Объединенный отчет по проверке гипотез с использованием случайных графов

Равиль Гареев Хамаганов Ильдар

30 мая 2025 г.

Содержание

Часть	І: Про	оверка гипотез с использованием случайных графов (Рас-	
пре	еделені	ия χ^2 и $\chi)$	2
0.1	Описа	ние кода	2
	0.1.1	Используемые инструменты	2
	0.1.2	UML-диаграмма класса GraphAnalyzer	2
	0.1.3	Реализованные компоненты	3
0.2	Описа	ние экспериментов	4
	0.2.1	Эксперимент 1: Зависимость характеристик от параметра ν	4
	0.2.2	Эксперимент 2: Зависимость характеристик от параметров гра-	
		фа и размера выборки	5
	0.2.3	Эксперимент 3: Проверка гипотез с критической областью	6
Uэсть	ΤΤ. Δτ	пализ графовых признаков для классификации распреде-	
лен		ализ графовых признаков для классификации распредс-	8
0.3		ание экспериментов	8
0.0	0.3.1	Извлечение признаков	8
	0.3.2	Анализ важности признаков	8
	0.3.3	Классификация и метрики качества	8
	0.0.0	Twiceon principles in the recipient of t	O
Часть	III: Π_I	ооверка гипотез для распределений $\mathbf{Stable}(lpha=1)$ и $\mathbf{Normal}(0)$	0, 1) 1 0
0.4	4 Настройка окружения и код		10
0.5	Эксперимент 1: зависимость от параметров графа		
0.6	Экспе	римент 2: зависимость от параметров графа и размера выборки	11
0.7	Экспе	римент 3: критические области и мощность	12
0.8	Эксперимент 4: подбор параметров		

Часть I: Проверка гипотез с использованием случайных графов (Распределения χ^2 и χ)(Гареев Р.Р.)

Введение

В работе исследуется применение случайных графов (KNN-графов и дистанционных графов) для проверки гипотез согласия. Цель — определить, насколько характеристики графов позволяют различать выборки из двух распределений: χ^2 (гипотеза H_0) и χ (гипотеза H_1).

0.1 Описание кода

0.1.1 Используемые инструменты

- Python 3.10+: Базовый язык разработки с строгой типизацией
- Библиотеки:
 - numpy: Векторизованные вычисления и работа с массивами
 - scipy.stats: Генерация χ^2 и χ распределений
 - scikit-learn: Оптимизированное построение KNN-графов
 - networkx 3.0+: Топологический анализ и алгоритмы на графах
 - matplotlib/seaborn: Визуализация распределений характеристик
 - tqdm: Интерактивные прогресс-бары для длительных вычислений
- **Архитектура**: Модульная структура с разделением на генерацию данных, построение графов и анализ

0.1.2 UML-диаграмма класса GraphAnalyzer

```
GraphAnalyzer

- G: nx.Graph
- n: int

+ init(G: nx.Graph)
+ max_degree():: int
+ min_degree():: int
+ connected_components():: int
+ articulation_points():: int
+ count_triangles():: int
+ chromatic_number():: int
+ clique_number(d: float):: int
+ max_independent_set(exact: bool=False, warn_threshold: int=30):: int
+ dominating_number():: int
+ min_clique_cover():: int
```

Рис. 1: Диаграмма класса GraphAnalyzer с методами анализа

0.1.3 Реализованные компоненты

- Генераторы данных (distribution generators.py):
 - $-\chi^2$ -распределение: Адаптер для chi2.rvs() с параметрами:
 - * nu степени свободы
 - * n размер выборки
 - γ-распределение: Обертка для chi.rvs() с аналогичными параметрами

• Построители графов (build graph.py):

- KNN-граф:
 - 1. Поиск k+1 ближайших соседей через NearestNeighbors
 - 2. Фильтрация петель $(i \neq j)$
 - 3. Сохранение координат в атрибуте узлов
- Дистанционный граф:
 - 1. Полный перебор всех пар вершин
 - 2. Проверка условия $|x_i x_j| \le d$
- Анализатор графов (graph analyzer.py):
 - Расчёт степеней вершин: max_degree(), min_degree()
 - Компоненты связности: connected_components()
 - Топологический анализ: articulation_points(), count_triangles()
 - Раскраска графов: адаптивный алгоритм DSATUR в chromatic_number()
 - Клики: Алгоритм двух указателей для 1D в clique_number()
 - Оптимизационные задачи: независимые множества (max_independent_set()),
 доминирующие множества (dominating_number())
- Статистический анализ (hypothesis testing.py):
 - Критическая область: calculate_critical_region() на квантилях
 - Мощность теста: estimate_power() через сравнение с критическим значением
- Монте-Карло симулятор (monte carlo.py):
 - 1. Итеративная генерация $n_samples$ выборок для H_0 или H_1
 - 2. Динамическое построение графов (KNN/дистанционные)
 - 3. Гибкий выбор метрик через рефлексию (getattr())
 - 4. Поддержка аргументов метрик через metric_args

0.2 Описание экспериментов

0.2.1 Эксперимент 1: Зависимость характеристик от параметра ν

Цель: Исследовать, как характеристики графов (число треугольников для KNN, кликовое число для дистанционного) реагируют на изменение параметра ν в распределениях χ^2 и χ .

Рис. 2: Зависимость характеристик от ν (слева — KNN-граф, справа — дистанционный)

Ключевые наблюдения:

• KNN-граф (число треугольников):

- Минимальная чувствительность: различия между χ^2 и χ не превышают 0.4% для всех ν
- Стабильность: значения остаются в диапазоне 3012-3035 при любом ν

• Дистанционный граф (кликовое число):

- Катастрофическое различие: при $\nu=3$ значения для χ в 2.13 раза выше (113.2 vs 53.5)
- Парадоксальный рост: разрыв увеличивается с ростом ν (см. Табл. 1)
- При $\nu=20$: χ показывает более чем в 5 раз большее кликовое число (110 vs 20)

Статистика:

ν	$H_0^{ m DIST}$	$H_1^{ m DIST}$	Δ_{DIST} (%)	Отношение
3	53.5	113.3	+111.8%	2.12x
5	38.1	111.2	+191.9%	2.92x
7	31.9	110.1	+245.1%	3.45x
10	26.9	110.3	+309.7%	4.10x
12	24.8	109.6	+342.1%	4.42x
15	22.7	109.4	+381.9%	4.82x
20	20.3	110.2	+442.9%	5.43x

Таблица 1: Результаты для дистанционного графа ($\Delta = \frac{|H_1 - H_0|}{H_0} \times 100\%$)

Выводы:

• КNN-граф:

- Полностью неэффективен для различения распределений
- Число треугольников практически идентично для χ^2 и χ

• Дистанционный граф:

- Чрезвычайно чувствителен к типу распределения
- Эффективность растет с увеличением ν

0.2.2 Эксперимент 2: Зависимость характеристик от параметров графа и размера выборки

Цель: Исследовать влияние параметров графа (k для KNN, d для дистанционного) и размера выборки (n) на характеристики при фиксированных распределениях $\chi^2(\nu=5)$ и $\chi(\nu=5)$.

Результаты

• KNN-граф (число треугольников):

- Зависимость от k:
 - * Для H_0 : Рост от 1,038 (k=5) до 18,526 (k=20)
 - * Для H_1 : Рост от 1,040 (k=5) до 18,606 (k=20)
 - * Макс. разрыв: 80.7 треугольников (k = 20, 0.43%)
- Зависимость от n:
 - * Для H_0 : Рост от 1,595 (n=100) до 7,242 (n=500)
 - * Для H_1 : Рост от 1,591 (n=100) до 7,259 (n=500)
 - * Разрыв < 0.23% для всех n

• Дистанционный граф (кликовое число):

- Зависимость от d:
 - * Для H_0 : Рост от 31.5 (d=0.5) до 97.7 (d=2.0)
 - * Для H_1 : Рост от 92.7 (d = 0.5) до 260.4 (d = 2.0)

- * Отношение H_1/H_0 : от 2.94х (d=0.5) до 2.66х (d=2.0)
- Зависимость от n:
 - * Для H_0 : Рост от 57.2 (n=100) до 272.7 (n=500)
 - * Для H_1 : Рост от 20.7 (n=100) до 87.4 (n=500)
 - * Отношение H_0/H_1 : от 2.76х (n=100) до 3.12х (n=500)

Параметр	KNN $(\Delta_{max}, \%)$	DIST $(\Delta_{max}, \%)$	DIST (Отношение)
$k = 5 \rightarrow 20$	0.43	_	_
$d = 0.5 \to 2.0$	_	726.0%	$2.94x \rightarrow 2.66x$
$n = 100 \rightarrow 500$	0.23	377.1%	$2.76x \rightarrow 3.12x$

Таблица 2: Сводка результатов ($\Delta = \frac{|H_1 - H_0|}{H_0} \times 100\%$)

Ключевые выводы

• KNN-граф:

- Число треугольников растёт с k и n, но не различает H_0/H_1
- Максимальная разница: 0.43% при k=20

• Дистанционный граф:

- Кликовое число демонстрирует:
 - * Максимальную чувствительность при $d = 0.5 \; (\Delta = 194.4\%)$
 - * Стабильный рост различий с увеличением $n~(\Delta = 377.1\%)$
- Отношение H_0/H_1 сохраняется в диапазоне 2.66х—3.12х

d	$H_0^{ m DIST}$	$H_1^{ m DIST}$	Δ_{DIST} (%)	Отношение
0.5	31.5	92.7	+194.4%	2.94x
1.0	55.0	164.6	+199.3%	2.99x
1.5	76.2	222.2	+191.6%	2.92x
2.0	97.7	260.4	+166.5%	2.66x

Таблица 3: Зависимость от d для дистанционного графа (n=300)

0.2.3 Эксперимент 3: Проверка гипотез с критической областью

Цель: Оценить эффективность критериев для различения $\chi^2(\nu=5)$ и $\chi(\nu=5)$ при $\alpha=0.05$.

Метрика	KNN-граф	Дистанционный граф
Критическое значение	7,507.15	97.05
FPR (Ошибка I рода)	5.00%	5.00%
TPR (Мощность)	4.80%	100.00%
AUC-ROC	0.545	1.000

Таблица 4: Сравнение критериев (n = 500, k = 10, d = 1.0)

Анализ результатов

- KNN-граф (число треугольников):
 - Низкая мощность (4.8%): Менее 5% выборок H_1 попадают в критическую область
 - AUC 0.545: Незначительное улучшение над случайным угадыванием (0.5)
 - FPR строго соответствует уровню $\alpha = 0.05$
- Дистанционный граф (кликовое число):
 - Идеальная сепарация: AUC=1.0 и мощность=100%
 - Все выборки H_1 превышают критическое значение
 - Стабильный контроль ошибки І рода (ровно 5%)

Практические выводы

- Дистанционный граф с характеристикой "кликовое число" демонстрирует:
 - Абсолютную надежность при d=1.0
 - Эффективный контроль ошибок обоих типов
- КNN-граф требует:
 - Пересмотра используемой характеристики (число треугольников неинформативно)
 - Дополнительных исследований для поиска значимых метрик
- Оптимальная конфигурация: $d=1.0,\,n\geq 500$ гарантирует AUC=1.0

Заключение (Часть І)

- KNN-граф не подходит для проверки гипотез в текущей конфигурации.
- Дистанционный граф с характеристикой «кликовое число» показал идеальное разделение (AUC=1.0).
- Возможно, для KNN-графа стоит изучить другие характеристики.

Часть II: Анализ графовых признаков для классификации распределений (Гареев Р.Р.)

Введение

Цель исследования — оценить эффективность графовых признаков, построенных на выборках из распределений $\chi^2(5)$ и $\chi(5)$, для задачи бинарной классификации.

0.3 Описание экспериментов

0.3.1 Извлечение признаков

Для каждой выборки размера n строился дистанционный граф с порогом d=1.0 и вычислялись четыре признака.

0.3.2 Анализ важности признаков

При помощи Random Forest оценивалась важность признаков при n=25,100,500. Результаты приведены в таблице:

Признак	n = 25	n = 100	n = 500
count_triangles	0.49	0.45	0.45
${ m clique_number}$	0.34	0.39	0.39
\min_{degree}	0.00	0.01	0.05
$connected_components$	0.16	0.15	0.11

Таблица 5: Важность признаков при разных размерах выборки

Вывод: count_triangles и clique_number являются наиболее информативными.

0.3.3 Классификация и метрики качества

Эксперименты проводились для n=10,20,50,100,200,500 с классификаторами LogisticRegression, RandomForest и SVM. Оценивались Ассигасу, дисперсия Ассигасу, FPR, TPR, Precision и F1.

Рис. 3: Зависимость метрик качества от размера выборки

Выводы (Часть II)

- При $n \geq 20$ все алгоритмы достигают 100% Ассигасу и мощности, при этом FPR = 0.
- Для практических задач достаточно $n \approx 20\text{--}50$ для идеального разделения.
- RandomForest и SVM показали наилучшую стабильность при малых выборках.
- Наиболее информативные признаки: count_triangles и clique_number.

Часть III: Проверка гипотез для распределений $Stable(\alpha = 1)$ и Normal(0,1)(Xамаганов И. А.)

Введение

Целью данной части исследования было оценить, насколько топологические характеристики случайных графов позволяют различать выборки из двух распределений:

```
• H_0: Stable(\alpha = 1);
```

• H_1 : Normal(0, 1).

Использовались два типа графов:

```
KNN-граф: характеристика T^{knn} = \max \deg(G) (максимальная степень).
```

Дистанционный граф: характеристика $T^{\text{dist}} = \chi(G)$ (хроматическое число).

0.4 Настройка окружения и код

Импорт и автозагрузка

```
%load_ext autoreload
%autoreload 2
import sys, os
project_root = os.path.abspath(os.path.join(os.getcwd(),'..'))
sys.path.append(project_root)

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from tqdm import tqdm

from src.data_utils import sample_stable, sample_normal
from src.build_graph import build_knn_graph, build_distance_graph
from src.graph_analyzer import GraphAnalyzer
from src.monte_carlo import monte_carlo_simulation
from src.visualization import plot_distributions, plot_critical_region
```

Параметры экспериментов

- Размер выборки: n = 200.
- Число МС-итераций: $N_{\rm MC} = 500$.
- Параметры KNN-графа: $k \in \{3, 5, 7, 10, 12, 15, 20\}$.
- Параметры дистанционного графа: $d \in \{0.5, 1.0, 1.5, 2.0\}$.

0.5 Эксперимент 1: зависимость от параметров графа

Описание Для каждой из двух распределений (Stable, Normal) вычисляли

$$\overline{T}^{\mathrm{knn}}(k) = \mathbb{E}\big[\mathrm{max}\deg(G)\big], \quad \overline{T}^{\mathrm{dist}}(d) = \mathbb{E}\big[\chi(G)\big].$$

Рис. 4: Слева: $\overline{T}^{\text{knn}} = \Delta(G)$ vs k. Справа: $\overline{T}^{\text{dist}} = \chi(G)$ vs d.

Результаты

Выводы

- KNN-граф (T^{knn}): кривая почти горизонтальна, разрыв между Stable и Normal менее 1%, распределения перекрываются.
- Дистанционный граф ($T^{\rm dist}$): $\chi(G)$ растёт с d, и для Normal значения значительно выше (до $\sim 140~{
 m vs} \sim 103~{
 m при}~d=2$). Статистика хорошо разделяет гипотезы.

0.6 Эксперимент 2: зависимость от параметров графа и размера выборки

Описание Исследовали:

- 1. Зависимость $\overline{T}^{\mathrm{knn}}(k)$ и $\overline{T}^{\mathrm{dist}}(d)$ при n=200.
- 2. Зависимость при фиксированных k = 10, d = 1.0 от $n \in \{100, 200, 300, 500\}$.

Таблица 6: Отношение $\overline{T}^{H_1}/\overline{T}^{H_0}$

Параметр	KNN(k)	Dist (d)	Dist (n)
Минимум	$0.92 \times$	$1.47 \times$	$2.30 \times$
Максимум	$1.06 \times$	$2.80 \times$	$3.10 \times$

Сводные итоги

Выводы

- $\Delta(G)$ увеличивается с k, n, но соотношение H_1/H_0 остаётся близким (0.9–1.06).
- $\chi(G)$ показывает высокую чувствительность: отношение до $3 \times$ при росте n.

0.7 Эксперимент 3: критические области и мощность

Условия n = 500, k = 10, d = 1.0, уровень значимости $\alpha = 0.05$.

Таблица 7: Критические значения и характеристики теста

Граф	CV	FPR	TPR	AUC
KNN (Δ) Distance (χ)			4.8% 100.0%	

Результаты

Выводы

- Тест на $\Delta(G)$ практически не различает гипотезы (мощность уровень).
- Тест на $\chi(G)$ обеспечивает идеальное разделение (AUC=1, мощность=100%).

0.8 Эксперимент 4: подбор параметров

Подход Кросс-валидацией 5-fold искали параметры, максимизирующие AUC при n=100:

- KNN: $k \in \{1, 3, 5, 7, 10\}, k^* = 10, AUC0.996.$
- Distance: $d \in \{0.1, 0.5, 1.0, 1.5, 2.0\}, d^* = 0.1, AUC=1.000.$

Итоги и выводы

1. **KNN-граф:**

- Оптимальное $k^* = 10$.
- При n = 100, k = 10 AUC0.996, но требуется точная настройка.

2. Дистанционный граф:

- Оптимальное $d^* = 0.1$.
- AUC=1.000 без значительной зависимости от n.

3. Рекомендации:

• Для надёжного критерия использовать $\chi(G)$ дистанционного графа с d=0.1.

- Для KNN-графа рекомендован $k=10,\, n\geq 100$ при контроле стабильности.
- Возможны дальнейшие улучшения: новые признаки (центральность, диаметр) и комбинированные критерии.