БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Факультет прикладной математики и информатики

Настройка параметров

OSPF

Минск 2025

СОДЕРЖАНИЕ

1. Протокол OSPF	3
1.1 Два этапа построения таблицы маршрутизации	3
1.1.1. Первый этап построение таблицы маршрутизации	3
1.1.2. Второй этап построение таблицы маршрутизации	4
1.2. Метрики	5
1.3. Автономные системы	5
2. Методические указания к выполнению работы	7
2.1. Настройка протокола OSPF на маршрутизаторах	7
2.2. Проверка работы протокола OSPF	9
2.2.1.Проверки отношений соседства	9
2.2.2. Полная проверка протокола OSPF	9
2.3. Оптимизация работы протокола OSPF	9
3. Этапы выполнения лабораторной работы1	1
4. Подготовка отчетных документов1	3
5. Варианты заданий1	3

1. Протокол OSPF

Протокол OSPF (Open Shortest Path First –выбор кратчайшего пути первым) является протоколом, основанным на алгоритме состояния связей, и обладает многими особенностями, ориентированными на применение в больших гетерогенных сетях...

Протокол OSPF позволяет либо задавать метрики произвольно, либо использовать метрику по умолчанию. В качестве метрики по умолчанию используется величина обратно пропорциональная пропускной способности канала, через который проходит маршрут.

В протоколе OSPF каждый маршрутизатор строит описание сети в виде графа. В графе вершинами являются маршрутизаторы, а ребрами — связи между ними. Для отыскания оптимального пути на графе используется итерационный алгоритм Дейкстры.

В отличие от протокола RIP, в протоколе OSPF не используется широковещательные рассылки для обновления сведений о состоянии связей. Вместо этого используются рассылки на Multicast-адрес 224.0.0.6, предназначенные назначенному и запасному маршрутизаторам, и рассылки на Multicast-адрес 224.0.0.5, предназначенные для остальных маршрутизаторов. Поэтому при активизации на маршрутизаторе протокола OSPF, он автоматически становится членом группы многоадресной рассылки с адресом 224.0.0.5.

1.1 Два этапа построения таблицы маршрутизации

Протокол OSPF (Open Shortest Path First –выбор кратчайшего пути первым) разбивает процедуру построения таблицы маршрутизации на два этапа. К первому относится построение и поддержание базы данных о состоянии связей, а ко второму – нахождение оптимальных маршрутов и генерация таблицы маршрутизации.

1.1.1. Первый этап построение таблицы маршрутизации

Связи сети могут быть представлены в виде графа, в котором вершинами графа являются маршрутизаторы и подсети, а ребрами – связи между ними. Пример графа сети на рисунке 1.

Каждый маршрутизатор обменивается со своими соседями той информацией о графе сети, которой он располагает к данному моменту времени. Этот процесс напоминает на процесс распространения векторов расстояний до сети в протоколе RIP, однако сама информация качественно иная - эта информация о топологии сети.

Рисунок 1. Граф сети, построенный протоколом OSPF

Сообщение, с помощью которых распространяется топологическая информация, называются объявлениями обновлениями о состоянии связей (LSA - Link State Advertisement) сети. При транзитной передаче объявлений LSA-маршрутизаторы не модифицируют информацию, как это происходит в дистанционно-векторных протоколах, в частности в RIP. А передают ее в неизменном виде. В результате все маршрутизаторы сети сохраняют в своей памяти идентичные сведения о текущей конфигурации графа связей сети.

Для контроля состояния связей и соседних маршрутизаторов OSPF-маршрутизаторы передают друг-другу особые очень небольшие по объему HELLO-сообщения каждые 10сек.

В том случае, когда HELLO-сообщения перестают поступать от какого-либо непосредственного соседа, маршрутизатор делает вывод о том, состояние связи изменилось с работающего на неработающее и вносит соответствующие коррективы в свою топологическую базу данных. Одновременно он отсылает всем непосредственным соседям LSA-объявления об этом изменении, те также вносят исправления в свои базы топологических данных и, в свою очередь, рассылают данное объявление LSA своим непосредственным соседям.

1.1.2. Второй этап построение таблицы маршрутизации

Второй этап состоит в нахождении оптимального маршрута и генерации таблицы маршрутизации. Задача нахождения оптимального пути на графе является достаточно сложной и трудоемкой. В протоколе OSPF для ее решения используется итеративный алгоритм Дейкстры. Каждый маршрутизатор сети, действуя в соответствии с этим алгоритмом, ищет оптимальные маршруты от своих интерфейсов до всех известных ему подсетей. В каждом найденном таким

образом маршруте запоминается только один шаг — до следующего маршрутизатора. Именно данные об этом шаге попадают в таблицу маршрутизации.

Если состояние связей в сети изменилось, и произошла корректировка графа сети, каждый маршрутизатор заново ищет оптимальные маршруты и корректирует свою таблицу маршрутизации. Аналогичный процесс происходит и в том случае, когда в сети появляется новая связь или новый сосед, который себя объявит с помощью HELLO-сообщений.

Когда состояние сети не меняется, то объявления о связях не генерируются, топологические базы данных и таблицы маршрутизации не корректируются, что экономит служебный трафик сети и ресурс времени работы микропроцессора маршрутизатора.

Однако каждые 30 мин. OSPF-маршрутизаторы обмениваются всеми записями базы данных топологической информации, другими словами, синхронизируются для более надежной работы сети.

1.2. Метрики

При поиске оптимальных маршрутов протокол OSPF по умолчанию использует метрику, в которой учитывается пропускная способность каналов связи. Кроме того, допускается применение двух других меток, которые учитывают временные задержки и надежность передачи пакетов каналами связи.

Для каждой из метрик протокол OSPF строит отдельную таблицу маршрутизации. Выбор нужной таблицы зависит от специального параметра в заголовке пришедшего IP-пакета.

Протокол OSPF разрешает хранить в таблице маршрутизации несколько маршрутов к одной сети, если они обладают равными метриками. В этом случае протокол OSPF способен распараллелить передачу данных по нескольким маршрутам.

1.3. Автономные системы

Если подсеть содержит N маршрутизаторов, каждый из которых имеет M соседей, то требуемая емкость памяти будет пропорциональна N*M. Для больших подсетей это может оказаться проблемой, да и скорость расчетов при этом окажется невысока. Несмотря на это, в большинстве случаев протокол работает вполне удовлетворительно.

Но при тысячах и тем более десятках тысяч узлов этими проблемами нельзя пренебречь. В таких случаях следует подумать о разбивке сети на зоны и построении иерархической схемы маршрутизации. Причем чем больше сеть, тем больше уровней иерархии следует предусмотреть.

GORVV

Протокол OSPF может использоваться в корпоративных сетях, где сетевые объекты разбросаны на большой площади.

Автономная система (AS) может быть поделена на несколько областей, куда могут входить как отдельные компьютеры, так и целые сети. В этом случае внутренние маршрутизаторы области могут и не иметь информации о топологии остальной части AS.

Сеть обычно имеет выделенный (назначенный) маршрутизатор и запасной назначенный маршрутизатор, которые являются источником маршрутной информации для остальных маршрутизаторов AS.

Соответственно, маршрутизаторы строят графы состояния связей внутри своей области и самостоятельно решают задачу оптимизации маршрутов. Если к месту назначения ведут два или более эквивалентных маршрута, информационный поток будет поделен между ними поровну. Можно подумать, что совпадение метрик для каналов возможно лишь случайно. Так бы и было, если бы метрики вычислялись автоматически на основе измерения состояния каналов, но на практике это делает администратор сети.

Переходные процессы в OSPF завершаются быстрее, чем в RIP.

2. Методические указания к выполнению работы

Рассмотрим схему составной сети на рисунке ниже

Рисунок 1. – Схема сети

2.1. Настройка протокола OSPF на маршрутизаторах.

1. Для инсталляции динамического протокола маршрутизации *OSPF* перейти в режим глобальной конфигурации и выполнить команду

Router (config)# router ospf process-id

process-id - число от 1 до 65535. Отношения смежности устанавливают OSPF маршрутизаторы, имеющие одинаковые *process-id*.

2. Для настройки протокола необходимо указать все сети, которые непосредственно подключены на интерфейсы маршрутизатора. Используется команда:

Router(config-router)#network network-address wildcard-mask area area-id

Команда **network** требует задания *IP*-адреса сети и «обратной маски» (wildcard-mask). Обратите – «обратной маски» сети. Что такое обратная маска сети смотри пример ниже.

Пример. Если маска сети 255.255.255.252, то обратная маска равна 0.0.0.3.

Для вычисления обратной маски необходимо:

Протокол OSPF поддерживает многообластное представление автономной системы, в связи с чем необходимо указать area-id — номер области.

Рисунок 2. – Многообластное представление автономной системы

```
R1 (config) #router ospf 1
R1 (config-router) #network 172.16.1.16 0.0.0.15 area 0
R1 (config-router) #network 192.168.10.0 0.0.0.3 area 0
R1 (config-router) #network 192.168.10.4 0.0.0.3 area 0
R2 (config) #router ospf 1
R2 (config-router) #network 10.10.10.0 0.0.0.255 area 0
R2 (config-router) #network 192.168.10.0 0.0.0.3 area 0
R2 (config-router) #network 192.168.10.8 0.0.0.3 area 0
R3 (config-router) #network 172.16.1.32 0.0.0.7 area 0
R3 (config-router) #network 192.168.10.4 0.0.0.3 area 0
R3 (config-router) #network 192.168.10.4 0.0.0.3 area 0
```

Как еще называют нулевую область?

2.2. Проверка работы протокола OSPF

2.2.1. Проверки отношений соседства

Для проверки отношений соседства воспользуемся командой

Router#show ip ospf neighbor

R1#show ip ospi	neigh	bor				
Neighbor ID	Pri	State		Dead Time	Address	Interface
10.3.3.3	1	FULL/ FULL/	_	00:00:30 00:00:33	192.168.10.6 192.168.10.2	Serial0/0/1 Serial0/0/0

Гле

Neighbor ID - ID соседнего маршрутизатора;

Pri - OSPF приоритет интерфейса (каждый из маршрутизаторов OSPF характеризуется двумя параметрами: идентификатором и приоритетом);

State - OSPF состояние интерфейса. **FULL** – маршрутизатор и его сосед имеют в базе идентичные записи состояния связи. Вообще состояний может быть семь:

- 1. Нерабочее *(Down*),
- 2. Инициализация (*Init*),
- 3. Двухнаправленные отношения (Тwo-Way),
- 4. Выборы *DR* и *BDR* (*Exstart*),
- 5. Обмен *(Exchange*)
- 6. Загрузка *(Loading*),
- 7. Полные соседские отношения (Full).

Dead Time – оставшее время ожидания HELLO-пакета, прежде чем объявить о разрыве связи.

Address – адрес соседа,

Interface – собственный выходной интерфейс в направлении к соседу.

2.2.2. Полная проверка протокола OSPF.

Воспользуемся командой *show ip protocols* для инсталлированных протоколов или *show* $ip\ ospf$, командой *show ip route* для просмотра таблиц маршрутизации всех маршрутизаторов.

Административное расстояние у протокола OSPF = 110.

2.3. Оптимизация работы протокола OSPF

Протокол OSPF для оценки стоимости маршрутов использует интегрированные метрики. В качестве метрики используется значение

Bandwidth = 10^8 / пропускная скорость канала в кбит/с.

Interface Type	108/bps = Cost
Fast Ethernet and faster	10 ⁸ /100,000,000 bps = 1
Ethernet	10 ⁸ /10,000,000 bps = 10
E1	10 ⁸ /2,048,000 bps = 48
T1	10 ⁸ /1,544,000 bps = 64
128 kbps	10 ⁸ /128,000 bps = 781
64 kbps	108/64,000 bps = 1562
56 kbps	10 ⁸ /56,000 bps = 1785

Используя команды *show interface* можно оценить величину *Bandwidth* у интерфейсов и маршрутов в сети задания.

```
Serial0/0/0 is up, line protocol is up

Hardware is GT96K Serial

Internet address is 192.168.1.1/30

MTU 1500 bytes, BW 1544 Kbit, DLY 20000 usec,

reliability 255/255, txload 1/255, rxload 1/255

<*** output omitted ***>
```

Администратор имеет возможность прямо назначить стоимость связи: команда *ip ospf cost:*

R1(config)#interface serial 0/0/0 R1(config-if)#ip ospf cost 1562

3. Этапы выполнения лабораторной работы

- 1. Реализуйте схему, аналогичной той, которая изображена на рисунке 1. Подписать на схеме подсети (красный цвет). Сетевое оборудование подписать по правилам предыдущих лабораторных работ (черный цвет).
- 2. Прежде, чем настраивать протокол OSPF, настройте интерфейсы маршрутизаторов и узлов. Интерфейсы узлов подписать на схеме (синий цвет).
- 3. Получите все три таблицы маршрутизации. Прокомментируйте их содержимое.
- 4. Настройте маршрутизацию OSPF на всех маршрутизаторах. Привести скриншоты с комментарием
 Задайте process-id и area-id ваш номер варианта.
- 5. Используйте команду show ip route на всех маршрутизаторах для проверки первоначальных таблиц маршрутизации Что идентифицирует первый столбец в таблице маршрутизации.
- 6. Должны появиться примерно такие данные:

```
R1#sh ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS
level-2
       ia - IS-IS inter area, * - candidate default, U - per-user
static route
      o - ODR, P - periodic downloaded static route
Gateway of last resort is not set
     10.0.0.0/30 is subnetted, 1 subnets
       10.0.0.0 [110/128] via 192.168.2.2, 00:10:38, Serial0/0/1
                [110/128] via 192.168.1.2, 00:10:38, Serial0/0/0
     192.168.1.0/30 is subnetted, 1 subnets
        192.168.1.0 is directly connected, Serial0/0/0
С
     192.168.2.0/30 is subnetted, 1 subnets
        192.168.2.0 is directly connected, Serial0/0/1
С
```

- 7. Изменилось ли содержимое таблиц маршрутизации?

 Сравните результаты выполнения пунктов 3 и 5 (что касается таблиц маршрутизации).
- 8. Определить ID всех маршрутизаторов в задании.

Использовать команду show ip protocols.

Также можно использовать команды show ip ospf или show ip ospf interface.

- 9. Обычно в качестве ID выбирается максимальный активный IP-адрес из всех его интерфейсов (убедиться или опровергнуть это). Дать ответ в вашем случае.
- 10. Используйте команду show ip ospf neighbor для проверки отношений соседства.

 Прокомментировать значения в столбцах таблицы
- 11. Используйте команду ip ospf cost для изменения стоимости на последовательном интерфейсе.
- 12. R1: $s0/1 \rightarrow 2000$
- 13. Используйте команду show ip ospf interface для определения текущей стоимости обоих последовательных интерфейсов маршрутизатора R1. Выделить на скриншоте измененную стоимость
- 14. Используя команды ping, traceroute проверить взаимодостижимость всех узлов пользователей.
- 15. Выдать скриншоты таблиц маршрутизации (старые) каждого из трех маршрутизаторов.

Отключить nopm s0/1 у маршрутизатора R3.

Проверить взаимодостижимость всех узлов пользователей после отключения порта s0/1 у маршрутизатора R3.

Выдать опять скриншоты (уже новых) таблиц маршрутизации. Проанализировать (на что обратили внимание?) и прокомментировать старые и новые таблицы маршрутизации. Разрешается выдать таблицы маршрутизации, используя и такой инструмент пакета как на рисунке (лупа).

Выбор инструмента за Вами.

Ниже пример выдачи таблиц маршрутизации (таблиц переключения)

4. Подготовка отчетных документов

Разработанные модели сетей сохранить в файлах

N_Lab10_ FIO _01.pkt (до отключения порта),

N_ Lab10_ FIO _02.pkt (после отключения порта), а отчет в файле

N_Lab10_ FIO.doc.

В качестве **FIO** использовать только ФАМИЛИЮ и на ЛАТИНИЦЕ.

Архив папки положить на портал **edufpmi**.

5. Варианты заданий списка адресов сетей

Вариант	Сеть 1 - 6	Вариант	Сеть 1 - 6	Вариант	Сеть 1 - 6
1	179.11.0.0/16 179.12.0.0/16 179.13.0.0/16 179.14.0.0/16 179.15.0.0/16 179.16.0.0/16	2	221.56.1.0/24 221.56.2.0/24 221.56.3.0/24 221.56.4.0/24 221.56.5.0/24 221.56.6.0/24	3	180.101.0.0/16 180.102.0.0/16 180.103.0.0/16 180.104.0.0/16 180.106.0.0/16 180.107.0.0/16
Вариант	Сеть 1 - 6	Вариант	Сеть 1 - 6	Вариант	Сеть 1 - 6
4	178.79.11.0/24 178.79.12.0/24	5	205.100.1.0/24 205.100.2.0/24	6	200.192.210.0/24 200.192.211.0/24

Вариант	178.79.13.0/24 178.79.14.0/24 178.79.15.0/24 178.79.16.0/24	Вариант	205.100.3.0/24 205.100.4.0/24 205.100.5.0/24 205.100.6.0/24 Cemb 1 - 6	Вариант	200.192.212.0/24 200.192.213.0/24 200.192.214.0/24 200.192.215.0/24
Барнант		Барнант		Барнант	
7	55.11.65.0/24 55.11.66.0/24 55.11.67.0/24 55.11.68.0/24 55.11.69.0/24 55.11.70.0/24	8	125.100.0.0/16 125.101.0.0/16 125.102.0.0/16 125.103.0.0/16 125.104.0.0/16 125.105.0.0/16	9	13.1.0.0/16 13.2.0.0/16 13.3.0.0/16 13.4.0.0/16 13.5.0.0/16 13.6.0.0/16
Вариант	Сеть 1 - 6	Вариант	Сеть 1 - 6	Вариант	Сеть 1 - 6
10	175.123.1.0/24 175.123.2.0/24 175.123.3.0/24 175.123.4.0/24 175.123.5.0/24 175.123.6.0/24	11	97.134.0.0/16 97.135.0.0/16 97.136.0.0/16 97.137.0.0/16 97.138.0.0/16 97.139.0.0/16	12	106.208.101.0/24 106.208.102.0/24 106.208.103.0/24 106.208.104.0/24 106.208.105.0/24 106.208.106.0/24
Вариант	Сеть 1 - 6	Вариант	Сеть 1 - 6	Вариант	Сеть 1 - 6
13	155.10.0.0/16 155.11.0.0/16 155.12.0.0/16 155.13.0.0/16 155.14.0.0/16 155.15.0.0/16	14	10.150.1.0/24 10.150.2.0/24 10.150.3.0/24 10.150.4.0/24 10.150.5.0/24 10.150.6.0/24	15	115.201.11.0/24 115.201.12.0/24 115.201.13.0/24 115.201.14.0/24 115.201.15.0/24 115.201.16.0/24
Вариант	Сеть 1 - 6	Вариант	Сеть 1 - 6	Вариант	Сеть 1 - 6
16	192.168.1.0/24 192.168.2.0/24 192.168.3.0/24 192.168.4.0/24 192.168.5.0/24 192.168.6.0/24	17	121.16.0.0/16 121.17.0.0/16 121.18.0.0/16 121.19.0.0/16 121.20.0.0/16 121.21.0.0/16	18	196.5.1.0/24 196.5.2.0/24 196.5.3.0/24 196.5.4.0/24 196.5.5.0/24 196.5.6.0/24

Вариант	Сеть 1 - 6	Вариант	Сеть 1 - 6	Вариант	Сеть 1 - 6
19	100.100.1.0/24 100.100.2.0/24 100.100.3.0/24 100.100.4.0/24 100.100.5.0/24 100.100.6.0/24	20	102.16.1.0/24 102.16.2.0/24 102.16.3.0/24 102.16.4.0/24 102.16.5.0/24 102.16.6.0/24	21	12.16.1.0/24 12.16.2.0/24 12.16.3.0/24 12.16.4.0/24 12.16.5.0/24 12.16.6.0/24
Вариант	Сеть 1 - 6	Вариант	Сеть 1 - 6	Вариант	Сеть 1 - 6
22	111.192.210.0/24 111.192.211.0/24 111.192.212.0/24	23	15.151.0.0/16 15.152.0.0/16 15.153.0.0/16	24	203.21.140.0/24 203.21.141.0/24 203.21.142.0/24

GORVV

	111.192.213.0/24 111.192.214.0/24 111.192.215.0/24		15.154.0.0/16 15.155.0.0/16 15.156.0.0/16		203.21.143.0/24 203.21.144.0/24 203.21.145.0/24
Вариант	Сеть 1 - 6	Вариант	Сеть 1 - 6	Вариант	Сеть 1 - 6
25	187.16.0.0/18 187.17.0.0/18 187.18.0.0/18 187.19.0.0/18 187.20.0.0/18 187.21.0.0/18	26	137.45.110.0/24 137.45.120.0/24 137.45.130.0/24 137.45.140.0/24 137.45.150.0/24 137.45.160.0/24	27	103.16.11.0/24 103.16.12.0/24 103.16.13.0/24 103.16.14.0/24 103.16.15.0/24 103.16.16.0/24
Вариант	Сеть 1 - 6	Вариант	Сеть 1 - 6	Вариант	Сеть 1 - 6
28	157.10.0.0/17 157.11.0.0/17 157.12.0.0/17 157.13.0.0/17 157.14.0.0/17 157.15.0.0/17	29	10.156.1.0/24 10.156.2.0/24 10.156.3.0/24 10.156.4.0/24 10.156.5.0/24 10.156.6.0/24	30	119.201.11.0/24 119.201.12.0/24 119.201.13.0/24 119.201.14.0/24 119.201.15.0/24 119.201.16.0/24