Final Test

[ECE30001] Deep Learning Application

공개 정보 활용 허용 범위

- 개인별 시험입니다. 다른 사람의 도움을 받거나 토론, 정보공유 등은 부정행위에 해당합니다.
- 본 과목에서 제공한 강의자료, 과제 및 소스코드, 본인이 작성한 노트, 본인이 작성한 과제 답안은 사용 가능합니다.
- 논문이나 책도 참조 가능합니다. 단, 소스코드가 포함된 책은 금지합니다.
- 인터넷 검색을 통해 주요 함수 및 class 사용법(예: 클래스명, 함수명 및 파라미터 등)을 확인하는 것은 허용됩니다.
- 오픈 소스나 타인이 만든 코드를 사용하는 것은 금지됩니다.
- Q&A는 정오까지 가능합니다. 오픈 톡방을 통해 질문하세요. (단, 소스 코드를 공유하면 F가 주어집니다.)

Mission

- Solve Problem 1 and 2 on Colab and submit the .ipynb files on HISNet.
 - Submit the following files on HISNet report board
 - Final1_<student_id>_<name>.ipynb # Solution of Problem #1
 - □ Final2_<student_id>_<name>.ipynb # Solution of Problem #2
 - Closing time: 23:50:00.
 - □ Submission deadline: 24:00:00
 - □ The 10 minutes (23:50~24:00) is for submission.
 - □ No submission will be accepted after 24:00:00.

Problem #1 Extended XOR Problem

Create 'extended XOR' dataset

- Using numpy, generate data samples whose distribution is similar to the right figure.
 - □ Fill each quadrant with 10,000 random samples (totally, 40,000 samples)
 - □ The horizontal and vertical coordinate should be in range of [-1, 1].
 - Assign label 'class 0' to the samples in 1st and 3rd quadrants (yellow regions)
 - Assign label 'class 1' to the samples in 2nd and 4th quadrants (purple regions)
- Draw a scatter diagram similar to the right figure using matplotlib.
- Randomly split the samples into training samples (75%) and test samples (25%).

40,000 random samples from uniform distribution Each quadrant is filled with 10,000 samples

Problem #1 Extended XOR Problem

- Build a classifier to predict the extended XOR samples using MLP using the training samples.
 - Use scikit-learn or pytorch.
 - The accuracy should be at least 99%.
 - Use few hidden nodes as possible.
 - □ You'll get a point inversely proportional to the number of hidden nodes.
 - Use as many hidden layers as you want.

Problem #1 Extended XOR Problem

- Visualize the 1st hidden layer of the trained MLP on the scatter diagram as the following figure.
 - Draw the lines 'ax + by + c = 0', where a and b are the input weights a hidden node and c is its bias.
 - Set the horizontal and vertical range to [-1, 1].

< e.g. visualization of 100 hidden nodes >

Problem #2

Build a image recognizer using PyTorch.

- Download data.tgz from the following link.
 - https://drive.google.com/file/d/1IPJ6_LciQMBJ6YUzp-PD50Y7SPvpJi_4/view?usp=sharing
 - □ You need to login by an id of handing.edu.
- Upload data.tgz on colab.
 - UNIX command to uncompress: tar xvfz data.tgz
- Create a DataLoader for the image data.
- Build and train a CNN model to recognizer the images
- Try to achieve as high accuracy as possible.
 - Display the accuracy.
- The training time should be no longer than 15 min.
 - Exceeding training time can be penalized.