Детектирование машин при помощи YOLO

Задача

- размер входных данных не ниже 320х320 рх
- метрика mAP@50 >=0,6 на валидационной выборке
- скорость работы не ниже 15 FPS (CPU Ryzen 5 3600)
- экспорт в формат ONNX
- трекинг объектов*

Датасет

- Распаковка из zip архивов
- Доработка YAML описание (прописать пути и классы)
- сконвертировать метки из формата visdrone в yolo
- удалить из текстовых файлов меток ненужные классы
- удалить ненужные файлы изображений (на которых нет автомобилей)

Была реализована функция подготовки датасета с использованием многопоточности. Время преобразования меток снизился с 70 сек до 4,5

Выбор модели YOLO

-Выбираем YOLO11, не все фреймворки поддерживают последнюю версию*.

11 версия имеет выше FPS по сравнению с YOLO12** при незначительно

хужей точности

Нужен высокий FPS (S и N вариант)

*орепсv только 10 версию, RKNN - 11

^{**}https://learnopencv.com/yolo11/#aioseo-yolo11-vs-yolov10

Тренировка модели

Обучено 2 модели Nano и Small

```
epochs: 10
imgsz: 640
batch: 16
degrees: 45
patience: 10
save period: 1
exist ok: true
deterministic: false
plots: true
data: *yolo_cfg
single cls: true
model: 'yolo11s.pt'
```


Улучшения модели

Особенность датасета: мелкие объекты

В Yolo11 значительно улучшилось детектирование мелких объектов.

Небольшие объекты сильнее зависят от IOU

Использовать NWD loss функцию*.

Модифицирована BboxLoss в utils.loss

(точность не улучшилась, но эпох меньше)

https://www.mdpi.com/2079-9292/12/18/3969

https://www.nature.com/articles/s41598-025-95580-z

Figure 1: The sensitivity analysis of IoU on tiny and normal scale objects. Note that each grid denotes a pixel, box A denotes the ground truth bounding box, box B, C denote the predicted bounding box with 1 pixel and 4 pixels diagonal deviation respectively.

Валидация моделей

- -Обе модели Y11S и Y11N превысили порог mAP50=0.6
- -Модель S показала лучшие метрики
- -Библиотека может сравнивать

много моделей

Бенчмарк моделей

Конвертация модели Nano дала прирост 117% на GPU и 38% на CPU Для Small: 16% и 5% соответственно. Тест проводился штатным бенчмарком YOLO на CPU Ryzen 5 3600 32Gb RAM ^{£ **} RTX3070 8Gb Только модель nano подходит под требования ТЗ (15fps)

Запуск экспортированной модели ONNX

Для запуска используется ONNXRuntime

- Препроцессинг (ресайз, паддинг + преобразование в тензоры)
- Улучшенный постпроцессинг* (координаты боксов, NMS)
- Возможность инференса батчами изображений
- Тюнинг параметров сессии (количество потоков, последовательное исполнение)

*(по сравнению с примером ultralytics с 40 до 0 мс время постобработки)

Оценка производительности ONNX

- Для CPU подобрано число потоков и включена оптимизация. Так же используется ThreadPoolExecutor для полной загрузки процессора. -Для GPU подобран оптимальный размер батча (8).

	CPU (onnx)	GPU (onnx)	CPU (OpenVino на AMD)
small	12.745 (+43%)	71.57	15.905 (+24% от ONNX)
nano	29.987 (+45%)	86.769	34.82 (+16% от ONNX)

^{*}С пред и пост обработкой, пред и постобработка значительно снижает FPS для GPU (перенести на карточку?)

Демо программа

- фреймворк Руqt
- в виде ехе для win10+
- opencv для чтения потока из файла
- адаптивное обновление кадров в зависимости от производительности
- выбор моделей
- трекинг объектов (ByteTrack из ultralytics)

Выводы и возможные улучшения

В ходе работы был разработан python модуль, позволяющий упростить процесс создания датасета, обучения, валидации, сравнения моделей YOLO, а также обучено 2 модели и проведен анализ с использованием NWD лос функции для детектирования машин на датасете VisDrone.

Возможные улучшения:

Модифицировать архитектуру модели (ECA, FPN) для улучшения детектирования мелких объектов.

Интеграция работы с Docker (вместо создания вирт среды, работаем с контейнером с предустановленной средой)

Преобразование в tensorrt или другой фреймворк целевой платформы, квантизация и структурный прунинг для уменьшения модели и ускорения инференса.

Перенос предобработки на GPU

Добавить экспорт из ONNX в формат целевых платформ (RKNN, TPU MLIR ...)