Math 310 Homework 6

Due Tuesday, October 30

- 28. (Childs, p.121, E2) Suppose R is a ring with no zero divisors, and S is a subring of R. Show that S has no zero divisors.
- 29. (Childs, p.121, E3) Suppose R is a ring and $a \in R$ is a zero divisor. If $b \in R$, show that the equation

$$ax = b$$

has either no solution or has more than one solution. (I.e., show that if it has a solution, then it has more than one solution.)

30. For p a prime number, let

$$\mathbb{Q}_p \, = \{a/b \, : \, a,b \in \mathbb{Z} \text{ where } p \nmid b\} \subseteq \mathbb{Q}$$

Show that \mathbb{Q}_p is a subring of \mathbb{Q} .

- 31. A Boolean ring is a ring R where for every $x \in R$ we have $x^2 = x$. Show that if R is a Boolean ring, then
 - (a) $r+r=0_R$ for every $r\in R$. (Hint: look at $(r+r)^2$.)
 - (b) R is commutative. (Hint: for $r, s \in R$, look at $(r+s)^2$.
- 32. Suppose that R is a set on which we have a notion of addition and multiplication, and we have shown that it satisfies every axiom for a ring except that addition is commutative. Show that then addition must be commutative! I.e., show that together all of the other properties of a ring imply that a + b = b + a.

(Hint: compute $(a + b)(1_R + 1_R)$, in two different ways, using the distributive law.)

For Math 310H, or extra credit:

H4. Let S be any set, and let $P(S) = \{A : A \subseteq S\}$ be the set of all subsets of S. Then define, for any $A, B \in P(S)$,

$$A+B=(A\setminus B)\cup (B\setminus A)$$
 and $AB=A\cap B$.

Show that, with this addition and multiplication, P(S) is a commutative ring.

Hint/instructions: verify the axioms by drawing pictures, i.e., Venn diagrams. For example, we have:

