Announcements

Make sure to sign in on the google form.

Pset 3 due 2/16.

Stonks

The following questions deal with the past 5 years of S&P 500 adjusted closing prices available here.

In this section, we will be modeling the day-to-day percent differences in the adjusted closing price of the S&P 500 as $Y_1, ..., Y_n \sim \text{Expo}(\lambda)$.

1. Find the score of λ (the score is $\frac{\partial}{\partial \lambda} \ell(\lambda; \vec{y})$) in terms of the sample mean and verify that $E(s(\lambda^*; \vec{Y})) = 0$. (This equality was the last part of Neil's Thursday lecture.)

The likelihood function is

$$L(\lambda; \vec{y}) = \prod_{i=1}^{n} \lambda e^{-\lambda y_i} = \lambda^n e^{-\lambda \sum_{i=1}^{n} y_i}$$

The log likelihood function is

$$\ell(\lambda; \vec{y}) = n \log(\lambda) - \lambda \sum_{i=1}^{n} y_i$$

The score is

$$s(\lambda;\,\overrightarrow{y}) = n/\lambda - n\bar{y} \implies E(s(\lambda^*;\overrightarrow{Y})) = n/\lambda^* - nE(\bar{Y}) = 0$$

2. Show that the MLE of $\hat{\lambda}$ is consistent for λ . That is, show that $\hat{\lambda} \to \lambda$ as $n \to \infty$ by showing the MSE goes to 0, a LLN holds, making a claim using the CMT, or showing convergence directly.

Setting the score to 0 gives $\hat{\lambda} = 1/\bar{y}$. We will show consistency with the continuous mapping theorem. Because $\bar{Y}_n \to 1/\lambda$ by the LLN, $\hat{\lambda} = 1/\bar{Y}_n \to \lambda$ by the CMT since 1/x is a continuous function.

3. In his book The Black Swan, Nassim Taleb argues that part of the reason for the 2008 financial crisis was a failure to model market fluctuations and assign sufficient probability to extreme events. Let us consider daily absolute differences above τ to be extreme events. Let $X_i = I(Y_i > \tau)$. Show that \bar{X} is consistent for $p = P(Y_i > \tau)$ first by using MSE and then by using the law of large numbers.

Since the Y_i are i.i.d., by the story of the binomial $n\bar{X} \sim \text{Bin}(n,p)$. Thus, $E(\bar{X}) = p$ and $\text{Var}(\bar{X}) = p(1-p)/n \to 0$ as $n \to \infty$. Since $\text{MSE}(\bar{X},p) = \text{Bias}(\bar{X})^2 + \text{Var}(\bar{X}) \to 0$, \bar{X} is a consistent estimator. This can be seen more easily from the fact that $\bar{X} \to E(X_i) = E(I(Y_i > \tau)) = p$ by the law of large numbers and fundamental bridge.

4. Find the asymptotic distribution of \bar{X} and its approximate distribution for large n in terms of λ .

Using the Exponential CDF, $p = P(Y_i > \tau) = e^{-\lambda \tau}$. By the CLT,

$$\frac{\sqrt{n}(\bar{X} - e^{-\lambda \tau})}{\sqrt{e^{-\lambda \tau}(1 - e^{-\lambda \tau})}} \to \mathcal{N}(0, 1) \iff \bar{X} \sim \mathcal{N}(e^{-\lambda \tau}, \frac{e^{-\lambda \tau}(1 - e^{-\lambda \tau})}{n})$$

5. Now, suppose we estimate $P(Y_i > \tau)$ with $\hat{p} = e^{-\hat{\lambda}\tau}$. Given that

$$\sqrt{n}(\hat{\lambda} - \lambda^*) \to \mathcal{N}\left(0, \lambda^{*2}\right)$$

(we'll see how to find this in future weeks), find the asymptotic distribution of \hat{p} and its approximate distribution for large n.

We will use the Delta Method with $g(\lambda) = e^{-\lambda \tau}$. Differentiating gives $g'(\lambda) = -\tau e^{-\lambda \tau}$. Using the asymptotic distribution and the Delta Method,

$$\sqrt{n}(\hat{\lambda} - \lambda^*) \to \mathcal{N}\left(0, \lambda^{*2}\right) \implies \frac{\sqrt{n}(\hat{p} - e^{-\lambda^*\tau})}{|-\tau e^{-\lambda^*\tau}|} \to \mathcal{N}\left(0, \lambda^{*2}\right)$$

This gives the approximate distribution

$$\hat{p} \sim \mathcal{N}\left(e^{-\lambda^* \tau}, \frac{\tau^2 e^{-2\lambda^* \tau} \lambda^{*2}}{n}\right)$$

6. The distributions in 4 and 5 should have the same mean. However, the variances are different. The following are the estimated standard errors of each estimator with $\tau = 5$. Explain why the results are what they are.

```
## Xbar SE phat SE
## 0.000759 0.000004
```

We've made a distributional assumption about Y, so observing values even if they aren't over the threshold provides information, lowering the standard error of the estimate.

7. Though \hat{p} is more efficient, it might be less robust. The following shows the MSEs of the two estimators for estimating $P(Y > \tau)$ when $Y \sim \text{Expo}(0.5)$ (the correct model) and $Y \sim \text{Log-Normal}(0.1, 1)$ (an incorrect model). Again, we have used $\tau = 5$ and n = 100 with 10^5 simulations.

```
## Log Normal 0.00061 0.00054
## Expo 0.00075 0.00041
```

It turns out that \hat{p} has lower MSE on both the correct model and a misspecified model, so it is actually both more efficient and more robust. However, this is not always the case!

Ty Mup

Ty Mup is taking an exam with n equally hard questions. He has a probability p_2 of getting each question right independently. However, there is also a $0 < p_1 < 1$ probability he sleeps through his alarm and misses the exam entirely. Let Y be the number of questions he gets right on his exam. (This distribution is called the zero-inflated binomial.)

1. Find E(Y|Y>0).

If Y > 0, he must have made it to the exam on time. Call this event A. From the problem description, $Y|A \sim \text{Bin}(n, p_2)$. Then, by the law of total expectation,

$$E(Y|A) = E(Y|A, Y > 0)P(Y > 0|A) + E(Y|A, Y = 0)P(Y = 0|A)$$

Since $Y > 0 \implies A$,

$$E(Y|Y>0) = E(Y|A, Y>0) = \frac{E(Y|A)}{P(Y>0|A)} = \frac{np_2}{1 - (1 - p_2)^n}$$

from the binomial PMF. This is slightly above np_2 as expected.

2. Unfortunately, the day is February 2nd in Punxsutawney and Ty is destined to repeat this day d times, scoring i.i.d Y_i on the exams. Find the likelihood function, the log-likelihood function, and the score for p_1 and p_2 . (Hint: Let m be the number of 0s.)

The likelihood can be written as the probability of observing the 0 values times the probability of observing everything else:

$$L(p_1, p_2; \overrightarrow{y}) = (p_1 + (1 - p_1)(1 - p_2)^n)^m \prod_{i=1, y_i \neq 0}^d (1 - p_1)p_2^{y_i}(1 - p_2)^{n - y_i}$$

Taking the log and using the fact that $\sum_{i=1,y_i\neq 0}^d y_i = d\bar{y}$ (where the mean is over all y_i , not just the positive ones),

$$\ell(p_1, p_2; \vec{y}) = m \log(p_1 + (1 - p_1)(1 - p_2)^n) + \sum_{i=1, y_i \neq 0}^{d} \log(1 - p_1) + y_i \log(p_2) + (n - y_i) \log(1 - p_2)$$

$$= m \log(p_1 + (1 - p_1)(1 - p_2)^n) + (d - m) \log(1 - p_1) + d\bar{y} \log(p_2) + \log(1 - p_2)(n(d - m) - d\bar{y})$$

$$s(p_1; \vec{y}) = \frac{\partial}{\partial p_1} \ell(p_1, p_2; \vec{y}) = \frac{m(1 - (1 - p_2)^n)}{p_1 + (1 - p_1)(1 - p_2)^n} - \frac{d - m}{1 - p_1}$$

$$s(p_2; \vec{y}) = \frac{\partial}{\partial p_2} \ell(p_1, p_2; \vec{y}) = -\frac{nm(1 - p_1)(1 - p_2)^{n-1}}{p_1 + (1 - p_1)(1 - p_2)^n} + \frac{d\bar{y}}{p_2} - \frac{n(d - m) - d\bar{y}}{1 - p_2}$$

3. Find a two-dimensional sufficient statistic (a two dimensional statistic that contains all the information about the likelihood).

$$(M, \bar{Y})$$

4. Let B be the event that Ty sleeps through the alarm at least once. Show that as $d \to \infty$,

$$I_B \frac{d^{1/2}(\bar{Y} - (1 - p_1)np_2)}{\sqrt{np_2(1 - p_2)(1 - p_1) + (np_2)^2p_1(1 - p_1)}} \xrightarrow{d} \mathcal{N}(0, 1)$$

Let A be the event Ty made it to the exam on time. By Law of Total Expectation

$$E(\bar{Y}) = E(Y) = E(Y|A)P(A) + E(Y|A)P(A^c) = np_2(1-p_1)$$

Likewise, by Eve's law,

$$\mathrm{Var}(Y) = E(\mathrm{Var}(Y|I_A)) + \mathrm{Var}(E(Y|I_A)) = E(np_2(1-p_2)I_A) + \mathrm{Var}(np_2I_A) = np_2(1-p_2)(1-p_1) + (np_2)^2p_1(1-p_1)$$

Then, $Var(\bar{Y}) = Var(Y)/d$. By the CLT, $\frac{d^{1/2}(\bar{Y}-(1-p_1)dp_2)}{\sqrt{np_2(1-p_2)(1-p_1)+(np_2)^2p_1(1-p_1)}} \to Z$ with $Z \sim \mathcal{N}(0,1)$. Also, $P(|I_B-1| > \epsilon)$ is 0 if $\epsilon \ge 1$ and it is $(1-p_1)^d$ if $0 < \epsilon < 1$. Since $p_1 < 1$, $P(|I_B-1| > \epsilon) \to 0$, so $I_B \xrightarrow{p} 1$. Thus, by Slutsky's theorem,

$$I_B \frac{d^{1/2}(\bar{Y} - (1 - p_1)dp_2)}{\sqrt{np_2(1 - p_2)(1 - p_1) + (np_2)^2 p_1(1 - p_1)}} \xrightarrow{d} 1 \cdot Z \sim \mathcal{N}(0, 1)$$