Digital Logic Theory Assignment 4

12312706 Zhou Liangyu

1. State table:

x	A	B	A(t+1)	B(t+1)	T_A	T_B
0	0	0	0	1	0	1
0	0	1	1	1	1	0
0	1	0	1	1	0	1
0	1	1	0	0	1	1
1	0	0	0	0	0	0
1	0	1	1	0	1	1
1	1	0	1	0	0	0
1	1	1	1	1	0	0

 $T_A = B(x' + A')$

 \boldsymbol{x}

$$T_B = x'(A+B') + xA'B$$

$$\therefore A(t+1) = T'_A A(t) + T_A A'(t) = (B' + xA)A + A'B(x' + A') = A \oplus B + x'A'B,$$
$$B(t+1) = T'_B B(t) + T_B B'(t) = x(A+B') + x'A'B.$$

2. State table:

Present State	Inputs		Next State	Flip-Flop Input
Q	G	In	Q	D
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	1	1

Present State	Inputs		Next State	Flip-Flop Input	
1	0	0	1	1	
1	0	1	1	1	
1	1	0	0	0	
1	1	1	1	1	

Characteristic Table:

G	In	Q(t+1)
0	X	Q(t)
1	0	0
1	1	1

Logic Implementation:

3. State diagram:

State table: $S_0 = 000, S_1 = 001, S_2 = 010, S_3 = 011, S_4 = 100.$

Present	State		Input	Next	State		Flip-Flop	Inputs				
Q_2	Q_1	Q_0	X	Q_2	Q_1	Q_0	J_{Q_2}	K_{Q_2}	J_{Q_1}	K_{Q_1}	J_{Q_0}	K_{Q_0}
0	0	0	0	0	0	0	0	X	0	X	0	X
0	0	0	1	0	0	1	0	X	0	X	1	X
0	0	1	0	0	0	0	0	X	0	X	X	1
0	0	1	1	0	1	0	0	X	1	X	X	1
0	1	0	0	0	1	1	0	X	X	0	1	X
0	1	0	1	0	1	0	0	X	X	0	0	X
0	1	1	0	0	0	0	0	X	X	1	X	1
0	1	1	1	1	0	0	1	X	X	1	X	1
1	0	0	0	0	0	0	X	1	0	X	0	X
1	0	0	1	0	0	1	X	1	0	X	1	X

K-maps and Input/Excitation equations:

4. If we use 3 flip-flops:

clk	Q_2	Q_1	Q_0	Z
†	1	0	1	0
†	0	1	0	1
↑	1	0	1	1
↑	1	1	0	1
↑	1	1	1	1
↑	1	1	1	0
<u></u>	0	1	1	1

State 101 and 111 will occur twice, thus we need 4 flip-flops to generate 1011110.

State table:

clk	Q_3	Q_2	Q_1	Q_0	Z
†	1	0	1	1	0
↑	0	1	0	1	1
<u></u>	1	0	1	0	1
↑	1	1	0	1	1
↑	1	1	1	0	1
<u></u>	1	1	1	1	0
	0	1	1	1	1

K-map of Z:

$$\therefore Z = Q_3' + Q_1' + Q_0'.$$

Logic Implementation:

5. State table:

Present	State		Next	State		Flip-Flop	Inputs	
A	B	С	A	B	C	T_A	T_B	T_C
0	0	0	0	0	1	0	0	1
0	0	1	0	1	1	0	1	0
0	1	0	X	X	X	X	x	X
0	1	1	1	1	1	1	0	0
1	0	0	0	0	0	1	0	0
1	0	1	X	X	X	x	x	X
1	1	0	1	0	0	0	1	0
1	1	1	1	1	0	0	0	1

K-maps:

According to the input equation, the next state of state 010 and 101 are 101 and 010 separately.

Present	State		Next	State		Flip-Flop	Inputs	
A	В	С	A	B	C	T_A	T_B	T_C
0	1	0	1	0	1	1	1	1
1	0	1	0	1	0	1	1	1

If the state reaches 010 or 101 unexpectedly, then the state will switch between 101 and 010 repeatedly. It's a Lock Out Problem.

To solve this problem, we can let the next state of state 010 and 101 return to 000 and 110 separately.

The corrected state table:

Present	State		Next	State		Flip-Flop	Inputs	
A	B	С	A	B	C	T_A	T_B	T_C
0	0	0	0	0	1	0	0	1
0	0	1	0	1	1	0	1	0
0	1	0	0	0	0	0	1	0
0	1	1	1	1	1	1	0	0
1	0	0	0	0	0	1	0	0
1	0	1	1	1	0	0	1	1
1	1	0	1	0	0	0	1	0
1	1	1	1	1	0	0	0	1

The corrected k-maps:

$$T_A = A'BC + AB'C'$$

$$T_B = BC' + B'C = B \oplus C$$

$$T_C = A'B'C' + AC$$

Logic Implementation:

