計量分析 2: 宿題 6

村澤 康友

提出期限: 2024年1月16日

注意:すべての質問に解答しなければ提出とは認めない。授業の HP の解答例を正確に再現すること(乱数は除く)。グループで取り組んでよいが,個別に提出すること。解答例をコピペしたり,他人の名前で提出した場合は,提出点を 0 点とし,再提出も認めない。すべての結果をワードに貼り付けて印刷し(A4 縦・両面印刷可・手書き不可),2 枚以上の場合は向きを揃えて問題番号順に重ね,左上隅をホッチキスで留めること。

- 1. (教科書 p. 209, 実証分析問題 8-A) データセット「8_income.dta」を gretl に読み込み, 以下の分析 を行いなさい.
 - (a) 教科書 p. 198 の「年収(対数値)」を「修学年数」で説明する単回帰モデルの推定結果を再現しなさい.
 - (b) 教科書 p. 198 の「本人の修学年数」を「父親の修学年数」で説明する単回帰モデルの推定結果を再現しなさい.
 - (c) gretlで 2SLS を実行する手順は以下の通り.
 - i. メニューから「モデル」 \rightarrow 「操作変数法」 \rightarrow 「2 段階最小二乗法」を選択.
 - ii.「従属変数」を選択.
 - iii.「説明変数(回帰変数)」を選択.
 - iv.「操作変数」を選択.
 - v.「OK」をクリック.

教科書 p. 199 の「年収(対数値)」を「修学年数」で説明する線形モデルの 2SLS による推定結果 を再現しなさい.

- 2. (教科書 p. 209, 実証分析問題 8-B) 前問と同じデータを用いて, 以下の分析を行いなさい.
 - (a) 教科書 p. 207 の 2SLS によるミンサー方程式の推定結果を再現しなさい.
 - (b) 前問の分析に「母親の修学年数」を IV に加えて 2SLS でミンサー方程式を推定しなさい.
 - (c) さらに「生まれ月」を IV に加えて 2SLS でミンサー方程式を推定しなさい.
- 3. (教科書 p. 236, 実証分析問題 9-A) データセット「9_1_cig_xt.dta」を gretl に読み込み, 以下の分析を行いなさい.
 - (a) 教科書 p. 225 の「喫煙本数」を「生活の満足度」で説明する単回帰モデルの 2007 年と 2009 年の推定結果を再現しなさい.
 - (b) 教科書 p. 226 の「喫煙本数」の差分を「生活の満足度」の差分で説明する単回帰モデルの推定結果を再現しなさい. ※変数の変換方法は資料「gretl 入門」を参照.
 - (c) 前問の分析に所得を共変量として加えた重回帰モデルを推定しなさい.
- 4. (教科書 p. 236, 実証分析問題 9-B) データセット「9_2_life_xt.dta」を gretl に読み込み, 以下の

分析を行いなさい.

- (a) 教科書 p. 228 の「生活の満足度」を「怪我・病気ダミー」と「年収」で説明する重回帰モデルの 2009 年の推定結果を再現しなさい.
- (b) 教科書 p. 229 の「生活の満足度」の差分を「怪我・病気ダミー」と「年収」の差分で説明する重回帰モデルの推定結果を再現しなさい.

解答例

1. (a) 単回帰

モデル 1: 最小二乗法 (OLS), 観測: 1–734 従属変数: lincome

	係数	Std. Error	t-ratio	p 値
		0.0870176		
yeduc	0.0553906	0.00609099	9.094	0.0000

Mean dependent var	6.170857	S.D. dependent var	0.356020
Sum squared resid	83.47680	S.E. of regression	0.337697
R^2	0.101508	Adjusted \mathbb{R}^2	0.100280
F(1,732)	82.69835	P-value (F)	8.86e-19
Log-likelihood	-243.6648	Akaike criterion	491.3296
Schwarz criterion	500.5267	Hannan-Quinn	494.8770

(b) 2SLS の第 1 段階

モデル 2: 最小二乗法 (OLS), 観測: 1–734 従属変数: yeduc

	係数	Std. Error	t-ratio	p 値	
const	10.5220	0.350154	30.05	0.0000)
payeduc	0.295540	0.0280256	10.55	0.0000	1
Mean dependent	var 14.13	8896 S.D. o	dependent	var 2	2.047800
Sum squared resid	d 2668	.439 S.E. o	of regression	on 1	.909295
R^2	0.131	1883 Adjus	sted R^2	(0.130697
F(1,732)	111.2	2046 P-val	$\operatorname{ae}(F)$	4	2.66e–24
Log-likelihood	-1515	.202 Akaik	e criterion	n 3	3034.405
Schwarz criterion	3043	.602 Hann	an–Quinn	. 3	3037.952

(c) 2SLS

モデル 1: 二段階最小二乗法 (2SLS), 観測: 1-734

従属変数: lincome

内生変数 (instrumented): yeduc

操作変数: const payeduc

	係数 		標準誤差		t値 	p 値 	
const	5.75290)	0.2403	70	23.93	5.86e-0)94 ***
yeduc	0.02956	808	0.0169	771	1.741	0.0821	*
Mean depend	ent var	6.1	70857	S.D.	depender	ıt var	0.356020
Sum squared	resid	85.	52760	S.E.	of regre	ession	0.341820
R-squared		0.1	01508	Adju	sted R-sc	quared	0.100280
F(1, 732)		3.0	31835	P-va	lue(F)		0.082066
Log-likelih	ood	-519	2.300	Akai	ke criter	rion	10388.60
Schwarz cri	terion	103	97.80	Hann	an-Quinn		10392.15

ハウスマン (Hausman) 検定 -

帰無仮説: OLS 推定値は一致性を持つ

漸近的検定統計量: カイ二乗(1) = 2.74972

なお、p値(p-value) = 0.0972716

弱操作変数 (weak instrument) の検定 -

第1段階のF統計量(1,732) = 111.205

名目 5% の有意水準で検定を行う場合の望ましい TSLS 最大サイズに対する臨界値:

size 10% 15% 20% 25% value 16.38 8.96 6.66 5.53

2. (a) IV: 就業可能年数, 就業可能年数の2乗, 父親の修学年数, 兄弟姉妹数

モデル 1: 二段階最小二乗法 (2SLS), 観測: 1-734

従属変数: lincome

内生変数 (instrumented): yeduc

操作変数: const exper exper2 payeduc sibs

	係数		標準	誤差	t 値	I	値	
const	4.5241		0.32	 0600	13.76	1 '	71e-038	***
Const		_						***
yeduc	0.0699	093	0.02	17875	3.209	0.0	0014	***
exper	0.0609	592	0.01	60773	3.792	0.0	0002	***
exper2	-0.0010	4174	0.00	0610360	-1.707	0.0	0883	*
Mean depende	ent var	6.170	857	S.D. dep	endent va	r	0.35602	20
Sum squared	resid	70.30	899	S.E. of	regressio	n	0.31034	14
R-squared		0.246	920	Adjusted	d R-square	d	0.24382	25
F(3, 730)		23.08	824	P-value((F)		2.75e-1	4

ハウスマン (Hausman) 検定 -

帰無仮説: OLS 推定値は一致性を持つ

漸近的検定統計量: カイ二乗(1) = 0.477582

なお、p値(p-value) = 0.48952

Sargan の過剰識別検定 -

帰無仮説:全ての操作変数は有効(valid)である

検定統計量: LM = 0.403198

なお、p値(p-value) = P(カイ二乗(1) > 0.403198) = 0.525442

弱操作変数 (weak instrument) の検定 -

第1段階のF統計量(2,729) = 32.831

名目 5% の有意水準で検定を行う場合の望ましい TSLS 最大サイズに対する臨界値:

size 10% 15% 20% 25% value 19.93 11.59 8.75 7.25

(b) IV: 就業可能年数, 就業可能年数の2乗, 父親の修学年数, 兄弟姉妹数, 母親の修学年数

モデル 2: 二段階最小二乗法 (2SLS), 観測: 1-734

従属変数: lincome

内生変数 (instrumented): yeduc

操作変数: const exper exper2 payeduc sibs moyeduc

	係数 		標準	誤差 	t 値 	p 値 	<u>-</u>
const	4.5434	5	0.320)583	14.17	1.87e-040) ***
yeduc	0.0685	564	0.02	11846	3.236	0.0013	***
exper	0.0612	705	0.016	30450	3.819	0.0001	***
exper2	-0.0010	6162	0.000	0606077	-1.752	0.0803	*
Mean depende	ent var	6.1708	357	S.D. dep	endent va	r 0.3560	20
Sum squared	resid	70.408	367	S.E. of	regressio	n 0.3105	64
R-squared		0.246	519	Adjusted	R-square	d 0.2434	23
F(3, 730)		23.119	941	P-value(F)	2.64e-	14

ハウスマン (Hausman) 検定 -

帰無仮説: OLS 推定値は一致性を持つ

漸近的検定統計量: カイ二乗(1) = 0.609293

なお、p値(p-value) = 0.435054

Sargan の過剰識別検定 -

帰無仮説:全ての操作変数は有効 (valid) である

検定統計量: LM = 0.471859

なお、p値(p-value) = P(カイ二乗(2) > 0.471859) = 0.789836

弱操作変数 (weak instrument) の検定 -

第1段階のF統計量(3,728) = 23.2762

Critical values for TSLS bias relative to OLS:

bias 5% 10% 20% 30% value 13.91 9.08 6.46 5.39

Relative bias is probably less than 5%

名目 5% の有意水準で検定を行う場合の望ましい TSLS 最大サイズに対する臨界値:

size 10% 15% 20% 25% value 22.30 12.83 9.54 7.80

(c) IV: 就業可能年数,就業可能年数の2乗,父親の修学年数,兄弟姉妹数,母親の修学年数,生まれ月

モデル 3: 二段階最小二乗法 (2SLS), 観測: 1-734

従属変数: lincome

内生変数 (instrumented): yeduc

操作変数: const exper exper2 payeduc sibs moyeduc mbirth

*
0
9
6
4

ハウスマン (Hausman) 検定 -

帰無仮説: OLS 推定値は一致性を持つ

漸近的検定統計量: カイ二乗(1) = 0.454561

なお、p値(p-value) = 0.500177

Sargan の過剰識別検定 -

帰無仮説:全ての操作変数は有効(valid)である

検定統計量: LM = 2.12962

なお、p値(p-value) = P(カイ二乗(3) > 2.12962) = 0.545943

弱操作変数(weak instrument)の検定 -

第1段階のF統計量(4,727) = 17.5575

Critical values for TSLS bias relative to OLS:

bias 5% 10% 20% 30% value 16.85 10.27 6.71 5.34

Relative bias is probably less than 5%

名目 5% の有意水準で検定を行う場合の望ましい TSLS 最大サイズに対する臨界値:

size	10%	15%	20%	25%
פוו[פע	24 58	13 96	10 26	8 31

3. (a) 2007年

モデル 1: 最小二乗法 (OLS), 観測: 1–3022 従属変数: ncig

	係数	Std.	Error	t-ratio	p 値	
const	5.73678	0.281	.568	20.37	0.000	0
life	-0.68541	4 0.102	2435	-6.691	0.000	0
dependen	t var 3	3.966992	S.D.	dependen	t var	5.3463
guared re	sid 8	5088.68	S.E.	of regressi	on	5.3080

Mean d 335 Sum sq 3018 \mathbb{R}^2 Adjusted \mathbb{R}^2 0.0146090.014282F(1,3020)44.77234P-value(F) $2.63\mathrm{e}{-11}$ Log-likelihood -9331.411Akaike criterion 18666.82Schwarz criterion 18678.85Hannan-Quinn 18671.15

2009年

モデル 2: 最小二乗法 (OLS), 観測: 1–3022 従属変数: ncig

	係数	Std. Error	t-ratio	p 値
const	5.07249	0.272702	18.60	0.0000
life	-0.507946	0.0946631	-5.366	0.0000

Mean dependent var	3.691016	S.D. dependent var	4.964790
Sum squared resid	73761.82	S.E. of regression	4.942109
R^2	0.009444	Adjusted \mathbb{R}^2	0.009116
F(1,3020)	28.79208	P-value (F)	8.67e - 08
Log-likelihood	-9115.560	Akaike criterion	18235.12
Schwarz criterion	18247.15	Hannan-Quinn	18239.44

(b) 差分の単回帰

モデル 3: Pooled OLS, 観測数: 3022 クロスセクションユニット数: 3022

時系列の長さ= 1 従属変数: d_ncig

係数 Std. Error t-ratio p値

d_life -0.287266 0.109858 -2.615 0.0090

Mean dependent var	-0.275976	S.D. dependent var	5.322167
Sum squared resid	85607.61	S.E. of regression	5.323299
Uncentered \mathbb{R}^2	0.002258	Centered \mathbb{R}^2	-0.000425
F(1,3021)	6.837607	P-value (F)	0.008970
Log-likelihood	-9340.598	Akaike criterion	18683.20
Schwarz criterion	18689.21	Hannan-Quinn	18685.36

(c) 差分の重回帰

モデル 4: Pooled OLS, 観測数: 3022 クロスセクションユニット数: 3022

> 時系列の長さ= 1 従属変数: d_ncig

	係数	Std. Error	t-ratio	p 値
d_life	-0.300654	0.109478	-2.746	0.0061
d_income	0.00314364	0.000643058	4.889	0.0000
Mean depender	nt var -0.275	976 S.D. de	pendent var	5.322167
Sum squared re	esid 84935	5.49 S.E. of	regression	5.303238
Uncentered \mathbb{R}^2	0.010	092 Centere	$ed R^2$	0.007429
F(2,3020)	15.39	386 P-value	e(F)	2.23e-07
Log-likelihood	-9328.	688 Akaike	criterion	18661.38
Schwarz criterio	on 18673	3.40 Hannar	n–Quinn	18665.70

4. (a) 2009年

モデル 1: 最小二乗法 (OLS), 観測: 1–3020 従属変数: life

	係数	,	Std. Error	t-ratio	p 値
const	2.67366	0.	0305300	87.57	0.0000
shock	-0.124873	0.	0346006	-3.609	0.0003
income	0.000282	184 7.	10062e-005	3.974	0.0001
Mean depend	ent var	2.70397	4 S.D. dep	oendent var	0.938548
${\bf Sum~squared}$	resid	2633.17	9 S.E. of 1	egression	0.934227
\mathbb{R}^2		0.00984	2 Adjuste	$d R^2$	0.009186
F(2,3017)		14.9944	1 P-value	(F)	3.31e-07
Log-likelihood	d –	4078.22	6 Akaike o	criterion	8162.452
Schwarz crite	rion	8180.49	1 Hannan	-Quinn	8168.939

(b) 差分

モデル 2: Pooled OLS, 観測数: 3020 クロスセクションユニット数: 3020 時系列の長さ= 1 従属変数: d-life

	係数	Std. Error	t-ratio	p 値
const	0.215365	0.0313550	6.869	0.0000
shock	-0.140117	0.0484445	-2.892	0.0039
$d_{-income}$	0.000223286	0.000161409	1.383	0.1667
Mean depender	nt var 0.164	238 S.D. dep	endent var	1.310712
Sum squared re	esid 5168.	730 S.E. of r	egression	1.308893
R^2	0.003	434 Adjusted	$1 R^2$	0.002773
F(2,3017)	5.197	346 P-value(F)	0.005581
Log-likelihood	-5096.	623 Akaike c	riterion	10199.25
Schwarz criteri	on 10217	7.29 Hannan-	-Quinn	10205.73