FOUNDATIONS OF REPRESENTATION THEORY

5. Exercise sheet

Jendrik Stelzner

November 14, 2013

Exercise 17:

Exercise 18:

Exercise 19:

We can look at the 1-module $V:=N(\infty)\times (K,\mathrm{id}_K)$, the endomorphism being $\psi=\phi\times\mathrm{id}_K$.

It is obvious that $W:=N(\infty)\times 0$ is a proper submodule of V. W is also maximal in V because $V/W\cong (K,\mathrm{id}_K)$ is simple.

W is the only maximal submodule of V, because every maximal submodule $W'\subseteq V$ has to contain W: Assume $W'\subsetneq V$ is maximal with $W\subsetneq W'$. Then there is some $v=(\sum_{i=1}^n \mu_i e_i,0)\in W, \mu_n\neq 0$, with $v\not\in W'$. In particular $(e_n,0),(e_{n+1},0),\ldots\not\in W'$, because otherwise $(e_n,0),(e_{n-1},0)=\psi((e_n,0)),\ldots,e_1=\psi^{n-1}((e_n,0))\in W'$ and thus $v\in W'$. So $W'\subsetneq W'+U((e_n,0))\subsetneq V$, which contradicts the maximality of W.

Even though W is the only maximal submodule in V we find that V is not uniform, because the proper submodule $0\times K$ is not contained in W.

Exercise 20: