 0.716827852998
        C = 0.0206913808111
                                     Accuracy: 0.728433268859
        C = 0.0695192796178
                                    Accuracy: 0.742359767892
        C = 0.233572146909
                                    Accuracy: 0.754932301741
        C = 0.784759970351
                                   Accuracy: 0.770406189555
        C = 2.63665089873
                                  Accuracy: 0.777756286267
        C = 8.8586679041
                                  Accuracy: 0.786073500967
        C = 29.7635144163
                                   Accuracy: 0.775628626692
        C = 100.0
                          Accuracy: 0.781044487427
200 samples
        C = 1e-08
                          Accuracy: 0.710058027079
        C = 3.35981828628e-08
                                       Accuracy: 0.710058027079
        C = 1.12883789168e-07
                                       Accuracy: 0.710058027079
        C = 3.79269019073e-07
                                       Accuracy: 0.710058027079
        C = 1.2742749857e-06
                                      Accuracy: 0.710058027079
        C = 4.28133239872e-06
                                       Accuracy: 0.710058027079
        C = 1.43844988829e-05
                                       Accuracy: 0.710058027079
        C = 4.83293023857e-05
                                       Accuracy: 0.710058027079
        C = 0.000162377673919
                                      Accuracy: 0.710251450677
        C = 0.000545559478117
                                      Accuracy: 0.711025145068
        C = 0.00183298071083
                                      Accuracy: 0.716441005803
        C = 0.00615848211066
                                      Accuracy: 0.730174081238
        C = 0.0206913808111
                                     Accuracy: 0.745261121857
        C = 0.0695192796178
                                     Accuracy: 0.758800773694
```

```
C = 0.233572146909
                                   Accuracy: 0.767891682785
                                   Accuracy: 0.782591876209
        C = 0.784759970351
                                  Accuracy: 0.789555125725
        C = 2.63665089873
        C = 8.8586679041
                                 Accuracy: 0.798065764023
        C = 29.7635144163
                                  Accuracy: 0.792456479691
        C = 100.0
                          Accuracy: 0.786847195358
500 samples
        C = 1e-08
                          Accuracy: 0.710058027079
        C = 3.35981828628e-08
                                      Accuracy: 0.710058027079
        C = 1.12883789168e-07
                                      Accuracy: 0.710058027079
        C = 3.79269019073e-07
                                      Accuracy: 0.710058027079
        C = 1.2742749857e-06
                                     Accuracy: 0.710058027079
                                      Accuracy: 0.710058027079
        C = 4.28133239872e-06
        C = 1.43844988829e-05
                                      Accuracy: 0.710058027079
        C = 4.83293023857e-05
                                      Accuracy: 0.710058027079
        C = 0.000162377673919
                                      Accuracy: 0.710058027079
        C = 0.000545559478117
                                      Accuracy: 0.713926499033
        C = 0.00183298071083
                                     Accuracy: 0.731141199226
        C = 0.00615848211066
                                     Accuracy: 0.745261121857
        C = 0.0206913808111
                                    Accuracy: 0.763636363636
        C = 0.0695192796178
                                    Accuracy: 0.771760154739
        C = 0.233572146909
                                   Accuracy: 0.783172147002
        C = 0.784759970351
                                   Accuracy: 0.791876208897
        C = 2.63665089873
                                  Accuracy: 0.793423597679
        C = 8.8586679041
                                 Accuracy: 0.793036750484
                                  Accuracy: 0.792456479691
        C = 29.7635144163
        C = 100.0
                          Accuracy: 0.792456479691
1000 samples
                          Accuracy: 0.710058027079
        C = 1e-08
        C = 3.35981828628e-08
                                      Accuracy: 0.710058027079
        C = 1.12883789168e-07
                                      Accuracy: 0.710058027079
        C = 3.79269019073e-07
                                      Accuracy: 0.710058027079
        C = 1.2742749857e-06
                                     Accuracy: 0.710058027079
        C = 4.28133239872e-06
                                      Accuracy: 0.710058027079
        C = 1.43844988829e-05
                                      Accuracy: 0.710058027079
                                      Accuracy: 0.710058027079
        C = 4.83293023857e-05
                                      Accuracy: 0.711411992263
        C = 0.000162377673919
        C = 0.000545559478117
                                      Accuracy: 0.725725338491
        C = 0.00183298071083
                                     Accuracy: 0.741199226306
        C = 0.00615848211066
                                     Accuracy: 0.761895551257
        C = 0.0206913808111
                                    Accuracy: 0.770599613153
        C = 0.0695192796178
                                    Accuracy: 0.78413926499
        C = 0.233572146909
                                   Accuracy: 0.790135396518
                                   Accuracy: 0.792843326886
        C = 0.784759970351
                                  Accuracy: 0.797098646035
        C = 2.63665089873
        C = 8.8586679041
                                 Accuracy: 0.798646034816
        C = 29.7635144163
                                  Accuracy: 0.799419729207
        C = 100.0
                          Accuracy: 0.798452611219
```

```
2000 samples
                        Accuracy: 0.710058027079
       C = 1e-08
       C = 3.35981828628e-08
                                     Accuracy: 0.710058027079
       C = 1.12883789168e-07
                                     Accuracy: 0.710058027079
                                     Accuracy: 0.710058027079
       C = 3.79269019073e-07
       C = 1.2742749857e-06
                                    Accuracy: 0.710058027079
       C = 4.28133239872e-06
                                     Accuracy: 0.710058027079
       C = 1.43844988829e-05
                                     Accuracy: 0.710058027079
       C = 4.83293023857e-05
                                     Accuracy: 0.710058027079
       C = 0.000162377673919
                                     Accuracy: 0.717214700193
       C = 0.000545559478117
                                     Accuracy: 0.734429400387
       C = 0.00183298071083
                                    Accuracy: 0.750096711799
       C = 0.00615848211066
                                    Accuracy: 0.768278529981
                                   Accuracy: 0.779303675048
       C = 0.0206913808111
       C = 0.0695192796178
                                   Accuracy: 0.793617021277
       C = 0.233572146909
                                  Accuracy: 0.8
       C = 0.784759970351
                                  Accuracy: 0.80251450677
       C = 2.63665089873
                                 Accuracy: 0.804835589942
       C = 8.8586679041
                                Accuracy: 0.80502901354
       C = 29.7635144163
                                 Accuracy: 0.807350096712
       C = 100.0
                         Accuracy: 0.807543520309
4138 samples
       C = 1e-08
                         Accuracy: 0.710058027079
                                     Accuracy: 0.710058027079
       C = 3.35981828628e-08
       C = 1.12883789168e-07
                                     Accuracy: 0.710058027079
       C = 3.79269019073e-07
                                     Accuracy: 0.710058027079
       C = 1.2742749857e-06
                                    Accuracy: 0.710058027079
       C = 4.28133239872e-06
                                     Accuracy: 0.710058027079
       C = 1.43844988829e-05
                                     Accuracy: 0.710058027079
       C = 4.83293023857e-05
                                     Accuracy: 0.712185686654
       C = 0.000162377673919
                                     Accuracy: 0.725338491296
       C = 0.000545559478117
                                    Accuracy: 0.74332688588
       C = 0.00183298071083
                                    Accuracy: 0.763056092843
       C = 0.00615848211066
                                    Accuracy: 0.774854932302
       C = 0.0206913808111
                                   Accuracy: 0.789361702128
       C = 0.0695192796178
                                   Accuracy: 0.79497098646
       C = 0.233572146909
                                  Accuracy: 0.799419729207
       C = 0.784759970351
                                  Accuracy: 0.801353965184
       C = 2.63665089873
                                Accuracy: 0.802127659574
       C = 8.8586679041
                                Accuracy: 0.802901353965
       C = 29.7635144163
                                 Accuracy: 0.802707930368
                         Accuracy: 0.80251450677
       C = 100.0
[[ 0.71005803  0.71005803
                         0.71005803
                                      0.71005803
                                                  0.71005803
                                                              0.71005803
   0.71005803 0.7098646
                          0.71044487
                                      0.7106383
                                                  0.71160542
                                                              0.71682785
   0.72843327 0.74235977
                          0.7549323
                                      0.77040619
                                                 0.77775629
                                                              0.7860735
   0.77562863 0.781044491
 0.71005803
   0.71005803 0.71005803 0.71025145 0.71102515 0.71644101
                                                              0.73017408
```

```
0.74526112 0.75880077 0.76789168 0.78259188 0.78955513 0.79806576
   0.79245648 0.7868472 ]
 [ 0.71005803 \quad 0.71005803 \quad 0.71005803 \quad 0.71005803 \quad 0.71005803 \quad 0.71005803
   0.71005803 0.71005803 0.71005803 0.7139265
                                                   0.7311412
                                                               0.74526112
   0.76363636 0.77176015 0.78317215
                                       0.79187621
                                                   0.7934236
                                                               0.79303675
   0.79245648 0.79245648]
 [0.71005803 \quad 0.71005803 \quad 0.71005803 \quad 0.71005803 \quad 0.71005803 \quad 0.71005803
   0.71005803 \quad 0.71005803 \quad 0.71141199 \quad 0.72572534 \quad 0.74119923 \quad 0.76189555
   0.77059961 0.78413926 0.7901354
                                       0.79284333 0.79709865 0.79864603
   0.79941973 0.79845261]
 [ \ 0.71005803 \ \ 0.71005803 \ \ 0.71005803 \ \ 0.71005803 \ \ 0.71005803 \ \ 0.71005803
   0.71005803 0.71005803 0.7172147
                                       0.7344294
                                                   0.75009671 0.76827853
   0.77930368 0.79361702 0.8
                                       0.80251451 0.80483559 0.80502901
   0.8073501 0.80754352]
 0.71005803 \quad 0.71218569 \quad 0.72533849 \quad 0.74332689 \quad 0.76305609 \quad 0.77485493
   0.7893617 0.79497099 0.79941973 0.80135397 0.80212766 0.80290135
   0.80270793 0.80251451]]
In [17]: # Find the index of the maximum value in the accuracies table
         maxindex = np.array([int(len(Accs)*np.argmax(Accs)/(len(Accs.flatten())))),
         print('The index of the maximum accuracy ('+str(Accs[maxindex[0], maxindex
        besthp = hyperparams[maxindex[1]]
         bestns = samples[maxindex[0]]
         # Determine which sample count-hyperparameter combination this corresponds
         print('This corresponds to a hyperparameter of C = '+ str(besthp) + ' when
The index of the maximum accuracy (0.807543520309) is: [ 4 19]
This corresponds to a hyperparameter of C = 100.0 when training on 2000 samples.
In [86]: # Load test data
         datafilepath = r"spam\spam_data.mat"
         spam_dict = spio.loadmat(_DATA_DIR+"\\"+datafilepath)
         spam_test = np.array(spam_dict['test_data'])
         predictions = tf.TrainAndPredictNsamples(spamdata, labels[0], spam_test, best
In [87]: IDs = np.arange(len(predictions))
         numpycsv = np.c_[IDs,predictions]
         np.savetxt(_LOCAL_PATH+r'\spam_testpredictions.csv',numpycsv,fmt='%i',del:
In [80]: from matplotlib import pyplot as plt
In [50]: hpC1 = 15
In [86]: errors = np.ones_like(AccsNoK)-AccsNoK
```



```
In [89]: fig.savefig(_LOCAL_PATH+r"\Figures\spam_SampleAcc.jpg")
In [91]: np.savetxt(_LOCAL_PATH+r'\spam_Accuracies.csv', Accs, fmt='%f', delimiter=',
         np.savetxt(_LOCAL_PATH+r'\spam_hyperparams.csv',hyperparams,fmt='%.8f',del
In [94]: print(Accs)
[[ 0.71005803  0.71005803
                           0.71005803
                                       0.71005803
                                                    0.71005803 0.71005803
   0.71005803 0.7098646
                           0.71044487
                                       0.7106383
                                                    0.71160542
                                                                0.71682785
                                                    0.77775629
   0.72843327 0.74235977
                           0.7549323
                                       0.77040619
                                                                0.7860735
   0.77562863 0.781044491
 [ 0.71005803  0.71005803  0.71005803
                                       0.71005803
                                                    0.71005803
                                                                0.71005803
   0.71005803 0.71005803
                           0.71025145
                                       0.71102515
                                                    0.71644101
                                                                0.73017408
   0.74526112 0.75880077
                           0.76789168
                                       0.78259188
                                                    0.78955513
                                                                0.79806576
   0.79245648 0.7868472 ]
 [ 0.71005803  0.71005803  0.71005803
                                       0.71005803
                                                    0.71005803
                                                                0.71005803
   0.71005803 0.71005803
                           0.71005803
                                       0.7139265
                                                    0.7311412
                                                                0.74526112
   0.76363636 0.77176015
                           0.78317215
                                       0.79187621
                                                    0.7934236
                                                                0.79303675
   0.79245648 0.79245648]
 [ 0.71005803  0.71005803
                          0.71005803
                                       0.71005803
                                                    0.71005803
                                                                0.71005803
   0.71005803 0.71005803
                           0.71141199
                                       0.72572534
                                                    0.74119923
                                                                0.76189555
   0.77059961 0.78413926
                           0.7901354
                                       0.79284333
                                                    0.79709865
                                                                0.79864603
   0.79941973 0.79845261]
 [0.71005803 \quad 0.71005803 \quad 0.71005803 \quad 0.71005803 \quad 0.71005803 \quad 0.71005803
```

```
In [95]: # Export data to csv files for report
```

np.savetxt(_LOCAL_PATH+r'\spam_Accuracies.csv',Accs,fmt='%f',delimiter=',
np.savetxt(_LOCAL_PATH+r'\spam_hyperparams.csv',hyperparams,fmt='%.8f',delimiter=',

In []:

CS289A_HW01_CIFAR-10

January 30, 2017

```
In [1]: %load_ext autoreload
In [2]: %autoreload 2
In [12]: from sklearn import svm
         from scipy import io as spio
         import numpy as np
         import HW01_utils as utils
         import trainfunctions as tf
In [26]: _LOCAL_PATH = r"C:\Users\Mitch\Documents\Cal\2 - 2017 Spring\COMPSCI 289A
         _DATA_PATH = "Data\hw01_data"
         _DATA_DIR = _LOCAL_PATH + "\\" + _DATA_PATH
         trainpath = r"cifar\train.mat"
In [8]: valsetsize = 5000
        samples = np.array([100, 200, 500, 1000, 2000, 5000])
        hyperparams = np.logspace(-8, 4, num=20)
In [9]: # Load CIFAR-10 training data
        cifardata = spio.loadmat(_DATA_DIR+'\\'+trainpath)
        cifar = cifardata['trainX']
In [10]: # Shuffle data before splitting
         np.random.shuffle(cifar)
In [13]: trainset, valset = utils.partition(valsetsize, cifar)
         trainsetarrays,trainsetlabels = utils.separatelabels(trainset)
         valsetarrays, valsetlabels = utils.separatelabels(valset)
In [14]: Accs = np.empty((len(samples), len(hyperparams)))
         i = 0 # sample index counter
         for nsamples in samples:
             print(nsamples, 'samples')
             j = 0 # hyperparameter index counter
             for hp in hyperparams:
                 acc = tf.TrainAndScoreNsamples(trainsetarrays[:nsamples],trainset]
                 print('\tC =', hp, '\tAccuracy:', acc)
```

```
i+=1
             i+=1
         print (Accs)
100 samples
        C = 1e-08
                    Accuracy: 0.111
        C = 4.28133239872e-08
                                      Accuracy: 0.1658
        C = 1.83298071083e-07
                                       Accuracy: 0.1834
        C = 7.84759970351e-07
                                       Accuracy: 0.1838
        C = 3.35981828628e-06
                                       Accuracy: 0.1826
        C = 1.43844988829e-05
                                      Accuracy: 0.1826
        C = 6.15848211066e-05
                                      Accuracy: 0.1826
        C = 0.000263665089873
                                      Accuracy: 0.1826
        C = 0.00112883789168
                                     Accuracy: 0.1826
        C = 0.00483293023857
                                     Accuracy: 0.1826
        C = 0.0206913808111
                                    Accuracy: 0.1826
        C = 0.088586679041
                                   Accuracy: 0.1826
        C = 0.379269019073
                                   Accuracy: 0.1826
        C = 1.62377673919
                                  Accuracy: 0.1826
        C = 6.95192796178
                                  Accuracy: 0.1826
        C = 29.7635144163
                                  Accuracy: 0.1826
        C = 127.42749857
                                 Accuracy: 0.1826
        C = 545.559478117
                                  Accuracy: 0.1826
        C = 2335.72146909
                                  Accuracy: 0.1826
                            Accuracy: 0.1826
        C = 10000.0
200 samples
        C = 1e-08
                          Accuracy: 0.1026
        C = 4.28133239872e-08
                                      Accuracy: 0.2272
        C = 1.83298071083e-07
                                      Accuracy: 0.2622
        C = 7.84759970351e-07
                                       Accuracy: 0.2466
        C = 3.35981828628e-06
                                       Accuracy: 0.2466
        C = 1.43844988829e-05
                                      Accuracy: 0.2466
        C = 6.15848211066e-05
                                      Accuracy: 0.2466
        C = 0.000263665089873
                                      Accuracy: 0.2466
        C = 0.00112883789168
                                     Accuracy: 0.2466
        C = 0.00483293023857
                                     Accuracy: 0.2466
        C = 0.0206913808111
                                    Accuracy: 0.2466
        C = 0.088586679041
                                   Accuracy: 0.2466
        C = 0.379269019073
                                   Accuracy: 0.2466
        C = 1.62377673919
                                  Accuracy: 0.2466
        C = 6.95192796178
                                  Accuracy: 0.2466
        C = 29.7635144163
                                  Accuracy: 0.2466
        C = 127.42749857
                                 Accuracy: 0.2466
        C = 545.559478117
                                  Accuracy: 0.2466
        C = 2335.72146909
                                  Accuracy: 0.2466
        C = 10000.0
                            Accuracy: 0.2466
500 samples
```

Accs[i,j] = acc

```
C = 4.28133239872e-08
                                      Accuracy: 0.295
        C = 1.83298071083e-07
                                      Accuracy: 0.3008
        C = 7.84759970351e-07
                                      Accuracy: 0.2842
        C = 3.35981828628e-06
                                      Accuracy: 0.2708
        C = 1.43844988829e-05
                                      Accuracy: 0.2714
        C = 6.15848211066e-05
                                      Accuracy: 0.2714
        C = 0.000263665089873
                                      Accuracy: 0.2714
        C = 0.00112883789168
                                     Accuracy: 0.2714
        C = 0.00483293023857
                                     Accuracy: 0.2714
        C = 0.0206913808111
                                   Accuracy: 0.2714
        C = 0.088586679041
                                   Accuracy: 0.2714
                                   Accuracy: 0.2714
        C = 0.379269019073
                                  Accuracy: 0.2714
        C = 1.62377673919
        C = 6.95192796178
                                  Accuracy: 0.2714
        C = 29.7635144163
                                  Accuracy: 0.2714
        C = 127.42749857
                                 Accuracy: 0.2714
        C = 545.559478117
                                  Accuracy: 0.2714
        C = 2335.72146909
                                  Accuracy: 0.2714
        C = 10000.0
                            Accuracy: 0.2714
1000 samples
        C = 1e-08
                          Accuracy: 0.2632
        C = 4.28133239872e-08
                                      Accuracy: 0.3164
        C = 1.83298071083e-07
                                      Accuracy: 0.3306
        C = 7.84759970351e-07
                                      Accuracy: 0.3148
        C = 3.35981828628e-06
                                      Accuracy: 0.2934
        C = 1.43844988829e-05
                                      Accuracy: 0.2934
        C = 6.15848211066e-05
                                      Accuracy: 0.2934
        C = 0.000263665089873
                                      Accuracy: 0.2934
        C = 0.00112883789168
                                    Accuracy: 0.2934
        C = 0.00483293023857
                                     Accuracy: 0.2934
        C = 0.0206913808111
                                   Accuracy: 0.2934
        C = 0.088586679041
                                   Accuracy: 0.2934
        C = 0.379269019073
                                   Accuracy: 0.2934
        C = 1.62377673919
                                  Accuracy: 0.2934
        C = 6.95192796178
                                  Accuracy: 0.2934
        C = 29.7635144163
                                  Accuracy: 0.2934
        C = 127.42749857
                                 Accuracy: 0.2934
        C = 545.559478117
                                  Accuracy: 0.2934
        C = 2335.72146909
                                  Accuracy: 0.2934
        C = 10000.0
                            Accuracy: 0.2934
2000 samples
       C = 1e-08
                          Accuracy: 0.3
                                      Accuracy: 0.3476
        C = 4.28133239872e-08
        C = 1.83298071083e-07
                                      Accuracy: 0.345
        C = 7.84759970351e-07
                                      Accuracy: 0.321
        C = 3.35981828628e-06
                                      Accuracy: 0.3016
        C = 1.43844988829e-05
                                      Accuracy: 0.291
```

Accuracy: 0.2202

C = 1e-08

```
C = 6.15848211066e-05
                               Accuracy: 0.2906
      C = 0.000263665089873
                                Accuracy: 0.2906
      C = 0.00112883789168
                               Accuracy: 0.2906
      C = 0.00483293023857
                               Accuracy: 0.2906
      C = 0.0206913808111
                              Accuracy: 0.2906
      C = 0.088586679041
                              Accuracy: 0.2906
      C = 0.379269019073
                              Accuracy: 0.2906
      C = 1.62377673919
                             Accuracy: 0.2906
      C = 6.95192796178
                             Accuracy: 0.2906
      C = 29.7635144163
                             Accuracy: 0.2906
      C = 127.42749857
                            Accuracy: 0.2906
      C = 545.559478117
                             Accuracy: 0.2906
      C = 2335.72146909
                             Accuracy: 0.2906
      C = 10000.0
                        Accuracy: 0.2906
5000 samples
                      Accuracy: 0.353
      C = 1e-08
      C = 4.28133239872e-08
                                 Accuracy: 0.3736
      C = 1.83298071083e-07
                                 Accuracy: 0.3752
      C = 7.84759970351e-07
                                 Accuracy: 0.3518
      C = 3.35981828628e-06
                                 Accuracy: 0.3216
      C = 1.43844988829e-05
                                 Accuracy: 0.3066
      C = 6.15848211066e-05
                                Accuracy: 0.2992
      C = 0.000263665089873
                                Accuracy: 0.2998
      C = 0.00112883789168
                               Accuracy: 0.2998
      C = 0.00483293023857
                               Accuracy: 0.2998
      C = 0.0206913808111
                              Accuracy: 0.2998
      C = 0.088586679041
                              Accuracy: 0.2998
      C = 0.379269019073
                              Accuracy: 0.2998
      C = 1.62377673919
                             Accuracy: 0.2998
      C = 6.95192796178
                             Accuracy: 0.2998
      C = 29.7635144163
                             Accuracy: 0.2998
      C = 127.42749857
                            Accuracy: 0.2998
      C = 545.559478117
                             Accuracy: 0.2998
      C = 2335.72146909
                             Accuracy: 0.2998
      C = 10000.0
                       Accuracy: 0.2998
         [[ 0.111
  0.1826 0.1826 0.1826 0.1826 0.1826 0.1826 0.1826 0.1826
  0.1826 0.1826]
0.2466 0.2466 0.2466 0.2466 0.2466 0.2466 0.2466 0.2466
  0.2466 0.2466]
[ 0.2202 0.295
                0.2714 0.2714 0.2714 0.2714 0.2714 0.2714 0.2714
                                                   0.2714 0.2714
  0.2714 0.27141
 [ 0.2632  0.3164  0.3306  0.3148  0.2934  0.2934  0.2934
                                                   0.2934
                                                         0.2934
  0.2934 0.2934 0.2934 0.2934 0.2934 0.2934 0.2934
                                                   0.2934 0.2934
  0.2934 0.29341
0.3
        0.3476 0.345 0.321 0.3016 0.291 0.2906 0.2906 0.2906
```

```
0.2906 0.2906 0.2906 0.2906 0.2906 0.2906 0.2906 0.2906 0.2906
   0.2906 0.2906]
 [ 0.353 \quad 0.3736 \quad 0.3752 \quad 0.3518 \quad 0.3216 \quad 0.3066 \quad 0.2992 \quad 0.2998 \quad 0.2998
   0.2998 0.2998 0.2998 0.2998 0.2998 0.2998 0.2998 0.2998
   0.2998 0.299811
In [15]: # Find the index of the maximum value in the accuracies table
         maxindex = np.array([int(len(Accs)*np.argmax(Accs)/(len(Accs.flatten()))))
         print('The index of the maximum accuracy ('+str(Accs[maxindex[0], maxindex
         besthp = hyperparams[maxindex[1]]
         bestns = samples[maxindex[0]]
         # Determine which sample count-hyperparameter combination this corresponds
         print('This corresponds to a hyperparameter of C = '+ str(besthp) + ' when
The index of the maximum accuracy (0.3752) is: [5 2]
This corresponds to a hyperparameter of C = 1.83298071083e-07 when training on 5000
In [16]: from matplotlib import pyplot as plt
In [17]: hpC1 = 13
In [18]: errors = np.ones_like(Accs[:,hpC1])-Accs[:,hpC1]
In [39]: fig = plt.figure()
         plt.plot(samples, errors)
         plt.title('Error on Datasets of Varying Size')
         plt.xlabel('# Training Samples')
         plt.ylabel('Error')
         plt.text(4000, 0.80, 'C = '+str(round(hyperparams[hpC1], 4)))
Out[39]: <matplotlib.text.Text at 0x170daddb2e8>
In [41]: plt.show()
<matplotlib.figure.Figure at 0x170dac40630>
```


In [40]: plt.savefig(_LOCAL_PATH+r'\Figures\CIFAR10_SampleAcc.jpg')

C:\Users\Mitch\Documents\Cal\2 - 2017 Spring\COMPSCI 289A - Intro to Machine Learn:


```
jEdit - trainfunctions.py
1 # trainfunctions.py
2 #-----
3 # Python module for CS289A HW01
4 #-----
5 #-----
8 from sklearn import svm
10
11 \text{ def}
  TrainAndScoreNsamples(trainsetarrays, trainsetlabels, valsetarrays, valsetlabels, hyperp
12 # Train the classifier and score on the validation set
      clf = svm.SVC(C=hyperparam,kernel='linear')
14
      clf.fit(trainsetarrays,trainsetlabels)
15
      return clf.score(valsetarrays, valsetlabels)
16
17
18 def TrainAndPredictNsamples(trainsetarrays,trainsetlabels,testarrays,hyperparam):
19 # Train the classifier and predict on the test array
      clf = svm.SVC(C=hyperparam,kernel='linear')
      clf.fit(trainsetarrays,trainsetlabels)
21
22
      return clf.predict(testarrays)
```

jEdit - HW01_utils.py

```
1 # HW01_utils.py
2 #-----
3 # Python module for CS289A HW01
4 #-----
5 #-----
8 import numpy as np
9 from scipy import io as spio
10
11
12 def loaddata(shortpath,_DATA_DIR,dictkey):
13 #Load data
    data_dict = spio.loadmat(_DATA_DIR+"\\"+shortpath)
15
    data = np.array(data_dict[dictkey])
    return data
16
17
18
19 def partition(valsetsize,data):
20 # Separate <valsetsize> items for validation
   trainset = data[valsetsize:]
22 valset = data[:valsetsize]
23
    return trainset, valset
24
25
26 def separatelabels(inset):
27 # Separate labels from sets
   setarrays = inset[:,:-1]
28
29
    setlabels = inset[:,-1]
    return setarrays,setlabels
30
31
```