```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

df=pd.read_csv('/content/tvmarketing.csv')
```

df.head()

	TV	Sales	1
0	230.1	22.1	
1	44.5	10.4	
2	17.2	9.3	
3	151.5	18.5	
4	180.8	12.9	

df.describe()

	TV	Sales
count	200.000000	200.000000
mean	147.042500	14.022500
std	85.854236	5.217457
min	0.700000	1.600000
25%	74.375000	10.375000
50%	149.750000	12.900000
75%	218.825000	17.400000
max	296.400000	27.000000

```
x=df["TV"]
y=df["Sales"]
```

plt.scatter(x,y)

```
<matplotlib.collections.PathCollection at 0x7ffb4ccc0c90>
```

```
def linear_regression(x,y):
    x_mean=x.mean()
    y_mean=y.mean()
    blnum= ((x-x_mean)*(y-y_mean)).sum()
    blden = ((x-x_mean)*(x-x_mean)).sum()
    bl= blnum/blden
    b0= y_mean- x_mean*bl
    reg_line= 'y= {} + {}x' .format(b0,b1)
    return(b0,b1,reg_line)
```

```
b0,b1,reg_line = linear_regression(x_train, y_train)
print("Regresssion line", reg_line)
```

Regression line y= 6.989068764398717 + 0.04860387259879957x

```
z= b0+b1*x
plt.scatter(x,y)
plt.plot(x,z,c="r")
```

[<matplotlib.lines.Line2D at 0x7ffb4ceca110>]

Colab paid products - Cancel contracts here

✓ 0s completed at 3:02 PM

×