Math 146: Homework 6

Due: Sunday, April 7, by 11:59pm Please submit your solutions as a single PDF on Canvas

Reminders:

- You are encouraged to work together on homework. If you work with other students, please indicate who you worked with on this assignment.
- The usual extension policy applies to this assignment: if you would like an extension on this homework over the weekend, simply email the professor to ask for it. No justification is required.
- **1.** Let $a \in \mathbb{Z}$ be non-zero and not a perfect cube, and let $f \in \mathbb{Q}[x]$ be given by $f = x^3 a$.
 - a) Prove that f is irreducible.
 - b) Prove that the splitting field L of f over \mathbb{Q} is $L = \mathbb{Q}(\sqrt[3]{a}, \sqrt{-3})$, and that $[L:\mathbb{Q}] = 6$. (*Hint*: The three solutions in \mathbb{C} to the equation $x^3 = 1$ are x = 1, $x = \frac{-1+\sqrt{-3}}{2}$, and $x = \frac{-1-\sqrt{-3}}{2}$.) c) Prove that $Gal(f) \simeq S_3$.
- **2.** Let p be a prime. This problem will have you prove some properties of \mathbb{F}_{p^2} and \mathbb{F}_{p^3} . These properties are true for general finite fields \mathbb{F}_{p^k} , and we'll give a different proof in class of that more general statement.
 - a) Prove that every polynomial $f \in \mathbb{F}_p[x]$ with degree 2 splits completely in \mathbb{F}_{p^2} . (Hint: There's a very quick proof available if you use some results from Homework 5. Alternatively, you could follow the strategy suggested below for \mathbb{F}_{p^3} .)

We'll now show that every irreducible degree 3 polynomial in $\mathbb{F}_p[x]$ splits completely in \mathbb{F}_{p^3} .

- b) Let $\alpha \in \mathbb{F}_{p^3}$, and suppose that α is not an element of \mathbb{F}_p . Prove that α is a root of some monic, irreducible polynomial $f \in \mathbb{F}_p[x]$ of degree 3.
- c) By considering the number of monic, irreducible, degree 3 polynomials in $\mathbb{F}_p[x]$ (which you found on an earlier homework assignment), prove that every irreducible degree 3 polynomial in $\mathbb{F}_p[x]$ splits completely in \mathbb{F}_{p^3} .
- d) Decide whether the following statement is true or false, and explain your answer. Every degree 3 polynomial in $\mathbb{F}_p[x]$ splits completely in \mathbb{F}_{p^3} .
- 3. Let p be a prime and let $q=p^k$ for some integer $k\geq 1$. Let \mathbb{F}_q denote the finite field with q elements, and recall that \mathbb{F}_q is an extension of \mathbb{F}_p . This problem will explore some of the properties of an explicit family of polynomials. It has four parts, one of which runs onto the next page.
 - a) Prove that every element of \mathbb{F}_q is a root of the polynomial $x^q x \in \mathbb{F}_p[x]$, with multiplicity 1. (Hint: Observe that $x^q - x = x \cdot (x^{q-1} - 1)$. What do we know about the non-zero elements of \mathbb{F}_q ?)
 - b) In fact, prove that if we consider it in the ring $\mathbb{F}_q[x]$, the polynomial $x^q x$ splits completely as $x^q - x = \prod_{\alpha \in \mathbb{F}_q} (x - \alpha)$.
 - c) Prove that if $f \in \mathbb{F}_p[x]$ is an irreducible factor of $x^q x$ in $\mathbb{F}_p[x]$, then the degree of f is at most k.

¹Note the distinction! \mathbb{F}_q vs. \mathbb{F}_p . This is the only part of the problem where we'll use $\mathbb{F}_q[x]$.

d) Describe completely how the polynomials $x^p - x$, $x^{p^2} - x$, and $x^{p^3} - x$ factor in $\mathbb{F}_p[x]$. (*Hint:* The statements of the various parts of Problem 2 above may be useful, but you don't need to understand their proofs.)