LYCEE IBN SINA	DEVOIR DE CONTROLE N° 1	M ^r ABDELMOULA
MAHDIA	EN MATHEMATIQUES 1S ₁₋₂	$DUREE 45^{mn}:00$
<i>NOM</i>	PRENOM	N*
EXERCICE N • 1 (4	pts) Répondre par VRAI où F .	AUX sans justification.
,	et 237 sont premiers entre eux	()
2) L'arrondi à 10^{-2} p		()
	x entiers consécutifs est un nombre impa ts dans un même cercle sont égaux	
T) Dean angles miseri	as dans an mome corole some egadic	()
EXERCICE N° 2 (6	± '	1400 045
	rithme d'Euclide calculer P.G.C.D (2	•
	chacun des entiers 2100 et 945 en pro	
, 1	•	•
h / De selevier ele		
	ors <i>P.G.C.D</i> (2100, 945)	
c / En déduire . P.	C.M (2100, 945)	
3) a/Rendre la frac	ction $\frac{2100}{945}$ irréductible	
	2100	
b / En déduire un	ne fraction égale $\frac{2100}{945}$ et ayant pour dé	nominateur la plus petite
nuissance de	e 6 possible	
puissance de	e o possible	
EXERCICE N^{\bullet} (4	. /	
1) Soit $X = \frac{8n-4}{n+1}$; n est un entier naturel	
a / Montrer que 2	$X = 8 - \frac{12}{n+1}$	
b / En déduire l'	ensemble des entiers naturels n pour c	que X soit un entier naturel

2) Trouver tous les chiffres <i>X et Y</i> pour que l'entier 2X4Y soit divisible par 15.
EXERCICE N^{\bullet} 4 (6 pts) Dans la figure ci-dessous C est un cercle de diamètre $[BC]$ A un point de C tel que $\widehat{AOB} = 80^{\circ}$. Δ est la tangente à C en . H est le projeté orthogonal du point C sur la droite Δ . 1) Prouver que le triangle ABC est rectangle en A
2) a / Vérifier que $\widehat{ACB} = 40^{\circ}$
b / En déduire la mesure de l'angle \widehat{ABC}
3) a / Montrer que les droites (CH) et (OA) sont parallèles
b / En déduire la mesure de \widehat{BCH}
4) a/ Construire la bissectrice de \widehat{AOB} qui coupe Δ en D . b/Montrer que les droites (AC) et (OD) sont parallèles

BONNE CHANCE