Chapitre 3 : Variables aléatoires sur un espace de probabilité discret (Partie II)

Nathaël Gozlan

4 novembre

- Espérance d'une variable aléatoire
 - Définition
 - Propriétés
 - Moments d'une variable aléatoire
- 2 Espérance et variance des lois usuelles
 - Loi de Dirac
 - Loi de Bernoulli
 - Loi binomiale
 - Loi géométrique
 - Loi de Poisson

Cadre

Dans toute cette partie, on considère un espace de probabilité

$$(\Omega, \mathcal{P}(\Omega), \mathbb{P})$$

où Ω est un ensemble fini ou dénombrable.

But : Donner un sens à la notion de "valeur moyenne" pour une variable aléatoire

$$X:\Omega \to \mathbb{R}.$$

Exemple : si X représente un gain à un jeu de hasard, on cherche à définir la notion de "gain moyen".

Définition

Soit $X : \Omega \to \mathbb{R}$ une variable aléatoire à valeurs réelles.

Définition (Espérance - cas fini)

Si $\Omega = \{\omega_0, \omega_1, \dots, \omega_N\}$ est un ensemble fini, l'espérance de X est le nombre noté $\mathbb{E}[X]$ défini par

$$\mathbb{E}[X] = \sum_{i=0}^{N} X(\omega_i) \mathbb{P}(\{\omega_i\}).$$

Définition (Espérance - cas dénombrable)

Si $\Omega = \{\omega_i; i \in \mathbb{N}\}$ est un ensemble dénombrable, on dit que X est intégrable si

$$\sum_{i=0}^{+\infty} |X(\omega_i)| \mathbb{P}(\{\omega_i\}) < +\infty.$$

L'espérance de X est le nombre noté $\mathbb{E}[X]$ défini par

$$\mathbb{E}[X] = \sum_{i=0}^{+\infty} X(\omega_i) \mathbb{P}(\{\omega_i\}).$$

Exercice 1

Calculer le score moyen lors d'un lancer d'un dé équilibré.

Exercice 2

Un tricheur s'est fabriqué un dé tombant toujours sur 6. Quel est le score moyen quand on joue avec un tel dé?

Espérance et probabilité

La notion de fonction caractéristique va nous permettre de relier espérance $\mathbb E$ et probabilité $\mathbb P$.

Définition

Soit $A\subset\Omega$; la fonction caractéristique de A est la fonction notée $\mathbf{1}_A$ définie par

$$\mathbf{1}_A(\omega)=1$$
 si $\omega\in A$

$$\mathbf{1}_A(\omega)=1 \text{ si } \omega \in A \qquad \text{ et } \qquad \mathbf{1}_A(\omega)=0 \text{ si } \omega \notin A.$$

Exercice 3

- Montrer que si A, B sont disjoints, alors $\mathbf{1}_{A \cup B} = \mathbf{1}_A + \mathbf{1}_B$.
- Montrer que si $A, B \subset \Omega$, $\mathbf{1}_{A \cap B} = \mathbf{1}_A \mathbf{1}_B$.
- Montrer que si $A, B \subset \Omega$, $\mathbf{1}_{A \cup B} = \mathbf{1}_A + \mathbf{1}_B \mathbf{1}_A \mathbf{1}_B$.

Espérance et probabilité

Proposition

Soit $A \subset \Omega$; la variable aléatoire $\mathbf{1}_A$ est intégrable et

$$\mathbb{E}[\mathbf{1}_A] = \mathbb{P}(A).$$

Démonstration.

On fait la preuve dans le cas dénombrable, le cas fini est analogue.

$$\mathbb{E}[\mathbf{1}_A] = \sum_{i=0}^{+\infty} \mathbf{1}_A(\omega_i) \mathbb{P}(\{\omega_i\}) = \sum_{i: \omega_i \in A} \mathbb{P}(\{\omega_i\}) = \mathbb{P}(A).$$

- Espérance d'une variable aléatoire
 - Définition
 - Propriétés
 - Moments d'une variable aléatoire
- 2 Espérance et variance des lois usuelles
 - Loi de Dirac
 - Loi de Bernoulli
 - Loi binomiale
 - Loi géométrique
 - Loi de Poisson

Linéarité

Proposition (Linéarité de l'espérance)

Si X,Y sont deux variables aléatoires intégrables, alors $\lambda X + \mu Y$ est également intégrable et

$$\mathbb{E}[\lambda X + \mu Y] = \lambda \mathbb{E}[X] + \mu \mathbb{E}[Y].$$

Démonstration.

Clair par linéarité de la somme de séries convergentes.

Formule de transfert

Théorème (Formules de transfert)

Soit X une variable aléatoire à valeurs réelles intégrable. On note $E = \{X(\omega); \omega \in \Omega\} \subset \mathbb{R}$ dont on énumère les éléments : $E = \{x_k : k \in K\}$, avec K une partie finie ou infinie de \mathbb{N} .

On a alors la formule

$$\mathbb{E}[X] = \sum_{k \in K} x_k \mathbb{P}_X(\{x_k\}).$$

• Plus généralement, si $f: E \to \mathbb{R}$ est une fonction telle que f(X) soit intégrable, alors

$$\mathbb{E}[f(X)] = \sum_{k \in K} f(x_k) \mathbb{P}_X(\{x_k\}).$$

Le nom de ces formules vient du fait qu'elles permettent d'exprimer l'espérance d'une variable aléatoire en faisant intervenir l'espace d'arrivée $(\mathcal{E}, \mathbb{P}_X)$ au lieu de l'espace de départ (Ω, \mathbb{P}) .

Sommation par paquet

Pour démontrer ce résultat, nous aurons besoin du lemme de sommation par paquets pour les séries absolument convergentes.

Lemme (Sommation par paquets)

Soit $(u_n)_{n\geq 0}$ une suite à termes positifs ou nuls telle que $\sum_{n=0}^{+\infty} u_n < +\infty$.

- ③ Si $I \subset \mathbb{N}$ est un ensemble non-vide, alors en notant $I = \{i_0 < i_1 < i_2 < \ldots\}$, la série $\sum_{j \geq 0} u_{i_j}$ est convergente. On notera sa somme $\sum_{i \in I} u_i$. Par convention $\sum_{i \in \emptyset} u_i = 0$.
- ② Pour toute famille $(I^{(k)})_{k\in\mathbb{N}}$ de \mathbb{N} d'ensembles deux à deux disjoints tels que $\cup_{k\in\mathbb{N}}I^{(k)}=\mathbb{N}$

$$\sum_{n\in\mathbb{N}}u_n=\sum_{k=0}^{+\infty}\left(\sum_{n\in I^{(k)}}u_n\right).$$

on a

Preuve de la formule de transfert

Démonstration.

Posons $A_k = \{X = x_k\}$, $k \in K$. Les ensembles A_k forment une partition de Ω .

Notons $I^{(k)} = \{n \in \mathbb{N} : \omega_n \in A_k\}, k \in K$. Ces ensembles $I^{(k)}$ forment une partition de \mathbb{N} .

Posons $u_n = f(X(\omega_n))\mathbb{P}(\{\omega_n\})$, $n \in \mathbb{N}$. Comme f(X) est intégrable, la série $\sum_n u_n$ est absolument convergente. On a donc, d'après le lemme de sommation par paquet,

$$\mathbb{E}[f(X)] = \sum_{n=0}^{+\infty} f(X(\omega_n)) \mathbb{P}(\{\omega_n\})$$

$$= \sum_{n=0}^{+\infty} u_n$$

$$= \sum_{k \in K} \sum_{n \in I^{(k)}} u_i$$

$$= \sum_{k \in K} \left(\sum_{n \in I^{(k)}} f(X(\omega_n)) \mathbb{P}(\{\omega_n\}) \right)$$

$$= \sum_{k \in K} \left(f(x_k) \sum_{n:\omega_n \in A_k} \mathbb{P}(\{\omega_n\}) \right)$$

$$= \sum_{k \in K} f(x_k) \mathbb{P}(A_k).$$

Exercice 4

On lance deux fois de suite un dé équilibré sans trucage et on note S la somme des scores réalisés. Calculer de deux manières différentes l'espérance de S.

Propriétés de comparaison

Proposition (Propriétés de comparaison)

- Soient X, Y deux variables aléatoires telles que |X| ≤ |Y|. Si Y est intégrable, alors X est intégrable. En particulier, si |X| ≤ M où M est une constante positive, alors X est intégrable.
- ② Si X, Y sont deux variables aléatoires intégrables telles que $X \leq Y$, alors $\mathbb{E}[X] \leq \mathbb{E}[Y]$.
- ③ Si X, Y sont deux variables aléatoires intégrables telles que $X \leq Y$ alors $\mathbb{E}[X] = \mathbb{E}[Y]$ si et seulement si $\mathbb{P}(X = Y) = 1$. On dit dans ce cas que X = Y presque sûrement.

Démonstration.

Posons $u_i = X(\omega_i)\mathbb{P}(\{\omega_i\})$ et $v_i = Y(\omega_i)\mathbb{P}(\{\omega_i\})$.

- 1. Y intégrable signifie que la série de terme général $|v_i|$ converge. Comme $0 \le |u_i| \le |v_i|$, on conclut par le théorème de comparaison pour les séries convergentes que $\sum_i |u_i|$ est convergente et donc que X est intégrable.
- 2. On a $u_i \leq v_i$ et les séries $\sum_i u_i$ et $\sum_i v_i$ convergent. Donc $\sum_{i=0}^{+\infty} u_i \leq \sum_{i=0}^{+\infty} v_i$ et donc $\mathbb{E}[X] \leq \mathbb{E}[Y]$.
- 3. Posons $w_i = v_i u_i$. Si $\mathbb{E}[X] = \mathbb{E}[Y]$, alors $\sum_{i=0}^{+\infty} w_i = 0$. Comme les termes w_i sont positifs ou nuls, cela entraı̂ne que $w_i = 0$ pour tout $i \in \mathbb{N}$. Donc pour tout $i, X(\omega_i) = Y(\omega_i)$ ou $\mathbb{P}(\{\omega_i\}) = 0$. Autrement dit $X(\omega_i) \neq Y(\omega_i) \Rightarrow \mathbb{P}(\{\omega_i\}) = 0$. On en déduit que $\mathbb{P}(X \neq Y) = 0$ et donc $\mathbb{P}(X = Y) = 1$.

- Espérance d'une variable aléatoire
 - Définition
 - Propriétés
 - Moments d'une variable aléatoire
- 2 Espérance et variance des lois usuelles
 - Loi de Dirac
 - Loi de Bernoulli
 - Loi binomiale
 - Loi géométrique
 - Loi de Poisson

Moments d'une variable aléatoire

Définition

Soit $p \in \mathbb{N}^*$ et X une variable aléatoire à valeurs réelles. Si la variable aléatoire $|X|^p$ est intégrable, la quantité $\mathbb{E}[X^p]$ est bien définie et s'appelle le moment d'ordre p de X. On dit que X admet un moment d'ordre p fini.

On pose par convention $\mathbb{E}[X^0] = 1$ (moment d'ordre 0).

Exemple : Une variable aléatoire bornée possède des moments de tous ordres.

Proposition

- **1** Si $p \le q$ et si X admet un moment d'ordre q fini, alors X admet un moment d'ordre p fini.
- $oldsymbol{3}$ Si X,Y sont deux variables aléatoires admettant un moment d'ordre p fini, alors $\lambda X + \mu Y$ admet également un moment d'ordre p fini.

Démonstration.

1. On remarque que $t^p \le 1 + t^q$, pour tout $t \ge 0$. Par conséquent, $|X|^p \le 1 + |X|^q$ et donc par comparaison, si $|X|^q$ est intégrable, il en va de même pour $|X|^p$.

Exercice 5

Montrer le point 2.

Variance et écart type

Définition (Variance et écart type)

Si X admet un moment d'ordre 2 fini, alors X est intégrable et la quantité

$$\operatorname{Var}(X) = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

est bien définie et s'appelle variance de X. Le nombre σ_X défini par

$$\sigma_X = \sqrt{\operatorname{Var}(X)}$$

est appelé écart type de X. On a par ailleurs la formule

$$\operatorname{Var}(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

Exercice 6

Démontrer la formule

$$\operatorname{Var}(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2.$$

Covariance

Définition (Covariance)

Soient X,Y deux variables aléatoires admettant un moment d'ordre 2 fini, alors la variable aléatoire $(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])$ est intégrable. La quantité

$$\mathrm{Cov}(X,Y) := \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

s'appelle la covariance de X et Y.

Démonstration.

La variable $(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])$ est intégrable car

$$|(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])| \leq \frac{1}{2}(X-\mathbb{E}[X])^2 + \frac{1}{2}(Y-\mathbb{E}[Y])^2$$

et l'intégrabilité en découle par comparaison.

Covariance

Proposition

Soient X, Y, Z des variables aléatoires ayant un moment d'ordre 2 fini.

Démonstration.

Démontrons le point 3., les deux autres en découlent :

$$\begin{aligned} \operatorname{Cov}(\alpha X + \beta Y, Z) &= \mathbb{E}\left[\left(\left(\alpha X + \beta Y\right) - \mathbb{E}[\alpha X + \beta Y]\right)(Z - \mathbb{E}[Z])\right] \\ &= \mathbb{E}\left[\alpha(X - \mathbb{E}[X])(Z - \mathbb{E}[Z]) + \beta(Y - \mathbb{E}[Y])(Z - \mathbb{E}[Z])\right] \\ &= \alpha \mathbb{E}\left[\left(X - \mathbb{E}[X]\right)(Z - \mathbb{E}[Z])\right] + \beta \mathbb{E}\left[\left(Y - \mathbb{E}[Y]\right)(Z - \mathbb{E}[Z])\right] \\ &= \alpha \operatorname{Cov}(X, Z) + \beta \operatorname{Cov}(Y, Z) \end{aligned}$$

Exercice 7

Démontrer les points 1 et 2 de la proposition précédente.

Inégalité de Markov

Proposition (Inégalité de Markov)

Soit X une variable aléatoire intégrable, alors

$$\mathbb{P}(|X| > t) \le \frac{\mathbb{E}[|X|]}{t}, \quad \forall t > 0.$$

Plus généralement, si X possède un moment d'ordre $p \geq 1$ fini, alors

$$\mathbb{P}(|X|>t)\leq \frac{\mathbb{E}[|X|^p]}{t^p}, \qquad \forall t>0.$$

Démonstration.

Remarquons que

$$|X|^p \geq t^p \mathbf{1}_{\{|X| \geq t\}}.$$

Donc en prenant l'espérance, on trouve

$$\mathbb{E}[|X|^p] \geq t^p \mathbb{E}[\mathbf{1}_{\{|X| \geq t\}}] = t^p \mathbb{P}(|X| \geq t).$$

Inégalité de Bienaymé-Tchebychev

Corollaire (Inégalité de Bienaymé-Tchebychev)

Si X admet un moment d'ordre 2 fini, alors

$$\mathbb{P}(|X - \mathbb{E}[X]| > t) \le \frac{\operatorname{Var}(X)}{t^2}, \quad \forall t > 0.$$

Démonstration.

Il suffit d'appliquer le résultat précédent avec p=2 à $Y=X-\mathbb{E}[X]$.

Inégalité de Cauchy-Schwarz

Proposition (Inégalité de Cauchy-Schwarz)

Si X, Y admettent un moment d'ordre 2, alors XY admet un moment d'ordre 1 et

$$|\mathbb{E}[XY]| \le \sqrt{\mathbb{E}[X^2]} \sqrt{\mathbb{E}[Y^2]}$$

Corollaire

Si X, Y admettent un moment d'ordre 2, alors

$$Cov(X, Y) \le \sqrt{Var(X)} \sqrt{Var(Y)}$$

Démonstration de l'inégalité de Cauchy-Schwarz.

Pour tout $a, b \in \mathbb{R}$, on a

$$ab \leq \frac{a^2}{2} + \frac{b^2}{2}.$$

Donc en posant $a = \sqrt{t}x$ et $b = y/\sqrt{t}$, avec $x, y \in \mathbb{R}$ et t > 0, on trouve que

$$xy \leq t\frac{x^2}{2} + \frac{y^2}{2t}.$$

On en déduit que

$$|X(\omega)Y(\omega)| \leq t\frac{X^2}{2} + \frac{Y^2}{2t}.$$

En particulier, XY est intégrable. De plus,

$$\mathbb{E}[XY] \le t \frac{\mathbb{E}[X^2]}{2} + \frac{\mathbb{E}[Y^2]}{2t}, \quad \forall t > 0.$$

En prenant $t=\sqrt{rac{\mathbb{E}[Y^2]}{\mathbb{E}[X^2]}}$, on obtient le résultat.

- Espérance d'une variable aléatoire
 - Définition
 - Propriétés
 - Moments d'une variable aléatoire
- 2 Espérance et variance des lois usuelles
 - Loi de Dirac
 - Loi de Bernoulli
 - Loi binomiale
 - Loi géométrique
 - Loi de Poisson

Loi de Dirac

Définition

On dit que X suit une loi de Dirac en $a \in \mathbb{R}$ si $\mathbb{P}(X = a) = 1$. Dans ce cas, on $\mathbb{E}[X^p] = a^p$, pour tout $p \ge 1$.

- Espérance d'une variable aléatoire
 - Définition
 - Propriétés
 - Moments d'une variable aléatoire
- Espérance et variance des lois usuelles
 - Loi de Dirac
 - Loi de Bernoulli
 - Loi binomiale
 - Loi géométrique
 - Loi de Poisson

Loi de Bernoulli

Définition

On dit que X suit une loi de Bernoulli de paramètre $p \in [0,1]$ si

$$\mathbb{P}(X=1)=p \qquad \mathbb{P}(X=0)=1-p$$

On note $X \sim \mathcal{B}(p)$.

Proposition

Si $X \sim \mathcal{B}(p)$, alors $\mathbb{E}[X] = p$ et Var(X) = p(1 - p).

Démonstration.

Pour tout k > 1, on a

$$\mathbb{E}[X^k] = 1^k \mathbb{P}(X = 1) + 0^k \mathbb{P}(X = 0) = p.$$

Donc $\mathbb{E}[X] = p$ et

$$Var(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2 = p - p^2 = p(1-p).$$

- Espérance d'une variable aléatoire
 - Définition
 - Propriétés
 - Moments d'une variable aléatoire
- 2 Espérance et variance des lois usuelles
 - Loi de Dirac
 - Loi de Bernoulli
 - Loi binomiale
 - Loi géométrique
 - Loi de Poisson

Loi binomiale

Définition

On dit que X suit une loi binomiale de paramètres $n\in\mathbb{N}^*$ et $p\in[0,1]$ si

$$\mathbb{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k}, \qquad \forall k \in \{0,1,\ldots,n\}.$$

On note $X \sim \mathcal{B}(n, p)$.

Proposition

Si $X \sim \mathcal{B}(n, p)$, alors $\mathbb{E}[X] = np$ et Var(X) = np(1 - p).

Preuve

Posons

$$f(x) = \sum_{k=0}^{n} {n \choose k} x^{k} (1-p)^{n-k}, \qquad x \in \mathbb{R}.$$

On a donc

$$f'(x) = \sum_{k=0}^{n} k \binom{n}{k} x^{k-1} (1-p)^{n-k} \qquad \text{et} \qquad f''(x) = \sum_{k=0}^{n} k(k-1) \binom{n}{k} x^{k-2} (1-p)^{n-k}$$

Mais, par la formule de binôme, on a aussi

$$f(x) = (1 - p + x)^n$$

et donc

$$f'(x) = n(1-p+x)^{n-1}$$
 et $f''(x) = n(n-1)(1-p+x)^{n-2}$.

En prenant x = p, on trouve

$$f'(p) = n = \sum_{k=0}^{n} k {n \choose k} p^{k-1} (1-p)^{n-k}$$

et donc

$$np = \sum_{k=0}^{n} k \binom{n}{k} p^k (1-p)^{n-k} = \mathbb{E}[X].$$

Preuve (suite)

De même

$$f''(p)p^2 = n(n-1)p^2 = \sum_{k=0}^n k(k-1) \binom{n}{k} p^k (1-p)^{n-k} = \mathbb{E}[X^2] - \mathbb{E}[X].$$

On en tire,

$$\mathbb{E}[X^2] = n(n-1)p^2 + np$$

puis

$$Var(X) = n(n-1)p^2 + np - n^2p^2 = n(p-p^2).$$

- Espérance d'une variable aléatoire
 - Définition
 - Propriétés
 - Moments d'une variable aléatoire
- 2 Espérance et variance des lois usuelles
 - Loi de Dirac
 - Loi de Bernoulli
 - Loi binomiale
 - Loi géométrique
 - Loi de Poisson

Loi géométrique

Définition

On dit que X suit une loi géométrique de paramètre $p\in]0,1[$ si

$$\mathbb{P}(X=k)=(1-p)^{k-1}p, \qquad \forall k \in \mathbb{N}^*$$

On note $X \sim \mathcal{G}(p)$.

Proposition

Si $X \sim \mathcal{G}(p)$, alors $\mathbb{E}[X] = 1/p$ et $\operatorname{Var}(X) = (1-p)/p^2$.

- Espérance d'une variable aléatoire
 - Définition
 - Propriétés
 - Moments d'une variable aléatoire
- 2 Espérance et variance des lois usuelles
 - Loi de Dirac
 - Loi de Bernoulli
 - Loi binomiale
 - Loi géométrique
 - Loi de Poisson

Loi de Poisson

Définition

On dit que X suit une loi de Poisson de paramètre $\lambda>0$ si

$$\mathbb{P}(X=k)=e^{-\lambda}\frac{\lambda^k}{k!}, \qquad \forall k \in \mathbb{N}.$$

On note $X \sim \mathcal{P}(\lambda)$.

Proposition

Si $X \sim \mathcal{P}(\lambda)$, alors $\mathbb{E}[X] = \lambda$ et $\mathrm{Var}(X) = \lambda$.

Preuve

Par définition

$$\mathbb{E}[X] = e^{-\lambda} \sum_{k=0}^{+\infty} k \frac{\lambda^k}{k!} = e^{-\lambda} \sum_{k=1}^{+\infty} k \frac{\lambda^k}{k!}.$$

Mais, si $k \geq 1$,

$$\frac{k}{k!}=\frac{1}{(k-1)!}.$$

Donc

$$\mathbb{E}[X] = e^{-\lambda} \sum_{k=1}^{+\infty} \frac{\lambda^k}{(k-1)!} = \lambda e^{-\lambda} \sum_{k=1}^{+\infty} \frac{\lambda^{k-1}}{(k-1)!} = \lambda e^{-\lambda} \sum_{i=0}^{+\infty} \frac{\lambda^i}{i!} = \lambda.$$

Exercice

Utiliser la même méthode pour calculer $\mathbb{E}[X^2]$ et $\mathrm{Var}(X)$.