Teoremas para el final de Análisis II (c)

Este es un compilado de los 19 teoremas en general tomados en los finales de Análisis II (c), basado en las dos listas de teoremas que circulan por ahí. Intento que sea lo más comprensible y completo posible, pero no puedo hacerme responsable si algún teorema no presente acá es tomado en un final. No debiera pasar, pero quién sabe. Desde ya, espero que a quien esté leyendo esto le sirva de algo. La mayoría de las demostraciones aquí presentes fueron tomadas del <u>Cálculo de Larotonda</u> o de apuntes tomados en clase.

Todas las demostraciones transcritas fueron escritas con <u>Gallemathic</u>. También me ayudó un montón a mí a la hora de estudiar estos teoremas.

Esta página también está disponible para descargar en PDF: Teoremas del final de Análisis II (c).pdf.

El presente sitio se encuentra constantemente en desarrollo, es posible que algunos teoremas tengan detalles de estilo de los cuales otros carezcan. A su debido tiempo iré mejorando todo para que la lectura y comprensión de los temas sea más amena.

Novedades

Sé que prometí que iba a ir pasando todos los teoremas al nuevo formato, y la mayoría ya los pasé, pero estoy bastante ocupado con otras materias y no tuve tiempo de mejorarlos todos, como por ejemplo el 13, que todavía sigue en el formato viejo (más allá de tener un par de flechitas amarillas). Cuando la facultad me deje en paz un rato y pueda dedicarme a esto voy a terminar de poner todo lindo. (30/10/17)

Prometo que lo voy a hacer eventualmente. (14/04/18)

Índice

- D Teorema 1
 - **○** Sea f: A ⊆ $\mathbb{R}^n \to \mathbb{R}^m$, P ∈ A^o, L ∈ \mathbb{R}^m . Entonces vale que: (f es continua en P) \Leftrightarrow (\forall suceción Tn (n ∈ \mathbb{N}) de puntos de A / Tn \to P, f(Tn) \to f(P)).
- D Teorema 2
 - ▶ Teorema de Bolzano: sea f: A $\subseteq \mathbb{R} \to \mathbb{R}$ una función continua. Si existen puntos P \in A y Q \in A tales que f(P)f(Q) < 0, entonces existe un punto $c \in A / f(c) = 0$.
- Teorema 3
 - ▶ Teorema de Bolzano en \mathbb{R}^n : sea f: A ⊆ $\mathbb{R}^n \to \mathbb{R}$, con A arcoconexo y f continua en A. Si existen P y Q ∈ A / f(P)f(Q) < 0, entonces existe R ∈ A / f(R) = 0.
- D Teorema 4
 - ▶ Teorema de Weierstrass: sea f: $A \subseteq \mathbb{R}^n \to \mathbb{R}$, con A compacto, f continua en A. Entonces existen m y $M \in \mathbb{R}$ tales que m \leq f(x) \leq M \forall x \in A. Además existen Pm y PM \in A tales que f alcanza su mínimo y máximo respectivos en A en dichos puntos.
- D <u>Teorema 5</u>
 - **D** Diferenciable ⇒ Continua: sea f: A ⊆ $\mathbb{R}^n \to \mathbb{R}$, P ∈ A°, y f diferenciable en P. Entonces f es continua en P.
- D Teorema 6
 - Sobre la existencia de las derivadas direccionales y la unicidad del diferencial: sea $f:A \subseteq \mathbb{R}^n \to \mathbb{R}$. Sea $p \in A^o$. Si existe una transformación lineal Tp tal que lim $x \to p$ ||f(x) f(p) Tp(x p)|| / ||x p|| = 0, entonces existen todas las derivadas direccionales de f en p, y su fórmula es Tp(v), con v un versor de R^n ; $Tp(X) = Dfp(X) = \langle \nabla f(p), X \rangle$ para todo $X \in \mathbb{R}^n$ y f es diferenciable en P; y la transformación lineal Tp es única.
- D Teorema 7
 - \triangleright $\nabla f(p)$ es la dirección de máximo crecimiento de f en p: sea f una función diferenciable en p. Entonces la dirección de máximo crecimiento de f en p viene dada por $\nabla f(p)$.
- D Teorema 8
 - Teoremas de Fermat, Rolle, Lagrange y Cauchy en ℝ.
- D Teorema 9
- D Teorema 10
 - ▶ Teorema del Hessiano: Sea f: $A \subseteq \mathbb{R}^n \to \mathbb{R}$, f una función de clase C^3 en A, con A abierto, $P \in A$ un punto de A tal que $\nabla f(P) = 0$. Entonces si el Hessiano de f en P (Hf(P)) es definido negativo, P es un máximo estricto de f. Si Hf(P) es definido positivo, P es un mínimo estricto de f. Si Hf(P) es indefinido, entonces P es un punto silla de f.
- D Teorema 11
 - De Teorema de los multiplicadores de Lagrange: En formato imagen.
- D Teorema 12
 - Continua ⇒ Integrable: En formato imagen.

Teorema 13
(Teorema fundamental del cálculo integral) Sea f:[a,b]→ \mathbb{R} una función continua. Dado x∈[a,b] sea F:[a,b]→ \mathbb{R} tal que F(x)= $\int [a,x]f=\int [a,x]f(t)dt$. Entonces F es continua en [a,b], derivable en (a,b) y $\forall x \in [a,b]$ vale que F'(x)= $\int [a,x]f=\int [a,x]f(t)dt$.

- D Teorema 14
 - ▶ Regla de Barrow: sea f una función continua en un cerrado [a, b]. Si F es una primitiva de f, se tiene que ∫[a, b]f = F(b) F(a).
- D Teorema 15
 - ▶ Teorema del valor medio integral: sea f: $[a, b] \rightarrow \mathbb{R}$ una función continua. Entonces $\exists c \in (a, b) / [a, b]f = f(c)(b a)$.
- D Teorema 16
 - Dado P en una curva de nivel de F(x, y) de clase C¹ tal que $\nabla F(P) \neq 0$, entonces $\nabla F(P)$ es perpendicular a la recta tangente a la curva en P. En formato imagen.
- D Teorema 17
 - Las derivadas cruzadas coinciden.
- D Teorema 18
 - lacktriangle Teorema de Lagrange en \mathbb{R}^n o Teorema del valor medio para funciones diferenciables: En formato imagen.
- D Teorema 19
 - lacktriangle Teorema de Fermat en \mathbb{R}^n : En formato imagen.

Teorema 1

Sean:

- \triangleright **f**: $A \subseteq \mathbb{R}^n \to \mathbb{R}^m$
- $P \in A^0$

Entonces vale que:

○ (f es continua en P) \Leftrightarrow (\forall suceción Tn (n \in N) de puntos de A tal que Tn \rightarrow P, se cumple que f(Tn) \rightarrow f(P))

Demostración:

(1 ⇒ 2)

- Si **f** es continua en **P**, entonces vale que $\forall \ \epsilon > 0 \ \exists \ \delta > 0 \ / \ \|x P\| < \delta \Rightarrow \|\mathbf{f}(x) \mathbf{f}(P)\| < \epsilon$, es decir que puedo hacer la distancia de $\mathbf{f}(x)$ a $\mathbf{f}(P)$ tan chica como yo quiera acercando x a P.
- ▶ Sea Tn una sucesión de puntos de A, con $n \in \mathbb{N}$ tal que Tn \rightarrow P.
 - ▶ Esto implica que existe un no a partir del cual Tn está suficientemente cerca de P.
 - Es decir, $\forall \epsilon' > 0 \exists n_0 \in \mathbb{N} / n > n_0 \Rightarrow \| \mathbf{Tn} \mathbf{P} \| < \epsilon'.$
- \bullet Ahora, que **f** sea continua implica que puedo tomar cualquier ϵ y para ese ϵ existir un δ .
- Que Tn → P implica que siempre existe un n₀ a partir del cual Tn está a una distancia ε' o menor de P.
- **●** Usando los dos últimos puntos, si tomo $\delta = \epsilon'$ puedo decir lo siguiente: $\forall \epsilon > 0 \exists \delta / \|Tn P\| < \delta \Rightarrow \|f(Tn) f(P)\| < \epsilon$.

$(2 \Rightarrow 1)$

- Supongamos que f no es continua en P.
 - **▶** Entonces esto significa que ∃ ε > 0 / \forall δ > 0 ∃ x ∈ A / $\|x P\|$ < δ ∧ $\|f(x) f(P)\|$ > ε .
- Ahora, como para toda sucesión Tn → P vale que f(Tn) → f(P), entonces esto significa que ∀ ε > 0 ∃ δ > 0 / (||Tn − P|| < δ ⇒ ||f(Tn) − f(P)|| < ε).</p>
- **©** Como **f** no es continua, se puede tomar una sucesión de deltas δi = (1 / i) con i ∈ N, tal que (∀ δi > 0, ∃ ε' > 0 ∧ ∃ xi ∈ A) / ($\|xi P\|$ < δi ∧ $\|f(xi) f(P)\|$ > ε').
- **▶** Como i → ∞ ⇒ δi → 0, y $\|xi P\|$ < δi, entonces se deduce que $xi \to P$.
- lacktriangle Como xi es una sucesión de puntos de A que tiende a P, entonces necesariamente $f(xi) \rightarrow f(P)$.
 - **○** Esto significa que $(\forall \ \epsilon > 0 \ \exists \ \delta > 0) \ / \ (\|xi P\| < \delta \Rightarrow \|f(xi) f(P)\| < \epsilon)$.
- \bullet Ahora, si yo tomo $\varepsilon = \varepsilon'$ llegamos a un absurdo, pues habíamos dicho que $\|\mathbf{f}(xi) \mathbf{f}(\mathbf{P})\| > \varepsilon'$.
- ▶ Ha de ser entonce que f es continua en P.
- Como $1 \Rightarrow 2 \land 2 \Rightarrow 1$, entonces $1 \Leftrightarrow 2$, que es lo que queríamos probar. \Box

Teorema 2

Teorema de Bolzano

Sean:

- Sea A el intervalo [P, Q] ⊆ R
- $lackbox{}{}$ f: A $ightarrow \mathbb{R}$ una función continua
- Dos puntos P ∈ A y Q ∈ A tales que f(P)f(Q) < 0</p>

Entonces:

 \triangleright Existe un punto $c \in A / f(c) = 0$

Demostración:

- Supongamos que f(P) > 0 y f(Q) < 0. El caso inverso es análogo.
- Sea S entonces el conjunto de los $x \in A / f(x) > 0$.
 - \triangleright S \neq Ø porque al menos \triangleright S.
 - Además, S está acotado superiormente al menos por Q, por lo que tiene un supremo s (notar la diferencia entre S y s).
- Como S es cerrado y acotado, o sea que S ⊆ [P, s], puedo extraer una subsucesión creciente Sn de puntos de S que tienda al supremo.
- Sn \rightarrow s. Ahora hay dos posibilidades, f(s) > 0 o f(s) = 0.
 - **D** Si $\mathbf{f}(\mathbf{s})$ > 0, entonces existe un entorno ($\mathbf{s} \epsilon$, $\mathbf{s} + \epsilon$)∩[P, \mathbf{s}] tal que $\mathbf{f}(\mathbf{x})$ > 0 \forall x perteneciente a ese intervalo.
 - **○** Como s < Q, ya que f(Q) < 0, entonces puedo tomar $x_0 \in (s, s + \epsilon)$ tal que $f(x_0) > 0$.
 - ▶ Pero entonces $x_0 \in S$ y $x_0 > s$, lo que es absurdo pues s es el supremo del conjunto.
- \bullet Debe ser entonces que f(s) = 0.
- ▶ Tomando c = s se demuestra el teorema.

(Aprovecho para agredecer a Tony Luciana y a Fernando Martin por señalar y corregir errores presentes en esta demostración)

Volver al índice

Teorema 3

Teorema de Bolzano en ℝⁿ

Sean:

- \triangleright f: $A \subseteq \mathbb{R}^n \to \mathbb{R}$
- D f continua en A

Entonces:

Demostración:

- Por ser A arcoconexo puedo definir una curva $a(t):[0,1] \to A / a(0) = P y a(1) = Q$.
 - Arcoconexo significa que dados dos puntos pertenecientes al conjunto, existe alguna curva de puntos del conjunto mediante la cual los puedo unir.
- Considero entonces una función G(t) = f∘a(t)
 - G es continua por composición de continuas.
 - \circ G cumple que G(0) = f(P) y G(1) = f(Q).

- \bullet Como G es continua en [0, 1] entonces G(0)G(1) < 0.
- ▶ Partiendo del punto anterior, existe $c \in (0, 1) / G(c) = 0$ por el Teorema de Bolzano en \mathbb{R} .
 - Es decir que $G(c) = f \circ a(c) = f(a(c)) = 0$.
- \bullet Si tomamos R = a(c) se demuestra el teorema \Box

Volver al índice

Teorema 4

Teorema de Weierstrass

Sean:

- ightharpoonup A $\subseteq \mathbb{R}^n$ compacto
- \triangleright f: $A \subseteq \mathbb{R}^n \to \mathbb{R}$
- f continua en A

Entonces:

- **○** Existen m y M \in \mathbb{R} tales que m \leq f(x) \leq M \forall x \in A.
- Existen Pm y PM ∈ A tales que f alcanza su mínimo y máximo respectivos en A en dichos puntos.

Demostración:

(Existencia de m y M)

- ▶ Veamos el caso de M, el de m es análogo. Supongamos que f no está acotada superiormente.
 - ▶ Entonces no existe $M \in \mathbb{R}$ tal que $M > f(x) \forall x \in A$.
 - $lackbox{0}$ Por lo tanto debe existir una sucesión de puntos An de A tal que $f(An) \ge n \ \forall n \in \mathbb{N}$.
- Por ser A compacto, existe una subsucesión convergente de An que tiende a P ∈ A, sea esta subsucesión Ank.
- \bullet Por lo dicho anteriormente, se cumple que $f(Ank) \ge nk \ \forall \ nk \in \mathbb{N}$.
 - Como f es continua en A, f es continua en el punto P.
 - ▶ Se ve que es imposible que $f(Ank \rightarrow P) \ge nk \ \forall \ nk \in \mathbb{N}$, porque que f es continua P y no diverge ni pega saltos en P, por lo que eventualmente nk será mayor a f(P).
 - Por lo tanto, f debe estar acotada superiormente.
- **▶** Entonces existe $M \in \mathbb{R}$ tal que $M > f(x) \forall x \in A$.

(Pm y PM)

- Ahora quiero ver que f alcanza su máximo y su mínimo en A. Veamos el caso de PM, en donde alcanza su máximo, el otro es análogo.
- lacktriangle Por el punto anterior, sé que Img(f) \subseteq [m, M], por lo que tiene un supremo: s.
 - Quiero ver que s es en realidad un máximo.
- Tomo una sucesión creciente de puntos de Img(f) que tienda al supremo.
- lacktriangle Como esta sucesión existe, puedo tomar una sucesión An de puntos de A tal que lim $n \to \infty$ f(An) = s.
 - De esta sucesión extraigo una subsucesión convergente Ank.
 - \bullet Al límite de Ank lo llamo PM, de forma que lim nk $\to \infty$ Ank = PM.
- Como A es un conjunto compacto, PM ∈ A.
- Como f es continua en PM, entonces $f(PM) = \lim_{n \to \infty} f(Ank) = s$.
- Por lo tanto f alcanza su máximo en A.

Dicho todo esto queda demostrado el teorema.

□

Volver al índice

Teorema 5

Diferenciable ⇒ **Continua**

Sean:

- \triangleright f: $A \subseteq \mathbb{R}^n \to \mathbb{R}$
- P ∈ A⁰
- f diferenciable en P

Entonces:

o f es continua en P

Demostración:

- Partimos de la siguiente obviedad: $0 \le \|f(x) f(P)\|$, $\forall x \in A$.
- $\|f(x) f(P)\| = \|f(x) f(P) Df(P)(x P) + Df(P)(x P)\|$
- $\| ||f(x) f(P) Df(P)| + ||f(P)(x P)|| \le ||f(x) f(P) Df(P)(x P)|| + ||Df(P)(x P)||$
 - Porque ||a + b|| ≤ ||a|| + ||b|| (desigualdad triangular).
- **▶** Df(P)(x P) = $\langle \nabla f(P), (x P) \rangle$ que, por desigualdad de Cauchy-Schwartz, es menor a $\|\nabla f(P)\| \cdot \|x P\|$.
- Juntando todo lo que teníamos hasta ahora, nos queda que:
 - $0 \le \|f(x) f(P)\| = \|f(x) f(P) Df(P) + Df(P)(x P)\|$

 - **○** Entonces $0 \le \|f(x) f(P)\| \le \|f(x) f(P) Df(P)(x P)\| + \|\nabla f(P)\| \cdot \|x P\|$
- ▶ Ahora, multiplicamos y dividimos al primer término por llx Pll.
- Nos queda que: $\|f(x) f(P) Df(P)(x P)\| + \|\nabla f(P)\| \cdot \|x P\| = (\|f(x) f(P) Df(P)(x P)\| / \|x P\|) \cdot \|x P\| + \|\nabla f(P)\| \cdot \|x P\|$
- ▶ Si se fijan, $\|f(x)-f(P)-Df(P)(x-P)\| / \|x-P\|$ es la definición del diferencial de f en P, por lo que tiende a 0.
 - lacktriangle El diferencial de f en P (Df(P)) tiende a 0 cuando $x \to P \Leftrightarrow f$ es diferenciable.
- ▶ El segundo término, $\|\nabla f(P)\| \cdot \|x P\|$, trivialmente tiende a 0 cuando $x \to P$.
- Por lo que ambos términos tienden a 0 y suman 0.
 - ▶ Por lo tanto, $\|f(x) f(P) Df(P)(x P)\| + \|\nabla f(P)\| \cdot \|x P\|$ tiende a 0 cuando $x \to P$.
- ▶ Juntando todo lo que conseguimos, $0 \le \|f(x) f(P)\| \le 0$.
 - \triangleright Por lo tanto $f(x) \rightarrow f(P)$ cuando $x \rightarrow P$.
 - Esto hace que f sea continua en P.
- ▶ Llegamos a que f es continua en P, que es lo que queríamos probar. □

Volver al índice

Teorema 6

Sobre la existencia de las derivadas direccionales y la unicidad del diferencial

Sean:

- \triangleright Sea $p \in A^0$
- ▶ Tp transformación lineal tal que lim $x \rightarrow p (\|f(x) f(p) Tp(x p)\| / \|x p\|) = 0$

Entonces:

- ▶ La fórmula de las derivadas direccionales de f en p es Tp(v), con v un versor de Rⁿ.
- Existen todas las derivadas direccionales de f en p.
- of es diferenciable en p.
- ▶ $\mathsf{Tp}(\mathsf{X}) = \mathsf{Dfp}(\mathsf{X}) = \langle \nabla \mathsf{f}(\mathsf{p}), \mathsf{X} \rangle$ para todo $\mathsf{X} \in \mathbb{R}^n$.
- De La transformación lineal Tp es única.

Demostración:

▶ Si $\|f(x) - f(p) - Tp(x - p)\| / \|x - p\|$ tiende a 0 cuando $x \to p$, entonces lo hace por cualquier curva por la que x tienda a p.

- Sea entonces x = p + tV, con V un versor de \mathbb{R}^n .
 - ightharpoonup Entonces $x \to p$ cuando $t \to 0$.
- ▶ Reemplazando en la ecuación de arriba me queda que lim $t \to 0$ ($\|f(p + tV) f(p) Tp(tV)\| / \|tV\|$) = 0.
- ▶ Como $\|V\| = 1$, entonces eso es igual a lim $t \to 0$ ($\|f(p + tV) f(p) Tp(tV)\| / |t|$) = 0.
- Eso es igual a lim $t \rightarrow 0 |(f(p + tV) f(p)) / t Tp(v)| = 0.$
- Puede verse entonces que (f(p + tV) f(p)) / t = Tp(v).
 - \triangleright Recordemos, $\lim_{t\to 0} (f(p+tV)-f(p)) / t$ es la definición de la derivada en dirección V de f(p).
 - Por lo anterior, se deduce que $\underline{Tp(V)} = \partial f / \partial v(P)$.
 - Como V puede ser cualquier versor en cualquier dirección, entonces existen todas las derivadas direccionales.
 - Esto hace que f sea diferenciable en p.
- Como existen todas las derivadas direccionales para cualquier dirección V, en particular existen para cualquier dirección Ei, con Ei un versor de la base canónica.
 - Por ejemplo, en R³ los vectores de la base canónica son (1, 0, 0), (0, 1, 0) y (0, 0, 1).
 - De Todos los vectores de una base canónica tienen norma 1.
- En particular, entonces, existen todas las derivadas parciales de f.
 - Las derivadas direccionales que van por la dirección de los vectores de la base canónica.
- ▶ Por otro lado, como una transformación lineal se determina por su valor en una base canónica de Rⁿ, y como Tp(Ei) = $\partial f / \partial Ei(p)$, entonces se deduce que $\langle \nabla f(p), x \rangle = Tp(x) \forall x \in \mathbb{R}^n$.
- Finalmente, falta ver que esta transformación lineal es única.
- Sea Sp otra transformación lineal que cumple lo enunciado en la hipótesis.
- Entonces se deduce que $\partial f / \partial v(p) = Sp(v)$ para cualquier versor v de \mathbb{R}^n .
- ▶ Esto mismo aplica para versores de la base canónica y, por lo tanto, se deduce que $Sp(v) = \langle \nabla f(p), v \rangle$.
- ▶ Pero $\langle \nabla f(p), v \rangle = Tp(v)$, por lo establecido en los puntos anteriores.
- lacktriangle Se deduce entonces que Tp = Sp, por lo que $\underline{\text{Tp es única}}$. \Box

Volver al índice

Teorema 7

∇f(p) es la dirección de máximo crecimiento de f en p

Sea:

f una función diferenciable en p.

Entonces:

▶ La dirección de máximo crecimiento de f en p viene dada por ∇f(p).

Demostración:

- Sea v un versor cualquiera.
 - Un versor es un vector de norma unitaria.
- **▶** Entonces $\langle \nabla f(p), v \rangle \leq |\langle \nabla f(p), v \rangle| \leq ||\nabla f(p)|| \cdot ||v||$.
- **▶** Como $\|v\| = 1$, entonces $\langle \nabla f(p), v \rangle \leq \|\nabla f(p)\|$.
- Sea ahora $v = \nabla f(p) / \|\nabla f(p)\|$, que es el gradiente de f en p normalizado, un versor con la misma direción que $\nabla f(p)$.
- ▶ Entonces $\langle \nabla f(p), v \rangle = \langle \nabla f(p), \nabla f(p) / \|\nabla f(p)\| \rangle = \|\nabla f(p)\|^2 / \|\nabla f(p)\| = \|\nabla f(p)\|$.
- Por lo tanto ∇f(p) es la dirección de mayor crecimiento de f en p. □

Volver al índice

Teorema 8

Teorema de Fermat

Sea:

- f derivable en (a, b)
- p ∈ (a, b) un extremo local de f

Entonces:

 $\triangleright \nabla f(p) = 0.$

Demostración:

- Supongamos que p es un máximo local. Si fuere un mínimo la demostración es análoga.
- ▶ Por ser máximo de f, existe un entorno (p ε, p + ε) de p tal que f(x) ≤ f(p) para cada x perteneciente a dicho entorno
- Dicho esto, calculemos f'(p) por límites laterales.
 - D lim t → 0^+ (f(p + t) f(p)) / t ≤ 0
 - $lim t → 0^- (f(p + t) f(p)) / t ≥ 0$
- Solo puede ser entonces que lim t → 0 (f(p + t) f(p)) / t = 0, por lo que f'(p) = 0, que es lo que queríamos probar. \Box

Teorema de Rolle

Sea:

- f continua en [a, b]
- f derivable en (a, b)

Entonces:

 \circ Si f(a) = f(b), existe $c \in (a, b)$ tal que f'(c) = 0.

Demostración:

- \bullet Si f es una función constante (linea recta horizontal), entonces trivialmente su derivada es 0 para todo $x \in (a, b)$.
- Si f no es constante, entonces necesariamente al menos el máximo o el mínimo del interior se alcanzan en el interior, por teorema de Weierstrass.
 - Esto sucede dado que f es continua en un compacto.
 - Digo en el interior porque capaz el máximo o el mínimo absolutos de la función son f(a) y f(b).
 - Por si hay dudas, el interior de [a, b] es (a, b).
- Sea c dicho mínimo, por teorema de Fermat f'(c) = 0, que es lo que queríamos probar □

Teorema de Lagrange

Sea:

- f continua en [a, b]
- of derivable en (a,b)

Entonces:

Existe c ∈ (a, b) tal que f'(c) = (f(b) - f(a)) / (b - a)

Demostración:

- Consideremos la siguiente función auxiliar: g(x) = f(x) − L(x), donde L es la recta que une f(b) con f(a), de forma que L(a) = f(a) y L(b) = f(b).
- ▶ Por álgebra de continuas y derivables, g es continua en [a, b] y derivable en (a,b).
- g(b) = f(b) L(b) = f(b) f(b) = 0
- Por los dos puntos anteriores, g cumple las hipótesis del teorema de Rolle.
- Entonces Rolle nos dice que existe $c \in (a, b)$ tal que g'(c) = 0.
- ▶ Partiendo de la ecuación del primer punto, queremos ver que g'(c) = f'(c) m.
 - La m sale de que las rectas como L tienen la pinta p + mx.
 - (L(x))' = (p + mx)' = (p)' + (mx)' = 0 + m(x)' = 0 + m = m

- \bullet Como g'(c) = 0, entonces nos queda que f'(c) = m.
- Pero m es la pendiente de la recta que une f(a) con f(b), por lo que m = (f(b) f(a)) / (b a).
- ▶ Reemplazando nos queda que f'(c) = (f(b) f(a)) / (b a), que es lo que queríamos probar. □

Teorema de Cauchy

Sea:

- f continua en [a, b]
- f derivable en (a, b)

Entonces:

- **○** Existe $c \in (a, b)$ tal que (f(b) f(a)) / f'(c) = (g(b) g(a)) / g'(c).
 - Este es un resultado técnico más que nada.

Demostración:

- Consideremos la siguiente función: h(x) = (f(x) - f(a))(g(b) - g(a)) - (g(x) - g(a))(f(b) - f(a)).
- Podemos observar que h(a) = 0 trivialmente.
- Podemos observar que h(b) = (f(b) f(a))(g(b) g(a)) (g(b) g(a))(f(b) f(a)), ambos términos son el mismo, así que h(b) = 0.
- Por lo tanto, h cumple todas las hipótesis del <u>teorema de Rolle</u>.
 - Nótese que las cualidades de continuidad y derivabilidad las adquiere por álgebra de derivables y continuas.
- De esta forma, Rolle nos asegura que existe $c \in (a, b) / h'(c) = 0$.
- $lackbox{0}$ Observemos ahora que h'(c) = f'(c)(g(b) g(a)) g'(c)(f(b) f(a)).
- Como h'(c) = 0, entonces tengo que f'(c)(g(b) g(a)) = g'(c)(f(b) f(a)).
- ▶ Distribuyendo llego a que (f(b) f(a)) / f'(c) = (g(b) g(a)) / g'(c), que es a lo que queríamos llegar. □

Volver al índice

Teorema 9

C¹ ⇒ Diferenciable

(Abrir en grande en una pestaña nueva)

(Cortesía de Ezequiel Togno)

Volver al índice

Teorema 10

Teorema del Hessiano

Primero, un poco de introducción:

- Los puntos donde el gradiente de f se anula son candidatos a extremos relativos, pero no tienen por qué serlo. Estos puntos se llaman "puntos críticos". Si uno de estos puntos es efectivamente un extremo, llamemos P al punto, se dice que P es un extremo "estricto" si f(P) > f(X) ∀ X en un entorno de P. Nótese que la 'estrictitud' viene dada porque hablamos de > y no de ≥.
- Dicho eso, decimos también que P es un punto silla de f si dadas dos trayectorias α y β que tiendan a P, f(α) tiene un máximo en P y f(β) tiene un mínimo en P. En ambos casos, sin embargo, ∇ f(P) = 0.

Ahora sí, el teorema.

Sean:

A un conjunto abierto

- \triangleright f: A $\subseteq \mathbb{R}^n \to \mathbb{R}$

 - P ∈ A un punto de A tal que ∇f(P) = 0

Entonces:

- Si el Hessiano de f en P, Hf(P), es definido negativo, P es un máximo estricto de f.
- Si Hf(P) es definido positivo, P es un mínimo estricto de f.
- Si Hf(P) es indefinido, entonces P es un punto silla de f.

Unas cosas más antes de seguir:

- Que f sea de clase C³ implica que sus derivadas primeras, segundas y terceras son continuas.
- DEI Hessiano es la matriz de las derivadas segundas de f.
 - Que sea definido positivo implica que los determinantes de sus menores pricipales son todos positivos.
 - Que sea definido negativo implica que los determinantes de sus menores principales son intercaladamente negativos y positivos, empezando por un negativo.

Demostración:

(Casos de Hessiano definido)

- Supongamos que Hf(P) es definido positivo. El caso opuesto es análogo.
- ▶ Entonces para un X suficientemente cercano a P puedo describir a f en base a su polinomio de Taylor en \mathbb{R}^n . O sea, f(X) = f(P) + (1/2) < Hf(P)(X P), (X P) > + R(X P).
 - Nótese que el término del gradiente −derivadas primeras de f(p)− no aparece porque al ser un punto crítico es nulo.
- Dividiendo y multiplicando por $\|X P\|^2$ nos queda que: $f(X) = f(P) + \|X - P\|^2[(1/2) < Hf(P)((X - P) / \|X - P\|), ((X - P) / \|X - P\|) > + R(X-P) / \|X - P\|^2]$
 - Nota: lo que está en naranja lo usaremos varias veces dentro del teorema, es por eso que está destacado, pero es parte de la misma fórmula.
- ▶ Llamemos Qp(V) a <(1 / 2)Hf(P)(V), V>.
 - ▶ Por propiedades del producto interno escalar, si ponemos el (1 / 2) afuera o adentro es indistinto. Ahora lo ponemos adentro para poder hacer un trucazo.
 - ▶ Haciendo esto, nuestra expresión anterior queda así: $f(X) = f(P) + \|X P\|^2 [<(1/2)Hf(P)((X P)/\|X P\|), ((X P)/\|X P\|) > + R(X-P)/\|X P\|^2]$
 - Ahora podemos reemplazar con Qp(V).
- Nos queda entonces que:

```
f(X) = f(P) + \|X - P\|^2 [Qp((X - P) / \|X - P\|) + R(X - P) / \|X - P\|^2]
```

- Nótese que el vector (X − P) / ||X − P|| tiene la misma dirección que (X − P) pero es de norma unitaria ("está normalizado").
- ▶ Sea S un conjunto compacto $-cerrado\ y\ acotado\ -$ tal que S = $\{V \in \mathbb{R}\ /\ \|V\| = 1\}$.
 - Nótese que S es una esfera n-dimensional de radio 1 centrada en el origen.
- **▶** Como Qp es una función continua definida de $\mathbb{R}^n \to \mathbb{R}$, entonces por el <u>teorema de Weierstrass</u> alcanza su mínimo en S.
 - Atención que no es su mínimo absoluto de todos los valores posibles de la función, sino que toca su mínimo dentro de los valores que alcanza en S.
- Vamos a llamar a este mínimo "mp".
- Como lo alcanza, entonces existe un versor Vp tal que Qp(Vp) = mp.
- ▶ Como Vp \neq 0 ya que $\|Vp\| = 1$, por pertenecer a S, entonces vale que mp > 0.
 - lacktriangle Esto es así porque Hf(p) es definido positivo, y esto hace que Qp(Vp) > 0 al multiplicar.
- Como este era el mínimo que alcanza Qp en la esfera, vale que Qp ≥ mp > 0 para todo versor V.
- Por lo tanto, el Qp((X−P) / ||X−P||) que teníamos en nuestro polinomio de Taylor va a ser siempre mayor a 0 (recordemos que estamos consideando que Hf(P) es definido positivo).
- $\blacksquare \mbox{ Cuando X} \rightarrow \mbox{P, } (\mbox{R(X P)} \ / \ \mbox{IIX PII}^2) \rightarrow \mbox{0 porque la diferencia entre f(X) y f(P) se achica cada vez más. }$
 - $lue{P}$ Esto sucede porque el polinomio de Taylor centrado en P es cada vez más exacto conforme X \rightarrow P.
- **●** Juntando los dos puntos anteriores tenemos que $[(1/2) < Hf(P)((X P) / ||X P||), ((X P) / ||X P||) > + R(X P) / ||X P||^2]$ es siempre positivo y mayor a 0
- ▶ Por lo dicho arriba nos queda que $f(X) = f(P) + \|X P\|^2$ [término mayor a 0], por lo que f(X) es siempre f(P) más un poquito, lo que significa que f(P) < f(X) para todo X en un entorno de P.
 - Nótese que ||X − P|| > 0 porque X tiende a P pero no es igual a P.
- El caso en el que Hf(P) es definido negativo y f(P) un máximo local es análogo.

(Caso de Hessiano indefinido)

- ullet Si Hf(P) fuera indefinido, existirían dos trayectorias W y Z tales que Qp(W) > 0 y Qp(Z)<0.
- A través de estas trayectorias f(X) es respectivamente mayor y menor a f(P), por lo que se deduce que P ha de ser un punto silla de f.

Dicho todo esto, se demuestra el teorema.

□

Volver al índice

Teorema 11

Teorema de los multiplicadores de Lagrange

· Sea $f: \mathbb{R}^2 \to \mathbb{R}$ diferenciable, $S = \{(x,y) \in \mathbb{R}^2 : g(x,y) = 0\}$ y $P \in S$. Si P es extremo de f restringido a S y $\nabla g(P) \neq 0$, probar que existe $\lambda \in \mathbb{R}$ tal que $\nabla f(P) = \lambda \nabla g(P)$.

Demo: Sea P = (x, y). Por teorema de la función implícita (aplica porque $\nabla g(P) \neq 0$) existe una función h tal que en una vecindad de P se cumple g(x, h(x)) = 0. Podemos ver entonces que en dicha vecindad $\nabla g = 0$ lo que implica, por regla de la cadena,

$$\bigtriangledown g(x,h(x))(x,h(x)) = \bigtriangledown g(x,h(x)) \cdot (1,h'(x)) = 0.$$

Ahora lo que queremos es un extremo de f(x,h(x)) sin ninguna restricción (ya que el punto (x,h(x)) siempre pertence a S). Para esto tomamos el gradiente igual a $0: \nabla f(x,h(x))(x,h(x)) = \nabla f(x,h(x)) \cdot (1,h'(x)) = 0$. Dado que $\nabla g(x,h(x))$ y $\nabla f(x,h(x))$ son ambos perpendiculares al vector (1,h'(x)) (su producto interno da 0), deben ser paralelos entre sí, por lo cual existe λ tal que $\nabla f(x,h(x)) = \lambda \nabla g(x,h(x))$ y como $P \in S \Rightarrow y = h(x) \Rightarrow P = (x,h(x))$ queda demostrado el teorema.

(Abrir en una pestaña nueva)

Volver al índice

Teorema 12

Continua ⇒ Integrable

(**Nota**: en el primer renglón, donde dice *entonces es derivable en [a, b]*, debería decir *entonces es integrable en [a, b]*)

Veamos que si fer continua en [a, b] en roncer et derivable en [a, b] Sea 870. Busco una parición Rdel intervalo tal que S(f, R) - I(f, R) (E, con 5 la suma superor de f en R e I la inferior. Sea ahora E'= E Como f er continua en un compacto, en Toncer er vaiformemente continua (en ta,63). Esto significa que 7 870/1f(x)-f(y)/ E Evando IX- Y/ S. tomo eroncer una partición R tol que el diámetro de R sea menor a S. Entonce, s: x, y, & A: > 1x; + y; 1 < S. ahora, 5(f, R)-I(f, R) = E(M.-m) D; = E(f(x,)-f(y,)) D; donde x;, y & A;, f(x;) = max(fla) = M;, f(y;) = wind (fla) = m;. Se tiene enroncer que 0 5 f(x;) - f(y;) = |f(x;) -f(y;)| < E', gorque 1x; - y; 1 < 8. Por 10 tonto, S(f, R) - \$1(f, R) (ξε'Δ; = ΕξΔ; $= \underbrace{\varepsilon}_{6-\alpha} (6-\alpha) = \varepsilon.$ aplicando el criterio de integrabilidad se tiene que f er la que quertonos probor.

(Abrir en grande en una pestaña nueva)

Volver al índice

Teorema 13

Teorema fundamental del cálculo integral

Nota: de acá en adelante, debido a las limitaciones de Gallemathic y html, voy a notar las integrales definidas de a hasta b de f(t)dt como [a,b]f(t)dt.

Sea $f:[a,b] \to \mathbb{R}$ una función continua. Dado $x \in [a,b]$ sea $F:[a,b] \to \mathbb{R}$ tal que $F(x) = \int [a,x]f = \int [a,x]f(t)dt$. Entonces F es continua en [a,b], derivable en (a,b) y $\forall x \in [a,b]$ vale que F'(x) = f(x).

Veamos esto. Sea s el máximo valor que toma |f(t)| con t∈[a,b], que como f es una función continua es un número finito. Vamos a probar que F es una función continua.

Position versus primero que F es continua en los bordes. Como F(a)=∫[a,a]f, entonces F(a)=0. Como |F(x)−F(a)|=| $\int [a,x]f| ≤ \int [a,x]f| = \inf S(|f|,P)$ que es el ínfimo de las sumas superiores de |f|, sobre cualquier P partición del intervalo [a,x]. Esto significa que |F(x)−F(a)|≤S(|f|,P), donde S(|f|,P) es una suma superior de |f| en una partición P, que es igual a $\Sigma[i]$ Mi∆i, donde Mi es el máximo de |f| en el intervalo ∆i (juntando todos los ∆i formo P), que es menor o igual a s $\Sigma[i]$ ∆i, donde s, como habíamos dicho, era el máximo de |f| en [a,b].

Tenemos entonces que $|F(x)-F(a)| \le s\Sigma[i]\Delta i$. Pero $s\Sigma[i]\Delta i=s(x-a)$, entonces quedamos en que $|F(x)-F(a)| \le s(x-a)$. Cuando $x\to a^+$, $s(x-a)\to 0$, con lo cual $F(x)\to F(a)$.

Podemos hacer la misma analogía con el intervalo [x,b] hasta llegar a que $|F(b)-F(x)| \le s(b-x)$. Como $s(b-x) \to 0$ cuando $x \to b^-$, entonces $F(x) \to F(b)$.

Con estas dos cosas probamos que F es continua en los bordes.

Ahora vamos a probar que F es derivable, que F'=f y que F es continua en el interior del intervalo. Para esto tomamos un punto $xo \in (a,b)$. Sea $x \in (a,b)$ otro punto cualquiera, calculemos lo siguiente: (F(x)-F(xo))/(x-xo).

 $(F(x)-F(xo))/(x-xo) = (\int [a,x]f-\int [a,xo]f)/(x-xo) = (\int [xo,x]f)/(x-xo)$. Si eso tiende a f(xo) cuando $x\to xo$, esto probaría que F es derivable, que F'=f y que F es continua en el interior.

Como f es continua entre x y xo, que eran puntos de [a,b], entonces existen dos números reales, el máximo y el mínimo de f entre x y xo tales que $m \le f(t) \le M$ $\forall t$ entre x y xo. No pongo [x,xo] o [xo,x] porque no sabemos cuál es el mayor.

Supongamos que x>xo, total el razonamiento inverso es análogo. Se tiene lógicamente que $m(x-xo) \le \int [xo,x] f \le M(x-xo)$. Ahora, como $x \ne xo$, trivial, y x>xo, se tiene que x-xo>0, por lo que puedo dividir todos los términos por (x-xo) y me queda que $m \le (\int [xo,x]f) / (x-xo) \le M$.

Ahora,como m y M eran dos números entre x y xo, cuando $x\rightarrow xo^+$, m y M tienden a f(xo), porque f es continua. Por lo tanto $(\int [xo,x]f) / (x-xo) \rightarrow f(xo)$.

Como $(\int [xo,x]f) / (x-xo) = (F(x)-F(xo))/(x-xo)$, entonces (F(x)-F(xo))/(x-xo) = f(xo) cuando $x\to xo^+$. Al probar el caso xo>x se comprueba que $\lim_{x\to xo} (F(x)-F(xo))/(x-xo) = f(xo)$.

Como lim $x \rightarrow xo$ (F(x)-F(xo))/(x-xo)=f(xo), se prueba que F es continua en el interior, derivable en todo el interior (y por tanto, efectivamente derivable) y F'=f, que es lo que queríamos probar \Box

Volver al índice

Teorema 14

Regla de Barrow

Sea:

- [a, b] cerrado
- of continua en [a, b]

Entonces:

○ Si F es una primitiva de f, se tiene que [a, b]f = F(b) - F(a).

Demostración:

- ▶ Si F es la primitiva que detalla el Teorema Fundamental del Cálculo, o sea, $F(x) = \int [a, x]f$, entonces es trivial que $\int [a, b]f = F(b) F(a)$.
- Si no es esa primitiva, y la primitiva es G, entonces como ambas primitivas varían, cuando mucho, en una constante, se tiene que G = F + c.
- En consecuencia de lo anterior, $G(b) G(a) = F(b) + c F(a) c = F(b) F(a) = \int [a, b]f$.
- ▶ Juntando ambas cosas se tiene que para cualquier primitiva T de f, $\int [a, b]f = T(b) T(a)$, que es lo que queríamos probar. □

Volver al índice

Teorema 15

Teorema del valor medio integral

Sea:

 $lackbox{0}$ f: [a, b] $ightarrow \mathbb{R}$ una función continua.

Entonces:

Demostración:

- Para demostrar este teorema solo hace falta aplicar el teorema de Lagrange en una variable a la primitiva F, tal que $F(x) = \int [a,x]f$, de f.
 - \bullet Es decir, $F(b) = \int [a,b]f = F(b) F(a)$.
- ▶ Por <u>Lagrange en una variable</u> se tiene que si F: $[a, b] \rightarrow \mathbb{R}$ es continua en [a, b] y diferenciable en (a, b), entonces existe $c \in (a, b)$ tal que (F(b) F(a)) / (b a) = F'(c).
- Si movemos un poco esto nos queda que F(b) F(a) = F'(c)(b a).
- ▶ Volviendo a lo anterior tenemos que $F(b) = \{[a,b]f = F(b) F(a) = F'(c)(b-a)\}$.
- Sin embargo, como F'(c) = f(c), entonces nos queda que F(b) = f(c)(b a).
- ▶ Eso último lo podemos reescribir como $\int [a,b]f = f(c)(b-a)$, que es lo que queríamos probar. □

Volver al índice

Teorema 16

Dado P en una curva de nivel de F(x, y) de clase C^1 tal que $\nabla F(P) \neq 0$, entonces $\nabla F(P)$ es perpendicular a la recta tangente a la curva en P.

(Abrir en grande en una pestaña nueva)

(Cortesía de Ezequiel Togno)

Volver al índice

Teorema 17

Este es el de **las derivadas cruzadas coinciden**. Dado que no se toma nunca y su demostración es medio complicada, no voy a subirlo. Si se quiere ver por cuenta propia, está en la página 109 del Cálculo de Larotonda.

Volver al índice

Teorema 18

Teorema de Lagrange en Rⁿ

Proposición 3.3.1. (Lagrange) Sea $f: B_r(P) \subset \mathbb{R}^n \to \mathbb{R}$ diferenciable. Entonces para todo $Q, R \in B_r(P)$ existe un punto P_0 en el segmento que une Q con R tal que

$$f(Q) - f(R) = \langle \nabla f_{P_0}, Q - R \rangle.$$

Demostración. Consideremos la parametrización del segmento que une Q con P, g(t) = R + t(Q - R). Entonces $h(t) = f \circ g(t)$ está definida en [0,1], y es diferenciable en (0,1) por la regla de la cadena. Es más $h: [0,1] \to \mathbb{R}$ es una función continua pues f es continua por ser diferenciable. Entonces, por el Teorema de Lagrange en una variable, existe $c \in (0,1)$ tal que h(1) - h(0) = h'(c). Pero por la regla de la cadena, $h'(c) = Df_{g(c)}g'(c) = Df_{g(c)}(Q - R)$. Si llamamos $P_0 = g(c)$, se tiene la afirmación. □

(Abrir en una pestaña nueva)

Volver al índice

Teorema 19

Teorema de Fermat en Rn

Teorema 3.3.5. (Fermat en \mathbb{R}^n) Sea $f: A \subset \mathbb{R}^n \to \mathbb{R}$ diferenciable, con A abierto. Supongamos que $P \in A$ es un extremo local de f. Entonces $Df_P = \nabla f_P = \mathbb{O}$. Equivalentemente, todas las derivadas parciales de f se anulan en P.

Demostración. Supongamos que P es un máximo local de f. Como $P \in A$ es un punto interior, podemos suponer que existe r > 0 y una bola abierta $B_r(P) \subset A$ tal que $f(P) \ge f(X)$ para todo $X \in B_r(P)$. Consideremos la función auxiliar $g(t) = f(P + tE_i)$, donde E_i es un vector de la base canónica. Entonces $g: (-r,r) \to \mathbb{R}$ es una función derivable, que tiene une máximo local en t = 0 pues $g(0) = f(P) \ge f(P + tE_i) = g(t)$. En consecuencia, debe ser g'(0) = 0. Pero esta derivada en cero es exactamente (usando la definición) la derivada parcial i-ésima de f en P. Esto prueba que $f_{x_i}(P) = 0$, y como i es cualquiera entre 1 y n, se tiene que el gradiente de f es cero en P. \Box

(Abrir en una pestaña nueva)

Volver al índice

Martín del Río, 2017 - 2018. Volver al inicio