Programme n°22

MECANIQUE

M5 Mouvement d'une particule chargée dans un champ électrique ou magnétique (Cours et exercices)

M6 Moment cinétique (Cours et exercices)

M7 Mouvement dans un champ de force centrale (Cours uniquement)

Forces centrales conservatives

- Définition
- Energie potentielle associée
- Exemples : Interaction de gravitation, Interaction électrostatique
- · Lois générales de conservation
- Le moment cinétique (Conservation, (Le mouvement est plan, Loi des Aires)
- L'énergie mécanique

• Cas du champ Newtonien

- Position du problème
- Détermination de la trajectoire par une méthode numérique
- Analyse

- Analyse	
2.6. Mouvements dans un champ de force centrale conservatif	
Point matériel soumis à un champ de force centrale.	Établir la conservation du moment cinétique à partir du théorème du moment cinétique. Établir les conséquences de la conservation du moment cinétique : mouvement plan, loi des aires.
Point matériel soumis à un champ de force centrale conservatif Conservation de l'énergie mécanique. Énergie potentielle effective. État lié et état de diffusion.	Exprimer l'énergie mécanique d'un système conservatif ponctuel à partir de l'équation du mouvement. Exprimer la conservation de l'énergie mécanique et construire une énergie potentielle effective. Décrire qualitativement le mouvement radial à l'aide de l'énergie potentielle effective. Relier le caractère borné du mouvement radial à la valeur de l'énergie mécanique. Capacité numérique : à l'aide d'un langage de programmation, obtenir des trajectoires d'un point
Cas particulier du champ newtonien	matériel soumis à un champ de force centrale conservatif.
Lois de Kepler.	Énoncer les lois de Kepler pour les planètes et les transposer au cas des satellites terrestres.
Cas particulier du mouvement circulaire : satellite, planète.	Établir que le mouvement est uniforme et déterminer sa période. Établir la troisième loi de Kepler dans le cas particulier de la trajectoire circulaire. Exploiter sans démonstration sa généralisation au cas d'une trajectoire elliptique.
Énergie mécanique dans le cas du mouvement circulaire et dans le cas du mouvement elliptique.	Exprimer l'énergie mécanique pour le mouvement circulaire. Exprimer l'énergie mécanique pour le mouvement elliptique en fonction du demi-grand axe.
Satellites terrestres Satellites géostationnaire, de localisation et de navigation, météorologique.	Différencier les orbites des satellites terrestres en fonction de leurs missions. Déterminer l'altitude d'un satellite géostationnaire et justifier sa localisation dans le plan équatorial.

SOLUTIONS AQUEUSES

AQ2 Réactions de dissolution ou de précipitation (Cours uniquement)

- Définition : Solution saturée
- Equilibres de précipitation
- Produit de solubilité
- Solubilité
- Conditions de précipitation
- Diagrammes de prédominance
- Couple précipité ions métallique

- Cas d'un hydroxyde amphotère

- Diagrammes de distribution
- Facteurs influençant l'équilibre de précipitation
- Influence de la température
- Effet d'ion commun
- Influence du pH

 - → Exemple 1 : AgCH₃CO₂H
 → Exemple 2 ; Solubilité du carbonate de nickel
- Réactions de complexation

 - → Mise en évidence
 → Influence sur la solubilité (exemple AgCN)

TP Mécanique :

Mesure d'une force de frottement fluide Le pendule Mesure d'une force