SEMESTER – I/II								
INTRODUCTION TO ELECTRONICS ENGINEERING								
(Common for Non Circuit Branches)								
Course Code	:	22ES1A05		CIE	:	100 Marks		
Credits: L: T: P	:	3:0:0		SEE	:	100 Marks		
Total Hours	:	40L		SEE Duration	:	3.00 Hours		

UNIT-I 08 Hrs

REGULATED POWER SUPPLY:

Block Diagram, Bridge Rectifier with filter, Zener diode as Voltage Regulator, Photo diode, LED.

AMPLIFIERS:

CE Amplifier with and without feedback, Multistage amplifier, BJT as a switch, Cutoff and Saturation modes.

UNIT-II 08 Hrs

FEEDBACK AND SIGNAL GENERATORS:

Feedback Concepts, Advantages of Voltage series Negative feedback, Oscillator Operation, Barkhausen Criterion, RC Phase Shift Oscillator, Wein Bridge Oscillator, Crystal Oscillator (Only Concepts, Working, Waveforms, No mathematical derivations).

OPERATIONAL AMPLIFIERS:

Op-Amp basics, Practical Op-amp circuits- Inverting Amplifier, Non Inverting Amplifier, Voltage Follower, Summer, Integrator, Differentiator(Only Concepts, Working, Waveforms, No mathematical derivations)

UNIT-III 08 Hrs

BOOLEAN ALGEBRA AND LOGIC CIRCUITS:

Binary numbers, Number base conversion and Hexadecimal Numbers, Complements, Basic definitions, Basic theorems and properties of Boolean Algebra, Boolean functions, Canonical and Standard forms, Digital Logic gates, Demorgan's Laws, Ex-OR realization using NAND and NOR, Kmaps (Upto 4 variable)

COMBINATIONAL LOGIC:

Introduction, Design procedure, Adders-Half adder, Full adder

UNIT-IV 08 Hrs

COMMUNICATION SYSTEMS:

Introduction, Elements of Communication system, Modulation- AM, FM (Only concepts, working principle, waveform and Comparison), Super heterodyne receiver, Digital Communication block diagram.

INTRODUCTION TO MICROPROCESSOR AND MICROCONTROLLER:

Microprocessor, Microcontroller (Only concepts, working principle, and Comparison)

Case studies:

i.Development board based on Microprocessor(Raspberry Pi)

ii.Development board based on Micro controller(Arduino)

UNIT-V 08 Hrs

TRANSDUCERS:

Introduction to Transducers: Passive Electrical transducers- Resistive thermometer, Linear variable differential transformer (LVDT), Proximity transducer. Active Electrical transducer- Piezo electric transducer, Hall effect Transducer.

SENSORS:

Introduction to sensors: LDR, Biomedical Sensor, Humidity sensor, Ultra sonic Sensor, Touch Sensor (Only concepts, working principle)

Case studies:

- i. Automatic Headlight System
- ii. Pick and Place Robots.

Course Outcomes: After completing the course, the students will be able to									
CO1:	Comprehending the operations and the characteristics of the Electronic devices for modern								
	day applications.								
CO2:	Analyze Different Electronic circuits for various system designs.								
CO3:	Demonstrate the different building blocks of Electronics systems.								
CO4:	Evaluate the performance of the Electronic Systems to meet given specifications using								
	modern Engineering tools.								

Refe	erence Books
1.	Basic Electronics, D P Kothari, I J Nagrath, 2 nd edition, McGraw Hill Education (India),
	Private Limited, 2018.
2.	Electronic Devices and Circuit Theory, Robert L Boylestad, Louis Nashelsky, Prentice Hall
	India publication, 11th Edition, 2009.
3.	Digital Logic and Computer Design, Morris Mano, Prentice Hall India publication, 54th
	Edition, 2007, ISBN: 978-81-317-1450-8.
4.	Electronic Devices and Circuits, David A. Bell, Oxford University Press, 5th Edition, 2008,
	ISBN: 9780195693409.
5.	,,,,
	University Press, 5 th Edition, ISBN: 9780198062257.
6.	Basic Electronics, Ravish Aradhya H V, McGraw Hill Education; 3rd edition, ISBN: 978-
	0071333108.

ASSESSMENT AND EVALUATION PATTERN								
WEIGHTAGE	50%	50%						
QUIZZES								
Quiz-I	Each quiz is evaluated for 10 marks adding up to 20	****						
Quiz-II	MARKS.	<u> </u>						
THEORY COURSE: (Blo Applying, Analyzing, Evalua	oom's Taxonomy Levels: Remembering, Understanding, ating, and Creating)							
Test – I	Each test will be conducted for 50 Marks adding upto	ale ale ale ale ale						
Test – II	100 marks. Final test marks will be reduced to 40 MARKS	****						
EXPERIENTIAL	40	****						
LEARNING	40							
Case Study-based	10							
Teaching-Learning	10							
Sector wise study &								
consolidation (viz., Engg.								
Semiconductor Design,								
Healthcare &	20	****						
Pharmaceutical, FMCG,								
Automobile, Aerospace and								
IT/ITeS)								
Video based seminar (4-5	10							
minutes per student)								
MAXIMUM MARKS	100 MARKS	100						
FOR THE THEORY		MARKS						

PRACTICALS	**	**
TOTAL MARKS FOR THE COURSE	100	100

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	-	-	-	-	-	-	-	-	-	-
CO2	1	1	2	-	-	-	-	-	1	-	-	1
CO3	-	-	1	-	2	-	-	1	-	1	-	1
CO4	-	-	-	-	2	-	-	2	2	1	-	1

High-3: Medium-2: Low-1