

Cálculo computacional II

Unidade 5: Integrais triplas

Cristina Vaz

C2-aula 18/8/25

UFPA

Sumário

<u>∂f</u> ∂t

Integrais triplas

Teorema de Fubini para integrais tripla:

Exemplos

Integrais triplas em regiões mais gerais

- 1 Integrais triplas
- 2 Teorema de Fubini para integrais triplas
- 3 Exemplos
- 4 Integrais triplas em regiões mais gerais

Integrais triplas

Teorema de Fubini para integrais triplas

Exemplos

Integrais triplas em regiões mais gerais Agora, queremos definir a integral de uma função

$$f: E \subset \mathbb{R}^3 \to \mathbb{R}$$

Para isto, considere E é um paralelepípedo dado por

$$E = \{(x, y, z) \in \mathbb{R}^3 ; a_1 \le x \le b_1, a_2 \le y \le b_2, a_3 \le z \le b_3\}$$

Integrais triplas

Teorema de Fubini para integrais triplas

Exemplos

Integrais triplas em regiões mais gerais

Integrais triplas

Teorema de Fubini para integrais triplas

Exemplos

Integrais triplas em regiões mais gerais Agora, vamos subdividir D em vários cubos de tamanho

$$E_{ijk} = [x_{i-1}, x_i] \times [y_{j-1}, y_j] \times [z_{k-1}, z_k]$$

Integrais triplas

Teorema de Fubini para integrais triplas

Exemplos

Integrais triplas em regiões mais gerais

Note que, cada cubo
$$E_{ijk}$$
 tem dimensões $\Delta x_i = x_i - x_{i-1}$, $\Delta y_i = y_i - y_{i-1}$ e $\Delta z_k = z_k - z_{k-1}$

<u>∂f</u> ∂t

Integrais triplas

Teorema de Fubini para integrais triplas

Exemplos

Integrais triplas em regiões mais gerais Assim, o volume de cada E_{ijk} é dado por

$$\Delta V_{ijk} = \Delta x_i \, \Delta y_j \, \Delta z_k$$

Integrais triplas

Teorema de Fubini para integrais triplas

Exemplos

Integrais triplas em regiões mais gerais Assim, o volume de cada E_{iik} é dado por

$$\Delta V_{ijk} = \Delta x_i \, \Delta y_j \, \Delta z_k$$

Escolhendo, um ponto $(x_{ijk}^*, y_{ijk}^*, z_{ijk}^*)$ em cada D_{ijk} podemos formas a soma de Riemann:

$$S_{lmn} = \sum_{k=1}^{l} \sum_{i=1}^{m} \sum_{i=1}^{n} f(x_{ijk}^{*}, y_{ijk}^{*}, z_{ijk}^{*}) \Delta V_{ijk}$$

Integrais triplas

Teorema de Fubini para integrais triplas

Exemplos

Integrais triplas em regiões mais gerais Tomando o limite de S para $l, m, n \to \infty$ obtemos a **integral tripla** de f dada por

$$\iiint_{E} f(x,y,z) dV = \lim_{l,m,n\to\infty} \sum_{k=1}^{l} \sum_{j=1}^{m} \sum_{i=1}^{n} f(x_{ijk}^{*}, y_{ijk}^{*}, z_{ijk}^{*}) \Delta V_{ijk}$$

$$com dV = dx dy dz$$

Integrais triplas

Teorema de Fubini para integrais tripla

Exemplos

Integrais triplas em regiões mais gerais

Definição

Sejam $E \subset \mathbb{R}^3$ o paralelepípedo $[a_1,b_1] \times [a_2,b_2] \times [a_3,b_3]$ e $f:E \to \mathbb{R}$ uma função integrável. Então, se existe o limte

$$\iiint_{E} f(x,y,z) dV = \lim_{l,m,n\to\infty} \sum_{k=1}^{l} \sum_{j=1}^{m} \sum_{i=1}^{n} f(x_{ijk}^{*}, y_{ijk}^{*}, z_{ijk}^{*}) \Delta V_{ijk}$$

é chamado de a integral tripla de f.

Integrais triplas

Teorema de Fubini para integrais triplas

Exemplos

Integrais triplas em regiões mais gerais

Teorema (Teorema de Fubini)

Sejam $E \subset \mathbb{R}^3$ o paralelepípedo $[a_1,b_1] \times [a_2,b_2] \times [a_3,b_3]$ e $f:E \to \mathbb{R}$ uma função integrável. Então,

$$\iiint_E f(x,y,z) \, dx \, dy \, dz = \int_{a_3}^{b_3} \int_{a_2}^{b_2} \int_{a_1}^{b_1} f(x,y,z) \, dx \, dy \, dz$$

Integrais triplas

Teorema de Fubini para integrais tripla

Exemplos

Integrais triplas em regiões mais gerais

Exemplo

Calcule a integral tripla

$$\iiint_E x y z^2 dx dy dz$$

no paralelepípedo

$$E = [0,1] \times [-1,2] \times [0,3]$$

Integrais triplas

Teorema de Fubini para integrais triplas

Exemplos

Integrais triplas em regiões mais gerais Solução: aplicando o teorema de Fubini temos que

$$\iiint_E x y z^2 dx dy dz = \int_0^3 \int_{-1}^2 \int_0^1 x y z^2 dx dy dz,$$

então

$$\int_{0}^{3} \int_{-1}^{2} \int_{0}^{1} xyz^{2} dx dy dz = \int_{0}^{3} \int_{-1}^{2} \left(\int_{0}^{1} xyz^{2} dx \right) dy dz$$

$$= \int_{0}^{3} \int_{-1}^{2} yz^{2} \left(\int_{0}^{1} x dx \right) dy dz$$

$$= \int_{0}^{3} \int_{1}^{2} yz^{2} \left(\frac{x^{2}}{2} \right)_{0}^{1} dy dz$$

Integrais triplas

Teorema de Fubini para integrais triplas

Exemplos

Integrais triplas em regiões mais gerais

$$\int_{0}^{3} \int_{-1}^{2} \int_{0}^{1} xyz^{2} dx dy dz = \frac{1}{2} \int_{0}^{3} \left(\int_{-1}^{2} y dy \right) z^{2} dz$$
$$= \frac{1}{2} \int_{0}^{3} \left(\frac{y^{2}}{2} \right)_{-1}^{2} z^{2} dz = \frac{1}{2} \int_{0}^{3} \left(2 - \frac{1}{2} \right) z^{2} dz$$
$$= \frac{3}{4} \int_{0}^{3} z^{2} dz = \frac{3}{4} \left(\frac{z^{3}}{3} \right)_{0}^{3} = \frac{3}{4} (9) = \frac{27}{4}$$

integrais triplas e volume

Integrais triplas

Teorema de Fubini para integrais triplas

Exemplos

Integrais triplas em regiões mais gerais Se f(x, y, z) = 1 temos que

$$\iiint_{E} dV = \lim_{l,m,n\to\infty} \sum_{k=1}^{l} \sum_{j=1}^{m} \sum_{i=1}^{n} \Delta V_{ijk} = \text{volume de E}$$

Logo,

$$V(E) = \iiint_E dx \, dy \, dz$$

integrais triplas e volume

Integrais triplas

Teorema de Fubini para integrais tripla:

Exemplos

Integrais triplas em regiões mais gerais

Exemplo

Calcule o volume do paralelepípedo

$$E = [1, 2] \times [3, 5] \times [0, 1]$$

integrais triplas e volume

Integrais triplas

Teorema de Fubini para integrais triplas

Exemplos

Integrais triplas em regiões mais gerais

Solução:

$$V(E) = \iiint_E dx \, dy \, dz = \int_0^1 \int_3^5 \int_1^2 dx \, dy \, dz.$$

Logo,

$$V(D) = \int_0^1 \int_3^5 \left[x \right]_1^2 dy \, dz = 2 \int_0^1 \int_3^5 dy \, dz = 2 \int_0^1 \left[y \right]_3^5 dz$$

$$V(D) = 4 \int_{0}^{1} dz = 4 \left[z \right]_{0}^{1} = 4 u.v$$

Integrais triplas

Teorema de Fubini para integrais triplas

Exemplos

Integrais triplas em regiões mais gerais **pergunta** Se E não for um paralelepípedo, como calculamos a integral tripla de f?

Integrais triplas

Teorema de Fubini para integrais tripla

Exemplos

Integrais triplas em regiões mais gerais **pergunta** Se *E* não for um paralelepípedo, como calculamos a integral tripla de *f*?

Suponha que E seja uma região limitada do \mathbb{R}^3 , ou seja, que E está contida em algum paralelepípedo B e que f é zero foram de B.

Integrais triplas

Teorema de Fubini para integrais tripla

Exemplos

Integrais triplas em regiões mais gerais **pergunta** Se E não for um paralelepípedo, como calculamos a integral tripla de f?

Suponha que E seja uma região limitada do \mathbb{R}^3 , ou seja, que E está contida em algum paralelepípedo B e que f é zero foram de B.

Vamos considerar a região E, que chamaremos região do **tipo I**, dada por

$$E = \{(x, y, z); (x, y) \in D, u_1(x, y) \le z \le u_2(x, y)\}$$

com *D* a projeção de *E* no plano xy.

Integrais triplas

Teorema de Fubini para integrais triplas

Exemplos

Integrais triplas em regiões mais gerais

Integrais triplas

Teorema de Fubini para integrais tripla:

Exemplos

Integrais triplas em regiões mais gerais

Teorema (Teorema de Fubini)

Sejam $E \subset \mathbb{R}^3$ uma região do tipo I e $f: E \to \mathbb{R}$ uma função integrável. Então,

$$\iiint_E f(x,y,z) dx dy dz = \iint_D \left(\int_{u_1(x,y)}^{u_2(x,y)} f(x,y,z) dz \right) dx dy$$

Integrais triplas

Teorema de Fubini para integrais tripla

Exemplos

Integrais triplas em regiões mais gerais

$$D = \{(x,y); a \le x \le b, g_1(x) \le y \le g_2(x)\}$$

tipo II

$$D = \{(x,y); h_1(y) \le x \le h_2(y), \ c \le y \le d\}$$

Nestes casos, a região E torna-se

Integrais triplas

Teorema de Fubini para integrais tripla

Exemplos

Integrais triplas em regiões mais gerais

D tipo I

$$E = \{(x,y,z); \, a \leq x \leq b, \, g_1(x) \leq y \leq g_2(x), \, u_1(x,y) \leq z \leq u_2(x,y) \}$$

D tipo II

$$E = \{(x,y,z) \, ; \, h_1(y) \leq x \leq h_2(y), \, c \leq y \leq d, \, u_1(x,y) \leq z \leq u_2(x,y) \}$$

E o teorema de Fubini torna-se

Integrais triplas

Teorema de Fubini para integrais tripla

Exemplos

Integrais triplas em regiões mais gerais

Teorema (Teorema de Fubini)

Sejam $f: E \to \mathbb{R}$ uma função integrável e $E \subset \mathbb{R}^3$ uma região dada por

$$E = \{(x,y,z); \, a \leq x \leq b, \, g_1(x) \leq y \leq g_2(x), \, u_1(x,y) \leq z \leq u_2(x,y) \}$$

Então,

$$\iiint_E f(x,y,z) \, dx \, dy \, dz = \int_a^b \int_{g_1(x)}^{g_2(x)} \int_{u_1(x,y)}^{u_2(x,y)} f(x,y,z) \, dz \, dy \, dx$$

Integrais triplas

Teorema de Fubini para integrais tripla

Exemplos

Integrais triplas em regiões mais gerais

Teorema (Teorema de Fubini)

Sejam $f: E \to \mathbb{R}$ uma função integrável e $E \subset \mathbb{R}^3$ uma região dada por

$$E = \{(x,y,z); \, h_1(y) \leq x \leq h_2(y), \, c \leq y \leq d, \, u_1(x,y) \leq z \leq u_2(x,y) \}$$

Então,

$$\iiint_E f(x,y,z) \, dx \, dy \, dz = \int_c^d \int_{h_1(y)}^{h_2(y)} \int_{u_1(x,y)}^{u_2(x,y)} f(x,y,z) \, dz \, dx \, dy$$

Integrais triplas

Teorema de Fubini para integrais tripla

Exemplos

Integrais triplas em regiões mais gerais

Exemplo

Calcule a integral tripla $\iiint_E z \, dx \, dy \, dz \, com \, E$ o tetraedro sólido limitado pelos plano x = 0, y = 0, z = 0 e x + y + z = 1

Integrais triplas

Teorema de Fubini para integrais triplas

Exemplos

Integrais triplas em regiões mais gerais **Solução:** Desenhar a região de integração ${\cal E}$ no espaço e a região plana ${\cal D}$

Note que, $0 \le x \le 1$, $0 \le y \le 1 - x$ e $0 \le z \le 1 - x - y$

Integrais triplas

Teorema de Fubini para integrais triplas

Exemplos

Integrais triplas em regiões mais gerais Pelo teorema de Fubini:

$$\iiint_{E} z \, dx \, dy \, dz = \int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} z \, dz \, dy \, dx$$

Integrais triplas

Teorema de Fubini para integrais triplas

Exemplos

Integrais triplas em regiões mais gerais Pelo teorema de Fubini:

$$\iiint_{E} z \, dx \, dy \, dz = \int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} z \, dz \, dy \, dx$$

Farei os cálculos na próxima aula!

OBRIGADA