Homework 4

Kevin Jin

3/10/2022

Problem 1

Part (a)

```
# Load data
library(UsingR)
## Loading required package: MASS
## Loading required package: HistData
## Loading required package: Hmisc
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
## Loading required package: ggplot2
##
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:base':
##
##
       format.pval, units
## Attaching package: 'UsingR'
## The following object is masked from 'package:survival':
##
##
       cancer
data("UScereal")
# Rename factor levels
levels(UScereal$mfr) <- c("General Mills",</pre>
                           "Kelloggs",
                           "Nabisco",
                           "Post",
                           "Quaker Oats",
                           "Ralston Purina")
```

Part (b)

Part (c)

```
# Create product variable
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:Hmisc':
##
       src, summarize
## The following object is masked from 'package:MASS':
##
## The following objects are masked from 'package:stats':
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
UScereal <- mutate(UScereal, product = rownames(UScereal))</pre>
```

Problem 2

Part (a)

```
## Variables Pearson
## 1 Protein 0.7060105
## 2 Fat 0.5901757
## 3 Sodium 0.5286552
## 4 Fibre 0.3882179
## 5 Carbohydrates 0.7887227
## 6 Sugars 0.4952942
## 7 Potassium 0.4765955
```

Variables	Pearson Coefficient (2 d.p.)
Calories ~ Protein	0.71
Calories \sim Fat	0.59

Variables	Pearson Coefficient (2 d.p.)
Calories ~ Sodium	0.53
Calories \sim Fibre	0.39
Calories \sim Carbohydrates	0.79
Calories ~ Sugars	0.50
Calories \sim Potassium	0.48

Part (b)

Correlations between Calories and Nutrition Metrics in US Cereals

Conclusion: Carbohydrates have the highest positive correlation with calories.

Part (c)

```
# Plot linear relationship between carbohydrates and calories
ggplot(data = UScereal, mapping = aes(x = carbo, y = calories)) +
```

`geom_smooth()` using formula 'y ~ x'

Linear Relationship between Carbohydrates and Calories in US Cereals

Conclusion: In this plot, the slope represents number of calories per gram of complex carbohydrates in one portion of cereal, and the intercept represents the average number of calories in one portion with zero grams of carbohydrates.

Part (d)

```
xlab("Calories") +
ylab("Density") +
theme(legend.position = c(0.9, 0.9)) +
scale_color_manual(values = c("dodgerblue3", "red")) +
guides(color = guide_legend("Cereals"))
```

Calorie Distribution of General Mills and Kelloggs Cereals

Conclusion: The General Mills density curve is left-skewed with a bimodal distribution, suggesting a lower number of calories in general, while the Kelloggs curve is also left-skewed but less steep, also suggesting a lower number of calories but with less skew. Both curves are asymmetric.

Part (e)

Calorie Difference between General Mills and Kelloggs

Conclusion: There does appear to be a slight difference in median calorie content between General Mills and Kelloggs and a larger IQR for Kelloggs, but not a significant difference in calorie distribution overall considering the overlap in distributions.

Part (f)

Protein Difference between 7 Cereal Manufacturers

Fat Difference between 7 Cereal Manufacturers

Sodium Difference between 7 Cereal Manufacturers

Fibre Difference between 7 Cereal Manufacturers

Carbohydrate Difference between 7 Cereal Manufacturers

Sugar Difference between 7 Cereal Manufacturers

Potassium Difference between 7 Cereal Manufacturers

Conclusion: Based on its high protein content, low fat, low sodium, high fibre, high carbohydrates, low sugar, and high potassium, out of all cereal manufacturers, Nabisco is aiming to make the healthiest cereals.

Part (g)

Conclusion: General Mills and Kelloggs occupy most of the shelf space among all three shelf positions. The middle shelf has the narrowest distribution of brands.