#### Conditional Distribution

Le Wang

# Motivation and Basic Definition

#### Motivation

We are interested in whether or not the relationship exists. But more important, we are interested in predictions.

Given a value of X, what will Y be?

We will discuss the discrete case first, which is completely nonparametric and model-free.

## Classification Problems: A Numerical Example

| ID | Χ | Y |
|----|---|---|
| —- | _ | _ |
| 1  | 1 | 0 |
| 2  | 1 | 0 |
| 3  | 1 | 0 |
| 4  | 2 | 1 |
| 5  | 2 | 0 |
| 6  | 2 | 1 |
| 7  | 2 | 1 |
|    |   |   |

**Questions:** What are your predictions of Y when X = 1, 2, respectively?

#### Definition

**Definition**. Conditional Distribution is a probability distribution for a **sub-population**.

That is, a conditional probability distribution describes the probability that a randomly selected person from a sub-population has the one characteristic of interest.



In a sample

$$Pr[Y = y \mid X = x] = \frac{\sum \mathbb{I}[Y = y, X = x]}{\sum \mathbb{I}[X = x]}$$

In a sample

$$Pr[Y = y \mid X = x] = \frac{\sum \mathbb{I}[Y = y, X = x]}{\sum \mathbb{I}[X = x]}$$
$$= \frac{N \cdot \frac{1}{N} \sum \mathbb{I}[Y = y, X = x]}{N \cdot \frac{1}{N} \sum \mathbb{I}[X = x]}$$

In a sample

$$Pr[Y = y \mid X = x] = \frac{\sum \mathbb{I}[Y = y, X = x]}{\sum \mathbb{I}[X = x]}$$
$$= \frac{N \cdot \frac{1}{N} \sum \mathbb{I}[Y = y, X = x]}{N \cdot \frac{1}{N} \sum \mathbb{I}[X = x]}$$

 $= \frac{\frac{1}{N} \sum \mathbb{I}[Y = y, X = x]}{\frac{1}{N} \sum \mathbb{I}[X = x]}$ 

$$= \frac{N \cdot \frac{1}{N} \sum \mathbb{I}[X = x]}{N \cdot \frac{1}{N} \sum \mathbb{I}[X = x]}$$

$$= \frac{N \cdot \overline{N} \sum \mathbb{I}[Y = y, X = x]}{N \cdot \frac{1}{N} \sum \mathbb{I}[X = x]}$$
$$= \frac{\frac{1}{N} \sum \mathbb{I}[Y = y, X = x]}{\frac{1}{N} \sum \mathbb{I}[X = x]}$$

$$= \frac{\frac{N}{N} \sum \mathbb{I}[X = x]}{\frac{1}{N} \sum \mathbb{I}[X = x]}$$

$$= \Pr[Y = y, X = x]$$

$$= \frac{\Pr[Y = y, X = x]}{\Pr[X = x]}$$

## Joint, Margianl, and Conditional Dists

$$Pr[Y|X] = \frac{Pr[Y, X]}{Pr[X]}$$
$$p(y|x) = \frac{p(x, y)}{p(x)}$$

## Joint, Margianl, and Conditional Dists

$$Pr[Y|X] = \frac{Pr[Y, X]}{Pr[X]}$$

$$p(y|x) = \frac{p(x, y)}{p(x)}$$

$$p(x, y) = p(y \mid x)p(x)$$

Note: We will also use the later equality a lot later.

#### Definition

**Conditional distribution of** Y **given** X is nothing but the distribution of Y for the subsample when X = x.

What is the probability of having Y = 1 when X = 1?

Table 2: Joint Prob

| L  |
|----|
| .4 |
| .1 |
|    |

## joint and conditional Distributions

Table 3: Joint Prob

| 0       | 1       | p(x)                       |
|---------|---------|----------------------------|
| 0.2     | 0.1     | 0.3                        |
| 0.2/0.3 | 0.1/0.3 |                            |
|         | V       | 0.2 0.1<br>0.2/0.3 0.1/0.3 |

### Extensions to Continuous Variable

**Definition** (Greene, Appendix B.8)

$$f(y \mid x) = \frac{f(x,y)}{f(x)}$$

#### Extensions to Continuous Variable

**Definition** (Greene, Appendix B.8)

$$f(y \mid x) = \frac{f(x,y)}{f(x)}$$

$$f(x,y) = f(y \mid x)f(x)$$

### Extensions to More than Two Variables

#### Discrete Variables:

$$Pr[X\&Y|Z] = \frac{Pr[X\&Y\&Z]}{Pr[Z]}$$

$$Pr[Y|X,Z] = \frac{Pr[X\&Y\&Z]}{Pr[X\&Z]}$$

#### **Continuous Variables:**

$$f(x,y|z) = \frac{f(x,y,z)}{f(z)}$$
$$f(y|x,z) = \frac{f(x,y,z)}{f(x,z)}$$

### Extensions to More than Two Variables

$$f(\text{outcome} \mid \text{predictors}) = \frac{f(\text{outcome}, \text{predictors})}{f(\text{predictors})}$$

$$Pr[Y=y] = \mathbb{E}[\mathbb{I}(Y=y)]$$

$$Pr[Y \le y] = \mathbb{E}[\mathbb{I}(Y \le y)]$$

$$Pr[Y = y \mid X] = \mathbb{E}[\mathbb{I}(Y = y)]$$

$$Pr[Y \le y] = \mathbb{E}[\mathbb{I}(Y \le y)]$$

$$Pr[Y = y \mid X] = \mathbb{E}[\mathbb{I}(Y = y) \mid X]$$

$$Pr[Y \le y] = \mathbb{E}[\mathbb{I}(Y \le y)]$$

$$Pr[Y = y \mid X] = \mathbb{E}[\mathbb{I}(Y = y) \mid X]$$

$$Pr[Y \le y \mid X] = \mathbb{E}[\mathbb{I}(Y \le y)]$$

$$Pr[Y = y \mid X] = \mathbb{E}[\mathbb{I}(Y = y) \mid X]$$

$$Pr[Y \le y \mid X] = \mathbb{E}[\mathbb{I}(Y \le y) \mid X]$$

## **Applications**

Transition Matrix and Income Mobility

$$\Pr[Y_t|Y_{t-1}] = \frac{\Pr[Y_t, Y_{t-1}]}{\Pr[Y_{t-1}]}$$

- Predictions for discrete variables (also called classification problem in machine learning)
- 1. Whether or not an email is a spam
- 2. Whether or not an individual is an Asian.
- ▶ Partial Effects: Estimation of the impact of X on Y

## Special Conditional Distribution

- 1. Multivariate Normal Distribution
- 2. Truncated Distribution.

## Special Conditional Distribution (I)

Greene, Appendix B. on Multivariate Normal Distribution Let

$$\left(\begin{array}{c} \mathbf{X} \\ \mathbf{Y} \end{array}\right) \sim \mathcal{N}\left(\left(\begin{array}{c} \mu_{X} \\ \mu_{Y} \end{array}\right), \left(\begin{array}{cc} \Sigma_{XX} & \Sigma_{XY} \\ \Sigma_{YX} & \Sigma_{YY} \end{array}\right)\right)$$

where  $\Sigma_{XX}$  is positive definite. Then,

## Special Conditional Distribution (I)

Greene, Appendix B. on Multivariate Normal Distribution Let

$$\left(\begin{array}{c} \mathbf{X} \\ \mathbf{Y} \end{array}\right) \sim \mathcal{N}\left(\left(\begin{array}{c} \mu_{X} \\ \mu_{Y} \end{array}\right), \left(\begin{array}{cc} \Sigma_{XX} & \Sigma_{XY} \\ \Sigma_{YX} & \Sigma_{YY} \end{array}\right)\right)$$

where  $\Sigma_{XX}$  is positive definite. Then,

$$Y|X \sim \mathcal{N}(\mu_{Y|X}, \Sigma_{Y|X})$$

## Special conditional Distributions (II): Truncated Distribution

#### Chapter 19

Suppose that we only observe individuals who receive wage offers greater than L will enter the labor force. What is the density function for wages among the sample of workers?

#### Theorem 19.1

$$f^*(y) = f(y|Y > L)$$
  
=  $\frac{f(y)}{\Pr[Y > L]}$ 

 $=\frac{f(y)}{[1-F^*(L)]}$ 

Intuition: The original density function is no longer a proper density function since it does not integrate to one. Then, how can we reflect this?

We inflate the density by  $\frac{1}{\Pr[Y>L]}$ !

| In your <b>homework</b> : you will be asked to show the result above holds. Below is some hint. |  |
|-------------------------------------------------------------------------------------------------|--|
|                                                                                                 |  |

In your **homework**: you will be asked to show the result above holds. Below is some hint.

$$f(y \mid y > L) = \frac{d}{dy}F(y \mid Y > L)$$

In your **homework**: you will be asked to show the result above holds. Below is some hint.

 $f(y \mid y > L) = \frac{d}{dy}F(y \mid Y > L)$ 

 $= \frac{d}{dv} \frac{\Pr[Y \le y, Y > L]}{\Pr[Y > I]}$ 

#### Chi-square Density with 4 degrees of freedom



#### Chi-square Density with 4 degrees of freedom



Using the definition, we can easily derive the expectation of the trancated variable later:

$$\mathbb{E}[y \mid y > L] = \int_{L}^{\infty} y f(y \mid y > L) dy$$

**Question**: Which one is bigger,  $\mathbb{E}[y]$  or  $\mathbb{E}[y \mid y > L]$ ?

A special truncated distribution: Truncated Normal

Suppose that  $Y \sim \mathcal{N}(\mu, \sigma^2)$ . Then the following results hold

$$\Pr[Y > L] = 1 - \Phi(\frac{L - \mu}{\sigma}) = 1 - \Phi(\alpha)$$

A special truncated distribution: Truncated Normal

Suppose that  $Y \sim \mathcal{N}(\mu, \sigma^2)$ . Then the following results hold

$$\Pr[Y > L] = 1 - \Phi(\frac{L - \mu}{\sigma}) = 1 - \Phi(\alpha)$$

$$f(y|Y > L) = \frac{f(y)}{1 - \Phi(\alpha)}$$

$$= \frac{\frac{1}{\sigma}\phi(\frac{y - \mu}{\sigma})}{1 - \Phi(\alpha)}$$

where  $\alpha = \frac{L-\mu}{\sigma}$ ,  $\phi(\cdot)$  ( $\Phi(\cdot)$ ) is the **standard** normal density (distribution) function.

Later we will use this density function to derive moments of moments of the truncated normal variables.

### Conditional Distribution and Related Concepts and Results

#### Conditional Distribution and Related Concepts and Results

- 1. Conditional distribution and indepdence
- Conditional distribution and law of total probability (discrete and continuous cases)
- 3. Conditional distribution and Bayes' Rule
- 4. Conditional distribution and Skorohod Representation

$$p(x,y) = p(x)p(y)$$

$$p(x,y)=p(x)p(y)$$

$$p(y|x) = \frac{p(y,x)}{p(x)}$$

$$p(x,y)=p(x)p(y)$$

$$p(y|x) = \frac{p(y,x)}{p(x)}$$
$$= \frac{p(x)p(y)}{p(x)}$$

$$p(x,y)=p(x)p(y)$$

$$p(y|x) = \frac{p(y,x)}{p(x)}$$
$$= \frac{p(x)p(y)}{p(x)}$$
$$= p(y)$$

**Independence** implies that conditional distribution is **marginal** distribution!

Intuitively, NO predictive power at all! as it should be for independent variables!

#### Equilvalent Definitions of Dependence

For Y = 0,1 and X = 0,1, there are also alternative definitions of independence. These concepts are sometimes called **risk differences**, **risk ratio**, and **odds ratios**, respectively.

$$Pr[Y = 1] = Pr[Y = 1|X = 1] = Pr[Y = 1|X = 0]$$

#### Equilvalent Definitions of Dependence

For Y=0,1 and X=0,1, there are also alternative definitions of independence. These concepts are sometimes called **risk differences**, **risk ratio**, and **odds ratios**, respectively.

$$Pr[Y = 1] = Pr[Y = 1|X = 1] = Pr[Y = 1|X = 0]$$
 
$$\frac{Pr[Y = 1|X = 1]}{Pr[Y = 1|X = 0]} = 1$$

#### Equilvalent Definitions of Dependence

For Y=0,1 and X=0,1, there are also alternative definitions of independence. These concepts are sometimes called **risk differences**, **risk ratio**, and **odds ratios**, respectively.

$$\begin{aligned} \Pr[Y = 1] &= \Pr[Y = 1 | X = 1] = \Pr[Y = 1 | X = 0] \\ &\frac{\Pr[Y = 1 | X = 1]}{\Pr[Y = 1 | X = 0]} = 1 \\ &\frac{\Pr[Y = 1 | X = 1]}{\Pr[Y = 1 | X = 0]} \cdot \frac{\Pr[Y = 0 | X = 0]}{\Pr[Y = 0 | X = 1]} = 1 \end{aligned}$$

#### Conditional Distribution and Related Concepts and Results

- 1. Conditional distribution and **indepdence**
- Conditional distribution and law of total probability (discrete and continuous cases)

Construct from Joint Distribution

$$\Pr[Y = y] = p(y) = \sum p(x_i, y)$$

Construct from Joint Distribution

$$Pr[Y = y] = p(y) = \sum p(x_i, y)$$

 Construct from conditional distribution (a weighted sum of conditional probabilities)

$$Pr[Y = y] = p(y)$$

$$= \sum p(x_i, y)$$

Construct from Joint Distribution

$$Pr[Y = y] = p(y) = \sum p(x_i, y)$$

 Construct from conditional distribution (a weighted sum of conditional probabilities)

$$Pr[Y = y] = p(y)$$

$$= \sum p(y|x_i) \cdot p(x_i)$$

Construct from Joint Distribution

$$\Pr[Y = y] = p(y) = \sum p(x_i, y)$$

 Construct from conditional distribution (a weighted sum of conditional probabilities)

$$Pr[Y = y] = p(y)$$

$$= \sum p(y|x_i) \cdot p(x_i)$$

$$= Pr[Y = y|X = x_1] \cdot Pr[X = x_1] +$$

$$Pr[Y = y|X = x_2] \cdot Pr[X = x_2]$$

$$+ \dots + Pr[Y = y|X = x_n] \cdot Pr[X = x_n]$$

$$p(y) = \sum p(y \mid x_i) \cdot p(x_i)$$
$$p(x) = \sum p(x \mid y_i) \cdot p(y_i)$$

We will use the latter equality as well in showing general Bayes' Rule.

#### Law of Total Probability

#### **Continuous Variables**

$$f(y) = \int f(y|x)f(x)dx$$

It is easy to show that the law of total probability is satisfied based on the definition.

$$f(y) = \int f(x, y) dx$$
$$= \int f(y|x) f(x) dx$$

$$f(y) = \int f(y|x)f(x)dx$$

This expression is very useful, e.g., for thinking how the distribution of y is determined. It consists of two parts

- 1.  $f(y \mid x)$ : how y is linked to x (for example, the wage determination process linking education to wages)
- 2. f(x): the distribution of x (e.g., education)

### Law of Total Probability (CDF version)

We can also simlarly show that the following holds

$$F(y) = \int F(y|x)f(x)dx$$

This result is particularly useful when we would like to use conditional distribution (conditional quantile function) to recover marginal distribution.

**Intuition:** The percentage of values smaller than y is equal to the weighted average of the percentage of values smaller than y in every subgroup with the weight being the probability of the subgroup.

$$F(y) = \int_{-\infty}^{y} f(t)dt$$

$$F(y) = \int_{-\infty}^{y} f(t)dt$$
$$= \int_{-\infty}^{y} \int f(t|x)f(x)dxdt$$

$$F(y) = \int_{-\infty}^{y} f(t)dt$$
$$= \int_{-\infty}^{y} \int f(t|x)f(x)dxdt$$
$$= \int_{-\infty}^{y} f(t|x)dtf(x)dx$$

$$F(y) = \int_{-\infty}^{y} f(t)dt$$

$$= \int_{-\infty}^{y} \int f(t|x)f(x)dxdt$$

$$= \int \int_{-\infty}^{y} f(t|x)dtf(x)dx$$

$$= \int F(y|x)f(x)dx$$

We can also simlarly show that the following holds

 $F(y) = \sum F(y|x)p(x)$ 

## Application 1: Partial Identification of the Distribution in the Presence of Sample Selection

Bounding the wage distribution in the sample selection:

We do not know the wages for women who do not work. In other words, we can only observe wages for those who do work (S=1) and have the knowledge of conditional distribution of wages

$$F(y|S=1)$$

**Question** is: What is F(y)?

$$F(y) = F(y|S = 1) \Pr[S = 1] + F(y|S = 0) \Pr[S = 0]$$

$$F(y) = F(y|S = 1) \Pr[S = 1] + F(y|S = 0) \Pr[S = 0]$$

▶ Upper Bound: F(y|S=0)=1 ⇒

$$F^{UB}(y) = F(y|S=1) \Pr[S=1] + \Pr[S=0]$$

$$F(y) = F(y|S = 1) \Pr[S = 1] + F(y|S = 0) \Pr[S = 0]$$

▶ Upper Bound: F(y|S=0)=1  $\Longrightarrow$ 

$$F^{UB}(y) = F(y|S=1) \Pr[S=1] + \Pr[S=0]$$

▶ Lower Bound: F(y|S=0)=1  $\Longrightarrow$ 

$$F^{LB}(y) = F(y|S=1) \Pr[S=1]$$

Such case is also called worst-case bounds

Let's draw a graph of these bounds

## Application 2: Decomposition of Wage Distribution between Groups

 $F^{1}(y)$  and  $F^{0}(y)$  are wage distributions for men and women.

The Gender Gap is defined as

$$F^{1}(y) - F^{0}(y) = [F^{1}(y) - F^{c}(y)] + [F^{c}(y) - F^{0}(y)]$$
Structural effects
Composition effects

**Question:** How to define the counterfactual so that it reflects the wage distribution for individuals in group 1 under the wage structure for group 0 but holding fixed the distribution of characteristics, X?

## Application 2: Decomposition of Wage Distribution between Groups

How do wages, y, relate to the characteristics, x? Through the conitional distribution!

$$F(y) = \int F(y|x)f(x)dx$$

## Application 2: Decomposition of Wage Distribution between Groups

How do wages, y, relate to the characteristics, x? Through the conitional distribution!

$$F(y) = \int F(y|x)f(x)dx$$

$$F^{c}(y) = \int F^{0}(y|x)f^{1}(x)dx$$

#### Conditional Distribution and Related Concepts and Results

- 1. Conditional distribution and **indepdence**
- Conditional distribution and law of total probability (discrete and continuous cases)
- 3. Conditional distribution and Bayes' Rule

## (General) Baye's Rule

$$p(y|x) = \frac{p(y,x)}{p(x)}$$

## (General) Baye's Rule

$$p(y|x) = \frac{p(y,x)}{p(x)}$$
$$= \frac{p(x|y) \cdot p(y)}{p(x)}$$

### (General) Baye's Rule

$$p(y|x) = \frac{p(y,x)}{p(x)}$$

$$= \frac{p(x|y) \cdot p(y)}{p(x)}$$

$$= \frac{p(x|y) \cdot p(y)}{\sum_{j} p(x|y_{j}) \cdot p(y_{j})}$$

The last equality comes from the **law of total probability**.

We can similarly write the rule for the continuous case (simply by

 $f(y|x) = \frac{f(x|y) \cdot f(y)}{f(x)} = \frac{f(x|y) \cdot f(y)}{\int f(x|y) \cdot f(y) dy}$ 

### (General) Baye's Rule (Skip)

Proof:

$$f(y|x) = \frac{f(x,y)}{f(x)}$$

$$f(x|y) = \frac{f(x,y)}{f(y)} \implies f(x,y) = f(x|y) \cdot f(y)$$

$$f(y|x) = \frac{f(x,y)}{f(x)}$$

$$= \frac{f(x|y) \cdot f(y)}{f(x)}$$

### Bayes' Rule (Mixed/Hybrid Variables)

$$f_{X|D=1}(\cdot) = \frac{\Pr[D=1|X] \cdot f(x)}{\Pr[D=1]}$$

Such result is useful for analyzing the distribution by various types (e.g., compliers in the local average treatment effects literature)

**Example:** The distribution of, say, education (X) given that someone participated in a job training program (D=1)

With Bayes' Rule and law of total probability, we can derive the counterfactual distribution!

How do wages, y, relate to the characteristics, x? Through the conitional distribution!

$$F(y) = \int F(y|x)f(x)dx$$

How do wages, y, relate to the characteristics, x? Through the conitional distribution!

$$F(y) = \int F(y|x)f(x)dx$$

$$F^{c}(y) = \int F^{0}(y|x)f^{1}(x)dx$$

How do actually recover the counterfactual distribution,  $F^c(y)$  and all the characteristics of the distribution? Reweighting!

$$F^{c}(y) = \mathbb{E}[w \cdot \mathbb{I}[Y \leq y] \mid D = 0]$$

where 
$$w = \frac{p(x)}{1-p(x)} \frac{1-p}{p}$$
. Here,  $p = \Pr[D=1]$  and  $p(x) = \Pr[D=1|X]$ 

$$F^{c}(y) = \int F^{0}(y|x)f^{1}(x)dx$$

$$F^{c}(y) = \int F^{0}(y|x)f^{1}(x)dx$$
$$= \int F^{0}(y|x)\frac{f^{1}(x)}{f^{0}(x)}f^{0}(x)dx$$

$$F^{c}(y) = \int F^{0}(y|x)f^{1}(x)dx$$

$$= \int F^{0}(y|x)\frac{f^{1}(x)}{f^{0}(x)}f^{0}(x)dx$$

$$= \int F^{0}(y|x)\frac{f_{X|D=1}(x)}{f_{X|D=0}(x)}f_{X|d=0}(x)dx$$

Groups (Skip in Class)
$$F^{c}(y) = \int F^{0}(y|x)f^{1}(x)dx$$

$$= \int F^{0}(y|x)\frac{f^{1}(x)}{f^{0}(x)}f^{0}(x)dx$$

$$= \int F^{0}(y|x) \frac{f^{1}(x)}{f^{0}(x)} f^{0}(x) dx$$

$$= \int F^{0}(y|x) \frac{f_{X|D=1}(x)}{f_{X|D=0}(x)} f_{X|d=0}(x) dx$$

$$= \int F^{0}(y|x) \frac{\Pr[D=1|X] \cdot f(x)}{\Pr[D=1]} f_{X|D=0}(x) dx$$

$$= \int F'(y|x) \frac{f^{0}(x)}{f^{0}(x)} f'(x) dx$$

$$= \int F^{0}(y|x) \frac{f_{X|D=1}(x)}{f_{X|D=0}(x)} f_{X|d=0}(x) dx$$

$$= \int F^{0}(y|x) \frac{\frac{\Pr[D=1|X] \cdot f(x)}{\Pr[D=1]}}{\frac{1-\Pr[D=1|X] \cdot f(x)}{1-\Pr[d=1]}} f_{X|D=0}(x) dx$$

Groups (Skip in Class)
$$F^{c}(y) = \int F^{0}(y|x)f^{1}(x)dx$$

$$= \int F^{0}(y|x)\frac{f^{1}(x)}{f^{0}(x)}f^{0}(x)dx$$

$$= \int F^{0}(y|x) \frac{f_{X|D=1}(x)}{f_{X|D=0}(x)} f_{X|d=0}(x)$$

$$= \int F^{0}(y|x) \frac{f_{X|D=1}(x)}{f_{X|D=0}(x)} f_{X|d=0}(x) dx$$

$$= \int F^{0}(y|x) \frac{\frac{\Pr[D=1|X] \cdot f(x)}{\Pr[D=1]}}{\frac{1-\Pr[D=1|X] \cdot f(x)}{1-\Pr[d=1]}} f_{X|D=0}(x) dx$$

$$= \int F'(y|x) \frac{1 - \Pr[D=1|X] \cdot f(x)}{1 - \Pr[d=1]} IX | D$$

$$= \int F^{0}(y|x) \frac{\frac{p(x)}{p}}{1 - p(x)} f_{X|D=0}(x) dx$$

From Skip in Class)
$$F^{c}(y) = \int F^{0}(y|x)f^{1}(x)dx$$

$$= \int F^{0}(y|x)\frac{f^{1}(x)}{f^{0}(x)}f^{0}(x)dx$$

$$= \int F^{0}(y|x)\frac{f_{X|D=1}(x)}{f_{X|D=0}(x)}f_{X|d=0}(x)dx$$

$$= \int F^{0}(y|x) \frac{f_{X|D=1}(x)}{f_{X|D=0}(x)} f_{X|d=0}(x) dx$$

$$= \int F^{0}(y|x) \frac{\frac{\Pr[D=1|X] \cdot f(x)}{\Pr[D=1]}}{\frac{1-\Pr[D=1|X] \cdot f(x)}{1-\Pr[d=1]}} f_{X|D=0}(x) dx$$

$$= \int F^{0}(y|x) \frac{\frac{1}{1-\Pr[D=1|X] \cdot f(x)}}{\frac{1-\Pr[D=1|X] \cdot f(x)}{1-\Pr[d=1]}} f_{X|D=0}(x) dx$$

$$= \int F^{0}(y|x) \frac{\frac{p(x)}{1-p(x)}}{\frac{1-p(x)}{1-p}} f_{X|D=0}(x) dx$$

$$= \int F^{0}(y|x) \frac{p(x)}{1-p(x)} \cdot \frac{1-p}{p} f_{X|D=0}(x) dx$$

# Application 2: Decomposition of Wage Distribution

Application 2: Decomposition of Wage Distribution between Groups (Skip in Class)
$$F^{c}(y) = \int F^{0}(y|x)f^{1}(x)dx$$

$$= \int F^{0}(y|x)\frac{f^{1}(x)}{f^{0}(x)}f^{0}(x)dx$$

$$= \int F^{0}(y|x)\frac{f_{X|D=1}(x)}{f_{X|D=0}(x)}f_{X|d=0}(x)dx$$

$$= \int F^{0}(y|x) \frac{f_{X|D=1}(x)}{f_{X|D=0}(x)} f_{X|d=0}(x) dx$$

$$= \int F^{0}(y|x) \frac{\frac{\Pr[D=1|X] \cdot f(x)}{\Pr[D=1]}}{\frac{1-\Pr[D=1|X] \cdot f(x)}{1-\Pr[d=1]}} f_{X|D=0}(x) dx$$

$$= \int F^{0}(y|x) \frac{\frac{p(x)}{p}}{\frac{1-p(x)}{p}} f_{X|D=0}(x) dx$$

 $= \mathbb{E}[w \cdot \mathbb{I}[Y < y]|D = 0]$ 

$$= \int F^{0}(y|x) \frac{f^{1}(x)}{f^{0}(x)} f^{0}(x) dx$$

$$= \int F^{0}(y|x) \frac{f_{X|D=1}(x)}{f_{X|D=0}(x)} f_{X|d=0}(x) dx$$

$$\frac{\Pr[D=1|X] \cdot f(x)}{\Pr[D=1|X] \cdot f(x)}$$

 $= \int F^{0}(y|x) \frac{p(x)}{1 - p(x)} \cdot \frac{1 - p}{p} f_{X|D=0}(x) dx$ 

#### Conditional Distribution and Related Concepts and Results

- 1. Conditional distribution and indepdence
- Conditional distribution and law of total probability (discrete and continuous cases)
- 3. Conditional distribution and Bayes' Rule
- 4. Conditional distribution and Skorohod Representation

**Theorem** Conditioning on X, for a random variable Y, there exists  $U \sim \mathcal{U}(0,1)$  (the standard uniform distribution) such that

$$Y = F^{-1}(U|X) = m(X, U)$$

holds almost surely. This m(X, U) is the quantile function.

**Proof.** Let's show it for the simple case where Y is continuous. In other words, F(y|x) is strictly increasing, and so is its inverse function. Define U such that

$$F(Y|X) = U$$

**Proof.** Let's show it for the simple case where Y is continuous. In other words, F(y|x) is strictly increasing, and so is its inverse function. Define U such that

$$F(Y|X) = U$$

And let y be the  $\tau^{th}$  quantile of the conditional distribution

$$F(y|X) = \tau$$

**Proof.** Let's show it for the simple case where Y is continuous. In other words, F(y|x) is strictly increasing, and so is its inverse function. Define U such that

$$F(Y|X) = U$$

And let y be the  $au^{th}$  quantile of the conditional distribution

$$F(y|X) = \tau$$

$$\Pr[U \le \tau | X] = \Pr[F^{-1}(U|X) \le F^{-1}(\tau | X) | X]$$

**Proof.** Let's show it for the simple case where Y is continuous. In other words, F(y|x) is strictly increasing, and so is its inverse function. Define U such that

$$F(Y|X) = U$$

And let y be the  $\tau^{th}$  quantile of the conditional distribution

$$F(y|X) = \tau$$

$$Pr[U \le \tau | X] = Pr[F^{-1}(U|X) \le F^{-1}(\tau | X) | X]$$
$$= Pr[Y \le y | X]$$

**Proof.** Let's show it for the simple case where Y is continuous. In other words, F(y|x) is strictly increasing, and so is its inverse function. Define U such that

$$F(Y|X) = U$$

And let y be the  $\tau^{th}$  quantile of the conditional distribution

$$F(y|X) = \tau$$

$$Pr[U \le \tau | X] = Pr[F^{-1}(U|X) \le F^{-1}(\tau | X) | X]$$
$$= Pr[Y \le y | X]$$
$$= F(y|X)$$

**Proof.** Let's show it for the simple case where Y is continuous. In other words, F(y|x) is strictly increasing, and so is its inverse function. Define U such that

$$F(Y|X) = U$$

And let y be the  $au^{th}$  quantile of the conditional distribution

$$F(y|X) = \tau$$

$$Pr[U \le \tau | X] = Pr[F^{-1}(U|X) \le F^{-1}(\tau | X) | X]$$

$$= Pr[Y \le y | X]$$

$$= F(y|X)$$

$$= \tau$$

$$\implies U|X \sim \mathcal{U}(0,1).$$

| <b>Question:</b> Are $U$ and $X$ dependent? |  |
|---------------------------------------------|--|
|                                             |  |

**Question:** Are U and X dependent?

**Answer:** Yes. You can show the following is true.

**Question:** Are U and X dependent?

**Answer:** Yes. You can show the following is true.

$$Pr[U \le \tau \mid X] = Pr[U \le \tau]$$

**Hint:** You can use the CDF version of the law of total probability.

### Conditional Distribution and Conditional

Independence

#### Conditional Distribution and Independence

$$f(y|x) = f(y)$$

This result immediately follows from the fact that independence implies that f(x, y) = f(x)f(y)

#### Conditional Independence

$$x \perp y|z$$

if and only if the following statements are satisfied

$$f(x,y|z) = f(x|z)f(y|z)$$

$$f(y|x,z) = f(y|z)$$

Note that these results extend to many variables

$$x \perp (y_1, y_2, y_3, \dots, y_k) \mid z$$

if and only if **one** of the following **equivalent** statements are satisfied

$$f(x, y_1, y_2, y_3, \dots, y_k | z) = f(x|z)f(y_1, y_2, y_3, \dots, y_k | z)$$

Note that these results extend to many variables

$$x \perp (y_1, y_2, y_3, \dots, y_k) \mid z$$

if and only if **one** of the following **equivalent** statements are satisfied

$$f(x, y_1, y_2, y_3, \dots, y_k | z) = f(x|z)f(y_1, y_2, y_3, \dots, y_k | z)$$

$$f(y_1, y_2, y_3, \ldots, y_k \mid x, z) = f(y_1, y_2, y_3, \ldots, y_k \mid z)$$

Note that these results extend to many variables

$$x \perp (y_1, y_2, y_3, \dots, y_k) \mid z$$

if and only if **one** of the following **equivalent** statements are satisfied

$$f(x, y_1, y_2, y_3, \dots, y_k|z) = f(x|z)f(y_1, y_2, y_3, \dots, y_k|z)$$

$$f(y_1, y_2, y_3, ..., y_k \mid x, z) = f(y_1, y_2, y_3, ..., y_k \mid z)$$

$$f(x | y_1, y_2, y_3, ..., y_k, z) = f(x | z)$$

#### Applications in the treatment effects

#### **Potential Outcome Framework**

Consider the impacts of job training program on wages, then for each state (whether or not one participates in the program, D=0,1), there is a potential wage offer

$$Y(0) \text{ if } D = 0$$
  
  $Y(1) \text{ if } D = 1$ 

We never observe both, but only one of them. The observed outcome can be written as

#### Applications in the treatment effects

#### **Potential Outcome Framework**

Consider the impacts of job training program on wages, then for each state (whether or not one participates in the program, D=0,1), there is a potential wage offer

$$Y(0) \text{ if } D = 0$$
  
  $Y(1) \text{ if } D = 1$ 

We never observe both, but only one of them. The observed outcome can be written as

$$Y = D \cdot Y(1) + (1 - D) \cdot Y(0)$$

#### Application 1: Strong Ignorability Assumption

Variants of this assumption is employed to identify models such as OLS and Propensity Score Matching

$$(Y(0), Y(1)) \perp D \mid X$$

## Application 2: Marginal, Conditional, and Joint Independence

$$(Y(0), Y(1)) \perp D$$

Does marginal independence imply the joint depedence?

## Application 2: Marginal, Conditional, and Joint Independence

$$(Y(0), Y(1)) \perp D$$

Does marginal independence imply the joint depedence?

Answer No!

#### What do we need?

The following result states one of the ways (with two conditions) to ensure joint independence:

$$Y(1) \perp D \mid Y(0)$$

and

$$Y(0) \perp D$$

In other words, these two conditions imply that

$$(Y(1), Y(0)) \perp D$$

### Application 2: Marginal, Conditional, and Joint Independence

Proof: Note I use lower case for a specific value

$$Pr[d|y_1, y_0] = \dots$$
 (you fill in here) =  $Pr[d]$ 

### Application 2: Marginal, Conditional, and Joint Independence

Proof: **Note** I use lower case for a specific value

$$Pr[d|y_1, y_0] = \dots$$
 (you fill in here) =  $Pr[d]$ 

Or, you can start with joint distribution (then by factoring out  $f(y_0)$ )

$$f(y_1, y_0, d) = \dots$$
 (you fill in here)  
=  $\dots$  (you fill in here)  
=  $f(d)f(y_1, y_0)$ 

This is left as a homework question.

#### Why care about marginals?

Why can we just assume joint dependence to estiamte the effects? Consider the following model:

$$D = \mathbb{I}[Y(1) \geq Y(0)]$$

Joint indepedence rules out selection based on personal gains,  $y_1-y_0\geq 0$ . Such case is economically uninteresting.

### Conditional Indpendence (Some Basic Properties)

Angrist (1997), Conditional Indpedence in Sample Selection Models, *Economics Letters* 

**Lemma** Let  $R_1$ ,  $R_2$ ,  $R_3$  and  $R_4$  be random variables defined on a common probability space with joint proability measure. Then the following are equivalent.

- $R_1 \perp R_2 | R_3$  and  $R_1 \perp R_4 | (R_2, R_3)$
- $ightharpoonup R_1 \perp (R_2, R_4) | R_3$
- $R_1 \perp R_4 | R_3$  and  $R_1 \perp R_2 | (R_3, R_4)$

Note that

► 
$$R_1 \perp R_2 | R_3$$
 and  $R_1 \perp R_4 | (R_2, R_3)$   
►  $R_1 \perp (R_2, R_4) | R_3$ 

implies that (the unconditional one is just omitting  $R_3$ ), which exactly what we show earlier!

$$ightharpoonup R_1 \perp R_2$$
 and  $R_1 \perp R_4 | R_2$ 

► 
$$R_1 \perp R_2$$
 and  $R_1 \perp R_4 | R_2$   
►  $R_1 \perp (R_2, R_4)$