Bartłomiej Gintowt 262225

Statystyka stosowana raport nr.2

22 czerwca 2022

1. Zadanie 1.

Do przeprowadzenia zadania wykorzystamy umieszczone na stronie dane, przedstawiające próbę z populacji generalnej o rozkładzie normalnym $N(\mu, 0.2)$. Za poziom istotności przyjmujemy $\alpha = 0.05$.

Znając, że $\sigma=0.2$ możemy wykorzystać statystykę testową Z, taką że

$$Z = \frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}}.$$

Dla podanego wzoru $\overline{X}=1.45546595425$ jest średnią z próby, $\mu_0=1.5$ to nasza hipoteza zerowa, a n=1000 to długość danych z próby. Otrzymujemy dla takich danych wówczas wartość Z=-7.041450899607091.

1.1. Wyznaczamy wzory na obszary krytyczne.

 $\mu \neq \mu_0$

$$C_1 = \{x : x \leqslant -z_{1-\frac{\alpha}{2}} \lor x \geqslant z_{1-\frac{\alpha}{2}}\}$$

 $\mu > \mu_0$

$$C_2 = \{x : x \geqslant z_{1-\alpha}\}$$

 $\mu < \mu_0$

$$C_3 = \{x : x \leqslant -z_{1-\alpha}\}$$

Korzystając z wartości $\alpha=0.05$ możemy wyznaczyć kwantyle z_{α} i podstawić do wzorów na obszary krytyczne. Są one kwantylami z rozkładu N(0,1).

Otrzymujemy:

$$\mu \neq \mu_0$$

$$C_1 = (-\infty, -1.959963984540054] \cup [1.959963984540054, \infty)$$

 $\mu > \mu_0$

$$C_2 = [1.6448536269514722, \infty)$$

 $\mu < \mu_0$

$$C_3 = (-\infty, -1.6448536269514722]$$

1.2. Wykresy dla wyznaczonych obszarów krytycznych.

Rysunek 1. Wykres obszaru krytycznego dla hipotezy $\mu \neq \mu_0$.

Rysunek 2. Wykres obszaru krytycznego dla hipotezy $\mu > \mu_0$.

Rysunek 3. Wykres obszaru krytycznego dla hipotezy $\mu < \mu_0$.

Z wykresów, jak i samych wartości przedziałów, odczytać możemy, iż jedynie hipoteza zerowa $\mu_0=1.5$ zostanie zaakceptowana dla hipotezy alternatywnej $\mu>\mu_0$. Dla pozostałych hipotez odrzucamy hipotezę zerową i akceptujemy alternatywne.

1.3. Wyznaczamy p-wartości.

$$\mu \neq \mu_0$$

$$p - wartosc = 2P(Z \geqslant |z|)$$

 $\mu > \mu_0$

$$p - wartosc = P(Z \geqslant z)$$

 $\mu < \mu_0$

$$p - wartosc = P(Z \leq z)$$

Korzystając z danych otrzymujemy:

$$\mu \neq \mu_0$$

$$p - wartosc = 1.9024781749976682e - 12$$

 $\mu > \mu_0$

$$p - wartosc = 0.999999999999488$$

 $\mu < \mu_0$

$$p - wartosc = 9.51241291241344e - 13$$

Z p-wartości wynika, że dla hipotezy $\mu > \mu_0$ nie odrzucamy hipotezy zerowej. Dla dwóch pozostałych hipotez alternatywnych odrzucamy hipotezy zerowe z uwagi na ich bardzo małe wielkości i akceptujemy alternatywne. Niezależnie od tego jaki parametr α dobierzemy hipoteza zerowa zaakceptowana będzie jedynie dla hipotezy $\mu > \mu_0$.

2. Zadanie 2.

Do przeprowadzenia zadania wykorzystamy umieszczone na stronie dane, przedstawiające próbę z populacji generalnej o rozkładzie normalnym $N(0.2, \sigma^2)$. Za poziom istotności przyjmujemy $\alpha = 0.05$.

Przy testach dla wariancji w rodzinie rozkładów normalnych korzystamy ze statystyki testowej χ^2 , takiej że

$$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}.$$

Dla podanego wzoru n=1000 jest długością próby, $S^2=1.6664526733522602$ wariancją danych z próby, $\sigma_0=1.5$ naszą hipotezą zerową. Podstawiając dane otrzymujemy wówczas wartość $\chi^2=1109.8574804526054$.

2.1. Wyznaczamy wzory na obszary krytyczne.

$$\sigma^2 \neq \sigma_0^2$$

$$C_1 = \{\chi^2 : \chi^2 \leqslant \chi^2_{\frac{\alpha}{2}, n-1} \lor \chi^2 \geqslant \chi^2_{1-\frac{\alpha}{2}, n-1}\}$$

$$\sigma^2 > \sigma_0^2$$

$$C_2 = \{\chi^2 : \chi^2 \geqslant \chi^2_{1-\alpha,n-1}\}$$

$$\sigma^2 < \sigma_0^2$$

$$C_3 = \{\chi^2 : \chi^2 \leqslant \chi^2_{\alpha, n-1}\}$$

Korzystając z wartości $\alpha=0.05$ możemy wyznaczyć kwantyle χ^2_{α} i podstawić do wzorów na obszary krytyczne. Są one kwantylami z rozkładu χ^2 z n-1=999 stopniami swobody.

Otrzymujemy:

$$\mu \neq \mu_0$$

$$C_1 = (-\infty, 913.3009983021134] \cup [1088.4870677259353, \infty)$$

 $\mu > \mu_0$

$$C_2 = [1073.6426506574246, \infty)$$

 $\mu < \mu_0$

$$C_3 = (-\infty, 926.6311609204329]$$

2.2. Wykresy dla wyznaczonych obszarów krytycznych.

Rysunek 4. Wykres obszaru krytycznego dla hipotezy $\sigma \neq \sigma_0^2$.

Rysunek 5. Wykres obszaru krytycznego dla hipotezy $\sigma>\sigma_0^2.$

Rysunek 6. Wykres obszaru krytycznego dla hipotezy $\sigma < \sigma_0^2$.

Z wykresów, jak i samych wartości przedziałów, odczytać możemy, iż hipoteza zerowa $\sigma_0^2 = 1.5$ zostanie zaakceptowana dla hipotezy alternatywnej $\sigma < \sigma_0^2$. Dla pozostałych hipotez odrzucamy hipotezę zerową i akceptujemy alternatywną.

2.3. Wyznaczamy p-wartości.

 $\sigma \neq \sigma_0^2$

$$p-wartosc = 1 - |1 - 2P(X \leqslant \chi^2)|$$

 $\sigma > \sigma_0^2$

$$p - wartosc = P(X \geqslant \chi^2)$$

 $\sigma < \sigma_0^2$

$$p - wartosc = P(X \leqslant \chi^2)$$

Korzystając z danych otrzymujemy:

 $\sigma \neq \sigma_0^2$

p-wartosc = 0.016011673877854404

 $\sigma > \sigma_0^2$

p - wartosc = 0.008005836938927202

 $\sigma < \sigma_0^2$

p - wartosc = 0.9919941630610728

Z p-wartości wynika, że przyjmujemy hipotezę zerową $\sigma_0^2=1.5$ dla hipotezy alternatywnej $\sigma<\sigma_0^2$. Odrzucamy natomiast hipotezę zerową dla hipotezy $\sigma>\sigma_0^2$. Dla hipotezy $\sigma\neq\sigma_0^2$ będziemy przyjmować hipotezę zerową jedynie dla bardzo małych poziomów istotności np. $\alpha=0.01$ ale już nie dla np. $\alpha=0.5$ czy $\alpha=0.1$.

3. Zadanie 3.

3.1. Prawdopodobieństwo błędu I rodzaju.

3.1.1. Hipoteza zerowa $\mu_0 = 1.5$.

W celu wyznaczenia błędu I rodzaju dla hipotezy zerowej $\mu_0=1.5$ przeprowadzimy symulację Monte Carlo dla M=100 kroków. Za poziom istotności przyjmujemy $\alpha=0.05$. Generujemy próbę rozkładu normalnego N(1.5,0.2) o długości n=1000. Wyznaczamy statystykę Z ze wzoru, obszary krytyczne oraz sprawdzamy czy wyznaczona statystyka się w nich znajduje. Jeśli tak zwiększamy nasz licznik o jeden. Algorytm powtarzamy N=1000 razy i wyznaczamy liczność statystyki, która jest naszym prawdopodobieństwem I rodzaju. Wszystko powtarzamy natomiast M=100 razy w celu znalezienia bardziej przybliżonego rozwiązania. Wartości błędów prezentujemy na wykresie pudełkowym.

Rysunek 7. Wykres pudełkowy błędu I rodzaju dla hipotezy $\mu \neq \mu_0.$

Rysunek 8. Wykres obszaru krytycznego dla hipotezy $\mu > \mu_0$.

Rysunek 9. Wykres obszaru krytycznego dla hipotezy $\mu < \mu_0$.

Na otrzymanych wykresach pudełkowych zauważyć można, iż mediana błędów jest bardzo zbliżona do wartości teoretycznej $\alpha=0.05$.

3.1.2. Hipoteza zerowa $\sigma_0^2 = 1.5$.

W celu wyznaczenia błędu I rodzaju stosujemy algorytm bardzo zbliżony do poprzedniego. Generujemy jedynie próbę z rozkładu normalnego N(0.2,1.5), a za statystykę przyjmujemy χ^2 . Reszta algorytmu działa w sposób analogiczny. Za poziom istotności przyjmujemy $\alpha=0.05$.

Rysunek 10. Wykres pudełkowy błędu I rodzaju dla hipotezy $\sigma \neq \sigma_0^2$.

Rysunek 11. Wykres pudełkowy błędu I rodzaju dla hipotezy $\sigma>\sigma_0^2.$

Rysunek 12. Wykres pudełkowy błędu I rodzaju dla hipotezy $\sigma < \sigma_0^2$.

Ponownie wartości mediany błędów są zbliżone do wartości teoretycznej $\alpha=0.05$. Oznaczać to może, iż użyta metoda testowania hipotez statystycznych oraz zaimplementowane algorytmy są poprawne.

3.2. Prawdopodobieństwo błędu II rodzaju.

3.2.1. Hipoteza zerowa $\mu_0 = 1.5$.

W celu wyznaczenia błędu II rodzaju dla hipotezy zerowej $\mu_0=1.5$ przeprowadzimy symulację Monte Carlo dla M=100 kroków. Za poziom istotności przyjmujemy $\alpha=0.05$. Generujemy próbę rozkładu normalnego N(1.53,0.2) o długości n=1000. Wartość parametru μ ma być niezwykle blisko wartości hipotezy zerowej $\mu_0=1.5$ oraz zgodna dla sprawdzanej hipotezy alternatywnej. Dla hipotezy $\mu \neq \mu_0$ oraz $\mu > \mu_0$ weźmiemy wartość $\mu=1.51$, a dla $\mu < \mu_0$ wartość $\mu=1.49$. Wyznaczamy statystykę Z, obszary krytyczne oraz sprawdzamy czy wyznaczona statystyka znajduje się poza nim. Procedurę powtarzamy N=1000 i zliczamy ile razy statystyka znalazła się poza obszarem krytycznym, a następnie dzielimy przez liczbę wywołań w celu znalezienia pojedynczego prawdopodobieństwa błędu II rodzaju. Algorytm powtarzamy M=100 razy i wartości błędów prezentujemy na wykresie pudełkowym.

Rysunek 13. Wykres pudełkowy błędu II rodzaju dla hipotezy $\mu \neq \mu_0$ dla N(1.51, 0.2).

Rysunek 14. Wykres pudełkowy błędu II rodzaju dla hipotezy $\mu>\mu_0$ dla N(1.51,0.2).

Rysunek 15. Wykres pudełkowy błędu II rodzaju dla hipotezy $\mu < \mu_0$ dla N(1.49,0.2).

Wyznaczyć możemy również moce przeprowadzonych testów statystycznych. Wyrażają się one wzorem 1—błąd II rodzaju. Na tej podstawie możemy wygenerować wykresy pudełkowe mocy testów dla hipotezy zerowej $\mu_0=1.5$

Rysunek 16. Wykres pudełkowy mocy testu dla hipotezy $\mu \neq \mu_0$ dla N(1.51, 0.2).

Rysunek 17. Wykres pudełkowy mocy testu dla hipotezy $\mu > \mu_0$ dla N(1.51, 0.2).

Rysunek 18. Wykres pudełkowy mocy testu dla hipotezy $\mu < \mu_0$ dla N(1.49, 0.2).

Z otrzymanych wykresów jesteśmy w stanie odczytać, iż prawdopodobieństwo na uniknięcie zaakceptowania fałszywej hipotezy zerowej wynosi około 35 dla hipotezy $\mu \neq \mu_0$ oraz około 48 procent dla pozostałych. Świadczyć to może, iż nie jest to idealna metoda testowania, gdyż obarczona jest znaczącymi błędami.

3.2.2. Hipoteza zerowa $\sigma_0^2 = 1.5$.

W celu wyznaczenia błędu II rodzaju dla hipotezy zerowej $\sigma_0^2=1.5$ skorzystam z analogicznego algorytmy jak w poprzednim przykładzie. Będziemy jedynie generować rozkład normalny N(0.2,1.51) dla hipotez alternatywnych $\sigma^2 \neq \sigma_0^2$ i $\sigma^2 > \sigma_0^2$ oraz N(0.2,1.49) dla $\sigma^2 < \sigma_0^2$. Korzystamy również ze statystyki χ^2 . Otrzymujemy wykresy pudełkowe błędu II rodzaju.

Rysunek 19. Wykres pudełkowy błędu II rodzaju dla hipotezy $\sigma^2 \neq \sigma_0^2$ dla N(0.2, 1.51).

Rysunek 20. Wykres pudełkowy błędu II rodzaju dla hipotezy $\sigma^2 > \sigma_0^2$ dla N(0.2, 1.51).

Rysunek 21. Wykres pudełkowy błędu II rodzaju dla hipotezy $\sigma^2 < \sigma_0^2$ dla N(0.2, 1.49).

Ponownie wyznaczyć możemy moce przeprowadzonych testów statystycznych. Wygenerujemy wykresy pudełkowe mocy testów dla hipotezy zerowej $\sigma_0^2=1.5$

Rysunek 22. Wykres pudełkowy mocy testu dla hipotezy $\mu \neq \mu_0$ dla N(1.51,0.2).

Rysunek 23. Wykres pudełkowy mocy testu dla hipotezy $\mu > \mu_0$ dla N(1.51, 0.2).

Rysunek 24. Wykres pudełkowy mocy testu dla hipotezy $\mu < \mu_0$ dla N(1.49, 0.2).

Z otrzymanych wykresów jesteśmy w stanie odczytać, iż prawdopodobieństwo uniknięcia zaakceptowania fałszywej hipotezy zerowej jest niezwykle niskie, niemalże równe 0 dla każdej hipotezy alternatywnej. Świadczyć to może, iż jest to bardzo słaba metoda testowania, gdyż jest niemalże w każdym przypadku błędna.

4. Wnioski

Prawdopodobieństwa błędu I rodzaju zarówno dla hipotezy zerowej $\mu_0=1.5$ oraz $\sigma_0^2=1.5$ były bardzo zbliżone do wartości teoretycznych poziomu istotności testu wynoszącego $\alpha=0.05$. Przy wyznaczeniu prawdopodobieństwa błędów II rodzaju mieliśmy już jednak znaczącą różnicę pomiędzy dwoma hipotezami zerowymi. Hipoteza zerowa dla μ obarczona była sporymi błędami, jednakże moc testu utrzymywała się na granica prawdopodobieństwa od 35 do 48 procent. Hipoteza dla σ^2 miała natomiast bardzo duże błędy oraz niemalże zerową moc testu. Metoda testowania znacząco lepiej sprawdziła się dla hipotezy zerowej $\mu_0=1.5$ i jest ona dla niej zdecydowanie bardziej efektywniejsza niż dla hipotezy $\sigma_0^2=1.5$.