§10.2. Vectors

In this section we show how to represent things that have both magnitude and direction in the plane or space.

Definition. The vector represented by the directed line segment \overrightarrow{AB} has **initial point** A and **terminal point** B and the **length** is denoted by $|\overrightarrow{AB}|$. A quantity such as velocity, force and displacement is called vector.

Two vectors are **equal** if they have the same length and direction regardless of the initial point.

Definition. If \overrightarrow{v} is **two-dimensional** vector in the plane equal to

the vector with initial point at the origin and terminal point (v_1, v_2) , then the component form of \overrightarrow{v} is $\overrightarrow{v} = \langle v_1, v_2 \rangle$.

If \overrightarrow{v} is **three-dimensional** vector in the plane equal to the vector with initial point at the origin and terminal point (v_1, v_2, v_3) , then the component form of \overrightarrow{v} is $\overrightarrow{v} = \langle v_1, v_2, v_3 \rangle$.

Definition. The **magnitude** or **length** of the vector $\overrightarrow{v} = \overrightarrow{PQ}$ is the nonnegative number;

$$|\overrightarrow{v}| = \sqrt{v_1^2 + v_2^2 + v_3^2} = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$$

A vector \overrightarrow{PQ} in standard position has its initial point at the origin. The directed line segments \overrightarrow{PQ} and \mathbf{v} are parallel and have the same length.

Definition. (Vector Algebra Operations) Let $\overrightarrow{u} = \langle u_1, u_2, u_3 \rangle$ and $\overrightarrow{v} = \langle v_1, v_2, v_3 \rangle$ be vectors with k a scalar:

Addition: $\overrightarrow{u} + \overrightarrow{v} = \langle u_1 + v_1, u_2 + v_2, u_3 + v_3 \rangle$

Scalar multiplication: $k\overrightarrow{u} = \langle ku_1, ku_2, ku_3 \rangle$

If k > 0 then $k \overrightarrow{u}$ has the same direction as \overrightarrow{u} ,

If k < 0 then $k \overrightarrow{u}$ has the opposite direction as \overrightarrow{u}

If k=0 then $k\overrightarrow{u}$ has zero length and therefore no particular direction. It is the zero vector denoted $\overrightarrow{0}$.

(a) Geometric interpretation of the vector sum. (b) The parallelogram law of vector addition.

In \mathbb{R}^2 we single out two particular vectors for special attention.

They are;

i. the vector \overrightarrow{i} from the origin to the point (1,0), and

ii. the vector \overrightarrow{j} from the origin to the point (0,1).

These vectors are called the **standard basis vectors** in the plane. The vector \overrightarrow{r} from the origin to the point (x,y) has components x and y and can be expressed in the form $\overrightarrow{r} = \langle x, y \rangle = x\overrightarrow{i} + y\overrightarrow{j}$.

In the first form we specify the vector by listing its components between angle brackets; in the second we write \overrightarrow{r} as a linear combination of the standard basis vectors i and j.

The vector r is called the **position vector** of the point (x,y). A position vector has its tail at the origin and its head at the point whose position it is specifying. The length of \overrightarrow{r} is $|\overrightarrow{r}| = \sqrt{x^2 + y^2}$.

More generally, the vector \overrightarrow{AP} from A = (a, b) to P = (p, q) can also be written as a list of components or as a linear combination of the standard basis vectors:

$$\overrightarrow{AP} = \langle p - a, q - b \rangle = (p - a)\overrightarrow{i} + (q - b)\overrightarrow{j}.$$

The zero vector is $\overrightarrow{0} = 0 \overrightarrow{i} + 0 \overrightarrow{j}$. It has length zero and no specific direction.

For any vector \overrightarrow{u} we have $0u = \overrightarrow{0}$. Here 0 is the scalar of the multiplication.

A unit vector is a vector of length 1. Thus, the standard basis vectors \overrightarrow{i} and \overrightarrow{j} are unit vectors.

Given any nonzero vector \overrightarrow{v} , we can form a unit vector \widehat{v} in the same direction as \overrightarrow{v} by multiplying \overrightarrow{v} by the reciprocal of its length (which a scalar):

$$\widehat{v} = \frac{1}{|\overrightarrow{v}|} \overrightarrow{v}$$

Example 1. If A = (2, -1), B = (-1, 3), and C = (0, 1), express \overrightarrow{AC} , \overrightarrow{CB} and $2\overrightarrow{AC} - 3\overrightarrow{CB}$.

$$\overrightarrow{AC} = (0-2)\overrightarrow{i} + (1-(-1))\overrightarrow{j} = -2\overrightarrow{i} + 2\overrightarrow{j},$$

$$\overrightarrow{CB} = (-1-0)\overrightarrow{i} + (3-1)\overrightarrow{j} = -1\overrightarrow{i} + 2\overrightarrow{j},$$

$$2\overrightarrow{AC} - 3\overrightarrow{CB} = 2(-2\overrightarrow{i} + 2\overrightarrow{j}) - 3(-\overrightarrow{i} + 2\overrightarrow{j}) = -\overrightarrow{i} - 2\overrightarrow{j}.$$

Properties of Vector Operations:

i.
$$\overrightarrow{u} + \overrightarrow{v} = \overrightarrow{v} + \overrightarrow{u}$$

ii.
$$(\overrightarrow{u} + \overrightarrow{v}) + \overrightarrow{w} = \overrightarrow{u} + (\overrightarrow{v} + \overrightarrow{w})$$

iii.
$$\overrightarrow{u} - \overrightarrow{v} = \overrightarrow{u} + (-1)\overrightarrow{v}$$

iv.
$$t(\overrightarrow{u} + \overrightarrow{v}) = t\overrightarrow{u} + t\overrightarrow{v}$$

Vectors in 3-Space

Given a Cartesian coordinate system in 3-space, we define three standard basis vectors, \overrightarrow{i} , \overrightarrow{j} , and \overrightarrow{k} , represented by arrows from the origin to the points (1,0,0), (0,1,0) and (0,0,1), respectively. Any vector in 3-space can be written as a linear combination of these basis vectors; for instance, the position vector of the point (x,y,z) is given by;

$$\overrightarrow{r} = \langle x, y, z \rangle = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}.$$

Example 2. If $\overrightarrow{u} = -\overrightarrow{i} + 3\overrightarrow{j} + \overrightarrow{k}$ and $\overrightarrow{v} = 4\overrightarrow{i} + 7\overrightarrow{j}$ are two vectors in 3-space. Find $2\overrightarrow{u} + 3\overrightarrow{v}$, $\overrightarrow{u} - \overrightarrow{v}$ and $|\frac{1}{2}\overrightarrow{u}|$. $2\overrightarrow{u} + 3\overrightarrow{v} = 2(-\overrightarrow{i} + 3\overrightarrow{j} + \overrightarrow{k}) + 3(4\overrightarrow{i} + 7\overrightarrow{j}) = (-2\overrightarrow{i} + 6\overrightarrow{j} + 2\overrightarrow{k}) + (12\overrightarrow{i} + 21\overrightarrow{j}) = 10\overrightarrow{i} + 27\overrightarrow{j} + 2\overrightarrow{k}$. $\overrightarrow{u} - \overrightarrow{v} = (-\overrightarrow{i} + 3\overrightarrow{j} + \overrightarrow{k}) - (4\overrightarrow{i} + 7\overrightarrow{j}) = -5\overrightarrow{i} - 4\overrightarrow{j} + \overrightarrow{k}$. $|\frac{1}{2}\overrightarrow{u}| = |\frac{-1}{2}\overrightarrow{i} + \frac{3}{2}\overrightarrow{j} + \frac{1}{2}\overrightarrow{k}| = \sqrt{(\frac{-1}{2})^2 + (\frac{3}{2})^2 + (\frac{1}{2})^2} = \frac{1}{2}\sqrt{11}$.

The Dot Product and Projections

Definition. Given two vectors, $\overrightarrow{u} = u_1 \overrightarrow{i} + u_2 \overrightarrow{j}$ and $\overrightarrow{v} = v_1 \overrightarrow{i} + v_2 \overrightarrow{j}$ in \mathbb{R}^2 , we define their **dot product** $\overrightarrow{u} \bullet \overrightarrow{v}$ to be the sum of

the products of their corresponding components.

$$\overrightarrow{u} \bullet \overrightarrow{v} = u_1 v_1 + u_2 v_2.$$

The terms **scalar product** and **inner product** are also used in place of dot product. Similarly, for vectors $\overrightarrow{u} = u_1 \overrightarrow{i} + u_2 \overrightarrow{j} + u_3 \overrightarrow{k}$ and $\overrightarrow{v} = v_1 \overrightarrow{i} + v_2 \overrightarrow{j} + v_3 \overrightarrow{k}$ in \mathbb{R}^3 ,

$$\overrightarrow{u} \bullet \overrightarrow{v} = u_1 v_1 + u_2 v_2 + u_3 v_3.$$

The dot product has the following algebraic properties;

$$\overrightarrow{u} \bullet \overrightarrow{v} = \overrightarrow{v} \bullet \overrightarrow{u}$$

$$\overrightarrow{u} \bullet (\overrightarrow{v} + \overrightarrow{w}) = \overrightarrow{u} \bullet \overrightarrow{v} + u \bullet \overrightarrow{w}$$

$$(t\overrightarrow{u}) \bullet \overrightarrow{v} = \overrightarrow{u} \bullet (t\overrightarrow{v}) = t(\overrightarrow{u} \bullet \overrightarrow{v})$$

$$\overrightarrow{u} \bullet \overrightarrow{u} = |u|^2$$

Theorem 1. If θ is the angle between the directions of \overrightarrow{u} and \overrightarrow{v} $(0 \le \theta \le \pi)$, then

$$\overrightarrow{u} \bullet \overrightarrow{v} = |\overrightarrow{u}||\overrightarrow{v}|\cos\theta.$$

In particular, $\overrightarrow{u} \bullet \overrightarrow{v} = 0$ if and only if \overrightarrow{u} and \overrightarrow{v} are perpendicular. (Of course, the zero vector is perpendicular to every vector.)

Example 3. Find the angle between $\overrightarrow{u} = \langle 1, -2, -2 \rangle$ and $\overrightarrow{v} = \langle 1, -2, -2 \rangle$

$$\langle 6, 3, 2 \rangle$$
;
 $\overrightarrow{u} \bullet \overrightarrow{v} = (1)(6) + (-2)(3) + (-2)(2) = 6 - 6 - 4 = -4$
 $|\overrightarrow{u}| = \sqrt{(1)^2 + (-2)^2 + (-2)^2} = \sqrt{9} = 3$
 $|\overrightarrow{v}| = \sqrt{(6)^2 + (3)^2 + (2)^2} = \sqrt{49} = 7$
 $\theta = \cos^{-1}(\frac{\overrightarrow{u} \bullet \overrightarrow{v}}{|\overrightarrow{u}||\overrightarrow{v}|}) = \cos^{-1}(\frac{-4}{(3)(7)}) \approx 1.76 \text{ radians.}$

Definition. Scalar and vector projections

The scalar projection s of any vector \overrightarrow{u} in the direction of nonzero vector \overrightarrow{v} is the dot product of \overrightarrow{u} with a unit vector in the direction of \overrightarrow{v} . Thus, is the number

$$s = \frac{\overrightarrow{u} \bullet \overrightarrow{v}}{|\overrightarrow{v}|} = |\overrightarrow{u}| \cos \theta,$$

where θ is the angle between \overrightarrow{u} and \overrightarrow{v} .

The vector projection, $\overrightarrow{u}_{\overrightarrow{v}}$ of \overrightarrow{u} in the direction of \overrightarrow{v} is the scalar multiple of a unit vector \widehat{v} in the direction of \overrightarrow{v} , by the scalar projection of \overrightarrow{u} in the direction of \overrightarrow{v} ; that is,

$$\overrightarrow{u}_v = \frac{\overrightarrow{u} \bullet \overrightarrow{v}}{|\overrightarrow{v}|} \widehat{v} = \frac{\overrightarrow{u} \bullet \overrightarrow{v}}{|\overrightarrow{v}|^2} \overrightarrow{v}.$$

Note that |s| is the length of the line segment along the line of \overrightarrow{v} obtained by dropping perpendiculars to that line from the tail and head of \overrightarrow{u} . Also, s is negative if $\theta > 90^{\circ}$.

It is often necessary to express a vector as a sum of two other vectors

parallel and perpendicular to a given direction.

Example 4. Express the vector $\overrightarrow{i} + \overrightarrow{j}$ as a sum of vectors $\overrightarrow{u} + \overrightarrow{v}$, where \overrightarrow{u} is parallel to the vector $\overrightarrow{i} + \overrightarrow{j}$ and \overrightarrow{v} is perpendicular to \overrightarrow{u} .

Method-I(Using vector projection) Note that \overrightarrow{u} must be the vector projection of $3\overrightarrow{i} + \overrightarrow{j}$ in the direction of $\overrightarrow{i} + \overrightarrow{j}$. Thus,

$$\overrightarrow{u} = \frac{(3\overrightarrow{i} + \overrightarrow{j}) \bullet (\overrightarrow{i} + \overrightarrow{j})}{|\overrightarrow{i} + \overrightarrow{j}|^2} (\overrightarrow{i} + \overrightarrow{j}) = \frac{4}{2} (\overrightarrow{i} + \overrightarrow{j}) = 2\overrightarrow{i} + 2\overrightarrow{j}$$

$$\overrightarrow{v} = 3\overrightarrow{i} + \overrightarrow{j} - \overrightarrow{u} = \overrightarrow{i} - \overrightarrow{j}$$

Method-II(From basic principles) Since \overrightarrow{u} is parallel to \overrightarrow{i} + \overrightarrow{j} and \overrightarrow{v} is perpendicular to \overrightarrow{u} , we have

$$\overrightarrow{u} = t(\overrightarrow{i} + \overrightarrow{j}) \text{ and } \overrightarrow{v} \bullet (\overrightarrow{i} + \overrightarrow{j}) = 0,$$

for some scalar t. We want $\overrightarrow{u} + \overrightarrow{v} = 3\overrightarrow{i} + \overrightarrow{j}$. Take the dot product of this equation with $\overrightarrow{i} + \overrightarrow{j}$:

$$\overrightarrow{u} \bullet (\overrightarrow{i} + \overrightarrow{j}) + \overrightarrow{v} \bullet (\overrightarrow{i} + \overrightarrow{j}) = (3\overrightarrow{i} + \overrightarrow{j}) \bullet (\overrightarrow{i} + \overrightarrow{j})$$
$$t(\overrightarrow{i} + \overrightarrow{j}) \bullet (\overrightarrow{i} + \overrightarrow{j}) + 0 = 4.$$

Thus 2t = 4, so t = 2. Therefore,

$$\overrightarrow{u} = 2\overrightarrow{i} + 2\overrightarrow{j} \text{ and } \overrightarrow{v} = 3\overrightarrow{i} + \overrightarrow{j} - \overrightarrow{u} = \overrightarrow{i} - \overrightarrow{j}.$$