分选任务结束后,可以更为细致的去往干扰对抗,信号内部参数去搞。

雷达有源干扰

高效宽频压制、相干可控欺骗、多样组合干扰的精准注入有源干扰, 对雷达造成探测误差、跟踪丢失、目标混淆、信号屏蔽等影响

Ø 18/1 €

美国等发达国家已经较为全面的掌握雷达<mark>复杂自适应抗干扰波形优化</mark> 设计技术,并在实际雷达装备中广泛应用

美军已经在F-22、F-35等最先进的隐身战斗机上实际应用复杂抗干扰波形,F-22装备的AN/APG-77雷达具有优秀的低截获性能。美国航天飞行器X-37B装配高性能 √抗干扰雷达系统进行下一代先进雷达试验,具有步进调频、多子带编码、脉内频率编码、脉间脉内联合频率编码等复杂调 √抗辨识制波形工作模式。

NEXCEN COROOP

Long trough search, trackens, and description problems require could be a search, trackens, and the search problems are search, trackens, and trackens, and

美国X-37B飞行器与复杂编码波形

我国 现状

- ◆ 清华大学
- ◆ 北京理工大学
 - •••••
- ◆ 西安电子科技大学
- ◆中电38所
- ◆ 频率捷变
- ◆ 重频捷变
- ◆ 相位编码
- ◆ 多维捷变

.....11 ⊘ Not • Q

雷达探测波形与对抗波形之间存在尖锐矛盾

挑战一

兼顾探测和对抗性能的对抗波形设计难

探测需求

■ 强相参 ■ 高増益 ■ 易处理

对抗

兼容难

对抗需求

■ 多维度 ■ 强持

■ 强捷变 ■ 多调制

探测

● 西电·王家东的屏幕共享

2 批注 ①

挑战二

捷变体制雷达相参积累难

捷变体制雷达运动补偿难

□ 西电·王家东的屏幕共享

€ 批注 ①

现有方法: 压缩感知

现有方法: 插值处理

现有方法:运动补偿

♣ ■ 西电·王家东的屏幕共享

面安笔子科技大學 XIDIAN UNIVERSITY

	传统波形	频率捷变	引入问题	
1	速度引入的包络走动	速度引入的包络走动	与传统一致	2
2	初相固定	初相随频率捷变	回波非相参	
3	多普勒固定	多普勒随频率捷变	回波非相参	

关键

■ 距离走动校正

■ 捷变初相补偿

○ 四個·王家东的屏幕共享

波形一: 半相参频率捷变波形

步骤二: 捷变初相补偿

步骤三:全脉冲积累

波形二: 全相参频率+重频联合捷变波形

波形三: 面向扩展目标的相参频率+重频联合捷变波形

 $S(f_r,t_l) = p(f_r) \cdot \exp(-j4\pi f_r v t_l/c) \exp(-j4\pi f_l v t_l/c)$ 扩展目标捷变波形回波信号模型

多散射点捷变初相耦合

- ① 耦合捷变初相补偿难
- ② 相参处理复杂度高

 $\delta(f_{i}) = \left|\sigma\left[j\phi(f_{i})\right]\right| \cdot \exp\left[j\phi(f_{i})\right]$

5 □ 西南·王家东的屏幕共享

波形三: 面向扩展目标的相参频率+重频联合捷变波形

波形四: 脉内频率编码优化波形设计——抗切片转发干扰

抗切片转发干扰原理

脉内频率编码波形

优势:通过脉内码片频率编码,可使干扰失配

难点:

- 需要同时兼顾探测和抗干扰性能
- 脉内<mark>稀疏频率</mark>编码会导致距离脉压产生栅瓣

⇒ □ 西电·王家东的屏幕共享

Q BUI (0)

1

第一步脉内频率优化设计

第二步非匹配滤波器设计

第三步干扰对消

西安尼子科技大學 XIDIAN UNIVERSITY

波形四: 脉内相位编码+非匹配滤波器设计——抗切片转发干扰

难点1: 切片采样位置具有随机性

难点2: 单一波形设计只能应对一种采样情况

第一步考虑所有干扰采样情况

第二步构建发射波形优化模型

第三步接收端非匹配滤波器设计

