Table des matières

Ta	ble d	les mat	ières			
2	Application du Principe Fondamental de la Dynamique					
	2.1	Énone	cé du Principe Fondamental de la Dynamique : cas général			
		2.1.1	Théorème de la résultante dynamique			
		2.1.2	Théorème du moment dynamique			
	2.2	2.2 Torseur cinétique				
		2.2.1	Définition			
		2.2.2	Écriture avec l'opérateur d'inertie			
		2.2.3	Cas particuliers			
		2.2.4	Méthodologie de Calcul			
	2.3	Torset	ur dynamique			
		2.3.1	Définition			
		2.3.2	Relations entre les torseurs cinétiques et dynamiques			
		2.3.3	Cas particuliers			
		2.3.4	Méthodologie de calcul			
	Apr	olication	n 1 : Régulateur centrifuge – Sujet			

2 Application du Principe Fondamental de la Dynamique

2.1 Énoncé du Principe Fondamental de la Dynamique : cas général

Définition - Énoncé du Principe Fondamental de la Dynamique

Soit un ensemble matériel E en mouvement par rapport à un référentiel galiléen (R_0) , alors la somme des actions mécaniques extérieures s'appliquant sur E est égale au torseur dynamique du mouvement de E par rapport à R_0 :

$$\left\{ \mathcal{D}\left(E/R_{0}\right)\right\} =\left\{ \mathcal{T}\left(\overline{E}\rightarrow E\right)\right\} .$$

De plus le **Principe Fondamental de la Dynamique** postule que pour tout mouvement, il existe au moins un référentiel dans lequel le PFD est vérifié. Ce sera donc un **référentiel galiléen**.

Le **torseur dynamique** est de la forme :

$$\{\mathfrak{D}\left(E/R_{0}\right)\} = \left\{\begin{array}{l} \overrightarrow{R_{d}\left(E/R_{0}\right)} = m \ \overrightarrow{\Gamma\left(G,E/R_{0}\right)} \\ \overleftarrow{\delta\left(A,E/R_{0}\right)} \end{array}\right\}_{A}.$$

- ▶ On note $\overrightarrow{R_d(S/R_0)}$ la résultante dynamique où l'accélération est **toujours** calculée au centre d'inertie G.
- ▶ Le **moment dynamique** dépend du point A et se note $\delta(A, E/R_0)$.

Du Principe Fondamental de la dynamique découle plusieurs théorèmes généraux.

2.1.1 Théorème de la résultante dynamique

Théorème - Théorème de la résultante dynamique

Pour tout ensemble matériel (E) de masse m et de centre d'inertie G en mouvement par rapport à un référentiel galiléen (R_0), la somme des résultantes des efforts extérieurs s'appliquant sur E est égale à la résultante dynamique du mouvement

2.1	Enonce au Principe Fonda-		
	mental de la Dynamique :		
	cas général	1	
2.2	Torseur cinétique	2	
2 2	Torsour drinamiana	-	

B2-10

Emilien Durif, Introduction à la dynamique des solides, Lycée La Martinière Monplaisir, Lyon.

Florestan Mathurin, Géométrie des masses, Lycée Bellevue, Toulouse http://florestan.mathurin.free.fr/.

de E par rapport à R_0 :

$$\overrightarrow{R}(\overrightarrow{E} \to \overrightarrow{E}) = \overrightarrow{R_d}(E/R_0) = m \overrightarrow{\Gamma(G, E/R_0)}.$$

2.1.2 Théorème du moment dynamique

Théorème -

Théorème du moment dynamique Pour tout ensemble matériel (E) de masse m en mouvement par rapport à un référentiel galiléen (R_0), la somme des moments des efforts extérieurs s'appliquant sur E en un point quelconque A est égale au moment dynamique du mouvement de E par rapport à R_0 en A:

$$\overrightarrow{\mathcal{M}\left(A,\bar{E}\to E\right)}=\overrightarrow{\delta\left(A,E/R_0\right)}.$$

2.2 Torseur cinétique

2.2.1 Définition

Définition -

Le **torseur cinétique** d'un solide S dans son mouvement par rapport à R_0 se définit de la façon suivante,

$$\{\mathscr{C}(S/R_0)\} = \left\{ \begin{array}{l} \overrightarrow{R_c}(S/R_0) = \int_{P \in S} \overrightarrow{V}(P/R_0) \, \mathrm{d}m \\ \overrightarrow{\sigma(A, S/R_0)} = \int_{P \in S} \overrightarrow{AP} \wedge \overrightarrow{V}(P/R_0) \, \mathrm{d}m \end{array} \right\}_A$$

- ▶ La résultante du torseur cinétique, $\overrightarrow{R_c}(S/R_0)$ ne dépend pas du point A mais uniquement du centre de gravité G de S (de masse m) et vérifie : $\overrightarrow{R_c}(S/R_0) = m \overrightarrow{V}(G/R_0)$.
- ► Le moment cinétique dépend du point A et peut s'exprimer avec la formule fondamentale de changement de point : $\overrightarrow{\sigma(B,S/R_0)} = \overrightarrow{\sigma(A,S/R_0)} + \overrightarrow{BA} \land \overrightarrow{R_c(S/R_0)}$.

2.2.2 Écriture avec l'opérateur d'inertie

Pour un solide S de masse m dans son mouvement par rapport au repère R_0 et soit un point A quelconque.

$$\overrightarrow{\sigma(A,S/R_0)} = I_A(S) \cdot \overrightarrow{\Omega(S/R_0)} + m \overrightarrow{AG} \wedge \overrightarrow{V(A,S/R_0)}.$$

2.2.3 Cas particuliers

- ► En appliquant cette formule en un point A fixe dans le mouvement de S/R_0 , on a : $\overrightarrow{\sigma(A, S/R_0)} = I_A(S) \cdot \overrightarrow{\Omega(S/R_0)}$.
- ► En appliquant cette formule en G, **centre d'inertie** de S, on a : $\overrightarrow{\sigma(G, S/R_0)} = I_G(S) \cdot \overrightarrow{\Omega(S/R_0)}$.

Xavier Pessoles Sciences Industrielles de l'Ingénieur – PSI⋆

2.2.4 Méthodologie de Calcul

On considère un ensemble matériel E composé de solides S_i . On étudie son mouvement dans le référentiel R_0 . On donne la méthodologie de calcul du moment cinétique en un point A sur la figure suivante.

2.3 Torseur dynamique

2.3.1 Définition

Définition -

Le **torseur dynamique** d'un solide S dans son mouvement par rapport à R_0 se définit de la façon suivante,

$$\{\mathfrak{D}(S/R_0)\} = \left\{ \begin{array}{l} \overrightarrow{R_d}(S/R_0) = \int_{P \in S} \overrightarrow{\Gamma}(P/R_0) \, \mathrm{d}m \\ \overrightarrow{\delta(A, S/R_0)} = \int_{P \in S} \overrightarrow{AP} \wedge \overrightarrow{\Gamma}(P/R_0) \, \mathrm{d}m \end{array} \right\}_A$$

- ▶ La résultante du torseur dynamique, $\overrightarrow{R_d}(S/R_0)$ ne dépend pas du point A mais uniquement du centre de gravité G de S (de masse m) et vérifie : $\overrightarrow{R_d}(S/R_0) = m \overrightarrow{\Gamma}(G/R_0).$ Le moment dynamique dépend du point A et peut s'exprimer avec la formule
- fondamentale de changement de point : $\overrightarrow{\delta(B, S/R_0)} = \overrightarrow{\delta(A, S/R_0)} + \overrightarrow{BA} \wedge$ $\overrightarrow{R_d}(S/R_0)$.

2.3.2 Relations entre les torseurs cinétiques et dynamiques

Relations entre les torseurs cinétiques et dynamiques Pour un solide S de masse M dans son mouvement par rapport au repère R_0 et soit un point A quelconque.

- ► Relation entre les **résultantes** : $\overrightarrow{R_d}(S/R_0) = \left[\frac{d\overrightarrow{R_c}(S/R_0)}{dt}\right]_{R_0}$.

 ► Relation entre les **moments** : $\overrightarrow{\delta(A,S/R_0)} = \left[\frac{d\overrightarrow{\sigma(A,S/R_0)}}{dt}\right]_{R_0} + \overrightarrow{V(A/R_0)} \wedge$ $\overrightarrow{R_c}(S/R_0)$.

2.3.3 Cas particuliers

- ► En appliquant cette formule en un point O fixe dans R_0 , on a : $\delta(O, S/R_0) =$ $\begin{bmatrix} \overrightarrow{d\sigma(O,S/R_0)} \\ \overrightarrow{dt} \end{bmatrix}_{R_0}.$ • En appliquant cette formule en un point *G*, centre d'inertie de *S*, on a :
- $\overrightarrow{\delta(G, S/R_0)} = \left[\frac{\overrightarrow{d\sigma(G, S/R_0)}}{\overrightarrow{dt}} \right]_{R_0}.$

2.3.4 Méthodologie de calcul

On considère un ensemble matériel E composé de solides S_i . On étudie son mouvement dans le référentiel R_0 . On donne l'algorigramme de calcul du moment dynamique en un point A sur la figure ci-dessous.

Bilan

Point fixe dans ${\mathcal R}_0A$	$\left\{ \begin{array}{l} \overrightarrow{R_c}(S/R_0) = m \ \overrightarrow{V(G,S/R_0)} \\ \overrightarrow{\sigma(A,S/R_0)} = I_A (S) \cdot \overrightarrow{\Omega(S/R_0)} \end{array} \right\}_A$	$ \begin{cases} \overrightarrow{R_d}(S/R_0) = m \overrightarrow{T}(G, S/R_0) \\ \overrightarrow{\delta}(A, S/R_0) = \left[\frac{d\sigma(A, S/R_0)}{dt}\right]_{R_0} \end{cases} $
Centre de gravité G	$\left\{\begin{array}{c} \overrightarrow{R_c(S/R_0)} = m \ \overrightarrow{V(G,S/R_0)} \\ \overrightarrow{\sigma(G,S/R_0)} = I_G(S) \cdot \overrightarrow{\Omega(S/R_0)} \end{array}\right\}_G$	$ \begin{cases} \overrightarrow{R_d}(S/R_0) = m \overrightarrow{T}(G, S/R_0) \\ \overrightarrow{\delta}(G, S/R_0) = \left[\frac{\overrightarrow{d\sigma(G, S/R_0)}}{\overrightarrow{dt}} \right]_{R_0} \end{cases} $
Point quelconque A	$\left\{\begin{array}{c} \overrightarrow{R_c(S/R_0)} = m \ \overrightarrow{V(G,S/R_0)} \\ \overrightarrow{\sigma(A,S/R_0)} = I_A(S) \cdot \overrightarrow{\Omega(S/R_0)} + m \ \overrightarrow{AG} \wedge \overrightarrow{V(A,S/R_0)} \end{array}\right\}_A$	$\left\{\begin{array}{l} \overrightarrow{R_d}(S/R_0) = m \ \overrightarrow{T}(G, S/R_0) \\ \overbrace{\delta\left(A, S/R_0\right)} = \left[\frac{d\sigma(A, S/R_0)}{dt}\right]_{R_0} + \overrightarrow{V(A/R_0)} \wedge \overrightarrow{R_c}(S/R_0) \end{array}\right\}_A$
Point considéré	Torseur cinétique $\{\mathscr{C}(S/R_0)\}$	Torseur dynamique $\{\mathfrak{D}(S/R_0)\}$

Application 1 Régulateur centrifuge - Sujet

On considère le mécanisme de la figure ci-contre, qui représente le régulateur centrifuge utilisé dans la direction assistée « DIRAVI » de CITROËN. Ce système, dont la fréquence de rotation est liée à la vitesse du véhicule, agit sur un circuit hydraulique et permet de faire varier l'assistance en fonction de la vitesse. Considérons uniquement le rotor (S_1) et la masselotte (S_2) représentés schématiquement ci-contre.

► (S₁) est en liaison pivot d'axe $\begin{pmatrix}
O_1, \overrightarrow{z_0} \\
O_2, \overrightarrow{x_1}
\end{pmatrix} \text{ avec } (S_0).$ ► (S₂) est en liaison pivot d'axe $\begin{pmatrix}
O_2, \overrightarrow{x_1} \\
O_2, \overrightarrow{x_1}
\end{pmatrix} \text{ avec } (S_1).$ ► $(\overrightarrow{x_0}, \overrightarrow{x_1}) = (\overrightarrow{y_0}, \overrightarrow{y_1}) = \theta_1.$ ► (S₁) est en liaison pivot d'axe $\begin{pmatrix}
\overrightarrow{y_1}, \overrightarrow{y_2} \\
O_0 \overrightarrow{C_1} \\
O_0 \overrightarrow{C_2} \\
O_1 \overrightarrow{C_2} \\
O_2 \overrightarrow{C_2}$

$$\blacktriangleright \left(\overrightarrow{x_0}, \overrightarrow{x_1}\right) = \left(\overrightarrow{y_0}, \overrightarrow{y_1}\right) = \theta_1$$

Pour chacun des solides S_i on note m_i la masse, $I_{G_i}(S_i) = \begin{pmatrix} A_i & -F_i & -E_i \\ -F_i & B_i & -D_i \\ -E_i & -D_i & C_i \end{pmatrix}_{B_i}$.

On note $E = \{S_1, S_2\}$. Une vue 3D de la masselotte est donnée ci-dessous.

Question 1 Indiquer, sans développer de calculs, quelles sont les particularités des matrices d'inertie des solides (1) et (2).

Afin de moins alourdir les calculs, on suppose constantes les vitesse de rotation $\dot{\theta}_1$ et $\dot{\theta}_2$.

Question 2 Discuter de la pertinence de ces hypothèses. Vous pourrez éventuellement les remettre en cause.

C. Gamelon & P. Dubois.

C1-05

C2-09

Question 3 Déterminer le torseur dynamique $\{\mathfrak{D}(S_1/R_0)\}$ en O_1 et le torseur dynamique $\{\mathfrak{D}(S_2/R_0)\}$ en O_2 .

Question 4 Déterminer $\overrightarrow{\delta(O_2, 2/0)} \cdot \overrightarrow{x_2}$.

Question 5 Comment pourrait-on déterminer le torseur dynamique $\{\mathfrak{D}(E/R_0)\}$ en O_2 ?

Question 6 Donner une méthode qui permettrait d'obtenir le couple moteur nécessaire à la mise en mouvement du régulateur.

Pour mettre en mouvement le régulateur on réalise une montée en vitesse de 0 à 2000 tours par minute en 0,5 seconde. On reste ensuite à vitesse constante. On donne le résultats de deux simulation permettant de calculer le couple nécessaire à la mise en mouvement du régulateur : la première sans frottement dans la liaison entre S_1 et S_2 (couple maximal 0,46 Nm) , une seconde avec frottement (couple maximal 0,1 Nm).

Question 7 Commenter ces résultats.

