COPY OF ALL CLAIMS

- 1. (twice amended) A process for preparing graft copolymers of polyvinyl esters by polymerization of
- a) at least one vinyl ester of aliphatic C₁-C₂₄-carboxylic acids in the presence of
- b) polyethers which are solid at room temperature and have the general formula I $R^{1}(-O^{2}-O)_{u}^{-1}(R^{3}-O)_{v}^{-1}(R^{4}-O)_{w}^{-1}(R^{5}-O)_{x}^{-1}(R^{6}-O)_{v}^{-1}(R^{7}-O)_{z}^{-1}(R^{8})_{n}$ I

in which the variables have the following meaning, independently of one another:

$$R^8$$
 hydrogen, C_1-C_{24} -alkyl, $R^9-C(=O)-$, $R^9-NH-C(=O)-$;

$$R^9$$
 C_1-C_{24} -alkyl;

$$R^{10}$$
 hydrogen, C_1-C_{24} -alkyl, $R^9-C(=O)$ -;

A
$$-C(=O)-O-$$
, $-C(=O)-B-C(=O)-O-$, $-C(=O)-NH-B-NH-C(=O)-O-$;

- B -(CH₂)_t-, arylene, optionally substituted;
- n 1 to 8;
- s 0 to 500;
- t 1 to 12;
- u 1 to 5000;
- v 0 to 5000;
- w 0 to 5000;

- x 1 to 5000;
- y 0 to 5000;
- z 0 to 5000
- c) and, where appropriate, at least one other monomer using a free-radical initiator system, wherein liquid polyalkylene glycol is used as solvent for the free-radical initiator.
- 2. (amended) A process as claimed in claim 1, wherein the solution of the freeradical initiator is added continuously throughout the polymerization reaction time.
- 3. A process as claimed in claim 1, wherein liquid polyethylene glycol is used as solvent for the free-radical initiator at room temperature.
- 6. A cosmetic, dermatological, hygienic or pharmaceutical dosage form comprising at least one of the polymers prepared by a process as claimed in claim 1 in addition to conventional excipients.
- 7. (twice amended) Graft copolymers of polyvinyl esters which are the products of the process of polymerization of
- a) at least one vinyl ester of aliphatic C_1 – C_{24} –carboxylic acids in the presence of
- b) polyethers which are solid at room temperature and have the general formula I

$$R^{1}$$
(-O-(R^{2} -O)_u-(R^{3} -O)_v-(R^{4} -O)_w(-A-(R^{5} -O)_x-(R^{6} -O)_y-(R^{7} -O)_z(R^{8})_n I

in which the variables have the following meaning, independently of one another:

- R¹ hydrogen, C₁–C₂₄–alkyl, R⁹–C(=O)–, R⁹–NH–C(=O)–, polyalcohol residue;
- R^8 hydrogen, C_1-C_{24} -alkyl, $R^9-C(=O)$ -, $R^9-NH-C(=O)$ -;

- R^9 C_1-C_{24} -alkyl;
- R^{10} hydrogen, C_1 – C_{24} –alkyl, R^9 –C(=O)–;
- A -C(=O)-O-, -C(=O)-B-C(=O)-O-, -C(=O)-NH-B-NH-C(=O)-O-;
- B -(CH₂)_t-, arylene, optionally substituted;
- n 1 to 8;
- s 0 to 500;
- t 1 to 12;
- u 1 to 5000;
- v 0 to 5000;
- w 0 to 5000;
- x 1 to 5000;
- y 0 to 5000;
- z 0 to 5000
- c) and, where appropriate, at least one other monomer using a free-radical initiator system, wherein liquid polyalkylene glycol is used as solvent for the free-radical initiator.
- 8. (amended) Coating agents, binders or film-forming excipients for pharmaceutical dosage forms containing a polymer produced by the process of claim 1.
- 9. Cosmetic, hygienic or dermatological preparations containing a polymer produced by the process of claim 1.