Programme de colles en mathématiques

BCPST1B Clémenceau

semaine 5 du 17 au 21 octobre 2021

1 Suites usuelles

1.1 Définition

définition d'une suite, distinction entre les notations u_n et (u_n)

1.2 Suites arithmétiques

définition, comment prouver qu'une suite est arithmétique, calcul du n-ième terme, somme de termes consécutifs

1.3 Suites géométriques

définition, comment prouver qu'une suite est géométrique, calcul du n-ième terme, somme de termes consécutifs

1.4 Suites arithmético-géométriques

principe de la détermination du n-ième terme, cas où la suite ne commence pas au rang 0

1.5 Suites récurrentes linéaires d'ordre 2 à coefficients constants

résultats admis, exemples. On ne traite pas pour le moment le cas où le discriminant de l'équation caractéristique est nul.

2 Sommes et produits finis

2.1 Notations

notation \sum et \prod

2.2 Sommes et produits usuels

2.2.1 somme ou produit d'une constante

2.2.2 sommes des premiers entiers, des premiers carrés

démo par sommation inverse pour la première, par récurrence pour la deuxième. Somme des 1 ers termes d'une suite arithmétique.

2.2.3 sommes géométriques

formule, cas où la somme ne commence pas à 0, cas où la raison est égale à 1. Somme des 1 ers termes d'une suite géométrique.

2.2.4 factorielle

définition, relation (n+1)! = (n+1) * n!

2.3 Propriétés de la somme et du produit

2.3.1 linéarité de la somme, multiplicativité du produit

2.3.2 relation de Chasles

2.3.3 changement d'indice

on se restreint aux changement d'indice par translation et par inversion des termes

2.3.4 sommes ou produits télescopiques

2.4 Le binôme de Newton

2.4.1 les coefficients binomiaux

définition à l'aide de la fonction factorielle, exemples, calcul pratique

2.4.2 propriétés

on démontre les formules
$$\binom{n}{k} = \binom{n}{n-k}$$
, $\binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}$, triangle de Pascal

2.4.3 binôme de Newton

2.5 Sommes doubles

développement très succint sur cette partie, on se contente d'expliquer comment intervertir deux sommes (sommes sur un rectangle ou sur un triangle)

Compétences attendues

- 1. Savoir rédiger proprement une récurrence (simple ou double) sur un exemple simple
- $2.\ \,$ Bien connaître les résultats sur les suites arithmétiques et géométriques
- 3. Savoir calculer le n-ième terme d'une suite arithmético-géométrique (une simple application de la formule n'est pas suffisante, on refera le raisonnement)
- 4. Savoir calculer le *n*-ième terme d'une suite récurrente linéaire d'ordre 2 en appliquant les formules données dans le cours
- 5. Connaître les sommes usuelles
- 6. Savoir se ramener à une somme usuelles en utilisant les différents outils (linéarité, Chasles, changement d'indices)
- 7. Savoir calculer une somme ou un produit télescopique (un raisonnement avec des ... sera accepté)
- 8. Connaître la définition des $\binom{n}{k}$, connaître la relation du triangle de Pascal et la formule du binôme de Newton
- 9. utiliser également le binôme de Newton pour calculer des sommes