Exo 1

Rappel de cours:

- Une fonction dérivable est continue, par contre le réciproque n'est pas vraie
- Une fonction est dérivable sur un intervalle si elle est dérivable en tout point de cette intervalle
- Une fonction est dérivable en un point a si $\exists l, \lim_{x \to a} \frac{f(x) f(a)}{x a} = l$ ou $\exists l, \lim_{h \to 0} \frac{f(a + h) f(a)}{h}$
- une fonction est dérivable sur un intervalle donn si elle est un assemblage de fonctions connues et drivables sur cette intervalle.

La fonction $f(x) = |x - \pi| \sin(x)$ est égale à

$$f(x) = \begin{cases} (x - \pi)sin(x) & x \ge \pi \\ (\pi - x)sin(x) & x < \pi \end{cases}$$

Les deux parties sont un assemblage fonctions dérivables sur leur intervalle. Il reste à démontrer si la fonction est dérivable en π .

$$\exists l, \lim_{x \to \pi} \frac{f(x) - f(\pi)}{x - \pi} = l$$

$$\begin{cases} \lim_{x \to \pi^+} \frac{(x - \pi)sin(x) - (\pi - \pi)sin(\pi)}{x - \pi} \\ \lim_{x \to \pi^-} \frac{(\pi - x)sin(x) - (\pi - \pi)sin(\pi)}{x - \pi} \end{cases}$$

$$\begin{cases} \lim_{x \to \pi^+} \frac{(x - \pi)sin(x)}{x - \pi} \\ \lim_{x \to \pi^-} \frac{-(x - \pi)sin(x)}{x - \pi} \end{cases}$$

$$\begin{cases} \lim_{x \to \pi^+} sin(x) \\ \lim_{x \to \pi^-} -sin(x) \end{cases}$$

La fonction sinus est impaire, sin(-x) = -sin(x). Donc

$$\begin{cases} \lim_{x \to \pi^+} \sin(x) \\ \lim_{x \to \pi^-} \sin(-x) \end{cases}$$

on a $\lim_{x\to\pi^-} sin(-x) = \lim_{x\to\pi^+} sin(x)$. La valeur l existe donc la fonction f est dérivable.

La proposition est Vraie.

Exo 2

Si f est dérivable en x_0 alors $\exists l, \lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h} = l$ et on note $f'(x_0) = l$. Il faut calculer $\lim_{h\to 0} \frac{f(x_0+3h)-f(x_0+h)}{h}$

Soit
$$f(x) = e^x$$
. on a $\forall x, f'(x) = e^x$

$$\lim_{h \to 0} \frac{f(x_0 + 3h) - f(x_0 + h)}{h}$$

$$\lim_{h \to 0} \frac{e^{(x_0 + 3h)} - e^{(x_0 + h)}}{h}$$

$$\lim_{h \to 0} \frac{e^{x_0} \cdot e^{3h} - e^{x_0} \cdot e^{h}}{h}$$

$$\lim_{h \to 0} \frac{e^{x_0} (e^{3h} - e^{h})}{h}$$

$$e^{x_0} \lim_{h \to 0} \frac{(e^{3h} - e^{h})}{h}$$

Si $\lim_{h\to 0} \frac{f(x_0+3h)-f(x_0+h)}{h} = 2f'(x_0)$ alors on a $\lim_{h\to 0} \frac{(e^{3h}-e^h)}{h} = e^{x_0}$. Ce qui est faux.

La proposition est Fausse.