2023-06-05_Charleston-Example

June 9, 2023

```
[2]: import numpy as np
import scipy
import imageio

import matplotlib
import matplotlib.pyplot as plt
import matplotlib.cm as cm

matplotlib.rc('image', interpolation='nearest')
matplotlib.rc('figure',facecolor='white')
matplotlib.rc('image',cmap='viridis')
colors=plt.rcParams['axes.prop_cycle'].by_key()['color']
%matplotlib inline
[3]: # original data
# number of victims
```

```
[3]: # original data
     categoriesVictims=["total", "white", "black", "hisp", "other"]
     total=np.array([6484507,4091971,955800,995996,440741])
     # distribution of offenders: rows are victim categories, columns are
      ⇒percentages of offenders
     categoriesOffenders=["white", "black", "hisp", "other", "unknown"]
     ratios=np.array([\
             [42.9, 22.4, 14.8, 12.1, 7.8],
             [56.0,13.7,11.9,10.6,7.8],
             [10.4,62.2,4.7,15.0,7.7],
             [21.7,21.2,38.6,11.6,6.9],
             [40.3,19.3,10.6,20.3,9.5]
             ])/100.
     # total ethnic census (careful: data from 2019, only for coarse illustrative
      ⇔purposes)
     population=np.array([0.603,0.134,0.185,0])
     population[-1]=1-np.sum(population)
```

```
[7]: # compute absolute numbers
# columns: victim category, rows: offender category
numbers=total.reshape((-1,1))*ratios
```

```
# now: normalize by colum (drop first row: total)
sums=np.sum(numbers[1:],axis=0)
ratios2=numbers[1:]/(sums.reshape((1,-1)))
```

```
[9]: def print_table(offenders, victims, numbers, formstr):
    print("\t\toffender")
    print("\t", end="")
    for of in offenders:
        print("\t"+of, end="")
    print("")
    print("")
    print("victim\t|")
    for i,vic in enumerate(victims):
        print(vic+"\t|", end="")
        for j in range(numbers.shape[1]):
            print("\t"+formstr.format(numbers[i,j]), end="")
            print("")
```

```
[10]: print("absolute numbers (in 1E6)\n")
    print_table(categoriesOffenders, categoriesVictims[1:], numbers[1:]/1E6,"{:5.2f}")

    print("")
    print("="*60)
    print("relative numbers (per victim category: rows sum to 1)\n")
    print_table(categoriesOffenders, categoriesVictims[1:], ratios[1:], "{:5.2f}")

    print("")
    print("="*60)
    print("")

    print("relative numbers (per offender category: cols sum to 1)\n")
    print_table(categoriesOffenders, categoriesVictims[1:], ratios2, "{:5.2f}")
```

absolute numbers (in 1E6)

	offend	offender								
	white	black	hisp	other	unknown					
victim										
white	2.29	0.56	0.49	0.43	0.32					
black	0.10	0.59	0.04	0.14	0.07					
hisp	0.22	0.21	0.38	0.12	0.07					
other	0.18	0.09	0.05	0.09	0.04					

relative numbers (per victim category: rows sum to 1)

		offender							
		white	black	hisp	other	unknown			
victim									
white		0.56	0.14	0.12	0.11	0.08			
black		0.10	0.62	0.05	0.15	0.08			
hisp		0.22	0.21	0.39	0.12	0.07			
other		0.40	0.19	0.11	0.20	0.10			
white black hisp	 	0.10 0.22	0.62	0.05	0.15 0.12	0.08			

relative numbers (per offender category: cols sum to 1)

```
offender
             white black
                          hisp
                                 other
                                        unknown
victim |
              0.82
                    0.39
                         0.51
                                 0.55
                                         0.63
white
black |
              0.04
                     0.41
                          0.05
                                  0.18
                                         0.15
                                         0.14
hisp
              0.08
                     0.15
                           0.40
                                  0.15
                     0.06
other |
              0.06
                           0.05
                                  0.11
                                         0.08
```

```
[15]: fig=plt.figure(figsize=(10,6))

fig.add_subplot(2,4,1)
plt.title("victim: white")
plt.pie(ratios[1],labels=categoriesOffenders)

fig.add_subplot(2,4,2)
plt.title("victim: black")
plt.pie(ratios[2],labels=categoriesOffenders)

fig.add_subplot(2,4,3)
plt.title("victim: hisp")
plt.pie(ratios[3],labels=categoriesOffenders)

fig.add_subplot(2,4,5)
plt.title("offender: white")
```

```
plt.pie(ratios2[:,0],labels=categoriesVictims[1:])

fig.add_subplot(2,4,6)
plt.title("offender: black")
plt.pie(ratios2[:,1],labels=categoriesVictims[1:])

fig.add_subplot(2,4,7)
plt.title("offender: hisp")
plt.pie(ratios2[:,2],labels=categoriesVictims[1:])

fig.add_subplot(2,4,8)
plt.title("population distr.")
plt.pie(population,labels=categoriesVictims[1:])
```


[]: