```
In [1]: # The normal imports
    import numpy as np
    from numpy.random import randn
    import pandas as pd

# Import the stats library from numpy
    from scipy import stats

# These are the plotting modules adn libraries we'll use:
    import matplotlib as mpl
    import matplotlib.pyplot as plt
    import seaborn as sns

# Command so that plots appear in the iPython Notebook
%matplotlib inline
```

In [2]: # Now we'll learn how of visualize multiple regression with Implot()

Luckily, Seaborn comes with an example dataset to use as a pandas DataFrame
tips = sns.load_dataset("tips")

In [4]: # Preview
tips.head()

Out[4]:

_								
	total_bill	tip	sex	smoker	day	time	size	
0	16.99	1.01	Female	No	Sun	Dinner	2	
1	10.34	1.66	Male	No	Sun	Dinner	3	
2	21.01	3.50	Male	No	Sun	Dinner	3	
3	23.68	3.31	Male	No	Sun	Dinner	2	
4	24.59	3.61	Female	No	Sun	Dinner	4	

In [5]: # Let's use lmplot() to plot the total bill versus tips
sns.lmplot("total_bill","tip",tips)

Out[5]: <seaborn.axisgrid.FacetGrid at 0x192a9c18>

In [6]: # First we can see a scatter plot of all the points, tip vs total_bill # Then we see a line, which is an estimateed linear fit model t

In [8]: # WE can also specify teh confidence interval to use for the linear fit
sns.lmplot("total_bill","tip",tips,ci=75) # 68% ci

Out[8]: <seaborn.axisgrid.FacetGrid at 0x19758160>

Out[22]: <seaborn.axisgrid.FacetGrid at 0x1f7c42e8>

In [15]: # We can also not fit a regression if desired
sns.lmplot("total_bill", "tip", tips,fit_reg=False)

Out[15]: <seaborn.axisgrid.FacetGrid at 0x1c4a44a8>

In [23]: # lmplot() also works on discrete variables, such as the percentage of the tip

Create a new column for tip percentage
tips["tip_pect"]=100*(tips['tip']/tips['total_bill'])

#plot
sns.lmplot("size", "tip_pect", tips);

In [26]: # We can also add jitter to this

#Info link
url = "http://en.wikipedia.org/wiki/Jitter"

#plot
sns.lmplot("size", "tip_pect", tips,x_jitter=.1);

In [27]: # We can also estimate the tendency of each bin (size of party in this case)
sns.lmplot("size", "tip_pect", tips, x_estimator=np.mean);

In [28]: # Interesting, Looks like there is more variance for party sizes of 1 then 2-4

In [31]: # We can use the hue facet to automatically define subsets along a column
Plot, note the markers argument
sns.lmplot("total_bill", "tip_pect", tips, hue="sex", markers=["x","o"])

Out[31]: <seaborn.axisgrid.FacetGrid at 0x2044b390>


```
In [32]: # Does day make a difference?
sns.lmplot("total_bill", "tip_pect", tips, hue="day")
```

Out[32]: <seaborn.axisgrid.FacetGrid at 0x2042bd30>

In [36]: # Finally it should be noted that Seabron supports LOESS model fitting
 url = 'http://en.wikipedia.org/wiki/Local_regression'
 sns.lmplot("total_bill", "tip_pect", tips, lowess=True, line_kws={"color": 'black")

In [37]: # The lmplot() we've been using is actually using a lower-level function, regplot
sns.regplot("total_bill","tip_pect",tips)

Out[37]: <matplotlib.axes._subplots.AxesSubplot at 0x1fdad710>

In [38]: # reg_plot can be added to existing axes without modifying anything in the figure
 # Create figure with 2 subplots
 fig, (axis1,axis2) = plt.subplots(1,2,sharey =True)
 sns.regplot("total_bill","tip_pect",tips,ax=axis1)
 sns.violinplot(tips['tip_pect'],tips['size'],color='Reds_r',ax=axis2)

Out[38]: <matplotlib.axes._subplots.AxesSubplot at 0x1c46a080>

In [35]: # Next up: We'll Learn about

In []: