Kolloquium zur Bachelorarbeit

Referent: Benedikt Lüken-Winkels

Prüfer: Prof. Dr. Henning Fernau

Prof. Dr. Stefan Näher

07. März 2018

Universität Trier

Knotenüberdeckungsproblem

Knotenüberdeckungsproblem - Definition

Knotenüberdeckung

EINGABE: Graph G = (V, E), positive Integer $k \le |V|$

AUSGABE: $S \subseteq V$ mit $|S| \le k$, sodass jede Kante aus E einen

Endpunkt in S hat.

Graphreduktion

Einfache Reduktionsregeln

Kronenregel

Kronenregel - Algorithmus

```
0 G = (V, E)
   M_1 := maximal matching von G:
2
              M_1 := \emptyset
3
            \forall e \in E:
4
              füge e M_{1} hinzu
 5
              Entferne e und N(e)
6
    0 := nicht gepaarte Knoten in M_1
7
    M_{2} := maxmimum matching von b = G[0 \cup N(0)]
8
   I := nicht gepaarte Knoten in M_2
9
    I := \emptyset
10
    while I' \neq I
            I' := I
11
              H := N(I)
12
              I' := I \cup \{ \forall u \in O | \exists v \in H(uv \in M_2) \}
13
14
   Markiere N(I') \rightarrow Reduzierung um I' \cup H = N(I')
15
    durch Hinzufügen des VC von H
```

Nemhauser-Trotter-Regel

Nemhauser-Trotter-Regel

Nemhauser-Trotter-Theorem

Für einen Graphen G = (V, E) können zwei disjunkte Mengen C_0 und V_0 gefunden werden, sodass

- 1. C₀ in einer minimalen Knotenüberdeckung von G enthalten ist,
- 2. der Teilgraph $G[V_0]$ eine Knotenüberdeckung der Größe $\leq |V_0|/2$ hat,
- 3. und $VC(G) = VC(G[V_0]) \cup C_0$ gilt.

NT-Regel - Algorithmus

```
0 G = (V, E)
1 Bipartiden Graphen erstellen B = (V, V', E')
2 E':= \{\{x, y'\}, \{x', y\} | \{x, y\} \in E\}
3 Maximum Matching M von B bestimmen
4 C_B := VC(B)
5 C_0 := \{x \in V \mid x \in C_B \text{ und } x' \in C_B\}
6 V_0 := \{x \in V \mid \text{entweder } x \in C_B \text{ oder } x' \in C_B\}
```

Laufzeit und erwartete Reduktion

Anwendung

Tabelle 1: Anwendung kombinierter Reduktionsregeln

Kombination	Anwendungen ₁	Anwendungen ₂	Anwendungen ₃	Reduktion
K - G ₁	3.63	4.3	-	331.8
G ₁ - K	4.37	3.22	-	331.17
K - NT	0.8	0.38	-	68.28
NT - K	0.45	0.56	-	68.6
G ₁ - NT	1.33	0.017	-	99.87
NT - G ₁	0.28	1.13	-	99.87
K - G ₁ - NT	3.61	4.29	0.11	334.67
K - NT - G ₁	3.6	0.87	3.39	334.83
G ₁ - NT - K	4.36	0.12	3.2	334.17
G ₁ - K - NT	3.61	3.2	0.65	334.16
NT - K - G ₁	0.39	3.44	4.03	335.2
NT - G ₁ - K	0.91	3.42	3.2	334.16

Implementierung

Fazit