Type-Driven Automated Learning with LALE

Martin Hirzel, Kiran Kate, Avi Shinnar, Pari Ram, and Guillaume Baudart

Tuesday 4 November 2019

https://github.com/ibm/lale

Value Proposition

Augment, but don't replace, the data scientist.

Categorical + Continuous Dataset

```
In [1]:
                   import lale.datasets.openml
                  import pandas as pd
                  (train X, train y), (test X, test y) = lale.datasets.openml.fetch(
                        'credit-g', 'classification', preprocess=False)
                   # print last five rows of labels in train y and features in train X
                  pd.concat([pd.DataFrame({'y': train y}, index=train X.index).tail(5),
                                train X.tail(5)], axis=1)
    Out[1]:
                   y checking status duration credit history
                                                                   purpose credit amount savings status employment installment
                                                no credits/all
               835 0
                                         12.0
                                                                                                             1<=X<4
                                                                                   1082.0
                                                                                                   <100
                                                                     new car
                                                       paid
               192 0
                            0<=X<200
                                         27.0
                                                existing paid
                                                                                   3915.0
                                                                                                   <100
                                                                                                             1<=X<4
                                                                    business
                                                                                                no known
               629 1
                           no checking
                                                 existing paid
                                                                                   3832.0
                                                                                                                >=7
                                                                   education
                                                                                                 savings
                                                critical/other
                                         18.0
                                                                                                                 <1
               559 0
                            0<=X<200
                                                            furniture/equipment
                                                                                   1928.0
                                                                                                   <100
                                                existing credit
                                                    delayed
                                         36.0
               684 1
                            0<=X<200
                                                                    business
                                                                                   9857.0
                                                                                             100<=X<500
                                                                                                             4 <= X < 7
                                                  previously
              5 rows × 21 columns
```

Manual Pipeline

```
In [4]: N
             1 manual trainable = (
                       ( Project(columns={'type': 'number'}) >> Norm()
                        & Project(columns={'type': 'string'}) >> OneHot())
                    >> Concat
                   >> LR(LR.penalty.11, C=0.001))
             6 lale.helpers.to graphviz(manual trainable)
   Out[4]:
                             Norm
              Project
                                           Concat
                                                          LR
              Project
                              Hot
            1 import sklearn.metrics
In [5]: N
             2 manual trained = manual trainable.fit(train X, train y)
             3 manual y = manual trained.predict(test X)
             4 print(f'accuracy {sklearn.metrics.accuracy score(test y, manual y):.1%}')
           accuracy 29.1%
```

Pipeline Combinators

LALE features	Name	Description	Scikit-learn features
<pre>>> or make_pipeline</pre>	pipe	feed to next	make_pipeline
<pre>& or make_union</pre>	and	run both	<pre>make_union or ColumnTransformer</pre>
or make_choice	or	choose one	N/A (specific to given Auto-ML tool)

Automated Pipeline

```
auto_planned = (
In [7]:
                       ( Project(columns={'type': 'number'}) >> Norm
                        & Project(columns={'type': 'string'}) >> OneHot)
                    >> Concat
                    >> (LR | XGBoost | LinearSVC))
             6 lale.helpers.to graphviz(auto planned)
   Out[7]:
                             Norm
              Project
                                                          LR | XGBoost | LinearSVC
                                           Concat
                             One-
              Project
            1 from lale.lib.lale.hyperopt classifier import HyperoptClassifier
In [8]: N
             2 auto optimizer = HyperoptClassifier(auto planned, cv=3, max evals=10)
             3 auto trained = auto optimizer.fit(train X, train y)
             4 auto y = auto trained.predict(test X)
             5 print(f'accuracy {sklearn.metrics.accuracy score(test y, auto y):.1%}')
                          | 10/10 [00:30<00:00, 2.91s/it, best loss: -0.7373278347213325]
           accuracy 75.2%
```

Displaying Automation Results

Bindings as Lifecycle: Venn Diagram

[&]quot;Type-Driven Automated Learning with Lale", https://arxiv.org/pdf/1906.03957.pdf

Semi-Automated Data Science

Manual control over automation	Examples
Restrict available operator choices	InterpretableBased on licensesBased on GPU requirements
Tweak graph topology	Custom preprocessingMulti-modal dataFairness mitigation
Tweak hyperparameter schemas	Adjust range for continuousRestrict choices for categorical
Expand available operator choices	Wrap existing libraryWrite your own operators

Constraints in Scikit-learn

```
1 sklearn misconfigured = sklearn.pipeline.make pipeline(
In [13]: 🔰
                    sklearn.feature extraction.text.TfidfVectorizer(),
                    sklearn.linear model.LogisticRegression(solver='sag', penalty='l1'))
              4 print ('no error detected yet')
            no error detected yet
In [14]:
             1 %%time
              2 import sys
              3 try:
                    sklearn misconfigured.fit(news X, news y)
              5 except ValueError as e:
                    print(e, file=sys.stderr)
             CPU times: user 3.61 s, sys: 172 ms, total: 3.78 s
             Wall time: 3.96 s
             Solver sag supports only 12 penalties, got 11 penalty.
```

Type-Driven Manual Learning in LALE

Constraints in LALE

```
In [16]: N
             1 %%time
              2 import jsonschema
              3 try:
                     lale misconfigured = Tfidf >> LR(LR.solver.sag, LR.penalty.11)
              5 except jsonschema. ValidationError as e:
                     print(e.message, file=sys.stderr)
            CPU times: user 46.9 ms, sys: 15.6 ms, total: 62.5 ms
            Wall time: 36.7 ms
            Invalid configuration for LR(solver='sag', penalty='11') due to constraint the newton-cg, s
            ag, and 1bfgs solvers support only 12 penalties.
            Schema of constraint 1: {
                 'description': 'The newton-cg, sag, and lbfgs solvers support only 12 penalties.',
                 'anyOf': [{
                     'type': 'object',
                     'properties': {
                         'solver': {
                             'not': {
                                 'enum': ['newton-cg', 'sag', 'lbfgs']}}}, {
                     'type': 'object',
                     'properties': {
                         'penalty': {
                             'enum': ['12']}}],
            Value: {'solver': 'sag', 'penalty': '11', 'dual': False, 'C': 1.0, 'tol': 0.0001, 'fit inte
            rcept': True, 'intercept scaling': 1.0, 'class weight': None, 'random state': None, 'max it
            er': 100, 'multi class': 'ovr', 'verbose': 0, 'warm start': False, 'n jobs': None}
```

Types as Documentation

```
In [17]: M 1 XGBoost.hyperparam_schema('n_estimators')
Out[17]: {'description': 'Number of trees to fit.',
    'type': 'integer',
    'default': 100,
    'minimumForOptimizer': 10,
    'maximumForOptimizer': 1500}
In [18]: M 1 XGBoost.hyperparam_schema('booster')
Out[18]: {'description': 'Specify which booster to use.',
    'enum': ['gbtree', 'gblinear', 'dart'],
    'default': 'gbtree'}
```

Constraints in Auto-ML

Problem: Some automated trials raise exceptions

Solution 1: Unconstrained search space

- {solver: [linear,sag,lbfgs], penalty: [l1,l2]}
- Catch exception (after some time)
- Return made-up loss np.float.max

Solution 2: Constrained search space

- {solver: [linear,sag,lbfgs], penalty: [l1,l2]} and (if solver: [sag,lbfgs] then penalty: [l2])
- No exceptions (no time wasted)
- No made-up loss

Types as Search Spaces

[&]quot;Type-Driven Automated Learning with Lale", https://arxiv.org/pdf/1906.03957.pdf

Types as Single Source of Truth

[&]quot;Type-Driven Automated Learning with Lale", https://arxiv.org/pdf/1906.03957.pdf

Customizing Types

```
In [19]: N
                import lale.schemas as schemas
              2 Grove = XGBoost.customize schema(
                    n estimators=schemas.Int(min=2, max=6),
                    booster=schemas.Enum(['gbtree']))
In [20]: N
                grove planned = ( Project(columns={'type': 'number'}) >> Norm
                                & Project(columns={'type': 'string'}) >> OneHot
              3
                                ) >> Concat >> Grove
             1 grove optimizer = HyperoptClassifier(grove planned, cv=3, max evals=10)
In [21]:
              2 grove trained = grove optimizer.fit(train X, train y)
              3 grove y = grove trained.predict(test X)
              4 print(f'accuracy {sklearn.metrics.accuracy score(test y, grove y):.1%}')
                           | 10/10 [00:25<00:00, 2.45s/it, best loss: -0.7358263933376041]
            accuracy 71.2%
```

Scikit-learn Compatible Interopability

Modality	Dataset	Pipeline (bold: best found choice)
Text	Movie reviews (sentiment analysis)	(BERT TFIDF) >> (LR MLP KNN SVC PAC)
Table	Car (structured with categorical features)	J48 ArulesCBA LR KNN
Images	CIFAR-10 (image classification)	ResNet50
Time-series	Epilepsy (seizure classification)	<pre>WindowTransformer >>> (KNN XGBoost LR) >>> Voting</pre>

Ongoing Work

- General improvements
 - More operators
 - More Auto-ML tools
 - More robustness
- Resource usage
 - Memory
 - Compute
- Expressiveness
 - Grammars
 - Ensembles

We welcome your suggestions and contributions!

Conclusion

github.com/ibm/lale