

Schletter, Inc.		15° Tilt w/ Seismic Design
HCV	Standard PVMini Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMini ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 1 Module Tilt = 15°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

2.2 Snow Loads

Ground Snow Load,
$$P_g =$$
 30.00 psf Sloped Roof Snow Load, $P_s =$ 22.68 psf (ASCE 7-05, Eq. 7-2) $I_s =$ 1.00 $C_s =$ 1.00 $C_e =$ 0.90

1.20

2.3 Wind Loads

Design Wind Speed, V =	120 mph	Exposure Category = C
Height ≤	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 22.61 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Cf+ TOP	=	1 (Draggura)	Provided pressure coefficients are the result of wind tunnel
Cf+ BOTTOM	=	1 (Pressure) 1.6	testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP	=	-2.04 (Suction)	located in test report # 1127/0611-1e. Negative forces are
Cf- BOTTOM	=	-1 (Suction)	applied away from the surface.

2.4 Seismic Loads

S _S =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S of 1.5
$S_{DS} =$	1.67	$C_{S} = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
$T_a =$	0.04	$C_d = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6W + 0.5S 0.9D + 1.6W M 1.54D + 1.3E + 0.2S R $0.56D + 1.3E^{R}$ 1.54D + 1.25E + 0.2S $^{\circ}$

1.2D + 1.6S + 0.8W

(ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2)

0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S1.0D + 1.0W1.0D + 0.75L + 0.75W + 0.75S $0.6D + 1.0W^{M}$ (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E O 1.1785D + 0.65625E + 0.75S $^{\circ}$ $0.362D + 0.875E^{\circ}$

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	<u>Location</u>	<u>Diagonal Struts</u>	<u>Location</u>	Front Reactions	<u>Location</u>
M13	Тор	M3	Outer	N7	Outer
M16	Bottom	M7	Inner	N15	Inner
		M11	Outer	N23	Outer
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions	Location
M1	Outer	M2	Outer	N8	Outer
M5	Inner	M6	Inner	N16	Inner
M9	Outer	M10	Outer	N24	Outer
Front Struts	Location	Bracing	2		
M4	Outer	M15	5		
M8	Inner	M16A	Ą		
M12	Outer				

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

^o Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

Purlin Type =	<u>ProfiPlus</u>	
Aluminum Type =	6105-T5	
$F_{ty} =$	35	ksi
L _b =	<u>54</u>	in
$\Phi F_{ty STRONG-AXIS} =$	29.52	ksi
$\Phi F_{ty WEAK-AXIS} =$	28.47	ksi
$S_y =$	0.51	in ³
$S_x =$	0.37	in ³
E =	10100	ksi
$I_y =$	0.60	in ⁴
I _x =	0.29	in ⁴
A =	0.90	in ²
g =	1.08	lbs/ft
M _y =	0.453	k-ft
$M_z =$	0.060	k-ft
M _{y allowable} =	1.256	k-ft
$M_{z \text{ allowable}} =$	0.871	k-ft
Utilization =	<u>43%</u>	

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M8 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M8 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M8 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

4.6 Cross Brace Design

In order to resist weak side loading, aluminum cross bracing kits are provided. The cross bracing is attached at one end of a rear aluminum strut diagonally down to the bottom end of an adjacent strut. Single M10 bolts are provided at each of the cross bracing. Section units are in (mm).

Brace Type = Aluminum Type =	<u>1.5x0.25</u> 6061-T6	
$F_{ty} =$	35	ksi
Φ =	0.90	
$S_y =$	0.02	in^3
E =	10100	ksi
I _y =	33.25	in ⁴
A =	0.38	in ²
g =	0.45	lbs/ft
$M_y =$	0.003	k-ft
$P_n =$	0.169	k
$M_{y \text{ allowable}} =$	0.046	k-ft
P _{n allowable} =	11.813	k
Utilization =	<u>8%</u>	

A cross brace kit is required every 24 bays and is to be installed in centermost bays.

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	Front	Rear	
Tensile Load =	526.63	1532.12	k
Compressive Load =	1480.22	1066.86	k
Lateral Load =	24.22	<u>560.58</u>	k
Moment (Weak Axis) =	0.04	0.00	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (1) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 22528.3 in-lbs Resisting Force Required = 750.94 lbs A minimum 60in long x 22in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 1251.57 lbs to resist overturning. Minimum Width = Weight Provided = 1993.75 lbs Sliding 134.76 lbs Force = Use a 60in long x 22in wide x 18in tall Friction = 0.4 Weight Required = 336.89 lbs ballast foundation to resist sliding. Resisting Weight = 1993.75 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 134.76 lbs Cohesion = 130 psf Use a 60in long x 22in wide x 18in tall 9.17 ft² Area = ballast foundation. Cohesion is OK. Resisting = 996.88 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

<u></u>		Ballas	Width	
	<u>22 in</u>	23 in	<u>24 in</u>	<u>25 in</u>
$P_{ftg} = (145 \text{ pcf})(5 \text{ ft})(1.5 \text{ ft})(1.83 \text{ ft}) =$	1994 lbs	2084 lbs	2175 lbs	2266 lbs

ASD LC		1.0D	+ 1.0S			1.0D + 1.0W			1.0D + 0.75L + 0.75W + 0.75S				0.6D + 1.0W			
Width	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in
FA	471 lbs	471 lbs	471 lbs	471 lbs	580 lbs	580 lbs	580 lbs	580 lbs	756 lbs	756 lbs	756 lbs	756 lbs	-252 lbs	-252 lbs	-252 lbs	-252 lbs
FB	341 lbs	341 lbs	341 lbs	341 lbs	417 lbs	417 lbs	417 lbs	417 lbs	544 lbs	544 lbs	544 lbs	544 lbs	-736 lbs	-736 lbs	-736 lbs	-736 lbs
F _V	26 lbs	26 lbs	26 lbs	26 lbs	235 lbs	235 lbs	235 lbs	235 lbs	194 lbs	194 lbs	194 lbs	194 lbs	-270 lbs	-270 lbs	-270 lbs	-270 lbs
P _{total}	2806 lbs	2897 lbs	2988 lbs	3078 lbs	2991 lbs	3081 lbs	3172 lbs	3263 lbs	3293 lbs	3384 lbs	3475 lbs	3565 lbs	209 lbs	264 lbs	318 lbs	372 lbs
M	283 lbs-ft	283 lbs-ft	283 lbs-ft	283 lbs-ft	659 lbs-ft	659 lbs-ft	659 lbs-ft	659 lbs-ft	689 lbs-ft	689 lbs-ft	689 lbs-ft	689 lbs-ft	478 lbs-ft	478 lbs-ft	478 lbs-ft	478 lbs-ft
е	0.10 ft	0.10 ft	0.09 ft	0.09 ft	0.22 ft	0.21 ft	0.21 ft	0.20 ft	0.21 ft	0.20 ft	0.20 ft	0.19 ft	2.29 ft	1.82 ft	1.50 ft	1.29 ft
L/6	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft					
f _{min}	269.1 psf	266.8 psf	264.8 psf	262.9 psf	240.0 psf	239.0 psf	238.1 psf	237.3 psf	269.1 psf	266.9 psf	264.8 psf	262.9 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	343.2 psf	337.7 psf	332.7 psf	328.1 psf	412.5 psf	404.0 psf	396.2 psf	389.1 psf	449.4 psf	439.3 psf	430.1 psf	421.6 psf	357.9 psf	133.9 psf	106.5 psf	98.1 psf

Maximum Bearing Pressure = 449 psf Allowable Bearing Pressure = 1500 psf Use a 60in long x 22in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Seismic Design

Overturning Check

 $M_0 = 423.7 \text{ ft-lbs}$

Resisting Force Required = 462.19 lbs S.F. = 1.67

Weight Required = 770.32 lbs Minimum Width = 22 in in Weight Provided = 1993.75 lbs A minimum 60in long x 22in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785	D+0.65625E	+ 0.75S	0.362D + 0.875E						
Width		22 in			22 in			22 in					
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer				
F _Y	105 lbs	90 lbs	55 lbs	256 lbs	619 lbs	217 lbs	66 lbs	-12 lbs	18 lbs				
F _V	14 lbs	114 lbs	14 lbs	10 lbs	86 lbs	10 lbs	14 lbs	114 lbs	14 lbs				
P _{total}	2573 lbs	2558 lbs	2523 lbs	2605 lbs	2968 lbs	2567 lbs	788 lbs	710 lbs	740 lbs				
М	38 lbs-ft	191 lbs-ft	39 lbs-ft	28 lbs-ft	144 lbs-ft	31 lbs-ft	38 lbs-ft	191 lbs-ft	39 lbs-ft				
е	0.01 ft	0.07 ft	0.02 ft	0.01 ft	0.05 ft	0.01 ft	0.05 ft	0.27 ft	0.05 ft				
L/6	0.31 ft	1.68 ft	1.80 ft	1.81 ft	1.74 ft	1.81 ft	1.74 ft	1.30 ft	1.73 ft				
f _{min}	267.0 sqft 210.9 sqft 261.2 sqft			274.4 sqft	272.6 sqft	269.1 sqft	72.2 sqft	9.4 sqft	66.6 sqft				
f _{max}	294.4 psf	347.1 psf	289.4 psf	294.1 psf	375.1 psf	290.9 psf	99.7 psf 145.6 psf 94.8 psf						

Maximum Bearing Pressure = 375 psf Allowable Bearing Pressure = 1500 psf

Use a 60in long x 22in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 60in long x 22in wide x 18in tall ballast foundation and fiber reinforcing with (1) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6. DESIGN OF JOINTS AND CONNECTIONS

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of a Schletter, Inc. Klicktop connector. The reliability of calculations is uncertain due to limited standards, therefore the strength of the fasteners has been evaluated by load testing.

6.2 Bolted Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Cross bracing is attached to rear struts to provide lateral stability. Single M8 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

	Rear Strut	
1.139 k	Maximum Axial Load =	1.166 k
5.692 k	M8 Bolt Capacity =	5.692 k
7.952 k	Strut Bearing Capacity =	7.952 k
<u>20%</u>	Utilization =	<u>20%</u>
	Bracing	
0.190 k	Maximum Axial Load =	0.169 k
5.692 k	M10 Bolt Capacity =	8.894 k
7.952 k	Strut Bearing Capacity =	7.952 k
00/	Utilization =	<u>2%</u>
	5.692 k 7.952 k <u>20%</u> 0.190 k 5.692 k	1.139 k

Bolt and bearing capacities are accounting for double shear (ASCE 8-02, Eq. 5.3.4-1). Struts under compression are shown to demonstrate the load transfer from the girder. Single M8 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, } h_{\text{sx}} = & 28.39 \text{ in} \\ \text{Allowable Story Drift for All Other} & 0.020 h_{\text{sx}} \\ \text{Structures, } \Delta = \{ & 0.568 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.061 \text{ in} \\ & 0.061 \leq 0.568, \text{ OK.} \end{array}$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **ProfiPlus**

Strong Axis:

3.4.14

$$L_{b} = 54.00 \text{ in}$$

$$J = 0.255$$

$$140.613$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{2}\right)^{2}$$

$$\begin{split} S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= 1701.56 \\ \phi F_L &= \phi b [Bc-1.6Dc^* \sqrt{((LbSc)/(Cb^* \sqrt{(lyJ)/2}))}] \\ \phi F_L &= 29.5 \text{ ksi} \end{split}$$

3.4.16

$$b/t = 7.4$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

Weak Axis:

3.4.14

4.14
$$L_{b} = 54.00 \text{ in}$$

$$J = 0.255$$

$$146.018$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_{L} = \phi b[Bc - 1.6Dc*\sqrt{((LbSc)/(Cb*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 29.4$$

3.4.16

b/t = 23.9

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.5 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

SCHLETTER

3.4.18

$$h/t = 23.9$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 30$$

$$Cc = 30$$

$$A = \frac{k_1Bbr}{m}$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3 \varphi y F c y$$

$$\phi F_L St = 29.5 \text{ ksi}$$

$$lx = 250988 \text{ mm}^4$$

$$0.603 \text{ in}^4$$

$$y = 30 \text{ mm}$$

$$Sx = 0.511 \text{ in}^3$$

$$M_{max} St = 1.256 \text{ k-ft}$$

43.2 ksi

3.4.18

 $M_{max}Wk =$

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 20$$

$$Cc = 20$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.5 \text{ ksi}$$

0.871 k-ft

Compression

 $\phi F_L =$

3.4.9

b/t = 7.4

S1 = 12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula)

 $\begin{array}{ll} \phi F_L = \; \phi y F c y \\ \\ \phi F_L = \; & 33.3 \; ksi \end{array}$

b/t = 23.9 S1 = 12.21 S2 = 32.70 $\phi F_L = \phi c [Bp-1.6Dp*b/t]$ $\phi F_L = 28.5 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$
S1 = 6.87
S2 = 131.3

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

 $\begin{array}{ll} \phi F_{L} = & 28.47 \text{ ksi} \\ A = & 578.06 \text{ mm}^2 \\ & 0.90 \text{ in}^2 \\ P_{max} = & 25.51 \text{ kips} \end{array}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = Flex Profi

Strong Axis:

3.4.11

$$\begin{array}{lll} L_b = & 33.78 \text{ in} \\ ry = & 1.374 \\ Cb = & 1.36 \\ & 21.0529 \end{array}$$

$$S1 = \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc}$$

$$S1 = 1.37733$$

$$S2 = 1.2C_c$$

S2 = 79.2

$$\phi F_L = \phi b[Bc-Dc^*Lb/(1.2^*ry^*\sqrt(Cb))]$$

 $\phi F_L = 29.8 \text{ ksi}$

3.4.15

N/A for Strong Direction

Weak Axis:

3.4.11

$$\begin{array}{lll} \mathsf{L_b} = & 33.78 \text{ in} \\ \mathsf{ry} = & 1.374 \\ \mathsf{Cb} = & 1.36 \\ & 24.5845 \\ & & \\ S1 = & \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc} \\ \mathsf{S1} = & 1.37733 \\ & S2 = & 1.2C_c \\ & \mathsf{S2} = & 79.2 \\ & \varphi \mathsf{F_L} = & \varphi \mathsf{b} [\mathsf{Bc\text{-}Dc^*Lb/(1.2^*ry^*\sqrt{(Cb))}}] \end{array}$$

3.4.15

b/t = 24.46

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{5.1Dp}$$

$$S1 = 3.8$$

$$S2 = \frac{k_1 Bp}{5.1Dp}$$

$$S2 = 14.7$$

$$F_{UT} = (\phi bk2^* \sqrt{(BpE)})/(5.1b/t)$$

$$F_{LIT} = 9.4 ksi$$

 $\phi F_1 = 29.8 \text{ ksi}$

3.4.16

$$b/t = 4.29$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

3.4.16

N/A for Strong Direction

 $\phi F_L = 33.3 \text{ ksi}$

3.4.16

N/A for Weak Direction

$$b/t = 24.46$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$F_{ST} = \phi b [Bp-1.6Dp*b/t]$$

$$F_{ST} = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

(B)
$$4.17 \frac{\theta_{Y}}{2}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

3.4.16.1

N/A for Weak Direction

3.4.16.2

N/A for Strong Direction

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.2

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 9.37 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 13.5 \text{ ksi} \end{array}$$

3.4.18

$$h/t = 24.46$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 34.4$$

$$m = 0.70$$

$$C_0 = 34.23$$

$$Cc = 37.77$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 72.1$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.8 \text{ ksi}$$

$$lx = 364470 \text{ mm}^4$$

$$0.876 \text{ in}^4$$

$$y = 37.77 \text{ mm}$$

$$Sx = 0.589 \text{ in}^3$$

$$M_{max} St = 1.463 \text{ k-ft}$$

3.4.18

$$h/t = 4.29$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 29$$

$$Cc = 29$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 13.5 \text{ ksi}$$

$$\psi = 217168 \text{ mm}^4$$

$$0.522 \text{ in}^4$$

x =

Sy=

 $M_{max}Wk =$

29 mm

0.457 in³

0.513 k-ft

Compression

$$\lambda = 0.46067$$

$$r = 1.374 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.90326$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 30.1251 \text{ ksi}$$

3.4.8

$$\begin{array}{lll} b/t = & 24.46 \\ S1 = & 3.83 \\ S2 = & 10.30 \\ \phi F_L = & (\phi ck2^*\sqrt{(BpE))/(5.1b/t)} \\ \phi F_L = & 10.4 \text{ ksi} \end{array}$$

3.4.9

$$\begin{array}{lll} b/t = & 4.29 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi F_L = & 33.3 \text{ ksi} \\ \\ b/t = & 24.46 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi C[Bp-1.6Dp*b/t] \\ \end{array}$$

3.4.9.1

 $\phi F_L =$

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 10.43 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 14.3 \text{ ksi} \end{array}$$

0.0

28.2 ksi

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{9y}{\theta_b}Fcy}{Dt}\right)$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 14.29 \text{ ksi}$$

$$A = 576.21 \text{ mm}^2$$

$$0.89 \text{ in}^2$$

$$P_{max} = 12.76 \text{ kips}$$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_b = 18.00 \text{ in}$$
 $J = 0.16$
 47.2194

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S1 = 0.5146$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 31.2 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 18.00 \text{ in}$$
 $J = 0.16$
 47.2194

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 31.2$$

3.4.16

$$S1 = \frac{Bp - \frac{\delta y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$
$$S2 = 46.7$$

$$\phi F_L = \phi y F c y$$

$$\phi F_1 = 33.3 \text{ ksi}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 B p}{1.6 D p}$$

S2 =
$$\frac{100 \, \text{p}}{46.7}$$

 $\phi F_L = \phi y F c y$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

Rb/t =
$$\frac{\text{Not Used}}{0.0}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$\phi F_1 = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$32 = \frac{1}{mDbr}$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_1 = 43.2 \text{ ksi}$$

$$\phi \Gamma_L = 43.2 \text{ KSI}$$

$$\phi F_L St = 31.2 \text{ ksi}$$
 $lx = 39958.2 \text{ mm}^4$

$$0.096 \text{ in}^4$$

v = 15 mm

$$y = 15 \text{ mm}$$

 $Sx = 0.163 \text{ in}^3$

$$M_{max}St = 0.423 \text{ k-ft}$$

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$m = 0.65$$

 $C_0 = 15$

$$C_0 = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\varphi F_L = 1.3 \varphi y F_C y$$

$$\phi F_1 = 43.2 \text{ ksi}$$

$$\phi F_L W k = 31.2 \text{ ksi}$$

$$ly = 39958.2 \text{ mm}^4$$

$$Sy = 0.163 \text{ in}^3$$

$$M_{max}Wk = 0.423 \text{ k-ft}$$

SCHLETTER

Compression

3.4.7

$$\lambda = 0.77182$$
 $r = 0.437 \text{ in}$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$
 $S1^* = 0.33515$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = \frac{1}{\pi} \sqrt{Fcy/R}$$

 $S2^* = 1.23671$

$$S2^* = 1.23671$$

$$\phi cc = 0.83792$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 24.5226 \text{ ksi}$$

3.4.9

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$S2 = 32.70$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{B}\right)$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 24.52 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 12.31 \text{ kips}$$

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_b = 46.38 \text{ in}$$
 $J = 0.16$
 121.663

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 29.8 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S1 = 12$$

$$k_1 B p$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

 $Cc = 15$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$S2 = 77.$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.8 \text{ ksi}$$
 $lx = 39958.2 \text{ mm}^4$
 0.096 in^4

$$y = 15 \text{ mm}$$

 $Sx = 0.163 \text{ in}^3$

$$Sx = 0.163 \text{ in}^3$$

 $M_{\text{max}}St = 0.404 \text{ k-ft}$

Weak Axis:

3.4.14

$$L_b = 46.38 \text{ in}$$
 $J = 0.16$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 29.8$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fc}{mDbr}$$

$$m = 0.65$$

$$C_0 = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 33.3 \text{ ksi}$$

$$ly = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$
 $c = 15 \text{ mm}$

$$x = 15 \text{ mr}$$

 $Sy = 0.163 \text{ in}^3$

$$M_{max}Wk = 0.450 \text{ k-ft}$$

SCHLETTER

Compression

3.4.7

$$\lambda = 1.98863$$

 $r = 0.437$ in
 $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$
 $S1^* = 0.33515$
 $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$

$$\pi \sqrt{109/7}$$

S2^{*} = 1.23671

$$S2^* = 1.23671$$

$$\varphi cc = 0.85841$$

$$\phi F_L = (\phi ccFcy)/(\lambda^2)$$

$$\phi F_L = 7.59722 \text{ ksi}$$

3.4.9

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$b/t = 7.75$$

$$S2 = 32.70$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.60 \text{ ksi}$$
 $A = 323.87 \text{ mm}^2$
 0.50 in^2

$$P_{max} = 3.81 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14
$$L_b = 29.96 \text{ in}$$

$$J = 0.16$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$1.6Dc$$
 $S1 = 0.51461$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$
oF = ob[Bc-1.6Dc*\square\frac{1}{1}(1.bSc)\frac{1}{1}(Cb*\sqrt{1}(V.1)\frac{1}{2})

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(lyJ)/2))]$$

 $φF_L = 30.5 \text{ ksi}$

$$\varphi F_L = 30.5$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = \frac{12.2}{1.8Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$
$$S2 = 46.7$$

$$S2 = 46.7$$

 $\phi F_1 = \phi y F c y$

$$\phi F_1 = 33.3 \text{ ksi}$$

3.4.16.1

Not Used Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

7.75

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

 $Cc = 15$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 30.5 \text{ ksi}$$

$$lx = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

$$y = 15 \text{ mm}$$

 $Sx = 0.163 \text{ in}^3$

$$M_{max}St = 0.413 \text{ k-ft}$$

Weak Axis:

3.4.14

$$L_b = 29.96 \text{ in}$$
 $J = 0.16$
 78.5957

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 30.5$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$
$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = \frac{1.6Dp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_1 = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$S2 = 77.3$$

 $\phi F_L = 1.3 \phi y F c y$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 33.3 \text{ ksi}$$

$$ly = 39958.2 \text{ mm}^4$$

$$x = 15 \text{ mm}$$

Sy = 0.163 in³

$$M_{\text{max}}Wk = 0.450 \text{ k-ft}$$

SCHLETTER

Compression

$$\begin{array}{lll} \textbf{3.4.7} \\ \lambda = & 1.28467 \\ \textbf{r} = & 0.437 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ \textbf{S1}^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ \textbf{S2}^* = & 1.23671 \\ & \phi cc = & 0.75985 \\ & \phi \textbf{F}_L = & (\phi cc \textbf{Fcy})/(\lambda^2) \\ & \phi \textbf{F}_L = & 16.1143 \text{ ksi} \\ \end{array}$$

3.4.9

$$\begin{array}{lll} b/t = & 7.75 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \\ b/t = & 7.75 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \end{array}$$

3.4.10

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:___

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me	Surface(
1	Dead Load, Max	DĽ	_	-1	•			2	,	,
2	Dead Load, Min	DL		-1				2		
3	Snow Load	SL						2		
4	Wind Load - Pressure	WL						2		
5	Wind Load - Suction	WL						2		
6	Seismic - Lateral	EL			.8			4		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-63.248	-63.248	0	0
2	M16	Υ	-63.248	-63.248	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	У	-63.051	-63.051	0	0
2	M16	V	-100.882	-100.882	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	128.624	128.624	0	0
2	M16	V	63.051	63 051	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Ζ	6.693	6.693	0	0
2	M16	Ζ	6.693	6.693	0	0
3	M13	Ζ	0	0	0	0
4	M16	Z	0	0	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																

Model Name

: Schletter, Inc. : HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:__

Load Combinations (Continued)

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
	LATERAL - ASD 1.1785D + 0.65				1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	113.022	2	245.743	2	.016	9	Ō	9	Ō	1	0	1
2		min	-141.263	3	-364.629	3	-2.092	5	0	3	0	1	0	1
3	N7	max	0	5	377.194	1	.003	10	0	10	0	1	0	1
4		min	113	2	-118.424	3	-18.216	4	029	4	0	1	0	1
5	N15	max	0	15	1138.631	1_	.134	9	0	1	0	1	0	1
6		min	-1.19	2	-405.097	3	-18.632	5	029	4	0	1	0	1
7	N16	max	386.349	2	820.662	1	0	10	0	9	0	1	0	1
8		min	-431.219	3	-1178.553	3	-150.959	4	0	3	0	1	0	1
9	N23	max	0	15	377.323	1_	.73	1	.001	1	0	1	0	1
10		min	113	2	-118.064	3	-17.329	5	027	5	0	1	0	1
11	N24	max	113.023	2	248.248	2	52.032	3	0	4	0	1	0	1
12		min	-141.511	3	-363.331	3	-2.967	5	0	3	0	1	0	1
13	Totals:	max	610.977	2	3203.51	1	0	3						
14		min	-714.372	3	-2548.099	3	-209.636	4						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M2	1	max	271.359	1	.661	6	.871	4	0	10	0	3	0	1
2			min	-366.467	3	.153	15	124	3	0	4	0	2	0	1
3		2	max	271.456	1	.623	6	.784	4	0	10	0	4	0	15
4			min	-366.395	3	.144	15	124	3	0	4	0	10	0	6
5		3	max	271.552	1	.586	6	.697	4	0	10	0	4	0	15
6			min	-366.323	3	.136	15	124	3	0	4	0	3	0	6
7		4	max	271.648	1	.548	6	.609	4	0	10	0	4	0	15
8			min	-366.251	3	.127	15	124	3	0	4	0	3	0	6
9		5	max	271.745	1	.51	6	.522	4	0	10	0	4	0	15
10			min	-366.178	3	.118	15	124	3	0	4	0	3	0	6
11		6	max	271.841	1	.472	6	.435	4	0	10	0	4	0	15
12			min	-366.106	3	.109	15	124	3	0	4	0	3	0	6
13		7	max	271.938	1	.434	6	.347	4	0	10	0	4	0	15
14			min	-366.034	3	.1	15	124	3	0	4	0	3	0	6
15		8	max	272.034	1	.396	6	.26	4	0	10	0	4	0	15
16			min	-365.962	3	.091	15	124	3	0	4	0	3	0	6
17		9	max	272.13	1	.359	6	.199	1	0	10	0	4	0	15
18			min	-365.889	3	.082	15	124	3	0	4	0	3	0	6
19		10	max		1	.321	6	.199	1	0	10	0	4	0	15
20			min	-365.817	3	.073	15	124	3	0	4	0	3	0	6
21		11	max	272.323	1	.283	6	.199	1	0	10	0	4	0	15
22			min	-365.745	3	.064	15	124	3	0	4	0	3	0	6
23		12	max	272.419	1	.245	6	.199	1	0	10	0	4	0	15
24			min	-365.672	3	.056	15	139	5	0	4	0	3	0	6
25		13	max	272.516	1	.207	6	.199	1	0	10	0	4	0	15
26			min	-365.6	3	.047	15	226	5	0	4	0	3	0	6
27		14	max	272.612	1	.169	6	.199	1	0	10	0	4	0	15
28			min	-365.528	3	.038	15	313	5	0	4	0	3	0	6

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
29		15	max	272.708	1	.132	6	.199	1	0	10	0	4	0	15
30			min	-365.456	3	.029	15	401	5	0	4	0	3	0	6
31		16	max	272.805	1	.094	2	.199	1	0	10	0	4	0	15
32			min	-365.383	3	.02	15	488	5	0	4	0	3	0	6
33		17	max	272.901	1	.064	2	.199	1	0	10	0	1	0	15
34			min	-365.311	3	.011	15	575	5	0	4	0	3	0	6
35		18	max	272.998	1	.035	2	.199	1	0	10	0	1	0	15
36			min	-365.239	3	0	9	663	5	0	4	0	3	0	6
37		19	max	273.094	1	.008	10	.199	1	0	10	0	1	0	15
38			min	-365.167	3	027	1	75	5	0	4	0	3	0	6
39	M3	1	max	50.732	2	1.812	6	002	10	0	5	0	4	0	6
40			min	-55.49	9	.425	15	-1.357	4	0	1	0	10	0	15
41		2	max	50.664	2	1.634	6	002	10	0	5	0	1	0	6
42			min	-55.546	9	.383	15	-1.224	4	0	1	0	10	0	15
43		3	max	50.597	2	1.456	6	002	10	0	5	0	1	0	2
44			min	-55.602	9	.341	15	-1.09	4	0	1	0	10	0	15
45		4	max		2	1.278	6	002	10	0	5	0	1	0	15
46			min	-55.658	9	.299	15	957	4	0	1	0	5	0	4
47		5	max		2	1.1	6	002	10	0	5	0	1	0	15
48			min	-55.714	9	.257	15	823	4	0	1	0	5	0	4
49		6	max	50.396	2	.922	6	002	10	0	5	0	1	0	15
50			min	-55.77	9	.215	15	69	4	0	1	0	5	0	4
51		7	max	50.329	2	.744	6	002	10	0	5	0	1	0	15
52			min	-55.826	9	.174	15	556	4	0	1	0	5	0	4
53		8	max	50.262	2	.566	6	002	10	0	5	0	1	0	15
54		-	min	-55.882	9	.132	15	422	4	0	1	0	5	0	4
55		9	max		2	.388	6	002	10	0	5	0	1	0	15
56		-	min	-55.938	9	.09	15	289	4	0	1	0	5	001	4
57		10	max		2	.21	6	002	10	0	5	0	1	0	15
58		10	min	-55.994	9	.048	15	186	1	0	1	0	5	001	4
59		11	max	50.061	2	.038	2	.017	5	0	5	0	1	0	15
60		- 1 1	min	-56.049	9	.006	15	186	1	0	1	0	5	001	4
61		12	max	49.994	2	036	15	.15	5	0	5	0	1	0	15
62		12	min	-56.105	9	146	4	186	1	0	1	0	5	001	4
63		13		49.926	2	078	15	.284	5	0	5	0	1	0	15
64		13	max min	-56.161	9	324	4	186	1	0	1	0	5	001	4
65		14	max		2	119	15	.417	5	0	5	0	9	0	15
66		14	min	-56.217	9	502	4	186	1	0	1	0	5	001	4
67		15			2	302 161	15	.551	5	0	5	0	10	0	15
68		13	max min	-56.273	9	68	4	186	1	0	1	0	4	0	4
69		16	may	49.725	2	203	15	.684	5	0	5	0	10	0	15
70		10	min		9	858	4	186	1	0	1	0	4	0	4
		17			2		15	.818	5		5		10	0	15
71 72		17				245	4	186	1	0	1	0	4		4
		10	min		<u>9</u> 2	-1.037			-	0				0	
73		18				287 -1.215	15	.951 186	5	0	5	0	10	0	15
74		40	min		9		4		•	0		0			4
75		19		49.524	2	329	15	1.085	5	0	5	0	5	0	1
76	N 4 4		min		9	-1.393	4	186	1	0	1	0	1	0	1
77	M4	1	max		1	0	1	.003	10	0	1	0	5	0	1
78		_	min	-119.298	3	0	1	-17.434	4	0	1	0	2	0	1
79		2		376.094	1	0	1	.003	10	0	1	0	12	0	1
80				-119.249	3	0	1	-17.491	4	0	1	002	4	0	1
81		3		376.159	1_	0	1	.003	10	0	1	0	10	0	1
82				-119.201	3	0	1	-17.547	4	0	1	003	4	0	1
83		4		376.224	1_	0	1	.003	10	0	1	0	10	0	1
84		-			3	0	1	-17.603	4	0	1	005	4	0	1
85		5	max	376.288	1	0	1	.003	10	00	1	0	10	0	1

Model Name

: Schletter, Inc. : HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]	LC			Torque[k-ft]				z-z Mome	<u>LC</u>
86				-119.104	3	0	1	-17.659	4	0	1	006	4	0	1
87		6		376.353	_1_	0	1_	.003	10	0	1_	0	10	0	1
88				-119.055	3	0	1	-17.715	4	0	1	008	4	0	1
89		7		376.418	_1_	0	1	.003	10	0	1	0	10	0	1
90				-119.007	3	0	1	<u>-17.771</u>	4	0	1_	009	4	0	1
91		8		376.482	1_	0	1	.003	10	0	1	0	10	0	1
92				-118.958	3	0	1	-17.827	4	0	1_	011	4	0	1
93		9		376.547	1_	0	1	.003	10	0	1	0	10	0	1
94		40		-118.91	3	0	1	-17.883	4	0	1_	013	4	0	1
95		10		376.612 -118.861	1	0	1	.003 -17.939	10	0	1	0	10	0	1
96 97		44		376.677	3		1		4		1	014 0	4		1
98		11		-118.813	<u>1</u> 3	0	1	.003 -17.995	10 4	0	1	016	10	0	1
99		12		376.741	<u> </u>	0	1	.003	10	0	1	0	10	0	1
100		12		-118.764	3	0	1	-18.051	4	0	1	017	4	0	1
101		13		376.806	_ <u></u>	0	1	.003	10	0	1	017 0	10	0	1
102		13		-118.715	3	0	1	-18.107	4	0	1	019	4	0	1
103		14		376.871	1	0	1	.003	10	0	1	0	10	0	1
104		17		-118.667	3	0	1	-18.163	4	0	1	021	4	0	1
105		15		376.935	1	0	1	.003	10	0	1	0	10	0	1
106				-118.618	3	0	1	-18.22	4	0	1	022	4	0	1
107		16	max	377	1	0	1	.003	10	0	1	0	10	0	1
108				-118.57	3	0	1	-18.276	4	0	1	024	4	0	1
109		17		377.065	1	0	1	.003	10	0	1	0	10	0	1
110			min	-118.521	3	0	1	-18.332	4	0	1	026	4	0	1
111		18	max	377.13	1	0	1	.003	10	0	1	0	10	0	1
112			min	-118.473	3	0	1	-18.388	4	0	1	027	4	0	1
113		19	max	377.194	1	0	1	.003	10	0	1	0	10	0	1
114			min	-118.424	3	0	1	-18.444	4	0	1	029	4	0	1
115	<u>M6</u>	1	max	867.291	_1_	.648	6	.866	4	0	3	0	3	0	1
116				-1166.497	3	.15	15	256	3	0	5	0	1	0	1
117		2		867.387	_1_	.61	6	.779	4	0	3	0	4	0	15
118		_		-1166.425	3	.141	15	256	3	0	5	0	2	0	6
119		3		867.483	_1_	.572	6	.692	4	0	3	0	4	0	15
120		4	min	-1166.353	3	.132	15	256	3	0	5	0	2	0	6
121		4		867.58	1	.534	6	.604	4	0	3	0	4	0	15
122		_		-1166.28	3	.123	15	256	3	0	5	0	2	0	6
123		5	max		1_	.496	6	.517	4	0	3	0	4	0	15
124		6		-1166.208	<u>3</u> 1	.115	15	256	3	0	5	0	3	0	6
125 126		6	max	867.773 -1166.136		.459 .106	15	.43 256	3	0	<u>3</u>	0	3	0	15
127		7		867.869	<u>ა</u> 1	.421	6	.342	4	0	3	0	4	0	15
128			min	-1166.064	3	.097	15	256	3	0	5	0	3	0	6
129		8		867.965	_ <u></u>	.383	6	.255	4	0	3	0	4	0	15
130			min	-1165.991	3	.088	15	256	3	0	5	0	3	0	6
131		9		868.062	1	.345	6	.168	4	0	3	0	4	0	15
132		Ť	min	-1165.919	3	.079	15	256	3	0	5	0	3	0	6
133		10	max		1	.307	6	.08	4	0	3	0	4	0	15
134		ľ	min	-1165.847	3	.07	15	256	3	0	5	0	3	0	6
135		11	max	868.254	1	.27	2	.055	9	0	3	0	4	0	15
136				-1165.774	3	.061	15	256	3	0	5	0	3	0	6
137		12	max		1	.241	2	.055	9	0	3	0	4	0	15
138			min	-1165.702	3	.052	15	256	3	0	5	0	3	0	6
139		13		868.447	1	.211	2	.055	9	0	3	0	4	0	15
140				-1165.63	3	.043	15	256	3	0	5	0	3	0	6
141		14	max		1	.182	2	.055	9	0	3	0	4	0	15
142			min	-1165.558	3	.035	15	29	5	0	5	0	3	0	6

Model Name

Schletter, Inc.

: HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

1.10	Member	Sec		Axial[lb]						Torque[k-ft]		1 -		l -	
143		15	max	868.64	_1_	.152	2	.055	9	0	3_	0	4	0	15
144			min	-1165.485	3	.026	15	377	5	0	5	0	3	0	6
145		16	max	868.736	1_	.123	2	.055	9_	0	3	0	4	0	15
146			min	-1165.413	3	.017	15	464	5	0	5	0	3	0	6
147		17	max	868.833	1_	.093	2	.055	9_	0	3	0	4	0	15
148			min	-1165.341	3	003	9	552	5	0	5	0	3	0	6
149		18	max	868.929	1_	.064	2	.055	9	0	3	0	4	0	15
150			min		3	028	9	639	5	0	5	0	3	0	6
151		19	max		_1_	.034	2	.055	9	0	3	0	4	0	15
152			min	-1165.196	3	052	9	726	5	0	5	0	3	0	6
153	<u>M7</u>	1	max	189.885	2	1.817	4	0	2	0	_1_	0	4	0	4
154			min	-100.03	9	.431	15	-1.42	4	0	3	0	3	0	15
155		2	max	189.818	2	1.639	4	0	2	0	<u>1</u>	0	4	0	2
156			min	-100.085	9	.389	15	-1.287	4	0	3	0	3	0	15
157		3	max	189.751	2	1.461	4	0	2	0	1_	0	4	0	2
158			min	-100.141	9	.347	15	-1.153	4	0	3	0	3	0	9
159		4	max	189.684	2	1.283	4	0	2	0	1	0	1	0	10
160			min	-100.197	9	.305	15	-1.02	4	0	3	0	3	0	9
161		5	max	189.616	2	1.105	4	0	2	0	1	0	1	0	15
162			min	-100.253	9	.264	15	886	4	0	3	0	5	0	6
163		6	max	189.549	2	.927	4	0	2	0	1	0	1	0	15
164			min	-100.309	9	.222	15	753	4	0	3	0	5	0	6
165		7	max	189.482	2	.749	4	0	2	0	1	0	1	0	15
166				-100.365	9	.18	15	619	4	0	3	0	5	0	6
167		8	max	189.415	2	.571	4	0	2	0	1	0	1	0	15
168				-100.421	9	.138	15	486	4	0	3	0	5	0	6
169		9	max	189.348	2	.393	4	0	2	0	1	0	1	0	15
170		Ť		-100.477	9	.096	15	352	4	0	3	0	5	001	6
171		10	max		2	.215	4	0	2	0	1	0	1	0	15
172		10	min	-100.533	9	.054	15	219	4	0	3	0	5	001	6
173		11	max	189.214	2	.057	2	0	2	0	1	0	1	0	15
174			min	-100.589	9	001	9	085	4	0	3	0	5	001	6
175		12	max	189.147	2	029	15	.051	5	0	1	0	1	0	15
176		12		-100.645	9	141	6	012	1	0	3	0	5	001	6
177		13	max	189.08	2	071	15	.184	5	0	1	0	1	0	15
178		13	min	-100.7	9	319	6	012	1	0	3	0	5	001	6
179		14	max	189.013	2	113	15	.318	5	0	1	0	1	0	15
180		14		-100.756	9	497	6	012	1	0	3	0	5	001	6
181		15	min		2	4 <i>91</i> 155	15	.451	5	0	<u> </u>	0	1		15
		10	max						<u> </u>			i i	_	0	
182		16		-100.812	9	675	6 15	012	_	0	3	0	5	0	15
183		10		188.878	2	197	15	.585	<u>5</u> 1	0	<u>1</u> 3	0	5	0	15
184		17		<u>-100.868</u> 188.811	<u>9</u> 2	853	<u>6</u>	012		0		0		0	6
185		17				239	15	.718	<u>5</u> 1	0	<u>1</u>		1	0	15
186		10		-100.924	9	-1.031	6 1 <i>E</i>	012	•	0		0	5	0	6
187		18		188.744	2	28	15	.852	5	0	1	0	1	0	15
188		40		-100.98	9	-1.209	6	012	1	0	3	0	5	0	6
189		19		188.677	2	322	15	.985	5_	0	1	0	1	0	1
190	NAC .			-101.036	9	-1.387	6	012	1_	0	3	0	3	0	1
191	<u>M8</u>	1_		1137.466	1	0	1	.161	1_	0	1	0	4	0	1
192				-405.971	3	0	1	-17.81	4_	0	1	0	1	0	1
193		2		1137.531	_1_	0	1	.161	_1_	0	1	0	1	0	1
194				-405.922	3_	0	1	-17.866	4_	0	1_	002	4	0	1
195		3		1137.596	1_	0	1	.161	1	0	1	0	1	0	1
196				-405.874	3	0	1	-17.922	4	0	1	003	4	0	1
197		4		1137.661	1_	0	1	.161	_1_	0	1_	0	1	0	1
198				-405.825	3	0	1	-17.978	4	0	1_	005	4	0	1
199		5	max	1137.725	_1_	0	1	.161	1	0	1	0	1	0	1

Schletter, Inc. HCV

Job Number : Model Name : Standard PVMini Racking System Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
200			min	-405.777	3	0	1	-18.035	4	0	1	006	4	0	1
201		6	max		_1_	0	1	.161	1	0	1	0	1	0	1
202			min	-405.728	3	0	1	-18.091	4	0	1	008	4	0	1
203		7		1137.855	_1_	0	1	.161	1	0	1	0	1	0	1
204			min	-405.679	3	0	1	-18.147	4	0	1	01	4	0	1
205		8	max	1137.919	_1_	0	1	.161	1	0	1	0	1_	0	1
206			min	-405.631	3	0	1	-18.203	4	0	1	011	4	0	1
207		9		1137.984	_1_	0	1	.161	1	0	1	0	1	0	1
208			min	-405.582	3	0	1	-18.259	4	0	1	013	4	0	1
209		10		1138.049	_1_	0	1_	.161	1	0	1	0	1_	0	1
210			min	-405.534	3	0	1	-18.315	4	0	1	015	4	0	1
211		11		1138.114	_1_	0	1	.161	1	0	1	0	1	0	1
212			min	-405.485	3	0	1	-18.371	4	0	1	016	4	0	1
213		12		1138.178	_1_	0	1	.161	1	0	1	0	1	0	1
214			min	-405.437	3	0	1	-18.427	4	0	1	018	4	0	1
215		13	max	1138.243	_1_	0	1	.161	1	0	1	0	1	0	1
216			min	-405.388	3	0	1	-18.483	4	0	1	019	4	0	1
217		14	max	1138.308	_1_	0	1	.161	1	0	1	0	1	0	1
218			min	-405.34	3	0	1	-18.539	4	0	1	021	4	0	1
219		15		1138.372	_1_	0	1	.161	1	0	1	0	1	0	1
220			min	-405.291	3	0	1	-18.595	4	0	1	023	4	0	1
221		16	max	1138.437	_1_	0	1	.161	1	0	1	0	1	0	1
222			min	-405.243	3	0	1	-18.651	4	0	1	024	4	0	1
223		17	max	1138.502	_1_	0	1	.161	1	0	1	0	1	0	1
224			min	-405.194	3	0	1	-18.707	4	0	1	026	4	0	1
225		18	max	1138.567	_1_	0	1	.161	1	0	1	0	1_	0	1
226			min	-405.146	3	0	1	-18.764	4	0	1	028	4	0	1
227		19	max	1138.631	_1_	0	1	.161	1	0	1	0	1_	0	1
228			min	-405.097	3	0	1	-18.82	4	0	1	029	4	0	1
229	<u>M10</u>	1	max	272.991	_1_	.69	4	1.011	5	0	1	0	4	0	1
230			min	-336.832	3	.173	15	098	1	001	5	0	3	0	1
231		2	max		_1_	.652	4	.924	5	0	1	0	4	0	15
232			min	-336.759	3	.164	15	098	1	001	5	0	3	0	4
233		3	max		_1_	.615	4	.836	5	0	1	0	4	0	15
234			min	-336.687	3	.155	15	098	1	001	5	0	3	0	4
235		4	max	273.28	_1_	.577	4	.749	5	0	1	0	4	0	15
236			min	-336.615	3	.146	15	098	1	001	5	0	3	0	4
237		5	max	273.376	_1_	.539	4	.662	5	0	1	0	5	0	15
238			min	-336.542	3	.137	15	098	1	001	5	0	3	0	4
239		6	max		_1_	.501	4	.574	5	0	1	0	_5_	0	15
240			min		3_	.129	15	098	1	001	5	0	3	0	4
241		7	max		_1_	.463	4	.487	5	0	1	0	5	0	15
242			min	-336.398	3_	.12	15	098	1	001	5	0	3	0	4
243		8		273.665	_1_	.425	4	.4	5	0	1	0	5	0	15
244			min	-336.326	3	.111	15	098	1	001	5	0	3	0	4
245		9	max		_1_	.388	4	.312	5	0	1	0	5	0	15
246			min	-336.253	3	.102	15	098	1	001	5	0	3	0	4
247		10	max		_1_	.35	4	.225	5	0	1	0	5	0	15
248					3	.093	15	098	1	001	5	0	3	0	4
249		11	max		1_	.312	4	.138	5	0	1	0	5	0	15
250			min		3	.084	15	098	1	001	5	0	3	0	4
251		12		274.051	_1_	.274	4	.05	5	0	1	0	5	0	15
252			min	-336.037	3	.075	15	098	1	001	5	0	3	0	4
253		13		274.147	_1_	.236	4	005	10	0	1	0	5	0	15
254			min	-335.964	3	.066	15	098	1	001	5	0	3	0	4
255		14		274.244	_1_	.198	4	005	10	0	1	0	5	0	15
256			min	-335.892	3	.057	15	133	4	001	5	0	3	0	4

Model Name

Schletter, Inc. HCV

. псv :

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	v-v Mome	LC	z-z Mome	. LC
257		15	max	274.34	1	.161	4	005	10	0	1	0	5	0	15
258			min	-335.82	3	.049	15	22	4	001	5	0	3	0	4
259		16	max	274.436	1	.123	4	005	10	0	1	0	5	0	15
260			min	-335.747	3	.04	15	308	4	001	5	0	3	0	4
261		17	max	274.533	1	.085	4	005	10	0	1	0	5	0	15
262			min	-335.675	3	.024	9	395	4	001	5	0	3	0	4
263		18	max	274.629	1	.056	3	005	10	0	1_	0	5	0	15
264			min	-335.603	3	001	9	482	4	001	5	0	3	0	4
265		19	max	274.725	1	.034	3	005	10	0	1	0	5	0	15
266			min	-335.531	3	027	1	57	4	001	5	0	3	0	4
267	<u>M11</u>	1_	max	50.288	2	1.811	6	.203	1	0	4	.001	5	0	6
268			min	-55.573	9	.424	15	-1.222	5	0	10	0	1	0	15
269		2	max	50.221	2	1.633	6	.203	1_	0	4	0	5	0	6
270			min	-55.629	9	.382	15	-1.089	5	0	10	0	1	0	15
271		3	max	50.154	2	1.455	6	.203	1	0	4	0	5	0	2
272			min	-55.685	9	.34	15	955	5	0	10	0	1_	0	3
273		4	max	50.087	2	1.277	6	.203	1	0	4	0	5	0	15
274			min	<u>-55.741</u>	9	.298	15	822	5	0	10	0	1	0	4
275		5	max	50.02	2	1.099	6	.203	1	0	4	0	3	0	15
276			min	-55.797	9	.257	15	688	5	0	10	0	1	0	4
277		6	max	49.953	2	.921	6	.203	1	0	4	0	3	0	15
278 279		7	min	<u>-55.853</u> 49.886	9	.215	1 <u>5</u>	<u>554</u> .203	5	0	10	0	3	0	15
280			max		9	.743		421	1	0	10	0	1	0	
281		8	min	<u>-55.909</u> 49.819	2	.173	15	.203	5 1	0	4	0	3	0	15
282		0	max min	-55.965	9	.565 .131	6 15	287	5	0	10	0	1	0	4
283		9	max	49.752	2	.387	6	.203	1	0	4	0	3	0	15
284		9	min	-56.021	9	.089	15	154	5	0	10	0	1	001	4
285		10	max	49.684	2	.209	6	.203	1	0	4	0	3	0	15
286		10	min	-56.077	9	.047	15	02	5	0	10	0	4	001	4
287		11	max	49.617	2	.038	2	.203	1	0	4	0	3	0	15
288			min	-56.133	9	0	3	017	3	0	10	0	4	001	4
289		12	max	49.55	2	036	15	.289	4	0	4	0	3	0	15
290			min	-56.188	9	147	4	017	3	0	10	0	4	001	4
291		13	max	49.483	2	078	15	.422	4	0	4	0	3	0	15
292			min	-56.244	9	325	4	017	3	0	10	0	5	001	4
293		14	max	49.416	2	12	15	.556	4	0	4	0	3	0	15
294			min	-56.3	9	503	4	017	3	0	10	0	10	001	4
295		15	max	49.349	2	162	15	.69	4	0	4	0	3	0	15
296			min	-56.356	9	681	4	017	3	0	10	0	10	0	4
297		16	max	49.282	2	204	15	.823	4	0	4	0	4	0	15
298			min	-56.412	9	859	4	017	3	0	10	0	10	0	4
299		17	max	49.215	2	246	15	.957	4	0	4	0	4	0	15
300			min	-56.468	9	-1.037	4	017	3	0	10	0	10	0	4
301		18	max		2	287	15	1.09	4	0	4	0	4	0	15
302			min	-56.524	9	-1.215	4	017	3	0	10	0	10	0	4
303		19	max		2	329	15	1.224	4	0	4	.001	4	0	1
304			min	-56.58	9	-1.393	4	017	3	0	10	0	10	0	1
305	M12	1	max		1	0	1	.778	1	0	1	0	4	0	1
306						0	1	-16.331	5	0	1	0	3	0	1
307		2		376.223	1	0	1	.778	1_	0	1	0	1_	0	1
308					3	0	1	-16.388	5	0	1	001	5	0	1
309		3		376.288	1	0	1	.778	1	0	1	0	1	0	1
310				-118.841	3	0	1	-16.444	5	0	1	003	5	0	1
311		4		376.353	1	0	1	.778	1	0	1	0	1	0	1
312				-118.792	3	0	1	-16.5	5	0	1_	004	5	0	1
313		5	max	376.417	_1_	0	1	.778	1	0	1_	0	_1_	0	1

Schletter, Inc.HCV

Job Number :
Model Name : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>. LC</u>
314			min	-118.744	3	0	1	-16.556	5	0	1_	006	5	0	1
315		6	max	376.482	1	0	1	.778	1	0	1	0	1	0	1
316			min	-118.695	3	0	1	-16.612	5	0	1	007	5	0	1
317		7	max	376.547	1	0	1	.778	1	0	1	0	1	0	1
318			min	-118.647	3	0	1	-16.668	5	0	1	009	5	0	1
319		8	max		1	0	1	.778	1	0	1	0	1	0	1
320			min	-118.598	3	0	1	-16.724	5	0	1	01	5	0	1
321		9	max		1	0	1	.778	1	0	1	0	1	0	1
322			min	-118.55	3	0	1	-16.78	5	0	1	012	5	0	1
323		10	max	376.741	1	0	1	.778	1	0	1	0	1	0	1
324		10		-118.501	3	0	1	-16.836	5	0	1	013	5	0	1
		4.4	min								•				
325		11	max		1	0	1	.778	1	0	1	0	1	0	1
326			min		3	0	1	-16.892	5	0	1_	015	5	0	1
327		12	max	376.87	1	0	1	.778	1	0	1	0	1	0	1
328			min	-118.404	3	0	1	-16.948	5	0	1_	016	5	0	1
329		13	max	376.935	_1_	0	1	.778	1	0	_1_	0	1	0	1
330			min	-118.355	3	0	1	-17.004	5	0	1	018	5	0	1
331		14	max	377	1	0	1	.778	1	0	1	0	1	0	1
332			min	-118.307	3	0	1	-17.061	5	0	1	019	5	0	1
333		15	max	377.064	1	0	1	.778	1	0	1	0	1	0	1
334			min	-118.258	3	0	1	-17.117	5	0	1	021	5	0	1
335		16	max		1	0	1	.778	1	0	1	.001	1	0	1
336			min	-118.21	3	0	1	-17.173	5	0	1	022	5	0	1
337		17	max	377.194	1	0	1	.778	1	0	1	.001	1	0	1
338		1,	min	-118.161	3	0	1	-17.229	5	0	1	024	5	0	1
339		18			1	0	1	.778	1	0	1	.001	1	0	1
		10	max				1				1				_
340		40	min	-118.113	3	0	-	-17.285	5	0	•	026	5	0	1
341		19	max		1	0	1	.778	1	0	1	.001	1	0	1
342			min	-118.064	3	0	1	-17.341	5	0	1_	027	5	0	1
343	<u>M1</u>	1	max	59.716	1	344.8	3	178	10	0	1	.033	1	0	1
344			min	3.696	12	-273.939	1	-16.993	1	0	3	0	10	0	3
345		2	max	59.788	1	344.598	3	178	10	0	_1_	.03	1	.06	1
346			min	3.732	12	-274.209	1	-16.993	1	0	3	0	10	075	3
347		3	max	69.838	1	4.675	14	174	10	0	5	.026	1	.118	1
348			min	-6.663	3	-21.881	3	-16.854	1	0	1	0	10	148	3
349		4	max	69.91	1	4.41	14	174	10	0	5	.022	1	.119	1
350			min	-6.609	3	-22.083	3	-16.854	1	0	1	0	10	144	3
351		5	max	69.983	1	4.145	14	174	10	0	5	.018	1	.12	1
352			min	-6.555	3	-22.285	3	-16.854	1	0	1	0	10	139	3
353		6	max	70.055	1	3.88	14	174	10	0	5	.015	1	.12	1
354			min		3	-22.487	3	-16.854	1	0	1	0	10	134	3
355		7	max		1	3.615	14	174	10	0	5	.011	1	.121	1
356			min	-6.446	3	-22.69	3	-16.854	1	0	1	0	10	129	3
357		8	max	70.199	1	3.35	14	174	10	0	5	.007	1	.123	2
358		0	min	-6.392	3	-22.892	3	-16.854	1	0	<u> </u>	0	10	124	3
		9													
359		9	max	70.272	1	3.085	14	174	10	0	5	.004	1	.127	2
360		4.0	min	-6.338	3	-23.094	3	-16.854	1	0	_1_	0	10	119	3
361		10	max	70.344	1	2.844	9	174	10	0	5	.001	3	.13	2
362			min	-6.284	3	-23.297	3	-16.854	1	0	1_	0	10	114	3
363		11	max	70.416	1_	2.62	9	174	10	0	_5_	0	3	.134	2
				0.000	3	-23.499	3	-16.854	1	0	1	004	1 1	109	3
364			min	-6.229	J		_				_			.100	
364 365		12	min max		1	2.395	9	174	10	0	5	0	12	.138	2
		12									_				
365 366		12	max min	70.489 -6.175	1	2.395 -23.701	9	174 -16.854	10 1	0	5	0	12	.138 104	3
365 366 367			max min max	70.489 -6.175 70.561	1 3 1	2.395 -23.701 2.17	9 3 9	174 -16.854 174	10	0 0 0	5	0 007 0	12	.138 104 .142	3 2
365 366 367 368		13	max min max min	70.489 -6.175 70.561 -6.121	1 3 1 3	2.395 -23.701 2.17 -23.903	9 3 9 3	174 -16.854 174 -16.854	10 1 10 1	0 0 0	5 1 5 1	0 007 0 011	12 1 10 1	.138 104 .142 099	2 3 2 3
365 366 367			max min max	70.489 -6.175 70.561	1 3 1	2.395 -23.701 2.17	9 3 9	174 -16.854 174	10 1 10	0 0 0	5 1 5	0 007 0	12 1 10	.138 104 .142	3 2

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
371		15	max	70.705	1	1.721	9	174	10	0	5	0	10	.149	2
372			min	-6.013	3	-24.308	3	-16.854	1	0	1	018	1	088	3
373		16	max	68.986	2	15.303	10	176	10	0	1	0	10	.153	2
374			min	-34.641	3	-50.262	3	-17.027	1	0	4	022	1	083	3
375		17	max	69.059	2	15.079	10	176	10	0	1	0	10	.15	2
376			min	-34.587	3	-50.465	3	-17.027	1	0	4	026	1	072	3
377		18	max	-2.419	12	348.965	2	173	10	0	3	0	10	.076	2
378			min	-59.746	1	-165.979	3	-27.44	4	0	2	03	1	036	3
379		19	max	-2.383	12	348.696	2	173	10	0	3	0	10	0	2
380			min	-59.674	1	-166.182	3	-27.198	4	0	2	033	1	0	3
381	M5	1	max	142.8	1	1119.426	3	0	10	0	9	.032	4	0	3
382			min	.212	15	-886.309	1	-46.617	3	0	5	0	10	0	1
383		2	max	142.872	1	1119.224	3	0	10	0	9	.028	4	.192	1
384			min	.234	15	-886.578	1	-46.617	3	0	5	004	3	242	3
385		3	max	173.772	1	6.727	9	5.109	3	0	3	.023	4	.381	1
386			min	-40.919	3	-76.809	3	-17.655	4	0	4	013	3	48	3
387		4	max	173.844	1	6.502	9	5.109	3	0	3	.019	4	.385	1
388			min	-40.865	3	-77.011	3	-17.413	4	0	4	012	3	463	3
389		5	max	173.916	1	6.278	9	5.109	3	0	3	.015	4	.389	1
390			min	-40.811	3	-77.213	3	-17.171	4	0	4	011	3	446	3
391		6	max	173.988	1	6.053	9	5.109	3	0	3	.012	4	.394	1
392			min	-40.757	3	-77.416	3	-16.929	4	0	4	01	3	43	3
393		7	max	174.061	1	5.828	9	5.109	3	0	3	.008	4	.398	1
394			min	-40.702	3	-77.618	3	-16.687	4	0	4	009	3	413	3
395		8	max	174.133	1	5.603	9	5.109	3	0	3	.004	4	.403	1
396			min	-40.648	3	-77.82	3	-16.445	4	0	4	008	3	396	3
397		9	max		1	5.378	9	5.109	3	0	3	0	4	.413	2
398			min	-40.594	3	-78.023	3	-16.203	4	0	4	007	3	379	3
399		10	max	174.277	1	5.154	9	5.109	3	0	3	0	2	.425	2
400		10	min	-40.54	3	-78.225	3	-15.961	4	0	4	006	3	362	3
401		11	max	174.35	1	4.929	9	5.109	3	0	3	0	2	.437	2
402			min	-40.486	3	-78.427	3	-15.719	4	0	4	006	4	345	3
403		12	max	174.422	1	4.704	9	5.109	3	0	3	0	2	.45	2
404		12	min	-40.431	3	-78.629	3	-15.477	4	0	4	009	4	328	3
405		13	max	174.494	1	4.479	9	5.109	3	0	3	0	2	.462	2
406		10	min	-40.377	3	-78.832	3	-15.235	4	0	4	013	4	311	3
407		14	max		1	4.255	9	5.109	3	0	3	0	2	.475	2
408		17	min	-40.323	3	-79.034	3	-14.993	4	0	4	016	4	294	3
409		15	max	174.639	1	4.03	9	5.109	3	0	3	0	3	.487	2
410		10	min	-40.269	3	-79.236	3	-14.751	4	0	4	019	4	277	3
411		16		228.615		66.559	2	5.083	3	0	3	0	3	.499	2
412		10			3	-138.67	3	-13.53	4	0	4	023	4	259	3
413		17		228.687	2	66.289	2	5.083	3	0	3	.002	3	.484	2
414		1 '	min	-108.53	3	-138.872	3	-13.288	4	0	4	026	4	229	3
415		18	max	-2.579	12	1128.101	2	4.685	3	0	4	.003	3	.244	2
416		10		-142.964	1	-532.072	3	-30.448	5	0	1	032	4	115	3
417		19			12	1127.832	2	4.685	3	0	4	.004	3	0	3
418		19	max min	-142.891	1	-532.274	3	-30.206	5	0	1	039	4	0	2
419	M9	1				344.758		124.86	4		3	<u>039</u> 0	5		1
	IVIS		max	59.604	1		3			0	1		1	0	3
420 421		2	min	<u>24</u> 59.676	<u>5</u> 1	-273.938 344.556	1	.178 125.102	10	0	3	033 .027	5	.06	1
422			max				3		4		1				_
		3	min	212 70.004	15	-274.208	1	.178	10	0	_	029	1 5	075	3
423		3	max		1	4.404	9	16.569	1	0	4	.052	5	.118	1
424		4	min	-6.779 70.467	3	-21.802	3	-23.384	5	0	10	025		<u>148</u>	3
425		4	max	70.167	1	4.179	9	16.569	1	0	4	.047	5	.119	1
426		_	min	-6.725	3	-22.004	3	-23.142	5	0	10	022	1	<u>143</u>	3
427		5	max	70.239	1	3.954	9	16.569	1	0	4	.042	5	.119	1

Model Name

: Schletter, Inc. : HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]		Torque[k-ft]	LC \	/-y Mome	LC	z-z Mome	LC
428			min	-6.67	3	-22.206	3	-22.9	5	0	10	018	1	139	3
429		6	max	70.311	1	3.729	9	16.569	1	0	4	.037	5	.12	1
430			min	-6.616	3	-22.409	3	-22.658	5	0	10	014	1	134	3
431		7	max	70.383	1	3.505	9	16.569	1	0	4	.032	5	.121	1
432			min	-6.562	3	-22.611	3	-22.416	5	0	10	011	1	129	3
433		8	max	70.456	1	3.28	9	16.569	1	0	4	.027	5	.123	2
434			min	-6.508	3	-22.813	3	-22.174	5	0	10	007	1	124	3
435		9	max	70.528	1	3.055	9	16.569	1	0	4	.022	5	.127	2
436			min	-6.454	3	-23.016	3	-21.932	5	0	10	004	1	119	3
437		10	max	70.6	1	2.83	9	16.569	1	0	4	.018	4	.13	2
438			min	-6.399	3	-23.218	3	-21.69	5	0	10	0	1	114	3
439		11	max	70.672	1	2.606	9	16.569	1	0	4	.014	4	.134	2
440			min	-6.345	3	-23.42	3	-21.448	5	0	10	0	10	109	3
441		12	max	70.745	1	2.381	9	16.569	1	0	4	.01	4	.138	2
442			min	-6.291	3	-23.622	3	-21.206	5	0	10	0	10	104	3
443		13	max	70.817	1	2.156	9	16.569	1	0	4	.011	1	.142	2
444			min	-6.237	3	-23.825	3	-20.964	5	0	10	0	10	099	3
445		14	max	70.889	1	1.931	9	16.569	1	0	4	.014	1	.145	2
446		17	min	-6.183	3	-24.027	3	-20.722	5	0	10	0	5	093	3
447		15	max	70.961	1	1.706	9	16.569	1	0	4	.018	1	.149	2
448		10	min	-6.128	3	-24.229	3	-20.48	5	0	10	005	5	088	3
449		16	max	69.058	2	15.08	10	16.76	1	0	10	.022	1	.153	2
450		10	min	-35.218	3	-50.606	3	-19.059	5	0	4	008	5	083	3
451		17	max	69.131	2	14.855	10	16.76	1	0	10	.025	1	.15	2
452		17	min	-35.164	3	-50.808	3	-18.817	5	0	4	012	5	072	3
453		18		8.331	5		2	17.521	1	0	2	.029	1	.076	2
		10	max			348.966					3				
454 455		19	min	<u>-59.626</u> 8.364	<u>1</u> 5	-165.974 348.696	2	-34.892 17.521	<u>5</u>	0	2	02 .033	5	036 0	2
422					ר ו	34X nyn									_ / _
		13	max		_									_	
456	MAO		min	-59.554	1	-166.177	3	-34.65	5	0	3	028	5	0	3
456 457	M13	1	min max	-59.554 124.859	1 4	-166.177 273.752	3	-34.65 .24	5 5	0	3	028 .033	5	0	3
456 457 458	M13	1	min max min	-59.554 124.859 .178	1 4 10	-166.177 273.752 -344.782	3 1 3	-34.65 .24 -59.601	5 5 1	0 0 0	3 1 3	028 .033 0	5 1 5	0 0 0	3 1 3
456 457 458 459	M13		min max min max	-59.554 124.859 .178 119.948	1 4 10 4	-166.177 273.752 -344.782 194.185	3 1 3 1	-34.65 .24 -59.601 .924	5 5 1 5	0 0 0 0	3 1 3 1	028 .033 0 .008	5 1 5 3	0 0 0 .147	3 1 3 3
456 457 458 459 460	M13	1 2	min max min max min	-59.554 124.859 .178 119.948 .178	1 4 10 4 10	-166.177 273.752 -344.782 194.185 -244.285	3 1 3 1 3	-34.65 .24 -59.601 .924 -45.039	5 5 1 5	0 0 0 0	3 1 3 1 3	028 .033 0 .008 001	5 1 5 3 10	0 0 0 .147 117	3 1 3 3
456 457 458 459 460 461	M13	1	min max min max min max	-59.554 124.859 .178 119.948 .178 115.038	1 4 10 4 10 4	-166.177 273.752 -344.782 194.185 -244.285 114.617	3 1 3 1 3	-34.65 .24 -59.601 .924 -45.039 1.608	5 5 1 5 1 5	0 0 0 0 0	3 1 3 1 3 1	028 .033 0 .008 001 .006	5 1 5 3 10 3	0 0 0 .147 117 .244	3 1 3 3 1 1 3
456 457 458 459 460 461 462	M13	2	min max min max min max min	-59.554 124.859 .178 119.948 .178 115.038 .178	1 4 10 4 10 4 10	-166.177 273.752 -344.782 194.185 -244.285 114.617 -143.789	3 1 3 1 3 1 3	-34.65 .24 -59.601 .924 -45.039 1.608 -30.476	5 5 1 5 1 5	0 0 0 0 0 0	3 1 3 1 3 1 3	028 .033 0 .008 001 .006 012	5 1 5 3 10 3 1	0 0 0 .147 117 .244 194	3 1 3 3 1 1 3
456 457 458 459 460 461 462 463	M13	1 2	min max min max min max min max	-59.554 124.859 .178 119.948 .178 115.038 .178 110.127	1 4 10 4 10 4 10 4	-166.177 273.752 -344.782 194.185 -244.285 114.617 -143.789 35.05	3 1 3 1 3 1 3	-34.65 .24 -59.601 .924 -45.039 1.608 -30.476 2.293	5 5 1 5 1 5 1 5	0 0 0 0 0 0 0	3 1 3 1 3 1 3	028 .033 0 .008 001 .006 012	5 1 5 3 10 3 1 3	0 0 0 .147 117 .244 194	3 1 3 3 1 3 1 3
456 457 458 459 460 461 462 463 464	M13	3	min max min max min max min max min	-59.554 124.859 .178 119.948 .178 115.038 .178 110.127 .178	1 4 10 4 10 4 10 4	-166.177 273.752 -344.782 194.185 -244.285 114.617 -143.789 35.05 -43.292	3 1 3 1 3 1 3 1	-34.65 .24 -59.601 .924 -45.039 1.608 -30.476 2.293 -15.914	5 5 1 5 1 5 1 5	0 0 0 0 0 0 0 0	3 1 3 1 3 1 3 1 3	028 .033 0 .008 001 .006 012 .004 024	5 1 5 3 10 3 1 3	0 0 .147 117 .244 194 .291 232	3 1 3 1 3 1 3 1
456 457 458 459 460 461 462 463 464 465	M13	2	min max min max min max min max min max	-59.554 124.859 .178 119.948 .178 115.038 .178 110.127 .178 105.216	1 4 10 4 10 4 10 4 10 4	-166.177 273.752 -344.782 194.185 -244.285 114.617 -143.789 35.05 -43.292 57.204	3 1 3 1 3 1 3 1 3 3	-34.65 .24 -59.601 .924 -45.039 1.608 -30.476 2.293 -15.914 2.977	5 5 1 5 1 5 1 5	0 0 0 0 0 0 0 0 0	3 1 3 1 3 1 3 1 3	028 .033 0 .008 001 .006 012 .004 024	5 1 5 3 10 3 1 3 1 3	0 0 .147 117 .244 194 .291 232 .288	3 1 3 3 1 3 1 3 1 3
456 457 458 459 460 461 462 463 464 465 466	M13	1 2 3 4 5	min max min max min max min max min max	-59.554 124.859 .178 119.948 .178 115.038 .178 110.127 .178 105.216 .178	1 4 10 4 10 4 10 4 10 4	-166.177 273.752 -344.782 194.185 -244.285 114.617 -143.789 35.05 -43.292 57.204 -44.518	3 1 3 1 3 1 3 1 3 1	-34.65 .24 -59.601 .924 -45.039 1.608 -30.476 2.293 -15.914 2.977 -2.658	5 5 1 5 1 5 1 5 1 5	0 0 0 0 0 0 0 0 0 0	3 1 3 1 3 1 3 1 3 1 3 1 3	028 .033 0 .008 001 .006 012 .004 024 .003	5 1 5 3 10 3 1 3 1 3	0 0 .147 117 .244 194 .291 232 .288 229	3 1 3 3 1 3 1 3 1 3
456 457 458 459 460 461 462 463 464 465 466 467	M13	3	min max min max min max min max min max min max	-59.554 124.859 .178 119.948 .178 115.038 .178 110.127 .178 105.216 .178 100.305	1 4 10 4 10 4 10 4 10 4 10 4	-166.177 273.752 -344.782 194.185 -244.285 114.617 -143.789 35.05 -43.292 57.204 -44.518 157.701	3 1 3 1 3 1 3 1 3 1 3 1 3	-34.65 .24 -59.601 .924 -45.039 1.608 -30.476 2.293 -15.914 2.977 -2.658 13.21	5 5 1 5 1 5 1 5 1 5	0 0 0 0 0 0 0 0 0 0	3 1 3 1 3 1 3 1 3 1 3 1 3	028 .033 0 .008 001 .006 012 .004 024 .003 028	5 1 5 3 10 3 1 3 1 3 1 5	0 0 0 .147 117 .244 194 .291 232 .288 229	3 1 3 3 1 3 1 3 1 3 1 3
456 457 458 459 460 461 462 463 464 465 466 467 468	M13	1 2 3 4 5	min max min max min max min max min max min max	-59.554 124.859 .178 119.948 .178 115.038 .178 110.127 .178 105.216 .178 100.305 .178	1 4 10 4 10 4 10 4 10 4 10 4	-166.177 273.752 -344.782 194.185 -244.285 114.617 -143.789 35.05 -43.292 57.204 -44.518 157.701 -124.085	3 1 3 1 3 1 3 1 3 1 3 1	-34.65 .24 -59.601 .924 -45.039 1.608 -30.476 2.293 -15.914 2.977 -2.658 13.21 -2.014	5 5 1 5 1 5 1 5 1 5 1 3	0 0 0 0 0 0 0 0 0 0 0	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3	028 .033 0 .008 001 .006 012 .004 024 .003 028 .004 025	5 1 5 3 10 3 1 3 1 3 1 5	0 0 .147 117 .244 194 .291 232 .288 229 .234 187	3 1 3 3 1 3 1 3 1 3 1 3 1 3
456 457 458 459 460 461 462 463 464 465 466 467 468 469	M13	1 2 3 4 5	min max min max min max min max min max min max min max	-59.554 124.859 .178 119.948 .178 115.038 .178 110.127 .178 105.216 .178 100.305 .178 95.394	1 4 10 4 10 4 10 4 10 4 10 4	-166.177 273.752 -344.782 194.185 -244.285 114.617 -143.789 35.05 -43.292 57.204 -44.518 157.701 -124.085 258.197	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3	-34.65 .24 -59.601 .924 -45.039 1.608 -30.476 2.293 -15.914 2.977 -2.658 13.21 -2.014 27.773	5 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	0 0 0 0 0 0 0 0 0 0 0 0	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3	028 .033 0 .008 001 .006 012 .004 024 .003 028 .004 025	5 1 5 3 10 3 1 3 1 3 1 5 1 5	0 0 0 .147 117 .244 194 .291 232 .288 229 .234 187	3 1 3 3 1 3 1 3 1 3 1 3 1 3
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470	M13	1 2 3 4 5 6	min max min max min max min max min max min max min max min max	-59.554 124.859 .178 119.948 .178 115.038 .178 110.127 .178 105.216 .178 100.305 .178 95.394 .178	1 4 10 4 10 4 10 4 10 4 10 4 10 4 10	-166.177 273.752 -344.782 194.185 -244.285 114.617 -143.789 35.05 -43.292 57.204 -44.518 157.701 -124.085 258.197 -203.653	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3	-34.65 .24 -59.601 .924 -45.039 1.608 -30.476 2.293 -15.914 2.977 -2.658 13.21 -2.014 27.773 -1.371	5 5 1 5 1 5 1 5 1 5 1 5 1 3 1 3	0 0 0 0 0 0 0 0 0 0 0 0 0	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	028 .033 0 .008 001 .006 012 .004 024 .003 028 .004 025 .006 015	5 1 5 3 10 3 1 3 1 3 1 5 1 5	0 0 0 .147 117 .244 194 .291 232 .288 229 .234 187 .13 105	3 1 3 3 1 3 1 3 1 3 1 3 1 3 1 3
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471	M13	1 2 3 4 5	min max min max min max min max min max min max min max min max	-59.554 124.859 .178 119.948 .178 115.038 .178 110.127 .178 105.216 .178 100.305 .178 95.394 .178 90.483	1 4 10 4 10 4 10 4 10 4 10 4 10 4 10 4	-166.177 273.752 -344.782 194.185 -244.285 114.617 -143.789 35.05 -43.292 57.204 -44.518 157.701 -124.085 258.197 -203.653 358.694	3 1 3 1 3 1 3 3 1 3 1 3 1 3 1 3 1 3 3 1 3 3 1 3 3 1 3 3 3 1 3 3 3 1 3 3 1 3 3 1 3 3 3 1 3	-34.65 .24 -59.601 .924 -45.039 1.608 -30.476 2.293 -15.914 2.977 -2.658 13.21 -2.014 27.773 -1.371 42.335	5 5 1 5 1 5 1 5 1 3 1 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	028 .033 0 .008 001 .006 012 .004 024 .003 028 .004 025 .006 015	5 1 5 3 10 3 1 3 1 5 1 5 1 5	0 0 0 .147 117 .244 194 .291 232 .288 229 .234 187 .13 105	3 1 3 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 1 3
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472	M13	1 2 3 4 5 6 7	min max min max min max min max min max min max min max min max min max	-59.554 124.859 .178 119.948 .178 115.038 .178 110.127 .178 105.216 .178 100.305 .178 95.394 .178 90.483 .178	1 4 10 4 10 4 10 4 10 4 10 4 10 4 10	-166.177 273.752 -344.782 194.185 -244.285 114.617 -143.789 35.05 -43.292 57.204 -44.518 157.701 -124.085 258.197 -203.653 358.694 -283.22	3 1 3 1 3 1 3 1 3 3 1 3 1 3 1 3 1 3 1 3	-34.65 .24 -59.601 .924 -45.039 1.608 -30.476 2.293 -15.914 2.977 -2.658 13.21 -2.014 27.773 -1.371 42.335 727	5 5 1 5 1 5 1 5 1 5 1 5 3 1 3 1 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	028 .033 0 .008 001 .006 012 .004 024 .003 028 .004 025 .006 015	5 1 5 3 10 3 1 3 1 3 1 5 1 5	0 0 0 .147 117 .244 194 .291 232 .288 229 .234 187 .13 105 .017	3 1 3 3 1 3 1 3 1 3 1 3 1 3 1 3
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473	M13	1 2 3 4 5 6	min max min max min max min max min max min max min max min max	-59.554 124.859 .178 119.948 .178 115.038 .178 110.127 .178 105.216 .178 100.305 .178 95.394 .178 90.483 .178 85.573	1 4 10 4 10 4 10 4 10 4 10 4 10 4 10 4	-166.177 273.752 -344.782 194.185 -244.285 114.617 -143.789 35.05 -43.292 57.204 -44.518 157.701 -124.085 258.197 -203.653 358.694 -283.22 459.19	3 1 3 1 3 1 3 3 1 3 1 3 1 3 1 3 1 3 3 1 3 3 1 3 3 1 3 3 3 1 3 3 3 1 3 3 1 3 3 1 3 3 3 1 3	-34.65 .24 -59.601 .924 -45.039 1.608 -30.476 2.293 -15.914 2.977 -2.658 13.21 -2.014 27.773 -1.371 42.335	5 5 1 5 1 5 1 5 1 5 3 1 3 1 3 1 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	028 .033 0 .008 001 .006 012 .004 024 .003 028 .004 025 .006 015	5 1 5 3 10 3 1 3 1 5 1 5 1 4 12 1	0 0 0 .147 117 .244 194 .291 232 .288 229 .234 187 .13 105	3 1 3 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474	M13	1 2 3 4 5 6 7	min max min max min max min max min max min max min max min max min max	-59.554 124.859 .178 119.948 .178 115.038 .178 110.127 .178 105.216 .178 100.305 .178 95.394 .178 90.483 .178	1 4 10 4 10 4 10 4 10 4 10 4 10 4 10 4	-166.177 273.752 -344.782 194.185 -244.285 114.617 -143.789 35.05 -43.292 57.204 -44.518 157.701 -124.085 258.197 -203.653 358.694 -283.22	3 1 3 1 3 1 3 1 3 3 1 3 1 3 1 3 1 3 1 3	-34.65 .24 -59.601 .924 -45.039 1.608 -30.476 2.293 -15.914 2.977 -2.658 13.21 -2.014 27.773 -1.371 42.335 727	5 5 1 5 1 5 1 5 1 5 1 5 3 1 3 1 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	028 .033 0 .008 001 .006 012 .004 024 .003 028 .004 025 .006 015	5 1 5 3 10 3 1 3 1 5 1 5 1 4 12	0 0 0 .147 117 .244 194 .291 232 .288 229 .234 187 .13 105 .017	3 1 3 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473	M13	1 2 3 4 5 6 7	min max min max min max min max min max min max min max min max min max min max	-59.554 124.859 .178 119.948 .178 115.038 .178 110.127 .178 105.216 .178 100.305 .178 95.394 .178 90.483 .178 85.573	1 4 10 4 10 4 10 4 10 4 10 4 10 4 10 4	-166.177 273.752 -344.782 194.185 -244.285 114.617 -143.789 35.05 -43.292 57.204 -44.518 157.701 -124.085 258.197 -203.653 358.694 -283.22 459.19 -362.787 559.687	3 1 3 1 3 1 3 1 3 3 1 3 1 3 1 3 1 3 1 3	-34.65 .24 -59.601 .924 -45.039 1.608 -30.476 2.293 -15.914 2.977 -2.658 13.21 -2.014 27.773 -1.371 42.335 727 56.897	5 5 1 5 1 5 1 5 1 5 3 1 3 1 3 1 3 1 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	028 .033 0 .008 001 .006 012 .004 024 .003 028 .004 025 .006 015 .009 0	5 1 5 3 10 3 1 3 1 5 1 5 1 4 12 1	0 0 0 .147 117 .244 194 .291 232 .288 229 .234 187 .13 105 .017 024	3 1 3 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474	M13	1 2 3 4 5 6 7 8	min max min max min max min max min max min max min max min max min max min max	-59.554 124.859 .178 119.948 .178 115.038 .178 110.127 .178 105.216 .178 100.305 .178 95.394 .178 90.483 .178 85.573 .178	1 4 10 4 10 4 10 4 10 4 10 4 10 4 10 4	-166.177 273.752 -344.782 194.185 -244.285 114.617 -143.789 35.05 -43.292 57.204 -44.518 157.701 -124.085 258.197 -203.653 358.694 -283.22 459.19 -362.787	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	-34.65 .24 -59.601 .924 -45.039 1.608 -30.476 2.293 -15.914 2.977 -2.658 13.21 -2.014 27.773 -1.371 42.335 727 56.897 083	5 5 1 5 1 5 1 5 1 5 3 1 3 1 3 1 3 1 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	028 .033 0 .008 001 .006 012 .004 024 .003 028 .004 025 .006 015 .009 0	5 1 5 3 10 3 1 3 1 5 1 5 1 4 12 1 3	0 0 0 .147 117 .244 194 .291 232 .288 229 .234 187 .13 105 .017 024 .178 229	3 1 3 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475	M13	1 2 3 4 5 6 7 8	min max	-59.554 124.859 .178 119.948 .178 115.038 .178 110.127 .178 105.216 .178 100.305 .178 95.394 .178 90.483 .178 85.573 .178 80.662	1 4 10 4 10 4 10 4 10 4 10 4 10 4 10 4	-166.177 273.752 -344.782 194.185 -244.285 114.617 -143.789 35.05 -43.292 57.204 -44.518 157.701 -124.085 258.197 -203.653 358.694 -283.22 459.19 -362.787 559.687	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	-34.65 .24 -59.601 .924 -45.039 1.608 -30.476 2.293 -15.914 2.977 -2.658 13.21 -2.014 27.773 -1.371 42.335 727 56.897 083 71.459	5 5 1 5 1 5 1 5 1 5 3 1 3 1 3 1 3 1 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	028 .033 0 .008 001 .006 012 .004 024 .003 028 .004 025 .006 015 .009 0	5 1 5 3 10 3 1 3 1 5 1 5 1 4 12 1	0 0 0 .147 117 .244 194 .291 232 .288 229 .234 187 .13 105 .017 024 .178 229 .379	3 1 3 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476	M13	1 2 3 4 5 6 7 8	min max min	-59.554 124.859 .178 119.948 .178 115.038 .178 110.127 .178 105.216 .178 100.305 .178 95.394 .178 90.483 .178 85.573 .178 80.662 .178	1 4 10 4 10 4 10 4 10 4 10 4 10 4 10 4	-166.177 273.752 -344.782 194.185 -244.285 114.617 -143.789 35.05 -43.292 57.204 -44.518 157.701 -124.085 258.197 -203.653 358.694 -283.22 459.19 -362.787 559.687 -442.355 362.787 -459.19	3 1 3 1 3 1 3 3 1 3 1 3 1 3 1 3 1 3 1 3	-34.65 .24 -59.601 .924 -45.039 1.608 -30.476 2.293 -15.914 2.977 -2.658 13.21 -2.014 27.773 -1.371 42.335 727 56.897 083 71.459	5 5 1 5 1 5 1 5 1 5 1 5 3 1 3 1 3 1 3 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	028 .033 0 .008 001 .006 012 .004 024 .003 028 .004 025 .006 015 .009 0	5 1 5 3 10 3 1 3 1 5 1 5 1 4 12 1 3 1 5	0 0 0 .147 117 .244 194 .291 232 .288 229 .234 187 .13 105 .017 024 .178 229 .379 484	3 1 3 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477	M13	1 2 3 4 5 6 7 8 9	min max	-59.554 124.859 .178 119.948 .178 115.038 .178 110.127 .178 105.216 .178 100.305 .178 95.394 .178 90.483 .178 85.573 .178 80.662 .178 55.54	1 4 10 4 10 4 10 4 10 4 10 4 10 4 10 4	-166.177 273.752 -344.782 194.185 -244.285 114.617 -143.789 35.05 -43.292 57.204 -44.518 157.701 -124.085 258.197 -203.653 358.694 -283.22 459.19 -362.787 559.687 -442.355 362.787	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	-34.65 .24 -59.601 .924 -45.039 1.608 -30.476 2.293 -15.914 2.977 -2.658 13.21 -2.014 27.773 -1.371 42.335 727 56.897 083 71.459 .48 6.508	5 5 1 5 1 5 1 5 1 5 3 1 3 1 3 1 3 1 3 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	028 .033 0 .008 001 .006 012 .004 024 .003 028 .004 025 .006 015 .009 0 .028 0	5 1 5 3 10 3 1 3 1 5 1 5 1 4 12 1 3 1 5	0 0 0 .147 117 .244 194 .291 232 .288 229 .234 187 .13 105 .017 024 .178 229 .379 484	3 1 3 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478	M13	1 2 3 4 5 6 7 8 9	min max	-59.554 124.859 .178 119.948 .178 115.038 .178 110.127 .178 105.216 .178 100.305 .178 95.394 .178 90.483 .178 85.573 .178 80.662 .178 55.54 .178	1 4 10 4 10 4 10 4 10 4 10 4 10 4 10 4	-166.177 273.752 -344.782 194.185 -244.285 114.617 -143.789 35.05 -43.292 57.204 -44.518 157.701 -124.085 258.197 -203.653 358.694 -283.22 459.19 -362.787 559.687 -442.355 362.787 -459.19	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	-34.65 .24 -59.601 .924 -45.039 1.608 -30.476 2.293 -15.914 2.977 -2.658 13.21 -2.014 27.773 -1.371 42.335 727 56.897 083 71.459 .48 6.508 -56.785	5 5 1 5 1 5 1 5 1 5 3 1 3 1 3 1 3 1 3 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	028 .033 0 .008 001 .006 012 .004 024 .003 028 .004 025 .006 015 .009 0 .028 0 .06 018	5 1 5 3 10 3 1 3 1 5 1 5 1 4 12 1 3 1 5 1 5	0 0 0 .147 117 .244 194 .291 232 .288 229 .234 187 .13 105 .017 024 .178 229 .379 484 .178	3 1 3 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480	M13	1 2 3 4 5 6 7 8 9 10	min max	-59.554 124.859 .178 119.948 .178 115.038 .178 110.127 .178 105.216 .178 100.305 .178 95.394 .178 90.483 .178 85.573 .178 80.662 .178 55.54 .178 50.63 .178	1 4 10 4 10 4 10 4 10 4 10 4 10 4 10 4	-166.177 273.752 -344.782 194.185 -244.285 114.617 -143.789 35.05 -43.292 57.204 -44.518 157.701 -124.085 258.197 -203.653 358.694 -283.22 459.19 -362.787 -559.687 -442.355 362.787 -459.19 283.22 -358.694	3 1 3 1 3 1 3 3 1 3 1 3 1 3 1 3 1 3 1 3	-34.65 .24 -59.601 .924 -45.039 1.608 -30.476 2.293 -15.914 2.977 -2.658 13.21 -2.014 27.773 -1.371 42.335 727 56.897 083 71.459 .48 6.508 -56.785 7.192 -42.223	5 5 1 5 1 5 1 5 1 5 1 5 3 1 3 1 3 1 3 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	028 .033 0 .008 001 .006 012 .004 024 .003 028 .004 025 .006 015 .009 0 .028 0 .06 018	5 1 5 3 10 3 1 3 1 5 1 5 1 4 12 1 3 1 5 1 5	0 0 0 .147 117 .244 194 .291 232 .288 229 .234 187 .13 105 .017 024 .178 229 .379 484 .178 229 .017 024	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481	M13	1 2 3 4 5 6 7 8 9	min max	-59.554 124.859 .178 119.948 .178 115.038 .178 110.127 .178 105.216 .178 100.305 .178 95.394 .178 90.483 .178 85.573 .178 80.662 .178 55.54 .178 50.63 .178	1 4 10 4 10 4 10 4 10 4 10 4 10 4 10 4	-166.177 273.752 -344.782 194.185 -244.285 114.617 -143.789 35.05 -43.292 57.204 -44.518 157.701 -124.085 258.197 -203.653 358.694 -283.22 459.19 -362.787 -559.687 -442.355 362.787 -459.19 283.22 -358.694 203.653	3 1 3 1 3 1 3 3 1 3 1 3 1 3 1 3 1 3 1 3	-34.65 .24 -59.601 .924 -45.039 1.608 -30.476 2.293 -15.914 2.977 -2.658 13.21 -2.014 27.773 -1.371 42.335 727 56.897 083 71.459 .48 6.508 -56.785 7.192 -42.223 7.876	5 5 1 5 1 5 1 5 1 5 1 3 1 3 1 3 1 3 1 1 2 5 1 1 5 5 1 1 5 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	028 .033 0 .008 001 .006 012 .004 024 .003 028 .004 025 .006 015 .009 0 .028 0 .06 018 .028 014	5 1 5 3 10 3 1 3 1 5 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 5	0 0 0 .147 117 .244 194 .291 232 .288 229 .234 187 .13 105 .017 024 .178 229 .379 484 .178 229 .017 024	3 1 3 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482	M13	1 2 3 4 5 6 7 8 9 10 11	min max	-59.554 124.859 .178 119.948 .178 115.038 .178 110.127 .178 105.216 .178 100.305 .178 95.394 .178 90.483 .178 85.573 .178 85.573 .178 80.662 .178 55.54 .178 50.63 .178	1 4 10 4 10 4 10 4 10 4 10 4 10 4 10 4	-166.177 273.752 -344.782 194.185 -244.285 114.617 -143.789 35.05 -43.292 57.204 -44.518 157.701 -124.085 258.197 -203.653 358.694 -283.22 459.19 -362.787 559.687 -442.355 362.787 -459.19 283.22 -358.694 203.653 -258.197	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	-34.65 .24 -59.601 .924 -45.039 1.608 -30.476 2.293 -15.914 2.977 -2.658 13.21 -2.014 27.773 -1.371 42.335 727 56.897 083 71.459 .48 6.508 -56.785 7.192 -42.223 7.876 -27.66	5 5 1 5 1 5 1 5 1 5 1 3 1 3 1 3 1 3 1 1 2 5 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	028 .033 0 .008001 .006012 .004024 .003028 .004025 .006015 .009 0 .028 0 .06018 .028014 .003011 0015	5 1 5 3 10 3 1 3 1 5 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1	0 0 0 .147 117 .244 194 .291 232 .288 229 .234 187 .13 105 .017 024 .178 229 .379 484 .178 229 .017 024 .13 229	3 1 3 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481	M13	1 2 3 4 5 6 7 8 9 10 11	min max	-59.554 124.859 .178 119.948 .178 115.038 .178 110.127 .178 105.216 .178 100.305 .178 95.394 .178 90.483 .178 85.573 .178 80.662 .178 55.54 .178 50.63 .178	1 4 10 4 10 4 10 4 10 4 10 4 10 4 10 4	-166.177 273.752 -344.782 194.185 -244.285 114.617 -143.789 35.05 -43.292 57.204 -44.518 157.701 -124.085 258.197 -203.653 358.694 -283.22 459.19 -362.787 -559.687 -442.355 362.787 -459.19 283.22 -358.694 203.653	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	-34.65 .24 -59.601 .924 -45.039 1.608 -30.476 2.293 -15.914 2.977 -2.658 13.21 -2.014 27.773 -1.371 42.335 727 56.897 083 71.459 .48 6.508 -56.785 7.192 -42.223 7.876	5 5 1 5 1 5 1 5 1 5 3 1 3 1 3 1 3 1 1 2 5 1 1 5 1 1 5 1 1 5 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	028 .033 0 .008 001 .006 012 .004 024 .003 028 .004 025 .006 015 .009 0 .028 0 .06 018 .028 014	5 1 5 3 10 3 1 3 1 5 1 5 1 4 12 1 5 1 5 1 5 1 5 1 1 5 1 1 5 1 5 1 1 5 1 1 5 1 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1	0 0 0 .147 117 .244 194 .291 232 .288 229 .234 187 .13 105 .017 024 .178 229 .379 484 .178 229 .017 024	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1

Schletter, Inc.HCV

Job Number : Standard P\

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	
485		15	max	35.897	4	44.518	1	9.805	4	0	3	.001	5	.288	3
486			min	.178	10	-57.204	3	-1.09	2	0	1_	028	1	229	1
487		16	max	30.986	4	43.292	3	16.026	1	0	3	.006	5	.291	3
488			min	.178	10	-35.05	1	.173	10	0	1	023	1	232	1
489		17	max	26.075	4	143.789	3	30.588	1	0	3	.011	5	.244	3
490			min	.178	10	-114.617	1	1.395	10	0	1	012	1	194	1
491		18	max	21.165	4	244.285	3	45.151	1	0	3	.019	4	.147	3
492			min	.178	10	-194.185	1	2.617	10	0	1	001	10	117	1
493		19	max	17.018	1	344.782	3	59.713	1	0	3	.033	1	0	1
494		13	min	.178	10	-273.752	1	3.696	12	0	1	0	10	0	3
495	M16	1		34.637	5	348.775	2	8.364	5	0	3	.033	1	0	2
	IVITO		max												
496			min	-17.496	1	-166.19	3	-59.558	1	0	2	028	5	0	3
497		2	max	29.726	5	247.323	2	9.049	5	0	3	.007	1	.071	3
498			min	-17.496	1	-118.152	3	-44.995	1	0	2	023	5	149	2
499		3	max	24.816	5	145.871	2	9.733	5	0	3	0	12	.118	3
500			min	-17.496	1	-70.114	3	-30.433	1	0	2	021	4	247	2
501		4	max	19.905	5	44.419	2	10.417	5	0	3	001	12	.141	3
502			min	-17.496	1	-22.075	3	-15.871	1	0	2	024	1	295	2
503		5	max	14.994	5	25.963	3	11.102	5	0	3	002	12	.14	3
504			min	-17.496	1	-57.033	2	-1.727	3	0	2	028	1	292	2
505		6	max	10.083	5	74.001	3	14.236	4	0	3	002	15	.115	3
506			min	-17.496	1	-158.485	2	-1.083	3	0	2	025	1	238	2
507		7	max	5.172	5	122.039	3	27.816	1	0	3	.004	5	.066	3
508			min	-17.496	1	-259.936	2	439	3	0	2	015	1	133	2
509		8	max	1.837	3	170.077	3	42.378	1	0	3	.011	4	.022	2
510		0	min	-17.496	1	-361.388	2	.204	12	0	2	004	3	007	3
		0			_						3				
511		9	max	1.837	3	218.115	3	56.94	1	0		.028	1	.228	2
512		4.0	min	-17.496	1	-462.84	2	.633	12	0	2	004	3	<u>104</u>	3
513		10	max	20.652	5	-9.171	15	71.503	1	0	14	.06	1	.485	2
514			min	-17.496	1	-564.292	2	-2.164	3	0	2	003	3	225	3
515		11	max	15.741	5	462.84	2	5.821	5	0	2	.028	1	.228	2
516			min	-17.454	1	-218.115	3	-56.82	1	0	3	012	5	<u>104</u>	3
517		12	max	10.83	5	361.388	2	6.505	5	0	2	.003	2	.022	2
518			min	-17.454	1	-170.077	3	-42.258	1	0	3	009	5	007	3
519		13	max	5.919	5	259.936	2	7.189	5	0	2	0	10	.066	3
520			min	-17.454	1	-122.039	3	-27.696	1	0	3	015	1	133	2
521		14	max	1.009	5	158.485	2	7.874	5	0	2	0	12	.115	3
522			min	-17.454	1	-74.001	3	-13.133	1	0	3	025	1	238	2
523		15	max	173	10	57.033	2	9.094	4	0	2	.003	5	.14	3
524			min	-17.454	1	-25.963	3	-1.115	2	0	3	028	1	292	2
525		16	max		10	22.075	3	15.991	1	0	2	.007	5	.141	3
526			min		1	-44.419	2	.158	10	0	3	023	1	295	2
527		17	max	173	10	70.114	3	30.553	1	0	2	.012	5	.118	3
528		17	min	-17.454	1	-145.871	2	1.38	10	0	3	012	1	247	2
		40		173						_					
529		18			10	118.152	3	45.116	1	0	2	.019	4	.071	3
530		40	min	-22.309	4	-247.323	2	1.953	12	0	3	001	10	149	2
531		19	max	173	10	166.19	3	59.678	1	0	2	.033	1	0	2
532			min	-27.219	4	-348.775	2	2.382	12	0	3	0	10	0	3
533	M15	1	max	0	1	.923	3	.107	3	0	1_	0	1	0	1
534			min	-59.178	3	0	1	0	1	0	3	0	3	0	1
535		2	max	0	1	.821	3	.107	3	0	1_	0	1	0	1
536			min	-59.232	3	0	1	0	1	0	3	0	3	0	3
537		3	max	0	1	.718	3	.107	3	0	1	0	1	0	1
538			min	-59.286	3	0	1	0	1	0	3	0	3	0	3
539		4	max	0	1	.616	3	.107	3	0	1	0	1	0	1
540			min	-59.34	3	0	1	0	1	Ö	3	0	3	0	3
541		5	max	0	1	.513	3	.107	3	0	1	0	1	0	1
UTI			παλ	U		.010		.101						<u> </u>	

: Schletter, Inc. : HCV

Job Number : Model Name : Standard PVM

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]	LC	z Shear[lb]		Torque[k-ft]		y-y Mome		z-z Mome	
542			min	-59.394	3	0	1	0	1	0	3	0	3	0	3
543		6	max	0	_1_	.41	3	.107	3	0	1	0	1	0	1
544			min	-59.448	3	0	1	0	1	0	3	0	3	0	3
545		7	max	0	_1_	.308	3	.107	3	0	1_	0	3	0	1
546			min	-59.502	3	0	1	0	1	0	3	0	1	001	3
547		8	max	0	_1_	.205	3	.107	3	0	1	0	3	0	1
548			min	-59.556	3	0	1	0	1	0	3	0	1	001	3
549		9	max	0	<u>1</u>	.103	3	.107	3	0	1	0	3	0	1
550			min	-59.61	3	0	1	0	1	0	3	0	1	001	3
551		10	max	0	<u>1</u>	0	1	.107	3	0	1	0	3	0	1
552			min	-59.664	3	0	1	0	1	0	3	0	1	001	3
553		11	max	0	_1_	0	1	.107	3	0	1	0	3	0	1
554			min	-59.718	3	103	3	0	1	0	3	0	1	001	3
555		12	max	0	1	0	1	.107	3	0	1	0	3	0	1
556			min	-59.772	3	205	3	0	1	0	3	0	1	001	3
557		13	max	0	1	0	1	.107	3	0	1	0	3	0	1
558			min	-59.826	3	308	3	0	1	0	3	0	1	001	3
559		14	max	0	1	0	1	.107	3	0	1	0	3	0	1
560			min	-59.88	3	41	3	0	1	0	3	0	1	0	3
561		15	max	0	1	0	1	.107	3	0	1	0	3	0	1
562			min	-59.934	3	513	3	0	1	0	3	0	1	0	3
563		16	max	0	1	0	1	.107	3	0	1	0	3	0	1
564			min	-59.988	3	616	3	0	1	0	3	0	1	0	3
565		17	max	0	1	0	1	.107	3	0	1	0	3	0	1
566			min	-60.042	3	718	3	0	1	0	3	0	1	0	3
567		18	max	0	1	0	1	.107	3	0	1	0	3	0	1
568			min	-60.095	3	821	3	0	1	0	3	0	1	0	3
569		19	max	0	1	0	1	.107	3	0	1	0	3	0	1
570			min	-60.149	3	923	3	0	1	0	3	0	1	0	1
571	M16A	1	max	0	2	2.134	4	.233	4	0	3	0	3	0	1
572	1411071			-168.798	4	0	2	041	3	0	1	0	4	0	1
573		2	max	0	2	1.897	4	.211	4	0	3	0	3	0	2
574				-168.823	4	0	2	041	3	0	1	0	4	0	4
575		3	max	0	2	1.66	4	.19	4	0	3	0	3	0	2
576			min	-168.848	4	0	2	041	3	0	1	0	4	001	4
577		4	max	0	2	1.423	4	.168	4	0	3	0	3	0	2
578			min	-168.872	4	0	2	041	3	0	1	0	1	002	4
579		5	max	0	2	1.185	4	.147	4	0	3	0	3	0	2
580				-168.897	4	0	2	041	3	0	1	0	1	002	4
581		6	max	0	2	.948	4	.125	4	0	3	0	3	0	2
582				-168.922	4	0	2	041	3	0	1	0	1	002	4
583		7	max	0	2	.711	4	.104	4	0	3	0	3	0	2
584				-168.946	4	0	2	041	3	0	1	0	1	002	4
585		8	max	0	2	.474	4	.082	4	0	3	0	5	002	2
586			min	-168.971	4	0	2	041	3	0	1	0	1	003	4
587		9	max	0	2	.237	4	.06	4	0	3	0	5	0	2
588		9	min	-168.996	4	0	2	041	3	0	1	0	1	003	4
589		10	max	0	2	0	1	.04	1	0	3	0	5	003 0	2
		10	min	-169.02	4	0	1	041	3	0	1	0	1	003	4
590		11		_	-		•	.041	1	_		_			_
591		11	max	160.045	2	237	2	.04 041	3	0	3	0	5	0	4
592		10		-169.045	4		4							003	
593		12	max	0	2	0	2	.04	1	0	3	0	5	0	2
594		40	min		4	474	4	041	3	0	1	0	1	003	4
595		13	max	0	11_	0	2	.04	1	0	3	0	5	0	2
596		4.4	min	-169.094	4_	711	4	041	3	0	1	0	3	002	4
597		14	max	.06	11_	0	2	.04	1	0	3	0	5	0	2
598			mın	-169.119	4	948	4	052	5	0	1	0	3	002	4

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
599		15	max	.12	11	0	2	.04	1	0	3	0	4	0	2
600			min	-169.143	4	-1.185	4	073	5	0	1	0	3	002	4
601		16	max	.18	11	0	2	.04	1	0	3	0	4	0	2
602			min	-169.168	4	-1.423	4	095	5	0	1	0	3	002	4
603		17	max	.24	11	0	2	.04	1	0	3	0	1	0	2
604			min	-169.193	4	-1.66	4	116	5	0	1	0	3	001	4
605		18	max	.3	11	0	2	.04	1	0	3	0	1	0	2
606			min	-169.217	4	-1.897	4	138	5	0	1	0	3	0	4
607		19	max	.36	11	0	2	.04	1	0	3	0	1	0	1
608			min	-169.242	4	-2.134	4	159	5	0	1	0	3	0	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio		(n) L/z Ratio	LC
1	M2	1	max	.002	1	.005	2	.003	1	9.995e-4	5	NC	3	NC	1
2			min	003	3	004	3	01	5	-2.415e-4	1	5537.415	2	NC	1
3		2	max	.002	1	.005	2	.003	1	1.019e-3	5	NC	3	NC	1
4			min	003	3	004	3	009	5	-2.317e-4	1	6016.825	2	NC	1
5		3	max	.002	1	.005	2	.002	1	1.038e-3	5	NC	1	NC	1
6			min	002	3	004	3	009	5	-2.218e-4	1	6582.598	2	NC	1
7		4	max	.002	1	.004	2	.002	1	1.058e-3	5	NC	1	NC	1
8			min	002	3	004	3	008	5	-2.12e-4	1	7255.117	2	NC	1
9		5	max	.002	1	.004	2	.002	1	1.077e-3	5	NC	1	NC	1
10			min	002	3	004	3	008	5	-2.021e-4	1	8061.424	2	NC	1
11		6	max	.001	1	.003	2	.002	1	1.096e-3	5	NC	1	NC	1
12			min	002	3	004	3	008	5	-1.922e-4	1	9037.989	2	NC	1
13		7	max	.001	1	.003	2	.002	1	1.116e-3	5	NC	1	NC	1
14			min	002	3	003	3	007	5	-1.824e-4	1	NC	1	NC	1
15		8	max	.001	1	.003	2	.001	1	1.135e-3	5	NC	1	NC	1
16			min	002	3	003	3	007	5	-1.725e-4	1	NC	1	NC	1
17		9	max	.001	1	.002	2	.001	1	1.155e-3	5	NC	1	NC	1
18			min	002	3	003	3	006	5	-1.627e-4	1	NC	1	NC	1
19		10	max	.001	1	.002	2	.001	1	1.174e-3	5	NC	1	NC	1
20			min	001	3	003	3	006	5	-1.528e-4	1	NC	1	NC	1
21		11	max	0	1	.002	2	0	1	1.193e-3	5	NC	1	NC	1
22			min	001	3	003	3	005	5	-1.43e-4	1	NC	1	NC	1
23		12	max	0	1	.001	2	0	1	1.213e-3	5	NC	1	NC	1
24			min	001	3	002	3	005	5	-1.331e-4	1	NC	1	NC	1
25		13	max	0	1	.001	2	0	1	1.232e-3	5	NC	1	NC	1
26			min	0	3	002	3	004	5	-1.233e-4	1	NC	1	NC	1
27		14	max	0	1	0	2	0	1	1.251e-3	5	NC	1	NC	1
28			min	0	3	002	3	003	5	-1.134e-4	1	NC	1	NC	1
29		15	max	0	1	0	2	0	1	1.271e-3	5	NC	1	NC	1
30			min	0	3	001	3	003	5	-1.035e-4	1	NC	1	NC	1
31		16	max	0	1	0	2	0	1	1.29e-3	5	NC	1	NC	1
32			min	0	3	001	3	002	5	-9.369e-5	1	NC	1	NC	1
33		17	max	0	1	0	2	0	1	1.31e-3	5	NC	1	NC	1
34			min	0	3	0	3	001	5	-8.384e-5	1	NC	1	NC	1
35		18	max	0	1	0	2	0	1	1.329e-3	5	NC	1	NC	1
36			min	0	3	0	3	0	5	-7.398e-5	1	NC	1	NC	1
37		19	max	0	1	0	1	0	1	1.348e-3	5	NC	1	NC	1
38			min	0	1	0	1	0	1	-6.412e-5	1	NC	1	NC	1
39	M3	1	max	0	1	0	1	0	1	2.918e-5	1	NC	1	NC	1
40			min	0	1	0	1	0	1	-6.138e-4	5	NC	1	NC	1
41		2	max	0	9	0	2	.003	5	3.864e-5	1	NC	1	NC	1
42			min	0	2	0	3	0	1	-6.18e-4	5	NC	1	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio	LC	· ·	LC
43		3	max	0	9	0	2	.007	5	4.81e-5	1_	NC	1_	NC	1
44			min	0	2	001	3	0	1	-6.221e-4	5	NC	1	NC	1
45		4	max	0	9	0	2	.01	4	5.756e-5	1	NC	1	NC	1
46			min	0	2	002	3	0	1	-6.262e-4	5	NC	1	NC	1
47		5	max	0	9	0	2	.013	4	6.701e-5	1	NC	1	NC	1
48			min	0	2	003	3	0	1	-6.303e-4	5	NC	1	NC	1
49		6	max	0	9	0	2	.016	4	7.647e-5	1	NC	1	NC	1
50			min	0	2	003	3	0	1	-6.345e-4	5	NC	1	NC	1
51		7	max	0	9	0	2	.02	4	8.593e-5	1	NC	1	NC	1
52		-	min	0	2	004	3	0		-6.386e-4	5	NC	1	NC	1
53		8	max	0	9	<u>004</u>	2	.023	4	9.539e-5	1	NC	1	NC	1
54		-0	min	0	2	004	3	0		-6.427e-4	5	NC	1	NC	1
											<u> </u>				1
55		9	max	0	9	0	2	.026	4	1.048e-4		NC	1_	NC NC	1
56			min	0	2	005	3	0		-6.469e-4	5	NC	1_	NC	1
57		10	max	0	9	.001	2	.029	4	1.143e-4	_1_	NC	_1_	NC	1
58			min	0	2	005	3	0	10	-6.51e-4	5	NC	1_	NC	1
59		11	max	0	9	.002	2	.032	4	1.238e-4	_1_	NC	_1_	NC	1
60			min	0	2	006	3	0	10	-6.551e-4	5	NC	1_	NC	1
61		12	max	0	9	.002	2	.035	4	1.332e-4	1	NC	1_	NC	1
62			min	0	2	006	3	0	10	-6.593e-4	5	NC	1	NC	1
63		13	max	0	9	.003	2	.038	4	1.427e-4	1	NC	1	NC	1
64			min	0	2	006	3	0	10	-6.634e-4	5	NC	1	NC	1
65		14	max	0	9	.004	2	.04	4	1.521e-4	1	NC	1	NC	1
66			min	0	2	006	3	0	_	-6.675e-4	5	NC	1	NC	1
67		15	max	0	9	.004	2	.043	4	1.616e-4	1	NC	1	NC	1
68		10	min	0	2	007	3	0		-6.717e-4	5	NC	1	NC	1
69		16	max	0	9	.005	2	.046	4	1.71e-4	1	NC	1	NC	1
		10	_	-	2									NC	1
70		47	min	0		007	3	0		-6.758e-4	5	8975.15	2		
71		17	max	0	9	.006	2	.048	4	1.805e-4	1_	NC	3	NC NC	1
72		4.0	min	0	2	007	3	0		-6.799e-4	5	7639.53	2	NC	1
73		18	max	0	9	.007	2	.051	4	1.9e-4	_1_	NC	3	NC	1
74			min	0	2	007	3	0		-6.841e-4	5_	6611.666	2	NC	1
75		19	max	0	9	.008	2	.053	4	1.994e-4	_1_	NC	3_	NC	1
76			min	0	2	007	3	0	10	-6.882e-4	5	5811.84	2	NC	1
77	M4	1	max	.002	1	.006	2	0	10	2.28e-3	5	NC	1_	NC	1
78			min	0	3	005	3	056	4	-2.145e-4	1	NC	1	343.765	4
79		2	max	.002	1	.006	2	0	10	2.28e-3	5	NC	1	NC	1
80			min	0	3	005	3	052	4	-2.145e-4	1	NC	1	374.719	4
81		3	max	.002	1	.006	2	0	10	2.28e-3	5	NC	1	NC	1
82			min	0	3	004	3	047		-2.145e-4	1	NC	1	411.557	4
83		4	max	.001	1	.005	2	0	10	2.28e-3	5	NC	1	NC	1
84			min	0	3	004	3	042		-2.145e-4	1	NC	1	455.828	4
85		5	max	.001	1	.005	2	0	10	2.28e-3	5	NC	1	NC	1
86			min	0	3	004	3	038	4	-2.145e-4	1	NC	1	509.643	4
87		6		.001	1	.005	2	0	10	2.28e-3	•	NC	1	NC	1
88		0	max	0	3	004	3	034	4		<u>5</u> 1	NC NC	1	575.938	4
		7	min							-2.145e-4	•				
89		7	max	.001	1	.004	2	0	10	2.28e-3	5_	NC NC	1_	NC CEO COO	1
90			min	0	3	003	3	029	4	-2.145e-4	1_	NC	1_	658.893	4
91		8	max	.001	1	.004	2	0	10	2.28e-3	5_	NC	_1_	NC	1_
92			min	0	3	003	3	025		-2.145e-4	<u>1</u>	NC	_1_	764.629	4
93		9	max	0	1	.003	2	0	10	2.28e-3	5	NC	_1_	NC	1
94			min	0	3	003	3	021	4	-2.145e-4	1	NC	1_	902.404	4
95		10	max	0	1	.003	2	0	10	2.28e-3	5	NC	1	NC	1
96			min	0	3	002	3	018	4	-2.145e-4	1	NC	1	1086.769	4
97		11	max	0	1	.003	2	0	10	2.28e-3	5	NC	1	NC	1
98			min	0	3	002	3	014	4	-2.145e-4	1	NC	1	1341.691	4
99		12	max	0	1	.002	2	0	10	2.28e-3	5	NC	1	NC	1
			man			.002									

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio	LC		
100			min	0	3	002	3	011	4	-2.145e-4	1	NC	1_	1708.972	4
101		13	max	0	1	.002	2	0	10		5_	NC	<u>1</u>	NC	1
102			min	0	3	002	3	009	4	-2.145e-4	1	NC	1	2267.018	4
103		14	max	0	1	.002	2	0	10	2.28e-3	5	NC	1_	NC	1
104			min	0	3	001	3	006	4	-2.145e-4	1	NC	1	3177.55	4
105		15	max	0	1	.001	2	0	10	2.28e-3	5	NC	1_	NC	1
106			min	0	3	001	3	004	4	-2.145e-4	1	NC	1	4820.49	4
107		16	max	0	1	.001	2	0	10	2.28e-3	5	NC	1	NC	1
108			min	0	3	0	3	002	4	-2.145e-4	1	NC	1	8275.825	4
109		17	max	0	1	0	2	0	10	2.28e-3	5	NC	1	NC	1
110			min	0	3	0	3	001	4	-2.145e-4	1	NC	1	NC	1
111		18	max	0	1	0	2	0	10	2.28e-3	5	NC	1	NC	1
112			min	0	3	0	3	0	4	-2.145e-4	1	NC	1_	NC	1
113		19	max	0	1	0	1	0	1	2.28e-3	5	NC	1	NC	1
114			min	0	1	0	1	0	1	-2.145e-4	1	NC	1	NC	1
115	M6	1	max	.006	1	.018	2	0	1	1.064e-3	4	NC	3	NC	1
116			min	009	3	014	3	009	5	-8.516e-8	2	1651.802	2	8123.232	3
117		2	max	.006	1	.017	2	0	1	1.083e-3	4	NC	3	NC	1
118			min	008	3	013	3	009	5	-8.065e-8	2	1763.365	2	8703.294	3
119		3	max	.006	1	.016	2	0	1	1.102e-3	4	NC	3	NC	1
120			min	008	3	012	3	009	5	-7.614e-8	2	1890.696	2	9382.546	3
121		4	max	.005	1	.015	2	0	1	1.121e-3	4	NC	3	NC	1
122			min	007	3	012	3	008	5	-9.523e-7	11	2036.956	2	NC	1
123		5	max	.005	1	.014	2	0	1	1.14e-3	4	NC	3	NC	1
124			min	007	3	011	3	008	5	-1.978e-6	11	2206.217	2	NC	1
125		6	max	.005	1	.013	2	0	1	1.159e-3	4	NC	3	NC	1
126			min	006	3	01	3	008	5	-3.12e-6	1	2403.809	2	NC	1
127		7	max	.004	1	.011	2	0	1	1.178e-3	4	NC	3	NC	1
128			min	006	3	01	3	007	5	-5.463e-6	1	2636.846	2	NC	1
129		8	max	.004	1	.01	2	0	1	1.197e-3	4	NC	3	NC	1
130			min	005	3	009	3	007	5	-7.806e-6	1	2915.035	2	NC	1
131		9	max	.004	1	.009	2	0	1	1.215e-3	4	NC	3	NC	1
132			min	005	3	008	3	006	5	-1.015e-5	1	3251.973	2	NC	1
133		10	max	.003	1	.008	2	0	1	1.234e-3	4	NC	3	NC	1
134			min	004	3	007	3	006	5	-1.249e-5	1	3667.305	2	NC	1
135		11	max	.003	1	.007	2	0	1	1.253e-3	4	NC	3	NC	1
136			min	004	3	007	3	005	5	-1.483e-5	1	4190.505	2	NC	1
137		12	max	.003	1	.006	2	0	1	1.272e-3	4	NC	3	NC	1
138		, <u> </u>	min	003	3	006	3	005	5	-1.718e-5	1	4867.898	2	NC	1
139		13	max	.002	1	.005	2	0	1	1.291e-3	4	NC	3	NC	1
140		-10	min	003	3	005	3	004	5	-1.952e-5		5776.694	2	NC	1
141		14		.002	1	.004	2	0	1	1.31e-3	4	NC	3	NC	1
142			min	002	3	004	3	003	5	-2.186e-5		7055.874	2	NC	1
143		15	max	.001	1	.003	2	0	1	1.329e-3	4	NC	1	NC	1
144		'	min	002	3	004	3	003	5	-2.421e-5	1	8983.406	2	NC	1
145		16	max	.001	1	.002	2	<u>.000</u>	1	1.348e-3	4	NC	1	NC	1
146		10	min	001	3	003	3	002	5	-2.655e-5	1	NC	1	NC	1
147		17	max	0	1	.002	2	0	1	1.367e-3	4	NC	1	NC	1
148		11/	min	0	3	002	3	001	5	-2.889e-5	1	NC	1	NC	1
149		18	max	0	1	<u>002</u> 0	2	<u>001</u> 0	1	1.386e-3	4	NC	1	NC	1
150		10	min	0	3	0	3	0	5	-3.123e-5	1	NC NC	1	NC	1
151		19	max	0	1	0	1	0	1	1.404e-3	4	NC	+	NC	1
152		18	min	0	1	0	1	0	1	-3.358e-5		NC NC	1	NC NC	1
	M7	1			1	0	1	0			-	NC NC	1	NC NC	
153	IVI /		max	0	1		1	0	1	1.521e-5	1_1		1		1
154		2	min	0		0				-6.393e-4	4	NC NC	_	NC NC	_
155		2	max	0	9	.001	2	.003	4	1.391e-5	1_1	NC NC	1	NC NC	1
156			min	0	2	001	3	0	1	-6.303e-4	4	NC	1	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
157		3	max	0	9	.002	2	.007	4	1.262e-5	1	NC	_1_	NC	1
158			min	0	2	003	3	0	1	-6.212e-4	4	NC	1_	NC	1
159		4	max	0	9	.003	2	.01	4	1.133e-5	1	NC	_1_	NC	1
160			min	0	2	004	3	0	1	-6.122e-4	4_	NC	1_	NC	1
161		5_	max	0	9	.004	2	.014	4	1.004e-5		NC	1_	NC	1
162			min	0	2	006	3	0	1	-6.032e-4	4	NC NC	1_	NC	1
163		6	max	0	9	.006	2	.017	4	8.742e-6	1	NC	1_	NC	1
164		-	min	0	2	007	3	0	1	-5.942e-4	4_	8323.139	2	NC NC	1
165		7	max	0	9	.007	2	.021	4	2.339e-5	3	NC COOZ COO	3	NC	1
166		0	min	0	9	009	2	0 .024	1	-5.852e-4	4	6887.693 NC	2	NC NC	1
167 168		8	max	0	2	.008	3	<u>.024</u> 0	1	3.94e-5 -5.762e-4	3	5832.223	3	NC NC	1
169		9	min	<u> </u>	9	01 .009	2	.027	4	5.541e-5	3	NC	3	NC NC	1
170		9	max	0	2	011	3	<u>.027</u>	1	-5.672e-4	4	5019.427	2	NC NC	1
171		10	max	0	9	.011	2	.03	4	7.143e-5	3	NC	3	NC	1
172		10	min	001	2	012	3	0	1	-5.582e-4	4	4373.107	2	NC	1
173		11	max	0	9	.012	2	.033	4	8.744e-5	3	NC	3	NC	1
174			min	001	2	013	3	0	1	-5.492e-4	4	3847.352	2	NC	1
175		12	max	0	9	.013	2	.036	4	1.035e-4	3	NC	3	NC	1
176		_	min	001	2	015	3	0	1	-5.402e-4	4	3412.604	2	NC	1
177		13	max	0	9	.015	2	.039	4	1.195e-4	3	NC	3	NC	1
178			min	001	2	016	3	0	1	-5.312e-4	4	3048.764	2	NC	1
179		14	max	0	9	.017	2	.042	4	1.355e-4	3	NC	3	NC	1
180			min	002	2	016	3	0	1	-5.222e-4	4	2741.534	2	NC	1
181		15	max	0	9	.019	2	.045	4	1.515e-4	3	NC	3	NC	1
182			min	002	2	017	3	0	1	-5.132e-4	4	2480.356	2	NC	1
183		16	max	0	9	.02	2	.047	4	1.675e-4	3	NC	3	NC	1
184			min	002	2	018	3	0	1	-5.042e-4	4	2257.2	2	NC	1
185		17	max	.001	9	.022	2	.05	4	1.835e-4	3	NC	3	NC	1
186			min	002	2	019	3	0	1	-4.952e-4	4	2065.818	2	NC	1
187		18	max	.001	9	.024	2	.052	4	1.995e-4	3	NC	3	NC	1
188			min	002	2	02	3	0	1	-4.862e-4	4	1901.267	2	NC	1
189		19	max	.001	9	.026	2	.055	4	2.155e-4	3	NC	3	NC	1
190			min	002	2	02	3	0	1	-4.771e-4	4_	1759.582	2	NC	1
191	<u>M8</u>	1_	max	.005	1	.021	2	0	1	2.095e-3	4	NC	_1_	NC	1
192			min	002	3	015	3	057	4	-1.715e-4	3	NC	1_	336.691	4
193		2	max	.005	1	.02	2	0	1	2.095e-3	4	NC	1	NC 007.000	1
194			min	002	3	014	3	053	4	-1.715e-4	3	NC	1_	367.008	4
195		3	max	.005	1	.019	2	0	1	2.095e-3	4	NC	1_	NC 400,000	1
196		4	min	002	3	013	2	048	1	-1.715e-4	<u>3</u> 4	NC NC	<u>1</u> 1	403.089	1
197		4	max	.005		.017	3	0		2.095e-3 -1.715e-4		NC NC	1	NC	
198 199		5	min	002 .004	3	013	2	043 0	1	2.095e-3	3	NC NC	1	446.451 NC	1
200		5	max min	002	3	<u>.016</u> 012	3	039	4	-1.715e-4	3	NC NC	1	499.162	4
201		6	max	.002	1	.015	2	<u>039</u> 0	1	2.095e-3	4	NC	1	NC	1
202		10	min	001	3	011	3	034	4	-1.715e-4	3	NC	1	564.096	4
203		7	max	.004	1	.014	2	0	1	2.095e-3	4	NC	1	NC	1
204		+	min	001	3	01	3	03	4	-1.715e-4	3	NC	1	645.349	4
205		8	max	.003	1	.013	2	<u>05</u>	1	2.095e-3	4	NC	1	NC	1
206			min	001	3	009	3	026	4	-1.715e-4	3	NC	1	748.916	4
207		9	max	.003	1	.012	2	<u>.020</u> 0	1	2.095e-3	4	NC	1	NC	1
208		 	min	001	3	008	3	022	4	-1.715e-4	3	NC	1	883.864	4
209		10	max	.003	1	.01	2	0	1	2.095e-3	4	NC	1	NC	1
210		1.5	min	0	3	008	3	018	4	-1.715e-4	3	NC	1	1064.449	_
211		11	max	.002	1	.009	2	0	1	2.095e-3	4	NC	1	NC	1
212			min	0	3	007	3	015	4	-1.715e-4	3	NC	1	1314.145	_
213		12	max	.002	1	.008	2	0	1	2.095e-3	4	NC	1	NC	1
					• •					,	_		_		

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
214			min	0	3	006	3	012	4	-1.715e-4	3	NC	1_	1673.898	
215		13	max	.002	1	.007	2	0	1	2.095e-3	4_	NC	_1_	NC	1
216			min	0	3	005	3	009	4	-1.715e-4	3	NC	1_	2220.508	
217		14	max	.002	1	.006	2	0	1	2.095e-3	4_	NC	1_	NC	1
218		45	min	0	3	004	3	006	4	-1.715e-4	3	NC NC	1_	3112.384	
219		15	max	.001	1	.005	2	0	1	2.095e-3	4	NC NC	1_	NC	1
220		4.0	min	0	3	003	3	004	4	-1.715e-4	3	NC NC	1_	4721.671	4
221		16	max	0	3	.003	2	0	1	2.095e-3	3	NC NC	1	NC	1
222		17	min	0	1	003	3	002	4	-1.715e-4		NC NC	1	8106.24	4
223 224		17	max min	<u> </u>	3	.002 002	3	0 001	4	2.095e-3 -1.715e-4	<u>4</u> 3	NC NC	1	NC NC	1
225		18	max	0	1	.002	2	<u>001</u> 0	1	2.095e-3	4	NC NC	1	NC NC	1
226		10	min	0	3	0	3	0	4	-1.715e-4	3	NC	1	NC	1
227		19	max	0	1	0	1	0	1	2.095e-3	4	NC	1	NC	1
228		13	min	0	1	0	1	0	1	-1.715e-4	3	NC	1	NC	1
229	M10	1	max	.002	1	.005	2	0	3	2.571e-4	1	NC	3	NC	1
230	IVIIO		min	002	3	005	3	004	4	-3.58e-4	3	5548.461	2	NC	1
231		2	max	.002	1	.005	2	0	3	2.446e-4	1	NC	3	NC	1
232		Ė	min	002	3	004	3	004	4	-3.479e-4	3	6029.068	2	NC	1
233		3	max	.002	1	.005	2	0	3	2.837e-4	4	NC	1	NC	1
234			min	002	3	004	3	004	4	-3.378e-4	3	6596.296	2	NC	1
235		4	max	.002	1	.004	2	0	3	3.3e-4	4	NC	1	NC	1
236			min	002	3	004	3	004	4	-3.277e-4	3	7270.602	2	NC	1
237		5	max	.002	1	.004	2	0	3	3.764e-4	4	NC	1	NC	1
238			min	002	3	004	3	004	4	-3.176e-4	3	8079.122	2	NC	1
239		6	max	.001	1	.003	2	0	3	4.227e-4	4	NC	1	NC	1
240			min	002	3	004	3	004	4	-3.075e-4	3	9058.464	2	NC	1
241		7	max	.001	1	.003	2	0	3	4.69e-4	4	NC	1_	NC	1
242			min	002	3	004	3	004	4	-2.974e-4	3	NC	1_	NC	1
243		8	max	.001	1	.003	2	0	3	5.154e-4	4	NC	_1_	NC	1
244			min	002	3	003	3	004	4	-2.873e-4	3	NC	1_	NC	1
245		9	max	.001	1	.002	2	0	3	5.617e-4	4	NC	1_	NC	1
246			min	001	3	003	3	003	4	-2.772e-4	3	NC	1_	NC	1
247		10	max	.001	1	.002	2	0	3	6.08e-4	4_	NC	1_	NC NC	1
248		44	min	<u>001</u>	3	003	3	003	4	-2.671e-4	3	NC NC	1_	NC NC	1
249		11	max	0	1	.002	2	0	3	6.544e-4	4	NC	1	NC NC	1
250		40	min	001	3	003	3	003	4	-2.571e-4	3	NC NC	1_	NC NC	1
251		12	max	0	1	.001	2	0	3	7.007e-4	4	NC NC	1_	NC NC	1
252		12	min	0	3	002	3	003	4	-2.47e-4	3	NC NC	1	NC NC	1
253 254		13	max min	<u> </u>	3	.001 002	3	003	3	7.47e-4 -2.369e-4	4	NC NC	1	NC NC	1
255		11	max	0	1	<u>002</u> 0	2	003 0	3	7.933e-4	4	NC NC	1	NC	1
256		14	min	0	3	002	3	002	4	-2.268e-4	3	NC	1	NC	1
257		15	max	0	1	<u>002</u> 0	2	002	3	8.397e-4	4	NC	1	NC	1
258		13	min	0	3	002	3	002	4	-2.167e-4	3	NC	1	NC	1
259		16	max	0	1	<u>002</u> 0	2	- <u>002</u> 0	3	8.86e-4	4	NC	1	NC	1
260		10	min	0	3	001	3	001	4	-2.066e-4	3	NC	1	NC	1
261		17	max	0	1	0	2	0	3	9.323e-4	4	NC	1	NC	1
262			min	0	3	0	3	0	4	-1.965e-4	3	NC	1	NC	1
263		18	max	0	1	0	2	0	3	9.787e-4	4	NC	1	NC	1
264			min	0	3	0	3	0	4	-1.864e-4	3	NC	1	NC	1
265		19	max	0	1	0	1	0	1	1.025e-3	4	NC	1	NC	1
266			min	0	1	0	1	0	1	-1.763e-4	3	NC	1	NC	1
267	M11	1	max	0	1	0	1	0	1	8.048e-5	3	NC	1	NC	1
268			min	0	1	0	1	0	1	-4.672e-4	4	NC	1	NC	1
269		2	max	0	9	0	2	.003	4	6.456e-5	3	NC	1	NC	1
270			min	0	2	0	3	0	3	-5.17e-4	4	NC	1	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	I C	(n) I /v Ratio	I C	(n) I /z Ratio	IC
271		3	max	0	9	0	2	.005	4	4.864e-5	3	NC	1	NC	1
272			min	0	2	001	3	0	3	-5.668e-4	4	NC	1	9037.956	4
273		4	max	0	9	0	2	.008	4	3.272e-5	3	NC	1	NC	1
274			min	0	2	002	3	001	3	-6.166e-4	4	NC	1	5957.257	4
275		5	max	0	9	0	2	.01	4	1.68e-5	3	NC	1	NC	1
276			min	0	2	003	3	001	3	-6.664e-4	4	NC	1	4428.822	4
277		6	max	0	9	0	2	.013	4	8.768e-7	3	NC	1	NC	1
278			min	0	2	003	3	002	3	-7.163e-4	4	NC	1	3519.844	4
279		7	max	0	9	0	2	.016	4	-8.533e-7	10	NC	1	NC	1
280			min	0	2	004	3	002	3	-7.661e-4	4	NC	1	2919.538	4
281		8	max	0	9	0	2	.018	5	-9.299e-7	10	NC	1	NC	1
282			min	0	2	005	3	002	3	-8.159e-4	4	NC	1	2494.783	5
283		9	max	0	9	0	2	.021	5	-1.007e-6	10	NC	1	NC	1
284			min	0	2	005	3	002	3	-8.657e-4	4	NC	1	2176.64	5
285		10	max	0	9	.001	2	.024	5	-1.083e-6	10	NC	1	NC	1
286			min	0	2	006	3	002	3	-9.156e-4	4	NC	1	1931.436	5
287		11	max	0	9	.002	2	.026	5	-1.16e-6	10	NC	1_	NC	1
288			min	0	2	006	3	002	3	-9.654e-4	4	NC	1	1736.797	5
289		12	max	0	9	.002	2	.029	5	-1.236e-6	10	NC	1_	NC	1
290			min	0	2	006	3	002	3	-1.015e-3	4	NC	1	1578.494	5
291		13	max	0	9	.003	2	.032	5	-1.313e-6	10	NC	_1_	NC	1
292			min	0	2	006	3	002	3	-1.065e-3	4	NC	1_	1447.049	5
293		14	max	0	9	.004	2	.034	5	-1.389e-6	<u>10</u>	NC	_1_	NC	1_
294			min	0	2	007	3	002	3	-1.115e-3	4	NC	1_	1335.899	
295		15	max	00	9	.004	2	.037	5	-1.466e-6	10	NC	_1_	NC	1_
296			min	0	2	007	3	002	3	-1.165e-3	4	NC	1_	1240.359	5
297		16	max	0	9	.005	2	.04	5	-1.543e-6	<u>10</u>	NC	_1_	NC	1
298			min	0	2	007	3	002	1	-1.215e-3	4_	8987.357	2	1156.991	5
299		17	max	0	9	.006	2	.042	5	-1.619e-6	10	NC	3	NC	1
300			min	0	2	007	3	003	1_	-1.264e-3	4	7648.752	2	1083.222	5
301		18	max	0	9	.007	2	.045	5	-1.696e-6	10	NC	3	NC	1
302			min	0	2	007	3	003	1	-1.314e-3	4	6618.851	2	1017.086	
303		19	max	0	9	.008	2	.048	5	-1.772e-6	10	NC	3	NC	1
304	1440	_	min	0	2	007	3	003	1	-1.364e-3	4	5817.606	2	957.069	5
305	M12	1	max	.002	1	.006	2	.003	1	2.846e-3	4	NC	1	NC 000 500	2
306			min	0	3	005	3	053	5	1.509e-6	10	NC NC	1_	366.538	5
307		2	max	.002	1	.006	2	.002	1	2.846e-3	4	NC	1_	NC 200 F04	2
308		_	min	0	3	005	3	048	5	1.509e-6	10	NC NC	1_	399.534	5
309		3	max	.002	1	.006	2	.002	1	2.846e-3	4	NC	1_1	NC	2
310		4	min	0	3	004	3	044	5	1.509e-6	<u>10</u>	NC NC	1	438.802 NC	5
311		4	max	.001	1	.005	2	.002	1	2.846e-3	4		1		1
312		E	min	<u> </u>	3	004 .005	2	04 .002	5	1.509e-6	<u>10</u>	NC NC	1	485.992	5
313		5	max	0 <u></u>	3	005		036	1	2.846e-3	4	NC NC	<u>1</u> 1	NC 543.355	5
314		6	min max	.001	1	004 .005	2	036 .001	<u>5</u>	1.509e-6 2.846e-3	<u>10</u> 4	NC NC	1	NC	1
316		0	min	0	3	005	3	031	5	1.509e-6	10	NC NC	1	614.019	5
317		7	max	.001	1	.004	2	.001	1	2.846e-3	4	NC	1	NC	1
318		-	min	0	3	003	3	028	5	1.509e-6	10	NC NC	1	702.44	5
319		8	max	.001	1	.004	2	.001	1	2.846e-3	4	NC	1	NC	1
320		0	min	0	3	003	3	024	5	1.509e-6	10	NC NC	1	815.141	5
321		9	max	0	1	.003	2	<u>024</u> 0	1	2.846e-3	4	NC	1	NC	1
322		9	min	0	3	003	3	02	5	1.509e-6	10	NC	1	961.989	5
323		10	max	0	1	.003	2	0	1	2.846e-3	4	NC	1	NC	1
324		10	min	0	3	002	3	017	5	1.509e-6	10	NC	1	1158.492	5
325		11	max	0	1	.003	2	017	1	2.846e-3	4	NC	1	NC	1
326			min	0	3	002	3	014	5	1.509e-6	10	NC	1	1430.193	_
327		12	max	0	1	.002	2	0	1	2.846e-3	4	NC	1	NC	1
UZI		14	πιαλ	U		.002		<u> </u>		<u>∠.∪⊤∪</u> 0-3		110		110	

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

000	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
328		40	min	0	3	002	3	011	5	1.509e-6	10	NC NC	1_	1821.641	5
329		13	max	0	1	.002	2	0	1	2.846e-3	4	NC NC	1	NC 0440.007	1
330		144	min	0	3	002	3	008	5	1.509e-6	<u>10</u>	NC NC	1_	2416.397	5
331		14	max	0	1	.002	2	0	1	2.846e-3	4	NC	1	NC 0000 04	1
332		4.5	min	0	3	001	3	006	5	1.509e-6	10	NC NC	1_	3386.81	5
333		15	max	0	1	.001	2	0	1	2.846e-3	4	NC	1	NC	1
334		10	min	0	3	001	3	004	5	1.509e-6	10	NC NC	1_	5137.769	5
335		16	max	0	1	.001	2	0	1	2.846e-3	4	NC	1	NC	1
336		47	min	0	3	0	3	002	5	1.509e-6	<u>10</u>	NC NC	1_	8820.212	5
337		17	max	0	1	0	2	0	1	2.846e-3	4	NC NC	1	NC NC	1
338		10	min	0	3	0	3	001	5	1.509e-6	10	NC NC	1_	NC NC	1
339		18	max	0	1	0	2	0	1	2.846e-3	4	NC	1	NC	1
340		10	min	0	3	0	3	0	5	1.509e-6	<u>10</u>	NC NC	1_	NC	1
341		19	max	0	1	0	1	0	1	2.846e-3	4	NC	1_	NC	1
342	B.4.4		min	0	1	0	1	0	1	1.509e-6	10	NC	1_	NC NC	1
343	<u>M1</u>	1_	max	.005	3	.021	3	.005	5	8.376e-3	1_	NC	1	NC NC	1
344		_	min	005	2	<u>019</u>	1	0	1	-1.034e-2	3	NC	1_	NC	1
345		2	max	.005	3	.011	3	.007	5	4.085e-3	1_	NC	4	NC	1
346			min	005	2	01	1	002	1	-5.09e-3	3_	4999.456	3	NC	1
347		3	max	.005	3	.002	3	.01	5	1.943e-4	5_	NC	4_	NC	1
348			min	005	2	002	1	003	1	-1.259e-4	<u>1</u>	2596.174	3	9993.366	5
349		4	max	.005	3	.006	2	.012	5	1.873e-4	5	NC	4_	NC	1
350		_	min	006	2	005	3	003	1_	-1.017e-4	1_	1857.912	2	6294.748	5
351		5	max	.005	3	.012	2	.015	5	1.803e-4	5	NC	4	NC	1
352			min	006	2	011	3	003	1_	-7.741e-5	<u>1</u>	1476.081	2	4497.945	5
353		6	max	.005	3	.017	2	.018	5	1.732e-4	5	NC	4_	NC	1
354			min	006	2	016	3	003	1	-5.316e-5	1_	1258.491	2	3452.202	5
355		7	max	.005	3	.021	2	.022	5	1.662e-4	5	NC	_5_	NC	1
356			min	006	2	02	3	003	1	-2.916e-5	9	1124.869	2	2776.777	5
357		8	max	.005	3	.024	2	.025	5	1.592e-4	_5_	NC	_5_	NC	1
358			min	006	2	022	3	002	1	-1.195e-5	9	1041.714	2	2309.717	5
359		9	max	.005	3	.026	2	.029	5	1.551e-4	4_	NC	5_	NC	1
360			min	006	2	023	3	002	1	7.908e-7	10	993.246	2	1965.934	4
361		10	max	.005	3	.027	2	.032	4	1.534e-4	4_	NC	5_	NC	1
362		1.4	min	006	2	<u>024</u>	3	0	1	9.576e-7	10	971.99	2	1700.479	4
363		11	max	.005	3	.027	2	.036	4	1.517e-4	4	NC	5	NC	1
364		1.0	min	006	2	023	3	0	9	1.124e-6	10	975.335	2	1497.669	4
365		12	max	.005	3	.025	2	.04	4	1.5e-4	4	NC	5	NC	1
366		1.0	min	006	2	021	3	0	10	1.291e-6		1004.535	2	1339.344	4
367		13	max	.005	3	.022	2	.043	4	1.484e-4	4	NC 1005.04	5_	NC	1
368		111	min	006	2	018	3	0		1.458e-6				1213.681	
369		14		.005	3	.018	2	.047	4	1.467e-4	4	NC	4_	NC 4440.004	1
370		4-	min	006	2	014	3	0	10	1.625e-6		1170.847	2	1112.691	4
371		15	max	.005	3	.012	2	.05	4	1.651e-4	1_	NC	4_	NC 4000 005	1
372		10	min	006	2	01	3	0		1.792e-6		1349.589	2	1030.825	
373		16	max	.005	3	.005	2	.053	4	3.188e-4	4	NC 4070.000	4_	NC 004 400	1
374		4.7	min	006	2	004	3	0	10	1.935e-6	10	1670.603	2	964.128	4
375		17	max	.005	3	.002	3	.056	4	4.666e-3	4	NC	4_	NC	1
376		1.0	min	006	2	003	2	0	10	1.513e-6	10	2348.385	2	909.779	4
377		18	max	.005	3	.009	3	.059	4	5.271e-3	2	NC 4500,005	4_	NC 005.505	1
378		40	min	006	2	013	2	0	10	-2.595e-3	3	4536.925	2	865.535	4
379		19	max	.005	3	.016	3	.061	4	1.061e-2	2	NC	1	NC	1
380			min	006	2	024	2	0	1	-5.276e-3	3	NC	1_	830.737	4
381	<u>M5</u>	1_	max	.014	3	.067	3	.005	5	8.041e-6	4_	NC		NC	1
382			min	018	2	063	1	0	1	0	<u>1</u>	NC	1_	NC NC	1
383		2	max	.014	3	.036	3	.007	5	9.064e-5	5_	NC	4_	NC NC	1
384			min	018	2	033	1	0	1	-1.952e-5	1	1561.503	3	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]						(n) L/z Ratio	
385		3	max	.014	3	.008	3	.009	5	1.719e-4	5_	NC 005,000	5_	NC	1
386		4	min	018	2	005	1	0	1	-3.865e-5	<u>1</u>	805.689	1_	NC NC	1
387		4	max	.014	3	.019	2	.012	5	1.789e-4	5_	NC 500.407	5	NC	1
388		_	min	018	2	016	3	0	1	-3.644e-5	9	568.137	1_	NC	1
389		5	max	.014	3	.039	2	.016	5	1.859e-4	5_	NC 450.0	5_	NC	1_
390			min	018	2	036	3	0	1	-3.425e-5	9	453.8	1_	NC NC	1
391		6	max	.014	3	.056	2	.019	5	1.929e-4	5_	NC	5	NC	1_
392		_	min	018	2	051	3	0	1	-3.207e-5	9	387.21	2	NC	1_
393		7	max	.014	3	.07	2	.023	5	1.999e-4	5_	NC 0.45.05	5	NC	1
394			min	019	2	063	3	0	1	-2.988e-5	9_	345.95	2	NC NC	1
395		8	max	.014	3	.08	2	.027	5	2.069e-4	5_	NC	5	NC	1_
396			min	019	2	07	3	0	1	-2.77e-5	9	320.26	2	NC NC	1
397		9	max	.014	3	.086	2	.03	4	2.138e-4	5_	NC	5	NC	1_
398		4.0	min	019	2	074	3	0	1	-2.551e-5	9	305.266	2	NC	1
399		10	max	.014	3	.089	2	.034	4	2.208e-4	5_	NC	5	NC	1_
400			min	<u>019</u>	2	075	3	0	1	-2.333e-5	9_	298.661	2	NC	1
401		11	max	.014	3	.087	2	.038	4	2.278e-4	5	NC	5	NC	1_
402			min	019	2	072	3	0	1	-2.114e-5	9	299.635	2	NC	1_
403		12	max	.014	3	.082	2	.042	4	2.348e-4	5	NC	5	NC	1_
404			min	019	2	066	3	0	1	-1.896e-5	9	308.571	2	NC	1
405		13	max	.014	3	.072	2	.045	4	2.418e-4	5	NC	5_	NC	1
406			min	019	2	057	3	0	1	-1.677e-5	9	327.234	2	NC	1_
407		14	max	.014	3	.058	2	.049	4	2.488e-4	5	NC	5	NC	_1_
408			min	019	2	046	3	0	1	-1.459e-5	9	359.653	2	NC	1
409		15	max	.014	3	.04	2	.052	4	2.562e-4	4_	NC	5	NC	1_
410			min	019	2	031	3	0	1	-1.24e-5	9	414.612	2	NC	1
411		16	max	.014	3	.017	2	.055	4	4.364e-4	4_	NC	5_	NC	1_
412			min	019	2	014	3	0	1	-1.124e-5	9	513.377	2	NC	1
413		17	max	.014	3	.005	3	.057	4	4.714e-3	4	NC	5	NC	1_
414			min	019	2	01	2	0	1	-3.807e-5	1	722.199	2	NC	1
415		18	max	.014	3	.027	3	.059	4	2.421e-3	4	NC	4	NC	1
416			min	019	2	042	2	0	1	-1.957e-5	1	1395.832	2	NC	1
417		19	max	.014	3	.05	3	.061	4	3.48e-6	5	NC	1_	NC	1
418			min	019	2	077	2	0	1	-3.386e-7	3	NC	1	NC	1
419	M9	1	max	.005	3	.021	3	.004	5	1.035e-2	3	NC	1	NC	1
420			min	005	2	019	1	001	1	-8.376e-3	1	NC	1	NC	1
421		2	max	.005	3	.011	3	.004	5	5.141e-3	3	NC	4	NC	1
422			min	005	2	01	1	0	9	-4.13e-3	1	5001.531	3	NC	1
423		3	max	.005	3	.002	3	.004	4	3.768e-5	1	NC	4	NC	1
424			min	005	2	002	1	0	3	-3.524e-5	5	2597.281	3	NC	1
425		4	max	.005	3	.006	2	.005	4	2.022e-5	3	NC	4	NC	1
426			min	005	2	005	3	001	3	-5.203e-5	5	1858.254	2	NC	1
427		5	max	.005	3	.012	2	.006	4	1.065e-5	2	NC	4	NC	1
428			min	005	2	011	3	002	3	-7.205e-5		1476.367	2	NC	1
429		6	max	.005	3	.017	2	.008	4	4.476e-6	2	NC	4	NC	1
430			min	006	2	016	3	002	3	-9.274e-5	4	1258.747	2	NC	1
431		7	max	.005	3	.021	2	.011	4	-3.197e-7	10	NC	5	NC	1
432			min	006	2	02	3	003	3	-1.134e-4	4	1125.108	2	6640.443	4
433		8	max	.005	3	.024	2	.014	4	-4.945e-7	10	NC	5	NC	1
434			min	006	2	022	3	003	3	-1.341e-4		1041.945	2	4610.767	4
435		9	max	.005	3	.026	2	.017	4	-6.693e-7	10	NC	5	NC	1
436			min	006	2	023	3	003	3	-1.548e-4	4	993.475	2	3428.712	4
437		10	max	.005	3	.027	2	.021	5	-8.44e-7	10	NC	5	NC	1
438			min	006	2	024	3	003	3	-1.755e-4	4	972.222	2	2676.895	4
439		11	max	.005	3	.027	2	.026	5	-1.019e-6		NC	5	NC	1
440			min	006	2	023	3	003	3	-1.962e-4		975.576	2	2167.787	4
441		12	max	.005	3	.025	2	.03	5	-1.194e-6		NC	5	NC	1
			,							,					

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

112	Member	Sec	min	x [in]	LC 2	y [in] 021	LC	z [in]	LC 3	x Rotate [r	LC 4		LC 2		
442		13	min	006 .005	3	.021	2	003 .035		-2.169e-4 -1.368e-6	10	1004.789 NC	5	1806.524 NC	1
444		13	max	006	2	022 018	3	003	3	-1.306e-6 -2.376e-4	4	1065.616	2	1540.324	
445		14	max	.005	3	.018	2	.039	5	-1.543e-6	10	NC	5	NC	1
446		14	min	006	2	014	3	003	1	-2.582e-4	4	1171.156	2	1337.555	5
447		15	max	.005	3	.012	2	.044	5	-1.718e-6	10	NC	4	NC	1
448		13	min	006	2	012	3	003	1	-2.789e-4	4	1349.948	2	1182.3	5
449		16	max	.005	3	.005	2	.048	5	-1.875e-6	10	NC	4	NC	1
450		10	min	006	2	004	3	003	1	-2.206e-4	1	1671.042	2	1061.26	5
451		17	max	.005	3	.002	3	.053	5	4.542e-3	4	NC	4	NC	1
452		11/	min	006	2	003	2	003	1	-1.343e-4	1	2348.955	2	963.084	4
453		18	max	.005	3	.009	3	.057	4	2.604e-3	3	NC	4	NC	1
454			min	006	2	013	2	002	1	-5.271e-3	2	4537.988	2	883.327	4
455		19	max	.005	3	.016	3	.061	4	5.275e-3	3	NC	1	NC	1
456			min	006	2	024	2	0	1	-1.061e-2	2	NC	1	818.86	4
457	M13	1	max	.001	1	.021	3	.005	3	3.648e-3	3	NC	1	NC	1
458			min	004	5	019	1	005	2	-3.412e-3	1	NC	1	NC	1
459		2	max	.001	1	.081	3	.003	3	4.544e-3	3	NC	4	NC	1
460			min	004	5	068	1	004	2	-4.275e-3	1	1800.121	3	NC	1
461		3	max	0	1	.131	3	.008	1	5.44e-3	3	NC	5	NC	2
462			min	004	5	108	1	003	10	-5.138e-3	1	983.062	3	9103.237	1
463		4	max	0	1	.164	3	.013	1	6.336e-3	3	NC	5	NC	2
464			min	004	5	135	1	004	5	-6.001e-3	1	756.704	3	6475.212	1
465		5	max	0	1	.176	3	.015	1	7.232e-3	3	NC	5	NC	2
466			min	004	5	146	1	005	5	-6.863e-3	1	695.544	3	5966.302	1
467		6	max	0	1	.169	3	.012	1	8.128e-3	3	NC	5_	NC	2
468			min	004	5	141	1	006	5	-7.726e-3	1_	730.931	3	6970.848	1
469		7	max	0	1	.145	3	.008	3	9.024e-3	3	NC	5	NC	1
470			min	005	5	123	1	009	2	-8.589e-3	1_	871.13	3	NC	1
471		8	max	0	1	.112	3	.01	3	9.92e-3	3_	NC	_5_	NC	1
472			min	005	5	098	1	013	2	-9.452e-3	1_	1182.947	3	NC	1
473		9	max	0	1	.082	3	.012	3	1.082e-2	3	NC 1701 010	4	NC	1
474		40	min	005	5	074	1	017	2	-1.031e-2	1_	1781.016	3	9599.326	
475		10	max	0	1	.067	3	.014	3	1.171e-2	3_	NC	4_	NC	1
476		4.4	min	005	5	063	1	018	2	-1.118e-2	1_	2323.429	3	8375.474	2
477		11	max	0	1	.082	3	.015	3	1.082e-2	3	NC 1701 015	4	NC 9599.382	1
478 479		12	min	005 0	5	074 .112	3	017 .016	3	-1.032e-2 9.922e-3	<u>1</u> 3	1781.015 NC	<u>3</u> 5	NC	1
480		12	max	005	5	098	1	013	2	-9.453e-3	<u> </u>	1182.947	3	9618.845	
481		13	max	0	1	.145	3	.015	3	9.026e-3	3	NC	5	NC	1
482		13	min	005	5	123	1	009	2	-8.59e-3	1	871.13		9971.571	
483		14		0	1	.169	3	.014	3	8.131e-3	3	NC	5	NC	2
484		17	min	005	5	141	1	006		-7.727e-3	1	730.931	3	6963.382	
485		15	max	0	1	.176	3	.015	1	7.236e-3	3	NC	5	NC	2
486			min	005	5	146	1	005	10	-6.865e-3	1	695.544	3	5969.945	
487		16	max	0	1	.164	3	.013	1	6.341e-3	3	NC	5	NC	2
488			min	005	5	135	1	004	10	-6.002e-3	1	756.704	3	6488.764	
489		17	max	0	1	.131	3	.008	1	5.446e-3	3	NC	5	NC	2
490			min	005	5	108	1	003	10	-5.139e-3	1	983.062	3	9139.022	1
491		18	max	0	1	.081	3	.006	3	4.551e-3	3	NC	4	NC	1
492			min	005	5	068	1	004	2	-4.277e-3	1	1800.122	3	NC	1
493		19	max	0	1	.021	3	.005	3	3.656e-3	3	NC	1	NC	1
494			min	005	5	019	1	005	2	-3.414e-3	1	NC	1	NC	1
495	M16	1	max	0	1	.016	3	.005	3	4.016e-3	2	NC	1	NC	1
496			min	061	4	024	2	006	2	-2.742e-3	3	NC	1	NC	1
497		2	max	0	1	.046	3	.007	4	5.021e-3	2	NC	4	NC	1
498			min	061	4	085	2	004	2	-3.4e-3	3	1753.56	2	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
499		3	max	0	1	.072	3	.012	4	6.026e-3	2	NC	5	NC	2
500			min	061	4	136	2	003	10	-4.057e-3	3	956.385	2	8974.156	
501		4	max	0	1	.09	3	.013	14		2	NC	5	NC	2
502			min	061	4	171	2	004	10	-4.715e-3	3	734.455	2	6539.728	
503		5	max	0	1	.097	3	.014	1	8.036e-3	2	NC	_5_	NC	2
504			min	061	4	184	2	005	10	-5.372e-3	3	672.529	2	6041.358	
505		6	max	0	1	.095	3	.014	3	9.042e-3	2	NC	5_	NC 7400 004	2
506		-	min	061	4	177	2	006	10	-6.03e-3	3	702.354	2	7100.384	
507		7	max	0	1	.085	3	.015	3	1.005e-2	2	NC 000 400	5_	NC NC	1
508		0	min	<u>061</u>	4	1 <u>54</u>	2	009	2	-6.687e-3	3	828.186	2	NC NC	1
509		8	max	0	1	.071	3	.015	3	1.105e-2	2	NC	5	NC NC	1
510			min	061	4	121	2	013	2	-7.345e-3	3	1103.095	2	NC NC	1
511		9	max	0	1 4	.056	3	.015	3	1.206e-2 -8.003e-3	2	NC 4COE 4E4	2	NC	1
512		10	min	061	1	091	3	017 .014			2	1605.454 NC	4	9393.915 NC	1
513 514		10	max min	0 061	4	.05 077	2	014 019	2	1.306e-2 -8.66e-3	3	2034.259	2	8215.159	
515		11	max	<u>001</u> 0	1	.056	3	.013	3	1.206e-2	2	NC	4	NC	1
516			min	061	4	091	2	017	2	-8.002e-3	3	1605.454	2	9393.954	
517		12	max	0	1	.07	3	.012	3	1.105e-2	2	NC	5	NC	1
518		12	min	061	4	121	2	013	2	-7.344e-3	3	1103.095	2	NC	1
519		13	max	0	1	.085	3	.011	3	1.005e-2	2	NC	5	NC	1
520			min	061	4	154	2	009	2	-6.685e-3	3	828.186	2	NC	1
521		14	max	0	1	.095	3	.011	1	9.042e-3	2	NC	5	NC	2
522			min	061	4	177	2	006	10	-6.027e-3	3	702.354	2	7109.92	1
523		15	max	0	1	.097	3	.014	1	8.037e-3	2	NC	5	NC	2
524			min	061	4	184	2	005	10	-5.369e-3	3	672.529	2	6058.322	1
525		16	max	0	1	.09	3	.013	1	7.032e-3	2	NC	5	NC	2
526			min	061	4	171	2	004	5	-4.71e-3	3	734.455	2	6568.263	1
527		17	max	0	1	.072	3	.008	1	6.027e-3	2	NC	5	NC	2
528			min	061	4	136	2	005	5	-4.052e-3	3	956.385	2	9244.564	
529		18	max	0	1	.046	3	.005	3	5.022e-3	2	NC	4	NC	1
530		10	min	061	4	085	2	004	2	-3.394e-3	3	1753.56	2	NC	1
531		19	max	0	1	.016	3	.005	3	4.017e-3	2	NC	1	NC NC	1
532	N445		min	061	4	024	2	006	2	-2.736e-3	3	NC NC	1_	NC NC	1
533 534	M15	1	max	0 0	1	<u>0</u> 	1	<u> </u>	1	3.137e-4	3	NC NC	1	NC NC	1
535		2	min max	0	3	0	5	.004	4	-4.408e-4 7.759e-4	<u>5</u> 3	NC NC	1	NC NC	1
536			min	0	4	002	1	<u>.004</u> 0	3	-5.149e-4	2	NC NC	1	NC	1
537		3	max	0	3	<u>002</u> 0	5	.008	4	1.238e-3	3	NC	1	NC	1
538			min	0	4	005	1	003	3	-9.807e-4	2	NC	1	7995.282	4
539		4	max	0	3	0	5	.012	4	1.7e-3		NC	3	NC	9
540			min	001	4	007	1	006	3	-1.447e-3	2	9160.505	2	5326.013	
541		5	max	0	3	0	5	.015	4	2.163e-3	3	NC	5	NC	9
542			min	002	4	009	1	01	3	-1.923e-3	1	7148.035	2	4094.136	4
543		6	max	0	3	.001	5	.018	4	2.625e-3	3	NC	5	8574.048	9
544			min	002	4	011	1	014	3	-2.4e-3	1	6015.827	2	3320.106	3
545		7	max	0	3	.001	5	.02	4	3.087e-3	3	NC	5	6688.496	9
546			min	003	4	012	1	019	3	-2.878e-3	1	5334.953	2	2584.389	3
547		8	max	0	3	.001	5	.021	4	3.549e-3	3	NC	5	5505.9	9
548			min	003	4	013	1	023	3	-3.355e-3	1_	4926.327	2	2123.961	
549		9	max	0	3	.002	5	.025	1	4.012e-3	3	NC	5_	5280.609	
550			min	004	4	<u>014</u>	1	027	3	-3.833e-3	1_	4706.379	2	1823.513	
551		10	max	0	3	.002	5	.028	1	4.474e-3	3	NC	<u>5</u>	5632.117	
552		4.4	min	004	4	<u>014</u>	1	03	3	-4.31e-3	1_	4636.799	2	1625.442	
553		11	max	0	3	.002	5	.03	1	4.936e-3	3	NC 4706 270	5	6355.921	
554		10	min	005	4	<u>014</u>	1 5	032	3	-4.787e-3	1	4706.379	2	1499.583	
555		12	max	00	3	.002	5	.031	_ 1	5.398e-3	3	NC	5	7679.535	LD

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio	LC	(n) L/z Ratio	
556			min	005	4	013	1	033	3	-5.265e-3	1	4926.327	2	1430.914	3
557		13	max	0	3	.003	5	.031	1	5.86e-3	3	NC	5	NC	15
558			min	006	4	012	1	033	3	-5.742e-3	1	5334.953	2	1414.865	3
559		14	max	0	3	.003	5	.029	1	6.323e-3	3	NC	5	NC	5
560			min	006	4	011	1	031	3	-6.22e-3	1	6015.827	2	1457.321	3
561		15	max	0	3	.003	5	.025	1	6.785e-3	3	NC	5	NC	5
562			min	007	4	01	1	027	3	-6.697e-3	1	7148.035	2	1580.676	3
563		16	max	0	3	.003	5	.019	1	7.247e-3	3	NC	3	NC	4
564			min	007	4	008	1	02	3	-7.175e-3	1	9160.505	2	1846.078	3
565		17	max	0	3	.004	5	.01	1	7.709e-3	3	NC	1	NC	4
566			min	008	4	006	1	011	3	-7.652e-3	1	NC	1	2445.627	3
567		18	max	0	3	.004	5	.001	9	8.172e-3	3	NC	1	NC	4
568			min	008	4	004	9	005	2	-8.13e-3	1	NC	1	4351.405	3
569		19	max	0	3	.004	3	.016	3	8.634e-3	3	NC	1	NC	1
570			min	009	4	002	9	019	2	-8.607e-3	1	NC	1	NC	1
571	M16A	1	max	0	10	0	3	.005	3	2.558e-3	3	NC	1	NC	1
572			min	003	4	002	4	006	2	-2.563e-3	2	NC	1	NC	1
573		2	max	0	10	0	12	.001	9	2.447e-3	3	NC	1	NC	1
574			min	003	4	006	4	001	5	-2.443e-3	2	NC	1	NC	1
575		3	max	0	10	002	12	.005	1	2.336e-3	3	NC	1	NC	4
576			min	002	4	01	4	004	3	-2.323e-3	2	7703.344	4	6935.617	3
577		4	max	0	10	003	12	.008	1	2.225e-3	3	NC	3	NC	4
578			min	002	4	014	4	008	3	-2.203e-3	2	5284.944	4	5266.081	3
579		5	max	0	10	004	12	.009	1	2.113e-3	3	NC	12	NC	9
580			min	002	4	017	4	01	5	-2.083e-3	2	4123.895	4	4539.148	3
581		6	max	0	10	005	12	.011	1	2.002e-3	3	NC	12	NC	10
582			min	002	4	02	4	014	5	-1.963e-3	2	3470.694	4	4217.064	3
583		7	max	0	10	006	12	.011	1	1.891e-3	3		12	NC	10
584			min	002	4	022	4	017	5	-1.843e-3	2	3077.879	4	3743.361	5
585		8	max	0	10	006	12	.011	1	1.78e-3	3		12	NC	10
586			min	002	4	023	4	02	5	-1.723e-3	2	2842.131	4	3140.171	5
587		9	max	0	10	006	12	.01	1	1.669e-3	3		12	NC	9
588			min	002	4	024	4	023	5	-1.603e-3	2	2715.238	4	2786.033	5
589		10	max	0	10	006	12	.009	1	1.558e-3	3		12	NC	9
590			min	001	4	024	4	024	5	-1.483e-3	2	2675.095	4	2592.011	5
591		11	max	0	10	006	12	.008	1	1.447e-3	3		12	NC	9
592			min	001	4	024	4	025	5	-1.363e-3	2	2715.238	4	2517.781	5
593		12	max	0	10	006	12	.007	1	1.335e-3	3		12	NC	9
594		12	min	001	4	023	4	025	5	-1.243e-3	2	2842.131	4	2550.569	5
595		13	max	0	10	006	12	.005	1	1.224e-3	3		12	NC	2
596		10	min	0	4	021	4	023		-1.123e-3	2	3077.879	4	2699.839	5
597		14	max	0	10	005	12	.004	1	1.113e-3	3		12	NC	1
598		17	min	0	4	018	4	021	5	-1.004e-3	2	3470.694	4	3003.473	
599		15	max	0	10	004	12	.002	1	1.002e-3	3		12	NC	1
600		10	min	0	4	016	4	018	5	-8.835e-4	2	4123.895	4	3553.224	5
601		16	max	0	10	003	12	.001	1	8.909e-4	3	NC	3	NC	1
602		10	min	0	4	012	4	014	5	-7.636e-4	2	5284.944	4	4577.779	5
603		17	max	0	10	002	12	<u>014</u> 0	9	7.797e-4	3	NC	1	NC	1
604		17	min	0	4	002	4	009	5	-6.436e-4	2	7703.344	4	6780.912	5
605		18	max	0	10	008 001	12	<u>009</u> 0	9	7.187e-4	4	NC	1	NC	1
606		10	min	0	4	001	4	005	5	-5.237e-4	2	NC NC	1	NC NC	1
607		19	max	0	1	- <u>004</u> 0	1	<u>005</u> 0	1	7.789e-4	4	NC	1	NC	1
608		13	min	0	1	0	1	0	1	-4.037e-4	2	NC	1	NC	1
000			1111111	U		U		U		7.0076-4		INO		INO	

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

<Figure 1>

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	405.0	6.0	101.0	101.2	
Sum	405.0	6.0	101.0	101.2	_

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 405

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{vy} (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N _b (lb)			
17.0	1.00	2500	5.333	10469			
$\phi N_{cb} = \phi (A_N)$	$_{Nc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,n}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
253.92	256.00	0.995	1.00	1.000	10469	0.65	6717

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 K_{sat}

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

f_{short-term}

 $\tau_{k,cr}$ (psi)

1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
τ _{k,cr} (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a))		
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	<i>N</i> _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

 $\tau_{k,cr}$ (psi)

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

le (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)	
4.00	0.50	1.00	2500	8.00	8488	
$\phi V_{cby} = \phi (A_V$	$_{/c}/A_{Vco})\Psi_{ed,V}\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)		
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ
238.44	288.00	0.897	1.000	1.000	8488	0.70

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

I _e (in)	d _a (in)	λ	f'_c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	$_{Vc}$ / A_{Vco}) $\Psi_{ed,V}$ $\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
188.88	278.72	0.903	1.000	1.000	8282	0.70	3549

Shear parallel to edge in x-direction:

I _e (in)	da (in)	λ	f_c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.00	8488		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) Yed, v	$\mathcal{V}_{c,V} \mathcal{V}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
238.44	288.00	1.000	1.000	1.000	8488	0.70	9838

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

- 2/ - (-0	,	(-4 /						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)(2)$	$A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{bx} (lb)	ϕ	ϕV_{cby} (lb)	
188.88	278.72	1.000	1.000	1.000	8282	0.70	7858	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\mathit{CP}} = \phi \min |k_{\mathit{CP}} N_{\mathit{a}} \; ; \; k_{\mathit{CP}} N_{\mathit{Cb}}| = \phi \min |k_{\mathit{CP}} (A_{\mathit{Na}} / A_{\mathit{NaO}}) \, \Psi_{\mathit{ed},\mathit{Na}} \, \Psi_{\mathit{P},\mathit{Na}} N_{\mathit{aO}} \; ; \; k_{\mathit{CP}} (A_{\mathit{Nc}} / A_{\mathit{NcO}}) \, \Psi_{\mathit{ed},\mathit{N}} \, \Psi_{\mathit{CP},\mathit{N}} N_{\mathit{b}}| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A _{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\Psi_{ m extsf{p},Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
A _{Nc} (in ²)	A _{Nco} (in²)	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	N _{cb} (lb)	ϕ	ϕV_{cp} (lb)
253.92	256.00	0.995	1.000	1.000	10469	10334	0.70	13657

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	405	6071	0.07	Pass
Concrete breakout	405	6717	0.06	Pass
Adhesive	405	5365	0.08	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	101	3156	0.03	Pass (Governs)
T Concrete breakout y+	101	4411	0.02	Pass
T Concrete breakout x+	6	3549	0.00	Pass
Concrete breakout y+	6	9838	0.00	Pass
Concrete breakout x+	101	7858	0.01	Pass
Concrete breakout, combined	-	-	0.02	Pass
Pryout	101	13657	0.01	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rati	o Permissible	Status
Sec. D.7.1 0.0	8 0.00	7.5 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Fastening description:

Base Material

State: Cracked

 $\Psi_{c,V}$: 1.0

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

Compressive strength, f'c (psi): 2500

Reinforcement provided at corners: No

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable

Do not evaluate concrete breakout in tension: No

Do not evaluate concrete breakout in shear: No

Location:

Project description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes h_{min} (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Hole condition: Dry concrete Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 9.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	732.5	499.5	0.0	499.5	
2	732.5	499.5	0.0	499.5	
Sum	1465.0	999.0	0.0	999.0	

Maximum concrete compression strain (%): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 1465 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00

Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}} \text{ (Eq. D-7)}$

Kc	λ	ř _c (psi)	n _{ef} (in)	N_b (ID)
17.0	1.00	2500	5.333	10469
$\phi N_{cbg} = \phi (A_{Nc}/A_{Nco}) \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_b$ (Sec. D.4.1 & Eq. D-5)				

A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
314.72	256.00	1.000	0.865	1.00	1.000	10469	0.65	7233

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / $A_{Na0})$ $\Psi_{ed,Na}$ Ψ_{g}	,Na $\Psi_{ec,Na}\Psi_{p,Na}N$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$arPsi_{ m extsf{p},Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
177.03	109.66	0.952	1.021	1.000	1.000	9755	0.55	8418

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/a$	$(a)^{0.2}\sqrt{d_a}\lambda\sqrt{f'_c}C_{a1}^{1.5}$	⁵ (Eq. D-24)					
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	12.00	15593		
$\phi V_{cbx} = \phi (A_1)$	$_{/c}$ / A $_{Vco}$) $\Psi_{ed,V}$ $\Psi_{c,}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
288.00	648.00	0.833	1.000	1.000	15593	0.70	4043

Shear parallel to edge in x-direction:

•	-							
$V_{by} = 7(I_e/a$	$(J_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.2}$	⁵ (Eq. D-24)						
I _e (in)	d _a (in)	λ	f_c' (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	8.00	8488			
$\phi V_{cbgx} = \phi (2$	$2)(A_{Vc}/A_{Vco})\Psi_{ec}$	v $\Psi_{ed, V} \Psi_{c, V} \Psi_{h, V}$	V _{by} (Sec. D.4.1, [D.6.2.1(c) & Eq.	D-22)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{ed,V}$	$\Psi_{c,V}$	$arPsi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbgx} (lb)
284.04	288.00	1.000	1.000	1.000	1.000	8488	0.70	11720

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{\textit{cpg}} = \phi \min k_{\textit{cp}} N_{\textit{ag}} \; ; \; k_{\textit{cp}} N_{\textit{cbg}} = \phi \min k_{\textit{cp}} (A_{\textit{Na}} / A_{\textit{Na0}}) \; \Psi_{\textit{ed},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; N_{\textit{a0}} \; ; \; k_{\textit{cp}} (A_{\textit{Nc}} / A_{\textit{Nco}}) \; \Psi_{\textit{ed},\textit{N}} \; \Psi_{\textit{cp},\textit{N}} N_{\textit{b}} \; (\text{Eq. D-30b})$								
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N _{a0} (lb)	Na (lb)
2.0	177.03	109.66	0.952	1.021	1.000	1.000	9755	15305
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
314.72	256.00	1.000	0.865	1.000	1.000	10469	11128	0.70

φV_{cpg} (lb) 15580

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	733	6071	0.12	Pass
Concrete breakout	1465	7233	0.20	Pass (Governs)
Adhesive	1465	8418	0.17	Pass
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	500	3156	0.16	Pass
T Concrete breakout x+	999	4043	0.25	Pass (Governs)
Concrete breakout y-	999	11720	0.09	Pass (Governs)
Pryout	999	15580	0.06	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

Sec. D.7.3 0.20 0.25 45.0 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.