TSPiSM Plan de Calidad

R. Casallas

Dpto. de Ingeniería de Sistemas y Computación

Universidad de los Andes

Reference

- Introduction to the Team Software ProcessSM. Capítulo 5.
- Watts Humphrey. Addison Wesley. 2000

- Construir un plan de calidad basado en ciertos índices de desempeño.
- Contenido del Plan
 - 1. Resumen de Porcentajes
 - 2. Porcentaje libre de defectos (PDF)
 - 3. Defectos por Página
 - 4. Defectos por KLOC
 - 5. Proporción de defectos (Ratio)
 - 6. Proporción de tiempos de desarrollo

- Contenido del Plan
 - 7. A/FR
 - 8. Porcentaje de revisión e inspección
 - 9. Porcentaje de inyección de defectos
 - 10. Porcentaje de eliminación de defectos
 - 11. Rendimiento (yield) de fase
 - 12. Rendimiento (yield) de proceso

.

1. Resumen de Porcentajes

- Las tres medidas del resumen dan una perspectiva global de la calidad del Proceso:
- LOC/Horas: mide la productividad global del grupo.
 Un número grande indica gran productividad y bajos costos
- % Reutilización: mide el porcentaje global de este producto que fue reutilizado de proyectos anteriores
- % Reutilización nuevo: mide la contribución de este ciclo al mejoramiento de la productividad en ciclos posteriores o proyectos.

2. Porcentaje libre de defectos (PDF)

- Mide el porcentaje de los componentes de un producto que no tiene defectos en una fase dada.
- Ejemplo:
 - Un componente con 5 partes y cuatro tenían defectos en la fase de compilación, el PDF del componente en la fase de compilación es del 20% (no se tiene en cuenta el número de defectos)
 - Entre mayor el número de partes, mayor la precisión del PDF para medir la calidad del componente.
- Datos de PDF en todas las fases de eliminación de defectos permite ver el mejoramiento de la calidad a través del proceso de desarrollo.

3. Defectos por Página

 Muestra el número de defectos removidos de cada página del documento de requerimientos y del diseño de alto nivel

4. Defectos por KLOC

- Un defecto es cualquier elemento asociado con los requerimientos, el diseño o la implementación que de no ser cambiado puede causar un diseño, implementación, prueba, uso o mantenimiento del producto no adecuados.
- Un defecto mayor es cualquier problema que cuando se arregla cambia el código ejecutable.
- Defectos en formatos o comentarios son considerados menores.

ç

4. Defectos por KLOC (cont ...)

- El número de defectos encontrados en una fase de pruebas indica la calidad del producto entrando y saliendo de esa fase.
- Cuando un producto tiene muchos defectos, una fase de pruebas encontrará muchos de ellos pero también dejará sin encontrar muchos.
- Si hay muchos defectos en pruebas unitarias, probablemente habrá todavía muchos terminada esa fase.

4. Defectos por KLOC (cont ...)

La experiencia muestra que cuando un producto tiene menos de 0.5 defectos/KLOC en construcción y pruebas de integración y menos de 0.2 defectos/KLOC en pruebas de sistema, generalmente no habrá defectos para que encuentre el usuario (producto de alta calidad).

5. Proporción de defectos (Ratio)

- Provee un mayor detalle de la calidad de las revisiones de diseño y de código
- La experiencia muestra que cuando se encuentra el doble de defectos en revisión de código que en compilación, la revisión de código fue realizada a conciencia. En este caso la proporción de defectos es 2.0
- Número de defectos encontrados en revisión de diseño contra número de defectos encontrados en pruebas unitarias. Esta proporción debería ser más de 2.0 !!

13

Plan de Calidad

6. Proporción de tiempos de desarrollo

- Según la experiencia, las siguientes proporciones dan una idea de la buena calidad del producto (no es una garantía pero la probabilidad es alta):
 - 25% del tiempo de requerimientos debe ser en inspección de requerimientos
 - 50% del tiempo de diseño de alto nivel debe ser en revisiones e inspecciones
 - >100% del tiempo de diseño detallado debería ser en revisiones e inspecciones

7. A/FR (appraisal to failure ratio)

(Revisión/Pruebas)

- Para programas pequeños debería ser alrededor de 2.0
- Para programas grandes debería ser alrededor de 1.0 porque aun si los programas tienen pocos defectos en pruebas, probarlos es dispendioso.

15

Plan de Calidad

8. Porcentaje de revisión e inspección

- Requerimientos: <2.0 páginas de texto a espacio simple por hora
- Diseño de alto nivel: <5.0 páginas de diseño por hora
- Diseño detallado: < 100 líneas de pseudo código por hora
- □ Código: < 200 líneas de código por hora

9. Porcentaje de inyección de defectos

- de acuerdo con datos de varios cientos de programas escritos por estudiantes y por ingenieros experimentados en un curso de PSP, se tiene que:
 - la proporción de inyección de defectos durante diseño detallado es de 2 defectos por hora
 - y es de 6 defectos por hora en codificación

17

Plan de Calidad

10. Porcentaje de eliminación de defectos

- Tomando la misma muestra, los datos fueron más variados:
 - en revisión de código va de 0 a 20 defectos por hora, el resultado fue de 6 defectos por hora para el 61.5% de los ingenieros
 - en revisión de diseño, 2 o más defectos por hora para el 57.9% de los ingenieros

11. Rendimiento (yield) de fase

- Porcentaje de defectos en un programa que fueron removidos durante una fase dada.
- Ejemplo:
 - 19 defectos en el programa a la entrada de la revisión de código
 - se inyectó un defecto durante la revisión de código
 - se encontraron 15 durante la revisión
 - □ yield = 100* (defectos encontrados)/(defectos en el producto) = 100* 15/(19+1) = 75%
- Se puede calcular sólo cuando se ha terminado el programa y se sabe el número total de defectos

19

12. Rendimiento (yield) de proceso

- El porcentaje de defectos removidos antes de una fase dada.
- Ejemplo, antes de pruebas de sistema debería ser de 99%

Para el primer ciclo de desarrollo, si no se tienen datos históricos, usar el criterio de calidad definido en la tabla 5.8 (página 86-87)!