Miscellaneous

Mag to dB: $M_{dB}(\omega) = 20 \log_{10} (|M(j\omega)|)$

Hang to the
$$M_{aB}(\omega) = 20 \log_{10}(|M_{aB}(\omega)|)$$

dB to Mag: $|M(j\omega)| = 10^{\frac{M_{aB}(\omega)}{20}}$
Pade approximation $[n, n]$:
$$e^{-sh} = \frac{\sum_{i=1}^{n} \frac{(2n-i)!n!}{(2n)!(n-i)!i!} (-sh)^{i}}{\sum_{i=1}^{n} \frac{(2n-i)!n!}{(2n)!(n-i)!i!} (sh)^{i}}$$

Signal Properties

Energy: $E_x = \int_{-\infty}^{\infty} |x(t)|^2 dt$

Average Power: $P_f = \lim_{M \to \infty} \frac{1}{M} \int_{-\frac{M}{M}}^{\frac{M}{2}} |x(t)|^2 dt$

Fourier Series

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

Spectral coefficient: $a_k = \frac{1}{T_0} \int_{T_0} x(t)e^{-jk\omega_0 t} dt$ $|a_k|$, $\angle a_k$: the kth harmonic amplitude and phase

Fourier Transform

$$\begin{split} X(j\omega) &= \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt \\ x(t) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega \end{split}$$

Parseval's theorem

Given periodic and piecewise continuous x(t)

Power:
$$P_X = \sum_{k=-\infty}^{\infty} |a_k|^2$$

Express: $F_X = \int_{-\infty}^{\infty} |x(t)|^2 dt$

Energy:
$$E_x = \int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |X(\omega)|^2 d\omega$$

Frequency based control

Lead controller

$$C_{\rm lead}(s) = \frac{\sqrt{\alpha}s + \omega_m}{s + \sqrt{\alpha}\omega_m}, \quad \alpha > 1$$
 Max phase lead: $\phi_m = \arcsin\left(\frac{\alpha - 1}{\alpha + 1}\right)$

Lag controller

$$C_{\text{lag}}(s) = \frac{10s + \omega_m}{10s + \frac{\omega_m}{\beta}}, \quad \beta > 1$$

Max phase lag: $\phi_m = -\arcsin\left(\frac{\beta-1}{\beta+1}\right)$

Notch Filter / Skewed Notch Filter

$$F(s) = \frac{s^2 + 2\zeta_n \omega_n s + \omega_n^2}{s^2 + 2\zeta_d \omega_d s + \omega_d^2}, \quad \zeta_n < \zeta_d$$

Notch: $w_n = w_d$, Skewed: $w_n \neq w_d$

Butterworth low-pass filters

A special family of low-pass filters

$$|C_{b,n}(j\omega)|^2 = \frac{1}{1 + \left(\frac{\omega}{\omega_b}\right)^{2n}}$$

where n is the order of the filter and ω_b is the bandwidth of the filter.

Robust stability

Multiplicative uncertainty

$$\Pi = \left\{ P(s) : \left| \frac{P(j\omega)}{P_n(j\omega)} - 1 \right| < \ell_m(\omega) \right\}$$
 If conditions of theorem are met, then the controller

C(s) robustly stabilizes the system iff it stabilizes the nominal process and:

$$|T_n(j\omega)| < \frac{1}{|\ell_m(\omega)|}, \quad \forall \omega$$

2DoF control

In case of single prefilter, we choose:

$$K(s) = \frac{T_{\text{ref}}(s)}{T(s)}$$

it's possible to split the controller: $C(s) = C_1(s)C_2(s)$ and to move one of them to the feedback inorder to control the complementary sensitivity function

In case of a **double prefilter**, choose:

$$K_1(s) = T_{\text{ref}}(s)$$
 $K_2(s) = \frac{T_{\text{ref}}(s)}{P(s)}$

Integrator Anti-windup

Pole placement controller

The plant P and controller C are given by:

$$P(s) = \frac{a(s)}{b(s)} = \frac{\sum_{i=0}^{m} a_i s^i}{s^n + \sum_{i=0}^{n-1} b_i s^i}$$

$$C(s) = \frac{x(s)}{y(s)} = \frac{\sum_{i=0}^{n-1} x_i s^i}{s^{p-n} + \sum_{i=0}^{p-n-1} y_i s^i}$$

 $\Delta_{\rm cl} = D_0 + N_0 = b(s) \cdot y(s) + a(s) \cdot x(s)$

We require $m + n \le p \le 2n$ and p > n.

Strictly proper Proper Improper p = 2n p = 2n - 1 $m + n \le p < 2n - 1$

Internal model principle

Necessary condition for disturbance attenuation in steady-state and tracking with zero steady-state er-

$$\begin{array}{ll} \mathbf{d(t):} & C(s) = \frac{\overline{C}(s)}{\Gamma(s)} & D(s) = \frac{N(s)}{\Gamma(s)} \\ \mathbf{r(t):} & L(s) = \frac{\overline{L}(s)}{\Gamma_r(s)} & R(s) = \frac{N_r(s)}{\Gamma_r(s)} \end{array}$$

where $\Gamma(s)$ and $\Gamma_r(s)$ are the generating polynomials

Feed forward control

Ideal feed forward controller: D(s)

$$\begin{array}{c|c}
d & D(s) \\
\hline
C_{\text{ff}}(s) & P_{1}(s) \\
\hline
P_{2}(s) & y
\end{array}$$

Dead time compensator

Smith controller (For stable processes)

System transfer function with dead time $P = P_0 e^{-\theta s}$

If
$$\hat{P}_0(s) = P_0(s)$$
 and $\hat{\theta} = \theta$:
$$T_{\text{ideal}} = \frac{C_0 P}{1 + C_0 P_0} = \frac{C_0 P_0 e^{-\theta s}}{1 + C_0 P_0} = Q(s)e^{-\theta s}$$

Multiplicative uncertaint

$$L(s) = \frac{P(s) - \hat{P}(s)}{\hat{P}(s)} = \frac{P_0(s)}{\hat{P}_0(s)} e^{-\Delta \theta s} - 1$$

Assumptions:

- 1. Q(s) is asymptotically stable
- 2. $\hat{P}_0(s) = P_0(s)$
- (a) Assuming (1) then the necessary condition for practical stability: $\lim_{\omega \to \infty} |Q(j\omega)| < \frac{1}{2}$ If $\hat{P}_0(s) = P_0(s)$ but $\hat{\theta} \neq \theta$ the condition is also suf-
- (b) Assuming (1),(2) then the closed loop is asymptotically stable for every $\Delta\theta$ if $|Q(j\omega)| < \frac{1}{2}$,

- (c) Assuming (1), (2) then there exists a positive $(\Delta \theta_m)$ which guarantees asymptotic stability for all $|\Delta\theta| < (\Delta\theta_m)$ if: (i) $|Q(j\omega)| < 1, \forall \omega > 0$ and (ii) $\lim_{\omega \to \infty} |Q(j\omega)| < \frac{1}{2}$
- (d) Assuming (1) then the closed loop is robustly stable if: $|Q(j\omega)\ell_m(\omega)| < 1, \forall \omega > 0$
- Assuming (1) and condition (a) and if $|Q(j\omega)|$ < $1, \forall \omega > 0$, the closed loop $GM \geq 2$, and PM > 1
- (f) Assuming (1) and condition (a), P(s) is stable without a zero at origin, $C_0(s)$ includes an integrator then the DTC guarantees zero steady state error for a step change in reference and disturbance.

Inversion based primary controller design

For a stable and minimum phase $\hat{P}_0(s)$, choose $C_0(s) = \frac{k}{s} \hat{P}_0^{-1}(s)$ which leads to $Q(s) = \frac{k}{s+k}$ which (1) guarantees stability for all k > 0 in the ideal case (2) satisfies Theorems 1, 2b, 4, 5, and (3) has a single tuning parameter, k - as a rule of thumb $k \in \left(\frac{1}{\Delta}, \frac{1.5}{\Delta}\right)$.

Modified DTC

Modified DTC-holds for unstable processes.

$$\begin{split} \hat{\Pi}(s) &= \tilde{P}(s) - P_0(s)e^{-\theta s} \\ \Pi(s) &= \tilde{P}(s) - P(s) = Ce^{-A\theta} \cdot \int_{-\theta}^{0} e^{(sI-A)\tau} d\tau \cdot \mathbf{B} \end{split}$$

$$P_0(s) = C(sI - A)^{-1}B$$
 and $\tilde{P}(s) = Ce^{-A\theta}(sI - A)^{-1}B$

The choice of $\tilde{P}(s)$

A possible choice of $\tilde{P}(s)$ in order to guarantee stability of $\Pi(s)$ is $D_{\tilde{P}}(s) = D_{P_0}(s)$, and the numerator is chosen such that it cancels all undesirable poles (or unstable poles) of $\tilde{P}_0(s)$ inside $\Pi(s)$, the number of required parameters for $N_{\tilde{p}}(s)$ is equal to the number of constraints.

Integral action in MDTC

Requires an integrator in $C_0(s)$ and $\Pi(0) = 0$.

Strong stabilization

The process P(s) is strongly stabilizable if it is possible to stabilize it with a stable controller. A rational process P(s) is strongly stabilizable \iff between every pair of real zeros in RHP (including ∞) there is an even number of poles.

★ The number of zeros at $+\infty$ is equal to the process' pole excess.

Bode's sensitivity integral

Lemma 1. Let $L(s) = e^{-\tau s}L_0$ be the open-loop transfer function with $\tau \ge 0$ where $L_0(\hat{s})$ is stable and rational having poles excess $n_r \ge 1$ and define $\kappa \triangleq$ $\lim_{s\to\infty} sL_0(s)$, then

$$BI = \begin{cases} 0 & \tau > 0 \\ -\kappa \frac{\pi}{2} & \tau = 0 \end{cases}$$

where $BI = \int_0^\infty \ln(|S(j\omega)|) d\omega$ and where S(s), the sensitivity function, is assumed stable.

Lemma 2. Consider a feedback control loop with open loop transfer function as in Lemma 1 and having unstable poles $\{p_i\}_{i=1}^N$, $\tau \ge 0$, having poles excess

$$BI = \begin{cases} \pi \sum_{i=1}^{N} \operatorname{Re}\{p_i\} & n_r > 1\\ -\kappa \frac{\pi}{2} + \pi \sum_{i=1}^{N} \operatorname{Re}\{p_i\} & n_r = 1 \end{cases}$$

where $BI = \int_{0}^{\infty} \ln(|S(j\omega)|) d\omega$ and S(s), the sensitivity function is assumed stable. function, is assumed stable.

Control in state space

State space modeling

$$P(s) = \begin{bmatrix} A & B \\ \hline C & D \end{bmatrix} : \begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{cases}$$

where $x \in \mathbb{R}^n, u \in \mathbb{R}^m, v \in \mathbb{R}^r.$

$$\begin{split} & [\dot{x}(t)]_{n \times 1} = [A]_{n \times n} [x(t)]_{n \times 1} + [B]_{n \times m} [u(t)]_{m \times 1} \\ & [y(t)]_{r \times 1} = [C]_{r \times n} [x(t)]_{n \times 1} + [D]_{r \times m} [u(t)]_{m \times 1} \end{split}$$

$$P(s) = \frac{b_n s^n + b_{n-1} s^{n-1} + \ldots + b_1 s + b_0}{s^n + a_{n-1} s^{n-1} + \ldots + a_1 s + a_0}, \quad a_n = 1$$

Companion form

Observer form

$$\begin{bmatrix} -a_{n-1} & 1 & \cdots & 0 & b_{n-1} - b_n a_{n-1} \\ \vdots & \vdots & \ddots & \vdots & & \vdots \\ -a_1 & 0 & \cdots & 1 & b_1 - b_n a_1 \\ -a_0 & 0 & \cdots & 0 & b_0 - b_n a_0 \\ \hline 1 & 0 & \cdots & 0 & b_n \end{bmatrix}$$

State equation solution

$$\boldsymbol{x}(t) = e^{\boldsymbol{A}t}\boldsymbol{x_0} + \int_0^t e^{\boldsymbol{A}(t-\tau)}\boldsymbol{B}\boldsymbol{u}(\tau)d\tau$$

$$x(s) = (sI - A)^{-1} x_0 + (sI - A)^{-1} B u(s)$$

$$y(s) = C(sI - A)^{-1} x_0 + (C(sI - A)^{-1} B + D) u(s)$$

Matrix similarity transformation

$$\tilde{A} = T^{-1}AT$$
, $\tilde{B} = T^{-1}B$, $\tilde{C} = CT$, $\tilde{D} = D$
Controllability

Controllability matrix

$$C \triangleq \begin{bmatrix} \mathbf{B} & \mathbf{A}\mathbf{B} & \dots & \mathbf{A}^{n-1}\mathbf{B} \end{bmatrix}$$

 $C \triangleq \begin{bmatrix} B & AB & \dots & A^{n-1}B \end{bmatrix}$ Given two minimal realizations with controllability matrices C_1 , C_2 , then the similarity transformation connecting between them is: $x_1 = Tx_2, A_2 =$ $T^{-1}A_1T_1B_2 = T^{-1}B_1$, given by $T = C_1C_2^{-1}$.

PBH controllability test

The matrix $[A - sI \quad B]$ has full rank $\forall s \in \mathbb{C}$

Controllability Gramian

$$W_{C}(t) \triangleq \int_{0}^{t} e^{\mathbf{A}\tau} \mathbf{B} \mathbf{B}' e^{\mathbf{A}'\tau} d\tau$$

The control input

$$u(t) = \mathbf{B}^{\top} e^{\mathbf{A}^{\top} (t_1 - t)} \mathbf{W}_C^{-1} (t_1) \left[\mathbf{x}_1 - e^{\mathbf{A}^{\top} t_1} \mathbf{x}_0 \right]$$

transfers the system from $x(0) = x_0$ to $x(t_1) = x_{t_1}$, and does it with minimum control energy.

Observability

Observability matrix

$$\mathcal{O} \triangleq \begin{bmatrix} \mathbf{C} & \mathbf{C}\mathbf{A} & \cdots & \mathbf{C}\mathbf{A}^{n-1} \end{bmatrix}^{\top}$$

PBH observability test

The matrix $\begin{bmatrix} A - sI \\ C \end{bmatrix}$ has full rank $\forall s \in \mathbb{C}$

Observability Gramian

$$W_{\mathbf{O}}(t) \triangleq \int_{0}^{t} e^{\mathbf{A}\tau} CC' e^{\mathbf{A}'\tau} d\tau$$

Stabilizability and Detectability

The pair (A, B) is **stabilizable** if all uncontrollable

modes are stable. The pair (C,A) is **detectable** if all unobservable modes are stable.

State Feedback

$$u\left(t\right)=f_{r}r\left(t\right)-\boldsymbol{F}\boldsymbol{x}\left(t\right)$$

Ackermann's formula

$$F = \begin{bmatrix} 0 & \cdots & 1 \end{bmatrix} C^{-1} \Delta_{cl} (A)$$

Adding an integrator to state feedback

Let $\tilde{x}(t) \triangleq \begin{bmatrix} x(t) \\ \overline{x}(t) \end{bmatrix} \in \mathbb{R}^{n+r}$, where $\overline{x}(t) \triangleq \int_0^t e(\tau) d\tau \in \mathbb{R}^r$

$$\begin{split} \dot{\tilde{\boldsymbol{x}}}\left(t\right) &= \begin{bmatrix} \boldsymbol{A} - \boldsymbol{B}\boldsymbol{F}_1 & -\boldsymbol{B}\boldsymbol{F}_2 \\ -\boldsymbol{C} & 0 \end{bmatrix} \tilde{\boldsymbol{x}}\left(t\right) + \begin{bmatrix} \boldsymbol{0} \\ \boldsymbol{I} \end{bmatrix} \boldsymbol{r}\left(t\right) + \begin{bmatrix} \boldsymbol{B} \\ 0 \end{bmatrix} \boldsymbol{d}\left(t\right) \\ \boldsymbol{y}\left(t\right) &= \begin{bmatrix} \boldsymbol{C} & 0 \end{bmatrix} \tilde{\boldsymbol{x}}\left(t\right) \end{split}$$

Closed-loop transfer functions

$$T\left(s\right) = \begin{bmatrix} \boldsymbol{C} & 0 \end{bmatrix} \left(s\boldsymbol{I} - \tilde{\boldsymbol{A}}\right)^{-1} \begin{bmatrix} 0 \\ \boldsymbol{I} \end{bmatrix}$$

$$S_d(s) = \begin{bmatrix} C & 0 \end{bmatrix} (sI - \tilde{A})^{-1} \begin{bmatrix} B \\ 0 \end{bmatrix}$$

Prototype table

1 Tototype tubic				
0	Transfer function poles			
	Bessel			
1	$\frac{s}{\omega_0} + 1$			
2	$\frac{s_0}{w_0} + 0.866 \pm 0.5j$			
3	$\left(\frac{s}{\omega_0} + 0.942\right)\left(\frac{s}{\omega_0} + 0.745 \pm 0.711j\right)$			
4	$\frac{\frac{s}{\omega_0} + 1}{\frac{s}{\omega_0} + 0.866 \pm 0.5j} \left(\frac{s}{\omega_0} + 0.942 \right) \left(\frac{s}{\omega_0} + 0.745 \pm 0.711j \right) \left(\frac{s}{\omega_0} + 0.657 \pm 0.830j \right) \left(\frac{s}{\omega_0} + 0.904 \pm 0.271j \right)$ ITAE			
	ITAE			
1	$\frac{s}{\omega_0} + 1$			
2	$\frac{s_0}{\omega_0} + 0.707 \pm 0.707j$			
3	$\left(\frac{g}{\omega_0} + 0.708\right)\left(\frac{s}{\omega_0} + 0.521 \pm 1.068j\right)$			
4	$ \frac{\frac{s}{\omega_0} + 1}{\frac{s}{\omega_0} + 0.707 \pm 0.707 j} $ $ (\frac{s}{\omega_0} + 0.708)(\frac{s}{\omega_0} + 0.521 \pm 1.068 j) $ $ (\frac{s}{\omega_0} + 0.424 \pm 1.263 j)(\frac{s}{\omega_0} + 0.626 \pm 0.414 j) $			

Asymptotic Observer

$$\begin{split} \dot{\hat{x}}\left(t\right) &= A\hat{x}\left(t\right) + Bu\left(t\right) + L\left(y\left(t\right) - C\hat{x}\left(t\right)\right) \quad , \hat{x}\left(0\right) = \hat{x}_{0} \\ \dot{e}\left(t\right) &= \left(A - LC\right)e\left(t\right) + Bd\left(t\right) - Ln\left(t\right) \quad , e\left(0\right) = x_{0} - \hat{x}_{0} \end{split}$$

$$\Delta_{ob}(s) = \det(s\mathbf{I} - \mathbf{A} + \mathbf{L}\mathbf{C})$$

Ackermann's formula

$$L = \Delta_{ob}(A)\mathcal{O}^{-1} \begin{bmatrix} 0 \\ \vdots \\ 1 \end{bmatrix}$$

Observer based state feedback

$$u(t) = f_r r(t) - \mathbf{F} \hat{\mathbf{x}}(t)$$

Closed loop system equations

$$\begin{split} \begin{bmatrix} \dot{\boldsymbol{x}}\left(t\right) \\ \dot{\boldsymbol{x}}\left(t\right) \end{bmatrix} &= \begin{bmatrix} \boldsymbol{A} & -\boldsymbol{B}\boldsymbol{F} \\ \boldsymbol{L}\boldsymbol{C} & \boldsymbol{A} - \boldsymbol{B}\boldsymbol{F} - \boldsymbol{L}\boldsymbol{C} \end{bmatrix} \begin{bmatrix} \boldsymbol{x}\left(t\right) \\ \dot{\boldsymbol{x}}\left(t\right) \end{bmatrix} + \begin{bmatrix} \boldsymbol{B} \\ \boldsymbol{B} \end{bmatrix} f_{r}\boldsymbol{r}\left(t\right) \\ &+ \begin{bmatrix} \boldsymbol{B} \\ \boldsymbol{0} \end{bmatrix} \boldsymbol{d}\left(t\right) + \begin{bmatrix} \boldsymbol{0} \\ \boldsymbol{L} \end{bmatrix} \boldsymbol{n}\left(t\right) \\ \boldsymbol{y}\left(t\right) &= \begin{bmatrix} \boldsymbol{C} & \boldsymbol{0} \end{bmatrix} \begin{bmatrix} \boldsymbol{x}\left(t\right) \\ \dot{\boldsymbol{x}}\left(t\right) \end{bmatrix} \end{aligned}$$

Closed loop transfer function

$$y(s) = C(s\mathbf{I} - (\mathbf{A} - \mathbf{B}\mathbf{F}))^{-1}\mathbf{B}f_r r(s)$$

Controller transfer function

$$\dot{x}(t) = (A - LC)\dot{x}(t) + Bu(t) + Ly(t) + Ln(t)$$

$$u(s) = C_r \cdot r(s) - C_y \cdot (y(s) + n(s))$$
 where $C_r = (I - F\phi^{-1}(s)B)f_r$, $C_v = F\phi^{-1}(s)L$, and

where
$$C_r = (I - F\phi^{-1}(s)B)f_r$$
, $C_y = F\phi^{-1}(s)L$, and $\phi(s) = (sI - A + BF + LC)$

Disturbance generator

$$\dot{x}_{d}(t) = A_{d}x_{d}(t)$$
$$d(t) = C_{d}x_{d}(t)$$

The augmented realization

$$\begin{bmatrix} \dot{\boldsymbol{x}}\left(t\right) \\ \dot{\boldsymbol{x}}_{d}\left(t\right) \end{bmatrix} = \begin{bmatrix} -\boldsymbol{A} & \mid \boldsymbol{B}\boldsymbol{C}_{d} \\ \boldsymbol{0} & \mid \boldsymbol{A}_{d} \end{bmatrix} \begin{bmatrix} \boldsymbol{x}\left(t\right) \\ \boldsymbol{x}_{d}\left(t\right) \end{bmatrix} + \begin{bmatrix} -\boldsymbol{B} \\ \boldsymbol{0} \end{bmatrix} \boldsymbol{u}\left(t\right)$$

$$\boldsymbol{y}\left(t\right) = \begin{bmatrix} \boldsymbol{C} & \mid \boldsymbol{0} \end{bmatrix} \begin{bmatrix} \boldsymbol{x}\left(t\right) \\ \boldsymbol{x}_{d}\left(t\right) \end{bmatrix}$$

Integrated observer

$$\begin{bmatrix} \hat{x}\left(t\right) \\ \hat{x}_{d}\left(t\right) \end{bmatrix} = \begin{bmatrix} -\frac{A - L_{1}C}{-L_{2}C} & \frac{BC_{d}}{A_{d}} \end{bmatrix} \begin{bmatrix} \hat{x}\left(t\right) \\ \hat{x}_{d}\left(t\right) \end{bmatrix}$$

$$+ \begin{bmatrix} -\frac{B}{0} \end{bmatrix} u\left(t\right) + \begin{bmatrix} -\frac{L_{1}}{L_{2}} \end{bmatrix} y\left(t\right)$$
where $\begin{bmatrix} L_{1} & L_{2} \end{bmatrix} = L$.

Internal model control (IMC) in state space

$$u(t) = f_r r(t) - \mathbf{F} \hat{\mathbf{x}}(t) - \hat{d}(t) = f_r r(t) - [\mathbf{F} \quad \mathbf{C}_d] \hat{\eta}$$

LOR control

Finds the control signal which stabilizes the system and minimizes the cost function: C^{∞}

$$\mathcal{J} = \int_{0}^{\infty} \left(\mathbf{x}^{\top}(t) C_{z}^{\top} C_{z} \mathbf{x}(t) + \rho u^{2}(t) \right) dt$$

Optimal control law

A static state feedback u(t) = -Fx(t) with

$$F = \frac{1}{\rho} B^{\top} P$$

where \boldsymbol{P} is a stabilizing solution of the the following ARE:

Continuous algebraic Riccati equation

$$\boldsymbol{A}^{\top}\boldsymbol{P} + \boldsymbol{P}\boldsymbol{A} + \boldsymbol{C}_{z}^{\top}\boldsymbol{C}_{z} - \frac{1}{\rho}\boldsymbol{P}\boldsymbol{B}\boldsymbol{B}^{\top}\boldsymbol{P} = 0$$

Cross-term in LQR cost function

$$\mathcal{J} = \int_0^\infty \left(\mathbf{x}^\top (t) \, \mathbf{C}_z^\top \mathbf{C}_z \mathbf{x}(t) + 2 \mathbf{x}^\top (t) \, \mathbf{S} u(t) + \rho u^2(t) \right) dt$$
To solve it we define:

$$\tilde{z}(t) = \tilde{C}_z^{\top} x(t), \quad \tilde{u}(t) = u(t) + \frac{1}{\rho} S^{\top} x(t)$$

satisfying the cross-term weight:

$$\tilde{C}_z^{\top} \tilde{C}_z = C_z^{\top} C_z - \frac{1}{\rho} S^{\top} S \ge 0$$

and the criterion becomes:
$$\mathcal{J} = \int_0^\infty \left(x^\top (t) \, \tilde{C}_z^\top \, \tilde{C}_z x(t) + \tilde{\rho} \, \tilde{u}^2(t) \right) dt$$
 the optimal feedback gain is:
$$F = \frac{1}{\rho} \left(B^\top P + S^\top \right)$$
 where P is the solution of the ARF:

$$F = \frac{1}{\rho} \left(B^{\top} P + S^{\top} \right)$$

where
$$P$$
 is the solution of the ARE:

$$A^{\top}P + PA + C_z^{\top}C_z - \frac{1}{\rho}(PB + S)(B^{\top}P + S^{\top}) = 0$$

Cost function with exponential decay constraint

$$\mathcal{J} = \int_0^\infty e^{2\alpha t} \left(\mathbf{x}^\top (t) \, \mathbf{C}_z^\top \, \mathbf{C}_z \mathbf{x}(t) + \rho u^2(t) \right) dt$$
To solve it we define:

and the criterion becomes:

$$\mathcal{J}_{\alpha} = \int_{0}^{\infty} \left(\mathbf{x}_{\alpha}^{\top}(t) C_{z}^{\top} C_{z} \mathbf{x}_{\alpha}(t) + \rho u_{\alpha}^{2}(t) \right) dt$$
 the optimal feedback gain is:

$$F = \frac{1}{\alpha} B^{\top} P_{\alpha}$$

 $F = \frac{1}{\rho} B^{\top} P_{\alpha}$ where P_{α} is the solution of the ARE

$$(\alpha \mathbf{I} + \mathbf{A})^{\top} \mathbf{P}_{\alpha} + \mathbf{P}_{\alpha} (\alpha \mathbf{I} + \mathbf{A}) + \mathbf{C}_{z}^{\top} \mathbf{C}_{z} - \frac{1}{\rho} \mathbf{P}_{\alpha} \mathbf{B} \mathbf{B}^{\top} \mathbf{P}_{\alpha} = 0$$

Return difference equality

$$1 + \frac{1}{\rho} P_z^{\top}(-s) P_z(s) = (1 + L(-s)) (1 + L(s))$$

where

$$L(s) \triangleq \mathbf{F} (s\mathbf{I} - \mathbf{A})^{-1} \mathbf{B}$$

$$u(s) \mapsto \mathbf{C}_z \mathbf{x}(s) : P_z(s) \triangleq \mathbf{C}_z (s\mathbf{I} - \mathbf{A})^{-1} \mathbf{B}$$

Optimal closed loop poles

The optimal control law satisfies $|1 + L(j\omega)| \ge 1$, $\forall \omega$ which implies that the LQR control law guarantees

$$GM \in \left(\frac{1}{2}, \infty\right)$$
 , $PM \ge 60^{\circ}$

Location of Closed Loop Poles

Define $P_Z(s) = \frac{N_Z(s)}{\Delta_{ol}(s)}$, then the closed-loop poles are the stable roots of

$$\Delta_{ol}(-s)\Delta_{ol}(s) + \frac{1}{\rho}N_z(-s)N_z(s) = 0$$

Symmetric Root Locus (SRL)

The R.L. problem has the form $kG_0(s) = -1$ where $G_0(s) = P_z(-s) P_z(s)$ and $k = \frac{1}{0} \ge 0$.

- SRL has 2n symmetrical branches (about the imaginary as well as the real axis).
- The pole excess of $G_0(s)$ is 2(n-m) (even).
- · Asymptotes' center of gravity always at the origin.
- · No branch can intersect or be on the imaginary

$$\begin{array}{c|c} (n-m) \text{ is odd} & (n-m) \text{ is even} \\ K<0 & K\geq 0 \\ \gamma=\frac{180}{n-m} \cdot l & \gamma=\frac{90}{n-m} \cdot (2l+1) \end{array}$$

where l = 0, 1, ..., 2(n - m) - 1

Linear quadratic estimator (LQE)

$$\begin{split} \dot{\boldsymbol{x}}\left(t\right) &= \boldsymbol{A}\boldsymbol{x}\left(t\right) + \boldsymbol{B}\boldsymbol{u}\left(t\right) + \boldsymbol{B}_{w}\boldsymbol{w}\left(t\right) \quad , \boldsymbol{x}\left(0\right) = 0 \\ \boldsymbol{y}\left(t\right) &= \boldsymbol{C}\boldsymbol{x}\left(t\right) + \sqrt{\sigma}\boldsymbol{n}\left(t\right) \end{split}$$

where w(t) and n(t) are white Gaussian noises with unit intensities. We minimize:

$$\mathcal{J} = \int_0^\infty \|\boldsymbol{x}(t) - \hat{\boldsymbol{x}}(t)\|_2 dt$$

Kalman filter

$$\dot{\hat{x}}(t) = (A - LC)\hat{x}(t) + Bu(t) + L(y(t) - C\hat{x}(t))$$
 where $L \triangleq \frac{1}{\sigma}QC^{\top}$ and $Q = Q^{\top} \ge 0$ is the unique stabilizing solution of the CARE

$$QA^{\top} + AQ + B_wB_w^{\top} - \frac{1}{\sigma}QC^{\top}CQ = 0$$

For a partial observation of the state vector

Define $v(t) = C_v x(t)$. We with to minimize: $\mathcal{J} = \int_0^\infty ||C_v x(t) - \hat{v}(t)||_2 dt$

$$S = \int_0^{\infty} ||\nabla u(t) - \nabla t||_2 dt$$

Kalman filter (partial observer) transfer function:

$$\underbrace{\begin{array}{c} y \\ u \end{array}} \left[\left[K_y \left(s \right) \quad K_u \left(s \right) \right] \right] \quad \hat{v}$$

Denoting $A_L \triangleq A - LC$ we have

$$y \rightarrow \hat{\boldsymbol{v}} : K_y(s) = \boldsymbol{C}_v (s\boldsymbol{I} - \boldsymbol{A}_L)^{-1} \boldsymbol{L}$$

$$u \rightarrow \hat{\boldsymbol{v}} : K_u(s) = \boldsymbol{C}_v(s\boldsymbol{I} - \boldsymbol{A}_L)^{-1}\boldsymbol{B}$$

and

$$\hat{\boldsymbol{v}}\left(s\right) = K_{u}\left(s\right)u\left(s\right) + K_{v}\left(s\right)y\left(s\right)$$

Filtering error:

Let
$$\varepsilon(t) \triangleq x(t) - \hat{x}(t)$$

$$\dot{\varepsilon} = (A - LC)\hat{\varepsilon} + B_w w - \sqrt{\sigma} Ln$$

Measurement error:

Let
$$y_{\varepsilon} = y - C\hat{x} = C\varepsilon(t) + \sqrt{\sigma}n$$

 $\frac{y_{\varepsilon}}{w} = S_w(s) = C(sI - (A - LC)^{-1})B_w$
 $\frac{y_{\varepsilon}}{n} = S_n(s) = \sqrt{\sigma}(I - C(sI - (A - LC))^{-1}L)$

Resulting relation:

$$\sigma = |S_w(j\omega)|^2 + |S_n(j\omega)|^2$$

Stability margins of the optimal filter:

$$\frac{1}{2} \le GM < \infty$$
, $PM \ge 60^{\circ}$

Signal to noise ratio:

$$SNR(\omega) = \frac{|Y_s(j\omega)|}{|Y_n(j\omega)|}$$

$$Y_s(s) \triangleq C(sI - A)^{-1}B_w, \quad Y_n(s) \triangleq \sqrt{\sigma}.$$

Extreme cases

If no process noise is present, meaning $B_w = 0$, the filter leaves the stable modes in their place, and reflects with respect to the imaginary axis the unstable modes. If measurement noise is infinitesimal, meaning $\sigma \to 0$, we define:

$$P_{\omega}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B}_{w} = \frac{N_{\omega}(s)}{\Delta_{\text{ol}}(s)}$$

- m eigenvalues of A LC are approaching to m stable roots of N_ω(-s)/N_ω(s)
 n m eigenvalues of A LC are approaching to n m stable roots of s^{2(n-m)} + (-1)^{n-m}/σ = 0

Coloring Process Disturbances

Let d(t) be the colored disturbance generated form the **shaping filter** $W_d(s)$, with the following minimal

$$\dot{x}_{d}(t) = A_{d}x_{d}(t) + B_{d}\tilde{w}(t)$$
$$d(t) = C_{d}x_{d}(t)$$

 $d\left(t\right)=C_{d}x_{d}\left(t\right)$ where $\tilde{w}\left(t\right)$ is a white Gaussian noise. The augmented realization of the plant and the filter is

$$\begin{bmatrix} \dot{\boldsymbol{x}}(t) \\ \dot{\boldsymbol{x}}_{d}(t) \end{bmatrix} = \begin{bmatrix} \boldsymbol{A} & \boldsymbol{B}_{w}^{T} \boldsymbol{C}_{d} \\ \boldsymbol{0} & \boldsymbol{A}_{d} \end{bmatrix} \begin{bmatrix} \boldsymbol{x}(t) \\ \boldsymbol{x}_{d}(t) \end{bmatrix}$$

$$+ \begin{bmatrix} \boldsymbol{B} \\ \boldsymbol{0} \end{bmatrix} \boldsymbol{u}(t) + \begin{bmatrix} \boldsymbol{0} \\ \boldsymbol{B}_{d} \end{bmatrix} \boldsymbol{w}(t)$$

$$\boldsymbol{y}(t) = \begin{bmatrix} \boldsymbol{C} & \boldsymbol{0} \end{bmatrix} \begin{bmatrix} \boldsymbol{x}(t) \\ \boldsymbol{x}_{d}(t) \end{bmatrix} + \sqrt{\sigma} \boldsymbol{n}(t)$$

Given the augmented realization of the plant and shaping filter, the optimal observer is

$$\begin{bmatrix} \hat{\boldsymbol{x}}(t) \\ \hat{\boldsymbol{x}}_{d}(t) \end{bmatrix} = \begin{bmatrix} A - L_{1}C & B_{w}C_{d} \\ -L_{2}C & A_{d} \end{bmatrix} \begin{bmatrix} \hat{\boldsymbol{x}}(t) \\ \hat{\boldsymbol{x}}_{d}(t) \end{bmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix} u(t) + \begin{bmatrix} L_{1} \\ L_{2} \end{bmatrix} y(t)$$
where $\begin{bmatrix} L_{1} & L_{2} \end{bmatrix} = L$.

Coloring measurement noise

Let n(t) be the colored disturbance generated form the shaping filter $W_n(s)$, with the following minimal realization (for simplicity we assume $D_n = 1$)

$$\dot{x}_n(t) = A_n x_n(t) + B_n \tilde{n}(t)$$

$$n(t) = C_n x_n(t) + \tilde{n}(t)$$

where $\tilde{n}(t)$ is a white Gaussian noise. The optimal

$$\begin{vmatrix} \hat{\mathbf{x}}(t) \\ \hat{\mathbf{x}}_n(t) \end{vmatrix} = \left(\begin{bmatrix} \mathbf{A} & \mathbf{0} \\ -\frac{1}{\sqrt{\sigma}} \mathbf{B}_n \mathbf{C} & \mathbf{A}_n - \mathbf{B}_n \mathbf{C}_n \end{bmatrix} \right)$$

$$- \begin{bmatrix} \mathbf{L}_1 \\ \mathbf{L}_2 \end{bmatrix} \begin{bmatrix} \mathbf{C} \mid \sqrt{\sigma} \mathbf{C}_n \end{bmatrix} \right) \begin{bmatrix} \hat{\mathbf{x}}(t) \\ \hat{\mathbf{x}}_n(t) \end{bmatrix}$$

$$+ \begin{bmatrix} \mathbf{B} \\ \mathbf{0} \end{bmatrix} u(t) + \begin{bmatrix} \mathbf{L}_1 \\ \mathbf{L}_2 + \frac{1}{\sqrt{\sigma}} \mathbf{B}_n \end{bmatrix} y(t)$$

where $[L_1 L_2] = L$.

Shaping filter with a dominant frequency α

$$\begin{split} \phi_n(\omega) &= \frac{\omega^4 + \omega_0^4}{(\omega^2 - \omega_0^2)^2} \rightarrow W_n(s) = \frac{s^2 + \sqrt{2}\omega_0 s + \omega_0^2}{s^2 + \omega_0^2} \\ \dot{\boldsymbol{x}}_n(t) &= \begin{bmatrix} 0 & \omega_0 \\ -\omega_0 & 0 \end{bmatrix} \boldsymbol{x}_n(t) + \begin{bmatrix} \sqrt{2}\omega_0 \\ 0 \end{bmatrix} \bar{n}(t), \\ n(t) &= \begin{bmatrix} 1 & 0 \end{bmatrix} \boldsymbol{x}_n(t) + \tilde{n}(t) \end{split}$$

LOG control

The solution to the LQG problem is the combination of the LQR controller minimizing

of the LQR controller minimizing
$$\mathcal{J}_{LQR} = \int_0^\infty (x^\top(t)Xx(t) + u^\top(t)Ru(t))dt$$
 and a Kalman filter. The LQG controller:
$$K_{LQG} = \left[\begin{array}{c|c} A - BF - LC & L \\ \hline -F & l \end{array} \right]$$
 where: $F = R^{-1}B^\top P$, $L = QC^\top N^{-1}$ are solutions of the Riccati equations:
$$A^\top P + PA + X - PBR^{-1}B^\top P = 0$$

$$K_{LQG} = \begin{bmatrix} A - BF - LC & L \\ -F & 0 \end{bmatrix}$$

$$A^{\top} P + PA + X - PBR^{-1}B^{\top}P = 0$$
$$QA^{\top} + AQ + W - QC^{\top}N^{-1}CQ = 0$$

Disturbance generators

Step + Ramp

$$\begin{split} d\left(t\right) &= \left(d_0 + d_1 t\right) \cdot \mathbb{I}\left(t\right) \rightarrow D(s) = \frac{d_0 s + d_1}{s^2} \\ \dot{\boldsymbol{x}}_d(t) &= \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \boldsymbol{x}_d(t), \quad \boldsymbol{x}_d(0) = \begin{bmatrix} d_0 \\ d_r \end{bmatrix} \\ d(t) &= \begin{bmatrix} 1 & 0 \end{bmatrix} \boldsymbol{x}_d(t) \end{split}$$

Harmonic signal

$$\begin{split} d\left(t\right) &= a \sin\left(\omega t + \varphi\right) \rightarrow D(s) = \frac{a \sin\left(\varphi\right) s + a \omega \cos\left(\varphi\right)}{s^2 + \omega^2} \\ \dot{x}_d(t) &= \begin{bmatrix} 0 & \omega \\ -\omega & 0 \end{bmatrix} x_d(t), \quad x_d(0) = \begin{bmatrix} a \sin(\phi) \\ a \cos(\phi) \end{bmatrix} \\ d(t) &= \begin{bmatrix} 1 & 0 \end{bmatrix} x_d(t) \end{split}$$

Sampled data system

Spectrum of sampled signal

$$X^{\star}(\omega) \triangleq \mathcal{F}\left\{x^{\star}(t)\right\} = \frac{1}{T_s} \sum_{k=-\infty}^{\infty} X(\omega + k\omega_s)$$

Sampling theorem (Shannon-Nyquist

A continuous signal, x(t), can be uniquely reconstructed from its samples, $x(kT_s)$, if: $\forall |\omega| > \omega_b$: $|X(j\omega)| = 0$, and $\omega_s > 2\omega_b$.

Nyquist frequency

The highest frequency in a band-limited signal that can be reconstructed (in an unbiased way) from its samples:

$$\omega_N \triangleq \frac{\omega_s}{2} = \frac{\pi}{T_s}$$

Ideal filter (the sinc interpolator)

$$g_{I}\left(t\right) = \frac{1}{T_{s}} \operatorname{sinc}\left(\frac{\omega_{s}}{2}t\right) \rightarrow G_{I}\left(\omega\right) = \begin{cases} 1 & |\omega| \leq \frac{\omega_{s}}{2} \\ 0 & \text{otherwise} \end{cases}$$
 which is non-causal. With frequency response:

$$G(j\omega) = \begin{cases} 1, & -\frac{\omega_s}{2} \le \omega \le \frac{\omega_s}{2} \\ 0, & \text{elsewhere} \end{cases}$$

$$x_{\text{ideal}}^{\star}(t) = \sum_{k=-\infty}^{\infty} x(kT_s) \operatorname{sinc}\left(\frac{\omega_s}{2}(t - kT_s)\right)$$

Given the sampled signal, $x(kT_s)$, the ideal reconstructed signal is given by $x_{\text{ideal}}^{\star}(t) = \sum_{k=-\infty}^{\infty} x(kT_s) \text{sinc}\left(\frac{\omega_s}{2}(t-kT_s)\right)$ And if the conditions of the Shannon-Nyquist Sampling Theorem are satisfied, then $x_{\text{ideal}}^{\star}(t) = x(t)$.

ZOH Discrete Equivalent Plant (DEP)

The discrete model of the continuous plant P(s)

$$P_{eq}: \begin{bmatrix} A_S & B_S \\ \hline C & D \end{bmatrix}$$

$$A_s = e^{AT_s}$$
 , $B_s = \int_0^{T_s} e^{A\tau} B d\tau$

The DEP transfer function is

$$P_{eq}(z) = (1 - z^{-1}) \mathbb{Z} \left\{ \frac{P(s)}{s} \right\}$$

Triangular hold DEP

Given P(s) the triangular discrete equivalent plant is given by

$$P_{\text{Tri}}(z) = \frac{(z-1)^2}{T_s z} \mathcal{Z} \left\{ \frac{P(s)}{s^2} \right\}$$

which is causal.

Pathological sampling

A sampling frequency ω_s is called pathological with respect to P(s) if complex poles of P(s) satisfy

 $\Re\{p_i\} = \Re\{p_j\}$ and $\operatorname{Im}\{p_i - p_j\} = m\omega_s$ where p_i, p_j are poles of P(s), ω_s is the sampling frequency, and m = 1, 2...

Residue theorem

Assuming strictly proper F(s)

Assuming strictly proper
$$F(s)$$

$$F(z) = \sum_{\text{poles of } F(s)} R_i \left\{ F(s) \frac{1}{1 - e^{-Ts} z^{-1}} \right\}$$
For a single pole
$$P_{i,j}(F(s)) = (s - s) F(s)$$

$$R_i \{F(s)\} = (s - s_i) F(s)|_{s = s_i}$$

For a pole of q_i multiplicity

$$R_{i} = \frac{1}{(q_{i} - 1)!} \frac{d^{q_{i} - 1}}{ds^{q_{i} - 1}} \left((s - s_{i})^{q_{i}} F(s) \right) \Big|_{s = s_{i}}$$

Stability of Closed-Loop Sampled Data Sys-

It can be shown that the following Sampled Data

is equivalent at the sampling instants to the following discrete system:

The closed-loop transfer functions are"
$$y(z) = \frac{C(z)P_{eq}(z)}{1 + C(z)[HPh](z)}r(z) + \frac{P_{eq}(z)}{1 + C(z)[HPh](z)}d(z)$$
 where

$$[HPh](z) = (1 - z^{-1})\mathbb{Z}\left\{\frac{P(s)H(s)}{s}\right\}$$

Denote

Denote
$$C(z) = \frac{N_c(z)}{D_c(z)}, \quad P_{eq}(z) = \frac{N_p(z)}{D_p(z)}$$
 then the open loop of the discrete system is
$$\frac{N_c(z)N_c(z)}{N_c(z)N_c(z)} = \frac{N_c(z)N_c(z)}{N_c(z)N_c(z)}$$

L(z) =
$$C(z)P_{eq}(z) = \frac{N_c(z)N_p(z)}{D_c(z)D_p(z)} = \frac{N_o(z)}{D_o(z)}$$

and the characteristic polynomial of the discrete closed loop system is:

$$\Delta_{cl}(z) = D_o(z) + N_o(z).$$

Theorem:

- 1. Let L(z) be minimal, then the discrete system is stable iff all roots of $\Delta_{cl}(z)$ are in the Open Unit Disk (OUD).
- Stability of the discrete system implies the stability of the sampled data system.

Discretization of continuous design

Forward rectangular rule (FRR)

$$s \longleftarrow \frac{z-1}{T_s}$$

Backward rectangular rule (BRR)

$$s \longleftarrow \frac{1 - z^{-1}}{T_s}$$

Trapezoid/Tustin's rule (TR) / Bilinear rule

$$s \longleftarrow \frac{2}{T_s} \cdot \frac{z-1}{z+1}$$

Tustin with frequency prewarping

Ensures a match between the continuous and discrete responses at ω_0

$$s \longleftarrow \frac{\omega_0}{\tan\left(\frac{\omega_0 T_s}{2}\right)} \cdot \frac{z-1}{z+1}$$

Impulse invariance (Z transform)

$$C_D(z) = \mathbb{Z}\{C_D(kT_s)\} = T_s\mathbb{Z}\{C(t = kT_s)\} = T_sC(z)$$

$$C_{D}\left(z\right) = \left(1 - z^{-1}\right) \mathbb{Z}\left\{\frac{C\left(s\right)}{s}\right\}$$

Zero-Pole matching

	$C_D(z)$	(c(s)
Pole	$e^{p_i T}$	p_i
Finite zero	$e^{z_i T}$	z_i
Infinite zero	z = -1	z_i
LPF gain	$C_D(z=1)$	$\dot{C}(s=0)$
HPF gain	$C_D(z = -1)$	$C(s=\infty)$

Frequency response for discrete systems

For input $u_k = a \sin(\omega kT)$:

$$Y_{ss}(kT) = a \left| P(e^{j\omega T}) \right| \sin\left(k\omega T + \angle P(e^{j\omega T})\right)$$

Direct discrete controller design - minimal prototype

zero tracking error in minimum steps at sampling

$$P_{eq}(z) = \frac{A(z)}{B(z)}, \quad C(z) = \frac{P_{eq}^{-1}(z)}{z^{n-m}-1}$$

$$P_{eq} \text{ is stable and MP}$$

where P_{ea} is stable an

Deadbeat control

Zero tracking error at sampling instants after *n* steps

and control reaches steady state in
$$n$$
 steps.
$$P(z) = \frac{A(z)}{B(z)}, \quad C(z) = \frac{\alpha B(z)}{z^n - \alpha A(z)}, \quad \alpha = \frac{1}{A(1)}$$

where P(z) is stable and MP. ★ Equivalent to pole placement with $\Delta_{cl}(z) = z^n$

Pole placement controller

Same formulas and conditions as in continuous case

Discrete systems in state space

$$\begin{cases} x_{k+1} = Ax_k + Bu_k \\ y_k = Cx_k + Du_k \end{cases}, x[k=0] = x_0$$

$$x_n = A^n x_0 + \sum_{i=0}^{n-1} A^{n-i-1} Bu_i$$
transfer function of the discrete system:

Controllability matrix

$$C \triangleq \begin{bmatrix} B & AB & \dots & A^{n-1}B \end{bmatrix}$$

 $C(zI-A)^{-1}B+D$

Observability matrix

$$\mathcal{O} \triangleq \begin{bmatrix} C & CA & \cdots & CA^{n-1} \end{bmatrix}^{\top}$$

Ackermann's formula for state feedback

$$\mathbf{K} = \begin{bmatrix} 0 & \cdots & 1 \end{bmatrix} \mathcal{C}^{-1} \Delta_{cl} (\mathbf{A})$$

State feedback with integration on error

$$\begin{split} & \text{Control law: } u_i = - \begin{bmatrix} & K_1 & K_2 & \end{bmatrix} \begin{bmatrix} & x_i \\ & s_i & \end{bmatrix} \\ & \begin{bmatrix} & x_{i+1} \\ & s_{i+1} & \end{bmatrix} = \begin{bmatrix} & A & \mathbf{0} \\ & -C & I & \end{bmatrix} \begin{bmatrix} & x_i \\ & s_i & \end{bmatrix} + \begin{bmatrix} & B \\ & \mathbf{0} & \end{bmatrix} u_i + \begin{bmatrix} & \mathbf{0} \\ & I & \end{bmatrix} v_i \\ & y_i = \begin{bmatrix} & C & \mathbf{0} & \end{bmatrix} \begin{bmatrix} & x_i \\ & s_i & \end{bmatrix} \\ \end{aligned}$$

Ackermann's formula for observer

$$L = \Delta_{oh}(A)\mathcal{O}^{-1}[0 \quad \cdots \quad 0 \quad 1]^{\top}$$

Discrete Dead time (delay)

Transfer function - z^{-l} Frequency response $z^{-j\omega Tl}$ $\left|z^{-j\omega Tl}\right| = 1, \quad \forall \omega T \in [0,\pi]$

 $\angle z^{-j\omega T} = -\omega T l$ Discrete DT is finite dimensional (-l poles at origin)

Discrete system with an input delay of l sampling intervals

$$x_{i+1} = Ax_i + Bu_{i-1}$$

$$\begin{bmatrix} x_{i+1} \\ u_{i-l+1} \\ u_{i-l+2} \\ \vdots \\ u_i \end{bmatrix} = \begin{bmatrix} A & B & 0 & \cdots & 0 \\ 0 & 0 & I & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & I \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix} + \begin{bmatrix} x_i \\ u_{i-l} \\ u_{i-l+1} \\ \vdots \\ u_{i-1} \end{bmatrix}$$

State feedback for system with dead time

$$u_{i} = k_{v}v_{i} - (K_{x} \cdot K_{u,1} \cdot K_{u,2} \cdot \dots \cdot K_{u,l})\overline{x}_{i}$$

$$= k_{v}v_{i} - K_{x}x_{i} - \sum_{k=1}^{l} K_{u,l+1-k}u_{i-k}$$

$$u(z) = k_{v}v(z) - K_{x}x(z) \underbrace{\left(\sum_{k=1}^{l} K_{u,l+1+k}z^{-k}\right)}_{\text{II}(z)} u(z)$$

Discrete observer

Regular full order observer system

$$L$$
 can be obtained using Ackermann's formula:
$$L = \Delta_{ob}(A)\mathcal{O}^{-1}\begin{bmatrix}0&\cdots&0&1\end{bmatrix}^{\mathsf{T}}$$
 where: $\Delta_{ob}(z) = \det(zI - A + LC)$

Current observer

L can be obtained using Ackermann's formula: $L = \Delta_{ob}(A) \mathcal{O}_{CA,A}^{-1} \begin{bmatrix} 0 & \cdots & 0 & 1 \end{bmatrix}^{\mathsf{T}}$

$$L = \Delta_{ob}(A)\mathcal{O}_{CA,A}^{-1}[0 \quad \cdots \quad 0]$$

where: $\Delta_{ob}(z) = \det(zI - A + LCA)$

Theorem:

- 1. If (C,A) is observable and if $det(A) \neq 0$ then the pair (CA, A) is observable.
- 2. If det(A) = 0 and A has q poles at the origin and (C,A) observable then (CA,A) is not observable and only n - q poles (those not at the origin) can be placed arbitrarily.

Discrete state feedback + observer

	Current	Regular
G_m	$\left[I + K\Phi_0^{-1} \left(I - L_C C\right)B\right]^{-1}$	$\left[I + K\Phi_{0}^{-1}B\right]^{-1}$
G_f	$zK\Phi_0^{-1}L_C$	$K\Phi_0^{-1}L$
$\mathbf{\Phi}_0$	$zI - A + L_C CA$	zI - A + LC

Discrete LQR

$$\mathcal{J} = \sum_{i=1}^{\infty} \begin{bmatrix} x_i^{\top} & u_i^{\top} \end{bmatrix} \begin{bmatrix} Q & S \\ S^{\top} & R \end{bmatrix} \begin{bmatrix} x_i \\ u_i \end{bmatrix}$$
The optimal state feedback $u_i = -Kx_i$

$$K = (R + B^{\top}PB)^{-1} (B^{\top}PA + S^{\top})$$

$$K = (R + B^{\top} P B)^{-1} (B^{\top} P A + S^{\top})$$

Discrete Riccati equation

 $A^\top PA + Q = P + (A^\top PB + S)(R + B^\top PB)^{-1}(B^\top PA + S^\top)$ open loop of optimal state feedback

$$L(z) = K(zI - A)^{-1}B$$

Sampled-Data LQR

finding the discrete feedback which internally stabilizes the closed loop and minimizes the continuous cost function:

cost function:

$$\mathcal{J} = \int_0^\infty \begin{bmatrix} \mathbf{x}^\top(t) & u^\top(t) \end{bmatrix} \begin{bmatrix} \mathbf{Q} & \mathbf{0} \\ \mathbf{0} & \mathbf{R} \end{bmatrix} \begin{bmatrix} \mathbf{x}(t) \\ u(t) \end{bmatrix} dt$$
Find stabilizing piecewise-constant control signal
$$u(t) = u_i = -K\mathbf{x}_i, \quad t \in [iT, (i+1)T)$$
Equivalent discrete criterion

$$\mathcal{J} = \sum_{i=0}^{\infty} \left[\begin{array}{cc} \boldsymbol{x}_{iT}^{\top} & \boldsymbol{u}_{iT}^{\top} \end{array} \right] \left[\begin{array}{cc} \boldsymbol{Q}_{d} & \boldsymbol{S}_{d} \\ \boldsymbol{S}_{d}^{\top} & \boldsymbol{R}_{d} \end{array} \right] \left[\begin{array}{cc} \boldsymbol{x}_{iT} \\ \boldsymbol{u}_{iT} \end{array} \right]$$

where:

$$\begin{aligned} Q_d &= \int_0^T e^{A^\top \tau} Q e^{A\tau} d\tau \\ S_d &= \int_0^T e^{A^\top \tau} Q B_s(\tau) d\tau \\ R_d &= \int_0^T (B_s^\top(\tau) Q B_s(\tau) + R) d\tau \\ \text{and } B_s(v) &= \int_0^v e^{A\sigma} d\sigma B \end{aligned}$$

Aliasing (frequency folding)

The frequency ω_0 is called the alias of $\omega_0 \pm n\omega_s$, $\forall n \in \mathbb{Z}$. The fundamental alias for $\omega_1 > \omega_N$ is given

$$\omega = |(\omega_1 + \omega_N) \bmod (\omega_s) - \omega_N|$$