# data visualization

(a)Import library

In [1]: import numpy as np
import pandas as pd

b) Import dataset

In [2]: data=pd.read\_csv(r"C:\Users\user\Downloads\3\_Fitness-1.csv")

In [3]: data

Out[3]:

|   | Row Labels  | Sum of Jan | Sum of Feb | Sum of Mar | Sum of Total Sales |
|---|-------------|------------|------------|------------|--------------------|
| 0 | А           | 5.62%      | 7.73%      | 6.16%      | 75                 |
| 1 | В           | 4.21%      | 17.27%     | 19.21%     | 160                |
| 2 | С           | 9.83%      | 11.60%     | 5.17%      | 101                |
| 3 | D           | 2.81%      | 21.91%     | 7.88%      | 127                |
| 4 | E           | 25.28%     | 10.57%     | 11.82%     | 179                |
| 5 | F           | 8.15%      | 16.24%     | 18.47%     | 167                |
| 6 | G           | 18.54%     | 8.76%      | 17.49%     | 171                |
| 7 | Н           | 25.56%     | 5.93%      | 13.79%     | 170                |
| 8 | Grand Total | 100.00%    | 100.00%    | 100.00%    | 1150               |

c)head

In [13]: data.head(5)

Out[13]:

|   | Row Labels | Sum of Jan | Sum of Feb | Sum of Mar | Sum of Total Sales |
|---|------------|------------|------------|------------|--------------------|
| 0 | Α          | 5.62%      | 7.73%      | 6.16%      | 75                 |
| 1 | В          | 4.21%      | 17.27%     | 19.21%     | 160                |
| 2 | С          | 9.83%      | 11.60%     | 5.17%      | 101                |
| 3 | D          | 2.81%      | 21.91%     | 7.88%      | 127                |
| 4 | Е          | 25.28%     | 10.57%     | 11.82%     | 179                |

d) tail

In [14]: data.tail(5)

Out[14]:

|   | Row Labels  | Sum of Jan | Sum of Feb | Sum of Mar | Sum of Total Sales |
|---|-------------|------------|------------|------------|--------------------|
| 4 | E           | 25.28%     | 10.57%     | 11.82%     | 179                |
| 5 | F           | 8.15%      | 16.24%     | 18.47%     | 167                |
| 6 | G           | 18.54%     | 8.76%      | 17.49%     | 171                |
| 7 | Н           | 25.56%     | 5.93%      | 13.79%     | 170                |
| 8 | Grand Total | 100.00%    | 100.00%    | 100.00%    | 1150               |

e) describe

In [6]: data.describe()

Out[6]:

#### **Sum of Total Sales**

| count | 9.000000    |
|-------|-------------|
| mean  | 255.555556  |
| std   | 337.332963  |
| min   | 75.000000   |
| 25%   | 127.000000  |
| 50%   | 167.000000  |
| 75%   | 171.000000  |
| max   | 1150.000000 |

f) shape

In [7]: data.shape

Out[7]: (9, 5)

g) size

In [8]: data.size

Out[8]: 45

h) find missing values

In [9]: data.isna()

#### Out[9]:

|   | Row Labels | Sum of Jan | Sum of Feb | Sum of Mar | Sum of Total Sales |
|---|------------|------------|------------|------------|--------------------|
| 0 | False      | False      | False      | False      | False              |
| 1 | False      | False      | False      | False      | False              |
| 2 | False      | False      | False      | False      | False              |
| 3 | False      | False      | False      | False      | False              |
| 4 | False      | False      | False      | False      | False              |
| 5 | False      | False      | False      | False      | False              |
| 6 | False      | False      | False      | False      | False              |
| 7 | False      | False      | False      | False      | False              |
| 8 | False      | False      | False      | False      | False              |

```
In [29]: | data.isnull().sum()
```

Out[29]: Row Labels 0 Sum of Jan 0 Sum of Feb 0 Sum of Mar Sum of Total Sales dtype: int64

### In [ ]:

i) fill/drop

In [11]: data.dropna(axis=1,how='any')

# Out[11]:

|   | Row Labels  | Sum of Jan | Sum of Feb | Sum of Mar | Sum of Total Sales |
|---|-------------|------------|------------|------------|--------------------|
| 0 | А           | 5.62%      | 7.73%      | 6.16%      | 75                 |
| 1 | В           | 4.21%      | 17.27%     | 19.21%     | 160                |
| 2 | С           | 9.83%      | 11.60%     | 5.17%      | 101                |
| 3 | D           | 2.81%      | 21.91%     | 7.88%      | 127                |
| 4 | Е           | 25.28%     | 10.57%     | 11.82%     | 179                |
| 5 | F           | 8.15%      | 16.24%     | 18.47%     | 167                |
| 6 | G           | 18.54%     | 8.76%      | 17.49%     | 171                |
| 7 | Н           | 25.56%     | 5.93%      | 13.79%     | 170                |
| 8 | Grand Total | 100.00%    | 100.00%    | 100.00%    | 1150               |

In [19]: data1 = data[['Sum of Jan','Sum of Total Sales']]
 data1

#### Out[19]:

|   | Sum of Jan | Sum of Total Sales |
|---|------------|--------------------|
| 0 | 5.62%      | 75                 |
| 1 | 4.21%      | 160                |
| 2 | 9.83%      | 101                |
| 3 | 2.81%      | 127                |
| 4 | 25.28%     | 179                |
| 5 | 8.15%      | 167                |
| 6 | 18.54%     | 171                |
| 7 | 25.56%     | 170                |
| 8 | 100.00%    | 1150               |

# In [20]: data1.plot.line()

#### Out[20]: <AxesSubplot:>



In [21]: data1.plot.bar()

Out[21]: <AxesSubplot:>



In [22]: data1.plot.hist()

Out[22]: <AxesSubplot:ylabel='Frequency'>



```
In [23]: data1.plot.area()
```

#### Out[23]: <AxesSubplot:>



```
In [25]: data2 = data1['Sum of Total Sales']
data2
```

```
Out[25]: 0
                  75
          1
                 160
          2
                 101
                 127
          4
                 179
          5
                 167
          6
                 171
          7
                 170
                1150
```

Name: Sum of Total Sales, dtype: int64

## In [26]: data2.plot.pie()

Out[26]: <AxesSubplot:ylabel='Sum of Total Sales'>



```
In [ ]:
```