EPFL E EDMA-GE MA B2 424 (Bâtiment MA) Station 8 CH-1015 Lausanne

Email / E-mail: Site web / Web site: edma@epfl.ch http://phd.epfl.ch/EDMA

PLAN DE RECHERCHE - Page de couverture RESEARCH PLAN - Cover Page

Candidat (Prénom, NOM, SCIPER) Candidate (First name, LASTNAME)	Giacomo GAREGNANI 248064		
Directeur de thèse / Thesis director Codirecteur / co-director	Prof. Assyr Abdulle		
Nom du laboratoire / Laboratory's name Localisation / Location	Chair of Computational Mathematics and Numerical Analysis EPFL		
Date d'immatriculation Date of enrolment	01.04.2017		

Titre provisoire de la thèse Provisional title of the thesis	Probabilistic methods for uncertainty quantification of the error in numerical solvers of differential equations			
Resumé / Abstract *				

A large variety of numerical methods for ordinary and partial differential equations have been proposed in the last decades, with an emphasis on the analysis of the numerical error in terms of accuracy and stability. However, traditional deterministic methods fail to furnish reliable solutions in a wide range of problems, especially when the employed discretisation is not sufficiently refined. In particular, classical error estimators can be overconfident on the method's precision, possibly leading to inadequate results in frameworks such as statistical inference of parameterised models. In this work, we propose novel probabilistic numerical methods which allow to overcome these issues. In particular, we are able to perform a full uncertainty quantification of numerical errors by introducing a probability measure over the approximate solution. In this way, we can provide with quantitative criteria on the reliability of the numerical method. Moreover, consistency with the deterministic approach is granted via precise estimates on the variability of the resulting probability measure, which scales according to the precision of the numerical solver.

*Résumé et plan de recherche lus et approuvés / *Abstract and research plan read and approved

Candidat Candidate	Directeur de thèse Thesis director	Codirecteur de thèse Thesis co-director	Dir. de programme Doctoral program dir.
(Date & signature)	(Date & signature)	(Date & signature)	(Date & signature)

Instructions pour le plan de recherche / Guidelines for Research Proposal
Merci de vous référer aux règles spécifiques à EDMA / Please refer to EDMA specific rules