1

AULA 6 - ANÁLISE DA COMPLEXIDADE DE ALGORITMOS RECURSIVOS

*** Entregue, num ficheiro ZIP, este guião preenchido e o código desenvolvido ***

Implemente os seguintes algoritmos recursivos – sem recorrer a funções de arredondamento (floor e ceil) – e analise o número de chamadas recursivas executadas por cada algoritmo.

$$T_{1}(n) = \begin{cases} 0, \text{se } n = 0 \\ T_{1}\left(\left\lfloor\frac{n}{4}\right\rfloor\right) + n, \text{se } n > 0 \end{cases}$$

$$T_{2}(n) = \begin{cases} n, \text{se } n = 0, 1, 2, 3 \\ T_{2}\left(\left\lfloor\frac{n}{4}\right\rfloor\right) + T_{2}\left(\left\lceil\frac{n}{4}\right\rceil\right) + n, \text{se } n > 3 \end{cases}$$

$$T_{3}(n) = \begin{cases} n, \text{se } n = 0, 1, 2, 3 \\ 2 \times T_{3}\left(\frac{n}{4}\right) + n, \text{se } n \text{ é múltiplo de 4} \end{cases}$$

$$T_{3}\left(\left\lfloor\frac{n}{4}\right\rfloor\right) + T_{3}\left(\left\lceil\frac{n}{4}\right\rceil\right) + n, \text{caso contrário}$$

Deve utilizar **aritmética inteira**: n/4 é igual a $\left\lfloor \frac{n}{4} \right\rfloor$ e (n+3)/4 é igual a $\left\lceil \frac{n}{4} \right\rceil$.

- Preencha a tabela da página seguinte com o resultado de cada função e o número de chamadas recursivas para os sucessivos valores de n.
- Analisando os dados da tabela, estabeleça uma ordem de complexidade para cada algoritmo.

T1(n) tem ordem de complexidade $O(\log(n))$

T2(n) tem ordem de complexidade O(n)

T3(n) tem ordem de complexidade O(n)

Escreva uma expressão recorrente para o número de chamadas recursivas efetuadas pela função T₁(n). Obtenha, depois, uma expressão exata e simplificada; determine a sua ordem de complexidade. Compare a expressão obtida com os dados da tabela. Sugestão: use o desenvolvimento telescópico.

$$\begin{split} &C(0)=1\\ &C(n)=C(floor(\frac{n}{4^k}))+k\\ &\mathrm{N=0,\,k=}\ 1+\log_4 n\\ &C(n)=1+C(floor(\frac{n}{4+\log_4 n}))+1+\log_4 n=C(0)+1+\log_4 n\\ &\mathrm{\acute{E}\ um\ algoritmo\ de\ complexidade}\quad O(\log(n)) \end{split}$$

n	$T_1(n)$	Nº de Chamadas Recursivas	$T_2(n)$	Nº de Chamadas Recursivas	T ₃ (n)	Nº de Chamadas Recursivas
0	0	1	0	1	0	1
1	1	2	1	1	1	1
2	2	2	2	1	2	1
3	3	2	3	1	3	1
4	5	3	6	3	6	2
5	6	3	8	3	8	3
6	7	3	9	3	9	3
7	8	3	10	3	10	3
8	10	3	12	3	12	2
9	11	3	14	3	14	3
10	12	3	15	3	15	3
11	13	3	16	3	16	3
12	15	3	18	3	18	2
13	16	3	22	5	22	4
14	17	3	23	5	23	4
15	18	3	24	5	24	4
16	21	4	28	7	28	3
17	22	4	31	7	31	6
18	23	4	32	7	32	6
19	24	4	33	7	33	6
20	26	4	36	7	36	4
21	27	4	38	7	38	7
22	28	4	39	7	39	7
23	29	4	40	7	40	7
24	31	4	42	7	42	4
25	32	4	44	7	44	7
26	33	4	45	7	45	7
27	34	4	46	7	46	7
28	36	4	48	7	48	4

• Escreva uma expressão recorrente para o número de chamadas recursivas efetuadas pela função $T_2(n)$. Considere o caso particular $n=4^k$ e obtenha uma expressão exata e simplificada; determine a ordem de complexidade para esse caso particular. Compare a expressão obtida com os dados da tabela. Sugestão: use o desenvolvimento telescópico e confirme o resultado obtido usando o Teorema Mestre.

$$\begin{split} &C(0) = C(1) = C(2) = C(3) = 1 \\ &C(n) = 1 + C(floor(\frac{n}{4})) + C(ceil(\frac{n}{4})) + 2 \\ &n = 4^k \to k = \log_4 n \\ &C(n) = 3 \times C(\frac{n}{4}) + 3 = 3 \times (3 \times C(\frac{n}{16}) + 3) + 3 = 3^{k+1} - 3 \\ &C(n) = 3^{\log_4 n + 1} - 3 = 3 \times n^{\log_4 3} - 3 \to = O(n^{\log_4 3}) \\ &\text{Teorema do Mestre} \\ &a = 3; b = 4; d = 0 \to a > b^d \to O(n^{\log_4 3}) \end{split}$$

• Pode generalizar a ordem de complexidade que acabou de obter para todo o n? Justifique.

Como o desenvolvimento telescópico é do tipo $n^{\alpha}(\alpha>0)$ a ordem de complexidade pode ser generalizada para todo o n.

 Obtenha uma expressão recorrente para o número de chamadas recursivas efetuadas pela função T₃(n).

$$\begin{split} &C(0) = C(1) = C(2) = C(3) = 1 \\ &C(n) = 2 \times C(\frac{n}{4}) + n \to n\%3 == 0 \\ &C(n) = C(floor(\frac{n}{4})) + C(ceil(\frac{n}{4})) + n \end{split}$$

• Considere o caso particular $n = 4^k$ e obtenha uma expressão exata e simplificada; determine a ordem de complexidade para esse caso particular. Compare a expressão obtida com os dados da tabela. Sugestão: use o desenvolvimento telescópico e confirme o resultado obtido usando o Teorema Mestre.

$$\begin{array}{l} C(0) = C(1) = C(2) = C(3) = 1 \\ \text{Para n múltiplo de 3:} \\ C(n) = 2 + C(\frac{n}{4}) = 3 + C(\frac{n}{16}) = k + 1 + C(\frac{n}{4^k}) \\ \text{Substitui k por} & \log_4 n \\ C(n) = \log_4 n + 1 + C(\frac{n}{4^{\log_4 n}}) = \log_4 n + C(1) = \log_4 n + 1 \to O(\log_4 n) \\ \text{Teorema Mestre:} \\ a = 1; b = 4; d = 0.a = b^d \to O(n^d \log_b n) \to O(\log_4 n) \end{array}$$

• Pode generalizar a ordem de complexidade que acabou de obter para todo o n? Justifique.

Como o desenvolvimento telescópico é do tipo $n^{\alpha}(\alpha>0)$ a ordem de complexidade pode ser generalizada para todo o n.

• Atendendo às semelhanças entre $T_2(n)$ e $T_3(n)$ estabeleça uma ordem de complexidade para $T_3(n)$. Justifique.

Como T3(n) e T2(n) calculam o mesmo resultado, mas T3(n) faz menos chamadas recursivas, então T3(n) não pode ter ordem de complexidade superior à de T2(n)