Darstellung rationaler und reeller Zahlen Vorlesung vom 30.10.15

Rationale Zahlen:

Rationale Zahlen als Brüche ganzer Zahlen.

q-adische Brüche, periodische q-adische Brüche. Beispiele.

Satz: Jede rationale Zahl ist als periodischer q-adischer Bruch darstellbar.

Eindeutigkeit durch $0, \overline{9}$ statt 1.

Praktische Realisierung: Dynamische Ziffernzahl. Aufwand pro Addition problemabhängig. (Hauptnenner, Kürzen).

Reelle Zahlen:

Reelle Zahlen als unendliche q-adische Brüche.

Satz: \mathbb{R} ist nicht abzählbar. Folgerung: Es gibt keine Zifferndarstellung von \mathbb{R} .

Konsequenz: Numerisches Rechnen mit reellen Zahlen ist nicht möglich!

Festkommazahlen:

Absoluter und relativer Fehler. Beispiele.

Definition von Festkommazahlen und Gleitkommazahlen. Beispiele.

Festkommazahlen

$$z_{n-1} z_{n-2} \cdots z_0, z_{-1} \cdots z_{-m} = \sum_{i=-m}^{n-1} z_i q^i, \qquad z_i \in \{0, \dots, q-1\}.$$

 $\ell=m+n$ Stellen verfügbar; $n, m \in \mathbb{N}$ fest gewählt.

Beispiel: q = 10, $\ell = 4$, n = 3, m = 1

x=0,123, Runden: $\tilde{x}=0,1$ relativer Fehler: $|x-\tilde{x}|/|x| \approx 0.2$

x=123, exakt darstellbar: $\tilde{x}=123$ relativer Fehler: $|x-\tilde{x}|/|x|=0$

Folgerung:

Im Sinne einer optimalen Stellenausnutzung n, m variabel halten!

Gleitkommazahlen $\mathbb{G}(\ell,q)$

Definition: (Gleitkommazahlen) Jede in der Form

$$\tilde{x} = (-1)^s a \cdot q^e \tag{1}$$

mit Vorzeichenbit $s \in \{0,1\}$, Exponent $e \in \mathbb{Z}$ und Mantisse a=0 oder

$$a = 0, a_1 \cdots a_\ell = \sum_{i=1}^{\ell} a_i \ q^{-i} \ , \qquad a_i \in \{0, \dots, q-1\} \ , \ a_1 \neq 0 \ ,$$

darstellbare Zahl \tilde{x} heißt Gleitkommazahl mit Mantissenlänge $\ell \in \mathbb{N}$, $\ell \geq 1$. Die Menge all dieser Zahlen heißt $\mathbb{G}(q,\ell)$.

Die Darstellung (1) heißt normalisierte Gleitkommadarstellung.

Approximation durch Runden

normalisierte Darstellung:

$$x = a^* q^e, \qquad e \in \mathbb{Z} , \qquad q^{-1} \le a^* < 1$$

unendlicher q-adischer Bruch: (Achtung: Eindeutigkeit)

$$a^* = 0, a_1 \ a_2 \cdots a_\ell \ a_{\ell+1} \dots = \sum_{i=1}^{\infty} a_i q^{-i} \ , \quad a_i \in \{0, \dots, q-1\}$$

Approximation durch Runden

normalisierte Darstellung:

$$x = a^* q^e, \qquad e \in \mathbb{Z} , \qquad q^{-1} \le a^* < 1$$

unendlicher q-adischer Bruch: (Achtung: Eindeutigkeit)

$$a^* = 0, a_1 \ a_2 \cdots a_\ell \ a_{\ell+1} \dots = \sum_{i=1}^{\infty} a_i q^{-i} \ , \quad a_i \in \{0, \dots, q-1\}$$

Runden: $\tilde{x} = \operatorname{rd}(x) := aq^e$

$$a = \sum_{i=1}^{\ell} a_i q^{-i} + \begin{cases} 0 & \text{falls } a_{\ell+1} < \frac{1}{2}q \\ q^{-\ell} & \text{falls } a_{\ell+1} \ge \frac{1}{2}q \end{cases}$$

Fehlerabschätzung: Absoluter Fehler

Satz: Zu jedem $N \in \mathbb{N}$ gibt es ein $x \in \mathbb{R}$, so daß

$$|x - \operatorname{rd}(x)| \ge q^N .$$

Fehlerabschätzung: Absoluter Fehler

Satz: Zu jedem $N \in \mathbb{N}$ gibt es ein $x \in \mathbb{R}$, so daß

$$|x - \operatorname{rd}(x)| \ge q^N$$
.

Beweis:

Wähle $x=0, a_1\cdots a_\ell \ a_{\ell+1}\cdot q^{\ell+1+N}$ mit a_1 , $a_{\ell+1}\neq 0$ und $N\in\mathbb{N}$.

Fehlerabschätzung: Absoluter Fehler

Satz: Zu jedem $N \in \mathbb{N}$ gibt es ein $x \in \mathbb{R}$, so daß

$$|x - \operatorname{rd}(x)| \ge q^N .$$

Beweis:

Wähle $x=0, a_1\cdots a_\ell \ a_{\ell+1}\cdot q^{\ell+1+N}$ mit $a_1, \ a_{\ell+1}\neq 0$ und $N\in\mathbb{N}$.

Der absolute Rundungsfehler kann beliebig groß werden.

Satz: Es sei q eine gerade Zahl. Dann gilt

$$\frac{|x - \operatorname{rd}(x)|}{|x|} \le \frac{1}{2}q^{-(\ell - 1)} =: eps(q, \ell) \qquad \forall x \in \mathbb{R}, \ x \ne 0.$$

Die Zahl $eps(q, \ell)$ heißt Maschinengenauigkeit.

Satz: Es sei q eine gerade Zahl. Dann gilt

$$\frac{|x - \operatorname{rd}(x)|}{|x|} \le \frac{1}{2}q^{-(\ell - 1)} =: eps(q, \ell) \qquad \forall x \in \mathbb{R}, \ x \ne 0.$$

Die Zahl $eps(q, \ell)$ heißt Maschinengenauigkeit.

Satz: Es sei q eine gerade Zahl. Dann gilt

$$\frac{|x - \operatorname{rd}(x)|}{|x|} \le \frac{1}{2}q^{-(\ell - 1)} =: eps(q, \ell) \qquad \forall x \in \mathbb{R}, \ x \ne 0.$$

Die Zahl $eps(q, \ell)$ heißt Maschinengenauigkeit.

$$x = 0, a_1 a_2 \cdots a_\ell a_{\ell+1} \dots q^e, \quad a_1 \neq 0$$

Satz: Es sei q eine gerade Zahl. Dann gilt

$$\frac{|x - \operatorname{rd}(x)|}{|x|} \le \frac{1}{2}q^{-(\ell - 1)} = :eps(q, \ell) \qquad \forall x \in \mathbb{R}, \ x \ne 0.$$

Die Zahl $eps(q, \ell)$ heißt Maschinengenauigkeit.

$$x = 0, a_1 a_2 \cdots a_\ell a_{\ell+1} \dots q^e, \quad a_1 \neq 0$$

$$\operatorname{rd}(x) = (0, a_1 a_2 \cdots a_\ell + \delta) \cdot q^e, \quad \delta = q^{-\ell}$$

Satz: Es sei q eine gerade Zahl. Dann gilt

$$\frac{|x - \operatorname{rd}(x)|}{|x|} \le \frac{1}{2}q^{-(\ell - 1)} =: eps(q, \ell) \qquad \forall x \in \mathbb{R}, \ x \ne 0.$$

Die Zahl $eps(q, \ell)$ heißt Maschinengenauigkeit.

$$x = 0, a_1 a_2 \cdots a_{\ell} a_{\ell+1} \cdots q^e, \quad a_1 \neq 0$$

$$rd(x) = (0, a_1 a_2 \cdots a_{\ell} + \delta) \cdot q^e, \quad \delta = q^{-\ell}$$

$$\frac{|x - \operatorname{rd}(x)|}{|x|}$$

Satz: Es sei q eine gerade Zahl. Dann gilt

$$\frac{|x - \operatorname{rd}(x)|}{|x|} \le \frac{1}{2}q^{-(\ell - 1)} =: eps(q, \ell) \qquad \forall x \in \mathbb{R}, \ x \ne 0.$$

Die Zahl $eps(q, \ell)$ heißt Maschinengenauigkeit.

$$x = 0, a_1 a_2 \cdots a_{\ell} a_{\ell+1} \cdots q^e, \quad a_1 \neq 0$$

$$\operatorname{rd}(x) = (0, a_1 a_2 \cdots a_{\ell} + \delta) \cdot q^e, \quad \delta = q^{-\ell}$$

$$\frac{|x - \operatorname{rd}(x)|}{|x|} \leq \frac{(\delta - a_{\ell+1} q^{-(\ell+1)}) \cdot q^e}{q^{-1} \cdot q^e}$$

Satz: Es sei q eine gerade Zahl. Dann gilt

$$\frac{|x - \operatorname{rd}(x)|}{|x|} \le \frac{1}{2}q^{-(\ell - 1)} =: eps(q, \ell) \qquad \forall x \in \mathbb{R}, \ x \ne 0.$$

Die Zahl $eps(q, \ell)$ heißt Maschinengenauigkeit.

$$x = 0, a_{1}a_{2} \cdots a_{\ell}a_{\ell+1} \cdots q^{e}, \quad a_{1} \neq 0$$

$$rd(x) = (0, a_{1}a_{2} \cdots a_{\ell} + \delta) \cdot q^{e}, \quad \delta = q^{-\ell}$$

$$\frac{|x - rd(x)|}{|x|} \leq \frac{(\delta - a_{\ell+1}q^{-(\ell+1)}) \cdot q^{e}}{q^{-1} \cdot q^{e}} \leq \frac{q^{-\ell} - \frac{1}{2}q \cdot q^{-(\ell+1)}}{q^{-1}}$$

Satz: Es sei q eine gerade Zahl. Dann gilt

$$\frac{|x - \operatorname{rd}(x)|}{|x|} \le \frac{1}{2}q^{-(\ell - 1)} =: eps(q, \ell) \qquad \forall x \in \mathbb{R}, \ x \ne 0.$$

Die Zahl $eps(q, \ell)$ heißt Maschinengenauigkeit.

$$x = 0, a_{1}a_{2} \cdots a_{\ell}a_{\ell+1} \cdots q^{e}, \quad a_{1} \neq 0$$

$$rd(x) = (0, a_{1}a_{2} \cdots a_{\ell} + \delta) \cdot q^{e}, \quad \delta = q^{-\ell}$$

$$\frac{|x - rd(x)|}{|x|} \leq \frac{(\delta - a_{\ell+1}q^{-(\ell+1)}) \cdot q^{e}}{q^{-1} \cdot q^{e}} \leq \frac{q^{-\ell} - \frac{1}{2}q \cdot q^{-(\ell+1)}}{q^{-1}} = \frac{1}{2}q \cdot q^{-\ell}$$

Maschinengenauigkeit

Der relative Rundungsfehler ist durch $eps(q,\ell)$ beschränkt.

Mantissenlänge $\ell \iff \ell$ gültige Stellen $\iff eps(q,\ell) = \frac{1}{2}q^{-(\ell-1)}$

Praktische Realisierung

endlicher Exponenten-Bereich:

$$e \in \{e_{\min}, e_{\min} + 1, \dots, e_{\max} - 1, e_{\max}\}$$

endlicher Zahlen-Bereich:

$$x_{\min} := q^{e_{\min}-1} \le |\tilde{x}| \le (1 - q^{-\ell})q^{e_{\max}} =: x_{\max}$$

 $x < x_{\min}$: underflow oder x = 0

 $x > x_{\text{max}}$: overflow oder x = NaN

IEEE 754 - Standard

	float	double
Länge in Bits	32	64
Vorzeichen s		
Bits	1	1
Exponent e		
Bits	8	11
Mantisse a		
Bits	23	52
Maschinengenauigkeit eps	$6,0\cdot 10^{-8}$	$1,1\cdot 10^{-16}$
$egin{array}{c} e_{\min} \ e_{\max} \ x_{\min} \ x_{\max} \end{array}$	$ \begin{array}{r} -126 \\ 128 \\ 1, 2 \cdot 10^{-38} \\ 3, 4 \cdot 10^{+38} \end{array} $	$ \begin{array}{r} -1022 \\ 1024 \\ 2, 2 \cdot 10^{-308} \\ 1, 8 \cdot 10^{+308} \end{array} $

Zahlenmengen statt Zahlen

Menge aller Approximationen \tilde{x} auf ℓ gültige Stellen im q-System:

$$rd(x) \in {\tilde{x} \in \mathbb{R} \mid \tilde{x} = x(1+\varepsilon), \mid \varepsilon \mid \leq eps(q,\ell)}$$
 $\forall x \in \mathbb{R}$

Menge aller $x \in \mathbb{R}$, die auf $\tilde{x} = \mathrm{rd}(x) \in \mathbb{G}(q, \ell)$ gerundet werden:

$$R(\tilde{x}) = \{ x \in \mathbb{R} \mid \tilde{x} = \mathrm{rd}(x) \} .$$

Zahlenmengen statt Zahlen

Menge aller Approximationen \tilde{x} auf ℓ gültige Stellen im q-System:

$$rd(x) \in {\tilde{x} \in \mathbb{R} \mid \tilde{x} = x(1+\varepsilon), \mid \varepsilon \mid \leq eps(q,\ell)}$$
 $\forall x \in \mathbb{R}$

Menge aller $x \in \mathbb{R}$, die auf $\tilde{x} = \mathrm{rd}(x) \in \mathbb{G}(q, \ell)$ gerundet werden:

$$R(\tilde{x}) = \{ x \in \mathbb{R} \mid \tilde{x} = \mathrm{rd}(x) \} .$$

Satz: Es sei q eine gerade Zahl und

$$\tilde{x} = aq^e \in \mathbb{G}(q,\ell), \quad q^{-1} < 0, a_1 \cdots a_\ell \le 1.$$

Dann gilt $R(\tilde{x}) = [\alpha(\tilde{x}), \beta(\tilde{x})]$ mit

$$\alpha(\tilde{x}) = \tilde{x} - q^{e-1}eps$$
, $\beta(\tilde{x}) = \tilde{x} + q^{e-1}eps$.

Folgerung: Die Abfrage if $\tilde{\mathbf{x}} == \tilde{\mathbf{y}}$ mit $\tilde{x}, \ \tilde{y} \in \mathbb{G}(q,\ell)$ ist sinnlos!

$$\tilde{x} = \tilde{y} \quad \not \Longrightarrow \quad x = y, \qquad \tilde{x} = \operatorname{rd}(x), \ \tilde{y} = \operatorname{rd}(y)$$

Folgerung: Die Abfrage if $\tilde{\mathbf{x}} == \tilde{\mathbf{y}}$ mit $\tilde{x}, \ \tilde{y} \in \mathbb{G}(q, \ell)$ ist sinnlos!

$$\tilde{x} = \tilde{y} \quad \not \Longrightarrow \quad x = y, \qquad \tilde{x} = \operatorname{rd}(x), \ \tilde{y} = \operatorname{rd}(y)$$

umgekehrt: $x = y \Longrightarrow rd(x) = rd(y)$ aber

$$x = a + b, \ y = x$$
 $\tilde{x} = \operatorname{rd}(a) + \operatorname{rd}(b), \ \tilde{y} = \operatorname{rd}(x) \iff \tilde{x} = \tilde{y}$

Folgerung: Die Abfrage if $\tilde{\mathbf{x}} == \tilde{\mathbf{y}}$ mit $\tilde{x}, \ \tilde{y} \in \mathbb{G}(q, \ell)$ ist sinnlos!

$$\tilde{x} = \tilde{y} \quad \not \Longrightarrow \quad x = y, \qquad \tilde{x} = \operatorname{rd}(x), \ \tilde{y} = \operatorname{rd}(y)$$

umgekehrt: $x = y \Longrightarrow rd(x) = rd(y)$ aber

$$x = a + b, \ y = x$$
 $\tilde{x} = \operatorname{rd}(a) + \operatorname{rd}(b), \ \tilde{y} = \operatorname{rd}(x) \iff \tilde{x} = \tilde{y}$

Gleichheits-Abfragen von Gleitkomma-Zahlen verboten!

Praxisbeispiel

Aufgabe: Plotten Sie

$$f(x) = \begin{cases} \frac{x - \pi}{\sin(x)} & \text{falls } \sin(x) \neq 0 \\ -1 & \text{falls } \sin(x) = 0 \end{cases} \quad x \in \left[\frac{1}{2}\pi, \frac{2}{3}\pi\right]$$

function tumbplot(n)

```
h=pi/n;
for i=1:n+1
    x(i) = pi/2 + (i-1)*h;
    if (sin(x(i))==0) y(i) = -1;
    else y(i) = (x(i)-pi)/sin(x(i)); end;
end;
plot(x,y);
```

Was ist passiert?

Das Ergebnis von TumbPlot für n=5 und n=10.

siehe Abschnitt 5.3.6 im Skript

Folgerung: Die Abfrage if $\tilde{\mathbf{x}} == \tilde{\mathbf{y}}$ mit $\tilde{x}, \ \tilde{y} \in \mathbb{G}(q, \ell)$ ist sinnlos!

$$\tilde{x} = \tilde{y} \quad \not \Longrightarrow \quad x = y, \qquad \tilde{x} = \operatorname{rd}(x), \ \tilde{y} = \operatorname{rd}(y)$$

umgekehrt: $x = y \Longrightarrow rd(x) = rd(y)$ aber

$$x = a + b, \ y = x$$
 $\tilde{x} = \operatorname{rd}(a) + \operatorname{rd}(b), \ \tilde{y} = \operatorname{rd}(x) \iff \tilde{x} = \tilde{y}$

Gleichheits-Abfragen von Gleitkomma-Zahlen verboten!

Algebraische Eigenschaften

Grundrechenarten führen aus $\mathbb{G}=\mathbb{G}(q,\ell)$ heraus:

$$\tilde{x}, \tilde{y} \in \mathbb{G} \not\Rightarrow \tilde{x} + \tilde{y} \in \mathbb{G}$$
, analog: $-, \cdot, /$

Gleitkommaarithmetik:

$$\tilde{x} + \tilde{y} = \operatorname{rd}(\tilde{x} + \tilde{y}), \quad \tilde{x} - \tilde{y} = \operatorname{rd}(\tilde{x} - \tilde{y}), \quad \tilde{x} * \tilde{y} = \operatorname{rd}(\tilde{x}\tilde{y}), \quad \tilde{x} : \tilde{y} = \operatorname{rd}(\tilde{x} : \tilde{y}), \quad \tilde{y} \neq 0$$

Algebraische Eigenschaften

Grundrechenarten führen aus $\mathbb{G} = \mathbb{G}(q,\ell)$ heraus:

$$\tilde{x}, \tilde{y} \in \mathbb{G} \Rightarrow \tilde{x} + \tilde{y} \in \mathbb{G}$$
, analog: $-, \cdot, /$

Gleitkommaarithmetik:

$$\tilde{x} + \tilde{y} = \operatorname{rd}(\tilde{x} + \tilde{y}), \quad \tilde{x} - \tilde{y} = \operatorname{rd}(\tilde{x} - \tilde{y}), \quad \tilde{x} * \tilde{y} = \operatorname{rd}(\tilde{x}\tilde{y}), \quad \tilde{x} : \tilde{y} = \operatorname{rd}(\tilde{x} : \tilde{y}), \quad \tilde{y} \neq 0$$

Der Hammer:

Die Gleitkommazahlen mit Gleitkommaarithmetik sind kein Körper.

 $\tilde{+}$, $\tilde{*}$ nicht assoziativ, nicht distributiv, i.a. kein Inverses bzgl. $\tilde{*}$

Äquivalente Umformungen in $\mathbb R$ sind in Gleitkommaarithmetik nicht äquivalent.

Äquivalente Umformungen in \mathbb{R} sind in Gleitkommaarithmetik nicht äquivalent.

Beispiele:

keine binomische Formel:

$$(a + b) * (a + b) \neq a * a + 2 * a * b + b * b$$

Äquivalente Umformungen in \mathbb{R} sind in Gleitkommaarithmetik nicht äquivalent.

Beispiele:

keine binomische Formel:

$$(a + b) \approx (a + b) \neq a \approx a + 2 \approx a \approx b + b \approx b$$

kein Assoziativgesetz:

$$(a \tilde{*} a \tilde{+} 2 \tilde{*} a \tilde{*} b) \tilde{+} b \tilde{*} b \neq a \tilde{*} a \tilde{+} (2 \tilde{*} a \tilde{*} b \tilde{+} b \tilde{*} b)$$

Äquivalente Umformungen in $\mathbb R$ sind in Gleitkommaarithmetik nicht äquivalent.

Beispiele:

keine binomische Formel:

$$(a + b) \approx (a + b) \neq a \approx a + 2 \approx a \approx b + b \approx b$$

kein Assoziativgesetz:

$$(a \ \tilde{*} \ a \ \tilde{+} \ 2 \ \tilde{*} \ a \ \tilde{*} \ b) \ \tilde{+} \ b \ \tilde{*} b \ \neq a \ \tilde{*} \ a \ \tilde{+} \ (2 \ \tilde{*} \ a \ \tilde{*} \ b \ \tilde{+} \ b \ \tilde{*} b)$$

It is hard, but it's harder to ignore it Cat Stevens

Ausblick: Kondition

Auswirkung von Eingabefehlern auf das Ergebnis

