

## 12.Übungsblatt zur Vorlesung Optimierung B

Abgabe spätestens in der Übung am 03.02.12

Aufgabe 1: 2 Punkte

Zeige, dass der Wert  $\frac{3}{2}$  für die obere Schranke des Christofides Algorithmus scharf ist.

Aufgabe 2: 2 Punkte

Zeige, dass der Wert 2 für die Minimum Spanning Tree Heuristik bzgl. der  $\varepsilon$ -Approximierbarkeit scharf ist.

Aufgabe 3: 3 Punkte

Betrachte den folgenden Approximationsalgorithmus  $\mathcal{MATCH}$  für Vertex Cover:

- Berechne ein inklusions-maximales Matching  $M \subset E$
- Gib V(M), die Menge aller Endpunkte der Kanten in M aus

Zeige, dass  $\mathcal{MATCH}$  ein 2-Approximationsalgorithmus für Vertex Cover ist.

Aufgabe 4: 3 Punkte

Betrachte das metrische Steinerbaumproblem vom ersten Programmierübungsblatt:

Gegeben ein Graph G=(V,E) mit Gewichten  $c:E\to\mathbb{N}$  und eine Knotenmenge  $T\subseteq V,$  c erfülle die Dreiecksungleichung.

Gesucht ist ein minimaler Steinerbaum, d.h. ein zusammenhängender Teilgraph G'=(V',E') von G mit  $T\subseteq V'$ , der minimale Kosten  $\sum_{e\in E'}c(e)$  besitzt.

Betrachte folgenden Approximationsalgorithmus STEINER - MST:

- ullet Berechne die Distanzmatrix M für alle Paare von Terminals bzgl G.
- Berechne einen MST auf  $G'' = (T, T \times T)$  mit  $c' : T \times T \to \mathbb{N} : \{t_1, t_2\} \mapsto M_{t_1 t_2}$ .
- $\bullet\,$  Bestimme für jede Kante  $\{u,v\}$  in diesem MST einen kürzesten Weg von u nach v in G.
- $\bullet$  Gib den Graphen G' mit allen Kanten und Knoten auf diesen Wegen aus.

Zeige, dass STEINER - MST ein 2-Approximationsalgorithmus für das metrische Steinerbaum Problem ist.

Bonusaufgabe: 1 Punkt

Beweise Theorem 25.2 aus der Vorlesung für Minimierungsprobleme.

Viel Erfolg!