MATLAB Tutorials

16.62x Experimental Projects

Violeta Ivanova, Ph.D. Educational Technology Consultant MIT Academic Computing

violeta@mit.edu

This Tutorial

- Class materialsweb.mit.edu/acmath/matlab/16.62x
- Topics
 - MATLAB Basics Review
 - Data Analysis
 - Statistics Toolbox
 - Curve Fitting Toolbox

Other References

- Mathematical Tools at MIT web.mit.edu/ist/topics/math
- Course16 Tutorials
 - Unified MATLAB: web.mit.edu/acmath/matlab/unified
 - 16.06 &16.07 MATLAB & Simulink: web.mit.edu/acmath/matlab/course16

MATLAB Basics Review

Toolboxes & Help
Matrices & Vectors
Built-In Functions
Graphics

Help in MATLAB

- Command line help
 - >> help <command>
 - e.g. help regress
 - >> lookfor < keyword>
 - e.g. lookfor regression
- Help Browser
 - Help->Help MATLAB

MATLAB Help Browser

- MATLAB
 - + Mathematics
 - + Data Analysis
 - + Programming
 - + Graphics
- Curve Fitting Toolbox
- Statistics Toolbox
 - + Linear Models
 - + Hypothesis Tests
 - + Statistical Plots

Vectors

Row vector

Column vector

Matrices

Creating a matrix

Accessing elements

Matrix Operations

Operators + and -

>>
$$X = [x_1 \ x_2]; Y = [y_1 \ y_2]; A = X+Y$$

$$A = x_1+y_1 \ x_2+y_2$$

Operators *, /, and ^

Operators .*, ./, and .^

>>
$$Z = [z_1 \ z_2]; B = [Z.^2 \ Z.^0]$$

 $B = z_1^2 \ z_2^2 \ 1 \ 1$

Built-In Functions

Matrices & vectors

```
>> [n, m] = size(A)
>> n = length(X)
>> M1 = ones(n, m)
>> M0 = zeros(n, m)
>> En = eye(n)
>> N1 = diag(En)
```

And many others ...

$$>> y = exp(sin(x) + cos(t))$$

Graphics

2D linear plots: plot

```
>> plot (t, z, 'r-')

Colors: b, r, g, y, m, c, k, w

Markers: o, *, ., +, x, d

Line styles: -, --, -., :
```

Annotating graphs

```
>> legend ('z = f(t)')
>> title ('Position vs. Time')
>> xlabel ('Time')
>> ylabel ('Position')
```


Multiple Plots

Multiple datasets on a plot

```
>> p1 = plot(xcurve, ycurve)
>> hold on
>> p2 = plot(Xpoints, Ypoints, 'ro')
>> hold off
```

Subplots on a figure

```
>> s1 = subplot(1, 2, 1)
>> p1 = plot(time, velocity)
>> s2 = subplot(1, 2, 2)
>> p2 = plot(time, acceleration)
```


MATLAB Data Analysis

Preparing Data
Basic Fitting
Correlation

Data Input / Output

Import Wizard for data import

```
File->Import Data ...
```

File input with load

```
B = load('datain.txt')
```

File output with save

```
save('dataout', 'A', '-ascii')
```


Missing Data

Removing missing data

Removing NaN elements from vectors

```
>> x = x (\sim isnan(x))
```

Removing rows with NaN from matrices

```
>> X(any(isnan(X), 2), :) = []
```

Interpolating missing data

```
YI = interp1(X, Y, XI, 'method')
Methods: 'spline', 'nearest', 'linear', ...
```


Data Statistics

Figure window: Tools->Data Statistics

Correlation

Correlation coefficient & confidence interval

```
>> [R, P, Rlo, Rup, alpha] = corrcoef(X);
>> [i, j] = find(P < 0.05);
X =
   18.2000
            17.0500
                      6.1500
                                  >> [r,p]=corrcoef(X)
  25.8200
            19.8000
                      6.6100
            15.9800
   18.2400
                      6.9400
            22.0700
   28.6000
                      7.0600
   31.1000
            22.8300
                      7.2000
                                      1.0000
                                                        -0.0685
   33.6000
            24.5500
                      6.4500
                                               1.0000
                                      0.6974
                                                        -0.1516
   40.4600
            27.2700
                      7.0800
                                               -0.1516
                                     -0.0685
                                                         1.0000
   28.2700
            23.5700
                      6.0700
   20.1000
            13.5800
                      6.6200
  27.9100
            22.8000
                      7.2700
   26.1800
            20.3000
                      7.0000
   22.1200
            16.5900
                      7.6900
                                      1.0000
   21.8400
            16.8400
                      7.4200
                                      0.0000
                                                1.0000
            17.7100
                      6.4100
                                      0.6587
                                                0.3260
            ~ 4500
                      6.7100
                      5.2400
```


Basic Fitting

Figure window: Tools->Basic Fitting ...

Polynomials

Evaluating polynomials

$$y = p_1 x^n + p_2 x^{n-1} ... + p_n x + p_{n+1}$$

>> p = [p1 p2 ...]
>> t = [-3 : 0.1 : 3]
>> z = polyval(p, t)

Fitting a polynomial

Statistics Toolbox

Probability Distributions

Descriptive Statistics

Linear & Nonlinear Models

Hypothesis Tests

Statistical Plots

Descriptive Statistics

Central tendency

```
>> m = mean(X)
>> gm = geomean(X)
>> med = median(X)
>> mod = mode(X)
```

Dispersion

Probability Distributions

Probability density functions

```
>> Y = exppdf(X, mu)
>> Y = normpdf(X, mu, sigma)
```

Cumulative density functions

```
>> Y = expcdf(X, mu)
>> Y = normcdf(X, mu, sigma)
```

Parameter estimation

```
>> m = expfit(data)
>> [m, s] = normfit(data)
```


Distribution Fitting Tool

Start from command line window

>> dfittool

Linear Models

Definition:

$$y = X\beta + \varepsilon$$

y: *n x 1* vector of observations

X: *n x p* matrix of predictors

 β : *p x 1* vector of parameters

ε: n x 1 vector of random disturbances

Linear Regression

Multiple linear regression

```
>> [B, Bint, R, Rint, stats] = regress(y, X)
```

B: vector of regression coefficients

Bint: matrix of 95% confidence intervals for B

R: vector of residuals

Rint: intervals for diagnosing outliners

stats: vector containing R² statistic etc.

Residuals plot

```
>> rcoplot(R, Rint)
```


Polynomial Fitting Tool

>> polytool(X, Y)

Analysis of Variance (ANOVA)

- One-way ANOVA
 - >> anoval(X, group)

$\Theta \Theta \Theta$				Figure	Figure 1: One-way ANOVA			
File	Edit	View	Inser	rt Tools	Deskt	op Wir	ndow	
ANOVA Table								
Source	1	SS	df	MS	F	Prob>F		
Groups Error Total	4.		3 140 143	1.31765 0.0297	44.37	0		

Multiple Comparisons

```
>> [p, tbl, stats]
= anoval(X,group)
>> [c, m] =
multcompare(stats)
```


More Built-In Functions

Two-way ANOVA

```
>> [P, tbl, stats] = anova2(X, reps)
```

Statistical plots

```
>> boxplot(X, group)
```

Other hypothesis tests

```
>> H = ttest(X)
>> H = lillietest(X)
```


Exercise 1: Data Analysis

- RFID and Barcode Scanning Tests
 - o Script m-file: dataanalysis.m

Follow instructions in the m-file ...

Questions?

Curve Fitting Toolbox

Curve Fitting Tool
Goodness of Fit
Analyzing a Fit
Fourier Series Fit

Curve Fitting Tool

Goodness of Fit Statistics

Analyzing a Fit

Fourier Series Fit

Exercise 2: Regression

- Linear regression & other line fitting
 - Script m-file: regression.m

Follow instructions in the m-file ...

Questions?

