Занятие 15. Адаптивные модели.

- 1. Экспоненциально взвешенная СС
- 2. Модель Хольта
- 3. Модель Хольта_Уитерса (аддитивная и мультипликативная)

Литература

Holt CC (2004) Forecasting seasonals and trends by exponentially weighted moving averages. Int J Forecasting, 20, 5-10.

Winters, P. R. (1960). Forecasting Sales by Exponentially Weighted Moving Averages. Management Science 6 (3): 324–342.

Goodwin P (2010) The Holt-Winters approach to exponential smoothing: 50 years old and going strong. Foresight, Fall 2010, 30-33.

Forecasting Competitions

Makridakis S et al (1982) The accuracy of extrapolation (time series) methods: results of a forecasting competition. J Forecasting, 1, 111-153.

Makridakis S and Hibon M (2000) The M3 Competition: results, conclusions and implications, Int J Forecasting, 16, 451-476.

Задача 1. Исходные данные: Объемы продаж.

Файл: S15.xls

t		sales
	1	97.80807
	2	99
	3	96
	4	92

1.1. Рассчитайте значения экспоненциально взвешенной СС для первых трех точек (по формулам), задав λ =0.4.

$$\hat{f}_{t} = \lambda \hat{f}_{t-1} + (1 - \lambda) y_{t}$$

$$\textbf{Пример.} \ \hat{f}_{1} = 0.4 \, \hat{f}_{0} + (1 - 0.4) * 97.81$$

Как выбрать начальное значение f_0 ?

Вариант 1. Пусть f_0 =у1.

Вариант 2. Пусть f₀=среднее значение первых четырех наблюдений.

Замечание. Оптимальный параметр λ выбирается на основе минимизации SSE/RMSE.

Выбор параметра сглаживания. Pacчет SSE/RMSE.

	t	y _t	\hat{y}_t	$e_t^2 = (y_t - \hat{y}_t)^2$
	1	98		
ĺ	2	99		
ĺ	3	96		
	4	Сумма		

$$SSE = \sum_{t=1}^{T} (y_t - \hat{y}_{t|t-1})^2 \to \min$$

$$RMSE = \sqrt{\frac{1}{T} \sum_{t=1}^{T} (y_t - \hat{y}_t)^2}$$

$$RMSE = \sqrt{\frac{1}{T} \sum_{t=1}^{T} (y_t - \hat{y}_t)^2}$$

1.2. Рассчитайте в Stata значения экспоненциально взвешенной СС, задав разные $\lambda = 0.1, \lambda = 0.9.$

Экспоненциально взвешенная СС				
tssmooth exponential y = x Построение взвешенной экспоненциальной средней для x (параме оптимальный)				
tssmooth exponential y1 = x, parms(0.1)	Построение взвешенной экспоненциальной средней для х (параметр заданный)			
tssmooth shwinters yt = x, period(6)	Построение модели Хольта-Уинтерса для х (параметры оптимальные)			
tssmooth shwinters shw11 = sales, period(4) additive	Построение модели Хольта-Уинтерса (адитивной) для х (параметры оптимальные)			

Исходные данные: bsales.dta.

Как параметр сглаживания влияет на результат? Определите оптимальный параметр λ. Сравните RMSE.

Stata:

```
*значения экспоненциально взвешенной СС для \lambda=0.1, \lambda =0.9
tssmooth exponential x01 = sales, parms(0.1)
tssmooth exponential x09 = sales, parms(0.9)
tssmooth exponential x = sales
tsline sales x x01 x09
```

Результат:

Задача 2. Модель Хольта (Stata).

Holt C.C. Forecasting trends and seasonals by exponentially weighted moving averages // O.N.R. Memorandum, Carnegie Inst. of Technology. - 1957. - №2.

Модель Хольта					
tssmooth shwinters yt = x Построение модели Хольта-Уинтерса для x (параметры					
tssmooth shwinters yt = x, period(6) оптимальные)					
$\hat{\mathbf{v}}_{\perp} = \hat{a} + h h$	$\alpha y_{t} + (1 - \alpha) \left\{ \hat{a}_{t-1} + \hat{b}_{t-1} \right\},$ $\beta \left\{ \hat{a}_{t} - \hat{a}_{t-1} \right\} + (1 - \beta) \hat{b}_{t-1}$				

Исходные данные: Объемы продаж (Т=60)

Файл: S15.xls

bsales.dta. (webuse bsales)

- 1. В чем суть модели Хольта?
- 2. Постройте модель Хольта для рассматриваемых данных, используя параметры адаптации, равные =0.8 и 0.01, а потом для 0.3 и 0.4 (В Экселе и Стате). По формулам рассчитайте первые три значения.
 - Задайте начальное значение (например, в качестве начального значения выберите оценки параметров линейной зависимости по первой трети выборки).
 - Получите остатки модели.
 - Рассчитайте сумму квадратов остатков.
 - Как выбрать наиболее оптимальный параметр сглаживания?
 - Оцените адекватность полученной модели.

Параметры адаптации	Начальные	RMSE	Адекватность
	значения		модели
α =0.8, β =0.01			
α =0.3, β =0.4			
Оптимальные α= , β=			

Пример.
$$\hat{y}_{t+h} = \hat{a}_t + \hat{b}_t h \qquad \qquad \hat{a}_t = \alpha y_t + (1-\alpha) \Big\{ \hat{a}_{t-1} + \hat{b}_{t-1} \Big\}, \\ \hat{b}_t = \beta \Big\{ \hat{a}_t - \hat{a}_{t-1} \Big\} + (1-\beta) \hat{b}_{t-1}$$

_		1		
t	y _t	$\hat{y}_{t+h} = \hat{a}_t + \hat{b}_t h$	$\hat{a}_{t} = \alpha y_{t} + (1 - \alpha) \{ \hat{a}_{t-1} + \hat{b}_{t-1} \}$	$\hat{b}_{t} = \beta \{ \hat{a}_{t} - \hat{a}_{t-1} \} + (1 - \beta) \hat{b}_{t-1}$
1	98	$\hat{y}_1 = \hat{y}_{0+1} = \hat{a}_0 + \hat{b}_0 1$	$\hat{a}_0 = 90$ (МНК по первой трети выборки)	$\hat{b}_0 = 1.2$
				(МНК по первой трети выборки)
2	99	$\hat{y}_2 = \hat{y}_{1+1} = \hat{a}_1 + \hat{b}_1 1$	$\hat{a}_1 = 0.8 y_1 + (1 - 0.8) \{ \hat{a}_0 + \hat{b}_0 \}$	$\hat{b}_1 = 0.01 \{ \hat{a}_1 - \hat{a}_0 \} + (1 - 0.01) \hat{b}_0$ = 0.01 \{ 96.6 - 90 \} + 0.99 \cdot 1.2 = 1.3
		$\hat{y}_2 = 96.6 + 1.3 = 97.9$	$= 0.8 \cdot 98 + 0.2 \cdot \{90 + 1.2\} = 96.6$	$= 0.01\{96.6 - 90\} + 0.99 \cdot 1.2 = 1.3$
3	96	$\hat{y}_3 = \hat{y}_{2+1} = \hat{a}_2 + \hat{b}_2$		
4	-	Прогноз		
		$\hat{y}_4 = \hat{y}_{3+1} = \hat{a}_3 + \hat{b}_3$		

Расчет начальных значений. («МНК по первой трети выборки»)

webuse bsales tsline sales

reg sales t if $t \le 20$

t _cons	1.180185 89.99846	. 2044 2. 448		5.77 36.75	0.000 0.000	.7506762 84.8533	_	. 609695 5. 14361
sales	Coef.	Std. I	Err.	t	P> t	[95% Conf.	In	terval]
Total	1426. 52393	19	75.0	080207		Adj R-squared Root MSE	=	0.6298 5.272
Model Residual	926. 236982 500. 286951			236982 937195		Prob > F R-squared	=	0.0000 0.6493
Source	55	df		MS		Number of obs = F(1. 18) =		20 33, 33

Выбор параметра сглаживания. Pacчет SSE/RMSE.

t	y_t	\hat{y}_t	$e_t^2 = (y_t - \hat{y}_t)^2$
1	98	91,2	
2	99	97,9	
3	96		
4	Сумма		

$$SSE = \sum_{t=1}^{T} (y_t - \hat{y}_{t|t-1})^2 \to \min$$

$$RMSE = \sqrt{\frac{1}{T} \sum_{t=1}^{T} (y_t - \hat{y}_t)^2}$$

$$RMSE = \sqrt{\frac{1}{T} \sum_{t=1}^{T} (y_t - \hat{y}_t)^2}$$

3. Постройте модель Хольта для рассматриваемых данных, используя встроенную процедуру.

- Сравните полученные параметры адаптации с ранее полученными результатами.
- Оцените адекватность полученной модели.
- Запишите модель.
- Используйте модель для краткосрочного прогнозирования.

Stata:

***** Модель Хольта: встроенная процедура *****расчет начальных значений по первым 20 наблюдениям reg sales t if $t \le 20$

tssmooth hwinters h11 = sales, parms(0.8 0.01) s0(90 1.18)

tssmooth hwinters h12 = sales, parms(0.3 0.4) s0(90 1.18)

 $tssmooth\ hwinters\ hl3 = sales$

tsline sales hl1 hl2

tssmooth hwinters h13 = sales, forecast(3)

list hl3 in 61/63

Задача 3. Модель Хольта-Уинтерса (аддитивная)

Модель Хольта-Уинтерса	Модель Хольта-Уинтерса					
tssmooth shwinters yt = x tssmooth shwinters yt = x, period(6)	Построение модели Хольта-Уинтерса для х (параметры оптимальные)					
tssmooth shwinters shw11 = sales, period(4) additive	Построение модели Хольта-Уинтерса (адитивной) для х (параметры оптимальные)					
tssmooth shwinters shw11 = sales	Построение модели Хольта-Уинтерса (мультипликативной) для х (параметры оптимальные)					

Модель $\hat{y}_{t+h} = \left\{ \hat{a}_t + h \cdot \hat{b}_t \right\} + \hat{s}_{t-L+h}$ Параметры модели $\hat{a}_t = \alpha \left(y_t - \hat{S}(t-L) \right) + (1-\alpha) \left\{ \hat{a}_{t-1} + \hat{b}_{t-1} \right\},$ $\hat{b}_t = \beta \left\{ \hat{a}_t - \hat{a}_{t-1} \right\} + (1-\beta) \hat{b}_{t-1};$ $\hat{S}_t = \gamma \left(y_t - \hat{a}_t \right) + (1-\gamma) \hat{S}(t-L);$ $0 < \alpha, \beta, \gamma < 1.$ Начальные значения $y_t = a_t(0) + b_t(0)t + \\ + \beta_{s,1-L}d_1 + \beta_{s,2-L}d_2 + \dots + \beta_{s0}d_L + \varepsilon_t$

Исходные данные: turksales (webuse turksales)

- 1. В чем суть модели Хольта-Уинтерса?
- 2. Постройте график sales. Проанализируйте сезонную составляющую.
- 3. Постройте модель Хольта-Уинтерса для рассматриваемых данных, используя параметры адаптации, равные 0.1 0.2 0.3, используя встроенную процедуру.
 - Задайте начальное значение.
 - Получите остатки модели.
 - Рассчитайте сумму квадратов остатков.
 - Как выбрать наиболее оптимальный параметр сглаживания?
 - Оцените адекватность полученной модели.

Параметры адаптации	Начальные	Сумма квадратов	Адекватность
	значения	остатков	модели
α =0.1, β =0.2, γ =0.3			
Оптимальные $\alpha = , \beta = , \gamma =$			

- 3. Постройте модель Хольта-Уинтерса для рассматриваемых данных, используя встроенную процедуру.
 - Сравните полученные параметры адаптации с ранее полученными результатами.
 - Оцените адекватность полученной модели.
 - Запишите модель.
 - Используйте модель для краткосрочного прогнозирования.

Stata:

*Модель Хольта-Уинтерса: (встроенная процедура) tssmooth shwinters shw11 = sales, period(4) additive tssmooth shwinters shw12 = sales, parms(0.3 0.02 0.85) forecast(4) period(4) additive tsline sales shw12

Задача 4. Модель Хольта-Уинтерса (мультипликативная)

Модель	Параметры модели	Начальные значения
$\hat{y}_{t+\tau} = \left\{ \hat{a}_t + \tau \cdot \hat{b}_t \right\} \cdot \hat{s}_{t-L+\tau}$	$\hat{a}_{t} = \alpha \frac{y_{t}}{\hat{S}(t-L)} + (1-\alpha) \{ \hat{a}_{t-1} + \hat{b}_{t-1} \},$	$\hat{b}_t(0) = \frac{\overline{y}_m - \overline{y}_1}{(m-1)L};$
	$\hat{b}_{t} = \beta \{\hat{a}_{t} - \hat{a}_{t-1}\} + (1 - \beta)\hat{b}_{t-1};$	$\hat{a}_t(0) = \overline{y}_1 - \frac{1}{2}\hat{b}_t(0);$
	$\hat{S}_{t} = \gamma \frac{y_{t}}{\hat{a}_{t}} + (1 - \gamma)\hat{S}(t - L);$	$\hat{S}_{0l} = \overline{S}_l \left(\frac{l}{\sum_{l=1}^L \overline{S}_l} \right), l = \overline{1, L};$
	$0 < \alpha, \beta, \gamma < 1$.	$\overline{S}_l = \frac{1}{m} \sum_{k=0}^{m-1} S_{l+kL}$

3.1. Исходные данные: turksales (webuse turksales)

Постройте модель Хольта-Уинтерса для рассматриваемых данных, используя встроенную процедуру.

- Проанализируйте полученные параметры адаптации.
- Оцените адекватность полученной модели.
- Запишите модель.
- Используйте модель для краткосрочного прогнозирования.

Параметры адаптации	Начальные	Сумма квадратов	Адекватность	
	значения	остатков	модели	
α =0.1, β =0.2, γ =0.3				
Оптимальные $\alpha = , \beta = , \gamma =$				

- 3.2. Исходные данные: air (webuse air2) авиаперевозки.
- Постройте модель Хольта-Уинтерса, используя встроенную процедуру.
- Оцените модель SARIMA.
- -Сравните полученные модели между собой.

Stata:

webuse air2 generate lnair = ln(air)

*Модель Хольта-Уинтерса (мультипликативная): (встроенная процедура)

tssmooth shwinters hw1 = lnair, period(12)

tssmooth shwinters hw2 = lnair, period(12) forecast(12)

tsline lnair hw1 hw2

Команды Stata

tssmooth shwinters $yt = x$, $period(6)$	Построение модели Хольта-Уинтерса для х (параметры
	оптимальные)
tssmooth shwinters shw11 = sales,	Построение модели Хольта-Уинтерса (аддитивной) для х
period(4) additive	(параметры оптимальные)
arima y, arima(1,1,1)	Оценивание arima-модели для у
arima y, ar(1) ma(1)	
arima y, ar(1 5) ma(1 3)	
dmariano y if tin(2017m1,2018m11),	тест Diebold, Mariano
crit(MAPE)	

Diebold, Francis and Roberto Mariano, "Comparing Predictive Accuracy," Journal of Business and Economic Statistics, 13:3, 253-263, 1995.

Зачада 4. СР на занятии

Исходные данные:

Cows'milk collection and products obtained - monthly data [apro_mk_colm] Last update 12.04.19 Source of data Eurostat https://ec.europa.eu/eurostat/web/agriculture/data/database UNIT Thousand tonnes

Файл: milkEU.dta Файл со всеми данными: apro_mk_colm Сравнить производство молока в двух выбранных странах (север/юг или лидер/аутсайдер).

- 1. Выбранные страны
- 2. Описать характер сезонности.
- 3. Подобрать адаптивную модель (какая?),
- 4. Записать оптимальные параметры сглаживания, RMSE
 - а. как выбирались нач значения,
 - b. провести анализ остатков.

Домашняя работа (ТДЗ) 15. Адаптивные модели.

1. Адаптивные модели. Исходные данные: Cows'milk collection and products

obtained - monthly data [apro_mk_colm] Last update 12.04.19

Source of data Eurostat

https://ec.europa.eu/eurostat/web/agriculture/data/database

UNIT Thousand tones

Файл: milkEU.dta Файл со всеми данными: apro_mk_colm

Сравнить производство молока в двух выбранных странах (север/юг или лидер/аутсайдер).

- 1. Описать характер сезонности.
- 2. Подобрать адаптивную модель, описать оптимальные параметры сглаживания, как выбирались нач значения, провести анализ остатков.
- 3. Подобрать адекватную SARIMA-модель (представить итоговый вариант модели), провести анализ остатков, ответ обосновать.
- 4. Сравнить прогнозы по адаптивной и SARIMA-моделям на основе критерия Диболда-Мариано (встроенная процедура в Stata). Сделать вывод, какая модель предпочтительна для прогнозирования. (см методические указания «Сравнение прогнозов»)

Простейшие команды Stata

iipocienmie komung		
редактирование данных (открытие редактора данных)		
очистить память компьютера		
Вывод на экран значения переменной или выражения		
калькулятор		
Вывод на экран значений переменных из активного множества данных		
Описательные статистики		
вывести значения переменных (v1) на экран,		
кнопка BREAK (прервать выполнение команды)		
вывести описание переменных		
расчет дескриптивных статистик для переменной (v1)		
Действия над переменными		
создать новую переменную v2 как функцию g от v1		
удалить переменную v1		

ren v1 v2	переименовать переменную v1 в v2	
Работа с временными рядами		
tsset t	Объявить переменную t переменной времени	
tsline y	Построить график временного ряда у	
regress y t	Построить линейную регрессию	
predict y1, xb	Сохранить предсказанные значения в у1	
predict e1, residuals	Сохранить значения остатков в е1	
ac y	построить автокорреляционную функцию для у	
corrgram y	Вычислить значения автокорреляционной функций для у	
pergram y	Построение периодограммы для у	
sktest e1	Тест на нормальность для е1	
wntestq e1	Статистика Льюинга-Бокса для е1	
estat dwatson	Статистика Дарбина-Уотсона на наличие автокорреляции 1-го порядка	
Число ПИ	_pi	
tssmooth exponential $y = x$	Построение взвешенной экспоненциальной средней для х (параметр оптимальный)	
tssmooth exponential y1 = x, parms(0.1)	Построение взвешенной экспоненциальной средней для х (параметр заданный)	
tssmooth shwinters yt = x, period(6)	Построение модели Хольта-Уинтерса для х (параметры оптимальные)	
tssmooth shwinters shw11 = sales, period(4) additive	Построение модели Хольта-Уинтерса (адитивной) для х (параметры оптимальные)	

Дополнительная литература:

- Abraham, B., and J. Ledolter. 1983. Statistical Methods for Forecasting. New York: Wiley.
- Bowerman, B. L., and R. T. O'Connell. 1993. Forecasting and Time Series: An Applied Approach. 3rd ed. Pacific Grove, CA: Duxbury.
- Chatfield, C. 2001. Time-Series Forecasting. London: Chapman & Hall/CRC.
- Chatfield, C. 2004. The Analysis of Time Series: An Introduction. 6th ed. Boca Raton, FL: Chapman & Hall/CRC.
- Chatfield, C., and M. Yar. 1988. Holt-Winters forecasting: Some practical issues. Statistician 37: 129–140.
- Holt, C. C. 2004. Forecasting seasonals and trends by exponentially weighted moving averages. International Journal of Forecasting 20: 5–10.
- Montgomery, D. C., L. A. Johnson, and J. S. Gardiner. 1990. Forecasting and Time Series Analysis. 2nd ed. New York: McGraw–Hill.
- Winters, P. R. 1960. Forecasting sales by exponentially weighted moving averages. Management Science 6: 324–342.