机智云平台标准接入协议

之 MCU 与移动通讯模组通讯

修订历史

版本	修订内容	修订人	修订日期	
4.1.0 首次公布		Will	2016-03-09	
4. 1. 1	增加变长支持;支持中控;	AndyGao	2017-05-17	

产品名称:车载监视器

生成日期: 2018-11-25

目录

- 1. 通讯模型
 - 2. 约定
 - 2.1. 协议阅读说明
 - 2.2. 数据包重发策略
 - 2.3 设备识别码:
 - 2.4 SDID
 - 2.5 DID
 - 3. 通讯协议
 - 3.1. 获取设备信息
 - 3.2. 通讯模组读取设备的当前状态
 - 3.3. 通讯模组控制设备
 - 3.4. 设备MCU向通讯模组主动上报当前状态
 - 3.5. 心跳
 - 3.6. 重置通讯模组
 - 3.7. 推送通讯模组工作状态
 - 3.8. 重启 MCU
 - 3.9. 非法数据包通知
 - 3.10. MCU 请求通讯模组进入产测模式
 - 3.11. MCU 请求获取网络时间
 - 3.12. 大数据下发:数据发起者请求向数据接收者发送大数据
 - 3.13. 大数据下发: 数据接收者告知数据发起者可以开始发送数据
 - 3.14. 大数据下发:数据发送者向数据接收者下发数据分片
 - 3.15. 大数据下发:数据发起者向数据接收者通知取消数据下发
 - 3.16. 大数据下发: 数据接收者向数据发起者通知取消数据下发
 - 3.17. MCU 获取通讯模组的信息
 - 3.18. MCU 请求通讯模组进行事务处理
 - 3.19. MCU 重启通讯模组
 - 3.20. 模组通知主 MCU 对其下的子 MCU 进行推送升级

4. 事务附录

- 4.1. 事务处理一: MCU 请求 GAgent 进行设备 OTA 检查
- 4.2. 事务处理二: MCU 请求 GAgent 进行文件下载

5. 中控扩展协议(高级)

- 5.1. 连接云端
- 5.2. 连接云端回调函数
- 5.3. 断开云端连接
- 5.4. 断开云端连接回调函数
- 5.5. 解除用户绑定关系
- 5.6. 解除用户绑定关系回调函数
- 5.7. 写子设备数据点
- 5.8. 读取子设备的当前状态
- 5.9. 子设备主动上报当前状态
- 5.10. 添加子设备
- 5.11. 删除子设备
- 5.12. 查询子设备列表
- 5.13. 子设备列表变更通知
- 5.14. 子设备上下线状态变更通知

1. 通讯模型¶

在设备内部,设备主控制 MCU 通过串口(UART)和模组通讯。

设备

串口的通讯参数如下:

• 波特率: 9600 (默认9600bps, 可调整)

• 数据位: 8

• 奇偶校验: 无

停止位: 1

• 数据流控: 无

• 给模组供电电压: 3.3v, 电流(max): 150mA

2. 约定¶

2.1. 协议阅读说明¶

- 长度:一般由一个(1B)或两个字节(2B)组成。若多于一个字节组成,采用大端编码方式,即高字节在前,低字节在后。即高字节在前,低字节在后。
- 指令格式: 指令由以下部分按顺序组成-包头(2B)=0xFFFF,包长度(2B,包的剩余字节数),命令(1B),包序号(1B),Flags(2B),有效负载,校验和(1B)。包长度是指从命令开始一直到校验和的字节长度(包括命令和校验和)。因为包头为固定 0xFFFF,对于发送方,如检测到有出现 0xFF 的数据内容,需要在 0xFF 后添加 0x55。对于接收方,如检测到非包头部分出现 0xFF,需要把紧跟其后的 0x55 移除。
- 校验和:对数据包中的包长度开始一直到有效负载的字节求和取余数,即 sum(包长度...有效负载)%256。
- 包序号:由命令发起方给出,从1开始递增,超过255后从头从1开始。命令确认消息中包序号表示被确认的消息的序号。
- flag: 分为高字节和低字节,比如falg值为0x0A0B,0A是高字节,0B是低字节;高字节是通讯协议级别的标记定义,是协议命令间通用的标记,低字节是本条协议内的标记定义,只影响本条协议,不具通用性,具体含义每条命令单独定义。

2.2. 数据包重发策略¶

除"非法据包通知"指令外,其它指令都需要接收方确认,如发送方在200毫秒内没有收到确认,发送方将重发该指令,每条指令最多重发 3 次。

2.3 设备识别码:¶

• 格式为字符串,一般由MAC地址代替,无MAC的设备由厂商定义,并保证同产品下设备识别码的唯一性。如MAC为E043DF2B8A13,设备识别码即为"E043DF2B8A13"。

2.4 SDID¶

• 由中控设备分配且保证唯一性,由 1 开始,每加入一个子设备为其分配的 SDID 增加 1。同一子设备前后两次加入同一个中控设备,中控设备为其分配的 SDID 不同。

2.5 DID¶

• 设备号,当一个设备初次接入机智云时,机智云自动根据ProductKey以及设备Wi-Fi模块MAC地址为此设备注册一个did,此did全网唯一,用于与用户的绑定及后续操作。

3. 通讯协议¶

3.1. 获取设备信息¶

通讯模组上电后,需要向 MCU 查询设备信息。

模组向 MCU 请求设备信息,模组 => MCU。

序号	字段名称	字节长度(B)	内容说明	
1	固定包头	2	0xFFFF	
2	包长度	2	len(命令校验和)	
3 命令		1	0x01	

4	包序号	1	
5	Flags	2	0x0000
6	校验和	1	

MCU 回复设备信息, MCU => 模组。

序号	字段名称	字节长度(B)	内容说明	
1	固定包头	2	0xFFFF	
2	包长度	2	len(命令校验和)	
3	命令	1	0x02	
4	包序号	1	对应发送包的包序号	
5	Flags	2	0x0000	
6	通用串口协议版本号	8	字符串,"00000004"	
7	业务协议版本号	8	字符串,"00000002"	
8	硬件版本号	8	字符串	
9	软件版本号	8	字符串	
10	产品标识码	32	字符串,即 ProductKey	
11	可绑定状态失效时间	2	预留,填 0	
12	设备属性	8	设备属性。从右向左编号成 bit0~bit63。bit0=1 表示设备是中控设备。bit1~bit63 预留。	
13	产品秘钥	32	十六进制字符串,通过机智云官网获取	
14	校验和	1		

3.2. 通讯模组读取设备的当前状态¶

通讯模组发送:

header (2B)	len(2B)	cmd(1B)	sn (1B)	flags(2B)	action(1B)	attr_flags(2B)	checksum(1B)
0xFFFF	0x0006	0x03	0x##	0x0000	0x12		0x##

设备MCU回复:

header (2B)	len(2B)	cmd(1B)	sn (1B)	flags (2B)	action(1B)	attr_flags(2B)	dev_status(43B)	checksum(1B)
0xFFFF	0x0031	0x04	0x##	0x0000	0x13		有效设备状态	0x##

注:

attr_flags见"通信模组控制设备"的描述。

设备状态(dev_status)使用一个或多个字节表示。例如数据包为

0x01 FF 64 C3 50 03 E8 01 02 03 ... 04 05 时, 其格式为:

字节序 位序 数据内容 说明	
---------------------------	--

byte0 byte1	bit15 bit14 bit1 bit1 bit1	0ь00000001 111111111	GetData,类型为bool,值为true:字段bit0,字段值为0b1;GPS_ERROR,类型为bool,值为true:字段bit1,字段值为0b1;DHT11_ERROR,类型为bool,值为true:字段bit2,字段值为0b1;TV0C_ERROR,类型为bool,值为true:字段bit3,字段值为0b1;RGB,类型为enum,值为7:字段bit6~bit4,字段值为0b111;Beep,类型为enum,值为3:字段bit8~bit7,字段值为0b11;
byte2		0x64	HR, 类型为uint8, 字段值为100; 实际值计算公式y=1.000000*x+(0.000000) x最小值为0,最大值为100
byte3 byte4		0xC3 50	TVOC_PPM, 类型为uint16, 字段值为50000; 实际值计算公式y=0.100000*x+(0.000000) x最小值为0,最大值为50000
byte5 byte6		0x03 E8	Temp,类型为uint16,字段值为1000; 实际值计算公式y=0.100000*x+(0.000000) x最小值为0,最大值为1000
byte7 byte8 byte9 byte41 byte42		0x01 02 03 04 05	GPS_Location, 类型为binary, 字段长度为36, 值为[1,2,3 4,5]

3.3. 通讯模组控制设备¶

通讯模组发送:

header (2B)	len(2B)	cmd(1B)	sn (1B)	flags (2B)	action(1B)	attr_flags(2B)	attr_vals(1B)	checksum(1B)
0xFFFF	0x0008	0x03	0x##	0x0000	0x11	是否设置标志位	有效设置数据值	0x##

注:

1. 是否设置标志位(attr_flags)表示相关的数据值是否为有效值,相关的标志位为1表示值有效,为0表示值无效,从石到左的标志位依次为:

bit0: 设置GetData

bit1: 设置GPS_ERROR

bit2: 设置DHT11_ERROR

bit3: 设置TVOC_ERROR

bit4: 设置RGB

bit5: 设置Beep

bit6: 设置HR

bit7: 设置TVOC_PPM

bit8: 设置Temp

bit9: 设置GPS_Location

2. 设置数据值(attr_vals)存放数据值,只有相关的设置标志位为1时,数据值才有效。例如数据包为0x3F时,其格式为:

字节序	bit序	数据内容	说明
byte0	bit7 bit6 bit1 bit0	0b00111111	GetData, 类型为bool, 值为true: 字段bit0, 字段值为0b1; RGB, 类型为enum, 值为7: 字段bit3 ~ bit1, 字段值为0b111; Beep, 类型为enum, 值为3: 字段bit5 ~ bit4, 字段值为0b11;

设备MCU回复:

header (2B)	len(2B)	cmd(1B)	sn (1B)	flags(2B)	checksum(1B)	
0xFFFF	0x0005	0x04	0x##	0x0000	0x##	

重要说明:无论设备的状态是否发生变化,MCU需要立即上报一次最新的设备状态,格式和流程参见3.4部分。

3.4. 设备MCU向通讯模组主动上报当前状态¶

设备MCU发送:

header (2B)	len(2B)	cmd(1B)	sn (1B)	flags (2B)	action(1B)	attr_flags(2B)	dev_status(43B)	checksum(1B)
0xFFFF	0x0031	0x05	0x##	0x0000	0x14		有设备状态	0x##

注:

attr_flags见"通信模组控制设备"的描述。

设备状态(dev_status)使用一个或多个字节表示。例如数据包为

0x01 FF 64 C3 50 03 E8 01 02 03 ... 04 05 时, 其格式为:

字节序	位序	数据内容	说明
byte0 byte1	bit15 bit14 bit1 bit0	0b00000001 11111111	GetData, 类型为bool, 值为true: 字段bit0, 字段值为0b1; GPS_ERROR, 类型为bool, 值为true: 字段bit1, 字段值为0b1; DHT11_ERROR, 类型为bool, 值为true: 字段bit2, 字段值为0b1; TVOC_ERROR, 类型为bool, 值为true: 字段bit3, 字段值为0b1; RGB, 类型为enum, 值为7: 字段bit6 ~ bit4, 字段值为0b111; Beep, 类型为enum, 值为3: 字段bit8 ~ bit7, 字段值为0b11;
byte2		0x64	HR, 类型为uint8, 字段值为100; 实际值计算公式y=1.000000*x+(0.000000) x最小值为0,最大值为100
byte3 byte4		0xC3 50	TVOC_PPM, 类型为uint16, 字段值为50000; 实际值计算公式y=0.100000*x+(0.000000) x最小值为0,最大值为50000
byte5 byte6		0x03 E8	Temp,类型为uint16,字段值为1000; 实际值计算公式y=0.100000*x+(0.000000) x最小值为0,最大值为1000

byte7	0x01 02 03	04 05	GPS_Location,	类型为binary,	字段长度为36,	值为[1,2,3	4, 5]
byte8							
byte9							
.							
.							
byte41							
byte42							
Dy 00-12							

关于发送频率。当设备MCU收到通讯模组控制产生的状态变化,设备MCU应立刻主动上报当前状态,发送频率不受限制。但如设备的状态的变化是由于用户触发或环境变化所产生的,其发送的频率不能快于6秒每次。建议按需上报,有特殊上报需求请联系机智云。

模组回复MCU:

header(2B)	len (2B)	cmd(1B)	sn (1B)	flags(2B)	checksum(1B)
0xFFFF	0x0005	0x06	0x##	0x0000	0x##

3.5. 心跳¶

当通讯模组超过55秒没有收到MCU的数据包,应向MCU发送心跳包。MCU收到心跳包后马上回复。当通讯模组连续3次没有收到MCU的心跳回复,则重启自身。如MCU在180秒内没有收到通讯模组的心跳请求,则通过硬件引脚重启通讯模组。

模组向 MCU 发送心跳,模组 => MCU。

序号	字段名称	字节长度(B)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x07
4	包序号	1	
5	Flags	2	0x0000
6	校验和	1	

MCU 回复模组, MCU => 模组。

序号	字段名称	字节长度(B)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x08
4	包序号	1	对应发送包的包序号
5	Flags	2	0x0000
6	校验和	1	

3.6. 重置通讯模组¶

重置的内容包括模组保存的 DID, Passcode 等信息。

MCU 重置模组, MCU => 模组。

	序号	字段名称	字节长度(B)	内容说明	
--	----	------	---------	------	--

1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x0B
4	包序号	1	
5	Flags	2	0x0000
6	校验和	1	

模组回复MCU, 模组 => MCU。

序号	字段名称	字节长度(B)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x0C
4	包序号	1	对应发送包的包序号
5	Flags	2	0x0000
6	校验和	1	

3.7. 推送通讯模组工作状态¶

通讯模组会定期(每 10 分钟)或当通讯模组工作状态发生了变化后,把最新的状态推送到 MCU。模组向MCU推送工作状态,模组 => MCU。

序号	字段名称	字节长度(B)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x0D
4	包序号	1	
5	Flags	2	0x0000
6	模组工作状态bit8~bit15	1	bit8 [~] bit15 从低位(bit) 向高位排列

7	模组工作状态bit0~bit7	1	bit0~bit7从低位(bit)向高位排列,与上面的bit8~bit15一共组成bit0 ~bit15,各位的定义如下: • bit0: 预留,填 0 • bit1: 预留,填 1 • bit2: 预留,填 1 • bit3: 预留,填 1 • bit4: 模组是否已连接基站,0 为未连接,1为已连接 • bit5: 模组是否已成功连接上了M2M服务器,0为未连接,1为已连接 • bit6~bit7: 保留 • bit6~bit7: 保留 • bit8~bit10: 仅当模组已成功连接上网络(请看bit4)后值才有效,三个位合起来表示一个整型值,值范围为0~7,表示模组当前连接网络信号强度(RSSI),0为最低,7为最高 • bit11: 是否有App在线,0为否
			 bit11:是否有App在线,0为否,1为是 bit12:是否处于产测模式,0为否,1为是 bit13~bit15:保留
8	校验和	1	

MCU 回复模组, MCU => 模组。

序号	字段名称	字节长度(B)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x0E
4	包序号	1	对应发送包的包序号
5	Flags	2	0x0000
6	校验和	1	

3.8. 重启 MCU¶

模组可以请求重启 MCU, 当做 MCU OTA 升级时可以使用这条命令。

模组请求重启 MCU, 模组 => MCU。

序号	字段名称	字节长度(B)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x0F
4	包序号	1	
5	Flags	2	0x0000
6	校验和	1	

MCU 向模组确认,MCU => 模组。为了避免模组没有收到确认而重发指令而造成 MCU 多次重启,故

MCU 回复模组后需等待 600 毫秒再进行重启。

序号	字段名称	字节长度(B)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x10
4	包序号	1	对应发送包的包序号
5	Flags	2	0x0000
6	校验和	1	

3.9. 非法数据包通知¶

模组回应 MCU 对应包序号的数据包非法,模组 => MCU。

序号	字段名称	字节长度(B)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x11
4	包序号	1	指示非法数据包的包序号
5	Flags	2	0x0000
6	错误码	1	1为校验和错误,2为命令不可识别,3为其它错误,4,文件类型不匹配,0和5~255保留。
7	校验和	1	

MCU 回应模组对应包序号的数据包非法, MCU => 模组。

序号	字段名称	字节长度(B)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x12
4	包序号	1	指示非法数据包的包序号
5	Flags	2	0x0000
6	错误码	1	1为校验和错误,2为命令不可识别,3为其它错误,4,文件类型不匹配,0和5 [~] 255保留。
7	校验和	1	

3.10. MCU 请求通讯模组进入产测模式¶

MCU 请求模组进入产测模式, MCU => 模组。

序号	字段名称	字节长度(B)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)

3	命令	1	0x13
4	包序号	1	
5	Flags	2	0x0000
6	校验和	1	

模组回应 MCU, 模组 => MCU。

序号	字段名称	字节长度(B)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x14
4	包序号	1	对应发送包的包序号
5	Flags	2	0x0000
6	校验和	1	

3.11. MCU 请求获取网络时间¶

MCU 请求获取网络时间, MCU => 模组。

序号	字段名称	字节长度(B)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x17
4	包序号	1	
5	Flags	2	0x0000
6	校验和	1	

模组回应 MCU, 模组 => MCU。

年月日的时区是东 8 区,北京时间。

序号	字段名称	字节长度(B)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x18
4	包序号	1	对应发送包的包序号
5	Flags	2	0x0000
6	年	2	e. g 2015
7	月	1	
8	日	1	
9	时	1	
10	分	1	

11	秒	1	
12	NTP 时间	4	1970 年 1 月 1 日至今的秒数
13	校验和	1	

3.12. 大数据下发:数据发起者请求向数据接收者发送大数据¶

发起者请求向接收者发送大数据。

序号	字段名称	字节长度(B)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x19
4	包序号	1	
5	Flags	2	0x0000
6	数据大小	4	请求传送的数据字节大小
7	数据校验码长度	2	len(数据校验码)
8	数据校验码		数据校验码的内容,使用 MD5 校验算法
9	校验和	1	

接收者回应发起者(表示收到通知)。

序号	字段名称	字节长度(B)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x1A
4	包序号	1	对应发送包的包序号
5	Flags	2	0x0000
6	校验和	1	

3.13. 大数据下发:数据接收者告知数据发起者可以开始发送数据¶

接收者告知发起者可以开始发送数据。

大文件传输细节约定:

数据发起者中的文件格式如果是 hex 文件,数据接收者以 bin 格式索取,此时数据发起者就使用数据分片大小,以 bin 类型数据下发;但是如果数据发起者中的文件格式是 bin,接收者以 hex类型索取,则返回无效命令,命令中的错误码是 4,表示文件类型不匹配。以 hex 文件索取文件时,分片大小无效,填充 0。

序号	字段名称	字节长度(B)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x1B
4	包序号	1	

5	Flags	2	0x0000, 低字节定义, bit0: 是否按照HEX格式进行一行一 包的传输, (0: 否,1: 是); 如果 采用HEX格式传输,一包只发送一行 ,长度不定。
6	数据校验码长度	2	len(数据校验码)
7	数据校验码		向模组回传准备接收数据的数据校 验码的内容
8	分片大小	2	大数据需要分片传送。由MCU指定数据分片的大小,分片大小建议设为128B
9	校验和	1	

发起者回应接收者。

序号	字段名称	字节长度(B)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x1C
4	包序号	1	对应发送包的包序号
5	Flags	2	0x0000
6	校验和	1	

3.14. 大数据下发:数据发送者向数据接收者下发数据分片¶

发送者向接收者发送数据分片。

以 hex 文件传输数据时,总分片数无效,填充 0,是否传输完毕,根据 Flags 的 bit1 位来判断。

序号	字段名称	字节长度(B)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x1D
4	包序号	1	
5	Flags	2	0x0000, 低字节定义,bit0:是否按照HEX格式进行一行一包的传输,(0:否,1:是);如果采用HEX格式传输,一包只发送一行,长度不定,每包都需要置此标记位为1。bit1:此包是否是文件最后一包,(0:否,1:是);当传输文件的最后一包(最后一行)时,需要置此位为1。
6	分片序号	2	当前数据包的分片序号,分片序号从1 开始计算
7	总分片数	2	
8	分片数据内容		
9	校验和	1	

接收者回应发起者,每一个数据帧都需要及时回应。

序号	字段名称	字节长度(B)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x1E
4	包序号	1	对应发送包的包序号
5	Flags	2	0x0000
6	校验和	1	

3.15. 大数据下发:数据发起者向数据接收者通知取消数据下发¶

发起者向接收者通知取消数据下发。

序号	字段名称	字节长度(B)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x1F
4	包序号	1	
5	Flags	2	0x0000
6	校验和	1	

接收者回应发起者。

序号	字段名称	字节长度(B)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x20
4	包序号	1	对应发送包的包序号
5	Flags	2	0x0000
6	校验和	1	

3.16. 大数据下发:数据接收者向数据发起者通知取消数据下发¶

接收者向发起者通知取消数据下发。

序号	字段名称	字节长度(B)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x27
4	包序号	1	
5	Flags	2	0x0000
6	校验和	1	

发起者回应接收者。

序号	字段名称	字节长度(B)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x28
4	包序号	1	对应发送包的包序号
5	Flags	2	0x0000
6	校验和	1	

3.17. MCU 获取通讯模组的信息¶

通讯模组上电后,进入正常工作模式后,MCU 可以向通讯模组查询相关信息。 各产品可以根据需要判断是否支持此协议。

MCU 向通讯模组请求模组信息,MCU => 通讯模组。

序号	字段名称	字节长度(B)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x21
4	包序号	1	
5	Flags	2	0x0000
6	Туре	1	本版本固定为0x00:返回基本信息
7	校验和	1	

2G/3G/4G 模组回复 MCU 信息, 2G/3G/4G 模组 => MCU。

序号	字段名称	字节长度(B)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x22
4	包序号	1	对应发送包的包序号
5	Flags	2	0x0000
6	Туре	1	0x02: 2G/3G/4G模组
7	通用串口协议版本号	8	字符串,形如"00000004"
8	硬件版本号	8	字符串
9	软件版本号	8	字符串
10	设备属性	8	设备属性,预留。
11	IMEI	16	字符串,形如: "355065053311001"
12	IMSI	16	字符串,形如: "355065053311001"

13	MCC移动国家码	8	字符串,形如: "460"
14	MNC移动网络码	8	字符串,形如: "03"
15	CellNum基站数量	1	无符号数字,范围: 0-255
16	基站信息长度	1	无符号数字,范围: 0-255, 目前长度固定为5
17	基站1信息	5	参见下表:基站信息
18		5	参见下表:基站信息
19	基站n信息	5	参见下表:基站信息
20	CCID长度	1	CCID长度
21	CCID	20	CCID
22	SIM NUM长度	1	手机号为空时为0
23	SIM NUM	13 (MAX)	手机号为空时没有该字段
24	校验和	1	

基站信息

序号	字段名称	字节长度(B)	内容说明
1	LAC区域ID	2	无符号数字,范围: 0-65535
2	CellID基站ID	2	无符号数字,范围: 0-65535
3	RSSI信号强度	1	无符号数字,范围: 0-255

3.18. MCU 请求通讯模组进行事务处理¶

说明:

- 1、此过程为MCU申请模组做事务处理的通用流程,一共两次交互,每次交互两次通讯,因为事务处理需要一段时间,第一个来回和第二个来回之间不可用阻塞的方式进行等待。
- 2、具体的事务处理数据,参见第 4 部分的事务附录。

MCU 向通讯模组请求事务处理, MCU => 通讯模组。

序号	字段名称	字节长度(B)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x23
4	包序号	1	
5	Flags	2	0x0000
6	事务数据1	包长度-5	
7	校验和	1	

通讯模组响应 MCU,表示收到请求。

序号	字段名称	字节长度(B)	内容说明
1	固定包头	2	0xFFFF

2	包长度	2	len(命令校验和)
3	命令	1	0x24
4	包序号	1	对应发送包的包序号
5	Flags	2	0x0000
6	事务数据2	包长度-5	
7	校验和	1	

在此期间,MCU 不可以进行阻塞等待,通常会有秒级的时间间隔。

通讯模组事务处理完成后,通知 MCU 处理结果。

序号	字段名称	字节长度(B)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x25
4	包序号	1	
5	Flags	2	0x0000
6	事务数据3	包长度-5	
7	校验和	1	

MCU 响应通讯模组。

序号	字段名称	字节长度(B)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x26
4	包序号	1	对应发送包的包序号
5	Flags	2	0x0000
6	事务数据4	包长度-5	
7	校验和	1	

3.19. MCU 重启通讯模组¶

MCU在完成MCU升级后等场景,可能需要立即重启模组进行重启,以读取最新的MCU信息,MCU发出命令后,模组需要回复 ACK表示接受命令成功后再重启。

MCU 重启模组, MCU => 模组。

序号	字段名称	字节长度(B)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x29
4	包序号	1	

5	Flags	2	0x0000
6	校验和	1	

模组回复 MCU, 模组 => MCU。

序号	字段名称	字节长度(B)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x2A
4	包序号	1	对应发送包的包序号
5	Flags	2	0x0000
6	校验和	1	

3.20. 模组通知主 MCU 对其下的子 MCU 进行推送升级¶

当云端进行子 MCU OTA 推送时,模组收到云端的推送信息,需要将这些推送信息发送给主 MCU,并由主 MCU 代理子 MCU 进行升级处理。

模组通知主 MCU,对其下的子 MCU 进行推送升级,模组 => MCU。

序号	字段名称	字节长度(B)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x2B
4	包序号	1	
5	Flags	2	0x0000
6	PK	32	子设备的ProductKey
7	硬件版本号	8	子设备的软件版本号
8	软件版本号	8	子设备的软件版本号
9	OTAType	1	0: push; 1: pull
10	OTAID	22	OTA 唯一标识,用于区分每一次升级
11	校验和	1	

MCU 回复模组,表示信息收到,MCU => 模组。

序号	字段名称	字节长度(B)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x2C
4	包序号	1	对应发送包的包序号
5	Flags	2	0x0000
6	校验和	1	

4. 事务附录¶

4.1. 事务处理一: MCU 请求 GAgent 进行设备 OTA 检查¶

事务数据 1: MCU 向通讯模组进行子设备 OTA 检查, MCU => 通讯模组。

序号	字段名称	字节长度(B)	内容说明
1	SubCmd	1	0x01
2	PK	32	字符串
3	DID	32	字符串(预留,置 OXOO)
4	硬件版本号	8	字符串
5	软件版本号	8	字符串
6	TAG	1	Bit_0=0:不需要GAgent比较结果, 仅需要传送软件版本号和URL。 Bit_0=1:需要GAgent比较结果,如 果需要升级,直接发送大文件
7	SDID	4	子设备的 SDID

事务数据 2: 空。

事务数据 3: 通讯模组通知 MCU OTA 检查结果。

当 TAG 为 0 的时候,不需要 GAgent 比较结果,仅需要传送软件版本号和 URL

序号	字段名称	字节长度(B)	内容说明
1	SubCmd	1	0x02
2	SoftVersion	8	
3	URL Length	2	
4	URL	URL Length	

不判断是否需要升级,不进行大文件发送。

当 TAG 为 1 的时候,需要 GAgent 比较结果,如果需要升级,直接发送大文件

序号	字段名称	字节长度(B)	内容说明
1	SubCmd	1	0x02
2	Result	1	处理结果,0x00: 不需要升级; 0x01: 需要升级;

当需要升级时,模组在发送本命令并得到 MCU 的回复后,便立即启动大文件发送。

事务数据 4: 空。

4.2. 事务处理二: MCU 请求 GAgent 进行文件下载¶

事务数据 1: MCU 向通讯模组进行文件下载, MCU => 通讯模组。

序号	字段名称	字节长度(B)	内容说明
1	SubCmd	1	0x03
2	URL Length	2	

3 URL URL Length

事务数据 2: 空。

事务数据 3: 通讯模组通知 MCU OTA 检查结果。

序号	字段名称	字节长度(B)	内容说明
1	SubCmd	1	0x04
2	Result	1	处理结果,0x00:成功; 0x01:失败;

当文件下载成功时,模组会立即启动大文件传输过程。

事务数据 4: 空。

5. 中控扩展协议(高级)¶

5.1. 连接云端¶

WiFI=>MCU

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	1	len(命令校验)
3	命令	1	0x2D
4	包序号	1	对应发送包的包序号
5	Flags	2	0x0000
6	maclen	1	子设备mac地址长度
7	mac	maclen	子设备mac地址内容
8	pklen	1	子设备pk长度
9	pk	pklen	子设备pk内容
10	pkslen	1	子设备pks长度
11	pks	pkslen	子设备pks的内容
12	zsDIDLen	1	子设备did的长度(max23)
13	szDID	szDIDLen(max23)	did内容
14	passcodeLen	1	子设备passcode的长度
15	passcode	passcodeLen	子设备passcode内容
16	arglen	1	参数的长度
17	arg	arglen(max8)	参数的长度
18	校验和	1	

WiFi=>MCU

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF

2	包长度	1	len(命令校验)
3	命令	1	0x2E
4	包序号	1	对应发送包的包序号
5	Flags	2	0x0000
6	校验和	1	

5.2. 连接云端回调函数¶

WiFI=>MCU

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	1	len(命令校验)
3	命令	1	0x2F
4	包序号	1	对应发送包的包序号
5	Flags	2	0x0000
6	result	1	连接云端结果(见下表 "result说明")
7	zsDIDLen	1	子设备did的长度(max23)
8	szDID	szDIDLen(max23)	did内容
9	passcodeLen	1	子设备passcode的长度
10	passcode	passcodeLen	子设备passcode内容
11	arglen	1	参数的长度
12	arg	arglen(max8)	参数的长度
13	校验和	1	

result说明:

序号	值	说明		
1	0	连接成功		
2	-1	底层出错 获取到did 但是连接M2M失败		
3	-2	虚拟设备数量已经到达上限		
4	-3	m2m 返回错误		
5	-4	入参是中控信息,且中控有did,但是没有连接上m2m		
6	-5	入参是中控信息,但是中控还没有did		
7	-6	P控还没连接上m2m		
8	-7	\ 参不合法		
9	-8	设备还没连接上路由		
10	-9	设备还没获取到GServer ip		
11	-10	GServer 返回其他错误 GServer ip 未获取到		
12	-11	device encrypt enabled, does not support this api!		

13	-12	Register already in progress!	
14	-13	device is disabled!	
15	-14	evice not found!	
16	-15	oduct_key invalid!	
17	-16	mac already registered!	
18	-17	连接GServer失败	
19	-18	连接异常,该设备未绑定到该中控下	
20	-19	连接异常,改设备之前已经登录过了	
21	-20	服务器错误	
22	-21	其他错误	
23	-22	连接超时	

WiFi=>MCU

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	1	len(命令校验)
3	命令	1	0x30
4	包序号	1	对应发送包的包序号
5	Flags	2	0x0000
6	校验和	1	

5.3. 断开云端连接<u>¶</u>

WiFI=>MCU

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	1	len(命令校验)
3	命令	1	0x35
4	包序号	1	对应发送包的包序号
5	Flags	2	0x0000
6	arglen	1	参数的长度
7	arg	arglen(max8)	参数的长度
8	zsDIDLen	1	子设备did的长度 (max23)
9	szDID	szDIDLen(max23)	did内容
10	校验和	1	

WiFi=>MCU

	序号	字段名称	字节长度(Byte)	内容说明	
--	----	------	------------	------	--

1	固定包头	2	0xFFFF
2	包长度	1	len(命令校验)
3	命令	1	0x36
4	包序号	1	对应发送包的包序号
5	Flags	2	0x0000
6	校验和	1	

5.4. 断开云端连接回调函数¶

WiFI=>MCU

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	1	len(命令校验)
3	命令	1	0x37
4	包序号	1	对应发送包的包序号
5	Flags	2	0x0000
6	result	1	连接云端结果(见下表 "result说明")
7	arglen	1	参数的长度
8	arg	arglen(max8)	参数的长度
9	zsDIDLen	1	子设备did的长度(max23)
10	szDID	szDIDLen(max23)	did内容
11	校验和	1	

result说明:

序号	值	说明			
1	0	断开成功			
2	-1	错误(did长度或者内容错误)			
3	-2	前设备没有连接到云端,不需要断开			
4	-3	端返回断开失败			
5	-4	f开超时			
6	-5	产设备之前没有登陆过云端			

WiFi=>MCU

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	1	len(命令校验)
3	命令	1	0x38
4	包序号	1	对应发送包的包序号

5	Flags	2	0x0000
6	校验和	1	

5.5. 解除用户绑定关系¶

WiFI=>MCU

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	1	len(命令校验)
3	命令	1	0x39
4	包序号	1	对应发送包的包序号
5	Flags	2	0x0000
6	maclen	1	子设备mac地址长度
7	mac	maclen	子设备mac地址内容
8	pklen	1	子设备pk长度
9	pk	pklen	子设备pk内容
10	pkslen	1	子设备pks长度
11	pks	pkslen	子设备pks的内容
12	passcodeLen	1	子设备passcode的长度
13	passcode	passcodeLen	子设备passcode内容
14	arglen	1	参数的长度
15	arg	arglen(max8)	参数的长度
16	校验和	1	

WiFi=>MCU

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	1	len(命令校验)
3	命令	1	0x3A
4	包序号	1	对应发送包的包序号
5	Flags	2	0x0000
6	校验和	1	

5.6. 解除用户绑定关系回调函数¶

WiFI=>MCU

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	1	len(命令校验)

3	命令	1	0x3B
4	包序号	1	对应发送包的包序号
5	Flags	2	0x0000
6	result	1	连接云端结果(见下表 "result说明")
7	maclen	1	子设备mac地址长度(max23)
8	mac	maclen	子设备mac地址内容
7	arglen	1	参数的长度
8	arg	arglen(max8)	连接云端标识参数内容
11	校验和	1	

result说明:

序号	值	说明		
1	0	军除绑定成功		
2	-1	底层出错		
3	-2	入参非法		
4	-3	GServer 返回其他错误		
5	-4	device encrypt enabled, does not support this api!		
6	-5	Register already in progress!		
7	-6	device is disabled!		
8	-7	device not found!		
9	-8	product_key invalid!		
10	-9	mac already registered!		
11	-10	连接错误		
12	-11	设备还未连接到云端		
13	-12	操作超时		

WiFi=>MCU

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	1	len(命令校验)
3	命令	1	0x3C
4	包序号	1	对应发送包的包序号
5	Flags	2	0x0000
6	校验和	1	

5.7. 写子设备数据点¶

MCU=>WiFi模组

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x03
4	包序号	1	0x##
5	flags	2	0x0001:表示后面有did字段 0x00后面没有did字段
6	didlen	1	did长度
7	did	max23	did内容
8	action	1	0x01/0x11
9	attr_flags		参考对应子设备协议
10	attr_vals		参考对应子设备协议
11	校验和	1	0x##

WiFi模组=>MCU:

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x04
4	包序号	1	0x##
5	flags	2	0x0001:表示后面有did字段 0x00后面没有did字段
6	didlen	1	did长度
7	did	max23	did内容
8	校验和	1	0x##

注:

当子设备为变长数据点时,action为0x11,定长数据点时action为0x01.

5.8. 读取子设备的当前状态¶

WiFi模组=>MCU:

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x03
4	包序号	1	0x##
5	flags	2	0x0001:表示后面有did字段 0x00后面没有did字段
6	didlen	1	did长度
7	did	max23	did内容
8	action	1	0x02/0x12

9 校验和 1 0x##

注: 当子设备为变长数据点时, action为0x12, 定长数据点时action为0x02.

设备MCU回复:

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x04
4	包序号	1	0x##
5	flags	2	0x0001:表示后面有did字段 0x00后面没有did字段
6	didlen	1	did长度
7	did	max23	did内容
8	action	1	0x03/0x13
9	校验和	1	0x##

说明: 1. 实际数据通过 5.11 子设备状态上报上报子设备数据点。

2. 当子设备为变长数据点时,action为0x13,定长数据点时action为0x03.

5.9. 子设备主动上报当前状态¶

MCU=>WiFi模组:

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x31
4	包序号	1	0x##
5	flags	2	flags=1,数据需要发送到云端和小循环(如果有小循环客户端); flag=0数据只需发小循环(如果有小循环客户端)
6	didlen	1	did长度
7	did	max23	did内容
8	srclen	2	上传数的大小
9	action	1	0x04/0x14
10	dev_status		参考对应子设备通信协议
11	arglen	1	参数的长度
12	arg	arglen(max8)	连接云端标识参数内容
13	校验和	1	0x##

注:

1. 关于发送频率。当设备MCU收到WiFi模组控制产生的状态变化,设备MCU应立刻主动上报当前状态,发送频率不受限制。

但如设备的状态的变化是由于用户触发或环境变化所产生的,其发送的频率不能快于6秒每次。建议按需上报,有特殊上报需求请

联系机智云。

- 2. 设备MCU需要每隔10分钟定期主动上报当前状态。
- 3. 当子设备为变长数据点时, action为0x11, 定长数据点时为0x01.

ACK, WiFI模组=>MCU。

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x32
4	包序号	1	0x##
5	flags	2	0x0000
6	校验和	1	0x##

上报数据的回调通知, WiFI=>MCU

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	1	len(命令校验)
3	命令	1	0x33
4	包序号	1	对应发送包的包序号
5	Flags	2	0x0000
6	result	1	结果
7	arglen	1	参数的长度
8	arg	arglen(max8)	连接云端标识参数内容
9	szDIDLen	1	子设备did的长度
10	szDID	szDIDLen(max23)	did内容
11	校验和	1	

上报数据的回调通知,WiFi=>MCU

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	1	len(命令校验)
3	命令	1	0x34
4	包序号	1	对应发送包的包序号
5	Flags	2	0x0000
6	校验和	1	

5.10. 添加子设备¶

控制中控设备进入添加子设备模式并持续 3 分钟,3 分钟到后中控设备自动切换到正常模式。

App=>中控设备。

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x03
4	包序号	1	0x##
5	flags	2	0x0000
6	Action	1	0x56
7	个数	2	大端模式
8	设备识别码长度	1	设备识别码所占字节数。
9	设备识别码		见约定"设备识别码"描述。
10	校验和	1	0x##

注:

- 1、不带设备识别码时,个数字段可不传输。
- 2、带设备识别码时,必须带个数字段且不能为 0。

中控设备收到添加子设备并验证正常后回复ACK,中控设备=>App。

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x04
4	包序号	1	0x##
5	flags	2	0x0000
6	Action	1	0x57
7	状态	1	0x00 代表成功,0x01 代表失败。
8	校验和	1	0x##

说明:合法性判断标准为设备识别码个数与个数字段是否一致。

5.11. 删除子设备¶

由 App 向中控设备发起删除子设备的请求,中控设备完成删除子设备的动作。

WiFi模组=>MCU。

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x03
4	包序号	1	0x##
5	flags	2	0x0000
6	Action	1	0x58

7	SDID	4	被删除的子设备 ID。
8	校验和	1	0x##

中控设备收到删除子设备并验证 SDID 合法后回复 ACK, MCU=>WiFi模组。

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x04
4	包序号	1	0x##
5	flags	2	0x0000
6	Action	1	0x59
7	状态	1	0x00 代表成功,0x01 代表失败。
8	校验和	1	0x##

说明:合法性判断标准为 SDID 对应设备是否属于子设备列表。

5.12. 查询子设备列表¶

由 App 向中控设备查询当前的子设备表列信息。

请求查询子设备,WiFi模组=>MCU。

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x03
4	包序号	1	0x##
5	flags	2	0x0000
6	Action	1	0x5A
7	校验和	1	0x##

中控设备响应子设备列表信息, MCU=>WiFi模组。

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x04
4	包序号	1	0x##
5	flags	2	0x0000
6	Action	1	0x5B
7	产品个数	2	大端字节序
8	产品信息列表		依次由一个或多个产品信息项组成,每一项的结构请见下表"产品信息"

9 校验和 1 0x##

产品信息:

序号	字段名称	字节长度(Byte)	内容说明
1	产品识别码	32	即 product_key
2	子设备个数	2	大端字节序, 表示当前产品的子设备个数
3	子设备信息		依次由一个或多个子设备信息项组成,每一项的结构请见下表"子设备信息"

子设备信息:

序号	字段名称	字节长度(Byte)	内容说明
1	SDID	4	子设备ID
2	是否在线	1	0 表示离线, 1 表示在线
3	设备识别码长度	1	设备识别码所占字节数。
4	设备识别码		见约定"设备识别码"描述。
5	DID	22	云端分配的子设备 DID, 未分配时为全 0。

说明:字段 2"是否在线"变化不会触发设备列表变更。

5.13. 子设备列表变更通知¶

当中控设备第一次启动联网成功或子设备列表信息发生变化时,中控设备应把最新的子设备列表信息通知到 App。中控设备推送最新子设备列表消息,MCU=>WiFI模组。

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x31
4	包序号	1	0x##
5	flags	2	flags=1,数据需要发送到云端和小循环(如果有小循环客户端); flag=0数据只需发小循环(如果有小循环客户端)
6	srclen	2	上传数的大小
7	Action	1	0x5C
8	产品个数	2	大端字节序
9	产品信息列表		依次由一个或多个产品信息项组成,每一项的结构请参见"子设备列表"中的"产品信息"
10	arglen	1	参数的长度
11	arg	arglen(max8)	连接云端标识参数内容
12	校验和	1	0x##

ACK, WiFI模组=>MCU。

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF

2	包长度	2	len(命令校验和)
3	命令	1	0x32
4	包序号	1	0x##
5	flags	2	0x0000
6	校验和	1	0x##

上报数据的回调通知, WiFI=>MCU

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	1	len(命令校验)
3	命令	1	0x33
4	包序号	1	对应发送包的包序号
5	Flags	2	0x0000
6	result	1	结果
7	arglen	1	参数的长度
8	arg	arglen(max8)	连接云端标识参数内容
9	szDIDLen	1	子设备did的长度
10	szDID	szDIDLen(max23)	did内容
11	校验和	1	

result说明:

序号	值	说明	
1	0	发送数据成功	
2	-1	上传数据的did错误或他入参错误	
3	-2	设备没有连接上路由器	
4	-3	备没有连接到云端且小循环没有客户端	
5	-4	层数据发送错误	
6	-5	发送超时	

上报数据的回调通知ACK, MCU=>WiFi

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	1	len(命令校验)
3	命令	1	0x34
4	包序号	1	对应发送包的包序号
5	Flags	2	0x0000
6	校验和	1	

5.14. 子设备上下线状态变更通知¶

当中控设备的子设备上下线状态发生变化时,中控设备应把最新的状态通知到 App。

中控设备推送子设备上下线状态变化消息, MCU=>WiFi模组。

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x31
4	包序号	1	0x##
5	flags	2	flags=1,数据需要发送到云端和小循环(如果有小循环客户端); flag=0数据只需发小循环(如果有小循环客户端)
6	srclen	2	上传数的大小
7	Action	1	0x10
8	SDID	4	子设备ID
9	是否在线	1	0 表示离线,1 表示在线
10	arglen	1	参数的长度
11	arg	arglen(max8)	连接云端标识参数内容
12	校验和	1	0x##

ACK, WiFI模组=>MCU。

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x32
4	包序号	1	0x##
5	flags	2	0x0000
6	校验和	1	0x##

上报数据的回调通知, WiFI=>MCU

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	1	len(命令校验)
3	命令	1	0x33
4	包序号	1	对应发送包的包序号
5	Flags	2	0x0000
6	result	1	见 "5.15子设备列表变更通知"的result说明
7	arglen	1	参数的长度
8	arg	arglen(max8)	连接云端标识参数内容
9	szDIDLen	1	子设备did的长度

10	szDID	szDIDLen(max23)	did内容
11	校验和	1	

上报数据的回调通知ACK, MCU=>WiFi

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	1	len(命令校验)
3	命令	1	0x34
4	包序号	1	对应发送包的包序号
5	Flags	2	0x0000
6	校验和	1	