Number Theory: Problem Set I

Youngduck Choi *

Abstract

This work contains solutions to some exercises in the problem set I.

Question 1-1.

1. Let A be a ring. Show that an ideal $\mathfrak{m} \subset A$ is maximal if and only if A/\mathfrak{m} is a field.

Solution.

By proposition 1.1 in Atiyah-MacDonald, there is a one-to-one correspondence between the ideals of \mathfrak{b} of A, which contains \mathfrak{m} , and the ideals $\bar{\mathfrak{b}}$ of A/\mathfrak{m} . Now, by proposition 1.2 in Atiyah-MacDonald, A/\mathfrak{m} is a field iff the only ideals of A/\mathfrak{m} are (0) and (1), and by the one-to-one correspondence, the later is equivalent to \mathfrak{m} and A being the only ideals containing \mathfrak{m} , which is precisely definition of \mathfrak{m} being maximal.

^{*}Department of Mathematics, Courant Institute of Mathematical Sciences, yc1104@nyu.edu; If you find an error and want to share with me, you can reach me via email.

Question 1-2.

2. Let A be a ring, and suppose that $\mathfrak{m} \subset A$ is the unique maximal ideal of A (we say that A is a local ring). Show that an element $a \in A$ is a unit if and only if $a \notin \mathfrak{m}$.

Solution.

Suppose $a \in A$ is a unit. Then, there exists $b \in A$, such that ab = 1. If $a \in \mathfrak{m}$, then $1 \in \mathfrak{m}$, and $\mathfrak{m} = A$, which contradicts the fact that \mathfrak{m} is maximal, hence. Therefore,

$$a$$
 is a unit $\implies a \notin \mathfrak{m}$.

From Atiyah-MacDonald, Corollary 1.5, which uses a standard Zorn's lemma argument, we know that every non-unit of A is contained in a maximal ideal. Therefore, by the uniqueness of \mathfrak{m} as a maximal ideal,

$$a$$
 is a non-unit $\implies a \in \mathfrak{m}$,

and hence, by contrapositive,

$$a \notin \mathfrak{m} \implies a \text{ is a unit,}$$

which concludes

$$a \notin \mathfrak{m} \iff a \text{ is a unit,}$$

as required. \Box

Question 1-3.

3. Give an example of a ring A and ideals $\mathfrak a$ and $\mathfrak b$ such that the set $\{ab|a\in\mathfrak a,b\in\mathfrak b\}$ is not an ideal.

Solution.

Consider
$$A = \mathbb{R}[x, y]$$
, and $\mathfrak{a} = \mathfrak{b} = (x, y)$. Then, $x^2, y^2 \in \{ab : a \in \mathfrak{a}, b \in \mathfrak{b}\}$, but $x^2 + y^2 \notin \{ab : a \in \mathfrak{a}, b \in \mathfrak{b}\}$.

Question 1-4.

4. Let A be an integral domain. Recall that for $a \in A$, the principal ideal defined by a is

$$(a) = \{ax | x \in A\}$$

Prove the following:

- (a) Two elements $a, b \in A$ are associates if and only if (a) = (b).
- (b) For any $a, b \in A$, (ab) = (a)(b).
- (c) For any $a, b \in A$, a|b if and only if $(b) \subset (a)$.
- (d) For any $a, b \in A$, $(a) \subsetneq (b)$ if and only if there exists a principal ideal (c) such that (b) = (a)(c).
- (e) An element $a \in A$ is irreducible if and only (a) is maximal among the principal ideals of A, in other words, if $(a) \subset (b)$ implies (a) = (b).
- (f) An element $a \in A$ is prime if and only if (a) is a prime ideal.
- (g) An element $a \in A$ is a unit if and only if (a) is the unit ideal.

Solution.

(a) Observe that $a, b \in A$ are associates, there exists a unit c such that a = bc is equivalent to there exists c, d units such that a = bc and b = ad. To see this, if c is a unit and a = bc, then there exists d such that cd = 1, and multiplying both sides by d gives, ad = b, and by definition d is a unit.

Suppose a, b are associates. Then, if $ax \in (a)$, then set y = cx, so $ax = bcx - by \in (b)$. Therefore, $(a) \subset (b)$ and similarly, by the above discussion $(b) \subset (a)$ and hence (a) = (b). Conversely, suppose that (a) = (b). Then, a = bx for some $x \in A$, and b = ay for some $y \in A$. Therefore, a = ayx, so 1 = yx. This shows that x is a unit, and a, b are associates.

(b) We wish to show

$$(ab) = \{abx \mid x \in A\} = \{ax \mid x \in A\} \{bx \mid x \in A\} = (a)(b).$$

For any $x \in A$, abx = (ab)x, so it is clear that

$$(ab) \subset (a)(b)$$
.

Now, for axby for any $x, y \in A$, axby = abxy so

$$(a)(b) \subset (ab),$$

which completes the proof.

- (c) Suppose $(b) \subset (a)$. Then, for any $x \in A$, bx = ay for some $y \in A$, and as A is an integral domain, $b = ayx^{-1}$, so a|b. Now, if a|b then, by definition, b = ay for some $y \in A$. Then, for any $x \in A$, bx = ayx, so $(b) \subset (a)$, and we are done.
- (d) Suppose (a) is not contained in (b). Then, there exists $e \in A$, such that for all $y \in A$, $ae \neq by$.
- (e) Let $a \in A$ be irreducible.

$$a$$
 is irreducible $\iff \forall b, x \in A, \exists y \in A . s.t > bx = ay$
 $\iff \forall b \in A, (b) \subset (a)$

ddd

(f) We have the following sequence of equivalence:

(a) is prime
$$\iff \forall b, c \in A, (bc = az \text{ for some } z \in A \implies a|b \text{ or } a|c)$$

 $\iff a \text{ is prime.}$

(g) We have the following sequence of equivalence:

$$a$$
 is unit \iff there exists $b \in A$ s.t. $ab = 1$ \iff $1 \in (a) \iff (a)$ is unit ideal,

which completes the proof.

Question 1-5.

5. Let [0,1] denote the unit interval, and let $C^0[0,1]$ denote the ring of continuous real-valued functions on [0,1]. For $a \in [0,1]$, define

$$\mathfrak{m}_a = \{ f \in C^0[0,1] | f(a) = 0 \}.$$

- (a) Show that \mathfrak{m}_a is a maximal ideal of $C^0[0,1]$.
- (b) Show that any maximal ideal of $C^0[0,1]$ is equal to \mathfrak{m}_a for some $a \in [0,1]$.

Solution.

We prove the statements in a slightly more general setting. Let X be compact and Hausdorff space, and C(X) be the ring of all real-valued continuous functions on X. For each $x \in X$, let \mathfrak{m}_x be the set of all $f \in C(X)$ such that f(x) = 0.

(a) Now, for any $x \in X$, we know that $\operatorname{eval}_x : C(X) \to \mathbb{R}$, defined by

$$\operatorname{eval}_x(f) \mapsto f(x) \quad (f \in C(X))$$

is a surjective ring-homomorphism. Then, \mathfrak{m}_x can be viewed as a kernel of eval_x, so \mathfrak{m}_x is maximal.

(b) Now, with (a) established, we can view $x \mapsto \mathfrak{m}_x$ as a map from X to $\operatorname{Max}(C(X))$, where the later denotes the set of all maximal ideals of C(X). We denote this map as μ . Then, (b) asserts that μ is surjective, which we show now. Let \mathfrak{m} be any maximal idea in C(X). Set

$$V = \{x \in X : f(x) = 0 \text{ for all } f \in \mathfrak{m}\}.$$

Suppose V is empty. Then, for each $x \in X$, we can find $f_x \in \mathfrak{m}$ such that $f_x(x) \neq 0$. By continuity of $\{f_x\}_{xinX}$, we can choose an open cover of X, $\{U_x\}_{x\in X}$, such that $f_x(U_x)\cap\{0\}=\emptyset$ for all $x\in X$. Now, by compactness, there exists a sub-cover of the cover $\{U_i\}_{i\leq n}$. Now, set

$$f = \sum_{i \le n} f_i^2,$$

where f_i s are the corresponding functions in \mathfrak{m} for U_i s in the construction. Then, $f \in \mathfrak{m}$ does not vanish anywhere, so it is a unit, which contradicts the fact that \mathfrak{m} is a maximal ideal. Hence, V is non-empty, so $x_0 \in V$ for some $x_0 \in X$. Then, $\mathfrak{m} \subset \mathfrak{m}_{x_0}$, and by maximality of \mathfrak{m} and \mathfrak{m}_{x_0} , we see that $\mathfrak{m} = \mathfrak{m}_{x_0}$. In other words, $\mathfrak{m} = \mu(x_0)$. Therefore, μ is surjective and, we are done. \square