Math Computing

Chakali Suresh

NCERT 9.7.1.7

This question is from class 9 ncert chapter 7.triangles

- 1. **AB** is a line segment and **P** is its mid-point. **D** and **E** are points on the same side of **AB** such that $\angle BAD = \angle ABE$ and $\angle EPA = \angle DPB$. Show that
 - (a) $\triangle \mathbf{DAP} \cong \triangle \mathbf{EBP}$
 - (b) AD = BE

Figure 1: $\triangle \mathbf{DAP}$ and $\triangle \mathbf{EBP}$

Construction steps:

(i) Let point $\bf A$ be the reference point whose coordinates are at origin.

$$\mathbf{A} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{1}$$

(ii) Let the distance between point $\bf A$ and $\bf B$ be x, and also considering the point $\bf B$ on same axis .

$$||A - B|| = x \tag{2}$$

So, the coordinates of point \mathbf{B} be,

$$\mathbf{B} = \begin{pmatrix} x \\ 0 \end{pmatrix} \tag{3}$$

(iii) Given the point **P** is the mid-point of line segment **AB**,

$$\mathbf{P} = \left(\frac{A+B}{2}\right) \tag{4}$$

$$\mathbf{P} = \begin{pmatrix} a \\ b \end{pmatrix} \tag{5}$$

(iv) Let the coordinate points of **D** and **E** are,

$$\mathbf{D} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix},\tag{6}$$

$$\mathbf{E} = \begin{pmatrix} x_3 \\ x_4 \end{pmatrix} \tag{7}$$

(v) Let assume the distance between point \mathbf{A}, \mathbf{D} and \mathbf{B}, \mathbf{E} be \mathbf{r} , and the line \mathbf{AB} makes an angle θ anticlock-wise from point \mathbf{A} clockwise from point \mathbf{B} with the line \mathbf{AD} , \mathbf{BE} .

$$||A - D|| = \mathbf{r} = ||B - E||$$
 (8)

$$\angle BAD = \theta = \angle ABE \tag{9}$$

 \therefore Now the coordinates of point **D**, **E** are,

$$\mathbf{D} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} r \cos \theta \\ r \sin \theta \end{pmatrix} \tag{10}$$

$$\mathbf{E} = \begin{pmatrix} x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -r\cos\theta \\ r\sin\theta \end{pmatrix} \tag{11}$$

(vi) Similarly, the mid-point ${\bf P}$ also makes an angle θ with the points ${\bf D}$ and ${\bf E}$

$$\angle BAD = \theta = \angle ABE \tag{12}$$

(vii) Let assume,

Symbol	Value	Description
θ_1	30°	$\angle BAD = \angle ABE$
θ_2	60°	$\angle EPA = \angle DPB$
r	5	Length of AB
A	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	Reference point at origin
В	$\begin{pmatrix} 5 \\ 0 \end{pmatrix}$	point B on the same axis of A
P	$\begin{pmatrix} 2.5 \\ 0 \end{pmatrix}$	Mid-point of AB
D	$\begin{pmatrix} 5\cos 30^{\circ} \\ 5\sin 30^{\circ} \end{pmatrix}$	From point A makes an angle θ_1 in anticlock-wise with line \mathbf{AB}, \mathbf{AD}
E	$\begin{pmatrix} -5\cos 30^{\circ} \\ 5\sin 30^{\circ} \end{pmatrix}$	From point B makes an angle θ_1 in cloock-wise with line \mathbf{AB}, \mathbf{BE}
D	$ \begin{pmatrix} 5\cos 60^{\circ} \\ 5\sin 60^{\circ} \end{pmatrix} $	From point \mathbf{P} makes an angle θ_2 in anticlock-wise with line \mathbf{BP}, \mathbf{PD}
E	$\begin{pmatrix} -5\cos 60^{\circ} \\ 5\sin 60^{\circ} \end{pmatrix}$	From point \mathbf{P} makes an angle θ_2 in clock-wise with line \mathbf{AP}, \mathbf{PE}

Table 1: Parameters

(viii) on calculating we get,

$$\mathbf{r} = 5,\tag{13}$$

$$\mathbf{A} = \begin{pmatrix} 0 \\ 0 \end{pmatrix},\tag{14}$$

$$\mathbf{A} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \tag{14}$$

$$\mathbf{B} = \begin{pmatrix} 5 \\ 0 \end{pmatrix}, \tag{15}$$

$$\mathbf{P} = \begin{pmatrix} 2.5\\0 \end{pmatrix},\tag{16}$$

$$\mathbf{D} = \begin{pmatrix} 4.330127 \\ 2.5 \end{pmatrix}, \tag{17}$$

$$\mathbf{D} = \begin{pmatrix} 4.330127 \\ 2.5 \end{pmatrix}, \tag{17}$$

$$\mathbf{E} = \begin{pmatrix} -4.330127 \\ 2.5 \end{pmatrix}, \tag{18}$$

$$\mathbf{D} = \begin{pmatrix} 2.5\\ 4.330127 \end{pmatrix},\tag{19}$$

$$\mathbf{D} = \begin{pmatrix} 2.5 \\ 4.330127 \end{pmatrix}, \tag{19}$$

$$\mathbf{E} = \begin{pmatrix} -2.5 \\ 4.330127 \end{pmatrix}$$

Joining these points forms the required figure

Figure 2: $\triangle \mathbf{DAP}$ and $\triangle \mathbf{EBP}$