Technique des systèmes électriques, incl. bases technologiques

Dossier des expertes et experts

Moyens auxiliaires autorisés:

- Règle, équerre, chablon
- Recueil de formules sans exemple de calcul
- Calculatrice de poche, indépendante du réseau (tablettes, smartphones, etc. ne sont pas autorisés)

Cotation – Les critères suivants permettent l'obtention de la totalité des points:

- Les formules et les calculs doivent figurer dans la solution.
- · Les résultats sont donnés avec leur unité.
- Le cheminement vers la solution doit être clair.
- Les réponses et leur unité doivent être soulignés deux fois.
- Si dans un exercice on demande plusieurs réponses, vous êtes tenu de répondre à chacune d'elles.
- Les réponses sont évaluées dans l'ordre.
- Les réponses données en plus ne sont pas évaluées.
- Le verso est à utiliser si la place manque. Par exercice, un commentaire adéquat tel que par exemple « voir la solution au dos » doit être noté.
- Toute erreur induite par une précédente erreur n'entraîne aucune déduction.

Nous vous souhaitons plein succès!

Délai d'attente:

Cette épreuve d'examen ne peut pas être utilisée librement comme exercice avant le 1^{er} septembre 2019.

Créé par:

Groupe de travail PQ de l'USIE pour la profession d'électricienne de montage CFC / électricien de montage CFC

Editeur:

CSFO, département procédures de qualification, Berne

2

1

1

3

0,5

0,5

0,5

0,5

1

Energie, courant et puissance N° d'objectif d'évaluation 3.2.4

Sur la plaque signalétique d'une bouilloire, on peut lire : P = 750 W, U = 230 V. Calculez:

a) le courant.

$$I = \frac{P}{U} = \frac{750 \text{ W}}{230 \text{ V}} = \underline{3,26 \text{ A}}$$

b) la résistance de cette bouilloire.

$$R = \frac{U^2}{P} = \frac{(230 \text{ V})^2}{750 \text{ W}} = \underline{70,53 \Omega}$$

ou

$$R = \frac{U}{I} = \frac{230 \text{ V}}{3.26 \text{ A}} = \frac{70,53 \Omega}{200}$$

2. Densité de courant N° d'objectif d'évaluation 3.2.3b

Dans quelle partie du circuit électrique la densité de courant est-elle la plus grande ?

a) Pour chaque affirmation, cochez si elle est juste ou fausse.

Affirmations	Juste	Fausse
Dans le conducteur 1,5 mm²		
Dans le contact S0		
Dans le filament de la lampe à incandescence P1	\boxtimes	
Aux bornes de connexion L/N		

b) Justifiez votre réponse.

La densité de courant est maximale dans les parties du circuit ayant la plus petite section transversale.

Ampoule - filament de tungstène

1

2

1

1

2

1

3. Système triphasé N° d'objectif d'évaluation 5.3.5b

Un chauffe-eau est relié au réseau 3 x 400 V.

Avec une pince ampèremétrique, on mesure un courant de 8,66 A dans chaque conducteur polaire.

Que vaut la puissance absorbée ?

$$P = \sqrt{3} \cdot U \cdot I = \sqrt{3} \cdot 400 \ V \cdot 8,66 \ A = \underline{6000 \ W} = \ \underline{6 \ kW}$$

4. Energie N° d'objectif d'évaluation 3.2.4b

Un fer à repasser a une puissance : P = 1800 W.

a) Quelle énergie électrique en kWh consomme-t-il si il est utilisé pendant 2,5 heures ?

$$W = P \cdot t = 1,8 \text{ kW} \cdot 2,5 \text{ h} = 4,5 \text{ kWh}$$

b) Que coûte l'énergie consommée si le prix d'un kilowatt-heure d'énergie est de 20 centimes?

$$K = W \cdot T_a = 4,5 \text{ kWh} \cdot 20 \frac{\text{cts}}{\text{kWh}} = \frac{90 \text{ cts}}{\text{mean}}$$

5. Champs magnétiques N° d'objectif d'évaluation 3.2.5b

Notez les pôles en fonction des lignes de champ.

1

2

0,5

0,5

0,5

0,5

2

1

1

6. Sources d'énergie N° d'objectif d'évaluation 3.2.2b

Pour chaque source d'énergie, indiquez s'il s'agit d'une énergie renouvelable ou fossile.

Sources d'énergie	Energie renouvelable	Energie fossile
Biomasse		
Gaz naturel		
Soleil		
Pétrole		
Charbon		
Vent		

7. Puissance, rendement N° d'objectif d'évaluation 3.3.2b

Un moteur triphasé consomme 4650 W et délivre 4 kW.

Calculez:

a) la puissance perdue.

$$P_{perdue} = P_{absorb\acute{e}e} - P_{utile} = 4650 \text{ W} - 4000 \text{ W} = \underline{650 \text{ W}}$$

b) le rendement.

$$\eta = \frac{P_{utile}}{P_{absorb\acute{e}e}} = \frac{4000 \text{ W}}{4650 \text{ W}} = \ \underline{0.86} = \underline{86.0 \%}$$

8. Procédés chimiques N° d'objectif d'évaluation 3.3.6b

Quelle est le rôle de l'anode de magnésium dans un chauffe-eau (boiler) ?

Prévenir la corrosion - garantir l'étanchéité de la cuve ou protection contre la corrosion ou empêche la chaudière à eau chaude d'être détruite ou boucher les pores de l'émail

2

0,5

0,5 0,5

0,5

2

1

1

2

1

9. Organes de protection N° d'objectif d'évaluation 5.1.4b

Cochez pour chaque affirmation si elle est juste au fausse.

«Pour assurer la protection contre les surcharges des moteurs, on utilise»

Affirmations	Juste	Fausse
Disjoncteur de ligne		\boxtimes
Relais thermique de protection de moteur	\boxtimes	
Disjonteur combiné avec un relais de protection de moteur	\boxtimes	
HPC		

10. Triangle des puissances N° d'objectif d'évaluation 5.3.3b

Calculez la puissance apparente S à partir du triangle de puissance donné.

Formule :
$$S = \sqrt{P^2 + Q^2} =$$

Calcul:
$$\sqrt{(7 \text{ kW})^2 + (5 \text{ kvar})^2} = 8,602 \text{ kVA} = 8602 \text{ VA}$$

11. Déplacement, vitesse N° d'objectif d'évaluation 3.3.3b

Le déplacement vers le chantier prend 0,5 heure.

L'électricien de montage roule à une vitesse moyenne de 50 km/h.

Calculez la distance en km à laquelle se trouve le chantier.

Formule :
$$s = v \cdot t$$

Calcul:
$$\frac{50 \text{ km}}{\text{h}} \cdot 0,5 \text{ h} = \underline{25 \text{ km}}$$

3

2

12. Loi d'ohm N° d'objectif d'évaluation 3.2.3b/5.3.6b

a) Complétez le circuit de mesure avec un voltmètre et un ampèremètre.

(Note pour les experts: 1 Pt. Par instrument de mesure correct)

b) Le voltmètre indique une tension de 230 V. L'ampèremètre mesure un courant de 1,15 A.

A l'aide de ces deux mesures, calculez la résistance R.

$$R = \frac{U}{I} = \frac{230 \text{ V}}{1,15 \text{ A}} = \underline{\frac{200 \Omega}{}}$$

13. Couplage parallèle N° d'objectif d'évaluation 5.3.2b

Quatre résistances de 80 $\Omega;$ 40 $\Omega;$ 120 Ω et 240 Ω sont couplées en parallèle.

Calculez la résistance équivalente.

Formule :
$$R = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4}} =$$

Calcul:
$$\frac{1}{\frac{1}{80.0} + \frac{1}{40.0} + \frac{1}{120.0} + \frac{1}{240.0}} = \underline{20.0}$$

14. Organe de protection N° d'objectif d'évaluation 5.1.4b

Pour quelles tâches utilise-t-on des dispositifs de protection à courant différentielrésiduel ?

Cochez pour chaque affirmation si elle est juste au fausse.

Affirmations	Juste	Fausse
Augmenter la résistance d'isolation		\boxtimes
Amélioration de la protection des personnes	\boxtimes	
Protection des choses (Protection contre les incendies)	\boxtimes	
Modifie l'impédance de boucle		

1

2

1

1

2

0,5

0,5

0,5

0,5 Points par page:

1

15. Appareils de mesure N° d'objectif d'évaluation 5.3.6b

La puissance d'un chauffage d'appoint 3 x 400 V est vérifiée.

Quelle mesure permet de déterminer la valeur du courant I ?

Cochez la bonne réponse.

2

16. Machines électriques N° d'objectif d'évaluation 5.2.4b

Plaquette signalétique d'un moteur triphasé à induit court-circuité :

- a) Raccordez le moteur correctement selon la plaquette signalétique.
- b) Dessinez les ponts nécessaires.

1 1