Problemas

Ejercicios de repaso

```
def Una(Imagen[n, n], m)
    i = m + 1
    repeat
        for j = m + 1 to n - m
            Otra(Imagen, i, j, m)

        i = i +1
    until i > n - m
```

Número promedio de ejecuciones de (I)

A partir del conteo de instrucciones derivar ${\it O}$

Expression	Dominant term(s)	$O(\ldots)$
$5 + 0.001n^3 + 0.025n$		
$500n + 100n^{1.5} + 50n\log_{10}n$		
$0.3n + 5n^{1.5} + 2.5 \cdot n^{1.75}$		
$n^2 \log_2 n + n(\log_2 n)^2$		
$n\log_3 n + n\log_2 n$		
$3\log_8 n + \log_2 \log_2 \log_2 n$		
$100n + 0.01n^2$		
$0.01n + 100n^2$		
$2n + n^{0.5} + 0.5n^{1.25}$		
$0.01n\log_2 n + n(\log_2 n)^2$		
$100n\log_{3}n + n^{3} + 100n$		
$0.003\log_4 n + \log_2\log_2 n$		

Indicar verdadero o falso. En caso de que sea falso, indicar la expresión correcta.

1.
$$O(f + g) = O(f) + O(g)$$

2.
$$O(f \cdot g) = O(f) \cdot O(g)$$

3. Transitividad

$$si \ g \in O(f) \ y \ h \in O(f)$$

entonces $g \in O(h)$

4.
$$5n + 8n^2 + 100n^3 \in O(n^4)$$

5.
$$5n + 8n^2 + 100n^3 \in O(n^2 \cdot \log n)$$

Razonar sobre órdenes de ejecución

Ejercicio 7.17 Llamamos t al tiempo de ejecución de un algoritmo, t_m al tiempo en el caso más favorable, t_M el tiempo en el caso más desfavorable, y t_p al tiempo promedio. Decir si son ciertas o falsas las siguientes afirmaciones:

- a) $t_p \in O(t_M)$
- b) $t \in \Omega(t_M)$
- c) $t_m \in O(t_M)$
- d) $t_m \in \Theta(t_M) \Rightarrow t_p \in \Theta(t_m)$
- e) $t_m \in \Omega(t_M) \Rightarrow t \in \Theta(t_m)$
- f) En cualquier algoritmo $t_m \neq t_M$
- g) $(t_M)^2 \in \Omega(t_M)$ h) $(t_p)^2 \in \Omega(t_p)$
- i) $t_p + t_m + t_M \in \Theta(t_M)$
- j) $t_p \in \Theta\left(\frac{t_M + t_m}{2}\right)$

Dadas los siguientes funciones f(n)

 $\log_3 2n$ $\ln n^2$ \sqrt{n} , $5^{\sqrt{4n}}$

 2^n

Ordenar utilizando la relación de inclusión, $O\ y\ \Omega$

Tenemos dos programas **A** y **B** que realizan la misma función. Se van utilizar para procesar entradas de hasta 10⁹ elementos.

A tiene un tiempo medio $T_A(n) = 0.001n$ ms.

B tiene un tiempo medio $T_A(n) = 500 \cdot \text{sqrt}(n)$ ms.

¿Cuál es el mejor en cuanto a O?

¿Cuál elegiríamos con esta información?

```
int doble(n) {
   if (n == 1) {
      return 1;
   } else {
      return 2 * doble(n - 1);
   }
}
```

El coste las comparaciones es 1 instrucción y la multiplicación es 4

Calcula el orden exacto (utilizando fórmulas maestras) y utilizando la técnica de la ecuación característica

$$T(n) = 2 T\left(\frac{n}{2}\right) + 4n$$

$$t(n) = a t\left(\frac{n}{b}\right) + cn^k$$

Resolver la ecuación recurrencia, siendo b >= 2, k>= 0 y n una potencia de b.