

分布式多模数据库 设计与实现浅析

○ 讲师简介

msup

简怀兵 字节跳动 架构师

程序员,先后在YY、腾讯、唯品会工作,现在在字节跳动参与基础架构相关工作。分布式系统和数据库技术爱好者。

msup

○ 背景导读 – Polyglot Persistence

Polyglot Persistence

○ 背景导读 – Overall R&D burden

○ 背景导读 – Multi-Model

msup

From Polyglot Persistence To Multi-Model

msup

业务价值 – 显性解决问题

msup

组织敏捷

爽点

自主可控

依赖重

痒点

逻辑冗余

数据资产安全

数据一致性

运维/操作复杂

痛点

数据孤岛

交付效率

成本高昂

业务价值 – 隐性对抗 Complexity

Data Complexity

msup

○ 关键技术 – Open Layer Architecture

0

关键技术 – 架构原则

msup

Open Layer Architecture

按技术域封闭,按访问场景开放

Control / Data Plane Separation

控制面和数据面分离,系统弹性、开放性与服务能力同等对待

Cloud Native Design

从计算/存储分离到计算/状态分离,轻松构建/迁移至三方云

○ 关键技术 – Minimalist Storage Substrate

背景导读 – MSS Distributed Transaction Isolation

○ 关键技术 – MSS Distributed Transaction – 基于 Calvin

n=5, f=2

关键技术 – Optimal Leaderless Sync Rep (Conflict)


```
commit(a,{Ø})
commit(b,{a,c})
commit(c,{a,b})
```


Compare logical timestamp

If b < c then execute(a), execute(b), execute(c)
If c < b then execute(a), execute(c), execute(b)

○ 关键技术 – Distributed Transaction Execution

T1: A = A + B;		alyze /WS	Identify Role	Perform Local Reads	Serve Remote Reads	Collect Remote Items	Local Execute
C = C + B;	Local RS	Local WS			y		·
Deterministic Scheduler	{A}	{ A }	Active	A := a		A := a; B := b;	P1 (A)
Deterministic Scheduler	{B}		Passive	B := b	Send $B := b$ $Send B := b$		P2 (B)
Deterministic Scheduler	{C}	{C}	Active	C := c		C := c; B := b;	P3 (C)

U: unlock; R: read; W: write

)关键技术 – Doc Data Model 示例

msup®

逻辑文档

```
DocumentKey1={
    SubKey1={
        SubKey2=Value1
        SubKey3=Value2
    },
    SubKey4=Value3
}
```

在 MSS 中的存储

```
DocumentKey1,T10 → {}
DocumentKey1,SubKey1,T10 → {}
DocumentKey1,SubKey1,SubKey2,T10 → Value1
DocumentKey1,SubKey1,SubKey3,T10 → Value2
DocumentKey1,SubKey4,T10 → Value3
```


关键技术 – Relationship Data Model 示例

关系数据表 DDL & DML

CREATE TABLE test (
key INT PRIMARY KEY,
floatVal FLOAT,
stringVal STRING);

INSERT INTO test VALUES (10, 4.5, "hello");

test Table ID 1000 key Column ID 1 floatVal Column ID 2
key Column ID 1
floatVal Column ID 2
noatvar ooiaiiii ib
stringVal Column ID 3

MSS 中的实际数据

 Key
 Value

 /1000/10/2
 4.5

 /1000/10/3
 "hello"

查询实现

SELECT * FROM test WHERE key = 10;

Scan(/test/10/, /test/10/ Ω)

msup

○ 趋势展望 – 市场头部玩家

msup

■ MarkLogic •

(图片均来自官网)

趋势展望 – 潜在场景

aPaaS: Application Platform as a Service

关注msup公众号 获取更多AI落地实践 麦思博(msup)有限公司是一家面向技术型企业的培训咨询机构,携手2000余位中外客座导师,服务于技术团队的能力提升、软件工程效能和产品创新迭代,超过3000余家企业续约学习,是科技领域占有率第1的客座导师品牌,msup以整合全球领先经验实践为己任,为中国产业快速发展提供智库。