Calculation of Super Keys and Candidate Keys

Sid	Name	Marks	Dept	Course
1	Harsh	88	CE	C1
2	Raj	77	EE	C2
3	Harsh	88	CE	C2
4	Raj	77	EE	C3
5	Kunj	80	IT	C2

Key = Sid

{Dept,Course} is Key? YES

{Name} is Key? No

{Name, Marks} is Key? No

{Sid, Name, Marks, Dept, Course} is Key? YES

For above relation: sid is a super key.

{sid, Name} is super key? YES {sid, Marks} is super key? YES

{sid,Marks,Name} is super key? YES {Name, Marks, Dept} is super key? NO {Marks,Course, Dept} is super key? YES

How many maximum number keys are possible for a above relation? Here there are five attributes, so maximum number of super keys are, $5C_1 + 5C_2 + 5C_3 + 5C_4 + 5C_5 = 5 + 10 + 10 + 5 + 1 = 31$

If there are 4 attributes, so maximum number of suoer keys are 15

In general, Maximum number of super keys for given relation with n attributes are 2ⁿ-1

Example: Find Super keys in a given relation

A	В	С	D
1	1	5	1
2	1	7	1
3	1	7	1
4	2	7	1
5	2	5	1
6	2	5	2

Answer:

Super key = A, AB, AC, AD, ABC, ACD, ABD, ABCD

Example: Calculate Candidate Key for the given relation

A	В	С
1	1	1
2	1	2
3	2	1
4	2	2

Answer:

Superkey = A, AB, AC, ABC, BC

Candidate key = Whose proper subset is not super key.

Example 1: $S1 = \{1,2,3\}$ and $S2 = \{1,2\}$

Then $S2 \subseteq S1$

and $S2 \subset S1$

IF S2 \subseteq S1 and S1 $\not\subseteq$ S2 THEN S2 \subset S1

 \subseteq = Subset

 \subset = Proper Subset

Example 2: $S1 = \{1,2,3\}$ and $S2 = \{1,2,3\}$

Then $S2 \subseteq S1$ and $S2 \not\subset S1$

	Super Key	Candidate Key
A	✓	✓
AB	✓	X
AC	✓	X
ABC	✓	X
ВС	✓	✓

The subset of AB will be $\{A\}$, $\{B\}$

Hence Candidate keys are A and BC

Key Point: Every Candidate key is a Super key. But the reverse is not always true.

Example:

R(A, B, C) and A is a Candidate Key. Calculate number of super keys in the relation? **Answer:**

Super key = A, AB, AC, ABC

Example:

R(A, B, C) and AC is a Candidate Key. Calculate number of super keys in the relation? **Answer:**

Super key = AC, ACB

Example:

R(A, B, C, D) and A and D are Candidate Key. Calculate number of super keys in the relation? **Answer:**

Super key = AB, AD, BC, CD

Finding number of Candidate keys in a relation:

Example: R(A, B, C, D, E, F) $F = \{AB --> C, C --> DE, E --> F, D --> A, C --> B\}$ Calculate Candidate Key. **Answer: Find Super keys:** 1) $(ABCDEF) + = \{A, B, C, D, E, F\}$ To find candidate keys, Try to discard attributes from ABCDEF. Check for first dependency which is AB --> C, we can discard C Hence, (ABDEF)+ = {A, B, C, D, E, F} Try to discard attributes from ABDEF, we discard D because AB --> C, C --> D hence AB --> D Hence (ABEF)+ = {A, B, C, D, E, F} Try to discard attributes from ABEF, we discard E Hence (ABF)+ = {A, B, C, D, E, F} Try to discard attributes from ABF, we discard F Hence (AB)+ = {A, B, C, D, E, F} Try to discard attributes from AB. we can't discard anything Check AB is Candidate key or not? Proper Subset of AB are {A} and {B} Find $A+=\{A\}$ $B + = \{B\}$

Note: If prime attributes are present on R.H.S. of FD then there are more candidates key.

For above scenario, A and B are prime attributes and they are on RHS of FD hence there are more Candidate keys are there.

Here Candidate key is AB and FD D --> A is there so by psudotransitivity property,

Here A and B are not Super key. Hence, **AB** is a candidate key

A in AB will be replaced with D. Hence it will become DB. Still DB is not a Candidate key. We need to prove it.

DB is super key, but need to calculate for Candidate key.

```
Check DB is Candidate key or not?

Proper Subset of DB are {D} and {B}

Find D+ = {DA} DA is not super key.

B+ = {B} B is not super key.

Hence DB is a Candidate key.
```

Hence prime attributes are {A, B, D}

Here prime attributes are A and B

Here Candidate key is AB and FD C --> B is there so by psudotransitivity property,

B in AB will be replaced with C. Hence it will become AC. Still AC is not a Candidate key. We need to prove it.

```
Check AC is Candidate key or not?

Proper subset of AC are {A} and {C}

Find A+ = {A}

C+ = {C,D,E,F,A,B}

AC is not a Candidate Key.
```

But C is a Super key, Hence C is a Candidate Key.

Hence prime attributes are {A, B, D,C}

Check D is present on RHS of FD.

D in DB is replaced with C. Hence, CB or BC

Check BC is Candidate key or not?

Proper subset of BC are {B} and {C}

 $B+=\{B\}$

 $C+ = \{C,D,E,F,A,B\}$ BC is not a Candidate Key.

But C is a Super key, Hence C is a Candidate Key.

Check C is present on RHS of FD.

AB --> C hence C will be replaced with AB. And AB is already a CK.

Hence, CK for above relation are, {AB, DB, C}