емой волны. Амплитуды радиосигналов, принмаемых антенной от передатчиков, одинаковы. При одновременной работе передатчиков мощность принимаемого сигнала меняется в очень широких пределах. Объясните явление и оцените суммарный процент времени, в течении которого мощность принимаего сигнала составляет менее 1/1000 среднего значения принимаемой мощности. Отражением радиосигналов от земли пренебречь.

Р.Александров

Решения задач М1451-1460, $\Phi 1468-1477$

М1451. Даны натуральные числа а и в такие, что числа $\frac{a+1}{b} + \frac{b+1}{a}$ является целым. Докажите, что наибольший общий делитель чисел a и b не превосходит числа $\sqrt{a+b}$.

Пусть d – наибольший общий делитель чисел a и b. Так как

$$\frac{a+1}{b} + \frac{b+1}{a} = \frac{a^2 + b^2 + a + b}{ab}$$

и ab делится на d^2 , то $a^2 + b^2 + a + b$ делится на d^2 . Число $a^2 + b^2$ также делится на d^2 . Поэтому a + b делится на d^2 и $\sqrt{a+b} > d$

А.Голованов, Е.Малинникова

M1451. Окружности S_1 и S_2 касаются внешним образом в точке F. Прямая l касается S_1 и S_2 в точках A и Bсоответственно. Прямая параллельная прямой l касается S_2 в точке C и пересекает S_1 в точках D и E. Докажите, что а) точки A, F и C лежат на одной прямой; б) общая хорда окружностей, описанных около треугольников ABC и BDE, проходит через точку F.

а) Первое решение. Так как касательные к окружности S_2 в точках B и C паралельны, то BC - ее диаметр, и $\angle BFC = 90^{\circ}$. Проведем через точку F общую касательную к окружностям(см. рисунок), пусть она пересекает прямую l в точке K. Из равенства отрезков касательных, проведенных к окружности из одной точки, следует, что треугольники AKF и BKFравнобедренные. Следовательно,

$$\angle AFB = \angle AFK + \angle KFB = \angle FAB + \angle FBA = 180^{\circ}/2 = 90^{\circ}$$

Второе решение. Рассмотрим гомотетию с центром F и коэффициентом, равным $-r_1/r_2$, где r_1 и r_2 – радиусы окружностей S_1 и S_2 . При этой гомотетин S_1 переходит в S_2 , а прямая l – касательная к S_1 – переходит в паралельную прямую – касательную к S_2 . Следовательно, точка Aперехолдит в точку C, поэтому точка F лежит на отрезке AC.

б) Ниже мы покажем, что центр окружности ВDE находится в точке A. Поскольку центр окружности ABC есть середина $AC(\angle ABC = 90^\circ)$, а $\angle BFC = 90^\circ$ (см. первое решение а)), отсюда бдет следовать, что BF есть перпендекуляр,

опущенный из общей точки окружностей BDE и ABC на прямую, соединяющую их центры. А это и значит, что прямая BF содержит иъ обзую хорду.

Итак, нам достаточно доказать, что AD = AE = AB. Первое из этих равенств очевидно (ибо касательная к S_1 в точке Aпарарлельна DE). Пусть r_1 и r_2 - радиусы S_1 и S_2 .

Опуская перепендекуляр AP на DE, найдем, что

 $AP = BC = 2r_2$ б и по теореме Пифагора для треугольников APD и O_1PD , где O_1 – центр S_1 ,

$$PD^2 = O_1D^2 - O_1p_2 = r_1^2 - (2r_2 - r_1)^2 = 4r_1r_2 - 4r_2^2,$$

 $PD^2=O_1D^2-O_1p_2=r_1^2-(2r_2-r_1)^2=4r_1r_2-4r_2^2, \ AD^2=AP^2+PD^2=4r_1r_2.$ Но легко найти, что обзая касательная AB окружностей S_1 и S_2 равна $2\sqrt{r_2r_2}$.

А.Калинин, В.Дубровский

M1453.Существует ли квадратный трехчлен P(x) с целыми коэффициентами такой, что для любого натурального числа n, в десятичной записи коториого учавствуют одни единицы, число P(n) также записывается одними единицами? Ответ: существует.

Рассмотрим квадратный трехчлен

$$P(x) = x(9x+2)$$

Если
$$n=\underbrace{11\dots 11}_k$$
, то $9n+2=1\underbrace{00\dots 00}_{k-1}1$. Следовательно, $P(n)=\underbrace{11\dots 11}_k\cdot 1\underbrace{00\dots 00}_{k-1}1=\underbrace{11\cdots 11}_{2k}$.

A. Перлин

 $M1454. Прямоугольник <math>m \times n$ разрезан на уголки:

Докажите, что разность между количеством уголков вида а и количеством уголоков вида b делится на 3.

Ясно, что если прямоугольник $m \times n$ разрезан на уголки, то тп делится на 3. Расставим в клетках прямоугольника числа так, как показано на рисунке.

1	2	3	4	 n-3	n-2	n-1	n
2	3	4	5	 n-2	n-1	n	n+1
3	4	5	6	 n-1	n	n+1	n+2
m-1	m	m+1	m+2	 m+n-5	m+n-4	m+n-3	m+n-2
m	m+1	m+2	m+3	 m+n-4	m+n-3	m+n-2	m+n-1

Сумма всез этих чисел равна mn(m+n)/2. Сумма чисел, стоящих в уголке вида a, дает при делении на 3 остаток 2; сумма чисел, стоящих в уголке вида b, — остаток 1 (или, что тоже самое, -2); суммы чисел, стоящих в уголках вида c и d, делятся на 3. Если n_a и n_b – количество уголков вида a и bсоответственно, то сумма всех чисел в прямоугольнике имеет вид $3N + 2(n_a - n_b)$, где N – некоторое число. Из равенства