基板出荷検査における

業務効率化のご提案

Al Quest PBL_02

2021/10/30

アジェンダと検討プロセス

- 1 背景と対策
- 2 効果検証 (PoC)
- 3 AI導入と費用対効果
- 4 運用と保守対応
- 5 今後のアクション

アセスメント・ 要件定義 モデル開発・ 効果検証 本番開発・ 運用計画 本日のご提案 本番開発に向けた ご提案

> 本番開発・ 運用

エグゼクティブサマリー

コスト削減のため、

検品作業を効率化したい

(工数大・属人化が課題)

5か月程度の開発期間で、

出荷検査の不良品判定にAIを導入 (工数削減・属人化解消が目的)

効果検証 (PoC) の結果、

人の2回検査の判定精度を、 AIが1回で実現できる

	人 (2回)	AI (1回)	AI+人
不良品出荷台数	10台	10台	1台

※今回はさらに不良品出荷台数を削減するため、

AIと人の併用検査をご提案

導入効果と費用を比較した結果、

十分な費用対効果が見込める

(属人化解消の効果もあり)

導入効果

費用

年間: 1,492万円

(人件費:約5人月相当)

初年度:948万円

(次年度:68万円)

背景と対策

現状の課題を整理した上で、AI導入の目的を確認させていただきます。

問題と課題

問題

海外製の低価格な基板の輸入が増加しており、

価格対抗のため利益が減少

課題

基板の検品作業を効率化し、

コストを削減

目的と対策

目的

- ・検品作業の工数削減
- ・検品作業の属人化解消

※撮影条件真上に設置したズームカメラで撮影

改善効果の最も大きい**出荷検査**を対象とし、

「撮影※した基板画像から不良品を判定するAI」

を搭載したシステムを業務プロセスを組み込みます。

効果検証 (PoC)

PoCの実施内容をご確認いただき、 その結果をご報告いたします。

PoC概要

実施目的 AIによる不良品判定の精度を確認		AIによる不良品判定の精度を確認
評価方法		検査担当者の目視判定による不良品出荷台数と比較 ・不良品出荷台数:10台(許容上限は20台 ※全生産数の0.02%)
判定対象		異常ハンダ(角ハンダ、ブリッジ、芋ハンダ)を判定
利用データ	学習用	基板撮影画像: 290枚 ・異常ハンダ: 190枚 ・正常ハンダ: 100枚
検証用		基板撮影画像: 213枚 ・異常ハンダ: 106枚 ・正常ハンダ: 107枚

検証結果

	目視判定(2回)	AI判定(1回)
不良品出荷台数	10台	10台
良品廃棄台数	20台(10台×2回)	99台
判定時間	60秒(30秒×2回)	10秒(※)

※うち5秒は、撮影台への設置とシステムの操作時間

不良品出荷台数については、許容台数20台を下回り、

目視判定とAIが同じ結果となりました。

また参考として、良品廃棄台数が<u>約80台増加</u>しますが、 判定時間が<u>50秒短縮</u>することがわかりました。

結論

・PoCの結果を踏まえ、AIと目視判定の併用での導入をご提案いたします。

	目視判定(2回)	AI判定(1回)	AI+目視判定
不良品出荷台数	10台	10台	1台 👚
良品廃棄台数	20台	99台	109台
(判定時間)	60秒	10秒	40秒

良品廃棄台数が<u>10台増加</u>しますが、不良品出荷台数を<u>1台に削減</u>できます。

※判定時間はAI判定(1回)に比べ30秒増加しますが、目視判定(2回)よりは20秒短縮

また、目視判定を併用して実施することで、

イレギュラー時の対応も可能になるため、**判定品質も安定**します。

AI導入と費用対効果

AI導入による業務プロセスと、 実作業のフローをご確認いただき、 導入効果と費用を提示いたします。

導入前後の業務プロセス

※出荷検査以外のプロセスについては、 変更がないため割愛させていただきます。

検査数を約10万台/月として、1名あたりの工数を計算

作業フロー

Al 担当者

AI判定 システム

検査 担当者

金額は概算

導入効果

コスト削減		売上減少	
検査工数	4名×1.0人月(140h⇒0h) 2名×0.5人月(140h⇒70h)	良品廃棄台数	90台/月(20台⇒110台)
※年間人件費を300万円/人とする		※基板単価を1,000円とする	
年間合計	1,600万円	年間合計	-108万円
効果合計		1,	492万円

定性的な効果として、

不良品出荷台数の削減による**取引先からの信頼度向上**や、 検査工数削減による**従業員の満足度向上**が考えられます。

金額は概算

イニシャルコスト				ラン	ニングコスト		
AI判定 システム	カメラ購入	(耐震対応)	10万円 40万円		守オンサイト	パソコン 12h/7day	12万円
	バソコン・モ 設置・設定作	ニタ・ボタン購入 ■業	100万円 100万円	※ 1		システム 12h/7day	36万円
	システム開発	k J	250万円			AIモデル変更 ※ 2	約20万円
	AIモデル開発		200万円	※1 部品交換、訪問費用および カメラ、撮影台の運用・保守費用は別途請求			別途請求
導入支援	導入支援マニュアル作成・研修		100万円	※2 次年度以降、年1回のスポット対応を想定 (対応内容により金額に変動あり)		を想定	
コンサルティ	コンサルティング		100万円		(対心で合いより	並領に友勤のり)	
年間合計		900万円	年間名	含計	(初年度) (次年度)	48万円 68万円	
費田	費用合計 次年度以		Į Ž	948万円 効果1,492万円に			
吳 /刀			次年度以降		68万円	費用対効果	あり

運用と保守対応

AIモデルの更新、変更、障害時の対応方法について、 ご確認いただきます。

製造担当者の変更や加工器具の変更等により、はんだの形状が変化した場合、

判定精度が低下するため、**モデルの自動更新**を実施します。

当月の全検査の完了後

当月の良品判定の訂正記録より、

精度低下を自動検知

(YYYYMM.csvファイル)

検知日以降の非稼働日

現行モデル バックアップ

自動構築

AI判定結果の

訂正数(良品⇒不良品) をカウント

訂正後の当月データで再学習 (転移学習)

保守

回路図の変更等により、基板パターンが変化した場合、

判定ができなくなるため、**モデルの変更※**が必要です。

※別途有償でのご対応のため、ご相談ください。

また、自動更新後の新モデルによる障害(実行エラー等)が発生した場合、

バックアップした**直前のモデル(現行モデル)**に自動切換されます。

障害時 自動切換

今後のアクション

導入スケジュールをご確認いただき、 今後の展望について、活用案の一例を紹介いたします。

導入スケジュール

項目		1か月	2カ月	3か月	4か月	5か月	6か月~
AI判定システム構築 (撮影機材含む)	機器購入	1か月					
	設置・設定作業		1				番
	システム開発		2				運
	AIモデル開発		1				用
導入支援	マニュアル作成				1		本番運用開始
	研修					1	始

※ システム開発 : 原則非対面として、弊社環境にてシステムを開発(貴社へ納品)

AIモデル開発:システム開発と並行し、弊社環境にてAIモデルを開発(貴社へ納品)

研修: 構築したシステムを利用し、対面にて研修を実施

今後の展望

下記は一例です。

お気軽にご相談ください。

回路内異物・傷検出の自動化

生産量の自動最適化

出荷検査の完全自動化

本日のご提案

出荷検査の一部自動化

エグゼクティブサマリー

再掲

コスト削減のため、

検品作業を効率化したい

(工数大・属人化が課題)

5か月程度の開発期間で、

出荷検査の不良品判定にAIを導入 (工数削減・属人化解消が目的)

効果検証(PoC)の結果、

人の2回検査の判定精度を、 AIが1回で実現できる

	人 (2回)	AI (1回)	AI+人
不良品出荷台数	10台	10台	1台

※今回はさらに不良品出荷台数を削減するため、

AIと人の併用検査をご提案

導入効果と費用を比較した結果、

十分な費用対効果が見込める

(属人化解消の効果もあり)

導入効果

費用

年間: 1,492万円

(人件費:約5人月相当)

初年度:948万円

(次年度:68万円)

付録

効果検証(PoC)における、 不良品出荷台数、良品廃棄台数の 算出条件と根拠を提示いたします。

算出条件

生産台数における不良品数

⇒10万台のうち1000台(1%)

各判定精度	不良品判定率	良品判定率
目視判定(ヒアリング結果より)	90.00%	99.99% (ほぼ100%)
AI判定 (PoC結果より)	99.00%	99.90%

算出根拠

目視判定(2回)

		実際の製品		
		不良品	良品	
判定結果	不良品	900台	10台	
結果	良品	100台	98990台	

AI判定(1回)

		実際の製品		
		不良品	良品	
判定結果	不良品	990台	99台	
結果	良品	10台	98901台	

赤字:不良品出荷台数

青字合計: 良品廃棄台数

AI⇒目視判定

(AI判定)		実際の	D製品
		不良品	良品
判定結果	不良品	990台	99台
結果	良品	10台	98901台

