

Plan pour l'après-midi

- Exécuter des circuits sur MonarQ
 - MonarQ, transpilation et mitigation d'erreurs
 - Notebook 3 : État GHZ + temps d'expérimentation sur un ordinateur quantique
 - Notebook 4 : Algorithme de Bernstein-Vazirani
- Pause
- Calcul hybride
 - Circuits variationnels et apprentissage machine quantique
 - Notebook 5 : Circuits variationnels
- Questions / Récapitulatif

À propos de MonarQ

- MonarQ possède 13 portes natives
- Toute opération peut être traduite dans cet ensemble de portes
- On retrouve les portes : Z, X, Y, RZ90, X90, Y90, ZM90, XM90, YM90, T, adjoint(T), Phase shift et CZ

Transpilateur

- S'assurer qu'un circuit peut fonctionner sur une machine en
 - faisant correspondre les "wires" du circuit aux qubits de la machine
 - oroutant les opérations à 2+ qubits
 - convertissant les portes non-natives
- Optimiser le circuit (le rendre le plus compact) en
 - optimisant le placement des portes
 - supprimant les opérations triviales et inverses
 - trouvant des opérations équivalentes qui réduisent la profondeur du circuit, ex: Z = HXH

Pause programmation

Notebook 3 : Lancer des circuits sur MonarQ

Comment identifier la bonne clé ? Classiquement

Comment identifier la bonne clé ? Classiquement

Comment identifier la bonne clé ? Quantique

$$|ext{c}| + |ext{c}| + |ext{c}|$$

On identifie la bonne clé avec un seul essai

Comment identifier la bonne clé ? Algorithme de Bernstein-Vazirani

Pause programmation

Notebook 4 : Algorithme de Bernstein-Vazirani