Prove that $\lceil x \rceil + \lceil y \rceil - \lceil x + y \rceil = (0 \vee 1)$, whenever x and y are real numbers.

Proof. There are three cases under consideration: $(x \oplus y) \in \mathbb{Z}$, $(x \wedge y) \in \mathbb{Z}$, and $(x \wedge y) \in \mathbb{R} - \mathbb{Z}$.

Suppose the case $(x\oplus y)\in\mathbb{Z}$, and $x\in\mathbb{Z}$. Then $y\in\mathbb{R}-\mathbb{Z}$, and $\lceil y\rceil=\lceil n+\epsilon\rceil$ where $n\in\mathbb{Z}$ such that n< y< n+1, and $\epsilon\in\mathbb{R}$ such that $0<\epsilon<1$. It follows that $\lceil x\rceil+\lceil y\rceil-\lceil x+y\rceil=(x+n+1)-(x+n+1)=0$. Without loss of generality, this holds whenever x,y=y,x.

Suppose the case that $x,y\in\mathbb{Z}$. Then $\lceil y\rceil=\lceil n+\epsilon\rceil$ where $n,\epsilon\in\mathbb{Z}$ such that y=n, and $\epsilon=0$. It follows that $\lceil x\rceil+\lceil y\rceil-\lceil x+y\rceil=(x+n+0)-(x+n+0)=0$.

Now consider the case where $(x \wedge y) \in \mathbb{R} - \mathbb{Z}$. This means that $\lceil x \rceil + \lceil y \rceil - \lceil x + y \rceil = \lceil m + \epsilon \rceil + \lceil n + \sigma \rceil - \lceil m + n + \epsilon + \sigma \rceil$, where $m, n \in \mathbb{Z}$ and $\epsilon, \sigma \in \mathbb{R}$, such that $m < x < m + 1, \ n < y < n + 1, \ 0 < \epsilon < 1$, and $0 < \sigma < 1$. Within this case, there are two cases to consider: $\epsilon + \sigma > 1$, and $\epsilon + \sigma \leq 1$.

If $\epsilon+\sigma>1$, then $\lceil m+\epsilon \rceil+\lceil n+\sigma \rceil-\lceil m+n+\epsilon+\sigma \rceil=(m+1)+(n+1)-(m+n+2)=0$. Because $\lceil \epsilon+\sigma \rceil=2$, whenever $\epsilon+\sigma>1$.

If $\epsilon+\sigma\leq 1$, then $\lceil m+\epsilon \rceil+\lceil n+\sigma \rceil-\lceil m+n+\epsilon+\sigma \rceil=(m+1)+(n+1)-(m+n+1)=1$. Because $\lceil \epsilon+\sigma \rceil=1$, whenever $\epsilon+\sigma\leq 1$.

 \therefore $\lceil x \rceil + \lceil y \rceil - \lceil x + y \rceil = (0 \vee 1),$ whenever x and y are real numbers.