Práctica 2 PRODUCTO ESCALAR Y PRODUCTO PUNTO

Objetivo: Poder comprender y conocer el producto escalar y el producto punto.

Marco teórico

El producto punto, también conocido como producto escalar o producto interno, es una operación fundamental en álgebra lineal que combina dos vectores del mismo espacio vectorial para obtener un escalar. A diferencia de la suma de vectores, que resulta en otro vector, el producto punto genera un número real que representa la relación entre los dos vectores originales.

Consideremos dos vectores u y v en Rⁿ, digamos

$$U=(a_1, a_2, ..., a_n)$$
 y $V=(b_1, b_2, ..., b_n)$

El producto punto o producto escalar de u y v se detona y define por:

$$U \cdot V = a_1 + b_1 + a_2 + b_2 + ... + a_n + b_n$$

es decir, $V \cdot U$ se obtiene multiplicando los elementos correspondientes y sumando los productos resultantes, se dice que los vectores $u \cdot y \cdot v$ son ortogonales o perpendiculares si su producto punto es igual a cero, es decir, si $u \cdot v = 0$.

Ejemplo

• Sea
$$u = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}$$
 $v = \begin{bmatrix} 4 \\ 5 \\ -1 \end{bmatrix}$ $w = \begin{bmatrix} 2 \\ 7 \\ 4 \end{bmatrix}$

•
$$u \cdot v =$$

= 1(4) - 2(5) + 3(-1) = -9

•
$$u \cdot w =$$

= $2 - 14 + 12 = 0$

Decimos que u y w son ortogonales

•
$$v \cdot w =$$

= 8 + 35 - 4 = 39

Algunas propiedades del producto escalar son las siguientes:

Para cualesquiera vectores u, v, w en Rⁿ y cuales quisiera escalares k en R:

1.
$$(U + V) W = U \cdot W + V \cdot W$$

2.
$$(ku) v = k(u \cdot v)$$

3.
$$U \cdot v = v \cdot U$$

4.
$$U \cdot U >= 0$$
, $y \cup \cdot U = sii \cup = 0$

Ejercicio

En base a lo visto anteriormente realice lo siguiente:

Resultados

Al terminar ésta práctica, el alumno podrá identificar y resolver producto escalar o punto y algunas de sus propiedades.

Conclusiones:

El producto escalar o punto tiene una capacidad para medir la relación entre vectores y su versatilidad en cálculos geométricos y físicos lo convierten en un concepto esencial para comprender el comportamiento de sistemas vectoriales, es una herramienta fundamental en el álgebra lineal y sus aplicaciones se extienden a diversas áreas del conocimiento.