Congratulations! You passed!

Grade received 100% To pass 80% or higher

Go to next item

Optimization algorithms

Latest Submission Grade 80%

1.		ich notation would you use to denote the 3rd layer's activations when the input is 7th example from the 8th minibatch?	1/1 point	
	0	$a^{[8]\{3\}(7)}$		
	0	$a^{[8]\{7\}(3)}$		
	0	$a^{[3]\{7\}(8)}$		
	•	$a^{[3]\{8\}(7)}$		
	⊘ Correct			
2.	Whi	0 / 1 point		
	•	Training one epoch (one pass through the training set) using mini-batch gradient descent is faster than training one epoch using batch gradient descent.		
	0	One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster than one iteration of batch gradient descent.		
	0	You should implement mini-batch gradient descent without an explicit for- loop over different mini-batches, so that the algorithm processes all mini- batches at the same time (vectorization).		
	(>	Incorrect		

- **3.** Why is the best mini-batch size usually not 1 and not m, but instead something inbetween?
 - If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making progress.
 - ✓ Correct
 - If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent.
 - If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.
 - **⊘** Correct
 - If the mini-batch size is 1, you end up having to process the entire training set before making any progress.
- **4.** Suppose your learning algorithm's cost J, plotted as a function of the number of iterations, looks like this:

1/1 point

Which of the following do you agree with?

- If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.
- Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.
- Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.
- If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.
 - **⊘** Correct
- **5.** Suppose the temperature in Casablanca over the first three days of January are the same:

Jan 1st: $heta_1=10^oC$

Jan 2nd: $heta_2 10^o C$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0, v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

- $\bigcirc \ v_2=10, v_2^{corrected}=7.5$
- $\bigcirc \ v_2 = 7.5, v_2^{corrected} = 7.5$
- $\bigcirc \ v_2=10, v_2^{corrected}=10$
 - **⊘** Correct
- **6.** Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.
- **1 / 1 point**

 $\bigcirc \ \alpha = \frac{1}{\sqrt{t}} \alpha_0$

- $\bigcirc \ lpha = 0.95^t lpha_0$
- $\bigcirc \ lpha = rac{1}{1+2*t}lpha_0$
- left $\alpha = e^t \alpha_0$
 - **⊘** Correct
- 7. You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t = \beta v_{t-1} + (1-\beta)\theta_t$. The red line below was computed using $\beta=0.9$. What would happen to your red curve as you vary β ? (Check the two that apply)

1/1 point

- \square Decreasing β will shift the red line slightly to the right.
- Increasing β will shift the red line slightly to the right.
 - **⊘** Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a green line \$\$\beta=0.98\$) that is slightly shifted to the right.

- lacktriangledown Decreasing eta will create more oscillation within the red line.
 - **⊘** Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a yellow line \$\$\beta=0.98\$ that had a lot of oscillations.

- lacksquare Increasing eta will create more oscillations within the red line.
- 8. Consider this figure:

1/1 point

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

- (1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)
- (1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent
- (1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)
- (1) is gradient descent. (2) is gradient descent with momentum (large β). (3) is gradient descent with momentum (small β)
 - ✓ Correct
- **9.** Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the cost function $\mathcal{J}(W^{[1]},b^{[1]},...,W^{[L]},b^{[L]})$. Which of the following techniques could help find parameter values that attain a small value for \mathcal{J} ? (Check all that apply)

0 / 1 point

(/22, 2:00	U PM U	optimization algorithms Coursera	
✓	Try tuning the learning rate $lpha$		
	Correct		
~	Try using Adam		
(Correct		
	Try initializing all the weights to zero		
	Try better random initialization for the w	reights	
✓	Try mini-batch gradient descent		
(Correct		
	You didn't select all the correct answers		
10. Wh	nich of the following statements about Ada	m is False?	1 / 1 point
•	Adam should be used with batch gradien batches.	nt computations, not with mini-	
0	The learning rate hyperparameter $lpha$ in A $lpha$	dam usually needs to be tuned.	
0	We usually use "default" values for the hy $(eta_1=0.9,eta_2=0.999,arepsilon=10^{-8})$	yperparameters eta_1,eta_2 and $arepsilon$ in Adam	
0	Adam combines the advantages of RMSP	Prop and momentum	
	◯ Correct		