机器学习 assignment3 实验报告

21307347 陈欣宇

一、问题描述

1.1 实验内容

探索 K-Means 和 GMM 这两种聚类算法的性能。

1.2 实验要求

- 1) 自己实现 K-Means 算法及用 EM 算法训练 GMM 模型的代码。可调用 numpy, scipy 等 软件包中的基本运算, 但不能直接调用机器学习包(如 sklearn)中上述算法的实现函数;
- 2) 在 K-Means 实验中, 探索两种不同初始化方法对聚类性能的影响;
- 3) 在 GMM 实验中,探索使用不同结构的协方差矩阵(如:对角且元素值都相等、对角但对元素值不要求相等、普通矩阵等)对聚类性能的影响。同时,也观察不同初始化对最后结果的影响;
- 4) 在给定的训练集上训练模型,并在测试集上验证其性能。使用聚类精度(Clustering Accuracy, ACC)作为聚类性能的评价指标。由于 MNIST 数据集有 10 类,故在实验中固定 簇类数为 10。

二、实验过程

2.1 基本思路:对 MNIST 数据集实现 K-Means 和 GMM 聚类算法。

K-Means 首先初始化 K 个聚类中心(①随机选择 K 个点 ②随机选择一个点,再不断计算离当前聚类中心们最远的点,直至选择了 K 个点),训练过程主要有两个步骤,划分样本点和更新聚类中心,每次划分样本点后计算损失函数(样本点与聚类中心距离的平均数),更新聚类中心后计算聚类中心移动距离,经测试,移动距离的变化更直观地反应了训练有无收敛,未收敛则继续划分样本点,否则跳出循环,得到最终聚类中心。

GMM 称为高斯混合模型,模型表达式如下:p 为权重, ϕ 表示单个高斯模型, μ 和 Σ 分别表示均值和协方差。

$$P\left(x| heta
ight) = \sum_{i}^{K} p_{i} \phi\left(x|\mu_{i}, \Sigma_{i}
ight) \oint \left(x|\mu_{i}, \Sigma_{i}
ight) = rac{1}{\left(2\pi
ight)^{rac{d}{2}}|\Sigma_{i}|^{rac{1}{2}}} \exp\left(-rac{\left(x-\mu_{i}
ight)^{T} \Sigma_{i}^{-1} \left(x-\mu_{i}
ight)}{2}
ight)$$

首先确定初始的平均值集和协方差集(① μ 取样本集上随机点, Σ 使用样本生成;②随机生成 Υ_{nk} ,使用以下的 M 步计算 μ 和 Σ 。p 平分),训练过程采用 EM 算法,直接介绍更新公式: E-step:

$$\gamma_{ij} = rac{p_{j}\phi\left(x_{i}|\mu_{j},\Sigma_{j}
ight)}{\sum_{k=1}^{K}p_{k}\phi\left(x_{i}|\mu_{k},\Sigma_{k}
ight)}$$

M-step

$$p_{j}^{(t+1)} = rac{1}{N} \sum_{i=1}^{N} \gamma_{ij} ~~ \mu_{j}^{(t+1)} = rac{\sum_{i=1}^{N} x_{i} \gamma_{ij}}{\sum_{i=1}^{N} \gamma_{ij}}$$

$$\Sigma_{j}^{\left(t+1\right)} = \frac{\sum_{i=1}^{N}\left(x_{i}-\mu_{j}\right)^{T}\left(x_{i}-\mu_{j}\right)\gamma_{ij}}{\sum_{i=1}^{N}\gamma_{ij}}$$

使用对数似然函数 $L(\theta) = \ln P(X|\theta)$ 作为损失函数,训练不断进行 EM 步至 $L(\theta)$ 收敛。 其他:在协方差矩阵初始化中,可加入微小数防止矩阵不可逆。

2.2 代码实现:

2.2.1 数据预处理: 读取并使用 PCA 进行降维操作

```
train_data = pd.read_csv("data/mnist_train.csv")

test_data = pd.read_csv("data/mnist_test.csv")

TrainData = train_data.iloc[:,1:].values

train_labels = train_data.iloc[:,0].values

TestData = test_data.iloc[:,1:].values

test_labels = test_data.iloc[:,0].values

# 数据降维

pcaModel = PCA(n_components=NEW_DIMENSION)

pcaModel.fit(TrainData)

TrainData = pcaModel.transform(TrainData)

TestData = pcaModel.transform(TestData)
```

将 K-Means 和 GMM 封装为两个类分别进行调用

2.2.2 K-Means

K-means 成员函数如下:

```
class Kmeans():
    def __init__(self, data, K, cen_init): ...
    def initCentroids(self, data, cen_init): #初始化聚类中心...
    def getDistance(self, data): #计算所有点到当前聚类中心的距离...
    def getClusters(self, data): #划分样本点, 计算loss...
    def getCentroids(self, data, clusters): #更新聚类中心...
    def getAccuracy(self, clusters, Labels): #计算结果准确率...
    def train(self,data): #训练函数...
    def test(self,data,labels): #测试函数...
```

训练讨程:

```
k = Kmeans(TrainData,10, 'random')
start_time = time.time()
for i in range(EPOCHS):
    loss,diff = k.train(TrainData)
    acc = k.getAccuracy(k.clusters, train_labels)
    print('epochs:{}\tloss = {:.4f}\tdiff={:.4f}\tacc =
{:.4f}'.format(i+1,loss,diff, acc))
    if diff < 1e-7:
        break
end_time = time.time()
acc, loss = k.test(TestData, test_labels)
print('test: loss = {:.4f}\tacc = {:.4f}'.format(loss, acc))
print('Total time:{:.2f}s.\n'.format(end_time-start_time))</pre>
```

主要代码:

聚类中心初始化:根据类型'random''distance'分别选择①随机选择 K 个点 ②随机选择一个点,再不断计算离当前聚类中心们最远的点,直至选择了 K 个点

```
def initCentroids(self, data, cen_init): #初始化聚类中心
indexes = np.arange(data.shape[0])
```

```
np.random.shuffle(indexes)
self.centroids = np.zeros((self.K, data.shape[1]))
if cen_init=='random':
   for i in range(self.K):
       self.centroids[i] = data[indexes[i]]
elif cen_init=='distance':
   usedIndexes = list()
   for i in range(self.K):
       if i==0:
           self.centroids[i] = data[indexes[i]]
           usedIndexes.append(indexes[i])
           distances = self.getDistance(data) #与聚类中心距离 60000 x K
           totalDistances = np.sum(distances, axis=1) #距离和 60000 x 1
           indexes = np.argsort(-totalDistances)
           for index in indexes:
               if index not in usedIndexes:
                   self.centroids[i] = data[index]
                   usedIndexes.append(index)
                   break
self.clusters,_ = self.getClusters(data)
```

划分样本点:

```
def getClusters(self, data): #划分样本点,计算 loss
    distances = self.getDistance(data)
    clusters = np.argmin(distances, axis=1)
    avgDistances = np.sum(np.min(distances, axis=1))/data.shape[0]
    return clusters, avgDistances
```

更新聚类中心:

准确度计算:在分类结束后设计类与真实标签匹配的问题,直接调用 Munkres 匈牙利算法进行匹配操作,得到标签映射,便于最后矩阵计算

```
def getAccuracy(self, clusters, Labels): #计算结果准确率
    clustersType = np.unique(clusters)
    LabelType = np.unique(Labels)
    labelNum = np.maximum(len(clustersType), len(LabelType))
    costMatrix = np.zeros((labelNum, labelNum)) # 代价矩阵
    for i in range(len(clustersType)):
        selclusters = (clusters==clustersType[i]).astype(float)
```

```
for j in range(len(LabelType)):
    sellabels = (Labels==LabelType[j]).astype(float)
    costMatrix[i,j] = -np.sum(selclusters*sellabels) # 越小匹配度越高

m = Munkres()
indexes = m.compute(costMatrix) # 匈牙利算法->索引映射
maplabels = np.zeros_like(clusters, dtype=int)
for index1,index2 in indexes:
    if index1<len(clustersType) and index2<len(LabelType):
        maplabels[clusters==clustersType[index1]] = LabelType[index2]
return np.sum((maplabels==Labels).astype(float))/Labels.size
```

训练函数:训练过程不断调用 train,更新聚类中心并重新划分样本点,diff 记录聚类中心更新前后差距,据此判断训练是否收敛。

```
def train(self,data): #训练函数
newcentroids = self.getCentroids(data, self.clusters)
diff = np.sum((newcentroids-self.centroids)**2)**0.5
self.centroids = newcentroids
self.clusters, loss = self.getClusters(data)
return loss,diff
```

K-Means 测试过程:

因结果具有一定随机性,调参先根据 10 次测试结果的平均值,比对结果取较优参数,便于之后比较。初始未降维数据总体只能到达 55%左右的准确率,使用 PCB 对最终结果影响不大,但大大加快了训练速度,因此在后续可以使用降维后数据进行性能比较。其中降至 40-70 时准确度处于正常数值,考虑效率和准确性,下面实验均将样本维度降至 60 进行比对。

初始化方式	Random(1)			Distance2		
PCB 维度	准确度	收敛轮数	时间/s	准确度	收敛轮数	时间/s
未降维(784)	0.5486	112.1	129.08	0.5275	58.9	66.75
40	0.5375	89.7	45.68	0.5469	71.2	40.98
50	0.5630	89.2	49.52	0.5449	74.2	36.51
60	0.5371	88.7	53.03	0.5531	82.4	41.94
70	0.5326	80.4	42.39	0.5395	67.6	34.71

对不同的聚类中心初始化方式进行性能比较:由上表可知 Distance 效果优于 random, 二者准确度无明显差别, distance 的收敛速度较快。

下图分别为 random 和 distance 初始化方式的准确率 acc 和 loss 变化图, random 模式下的 损失函数降到较低值,但相应的准确度不如 distance 模式,可能是陷入局部最优的之中。

2.2.3 GMM

GMM 成员函数如下:

```
class GMM():
    def __init__(self, K, data, init_type='random', cov_type='commom', reg_covar=1e-6): …
    def __init_parameters(self, data, init_type='random', cov_type='full'): #初始化均值、协方差、权重
    def EStep(self, data): …
    def MStep(self, data, gamma): …
    def gaussfunc(self, x, mean, cov): #计算高斯函数 …
    def getAccuracy(self, clusters, Labels): #计算结果准确率 …
    def train(self, data,gam): #训练函数 …
    def test(self, data, labels): #测试函数 …
    def getfullcov(self): #计算完整协方差矩阵 …
```

训练过程:

```
G = GMM(10,TrainData,init_type='random',cov_type='ellipse')
start_time = time.time()
gamma = np.zeros((TrainData.shape[0], 10)) #用于计算是否收敛
for i in range(EPOCHS):
    gamma,diff = G.train(TrainData,gamma)
    acc = G.test(TrainData, train_labels)
    print('epochs:{}\tdiff:{:.4f}\tacc = {:.4f}'.format(i+1,diff,acc))
    if diff < 1e-4:
        break
end_time = time.time()
acc = G.test(TestData, test_labels)
print('Test: acc = {:.4f}'.format(acc))
print('Total time:{:.2f}s.\n'.format(end_time-start_time))
```

主要代码:

参数初始化:两种模型初始化方法'random''randgamma'分别为① μ 取样本集上随机点, Σ 使用样本生成;②随机生成 Υ_{nk} ,使用以下的 M 步计算 μ 和 Σ 。其中 random 方法中协方差矩阵使用 3 中初始结构(①common:普通矩阵②circle:对角且元素值都相等③ellipse:对角但元素值不要求相等)。此处因为协方差矩阵只存在对角元素甚至对角元素相等,因此 circle 类型每个协方差矩阵只存储一个值,ellipse 类型每个协方差矩阵使用一维列表存储对角数据。

```
def _init_parameters(self, data, init_type='random', cov_type='full'):
    # init_type:'random', 'randgamma'
    # cov_type:'commom', 'circle', 'ellipse'
    if init_type=='random':
        indexes = np.arange(data.shape[0])
        np.random.shuffle(indexes)
        self.means = np.zeros((self.K, self.dimension))
        self.means = data[indexes[:self.K]]
        self.weights = np.ones(self.K)/self.K
        tempCov = np.cov(data, rowvar=False)
        tempCov += np.eye(self.dimension)*self.reg_covar
        if cov_type=='commom':
            self.cov = tempCov[np.newaxis,:].repeat(self.K, axis=0)
        elif cov_type=='circle':
            self.cov = np.ones(self.K)*np.diag(tempCov).mean()
```

```
elif cov_type=='ellipse':
    self.cov = np.diag(tempCov)
    self.cov = self.cov[np.newaxis, :].repeat(self.K, axis=0)
elif init_type=='randgamma':
    gamma = np.random.rand(data.shape[0], self.K)
    gamma /= np.sum(gamma, axis=1).reshape(-1,1)
    self.MStep(data, gamma)
```

M-step 函数: 先对高斯混合模型的平均值和权重序列进行更新, 再根据协方差矩阵类型进行不同类型的更新, 计算中加入对角非负正则化

```
def MStep(self, data, gamma):
       self.means = np.dot(gamma.T, data)/np.sum(gamma, axis=0).reshape(-1,1)
       self.weights = np.sum(gamma, axis=0)/data.shape[0]
       if self.cov_type=='commom':
           self.cov = np.zeros((self.K, self.dimension, self.dimension))
           for k in range(self.K):
               diff = data - self.means[k]
               self.cov[k] = np.dot(gamma[:,k]*diff.T, diff)
               self.cov[k] /= np.sum(gamma[:,k])
               self.cov[k] += np.eye(self.dimension)*self.reg_covar
       elif self.cov_type=='circle':
           self.cov = np.zeros((self.K))
           for k in range(self.K):
               diff = data - self.means[k]
               temp = np.dot(gamma[:,k]*diff.T, diff)
               temp /= np.sum(gamma[:,k])
               temp += np.eye(self.dimension)*self.reg_covar
               self.cov[k] = np.diag(temp).mean()
       elif self.cov type=='ellipse':
           self.cov = np.zeros((self.K, self.dimension))
           for k in range(self.K):
               diff = data - self.means[k]
               temp = np.dot(gamma[:,k]*diff.T, diff)
               temp /= np.sum(gamma[:,k])
               temp += np.eye(self.dimension)*self.reg_covar
               self.cov[k] = np.diag(temp)
```

E-step 函数: 计算 Υ_{nk} , 调用高斯函数以及权重进行计算

```
def EStep(self, data):
    gamma = np.zeros((data.shape[0], self.K))
    Cov = self.getfullcov()
    for k in range(self.K):
        gamma[:,k] = self.weights[k]*self.gaussfunc(data, self.means[k], Cov[k])
    gamma /= np.sum(gamma, axis=1).reshape(-1,1)
    return gamma
```

高斯函数:

```
def gaussfunc(self, x, mean, cov):
    diff = x - mean
    expon = -0.5*(np.sum(np.dot(diff,np.linalg.pinv(cov))*diff, axis=1))
    return np.exp(expon)/(((2*np.pi)**(self.dimension/2))*(np.sqrt(np.linalg.det(cov))))
```

准确度函数与 K-Means 基本一致

train 函数: 调用 EStep 和 Mstep 即可,其中加入 gam 参数为上一轮 train 计算 gamma 值,用于计算 gamm 变化大小以判断是否收敛。

```
def train(self, data,gam):
    gamma = self.EStep(data)
    diff = np.linalg.norm(gamma-gam)
    self.MStep(data, gamma)
    return gamma,diff
```

GMM 测试过程:

这里直接使用上面测试的降维至 60, 与 K-Means 明显的不同就是收敛轮数变多了, 且收敛轮数波动较大, 容易出现很多轮未判定收敛的情况, 但准确性基本在 100 轮以后保持稳定。

比较不同协方差矩阵结构的性能:

训练过程会随机性出现难以收敛的情况,但三种协方差结构的性能比较都呈现在以下的准确率图像上,其中主要普通矩阵容易出现 gamma 值难收敛的情况,但普通矩阵能达到的准确率最高 60%以上,而对角且元素相等的矩阵保持与 K-Means 差不多的准确率,特点是收敛速度快,而对角且元素不等的矩阵准确率只有 33%左右,对角矩阵因为在不同维度之间保持独立,虽然能够加快训练速度,但准确度也遭到了很大限制。

多次样例	收敛轮数	准确度
Commom	387.75	0.6052
Circle	126.24	0.5349
Ellipse	334.43	0.3447

注: 该比对为 pcb 降维至 50 之后的结果

比较不同初始化方法的性能:

'Random'模型协方差矩阵采用'commom'模式,与'randgamma'模型进行比较,在同样的打乱条件下,根据样本生成协方差比随机生成γ方案的准确率略好一些,二者的判定收敛轮数都具有很大随机性,但准确率在 100 轮之后基本稳定。

以下是两次重复测试结果: random 模式的准确率要略高于 randgamma 模式

多个样例取平均测试结果表明 random 在准确率和收敛性上都要优于 randgamma

	准确率	收敛轮数	时间/s
random	0.6115	327.26	281.87
randgamma	0.5953	491	392.73

2.2.4 K-Means 与 GMM 性能比较

K-means 使用表现较优的'Distance'模式, GMM 使用 random 的'commom'模式, 进行比较, 以下是两次不同随机种子下的训练比较。

可以看出 GMM 算法的性能要明显优于 K-Means 算法, 理论上来看, GMM 算法不仅通过更新聚类中心来优化模型, 还有协方差、权重等更新来更好地拟合数据分布, 多于 K-Means 的参数更新模型, 具有优于 K-Means 的性能。

三、实验总结

本次实验实现了 K-Means 和 GMM 两类无监督学习算法。对其中不同初始化方式和结构的性能进行了比对, 对模型的具体实现有了更好的理解。最终结果最多只能达到 60%的准确率, 因为数据集是手写数字图像集, 用无监督的聚类算法并不是很好的解决方案, 就不再探究如何提升准确率的问题。但通过手动实现算法, 对于这两类模型的细节处理和调参都有了新的体会。