Software Requirements Specification for ProgName: subtitle describing software

Author Name(s)

September 25, 2019

Contents

1	Ref	Ference Material	i					
	1.1	Table of Units	j					
	1.2	Table of Symbols						
	1.3	Abbreviations and Acronyms						
2	Introduction							
	2.1	Purpose of Document						
	2.2	Scope of Requirements						
	2.3	Characteristics of Intended Reader						
	2.4	Organization of Document						
3	Ger	neral System Description						
	3.1	System Context						
	3.2	User Characteristics						
	3.3	System Constraints						
4	Spe	ecific System Description						
	4.1	Problem Description						
		4.1.1 Terminology and Definitions						
		4.1.2 Physical System Description						
		4.1.3 Goal Statements						
	4.2	Solution Characteristics Specification						
		4.2.1 Assumptions						
		4.2.2 Theoretical Models						
		4.2.3 General Definitions						
		4.2.4 Data Definitions						
		4.2.5 Instance Models						
		4.2.6 Input Data Constraints						
		4.2.7 Properties of a Correct Solution						
5	Rec	Requirements						
	5.1	.1 Functional Requirements						
	5.2	Nonfunctional Requirements						
6 Likely Changes		ely Changes	-					
7	Unl	Unlikely Changes						
8	Tra	Traceability Matrices and Graphs						
9	Val	ues of Auxiliary Constants	Values of Auxiliary Constants					

Revision History

Date	Version	Notes
Date 1	1.0	Notes
Date 2	1.1	Notes

1 Reference Material

This section records information for easy reference.

1.1 Table of Units

Throughout this document SI (Système International d'Unités) is employed as the unit system. In addition to the basic units, several derived units are used as described below. For each unit, the symbol is given followed by a description of the unit and the SI name.

symbol	unit	SI
m	length	metre
kg	mass	kilogram
S	$_{ m time}$	second
$^{\circ}\mathrm{C}$	temperature	centigrade
J	energy	Joule
W	power	Watt $(W = J s^{-1})$

[Only include the units that your SRS actually uses. —TPLT]

[Derived units, like newtons, pascal, etc, should show their derivation (the units they are derived from) if their constituent units are in the table of units (that is, if the units they are derived from are used in the document). For instance, the derivation of pascals as $Pa = N m^{-2}$ is shown if newtons and m are both in the table. The derivations of newtons would not be shown if kg and s are not both in the table. —TPLT]

[The symbol for units named after people use capital letters, but the name of the unit itself uses lower case. For instance, pascals use the symbol Pa, watts use the symbol W, teslas use the symbol T, newtons use the symbol N, etc. The one exception to this is degree Celsius. Details on writing metric units can be found on the NIST web-page. —TPLT]

1.2 Table of Symbols

The table that follows summarizes the symbols used in this document along with their units. The choice of symbols was made to be consistent with the heat transfer literature and with existing documentation for solar water heating systems. The symbols are listed in alphabetical order.

symbol	unit	description
A_C	m^2	coil surface area
$A_{ m in}$	m^2	surface area over which heat is transferred in

Use your problems actual symbols. The si package is a good idea to use for units.

—TPLT]

1.3 Abbreviations and Acronyms

symbol	description
A	Assumption
DD	Data Definition
GD	General Definition
GS	Goal Statement
IM	Instance Model
LC	Likely Change
PS	Physical System Description
R	Requirement
SRS	Software Requirements Specification
ProgName	[put an expanded version of your program name here (as appropriate) —TPLT]
Т	Theoretical Model

[Add any other abbreviations or acronyms that you add —TPLT] $\,$

[This SRS template is based on ??. It will get you started. You should not modify the section headings, without first discussing the change with the course instructor. Modification means you are not following the template, which loses some of the advantage of a template, especially standardization. Although the bits shown below do not include type information, you may need to add this information for your problem. If you are unsure, please can ask the instructor. —TPLT]

[Feel free to change the appearance of the report by modifying the LaTeX commands.—TPLT]

[This template document assumes that a single program is being documented. If you are documenting a family of models, you should start with a commonality analysis. A separate template is provided for this. For program families you should look at ??. Single family member programs are often programs based on a single physical model. General purpose tools are usually documented as a family. Families of physical models also come up. —TPLT]

[The SRS is not generally written, or read, sequentially. The SRS is a reference document. It is generally read in an ad hoc order, as the need arises. For writing an SRS, and for reading one for the first time, the suggested order of sections is:

- Goal Statement
- Instance Models
- Requirements
- Introduction
- Specific System Description

-TPLT

[Guiding principles for the SRS document:

• Do not repeat the same information at the same abstraction level. If information is repeated, the repetition should be at a different abstraction level. For instance, there will be overlap between the scope section and the assumptions, but the scope section will not go into as much detail as the assumptions section.

—TPLT]

[The template description comments should be disabled before submitting this document for grading. —TPLT]

[You can borrow any wording from the text given in the template. It is part of the template, and not considered an instance of academic integrity. Of course, you need to cite the source of the template. —TPLT]

[When the documentation is done, it should be possible to trace back to the source of every piece of information. Some information will come from external sources, like terminology. Other information will be derived, like General Definitions. —TPLT]

[An SRS document should have the following qualities: unambiguous, consistent, complete, validatable, abstract and traceable. —TPLT]

[The overall goal of the SRS is that someone that meets the Characteristics of the Intended Reader (Section 2.3) can learn, understand and verify the captured domain knowledge. They should not have to trust the authors of the SRS on any statements. They should be able to independently verify/derive every statement made. —TPLT]

2 Introduction

[The introduction section is written to introduce the problem. It starts general and focuses on the problem domain. The general advice is to start with a paragraph or two that describes the problem, followed by a "roadmap" paragraph. A roadmap orients the reader by telling them what sub-sections to expect in the Introduction section. —TPLT]

2.1 Purpose of Document

[This section summarizes the purpose of the SRS document. It does not focus on the problem itself. The problem is described in the "Problem Description" section (Section 4.1). The purpose is for the document in the context of the project itself, not in the context of the CAS 741 course. Although the "purpose" of the document is to get a grade in 741, you should not mention this. Instead, "fake it" as if this is a real project. The purpose section will be similar between projects. The purpose of the document is the purpose of the SRS, including communication, planning for the design stage, etc. —TPLT]

2.2 Scope of Requirements

[Modelling the real world requires simplification. The full complexity of the actual physics, chemistry, biology is too much for existing models, and for existing computational solution techniques. Rather than say what is in the scope, it is usually easier to say what is not. You can think of it as the scope is initially everything, and then it is constrained to create the actual scope. For instance, the problem can be restricted to 2 dimensions, or it can ignore the effect of temperature (or pressure) on the material properties, etc. —TPLT]

[The scope section is related to the assumptions section (Section 4.2.1). However, the scope and the assumptions are not at the same level of abstraction. The scope is at a high level. The focus is on the "big picture" assumptions. The assumptions section lists, and describes, all of the assumptions. —TPLT]

2.3 Characteristics of Intended Reader

[This section summarizes the skills and knowledge of the readers of the SRS. It does NOT have the same purpose as the "User Characteristics" section (Section 3.2). The intended readers are the people that will read, review and maintain the SRS. They are the people that will conceivably design the software that is intended to meet the requirements. The user, on the other hand, is the person that uses the software that is built. They may never

read this SRS document. Of course, the same person could be a "user" and an "intended reader." —TPLT]

[The intended reader characteristics should be written as unambiguously and as specifically as possible. Rather than say, the user should have an understanding of physics, say what kind of physics and at what level. For instance, is high school physics adequate, or should the reader have had a graduate course on advanced quantum mechanics? —TPLT]

2.4 Organization of Document

[This section provides a roadmap of the SRS document. It will help the reader orient themselves. It will provide direction that will help them select which sections they want to read, and in what order. This section will be similar between project. —TPLT]

3 General System Description

This section provides general information about the system. It identifies the interfaces between the system and its environment, describes the user characteristics and lists the system constraints. [This text can likely be borrowed verbatim. —TPLT]

[The purpose of this section is to provide general information about the system so the specific requirements in the next section will be easier to understand. The general system description section is designed to be changeable independent of changes to the functional requirements documented in the specific system description. The general system description provides a context for a family of related models. The general description can stay the same, while specific details are changed between family members. —TPLT]

3.1 System Context

[Your system context will include a figure that shows the abstract view of the software. Often in a scientific context, the program can be viewed abstractly following the design pattern of Inputs \rightarrow Calculations \rightarrow Outputs. The system context will therefore often follow this pattern. The user provides inputs, the system does the calculations, and then provides the outputs to the user. The figure should not show all of the inputs, just an abstract view of the main categories of inputs (like material properties, geometry, etc.). Likewise, the outputs should be presented from an abstract point of view. In some cases the diagram will show other external entities, besides the user. For instance, when the software product is a library, the user will be another software program, not an actual end user. —TPLT]

[For each of the entities in the system context diagram its responsibilities should be listed. Whenever possible the system should check for data quality, but for some cases the user will need to assume that responsibility. —TPLT]

• User Responsibilities:

_

Figure 1: System Context

- ProgName Responsibilities:
 - Detect data type mismatch, such as a string of characters instead of a floating point number

_

3.2 User Characteristics

[This section summarizes the knowledge/skills expected of the user. Measuring usability, which is often a required non-function requirement, requires knowledge of a typical user. As mentioned above, the user is a different role from the "intended reader," as given in Section 2.3. As in Section 2.3, the user characteristics should be specific an unambiguous. For instance, "The end user of ProgName should have an understanding of undergraduate Level 1 Calculus and Physics." —TPLT]

3.3 System Constraints

[System constraints differ from other type of requirements because they limit the developers options in the system design and they identify how the eventual system must fit into the world. This is the only place in the SRS where design decisions can be specified. That is, the quality requirement for abstraction is relaxed here. However, system constraints should only be included if they are truly required. In the context of CAS 741, you often will may not have any system constraints. —TPLT]

4 Specific System Description

This section first presents the problem description, which gives a high-level view of the problem to be solved. This is followed by the solution characteristics specification, which presents the assumptions, theories, definitions and finally the instance models. [Add any project specific details that are relevant for the section overview. —TPLT]

4.1 Problem Description

ProgName is intended to solve ... [What problem does your program solve? The description here should be in the problem space, not the solution space. —TPLT]

4.1.1 Terminology and Definitions

[This section is expressed in words, not with equations. It provide the meaning of the different words and phrases used in the domain of the problem. The terminology is used to introduce concepts from the world outside of the mathematical model The terminology provides a real world connection to give the mathematical model meaning. —TPLT]

This subsection provides a list of terms that are used in the subsequent sections and their meaning, with the purpose of reducing ambiguity and making it easier to correctly understand the requirements:

•

4.1.2 Physical System Description

[The purpose of this section is to clearly and unambiguously state the physical system that is to be modelled. Effective problem solving requires a logical and organized approach. The statements on the physical system to be studied should cover enough information to solve the problem. The physical description involves element identification, where elements are defined as independent and separable items of the physical system. Some example elements include acceleration due to gravity, the mass of an object, and the size and shape of an object. Each element should be identified and labelled, with their interesting properties specified clearly. The physical description can also include interactions of the elements, such as the following: i) the interactions between elements; and, iii) the initial or boundary conditions. —TPLT]

The physical system of ProgName, as shown in Figure?, includes the following elements:

PS1:

PS2: ...

[A figure here makes sense for most SRS documents —TPLT]

4.1.3 Goal Statements

[The goal statements refine the "Problem Description" (Section 4.1). A goal is a functional objective the system under consideration should achieve. Goals provide criteria for sufficient completeness of a requirements specification and for requirements pertinence. Goals will be refined in Section Instanced Models (Section 4.2.5). Large and complex goals should be decomposed into smaller sub-goals. The goals are written abstractly, with a minimal amount of technical language. They should be understandable by non-domain experts. —TPLT] Given the [inputs —TPLT], the goal statements are:

GS1: [One sentence description of the goal. There may be more than one. Each Goal should have a meaningful label. —TPLT]

4.2 Solution Characteristics Specification

[This section specifies the information in the solution domain of the system to be developed. This section is intended to express what is required in such a way that analysts and stakeholders get a clear picture, and the latter will accept it. The purpose of this section is to reduce the problem into one expressed in mathematical terms. Mathematical expertise is used to extract the essentials from the underlying physical description of the problem, and to collect and substantiate all physical data pertinent to the problem. —TPLT]

[This section presents the solution characteristics by successively refining models. It starts with the abstract/general Theoretical Models (TMs) and refines them to the concrete/specific Instance Models (IMs). If necessary there are intermediate refinements to General Definitions (GDs). All of these refinements can potentially use Assumptions (A) and Data Definitions (DD). TMs are refined to create new models, that are called GMs or IMs. DDs are not refined; they are just used. GDs and IMs are derived, or refined, from other models. DDs are not derived; they are just given. TMs are also just given, but they are refined, not used. If a potential DD includes a derivation, then that means it is refining other models, which would make it a GD or an IM. —TPLT]

[The above makes a distinction between "refined" and "used." A model is refined to another model if it is changed by the refinement. When we change a general 3D equation to a 2D equation, we are making a refinement, by applying the assumption that the third dimension does not matter. If we use a definition, like the definition of density, we aren't refining, or changing that definition, we are just using it. —TPLT]

[The same information can be a TM in one problem and a DD in another. It is about how the information is used. In one problem the definition of acceleration can be a TM, in another it would be a DD. —TPLT]

[There is repetition between the information given in the different chunks (TM, GDs etc) with other information in the document. For instance, the meaning of the symbols, the units etc are repeated. This is so that the chunks can stand on their own when being read by a reviewer/user. It also facilitates reuse of the models in a different context. —TPLT] [The relationships between the parts of the document are show in the following figure. In this diagram "may ref" has the same role as "uses" above. The figure adds "Likely Changes," which are able to reference (use) Assumptions. —TPLT]

The instance models that govern ProgName are presented in Subsection 4.2.5. The information to understand the meaning of the instance models and their derivation is also presented, so that the instance models can be verified.

4.2.1 Assumptions

[The assumptions are a refinement of the scope. The scope is general, where the assumptions are specific. All assumptions should be listed, even those that domain experts know so well

that they are rarely (if ever) written down. —TPLT] [The document should not take for granted that the reader knows which assumptions have been made. In the case of unusual assumptions, it is recommended that the documentation either include, or point to, an explanation and justification for the assumption. —TPLT]

This section simplifies the original problem and helps in developing the theoretical model by filling in the missing information for the physical system. The numbers given in the square brackets refer to the theoretical model [T], general definition [GD], data definition [DD], instance model [IM], or likely change [LC], in which the respective assumption is used.

A1: [p—TPLT] ressure and temperature are not relative

Short description of each assumption. Each assumption should have a meaningful label. Use cross-references to identify the appropriate traceability to T, GD, DD etc., using commands like dref, ddref etc. Each assumption should be atomic - that is, there should not be an explicit (or implicit) "and" in the text of an assumption.

4.2.2 Theoretical Models

[Theoretical models are sets of abstract mathematical equations or axioms for solving the problem described in Section "Physical System Description" (Section 4.1.2). Examples of theoretical models are physical laws, constitutive equations, relevant conversion factors, etc.—TPLT]

This section focuses on the general equations and laws that ProgName is based on. [Modify the examples below for your problem, and add additional models as appropriate. —TPLT]

Number	T1
Label	Momentum conservation
Equation	$F = \frac{d(mc)}{dt}$
Description	The above equation gives the force F that is equal to the rate of change of linear momentum, the product of mass and velocity. The mass of the particle is denoted by m , the velocity of the particle is denoted by c , and time of denoted by t .
Source	2019 Book Lattice BoltzmannMethod pdf
Ref. By	$\mathrm{GD}_{1},\mathrm{GD}_{2}$

Number	T2
Label	Rate of Change of Distribution Function
Equation	$\frac{df}{dt} = \Omega(f)$
Description	The above function states that the total date of change of a distribution function is countrolled by the collision process. f is a function of r , c , and t . The rate of change between the final status and the initial status of the distribution function is called the collision operator, Ω .
Source	2019 Book Lattice BoltzmannMethod pdf
Ref. By	$\mathrm{GD}_{1},\mathrm{GD}_{2}$

Number	T3
Label	Normalized Distribution Function
Equation	$\overline{f}(r,v) = \frac{f(r,v)}{n(r)}$
Description	Frequency of particles with defined position r and velocity v in specified r .
Source	2019 Book Lattice BoltzmannMethod pdf
Ref. By	GD1, GD2

Number	T4
Label	BKG Model
Equation	$\overline{f}(r,v) = \frac{f(r,v)}{n(r)}$
Description	Simplifies the collision operator
Source	2019 Book Lattice BoltzmannMethod pdf
Ref. By	GD1, GD2

4.2.3 General Definitions

[General Definitions (GDs) are a refinement of one or more TMs, and/or of other GDs. The GDs are less abstract than the TMs. Generally the reduction in abstraction is possible through invoking (using/referencing) Assumptions. For instance, the TM could be Newton's

Law of Cooling stated abstracting. The GD could take the general law and apply it to get a 1D equation. —TPLT]

This section collects the laws and equations that will be used in building the instance models.

[Some projects may not have any content for this section, but the section heading should be kept. —TPLT] [Modify the examples below for your problem, and add additional definitions as appropriate. —TPLT]

Number	GD1
Label	Momentum conservation constant mass
SI Units	N
Equation	F = ma
Description	This is a refinement of the theoretical model of momentum conservation. A constant mass m simplifies the equation. We can represent the rate of change of the velocity c as acceleration a .
Source	2019 Book Lattice BoltzmannMethod pdf
Ref. By	DD2, DD??

Number	GD2
Label	Boltzmann Transport Equation
SI Units	N
Equation	$\frac{\partial f}{\partial t} + c \cdot \frac{\partial f}{\partial r} + a \cdot \frac{\partial f}{\partial c} = \Omega$
Description	This is a refinement of the rate of change of the distribution function. Since f is a function of r , c , and t the total rate of change, Ω can be expanded. We can also substitute c and a from Newton's second law. Collision operator
Source	2019 Book Lattice BoltzmannMethod pdf
Ref. By	DD2, DD??

Number	GD3
Label	Maxwell-Boltzmann Distribution Function
SI Units	N
Equation	$f(c) = 4\pi \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} c^2 e^{\frac{-mc^2}{2kT}}$
Description	This is a refinement of the normalized distribution function along speed.
Source	2019 Book Lattice BoltzmannMethod pdf
Ref. By	DD??, DD??

Number	GD4
Label	Equilibrium Distribution Function
SI Units	N
Equation	$f^{eq} = \rho w_i \left[1 + \frac{2\overrightarrow{c} \overrightarrow{u} - \overrightarrow{u} \overrightarrow{u}}{2c_s^2} + \frac{(\overrightarrow{c} \overrightarrow{u})^2}{2c_s^4} \right] + O(u^2)$
Description	This is
Source	2019 Book Lattice BoltzmannMethod pdf
Ref. By	DD??, DD??

Number	GD5
Label	Boltzmann Equation
SI Units	
Equation	$f_i(r+c_i\Delta t, t+\Delta t) = f_i(r,t) + \frac{\Delta t}{\tau} [f_i^{eq}(r,t) - f_i(r,t)]$
Description	This is
Source	2019 Book Lattice BoltzmannMethod pdf
Ref. By	DD??, DD??

Detailed derivation of simplified rate of change of temperature

[This may be necessary when the necessary information does not fit in the description field. —TPLT] [Derivations are important for justifying a given GD. You want it to be clear where the equation came from. —TPLT]

4.2.4 Data Definitions

[The Data Definitions are definitions of symbols and equations that are given for the problem. They are not derived; they are simply used by other models. For instance, if a problem depends on density, there may be a data definition for the equation defining density. The DDs are given information that you can use in your other modules. —TPLT]

[All Data Definitions should be used (referenced) by at least one other model. —TPLT]

This section collects and defines all the data needed to build the instance models. The dimension of each quantity is also given. [Modify the examples below for your problem, and add additional definitions as appropriate. —TPLT]

Number	DD1
Label	Position of Particle
Symbol	c
SI Units	m/s
Equation	$c = \frac{d(r)}{dt}$
Description	The velocity of the particle can be determined by the position of the particle r relative to the origin in relation to time t .
Source	2019 Book Lattice BoltzmannMethod pdf
Ref. By	T1

Number	DD2
Label	Heat flux out of coil
Symbol	q_C
SI Units	$ m Wm^{-2}$
Equation	$q_C(t) = h_C(T_C - T_W(t))$, over area A_C
Description	T_C is the temperature of the coil (°C). T_W is the temperature of the water (°C). The heat flux out of the coil, q_C (W m ⁻²), is found by assuming that Newton's Law of Cooling applies (A??). This law (GD??) is used on the surface of the coil, which has area A_C (m ²) and heat transfer coefficient h_C (W m ⁻² °C ⁻¹). This equation assumes that the temperature of the coil is constant over time (A??) and that it does not vary along the length of the coil (A??).
Sources	Citation here
Ref. By	IM <mark>3</mark>

4.2.5 Instance Models

[The motivation for this section is to reduce the problem defined in "Physical System Description" (Section 4.1.2) to one expressed in mathematical terms. The IMs are built by refining the TMs and/or GDs. This section should remain abstract. The SRS should specify the requirements without considering the implementation. —TPLT]

This section transforms the problem defined in Section 4.1 into one which is expressed in mathematical terms. It uses concrete symbols defined in Section 4.2.4 to replace the abstract symbols in the models identified in Sections 4.2.2 and 4.2.3.

The goals [reference your goals —TPLT] are solved by [reference your instance models —TPLT]. [other details, with cross-references where appropriate. —TPLT] [Modify the examples below for your problem, and add additional models as appropriate. —TPLT]

Number	IM1
Label	Maxwell distribution function over the surface of a sphere in phase space relative to container T_W
Input	
Output	$f(c) = \left[\sqrt{\frac{m}{2\pi kT}}\right]e^{\frac{-m[(c_x - u_x)^2 + (c_y - u_y)^2 + (c_z - u_z)^2]}{2kT}}$
Description	
Sources	Citation here
Ref. By	IM??

Number	IM2						
Label	Energy balance on water to find T_W						
Input	m_W , C_W , h_C , A_C , h_P , A_P , t_{final} , T_C , T_{init} , $T_P(t)$ from IM??						
	The input is constrained so that $T_{\text{init}} \leq T_C$ (A??)						
Output	$T_W(t), 0 \le t \le t_{\text{final}}, \text{ such that}$						
	$\frac{dT_W}{dt} = \frac{1}{\tau_W} [(T_C - T_W(t)) + \eta (T_P(t) - T_W(t))],$						
	$T_W(0) = T_P(0) = T_{\text{init}}$ (A??) and $T_P(t)$ from IM??						
Description	T_W is the water temperature (°C).						
	T_P is the PCM temperature (°C).						
	T_C is the coil temperature (°C).						
	$\tau_W = \frac{m_W C_W}{h_C A_C}$ is a constant (s).						
	$\eta = \frac{h_P A_P}{h_C A_C}$ is a constant (dimensionless).						
	The above equation applies as long as the water is in liquid form, $0 < T_W < 100^{\circ}\text{C}$, where 0°C and 100°C are the melting and boiling points of water, respectively (A??, A??).						
Sources	Citation here						
Ref. By	IM??						

Number	IM3						
Label	Discredization of the Lattice Boltzmann Equation T_W						
Input	m_W , C_W , h_C , A_C , h_P , A_P , t_{final} , T_C , T_{init} , $T_P(t)$ from IM??						
	The input is constrained so that $T_{\text{init}} \leq T_C$ (A??)						
Output	$T_W(t), 0 \le t \le t_{\text{final}}, \text{ such that}$						
	$\frac{dT_W}{dt} = \frac{1}{\tau_W} [(T_C - T_W(t)) + \eta (T_P(t) - T_W(t))],$						
	$T_W(0) = T_P(0) = T_{\text{init}}$ (A??) and $T_P(t)$ from IM??						
Description	T_W is the water temperature (°C).						
	T_P is the PCM temperature (°C).						
	T_C is the coil temperature (°C).						
	$ au_W = \frac{m_W C_W}{h_C A_C}$ is a constant (s).						
	$\eta = \frac{h_P A_P}{h_C A_C}$ is a constant (dimensionless).						
	The above equation applies as long as the water is in liquid form, $0 < T_W < 100^{\circ}\text{C}$, where 0°C and 100°C are the melting and boiling points of water, respectively (A??, A??).						
Sources	Citation here						
Ref. By	IM??						

Derivation of ...

[The derivation shows how the IM is derived from the TMs/GDs. In cases where the derivation cannot be described under the Description field, it will be necessary to include this subsection. —TPLT]

4.2.6 Input Data Constraints

Table 1 shows the data constraints on the input output variables. The column for physical constraints gives the physical limitations on the range of values that can be taken by the variable. The column for software constraints restricts the range of inputs to reasonable values. The software constraints will be helpful in the design stage for picking suitable algorithms. The constraints are conservative, to give the user of the model the flexibility to experiment with unusual situations. The column of typical values is intended to provide a feel for a common scenario. The uncertainty column provides an estimate of the confidence with which the physical quantities can be measured. This information would be part of the input if one were performing an uncertainty quantification exercise.

The specification parameters in Table 1 are listed in Table 2.

Table 1: Input Variables

Var	Physical Constraints	Software Constraints	Typical Value	Uncertainty
L	L > 0	$L_{\min} \le L \le L_{\max}$	1.5 m	10%

(*) [you might need to add some notes or clarifications —TPLT]

Table 2: Specification Parameter Values

Var	Value
L_{\min}	0.1 m

4.2.7 Properties of a Correct Solution

A correct solution must exhibit [fill in the details —TPLT]. [These properties are in addition to the stated requirements. There is no need to repeat the requirements here. These additional properties may not exist for every problem. Examples include conservation laws (like conservation of energy or mass) and known constraints on outputs (which are usually summarized in tabular form. A sample table is shown in Table 3 —TPLT]

Table 3: Output Variables

Var	Physical Constraints
T_W	$T_{\text{init}} \le T_W \le T_C \text{ (by A??)}$

5 Requirements

[The requirements refine the goal statement. They will make heavy use of references to the instance models. —TPLT]

This section provides the functional requirements, the business tasks that the software is expected to complete, and the nonfunctional requirements, the qualities that the software is expected to exhibit.

5.1 Functional Requirements

- R1: [Requirements for the inputs that are supplied by the user. This information has to be explicit. —TPLT]
- R2: [It isn't always required, but often echoing the inputs as part of the output is a good idea. —TPLT]
- R3: [Calculation related requirements. —TPLT]
- R4: [Verification related requirements. —TPLT]
- R5: [Output related requirements. —TPLT]

5.2 Nonfunctional Requirements

[List your nonfunctional requirements. You may consider using a fit criterion to make them verifiable. —TPLT]

6 Likely Changes

LC1: [Give the likely changes, with a reference to the related assumption (aref), as appropriate. —TPLT]

7 Unlikely Changes

LC2: [Give the unlikely changes. The design can assume that the changes listed will not occur. —TPLT]

8 Traceability Matrices and Graphs

The purpose of the traceability matrices is to provide easy references on what has to be additionally modified if a certain component is changed. Every time a component is changed, the items in the column of that component that are marked with an "X" may have to be modified as well. Table 4 shows the dependencies of theoretical models, general definitions, data definitions, and instance models with each other. Table 5 shows the dependencies of instance models, requirements, and data constraints on each other. Table 6 shows the dependencies of theoretical models, general definitions, data definitions, instance models, and likely changes on the assumptions.

[You will have to modify these tables for your problem. —TPLT]

	T??	T??	T??	GD??	GD??	DD2	DD??	DD??	DD??	IM3	IM??	IM??	IM??
T??													
T??			X										
T??													
GD??													
GD??	X												
DD2				X									
DD??				X									
DD??													
DD??								X					
IM3					X	X	X				X		
IM??					X		X		X	X			X
IM??		X											
IM??		X	X				X	X	X		X		

Table 4: Traceability Matrix Showing the Connections Between Items of Different Sections

	IM3	IM??	IM??	IM??	4.2.6	R??	R??
IM <mark>3</mark>		X				X	X
IM??	X			X		X	X
IM??						X	X
IM??		X				X	X
R??							
R??						X	
R??					X		
R2	X	X				X	X
R??	X						
R??		X					
R??			X				
R??				X			
R4			X	X			
R??		X					
R??		X					

Table 5: Traceability Matrix Showing the Connections Between Requirements and Instance Models

	A??																		
T??	X																		
T??																			
T??																			
GD??		X																	
GD??			X	X	X	X													
DD2							X	X	X										
DD??			X	X						X									
DD??																			
DD??																			
IM3											X	X		X	X	X			X
IM??												X	X			X	X	X	
IM??														X					X
IM??													X					X	
LC??				X															
LC??								X											
LC??									X										
LC??											X								
LC??												X							
LC??															X				

Table 6: Traceability Matrix Showing the Connections Between ions and Other Items

[The traceability matrix is challenging to maintain manually. Please do your best. In the future tools (like Drasil) will make this much easier. —TPLT]

The purpose of the traceability graphs is also to provide easy references on what has to be additionally modified if a certain component is changed. The arrows in the graphs represent dependencies. The component at the tail of an arrow is depended on by the component at the head of that arrow. Therefore, if a component is changed, the components that it points to should also be changed. Figure ?? shows the dependencies of theoretical models, general definitions, data definitions, instance models, likely changes, and assumptions on each other. Figure ?? shows the dependencies of instance models, requirements, and data constraints on each other.

9 Values of Auxiliary Constants

[Show the values of the symbolic parameters introduced in the report. —TPLT]
[The definition of the requirements will likely call for SYMBOLIC_CONSTANTS. Their values are defined in this section for easy maintenance. —TPLT]

[The following is not part of the template, just some things to consider when filing in the template. —TPLT]

[Grammar, flow and LaTeXadvice:

- For Mac users *.DS_Store should be in .gitignore
- LaTeX and formatting rules
 - Variables are italic, everything else not, includes subscripts (link to document)
 - * Conventions
 - * Watch out for implied multiplication
 - Use BibTeX
 - Use cross-referencing
- Grammar and writing rules
 - Acronyms expanded on first usage (not just in table of acronyms)
 - "In order to" should be "to"

—TPLT

[Advice on using the template:

- Difference between physical and software constraints
- Properties of a correct solution means *additional* properties, not a restating of the requirements (may be "not applicable" for your problem). If you have a table of output constraints, then these are properties of a correct solution.
- Assumptions have to be invoked somewhere
- "Referenced by" implies that there is an explicit reference
- Think of traceability matrix, list of assumption invokations and list of reference by fields as automatically generatable
- If you say the format of the output (plot, table etc), then your requirement could be more abstract

-TPLT