Feuille de TD n.2 de IPD 2015-2016, Ensimag 2A IF

H. Guiol & J. Lelong

Semaine du 8 fev au 12 fev 2016

Exercice 2.1 1. Le processus $W_t = -B_t$ est un processus continue à accroissements stationnaires et indépendant vérifiant que pour tout t fixé $W_t \sim \mathcal{N}(0, t)$.

- 2. Pour s fixé on pose $W_t = B_{s+t} B_s$. On a que pour tout $t > r \ge 0$ fixés $W_t W_r = B_{s+t} B_{s+r} \sim \mathcal{N}(0, t-r)$. Le processus (W_t) est continu et à accroissements indépendants car tout accroissement de W sur t_i, t_{i+1} correspond à un accroissement (translaté) de B sur $t_i + s, t_{i+1} + s$.
- 3. Le processus W_t est bien continu sur [0,T] de plus ses accroissements sont bien stationnaires : $W_t W_s = B_{T-s} B_{T-t} \sim \mathcal{N}(0,t-s)$. De plus comme chaque accroissement de W sur t_i,t_{i+1} correspond à un accroissement de B sur $T-t_{i+1},T-t_i$ on conserve la propriété d'accroissements indépendants héritée de B.
- 4. On pose $W_t = \lambda B_{t/\lambda^2}$ qui est continu sur \mathbb{R} . On a $W_t W_s = \lambda (B_{t/\lambda^2} B_{s/\lambda^2}) \sim \mathcal{N}(0, t s)$. De plus comme chaque accroissement de W sur t_i, t_{i+1} correspond à un accroissement de λB sur $t_i/\lambda^2, t_{i+1}/\lambda^2$ on conserve la propriété d'accroissements indépendants héritée de B.
- 5. Pour $X_t = tW_{1/t}, X_0 = 0$:

Pour tout choix $0 \le t_1 < \dots < t_n$ le vecteur $X := (X_{t_1}, X_{t_2}, \dots, X_{t_n})$ est Gaussien car X = AW où $W := (W_{1/t_1}, W_{1/t_2}, \dots, W_{1/t_n})$ est Gaussien et

$$A = \begin{pmatrix} t_1 & 0 & 0 & \cdots & 0 \\ 0 & t_2 & 0 & \cdots & 0 \\ 0 & 0 & t_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & 0 \\ 0 & 0 & 0 & \cdots & t_n \end{pmatrix}$$

ce qui montre que X est un vecteur Gaussien. Donc $(X_t)_{t\geq 0}$ est un processus Gaussien. Pour tout t on a $\mathbb{E}(X_t)=0$ donc le processus est centré.. Enfin pour tous s,t>0

$$Cov(X_s, X_t) = tsCov(W_{1/s}, W_{1/t})$$

$$= ts \inf\left(\frac{1}{s}, \frac{1}{t}\right)$$

$$= \mathbb{E}(X_t - X_s)\mathbb{E}(X_s) + \mathbb{E}(X_s^2)$$

$$= \inf(s, t)$$

La continuité est automatique en dehors de t=0. On observe alors que les processus X et B sont tous les deux gaussaient de même caractéristique on a donc que les v.a. $\sup_{0 < s \le t} |W_s|$ et $\sup_{0 < s \le t} |X_s|$ ont même loi donc pour tout $\varepsilon > 0$

$$\mathbb{P}(\sup_{0 < s \le t} |X_s| > \varepsilon) = \mathbb{P}(\sup_{0 < s \le t} |W_s| > \varepsilon) \to 0 \text{ quand } t \to 0$$

car W est continu en 0. Ceci entraîne également la continuité (à droite) de X en 0.

Remarque : on aurait pu également utilisé le théorème de Kolmogorov-Chentsov. Il existe une version continue de X. Donc le processus X est continu sur \mathbb{R}

Ce qui conclut que X_t est un MBS.

Exercice 2.2 Comportement trajectoriel du mouvement brownien.

Soit $(B_t)_{t>0}$ un mouvement brownien standard.

1. On considère le quotient décalé en temps

$$R_s = \limsup_{t \to \infty} \frac{B_{t+s} - B_s}{\sqrt{t}}.$$

Montrer qu'il est indépendant de $\sigma(B_u, u \leq s)$.

Réponse. Pour tout t > s, les v.a. $(B_{t+s} - B_s)$ sont indépendantes de $(B_u, 0 \le u \le s)$. Ainsi, R_s est indépendant de $(B_u, u \leq s)$ par passage à la lim sup.

2. Soit $R = \limsup_{t \to \infty} \frac{B_t}{\sqrt{t}}$, montrer que $R = R_s$ p.s. et en déduire que R est indépendant de $\sigma(B_u, u \ge 0)$.

Réponse. On a clairement que $R = R_s$, car

$$\frac{B_{t+s}-B_s}{\sqrt{t}} = \frac{B_{t+s}-B_t}{\sqrt{t}} + \frac{B_t}{\sqrt{t}} - \frac{B_s}{\sqrt{t}}$$

Or $\lim_{t\to\infty}\frac{B_{t+s}-B_t}{\sqrt{t}}=0$ p.s. et $\lim_{t\to\infty}\frac{B_s}{\sqrt{t}}=0$ p.s. Remarque : on n'a pas nécessairement besoin d'autant Il suffit de remarquer que comme B et W (défini par $W_t=B_{t+s}-B_s$) sont deux MBS ce qui implique R et R_s sont de même loi.

On en déduit également que R_s converge en loi vers une v.a. R_∞ de même loi et qui est indépendante de $\sigma(B_u, u \leq s)$ pour tout s et donc de $\sigma(B_u, u \geq 0)$.

3. Déduire des questions précédentes que $\mathbb{P}(R=+\infty)=1$.

Réponse. La v.a. R_{∞} est mesurable pour $\sigma(B_u, u \geq 0)$ mais en est également indépendant. Ainsi pour tout $\alpha \in \mathbb{R}_{\infty}$, $\mathbb{P}(R_{\infty} > \alpha) = \mathbb{P}(R_{\infty} > \alpha)^2$. Donc $\mathbb{P}(R_{\infty} > \alpha) = 0$ ou $\mathbb{P}(R_{\infty} > \alpha) = 1$. Comme R_{∞} est de même loi que R on a le même résultat pour R. Or, $\mathbb{P}(B_t/\sqrt{t}>\alpha)=\mathcal{N}(-\alpha)>0$. On en conclut donc que pour tout $\alpha>0$, $\mathbb{P}(R>\alpha)=1$, ce qui implique $R = +\infty$ p.s.

4. Justifier que $\liminf_{t} \frac{B_t}{\sqrt{t}} = -\infty$.

Réponse. Il suffit de remarquer -B est encore un mouvement brownien.

Exercice 2.3 Pont Brownien

Soit $(W_s)_s$ un mouvement brownien et $a, b \in \mathbb{R}, 0 \le t_1 < t < t_2$. Montrer que W_t sachant $W_{t_1=a}$ et $W_{t_2} = b$ est de loi gaussienne de paramètres

$$\mu = a + \frac{t - t_1}{t_2 - t_1}(b - a)$$
 et $\sigma^2 = \frac{(t_2 - t)(t - t_1)}{t_2 - t_1}$

Réponse. Il s'agit ici de calculer la densité conditionnelle

$$f_{B_{t}\mid B_{t_{1}}=a,B_{t_{2}}=b}(x):=\frac{f_{B_{t_{1}},B_{t},B_{t_{2}}}(a,x,b)}{f_{B_{t_{1}},B_{t_{2}}}(a,b)}$$

et donc par suite calculer les densités jointes de $(B_{t_1}, B_{t_1}, B_{t_2})$ et (B_{t_1}, B_{t_2}) . Hormis leurs longueurs ces calculs ne présentent aucune difficultés.

On peut ainsi obtenir la densité jointe de (B_{t_1},B_t,B_{t_2}) en transformant le vecteur gaussaient à coordonnées indépendantes $(U, V, W) = (B_{t_1}, B_{t_1} - B_{t_1}, B_{t_2} - B_{t_1})$ de densité

$$f_{U,V,W}(u,v,w) = \frac{1}{(2\pi)^{3/2} \sqrt{t_1(t-t_1)(t_2-t)}} \exp\left(-\frac{1}{2} \left(\frac{u^2}{t_1} + \frac{v^2}{(t-t_1)} + \frac{w^2}{(t_2-t)}\right)\right)$$

Le jacobien de la transformation est 1 et on obtient

$$f_{B_{t_1},B_{t},B_{t_2}}(a,x,b) = \frac{1}{(2\pi)^{3/2}\sqrt{t_1(t-t_1)(t_2-t)}} \exp\left(-\frac{1}{2}\left(\frac{a^2}{t_1} + \frac{(x+a)^2}{(t-t_1)} + \frac{(b+x)^2}{(t_2-t)}\right)\right)$$

De facon similaire on trouve

$$f_{B_{t_1},B_{t_2}}(a,b) = \frac{1}{(2\pi)^{3/2}\sqrt{t_1(t_2-t_1)}} \exp\left(-\frac{1}{2}\left(\frac{a^2}{t_1} + \frac{(b+a)^2}{(t_2-t_1)}\right)\right)$$