Battery health

Specification

Goal

• To provide a fast and reliable way to examine the healthiness of battery

Use case

 One can read the latest healthiness of battery from phone, to tell if customer needs to replace the battery or not

Interface

 One can use terminal commands to check the healthiness of battery when phone is connected properly

Method (2019.04.16)

During a charging process that battery level changes from p1% to p2%, and note the difference of battery level before and after charging as Δp , $\Delta p = p2 - p1$.

The electric charge according to design capacity is $\Delta t \times I$. And the estimated capacity of battery is $(\Delta t \times I) / \Delta p$.

If these is no loss in capacity, $(\Delta t \times I) / \Delta p$ should be very close to d, the designed capacity.

Thus, the healthiness of battery can be inferred as: $(\Delta t \times I) / \Delta p / d$.

Note:

- 1. The starting battery level (p1) of charge session should be 70%, and the ending battery level (p2) is 100%.
- 2. The estimation of "I", aka average current (unit: mA) during charging, should be monitored per second continuously.
- 3. The estimated battery healthiness wll be stored up to 20 records in the database.
- 4. The battery healthiness (raw) data should be averaged with all previous records. For example, if we get a new record (2nd record), before putting it into database, the raw data should be averaged with the first record in database, then update to database.
- 5. To be generalized, for ith new record, the raw data needed to be averaged with 1 to (i-1) records existed in database.