Toward High Performance Matrix Multiplication for Exact Computation

Pascal Giorgi

Joint work with Romain Lebreton (U. Waterloo) Funded by the French ANR project HPAC

Motivations

- Matrix multiplication plays a central role in computer algebra. algebraic complexity of O(n^{ω}) with $\omega <$ 2.3727 [Williams 2011]
- Modern processors provide many levels of parallelism. superscalar, SIMD units, multiple cores

High performance matrix multiplication

- ✓ numerical computing = classic algorithm + hardware arithmetic
- $m{\mathsf{x}}$ exact computing eq numerical computing
 - ullet algebraic algorithm is not the most efficient (eq complexity model)
 - arithmetic is not directly in the hardware (e.g. $\mathbb{Z}, \mathsf{F}_q, \mathbb{Z}[x], \mathbb{Q}[x,y,z]).$

Outline

- 1 Matrix multiplication with small integers
- 2 Matrix multiplication with multi-precision integers
- Matrix multiplication with polynomials

Outline

- 1 Matrix multiplication with small integers
- 2 Matrix multiplication with multi-precision integers
- Matrix multiplication with polynomials

This corresponds to the case where each integer result holds in one processor register :

$$A, B \in \mathbb{Z}^{n \times n}$$
 such that $||AB||_{\infty} < 2^s$

where s is the register size.

Main interests

- ring isomorphism :
 - \rightarrow computation over $\mathbb{Z}/p\mathbb{Z}$ is congruent to $\mathbb{Z}/2^s\mathbb{Z}$ when $p(n-1)^2 < 2^s$.
- its a building block for matrix mutiplication with larger integers

Two possibilities for hardware support :

- use floating point mantissa, i.e. $s = 2^{53}$,
- use native integer, i.e. $s = 2^{64}$.

Using floating point

historically, the first approach in computer algebra [Dumas, Gautier, Pernet 2002]

- ✓ out of the box performance from optimized BLAS
- \times handle matrix with entries $< 2^{26}$

Using native integers

- √ apply same optimizations as BLAS libraries [Goto, Van De Geijn 2008]
- ✓ handle matrix with entries $< 2^{32}$

		floating point	integers
Nehalem (2008)	SSE4 128-bits	1 mul+1 add	1 mul+2 add
Sandy Bridge (2011)	AVX 256-bits	1 mul+1 add	
Haswell (2013)	AVX2 256-bits	2 FMA	1 mul+2 add

vector operations per cycle (pipelined)

benchmark on Intel i7-4960HQ @ 2.60GHz

Matrix multiplication modulo a small integer

Let p such that $(p-1)^2 \times n < 2^{53}$

- lacktriangle perform the multiplication in $\mathbb Z$ using BLAS
- reduce the result modulo p

benchmark on Intel i7-4960HQ @ 2.60GHz

Outline

- Matrix multiplication with small integers
- 2 Matrix multiplication with multi-precision integers
- Matrix multiplication with polynomials

Direct approach

Let M(k) be the bit complexity of k-bit integers multiplication and

$$A, B \in \mathbb{Z}^{n \times n}$$
 such that $||A||_{\infty}, ||B||_{\infty} \in O(2^k)$.

Computing AB using direct algorithm costs $n^{\omega}M(k)$ bit operations.

- \times not best possible complexity, i.e. M(k) is super-linear
- not efficient in practice

Remark:

Use evaluation/interpolation technique for better performances!!!

Multi-modular matrix multiplication

Multi-modular approach

$$||AB||_{\infty} < M = \prod_{i=1}^{\kappa} m_i, \quad \text{with primes } m_i \in O(1)$$

then AB can be reconstructed with the CRT from (AB) mod m_i .

- for each m_i compute $A_i = A \mod m_i$ and $B_i = B \mod m_i$
- **3** reconstruct C = AB from (C_1, \ldots, C_k)

Bit complexity:

 $O(n^{\omega}k + n^2R(k))$ where R(k) is the cost of reduction/reconstruction

Multi-modular matrix multiplication

Multi-modular approach

$$||AB||_{\infty} < M = \prod_{i=1}^{\kappa} m_i, \quad \text{with primes } m_i \in \mathrm{O}(1)$$

then AB can be reconstructed with the CRT from (AB) mod m_i .

- for each m_i compute $A_i = A \mod m_i$ and $B_i = B \mod m_i$
- **3** reconstruct C = AB from (C_1, \ldots, C_k)

Bit complexity:

 $O(n^{\omega}k + n^2R(k))$ where R(k) is the cost of reduction/reconstruction

- $R(k) = O(M(k) \log(k))$ using divide and conquer strategy
- $R(k) = O(k^2)$ using naive approach

Multi-modular matrix multiplication

Improving naive approach with linear algebra

reduction/reconstruction of n^2 data corresponds to matrix multiplication

- ✓ improve the bit complexity from $O(n^2k^2)$ to $O(n^2k^{\omega-1})$
- ✓ benefit from optimized matrix multiplication, i.e. SIMD

Remark:

A similar approach has been used by [Doliskani, Schost 2010] in a non-distributed code.

Multi-modular reductions of an integer matrix

Let us assume $M = \prod_{i=1}^k m_i < \beta^k$ with $m_i < \beta$.

Multi-reduction of a single entry

Let $a = a_0 + a_1 \beta + \dots + a_{k-1} \beta^{k-1}$ be a value to reduce mod m_i then

$$\begin{bmatrix} |a|_{m_1} \\ \vdots \\ |a|_{m_k} \end{bmatrix} = \begin{bmatrix} 1 & |\beta|_{m_1} & \dots & |\beta^{k-1}|_{m_1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & |\beta|_{m_k} & \dots & |\beta^{k-1}|_{m_k} \end{bmatrix} \times \begin{bmatrix} a0 \\ \vdots \\ a_{k-1} \end{bmatrix} - Q \times \begin{bmatrix} m_1 \\ \vdots \\ m_k \end{bmatrix}$$

with $||Q||_{\infty} < k\beta^2$

<u>Lemma</u>: if $k\beta^2 \in O(1)$ than the reduction of n^2 integers modulo the m_i 's costs $O(n^2k^{\omega-1}) + O(n^2k)$ bit operations.

Multi-modular reconstruction of an integer matrix

Let us assume $M = \prod_{i=1}^k m_i < \beta^k$ with $m_i < \beta$ and $M_i = M/m_i$

CRT formulae :
$$a = (\sum_{i=1}^{k} |a|_{m_1} \cdot M_i |M_i^{-1}|_{m_i}) \mod M$$

Reconstruction of a single entry

Let $M_i|M_i^{-1}|_{m_i}=\alpha_0^{(i)}+\alpha_1^{(i)}\beta+\ldots\alpha_{k-1}^{(i)}\beta^{k-1}$ be the CRT constants, then

$$\begin{bmatrix} a_0 \\ \vdots \\ a_{k-1} \end{bmatrix} = \begin{bmatrix} \alpha_0^{(1)} & \dots & \alpha_{k-1}^{(1)} \\ \vdots & \ddots & \vdots \\ \alpha_0^{(k)} & \dots & \alpha_{k-1}^{(k)} \end{bmatrix} \times \begin{bmatrix} |a|_{m_1} \\ \vdots \\ |a|_{m_k} \end{bmatrix}$$

with $a_i < k\beta^2$ and $a = a_0 + \ldots + a_{k-1}\beta^{k-1} \mod M$ the CRT solution.

<u>Lemma</u>: if $k\beta^2 \in O(1)$ than the reconstruction of n^2 integers from their images modulo the m_i 's costs $O(n^2k^{\omega-1}) + O(n^2k)$ bit operations.

Implementation of multi-modular approach

- choose $\beta = 2^{16}$ to optimize β -adic conversions
- choose m_i s.t. $n\beta m_i < 2^{53}$ and use BLAS dgemm
- use a linear storage for multi-modular matrices

Compare sequential performances with :

- FLINT library 1: uses divide and conquer
- Mathemagix library²: uses divide and conquer
- Doliskani's code ³: uses dgemm for reductions only

- 1. www.flintlib.org
- 2. www.mathemagix.org
- 3. courtesy of J. Doliskani

benchmark on Intel Xeon-2620 @ 2.0GHz

benchmark on Intel Xeon-2620 @ 2.0GHz

benchmark on Intel Xeon-2620 @ 2.0GHz

benchmark on Intel Xeon-2620 @ 2.0GHz

- based on OpenMP task
- CPU affinity (hwloc-bind), allocator (tcmalloc)
- still under progress for better memory strategy!!!

benchmark on Intel Xeon-2620 @ 2.0GHz (2 NUMA with 6 cores)

Outline

- Matrix multiplication with small integers
- Matrix multiplication with multi-precision integers
- Matrix multiplication with polynomials

We consider the "easiest" case :

$$A,B \in \mathsf{F}_p[x]^{n \times n}$$
 such that $\mathsf{deg}(\mathsf{AB}) < k = 2^t$

- p is a Fourier prime, i.e. $p = 2^t q + 1$
- p is such that $n(p-1)^2 < 2^{53}$

Complexity

 $\mathrm{O}(\mathit{n}^\omega k + \mathit{n}^2 k \log(k))$ op. in F_p using evaluation/interpolation with FFT

We consider the "easiest" case :

$$A,B \in \mathsf{F}_p[x]^{n \times n} \text{ such that } \mathsf{deg}(\mathsf{AB}) < k = 2^t$$

- p is a Fourier prime, i.e. $p = 2^t q + 1$
- *p* is such that $n(p-1)^2 < 2^{53}$

Complexity

 $O(n^{\omega}k + n^2k\log(k))$ op. in F_p using evaluation/interpolation with FFT

Remark:

using Vandermonde matrix on can get a similar approach as for integers, i.e. $O(n^{\omega}k + n^2k^{\omega-1})$

Evaluation/Interpolation scheme

Let θ a primitive kth root of unity in F_p .

- for i = 1 ... k compute $A_i = A(\theta^{i-1})$ and $B_i = B(\theta^{i-1})$
- ② for i = 1 ... k compute $C_i = A_i B_i \in F_p$
- **1** interpolate C = AB from (C_1, \ldots, C_k)

- steps 1 and 3 : $O(n^2)$ call to FFT_k over $F_p[x]$
- step 2 : k matrix multiplications modulo a small prime p

FFT with SIMD over F_n

Butterly operation modulo p

compute $X + Y \mod p$ and $(X - Y)\theta^{2^i} \mod p$.

- Barret's modular multiplication with a constant (NTL)
- calculate into [0, 2p) to remove two conditionals [Harvey 2014]

Let
$$X, Y \in [0, 2p), W \in [0, p), p < \beta/4$$
 and $W' = \lceil W\beta/p \rceil$.

Algorithm: Butterfly(X,Y,W,W',p)

- 1: $X' := X + Y \mod 2p$
- 2: T := X Y + 2p
- 3: $Q := \lceil W'T/\beta \rceil$
- 4: $Y' := (WT Qp) \mod \beta$
- 5: return (X', Y')

- 1 high short product
- 2 low short products

FFT with SIMD over F_p

Butterly operation modulo p

compute $X + Y \mod p$ and $(X - Y)\theta^{2^i} \mod p$.

- Barret's modular multiplication with a constant (NTL)
- calculate into [0,2p) to remove two conditionals [Harvey 2014]

1 high short product

2 low short products

Let
$$X, Y \in [0, 2p), W \in [0, p), p < \beta/4$$
 and $W' = \lceil W\beta/p \rceil$.

Algorithm: Butterfly(X,Y,W,W',p)

- 1: $X' := X + Y \mod 2p$
- 2: T := X Y + 2p
- 3: $Q := \lceil W'T/\beta \rceil$
- 4: $Y' := (WT Qp) \mod \beta$
- $= (V' \cup Qp) \bmod p$
- 5: return (X', Y')
 - ✓ SSE/AVX provide 16 or 32-bits low short product
 - no high short product available (use full product)

Implementation

- radix-4 FFT with 128-bits SSE (29 bits primes)
- BLAS-based matrix multiplication over F_p [FFLAS-FFPACK library]

benchmark on Intel Xeon-2620 @ 2.0GHz

Matrix multiplication over $\mathbb{Z}[x]$

$$A, B \in \mathbb{Z}[x]^{n \times n}$$
 such that $\deg(AB) < d$ and $||(AB)_i||_{\infty} < k$

Complexity

- $O(n^{\omega} d \log(d) \log(k))$ bit op. using Kronecker substitution
- $O(n^{\omega}d\log(k) + n^2d\log(d)\log(k))$ bit op. using CRT+FFT

Remark:

if the result's degree and bitsize are not too large, CRT with Fourier primes might suffice.

Matrix multiplication over $\mathbb{Z}[x]$

Implementation

- use CRT with Fourier primes
- re-use multi-modular reduction/reconstruction with linear algebra
- re-use multiplication in $F_p[x]$

benchmark on Intel Xeon-2620 @ 2.0GHz

Parallel Matrix multiplication over $\mathbb{Z}[x]$

Very first attempt (work still in progress)

- ullet parallel CRT with linear algebra (same code as in $\mathbb Z$ case)
- perform each multiplication over $F_p[x]$ in parallel
- some part of the code still sequential

n	d	$\log(k)$	6 cores	12 cores	time seq
64	1024	600	×3.52	×4.88	61.1s
32	4096	600	×3.68	×5.02	64.4s
32	2048	1024	$\times 3.95$	×5.73	54.5s
128	128	1024	×3.76	×5.55	53.9s

Conclusion

High performance tools for exact linear algebra :

- matrix multiplication through floating points
- multi-dimensional CRT
- FFT for polynomial over wordsize prime fields

We provide in the LinBox library (www.linalg.org)

- efficient sequential/parallel matrix multiplication over Z
- ullet efficient sequential matrix multiplication over $F_p[x]$ and $\mathbb{Z}[x]$

Parallel multi-modular matrix multiplication

- for $i = 1 \dots k$ compute $A_i = A \mod m_i$ and $B_i = B \mod m_i$
- \bullet for $i = 1 \dots k$ compute $C_i = A_i B_i \mod m_i$
- reconstruct C = AB from (C_1, \ldots, C_k)

Parallelization of multi-modular reduction/reconstruction

each thread reduces (resp. reconstructs) a chunk of the given matrix

thread 0	thread 1	thread 2	thread 3
	$A_0 = A$	mod m ₀	
	$A_1 = A$	mod m_1	
	$A_2 = A$	mod m ₂	
	$A_3 = A$	mod <i>m</i> ₃	1
	$A_4 = A$	mod m ₄	
	$A_5 = A$	mod m ₅	
	$A_6 = A$	mod m ₆	

Parallel multi-modular matrix multiplication

- for $i = 1 \dots k$ compute $A_i = A \mod m_i$ and $B_i = B \mod m_i$
- ② for i = 1 ... k compute $C_i = A_i B_i \mod m_i$
- **3** reconstruct C = AB from (C_1, \ldots, C_k)

Parallelization of modular multiplication

each thread computes a bunch of matrix multiplications $mod m_i$

thread 0	$C_0 = A_0 B_0 \bmod m_0$	
	$C_1 = A_1B_1 \mod m_1$	
thread 1	$C_2 = A_2B_2 \mod m_2$	
	$C_3 = A_3 B_3 \mod m_3$	
thread 2	$C_4 = A_4 B_4 \bmod m_4$	
	$C_5 = A_5 B_5 \mod m_5$	
thread 3	$C_6 = A_6 B_6 \bmod m_6$	