Udacity Deep Reinforcement Learning Nanodegree Navigation Project Report Xuan Liang

1. Learning algorithm

I used deep Q-Learning algorithm to solve the environment. Below is a summary of the algorithm:

- Initialize replay memory D with capacity N (replay buffer size)
- Initialize action-value function \hat{q} with random weights w
- Initialize target action-value weights $w^- \leftarrow w$
- For the episode $e \leftarrow 1$ to M:
 - o State input: S
 - o For time step t ← 1 to T:
 - Sample:
 - choose action A from state S using policy $\pi \leftarrow \epsilon Greedy(\hat{q}(S, A, w))$.
 - Take action A, observer reward R, and next state S'.
 - Store experience tuple (S, A, R, S') in replay memory D. $S \leftarrow S'$
 - For every C steps, learn:
 - Obtain random minibatch of tuples (s_i, a_i, r_i, s_{i+1}) from D
 - Set target $y_j = r_j + \gamma \max_a \hat{q}(s_{j+1}, a, w^-)$
 - Update: $\Delta w = \alpha \left(y_j \hat{q}(s_j, a_j, w) \right) \nabla_w \hat{q}(s_j, a_j, w)$
 - $w^- \leftarrow \tau \times w + (1 \tau) \times w^-$

2. Hyperparameters:

- Exploration vs exploitation:
 - Initial ϵ : 1.0
 - ϵ decay parameter: 0.995
 - Smallest ϵ : 0.01
- Experience replay:
 - Replay buffer size: 100000 (maximum number of experiences in memory)
- Minibatch size of experience to learn: 64
- Discount factor: 0.99 ($\gamma = 0.99$)
- Frequency to learn: 4 steps (C=4)
- Learning rate for updating local network: ($\alpha = 0.0001$)
- Parameter governing soft update of target network weights: 0.001 ($\tau = 0.001$)
- Neural network:
 - Two hidden layers
 - Each hidden layer has 64 nodes
 - Linear activation is used for both layers

3. Plot of scores

• Period by period score:

• Average scores over 100 periods. The environment is solved in 594 periods.

4. Future work

- Use double DQN. The main difference would be on the target estimate during learn step: $y_j = r_j + \gamma \hat{q} \left(s_{j+1}, argmax_a \left(\hat{q} \left(s_{j+1}, a, w \right) \right), w^- \right)$
- Use dueling DQN where the final value functions are estimated as a combination of state values V(s) and advantage values A(s, a). This could potentially improve performance because many value functions may not change much with the actions.