Übungsblatt LA 9

Computational and Data Science FS2024

Lösungen Mathematik 2

Lernziele:

- ➤ Sie kennen die Begriffe Axiom, Skalarkörper, Vektorraum, Linearkombination, lineare Hülle, linear abhängig, linear unabhängig, erzeugend, Basis, Dimension, Bild, Kern und deren wichtigste Eigenschaften.
- \triangleright Sie können beurteilen, ob die Vektoren einer Teilmenge von \mathbb{R}^n linear abhängig, linear unabhängig oder erzeugend sind und ob sie eine Basis bilden.
- > Sie können Bild und Kern einer linearen Abbildung berechnen.

1. Aussagen über Vektorräume

Welche der folgenden Aussagen sind wahr und welche falsch?

	wahr	falsch
a) Der Vektorraum ist die fundamentale Struktur der linearen	Χ	
Algebra.		
b) Jeder Vektorraum basiert auf einem Skalarkörper.	Χ	
c) In jedem Vektorraum ist eine Addition zwischen den Vektoren	Χ	
definiert.		
d) In jedem Vektorraum ist eine Multiplikation zwischen den		Χ
Vektoren definiert.		
e) In jedem Vektorraum ist eine Multiplikation zwischen den		Χ
Vektoren und den reellen Zahlen definiert.		

2. Vektorraumstrukturen

Welche der folgenden Strukturen bilden bezüglich der üblichen Addition und Multiplikation einen Vektorraum? Begründen Sie Ihre Antwort.

a)
$$(\mathbb{Z}; \mathbb{Q}; +;\cdot)$$

b) (
$$\mathbb{Z}$$
; \mathbb{R} ; +;·)

c)
$$(\mathbb{Q}^2; \mathbb{Q}; +;\cdot)$$

d) (
$$\mathbb{Q}^2$$
; \mathbb{R} ; +;·)

e) (
$$\mathbb{R}^3$$
; \mathbb{Q} ; +;·)

f) (
$$\mathbb{R}^3$$
; \mathbb{R} ; +;·)

a)

Wir betrachten das Quadrupel

$$(\mathbb{Z};\mathbb{Q};+;\cdot)$$
.

Wählen wir $a := 1/2 \in \mathbb{Q}$ und $v := 1 \in \mathbb{Z}$, dann gilt

$$a\cdot v=\frac{1}{2}\cdot 1=\frac{1}{2}\not\in\mathbb{Z}.$$

Es wird also kein Vektorraum gebildet.

b)

Wir betrachten das Quadrupel

$$(\mathbb{Z}; \mathbb{R}; +; \cdot)$$
.

Wählen wir $a := 1/2 \in \mathbb{R}$ und $v := 1 \in \mathbb{Z}$, dann gilt

$$a\cdot v=\frac{1}{2}\cdot 1=\frac{1}{2}\not\in\mathbb{Z}.$$

Es wird also kein Vektorraum gebildet.

c)

Wir betrachten das Quadrupel

$$(\mathbb{Q}^2; \mathbb{Q}; +; \cdot)$$
.

Weil \mathbb{Q} ein Zahlen-Körper ist, gilt für alle $\mathbf{v}, \mathbf{w} \in \mathbb{Q}^2$ und alle $a, b \in \mathbb{Q}$, dass

$$a\cdot \mathbf{v} + b\cdot \mathbf{w} = a\cdot \left[\begin{array}{c} v_1 \\ v_2 \end{array}\right] + b\cdot \left[\begin{array}{c} w_1 \\ w_2 \end{array}\right] = \left[\begin{array}{c} a\cdot v_1 + b\cdot w_1 \\ a\cdot v_2 + b\cdot w_2 \end{array}\right] \in \mathbb{Q}^2.$$

Es liegt ein Vektorraum vor.

d)

Wir betrachten das Quadrupel

$$\left(\mathbb{Q}^2; \mathbb{R}; +; \cdot\right)$$
.

Zunächst wählen wir

$$\mathbf{v} := \left[\begin{array}{c} 1 \\ 0 \end{array} \right] \in \mathbb{Q}^2 \quad \text{und} \quad a := \sqrt{2} \in \mathbb{R} \,.$$

Wegen $\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$ gilt

$$a \cdot \mathbf{v} = \sqrt{2} \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \sqrt{2} \\ 0 \end{bmatrix} \notin \mathbb{Q}^2.$$

Es wird kein Vektorraum gebildet.

e)

Wir betrachten das Quadrupel

$$(\mathbb{R}^3;\mathbb{Q};+;\cdot)$$
.

Weil $\mathbb Q$ ein Zahlen-Teilkörper des Zahlen-Körpers $\mathbb R$ ist, gilt für alle $\mathbf v, \mathbf w \in \mathbb R^3$ und alle $a,b\in \mathbb Q$, dass

$$a \cdot \mathbf{v} + b \cdot \mathbf{w} = a \cdot \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} + b \cdot \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} = \begin{bmatrix} a \cdot v_1 + b \cdot w_1 \\ a \cdot v_2 + b \cdot w_2 \\ a \cdot v_3 + b \cdot w_3 \end{bmatrix} \in \mathbb{R}^3.$$

Es wird also ein Vektorraum gebildet.

f)

Wir betrachten das Quadrupel

$$(\mathbb{R}^3; \mathbb{R}; +; \cdot)$$
.

Weil \mathbb{R} ein Zahlen-Körper ist, gilt für alle $\mathbf{v}, \mathbf{w} \in \mathbb{R}^3$ und alle $a, b \in \mathbb{R}$, dass

$$a \cdot \mathbf{v} + b \cdot \mathbf{w} = a \cdot \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} + b \cdot \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} = \begin{bmatrix} a \cdot v_1 + b \cdot w_1 \\ a \cdot v_2 + b \cdot w_2 \\ a \cdot v_3 + b \cdot w_3 \end{bmatrix} \in \mathbb{R}^3.$$

Es liegt ein Vektorraum vor.

3. Linear abhängig/unabhängig und erzeugend

Bestimmen Sie, ob die jeweiligen Vektoren linear unabhängig bzw. erzeugend sind. Bilden die gegebenen Vektoren eine Basis des jeweiligen \mathbb{R}^n ?

$$\mathsf{a})\left\{ \begin{pmatrix} 1\\1 \end{pmatrix}, \begin{pmatrix} 1\\-1 \end{pmatrix} \right\}$$

$$b)\left\{ \binom{2}{-6}, \binom{-1}{3} \right\}$$

c)
$$\left\{ \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$$

$$\mathbf{e}) \left\{ \begin{pmatrix} 1\\2\\3\\4 \end{pmatrix}, \begin{pmatrix} 5\\6\\7\\8 \end{pmatrix}, \begin{pmatrix} 2\\4\\6\\8 \end{pmatrix} \right\}$$

$$f) \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} \right\}$$

a) Wir betrachten die Teilmenge

$$M = \{\mathbf{v}_1, \mathbf{v}_2\} = \left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1 \end{bmatrix} \right\} \subset V = \mathbb{R}^2$$

aus m=2 Vektoren. Wir schreiben das homogene LGLS

$$0 = x_1 \cdot \mathbf{v}_1 + x_2 \cdot \mathbf{v}_2 = x_1 \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} + x_2 \cdot \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

in einem Gauss-Schema und bringen dieses mit Hilfe des Gauss-Verfahrens auf Stufenform. Es gilt

$$1 \begin{bmatrix} \begin{bmatrix} 1 \end{bmatrix} & 1 \\ 1 & -1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} \begin{bmatrix} 1 \end{bmatrix} & 1 \\ 0 & -2 \end{bmatrix} \Leftrightarrow \begin{bmatrix} \begin{bmatrix} 1 \end{bmatrix} & 1 \\ 0 & \begin{bmatrix} 1 \end{bmatrix} \end{bmatrix} \Leftrightarrow \begin{bmatrix} \begin{bmatrix} 1 \end{bmatrix} & 0 \\ 0 & \begin{bmatrix} 1 \end{bmatrix} \end{bmatrix}.$$

Das LGLS hat offensichtlich den Rang

$$n_{\rm R} = 2 = m = n.$$

Demnach ist M linear unabhängig sowie erzeugend und bildet folglich eine <u>Basis</u> von V.

Wir betrachten die Teilmenge

$$M = \{\mathbf{v}_1, \mathbf{v}_2\} = \left\{ \begin{bmatrix} 2 \\ -6 \end{bmatrix}, \begin{bmatrix} -1 \\ 3 \end{bmatrix} \right\} \subset V = \mathbb{R}^2$$

aus m=2 Vektoren. Wir schreiben das homogene LGLS

$$0 = x_1 \cdot \mathbf{v}_1 + x_2 \cdot \mathbf{v}_2 = x_1 \cdot \begin{bmatrix} 2 \\ -6 \end{bmatrix} + x_2 \cdot \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$

3

in einem GAUSS-Schema und bringen dieses mit Hilfe des GAUSS-Verfahrens auf Stufenform. Es gilt

$$\begin{bmatrix} 2 & -1 \\ -6 & 3 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 2 & -1 \\ 0 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 2 & -1 \\ 0 & 1 \end{bmatrix}.$$

Das LGLS hat offensichtlich den Rang

$$n_{\rm R} = 1 < 2 = m = n.$$

Demnach ist M <u>linear abhängig</u> sowie <u>nicht erzeugend</u> und bildet folglich <u>keine Basis</u> von V.

c)

Wir betrachten die Teilmenge

$$M = \left\{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \right\} = \left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\} \subset V = \mathbb{R}^3$$

aus m=3 Vektoren. Wir schreiben das homogene LGLS

$$0 = x_1 \cdot \mathbf{v}_1 + x_2 \cdot \mathbf{v}_2 + x_3 \cdot \mathbf{v}_3 = x_1 \cdot \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} + x_2 \cdot \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} + x_3 \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

in einem Gauss-Schema und bringen dieses mit Hilfe des Gauss-Verfahrens auf Stufenform. Es gilt

$$-1 \begin{bmatrix} [1] & 3 & 1 \\ -1 & 1 & 1 \\ 0 & 2 & 1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & 3 & 1 \\ 0 & 4 & 2 \\ 0 & 2 & 1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & 3 & 1 \\ 0 & [2] & 1 \\ 0 & 4 & 2 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & 3 & 1 \\ 0 & [2] & 1 \\ 0 & 0 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & 3 & 1 \\ 0 & [2] & 1 \\ 0 & [2] & 1 \end{bmatrix}.$$

Das LGLS hat offensichtlich den Rang

$$n_{\rm R} = 2 < 3 = m = n.$$

Demnach ist $M \underline{\underline{linear\ abhängig}}$ sowie $\underline{\underline{nicht\ erzeugend}}$ und bildet folglich $\underline{\underline{keine\ Basis}}$ von V.

d)

Wir betrachten die Teilmenge

$$M = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\} = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\} \subset V = \mathbb{R}^3$$

aus m=4 Vektoren. Wir schreiben das homogene LGLS

$$0 = x_1 \cdot \mathbf{v}_1 + x_2 \cdot \mathbf{v}_2 + x_3 \cdot \mathbf{v}_3 + x_4 \cdot \mathbf{v}_4$$

$$= x_1 \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + x_2 \cdot \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + x_3 \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + x_4 \cdot \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

in einem GAUSS-Schema und bringen dieses mit Hilfe des GAUSS-Verfahrens auf Stufenform. Es gilt

$$\begin{bmatrix} 1] & 1 & 1 & 0 \\ 0 & [1] & 1 & 1 \\ 0 & 0 & [1] & 0 \end{bmatrix}.$$

Das LGLS hat offensichtlich den Rang

$$n_{\rm R} = 3 = n < 4 = m.$$

Demnach ist M linear abhängig sowie erzeugend und bildet folglich keine Basis von V.

e)

Wir betrachten die Teilmenge

$$M = \left\{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \right\} = \left\{ \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}, \begin{bmatrix} 5\\6\\7\\8 \end{bmatrix}, \begin{bmatrix} 2\\4\\6\\8 \end{bmatrix} \right\} \subset V = \mathbb{R}^4$$

aus m=3 Vektoren. Wir schreiben das homogene LGLS

$$0 = x_1 \cdot \mathbf{v}_1 + x_2 \cdot \mathbf{v}_2 + x_3 \cdot \mathbf{v}_3 = x_1 \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} + x_2 \cdot \begin{bmatrix} 5 \\ 6 \\ 7 \\ 8 \end{bmatrix} + x_3 \cdot \begin{bmatrix} 2 \\ 4 \\ 6 \\ 8 \end{bmatrix}$$

in einem Gauss-Schema und bringen dieses mit Hilfe des Gauss-Verfahrens auf Stufenform. Es gilt

$$\begin{bmatrix} [1] & 5 & 2 \\ 2 & 6 & 4 \\ 3 & 3 & 7 & 6 \\ 4 & 4 & 8 & 8 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & 5 & 2 \\ 0 & -4 & 0 \\ 0 & -8 & 0 \\ 0 & -12 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & 5 & 2 \\ 0 & [1] & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & 5 & 2 \\ 0 & [1] & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} [1] & 5 & 2 \\ 0 & [1] & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} .$$

Das LGLS hat offensichtlich den Rang

$$n_{\rm R} = 2 < 3 = m < 4 = n$$
.

Demnach ist M <u>linear abhängig</u> sowie <u>nicht erzeugend</u> und bildet folglich <u>keine Basis</u> von V.

f)

Wir betrachten die Teilmenge

$$M = \left\{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4 \right\} = \left\{ \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix} \right\} \subset V = \mathbb{R}^4$$

aus m=4 Vektoren. Wir schreiben das homogene LGLS

$$0 = x_1 \cdot \mathbf{v}_1 + x_2 \cdot \mathbf{v}_2 + x_3 \cdot \mathbf{v}_3 + x_4 \cdot \mathbf{v}_4$$

$$= x_1 \cdot \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} + x_2 \cdot \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_3 \cdot \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} + x_4 \cdot \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$

in einem Gauss-Schema und bringen dieses mit Hilfe des Gauss-Verfahrens auf Stufenform. Es gilt

$$\begin{bmatrix} [1] & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & 1 & 0 & 0 \\ 0 & [1] & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & 1 & 0 & 0 \\ 0 & [1] & 1 & 0 \\ 0 & 0 & [1] & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & 1 & 0 & 0 \\ 0 & [1] & 1 & 0 \\ 0 & 0 & [1] & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
$$\Leftrightarrow \begin{bmatrix} [1] & 1 & 0 & 0 \\ 0 & [1] & 1 & 0 \\ 0 & 0 & [1] & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Das LGLS hat offensichtlich den Rang

$$n_{\rm R} = 3 < 4 = m = n.$$

Demnach ist M <u>linear abhängig</u> sowie <u>nicht erzeugend</u> und bildet folglich <u>keine Basis</u> von V.

4. Basis

Für welche Werte von a bilden die folgenden Vektoren eine Basis des \mathbb{R}^3 ?

$$a) \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ a \end{pmatrix} \qquad b) \begin{pmatrix} 6 \\ a \\ 7 \end{pmatrix}, \begin{pmatrix} -a \\ -1 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ a \\ 4 \end{pmatrix}$$

Anzahl der Basisvektoren im \mathbb{R}^3 ist 3, d. h. es muss die lineare Unabhängigkeit der gegebenen Vektoren überprüft werden. a)

Linearkombination des Nullvektors:

$$\lambda_1 \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + \lambda_3 \begin{pmatrix} 0 \\ -1 \\ a \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

In Koordinaten:

$$2\lambda_1 + \lambda_2 = 0 + \lambda_2 - \lambda_3 = 0 \lambda_1 + a\lambda_3 = 0$$

Matrizenschreibweise:

$$\begin{pmatrix}
2 & 1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
1 & 0 & a & 0
\end{pmatrix}
\leftarrow$$

$$\begin{pmatrix}
1 & 0 & a & 0 \\
0 & 1 & -1 & 0 \\
2 & 1 & 0 & 0
\end{pmatrix}
\leftarrow
+$$

$$\begin{pmatrix}
1 & 0 & a & 0 \\
0 & 1 & -1 & 0 \\
0 & 1 & -2a & 0
\end{pmatrix}
\leftarrow
+$$

$$\begin{pmatrix}
1 & 0 & a & 0 \\
0 & 1 & -1 & 0 \\
0 & 1 & -2a & 0
\end{pmatrix}
\leftarrow
+$$

Das LGS ist also dann nur trivial lösbar, wenn

$$1 - 2a \neq 0$$
$$a \neq \frac{1}{2}.$$

Also bilden die 3 Vektoren für $a \neq \frac{1}{2}$ eine Basis des \mathbb{R}^3 .

b)

Linearkombination des Nullvektors:

$$\lambda_1 \begin{pmatrix} 6 \\ a \\ 7 \end{pmatrix} + \lambda_2 \begin{pmatrix} -a \\ -1 \\ 2 \end{pmatrix} + \lambda_3 \begin{pmatrix} 3 \\ a \\ 4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

In Koordinaten:

$$6\lambda_1 - a\lambda_2 + 3\lambda_3 = 0$$

$$a\lambda_1 - \lambda_2 + a\lambda_3 = 0$$

$$7\lambda_1 + 2\lambda_2 + 4\lambda_3 = 0$$

Matrizenschreibweise:

$$\begin{pmatrix}
6 & -a & 3 & 0 \\
a & -1 & a & 0 \\
7 & 2 & 4 & 0
\end{pmatrix} | (-1) \\
\begin{pmatrix}
6 & -a & 3 & 0 \\
-a & 1 & -a & 0 \\
7 & 2 & 4 & 0
\end{pmatrix} \stackrel{+}{\longleftarrow} \stackrel{+}{\longrightarrow} \stackrel{+}{\longleftarrow} \stackrel{+}{\longrightarrow} \stackrel$$

Für a = -1 gibt es offensichtlich eine nicht triviale Lösung. Ab jetzt sei $a \neq -1$:

$$\begin{pmatrix}
6 - a^2 & 0 & 3 - a^2 & 0 \\
-a & 1 & -a & 0 \\
1 & 0 & 1 & 0
\end{pmatrix}
\leftarrow$$

$$\begin{pmatrix}
1 & 0 & 1 & 0 \\
-a & 1 & -a & 0 \\
6 - a^2 & 0 & 3 - a^2 & 0
\end{pmatrix}
\leftarrow
\begin{pmatrix}
(-(& 6 - a^2)) \\
+ & + \\
-(& 6 - a^2))
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -3 & 0
\end{pmatrix}$$

Dieses LGS ist nur noch trivial lösbar, d. h. die 3 Vektoren sind dann linear unabhängig. Also bilden die 3 Vektoren für $a \neq -1$ eine Basis des \mathbb{R}^3 .

5. Aussagen über Bild und Kern

Gegeben sei eine mxn Matrix.

Welche der folgenden Aussagen sind wahr und welche falsch?

	wahr	falsch
a) Es gilt: $ker(A) \neq \emptyset$.	Χ	
b) Für m = 2 und n = 3 gilt: ker(A) ≠ {0}.	Χ	
c) Für m = 3 und n = 2 gilt: ker(A) ≠ {0}.		Χ
d) Für n = m und A regulär gilt: ker(A) ≠ {0}.		Х
e) Für n = m und A singulär gilt: ker(A) ≠ {0}.	Χ	
f) Für $m = 3$ und $n = 4$ gilt: $dim(ker(A)) + dim(img(A)) = 7$.		Χ

6. Bild und Kern berechnen

Berechnen Sie jeweils Bild und Kern der gegebenen Matrix.

a)
$$\begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix}$$

b)
$$\begin{pmatrix} 2 & 3 \\ 4 & 6 \end{pmatrix}$$

c)
$$\begin{pmatrix} 0 & -3 & 8 \\ 3 & 0 & -1 \\ -2 & 1 & 0 \end{pmatrix}$$

f) $\begin{pmatrix} -2 & 1 \\ 4 & -2 \\ 2 & 2 \end{pmatrix}$

d)
$$\begin{pmatrix} -2 & 4 & 8 \\ 1 & -2 & -4 \end{pmatrix}$$
 e) $\begin{pmatrix} -2 & 4 & 8 \\ 1 & -2 & 0 \end{pmatrix}$

$$e)\begin{pmatrix} -2 & 4 & 8 \\ 1 & -2 & 0 \end{pmatrix}$$

$$f)\begin{pmatrix} -2 & 1 \\ -2 & 1 \\ 4 & -2 \\ 8 & 0 \end{pmatrix}$$

Wir betrachten die Matrix

$$A = \left[\begin{array}{cc} 2 & 3 \\ 4 & 5 \end{array} \right].$$

Offensichtlich ist A quadratisch und es gilt

$$\det(A) = 2 \cdot 5 - 4 \cdot 3 = 10 - 12 = -2 \neq 0.$$

Demnach ist A regulär und es gilt

$$\underline{\ker(A) = \{0\}}$$
 und $\underline{\operatorname{img}(A) = \mathbb{R}^2}$.

b)

Wir erzeugen mit dem Gauß-Jordan-Verfahren reduzierte Stufenform (aus A ergeben sich die Vektoren im Kern, aus A^T das Bild von A):

9

$$A: \begin{bmatrix} 2 & 3 \\ 4 & 6 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 2 & 3 \\ 0 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 1 & \frac{3}{2} \end{bmatrix}$$

$$A^T: \begin{bmatrix} 2 & 4 \\ 3 & 6 \end{bmatrix} \Leftrightarrow \begin{bmatrix} \begin{bmatrix} 1 \end{bmatrix} & 2 \\ 1 & 2 \end{bmatrix} \Leftrightarrow \begin{bmatrix} \begin{bmatrix} 1 \end{bmatrix} & 2 \\ 0 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} \begin{bmatrix} 1 \end{bmatrix} & 2 \end{bmatrix}$$

ker(A) enthält alle die Vektoren, die folgende Gleichung erfüllen:

$$1 \cdot x + \frac{3}{2} \cdot y = 0 \implies x = -\frac{3}{2} \cdot y$$

$$\underline{\underline{\ker(A)}} = \left\{ \begin{bmatrix} -\frac{3}{2}y \\ y \end{bmatrix} \in \mathbb{R}^2 \right\} = \operatorname{span} \left\{ \begin{bmatrix} -\frac{3}{2} \\ 1 \end{bmatrix} \right\} = \operatorname{span} \left\{ \begin{bmatrix} 3 \\ -2 \end{bmatrix} \right\}$$

Für das Bild von A ergibt sich

$$\operatorname{img}(A) = \operatorname{span}\left\{\left[\begin{array}{c} 1 \\ 2 \end{array}\right]\right\}$$

$$A: \begin{bmatrix} 0 & -3 & 2 \\ 3 & 0 & -1 \\ -2 & 1 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & -\frac{1}{2} & 0 \\ 0 & 3 & -2 \\ 3 & 0 & -1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & -\frac{1}{2} & 0 \\ 0 & 3 & -2 \\ 0 & \frac{3}{2} & -1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} -\frac{1}{2} & [1] & -\frac{1}{2} & 0 \\ 0 & [1] & -\frac{2}{3} & 0 \\ 0 & 3 & -2 & 0 \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} [1] & 0 & -\frac{1}{3} \\ 0 & [1] & -\frac{2}{3} \\ 0 & 0 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & 0 & -\frac{1}{3} \\ 0 & [1] & -\frac{2}{3} \end{bmatrix}.$$

Für die Vektoren im Kern von A gilt

$$0 \cdot x + 1 \cdot y - \frac{2}{3} \cdot z = 0 \quad \Rightarrow \quad y = \frac{2}{3} \cdot z$$

$$1 \cdot x + 0 \cdot y - \frac{1}{3} \cdot z = 0 \quad \Rightarrow \quad x = \frac{1}{3} \cdot z$$

$$\underline{\underline{\ker(A)}} = \left\{ \begin{bmatrix} \frac{1}{3} z \\ \frac{2}{3} z \\ z \end{bmatrix} \in \mathbb{R}^3 \right\} = \operatorname{span} \left\{ \begin{bmatrix} \frac{1}{3} \\ \frac{2}{3} \\ 1 \end{bmatrix} \right\} = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \right\}$$

Für das Bild von A ergibt sich

$$\underline{\underline{\operatorname{img}}(A)} = \operatorname{span} \left\{ \begin{bmatrix} 1\\0\\-\frac{1}{3} \end{bmatrix}, \begin{bmatrix} 0\\1\\-\frac{2}{3} \end{bmatrix} \right\} = \operatorname{span} \left\{ \begin{bmatrix} 3\\0\\-1 \end{bmatrix}, \begin{bmatrix} 0\\3\\-2 \end{bmatrix} \right\}$$

d)

$$A^{T}: \begin{bmatrix} -2 & 1 \\ 4 & -2 \\ 8 & -4 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 2 & -1 \\ 4 & -2 \\ 8 & -4 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [2] & -1 \\ 4 & -2 \\ 8 & -4 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [2] & -1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & -\frac{1}{2} \end{bmatrix}$$

Für die Vektoren im Kern von A gilt

$$1 \cdot x - 2 \cdot y - 4 \cdot z = 0 \implies x = 2 \cdot y + 4 \cdot z.$$

Daraus erhalten wir

$$\underline{\underline{\ker(A)}} = \left\{ \begin{bmatrix} 2y + 4z \\ y \\ z \end{bmatrix} \in \mathbb{R}^3 \right\} = \operatorname{span} \left\{ \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 4 \\ 0 \\ 1 \end{bmatrix} \right\}$$

Für das Bild von A ergibt sich

$$\underline{\underline{\operatorname{img}(A)}} = \operatorname{span} \left\{ \left[\begin{array}{c} 1 \\ -\frac{1}{2} \end{array} \right] \right\} = \operatorname{span} \left\{ \left[\begin{array}{c} 2 \\ -1 \end{array} \right] \right\}$$

$$A: \begin{bmatrix} -2 & 4 & 8 \\ 1 & -2 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 2 & 1 & -2 & 0 \\ 2 & -4 & -8 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 1 & -2 & 0 \\ 0 & 0 & -8 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 1 & -2 & 0 \\ 0 & 0 & [1] \end{bmatrix}$$

$$A^{T}: \begin{bmatrix} -2 & 1 \\ 4 & -2 \\ 8 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 2 \\ 4 & -2 \\ 8 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [2] & -1 \\ 4 & -2 \\ 8 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [2] & -1 \\ 0 & 0 \\ 0 & 4 \end{bmatrix} \Leftrightarrow \begin{bmatrix} -\frac{1}{2} \\ 0 & [1] \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & 0 \\ 0 & [1] \end{bmatrix}$$

Für die Vektoren im Kern von A gilt

$$0 \cdot x + 0 \cdot y + 1 \cdot z = 0 \quad \Rightarrow \quad z = 0$$

$$1 \cdot x - 2 \cdot y - 0 \cdot z = 0 \implies x = 2 \cdot y + 0 \cdot 0 = 2 \cdot y$$

$$\underline{\underline{\ker(A)}} = \left\{ \begin{bmatrix} 2y \\ y \\ 0 \end{bmatrix} \in \mathbb{R}^3 \right\} = \operatorname{span} \left\{ \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} \right\}$$

Für das Bild von A ergibt sich

$$\underline{\operatorname{img}(A)} = \operatorname{span} \left\{ \left[\begin{array}{c} 1 \\ 0 \end{array} \right], \left[\begin{array}{c} 0 \\ 1 \end{array} \right] \right\} = \underline{\mathbb{R}^2}$$

f)

$$A: \begin{bmatrix} -2 & 1 \\ 4 & -2 \\ 8 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 2 \\ 4 & -2 \\ 8 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [2] & -1 \\ 4 & -2 \\ 8 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [2] & -1 \\ 0 & 0 \\ 0 & 4 \end{bmatrix} \Leftrightarrow \begin{bmatrix} -\frac{1}{2} \\ 0 & [1] \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & 0 \\ 0 & [1] \end{bmatrix}$$

$$A^T: \begin{bmatrix} -2 & 4 & 8 \\ 1 & -2 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & -2 & 0 \\ 2 & -4 & -8 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & -2 & 0 \\ 0 & 0 & -8 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & -2 & 0 \\ 0 & 0 & [1] \end{bmatrix}.$$

Für die Vektoren im Kern von A gilt

$$0 \cdot x + 1 \cdot y = 0 \implies y = 0$$

$$1 \cdot x + 0 \cdot y = 0 \Rightarrow x = 0$$

$$\ker(A) = \{0\}$$

Für das Bild von A ergibt sich

$$\operatorname{img}(A) = \operatorname{span} \left\{ \begin{bmatrix} 1\\-2\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$$

7. Aussagen über 2 Matrizen in 3D

Gegeben seien die beiden Matrizen
$$A = \begin{pmatrix} 0 & 2 & -1 \\ -2 & 0 & -1 \\ 1 & 1 & 0 \end{pmatrix} \text{ und } B = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$$
 Welche der folgenden Aussagen sind wahr und welche falsch?

	wahr	falsch
a) Es gilt: $img(A) = \mathbb{R}^3$.		Χ
b) Es gilt: $ker(A^{12}) \neq \{0\}$.	Χ	
c) Es gilt: B ist orthogonal.		Χ
d) Es gilt: $tr(2A + \sqrt{2}B) = 0$.	Χ	
e) Die Spaltenvektoren von B sind linear unabhängig.	Χ	
f) Es gilt: $ker(B^3) = ker(B)$.	X	

Übungsblatt LA 9

Computational and Data Science BSc FS

2022

Lösungen

Analysis und Lineare Algebra 2

1. Aussagen über Vektorräume

Welche der folgenden Aussagen sind wahr und welche falsch?	wahr	falsch
a) Der Vektorraum ist die fundamentale Struktur der linearen Algebra.	•	0
b) Jeder <i>Vektorraum</i> basiert auf einem <i>Skalar-Körper</i> .	•	0
c) In jedem Vektorraum ist eine Addition zwischen den Vektoren definiert.	•	0
d) In jedem <i>Vektorraum</i> ist eine <i>Multiplikation</i> zwischen den <i>Vektoren</i> definiert.	0	•
e) In jedem <i>Vektorraum</i> ist eine <i>Multiplikation</i> zwischen den <i>Vektoren</i> und den <i>reellen Zahlen</i> definiert.	0	•
f) Die wesentliche Eigenschaft eines Vektorraums ist die Abgeschlossenheit unter Bildung von Linearkombinationen.	•	0

2. Vektorraumstrukturen

Wir betrachten die folgenden Strukturen und untersuchen, welche bezüglich der üblichen Ad-dition und Multiplikation einen Vektorraum bilden.

a) Wir betrachten das Quadrupel

$$\left(\mathbb{Z};\mathbb{Q};+;\cdot\right). \tag{1}$$

Wählen wir $a := 1/2 \in \mathbb{Q}$ und $v := 1 \in \mathbb{Z}$, dann gilt

$$a \cdot v = \frac{1}{2} \cdot 1 = \frac{1}{2} \notin \mathbb{Z}. \tag{2}$$

Demnach bildet die Struktur (1) keinen Vektorraum.

b) Wir betrachten das Quadrupel

$$\left(\mathbb{Z};\mathbb{R};+;\cdot\right). \tag{3}$$

Wählen wir $a := 1/2 \in \mathbb{R}$ und $v := 1 \in \mathbb{Z}$, dann gilt

$$a \cdot v = \frac{1}{2} \cdot 1 = \frac{1}{2} \notin \mathbb{Z}. \tag{4}$$

Demnach bildet die Struktur (3) keinen Vektorraum.

c) Wir betrachten das Quadrupel

$$\left(\mathbb{Q}^2;\mathbb{Q};+;\cdot\right). \tag{5}$$

Weil $\mathbb Q$ ein Zahlen-Körper ist, gilt für alle $\mathbf v, \mathbf w \in \mathbb Q^2$ und alle $a,b \in \mathbb Q$, dass

$$a \cdot \mathbf{v} + b \cdot \mathbf{w} = a \cdot \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} + b \cdot \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} a \cdot v_1 + b \cdot w_1 \\ a \cdot v_2 + b \cdot w_2 \end{bmatrix} \in \mathbb{Q}^2.$$
 (6)

Demnach bildet die Struktur (5) einen Vektorraum.

d) Wir betrachten das Quadrupel

$$\left(\mathbb{Q}^2; \mathbb{R}; +; \cdot\right). \tag{7}$$

Zunächst wählen wir

$$\mathbf{v} := \begin{bmatrix} 1 \\ 0 \end{bmatrix} \in \mathbb{Q}^2 \quad \text{und} \quad a := \sqrt{2} \in \mathbb{R}. \tag{8}$$

Wegen $\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$ gilt

$$a \cdot \mathbf{v} = \sqrt{2} \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \sqrt{2} \\ 0 \end{bmatrix} \notin \mathbb{Q}^2.$$
 (9)

Demnach bildet die Struktur (7) <u>keinen Vektorraum.</u>

e) Wir betrachten das Quadrupel

$$\left(\mathbb{R}^3; \mathbb{Q}; +; \cdot\right). \tag{10}$$

Weil \mathbb{Q} ein Zahlen-Teilkörper des Zahlen-Körpers \mathbb{R} ist, gilt für alle $\mathbf{v}, \mathbf{w} \in \mathbb{R}^3$ und alle $a, b \in \mathbb{Q}$, dass

$$a \cdot \mathbf{v} + b \cdot \mathbf{w} = a \cdot \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} + b \cdot \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} = \begin{bmatrix} a \cdot v_1 + b \cdot w_1 \\ a \cdot v_2 + b \cdot w_2 \\ a \cdot v_3 + b \cdot w_3 \end{bmatrix} \in \mathbb{R}^3.$$
 (11)

Demnach bildet die Struktur (10) einen <u>Vektorraum</u>.

f) Wir betrachten das Quadrupel

$$\left(\mathbb{R}^3; \mathbb{R}; +; \cdot\right). \tag{12}$$

Weil \mathbb{R} ein Zahlen-Körper ist, gilt für alle $\mathbf{v}, \mathbf{w} \in \mathbb{R}^3$ und alle $a, b \in \mathbb{R}$, dass

$$a \cdot \mathbf{v} + b \cdot \mathbf{w} = a \cdot \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} + b \cdot \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} = \begin{bmatrix} a \cdot v_1 + b \cdot w_1 \\ a \cdot v_2 + b \cdot w_2 \\ a \cdot v_3 + b \cdot w_3 \end{bmatrix} \in \mathbb{R}^3.$$
 (13)

Demnach bildet die Struktur (12) einen Vektorraum.

3. Der Begriff des Axioms

Das Wort Axiom stammt aus dem Altgriechischen.

- a) Auf https://de.wikipedia.org/wiki/Axiom findet man für das Wort Axiom die Bedeutungen "Wertschätzung", "Urteil" und "als wahr angenommener Grundsatz".
- **b)** Die Bedeutung "als wahr angenommener Grundsatz" aus Teilaufgabe a) ist wohl dafür verantwortlich, dass das altgriechische Wort *Axiom* bei der Bildung der Grundbegriffe in der Mathematik zur Anwendung kam.

4. Linear unabhängige und erzeugende Vektoren

Wir betrachten jeweils die Vektoren der angegebenen Teilmenge von $V = \mathbb{R}^n$ und bestimmen, welche linear unabhängig bzw. erzeugend sind und identifizieren die Teilmengen, welche eine Basis von V bilden.

a) Wir betrachten die Teilmenge

$$M = \left\{ \mathbf{v}_1, \mathbf{v}_2 \right\} = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\} \subset V = \mathbb{R}^2$$
 (14)

aus m = 2 Vektoren. Wir schreiben das homogene LGLS

$$0 = x_1 \cdot \mathbf{v}_1 + x_2 \cdot \mathbf{v}_2 = x_1 \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} + x_2 \cdot \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
 (15)

in einem Gauss-Schema und bringen dieses mit Hilfe des Gauss-Verfahrens auf Stufenform. Es gilt

$$\begin{bmatrix}
[1] & 1 \\
1 & -1
\end{bmatrix} \Leftrightarrow \begin{bmatrix}
[1] & 1 \\
0 & -2
\end{bmatrix} \Leftrightarrow \begin{bmatrix}
[1] & 1 \\
0 & [1]
\end{bmatrix} \Leftrightarrow \begin{bmatrix}
[1] & 0 \\
0 & [1]
\end{bmatrix}.$$
(16)

Das LGLS hat offensichtlich den Rang

$$n_{\rm R} = 2 = m = n.$$
 (17)

Demnach ist M linear unabhängig sowie erzeugend und bildet folglich eine \underline{Basis} von V.

b) Wir betrachten die *Teilmenge*

$$M = \left\{ \mathbf{v}_1, \mathbf{v}_2 \right\} = \left\{ \begin{bmatrix} 2 \\ -6 \end{bmatrix}, \begin{bmatrix} -1 \\ 3 \end{bmatrix} \right\} \subset V = \mathbb{R}^2$$
 (18)

aus m=2 Vektoren. Wir schreiben das homogene LGLS

$$0 = x_1 \cdot \mathbf{v}_1 + x_2 \cdot \mathbf{v}_2 = x_1 \cdot \begin{bmatrix} 2 \\ -6 \end{bmatrix} + x_2 \cdot \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$
 (19)

in einem Gauss-Schema und bringen dieses mit Hilfe des Gauss-Verfahrens auf Stufenform. Es gilt

$$\begin{vmatrix}
[2] & -1 \\
-6 & 3
\end{vmatrix} \Leftrightarrow \begin{vmatrix}
[2] & -1 \\
0 & 0
\end{vmatrix} \Leftrightarrow \begin{bmatrix}
[2] & -1
\end{bmatrix}.$$
(20)

Das LGLS hat offensichtlich den Rang

$$n_{\rm R} = 1 < 2 = m = n. (21)$$

Demnach ist M <u>linear abhängig</u> sowie <u>nicht erzeugend</u> und bildet folglich <u>keine Basis</u> von V.

c) Wir betrachten die Teilmenge

$$M = \left\{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \right\} = \left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\} \subset V = \mathbb{R}^3$$
 (22)

aus m=3 Vektoren. Wir schreiben das homogene LGLS

$$0 = x_1 \cdot \mathbf{v}_1 + x_2 \cdot \mathbf{v}_2 + x_3 \cdot \mathbf{v}_3 = x_1 \cdot \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} + x_2 \cdot \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} + x_3 \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
(23)

in einem GAUSS-Schema und bringen dieses mit Hilfe des GAUSS-Verfahrens auf Stufenform. Es gilt

$$-1 \begin{bmatrix} [1] & 3 & 1 \\ -1 & 1 & 1 \\ 0 & 2 & 1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & 3 & 1 \\ 0 & 4 & 2 \\ 0 & 2 & 1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & 3 & 1 \\ 0 & [2] & 1 \\ 0 & 4 & 2 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & 3 & 1 \\ 0 & [2] & 1 \\ 0 & 0 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & 3 & 1 \\ 0 & [2] & 1 \\ 0 & [2] & 1 \end{bmatrix}.$$

$$(24)$$

Das LGLS hat offensichtlich den Rang

$$n_{\rm R} = 2 < 3 = m = n. \tag{25}$$

Demnach ist M <u>linear abhängig</u> sowie <u>nicht erzeugend</u> und bildet folglich <u>keine Basis</u> von V.

d) Wir betrachten die *Teilmenge*

$$M = \left\{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4 \right\} = \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\} \subset V = \mathbb{R}^3$$
 (26)

aus m=4 Vektoren. Wir schreiben das homogene LGLS

$$0 = x_1 \cdot \mathbf{v}_1 + x_2 \cdot \mathbf{v}_2 + x_3 \cdot \mathbf{v}_3 + x_4 \cdot \mathbf{v}_4$$

$$= x_1 \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + x_2 \cdot \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + x_3 \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + x_4 \cdot \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
 (27)

in einem Gauss-Schema und bringen dieses mit Hilfe des Gauss-Verfahrens auf Stufenform. Es gilt

$$\begin{bmatrix}
 [1] & 1 & 1 & 0 \\
 0 & [1] & 1 & 1 \\
 0 & 0 & [1] & 0
 \end{bmatrix}.
 \tag{28}$$

Das LGLS hat offensichtlich den Rang

$$n_{\rm R} = 3 = n < 4 = m. \tag{29}$$

Demnach ist M linear abhängig sowie erzeugend und bildet folglich <u>keine Basis</u> von V.

e) Wir betrachten die Teilmenge

$$M = \left\{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \right\} = \left\{ \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}, \begin{bmatrix} 5\\6\\7\\8 \end{bmatrix}, \begin{bmatrix} 2\\4\\6\\8 \end{bmatrix} \right\} \subset V = \mathbb{R}^4$$
 (30)

aus m=3 Vektoren. Wir schreiben das homogene LGLS

$$0 = x_1 \cdot \mathbf{v}_1 + x_2 \cdot \mathbf{v}_2 + x_3 \cdot \mathbf{v}_3 = x_1 \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} + x_2 \cdot \begin{bmatrix} 5 \\ 6 \\ 7 \\ 8 \end{bmatrix} + x_3 \cdot \begin{bmatrix} 2 \\ 4 \\ 6 \\ 8 \end{bmatrix}$$
(31)

in einem GAUSS-Schema und bringen dieses mit Hilfe des GAUSS-Verfahrens auf Stufenform. Es gilt

$$\begin{bmatrix}
[1] & 5 & 2 \\
2 & 6 & 4 \\
3 & 7 & 6 \\
4 & 8 & 8
\end{bmatrix}
\Leftrightarrow
\begin{bmatrix}
[1] & 5 & 2 \\
0 & -4 & 0 \\
0 & -8 & 0 \\
0 & -12 & 0
\end{bmatrix}
\Leftrightarrow
\begin{bmatrix}
[1] & 5 & 2 \\
0 & [1] & 0 \\
0 & 1 & 0 \\
0 & 1 & 0
\end{bmatrix}
\Leftrightarrow
\begin{bmatrix}
[1] & 5 & 2 \\
0 & [1] & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}$$

$$\Leftrightarrow
\begin{bmatrix}
[1] & 5 & 2 \\
0 & [1] & 0 \\
0 & 0 & 0
\end{bmatrix}$$

$$\Leftrightarrow
\begin{bmatrix}
[1] & 5 & 2 \\
0 & [1] & 0 \\
0 & 0 & 0
\end{bmatrix}$$

$$\Leftrightarrow
\begin{bmatrix}
[1] & 5 & 2 \\
0 & [1] & 0
\end{bmatrix}$$

$$\Leftrightarrow
\begin{bmatrix}
[1] & 5 & 2 \\
0 & [1] & 0
\end{bmatrix}$$

Das LGLS hat offensichtlich den Rang

$$n_{\rm R} = 2 < 3 = m < 4 = n. \tag{33}$$

Demnach ist M <u>linear abhängig</u> sowie <u>nicht erzeugend</u> und bildet folglich <u>keine Basis</u> von V.

f) Wir betrachten die *Teilmenge*

$$M = \left\{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4 \right\} = \left\{ \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix} \right\} \subset V = \mathbb{R}^4$$
 (34)

aus m = 4 Vektoren. Wir schreiben das homogene LGLS

$$0 = x_1 \cdot \mathbf{v}_1 + x_2 \cdot \mathbf{v}_2 + x_3 \cdot \mathbf{v}_3 + x_4 \cdot \mathbf{v}_4$$

$$= x_{1} \cdot \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} + x_{2} \cdot \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_{3} \cdot \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} + x_{4} \cdot \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$
(35)

in einem Gauss-Schema und bringen dieses mit Hilfe des Gauss-Verfahrens auf Stufenform. Es gilt

$$\begin{bmatrix} [1] & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & 1 & 0 & 0 \\ 0 & [1] & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & 1 & 0 & 0 \\ 0 & [1] & 1 & 0 \\ 0 & 0 & [1] & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & 1 & 0 & 0 \\ 0 & [1] & 1 & 0 \\ 0 & 0 & [1] & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} [1] & 1 & 0 & 0 \\ 0 & [1] & 1 & 0 \\ 0 & 0 & [1] & 1 \end{bmatrix}. \tag{36}$$

Das LGLS hat offensichtlich den Rang

$$n_{\rm R} = 3 < 4 = m = n. \tag{37}$$

Demnach ist M <u>linear abhängig</u> sowie <u>nicht erzeugend</u> und bildet folglich <u>keine Basis</u> von V.

5. Vektorraum der Polynome zweiten Grades

Wir betrachten die Menge \mathcal{P}_2 der Polynome vom Grad $p \leq 2$ mit reellen Koefficienten.

a) Es seien $f, g \in \mathcal{P}_2$. Dann gibt es reelle Koeffzienten $a, \tilde{a}, b, \tilde{b}, c, \tilde{c} \in \mathbb{R}$, so dass für alle $x \in \mathbb{R}$

$$f(x) = a x^2 + b x + c \text{ und } g(x) = \tilde{a} x^2 + \tilde{b} x + \tilde{c}.$$
 (38)

Für alle $u, v \in \mathbb{R}$ können wir die *Linearkombination* von f und g schreiben als

$$h(x) = u \cdot f(x) + v \cdot g(x) = u \cdot (a x^{2} + b x + c) + v \cdot (\tilde{a} x^{2} + \tilde{b} x + \tilde{c})$$

$$= u a x^{2} + u b x + u c + v \tilde{a} x^{2} + v \tilde{b} x + v \tilde{c} = (u a + v \tilde{a}) x^{2} + (u b + v \tilde{b}) x + u c + v \tilde{c}.$$
(39)

Offensichtlich gilt $h \in \mathcal{P}_2$. Demnach ist \mathcal{P}_2 ein reeller Vektorraum.

b) Wir betrachten die Monome $B := \{1, x, x^2\} \subset \mathcal{P}_2$. Offensichtlich lässt sich jedes $f \in \mathcal{P}_2$ schreiben als Linearkombination der Form

$$f(x) = a x^{2} + b x + c = c \cdot 1 + b \cdot x + a \cdot x^{2}.$$
 (40)

B ist daher erzeugend. Die Gleichung

$$0 = c \cdot 1 + b \cdot x + a \cdot x^2 \quad \text{für alle} \quad x \in \mathbb{R}$$
 (41)

ist nur erfüllt, wenn a = b = c = 0. Die *Monome* in *B* sind daher *linear unabhängig*. Somit bildet *B* eine *Basis* von \mathcal{P}_2 .

c) Wir betrachten die Basis B und definieren

$$1 \mapsto \mathbf{e}_0 := \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad x \mapsto \mathbf{e}_1 := \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \quad \text{und} \quad x^2 \mapsto \mathbf{e}_2 := \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}. \tag{42}$$

Eine quadratische Funktion der Form $f(x) = a x^2 + b x + c$ lässt sich darstellen als Linearkombination gemäss

$$f \mapsto \underline{\mathbf{f}} := c \, \mathbf{e}_0 + b \, \mathbf{e}_1 + a \, \mathbf{e}_2 \mapsto c \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + b \cdot \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + a \cdot \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} c \\ b \\ a \end{bmatrix}. \tag{43}$$

d) Es seien $f, g \in \mathcal{P}_2$ und $u, v \in \mathbb{R}$ mit $f(x) = a x^2 + b x + c$. Es gilt

$$f'(x) = a \cdot 2x + b \cdot 1 + 0 = b + 2a x = b \cdot 1 + 2a \cdot x + 0 \cdot x^{2}. \tag{44}$$

Offensichtlich ist $f' \in \mathcal{P}_2$. Gemäss Summen-Regel und Faktor-Regel der Differentialrechnung gilt

$$(u \cdot f + v \cdot g)' = (u \cdot f)' + (v \cdot g)' = u \cdot f' + v \cdot g'. \tag{45}$$

Die Ableitung ist daher eine lineare Abbildung der Form $d: \mathcal{P}_2 \to \mathcal{P}_2$.

e) Wir suchen eine *Matrix*, welche die *Ableitung* bezüglich der *Basis B* durch eine *Matrix D* darstellt. Es gilt

$$1' = 0 \mapsto d(\mathbf{e}_0) = 0 \tag{46}$$

$$x' = 1 \mapsto d(\mathbf{e}_1) = \mathbf{e}_0 \tag{47}$$

$$(x^2)' = 2x \mapsto d(\mathbf{e}_2) = 2\mathbf{e}_1.$$
 (48)

Mit Hilfe des Spalten-Vektor-Konstruktionsverfahrens erhalten wir

$$\underline{\underline{D}} = \begin{bmatrix} d(\mathbf{e}_0) & d(\mathbf{e}_1) & d(\mathbf{e}_2) \end{bmatrix} = \begin{bmatrix} 0 & \mathbf{e}_0 & 2 \, \mathbf{e}_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}. \tag{49}$$

f) Für Spur und Determinante von D erhalten wir

$$\underline{\operatorname{tr}(D)} = 0 + 0 + 0 = \underline{\underline{0}} \tag{50}$$

$$\underline{\det(D)} = 0 \cdot 1 \cdot 2 + 0 \cdot 0 \cdot 0 + 0 \cdot 0 \cdot 0 - 0 \cdot 1 \cdot 0 - 0 \cdot 0 \cdot 0 - 0 \cdot 0 \cdot 2 = \underline{\underline{0}}.$$
(51)

g) Betrachten wir $f \in \mathcal{P}_2$ mit $f(x) = a x^2 + b x + c$, dann ist

$$f'(x) = a \cdot 2x + b \cdot 1 + 0 = 2a \cdot x + b \cdot 1 \mapsto \mathbf{f}' = b \, \mathbf{e}_0 + 2a \, \mathbf{e}_1. \tag{52}$$

Offensichtlich gilt

$$0 = \mathbf{f}' = b \, \mathbf{e}_0 + 2a \, \mathbf{e}_1 \iff a = b = 0 \iff \mathbf{f} = c \, \mathbf{e}_0 \mapsto f(x) = c \cdot 1. \tag{53}$$

Demnach gilt

$$img(D) = span\{\mathbf{e}_0, \mathbf{e}_1\} \mapsto \underline{img(d) = span\{1, x\}}$$
(54)

$$\ker(D) = \operatorname{span}\{\mathbf{e}_0\} \mapsto \ker(d) = \operatorname{span}\{1\}. \tag{55}$$

h) Wir betrachten die Funktion

$$f(x) := (2x - 3)^{2} + 2 = 4x^{2} - 12x + 9 + 2 = 4x^{2} - 12x + 11$$
(56)

$$\mapsto \underline{\mathbf{f}} = \begin{bmatrix} 11 \\ -12 \\ 4 \end{bmatrix}. \tag{57}$$

Mit Hilfe der Matrix D aus (49) erhalten wir die Ableitung

$$\mathbf{f}' = D \cdot \mathbf{f} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 11 \\ -12 \\ 4 \end{bmatrix} = \begin{bmatrix} -12 \\ 8 \\ 0 \end{bmatrix}$$
 (58)

$$\mapsto f'(x) = -12 \cdot 1 + 8 \cdot x + 0 \cdot x^2 = \underline{8x - 12}.$$
 (59)

6. Aussagen über Bild und Kern

Betrachten Sie die *Matrix* $A \in \mathbb{M}(m, n, \mathbb{R})$ für $m, n \in \mathbb{N}^+$.

Welche der folgenden Aussagen sind wahr und welche falsch?	wahr	falsch
a) In jedem Fall gilt $\ker(A) \neq \emptyset$.	•	0
b) Für $m=2$ und $n=3$ gilt in jedem Fall $\ker(A) \neq \{0\}$.	•	0
c) Für $m=3$ und $n=2$ gilt in jedem Fall $\ker(A) \neq \{0\}$.	0	•
d) Ist $n = m$ und A regulär, dann gilt $ker(A) \neq \{0\}$.	0	•
e) Ist $n = m$ und A singulär, dann gilt $ker(A) \neq \{0\}$.	•	0
f) Für $m = 3$ und $n = 4$ gilt $\dim(\ker(A)) + \dim(\operatorname{img}(A)) = 7$.	0	•

7. Bild und Kern berechnen

Wir berechnen jeweils Bild und Kern der Matrix.

a) Wir betrachten die *Matrix*

$$A = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}. \tag{60}$$

Offensichtlich ist A quadratisch und es gilt

$$\det(A) = 2 \cdot 5 - 4 \cdot 3 = 10 - 12 = -2 \neq 0. \tag{61}$$

Demnach ist A regulär und es gilt

$$\underline{\ker(A) = \{0\}} \quad \text{und} \quad \underline{\operatorname{img}(A) = \mathbb{R}^2}.$$
 (62)

b) Wir betrachten die *Matrix*

$$A = \begin{bmatrix} 2 & 3 \\ 4 & 6 \end{bmatrix}. \tag{63}$$

Mit Hilfe des GAUSS-JORDAN-Verfahrens bringen wir A und A^T auf reduzierte Stufenform. Es gilt

$$A: \begin{bmatrix} 2 & 3 \\ 4 & 6 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 2 & 3 \\ 2 & 3 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 2 & 3 \\ 0 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} \frac{3}{2} \end{bmatrix}$$

$$A^{T}: \begin{bmatrix} 2 & 4 \\ 3 & 6 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 & 2 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} .$$

$$(64)$$

$$A^{T}: \begin{bmatrix} 2 & 4 \\ 3 & 6 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 & 2 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix}. \tag{65}$$

Gemäss (64) ist ein Vektor genau dann im Kern von A, wenn für seine Komponenten gilt

$$1 \cdot x + \frac{3}{2} \cdot y = 0 \implies x = -\frac{3}{2} \cdot y.$$
 (66)

Daraus erhalten wir

$$\underline{\underline{\ker(A)}} = \left\{ \begin{bmatrix} -\frac{3}{2}y \\ y \end{bmatrix} \in \mathbb{R}^2 \right\} = \operatorname{span} \left\{ \begin{bmatrix} -\frac{3}{2} \\ 1 \end{bmatrix} \right\} = \operatorname{span} \left\{ \begin{bmatrix} 3 \\ -2 \end{bmatrix} \right\}.$$
(67)

Durch Ablesen aus (65) erhalten wir

$$img(A) = span\left\{ \begin{bmatrix} 1\\2 \end{bmatrix} \right\}. \tag{68}$$

c) Wir betrachten die Matrix

$$A = \begin{bmatrix} 0 & -3 & 2 \\ 3 & 0 & -1 \\ -2 & 1 & 0 \end{bmatrix}. \tag{69}$$

Mit Hilfe des Gauss-Jordan-Verfahrens bringen wir A und $A^T=-A$ auf reduzierte Stufenform. Es gilt

$$A: \begin{bmatrix} 0 & -3 & 2 \\ 3 & 0 & -1 \\ -2 & 1 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & -\frac{1}{2} & 0 \\ 0 & 3 & -2 \\ 3 & 0 & -1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & -\frac{1}{2} & 0 \\ 0 & 3 & -2 \\ 0 & \frac{3}{2} & -1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & -\frac{1}{2} & 0 \\ 0 & [1] & -\frac{2}{3} \\ 0 & 3 & -2 \end{bmatrix}$$
$$\Leftrightarrow \begin{bmatrix} [1] & 0 & -\frac{1}{3} \\ 0 & [1] & -\frac{2}{3} \\ 0 & 0 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & 0 & -\frac{1}{3} \\ 0 & [1] & -\frac{2}{3} \\ 0 & [1] & -\frac{2}{3} \end{bmatrix}. \tag{70}$$

Gemäss (70) ist ein Vektor genau dann im Kern von A, wenn für seine Komponenten gilt

$$0 \cdot x + 1 \cdot y - \frac{2}{3} \cdot z = 0 \quad \Rightarrow \quad y = \frac{2}{3} \cdot z$$

$$1 \cdot x + 0 \cdot y - \frac{1}{3} \cdot z = 0 \quad \Rightarrow \quad x = \frac{1}{3} \cdot z.$$

$$(71)$$

Daraus erhalten wir

$$\underbrace{\ker(A)}_{=} = \left\{ \begin{bmatrix} \frac{1}{3}z\\ \frac{2}{3}z\\ z \end{bmatrix} \in \mathbb{R}^3 \right\} = \operatorname{span} \left\{ \begin{bmatrix} \frac{1}{3}\\ \frac{2}{3}\\ 1 \end{bmatrix} \right\} = \operatorname{span} \left\{ \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix} \right\}.$$
(72)

Durch Ablesen aus (70) erhalten wir

$$\underline{\underline{\operatorname{img}(A)}} = \operatorname{span} \left\{ \begin{bmatrix} 1\\0\\-\frac{1}{3} \end{bmatrix}, \begin{bmatrix} 0\\1\\-\frac{2}{3} \end{bmatrix} \right\} = \operatorname{span} \left\{ \begin{bmatrix} 3\\0\\-1 \end{bmatrix}, \begin{bmatrix} 0\\3\\-2 \end{bmatrix} \right\}.$$
(73)

d) Wir betrachten die *Matrix*

$$A = \begin{bmatrix} -2 & 4 & 8 \\ 1 & -2 & -4 \end{bmatrix}. \tag{74}$$

Mit Hilfe des Gauss-Jordan-Verfahrens bringen wir A und A^T auf reduzierte Stufenform. Es gilt

$$A: \begin{bmatrix} -2 & 4 & 8 \\ 1 & -2 & -4 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} -2 & -4 \\ 2 & -4 & -8 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} -2 & -4 \\ 0 & 0 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} -2 & -4 \\ -2 & -4 \end{bmatrix}$$
 (75)

$$A^{T}: \begin{bmatrix} -2 & 1 \\ 4 & -2 \\ 8 & -4 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 2 & -1 \\ 4 & -2 \\ 8 & -4 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [2] & -1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & -\frac{1}{2} \end{bmatrix}.$$
 (76)

Gemäss (75) ist ein Vektor genau dann im Kern von A, wenn für seine Komponenten gilt

$$1 \cdot x - 2 \cdot y - 4 \cdot z = 0 \implies x = 2 \cdot y + 4 \cdot z. \tag{77}$$

Daraus erhalten wir

$$\underline{\underline{\ker(A)}} = \left\{ \begin{bmatrix} 2y + 4z \\ y \\ z \end{bmatrix} \in \mathbb{R}^3 \right\} = \operatorname{span} \left\{ \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 4 \\ 0 \\ 1 \end{bmatrix} \right\}.$$
(78)

Durch Ablesen aus (76) erhalten wir

$$\underline{\underline{\operatorname{img}(A)}} = \operatorname{span}\left\{ \begin{bmatrix} 1\\ -\frac{1}{2} \end{bmatrix} \right\} = \operatorname{span}\left\{ \begin{bmatrix} 2\\ -1 \end{bmatrix} \right\}.$$
(79)

e) Wir betrachten die Matrix

$$A = \begin{bmatrix} -2 & 4 & 8 \\ 1 & -2 & 0 \end{bmatrix}. \tag{80}$$

Mit Hilfe des Gauss-Jordan-Verfahrens bringen wir A und A^T auf reduzierte Stufenform. Es gilt

$$A: \begin{bmatrix} -2 & 4 & 8 \\ 1 & -2 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & -2 & 0 \\ 2 & -4 & -8 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & -2 & 0 \\ 0 & 0 & -8 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & -2 & 0 \\ 0 & 0 & [1] \end{bmatrix}$$
(81)

$$A^{T}: \begin{bmatrix} -2 & 1 \\ 4 & -2 \\ 8 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 2 \\ 4 & -2 \\ 8 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [2] & -1 \\ 4 & -2 \\ 8 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [2] & -1 \\ 0 & 0 \\ 0 & 4 \end{bmatrix} \Leftrightarrow \begin{bmatrix} -\frac{1}{2} \\ 0 & [1] \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & 0 \\ 0 & [1] \end{bmatrix}. \quad (82)$$

Gemäss (81) ist ein Vektor genau dann im Kern von A, wenn für seine Komponenten gilt

$$0 \cdot x + 0 \cdot y + 1 \cdot z = 0 \quad \Rightarrow \quad z = 0$$

$$1 \cdot x - 2 \cdot y - 0 \cdot z = 0 \quad \Rightarrow \quad x = 2 \cdot y + 0 \cdot 0 = 2 \cdot y.$$
(83)

Daraus erhalten wir

$$\underline{\underline{\ker(A)}} = \left\{ \begin{bmatrix} 2y \\ y \\ 0 \end{bmatrix} \in \mathbb{R}^3 \right\} = \underline{\operatorname{span}} \left\{ \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} \right\}. \tag{84}$$

Durch Ablesen aus (82) erhalten wir

$$\underline{\underline{\operatorname{img}}(A)} = \operatorname{span}\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\} = \underline{\mathbb{R}^2}. \tag{85}$$

f) Wir betrachten die Matrix

$$A = \begin{bmatrix} -2 & 1\\ 4 & -2\\ 8 & 0 \end{bmatrix}. \tag{86}$$

Mit Hilfe des Gauss-Jordan-Verfahrens bringen wir A und A^T auf reduzierte Stufenform. Es gilt

$$A: \begin{bmatrix} -2 & 1 \\ 4 & -2 \\ 8 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 2 & -1 \\ 4 & -2 \\ 8 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [2] & -1 \\ 0 & 0 \\ 0 & 4 \end{bmatrix} \Leftrightarrow \begin{bmatrix} -\frac{1}{2} & [1] & -\frac{1}{2} \\ 0 & [1] \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & 0 \\ 0 & [1] \end{bmatrix}$$
(87)

$$A^{T}: \begin{bmatrix} -2 & 4 & 8 \\ 1 & -2 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & -2 & 0 \\ 2 & -4 & -8 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & -2 & 0 \\ 0 & 0 & -8 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & -2 & 0 \\ 0 & 0 & [1] \end{bmatrix}. \tag{88}$$

Gemäss (87) ist ein Vektor genau dann im Kern von A, wenn für seine Komponenten gilt

$$0 \cdot x + 1 \cdot y = 0 \Rightarrow y = 0$$

$$1 \cdot x + 0 \cdot y = 0 \Rightarrow x = 0.$$
(89)

Daraus und durch Ablesen aus (88) erhalten wir

$$\underline{\ker(A) = \{0\}} \quad \text{bzw.} \quad \operatorname{img}(A) = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}. \tag{90}$$

8. Aussagen über zwei Matrizen in 3D

Wir betrachten die Matrizen

$$A = \begin{bmatrix} 0 & 2 & -1 \\ -2 & 0 & -1 \\ 1 & 1 & 0 \end{bmatrix} \quad \text{und} \quad B = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}. \tag{91}$$

Welche der folgenden Aussagen sind wahr und welche falsch?	wahr	falsch
a) Es gilt $img(A) = \mathbb{R}^3$.	0	•
b) Es gilt $\ker(A^{12}) \neq \{0\}$.	•	0
c) Es gilt $B \in O(3)$.	0	•
d) Es gilt $\operatorname{tr}(2 \cdot A + \sqrt{2} \cdot B) = 0$.	•	0
e) Die Spalten-Vektoren von B sind linear unabhängig.	•	0
f) Es gilt $\ker(B^3) = \ker(B)$.	•	0