Deep Learning Standalone

for Chemistry

https://bit.ly/2ZxelbL Github 저장소 링크

- 1. ML Basic
- 2. Pytorch Basic
- 3. MLP with Fingerprint Representation
- 4. CNN with SMILES Representation
- 5. GNN with Graph Representation
- 6. Experiment Management and Hyperparameter Tuning with Tensorboard
- 7. Practical Tips

What is Machine Learning?

"A Field of study that gives computer the ability to learn without being explicitly programmed"

- Arthur Samuel, 1959

Deep Learning, Machine Learning, Artificial Intelligence

Categories of ML Problems

Categories of ML Problems

Regression Problem

6

Regression Problem

Fit the prediction function f(x) to the training data, to predict continuous real value

Linear regression

Categories of ML Problems

Classification Problem

Chihuahua or Muffin?

Classification Problem

Identifying which of a set of categories a new instance belongs

Categories of ML Problems

Clustering Problem

Grouping similar samples into K groups

Clustering Problem

Automatic grouping of instances, such that the instances that belong to the same clusters are more similar to each other than to those in the other groups

Categories of ML Problems

Dimensionality Reduction Problem

Reduce the dimension of input data, to avoid the effect of the curse of dimensionality

Hypothesis

Model

Cost

Loss

Optimization

Hypothesis

Cost

Optimization

Model

Loss

H(x) = Wx + b

Hypothesis

Cost

Optimization

Model

Loss

H(x) = Wx + b

$$cost(W, b) = \frac{1}{m} \sum_{i=1}^{m} (H(x^{(i)}) - y^{(i)})^2$$

Gradient Descent – 1D input

Gradient Descent – 2D input

Hypothesis

Cost

Optimization

Model

Loss

$$H(x) = Wx + b$$

$$W := W - \alpha \frac{\partial}{\partial W} cost(W)$$

$$cost(W, b) = \frac{1}{m} \sum_{i=1}^{m} (H(x^{(i)}) - y^{(i)})^2$$

Stochastic Gradient Descent

Calculate gradient for small chunk (mini-batch) of whole training dataset, rather than the whole training dataset (batch).

Stochastic since the gradient is not deterministic, but stochastic depending on the mini-batch

Faster than batch gradient descent, while converging similar.

Can avoid local minima by stochasticity.

Stochastic Gradient Descent

Hypothesis

Cost

Optimization

Model

Loss

H(X) = XW

$$\begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \\ x_{41} & x_{42} & x_{43} \\ x_{51} & x_{52} & x_{53} \end{pmatrix} \cdot \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} = \begin{pmatrix} x_{11}w_1 + x_{12}w_2 + x_{13}w_3 \\ x_{21}w_1 + x_{22}w_2 + x_{23}w_3 \\ x_{31}w_1 + x_{32}w_2 + x_{33}w_3 \\ x_{41}w_1 + x_{42}w_2 + x_{43}w_3 \\ x_{51}w_1 + x_{52}w_2 + x_{53}w_3 \end{pmatrix}$$

Hypothesis

Model

H(X) = XW

$$\begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \\ x_{41} & x_{42} & x_{43} \\ x_{51} & x_{52} & x_{53} \end{pmatrix} \cdot \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} = \begin{pmatrix} x_{11}w_1 + x_{12}w_2 + x_{13}w_3 \\ x_{21}w_1 + x_{22}w_2 + x_{23}w_3 \\ x_{31}w_1 + x_{32}w_2 + x_{33}w_3 \\ x_{41}w_1 + x_{42}w_2 + x_{43}w_3 \\ x_{51}w_1 + x_{52}w_2 + x_{53}w_3 \end{pmatrix}$$

Cost

Loss

$$cost(W, b) = \frac{1}{m} \sum_{i=1}^{m} (H(x_1^{(i)}, x_2^{(i)}, ..., x_n^{(i)}) - y^{(i)})^2$$

Limitation of ML – MNIST/Cat or Dog?

Structure of Neuron

Modeling Neuron (1957)

Multilayer Perceptron (1969)

Backpropagation (1986)

Backpropagation

Backpropagation

Universal Approximation Theorem

A feed-forward network with single hidden layer is sufficient to represent any function, but the required hidden unit might be infinitely large and may fail to learn.

Using deeper model can reduce the number of required units for representing desired function.

Overfitting – Linear Regression

Overfitting – MLP

Overfitting – True Distribution

Overfitting – True Distribution

Training, Validation, and Test Set

L2 Regularization

Hyperparameter Tuning