PHYS 502: Mathematical Physics II

Winter 2015

Solutions to Homework #3

1. (a) Separating $u(\rho, \phi) = R(\rho)\Phi(\phi)$, Laplace's equation becomes

$$\frac{\rho}{R} \left(\rho R' \right)' + \frac{\Phi''}{\Phi} = 0.$$

Hence $\Phi''/\Phi = -m^2$, where m is an integer (by the usual argument) and

$$\rho \left(\rho R'\right)' - m^2 R = 0,$$

or

$$\rho^2 R'' + \rho R' - m^2 R = 0.$$

Seeking a power-law solution $R \sim \rho^{\alpha}$ and substituting in, we find $\alpha = \pm m$.

(b) Hence the general solution is a sum of terms of the form

$$u_m(\rho,\phi) = \rho^m \left(a_m \cos m\phi + b_m \sin m\rho \right)$$

(aside from the second solution for m = 0, which is $\ln \rho$, as discussed in class, but we won't need that here since we are looking for regular solutions with r < a).

(c) The boundary condition is $u(a, \phi) = U \cos^2 \phi = \frac{1}{2}U(1 + \cos 2\phi)$, which picks out the cosine terms with m = 0 and m = 2. Hence the interior regular solution (non-negative powers of ρ) is

$$u(\rho,\phi) = \frac{1}{2}U\left(1 + \frac{\rho^2}{a^2}\cos 2\phi\right).$$

2. The solutions to the wave equation in a sphere are of the form

$$u(r, \theta, \phi) = j_l(kr)P_l^m(\cos\theta)e^{im\phi},$$

for integer l and m. The boundary condition $\partial u/\partial r = 0$ at r = R requires $j'_l(kR) = 0$. As illustrated in the figure below, the three lowest allowed values of kR correspond, respectively, to the first zeros of j'_1 and j'_2 , and the second zero of j'_0 .

Since

$$j_0(x) = \frac{\sin x}{x},$$

we have

$$j_0'(x) = \frac{\cos x}{x} - \frac{\sin x}{x^2},$$

so $j_0'(x) = 0 \rightarrow \tan x = x$, or x = 4.49. Similarly, since

$$j_1(x) = \frac{\sin x}{x^2} - \frac{\cos x}{x},$$

$$j_2(x) = \sin x \left(\frac{3}{x^2} - 1\right) - \frac{3\cos x}{x^2},$$

 $j_1'(x) = 0$ for x = 2.08, $j_2'(x) = 0$ for x = 3.34. (Note that the first zero of j_3' is at x = 4.52.) Thus, the three lowest frequencies are $\omega = kc = 2.08c/R$, 3.34c/R, 4.49c/R.

3. The equation to be solved is

$$\nabla^2 n + \lambda n = \frac{1}{\kappa} \frac{\partial n}{\partial t},$$

where $\lambda, \kappa > 0$ and n = 0 on the surface. For assumed time dependence $n \sim e^{\alpha t}$, the equation becomes

$$\nabla^2 n + k^2 n = 0,$$

where $k^2 = \lambda - \alpha/\kappa$. The critical case has $\alpha = 0$, or $k^2 = \lambda$.

(a) For a sphere, the general solution is $n \sim j_l(kr)P_l^m(\cos\theta)e^{im\phi}$. The surface boundary condition is $j_l(kR) = 0$, and the minimum k corresponds to the first root of j_0 , so l = m = 0. Since $j_0(x) \sim \sin x/x$, we find $kR = \pi$ and the critical radius is

$$R_0 = \frac{\pi}{k} = \frac{\pi}{\sqrt{\lambda}} \,.$$

Note that, in order to satisfy the boundary condition, increasing R has the effect of decreasing k and hence of increasing $\alpha = \kappa(\lambda - k^2)$. Thus the sphere is unstable for $R > R_0$.

(b) For a hemisphere, the extra boundary condition at $\theta = \pi/2$ means that the l = 0 mode is not a solution. We now require $P_l^m(\cos \theta) = 0$ at $\theta = \pi/2$ (where we have assumed that the z axis is the axis of symmetry of the hemisphere). The lowest-order P_l^m satisfying the boundary condition is $P_1^0 = \cos \theta$, so l = 1 and the radial boundary condition becomes $j_1(kR) = 0$. Since $j_1(x) \sim \sin x/x^2 - \cos x/x$, the first zero has $x = \tan x$, or $x = 1.43\pi = 4.49$. The critical $(\alpha = 0)$ radius for this geometry then is

$$R_1 = \frac{1.43\pi}{k} = \frac{1.43\pi}{\sqrt{\lambda}} = 1.43R_0.$$

(c) Now the system is spherical again, but the radius is $R_1 > R_0$ and the system is unstable. Writing $\beta = 1.43$, the boundary condition now implies

$$kR_1 = \left(\lambda - \frac{\alpha}{\kappa}\right)^{1/2} R_1 = \pi$$

$$\Rightarrow \alpha = \kappa \lambda \left(1 - \beta^{-2}\right).$$

The growth time scale therefore is

$$\tau = \alpha^{-1} = \left(\frac{\beta^2}{\beta^2 - 1}\right) \frac{1}{\kappa \lambda} = \frac{1.96}{\kappa \lambda}.$$

4. (a) The general regular solution (in polar coordinates) to the 2-D Helmholtz equation is

$$u(r,\theta) = \sum_{m} J_m(kr) (a_m \cos m\theta + b_m \sin m\theta).$$

The boundary condition $u(R, \theta) = f(\theta)$ implies

$$\sum_{m} J_{m}(kR) (a_{m} \cos m\theta + b_{m} \sin m\theta) = f(\theta)$$

$$= \sum_{m} (A_{m} \cos m\theta + B_{m} \sin m\theta),$$

where

$$A_m = \frac{1}{\pi} \int_0^{2\pi} f(\theta') \cos m\theta' d\theta' \qquad (\times \frac{1}{2} \text{ for } m = 0)$$

$$B_m = \frac{1}{\pi} \int_0^{2\pi} f(\theta') \sin m\theta' d\theta' \qquad (m > 0).$$

Hence

$$a_m = \frac{A_m}{J_m(kR)}, \quad b_m = \frac{B_m}{J_m(kR)},$$

and so

$$u(r,\theta) = \int_0^{2\pi} K(r,\theta,\theta') f(\theta') d\theta',$$

where

$$K(r, \theta, \theta') = \sum_{m} \frac{J_m(kr)}{\pi J_m(kR)} \left(\cos m\theta \cos m\theta' + \sin m\theta \sin m\theta'\right)$$
$$= \frac{1}{\pi} \sum_{m} \frac{J_m(kr)}{J_m(kR)} \cos m(\theta - \theta')$$

(again with an extra factor of $\frac{1}{2}$ in the m=0 term).

(b) For $f(\theta) = \cos^2 \theta = \frac{1}{2}(1 + \cos 2\theta)$, we have $A_0 = A_2 = \frac{1}{2}$, and all the other As and Bs are zero. Hence

$$u(r,\theta) = \frac{1}{2} \left[\frac{J_0(kr)}{J_0(kR)} + \frac{J_2(kr)}{J_2(kR)} \cos 2\theta \right].$$