AS.280.347 CLASS 1.1

Course Introduction

- Course information
- Recall of previous topics
- NMES data
- Using R markdown and GitHub Classroom

Health Data Analysis Practicum (AS.280.347)

 Objective: to enable each student to enhance his/her quantitative, scientific reasoning and to achieve a functional standard in statistical data analysis using the R statistical language

Modular Organization:

- Module 1: Risk of smoking-caused disease (LC, CVD, etc), the contribution of smoking, and possible effect modification by sex and SES
- Module 2: Particulate air pollution and mortality in U.S. cities
- Module 3: Individual projects!

Health Data Analysis Practicum (AS.280.347)

Teams of 3-5 students for the first two projects

 You are strongly encouraged to work together in groups prior to meetings to develop your teamwork skills, in particular listening and teaching

Student evaluation based on:

- knowledge and skills in data analysis: quality of the project
- contribution to group: quality of group presentations; critiques by team members

Presentations:

- Group presentations for each of the first two projects
- Individual mini-presentations for final project

Health Data Analysis Practicum (AS.280.347)

Computation: Statistical software R

- Bring your laptop (with R installed) to each course meeting
- You will create all of your assignments using R markdown
- You are encouraged to complete online modules on the DataCamp platform to learn and improve your R skills

Version control/collaboration: GitHub

- GitHub is an online compendium of file repositories where people can share their work, work collaboratively with others, and easily use a version control system to track development of software and projects.
- We will share course materials through GitHub; you will collaborate in your teams using Guthub; you will turn in your work through GitHub

Class structure:

- We will usually start class by sharing YOUR work that has been done in the previous week
- We will ask you to turn in your work to us (over email) by Sunday night at midnight so we can prepare for Monday's class
- Everyone should be prepared to share their work and provide constructive feedback to their classmates each week

Communicating with instructors

If you need to email us about a course-related matter:

phbiostats@jhu.edu

- This account is accessed by <u>both</u> Dr. Jager and Dr. Taub.
- Emails to our individual accounts about a course-related matter will NOT receive a reply.
- If asking a question about code or other work for an assignment, please also copy Ruthe (rhuang16@jhu.edu) on your email as well.

Module 1: Smoking and risk of disease

- Question 1.1 (Q1.1): How does the risk of disease compare for smokers and otherwise similar non-smokers?
- Question 1.2 (Q1.2): Does the contribution of smoking to the risk of disease vary by sex or SES?
- To address each question, we want:
 - a data display (graph or table!)
 - a statistical analysis
- We will answer these questions using data from the National Medical Expenditures Survey (NMES)

NMES data

> head(nmes.data)

	id	totalexp	lc5	chd5	eversmk	current	former	packyears
1	20449	25951.58	1	0	0	NA	0	0
2	15534	378.33	0	0	1	1	0	3
3	9503	51.18	0	0	1	0	1	40
4	15024	1899.20	0	0	0	NA	0	0
5	17817	153.50	0	0	1	1	0	86
6	31716	270.00	0	0	0	NA	0	0

	yearsince	bmi	beltuse	educate	marital	poor	age	female
1	0	23.96408	2	4	1	1	78	1
2	0	26.68133	3	1	5	0	30	1
3	9	22.32027	3	4	1	0	72	1
4	0	25.06986	3	4	2	0	64	1
5	0	20.23634	3	1	1	0	59	1
6	0	22.19736	2	1	5	0	25	0

NMES data

- age: age in years
- female: 1=female, 0=male
- eversmk: 1=has ever been a smoker, 0=has never been a smoker
- current: 1=current smoker, 0=not current smoker
- former: 1=former smoker, 0=not former smoker, NA if eversmk=0
- packyears: reported packs per year of smoking (0 if eversmk = No
- yearsince: years since quitting smoking (0 if eversmk = No)
- totalexp: self-reported total medical expenditures for 1987
- Ic5: 1=Lung Cancer, Laryngeal Cancer or COPD, 0=none of these
- chd5: 1=CHD, Stroke, and other cancers (oral, esophageal, stomach, kidney and bladder), 0=none of these
- beltuse: 1=Rare, 2=Some, 3=Always/Almost always
- educate: 1=College grad, 2=Some college, 3=HS grad, 4=other
- marital: 1=Married, 2=widowed, 3=divorced, 4=separated, 5=never married
- poor: 1=Poor, 0=Not poor

Discussion questions: Recall...

- What do we mean by "cause"?
- What is confounding?
- What is effect modification?

Counterfactual definition of "causal effect" of "treatment"

Our definition of "cause":

- The difference between a population characteristic (e.g. mean) having given the treatment to everyone and the same population characteristic absent the treatment
- Potential for intervention to have either, if not both worlds

Counterfactual definition of "causal effect" of "treatment"

Our definition of "causal effect":

- The difference (or other comparison) between a population characteristic (e.g. mean, risk) having given the treatment to everyone and the same population characteristic absent the treatment
- Potential for intervention to have either, if not both worlds

In this case:

- Treatment = smoking
- Population characteristic = risk of disease
- We want to compare the risk of disease between two worlds where (1) everyone smokes and (2) no one smokes

Counterfactual data table

no one smokes

everyone smokes

Person	Treatment	Outcome (0)	Outcome (1)
	0 = doesn't smoke	0 = no disease	0 = no disease
	1 = smokes	1 = disease	1 = disease
1		0	1
2		1	1
3		0	0
4		0	1
5		0	0
6		0	1

Risk

1/6 = .17

4/6 = .67

Difference in risk = Risk (1) – Risk (0) = .67 - .17 = .5

Actual data table

no	n-sm	10	kei	rs
				_

smokers

Person	Treatment	Outcome (0)	Outcome (1)	
	0 = doesn't smoke	0 = no disease	0 = no disease	
	1 = smokes	1 = disease	1 = disease	
1	0	0	?	
2	0	1	?	
3	0	0	?	
4	1	?	1	
5	1	?	0	
6	1	?	1	

Risk

1/3 = .33

2/3 = .67

Difference in risk = Risk (1) – Risk (0) = .67 - .33 = .34

Confounding

When do we have **confounding** when studying the effect of an treatment Z (e.g., smoking) on an outcome variable Y (e.g., disease status)?

Confounding

When do we have **confounding** when studying the effect of an treatment Z (e.g., smoking) on an outcome variable Y (e.g., disease status)?

When we fail to compare **otherwise similar** units and, as a result, attribute to Z what is **actually caused by factors X** that differ between the Z=0 and Z=1 observations.

Assignment 1.1

- Create a data display with the NMES data to answer Q1.1:
 How does the risk of disease compare for smokers and otherwise similar non-smokers?
 - Work together in groups!
 - Submit your display in R markdown through GitHub by Sunday @ midnight
 - If you have trouble using GitHub, we will have a submission link available on Blackboard as well. By Assignment 1.2, we will REQUIRE all homework submissions to be through GitHub.
- Next week in class we will start with discussion/critiques of your displays.
 - Class brainstorming on ideas to improve these displays.