# Statistical Language Modeling for Information Access

Theory, day 4: Between IR and IE

Maarten de Rijke Edgar Meij

ISLA University of Amsterdam

August 11–15, 2008 / ESSLLI 2008 August 14

#### Outline

#### 1 Expertise Retrieval

Setting the scence Models for expertise retrieval Let's evaluate

- **2** Retrieving Questions from Question and Answer Archives
- **3** Wrap Up and Look Ahead

# What Is Expertise Retrieval About?

- One line summary: finding and profiling people within an organizational setting
- Background, models for expertise retrieval, experimental setup and evaluation, recent developments
- Presentation mostly based on Krisztian Balog, People Search in the Enterprise, PhD thesis, U. Amsterdam, July 2008
  - http://www.science.uva.nl/~kbalog/phd-thesis/

# From Documents to Things to People

- Increasingly, search engines become aware of entities and entity like classes: CDs, books, people, locations, answers, . . .
- This lecture: people and answers
- Why interesting
  - From a modeling point of view: entities are directly represented (yet)—you need to get to them by collecting evidence and associating it to them, somehow
  - Mixes information retrieval and information extraction, providing a level of focus not offered by document retrieval
  - People love to search for people











#### Flavors of People Search

- · Locating classmates and old friends
- Finding dates, partners
- White/yellow pages (name, addres, phone, ...)
- Background check (recordsfinder.com: "investigate a susicious person or strange neighbor")
- Interest in this lecture: professional or work-related people search applications
  - A personnel officer wants to find information about a person who applied for a specific position
  - A company requires the state-of-the-art in some field, therefore they want to contact with someone from a knowledge institute
  - An enterprise needs to set up a task force to accomplish some

Two Main Tasks **Two Main Tasks** Expert finding

- Identifying a list of people who are knowledgeable about a given topic Who are the experts on topic X?
- Expert profiling
  - · Returning a list of topics that a person is knowledgeable about • What topics does person Y know about?
- Concretely:



• Concretely: http://www.uvt.nl/webwijs/





#### **Additional Tasks**

#### · Mining contact details

- Essential for an operational system
- · Finding similar experts
  - Counterpart of "find similar pages" feature of Web search engines
- · Enterprise document search
  - · Not just names, but documents relevant to the topic

# Language Modeling Framework

- Expert finding: p(ca|q) the probability of a candidate being an expert given the query topic q?
- Expert profiling: p(q|ca) the probability of a knowledge area (topic) being part of the candidate's profile?
- Use Bayes to reduce to p(q|ca)

# **Main Building Blocks**



p(q|ca) — expert profiling

#### Quickly: Two Models for Expertise Retrieval

- Estimating p(q|ca)... how do we find experts? how do **you** find experts?
- An association finding problem
  - candidate-based: create a textual model candidates' knowledge according to the document with which they associated
  - document-based: identify the docs that best describe the topic, then find out who is most strongly associated with them

#### Model 1: Candidate Model

- Collect all term information from all documents associated with given candidate
- Smooth it with a background model
- Use this to represent candidate
- In a few steps
  - $p(t|M_{ca}) = (1 \lambda) \cdot p(t|ca) + \lambda \cdot p(t)$
  - $p(t|ca) = \sum_{d} p(t|d) \cdot p(d|ca)$
  - $p(q|M_{ca}) = \prod_{t \in q} p(t|M_{ca})^{n(t,q)}$
- Putting it altogether:

$$p(q|M_{ca}) =$$

$$\prod_{t \in q} \left\{ (1 - \lambda) \cdot \left( \sum_{d} p(t|d) \cdot p(d|ca) \right) + \lambda \cdot p(t) \right\}^{n(t,q)}$$



De Riike, Meii (U. Amsterdan

Language modeling

SLLI 2008 – IV 21 /

De Rijke, Meij (U. Amsterdam)

• Step by step:

· All in one:

**Model 2: Document Model** 

associated with the relevant docs

•  $p(q|ca) = \sum_{d} p(q|d)p(d|ca)$ •  $p(q|M_d) = \prod_{t \in q} p(t|M_d)^{n(t,q)}$ 

•  $p(t|M_d) = (1-\lambda) \cdot p(t|d) + \lambda \cdot p(t)$ 

anguage modeling

• Find docs relevant to query and determine who's most strongly

 $p(q|ca) = \sum_{d} \left\{ ((1-\lambda) \cdot p(t|d) + \lambda \cdot p(t))^{n(t,q)} \right\} \cdot p(d|ca)$ 

document

ESSLLI 2008 – IV 22

# Document-Candidate Associations

- Need: estimate the probability that a doc is associated with a candidate p(d|ca)
- Assume: extraction component produces n(d, ca), the number of times person ca appears in doc d

$$p(d|ca) = \frac{p(ca|d) \cdot p(d)}{p(ca)}$$

- Multiple choices
  - Boolean: associations are binary; p(ca|d) = 1 if n(ca, d) > 0, 0 otherwise
  - TEIDF like features
  - KL divergence (see below)
  - ...

#### **Smoothing**

- JM
- Dirichlet  $\lambda = \frac{\beta}{\beta + n(x)}$  where n(x) is
  - Model 1: sum of lengths of all docs assocated with a given candidate (x=ca)
  - Model 2: document length (x = d)

and  $\boldsymbol{\beta}$  is the avg representation length

- · Model 1: of a candidate representation
- · Model 2: of a doc

De Rijke, Meij (U. Amsterdam)

Language modelin

LLI 2008 – IV 23 / 42

De Rijke, Meij (U. Amsterdan

Language modeling

ESSLLI 2008 - IV 24 /

### TREC enterprise track

• Tasks at the enterprise track

|                          | TREC |      |      |  |  |
|--------------------------|------|------|------|--|--|
| Task                     | 2005 | 2006 | 2007 |  |  |
| Expert search            | х    | х    | х    |  |  |
| E-mail known item search | x    |      |      |  |  |
| E-mail discussion search | x    | x    |      |  |  |
| Document search          |      |      | x    |  |  |

- Standard metrics: MAP, MRR, both for expert finding and for expert profiling
- Multiple collections, with their own characteristics...
  - W3C (TREC 2006, 2006): w3c.org
  - CSIRO (TREC 2007, 2008): csiro.au
  - UvT Epert Collection: uvt.nl/webwijs

# Expert Finding: Model 1 vs Model 2

| Model | TREC 2005 |               | TREC     | 2006          | TREC 2007    |       |
|-------|-----------|---------------|----------|---------------|--------------|-------|
|       | MAP       | MRR           | MAP      | MRR           | MAP          | MRR   |
| 1     | .1883     | .4692         | .3206    | .7264         | .3700        | .5303 |
| 2     | .2053     | $.6088^{(2)}$ | .4660(3) | $.9354^{(3)}$ | $4137^{(1)}$ | 5666  |

Table 5.1: Model  $1\,\mathrm{vs}$ . Model  $2\,\mathrm{on}$  the expert finding task, using the TREC 2005–2007 test collections. Best scores for each year are in boldface.



Figure 6.2: Topic-level differences in scores, Model 1 (baseline) vs Model 2. (Top): AP; (Bottom): RR. From left to right: TREC 2005, 2006, 2007.

De Kijke, Meij (U. Amsterdam

Language modelin

SSLLI 2008 – IV 27 / 42

De Rijke, Meij (U. Amsterdam

Language modeling

I 2008 – IV 28 / 42

### **Expert Profiling**

| 64       |       | UvT ALL |          |                      | UvT MAIN |       |          |                      |
|----------|-------|---------|----------|----------------------|----------|-------|----------|----------------------|
| Language | Mod   | del 1   | Mod      | lel 2                | Mo       | del 1 | Mod      | el 2                 |
|          | MAP   | MRR     | MAP      | MRR                  | MAP      | MRR   | MAP      | MRR                  |
| English  | .2023 | .3913   | .2682(3) | .4968 <sup>(3)</sup> | .3003    | .4375 | .3549(3) | .5198 <sup>(3)</sup> |
| Dutch    | .2081 | .4130   | .2503(3) | .4963(3)             | .2782    | .4155 | .3102(3) | .4854(3)             |

Table 5.5: Model 1 vs. Model 2 on ALL vs. MAIN topics of the UvT collection. Best scores for each language are in boldface.



Figure 6.5: Topic-level differences in scores, Model 1 (baseline) vs Model 2. (Top): AP; (Bottom): RR. From left to right: English ALL, Dutch ALL, English MAIN, and Dutch MAIN.

# Variations and Improvements

- Better estimates of candidate-document associations
- Bring in organisational structure
  - Smooth with documents from colleagues in the same group
- Proximity-based models
  - Passage/window based (M1B, M2B)
- Weigh candidate's weight in doc using KL-divergence between candidate's LM and doc LM
- Boosting underlying doc retrieval (BFB, query expansion using expert profiles, doc priors, ...)
- Careful combination leads to MAP scores of 0.5267 on TREC 2007 data (M1B; SIGIR 2009)
- Up to **0.5405** with some "secret" ingredients (M1B; SIGIR 2009)
- Up to 0.5747 without secret sauce but with rich query model based on example documents (M1B; CIKM 2008)

#### Something Else

- Finding Similar Experts task
  - · Balog and De Rijke, SIGIR 2007
- · Complement topic-centric models with contextual factors
  - Media experience, "up-to-date-ness", organizational structure, reliability, proximity, position, ...
  - Model as priors
- · Experiment with Tilburg University science communicators
  - If the expert you'd normally recommend is not available, whom would you recommend?
- Contextual factors significantly improve early precision (MRR):  $0.54 \to 0.59$ 
  - Hofmann et all, Future Challenges in Expertise Retrieval Workshop, 2008

#### **Expertise Retrieval Upshot**

- · Going beyond documents
  - After all, document search has become a commodity (on the web, at
- Language models offer a flexible setting for modeling ER, accommodating priors, mixtures, etc.
- Very competitive performance on a range of ER tasks
- Lots of modeling work left to be done, lots of work on the interface of IR/IE left to be done
  - Be creative

# Hang on

#### If You Have A Hammer...

- · Apply the underlying type-topic associations elsewhere
  - Stakeholders in the news
  - Influential authors on a given topic (digital library setting)
  - Intelligence
  - Blog distillation
  - Spotting moods associated with a given topic
  - Getting to know your politician
  - Automatic composition of committees, PCs, . . .
- What's next
  - Web-based ER
  - Result presentation
  - New evaluation/application settings

# **Question Answering vs Question Retrieval**

- · QA has been around since the early 1960s
- Initially as a front end to (structured database)
  - Early fame for systems provided access to baseball data, data on rocks collected by NASA during its moon missions, ...
- Since late 1990s lot of attention for corpus-based QA: given a text corpus and a question, a system has to identify and return "the answer" (in the corpus)
- Recent rise in interest in community-based QA: retrieving questions that are similar to a given input query
  - FAQs (Jijkoun and de Rijke, CIKM 2005)
  - Yahoo! Answers (Agichtein et al, WISDOM 2008)
  - wondir.com (Xue et al, SIGIR 2008)

### Combining a Translation-Based LM with a QL Model

- Given a question, find a good answer in the repository
  - · Unlike standard doc retrieval, can use both answer part and question part (of items in repository)
- · Xue et al combine a translation-based language model for the question part with a query likelihood approach for the answer
- Word mismatch problem ("the vocabulary gap") potentially worse than with doc retrieval
  - · short bits of text, little redundancy

#### The Models

- Setting: query ("the user's question"): q, archive consisting of (q, a) pairs
- $p(\mathbf{q}|(q,a)) = \prod_{w \in \mathbf{q}} p(w|(q,a))$
- $p(w|(q,a)) = \frac{|(q,a)|}{|(q,a)|+\lambda} p_{mx}(w|(q,a)) + \frac{\lambda}{|(q,a)|+\lambda} p_{ml}(w|GE)$
- $p_{mx}(w|(q, a)) = \alpha p_{ml}(w|q) + \beta \sum_{t \in q} p(w|t) p_{ml}(t|q) + \gamma p_{ml}(w|a)$
- Huh?
  - Generation probability of the question:

$$\alpha p_{ml}(w|q) + \beta \sum_{t \in q} p(w|t) p_{ml}(t|q)$$

• Generation probility of the answer:

 $\gamma p_{ml}(w|a)$ 

#### **Evaluation**

- Use IBM Model 1 to estimate translation probabilities  $p(w_i|w_i)$ , using (q, a) and (a, q) pairs as parallel corpus
  - · Briefly: EM plus maximum likelihood estimates
- Compare: standard mixture LM ( $\beta = 0$ ), translation model  $(\gamma = 0)$ , everything together  $(\alpha \cdot \beta \cdot \gamma > 0)$
- Evaluation: using 50 TREC QA questions, against a 1M (q, a)

| Model        | MAP    | P@10   |
|--------------|--------|--------|
| $\beta = 0$  | 0.3791 | 0.2368 |
| $\gamma = 0$ | 0.4238 | 0.2868 |
| full         | 0.4885 | 0.3053 |

# What's Next Here?

- Parameter estimation
- Bringing in additional factors
  - Social features (number of stars)
  - Question class specific features

# Wrap Up and Look Ahead

- The course wiki
  - http:

//www.science.uva.nl/~mdr/Teaching/ESSLLI2008
• LostInHamburg (case sensitive!)

- Summary

  - Getting started with expertise retrievalA bit on retrieving questions and answers
- Tomorrow

  - Learning to rank
     Discriminative vs generative models
     Issues you can work on
     Issues that you requested