Homework 8 - LogitBoost

Thomas Johansen and Kyle Shaw November 6, 2017

Method

The "ada" package in R was used to run LogitBoost on four datasets. The ada function was modified to also return the loss so that it could be plotted. The plots below show the loss vs. iteration and misclassification error vs. iteration. A table of results is also included, as well as the script and a bibliography.

Gisette

R ran out of memory on full dataset, so a subset of 500 features was used for analysis.

Gisette Misclassification Error by Iteration

Arcene

R ran out of memory on full dataset, so a subset of 2000 features was used for analysis.

Figure 1:

Arcene Logistic Loss

Figure 2:

Hill-Valley

Hill-Valley Misclassification Error by Iteration

Hill_valley Logistic Loss

Figure 3:

Madelon Logistic Loss

Figure 4:

Madelon

Table of Results

k	Training.Error	Testing.Error
10	0.0725000	0.0940000
30	0.0376667	0.0560000
100	0.0035000	0.0490000
300	0.0000000	0.0340000
10	0.1100000	0.3300000
30	0.0200000	0.3100000
100	0.0000000	0.2600000
300	0.0000000	0.2800000
10	0.1617162	0.4570957
30	0.0874587	0.4603960
100	0.0115512	0.4422442
300	0.0016502	0.4306931
10	0.1060000	0.1816667
30	0.0370000	0.2466667
100	0.0000000	0.2400000
300	0.0000000	0.2483333
	10 30 100 300 10 30 100 300 10 300 100 300 10	10 0.0725000 30 0.0376667 100 0.0035000 300 0.0000000 10 0.1100000 30 0.0200000 100 0.0000000 300 0.0000000 10 0.1617162 30 0.0874587 100 0.0115512 300 0.0016502 10 0.1060000 30 0.0370000 100 0.0000000

Script

```
## run logitboost
library(ada)
results <- data.frame()
set.seed(5)
files <- c("gisette", "arcene", "hill_valley", "madelon")</pre>
propcase <- function(string) {paste0(toupper(substring(string, 1, 1)), substring(string, 2))}</pre>
print(Sys.time())
for (i in 1:4) {
  message(paste("Begin", files[i]))
  filelist <- read_data(files[i])</pre>
  for (k in c(10, 30, 100, 300)) {
    logitBoost <- ada(filelist$X, filelist$Y$, filelist$Xtest, filelist$Ytest$Y,</pre>
                                   loss="logistic", iter=k, verbose = FALSE)
    if (k == 300) {
      png(filename = paste0("C:/Users/joh10/Desktop/FSU/FA17/5635/git/hw8/", files[i], "_loss.png"))
      plot(logitBoost$model$plot_loss, xlab = "Iteration", ylab = "Loss",
                      main = paste0(propcase(files[i]), " Logistic Loss"), pch=16)
      dev.off()
      message("Plot saved.")
    results <- rbind(results, c(k, logitBoost$model$errs[k,1], logitBoost$model$errs[k,3]))
    message(paste("k =", k, "finished"))
  print(Sys.time())
colnames(results) <- c("k", "Training Error", "Testing Error")</pre>
results <- data.frame(Data = rep(files, each = 4), results)
saveRDS(results, "C:/Users/joh10/Desktop/FSU/FA17/5635/git/hw8/results.rds")
```

Modifying the ada function

The "trace" function in base R was used to modify the ada package so that the loss function could be plotted.

```
trace(ada:::ada.default, edit = TRUE)
trace(ada:::ada.machine, edit = TRUE)

## code added:
# plot_loss <- c()
# plot_loss[m] <- sum(log(1 + exp(-y * fits)))
# add plot_loss to return obj

#untrace(ada:::ada.machine)</pre>
```

Bibliography

- Mark Culp, Kjell Johnson and George Michailidis (2016). ada: The R Package Ada for Stochastic Boosting. R package version 2.0-5. https://CRAN.R-project.org/package=ada
- H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2009.
- Hadley Wickham and Lionel Henry (2017). tidyr: Easily Tidy Data with 'spread()' and 'gather()' Functions. R package version 0.7.2. https://CRAN.R-project.org/package=tidyr