

数学分析 2

作者: UnsunSk8er

组织: ElegantIATEX Program

时间: November 29, 2022

版本: 0.1

第1章 级数理论与反常积分

1.1 正项级数的敛散性

1.1.1 级数及其基本性质

定义 1.1 (无穷级数)

设数列 {a_n},令

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots + a_n + \dots$$

 $\bigwedge_{n=1}^{\infty} a_n \, \mathcal{A}_n$ 的无穷级数 (infinite series), 简称级数. 其中 a_n 称为级数的通项. 令

$$S_n = \sum_{k=1}^n a_k = a_1 + a_2 + \dots + a_n.$$

称 S_n 为这个数列的前 n 项和, 也称为级数 $\sum_{n=1}^{\infty} a_n$ 的部分和 (partial sum). 若数列 S_n 收敛到 S, 则称级数 $\sum_{n=1}^{\infty} a_n$ 收敛, 并称该级数和为 S, 记作

$$\sum_{n=1}^{\infty} a_n = S.$$

反之,称该级数发散.

注 从定义可以看出数项级数本质是一种数列. 因此判断数项级数的敛散性就是判断数列的敛散性.

例题 1.1 几何级数 几何级数:

$$\sum_{n=0}^{\infty} q^n = 1 + q + q^2 + \dots + q^n + \dots$$

当 |q| < 1 时, 几何级数收敛于 $\lim_{n \to \infty} S_n = \frac{1}{1-a}$

例题 1.2p 级数 设 p 级数

$$\sum_{n=1}^{\infty} \frac{1}{n^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p} + \dots$$

 $p \le 1$ 时级数发散,p > 1 时级数收敛. 特别地, 当 p = 1 时, 称它为调和级数.

大部分情况下,级数的和很难求出.因此级数的研究重点不是求和,而是如何判断敛散性.级数本身是一种数列,因此判断数列敛散性的方法结论在级数中都适用,下面重点希望从通项来判断级数的敛散性.

笔记 当级数看作一种数列的和时,它的通项是 S_n ,此时即研究数列的 S_n 的敛散性.而当级数看作通项的和时,才是需要研究的重点.

命题 1.1 (级数收敛的必要条件)

级数 $\sum_{n=1}^{\infty}$ 收敛的必要条件是 $a_n \to 0$.

证明 设级数的和为 S. 令级数的部分和为 S_n , 则 $a_n = S_n - S_{n-1}$. 令 $n \to \infty$, 则 $a_n \to S - S = 0$. 此即得证. 这个必要条件可断言很多级数不收敛.

注 这个必要条件告诉我们级数收敛问题的重点在于收敛速度.

Ŷ 笔记 类比:

- 1. 函数可微 ⇒ 函数连续
- 2. 函数可积 ⇒ 函数有界

这类必要条件是很有用的.

命题 1.2 (级数的线性性质)

设级数 $\sum_{n=1}^{\infty}a_n$ 与 $\sum_{n=1}^{\infty}b_n$. 若它们都收敛, 则级数 $\sum_{n=1}^{\infty}(\alpha a_n+\beta b_n)$ 也收敛, 且

$$\sum_{n=1}^{\infty} (\alpha a_n + \beta b_n) = \alpha \sum_{n=1}^{\infty} + \beta \sum_{n=1}^{\infty} b_n.$$

证明

注 用这个命题可以计算比较复杂的级数.

- **室记**会求级数的类型:
 - 1. 可裂项相消的级数
 - 2. 与几何级数相关的级数

推论 1.1

设级数 $\sum_{n=1}^{\infty} a_n$ 收敛, 级数 $\sum_{n=1}^{\infty} b_n$ 发散, 则以下级数发散:

$$\sum_{n=1}^{\infty} (\alpha a_n + \beta_n), \quad \beta \neq 0.$$

命题 1.3 (级数的结合性)

设级数 $\sum_{n=1}^{\infty} a_n$ 收敛. 若把级数项任意结合, 但不改变各项顺序, 则得到的新级数仍收敛, 且与原级数有相同的和.

以上命题的逆命题不成立,为使其逆命题成立,可以加一些条件.

证明 设新的级数为

$$(a_1 + \dots + a_{k_1}) + (a_{k_1+1} + \dots + a_{k_2}) + \dots + (a_{k_{n-1}+1} + \dots + a_{k_n}) + \dots$$

$$(1.1)$$

其中 $k_1 < k_2 < \cdots < k_n < \cdots$. 若原级数的部分和数列为 $S_n(n = 1, 2, \cdots)$, 则新级数的部分和数列为 $S_{k_n}(n = 1, 2, \cdots)$, 显然它是 $S_n(n = 1, 2, \cdots)$ 的一个子列. 因此新级数与原级数同敛散且有相同的和.

笔记级数看作数列时收敛,则子列的极限和级数的极限相等.而子列收敛于某一极限不能推出级数收敛于某一极限。这是数列极限的理论.

注结合律比交换律更本质,级数加到无穷项后交换律是难以把握的.

加完括号是子列的和,子列收敛原数列不一定收敛.对比数列极限和极限点.

注 发散级数不满足结合性.

例题 1.3

$$\sum_{n=1}^{\infty} (-1)^{n-1}$$

本身是发散的,然而以不同的方式添加括号括号后竟然收敛于不同的极限:0和1.

笔记添加括号后是否可以看成子列?部分和数列不收敛但有极限点?

命题 1.4

若级数??收敛,且在同一括号里有相同的符号,则原级数 $\sum_{n=1}^{\infty} a_n$ 也收敛,且两个级数有相同的.

证明 设??的部分和数列 $A_n(n=1,2,\cdots)$ 且 $A_n\to S$. 设原级数部分和数列为 S_k . 由于括号中的项都同号, 故当 k 从 k_{n-1} 变到 k_n 时, S_k 将从 A_{n-1} 单调变化到 A_n , 即

$$A_{n-1} \leqslant S_k \leqslant A_n or A_n \leqslant S_k \leqslant A_{n-1}$$

当 $k \to \infty$ 时 $n \to \infty$, 由于 $\lim_{n \to \infty} A_{n-1} = \lim_{n \to \infty} A_n = S$. 由夹逼定理可知 $S_k \to S$. 这表明原级数收敛, 且两个级数有相同的和.

级数的交换性比结合性更为复杂,后面会讨论"级数重排"问题,即无穷多项的交换.

命颢 1.5

在级数前面加上或去掉有限项,不会改变级数的敛散性.

证明

注 敛散性相同, 但和未必相同.

由数列 $\{a_n\}$ 可以得到一个级数的部分和数列 $\{S_n\}$,反过来可以由 $\{S_n\}$ 构造一个数列 $\{a_n\}$ 从而得到级数 $\sum_{n=1}^{\infty} a_n$.

前面研究了通过 $\{a_n\}$ 判断 S_n 的敛散性; 反过来有时通过 $\{S_n\}$ 的敛散性判断 $\{a_n\}$ 的敛散性更方便.

1.1.2 比较判别法

为排除符号影响,先讨论"正项级数".

定义 1.2 (正项级数)

设级数 $\sum_{n=1}^{\infty} a_n$, 当 n 充分大时, $a_n \ge 0$, 则该级数称为正项级数 (series of prositive terms).

注 由于去掉或加上级数前面有限项不影响级数敛散性, 所以对前面有限项符号没有要求.

室记 类比开始研究积分时, 积分函数为正.

n 充分大时,正项级数部分和数列 S_n 单调递增,故正项级数要么收敛要么趋于正无穷. 由单调有界收敛定理,反过来若级数部分和数列单调递增,则该级数一定是正项数列.

命题 1.6 (正项级数收敛的充要条件)

正项级数 $\sum_{n=1}^{\infty} a_n$ 收敛当且仅当它的部分和数列 $\{S_n\}$ 有界.

曾经在证明调和级数发散时,首先就是证明它无界.

例题 1.4

证明数列有界时,基本思路是放大;反之证明数列无界时,是缩小.这个方法在判断级数敛散性时很有用.引出级数敛散比较判别法.

3

定理 1.1 (比较判别法)

设正项级数 $\sum_{n=1}^{\infty} a_n, \sum_{n=1}^{\infty} b_n$, 当 n 充分大时, 有 $a_n \leq b_n$.

- 1. 若 $\sum_{n=1}^{\infty} b_n$ 收敛, 则 $\sum_{n=1}^{\infty} a_n$ 收敛.
- 2. 若 $\sum_{n=1}^{\infty} a_n$ 发散, 则 $\sum_{n=1}^{\infty} b_n$ 发散.

证明

注 以上定理只对正项级数成立.

使用比较判别法时,关键是找到一个可比较的p级数.

\$ \$ 笔记 比较判别法的关键在于不等式的放缩, 而这对技巧性的要求更高. 因此想到用极限来转化不等式放缩问题.

- 笔记 数学分析中, 粗略的讲, 一种东西可以写成三种形式:
 - 1. 不等式形式
 - 2. 极限形式
 - 3. Landou 记号

而从不等式到 Landou 记号越来越粗略.

定理 1.2 (比较判别法的极限形式)

设正项级数 $\sum_{n=1}^{\infty} a_n, \sum_{n=1}^{\infty} b_n$. 若

$$\lim_{n\to\infty}\frac{a_n}{b_n}=l.$$

则

- 1. $0 < l < +\infty, \sum_{n=1}^{\infty} a_n, \sum_{n=1}^{\infty} b_n$ 同敛散.
- 2. l = 0, 若 $\sum_{n=1}^{\infty} b_n$ 收敛, 则 $\sum_{n=1}^{\infty} a_n$ 也收敛.
- 3. $l = +\infty$, 若 $\sum_{n=1}^{\infty} a_n$ 发散, 则 $\sum_{n=1}^{\infty} b_n$ 也发散.

证明

ک سر

笔记 $\{a_n\}$, $\{b_n\}$ 都是无穷小.

以上定理说明,判断正项级数敛散性,转化为找级数通项的同阶无穷小.

例题 1.5 判断以下级数敛散性:

$$\sum_{n=1}^{\infty} (1 - \cos \frac{x}{n}).$$

注 此例表明,级数可以定义一个函数.

比较判别法不仅可以直接用于判断正项级数的敛散性性,还可以派生出很多别的判别法.如果以几何级数为比较对象,可以得到所谓的根值判别法 (root test).

定理 1.3 (Cauchy 根值判别法)

~

定理 1.4 (Cauchy 根值判别法的极限形式)

 \sim

如果以p级数为比较对象,可以得到所谓的对数判别法 (logarithmic test).

命题 1.7 (对数判别法)

命题 1.8 (对数判别法的极限形式)

•

第2章 连续性的一般化

为了进一步推广和一般化分析学的理论, 我们必须先掌握点集拓扑学的基础知识.

室 笔记 拓扑问题是没有距离的几何问题. 极限不需要距离, 仅仅需要邻域即可刻画.

2.1 Euclid 空间中点列的收敛性

2.1.1 \mathbb{R}^n 空间的线性结构

定义 2.1 (有限维实空间 \mathbb{R}^n)

n 元有序实数组集记作 \mathbb{R}^n , 这些数组称为向量 (vector). 其中 a_i 为向量 α 的第 i 个分量 (component). 规定 \mathbb{R}^n 上的加法运算:

$$(a_1,\ldots,a_n)+(b_1,\ldots,b_n):=(a_1+b_1,\ldots,a_n+b_n),$$

再规定 \mathbb{R}^n 中元素与 \mathbb{R} 中实数间的数乘运算 (scalar multiplication):

$$k(a_1,\ldots,a_n) := (ka_1,\ldots,ka_n).$$

注(Einstein notation) 由于要研究 \mathbb{R}^n 中的点列, 将 \mathbb{R}^n 中的点记作

$$x = (x^1, \dots, x^n).$$

注意这种记法与幂指数的区别, 当分量有次方时要加括号.

命题 **2.1** (ℝⁿ 的线性性质)

公理 2.1 (线性空间)

设非空集合V和域F. 定义V上的加法运算:

$$+: V \times V \rightarrow V$$
,

V 关于 F 的数乘运算:

$$\cdot: F \times V \to V.$$

加法运算满足 (V,+) 是个 Abel 群. 数乘运算满足:

- 1. $\exists 1 \in F \text{ s. t. } 1 \cdot \alpha = \alpha, \forall \alpha \in V.$
- 2. $(kl)\alpha = k(l\alpha), \forall k, l \in F, \alpha \in V.$
- 3. $(k+l)\alpha = k\alpha + l\alpha$, $\forall k, l \in F, \alpha \in V$.
- 4. $k(\alpha + \beta) = k\alpha + k\beta$, $\forall k \in F, \alpha, \beta \in F$.

则称 V 是域 F 上的一个线性空间 (linear space), 或向量空间 (vector space).

定义 2.2 (线性相关性)

定义 2.3 (R ⁿ 的基)	*
2.1.2 \mathbb{R}^n 空间的内积,范数和度量	
定义 2.4 (ℝ 中的内积)	*
命题 2.2 (内积的性质)	
定义 2.5 (向量的范数)	
命题 2.3 (范数的性质)	*
定义 2.6 (向量的夹角)	•
定义 2.7 (标准正交基)	*
定义 2.8 (ℝ 中的距离)	*
	*
命题 2.4 (距离的性质)	•
2.1.3 ℝ ⁿ 中点列的收敛性	
定义 2.9 (ℝ ⁿ 中点列的极限)	*
定义 2.10 (邻域)	*
定义 2.11 (有界点列)	*
定义 2.12 (子列和极限点)	*
命题 2.5 (点列极限的简单性质)	
	•

2.2 度量空间上的收敛性和连续性

2.2.1 一般的度量

公理 2.2 (度量)

设非空集合 X. 定义一个映射:

$$d(\cdot,\cdot): X \times X \to \mathbb{R}$$
.

若 d 满足:

- 1. 正定性
- 2. 对称性
- 3. 三角不等式

则称 d 为 X 上的一个距离 (distance) 或度量 (metric). 定义了一个度量 d 的集合 X 称为度量空间,记作 (X,d).

注从一般集合到数集的映射称为泛函 (functional). 度量是一个泛函.

注 若 Y 是 X 的一个非空子集,则将 d 限制到 $Y \times Y$ 上以后也是 Y 上的一个度量,于是 (Y,d) 是一个度量空间.

例题 2.1 离散度量 设非空集合 X. 令

$$d(x,y) = \begin{cases} 0, & x = y \\ 1, & x \neq y \end{cases}, \quad \forall x, y \in X.$$

则 d 称为离散度量,(X,d) 是一个度量空间,称为离散空间.

注 离散空间表明,任一非空集合上都可以定义度量.

注 度量空间一般总要求是线性空间,这样可以在其中做很多事.

注 对比线性代数中的 $δ_{ij}$ 函数.

例题 2.2 连续函数空间 C[0,1] 中,令

$$d_1(f,g) = \max_{x \in [0,1]} |f(x) - g(x)|, \quad d_2(f,g) = \int_0^1 |f(x) - g(x)| \, \mathrm{d}x.$$

则 $(C[0,1],d_1),(C[0,1],d_2)$ 都是度量空间.

注 d₁ 关注局部,d₂ 关注整体.

定义 2.13 (有界集的度量定义)

在度量空间 (X,d) 中,设 $E \subseteq X. \forall x \in X, \exists M > 0$ s.t. $\forall y \in E$:

$$d(x, y) < M$$
,

称 E 为 X 上的一个有界集 (bounded set).

注 在 (\mathbb{R}^n, d_1) 中经常选取 $x_0 = 0$ 为基准, 其中 $d_1 := ||x - y||, \forall x, y \in \mathbb{R}^n$.

定义 2.14 (集合的直径)

度量空间 (X,d) 中, 设非空集合 E. 令

$$\dim E := \sup_{x,y \in E} d(x,y).$$

称 diam E 为 E 的直径 (diameter).

- 注 规定空集的直径为 0.
- 注集合直径的范围是 [0,+∞]

命题 2.6 (有界集的直径刻画)

度量空间 (X,d) 中, 集合 E 有界当且仅当 diam $E \in \mathbb{R}$.

现将 ℝ 中度量定义的 ℝ 数列的极限推广到一般的度量空间上.

定义 2.15 (度量空间中的点列)

度量空间 (X,d) 中, 取出的可数多元素并进行编号得到 x_1,\ldots,x_n,\ldots , 令

$$\{x_n\}: \mathbb{N} \to X$$

称 $\{x_n\}$ 为 X 中的一个点列.

命题 2.7 (度量空间中点列极限的度量刻画)

度量空间 (X,d) 中, 设点列 $\{x_n\}$. $\exists l \forall \varepsilon > 0$, $\exists \mathbb{N}^*$ s. t. $\forall N > \mathbb{N}^*$:

$$d(x_n, l) < \varepsilon$$
.

则称 l 收敛到 l, 或 $\{x_n\}$ 的极限是 l.

定义 2.16 (度量空间中点列极限的邻域刻画)

度量空间 (X,d) 中, 设点列 $\{x_n\}. \forall U(x), \exists N \in \mathbb{N}^* \text{ s. t. } \forall n > N : x_n \subseteq U(x)$. 则称 $\{x_n\}$ 收敛于 l. 或称 $\{x_n\}$ 的 极限是 l. 记作

$$\lim_{n\to\infty}x_n=l\quad \dot{\mathfrak{A}}\quad x_n\to l(n\to\infty).$$

注 度量空间中,除了度量,没有任何其他结构. 这说明,极限的概念只需要度量即可定义! 下面类比定义度量空间上的有界点列、子列等概念.

定义 2.17 (有界点列)

度量空间 (X,d) 中, 设点列 $\{x_n\}$. 若 $\forall x \in X, \exists M > 0$ s. t.

$$d(x_n,x) \leqslant M, \quad n=1,2,\ldots$$

则称点列 $\{x_n\}$ 有界.

注 同样, $\forall x \in X$ 可削弱为 $\exists x_0 \in X$.

注 在 (\mathbb{R}^n, d_1) 中常选取 $x_0 = 0$ 为基准中心.

笔记 由此可见, 度量空间是"去中心化的", 要在其中做一些事情, 要选取基准中心.

下面定义度量空间中点列的子列和极限点.

定义 2.18 (子列和极限点)

度量空间 (X,d) 中, 设点列 $\{x_n\}$. 若 $k_i \in \mathbb{N}^*(i=1,2,...)$ 满足 $k_1 < k_2 < ...$,则称点列 $\{x_{k_n}\}$ 为 $\{x_n\}$ 的一个子列, 存在一个子列收敛于 l,则称 l 是 x_n 的一个极限点.

 \mathbb{R}^n 中点列的一些性质对度量空间中的点列仍然成立.

命题 2.8 (点列极限的性质)

度量空间 (X,d), 设点列 $x_n \to l$, 则

- 1. $\{x_n\}$ 唯一.
- 2. $\{x_n\}$ 有界.
- 3. $\{x_n\}$ 任一子列收敛到 l, 即 $\{x_n\}$ 极限点唯一.

注 度量空间中没有线性结构、序结构,因此极限中没有线性运算法则、和保序夹逼等定理.

2.2.2 一般的范数和内积

公理 2.3 (范数)

设线性空间 V. 定义一个映射

 $\|\cdot\|:V\to\mathbb{R}$

||.|| 满足:

- 1. 正定性
- 2. 绝对齐次性
- 3. 三角不等式

则称 $\|\cdot\|$ 是 V 中的一个范数. 定义了范数的线性空间 V 称为赋范线性空间 (normed vector space), 简称赋范线性空间 (normed space), 记作 $(V,\|\cdot\|)$.

注 范数也是一个泛函.

注 齐次性是范数和度量的本质差别.

室记 一般不可以在一般域上定义范数.

定理 2.1 (范数诱导的度量)

在赋范空间 (V, ||·||) 中令

 $d(\alpha, \beta) = \|\alpha - \beta\|,$

则 d 是 V 的一个度量.

注 定理表明任一范数可以定义一个度量,于是这个赋范空间一定可以成为一个度量空间. 反之不然,有些度量是 无法用范数诱导.

注 范数诱导的度量必满足:

- 1. 平移不变性: $d(\alpha) = d(\alpha + x, \beta + x)$
- 2. 绝对齐次性: $d(k\alpha, k\beta) = |k|d(\alpha, \beta)$

公理 2.4 (内积)

设实线性空间 V. 定义一个映射:

$$(\cdot,\cdot):V\times V\to\mathbb{R},$$

若满足

- 1. 正定性
- 2. 对称性
- 3. 双线性

则称 (\cdot,\cdot) 为 V 上的一个内积 (inner product). 定义了一个内积 (\cdot,\cdot) 的集合 V 称为内积空间 (inner product space), 记作 $(V,(\cdot,\cdot))$.

注 一般的线性空间对称性可以放宽为"共轭对称性", 此是为了让复数域上的线性空间, 即酉空间上的内积. 注 内积也是一个泛函.

定理 2.2 (Cauchy-Schwartz 不等式)

设线性空间 $V,(\cdot,\cdot)$ 中有

$$(\alpha,\beta)^2 \leq (\alpha,\alpha)(\beta,\beta), \quad \forall \alpha,\beta \in V,$$

等号成立当且仅当 α , β 线性相关.

定理 2.3 (内积诱导的范数)

内积空间 $(V,(\cdot,\cdot))$ 中,令

$$\|\alpha\| = \sqrt{(\alpha, \alpha)}$$

则称 $\|\cdot\|$ 是 V 的一个范数.

注 定理表明任一内积可以定义一个范数,于是这个内积空间必然可以成为一个赋范空间,从而成为一个度量空间. 注 内积诱导的范数必满足平行四边形等式:

$$\|\alpha - \beta\|^2 + \|\alpha + \beta\|^2 = 2(\|\alpha\|^2 + \|\beta\|^2).$$

例题 2.3 L^p 范数和 L^p 度量 \mathbb{R}^n 中, 设 $\alpha = (a_1, \dots, a_n), \beta = (b_1, \dots, b_n)$. 令

$$\|\alpha\|_p := \left(\sum_{i=1}^n |a_i|^p\right)^{1/p}, \quad p \geqslant 1.$$

则 $\|\cdot\|_p$ 是 \mathbb{R}^n 上的一个范数. 从而可以用 $\|\cdot\|_p$ 定义一个度量:

$$d_p(\alpha, \beta) = \|\alpha - \beta\|_p.$$

例题 **2.4** L^{∞} 范数和 L^{∞} 度量 \mathbb{R}^n 中, 设 $\alpha = (a_1, \dots, a_n), \beta = (b_1, \dots, b_n)$. 令

$$\|\alpha\|_{\infty} := \max\{|a_1|, \cdots, |a_n|\}$$

则 $\|\cdot\|_p$ 是 \mathbb{R}^n 上的一个范数. 从而可以用 $\|\cdot\|_\infty$ 定义一个度量:

$$d_{\infty}(\alpha,\beta) = \|\alpha - \beta\|_{\infty}.$$

命题 2.9 (ℝⁿ 中范数和度量的常用不等式)

 \mathbb{R}^n 中

- 1. $\|\cdot\|_{\infty} \leq \|\cdot\|_{2} \leq \|\cdot\|_{1}$
- 2. $d(\cdot,\cdot)_{\infty} \leq d(\cdot,\cdot)_{1} \leq d(\cdot,\cdot)_{1}$

2.2.3 度量空间的完备化

在讨论 ℝ 的完备性的时候有 7 个等价命题:

- 1. Dedekind 定理
- 2. LUB
- 3. Hiene-Borel 定理
- 4. 单调有界收敛定理
- 5. 闭区间套定理
- 6. Bolzano-Werestrass 定理
- 7. Cauchy 收敛原理

现在想要在一般的度量空间中推广完备性. 但由于一般的度量空间甚至 ℝ"空间中不具备序结构, 从而 Dedekind 定理、LUB、单调有界收敛定理都难以推广, 而其中直接涉及度量的定理只有 Cauchy 收敛原理. 于是可以考虑将它推广到一般的度量空间.

定义 2.19 (Cauchy 列)

度量空间 (X,d) 中, 设点列 $\{x_n\}$. 若 $\forall \varepsilon > 0, \exists N \in \mathbb{N}^*$ s. t. $\forall n > N$:

$$d(x_m, x_n) < \varepsilon$$
,

则称该点列是一个 Cauchy 列 (Cauchy sequence) 或基本列 (fundamental sequence).

一般的度量空间中,Cauchy 列未必收敛, 比如 Q 中的 Cauchy 列.

定义 2.20 (完备的度量空间)

设度量空间 (X,d). 若其中任一 Cauchy 列都收敛, 则称 (X,d) 是完备的度量空间 (complete metric space), 简称完备空间 (complete sapce).

注 完备的内积空间称为 Hilbert 空间, 完备的赋范空间称为 Banach 空间.

一般的度量空间没有 Cauchy 收敛原理, 但 Cauchy 收敛原理的必要性仍然是成立的.

命题 2.10

度量空间 (X,d) 中, 收敛的点列必为 Cauchy 列.

尽管 Cauchy 列未必收敛, 但一定有界, 若有收敛子列, 则必收敛.

命题 2.11

在度量空间 (X,d) 中, Cauchy 列一定有界.

命题 2.12

度量空间 (X,d) 中, 存在收敛子列的 Cauchy 列必收敛.

定理 **2.4** (ℝⁿ 中的 Cauchy 收敛原理)

 \mathbb{R}^n 在 d_n 下是完备的, 即在 d_n 下 \mathbb{R}^n 中的点列 $\{x_k\}$ 收敛当且仅当它是 Cauchy 列.

~