Programação Linear Solução analítica

Prof. Marcelo de Souza

55MQU – Métodos Quantitativos Universidade do Estado de Santa Catarina

Pré-condições para aplicação do método simplex

Função objetivo deve ser de maximização;

$$\mathbf{maximiza} \quad z = \sum_{i \in [n]} c_i x_i$$

- Restrições devem ser equações com lado direito não negativo;
 - exceto restrições triviais (não-negatividade).

$$\sum_{\mathfrak{i}\in[\mathfrak{n}]}a_{\mathfrak{j}\mathfrak{i}}x_{\mathfrak{i}}=b_{\mathfrak{j}},\quad\forall\mathfrak{j}\in[\mathfrak{m}]$$

Todas as variáveis devem ser não negativas.

$$x_i \ge 0$$
, $\forall i \in [n]$

Transformações (função objetivo)

Função objetivo de minimização para maximização (e vice-versa)

► Multiplica por −1.

minimiza
$$z = 3x_1 - 2x_2 \iff \text{maximiza} \quad -z = -3x_1 + 2x_2$$

Transformações (restrições)

Desigualdades para equações com lado direito não negativo

- As restrições representam limites no uso de algum recurso por meio de inequações;
- A diferença entre o primeiro e segundo membros da inequação indica a quantidade de recurso sobrando ou excedente;
- Para transformar desigualdades em equações introduzimos variáveis de folga ou sobra;
- ► Em caso de lado direito negativo, multiplicamos por −1.

Transformações (restrições)

Desigualdades para equações com lado direito não negativo

- As restrições representam limites no uso de algum recurso por meio de inequações;
- A diferença entre o primeiro e segundo membros da inequação indica a quantidade de recurso sobrando ou excedente;
- Para transformar desigualdades em equações introduzimos variáveis de folga ou sobra;
- ightharpoonup Em caso de lado direito negativo, multiplicamos por -1.

$$3x_1 + 2x_2 \le 16 \iff 3x_1 + 2x_2 + s_1 = 16, \quad s_1 \ge 0$$

Transformações (restrições)

Desigualdades para equações com lado direito não negativo

- As restrições representam limites no uso de algum recurso por meio de inequações;
- A diferença entre o primeiro e segundo membros da inequação indica a quantidade de recurso sobrando ou excedente;
- Para transformar desigualdades em equações introduzimos variáveis de folga ou sobra;
- ightharpoonup Em caso de lado direito negativo, multiplicamos por -1.

$$3x_1 + 2x_2 \le 16$$
 \iff $3x_1 + 2x_2 + s_1 = 16$, $s_1 \ge 0$

$$x_1 - 2x_2 \ge 6 \iff x_1 - 2x_2 - s_1 = 6, s_1 \ge 0$$

Transformações (restrições)

Desigualdades para equações com lado direito não negativo

- As restrições representam limites no uso de algum recurso por meio de inequações;
- A diferença entre o primeiro e segundo membros da inequação indica a quantidade de recurso sobrando ou excedente;
- Para transformar desigualdades em equações introduzimos variáveis de folga ou sobra;
- ightharpoonup Em caso de lado direito negativo, multiplicamos por -1.

$$3x_1 + 2x_2 \le 16$$
 \iff $3x_1 + 2x_2 + s_1 = 16$, $s_1 \ge 0$
 $x_1 - 2x_2 \ge 6$ \iff $x_1 - 2x_2 - s_1 = 6$, $s_1 \ge 0$
 $2x_1 - x_2 \ge -8$ \iff $-2x_1 + x_2 + s_1 = 8$, $s_1 \ge 0$

Transformações (adicionais)

Restrição ≤ em ≥ (e vice-versa)

► Multiplica por −1.

$$3x_1+2x_2 \leq 16 \quad \Longleftrightarrow \quad -3x_1-2x_2 \geq -16$$

Variável irrestrita x_i em não negativa

Introduz novas variáveis $x_i^+ \ge 0$ e $x_i^- \ge 0$, e define $x_i = x_i^+ - x_i^-$.

$$2x_1 + x_2 \le 10, \quad x_1 \ge 0, x_2 \lessgtr 0 \quad \Longleftrightarrow \quad 2x_1 + x_2^+ - x_2^- \le 10, \quad x_1, x_2^+, x_2^- \ge 0.$$

Exemplo

Dado o modelo abaixo, apresente o modelo equivalente na forma padrão.

minimiza
$$z = 2x_1 - x_2$$

sujeito a $x_1 + x_2 \ge 2$
 $3x_1 + 2x_2 \le 4$
 $x_1 + 2x_2 = 3$
 $x_1 \le 0, x_2 \ge 0$

Exemplo

Dado o modelo abaixo, apresente o modelo equivalente na forma padrão.

minimiza
$$z = 2x_1 - x_2$$
 maximiza $-z = -2x_1^+ + 2x_1^- + x_2$
sujeito a $x_1 + x_2 \ge 2$ sujeito a $x_1^+ - x_1^- + x_2 - s_1 = 2$
 $3x_1 + 2x_2 \le 4$ \iff $3x_1^+ - 3x_1^- + 2x_2 + s_2 = 4$
 $x_1 + 2x_2 = 3$ $x_1 \le 0, x_2 \ge 0$ $x_1^+, x_1^-, x_2, s_1, s_2 \ge 0$

Se o modelo de PL está na forma padrão:

- le ele é representado por um conjunto de m equações em n variáveis;
- ▶ sendo m < n (regra geral);</p>
 - ightharpoonup se $\mathfrak{m}=\mathfrak{n}$: o sistema possui uma única solução trivial;
 - ightharpoonup se $\mathfrak{m} > \mathfrak{n}$: existem pelo menos $\mathfrak{m} \mathfrak{n}$ restrições redundantes.

Se o modelo de PL está na forma padrão:

- le ele é representado por um conjunto de m equações em n variáveis;
- ▶ sendo m < n (regra geral);</p>
 - ightharpoonup se m=n: o sistema possui uma única solução trivial;
 - ightharpoonup se $\mathfrak{m} > \mathfrak{n}$: existem pelo menos $\mathfrak{m} \mathfrak{n}$ restrições redundantes.

Ao igualar n-m variáveis a zero e resolver as m equações para as m variáveis restantes, obtemos uma solução básica, que corresponde a um ponto extremo (viável ou inviável) e, portanto, a uma solução candidata a ótima.

Exemplo

Exemplo

Exemplo

O sistema possui:

m = 2 equações
$$\{2x_1 + x_2 + s_1 = 4, x_1 + 2x_2 + s_2 = 5\};$$

$$n = 4 \text{ variáveis } \{x_1, x_2, s_1, s_2\}$$

Exemplo

O sistema possui:

m = 2 equações
$$\{2x_1 + x_2 + s_1 = 4, x_1 + 2x_2 + s_2 = 5\};$$

$$ightharpoonup n = 4 \text{ variáveis } \{x_1, x_2, s_1, s_2\}$$

Logo, zerando n-m=4-2=2 variáveis e determinando o valor das m=2 variáveis restantes, obtemos uma solução básica.

Exemplo

O sistema possui:

m = 2 equações
$$\{2x_1 + x_2 + s_1 = 4, x_1 + 2x_2 + s_2 = 5\};$$

$$ightharpoonup n = 4 \text{ variáveis } \{x_1, x_2, s_1, s_2\}$$

Logo, zerando n - m = 4 - 2 = 2 variáveis e determinando o valor das m = 2 variáveis restantes, obtemos uma solução básica.

Exemplos:

$$x_1 = 0, x_2 = 0 \rightarrow s_1 = 4, s_2 = 5$$
 (A)

$$s_1 = 0, s_2 = 0 \rightarrow x_1 = 1, x_2 = 2$$
 (C)

$$x_1 = 0$$
, $s_1 = 0 \rightarrow x_2 = 4$, $s_2 = -3$ (F)

Exemplo

 χ_2

Todas as soluções básicas

Variáveis não básicas	Variáveis básicas	Solução básica	Ponto	Viável	Valor
(x_1, x_2)	(s_1, s_2)	(4, 5)	Α	Sim	0
(x_1, s_1)	(x_2, s_2)	(4, -3)	F	Não	_
(x_1, s_2)	(x_2, s_1)	(2,5,1,5)	В	Sim	7,5
(x_2, s_1)	(x_1, s_2)	(2, 3)	D	Sim	4
(x_2, s_2)	(x_1, s_1)	(5, -6)	E	Não	_
(s_1, s_2)	(x_1, x_2)	(1, 2)	C	Sim	8

A solução (1, 2) é a solução ótima, com valor 8.

Solução algébrica por busca exaustiva

- 1. Determina todas as soluções básicas do modelo;
 - ► Zera n m variáveis (não básicas) e determina o valor para as m variáveis restantes (básicas); repete para toda combinação possível.
- 2. Calcula o valor da função objetivo para cada solução básica viável e retorna a melhor.

Solução algébrica por busca exaustiva

- 1. Determina todas as soluções básicas do modelo;
 - Zera n − m variáveis (não básicas) e determina o valor para as m variáveis restantes (básicas); repete para toda combinação possível.
- 2. Calcula o valor da função objetivo para cada solução básica viável e retorna a melhor.

Número total de soluções básicas é dado por

$$C_m^n = \frac{n!}{m!(n-m)!}$$

Para n = 20 e m = 10 (PL pequeno): $C_{10}^{20} = 184.756$ conjuntos de 10×10 equações!

Solução algébrica por busca exaustiva

- 1. Determina todas as soluções básicas do modelo;
 - ► Zera n m variáveis (não básicas) e determina o valor para as m variáveis restantes (básicas); repete para toda combinação possível.
- 2. Calcula o valor da função objetivo para cada solução básica viável e retorna a melhor.

Número total de soluções básicas é dado por

$$C_m^n = \frac{n!}{m!(n-m)!}$$

Para n = 20 e m = 10 (PL pequeno): $C_{10}^{20} = 184.756$ conjuntos de 10×10 equações!

Método simplex propõe estratégias para avaliar somente parte das soluções básicas viáveis.

George B. Dantzig

O método simplex foi desenvolvido pelo matemático **George Dantzig** em 1947. O corpo editorial da *SIAM News* o listou como um dos *Top 10 Algoritmos do Século XX*, junto com o método de Monte Carlo, o algoritmo *quicksort*, a transformada rápida de Fourier, e outros algoritmos importantes.

"In terms of widespread use, George Dantzig's simplex method is among the most successful algorithms of all time." (SIAM News, Volume 33, Number 4)

Natureza iterativa

Dado um programa linear na forma padrão:

- 1. Determina uma solução básica inicial;
- 2. Se a solução for ótima, retorna;
- 3. Caso contrário, determina a melhor solução básica viável adjacente;
- 4. Volta ao passo 2.

Natureza iterativa

Dado um programa linear na forma padrão:

- 1. Determina uma solução básica inicial;
- 2. Se a solução for ótima, retorna;
- 3. Caso contrário, determina a melhor solução básica viável adjacente;
- 4. Volta ao passo 2.

Solução básica inicial: geralmente $x_1 = 0$, $x_2 = 0$, com função objetivo z = 0.

Determinação da solução adjacente: seleciona a variável não básica que produz a maior taxa de melhoria na função objetivo, e aumenta seu valor o máximo possível sem violar restrições.

Neste caso, uma variável sai da base para dar lugar à nova.

Visão geral

Visão geral

Visão geral

Inicia no ponto A:

- Solução básica inicial: $x_1 = 0$, $x_2 = 0$;
- Variáveis não básicas: (x₁, x₂);
- Variáveis básicas: (s₁, s₂);

Pela função objetivo ($z = 2x_1 + 3x_2$):

- Variável x₂ tem maior contribuição;
- Seleciona x₂ e aumenta o máximo possível;

Detalhes:

- Seleciona uma variável por vez;
- Sempre faz o caminho "guloso";
- A próxima solução é sempre "vizinha".

Visão geral

Variáveis básicas e não básicas:

Ponto	Variáveis	Variáveis
extremo	básicas	não básicas
A B C	$s_1, s_2 \\ s_1, x_2 \\ x_1, x_2$	$x_1, x_2 \\ x_1, s_2 \\ s_1, s_2$

Passos:

- 1. x_2 entra na base; s_2 sai da base;
- 2. x_1 entra na base; s_1 sai da base.

Questões:

- Como decidir quem entra e quem sai?
- Como identificar a solução ótima?

Algoritmo

Algoritmo

Base	z	χ_1	χ_2	s_1	s_2	s_3	s ₄	Sol.
z	1	-5	-4	0	0	0	0	0
s ₁ s ₂ s ₃ s ₄	0	6	4	1	0	0	0	24
s_2	0	1	2	0	1	0	0	6
s_3	0	-1	1	0	0	1	0	1
s ₄	0	0	1	0	0	0	1	2

Dada a solução básica inicial $(x_1,x_2) = (0,0)$, montamos a tabela simplex inicial com:

- todas variáveis do modelo (colunas);
- as variáveis da base (linhas);
- equações do modelo e seus coeficientes (linhas);
- valor de cada equação (última coluna).

Algoritmo

Base	z	χ_1	χ_2	s_1	s_2	s_3	s_4	Sol.
z	1	-5	-4	0	0	0	0	0
s ₁ s ₂ s ₃ s ₄	0	6	4	1	0	0	0	24
s_2	0	1	2	0	1	0	0	6
s_3	0	-1	1	0	0	1	0	1
s ₄	0	0	1	0	0	0	1	2

maximiza	$z = 5x_1 + 4x_2$
sujeito a	$6x_1 + 4x_2 + s_1 = 24$
	$x_1 + 2x_2 + s_2 = 6$
	$-x_1 + x_2 + s_3 = 1$
	$x_2 + s_4 = 2$
	$x_1,x_2,s_1,s_2,s_3,s_4\geq 0$

Informações:

- Variáveis não básicas: (x₁,x₂)
- ightharpoonup Variáveis básicas: (s_1, s_2, s_3, s_4)
- Solução básica: $x_1 = 0$, $x_2 = 0$, $s_1 = 24$, $s_2 = 6$, $s_3 = 1$, $s_4 = 2$. Função objetivo z = 0.

Teste de otimalidade: solução é ótima se na linha z não há nenhum valor negativo.

▶ Se há valores negativos, mudar as variáveis correspondentes melhoram a solução!

Algoritmo

Base	z	χ_1	χ_2	s_1	s_2	s_3	s ₄	Sol.
z	1	-5	-4	0	0	0	0	0
s ₁ s ₂ s ₃ s ₄	0	6	4	1	0	0	0	24
s_2	0	1	2	0	1	0	0	6
s_3	0	-1	1	0	0	1	0	1
S ₄	0	0	1	0	0	0	1	2

Solução não é ótima. Logo,

> seleciona uma variável para entrar na base (aumentar o valor) e outra para sair (zerar o valor).

Seleção de variável entrante: aquela com coeficiente mais negativo na linha z.

- Ou seja, a que mais contribui para a melhoria da função objetivo!
- A variável define a coluna pivô.

Algoritmo

Base	z	χ_1	\mathbf{x}_2	s_1	s_2	s_3	s_4	Sol.
z	1	-5	-4	0	0	0	0	0
s_1	0	6	4 2	1	0	0	0	24
s_2	0	1	2	0	1	0	0	6
s_3	0	-1	1	0	0	1	0	1
s ₄	0	0	1	0	0	0	1	2

maximiza	$z = 5x_1 + 4x_2$
sujeito a	$6x_1 + 4x_2 + s_1 = 24$
	$x_1 + 2x_2 + s_2 = 6$
	$-x_1 + x_2 + s_3 = 1$
	$x_2 + s_4 = 2$
	$x_1, x_2, s_1, s_2, s_3, s_4 \ge 0$

Variável x_1 tem o menor coeficiente (-5).

 \triangleright x_1 entra na base e identificamos a coluna pivô.

Algoritmo

Base	z	χ_1	\mathbf{x}_2	s_1	s_2	s_3	s_4	Sol.
z	1	-5	-4	0	0	0	0	0
s_1	0	6	4 2 1 1	1	0	0	0	24
s_2	0	1	2	0	1	0	0	6
s_3	0	-1	1	0	0	1	0	1
s ₄	0	0	1	0	0	0	1	2

Seleção de variável sainte: aquela cuja linha apresenta a menor razão não negativa.

A variável define a linha pivô.

Razão não negativa =
$$\frac{\text{valor da solução}}{\text{valor na coluna pivô}}$$

Algoritmo

Base	z	χ_1	\mathbf{x}_2	s_1	s_2	s_3	s_4	Sol.
z	1	-5	-4	0	0	0	0	0
s_1	0	6	4	1	0	0	0	24
s_2	0	1	2	0	1	0	0	6
s_3	0	-1	1	0	0	1	0	1
$s_1 \\ s_2 \\ s_3 \\ s_4$	0	0	1	0	0	0	1	2

Razão não negativa:

- Linha s_1 : 24/6 = 4
- Linha s_2 : 6/1 = 6
- Linha s_3 : 1/-1 = -1 (negativa; descarta)
- ▶ Linha s_4 : $2/0 = \infty$ (descarta)

Algoritmo

Base	z	χ_1	χ_2	s_1	s_2	s_3	s ₄	Sol.
z	1	-5	-4	0	0	0	0	0
s_1	0	6	4 2 1 1	1	0	0	0	24
s_2	0	1	2	0	1	0	0	6
s_3	0	-1	1	0	0	1	0	1
s ₄	0	0	1	0	0	0	1	2

Razão não negativa:

- ► Linha s_1 : 24/6 = 4 ← menor valor não negativo!
- Linha s_2 : 6/1 = 6
- Linha s_3 : 1/-1 = -1 (negativa; descarta)
- ▶ Linha s_4 : $2/0 = \infty$ (descarta)

Algoritmo

maximiza
$$z = 5x_1 + 4x_2$$

sujeito a $6x_1 + 4x_2 + s_1 = 24$
 $x_1 + 2x_2 + s_2 = 6$
 $-x_1 + x_2 + s_3 = 1$
 $x_2 + s_4 = 2$
 $x_1, x_2, s_1, s_2, s_3, s_4 \ge 0$

Algoritmo

Base	z	χ_1	\mathbf{x}_2	s_1	s_2	s_3	s_4	Sol.
z	1	-5	-4	0	0	0	0	0
s_1	0	6	4 2 1 1	1	0	0	0	24
s_2	0	1	2	0	1	0	0	6
s_3	0	-1	1	0	0	1	0	1
s ₄	0	0	1	0	0	0	1	2

maximiza	$z = 5x_1 + 4x_2$
sujeito a	$6x_1 + 4x_2 + s_1 = 24$
	$x_1 + 2x_2 + s_2 = 6$
	$-x_1 + x_2 + s_3 = 1$
	$x_2 + s_4 = 2$
	$x_1, x_2, s_1, s_2, s_3, s_4 \ge 0$

Informações:

▶ Variável que entra na base: x_1 (terá seu valor aumentado);

 \blacktriangleright Variável que sai da base: s_1 (terá seu valor zerado);

ightharpoonup Coluna pivô: x_1 ;

► Linha pivô: s₁;

Elemento pivô: 6 (interseção da coluna e linha pivôs).

Algoritmo

Base	z	x_1	\mathbf{x}_2	s_1	s_2	s_3	s ₄	Sol.	Base	z	χ_1	χ_2	s_1	\mathbf{s}_2	s_3	$s_4 \mid Sol.$
z	1	-5	-4	0	0	0	0	0	z							
s_1	0	6	4	1	0	0	0	24	s_1							
s_2	0	1	2	0	1	0	0	6	s_2							
s_3	0	-1	1	0	0	1	0	1	s ₃							
S ₄	0	0	1	0	0	0	1	2	84							

Algoritmo

Base	z	x_1	\mathbf{x}_2	s_1	s_2	s_3	s ₄	Sol.	Base	z	χ_1	\mathbf{x}_2	s_1	s_2	s_3	s_4 Sol.
z	1	-5	-4	0	0	0	0	0	z							
s_1	0	6	4	1	0	0	0	24	s_1							
\mathbf{s}_2	0	1	2	0	1	0	0	6	\mathbf{s}_2							
s_3	0	-1	1	0	0	1	0	1	s_3							
s_4	0	0	1	0	0	0	1	2	s ₄							

Troca de variáveis (tabela): operações de Gauss-Jordan

- ► Na linha pivô:
 - 1. Substitui a variável que sai da base pela variável que entra na base (coluna "Base");
 - 2. Calcula a nova linha pivô como

Nova linha pivô = $\frac{\text{linha pivô atual}}{\text{elemento pivô}}$

Algoritmo

Base	z	x_1	χ_2	s_1	s_2	s_3	s ₄	Sol.	Base	z	χ_1	χ_2	s_1	s_2	s_3	s ₄	Sol.
z	1	-5	-4	0	0	0	0	0	z								
s_1	0	6	4	1	0	0	0	24	χ_1	0	1	2/3	1/6	0	0	0	4
s_2	0	1	2	0	1	0	0	6	s_2								
s_3	0	-1	1	0	0	1	0	1	s_3								
s_4	0	0	1	0	0	0	1	2	S ₄								

Atualização da linha pivô:

Linha pivô atual
$$\rightarrow$$
 $\begin{pmatrix} 0 & 6 & 4 & 1 & 0 & 0 & 24 \end{pmatrix} \div 6$ (elemento pivô)
Nova linha pivô \rightarrow $\begin{pmatrix} 0 & 1 & 2/3 & 1/6 & 0 & 0 & 4 \end{pmatrix}$

Algoritmo

Base	z	χ_1	χ_2	s_1	s_2	s_3	s ₄	Sol.		Base	z	χ_1	χ_2	s_1	s_2	s_3	s ₄	Sol.
z	1	-5	-4	0	0	0	0	0	_	z								
s_1	0	6	4	1	0	0	0	24	_	χ_1	0	1	2/3	1/6	0	0	0	4
\mathbf{s}_2	0	1	2	0	1	0	0	6		s_2								
s_3	0	-1	1	0	0	1	0	1		s_3								
S ₄	0	0	1	0	0	0	1	2		S ₄								

Troca de variáveis (tabela): operações de Gauss-Jordan

Nas demais linhas:

Nova linha = linha atual − coeficiente na coluna pivô × nova linha pivô

Algoritmo

Base	z	x_1	\mathbf{x}_2	s_1	s_2	s_3	s ₄	Sol.		Base	z	χ_1	\mathbf{x}_2	s_1	s_2	s_3	$s_4 \mid Sol.$
z	1	-5	-4	0	0	0	0	0		z	1	0	-2/3	5/6	0	0	0 20
s_1	0	6	4	1	0	0	0	24	·	χ_1	0	1	2/3	1/6	0	0	0 4
s_2	0	1	2	0	1	0	0	6		\mathbf{s}_2							
s_3	0	-1	1	0	0	1	0	1		s_3							
s_4										s_4							

Atualização da linha z:

Linha atual
$$\rightarrow$$
 $\begin{pmatrix} 1 & -5 & -4 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$ —

Nova linha pivô \rightarrow $\begin{pmatrix} 0 & 1 & 2/3 & 1/6 & 0 & 0 & 0 & 4 \end{pmatrix} \times (-5)$ [coeficiente na coluna pivô]

Nova linha \rightarrow $\begin{pmatrix} 1 & 0 & -2/3 & 5/6 & 0 & 0 & 0 & 20 \end{pmatrix}$

ΔΙ	n	or	iŧ	m
/ \	9	OI.	ıı	

Base	Z	χ_1	χ_2	s_1	s_2	s ₃	S ₄	Sol.	Base	z	χ_1	χ_2	s_1	s_2	s_3	s ₄	Sol.
Z	1	-5	-4	0	0	0	0	0	z	1	0	-2/3	5/6	0	0	0	20
s_1	0	6	4	1	0	0	0	24	χ_1	0	1	2/3	1/6	0	0	0	4
s_2	0	1	2	0	1	0	0	6	x_1 s_2	0	0	4/3	$^{-1}/_{6}$	1	0	0	2
s ₃	0	-1	1	0	0	1	0	1	s_3	0	0	5/3	$^{1}/_{6}$	0	1	0	5
S_A	0	0	1	0	0	0	1	2	S4	0	0	1	0	0	0	1	2

Informações:

- Variáveis não básicas: (s_1,x_2)
- ightharpoonup Variáveis básicas: (x_1, s_2, s_3, s_4)
- Solução básica: $s_1 = 0$, $x_2 = 0$, $x_1 = 4$, $s_2 = 2$, $s_3 = 5$, $s_4 = 2$. Função objetivo z = 20.

Solução é ótima? Não, pois há valores negativos na linha z.

► Repita o processo.

