Name	e:
UNS	W School of Mathematics and Statistics
MA	TH3411 Information Codes and Ciphers
2016	\mathbf{S} S2 VERSION A
• Tin	ne Allowed: 45 minutes
ea Fo	r the multiple choice questions, circle the correct answer; ch multiple choice question is worth 1 mark. r the true/false and written answer questions, use extra paper. aple everything together at the end.
1.	Using the LZ78 algorithm a message is encoded as $(0, a)(0, b)(2, a)(3, b)(4, a)$. What is the last dictionary entry after decoding?
	(a) $abab$ (b) $abba$ (c) $baab$ (d) $aabb$ (e) $baba$
2.	A Markov source $S = \{s_1, s_2, s_3\}$ has transition matrix M . The Huffman code for the quilibrium distribution is $\mathbf{D} \mathbf{f}_{s_0} = [1, 00, 0] \mathbf{E}(\mathbf{s}_0, \mathbf{s}_0) = [1, 00, 0] \mathbf{E}(\mathbf{s}_0, \mathbf{s}_0) = [1, 0] \mathbf{f}_{s_0} = [$
3.	Consider a binary bannifyith collection such that $P(a_1) = \frac{1}{5}$, $P(b_1 \mid a_1) = \frac{1}{8}$ and $P(b_2 \mid a_2) = \frac{1}{7}$. Recall the function
	$H(x) = -x \log_2 x - (1 - x) \log_2 (1 - x)$
	and note that $H(x) = H(1-x)$. The noise entropy $H(B \mid A)$ can be written as
	$ (a) \frac{2}{5}H(\frac{3}{8}) + \frac{3}{5}H(\frac{5}{7}) (b) \frac{2}{7}H(\frac{2}{5}) + \frac{5}{8}H(\frac{3}{5}) (c) \frac{5}{8}H(\frac{2}{5}) + \frac{2}{7}H(\frac{3}{5}) (d) \frac{3}{5}H(\frac{5}{8}) + \frac{2}{5}H(\frac{2}{7}) (e) \frac{2}{7}H(\frac{3}{5}) + \frac{5}{8}H(\frac{2}{5}) $
4.	Using Euler's Theorem or otherwise, calculate $5^{1155} \pmod{2016}$. The answer is
	(a) 1 (b) 5 (c) 25 (d) 125 (e) 625
5.	For which of the following numbers a is $n = 121$ a strong pseudo-prime to base a ?
	(a) 2 (b) 3 (c) 5 (d) 7 (e) None of these

6. [5 marks] For each of the following, say whether the statement is true or false, giving a brief reason or showing your working. You will get $\frac{1}{2}$ mark for a correct true/false answer, and if your true/false answer is correct, then you will get $\frac{1}{2}$ mark for a good reason.

Begin each answer with the word "True" or "False".

- i) If arithmetic coding with source symbols a, b and stop symbol \bullet corresponding to the intervals [0,0.3), [0.3,0.7) and [0.7,1) is used, then the message $bb\bullet$ is encoded by 0.6.
- ii) For a 3-symbol source $S = \{s_1, s_2, s_3\}$ with probabilities $p_1 = 4/9$, $p_2 = 2/9$, $p_3 = 1/3$ it is possible to find a **ternary** encoding of some extension S^n with average word length per original source symbol less than 1.
- iii) When using Fermat factorisation to factor n=1333 as a product n=ab where $2 \le a < b$, the sum a+b equals 74.
- iv) For a source $S = \{a, b\}$ with probabilities $P(a) = \frac{1}{3}$ and $P(b) = \frac{2}{3}$, the second longest codewords in the binary Shannon-Fano code for the fifth extension S^5 have length 7.
- $\stackrel{v)}{Assignment} \stackrel{\text{There are 100 primitive elements in the field GF(125).}}{Assignment} \stackrel{\text{Project Exam Help}}{Exam}$
- 7. [5 marks] Let $\mathbb{F} = \mathbb{Z}_3(\alpha)$ where α is a root of the polynomial $x^2 + 2x + 2 \in \mathbb{Z}_3[x]$.
 - (i) Express altrops of power sections over \mathbb{Z}_3 of 1 and α .
 - (ii) Solve the set of linear equations

Add WeChat powcoder
$$\begin{pmatrix} \alpha & \alpha^6 \\ \alpha & \alpha^6 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \alpha \\ 1 \end{pmatrix}$$

in \mathbb{F} .

(iii) Find the minimal polynomial of α^5 . Show your working.

Name:	Stud	dent ID:		
UNSW SCHOO	OL OF MATHEMATIC	S AND STATIST	ICS	
MATH3411	Information	Codes and (CIPHERS	
2016 S2	${f T}$	EST 2		VERSION B
• Time Allowed	: 45 minutes			
each multiple For the true/	ple choice questions, choice question is we false and written and hing together at the	worth 1 mark. swer questions, u	,	
_	LZ78 algorithm a m ne last dictionary en	_		(2,a)(2,b)(4,b).
	(a) <i>aba</i> (b) <i>a</i>	abb (c) bab	(d) bba	(e) bbb
the equilibrium $Huff_1 = [0]$ Given the		$ \begin{array}{c c} & \text{Dff}_{M} = \begin{bmatrix} 1 & 00 \\ 0 & 0 \end{bmatrix} \\ & \text{of } M & \text{e given} \\ & 10, 11 \end{bmatrix} \text{ and } \text{Hubols } s_1 s_2 s_1 s_3 s_1, \\ & \text{OWCOO} \\ & \text{OWCOO} \\ & \text{e given} \\ & \text{OWCOO} \\ & \text{e given} \\ & \text{output} $	$\mathbf{f}_{\mathrm{by}}^{\mathrm{So}}$ $\mathbf{\hat{a}}$ $\mathbf{\hat{n}}^{\mathrm{T}}$, $\mathbf{\hat{q}}$ $\mathbf{f}_{3}=[11,\ 10,\ 0].$ the Markov Huf	
3. Consider a such that				put symbols $\{b_1, b_2\}$ the function
	H(x) =	$-x\log_2 x - (1 -$	$x)\log_2(1-x)$	
and note t	hat H(x) = H(1 - x)	c). The noise ent	cropy $H(B \mid A)$ or	can be written as
$(a)\frac{2}{7}H(\frac{1}{4})$	$+\frac{3}{8}H(\frac{3}{4})$ (b) $\frac{3}{4}H(\frac{3}{8})+$	$\frac{1}{4}H\left(\frac{2}{7}\right) (c)\frac{1}{4}H\left(\frac{3}{8}\right)$	$+\frac{3}{4}H(\frac{5}{7})$ (d) $\frac{3}{8}H$	$I(\frac{1}{4}) + \frac{2}{7}H(\frac{3}{4})$ (e) $\frac{2}{7}H(\frac{3}{4}) + \frac{3}{8}H(\frac{3}{4})$
4. Using Eule	er's Theorem or other	erwise, calculate	$2^{2016} \pmod{123}$. The answer is
	(a) 4 (b)	9 (c) 25	(d) 36 (e)	100
5. For which	of the following nun	others a is $n = 25$	a strong pseudo	p-prime to base a?
	(a) 2 (b) 3	(c) 5 (d)	7 (e) Non	ne of these

6. [5 marks] For each of the following, say whether the statement is true or false, giving a brief reason or showing your working. You will get $\frac{1}{2}$ mark for a correct true/false answer, and if your true/false answer is correct, then you will get $\frac{1}{2}$ mark for a good reason.

Begin each answer with the word "True" or "False".

- i) If arithmetic coding with source symbols a, b and stop symbol \bullet corresponding to the intervals [0,0.4), [0.4,0.8) and [0.8,1) is used, then the message $ba \bullet$ is encoded by 0.55.
- ii) For a 3-symbol source $S = \{s_1, s_2, s_3\}$ with probabilities $p_1 = 1/2$, $p_2 = 1/6$, $p_3 = 1/3$, it is possible to find a **ternary** encoding of some extension S^n with average word length per original source symbol less than 0.9.
- iii) When using Fermat factorisation to factor n = 2257 as a product n = ab where $2 \le a < b$, the linear combination 2a b equals 13.
- iv) A source $S = \{s_1, s_2\}$ has probabilities $P(s_1) = \frac{1}{4}$, $P(s_2) = \frac{3}{4}$. The second shortest codeword length in the binary Shannon-Fano code for the fourth extension S^4 is 3.
- What 5 is a primitive element of \mathbb{Z}_{17} , then 6 is also a primitive element. Assignment Project Exam Help
- 7. [5 marks] Let $\mathbb{F} = \mathbb{Z}_3(\alpha)$ where α is a root of the polynomial $x^2 + x + 2 \in \mathbb{Z}_3[x]$.
 - (i) Express https://elepeosweoders.combinations over \mathbb{Z}_3 of 1 and α .
 - (ii) Solve the set of linear equations at powcoder $\begin{pmatrix} \alpha^3 & \alpha^4 \\ \alpha^4 & \alpha^6 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \alpha^2 \\ \alpha^5 \end{pmatrix}$

in \mathbb{F} .

(iii) Find the minimal polynomial of α^2 . Show your working.