Mechanizmy i modele propagacyjne

dr inż. Krzysztof Makles

Cele wykładu

środowisko radiowe w systemach mobilnych;

metody modelowania propagacji;

Kanał transmisyjny

- łącze radiowe: TX+antena, kanał radiowy, RX+antena;
- wielotorowość sygnału zmienna moc i faza fali, brak widoczności optycznej (LOS);
- modele przewidywanie zachowania fal radiowych w systemach mobilnych;
- systemy mobilne w widmie fal EM:
 - UHF (Ultra High Frequency) 300 MHz 3 GHz (Land, sea and air mobile, broadcasting, navigation, fixed, radar, satellite, telemetry)
 - długość fali: mała (1 m 10 cm) w porównaniu do rozmiarów przeszkód terenowych, co ma wpływ na propagację;

Zjawiska fizyczne dla fal EM

- diffusion pomiędzy TX a RX w związku z odległością;
- reflection od "płaskich" powierzchni;
- scattering od powierzchni nieregularnych;
- refraction przy zmianach charakteru atmosfery (wysokość);
- diffraction na dużych przeszkodach;
- absorption przez obiekty pochłaniające energię radiową;

Diffusion

 Moc sygnału maleje w funkcji odległości oraz częstotliwości (Free Space Loss equation):

$$L = 32,44 + 20\log f + 20\log d$$

- L loss [dB]
- f frequency [MHz]
- d distance [km]
- Nie można używać FSLe samodzielne z uwagi na pozostałe zjawiska
- Wyjątki:
 - wysoko zlokalizowane anteny kierunkowe z zachowanym LOS
 - metoda oszacowania maksymalnego zasiegu radiowego
- ITU-R P.525

Reflection

- zachodzi przy napotkaniu przez fale dużej gładkiej powierzchni;
- stopień "gładkości" musi być porównywalny do długości fali;
- powoduje zmianę fazy sygnału odbitego;
- może powodować absorpcje i/lub refrakcje części energii;
- prowadzi do interferencji suma odebranych sygnałów ma zmienną amplitudę i zależności fazowe;

Scattering

- podobne do odbicia powierzchnia rozpraszająca nie jest gładka, a odbicia nie są w żaden sposób spójne;
- odbicie zachodzącego słońca w jeziorze a widok otaczających jezioro elementów krajobrazu w jeziorze (i samej powierzchni wody!);
- trudniejsze w modelowaniu matematycznym: małe zmiany lokalizacji powodują znaczne zmiany amplitudy i fazy sygnału;
- rozpraszanie troposferyczne (8–18 km) dukty komunikacja na setki i tysiące km

Refraction

- spowodowana zmianą współczynnika refrakcji radiowej w zależności od wysokości;
- dla komunikacji naziemnej istotne warunki poniżej 1000 m;
- zasadniczo współczynnik refrakcji radiowej maleje ze wzrostem wysokości (zależny od ciśnienia), ale zależy też od warunków pogodowych;
- typowe zastosowanie horyzont radiowy większy od optycznego;
- "efektywny promień Ziemi" = 4/3 wartości nominalnej (6370 km) = 8500 km (k = 4/3);
- Ziemia może być "płaska" dla ekstremalnych wartości k dukty (atmosferyczne);
- zjawisko odwrotne super-refraction (zasięg mniejszy od horyzontu optycznego);
- wartości współczynnika refrakcji radiowej dla różnych pór roku ITU-R P.453:

Diffraction

 przeszkody terenowe, zabudowa naziemna - brak bezpośredniej widzialności anten;

 sygnał ugina się na kolejnych przeszkodach - dość duża utrata mocy sygnału

Absorption

- energia w.cz. jest pochłaniana przez materiały budowlane, rośliny, pojazdy, ciała ludzkie (w systemach personalnych);
- różna grubość i właściwości materiałów typowe wartości w większości przypadków;
- przykład wartości pochłaniania w.cz. przez ciało człowieka: ITU-R P.1406 (znacząco większe na poziomie talii niż głowy).

Proces projektowania sieci WLAN

- planowanie
- modelowanie
- wdrażanie
- pomiary
- (rozbudowa)

Badania naukowe i wdrożeniowe

- wykorzystanie metod wieloatrybutowego wspomagania podejmowania decyzji;
- budowa systemów eksperckich wspomagających projektowanie sieci;
- poszukiwanie efektywnych metod optymalizacji;
- badania nad modelami propagacyjnymi;

Metoda d-FDL

FDL = Floor Description Language;

 algorytm rozmieszczania AP z uwzględnieniem planu budynku (jedna kondygnacja);

Dane wejściowe i wyjściowe

- poziom sygnału do osiągnięcia przez stacje robocze (dBm);
- procent pokrycia zadanym sygnałem stacji roboczych;
- plan budynku (kondygnacji);

najkorzystniejsze ustawienie punktów dostępowych.

Metody propagacyjne

One Slope Model (1SM)

- poziom sygnału obliczany na podstawie:
 - rodzaju pomieszczenia: stałe L_0 oraz n;
 - odległości nadajnik odbiornik: zmienna d

$$L(d) = L_0 + 10n\log(d)$$

- *L* spadek poziomu sygnału [dB]
- \circ L_0 zmienna empiryczna oznaczająca spadek sygnału na dystansie 1 metra [dB]
- n zmienna empiryczna oznaczająca stopień spadku sygnału
- \circ d odległość pomiędzy nadajnikiem i odbiornikiem [m]

Stałe L_0 oraz n w metodzie 1SM

f [GHz]	L ₀ [dB]	n (-)	Typ pomieszczenia
1,80	33,3	4,0	Biuro
1,80	37,5	2,0	Otwarta przestrzeń
1,80	39,2	1,4	Korytarz
1,90	38,0	3,5	Biuro
1,90	38,0	1,3	Korytarz
2,45	40,2	4,2	Biuro
2,45	40,2	1,2	Korytarz
2,45	40,0	3,5	Biuro
2,50	40,0	3,7	Biuro
5,00	46,4	3,5	Biuro
5,25	46,8	4,6	Biuro

Free Space Loss (FSL)

- bez uwzględniania przeszkód terenowych;
- wzór z przekształcenia równania Friisa:

$$FSL = -(32,44 + 20\log 10(f) + 20\log 10(d))$$

- FSL spadek poziomu sygnału [dB];
- f częstotliwość [MHz];
- d odległość pomiędzy nadajnikiem i odbiornikiem
 [m];

Multi Wall Model (MWM)

- uwzględnia tłumienie przeszkód;
- bazuje na modelu FSL (f =2450 MHz);

$$MWM = -(100 + 20\log 10(d) + \sum_{i=1}^{N} k_{wi} L_{wi} + k_{f} L_{f})$$

- MWM spadek poziomu sygnału pomiędzy nadajnikiem a odbiornikiem [dB];
- o d − odległość między nadajnikiem i odbiornikiem [m];
- N ilość typów ścian;
- o k_{wi} numer ściany typu "i";
- \circ L_{wi} spadek sygnału po przejściu przez ścianę typu "i" [dB];
- o k_f numer kondygnacji;
- \circ L_f spadek sygnału po przejściu przez kondygnację [dB];

MWM – przejście przez trzy przeszkody

Algorytm – cel oraz dane wejściowe

- znaleźć najkorzystniejszą lokalizację punktów dostępowych (AP);
- Dane wejściowe:
 - poziom sygnału do osiągnięcia przez stacje robocze [dBm];
 - procent pokrycia stacji roboczych wyżej wspomnianym poziomem sygnału [%];
 - moc nadajników [dBm];
 - plan budynku (definiowany przez tzw. "język opisu kondygnacji");

Algorytm: schemat, plan, wyniki

Algorytm – założenia przy badaniach

- budynek posiada 3 ciągi pomieszczeń (rzut z góry) (w części deklaracyjnej (język opisu kondygnacji) każdy z ciągów traktowany jest jako osobny moduł (macierz), w części obliczeniowej wszystkie ciągi tworzą jednolity moduł)
- długość każdego ciągu pomieszczeń jest stała
- szerokość każdego ciągu pomieszczeń jest stała
- dopuszczalny kształt budowli to prostokąt
- budynek posiada jedną kondygnację
- niezmienna lokalizacja stacji roboczych
- zmienna lokalizacja punktów dostępowych
- moc wszystkich nadajników jest stała i wynosi 15 dBm

1. FDL (Floor Description Language)

- FDL pozwala na zdefiniowanie specyfiki każdego pomieszczenia w każdym ciągu;
- podział struktury budynku na trzy "ciągi pomieszczeń";
- długość każdego ciągu jest sobie równa;
- (w badaniach budynek 60 m x 25 m)

1. FDL (Floor Description Language)

Specyfikacja pomieszczenia:

- •identyfikator [1-6]
- wymiar [m]
- typ ściany [1-4]
 - 1. ściana monolityczno-żelbetowa (czerwony): 15 dBm
 - 2. ściana z bloczków silkatowych (zielony): 12 dBm
 - 3. ściana z płyt gipsowo-kartonowych (niebieski): 10 dBm
 - 4. ekran (czarny): 40 dBm
- •tłumienność ściany [dBm]
- •grubość ściany [m]

2. FSL oraz MWM

Dane wejściowe

- współrzędne stacji roboczych;
- współrzędne punktów dostępowych;
- moc nadajników;
- numer ustawienia;
- macierz obliczeniowa;

Dane wyjściowe

- macierz obliczeniowa poziomy sygnałów dla każdej stacji roboczej;
- wizualizacja wyników (plan budynku + wykres);

2. FSL oraz MWM

Detekcja przeszkód

- pomocnicza macierz tymczasowa
- wyznacz równanie prostej (y=ax+b) pomiędzy urządzeniami
- sprawdź punkty x (od 1 do l. wierszy) oraz y (od 1 do l. kolumn) dla znalezionej funkcji
- dwie wartości funkcji:
 - 0 = brak przeszkody
 - różna od zera = jest przeszkoda
- aktualizuj macierz obliczeniową

0	0	0	-1
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
12	12	12	12
0	0	0	0
0	0	0	0
-2	0	0	0

3. Wybór najlepszej lokalizacji

- dwa moduły:
 - obliczanie procenta stacji roboczych, które osiągnęły zadany poziom sygnału
 - wybór ustawienia o najmniejszej liczbie punktów dostępowych
- kolejność ustawień punktów dostępowych:
 - ustawienie o najniższym numerze posiada najmniejszą ilość punktów dostępowych

Systemy komercyjne

Produkt	Ekahau Site Survey	Airespace Control System	AirMagnet Survey
Standard	WLAN	WLAN	WLAN
Format danych wejściowych	Format graficzny	Format graficzny	Format graficzny
Format danych wyjściowych	Format graficzny, XML, HTML	Format graficzny	Format graficzny, Doc, PDF, XML, HTML, Excel
Typ produktu	komercyjny	komercyjny	komercyjny
Koszt [PLN]	ok. 5400	b.d.	ok. 17000
Wymagania sprzętowe	Windows 7 CPU: 1,5 GHz, mcore RAM: 8GB	b.d.	Windows 7 Pro CPU: Core 2 Duo RAM: 4GB
Adres www	www.ekahau.com	b.d.	www.airmagnet.com
Inne	GPS	-	wspiera Google Earth

Systemy komercyjne

Produkt	Radiowave Propagation Simulation	InCharge RF Planner	RF3D WiFiPlanner
Standard	WLAN, GSM, UMTS	WLAN	WLAN
Format danych wejściowych	CAD, Format graficzny	CAD, Format graficzny	Format graficzny
Format danych wyjściowych	Format graficzny, PDF, ASCII, Matlab	Format graficzny, txt	b.d.
Typ produktu	freeware dla studentów, komercyjny	komercyjny	komercyjny
Koszt [PLN]	Nie wspierany, free	b.d.	ok. 4000
Wymagania sprzętowe	Windows 9x, Me, NT, 2000, XP RAM: 256	Windows 2000,XP CPU: 1.4GHz RAM: 512MB	Windows XP CPU: 1.5GHz RAM: 750MB
Adres www	www.radioplan.com	www.winncom.com	www.rf3d.com
Inne	możliwa integracja z Matlab-em Program typu klient-serwer	-	Dostępna wersja DEMO

Porównanie d-FDL i sys. komercyjnymi

Cel

- Wybranie najkorzystniejszego ustawienia punktów dostępowych spośród ośmiu zdefiniowanych;
- Dla każdego ustawienia zmieniają się:
 - lokalizacja oraz liczba AP;
 - sygnały osiągane przez wszystkie stacje robocze dla każdej konfiguracji AP;
- Charakterystyka budynku:
 - wymiary: 60 [m] x 25 [m];
 - ilość pomieszczeń: 9 + korytarz;
 - ilość typów ścian: 4;
- Dane wejściowe:
 - procent pokrycia stacji roboczych: 70 [%];
 - poziom sygnału: -63 [dBm];

Badania porównawcze metody d-FDL z systemami komercyjnymi – ustawienie 4

Program	d-FDL	Ekahau	RF3D
Procent pokrycia [%]	75	50	67
Średni p ozio m sygnału [dBm]	-86	-74	-104

Badania porównawcze metody d-FDL z systemami komercyjnymi – ustawienie 7

Program	d-FDL	Ekahau	RF3D
Procent pokrycia [%]	75	67	75
Średni poziom sygnału [dBm]	-98	-73	-121

Badania porównawcze metody d-FDL z systemami komercyjnymi – ustawienie 8

Program	d-FDL	Ekahau	RF3D
Procent pokrycia [%]	100	92	83
Średni poziom sygnału [dBm]	-94	-115	-73

Badania porównawcze metody d-FDL z systemami komercyjnymi – podsumowanie

		Procent pokrycia stacji roboczych [%]			
Numer ustawienia	Liczba AP	d-FDL	Ekahau	RF3D WiFiPlanner	
1	1	50,00	42,00	42,00	
2	1	25,00	17,00	0,00	
3	1	25,00	17,00	17,00	
4	2	75,00	67,00	50,00	
5	2	25,00	17,00	17,00	
6	2	58,33	58,33	50,00	
7	4	75,00	75,00	67,00	
8	6	100,00	92,00	83,00	

Badania porównawcze metody d-FDL z pomiarami w terenie

Cel

- •sprawdzenie zbieżności wyników uzyskiwanych przez program d-FDL oraz Ekahau z badaniami poziomu sygnałów;
- rzeczywiste pomiary sygnałów w określonych punktach (Host 1, Host 2, Host 3);
- •3 stacje robocze, 1 punkt dostępowy (moc 15 [dBm]);
- •2 różne lokalizacje punktu dostępowego;
- niezmienna lokalizacja stacji roboczych;
- Charakterystyka budynku:
 - wymiary: 9 [m] x 8 [m]
 - ilość pomieszczeń: 5 + korytarz
 - ilość typów ścian: 3

Typ ściany	Tłumienie sygnału [dBm] + (kolor ściany)
Monolityczno – żelbetowa	15 (czerwony)
Cegła	12 (zielony)
Gipsowo – kartonowa	10 (niebieski)

Badania porównawcze metody d-FDL z pomiarami w terenie – eksperyment 1

Poziomy sygnałów [dBm]

Host	Ekahau	d-FDL	Pomiary w terenie
1	-33	<mark>-32</mark>	-32
2	-52	<mark>-47</mark>	-45
3	-82	<mark>-77</mark>	-73

Badania porównawcze metody d-FDL z pomiarami w terenie – eksperyment 2

Poziomy sygnałów [dBm]

Host	Ekahau	d-FDL	Pomiary w terenie
1	-51	<mark>-46</mark>	-48
2	-34	<mark>-32</mark>	-32
3	<mark>-64</mark>	-66	-63

Badania porównawcze metody d-FDL z pomiarami w terenie – wnioski

- zarówno program d-FDL, jak też Ekahau dały wyniki zbliżone do pomiarów w terenie;
- niewielkie odchylenia mieściły się w granicach od 2 do 6 [dBm];
- w obu eksperymentach lepsze wyniki dał program d-FDL;