Lecture 21: Gaussian process regression

Professor Ilias Bilionis

The effect of the covariance function function

The effect of the covariance function - The Squared exponential

Changing the length scale

function - Regularity

f(.)~ GP(0, cc. 1.1)

Thm: Regularity of souples from the 4P of cov. fun. C is the same as he regularity of g(x) = c(x,x).

- f is continuous at x if p(x)=c(x,x) is cont. at x.

-
$$\frac{2f}{2x}$$
 is continuous at x if $\frac{\partial^2 c(x,x)}{\partial x_j \partial x_j}$ is cont. at x.

- $\frac{2f}{2x_j}$ is continuous at x if $\frac{\partial^4 c(x,x)}{\partial x_j \partial x_j}$ is cont. at x.

- $\frac{2^2f}{\partial x_j \partial x_k}$ if $\frac{\partial^4 c(x,x)}{\partial x_j \partial x_k}$ is cont. at x.

PREDICTIVE
SCIENCE LABORATORY

SEE cov. fun. 23 inthintely diff. =) A int. diff.

The samples are as smooth as the covariance

Infinitely smooth SE covariance

The samples are as smooth as the covariance

Matern 2-3, 2 times differentiable

The samples are as smooth as the covariance

Exponential, continuous, nowhere differentiable

