ĐẠI HỌC QUỐC GIA TP.HÒ CHÍ MINH TRƯỜNG ĐẠI HỌC BÁCH KHOA KHOA ĐIỆN-ĐIỆN TỬ BỘ MÔN KỸ THUẬT ĐIỆN TỬ

Embedded System Design

Chapter 4: Development Tools

- 1. Code Composer Studio
- Keil Tools by ARM

1. Code Composer Studio - Overview

- Code Composer Studio™ (CCStudio) is an integrated development environment (IDE) for Texas Instruments (TI) embedded processor families.
- CCStudio comprises a suite of tools used to develop and debug embedded applications

1. Code Composer Studio – Create a project

Create new project

Family: ARM

Variant: LM4F120H5QR

Connection: ICDI

Project templates: Empty project

1. Code Composer Studio – Project view

C/C++ Projects view

1. Code Composer Studio – Properties

Setup properties...

1. Code Composer Studio – Properties

- Include options:
 - C:\StellarisWare

1. Code Composer Studio – Properties

- File Search Path
 - Driverlib-cm4f.lib

1. Code Composer Studio – Build a project

Build your project

1. Code Composer Studio – Debug

Image	Name	Description	Availability
	New Target Configuration	Creates a new target configartion file.	File New Menu Target Menu
	Debug	Opens a dialog to modify existing debug configurations. Its drop down can be used to access other launching options.	Debug Toolbar Target Menu
珍	Connect Target	Connect to hardware targets.	TI Debug Toolbar Target Menu Debug View Context Menu
	Terminate All	Terminates all active debug sessions.	Target Menu Debug View Toolbar

2. Keil Tools by ARM

- The Keil products from ARM support over 700 of the most popular ARM microcontrollers.
 - Includes RealView® Compilation Tools including C/C++ Compiler, Macro Assembler, and Linker
 - Includes Debuggers, Real-time Kernels, Single-board Computers, and Emulators
 - All tools are integrated into μ Vision which provides interfaces to ULINK and other third-party debug adapters.

2. Keil Tools by ARM – Create a project

2. Keil Tools by ARM – Select device

Vendor: Texas Instruments

Device: LM4F120H5QR

2. Keil Tools by ARM – Add files

Add main.c

2. Keil Tools by ARM – Add files

Add C:\StellarisWare\driverlib\rvmdk-cm4\driverlib-

cm4f.lib

2. Keil Tools by ARM – Options

Include Paths: C:\StellarisWare

2. Keil Tools by ARM – Build target

2. Keil Tools by ARM – Run on Kit

2. Keil Tools by ARM – Debug

Use Simulator or Use Stellaris ICDI

2. Keil Tools by ARM – Debug

2. Keil Tools by ARM – Simulation

Sample Codes

```
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/gpio.c"
#include "driverlib/sysctl.h"
unsigned int i;
int main()
   //Enable GPIO Port F
   SysCtlPeripheralEnable(SYSCTL PERIPH GPIOF);
    // Set pins PF3 as output.
   GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE,GPIO_PIN_3);
   while(1)
         GPIOPinWrite(GPIO PORTF BASE, GPIO PIN 3, GPIO PIN 3); //SET PF3
         for(i=0;i<1000000;i++){}; //Delay
         GPIOPinWrite(GPIO PORTF BASE,GPIO PIN 3,0); //Clear PF3
         for(i=0;i<1000000;i++){}; //Delay
```