26.5 **System and Reset Characteristics**

Reset, Brown-out and Internal Voltage Characteristics⁽¹⁾ Table 26-3.

Symbol	Parameter		Min	Тур	Max	Units
V _{POT}	Power-on Reset Threshold Voltage (rising)		1.1	1.4	1.6	V
	Power-on Reset Threshold Voltage (falling) ⁽²⁾		0.6	1.3	1.6	V
SR _{ON}	Power-on Slope Rate		0.01		10	V/ms
V _{RST}	RESET Pin Threshold Voltage		0.2 V _{CC}		0.9 V _{CC}	V
t _{RST}	Minimum pulse width on RESET Pin				2.5	μs
V_{HYST}	Brown-out Detector Hysteresis			50		mV
t _{BOD}	Min Pulse Width on Brown-out Reset			2		μs
V_{BG}	Bandgap reference voltage	V _{CC} =2.7 T _A =25°C	1.0	1.1	1.2	V
t _{BG}	Bandgap reference start-up time	V _{CC} =2.7 T _A =25°C		40	70	μs
I _{BG}	Bandgap reference current consumption	V _{CC} =2.7 T _A =25°C		10		μΑ

Table 26-4. BODLEVEL Fuse Coding⁽¹⁾

BODLEVEL 2:0 Fuses	Min V _{BOT}	Typ V _{BOT}	Max V _{BOT}	Units				
111		BOD Disabled						
110	1.7	1.8	2.0	V				
101	2.5	2.7	2.9					
100	4.1	4.3	4.5					
011								
010		December						
001		Reserved						
000								

Notes: 1. V_{BOT} may be below nominal minimum operating voltage for some devices. For devices where this is the case, the device is tested down to $V_{CC} = V_{BOT}$ during the production test. This guarantees that a Brown-Out Reset will occur before V_{CC} drops to a voltage where correct operation of the microcontroller is no longer guaranteed. The test is performed using BODLEVEL = 110 and BODLEVEL = 101 for ATmega48P/88P/168PV and ATmega328P, and BODLEVEL = 101 and BODLEVEL = 100 for ATmega48P/88P/168P/328P.

Notes: 1. Values are guidelines only.

^{2.} The Power-on Reset will not work unless the supply voltage has been below V_{POT} (falling).