Technische Universität München

BGCE Project: CAD – Integrated Topology Optimization

BGCE Second Milestone Meeting

S. Joshi, J.C. Medina, F. Menhorn, S. Reiz, B. Rüth, E. Wannerberg, A. Yurova November 5, 2015

Contents

Motivation

Current Design Process:

- · Iterative and redundant
- Time consuming

Motivation

Current Design Process:

- · Iterative and redundant
- Time consuming

Topology optimization

 Promoted by additive manufacturing

Motivation

Current Design Process:

- · Iterative and redundant
- Time consuming

Topology optimization

 Promoted by additive manufacturing

Focus:

Convert optimized geometry to lightweight and scalable CAD formats

CAD design

STL interface

Voxelized topology

Specification of loads and fixtures

Optimized topology

Surface extraction

Parametrized CAD-geometries

Iterative design process

Schedule & Milestones

Schedule:

Schedule & Milestones

Schedule: (current)

Divide and Conquer

Project Manager

Team Leader

C++ Implementation

Project management

Contents

Status

Last milestone

- Manual voxelization using CVMLCPP
- √ "Hard coded" script for ToPy input
- Topology optimized geometry using ToPy
- Recognition of boundary conditions

Today

- √ Voxelization with OpenCascade
- Extraction of loads, fixtures and active elements through colouring
- ✓ Automatic "one click" pipeline to surface reconstruction

But what does the user see?

But what does the user see?

Contents

Status

Last milestone

① Surface reconstruction with the VTK Toolbox

Today

- Extraction of voxel data from Topy
- √ 3D Dual Contouring implementation
- Coarsening and non-manifold edge treatment
- Projection of datapoints onto quads and respective parametrization
- (b) Interface to NURBS

From Voxel to Mesh Geometry

- Extract isosurface from voxel information
- Algorithms: Marching Cubes, Dual Contouring, Extended Models
- Problems with VTK's Marching Cube implementation

From [4],[5]

Dual Contouring

- Python implementation Use of powerful libraries, including VTK
- Output: Closed surface made out of quads
- Coarsening is needed for surface fitting algorithms

Dual Contouring

- Python implementation Use of powerful libraries, including VTK
- Output: Closed surface made out of quads
- Coarsening is needed for surface fitting algorithms

Dual Contouring — Problems

- Non-manifold edges appear
- One edge can only belong to two quads for the surface to be closed
- Special treatments in the implementation to avoid them

Dual Contouring — Problems

- Non-manifold edges appear
- One edge can only belong to two quads for the surface to be closed
- Special treatments in the implementation to avoid them

Dual Contouring — Input

- Interface between Topology Optimization and Surface Extraction
- Special implementation to use voxel data from ToPy as input

Demo

Projection and Parametrization

- Points from finer grid are projected to quads of the coarser grid
- Parameters u and v are found for each quad
- This information is needed for the algorithms in the last part of the pipeline

Contents

B–Spline

$$\vec{S}(u,v) = \sum_{i,j=1}^{n,m} \vec{C}_{i,j} N_i^{\rho}(u) N_j^{\rho}(v),$$

where p – degree of the B–Spline surface and n, m – number of control points in each direction.

B-Splines

- offer great flexibility for handling arbitrary shapes
- are CAD-standard

Engineers are working with CAD

B–Spline Fitting Pipeline [2]

Status

Last milestone

- Automatic patch selection
- Parametrization of obtained patches
- B—spline fitting using least squares
- (b) Smooth connection of patches
- Conversion back to CAD

Today

- ✓ Automatic patch selection moved to the surface extraction part
- Parametrization of obtained patches moved to the surface extraction part
- √ B—spline fitting using least squares modified
- √ Smooth connection of patches
- Conversion back to CAD

Control mesh

Refined control mesh

Bezier control points

B-Spline patch

Peters' surface

Long way to smoothness

Main ideas

- Use the mesh obtained from Dual Contouring as a control mesh
- Modify the fitting step to take advantage of the Peters' scheme

$$\downarrow$$

$$E_{dist}(V_x) = \sum_{i=1}^{N} \|P_i - y_i V_x\|_2^2 \rightarrow min,$$

 y_i - coefficients obtained from the Peters' scheme theory.

Long way to smoothness

Main ideas

- Use the mesh obtained from Dual Contouring as a control mesh
- Modify the fitting step to take advantage of the Peters' scheme

$$\downarrow E_{dist}(V_x) = \sum_{i=1}^{N} \|P_i - y_i V_x\|_2^2 \rightarrow min,$$

 y_i - coefficients obtained from the Peters' scheme theory.

What is achieved?

- Smoothness of the fitted surface is now guaranteed by construction
- Fitting of more complex shapes achieved

Improved pipeline[3]

Possible optimizations

- Introduction of the fairness functional in order to deal with more complex shapes
- Implementation of the adaptive refinement in order to control a maximum error tolerance
- Implementation of the parameter correction for the improved pipeline

Contents

What is done? What is next?

- Topology Optimization
 - √ Pipeline from CAD model to optimized voxel model
 - User input of boundary conditions
 - (b) Support for complex geometries
 - GUI for user interaction

What is done? What is next?

- Topology Optimization
 - √ Pipeline from CAD model to optimized voxel model
 - User input of boundary conditions
 - ① Support for complex geometries
 - GUI for user interaction
- Surface Extraction
 - Dual Contouring for simple geometries
 - Provide necessary data for Surface Fitting
 - Unterfaces
 - Adaptive and topology safe Dual Contouring

What is done? What is next?

- Topology Optimization
 - ✓ Pipeline from CAD model to optimized voxel model
 - User input of boundary conditions
 - (b) Support for complex geometries
 - GUI for user interaction
- Surface Extraction
 - Dual Contouring for simple geometries
 - Provide necessary data for Surface Fitting
 - (b) Interfaces
 - Adaptive and topology safe Dual Contouring
- Surface Fitting
 - √ B–spline fitting using least squares
 - Smooth connection of patches using Peters' scheme
 - Conversion back to CAD

Remaining questions

Python

- First part of the pipeline is in C++
- Second part of the pipeline is now in Python
- Easy to port from the original MATLAB prototypes

C++

- First part of the pipeline is in C++
- Second part of the pipeline is now in Python
- ⊖ Cumbersome to implement

Remaining questions

Python

- First part of the pipeline is in C++
- Second part of the pipeline is now in Python
- Easy to port from the original MATLAB prototypes

ToPy Problem

Current implementation is using ToPy

C++

- First part of the pipeline is in C++
- Second part of the pipeline is now in Python
- Cumbersome to implement

Remaining questions

Python

- First part of the pipeline is in C++
- Second part of the pipeline is now in Python
- Easy to port from the original MATLAB prototypes

ToPy Problem

- Current implementation is using ToPy
- → ToPy is not available any more!

C++

- First part of the pipeline is in C++
- Second part of the pipeline is now in Python
- Cumbersome to implement

Thank you for your attention!

Literature

- William Hunter. "Predominantly solid-void three-dimensional topology optimisation using open source software"
- Gerrit Becker, Michael Schäfer, Antony Jameson. "An advanced NURBS fitting procedure for post-processing of grid-based shape optimizations"
- Matthias Eck, Hugues Hoppe. "Automatic Reconstruction of B-Spline Surfaces of Arbitrary Topological Type"
- Greg Turk, Marc Levoy "Stanford Bunny"
- Tao Ju, Frank Losasso, Scott Schaefer, Joe Warren. "Dual contouring of hermite data"

Projection and Parametrization on arbitrary quads

find least squares plane approximating quad

DC sphere

with plane quads

Projection and Parametrization on arbitrary quads

- 1. find least squares plane approximating quad
- 2. projection of datapoint onto plane

Coordinate transformation

system with basis

$$B_{BAD} = \left(\vec{n} \quad \vec{AB} \quad \vec{AD} \right)$$

yields

$$(B_{BAD})^{-1} P_1 = (\begin{array}{ccc} d & u & v \end{array})^T$$

Projection and Parametrization on arbitrary quads

- 1. find least squares plane approximating quad
- 2. projection of datapoint onto plane
- **3.** find corresponding parameters $[u, v] \in [0, 1]^2$

Problem:

$$\checkmark$$
 for P_1 : $(u, v) = (0.5, 0.4)$

$$\nearrow$$
 for P_2 : $(u, v) = (1, 1)$

Solution:

- **1.** if we get u + v > 1
- 2. use B_{BCD} instead of B_{BAD}
- 3. set u = 1 u, v = 1 v