Social Network Analysis

Vocabulary Lesson

Relation: collection of ties of a specific type (every parentOf tie)

Vocabulary Lesson

If A likes B and B likes C then A likes C (transitivity)
If A likes B and C likes B then A likes C

Vocabulary Lesson

Describing Networks

- Graph theoretic
 - Nodes/edges, what you'd expect
- Sociometric
 - Sociomatrix (2D matrix representation)
 - Sociogram (the adjacency matrix)
- Algebraic
 - $-n_i \rightarrow n_j$
 - Also what you'd expect
- Basically complimentary

Describing Networks

Stanford

MIT

Describing Networks

- Geodesic
 - shortest_path(n,m)
- Diameter
 - max(geodesic(n,m)) n,m actors in graph
- Density
 - Number of existing edges / All possible edges
- Degree distribution

Types of Networks/Models

- A few quick examples
 - Erdős–Rényi
 - G(n,M): randomly draw M edges between n nodes
 - Does not really model the real world
 - Average connectivity on nodes conserved

Types of Networks/Models

- A few quick examples
 - Erdős–Rényi
 - Small World
 - Watts-Strogatz
 - Kleinberg lattice model

Small world experiments then

Milgram's experiment (1960's):

Given a target individual and a particular property, pass the message to a person you correspond with who is "closest" to the target.

Watts-Strogatz Ring Lattice Rewiring

Select a fraction p of edges
Reposition on of their endpoints

Add a fraction p of additional edges leaving underlying lattice intact

- As in many network generating algorithms
 - Disallow self-edges
 - Disallow multiple edges

Geographical search

Kleinberg Lattice Model

nodes are placed on a lattice and connect to nearest neighbors

additional links placed with $p_{uv} \sim d_{uv}^{-r}$

A little more on degree distribution

Power-laws, zipf, etc.

Distribution of users among web sites

Sites ranked by popularity

A little more on degree distribution

- Pareto/Power-law
 - Pareto: CDF $P[X > x] \sim x^{-k}$
 - Power-law: PDF P[X = x] $\sim x^{-(k+1)} = x^{-a}$
 - Some recent debate (Aaron Clauset)
 - http://arxiv.org/abs/0706.1062
- Zipf
 - Frequency versus rank $y \sim r^{-b}$ (small b)
- More info:
 - Zipf, Power-laws, and Pareto a ranking tutorial (http://www.hpl.hp.com/research/idl/papers/ranking/ranking.html)

Types of Networks/Models

- A few quick examples
 - Erdős–Rényi
 - Small World
 - Watts-Strogatz
 - Kleinberg lattice model
 - Preferential Attachment
 - Generally attributed to Barabási & Albert

Basic BA-model

- Very simple algorithm to implement
 - start with an initial set of m₀ fully connected nodes

- now add new vertices one by one, each one with exactly medges
- each new edge connects to an existing vertex in proportion to the number of edges that vertex already has ->
 preferential attachment

Properties of the BA graph

- The distribution is scale free with exponent $\alpha = 3$ $P(k) = 2 \text{ m}^2/k^3$
- The graph is connected
 - Every new vertex is born with a link or several links (depending on whether m = 1 or m > 1)
 - It then connects to an 'older' vertex, which itself connected to another vertex when it was introduced
 - And we started from a connected core
- The older are richer
 - Nodes accumulate links as time goes on, which gives older nodes an advantage since newer nodes are going to attach preferentially – and older nodes have a higher degree to tempt them with than some new kid on the block

Common Tasks

- Measuring "importance"
 - Centrality, prestige
- Link prediction
- Diffusion modeling
 - Epidemiological
- Clustering
 - Blockmodeling, Girvan-Newman
- Structure analysis
 - Motifs, Isomorphisms, etc.
- Visualization/Privacy/etc.

Data Collection / Cleaning Analysis

Past

Small datasets Data Collection / Cleaning Pretty explicit connections Analysis

Understand the properties

Present

Data Collection / Cleaning

Large datasets
Entity resolution
Implicit connections

Understand the properties

Present

Common Tasks

- Measuring "importance"
 - Centrality, prestige (incoming links)
- Link prediction
- Diffusion modeling
 - Epidemiological
- Clustering
 - Blockmodeling, Girvan-Newman
- Structure analysis
 - Motifs, Isomorphisms, etc.
- Visualization/Privacy/etc.

Centrality Measures

- Degree centrality
 - Edges per node (the more, the more important the node)
- Closeness centrality
 - How close the node is to every other node
- Betweenness centrality
 - How many shortest paths go through the edge node (communication metaphor)
- Information centrality
 - All paths to other nodes weighted by path length
- Bibliometric + Internet style
 - PageRank

Tie Strength

Strength of Weak Ties (Granovetter)

- Granovetter: How often did you see the contact that helped you find the job prior to the job search
 - 16.7 % often (at least once a week)
 - 55.6% occasionally (more than once a year but less than twice a week)
 - 27.8% rarely once a year or less
- Weak ties will tend to have different information than we and our close contacts do

weak ties will tend to have high beweenness and low transitivity

Common Tasks

- Measuring "importance"
 - Centrality, prestige (incoming links)
- Link prediction
- Diffusion modeling
 - Epidemiological
- Clustering
 - Blockmodeling, Girvan-Newman
- Structure analysis
 - Motifs, Isomorphisms, etc.
- Visualization/Privacy/etc.

Link Prediction

Link Prediction in Social Net Data

- We know things about structure
 - Homophily = like likes like or bird of a feather flock together or similar people group together
 - Mutuality
 - Triad closure

Various measures that try to use this

Link Prediction

- Simple metrics
 - Only take into account graph properties

$$\sum_{z \in \Gamma(x) \cap \Gamma(y)} \frac{1}{\log |\Gamma(z)|}$$

 $\Gamma(x)$ = neighbors of x Originally: 1 / log(frequency(z))

Link Prediction

- Simple metrics
 - Only take into account graph properties

$$\sum_{l=1}^{\infty} \beta^l \mid paths_{x,y}^{< l>} \mid$$

Paths of length *I* (generally 1) from x to y weighted variant is the number of times the two collaborated

Liben-Nowell, Kleinberg (CIKM'03)

Link Prediction in Relational Data

- We know things about structure
 - Homophily = like likes like or bird of a feather flock together or similar people group together
 - Mutuality
 - Triad closure

- Slightly more interesting problem if we have relational data on actors and ties
 - Move beyond structure

Relationship & Link Prediction

Employee /contractor Salary
Time at company

•••

Link/Label Prediction in Relational Data

- Koller and co.
 - Relational Bayesian Networks
 - Relational Markov Networks
 - Structure (subgraph templates/cliques)
 - Similar context
 - Transitivity
- Getoor and co.
 - Relationship Identification for Social Network Discovery
 - Diehl/Namata/Getoor AAAI'07
 - Enron data
 - Traffic statistics and content to find supervisory relationships?
 - Traffic/Text based
 - Not really identification, more like ranking

Common Tasks

- Measuring "importance"
 - Centrality, prestige (incoming links)
- Link prediction
- Diffusion modeling
 - Epidemiological
- Clustering
 - Blockmodeling, Girvan-Newman
- Structure analysis
 - Motifs, Isomorphisms, etc.
- Visualization/Privacy/etc.

Epidemiological

- Viruses
 - Biological, computational
 - STDs, needle sharing, etc.
 - Mark Handcock at UW
- Blog networks
 - Applying SIR models (Info Diffusion Through Blogspace, Gruhl et al.)
 - Induce transmission graph, cascade models, simulation
 - Link prediction (Tracking Information Epidemics in Blogspace, Adar et al.)
 - Find repeated "likely" infections
 - Outbreak detection (Cost-effective Outbreak Detection in Networks, Leskovec et al.)
 - Submodularity

Common Tasks

- Measuring "importance"
 - Centrality, prestige (incoming links)
- Link prediction
- Diffusion modeling
 - Epidemiological
- Clustering
 - Blockmodeling, Girvan-Newman
- Structure analysis
 - Motifs, Isomorphisms, etc.
- Visualization/Privacy/etc.

2 2

Blockmodels

- Actors are portioned into positions
 - Rearrange rows/columns
- The sociomatrix is then reduced to a smaller image
- Hierarchical clustering
 - Various distance metrics
 - Euclidean, CONvergence of CORrelation (CONCOR)
- Various "fit" metrics

Image matrix

Cohesion

Center-periphery

Ranking

Girvan-Newman Algorithm

Split on shortest paths ("weak ties")

- 1. Calculate betweenness on all edges
- 2. Remove highest betweenness edge
- 3. Recalculate
- 4. Goto 1

Other solutions

- Min-cut based
- "Voltage" based
- Hierarchical schemes

Common Tasks

- Measuring "importance"
 - Centrality, prestige (incoming links)
- Link prediction
- Diffusion modeling
 - Epidemiological
- Clustering
 - Blockmodeling, Girvan-Newman
- Structure analysis
 - Motifs, Isomorphisms, etc.
- Visualization/Privacy/etc.

Network motif detection

 How many more motifs of a certain type exist over a random network

- Started in biological networks
 - http://www.weizmann.ac.il/mcb/UriAlon/

Basic idea

- construct many random graphs with the same number of nodes and edges (same node degree distribution?)
- count the number of motifs in those graphs
- calculate the Z score: the probability that the given number of motifs in the real world network could have occurred by chance

Generating random graphs

- Many models don't preserve the desired features
- Have to be careful how we generate

Other Structural Analysis

Common Tasks

- Measuring "importance"
 - Centrality, prestige (incoming links)
- Link prediction
- Diffusion modeling
 - Epidemiological
- Clustering
 - Blockmodeling, Girvan-Newman
- Structure analysis
 - Motifs, Isomorphisms, etc.
- Visualization/Privacy/etc.

Privacy

- Emerging interest in anonymizing networks
 - Lars Backstrom (WWW'07) demonstrated one of the first attacks
- How to remove labels while preserving graph properties?
 - While ensuring that labels cannot be reapplied

Network attacks

- Terrorist networks
 - How to attack them
 - How they might attack us
- Carley at CMU

Software

- Pajek
 - http://vlado.fmf.uni-lj.si/pub/networks/pajek/
- UCINET
 - http://www.analytictech.com/
- KrackPlot
 - http://www.andrew.cmu.edu/user/krack/krackplot.shtml
- GUESS
 - http://www.graphexploration.org
- Etc.

Books/Journals/Conferences

- Social Networks/Phs. Rev
- Social Network Analysis (Wasserman + Faust)
- The Development of Social Network Analysis (Freeman)
- Linked (Barabsi)
- Six Degrees (Watts)
- Sunbelt/ICWSM/KDD/CIKM/NIPS

Assortativity

- Social networks are assortative:
 - the gregarious people associate with other gregarious people
 - the loners associate with other loners
- The Internet is disassorative:

Assortative: hubs connect to hubs

Random

Disassortative: hubs are in the periphery

