

Traitement Numérique du Signal

Nathalie Thomas

IRIT/ENSEEIHT
Nathalie.Thomas@enseeiht.fr

Traitement Numérique du Signal INTRODUCTION

Qu'est-ce qu'un signal?

→ Formes multiples et variées de signaux

Point commun : représentent un message, contiennent une information.

Qu'est-ce qu'un signal?

 \rightarrow Représentation théorique : x(t), I(x,y)...

→ Signaux analogiques, signaux numériques (échantillonnage, quantification)

Exemple 1

Identifier la bande de fréquence nécessaire à la transmission d'un signal,

Exemple 2

Eliminer des composantes indésirables : le bruit, certaines fréquences...

Avant filtrage de réception

TEB = 0.1581

SNR = 0 dB

Image reçue après filtrage de réception

TEB = 7.5483e-04

Exemple 3

Détecter des anomalies, des défauts (ECG, Arcs électriques sur les câbles d'alimentation d'un avion, dent cassée dans un engrenage...)

En éliminant des composantes indésirables : le bruit, certaines fréquences...

Usure des gaines d'isolation

⇒ Arcs électriques

⇒ Possible destruction d'une partie du réseau d'alimentation de l'avion.

Exemple 3

Détecter des anomalies, des défauts (ECG, Arcs électriques sur les câbles d'alimentation d'un avion, dent cassée dans un engrenage...)

En éliminant des composantes indésirables : le bruit, certaines fréquences...

Détection de perturbations « annonciatrices » (de fréquences > 500 Hz noyées dans le 50 Hz)

Signal d'alimentation contenant la perturbation

Signal après filtrage passe-haut (élimination du 50 Hz)

Détecteur d'énergie

Le traitement du signal a besoin d'outils...

Partie 1 : Signaux et Systèmes à temps continu

Cours 1 à 4

- Modèles de signaux,
- Outils pour la représentation et l'analyse de signaux :
- + Représentation fréquentielle ou « spectre » (Transformée de Fourier, Densité Spectrale de Puissance : DSP),
 - + Fonctions d'inter et d'autocorrélation.
 - + Filtrage (linéaire, non linéaire) des signaux à temps continu.

TD1

Etude de différentes modélisations d'un signal, calcul de fonctions d'autocorrélation et de spectres (TF, DSP)

TD2

Exercices sur le filtrage linéaire et non linéaire.

...qui doivent être implantés en numérique

Partie 2 : Signaux et Systèmes à temps discret

Cours 5 à 7

- Numérisation des signaux : échantillonnage, quantification.
- Numérisation des outils pour la représentation et l'analyse de signaux (Transformée de Fourier Discrète,
 DSP et fonctions d'inter et d'autocorrélation numériques).
- Définition et implantation de filtres numériques.

TD3

Etude de l'échantillonnage (impact, échantillonnage non idéal)

Mise en pratique (TPs et Projet signal/telecom)

TP1: « Signaux et spectres »

TP2 : « Filtrage numérique »

Projet signal/télécom : « Simulation d'une transmission voie retour par satellite au format type DVB-RCS (Digital Video Broadcasting – Return Channel by Satellite, norme ETSI)

Simulation d'une transmission voie retour par satellite type DVB-RCS (norme ETSI)

(Multiple Frequency – Time Division Multiple Access)

Simulation d'une transmission voie retour par satellite type DVB-RCS (norme ETSI)

Modulation bande de base pour chaque utilisateur

= passage de l'information binaire à un signal « bande de base » pour chaque utilisateur

Construction de la trame MF-TDMA

Simulation d'une transmission voie retour par satellite au format DVB-RCS (norme ETSI)

Simulation du canal satellite (AWGN)

 P_1 et P_2 choisies pour fonctionner au même rapport signal à bruit par bit à l'entrée du récepteur

Simulation d'une transmission voie retour par satellite au format DVB-RCS (norme ETSI)

Demultiplexage des porteuses

Des traitements en temps réel ?

→ Temps de calcul en traitement numérique du signal :

Nombre d'opérations d'addition/multiplication

(MAC = Multiplication Accumulation)

→ Temps réel

y(n) est calculé avant que x(n+1) ne se présente $(T_e \text{ secondes entre deux } x(n) \text{ et } x(n+1))$

Exemples:

 \rightarrow Estimation biaisée de la fonction d'autocorrélation de x:

$$y(n) = \frac{1}{N} \sum_{k=0}^{N-1} x(k) \times x^*(k-n), \ n = 0, ..., N-1$$

→ Transformée de Fourier Discrète (TFD) de x:

$$y(n) = \sum_{k=0}^{N-1} x(k) \times e^{-j2\pi \frac{kn}{N}}, \ n = 0, ..., N-1$$

 \rightarrow Filtrage numérique à réponse impulsionnelle finie de x:

$$y(n) = \sum_{k=0}^{N-1} b_k \times x(n-k), \ n = 0, ..., N-1$$

Références

- →"Traitement numérique du signal, théorie et pratique", M. Bellanger, Masson, collection CNET-ENST.
- →"Traitement numérique des signaux", M. Kunt, Dunod, Traité d'électricité, d'électronique et d'électrotechnique.
- →"Traitement numérique du signal, Une introduction", A.W.M. Van Den Enden et N.A.M. Verhoeckx, Masson
- →"Introduction au traitement du signal", P. Duvaut, F. Michaut, M. Chuc, Hermes, Collection traitement du signal
- →Documents sur la variable complexe, la transformée de Laplace et la transformée en z : http://dobigeon.perso.enseeiht.fr/teaching/complexe.html
- →"Introduction to digital filters, with audio applications", J.O. Smith, BookSurge, 2007
- →"Digital signal processing: fundamentals and applications", Tan Li, Jiang Jean, Elsevier, 2013.
- →Alan V. Oppenheim, Ronald W. Schafer et J. R. Buck, Discrete-time signal processing, Upper Saddle River, N.J., Prentice Hall, 3^{ième} édition, 2009.
- →Signal and Systems, by Simon Haykin and Barry Von Veen, Wiley, 2^{nde} édition, 2002.
- → John G. Proakis, Dimitri G. Manolakis, Digital Signal Processing: Principles, Algorithms and Applications, Pearson Education, 4^{ième} édition, 2006.