Linear Smoothers

DATA 607 — Session 1 — 25/02/2019

SESSION PLAN

- Welcome and introductions
- Smoothing
- **3** Coding activity 1
 - Code a simple smoother.
 - Explore sklearn's Estimator and Regressor APIs.
- Linear smoothers: First examples
 - k-nearest neighbors
 - local averaging
- Evaluating smoothers: Loss and risk
- 6 Coding activity 2
 - Work with sklearn's built in regressors:
 - KNeighborsRegressor, RadiusNeighborsRegressor
 - Tune smoothing parameters to minimize average risk.

LINEAR SMOOTHERS

Dataset:

$$(\vec{x}_1, Y_1), \ldots, (\vec{x}_n, Y_n)$$

Suppose:

$$Y_i = r(\vec{x}_i) + \epsilon_i$$

Definition

A linear smoother is an estimator of r of the form

$$\widehat{r}(\vec{x}) = \sum_{i=1}^{n} w_i(\vec{x}) Y_i = \vec{w}(\vec{x}) \cdot \vec{Y}$$

The $w_i(\vec{x})$ are called weights.

Example 0: Linear Regression

Dataset:

$$(\vec{x}_1, Y_1), \ldots, (\vec{x}_n, Y_n) \in \mathbb{R}^p \times \mathbb{R}$$

Regression line:

$$\widehat{r}(\vec{x}) = \vec{x} \cdot \vec{\beta}$$

$$= \vec{x} \cdot ((X^T X)^{-1} X^T \vec{Y})$$

$$= (X(X^T X)^{-T} \vec{x}) \cdot \vec{Y}$$

This is a linear smoother with $\vec{w}(\vec{x}) = X(X^TX)^{-T}\vec{x}$.

 Write a simple nearest neighbor smoother, first as a function and then as a class implementing sklearn's Estimator and Regressor APIs.

Example 1: k-nearest neightbors

 $N_k(x) := \text{set of the } k \text{ elements of } \{x_1, \dots, x_n\} \text{ closest to } x.$

Definition

The k-nearest neighbor smoother is

$$\widehat{r}_k(\vec{x}) = \frac{1}{k} \sum_{i=1}^n \mathbf{1}_{N_k(\vec{x})}(\vec{x}_i) Y_i$$

This is a linear smoother with $w_i(\vec{x}) = \frac{1}{k} \mathbf{1}_{N_k(\vec{x})}(\vec{x}_i)$.

Indicator function of $A \subseteq B$:

$$\mathbf{1}_{\mathcal{A}}(b) := egin{cases} 1 & ext{if } b \in \mathcal{A}, \\ 0 & ext{otherwise}. \end{cases}$$

Example 2: Local averaging

Definition

The local average smoother with bandwidth h > 0 is

$$\widehat{r}_h(\vec{x}) = \frac{\sum_{\|\vec{x}_i - \vec{x}\| < h} Y_i}{\sum_{\|\vec{x}_i - \vec{x}\| < h} 1}$$

In words: $r_h(\vec{x})$ is the average of the Y_i for which $\vec{x_i}$ lies a distance less than h from \vec{x} .

Overfitting and Underfitting

For small k or h, the graphs of $\hat{r}(x)$ are too wiggly. We've *overfit* or *undersmoothed* the data.

For big k or h, the graphs of $\widehat{r}(x)$ data very well (they're too flat). We say we've *underfit* or *oversmoothed* the data.

How do we choose k or h optimally?

EVALUATING SMOOTHERS: LOSS AND RISK

Definitions

Squared error loss at x:

$$L(\widehat{r}(x), r(x)) := (\widehat{r}(x) - r(x))^2$$

- $L(\hat{r}(x), r(x))$ is a random variable as $\hat{r}(x)$ is.
- Mean squared error (MSE) or risk at x:

$$R(\widehat{r}(x), r(x)) := \mathbb{E}[L(\widehat{r}(x), r(x))] \approx \frac{1}{n} \sum_{i=1}^{n} L(\widehat{r}(x_i), r(x_i))$$

Average MSE or average risk:

$$R(\widehat{r},r) := \int R(\widehat{r}(x),r(x)) dx \approx \frac{1}{n} \sum_{i=1}^{n} R(\widehat{r}(x_i),r(x_i))$$

CHOOSING THE SMOOTHING PARAMETER

Obviously, smoothers with smaller average risk are preferred.

So, choose the smoothing parameter to minimize average risk:

$$k := \operatorname{argmin}_k R(\widehat{r}_k, r), \qquad h := \operatorname{argmin}_h R(\widehat{r}_h, r)$$

But there's a problem...

WE DON'T KNOW r(x)!

Loss at
$$x$$
:
$$L(\hat{r}(x), r(x)) = (\hat{r}(x) - r(x))^2$$

Risk at at
$$x$$
: $R(\hat{r}(x), r(x)) = \mathbb{E}[L(\hat{r}(x), r(x))]$

Average risk at at
$$x$$
: $R(\hat{r}, r) = \int R(\hat{r}(x), r(x)) dx$

These expressions all involve r(x), which we typically don't know!

We can't compute these expressions; they also need to be estimated.

But, we can work in an artificial situation where we do know r(x):

- Choose:
 - a function, r(x)
 - \bullet x_1, \ldots, x_n
 - a fine partition, P, of an interval containing the x_i
 - k (or h)
- for k = 1, ..., K
 - for j = 0, ..., J 1:
 - Generate $y_i^{(j)}$, $1 \le i \le n$, by sampling from $N(r_k(x_i), \sigma^2)$.
 - Compute the losses $L(\hat{r}_k^{(j)}(x), r(x))$ at each x in P.
 - Average the losses over j to get the risks, $R(\hat{r}_k(x), r(x))$.
 - Average the risks over x to get the average risk, $R(\hat{r}_k, r)$.
- Plot $R(\hat{r}_k, r)$ vs k and choose k.

THE BIAS-VARIANCE DECOMPOSITION

Definition

The bias of $\hat{r}(x)$, as an estimator of r(x), is

$$\mathsf{Bias}(\widehat{r}(x), r(x)) := \mathbb{E}[\widehat{r}(x)] - r(x)$$

Bias-variance decomposition

$$R(\widehat{r}(x), r(x)) = \operatorname{Var} \widehat{r}(x) + \operatorname{Bias}(\widehat{r}(x), r(x))^2$$

Var $\widehat{r}(x)$ big / graph of \widehat{r} wiggly / overfit / undersmoothed Bias $(\widehat{r}(x), r(x))$ big / graph of \widehat{r} too flat / underfit / oversmoothed

Variance decreases as k increases.

Bias increases as k increases.

Define:

$$\operatorname{Var} \widehat{r} := \int R(\widehat{r}(x), r(x)) \, dx, \qquad \operatorname{Bias}(\widehat{r}, r)^2 := \int \operatorname{Bias}(\widehat{r}(x), r(x))^2 \, dx$$

Integrate the bias-variance decomposition:

$$R(\hat{r}, r) = \operatorname{Var} \hat{r} + \operatorname{Bias}(\hat{r}, r)^2$$

Since r is unknown, these quantities can only be estimated.

• For our running synthetic example, plot

$$R(\widehat{r}_k, r)$$
, $Var \widehat{r}_k$, and $Bias(\widehat{r}_k, r)^2$

versus k on the same axes.

• Verify the integrated bias-variance decomposition using your computed $R(\hat{r}_k, r)$, $\text{Var } \hat{r}_k$, and $\text{Bias}(\hat{r}_k, r)^2$.

Reuse as much of your code from CODING $\operatorname{ACTIVITY}$ 2 as possible.

Training error

Definition

The empirical risk or training error is

$$\frac{1}{n}\sum_{i=1}^n L(\widehat{r}(x_i), Y_i).$$

Empirical risk is not good estimator of R: We trained \hat{r} on the (x_i, Y_i) , making $L(\hat{r}(x_i), Y_i)$ biased downwards.

LEAVE ONE OUT CROSS-VALIDATION

Definition

The leave one out cross validation (LOOCV) score is

$$\widehat{R}(h) := \frac{1}{n} \sum_{i=1}^{n} (Y_i - \widehat{r}_h^{(-i)}(x_i))^2,$$

where $\hat{r}_{h}^{(-i)}$ is computed using the subdataset of the original one by removing the point (x_i, Y_i) .

 $\widehat{R}(h)$ is typically a good estimator of the average risk of \widehat{r}_h :

$$\widehat{R}(h) \approx R(\widehat{r}_h, r) + \sigma^2$$
, where $\sigma^2 = \text{Var } Y_i$.

We choose our smoothing parameter to be the one that minimizes $\widehat{R}(h)$:

$$h := \operatorname{argmin}_h \widehat{R}(h)$$

For our running example, plot $\widehat{R}(k)$ versus k. Compute the $\widehat{R}(k)$ using sklearn's LeaveOneOut class and the generator returned by its split method.

Which k that minimizes $\widehat{R}(k)$? Compare with the results of CODING ACTIVITY 2.

For this optimal value of k, plot $\hat{r}_k^{(-i)}(x_i)$ versus x_i and r(x) versus x on the same axes.

Remark: LeaveOneOut is fairly low-level; sklearn provides more convenient ways to tune hyperparameters using cross validation. Sometimes, though, it's necessary to work with the lower-level constructs.

K-FOLD CROSS VALIDATION

Partition $\{1, \ldots, n\}$ into K folds, I_1, \ldots, I_K , of roughly equal size.

Let $\hat{r}_{h}^{(-l_{j})}$ be the smoother computed using the subdataset of the original one obtained by removing (x_i, Y_i) , for $i \in I_i$.

Definition

The K-fold cross validation score is

$$\widehat{R}_{K}(h) := \sum_{j=1}^{K} \frac{1}{|I_{j}|} \sum_{i \in I_{j}} (Y_{i} - r_{h}^{(-I_{j})}(x_{i}))^{2}$$

We can use \widehat{R}_K in place of \widehat{R} to select a smoothing parameter.

In practice, K is usually 5 (sklearn's default) or 10.

Find the values of k that minimize the 3-, 5-, and 10-fold cross validation scores. Compute these scores using cross_val_score from sklearn.model_selection.

Confirm your results from CODING ACTIVITY 4 by performing LOOCV as n-fold cross validation, n being the size of the dataset.