Assignment 3

Due: 23:55, 3 March 2019

1. Source coding. Let p be a distribution on $\{a, b\}$ with p(a) = 0.4 and p(1) = 0.6. Draw the curve of $M^*(3, \epsilon)$ for $\epsilon \in [0, 1]$. Specify all the discontinuous points.

Solution: When n=2, the probabilities of the four 2-length inputs are

$$p(0,0) = 0.09, p(0,1) = 0.21, p(1,0) = 0.21, p(1,1) = 0.49.$$

If a 2-length code has only one message, the error probability is at least 0.51 (when encoding only (1,1)). Therefore, $M^*(2,0.3) > 1$. As the 2-length code with messages $\{(1,1),(1,0)\}$ has the error probability $0.3, M^*(2,0.3) = 2$.

When n=3, the probabilities of the four 3-length inputs are

$$p(0,0,0) = 0.027, \ p(0,0,1) = p(0,1,0) = p(1,0,0) = 0.063,$$

 $p(1,1,1) = 0.343, \ p(0,1,1) = p(1,0,1) = p(1,1,0) = 0.147.$

If a 3-length code has only 3 messages, the error probability is all larger than 0.3. Therefore, $M^*(3,0.3) > 3$. As the 4-length code with messages

$$\{(1,1,1),(1,1,0),(1,0,1),(0,1,1)\}$$

has the error probability $0.216 < 0.3, M^*(2, 0.3) = 4$.

Last, $\frac{1}{2} \log M^*(2, 0.3) = 1$ and $\frac{1}{3} \log M^*(3, 0.3) = 2/3$.

2. Prefix codes. Consider a probability distribution $p = (p_1, p_2, \dots, p_m)$ with $p_1 \ge p_2 \ge \dots \ge p_m$. Let $p' = (p_1, p_2, \dots, p_{m-2}, p_m + p_{m-1})$. What is the difference between the optimal prefix code lengths for p and p'?

Solution: Huffman codes are optimal prefix codes. For a Huffman code C for p, the codewords for p_m and p_{m-1} are of the longest and of the same length l with difference only in the last symbol. Consider a code C' for p', where the codeword of p_i , $1 \le i < m-1$, is the same as the one for p_i in C, and the codeword of $p_m + p_{m-1}$ is the first l-1 symbols of the codeword for p_m in C. According to

1

the Huffman procedure, C' is also a Huffman code. The difference between the codeword lengths of C and C' is

$$p_m l + p_{m-1} l - (p_m + p_{m-1})(l-1) = p_m + p_{m-1}.$$

3. (Huffman coding) Consider the random variable

$$X = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 \\ 0.49 & 0.26 & 0.12 & 0.04 & 0.04 & 0.03 & 0.02 \end{bmatrix}$$

- (a) Find a binary Huffman code for X.
- (b) Find the expected code length for the above encoding.

Solution:

(a)

$$x_1 \rightarrow 0$$

$$x_2 \rightarrow 10$$

$$x_3 \rightarrow 110$$

$$x_4 \rightarrow 11100$$

$$x_5 \rightarrow 11101$$

$$x_6 \rightarrow 11110$$

$$x_7 \rightarrow 11111$$

- (b) The expected code length is $1 \cdot 0.49 + 2 \cdot 0.26 + 3 \cdot 0.12 + 5 \cdot (0.04 + 0.04 + 0.03 + 0.02) = 2.02$ bits.
- 4. Count the exact number of different types in \mathcal{X}^n , where \mathcal{X} is a finite set.

Solution: Let $s = |\mathcal{X}|$. For $i = 1, \ldots, s$, let N_i be an non-negative integer such that $\sum_{i=1}^{s} N_i = n$. The number of types is the same as the number of sequence (N_1, N_2, \ldots, N_s) , where the latter can be determined as follows: Consider n balls and s-1 separators. We apply distinguishable permutation of these n+s-1 objects, i.e., all the balls (separators) are treated as the same. In a permutation, the number of balls before the first separator is N_1 , the number of balls between the ith and (i+1)th separators is N_i , and the number of remaining balls is N_s . The number of distinguishable permutation is $\frac{(n+s-1)!}{n!(s-1)!}$.

5. Let $X^n = (X_1, ..., X_n)$ be an i.i.d. sequence of random variables, each of which has a distribution p over a finite set \mathcal{X} and let c be a real number in (0,1). Prove that for any subset A of \mathcal{X}^n with $\Pr\{X^n \in A\} \geq c$ and sufficiently large n,

$$|A \cap W_{\delta}^n| \ge 2^{n(H(p) - \delta')},$$

where $\delta' \to 0$ as $\delta \to 0$. (Hint: the converse of the block source coding theorem.)

Solution: Let $T = T_{[X]\delta}^n$. On the one hand, we have

$$P(A \cap T) = P(A) - P(A \cap T^{c})$$

$$\geq P(A) - P(T^{c})$$

$$\geq P(A) - \sum_{a \in \mathcal{X}: p(a) > 0} \frac{|\mathcal{X}|^{2}}{4n\delta^{2}}$$

$$\geq c/2, \tag{1}$$

where the second last inequality is obtained using the similar steps of proving Strong AEP 2, and the last inequality holds when n is sufficiently large.

On the other hand, by Strong AEP I,

$$P(A \cap T) \le |A \cap T| 2^{-n(H(X) - \eta)},\tag{2}$$

where $\eta > 0$ and $\eta \to 0$ as $\delta \to 0$. By (1) and (2), we have

$$|A \cap T| \ge \frac{c}{2} 2^{n(H(X) - \eta)} = 2^{n(H(X) - \eta + \frac{\log c/2}{n})}.$$

The proof is completed by letting $\delta' = \eta - \frac{\log c/2}{n}$.