CLAIMS

Having thus described our invention, what we claim as new and desire to secure by Letters Patent is as follows:

1	1. A process of testing spacing of wiring in a circuit comprising:
2	forming a plurality of conductor rectangles representative of conductors of
3	said circuit;
4	forming minimum spacing rectangles around said conductor rectangles,
5	said minimum spacing rectangles being larger than respective ones of said
6	conductor rectangles;
7	identifying a possible error rectangle when a first conductor rectangle of
8	said conductor rectangles occupies a portion of a minimum spacing rectangle of a
9	second conductor rectangle of said conductor rectangles;
10	checking whether said possible error rectangle is a true error; and
11	reporting said true errors.

- 2. The process in claim 1, wherein said checking comprises:
- classifying said possible error rectangle as a possible diagonal error
 rectangle or a possible non-diagonal error rectangle;
- determining that said possible diagonal error rectangle is said not a true
 error when at least two adjacent sides of said possible diagonal error rectangle

- which connect said first conductor and said second conductor are covered by a
 third conductor of said conductors; and
- determining that said possible non-diagonal error rectangle is not a true
 error when said possible non-diagonal error rectangle is completely covered by said
 third conductor.
- 3. The process in claim 1, wherein said forming minimum spacing rectangles comprises forming said minimum spacing rectangles to have sides which are a minimum spacing design constraint distance from sides of respective ones of said conductor rectangles.
- 1 4. The process in claim 1, wherein said conductors are within a single net.
- The process in claim 1, wherein said circuit comprises a plurality of nets
 and said process further includes checking for shorts between different ones of said
 nets.
- 1 6. The process in claim 1, further comprising dividing said possible error rectangle into at least two possible error rectangles if said possible error rectangle is partially covered by a third conductor of said conductors.
- 1 7. A process of testing spacing of elements in a structure comprising:

2	forming a plurality of element rectangles representative of elements of said				
3	structure;				
4	forming minimum spacing rectangles around said element rectangles, said				
5	minimum spacing rectangles being larger than respective ones of said element				
6	rectangles;				
7	identifying a possible error rectangle when a first element rectangle of said				
8	element rectangles occupies a portion of a minimum spacing rectangle of a second				
9	element rectangle of said element rectangles;				
10	checking whether said possible error rectangle is a true error; and				
11	reporting said true errors.				
1	8. The process in claim 7, wherein said checking comprises:				
2	classifying said possible error rectangle as a possible diagonal error				
3	rectangle or a possible non-diagonal error rectangle;				
4	determining that said possible diagonal error rectangle is said not a true				
5	error when at least two adjacent sides of said possible diagonal error rectangle				
6	which connect said first element and said second element are covered by a third				
7	element of said elements; and				
8	determining that said possible non-diagonal error rectangle is not a true				
9	error when said possible non-diagonal error rectangle is completely covered by said				
10	third element.				

- 1 9. The process in claim 7, wherein said forming minimum spacing rectangles comprises forming said minimum spacing rectangles to have sides which are a
- 3 minimum spacing design constraint distance from sides of respective ones of said
- 4 element rectangles.
- 1 10. The process in claim 7, wherein said elements are within a single net.
- 1 11. The process in claim 7, wherein said structure comprises a plurality of nets
- 2 and said process further includes checking for shorts between different ones of said
- 3 nets.
- 1 12. The process in claim 7, further comprising dividing said possible error
- 2 rectangle into at least two possible error rectangles if said possible error rectangle
- 3 is partially covered by a third element of said elements.
- 1 13. A computer system for testing spacing of wiring in a circuit comprising:
- 2 a unit for forming a plurality of conductor rectangles representative of conductors
- 3 of said circuit;
- 4 a unit for forming minimum spacing rectangles around said conductor
- 5 rectangles, said minimum spacing rectangles being larger than respective ones of
- 6 said conductor rectangles;
- 7 a unit for identifying a possible error rectangle when a first conductor

8	rectangle of said conductor rectangles occupies a portion of a minimum spacing				
9	rectangle of a second conductor rectangle of said conductor rectangles;				
10	a unit for checking whether said possible error rectangle is a true error; and				
11	a unit for reporting said true errors.				
1	14. The computer system in claim 13, wherein said unit for checking				
2	comprises:				
3	a unit for classifying said possible error rectangle as a possible diagonal				
4	error rectangle or a possible non-diagonal error rectangle;				
5	a unit for determining that said possible diagonal error rectangle is said not				
6	a true error when at least two adjacent sides of said possible diagonal error				
7	rectangle which connect said first conductor and said second conductor are covered				
8	by a third conductor of said conductors; and				
9	a unit for determining that said possible non-diagonal error rectangle is not				
10	a true error when said possible non-diagonal error rectangle is completely covered				
11	by said third conductor.				
12	15. The computer system in claim 13, wherein said unit for forming minimum				
13	spacing rectangles comprises a unit for forming said minimum spacing rectangles				
14	to have sides which are a minimum spacing design constraint distance from sides				

of respective ones of said conductor rectangles.

2

3

4

5

6

7

8

9

1	16.	The computer system in claim 13, wherein said conductors are within a
2	single	net.

- 1 17. The computer system in claim 13, wherein said circuit comprises a plurality
 2 of nets and said computer system further includes a unit for checking for shorts
 3 between different ones of said nets.
- 1 18. The computer system in claim 13, further comprising a unit for dividing
 2 said possible error rectangle into at least two possible error rectangle if said
 3 possible error rectangle is partially covered by a third conductor of said conductors.
 - 19. A computer program product comprising a program storage device readable by a computer system tangibly embodying a program of instructions executed by said computer system to perform a process for testing spacing of wiring in a circuit, said process comprising:
 - forming a plurality of conductor rectangles representative of conductors of said circuit;
 - forming minimum spacing rectangles around said conductor rectangles, said minimum spacing rectangles being larger than respective ones of said conductor rectangles;

10	identifying a possible error rectangle when a first conductor rectangle of		
11	said conductor rectangles occupies a portion of a minimum spacing rectangle of a		
12	second conductor rectangle of said conductor rectangles;		
13	checking whether said possible error rectangle is a true error; and		
14	reporting said true errors.		
1	20. The computer program product in claim 19, wherein said checking		
2	comprises:		
3	classifying said possible error rectangle as a possible diagonal error		
4	rectangle or a possible non-diagonal error rectangle;		
5	determining that said possible diagonal error rectangle is said not a true		
6	error when at least two adjacent sides of said possible diagonal error rectangle		
7	which connect said first conductor and said second conductor are covered by a		
8	third conductor of said conductors; and		
9	determining that said possible non-diagonal error rectangle is not a true		
10	error when said possible non-diagonal error rectangle is completely covered by said		

third conductor.

- 1 21. The computer program product in claim 19, wherein said forming
- 2 minimum spacing rectangles comprises forming said minimum spacing rectangles
- 3 to have sides which are a minimum spacing design constraint distance from sides
- 4 of respective ones of said conductor rectangles.
- 1 22. The computer program product in claim 19, wherein said conductors are
- 2 within a single net.
- 1 23. The computer program product in claim 19, wherein said circuit comprises
- a plurality of nets and said process further includes checking for shorts between
- different ones of said nets.

The computer program product in claim 19, said process further comprising

1

- 2 dividing said possible error rectangle into at least two possible error rectangle if
- 3 said possible error rectangle is partially covered by a third conductor of said
- 4 conductors.

24.