

Arhitecturi Paralele Abordări probleme paralele

Prof. Florin Pop As. Drd. Ing. Cristian Chilipirea cristian.chilipirea@cs.pub.ro

Elemente preluate din cursul Prof. Ciprian Dobre

9 4 2 7 6 5 6 1

1 2 4 5 6 6 7 9

by Cristian Chilipirea

How many numbers are smaller than me?

9 4 2 7 6 5 6 1

1 2 4 5 6 6 7 9

All question can be answered in parallel

Searching for 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 2 3 5 5 6 6 7 7 7 8 8 9 9 9

Searching for 3

Interest area

Searching for 3

Interest area

Searching for 3

Interest area

Searching for 3

Interest area

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 2 3 5 5 6 6 7 7 7 8 8 9 9 9 9

3 = 3
end

$$O(log_2(n))$$
 time

Parallel Search

Searching for 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 2 3 5 5 6 6 7 7 7 8 8 9 9 9

Parallel Search

Searching for 3

Interest area

0 15

The element is in my area

Parallel Search

Searching for 3

Interest area

Parallel Search – solution 2 (fewer threads)

Parallel Search – solution 2 (fewer threads)

Searching for 3

Interest area

0 15

Operations can be executed in parallel

Parallel Search

Searching for 3

Interest area

0 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 2 3 5 5 6 6 7 7 7 8 8 9 9 9 9

3 > 1 3 = 3 end

3 > 2 O(
$$log_p(n)$$
) time

Parallel Search

Parallel Search

- CPU Instruction pipeline
- Graphics pipeline
- Various algorithms

Un pas poate fi executat de:

- thread
- process
- element hardware

Task 1

total_execution_time = task_execution_time * number_of_tasks

Task 6
Task 5
Task 4
Task 3
Task 2
Task 2
Task 1

Task 6
Task 5
Task 4
Task 3
Task 2

Task 6
Task 5
Task 4
Task 4

Task 6 Task 5 Task 4

Task 6 Task 5

Task 6

Task 1

Task 2

Task 2
Task 1

Task 4
Task 3
Task 2
Task 1

Ideal:
$$step_execution_time = \frac{task_execution_time}{number_of_steps}$$

După number_of_steps tascuri: total_execution_time = number_of_tasks * step_execution_time

Un task se termină la fiecare "step tick"

Sorting

9 4 2 7 6 5 6 1

1 2 4 5 6 6 7 9

9 4 2 7 6 5 6 1

9 4 2 7 6 5 6

9 4 2 7 6 5

9 4 2 7 6

9 4 2 7

9 4 2

Polynomial

$$P(x) = \sum_{i=0}^{n} a_i x^i = a_0 x^0 + a_1 x^1 + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n, n \ge 0$$

Pipeline

$$P(x) = 1 + 8x + (-4)x^3 + x^4$$

$$P(x) = 1 + 8x + (-4)x^3 + x^4$$

 x_1 x_2 x_3 x_4 x_5

 $x_1 \ x_2 \ x_3 \ x_4$

 x_1 x_2 x_3

 $x_1 x_2$

 x_1

$$1 + 8x_5 + (-4)x_5^3 + x_5^4$$

$$1 + 8x_4 + (-4)x_4^3 + x_4^4$$
$$1 + 8x_5 + (-4)x_5^3 + x_5^4$$

$$\mathbf{1} + \mathbf{8}x_5 + (-\mathbf{4})x_5^3 + x_5^4$$
 by Cristian Chilipirea

 $1 + 8x_4 + (-4)x_4^3 + x_4^4$

$$1 + 8x_3 + (-4)x_3^3 + x_3^4$$

$$1 + 8x_1 + (-4)x_1^3 + x_1^4$$

$$1 + 8x_4 + (-4)x_4^3 + x_4^4$$

$$1 + 8x_2 + (-4)x_2^3 + x_2^4$$

$$1 + 8x_5 + (-4)x_5^3 + x_5^4$$

