A Brief Tutorial on Group ℓ_1 -norm

Peng Xu

Pattern Recognition and Intelligent Systems Lab. (PRIS), Beijing University of Posts and Telecommunications (BUPT), Beijing, China.

peng.xu@bupt.edu.cn

www.pengxu.net

Abstract. In this tutorial, firstly I introduce Group ℓ_1 -norm briefly. I will also define a simple unconstrained "multi-view" category-level regression model using Group ℓ_1 -norm, as application example. This regression model also can be regarded as a sparse-coding or subspace learning "framework". I will explain the "physical meaning" of the "view-selection" based on Group ℓ_1 -norm. And an iterative algorithm will be illustrated clearly. Finally, the MATLAB code will be released in my Github repository.

1 Introduction

The Group ℓ_1 -norm (G_1 -norm) of the matrix **M** is defined as

$$\|\mathbf{M}\|_{G_1} = \sum_{i=1}^n \sum_{j=1}^k \|\mathbf{m}_i^j\|_2 ,$$
 (1)

where \mathbf{m}_{i}^{j} the j-th segment vector in i-th column of \mathbf{M} .

Group ℓ_1 -norm (G_1 -norm) has the effect of structured sparsity and can be used to conduct the "view-selection" in multi-view learning problem [1, 2].

2 Application Example of Group ℓ_1 -norm

In this section, I will define a simple multi-view subspace learning model as the application example of Group ℓ_1 -norm, and give the solution algorithm.

2.1 Notations

Matrices and column vectors will be consistently denoted as bold uppercase letters and bold lowercase letters, respectively. Given a matrix $\mathbf{M} \in \mathbb{R}^{m \times n}$, we will express its *i*-th row as \mathbf{M}^i and *j*-th column as \mathbf{M}_j .

The Frobenius norm of the matrix \mathbf{M} is defined as

$$\|\mathbf{M}\|_F = \sqrt{\sum_{i=1}^m \|\mathbf{M}^i\|_2^2} \ .$$
 (2)

2.2 Problem formulation

Suppose there are n data samples, which are denoted as $\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n] \in \mathbb{R}^{d \times n}$. $\mathbf{x}_i \in \mathbb{R}^d$ is formed by stacking features from k views, and the feature for each view j is a d_j dimensional vector, i.e. $d = \sum_{j=1}^k d_j$. And $\mathbf{Y} = [\mathbf{y}_1, \mathbf{y}_2, ..., \mathbf{y}_n]^T \in \mathbb{R}^{n \times c}$ denotes the class label matrix and c is the amount of data categories.

Our model can be described as a minimization problem:

$$J = \min_{\mathbf{W}} \|\mathbf{X}^T \mathbf{W} - \mathbf{Y}\|_F^2 + \lambda_1 \|\mathbf{W}\|_{G_1},$$
(3)

where $\mathbf{W} \in \mathbb{R}^{d \times c}$ is the projection matrix for the original data domain \mathbf{X} . \mathbf{W} contains the weights for the features from each individual view for c different categories. According to the structure of \mathbf{X}^T , the values of \mathbf{W} can be grouped as

$$\mathbf{W} = \begin{bmatrix} \mathbf{W}_{1}^{1} & \mathbf{W}_{2}^{1} & \cdots & \mathbf{W}_{c}^{1} \\ \mathbf{W}_{1}^{2} & \mathbf{W}_{2}^{2} & \cdots & \mathbf{W}_{c}^{2} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{W}_{1}^{k} & \mathbf{W}_{2}^{k} & \cdots & \mathbf{W}_{c}^{k} \end{bmatrix}, \tag{4}$$

where $\mathbf{W}_i^j \in \mathbb{R}^{d_j}$ is a weighting vector contains the weights for all features in the j-th view with respect to the i-th class.

2.3 View-Selection based on Group ℓ_1 -norm

As defined in **W** and Group ℓ_1 -norm of **W**, all the weight vectors for all the views are organized under the ℓ_1 -norm framework. Hence the interaction among all the views can be captured by the Group ℓ_1 -norm regularizer, termed as "view-selection".

2.4 A mathematical solution

The designed objective function contains the non-smooth regularization terms of Group ℓ_1 -norm, which is difficult to solve by general methods. Our objective function has no constraint conditions. We can use variable separation approach to derive an alternative iterative algorithm to solve it [1].

Take the derivative of the objective J with respect to \mathbf{W}_i $(1 \leq i \leq c)$, we have ¹

$$\frac{\partial J}{\partial \mathbf{W}_i} = 2\mathbf{X}\mathbf{X}^T\mathbf{W}_i - 2\mathbf{X}\mathbf{Y}_i + \lambda_1 \mathbf{D}^i \mathbf{W}_i , \qquad (5)$$

When $\|\mathbf{W}_i^j\|_2 = 0$, (3) is not differentiable. Following [3], a small perturbation can be introduced to smooth the j-th diagonal block of \mathbf{D}^i as $\frac{1}{2\sqrt{\|\mathbf{W}_i^j\|_2^2 + \zeta}}\mathbf{I}_j$. We set $\zeta = 1.0000e - 8$ in our following experiments.

where \mathbf{D}^i is a block diagonal matrix with the j-th diagonal block as $\frac{1}{2\|\mathbf{W}_j^j\|_2}\mathbf{I}_j$, \mathbf{I}_i is an identity matrix with the same size as d_i , \mathbf{W}_i^j is the j-th segment of \mathbf{W}_i and includes the wighting vector for the features in the *j*-th view.

Set $\frac{\partial J}{\partial \mathbf{W}} = 0$, we can get

$$\mathbf{W}_i = (2\mathbf{X}\mathbf{X}^T + \lambda_1 \mathbf{D}^i)^{-1} 2\mathbf{X}\mathbf{Y}_i . \tag{6}$$

We can optimize them alternatively and iteratively until convergence. During each optimization step of W, it can be obtained column by column.

Empirically, W can be initialized randomly. In order to reach convergence more faster, we can initialize **W** by setting as

$$\frac{\partial \|\mathbf{X}^T \mathbf{W} - \mathbf{Y}\|_F^2}{\partial \mathbf{W}} = 2\mathbf{X}\mathbf{X}^T \mathbf{W} - 2\mathbf{X}\mathbf{Y} = 0.$$
 (7)

Then the initial value of W can be set as 2

$$\mathbf{W} = (\mathbf{X}\mathbf{X}^T + 0.0000001I)^{-1}\mathbf{X}\mathbf{Y} . \tag{8}$$

The whole algorithm is described in Algorithm 1.

Algorithm 1 Iterative algorithm for this category-level regression model.

Input: $\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n] \in \mathbb{R}^{d \times n}$ and $\mathbf{Y} = [\mathbf{y}_1, \mathbf{y}_2, ..., \mathbf{y}_n]^T \in \mathbb{R}^{n \times c}$. 1. Set t = 0. Initialize \mathbf{W}_t by solving $\min_{\mathbf{W}} \|\mathbf{X}^T \mathbf{W} - \mathbf{Y}\|_F^2$.

while not converge do

- 2. Calculate the block diagonal matrices $(D^i)_{t+1}$ $(1 \le i \le c)$. where the j-th diagonal block of $(D^i)_{t+1}$ is $\frac{1}{2\|(\mathbf{W}^j)_{t+1}\|_2}I_j$

3. For each
$$\mathbf{W}_i$$
 $(1 \leq i \leq c)$, $(\mathbf{W}_i)_{t+1} \leftarrow (\mathbf{X}\mathbf{X}^T + \lambda_1(\mathbf{D}^i)_{t+1})^{-1} 2\mathbf{X}\mathbf{Y}_i$.

 $4, t \leftarrow t + 1$

end while

Output: $\mathbf{W} \in \mathbb{R}^{d \times c}$

This iterative algorithm also can be extended to solve the "view-selection" models of [1, 2].

Programming Implement 2.5

The MATLAB code with detailed annotation is available in my Github repository, https://github.com/PengBoXiangShang.

 $^{^{2}}$ A small perturbation can be introduced to ensure the matrix invertible. Here, \mathbf{I} \in $\mathbb{R}^{d \times d}$

References

- Wang, H., Nie, F., Huang, H.: Multi-view clustering and feature learning via structured sparsity. In: ICML. (2013)
- 2. Xu, P., Yin, Q., Qi, Y., Song, Y.Z., Ma, Z., Wang, L., Guo, J.: Instance-level coupled subspace learning for fine-grained sketch-based image retrieval. In: ECCV workshops. (2016)
- 3. Gorodnitsky, I.F., Rao, B.D.: Sparse signal reconstruction from limited data using focuss: A re-weighted minimum norm algorithm. IEEE Transactions on Signal Processing $\bf 45(3)$ (1997) 600–616