Lecture 2. Functions and types

Functional Programming 2019/20

Goals

- ► Function definitions
 - Local definitions
 - Guards and pattern matching
- Working with lists
- ► Layout and comments
- Notions about types
 - ► What is polymorphism?

Chapters 4 (up to 4.4) and 3 from Hutton's book

Simple functions

From the previous lecture...

```
average ns = sum ns `div` length ns
```

- ► Function average and argument ns are in lowercase
- ► This line defines an equation
- Calling a function is done without parentheses
 - div is used as an operator

Basic list functions

- ▶ null tells whether a list is empty
- head returns the first element in a list
- ▶ tail returns all but the first element

```
> null [1,2,3]
False
> head [1,2,3]
1
> tail [1,2,3]
[2,3]
```

Basic list functions

- null tells whether a list is empty
- ▶ head returns the first element in a list
 - head fails if the list is empty
- tail returns all but the first element
 - tail fails if the list is empty

```
> null [1,2,3]
False
> head [1,2,3]
1
> head []
*** Exception: Prelude.head: empty list
> tail [1,2,3]
[2,3]
```


List constructors

- ▶ [] is the empty list
- ightharpoonup x: xs puts element x in front of the list xs

```
> 1 : []
[1]
> 1 : [2,3]
[1,2,3]
```

▶ In fact, [1,2,3] is sugar for 1 : (2 : (3 : []))

Types of the basic list functions

▶ What are the types of those functions?

Types of the basic list functions

▶ What are the types of those functions?

Here is the first one: null checks if a list is empty

```
null :: [a] -> Bool
```

What about head, tail, [], and (:)?

Types of the basic list functions

▶ What are the types of those functions?

Here is the first one: null checks if a list is empty

```
null :: [a] -> Bool
```

What about head, tail, [], and (:)?

```
head :: [a] -> a
tail :: [a] -> [a]
```

```
[] :: [a]
```

Conditionals

if condition then expression else expression

```
abs n = if n < 0 then -n else n
```

firstordefault def list

- = if null list then def else head list
- condition must be a Bool expression
- You always need both branches
 - What would you return if one is missing?
 - Remember, everything is an expression

Layout rule

- ► Haskell does not have other delimiters but parentheses
 - Not completely true, but valid for human-produced code
 - ► The grouping is done by indentation
- ► The **layout rule** applies for indentation
 - Related elements must start on the same column
 - In the case of conditionals, no requirements

Guards

Instead of conditionals, we use equations with **guards**

- Each guard defines a condition over the arguments
- ► These conditions are checked in order
 - The first satisfiable one is applied
- ▶ We typically use otherwise for the default case

```
abs n \mid n < 0 = -r
| otherwise = n
```


Nested conditionals versus guards

What does this function do?

Nested conditionals versus guards

What does this function do?

It reads much better with guards!

```
sign n | n < 0 = -1

| n == 0 = 0

| otherwise = 1

-- Why not | n > 0 = 1 ?
```

Nested conditionals versus guards

Good style

Prefer guards overs conditionals

Tuples

- Lists are sequences of elements of the same type
 - ► Unknown length, uniform type

 [True. False] :: [Bool]
- ▶ **Tuples** are made of a number of components
 - Known length, different types

```
(True, 'a') :: (Bool, Char)
(1, 'b', 3) :: (Int, Char, Int)
```

Useful for returning several values

Root of a quadratic equation

The solutions of $ax^2 + bx + c = 0$ are given by

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Root of a quadratic equation

The solutions of $ax^2 + bx + c = 0$ are given by

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

```
quad :: Float -> Float -> (Float, Float)
quad a b c
= ( (-b + sqrt (b*b - 4*a*c)) / (2*a)
, (-b - sqrt (b*b - 4*a*c)) / (2*a) )
```

Root of a quadratic equation

The solutions of $ax^2 + bx + c = 0$ are given by

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

quad :: Float -> Float -> (Float, Float)
quad a b c
= ((-b + sqrt (b*b - 4*a*c)) / (2*a)

(-b - sqrt (b*b - 4*a*c)) / (2*a))

- ► So much repetition!
- And this is not even correct
 - quad 4 0 4 --> (NaN,NaN)
 - We need to check that $b^2 4ac > 0$

Local definitions

expression where name = expression

- Local definitions assign a name to an expression
 - ▶ In the larger expression, this name is available
- Multiple benefits
 - Maintainability: reduce repetition of code
 - Performance: the expression is only computed once
 - Documentation: assign names to concepts

Layout rule

- You can have more than one local definition
 - Definitions may refer to each other
- ► The **layout rule** kicks in
 - All definition must start in the same column
 - Aligning ='s is not mandated, but good style

Normalized vector with where

- Given a vector \vec{v} , its normalized version has the same direction but norm 1
- For a two-dimensional $\vec{v} = (x, y)$
 - ▶ The norm is computed as $\|\vec{v}\| = \sqrt{x^2 + y^2}$
 - ▶ The unit vector is $\left(\frac{x}{\|\vec{v}\|}, \frac{y}{\|\vec{v}\|}\right)$

```
unit :: (Float, Float) -> (Float, Float)
-- Define the function
```

Normalized vector with where

- Given a vector \vec{v} , its normalized version has the same direction but norm 1
- For a two-dimensional $\vec{v} = (x, y)$
 - ▶ The norm is computed as $\|\vec{v}\| = \sqrt{x^2 + y^2}$
 - ► The unit vector is $\left(\frac{x}{\|\vec{v}\|}, \frac{y}{\|\vec{v}\|}\right)$

Normalized vector with let

let name = expression in expression

```
unit (x, y) = let n = sqrt(x*x + y*y)
in (x / n, y / n)
```

- ▶ let does the same job as where
 - ▶ With let local definitions go before, with where after
- Rules to decide which one to use
 - ▶ 1et gives more importance to local definitions
 - ▶ 1et has a more "imperative" feeling

Normalized vector with two functions

In this case the preferred version is

```
norm (x, y) = sqrt(x*x + y*y)
unit (x, y) = (x / norm (x, y), y / norm (x, y))
```

- ▶ norm is often used in vector code
- ▶ norm is a concept in its own

Comments

```
-- The norm of a vector.

norm (x, y) = sqrt(x*x + y*y)

{-

Computes the unit vector in a given direction.

Defined by dividing the vector by its norm.

-}

unit (x, y) = (x / norm (x, y), y / norm (x, y))
```

- ▶ -- comments skip until the end of the line
- {- comments skip until its matching -}
 - Warning! These comments nest

Pattern matching, fac

From the previous lecture...

```
fac 0 = 1
fac n = n * fac (n-1)
```

- The first equation is chosen if the arguments is 0
- ▶ Otherwise, the second branch is executed
- ► This is an example of **pattern matching**

Pattern matching, conjunction

► For Bools, we can list all the possible values

```
conj :: Bool -> Bool -> Bool
conj True True = True
conj True False = False
conj False True = False
conj False False = False
```

Pattern matching, conjunction

► For Bools, we can list all the possible values

```
conj :: Bool -> Bool -> Bool
conj True True = True
conj True False = False
conj False True = False
conj False False = False
```

- But this is very repetitive!
 - All last three equations return False
- Wilcard patterns _ match any value

```
conj True True = True
conj _ = False
```

Pattern matching, replicate

- ► For a call replicate n x,
 - ▶ If n is 0, we return an empty list
 - Otherwise, we attach a copy of x to the result of replicating the element n-1 times

Pattern matching, replicate

- ► For a call replicate n x,
 - ▶ If n is 0, we return an empty list
 - Otherwise, we attach a copy of x to the result of replicating the element n-1 times

```
replicate :: Int -> a -> [a]
replicate 0 _ = []
replicate n x = x : replicate (n-1) x
```

► Good style: use _ if you don't care about a value

Pattern matching for lists and tuples

- ▶ The syntax for construction can be used for matching
- ▶ Information is extracted by giving names to the parts
 - ► As usual, starting with lowercase

```
null [] = True
null _ = False
length [] = 0
length (_ : xs) = 1 + length xs
norm (x, y) = sqrt (x*x + y*y)
```

Nested patterns

- Instead of just giving a name, you can further pattern match in a list or tuple
 - You can go as deep as you want

```
trimstart (' ' : xs) = trimstart xs
trimstart ('\t' : xs) = trimstart xs
trimstart xs
                    = xs
iszero (0, 0) = True
iszero = False
sumifthree (a : b : c : []) = a + b + c
sumifthree
```

Pattern matching versus guards with ==

Two problems with this definition:

Pattern matching versus guards with ==

Two problems with this definition:

- == is more expensive than matching
- You need to call tail

Good style for defining a function

- Pattern matching, maybe with guards
 - But **not** guards with ==
- Single equation with guards
- Conditionals

Pattern matching versus guards with ==

The correct way to write length is:

```
length [] = 0
length (_ : xs) = 1 + length xs
```

- ► Substitute check of [] by pattern matching
- Access the tail of the list by matching (_ : xs)

Exercise: define the existsPositive function

existsPositive xs should return True if and only if (at least) one of the elements in the list xs is positive, that is, greater than 0

Exercise: define the existsPositive function

existsPositive $\,xs$ should return $\,True$ if and only if (at least) one of the elements in the list $\,xs$ is positive, that is, greater than $\,0$

Exercise: define the existsPositive function

existsPositive $\,xs$ should return $\,True$ if and only if (at least) one of the elements in the list $\,xs$ is positive, that is, greater than $\,0$

```
existsPositive [] = False
existsPositive (x:xs) = x > 0 || existsPositive xs
```

Next lecture is devoted to functions over lists

Operators

From the previous lecture...

- Operators are functions whose name is exclusively made out of symbols
- Operators are written between the arguments
 - Both for definition and call

```
True && True = True && = False
```

Anywhere else, you need to use parentheses

```
(&&) :: Bool → Bool → Bool
```

Associativity and precedence

How should we read the following expressions?

$$1 + 2 - 3$$

We make it explicit by introducing parentheses

$$1 + (2 - 3)$$

$$(1 * 2) + (3 / 4)$$

- ► We say that + associates to the right
 - \triangleright So 1 + 2 + 3 means 1 + (2 + 3)
- ▶ We say that * and / have higher precedence than +

Declaring associativity and precedence

infixr/infixl/infix precedence operator

- infixr and infix1 declare associativity
- ▶ infix makes the operator **non**-associative
 - == and /= are examples of those
- Precedence ranges between 1 and 9
 - ► Function application has the highest number, 10

infixr 3 &&

Types

Expressions have types

Type = collection of related values

- In Haskell, every expression has a type
- ► We write it as expression :: type

```
True :: Bool
'a' :: Char
[1, 2] :: [Int]
(1,'a') :: (Int,Char)
not :: Bool -> Bool
```

This includes applied functions

```
1 + 2 :: Int
not True :: Bool
```

Static typing and type safety

- ► Haskell forbids executing code with type errors
 - ► This is known as static typing
 - Other languages are dynamically typed
 - ► E.g., Python, JavaScript, Ruby...
- As a result, no run-time error may arise from this
 - We say that Haskell programs are type safe
- ► Some "valid" expressions are rejected
 - Code execution is not taken into account

if True then 1 else False

Type checking and inference

General rule: if f :: A -> B and e :: A, then f e :: B

This rule can be used in two ways:

To check whether an application is correct

```
not :: Bool -> Bool
'a' :: Char
not 'a'
-- Couldn't match expected type 'Bool'
-- with actual type 'Char'
```

To infer the result of an expression

```
f :: Bool -> String
f True :: String -- No further details needed!
```


Parse errors are not type errors

```
> isZero x = x = 0
<interactive>:1:14: error:
    parse error on input '='
```

Parse error = code does not follow the syntax

- ▶ The structure of the code cannot be understood
 - ▶ In this case, where does the real definition start?
- Parsing happens before typing
- Check the shape and the upper/lowercase distinction

Parse errors are not type errors

```
> isZero x = x = 0
<interactive>:1:14: error:
    parse error on input '='
```

Parse error = code does not follow the syntax

- ▶ The structure of the code cannot be understood
 - ▶ In this case, where does the real definition start?
- Parsing happens before typing
- Check the shape and the upper/lowercase distinction

```
> isZero x = x == 0
```


Basic types

- ▶ Bool: logical values, that is, either True of False
- Char: single characters like 'a'
- Integral types:
 - Int: machine integers with a fixed range
 - > maxBound :: Int 9223372036854775807
 - ► Integer: integers with unlimited range
- Floating-point types:
 - Numbers with a decimal comma
 - Float: single-precision
 - ▶ Double: double-precision, take up more space

Compound types

These types are parametrized by other types

- Lists [T], uniform sequences of Ts
- ► Tuples come in different arities
 - Pairs (T1, T2)
 - ► Triples (T1, T2, T3)
 - ▶ ... up to 62 in GHC 8.0.1
- ► Functions T1 -> T2 -> ... -> R

Types can be nested as much as we want

```
([1, 2], [True])
[(1, True), (2, False)]
```



```
-- ↓ Tuple of lists
([1, 2], [True]) :: ([Int], [Bool])
-- ↓ List of tuples
[(1, True), (2, False)] :: [(Int, Bool)]
```

```
-- ↓ Tuple of lists

([1, 2], [True]) :: ([Int], [Bool])
-- ↓ List of tuples

[(1, True), (2, False)] :: [(Int, Bool)]

f :: (Int, Int) -> Int

g :: Int -> Int -> Int
```



```
-- ↓ Tuple of lists
([1, 2], [True])
                       :: ([Int], [Bool])
                        -- ↓ List of tuples
[(1, True), (2, False)] :: [(Int, Bool)]
f :: (Int, Int) -> Int -- Takes one argument
                        -- which is a pair
g :: Int -> Int -> Int -- Takes two arguments
> f (1, 2) -- OK
> g 1 2 -- OK
> g (1, 2)
-- Couldn't match expected type 'Int'
              with actual type '(Int, Int)'
```



```
-- ↓ Tuple of lists
([1, 2], [True])
                       :: ([Int], [Bool])
                        -- ↓ List of tuples
[(1, True), (2, False)] :: [(Int, Bool)]
f :: (Int, Int) -> Int -- Takes one argument
                        -- which is a pair
g :: Int -> Int -> Int -- Takes two arguments
> f (1, 2) -- OK
> g 1 2 -- OK
> g (1, 2)
-- Couldn't match expected type 'Int'
              with actual type '(Int, Int)'
```


Functions are first-class citizens

```
-- Functions can be put in a list

[(+), (*), (-)] :: [Int -> Int -> Int]

[(&&), (||)] :: [Bool -> Bool -> Bool]

-- Elements must agree in their type

[(+), (&&)] -- Type error!

-- Functions can be arguments and results

-- 'flip' takes one function and swaps the order

flip :: (a -> b -> c) -> (b -> a -> c)
```


length is polymorphic

```
length [1, 2, 3] -- OK
length [True, False] -- OK
length "abcd" -- OK
```

- ▶ length can be applied to any expression which is a list
 - ▶ In type terms, to any [T], regardless of T
 - We say that length is polymorphic
 - ► From Greek, Πολυμορφισμός "of many forms/shapes"
- How does this show up in the type?

```
length :: [a] -> Int
```

- Types starting with lowercase are variables
- ▶ They can be substituted with whatever we need

Other polymorphic list functions

```
null :: [a] -> Bool
(++) :: [a] -> [a] -- Concatenation
reverse :: [a] -> [a]
```

Important! A variable has to be substituted **uniformly** throughout the whole type

```
[1, 2] ++ [3, 4] :: [Int]

-- OK, 'a' is substituted by 'Int'

[1, 2] ++ [True, False]

-- Couldn't match expected type 'Int'

with actual type 'Bool'
```

This is the #1 type error in Haskell programming

Build your own polymorphic function

$$id x = x$$

What is the type of id?

Build your own polymorphic function

id x = x

What is the type of id?

- 1. It is a function with one argument
 - ightharpoonup lpha
 ightarrow eta for yet unknown lpha and eta
- 2. We return the same type we are given
 - ightharpoonup lpha
 ightarrow lpha for a yet unknown type lpha
- 3. There are no further constraints for x
 - ▶ We reach the final type a -> a
 - This function works for any type

Inferring the type of id id

Expect these kind of problems in the exam

id id :: ?

Inferring the type of id id

Expect these kind of problems in the exam

```
id id :: ?
```

- 1. Disambiguate the names of variables for each id
 - ightharpoonup First id $:: \alpha \to \alpha$
 - ▶ Second id $::\beta \to \beta$
- 2. If $f :: A \rightarrow B$, in $f \in We$ must have e :: A
 - ▶ In this case, α must be $\beta \to \beta$
 - ▶ Thus, first id $::(\beta \to \beta) \to (\beta \to \beta)$
- 3. The result type of f e is B
 - ightharpoonup In this case, id id :: eta
 ightarrow eta
- 4. Finally, replace by variables types without constraints
 - ▶ id id :: a -> a

Elements in a list have to match

```
> :t sin
sin :: Float -> Float
> :t [sin, id]
[sin,id] :: [Float -> Float]
```

- 1. We can choose any type for the a in id
- 2. All elements in a list must have the same type
- 3. The only solution is to make a be Float

Elements in a list have to match

What about these?

```
> :t [length, head]
> :t [head, null]
> :t [tail, null]
```

Elements in a list have to match

What about these?

```
> :t [length, head]
> :t [head, null]
> :t [tail, null]

> :t [length, head]
[length,head] :: [[Int] -> Int]
> :t [head, null]
[head,null] :: [[Bool] -> Bool]
> :t [tail, null]
Couldn't match type '[a]' with 'Bool'
```

Overloaded addition

In Haskell, addition works for different types:

```
> 1 + 2 -- Integers
3
> 1.0 + 2.5 -- Floating-point
3.5
```

But not for any type!

```
> 'a' + 'b'
No instance for (Num Char)
arising from a use of '+'
```

Overloaded addition

Addition cannot be given the following type

because it does not work for any type.

Overloaded addition

Addition cannot be given the following type

because it does not work for any type.

Let's ask GHC what is its real type:

- ► The Num a before the => symbol is a constraint
- It restricts (+) to types which satisfy the constraint
 - ► In this case a must be "numeric"
- Num is called a type class
 - ▶ **Warning!** Not to be confused with C++/C#/Java classes

- ► Num for numeric types
 - ► Includes (+), (*), abs, among others
 - ► For example, Int, Integer, Float, and Double
 - Char or [Int] are not numeric

- ► Num for numeric types
- ► Eq for types which support equality checks

```
(==) :: Eq a => a -> a -> Bool -- Equals
(/=) :: Eq a => a -> a -> Bool -- Not equals
```

- For example, Int, Char, and Bool
- ► Also [T] if T is itself a member of Eq
 - ► Like [Int] or String
- But not function types

```
> sin == cos
No instance for (Eq (Float -> Float))
```


- ► Num for numeric types
- Eq for types which support equality checks
- Ord for types which in addition have an ordering

```
(<), (>) :: Ord a => a -> a -> Bool
(<=), (>=) :: Ord a => a -> a -> Bool
min, max :: Ord a => a -> a -> a
```

- For example, Int, Char, and Bool
- Every type which is Ord is also Eq

- ► Num for numeric types
- ► Eq for types which support equality checks
- Ord for types which in addition have an ordering
- Show for turning things into strings show :: Show a => a -> String

```
age :: Int -> String
age y = "You are " ++ show y ++ " years old"
```

- ► Almost everything is in Show, but not functions
- We need a explicit call to show to preserve type safety

- ► Num for numeric types
- ► Eq for types which support equality checks
- Ord for types which in addition have an ordering
- Show for turning things into strings
- And many more!

You can also define your own (later in the course)

Important concepts

- Every expression has a type
- Types are used in two different ways
 - Checking that types match
 - ► Inferring a type for an expression
- ► Two forms of polymorphism
 - Functions that work for any type, parametric
 - ► Functions that work for a subset of types, ad-hoc

Check exercises at the end of chapter 3 of Hutton's book