A Supertag-Context Model for Weakly-Supervised CCG Parser Learning

Dan Garrette

Chris Dyer

Jason Baldridge

Noah A. Smith

U. Washington

CMU

UT-Austin

CMU

Contributions

- 1. A **new generative model** for learning CCG parsers from *weak supervision*
- 2. A way to select Bayesian **priors** that capture properties of CCG
- 3. A Bayesian **inference procedure** to learn the parameters of our model

- Unannotated text
- Incomplete tag dictionary: word → {tags}

(This makes inference tricky... we'll come back to that)

Why CCG?

- The grammar formalism itself can be used to guide learning
 - Given any two categories, we always know whether they are combinable.
- We can extract a priori context preferences, before we even look at the data
 - Adjacent categories tend to be combinable.

Why CCG?

universal, intrinsic grammar properties

all relationships must be learned

CCG Parsing

CCG Parsing

 Klein & Manning showed the value of modeling context with the Constituent Context Model (CCM)

the lazy dog sleeps


```
DT ( NN ) WBZ dog
```

```
DT ( JJ JJ NN ) WBZ big lazy dog
```

"substitutability"

DT **~** Noun) → VBZ

- We know the constituent label
- We know if it's a fitting context, even before looking at the data

This Paper

- 1. A **new generative model** for learning CCG parsers from *weak supervision*
- 2. A way to select Bayesian **priors** that capture properties of CCG
- 3. A Bayesian **inference procedure** to learn the parameters of our model

Supertag-Context Parsing

Standard PCFG

 $P(A_{root})$

 $P(A \rightarrow A_{left} A_{right} OR w_i)$

Supertag-Context Parsing

Prior on Categories

Supertag-Context Prior

```
P_{L-prior}(t_{left} \mid A) \propto \begin{cases} 10^5 & \text{if } t_{left} \text{ can combine with } A \\ 1 & \text{otherwise} \end{cases}
```


Supertag-Context Prior

This Paper

- 1. A **new generative model** for learning CCG parsers from *weak supervision*
- 2. A way to select Bayesian **priors** that capture properties of CCG
- 3. A Bayesian **inference procedure** to learn the parameters of our model

Type-Level Supervision

Type-Supervised Learning

unlabeled corpus

tag dictionary

universal properties of the CCG formalism

- A Bayesian inference procedure will make use of our linguistically-informed priors
- But we can't do sampling like a PCFG
 - Can't compute the inside chart, even with dynamic programming.

Sampling via Metropolis-Hastings

Idea:

- Sample tree from an efficient proposal distribution
 - (PCFG parameters) (Johnson et al. 2007)
- Accept according to the full distribution
 - (Context parameters)

• • •

• • •

- Sample tree based only on the pcfg parameters
- Accept based only on the context
- New worse than old => less likely to accept

Experimental Results

Experimental Question

 When supervision is incomplete, does modeling context, and biasing toward combining contexts, help learn better parsing models?

English Results

size of the corpus from which the tag dictionary is drawn

Experimental Results

Conclusion

Under weak supervision, we can use universal grammatical knowledge about **context** to find trees with a **better global structure**.

Deficiency

- Generative story has a "throw away" step if the context-generated nonterminals don't match the tree.
- We sample only over the space of valid trees (condition on well-formed structures).
- This is a benefit of the Bayesian formulation.
- See Smith 2011.

$$P_{context}(\mathbf{y}) = P_{full}(\mathbf{y}) / P_{pcfg}(\mathbf{y})$$
 $P_{context}(\mathbf{y'}) = P_{full}(\mathbf{y'}) / P_{pcfg}(\mathbf{y'})$

 $z \sim uniform(0,1)$

accept if
$$z < \frac{P_{\text{full}}(\mathbf{y'}) / P_{\text{pcfg}}(\mathbf{y'})}{P_{\text{full}}(\mathbf{y}) / P_{\text{pcfg}}(\mathbf{y})} = \frac{P_{\text{context}}(\mathbf{y'})}{P_{\text{context}}(\mathbf{y})}$$