Appello – Parte 1

07/07/2022 — versione 1 —

♦♥♣♠♦♠♣♥♠♣

32 pt - durata 1h 30' - MS Forms

Gli studenti aventi diritto a svolgere la **prova ridotta** del 30% secondo la L.170/2010 (indicazioni **Multichance** team) **NON** svolgono i quesiti contrassegnati con (***)

TEST - 15 pt

1-1 pt (***) No Multichance

Sia dato l'insieme dei numeri floating point $\mathbb{F}(2,t,-15,15)$ dipendente dal numero di cifre della mantissa $t \in \mathbb{N}$. Qual è il valore minimo di t tale per cui l'epsilon macchina associato all'insieme \mathbb{F} è inferiore a 10^{-8} ?

28

2 — 1 pt

Il seguente algoritmo: dato $a_0 \in \mathbb{R}$ positivo, $a_{n+1} = \frac{a_n}{2} \left(1 + \frac{3}{a_n^3 + 1} \right)$ per $n = 0, 1, \ldots$ fornisce un'approssimazione di $2^{1/3}$ per n "grande". Quante operazioni richiede l'applicazione di un'iterazione di tale algoritmo così come riportato?

7

3-1 pt

Si considerino 10 sistemi lineari $A \mathbf{x}_j = \mathbf{b}_j$ per $j=1,\ldots,10$, dove la matrice $A \in \mathbb{R}^{80 \times 80}$ è fissata, triangolare inferiore e non singolare, mentre i vettori $\mathbf{b}_j \in \mathbb{R}^{80}$ rappresentano diversi termini noti. Qual è il numero di operazioni richiesto per la risoluzione di tali sistemi lineari per $j=1,\ldots,10$ attraverso l'uso computazionalmente più efficiente di un metodo diretto?

64000

4-2 pt (***) No Multichance

Dato il sistema lineare $A\mathbf{x} = \mathbf{b}$, con $A = \begin{bmatrix} 10 & -1 & 0 \\ 0 & 3 & 5 \\ 2 & 4 & 1 \end{bmatrix}$ e $\mathbf{b} = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}^T$, si

consideri la sua risoluzione tramite il metodo della fattorizzazione LU con pivoting per righe (permutazione della seconda e terza riga). Si riportino gli elementi $l_{21} = (L)_{21}$ e $u_{33} = (U)_{33}$ dei fattori L ed U della matrice permutata e la terza componente y_3 del vettore ausiliario \mathbf{y} associato alla soluzione del sistema triangolare inferiore che compare durante l'applicazione del metodo.

$$l_{21} = 0.2$$
 $u_{33} = 4.2857$ $y_3 = 0$

5 — 2 pt

Si consideri la matrice $A=\left[\begin{array}{ccc} 6 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 2 \end{array}\right]$. Si applichi il metodo delle potenze

(dirette) per l'approssimazione di $\lambda_1(A)$ a partire dal vettore iniziale $\mathbf{x}^{(0)} = \mathbf{1}$. Si riportino i valori delle approssimazioni $\lambda^{(0)}$ e $\lambda^{(3)}$ di tale autovalore.

2.6667, 6.2054

6-2 pt

Si consideri la matrice $A=\left[\begin{array}{ccc}-4&0&0\\0&2&(\sqrt{10}-1)\\0&-(\sqrt{10}+1)&2\end{array}\right]$. Per quali valori

dello shift $s \in \mathbb{R}$ è possibile applicare il metodo delle potenze inverse con shift per l'approssimazione dell'autovalore -4 di A?

$$s < -\frac{1}{4} e s \neq -4$$

7 — 1 pt

Si consideri la funzione $f(x) = \log\left(\frac{x}{3}\right)\sin(\pi x)$ e il metodo di Newton approssimare lo zero $\alpha = 3$. Scelto $x^{(0)}$ "sufficientemente" vicino ad α , qual è l'ordine di convergenza p atteso per il metodo?

1

$8-2 ext{ pt}$ (***) No Multichance

Il metodo delle corde approssima lo zero α di una funzione f(x) applicando la seguente iterata:

 $x^{(k+1)} = x^{(k)} - \frac{f(x^{(k)})}{q_c}$ per $k \ge 0$,

dati $x^{(0)}$ e $q_c = \frac{f(b) - f(a)}{b - a}$ per $\alpha \in (a, b)$. Posti $f(x) = e^x - 2$, a = 0, b = 2 e $x^{(0)} = 2$, si riporti il valore dell'iterata $x^{(2)}$ ottenuta applicando il metodo.

0.5110

9-1 pt

Si consideri la funzione di iterazione $\phi(x) = \cos(x)$. Si applichi il metodo delle iterazioni di punto fisso partendo dall'iterata iniziale $x^{(0)} = 0.9$. Si riporti il valore dell'iterata $x^{(3)}$ così ottenuta.

0.6874

10 - 2 pt

Si consideri la funzione di iterazione $\phi(x)=\frac{2-x+\gamma\,x(x-1)}{\gamma(x-1)}$, dipendente dal parametro $\gamma\in\mathbb{R}$ tale che $\gamma>0$ e dotata del punto fisso $\alpha=2$. Per quali valori di γ il metodo delle iterazioni di punto fisso converge ad α , scegliendo l'iterata iniziale "sufficientemente" vicina a α ? Per quale valore di γ l'ordine di convergenza atteso dal metodo è p=2?

 $\gamma > 0.5, \, \gamma = 1$

ESERCIZIO – 17 pt

Si consideri il sistema lineare A $\mathbf{x} = \mathbf{b}$, dove $A \in \mathbb{R}^{n \times n}$ è una matrice simmetrica e definita positiva, e \mathbf{x} , $\mathbf{b} \in \mathbb{R}^n$ per $n \ge 1$.

In particolare, poniamo $n=100,\,A$ corrispondente alla seguente matrice pentadiagonale

$$A = \text{pentadiag}(1, -11, 20, -11, 1) \in \mathbb{R}^{100 \times 100},$$

mentre $\mathbf{b} \in \mathbb{R}^{100}$ tale per cui la soluzione esatta del sistema lineare è $\mathbf{x} = \mathbf{2} \in \mathbb{R}^{100}$.

Punto 1) — 2 pt

Si assegni la matrice A in Matlab[®] e si verifichi che A è simmetrica e definita positiva. Inoltre, si calcoli il suo numero di condizionamento spettrale K(A), dopo averne dato definizione. Si giustifichi la risposta data riportando valori numerici laddove necessario.

$$\lambda_n(A) = 0.0068 > 0, K(A) = 6.4617 \cdot 10^3$$

Spazio per risposta lunga

Punto 2) — 3 pt

- Si scriva il problema di minimo associato alla funzione $\Phi: \mathbb{R}^n \to \mathbb{R}$ corrispondente alla soluzione del sistema lineare $A\mathbf{x} = \mathbf{b}$ di cui sopra.
- Si riportino, oltre ai comandi Matlab[®] : il valore di Φ nel punto di minimo e il punto di minimo; la norma $\|\mathbf{d}\|$ della direzione di discesa $\mathbf{d} \in \mathbb{R}^{100}$ della funzione Φ nel punto $\mathbf{y} = \mathbf{1} \in \mathbb{R}^{100}$.

problema di minimo; $\Phi(\mathbf{x}) = -36$, pto min. \mathbf{x} ; $\|\mathbf{d}\| = 14.2127$ Spazio per risposta lunga

Punto 3) — 2 pt

Si consideri il metodo del gradiente per la soluzione del sistema lineare indicato. Senza applicare esplicitamente l'algoritmo, si stimi il numero di iterazioni k_{min} necessarie a tale metodo iterativo affinché l'errore in norma A si riduca di un fattore inferiore a $tol=10^{-3}$, ovvero tale che $\frac{\|\mathbf{x}^{(k_{min})}-\mathbf{x}\|_A}{\|\mathbf{x}^{(0)}-\mathbf{x}\|_A} < tol$. Qual è il valore stimato di $\|\mathbf{x}^{(k_{min})}-\mathbf{x}\|_A$ se $\mathbf{x}^{(0)}=\mathbf{b}$? Si giustifichi la risposta data definendo la notazione utilizzata e i comandi Matlab.

$$k_{min} = 22318, \|\mathbf{x}^{(k_{min})} - \mathbf{x}\|_{A} = 0.1280$$

Spazio per risposta lunga

Punto 4) — 2 pt

Per la matrice A e il vettore \mathbf{b} assegnati, si applichi il metodo del gradiente implementato nella funzione Matlab[®] richardson.m usando la tolleranza sul criterio d'arresto basato sul residuo normalizzato $tol=10^{-3}$, il numero massimo di iterazioni pari a 10^5 e l'iterata iniziale $\mathbf{x}^{(0)}=\mathbf{b}$. Si riportino: i comandi Matlab[®] usati, il numero N di iterazioni effettuate, la prima componente della soluzione approssimata $x_1=\left(\mathbf{x}^{(N)}\right)_1$ e il valore del residuo normalizzato $r_{norm}^{(N)}$

$$N = 5731$$
, $x_1 = 1.9882$, $r_{norm}^{(N)} = 9.9945 \cdot 10^{-4}$

Spazio per risposta lunga

Punto 5) — 2 pt (***) No Multichance

Si consideri ora il metodo del gradiente precondizionato per risolvere un sistema lineare associato alla matrice A. In particolare si consideri la seguente matrice di precondizionamento dipendente dal parametro $\beta \in \mathbb{R}$:

$$P = \text{tridiag}(-\beta, 2, -\beta) \in \mathbb{R}^{100 \times 100}$$

Per quale valore di $\beta_{opt} \in \left[\frac{1}{2}, 1\right]$ il metodo del gradiente precondizionato converge più rapidamente alla soluzione per ogni scelta dell'iterata iniziale? Per il valore β_{opt} selezionato, quanto vale il fattore di abbattimento dell'errore $\frac{\|\mathbf{x}^{(k)} - \mathbf{x}\|_A}{\|\mathbf{x}^{(0)} - \mathbf{x}\|_A}$ dopo k = 10 iterazioni del metodo per ogni $\mathbf{x}^{(0)} \in \mathbb{R}^{100}$?

Si motivino dettagliatamente la risposte date alla luce della teoria e riportando i comandi Matlab $^{\circledR}$ usati.

$$\beta_{opt} = 1$$
, fatt. abbattimento = $2.8976e - 7$

Spazio per risposta lunga

Punto 6) — 3 pt (***) No Multichance

Si consideri il metodo del gradiente coniugato applicato alla soluzione del sistema lineare $A \mathbf{x} = \mathbf{b}$ assegnato a partire dal vettore iniziale $\mathbf{x}^{(0)} = \mathbf{b}$. Si riportino:

- le norme delle direzioni di discesa dell'algoritmo $\|\mathbf{p}^{(0)}\|, \|\mathbf{p}^{(1)}\|, \|\mathbf{p}^{(2)}\|;$
- gli angoli $\theta^{(1)}$ e $\theta^{(2)}$ formati rispettivamente tra le direzioni di discesa $\mathbf{p}^{(0)}$ e $\mathbf{p}^{(1)}$ e tra $\mathbf{p}^{(1)}$ e $\mathbf{p}^{(2)}$;
- l'errore relativo $\frac{\|\mathbf{x}^{(3)} \mathbf{x}\|_A}{\|\mathbf{x}^{(0)} \mathbf{x}\|_A}$ effettivamente commesso.

Si riportino i comandi Matlab[®] usati.

$$\|\mathbf{p}^{(0)}\| = 678.1386, \|\mathbf{p}^{(1)}\| = 181.1925, \|\mathbf{p}^{(2)}\| = 74.1370$$

$$\theta^{(1)} = 75.4968^{\circ}, \ \theta^{(2)} = 67.9686^{\circ}, \frac{\|\mathbf{x}^{(3)} - \mathbf{x}\|_{A}}{\|\mathbf{x}^{(0)} - \mathbf{x}\|_{A}} = 0.0750$$

Spazio per risposta lunga

Punto 7) — 3 pt

Si consideri ora il seguente sistema di equazioni non lineari

$$\mathbf{F}(\mathbf{x}) = A\mathbf{x} + e^{-2\mathbf{x}} - \mathbf{1} = \mathbf{0},$$

dove $\mathbf{F}: \mathbb{R}^{100} \to \mathbb{R}^{100}$ e la matrice A è stata definita precedentemente. Si approssimi lo zero $\boldsymbol{\alpha} = \mathbf{0} \in \mathbb{R}^{100}$ del precedente sistema di equazioni non lineari implementando opportunamente il metodo di Newton in Matlab[®] .

Si riportino:

- l'espressione della generica matrice Jacobiana $J_{\mathbf{F}}(\mathbf{x})$;
- i valori della prima componente della prima, seconda e terza iterata, ovvero $(\mathbf{x}^{(1)})_1, (\mathbf{x}^{(2)})_1$ e $(\mathbf{x}^{(3)})_1$, ottenute applicando il metodo di Newton a partire dal vettore iniziale $\mathbf{x}^{(0)} = (0.3, 0.3, \dots, 0.3)^T \in \mathbb{R}^{100}$;
- i comandi Matlab® usati.

$$J_{\mathbf{F}}(\mathbf{x}) = A - 2\operatorname{diag}(e^{-2\mathbf{x}}), 0.0533, -0.0570, 0.0063$$

Spazio per risposta lunga