SAPCAD LLM Fine-Tuning – Updated Model Selection Guide

Objective

Train an LLM that:

- Understands architectural design instructions (English/German)
- Maps instructions to IFC elements with BIM standards compliance
- Generates accurate JSON outputs for add, modify, remove actions for use with IfcOpenShell

Recommended Models

Model	Why Choose	Advantages	Disadvantages
LLaMA 3 8B / 13B (Meta)	Strong multilingual understanding, excellent for structured outputs	High accuracy, good English/German support, strong community	Requires high-end GPU (24GB+ VRAM recommended)
Mistral 7B	Lightweight open- weights, good at JSON and instructions	Lower resource needs, good for structured data	Slightly weaker in multilingual handling
Qwen 7B	Good for command- following and structured JSON output	Balanced performance/size, solid JSON generation	Less optimized for German
Phi-3 3.8B	Best for low- resource environments	Small, efficient, fast	Lower accuracy on complex instructions
Phi-2 (used for testing in Colab)	Chosen for prototyping on limited hardware (Colab Free)	Loads in 4-bit quantization, works on Colab Free, good for small-scale test	Not ideal for production, less accurate on large/complex instructions

Summary of Current Choice

Phi-2 (microsoft/phi-2) was selected for initial LoRA fine-tuning and testing in Colab due to:

- Low VRAM requirement (worked with 4-bit quantization)
- Ability to complete LoRA training on Colab Free
- Successful generation of structured JSON for add/remove/modify actions

Recommended model for university server

If the university server has access to A100 / H100 / 3090 / 4090 (>=24GB VRAM):

- → LLaMA 3 8B or 13B is recommended because:
- Best performance for multilingual (English/German) instructions
- Higher accuracy in structured JSON generation
- Suitable for complex architectural tasks

If server has medium GPU (16-24GB VRAM):

→ Mistral 7B + LoRA would be a great choice

Next steps

- Use Phi-2 outputs to validate prompt/response structure
- Prepare university server for full fine-tuning with LLaMA 3 8B or Mistral 7B