

Lineare Algebra 2: Zusammenfassung

LA2 für die Fachrichtung Informatik - Sommersemester 23 Jonatan Ziegler | 24. Juli 2023

Disclaimer

Dieser Foliensatz wurde von einem Tutor erstellt und ist damit **kein** offizielles Dokument und hat insbesondere keine Vollständigkeitsansprüche. Ebenso kann nicht für Fehlerfreiheit garantiert werden.

Der Foliensatz orientiert sich am Skript und der zugehörigen Vorlesung von PD Dr. Stefan Kühnlein.

Das Teilen und Weiterverbreiten des Foliensatzes in seiner ursprünglichen Form ist ausdrücklich erlaubt.

Feedback oder Fehler können gerne an jonatan.ziegler@student.kit.edu gemeldet werden.

Inhalt

- 1. Polynomring+
- 2. Haupträume
- 3. Jordan'sche Normalform
- 4. Bilinearformen
- 5. Skalarprodukt

- 6. Orthogonalsysteme
- 7. Positiv-Definite

Matrizen

8. Orthogonales

Komplement

- 9. Orthogonale Projektion
- 10. Unitäre Vektorräume

- 11. Isometrien
- 12. Isometrienormalform
- 13. Selbstadjungierte **Endomorphismen**
- 14. Normale

Endomorphismen

Polynomring+

Erinnerung: Polynome

kommutativer Ring R

$$a_i\in R\quad (i\in\{0,\dots,n\}, a_n\neq 0, n\in\mathbb{N}_0)$$
 :
$$p=a_nX^n+a_{n-1}X^{n-1}+\dots+a_1X+a_0\in R[X]$$

- grad p = n (grad $p = -\infty$ falls p = 0)
- \blacksquare R[X] ist Ring

Weitere Eigenschaften

$$f,g \in R[X]$$

- f Teiler von $g \iff \exists h \in R[X] : g = f \cdot h$
- f, q teilerfremd: nur Einheiten aus R[X] sind gemeinsame Teiler
- $f \notin R[X]^{\times}$ irreduzibel: Bei Zerlegung $f = g \cdot h$ ist immer ein Faktor Einheit

Erinnerung

Einheiten $R[X]^{\times} = R^{\times}$ invertierbaren Elemente

Sei $\Phi \in \text{Hom}(V, V)$, B Basis von V

Idee: Einfaches finden von Eigenwerten

$$\mathsf{CP}_\Phi(X) := \det(XI_n - D_{BB}(\Phi))$$

Unabhängig von gewählter Basis ${\it B}$

$$CP_{\Phi}(\lambda) = 0 \iff \lambda \text{ Eigenwert von } \Phi$$

Satz von Cayley-Hamilton

Jonatan Ziegler: LA 2 Info

Sei
$$\Phi \in \operatorname{Hom}(V,V)$$

$$CP_{\Phi}(\Phi) = 0$$

Ideale

Sei R kommutativer Ring

Ideal I

- 1 UGR (R, +)
- - Hauptideal I: $\exists a \in I : I = a \cdot R$

Hinweis: Ideal vs Teilring/Unterring

Nur I=R ist sowohl **Teilring** als auch **Ideal** von R, da $1\in I$ wegen Teilring $\implies r\cdot 1\in I$.

Polynome und Eigenwerte

Sei
$$\Phi \in \text{End}(V), f \in K[X], V K\text{-VR}$$

- Annullierendes Polynom: $f(\Phi) = 0$
- Verschwindugsideal $I(\Phi) \subseteq K[X]$: Menge aller annullierenden Polynome
- $f(\operatorname{Spec} \Phi) \subset \operatorname{Spec} f(\Phi)$

Minimalpolynom

Sei $\Phi \in \operatorname{End}(V)$

Minimal polynom $MP_{\Phi}(X)$

- annullierendes Polynom für Φ $(MP_{\Phi}(\Phi) = 0)$
- 2 kleinstmöglicher Grad (≥ 0)
- (3) normiert (erster Koeffizient ist 1)

Eigenschaften

- existiert immer eindeutig
- teilt alle annullierenden Polynome
 - \implies ist Teiler vom $CP_{\Phi}(X)$
- hat gleiche Nullstellen (Eigenwerte) wie $CP_{\Phi}(X)$
- lacktriangledown Φ diagonalisierbar $\Leftrightarrow MP_{\Phi}(X)$ zerfällt in verschiedene Linearfaktoren

Direkte Summe char. P.

 $\mathsf{Sei}\ \Phi \in \mathsf{End}(V), V\ K\text{-}\mathsf{VR}$

Für
$$CP_{\Phi}(X) = f \cdot g$$
 gilt:

$$V = \operatorname{Kern} f(\Phi) \oplus \operatorname{Kern} g(\Phi)$$

Haupträume

Erinnerung: Eigenräume und Diagonalisierbarkeit

Sei $\Phi \in \text{End}(V)$, V K-VR

$$\operatorname{Eig}(\Phi,\lambda) = \operatorname{Kern}(\Phi - \lambda \cdot \operatorname{Id}_V)$$

$\Phi \in \operatorname{End}(V)$ diagonalisierbar

- \blacksquare \exists Basis B sodass $D_{BB}(\Phi)$ in Diagonalform (falls $\dim V<\infty$)
- lacktriangleq V hat **Basis aus Eigenvektoren** von Φ
- V ist Summe der Eigenräume
- Charakteristisches Polynom zerfällt in Linearfaktoren und geometrische und algebraische Vielfachheiten stimmen überein

Hauptraum

Sei $\Phi \in \operatorname{End}(V)$, $\lambda \to \operatorname{EW}$ von Φ .

Hauptraum von Φ zu EW λ

$$H:=H(\Phi,\lambda):=\bigcup_{k=0}^{\infty}\underbrace{\mathrm{Kern}(\Phi-\lambda Id_{V})^{k}}_{:=H_{k}}$$

Erinnerung

 $\mu_a(\Phi,\lambda)$ ist die **algebraische Vielfachheit**, also wie of λ Nullstelle im CP ist.

Eigenschaften

- Untervektorraum
- \bullet $H_0 = \{0\}$
- $\blacksquare \ H_1 = \operatorname{Eig}(\Phi, \lambda)$
- $\blacksquare H_k \subseteq H_{k+1}$
- $\blacksquare H_k = H_{k+1} \implies H_k = H_j \ (j \ge k)$
- $\blacksquare H = H_{\dim V} = H_{\mu_{\sigma}(\Phi,\lambda)}$
- $\blacksquare \dim H = \mu_a(\Phi,\lambda) \geq \mu_q(\Phi,\lambda)$
- $\blacksquare \ H \neq \{0\} \iff \mathsf{Eig}(\Phi, \lambda) \neq \{0\}$
- lacksquare H_k ist Φ -invariant

Direkte Summe

Sei $\Phi \in \operatorname{End} V$

Äquivalent

- ${\color{red} \bullet} \ V = \textstyle\bigoplus_{\lambda \in \operatorname{Spec} \, \Phi} H(\Phi, \lambda)$
- ${\color{blue} \bullet} \ CP_{\Phi}(X) = \prod_{\lambda \in \operatorname{Spec} \, \Phi} \, (X \lambda)^{\dim H(\Phi, \lambda)}$
- CP zerfällt in Linearfaktoren
- MP zerfällt in Linearfaktoren

Jordan'sche Normalform

Nilpotente Endomorphismen

Sei $\Phi \in \operatorname{End}(V)$

Φ nilpotent

- $\blacksquare \iff \exists n \in \mathbb{N}: \quad \Phi^n = 0$
- \longrightarrow X^n annullierendes Polynom

Zyklischer UVR

Sei
$$\Psi \in \text{End}(V)$$
 nilpotent, $v \in V, k \in \mathbb{N}, \Psi^k(v) \neq 0, \Psi^{k+1}(v) = 0$

 $\blacksquare U$ ist Ψ invariant

Zerlegung von $H(\Phi, \lambda)$

$$H(\Phi,\lambda)=igoplus_{i=1}^k Z_i \quad Z_i$$
 zyklische UVR zu $(\Phi-\lambda id)$, $k\in\mathbb{N}$

Eigenschaften

- $\blacksquare \ k = \dim \operatorname{Eig}(\Phi, \lambda)$
- \blacksquare es gibt $m_d=2\cdot \dim H_d-\dim H_{d-1}-\dim H_{d+1}$ viele UVR Z_i mit $\dim Z_i=d,\ d\in \mathbb{N}$

Jordankästchen und -blöcke

Jordankästchen

für geeignetes $v \in Z_i$

$$\begin{split} D_{B_iB_i}(Z_i) &= \\ J_d(\lambda) &= \begin{pmatrix} \lambda \\ 1 & \lambda \\ & \ddots & \ddots \\ & 1 & \lambda \end{pmatrix} \in K^{d\times d} \\ &\text{mit } B_i &= \\ \{v, (\Phi - \lambda id)(v), \dots, (\Phi - \lambda id)^r(v)\} \end{split}$$

Jordanblock für $H(\Phi, \lambda)$:

$$D(\lambda) = \begin{pmatrix} J_{d_1}(\lambda) & & & \\ & J_{d_2}(\lambda) & & \\ & & \ddots & \\ & & & J_{d_k}(\lambda) \end{pmatrix}$$

Jordan-Normalform von Φ

$$JNF = \begin{pmatrix} D(\lambda_1) & & & \\ & D(\lambda_2) & & \\ & & \ddots & \\ & & D(\lambda_l) \end{pmatrix}$$

Jordanhasis

Bestimme Basen $B(\lambda)$ von $H(\lambda) = H_d$, $d \in \mathbb{N}$ separat:

- Finde U_i (1 ≤ i ≤ d) sodass $H_{i+1} = H_i \oplus U_{d+1}$
- \blacksquare Bilde Basis B_d von U_d
- Ergänze $(\Phi \lambda id)(B_{i+1})$ zu Basis B_i von U_i für $1 \le i < d$
- $\blacksquare B(\lambda) = \bigcup_{i=1}^{d} B_i$

Übersicht: Bestimmen der JNF & Jordanbasis

- 1 charakteristisches Polynom bestimmen
- Zerlegung in Haupträume
- ${\color{red} oldsymbol{3}}$ Bestimmen der **Dimensionen der Kerne** $H_k(\lambda)$ pro Hauptraum
- 4 Bestimmen der Jordankästchengrößen mit Formel

Für Jordanbasis:

- ${\color{red} f 5}$ Bestimme Komplemente U_i und finde deren Basen schrittweise (siehe vorherige Folie)
- 6 Vereine diese Basen in der richtigen Reihenfolge

Bilinearformen

Paarungen und Bilinearformen

Seien V, W K-VR

Paarung $P: V \times W \rightarrow K$

- $P(\alpha v_1 + v_2, w) = \alpha P(v_1, w) + P(v_2, w) \quad v_1, v_2 \in V, \ w \in W, \ \alpha \in K$
- $\ \ \, P(v,\beta w_1+w_2)=\beta P(v,w_1)+P(v,w_2) \quad v\in V,\; w_1,w_2\in W,\; \beta\in K$
- **Bilinearform** falls V = W
 - **symetrisch** falls P(v, w) = P(w, v) ($v, w \in V = W$)
- nicht ausgeartet falls $\forall v \in V \setminus \{0\} \exists w \in W : P(v, w) \neq 0$ und umgekehrt

Fundamentalmatrix

Seien B Basis von V, C Basis von W

- lacksquare P ist durch $P(b_i,c_i)$ eindeutig bestimmt
- lacktriangledown durch jede Wahl von $P(b_i,c_j)$ ergibt sich eine Paarung (bilineare Fortsetzung)

Fundamentalmatrix $D_{BC}(P) = F$

$$F = (P(b_i, c_j))_{i,j}$$

- ightharpoonup P Bilinearform $\implies F$ quadratisch
- P symetrisch $\iff F = F^{\top}$ symetrisch
- ightharpoonup P nicht ausgeartet $\iff F$ regulär (und quadratisch)

Basiswechsel für Fundamentalmatrix

Sei $P: V \times W \to K$ Paarung, B Basis von V, C Basis von W, $v \in V$, $w \in W$

Berechnen einer Paarung mit der Fundamentalmatrix

$$P(v, w) = D_B(v)^{\mathsf{T}} \cdot \underbrace{D_{BC}(P)}_F \cdot D_C(w)$$

Basiswechsel

$$D_{\tilde{B}\tilde{C}}(P) = D_{\underline{B}\tilde{\underline{B}}}(id)^{\top} \cdot D_{BC}(P) \cdot D_{C\tilde{C}}(id)$$

Orthonormalbasis

Sei $P: V \times V \to K$ Bilinearform, B Basis von V

- B OrthoGONALbasis (OGB) wenn $P(b_i, b_j) = 0$ $(i \neq j)$
- B OrthoNORMALbasis (ONB) wenn B OGB und $P(b_i, b_i) = 1$
- Eine OGB existiert immer, wenn P symetrische Bilinearform und Charakeristik $K \neq 2$

Fourierformel

$$P$$
 Bilinearform, B ONB, $v \in V$:

$$v = \sum_{b \in B} P(v, b) \cdot b$$

Skalarprodukt

Positiv-Definitheit

Sei $V \mathbb{R}$ -VR

Sei $P: V \times V \to \mathbb{R}$

P positiv definit

$$\forall v \in V \setminus \{0\} : P(v, v) > 0$$

Skalarprodukt

Skalarprodukt (SP) $\langle \cdot, \cdot \rangle$

- Bilinearform
- symetrisch
- positiv definit

euklidischer VR $\,V$

 $V \mathbb{R}\text{-VR mit SP } \langle \cdot, \cdot \rangle$

Standart-SP

Standart-SP auf Standart-VR

 $\langle x,y\rangle = x^{\top}y \text{ auf } \mathbb{R}^n$ ⇒ euklidische Standardraum

Geometrie

Sei $v, w \in V$, V eukl. VR.

Norm ||v||

Länge $||v|| := \sqrt{\langle v, v \rangle}$

Metrik d(v, w)

Abstand d(v, w) := ||v - w||

Winkel

$$\angle(v,w) := \alpha \text{ mit } \cos \alpha = \frac{\langle v,w \rangle}{||v||\cdot||w||}$$

$$v \perp w : \iff v, w \text{ orthagonal}$$

$$\iff \angle(v, w) = 90^{\circ} \iff \langle v, w \rangle = 0$$

(Un-)Gleichungen

Sei $v, w \in V$, V eukl. VR.

Cauchy-Schwarzsche-UGL

$$\langle v, w \rangle^2 \le \langle v, v \rangle \cdot \langle w, w \rangle$$

 $\iff \langle v, w \rangle \le ||v|| \cdot ||w||$

Gleichheit gdw. v, w lin. abhängig.

Dreiecks-UGL

$$d(u, w) \le d(u, v) + d(v, w)$$

Phytagoras

$$v \perp w \iff ||v||^2 + ||w||^2 = ||v + w||^2$$

Orthogonalsysteme

Erinnerung Orthonormalbasis

Sei $P: V \times V \to \mathbb{R}$ Skalarprodukt, B Basis von V

- B Orthogonalbasis (OGB) wenn $\langle b_i, b_i \rangle = 0 \quad (i \neq j)$
- B OrthoNORMALbasis (ONB) wenn B OGB und $\langle b_i, b_i \rangle = 1$

Fourierformel

P Skalarprodukt, B ONB, $v \in V$:

$$v = \sum_{b \in B} \langle v, b \rangle b$$

Orthagonalsystem

Orthagonalsystem S

Menge Orthogonaler Vektoren $\neq 0$ ($\langle s_i, s_i \rangle = 0$)

Orthagonalsysteme sind linear unabhänig.

Orhtogonale Gruppe O(n)

$$O(n) := \{A \in GL_n(\mathbb{R}) \mid A^\top A = I_n\}$$
 Also $A^{-1} = A^\top$

Gram-Schmidt

Ziel: Menge $V = \{v_1, \dots, v_n\} \rightsquigarrow \mathsf{ONB}\ W \mathsf{von}\ \langle v_1, \dots, v_n\rangle$ Vorgehen:

(1) Ortogonalisieren

Für
$$i \in \{1,\dots,n\}: \quad w_i' := v_i - \sum_{k=1}^{i-1} \frac{\langle v_i, w_k' \rangle}{\langle w_k', w_k' \rangle} w_k'$$

(2) Normieren

$$\text{Für } i \in \{1,\dots,n\}: \quad w_i := \frac{w_i'}{||w_i'||}$$

Funktioniert auch mit linear abhänigen Vektoren $\rightsquigarrow w'_{\iota} = 0$

Iwasawa-Zerlegung

$$GL_n(\mathbb{R}) = O(n) \cdot \mathcal{B}(n)$$

$$\mathbf{mit}\ \mathcal{B}(n) = \begin{pmatrix} + & * & \cdots & * \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & * \\ 0 & \cdots & 0 & \bot \end{pmatrix} \subseteq \mathbb{R}^{n \times n}$$

Positiv-Definite Matrizen

Erinnerung: Positiv-Definitheit

Sei $V \mathbb{R}$ -VR

Sei $P: V \times V \to \mathbb{R}$ Bilinearform

P positiv definit

$$\forall v \in V \setminus \{0\}: \quad P(v, v) > 0$$

Positiv-definite Matrizen

$A \in \mathbb{R}^{n \times n}$ positiv definit

- A symmetrisch

Kriterien: A pos. def \iff

- Cholesky-Zerlegung $A = R^\top R \text{ mit } R \in GL_n(\mathbb{R}) \text{ invertierbar und obere Dreiecksmatrix}$
- Hurwitz-Kriterium alle führenden Hauptminoren positiv
- später: Alle Eigenwerte positiv

Führende Hauptminoren

Sei
$$A = (a_{ij})_{i,j} \in \mathbb{R}^{n \times n}$$
.

- 1) Streichen der letzten k Zeilen und Spalten von A (Cholesky-Zerlegung)
- 2 Determinate bestimmen

$$\det\left(a_{11}\right), \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}, \dots$$

Orthogonales Komplement

Orthogonalraum

 $\mathsf{Sei}\ M \subseteq V \ \mathbb{R}\text{-}\mathsf{VR}$

Orthogonalraum M^{\perp}

$$M^{\perp} := \{ v \in V \mid v \perp m \quad \forall m \in M \}$$

- lacksquare M^{\perp} ist UVR
- ${\color{red} \bullet} \ N \subseteq M \implies M^{\perp} \subseteq N^{\perp}$

Orthogonales Komplement

Sei U endl. dim. UVR von $V \mathbb{R}$ -VR

- $U \oplus U^{\perp} = V$
- U^{\perp} orthogonales Komplement (eindeutig)

Orthogonale Projektion

Erinnerung: Orthogonales Komplement

Sei U endl. dim. UVR von $V \mathbb{R}$ -VR

- $U \oplus U^{\perp} = V$
- U^{\perp} orthogonales Komplement (eindeutig)

Orthogonale Projektion

Sei $U \leq V \mathbb{R}$ -VR.

$$\pi_U: V = U + U^{\perp} \to U, \quad v = u + u^{\perp} \mapsto u$$

Seien $A, B \subseteq V, \ U, W \leq V, \ v \in V \mathbb{R}$ -VR.

$$d(A,B) := \inf\{d(a,b) \mid a \in A, b \in B\}$$

- $\quad \blacksquare \ d(\underbrace{u+u^\perp}_{=:v},U) = ||u^\perp|| = ||\pi_{U^\perp}(v)||$
- $lack d(A,U) = d(\pi_{U^{\perp}}(A),0)$
- $d(v+W,U) = ||\pi_{(U+W)^{\perp}}(v)||$

Unitäre Vektorräume

Komplexe Sklarprodukte

Sei $v, v_1, v_2, w \in V$ \mathbb{C} -VR, $\alpha \in \mathbb{C}$.

$\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C}$ Skalarprodukt

1 sesquilinear

$$\langle \alpha v_1 + v_2, w \rangle = \alpha \langle v_1, w \rangle + \langle v_2, w \rangle$$
$$\langle w, \alpha v_1 + v_2, \rangle = \overline{\alpha} \langle w, v_1 \rangle + \langle w, v_2 \rangle$$

- 2 hermitesch $\langle v, w \rangle = \overline{\langle w, v \rangle}$
- $\textbf{ 3) positiv definit } \langle v,v\rangle > 0 \in \mathbb{R} \quad (v \neq 0)$

Unterschiede und Gemeinsamkeiten

Körper	$\mathbb R$	\mathbb{C}
Bezeichnung	euklidisch	unitär
CSU: $ \langle v, w \rangle \leq v \cdot w $	gilt	gilt
$\perp \stackrel{?}{\iff} a^2 + b^2 = c^2$	\Leftrightarrow	\Rightarrow
Matrizen	orthogonal $O(n)$ mit $A^{\top} = A$	unitär $U(n)$ mit $A^{\top} = \overline{A}$

Isometrien

Isometrie

Sei M Menge, $d:M^2->\mathbb{R}$

(M,d) metrischer Raum

 $\forall x, y, z \in M :$

- (2) $d(x,y) \ge 0 \land d(x,x) = 0$
- (3) $d(x,y) + d(y,z) \ge d(x,z)$

Seien (X,d) und (Y,e) metrische Räume, $\Phi:X\to Y.$

$$d(x,y) = e(\Phi(x), \Phi(y)) \quad \forall x, y \in X$$

Lineare Isometrie

Seien V, W euklidische oder unitäre VR, $\Phi: V \to W$, B ONB von V.

 Φ lineare Isometrie \iff linear und Isometrie

Sei Φ linear.

Kriterien Ineare Isometrie

- lacktriangledown endlichdim.: $\Longleftrightarrow \Phi(B)$ orthonormal
- endlichdim. und $V=W\colon \iff D_{BB}(\Phi)$ orthogonal bzw. unitär $(A^\top=\overline{A})$

Drehkästchen mit Winkel φ

$$D_{\varphi} := \begin{pmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{pmatrix}$$

Spiegelung an Hyperebene $\langle v \rangle^{\perp}$

$$\sigma_v(x) := x - 2\frac{\langle x,v \rangle}{\langle v,v \rangle}v$$

Isometrienormalform

Erinnerung: Lineare Isometrie

Seien V, W euklidische oder unitäre VR, $\Phi: V \to W$, B ONB von V.

 Φ lineare Isometrie \iff linear und Isometrie

Sei Φ linear.

Kriterien Ineare Isometrie

- $\blacksquare \iff \langle x, y \rangle_V = \langle \Phi(x), \Phi(y) \rangle_W \quad \forall x, y \in V$
- lacktriangledown endlichdim.: $\Longleftrightarrow \Phi(B)$ orthonormal
- endlichdim. und V=W: $\iff D_{BB}(\Phi)$ orthogonal bzw. unitär $(A^{\top}=\overline{A})$

Eigenschaften von Isometrien

Sei Φ lin. Iso auf V, $U \leq V$.

- $lackbox{}{} U \Phi$ -invariant $\Longrightarrow U^{\perp} \Phi$ -invariant

Isometrienormalform

Sei

Ineare Isometrie.

In C

 Φ ist orthogonal diagonalisierbar (alle EW Betrag 1)

In R

$$\Phi = \underbrace{\mathrm{Eig}(\Phi,1)}_{=:d_+} \oplus \underbrace{\mathrm{Eig}(\Phi,-1)}_{=:d_-} \oplus \bigoplus_{k=1}^l W_k$$

- $\begin{tabular}{l} \blacksquare & D_{BB}(\Phi|_{W_k}) = D_{\varphi_k} \mbox{ für } B \mbox{ bel. ONB} \\ \mbox{ von } W_k \end{tabular}$
- ER und UVR paarweise orthogonal

Mit Matrizen (ℝ)

Sei $A \in O(n)$.

$$\exists S \in O(n): \quad S^{-1}AS = \begin{pmatrix} I_{d_+} & & & \\ & -I_{d_-} & & & \\ & & D_{\varphi_1} & & \\ & & & \ddots & \\ & & & D_{\varphi_l} \end{pmatrix}$$

Drehkästchen mit Winkel φ

$$D_{\varphi} := \begin{pmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{pmatrix}$$

Tricks

Zusammenhang komplexe EW und Drehwinkel

$$\lambda = a + bi = \cos \varphi + i \sin \varphi$$

Warum $\varphi \in (0,\pi)$?

- $\mathbf{Q} = 0$: EW zu 1
- $\mathbf{Q} = \pi$: EW zu -1
- $\varphi > \pi$: Rotation in gegenrichtung um $2\pi \varphi < \pi$

Tricks 2

Drehebene U finden

Falls $V = \mathbb{R}^3$:

- $lackbox{ }\Phi(v)-v$ liegt in Drehebene U falls $\det\Phi=1$
- $lackbox{ }\Phi(v)+v$ liegt in Drehebene U falls $\det\Phi=-1$

Drehwinkel bestimmen

- $\quad \bullet \quad \varphi = \angle(v,\Phi(v)) = \arccos\frac{\langle v,\Phi(v)\rangle}{||v||^2} \text{ mit } v \in \red{U}$

Selbstadjungierte Endomorphismen

Adjungierter Homomorphismus

Sei $\Phi \in \mathsf{Hom}(V,W)$

Eindeutige Abbildung $\Phi^* \in \text{Hom}(W,V)$ falls existent mit:

$$\langle \Phi(v), w \rangle_W = \langle v, \Phi^*(w) \rangle_V \quad \forall v, w \in V$$

V, *W* endlich-dimensional:

Adjungierte existiert und $D_{CB}(\Phi^*)=D_{BC}(\Phi)^*$ mit $A^*=\overline{A^{\top}}$, B,C ONB

Selbstadjungierte Abbildung

Sein V eukl, oder unitärer VR.

$\Phi \in \operatorname{End} V$ selbstadjungiert

$$\langle v, \Phi(w) \rangle = \langle \Phi(v), w \rangle \quad \forall v, w \in V$$

Eigenschaften

- lacksquare endl. dim.: $\iff D_{BB}\Phi = (D_{BB}\Phi)^* \ \left(= \overline{D_{BB}(\Phi)^{ op}}
 ight)$ mit ONB B
- Alle EW von Φ sind reell, $CP_{\Phi}(X)$ zerfällt
- lacksquare $U \leq V$ endl. dim., $U \Phi$ -invariant $\implies U^{\perp} \Phi$ -invariant

Spektralsatz

Sei $\Phi \in \text{End } V$.

Spektralsatz

 Φ ist orthogonal reell diagonalisierbar (ONB aus EV) $\iff \Phi$ selbstadjungiert

Symmetrische reelle Matrizen sind diagonalisierbar.

Positiv Definit

A symmetrisch: **positiv definit** \iff alle EW **positiv**

Normale Endomorphismen

Sei $\Phi \in \mathsf{Hom}(V,W)$

Adjungierte Abbildung Φ^*

Eindeutige Abbildung $\Phi^* \in \text{Hom}(W, V)$ falls existent mit:

$$\langle \Phi(v), w \rangle_W = \langle v, \Phi^*(w) \rangle_V \quad \forall v, w \in V$$

V, W endlich-dimensional:

Adjungierte existiert und $D_{CB}(\Phi^*) = D_{RC}(\Phi)^*$ mit $A^* = \overline{A^{\top}}$, B, C ONB

Sein V eukl, oder unitärer VR.

$\Phi \in \operatorname{End} V$ selbstadjungiert

$$\langle v, \Phi(w) \rangle = \langle \Phi(v), w \rangle \quad \forall v, w \in V$$

Eigenschaften

- lacksquare endl. dim.: $\iff D_{BB}\Phi = (D_{BB}\Phi)^* \ \left(= \overline{D_{BB}(\Phi)^{ op}}
 ight)$ mit ONB B
- Alle EW von Φ sind reell, $CP_{\Phi}(X)$ zerfällt
- lacksquare $U \leq V$ endl. dim., $U \Phi$ -invariant $\implies U^{\perp} \Phi$ -invariant

Normale Endomorphismen

Sei $\Phi \in \text{End } V$.

Φ normal

$$\Phi \text{ normal} \iff \Phi \circ \Phi^* = \Phi^* \circ \Phi$$

Sei U < V endl. dim. und Φ -invariant.

 $\implies U^{\perp} \Phi$ -invariant.

Spektralsatz für normale Endomorphismen

Sein V endl. dim., Φ normal.

Spektralsatz für normale Endomorphismen

- In \mathbb{C} : Φ ist orthogonal diagonalisierbar
- In \mathbb{R} : Φ ist orthogonal in 1 und 2-dim. Φ -invariante UVR zerlegbar

diag.bar oder Drehstreck-Kästchen EW belibig

$$\frac{\Phi^*}{A^\top} = \Phi$$

diag.-bar EW reell Φ Isometrie

$$\frac{\Phi^*}{A^{\top}} = \Phi^{-1}$$

diag.-bar oder Drehkästchen

$$\mathsf{EW} \mid \cdot \mid = 1$$

 $U \ \Phi$ -invariant $\implies U^{\perp} \ \Phi$ -invariant

Viel Freude beim Lernen und

Viel Erfolg bei der Klausur