Analysis I: Übung 9

Michel Heusser

November 24, 2012

1 Theorie

1.1 Parameterisierung einer Expliziten Kurve

Satz: Eine Kurve $\Gamma = \{(x,y)|y=f(x), x\in [a,b]\} = \{(r,\varphi)|r=g(\varphi), \varphi\in [c,d]\}$ die in explizite Form gegeben ist (in kartesische- oder Polarkordinaten) kann immer Parameterisiert werden indem man x(t)=t setzt und folglich y(t)=f(t) wird (bzw. $\varphi(t)=t$ und r(t)=g(t)) zur Form $\Gamma=\{(x(t)=t,y(t)=f(t))|t\in [a,b]\}=\{(r(t)=g(t),\varphi(t)=t|t\in [c,d])\}$

1.1.1 Beispiel

Parameterisiere die Kurve:

$$\Gamma = \{(x, y) | y = \ln(x), x \in (0, \infty)\}$$

$$\Gamma: t \to \left(\begin{array}{c} x(t) \\ y(t) \end{array} \right) = \left(\begin{array}{c} t \\ \ln(t) \end{array} \right), t \in (0, \infty)$$

1.1.2 Beispiel

Parameterisiere die Kurve:

$$\Gamma = \{(r, \varphi) | r = 2R\sin(\varphi), \ \varphi \in [0, \pi)\}$$

$$\Gamma: t \to \begin{pmatrix} r(t) \\ \varphi(t) \end{pmatrix} = \begin{pmatrix} 2R\sin(t) \\ t \end{pmatrix}, t \in [0, \pi)$$

Manchmal wird auch:
$$\Gamma: \varphi \to \begin{pmatrix} 2R\sin(\varphi) \\ \varphi \end{pmatrix}, \varphi \in [0,\pi)$$

1.2 Steigung einer Parameterisierten Kurve

<u>Satz</u>: Die Steigung m(t) einer nach t parameterisierten Kurve wird wie folgt berechnet:

$$m(t) = \frac{\dot{y}(t)}{\dot{x}(t)}$$

1.2.1 Beispiel

Finde die Steigung der Kurve: $\Gamma:t\to\left(\begin{array}{c}x(t)\\y(t)\end{array}\right)=\left(\begin{array}{c}t\\3\cos(t)\end{array}\right),t\in[0,\pi)$ am Punkt $(\frac{\pi}{4},\frac{1}{\sqrt{2}})$

Man sucht zuerst t_0 so dass $x(t_0) = \frac{\pi}{4}$ (oder $y(t_0) = \frac{1}{\sqrt{2}}$, es geht um das gleiche t_0). Wir finden $t_0 = \frac{\pi}{4}$.

Danach findet man
$$m(t_0) = \frac{\dot{y}(t_0)}{\dot{x}(t_0)} = \frac{-3\sin(t_0)}{1} = -3\frac{1}{\sqrt{2}}$$

1.3 Parameterdarstellung einer Tangente

Satz: Die Tangente T einer Kurve $\Gamma = \{(x(t), y(t)) | t \in [a, b]\}$ am Punkt $(x_0 = x(t_0), y_0 = y(t_0))$ hat die folgende Form:

$$T:t\to \left(\begin{array}{c}x_0\\y_0\end{array}\right)+t\cdot\vec{u},\quad t\in\mathbb{R}\qquad \vec{u}=\frac{1}{\sqrt{\dot{x}^2(t_0)+\dot{y}^2(t_0)}}\left(\begin{array}{c}\dot{x}(t_0)\\\dot{y}(t_0)\end{array}\right),$$

Bemerkung: Hier ist \vec{u} der normierte (und schon behandelte) Tangetialvektor

1.3.1 Beispiel

Finden sie die Tangente T im Punkt $(\frac{1}{2}, \sqrt{2})$ (kart. Koordinaten)

$$\Gamma: t \to \left(\begin{array}{c} x(t) \\ y(t) \end{array} \right) = \left(\begin{array}{c} 1/t \\ \sqrt{t} \end{array} \right), t \in (0, \infty)$$

Man sucht zuerst den ent. t_0 zum gesuchten Punkt. $x(t_0) = \frac{1}{2} \Rightarrow \frac{1}{t_0} = \frac{1}{2} \Rightarrow t_0 = 2$. Danach findet man den normierten Tangentialvektor \vec{u} :

$$\vec{u} = \frac{1}{\sqrt{\dot{x}^2(t_0) + \dot{y}^2(t_0)}} \left(\begin{array}{c} \dot{x}(t_0) \\ \dot{y}(t_0) \end{array} \right) = \frac{1}{\sqrt{(-\frac{1}{t_0^2})^2 + (\frac{1}{2\sqrt{t_0}})^2}} \left(\begin{array}{c} -\frac{1}{t_0^2} \\ \frac{1}{2\sqrt{t_0}} \end{array} \right) = \frac{1}{\sqrt{\frac{1}{8} + \frac{1}{8}}} \left(\begin{array}{c} -\frac{1}{4} \\ \frac{1}{2\sqrt{2}} \end{array} \right) = \left(\begin{array}{c} -\frac{1}{2} \\ \frac{1}{\sqrt{2}} \end{array} \right),$$

Es folgt dann:

$$T: t \to \begin{pmatrix} \frac{1}{2} \\ \sqrt{2} \end{pmatrix} + t \cdot \begin{pmatrix} -\frac{1}{2} \\ \frac{1}{\sqrt{2}} \end{pmatrix}, t \in \mathbb{R}$$

Mann könnte auch die Kurve Γ explizit darstellen und dann die bekannte Formel $t_{x_0}(x) = f'(x_0)(x-x_0)+f(x_0)$ aufstellen und parameterisieren (gleiche Resultat). Das Vorteilhafte an der parameterisierte Tangente, ist dass alle mögliche Richtungen möglich sind, inkl. Richtungen parallel zur y-Achse

1.4 Bogenlenge einer Kurve

<u>Definition</u>: Die **Bogenlänge** einer parameterisierten Kurve $\Gamma = \{(x(t), y(t)) | t \in [a, b]\}$ ist die Funktion s(t), die die Länge der Kurve Γ von t = a bis jedem t gibt. Sie wird wie folgt berechnet:

$$s(t) = \int_{a}^{t} \sqrt{\dot{x}^{2}(t') + \dot{y}^{2}(t')} dt'$$

Bemerkung: Weil wir eben von a bis t integrieren, brauchen wir eine Laufvariable die von a zu einem bestimmten "fixen" t integriert. Die nennen wir t'.

1.4.1 Beispiel:

Berechne die Bogenlenge der Kurve: $\Gamma: t \to \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} 1/t \\ \sqrt{t} \end{pmatrix}, t \in (1, \infty)$

$$s(t) = \int_{1}^{t} \sqrt{\dot{x}^{2}(t') + \dot{y}^{2}(t')} \, dt' = \int_{1}^{t} \sqrt{(-\frac{1}{t'^{2}})^{2} + (\frac{1}{2\sqrt{t'}})^{2}} \, dt' = \int_{1}^{t} \sqrt{\frac{1}{t'^{4}} + \frac{1}{4t'}} \, dt' = \dots$$

$$\Rightarrow s(t) = \dots$$

1.5 Parameterisierung nach der Bogenlänge

Satz: Eine parameterisierte Kurve $\Gamma = \{(x(t), y(t)) | t \in [a, b]\}$ kann **nach ihrer Bogenlänge** parameterisiert werden, indem man zuerst s(t) berechnet und dann man die Funktion invertiert, so dass man t(s) bekommt. Dieses t(s) kann man dann in die Parameterisierung nach t einsetzen zu $\Gamma = \{(x(t(s)), y(t(s)) | s \in [s(a), s(b)]\} = \{(x(s), y(s)) | s \in [c, d]\}$

1.5.1 Beispiel

Die Bogenlänge der Kurve
$$\Gamma: t \to \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} t \\ t^{\frac{3}{2}} \end{pmatrix}, t \in (-\frac{4}{9}, \infty)$$
 ist: $s(t) = \frac{8}{27}(1 + \frac{9}{4}t)^{\frac{3}{2}}$

Wir lösen jetzt nach t nach: $\Rightarrow t(s) = s^{\frac{2}{3}} - \frac{4}{9}$. Durch das Einsetzen in die Kurvenfunktion wir bekommen:

$$\Gamma:s\to \left(\begin{array}{c}x(t(s))\\y(t(s))\end{array}\right)=\left(\begin{array}{c}t(s)\\t(s)^{\frac{3}{2}}\end{array}\right)=\left(\begin{array}{c}s^{\frac{2}{3}}-\frac{4}{9}\\\left(s^{\frac{2}{3}}-\frac{4}{9}\right)^{\frac{3}{2}}\end{array}\right),s\in (0,\infty)$$

 Γ ist jetzt nach der Bogenlänge parameterisiert!

1.6 Krümmung und Krümmungsradius

<u>Definition</u>: Die Krümmung einer nach ihrer Bogenlänge parameterisierte Kurve $\Gamma = \{(x(s),y(s))|s\in[c,d]\}$ ist definiert als die Steigungsänderung, wenn man sich entlang der Kurve bewegen würde (deshalb Bogenlänge). Oder anders gesagt: $k(s):=\frac{\mathrm{d}\alpha(s)}{\mathrm{d}s}$ mit $\alpha(s)=\arctan(\frac{\dot{y}(s)}{\dot{x}(s)})$. Eingesetzt bekommt man:

$$k(s) = \frac{\ddot{y}\dot{x} - \dot{y}\ddot{x}}{\dot{x}^2 + \dot{y}^2}$$

<u>Satz</u>: Wenn eine Kurve **nicht nach der Bogenlänge** parameterisiert ist $(\Gamma = \{(x(t), y(t)) | t \in [a, b]\})$. Dann berechnet man die Kurve nach der oberen Definition der Krümmung:

$$k(t) = \frac{\ddot{y}\dot{x} - \dot{y}\ddot{x}}{(\dot{x}^2 + \dot{y}^2)^{\frac{3}{2}}}$$

Beweis: Man berechnet die Bogenlänge s(t)=f(t) und daraus $t(s)=f^{-1}(s)$. Damit schreibt man k(s) als k(t(s)) und man benutzt die Definition von Krümmung und die Kettenregel $k(t(s)):=\frac{d\alpha}{ds}=\frac{d\alpha}{dt}\cdot\frac{dt}{ds}$. Um $\frac{ds}{dt}$ zu berechnen benutzt man die Definition von Bogenlänge und den Hauptsatz der Integralrechnung ("Die Umkehrung von Integrieren

ist Ableiten"):
$$\frac{ds}{dt} = \frac{d}{dt} \int_{a}^{t} \sqrt{\dot{x}^2(t') + \dot{y}^2(t')} dt' = \sqrt{\dot{x}^2(t) + \dot{y}^2(t)}$$

<u>Satz:</u> Der Krümmungsradius von einer parameterisierten Kurve Γ zum Punkt (x(t), y(t)) ist der Radius des am besten angepassten Kreises am Punkt (x(t), y(t)) und es wird wie folgt berechnet:

$$R(t) = \frac{1}{k(t)}$$
 wobei $k(t)$ die Krümmung ist.

Bemerkung: Der am besten angepasstsen Kreis am Punkt (x_0, y_0) berührt Tangential die Kurve Γ. Der Verbindungsvektor zwischen (x_0, y_0) und der Mittelpunkt des Kreises

liegt senkrecht auf die tangentiale Richtung der Kurve am gleichen Punkt.

2 Tipps zur Übung

2.1 Online-Teil

- Frage 1: Parameterisierung. Krümung aufstellen. Maximum finden.
- Frage 2: Gleich wie beim Schnittpunkt von zwei Kurven $y = f_1(x)$ und $y = f_2(x)$, man sucht den Punkt (x, y) der beide Gleichungen erfüllt. Dadurch kriegt man zwei Gleichungen $(y = f_1(x))$ und $y = f_2(x)$ und zwei Unbekannten (x) und y die man nach den Unbekannten lösen kann. Analog, sucht man den Punkt (in Polarkoordinaten) (r, ϕ) der in beiden Kurven ist, also beide Kurvegleichunen erfüllt. Man transformiert den Punkt in Kartesische Koordinate und findet die Tangente auf dem Punkt P (Theorie)
- Frage 3: Kurve parameterisieren und in kart. Koordinaten umwandeln.