Online Selection, Adaptation, and Hybridization of Algorithms

(Thesis proposal)

Matthew Streeter

Thesis

- (i) the performance of algorithms can be improved by adapting them to the sequence of instances they are run on; and
- (ii) this adaptation can be accomplished using black box techniques

Thanks to my committee

Avrim Blum

Stephen Smith (Chair)

Carla Gomes, Cornell

John Hooker, CMU Tepper School

2

Outline

- Introduction ☆
- Four problems
 - Combining multiple heuristics online (0:25)
 - Online reduction from optimization to decision (0:10)
 - Online tuning of branch and bound algorithms (0:05)
 - The max k-armed bandit problem (0:05)
- Summary & timeline

Common framework

- You are given a set Π of problem-solving policies, fed a sequence $I_1, I_2, ..., I_n$ of instances to solve
- For j from 1 to n:
 - You select policy $\pi_i \in \Pi$, receive feedback $f_i = F(\pi_i, I_i)$, and incur cost $c_i = C(\pi_i, I_i)$
 - Your decision is a function of history $(\pi_1,f_1), (\pi_2,f_2), ...,$ (π_{i-1},f_{i-1}) plus private random bits

•
$$regret = \frac{1}{n} \left(\mathbb{E} \left[\sum_{j=1}^{n} c_j \right] - \min_{\pi \in \Pi} \sum_{j=1}^{n} C(\pi, I_j) \right)$$

• A no-regret policy-selection strategy has worst-case regret that is o(1) as a function of n

Setup

- Given set H={h₁,h₂,..., h_k} of deterministic heuristics (e.g., SAT solvers)
- Fed sequence of decision problems to solve
- Each heuristic eventually returns "yes" or "no", but CPU time depends on instance
- Solve each problem by interleaving execution of heuristics, stopping as soon as one of them returns an answer

Combining multiple heuristics online

Task-switching schedules

• Mapping $\pi: \mathbb{Z} \mapsto H$ from time slices to heuristics; $\pi(t)$ = heuristic to run from time t to time t+1

• Example:

Completion times

Motivations

- Task-switching schedule can be better than any single heuristic
- Evidence that tables like this arise in practice (e.g., for SAT solvers)

Completion times

	\mathbf{h}_1	\mathbf{h}_2
I_1	10^{6}	1
I_2	1	1
I_3	1	10^{6}

9

Solving the offline problem

- Offline problem: given table of completion times, compute task-switching schedule that minimizes sum of CPU time over all instances
- Can solve as shortest path problem

10

Solving the offline problem

- Assume completion times in {1,2, ..., B} for some known B (here B=4)
- Can think of a taskswitching schedule as a path in a kdimensional grid
- E.g. "run h₁ for 2 seconds, then run h₂ for 3 seconds..."

Solving the offline problem

Completion times

- Time bomplexity is $Q(n | B_3^k) = 4$
- Can gêt α-1
 approximation in
 time Q(n(logα B)k)

Shortest path problem $\begin{bmatrix} 4 & 0 & 0 & 0 & 0 & 0 \\ 3 & 2 & 2 & 1 & 0 & 0 \\ 2 & 2 & 2 & 1 & 0 & 0 \\ 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 4 & 3 & 2 & 0 & 0 \\ \hline & 0 & 1 & 2 & 3 & 4 \\ \hline & & & & & & & & \\ \hline \end{bmatrix}$

Solving the online problem

- In online problem, adversary secretly fills in table of completion times. Then:
- For j from 1 to n
 - You select task-switching schedule π_i
 - You incur cost c_i = time it takes to solve l_i using π_i
 - Your feedback is ci

13

Handling a large number of heuristics

(Joint work with Daniel Golovin)

- Bad news:
 - Offline problem generalizes MIN-SUM SET COVER, which is NP-hard to approximate within 4-€ for any € >0 (Feige et al., 2002)
- Good news:
 - Simple greedy algorithm gives 4-approximation; seems to behave much better in practice
 - Can use to get 4+o(1) multiplicative regret in distributional online setting
 - Proposed work: similar result for adversarial online setting?

Solving the online problem

- Can solve using existing no-regret strategies for online shortest paths
 - two-player game where you pick path, adversary picks edge weights
 - various feedback models
- György et al. (2006) assume at the end of each round, you find out weights of all edges you traversed
- Cesa-Bianchi et al. (2005) assume that by paying a price (here Bk), you can find out weights of all edges
- Combining the two gives regret at most

$$O\left(Bk \cdot \min\left\{\sqrt{\frac{k(\ln k)L^k}{n}}, \left(\frac{Lk}{n}\right)^{\frac{1}{3}}\right\}\right)$$

where L = length of sides of grid

14

Offline experiments

- Each year, various conferences hold solver competitions with the following format:
 - each submitted heuristic is run on a sequence of instances (subject to time limit)
 - awards for heuristics that solve the most instances in various instance categories
- Downloaded tables of completion times, computed (approximately) optimal task-switching schedules, and compared them to best individual solver

15

Results for 2006 A.I. Planning Competition

- A.I. planning involves finding a minimumlength sequence of actions that lead from a start state to a goal state
- Six "optimal" planners were submitted to 2006 A.l. planning competition
 - each run on 240 instances with 30 minute time limit per instance
 - 110 instances were solved by at least one of the six

17

Summary of results

Domain	Venue	Speedup factor (range across categories)
satisfiability	SAT 2005	1.1x-2x
planning	ICAPS 2006	1.4x
constraint solving	CP 2006	1x-1.5x
theorem proving	CADE 2006	1x-7.7x
satisfiability modulo theories	CAV 2006	1x-165x

Results for 2006 A.I. Planning Competition

Solver	Avg. CPU time (s)	Num. solved
Greedy schedule	358	98
Satplan	507	83
Maxplan	641	88
Mips-BDD	946	54
CPT2	969	53
FDP	1079	46
Parallel schedule	1244	89
IPPLAN-1SC	1437	23

Greedy schedule:

Proposed work

- Experimental results for online setting (good preliminary results in distributional online setting)
- Incorporate two forms of "expert advice":
 - Expert looks at features of instance, predicts which heuristic will work best
 - Given run-so-far, expert predicts how much longer heuristic will take

Generalization: restart schedules

- If H contains randomized heuristics, it may help to periodically restart them with a fresh random seed
- A restart schedule $\pi: \mathbb{Z} \mapsto H \times \{0,1\}$ is a task-switching schedule augmented with a flag that says whether to restart (if |H|=1, can represent as a sequence of thresholds $t_1, t_2, t_3, ...$)
- In online problem, adversary picks run length distributions rather than completion times

21

Generalization: restart schedules

 Motivation: solvers based on chronological backtracking often exhibit heavy-tailed run length distributions, and restarting can reduce mean run length by orders of magnitude (Gomes et al. 1998)

22

Generalization: restart schedules

- Our results:
 - Similar shortest path formulation; to get an α^2 -approximation you need B($\log_{\alpha} \log_{\alpha} B$)k vertices; online shortest paths gives no-regret strategy
 - Greedy algorithm gives 4-approximation
- Proposed work: experimental evaluation, engineering of strategies that work well in practice

Related work

- Algorithm portfolios (Huberman et al. 1997, Gomes et al. 2001, ...)
 - assigns each heuristic a fixed proportion of CPU time, plus a fixed restart threshold
 - previous work considered offline setting, and assumed each heuristic has same run length distribution on each instance

23

Proposed work: online reduction from optimization to decision

Setup

- Fed a sequence of minimization problems (e.g., find a plan of minimum length), each with minimum in {1, 2, ..., B}
- Given: oracle that answers queries of the form
 "Does there exist a solution with cost at most q?"
- CPU time required by oracle depends on q (and on instance)
- Goal: find a (provably) optimal solution to each instance, minimizing CPU time consumed by oracle calls

26

Reduction policies

• A reduction policy is a binary search tree with key set {1,2, ..., B}, e.g. for B=4:

Motivating example

- At 2006 A.I. Planning Competition, first place for optimal planners went to SATPLAN and MAXPLAN
- Both construct a sequence of boolean formulae σ_1 , σ_2 , ... where σ_q is satisfiable iff. there exists a plan of length $\leq q$
 - both use SAT solver as oracle
 - SATPLAN uses ramp-up; MAXPLAN uses rampdown

29

Solving the online problem

- Adversary determines CPU time for each query and instance; on each round you select a reduction policy
 - $cost c_j = total CPU time used on round j$
 - feedback f_j = list of oracle CPU times for each query you made on round j

Solving the offline problem

 Offline problem: given CPU time for each instance I_j and query q, compute reduction policy that minimizes total CPU time

• Can solve in O(B3) time using dynamic programming

30

Solving the online problem

- Use the multiplicative weight update method: on round j, select tree T with prob. proportional to $\alpha^{(hypothetical\ cost\ of\ using\ T\ on\ first\ j-1\ rounds)}$, for some $\alpha<1$.
- Two difficulties:
 - limited feedback handle using standard technique
 - there are exponentially many trees use an O(B³) dynamic programming algorithm to implement efficiently
- Regret is at most $B\sqrt{\frac{2B\ln B}{n}}$ (assuming max. oracle CPU time = 1)

31

Finding approximately optimal solutions

- Just need to work with pruned trees
- E.g., 2-approximation for B=30:

• Can get additive or multiplicative approximations

33

Proposed work: online tuning of branch and bound algorithms

Setup

• Fed a sequence of minimization problems of the form

$$\min g(x_1,x_2,\dots,x_d)$$
 s.t.
$$x_i \in D_i \ \forall i,1 \leq i \leq d$$

$$\langle x_1,x_2,\dots,x_d \rangle \text{ satisfies constraints}$$

- Will solve each problem using branch and bound
- Goal: given set R={r₁,r₂, ..., r_k} of available relaxations, select which relaxation(s) to run at each depth of the search tree so as to minimize CPU time

Branch and bound

- Branch and bound is a divide and conquer algorithm, widely used for solving NP-hard minimization problems
 - recursively breaks problem into subproblems by picking some variable and considering all values that can be assigned to it (branching)
 - solves relaxed versions of subproblems to quickly identify subproblems that can be safely ignored (bounding)

35

Variable selection and value ordering heuristics define a tree of subproblems

- At each tree node, can run one or more relaxation(s), which may cause the subtree rooted at that node to be pruned (ignored)
- A relaxation policy $\pi: \mathbb{Z} \mapsto 2^R$ lists the relaxation(s) to run at each depth
- Want to select relaxation policy that minimizes CPU time (sum of time to run relaxations plus time to process non-pruned nodes)

Strong assumption: Branch and relaxation(s) do not interact with variable or value ordering heuristics

pruned by running r₁

The max k-armed bandit problem

Outline of results

- Key fact: suppose |R|=1. The CPU time policy π spends on some particular node at depth i depends on:
 - largest depth < i where π ran relaxation
 - whether π runs relaxation at depth i
- Can compute optimal relaxation policy finding shortest path in graph with d^2 vertices, where d = max. tree **depth** (in general need d^{2k} vertices)
- Online shortest paths gives no-regret strategy, but using this idea naïvely shouldn't work well in practice
- Results on relaxations carry over to constraint propagators so long as key fact holds

The classical k-armed bandit

- You are in a room with k slot. machines
- Pulling arm of ith machine returns payoff drawn from unknown distribution Di
- Goal: maximize sum of payoffs given n pulls
- > 50 years of papers

The max k-armed bandit

- You are in a room with k slot machines
- Pulling arm of ith machine returns payoff drawn from unknown distribution D_i
- Goal: maximize highest payoff given n pulls
- Introduced by Cicirello & Smith (2003)

41

Application: selecting among heuristics

- Given: a single optimization problem, k randomized heuristics
- Each time you run a heuristic, get a solution with a certain quality
- Goal: given n runs, maximize quality of best solution

,

Previous work

- Fact: the generalized extreme value (GEV) distribution is to maxima what the Gaussian is to sums
- Cicirello & Smith (AAAI 2005 best paper) assumed payoffs drawn from Gumbel distributions (special case of GEV)
 - good experimental results for selecting among randomized greedy heuristics for the RCPSP/max
 - no rigorous performance guarantees

Our results: GEV payoffs

(Streeter & Smith, AAAI 2006)

- We give a no-regret strategy for the case where each payoff distribution is a GEV.
 - regret = max_{arms i} M_{i,n} S_n
 - M_{i,n} = expected max. payoff from pulling ith arm n times
 - S_n = expected max. payoff from using our strategy for n pulls
- Note: not possible to get a no-regret strategy for arbitrary payoff distributions (e.g., suppose payoffs are always 0 except for one "mystery" arm that gives payoff 1 with prob. 1/n)

43

Our results: Threshold Ascent

(Streeter & Smith, CP 2006)

- Threshold Ascent: use classical k-armed bandit solver to maximize #payoffs that exceed some threshold, ramp up threshold over time
- Outperforms strategy of Cicirello & Smith (2005) on RCPSP/max experiments

Strategy	Σ Regret	$\mathbb{P}[Regret = 0]$
Threshold Ascent	188	0.722
Round-robin sampling	345	0.556
LPF	355	0.675
MTS	402	0.657
QD-BEACON	609	0.538
RSM	2130	0.166
LST	3199	0.095
MST	4509	0.107

45

Summary & timeline

Proposed work

 Investigate online version in which we are fed a sequence of max k-armed bandit instances; perhaps can learn appropriate distributional assumptions

46

Summary

Problem	Results so far	Proposed work
Combining multiple heuristics online	no-regret strategy, greedy approximation, offline experiments	experimental evaluations, online version of greedy, expert advice
Online reduction from optimization to decision	no-regret strategy	experimental evaluation
Online tuning of branch and bound algorithms	no-regret strategy	more practical no-regret strategies, experimental evaluation
The max k-armed bandit	Threshold Ascent, no- regret strategy for GEV payoffs	online (multiple-instance) setting

Timeline

- Aim to finish between Dec. 2007 and May 2008
- Rough timeline:

Thanks!