

Sistemas de información

Grado en Ingeniería en Informática e Ingeniería de Tecnologías y Servicios de Telecomunicación

Curso 2023-2024

Raquel Trillo Lado (raqueltl@unizar.es)

Carlos Tellería (telleria@unizar.es)

Fernando Tricas (ftricas@unizar.es)

Dpto. Informática e Ingeniería de

Sistemas

Organización del curso 2023/2024

Notas y comentarios clase anterior:

Clave de matriculación en Moodle:

Si2023-2024

• Solicitud de activación de la cuenta de Google Apps for Education ligada a la Universidad de Zaragoza:

Activación de la cuenta: https://portalcorreo.unizar.es/google/

Cambio de contraseña en la cuenta de Google Apps for Education:

https://portalcorreo.unizar.es/google/cambiar_clave.php

Ayuda sobre Google Apps: https://sicuz.unizar.es/correo-y-colaboracion/espacios-web-colaborativos-inicio/ayuda-sobre-google-apps

Sistemas de información

Introducción

Guión

- Introducción
 - Datos VS. Información VS. Conocimiento
 - Proceso VS. Algoritmo VS. Sistema
- Sistemas de información
 - Componentes
 - Clasificación
- Aplicaciones empresariales
 - Características
 - Arquitecturas software
 - Tecnologías
- Nuevas tendencias: arquitecturas basadas en cloud computing
 - Tipos de Cloud
- Bibliografía y referencias

Datos VS. Información VS. Conocimiento

- Datos: valores en crudo que representan hechos
 - 165 cm, 55 kg, 1,80 m, 75000 gr, etc.

• **Información:** colección de datos organizados de forma que proporcionen valor añadido

Altura	Peso	Índice de masa corporal
1,65 m	55 kg	20,2 kg/m ²
1,80 m	75 kg	23,15 kg/m ²

Datos VS. Información VS. Conocimiento

Información:

- ¿Valor/utilidad de la información? Depende de si nos ayuda a alcanzar un determinado objetivo
- Sobrecarga de información (information overload) vs infobesidad (consumo de información innecesaria): ej. NSA vs Twitter. Últimamente se ha puesto de moda el término infodemia (pandemia de información)

Conversión de datos en Información:

- **Definir relaciones** entre los datos de modo que resulten útiles
- Requiere conocimiento de dominio

Datos VS. Información VS. Conocimiento

- Conocimiento: conciencia o familiaridad adquirida por la experiencia de hechos o situaciones a través del aprendizaje, observación o introspección:
 - IMC = Peso (kg) / Altura^2 (cm)
 - Infra-peso < 18.5
 - Sobrepeso > 25
 - Obesidad > 30

¿Por qué esa fórmula y esos parámetros

y no otros como por ejemplo:

IMC =Peso(gr) / Altura(m) ?

¿Cómo se determinan los rangos de

normalidad en las medidas clínicas?

Datos VS. Información VS. Conocimiento

- Se pueden llegar a tomar decisiones que suponen pérdidas millonarias por no estar bien informado o trabajar con datos incorrectos
 - No consistentes, desactualizados, incompletos, no íntegros, etc.
 - Mucho tiempo en la creación de fuentes/almacenes de datos se va en procesos de limpieza de datos (*Data Cleansing*): 70%-80%
- ¿De dónde vienen los datos? ¿Son fiables?
 - **Provenance** (origen de los datos) y **trazabilidad / data lineage** (indicación de los procesos a los que han sido sometidos).
 - ¿No sabes lo que es Blockchain? Tranquilo/a ellos tampoco
- Beneficios obtenidos vs. coste de la información
 - Principio de proporcionalidad
- Beneficios obtenidos vs. modo de obtenerlos:
 - Aspectos legales, éticos y morales

Proceso vs. Algoritmo vs. Sistema

- Proceso: conjunto de tareas lógicamente relacionadas que a partir de datos de entrada proporciona resultados (datos de salida)
 - **Ejemplo**: método que proporciona IMC
- Algoritmo: Lista ordenada de pasos o especificación de instrucciones para llevar a cabo una determinada tarea

Proceso vs. Algoritmo vs. Sistema

- Sistema: conjunto de elementos (procesos, algoritmos, conocimiento, información y datos) que interactúan para lograr un objetivo
 - Ejemplo: Programa de control médico con el objetivo de evitar la obesidad infantil
 - ¿Tipos de elementos que intervienen en un sistema?
 - Protocolos actuación
 - Planes de contingencia
 - . . .

Sistemas de información

Componentes de cualquier tipo de sistema:

- Entradas
- Mecanismos de procesado (no sólo elementos físicos que realizan en procesamiento sino también otro tipo de elementos como por ejemplo los protocolos)
- Salidas
- La retroalimentación (feedback) para mejorar los mecanismos de procesado

Sistemas de información

Métricas de cualquier tipo de sistema:

- Feedback o retroalimentación
 - Efectividad: mide hasta qué punto se ha alcanzado el objetivo del sistema
 - Ejemplo: ¿Se considera que el coche está limpio?
 - **Eficiencia**: mide el beneficio con respecto al consumo realizado para obtenerlo (optimización de recursos)
 - Ejemplo: relación limpieza del coche respecto al consumo de agua y jabón
- Medidas de rendimiento estándar específicas del sistema
 - Ejemplo: ¿Están los residuos vertidos en el proceso de limpieza dentro de los parámetros establecidos por la normativa vigente?

Sistema de Información

Definición de (R. Stair & G. Reynolds):

Es un sistema que está compuesto por un conjunto de elementos interrelacionados que recogen (entrada), manipulan (proceso), almacenan información, y diseminan (salida) datos y, además, proporcionan mecanismos correctores (feedback) para alcanzar un determinado objetivo

Sistemas de información

Componentes de un sistema de información:

- **Hardware:** ordenadores (servidores, estaciones de trabajo, etc.), infraestructura de comunicación y redes (Internet, Intranet, etc.)
- **Software:** sistemas (ej. sistema operativo), aplicaciones (herramientas específicas, ofimática, SGBD, etc.)
- Datos: configuración y específicos del sistema
- **Personas:** usuarios no técnicos (finales, auditores...), técnicos (programadores, equipo de mantenimiento, asesoría y ayuda, auditores)
- **Procedimientos y protocolos:** políticas de uso, reglas de mantenimiento y revisión, control de acceso, metodología, implantación y control de calidad...

[Stair y Reynolds]¹

- Sistemas de procesado transaccional: Transaction Processing Systems (TPS)
- Sistemas de información de gestión: Management Information Systems (MIS)
- Sistemas de Información de apoyo a la toma de decisiones: Decision Support Systems (DSS)
- Sistemas de Información empresarial: Executive Information Systems (EIS)
 - 1. Esta es una clasificación, la de Stair y Reynolds. No es LA clasificación, aunque es muy práctica para diferenciar unos sistemas de otros, y para entender de qué estamos hablando. Pero los sistemas de información no son matemáticas. Encontraremos muchos sistemas que no se ajustarán a estas clases, o que estarán a caballo entre varias de ellas.

- Sistemas de procesado transaccional: Transaction Processing Systems (TPS)
 - Gestionan la información referente a las transacciones producidas diariamente en una organización (centrados en la recolección de datos):
 - Compra de materiales, registro de horas de los empleados, ventas de productos, etc.
 - Surgieron en la década de los 60s y tuvieron mucha incidencia en las décadas de los 70s y 80s

- Sistemas de información de gestión de gestión (MIS):
 - Orientados a los responsables técnicos de las diferentes áreas de la organización para la definición de procedimientos rutinarios
 - Sistemas de información operativa:
 - Generación de nóminas, facturación (facturas, albaranes, etc.), planificación rutas de entrega, asignación operarios a tareas...
 - Surgieron en la década de los 70 y tuvieron mucha incidencia en las décadas de los 80 y 90

MIS (finanzas, contabilidad,market ing, logística, producción, etc.),

- Sistemas de apoyo a la toma de decisiones (DSS):
 - Dan soporte a la toma de decisiones para un problema específico complejo. Además, en general la información a considerar para analizar el problema no está definida
 - Surgieron en la década de los 80 y 90 y desde entonces se invierte gran cantidad de recursos en su desarrollo
 - Ejemplo: Software destinado a la creación de Dataware houses

- Sistemas de información para ejecutivos (EIS):
 - DSS para altos directivos
 - Requieren datos para las decisiones pero no pueden dedicar tiempo para extraerlos del total generado
 - Orientados a conseguir los objetivos estratégicos de la empresa
 - Su principal uso es informativo
 - Surgieron a finales de la década de los 90

Aplicaciones Empresariales

Características:

- Almacenan y manipulan datos:
 - Bases de datos (relacionales, NoSQL, Objetuales, ...)
 - https://youtu.be/rRoy6l4gKWU (SQL vs. NoSQL)
 - Ficheros XML (intercambio de datos y configuraciones)
- Realizan transacciones:
 - Propiedades ACID (Atomicity-Consistency-Isolation-Durability)
- Escalables: más carga de trabajo sin necesidad de modificar el software
- Disponibles: no dejar de prestar servicio
- **Seguras:** permisos acceso a datos y funcionalidades
- Integración: diferentes tecnologías

Tipos de interfaces: texto

PINE 4.58	MAIN MENU		Folder: INBOX 2 Messages	
?	HELP	-	Get help using Pine	
C	COMPOSE MESSAGE	-	Compose and send a message	
I	MESSAGE INDEX	-	View messages in current folder	
L	FOLDER LIST	_	Select a folder to view	
A	ADDRESS BOOK	-	Update address book	
S	SETUP	_	Configure Pine Options	
Q	QUIT	_	Leave the Pine program	
Copyright 1989-2003. PINE is a trademark of the University of Washington. [Folder "INBOX" opened with 2 messages] Help PrevCmd R RelNotes O OTHER CMDS [Compose] N NextCmd K KBLock				

Tipos de interfaces: entorno de ventanas (cliente de escritorio)

Tipos de interfaces: Web

Tipos de interfaces: Aplicaciones móviles

¿Cuándo usar una responsive web y cuándo una web móvil?

Aplicaciones Monocapa (Ejemplo: ContaPlus, FacturaPlus, ...)

 Modelo de datos: dependiente de la aplicación en concreto (no tiene en cuenta la integración con el resto de sistemas/aplicaciones de la empresa)

Persistencia: Ficheros

Ventajas: Rápidas, útiles para aplicaciones de propósito específico

• Inconvenientes:

- Necesaria instalación y re-compilación en todas las máquinas.
- Datos duplicados y necesidad de procesos ETL.

Aplicaciones de dos capas

[fbellas]

Aplicaciones de dos capas

- Separación entre interfaz y modelo:
 - Modelo: clases que implementan las reglas de negocio y que son independientes de la interfaz gráfica de la aplicación
 - Interfaz: clases que afectan a la navegación de la aplicación y a la visualización de los datos
 - Patrón Model-View-Controller (Modelo-Vista-Controlador)

Ventajas:

- Cada capa puede ser desarrollada por personal con perfiles específicos
- Reuso de la capa modelo para diferentes dispositivos: operarios de caja, personal del banco, etc.

Aplicaciones de dos capas

Inconvenientes:

 Cambios en el modelo implican la re-compilación e instalación en todas las máquinas cliente (p.e. cambio en la librería de acceso a la BD: JDBC# ODBC)

Aplicaciones de tres capas

Aplicaciones de tres capas

Ventajas:

- Cambios en el modelo sólo afectan al servidor de la aplicación (nº menor que el de clientes en general)
- Clientes ligeros que necesitan poca capacidad de procesamiento (coste equipos de clientes reducido)

Inconvenientes:

 Cambios en la interfaz gráfica implican la re-compilación y reinstalación de la aplicación cliente

Aplicaciones de tres capas con interfaz Web

Aplicaciones de tres capas con interfaz Web

- Ventajas:
 - Cambios en la interfaz gráfica sólo implican la re-compilación y reinstalación de la capa interfaz en el servidor de aplicaciones Web
 - Los servidores de aplicaciones Web suelen tener soporte para gestionar la escalabilidad y disponibilidad:
 - Pool de máquinas
 - Balanceador de carga

Aplicaciones de cuatro capas

Aplicaciones de cuatro capas

- Esta arquitectura suele emplearse cuando la interfaz gráfica web y la capa modelo están construidas con tecnologías diferentes:
 - Ej. Modelo construido en Cobol
 - Se requiere una aplicación Web para facilitar el acceso a la aplicación
 - Se usa tecnología moderna para la implementación de la aplicación Web (JavaEE,
 .Net o PHP)

Aplicaciones Empresariales. Tecnologías

Acceso a bases de datos:

- API JDBC (Java DataBase Connectivity)
- API ODBC (Open Database Connectivity)

Aplicaciones Web:

- Servlets y JSP (Java Server Pages) para la interfaz y Java EE para el modelo
- ASP.Net para la interfaz y C# y ADO.Net para el modelo
- PHP Ruby on Rails, Python, MEAN, etc.

Servidores Web:

- Tomcat, Jboss, Jetty, WepSphere
- Internet Information Server (IIS)

Nuevas tendencias: cloud computing

- -Inversión inicial alta
- -Mantenimiento

Nuevas tendencias: cloud computing

Aprovisionamiento bajo demanda

Nuevas tendencias: cloud computing

Computación en la nube o Cloud Computing

- Paradigma que permite el acceso ubicuo bajo demanda a servicios TIC a través de Internet
- Surge de la externalización del servicio TIC y para ahorrar costes (pagar sólo por lo que se necesite)
- Cloud computing no es una nueva arquitectura de aplicaciones empresariales, sino una nueva forma de proveer servicios tecnológicos para soportar las aplicaciones empresariales

- Tipos de cloud (funcionalidad):
 - SaaS (Software as a Service): ej. Servicio de Google Apps
 - PaaS (Platform as a Service): ej. MarketPlaces
 - laaS (Infrastructure as a Service): ej. AWS de Amazon
- Tipos de cloud (compartición):
 - Público
 - Privado
 - Híbrido
 - Comunitario

- Infraestructura como servicio (Infrastructure as a Service –laaS-)
 - Ofrece recursos de computación: almacenamiento, red, procesadores, etc.
 - Características:
 - Recursos compartidos y virtualización
 - Gestión más eficiente de los data-centers (reducción de costes, eficiencia energética)
 - No necesaria gran inversión inicial (pago por uso)
 - Ahorro de costes de mantenimiento, electricidad, etc.
 - Aumento de la seguridad

- Plataforma como servicio (Platform as a Service -PaaS-)
 - Se ofrecen entornos de desarrollo cooperativo y despliegue de aplicaciones rápido.
 - Es decir PaaS = IaaS + middleware, herramientas de desarrollo, servicios de inteligencia empresarial (BI), SOs, sistemas de administración de bases de datos, etc.
 - Diseñado para sustentar el ciclo de vida completo de las aplicaciones web: compilación, pruebas, implementación, administración y actualización.
 - Características:
 - No es necesaria tanta inversión en administración de sistemas (el hardware y la configuración del entorno de desarrollo y despliegue es externo)
 - Ejemplo: OPENSHIFT (MySQL, JEE, PHP, ..), Microsoft Azure...

- Software como servicio (Software as a Service SaaS –)
 - Se ofrecen aplicaciones en concreto sin controlar el cliente ni la infraestructura hardware ni su configuración
 - SaaS = PaaS + despliegue de aplicaciones
 - Características:
 - No necesaria inversión en licencias ni en mantenimiento (actualizaciones)
 - Dependencia de la red y el proveedor
 - Aspectos legales y de seguridad
 - Los clientes comparten infraestructura HW y SW aunque cada uno tenga su propio espacio
 - Ejemplo: Gmail, Blogger, Dropbox, etc.

Cloud Computing. Clasificación

Público

- Cloud destinado a público general o empresas que deseen contratarlo
 - Ejemplo: Amazon Web Services

Privado

- Para uso exclusivo de una organización. No obstante, puede ser propio o alquilado. En las máquinas donde se ejecutan los sistemas de la empresa que alquila no se ejecutan sistemas de otras empresas
 - Ejemplo: Inditex

Cloud Computing. Clasificación

Híbrido

- Los picos se gestionan mediante un *cloud* público de forma totalmente transparente al usuario.
 - Ejemplo: Amazon Web Services

Comunitario

• Cloud privado de una comunidad de organizaciones

Resumen

- Cloud Computing no es una nueva tecnología sino una nueva forma de uso.
- Los ISPs comenzaron a ofrecer su infraestructura a los clientes y a medir el uso que hacían los clientes de esta:
 - Acceso a través de la red (no se conoce la ubicación exacta)
 - Escalabilidad y flexibilidad casi instantánea
 - Recursos compartidos
 - Pago por uso

Bibliografía y referencias

• [Stair y Reynols] Ralph Stair y George Reynols, Principles of Information Systems, International Edition. 13th Edición 2016 (capítulo 1)

• [fbellas] Fernando Bellas Permu, Integración de Sistemas, Ingeniería en Informática, Universidad da Coruña [http://www.tic.udc.es/is-java/index.html, fechaúltimo acceso: 21 de septiembre de 2015]

Sistemas de información

Grado en Ingeniería en Informática e Ingeniería de Tecnologías y Servicios de Telecomunicación

Curso 2023-2024

Raquel Trillo Lado (<u>raqueltl@unizar.es</u>) Carlos Tellería (telleria@unizar.es)

Fernando Tricas (ftricas@unizar.es)

Dpto. Informática e Ingeniería de Sistemas