Chaos and Logistic Map

モデル化とシミュレーション特論 2021 年度前期 佐賀大学理工学研究科 只木進一

- Chaos
- 2 Logistic Map
- Period Doubling
- Period Doubling to Chaos
- Sample Programs

Chaos

- Henri Poincaré
 - complex trajectories for 3-body problems (1880's)
- Edward Lorenz
 - difficulties in weather forecasts (1960's)
 - small initial differences expands.
- Turbulence
- Logistic Map as a simplest chaos model routes to chaos, intermittency, band splitting, etc.

Logistic Map

- A species which has off-springs
- If the number of individuals small, the number of off-springs will increase proportionally.
- If large, the number of off-springs will decrease because of restriction from the environment.

$$x_{n+1} = f_{\lambda}\left(x_n\right) \tag{1}$$

$$f_{\lambda}(x) = 4\lambda x (1 - x)$$

$$x_i \in [0, 1], \qquad \lambda \in [0, 1]$$
(2)

fixed points for small λ

- fixed points are solutions of $x = f_{\lambda}(x)$
- $\lambda < 1/4$
 - only one fixed point at x=0
 - $\bullet \ \ \text{example} \ \lambda = 0.2$

- $1/4 < \lambda < 3/4$
 - two fixed points at x = 0 and $(4\lambda 1)/(4\lambda)$
 - trajectories do not go to x=0
 - example $\lambda = 0.5$ from $x_0 = 0.1$ and 0.8

stability of fixed points

• A point $x_0 = x_{\mathrm{f}} + \delta$ near a fixed point x_{f}

$$x_1 = f_{\lambda} \left(x_{\rm f} + \delta \right) = f_{\lambda} \left(x_{\rm f} \right) + \delta \left. \frac{\mathrm{d}f_{\lambda}}{\mathrm{d}x} \right|_{x = x_{\rm f}} + O\left(\delta^2 \right) \tag{3}$$

- stable: $|\mathrm{d}f_{\lambda}/\mathrm{d}x| < 1$
- unstable: $|\mathrm{d}f_{\lambda}/\mathrm{d}x| > 1$

Stability of $x_{\rm f} = 0$

$$\frac{\mathrm{d}f_{\lambda}}{\mathrm{d}x}\Big|_{x=0} = 4\lambda \left(1 - 2x\right)\Big|_{x=0} = 4\lambda \tag{4}$$

- stable: $\lambda < 1/4$
- unstable: $\lambda > 1/4$

Stability of $x_{\rm f} = \left(4\lambda - 1\right)/\left(4\lambda\right)$

$$\frac{\mathrm{d}f_{\lambda}}{\mathrm{d}x}\bigg|_{x=x_{\mathrm{f}}} = 4\lambda \left(1-2x\right)\big|_{x=x_{\mathrm{f}}} = 2-4\lambda \tag{5}$$

- $|\mathrm{d}f_{\lambda}/\mathrm{d}x|=1$ at $\lambda=1/4$
- $|\mathrm{d}f_{\lambda}/\mathrm{d}x| = -1$ at $\lambda = 3/4$
- stable: $1/4 < \lambda < 3/4$

Period Doubling

• at $\lambda = 3/4$ period-2 trajectory appears

$$x_{\pm} = f_{\lambda} (x_{\mp})$$
$$= \frac{1}{8\lambda} \left[4\lambda + 1 \pm \sqrt{(4\lambda + 1)(4\lambda - 3)} \right]$$

(6)

Stabitily of period-2 trajectories

$$f_{\lambda}^{[n+1]}(x) = f_{\lambda}\left(f_{\lambda}^{[n]}(x)\right) \tag{7}$$

$$f_{\lambda}^{[1]}(x) = f_{\lambda}(x) \tag{8}$$

$$\frac{\mathrm{d}}{\mathrm{d}x} f_{\lambda}^{[2]} \bigg|_{x=x_{\perp}} = 1 - (4\lambda + 1)(4\lambda - 1) \tag{9}$$

• the next instability

$$\lambda = \frac{1 + \sqrt{6}}{4} \simeq 0.8624 \tag{10}$$

14/18

Period Doubling to Chaos

- ullet Trajectories are doubled by increasing λ
- Period becomes infinite at $\lambda \simeq 0.893$

Sample Programs

https://github.com/modeling-and-simulation-mc-saga/Logistic

- model/Logistic.java
 - Logistic map
 - setting λ
 - update() method
- analysis/PrintOrbit.java
 - show orbits in (x_n, x_{n+1}) -plane
 - show Logistic map : $f_1^{[n]}(x)$
 - Output orbits in pdf through gnuplot

Direct output to PDF

- utils/Gnuplot.java
 - open gnuplot as a process
 - open outputstream of the process
 - write gnuplot commands to the stream
 - You have to set the path to gnuplot.

Gnuplot with standard input

Input from standard input plot "-"

Script containing data

```
plot
1 2
3 5
6 10
10 7
```

end