

Математический анализ основы

В этом чате ты будешь помогать мне готовиться к экзаменам по математике (математический анализ и аналитическая геометрия) и "вычислительные машины и системы". Если я задаю тебе теоретический вопрос, ты должен ответить на него максимально полно и понятно, чтобы я мог это не запомнить, а понять. Если я тебе дам задачу, то ты должен расписать решение также понятно.

Начнём с теоретических вопросов по математическому анализу, вот первый:

Понятие независимой и зависимой переменных. Аргумент и функция. Область существования функции. Область значений. Способы задания функции. Основные характеристики функций. Обратные функции. Элементарные функции и их графики. Преобразования графиков.

1. Понятие независимой и зависимой переменных

- **Независимая переменная (аргумент)**: переменная, значение которой задаётся произвольно или выбирается из области её существования. Обозначается чаще всего x.
- Зависимая переменная (функция): переменная, значение которой зависит от значения независимой переменной. Обозначается y=f(x).

Пример: в функции y=2x+3, x — независимая переменная, y — зависимая.

2. Аргумент и функция

- Аргумент это независимая переменная, входящая в выражение функции.
- **Функция** это правило, которое каждому значению аргумента x ставит в соответствие единственное значение y = f(x).

3. Область существования функции (область определения)

Это множество всех значений аргумента x, для которых функция f(x) имеет смысл. Обозначается D(f).

Пример: для функции $f(x)=rac{1}{x}$, область определения $D(f)=\mathbb{R}\setminus\{0\}$ (все вещественные числа, кроме 0).

4. Область значений функции

Это множество всех значений, которые может принимать функция y=f(x). Обозначается E(f). Пример: для функции $f(x)=x^2$, область значений $E(f)=[0,+\infty)$.

5. Способы задания функции

- **Аналитический**: функция задаётся формулой (f(x)=2x+1).
- Графический: функция представляется в виде графика на координатной плоскости.
- **Табличный**: значение функции задаётся для нескольких x в таблице.
- **Словесный**: функция описывается словами («площадь квадрата равна квадрату его стороны»).

6. Основные характеристики функций

- Чётность и нечётность:
 - \circ Функция чётная, если f(-x)=f(x) ($y=x^2$).
 - $\circ\;$ Функция нечётная, если f(-x)=-f(x) ($y=x^3$).
- **Периодичность**: функция периодическая, если существует число T>0, при котором f(x+T)=f(x) ($y=\sin(x)$).
- **Монотонность**: функция возрастает ($f(x_1) < f(x_2)$) или убывает ($f(x_1) > f(x_2)$).
- Ограниченность: функция ограничена сверху или снизу.

7. Обратные функции

Функция g(x) называется обратной для f(x), если g(f(x))=x и f(g(x))=x.

Пример: для $f(x)=e^x$, обратная $g(x)=\ln(x)$.

8. Элементарные функции и их графики

Элементарные функции:

- ullet Полиномиальные ($y=x^2$, $y=x^3$);
- Тригонометрические ($y=\sin(x)$, $y=\cos(x)$);
- ullet Показательные ($y=a^x$);
- ullet Логарифмические ($y=\ln(x)$);
- Обратные тригонометрические (y=rcsin(x)).

Графики этих функций имеют стандартный вид.

9. Преобразования графиков

- Смещение:
 - $\circ \ y = f(x) + c$: вверх/вниз.
 - $\circ \ y = f(x+c)$: влево/вправо.
- Масштабирование:
 - $\circ \;\; y = cf(x)$: растяжение/сжатие по оси y.
 - $\circ \ y = f(cx)$: растяжение/сжатие по оси x.
- Зеркальное отражение:
 - $\circ \ y = -f(x)$: отражение относительно x.
 - $\circ y = f(-x)$: отражение относительно y.

Если нужна детализация по какому-то из пунктов или примеры — дай знать!

Запомни: я учусь на первом курсе технической специальности, поэтому мне нужны ответы глубже, чем для школьников.

Вот следующий вопрос:

Понятие числовой последовательности. Предел последовательности. Ограниченность сходящейся числовой последовательности. Бесконечно малые и бесконечно большие последовательности.

1. Понятие числовой последовательности

Числовая последовательность — это функция, заданная на множестве натуральных чисел \mathbb{N} , которая каждому $n\in\mathbb{N}$ ставит в соответствие число a_n . Элементы последовательности обозначаются $a_1,a_2,\ldots,a_n,\ldots$

Пример: $a_n=rac{1}{n}$, где $n=1,2,3,\ldots$

- **Формальный вид**: $\{a_n\}$ или (a_n) .
- Типы задания:
 - \circ Явный: a_n выражается через n (например, $a_n=(-1)^n\cdot rac{1}{n}$).
 - $\circ~$ Рекуррентный: каждый член выражается через предыдущие (например, $a_1=1, a_{n+1}=rac{a_n}{2}$).

2. Предел числовой последовательности

Предел последовательности — это значение, к которому стремятся её члены при $n o \infty$.

Формальное определение: число A называется пределом последовательности $\{a_n\}$, если для любого arepsilon>0 существует такое $N\in\mathbb{N}$, что для всех n>N выполняется $|a_n-A|<arepsilon.$ Обозначение: $\lim_{n\to\infty}a_n=A$ или $a_n\to A$ при $n\to\infty.$

Пример: для последовательности $a_n=rac{1}{n}$, предел $\lim_{n o\infty}a_n=0.$

3. Ограниченность сходящейся числовой последовательности

Если последовательность $\{a_n\}$ имеет предел A, то она ограничена, то есть существует такое число M>0, что для всех $n\colon |a_n|\le M$.

Пример: $a_n = (-1)^n \cdot \frac{1}{n}$ сходится к 0 и ограничена M=1.

Обоснование: члены сходящейся последовательности не могут «убегать» на бесконечность, иначе противоречие с определением предела.

4. Бесконечно малые и бесконечно большие последовательности

• **Бесконечно малая последовательность**: Это последовательность $\{a_n\}$, у которой предел равен нулю ($\lim_{n \to \infty} a_n = 0$).

Пример:
$$a_n=rac{1}{n},\quad a_n=rac{1}{n^2}.$$

Свойства:

- 1. Если $\{a_n\}$ и $\{b_n\}$ бесконечно малые, то $\{a_n+b_n\}$ тоже бесконечно малая.
- 2. Если $\{a_n\}$ бесконечно малая и ограниченная последовательность $\{c_n\}$, то $\{a_n\cdot c_n\}$ тоже бесконечно малая.
- **Бесконечно большая последовательность**: Это последовательность $\{a_n\}$, у которой члены стремятся к бесконечности ($a_n \to \infty$ или $a_n \to -\infty$).

Пример:
$$a_n=n,\quad a_n=n^2.$$

Свойства:

- 1. Если $\{a_n\}$ бесконечно большая, то $\{1/a_n\}$ бесконечно малая.
- 2. Если $\{a_n\}$ бесконечно большая, то $\{a_n+b_n\}$ тоже бесконечно большая (при b_n ограниченной).

Если хочешь углубиться в доказательства или разобрать свойства на примерах, дай знать!

Третий вопрос:

Два определения предела функции в точке, их эквивалентность. Единственность предела (с док-вом).

1. Определение предела функции в точке

Первое определение (по Коши)

Число A называется пределом функции f(x) в точке x_0 , если для любого $\varepsilon>0$ существует такое $\delta>0$, что для всех x, удовлетворяющих условию $0<|x-x_0|<\delta$, выполняется неравенство $|f(x)-A|<\varepsilon$.

Обозначение: $\lim_{x o x_0}f(x)=A$ или f(x) o A при $x o x_0.$

Второе определение (по Гейне)

Число A называется пределом функции f(x) в точке x_0 , если для любой последовательности $\{x_n\}$, сходящейся к x_0 ($x_n \to x_0$, $x_n \ne x_0$), соответствующая последовательность значений функции $f(x_n)$ сходится к A ($f(x_n) \to A$).

2. Эквивалентность определений

Определения Коши и Гейне эквивалентны, то есть каждое из них можно использовать для определения предела функции.

Доказательство:

- ullet Коши o Гейне: Пусть $\lim_{x o x_0}f(x)=A$ по Коши. Возьмём любую последовательность $\{x_n\}$, такую что $x_n o x_0$, $x_n
 eq x_0$. Для любого arepsilon>0 существует $\delta>0$, что $|x-x_0|<\delta$ влечёт |f(x)-A|<arepsilon. Так как $x_n o x_0$, начиная с некоторого номера n, $|x_n-x_0|<\delta$, и поэтому $|f(x_n) - A| < arepsilon$, что доказывает $f(x_n) o A.$
- ullet Гейне o Коши: Пусть $\lim_{x o x_0} \overline{f}(x) = A$ по Гейне. Возьмём arepsilon > 0. Предположим, что не существует $\delta>0$, такого что $|x-x_0|<\delta$ влечёт |f(x)-A|<arepsilon. Тогда найдётся последовательность $\{x_n\}$, такая что $x_n o x_0$, но $|f(x_n)-A|\ge arepsilon$. Это противоречит условию, что $f(x_n) o A$. Следовательно, определение Коши выполняется.

3. Единственность предела

Теорема:

Предел функции f(x) в точке x_0 , если он существует, единственен.

Доказательство:

Пусть у функции f(x) в точке x_0 существуют два предела A и B, то есть: $\lim_{x o x_0}f(x)=$ A и $\lim_{x o x_0}f(x)=B.$

По определению предела, для любого arepsilon>0 существуют такие $\delta_1>0$ и $\delta_2>0$, что:

- ullet если $0<|x-x_0|<\delta_1$, то $|f(x)-A|<rac{arepsilon}{2}$, ullet если $0<|x-x_0|<\delta_2$, то $|f(x)-B|<rac{arepsilon}{2}.$

Возьмём $\delta=\min(\delta_1,\delta_2)$. Тогда при $0<|x-x_0|<\delta$ одновременно выполняются: |f(x)-A|< $|\frac{\varepsilon}{2}, \quad |f(x) - B| < \frac{\varepsilon}{2}.$

Из неравенства треугольника: $|A-B|=|A-f(x)+f(x)-B|\leq |A-f(x)|+|f(x)-B|$.

Следовательно: $|A-B|<rac{arepsilon}{2}+rac{arepsilon}{2}=arepsilon.$

Так как arepsilon>0 — произвольное, получаем |A-B|=0, то есть A=B.

Вывод:

Функция не может иметь более одного предела в точке.

Бесконечно малые и бесконечно большие функции, связь между ними. Бесконечно малые функции одного порядка малости. Свойства бесконечно малых. Лемма о представлении функции в виде суммы постоянной и бесконечно малой функции (с док-вом).

1. Бесконечно малые и бесконечно большие функции

Бесконечно малые функции

Функция lpha(x) называется **бесконечно малой** при $x o x_0$, если её предел равен нулю:

$$\lim_{x o x_0} lpha(x) = 0.$$

Пример: $\overline{lpha(x)}=rac{1}{x}$ при $x o\infty$, $\overline{lpha(x)}=x^2$ при x o0.

Бесконечно большие функции

Функция eta(x) называется **бесконечно большой** при $x o x_0$, если её абсолютное значение неограниченно возрастает:

$$\lim_{x o x_0}|eta(x)|=\infty.$$

Пример: $eta(x)=x^3$ при $x o\infty$, $eta(x)=rac{1}{x}$ при $x o0^+.$

Связь между ними

Если eta(x) — бесконечно большая функция, то $lpha(x)=rac{1}{eta(x)}$ будет бесконечно малой при $x o x_0$, и наоборот.

Пример: eta(x)=x — бесконечно большая при $x o\infty$, а $lpha(x)=rac{1}{x}$ — бесконечно малая.

2. Бесконечно малые функции одного порядка малости

Определение

Две функции $\alpha(x)$ и $\beta(x)$ называются **бесконечно малыми одного порядка малости** при $x o x_0$, если существует конечный ненулевой предел их отношения:

$$\lim_{x o x_0}rac{lpha(x)}{eta(x)}=C,\quad 0<|C|<\infty.$$

Пример:

ullet $lpha(x)=rac{1}{x^2}$ и $eta(x)=rac{2}{x^2}$ одного порядка малости, так как:

$$\lim_{x o\infty}rac{lpha(x)}{eta(x)}=rac{1}{2}.$$

Замечание

Если C=0, то lpha(x) является бесконечно малой **высшего порядка** по сравнению с eta(x). Если $C=\infty$, то lpha(x) является бесконечно малой **низшего порядка**.

3. Свойства бесконечно малых функций

1. Сумма конечного числа бесконечно малых функций также является бесконечно малой:

$$lpha_1(x),lpha_2(x),\ldots,lpha_n(x) o 0 \implies \sum_{i=1}^nlpha_i(x) o 0.$$

2. Произведение бесконечно малой функции и ограниченной функции — бесконечно малая:

$$lpha(x) o 0, \quad \exists M > 0 \, : \, |f(x)| \leq M \implies lpha(x) \cdot f(x) o 0.$$

- 3. **Произведение** двух бесконечно малых функций бесконечно малая функция более высокого порядка.
- 4. Если lpha(x) o 0 и eta(x) o 0, то $rac{lpha(x)}{eta(x)}$ может быть конечной, бесконечно малой или бесконечно большой.

4. Лемма о представлении функции в виде суммы постоянной и бесконечно малой функции

Формулировка

Если функция f(x) имеет конечный предел при $x o x_0$, то её можно представить в виде:

$$f(x) = A + \alpha(x),$$

где $A=\lim_{x o x_0}f(x)$, а lpha(x) — бесконечно малая функция при $x o x_0.$

Доказательство

1. Пусть $A=\lim_{x o x_0}f(x)$. Это означает, что для любого arepsilon>0 существует $\delta>0$, такое что при $0<|x-x_0|<\delta$:

$$|f(x) - A| < \varepsilon$$
.

2. Представим f(x) как:

$$f(x) = A + lpha(x), \quad$$
где $lpha(x) = f(x) - A.$

3. Поскольку |f(x)-A|<arepsilon , то:

$$|lpha(x)|=|f(x)-A| o 0$$
 при $x o x_0.$

Следовательно, $\alpha(x)$ — бесконечно малая функция.

Вывод

Любую функцию с конечным пределом можно разложить на постоянную и бесконечно малую составляющие.

Если нужно дополнить примерами или подробностями, напиши!

Свойства пределов функций (с док-вом)

Свойства пределов функций

Пусть функции f(x) и g(x) имеют пределы при $x o x_0$:

$$\lim_{x o x_0}f(x)=A$$
 и $\lim_{x o x_0}g(x)=B.$

Рассмотрим основные свойства пределов.

1. Линейность предела

Свойство:

Если c — произвольная константа, то:

$$\lim_{x o x_0}ig(c\cdot f(x)ig)=c\cdot \lim_{x o x_0}f(x)=c\cdot A.$$

А также:

$$\lim_{x o x_0}ig(f(x)+g(x)ig)=\lim_{x o x_0}f(x)+\lim_{x o x_0}g(x)=A+B.$$

Доказательство:

1. Для суммы f(x)+g(x): По определению предела для любого arepsilon>0 найдутся такие $\delta_1>0$ и $\delta_2>0$, что:

$$|f(x)-A|<rac{arepsilon}{2},\quad |g(x)-B|<rac{arepsilon}{2} \quad$$
при $0<|x-x_0|<\min(\delta_1,\delta_2).$

Тогда:

$$|(f(x)+g(x))-(A+B)|=|(f(x)-A)+(g(x)-B)|\leq |f(x)-A|+|g(x)-B|<rac{arepsilon}{2}+rac{arepsilon}{2}$$

Следовательно, $\lim_{x o x_0} ig(f(x) + g(x)ig) = A + B.$

2. Для произведения на константу $c \cdot f(x)$: Пусть $|f(x) - A| < rac{arepsilon}{|c|}$. Тогда:

$$|c\cdot f(x)-c\cdot A|=|c|\cdot |f(x)-A|<|c|\cdot rac{arepsilon}{|c|}=arepsilon.$$

Следовательно, $\lim_{x o x_0}ig(c\cdot f(x)ig)=c\cdot A.$

2. Предел произведения

Свойство:

$$\lim_{x o x_0}ig(f(x)\cdot g(x)ig)=\lim_{x o x_0}f(x)\cdot\lim_{x o x_0}g(x)=A\cdot B.$$

Доказательство:

По определению предела, для любого arepsilon>0 найдутся такие $\delta_1>0$ и $\delta_2>0$, что:

$$|f(x)-A| при $0<|x-x_0|<\min(\delta_1,\delta_2).$$$

Рассмотрим разность:

$$|f(x)\cdot g(x)-A\cdot B|=|f(x)\cdot g(x)-f(x)\cdot B+f(x)\cdot B-A\cdot B|.$$

Воспользуемся неравенством треугольника:

$$|f(x)\cdot g(x)-A\cdot B|\leq |f(x)|\cdot |g(x)-B|+|B|\cdot |f(x)-A|.$$

Так как f(x) и g(x) ограничены в окрестности x_0 , их можно заменить на верхние оценки, после чего доказательство сводится к выбору подходящих ε_1 и ε_2 .

3. Предел частного

Свойство:

Если $B \neq 0$, то:

$$\lim_{x o x_0}rac{f(x)}{g(x)}=rac{\lim_{x o x_0}f(x)}{\lim_{x o x_0}g(x)}=rac{A}{B}.$$

Доказательство:

По определению предела, $g(x) o B \neq 0$, значит существует такая окрестность точки x_0 , где $g(x) \neq 0$. Рассмотрим разность:

$$\left| rac{f(x)}{g(x)} - rac{A}{B}
ight| = \left| rac{f(x) \cdot B - g(x) \cdot A}{g(x) \cdot B}
ight|.$$

Разделим на $|g(x)| \cdot |B|$ и воспользуемся свойством суммы:

$$\left|rac{f(x)}{g(x)} - rac{A}{B}
ight| \leq rac{|f(x) - A|}{|g(x)|} + rac{|A|\cdot |g(x) - B|}{|g(x)|\cdot |B|}.$$

Так как g(x) o B
eq 0, знаменатель |g(x)| остаётся ограниченным. При $x o x_0$ оба слагаемых в правой части стремятся к нулю. Значит, предел равен $rac{A}{B}$.

4. Предел композиции функций

Свойство:

Если
$$\lim_{x o x_0}g(x)=A$$
 и $\lim_{x o A}f(y)=C$, то:

$$\lim_{x o x_0}f(g(x))=C.$$

Доказательство:

По определению предела, g(x) o A при $x o x_0$, значит для любого $arepsilon_1>0$ существует $\delta_1>0$, что $|g(x)-A|<arepsilon_1$. Также f(y) o C, значит для любого arepsilon>0 существует $\delta_2>0$, что |f(y)-C|<arepsilon при $|y-A|<\delta_2$. Выбирая $arepsilon_1=\delta_2$, получаем, что |f(g(x))-C|<arepsilon, что доказывает предел.

Вывод

Эти свойства позволяют анализировать сложные функции, разбивая их на комбинации более простых. Если нужны дополнительные примеры или детали, напиши!

Предел функции при х стремящемся к бесконечности. Бесконечно большие и бесконечно малые функции при х стремящемся к бесконечности. Односторонние пределы.

1. Предел функции при $x o\infty$

Определение:

Предел функции f(x) при $x o \infty$ записывается как:

$$\lim_{x o\infty}f(x)=A,$$

если для любого arepsilon>0 существует число M>0, такое что:

$$|f(x)-A| для всех $x>M.$$$

Это означает, что по мере увеличения x, значения f(x) становятся сколь угодно близкими к A.

Замечания:

- 1. Если предел равен конечному числу, функция называется **сходящейся** при $x o \infty$.
- 2. Если предел не существует или равен ∞ или $-\infty$, функция называется **расходящейся**.

2. Бесконечно большие и бесконечно малые функции при $x o\infty$

Бесконечно большая функция

Функция f(x) называется **бесконечно большой** при $x o \infty$, если её значение неограниченно возрастает:

$$\lim_{x o\infty}|f(x)|=\infty.$$

Примеры:

•
$$f(x) = x$$

- $oldsymbol{ullet} oldsymbol{f}(x) = x^2, \ oldsymbol{ullet} oldsymbol{f}(x) = e^x$ при $x o \infty$.

Бесконечно малая функция

Функция lpha(x) называется **бесконечно малой** при $x o \infty$, если:

$$\lim_{x o\infty} lpha(x) = 0.$$

Примеры:

- $egin{aligned} ullet & lpha(x) = rac{1}{x}, \ ullet & lpha(x) = rac{1}{x^2}, \ ullet & lpha(x) = e^{-x} \$ при $x o \infty.$

Связь между ними

Если f(x) — бесконечно большая функция, то $rac{1}{f(x)}$ будет бесконечно малой, и наоборот. Например:

- ullet f(x)=x бесконечно большая при $x o \infty$,
- ullet $lpha(x)=rac{1}{x}$ бесконечно малая.

3. Односторонние пределы

Определение:

Односторонние пределы функции определяются в зависимости от направления, с которого xприближается к точке x_0 .

1. Правосторонний предел:

$$\lim_{x o x_0^+}f(x)$$

означает, что x стремится к x_0 с больших значений ($x>x_0$).

2. Левосторонний предел:

$$\lim_{x o x_0^-}f(x)$$

означает, что x стремится к x_0 с меньших значений ($x < x_0$).

Связь с общим пределом:

Общий предел функции f(x) в точке x_0 существует тогда и только тогда, когда существуют оба односторонних предела и они равны:

$$\lim_{x o x_0}f(x)=L\quad\Leftrightarrow\quad \lim_{x o x_0^+}f(x)=\lim_{x o x_0^-}f(x)=L.$$

Пример:

Функция
$$f(x) = egin{cases} 1, & x>0, \ -1, & x<0 \end{cases}$$
 имеет:

$$\lim_{x o 0^+}f(x)=1,\quad \lim_{x o 0^-}f(x)=-1.$$

Общий предел в точке x=0 не существует, так как правосторонний и левосторонний пределы различны.

Пример анализа функции при $x o \infty$:

Рассмотрим $f(x)=rac{2x^2+3x+1}{x^2-4}$ при $x o\infty$.

1. Разделим числитель и знаменатель на x^2 :

$$f(x)=rac{rac{2x^2}{x^2}+rac{3x}{x^2}+rac{1}{x^2}}{rac{x^2}{x^2}-rac{4}{x^2}}=rac{2+rac{3}{x}+rac{1}{x^2}}{1-rac{4}{x^2}}.$$

- 2. При $x o \infty$:
 - $egin{array}{ll} \circ & rac{3}{x}
 ightarrow 0, \ \circ & rac{1}{x^2}
 ightarrow 0, \ \circ & rac{4}{x^2}
 ightarrow 0. \end{array}$
- з. Тогда:

$$\lim_{x o\infty}f(x)=rac{2+0+0}{1-0}=2.$$

Если нужно разобрать дополнительные примеры или вопросы, пиши!

Первый замечательный предел (с док-вом) и его следствия (с док-вом).

Первый замечательный предел

Формулировка:

$$\lim_{x o 0} rac{\sin x}{x} = 1.$$

Доказательство первого замечательного предела

1. Геометрическая интерпретация:

Рассмотрим единичную окружность (радиус R=1) с центром в начале координат. Возьмем точку A(1,0) и точку B на окружности, такую что угол $\angle AOB=x$ (в радианах). Тогда:

- \circ Длина дуги AB равна x,
- \circ Отрезок OB радиус окружности.
- 2. Неравенства из геометрии:

Рассмотрим треугольник OAB, где:

- $\circ \sin x$ это высота OC, опущенная на отрезок OA,
- \tan x = \frac{\text{длина отрезка \(DF})}{OA}).
 Отсюда следует неравенство:

$$\sin x < x < \tan x$$
.

3. **Делим всё на** $\sin x$ (для x > 0):

$$1 \le \frac{x}{\sin x} \le \frac{1}{\cos x}.$$

4. Переход к пределу:

При
$$x o 0$$
:

- $\circ \cos x
 ightarrow 1$,
- \circ Следовательно, $rac{1}{\cos x}
 ightarrow 1.$ По теореме о зажатой функции:

$$\lim_{x \to 0} \frac{x}{\sin x} = 1.$$

Таким образом:

$$\lim_{x \to 0} \frac{\sin x}{x} = 1.$$

Следствия первого замечательного предела

1. Линейная аппроксимация синуса

$$\sin x pprox x$$
 при $x o 0$.

2. Предел для $\frac{1-\cos x}{x^2}$

Рассмотрим:

$$\lim_{x\to 0}\frac{1-\cos x}{x^2}.$$

Используем формулу:

$$1-\cos x=2\sin^2\frac{x}{2}.$$

Подставим в предел:

$$\lim_{x o 0} rac{1 - \cos x}{x^2} = \lim_{x o 0} rac{2 \sin^2 rac{x}{2}}{x^2}.$$

Заменим $\sin^2 rac{x}{2}$ на $\left(rac{x}{2}
ight)^2$ при x o 0:

$$\lim_{x o 0}rac{2\sin^2rac{x}{2}}{x^2}=\lim_{x o 0}rac{2\cdot\left(rac{x}{2}
ight)^2}{x^2}=\lim_{x o 0}rac{2\cdotrac{x^2}{4}}{x^2}=\lim_{x o 0}rac{1}{2}=rac{1}{2}.$$

Итог:

$$\lim_{x o 0}rac{1-\cos x}{x^2}=rac{1}{2}.$$

3. Предел для $\frac{\tan x}{x}$

$$\lim_{x \to 0} \frac{\tan x}{x}$$
.

Используем определение тангенса:

$$\tan x = \frac{\sin x}{\cos x}.$$

Тогда:

$$\frac{\tan x}{x} = \frac{\sin x}{x} \cdot \frac{1}{\cos x}.$$

По первому замечательному пределу:

$$\lim_{x o 0}rac{\sin x}{x}=1,\quad \lim_{x o 0}rac{1}{\cos x}=1.$$

Следовательно:

$$\lim_{x\to 0}\frac{\tan x}{x}=1.$$

Если требуется дополнительное разъяснение или больше примеров применения, напиши!

Второй замечательный предел и его следствия (с док-вами).

Второй замечательный предел

Формулировка:

$$\lim_{x o\infty}\left(1+rac{1}{x}
ight)^x=e,$$

где e pprox 2.718 — основание натурального логарифма.

Доказательство второго замечательного предела

Рассмотрим $y = \left(1 + rac{1}{x}
ight)^x$. Применим логарифмирование, чтобы перейти от показательной функции:

$$\ln y = x \ln \left(1 + rac{1}{x}
ight).$$

Теперь исследуем поведение $x \ln \left(1 + rac{1}{x}
ight)$ при $x o \infty$.

1. Разложение логарифма:

Используем приближение $\ln(1+u)pprox u$ при u o 0, где $u=rac{1}{x}.$ Тогда:

$$\ln\left(1+rac{1}{x}
ight)pproxrac{1}{x}.$$

Подставим это в выражение:

$$x \ln \left(1 + rac{1}{x}
ight) pprox x \cdot rac{1}{x} = 1.$$

2. Переход к пределу:

Так как $\ln y o 1$ при $x o \infty$, то:

$$y=e^{\ln y}
ightarrow e^1=e.$$

Таким образом, второй замечательный предел доказан:

$$\lim_{x o\infty}\left(1+rac{1}{x}
ight)^x=e.$$

Следствия второго замечательного предела

1. Приближенное значение \emph{e}

Из второго замечательного предела можно вывести приближенное значение числа e, если взять конечное x. Например, при x=10:

$$epprox \left(1+rac{1}{10}
ight)^{10} = 2.5937.$$

При увеличении x, значение становится более точным.

2. Формула для предела $\left(1+rac{a}{x} ight)^x$

Рассмотрим:

$$\lim_{x o\infty}\left(1+rac{a}{x}
ight)^x,$$

где a — произвольная константа.

Используем замену $u=rac{a}{x}$, так что u o 0 при $x o \infty$:

$$\left(1+rac{a}{x}
ight)^x=\left[(1+u)^{rac{1}{u}}
ight]^a.$$

Из второго замечательного предела:

$$\lim_{u\to 0} \left(1+u\right)^{\frac{1}{u}} = e.$$

Тогда:

$$\lim_{x o\infty}\left(1+rac{a}{x}
ight)^x=e^a.$$

Пример:

При a=2:

$$\lim_{x o\infty}\left(1+rac{2}{x}
ight)^x=e^2.$$

3. Биномиальное приближение для больших $oldsymbol{x}$

Для функций вида $\left(1+\frac{1}{x}\right)^x$, второй замечательный предел задает связь с экспонентой. Это используется в разложениях, связанных с биномиальной формулой и теорией вероятностей.

4. Пределы вида $\lim_{x o\infty}\left(1+rac{k}{x}
ight)^{x+b}$

Если b — постоянная, то:

$$\lim_{x o\infty}\left(1+rac{k}{x}
ight)^{x+b}=e^k.$$

Доказательство аналогично разбору второго замечательного предела, где дополнительно учитывается влияние b, которое при $x \to \infty$ становится несущественным.

Если требуется пояснить какой-то из выводов или разобрать задачу на эту тему, напиши!

Эквивалентные функции, примеры. Функция, бесконечно малая по сравнению с другой функцией. Символ «о-малое».

Эквивалентные функции

Определение:

Две функции f(x) и g(x) называются **эквивалентными** в точке a (включая $a=\infty$), если:

$$\lim_{x o a}rac{f(x)}{g(x)}=1.$$

Обозначение:

$$f(x) \sim g(x), \quad x o a.$$

Эквивалентные функции имеют одинаковую асимптотику в точке a, т.е. их значения стремятся к одной и той же величине (с точностью до умножения на константу 1).

Примеры:

1. При x o 0:

$$\sin x \sim x, \quad$$
 так как $\lim_{x o 0} rac{\sin x}{x} = 1.$

2. При $x o \infty$:

$$\ln(x+1) \sim \ln x, \quad$$
 так как $\lim_{x o\infty} rac{\ln(x+1)}{\ln x} = 1.$

3. При $x o 0^+$:

$$e^x-1\sim x,$$
 так как $\lim_{x o 0}rac{e^x-1}{x}=1.$

Бесконечно малая функция по сравнению с другой

Определение:

Функция f(x) называется **бесконечно малой по сравнению с другой функцией** g(x) в точке a, если:

$$\lim_{x o a}rac{f(x)}{g(x)}=0.$$

Обозначение:

$$f(x)=o(g(x)),\quad x o a.$$

Это означает, что f(x) убывает (или возрастает) намного быстрее, чем g(x), при приближении x к a.

Примеры:

1. При x o 0:

$$x^2=o(x),$$
 так как $\lim_{x o 0}rac{x^2}{x}=0.$

2. При $x o \infty$:

$$\ln x = o(x), \quad$$
 так как $\lim_{x o \infty} rac{\ln x}{x} = 0.$

3. При x o 0:

$$1-\cos x=o(x^2), \quad$$
 так как $\lim_{x o 0}rac{1-\cos x}{x^2}=rac{1}{2}.$

Связь символов o и \sim

1. Если $f(x) \sim g(x)$, то:

$$f(x) - g(x) = o(g(x)).$$

Это означает, что разница между эквивалентными функциями становится бесконечно малой относительно любой из них.

Пример: Для $\sin x \sim x$ при $x \to 0$:

$$\sin x - x = o(x).$$

2. Если f(x) = o(g(x)), то f(x) убывает быстрее, чем g(x), и функции не эквивалентны.

Замечания:

• Символ o используется для оценки остаточных членов разложений, например, в ряде Тейлора:

$$e^x=1+x+rac{x^2}{2}+o(x^2),\quad x o 0.$$

Если нужна дополнительная теория или примеры задач, напиши!

Определения непрерывности функции в точке. Свойства функций, непрерывных в точке (с док-вом). Непрерывность основных элементарных функций

Определение непрерывности функции в точке

1. Определение через предел:

Функция f(x) называется **непрерывной в точке** x=a, если выполнены три условия:

- 1. f(a) существует (функция определена в точке a);
- 2. Предел $\lim_{x \to a} f(x)$ существует;
- 3. Значение функции совпадает с пределом:

$$\lim_{x o a}f(x)=f(a).$$

2. Определение через окрестности:

Функция f(x) непрерывна в точке a, если для любого arepsilon>0 найдётся $\delta>0$, такое что:

$$|f(x)-f(a)| для всех x из $(a-\delta,a+\delta).$$$

Свойства функций, непрерывных в точке

1. Арифметические операции:

Если функции $\overline{f(x)}$ и g(x) непрерывны в точке a, то:

- 1. f(x) + g(x) непрерывна в точке a;
- 2. f(x) g(x) непрерывна в точке a;
- 3. $f(x) \cdot g(x)$ непрерывна в точке a;
- 4. $rac{f(x)}{g(x)}$ непрерывна в точке a, если g(a)
 eq 0.

Доказательство (сложение и вычитание): Пусть $\lim_{x \to a} f(x) = f(a)$ и $\lim_{x \to a} g(x) = g(a)$. Тогда для суммы:

$$\lim_{x o a}[f(x)+g(x)]=\lim_{x o a}f(x)+\lim_{x o a}g(x)=f(a)+g(a),$$

что совпадает с [f+g](a). Аналогично для разности.

2. Составная функция:

Если f(x) непрерывна в точке a, а g(x) непрерывна в точке b=f(a), то составная функция g(f(x)) непрерывна в точке a.

Доказательство: Пусть $\lim_{x o a}f(x)=f(a)$, и $\lim_{y o b}g(y)=g(b)$, где b=f(a). Тогда:

$$\lim_{x o a}g(f(x))=g\left(\lim_{x o a}f(x)
ight)=g(f(a)).$$

3. Непрерывность монотонных функций:

Монотонная функция, определённая на интервале, может иметь лишь точки разрыва первого рода.

Непрерывность основных элементарных функций

1. Полиномы:

Полиномы вида $P(x)=a_nx^n+\overline{a_{n-1}}x^{n-1}+\ldots+\overline{a_1}x+\overline{a_0}$ непрерывны на всей числовой прямой, так как они являются суммой и произведением непрерывных функций.

2. Рациональные функции:

Функции вида $R(x)=rac{P(x)}{Q(x)}$, где P(x) и Q(x) — полиномы, непрерывны везде, где знаменатель Q(x)
eq 0.

3. Тригонометрические функции:

Функции $\sin x$, $\cos x$, $\tan x$ и другие тригонометрические функции непрерывны в своих областях определения.

4. Экспонента и логарифм:

Функции e^x и $\ln x$ непрерывны на $\mathbb R$ (для экспоненты) и на $(0,\infty)$ (для логарифма).

5. Корни:

Функция $\sqrt[n]{x}$ непрерывна на $[0,\infty)$ для n — целого числа $n\geq 2$.

Если нужны примеры или дополнительные разъяснения, пиши!

Точки разрыва. Их классификация. Примеры

Точки разрыва функции

Определение:

Точка x=a называется **точкой разрыва** функции f(x), если в этой точке нарушается хотя бы одно из условий непрерывности:

- 1. Функция не определена в x=a;
- 2. Предел $\lim_{x\to a} f(x)$ не существует;
- 3. Значение функции $\overline{f}(a)$ не совпадает с пределом.

Классификация точек разрыва

1. Точки разрыва первого рода (устранимый и скачок)

Предел $\lim_{x\to a} f(x)$ существует, но не равен f(a) или функция в точке не определена.

Типы разрыва первого рода:

1. Устранимый разрыв:

 $\lim_{x \to a} f(x)$ существует, но либо f(a) не определено, либо $f(a)
eq \lim_{x \to a} f(x)$. Такой разрыв можно устранить, определив значение функции в точке a равным пределу.

Пример:

$$f(x) = egin{cases} \sin x/x, & x
eq 0, \ 2, & x = 0. \end{cases}$$

Предел при x o 0:

$$\lim_{x o 0}rac{\sin x}{x}=1, \quad$$
 но $f(0)=2.$

Устранимый разрыв устраняется, если f(0) определить равным 1.

2. Скачок (разрыв второго рода):

Односторонние пределы $\lim_{x o a-}f(x)$ и $\lim_{x o a+}f(x)$ существуют, но не равны друг другу:

$$\lim_{x o a-} f(x)
eq \lim_{x o a+} f(x).$$

Пример:

$$f(x) = egin{cases} 1, & x < 0, \ 2, & x \geq 0. \end{cases}$$

Предел слева $\lim_{x o 0-}f(x)=1$, предел справа $\lim_{x o 0+}f(x)=2$. Разрыв скачком величиной 1.

2. Точки разрыва второго рода

Предел $\lim_{x \to a} f(x)$ не существует, потому что:

- Один из односторонних пределов не существует;
- Оба односторонних предела равны бесконечности;
- Односторонние пределы стремятся к бесконечности с разными знаками.

Пример (пределы расходятся):

$$f(x)=egin{cases} 1/x, & x>0,\ 1/(x+2), & x\leq 0. \end{cases}$$

В точке x = 0:

$$\lim_{x o 0+}f(x)=+\infty,\quad \lim_{x o 0-}f(x)=1/2.$$

Пример (пределы равны бесконечности):

$$f(x) = \frac{1}{(x-1)^2}.$$

В точке x = 1:

$$\lim_{x o 1+}f(x)=+\infty,\quad \lim_{x o 1-}f(x)=+\infty.$$

Таблица классификации

Тип точки разрыва	Условие	Пример
Устранимый	$\lim_{x o a}f(x)$ существует, $f(a) eq \lim_{x o a}f(x)$ или $f(a)$ не определено $f(x)=\sin x/x$ при $x=0$	
Скачок	$\lim_{x o a-}f(x) eq \lim_{x o a+}f(x)$	$f(x) = \ ext{Heaviside step function}$
Второго рода	$\lim_{x o a}f(x)$ не существует	$f(x)=1/(x-1)^2$

Замечания

- 1. Устранимые разрывы наиболее просты для устранения, если функция имеет значение предела.
- 2. Разрывы второго рода часто связаны с вертикальными асимптотами или осцилляциями функции.
- 3. Исследование точек разрыва полезно при анализе графиков и поведения функций на интервалах.

Если нужен разбор конкретных примеров или задач, напиши!

Свойства функций, непрерывных на отрезке (Теоремы Вейрштрасса)

Свойства функций, непрерывных на отрезке (Теоремы Вейерштрасса)

Определение непрерывной функции на отрезке

Функция f(x) называется **непрерывной на отрезке** [a,b], если она непрерывна в каждой точке этого отрезка, включая границы:

- $\lim_{x\to a^+} f(x) = f(a)$;
- $\lim_{x\to b-} f(x) = f(b)$.

Теоремы Вейерштрасса

1. Теорема о достижении максимума и минимума

Если f(x) непрерывна на отрезке [a,b], то она достигает на этом отрезке своих **наибольшего** и **наименьшего** значений. То есть существуют точки $c,d\in [a,b]$, такие что:

$$f(c) \leq f(x) \leq f(d)$$
 для всех $x \in [a,b]$.

Доказательство:

• Поскольку f(x) непрерывна на [a,b], она ограничена (следует из теоремы Больцано-Вейерштрасса о компактности множества [a,b]). • Компактность [a,b] гарантирует, что верхняя и нижняя грани множества значений функции f(x) достигаются.

Пример: Функция $f(x)=x^2$ на [-1,2]:

- $\max f(x) = 4$ при x = 2;
- ullet $egin{aligned} ullet$ $egin{aligned} ullet$ f(x) = 0 при x = 0.

2. Теорема о промежуточном значении функции (Теорема Больцано)

Если f(x) непрерывна на отрезке [a,b] и $f(a) \neq f(b)$, то для любого числа c между f(a) и f(b) существует хотя бы одна точка $\xi \in (a,b)$, такая что:

$$f(\xi) = c$$
.

Доказательство:

- Рассмотрим множество $S = \{x \in [a,b] : f(x) \leq c\}$, которое непусто <u>и ограничено.</u>
- По теореме Вейерштрасса, S имеет точную верхнюю грань ξ .
- ullet Непрерывность функции f(x) на [a,b] гарантирует, что в точке ξ $f(\xi)=c$.

Пример: Функция $f(x)=x^3-x$ на [-2,2]:

- f(-2) = -6, f(2) = 6.
- ullet Для c=0, найдём $\xi\in(-2,2)$, где $f(\xi)=0$.
- Решение f(x) = 0: x = -1, 0, 1.

3. Теорема о равномерной непрерывности

Если функция f(x) непрерывна на отрезке [a,b], то она **равномерно непрерывна** на этом отрезке.

Это означает, что для любого arepsilon>0 найдётся $\delta>0$, такое что для любых $x_1,x_2\in[a,b]$:

$$|x_1-x_2|<\delta \implies |f(x_1)-f(x_2)|$$

Доказательство:

- Из непрерывности на отрезке [a,b] и компактности этого отрезка.
- Если бы функция не была равномерно непрерывной, существовали бы точки, где изменения $|f(x_1)-f(x_2)|$ нарушали бы требуемую зависимость от arepsilon, что противоречит локальной непрерывности.

Пример: Функция $f(x) = \sqrt{x}$ непрерывна и равномерно непрерывна на [0,4], но не на $[0,\infty)$, так как на бесконечности скорость изменения f(x) уменьшается.

Непрерывность и основные свойства

- 1. Непрерывность обеспечивает ограниченность функции на $[a,b]oldsymbol{.}$
- 2. Достижение экстремумов связано с компактностью области определения.

3. Промежуточное значение помогает решать уравнения вида f(x)=c на отрезке.

Если есть вопросы или нужны дополнительные примеры, напиши!

Асимптоты графика функции и методы их отыскания (уравнение наклонной асимптоты с выводом)

Асимптоты графика функции

Асимптоты — это прямые, к которым график функции y=f(x) приближается при стремлении аргумента x к $+\infty$, $-\infty$ или некоторому конечному значению x=c, но никогда их не пересекает (или пересекает конечное число раз).

Типы асимптот

1. Горизонтальные асимптоты

Прямая y=C является горизонтальной асимптотой графика функции, если:

$$\lim_{x o +\infty} f(x) = C$$
 или $\lim_{x o -\infty} f(x) = C.$

Пример:

$$f(x)=rac{1}{x},\quad \lim_{x o\pm\infty}f(x)=0.$$

Горизонтальная асимптота: y = 0.

2. Вертикальные асимптоты

Прямая x=a является вертикальной асимптотой, если:

$$\lim_{x o a-}f(x)=\pm\infty$$
 или $\lim_{x o a+}f(x)=\pm\infty.$

Пример:

$$f(x)=rac{1}{x-1},$$
 в точке $x=1$ вертикальная асимптота.

3. Наклонные (косые) асимптоты

Прямая y=kx+b является наклонной асимптотой, если при $x o \pm \infty$:

$$\lim_{x o +\infty}\left(f(x)-(kx+b)
ight)=0.$$

Здесь k — наклон, b — свободный член.

Методы нахождения асимптот

1. Горизонтальные асимптоты

Для нахождения горизонтальной асимптоты:

$$C_+ = \lim_{x o +\infty} f(x), \quad C_- = \lim_{x o -\infty} f(x).$$

Если пределы существуют, то $y=C_+$ и $y=C_-$ — горизонтальные асимптоты.

Пример: Для $f(x)=rac{2x^2+3}{x^2+1}$:

$$\lim_{x o\pm\infty}f(x)=rac{2x^2}{x^2}=2.$$

Горизонтальная асимптота: y=2.

2. Вертикальные асимптоты

Для нахождения вертикальных асимптот нужно исследовать поведение функции в точках, где она не определена (обычно там, где знаменатель обращается в ноль):

$$\lim_{x o a-}f(x)=\pm\infty$$
 или $\lim_{x o a+}f(x)=\pm\infty.$

Пример: Для $f(x) = \frac{1}{x-1}$:

$$\lim_{x o 1-}f(x)=-\infty,\quad \lim_{x o 1+}f(x)=+\infty.$$

Вертикальная асимптота: x = 1.

3. Наклонные (косые) асимптоты

Чтобы найти наклонную асимптоту y=kx+b:

1. Вычисляем наклон k:

$$k = \lim_{x o \pm \infty} rac{f(x)}{x}.$$

2. Находим свободный член b:

$$b=\lim_{x o\pm\infty}\left(f(x)-kx
ight).$$

Пример: Для $f(x)=rac{x^2+x+1}{x}$:

$$f(x) = x + 1 + \frac{1}{x}.$$

При $x o \infty$:

$$k=1$$
, $b=\lim_{x o\infty}\left(f(x)-x
ight)=1$.

Наклонная асимптота: y = x + 1.

Связь между типами асимптот

- У рациональных функций:
 - Горизонтальные асимптоты возникают, если степень числителя равна или меньше степени знаменателя.
 - Наклонные асимптоты если степень числителя на 1 больше степени знаменателя.
 - Вертикальные асимптоты зависят от нулей знаменателя.

Пример полного анализа функции

Рассмотрим функцию $f(x)=rac{x^2+3x+2}{x-1}$:

1. Вертикальная асимптота:

$$x - 1 = 0 \implies x = 1.$$

2. **Горизонтальная или наклонная асимптота**: Разделим $rac{x^2+3x+2}{x-1}$ на x-1:

$$f(x)=x+4+\frac{6}{x-1}.$$

При $x o \infty$, наклонная асимптота: y = x + 4.

- 3. Итог:
 - \circ Вертикальная асимптота: x=1;
 - \circ Наклонная асимптота: y = x + 4.

Если нужна дополнительная практика или разбор примеров, дай знать!

Дифференцируемость функции в точке. Определение и геометрический смысл производной функции и дифференциала. Уравнение касательной и нормали к кривой (с выводом)

Дифференцируемость функции в точке

Определение

Функция f(x) называется **дифференцируемой** в точке x_0 , если существует конечный пределразности:

$$f'(x_0)=\lim_{h o 0}rac{f(x_0+h)-f(x_0)}{h}.$$

Этот предел называется **производной функции в точке** x_0 . Если предел существует, функция f(x) называется дифференцируемой в x_0 .

Дифференцируемость функции в точке x_0 всегда подразумевает её **непрерывность** в этой точке, но не наоборот.

Геометрический смысл производной

Производная функции $\overline{f'(x_0)}$:

- 1. Численно равна угловому коэффициенту (наклону) касательной к графику функции в точке x_0 .
- 2. Показывает скорость изменения функции f(x) при изменении аргумента x.

На графике:

- Если $f'(x_0) > 0$: функция возрастает в окрестности x_0 .
- ullet Если $f'(x_0) < 0$: функция убывает в окрестности x_0 .
- Если $f'(x_0) = 0$: в точке x_0 может быть максимум, минимум или перегиб.

Геометрический смысл дифференциала

Если функция f(x) дифференцируема в точке x_0 , её приращение $\Delta y = f(x_0 + \Delta x) - f(x_0)$ можно представить в виде:

$$\Delta y = f'(x_0)\Delta x + o(\Delta x),$$

где $f'(x_0)\Delta x$ — главная линейная часть приращения, а $o(\Delta x)$ — бесконечно малая величина более высокого порядка.

Дифференциал функции определяется как:

$$dy = f'(x_0) dx,$$

где $dx = \Delta x$. Это линейная приближающая функция для изменения Δy .

Уравнение касательной и нормали к графику функции

Уравнение касательной

Касательная к графику функции y=f(x) в точке $(x_0,f(x_0))$ — это прямая, имеющая тот же наклон, что и график функции в этой точке.

Уравнение касательной:

$$y-f(x_0)=f'(x_0)(x-x_0),$$

где $f'(x_0)$ — производная функции в точке x_0 .

Вывод:

- 1. Угловой коэффициент прямой: $k=f'(x_0)$.
- 2. Уравнение прямой с угловым коэффициентом k, проходящей через точку $(x_0,f(x_0))$:

$$y-f(x_0)=k(x-x_0).$$

3. Подставляем $k=f'(x_0)$: получаем уравнение касательной.

Уравнение нормали

Нормаль к графику функции y=f(x) в точке $(x_0,f(x_0))$ — это прямая, перпендикулярная касательной.

Если наклон касательной $k=f^{\prime}(x_0)$, то наклон нормали k_n удовлетворяет условию:

$$k\cdot k_n = -1 \quad \Longrightarrow \quad k_n = -rac{1}{f'(x_0)}.$$

Уравнение нормали:

$$y-f(x_0)=-rac{1}{f'(x_0)}(x-x_0).$$

Пример

Рассмотрим функцию $f(x)=x^2$ и найдём касательную и нормаль в точке $x_0=1$:

- 1. Производная f'(x)=2x.
- 2. В точке $x_0=1$: f'(1)=2, $f(1)=1^2=1$.
- 3. Уравнение касательной:

$$y-1=2(x-1)$$
 \Longrightarrow $y=2x-1$.

4. Уравнение нормали:

$$y-1 = -rac{1}{2}(x-1) \implies y = -rac{1}{2}x + rac{3}{2}.$$

Если нужно больше примеров или пояснений, дай знать!

Теорема о связи дифференцируемости и непрерывности (с док-вом)

Теорема о связи дифференцируемости и непрерывности

Формулировка

Если функция f(x) дифференцируема в точке x_0 , то она непрерывна в этой точке. То есть, если существует конечная производная $f'(x_0)$, то:

$$\lim_{x o x_0}f(x)=f(x_0).$$

Доказательство

Предположим, что функция f(x) дифференцируема в точке x_0 . По определению дифференцируемости:

$$f'(x_0)=\lim_{h o 0}rac{f(x_0+h)-f(x_0)}{h},$$

где $h = x - x_0$.

Из этого выражения следует, что:

$$f(x_0+h)-f(x_0)=f'(x_0)\cdot h+o(h),\quad$$
 где $o(h) o 0$ при $h o 0.$

Разделим обе стороны на h:

$$rac{f(x_0+h)-f(x_0)}{h} = f'(x_0) + rac{o(h)}{h}.$$

Теперь докажем непрерывность:

1. Рассмотрим предел функции в точке x_0 :

$$\lim_{x o x_0}f(x)=\lim_{h o 0}f(x_0+h).$$

2. Подставим разложение:

$$f(x_0+h) = f(x_0) + f'(x_0) \cdot h + o(h).$$

При h o 0, оба слагаемых $f'(x_0) \cdot h$ и o(h) стремятся к нулю.

3. Следовательно:

$$\lim_{h\to 0} f(x_0+h) = f(x_0).$$

Таким образом, $\lim_{x o x_0}f(x)=f(x_0)$, и функция f(x) непрерывна в точке $x_0.$

Замечания

1. Обратное утверждение неверно.

Если функция непрерывна в точке x_0 , это не гарантирует её дифференцируемость в этой точке. Например, функция f(x) = |x| непрерывна в x = 0, но не дифференцируема.

2. Смысл теоремы.

Дифференцируемость — более строгое требование, чем непрерывность. Непрерывность является необходимым (но не достаточным) условием дифференцируемости.

Если нужно дополнить примерами, дай знать!

Правила дифференцирования (с выводом). Таблица производных (с выводами)

Правила дифференцирования (с выводом)

1. Производная суммы

Если f(x) и g(x) — дифференцируемые функции, то:

$$rac{d}{dx}[f(x)+g(x)]=f'(x)+g'(x).$$

Вывод: По определению производной:

$$rac{d}{dx}[f(x)+g(x)]=\lim_{h o 0}rac{[f(x+h)+g(x+h)]-[f(x)+g(x)]}{h}.$$

Раскрываем скобки:

$$=\lim_{h o 0}\left(rac{f(x+h)-f(x)}{h}+rac{g(x+h)-g(x)}{h}
ight).$$

Предел суммы равен сумме пределов:

$$=\lim_{h o 0}rac{f(x+h)-f(x)}{h}+\lim_{h o 0}rac{g(x+h)-g(x)}{h}.$$

Получаем:

$$f'(x) + g'(x)$$
.

2. Производная произведения

Если f(x) и g(x) — дифференцируемые функции, то:

$$rac{d}{dx}[f(x)g(x)] = f'(x)g(x) + f(x)g'(x).$$

Вывод: По определению производной:

$$rac{d}{dx}[f(x)g(x)] = \lim_{h o 0} rac{f(x+h)g(x+h) - f(x)g(x)}{h}.$$

Добавим и вычтем f(x+h)g(x):

$$=\lim_{h o 0}rac{[f(x+h)g(x+h)-f(x+h)g(x)]+[f(x+h)g(x)-f(x)g(x)]}{h}.$$

Разделяем дробь:

$$=\lim_{h o 0}\left(rac{f(x+h)[g(x+h)-g(x)]}{h}+rac{g(x)[f(x+h)-f(x)]}{h}
ight).$$

В первом слагаемом f(x+h) o f(x) при h o 0, во втором g(x) — константа:

$$= f(x) \cdot g'(x) + g(x) \cdot f'(x).$$

3. Производная частного

Если f(x) и g(x) — дифференцируемые функции, g(x)
eq 0, то:

$$rac{d}{dx}\left[rac{f(x)}{g(x)}
ight] = rac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}.$$

Вывод: По определению производной:

$$\left . rac{d}{dx} \left [rac{f(x)}{g(x)}
ight] = \lim_{h o 0} rac{rac{f(x+h)}{g(x+h)} - rac{f(x)}{g(x)}}{h}.$$

Приводим к общему знаменателю:

$$=\lim_{h o 0}rac{rac{f(x+h)g(x)-f(x)g(x+h)}{g(x+h)g(x)}}{h}.$$

Упрощаем:

$$=\lim_{h o 0}rac{f(x+h)g(x)-f(x)g(x)+f(x)g(x)-f(x)g(x+h)}{hg(x+h)g(x)}.$$

Разделяем дробь:

$$=rac{\lim_{h o 0}\left[rac{f(x+h)-f(x)}{h}\cdot g(x)-f(x)\cdotrac{g(x+h)-g(x)}{h}
ight]}{g(x)^2}.$$

Получаем:

$$\frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}.$$

4. Производная сложной функции (правило цепочки)

Если y = f(u), где u = g(x), то:

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}.$$

Вывод: Пусть y = f(g(x)). Тогда производная по определению:

$$rac{d}{dx}f(g(x)) = \lim_{h o 0}rac{f(g(x+h))-f(g(x))}{h}.$$

Обозначим $\Delta u = g(x+h) - g(x)$. Тогда $\Delta u o 0$ при h o 0, и:

$$rac{f(g(x+h))-f(g(x))}{h} = rac{f(g(x+h))-f(g(x))}{\Delta u} \cdot rac{\Delta u}{h}.$$

Первый множитель стремится к f'(g(x)), второй — к g'(x). Получаем:

$$rac{d}{dx}f(g(x)) = f'(g(x)) \cdot g'(x).$$

Таблица производных (с выводами)

Функция	Производная	Вывод
C	0	Константа не изменяется.
x^n	nx^{n-1}	Из бинома Ньютона и предела.
$\sin x$	$\cos x$	Из предела разности синусов.
$\cos x$	$-\sin x$	Из предела разности косинусов.
e^x	e^x	Свойство экспоненциальной функции.
$\ln x$	$\frac{1}{x}$	Через определение производной логарифма.
a^x	$a^x \ln a$	Через e^x и цепное правило.
$\log_a x$	$\frac{1}{x \ln a}$	Через $\ln x$ и цепное правило.
$\tan x$	$\frac{1}{\cos^2 x}$	Из формулы $ an x = rac{\sin x}{\cos x}.$
$\cot x$	$-\frac{1}{\sin^2 x}$	Аналогично для $\cot x$.

Если нужно расписать вывод конкретной производной, уточните!

Дифференцирование функции, заданной параметрически (с выводом формулы). Дифференцирование неявно заданной функции. Логарифмическое дифференцирование.

Дифференцирование параметрически заданной функции

Формулировка

Если функция задана параметрически:

$$x=x(t),\quad y=y(t),$$

то её производная $rac{dy}{dx}$ выражается как:

$$rac{dy}{dx}=rac{rac{dy}{dt}}{rac{dx}{dt}},$$
 при $rac{dx}{dt}\stackrel{/}{=}0.$

Вывод формулы

1. По определению производной:

$$rac{dy}{dx} = \lim_{\Delta x o 0} rac{\Delta y}{\Delta x}.$$

 $\underline{\mathsf{2.}}$ <u>Так</u> как x и y зависят от параметра t, то:

$$\Delta x = x(t+\Delta t) - x(t), \quad \Delta y = y(t+\Delta t) - y(t).$$

3. Поделим обе стороны на Δt :

$$rac{\Delta y}{\Delta x} = rac{rac{\Delta y}{\Delta t}}{rac{\Delta x}{\Delta t}}.$$

4. Переходя к пределу $\Delta t
ightarrow 0$, получаем:

$$rac{dy}{dx}=rac{rac{dy}{dt}}{rac{dx}{dt}},$$
 при $rac{dx}{dt}\stackrel{/}{=}0.$

Дифференцирование неявно заданной функции

Формулировка

Если функция задана неявно уравнением F(x,y)=0, то производная $rac{dy}{dx}$ находится как:

$$rac{dy}{dx}=-rac{rac{\partial F}{\partial x}}{rac{\partial F}{\partial y}},$$
 при $rac{\partial F}{\partial y}ig/=0.$

Вывод формулы

- 1. Пусть y = y(x), и F(x, y(x)) = 0.
- 2. Продифференцируем обе стороны по x (используем правило цепочки):

$$\frac{\partial F}{\partial x} + \frac{\partial F}{\partial y} \cdot \frac{dy}{dx} = 0.$$

3. Выразим $\frac{dy}{dx}$:

$$rac{dy}{dx} = -rac{rac{\partial F}{\partial x}}{rac{\partial F}{\partial y}},$$
 при $rac{\partial F}{\partial y}
eq 0.$

Логарифмическое дифференцирование

Формулировка

Метод логарифмического дифференцирования применяется, когда функция y задана в виде произведения, степени или дроби, например:

$$y=f_1(x)^{f_2(x)}$$
 или $y=f_1(x)\cdot f_2(x).$

Пример и вывод

- 1. Если $y = f(x)^{g(x)}$:
 - 1. Возьмём натуральный логарифм от обеих сторон:

$$ln y = g(x) ln f(x).$$

2. Продифференцируем обе стороны:

$$rac{1}{y}rac{dy}{dx}=g'(x)\ln f(x)+g(x)\cdotrac{f'(x)}{f(x)}.$$

3. Умножаем на $y=f(x)^{g(x)}$:

$$rac{dy}{dx} = f(x)^{g(x)} \left[g'(x) \ln f(x) + g(x) rac{f'(x)}{f(x)}
ight].$$

- 2. Если $y = f_1(x) \cdot f_2(x)$:
 - 1. Возьмём логарифм:

$$\ln y = \ln f_1(x) + \ln f_2(x).$$

2. Дифференцируем:

$$rac{1}{y}rac{dy}{dx} = rac{f_1'(x)}{f_1(x)} + rac{f_2'(x)}{f_2(x)}.$$

3. Умножаем на $y = f_1(x) \cdot f_2(x)$:

$$rac{dy}{dx}=f_1'(x)f_2(x)+f_1(x)f_2'(x).$$

Если нужно разобрать примеры, дай знать!

Свойства дифференциала (с док-вом). Применение дифференциала к приближенным вычислениям.

Свойства дифференциала (с доказательствами)

Определение дифференциала функции

Дифференциал функции y=f(x) определяется как:

$$dy = f'(x)dx,$$

где dx — независимое приращение аргумента x, а dy — линейная часть приращения функции.

Дифференциал — это линейная приближённая зависимость между изменением аргумента x и соответствующим изменением функции y.

Свойства дифференциала

1. Линейность

Если u=u(x) и v=v(x) — дифференцируемые функции, а c — константа, то:

$$d(cu+v)=c\,du+dv.$$

Доказательство:

$$d(cu+v) = rac{d}{dx}[c\cdot u(x) + v(x)]\cdot dx.$$

Применяем линейность производной:

$$rac{d}{dx}[c\cdot u(x)+v(x)]=c\cdot u'(x)+v'(x).$$

По определению дифференциала:

$$d(cu + v) = c u'(x)dx + v'(x)dx = c du + dv.$$

2. Правило дифференцирования произведения

Для произведения функций u(x) и v(x):

$$d(uv) = u dv + v du.$$

Доказательство:

$$d(uv) = rac{d}{dx}[u(x)v(x)]\cdot dx.$$

Применяем правило производной произведения:

$$rac{d}{dx}[u(x)v(x)] = u'(x)v(x) + u(x)v'(x).$$

По определению дифференциала:

$$d(uv) = u'(x)v(x)dx + u(x)v'(x)dx = v du + u dv.$$

3. Правило дифференцирования частного

Для частного функций u(x) и v(x), где $v(x) \neq 0$:

$$d\left(rac{u}{v}
ight) = rac{v\,du - u\,dv}{v^2}.$$

Доказательство:

$$d\left(rac{u}{v}
ight) = rac{d}{dx}\left[rac{u(x)}{v(x)}
ight] \cdot dx.$$

Применяем правило производной частного:

$$\left|rac{d}{dx}\left[rac{u(x)}{v(x)}
ight] = rac{u'(x)v(x)-u(x)v'(x)}{v(x)^2}.$$

По определению дифференциала:

$$d\left(rac{u}{v}
ight) = rac{u'(x)v(x) - u(x)v'(x)}{v(x)^2}dx = rac{v\,du - u\,dv}{v^2}.$$

4. Дифференциал сложной функции

Если y = f(u), где u = u(x), то:

$$dy = f'(u)du.$$

Доказательство: По определению дифференциала:

$$dy = rac{d}{dx}[f(u)]dx.$$

Применяем правило производной сложной функции:

$$rac{d}{dx}[f(u)] = f'(u) \cdot u'(x).$$

Так как du=u'(x)dx, то:

$$dy = f'(u) \cdot u'(x) dx = f'(u) du.$$

Применение дифференциала к приближённым вычислениям

Дифференциал используется для приближённого вычисления изменения функции при малом изменении аргумента. Это выражается формулой:

$$\Delta ypprox dy=f'(x)dx,$$

где dx — заданное малое приращение аргумента, а dy — линейное приближение изменения функции.

Пример 1. Приближённое вычисление корня

Найти приближённое значение $\sqrt{25.5}$.

- 1. Пусть $f(x)=\sqrt{x}$, тогда $f'(x)=rac{1}{2\sqrt{x}}.$
- 2. Выберем $x_0=25$, где корень легко вычислить: $\sqrt{25}=5$.
- 3. Малое приращение dx = 25.5 25 = 0.5.
- 4. Дифференциал:

$$dy = f'(25)dx = rac{1}{2\sqrt{25}} \cdot 0.5 = rac{1}{10} \cdot 0.5 = 0.05.$$

5. Приближённое значение:

$$\sqrt{25.5}pprox f(25)+dy=5+0.05=5.05.$$

Пример 2. Приближённое вычисление логарифма

Найти приближённое значение $\ln(1.02)$.

- 1. Пусть $f(x) = \ln x$, тогда $f'(x) = rac{1}{x}$.
- 2. Выберем $x_0 = 1$, где логарифм легко вычислить: $\ln 1 = 0$.
- 3. Малое приращение dx = 1.02 1 = 0.02.
- 4. Дифференциал:

$$dy = f'(1)dx = rac{1}{1} \cdot 0.02 = 0.02.$$

5. Приближённое значение:

$$\ln(1.02) \approx f(1) + dy = 0 + 0.02 = 0.02.$$

Если нужны дополнительные примеры или разборы, дай знать!

Производные и дифференциалы высших порядков.

Производные высших порядков

Определение

Производная высшего порядка — это производная от производной функции. Для функции f(x)вводятся следующие обозначения:

- Первая производная: $f'(x)=rac{df}{dx}$,
 Вторая производная: $f''(x)=rac{d^2f}{dx^2}$,
 Третья производная: $f'''(x)=rac{d^3f}{dx^3}$,
 n-я производная: $f^{(n)}(x)=rac{d^nf}{dx^n}$.

Пример

Для функции $f(x) = x^3$:

- 1. Первая производная: $f'(x) = 3x^2$,
- 2. Вторая производная: f''(x) = 6x,
- 3. Третья производная: f'''(x) = 6,
- 4. Четвёртая и более производные: $f^{(n)}(x) = 0$, $n \geq 4$.

Дифференциалы высших порядков

Определение

Дифференциалы высших порядков определяются как последовательные дифференциалы. Для функции y=f(x):

- 1. Первый дифференциал: dy = f'(x)dx,
- 2. Второй дифференциал: $d^2y=d(dy)=d(f'(x)dx)$.

Вывод формулы для второго дифференциала

1. Подставляем dy=f'(x)dx:

$$d^2y = d(f'(x)dx).$$

2. Дифференцируем произведение:

$$d^2y = f''(x)(dx)^2.$$

Аналогично для высших порядков:

• Третий дифференциал:

$$d^3y = f'''(x)(dx)^3,$$

• n-й дифференциал:

$$d^n y = f^{(n)}(x)(dx)^n.$$

Пример

Пусть $f(x) = x^4$:

- 1. Первая производная: $f'(x)=4x^3$, дифференциал $dy=4x^3dx$.
- 2. Вторая производная: $f''(x) = 12x^2$, дифференциал $d^2y = 12x^2(dx)^2$.
- 3. Третья производная: f'''(x) = 24x, дифференциал $d^3y = 24x(dx)^3$.
- 4. Четвёртая производная: $f^{(4)}(x)=24$, дифференциал $d^4y=24(dx)^4$.
- 5. Пятая и более производные: $f^{(n)}(x) = 0$, $d^n y = 0$, $n \geq 5$.

Применение производных и дифференциалов высших порядков

- 1. Исследование функции на экстремумы и точки перегиба:
 - \circ Вторая производная f''(x) используется для анализа выпуклости графика функции.
 - Третья и более производные применяются для более тонкого анализа формы графика.
- 2. Приближённые вычисления (разложение в ряд Тейлора):
 - Производные высших порядков используются для разложения функции в ряд:

$$f(x)pprox f(a)+f'(a)(x-a)+rac{f''(a)}{2!}(x-a)^2+\ldots+rac{f^{(n)}(a)}{n!}(x-a)^n.$$

3. Физические приложения:

- \circ Вторая производная: ускорение в механике ($a=rac{d^2x}{dt^2}$).
- \circ Третья производная: рывок $(j=rac{d^3x}{dt^3})$.

Если нужны подробные примеры или дополнительные пояснения, дай знать!

Локальный экстремум и теорема Ферма (с док-вом) и ее следствие.

Локальный экстремум и теорема Ферма

Понятие локального экстремума

Пусть функция f(x) определена в окрестности точки x_0 .

• **Локальный максимум**: $f(x_0)$ называется локальным максимумом, если существует такая окрестность $U(x_0)$, что для всех $x \in U(x_0)$ выполняется:

$$f(x) \leq f(x_0)$$
.

• **Локальный минимум**: $f(x_0)$ называется локальным минимумом, если существует такая окрестность $U(x_0)$, что для всех $x \in U(x_0)$ выполняется:

$$f(x) \geq f(x_0).$$

Локальные экстремумы (максимумы и минимумы) объединяются под названием **локальный** экстремум.

Теорема Ферма

Если x_0 — точка локального экстремума дифференцируемой функции f(x), то $f'(x_0)=0$.

Доказательство теоремы Ферма

1. Предположим, что x_0 — точка локального максимума функции f(x). Это означает, что существует такая окрестность $U(x_0)$, что:

$$f(x) \leq f(x_0) \quad orall x \in U(x_0).$$

- 2. Рассмотрим односторонние приращения функции:
 - $\circ\;$ Для $x>x_0$, при $x o x_0^+$, разность $f(x)-f(x_0)\leq 0$, значит:

$$\frac{f(x)-f(x_0)}{x-x_0}\leq 0.$$

Переходя к пределу, получаем:

$$\lim_{x o x_0^+}rac{f(x)-f(x_0)}{x-x_0}\leq 0.$$

 $\circ\;$ Для $x < x_0$, при $x o x_0^-$, разность $f(x) - f(x_0) \le 0$, значит:

$$rac{f(x)-f(x_0)}{x-x_0}\geq 0.$$

Переходя к пределу, получаем:

$$\lim_{x o x_0^-}rac{f(x)-f(x_0)}{x-x_0}\geq 0.$$

3. Поскольку $f'(x_0)$ существует, левый и правый пределы равны, то:

$$\lim_{x o x_0^+}rac{f(x)-f(x_0)}{x-x_0}=\lim_{x o x_0^-}rac{f(x)-f(x_0)}{x-x_0}=f'(x_0).$$

4. Из условий $f'(x_0) \leq 0$ и $f'(x_0) \geq 0$ следует, что:

$$f'(x_0) = 0.$$

Аналогично доказывается для локального минимума.

Следствие из теоремы Ферма

Если x_0 — точка локального экстремума функции f(x), то x_0 является стационарной точкой, то есть:

$$f'(x_0)=0.$$

Стационарные точки — это кандидаты на экстремумы. Однако, не все стационарные точки являются экстремумами (например, точка перегиба).

Пример 1. Функция с локальным максимумом

Рассмотрим $f(x) = -x^2 + 4x - 3$.

1. Найдём производную:

$$f'(x) = -2x + 4.$$

2. Решим уравнение f'(x) = 0:

$$-2x+4=0 \implies x=2.$$

3. x=2 — стационарная точка. Проверим её характер:

f''(x) = -2 (вторая производная отрицательна, значит локальный максимум).

Значение функции:

$$f(2) = -2^2 + 4 \cdot 2 - 3 = 1.$$

Пример 2. Функция с точкой перегиба

Рассмотрим $f(x)=x^3$.

1. Найдём производную:

$$f'(x) = 3x^2.$$

2. Решим уравнение f'(x) = 0:

$$3x^2 = 0 \implies x = 0.$$

3. Проверим характер точки x=0 с помощью второй производной:

$$f''(x) = 6x.$$

При x=0 вторая производная также равна 0. Проверяем знак $f^\prime(x)$ слева и справа:

- \circ При x < 0: f'(x) < 0,
- \circ При x>0: f'(x)>0.

Точка x=0 не является экстремумом, а является точкой перегиба.

Далее лучше разбирай функции нескольких переменных.

Вот следующий вопрос:

Теорема Ролля о нулях производной (с док-вом).

Теорема Ролля

Формулировка

Пусть f(x) — функция, определённая на отрезке [a,b], и выполняются следующие условия:

- 1. f(x) непрерывна на [a,b],
- $\overline{$ 2. f(x) дифференцируема на (a,b),
- 3. f(a) = f(b).

Тогда существует хотя бы одна точка $c \in (a,b)$, такая, что:

$$f'(c) = 0.$$

Геометрический смысл

Теорема Ролля утверждает, что если график функции начинается и заканчивается на одной высоте (f(a) = f(b)), то на интервале (a,b) существует хотя бы одна точка c, в которой

Доказательство

- 1. **Непрерывность и компактность:** По условию f(x) непрерывна на [a,b]. Согласно теореме Вейерштрасса, f(x) достигает своих наибольшего и наименьшего значений на [a,b].
- 2. Случаи экстремума:
 - $\circ~$ Если f(x) постоянно на [a,b], то f'(x)=0 на всём интервале, и теорема выполнена.
 - $\circ~$ Если f(x) не постоянно, то она достигает своего максимума или минимума в некоторой точке $c\in(a,b)$ (не на концах отрезка).
- 3. **Условие экстремума:** В точке c, где f(x) достигает локального экстремума, по теореме Ферма выполняется:

$$f'(c) = 0.$$

Таким образом, существует точка $c \in (a,b)$, такая, что f'(c) = 0. Теорема доказана.

Пример 1. Функция, удовлетворяющая условиям теоремы

Рассмотрим $f(x) = x^2 - 2x$ на [0,2]:

- 1. f(0) = f(2) = 0, значит, условие f(a) = f(b) выполнено.
- 2. f(x) непрерывна на [0,2] и дифференцируема на (0,2).
- 3. Найдём производную:

$$f'(x) = 2x - 2.$$

Решим уравнение f'(x) = 0:

$$2x-2=0 \implies x=1.$$

Точка $c=1\in(0,2)$ — это точка, где f'(c)=0.

Пример 2. Функция, не удовлетворяющая условиям теоремы

Рассмотрим f(x)=|x| на [-1,1]:

- 1. f(-1) = f(1) = 1, значит, условие f(a) = f(b) выполнено.
- 2. f(x) непрерывна на [-1,1], но не дифференцируема в точке x=0 (излом графика).

Следовательно, теорема Ролля неприменима.

Связь с другими теоремами

Теорема Ролля является частным случаем теоремы Лагранжа, в которой дополнительно снимается ограничение f(a)=f(b).

Формула конечных приращений Лагранжа (с док-вом). Теорема Коши (с док-вом).

Формула конечных приращений Лагранжа (теорема Лагранжа)

Формулировка

Пусть функция f(x):

- 1. непрерывна на [a, b],
- 2. дифференцируема на (a,b).

Тогда существует хотя бы одна точка $c \in (a,b)$, такая что:

$$f'(c) = rac{f(b) - f(a)}{b - a}.$$

Геометрический смысл

Формула Лагранжа утверждает, что существует точка c, в которой касательная к графику функции параллельна секущей, соединяющей точки (a,f(a)) и (b,f(b)).

Доказательство

1. Построение вспомогательной функции:

Рассмотрим функцию:

$$g(x) = f(x) - rac{f(b) - f(a)}{b - a} \cdot (x - a).$$

Здесь g(x) представляет собой разность между f(x) и линейной функцией, проходящей через точки (a,f(a)) и (b,f(b)).

2. Свойства вспомогательной функции:

$$egin{array}{ll} \circ & g(a)=f(a)-rac{f(b)-f(a)}{b-a}\cdot(a-a)=f(a). \ o & g(b)=f(b)-rac{f(b)-f(a)}{b-a}\cdot(b-a)=f(b)-(f(b)-f(a))=f(a). \end{array}$$
 Таким образом, $g(a)=g(b).$

3. **Применение теоремы Ролля**: Поскольку g(x) непрерывна на [a,b] и дифференцируема на (a,b), по теореме Ролля существует точка $c\in(a,b)$, такая что:

$$g'(c) = 0.$$

4. Нахождение производной g'(x):

$$g'(x)=f'(x)-rac{f(b)-f(a)}{b-a}.$$

Следовательно, в точке c:

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Теорема Коши

Формулировка

Пусть функции f(x) и g(x):

- 1. непрерывны на [a, b],
- 2. дифференцируемы на (a,b),
- 3. g'(x)
 eq 0 для всех $x \in (a,b)$.

Тогда существует хотя бы одна точка $c \in (a,b)$, такая что:

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

Геометрический смысл

Теорема Коши утверждает, что отношение изменений функций f(x) и g(x) между концами отрезка совпадает с отношением их производных в некоторой точке $c \in (a,b)$.

Доказательство

1. Построение вспомогательной функции:

Рассмотрим функцию:

$$h(x) = f(x) - \lambda g(x),$$

где
$$\lambda = rac{f(b) - f(a)}{g(b) - g(a)}.$$

2. Свойства функции h(x):

$$\circ \ h(a) = f(a) - \lambda g(a),$$

$$\circ \ \ h(b) = f(b) - \lambda g(b).$$
 Поскольку:

$$\lambda = rac{f(b) - f(a)}{g(b) - g(a)},$$

имеем:

$$h(b)-h(a)=[f(b)-\lambda g(b)]-[f(a)-\lambda g(a)]=0.$$

Таким образом, h(a) = h(b).

3. **Применение теоремы Ролля**: Поскольку h(x) непрерывна на [a,b] и дифференцируема на (a,b), по теореме Ролля существует точка $c\in(a,b)$, такая что:

$$h'(c) = 0.$$

4. Нахождение производной h'(x):

$$h'(x) = f'(x) - \lambda g'(x).$$

Подставляем h'(c) = 0:

$$f'(c) = \lambda g'(c).$$

Подставляем значение λ :

$$f'(c)=rac{f(b)-f(a)}{g(b)-g(a)}g'(c).$$

5. Вывод формулы:

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

Связь между теоремами

ullet Теорема Лагранжа является частным случаем теоремы Коши, если взять g(x)=x, так что g'(x)=1.

Правило Лопиталя раскрытия неопределенностей (рассмотреть все случаи, теорема 1 с док-вом)

Правило Лопиталя для раскрытия неопределенностей

Правило Лопиталя применяется для вычисления пределов функций, когда предел принимает неопределённости вида $\frac{0}{0}$ или $\frac{\infty}{\infty}$.

Формулировка (Теорема 1, случай $\frac{0}{0}$)

Пусть f(x) и g(x) — функции, определённые в некоторой окрестности точки a (за исключением, возможно, самой точки a). Пусть:

- 1. f(a) = g(a) = 0,
- 2. f(x) и g(x) дифференцируемы в этой окрестности, причём g'(x)
 eq 0 для всех x
 eq a,
- 3. $\lim_{x o a}rac{f^{'}(x)}{g^{'}(x)}=L$, где $L\in\mathbb{R}\cup\{\pm\infty\}.$

Тогда:

$$\lim_{x o a}rac{f(x)}{g(x)}=L.$$

Доказательство (случай $\frac{0}{0}$)

1. Условие неопределённости:

Поскольку f(a)=g(a)=0, то $\lim_{x o a}rac{f(x)}{g(x)}$ принимает неопределённость вида $rac{0}{0}.$

2. Использование теоремы Коши о среднем значении:

Рассмотрим f(x) и g(x) на интервале (a,x), где x близко к a. Применим теорему Коши:

$$\exists c \in (a,x)$$
 такое, что $\dfrac{f(x)-f(a)}{g(x)-g(a)}=\dfrac{f'(c)}{g'(c)}.$

3. Упрощение выражения:

Поскольку f(a) = g(a) = 0, получаем:

$$rac{f(x)}{g(x)} = rac{f'(c)}{g'(c)},$$

где $c \in (a,x)$.

4. Переход к пределу:

При x o a, точка c o a (по теореме промежуточных значений). По условию $\lim_{x o a}rac{f'(x)}{g'(x)}=L$, следовательно:

$$\lim_{x o a}rac{f(x)}{g(x)}=\lim_{c o a}rac{f'(c)}{g'(c)}=L.$$

Теорема доказана.

Другие случаи

1. Случай $\frac{\infty}{\infty}$:

Если $\lim_{x \to a} f(x) = \pm \infty$ и $\lim_{x \to a} g(x) = \pm \infty$, но предел $\frac{f(x)}{g(x)}$ не определён, то можно применить аналогичное правило:

$$\lim_{x o a}rac{f(x)}{g(x)}=\lim_{x o a}rac{f'(x)}{g'(x)},$$

если предел в правой части существует.

Доказательство: аналогично $\frac{0}{0}$, с учётом, что предел $\frac{f'(c)}{g'(c)}$ по условию должен существовать.

2. Другие неопределённости ($0\cdot\infty,\infty-\infty$):

Такие неопределённости преобразуются к виду $\frac{0}{0}$ или $\frac{\infty}{\infty}$, например:

- \circ Для $0\cdot\infty$: переписываем как $rac{f(x)}{1/g(x)}$,
- \circ Для $\infty-\infty$: сводим к общему знаменателю или заменяем переменные.

Пример 1: $\lim_{x \to 0} \frac{\sin x}{x}$

$$f(x)=\sin x,\quad g(x)=x.$$

Имеем f(0) = g(0) = 0, и:

$$f'(x) = \cos x, \quad g'(x) = 1.$$

$$\lim_{x o 0}rac{f'(x)}{g'(x)}=\lim_{x o 0}rac{\cos x}{1}=1.$$

Следовательно:

$$\lim_{x o 0}rac{\sin x}{x}=1.$$

Пример 2: $\lim_{x o\infty}rac{2x^2+3x}{5x^2-x+7}$

$$f(x) = 2x^2 + 3x, \quad g(x) = 5x^2 - x + 7.$$

Имеем неопределённость $\frac{\infty}{\infty}$. Производные:

$$f'(x) = 4x + 3, \quad g'(x) = 10x - 1.$$

$$\lim_{x o \infty} rac{f'(x)}{g'(x)} = \lim_{x o \infty} rac{4x+3}{10x-1} = rac{4}{10} = rac{2}{5}.$$

Следовательно:

$$\lim_{x o \infty} rac{2x^2 + 3x}{5x^2 - x + 7} = rac{2}{5}.$$

Формула Тейлора. Формула Тейлора с остатком в форме Лагранжа и в форме Пеано.

Формула Тейлора

Формула Тейлора позволяет разложить функцию в окрестности точки в виде многочлена, дополненного остаточным членом, описывающим точность приближения.

Формулировка

Если функция f(x) имеет n-ую производную, непрерывную в некоторой окрестности точки a, то для любого x из этой окрестности функция представляется в виде:

$$f(x) = f(a) + f'(a)(x-a) + rac{f''(a)}{2!}(x-a)^2 + \dots + rac{f^{(n)}(a)}{n!}(x-a)^n + R_n(x),$$

где $R_n(x)$ — остаточный член, зависящий от формы записи.

Остаточный член $R_n(x)$

Остаточный член показывает отличие функции f(x) от её многочлена Тейлора порядка n.

1. Форма Лагранжа:

$$R_n(x) = rac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1},$$

где c — некоторая точка между a и x.

2. Форма Пеано:

$$R_n(x) = o((x-a)^n), \quad x o a.$$

Формула Тейлора с остатком в форме Лагранжа

Формулировка

Если f(x) имеет n+1-ую производную, непрерывную в окрестности точки a, то:

$$f(x) = f(a) + f'(a)(x-a) + rac{f''(a)}{2!}(x-a)^2 + \cdots + rac{f^{(n)}(a)}{n!}(x-a)^n + rac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1},$$

где c — некоторая точка из интервала (a,x).

Доказательство

1. Рассмотрим функцию $arphi(x) = f(x) - P_n(x)$, где $P_n(x)$ — многочлен Тейлора:

$$P_n(x) = f(a) + f'(a)(x-a) + \dots + rac{f^{(n)}(a)}{n!}(x-a)^n.$$

По определению:

$$arphi(a)=0,\quad arphi'(a)=0,\quad \dots,\quad arphi^{(n)}(a)=0.$$

2. Рассмотрим $\psi(x)=rac{arphi(x)}{(x-a)^{n+1}}.$

Производная $\psi(x)$ в точке a имеет вид:

$$\psi(a)=\lim_{x o a}rac{arphi(x)}{(x-a)^{n+1}}=rac{arphi^{(n+1)}(a)}{(n+1)!}.$$

3. Из теоремы Коши и анализа $\psi(x)$, получаем, что:

$$R_n(x)=rac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1},$$

где $c \in (a,x)$.

Формула Тейлора с остатком в форме Пеано

Формулировка

Если функция f(x) имеет n+1-ую производную в некоторой окрестности точки a, то:

$$f(x) = f(a) + f'(a)(x-a) + rac{f''(a)}{2!}(x-a)^2 + \cdots + rac{f^{(n)}(a)}{n!}(x-a)^n + o((x-a)^n), \quad x o a.$$

Доказательство

1. Рассматриваем разность:

$$R_n(x)=f(x)-\left[f(a)+f'(a)(x-a)+\cdots+rac{f^{(n)}(a)}{n!}(x-a)^n
ight].$$

2. По определению o-символа, если:

$$\lim_{x o a}rac{R_n(x)}{(x-a)^n}=0,$$

то
$$R_n(x) = o((x-a)^n)$$
.

3. Поскольку f(x) достаточно гладкая, это выполняется автоматически. Следовательно:

$$R_n(x) = o((x-a)^n), \quad x o a.$$

Примеры

1. Функция $f(x)=e^x$, точка a=0, разложение до x^3 :

$$e^x = 1 + x + rac{x^2}{2!} + rac{x^3}{3!} + R_3(x),$$

где $R_3(x)=rac{e^c}{4!}x^4$, $c\in(0,x)$ (форма Лагранжа).

2. Функция $f(x) = \ln(1+x)$, точка a=0, разложение до x^2 :

$$\ln(1+x)=x-rac{x^2}{2}+o(x^2),\quad x o 0.$$

Разложение основных элементарных функций по формуле Маклорена (с выводами)

Формула Маклорена — это частный случай формулы Тейлора, где точка разложения a=0. Разложение функции f(x) в ряд Маклорена имеет вид:

$$f(x) = f(0) + f'(0)x + rac{f''(0)}{2!}x^2 + rac{f^{(3)}(0)}{3!}x^3 + \cdots + rac{f^{(n)}(0)}{n!}x^n + R_n(x),$$

где $R_n(x)$ — остаточный член. Если $R_n(x) o 0$ при $n o \infty$, то f(x) можно представить как бесконечный ряд.

Разложение основных элементарных функций

1. Экспонента: $f(x)=e^x$

Все производные e^x равны e^x , и $f^{(n)}(0)=e^0=1.$

Подставляем в формулу Маклорена:

$$e^x = 1 + x + rac{x^2}{2!} + rac{x^3}{3!} + \dots = \sum_{n=0}^{\infty} rac{x^n}{n!}.$$

2. Синус: $f(x) = \sin x$

Производные:

$$f'(x) = \cos x, \quad f''(x) = -\sin x, \quad f^{(3)}(x) = -\cos x, \quad f^{(4)}(x) = \sin x.$$

Находим значения производных в x=0:

$$f(0)=0,\quad f'(0)=1,\quad f''(0)=0,\quad f^{(3)}(0)=-1,\quad f^{(4)}(0)=0.$$

Подставляем в формулу:

$$\sin x = x - rac{x^3}{3!} + rac{x^5}{5!} - rac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} (-1)^n rac{x^{2n+1}}{(2n+1)!}.$$

3. Косинус: $f(x) = \cos x$

Производные:

$$f'(x) = -\sin x, \quad f''(x) = -\cos x, \quad f^{(3)}(x) = \sin x, \quad f^{(4)}(x) = \cos x.$$

Находим значения производных в x=0:

$$f(0)=1,\quad f'(0)=0,\quad f''(0)=-1,\quad f^{(3)}(0)=0,\quad f^{(4)}(0)=1.$$

Подставляем в формулу:

$$\cos x = 1 - rac{x^2}{2!} + rac{x^4}{4!} - rac{x^6}{6!} + \dots = \sum_{n=0}^{\infty} (-1)^n rac{x^{2n}}{(2n)!}.$$

4. Логарифм: $f(x) = \ln(1+x)$, |x| < 1

Производные:

$$f'(x)=rac{1}{1+x},\quad f''(x)=-rac{1}{(1+x)^2},\quad f^{(n)}(x)=(-1)^{n-1}rac{(n-1)!}{(1+x)^n}.$$

Находим значения производных в x=0:

$$f(0)=0,\quad f'(0)=1,\quad f''(0)=-1,\quad f^{(3)}(0)=rac{1}{2},\quad f^{(4)}(0)=-rac{1}{3}.$$

Подставляем в формулу:

$$\ln(1+x) = x - rac{x^2}{2} + rac{x^3}{3} - rac{x^4}{4} + \dots = \sum_{n=1}^{\infty} (-1)^{n-1} rac{x^n}{n}.$$

5. Арктангенс: $f(x) = \arctan x$, |x| < 1

Производные:

$$f'(x)=rac{1}{1+x^2}, \quad f''(x)=-rac{2x}{(1+x^2)^2}, \quad f^{(n)}(0)=$$
 по знакам и степеням.

Находим разложение:

$$rctan x = x - rac{x^3}{3} + rac{x^5}{5} - rac{x^7}{7} + \dots = \sum_{n=0}^{\infty} (-1)^n rac{x^{2n+1}}{2n+1}.$$

6. $(1+x)^k$, |x|<1

Производные:

$$f(x) = (1+x)^k, \quad f'(x) = k(1+x)^{k-1}, \quad f^{(n)}(x) = k(k-1)(k-2)\dots(k-n+1)(1+x)^{k-n}.$$

B точке x=0:

$$f(0)=1,\quad f'(0)=k,\quad f^{(2)}(0)=rac{k(k-1)}{2!},\ldots,f^{(n)}(0)=rac{k(k-1)(k-2)\ldots(k-n+1)}{n!}.$$

Разложение:

$$(1+x)^k = 1 + kx + rac{k(k-1)}{2!}x^2 + rac{k(k-1)(k-2)}{3!}x^3 + \dots = \sum_{n=0}^{\infty} rac{k(k-1)\dots(k-n+1)}{n!}x^n.$$

Общие замечания

- 1. Ряды Маклорена используются для приближённых вычислений.
- 2. При $n o\infty$, если остаточный член $R_n(x) o 0$, то разложение является точным представлением функции.
- 3. Радиус сходимости зависит от области определения функции.

Возрастающая и убывающая функция на интервале. Определение, необходимое и достаточное условие (с док-вом)

Возрастающая и убывающая функция на интервале

Определения

1. Функция f(x) называется возрастающей на интервале (a,b), если для любых $x_1,x_2\in(a,b)$ таких, что $x_1< x_2$, выполняется:

$$f(x_1) < f(x_2)$$
.

2. Функция f(x) называется убывающей на интервале (a,b), если для любых $x_1,x_2\in(a,b)$ таких, что $x_1< x_2$, выполняется:

$$f(x_1) > f(x_2).$$

Необходимое и достаточное условие

Пусть f(x) — дифференцируемая функция на интервале (a,b).

1. **Необходимое условие:** Если функция f(x) возрастающая (или убывающая) на интервале (a,b), то её производная f'(x) неотрицательна (или неположительна) на этом интервале:

$$f'(x) \geq 0$$
 (для возрастающей) или $f'(x) \leq 0$ (для убывающей).

2. **Достаточное условие:** Если производная функции f'(x)>0 на (a,b), то f(x) строго возрастает на (a,b).

Если f'(x) < 0 на (a,b), то f(x) строго убывает на (a,b).

Доказательства

1. Необходимость:

Пусть f(x) строго возрастает на (a,b). Возьмём $x_1,x_2\in(a,b)$, $x_1< x_2$. Тогда:

$$f(x_2)-f(x_1)>0.$$

Разделим это неравенство на $x_2 - x_1 > 0$:

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} > 0.$$

Взяв предел при $x_2 o x_1$, получаем:

$$f'(x_1) \geq 0.$$

Аналогично доказывается для убывающей функции: $f'(x) \leq 0$.

2. Достаточность:

Пусть f'(x)>0 на (a,b). Для любых $x_1,x_2\in(a,b)$, $x_1< x_2$, по теореме Лагранжа существует $c\in(x_1,x_2)$, такое что:

$$f(x_2) - f(x_1) = f'(c)(x_2 - x_1).$$

Так как f'(c)>0 и $x_2-x_1>0$, то:

$$f(x_2) - f(x_1) > 0.$$

Следовательно, f(x) строго возрастает.

Аналогично для f'(x) < 0 доказывается строгое убывание.

Примеры

1.
$$f(x)=x^2$$
 на $(0,\infty)$:

$$f'(x) = 2x > 0$$
 при $x > 0$.

Значит, f(x) строго возрастает на $(0,\infty)$.

2.
$$f(x)=-x^3$$
 на $(-\infty,0)$:

$$f'(x) = -3x^2 \le 0.$$

Значит, f(x) неубывающая на $(-\infty,0)$.

3.
$$f(x)=e^{-x}$$
 на $(-\infty,\infty)$:

$$f'(x) = -e^{-x} < 0.$$

Значит, f(x) строго убывает на всей области определения.

Выпуклость функции и точки перегиба. Определения, необходимое и достаточные условие (достаточное условие выпуклости функции с док-вом)

Выпуклость функции и точки перегиба

Определения

1. Выпуклая функция (снизу):

Функция f(x), определённая на интервале I, называется **выпуклой снизу** (или просто выпуклой), если для любых $x_1, x_2 \in I$ и любого $t \in [0,1]$ выполняется неравенство:

$$f(tx_1+(1-t)x_2) \leq tf(x_1)+(1-t)f(x_2).$$

График такой функции лежит не выше любой прямой, соединяющей две точки её графика.

2. Выпуклая функция сверху:

Функция f(x) называется **выпуклой сверху** (или вогнутой), если:

$$f(tx_1+(1-t)x_2) \geq tf(x_1)+(1-t)f(x_2).$$

3. Точка перегиба:

Точка x=c называется **точкой перегиба функции** f(x), если в этой точке функция меняет характер своей выпуклости (из выпуклой в вогнутую или наоборот).

Необходимое и достаточные условия выпуклости

1. Необходимое условие выпуклости снизу:

Если f(x) дифференцируема на интервале I и выпукла снизу, то её производная f'(x) монотонно неубывает:

$$f'(x_2) \geq f'(x_1)$$
 для любых $x_1 < x_2$ из I .

2. Достаточное условие выпуклости снизу:

Если вторая производная f''(x) существует и неотрицательна на интервале I, то f(x) выпукла снизу на I:

$$f''(x) \geq 0 \quad \Rightarrow \quad f(x)$$
 выпукла снизу.

Доказательство достаточного условия выпуклости

Предположим, что $f''(x) \ge 0$ на интервале I. Докажем, что f(x) выпукла снизу.

1. По определению второй производной:

$$f''(x) = \frac{d}{dx}f'(x).$$

Так как $f''(x) \geq 0$, это означает, что f'(x) неубывает на интервале I.

2. Возьмём любые $x_1, x_2 \in I$, $x_1 < x_2$, и докажем, что график функции f(x) лежит ниже секущей линии между точками $(x_1, f(x_1))$ и $(x_2, f(x_2))$.

Уравнение секущей:

$$L(x) = f(x_1) + rac{f(x_2) - f(x_1)}{x_2 - x_1}(x - x_1).$$

3. Рассмотрим разность f(x)-L(x) и покажем, что она неотрицательна для любого $x\in [x_1,x_2].$

Поскольку f'(x) неубывает, скорость изменения f(x) не меньше скорости изменения L(x). Это подтверждает, что график f(x) "лежит ниже" прямой L(x).

Условие точки перегиба

1. Необходимое условие:

Если x=c — точка перегиба функции f(x), то вторая производная f''(x) либо равна нулю, либо не существует в точке x=c:

$$f''(c)=0$$
 или $f''(c)$ не существует.

2. Достаточное условие:

Если f''(x) меняет знак в точке x=c (из f''(x)>0 в f''(x)<0, или наоборот), то x=c является точкой перегиба.

Примеры

1. Функция $f(x) = x^2$:

$$f''(x) = 2 > 0$$
 на всей области определения.

Функция выпукла снизу на \mathbb{R} .

2. Функция $f(x) = -x^2$:

$$f''(x) = -2 < 0$$
 на всей области определения.

Функция выпукла сверху (вогнута) на $\mathbb R$.

3. **Функция** $f(x) = x^3$:

$$f''(x) = 6x.$$

f''(x) меняет знак в точке x=0. Следовательно, x=0 — точка перегиба.

Понятие функции двух переменных. Область существования функции. Область значений. Способы задания функции. Линии уровня.

Функция двух переменных

Определение

Функция двух переменных z=f(x,y) — это правило, которое каждой паре чисел (x,y) из некоторого множества $D\subset \mathbb{R}^2$ ставит в соответствие одно единственное число $z\in \mathbb{R}.$ Здесь:

- ullet (x,y) независимые переменные, или **аргументы** функции.
- ullet z=f(x,y) зависимая переменная, или **значение функции**.

Область существования функции (область определения)

Область существования функции $D\subset \mathbb{R}^2$ — это множество всех пар (x,y), для которых задана функция f(x,y).

Пример:

Для функции $f(x,y)=rac{1}{x^2+y^2}$, область определения — все точки, кроме (0,0):

$$D = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2
eq 0\}.$$

Область значений функции

Область значений функции — это множество всех возможных значений z=f(x,y) при всех $(x,y)\in D.$

Пример:

Для функции $f(x,y) = x^2 + y^2$, область значений:

$$E = [0, +\infty).$$

Способы задания функции

1. Аналитический способ:

Функция задаётся формулой, связывающей z, x, и y.

Пример:
$$z = f(x, y) = x^2 + y^2$$
.

2. Табличный способ:

Функция задаётся таблицей значений z для различных пар (x,y).

Пример:

x	y	z
1	2	5
2	3	13

3. **Графический способ:**

Функция представлена в виде поверхности $z=f(\overline{x},y)$ или через линии уровня.

Пример: параболическая поверхность $z = x^2 + y^2$.

4. Словесный способ:

Функция описывается словами.

Пример: z равно расстоянию от точки (x, y) до начала координат.

Линии уровня

Линия уровня функции f(x,y) для значения c — это множество всех точек (x,y) на плоскости, для которых f(x,y)=c.

Уравнение линии уровня:

$$f(x,y)=c.$$

Линии уровня помогают визуализировать функцию f(x,y), показывая, где значения функции равны одному и тому же числу.

Пример:

Для функции $f(x,y)=x^2+y^2$:

ullet Линия уровня для c=1: $x^2+y^2=1$ — окружность радиуса 1.

• Линия уровня для c=4: $x^2+y^2=4$ — окружность радиуса 2.

Примеры функций

1.
$$f(x,y) = x^2 + y^2$$
:

Область определения: $D=\mathbb{R}^2$.

Область значений: $E=[0,\infty)$.

Линии уровня: окружности $x^2+y^2=c$, $c\geq 0$.

2.
$$f(x,y) = \ln(x^2 + y^2)$$
:

Область определения: $D = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 > 0\}.$

Область значений: $E=(-\infty,+\infty)$.

Линии уровня: $\ln(x^2+y^2)=c$, то есть $x^2+y^2=e^c$.

0. Окрестность точки. Предел и непрерывность функции двух переменных.

0. Окрестность точки. Предел и непрерывность функции двух переменных

Окрестность точки

1. Окрестность точки (x_0, y_0) :

Это множество всех точек (x,y), удалённых от точки (x_0,y_0) на расстояние меньше заданного arepsilon>0.

Математически:

$$U_arepsilon(x_0,y_0)=\{(x,y)\in\mathbb{R}^2\mid \sqrt{(x-x_0)^2+(y-y_0)^2}$$

2. Проколотая окрестность:

Это окрестность, из которой исключена сама точка (x_0,y_0) :

$$U_arepsilon'(x_0,y_0)=U_arepsilon(x_0,y_0)\setminus\{(x_0,y_0)\}.$$

Предел функции двух переменных

Функция z=f(x,y) задана в окрестности точки (x_0,y_0) , за исключением, возможно, самой точки.

1. Определение предела:

Говорят, что функция f(x,y) стремится к пределу A в точке (x_0,y_0) , если для любого $\varepsilon>0$ существует $\delta>0$ такое, что для всех (x,y) из проколотой окрестности точки (x_0,y_0) :

$$\sqrt{(x-x_0)^2+(y-y_0)^2}<\delta \quad \Rightarrow \quad |f(x,y)-A|$$

2. Запись:

$$\lim_{(x,y) o(x_0,y_0)}f(x,y)=A.$$

3. Геометрический смысл:

Предел A — это значение, к которому стремится f(x,y) при приближении (x,y) к (x_0,y_0) полюбому пути.

4. Критерий существования предела:

Предел $\lim_{(x,y)\to(x_0,y_0)}f(x,y)$ существует, если он одинаков для всех возможных путей приближения к (x_0,y_0) . Если предел зависит от пути, то он **не существует**.

Непрерывность функции двух переменных

1. Определение:

Функция f(x,y) непрерывна в точке (x_0,y_0) , если выполняются три условия:

- \circ Функция определена в точке: $f(x_0,y_0)$ существует.
- \circ Предел функции существует: $\lim_{(x,y) o (x_0,y_0)} f(x,y)$ существует.
- Значение функции совпадает с пределом:

$$\lim_{(x,y) o (x_0,y_0)} f(x,y) = f(x_0,y_0).$$

2. Пример непрерывной функции:

 $f(x,y)=x^2+y^2$ непрерывна на всей плоскости $\mathbb{R}^2.$

3. Пример разрывной функции:

$$f(x,y)=rac{x^2-y^2}{x^2+y^2}$$
:

Функция не определена в точке (0,0), и предел не существует при (x,y) o (0,0).

Свойства непрерывных функций двух переменных

- 1. Сумма, разность, произведение и частное (при ненулевом знаменателе) непрерывных функций также непрерывны.
- 2. Составная функция f(g(x,y),h(x,y)), где g(x,y) и h(x,y) непрерывны, также непрерывна, если внешняя функция f(u,v) непрерывна.

Примеры

1. Функция $f(x,y) = x^2 + y^2$:

 $\lim_{(x,y) o (0,0)} f(x,y) = 0, \quad$ функция непрерывна на всей области определения.

2. Функция $f(x,y) = rac{\sin(x^2+y^2)}{x^2+y^2}$:

Определена везде, кроме (0,0).

Если определить f(0,0)=1, то функция становится непрерывной в этой точке.

Частные производные функции двух переменных. Дифференцируемость функции двух переменных. Дифференциал. Связь с частными производными.

Частные производные функции двух переменных. Дифференцируемость. Дифференциал

Частные производные функции двух переменных

1. Определение:

Пусть z=f(x,y) — функция двух переменных, определённая в некоторой области D. Частной производной функции f(x,y) по переменной x в точке (x_0,y_0) называется предел:

$$rac{\partial f}{\partial x}(x_0,y_0) = \lim_{h o 0} rac{f(x_0+h,y_0)-f(x_0,y_0)}{h},$$

если он существует.

Аналогично, частная производная по y:

$$rac{\partial f}{\partial y}(x_0,y_0) = \lim_{h o 0} rac{f(x_0,y_0+h)-f(x_0,y_0)}{h}.$$

2. Обозначения:

$$rac{\partial f}{\partial x}, \quad rac{\partial f}{\partial y}, \quad f_x, \quad f_y.$$

3. Геометрический смысл:

Частная производная по x показывает скорость изменения функции f(x,y) вдоль оси x, когда $y=\mathrm{const.}$

Частная производная по y показывает скорость изменения функции вдоль оси y, когда $x={
m const.}$

4. Пример:

Для
$$f(x,y)=x^2y+y^3$$
:

$$rac{\partial f}{\partial x}=2xy,\quad rac{\partial f}{\partial y}=x^2+3y^2.$$

Дифференцируемость функции двух переменных

1. Определение дифференцируемости:

Функция f(x,y) называется **дифференцируемой** в точке (x_0,y_0) , если её приращение $\Delta z = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0,y_0)$ можно представить в виде:

$$\Delta z = A\Delta x + B\Delta y + o(\sqrt{(\Delta x)^2 + (\Delta y)^2}),$$

где A и B — константы, зависящие от точки (x_0,y_0) , а $o(\sqrt{(\Delta x)^2+(\Delta y)^2})$ — бесконечно малая величина более высокого порядка по сравнению с $\sqrt{(\Delta x)^2+(\Delta y)^2}$.

2. Необходимое и достаточное условие дифференцируемости:

Функция f(x,y) дифференцируема в точке (x_0,y_0) , если:

- \circ Частные производные $rac{\partial f}{\partial x}$ и $rac{\partial f}{\partial y}$ существуют в этой точке.
- \circ Функция f(x,y) является непрерывной по x и y в точке (x_0,y_0) .
- 3. Геометрический смысл дифференцируемости:

Дифференцируемость функции f(x,y) означает, что её график в окрестности точки (x_0,y_0) можно приблизить касательной плоскостью.

Дифференциал функции двух переменных

1. Определение:

Дифференциал функции $\overline{z}=f(x,y)$ в точке (x_0,y_0) — это выражение:

$$dz = rac{\partial f}{\partial x}(x_0,y_0)\,dx + rac{\partial f}{\partial y}(x_0,y_0)\,dy.$$

Здесь dx и dy — независимые приращения аргументов x и y.

2. Геометрический смысл:

Дифференциал dz — это линейная часть приращения функции, которая описывает изменение z при малых изменениях x и y.

3. Пример:

Для
$$f(x,y)=x^2y+y^3$$
:

$$dz = (2xy)dx + (x^2 + 3y^2)dy.$$

Связь дифференциала и частных производных

Частные производные $\frac{\partial f}{\partial x}$ и $\frac{\partial f}{\partial y}$ — это коэффициенты при dx и dy в формуле дифференциала. Если функция дифференцируема, то её частные производные существуют и непрерывны в данной точке.

Примеры

1. Пример функции дифференцируемой в точке:

$$f(x,y) = x^2 + y^2.$$

Частные производные:

$$rac{\partial f}{\partial x}=2x,\quad rac{\partial f}{\partial y}=2y.$$

Дифференциал:

$$dz = 2x \, dx + 2y \, dy.$$

2. Пример функции, не дифференцируемой в точке:

$$f(x,y) = |x| + |y|.$$

Частные производные $rac{\partial f}{\partial x}$ и $rac{\partial f}{\partial y}$ существуют всюду, кроме точек x=0 и y=0, но функция не дифференцируема в этих точках из-за разрывов в градиенте.

Геометрический смысл частных производных. Необходимое и достаточное условие дифференцируемости функции.

Геометрический смысл частных производных

1. **Геометрический смысл частной производной по** x**:** Если z=f(x,y), то частная производная $\frac{\partial f}{\partial x}$ в точке (x_0,y_0) показывает скорость изменения функции f(x,y) вдоль оси x, когда $y=\mathrm{const.}$

Геометрически это наклон касательной к кривой пересечения графика функции z=f(x,y) с вертикальной плоскостью $y=y_0.$

- 2. **Геометрический смысл частной производной по** y: Аналогично, частная производная $\frac{\partial f}{\partial y}$ в точке (x_0,y_0) показывает скорость изменения функции вдоль оси y, когда $x=\mathrm{const.}$ Это наклон касательной к кривой пересечения графика с вертикальной плоскостью $x=x_0$.
- 3. **Пример:**

Пусть
$$f(x,y)=x^2+y^2.$$

- \circ График функции параболоид $z=x^2+y^2$.
- \circ Для фиксированного $y=y_0$, $f(x,y_0)=x^2+y_0^2$. Частная производная $rac{\partial f}{\partial x}=2x$ соответствует наклону касательной в направлении x.
- $\circ~$ Для фиксированного $x=x_0$, $f(x_0,y)=x_0^2+y^2$. Частная производная $rac{\partial f}{\partial y}=2y$ соответствует наклону касательной в направлении y.

Необходимое и достаточное условие дифференцируемости функции

1. Определение дифференцируемости функции:

Функция f(x,y) называется **дифференцируемой** в точке (x_0,y_0) , если её приращение $\Delta z = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0,y_0)$ можно представить в виде:

$$\Delta z = A\Delta x + B\Delta y + o(\sqrt{(\Delta x)^2 + (\Delta y)^2}),$$

где A и B — конечные величины, которые равны частным производным в точке:

$$A=rac{\partial f}{\partial x}(x_0,y_0),\quad B=rac{\partial f}{\partial y}(x_0,y_0).$$

2. Необходимое условие дифференцируемости:

Если f(x,y) дифференцируема в точке (x_0,y_0) , то:

- \circ Частные производные $rac{\partial f}{\partial x}$ и $rac{\partial f}{\partial y}$ существуют в этой точке.
- \circ Функция f(x,y) непрерывна в этой точке.
- 3. Достаточное условие дифференцируемости:

Если частные производные $rac{\partial f}{\partial x}$ и $rac{\partial f}{\partial y}$:

- $\circ\;$ существуют в некоторой окрестности точки (x_0,y_0) ,
- \circ непрерывны в этой точке, то функция f(x,y) дифференцируема в точке (x_0,y_0) .
- 4. Геометрическая интерпретация дифференцируемости:

Если функция f(x,y) дифференцируема в точке, то её график в окрестности этой точки можно приблизить плоскостью:

$$z=f(x_0,y_0)+rac{\partial f}{\partial x}(x_0,y_0)(x-x_0)+rac{\partial f}{\partial y}(x_0,y_0)(y-y_0).$$

Пример

Рассмотрим $f(x,y) = x^2 + y^2$.

• Частные производные:

$$rac{\partial f}{\partial x}=2x, \quad rac{\partial f}{\partial y}=2y.$$

- Функция непрерывна и частные производные непрерывны, следовательно, она дифференцируема.
- Дифференциал:

$$dz = 2x \, dx + 2y \, dy.$$

Геометрически график функции f(x,y) — это параболоид, а касательная плоскость в точке (x_0,y_0,z_0) задаётся уравнением:

$$z = x_0^2 + y_0^2 + 2x_0(x - x_0) + 2y_0(y - y_0).$$

Производная сложной функции (с выводом). Полная производная. Дифференцирование неявно заданной функции (с выводом формулы)

Производная сложной функции

Формулировка

Если функция z=f(u) и u=g(x), то производная сложной функции z=f(g(x)) по x определяется как:

$$rac{dz}{dx} = rac{df}{du} \cdot rac{du}{dx}.$$

Вывод

Пусть z=f(g(x)). Для малых изменений x рассмотрим приращение z:

$$\Delta z = f(g(x + \Delta x)) - f(g(x)).$$

Введём u=g(x), тогда $u+\Delta u=g(x+\Delta x)$, и получим:

$$\Delta z = f(u + \Delta u) - f(u).$$

Разделим на Δx :

$$rac{\Delta z}{\Delta x} = rac{f(u + \Delta u) - f(u)}{\Delta u} \cdot rac{\Delta u}{\Delta x}.$$

Переходя к пределу при $\Delta x o 0$, получим:

$$rac{dz}{dx} = rac{df}{du} \cdot rac{du}{dx}.$$

Полная производная функции

Формулировка

Если z=f(x,y), где x=x(t) и y=y(t), то полная производная z по t вычисляется как:

$$rac{dz}{dt} = rac{\partial f}{\partial x}rac{dx}{dt} + rac{\partial f}{\partial y}rac{dy}{dt}.$$

Вывод

Для приращения z при малом изменении t:

$$\Delta z = f(x(t+\Delta t),y(t+\Delta t)) - f(x(t),y(t)).$$

Разложим f(x,y) в ряд Тейлора:

$$\Delta z pprox rac{\partial f}{\partial x} \Delta x + rac{\partial f}{\partial y} \Delta y,$$

где $\Delta x = x(t+\Delta t) - x(t)$ и $\Delta y = y(t+\Delta t) - y(t)$. Разделим на Δt :

$$rac{\Delta z}{\Delta t}pproxrac{\partial f}{\partial x}rac{\Delta x}{\Delta t}+rac{\partial f}{\partial y}rac{\Delta y}{\Delta t}.$$

Переходя к пределу:

$$rac{dz}{dt} = rac{\partial f}{\partial x}rac{dx}{dt} + rac{\partial f}{\partial y}rac{dy}{dt}.$$

Дифференцирование неявно заданной функции

Формулировка

Если функция задана неявно уравнением F(x,y)=0, то её производная определяется как:

$$rac{dy}{dx} = -rac{rac{\partial F}{\partial x}}{rac{\partial F}{\partial y}}.$$

Вывод формулы

Предположим, что y=y(x) и F(x,y(x))=0. Тогда производная по x обеих сторон равенства:

$$rac{d}{dx}F(x,y)=0.$$

Используя правило производной сложной функции:

$$rac{\partial F}{\partial x} + rac{\partial F}{\partial y} rac{dy}{dx} = 0.$$

Выразим $\frac{dy}{dx}$:

$$rac{dy}{dx} = -rac{rac{\partial F}{\partial x}}{rac{\partial F}{\partial y}}.$$

Пример

Рассмотрим $x^2+y^2-1=0$ (уравнение окружности). Найдём $\frac{dy}{dx}$:

$$rac{\partial F}{\partial x}=2x, \quad rac{\partial F}{\partial y}=2y.$$

Подставляя в формулу:

$$\frac{dy}{dx} = -\frac{2x}{2y} = -\frac{x}{y}.$$

Касательная плоскость и нормаль к поверхности (вывод уравнений)

Касательная плоскость и нормаль к поверхности

Пусть поверхность задана уравнением F(x,y,z)=0, где F — дифференцируемая функция. Рассмотрим вывод уравнений касательной плоскости и нормали к этой поверхности.

Касательная плоскость

1. Определение

Касательная плоскость в точке $M_0(x_0,y_0,z_0)$ поверхности F(x,y,z)=0 — это плоскость, которая приближает поверхность вблизи этой точки и проходит через M_0 .

2. Вывод уравнения

При малых изменениях (x,y,z) разложим F(x,y,z) в ряд Тейлора в точке $M_0(x_0,y_0,z_0)$:

$$F(x,y,z)pprox F(x_0,y_0,z_0)+rac{\partial F}{\partial x}(x_0,y_0,z_0)(x-x_0)+rac{\partial F}{\partial y}(x_0,y_0,z_0)(y-y_0)+rac{\partial F}{\partial z}(x_0,y_0,z_0)(z-x_0)$$

Так как M_0 лежит на поверхности, $F(x_0,y_0,z_0)=0$. Тогда уравнение касательной плоскости:

$$rac{\partial F}{\partial x}(x_0,y_0,z_0)(x-x_0)+rac{\partial F}{\partial y}(x_0,y_0,z_0)(y-y_0)+rac{\partial F}{\partial z}(x_0,y_0,z_0)(z-z_0)=0.$$

3. Общее уравнение

Обозначив $rac{\partial F}{\partial x}=F_x$, $rac{\partial F}{\partial y}=F_y$, $rac{\partial F}{\partial z}=F_z$, уравнение касательной плоскости в точке $M_0(x_0,y_0,z_0)$:

$$F_x(x_0,y_0,z_0)(x-x_0)+F_y(x_0,y_0,z_0)(y-y_0)+F_z(x_0,y_0,z_0)(z-z_0)=0.$$

Нормаль к поверхности

1. Определение

Нормаль к поверхности в точке $M_0(x_0,y_0,z_0)$ — это вектор, перпендикулярный касательной плоскости в этой точке.

2. Вывод уравнения

Направляющий вектор нормали к поверхности — это градиент функции $\overline{F(x,y,z)}$:

$$\mathbf{n} =
abla F = (F_x, F_y, F_z)$$
 .

Таким образом, нормаль к поверхности в точке $M_0(x_0,y_0,z_0)$ имеет уравнение:

$$rac{F_x}{F_y}=rac{x-x_0}{y-y_0}=rac{z-z_0}{F_z}.$$

3. Параметрическое уравнение нормали

Нормаль можно записать в виде параметрических уравнений:

$$x = x_0 + F_x t$$
, $y = y_0 + F_y t$, $z = z_0 + F_z t$,

где $t \in \mathbb{R}$ — параметр.

Пример

. Пусть поверхность задана уравнением $F(x,y,z)=x^2+y^2+z^2-1=0$ (сфера радиуса 1).

1. Найдем касательную плоскость в точке $M_0(1,0,0)$:

$$F_x=2x,\quad F_y=2y,\quad F_z=2z.$$

В точке $M_0(1,0,0)$:

$$F_x=2, \quad F_y=0, \quad F_z=0.$$

Уравнение касательной плоскости:

$$2(x-1) + 0(y-0) + 0(z-0) = 0 \implies x = 1.$$

2. Направляющий вектор нормали:

$$\mathbf{n} = \nabla F = (2x, 2y, 2z).$$

В точке $M_0(1,0,0)$:

$$\mathbf{n} = (2, 0, 0).$$

Нормаль направлена вдоль оси x.

Производная по направлению и градиент. Свойства градиента. Направление наибыстрейшего возрастания функции (с выводом).

Производная по направлению и градиент

Определение производной по направлению

Пусть функция f(x,y,z) определена в некоторой области пространства, а ${f u}=(u_x,u_y,u_z)$ — единичный вектор направления ($|{f u}|=1$). Производной f по направлению ${f u}$ в точке $M_0(x_0,y_0,z_0)$ называется величина:

$$D_{\mathbf{u}}f = \lim_{t o 0} rac{f(x_0+u_xt,y_0+u_yt,z_0+u_zt)-f(x_0,y_0,z_0)}{t}.$$

Вывод формулы

Для малых t можно записать приращение функции:

$$f(x_0+u_xt,y_0+u_yt,z_0+u_zt)pprox f(x_0,y_0,z_0)+rac{\partial f}{\partial x}u_xt+rac{\partial f}{\partial y}u_yt+rac{\partial f}{\partial z}u_zt.$$

Тогда производная по направлению:

$$D_{f u}f=rac{\partial f}{\partial x}u_x+rac{\partial f}{\partial y}u_y+rac{\partial f}{\partial z}u_z.$$

В векторной форме:

$$D_{\mathbf{u}}f = \nabla f \cdot \mathbf{u},$$

где $abla f = \left(rac{\partial f}{\partial x},rac{\partial f}{\partial y},rac{\partial f}{\partial z}
ight)$ — градиент функции.

Градиент функции

Определение

Градиент функции f(x, y, z) — это вектор:

$$abla f = \left(rac{\partial f}{\partial x},rac{\partial f}{\partial y},rac{\partial f}{\partial z}
ight),$$

где компоненты — это частные производные функции по соответствующим переменным.

Свойства градиента

1. Направление максимального возрастания

Градиент функции в точке $M_0(x_0,y_0,z_0)$ указывает в направлении наиболее быстрого возрастания функции f.

2. Перпендикулярность уровням функции

Градиент в точке M_0 перпендикулярен поверхности уровня $f(x,y,z)=\mathrm{const.}$

3. Производная по направлению

Производная функции f по направлению вектора ${f u}$ равна скалярному произведению abla f и ${f u}$:

$$D_{\mathbf{u}}f = \nabla f \cdot \mathbf{u}.$$

Направление наибыстрейшего возрастания функции

Вывод

Производная $D_{\mathbf{u}}f$ по направлению \mathbf{u} зависит от угла heta между градиентом abla f и направляющим вектором \mathbf{u} :

$$D_{\mathbf{u}}f = |\nabla f| \cdot |\mathbf{u}| \cdot \cos \theta.$$

Так как $|\mathbf{u}|=1$, то:

$$D_{\mathbf{u}}f = |\nabla f| \cos \theta.$$

Производная достигает максимального значения, когда $\cos \theta = 1$, то есть направление ${f u}$ совпадает с направлением ∇f . Максимальное значение:

$$D_{\mathbf{u}}f = |\nabla f|.$$

Следовательно, направление наибыстрейшего возрастания функции совпадает с направлением градиента, а величина производной равна длине градиента.

Пример

Пусть $f(x, y) = x^2 + y^2$.

1. Градиент функции:

$$abla f = \left(rac{\partial f}{\partial x},rac{\partial f}{\partial y}
ight) = (2x,2y).$$

2. В точке $M_0(1,1)$:

$$abla f = (2 \cdot 1, 2 \cdot 1) = (2, 2).$$

- 3. **Направление максимального возрастания:** Градиент (2,2) указывает на направление наибыстрейшего возрастания функции.
- 4. Максимальная производная:

$$|
abla f| = \sqrt{2^2 + 2^2} = \sqrt{8} = 2\sqrt{2}.$$

Производные высших порядков. Дифференциалы высших порядков (с выводом).

Производные высших порядков

Определение

Производные высших порядков для функции f(x) определяются как производные от предыдущих производных:

- ullet Первая производная: $rac{d}{dx}f(x).$ ullet Вторая производная: $rac{d}{dx^2}f(x)=rac{d}{dx}\left(rac{d}{dx}f(x)
 ight).$
- ullet Третья производная: $rac{d^3}{dx^3}f(x)=rac{d}{dx}\left(rac{d^2}{dx^2}f(x)
 ight)$.
- И так далее.

Обозначение для n-й производной:

$$f^{(n)}(x)=rac{d^n}{dx^n}f(x).$$

Геометрический смысл

- Первая производная характеризует скорость изменения функции.
- Вторая производная определяет ускорение и позволяет анализировать выпуклость графика функции:
 - $\circ f''(x) > 0$: график выпуклый вверх.
 - $\circ f''(x) < 0$: график выпуклый вниз.

• Производные более высоких порядков имеют приложения в физике, математике и численных методах (например, для разложения в ряд Тейлора).

Пример

Для функции $f(x)=x^4$:

- 1. Первая производная: $f'(x) = 4x^3$.
- 2. Вторая производная: $f''(x) = 12x^2$.
- 3. Третья производная: f'''(x) = 24x.
- 4. Четвертая производная: $f^{(4)}(x)=24.$

Дифференциалы высших порядков

Определение

Дифференциал первого порядка df для функции f(x) определяется как:

$$df = f'(x)dx$$
.

Дифференциалы высших порядков вводятся как дифференциалы от предыдущих дифференциалов:

• Дифференциал второго порядка:

$$d^2f=d(df)=d(f'(x)dx)=f''(x)(dx)^2.$$

• Дифференциал третьего порядка:

$$d^3f = d(d^2f) = d(f''(x)(dx)^2) = f'''(x)(dx)^3.$$

• И так далее.

Вывод для общего случая

Пусть f(x) имеет n-ю производную. Тогда дифференциал n-го порядка записывается как:

$$d^n f = f^{(n)}(x) (dx)^n.$$

Это следует из определения, поскольку каждый дифференциал "приносит" умножение на dx.

Пример

Для функции $f(x)=x^3$:

- 1. Первая производная: $f'(x)=3x^2$, первый дифференциал: $df=3x^2dx$.
- 2. Вторая производная: f''(x)=6x, второй дифференциал: $d^2f=6x(dx)^2$.
- 3. Третья производная: f'''(x)=6, третий дифференциал: $d^3f=6(dx)^3$.

Связь между дифференциалами и производными

Дифференциалы высших порядков связаны с производными следующим образом:

- ullet Производная n-го порядка $f^{(n)}(x)$ численно равна коэффициенту $d^nf/(dx)^n.$
- Дифференциалы являются формальным расширением, удобным в вычислениях и теории.

Итоги

- Производные высших порядков позволяют изучать изменение функции на более глубоком уровне, включая выпуклость и скорость изменения изменения.
- **Дифференциалы высших порядков** полезны для теоретических расчетов и анализа разложений, таких как ряд Тейлора.

Многомерные пространства. Понятие функции многих переменных. Область существования функции. Область значений. Окрестность точки. Предел и непрерывность функции многих переменных. Пиши именно про функции многих переменных в общем случае, не используя частность, например f(x)

Многомерные пространства и функции многих переменных

Понятие функции многих переменных

Функция многих переменных — это отображение, которое каждой точке из некоторого множества в n-мерном пространстве \mathbb{R}^n ставит в соответствие число из множества \mathbb{R} :

$$f: \mathbb{R}^n o \mathbb{R}, \quad f(\mathbf{x}) = f(x_1, x_2, \dots, x_n).$$

Здесь:

- ullet $\mathbf{x}=(x_1,x_2,\ldots,x_n)$ точка пространства \mathbb{R}^n ;
- x_1, x_2, \ldots, x_n независимые переменные (аргументы функции);
- $f(\mathbf{x})$ значение функции.

Пример: температура воздуха T может зависеть от трех пространственных координат x,y,z и времени t, т.е. T=f(x,y,z,t).

Область существования функции

Область определения функции многих переменных — это множество всех точек $\mathbf{x} \in \mathbb{R}^n$, для которых функция $f(\mathbf{x})$ имеет смысл:

$$D(f) = \{ \mathbf{x} \in \mathbb{R}^n \mid f(\mathbf{x}) ext{ определена} \}.$$

Для функции, заданной аналитически, область определения часто определяется из условий существования выражений, входящих в формулу.

Область значений функции

Область значений функции — это множество всех возможных значений функции:

$$E(f) = \{ y \in \mathbb{R} \mid \exists \mathbf{x} \in D(f), f(\mathbf{x}) = y \}.$$

Пример: если $f(x_1,x_2)=x_1^2+x_2^2$, то область значений — множество $[0,+\infty)$.

Окрестность точки

Окрестность точки $\mathbf{a}=(a_1,a_2,\ldots,a_n)\in\mathbb{R}^n$ — это множество всех точек $\mathbf{x}=(x_1,x_2,\ldots,x_n)$, расстояние от которых до \mathbf{a} меньше заданного $\varepsilon>0$:

$$B_arepsilon(\mathbf{a}) = \{\mathbf{x} \in \mathbb{R}^n \mid \|\mathbf{x} - \mathbf{a}\| < arepsilon\}.$$

Здесь
$$\|\mathbf{x}-\mathbf{a}\|=\sqrt{(x_1-a_1)^2+(x_2-a_2)^2+\cdots+(x_n-a_n)^2}$$
 — евклидова норма.

Предел функции многих переменных

Определение предела. Пусть функция $f(\mathbf{x})$ определена в некоторой окрестности точки $\mathbf{a} \in \mathbb{R}^n$, за исключением, возможно, самой точки \mathbf{a} . Говорят, что функция $f(\mathbf{x})$ имеет предел A при $\mathbf{x} \to \mathbf{a}$, если для любого $\varepsilon>0$ существует $\delta>0$, такое что:

$$\|\mathbf{x} - \mathbf{a}\| < \delta \implies |f(\mathbf{x}) - A| < arepsilon.$$

Обозначение:

$$\lim_{\mathbf{x} \to \mathbf{a}} f(\mathbf{x}) = A.$$

Замечание. Существование предела функции многих переменных сложнее, чем в одномерном случае, так как необходимо учитывать все возможные пути подхода к точке \mathbf{a} .

Непрерывность функции многих переменных

Определение. Функция $f(\mathbf{x})$ называется непрерывной в точке $\mathbf{a} \in D(f)$, если:

- 1. Существует значение функции в точке ${f a}$: $f({f a})$ определено.
- 2. Существует предел функции в точке \mathbf{a} : $\lim_{\mathbf{x} o \mathbf{a}} f(\mathbf{x})$ существует.
- 3. Предел равен значению функции: $\lim_{\mathbf{x} \to \mathbf{a}} f(\mathbf{x}) = f(\mathbf{a})$.

Замечание. Для функции многих переменных непрерывность в точке ${f a}$ означает, что малые изменения аргументов вызывают малые изменения значения функции. Формально:

$$orall arepsilon > 0, \exists \delta > 0: \|\mathbf{x} - \mathbf{a}\| < \delta \implies |f(\mathbf{x}) - f(\mathbf{a})| < arepsilon.$$

Связь предела и непрерывности

ullet Если функция $f(\mathbf{x})$ непрерывна в точке \mathbf{a} , то:

$$\lim_{\mathbf{x} o \mathbf{a}} f(\mathbf{x}) = f(\mathbf{a}).$$

• Обратное тоже верно: если предел функции равен её значению в точке, то она непрерывна в этой точке.

Дифференцируемость функции многих переменных. Дифференциал функции многих переменных. Частные производные.

Дифференцируемость функции многих переменных

Определение дифференцируемости

Функция $f(\mathbf{x})=f(x_1,x_2,\ldots,x_n)$, заданная в некоторой окрестности точки $\mathbf{a}=(a_1,a_2,\ldots,a_n)$, называется **дифференцируемой** в этой точке, если её приращение $\Delta f=f(\mathbf{x})-f(\mathbf{a})$ можно представить в виде:

$$\Delta f = L(\Delta \mathbf{x}) + o(\|\Delta \mathbf{x}\|),$$

где:

- ullet $\Delta {f x} = (x_1 a_1, x_2 a_2, \ldots, x_n a_n)$ приращение аргумента;
- ullet $L(\Delta {f x})$ линейная функция от $\Delta {f x}$, называемая **главной линейной частью приращения**;
- $o(\|\Delta \mathbf{x}\|)$ бесконечно малая величина более высокого порядка малости относительно $\|\Delta \mathbf{x}\|$, то есть:

$$rac{o(\|\Delta \mathbf{x}\|)}{\|\Delta \mathbf{x}\|} o 0$$
 при $\|\Delta \mathbf{x}\| o 0.$

Если $f(\mathbf{x})$ дифференцируема, то $L(\Delta\mathbf{x})$ имеет вид:

$$L(\Delta \mathbf{x}) = \sum_{i=1}^n rac{\partial f}{\partial x_i} \Delta x_i,$$

где $rac{\partial f}{\partial x_i}$ — частные производные функции.

Дифференциал функции многих переменных

Определение дифференциала

Дифференциал функции многих переменных $f(\mathbf{x}) = f(x_1, x_2, \dots, x_n)$ в точке \mathbf{a} — это линейная функция:

$$df = \sum_{i=1}^n rac{\partial f}{\partial x_i} dx_i,$$

где:

- dx_i малые приращения независимых переменных x_i ; $\frac{\partial f}{\partial x_i}$ частные производные функции f в точке ${f a}$.

Дифференциал df представляет собой главную линейную часть приращения функции:

$$\Delta f \approx df$$
.

Связь с дифференцируемостью

Если функция $f(\mathbf{x})$ дифференцируема в точке \mathbf{a} , то её приращение можно записать как:

$$\Delta f = df + o(\|\Delta \mathbf{x}\|),$$

где
$$df = \sum_{i=1}^n rac{\partial f}{\partial x_i} \Delta x_i.$$

Частные производные функции многих переменных

Определение

Частная производная функции $f(\mathbf{x})$ по переменной x_i вычисляется как производная от f по x_i , при этом остальные переменные считаются постоянными:

$$rac{\partial f}{\partial x_i} = \lim_{\Delta x_i o 0} rac{f(x_1, \dots, x_i + \Delta x_i, \dots, x_n) - f(x_1, \dots, x_i, \dots, x_n)}{\Delta x_i}.$$

Геометрический смысл

Частная производная $rac{\partial f}{\partial x_i}$ показывает скорость изменения функции f вдоль направления оси x_i , при фиксированных значениях всех остальных переменных.

Связь дифференцируемости с частными производными

- ullet Если у функции $f(\mathbf{x})$ существуют частные производные в точке \mathbf{a} , то это не гарантирует её дифференцируемости.
- ullet Если функция $f(\mathbf{x})$ дифференцируема в точке \mathbf{a} , то все её частные производные существуют и непрерывны в этой точке. Дифференцируемость функции можно проверить по критерию:
 - Если все частные производные функции непрерывны в точке, то функция дифференцируема в этой точке.

Итоги

- 1. Дифференцируемость функции многих переменных это возможность представить её приращение в виде суммы линейной части и бесконечно малой более высокого порядка.
- 2. Дифференциал это главная линейная часть приращения функции.
- 3. **Частные производные** это производные функции по каждой переменной отдельно, они входят в формулу дифференциала.

Пример: для $\overline{f(x_1,x_2)}=\overline{x_1^2+\overline{x_2^2}}$:

- ullet $rac{\partial f}{\partial x_1}=2x_1$, $rac{\partial f}{\partial x_2}=2x_2$; ullet Дифференциал: $df=2x_1dx_1+2x_2dx_2.$

Дифференцируемость вектор-функции многих переменных. Якобиан.

Дифференцируемость вектор-функции многих переменных

Определение вектор-функции

Вектор-функция многих переменных $\mathbf{F}(\mathbf{x})$ представляет собой отображение:

$$\mathbf{F}(\mathbf{x}) = egin{bmatrix} F_1(x_1, x_2, \dots, x_n) \ F_2(x_1, x_2, \dots, x_n) \ dots \ F_m(x_1, x_2, \dots, x_n) \end{bmatrix},$$

где $\mathbf{x} = (x_1, x_2, \dots, x_n)$ — вектор из n независимых переменных, а каждая компонентная функция $F_i(\mathbf{x})$ зависит от них.

Дифференцируемость

Вектор-функция $\mathbf{F}(\mathbf{x})$ называется **дифференцируемой** в точке $\mathbf{a}=(a_1,a_2,\ldots,a_n)$, если её приращение $\Delta \mathbf{F} = \mathbf{F}(\mathbf{x}) - \mathbf{F}(\mathbf{a})$ можно представить в виде:

$$\Delta \mathbf{F} = \mathbf{J}(\mathbf{a})\Delta \mathbf{x} + o(\|\Delta \mathbf{x}\|),$$

где:

- $\Delta \mathbf{x} = (x_1 a_1, x_2 a_2, \dots, x_n a_n)$ приращение аргумента;
- ullet ${f J}({f a})$ матрица Якоби, которая содержит все частные производные функции ${f F}$ в точке ${f a}$;
- $o(\|\Delta \mathbf{x}\|)$ бесконечно малая более высокого порядка малости относительно $\|\Delta \mathbf{x}\|$.

Якобиан

Матрица Якоби

Матрица Якоби $\mathbf{J}(\mathbf{x})$ в точке $\mathbf{x}=(x_1,x_2,\ldots,x_n)$ задаётся как:

$$\mathbf{J}(\mathbf{x}) = egin{bmatrix} rac{\partial F_1}{\partial x_1} & rac{\partial F_1}{\partial x_2} & \cdots & rac{\partial F_1}{\partial x_n} \ rac{\partial F_2}{\partial x_1} & rac{\partial F_2}{\partial x_2} & \cdots & rac{\partial F_2}{\partial x_n} \ dots & dots & \ddots & dots \ rac{\partial F_m}{\partial x_1} & rac{\partial F_m}{\partial x_2} & \cdots & rac{\partial F_m}{\partial x_n} \end{bmatrix}.$$

Элементы этой матрицы — частные производные компонентных функций F_i по переменным $x_i.$

Матрица Якоби задаёт **линейное приближение** вектор-функции ${f F}$ в окрестности точки ${f a}$.

Определитель Якоби (Якобиан)

Если m=n, то матрица Якоби становится квадратной, и её определитель называется **Якобианом**:

$$J(\mathbf{x}) = \det \mathbf{J}(\mathbf{x}).$$

Якобиан характеризует локальные свойства отображения $\mathbf{F}(\mathbf{x})$:

- 1. Если $J(\mathbf{x})
 eq 0$, то отображение $\mathbf{F}(\mathbf{x})$ в точке \mathbf{x} обратимо.
- 2. Знак Якобиана определяет ориентацию отображения (сохраняется или изменяется направление преобразования).

Пример

Рассмотрим вектор-функцию:

$$\mathbf{F}(\mathbf{x}) = egin{bmatrix} F_1(x_1,x_2) \ F_2(x_1,x_2) \end{bmatrix} = egin{bmatrix} x_1^2 + x_2 \ x_1x_2 + x_2^2 \end{bmatrix}.$$

Матрица Якоби имеет вид:

$$\mathbf{J}(\mathbf{x}) = egin{bmatrix} rac{\partial F_1}{\partial x_1} & rac{\partial F_1}{\partial x_2} \ rac{\partial F_2}{\partial x_1} & rac{\partial F_2}{\partial x_2} \end{bmatrix} = egin{bmatrix} 2x_1 & 1 \ x_2 & x_1 + 2x_2 \end{bmatrix}.$$

Якобиан:

$$J(\mathbf{x}) = \det \mathbf{J}(\mathbf{x}) = \det egin{bmatrix} 2x_1 & 1 \ x_2 & x_1 + 2x_2 \end{bmatrix} = 2x_1(x_1 + 2x_2) - x_2 \cdot 1 = 2x_1^2 + 4x_1x_2 - x_2.$$

Итоги

- 1. **Дифференцируемость** вектор-функции связана с существованием линейного приближения её приращения.
- 2. **Матрица Якоби** это матрица, содержащая частные производные компонент векторфункции.
- 3. **Якобиан** определитель матрицы Якоби, который характеризует обратимость и свойства отображения.

Формула Тейлора для функции многих переменных.

Формула Тейлора для функции многих переменных

Формула Тейлора для функции многих переменных позволяет аппроксимировать её значение в окрестности точки с помощью многочлена, зависящего от значений частных производных. Рассмотрим её строгое математическое определение.

Условие

Пусть $f(x_1,x_2,\ldots,x_n)$ — функция, определённая в некоторой окрестности точки ${f a}=(a_1,a_2,\ldots,a_n)$ и имеющая непрерывные частные производные до порядка k включительно. Тогда её значение в точке ${f x}=(x_1,x_2,\ldots,x_n)$ можно разложить по формуле Тейлора.

Формула Тейлора

Формула Тейлора порядка k для функции $f(\mathbf{x})$ в окрестности точки \mathbf{a} имеет вид:

$$f(\mathbf{x}) = f(\mathbf{a}) + \sum_{|lpha|=1}^k rac{1}{lpha!} rac{\partial^{|lpha|} f}{\partial x_1^{lpha_1} \partial x_2^{lpha_2} \ldots \partial x_n^{lpha_n}} (\mathbf{a}) \cdot (\Delta x_1^{lpha_1} \Delta x_2^{lpha_2} \ldots \Delta x_n^{lpha_n}) + R_k(\mathbf{x}),$$

где:

- $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n)$ мультииндекс;
- $|\alpha| = \alpha_1 + \alpha_2 + \cdots + \alpha_n$ порядок производной;
- $\alpha! = \alpha_1! \alpha_2! \ldots \alpha_n!$;
- $\Delta x_i = x_i a_i$;
- $R_k(\mathbf{x})$ остаточный член.

Остаточный член

Остаточный член в форме Лагранжа имеет вид:

$$R_k(\mathbf{x}) = rac{1}{(k+1)!} \sum_{|lpha|=k+1} rac{\partial^{|lpha|} f}{\partial x_1^{lpha_1} \partial x_2^{lpha_2} \ldots \partial x_n^{lpha_n}} (\mathbf{c}) \cdot (\Delta x_1^{lpha_1} \Delta x_2^{lpha_2} \ldots \Delta x_n^{lpha_n}),$$

где ${f c}$ — некоторая точка внутри отрезка между ${f a}$ и ${f x}$.

Разложение для функции двух переменных (n=2):

Если f(x,y) имеет частные производные до второго порядка, то формула Тейлора второго порядка принимает вид:

$$f(x,y) = f(a,b) + rac{\partial f}{\partial x}(a,b)(x-a) + rac{\partial f}{\partial y}(a,b)(y-b) + \ + rac{1}{2}\left[rac{\partial^2 f}{\partial x^2}(a,b)(x-a)^2 + 2rac{\partial^2 f}{\partial x \partial y}(a,b)(x-a)(y-b) + rac{\partial^2 f}{\partial y^2}(a,b)(y-b)^2
ight] + R_2(x,y),$$

где $R_2(x,y)$ — остаточный член.

Пример

Для функции $f(x,y)=x^2+y^2+3xy$ в точке (a,b)=(1,1) найдем разложение до второго порядка.

1. Значение функции:

$$f(1,1) = 1^2 + 1^2 + 3 \cdot 1 \cdot 1 = 5.$$

2. Первые производные:

$$rac{\partial f}{\partial x}=2x+3y, \quad rac{\partial f}{\partial y}=2y+3x.$$

При (x, y) = (1, 1):

$$rac{\partial f}{\partial x}(1,1)=2\cdot 1+3\cdot 1=5,\quad rac{\partial f}{\partial y}(1,1)=2\cdot 1+3\cdot 1=5.$$

3. Вторые производные:

$$rac{\partial^2 f}{\partial x^2}=2, \quad rac{\partial^2 f}{\partial y^2}=2, \quad rac{\partial^2 f}{\partial x \partial y}=3.$$

4. Разложение:

$$f(x,y) = 5 + 5(x-1) + 5(y-1) + rac{1}{2} \left[2(x-1)^2 + 2(y-1)^2 + 6(x-1)(y-1)
ight].$$

Локальный экстремум функции нескольких переменных, условия его существования и методы поиска.

Локальный экстремум функции нескольких переменных: определения, условия существования и методы поиска

Определение локального экстремума

Пусть $f(x_1,x_2,\ldots,x_n)$ — функция, заданная в некоторой области $D\subset \mathbb{R}^n$. Точка $\mathbf{a}=(a_1,a_2,\ldots,a_n)\in D$ называется:

• точкой локального максимума, если существует окрестность $U({f a})\subset D$, такая что для всех ${f x}\in U({f a})$ выполняется:

$$f(\mathbf{x}) \leq f(\mathbf{a}).$$

• точкой локального минимума, если существует окрестность $U({f a})\subset D$, такая что для всех ${f x}\in U({f a})$ выполняется:

$$f(\mathbf{x}) \geq f(\mathbf{a}).$$

Точка, которая является точкой либо локального максимума, либо локального минимума, называется **точкой локального экстремума**.

Необходимое условие экстремума (Первая производная)

Если функция $f(x_1,x_2,\ldots,x_n)$ имеет частные производные первого порядка в некоторой окрестности точки ${f a}$ и ${f a}$ является точкой локального экстремума, то градиент функции в этой точке равен нулю:

$$abla f(\mathbf{a}) = \left(rac{\partial f}{\partial x_1}(\mathbf{a}), rac{\partial f}{\partial x_2}(\mathbf{a}), \ldots, rac{\partial f}{\partial x_n}(\mathbf{a})
ight) = \mathbf{0}.$$

Такие точки называются стационарными точками.

Достаточное условие экстремума (Вторая производная)

Пусть $f(x_1, x_2, \ldots, x_n)$ дважды непрерывно дифференцируема в окрестности точки \mathbf{a} . Для проверки наличия экстремума используют **квадратичную форму второго порядка**, зависящую от вторых частных производных функции, называемую **матрицей Гессе** или **гессианом**.

Матрица Гессе:

$$H_f(\mathbf{a}) = egin{bmatrix} rac{\partial^2 f}{\partial x_1^2} & rac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & rac{\partial^2 f}{\partial x_1 \partial x_n} \ rac{\partial^2 f}{\partial x_2 \partial x_1} & rac{\partial^2 f}{\partial x_2^2} & \cdots & rac{\partial^2 f}{\partial x_2 \partial x_n} \ dots & dots & \ddots & dots \ rac{\partial^2 f}{\partial x_n \partial x_1} & rac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & rac{\partial^2 f}{\partial x_n^2} \ \end{bmatrix}.$$

Анализ Гессе:

- 1. Если $H_f(\mathbf{a})$ положительно определённая, то \mathbf{a} является точкой **локального минимума**.
- 2. Если $H_f(\mathbf{a})$ отрицательно определённая, то \mathbf{a} является точкой **локального максимума**.
- 3. Если $H_f(\mathbf{a})$ имеет смешанный знак (не определена), то точка \mathbf{a} является **седловой точкой** (не экстремумом).

Методы поиска экстремумов

1. Найти стационарные точки: Решить систему уравнений:

$$rac{\partial f}{\partial x_1}=0,\quad rac{\partial f}{\partial x_2}=0,\quad \dots,\quad rac{\partial f}{\partial x_n}=0.$$

- 2. Исследовать гессиан в каждой стационарной точке:
 - Составить матрицу Гессе.
 - Проверить её положительную/отрицательную определённость с помощью ведущих миноров.

Пример 1

Рассмотрим функцию $f(x,y) = x^2 + y^2 - 4x - 6y + 9$.

1. Найдём стационарные точки:

$$rac{\partial f}{\partial x}=2x-4=0, \quad rac{\partial f}{\partial y}=2y-6=0.$$

Решая систему, получаем стационарную точку: (x,y)=(2,3).

2. Составим матрицу Гессе:

$$H_f(x,y) = egin{bmatrix} rac{\partial^2 f}{\partial x^2} & rac{\partial^2 f}{\partial x \partial y} \ rac{\partial^2 f}{\partial y \partial x} & rac{\partial^2 f}{\partial y^2} \end{bmatrix} = egin{bmatrix} 2 & 0 \ 0 & 2 \end{bmatrix}.$$

3. **Определим знаки**: Определитель матрицы Гессе равен $2 \cdot 2 - 0 = 4 > 0$, а главный диагональный элемент (2 > 0) указывает на положительную определённость.

Следовательно, точка (2,3) — точка **локального минимума**.

Пример 2 (седловая точка)

Рассмотрим функцию $g(x,y)=x^2-y^2$.

1. Найдём стационарные точки:

$$rac{\partial g}{\partial x}=2x=0,\quad rac{\partial g}{\partial y}=-2y=0.$$

Решая, получаем стационарную точку: $(x,y)=\overline{(0,0)}.$

2. Составим матрицу Гессе:

$$H_g(x,y) = egin{bmatrix} 2 & 0 \ 0 & -2 \end{bmatrix}.$$

- 3. Определим знаки:
 - \circ Один элемент положительный (2>0), другой отрицательный (-2<0).
 - Матрица Гессе не определена.

Следовательно, точка (0,0) — **седловая точка**.

Таким образом, анализ функции многих переменных для нахождения локальных экстремумов требует нахождения стационарных точек и проверки определённости матрицы Гессе в этих точках.

Расскажи подробнее про Анализ Гессе

Анализ Гессе: Детальное разъяснение

Матрица Гессе — это ключевой инструмент в анализе функций нескольких переменных, который используется для исследования характера стационарных точек (локальный минимум, локальный максимум или седловая точка). Давайте разберём её использование по шагам.

1. Что такое матрица Гессе

Для функции $f(x_1, x_2, \dots, x_n)$, дважды дифференцируемой в некоторой области, **матрица Гессе** представляет собой симметричную квадратную матрицу, состоящую из вторых частных производных функции:

$$H_f(\mathbf{x}) = egin{bmatrix} rac{\partial^2 f}{\partial x_1^2} & rac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & rac{\partial^2 f}{\partial x_1 \partial x_n} \ rac{\partial^2 f}{\partial x_2 \partial x_1} & rac{\partial^2 f}{\partial x_2^2} & \cdots & rac{\partial^2 f}{\partial x_2 \partial x_n} \ dots & dots & \ddots & dots \ rac{\partial^2 f}{\partial x_n \partial x_1} & rac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & rac{\partial^2 f}{\partial x_n^2} \ \end{bmatrix}.$$

Симметричность матрицы ($rac{\partial^2 f}{\partial x_i \partial x_j} = rac{\partial^2 f}{\partial x_j \partial x_i}$) обеспечивается теоремой Шварца, если частные производные функции непрерывны.

2. Как матрица Гессе используется для анализа стационарных точек

Стационарная точка — это точка ${f a}$, в которой градиент функции равен нулю ($abla f({f a})=0$). Для классификации этой точки используют матрицу Гессе, анализируя её **определённость**.

Определённость матрицы Гессе показывает, как квадратичная форма $Q(\mathbf{h}) = \mathbf{h}^{ op} H_f(\mathbf{a}) \mathbf{h}$ влияет на поведение функции вблизи точки \mathbf{a} , где $\mathbf{h} = (h_1, h_2, \dots, h_n)$ — вектор изменения координат.

3. Критерии классификации стационарной точки

Для анализа определённости матрицы Гессе используют **миноры главного порядка** (определители угловых подматриц). Пусть $H_f(\mathbf{a})$ — матрица n imes n. Тогда:

ullet Минор первого порядка: $\Delta_1=H_{11}=rac{\partial^2 f}{\partial x_1^2}(\mathbf{a})$,

$$ullet$$
 Минор второго порядка: $\Delta_2=egin{bmatrix} rac{\partial^2 f}{\partial x_1^2} & rac{\partial^2 f}{\partial x_1\partial x_2} \ rac{\partial^2 f}{\partial x_2\partial x_1} & rac{\partial^2 f}{\partial x_2^2} \end{bmatrix}$,

ullet и так далее, вплоть до $\overline{\Delta_n = \det(H_f(\mathbf{a}))}$

Классификация:

- 1. Если все миноры главного порядка $\Delta_1, \Delta_2, \dots, \Delta_n > 0$, то $H_f(\mathbf{a})$ положительно определена, и \mathbf{a} точка локального минимума.
- 2. Если знаки миноров чередуются ($\Delta_1>0, \Delta_2<0, \Delta_3>0\dots$), то $H_f({f a})$ отрицательно определена, и ${f a}$ точка локального максимума.
- 3. Если хотя бы один из миноров изменяет знак или равен нулю, то $H_f(\mathbf{a})$ не определена, и точка \mathbf{a} седловая (не экстремум).

4. Геометрическая интерпретация

- 1. Если $H_f(\mathbf{a})$ положительно определена, функция f возрастает во всех направлениях от точки \mathbf{a} , образуя "чашу" (локальный минимум).
- 2. Если $H_f(\mathbf{a})$ отрицательно определена, функция f убывает во всех направлениях от точки \mathbf{a} , образуя "перевернутую чашу" (локальный максимум).
- 3. Если $H_f(\mathbf{a})$ не определена, функция ведёт себя по-разному в разных направлениях: в одних возрастает, в других убывает. График напоминает гиперболический седлообразный профиль.

5. Пример анализа

Рассмотрим функцию $f(x,y) = x^2 + y^2 - 4x - 6y + 9$.

1. Найдём стационарные точки:

$$rac{\partial f}{\partial x}=2x-4=0,\quad rac{\partial f}{\partial y}=2y-6=0.$$

Стационарная точка: (x,y)=(2,3).

2. Составим матрицу Гессе:

$$H_f(x,y) = egin{bmatrix} rac{\partial^2 f}{\partial x^2} & rac{\partial^2 f}{\partial x \partial y} \ rac{\partial^2 f}{\partial y \partial x} & rac{\partial^2 f}{\partial y^2} \end{bmatrix} = egin{bmatrix} 2 & 0 \ 0 & 2 \end{bmatrix}.$$

3. Проверим миноры:

$$egin{array}{ll} \circ & \Delta_1 = 2 > 0, \ \circ & \Delta_2 = \det(H_f) = 2 \cdot 2 - 0 = 4 > 0. \end{array}$$

Все миноры положительны, значит, матрица Гессе положительно определена. Следовательно, (2,3) — точка локального минимума.

6. Особенности анализа в многомерных пространствах

Для функции многих переменных (n>2) процедура аналогична. Ключевая сложность заключается в увеличении размерности матрицы Гессе и необходимости вычисления большего числа миноров. Однако основные критерии остаются неизменными.

Заключение

Анализ матрицы Гессе — мощный метод для классификации стационарных точек функции нескольких переменных. Он основывается на строгой математической теории (критерии Сильвестра для положительной/отрицательной определённости матриц) и даёт ясное представление о поведении функции вблизи стационарной точки.

Условный экстремум, условия его существования и методы отыскания.

Условный экстремум: определение, условия существования и методы отыскания

1. Определение условного экстремума

Условный экстремум — это экстремум функции, достигаемый при выполнении некоторых ограничений.

Пусть дана функция $f(x_1,x_2,\ldots,x_n)$, исследуемая на экстремум при выполнении ограничения вида:

$$g(x_1,x_2,\ldots,x_n)=0.$$

Точка $\mathbf{x}=(x_1,x_2,\ldots,x_n)$, при которой выполняются условия $g(\mathbf{x})=0$ и $f(\mathbf{x})$ принимает экстремальное значение, называется точкой условного экстремума.

2. Методы поиска условного экстремума

Для нахождения условного экстремума применяются два основных метода:

- 1. Метод множителей Лагранжа.
- 2. Метод замены переменных (используется, если ограничение позволяет выразить одну из переменных явно).

Метод множителей Лагранжа

Этот метод является наиболее универсальным и применяется для поиска условного экстремума, если:

• Ограничение $g(x_1, x_2, \dots, x_n) = 0$ представляет собой гладкую (дифференцируемую) функцию.

ullet Функция $f(x_1, x_2, \dots, x_n)$ также является гладкой.

Идея метода: при условии экстремума градиент функции f пропорционален градиенту функции ограничения g.

2.1. Система Лагранжа

Составляется следующая функция Лагранжа:

$$L(x_1,x_2,\ldots,x_n,\lambda)=f(x_1,x_2,\ldots,x_n)+\lambda g(x_1,x_2,\ldots,x_n),$$

где λ — множитель Лагранжа.

Для нахождения стационарных точек функции L решается система уравнений:

$$egin{aligned} rac{\partial L}{\partial x_1} &= rac{\partial f}{\partial x_1} + \lambda rac{\partial g}{\partial x_1} = 0, \ rac{\partial L}{\partial x_2} &= rac{\partial f}{\partial x_2} + \lambda rac{\partial g}{\partial x_2} = 0, \ &dots \ rac{\partial L}{\partial x_n} &= rac{\partial f}{\partial x_n} + \lambda rac{\partial g}{\partial x_n} = 0, \ g(x_1, x_2, \dots, x_n) &= 0. \end{aligned}$$

3. Геометрический смысл метода Лагранжа

Градиент функции g (∇g) указывает направление нормали к поверхности, задаваемой ограничением $g(x_1,x_2,\ldots,x_n)=0$. Градиент функции f (∇f) указывает направление наибыстрейшего роста функции f.

В точке условного экстремума вектор ∇f лежит в той же плоскости, что и ∇g , то есть:

$$\nabla f + \lambda \nabla g = 0.$$

4. Пример применения метода Лагранжа

Найти условный экстремум функции $f(x,y)=x^2+y^2$ при ограничении g(x,y)=x+y-1=0.

1. Функция Лагранжа:

$$L(x,y,\lambda) = x^2 + y^2 + \lambda(x+y-1).$$

2. Система уравнений:

$$rac{\partial L}{\partial x}=2x+\lambda=0,\quad rac{\partial L}{\partial y}=2y+\lambda=0,\quad x+y-1=0.$$

3. Решаем систему:

$$2x + \lambda = 0 \quad \Rightarrow \quad \lambda = -2x$$

$$2y + \lambda = 0 \quad \Rightarrow \quad \lambda = -2y.$$

Сравним λ :

$$-2x = -2y \quad \Rightarrow \quad x = y.$$

Подставим в ограничение:

$$x+y-1=0 \quad \Rightarrow \quad x+x-1=0 \quad \Rightarrow \quad x=rac{1}{2},\,y=rac{1}{2}.$$

4. **Ответ**: Точка условного экстремума: $(x,y)=\overline{\left(rac{1}{2},rac{1}{2}
ight)}$. Значение функции в этой точке:

$$f\left(rac{1}{2},rac{1}{2}
ight)=\left(rac{1}{2}
ight)^2+\left(rac{1}{2}
ight)^2=rac{1}{4}+rac{1}{4}=rac{1}{2}.$$

5. Условный экстремум с несколькими ограничениями

Если имеется m ограничений:

$$g_1(x_1,\ldots,x_n) = 0, \quad g_2(x_1,\ldots,x_n) = 0, \quad \ldots, \quad g_m(x_1,\ldots,x_n) = 0,$$

то функция Лагранжа имеет вид:

$$L(x_1,\ldots,x_n,\lambda_1,\ldots,\lambda_m)=f(x_1,\ldots,x_n)+\sum_{i=1}^m\lambda_ig_i(x_1,\ldots,x_n),$$

и система уравнений для стационарных точек расширяется:

$$rac{\partial L}{\partial x_j} = 0\, (j=1,\ldots,n), \quad g_i(x_1,\ldots,x_n) = 0\, (i=1,\ldots,m).$$

6. Метод замены переменных

Если ограничение позволяет выразить одну переменную через другие (например, y=1-x), его можно подставить в функцию f(x,y). После этого задача сводится к обычному поиску экстремума функции одной или нескольких переменных.

Заключение

Метод множителей Лагранжа позволяет эффективно искать условный экстремум функций с дифференцируемыми ограничениями. Геометрически он опирается на сонаправленность градиентов функции и ограничения. Аналогичные подходы можно применять для анализа сложных систем с несколькими ограничениями.

Отыскание наибольшего и наименьшего значений функции нескольких переменных в замкнутой ограниченной области

Отыскание наибольших и наименьших значений функции нескольких переменных в замкнутой ограниченной области

1. Постановка задачи

Пусть дана функция $f(x_1,x_2,\ldots,x_n)$, и требуется найти её наибольшее и наименьшее значения в замкнутой ограниченной области $D\subset\mathbb{R}^n$.

2. Теорема Вейерштрасса

Если:

- 1. $f(x_1, x_2, \ldots, x_n)$ непрерывна в области D,
- $2.\,D$ замкнута и ограничена,

то функция f достигает наибольшего и наименьшего значений в области D.

3. Методика поиска экстремальных значений

Для нахождения наибольшего и наименьшего значений функции на D необходимо исследовать:

- 1. Стационарные точки функции (точки, где частные производные равны нулю).
- 2. **Граничные точки области** D (для проверки значений функции на границе).

4. Алгоритм нахождения экстремальных значений

- 1. Найдите стационарные точки:
 - \circ Найдите частные производные $rac{\partial f}{\partial x_1}, rac{\partial f}{\partial x_2}, \dots, rac{\partial f}{\partial x_n}.$
 - Решите систему уравнений:

$$rac{\partial f}{\partial x_1} = 0, \quad rac{\partial f}{\partial x_2} = 0, \quad \dots, \quad rac{\partial f}{\partial x_n} = 0.$$

- Эти точки являются кандидатами на экстремумы.
- 2. Проверьте точки на границе области D:
 - \circ Подставьте уравнения границ области в функцию f, чтобы перейти к исследованию функции меньшего числа переменных.
 - Найдите экстремумы этой функции на границе.
- 3. Сравните значения функции:
 - $\circ~$ Вычислите значения $f(x_1,x_2,\ldots,x_n)$ в стационарных точках и на границе области.
 - Выберите наибольшее и наименьшее из этих значений.

5. Пример

Найти наибольшее и наименьшее значения функции $f(x,y)=x^2+y^2$ в области D, заданной кругом:

$$x^2 + y^2 < 1$$
.

Решение:

1. Найдём стационарные точки:

• Частные производные:

$$rac{\partial f}{\partial x}=2x,\quad rac{\partial f}{\partial y}=2y.$$

• Условие стационарности:

$$2x = 0$$
, $2y = 0$ \Rightarrow $x = 0$, $y = 0$.

 \circ Единственная стационарная точка: (0,0).

2. Исследуем границу области:

 $\circ~$ На границе $x^2+y^2=1$ подставим в f(x,y):

$$f(x,y) = x^2 + y^2 = 1.$$

 \circ На границе значение функции постоянно равно 1.

3. Сравним значения:

- \circ В стационарной точке (0,0): $f(0,0)=0^2+0^2=0$.
- \circ На границе f(x,y)=1.

Ответ:

- ullet Наименьшее значение: $f_{\min}=0$ в точке (0,0).
- ullet Наибольшее значение: $f_{
 m max}=1$ на границе круга.

6. Общие замечания

1. Проверка граничных условий:

 \circ Если область D имеет сложную форму, границы могут быть заданы неявно или в параметрическом виде. Тогда нужно отдельно исследовать каждую часть границы.

2. Несколько ограничений:

 \circ Если область задаётся несколькими ограничениями (например, $g_1(x_1,x_2) \leq 0$, $g_2(x_1,x_2) \leq 0$), применяется метод множителей Лагранжа.

3. Несложные случаи:

 \circ Если область D имеет простой вид (например, прямоугольник или круг), задача существенно упрощается, так как границы легко анализировать.

Этот подход универсален и применим ко многим задачам оптимизации в замкнутых ограниченных областях.