利用 pandas 套件將資料讀取進來,透過 info()來看 character-deaths. csv 的資訊,如欄位的型態(object、float64…等)、資料的數量…等。

```
In [1]: import numpy as np
   import pandas as pd
   import seaborn as sns
   from pandas import Series, DataFrame
   import matplotlib.pyplot as plt

data = pd.read_csv("character-deaths.csv")
   data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 917 entries, 0 to 916
Data columns (total 13 columns):
                      917 non-null object
Name
Allegiances
                      917 non-null object
Death Year
                      305 non-null float64
Book of Death
                      307 non-null float64
Death Chapter
                      299 non-null float64
Book Intro Chapter
                      905 non-null float64
                      917 non-null int64
Gender
Nobility
                      917 non-null int64
GoT
                      917 non-null int64
CoK
                      917 non-null int64
                      917 non-null int64
SoS
FfC
                      917 non-null int64
                      917 non-null int64
DwD
dtypes: float64(4), int64(7), object(2)
memory usage: 93.3+ KB
```

再來進入資料前處理的階段;先利用 isna(). sum()來看哪些欄位是有空值存在。

透過 fillna()將有空值的欄位全都補上 0

在 Death Year , Book of Death , Death Chapter 三者當中,我選擇 Death Year 這個欄位,透過 np. where()將原本非零數值全部轉成 1

將 Allegiances 轉成 dummy 特徵,底下有幾種分類就會變成幾個特徵,值會是 0 或 1 。

	Arryn	Baratheon	Greyjoy	House	House Baratheon	House Greyjoy	House Lannister	House Martell	House Stark	House Targaryen		House Tyrell	Lannister	Martell	Night's Watch	None	Stark	Targa
0	0	0	0	0	0	0	0	0	0	0	***	0	1	0	0	0	0	
1	0	0	0	0	0	0	0	0	0	0		0	0	0	0	1	0	
2	0	0	0	0	0	0	0	0	0	1	***	0	0	0	0	0	0	
3	0	0	0	0	0	1	0	0	0	0		0	0	0	0	0	0	
4	0	0	0	0	0	0	0	0	0	0		0	1	0	0	0	0	
		920			***		***			***			***					
912	0	0	0	0	0	0	0	0	0	0		0	0	0	0	1	0	
913	0	0	0	0	0	0	0	0	0	0		0	0	0	0	1	0	
914	0	0	0	0	0	0	0	0	0	0	***	0	0	0	0	1	0	
915	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	
916	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	

接著要將新增的特徵透過 join()加到原本的資料集當中,資料集的特徵就會變成 34 個。

```
In [6]: select_data_3 = select_data.join(select_data_2)
    select_data_3.info()
```

接著亂數拆成訓練集(75%)與測試集(25%),random_state 設為 None 是避免測試集和訓練集資料重複。

```
In [7]: #亂數拆成訓練集(75%) 與測試集(25%)
from sklearn.model_selection import train_test_split
X = select_data_3.iloc[:,5:34]
y = select_data_3.loc[:,"Death Year"]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=None)
X_test
```

使用 scikit-learn 的 DecisionTreeClassifier 進行預測,樹的深度限制為 3,進行高度限制是怕訓練出的模型會有 overfitting 的問題;在此條件下,預測出的結果準確率大概為 72%

```
In [8]: #使用scikit-learn的DecisionTreeClassifier進行預測
#criterion : optional (default="gini") or Choose attribute selection measure: This parameter allows us to use the different
# attribute selection measure. Supported criteria are "gini" for the Gini index and "entropy" for the information gai
#max_depth : int or None, optional (default=None) or Maximum Depth of a Tree: The maximum depth of the tree.
# The higher value of maximum depth causes overfitting, and a lower value causes underfitting (Source).
from sklearn import tree
from sklearn import metrics
clf = tree.DecisionTreeClassifier(criterion="entropy", max_depth=3)
game_clf = clf.fit(X_train, y_train)
predicted = game_clf.predict(X_test)
accuracy = metrics.accuracy_score(predicted, y_test)
print(accuracy)

0.717391304347826
```

利用 sklearn.metrics 做出 Confusion Matrix,並計算出 Precision, Recall, Accuracy

```
In [9]: from sklearn.metrics import classification_report, confusion_matrix
    print(confusion_matrix(y_test, predicted))
    print(classification_report(y_test, predicted))
```

14 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -	35] 32]]				
		precision	recall	f1-score	support
	0.0	0.79	0.76	0.78	148
	1.0	0.60	0.63	0.62	82
accu	ıracy			0.72	230
macro	avg	0.69	0.70	0.70	230
weighted	avg	0.72	0.72	0.72	230

利用 matplotlib. pyplot 產出決策樹的圖

不過當樹的深度調整為 4 時,準確率並無明顯提升。

```
from sklearn import tree
from sklearn import metrics
clf = tree.DecisionTreeClassifier(criterion="entropy", max_depth=4)
game_clf = clf.fit(X_train, y_train)
predicted = game_clf.predict(X_test)
accuracy = metrics.accuracy_score(predicted, y_test)
print(accuracy)
```

230

0.7043478260869566

In [19]: from sklearn.metrics import classification_report, confusion_matrix print(confusion_matrix(y_test, predicted)) print(classification_report(y_test, predicted))

[[110 [27	41] 52]]	20 20			
		precision	recall	f1-score	support
	0.0	0.80	0.73	0.76	151
	1.0	0.56	0.66	0.60	79
ac	curacy			0.70	230
mac	ro avg	0.68	0.69	0.68	230

weighted avg 0.72 0.70 0.71

