CSE 440: Introduction to HCI

User Interface Design, Prototyping, and Evaluation

Lecture 06:

Human Performance

James Fogarty

Daniel Epstein

Brad Jacobson

King Xia

Tuesday/Thursday

10:30 to 11:50

MOR 234

Hall of Fame or Shame?

Add/Update Shipping Information We found an error while verifying your shipping address. We've marked the problem in red for you. Update the address book of Required information is marked in GREEN CAPS. HELP for questions about shipping. NICKNAME: Please assign a "nickname" for the person you're shipping to. You may change or delete this information at any time. DOUGLAS MIDDLE INITIAL: FIRST NAME: LAST NAME: ADDRESS: 245 SAN JOSE RD (International use only) LOS GATOS CITY: California STATE/PROVINCE: Includes APO and FPO. Use "Other" if country is not USA or Canada. ZIP/POSTAL 95333 CODE: COUNTRY: Select a country SHIPPING In the U.S.: HELP International: HELP METHOD: Standard UPS Canada Canada Post (2 business days plus (4-10 business days)

Hall of Shame!

Based on a major retailer

In study, people could not get past this screen, why?

Washington

Hall of Shame!

Based on a major retailer

In study, people could not get past this screen, why?

Color deficiency

Can not distinguish between red and green

How to fix?

Redundant cues

Today

Human Performance

Visual System

Model Human Processor

Fitts's Law

Gestalt Principles

Contextual Inquiry Review

Friday: 6 Tasks Informed by Contextual Inquiry

These are Examples of What?

Popsicle-stick bridge

$$x = x0 + v0t + \frac{1}{2} at2$$

ACT-R

Goffman's Negotiated Approach

Norman's Execution-Evaluation Cycle

Models

We have said models describe phenomena, isolating components and allowing a closer look

Today is a closer look at modeling humans

Capture essential pieces

Model should have what it needs but no more

Thus avoid underfitting or overfitting model

Allow us to measure

Collect data, put in model, compare model terms

Allow us to predict

The better the model, the better the predictions

Creating a Model

How would you go about creating a model?

Creating a Model

How would you go about creating a model?

One approach:

Observe, Collect Data, Find Patterns,

Draw Analogies, Devise Model,

Test Fit to Data, Test Predictions, Revise

Fundamentally an inductive process

Today

Some example models of human performance

Visual System Biological Model

Model Human Processor Higher-Level Model

Fitts's Law Model by Analogy

Gestalt Principles Predict Interpretation

Human Visual System

Light passes through lens, focused on retina

Blind Spot?

Blind Spot

```
abcdefgh
Ijkimmop
qrstuvwx
```


Visible Spectrum

Covered with light-sensitive receptors

Rods (120 million)

Sensitive to broad spectrum of light

Sensitive to small amounts of light

Cannot discriminate between colors

Sense intensity or shades of gray

Primarily for night vision & perceiving movement

Cones (6 million)

Used to sense color

Center of retina has most of the ... ??

Center of retina has most of the cones

Allows for high acuity of objects focused at center

Center of retina has most of the cones

Allows for high acuity of objects focused at center

Edge of retina is dominated by ... ??

Center of retina has most of the cones

Allows for high acuity of objects focused at center

Edge of retina is dominated by rods

Allows detecting motion of threats in periphery

Center of retina has most of the cones

Allows for high acuity of objects focused at center

Edge of retina is dominated by rods

Allows detecting motion of threats in periphery

What does that mean for you?

Center of retina has most of the cones

Allows for high acuity of objects focused at center

Edge of retina is dominated by rods

Allows detecting motion of threats in periphery

What does that mean for you?

Peripheral movement is easily distracting

Color Perception via Cones

Photopigments used to sense color

3 types: blue, green, "red" (actually yellow)

Each sensitive to different band of spectrum

Ratio of neural activity stimulation for the three types of gives us a continuous perception of color

Color Sensitivity

Distribution of Photopigments

Not distributed evenly

Mainly reds (64%), Very few blues (4%)
Insensitivity to short wavelengths (i.e., blue)

No blue cones in retina center

Fixation on small blue object yields "disappearance"

Lens yellows with age, absorbs short wavelengths

Sensitivity to blue is reduced even further

Color Sensitivity & Image Detection

Most sensitive to center of spectrum

To be perceived as the same, blues and reds must be brighter than greens and yellows

Brightness determined mainly by red and green

Y = 0.3 Red + 0.59 Green + 0.11 Blue

Shapes detected by finding edges

We use brightness and color difference

Implication

Blue edges and shapes are hard

Color Sensitivity & Image Detection

Most sensitive to center of spectrum

To be perceived as the same, blues and reds must be brighter than greens and yellows

Brightness determined mainly by red and green

Y = 0.3 Red + 0.59 Green + 0.11 Blue

Shapes detected by finding edges

We use brightness and color difference

Implication

Blue edges and shapes are hard

Focus

Different wavelengths of light focused at different distances behind eye's lens

Constant refocusing causes fatigue

Saturated colors (i.e., pure colors) require more focusing than desaturated (i.e., pastels)

Focus

Different wavelengths of light focused at different distances behind eye's lens

Constant refocusing causes fatigue

Saturated colors (i.e., pure colors) require more focusing than desaturated (i.e., pastels)

The Falklands Society

This hurts, why?

Color Deficiency

Trouble discriminating colors

Affects about 9% of population

Two main types

Different photopigment response most common

Reduces capability to discern small color differences

Red-Green deficiency is best known

Lack of either green or red photopigment, cannot discriminate colors dependent on red and green

Also known as color blindness

Red-Green Deficiency Test

The Model Human Processor

Developed by Card, Moran, & Newell (1983)

Based on empirical data

Summarizing human behavior in a manner easy to consume and act upon

Same book that named human computer interaction

The Model Human Processor

University of Washington

Basics of Model Human Processor

Sometimes serial, sometimes parallel

Serial in action and parallel in recognition

Pressing key in response to light

Driving, reading signs, hearing all simultaneously

Parameters

Processors have cycle time, approximately 100-200ms Memories have capacity, decay time, and type

A Working Memory Experiment

BMCIACSEI

BM CIA CSE I

IBM CIA CSE

Memory

Working memory (also known as short-term)

```
Small capacity (7 ± 2 "chunks")
```

6174591765 vs. (617) 459-1765

IBMCIACSE vs. IBM CIA CSE

Rapid access (~ 70ms) and decay (~200 ms)

Pass to LTM after a few seconds of continued storage

Long-term memory

Huge (if not "unlimited")

Slower access time (~100 ms) with little decay

Activation Experiment

Volunteer

Activation Experiment

Volunteer

Start saying colors you see in list of words

When slide comes up, as fast as you can

There will be three columns of words

Say "done" when finished

Everyone else time how long it takes

red green blue

yellow yellow red

blue blue blue

green yellow red

red green green

University of Washington

Activation Experiment

Do it again

Say "done" when finished

ivdolftcsfwaxncudgtzjdcvlxngytmkbhxbtscftobhfecnhdesfwa

uhths

dalcrd

Washington

cnofgt

Activation Experiment

Do it again

Say "done" when finished

red red green

blue yellow red

green green green

yellow blue blue

blue yellow yellow

University of Washington

Model Human Processor Operation

Recognize-Act Cycle of the Cognitive Processor

On each cycle, contents in working memory initiate actions associatively linked in long-term memory Actions modify the contents of working memory

Discrimination Principle

Retrieval is determined by candidates that exist in memory relative to retrieval cues

Interference created by strongly activated chunks

See also Freudian slips

Perceptual Causality

Perceptual Causality

Stimuli that occur within one cycle of the perceptual processor fuse into a single concept

Requirement

If you want to create the perception of causality, then you need to be sufficiently responsive

Caution

Two stimuli intended to be distinct can fuse if the first event appears to cause the other

Fitts's Law (1954)

Models time to acquire targets in aimed movement

Reaching for a control in a cockpit

Moving across a dashboard

Pulling defective items from a conveyor belt

Clicking on icons using a mouse

Very powerful, widely used

Holds for many circumstances (e.g., under water)

Allows for comparison among different experiments

Used both to measure and to predict

Fitts's Law (1954)

James's use of 's is correct, but others may say Fitts' Law

Models time to acquire targets in aimed movement

Reaching for a control in a cockpit

Moving across a dashboard

Pulling defective items from a conveyor belt

Clicking on icons using a mouse

Very powerful, widely used

Holds for many circumstances (e.g., under water)

Allows for comparison among different experiments

Used both to measure and to predict

Reciprocal Point-Select Task

Closed Loop versus Open Loop

What is closed loop motion?

What is open loop motion?

Closed Loop versus Open Loop

What is closed loop motion?

Rapid aimed movements with feedback correction

Fitts's law models this

What is open loop motion?

Ballistic movements without feedback correction

Example: Throwing a dart

See Schmidt's Law (1979)

Model by Analogy

Analogy to Information Transmission Shannon and Weaver, 1959

Model by Analogy

The Interface

Analogy to Information Transmission Shannon and Weaver, 1959

Fitts's Law

 $MT = a + b \log 2(A / W + 1)$

What kind of equation does this remind you of?

Fitts's Law

$$MT = a + b \log 2(A / W + 1)$$

What kind of equation does this remind you of?

$$y = mx + b$$

$$MT = a + bx$$
, where $x = log2(A / W + 1)$

x is called the Index of Difficulty (ID)

As "A" goes up, ID goes up

As "W" goes up, ID goes down

Index of Difficulty (ID)

log2(A/W+1)

Fitts's Law claims that the time to acquire a target increases linearly with the log of the ratio of the movement distance (A) to target width (W)

Why is it significant that it is a ratio?

Index of Difficulty (ID)

log2(A/W+1)

Fitts's Law claims that the time to acquire a target increases linearly with the log of the ratio of the movement distance (A) to target width (W)

Why is it significant that it is a ratio?

Units of A and W don't matter

Allows comparison across experiments

Index of Difficulty (ID)

log2(A/W+1)

Fitts's Law claims that the time to acquire a target increases linearly with the log of the ratio of the movement distance (A) to target width (W)

ID units typically in "bits"

Because of association with information capacity and somewhat arbitrary use of base-2 logarithm

Index of Performance (IP)

MT = a + b log2(A / W + 1)b is slope

1/b is called Index of Performance (IP)

If MT is in seconds, IP is in bits/second

Also called "throughput" or "bandwidth"

Consistent with analogy of the interaction as an information channel from human to target

A Fitts's Law Experiment

"Beating" Fitts's law

It is the law, right?

$$MT = a + b \log_2(A / W + 1)$$

So how can we reduce movement time?

Reduce A

Increase W

Fitts's Law Examples

Which will be faster on average?

Pop-up Linear Menu

Today
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday

Pop-up Pie Menu

Pie Menus in Use

The Sims

Rainbow 6

Maya

Fitts's Law Examples

Which will be faster on average?

Pop-up Linear Menu

Today
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday

Pop-up Pie Menu

What about adaptive menus?

Fitts's Law in Windowing

Windows 95: Missed by a pixel

Windows XP: Good to the last drop

Macintosh Menu

Fitts's Law in MS Office 2007

Larger, labeled controls can be clicked more quickly

Mini toolbar is close to the cursor

Magic Corner:
Office Button in the upper-left corner

Bubble Cursor

Grossman and Balakrishnan, 2005

Bubble Cursor

Grossman and Balakrishnan, 2005

Bubble Cursor with Prefab

Dixon et al, 2012

Bubble Cursor with Prefab

Dixon et al, 2012

Fitts's Law, Edge Targets, and Touch

Fitts's Law, Edge Targets, and Touch

Avrahami finds edge targets are actually slower with touch devices, at same physical location

Are people border cautious?

Fitts's Law Related Techniques

Put targets closer together

Make targets bigger

Make cursor bigger

Area cursors

Bubble cursor

Use impenetrable edges

Fitts's Law Related Techniques

Gravity Fields

Pointer gets close, gets "sucked in" to target

Sticky Icons

When within target, pointer "sticks"

Constrained Motion

Snapping, holding Shift to limit degrees of movement

Target Prediction

Determine likely target, move it nearer or expand it

Fitts's Law and Keyboard Layout

$$MT = a + b \log_2 \left(\frac{D_{ij}}{W_j} + 1 \right),$$

$$t = \sum_{i=1}^{27} \sum_{j=1}^{27} \frac{P_{ij}}{IP} \left[log_2 \left(\frac{D_{ij}}{W_j} + 1 \right) \right],$$

Zhai et. al (2002) pose stylus keyboard layout as an optimization of all key pairs, weighted by language frequency

Hooke's Keyboard

Optimizes a system of springs

Metropolis Keyboard

Random walk minimizing scoring function

Considering Multiple Space Keys

FITALY Keyboard

Textware Solutions

Z	V	С	Н	w	К
F	ı	Т	A	L	Υ
		N	E		
G	D	0	R	s	В
Q	J	U	М	Р	Х

OPTI Keyboard

MacKenzie and Zhang 1999

Considering Multiple Space Keys

FITALY Keyboard

OPTI Keyboard

Textware Solutions

MacKenzie and Zhang 1999

Z	V	С	н	W	K
F	ı	Т	A	L	Υ
		N	E		
G	D	0	R	S	В
Q	J	U	М	Р	Х

Correct choice of space key becomes important Requires planning head to be optimal

ATOMIK Keyboard

Optimized keyboard, adjusted for early letters in upper left and later letters in lower right

Using Motor Ability in Design

Pointing

Dragging

List Selection

Gajos et al 2007

Interface Generation As Optimization

Estimated task completion time

Manufacturer Interface

Font Character Spacing Text Effect	s					
Type, Style and Size						
Font	Style	Size				
Arial	▲ Regular	8 📤				
Arial Black	≡ Italic	9 🗏				
Comic Sans MS	Bold	10				
Courier New	Bold Italic	11				
Franklin Gothic Medium	▼	12 🔻				
Underline style (non	Underline style (none) ▼					
Strikethrough: Shadow: Small Caps: Double Strikethrough: Outline: All Caps: Superscript: Emboss: Hidden: Subscript: Engrave:						
Preview						
Times New Roman						
Ok Cancel						

Person with Cerebral Palsy

Person with Muscular Dystrophy

Interface Generation As Optimization

In a study with 11 participants with diverse motor impairments:

Consistently faster using generated interfaces (26%)

Fewer errors using generated interfaces (73% fewer)

Strongly preferred generated interfaces

Gestalt Psychology

Described loosely in the context of this lecture and associated work, not a real definition

Perception is neither bottom-up nor top-down, rather both inform the other as a whole

Gestalt Psychology

You can still see the dog...

Gestalt Psychology

You can still see the dog...

Spinning Wheel

Follow the red dots vs follow the yellow dots

Blind Spot Interpolation

```
X
```


Proximity

Objects close to each other form a group

Proximity

Using Lies in Research

By Nate Bolt • March 8, 2011

While it might be an uncomfortable topic, uncovering the lies behind a product or interface can be one of the most effective ways to turn ailing projects around.

Read More

Considerations for Mobile Design (Part 2): Dimensions

By David Leggett • March 1, 2011

In part two of this series, David helps readers adapt their design regimes to the (typically) small screens of mobile devices. Using responsive design, our experiences adapt to a variety of conditions.

Read More

A Simple, Usable Review

By Paul Seys • February 24, 2011

In this detailed review,
Paul Seys describes an
up-and-coming UX title
that's jam-packed with
lessons for designers
both new and
established. Follow along
to learn how author Giles
Colborne's teaches his
readers the essence of
great design.

Read More

Proximity

Similarity

Objects that are similar form a group

Similarity

Proximity and Similarity

Proximity and Similarity

Closure

Even incomplete objects are perceived as whole

Increases regularity of stimuli

Closure

The Sims

Rainbow 6

Symmetry

Objects are perceived as symmetrical and forming around a center point

If you fight symmetry, be sure you have a reason

Continuity

Objects are perceived as grouped when they align

Remain distinct even with overlap

Preferred over abrupt directional changes

not this

Continuity

Models from Different Perspectives

Some example models of human performance

Visual System

Model Human Processor

Fitts's Law

Gestalt Principles

Biological Model

Higher-Level Model

Model by Analogy

Predict Interpretation

CSE 440: Introduction to HCI

User Interface Design, Prototyping, and Evaluation

Lecture 06:

Human Performance

James Fogarty

Daniel Epstein

Brad Jacobson

King Xia

Tuesday/Thursday

10:30 to 11:50

MOR 234