Seminar 4 Decizii, decizii

- 1. Un sistem airbag detectează un accident prin eșantionarea semnalului de la un senzor cu 2 valori posibile: $s_0(t) = 0$ (OK) sau $s_1(t) = 5$ (accident). Semnalul este afectat de zgomot gaussian \mathcal{N} ($\mu = 0, \sigma^2 = 2$). Se ia un singur eșantion din semnal, cu valoarea r = 3.1. Costurile scenariilor sunt: $C_{00} = 0$, $C_{01} = 100$, $C_{10} = 10$, $C_{11} = -100$. Probabilitățile celor două ipoteze sunt $P(H_0) = 2/3$, $P(H_1) = 1/3$.
 - a. Găsiți decizia pentru eșantionul r, cu toate criteriile:
 - ML
 - MPE
 - MR
 - Neyman-Pearson cu probabilitatea condiționată) de alarmă falsă $P_{fa} = 0.01$
 - b. Găsiți regiunile de decizie R_0 și R_1 pentru toate criteriile de mai sus
 - c. Repetați cerințele considerând zgomot uniform U[-3,3]
- 2. Un semnal poate avea două valori, $s_0(t) = 0$ (ipoteza H_0) sau $s_1(t) = A$ (ipoteza H_1), unde A = 6.

Semnalul este afectat de zgomot gaussian $\mathcal{N}(0, \sigma^2 = 1)$.

La recepție se iau 5 eșantioane, cu valorile $\{1.1, 4.4, 3.7, 4.1, 3.8\}$.

- a. Ce decizie se ia cu criteriul ML?
- b. Ce decizie se ia cu criteriul MPE, dacă $P(H_0) = 2/3$ and $P(H_1) = 1/3$?
- c. Ce decizie se ia cu criteriul MR, dacă $P(H_0)=2/3$ and $P(H_1)=1/3$, și $C_{00}=0,\,C_{10}=10,\,C_{01}=20,\,C_{11}=5?$
- d. Considerând criteriul MR, care este valoarea minimă a lui A pentru ca probabilitatea de alarmă falsă sa fie maxim $P_{af} \leq 10^{-6}$?
- e. Care e intervalul de valori posibile ale lui $P(H_0)$ pentru ca decizia cu criteriul MPE să fie D_0 ?