CHAROTAR UNIVERSITY OF SCIENCE AND TECHNOLOGY

First Semester of B. Tech. (All Branches) Theory Examination February 2022

MA143: Engineering Mathematics-I

Date: 18/02/2022 (Friday)				Time: 10:0	0 a.m.	n. Maximum M	Maximum Marks: 70			
Instruct		e right indicate	marke							
_		le assumptions			where	it is required	d.			
iii. All n	otation	s and terminological	ogies a	are standard.		-				
Q-1 Choose the correct answer			er from the giv	ven op	followings.	[20]				
1)	The maximum and minimum values of $f(x) = x^5 - 5x^4 + 5x^3 - 1$ are									
	respectively.									
	(a)	0 and -28	(b)	-28 and 0	(c)	1 and 3	(d) 3 and 1			
2)	If the third derivative of the function $y = e^x \cdot x^3$ is $e^x(x^3 + 9x^2 + 18x + A)$,									
	then $A = \underline{\hspace{1cm}}$.									
	(a)	0	(b)	3	(c)	6	(d) 9			
3)	If $y = \cosh(2x)$ and n is an even natural number, then $y_n = \underline{\hspace{1cm}}$.									
	(a)	$2^n \sinh(2x)$			(b)	$2^n \cosh(2x)$	r)			
	(c)	$\cosh(2nx)$			(d)	sinh(2nx)				
4)	The value of $\lim_{x\to 0} x^x$ is									
		-1			(c)	1	(d) ∞			
5)	Which of the following function is in the indeterminate form when $x = \frac{\pi}{2}$?									
		cos x	U			cos x	2			
	(a)	$\frac{2x-\frac{\pi}{4}}{2x-\frac{\pi}{4}}$			(b)	$\frac{\frac{1}{2}x - \frac{\pi}{4}}{2}$				
	(c)	$\frac{\cos x}{\frac{1}{4}x + \frac{\pi}{2}}$			(d)	$\frac{\cos x}{\frac{1}{4}x - \frac{\pi}{4}}$				
6)	Which	h of the followi	ng sta	tement is false	?			01		
	(a) If $\lim_{n\to\infty} u_n \neq 0$, then the series $\sum u_n$ is not convergent.									
	(b)	(b) The geometric series with ratio r converges if $ r < 1$.								
	(c)	(c) Let $\sum_{n=1}^{\infty} u_n$ and $\sum_{n=1}^{\infty} v_n$ be two positive term series. If $\lim_{n \to \infty} \frac{u_n}{v_n} = l$								
		with $0 \le l < \infty$, then $\sum_{n=1}^{\infty} u_n$ and $\sum_{n=1}^{\infty} v_n$ converge or diverge together.								
	(d) The series $\sum \frac{1}{n^p}$ is convergent if and only if $p > 1$.									
7)	If $ z - 1 = 2$, then the value of $z\bar{z} - z - \bar{z}$ is									
	(a)	1	(b)	2	(c)	3	(d) 4			

8)	One of the values of $\sqrt{\cos \pi + i \sin \pi}$ is											
	(a) -1 (b) 0	(c)	1	(d) <i>i</i>								
9)	Which of the following value of z satisfies the equation $Log(z^2) = 2 Log(z)$?											
	(a) -1 (b) $-i$	(c)	i	(d) $-1+i$								
10)	The imaginary part of $sin(z)$ is, where $z = (1 + i)\pi$.											
	(a) $\sinh(\pi)$ (b) $-\sinh(\pi)$	(c)	$\sin \pi$	(d) $\cos \pi$								
11)	Which of the following is not a triangular matrix?											
	$\begin{pmatrix} \mathbf{a} \end{pmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$		$\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$									
	$ \begin{array}{cc} (\mathbf{c}) & \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{array} $		$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$		01							
12)	The number of solution(s) of the system of equations $AX = 0$, where A is a singular											
	matrix, is/are											
	(a) 0 (b) 1		2	(d) infinite	01							
13)	Let A be a matrix of order $m \times n$ such that there exists a nonzero minor of order p ,											
	where $0 , then the rank of A is$											
	(\mathbf{a})	(c)	$\geq p$	$(\mathbf{d}) > p$								
14)	If a matrix A of order 4×4 is invertible, the	nen th	e reduced row	echelon form of A	01							
	is											
		(c)	I_3	(d) I_4								
15)	If $A = [1]$, then											
	(a) A is in row echelon form	(b)	A is in reduce	ed row echelon form								
	(c) both (a) and (b) (d) none of these											
16)	If $u = x^2 + y^2$, then $\frac{\partial^2 u}{\partial x \partial y} = \underline{\hspace{1cm}}$.											
	(a) 0 (b) 2	(c)	2x + 2y	$(\mathbf{d}) yx^{y-1}$								
17)	If $f(x, y) = e^{xy^2}$, then the total differential of the function at point (1, 2) is											
	(a) $e(dx + dy)$	(b)	$e^4(dx+dy)$									
	$(\mathbf{c}) e^4(4\ dx + dy)$	(d)	$4e^4(dx+dy)$)								
18)	In the Taylor's series expansion of $e^x \cdot \sin y$ about the point $(1, \pi)$, the coefficient of											
	$(x-1)(y-\pi)$ is											
	(a) $-2e$ (b) $-e$	(c)	0	(d) <i>e</i>								
19)	The equation of the tangent plane to the surface $x^2 + y^2 + z^2 = 14$ at point $(1, 2, 3)$											
	is											
	(a) $2x + 4y + 6z = 14$	(b)	x + 2y + 3z	= 0								
	(c) $x + 2y + 3z = 1$	(d)	x + 2y + 3z	= 14								

20) The function $f(x, y) = y^2 - x^2$ has_____.

01

- (a) minimum at (0,0)
- **(b)** maximum at (1,1)
- (c) neither minimum nor maximum at (0, 0)
- (d) neither minimum nor maximum at (1, 1)

Q-2 Attempt any four of the following.

[16]

- 1) (a) A truck travels on a toll road with a speed limit of 80 km/hr. The truck completes a 164 km journey in 2 hours. At the end of the toll road the trucker is issued with a speed violation notice. Justify this using the Mean Value Theorem.
 - **(b)** Find the nature of the series $\sum_{n=1}^{\infty} \frac{4 \cdot 7 \cdot 10 \cdot ... \cdot (3n+1)}{1 \cdot 2 \cdot 3 \cdot ... \cdot n}$.
- 2) State Leibnitz's theorem for the n^{th} order derivative of product of two functions and using it show that $(1+x^2)y_{n+1} + 2nxy_n + n(n-1)y_{n-1} = 0$, where $y = \tan^{-1} x$.
- 3) (a) Simplify $(1 + \cos\theta + i\sin\theta)^n + (1 + \cos\theta i\sin\theta)^n$, where n is an integer.
 - (**b**) Show that the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\log(n+1)}$ is convergent.
- 4) Solve the equation $x^4 + 2x^3 7x^2 8x + 12 = 0$ using Ferrari's method.
- 5) (a) Find the values of log(1+i) + log(1-i).
 - **(b)** If cosh(u + iv) = x + iy, then prove that $\frac{x^2}{cosh^2u} + \frac{y^2}{sinh^2u} = 1$.

Q-3 Attempt any three of the following.

[09]

- 1) If $y = \frac{2}{(x-1)(x-2)(x-3)}$, then find y_n .
- 2) Prove that $\tan^{-1} x = \tan^{-1} \frac{\pi}{4} + \frac{\left(x \frac{\pi}{4}\right)}{1 + \frac{\pi^2}{16}} \frac{\pi \left(x \frac{\pi}{4}\right)^2}{4\left(1 + \frac{\pi^2}{16}\right)^2} + \cdots$
- 3) Use De Moivre's theorem to solve $x^4 + x^3 + x^2 + x + 1 = 0, x \in \mathbb{C}$.
- 4) Solve the equation $x^3 27x + 54 = 0$ using Cardon's method.

Q-4 Attempt any four of the following.

[16]

- 1) (a) Determine the rank of $\begin{bmatrix} 1 & 2 & -1 \\ 5 & 10 & -5 \end{bmatrix}$ using minors.
 - **(b)** Find $\frac{dy}{dx}$ at (-1, 1) if $xy + y^2 3x 3 = 0$.
- 2) Use Gauss elimination method to solve the system of linear equations x 2y + z w = 0; x + y 2z + 3w = 0; 4x + y 5z + 8w = 0; 5x 7y + 2z w = 0.
- 3) If u = f(2x 3y, 3y 4z, 4z 2x), then prove that $\frac{1}{2} \frac{\partial u}{\partial x} + \frac{1}{3} \frac{\partial u}{\partial y} + \frac{1}{4} \frac{\partial u}{\partial z} = 0$.
- 4) Find the minimum value of $x^2 + y^2 + z^2$ subject to $xyz = a^3$, where a is constant.
- 5) (a) Find the Jacobian $\frac{\partial(u,v)}{\partial(x,y)}$ for $u = x^2 y^2$, v = 2xy.
 - (b) Find an approximate value of $(1.04)^{3.01}$ using theory of approximation.

Q-5 Attempt any three of the following.

- [09]
- 1) Reduce the matrix $\begin{bmatrix} 1 & 3 & 5 \\ 2 & -1 & 4 \\ -2 & 8 & 2 \end{bmatrix}$ to row echelon form and determine the rank.
- 2) Decrypt the received encoded message [30 9] [19 8]; where the encryption matrix is $\begin{bmatrix} -1 & -1 \\ 2 & 1 \end{bmatrix}$ and the decryption matrix is its inverse. Here, the system of codes are represented as follows; the numbers 1-26 by the letters A-Z respectively, and the number 0 by the blank space. (Use Gauss Jordan method to find the inverse.)
- 3) If $u = \cos^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$, then show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = -\frac{1}{2}\cot u$, using Euler's theorem.
- 4) Show that the minimum value of the function $x^2 + y^2 + 6x + 12$ is 3.