## SORBONNE UNIVERSITÉ

TRAVAUX D'ÉTUDE ET DE RECHERCHE

# Autour du théorème de Dvoretzky

"It soon became clear that an outstanding breakthrough in Geometric Functional Analysis had been achieved."

Vitali Milman à propos du théorème de Dvoretzky dans Dvoretzky theorem - thirty years later

Mathieu GALLO Enseignant : Omer Friedland

date

### --- Introduction

Alexandre Grothendieck en 1956 dans son article "*sur certains classes de suites dans les espaces de Banach, et le théorème de Dvoretzky-Rogers*", inspiré par le lemme de Dvoretzky-Rogers (1950) propose une conjecture, a la quelle Aryeh Dvoretzky répondra positivement en 1961, aboutissant au résultat suivant :

**Théorème 1** (A. Dvoretzky, 1961). *Il existe une fonction*  $k: ]0,1[\times \mathbb{N} \to \mathbb{N}$ , *tel que*  $\forall \varepsilon \in ]0,1[$ ,  $k(\varepsilon,n) \xrightarrow{n\to\infty} \infty$  *et pour tout*  $n \in \mathbb{N}$  *et tous compact convexe symétrique*  $K \subset \mathbb{R}^n$ , *il existe un sous espace*  $V \subset \mathbb{R}^n$  *tel que* :

- (i) dim  $V = k(\varepsilon, n)$
- (ii)  $\exists r > 0$  tel que,  $r.(V \cap B_2^n) \subset V \cap K \subset (1+\varepsilon)r.(V \cap B_2^n)$

V. Milman en 1971 donna une nouvelle preuve du théorème de Dvoretzky en utilisant le phénomène de concentration de la mesure, il a de plus amélioré le théorème en donnant une estimation de la dépendance en n pour la dimension de V,  $k(\varepsilon,n) \ge c(\varepsilon) \cdot \log(n)$ .

**Théorème 2** (V. Milman, 1971). *Pour toute*  $\varepsilon > 0$ , *il existe une constante* c > 0 *tel que pour tout*  $n \in \mathbb{N}$  *et pour tous corps convexe symétrique*  $K \subset \mathbb{R}^n$ , *il existe un sous espace*  $V \subset \mathbb{R}^n$  *tel que* :

- (i) dim  $V \ge c \cdot \log(n)$
- $(ii) \ \exists r>0 \ tel \ que \ , \ r.(V\cap B_2^n)\subset V\cap K\subset (1+\varepsilon)r.(V\cap B_2^n)$

Il existe une reformulation du théorème en terme de norme.

**Théorème 3.** Pour tout  $\varepsilon > 0$  il existe c > 0 tel que pour toute  $n \in \mathbb{N}$  et pour toute norme ||.|| sur  $\mathbb{R}^n$  alors  $l_2^k$  est  $(1 + \varepsilon)$ -isomorphe à  $(\mathbb{R}^n, ||.||)$  pour un  $k \ge c.\log(n)$ .

Montrons que ses deux théorème sont équivalents.

(2) $\Rightarrow$ (3) Posons  $K = Adh(B_{||.||}(0,1)) = \{x \in \mathbb{R}^n \mid ||x|| \le 1\}$  et appliquons le théorème 2, celui ci nous procure un sous-espace V de  $\mathbb{R}^n$ , avec dim  $V := k \ge c.\log(n)$  et  $V \cap K$  est  $\varepsilon$ -ecuclidien.

Donnons nous une base orthonormée  $\{v_i\}_{1 \le i \le k}$  de V et posons

$$\phi: \begin{array}{ccc} (V,||.||) & \mapsto & (\mathbb{R}^k,|.|_k) \\ \sum_{i=1}^k x_i v_i & \to & \sum_{i=1}^k x_i e_i \end{array}$$

Soit  $v \in V \cap K$  tel que ||v|| = 1, comme  $K \cap V$  est  $\varepsilon$ -euclidien on a que

$$r \le |v|_n \le (1+\varepsilon)r$$

La borne supérieur est immédiate car  $K \cap V \subset r(1+\varepsilon)$ . $(V \cap B_2^n)$ , pour la borne inférieur il suffit de remarquer que  $(V \cap K)$  est un fermer de V qui contient l'ouvert  $r.(V \cap B_2^n)$  de V, comme v est dans la frontière de  $K \cap V$  il n'est pas dans l'intérieur de  $K \cap V$  et donc dans aucun ouvert contenue dans  $V \cap K$ .

Fixons des coordonnées à v dans la base  $\{v_j\}_{1 \le j \le k}$ ,  $v = \sum_{i=1}^k x_i v_i$ , on a que  $|v|_n = \sqrt{\sum_{i=1}^k x_i^2}$  et donc :

$$r \le \sqrt{\sum_{i=1}^k x_i^2} \le (1+\varepsilon)r$$

Mais comme  $|\phi(v)|_k = \left|\sum_{i=1}^k x_i e_i\right| = \sqrt{\sum_{i=1}^k x_i^2}$ , on a que :

$$r \le |\phi(v)|_k \le (1+\varepsilon)r$$

Pour tous  $x \in V \setminus \{0\}$  on peut appliqué ce qui précède à  $\frac{x}{||x||}$ , en utilisant la linéarité de  $\phi$  on obtient :

$$r||x|| \le |\phi(x)|_k \le (1+\varepsilon)r||x||$$

(3) $\Rightarrow$ (2) Soit  $\varepsilon > 0$ , par le théorème 3 il existe c > 0 tel que pour tous  $n \in \mathbb{N}$  il existe un k > c.  $\log(n)$  tel que  $l_2^k$  est  $(1+\varepsilon)$ -isomorphe à  $(R^n, ||.||)$  pour n'importe quelle norme ||.|| sur  $\mathbb{R}^n$ . Considérons un compact convexe symétrique  $K \subset \mathbb{R}^n$  et  $||y|| = \inf \left\{ \lambda > 0 \; ; \; \frac{y}{\lambda} \in K \right\}$ , alors  $\exists T : l_2^k \to (\mathbb{R}^n, ||.||)$  linéaire tel que :

$$\forall x \in \mathbb{R}^k$$
,  $|x| \le ||Tx|| \le (1+\varepsilon)|x|$ 

ceci implique immédiatement que T est injective, notons  $V = \operatorname{Im} T$ , alors la co-restriction a V de T est bijective. Soit  $y \in \partial(K \cap V)$ , c'est à dire ||y|| = 1, on sait qu'il existe un unique  $x \in \mathbb{R}^k$  tel que Tx = y, on en déduit donc

$$|x| \le 1 \le (1+\varepsilon)|x| \iff \frac{1}{1+\varepsilon} \le |x| \le 1$$

la convexité et la symétrie centrale de  $K \cap V$  nous permet de conclure que :

$$\frac{1}{1+\varepsilon}T(B_2^k) \subset K \cap V \subset T(B_2^k)$$

# **Existence du sous-espace**

#### Mesures de Haar

**Définition & Théorème** (Mesures de Haar). Soit (X, d) un espace métrique, G un groupe topologique localement compact qui agit sur X et tel que :

$$\forall x, y \in X \ \forall g \in G, \ d(gx, gy) = d(x, y) \tag{*}$$

alors il existe une unique mesure à un coefficient multiplicatif près, régulière définit sur les boréliens de X qui est invariante sous l'action de G, cette mesure est appeler mesure de Haar de X (où G est sous-entendu).

Considérons  $X = S^{n-1}$  avec la distance euclidienne et X = O(n) avec la norme  $||M|| = \sup_{|x|=1} |Mx|$  alors G = O(n) le groupe des isométries vérifie ( $\star$ ) pour la multiplication matricielle sur  $S^{n-1}$  et O(n), par le théorème précédent on peut définir sans ambiguïté  $\mu, \nu$  les mesures de Haar normalisés respectivement sur  $S^{n-1}$  et O(n). Montrons quelques propriétés qui serons utile par la suite.

**Lemme 1.** Soit  $f \in C(S^{n-1})$  et  $Y = (g_1, ..., g_n)$  où les  $\{g_i\}_{1 \le i \le n}$  sont i.i.d suivant une loi normale  $\mathcal{N}(0, 1)$ , alors

$$\int_{S^{n-1}} f \, d\mu = \mathbb{E}\left[f\left(\frac{Y}{|Y|}\right)\right]$$

*Démonstration.* Par unicité de la mesure de Haar , il nous suffit de montrer que pour tous M ∈ O(n) et  $f ∈ C(S^{n-1})$ :

$$\mathbb{E}\left[f\left(\frac{MY}{|MY|}\right)\right] = \mathbb{E}\left[f\left(\frac{Y}{|Y|}\right)\right]$$

$$\mathbb{E}\left[f\left(\frac{MY}{|MY|}\right)\right] = \int_{\mathbb{R}^n\setminus\{0\}} f\left(\frac{My}{|y|}\right) \exp\left\{-\frac{1}{2}|y|^2\right\} dy_1...dy_n = \int_{\mathbb{R}^n\setminus\{0\}} f\left(\frac{y}{|y|}\right) \exp\left\{-\frac{1}{2}|M^{-1}y|^2\right\} dy_1...dy_n$$

comme  $|\det M| = 1$  et  $|M^{-1}y| = |y|$ , on a :

$$\mathbb{E}\bigg[f\Big(\frac{MY}{|MY|}\Big)\bigg] = \mathbb{E}\bigg[f\Big(\frac{Y}{|Y|}\Big)\bigg]$$

**Lemme 2.** Soit  $A \subset S^{n-1}$  un borélien alors pour tous  $x \in S^{n-1}$ 

$$v(T \in O(n); Tx \in A) = \mu(A)$$

 $D\acute{e}monstration. \ \ \text{Soit} \ M \in O(n) \ \text{et} \ x \in S^{n-1} \ \text{alors la mesure d\'efinis pas} \ \omega_x(A) = v \Big( T \in O(n) \ ; \ Tx \in A \Big) \ \text{v\'erifie}$ 

$$\omega_x(MA) = v\Big(T \in O(n) \; ; \; M^TTx \in A\Big) = v\Big(T \in O(n) \; ; \; Tx \in A\Big) = \omega_x(A)$$

$$\omega_{x}(\emptyset) = 0$$
 et  $\omega_{x}(S^{n-1}) = 1$ 

L'unicité de la mesure de Haar nous permet de conclure que  $\omega_x = \mu$ , en particulier  $\omega_x$  ne dépend pas de x.

## Début de la démonstration du théorème de Dvoretzky

**Théorème 4** (Concentration de la mesure). Soit  $f: S^{n-1} \to \mathbb{R}$  une fonction Lipschitzienne de constante L > 0, alors

$$\mu \Big\{ x \in S^{n-1} \; ; \; |f(x) - \mathbb{E}[f]| > \varepsilon \Big\} \leq 2e^{-\frac{\varepsilon^2 n}{2L^2}}$$

**Lemme 3.** Pour tous  $0 < \varepsilon < 1$  il existe un  $\varepsilon$ -net sur  $S^{k-1}$  de cardinal inférieur à  $\left(\frac{3}{\varepsilon}\right)^k$ .

*Démonstration.* Soit  $N = \{x_i\}_{i=1,\dots,m}$  un sous ensemble de  $S^{k-1}$  maximal pour la propriété :  $x,y \in N$ ,  $|x-y| \ge \varepsilon$ , c'est à dire pour tous  $x \in S^{k-1} \setminus N$  il existe  $i \le m$  tel que  $|x-x_i| < \varepsilon$ , donc N est un  $\varepsilon$ -net. Les boules de centre  $x_i$  et de rayon  $\varepsilon/2$  sont donc disjointe deux à deux et toute contenue dans  $B(0,1+\frac{\varepsilon}{2})$  d'ou :

$$\begin{split} m\mathrm{Vol}(B(x_1,\frac{\varepsilon}{2})) &= \sum_{i=1}^m \mathrm{Vol}(B(x_i,\frac{\varepsilon}{2})) = \mathrm{Vol}(\cup_{1 \leq i \leq m} B(x_i,\frac{\varepsilon}{2})) \leq \mathrm{Vol}(B(0,1+\frac{\varepsilon}{2})) \\ m &\leq \frac{\mathrm{Vol}(B(0,1+\frac{\varepsilon}{2}))}{\mathrm{Vol}(B(x_1,\frac{\varepsilon}{2}))} = \left(\frac{1+\frac{\varepsilon}{2}}{\frac{\varepsilon}{2}}\right)^k = \left(1+\frac{2}{\varepsilon}\right)^k \leq \left(\frac{3}{\varepsilon}\right)^k \end{split}$$

**Théorème 5.** Pour tous  $\varepsilon > 0$  il existe c > 0 tel que pour tout  $n \in \mathbb{N}$  et pour toute norme ||.|| sur  $\mathbb{R}^n$  il existe un sousespace  $V \subset \mathbb{R}^n$  tel que :

(i) dim  $V \ge c \cdot \left(\frac{E}{h}\right)^2 n$ 

(ii) Pour tous  $x \in V : (1 - \varepsilon)E|x| \le ||x|| \le (1 + \varepsilon)E|x|$ 

où  $E = \int_{S^{n-1}} ||y|| d\mu(y)$  et b > 0 est le plus petit réel positif tel que  $||.|| \le b|.|$ .

*Démonstration.* Soit  $1 > \delta, \theta > 0$  tel que

$$\frac{1}{1-\theta} < 1 + \varepsilon/2 \text{ et } \frac{1-2\theta}{1-\theta} > 1 - \varepsilon/2$$

$$\frac{1+\delta}{1-\theta} < 1+\varepsilon \text{ et } \frac{1-2\theta-\delta}{1-\theta} > 1-\varepsilon$$

Posons  $\eta = \frac{\delta E}{b}$  et fixons  $V_0 \subset \mathbb{R}^n$  un sous-espace et  $M \subset V_0 \cap S^{n-1}$  un  $\theta$ -net, où dim  $V_0 = k$  avec  $|M| < \frac{1}{2}e^{\frac{\eta^2 n}{2}} < (\frac{3}{\theta})^k$ . (on justifira l'existence d'un tel ensemble dans lemme qui suit cette démonstration)

$$v\left(\bigcap_{x\in M} \{T\in O(n); |||Tx||-E|\leq b\eta\}\right) = 1-|M|v(T\in O(n); |||Ty||-E|>b\eta), \text{ pour un } y\in M.$$

or  $v(T \in O(n); |||Ty|| - E| > b\eta) = \mu(y \in S^{n-1}; |||y|| - E| > b\eta) \le 2e^{-\frac{\eta^2 n}{2}}, \text{ donc}:$ 

$$v\Big(\cap_{x\in M} \{T\in O(n); |||Tx||-E|\leq b\eta\}\Big) \geq 1-|M|2e^{-\frac{\eta^2n}{2}}>0$$

Il existe donc  $T \in O(n)$  tel que pour tous  $x \in M$  on ait  $|||Tx|| - E| \le b\eta$ , comme T est une isométrie on a que N =: TMest un  $\theta$ -net sur  $V \cap S^{n-1}$  avec  $V =: TV_0$ . Si  $x \in V \cap S^{n-1}$ , il existe  $\{y_i\} \subset N$  et  $\{\beta_i\}$  une suite avec  $|\beta_i| \le \theta^i$  tel que  $x = y_1 + \sum_{i=2}^{\infty} \beta_i y_i$ , on a donc

$$||x|| \le ||y_1|| + \sum_{i=2}^{\infty} \theta^i ||y_i|| \le \sum_{i=0}^{\infty} \theta^i (b\eta + E) = \frac{1}{1-\theta} (b\eta + E)$$

Trouvons maintenant une minoration de ||x||, on a  $||x-y_1|| = \left|\left|\sum_{i=2}^{\infty} \beta^i y_i\right|\right| \le \sum_{i=1}^{\infty} \theta^i ||y_i|| \le \frac{\theta}{1-\theta} (b\eta + E)$  et donc

$$||x|| \geq ||y_1|| - ||x - y_1|| \geq (b\eta + E) - \frac{\theta}{1 - \theta}(E + b\eta) = E\frac{1 - 2\theta}{1 - \theta} - b\eta\frac{1}{1 - \theta}$$

$$E\frac{1-2\theta}{1-\theta} - b\eta \frac{1}{1-\theta} \le ||x|| \le \frac{1}{1-\theta} (b\eta + E)$$

Or on a  $E\frac{1-2\theta}{1-\theta}-b\eta\frac{1}{1-\theta}=E\frac{1-2\theta-\delta}{1-\theta}>E(1-\varepsilon)$  et  $\frac{1}{1-\theta}(b\eta+E)=E\frac{1+\delta}{1-\theta}< E(1+\varepsilon)$  et donc

$$E(1-\varepsilon) \le ||x|| \le E(1+\varepsilon)$$

Pour  $y \in V$  il suffit de prendre  $x = \frac{y}{|y|}$  et l'on a :

$$E(1-\varepsilon)|y| \leq ||y|| \leq E(1+\varepsilon)|y|$$

Il ne nous reste plus qu'as discuté de la minoration de k, en prenant le logarithme dans  $\frac{1}{2}e^{\frac{\eta^2n}{2}} < (\frac{3}{\theta})^k$ , on obtient :

$$k > \frac{1}{\log(3/\theta)} \left( \frac{\delta^2 E^2}{2b^2} n - \log(2) \right)$$

Je n'arrive pas a conclure pour la dimension, par rapport au livre de Gideon et Milman j'ai remplacer dans les notations  $\varepsilon$  par  $\eta$ ,  $\varepsilon'$  par  $\delta$ ,  $\delta$  par  $\varepsilon$ 

# Minoration de la dimension du sous-espace

Par la suite on fixe ||.|| une norme sur  $\mathbb{R}^n$ ,  $K = \text{Adh}(B_{||.||})$  tel que  $B_2^n$  soit l'ellipsoïde de volume maximale incluse dans K, on a donc b = 1. Dans cette partie nous allons donner une estimation de E.

**Défintion.** Un ellipsoïde de  $\mathbb{R}^n$  est l'image de la boule unité euclidienne par un élément de GL(n).

Admettons le théorème suivant de Fritz John (1910-1994) :

**Théorème 6** (Ellipsoïde de John). *Tous compact convexe symétrique d'intérieur non vide contient un unique ellipsoïde de volume maximale.* 

Pour estimer E nous aurons besoin d'une minoration de  $\mathbb{E}\Big[\max_{1\leq i\leq N}g_i\Big]$  pour des  $\{g_i\}$  i.i.d suivant  $\mathcal{N}(0,1)$ , nous démontrons une telle borne dans le lemme suivant.

**Lemme 4.** il existe c > 0 tel que  $\forall N > 1$  et  $\{g_i\}_{1 \le i \le N}$  des variables aléatoire i.i.d suivant une loi  $\mathcal{N}(0,1)$  on ait:

$$c\sqrt{\log N} \le \mathbb{E}\big[\max_{1 \le i \le \tilde{N}} |g_i|\big]$$

$$o\grave{u}\ \tilde{N} = \left[\frac{\sqrt{N}}{16\sqrt{2}}\right]$$

*Démonstration*. Commençons par montrer que pour n > 1,  $\mathbb{P}(|g_1| > \sqrt{\log n}) \ge \frac{1}{n}$ , on a :

$$\mathbb{P}(|g_1| > \sqrt{\log n}) = 2 \int_{\sqrt{\log n}}^{+\infty} e^{-\frac{x^2}{2}} dx \ge \int_{\sqrt{\log n}}^{+\infty} e^{-\frac{x^2}{2}} (1 + \frac{1}{x^2}) dx \qquad \text{pour } x > \sqrt{\log(2)} > 1$$

$$\int_{\sqrt{\log n}}^{+\infty} e^{-\frac{x^2}{2}} (1 + \frac{1}{x^2}) dx = \left[ -\frac{e^{-\frac{t^2}{2}}}{t} \right]_{\sqrt{\log n}}^{+\infty} = \frac{1}{\sqrt{n \log n}} > \frac{1}{n}$$

On à  $\mathbb{P}(|g_1| > \sqrt{\log \sqrt{N}}) \ge \frac{1}{\sqrt{N}}$ , et donc

$$\mathbb{P}\bigg(\max_{1 \leq i \leq \tilde{N}} |g_i| \leq \sqrt{\log \sqrt{N}}\bigg) = \mathbb{P}\bigg(|g_1| \leq \sqrt{\log \sqrt{N}}\bigg)^{\tilde{N}} = \bigg(1 - \mathbb{P}\bigg(|g_1| > \sqrt{\log \sqrt{N}}\bigg)\bigg)^{\tilde{N}}$$

$$\mathbb{P}\left(\max_{1 \leq i \leq \tilde{N}} |g_i| \leq \sqrt{\log \sqrt{N}}\right) \leq \left(1 - \frac{1}{\sqrt{N}}\right)^{\tilde{N}} \leq e^{-\frac{\tilde{N}}{\sqrt{N}}} \leq e^{-\frac{1}{16\sqrt{2}}}$$

Ce qui équivaut a

$$\mathbb{P}\left(\max_{1 \le i \le \tilde{N}} |g_i| > \sqrt{\log \sqrt{N}}\right) \ge 1 - e^{-\frac{1}{16\sqrt{2}}}$$

Par l'inégalité de Markov on a finalement :

$$\mathbb{E}\big[\max_{1\leq i\leq \tilde{N}}|g_i|\big]\geq \mathbb{P}\Big(\max_{1\leq i\leq \tilde{N}}|g_i|>\sqrt{\log\sqrt{N}}\Big)\sqrt{\log\sqrt{N}}\geq \frac{1-e^{-\frac{1}{16\sqrt{2}}}}{\sqrt{2}}\sqrt{\log N}$$

avec 
$$c =: \frac{1 - e^{-\frac{1}{16\sqrt{2}}}}{\sqrt{2}} \approx 0.3235$$

**Lemme 5** (Dvoretzky-Rogers). *Il existe une base orthonormée*  $\{x_i\}_{i=1,\dots,n}$  *tel que*  $\forall 1 \le i \le n$ 

$$e^{-1}(1-\frac{i-1}{n}) \le ||x_i|| \le 1$$

*Démonstration.*  $S^{n-1}$  est compact et ||.|| continue, on peux donc prendre un  $x_1 \in S^{n-1}$  qui maximise ||.|| c'est à dire || $x_1$ || = 1, supposons que l'on ai  $x_1, ..., x_{k-1}$  avec  $k \le n$  tel que pour tous  $1 \le i \le k-1$ ,  $x_i$  maximise ||.|| sur  $S^{n-1} \cap_{j < i} x_j \ne \emptyset$  car les  $\{x_i\}_{i=1,...,k-1}$  sont orthogonaux deux à deux et est compact, on peut donc répéter le procéder pour trouver  $x_k$  qui maximise  $S^{n-1} \cap_{j < k} x_j$ , par récurrence on peut donc avoir n vecteurs avec ses propriétés. Fixons  $1 \le k \le n$ ,  $a, b \in \mathbb{R}^*$  et définissons :

$$\mathscr{E} = \left\{ \sum_{i=1}^{n} a_i x_i \; ; \; \sum_{i=1}^{k-1} \left( \frac{a_i}{a} \right)^2 + \; \sum_{i=k}^{n} \left( \frac{b_i}{b} \right)^2 \le 1 \right\}$$

Supposons  $\sum_{i=1}^n a_i x_i \in \mathcal{E}$ , alors  $\sum_{i=1}^{k-1} a_i x_i \in aB_2^n$  et donc  $||\sum_{i=1}^{k-1} a_i x_i|| \le a$ . Si  $x \in \text{Vect}(x_k, ..., x_n) \cap B_n^2$  on a  $||x|| \le ||x_k||$  par construction, et donc  $\sum_{i=k}^n a_i x_i \in bB_2^n \Rightarrow ||\sum_{i=k}^n a_i x_i|| \le b||x_k||$ , ce qui nous donne la majoration suivante

$$||\sum_{i=1}^{n} a_i x_i|| \le ||\sum_{i=1}^{k-1} a_i x_i|| + ||\sum_{i=k}^{n} a_i x_i|| \le a + b||x_k||$$

Posons  $\phi \in GL(n)$  définit par  $\phi(\sum_{i=1}^n a_i x_i) = \sum_{i=1}^{k-1} a a_i x_i + \sum_{i=k}^n b a_i x_i$  on a  $\phi = \text{diag}(\overbrace{a,...,a}^{(k-1)\times}, \overbrace{b,...,b}^{(n-k+1)\times})$  et donc  $\det \phi = a^{k-1}b^{n-k+1}$  d'où :

$$\int_{\mathcal{E}} dx_1 ... dx_n = \int_{B_2^n} \det \phi dx_1 ... dx_n = a^{k-1} b^{n-k-1} \int_{B_2^n} dx_1 ... dx_n$$

On prend  $a+b||x_k||=1$  de sorte que  $\mathcal{E}\subset K$ , comme  $B_2^n$  est l'ellipsoïde de volume maximale inclue dans K, on a que

$$1 \ge \frac{\int_{\mathscr{E}} dx_1 ... dx_n}{\int_{B_n^n} dx_1 ... dx_n} = a^{k-1} b^{n-k+1}$$

Fixons donc pour  $k \ge 2$ ,  $b = \frac{1-a}{||x_k||}$  et  $a = \frac{k-1}{n}$ , en remplaçant dans l'inégalité on obtient :

$$1 \ge a^{k-1} \left(\frac{1-a}{||x_k||}\right)^{n-k+1} \iff ||x_k|| \ge a^{\frac{k-1}{n-k+1}} (1-a) = \left(\frac{k-1}{n}\right)^{\frac{k-1}{n-k+1}} \left(1-\frac{k-1}{n}\right)^{\frac{k-1}{n-k+1}} \left(1-\frac{k-1}{n}\right)^{\frac{k-1}{n}} \left(1-$$

et  $\log a^{\frac{k-1}{n-k+1}} = \frac{k-1}{n-k+1} \log \left( \frac{k-1}{n} \right) > -1.$ 

**Proposition** (Estimation de *E*). Il existe c > 0 tel que  $E \ge c\sqrt{\frac{\log n}{n}}$ .

*Démonstration.* Par le lemme de Dvoretzky-Rogers il existe une base orthonormé  $x_1,...,x_n$  tel que pour  $1 \le i \le \tilde{n} = \frac{1}{16\sqrt{2}} \left| (\le n), ||x_i|| \ge e^{-1} \left( 1 - \frac{\tilde{n}-1}{n} \right) \ge e^{-1} \left( 1 + \frac{1}{n} - \frac{1}{16\sqrt{2n}} \right) \ge (2e)^{-1}$ . Comme  $\mu$  est invariante par composition par une transformation orthogonale on a que

$$E =: \int_{S^{n-1}} || \sum_{i=1}^{n} a_i x_i || \ d\mu(a) = \int_{S^{n-1}} || \sum_{i=1}^{n-1} a_i x_i - a_n x_n || \ d\mu(a)$$

et donc

$$\begin{split} \int_{S^{n-1}} || \sum_{i=1}^{n} a_i x_i || \ d\mu(a) &= \frac{1}{2} \int_{S^{n-1}} || \sum_{i=1}^{n} a_i x_i || \ d\mu(a) + \frac{1}{2} \int_{S^{n-1}} || \sum_{i=1}^{n-1} a_i x_i - a_n x_n || \ d\mu(a) \\ \int_{S^{n-1}} || \sum_{i=1}^{n} a_i x_i || \ d\mu(a) &\geq \frac{1}{2} \int_{S^{n-1}} 2 \max \Big\{ || \sum_{i=1}^{n-1} a_i x_i ||, || a_n x_n || \Big\} d\mu(a) \geq \ldots \geq \int_{S^{n-1}} \max_{1 \leq i \leq n} \Big\{ |a_i| \ ||x_i|| \Big\} d\mu(a) \\ \int_{S^{n-1}} || \sum_{i=1}^{n} a_i x_i || \ d\mu(a) &\geq \int_{S^{n-1}} \max_{1 \leq i \leq \tilde{n}} \Big\{ |a_i| \ ||x_i|| \Big\} d\mu(a) \geq (2e)^{-1} \int_{S^{n-1}} \max_{1 \leq i \leq \tilde{n}} |a_i| d\mu(a) \end{split}$$

Soit  $(g_1,...,g_n)$ , des variables aléatoire i.i.d de loi  $\mathcal{N}(0,1)$  alors

$$\int_{S^{n-1}} \max_{1 \le i \le \tilde{n}} |a_i| d\mu(a) = \mathbb{E}\left[\left(\sum_{i=1}^n g_i^2\right)^{-\frac{1}{2}} \max_{1 \le i \le \tilde{n}} |g_i|\right]$$

**Lemme 6.**  $\left(\sum_{i=1}^{n}g_{i}^{2}\right)^{-\frac{1}{2}}(g_{1},...,g_{n})\ et\left(\sum_{i=1}^{n}g_{i}^{2}\right)^{\frac{1}{2}}\ sont\ indépendants.$ 

(-i) Démonstration du lemme.

Par le lemme on à donc

$$\mathbb{E}\Big[ \Big( \sum_{i=1}^n g_i^2 \Big)^{-\frac{1}{2}} \max_{1 \leq i \leq \bar{n}} |g_i| \Big] . \mathbb{E}\Big[ \Big( \sum_{i=1}^n g_i^2 \Big)^{\frac{1}{2}} \Big] = \mathbb{E}\big[ \max_{1 \leq i \leq \bar{n}} |g_i| \big]$$

la fonction racine carré est concave, par l'inégalité de Jensen on a donc :

$$\mathbb{E}\left[\left(\sum_{i=1}^{n} g_{i}^{2}\right)^{\frac{1}{2}}\right] \leq \mathbb{E}\left[\sum_{i=1}^{n} g_{i}^{2}\right]^{\frac{1}{2}} = \sqrt{n}\mathbb{E}[g_{1}^{2}]^{\frac{1}{2}} = \sqrt{n}$$

Et finalement par le lemme 4, il existe K > 0 tel que :

$$E \ge \frac{1}{2e\sqrt{n}} \mathbb{E}\left[\max_{1 \le i \le \tilde{n}} |g_i|\right] \ge \frac{K}{2e} \sqrt{\frac{\log n}{n}}$$

Pour finir il suffit de poser  $c =: \frac{K}{2e}$ 

Revenons à la conclusion du thèor

## **Sources**

- Euclidean sections of convex bodies , Gideon Schechtman (2008)
- "SUR CERTAINS CLASSES DE SUITES DANS LES ESPACES DE BANACH, ET LE THÉORÈME DE DVORETSKYROGERS" , ALEXANDRE GROTHENDIECK (1956)
  - -DVORETZKY'S THEOREM- THIRTY YEARS LATER , Vitali Milman (1992)