[CSED233-01] Data Structure Graph Traversals

Jaesik Park

Graph Traversal/Search

- Visiting the vertices of a graph in some specific order (in some organized manner)
 - Similar in concept to a tree traversal

Many graph problems can be solved using a search method

- Two commonly used search methods
 - DFS (Depth-First Search)
 - BFS (Breadth-First Search)

Graph Traversal/Search

- Troublesome cases
 - If the graph is not connected
 - → unreachable to all vertices
 - If the graph contains cycles
 - → infinite loop

Maintain a mark bit for each vertex to solve the problems

- Going as deep as possible on each child before going to the next sibling
 - Generalization of the preorder traversal of a tree to a graph
- Recursive implementation:
 - Using Recursion Stack

```
DFS (v) {
    mark[v] := visited;
    for (each unvisited vertex w adjacent from v)
        DFS(w);
}
```


- Start at vertex A
- Mark vertex A and do DFS from either C or E

Mark vertex C and do DFS from either B, D or F

Mark vertex B and do DFS from F

• Mark vertex F and do DFS from either D or E

- Mark vertex D and return (backtrack) to vertex F
- From F, do DFS(E)

- Mark vertex E and return (backtrack) to vertex F
- Return to B, C, and A in turn

- There are still unvisited vertices G and H
- So, we invoke DFS(G) again

- Depth-first spanning forest (pink edges)
- Two connected components

Time Complexity of DFS

- All n vertices are visited only once
- When a vertex is visited, we examine its adjacent vertices
 - O(vertex degree) if adjacency lists are used
 - O(n) if adjacency matrix is used
- Total time requires multiple parameters
 - O(n + e) (adjacency lists)
 - $T = (c + d_1) + (c + d_2) + ... + (c + d_n) = c*n + e$
 - Aggregate analysis
 - O(n*n) (adjacency matrix)
 - $T = n^*(c_1 + c_2^*n)$

Applications of DFS (1)

- How to identify a spanning tree
 - Start DFS at any unvisited vertex
 - If G is connected, the *n-1* edges used to reach unvisited vertices defines a spanning tree

- How to find a path from vertex ν to vertex w
 - Start DFS at vertex v
 - Terminate when vertex w is visited or when there are no more unvisited vertices (whichever occurs first)

Applications of DFS (2)

- Is the graph is connected?
 - Start DFS at any vertex
 - G is connected if all vertices get visited

- How to identify connected components
 - Start DFS at any unvisited vertex
 - Newly visited vertices (plus edges between them) define a component
 - Repeat above until all vertices are visited

Applicable to digraphs (directed graphs)

How to Find the Strong Components

- Input: a digraph G
- Output: strong components
- Algorithm
 - 1 Do DFS of G (numbering the vertices in order of completion of the recursive calls)
 - 2 Construct a new digraph G_r by reversing the arc directions in G
 - \mathfrak{J} Do DFS on G_n starting at the highest numbered vertex according to the numbering at step \mathfrak{T}

Example: Strong Components

A given digraph G

After step (1) – DFS(G)
 with numbering

Example: Strong Components

• After step (2) – Construct a new digraph G_r

 $-DFS(G_r)$

Topological Sort

- A linear ordering of the vertices of a DAG s.t.
 - if there is a path from ν to w, then ν appears before w in the ordering

- Acceptable topological sorts?
 - J1, J2, J3, J4, J5, J6, J7
 - J1, J3, J2, J6, J4, J5, J7 etc.

Stack-Based Topological Sort

- DFS-based algorithm
 - Do a DFS on the graph (starting with any vertex)
 - When a vertex is visited, no action
 - When the recursion pops back to the vertex, print the vertex
 - → Topological sort in reverse order

```
TOPSORT (v) {
    mark[v] := visited;
    for (each unvisited vertex w adjacent from v)
        TOPSORT(w);
    print(v)
}
```

Queue-Based Topological Sort

- Going as broad as possible on each depth before going to the next depth
- Iterative implementation:
 - Similar to DFS except that a *queue* replaces the *recursion stack*

```
Visit/Mark a start vertex & put into the queue;
Repeat until the queue is empty {
    Remove a vertex from the queue;
    Visit/Mark its unvisited adjacent vertices;
    Put the newly visited vertices into the queue
}
```


- Start at vertex A
- Mark vertex A & put it into queue Q

• Remove A from Q; Visit all unvisited adjacent vertices; Put them into Q

• Remove A from Q; Visit all unvisited adjacent vertices; Put them into Q

• Remove C from Q; Visit all unvisited adjacent vertices; Put them into Q

• Remove C from Q; Visit all unvisited adjacent vertices; Put them into Q

• Remove *E* from Q; Visit all unvisited adjacent vertices; Put them into Q

- Remove *E* from Q; Visit all unvisited adjacent vertices; Put them into Q
- Similarly, B, D, and F can be removed from Q

- Queue is empty
- Search terminates

Breadth-First Search

Same time complexity as DFS

 Same properties with respect to graph connectivity, connected components, spanning trees, path finding

• There are problems for which BFS is better than DFS, and vice versa

References

- Further reading list and references
 - https://www.geeksforgeeks.org/difference-between-bfs-and-dfs/

- Slide credit
 - Jaesik Park
 - Seung-Hwan Baek
 - Jong-Hyeok Lee