Introduction to Quantum Groups and Tensor Categories

Johannes Flake¹

Rutgers University

Graduate VOA Seminar, Feb/Mar 2016

¹Got questions or comments? Just get in touch with him.

Outline

- 1 Hopf Algebras and Tensor Categories
- 2 Quasitriangular Hopf algebras and Ribbon Hopf Algebras
- 3 Quantum Groups at Roots of Unity

Outline

1 Hopf Algebras and Tensor Categories

- 2 Quasitriangular Hopf algebras and Ribbon Hopf Algebras
- 3 Quantum Groups at Roots of Unity

"A mathematican is a machine for turning coffee into theorems."

Alfréd Rényi (often attributed to Paul Erdős)

"A comathematican is a machine for turning cotheorems into ffee." communicated to the author by Fei Qi

(Co-)Algebras

k: our favorite commutative r1ng/field, all maps are k-linear.

- Algebra: k-space A with $\eta: k \to A$, $\mu: A \otimes A \to A$
- Coalgebra: k-space C with $\varepsilon: C \to k$, $\Delta: C \to C \otimes C$

$$A \otimes A \otimes A \xrightarrow{\mu \otimes I} A \otimes A$$

$$\downarrow^{I \otimes \mu} \qquad \downarrow^{\mu}$$

$$A \otimes A \xrightarrow{\mu} A$$

$$(co-)associativity$$

$$C \otimes C \otimes C \longleftrightarrow_{\Delta \otimes I} C \otimes C$$

$$I \otimes \Delta \uparrow \qquad \Delta \uparrow$$

$$C \otimes C \longleftrightarrow_{\Delta \otimes I} C \otimes C$$

Convolution

■ Sweedler's Notation: $\forall x \in C$

$$\Delta(x) = \sum_{i=1}^{n} x_{1,i} \otimes x_{2,i} =: x_1 \otimes x_2 \in C \otimes C$$

coassociativity \Rightarrow " $x_1 \otimes x_2 \otimes x_3$ " is well-defined counitarity $\Leftrightarrow \varepsilon(x_1)x_2 = x = x_1\varepsilon(x_2)$

- Convolution: $\forall f, g : C \rightarrow A, f * g := \mu \circ (f \otimes g) \circ \Delta,$ i.e. $(f * g)(x) := f(x_1)g(x_2) \forall x \in C$
- Note that $\eta \circ \varepsilon : C \to A$ is an identity element for *: $\forall f : C \to A, x \in C$,

$$(f * (\eta \circ \varepsilon))(x) = f(x_1)\eta(\varepsilon(x_2)) = f(x_1\varepsilon(x_2))1 = f(x)$$
$$((\eta \circ \varepsilon) * f)(x) = f(\varepsilon(x_1)x_2) = f(x)$$

Bialgebras, Hopf algebras

- Bialgebra: algebra and coalgebra with compatible structure maps (η, μ) are coalgebra maps, ε, Δ are algebra maps.)
- Hopf algebra: bialgebra H with an antipode, that is a *-inverse S of I as maps $H \to H$. For all $x \in H$, this means

$$x_1S(x_2) = (I * S)(x) = \varepsilon(x)1 = (S * I)(x) = S(x_1)x_2$$

 \Rightarrow S is an antialgebra map and an anticoalgebra map, every bialgebra has at most one antipode.

- Group algebra k[G] for a group G basis: $\{g\}$ for $g \in G$ $\varepsilon g = 1$, $\Delta g = g \otimes g$, $Sg = g^{-1}$ ("group-like element")
- Universal enveloping algebra $U(\mathfrak{g})$ for a Lie group \mathfrak{g} basis: $\{x_1^{p_1}\cdots x_n^{p_n}|p_1,\ldots,p_n\geq 0\}$ for a basis x_1,\ldots,x_n of g $\varepsilon x_i = 0$, $\Delta x_i = 1 \otimes x_i + x_i \otimes 1$, $Sx_i = -x_i$ ("primitive element")
- \Rightarrow In both cases, $S^2 = I$.

Any cocommutative Hopf algebra over \mathbb{C} is generated by group-likes and primitives.²

 $^{^2}$ Any cocommutative Hopf algebra over $\mathbb C$ is the $semidirect/smash\ product$ Hopf algebra of the group algebra of the group formed by its group-likes and the universal enveloping algebra of the Lie algebra formed by its primitives.

Categories and their bialgebras

"Tannaka(-Krein) duality", "reconstruction theorems"

- Rep(A): category of modules of an algebra A of finite rank/dimension over k
- Consider categories "of k-modules of finite rank/dimension".

category	Rep()
vector spaces/modules	k
monoidal	bialgebra
rigid monoidal	Hopf algebra
rigid braided monoidal	quasitriangular Hopf algebra
Ribbon	Ribbon Hopf algebra

Tannaka-Krein duality

- "For A an algebra and AMod its category of modules, and for AMod \rightarrow Vect the fiber functor that sends a module to its underlying vector space, we have a natural isomorphism $\operatorname{End}(\operatorname{AMod} \rightarrow \operatorname{Vect}) \simeq A$ in Vect." ³
- "The assignments

$$(C, F) \mapsto H = \operatorname{End}(F), H \mapsto (\operatorname{Rep}(H), \operatorname{Forget})$$

are mutually inverse bijections between (1) equivalence classes of finite tensor categories $\mathcal C$ with a fiber functor F, up to tensor equivalence and isomorphism of tensor functors, and (2) isomorphism classes of finite dimensional Hopf algebras over k." ⁴

³https://ncatlab.org/nlab/show/Tannaka+duality

⁴thm. 5.3.12 in Etingof, Gelaki, Nikshych, Ostrik: *Tensor Categories*.

Outline

1 Hopf Algebras and Tensor Categories

- 2 Quasitriangular Hopf algebras and Ribbon Hopf Algebras
- 3 Quantum Groups at Roots of Unity

R-matrices

We fix a Hopf algebra A over k.

- \blacksquare $\forall V, W$ k-spaces, $\tau_{V,W}: V \otimes W \to W \otimes V, v \otimes w \mapsto w \otimes v$.
- $\forall R \in A^{\otimes 2}$ we define elements in $A^{\otimes 3}$: $R_{12} := R \otimes 1$, $R_{23} := 1 \otimes R$, $R_{13} := (I \otimes \tau)(R \otimes 1)$.

 $R \in A^{\otimes 2}$ is called *(universal) R-matrix*, if

- **1** R is invertible and $\tau \circ \Delta(a) = R\Delta(a)R^{-1}$
- $(I \otimes \Delta)R = R_{13}R_{12}$
- $(\Delta \otimes I)R = R_{13}R_{23}$

$$\Rightarrow$$
 $(\varepsilon \otimes I)R = (I \otimes \varepsilon)R = 1 \otimes 1$, $(S \otimes I)R = (I \otimes S^{-1})R = R^{-1}$

$$\Rightarrow R_{12}R_{13}R_{23} = R_{23}R_{13}R_{12}$$
 "Yang-Baxter Equation"

Quasitriangular Hopf algebras and Ribbon Hopf Algebras

Scribble (some proofs)

 $R=:R^1\otimes R^2=:r^1\otimes r^2\in A^{\otimes 2}$, summation implied (but not a coproduct!).

$$(\Delta \otimes I)R = R_{13}R_{23} \Leftrightarrow R_1^1 \otimes R_2^1 \otimes R^2 = r^1 \otimes R^1 \otimes r^2R^2 \dots$$

$$\dots \Rightarrow \varepsilon(R_1^1) \otimes R_2^1 \otimes R^2 = \varepsilon(r^1) \otimes R^1 \otimes r^2 R^2$$

$$\Rightarrow 1 \otimes R^1 \otimes R^2 = 1 \otimes \varepsilon(r^1) R^1 \otimes r^2 R^2$$

$$\Rightarrow 1 \otimes 1 = \varepsilon(r^1) \otimes r^2$$

$$... \Rightarrow S(R_1^1)R_2^1 \otimes R^2 = S(r^1)R^1 \otimes r^2R^2$$
$$\Rightarrow \varepsilon(R^1) \otimes R^2 = (S(r^1) \otimes r^2)(R^1 \otimes R^2)$$
$$\Rightarrow 1 \otimes 1 = (S(r^1) \otimes r^2)R$$

Representations of quasitriangular Hopf algebras

If A has an R-matrix R, it is called quasitriangular. In this case, we define maps for all pairs of objects $V, W \in \text{Rep}(A)$:

$$c_{V,W}: V \otimes W \to W \otimes V, x \mapsto \tau(Rx)$$
.

 \Rightarrow Then Rep(A) is a braided monoidal category with braiding c, i.e. for any $n \ge 1$, the braid group B_n acts on n-fold tensor products of A-modules via c.

$$u := \mu \circ (S \otimes I) \circ \tau(R) \in A$$

 $\Rightarrow u$ is invertible and $S^2(a) = uau^{-1}$, $\forall a \in A$
(compare this with our examples for Hopf algebras above)

$$\Rightarrow u^{-1} = (I \otimes S^2)\tau(R), \varepsilon(u) = 1, \Delta u = (\tau(R)R)^{-1}(u \otimes u)$$

Ribbon elements

We fix a quasitriangular Hopf algebra A with R-matrix R.

A central invertible $v \in A$ is called *universal twist* or *ribbon element* if

- 1 $v^2 = uS(u)$
- $\varepsilon(v)=1$
- S(v) = v

Note: If $v = ug^{-1}$ for a group-like g, then (2), (3) follow directly and (1), (4) are equivalent.

Representations of ribbon Hopf algebras

If A has a Ribbon element v, it is called *ribbon Hopf algebra*. In this case, we define maps for all objects $V \in \text{Rep}(A)$:

$$\theta_V: V \to V, x \mapsto vx$$
.

- \Rightarrow Then Rep(A) is a Ribbon category with twist θ , i.e. $\forall V, W$,
 - $\bullet_{V\otimes W}=c_{W,V}c_{V,W}(\theta_V\otimes\theta_W)$
 - $\bullet (\theta_V \otimes I_{V^*})b_V = (I_V \otimes \theta_{V^*})b_V, \text{ where } b_V : k \to V \otimes V^*.$

Outline

1 Hopf Algebras and Tensor Categories

- 2 Quasitriangular Hopf algebras and Ribbon Hopf Algebras
- 3 Quantum Groups at Roots of Unity

Definition

- quantum group ^{here} = quantized universal enveloping algebra
- $(a_{ij})_{1 \le i,j \le m}$ the Cartan matrix of a simple Lie algebra $\mathfrak g$ of type ADE $(\Rightarrow a_{ii} = 2, \ a_{ij} = a_{ji} \in \{0,-1\}$ for $i \ne j)$
- $\mathbf{q} \in \mathbb{C} \setminus \{0, \pm 1\}$

 $U_q(\mathfrak{g})$ generated by $\{E_i, F_i, K_i, K_i^{-1}\}_{1 \leq i \leq m}$ with relations:

$$\begin{split} [K_i, K_j] &= 0 \qquad K_i K_i^{-1} = 1 = K_i^{-1} K_i \\ K_i E_j &= q^{a_{ij}} E_j K_i \qquad K_i F_j = q^{-a_{ij}} F_j K_i \qquad [E_i, F_j] = \delta_{ij} \frac{K_i - K_i^{-1}}{q - q^{-1}} \\ [E_i, E_j] &= [F_i, F_j] = 0 \qquad \text{if } a_{ij} = 0 \\ E_i^2 E_j - (q + q^{-1}) E_i E_j E_i + E_j E_i^2 = 0 \\ F_i^2 F_j - (q + q^{-1}) F_i F_j F_i + F_j F_i^2 = 0 \end{split} \right\} \qquad \text{if } a_{ij} = -1$$

Definition/Theorem

 $U_q(\mathfrak{g})$ is a Hopf algebra with

$$\begin{split} &\Delta(E_i) = E_i \otimes 1 + K_i \otimes E_i \qquad S(E_i) = -K_i^{-1} E_i \qquad \varepsilon(E_i) = 0 \ , \\ &\Delta(F_i) = F_i \otimes K_i^{-1} + 1 \otimes F_i \qquad S(F_i) = -F_i K_i \qquad \varepsilon(F_i) = 0 \ , \\ &\Delta(K_i) = K_i \otimes K_i \qquad S(K_i) = K_i^{-1} \qquad \varepsilon(K_i) = 1 \ . \end{split}$$

Assume q is a p-th root of unity, $p \ge 3$, $p' := \begin{cases} p & p \text{ odd} \\ p/2 & p \text{ even} \end{cases}$. $J := \langle E_i^{p'}, F_i^{p'}, K_i^p - 1 \rangle_i$ as ideal in $U_q(\mathfrak{g})$.

 $\Rightarrow \tilde{U}_q(\mathfrak{g}) := U_q(\mathfrak{g})/J$ is a fin.-dim. ribbon quotient Hopf algebra.

Scribble (proof ideas)

- We may verify that $U_q(\mathfrak{g})$ is a Hopf algebra, and that J is a Hopf ideal. Hence $\tilde{U}_q(\mathfrak{g})$ is a Hopf algebra.
- It is quasitriangular, because it is the quotient of a Drinfel'd double (see following slides).
- Let $(b_{ij})_{i,j} := (a_{ij})_{i,j}^{-1}$, $b_i := \sum_j b_{ij}$, $g := K_1^{-2b_1} \cdots K_m^{-2b_m}$. $\Rightarrow g$ is an invertible group-like in $\tilde{U}_q(\mathfrak{g})$, $S^2(a) = gag^{-1}$ for all $a \in \tilde{U}_q(\mathfrak{g})$
- Let u be the distinguished element of the quasitriangular Hopf algebra $\tilde{U}_q(\mathfrak{g})$.
 - $\Rightarrow v := ug^{-1}$ is central invertible and we may also verify that Sv = v. Hence, v is a ribbon element.

Drinfel'd double

Consider

- \blacksquare A a fin.-dim. Hopf algebra with dual A^*
- $lacksquare A^0 := A^*$ as algebra, but with $\Delta^0 := \tau \circ \Delta$, $S^0 := S^{-1}$

 \Rightarrow \exists Hopf algebra $D(A) \simeq A \otimes A^0$ as k-spaces such that the identifications $A \to A \otimes 1 \subset D(A)$ and $A^0 \to 1 \otimes A^0 \subset D(A)$, are Hopf algebra maps and such that their images generate D(A) as algebra.

D(A) is quasitriangular, with R the identity element in $A \otimes A^0$ (A has to be finite-dimensional!).

Note: D(A) can be defined even if A is not finite-dimensional, and even for two Hopf algebras with a suitable pairing.

Note also: D(A) is the Hopf algebra corresponding to the "center" of the tensor category Mod(A) by Tannaka-Krein duality.

Yetter-Drinfel'd modules, Radford's biproduct/bosonization

For a Hopf algebra H, $_H^H YD$ is the category of (left left) (H, H)-bimodules V with compatibility condition

$$\delta(h.v) = h_1 v_{-1} Sh_3 \otimes h_2.v_0 \qquad \forall h \in H, v \in V,$$

where δ is the coaction and $\delta(v) =: v_{-1} \otimes v_0$. $\Rightarrow {}^H_H YD$ is a braided monoidal category

 \exists functor Radford's biproduct/bosonization { "braided" Hopf algebra in ${}^H_H YD$ } \rightarrow {Hopf algebra}, $A \mapsto A \# H$. 5 A # H contains H as Hopf subalgebra and A as subalgebra.

⁵Not to be confused with the *semidirect/smash product* which is sometimes denoted identically. The latter one is a product of a Hopf algebra and a module algebra, and no comodule structure is involved.

Quantum groups revisited

$$H:=k[\mathbb{Z}^m]=k[K_1,\ldots,K_m],\ V^\pm:=k^n=\oplus_{i=1}^m E_i^\pm k$$
 the Yetter-Drinfel'd modules defined by $K_i.E_j^\pm=q^{\pm a_{ij}}$ and $\delta(E_i^\pm)=K_i\otimes E_i^\pm.$

- \blacksquare $T(V^{\pm})$ are braided Hopf algebras
- adding the Serre relations $\operatorname{ad}_{E_i^\pm}^{1-a_{ij}}(E_j^\pm)=0$ to $T(V^\pm)$ \to braided Hopf algebras $U(\mathfrak{n}^\pm)$ ("Borel part"; ad is to be taken in ${}_H^H\mathsf{YD}$)
- bosonizations $U(\mathfrak{n}^{\pm}) \# H$ → Hopf algebras which are dual in the sense of $A \mapsto A^0$
- $U_q(\mathfrak{g})$: Drinfel'd double $D(U(\mathfrak{n}^+)\# H)$ modulo identification of the two copies of H. $E_i=E_i^+$, $F_i=E_i^-$.

Quantum groups revisited / Outlook

- lacktriangleright Drinfel'd doubles and quotients of quasitriangular Hopf algebras are quasitriangular, so $\tilde{U}_q(\mathfrak{g})$ is quasitriangular
- Generalizations of the quantum groups discussed here which are still Ribbon Hopf algebras have been defined⁶. The fact that quantum groups and their generalizations are ribbon Hopf algebras can be proved through general Hopf algebra theory, as well⁷.
- There are results on how braided tensor categories obtained from conformal field theories can be studied through quantum groups⁸.

 $^{^6}$ Majid, Double-bosonization of braided groups and the construction of $U_q(\mathfrak{g})$, 1996 / Heckenberger, Nichols Algebras (Lecture Notes), 2008 / ...

Burciu, A class of Drinfeld doubles that are ribbon algebras, 2008.

⁸see http://arxiv.org/pdf/0705.4267v2.pdf, for instance

Summary

category	Rep()
vector spaces / modules	k
monoidal	bialgebra
rigid monoidal	Hopf algebra
rigid braided monoidal	quasitriangular Hopf algebra
Ribbon	Ribbon Hopf algebra*
(*) e.g. quantum groups	

Quantum groups are quotients of Drinfel'd doubles of bosonizations of universal enveloping algebras of Borel subalgebras of Lie algebras in a category of Yetter-Drinfel'd modules. Roughly speaking.

For further reading

- Turaev, Quantum Invariants of Knots and 3-Manifolds, 1994: chapter XI 1-3, 6.
- Chari, Pressley, A Guide to Quantum Groups, 1995.
- Najid, Foundations of Quantum Group Theory, 2000.
- Drinfel'd, Quantum Groups, 1986, [here].
- Reshetikhin, Turaev, *Invariants of 3-manifolds via link* polynomials and quantum groups, 1991, [here].
- Heckenberger, *Nichols Algebras (Lecture Notes)*, 2008, [here]: section 7, see also Simon Lentner's MO answer [here].