

19CSE437 DEEP LEARNING FOR COMPUTER VISION L-T-P-C: 2-0-3-3

Back propagation Algorithm

Citation Note: content, of this presentation were inspired by the awesome lectures and the material offered by Prof. <u>Mitesh M. Khapra</u> on <u>NPTEL</u>'s <u>Deep Learning</u> course

- The pre-activation at layer 'i' is given by $a_i(x) = W_i h_{i-1}(x) + b_i$
- ullet The activation at layer 'i' is given by $h_i(x)=g(a_i(x))$ where 'g' is called as the activation function
- ullet The activation at output layer 'L' is given by $f(x)=h_L=\,O(a_L)$ where 'O' is called as the output activation function

- The input to the network is an n-dimensional vector
- The network contains L-1 hidden layers (2, in this case) having \mathbf{n} neurons each
 - Finally, there is one output layer containing **k** neurons (say, corresponding to **k** classes)
- Each neuron in the hidden layer and output layer can be split into two parts: pre-activation and activation (a_i and h_i are vectors)
 - The input layer can be called the 0-th layer and the output layer can be called the (L)-th layer
- $W_i \in \mathbb{R}^{n \times n}$ and $b_i \in \mathbb{R}^n$ are the weight and bias between layers i-1 and i (0 < i < L)
 - $W_L \in \mathbb{R}^{n \times k}$ and $b_L \in \mathbb{R}^k$ are the weight and bias between the last hidden layer and the output layer (L=3 in this case)

 \bullet The pre-activation at layer i is given by

For example,
$$a_{i}(x) = \underbrace{b_{i} + W_{i}h_{i-1}(x)}_{1}$$

$$\begin{bmatrix} a_{i_{1}} \\ a_{i_{2}} \\ a_{i_{3}} \end{bmatrix} = \begin{bmatrix} b_{i_{1}} \\ b_{i_{2}} \\ b_{i_{3}} \end{bmatrix} + \begin{bmatrix} W_{i_{11}} & W_{i_{12}} & W_{i_{23}} \\ W_{i_{21}} & W_{i_{22}} & W_{i_{23}} \\ W_{i_{31}} & W_{i_{32}} & W_{i_{33}} \end{bmatrix} \begin{bmatrix} h_{o_{1}} = x_{1} \\ h_{o_{2}} = x_{2} \\ h_{o_{3}} = x_{3} \end{bmatrix}$$

$$= \begin{bmatrix} b_{i_{1}} \\ b_{i_{2}} \\ b_{i_{3}} \end{bmatrix} + \begin{bmatrix} W_{i_{11}}x_{1} + W_{i_{12}}x_{2} + W_{i_{13}}x_{3} \\ W_{i_{21}}x_{1} + W_{i_{22}}x_{2} + W_{i_{23}}x_{3} \\ W_{i_{31}}x_{1} + W_{i_{32}}x_{2} + W_{i_{33}}x_{3} \end{bmatrix}$$

$$= \begin{bmatrix} E W_{i_{11}}x_{1} + W_{i_{13}}x_{2} + W_{i_{133}}x_{3} \\ E W_{i_{21}}x_{1} + W_{i_{32}}x_{2} + W_{i_{33}}x_{3} \end{bmatrix}$$

$$= \begin{bmatrix} E W_{i_{11}}x_{1} + W_{i_{13}}x_{2} \\ E W_{i_{21}}x_{1} + W_{i_{32}}x_{2} + W_{i_{33}}x_{3} \end{bmatrix}$$

$$= \begin{bmatrix} E W_{i_{13}}x_{1} + W_{i_{22}} \\ E W_{i_{34}}x_{1} + W_{i_{33}}x_{3} \end{bmatrix}$$

 \bullet The pre-activation at layer i is given by

$$a_i = b_i + W_i h_{i-1}$$

 \bullet The activation at layer i is given by

$$h_i = g(a_i)$$

where g is called the activation function (for example, logistic, tanh, linear, etc.)

 \bullet The activation at layer i is given by

$$f(x) = h_L = O(a_L)$$

where O is the output activation function (for example, softmax, linear, etc.)

Learning Algorithm- backpropagation

Initialise w, b

Iterate over data:

 $compute \ \hat{y}$

compute $\mathcal{L}(w,b)$

$$w_{111} = w_{111} - \eta \Delta w_{111}$$

$$w_{112} = w_{112} - \eta \Delta w_{112}$$

....

$$w_{313} = w_{313} - \eta \Delta w_{313}$$

till satisfied

$$\Delta w_t = rac{\partial \mathscr{L}(w,b)}{\partial w}$$

$$\mathscr{L}=rac{1}{5}\sum_{i=1}^{i=5}(f(x_i)-y_i)^2$$

$$rac{\partial \mathscr{L}}{\partial w} = rac{\partial}{\partial w} igl[rac{1}{5} \sum_{i=1}^{i=5} (f(x_i) - y_i) igr]^2$$

$$\Delta w = rac{\partial \mathscr{L}}{\partial w} = rac{1}{5} \sum_{i=1}^{i=5} rac{\partial}{\partial w} (f(x_i) - y_i)^2$$

Calculation of Δw

$$egin{aligned}
abla w &= rac{\partial}{\partial w} [rac{1}{2}*(f(x)-y)^2] \ \ &= rac{1}{2}*[2*(f(x)-y)*rac{\partial}{\partial w}(f(x)-y)] \ \ &= (f(x)-y)*rac{\partial}{\partial w}(f(x)) \ \ &= (f(x)-y)*rac{\partial}{\partial w} \Big(rac{1}{1+e^{-(wx+b)}}\Big) \ \ &= (f(x)-y)*f(x)*(1-f(x))*x \end{aligned}$$

$$egin{aligned} rac{\partial}{\partial w} \left(rac{1}{1 + e^{-(wx + b)}}
ight) \ &= rac{-1}{(1 + e^{-(wx + b)})^2} rac{\partial}{\partial w} (e^{-(wx + b)})) \ &= rac{-1}{(1 + e^{-(wx + b)})^2} st (e^{-(wx + b)}) rac{\partial}{\partial w} (-(wx + b))) \ &= rac{-1}{(1 + e^{-(wx + b)})} st rac{e^{-(wx + b)}}{(1 + e^{-(wx + b)})} st (-x) \ &= rac{1}{(1 + e^{-(wx + b)})} st rac{e^{-(wx + b)}}{(1 + e^{-(wx + b)})} st (x) \ &= f(x) st (1 - f(x)) st x \end{aligned}$$

Partial derivative, Gradient

The partial derivative notation is used to specify the derivative of a function of more than one variable with respect to one of its variables.

Calculus basics - Chain rule

$$\frac{de^x}{dx} = e^x$$

$$rac{dx^2}{dx} = 2x$$

$$rac{de^x}{dx}=e^x$$
 $rac{dx^2}{dx}=2x$ $rac{d(1/x)}{dx}=-rac{1}{x^2}$

$$\frac{de^{x^2}}{dx} = \frac{de^{x^2}}{dx^2}.\frac{dx^2}{dx} = \frac{de^z}{dz}.\frac{dx^2}{dx} = (e^z).(2x) = (e^{x^2}).(2x) = 2xe^{x^2}$$

$$x = f(h) = e^{h} = e^{x^2}$$

$$h=f(x)$$

$$Y=f(h)=e^{h}=e^{x^{2}}$$

$$\frac{dy}{dx}=\frac{dy}{dh}\frac{dh}{dx}=\frac{de^{h}}{dh}\frac{dx^{2}}{dx}=e^{h}2x=2x e^{x^{2}}$$

Chain rule

$$rac{de^{e^{x^2}}}{dx}=rac{de^{e^{x^2}}}{de^{x^2}}\cdotrac{de^{x^2}}{dx^2}.rac{dx^2}{dx}$$

$$\frac{de^x}{dx} = e^x$$

$$\frac{dx^2}{dx} = 2x$$

$$rac{de^x}{dx}=e^x$$
 $rac{dx^2}{dx}=2x$ $rac{d(1/x)}{dx}=-rac{1}{x^2}$

$$\frac{de^{x^2}}{dx} = \frac{de^{x^2}}{dx^2}.\frac{dx^2}{dx} = \frac{de^z}{dz}.\frac{dx^2}{dx} = (e^z).(2x) = (e^{x^2}).(2x) = 2xe^{x^2}$$

$$rac{de^{e^{x^2}}}{dx} = rac{de^{e^{x^2}}}{de^{x^2}}.rac{de^{x^2}}{dx} = rac{de^z}{dz}.rac{de^{x^2}}{dx} = (e^z).(2xe^{x^2}) = (e^{e^{x^2}}).(2xe^{x^2}) = 2xe^{x^2}e^{e^{x^2}}$$

$$\underbrace{\frac{\partial \mathcal{L}(\theta)}{\partial W_{111}}}_{\text{Talk to the weight directly}} = \underbrace{\frac{\partial \mathcal{L}(\theta)}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial a_3}}_{\text{Talk to the output layer}} \underbrace{\frac{\partial a_3}{\partial h_2} \frac{\partial h_2}{\partial a_2}}_{\text{Talk to the previous hidden}} \underbrace{\frac{\partial a_2}{\partial h_1} \frac{\partial h_1}{\partial a_1}}_{\text{Talk to the and now talk to hidden layer}} \underbrace{\frac{\partial a_1}{\partial W_{111}}}_{\text{the weights}}$$

$$\Delta w_t = rac{\partial \mathscr{L}(w,b)}{\partial w}$$

The partial derivative notation is used to specify the derivative of a function of more than one variable with respect to one of its variables.

$$\underbrace{\frac{\partial \mathcal{L}(\theta)}{\partial W_{111}}}_{\text{Talk to the weight directly}} = \underbrace{\frac{\partial \mathcal{L}(\theta)}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial a_3}}_{\text{Talk to the output layer}} \underbrace{\frac{\partial a_3}{\partial h_2} \frac{\partial h_2}{\partial a_2}}_{\text{Talk to the previous hidden layer}} \underbrace{\frac{\partial a_2}{\partial h_1} \frac{\partial h_1}{\partial a_1}}_{\text{Talk to the previous hidden layer}} \underbrace{\frac{\partial a_1}{\partial W_{111}}}_{\text{the weights}}$$

$$\Delta w_t = rac{\partial \mathscr{L}(w,b)}{\partial w}$$

The partial derivative notation is used to specify the derivative of a function of more than one variable with respect to one of its variables.

$$\underbrace{\frac{\partial \mathcal{L}(\theta)}{\partial W_{111}}}_{\text{Talk to the weight directly}} = \underbrace{\frac{\partial \mathcal{L}(\theta)}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial a_3}}_{\text{Talk to the output layer}} \underbrace{\frac{\partial a_3}{\partial h_2} \frac{\partial h_2}{\partial a_2}}_{\text{Talk to the previous hidden layer}} \underbrace{\frac{\partial a_2}{\partial h_1} \frac{\partial h_1}{\partial a_1}}_{\text{Talk to the previous hidden layer}} \underbrace{\frac{\partial a_1}{\partial W_{111}}}_{\text{the weights}}$$

$$\Delta w_t = rac{\partial \mathscr{L}(w,b)}{\partial w}$$

The partial derivative notation is used to specify the derivative of a function of more than one variable with respect to one of its variables.

$$\underbrace{\frac{\partial \mathcal{L}(\theta)}{\partial W_{111}}}_{\text{Talk to the weight directly}} = \underbrace{\frac{\partial \mathcal{L}(\theta)}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial a_3}}_{\text{Talk to the output layer}} \underbrace{\frac{\partial a_3}{\partial h_2} \frac{\partial h_2}{\partial a_2}}_{\text{Talk to the previous hidden layer}} \underbrace{\frac{\partial a_2}{\partial h_1} \frac{\partial h_1}{\partial a_1}}_{\text{Talk to the previous hidden layer}} \underbrace{\frac{\partial a_1}{\partial W_{111}}}_{\text{talk to the weights}}$$

$$\Delta w_t = rac{\partial \mathscr{L}(w,b)}{\partial w}$$

The partial derivative notation is used to specify the derivative of a function of more than one variable with respect to one of its variables.

Learning algorithm- Back propagation

- Let us focus on the highlighted weight (w_{222})
- To learn this weight, we have to compute partial derivative w.r.t loss function

$$(w_{222})_{t+1} = (w_{222})_t - \eta * (\frac{\partial L}{\partial w_{222}})$$

$$\frac{\partial L}{\partial w_{222}} = (\frac{\partial L}{\partial a_{22}}) \cdot (\frac{\partial a_{22}}{\partial w_{222}})$$

$$= (\frac{\partial L}{\partial h_{22}}) \cdot (\frac{\partial h_{22}}{\partial a_{22}}) \cdot (\frac{\partial a_{22}}{\partial w_{222}})$$

$$= (\frac{\partial L}{\partial a_{31}}) \cdot (\frac{\partial a_{31}}{\partial h_{22}}) \cdot (\frac{\partial h_{22}}{\partial a_{22}}) \cdot (\frac{\partial a_{22}}{\partial w_{222}})$$

$$= (\frac{\partial L}{\partial \hat{y}}) \cdot (\frac{\partial \hat{y}}{\partial a_{31}}) \cdot (\frac{\partial a_{31}}{\partial h_{22}}) \cdot (\frac{\partial h_{22}}{\partial a_{22}}) \cdot (\frac{\partial a_{22}}{\partial w_{222}})$$

$$b = [0 0]$$

$$W_1 = egin{bmatrix} 0.1 & 0.3 & 0.8 & -0.4 \ -0.3 & -0.2 & 0.5 & 0.5 \ -0.3 & 0 & 0.5 & 0.4 \ 0.2 & 0.5 & -0.9 & 0.7 \end{bmatrix}$$

$$W_2 = egin{bmatrix} 0.5 & 0.8 & 0.2 & 0.4 \ 0.5 & 0.2 & 0.3 & -0.5 \end{bmatrix}$$

Multiple paths

- There are 2 different paths connecting w131 with loss function
- Consider all those paths through which gradient is flowing back
- Sum up the gradients along all these paths(2 here)
- ie Apply independent chain rules to all those multiple paths and sum up the derivatives across all these paths and get the total derivative of the loss function w.r.t w131

Can we see one more example?

Learning Algorithm

$$b = [0 \ 0]$$

$$W_1 = egin{bmatrix} 0.1 & 0.3 & 0.8 & -0.4 \ -0.3 & -0.2 & 0.5 & 0.5 \ -0.3 & 0 & 0.5 & 0.4 \ 0.2 & 0.5 & -0.9 & 0.7 \end{bmatrix}$$

$$W_2 = egin{bmatrix} 0.5 & 0.8 & 0.2 & 0.4 \ 0.5 & 0.2 & 0.3 & -0.5 \end{bmatrix}$$

$$x = [2 5 3 3]$$

$$\frac{\partial L}{\partial w_{131}} = (\frac{\partial L}{\partial \hat{y}_1}.\frac{\partial \hat{y}_1}{\partial a_{21}}.\frac{\partial a_{21}}{\partial h_{13}} + \frac{\partial L}{\partial \hat{y}_2}.\frac{\partial \hat{y}_2}{\partial a_{22}}.\frac{\partial a_{22}}{\partial h_{13}}).(\frac{\partial h_{13}}{\partial a_{13}}).(\frac{\partial a_{13}}{\partial w_{131}})$$

$$egin{array}{ll} rac{\partial L}{\partial \hat{y}_1} &= -2(y_1 - \hat{y}_1) &= -0.46 & rac{\partial L}{\partial \hat{y}_2} \ rac{\partial \hat{y}_1}{\partial a_{21}} &= \hat{y}_1 * (1 - \hat{y}_1) * (-a_{22}) & rac{\partial \hat{y}_2}{\partial a_{22}} \ &= -0.079 & \ rac{\partial a_{21}}{\partial h_{13}} &= w_{213} &= 0.20 & rac{\partial a_{22}}{\partial h_{13}} \end{array}$$

$$rac{\partial h_{13}}{\partial a_{13}} = h_{13}*(1-h_{13}) = 0.0979$$

$$rac{\partial L}{\partial w_{131}} = (-2(y_1 - \hat{y}_1) * \hat{y}_1(1 - \hat{y}_1) * w_{213} + -2(y_2 - \hat{y}_2) * \hat{y}_2(1 - \hat{y}_2) * w_{223}) * h_{13}(1 - h_{13}) * x_1$$

$$y = [1 0]$$

$$rac{\partial L}{\partial \hat{y}_2} \; = -2(y_2 - \hat{y}_2) \; = 0.46$$

$$egin{array}{ll} rac{\partial \hat{y}_2}{\partial a_{22}} &= \hat{y}_2 * (1 - \hat{y}_2)(-a_{21}) \ &= -0.293 \ rac{\partial a_{22}}{\partial a_{22}} &= a_{222} = 0.20 \end{array}$$

$$rac{\partial a_{22}}{\partial h_{13}}=w_{223}~=0.30$$

$$rac{\partial a_{13}}{\partial w_{131}}=x_1$$
 , $\ =2$

Hyper parameter tuning

Algorithms

- Vanilla/Momentum /Nesterov GD
- AdaGrad
- RMSProp
- Adam

Strategies

- Batch
- Mini-Batch (32, 64, 128)
- Stochastic
- Learning rate schedule

Network Architectures

- Number of layers
- · Number of neurons

Initialization Methods

- Xavier
- He

Activation Functions

- tanh (RNNs)
- relu (CNNs, DNNs)
- leaky relu (CNNs)

Regularization

- L2
- Early stopping
- Dataset augmentation
- Drop-out
- Batch Normalizat

Namah Shiyaya

