Manipulation de représentations de cubes de données

Arnaud Giacometti*, Patrick Marcel* Hassina Mouloudi*

*LI, université de Tours, 3 place Jean Jaurès, 41000 Blois {giaco,marcel}@univ-tours.fr, Hassina.Mouloudi@etu.univ-tours.fr

Ce travail en cours [Mouloudi, 2003] propose un modèle formel de représentations pour les résultats de requêtes OLAP et illustre comment des opérations typiques OLAP peuvent être facilement exprimées sur le modèle de représentation proposé.

Nous appelons représentation de cube de données la description formelle, dans le modèle des valeurs complexes [Abiteboul et al., 1995], de la structure décrite dans la figure 1. Une représentation est une valeur complexe de sort $R = \langle A, F \rangle$ où:

- − A est une valeur complexe décrivant les axes de la représentation, et
- F est une valeur complexe décrivant l'ensemble des faits représentés.

Est	lyon	20	30
	metz	30	70
Ouest	blois	60	40
	brest	50	20
-		1999	2000

| 1999 | 2000 FIG. 1 – une instance (I) de représentation à deux axes

Les opérations typiques OLAP [Chaudhuri et Dayal, 1997] sont définies sur les représentations et traduites dans l'algèbre sur les valeurs complexes [Abiteboul et al., 1995]. A titre d'exemple, nous présentons deux opérations OLAP sur la représentation I:

2000	20	40	70	30
1999	50	60	30	20
		11.		1
	brest	blois	metz	lyon
	brest	est	metz es	

	Est	lyon	30
2000		metz	70
	Ouest	blois	40
		brest	20
	Est	lyon	20
1999		metz	30
	Ouest	blois	60
		brest	50

 $I''=Nest_{annees_region=(annees,region)}(I)$ Le but de ce travail est d'utiliser ce cadre formel pour l'optimisation de requêtes OLAP. Par exemple, nous remarquons qu'une requête

```
q_1 = \sigma_{Qte \geq 50}(Nest_{regions,annees}(\sigma_{region=est}(Rotate_{annees}(I))))
peut être réécrite en q_2: Nest_{regions,annees}(\sigma_{Qte \geq 50 \land region=est}(I)).
```

Références

[Abiteboul et al., 1995] S. Abiteboul, R. Hull, et V. Vianu. Foundations of Databases. Addison-Wesley, 1995.

[Chaudhuri et Dayal, 1997] S. Chaudhuri et U. Dayal. An overview of data warehousing and OLAP technology. SIGMOD Record, 26(1):65–74, 1997.

[Mouloudi, 2003] H. Mouloudi. Langage de requêtes pour cubes et représentations. Master's thesis, Université de Tours, 2003.