Rede de Computadores

Camada de Transporte

Camada de Transporte

Os serviços oferecidos pelo protocolo IP não oferecem confiabilidade.

Problemas comuns como congestionamento, perda ou ordenação de pacotes não são tratados.

A camada de transporte pode oferecer um serviço confiável de entrega de dados das aplicações utilizando um serviço não confiável prestado pela camada de rede.

Camada de Transporte

Os principais serviços oferecidos pela camada de transporte são:

Controle de conexão

Fragmentação

Endereçamento

Confiabilidade

Controle de Conexão

A camada de transporte possui protocolos que oferecem serviços orientados a conexão e não orientados a conexão.

Os serviços não orientados a conexão tem conceito semelhante ao funcionamento do protocolo IP.

O serviço orientado a conexão, primeiramente estabelece uma comunicação entre usuários finais e só depois começa a transmissão.

Fragmentação

Esta função é similar a camada de rede, mas a fragmentação é feita apenas no transmissor e receptor, pois os dispositivos de rede em geral não entendem a camada de transporte.

Esta fragmentação não está relacionada com a feita pela camada de rede.

Endereçamento

Conhecemos o endereçamento IP e sabemos que a identificação de um host na Internet é única.

A camada de transporte oferece à camada de aplicação a função de endereçamento, onde os serviços são identificados pela sua porta (HTTP-80, FTP-20/21, SMTP-25, DNS-53...) e uma conexão entre sua estação e outro host é feita através de um **socket (IP+porta)**.

Confiabilidade

Para garantir a confiabilidade, a camada de transporte oferece:

- Controle de fluxo;
- Controle de erros;
- Controle de congestionamento e Qualidade de Serviço

O TCP é o protocolo da camada de transporte da arquitetura Internet responsável em oferecer **confiabilidade** na transmissão.

O TCP fornece um serviço orientado a conexão, confiável e full-duplex para os serviços de aplicação.

Transmission Control Protocol (TCP) Header 20-60 bytes

source port number			destination port number
2 bytes			2 bytes
sequence number 4 bytes			
acknowledgement number 4 bytes			
data offset	reserved	control flags	window size
4 bits	3 bits	9 bits	2 bytes
checksum			urgent pointer
2 bytes			2 bytes
optional data 0-40 bytes			

Para ter o controle dos pacotes enviados e conseguir efetuar a fragmentação, o TCP precisa que os usuários finais tenham o controle do que está sendo enviado.

Três fases durante uma conexão:

estabelecimento da ligação,

transferência e

término de ligação.

Para estabelecimento da conexão o TCP necessita que:

- O cliente inicia enviando um pacote TCP com a flag SYN ativa e espera-se que o servidor aceite a ligação enviando um pacote SYN+ACK;
- Se, durante um determinado espaço de tempo, esse pacote não for recebido ocorre um timeout e o pacote SYN é reenviado.
- O estabelecimento da ligação é concluído por parte do cliente, confirmando a aceitação do servidor respondendo-lhe com um pacote ACK

O TCP só encerra a conexão depois de entregar os dados ao receptor (Graceful Connection Shutdown).

É possível a transferência simultânea nas duas direções durante a sessão, **full-duplex**.

Utiliza o conceito de *stream*, enviando uma sequência limitada e contínua de bytes sem noção dos registros ou quantidade de pacotes que serão recebidos.

Enxerga a rede como uma conexão ponto-a-ponto

Perda de Pacote e Retransmissão

Quando o TCP envia os dados, ele inicializa um mecanismo de *timeout* (temporizador) para receber a confirmação de recebimento.

Caso a confirmação não seja recebida ele retransmite o pacote. A retransmissão é a base do sucesso do TCP.

Retransmissão adaptativa e Controle de Tempo

O TCP monitora o atraso do envio dos pacotes e adapta seu temporizador.

Controle de Fluxo (buffers e janelas de transmissão)

Utiliza o conceito de buffers (armazenamento de pedidos e respostas) e janelas deslizantes

Janela deslizante é uma característica de alguns protocolos que permite que o remetente transmita mais que um pacote de dados antes de receber uma confirmação.

Depois de recebê-lo para o primeiro pacote enviado, o remetente desliza a janela do pacote e manda outra confirmação.

O número de pacotes transmitidos sem confirmação é conhecido como o tamanho da janela; aumentando o tamanho da janela melhora-se a vazão.

UDP - User Datagram Protocol

O UDP é um protocolo da camada de transporte **não** confiável e não orientado a conexão.

Fornece apenas os serviços:

endereçamento;

fragmentação,

não provendo confiabilidade (controle de fluxo, erro, congestionamento).

UDP - User Datagram Protocol

Possui um cabeçalho menor gerando um menor overhead.

Ideal para algumas aplicações onde a velocidade é mais útil que a confiabilidade como aplicações multimídia.

É utilizado também pelo TFTP (Trivial File Transfer Protocol), RIP (Routing Information Protocol), SNMP (Simple Network Management Protocol) e DNS (Domain Name System), etc...

UDP - User Datagram Protocol

