Neural Networks and Deep Learning

Alexander Ioannidis

ioannidis@stanford.edu

Institute for Computational and Mathematical Engineering, Stanford University

Neural Networks

Neuron Networks

Bleckert A, Schwartz GW, Turner MH, Rieke F, Wong RO. Visual space is represented by nonmatching topographies of distinct mouse retinal ganglion cell types. Curr Biol. 2014 Feb 3;24(3):310-5.

Neuron Network

Neural Net

Weights

Ridge Function

Recall the logistic function

Hastie, Trevor, et al. The elements of statistical learning. Vol. 2. No. 1. New York: Springer, 2009.

Sigmoidal Function

Hastie, Trevor, et al. The elements of statistical learning. Vol. 2. No. 1. New York: Springer, 2009.

FIGURE 11.3. Plot of the sigmoid function $\sigma(v) = 1/(1 + \exp(-v))$ (red curve), commonly used in the hidden layer of a neural network. Included are $\sigma(sv)$ for $s = \frac{1}{2}$ (blue curve) and s = 10 (purple curve). The scale parameter s controls the activation rate, and we can see that large s amounts to a hard activation at v = 0. Note that $\sigma(s(v - v_0))$ shifts the activation threshold from 0 to v_0 .

Optimization

Too Many Weights

 Each layer has U*V weights, where U are the number of neurons in the previous layer and V the number in the current

Regularization via early stopping

Regularization via Weight Decay

Questions?

Deep Learning

Many layers, means many parameters

Huge Datasets only

Building High-level Features Using Large Scale Unsupervised Learning Quoc V. Le, Marc Aurelio Ranzato, Rajat Monga, Matthieu Devin, Kai Chen, Greg S. Corrado, Jeffrey Dean, and Andrew Y. Ng

Unsupervised Neural Net Learning

Building High-level Features Using Large Scale Unsupervised Learning Quoc V. Le, Marc Aurelio Ranzato, Rajat Monga, Matthieu Devin, Kai Chen, Greg S. Corrado, Jeffrey Dean, and Andrew Y. Ng

Unsupervised Neural Net Learning

Building High-level Features Using Large Scale Unsupervised Learning

Quoc V. Le, Marc Aurelio Ranzato, Rajat Monga, Matthieu Devin, Kai Chen, Greg S. Corrado, Jeffrey Dean, and Andrew Y. Ng

Questions?

