ABY & ABY2.0

安全多方计算中的算术分享(Arithmetic Sharing)、布尔分享(Boolean Sharing)、和姚氏分享(Yao's Sharing)对于计算不同的算子,例如加法、乘法、比较等各有优势。如何设计更高效的算法、如何平衡不同技术之间的优势侧重从而发挥最好的性能,是一个值得研究的重要问题。

本次我们从ABY和ABY2.0两篇文章,阐述安全两方($P_0\&P_1$)计算中三种技术的一些研究进展。文章链接如下:

ABY

ABY2.0

ABY:

Arithmetic Sharing: ABY中使用Additive Sharing,即对于秘密 x ,生成秘密分享 $\langle x \rangle_0^A = r \stackrel{R}{\leftarrow} \mathbb{Z}_{2^\ell} \ \& \ \langle x \rangle_1^A = x - r$ 满足 $x = \langle x \rangle_0^A + \langle x \rangle_1^A \mod 2^\ell$ 。并且 P_i 保存 $\langle x \rangle_i^A$ 。恢复秘密则需要同时获得 $\langle x \rangle_0^A \& \langle x \rangle_1^A$ 。该分享方法广泛应用于SPDZ等方案。

ADD 对于处于Additive Sharing的值x&y,加法可以直接在本地计算,不需要交互。具体来说,则是 P_i 本地计算 $\langle z \rangle_i^A = \langle x \rangle_i^A + \langle y \rangle_i^A \mod 2^\ell$ 。

MUL: 但是对于乘法,则需要借助Beaver 三元组 c=ab,并且a,b,c也是处于Additive Sharing的。在线计算阶段 P_i 首先计算 $\langle e \rangle_i^A = \langle x \rangle_i^A - \langle a \rangle_i^A$ 和 $\langle f \rangle_i^A = \langle y \rangle_i^A - \langle b \rangle_i^A$,然后 P_i 之间交换 $\langle e \rangle_i^A \& \langle f \rangle_i^A$ 并恢复 e & f。最后, P_i 在本地计算 $i \cdot e \cdot f + f \cdot \langle a \rangle_i^A + e \cdot \langle b \rangle_i^A + \langle c \rangle_i^A$ 。 c=ab:在MUL中,一个关键点在于计算Beaver三元组c=ab。这里介绍ABY中提到的两种方式:基于同态加密(HE-based)的方法和基于茫然传输(OT-based)的方法如下:

- 1. HE-based: 基于同态的方法简洁明了: P_i 各自随机选择 $\langle a \rangle_i^A, \langle b \rangle_i^A$ 。同时, P_1 选择随机数r。之后, P_0 加密 $\langle a \rangle_0^A, \langle b \rangle_0^A$ 并将密文传输给 P_1 。 P_1 根据半同态的明文-密文乘法同态性质计算 d (用 r 茫化),并将d返回给 P_0 。 P_0 解密 d并计算 $\langle c \rangle_0^A$, P_1 在本地计算 $\langle c \rangle_1^A$ 。
- 2. OT-based: 基于OT的方法则略微复杂一些。对于 $\langle a \rangle^A \cdot \langle b \rangle^A = \langle c \rangle^A$,有 $\langle a \rangle^A \cdot \langle b \rangle^A = (\langle a \rangle_0^A + \langle a \rangle_1^A) \cdot (\langle b \rangle_0^A + \langle b \rangle_1^A) = \langle a \rangle_0^A \cdot \langle b \rangle_0^A + \langle a \rangle_0^A \cdot \langle b \rangle_1^A + \langle a \rangle_1^A \cdot \langle b \rangle_0^A + \langle a \rangle_1^A \cdot \langle b \rangle_1^A$ 。第一项和第四项都可以在 P_0 和 P_1 本地计算,关键在于求交叉项乘法(第2、3项)。接下来说明如何用OT求 $\langle u \rangle^A = \langle a \rangle_0^A \langle b \rangle_1^A$,第3项类似。具体来说,在第i次关联OT(C-OT)中, P_0 作为发送者输入 $f_{\Delta_i}(x) = (\langle a \rangle_0^A \cdot 2^i x) \mod 2^\ell$,而 P_1 作为接收者输入 $\langle b \rangle_1^A[i]$ 作为选择比特。第i次C-OT执行完毕, P_0 获得 $(s_{i,0},s_{i,1})$,其中 $s_{i,0} \in_R \mathbb{Z}_{2^\ell}$, $s_{i,1} = f_{\Delta_i}(s_{i,0}) = (\langle a \rangle_0^A \cdot 2^i s_{i,0}) \mod 2^\ell$ 。而 P_1 则获得 $s_{i,\langle b \rangle_1^A[i]} = (\langle b \rangle_1^A[i] \cdot \langle a \rangle_0^A \cdot 2^i s_{i,0}) \mod 2^\ell$ 。执行完 ℓ 次C-OT之后, $P_0 \Leftrightarrow \langle u \rangle_0^A = (\sum_{i=1}^\ell s_{i,0}) \mod 2^\ell$, P_1 则令 $\langle u \rangle_1^A =$

 $(\sum_{i=1}^\ell s_{i,\langle b \rangle_1^A[i]}) \mod 2^\ell$ 。 同理,可以计算 $\langle v \rangle^A = \langle a \rangle_1^A \langle b \rangle_0^A$ 。最终, $P_i \otimes \langle c \rangle_i^A = \langle a \rangle_i^A \langle b \rangle_i^A + \langle u \rangle_i^A + \langle v \rangle_i^A$ 。

Boolean Sharing: 和Arithmetic sharing不同的是,Boolean Sharing是操作在比特上的抑或(XOR)秘密分享。也就是说对于一个秘密比特值 $\in \mathbb{Z}_2$,生成一个随机比特 $r \in_R \{0,1\}$ 。然后,令 $\langle x \rangle_0^B = r, \langle x \rangle_1^B = x \oplus r$ 。恢复秘密 x 只需要同时获取 $\langle x \rangle_0^B, \langle x \rangle_1^B$ 并计算 $x = \langle x \rangle_0^B \oplus \langle x \rangle_1^B$ 即可。对于 ℓ 比特的秘密值 x,如果要进行Boolean Sharing,只需要对每一比特并行进行Boolean Sharing即可。为了简单起见,这里只讨论 1 比特的 x 。Boolean Sharing主要应用于GMW方案。

XOR: 类似Arithmetic Sharing中的ADD,XOR在Boolean Sharing也可以无交互计算。即 P_i 在本地计算 $\langle z \rangle_i^B = \langle x \rangle_i^B \oplus \langle y \rangle_i^B$ 。

AND: AND门的计算则对应Arithmetic Sharing中的乘法门。因此,也需要预计算一个比特三元组 $\langle c \rangle^B = \langle a \rangle^B \wedge \langle b \rangle^B$ 来实现 $\langle z \rangle^B = \langle x \rangle^B \wedge \langle y \rangle^B$ 。

MUX: 除了XOR 和 AND 门,Boolean Sharing还适合进行 MUX(选择)门的计算。即 $\mathrm{MUX}(x,y,b)$:如果比特 b=0 则返回 x ,否则返回 y 。选择门可以用随机 OT(R-OT)实现。

Yao Sharing: 姚氏混乱电路(Yao's Garbled Circuits, Yao's GC)也是一种广泛应用的两方计算协议,其计算在布尔电路上(Boolean Circuits)。和Arithmetic Sharing,Boolean Sharing不同的是,Yao's GC 中计算的双方并不是对称的关系。Garbler(e.g., P_0)负责生成整个电路的真值表并将表加密打乱,并将加密打乱的真值表发送给Evaluator(e.g., P_1)。 P_1 则负责通过获得对应输入的密钥(a.k.a, label)解密真值表。除了上述基本内容,ABY还使用了free-XOR和point-and-permute等优化技术。使用这些技术, P_0 在生成混乱表的时候可以选择一个全局的 κ 比特串 R 满足 R[0]=1。这样,对于电路中的输入线 w,对应的密钥(a.k.a., label)可以设置为 $k_0^w \in_R \{0,1\}^\kappa$, $k_1^w = k_0^w \oplus R$ 。从而,一方面满足XOR门可以非交互计算,另一方面满足 $1-k_0^w[0]=k_1^w[0]$ (permutation bit)。对于 $\langle x \rangle^Y$ 则有 $\langle x \rangle^Y_0 = k_0$, $\langle x \rangle^Y_1 = k_x = k_0 \oplus xR$ 。和Boolean Sharing类似,这里只讨论对于1比特的Yao Sharing。对于 ℓ 比特的Yao Sharing,则可以并行进行 ℓ 次。

Sharing & Reconstruction 和Arithmetic/Boolean Sharing不同的是,Yao's GC的Sharing语义对于 P_0 和 P_1 来说并不是等价的。这也是因为 P_0 和 P_1 在GC计算中的角色也不同。具体来说, $\operatorname{Shr}_0^Y(x)$ 则是 P_0 首先在本地生成 $\langle x \rangle_0^Y = k_0 \in_R \{0,1\}^\kappa$,计算并发送 $k_x = k_0 \oplus xR$ 给 P_1 。 而 $\operatorname{Shr}_1^Y(x)$ 则是双方进行C-OT,其中 P_0 输入关联函数 $f_R(x) = (x \oplus R)$ 并获得 $k_0, k_1 = k_0 \oplus R$ 其中 $k_0 \in_R \{0,1\}^\kappa$, P_1 作为接收者输入选择比特 x 并获得 $\langle x \rangle_1^Y = k_x$ 。恢复秘密则需要 P_{1-i} 将 $\pi = \langle x \rangle_{1-i}^Y[0]$ 发送给 P_i , P_i 计算 $x = \pi \oplus \langle x \rangle_i^Y[0]$ 。

XOR: 利用free-XOR技术,XOR门也可以在本地计算 $\langle z \rangle_i^Y = \langle x \rangle_i^Y \oplus \langle y \rangle_i^Y$ 。

AND: 对于AND门, P_0 利用 $\langle x \rangle_0^Y, \langle y \rangle_0^Y$ 加密 $\langle z \rangle_0^Y$ 得到混乱表 $\mathrm{Gb}_{\langle z \rangle_0^Y}(\langle x \rangle_0^Y, \langle y \rangle_0^Y)$ 。 P_1 获得混乱表之后便利用 $\langle x \rangle_1^Y, \langle y \rangle_1^Y$ 解密表中的对应项。

Sharing Conversion: 上述三种Sharing各有自己的优势和劣势。在实际应用中往往要结合三种技术,充分发挥各自的性能。接下来介绍三种Sharing之间的转化。

Yao to Boolean Sharing (Y2B): 因为Yao Sharing ($\langle x \rangle_0^Y, \langle x \rangle_1^Y$) 的permutation bits 已经构成了关于 x 的Boolean Sharing,所以 P_i 可以在本地令 $\langle x \rangle_i^B = Y2B(\langle x \rangle_i^Y) = \langle x \rangle_i^Y[0]$ 。

Boolean to Yao Sharing (B2Y): 将 $\langle x \rangle^B$ 转化为 $\langle x \rangle^Y$ 和 Shr_1^Y 很相似。记 $x_0 = \langle x \rangle_0^B$, $x_1 = \langle x \rangle_1^B$ 。 P_0 取 $\langle x \rangle_0^Y = k_0 \in_R \{0,1\}^\kappa$ 。两方随后执行OT, P_0 作为发送者输入 $(k_0 \oplus x_0 \cdot R, k_0 \oplus (1-x_0) \cdot R)$, P_1 作为接收者输入 x_1 作为选择比特获得 $\langle x \rangle_1^Y = k_0 \oplus (x_0 \oplus x_1) \cdot R = k_x$ 。

Arithmetic to Yao Sharing (A2Y): 将 $\langle x \rangle^A$ 转化为 $\langle x \rangle^Y$ 则是两方执行 $\operatorname{Shr}_0^Y(\langle x \rangle_0^A)$ 和 $\operatorname{Shr}_1^Y(\langle x \rangle_1^A)$ 得到 $\langle \langle x \rangle_0^A \rangle^Y$ 和 $\langle \langle x \rangle_1^A \rangle^Y$,最终在在Yao Sharing下计算加法电路 $\langle x \rangle^Y = \langle \langle x \rangle_0^A \rangle^Y + \langle \langle x \rangle_1^A \rangle^Y$ 。

Arithmetic to Boolean Sharing (A2B): A2B可以用Boolean加法电路实现(和A2Y)类似,或者使用 Arithmetic 比特抽取电路。由于在Y2B是没有开销(free),而Yao Sharing在做加法时比Boolean电路 更加高效,因此使用 $Y2B(A2Y(\langle x \rangle^A))$ 实现 $A2B(\langle x \rangle^A)$ 。

Boolean to Arithemtic Sharing (B2A): B2A可以通过Boolean 电路上的减法实现,但是这种方法开销太大。为了提升性能,两方可以使用基于OT的方法实现,该方法和生成三元组的方法类似。在第 i 次OT, P_0 作为发送方输入 $(s_{i,0},s_{i,1})$ 满足 $s_{i,0}=\langle x\rangle_0^B[0]\cdot 2^i-r_i$, $s_{i,1}=(1-\langle x\rangle_0^B[i])\cdot 2^i-r_i$ 。 P_1 作为接受方输入 $\langle x\rangle_1^B[i]$ 作为选择比特得到 $s_{\langle x\rangle_1^B[i]}=(\langle x\rangle_0^B[i]\oplus\langle x\rangle_1^B[i])\cdot 2^i-r_i$ 。最终, P_0 计算得到 $\langle x\rangle_0^A=\sum_{i=0}^{\ell-1}r_i$, P_1 计算 $\langle x\rangle_1^A=\sum_{i=0}^{\ell-1}s_{\langle x\rangle_1^B[i]}=\sum_{i=0}^{\ell-1}(\langle x\rangle_0^B[i]\oplus\langle x\rangle_0^B[i]\oplus\langle x\rangle_1^B[i])\cdot 2^i-\sum_{i=0}^{\ell-1}r_i$, P_1 计算 $\langle x\rangle_1^A=\sum_{i=0}^{\ell-1}s_{\langle x\rangle_1^B[i]}=\sum_{i=0}^{\ell-1}(\langle x\rangle_0^B[i]\oplus\langle x\rangle_0^B[i])\cdot 2^i-\sum_{i=0}^{\ell-1}r_i=x-\langle x\rangle_0^A$ 。从而完成B2A转换。

Yao to Arithmetic Sharing (Y2A): 从Yao share转化到 Arithmetic share可以有两种方法进行: 1) P_0 随机选择 $r\in_R\mathbb{Z}_{2^\ell}$ 并执行 $\operatorname{Shr}_0^Y(r)$ 。进一步,两方计算 $\langle d\rangle^Y=\langle x\rangle^Y-\langle r\rangle^Y$ 并揭示 d 给 P_1 。最终, $\langle x\rangle_0^A=r$, $\langle x\rangle_1^A=d$ 。但这种方法需要在Yao Sharing下执行Boolean 减法电路。 2) 由于 Y2B 没有开销,而 B2A 比Yao Sharing下的Boolean 减法电路更加高效,因此可以利用 $B2A(Y2B(\langle x\rangle^Y))$ 实现 $Y2A(\langle x\rangle^Y)$ 。

理论开销上述分享和转化理论开销如下表所示。

	Comp. [#sym]	Comm. [bits]	#Msg
Y2B	0 0		0
$Shr^{A/B}_*,Rec^*_*$	0	ℓ	1
Shr_0^Y	ℓ	$\ell \kappa$	1
B2A, Y2A	6ℓ	$\ell\kappa + (\ell^2 + \ell)/2$	2
B2Y, Shr_1^Y	6ℓ	$2\ell\kappa$	2
A2Y, A2B	12ℓ	$6\ell\kappa$	2

TABLE I: Total computation (# symmetric cryptographic operations), communication, and number of messages in online phase for sharing, reconstruction, and conversion operations on ℓ -bit values. κ is the symmetric security parameter.

三种最重要的计算理论开销如下:

Sharing	N	IUL	C	MP	MUX	
Sharing	size	rounds	size	rounds	size	rounds
Arithmetic	· l	1	_	_	—	_
Boolean	$2\ell^2$	l	3ℓ	$\log_2\ell$	1	1
Yao	$2\ell^2$	0	l	0	ℓ	0

TABLE III: Asymptotic complexities of selected operations in each sharing on ℓ -bit values; smallest numbers in bold. Currently not implemented operations marked with — (cf. $\S V-A$).

其他相关的分析和实验细节请参考原文。

ABY2.0

接下来介绍ABY2.0,在这里着重分析ABY2.0对ABY的提升和不同。

Arithmetic Sharing:

Sharing Semantics: 和ABY相比,ABY2.0使用两种sharing。 1. 是additive sharing,记作 $[\cdot]$ -sharing,即对于秘密值 v 有 $[v]_0 + [v]_1 = v$, P_i 持有 v_i ; 2. 是 $\langle \cdot \rangle$ -sharing,即对于 v:

1)公布\Delta_v = v+\delta_v, 2) \delta_v在P_0, P_1之间[\cdot]\text{-sharing}。简单起见,\delta_{v_1...v_n}表示乘积\delta_{v_1}\delta_{v_2}...\delta_{v_n}, \Delta_{v_1...v_n}表示乘积\Delta_{v_1}\Delta_{v_n}, \Delta_{v_n}, \Delta_{v_1}...\Delta_{v_n}, \Delta_{v_n}, \Delta_{

SHARE: 在预计算阶段, P_i 生成 $[\delta_v]_i$,两方共同选择 $[\delta_v]_{1-i}$ 。因此, P_i 得到 $\delta_v = [\delta_v]_0 + [\delta_v]_1$ 。在线计算阶段, P_i 计算并公开 $\Delta_v = v + \delta_v$ 。

Reconstruction: 恢复 v则只需恢复 δ_v 然后计算 $\Delta_v - \delta_v$ 。

Linear Operations: 给定 $\langle a \rangle, \langle b \rangle$ 和公开数值 c_1, c_2 ,为了计算 $\langle y \rangle = c_1 \cdot \langle a \rangle + c_2 \cdot \langle b \rangle$, P_i 在本地计算 $\Delta_y = c_1 \cdot \Delta_a + c_2 \cdot \Delta_b$ 和 $[\delta_y]_i = c_1 \cdot [\delta_a]_i + c_2 \cdot [\delta_b]_i$ 。

Multiplication: 和ABY相比,ABY2.0最大的不同在于对乘法的改进。对于 $a\cdot b$,有 $y=a\cdot b=((a+\delta_a)-\delta_a)((b+delta_b)-\delta_b)=(a+\delta_a)(b+\delta_b)-(a+\delta_a)\delta_b-(b+\delta_b)\delta_a+\delta_{ab}$ 。 ABY中使用Beaver三元组的方法茫化输入,但是ABY2.0的分享语义下, $a+\delta_a$ 和 $b+\delta_b$ 在分享阶段就已经公开。如果三元组能够预计算生成,那么在线计算可以不用通信开销。但是为了输入输出的分享语义一致性,还需要公开 Δ_y 。但这仅需要每方传输一个数。通信量减少了两倍。

Figure 1: High level overview of Beaver's [9] and ABY2.0

形式化, $\Delta_y = y + \delta_y = ab + \delta_y = (\Delta_a - \delta_a)(\Delta_b - \delta_b) + \delta_y = \Delta_a \Delta_b - \Delta_a \delta_b - \Delta_b \delta_a + \delta_a \delta_b + \delta_y$ 。协议如下:

Protocol MULT($\langle a \rangle, \langle b \rangle$)

Setup:

- P_i for $i \in \{0, 1\}$ samples random $[\delta_y]_i \in_R \mathbb{Z}_{2^\ell}$.
- Parties execute setupMULT($[\delta_a]$, $[\delta_b]$) to generate $[\delta_{ab}]$.

Online:

- P_i for $i \in \{0, 1\}$ locally computes and sends to P_{1-i} $[\Delta_y]_i = i \cdot \Delta_{ab} \Delta_a [\delta_b]_i \Delta_b [\delta_a]_i + [\delta_{ab}]_i + [\delta_y]_i$.
- P_i for $i \in \{0, 1\}$ locally sets $\Delta_y = [\Delta_y]_0 + [\Delta_y]_1$.

Figure 2: Multiplication Protocol

而预计算阶段生成三元组 $([\delta_a], [\delta_b], [\delta_{ab}])$ 的方法和ABY一样。

Multi-Input Multiplication: 对比ABY,另一个提升在于多输入乘法只需要一轮通信而且通信量只有 ℓ 比特。以3-input为例, $\Delta_y = abc + \delta_y = (\Delta_a - \delta_a)(\Delta_b - \delta_b)(\Delta_c - \delta_c) + \delta_y = \Delta_{abc} - \Delta_{ab}\delta_c - \Delta_{bc}\delta_a - \Delta_{ac}\delta_b + \Delta_a\delta_{bc} + \Delta_b\delta_{ac} + \Delta_c\delta_{ab} - \delta_{abc} + \delta_y$ 。预计算生成 $\delta_{ab}, \delta_{bc}, \delta_{ac}, \delta_{abc}$,则在线计算可以一次通信完成。 对于N-input乘法,则需要生成 $2^N - N - 1$ 个元组交叉项,因此为了平衡在线和预计算开销,ABY2.0取 $N \in \{3,4\}$ 。下图展示ABY2.0在乘法计算的优化提升

		Setup	Onlin	e
Protocol Ref.		Comm [bits]	Comm [bits]	Rounds
	[41]	$2\ell(\kappa+\ell)$	4ℓ	1
MULT	[13]	$2\ell(\kappa+\ell)$	2ℓ	1
y = ab	[82]	$2\ell(\kappa+\ell)$	4ℓ	1
	ABY2.0	$2\ell(\kappa+\ell)$	2ℓ	1
	[41]	$4\ell(\kappa + \ell)$	8ℓ	2
MULT3	[13]	$4\ell(\kappa + \ell)$	4ℓ	2
y = abc	[82]	$8\ell(\kappa+\ell)$	6ℓ	1
	ABY2.0	$8\ell(\kappa+\ell)$	2ℓ	1
	[41]	$6\ell(\kappa + \ell)$	12ℓ	2
MULT4	[13]	$6\ell(\kappa+\ell)$	6ℓ	2
y = abcd	[82]	$22\ell(\kappa+\ell)$	8ℓ	1
	ABY2.0	$22\ell(\kappa+\ell)$	2ℓ	1

Table 1: Comparison of ABY2.0 and existing works for 2PC protocols. Best values for the online phase are marked in bold.

Boolean Sharing: Boolean Sharing和Arithmetic Sharing类似,区别在于操作的电路是布尔电路,可以看作在 \mathbb{Z}_2 上的Arithemtic Sharing。 另一个不同点在于Negation的实现:对于 $\langle u \rangle^B = ([\delta_u], \Delta_u)$,为了生成 $\langle \bar{u} \rangle^B$ 计算 $\Delta_{\bar{u}} = 1 \oplus \Delta_u$, $[\delta_{\bar{u}}] = [\delta_u]$ 。

Yao Sharing ABY2.0和ABY采用了同样的Yao Sharing。

Sharing Conversion ABY转化中在线阶段需要大量OT, ABY2.0中OT都在预计算完成, 因此ABY2.0 转化中在线效率提升很多(除了Y2B)。

Y2B: 和ABY一样,Y2B是没有开销的。但为了保持Boolean Sharing语义一致性,需要额外一轮通信揭示 Δ 。进一步, P_0 可以在预计算阶段计算 $\mathrm{SHARE}^B(P_0,\mathrm{LSB}(K_u^0))$ 。

B2Y: P_i 在本地计算 $u_i = (1-i) \cdot \Delta_u \oplus [\delta_u]_i$ 。随后分别计算 $SHARE^Y(P_i, u_i)$ 得到 $\langle u_0 \rangle^Y$ 和 $\langle u_1 \rangle^Y$ 。最后,利用free-XOR技术计算 $\langle u \rangle^Y = \langle u_0 \rangle^Y \oplus \langle u_1 \rangle^Y$ 。注意的是, u_1 在预计算阶段已经确定,因此可以将 OT(用来执行 $SHARE^Y(P_1, u_1)$)转移到预计算阶段。

A2Y: 和B2Y类似,不同之处在于需要用Yao GC执行一个加法电路。

Y2A: ABY2.0采用的方法类似ABY中提到的Y2A方法 1)。预计算阶段生成 r,并对 r 进行 $\operatorname{SHARE}^Y(P_0,r)$ 和 $\operatorname{SHARE}^A(P_0,r)$ 。在线阶段在Yao GC下计算加法电路得到 $\langle v+r \rangle^Y$ 并公 开 v+r。随后计算 $\operatorname{SHARE}^A(P_0,v+r)$ 得到 $\langle v+r \rangle^A$ 。最后,计算得到 $\langle v \rangle^A = \langle v+r \rangle^A - \langle r \rangle^A$ 。

A2B: 类似A2Y执行一个Boolean加法电路。另外一种常数轮通信的方法则是利用 $Y2B(A2Y(\langle v \rangle^A))$

**Bit2A: **也是一个经常应用的基本技术。对于 $v\in\{0,1\}$, $v=v_0\oplus v_1$, 有 $v^a=v_0^a+v_1^a-2v_0^av_1^a$, 其中 v^a 表示 v 的 ℓ 比特表示。所以 $v^a=(\Delta_v\oplus\delta_v)^a=\Delta_v^a+\delta_v^a-2\Delta_v^a\delta_v^a$ 。 假设预计算得到了 δ_v^a 的 $[\cdot]$ -shares,在线阶段 P_i 在本地计算 $[\delta^a]_i=i\cdot\Delta_v^a+(1-2\Delta_v^a)\cdot[\delta_v^a]_i$ 。最后计算 $\mathrm{SAHRE}^A(P_i,[v^a]_i)$ 得到 $\langle [v^a]_i\rangle^A$ 最终计算 $\langle v^a\rangle^A=\langle [v^a]_0\rangle^A+\langle [v^a]_1\rangle^A$ 。 最后,基于 $\delta_v=[\delta_v]_0\oplus [\delta_v]_1\Leftrightarrow \delta_v^a=[\delta_v^a]_0+[\delta_v^a]_1-2([\delta_v^a]_0[\delta_v^a]_1)$,可以用C-OT实现交叉项的计算(和ABY中计算Beaver三元组类似)。

**B2A: **和ABY类似,基于 $v=\sum_{j=0}^{\ell-1} 2^j \cdot v[j]$ 对每一比特调用一次Bit2A。这样通过一轮通信并行完成每一比特的转化。然后对于 $[\cdot]$ -sharing 的每一比特做求和。最后对求和结果进行 SHARE^A 。下图展示不同conversion的理论开销。

Conv	Ref.	Setup	Onlin	e
Conv.	Kei.	Comm [bits]	Comm [bits]	Rounds
Y2B	ABY [41]	0	0	0
YZB	ABY2.0	ℓ	ℓ	1
B2Y	ABY [41]	2ℓ κ	$\ell \kappa + \ell$	2
DZT	ABY2.0	2ℓκ	$\ell \kappa$	1
A2Y	ABY [41]	4ℓ κ	$2\ell\kappa + \ell$	2
AZT	ABY2.0	4ℓ κ	$\ell \kappa$	1
Y2A	ABY [41]	2ℓ κ	$(\ell^2 + 3\ell)/2$	2
YZA	ABY2.0	$3\ell\kappa + 2\ell$	l	1
A2B	ABY [41]	4ℓ κ	$2\ell\kappa + \ell$	2
AZD	ABY2.0	$4\ell\kappa + \ell$	$\ell \kappa + \ell$	2
P24	ABY [41]	$\ell \kappa$	$(\ell^2 + \ell)/2$	2
B2A	ABY2.0	$\ell \kappa + \ell^2$	2ℓ	1

Table 2: Comparison of ABY2.0 and ABY for the conversions. The values are reported for ℓ -bit values. Best values for the online phase are marked in bold.

Special Conversions: ABY2.0基于Bit2A做了三种比较高效转化如下(PQ, PV, PQV),比较直观不做过多介绍。

a)
$$\begin{array}{l} & \operatorname{Protocol} \, \mathsf{PQ}(\langle \mathsf{p} \rangle^{\boldsymbol{B}}, \langle \mathsf{q} \rangle^{\boldsymbol{B}}) : \langle \mathsf{p} \rangle^{\boldsymbol{B}} \langle \mathsf{q} \rangle^{\boldsymbol{B}} \to \langle \mathsf{pq} \rangle^{\boldsymbol{A}} \\ & \operatorname{Prep:} \, \left[\delta_{\mathsf{p}}^{\mathsf{a}} \right], \left[\delta_{\mathsf{q}}^{\mathsf{a}} \right], \left[\delta_{\mathsf{p}}^{\mathsf{a}} \delta_{\mathsf{q}}^{\mathsf{a}} \right] \\ & (\mathsf{pq})^{\mathsf{a}} = (\Delta_{\mathsf{p}}^{\mathsf{a}} + (1 - 2\Delta_{\mathsf{p}}^{\mathsf{a}}) \delta_{\mathsf{p}}^{\mathsf{a}}) (\Delta_{\mathsf{q}}^{\mathsf{a}} + (1 - 2\Delta_{\mathsf{q}}^{\mathsf{a}}) \delta_{\mathsf{q}}^{\mathsf{a}}) \\ & \mathsf{b}) \, \underbrace{\mathsf{Protocol} \, \mathsf{PV}(\langle \mathsf{p} \rangle^{\boldsymbol{B}}, \langle \mathsf{v} \rangle^{\boldsymbol{A}}) : \langle \mathsf{p} \rangle^{\boldsymbol{B}} \langle \mathsf{v} \rangle^{\boldsymbol{A}} \to \langle \mathsf{pv} \rangle^{\boldsymbol{A}}}_{\mathsf{prep:} \, \left[\delta_{\mathsf{p}}^{\mathsf{a}} \right], \left[\delta_{\mathsf{p}}^{\mathsf{a}} \delta_{\mathsf{v}} \right] \\ & (\mathsf{pv})^{\mathsf{a}} = (\Delta_{\mathsf{p}}^{\mathsf{a}} + (1 - 2\Delta_{\mathsf{p}}^{\mathsf{a}}) \delta_{\mathsf{p}}^{\mathsf{a}}) (\Delta_{\mathsf{v}} - \delta_{\mathsf{v}}) \\ & \mathsf{c}) \, \underbrace{\mathsf{Protocol} \, \mathsf{PQV}(\langle \mathsf{p} \rangle^{\boldsymbol{B}}, \langle \mathsf{q} \rangle^{\boldsymbol{B}}, \langle \mathsf{v} \rangle^{\boldsymbol{A}}) : \langle \mathsf{p} \rangle^{\boldsymbol{B}} \langle \mathsf{q} \rangle^{\boldsymbol{B}} \langle \mathsf{v} \rangle^{\boldsymbol{A}} \to \langle \mathsf{pqv} \rangle^{\boldsymbol{A}}}_{\mathsf{Prep:} \, \left[\delta_{\mathsf{p}}^{\mathsf{a}} \right], \left[\delta_{\mathsf{q}}^{\mathsf{a}} \delta_{\mathsf{q}} \right], \left[\delta_{\mathsf{p}}^{\mathsf{a}} \delta_{\mathsf{q}} \right], \left[\delta_{\mathsf{p}}^{\mathsf{a}} \delta_{\mathsf{v}} \right], \left[\delta_{\mathsf{p}}^{\mathsf{a}} \delta_{\mathsf{q}} \delta_{\mathsf{v}} \right]}_{\mathsf{prep:} \, \left[\delta_{\mathsf{p}}^{\mathsf{a}} \right], \left[\delta_{\mathsf{q}}^{\mathsf{a}} \delta_{\mathsf{q}} \right], \left[\delta_{\mathsf{p}}^{\mathsf{a}} \delta_{\mathsf{v}} \right], \left[\delta_{\mathsf{p}}^{\mathsf{a}} \delta_{\mathsf{q}} \delta_{\mathsf{v}} \right]}_{\mathsf{prep:} \, \left[\delta_{\mathsf{p}}^{\mathsf{a}} \right], \left[\delta_{\mathsf{p}}^{\mathsf{a}} \delta_{\mathsf{q}} \right], \left[\delta_{\mathsf{p}}^{\mathsf{a}} \delta_{\mathsf{v}} \right], \left[\delta_{\mathsf{p}}^{\mathsf{a}} \delta_{\mathsf{v}} \right], \left[\delta_{\mathsf{p}}^{\mathsf{a}} \delta_{\mathsf{q}} \delta_{\mathsf{v}} \right]}_{\mathsf{prep:} \, \left[\delta_{\mathsf{p}}^{\mathsf{a}} \delta_{\mathsf{q}} \right], \left[\delta_{\mathsf{p}}^{\mathsf{a}} \delta_{\mathsf{q}} \right], \left[\delta_{\mathsf{p}}^{\mathsf{a}} \delta_{\mathsf{v}} \right], \left[\delta_{\mathsf{p}}^{\mathsf{a}} \delta_{\mathsf{v}} \right], \left[\delta_{\mathsf{p}}^{\mathsf{a}} \delta_{\mathsf{q}} \right], \left[\delta_{\mathsf{p}}^{\mathsf{a}} \delta_{\mathsf{q}} \right], \left[\delta_{\mathsf{p}}^{\mathsf{a}} \delta_{\mathsf{q}} \right], \left[\delta_{\mathsf{p}}^{\mathsf{a}} \delta_{\mathsf{p}} \right], \left[\delta_{\mathsf{p}}^{\mathsf{a}} \delta_{\mathsf{q}} \right], \left[\delta_{\mathsf{p}}^{\mathsf{a}} \delta_{\mathsf{p}} \right], \left[\delta_{\mathsf{p}}^{\mathsf{a}} \delta_{\mathsf{p}} \right], \left[\delta_{\mathsf{p}}^{\mathsf{a}} \delta_{\mathsf{q}} \right], \left[\delta_{\mathsf{p$$

Scalar Product: 向量内积借鉴了先相加再分享的方法,结合ABY2.0的乘法,将在线通信降低为2个环元素。

^{**}面向机器学习的模块构造: **除了上述基本模块, ABY2.0还构造了如下面向ML的模块。简单介绍一下。

Matrix Multiplication: 类似向量内积的计算,将在线通信从 O(pqr) 降低为 O(pr) 。其中, p imes q, q imes r 分别为两个矩阵的大小。

Depth-Optimized Circuits: 通过Parallel-Prefix Adders (PPA)优化布尔加法电路深度,在64比特环上降低了2倍深度。从而构造BitExt更高效提取 $\overline{\mathrm{MSB}}(v)$ 。

Comparsion(LT): 定点数计算 x < y 等价于 v = x - y 的最高有效位。计算得到 $\langle v \rangle = \langle x \rangle - \langle y \rangle$ 之后,令 $a = -[\delta_v]_0$, $b = \Delta_v - [\delta_v]_1$ 。进一步, P_0, P_1 计算 SHARE P_0, P_0 得到Boolean sharing。最后利用BitExt提取 P_0, P_0 。

Truncation: 乘法截断可以防止溢出。ABY2.0采用了SecureML中的方法,在算完 ab 之后做截断,然后计算公开 Δ 。

MAX2/MIN2: $MAX2(\langle a \rangle^A, \langle b \rangle^A)$ 计算如下,首先计算 $\langle u \rangle^B = \langle a < b \rangle^B$ 。然后利用PV协议计算 $u \cdot (b-a) + a$ 。 $MIN2(\langle a \rangle^A, \langle b \rangle^A)$ 类似。

MAX3/MIN3: $MAX3(\langle a \rangle^A, \langle b \rangle^A, \langle c \rangle^A)$ 计算如下,首先计算 $\langle u_1 \rangle^B = \langle a < b \rangle^B, \langle u_2 \rangle^B = \langle a < c \rangle^B, \langle u_3 \rangle^B = \langle b < c \rangle^B$ 。最后利用PQV计算 $y = \bar{u_1} \cdot \bar{u_2} \cdot a + u_1 \cdot \bar{u_3} \cdot b + u_2 \cdot u_3 \cdot c$ 。 MIN3类似。

ReLU & Sigmoid: $\operatorname{ReLU}(v) = \max(0,v)$,首先计算 $\langle u \rangle^B$ 满足 $u=1 \Leftrightarrow v < 0$ 。进一步计算 $\langle \bar{u} \rangle^B$ 。最后利用PV协议计算 $\langle \bar{u} \rangle^B \cdot \langle v \rangle^A$ 。 对于Sigmoid利用如下分段函数近似 $\operatorname{Sig}(v) = \bar{u}_1 \cdot u_2(v+1/2) + \bar{u}_2$,其中 $u_1=1 \Leftrightarrow v+1/2 < 0$ 且 $u_2=1 \Leftrightarrow v-1/2 < 0$ 。具体来说,对 v+1/2,v-1/2 分别执行 LT 协议得到 $\langle u_1 \rangle^B, \langle u_2 \rangle^B$ 。最后执行PQV协议得到结果。

**Maxpool/Minpool: **依赖于MAX/MIN 协议。

Equality Testing: 在ABY2.0的分享语义下, $x=y\Leftrightarrow \Delta_x-[\delta_x]_0-[\delta_x]_1=\Delta_y-[\delta_y]_0-[\delta_y]_1$ 。令 $v_0=(\Delta_x-[\delta_x]_0)-(\Delta_y-[\delta_y]_0)$ 。所以问题归结为判断 $v_0\stackrel{?}{=}v_1$ 。 v_i 可以由 P_i 本地计算得到,进一步执行 $SHARE^B(v_i)$ 得到 $\langle v_i \rangle^B$ 。然后计算 $\langle v \rangle^B=NOT(\langle v_0 \rangle^B\oplus \langle v_1 \rangle^B)$ 。最终,验证 v 是否所有比特均为1。对此,执行AND4门,最终计算一个AND2门。

实验: ABY2.0做了许多实验,这里仅展示关于PPML部分关于模型训练和预测的结果。

Batch	Ref.	LAN (#	tit/min)	WAN (#	it/min)
Size	Kei.	n = 100	n = 900	n = 100	n = 900
120	[79]	29,112	27,273	108	104
128	ABY2.0	176,471	149,626	162	162
256	[79]	25,829	24,058	107	97
256	ABY2.0	163,043	117,188	162	162
512	[79]	23,292	22,247	104	83
512	ABY2.0	110,906	98,847	162	162

Table 9: Comparison of the online throughput of ABY2.0 and SecureML [79] for Logistic Regression Training. Best results are in bold and larger is better. n is the number of features.

Parameter	Ref.	LA	AN	W.A	AN
Farameter	Kei.	n = 100	n = 900	n = 100	n = 900
Runtime (ms)	[79]	1.60	1.69	496.08	504.96
	ABY2.0	0.29	0.29	308.16	308.16
Throughput (Queries/min)	[79]	5,342.61	1,193.01	16.08	3.58
	ABY2.0	42,372.41	42,371.11	39.88	39.88

Table 10: Comparison of the online runtime and throughput of ABY2.0 and SecureML [79] for Logistic Regression Inference. Best results in bold. n is the number of features.

Batch	Dof.	LAN (#	tit/min)	WAN (#	tit/min)
Size	Ref.	n = 100	n = 900	n = 100	n = 900
120	[79]	3,593	3,559	17	17
128	ABY2.0	12,448	12,343	42	42
256	[79]	3,578	3,521	17	17
230	ABY2.0	9,259	9,156	42	42
512	[79]	3,330	3,323	15	15
512	ABY2.0	9,177	9,146	42	42

Table 11: Comparison of the online throughput of ABY2.0 and SecureML [79] for NN Training. Best results in bold and larger is better. n is the number of features.

Parameter	Ref.	LA	AN	W	AN
	Kei.	n = 100	n = 900	n = 100	n = 900
Runtime	[79]	8.68	8.77	1,759.92	1,759.95
(ms)	ABY2.0	2.66	2.66	744.12	744.12
TP	[79]	62.02	40.89	0.19	0.12
(queries/min)	ABY2.0	30,796.99	30,795.17	92.39	91.57

Table 12: Comparison of the online runtime and throughput of ABY2.0 and SecureML [79] for NN Inference. Best results in bold. n is the number of features.

总结

和ABY相比,ABY2.0对于电路性能进行了进一步的提升,大部分开销转移到了预计算阶段。这主要归功于新的sharing semantics的提出。但是,预计算的开销却增加到了指数级别(多输入乘法门)。进一步,ABY2.0的计算需要对事先对电路的结构进行全局的扫描生成乘法关联元组,这比ABY的要求更加严格。