CS 228 : Logic in Computer Science

Krishna. S

Recap

- Syntax of Propositional Logic
- ► Encoding puzzles as formulae
- Natural deduction

A Proof Engine for Natural Deduction

- ▶ If it rains, Tia is outside and does not have any raingear with her, she will get wet. $\varphi = (R \land TiaOut \land \neg RG) \rightarrow TiaWet$
- ▶ It is raining, and Tia is outside, and is not wet. $\psi = (R \land TiaOut \land \neg TiaWet)$
- So, Tia has her rain gear with her. RG
- ▶ Thus, $\chi = \varphi \wedge \psi \rightarrow RG$.
- ▶ Given φ , ψ , can we "prove" RG?

A Proof Engine

- ▶ Given a formula φ in propositional logic, how to "prove" φ if φ is valid?
- What is a proof engine?
- Show that this proof engine is sound and complete
 - Completeness: Any fact that can be captured using propositional logic can be proved by the proof engine
 - Soundness: Any formula that is proved to be valid by the proof engine is indeed valid

▶ In natural deduction, we have a collection of proof rules

- ▶ In natural deduction, we have a collection of proof rules
- These proof rules allow us to infer formulae from some given formulae

- In natural deduction, we have a collection of proof rules
- These proof rules allow us to infer formulae from some given formulae
- Given a set of premises, we deduce a conclusion which is also a formula using proof rules. Recall how we deduced that Tia had rain gear with her, from the given premises

- In natural deduction, we have a collection of proof rules
- These proof rules allow us to infer formulae from some given formulae
- Given a set of premises, we deduce a conclusion which is also a formula using proof rules. Recall how we deduced that Tia had rain gear with her, from the given premises
- ▶ $\varphi_1, \ldots, \varphi_n \vdash \psi$: This is called a sequent. $\varphi_1, \ldots, \varphi_n$ are premises, and ψ , the conclusion.
- ▶ Given $\varphi_1, \ldots, \varphi_n$, we can deduce or prove ψ . What was the sequent in Tia's case?

- In natural deduction, we have a collection of proof rules
- These proof rules allow us to infer formulae from some given formulae
- Given a set of premises, we deduce a conclusion which is also a formula using proof rules. Recall how we deduced that Tia had rain gear with her, from the given premises
- ▶ $\varphi_1, \ldots, \varphi_n \vdash \psi$: This is called a sequent. $\varphi_1, \ldots, \varphi_n$ are premises, and ψ , the conclusion.
- ▶ Given $\varphi_1, \ldots, \varphi_n$, we can deduce or prove ψ . What was the sequent in Tia's case?
- ► For example, $\neg p \rightarrow q, q \rightarrow r, \neg r \vdash p$ is a sequent. How do you prove this?

- In natural deduction, we have a collection of proof rules
- These proof rules allow us to infer formulae from some given formulae
- Given a set of premises, we deduce a conclusion which is also a formula using proof rules. Recall how we deduced that Tia had rain gear with her, from the given premises
- ▶ $\varphi_1, \ldots, \varphi_n \vdash \psi$: This is called a sequent. $\varphi_1, \ldots, \varphi_n$ are premises, and ψ , the conclusion.
- ▶ Given $\varphi_1, \ldots, \varphi_n$, we can deduce or prove ψ . What was the sequent in Tia's case?
- ► For example, $\neg p \rightarrow q, q \rightarrow r, \neg r \vdash p$ is a sequent. How do you prove this?
- ▶ Proof rules to be carefully chosen, for instance you should not end up proving something like $p \land q \vdash \neg q$

The Rules of the Proof Engine

Rules for Natural Deduction

The and introduction rule denoted $\wedge i$

Rules for Natural Deduction

The and elimination rule denoted $\wedge e_1$

$$\frac{\varphi \wedge \psi}{\varphi}$$

The and elimination rule denoted $\wedge e_2$

$$\frac{\varphi \wedge \psi}{\psi}$$

▶ Show that $p \land q, r \vdash q \land r$

- 1. $p \wedge q$ premise
- 2.

▶ Show that $p \land q, r \vdash q \land r$

```
1. p \wedge q premise
```

2. r premise

▶ Show that $p \land q, r \vdash q \land r$

```
1. p \land q premise 2. r premise
```

3. $q \wedge e_2$ 1

4.

▶ Show that $p \land q, r \vdash q \land r$

```
1. p \wedge q premise
2. r premise
3. q \wedge e_2 1
```

4. $q \wedge r \wedge i 3,2$

Rules for Natural Deduction

The rule of double negation elimination $\neg \neg e$

$$\frac{\neg \neg \varphi}{\varphi}$$

The rule of double negation introduction $\neg \neg i$

$$\frac{\varphi}{\neg\neg\varphi}$$

Rules for Natural Deduction

The implies elimination rule or Modus Ponens MP

▶ Show that $p, p \rightarrow q, p \rightarrow (q \rightarrow \neg \neg r) \vdash r$

1. $p \rightarrow (q \rightarrow \neg \neg r)$ premise

▶ Show that $p, p \rightarrow q, p \rightarrow (q \rightarrow \neg \neg r) \vdash r$

1.
$$p \rightarrow (q \rightarrow \neg \neg r)$$
 premise

2.
$$p \rightarrow q$$
 premise

▶ Show that $p, p \rightarrow q, p \rightarrow (q \rightarrow \neg \neg r) \vdash r$

1.	$p o (q o \neg \neg r)$	premise
_		

2. $p \rightarrow q$ premise

3. p premise

▶ Show that $p, p \rightarrow q, p \rightarrow (q \rightarrow \neg \neg r) \vdash r$

1.	$p ightarrow (q ightarrow \lnot \lnot r)$	premise
2.	$m{ ho} ightarrow m{q}$	premise
3.	p	premise
4.	$q ightarrow \lnot \lnot r$	MP 1,3

▶ Show that $p, p \rightarrow q, p \rightarrow (q \rightarrow \neg \neg r) \vdash r$

q

1.	p o (q o eg eg r)	premise
2.	ho o q	premise
3.	p	premise
4.	$q ightarrow \lnot \lnot \lnot r$	MP 1,3

MP 2,3

5. 6.

▶ Show that $p, p \rightarrow q, p \rightarrow (q \rightarrow \neg \neg r) \vdash r$

1.	$p ightarrow (q ightarrow \lnot \lnot r)$	premise
2.	${m ho} ightarrow {m q}$	premise
3.	р	premise
4.	$q ightarrow \lnot \lnot r$	MP 1,3
5.	q	MP 2,3
6.	$\neg \neg r$	MP 4,5
7		

▶ Show that $p, p \rightarrow q, p \rightarrow (q \rightarrow \neg \neg r) \vdash r$

1.	p o (q o eg eg r)	premise
2.	$ extcolor{p} ightarrow extcolor{q}$	premise
3.	p	premise
4.	$q ightarrow \lnot \lnot r$	MP 1,3
5.	q	MP 2,3
6.	$\neg \neg r$	MP 4,5
7.	r	¬¬ <i>e</i> 6

Rules for Natural Deduction

Another implies elimination rule or Modus Tollens MT

▶ Show that $p \rightarrow \neg q, q \vdash \neg p$

- 1. $p \rightarrow \neg q$ premise
- 2.

▶ Show that $p \rightarrow \neg q, q \vdash \neg p$

- 1. $p \rightarrow \neg q$ premise
- 2. q premise
- 3.

▶ Show that $p \rightarrow \neg q, q \vdash \neg p$

4.

1.	p ightarrow eg q	premise
2.	q	premise
3.	$\neg \neg q$	¬¬ <i>i</i> 2

▶ Show that $p \rightarrow \neg q, q \vdash \neg p$

1.	$oldsymbol{p} ightarrow eg oldsymbol{q}$	premise
2.	q	premise
3.	$\neg \neg q$	¬¬ <i>i</i> 2
4.	$\neg p$	MT 1,3

▶ Thanks to MT, we have $p \rightarrow q, \neg q \vdash \neg p$.

- ▶ Thanks to MT, we have $p \rightarrow q, \neg q \vdash \neg p$.
- ▶ Can we prove $p \rightarrow q \vdash \neg q \rightarrow \neg p$?

- ▶ Thanks to MT, we have $p \rightarrow q, \neg q \vdash \neg p$.
- ▶ Can we prove $p \rightarrow q \vdash \neg q \rightarrow \neg p$?
- ► So far, no proof rule that can do this.

- ▶ Thanks to MT, we have $p \rightarrow q, \neg q \vdash \neg p$.
- ▶ Can we prove $p \rightarrow q \vdash \neg q \rightarrow \neg p$?
- So far, no proof rule that can do this.
- ▶ Given $p \rightarrow q$, let us assume $\neg q$. Can we then prove $\neg p$?

- ▶ Thanks to MT, we have $p \rightarrow q, \neg q \vdash \neg p$.
- ▶ Can we prove $p \rightarrow q \vdash \neg q \rightarrow \neg p$?
- So far, no proof rule that can do this.
- ▶ Given $p \rightarrow q$, let us assume $\neg q$. Can we then prove $\neg p$?
- ► Yes, using MT.

The implies introduction rule $\rightarrow i$

	p o q	premise
2.	$\neg q$	assumption

4.
$$\neg q \rightarrow \neg p \rightarrow i \ 2-3$$

$$\blacktriangleright \vdash (q \rightarrow r) \rightarrow [(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r)]$$

1. true

2.

premise

$$\blacktriangleright \vdash (q \rightarrow r) \rightarrow [(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r)]$$

- 1. true premise
- 2. $q \rightarrow r$ assumption 3.

$$\blacktriangleright \vdash (q \rightarrow r) \rightarrow [(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r)]$$

1.	true	premise
2.	q o r	assumption
3.	eg q o eg p	assumption
4.		

$$\blacktriangleright \vdash (q \rightarrow r) \rightarrow [(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r)]$$

1.	true	premise
2.	$q \rightarrow r$	assumption
3.	eg q ightarrow eg p	assumption
4.	p	assumption
5.		

$$\blacktriangleright \vdash (q \rightarrow r) \rightarrow [(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r)]$$

1.	true	premise
2.	$q \rightarrow r$	assumption
3.	eg q o eg p	assumption
4.	p	assumption
5.	$ \ \ \ \neg \neg p$	¬¬ <i>i</i> 4
6.		

$$\blacktriangleright \vdash (q \rightarrow r) \rightarrow [(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r)]$$

1.	true	premise
2.	q o r	assumption
3.	eg q ightarrow eg p	assumption
4.	p	assumption
5.	$ \ \ \neg \neg p$	¬¬ <i>i</i> 4
6.	$ \ \ \ \neg \neg q$	MT 3,5
7.		

$$\blacktriangleright \vdash (q \rightarrow r) \rightarrow [(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r)]$$

1.	true	premise
2.	$q \rightarrow r$	assumption
3.	eg q ightarrow eg p	assumption
4.	p	assumption
5.	$ \neg \neg \rho$	¬¬ <i>i</i> 4
6.		MT 3,5
7.	q	¬¬ <i>e</i> 6
8.		

$$\blacktriangleright \vdash (q \rightarrow r) \rightarrow [(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r)]$$

1.	true	premise
2.	$q \rightarrow r$	assumption
3.	eg q ightarrow eg p	assumption
4.	p	assumption
5.	$ \ \ \neg \neg \rho$	¬¬ <i>i</i> 4
6.	$ \ \ \neg \neg q$	MT 3,5
7.	q	¬¬e 6
8	r	MP 2 7

$$\blacktriangleright \vdash (q \rightarrow r) \rightarrow [(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r)]$$

1.	true	premise
2.	q o r	assumption
3.	eg q ightarrow eg p	assumption
4.	p	assumption
5.	$ \neg \neg p$	¬¬ <i>i</i> 4
6.	$ \neg \neg q$	MT 3,5
7.	q	¬¬ <i>e</i> 6
8.	r	MP 2,7
9	$p \rightarrow r$	→ <i>i</i> 4-8

$$\blacktriangleright \vdash (q \rightarrow r) \rightarrow [(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r)]$$

true	premise
q o r	assumption
eg q o eg p	assumption
p	assumption
$ \cdot \cdot \neg \neg p$	¬¬ <i>i</i> 4
$ \cdot \cdot \neg \neg q$	MT 3,5
q	¬¬ <i>e</i> 6
r	MP 2,7
ho ightarrow r	→ <i>i</i> 4-8
$(\neg q ightarrow eg p) ightarrow (p ightarrow r)$	→ <i>i</i> 3-9
	$q o r$ $\neg q o \neg p$ p $\neg \neg p$ $\neg q$ q r $p o r$

17/23

11.

$$\blacktriangleright \vdash (q \to r) \to [(\neg q \to \neg p) \to (p \to r)]$$

1.	true	premise	
2.	q ightarrow r	assumption	
3.	eg q ightarrow eg p	assumption	
4.	P	assumption	
5.	$ \cdot \cdot \neg \neg \rho$	¬¬ <i>i</i> 4	
6.	$ \cdot \cdot \neg \neg q$	MT 3,5	
7.	$ \cdot $ q	¬¬ <i>e</i> 6	
8.	r	MP 2,7	
9.	ho ightarrow r	→ <i>i</i> 4-8	
10.	$(\lnot q ightarrow \lnot p) ightarrow (p ightarrow r)$	<i>→ i</i> 3-9	
11.	$(q ightarrow r) ightarrow [(\lnot q ightarrow \lnot p) ightarrow (p ightarrow r)]$	→ <i>i</i> 2-10	

Transforming Proofs

- $ightharpoonup (q
 ightarrow r), (\neg q
 ightarrow \neg p), p \vdash r$
- ► Transform any proof $\varphi_1, \ldots, \varphi_n \vdash \psi$ to $\vdash \varphi_1 \rightarrow (\varphi_2 \rightarrow \ldots (\varphi_n \rightarrow \psi) \ldots))$ by adding n lines of the rule $\rightarrow i$

▶
$$p \to (q \to r) \vdash (p \land q) \to r$$

1. $p \to (q \to r)$ premise 2.

▶
$$p \rightarrow (q \rightarrow r) \vdash (p \land q) \rightarrow r$$

1. $p \rightarrow (q \rightarrow r)$ premise

2. $p \land q$ assumption

3. $p \land e_1 2$

4. $q \land e_2 2$

5. $q \rightarrow r \land P 1,3$

6. $r \land P 4,5$

7.

$$\begin{array}{c|cccc} \blacktriangleright & p \rightarrow (q \rightarrow r) \vdash (p \land q) \rightarrow r \\ \\ 1. & p \rightarrow (q \rightarrow r) & \text{premise} \\ 2. & p \land q & \text{assumption} \\ 3. & p & \land e_1 \ 2 \\ 4. & q & \land e_2 \ 2 \\ 5. & q \rightarrow r & \text{MP 1,3} \\ 6. & r & \text{MP 4,5} \\ \hline 7. & p \land q \rightarrow r & \rightarrow i \ 2\text{-}6 \\ \end{array}$$

More Rules

The or introduction rule $\vee i_1$

$$\frac{\varphi}{\varphi\vee\psi}$$

The or introduction rule $\vee i_2$

$$\frac{\psi}{\varphi \vee \psi}$$

More Rules

The or elimination rule $\vee e$

$$\begin{array}{ccc} \varphi \lor \psi & \varphi \vdash \chi & \psi \vdash \chi \\ \hline \chi & \end{array}$$

$$P q \to r \vdash (p \lor q) \to (p \lor r)$$

- 1. $q \rightarrow r$
- 2

premise

$$P q \to r \vdash (p \lor q) \to (p \lor r)$$

- 1. $q \rightarrow r$ premise 2. $p \lor q$ assumption
- 3.

$$P q \rightarrow r \vdash (p \lor q) \rightarrow (p \lor r)$$

1.	q o r	premise
2.	$p \lor q$	assumption
3.	р	∨ <i>e</i> (1)
4.		

$$P q \rightarrow r \vdash (p \lor q) \rightarrow (p \lor r)$$

1.	$oldsymbol{q} ightarrow oldsymbol{r}$	premise
2.	$p \lor q$	assumption
3.	р	∨ <i>e</i> (1)
4.	$p \lor r$	∨ <i>i</i> ₁ 3
5.		

$$P q \rightarrow r \vdash (p \lor q) \rightarrow (p \lor r)$$

1.	q o r	premise
2.	$p \lor q$	assumption
3.	p	∨ <i>e</i> (1)
4.	$p \lor r$	∨ <i>i</i> ₁ 3
5.	q	∨ <i>e</i> (2)
3.		

$$P q \rightarrow r \vdash (p \lor q) \rightarrow (p \lor r)$$

1.	$oldsymbol{q} ightarrow oldsymbol{r}$	premise
2.	$p \lor q$	assumption
3.	р	∨ <i>e</i> (1)
4.	p∨r	∨ <i>i</i> ₁ 3
5.	q	∨ e (2)
6.	r	MP 1,5
7.		

$$P q \to r \vdash (p \lor q) \to (p \lor r)$$

1.	$oldsymbol{q} ightarrow oldsymbol{r}$	premise
2.	$p \lor q$	assumption
3.	p	∨ <i>e</i> (1)
4.	$p \lor r$	√ <i>i</i> ₁ 3
5.	q	∨ e (2)
6.	r	MP 1,5
7.	p∨r	∨ <i>i</i> ₂ 6

$$P q \to r \vdash (p \lor q) \to (p \lor r)$$

1.	$q \rightarrow r$	premise
2.	p∨q	assumption
3.	р	∨ <i>e</i> (1)
4.	p∨r	∨ <i>i</i> ₁ 3
5.	q	∨ e (2)
6.	r	MP 1,5
7.	p∨r	∨ <i>i</i> ₂ 6
8.	p∨r	∨ <i>e</i> 2, 3-4, 5-7

$$P q \rightarrow r \vdash (p \lor q) \rightarrow (p \lor r)$$

1.	$q \rightarrow r$	premise
2.	$p \lor q$	assumption
3.	p	∨ <i>e</i> (1)
4.	p∨r	∨ <i>i</i> ₁ 3
5.	q	∨ <i>e</i> (2)
6.	r	MP 1,5
7.	$p \lor r$	∨ <i>i</i> ₂ 6
8.	p∨r	∨ <i>e</i> 2, 3-4, 5-7
9.		

$$P q \rightarrow r \vdash (p \lor q) \rightarrow (p \lor r)$$

1.	$oldsymbol{q} ightarrow oldsymbol{r}$	premise
2.	$p \lor q$	assumption
3.	р	∨ e (1)
4.	$p \lor r$	∨ <i>i</i> ₁ 3
5.	q	∨ e (2)
6.	r	MP 1,5
7.	p∨r	∨ <i>i</i> ₂ 6
8.	p∨r	∨ <i>e</i> 2, 3-4, 5-7
9.	$(p \lor q) \rightarrow (p \lor r)$	\rightarrow i 2-8

► $(p \lor q) \lor r \vdash p \lor (q \lor r)$ 1. $(p \lor q) \lor r$ premise

 \triangleright $(p \lor q) \lor r \vdash p \lor (q \lor r)$

```
2. p \lor q \lor e(1)
1. (p \lor q) \lor r premise
```

 $(p \lor q) \lor r \vdash p \lor (q \lor r)$

$(p \lor q) \lor r$	premise
$p \lor q$	∨ <i>e</i> (1)
р	∨ <i>e</i> (1.1)
	$(p \lor q) \lor r$ $p \lor q$ p

 \triangleright $(p \lor q) \lor r \vdash p \lor (q \lor r)$

1.	$(p \lor q) \lor r$	premise
2.	$p \lor q$	∨ <i>e</i> (1)
3.	p	∨ e (1.1)
4.	$p \lor (q \lor r)$	∨ <i>i</i> ₁ 3
5		

 $(p \lor q) \lor r \vdash p \lor (q \lor r)$

1.	$(p \lor q) \lor r$	premise
2.	$p \lor q$	∨ <i>e</i> (1)
3.	p	∨ <i>e</i> (1.1)
4.	$p \lor (q \lor r)$	∨ <i>i</i> ₁ 3
5.	q	∨ <i>e</i> (1.2)
6.		

 $(p \lor q) \lor r \vdash p \lor (q \lor r)$

1.	$(p \lor q) \lor r$	premise
2.	$p \lor q$	∨ <i>e</i> (1)
3.	p	∨ <i>e</i> (1.1)
4.	$p \lor (q \lor r)$	∨ <i>i</i> ₁ 3
5.	q	∨ <i>e</i> (1.2)
6.	$q \vee r$	∨ <i>i</i> ₁ 5
7.		

 $(p \lor q) \lor r \vdash p \lor (q \lor r)$

1.	$(p \lor q) \lor r$	premise
2.	$p \lor q$	∨ <i>e</i> (1)
3.	p	∨ <i>e</i> (1.1)
4.	$p \lor (q \lor r)$	∨ <i>i</i> ₁ 3
5.	q	∨ <i>e</i> (1.2)
6.	$q \vee r$	∨ <i>i</i> ₁ 5
7.	$p \lor (q \lor r)$	∨ <i>i</i> ₂ 6
8.		

 $(p \lor q) \lor r \vdash p \lor (q \lor r)$

1.	$(p \lor q) \lor r$	premise
2.	$p \lor q$	∨ <i>e</i> (1)
3.	p	∨ e (1.1)
4.	$p \lor (q \lor r)$	∨ <i>i</i> ₁ 3
5.	q	∨ <i>e</i> (1.2)
6.	$q \lor r$	∨ <i>i</i> ₁ 5
7.	$p \lor (q \lor r)$	∨ <i>i</i> ₂ 6
8.	$p \lor (q \lor r)$	∨ <i>e</i> 2, 3-4, 5-7
9.		

 $(p \lor q) \lor r \vdash p \lor (q \lor r)$

1.	$(p \lor q) \lor r$	premise
2.	$p \lor q$	∨ <i>e</i> (1)
3.	p	∨ <i>e</i> (1.1)
4.	$p \lor (q \lor r)$	√ <i>i</i> ₁ 3
5.	q	∨ <i>e</i> (1.2)
6.	$q \vee r$	∨ <i>i</i> ₁ 5
7.	$p \lor (q \lor r)$	∨ <i>i</i> ₂ 6
8.	$p \lor (q \lor r)$	∨ <i>e</i> 2, 3-4, 5-7
9.	r	∨ <i>e</i> (2)
0.		

 $(p \lor q) \lor r \vdash p \lor (q \lor r)$

1.	$(p \lor q) \lor r$	premise
2.	$p \lor q$	∨ <i>e</i> (1)
3.	p	∨ <i>e</i> (1.1)
4.	$p \lor (q \lor r)$	∨ <i>i</i> ₁ 3
5.	q	∨ <i>e</i> (1.2)
6.	$ q \lor r$	∨ <i>i</i> ₁ 5
7.	$p \lor (q \lor r)$	∨ <i>i</i> ₂ 6
8.	$p \lor (q \lor r)$	∨ <i>e</i> 2, 3-4, 5-7
9.	r	∨ <i>e</i> (2)
10.	$q \vee r$	∨ <i>i</i> ₂ 9
11.		

 $(p \lor q) \lor r \vdash p \lor (q \lor r)$

1.	$(p \lor q) \lor r$	premise
2.	$p \lor q$	∨ <i>e</i> (1)
3.	p	∨ <i>e</i> (1.1)
4.	$p \lor (q \lor r)$	√ <i>i</i> ₁ 3
5.	q	∨ <i>e</i> (1.2)
6.	$q \lor r$	∨ <i>i</i> ₁ 5
7.	$p \lor (q \lor r)$	∨ <i>i</i> ₂ 6
8.	$p \lor (q \lor r)$	∨ <i>e</i> 2, 3-4, 5-7
9.	r	∨ <i>e</i> (2)
0.	$q \vee r$	√ <i>i</i> ₂ 9
1.	$p \lor (q \lor r)$	√ <i>i</i> ₂ 10

$$\blacktriangleright (p \lor q) \lor r \vdash p \lor (q \lor r)$$

1.	$(p \lor q) \lor r$	premise
2.	$p \lor q$	∨ <i>e</i> (1)
3.	p	∨ <i>e</i> (1.1)
4.	$p \lor (q \lor r)$	∨ <i>i</i> ₁ 3
5.	q	∨ <i>e</i> (1.2)
6.	$ q \lor r$	∨ <i>i</i> ₁ 5
7.	$p \lor (q \lor r)$	∨ <i>i</i> ₂ 6
8.	$p \lor (q \lor r)$	∨ <i>e</i> 2, 3-4, 5-7
9.	r	∨ e (2)
0.	$q \vee r$	√ <i>i</i> ₂ 9
1.	$p \lor (q \lor r)$	∨ <i>i</i> ₂ 10
2.	$p \lor (q \lor r)$	∨ <i>e</i> 1, 2-8, 9-11