$h = \frac{1}{2}g(t - \Delta t)^2 \tag{2}$

实验报告

自由落体法测量重力加速度

少年班学院 马天开 PB21000030 (第三组) 2022 年 4 月 13 日

1 实验背景

参考"实验报告:单摆法测量重力加速度"

2 实验目的

参考"实验报告:单摆法测量重力加速度"

3 实验器材

光电门×2、电磁铁控制器(可以控制磁性的有无)、 小铁球、带刻度的支架、电子计时器

光电门精度: $1\times 10^{-4}s$,支架上刻度的测量精度: $10^{-3}m$

4 实验原理

在误差 $\Delta g/g < 1\%$ 的条件下,可以忽略空气阻力对实验结果的影响。注意到由于电磁铁断电时,小球并不会立刻下落(电磁铁有剩磁),测量一组数据 (t,x),并利用 $x=\frac{1}{2}gt^2$ 计算 g 的办法并不可靠,可以采取以下处理办法:

 考虑任意高度 h₀ 作为计时起点,从该位置向下 做的运动到 h 的过程便是初速度不为零的自由落 体,下落的高度满足:

$$h - h_0 = v_0 t + \frac{1}{2} g t^2 \tag{1}$$

对上面的方程进行回归分析即可得到结果。

• 假定剩磁对于小球下落的影响是恒定的延时 Δt , 只需要将参数 (t,x) 变为 $(t-\Delta t,x)$, 根据以下方

5 实验方法

组装、固定仪器

首先固定光电门 1, 调整光电门 2 的位置。每组实验做三次,记录 $(h_1,h_2,t_1,t_2,\Delta t)$, 填写记录实验数据

 h_1,h_2 估计在 0.2-1.0m 内, 误差 $\Delta h/h < 5\times 10^{-3}$ t_1,t_2 估计在 0.2-0.5s 内, 误差 $\Delta t/t < 5\times 10^{-4}$ 考虑回归计算的一般形式: $g=\frac{2h}{2}$, 有:

$$|\Delta g/g| < |\Delta h/h| + 2 |\Delta t/t| < 6 \times 10^{-3}$$
 (3)

满足实验精度要求

6 实验数据

见页尾。

7 数据处理

7.1 不确定度分析

实验中的系统误差主要来源于:

• h_1, h_2 测量引起的误差,不确定度:

$$U_{h0.68} = \sqrt{U_{Ah}^2 + U_{Bh}^2} = 0.33 \times 10^{-3} m, P = 0.68$$

• t₁,t₂ 测量引起的误差,不确定度:

$$U_{t0.68} = \sqrt{U_{At}^2 + U_{Bt}^2} = 0.33 \times 10^{-4} s, P = 0.68$$

由以上内容可以得到 g 的展伸不确定度(量纲测算值):

$$\frac{U_g}{g} = \sqrt{(\frac{U_l}{\bar{l}})^2 + 2(\frac{U}{\bar{T}})^2} = 1.37 \times 10^{-4}, P = 0.68$$

7.2 数值计算

对于每组的三次重复数据取平均值:

n	h_1	h_2	t_1	t_2
1 - 3	30	90	243.3	426.5
4 - 6	30	80	243.4	401.8
7 - 9	30	70	243.4	375.4
10 - 12	20	90	197.2	426.4
13 - 15	20	80	197.0	401.3
16 - 18	20	70	197.5	375.5
19 - 21	30	40	242.9	283.0
22 - 24	30	45	243.0	299.7
25 - 27	30	50	243.4	316.7
28 - 30	35	45	264.0	300.8
31 - 33	40	50	280.5	315.9
34 - 36	45	55	299.5	332.3

按照原理中第一种方式,利用 $h=v_0t+\frac{1}{2}gt^2$,推 出 $\bar{v}=\frac{h}{t}=v_0+\frac{1}{2}gt$

采用 1-3,4-6,7-9,19-21,22-24,25-27 中的数据进行回归计算: $\frac{h}{t}-t$: 的图像:

$$h/t = 4.944t + 2.322$$

由此测算:

$$\tilde{g} = 9.889m/s^2$$

实验原理中第二种方法限于数据量较小、无法评估 t_0 的分布,结果不能达到精度要求。

7.3 结论

$$g = \tilde{g} + \bar{U}_g = 9.889 m/s^2 \pm 0.0013 m/s^2, P = 0.68$$

实验数据:

n	h_1	h_2	t_1	t_2
1	30	90	243.4	426.5
2	30	90	243.2	426.3
3	30	90	243.5	426.7
4	30	80	243.6	401.9
5	30	80	243.4	401.7
6	30	80	243.3	401.7
7	30	70	243.5	375.5
8	30	70	243.2	375.2
9	30	70	243.6	375.5
10	20	90	197.1	426.3
11	20	90	197.3	426.4
12	20	90	197.4	426.5
13	20	80	197.3	401.8
14	20	80	196.0	400.5
15	20	80	197.8	402.0
16	20	70	197.4	375.4
17	20	70	197.6	375.5
18	20	70	197.6	375.6
19	30	40	241.6	280.7
20	30	40	243.3	282.5
21	30	40	243.5	282.7
22	30	45	243.6	300.2
23	30	45	242.6	299.4
24	30	45	242.9	299.6
25	30	50	243.8	317.0
26	30	50	243.8	316.9
27	30	50	242.7	316.1
28	35	45	263.7	300.2
29	35	45	263.9	300.4
30	35	45	264.5	301.3
31	40	50	281.0	315.4
32	40	50	282.1	316.4
33	40	50	281.4	315.8
34	45	55	299.3	332.1
35	45	55	299.5	332.3
36	45	55	299.7	332.4