DDoS Traffic Clustering using K-Means Report

Ahmed Yasser Ibrahim

222110758

SE495

Introduction

This assignment aims to use the **K-Means clustering** method to analyze network traffic and identify **DDoS-related patterns** by grouping them into clusters. The process involved loading and preprocessing the dataset, engineering new features, determining the optimal number of clusters (**K**), training the model, and evaluating its performance.

Data Preprocessing

We began by loading the dataset and ensuring it was clean, well-structured, and ready for processing. Since the dataset was preprocessed and standardized for evaluating models, it required minimal cleaning. However, one challenge was **normalizing the features** due to the presence of categorical data. To address this, we applied **MinMaxScaler** only to numerical features while keeping categorical features (including the label) unchanged.

Feature Engineering

To enhance clustering accuracy, we introduced additional features, including:

- Traffic rate
- TCP flags sum
- Packet size ratio
- Interaction intensity

• Flow entropy

These features aimed to improve the separation of normal and DDoS-related traffic.

Clustering and Model Training

We applied **K-Means clustering** and used the **Elbow Method** to determine the optimal number of clusters. Based on the graph, we observed a sharp decline in inertia until **K=4**, suggesting it as the best choice for clustering.

Model Evaluation

After training the model, we analyzed its performance:

- The model showed good precision but relatively low recall.
- The weighted F1-score was 78%, indicating room for improvement.
- Possible enhancements include adding more relevant features or encoding categorical features
 for better performance.

Conclusion

While the model successfully identified DDoS patterns, further improvements are needed to achieve higher recall. Future work may focus on **feature selection**, **categorical encoding**, and **trying alternative clustering algorithms** like **DBSCAN** or **Hierarchical Clustering** to refine the results.