New tools for designing and analysing MPC/FHE/ZK-friendly primitives

Clémence Bouvier

Seminar ALMASTY, LIP6 December 22nd, 2023

A need for new primitives

Protocols requiring new primitives:

- * MPC: Multiparty Computation
- * FHE: Fully Homomorphic Encryption
- ZK: Systems of Zero-Knowledge proofs Example: SNARKs, STARKs, Bulletproofs

Problem: Designing new symmetric primitives

And analyse their security!

Block ciphers

★ input: *n*-bit block

$$x \in \mathbb{F}_2^n$$

⋆ parameter: k-bit key

$$\kappa \in \mathbb{F}_2^k$$

★ output: *n*-bit block

$$y = E_{\kappa}(x) \in \mathbb{F}_2^n$$

 \star symmetry: E and E^{-1} use the same κ

(a) Block cipher

(b) Random permutation

Block ciphers

★ input: *n*-bit block

$$x \in \mathbb{F}_2^n$$

⋆ parameter: k-bit key

$$\kappa \in \mathbb{F}_2^k$$

★ output: *n*-bit block

$$y = E_{\kappa}(x) \in \mathbb{F}_2^n$$

 \star symmetry: E and E^{-1} use the same κ

A block cipher is a family of 2^k permutations of \mathbb{F}_2^n .

Iterated constructions

How to build an efficient block cipher?

A new context

By iterating a round function.

000

Comparison with the traditional case

Comparison with the traditional case

Traditional case

0000

$$y \leftarrow E(x)$$

* Optimized for: implementation in software/hardware

Arithmetization-oriented

$$y \leftarrow E(x)$$
 and $y == E(x)$

* Optimized for: integration within advanced protocols

Comparison with the traditional case

Traditional case

$$y \leftarrow E(x)$$

- * Optimized for: implementation in software/hardware
- * Alphabet size: \mathbb{F}_2^n , with $n \simeq 4.8$

Ex: Field of AES: \mathbb{F}_{2^n} where n=8

Arithmetization-oriented

$$y \leftarrow E(x)$$
 and $y == E(x)$

- * Optimized for: integration within advanced protocols
- * Alphabet size: \mathbb{F}_q , with $q \in \{2^n, p\}, p \simeq 2^n, n \geq 64$
 - Ex: Scalar Field of Curve BLS12-381: \mathbb{F}_n where

p = 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001

Traditional case

$$y \leftarrow E(x)$$

- * Optimized for: implementation in software/hardware
- * Alphabet size: \mathbb{F}_2^n , with $n \simeq 4.8$
- ⋆ Operations: logical gates/CPU instructions

Arithmetization-oriented

$$y \leftarrow E(x)$$
 and $y == E(x)$

- * Optimized for: integration within advanced protocols
- * Alphabet size: \mathbb{F}_q , with $q \in \{2^n, p\}, p \simeq 2^n, n \geq 64$
- ⋆ Operations: large finite-field arithmetic

Comparison with the traditional case

Cryptanalysis of MiMC and Chaghri

On MIMC

- * Study of the corresponding sparse univariate polynomials
- * Bounding the algebraic degree
- * Tracing maximum-weight exponents reaching the upper bound
- * Study of higher-order differential attacks

On Chaghri

- * Using the coefficient grouping strategy
- * Bounding the algebraic degree

The block cipher MiMC

- * Minimize the number of multiplications in \mathbb{F}_{2^n} .
- * Construction of MiMC₃ [Albrecht et al., AC16]:
 - ★ *n*-bit blocks (*n* odd \approx 129): $x \in \mathbb{F}_{2^n}$
 - ★ *n*-bit key: $k \in \mathbb{F}_{2^n}$
 - * decryption : replacing x^3 by x^s where $s = (2^{n+1} 1)/3$

The block cipher MiMC

- \star Minimize the number of multiplications in \mathbb{F}_{2^n} .
- * Construction of MiMC₃ [Albrecht et al., AC16]:
 - ★ *n*-bit blocks (*n* odd \approx 129): $x \in \mathbb{F}_{2^n}$
 - \star *n*-bit key: $k \in \mathbb{F}_{2^n}$
 - ★ decryption : replacing x^3 by x^s where $s = (2^{n+1} 1)/3$

$$r := \lceil n \log_3 2 \rceil$$
.

n	129	255	769	1025	
r	82	161	486	647	

Number of rounds for MiMC.

The block cipher MiMC

- * Minimize the number of multiplications in \mathbb{F}_{2^n} .
- * Construction of MiMC₃ [Albrecht et al., AC16]:
 - ★ *n*-bit blocks (*n* odd \approx 129): $x \in \mathbb{F}_{2^n}$
 - * *n*-bit key: $k \in \mathbb{F}_{2^n}$
 - \star decryption : replacing x^3 by x^s where $s = (2^{n+1} - 1)/3$

$$r := \lceil n \log_3 2 \rceil$$
.

n	129	255	769	1025
r	82	161	486	647

Number of rounds for MiMC.

Let $f: \mathbb{F}_2^n \to \mathbb{F}_2$, there is a unique multivariate polynomial in $\mathbb{F}_2[x_1, \dots x_n] / ((x_i^2 + x_i)_{1 \le i \le n})$:

$$f(x_1,...,x_n) = \sum_{u \in \mathbb{F}_2^n} a_u x^u$$
, where $a_u \in \mathbb{F}_2$, $x^u = \prod_{i=1}^n x_i^{u_i}$.

This is the **Algebraic Normal Form (ANF)** of f.

Definition

Algebraic degree of $f: \mathbb{F}_2^n \to \mathbb{F}_2$:

$$\deg^a(f) = \max \left\{ \operatorname{wt}(\underline{u}) : \underline{u} \in \mathbb{F}_2^n, a_{\underline{u}} \neq 0 \right\}.$$

Algebraic degree - 1st definition

Let $f: \mathbb{F}_2^n \to \mathbb{F}_2$, there is a unique multivariate polynomial in $\mathbb{F}_2[x_1, \dots x_n] / ((x_i^2 + x_i)_{1 \le i \le n})$:

$$f(x_1,...,x_n) = \sum_{u \in \mathbb{F}_2^n} a_u x^u$$
, where $a_u \in \mathbb{F}_2$, $x^u = \prod_{i=1}^n x_i^{u_i}$.

This is the **Algebraic Normal Form (ANF)** of f.

Definition

Algebraic degree of $f: \mathbb{F}_2^n \to \mathbb{F}_2$:

$$\deg^a(f) = \max \{ \operatorname{wt}(\underline{u}) : \underline{u} \in \mathbb{F}_2^n, a_{\underline{u}} \neq 0 \}$$
.

If
$$F: \mathbb{F}_2^n \to \mathbb{F}_2^m$$
, with $F(x) = (f_1(x), \dots f_m(x))$, then

$$\deg^a(F) = \max\{\deg^a(f_i), \ 1 \le i \le m\} \ .$$

Algebraic degree - 1st definition

Let $f: \mathbb{F}_2^n \to \mathbb{F}_2$, there is a unique multivariate polynomial in $\mathbb{F}_2[x_1, \dots x_n] / ((x_i^2 + x_i)_{1 \le i \le n})$:

$$f(x_1,...,x_n) = \sum_{u \in \mathbb{F}_2^n} a_u x^u$$
, where $a_u \in \mathbb{F}_2$, $x^u = \prod_{i=1}^n x_i^{u_i}$.

This is the **Algebraic Normal Form (ANF)** of f.

```
Example: ANF of x \mapsto x^3 in \mathbb{F}_{2^{11}}
```

```
 \begin{pmatrix} (x_0x_{10} + x_0 + x_1x_5 + x_1x_9 + x_2x_7 + x_2x_9 + x_2x_{10} + x_3x_4 + x_3x_5 + x_4x_8 + x_4x_9 + x_5x_{10} + x_6x_7 + x_6x_{10} + x_7x_8 + x_9x_{10}, \\ x_0x_1 + x_0x_5 + x_2x_5 + x_2x_6 + x_3x_9 + x_3x_{10} + x_4 + x_5x_9 + x_5x_9 + x_7x_8 + x_7x_9 + x_7 + x_{10}, \\ x_0x_1 + x_0x_2 + x_0x_{10} + x_1x_5 + x_1x_6 + x_1x_9 + x_2x_7 + x_3x_4 + x_3x_7 + x_4x_5 + x_4x_8 + x_4x_{10} + x_5x_{10} + x_6x_7 + x_6x_8 + x_6x_9 + x_7x_{10} + x_8 + x_9x_{10}, \\ x_0x_3 + x_0x_6 + x_0x_7 + x_1 + x_2x_5 + x_2x_6 + x_2x_8 + x_2x_{10} + x_3x_6 + x_3x_7 + x_3x_9 + x_4x_5 + x_4x_6 + x_4 + x_5x_8 + x_5x_{10} + x_6x_9 + x_7x_9 + x_7 + x_8x_9 + x_{10}, \\ x_0x_2 + x_0x_4 + x_1x_2 + x_1x_6 + x_1x_7 + x_2x_9 + x_2x_{10} + x_3x_5 + x_3x_6 + x_3x_7 + x_3x_9 + x_4x_5 + x_4x_9 + x_5 + x_6x_8 + x_7x_8 + x_8x_9 + x_8x_{10}, \\ x_0x_3 + x_0x_4 + x_1x_2 + x_1x_3 + x_2x_9 + x_2x_{10} + x_3x_9 + x_4x_5 + x_4x_9 + x_4x_9 + x_5 + x_6x_8 + x_7x_8 + x_8x_9 + x_8x_{10}, \\ x_0x_3 + x_0x_4 + x_1x_2 + x_1x_3 + x_2x_9 + x_2x_{10} + x_3x_9 + x_4x_5 + x_4x_9 + x_4x_9 + x_5x_9 + x_7x_9 + x_7x_{10} + x_9, \\ x_0x_3 + x_0x_6 + x_1x_4 + x_1x_7 + x_1x_8 + x_2 + x_3x_6 + x_3x_7 + x_3x_9 + x_4x_7 + x_4x_9 + x_4x_{10} + x_5x_6 + x_5x_7 + x_5 + x_6x_9 + x_7x_{10} + x_8x_{10} + x_8x_{10}, \\ x_0x_7 + x_0x_8 + x_1x_9 + x_1x_3 + x_1x_5 + x_2x_3 + x_2x_4 + x_3x_7 + x_3x_9 + x_4x_7 + x_4x_9 + x_4x_{10} + x_5x_6 + x_5x_7 + x_5 + x_5x_{10} + x_6 + x_7x_9 + x_8x_9 + x_9x_{10}, \\ x_0x_4 + x_0x_8 + x_1x_6 + x_1x_9 + x_1x_9 + x_2x_3 + x_2x_4 + x_3x_7 + x_3x_8 + x_4x_9 + x_4x_9 + x_4x_{10} + x_5x_6 + x_5x_8 + x_5x_{10} + x_6 + x_7x_9 + x_8x_9 + x_9x_{10}, \\ x_0x_1 + x_0x_9 + x_1x_4 + x_1x_7 + x_1x_9 + x_2x_3 + x_2x_4 + x_3x_7 + x_3x_8 + x_4x_9 + x_4x_{10} + x_5x_6 + x_5x_7 + x_5 + x_5x_{10} + x_6 + x_7x_9 + x_8x_9 + x_9x_{10}, \\ x_0x_1 + x_0x_9 + x_1x_9 + x_1x
```

Algebraic degree - 2nd definition

Let $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$. Then using the isomorphism $\mathbb{F}_2^n \simeq \mathbb{F}_{2^n}$, there is a unique univariate polynomial representation on \mathbb{F}_{2^n} of degree at most $2^n - 1$:

$$F(x) = \sum_{i=0}^{2^n-1} b_i x^i; b_i \in \mathbb{F}_{2^n}$$

Proposition

Algebraic degree of $F: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$:

$$\deg^a(F) = \max\{\operatorname{wt}(i), \ 0 \le i < 2^n, \ \operatorname{and} \ b_i \ne 0\}$$

Algebraic degree - 2nd definition

Let $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$. Then using the isomorphism $\mathbb{F}_2^n \simeq \mathbb{F}_{2^n}$, there is a unique univariate polynomial representation on \mathbb{F}_{2^n} of degree at most $2^n - 1$:

$$F(x) = \sum_{i=0}^{2^n-1} b_i x^i; b_i \in \mathbb{F}_{2^n}$$

Proposition

Algebraic degree of $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$:

Cryptanalysis of MiMC

$$\deg^{a}(F) = \max\{\operatorname{wt}(i), \ 0 \le i < 2^{n}, \ \operatorname{and} \ b_{i} \ne 0\}$$

If $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$ is a permutation, then

$$\mathsf{deg}^a(F) \leq n-1$$

Exploiting a low algebraic degree

For any affine subspace $\mathcal{V} \subset \mathbb{F}_2^n$ with dim $\mathcal{V} \geq \deg^a(F) + 1$, we have a 0-sum distinguisher:

$$\bigoplus_{x\in\mathcal{V}}F(x)=0.$$

Random permutation: degree = n - 1

Higher-Order differential attacks

Exploiting a low algebraic degree

For any affine subspace $\mathcal{V} \subset \mathbb{F}_2^n$ with dim $\mathcal{V} \geq \deg^a(F) + 1$, we have a 0-sum distinguisher:

$$\bigoplus_{x\in\mathcal{V}}F(x)=0.$$

Random permutation: degree = n-1

(a) Block cipher

(b) Random permutation

Polynomial representing r rounds of MIMC₃:

$$\mathcal{P}_{3,r}(x) = F_r \circ \dots F_1(x)$$
, where $F_i = (x + c_{i-1})^3$.

Upper bound [Eichlseder et al., AC20]:

$$\lceil r \log_2 3 \rceil$$
.

Aim: determine

$$B_3^r := \max_c \deg^a(\mathcal{P}_{3,r})$$
.

First Plateau

Polynomial representing r rounds of MIMC₃:

$$\mathcal{P}_{3,r}(x) = F_r \circ \dots F_1(x)$$
, where $F_i = (x + c_{i-1})^3$.

Upper bound [Eichlseder et al., AC20]:

$$\lceil r \log_2 3 \rceil$$
.

Aim: determine

$$B_3^r := \max_c \deg^a(\mathcal{P}_{3,r}) .$$

Example

* Round 1: $B_3^1 = 2$

$$\mathcal{P}_{3,1}(x)=x^3$$

$$3 = [11]_2$$

First Plateau

Polynomial representing r rounds of MIMC₃:

$$\mathcal{P}_{3,r}(x) = F_r \circ \dots F_1(x)$$
, where $F_i = (x + c_{i-1})^3$.

Upper bound [Eichlseder et al., AC20]:

$$\lceil r \log_2 3 \rceil$$
.

Aim: determine

$$B_3^r := \max_c \deg^a(\mathcal{P}_{3,r}) .$$

Example

* Round 1:
$$B_3^1 = 2$$

$$\mathcal{P}_{3,1}(x) = x^3$$

$$3 = [11]_2$$

* Round 2:
$$B_3^2 = 2$$

$$\mathcal{P}_{3,2}(x) = x^9 + c_1 x^6 + c_1^2 x^3 + c_1^3$$

$$9 = [1001]_2 \ 6 = [110]_2 \ 3 = [11]_2$$

Observed degree

Definition

There is a **plateau** between rounds r and r+1 whenever:

$$B_3^{r+1} = B_3^r$$
.

Proposition

If $d = 2^j - 1$, there is always **plateau** between rounds 1 and 2:

$$B_{\operatorname{d}}^2 = B_{\operatorname{d}}^1 \ .$$

Observed degree

Definition

There is a **plateau** between rounds r and r+1 whenever:

$$B_3^{r+1}=B_3^r.$$

Proposition

If $d = 2^j - 1$, there is always **plateau** between rounds 1 and 2:

 $B_d^2 = B_d^1 .$

Algebraic degree observed for n = 31.

Missing exponents

Proposition

Set of exponents that might appear in the polynomial:

$$\mathcal{E}_{3,r} = \{3 \times j \mod (2^n - 1) \text{ where } j \text{ is covered by } i, i \in \mathcal{E}_{3,r-1}\}$$

Missing exponents

Proposition

Set of exponents that might appear in the polynomial:

$$\mathcal{E}_{3,r} = \{3 \times j \mod (2^n - 1) \text{ where } j \text{ is covered by } i, i \in \mathcal{E}_{3,r-1}\}$$

Example

$$\mathcal{P}_{3,1}(x) = x^3$$
 so $\mathcal{E}_{3,1} = \{3\}$.

$$3 = [11]_2 \quad \xrightarrow{\text{cover}} \quad \begin{cases} [00]_2 = 0 & \xrightarrow{\times 3} & 0\\ [01]_2 = 1 & \xrightarrow{\times 3} & 3\\ [10]_2 = 2 & \xrightarrow{\times 3} & 6\\ [11]_2 = 3 & \xrightarrow{\times 3} & 9 \end{cases}$$

$$\mathcal{E}_{3,2} = \{0, 3, 6, 9\}$$
, indeed $\mathcal{P}_{3,2}(x) = x^9 + c_1 x^6 + c_1^2 x^3 + c_1^3$.

Missing exponents

Proposition

Set of exponents that might appear in the polynomial:

$$\mathcal{E}_{3,r} = \{3 \times j \mod (2^n - 1) \text{ where } j \text{ is covered by } i, i \in \mathcal{E}_{3,r-1}\}$$

Missing exponents: no exponent $2^{2k} - 1$

Proposition

$$\forall i \in \mathcal{E}_{3,r}, i \not\equiv 5,7 \mod 8$$

0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23
	25						
32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47
	49						
56	57	58	59	60	61	62	63

Representation exponents.

Missing exponents mod8.

Bounding the degree

Theorem

After r rounds of MIMC₃, the algebraic degree is

$$B_3^r \le 2 \times \lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \rceil$$

Bounding the degree

Theorem

After r rounds of MIMC₃, the algebraic degree is

$$B_3^r \leq 2 \times \lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \rceil$$

If
$$3^r < 2^n - 1$$
:

* A lower bound

$$B_3^r \ge \max\{\operatorname{wt}(3^i), i \le r\}$$

Upper bound reached for almost 16265 rounds

Tracing exponents

3

Round 1

Tracing exponents

Round 1 Round 2

Round 1 Round 2 Round 3

Tracing exponents

Round 1 Round 2 Round 3 Round 4

Tracing exponents

Round 1 Round 2 Round 3 Round 4

Tracing exponents

Round 1 Round 2 Round 3 Round 4

Round 1 Round 2 Round 3 Round 4

Maximum-weight exponents:

Let $k_r = |\log_2 3^r|$.

$$\forall \textit{r} \in \{4, \dots, 16265\} \backslash \mathcal{F} \text{ with } \mathcal{F} = \{465, 571, \dots\}:$$

 \star if $k_r = 1 \mod 2$,

$$\omega_{\mathbf{r}}=2^{k_{\mathbf{r}}}-5\in\mathcal{E}_{3,\mathbf{r}},$$

$$\star$$
 if $k_r = 0 \mod 2$,

$$\omega_r = 2^{k_r} - 7 \in \mathcal{E}_{3,r}.$$

Exact degree

Maximum-weight exponents:

Let
$$k_r = \lfloor \log_2 3^r \rfloor$$
.

$$\forall \textit{r} \in \{4, \dots, 16265\} \backslash \mathcal{F} \text{ with } \mathcal{F} = \{465, 571, \dots\}:$$

 \star if $k_r = 1 \mod 2$,

$$\omega_{\mathbf{r}}=2^{k_{\mathbf{r}}}-5\in\mathcal{E}_{3,\mathbf{r}},$$

 \star if $k_r = 0 \mod 2$,

$$\omega_r = 2^{k_r} - 7 \in \mathcal{E}_{3,r}.$$

Constructing exponents.

Exact degree

Maximum-weight exponents:

Let
$$k_r = \lfloor \log_2 3^r \rfloor$$
.

$$\forall \textit{r} \in \{4, \dots, 16265\} \backslash \mathcal{F} \text{ with } \mathcal{F} = \{465, 571, \dots\} :$$

 \star if $k_r = 1 \mod 2$.

$$\omega_r = 2^{k_r} - 5 \in \mathcal{E}_{3,r},$$

 \star if $k_r = 0 \mod 2$,

$$\omega_r = 2^{k_r} - 7 \in \mathcal{E}_{3,r}.$$

Constructing exponents.

In most cases, $\exists \ell$ s.t. $\omega_{r-\ell} \in \mathcal{E}_{3,r-\ell} \Rightarrow \omega_r \in \mathcal{E}_{3,r}$

Covered rounds

Idea of the proof:

 \star inductive proof: existence of "good" ℓ

Rounds for which we are able to exhibit a maximum-weight exponent.

Covered rounds

Idea of the proof:

- \star inductive proof: existence of "good" ℓ
- ⋆ MILP solver (PySCIPOpt)

Rounds for which we are able to exhibit a maximum-weight exponent.

Plateau

Proposition

There is a plateau when $k_r = \lfloor r \log_2 3 \rfloor = 1 \mod 2$ and $k_{r+1} = \lfloor (r+1) \log_2 3 \rfloor = 0 \mod 2$

Plateau

Proposition

There is a plateau when $k_r = |r \log_2 3| = 1 \mod 2$ and $k_{r+1} = |(r+1) \log_2 3| = 0 \mod 2$

If we have a plateau

$$B_3^r = B_3^{r+1} ,$$

Then the next one is

$$B_3^{r+4} = B_3^{r+5}$$

or

$$B_3^{r+5} = B_3^{r+6}$$
.

Music in MIMC₃

* Patterns in sequence $(\lfloor r \log_2 3 \rfloor)_{r>0}$: denominators of semiconvergents of

$$\log_2(3) \simeq 1.5849625$$

$$\mathfrak{D} = \{ \boxed{1}, \boxed{2}, 3, 5, \boxed{7}, \boxed{12}, 17, 29, 41, \boxed{53}, 94, 147, 200, 253, 306, \boxed{359}, \ldots \} \; ,$$

$$\log_2(3) \simeq \frac{a}{h} \Leftrightarrow 2^a \simeq 3^b$$

- * Music theory:
 - ⋆ perfect octave 2:1
 - * perfect fifth 3:2

- $2^{19} \simeq 3^{12} \quad \Leftrightarrow \quad 2^7 \simeq \left(\frac{3}{2}\right)^{12}$
 - \Rightarrow 7 octaves \sim 12 fifths

Higher-Order differential attacks

Exploiting a low algebraic degree

For any affine subspace $\mathcal{V} \subset \mathbb{F}_2^n$ with dim $\mathcal{V} \geq \deg^a(F) + 1$, we have a 0-sum distinguisher:

$$\bigoplus_{x\in\mathcal{V}}F(x)=0.$$

Random permutation: degree = n - 1

(a) Block cipher

(b) Random permutation

Comparison to previous work

First Bound: $\lceil r \log_2 3 \rceil$ Exact degree: $2 \times \lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \rceil$.

Comparison to previous work

First Bound: $\lceil r \log_2 3 \rceil$ Exact degree: $2 \times \lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \rceil$.

For n = 129, MIMC₃ = 82 rounds

ĺ	Rounds	Time	Data	Source
•	80/82	2 ¹²⁸ XOR	2 ¹²⁸	[EGL+20]
	<mark>81</mark> /82	$2^{128}{\rm XOR}$	2^{128}	New
	80/82	$2^{125}\mathrm{XOR}$	2^{125}	New

Secret-key distinguishers (n = 129)

From tweaked MIMC to CHAGHRI

From tweaked MIMC to CHAGHRI

Tweaked MIMC

where B is an \mathbb{F}_2 -linearized affine polynomial:

$$B(x) = c_0 + \sum_{i=1}^{w} c_i x^{2^{h_i}}$$

From tweaked MIMC to CHAGHRI

Tweaked MIMC

where B is an \mathbb{F}_2 -linearized affine polynomial:

$$B(x) = c_0 + \sum_{i=1}^{w} c_i x^{2^{h_i}}$$

One round of CHAGHRI

[Ashur, Mahzoun and Toprakhisar, CCS22] exponential increase

[Liu et al., EC23]

linear increase

Attack on CHAGHRI

[Ashur, Mahzoun and Toprakhisar, CCS22]

exponential increase

[Liu et al., EC23]

linear increase

	d	В
Original parameters	$2^{32} + 1$	$c_0 + c_1 x^8$
New parameters	$2^{32} + 1$	$c_0 + c_1 x + c_2 x^4 + x_3 x^{256}$

Coefficient Grouping strategy

Optimization problem

Set of exponents:

$$\mathcal{E}'_r = \left\{ \mathcal{M}_n(\mathbf{e}) \text{ s.t. } \mathbf{e} = \sum_{i=0}^{n-1} 2^i \gamma_i , 0 \le \gamma_i \le N_{r,i} \right\}$$

where

$$\mathcal{M}_n(\mathbf{e}) := egin{cases} 2^n - 1 & \text{if } 2^n - 1 | \mathbf{e}, \mathbf{e} \geq 2^n - 1 \ \mathbf{e} \mod (2^n - 1) & \text{else.} \end{cases}$$

Problem reduction:

Maximise wt
$$(\mathcal{M}_n(e))$$
, for $0 \le \gamma_i \le N_{r,i}$, $0 \le i \le n-1$

Coefficient Grouping strategy

Optimization problem

Set of exponents:

$$\mathcal{E}'_r = \left\{ \mathcal{M}_n(\mathbf{e}) \text{ s.t. } \mathbf{e} = \sum_{i=0}^{n-1} 2^i \gamma_i , 0 \le \gamma_i \le N_{r,i} \right\}$$

where

$$\mathcal{M}_n(e) := egin{cases} 2^n-1 & ext{if } 2^n-1|e,e\geq 2^n-1 \ e & ext{mod } (2^n-1) & ext{else.} \end{cases}$$

Problem reduction:

Maximise wt
$$(\mathcal{M}_n(e))$$
, for $0 \le \gamma_i \le N_{r,i}$, $0 \le i \le n-1$

New approach

- ★ influence of w on the algebraic degree
- * efficiently find exponents $(h_i)_{1 \le i \le w}$ to ensure the fastest growth of the algebraic degree
- \star efficiently upper bound the algebraic degree for any exponents $(h_i)_{1 \le i \le w}$

Necessary condition for exponential growth

$$B(x) = c_0 + \sum_{i=1}^{w} c_i x^{2^{h_i}}$$

- \star if w = 1: impossible to achieve exponential growth
- \star if w = 2: impossible to achieve exponential growth for 4 rounds or more
- \star if w = 3: impossible to achieve exponential growth for 7 rounds or more
- \star if w = 4: impossible to achieve exponential growth for 10 rounds or more

Necessary condition for exponential growth

$$B(x) = c_0 + \sum_{i=1}^{w} c_i x^{2^{h_i}}$$

- \star if w = 1: impossible to achieve exponential growth
- \star if w = 2: impossible to achieve exponential growth for 4 rounds or more
- \star if w = 3: impossible to achieve exponential growth for 7 rounds or more
- \star if w = 4: impossible to achieve exponential growth for 10 rounds or more

In particular

- * if n = 63 (CHAGHRI): we need $w \ge 3$
- \star if n = 129 (MIMC): we need w > 4

Good affine layers

When n = 63, and $d = 2^{32} + 1$, then we need $w \ge 3$.

$$B(x) = c_0 + c_1 x^{2^{h_1}} + c_2 x^{2^{h_2}} + c_3 x^{2^{h_3}}$$

h_2 (h_1, h_2, h_3)

- $2 \quad (0,2,9), (0,2,14), (0,2,20), (0,2,22), (0,2,24), (0,2,25), (0,2,26), (0,2,27), (0,2,38), (0,2,39), (0,2,40), \\ (0,2,41), (0,2,43), (0,2,45), (0,2,51), (0,2,56)$
- 3 (0,3,27), (0,3,39)
- $\{(0,4,10),(0,4,17),(0,4,26),(0,4,29),(0,4,38),(0,4,41),(0,4,50),(0,4,57)\}$
- (0,5,19), (0,5,24), (0,5,28), (0,5,40), (0,5,44), (0,5,49)
- (0,6,14),(0,6,15),(0,6,54),(0,6,55)
- 7 (0,7,22), (0,7,27), (0,7,34), (0,7,36), (0,7,43), (0,7,48)
- 8 (0,8,18), (0,8,26), (0,8,45), (0,8,53)
- 9 (0,9,26), (0,9,28), (0,9,34), (0,9,35), (0,9,37), (0,9,38), (0,9,44), (0,9,46),
- $10 \quad (0, 10, 23), (0, 10, 25), (0, 10, 27), (0, 10, 28), (0, 10, 29), (0, 10, 44), (0, 10, 45), (0, 10, 46), (0, 10, 48), (0, 10, 50)\\$
- 11 (0, 11, 29), (0, 11, 34), (0, 11, 36), (0, 11, 38), (0, 11, 40), (0, 11, 45)
- 12 (0, 12, 26), (0, 12, 30)

Good affine layers

When n = 63, and $d = 2^{32} + 1$, then we need w > 3.

$$B(x) = c_0 + c_1 x^{2^{h_1}} + c_2 x^{2^{h_2}} + c_3 x^{2^{h_3}}$$

- (0,4,57) (0,5,40), (0,5,40), (0,5,40), (0,5,40), (0,5,40), (0,5,40), (0,5,40), (0,5,40), (0,5,40), (0,5,50), (0,7,22), (0,7,27), (0,7,34), (0,8,18), (0,8,26), (0,8,45), (0,9,26), (0,9,28), (0,9,
- (0, 10, 23), (0, 10, 25), (0, 10, 27), (0, 10, 28), (0, 10, 29), (0, 10, 44), (0, 10, 45), (0, 10, 46), (0, 10, 48), (0, 10, 50)

Bounds on the algebraic degree

(a) CHAGHRI.

(b) MIMC.

A better understanding of the algebraic degree of MIMC

- * guarantee on the degree of MIMC₃
 - * tight upper bound on the algebraic degree, up to 16265 rounds

$$2 \times \lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \rceil$$
.

* minimal complexity for higher-order differential attack on MIMC₃

[Bouvier, Canteaut, and Perrin, DCC23] more details on ia.cr/2022/366

Take-Away

A better understanding of the algebraic degree of MIMC

- * guarantee on the degree of MIMC₃
 - * tight upper bound on the algebraic degree, up to 16265 rounds

$$2 \times \lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \rceil$$
.

* minimal complexity for higher-order differential attack on MIMC₃

[Bouvier, Canteaut, and Perrin, DCC23] more details on ia.cr/2022/366

Coefficient Grouping Strategy on CHAGHRI

- * to find good affine layer
- * to compute an upper bound on the algebraic degree

Design of Anemoi

- * Link between CCZ-equivalence and Arithmetization-Orientation
- * A new S-Box: the Flystel
- * A new family of ZK-friendly hash functions: Anemoi
- * A new mode: Jive

Our approach

Design of Anemoi

Need: verification using few multiplications.

Need: verification using few multiplications.

* First approach: evaluation using few multiplications, e.g. POSEIDON [Grassi et al., USENIX21]

$$y \leftarrow E(x)$$

 \sim *E*: low degree

Design of Anemoi 00000000000000000

 \sim E: low degree

Our approach

Need: verification using few multiplications.

* First approach: evaluation using few multiplications, e.g. POSEIDON [Grassi et al., USENIX21]

$$y \leftarrow E(x)$$

→ E: low degree

Design of Anemoi 00000000000000000

 \sim E: low degree

* First breakthrough: using inversion, e.g. Rescue [Aly et al., ToSC20]

$$y \leftarrow E(x)$$

 \sim *E*: high degree

$$x == E^{-1}(y)$$

 $\sim E^{-1}$: low degree

Our approach

Need: verification using few multiplications.

* First approach: evaluation using few multiplications, e.g. POSEIDON [Grassi et al., USENIX21]

$$y \leftarrow E(x)$$

 $y \leftarrow E(x)$ $\sim E$: low degree

Design of Anemoi 00000000000000000

 \sim E: low degree

* First breakthrough: using inversion, e.g. Rescue [Aly et al., ToSC20]

$$y \leftarrow E(x)$$

 $y \leftarrow E(x)$ $\sim E$: high degree

$$x == E^{-1}(y)$$
 $\sim E^{-1}$: low degree

* Our approach: using $(\underline{u}, \underline{v}) = \mathcal{L}(x, \underline{v})$, where \mathcal{L} is linear

$$y \leftarrow F(x)$$

 $y \leftarrow F(x)$ $\sim F$: high degree

 \sim G: low degree

Design of Anemoi

Inversion

$$\Gamma_{\mathcal{F}} = \{(x, \mathcal{F}(x)), x \in \mathbb{F}_q\} \quad \text{and} \quad \Gamma_{\mathcal{F}^{-1}} = \{(y, \mathcal{F}^{-1}(y)), y \in \mathbb{F}_q\}$$

Noting that

$$\Gamma_{F} = \left\{ \left(F^{-1}(y), y \right), y \in \mathbb{F}_{q} \right\} ,$$

then, we have:

$$\Gamma_{\mathbf{F}} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \Gamma_{\mathbf{F}^{-1}} .$$

CCZ-equivalence

Inversion

$$\Gamma_{F} = \{(x, F(x)), x \in \mathbb{F}_q\} \quad \text{and} \quad \Gamma_{F^{-1}} = \{(y, F^{-1}(y)), y \in \mathbb{F}_q\}$$

Noting that

$$\Gamma_{F} = \left\{ \left(F^{-1}(y), y \right), y \in \mathbb{F}_{q} \right\} ,$$

then, we have:

$$\Gamma_{\boldsymbol{\digamma}} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \Gamma_{\boldsymbol{\digamma}^{-1}} \ .$$

Definition [Carlet, Charpin and Zinoviev, DCC98]

 $F: \mathbb{F}_a \to \mathbb{F}_a$ and $G: \mathbb{F}_a \to \mathbb{F}_a$ are **CCZ-equivalent** if

$$\Gamma_F = \mathcal{L}(\Gamma_G) + c$$
, where \mathcal{L} is linear.

Design of Anemoi

If $F : \mathbb{F}_q \to \mathbb{F}_q$ and $G : \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent**. Then

 \star Differential properties are the same: $\delta_{\it F} = \delta_{\it G}$.

Differential uniformity

Maximum value of the DDT

$$\delta_F = \max_{a \neq 0, b} |\{x \in \mathbb{F}_q^m, F(x+a) - F(x) = b\}|$$

Advantages of CCZ-equivalence

If $F : \mathbb{F}_q \to \mathbb{F}_q$ and $G : \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent**. Then

 \star Differential properties are the same: $\delta_{\it F} = \delta_{\it G}$.

Differential uniformity

Maximum value of the DDT

$$\delta_F = \max_{a \neq 0, b} |\{x \in \mathbb{F}_q^m, F(x+a) - F(x) = b\}|$$

 \star Linear properties are the same: $\mathcal{W}_{\textit{F}} = \mathcal{W}_{\textit{G}}$.

Linearity

Maximum value of the LAT

$$\mathcal{W}_F = \max_{a,b \neq 0} \left| \sum_{x \in \mathbb{F}_{2^n}^m} (-1)^{a \cdot x + b \cdot F(x)} \right|$$

Advantages of CCZ-equivalence

If $F : \mathbb{F}_q \to \mathbb{F}_q$ and $G : \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent**. Then

* Verification is the same: if $y \leftarrow F(x)$, $v \leftarrow G(u)$ and $(u, v) = \mathcal{L}(x, y)$

$$y == F(x)? \iff v == G(u)?$$

Design of Anemoi

If $F: \mathbb{F}_q \to \mathbb{F}_q$ and $G: \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent**. Then

* Verification is the same: if $y \leftarrow F(x)$, $v \leftarrow G(u)$ and $(u, v) = \mathcal{L}(x, y)$

$$y == F(x)? \iff v == G(u)?$$

* The degree is **not preserved**.

Example

in \mathbb{F}_p where

p = 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001

if
$$F(x) = x^5$$
 then $F^{-1}(x) = x^{5^{-1}}$ where

 $5^{-1} = 0$ x2e5f0fbadd72321ce14a56699d73f002217f0e679998f19933333332ccccccd

Design of Anemoi

If $F: \mathbb{F}_q \to \mathbb{F}_q$ and $G: \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent**. Then

* Verification is the same: if $y \leftarrow F(x)$, $v \leftarrow G(u)$ and $(u, v) = \mathcal{L}(x, y)$

$$y == F(x)? \iff v == G(u)?$$

* The degree is **not preserved**.

Example

in \mathbb{F}_p where

p = 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001

if
$$F(x) = x^5$$
 then $F^{-1}(x) = x^{5^{-1}}$ where

 $5^{-1} = 0$ x2e5f0fbadd72321ce14a56699d73f002217f0e679998f19933333332ccccccd

The Flystel

Butterfly + Feistel \Rightarrow Flystel

A 3-round Feistel-network with

 $Q_{\gamma}: \mathbb{F}_q \to \mathbb{F}_q$ and $Q_{\delta}: \mathbb{F}_q \to \mathbb{F}_q$ two quadratic functions, and $E: \mathbb{F}_q \to \mathbb{F}_q$ a permutation

Open Flystel \mathcal{H} .

Low-Degree function

Design of Anemoi

Closed Flystel \mathcal{V} .

The Flystel

Butterfly + Feistel \Rightarrow Flystel

A 3-round Feistel-network with

 $Q_{\gamma}: \mathbb{F}_q \to \mathbb{F}_q$ and $Q_{\delta}: \mathbb{F}_q \to \mathbb{F}_q$ two quadratic functions, and $E: \mathbb{F}_q \to \mathbb{F}_q$ a permutation

Open Flystel \mathcal{H} .

Low-Degree function

Design of Anemoi

Closed Flystel \mathcal{V} .

$$\Gamma_{\mathcal{H}} = \mathcal{L}(\Gamma_{\mathcal{V}})$$
 s.t. $((x, y), (u, v)) = \mathcal{L}(((v, y), (x, u)))$

Advantage of CCZ-equivalence

★ High-Degree Evaluation.

High-Degree permutation

Open Flystel \mathcal{H} .

Example

if $E: x \mapsto x^5$ in \mathbb{F}_p where

p = 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfefffffff00000001

then $E^{-1}: x \mapsto x^{5^{-1}}$ where

Design of Anemoi

 $5^{-1} = 0x2e5f0fbadd72321ce14a56699d73f002$ 217f0e679998f19933333332ccccccd

Advantage of CCZ-equivalence

- ★ High-Degree Evaluation.
- ⋆ Low-Degree Verification.

$$(u, v) == \mathcal{H}(x, y) \Leftrightarrow (x, u) == \mathcal{V}(y, v)$$

Open Flystel \mathcal{H} .

Low-Degree function

Closed Flystel \mathcal{V} .

Flystel in \mathbb{F}_{2^n} , n odd

$$Q_{\gamma}(x) = \gamma + \beta x^3$$
, $Q_{\delta}(x) = \delta + \beta x^3$, and $E(x) = x^3$

Open Flystel₂.

Closed Flystel₂.

Properties of Flystel in \mathbb{F}_{2^n} , n odd

Introduced by [Perrin et al. 2016].

* Differential properties

$$\delta_{\mathcal{H}} = \delta_{\mathcal{V}} = 4$$

* Linear properties

$$W_{\mathcal{H}} = W_{\mathcal{V}} = 2^{n+1}$$

- * Algebraic degree
 - * Open Flystel₂: $deg_{\mathcal{H}} = n$
 - * Closed Flystel₂: $deg_{V} = 2$

Design of Anemoi

Flystel in \mathbb{F}_p

$$Q_{\gamma}(x) = \gamma + \beta x^2$$
, $Q_{\delta}(x) = \delta + \beta x^2$, and $E(x) = x^d$

usually d = 3 or 5.

Open Flystel,

Closed Flystel_p.

Design of Anemoi

* Differential properties

Flystel_p has a differential uniformity:

$$\delta_{\mathcal{H}} = \max_{a \neq 0, b} |\{x \in \mathbb{F}_{p}^{2}, \mathcal{H}(x+a) - \mathcal{H}(x) = b\}| \le \frac{d}{1}$$

Properties of Flystel in \mathbb{F}_p

* Differential properties

Flystel_p has a differential uniformity:

$$\delta_{\mathcal{H}} = \max_{a \neq 0, b} |\{x \in \mathbb{F}_p^2, \mathcal{H}(x+a) - \mathcal{H}(x) = b\}| \le \frac{d}{1}$$

Solving the open problem of finding an APN (Almost-Perfect Non-linear) permutation over \mathbb{F}_p^2

Properties of Flystel in \mathbb{F}_p

* Differential properties

Flystel_p has a differential uniformity:

$$\delta_{\mathcal{H}} = \max_{a \neq 0, b} |\{x \in \mathbb{F}_{\rho}^2, \mathcal{H}(x+a) - \mathcal{H}(x) = b\}| \le \frac{d}{1}$$

Solving the open problem of finding an APN (Almost-Perfect Non-linear) permutation over \mathbb{F}_p^2

* Linear properties

Conjecture:

$$\mathcal{W}_{\mathcal{H}} = \max_{a,b \neq 0} \left| \sum_{x \in \mathbb{F}_p^2} \exp \left(\frac{2\pi i (\langle a, x \rangle - \langle b, \mathcal{H}(x) \rangle)}{p} \right) \right| \leq p \log p ?$$

The internal state of Anemoi and its basic operations.

A Substitution-Permutation Network with:

(a) Internal state.

(b) The constant addition.

(c) The diffusion layer.

(d) The Pseudo-Hadamard Transform.

(e) The S-box layer.

Number of rounds

Anemoi
$$_{q,d,\ell} = \mathcal{M} \circ \mathsf{R}_{n_r-1} \circ ... \circ \mathsf{R}_0$$

* Choosing the number of rounds

$$n_r \ge \max \left\{ 8, \underbrace{\min(5, 1+\ell)}_{\text{security margin}} + 2 + \min \left\{ r \in \mathbb{N} \mid \left(\frac{4\ell r + \kappa_d}{2\ell r} \right)^2 \ge 2^s \right\} \right\}.$$

$$d$$
 (κ_d)
 3 (1)
 5 (2)
 7 (4)
 11 (9)

 $\ell = 1$
 21
 21
 20
 19

 $\ell = 2$
 14
 14
 13
 13

 $\ell = 3$
 12
 12
 12
 11

 $\ell = 4$
 12
 12
 11
 11

Number of rounds of Anemoi (s = 128).

Sponge construction

- ★ Hash function (random oracle):
 - ★ input: arbitrary length★ ouput: fixed length

Design of Anemoi 000000000000000000

★ Compression function (Merkle-tree):

* input: fixed length

★ output: (input length) /2

Dedicated mode: 2 words in 1

$$(x,y) \mapsto x + y + \mathbf{u} + \mathbf{v}$$
.

New Mode: Jive

Design of Anemoi 000000000000000000

★ Compression function (Merkle-tree):

* input: fixed length

★ output: (input length) /b

Dedicated mode: b words in 1

$$\mathtt{Jive}_b(P): egin{cases} (\mathbb{F}_q^m)^b & o \mathbb{F}_q^m \ (x_0,...,x_{b-1}) & \mapsto \sum_{i=0}^{b-1} \left(x_i + P_i(x_0,...,x_{b-1})
ight) \ . \end{cases}$$

Some Benchmarks

	$m (= 2\ell)$	RP^1	Poseidon ²	${\rm Griffin}^3$	Anemoi			$m (= 2\ell)$	RP	Poseidon	Griffin	Anemoi
R1CS	2	208	198	-	76	R1CS	2	240	216	-	95	
	4	224	232	112	96		4	264	264	110	120	
	6	216	264	-	120		6	288	315	-	150	
	8	256	296	176	160		8	384	363	162	200	
Plonk	2	312	380	-	191	Plonk	2	320	344	-	212	
	4	560	832	260	316		4	528	696	222	344	
	6	756	1344	-	460		6	768	1125	-	496	
	8	1152	1920	574	648		8	1280	1609	492	696	
AIR	2	156	300	-	126	AIR	2	200	360	-	210	
	4	168	348	168	168		4	220	440	220	280	
	6	162	396	-	216		6	240	540	-	360	
	8	192	456	264	288		8	320	640	360	480	

(a) when d = 3.

(b) when d = 5.

Constraint comparison for standard arithmetization, without optimization (s = 128).

¹Rescue [Aly et al., ToSC20]

²Poseidon [Grassi et al., USENIX21]

Take-Away

Anemoi: A new family of ZK-friendly hash functions

- * Identify a link between AO and CCZ-equivalence
- * Contributions of fundamental interest:

* New S-box: Flystel
* New mode: Jive

mode. of to

[Bouvier et al., CRYPTO23] more details on ia.cr/2022/840

Take-Away

Anemoi: A new family of ZK-friendly hash functions

- * Identify a link between AO and CCZ-equivalence
- * Contributions of fundamental interest:

* New S-box: Flystel
* New mode: Jive

[Bouvier et al., CRYPTO23] more details on ia.cr/2022/840

Related works

- * AnemoiJive₃ with TurboPlonK [Liu et al., 2022]
- * Arion [Roy, Steiner and Trevisani, 2023]
- * APN permutations over prime fields [Budaghyan and Pal, 2023]

Conclusions

- ★ New tools for the cryptanalysis
 - * a comprehensive understanding of the univariate representation of MiMC
 - * guarantees on the algebraic degree of MiMC
 - * Coefficient Grouping Strategy

Conclusions

- ★ New tools for the cryptanalysis
 - * a comprehensive understanding of the univariate representation of MiMC
 - * guarantees on the algebraic degree of MiMC
 - * Coefficient Grouping Strategy
- ★ New tools for designing primitives:
 - * Anemoi: a new family of ZK-friendly hash functions
 - * a link between CCZ-equivalence and AO
 - ★ more general contributions: Jive, Flystel

- * On the cryptanalysis
 - * solve conjectures to trace maximum-weight exponents
 - ★ generalization to other schemes
 - * find a univariate distinguisher

- * On the cryptanalysis
 - * solve conjectures to trace maximum-weight exponents
 - * generalization to other schemes
 - * find a univariate distinguisher

Missing exponents in the univariate representation

- * On the cryptanalysis
 - * solve conjectures to trace maximum-weight exponents
 - * generalization to other schemes
 - * find a univariate distinguisher

- * On the cryptanalysis
 - * solve conjectures to trace maximum-weight exponents
 - * generalization to other schemes
 - * find a univariate distinguisher

- * On the cryptanalysis
 - * solve conjectures to trace maximum-weight exponents
 - * generalization to other schemes
 - * find a univariate distinguisher

- * On the cryptanalysis
 - * solve conjectures to trace maximum-weight exponents
 - * generalization to other schemes
 - * find a univariate distinguisher

- * On the design
 - ★ a Flystel with more branches
 - * solve the conjecture for the linearity

- * On the cryptanalysis
 - * solve conjectures to trace maximum-weight exponents
 - * generalization to other schemes
 - * find a univariate distinguisher

- * On the design
 - ★ a Flystel with more branches
 - * solve the conjecture for the linearity

Conclusions

Anemoi

More benchmarks and Cryptanalysis

Comparison for Plonk (with optimizations)

	m	Constraints
Poseidon	3	110
POSEIDON	2	88
Reinforced Concrete	3	378
Reinforced Concrete	2	236
Rescue-Prime	3	252
Griffin	3	125
AnemoiJive	2	86 56

	m	Constraints
Poseidon	3	98
POSEIDON	2	82
Reinforced Concrete	3	267
Reinforced Concrete	2	174
Rescue-Prime	3	168
Griffin	3	111
AnemoiJive	2	64

(a) With 3 wires.

(b) With 4 wires.

Constraints comparison with an additional custom gate for x^{α} . (s = 128).

with an additional quadratic custom gate: 56 constraints

Native performance

Rescue-12	Rescue-8	Poseidon-12	Poseidon-8	Griffin-12	Griffin-8	Anemoi-8
$15.67~\mu s$	9.13 μ s	$5.87~\mu$ s	2.69 μ s	2.87 μ s	2.59 μ s	4.21 μ s

2-to-1 compression functions for \mathbb{F}_p with $p = 2^{64} - 2^{32} + 1$ (s = 128).

Rescue	Poseidon	Griffin	Anemoi			
206 μs	9.2 μ s	74.18 μ s	128.29 μ s			

For BLS12 - 381, Rescue, Poseidon, Anemoi with state size of 2, Griffin of 3 (s = 128).

Algebraic attacks: 2 modelings

Properties of Flystel in \mathbb{F}_p

* Linear properties

$$\mathcal{W}_{\mathcal{H}} = \max_{a,b \neq 0} \left| \sum_{x \in \mathbb{F}_p^2} exp\left(\frac{2\pi i (\langle a, x \rangle - \langle b, \mathcal{H}(x) \rangle)}{p} \right) \right| \leq p \log p ?$$

(a) For different d.

(b) For the smallest d.

Conjecture for the linearity.

Properties of Flystel in \mathbb{F}_p

* Linear properties

$$\mathcal{W}_{\mathcal{H}} = \max_{a,b \neq 0} \left| \sum_{x \in \mathbb{F}_p^2} exp\left(\frac{2\pi i(\langle a, x \rangle - \langle b, \mathcal{H}(x) \rangle)}{p}\right) \right| \leq p \log p ?$$

(a) when p = 11 and d = 3.

(b) when p = 13 and d = 5.

(c) when p = 17 and d = 3.

LAT of $Flystel_p$.

Open problems

on the Algebraic Degree

Missing exponents when $d = 2^j - 1$

★ For MIMC₃

$$i \mod 8 \not\in \{5,7\}$$
.

★ For MIMC₇

$$i \bmod 16 \not \in \{9,11,13,15\} \ .$$

* For MIMC₁₅ $i \mod 32 \notin \{17, 19, 21, 23, 25, 27, 29, 31\}$.

★ For MIMC₃₁

 $i \bmod 64 \not \in \{33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63\}\;.$

(a) For MIMC₃.

(c) For MIMC₁₅.

(d) *For* MIMC₃₁.

Proposition

Let $i \in \mathcal{E}_{d,r}$, where $d = 2^j - 1$. Then:

$$\forall \, i \in \mathcal{E}_{\mathsf{d},r}, \, \, i \, \, \mathsf{mod} \, \, 2^{j+1} \in \left\{0,1,\dots 2^{j}\right\} \, \, \, \mathsf{U} \, \, \left\{2^{j} + 2\gamma, \gamma = 1,2,\dots 2^{j-1} - 1\right\} \, .$$

Missing exponents when $d = 2^j + 1$

★ For MIMC₅

 $i \mod 4 \in \{0,1\}$.

★ For MIMC₉

 $i \bmod 8 \in \{0,1\}$.

★ For MIMC₁₇

 $i \bmod 16 \in \{0,1\}$.

★ For MIMC₃₃

 $i \mod 32 \in \{0,1\}$.

(a) For MIMC₅.

(c) For $MIMC_{17}$.

(d) For MIMC₃₃.

Proposition

Let $i \in \mathcal{E}_{\mathbf{d},r}$ where $\mathbf{d} = 2^j + 1$ and j > 1. Then:

$$\forall i \in \mathcal{E}_{d,r}, i \mod 2^j \in \{0,1\}$$
.

Missing exponents when $d = 2^j + 1$ (first rounds)

Corollary

Let $i \in \mathcal{E}_{d,r}$ where $d = 2^j + 1$ and j > 1. Then:

$$\begin{cases} i \bmod 2^{2j} \in \left\{ \{\gamma 2^j, (\gamma+1)2^j+1\}, \ \gamma=0, \dots r-1 \right\} & \text{if } r \leq 2^j \ , \\ i \bmod 2^j \in \{0,1\} & \text{if } r \geq 2^j \ . \end{cases}$$

Bounding the degree when $d = 2^j - 1$

Note that if $d = 2^j - 1$, then

$$2^i \mod d \equiv 2^{i \mod j}$$
.

Proposition

Let $d = 2^j - 1$, such that $j \ge 2$. Then,

$$B_{\mathbf{d}}^r \leq \lfloor r \log_2 \mathbf{d} \rfloor - (\lfloor r \log_2 \mathbf{d} \rfloor \mod j)$$
.

Note that if $2 \le j \le 7$, then

$$2^{\lfloor r \log_2 \frac{d}{\rfloor} + 1} - 2^j - 1 > \frac{d^r}{}.$$

Corollary

Let $d \in \{3, 7, 15, 31, 63, 127\}$. Then,

$$B_{\mathbf{d}}^{r} \leq \begin{cases} \left \lfloor r \log_{2} \mathbf{d} \right \rfloor - j & \text{if } \left \lfloor r \log_{2} \mathbf{d} \right \rfloor \bmod j = 0 \\ \left \lfloor r \log_{2} \mathbf{d} \right \rfloor - \left(\left \lfloor r \log_{2} \mathbf{d} \right \rfloor \bmod j \right) & \text{else }. \end{cases}$$

Bounding the degree when $d = 2^j - 1$

Particularity: Plateau when $\lfloor r \log_2 d \rfloor \mod j = j-1$ and $\lfloor (r+1) \log_2 d \rfloor \mod j = 0$.

Bound for MIMC₃

Bound for MIMC₇

Bounding the degree when $d = 2^j + 1$

Note that if $d = 2^j + 1$, then

$$2^{i} \bmod d \equiv \begin{cases} 2^{i \bmod 2j} & \text{if } i \equiv 0, \dots, j \bmod 2j \ , \\ d - 2^{(i \bmod 2j) - j} & \text{if } i \equiv 0, \dots, j \bmod 2j \ . \end{cases}$$

Proposition

Let $d = 2^j + 1$ s.t. j > 1. Then if r > 1:

$$B_d^r \leq \begin{cases} \lfloor r \log_2 d \rfloor - j + 1 & \text{if } \lfloor r \log_2 d \rfloor \bmod 2j \in \{0, j - 1, j + 1\} \\ \lfloor r \log_2 d \rfloor - j & \text{else }. \end{cases}$$

The bound can be refined on the first rounds!

Bounding the degree when $d = 2^j + 1$

Particularity: There is a gap in the first rounds.

Bound for MIMC₅

Bound for MIMCo

Sporadic Cases

Observation

Let $k_{3,r} = \lfloor r \log_2 3 \rfloor$. If $4 \le r \le 16265$, then

$$3^r > 2^{k_{3,r}} + 2^r$$
.

Observation

Let t be an integer s.t. $1 \le t \le 21$. Then

$$\forall x \in \mathbb{Z}/3^t\mathbb{Z}, \ \exists \varepsilon_2, \dots, \varepsilon_{2t+2} \in \{0,1\}, \ \text{s.t.} \ x = \sum_{j=2}^{2t+2} \varepsilon_j 4^j \ \text{mod} \ 3^t \ .$$

Is it true for any t?

Should we consider more ε_i for larger t?

More maximum-weight exponents

r	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
k _{3,r}	1	3	4	6	7	9	11	12	14	15	17	19	20	22	23	25	26	28
<i>b</i> _{3,<i>r</i>}	1	1	0	0	1	1	1	0	0	1	1	1	0	0	1	1	0	0

Study of $MiMC_3^{-1}$

Inverse: $F: x \mapsto x^s$, $s = (2^{n+1} - 1)/3 = [101..01]_2$

First plateau

Plateau between rounds 1 and 2, for $s = (2^{n+1} - 1)/3 = [101..01]_2$

* Round 1:

$$B_s^1 = \operatorname{wt}(s) = (n+1)/2$$

* Round 2:

$$B_s^2 = \max{\lbrace wt(is), \text{ for } i \leq s \rbrace} = (n+1)/2$$

Proposition

For $i \leq s$ such that $wt(i) \geq 2$:

$$\mathsf{wt}(is) \in \begin{cases} [\mathsf{wt}(i) - 1, (n-1)/2] & \text{if } wt(i) \equiv 2 \bmod 3 \\ [\mathsf{wt}(i), (n+1)/2] & \text{if } wt(i) \equiv 0, 1 \bmod 3 \end{cases}$$

Next Rounds

Proposition [Boura and Canteaut, IEEE13]

 $\forall i \in [1, n-1]$, if the algebraic degree of encryption is $\deg^a(F) < (n-1)/i$, then the algebraic degree of decryption is $\deg^a(F^{-1}) < n-i$

$$r_{n-i} \geq \left\lceil \frac{1}{\log_2 3} \left(2 \left\lceil \frac{1}{2} \left\lceil \frac{n-1}{i} \right\rceil \right\rceil + 1 \right) \right\rceil$$

In particular:

$$r_{n-2} \ge \left\lceil \frac{1}{\log_2 3} \left(2 \left\lceil \frac{n-1}{4} \right\rceil + 1 \right) \right\rceil$$

