1 Таблица простейших преобразований Лапласа

Изображение	Оригинал $(t \ge 0)$
изооражение	$Opmman(t \ge 0)$
1	$\delta(t)$
$\frac{1}{p}$	1(t)
$\frac{1}{p}$ $\frac{1}{p^2}$	t
$\frac{1}{p+a}$	e^{-at}
$\frac{1}{(p+a)^2}$	te^{-at}
$\frac{p}{p+a}$	$\delta(t) - ae^{-at}$
$\frac{p}{(p+a)^2}$	$(1 - at)e^{-at}$
$\frac{a}{p(p+a)}$	$1 - e^{-at}$
$\frac{1}{(p+a)(p+b)}$	$\frac{1}{b-a}(e^{-at} - e^{-bt})$
$\frac{p}{(p+a)(p+b)}$	$\frac{1}{b-a}(be^{-bt} - ae^{-at})$
$\frac{b^2}{p^2(p+b)}$	$bt - (1 - e^{-bt})$
$\frac{\omega}{p^2 + \omega^2}$	$\sin \omega t$
$\frac{p}{p^2 + \omega^2}$	$\cos \omega t$

2 Типовые задачи по радиоэлектронике

2.1 Задача №1

Дано. Найти спектр сигнала $S(t) = A \cdot e^{-\frac{t^2}{\tau^2}}$. Нарисовать график $|S(\omega)|$. Что будет при разных τ ?

Решение.
$$\hat{S}(\omega) = A \int_{-\infty}^{+\infty} e^{-\frac{t^2}{\tau^2}} e^{-i\omega t} dt = A \int_{-\infty}^{+\infty} e^{-\left(\frac{t^2}{\tau^2} + i\omega t\right)} dt$$

Выделим полный квадрат в степени экспоненты:

$$\hat{\mathbf{S}}(\omega) = A \int_{-\infty}^{+\infty} e^{-\left(\frac{t}{\tau} + \frac{i\omega\tau}{2}\right)^2 - \frac{\omega^2\tau^2}{4}} dt$$

Сделаем замену переменных: $\frac{t}{\tau}+\frac{i\omega\tau}{2}=x$, $t=\tau x-\frac{i\omega\tau}{2}\tau$, $dt=\tau dx$

$$\hat{S}(\omega) = A\tau e^{\frac{-\omega^2 \tau^2}{4}} \int_{-\infty}^{+\infty} e^{-x^2} dx$$

Это интеграл Пуассона, тогда:

$$\hat{S}(\omega) = A\tau e^{\frac{-\omega^2\tau^2}{4}} \frac{\sqrt{\pi}}{2}$$

Чем медленнее изменяется U(t) (т.е. чем больше τ), тем быстрее изменяется $|S(\omega)|$ (т.е. тем уже спектр сигнала), и наоборот. Похоже ли это на интеграл Пуассона? Наверное, не должно быть деления на 2

2.2 Задача №2

Дано. Определить отклик выхода RL-цепи, изображенной на рисунке, на воздействие прямоугольного импульса длительностью τ_0 . Нарисовать график $u_{\text{вых}}(t)$. При выполнении какого условия будет осуществляться приближенное интегрирование входной цепи?

Решение. Эквивалентная схема (картиночка)

$$u_{\text{BX}}(t) \stackrel{\cdot}{=} \frac{A}{p} - \frac{A}{p} \cdot e^{-p\tau} = \frac{A}{p} (1 - e^{-p\tau})$$

По второму правилу Кирхгофа, сумма падений напряжения на всех элементах цепи равна ЭДС. В нашем случае возможное начальное напряжение на катушке мы относим к ЭДС, а сумму падений напряжения записываем как ток в контуре на суммарный импеданс контура:

$$\mathscr{E} = Z(p) \cdot I(p) \quad \Rightarrow \quad \frac{A}{p} (1 - e^{-p\tau}) + i_L(0)L = (pL + R)I(p)$$

Отсюда выражаем ток в контуре:

$$I(p) = \frac{\frac{A}{p}(1 - e^{-p\tau})}{pL + R} + \frac{i_L(0)L}{pL + R}$$

Теперь мы можем найти и выходное напряжение – напряжение на резисторе:

$$u_{\text{\tiny BMX}}(p) \equiv u_R(p) = I(p)R = \frac{AR(1 - e^{-p\tau})}{p(pL + R)} + \frac{i_L(0)RL}{pL + R} = \frac{\frac{AR}{L}(1 - e^{-p\tau})}{p\left(p + \frac{R}{L}\right)} + \frac{i_L(0)R}{p + \frac{R}{L}} = \frac{AR}{p\left(p + \frac{R}{L}\right)} - A\frac{\frac{R}{L}}{p\left(p + \frac{R}{L}\right)}e^{-p\tau} + i_L(0)R\frac{1}{p + \frac{R}{L}}$$

Используя свойства преобразования Лапласа

$$rac{lpha}{p(p+lpha)}$$
 $ightharpoonup (1-e^{-lpha t})\mathbb{1}(t)$
$$rac{1}{(p+lpha)}
ightharpoonup e^{-lpha t}\mathbb{1}(t)$$
 $e^{-p au}F(p)$ $ightharpoonup f(t- au)\mathbb{1}(t- au)$, где $F(p)$ $ightharpoonup f(t)$

Из выражения $u_{\text{вых}}(p)$ элементарно получаем оригинал $u_{\text{вых}}(t)$:

$$u_{\text{\tiny BMX}}(t) = A \left(1 - e^{-\frac{Rt}{L}} \right) \cdot \mathbb{1}(t) - A \left(1 - e^{-\frac{R(t-\tau)}{L}} \right) \cdot \mathbb{1}(t-\tau) + i_L(0) R e^{-\frac{Rt}{L}} \cdot \mathbb{1}(t)$$

Условие интегрирования.

2.3 Задача №3

Дано. Определите отклик $u_{\text{вых}}(t)$ RL-цепи, изображенной на рисунке, на воздействие единичного импульса длительностью τ . Нарисуйте график отклика. Какова переходная характеристика цепи? При выполнении какого условия будет осуществляться приближённое дифференцирование входной цепи? Решить задачу с ненулевыми начальными условиями.

Решение. Найдем образ входного импульса преобразованием Лапласа:

$$u_{\text{BX}}(t) = E \cdot \mathbb{1}(t) - E \cdot \mathbb{1}(t - \tau) \quad \Rightarrow \quad u_{\text{BX}}(t) \stackrel{\cdot}{=} \frac{E}{p} - \frac{E}{p} e^{-p\tau} = \frac{E}{p} \left(1 - e^{-p\tau}\right)$$

Надо учесть, что в контуре могут быть заданы начальные условия - ток i_0 . Тогда начальное напряжение на катушке $u_L(0) = i_0 \cdot pL$, а его образ $u_L(0) \not= \frac{i_0 pL}{p} = i_0 L$. Это напряжение можно трактовать как часть ЭДС.

Обозначим суммарный ток в контуре за I(p). Тогда, так как сумма падений напряжения на каждом элементе равна нулю, получим следующее выражение:

$$\frac{E}{p}(1 - e^{-p\tau}) + i_0 L = (R + pL)I(p)$$

Откуда выразим ток I:

$$I(p) = \frac{\frac{E}{p}(1 - e^{-p\tau}) + i_0 L}{R + pL}$$

С другой стороны, $u_{\mbox{\tiny BX}}=u_C+u_R$, а $u_C\equiv u_{\mbox{\tiny BMX}}$, тогда

$$\begin{split} u_{\text{\tiny BMX}}(p) &= u_{\text{\tiny BX}}(p) - u_R(p) = u_{\text{\tiny BX}}(p) - I(p)R = \\ &= u_{\text{\tiny BX}}(p) - \frac{E(1 - e^{-p\tau})R}{p(R + pL)} + \frac{i_0LR}{R + pL} = u_{\text{\tiny BX}}(p) - \frac{ER}{p(R + pL)} + \frac{ERe^{-p\tau}}{p(R + pL)} - \frac{i_0LR}{R + pL} = \\ &= u_{\text{\tiny BX}}(p) - \frac{E\frac{R}{L}}{p(p + \frac{R}{L})} + \frac{E\frac{R}{L}e^{-p\tau}}{p(p + \frac{R}{L})} - \frac{i_0R}{p + \frac{R}{L}} \end{split}$$

Используем свойства преобразования Лапласа:

$$rac{lpha}{p(p+lpha)}$$
 $dots$ $(1-e^{-lpha t})\mathbb{1}(t)$
$$rac{1}{(p+lpha)} \dots e^{-lpha t}\mathbb{1}(t)$$
 $e^{-p au}F(p)$ $dots$ $f(t- au)\mathbb{1}(t- au)$, где $F(p)$ $dots$ $f(t)$

Учтя, что $u_{\text{вх}}(p) = u_{\text{вх}}(t)$, произведем преобразование:

$$u_{\text{вых}}(t) = u_{\text{вх}}(t) - E(1 - e^{-\frac{R}{L}t})\mathbb{1}(t) + E(1 - e^{-\frac{R}{L}(t-\tau)})\mathbb{1}(t-\tau) - i_0Re^{-\frac{R}{L}t}\mathbb{1}(t) =$$

$$= E \cdot \mathbb{1}(t) - E \cdot \mathbb{1}(t-\tau) - E(X - e^{-\frac{R}{L}t})\mathbb{1}(t) + E(X - e^{-\frac{R}{L}(t-\tau)})\mathbb{1}(t-\tau) - i_0Re^{-\frac{R}{L}t}\mathbb{1}(t) =$$

$$= (E - i_0R)e^{-\frac{R}{L}t}\mathbb{1}(t) - Ee^{-\frac{R}{L}(t-\tau)}\mathbb{1}(t-\tau)$$

Окончательно получили ответ: при воздействии прямоугольным импульсом $u_{\rm ex}(t)$ амплитуды E и длительностью τ , на выходе получаем

$$u_{\text{вых}}(t) = (E - i_0 R) e^{-\frac{R}{L}t} \mathbb{1}(t) - E e^{-\frac{R}{L}(t-\tau)} \mathbb{1}(t-\tau)$$

Условие дифференцирования. Как нетрудно догадаться,

$$u_{\text{BX}} = u_L + u_R = L\frac{\mathrm{d}I}{\mathrm{d}t} + IR$$

Продифференцируем это выражение:

$$\frac{\mathrm{d}u_{\text{BX}}}{\mathrm{d}t} = \underbrace{L\frac{\mathrm{d}^2I}{\mathrm{d}t^2}}_{L\frac{\mathrm{d}u_L}{\mathrm{d}t}} + \underbrace{\frac{1}{L}}_{u_L \equiv u_{\text{BbD}}} \underbrace{L\frac{\mathrm{d}I}{\mathrm{d}t}}_{u_L \equiv u_{\text{BbD}}}$$

Если будет выполнено условие

$$\left| L \frac{\mathrm{d}u_L}{\mathrm{d}t} \right| \ll \left| \frac{R}{L} u_L \right|$$

Тогда будет видно, что цепочка осуществляет дифференцирование:

$$u_{\text{вых}} = \frac{L}{R} \frac{\mathrm{d}u_{\text{вх}}}{\mathrm{d}t}$$

2.4 Задача №4

Рис. 1: RC-цепь

Дано. Определить отклик $u_{\text{вых}}(t)$ RC-цепи, изображенной на рисунке, на воздействие прямоугольного импульса длительностью τ . Нарисуйте график отклика. Какова переходная характеристика цепи? При выполнении какого условия будет осуществляться приближённое дифференцирование входной цепи? Решить задачу с ненулевыми начальными условиями.

Решение. Найдем образ входного импульса преобразованием Лапласа:

$$u_{\text{BX}}(t) = E \cdot \mathbb{1}(t) - E \cdot \mathbb{1}(t - \tau) \quad \Rightarrow \quad u_{\text{BX}}(t) \stackrel{\cdot}{=} \frac{E}{p} - \frac{E}{p} e^{-p\tau} = \frac{E}{p} \left(1 - e^{-p\tau}\right)$$

Надо учесть, что в контуре могут быть заданы начальные условия - напряжение на конденсаторе $u_C(0)=u_0$. Его образ $u_C(0)\stackrel{\cdot}{=}\frac{U_0}{p}$

Обозначим суммарный ток в контуре за I(p). Тогда, так как сумма падений напряжения на каждом элементе равна нулю, получим следующее выражение:

$$\frac{E}{p}(1 - e^{-p\tau}) = (R + \frac{1}{pC})I(p) + \frac{U_0}{p}$$

Откуда выразим ток I:

$$I(p) = \frac{\frac{E}{p}(1 - e^{-p\tau}) + U_0/p}{R + \frac{1}{pC}}$$

После простых алгебраических преобразований получим:

$$I(p) = \frac{\frac{E}{R}}{p + \frac{1}{CR}} - \frac{\frac{E}{R}e^{-p\tau}}{p + \frac{1}{CR}} - \frac{\frac{U_0}{R}}{p + \frac{1}{CR}}$$

Используем свойства преобразования Лапласа:

$$rac{lpha}{p(p+lpha)}$$
 $ightharpoonup (1-e^{-lpha t})\mathbb{1}(t)$
$$rac{1}{(p+lpha)}
ightharpoonup e^{-lpha t}\mathbb{1}(t)$$
 $e^{-p au}F(p)$ $ightharpoonup f(t- au)$, где $F(p)$ $ightharpoonup f(t)$

Произведем преобразование:

$$I(t) = (E - U_0) \frac{\mathbb{1}(t)}{R} \exp\left\{-\frac{t}{CR}\right\} - \frac{E}{R} \exp\left\{-\frac{t - \tau}{CR}\right\} \mathbb{1}(t - \tau)$$

Воспользуемся соотношением Uвых = I(t)R и окончательно получилим ответ: при воздействии прямоугольным импульсом $u_{\rm BX}(t)$ амплитуды E и длительностью τ , на выходе получаем

$$U(t) = (E - U_0)\mathbb{1}(t) \exp\left\{-\frac{t}{CR}\right\} - E \exp\left\{-\frac{t - \tau}{CR}\right\}\mathbb{1}(t - \tau)$$

График решения при $E=1, U_0=0.5, \tau=5$ изображен на рис. 2

Условие дифференцирования. Как нетрудно догадаться,

$$u_{\text{BX}} = u_C + u_R = \frac{q}{C} + IR$$

Продифференцируем это выражение:

$$\frac{\mathrm{d}u_{\scriptscriptstyle \mathrm{BX}}}{\mathrm{d}t} = \frac{1}{CR} \underbrace{IR}_{u_R \equiv u_{\scriptscriptstyle \mathrm{BMX}}} + \underbrace{\frac{\mathrm{d}I}{\mathrm{d}t}R}_{\frac{\mathrm{d}u_R}{\mathrm{d}t}}$$

Если будет выполнено условие

$$\left| \frac{\mathrm{d}u_R}{\mathrm{d}t} \right| \ll \left| \frac{1}{CR} u_R \right|$$

Рис. 2: Решение при $E=1, U_0=0.5, \tau=5$

Тогда будет видно, что цепочка осуществляет дифференцирование:

$$u_{\text{вых}} = CR \frac{\mathrm{d}u_{\text{вх}}}{\mathrm{d}t}$$