Symmetry constraints and unicroscopic origin of the muclion - unclean interaction I

For the two-body system, the Hamiltonian is a sum of Centr-of-wass and relative motion

Therefore, the wave function factories

14> = 1R> & I relative motion and internal quantum number >

WHE IR) a plane vane $\langle \vec{R} | \vec{k} \rangle = \frac{1}{(2\pi)^{3}k} e^{i\vec{k}\vec{R}}$

$$\left(\overrightarrow{R}_{cm} = \overrightarrow{r_1} + \overrightarrow{r_2}\right)$$

H/2

and a basis of angular momentum eigenstates and spin / isospin for the relation part of the wave function

J, Mg

T, Mg

2-Lody spin blody isospin

complete to total angular mon. eigenstates

Matrix elements of Hr

"charge independence

<uTm es; Tm | Hiz | n']' m'e's', T' m', = \(\delta_{J_1} \delta_{nn'} \delta_{ss'} \delta_{tr'} \delta_{nn'} \times \)
<uTes; Tn+ | Hiz | n'] e's; Tm+)

1

General form of the nucleon under interestion

Vocalone =
$$\frac{e^2}{|\vec{r}_1 - \vec{r}_2|} \frac{1}{2} (1 + \vec{t}_1^{\frac{3}{2}}) \frac{1}{2} (1 + \vec{t}_2^{\frac{3}{2}})$$
 (can be tracked as a perturbation!)

(10) projects on protons in isospin space

Since we are not able to derine Vow from the underlyg theory of the strong interactions, Quantum Chromodynamics (QCD), we first constrain the nuclear-unclear interaction by its symmetric and them introduce a mobile for it, based on heavy-boson exchange forces.

Symmetry constraints on VM

- 1.) termiticity: VNN= VNN
- *) 2.) translational invariance in time: Vpv must be time independent
 - 3.) Symmetric under exchange of particle labels: VM (1,2) = VM (2,1)
- *14.) translational invariance: VMN (F, F,) = VM (F, -F,)

* 5.) rotational invariance: VNN is a scalar under notations in
space and spin. Fiz, Piz, J., J. have
to come in scalar products
6.) Galilean invariance: VNN (rn, Pr. Pr.) = VNN (rn, Pr-pr.)
7.) time reverse invariance $\vec{r}_{in} \rightarrow \vec{r}_{in}$, $\vec{p}_{in} \rightarrow -\vec{p}_{in}$, $\vec{r}_{i} \rightarrow -\vec{v}_{i}$ (never motion) $\vec{r}_{i} \rightarrow -\vec{\tau}_{i}$
for a Hermitian operator: $V_{NN}(\vec{r}_{12},\vec{p}_{11},\vec{r}_{2},\vec{p}_{12}) = V_{NN}(\vec{v}_{11},-\vec{p}_{12},-\vec{o}_{1},-\vec{o}_{1},-\vec{o}_{1})$
1)-7) also hold for the Coulous wheather Vantout. In addition, we consider the strong intraction part of Vow and ignor weak intraction. Thus, we also have
8) parity invariance: Vm (1, p., p., d., d., d.,) = Vm (-1, -p., d., d.,
*) Recall: an operator O is invariant under a transformation U if
O = U O U explicit representations for the transformation and
explicit representations for the transformation and
(i) spechal translation: $U(\bar{a}) = e^{-\frac{1}{2}} \frac{\bar{a} \cdot \bar{p}}{1}$ mountain operator special translation vector (ii) temporal translation. $U(t) = e^{-\frac{1}{2}} \frac{\bar{a} \cdot \bar{p}}{12}$
(ii) temporal translation. U(+)= 2-14+H12
(iii) rotation: $\sqrt{\chi}$ b $(\vec{\chi}) = e^{-\frac{1}{4}} \sqrt{\chi} \int_{\vec{X}} a_{ij} dar unment operator angle of rotation$

- A THE CONTROL OF THE STATE OF

.

turthernore, to a good approximation, the NN iteration may
be taken to be charge independent: VNN = VNN (, Ti-Ti,)
(Scalar in isospin-space [VNN, T. T. T. T.], but [Vanhab, T] \$0)
<u> </u>
14 momentum space, the symmetris are realized (with $\vec{p} = \vec{q}/c + \vec{q}/c$ $\vec{p} = \vec{p} + \vec{p} + \vec{p} = \vec{p} + \vec{p} + \vec{p} + \vec{p} = \vec{p} + \vec{p} + \vec{p} + \vec{p} = \vec{p} + \vec$
P-9/2+9/2 = P-9/2+9/2 P= P+P2 (can of man)
(PRIMIPR) =
2
成= 10+72+9% 10-7%-10-10-10-10-10-10-10-10-10-10-10-10-10-
Gallen invarance: Vn (Pan, q, q, v, v, v,)= Vn (1, q, v, v,)
9 1)
(1) howevery: $\vec{q} \rightarrow -\vec{q}$, complex conjugation of matrix element
7) the squared by homeld V . I a
7) time reversal inv.: provided VNN is humbian
$\vec{q}, \vec{q}' \rightarrow -\vec{q}, -\vec{q}', \vec{\sigma}, \vec{\sigma}, \vec{\sigma}, -\vec{\sigma}, \vec{\sigma}, \vec{\sigma} \rightarrow -\vec{c}$
②) om ≥ 1 → ⊃ 1 → ¬≥ 1
8) parity inv: \(\bar{q}, \bar{\alpha}' - \bar{\alpha}, -\bar{\alpha}'
3.) sym under exchange of particle labels: \$\vec{\pi}_{n} \int \vec{\pi}_{n} \display \vec{\pi}_{n}, \vec{\pi}_{n}, \vec{\pi}_{n}' -> -\vec{\pi}_{n}, \vec{\pi}_{n}'}
soft some was exchange of parties carees of the 19, 9, 9 - 1-9, -9
り しゅっと ノヌ アール・コマン・ファーン
hemicity < \bar{P_3}, \bar{P_4} Van \bar{P_1}, \bar{P_2} > = < \bar{P_1}, \bar{P_2} Van \bar{P_3}, \bar{P_4} \bar{\gamma}
² →- 2 "(->-i"

Therefore the most general form of V	I'm reeds:
	Monumbur Space
Scalar inhaction O ₁ = 11	Ø, : <u>1</u>
spin-spin imbrachon Oz = T, 02	$O_2 = \overrightarrow{\nabla}_1 \cdot \overrightarrow{\nabla}_2$
tensor withoution O3 = Tr. Tr. Tr. Tr = = = =	0, = 0, 9 0, 9 - 5 0, 0,
spin-orlit mitraction Oy = 2.3	$\partial_4 = i(\vec{\sigma}_1 + \vec{\sigma}_2) \cdot \vec{q} \times \vec{q}'$
quedratic spin-orbit Os={(0, 10, 10, 1+0.1] = 0; (q×q') 0; (q×q')
With these set of operators	
$V_{NN} = \sum_{i=1}^{5} V_{0}^{(i)}(\vec{r}_{i2}^{2}, \vec{p}_{i2}^{2}, \vec{l}^{2}) \theta_{i}$	
$+\sum_{i=1}^{5}V_{T}^{(i)}(\vec{r}_{i2},\vec{p}_{i2},\vec{r}_{i2})$	इ.स
lu momentum space, the Viii depend	~ V(q',q',(q'-q')).

Notice: a) VNN doesnot connect different (150-) spins (k'Jest IVM lk Je's'T')
=0 for S#S', T#T'
b) spin-orbit and tensor forces vanish in S=0.

We have already discussed the spin-och. I whraction in the context of the nucleus shell model, but the tensor force is now to us It operates like an intraction between between dipole-magnets. We will discuss the one-pion exchange potential in the next Section. This intraction has a tensor force, while is of the form

$$V_{TT}^{\text{funcor}} = \frac{3^2}{4u_N^2} \frac{1}{4\pi} \left(\frac{u_n^2}{3} + \frac{u_n}{r} + \frac{1}{r_n} \right) \frac{e^{-u_n r_n}}{r_n^2} \left(3 \vec{\tau}_n^2 \vec{r}_n \vec{\sigma}_n^2 \vec{r}_n - \vec{\sigma}_n \vec{\sigma}_n^2 \right) \vec{\tau}_n^2 \vec{\tau}_n^2$$

$$Position$$

tensor operator is attractive or repulsive depending on the spirit direction relative to \vec{r}_{12} .

Tite attraction or reputer depending on isospin (pultitelpn) = -1

Therefore, the known force between a proton and newton operation follows

