

open space

Feel free to approach us in case of questions... (microphone or chat)

«Critical Social Media Analysis using Mixed Methods»

Clustering and Visualization

Michael Tebbe, Dr. Simon David Hirsbrunner
Human-Centered Computing, Institute of Computer Science
Freie Universität Berlin
Session III, 19 Nov 2020

Recap last session

- Language Models
- Sentence Embeddings (Vector Space Model)
- Pipeline Part 1 of 2

Plan for today

- Discussion previous Assignment
- Cluster Analysis (Pipeline part 2)
- Guest Talk Dr. Kinkeldey: Visualizing High-dimensional Data
- (Short break: 5 minutes)
- Assignment for next week
- Collaborative collection of ideas and meeting peers

Seminar progress / today

			Seminai			
Theory / Methodology Critical Data Science						
Research questions	Collection	Exploration	Machine Learnin language models	clustering / visualization		Paper writing
				Interpretative analysis		
online videos + user debates Material	digital traces of social interaction Data		cleaned datasets categorized data Data aggregatio		categories and theoretical elements Theory building	

Clustering - Example

Unmasking the conversation on masks: Natural language processing for topical sentiment analysis of COVID-19 Twitter discourse

Cluster 1: trump / president / realdonaldtrump

(Overall Sentiment : -0.1645 ; Divisiveness : 1.7472)

DistilBart summary: People have been reacting to news that President Donald Trump has refused to wear a face mask in public to protect himself from the deadly coronavirus pandemic.

Interpretation: This cluster (shown in Figure 5) features Twitter users expressing a spectrum of attitudes towards U.S. president, Donald Trump. Opinions specifically revolve around Trump's handling of the COVID-19 pandemic in the United States. Distinctly, there exists an evident theme of frustration arising from observations that Trump has refused to wear a mask in public appearances, despite statements from public health officials encouraging the action. It should be noted that, in complement, a sizeable discussion thread of a more positive and supporting nature also exists concerning President Trump. A major theme observed here among the pro-Trump tweets is the impression that the media is biased against the president, and that this in turn fosters a public motive to exaggerate the virus. The anti-Trump tweets in this cluster are mostly focused on the president's long refusal to wear a face mask, although this finding is predictable given the nature of the data set from which the tweets are drawn.

Pipeline

Results

Sanders, Abraham, Rachael White, Lauren Severson, Rufeng Ma, Richard McQueen, Haniel Campos Alcanatara Paulo, Yucheng Zhang, John S Erickson, und Kristin P Bennett. "Unmasking the Conversation on Masks: Natural Language Processing for Topical Sentiment Analysis of COVID-19 Twitter Discourse". Preprint. Health Informatics, 1. September 2020. https://doi.org/10.1101/2020.08.28.20183863.

Clustering - Example

"To find suitable choices for k and k_c we use the **elbow method**, where the within-cluster sums of squares objective function is measured over a range of choices for k and k_c in an attempt to find the point which strikes a balance between minimization of the objective and avoiding over-clustering."

https://therensselaeridea.github.io/COVID-masks-nlp/paper supplement.pdf

Clustering Overview of Methods

exclusive vs. overlapping

complete vs. partial

Tan, P., Steinbach, M., Karpatne, A., & Kumar, V. (2018). Introduction to Data Mining (2nd Edition). Chapter 7 (available online: https://www-users.cs.umn.edu/~kumar001/dmbook/ch7_clustering.pdf)

hierarchical vs. partitional

Algorithms:

- graph-based (e.g. Affinity **Propagation**)
- density-based (e.g. DBSCAN)
- prototype-based (e.g. K-Means)

Clustering - K-Medoids

- Initialize: Select k of the n data points as the medoids to minimize the cost
- Associate each data point to the closest medoid.
- 3. While the cost of the configuration decreases:
 - 1. For each medoid *m*, and for each non-medoid data point *o*:
 - 1. Consider the swap of *m* and *o*, and compute the cost change
 - 2. If the cost change is the current best, remember this *m* and *o* combination
 - 2. Perform the best swap of m_best and o_best, if it decreases the cost function. Otherwise, the algorithm terminates.

+ Less sensitive to outliers than k-means; Pro:

+ can use cosine distance as metric

Con: - Number of clusters has to be defined;

- Assumes convex clusters (i.e. 'round')

Demo: Pipeline part 2

Visualizing High-dimensional data

Guest talk by Dr. Christoph Kinkeldey

Postdoctoral Researcher

at Human-centered Computing

Short break: 5 Minutes

Assignments for next week

1 Reading assignment

- Read Paper:
 - Baumer, Eric & Mimno, David & Guha, Shion & Quan, Emily & Gay, Geri. (2017). Comparing grounded theory and topic modeling: Extreme divergence or unlikely convergence?. Journal of the Association for Information Science and Technology. 68. 10.1002/asi.23786.
- Share one personal insight in a commentary of 150 words as a reply to this issue (e.g. an aspect you found interesting, a point you disagree, a perspective you want to explore further)

2 Cluster Analysis

- Create a backup of your Output of the last assignment.
- Download and setup the Jupyter notebook Assignment_5 as described in our GitHub repository (https://github.com/FUB-HCC/seminar critical-social-media-analysis)
- Load your preprocessed data and embeddings from the previous assignment.
- Optimize the number of clusters for k-medoids by maximizing the average silhouette score while minimizing the inertia for your data.
- Sample 2 clusters you deem interesting, print them and interpret them.
- Answer the following questions in a summary of ~150 words:
 - What is the content of the clusters? What is the quality of the clusters?
 - Would you suggest a purely quantitative approach to optimizing the clustering pipeline? Why or why not?
- Commit your Notebook with outputs to GitHub: create a new folder named [name]_assignment_session5 within the folder /Pipeline/Assignment_5
- Share your notebook URL in your assignment submission

Submit on Github (reply to issue) until 9 Dec 12h00 (noon)

Github issue for assignment: https://github.com/FUB-HCC/seminar_critical-social-media-analysis/issues/23

Collaborative brainstorming and meeting peers

Discussion on Discord voice channels

- Based on your preliminary research (assignments) and material (videos, post-video discussion data), discuss first project ideas to be implemented using the ML pipeline.
- Instructors will drop by and can give you feedback
 - You can also ask instructors to drop by on WebEx or Discord.

Seminar project groups

- You can enter group participant names and/or first ideas, elements here: (see GitHub)
 - Not a must at this stage, but it will help instructors to taylor future inputs to your project ideas and give further assistance.
 - Help finding peers for your project

Indications for research projects

- Indications about the research project and seminar paper can be found here: https://github.com/FUB-HCC/seminar critical-social-media-analysis/issues/15
- If needed, you can also go back to the flinga.fi board from last session:

What's up next session?

Combining perspectives of ML and interpretative analysis

Recommended readings

Andy Coenen, Adam Pearce. Understanding UMAP | Google PAIR. https://pair-code.github.io/understanding-umap/

Tan, P., Steinbach, M., Karpatne, A., & Kumar, V. (2018). Introduction to Data Mining (2nd Edition). Chapter 7 (available online: https://www-users.cs.umn.edu/~kumar001/dmbook/ch7_clustering.pdf)

open space

Feel free to approach us in case of questions... (microphone or chat)