H at-insulat d line pipe

Patent Number: DE3635515
Publication date: 1988-04-28

Inventor(s): FUEHRMANN SIEGFRIED (DE); KNITTER BODO (DE); FRIESSNER JUERGEN DIPL ING

(DE)

Applicant(s): KABELMETAL ELECTRO GMBH (DE)

Requested Patent: DE3635515

Application

Number: DE19863635515 19861018 Priority Number(s): DE19863635515 19861018

IPC Classification: F16L59/14; F16L59/02; F16L9/18; F16L11/14

EC Classification: <u>F16L59/02F</u>, <u>F16L59/14F</u>, <u>B29C63/20</u>

Equivalents:

Abstract

In a heat-insulated line pipe, comprising two concentric pipes of which at least the outer pipe is a corrugated metal pipe, a heat insulation layer of polyurethane-based foamed plastic, located between the pipes, and a jacket of plastic seated on the outer pipe, the polyurethane foam has closed pores and an elongation at break of at least 25%. The wall thickness of the heat insulation layer is less than 30% of the average diameter D of the outer pipe, the corrugation depth t of the outer pipe is greater than 0.05 D and the distance a between two corrugation crests of the outer pipe is less than three times the corrugation depth t. The wall thickness s of the outer pipe is less than 0.2 of the corrugation depth t.

Data supplied from the esp@cenet database - I2

	•	

19 BUNDESREPUBLIK

© Offenl gungsschrift © DE 3635515 A1

(51) Int. Cl. 4: F 16 L 59/14

> F 16 L 59/02 // F16L 9/18,11/14

DEUTSCHES PATENTAMT

 (21) Aktenzeichen:
 P 36 35 515.1

 (22) Anmeldetag:
 18. 10. 86

 (43) Offenlegungstag:
 28. 4. 88

Behördeneigentum

(71) Anmelder:

kabelmetal electro GmbH, 3000 Hannover, DE

② Erfinder:

Frießner, Jürgen, Dipl.-Ing., 3002 Wedemark, DE; Führmann, Siegfried, 3014 Laatzen, DE; Knitter, Bodo, 3160 Lehrte, DE

Märmeisoliertes Leitungsrohr

Bei einem wärmeisolierten Leitungsrohr, bestehend aus zwei konzentrischen Rohren, von denen zumindest das Außenrohr ein gewelltes Metallrohr ist, einer zwischen den Rohren befindlichen Wärmeisolationsschicht aus aufgeschäumtem Kunststoff auf der Basis von Polyurethan sowie einem auf dem Außenrohr aufsitzenden Mantel aus Kunststoff, ist der Polyurethan-Schaum geschlossenporig und besitzt eine Bruchdehnung von mindestens 25%. Die Wanddicke der Wärmeisolationsschicht beträgt weniger als 30% des mittleren Durchmessers D des Außenrohres, die Welltiefe t des Außenrohres ist größer als 0,05 D und der Abstand a zwischen zwei Wellenkuppen des Außenrohres ist kleiner als der dreifache Wert der Welltiefe t. Die Wanddicke s des Außenrohres ist kleiner als der 0,2fache Wert der Welltiefe t.

1 Patentansprüche

- 1. Wärmeisoliertes Leitungsrohr, insbesondere für den Transport von Fernwärme, bestehend aus zwei konzentrischen Rohren, von denen zumindest das 5 Außenrohr ein gewelltes Metallrohr ist, einer zwischen den Rohren befindlichen Wärmeisolationsschicht aus aufgeschäumten Kunststoff auf der Basis von Polyurethan sowie einem auf dem Außenrohr aufsitzenden Mantel aus Kunststoff, gekenn- 10 zeichnet durch die Kombination folgender Merkmale:
 - a) Der Polyurethan-Schaum ist geschlossenporig und besitzt eine Bruchdehnung von mind. 15 25%.
 - b) Die Wanddicke der Wärmeisolationsschicht, gemessen zwischen dem mittleren Durchmesser des Innenrohres und dem mittleweniger als 30% des mittleren Durchmessers D des Außenrohres.
 - c) Die Welltiefe t des Außenrohres ist größer als 0,05 D.
 - d) Der Abstand a zwischen zwei Wellenkup- 25 pen des Außenrohres ist kleiner als der dreifache Wert der Welltiefe t.
 - e) Die Wanddicke s des Außenrohres ist kleiner als der 0,2fache Wert der Welltiefe t.
- 2. Wärmeisoliertes Leitungsrohr nach Anspruch 1, dadurch gekennzeichnet, daß die Wellung des Au-Benrohres einen sinusförmigen Verlauf zeigt.
- 3. Wärmeisoliertes Leitungsrohr nach Anspruch 1, Benrohres dergestalt ausgebildet ist, daß sowohl die Wellenberge als auch die Wellentäler, im Querschnitt gesehen, kreisbogenförmig verlaufen.
- 4. Wärmeisoliertes Leitungsrohr nach einem oder zeichnet, daß der Kunststoffmantel dem Verlauf der Wellung folgt und mit dem Außenrohr porenfrei verklebt ist.
- 5. Wärmeisoliertes Leitungsrohr nach einem oder zeichnet, daß zwischen dem Außenrohr und dem Kunststoffmantel eine Schicht aus einem Copolymer und/oder einer Bitumenmasse angeordnet ist.
- 6. Wärmeisoliertes Leitungsrohr nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekenn- 50 zeichnet, daß der Kunststoffmantel ein extrudierter Mantel aus Polyäthylen oder Polyvinylchlorid ist.
- 7. Wärmeisoliertes Leitungsrohr nach Anspruch 6, dadurch gekennzeichnet, daß das Polyäthylen ver-
- 8. Wärmeisoliertes Leitungsrohr nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Kunststoffmantel aus einem aufgesprühten Gießharz vorzugsweise auf der Basis von Polyurethan ist.
- 9. Wärmeisoliertes Leitungsrohr nach Anspruch 8, dadurch gekennzeichnet, daß das Gießharz vernetzt ist.
- 10. Wärmeisoliertes Leitungsrohr nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekenn- 65 zeichnet, daß der Kunststoffmantel aus einer bandförmigen, wendelartig aufgebrachten Bewicklung mit überlappenden Bandkanten besteht, deren Stei-

- gung in Größe und Richtung der Wellensteigung des Außenrohres entspricht.
- Wärmeisoliertes Leitungsrohr nach Anspruch 10, dadurch gekennzeichnet, daß die Bewicklung aus wärmeschrumpfbaren bzw. geschrumpften Kunststoffbändern besteht.
- 12. Wärmeisoliertes Leitungsrohr nach einem oder mehreren der Ansprüche 1 bis 11 mit einem schraubenlinienförmig gewellten metallischen Innenrohr, dadurch gekennzeichnet, daß die Wellung des Innenrohres einem metrischen Gewinde entspricht.

Beschreibung '

Die Erfindung betrifft ein wärmeisoliertes Leitungsrohr, insbesondere für den Transport von Fernwärme, bestehend aus zwei konzentrischen Rohren, von denen zumindest das Außenrohr ein gewelltes Metallrohr ist, einer zwischen den Rohren befindlichen Wärmeisolaren Durchmesser des Außenrohres, beträgt 20 tionsschicht aus aufgeschäumtem Kunststoff auf der Basis von Polyurethan sowie einem auf dem Außenrohr aufsitzenden Mantel aus Kunststoff.

Aus der CH-PS 4 51 621 ist ein wärmeisoliertes Leitungsrohr zur Verlegung in Erde oder auch außerhalb der Erde und zur Fortleitung von Gasen oder Flüssigkeiten bekannt, welches im wesentlich koaxial verlaufende metallische Rohre mit schrauben- oder balgenförmiger Wellung zeigt, von denen das Innenrohr als die eigentliche Schicht dient und zwischen denen sich eine thermisch isolierende Schicht befindet und das Außenrohr an seiner Außenseite eine mechanisch und korrosionshemmend wirkende Schutzschicht aufweist. Die besonderen Vorteile dieses Leitungsrohres sind darin zu sehen, daß es kontinuierlich in großen Längen hergedadurch gekennzeichnet, daß die Wellung des Au- 35 stellt und wie ein elektrisches Kabel auf Trommeln in abgemessener Länge versandt werden kann. Die exakte längenmäßige Anpassung kann dann an der Baustelle vorgenommen werden.

Dieses Leitungsrohrsystem hat sich insbesondere mehreren der Ansprüche 1 bis 3, dadurch gekenn- 40 dort von Vorteil erwiesen, wo aufwendige Erdarbeiten zwecks Verlegung von Leitungsrohren vermieden werden sollen. Thermisch bedingte Längenveränderungen des Rohres brauchen weder beim Aufbau der Leitung in der Schichtenfolge noch bei der Verlegung berücksichmehreren der Ansprüche 1 bis 4, dadurch gekenn- 45 tigt zu werden, weil die Wellung der Rohre diese in sich selbst ausgleicht.

> Die Verlegung der Haupttrassen von Fernwärmeleitungsrohren wird in der Regel von den Energieversorgungsunternehmen durchgeführt. Die Verbindung der Haupttrassen mit den einzelnen Verbrauchern, z. B. Einfamilienhäusern, wird jedoch von Subunternehmern, z. B. Heizungsbauern, durchgeführt. Da es sich bei den Anschlußleitungen zwischen der Haupttrasse und dem Endabnehmer in der Regel um Längen von weniger als 55 50 m handelt, ist der Transport solcher kurzen Längen auf einer Kabeltrommel wirtschaftlich nicht sinnvoll.

> Der vorliegenden Erfindung liegt von daher die Aufgabe zugrunde, ein wärmeisoliertes Leitungsrohr der eingangs erwähnten Art, anzugeben, welches unter Bei-60 behaltung der genannten Vorteile wesentlich flexibler ist, so daß es unter Fortfall von Kabeltrommeln zu Ringbunden gewickelt werden kann, deren Durchmesser 2,35 m nicht überschreitet, so daß die Ringbunde auf normalen Lastkraftwagen transportiert werden können.

Diese Aufgabe wird erfindungsgemäß durch die Kombination folgender Merkmale gelöst:

a) Der Polyurethan-Schaum ist geschlossenporig

und besitzt eine Bruchdehnung von mind. 25%.

- b) Die Wanddicke der Wärmeisolationsschicht, gemessen zwischen dem mittleren Durchmesser des Innenrohres und dem mittleren Durchmesser des Außenrohres, beträgt weniger als 30% des mittleren Durchmessers D des Außenrohres.
- c) Die Welltiefe t des Außenrohres ist größer als
- d) Der Abstand a zwischen zwei Wellenkuppen des Außenrohres ist kleiner als der dreifache Wert der 10
- e) Die Wanddicke f des Außenrohres ist kleiner als der 0,2fache Wert der Welltiefe L

Durch die erfindungsgemäßen Maßnahmen ist es ge- 15 lungen, ein wärmeisoliertes Leitungsrohr bei den für Hausanschlußleitungen üblichen Nennweiten so auszugestalten, daß es zu Ringbunden mit weniger als 2,35 m Durchmesser gewickelt werden kann. Dieses Maß wird durch die Erfindung im spannungsfreien Zustand er- 20 reicht, d. h. der Wickeldurchmesser, auf den das Rohr nach Fertigstellung gewickelt werden kann, ist noch geringer und beträgt in etwa 12 D, wobei D der Außendurchmesser des Rohres ist. Durch die Verwendung eines geschlossenporigen Polyurethan-Schaumes mit ei- 25 ner Bruchdehnung von mind. 25% ist sichergestellt, daß die Wärmeisolationsschicht beim Biegen um die engen Radien nicht einreißt. Der Schaum selbst ist auch wesentlich flexibler, so daß die Wärmeisolationsschicht, die bei dem bekannten Rohr aus einem Polyurethan-Hart- 30 schaum bestand, der Biegung wesentlich weniger Kräfte entgegensetzt. Da die Streckenlänge zwischen der Haupttrasse und den Endabnehmern in der Regel weniger als 50 m beträgt, fallen die Wärmeverluste auf diesen Strecken nicht so sehr ins Gewicht. Durch die Ver- 35 ringerung der Wanddicke der Wärmeisolationsschicht kann bei Beibehaltung der Nennweite, d. h. des Durchmessers des Innenrohres, der Durchmesser des Außenrohres wesentlich herabgesetzt werden, so daß auch durch diese Maßnahme die Biegbarkeit bzw. Flexibilität 40 des Leitungsrohres erhöht wird. Eine weitere Maßnahme zur Lösung der gestellten Aufgabe liegt in der Veränderung der Wellung des bekannten Rohres. Durch die Vergrößerung der Welltiefeikann die Flexibilität in bekannter Weise erhöht werden.

Diese Maßnahme allein reicht jedoch nicht. Da es auch auf den Abstand zwischen zwei Wellenkuppen eines Wellrohres ankommt, wird durch die Verringerung des Abstandes bei einer vorgegebenen Welltiefe auch durch diese Maßnahme die Flexibilität von Wellrohren 50 verbessert. Es hat sich weiterhin gezeigt, daß die Wanddicke bei Wellrohren entscheidend die Flexibilität beeinflußt. Da durch die tiefere Wellung die Druckbeständigkeit von Wellrohren bei gleicher Wanddicke wesentlich erhöht wird, kann eine Verringerung der Wanddik- 55 fangsseitig verlötet oder verschweißt werden können. ke in Kauf genommen werden, ohne daß die Druckbelastung zu sehr abfällt.

Die Wellung des Außenrohres sollte zweckmäßigerweise einen sinusförmigen Verlauf zeigen. Auch ist es möglich, sowohl die Wellenberge als auch die Wellentä- 60 schraubenlinienförmig gewellten Innenrohr 1, beispielsler im Querschnitt gesehen, kreisbogenförmig auszubil-

Untersuchungen haben ergeben, daß der Kunststoffmantel bei dem bekannten wärmeisolierten Leitungsrohr die Biegbarkeit entscheidend beeinflußt. So bilden 65 sich bei der Biegung um enge Radien in der Druckzone Falten. In der Zugzone wird das Kunststoffmaterial überbelastet, so daß sich die Überdehnung beim Verle-

gen in gerader Richtung nicht mehr rückbilden können. Auch kann es im Zugspannungsbereich infolge Überdehnung zu Rissen kommen. Aus den genannten Gründen hat es sich als vorteilhaft erwiesen, daß der Kunststoffmantel dem Verlauf der Wellung folgt und mit dem Außenrohr porenfrei verklebt ist. Durch die porenfreie Verklebung soll sichergestellt werden, daß eine Wasserdampfkondensation am Wellrohr, die zu Korrosionen führen kann, vermieden wird. Zur Vermeidung der Korrosion hat es sich weiterhin als sinnvoll erwiesen, zwischen dem Außenrohr und dem Kunststoffmantel eine Schicht aus einem Copolymer anzuordnen. Die Copolymer-Schicht liegt eng auf dem Metallwellrohr auf und ist mit diesem innig verklebt. Für die Ausbildung des Kunststoffmantels bieten sich mehrere Alternativen an. So ist es möglich, den Mantel aus einem Polyäthylen zu extrudieren. Das Anliegen an die Wellung kann dadurch erreicht werden, daß zwischen dem äußeren Wellrohr und dem extrudierten Rohr ein Unterdruck erzeugt wird oder aber daß der noch plastisch verformbare Kunststoffmantel durch äußere Druckeinwirkung in die Wellentäler eingeformt wird.

Verwendet man als Kunststoffmantel ein Polyäthylen, welches vernetzt ist, kann die Wanddicke des Kunststoffmantels gegenüber unvernetztem Polyäthylen verringert werden, da vernetztes Polyäthylen wesentlich höhere Festigkeitswerte als unvernetztes Polyäthylen aufweist.

Der Kunststoffaußenmantel kann jedoch auch aus einem aufgesprühten Gießharz vorzugsweise auf der Basis von Polyurethan bestehen. Derartige Beschichtungen lassen sich relativ einfach auf Wellrohre aufbringen. Auch hier gilt, daß das Gießharz vernetzt sein kann. Der Kunststoffmantel kann jedoch auch aus einer bandförmigen wendelartig aufgebrachten Bewicklung mit überlappenden Bandkanten bestehen, deren Steigung in Größe und Richtung der Wellensteigung des Außenrohres entspricht. Verwendet man vorgereckte Kunststoffbänder, so formen sich diese bei nachfolgender Erwärmung in die Wellentäler ein. Mit besonderem Vorteil besteht die Bewicklung jedoch aus wärmeschrumpfbaren Kunststoffbändern, deren Schrumpfwicklung auf einem Vernetzungsprozeß beruht. Derartige Schrumpfbänder können an ihrer dem Wellenrohr zugekehrten Oberfläche mit einer Klebeschicht versehen sein, welche die Funktion der vorher genannten Copolymerschicht übernimmt.

Für eine einfachere Verlegung des erfindungsgemäßen Leitungsrohres hat es sich als vorteilhaft erwiesen, die Wellung des Innenrohres so auszubilden, daß sie einem metrischen Gewinde entspricht. Daraus entsteht der Vorteil, daß auf einer üblichen Drehbank hergestellte Rohrformstücke auf oder in das Innenrohr eingeschraubt werden können, die mit dem Innenrohr um-

Die Erfindung ist anhand der in den Fig. 1 bis 4 schematisch dargestellten Ausführungsbeispiele näher erläutert.

Das wärmeisolierte Leitungsrohr besteht aus einem weise aus Kupfer oder auch aus Edelstahl, einer thermisch isolierenden Schicht 2 auf der Basis von Polyurethan, einem schraubenlinienförmig gewellten Außenrohr 3 aus Stahl oder aber auch aus einer Aluminiumlegierung sowie einem extrudierten Kunststoffmantel 4 auf der Basis von Polyäthylen. Die Wellentäler des Au-Benwellrohres 3 sind mit einer Bitumenmasse 5 ausgefüllt, die als Korrosionsschutz dient. Insbesondere bei

30

35

5

der Verwendung eines Außenwellrohres 3 aus normalem Stahl zeigt das Außenwellrohr 3 in nicht dargestellter Weise eine Copolymer-Beschichtung. Mit 6 ist noch ein wendelförmig aufgebrachter Abstandshalter gezeichnet. Die Wellung des Innenrohres ist eine schraubenlinienförmige Wellung, deren Steigung der Steigung eines metrischen Gewindes entspricht, so daß zum endseitigen Anschluß des Innenröhres 1 rohrförmige Verbindungsstücke verwendet werden können, die an einem Ende eine Wellung aufweisen, die der Wellung des 10 Innenrohres 1 entspricht. Solche Rohrformstücke können bei einer Wellung mit metrischen Gewinde auf üblichen Drehbänken hergestellt werden. Die Wärmeisolationsschicht 2 besteht aus einem Polyurethan-Schaum mit einer Bruchdehnung von mind. 25%. Die Wanddicke 15 S der Wärmeisolationsschicht 2 ist kleiner als der Au-Bendurchmesser D des Außenwellrohres 3. Der Kunststoffmantel 4 ist bei dem in der Fig. 1 dargestellten Beispiel ein extrudierter Polyäthylen-Mantel, der beispielsweise aus einem mit Silan gepropften Polyäthylen 20 besteht und insofern durch Feuchtigkeitseinwirkung vernetzbar ist. Diese Vernetzung vollzieht sich bei Lagerung selbsttätig durch die in der Umgebungsluft vorhandene Feuchtigkeit. Sie kann jedoch auch durch eine zusätzliche Wasserdampfbehandlung in der Wärme be- 25 schleunigt werden.

Nachfolgend wird ein Ausführungsbeispiel bezüglich der Bemessung angegeben.

Innenrohr:

Innendurchmesser	30 mm	
Außendurchmesser	34 mm	
Steigung	5,08 mm	
Welltiefe	1,5 mm	
Wanddicke	0,5 mm	
Material	Kupfer	

Außenrohr:

		40
Innendurchmesser	74 mm	
Außendurchmesser	85 mm	
Steigung	12,6 mm	
Welltiefe	4,9 mm	
Wanddicke	0,6 mm	45
Material	Stahl	

Korrosionsschutzschicht:

Aubendurchmesser Material	86,6 mm Bitumenbasis	50
Kunststoffmantel:		

Außendurchmesser	91,4 mm	55
Material	Polyäthylen	

Das angegebene wärmeisolierte Leitungsrohr läßt sich ohne Schwierigkeiten zu Ringbunden mit einem Außendurchmesser von weniger als 2 m wickeln.

Die Fig. 2 zeigt einen vergrößerten Ausschnitt des in der Fig. 1 dargestellten wärmeisolierten Leitungsrohres. Es ist deutlich zu sehen, daß die Wellung des Außenrohres 3 wesentlich tiefer ist als die Wellung des Innenrohres 1. Die Korrosionsschutzmasse 5 füllt nicht nur die 65 Wellentäler des Außenwellrohres 3 aus, sondern überdeckt in der Praxis auch die Wellenkuppen des Außenwellrohres 3.

In der Fig. 3 ist ein Schnitt durch einen Teil des Außenwellrohres 3 dargestellt, bei dem die Wellung des Außenrohres 3 so ausgestaltet ist, daß sowohl die Wellenberge als auch die Wellentäler kreisbogenförmig verlaufen. Der Kunststoffaußenmantel 4 folgt exakt

dem Verlauf der Wellung des Außenrohres 3. Der dargestellte Kunststoffaußenmantel 4 ist in der Fig. 3 zweckmäßigerweise durch Aufsprühen eines Gießharzes hergestellt worden.

Bei dem Ausführungsbeispiel nach der Fig. 4 ist auf das Außenwellrohr 3 ein Kunststoffmantel 5 in Form einer wendelartig verlaufenden Bandbewicklung aufgebracht, wobei die Bandkanten 6 einander überlappen. Eine solche Ummantelung läßt sich mit Vorteil unter Zuhilfenahme von wärmeschrumpfbaren Kunststoffbändern herstellen, die in Längsrichtung gereckt sind und nach Erwärmung des Kunststoffmantels 5 in die Wellentäler des Außenwellrohres 3 eingeformt werden.

Nummer:
 Int. Cl.⁴:
 Anmeldetag:
 Offenl gungstag:

36 35 515 F 16 L 59/14 18. Oktober 1986 28. April 1988

3635515

Fig 1

Fig 2

808 817/141

		•	
	·		