Bevezetés a számításelméletbe

9. előadás

Definíció

Tetszőleges $\mathcal{P}\subseteq RE$ halmazt a rekurzívan felsorolható nyelvek egy tulajdonságának nevezzük.

Definíció

Tetszőleges $\mathcal{P} \subseteq RE$ halmazt a rekurzívan felsorolható nyelvek egy tulajdonságának nevezzük. \mathcal{P} triviális, ha $\mathcal{P} = \emptyset$ vagy $\mathcal{P} = RE$.

Definíció

Tetszőleges $\mathcal{P} \subseteq RE$ halmazt a rekurzívan felsorolható nyelvek egy tulajdonságának nevezzük. \mathcal{P} triviális, ha $\mathcal{P} = \emptyset$ vagy $\mathcal{P} = RE$.

$$L_{\mathcal{P}} = \{ \langle M \rangle \mid L(M) \in \mathcal{P} \}.$$

Definíció

Tetszőleges $\mathcal{P}\subseteq RE$ halmazt a rekurzívan felsorolható nyelvek egy **tulajdonságának** nevezzük. \mathcal{P} **triviális**, ha $\mathcal{P}=\emptyset$ vagy $\mathcal{P}=RE$.

$$L_{\mathcal{P}} = \{ \langle M \rangle \, | \, L(M) \in \mathcal{P} \}.$$

Rice tétele

Ha $\mathcal{P} \subseteq RE$ egy nem triviális tulajdonság, akkor $L_{\mathcal{P}} \not\in R$.

Bizonyítás:

1. eset $\emptyset \notin \mathcal{P}$.

Bizonyítás:

1. eset $\emptyset \notin \mathcal{P}$.

Mivel tudjuk, hogy $L_u \notin R$, elég belátni, hogy $L_u \leq L_P$.

Bizonyítás:

1. eset $\emptyset \notin \mathcal{P}$.

Mivel tudjuk, hogy $L_u \notin R$, elég belátni, hogy $L_u \leq L_P$.

Mivel \mathcal{P} nem triviális, ezért létezik $L \in \mathcal{P}$. $(L \neq \emptyset)$.

Bizonyítás:

1. eset $\emptyset \notin \mathcal{P}$.

Mivel tudjuk, hogy $L_u \notin R$, elég belátni, hogy $L_u \leq L_P$.

Mivel \mathcal{P} nem triviális, ezért létezik $L \in \mathcal{P}$. $(L \neq \emptyset)$.

 $L \in RE$, ezért van olyan M_L TG, melyre $L(M_L) = L$.

Bizonyítás:

1. eset $\emptyset \notin \mathcal{P}$.

Mivel tudjuk, hogy $L_u \notin R$, elég belátni, hogy $L_u \leq L_{\mathcal{P}}$.

Mivel \mathcal{P} nem triviális, ezért létezik $L \in \mathcal{P}$. $(L \neq \emptyset)$.

 $L \in RE$, ezért van olyan M_L TG, melyre $L(M_L) = L$.

Bizonyítás:

1. eset $\emptyset \notin \mathcal{P}$.

Mivel tudjuk, hogy $L_u \notin R$, elég belátni, hogy $L_u \leq L_P$.

Mivel $\mathcal P$ nem triviális, ezért létezik $L\in\mathcal P$. $(L\neq\emptyset).$

 $L \in RE$, ezért van olyan M_L TG, melyre $L(M_L) = L$.

Egy tetszőleges $\langle M, w \rangle$ TG – bemenet pároshoz elkészítünk egy M' kétszalagos TG-t, mely egy x bemenetén a következőképpen működik:

1. Bemenetétől függetlenül először szimulálja *M*-et *w*-re a második szalagján.

Bizonyítás:

1. eset $\emptyset \notin \mathcal{P}$.

Mivel tudjuk, hogy $L_u \notin R$, elég belátni, hogy $L_u \leq L_P$.

Mivel \mathcal{P} nem triviális, ezért létezik $L \in \mathcal{P}$. $(L \neq \emptyset)$.

 $L \in RE$, ezért van olyan M_L TG, melyre $L(M_L) = L$.

- 1. Bemenetétől függetlenül először szimulálja *M*-et *w*-re a második szalagján.
- 2. Így, ha M nem áll meg w-n, akkor M' nem áll meg egyetlen inputjára sem

Bizonyítás:

1. eset $\emptyset \notin \mathcal{P}$.

Mivel tudjuk, hogy $L_u \notin R$, elég belátni, hogy $L_u \leq L_P$.

Mivel \mathcal{P} nem triviális, ezért létezik $L \in \mathcal{P}$. $(L \neq \emptyset)$.

 $L \in RE$, ezért van olyan M_L TG, melyre $L(M_L) = L$.

- 1. Bemenetétől függetlenül először szimulálja *M*-et *w*-re a második szalagján.
- 2. Így, ha M nem áll meg w-n, akkor M' nem áll meg egyetlen inputjára sem Ez esetben $L(M') = \emptyset$.

Bizonyítás:

1. eset $\emptyset \notin \mathcal{P}$.

Mivel tudjuk, hogy $L_u \notin R$, elég belátni, hogy $L_u \leq L_P$.

Mivel \mathcal{P} nem triviális, ezért létezik $L \in \mathcal{P}$. $(L \neq \emptyset)$.

 $L \in RE$, ezért van olyan M_L TG, melyre $L(M_L) = L$.

- 1. Bemenetétől függetlenül először szimulálja *M*-et *w*-re a második szalagján.
- 2. Így, ha M nem áll meg w-n, akkor M' nem áll meg egyetlen inputjára sem Ez esetben $L(M') = \emptyset$.
- 3. Ha M elutasítja w-t, akkor M' q_n -be lép és leáll (azaz nem fogadja el x-et).

Bizonyítás:

1. eset $\emptyset \notin \mathcal{P}$.

Mivel tudjuk, hogy $L_u \notin R$, elég belátni, hogy $L_u \leq L_P$.

Mivel \mathcal{P} nem triviális, ezért létezik $L \in \mathcal{P}$. $(L \neq \emptyset)$.

 $L \in RE$, ezért van olyan M_L TG, melyre $L(M_L) = L$.

- 1. Bemenetétől függetlenül először szimulálja *M*-et *w*-re a második szalagján.
- 2. Így, ha M nem áll meg w-n, akkor M' nem áll meg egyetlen inputjára sem Ez esetben $L(M') = \emptyset$.
- 3. Ha M elutasítja w-t, akkor M' q_n -be lép és leáll (azaz nem fogadja el x-et). Ez esetben is $L(M') = \emptyset$.

Bizonyítás:

1. eset $\emptyset \notin \mathcal{P}$.

Mivel tudjuk, hogy $L_u \notin R$, elég belátni, hogy $L_u \leq L_{\mathcal{P}}$. Mivel \mathcal{P} nem triviális, ezért létezik $L \in \mathcal{P}$. $(L \neq \emptyset)$.

 $L \in RE$, ezért van olyan M_L TG, melyre $L(M_L) = L$.

- 1. Bemenetétől függetlenül először szimulálja *M*-et *w*-re a második szalagján.
- 2. Így, ha M nem áll meg w-n, akkor M' nem áll meg egyetlen inputjára sem Ez esetben $L(M') = \emptyset$.
- 3. Ha M elutasítja w-t, akkor M' q_n -be lép és leáll (azaz nem fogadja el x-et). Ez esetben is $L(M') = \emptyset$.
- 4. Ha M elfogadja w-t, akkor M' szimulálja M_L -et x-en.

Bizonyítás:

1. eset $\emptyset \notin \mathcal{P}$.

Mivel tudjuk, hogy $L_u \notin R$, elég belátni, hogy $L_u \leq L_P$.

Mivel \mathcal{P} nem triviális, ezért létezik $L \in \mathcal{P}$. $(L \neq \emptyset)$.

 $L \in RE$, ezért van olyan M_L TG, melyre $L(M_L) = L$.

- 1. Bemenetétől függetlenül először szimulálja *M*-et *w*-re a második szalagján.
- 2. Így, ha M nem áll meg w-n, akkor M' nem áll meg egyetlen inputjára sem Ez esetben $L(M') = \emptyset$.
- 3. Ha M elutasítja w-t, akkor M' q_n -be lép és leáll (azaz nem fogadja el x-et). Ez esetben is $L(M') = \emptyset$.
- 4. Ha M elfogadja w-t, akkor M' szimulálja M_L -et x-en. Ekkor M_L definíciója miatt L(M') = L.

Összefoglalva

 $ightharpoonup \langle M, w \rangle \in L_u$

$$\blacktriangleright \langle M, w \rangle \in L_u \Rightarrow L(M') = L$$

$$\blacktriangleright \langle M, w \rangle \in L_u \Rightarrow L(M') = L \Rightarrow L(M') \in \mathcal{P}$$

Összefoglalva

 $\blacktriangleright \ \langle M, w \rangle \in L_u \Rightarrow L(M') = L \Rightarrow L(M') \in \mathcal{P} \Rightarrow \langle M' \rangle \in L_{\mathcal{P}}.$

- $\blacktriangleright \ \langle M, w \rangle \in L_u \Rightarrow L(M') = L \Rightarrow L(M') \in \mathcal{P} \Rightarrow \langle M' \rangle \in L_{\mathcal{P}}.$
- $ightharpoonup \langle M, w \rangle \not\in L_u$

- $\blacktriangleright \langle M, w \rangle \in L_u \Rightarrow L(M') = L \Rightarrow L(M') \in \mathcal{P} \Rightarrow \langle M' \rangle \in L_{\mathcal{P}}.$
- $\blacktriangleright \langle M, w \rangle \not\in L_u \Rightarrow L(M') = \emptyset \Rightarrow L(M') \not\in \mathcal{P}$

- $\blacktriangleright \ \langle M, w \rangle \in L_u \Rightarrow L(M') = L \Rightarrow L(M') \in \mathcal{P} \Rightarrow \langle M' \rangle \in L_{\mathcal{P}}.$
- $\blacktriangleright \ \langle M, w \rangle \not\in L_u \Rightarrow L(M') = \emptyset \Rightarrow L(M') \not\in \mathcal{P} \Rightarrow \langle M' \rangle \not\in L_{\mathcal{P}}.$

Összefoglalva

- $\blacktriangleright \langle M, w \rangle \in L_u \Rightarrow L(M') = L \Rightarrow L(M') \in \mathcal{P} \Rightarrow \langle M' \rangle \in L_{\mathcal{P}}.$
- $\blacktriangleright \ \langle M, w \rangle \not\in L_u \Rightarrow L(M') = \emptyset \Rightarrow L(M') \not\in \mathcal{P} \Rightarrow \langle M' \rangle \not\in L_{\mathcal{P}}.$

Azaz:

 $\langle M,w\rangle\in L_u \Leftrightarrow \langle M'\rangle\in L_{\mathcal{P}}\text{, tehát }L_u\leq L_{\mathcal{P}}\text{ \'es \'igy }L_{\mathcal{P}}\not\in R.$

2. eset $\emptyset \in \mathcal{P}$.

- **2.** eset $\emptyset \in \mathcal{P}$.
 - ▶ Alkalmazhatjuk az 1. eset eredményét $\overline{\mathcal{P}} = RE \setminus \mathcal{P}$ -re, hiszen ekkor $\overline{\mathcal{P}}$ szintén nem triviális és $\emptyset \notin \overline{\mathcal{P}}$.

- 2. eset $\emptyset \in \mathcal{P}$.
 - ▶ Alkalmazhatjuk az 1. eset eredményét $\overline{\mathcal{P}} = RE \setminus \mathcal{P}$ -re, hiszen ekkor $\overline{\mathcal{P}}$ szintén nem triviális és $\emptyset \notin \overline{\mathcal{P}}$.
 - ▶ Azt kapjuk, hogy $L_{\overline{P}} \notin R$.

- **2.** eset $\emptyset \in \mathcal{P}$.
 - Alkalmazhatjuk az 1. eset eredményét $\overline{\mathcal{P}}=RE\setminus\mathcal{P}$ -re, hiszen ekkor $\overline{\mathcal{P}}$ szintén nem triviális és $\emptyset\not\in\overline{\mathcal{P}}$.
 - ▶ Azt kapjuk, hogy $L_{\overline{D}} \notin R$.
 - ▶ $\overline{L_P} = L_{\overline{P}}$, mivel megállapodásunk szerint minden szó TG kód, a nem kellő alakú szavak egy rögzített, egyetlen szót sem elfogadó TG-et kódolnak.

- **2.** eset $\emptyset \in \mathcal{P}$.
 - ▶ Alkalmazhatjuk az 1. eset eredményét $\overline{\mathcal{P}} = RE \setminus \mathcal{P}$ -re, hiszen ekkor $\overline{\mathcal{P}}$ szintén nem triviális és $\emptyset \notin \overline{\mathcal{P}}$.
 - ▶ Azt kapjuk, hogy $L_{\overline{P}} \notin R$.
 - $\overline{L_{\mathcal{D}}} = L_{\overline{\mathcal{D}}}$, mivel megállapodásunk szerint minden szó TG kód, a nem kellő alakú szavak egy rögzített, egyetlen szót sem elfogadó TG-et kódolnak.
 - ▶ $\overline{L_{\mathcal{P}}} \notin R \Rightarrow L_{\mathcal{P}} \notin R$ (tétel volt).

Alkalmazások

Következmények:

Alkalmazások

Következmények:

Eldönthetetlen, hogy egy M TG

lacktriangle az üres nyelvet ismeri-e fel. $(\mathcal{P}=\{\emptyset\})$

Alkalmazások

Következmények:

- lacktriangle az üres nyelvet ismeri-e fel. $(\mathcal{P}=\{\emptyset\})$
- véges nyelvet ismer-e fel $(P = \{L \mid L \text{ véges }\})$

Alkalmazások

Következmények:

- lacktriangle az üres nyelvet ismeri-e fel. $(\mathcal{P} = \{\emptyset\})$
- véges nyelvet ismer-e fel $(P = \{L \mid L \text{ véges }\})$
- ▶ környezetfüggetlen nyelvet ismer-e fel $(P = \{L \mid L \text{ környezetfüggetlen }\})$

Alkalmazások

Következmények:

- lacktriangle az üres nyelvet ismeri-e fel. $(\mathcal{P} = \{\emptyset\})$
- véges nyelvet ismer-e fel $(P = \{L \mid L \text{ véges }\})$
- ▶ környezetfüggetlen nyelvet ismer-e fel $(\mathcal{P} = \{L \mid L \text{ környezetfüggetlen }\})$
- ▶ elfogadja-e az üres szót ($\mathcal{P} = \{L \in RE \mid \varepsilon \in L\}$)

Definíció

Legyen Σ egy ábécé és legyenek $u_1, \ldots, u_n, v_1, \ldots, v_n \in \Sigma^+ \ (n \geq 1)$.

Definíció

Legyen Σ egy ábécé és legyenek $u_1,\ldots,u_n,v_1\ldots,v_n\in\Sigma^+$ $(n\geq 1).$ A $D=\left\{\frac{u_1}{v_1},\ldots,\frac{u_n}{v_n}\right\}$ halmazt **dominókészletnek** nevezzük.

Definíció

Legyen Σ egy ábécé és legyenek $u_1,\ldots,u_n,v_1\ldots,v_n\in\Sigma^+$ $(n\geq1).$ A $D=\left\{\frac{u_1}{v_1},\ldots,\frac{u_n}{v_n}\right\}$ halmazt dominókészletnek nevezzük.

(Valójában az i. dominó egy az u_i és v_i szavakból álló rendezett pár. u_i -t a dominó felső, míg v_i -t a dominó alsó szavának nevezzük.)

Definíció

Legyen Σ egy ábécé és legyenek $u_1,\ldots,u_n,v_1\ldots,v_n\in\Sigma^+$ $(n\geq 1)$. A $D=\left\{\frac{u_1}{v_1},\ldots,\frac{u_n}{v_n}\right\}$ halmazt **dominókészletnek** nevezzük.

(Valójában az i. dominó egy az u_i és v_i szavakból álló rendezett pár. u_i -t a dominó felső, míg v_i -t a dominó alsó szavának nevezzük.)

Definíció

Az
$$\frac{u_{i_1}}{v_{i_1}}\cdots \frac{u_{i_m}}{v_{i_m}}$$
 dominósorozat $(m\geq 1, 1\leq i_1,\ldots,i_m\leq n)$ a $D=\{\frac{u_1}{v_1},\ldots,\frac{u_n}{v_n}\}$ dominókészlet egy **megoldása**, ha $u_{i_1}\cdots u_{i_m}=v_{i_1}\cdots v_{i_m}.$

Példa: A $\left\{\frac{b}{ca}, \frac{dd}{e}, \frac{a}{ab}, \frac{ca}{a}, \frac{abc}{c}\right\}$ készlet egy lehetséges megoldása

$$\frac{a}{ab} \frac{b}{ca} \frac{ca}{a} \frac{a}{ab} \frac{abc}{c}$$
.

Példa: A $\left\{\frac{b}{ca}, \frac{dd}{e}, \frac{a}{ab}, \frac{ca}{a}, \frac{abc}{c}\right\}$ készlet egy lehetséges megoldása

$$\frac{a}{ab} \frac{b}{ca} \frac{ca}{a} \frac{a}{ab} \frac{abc}{c}$$
.

Egy másik megoldás: $\frac{a}{ab} \frac{b}{ca} \frac{ca}{a} \frac{a}{ab} \frac{abc}{c} \frac{a}{ab} \frac{b}{ca} \frac{ca}{a} \frac{a}{ab} \frac{abc}{c}$.

Példa: A $\left\{ \frac{b}{ca}, \frac{dd}{e}, \frac{a}{ab}, \frac{ca}{a}, \frac{abc}{c} \right\}$ készlet egy lehetséges megoldása $\frac{a}{ab} \frac{b}{ca} \frac{ca}{a} \frac{a}{ab} \frac{abc}{c}$.

Egy másik megoldás: $\frac{a}{ab} \frac{b}{ca} \frac{ca}{a} \frac{a}{ab} \frac{abc}{c} \frac{a}{ab} \frac{b}{ca} \frac{ca}{a} \frac{a}{ab} \frac{abc}{c}$.

Megjegyzés: Tehát egy megoldáshoz a dominók többször felhasználhatók és nem kell minden dominót felhasználni. Egy dominókészletnek több megoldása is lehet.

Megoldás alatt véges (de akármekkora) hosszúságú kirakást értünk.

Vegyük észre, hogy hiába véges maga a készlet, végtelen sok féleképpen lehet a készlet dominóit véges sorozatba egymás után rakni, így megoldás keresése esetén egy végtelen keresési térrel állunk szemben.

Példa: A $\left\{\frac{b}{ca}, \frac{dd}{e}, \frac{a}{ab}, \frac{ca}{a}, \frac{abc}{c}\right\}$ készlet egy lehetséges megoldása $\frac{a}{ab} \frac{b}{ca} \frac{ca}{a} \frac{a}{ab} \frac{abc}{c}$.

Egy másik megoldás: $\frac{a}{ab} \frac{b}{ca} \frac{ca}{a} \frac{a}{ab} \frac{abc}{c} \frac{a}{ab} \frac{b}{ca} \frac{ca}{a} \frac{a}{ab} \frac{abc}{c}$.

Megjegyzés: Tehát egy megoldáshoz a dominók többször felhasználhatók és nem kell minden dominót felhasználni. Egy dominókészletnek több megoldása is lehet.

Megoldás alatt véges (de akármekkora) hosszúságú kirakást értünk.

Vegyük észre, hogy hiába véges maga a készlet, végtelen sok féleképpen lehet a készlet dominóit véges sorozatba egymás után rakni, így megoldás keresése esetén egy végtelen keresési térrel állunk szemben.

Post Megfelelkezési Probléma (PMP):

 $L_{PMP} = \{\langle D \rangle \mid D$ -nek van megoldása $\}$.

Tétel

 $L_{\mathsf{PMP}} \in \mathit{RE}$.

Tétel

 $L_{\mathsf{PMP}} \in RE$.

Bizonyítás: Ha *D*-t egy ábécének tekintjük, akkor éppen a *D* feletti szavak a potenciális megoldások.

Tétel

 $L_{\mathsf{PMP}} \in RE$.

Bizonyítás: Ha *D*-t egy ábécének tekintjük, akkor éppen a *D* feletti szavak a potenciális megoldások.

Egy olyan TG, mely a D feletti szavakat hosszlexikografikus sorrendben sorra kipróbálja és ha megoldást talál q_i -ben leáll éppen $L_{\rm PMP}$ -t ismeri fel.

Tétel

 $L_{\mathsf{PMP}} \in RE$.

Bizonyítás: Ha *D*-t egy ábécének tekintjük, akkor éppen a *D* feletti szavak a potenciális megoldások.

Egy olyan TG, mely a D feletti szavakat hosszlexikografikus sorrendben sorra kipróbálja és ha megoldást talál q_i -ben leáll éppen $L_{\rm PMP}$ -t ismeri fel.

Tétel

 $L_{\mathsf{PMP}} \not\in R$.

Tétel

 $L_{\mathsf{PMP}} \in RE$.

Bizonyítás: Ha *D*-t egy ábécének tekintjük, akkor éppen a *D* feletti szavak a potenciális megoldások.

Egy olyan TG, mely a D feletti szavakat hosszlexikografikus sorrendben sorra kipróbálja és ha megoldást talál q_i -ben leáll éppen $L_{\rm PMP}$ -t ismeri fel.

Tétel

 $L_{\mathsf{PMP}} \not\in R$.

Bizonyítás:

Definiáljuk a PMP egy módosított változatát, MPMP-t.

Tétel

 $L_{\mathsf{PMP}} \in RE$.

Bizonyítás: Ha *D*-t egy ábécének tekintjük, akkor éppen a *D* feletti szavak a potenciális megoldások.

Egy olyan TG, mely a D feletti szavakat hosszlexikografikus sorrendben sorra kipróbálja és ha megoldást talál q_i -ben leáll éppen $L_{\rm PMP}$ -t ismeri fel.

Tétel

 $L_{\mathsf{PMP}} \not\in R$.

Bizonyítás:

Definiáljuk a PMP egy módosított változatát, MPMP-t. Az MPMP probléma igen-példányai olyan (D,d) (dominókészlet,dominó) párok, melyre D-nek van d-vel kezdődő megoldása.

 $L_{\mathsf{MPMP}} = \{ \langle D, d \rangle \, | \, d \in D \, \wedge \, D\text{-nek van } d\text{-vel kezdődő megoldása} \}.$


```
L_{\mathsf{PMP}} = \{\langle D \rangle \, | \, D\text{-nek van megoldása} \}, L_{\mathsf{MPMP}} = \{\langle D, d \rangle \, | \, d \in D \, \land \, D\text{-nek van } d\text{-vel kezdődő megoldása} \}.
```

```
\begin{split} L_{\mathsf{PMP}} &= \{ \langle D \rangle \, | \, D\text{-nek van megoldása} \}, \\ L_{\mathsf{MPMP}} &= \{ \langle D, d \rangle \, | \, d \in D \, \wedge \, D\text{-nek van } d\text{-vel kezdődő megoldása} \}. \end{split}
```

Először megmutatjuk, hogy $L_{\text{MPMP}} \leq L_{\text{PMP}}$.

```
\begin{split} L_{\mathsf{PMP}} &= \{ \langle D \rangle \, | \, D\text{-nek van megoldása} \}, \\ L_{\mathsf{MPMP}} &= \{ \langle D, d \rangle \, | \, d \in D \, \wedge \, D\text{-nek van } d\text{-vel kezdődő megoldása} \}. \\ \mathsf{Elősz\"{o}r megmutatjuk, hogy} \, \mathit{L}_{\mathsf{MPMP}} &\leq \mathit{L}_{\mathsf{PMP}}. \end{split}
```

Jelölés: ha $u=a_1\cdots a_n\in \Sigma^+$ és $*\not\in \Sigma$ akkor legyen balcsillag $(u):=*a_1*a_2\cdots *a_n$

jobbcsillag(u) := $a_1 * a_2 * \cdots * a_n *$. baljobbcsillag(u) := $* a_1 * a_2 * \cdots * a_n *$.

```
\begin{split} L_{\mathsf{PMP}} &= \{ \langle D \rangle \, | \, D\text{-nek van megoldása} \}, \\ L_{\mathsf{MPMP}} &= \{ \langle D, d \rangle \, | \, d \in D \, \wedge \, D\text{-nek van } d\text{-vel kezdődő megoldása} \}. \end{split}
```

Először megmutatjuk, hogy $L_{\text{MPMP}} \leq L_{\text{PMP}}$.

Jelölés: ha $u=a_1\cdots a_n\in \Sigma^+$ és $*\not\in \Sigma$ akkor legyen

balcsillag(u) := $*a_1 * a_2 \cdots * a_n$ jobbcsillag(u) := $a_1 * a_2 * \cdots * a_n *$. baljobbcsillag(u) := $*a_1 * a_2 * \cdots * a_n *$.

Legyen $D=\{d_1,\ldots,d_n\}$ egy tetszőleges dominókészlet, ahol $d_i=\frac{u_i}{v_i}$ $(1\leq i\leq n).$

```
\begin{split} L_{\mathsf{PMP}} &= \{ \langle D \rangle \, | \, D\text{-nek van megoldása} \}, \\ L_{\mathsf{MPMP}} &= \{ \langle D, d \rangle \, | \, d \in D \, \wedge \, D\text{-nek van } d\text{-vel kezdődő megoldása} \}. \end{split}
```

Először megmutatjuk, hogy $L_{\text{MPMP}} \leq L_{\text{PMP}}$.

Jelölés: ha $u=a_1\cdots a_n\in \Sigma^+$ és $*\not\in \Sigma$ akkor legyen

balcsillag(u) := $*a_1 * a_2 \cdots * a_n$ jobbcsillag(u) := $a_1 * a_2 * \cdots * a_n *$. baljobbcsillag(u) := $*a_1 * a_2 * \cdots * a_n *$.

Legyen $D=\{d_1,\ldots,d_n\}$ egy tetszőleges dominókészlet, ahol $d_i=\frac{u_i}{v_i}$ $(1\leq i\leq n).$

D' legyen a következő |D|+2 méretű készlet:

$$\begin{split} L_{\mathsf{PMP}} &= \{ \langle D \rangle \, | \, D\text{-nek van megoldása} \}, \\ L_{\mathsf{MPMP}} &= \{ \langle D, d \rangle \, | \, d \in D \, \wedge \, D\text{-nek van } d\text{-vel kezdődő megoldása} \}. \end{split}$$

Először megmutatjuk, hogy $L_{\text{MPMP}} \leq L_{\text{PMP}}$.

Jelölés: ha $u=a_1\cdots a_n\in \Sigma^+$ és $*\not\in \Sigma$ akkor legyen

balcsillag(u) := $* a_1 * a_2 \cdots * a_n$ jobbcsillag(u) := $a_1 * a_2 * \cdots * a_n *$.

 $\mathsf{baljobbcsillag}(u) := * a_1 * a_2 * \cdots * a_n *.$

Legyen $D=\{d_1,\ldots,d_n\}$ egy tetszőleges dominókészlet, ahol $d_i=\frac{u_i}{v_i}$ $(1\leq i\leq n).$

D' legyen a következő |D| + 2 méretű készlet:

$$d_i' = \frac{\mathsf{balcsillag}(u_i)}{\mathsf{jobbcsillag}(v_i)} \qquad (1 \le i \le n)$$

$$d_0' = \frac{\mathsf{balcsillag}(u_1)}{\mathsf{baljobbcsillag}(v_1)}, \qquad d_{n+1}' = \frac{*\#}{\#}$$

Példa: Ha

$$D = \left\{ \frac{ab}{a}, \quad \frac{c}{bc} \right\},\,$$

akkor

$$D' = \left\{ \frac{* a * b}{* a *}, \quad \frac{* a * b}{a *}, \quad \frac{* c}{b * c *}, \quad \frac{* \#}{\#} \right\}$$

Példa: Ha

$$D = \left\{ \frac{ab}{a}, \quad \frac{c}{bc} \right\},\,$$

akkor

$$D' = \left\{ \frac{* a * b}{* a *}, \quad \frac{* a * b}{a *}, \quad \frac{* c}{b * c *}, \quad \frac{* \#}{\#} \right\}$$

Állítás: $\langle D, d_1 \rangle \in L_{\mathsf{MPMP}} \Longleftrightarrow \langle D' \rangle \in L_{\mathsf{PMP}}.$

Példa: Ha

$$D = \left\{ \frac{ab}{a}, \quad \frac{c}{bc} \right\},\,$$

akkor

$$D' = \left\{ \frac{* a * b}{* a *}, \quad \frac{* a * b}{a *}, \quad \frac{* c}{b * c *}, \quad \frac{* \#}{\#} \right\}$$

Állítás: $\langle D, d_1 \rangle \in L_{\mathsf{MPMP}} \Longleftrightarrow \langle D' \rangle \in L_{\mathsf{PMP}}$.

Az állítás bizonyítása:

Példa: Ha

$$D = \left\{ \frac{ab}{a}, \quad \frac{c}{bc} \right\},\,$$

akkor

$$D' = \left\{ \frac{*a*b}{*a*}, \quad \frac{*a*b}{a*}, \quad \frac{*c}{b*c*}, \quad \frac{*\#}{\#} \right\}$$

Állítás: $\langle D, d_1 \rangle \in L_{\mathsf{MPMP}} \Longleftrightarrow \langle D' \rangle \in L_{\mathsf{PMP}}$.

Az állítás bizonyítása:

▶ ha $d_{i_1} \cdots d_{i_m}$ MPMP egy (D, d_1) bemenetének egy megoldása, akkor $d'_0 d'_{i_2} \cdots d'_{i_m} d'_{n+1}$ megoldása a D' PMP inputnak.

Példa: Ha

$$D = \left\{ \frac{ab}{a}, \quad \frac{c}{bc} \right\},\,$$

akkor

$$D' = \left\{ \frac{*a*b}{*a*}, \quad \frac{*a*b}{a*}, \quad \frac{*c}{b*c*}, \quad \frac{*\#}{\#} \right\}$$

Állítás: $\langle D, d_1 \rangle \in L_{\mathsf{MPMP}} \Longleftrightarrow \langle D' \rangle \in L_{\mathsf{PMP}}.$

Az állítás bizonyítása:

- ▶ ha $d_{i_1} \cdots d_{i_m}$ MPMP egy (D, d_1) bemenetének egy megoldása, akkor $d'_0 d'_{i_2} \cdots d'_{i_m} d'_{n+1}$ megoldása a D' PMP inputnak.
- ha $d'_{i_1} \cdots d'_{i_m}$ D'-nek, mint PMP inputnak egy megoldása, akkor az első illetve az utolsó betű egyezése miatt ez csak úgy lehetséges, hogy $d'_{i_1} = d'_0$ és $d'_{i_m} = d'_{n+1}$. Ekkor viszont $d_{i_1} \cdots d_{i_{m-1}}$ megoldása a (D, d_1) MPMP bemenetnek.

Példa: Ha

$$D = \left\{ \frac{ab}{a}, \ \frac{c}{bc} \right\},\,$$

akkor

$$D' = \left\{ \frac{*a*b}{*a*}, \quad \frac{*a*b}{a*}, \quad \frac{*c}{b*c*}, \quad \frac{*\#}{\#} \right\}$$

Állítás: $\langle D, d_1 \rangle \in L_{\mathsf{MPMP}} \Longleftrightarrow \langle D' \rangle \in L_{\mathsf{PMP}}.$

Az állítás bizonyítása:

- ▶ ha $d_{i_1} \cdots d_{i_m}$ MPMP egy (D, d_1) bemenetének egy megoldása, akkor $d'_0 d'_{i_2} \cdots d'_{i_m} d'_{n+1}$ megoldása a D' PMP inputnak.
- ha $d'_{i_1} \cdots d'_{i_m}$ D'-nek, mint PMP inputnak egy megoldása, akkor az első illetve az utolsó betű egyezése miatt ez csak úgy lehetséges, hogy $d'_{i_1} = d'_0$ és $d'_{i_m} = d'_{n+1}$. Ekkor viszont $d_{i_1} \cdots d_{i_{m-1}}$ megoldása a (D, d_1) MPMP bemenetnek.

Ezzel az állítást bizonyítottuk. Mivel ez a megfeleltetés nyilván TG-pel kiszámítható, ezért $L_{\text{MPMP}} \leq L_{\text{PMP}}$.

Most megmutatjuk, hogy $L_u \leq L_{MPMP}$.

Most megmutatjuk, hogy $L_u \leq L_{MPMP}$.

Minden $\langle M, w \rangle$ (TG, szó) párhoz megadunk egy $\langle D, d \rangle$ (dominókészlet, kezdődominó) párt, úgy hogy

Most megmutatjuk, hogy $L_u \leq L_{\text{MPMP}}$. Minden $\langle M, w \rangle$ (TG, szó) párhoz megadunk egy $\langle D, d \rangle$ (dominókészlet, kezdődominó) párt, úgy hogy

 $w \in L(M) \Longleftrightarrow D$ -nek van d-vel kezdődő megoldása.

Most megmutatjuk, hogy $L_u \leq L_{MPMP}$.

Minden $\langle M, w \rangle$ (TG, szó) párhoz megadunk egy $\langle D, d \rangle$ (dominókészlet, kezdődominó) párt, úgy hogy

 $w \in L(M) \Longleftrightarrow D$ -nek van d-vel kezdődő megoldása.

Legyen $M = (Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n)$ és $w = a_1 \cdots a_n \in \Sigma^*$. (D, d) konstrukciója:

• $d:=\frac{\#}{\#q_0a_1\cdots a_n\#}$ (ahol $\#\not\in\Sigma$) $d:\in D$

Most megmutatjuk, hogy $L_u \leq L_{MPMP}$.

Minden $\langle M, w \rangle$ (TG, szó) párhoz megadunk egy $\langle D, d \rangle$ (dominókészlet, kezdődominó) párt, úgy hogy

 $w \in L(M) \Longleftrightarrow D$ -nek van d-vel kezdődő megoldása.

- $d:=\frac{\#}{\#q_0a_1\cdots a_n\#}$ (ahol $\#\not\in\Sigma$) $d:\in D$
- - ha $\delta(p,a) = (q,b,R)$, akkor $\frac{pa}{ba} :\in D$
 - ha $\delta(p,a) = (q,b,L)$, akkor $(\forall c \in \Gamma :)$ $\frac{cpa}{acb} :\in D$
 - ha $\delta(p,a)=(q,b,S)$, akkor $\frac{pa}{qb}:\in D$

Most megmutatjuk, hogy $L_u \leq L_{MPMP}$.

Minden $\langle M, w \rangle$ (TG, szó) párhoz megadunk egy $\langle D, d \rangle$ (dominókészlet, kezdődominó) párt, úgy hogy

 $w \in L(M) \Longleftrightarrow D$ -nek van d-vel kezdődő megoldása.

- $d:=\frac{\#}{\#q_0a_1\cdots a_n\#}$ (ahol $\#\not\in\Sigma$) $d:\in D$
- – ha $\delta(p,a)=(q,b,R)$, akkor $\frac{pa}{bq}:\in D$ – ha $\delta(p,a)=(q,b,L)$, akkor $(\forall c\in\Gamma:)\frac{cpa}{ach}:\in D$
 - ha $\delta(p,a)=(q,b,S)$, akkor $rac{pa}{qb}:\in D$
- $(\forall a \in \Gamma :) \frac{a}{a} :\in D$

Most megmutatjuk, hogy $L_u \leq L_{MPMP}$.

Minden $\langle M, w \rangle$ (TG, szó) párhoz megadunk egy $\langle D, d \rangle$ (dominókészlet, kezdődominó) párt, úgy hogy

 $w \in L(M) \Longleftrightarrow D$ -nek van d-vel kezdődő megoldása.

- $d:=\frac{\#}{\#q_0a_1\cdots a_n\#}$ (ahol $\#\not\in\Sigma$) $d:\in D$
- – ha $\delta(p,a)=(q,b,R)$, akkor $\frac{pa}{bq}:\in D$
 - ha $\delta(p, a) = (q, b, L)$, akkor $(\forall c \in \Gamma :) \frac{cpa}{qcb} :\in D$
 - ha $\delta(p,a)=(q,b,S)$, akkor $\frac{pa}{qb}:\in D$
- $(\forall a \in \Gamma :) \frac{a}{a} :\in D$
- $\frac{\#}{\#}$, $\frac{\#}{\sqcup \#}$, $\frac{\#}{\# \sqcup}$: $\in D$

Most megmutatjuk, hogy $L_u \leq L_{MPMP}$.

Minden $\langle M, w \rangle$ (TG, szó) párhoz megadunk egy $\langle D, d \rangle$ (dominókészlet, kezdődominó) párt, úgy hogy

 $w \in L(M) \Longleftrightarrow D$ -nek van d-vel kezdődő megoldása.

- $d:=\frac{\#}{\#q_0a_1\cdots a_n\#}$ (ahol $\#\not\in\Sigma$) $d:\in D$
- – ha $\delta(p,a)=(q,b,R)$, akkor $\frac{pa}{ba}:\in D$
 - ha $\delta(p, a) = (q, b, L)$, akkor (∀c ∈ Γ:) $\frac{cpa}{qcb}$:∈ D
 - ha $\delta(p,a)=(q,b,S)$, akkor $\frac{pa}{qb}:\in D$
- $(\forall a \in \Gamma :) \frac{a}{a} :\in D$
- $\frac{\#}{\#}$, $\frac{\#}{\sqcup \#}$, $\frac{\#}{\# \sqcup}$: $\in D$
- $(\forall a \in \Gamma :) \frac{aq_i}{q_i}, \frac{q_i a}{q_i} :\in D$

Most megmutatjuk, hogy $L_u \leq L_{MPMP}$.

Minden $\langle M, w \rangle$ (TG, szó) párhoz megadunk egy $\langle D, d \rangle$ (dominókészlet, kezdődominó) párt, úgy hogy

 $w \in L(M) \Longleftrightarrow D$ -nek van d-vel kezdődő megoldása.

- $d:=\frac{\#}{\#q_0a_1\cdots a_n\#}$ (ahol $\#\not\in\Sigma$) $d:\in D$
- - ha $\delta(p, a) = (q, b, R)$, akkor $\frac{pa}{ba} :\in D$
 - ha $\delta(p, a) = (q, b, L)$, akkor (∀c ∈ Γ:) $\frac{cpa}{qcb}$:∈ D
 - ha $\delta(p,a)=(q,b,S)$, akkor $\frac{pa}{qb}:\in D$
- $(\forall a \in \Gamma :) \frac{a}{a} :\in D$
- $\frac{\#}{\#}$, $\frac{\#}{\sqcup \#}$, $\frac{\#}{\# \sqcup}$: $\in D$
- $(\forall a \in \Gamma :) \frac{aq_i}{q_i}, \frac{q_i a}{q_i} :\in D$
- $\frac{q_i \# \#}{\#} :\in D$.

Példa:

Példa:

Ha M-nek $\delta(q_0, b) = (q_2, a, R)$ és $\delta(q_2, a) = (q_i, b, S)$ átmenetei, akkor $q_0bab \vdash aq_2ab \vdash aq_ibb$ egy bab-ot elfogadó konfigurációátmenet.

Példa:

Ha M-nek $\delta(q_0,b)=(q_2,a,R)$ és $\delta(q_2,a)=(q_i,b,S)$ átmenetei, akkor $q_0bab\vdash aq_2ab\vdash aq_ibb$ egy bab-ot elfogadó konfigurációátmenet.

Az $\langle M, bab \rangle$ -hoz tartozó dominókészlet tartalmazza többek között a $\frac{\#}{\#q_0bab\#}$ kezdő-,

Példa:

Ha M-nek $\delta(q_0,b)=(q_2,a,R)$ és $\delta(q_2,a)=(q_i,b,S)$ átmenetei, akkor $q_0bab\vdash aq_2ab\vdash aq_ibb$ egy bab-ot elfogadó konfigurációátmenet.

Az $\langle M,bab \rangle$ -hoz tartozó dominókészlet tartalmazza többek között a $\frac{\#}{\#q_0bab\#}$ kezdő-, $\frac{q_0b}{aq_2}$ és $\frac{q_2a}{q_ib}$ átmenet- ,

Példa:

Ha M-nek $\delta(q_0,b)=(q_2,a,R)$ és $\delta(q_2,a)=(q_i,b,S)$ átmenetei, akkor $q_0bab\vdash aq_2ab\vdash aq_ibb$ egy bab-ot elfogadó konfigurációátmenet.

Az $\langle M,bab \rangle$ -hoz tartozó dominókészlet tartalmazza többek között a $\frac{\#}{\#q_0bab\#}$ kezdő-, $\frac{q_0b}{aq_2}$ és $\frac{q_2a}{q_ib}$ átmenet- , $\frac{a}{a}$, $\frac{b}{b}$, $\stackrel{\sqcup}{\sqcup}$ és $\frac{\#}{\#}$ identikus dominókat

Példa:

Ha M-nek $\delta(q_0,b)=(q_2,a,R)$ és $\delta(q_2,a)=(q_i,b,S)$ átmenetei, akkor $q_0bab\vdash aq_2ab\vdash aq_ibb$ egy bab-ot elfogadó konfigurációátmenet.

Az $\langle M, bab \rangle$ -hoz tartozó dominókészlet tartalmazza többek között a

 $\frac{\#}{\#q_0bab\#}$ kezdő-, $\frac{q_0b}{aq_2}$ és $\frac{q_2a}{q_ib}$ átmenet- , $\frac{a}{a}$, $\frac{b}{b}$, $\stackrel{\square}{\sqcup}$ és $\frac{\#}{\#}$ identikus dominókat valamint a befejezéshez szükséges $\frac{aq_i}{q_i}$, $\frac{q_ib}{q_i}$ és $\frac{q_i\#\#}{\#}$ dominókat.

Példa:

Ha M-nek $\delta(q_0,b)=(q_2,a,R)$ és $\delta(q_2,a)=(q_i,b,S)$ átmenetei, akkor $q_0bab\vdash aq_2ab\vdash aq_ibb$ egy bab-ot elfogadó konfigurációátmenet.

Az $\langle M, bab \rangle$ -hoz tartozó dominókészlet tartalmazza többek között a

 $\frac{\#}{\#q_0bab\#}$ kezdő-, $\frac{q_0b}{aq_2}$ és $\frac{q_2a}{q_ib}$ átmenet- , $\frac{a}{a}$, $\frac{b}{b}$, $\stackrel{\square}{\sqcup}$ és $\frac{\#}{\#}$ identikus dominókat valamint a befejezéshez szükséges $\frac{aq_i}{q_i}$, $\frac{q_ib}{q_i}$ és $\frac{q_i\#\#}{\#}$ dominókat.

Ekkor egy kirakás (|-al blokkokra osztva):

Példa:

Ha M-nek $\delta(q_0,b)=(q_2,a,R)$ és $\delta(q_2,a)=(q_i,b,S)$ átmenetei, akkor $q_0bab\vdash aq_2ab\vdash aq_ibb$ egy bab-ot elfogadó konfigurációátmenet.

Az $\langle M, bab \rangle$ -hoz tartozó dominókészlet tartalmazza többek között a

 $\frac{\#}{\#q_0bab\#}$ kezdő-, $\frac{q_0b}{aq_2}$ és $\frac{q_2a}{q_ib}$ átmenet- , $\frac{a}{a}$, $\frac{b}{b}$, $\stackrel{\square}{\sqcup}$ és $\frac{\#}{\#}$ identikus dominókat valamint a befejezéshez szükséges $\frac{aq_i}{q_i}$, $\frac{q_ib}{q_i}$ és $\frac{q_i\#\#}{\#}$ dominókat.

Ekkor egy kirakás (|-al blokkokra osztva):

$$\frac{\#}{\#q_0bab\#} \left| \begin{array}{c} q_0b \ \underline{a} \ \underline{b} \ \# \\ aq_2 \ \underline{a} \ \underline{b} \ \# \end{array} \right| \left| \begin{array}{c} \underline{aq_i} \ \underline{b} \ \underline{b} \ \# \\ q_i \ \underline{b} \ \underline{b} \ \# \end{array} \right| \left| \begin{array}{c} \underline{q_ib} \ \underline{b} \ \# \\ q_i \ \underline{b} \ \# \end{array} \right| \left| \begin{array}{c} \underline{q_ib} \ \underline{b} \ \# \\ q_i \ \underline{b} \ \# \end{array} \right| \left| \begin{array}{c} \underline{q_ib} \ \underline{\#} \\ \end{array} \right| \left| \begin{array}{c} \underline{q_ib} \ \underline{\#} \end{array} \right|$$

$$\frac{\#}{\#q_0bab\#} \left| \begin{array}{c} \frac{q_0b}{aq_2} \frac{a}{a} \frac{b}{b} \# \\ aq_2 \end{array} \right| \left| \begin{array}{c} \frac{a}{a} q_2a}{q_ib} \frac{b}{b} \# \\ \end{array} \right| \left| \begin{array}{c} \frac{aq_i}{q_i} \frac{b}{b} \frac{b}{b} \# \\ \end{array} \right| \left| \begin{array}{c} q_ib}{q_i} \frac{b}{b} \# \\ \end{array} \right| \left| \begin{array}{c} q_ib}{q_i} \# \\ \end{array} \right| \left| \begin{array}{c} q_i\#\# \\ \# \end{array} \right|$$

A fenti példán szemléltetjük, hogy $w \in L(M) \iff D$ -nek van d-vel kezdődő megoldása.

$$\frac{\#}{\#q_0bab\#} \left| \begin{array}{c} \frac{q_0b}{aq_2} \frac{a}{a} \frac{b}{b} \# \\ aq_2 \end{array} \right| \left| \begin{array}{c} \frac{a}{a} q_2a}{q_ib} \frac{b}{b} \# \\ \end{array} \right| \left| \begin{array}{c} \frac{aq_i}{q_i} \frac{b}{b} \frac{b}{b} \# \\ \end{array} \right| \left| \begin{array}{c} q_ib}{q_i} \frac{b}{b} \# \\ \end{array} \right| \left| \begin{array}{c} q_ib}{q_i} \# \\ \end{array} \right| \left| \begin{array}{c} q_i\#\# \\ \# \end{array} \right|$$

A fenti példán szemléltetjük, hogy $w \in L(M) \iff D$ -nek van d-vel kezdődő megoldása.

Az első blokk csak a $d=\frac{\#}{\#q_0bab\#}$ kezdődominóból áll.

$$\frac{\#}{\#q_0bab\#} \left| \begin{array}{c} q_0b \ a \ b \ \# \\ aq_2 \ a \ b \ \# \end{array} \right| \left| \begin{array}{c} a \ q_2a \ b \ \# \\ a \ q_ib \ b \ \# \end{array} \right| \left| \begin{array}{c} aq_i \ b \ b \ \# \\ q_i \ b \ b \ \# \end{array} \right| \left| \begin{array}{c} q_ib \ b \ \# \\ q_i \ b \ \# \end{array} \right| \left| \begin{array}{c} q_ib \ \# \\ q_i \ \# \end{array} \right| \left| \begin{array}{c} q_i\#\# \\ \# \end{array} \right|$$

A fenti példán szemléltetjük, hogy $w \in L(M) \iff D$ -nek van d-vel kezdődő megoldása.

Az első blokk csak a $d=\frac{\#}{\#q_0bab\#}$ kezdődominóból áll.

A következő két blokkban alul és felül is konfigurációk következnek, felül mindig eggyel "lemaradva".

$$\frac{\#}{\#q_0bab\#} \left| \begin{array}{c} q_0b \ a \ b \ \# \\ aq_2 \ a \ b \ \# \end{array} \right| \left| \begin{array}{c} a \ q_2a \ b \ \# \\ a \ q_ib \ b \ \# \end{array} \right| \left| \begin{array}{c} aq_i \ b \ b \\ q_i \ b \ b \ \# \end{array} \right| \left| \begin{array}{c} q_ib \ b \\ q_i \ b \ \# \end{array} \right| \left| \begin{array}{c} q_ib \ \# \\ q_i \ \# \end{array} \right| \left| \begin{array}{c} q_i\#\# \\ \# \end{array} \right|$$

A fenti példán szemléltetjük, hogy $w \in L(M) \iff D$ -nek van d-vel kezdődő megoldása.

Az első blokk csak a $d=\frac{\#}{\#q_0bab\#}$ kezdődominóból áll.

A következő két blokkban alul és felül is konfigurációk következnek, felül mindig eggyel "lemaradva".

A 4.-6. blokkokban a $\frac{aq_i}{q_i}$ (és $\frac{q_i a}{q_i}$) típusú dominókkal egyesével behozható a felső szó lemaradása, egészen addig, amíg az alsó rész már csak $q_i\#$ -al hosszabb.

$$\frac{\#}{\#q_0bab\#} \left| \begin{array}{c} q_0b \ a \ b \ \# \\ aq_2 \ a \ b \ \# \end{array} \right| \left| \begin{array}{c} a \ q_2a \ b \ \# \\ a \ q_ib \ b \ \# \end{array} \right| \left| \begin{array}{c} aq_i \ b \ b \\ q_i \ b \ b \ \# \end{array} \right| \left| \begin{array}{c} q_ib \ b \\ q_i \ b \ \# \end{array} \right| \left| \begin{array}{c} q_ib \ \# \\ q_i \ \# \end{array} \right| \left| \begin{array}{c} q_i\#\# \\ \# \end{array} \right|$$

A fenti példán szemléltetjük, hogy $w \in L(M) \iff D$ -nek van d-vel kezdődő megoldása.

Az első blokk csak a $d=\frac{\#}{\#q_0bab\#}$ kezdődominóból áll.

A következő két blokkban alul és felül is konfigurációk következnek, felül mindig eggyel "lemaradva".

A 4.-6. blokkokban a $\frac{aq_i}{q_i}$ (és $\frac{q_ia}{q_i}$) típusú dominókkal egyesével behozható a felső szó lemaradása, egészen addig, amíg az alsó rész már csak $q_i\#$ -al hosszabb.

Végül a 7. blokkban csak egy (záró)dominó szerepel, melynek az a szerepe, hogy behozza a még megmaradt lemaradást.

A fenti példa alapján meg lehet általános esetben is konstruálni egy megoldást, így $w \in L(M) \Rightarrow \text{van } \langle D, d \rangle$ -nak megoldása.

A fenti példa alapján meg lehet általános esetben is konstruálni egy megoldást, így $w \in L(M) \Rightarrow \text{van } \langle D, d \rangle$ -nak megoldása.

Másrészt ha van d-vel kezdődő megoldás, akkor ez a dominósorozat két szavának hosszára vonatkozó megfontolások alapján csak q_i -t tartalmazó dominók használatával lehetséges. Meggondolható, hogy minden kirakás alsó szava az első q_i -t követő #-ig egy #-ekkel elválasztott elfogadó konfigurációátmenet sorozata kell legyen. és így a w szóhoz tartozó kezdőkonfigurációból el lehet jutni elfogadó konfigurációba, azaz $w \in L(M)$.

A fenti példa alapján meg lehet általános esetben is konstruálni egy megoldást, így $w \in L(M) \Rightarrow \text{van } \langle D, d \rangle$ -nak megoldása.

Másrészt ha van d-vel kezdődő megoldás, akkor ez a dominósorozat két szavának hosszára vonatkozó megfontolások alapján csak q_i -t tartalmazó dominók használatával lehetséges. Meggondolható, hogy minden kirakás alsó szava az első q_i -t követő #-ig egy #-ekkel elválasztott elfogadó konfigurációátmenet sorozata kell legyen. és így a w szóhoz tartozó kezdőkonfigurációból el lehet jutni elfogadó konfigurációba, azaz $w \in L(M)$.

Nyilván $\langle D,d\rangle$ $\langle M,w\rangle$ -ből TG-pel kiszámítható, így beláttuk, hogy $L_u \leq L_{\text{MPMP}}.$

A fenti példa alapján meg lehet általános esetben is konstruálni egy megoldást, így $w \in L(M) \Rightarrow \text{van } \langle D, d \rangle$ -nak megoldása.

Másrészt ha van d-vel kezdődő megoldás, akkor ez a dominósorozat két szavának hosszára vonatkozó megfontolások alapján csak q_i -t tartalmazó dominók használatával lehetséges. Meggondolható, hogy minden kirakás alsó szava az első q_i -t követő #-ig egy #-ekkel elválasztott elfogadó konfigurációátmenet sorozata kell legyen. és így a w szóhoz tartozó kezdőkonfigurációból el lehet jutni elfogadó konfigurációba, azaz $w \in L(M)$.

Nyilván $\langle D, d \rangle$ $\langle M, w \rangle$ -ből TG-pel kiszámítható, így beláttuk, hogy $L_u \leq L_{\text{MPMP}}$.

Innen a tétel bizonyítása: $L_u \leq L_{\text{MPMP}}$, $L_{\text{MPMP}} \leq L_{\text{PMP}}$ és tudjuk már, hogy $L_u \not\in R$. Ebből a visszavezetés tranzitivitása és korábbi tételünk alapján $L_{\text{PMP}} \not\in R$.

(Volt:) Egy G környezetfüggetlen (CF, 2-es típusú) grammatikát **egyértelműnek** neveztünk, ha minden L(G)-beli szónak pontosan egy baloldali levezetése van G-ben. (Baloldali levezetés: mindig a legbaloldalibb nemterminálist írjuk át a mondatformában.)

 $L_{\mathsf{ECF}} := \{ \langle G \rangle \mid G \text{ egyértelmű CF grammatika} \}.$

(Volt:) Egy G környezetfüggetlen (CF, 2-es típusú) grammatikát **egyértelműnek** neveztünk, ha minden L(G)-beli szónak pontosan egy baloldali levezetése van G-ben. (Baloldali levezetés: mindig a legbaloldalibb nemterminálist írjuk át a mondatformában.)

 $L_{\mathsf{ECF}} := \{ \langle G \rangle \mid G \text{ egyértelmű CF grammatika} \}.$

Tétel

 $L_{\mathsf{ECF}} \notin R$

Bizonyítás: Megmutatjuk, hogy $L_{PMP} \leq \overline{L_{ECF}}$.

(Volt:) Egy G környezetfüggetlen (CF, 2-es típusú) grammatikát **egyértelműnek** neveztünk, ha minden L(G)-beli szónak pontosan egy baloldali levezetése van G-ben. (Baloldali levezetés: mindig a legbaloldalibb nemterminálist írjuk át a mondatformában.)

 $L_{\mathsf{ECF}} := \{ \langle G \rangle \mid G \text{ egyértelmű CF grammatika} \}.$

Tétel

 $L_{\mathsf{FCF}} \not\in R$

Bizonyítás: Megmutatjuk, hogy $L_{PMP} \leq L_{ECF}$.

Legyen $D = \left\{\frac{u_1}{v_1}, \dots, \frac{u_n}{v_n}\right\}$ egy tetszőleges dominókészlet a Σ ábécé felett.

(Volt:) Egy G környezetfüggetlen (CF, 2-es típusú) grammatikát egyértelműnek neveztünk, ha minden L(G)-beli szónak pontosan egy baloldali levezetése van G-ben. (Baloldali levezetés: mindig a legbaloldalibb nemterminálist írjuk át a mondatformában.)

 $L_{\mathsf{FCF}} := \{ \langle G \rangle \mid G \text{ egyértelmű CF grammatika} \}.$

Tétel

 $L_{\mathsf{FCF}} \notin R$

Bizonyítás: Megmutatjuk, hogy $L_{PMP} < L_{FCF}$.

Legyen $D = \left\{ \frac{u_1}{v_1}, \dots, \frac{u_n}{v_n} \right\}$ egy tetszőleges dominókészlet a Σ ábécé felett.

$$\Delta := \{a_1, \ldots, a_n\}$$
 úgy, hogy $\Sigma \cap \Delta = \emptyset$.

$$P_A := \{A \to u_1 A a_1, \dots, A \to u_n A a_n, A \to \varepsilon\}.$$

$$P_B:=\big\{B\to v_1Ba_1,\ldots,B\to v_nBa_n,\,B\to\varepsilon\big\}.$$

$$G_A = \langle A, \{A\}, \Sigma \cup \Delta, P_A \rangle. \ G_B = \langle B, \{B\}, \Sigma \cup \Delta, P_B \rangle.$$

$$G_D = \langle S, \{S, A, B\}, \Sigma \cup \Delta, \{S \to A, S \to B\} \cup P_A \cup P_B \rangle.$$

$$\begin{aligned} G_A &= \langle A, \{A\}, \Sigma \cup \Delta, P_A \rangle. \ \ G_B &= \langle B, \{B\}, \Sigma \cup \Delta, P_B \rangle. \\ G_D &= \langle S, \{S, A, B\}, \Sigma \cup \Delta, \{S \rightarrow A, S \rightarrow B\} \cup P_A \cup P_B \rangle. \\ f &: \langle D \rangle \rightarrow \langle G_D \rangle \text{ visszavezetés, mert:} \end{aligned}$$

$$G_A = \langle A, \{A\}, \Sigma \cup \Delta, P_A \rangle. \ G_B = \langle B, \{B\}, \Sigma \cup \Delta, P_B \rangle.$$

$$G_D = \langle S, \{S, A, B\}, \Sigma \cup \Delta, \{S \to A, S \to B\} \cup P_A \cup P_B \rangle.$$

 $f: \langle D \rangle \rightarrow \langle G_D \rangle$ visszavezetés, mert:

▶ ha $\frac{u_{i_1}}{v_{i_1}}\cdots \frac{u_{i_m}}{v_{i_m}}$ megoldása D-nek, akkor $u_{i_1}\cdots u_{i_m}=v_{i_1}\cdots v_{i_m}$.

$$G_A = \langle A, \{A\}, \Sigma \cup \Delta, P_A \rangle. \ G_B = \langle B, \{B\}, \Sigma \cup \Delta, P_B \rangle.$$

$$G_D = \langle S, \{S, A, B\}, \Sigma \cup \Delta, \{S \rightarrow A, S \rightarrow B\} \cup P_A \cup P_B \rangle.$$

$$f : \langle D \rangle \rightarrow \langle G_D \rangle \text{ visszavezetés, mert:}$$

ha $\frac{u_{i_1}}{v_{i_1}}\cdots \frac{u_{i_m}}{v_{i_m}}$ megoldása D-nek, akkor $u_{i_1}\cdots u_{i_m}=v_{i_1}\cdots v_{i_m}$. De ekkor $u_{i_1}\cdots u_{i_m}a_{i_m}\cdots a_{i_1}=v_{i_1}\cdots v_{i_m}a_{i_m}\cdots a_{i_1}$ kétféleképpen is levezethető, így G_D nem egyértelmű.

$$G_A = \langle A, \{A\}, \Sigma \cup \Delta, P_A \rangle.$$
 $G_B = \langle B, \{B\}, \Sigma \cup \Delta, P_B \rangle.$ $G_D = \langle S, \{S, A, B\}, \Sigma \cup \Delta, \{S \rightarrow A, S \rightarrow B\} \cup P_A \cup P_B \rangle.$ $f : \langle D \rangle \rightarrow \langle G_D \rangle$ visszavezetés, mert:

- ha $\frac{u_{i_1}}{v_{i_1}} \cdots \frac{u_{i_m}}{v_{i_m}}$ megoldása D-nek, akkor $u_{i_1} \cdots u_{i_m} = v_{i_1} \cdots v_{i_m}$. De ekkor $u_{i_1} \cdots u_{i_m} a_{i_m} \cdots a_{i_1} = v_{i_1} \cdots v_{i_m} a_{i_m} \cdots a_{i_1}$ kétféleképpen is levezethető, így G_D nem egyértelmű.
- ▶ ha G_D nem egyértelmű, akkor van olyan szó, aminek két baloldali levezetése van. De ezek $S \to A$ -val illetve $S \to B$ -vel kell kezdődjenek, hiszen G_A és G_B egyértelmű.

$$G_A = \langle A, \{A\}, \Sigma \cup \Delta, P_A \rangle.$$
 $G_B = \langle B, \{B\}, \Sigma \cup \Delta, P_B \rangle.$ $G_D = \langle S, \{S, A, B\}, \Sigma \cup \Delta, \{S \rightarrow A, S \rightarrow B\} \cup P_A \cup P_B \rangle.$ $f : \langle D \rangle \rightarrow \langle G_D \rangle$ visszavezetés, mert:

- ha $\frac{u_{i_1}}{v_{i_1}} \cdots \frac{u_{i_m}}{v_{i_m}}$ megoldása D-nek, akkor $u_{i_1} \cdots u_{i_m} = v_{i_1} \cdots v_{i_m}$. De ekkor $u_{i_1} \cdots u_{i_m} a_{i_m} \cdots a_{i_1} = v_{i_1} \cdots v_{i_m} a_{i_m} \cdots a_{i_1}$ kétféleképpen is levezethető, így G_D nem egyértelmű.
- ▶ ha G_D nem egyértelmű, akkor van olyan szó, aminek két baloldali levezetése van. De ezek $S \to A$ -val illetve $S \to B$ -vel kell kezdődjenek, hiszen G_A és G_B egyértelmű. A generált szavak xy, $x \in \Sigma^*$, $y \in \Delta^*$ alakúak, így ugyanaz a generált Σ feletti prefix is. Így a két levezetés D egy megoldását adja.

$$G_A = \langle A, \{A\}, \Sigma \cup \Delta, P_A \rangle. \ G_B = \langle B, \{B\}, \Sigma \cup \Delta, P_B \rangle.$$

$$G_D = \langle S, \{S, A, B\}, \Sigma \cup \Delta, \{S \to A, S \to B\} \cup P_A \cup P_B \rangle.$$

- $f:\langle D\rangle \to \langle G_D\rangle$ visszavezetés, mert:
 - ha $\frac{u_{i_1}}{v_{i_1}} \cdots \frac{u_{i_m}}{v_{i_m}}$ megoldása D-nek, akkor $u_{i_1} \cdots u_{i_m} = v_{i_1} \cdots v_{i_m}$. De ekkor $u_{i_1} \cdots u_{i_m} a_{i_m} \cdots a_{i_1} = v_{i_1} \cdots v_{i_m} a_{i_m} \cdots a_{i_1}$ kétféleképpen is levezethető, így G_D nem egyértelmű.
 - ▶ ha G_D nem egyértelmű, akkor van olyan szó, aminek két baloldali levezetése van. De ezek $S \to A$ -val illetve $S \to B$ -vel kell kezdődjenek, hiszen G_A és G_B egyértelmű. A generált szavak xy, $x \in \Sigma^*$, $y \in \Delta^*$ alakúak, így ugyanaz a generált Σ feletti prefix is. Így a két levezetés D egy megoldását adja.

f nyilván TG-pel kiszámítható. Mivel $L_{\text{PMP}} \notin R$, következik, hogy $\overline{L_{\text{ECF}}} \notin R$, amiből kapjuk, hogy $L_{\text{ECF}} \notin R$.

Lemma

Az előző tétel bizonyításában definiált G_A és G_B grammatikák esetén $\overline{L(G_A)}$ és $\overline{L(G_B)}$ környezetfüggetlen.

Lemma

Az előző tétel bizonyításában definiált G_A és G_B grammatikák esetén $\overline{L(G_A)}$ és $\overline{L(G_B)}$ környezetfüggetlen.

Bizonyítás: Az állítás nem nyilvánvaló, mivel a környezetfüggetlen nyelvek nem zártak a komplementer képzésre.

Lemma

Az előző tétel bizonyításában definiált G_A és G_B grammatikák esetén $\overline{L(G_A)}$ és $\overline{L(G_B)}$ környezetfüggetlen.

Bizonyítás: Az állítás nem nyilvánvaló, mivel a környezetfüggetlen nyelvek nem zártak a komplementer képzésre. Elég G_A -ra belátni az állítást, G_B -re ugyanígy bizonyítható.

Lemma

Az előző tétel bizonyításában definiált G_A és G_B grammatikák esetén $\overline{L(G_A)}$ és $\overline{L(G_B)}$ környezetfüggetlen.

Bizonyítás: Az állítás nem nyilvánvaló, mivel a környezetfüggetlen nyelvek nem zártak a komplementer képzésre. Elég G_A -ra belátni az állítást, G_B -re ugyanígy bizonyítható.

Legyen $n_i := |u_i| \ (1 \le i \le |D|)$. $L(G_A)$ -hoz adható determinisztikus veremautomata.

Lemma

Az előző tétel bizonyításában definiált G_A és G_B grammatikák esetén $\overline{L(G_A)}$ és $\overline{L(G_B)}$ környezetfüggetlen.

Bizonyítás: Az állítás nem nyilvánvaló, mivel a környezetfüggetlen nyelvek nem zártak a komplementer képzésre. Elég G_A -ra belátni az állítást, G_B -re ugyanígy bizonyítható.

Legyen $n_i := |u_i| \ (1 \le i \le |D|)$. $L(G_A)$ -hoz adható determinisztikus veremautomata.

Ötlet: Amíg Σ -beli betűk jönnek az inputon pakoljuk őket bele a verembe. Ha $a_i \in \Delta$ -beli betű jön, akkor próbáljuk meg kivenni u_i^{-1} -et a veremből.

Lemma

Az előző tétel bizonyításában definiált G_A és G_B grammatikák esetén $\overline{L(G_A)}$ és $\overline{L(G_B)}$ környezetfüggetlen.

Bizonyítás: Az állítás nem nyilvánvaló, mivel a környezetfüggetlen nyelvek nem zártak a komplementer képzésre. Elég G_A -ra belátni az állítást, G_B -re ugyanígy bizonyítható.

Legyen $n_i := |u_i| \ (1 \le i \le |D|)$. $L(G_A)$ -hoz adható determinisztikus veremautomata.

Ötlet: Amíg Σ -beli betűk jönnek az inputon pakoljuk őket bele a verembe. Ha $a_i \in \Delta$ -beli betű jön, akkor próbáljuk meg kivenni u_i^{-1} -et a veremből. Megvalósítás:

$$A = \langle \Sigma \cup \{\#\}, Q, T, \delta, q_0, \#, \{s\} \rangle$$
, ahol

$$Q = \{q_0, r, s\} \cup \bigcup_{i=1}^{|D|} \{q_{i1}, \dots, q_{i(n_i-1)}\}$$

```
és M_\delta: \#q_0t	o\#t tq_0 \quad (t\in\Sigma)
```

```
és M_\delta: \#q_0t	o \#tq_0 \quad (t\in\Sigma) t_1q_0t_2	o t_1t_2q_0 \quad (t_1,t_2\in\Sigma)
```

```
és M_δ:

\#q_0t → \#tq_0 (t ∈ Σ)

t_1q_0t_2 → t_1t_2q_0 (t_1, t_2 ∈ Σ)

t_{n_i}xa_i → q_{i(n_i-1)} (1 ≤ i ≤ |D|, x ∈ \{q_0, r\}, u_i = t_1 \cdots t_{n_i}, n_i ≥ 2)
```

```
és M_δ:

\#q_0t → \#tq_0 (t ∈ Σ)

t_1q_0t_2 → t_1t_2q_0 (t_1, t_2 ∈ Σ)

t_{n_i}xa_i → q_{i(n_i-1)} (1 ≤ i ≤ |D|, x ∈ \{q_0, r\}, u_i = t_1 · · · t_{n_i}, n_i ≥ 2)

t_iq_{ij} → q_{i(i-1)} (1 ≤ i ≤ |D|, 2 ≤ j ≤ n_i-1, u_i = t_1 · · · t_{n_i}, n_i ≥ 2)
```

```
és M_δ:

\#q_0t → \#tq_0  (t ∈ Σ)

t_1q_0t_2 → t_1t_2q_0  (t_1, t_2 ∈ Σ)

t_{n_i}xa_i → q_{i(n_i-1)}  (1 ≤ i ≤ |D|, x ∈ \{q_0, r\}, u_i = t_1 ··· t_{n_i}, n_i ≥ 2)

t_jq_{ij} → q_{i(j-1)}  (1 ≤ i ≤ |D|, 2 ≤ j ≤ n_i-1, u_i = t_1 ··· t_{n_i}, n_i ≥ 2)

t_1q_{i1} → r  (1 ≤ i ≤ |D|, u_i = t_1 ··· t_{n_i}, n_i ≥ 2)
```

```
és M_δ:

\#q_0t \to \#tq_0  (t ∈ Σ)

t_1q_0t_2 \to t_1t_2q_0  (t_1, t_2 ∈ Σ)

t_{n_i}xa_i \to q_{i(n_i-1)}  (1 ≤ i ≤ |D|, x ∈ \{q_0, r\}, u_i = t_1 \cdots t_{n_i}, n_i ≥ 2)

t_jq_{ij} \to q_{i(j-1)}  (1 ≤ i ≤ |D|, 2 ≤ j ≤ n_i-1, u_i = t_1 \cdots t_{n_i}, n_i ≥ 2)

t_1q_{i1} \to r  (1 ≤ i ≤ |D|, u_i = t_1 \cdots t_{n_i}, n_i ≥ 2)

tra_i \to r  (1 ≤ i ≤ |D|, u_i = t, t ∈ Σ)
```

```
és M_δ:

\#q_0t → \#tq_0  (t ∈ Σ)

t_1q_0t_2 → t_1t_2q_0  (t_1, t_2 ∈ Σ)

t_{n_i}xa_i → q_{i(n_i-1)}  (1 ≤ i ≤ |D|, x ∈ \{q_0, r\}, u_i = t_1 ··· t_{n_i}, n_i ≥ 2)

t_jq_{ij} → q_{i(j-1)}  (1 ≤ i ≤ |D|, 2 ≤ j ≤ n_i-1, u_i = t_1 ··· t_{n_i}, n_i ≥ 2)

t_1q_{i1} → r  (1 ≤ i ≤ |D|, u_i = t_1 ··· t_{n_i}, n_i ≥ 2)

tra_i → r  (1 ≤ i ≤ |D|, u_i = t, t ∈ Σ)

\#r → \#s
```

```
és M_{\delta}:

#q_0t \to \#tq_0  (t ∈ Σ)

t_1q_0t_2 \to t_1t_2q_0  (t_1, t_2 ∈ Σ)

t_{n_i}xa_i \to q_{i(n_i-1)}  (1 ≤ i ≤ |D|, x ∈ \{q_0, r\}, u_i = t_1 \cdots t_{n_i}, n_i ≥ 2)

t_jq_{ij} \to q_{i(j-1)}  (1 ≤ i ≤ |D|, 2 ≤ j ≤ n_i-1, u_i = t_1 \cdots t_{n_i}, n_i ≥ 2)

t_1q_{i1} \to r  (1 ≤ i ≤ |D|, u_i = t_1 \cdots t_{n_i}, n_i ≥ 2)

tra_i \to r  (1 ≤ i ≤ |D|, u_i = t, t ∈ Σ)

#r \to \#s
```

Az veremautomata determinisztikus (teljessé tehető egy zsákutcaállapot és a hiányzó átmenetek hozzávételével.)

```
és M_{\delta}:

#q_0t \to \#tq_0  (t ∈ Σ)

t_1q_0t_2 \to t_1t_2q_0  (t_1, t_2 ∈ Σ)

t_{n_i}xa_i \to q_{i(n_i-1)}  (1 ≤ i ≤ |D|, x ∈ \{q_0, r\}, u_i = t_1 \cdots t_{n_i}, n_i ≥ 2)

t_jq_{ij} \to q_{i(j-1)}  (1 ≤ i ≤ |D|, 2 ≤ j ≤ n_i-1, u_i = t_1 \cdots t_{n_i}, n_i ≥ 2)

t_1q_{i1} \to r  (1 ≤ i ≤ |D|, u_i = t_1 \cdots t_{n_i}, n_i ≥ 2)

tra_i \to r  (1 ≤ i ≤ |D|, u_i = t, t ∈ Σ)

#r \to \#s
```

Az veremautomata determinisztikus (teljessé tehető egy zsákutcaállapot és a hiányzó átmenetek hozzávételével.) A determisztikus veremautomatával felismerhető nyelvek osztálya zárt a komplementerképzésre, ugyanis $Q \setminus F$ -re változtatva az elfogadó állapothalmazt a veremautomata épp a komplementer nyelvet ismeri fel.

Tétel

(1)
$$L(G_1) \cap L(G_2) \stackrel{?}{=} \emptyset$$

Tétel

- (1) $L(G_1) \cap L(G_2) \stackrel{?}{=} \emptyset$
- (2) $L(G_1) \stackrel{?}{=} L(G_2)$

Tétel

- (1) $L(G_1) \cap L(G_2) \stackrel{?}{=} \emptyset$
- (2) $L(G_1) \stackrel{?}{=} L(G_2)$
- (3) $L(G_1) \stackrel{?}{=} Γ^*$ valamely Γ ábécére

Tétel

- (1) $L(G_1) \cap L(G_2) \stackrel{?}{=} \emptyset$
- (2) $L(G_1) \stackrel{?}{=} L(G_2)$
- (3) $L(G_1) \stackrel{?}{=} Γ^*$ valamely Γ ábécére
- $(4) L(G_1) \stackrel{?}{\subseteq} L(G_2)$

Tétel

Eldönthetetlenek az alábbi, G_1 és G_2 környezetfüggetlen grammatikákkal kapcsolatos kérdések.

- (1) $L(G_1) \cap L(G_2) \stackrel{?}{=} \emptyset$
- (2) $L(G_1) \stackrel{?}{=} L(G_2)$
- (3) $L(G_1) \stackrel{?}{=} \Gamma^*$ valamely Γ ábécére
- $(4) L(G_1) \stackrel{?}{\subseteq} L(G_2)$

Bizonyítás:

(1) L_{PMP} -t vezethetjük vissza rá. Legyen $D = \left\{ \frac{u_1}{v_1}, \ldots, \frac{u_n}{v_n} \right\}$ a dominókészlet. Készítsük el a fenti G_A és G_B grammatikákat. Könnyen látható, hogy D-nek akkor és csak akkor van megoldása, ha $L(G_A)$ -nak és $L(G_B)$ -nek a metszete nemüres.

(2) $L:=\overline{L(G_A)} \cap L(\overline{G_A}) = \overline{L(G_A)} \cup \overline{L(G_B)} \in \mathcal{L}_2$, mivel az előző Lemma szerint $\overline{L(G_A)} \in \mathcal{L}_2$ és $\overline{L(G_B)} \in \mathcal{L}_2$ az, és \mathcal{L}_2 zárt az unióra.

(2) $L:=\overline{L(G_A)} \cap L(\overline{G_A}) = \overline{L(G_A)} \cup \overline{L(G_B)} \in \mathcal{L}_2$, mivel az előző Lemma szerint $\overline{L(G_A)} \in \mathcal{L}_2$ és $\overline{L(G_B)} \in \mathcal{L}_2$ az, és \mathcal{L}_2 zárt az unióra.

Legyenek G_1 és G_2 olyan környezetfüggetlen grammatikák, amelyekre $L(G_1) = L$ és $L(G_2) = (\Sigma \cup \Delta)^*$. $L(G_1) = L(G_2) \Leftrightarrow L(G_A) \cap L(G_B) = \emptyset$, így ha (2) eldönthető volna, akkor (1) is az lenne, de az imént láttuk, hogy nem az.

(2) $L:=\overline{L(G_A)\cap L(G_A)}=\overline{L(G_A)}\cup \overline{L(G_B)}\in \mathcal{L}_2$, mivel az előző Lemma szerint $\overline{L(G_A)}\in \mathcal{L}_2$ és $\overline{L(G_B)}\in \mathcal{L}_2$ az, és \mathcal{L}_2 zárt az unióra.

Legyenek G_1 és G_2 olyan környezetfüggetlen grammatikák, amelyekre $L(G_1) = L$ és $L(G_2) = (\Sigma \cup \Delta)^*$. $L(G_1) = L(G_2) \Leftrightarrow L(G_A) \cap L(G_B) = \emptyset$, így ha (2) eldönthető volna, akkor (1) is az lenne, de az imént láttuk, hogy nem az.

(3) Legyen G_1 ugyanaz,mint (2)-ben és $\Gamma = \Sigma \cup \Delta$. Pont úgy, mint előbb, (3) eldönthetősége (1) eldönthetőségét implikálná.

(2) $L:=\overline{L(G_A)\cap L(G_A)}=\overline{L(G_A)}\cup \overline{L(G_B)}\in \mathcal{L}_2$, mivel az előző Lemma szerint $\overline{L(G_A)}\in \mathcal{L}_2$ és $\overline{L(G_B)}\in \mathcal{L}_2$ az, és \mathcal{L}_2 zárt az unióra.

Legyenek G_1 és G_2 olyan környezetfüggetlen grammatikák, amelyekre $L(G_1) = L$ és $L(G_2) = (\Sigma \cup \Delta)^*$. $L(G_1) = L(G_2) \Leftrightarrow L(G_A) \cap L(G_B) = \emptyset$, így ha (2) eldönthető volna, akkor (1) is az lenne, de az imént láttuk, hogy nem az.

- (3) Legyen G_1 ugyanaz,mint (2)-ben és $\Gamma = \Sigma \cup \Delta$. Pont úgy, mint előbb, (3) eldönthetősége (1) eldönthetőségét implikálná.
- (4) Mivel $L(G_1) = L(G_2) \Leftrightarrow L(G_1) \subseteq L(G_2) \land L(G_2) \subseteq L(G_1)$, ezért a tartalmazás eldönthetősége (2) eldönthetőségét implikálná.

I. Ítéletkalkulus (nulladrendű logika)

A modell formális kereteket biztosít olyan következtetések helyességének eldöntésére, melyek elemi állításokból (ítéletekből) épülnek fel. Az ítéletek fontos jellemzője, hogy igazságértékük (igaz/hamis) egyértelműen eldönthető.

I. Ítéletkalkulus (nulladrendű logika)

A modell formális kereteket biztosít olyan következtetések helyességének eldöntésére, melyek elemi állításokból (ítéletekből) épülnek fel. Az ítéletek fontos jellemzője, hogy igazságértékük (igaz/hamis) egyértelműen eldönthető. Ítéletek például a "Süt a nap" vagy a "Lemegyek a térre" de nem tekinthető ítéletnek például a "Laci magas" (mihez képest?), "Lejössz a térre?" (kérdő mondat) vagy "Bárcsak itt lennél" (óhajtó mondat).

I. Ítéletkalkulus (nulladrendű logika)

A modell formális kereteket biztosít olyan következtetések helyességének eldöntésére, melyek elemi állításokból (ítéletekből) épülnek fel. Az ítéletek fontos jellemzője, hogy igazságértékük (igaz/hamis) egyértelműen eldönthető. Ítéletek például a "Süt a nap" vagy a "Lemegyek a térre" de nem tekinthető ítéletnek például a "Laci magas" (mihez képest?), "Lejössz a térre?" (kérdő mondat) vagy "Bárcsak itt lennél" (óhajtó mondat). Az elemi állításokból logikai műveleteknek megfeleltethető nyelvi összekötők segítségével összetett állítások építhetők. Például "Süt a nap, de mégis otthon maradok." (logikai és kapcsolat, konjunkció) vagy "Ha süt a nap, lemegyek a térre." (ha ... akkor, implikáció).

I. Ítéletkalkulus (nulladrendű logika)

A modell formális kereteket biztosít olyan következtetések helyességének eldöntésére, melyek elemi állításokból (ítéletekből) épülnek fel. Az ítéletek fontos jellemzője, hogy igazságértékük (igaz/hamis) egyértelműen eldönthető. Ítéletek például a "Süt a nap" vagy a "Lemegyek a térre" de nem tekinthető ítéletnek például a "Laci magas" (mihez képest?), "Lejössz a térre?" (kérdő mondat) vagy "Bárcsak itt lennél" (óhajtó mondat). Az elemi állításokból logikai műveleteknek megfeleltethető nyelvi összekötők segítségével összetett állítások építhetők. Például "Süt a nap, de mégis otthon maradok." (logikai és kapcsolat, konjunkció) vagy "Ha süt a nap, lemegyek a térre." (ha ... akkor, implikáció).

Beláthatók olyan következtetések, mint:

- (1) ,Ha süt a nap, lemegyek a térre."
- (2) "Süt a nap."
- (3) Tehát "Lemegyek a térre."

Definíció

Adott **ítéletváltozók** egy előre rögzített megszámlálhatóan végtelen $Var = \{x_1, x_2, \ldots\}$ halmaza. Az **ítéletlogikai formulák** Form halmaza a legszűkebb halmaz melyre

- ▶ Minden $x \in Var$ esetén $x \in Form$,
- ▶ Ha φ ∈ Form, akkor $\neg \varphi$ ∈ Form,
- ▶ Ha φ , ψ ∈ Form, akkor $(\varphi \land \psi)$, $(\varphi \lor \psi)$, $(\varphi \to \psi)$ ∈ Form.

Definíció

Adott **ítéletváltozók** egy előre rögzített megszámlálhatóan végtelen $Var = \{x_1, x_2, \ldots\}$ halmaza. Az **ítéletlogikai formulák** Form halmaza a legszűkebb halmaz melyre

- ▶ Minden $x \in Var$ esetén $x \in Form$,
- ▶ Ha $\varphi \in$ Form, akkor $\neg \varphi \in$ Form,
- ▶ Ha φ , ψ ∈ Form, akkor $(\varphi \land \psi)$, $(\varphi \lor \psi)$, $(\varphi \to \psi)$ ∈ Form.

A műveleti jelek elnevezése: **negáció** (\neg), **konjukció** (\land), **diszjunkció** (\lor), **implikáció** (\rightarrow).

Definíció

Adott **ítéletváltozók** egy előre rögzített megszámlálhatóan végtelen $Var = \{x_1, x_2, \ldots\}$ halmaza. Az **ítéletlogikai formulák** Form halmaza a legszűkebb halmaz melyre

- ▶ Minden $x \in Var$ esetén $x \in Form$,
- ▶ Ha φ ∈ Form, akkor $\neg \varphi$ ∈ Form,
- ▶ Ha φ , ψ ∈ Form, akkor $(\varphi \land \psi)$, $(\varphi \lor \psi)$, $(\varphi \to \psi)$ ∈ Form.

A műveleti jelek elnevezése: **negáció** (\neg) , **konjukció** (\land) , **diszjunkció** (\lor) , **implikáció** (\rightarrow) . Ez egyben egy csökkenő precedenciasorrend is zárójelek elhagyásához.

Definíció

Adott **ítéletváltozók** egy előre rögzített megszámlálhatóan végtelen $Var = \{x_1, x_2, \ldots\}$ halmaza. Az **ítéletlogikai formulák** Form halmaza a legszűkebb halmaz melyre

- ▶ Minden $x \in Var$ esetén $x \in Form$,
- ▶ Ha $\varphi \in$ Form, akkor $\neg \varphi \in$ Form,
- ▶ Ha φ , ψ ∈ Form, akkor $(\varphi \land \psi)$, $(\varphi \lor \psi)$, $(\varphi \to \psi)$ ∈ Form.

A műveleti jelek elnevezése: **negáció** (\neg) , **konjukció** (\land) , **diszjunkció** (\lor) , **implikáció** (\rightarrow) . Ez egyben egy csökkenő precedenciasorrend is zárójelek elhagyásához.

Szemantika:

Definíció

Egy $I: Var \rightarrow \{i, h\}$ függvényt interpretációnak (változókiértékelésnek) nevezünk.

2000

Egy I interpretációban egy $\varphi \in$ Form formula $\mathcal{B}_I(\varphi)$ igazságértékét (Boole értékét) a következő rekurzóval definiáljuk:

Definíció

▶ ha $x \in Var akkor \mathcal{B}_I(x) := I(x)$,

Egy I interpretációban egy $\varphi \in$ Form formula $\mathcal{B}_I(\varphi)$ igazságértékét (Boole értékét) a következő rekurzóval definiáljuk:

- ▶ ha $x \in \text{Var akkor } \mathcal{B}_I(x) := I(x)$,
- ▶ ha $\varphi \in \text{Form formula, akkor } \mathcal{B}_I(\neg \varphi) := \neg \mathcal{B}_I(\varphi)$,

Egy I interpretációban egy $\varphi \in$ Form formula $\mathcal{B}_I(\varphi)$ igazságértékét (Boole értékét) a következő rekurzóval definiáljuk:

- ▶ ha $x \in \text{Var akkor } \mathcal{B}_I(x) := I(x)$,
- ▶ ha $\varphi \in$ Form formula, akkor $\mathcal{B}_I(\neg \varphi) := \neg \mathcal{B}_I(\varphi)$,
- ▶ ha $\varphi, \psi \in$ Form formulák, akkor $\mathcal{B}_I(\varphi \circ \psi) := \mathcal{B}_I(\varphi) \circ \mathcal{B}_I(\psi)$, ahol $\circ \in \{\land, \lor, \rightarrow\}$,

Egy I interpretációban egy $\varphi \in$ Form formula $\mathcal{B}_I(\varphi)$ igazságértékét (Boole értékét) a következő rekurzóval definiáljuk:

Definíció

- ▶ ha $x \in \text{Var akkor } \mathcal{B}_I(x) := I(x)$,
- ▶ ha $\varphi \in$ Form formula, akkor $\mathcal{B}_I(\neg \varphi) := \neg \mathcal{B}_I(\varphi)$,
- ▶ ha $\varphi, \psi \in$ Form formulák, akkor $\mathcal{B}_I(\varphi \circ \psi) := \mathcal{B}_I(\varphi) \circ \mathcal{B}_I(\psi)$, ahol $\circ \in \{\land, \lor, \rightarrow\}$,

ahol a műveleteket az alábbi táblázat definiálja.

$\mathcal{B}_I(\varphi)$	$\mathcal{B}_{I}(\psi)$	$\mathcal{B}_I(\neg \varphi)$	$\mathcal{B}_I(\varphi \wedge \psi)$	$\mathcal{B}_I(\varphi \lor \psi)$	$\mathcal{B}_I(\varphi o \psi)$
i	i	h	i	i	i
i	h	h	h	i	h
h	i	i	h	i	i
h	h	i	h	h	i

Egy formula igazságértéke csak a benne szereplő ítéletváltozók kiértékelésétől függ.

Egy formula igazságértéke csak a benne szereplő ítéletváltozók kiértékelésétől függ.

n ítéletváltozó esetén 2^n lehetséges interpretáció van (ha nem törődünk a formulában nem szereplő ítéletváltozók kiértékelésével).

Egy formula igazságértéke csak a benne szereplő ítéletváltozók kiértékelésétől függ.

n ítéletváltozó esetén 2^n lehetséges interpretáció van (ha nem törődünk a formulában nem szereplő ítéletváltozók kiértékelésével).

Definíció

Egy φ ítéletlogikai formula **igazságtáblája** egy $2^n \times (n+1)$ -es táblázat, ha x_1, \ldots, x_n a φ formulában szereplő ítéletváltozók. A sorok megfelelnek a lehetséges interpretációknak. Az első n oszlop tartalmazza az ítéletváltozók kiértékelését. Egy I interpretációhoz tartozó sor n+1. oszlopa pedig $\mathcal{B}_I(\varphi)$ -t.

Egy formula igazságértéke csak a benne szereplő ítéletváltozók kiértékelésétől függ.

n ítéletváltozó esetén 2^n lehetséges interpretáció van (ha nem törődünk a formulában nem szereplő ítéletváltozók kiértékelésével).

Definíció

Egy φ ítéletlogikai formula **igazságtáblája** egy $2^n \times (n+1)$ -es táblázat, ha x_1, \ldots, x_n a φ formulában szereplő ítéletváltozók. A sorok megfelelnek a lehetséges interpretációknak. Az első n oszlop tartalmazza az ítéletváltozók kiértékelését. Egy I interpretációhoz tartozó sor n+1. oszlopa pedig $\mathcal{B}_I(\varphi)$ -t.

Példa:

X	y	$\neg x \lor y$		
i	i	i		
i	h	h		
h	i	i		
h	h	i		

Definíció

▶ Egy \mathcal{I} interpretáció **kielégít** egy φ formulát ($I \models_0 \varphi$) ha a formula helyettesítési értéke i az I interpretációban.

- ▶ Egy \mathcal{I} interpretáció **kielégít** egy φ formulát ($I \models_0 \varphi$) ha a formula helyettesítési értéke i az I interpretációban.
- ▶ Egy φ formula **kielégíthető**, ha legalább egy interpretáció kielégíti.

- ▶ Egy \mathcal{I} interpretáció **kielégít** egy φ formulát ($I \models_0 \varphi$) ha a formula helyettesítési értéke i az I interpretációban.
- Egy φ formula kielégíthető, ha legalább egy interpretáció kielégíti.
- Egy φ formula **kielégíthetetlen**, ha egyetlen interpretáció sem elégíti ki.

- ▶ Egy \mathcal{I} interpretáció **kielégít** egy φ formulát ($I \models_0 \varphi$) ha a formula helyettesítési értéke i az I interpretációban.
- Egy φ formula kielégíthető, ha legalább egy interpretáció kielégíti.
- Egy φ formula **kielégíthetetlen**, ha egyetlen interpretáció sem elégíti ki.
- ▶ Egy φ formula **tautologia** (ítéletlogikai törvény) ($\models_0 \varphi$), ha minden interpretáció kielégíti.

- ▶ Egy \mathcal{I} interpretáció **kielégít** egy φ formulát ($I \models_0 \varphi$) ha a formula helyettesítési értéke i az I interpretációban.
- Egy φ formula kielégíthető, ha legalább egy interpretáció kielégíti.
- Egy φ formula **kielégíthetetlen**, ha egyetlen interpretáció sem elégíti ki.
- ▶ Egy φ formula **tautologia** (ítéletlogikai törvény) ($\models_0 \varphi$), ha minden interpretáció kielégíti.
- ▶ Egy φ formulának a ψ formula **tautologikus következménye**($\varphi \models_0 \psi$), ha minden φ -t kielégítő interpretáció kielégíti ψ -t is.

- ▶ Egy \mathcal{I} interpretáció **kielégít** egy φ formulát ($I \models_0 \varphi$) ha a formula helyettesítési értéke i az I interpretációban.
- Egy φ formula kielégíthető, ha legalább egy interpretáció kielégíti.
- Egy φ formula **kielégíthetetlen**, ha egyetlen interpretáció sem elégíti ki.
- ▶ Egy φ formula **tautologia** (ítéletlogikai törvény) ($\models_0 \varphi$), ha minden interpretáció kielégíti.
- ▶ Egy φ formulának a ψ formula **tautologikus következménye**($\varphi \models_0 \psi$), ha minden φ -t kielégítő interpretáció kielégíti ψ -t is.
- ▶ φ és ψ tautologikusan ekvivalensek ($\varphi \sim_0 \psi$), ha $\varphi \models_0 \psi$ és $\psi \models_0 \varphi$ is teljesül.

Definíció

- ▶ Egy \mathcal{I} interpretáció **kielégít** egy φ formulát ($I \models_0 \varphi$) ha a formula helyettesítési értéke i az I interpretációban.
- ▶ Egy φ formula **kielégíthető**, ha legalább egy interpretáció kielégíti.
- Egy φ formula **kielégíthetetlen**, ha egyetlen interpretáció sem elégíti ki.
- ▶ Egy φ formula **tautologia** (ítéletlogikai törvény) ($\models_0 \varphi$), ha minden interpretáció kielégíti.
- ▶ Egy φ formulának a ψ formula **tautologikus következménye**($\varphi \models_0 \psi$), ha minden φ -t kielégítő interpretáció kielégíti ψ -t is.
- φ és ψ tautologikusan ekvivalensek ($\varphi \sim_0 \psi$), ha $\varphi \models_0 \psi$ és $\psi \models_0 \varphi$ is teljesül.

Példák: $\varphi \to \psi \sim_0 \neg \varphi \lor \psi$, $\neg (\varphi \land \psi) \sim_0 \neg \varphi \lor \neg \psi$ (De Morgan)

Definíció

▶ Egy I interpretáció **kielégít** egy \mathcal{F} formulahalmazt $(I \models_0 \mathcal{F})$, ha a formulahalmaz minden formuláját kielégíti.

- ▶ Egy I interpretáció **kielégít** egy \mathcal{F} formulahalmazt $(I \models_0 \mathcal{F})$, ha a formulahalmaz minden formuláját kielégíti.
- Egy F formulahalmaz kielégíthető, ha legalább egy interpretáció kielégíti.

- ▶ Egy I interpretáció **kielégít** egy \mathcal{F} formulahalmazt $(I \models_0 \mathcal{F})$, ha a formulahalmaz minden formuláját kielégíti.
- Egy F formulahalmaz kielégíthető, ha legalább egy interpretáció kielégíti.
- ► Egy F formulahalmaz kielégíthetetlen, ha nincs olyan interpretáció, ami egyszerre minden F-beli formulát kielégít.

- ▶ Egy I interpretáció **kielégít** egy \mathcal{F} formulahalmazt $(I \models_0 \mathcal{F})$, ha a formulahalmaz minden formuláját kielégíti.
- Egy F formulahalmaz kielégíthető, ha legalább egy interpretáció kielégíti.
- Egy F formulahalmaz kielégíthetetlen, ha nincs olyan interpretáció, ami egyszerre minden F-beli formulát kielégít.
- ▶ Egy \mathcal{F} formulahalmaznak a φ formula **tautologikus következménye**($\mathcal{F} \models_0 \varphi$), ha minden \mathcal{F} -t kielégítő interpretáció kielégíti φ -t is.

- ▶ Egy I interpretáció **kielégít** egy \mathcal{F} formulahalmazt $(I \models_0 \mathcal{F})$, ha a formulahalmaz minden formuláját kielégíti.
- Egy F formulahalmaz kielégíthető, ha legalább egy interpretáció kielégíti.
- Egy F formulahalmaz kielégíthetetlen, ha nincs olyan interpretáció, ami egyszerre minden F-beli formulát kielégít.
- Egy F formulahalmaznak a φ formula tautologikus következménye(F ⊨₀ φ), ha minden F-t kielégítő interpretáció kielégíti φ-t is.

Példa:
$$\{x, x \to y\} \models_0 y$$

Tétel

Legyen $\mathcal F$ egy formulahalmaz és φ egy formula. Akkor a következők teljesülnek.

 $ightharpoonup \varphi$ akkor és csak akkor kielégíthetetlen, ha $\neg \varphi$ tautológia.

Tétel

Legyen ${\mathcal F}$ egy formulahalmaz és φ egy formula. Akkor a következők teljesülnek.

- ightharpoonup arphi akkor és csak akkor kielégíthetetlen, ha $\neg arphi$ tautológia.
- $ightharpoonup \mathcal{F} \models_0 \varphi$ akkor és csak akkor, ha $\mathcal{F} \cup \{\neg \varphi\}$ kielégíthetetlen.

Definíció

▶ Literálnak nevezünk egy x vagy $\neg x$ alakú formulát, ahol $x \in Var$.

Definíció

Literálnak nevezünk egy x vagy ¬x alakú formulát, ahol x ∈ Var. Egy literál alapja az az ítéletváltozó, amelyik a literálban szerepel.

- Literálnak nevezünk egy x vagy ¬x alakú formulát, ahol x ∈ Var. Egy literál alapja az az ítéletváltozó, amelyik a literálban szerepel.
- ▶ Klóznak hívunk egy $\ell_1 \vee \cdots \vee \ell_n$ alakú formulát $(n \in \mathbb{N})$, ahol $\ell_1, \ldots \ell_n$ páronként különböző alapú literálok.

- Literálnak nevezünk egy x vagy ¬x alakú formulát, ahol x ∈ Var. Egy literál alapja az az ítéletváltozó, amelyik a literálban szerepel.
- ▶ Klóznak hívunk egy $\ell_1 \vee \cdots \vee \ell_n$ alakú formulát $(n \in \mathbb{N})$, ahol $\ell_1, \ldots \ell_n$ páronként különböző alapú literálok.
- ▶ Konjunktív normálformának (röviden KNF-nek) nevezünk egy $C_1 \wedge C_2 \wedge \ldots \wedge C_m$ ($m \geq 1$) alakú formulát, ahol minden $1 \leq i \leq m$ -re C_i egy klóz (a KNF egy tagja).

Definíció

- Literálnak nevezünk egy x vagy ¬x alakú formulát, ahol x ∈ Var. Egy literál alapja az az ítéletváltozó, amelyik a literálban szerepel.
- ▶ Klóznak hívunk egy $\ell_1 \vee \cdots \vee \ell_n$ alakú formulát $(n \in \mathbb{N})$, ahol $\ell_1, \ldots \ell_n$ páronként különböző alapú literálok.
- ▶ Konjunktív normálformának (röviden KNF-nek) nevezünk egy $C_1 \wedge C_2 \wedge \ldots \wedge C_m$ ($m \geq 1$) alakú formulát, ahol minden $1 \leq i \leq m$ -re C_i egy klóz (a KNF egy tagja).

Példa:

 $x \lor \neg y \lor z$ egy klóz (és 1-tagú KNF is egyben) $(x \lor \neg y \lor z) \land (\neg x \lor z) \land \neg y$ egy 3-tagú KNF.

Definíció

- Literálnak nevezünk egy x vagy ¬x alakú formulát, ahol x ∈ Var. Egy literál alapja az az ítéletváltozó, amelyik a literálban szerepel.
- ▶ Klóznak hívunk egy $\ell_1 \vee \cdots \vee \ell_n$ alakú formulát $(n \in \mathbb{N})$, ahol $\ell_1, \ldots \ell_n$ páronként különböző alapú literálok.
- ▶ Konjunktív normálformának (röviden KNF-nek) nevezünk egy $C_1 \wedge C_2 \wedge \ldots \wedge C_m$ ($m \geq 1$) alakú formulát, ahol minden $1 \leq i \leq m$ -re C_i egy klóz (a KNF egy tagja).

Példa:

 $x \lor \neg y \lor z$ egy klóz (és 1-tagú KNF is egyben) $(x \lor \neg y \lor z) \land (\neg x \lor z) \land \neg y$ egy 3-tagú KNF.

Tétel

Minden ítéletkalkulusbeli formulához megadható egy vele tautológikusan ekvivalens KNF.

Állítás: Eldönthetőek az ítéletkalkulus alábbi algoritmikus kérdései:

ightharpoonup egy φ ítéletkalkulusbeli formula kielégíthető-e,

- ightharpoonup egy φ ítéletkalkulusbeli formula kielégíthető-e,
- ightharpoonup egy φ ítéletkalkulusbeli formula kielégíthetetlen-e,

- ightharpoonup egy arphi ítéletkalkulusbeli formula kielégíthető-e,
- lacktriangle egy arphi ítéletkalkulusbeli formula kielégíthetetlen-e,
- lacktriangle egy arphi ítéletkalkulusbeli formula tautológia-e,

- ightharpoonup egy arphi ítéletkalkulusbeli formula kielégíthető-e,
- ightharpoonup egy φ ítéletkalkulusbeli formula kielégíthetetlen-e,
- lacktriangle egy arphi ítéletkalkulusbeli formula tautológia-e,
- $ightharpoonup \varphi$ és ψ ítéletkalkulusbeli formulákra $\varphi \sim_0 \psi$ fennáll-e,

- lacktriangle egy arphi ítéletkalkulusbeli formula kielégíthető-e,
- ightharpoonup egy φ ítéletkalkulusbeli formula kielégíthetetlen-e,
- lacktriangle egy arphi ítéletkalkulusbeli formula tautológia-e,
- $ightharpoonup \varphi$ és ψ ítéletkalkulusbeli formulákra $\varphi \sim_0 \psi$ fennáll-e,
- egy \mathcal{F} véges ítéletkalkulusbeli formulahalmaz és egy φ formula esetén $\mathcal{F}\models_0 \varphi$ fennáll-e.

Állítás: Eldönthetőek az ítéletkalkulus alábbi algoritmikus kérdései:

- lacktriangle egy arphi ítéletkalkulusbeli formula kielégíthető-e,
- lacktriangle egy arphi ítéletkalkulusbeli formula kielégíthetetlen-e,
- lacktriangle egy arphi ítéletkalkulusbeli formula tautológia-e,
- ightharpoonup arphi és ψ ítéletkalkulusbeli formulákra $arphi \sim_0 \psi$ fennáll-e,
- egy \mathcal{F} véges ítéletkalkulusbeli formulahalmaz és egy φ formula esetén $\mathcal{F} \models_0 \varphi$ fennáll-e.

Bizonyítás: Készítsük el az ítélettáblákat a szóban forgó formulákra és olvassuk le belőlük.

Állítás: Eldönthetőek az ítéletkalkulus alábbi algoritmikus kérdései:

- lacktriangle egy arphi ítéletkalkulusbeli formula kielégíthető-e,
- lacktriangle egy arphi ítéletkalkulusbeli formula kielégíthetetlen-e,
- lacktriangle egy arphi ítéletkalkulusbeli formula tautológia-e,
- ightharpoonup arphi és ψ ítéletkalkulusbeli formulákra $arphi \sim_0 \psi$ fennáll-e,
- egy \mathcal{F} véges ítéletkalkulusbeli formulahalmaz és egy φ formula esetén $\mathcal{F} \models_0 \varphi$ fennáll-e.

Bizonyítás: Készítsük el az ítélettáblákat a szóban forgó formulákra és olvassuk le belőlük.

Megjegyzés: A kérdések eldönthetősége valójában azon múlik, hogy véges sok lehetséges interpretáció van, így megoldhatóak "brute force" módszerrel.

Állítás: Eldönthetőek az ítéletkalkulus alábbi algoritmikus kérdései:

- lacktriangle egy arphi ítéletkalkulusbeli formula kielégíthető-e,
- lacktriangle egy arphi ítéletkalkulusbeli formula kielégíthetetlen-e,
- lacktriangle egy arphi ítéletkalkulusbeli formula tautológia-e,
- ightharpoonup arphi és ψ ítéletkalkulusbeli formulákra $arphi \sim_0 \psi$ fennáll-e,
- egy \mathcal{F} véges ítéletkalkulusbeli formulahalmaz és egy φ formula esetén $\mathcal{F}\models_0 \varphi$ fennáll-e.

Bizonyítás: Készítsük el az ítélettáblákat a szóban forgó formulákra és olvassuk le belőlük.

Megjegyzés: A kérdések eldönthetősége valójában azon múlik, hogy véges sok lehetséges interpretáció van, így megoldhatóak "brute force" módszerrel. Mivel n ítéletváltozó esetén az ítélettáblának 2^n , azaz exponenciális sok sora van, ez nem hatékony.

Állítás: Eldönthetőek az ítéletkalkulus alábbi algoritmikus kérdései:

- ightharpoonup egy φ ítéletkalkulusbeli formula kielégíthető-e,
- lacktriangle egy arphi ítéletkalkulusbeli formula kielégíthetetlen-e,
- lacktriangle egy arphi ítéletkalkulusbeli formula tautológia-e,
- ightharpoonup arphi és ψ ítéletkalkulusbeli formulákra $arphi \sim_0 \psi$ fennáll-e,
- egy \mathcal{F} véges ítéletkalkulusbeli formulahalmaz és egy φ formula esetén $\mathcal{F} \models_0 \varphi$ fennáll-e.

Bizonyítás: Készítsük el az ítélettáblákat a szóban forgó formulákra és olvassuk le belőlük.

Megjegyzés: A kérdések eldönthetősége valójában azon múlik, hogy véges sok lehetséges interpretáció van, így megoldhatóak "brute force" módszerrel. Mivel n ítéletváltozó esetén az ítélettáblának 2ⁿ, azaz exponenciális sok sora van, ez nem hatékony. Ugyan ismeretesek az ítélettáblánál jobb módszerek, azonban ezek mindegyike a legrosszabb esetben szintén exponenciális műveletigényű.

A matematikai logika formális modelljei

II. Elsőrendű logika

A nulladrendű logika korlátozottan alkalmas a világ leírására, az egyszerű állítások belső szerkezetét nem vizsgálja. Például a "Minden ember halandó.", "Szókrátész ember.", "Szókrátész halandó." állítások nulladrendű formalizálása esetén nincs más lehetőségünk, mint x, y és z-ként formalizálni a fenti állítás-hármast.

A matematikai logika formális modelljei

II. Elsőrendű logika

A nulladrendű logika korlátozottan alkalmas a világ leírására, az egyszerű állítások belső szerkezetét nem vizsgálja. Például a "Minden ember halandó.", "Szókrátész ember.", "Szókrátész halandó." állítások nulladrendű formalizálása esetén nincs más lehetőségünk, mint x, y és z-ként formalizálni a fenti állítás-hármast. Ugyanakkor mivel az emberek halmaza részhalmaz a halandók halmazának és Szókrátész az ember-halmaz egy eleme, ezért jó lenne egy olyan modell, ahol a 3. állítás az első 2 következménye.

A matematikai logika formális modelljei

II. Elsőrendű logika

A nulladrendű logika korlátozottan alkalmas a világ leírására, az egyszerű állítások belső szerkezetét nem vizsgálja. Például a "Minden ember halandó.", "Szókrátész ember.", "Szókrátész halandó." állítások nulladrendű formalizálása esetén nincs más lehetőségünk, mint x, y és z-ként formalizálni a fenti állítás-hármast. Ugyanakkor mivel az emberek halmaza részhalmaz a halandók halmazának és Szókrátész az ember-halmaz egy eleme, ezért jó lenne egy olyan modell, ahol a 3. állítás az első 2 következménye.

Egy elsőrendű logikában (nem véletlen a határozatlan névelő!) az állítások belső szerkezetét is figyelembe tudjuk venni. Tudunk egy halmaz összes elemére illetve legalább egy elemére vonatkozó állításokat formalizálni.

Definiálni fogunk két nyelvet a termek Term és a formulák Form nyelvét. Ehhez előbb definálunk egy megszámlálhatóan végtelen szimbólumhalmazt, a szavak betűinek a halmazát.

Definiálni fogunk két nyelvet a termek Term és a formulák Form nyelvét. Ehhez előbb definálunk egy megszámlálhatóan végtelen szimbólumhalmazt, a szavak betűinek a halmazát.

Definíció

Egy elsőrendű logika szimbólumhalmaza a következőkből áll

Pred, a predikátumszimbólumok véges halmaza,

Definiálni fogunk két nyelvet a termek Term és a formulák Form nyelvét. Ehhez előbb definálunk egy megszámlálhatóan végtelen szimbólumhalmazt, a szavak betűinek a halmazát.

Definíció

- Pred, a predikátumszimbólumok véges halmaza,
- Func, a függvényszimbólumok véges halmaza,

Definiálni fogunk két nyelvet a termek Term és a formulák Form nyelvét. Ehhez előbb definálunk egy megszámlálhatóan végtelen szimbólumhalmazt, a szavak betűinek a halmazát.

Definíció

- Pred, a predikátumszimbólumok véges halmaza,
- Func, a függvényszimbólumok véges halmaza,
- Cnst, a konstansszimbólumok véges halmaza,

Definiálni fogunk két nyelvet a termek Term és a formulák Form nyelvét. Ehhez előbb definálunk egy megszámlálhatóan végtelen szimbólumhalmazt, a szavak betűinek a halmazát.

Definíció

- Pred, a predikátumszimbólumok véges halmaza,
- Func, a függvényszimbólumok véges halmaza,
- Cnst, a konstansszimbólumok véges halmaza,
- ▶ Ind = $\{x_1, x_2, ...\}$, az individuumváltozók megszámlálhatóan végtelen halmaza

Definiálni fogunk két nyelvet a termek Term és a formulák Form nyelvét. Ehhez előbb definálunk egy megszámlálhatóan végtelen szimbólumhalmazt, a szavak betűinek a halmazát.

Definíció

- Pred, a predikátumszimbólumok véges halmaza,
- Func, a függvényszimbólumok véges halmaza,
- Cnst, a konstansszimbólumok véges halmaza,
- lnd = $\{x_1, x_2, ...\}$, az individuumváltozók megszámlálhatóan végtelen halmaza
- ▶ $\{\neg, \land, \lor, \rightarrow, \forall, \exists\}$ műveleti jelek és kvantorok. \forall neve univerzális kvantor, míg \exists neve egzisztenciális kvantor

Definiálni fogunk két nyelvet a termek Term és a formulák Form nyelvét. Ehhez előbb definálunk egy megszámlálhatóan végtelen szimbólumhalmazt, a szavak betűinek a halmazát.

Definíció

- Pred, a predikátumszimbólumok véges halmaza,
- Func, a függvényszimbólumok véges halmaza,
- Cnst, a konstansszimbólumok véges halmaza,
- lnd = $\{x_1, x_2, ...\}$, az individuumváltozók megszámlálhatóan végtelen halmaza
- ► $\{\neg, \land, \lor, \rightarrow, \forall, \exists\}$ műveleti jelek és kvantorok. \forall neve univerzális kvantor, míg \exists neve egzisztenciális kvantor
- ▶ (,) és , (vessző).

Definiálni fogunk két nyelvet a termek Term és a formulák Form nyelvét. Ehhez előbb definálunk egy megszámlálhatóan végtelen szimbólumhalmazt, a szavak betűinek a halmazát.

Definíció

Egy elsőrendű logika szimbólumhalmaza a következőkből áll

- Pred, a predikátumszimbólumok véges halmaza,
- ► Func, a függvényszimbólumok véges halmaza,
- Cnst, a konstansszimbólumok véges halmaza,
- lnd = $\{x_1, x_2, ...\}$, az individuumváltozók megszámlálhatóan végtelen halmaza
- ► {¬, ∧, ∨, →, ∀, ∃} műveleti jelek és kvantorok. ∀ neve univerzális kvantor, míg ∃ neve egzisztenciális kvantor
- ▶ (,) és , (vessző).

Minden $s \in \mathsf{Pred} \cup \mathsf{Func} \cup \mathsf{Cnst}$ -hez hozzá van rendelve egy $\mathsf{ar}(s) \in \mathbb{N}$ szám, a szimbólum **aritása** (a konstansokhoz mindig 0).

Definíció

A termek Term nyelve az a legszűkebb halmaz, amelyre

▶ minden $x \in Ind$ esetén $x \in Term$

Definíció

A termek Term nyelve az a legszűkebb halmaz, amelyre

- ▶ minden $x \in Ind$ esetén $x \in Term$
- ▶ minden $c \in \mathsf{Cnst}$ esetén $c \in \mathsf{Term}$

Definíció

A termek Term nyelve az a legszűkebb halmaz, amelyre

- ▶ minden $x \in Ind$ esetén $x \in Term$
- ▶ minden $c \in \mathsf{Cnst}$ esetén $c \in \mathsf{Term}$
- ▶ minden $f \in$ Func és $t_1, \dots t_{\mathsf{ar}(f)} \in$ Term esetén $f(t_1, \dots t_{\mathsf{ar}(f)}) \in$ Term.

Definíció

A termek Term nyelve az a legszűkebb halmaz, amelyre

- ▶ minden $x \in Ind$ esetén $x \in Term$
- ▶ minden $c \in \mathsf{Cnst}$ esetén $c \in \mathsf{Term}$
- ▶ minden $f \in$ Func és $t_1, \dots t_{\mathsf{ar}(f)} \in$ Term esetén $f(t_1, \dots t_{\mathsf{ar}(f)}) \in$ Term.

Definíció

Az **elsőrendű formulák** Form nyelve az a legszűkebb halmaz, amelyre

▶ minden $p \in \text{Pred \'es } t_1, \dots t_{\text{ar}(p)} \in \text{Term eset\'en}$ $p(t_1, \dots t_{\text{ar}(p)}) \in \text{Form. Ezek az atomi formul\'ak.}$

Definíció

A termek Term nyelve az a legszűkebb halmaz, amelyre

- ▶ minden $x \in Ind$ esetén $x \in Term$
- ▶ minden $c \in \mathsf{Cnst}$ esetén $c \in \mathsf{Term}$
- ▶ minden $f \in$ Func és $t_1, \dots t_{\mathsf{ar}(f)} \in$ Term esetén $f(t_1, \dots t_{\mathsf{ar}(f)}) \in$ Term.

Definíció

Az **elsőrendű formulák** Form nyelve az a legszűkebb halmaz, amelyre

- ▶ minden $p \in \text{Pred \'es } t_1, \dots t_{\text{ar}(p)} \in \text{Term eset\'en}$ $p(t_1, \dots t_{\text{ar}(p)}) \in \text{Form. Ezek az atomi formul\'ak.}$
- ▶ Ha φ ∈ Form, akkor $\neg \varphi$ ∈ Form.

Definíció

A termek Term nyelve az a legszűkebb halmaz, amelyre

- ▶ minden $x \in Ind$ esetén $x \in Term$
- ▶ minden $c \in \mathsf{Cnst}$ esetén $c \in \mathsf{Term}$
- ▶ minden $f \in$ Func és $t_1, \dots t_{\mathsf{ar}(f)} \in$ Term esetén $f(t_1, \dots t_{\mathsf{ar}(f)}) \in$ Term.

Definíció

Az **elsőrendű formulák** Form nyelve az a legszűkebb halmaz, amelyre

- ▶ minden $p \in \text{Pred \'es } t_1, \dots t_{\text{ar}(p)} \in \text{Term eset\'en}$ $p(t_1, \dots t_{\text{ar}(p)}) \in \text{Form. Ezek az atomi formul\'ak.}$
- ▶ Ha $\varphi \in \text{Form}$, akkor $\neg \varphi \in \text{Form}$.
- ▶ Ha φ , ψ ∈ Form, akkor $(\varphi \land \psi)$, $(\varphi \lor \psi)$, $(\varphi \to \psi)$ ∈ Form.

Definíció

A termek Term nyelve az a legszűkebb halmaz, amelyre

- ▶ minden $x \in Ind$ esetén $x \in Term$
- ▶ minden $c \in \mathsf{Cnst}$ esetén $c \in \mathsf{Term}$
- ▶ minden $f \in$ Func és $t_1, \dots t_{\mathsf{ar}(f)} \in$ Term esetén $f(t_1, \dots t_{\mathsf{ar}(f)}) \in$ Term.

Definíció

Az **elsőrendű formulák** Form nyelve az a legszűkebb halmaz, amelyre

- ▶ minden $p \in \text{Pred \'es } t_1, \dots t_{\text{ar}(p)} \in \text{Term eset\'en}$ $p(t_1, \dots t_{\text{ar}(p)}) \in \text{Form. Ezek az atomi formul\'ak.}$
- ▶ Ha $\varphi \in \text{Form}$, akkor $\neg \varphi \in \text{Form}$.
- ▶ Ha φ , ψ ∈ Form, akkor $(\varphi \land \psi)$, $(\varphi \lor \psi)$, $(\varphi \to \psi)$ ∈ Form.
- ▶ Ha $\varphi \in$ Form, akkor $\forall x \varphi \in$ Form és $\exists x \varphi \in$ Form.

Példa

 $\mathsf{Pred} = \{p,q\}, \ \mathsf{Func} = \{f\}, \ \mathsf{Cnst} = \{a\}.$

Pred =
$$\{p, q\}$$
, Func = $\{f\}$, Cnst = $\{a\}$.
 $ar(p) = ar(q) = ar(f) = 2$.

Pred =
$$\{p, q\}$$
, Func = $\{f\}$, Cnst = $\{a\}$.
 $ar(p) = ar(q) = ar(f) = 2$.

$$x, a, f(x,y), f(x,f(a,x)) \in \text{Term}.$$

$$\begin{aligned} & \mathsf{Pred} = \{p,q\}, \quad \mathsf{Func} = \{f\}, \quad \mathsf{Cnst} = \{a\}. \\ & \mathsf{ar}(p) = \mathsf{ar}(q) = \mathsf{ar}(f) = 2. \\ & x, \; a, \; f(x,y), \; f(x,f(a,x)) \in \mathsf{Term}. \\ & p(x,y), \; q(x,f(a,a)), \; \neg p(x,f(y,z)), \; (\exists x p(x,y) \to q(x,z)) \in \mathsf{Form}. \end{aligned}$$

Pred =
$$\{p, q\}$$
, Func = $\{f\}$, Cnst = $\{a\}$.
 $ar(p) = ar(q) = ar(f) = 2$.

$$x$$
, a , $f(x,y)$, $f(x,f(a,x)) \in \text{Term}$.

$$p(x,y), \ q(x,f(a,a)), \ \neg p(x,f(y,z)), \ (\exists x p(x,y) \rightarrow q(x,z)) \in \mathsf{Form}.$$

$$\varphi_1 = \forall x p(x, a) \in \mathsf{Form}$$
,

Pred =
$$\{p, q\}$$
, Func = $\{f\}$, Cnst = $\{a\}$.
 $ar(p) = ar(q) = ar(f) = 2$.

$$x, a, f(x,y), f(x,f(a,x)) \in \text{Term}.$$

$$p(x,y), q(x,f(a,a)), \neg p(x,f(y,z)), (\exists x p(x,y) \rightarrow q(x,z)) \in Form.$$

$$arphi_1 = \forall x p(x, a) \in \mathsf{Form},$$

$$\varphi_2 = \forall x \exists y q(f(x, y), a) \in \mathsf{Form},$$

Pred =
$$\{p, q\}$$
, Func = $\{f\}$, Cnst = $\{a\}$.
 $ar(p) = ar(q) = ar(f) = 2$.

$$x, a, f(x,y), f(x,f(a,x)) \in \text{Term}.$$

$$p(x,y), q(x,f(a,a)), \neg p(x,f(y,z)), (\exists x p(x,y) \rightarrow q(x,z)) \in Form.$$

$$arphi_1 = \forall x p(x, a) \in \mathsf{Form},$$
 $arphi_2 = \forall x \exists y q(f(x, y), a) \in \mathsf{Form},$
 $arphi_3 = \forall x (\forall y q(f(y, x), y) \to p(x, a)) \in \mathsf{Form}.$

Példa

Pred =
$$\{p, q\}$$
, Func = $\{f\}$, Cnst = $\{a\}$.
 $ar(p) = ar(q) = ar(f) = 2$.
 $x, a, f(x, y), f(x, f(a, x)) \in Term$.

$$p(x, y), \ q(x, f(a, a)), \ \neg p(x, f(y, z)), \ (\exists x p(x, y) \to q(x, z)) \in Form.$$

$$arphi_1 = \forall x p(x, a) \in \mathsf{Form},$$
 $arphi_2 = \forall x \exists y q(f(x, y), a) \in \mathsf{Form},$
 $arphi_3 = \forall x (\forall y q(f(y, x), y) \to p(x, a)) \in \mathsf{Form}.$

Precedenciasorrend zárójelelhagyáshoz: \forall , \exists , \neg , \land , \lor , \rightarrow .

Egy elsőrendű logika szemantikáját a szimbólumainak interpretációja és a változók kiértékelése adja meg.

Egy elsőrendű logika szemantikáját a szimbólumainak interpretációja és a változók kiértékelése adja meg.

Definíció

Egy elsőrendű logikai szimbólumainak interpretációja alatt egy $I = \langle U, I_{\mathsf{Pred}}, I_{\mathsf{Func}}, I_{\mathsf{Cnst}} \rangle$ rendezett négyest értünk, ahol

U egy tetszőleges, nemüres halmaz (univerzum),

Egy elsőrendű logika szemantikáját a szimbólumainak interpretációja és a változók kiértékelése adja meg.

Definíció

Egy elsőrendű logikai szimbólumainak **interpretációja** alatt egy $I = \langle U, I_{\text{Pred}}, I_{\text{Func}}, I_{\text{Cnst}} \rangle$ rendezett négyest értünk, ahol

- U egy tetszőleges, nemüres halmaz (univerzum),
- ▶ I_{Pred} minden $p \in \text{Pred-hez hozzárendel egy } p^I \subseteq U^{\text{ar}(p)}$ ar(p)-változós relációt U felett,

Egy elsőrendű logika szemantikáját a szimbólumainak interpretációja és a változók kiértékelése adja meg.

Definíció

Egy elsőrendű logikai szimbólumainak **interpretációja** alatt egy $I = \langle U, I_{\text{Pred}}, I_{\text{Func}}, I_{\text{Cnst}} \rangle$ rendezett négyest értünk, ahol

- U egy tetszőleges, nemüres halmaz (univerzum),
- ▶ I_{Pred} minden $p \in \text{Pred-hez hozzárendel egy } p^I \subseteq U^{\text{ar}(p)}$ ar(p)-változós relációt U felett,
- I_{Func} minden $f \in$ Func-hez hozzárendel egy $f^I : U^{ar(p)} \to U$ ar(p)-változós műveletet U-n,

Egy elsőrendű logika szemantikáját a szimbólumainak interpretációja és a változók kiértékelése adja meg.

Definíció

Egy elsőrendű logikai szimbólumainak **interpretációja** alatt egy $I = \langle U, I_{\text{Pred}}, I_{\text{Func}}, I_{\text{Cnst}} \rangle$ rendezett négyest értünk, ahol

- U egy tetszőleges, nemüres halmaz (univerzum),
- ▶ I_{Pred} minden $p \in Pred$ -hez hozzárendel egy $p^I \subseteq U^{ar(p)}$ ar(p)-változós relációt U felett,
- ▶ I_{Func} minden $f \in \text{Func-hez hozzárendel egy } f^I : U^{\text{ar}(p)} \to U$ ar(p)-változós műveletet U-n,
- ▶ I_{Cnst} minden $c \in Cnst$ -hez hozzárendel egy $c^I \in U$ -t.

Egy elsőrendű logika szemantikáját a szimbólumainak interpretációja és a változók kiértékelése adja meg.

Definíció

Egy elsőrendű logikai szimbólumainak **interpretációja** alatt egy $I = \langle U, I_{\text{Pred}}, I_{\text{Func}}, I_{\text{Cnst}} \rangle$ rendezett négyest értünk, ahol

- U egy tetszőleges, nemüres halmaz (univerzum),
- ▶ I_{Pred} minden $p \in \text{Pred-hez hozzárendel egy } p^I \subseteq U^{\text{ar}(p)}$ ar(p)-változós relációt U felett,
- ▶ I_{Func} minden $f \in \text{Func-hez hozzárendel egy } f^I : U^{\text{ar}(p)} \to U$ ar(p)-változós műveletet U-n,
- ▶ I_{Cnst} minden $c \in Cnst$ -hez hozzárendel egy $c^I \in U$ -t.

Definíció

Változókiértékelés alatt egy κ : Ind $\to U$ leképezést értünk.

Egy elsőrendű logika szemantikáját a szimbólumainak interpretációja és a változók kiértékelése adja meg.

Definíció

Egy elsőrendű logikai szimbólumainak **interpretációja** alatt egy $I = \langle U, I_{\text{Pred}}, I_{\text{Func}}, I_{\text{Cnst}} \rangle$ rendezett négyest értünk, ahol

- U egy tetszőleges, nemüres halmaz (univerzum),
- ▶ I_{Pred} minden $p \in \text{Pred-hez hozzárendel egy } p^I \subseteq U^{\text{ar}(p)}$ ar(p)-változós relációt U felett,
- ▶ I_{Func} minden $f \in \text{Func-hez hozzárendel egy } f^I : U^{\text{ar}(p)} \to U$ ar(p)-változós műveletet U-n,
- ▶ I_{Cnst} minden $c \in Cnst$ -hez hozzárendel egy $c^I \in U$ -t.

Definíció

Változókiértékelés alatt egy κ : Ind $\to U$ leképezést értünk.

Vegyük észre, hogy κ függ az U univerzumtól.

Példa Az előző példát folytatva legyen $I = \langle \mathbb{N}, I_{\mathsf{Pred}}, I_{\mathsf{Func}}, I_{\mathsf{Cnst}} \rangle$ egy interpretáció, ahol $I_{\mathsf{Pred}}(p) = p^I, \ (m,n) :\in p^I \Leftrightarrow m \geq n$

Példa Az előző példát folytatva legyen $I = \langle \mathbb{N}, I_{\mathsf{Pred}}, I_{\mathsf{Func}}, I_{\mathsf{Cnst}} \rangle$ egy interpretáció, ahol $I_{\mathsf{Pred}} = n^I - (m, n) : (n^I + m) > n$

$$I_{\mathsf{Pred}}(p) = p^I, \ (m, n) :\in p^I \Leftrightarrow m \ge n$$

 $I_{\mathsf{Pred}}(q) = q^I, \ (m, n) :\in q^I \Leftrightarrow m = n$

Példa Az előző példát folytatva legyen $I=\langle \mathbb{N},I_{\mathsf{Pred}},I_{\mathsf{Func}},I_{\mathsf{Cnst}} \rangle$ egy interpretáció, ahol

$$I_{\mathsf{Pred}}(p) = p^I, \quad (m, n) :\in p^I \Leftrightarrow m \ge n$$

 $I_{\mathsf{Pred}}(q) = q^I, \quad (m, n) :\in q^I \Leftrightarrow m = n$
 $I_{\mathsf{Func}}(f) = f^I, \quad f^I(m, n) := m + n$

Példa Az előző példát folytatva legyen $I = \langle \mathbb{N}, I_{\mathsf{Pred}}, I_{\mathsf{Func}}, I_{\mathsf{Cnst}} \rangle$ egy interpretáció, ahol $I_{\mathsf{Pred}}(p) = p^I, \quad (m,n) :\in p^I \Leftrightarrow m \geq n$ $I_{\mathsf{Pred}}(q) = q^I, \quad (m,n) :\in q^I \Leftrightarrow m = n$ $I_{\mathsf{Func}}(f) = f^I, \quad f^I(m,n) := m + n$ $I_{\mathsf{Cnst}}(a) := 0$,

Példa Az előző példát folytatva legyen $I = \langle \mathbb{N}, I_{\mathsf{Pred}}, I_{\mathsf{Func}}, I_{\mathsf{Cnst}} \rangle$ egy interpretáció, ahol $I_{\mathsf{Pred}}(p) = p^I, \quad (m,n) :\in p^I \Leftrightarrow m \geq n$ $I_{\mathsf{Pred}}(q) = q^I, \quad (m,n) :\in q^I \Leftrightarrow m = n$ $I_{\mathsf{Func}}(f) = f^I, \quad f^I(m,n) := m + n$ $I_{\mathsf{Cnst}}(a) := 0,$ legyen továbbá κ egy változókiértékelés, amelyre $\kappa(x) = 5, \kappa(y) = 3.$

Példa Az előző példát folytatva legyen $I=\langle \mathbb{N},I_{\mathsf{Pred}},I_{\mathsf{Func}},I_{\mathsf{Cnst}} \rangle$ egy interpretáció, ahol

$$I_{\mathsf{Pred}}(p) = p^I, \quad (m, n) :\in p^I \Leftrightarrow m \ge n$$

 $I_{\mathsf{Pred}}(q) = q^I, \quad (m, n) :\in q^I \Leftrightarrow m = n$
 $I_{\mathsf{Func}}(f) = f^I, \quad f^I(m, n) := m + n$
 $I_{\mathsf{Cnst}}(a) := 0,$

legyen továbbá κ egy változókiértékelés, amelyre

$$\kappa(x) = 5, \kappa(y) = 3.$$

Definíció

Egy $t \in \text{Term}$ értékét egy I interpretációban a κ változókiértékelés mellett $|t|^{I,\kappa}$ jelöli és a következőképpen definiáljuk

▶ Ha $x \in \text{Ind}$, akkor $|x|^{I,\kappa} := \kappa(x)$,

Példa Az előző példát folytatva legyen $I=\langle \mathbb{N},I_{\mathsf{Pred}},I_{\mathsf{Func}},I_{\mathsf{Cnst}} \rangle$ egy interpretáció, ahol

$$I_{\mathsf{Pred}}(p) = p^I, \quad (m, n) :\in p^I \Leftrightarrow m \ge n$$

 $I_{\mathsf{Pred}}(q) = q^I, \quad (m, n) :\in q^I \Leftrightarrow m = n$
 $I_{\mathsf{Func}}(f) = f^I, \quad f^I(m, n) := m + n$
 $I_{\mathsf{Cnst}}(a) := 0,$

legyen továbbá κ egy változókiértékelés, amelyre

$$\kappa(x) = 5, \kappa(y) = 3.$$

Definíció

Egy $t\in {\sf Term}$ értékét egy I interpretációban a κ változókiértékelés mellett $|t|^{I,\kappa}$ jelöli és a következőképpen definiáljuk

- ▶ Ha $x \in \text{Ind}$, akkor $|x|^{I,\kappa} := \kappa(x)$,
- ▶ Ha $c \in \text{Cnst}$, akkor $|c|^{I,\kappa} := c^I$,

Példa Az előző példát folytatva legyen $I=\langle \mathbb{N},I_{\mathsf{Pred}},I_{\mathsf{Func}},I_{\mathsf{Cnst}} \rangle$ egy interpretáció, ahol

$$I_{\mathsf{Pred}}(p) = p^I, \quad (m, n) :\in p^I \Leftrightarrow m \ge n$$

 $I_{\mathsf{Pred}}(q) = q^I, \quad (m, n) :\in q^I \Leftrightarrow m = n$
 $I_{\mathsf{Func}}(f) = f^I, \quad f^I(m, n) := m + n$
 $I_{\mathsf{Cnst}}(a) := 0,$

legyen továbbá κ egy változókiértékelés, amelyre

$$\kappa(x) = 5, \kappa(y) = 3.$$

Definíció

Egy $t \in \text{Term } \acute{\text{ert\'ek\'et}}$ egy I interpretációban a κ változókiértékelés mellett $|t|^{I,\kappa}$ jelöli és a következőképpen definiáljuk

- ▶ Ha $x \in \text{Ind}$, akkor $|x|^{I,\kappa} := \kappa(x)$,
- ▶ Ha $c \in Cnst$, akkor $|c|^{I,\kappa} := c^I$,
- $|f(t_1, t_2, \dots, t_{\mathsf{ar}(f)})|^{I,\kappa} := f^I(|t_1|^{I,\kappa}, |t_2|^{I,\kappa}, \dots, |t_{\mathsf{ar}(f)}|^{I,\kappa}).$

Példa Az előző példát folytatva legyen $I = \langle \mathbb{N}, I_{\mathsf{Pred}}, I_{\mathsf{Func}}, I_{\mathsf{Cnst}} \rangle$ egy interpretáció, ahol $I_{\mathsf{Pred}}(p) = p^I, \quad (m,n) :\in p^I \Leftrightarrow m \geq n$ $I_{\mathsf{Pred}}(q) = q^I, \quad (m,n) :\in q^I \Leftrightarrow m = n$ $I_{\mathsf{Func}}(f) = f^I, \quad f^I(m,n) := m + n$ $I_{\mathsf{Cnst}}(a) := 0$, legyen továbbá κ egy változókiértékelés, amelyre

 $\kappa(x) = 5, \kappa(y) = 3.$

Definíció

Egy $t\in \text{Term}$ értékét egy I interpretációban a κ változókiértékelés mellett $|t|^{I,\kappa}$ jelöli és a következőképpen definiáljuk

- ▶ Ha $x \in \text{Ind}$, akkor $|x|^{I,\kappa} := \kappa(x)$,
- ▶ Ha $c \in Cnst$, akkor $|c|^{I,\kappa} := c^I$,
- $|f(t_1, t_2, \dots, t_{\mathsf{ar}(f)})|^{I,\kappa} := f^I(|t_1|^{I,\kappa}, |t_2|^{I,\kappa}, \dots, |t_{\mathsf{ar}(f)}|^{I,\kappa}).$

Példa Az előző példát folytatva $|f(f(x,y),y)|_{x=0}^{l,\kappa}=11.$

Definíció

A κ^* változókiértékelés a κ változókiértékelés x-variánsa, ha $\kappa^*(y)=\kappa(y)$ minden $y\in \operatorname{Ind}, y\neq x$ esetén.

Definíció

A κ^* változókiértékelés a κ változókiértékelés x-variánsa, ha $\kappa^*(y) = \kappa(y)$ minden $y \in \operatorname{Ind}, y \neq x$ esetén.

Definíció

Egy $\varphi \in$ Form formula **igazságértékét** egy I interpretációban a κ változókiértékelés mellett $|\varphi|^{I,\kappa}$ jelöli és így definiáljuk:

Definíció

A κ^* változókiértékelés a κ változókiértékelés x-variánsa, ha $\kappa^*(y) = \kappa(y)$ minden $y \in \operatorname{Ind}, y \neq x$ esetén.

Definíció

Egy $\varphi \in$ Form formula **igazságértékét** egy I interpretációban a κ változókiértékelés mellett $|\varphi|^{I,\kappa}$ jelöli és így definiáljuk:

$$|p(t_1, t_2, \dots, t_{\mathsf{ar}(p)})|^{I, \kappa} = i \Leftrightarrow (|t_1|^{I, \kappa}, |t_2|^{I, \kappa}, \dots, |t_{\mathsf{ar}(p)}|^{I, \kappa}) \in p^I,$$

DITTERNET E POQO

Definíció

A κ^* változókiértékelés a κ változókiértékelés x-variánsa, ha $\kappa^*(y) = \kappa(y)$ minden $y \in \operatorname{Ind}, y \neq x$ esetén.

Definíció

Egy $\varphi \in$ Form formula **igazságértékét** egy I interpretációban a κ változókiértékelés mellett $|\varphi|^{I,\kappa}$ jelöli és így definiáljuk:

- $|p(t_1, t_2, \dots, t_{\mathsf{ar}(p)})|^{I,\kappa} = i \Leftrightarrow$ $(|t_1|^{I,\kappa}, |t_2|^{I,\kappa}, \dots, |t_{\mathsf{ar}(p)}|^{I,\kappa}) \in p^I,$
- $|\neg \varphi|^{I,\kappa} := \neg |\varphi|^{I,\kappa}$

or the result of the

Definíció

A κ^* változókiértékelés a κ változókiértékelés x-variánsa, ha $\kappa^*(y) = \kappa(y)$ minden $y \in \operatorname{Ind}, y \neq x$ esetén.

Definíció

Egy $\varphi \in$ Form formula **igazságértékét** egy I interpretációban a κ változókiértékelés mellett $|\varphi|^{I,\kappa}$ jelöli és így definiáljuk:

- $|p(t_1, t_2, \dots, t_{\operatorname{ar}(p)})|^{I, \kappa} = i \Leftrightarrow$ $(|t_1|^{I, \kappa}, |t_2|^{I, \kappa}, \dots, |t_{\operatorname{ar}(p)}|^{I, \kappa}) \in p^I,$
- $|\neg \varphi|^{I,\kappa} := \neg |\varphi|^{I,\kappa}$
- $|\varphi \circ \psi|^{I,\kappa} := |\varphi|^{I,\kappa} \circ |\psi|^{I,\kappa} \qquad \circ \in \{\land, \lor, \to\}$

J 7 1 5 7 5 7 9 9 9

Definíció

A κ^* változókiértékelés a κ változókiértékelés x-variánsa, ha $\kappa^*(y) = \kappa(y)$ minden $y \in \operatorname{Ind}, y \neq x$ esetén.

Definíció

Egy $\varphi \in$ Form formula **igazságértékét** egy I interpretációban a κ változókiértékelés mellett $|\varphi|^{I,\kappa}$ jelöli és így definiáljuk:

- $|p(t_1, t_2, \dots, t_{\operatorname{ar}(p)})|^{I, \kappa} = i \Leftrightarrow$ $(|t_1|^{I, \kappa}, |t_2|^{I, \kappa}, \dots, |t_{\operatorname{ar}(p)}|^{I, \kappa}) \in p^I,$
- $|\neg \varphi|^{I,\kappa} := \neg |\varphi|^{I,\kappa}$
- $|\varphi \circ \psi|^{I,\kappa} := |\varphi|^{I,\kappa} \circ |\psi|^{I,\kappa} \qquad \circ \in \{\land,\lor,\to\}$
- $ightharpoonup |\forall x \varphi|^{I,\kappa} = i \Leftrightarrow \text{ha } |\varphi|^{I,\kappa^*} = i \text{ } \kappa\text{-nak minden } \kappa^* \text{ } x\text{-variansara,}$

7 LET = 990

Definíció

A κ^* változókiértékelés a κ változókiértékelés x-variánsa, ha $\kappa^*(y) = \kappa(y)$ minden $y \in \operatorname{Ind}, y \neq x$ esetén.

Definíció

Egy $\varphi \in$ Form formula **igazságértékét** egy I interpretációban a κ változókiértékelés mellett $|\varphi|^{I,\kappa}$ jelöli és így definiáljuk:

- $|p(t_1, t_2, \dots, t_{\mathsf{ar}(p)})|^{I,\kappa} = i \Leftrightarrow$ $(|t_1|^{I,\kappa}, |t_2|^{I,\kappa}, \dots, |t_{\mathsf{ar}(p)}|^{I,\kappa}) \in p^I,$
- $|\neg \varphi|^{I,\kappa} := \neg |\varphi|^{I,\kappa}$
- $|\varphi \circ \psi|^{I,\kappa} := |\varphi|^{I,\kappa} \circ |\psi|^{I,\kappa} \qquad \circ \in \{\land, \lor, \to\}$
- $ightharpoonup |\forall x \varphi|^{I,\kappa} = i \Leftrightarrow \text{ha } |\varphi|^{I,\kappa^*} = i \text{ } \kappa\text{-nak minden } \kappa^* \text{ } x\text{-variansara,}$
- ▶ $|\exists x \varphi|^{I,\kappa} = i \Leftrightarrow \text{ha } |\varphi|^{I,\kappa^*} = i \text{ } \kappa\text{-nak legalabb egy } \kappa^*$ x-variansara.

U - 1 L - 1 - 1 - 1 990

Definíció

A κ^* változókiértékelés a κ változókiértékelés x-variánsa, ha $\kappa^*(y) = \kappa(y)$ minden $y \in \operatorname{Ind}, y \neq x$ esetén.

Definíció

Egy $\varphi \in$ Form formula **igazságértékét** egy I interpretációban a κ változókiértékelés mellett $|\varphi|^{I,\kappa}$ jelöli és így definiáljuk:

- $|p(t_1, t_2, \dots, t_{\mathsf{ar}(p)})|^{I,\kappa} = i \Leftrightarrow$ $(|t_1|^{I,\kappa}, |t_2|^{I,\kappa}, \dots, |t_{\mathsf{ar}(p)}|^{I,\kappa}) \in p^I,$
- $|\neg \varphi|^{I,\kappa} := \neg |\varphi|^{I,\kappa}$
- $|\varphi \circ \psi|^{I,\kappa} := |\varphi|^{I,\kappa} \circ |\psi|^{I,\kappa} \qquad \circ \in \{\land, \lor, \to\}$
- $ightharpoonup |\forall x \varphi|^{I,\kappa} = i \Leftrightarrow \text{ha } |\varphi|^{I,\kappa^*} = i \text{ } \kappa\text{-nak minden } \kappa^* \text{ } x\text{-variansara,}$
- ▶ $|\exists x \varphi|^{I,\kappa} = i \Leftrightarrow \text{ha } |\varphi|^{I,\kappa^*} = i \kappa \text{-nak legalabb egy } \kappa^*$ x-variansara.

A \neg , \wedge , \vee , \rightarrow műveletek ugyanazok, mint az ítéletlogikánál.

$$|p(f(y,y),x)|^{I,\kappa}=i.$$

$$|p(f(y,y),x)|^{I,\kappa} = i.$$

$$|q(f(y,y),x)|^{I,\kappa} = h.$$

$$|p(f(y,y),x)|^{l,\kappa} = i.$$

$$|q(f(y,y),x)|^{l,\kappa} = h.$$

$$|p(x,y) \to q(x,y)|^{l,\kappa} = h.$$

$$|p(f(y,y),x)|^{I,\kappa} = i.$$

$$|q(f(y,y),x)|^{I,\kappa} = h.$$

$$|p(x,y) \to q(x,y)|^{I,\kappa} = h.$$

$$\varphi_1 = \forall x p(x,a),$$

$$|p(f(y,y),x)|^{I,\kappa} = i.$$

$$|q(f(y,y),x)|^{I,\kappa} = h.$$

$$|p(x,y) \to q(x,y)|^{I,\kappa} = h.$$

$$\varphi_1 = \forall x p(x, a),$$

Minden természetes szám $\geq 0.$

$$\begin{split} |p(f(y,y),x)|^{I,\kappa} &= i. \\ |q(f(y,y),x)|^{I,\kappa} &= h. \\ |p(x,y) &\to q(x,y)|^{I,\kappa} = h. \\ \varphi_1 &= \forall x p(x,a), \\ \text{Minden természetes szám} &\geq 0. \quad |\varphi_1|^{I,\kappa} = i, \end{split}$$

$$\begin{split} &|p(f(y,y),x)|^{I,\kappa}=i.\\ &|q(f(y,y),x)|^{I,\kappa}=h.\\ &|p(x,y)\to q(x,y)|^{I,\kappa}=h.\\ &\varphi_1=\forall xp(x,a),\\ &\text{Minden term\'eszetes sz\'am}\geq 0.\quad |\varphi_1|^{I,\kappa}=i,\\ &\varphi_2=\forall x\exists yq(f(x,y),a), \end{split}$$

Példa Az előző példát folytatva

$$|p(f(y,y),x)|^{I,\kappa} = i.$$

$$|q(f(y,y),x)|^{I,\kappa} = h.$$

$$|p(x,y) \to q(x,y)|^{I,\kappa} = h.$$

$$\varphi_1 = \forall x p(x, a),$$

Minden természetes szám ≥ 0 . $|\varphi_1|^{I,\kappa} = i$,

$$\varphi_2 = \forall x \exists y q(f(x, y), a),$$

Minden természetes számhoz hozzá tudjuk adni egy természetes számot úgy, hogy 0-t kapjunk.

Példa Az előző példát folytatva

$$|p(f(y,y),x)|^{I,\kappa} = i.$$

$$|q(f(y,y),x)|^{I,\kappa} = h.$$

$$|p(x,y) \to q(x,y)|^{I,\kappa} = h.$$

$$\varphi_1 = \forall x p(x, a),$$

Minden természetes szám ≥ 0 . $|\varphi_1|^{I,\kappa} = i$,

$$\varphi_2 = \forall x \exists y q(f(x, y), a),$$

Minden természetes számhoz hozzá tudjuk adni egy természetes számot úgy, hogy 0-t kapjunk. $|\varphi_2|^{I,\kappa}=h$,

Példa Az előző példát folytatva

$$|p(f(y,y),x)|^{I,\kappa} = i.$$

$$|q(f(y,y),x)|^{I,\kappa} = h.$$

$$|p(x,y) \to q(x,y)|^{I,\kappa} = h.$$

$$\varphi_1 = \forall x p(x, a),$$

Minden természetes szám ≥ 0 . $|\varphi_1|^{I,\kappa} = i$,

$$\varphi_2 = \forall x \exists y q(f(x, y), a),$$

Minden természetes számhoz hozzá tudjuk adni egy természetes számot úgy, hogy 0-t kapjunk. $|\varphi_2|^{I,\kappa}=h$,

$$\varphi_3 = \forall x (\forall y q(f(y,x),y) \rightarrow p(x,a)),$$

Példa Az előző példát folytatva

$$|p(f(y,y),x)|^{I,\kappa} = i.$$

$$|q(f(y,y),x)|^{I,\kappa} = h.$$

$$|p(x,y) \to q(x,y)|^{I,\kappa} = h.$$

$$\varphi_1 = \forall x p(x, a),$$

Minden természetes szám ≥ 0 . $|\varphi_1|^{I,\kappa} = i$,

$$\varphi_2 = \forall x \exists y q(f(x, y), a),$$

Minden természetes számhoz hozzá tudjuk adni egy természetes számot úgy, hogy 0-t kapjunk. $|\varphi_2|^{I,\kappa}=h$,

$$\varphi_3 = \forall x (\forall y q(f(y,x),y) \to p(x,a)),$$

Ha a természetes számoknak van nulleleme, akkor az egyenlő 0-val,

Példa Az előző példát folytatva

$$|p(f(y,y),x)|^{I,\kappa} = i.$$

$$|q(f(y,y),x)|^{I,\kappa} = h.$$

$$|p(x,y) \to q(x,y)|^{I,\kappa} = h.$$

$$\varphi_1 = \forall x p(x, a),$$

Minden természetes szám ≥ 0 . $|\varphi_1|^{I,\kappa} = i$,

$$\varphi_2 = \forall x \exists y q(f(x, y), a),$$

Minden természetes számhoz hozzá tudjuk adni egy természetes számot úgy, hogy 0-t kapjunk. $|\varphi_2|^{I,\kappa}=h$,

$$\varphi_3 = \forall x (\forall y q(f(y,x),y) \to p(x,a)),$$

Ha a természetes számoknak van nulleleme, akkor az egyenlő 0-val, $|\varphi_3|^{I,\kappa}=i$.

Példa Az előző példát folytatva

$$|p(f(y,y),x)|^{I,\kappa} = i.$$

$$|q(f(y,y),x)|^{I,\kappa} = h.$$

$$|p(x,y) \to q(x,y)|^{I,\kappa} = h.$$

$$\varphi_1 = \forall x p(x, a),$$

Minden természetes szám ≥ 0 . $|\varphi_1|^{I,\kappa} = i$,

$$\varphi_2 = \forall x \exists y q(f(x, y), a),$$

Minden természetes számhoz hozzá tudjuk adni egy természetes számot úgy, hogy 0-t kapjunk. $|\varphi_2|^{I,\kappa}=h$,

$$\varphi_3 = \forall x (\forall y q(f(y,x),y) \to p(x,a)),$$

Ha a természetes számoknak van nulleleme, akkor az egyenlő 0-val, $|\varphi_3|^{I,\kappa}=i$.

Ha $U = \mathbb{Z}$ lenne, akkor φ_2 is igaz lenne.

Definíció

Legyen φ egy formula, és tekintsük $x \in \operatorname{Ind}$ egy előfordulását φ -ben. Azt mondjuk, hogy x ezen előfordulása **kötött**, ha x a φ egy $\exists x \psi$ vagy $\forall x \psi$ alakú részformulájába esik.

Definíció

Legyen φ egy formula, és tekintsük $x \in \operatorname{Ind}$ egy előfordulását φ -ben. Azt mondjuk, hogy x ezen előfordulása kötött, ha x a φ egy $\exists x \psi$ vagy $\forall x \psi$ alakú részformulájába esik. Ellenkező esetben x ezen előfordulása szabad.

Definíció

Legyen φ egy formula, és tekintsük $x \in \operatorname{Ind}$ egy előfordulását φ -ben. Azt mondjuk, hogy x ezen előfordulása **kötött**, ha x a φ egy $\exists x \psi$ vagy $\forall x \psi$ alakú részformulájába esik. Ellenkező esetben x ezen előfordulása **szabad**. Ha φ minden individuumváltozójának minden előfordulása kötött, akkor **zárt** formuláról beszélünk.

Definíció

Legyen φ egy formula, és tekintsük $x \in \operatorname{Ind}$ egy előfordulását φ -ben. Azt mondjuk, hogy x ezen előfordulása kötött, ha x a φ egy $\exists x \psi$ vagy $\forall x \psi$ alakú részformulájába esik. Ellenkező esetben x ezen előfordulása szabad. Ha φ minden individuumváltozójának minden előfordulása kötött, akkor zárt formuláról beszélünk. Egyébként a kormula nyitott.

Definíció

Legyen φ egy formula, és tekintsük $x \in \operatorname{Ind}$ egy előfordulását φ -ben. Azt mondjuk, hogy x ezen előfordulása **kötött**, ha x a φ egy $\exists x \psi$ vagy $\forall x \psi$ alakú részformulájába esik. Ellenkező esetben x ezen előfordulása **szabad**. Ha φ minden individuumváltozójának minden előfordulása kötött, akkor **zárt** formuláról beszélünk. Egyébként a kormula **nyitott**.

Észrevétel: Ha φ zárt, ekkor bármely I interpretáció esetén $|\varphi|^{I,\kappa}$ értéke nem függ κ -tól. Ilyenkor $|\varphi|^{I,\kappa}$ helyett $|\varphi|^I$ írható.

Definíció

Legyen φ egy formula, és tekintsük $x \in \operatorname{Ind}$ egy előfordulását φ -ben. Azt mondjuk, hogy x ezen előfordulása kötött, ha x a φ egy $\exists x \psi$ vagy $\forall x \psi$ alakú részformulájába esik. Ellenkező esetben x ezen előfordulása szabad. Ha φ minden individuumváltozójának minden előfordulása kötött, akkor zárt formuláról beszélünk. Egyébként a kormula nyitott.

Észrevétel: Ha φ zárt, ekkor bármely I interpretáció esetén $|\varphi|^{I,\kappa}$ értéke nem függ κ -tól. Ilyenkor $|\varphi|^{I,\kappa}$ helyett $|\varphi|^I$ írható.

Példa Az előző példában $\varphi_1,\ \varphi_2,\ \varphi_3$ zárt formulák, míg $\forall x p(x,x) \to q(x,x)$ nyitott, mert x 3. és 4. előfordulását nem tartalmazza kvantált részformula. (A formula részformulái: $\forall x p(x,x) \to q(x,x),\ \forall x p(x,x),\ p(x,x),\ q(x,x).$)

Definíció

▶ Egy φ elsőrendű logikai formula **kielégíthető**, ha van olyan I interpretáció és κ változókiértékelés, amelyre $|\varphi|^{I,\kappa} = i$, egyébként **kielégíthetetlen**.

- ▶ Egy φ elsőrendű logikai formula **kielégíthető**, ha van olyan I interpretáció és κ változókiértékelés, amelyre $|\varphi|^{I,\kappa} = i$, egyébként **kielégíthetetlen**.
- φ logikailag igaz (vagy érvényes), ha minden I, κ -ra, $|\varphi|^{I,\kappa} = i$, ennek jelölése $\models \varphi$.

- Egy φ elsőrendű logikai formula **kielégíthető**, ha van olyan I interpretáció és κ változókiértékelés, amelyre $|\varphi|^{I,\kappa} = i$, egyébként **kielégíthetetlen**.
- ▶ φ logikailag igaz (vagy érvényes), ha minden I, κ -ra, $|\varphi|^{I,\kappa} = i$, ennek jelölése $\models \varphi$.
- φ és ψ elsőrendű logikai formulák logikailag ekvivalensek, ha ha minden I, κ -ra, $|\varphi|^{I,\kappa} = |\psi|^{I,\kappa}$. Jelölése $\varphi \sim \psi$.

- ▶ Egy φ elsőrendű logikai formula **kielégíthető**, ha van olyan I interpretáció és κ változókiértékelés, amelyre $|\varphi|^{I,\kappa} = i$, egyébként **kielégíthetetlen**.
- ▶ φ logikailag igaz (vagy érvényes), ha minden I, κ -ra, $|\varphi|^{I,\kappa} = i$, ennek jelölése $\models \varphi$.
- φ és ψ elsőrendű logikai formulák logikailag ekvivalensek, ha ha minden I, κ -ra, $|\varphi|^{I,\kappa} = |\psi|^{I,\kappa}$. Jelölése $\varphi \sim \psi$.
- Az $\mathcal F$ formulahalmaz **kielégíthető**, ha van olyan I interpretáció és κ változókiértékelés, amelyre $|\varphi|^{I,\kappa}=i$ teljesül minden $\varphi\in\mathcal F$ -re, egyébként **kielégíthetetlen**.

- ▶ Egy φ elsőrendű logikai formula **kielégíthető**, ha van olyan I interpretáció és κ változókiértékelés, amelyre $|\varphi|^{I,\kappa}=i$, egyébként **kielégíthetetlen**.
- ▶ φ logikailag igaz (vagy érvényes), ha minden I, κ -ra, $|\varphi|^{I,\kappa} = i$, ennek jelölése $\models \varphi$.
- φ és ψ elsőrendű logikai formulák logikailag ekvivalensek, ha ha minden I, κ -ra, $|\varphi|^{I,\kappa} = |\psi|^{I,\kappa}$. Jelölése $\varphi \sim \psi$.
- Az $\mathcal F$ formulahalmaz **kielégíthető**, ha van olyan I interpretáció és κ változókiértékelés, amelyre $|\varphi|^{I,\kappa}=i$ teljesül minden $\varphi\in\mathcal F$ -re, egyébként **kielégíthetetlen**.
- Az $\mathcal F$ formulahalmaznak φ logikai következménye (jelölés: $\mathcal F \models \varphi$) ha minden I, κ -ra ha minden $\psi \in \mathcal F$ -re $|\psi|^{I,\kappa} = i$ teljesül, akkor $|\varphi|^{I,\kappa} = i$ is teljesül.

Tétel

Legyen ValidityPred = $\{\langle \varphi \rangle \mid \varphi \text{ logikallag igaz}\}.$

Tétel

Legyen ValidityPred = $\{\langle \varphi \rangle \mid \varphi \text{ logikalag igaz} \}$. Ekkor

(1) ValidityPred ∉ R

Tétel

Legyen ValidityPred = $\{\langle \varphi \rangle | \varphi \text{ logikalag igaz} \}$. Ekkor

(1) ValidityPred ∉ R

Nem bizonyítjuk, a bizonyítás megtalálható Gazdag Zsolt: Bevezetés a számításelméletbe elektronikus jegyzetének 61. oldalán.

Tétel

Legyen ValidityPred = $\{\langle \varphi \rangle | \varphi \text{ logikalag igaz} \}$. Ekkor

(1) ValidityPred ∉ R

Nem bizonyítjuk, a bizonyítás megtalálható Gazdag Zsolt: Bevezetés a számításelméletbe elektronikus jegyzetének 61. oldalán.

A bizonyítás egyébként L_{PMP} -t vezeti vissza a fenti problémának megfelelő formális nyelvre. Azaz minden D dominókészlethez megadható egy φ_D elsőrendű formula, amelyre teljesül, hogy D-nek akkor és csak akkor van megoldása, ha $\models \varphi_D$.

(Vagyis egy dominókészlet megoldásának fogalmát formálisan le lehet írni egy elsőrendű logikai formulával.)

Következmény

Legyen ${\mathcal F}$ egy elsőrendű formulahalmaz és φ egy elsőrendű formula. Eldönthetetlen, hogy

(2) φ kielégíthetetlen-e

Következmény

Legyen $\mathcal F$ egy elsőrendű formulahalmaz és φ egy elsőrendű formula. Eldönthetetlen, hogy

- (2) φ kielégíthetetlen-e
- (3) φ kielégíthető-e

Következmény

Legyen ${\mathcal F}$ egy elsőrendű formulahalmaz és φ egy elsőrendű formula. Eldönthetetlen, hogy

- (2) φ kielégíthetetlen-e
- (3) φ kielégíthető-e
- (4) $\mathcal{F} \models \varphi$ teljesül-e

Következmény

Legyen $\mathcal F$ egy elsőrendű formulahalmaz és φ egy elsőrendű formula. Eldönthetetlen, hogy

- (2) φ kielégíthetetlen-e
- (3) φ kielégíthető-e
- (4) $\mathcal{F} \models \varphi$ teljesül-e

Bizonyítás:

(2) $\vDash \neg \varphi \Leftrightarrow \varphi$ kielégíthetetlen.

Következmény

Legyen ${\mathcal F}$ egy elsőrendű formulahalmaz és φ egy elsőrendű formula. Eldönthetetlen, hogy

- (2) φ kielégíthetetlen-e
- (3) φ kielégíthető-e
- (4) $\mathcal{F} \models \varphi$ teljesül-e

Bizonyítás:

- (2) $\vDash \neg \varphi \Leftrightarrow \varphi$ kielégíthetetlen.
- (3) Eldönthetetlen nyelv komplementere eldönthetetlen.

Következmény

Legyen ${\mathcal F}$ egy elsőrendű formulahalmaz és φ egy elsőrendű formula. Eldönthetetlen, hogy

- (2) φ kielégíthetetlen-e
- (3) φ kielégíthető-e
- (4) $\mathcal{F} \models \varphi$ teljesül-e

Bizonyítás:

- (2) $\vDash \neg \varphi \Leftrightarrow \varphi$ kielégíthetetlen.
- (3) Eldönthetetlen nyelv komplementere eldönthetetlen.
- (4) $\mathcal{F} \vDash \varphi \Leftrightarrow \mathcal{F} \cup \{\neg \varphi\}$ kielégíthetetlen

Következmény

Legyen ${\mathcal F}$ egy elsőrendű formulahalmaz és φ egy elsőrendű formula. Eldönthetetlen, hogy

- (2) φ kielégíthetetlen-e
- (3) φ kielégíthető-e
- (4) $\mathcal{F} \models \varphi$ teljesül-e

Bizonyítás:

- (2) $\vDash \neg \varphi \Leftrightarrow \varphi$ kielégíthetetlen.
- (3) Eldönthetetlen nyelv komplementere eldönthetetlen.
- (4) $\mathcal{F} \vDash \varphi \Leftrightarrow \mathcal{F} \cup \{\neg \varphi\}$ kielégíthetetlen

Megjegyzés: Van olyan algoritmus, amely egy tetszőleges φ elsőrendű formulára pontosan akkor áll meg igen válasszal, ha φ kielégíthetetlen (ilyen például az elsőrendű logika rezolúciós algoritmusa). Ezért a kielégíthetetlenség rekurzíve felsorolható.

Következmény

Legyen ${\mathcal F}$ egy elsőrendű formulahalmaz és φ egy elsőrendű formula. Eldönthetetlen, hogy

- (2) φ kielégíthetetlen-e
- (3) φ kielégíthető-e
- (4) $\mathcal{F} \models \varphi$ teljesül-e

Bizonyítás:

- (2) $\vDash \neg \varphi \Leftrightarrow \varphi$ kielégíthetetlen.
- (3) Eldönthetetlen nyelv komplementere eldönthetetlen.
- (4) $\mathcal{F} \vDash \varphi \Leftrightarrow \mathcal{F} \cup \{\neg \varphi\}$ kielégíthetetlen

Megjegyzés: Van olyan algoritmus, amely egy tetszőleges φ elsőrendű formulára pontosan akkor áll meg igen válasszal, ha φ kielégíthetetlen (ilyen például az elsőrendű logika rezolúciós algoritmusa). Ezért a kielégíthetetlenség rekurzíve felsorolható. \Rightarrow a kielégíthetőség nem rekurzíve felsorolható.