Product Rule for Differentiation and Integration by Parts

Product Rule for Differentiation

Let u = u(x) and let v = v(x). Then

$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}. (1)$$

Integration by Parts

Derive this by manipulating equation (1):

$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx},$$

so (rearranging terms),

$$u\frac{dv}{dx} = \frac{d}{dx}(uv) - v\frac{du}{dx}.$$

Integrate both sides:

$$\int_{a}^{b} \left(u \frac{dv}{dx} \right) dx = \int_{a}^{b} \left(\frac{d}{dx} (uv) \right) dx - \int_{a}^{b} \left(v \frac{du}{dx} \right) dx.$$

But $\int_a^b \left(\frac{d}{dx}(uv)\right) dx = \left[uv\right]_a^b$, so

$$\int_{a}^{b} u \frac{dv}{dx} dx = \left[uv \right]_{a}^{b} - \int_{a}^{b} v \frac{du}{dx} dx. \tag{2}$$

To integrate by parts, therefore:

- 1. Write the function to be integrated as $u \frac{dv}{dx}$: that is, decide which part is to be u and which part is to be $\frac{dv}{dx}$.
- 2. Write $u = \ldots$, so $\frac{du}{dx} = \ldots$
- 3. Write $\frac{dv}{dx} = \dots$, so $v = \dots$ (i.e. integrate it).
- 4. Then all the ingredients are there to apply the formula (2): simply substitute u, $\frac{du}{dx}$, v, and $\frac{dv}{dx}$ into formula (2) and finish off.

Example of integration by parts

Find
$$\int_0^\infty x e^{-x} dx$$
.

Following the instructions overleaf:

- 1. Let $xe^{-x} = u\frac{dv}{dx}$. Either term can be integrated or differentiated easily. However, if we let u = x, then $\frac{du}{dx}$ in formula (2) will be = 1 and we will be able to find the integral in (2) easily. So let u = x and let $\frac{dv}{dx} = e^{-x}$.
- 2. u = x, so $\frac{du}{dx} = 1$.
- 3. $\frac{dv}{dx} = e^{-x}$, so $v = -e^{-x}$.
- 4. By formula (2),

$$\int_0^\infty x e^{-x} \, dx = \left[x \times (-e^{-x}) \right]_0^\infty - \int_0^\infty -e^{-x} \times 1 \, dx.$$

More informal method:

$$\int_0^\infty x e^{-x} \, dx = \begin{bmatrix} x \times (-e^{-x}) \end{bmatrix}_0^\infty - \int_0^\infty (-e^{-x}) \times 1 \, dx$$
 leave one alone, x , and integrate the other, $-e^{-x}$. leave alone the integrated one, $(-e^{-x})$, and differentiate the other, $\frac{dx}{dx} = 1$.

Finishing off:

$$= (0-0) + \int_0^\infty e^{-x} dx$$

$$= 0 + [-e^{-x}]_0^\infty$$

$$= 0 + -(0-e^0)$$

$$= 1.$$