Sistemas embarcados

O verdadeiro perigo não é os computadores começarem a pensar como humanos, mas o humanos começarem a pensar como computadores.

Sydney J. Harris

- Mais exemplos:
 - Auto-fornos
 - Bombas de água
 - Bombas
 - Cameras
 - Celulares
 - Centrífugas
 - CD players
 - Equipamentos de som
 - Equipamentos Médicos
 - Leitores de código de barras
 - HD's
 - Injeções eletrônicas

- Impressoras
- PDA's
- Máquinas de solda
- Robôs de linha de montagem
- Relógios de pulso

•

- Sistemas dedicados
- Microprocessados
- Hardware simplificado
- Baixo custo
- Recursos escassos
- Real-time
- Segurança/Criticidade

Microprocessador

Microcontrolador

Microcontrolador

- Processador
- Memória
 - RAM
 - ROM
 - PROM
 - EEPROM
 - Flash
- Periféricos
 - Timers
 - Watchdogs
 - Contadores
 - Comparadores
- Geradores de Clock

- Entradas
 - Digitais
 - Analógicas
- Saídas
 - Digitais
 - PWM
- Comunicação
 - USB
 - 1²C
 - RS232
 - Ethernet
 - CAN
- Sistema de suporte à gravação

Microcontrolador

- Tipos de microprocessadores
- Tamanho da palavra
- Frequência de processamento
- Lista de instruções
- RISC x CISC
- Operações com int/float
- E/S analógicas/digitais
- Periféricos de comunicação
- Quantidade de memória
- Consumo
- ...

Sistemas embarcados

- Desafios
 - Custo
 - Segurança
 - Mão de obra qualificada
 - Conhecimento em eletrônica e computação
 - Projeto em times
 - Hardware
 - Software
 - Comunicação
 - Normas

A Linguagem C

Histórico da linguagem C

- A linguagem de programação C foi projetada para permitir grande economia de expressão nos programas, isto é, produzir programas fonte mais compactos
- Foi usada para escrever cerca de 90% do código do sistema operacional UNIX
 - com a popularização do UNIX em equipamentos de médio porte, e até micros, a linguagem C também ganhou popularidade entre os programadores profissionais
- 1969: os laboratórios Bell lançaram uma versão básica do sistema operacional UNIX escrito em Assembly
 - Keneth Thompson desenvolveu em 1969 uma linguagem experimental chamada B
- 1972: a partir da linguagem B, a linguagem C foi projetada

Histórico da linguagem C

- 1973: o sistema operacional UNIX foi melhorado e cerca de 90% de seu código foi escrito em C
- Por causa da libertação do Assembly, o UNIX (e consequentemente C) adquiriu grande portabilidade
 - foi rapidamente adaptado a uma série de computadores e seu uso não parou de crescer
- No final da década de 70 e inicio da década de 80
 - a proliferação de UNIX e C foi muito grande e chegou até os micros
 - C ficou independente do sistema operacional UNIX e uma série de compiladores C surgiram para muitos equipamentos

Comparativo

Linguagem C	Linguagem Asm	Linguagem de máquina
<pre>int x = 10; int y = 20; int z = x*y;</pre>	<pre>ldaa 10 // carrega 10 no acum. a staa x // salva o valor do acum. a em x ldaa 20 // carrega o valor 20 no acum. a staa y // salva o valor do acum. a em y ldaa x // carrega o acum. a com valor de x ldab y // carrega o acum. b com valor de y mulab // mult. acum. a por b, salva em a staa z // salva o valor do acum. a em z</pre>	0x83 0x0a 0x84 0x00 0x83 0x14 0x84 0x01 0x83 0x00 0x93 0x01 0x5f 0x83 0x02

Uso da Linguagem C

TIOBE Programming Community Index

Source: www.tiobe.com

Uso da Linguagem C

Desenvolvimento de Sistemas Embarcados 2014

COMO O PROJETO EMBARCADO ATUAL É PROGRAMADO

Uso da Linguagem C

O PRÓXIMO PROJETO EMBARCADO SERÁ PROVAVELMENTE PROGRAMADO

Base: 657