First Name: Last Name:

4.1

Using axioms of the ordered field, prove

(a)
$$a > c \land b > d \Rightarrow a + b > c + d$$

(b)
$$a > c > 0 \land b > d > 0 \Rightarrow ab > cd > 0$$

(c)
$$a > b > 0 \Rightarrow \frac{1}{a} < \frac{1}{b}$$

(d) Denote
$$|x| = \begin{cases} x, & \text{if } x > 0 \\ -x, & \text{else} \end{cases}$$
. Then for any a, b it follows $|a - b| \geqslant ||a| - |b||$.

Determine which of the axioms satisfied by the set of real numbers are not satisfied by the following set:

- (a) Set \mathbb{Q} of all rational numbers.
- (b) Set $\mathbb{Q}(\sqrt{2})$ of all numbers, having the form $a + b\sqrt{2}$, where $a, b \in \mathbb{Q}$
- (c) Set \mathbb{C} of all pairs of real numbers (a,b) with the addition defined as: (a,b)+(c,d)=(a+c,b+d), multiplication defined as $(a,b)\cdot(c,d)=(ac-bd,ad+bc)$ and the order relation (a,b)<(c,d) if and only if $(b\leqslant d)\vee(b=d\wedge a< c)$.

Using the method of mathematical induction, prove the following statements:

(a) Bernoulli inequality: for all $n \in \mathbb{N}$ and for all x > -1 it follows that

$$(1+x)^n \geqslant 1 + nx$$

(b) For all $n \in \mathbb{N}$ it follows

$$\frac{1}{2} + \frac{2}{2^2} + \dots + \frac{n}{2^n} = 2 - \frac{n+2}{2^n}$$

(c)

$$(1+q)(1+q^2)(1+q^4)\cdots(1+q^{2^n})=\frac{1-q^{2^{n+1}}}{1-q}$$

(d)

$$1^3 + 3^3 + \dots + (2n+1)^3 = (n+1)^2(2n^2 + 4n + 1)$$

(e)

$$\sum_{k=0}^{n} (-1)^k \frac{n!}{k!(n-k)!} = 0, \qquad \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} = 2^n,$$

Show that for all $n \in \mathbb{N}, n \geqslant 2$

(a)
$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} > \sqrt{n}$$

(b)
$$\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{3n+1} > 1$$

(c)
$$\left(\frac{n+1}{2}\right)^n > n!$$

(d) The number $2^{2^n} - 6$ is divisible by 10.

- (a) Show that $\sqrt{2} \notin \mathbb{Q}$
- (b) Show that for any $a,b \in \mathbb{Q}, \ a < b$ there exists $x \in \mathbb{R} \setminus \mathbb{Q}: \ a < x < b$
- (c) Show that for any $a,b \in \mathbb{R} \setminus \mathbb{Q}, \ a < b \text{ there exists } x \in \mathbb{Q}: \ a < x < b$

Prove that for any n

- (a) For the any configuration of n straight lines on a plane one could color the plane in two colors, so that every two parts, having common boundary would have different colors.
- (b) For any set of n squares, one can partition them on finite amount of pieces and which will constitute one square.
- (c) What's wrong with this "theorem"?

Theorem 1. All the numbers are equal. In other words, the statement P_n is true for all $n \in \mathbb{N}$, where P_n is "if $\{a_1, a_2, \ldots, a_n\}$ is a collection of n numbers, then $a_1 = a_2 = \cdots = a_n$ ".

Proof. P_1 is definitely true: if $\{a_1\}$ is a collection of 1 number, then $a_1 = a_1$.

Assume that P_n is true. Let $\{a_1, \ldots, a_{n+1}\}$ be a collection of n+1 number. Consider the collection $\{a_1, \ldots, a_n\}$. Thanks to P_n it follows that $a_1 = \cdots = a_n$ denote this number by b. Now, consider the collection $\{a_2, \ldots, a_n, a_{n+1}\}$. It contains n numbers, and hence by P_n we get $a_2 = \cdots = a_n = a_{n+1}$. But $a_2 = \cdots = a_n = b$, therefore $a_{n+1} = a_n = b$. So $a_1 = \cdots = a_{n+1} = b$ and P_{n+1} follows.