

Randomness in Computing

LECTURE 3

Last time

- Probability amplification
- Verifying matrix multiplication

Today

- More probability amplification
- Randomized Min-Cut
- Random variables

Review question: balls and bins

We have two bins with balls.

- Bin 1 contains 3 black balls and 2 white balls.
- Bin 2 contains 1 black ball and 1 white ball.

We pick a bin uniformly at random. Then we pick a ball uniformly at random from that bin.

What is the probability that we picked bin 1, given that we picked a white ball?

Bayesian Approach to Amplification

How does our confidence increase with the number of trials?

- C = event that identity is correct
- A = event that test accepts

Our analysis of Basic Frievalds:

- $\Pr[A|\bar{C}] \le 1/2$
- 1-sided error: Pr[A|C]=1

Assumption (initial belief or ``prior''): Pr[C] = 1/2

By Bayes' Law

$$\Pr[C|A] = \frac{\Pr[A|C] \cdot \Pr[C]}{\Pr[A|C] \cdot \Pr[C] + \Pr[A|\overline{C}] \cdot \Pr[\overline{C}]}$$
$$\geq \frac{1 \cdot \frac{1}{2}}{1 \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2}} = \frac{2}{3}$$

Bayesian Approach to Amplification

How does our confidence increase with the number of trials?

- C = event that identity is correct
- A = event that test accepts

Our analysis of Basic Frievalds:

- $\Pr[A|\bar{C}] \le 1/2$
- 1-sided error: Pr[A|C]=1

Assumption (initial belief or ``prior''): Pr[C] = 2/3

By Bayes' Law

$$\Pr[C|A] = \frac{\Pr[A|C] \cdot \Pr[C]}{\Pr[A|C] \cdot \Pr[C] + \Pr[A|\overline{C}] \cdot \Pr[\overline{C}]}$$

$$\geq \frac{1 \cdot \frac{2}{3}}{1 \cdot \frac{2}{3} + \frac{1}{2} \cdot \frac{1}{3}} = \frac{4}{5}$$

Bayesian Approach to Amplification

How does our confidence increase with the number of trials?

- C = event that identity is correct
- A = event that test accepts

Our analysis of Basic Frievalds:

- $\Pr[A|\bar{C}] \ge 1/2$
- 1-sided error: Pr[A|C]=1

Assumption (initial belief or ``prior''): $Pr[C] = 2^{i}/(2^{i} + 1)$

By Bayes' Law

$$\Pr[C|A] = \frac{\Pr[A|C] \cdot \Pr[C]}{\Pr[A|C] \cdot \Pr[A|\bar{C}] \cdot \Pr[A|\bar{C}]}$$

$$\leq \frac{1 \cdot \frac{2^{i}}{2^{i} + 1}}{1 \cdot \frac{2^{i}}{2^{i} + 1} + \frac{1}{2} \cdot \frac{1}{2^{i} + 1}} = \frac{2^{i+1}}{2^{i+1} + 1}$$

Sofya Raskhodnikova; Randomness in Computing

§1.5 (MU) Randomized Min Cut

Given: undirected graph G = (V, E)

A **global cut** of G is a partition of V into non-empty, disjoint sets S, T.

The *cutset* of the cut is the set of edges that connect the parts:

$$\{(u,v)|u\in S,v\in T\}$$

Goal: Find the min cut in G (a cut with the smallest cutset).

Applications: Network reliability, network design, clustering

Exercise: How many distinct cuts are there in a graph G with n nodes?

Min Cut Algorithms

Given: undirected graph G = (V, E) with n nodes and m edges.

Goal: Find the min cut in *G*.

Algorithms for Min Cut:

• Deterministic [Stoer-Wagner `97]

Deterministic [Stoer-wagner 97]

Randomized [Karger `93]

$$O(mn + n^2 \log n)$$
 time

$$O(n^2 m \log n)$$
 time

but there are improvements

§1.5 (MU) Karger's Min Cut Algorithm

Idea: Repeatedly pick a random edge and put its endpoints on the same side of the cut.

Basic operation: Edge contraction of an edge (u, v)

- Merge *u* and *v* into one node
- Eliminate all edges connecting u and v
- Keep all other edges, including parallel edges (but no self-loops)

Claim

A cutset of the contracted graph is also a cutset of the original graph.

§1.5 (MU) Karger's Min Cut Algorithm

Algorithm Basic Karger (input: undirected graph G = (V, E)

- 1. While |V| > 2
- 2. choose $e \in E$ uniformly at random
- 3. $G \leftarrow \text{graph obtained by contracting } e \text{ in } G$
- 4. Return the only cut in G.

Theorem

Basic-Karger returns a min cut with probability $\geq \frac{2}{n(n-1)}$.

Probability Amplification: Repeat $r = n(n - 1) \ln n$ times and return the smallest cut found.

Running time of Basic Karger: Best known implementation: O(m)

- Easy: O(m) per contraction, so O(mn)
- View as Kruskal's MST algorithm in G with $w(e_i) = \pi(i)$ run until two components are left: $O(m \log n)$

Measurements in random experiments

- Example 1: coin flips
 - Measurement X: number of heads.
 - E.g., if the outcome is HHTH, then X=3.
- Example 2: permutations
 - n students exchange their hats, so that everybody gets a random hat
 - Measurement X: number of students that got their own hats.
 - E.g., if students 1,2,3 got hats 2,1,3 then X=1.

Random variables: definition

- A random variable X on a sample space Ω is a function $X: \Omega \to \mathbb{R}$ that assigns to each sample point $\omega \in \Omega$ a real number $X(\omega)$.
- For each random variable, we should understand:
 - The set of values it can take.
 - The probabilities with which it takes on these values.
- The distribution of a discrete random variable X is the collection of pairs $\{(a, \Pr[X = a])\}$.