Валерий Исаев

29 февраля 2016 г.

План лекции

Теорема Кантора-Бернштейна

Separation Axiom

Фактор-множества

Зависимые множества

Формулировка и доказательство

Theorem

Если множество A вкладывается в множество B, и наоборот, то A и B равномощны.

Другими словами, если $|A| \le |B|$ и $|B| \le |A|$, то |A| = |B|.

Формулировка и доказательство

Доказательство.

Пусть $f:A\to B$ и $g:B\to A$ — вложения. Тогда определим $h:A\to A$ как $h=g\circ f$. Пусть $A_0=A$, $A_1=g(B)$, $A_{k+2}=h(A_k)$. Так как $|A_1|=|B|$, нам достаточно показать, что $|A_0|=|A_1|$. Пусть $C_i=A_i\setminus A_{i+1}$. Если ограничить функцию h на C_i , то мы получим биекцию $h_i:C_i\to C_{i+2}$. Теперь можно определить биекцию $t:A_0\to A_1$ как $t(x)=h_i(x)$, если $x\in C_i$ и i — четно, иначе t(x)=x.

Является ли данное доказательство конструктивным?

- Является ли данное доказательство конструктивным?
- ▶ Нет, но если мы добавим несколько условий, то да.

- Является ли данное доказательство конструктивным?
- ▶ Нет, но если мы добавим несколько условий, то да.
- Во-первых, предположим, что образ A в B разрешим, и наоборот.

- Является ли данное доказательство конструктивным?
- Нет, но если мы добавим несколько условий, то да.
- ▶ Во-первых, предположим, что образ A в B разрешим, и наоборот.
- Во-вторых, предположим, что пересечение всех A_i разрешимо в A.

- Является ли данное доказательство конструктивным?
- ▶ Нет, но если мы добавим несколько условий, то да.
- ▶ Во-первых, предположим, что образ A в B разрешим, и наоборот.
- ▶ Во-вторых, предположим, что пересечение всех A_i разрешимо в A.
- ▶ Тогда эта теорема доказуема без исключенного третьего.

ightharpoonup Множества $\mathbb N$ и $\mathbb N imes \mathbb N$ равномощны.

- ▶ Множества \mathbb{N} и $\mathbb{N} \times \mathbb{N}$ равномощны.
- lacktriangle Мы можем вложить $\mathbb N$ в $\mathbb N imes \mathbb N$ как $x \mapsto (x,0)$.

- ▶ Множества \mathbb{N} и $\mathbb{N} \times \mathbb{N}$ равномощны.
- lacktriangle Мы можем вложить $\mathbb N$ в $\mathbb N imes \mathbb N$ как $x \mapsto (x,0)$.
- ▶ И наоборот, $(x, y) \mapsto 2^x \cdot 3^y$.

- ▶ Множества \mathbb{N} и $\mathbb{N} \times \mathbb{N}$ равномощны.
- ▶ Мы можем вложить $\mathbb N$ в $\mathbb N \times \mathbb N$ как $x \mapsto (x,0)$.
- ▶ И наоборот, $(x, y) \mapsto 2^x \cdot 3^y$.
- ▶ Соответствующие подмножества \mathbb{N} и $\mathbb{N} \times \mathbb{N}$ разрешимы, и пересечение всех A_i пусто. Следовательно, биекция вычислима.

План лекции

Теорема Кантора-Бернштейна

Separation Axiom

Фактор-множества

Зависимые множества

▶ Пусть A – множество и P(a) – предикат на нем.

- ▶ Пусть A множество и P(a) предикат на нем.
- ▶ Тогда существует множество $\{a \in A \mid P(a)\}$.

- ▶ Пусть A множество и P(a) предикат на нем.
- ▶ Тогда существует множество $\{a \in A \mid P(a)\}$.
- Это множество является подмножеством A и состоит в точности из тех его элементов, которые удовлетворяют предикату P.

- ightharpoonup Пусть A множество и P(a) предикат на нем.
- ▶ Тогда существует множество $\{a \in A \mid P(a)\}$.
- ightharpoonup Это множество является подмножеством A и состоит в точности из тех его элементов, которые удовлетворяют предикату P.
- Пример: множество четных чисел можно определить как

Even =
$$\{n \in \mathbb{N} \mid \exists k \in \mathbb{N} \ (2k = n)\}$$

- ightharpoonup Пусть A множество и P(a) предикат на нем.
- ▶ Тогда существует множество $\{a \in A \mid P(a)\}$.
- ightharpoonup Это множество является подмножеством A и состоит в точности из тех его элементов, которые удовлетворяют предикату P.
- Пример: множество четных чисел можно определить как

$$Even = \{n \in \mathbb{N} \mid \exists k \in \mathbb{N} \ (2k = n)\}\$$

ightharpoons Пример: если $f:A\to B$, то образ f – это подмножество B, которое определяется как

$$im(f) = \{b \in B \mid \exists a \in A (f(a) = b)\}.$$

▶ В большинстве языков программирования нет аналогичной конструкции.

- В большинстве языков программирования нет аналогичной конструкции.
- Очень жалко их таких, ибо полезная конструкция.

- В большинстве языков программирования нет аналогичной конструкции.
- Очень жалко их таких, ибо полезная конструкция.
- ► Часто функции определены не для всех значений типа, а только на некотором подмножестве. Если передавать элемент не из этого подмножества, то функция либо выбросит исключение, либо поведение вообще будет неопределено.

- В большинстве языков программирования нет аналогичной конструкции.
- Очень жалко их таких, ибо полезная конструкция.
- Часто функции определены не для всех значений типа, а только на некотором подмножестве. Если передавать элемент не из этого подмножества, то функция либо выбросит исключение, либо поведение вообще будет неопределено.
- ▶ Например, очень было бы полезно в java/C#/... иметь тип $\{x \in A \mid x \neq \textbf{null}\}.$

- В большинстве языков программирования нет аналогичной конструкции.
- Очень жалко их таких, ибо полезная конструкция.
- Часто функции определены не для всех значений типа, а только на некотором подмножестве. Если передавать элемент не из этого подмножества, то функция либо выбросит исключение, либо поведение вообще будет неопределено.
- ▶ Например, очень было бы полезно в java/С#/... иметь тип $\{x \in A \mid x \neq \text{null}\}.$
- ▶ Другой пример: типы вида $\{x \in \mathbf{int} \mid a < x < b\}$.

План лекции

Теорема Кантора-Бернштейна

Separation Axiom

Фактор-множества

Зависимые множества

Мотивация

 Часто различные элементы некоторого множества должны быть одинаковыми.

Мотивация

- ▶ Часто различные элементы некоторого множества должны быть одинаковыми.
- Например, рациональное число можно задать как пару целых чисел (числитель и знаменатель), но функция $\mathbb{Z} \times \mathbb{Z}_{>0} \to \mathbb{Q}$ не является биекцией, так как некоторые пары целых чисел задают одно и то же рациональное число.

Мотивация

- ▶ Часто различные элементы некоторого множества должны быть одинаковыми.
- Например, рациональное число можно задать как пару целых чисел (числитель и знаменатель), но функция $\mathbb{Z} \times \mathbb{Z}_{>0} \to \mathbb{Q}$ не является биекцией, так как некоторые пары целых чисел задают одно и то же рациональное число.
- ► Конструкция фактор множеств позволяет объединить различные элементы в один.

Характеризация

ightharpoonup Пусть на множестве A есть отношение эквивалентности \sim .

- ightharpoonup Пусть на множестве A есть отношение эквивалентности \sim .
- ▶ Тогда для любого $a \in A$ множество A/\sim должно содержать элемент $[a]_\sim$.

Характеризация

- ightharpoonup Пусть на множестве A есть отношение эквивалентности \sim .
- ▶ Тогда для любого $a \in A$ множество A/\sim должно содержать элемент $[a]_\sim$.
- ▶ Более того, должно быть верно, что $[a]_{\sim} = [a']_{\sim}$ тогда и только тогда, когда $a \sim a'$.

Характеризация

- ightharpoonup Пусть на множестве A есть отношение эквивалентности \sim .
- ▶ Тогда для любого $a \in A$ множество A/\sim должно содержать элемент $[a]_\sim$.
- ▶ Более того, должно быть верно, что $[a]_{\sim} = [a']_{\sim}$ тогда и только тогда, когда $a \sim a'$.
- Мы могли бы добавить аксиому, которая говорит, что это множество существует, но этого не нужно делать, так как его существование следует из других аксиом.

Определение

▶ Пусть $a \in A$. Тогда *класс эквивалентности а* — это подмножество A, состоящее из таких a', что $a \sim a'$.

Определение

- ▶ Пусть $a \in A$. Тогда *класс эквивалентности* a это подмножество A, состоящее из таких a', что $a \sim a'$.
- ▶ Класс эквивалентности a обозначается $[a]_{\sim}$. Его определение можно записать в виде формулы:

$$[a]_{\sim} = \{a' \in A \mid a \sim a'\}$$

Определение

- ▶ Пусть $a \in A$. Тогда *класс эквивалентности а* это подмножество A, состоящее из таких a', что $a \sim a'$.
- ▶ Класс эквивалентности a обозначается $[a]_{\sim}$. Его определение можно записать в виде формулы:

$$[a]_{\sim} = \{a' \in A \mid a \sim a'\}$$

lacktriangle Теперь мы можем определить A/\sim как

$$A/\sim = \{C \in \mathcal{P}(A) \mid \exists a \in A \ (C = [a]_{\sim})\}$$

Рациональные числа

▶ Мы можем определить отношение эквивалентности на множестве $\mathbb{Z} \times \mathbb{Z}_{>0}$ как

$$(x,y) \sim (x',y') \Leftrightarrow x \cdot y' = x' \cdot y$$

Рациональные числа

▶ Мы можем определить отношение эквивалентности на множестве $\mathbb{Z} \times \mathbb{Z}_{>0}$ как

$$(x,y) \sim (x',y') \Leftrightarrow x \cdot y' = x' \cdot y$$

lacktriangle Теперь множество рациональных чисел можно определить как $\mathbb{Q}=\mathbb{Z} imes\mathbb{Z}_{>0}/\sim$.

• Обратите внимание, что некоторые "функции" над множеством вида A/\sim не являются корректными функциями.

Функции над фактор-множествами

- Обратите внимание, что некоторые "функции" над множеством вида A/\sim не являются корректными функциями.
- ▶ Например, "функция" $nom : \mathbb{Q} \to \mathbb{Z}$, $nom([(x,y)]_{\sim}) = x$, возвращающая числитель, не является функцией.

Функции над фактор-множествами

- ightharpoonup Обратите внимание, что некоторые "функции" над множеством вида A/\sim не являются корректными функциями.
- ▶ Например, "функция" $nom: \mathbb{Q} \to \mathbb{Z}$, $nom([(x,y)]_{\sim}) = x$, возвращающая числитель, не является функцией.
- ▶ Проблема в том, что она не сохраняет равенство. Если бы она была корректной функцией, то 1=2:

$$1 = nom(1/2) = nom(2/4) = 2$$

Корректность функций над фактор-множествами

▶ Мы можем определить эту функцию, если немного изменим ее описание: $nom([(x,y)]_{\sim}) = x/gcd(x,y)$.

Корректность функций над фактор-множествами

- ▶ Мы можем определить эту функцию, если немного изменим ее описание: $nom([(x,y)]_{\sim}) = x/gcd(x,y)$.
- ▶ Чтобы проверить, что это определение является корректным, нам нужно проверить, что функция сохраняет эквивалентность. То есть если $(x,y) \sim (x',y')$, то $nom([(x,y)]_{\sim}) = nom([(x',y')]_{\sim})$.

Корректность функций над фактор-множествами

- ▶ Мы можем определить эту функцию, если немного изменим ее описание: $nom([(x,y)]_{\sim}) = x/gcd(x,y)$.
- Чтобы проверить, что это определение является корректным, нам нужно проверить, что функция сохраняет эквивалентность. То есть если $(x,y) \sim (x',y')$, то $nom([(x,y)]_{\sim}) = nom([(x',y')]_{\sim})$.
- ► Действительно, чтобы доказать это, достаточно разложить все числа в произведения простых.

Фактор-типы в программировании

 Как и в случае с separation аксиомой, в большинстве языков прораммирования нет конструкции фактор-типов.

Фактор-типы в программировании

- Как и в случае с separation аксиомой, в большинстве языков прораммирования нет конструкции фактор-типов.
- Но их можно смоделировать в некотором роде.

Фактор-типы в программировании

- ► Как и в случае с separation аксиомой, в большинстве языков прораммирования нет конструкции фактор-типов.
- ▶ Но их можно смоделировать в некотором роде.
- Конкретно, мы обычно переопределяем операцию сравнения на типе.

Канонические представители

 Иногда фактор-множества можно определить другим способом, используя понятие канонического представителя.

- Иногда фактор-множества можно определить другим способом, используя понятие канонического представителя.
- ▶ Во-первых, для любого класса эквивалентности $[a]_{\sim}$ выбираем некоторый элемент из него $a_0 \in [a]_{\sim}$, который мы будем называть *каноническим представителем* этого класса.

Канонические представители

- Иногда фактор-множества можно определить другим способом, используя понятие канонического представителя.
- ▶ Во-первых, для любого класса эквивалентности $[a]_{\sim}$ выбираем некоторый элемент из него $a_0 \in [a]_{\sim}$, который мы будем называть *каноническим представителем* этого класса.
- ▶ Теперь мы можем определить A/\sim как подмножество A, состоящее из канонических представителей.

Канонические представители

- Иногда фактор-множества можно определить другим способом, используя понятие канонического представителя.
- \blacktriangleright Во-первых, для любого класса эквивалентности $[a]_{\sim}$ выбираем некоторый элемент из него $a_0 \in [a]_{\sim}$, который мы будем называть каноническим представителем этого класса.
- ightharpoonup Теперь мы можем определить A/\sim как подмножество A, состоящее из канонических представителей.
- В случае с рациональными числами, канонический представитель $[(x,y)]_{\sim}$ – это (x/gcd(x,y),y/gcd(x,y)).

План лекции

Теорема Кантора-Бернштейна

Separation Axiom

Фактор-множества

Зависимые множества

Зависимые суммы

 Еще одна аксиома теории множеств говорит о том, что существуют (бесконечные) объединения множеств.

Зависимые суммы

- ► Еще одна аксиома теории множеств говорит о том, что существуют (бесконечные) объединения множеств.
- Вместо обычных конечных объединений мы добавили размеченные объединения.

Зависимые суммы

- ► Еще одна аксиома теории множеств говорит о том, что существуют (бесконечные) объединения множеств.
- Вместо обычных конечных объединений мы добавили размеченные объединения.
- По этой же причине вместо бесконечных объединений мы добавим бесконечные размеченные объединения, которые называются обычно зависимой суммой множеств.

 Размеченные объединения отличаются от обычных тем, что мы добавляем к ккаждому элементу метку, которая говорит нам из какого множества пришел этот элемент.

- Размеченные объединения отличаются от обычных тем, что мы добавляем к ккаждому элементу метку, которая говорит нам из какого множества пришел этот элемент.
- lacktriangle То есть, элементы $B_0 \coprod B_1$ можно задавать как (0,b) и (1,b'), где $b \in B_0$ и $b' \in B_1$.

- Размеченные объединения отличаются от обычных тем, что мы добавляем к ккаждому элементу метку, которая говорит нам из какого множества пришел этот элемент.
- lacktriangle То есть, элементы $B_0 malg B_1$ можно задавать как (0,b) и (1,b'), где $b \in B_0$ и $b' \in B_1$.
- ▶ Точно так же, элементы $B_0 \coprod ... \coprod B_n$ можно описать как (i, b_i) , где $0 \le i \le n$ и $b_i \in B_i$.

- Размеченные объединения отличаются от обычных тем, что мы добавляем к ккаждому элементу метку, которая говорит нам из какого множества пришел этот элемент.
- lacktriangle То есть, элементы $B_0 malg B_1$ можно задавать как (0,b) и (1,b'), где $b \in B_0$ и $b' \in B_1$.
- ▶ Точно так же, элементы $B_0 \coprod ... \coprod B_n$ можно описать как (i,b_i) , где $0 \le i \le n$ и $b_i \in B_i$.
- ▶ Если у нас есть бесконечная последовательность множеств B_0 , B_1 , ..., то можно определить множество $B_0 \coprod B_1 \coprod \ldots$ как множество пар вида (i,b_i) , где $i \in \mathbb{N}$, $b_i \in B_i$.

Размеченные объединения отличаются от обычных тем,

- что мы добавляем к ккаждому элементу метку, которая говорит нам из какого множества пришел этот элемент.
- lacktriangle То есть, элементы $B_0 malg B_1$ можно задавать как (0,b) и (1,b'), где $b \in B_0$ и $b' \in B_1$.
- ▶ Точно так же, элементы $B_0 \coprod \ldots \coprod B_n$ можно описать как (i,b_i) , где $0 \le i \le n$ и $b_i \in B_i$.
- **•** Если у нас есть бесконечная последовательность множеств B_0, B_1, \ldots , то можно определить множество $B_0 \coprod B_1 \coprod \ldots$ как множество пар вида (i, b_i) , где $i \in \mathbb{N}, b_i \in B_i$.
- ▶ В общем случае, если у нас есть коллекция множеств B_a , зависящая от элементов $a \in A$, то мы можем определить множество $\Sigma(a \in A)B_a$ как множество пар (a,b), где $a \in A$ и $b \in B_a$.

▶ Если B_a не зависит от A, то есть $B_a = B$ для всех $a \in A$, то $\Sigma(a \in A)B_a = A \times B$.

- ▶ Если B_a не зависит от A, то есть $B_a = B$ для всех $a \in A$, то $\Sigma(a \in A)B_a = A \times B$.
- ▶ Если A конечно, и для любого $a \in A$, B_a тоже конечно, то $\Sigma(a \in A)B_a$ тоже будет конечно, и $|\Sigma(a \in A)B_a| = \sum_{a \in A} |B_a|$.

- ▶ Если B_a не зависит от A, то есть $B_a = B$ для всех $a \in A$, то $\Sigma(a \in A)B_a = A \times B$.
- ▶ Если A конечно, и для любого $a \in A$, B_a тоже конечно, то $\Sigma(a \in A)B_a$ тоже будет конечно, и $|\Sigma(a \in A)B_a| = \sum_{a \in A} |B_a|$.
- В программировании такой тип тоже был бы полезен.

- ▶ Если B_a не зависит от A, то есть $B_a = B$ для всех $a \in A$, то $\Sigma(a \in A)B_a = A \times B$.
- ▶ Если A конечно, и для любого $a \in A$, B_a тоже конечно, то $\Sigma(a \in A)B_a$ тоже будет конечно, и $|\Sigma(a \in A)B_a| = \sum_{a \in A} |B_a|$.
- В программировании такой тип тоже был бы полезен.
- ▶ Пусть List(A) тип список с элементами типа A.

- ▶ Если B_a не зависит от A, то есть $B_a = B$ для всех $a \in A$, то $\Sigma(a \in A)B_a = A \times B$.
- ▶ Если A конечно, и для любого $a \in A$, B_a тоже конечно, то $\Sigma(a \in A)B_a$ тоже будет конечно, и $|\Sigma(a \in A)B_a| = \sum\limits_{a \in A} |B_a|.$
- ▶ В программировании такой тип тоже был бы полезен.
- ▶ Пусть List(A) тип список с элементами типа A.
- ▶ Пусть $Vec(A, n) = \{xs \in List(A) \mid length(xs) = n\}$ тип списков длинны n.

- ▶ Если B_a не зависит от A, то есть $B_a = B$ для всех $a \in A$, то $\Sigma(a \in A)B_a = A \times B$.
- ▶ Если A конечно, и для любого $a \in A$, B_a тоже конечно, то $\Sigma(a \in A)B_a$ тоже будет конечно, и $|\Sigma(a \in A)B_a| = \sum\limits_{a \in A} |B_a|.$
- В программировании такой тип тоже был бы полезен.
- ▶ Пусть List(A) тип список с элементами типа A.
- ▶ Пусть $Vec(A, n) = \{xs \in List(A) \mid length(xs) = n\}$ тип списков длинны n.
- ▶ Тогда у нас есть биекция между множествами List(A) и $\Sigma(n \in \mathbb{N}) Vec(A, n)$.

ightharpoonup Мы видели, что зависимые суммы обобщают произведение множеств A imes B.

Зависимые произведения

- ightharpoonup Мы видели, что зависимые суммы обобщают произведение множеств A imes B.
- Зависимые произведения обобщают понятие функций A o B.

Зависимые произведения

- ightharpoonup Мы видели, что зависимые суммы обобщают произведение множеств A imes B.
- Зависимые произведения обобщают понятие функций A o B.
- ▶ Пусть B_a колекция множеств, зависящая от $a \in A$.

Зависимые произведения

- ightharpoonup Мы видели, что зависимые суммы обобщают произведение множеств A imes B.
- Зависимые произведения обобщают понятие функций $A \rightarrow B$.
- ▶ Пусть B_a колекция множеств, зависящая от $a \in A$.
- ▶ Тогда зависимая функция из A в B это правило, которое каждому $a \in A$ сопоставляет элемент в B_a .

• Формально множество зависимых функций можно описать как подмножество множества функций $A \to \bigcup_{a \in A} B_a$, состоящее из функций f, таких что $f(a) \in B_a$ для любого $a \in A$.

- Формально множество зависимых функций можно описать как подмножество множества функций $A \to \bigcup_{a \in A} B_a$, состоящее из функций f, таких что $f(a) \in B_a$ для любого $a \in A$.
- Другой способ определить это множество это через зависимые суммы:

$$\Pi(a \in A)B_a = \{f : A \to \Sigma(a \in A)B_a \mid \pi_1 \circ f = id_A\},\$$

где
$$\pi_1: \Sigma(a \in A)B_a \to A$$
 – это функция $\pi_1(a,b) = a$.

- Формально множество зависимых функций можно описать как подмножество множества функций $A \to \bigcup_{a \in A} B_a$, состоящее из функций f, таких что $f(a) \in B_a$ для любого $a \in A$.
- Другой способ определить это множество это через зависимые суммы:

$$\Pi(a \in A)B_a = \{f : A \to \Sigma(a \in A)B_a \mid \pi_1 \circ f = id_A\},\$$

где $\pi_1: \Sigma(a\in A)B_a o A$ – это функция $\pi_1(a,b)=a$.

► Пример: функцию *index* можно определить для любого *n*.

$$index : \Pi(n \in \mathbb{N})(\{i \in \mathbb{N} \mid i \leq n\} \rightarrow Vec(A, n) \rightarrow A)$$

▶ Пусть $f: A \rightarrow B$ – функция.

- ▶ Пусть $f: A \rightarrow B$ функция.
- Тогда мы можем определить отношение эквивалентности на А как

$$a \sim a' \Leftrightarrow f(a) = f(a')$$

- ▶ Пусть $f: A \rightarrow B$ функция.
- Тогда мы можем определить отношение эквивалентности на А как

$$a \sim a' \Leftrightarrow f(a) = f(a')$$

▶ Тогда существует биекция $h: A/\sim \to im(f), h([a]_\sim) = f(a).$

- ▶ Пусть $f: A \to B$ функция.
- Тогда мы можем определить отношение эквивалентности на Акак

$$a \sim a' \Leftrightarrow f(a) = f(a')$$

- ▶ Тогда существует биекция $h: A/\sim \to im(f), h([a]_\sim) = f(a).$
- В теории групп аналогом отношений эквивалентности являются нормальные подгруппы.

- ▶ Пусть $f: A \rightarrow B$ функция.
- Тогда мы можем определить отношение эквивалентности на А как

$$a \sim a' \Leftrightarrow f(a) = f(a')$$

- ▶ Тогда существует биекция $h: A/\sim \to im(f), h([a]_\sim) = f(a).$
- В теории групп аналогом отношений эквивалентности являются нормальные подгруппы.
- Аналогом отношения \sim , определенного выше, является ядро гомоморфизма f.

- ▶ Пусть $f: A \to B$ функция.
- ightharpoonup Тогда мы можем определить отношение эквивалентности на A как

$$a \sim a' \Leftrightarrow f(a) = f(a')$$

- lacktriangle Тогда существует биекция $h:A/{\sim}{
 ightarrow}\ im(f),\ h([a]_{\sim})=f(a).$
- В теории групп аналогом отношений эквивалентности являются нормальные подгруппы.
- ightharpoonup Аналогом отношения \sim , определенного выше, является ядро гомоморфизма f.
- ightharpoonup Аналогом этой теоремы является теорма о существовании изоморфизма A/Ker(f)
 ightharpoonup im(f).

▶ В случае групп у нас есть интересное следствие, что |im(f)| = |A|/|Ker(f)|. Есть ли аналогичное утверждение в случае множеств?

- В случае групп у нас есть интересное следствие, что |im(f)| = |A|/|Ker(f)|. Есть ли аналогичное утверждение в случае множеств?
- ▶ Есть! Во-первых, заметим, что $|A| = \sum_{a \in A/\sim} |a|$.

- В случае групп у нас есть интересное следствие, что |im(f)| = |A|/|Ker(f)|. Есть ли аналогичное утверждение в случае множеств?
- ▶ Есть! Во-первых, заметим, что $|A| = \sum_{a \in A/\sim} |a|$.
- ▶ Теперь из теоремы следует, что $|A| = \sum_{b \in \mathit{im}(f)} |h^{-1}(b)|$.

- В случае групп у нас есть интересное следствие, что |im(f)| = |A|/|Ker(f)|. Есть ли аналогичное утверждение в случае множеств?
- ▶ Есть! Во-первых, заметим, что $|A| = \sum_{a \in A/\sim} |a|$.
- ▶ Теперь из теоремы следует, что $|A| = \sum_{b \in \mathit{im}(f)} |h^{-1}(b)|$.
- ▶ Если для любого $b \in im(f)$ множества $h^{-1}(b)$ равномощны, и их мощность равна k, то

$$|im(f)| = |A|/k$$

- В случае групп у нас есть интересное следствие, что |im(f)| = |A|/|Ker(f)|. Есть ли аналогичное утверждение в случае множеств?
- ▶ Есть! Во-первых, заметим, что $|A| = \sum_{a \in A/\sim} |a|$.
- ▶ Теперь из теоремы следует, что $|A| = \sum_{b \in im(f)} |h^{-1}(b)|$.
- ▶ Если для любого $b \in im(f)$ множества $h^{-1}(b)$ равномощны, и их мощность равна k, то

$$|im(f)| = |A|/k$$

▶ Теперь утверждение для групп следует из этого замечания, так как в случае групп это верно.