

EXHIBIT A

Nanocrystalline Silicon Ink

Fabio Zurcher, Brent Ridley, Joerg Rockenberger
[redacted]

kovio

CONFIDENTIAL

nc-Si Project

Project Weekly Report

Big Picture Objective

- Formulate Ink of Hydrogen-Capped Silicon-Nanocrystals (nc-Si:H)

Key Results

- [REDACTED] Amines, Esters, Amides, Polyethers + Anionic Surfactants Good; All Solvents Can Yield "Stable, Milky" Dispersions of nc-Si:H
- Tested 16 Surfactants in Xylene With High-Power Ultrasound: 3 Show Almost Clear, Yellow "Solutions" Of nc-Si:H After 0.5 Micron Filtration.

NC-SI:H - DEVELOPMENT PLAN

STEP	PURPOSE	EXPERIMENTS	OS	Done
Solvent Screen	1. determine compatibility of nc-Si:H w/ various solvents	1. Ultrasonicate nc-Si:H powder in solvent; check oxidation w/ FTIR		
Surfactant Screen	1. Determine miscibility of surfactants w/ solvents	1. 1% surfactant solution; optical inspection		
Dispersion Screen	1. determine suitability of solvents + surfactants to disperse nc-Si:H	1. Ultrasonicate 1% surfactant solvent solution w/ 0.1% nc-Si:H; Optical inspection + filtration		
Ink Formulation	1. Formulate 5 wt% Si-NC:H ink	1. Refine formulation recipe varying agitation parameters, surfactant conc. etc.		

Project Is On Track:

- Dispersion Screen Is Finished
- [REDACTED]
- Evaluated 650+ Formulations so far...

nc-Si Project

CONFIDENTIAL

KOVIO

Risks Map

Issue	Mitigation Plan	Risk
Agglomerate Size Bigger than 20 nm	<ul style="list-style-type: none"> • Higher Ultrasound Power (smaller tip) • Longer Ultrasonication Times • Increased Surfactant Concentration • Apply Ultrasonication + Surfactant During Etch • Separate Larger Agglomerates By Centrifugation + Filtration • Use Multidentate Surfactants • Let's do photovoltaics... 	H
Very Low Mass Loading (< 0.1 %)	<ul style="list-style-type: none"> • Drop-Casting Instead Of Spin-Coating • Increased Surfactant Concentration • Higher Ultrasound Power (smaller tip) • Longer Ultrasonication Times • Apply Ultrasonication + Surfactant During Etch • Use Multidentate Surfactants 	H
Colloidal Stability	<ul style="list-style-type: none"> • Increased Surfactant Concentration • Use Multidentate Surfactants 	H
Inpurity Levels	<ul style="list-style-type: none"> • Keep Surfactant Concentration As Low As Possible • Choose Small-Molecule Surfactants • Oxygen-Free Surfactants 	H
Film Density	<ul style="list-style-type: none"> • Keep Surfactant Concentration As Low As Possible • Choose Small-Molecule Surfactants 	H

CONFIDENTIAL

Kovio

mc-Si Project

3rd Screen: Dispersion Of nc-Si:H

Goals:

- Identify Surfactants + Solvents Which Can Disperse nc-Si:H During Ultrasonication

3. Screening Summary

Surfactants	#	Solvents						DMSO	Toluene	Ethyl ethoxy	Anisole	Limonene	DHT acetate	1-Dodecene
		Butyl ether	Xylene	Decaline	Diglyme	Tetrahydrofuran	Propionate							
Tridecylamine	1	?	?	?	?	?	?	?	?	?	?	?	?	?
Dimethylidodecylamine	2	?	?	?	?	?	?	?	?	?	?	?	?	?
Thiourea	3	?	?	?	?	?	?	?	?	?	?	?	?	?
N,N-Dimethyldecylamide	39	?	?	?	?	?	?	?	?	?	?	?	?	?
Sorbitol monooctate	4	?	?	?	?	?	?	?	?	?	?	?	?	?
Unilever's methyl ester	5	?	?	?	?	?	?	?	?	?	?	?	?	?
SDS	6	?	?	?	?	?	?	?	?	?	?	?	?	?
Union X-100	7	?	?	?	?	?	?	?	?	?	?	?	?	?
Union X-114	8	?	?	?	?	?	?	?	?	?	?	?	?	?
Union XL-80N	9	?	?	?	?	?	?	?	?	?	?	?	?	?
Genal CO 630	21	?	?	?	?	?	?	?	?	?	?	?	?	?
Genal CO 520	4	?	?	?	?	?	?	?	?	?	?	?	?	?
gena CO 621	22	?	?	?	?	?	?	?	?	?	?	?	?	?
Conethylene glycol monooctate	17	?	?	?	?	?	?	?	?	?	?	?	?	?
Wepa 60	18	?	?	?	?	?	?	?	?	?	?	?	?	?
Wepa 30	19	?	?	?	?	?	?	?	?	?	?	?	?	?
Acetone	20	?	?	?	?	?	?	?	?	?	?	?	?	?
Dimethylsulfide	10	?	?	?	?	?	?	?	?	?	?	?	?	?
Upol A	13	?	?	?	?	?	?	?	?	?	?	?	?	?
Vinol OI	14	?	?	?	?	?	?	?	?	?	?	?	?	?
Rhodoclear ER	23	?	?	?	?	?	?	?	?	?	?	?	?	?
Spesso 52MS	27	?	?	?	?	?	?	?	?	?	?	?	?	?
Spesso 10A503	28	?	?	?	?	?	?	?	?	?	?	?	?	?
Dispersant KS 8/33M	29	?	?	?	?	?	?	?	?	?	?	?	?	?
Dispersant 10/1004	30	?	?	?	?	?	?	?	?	?	?	?	?	?

Legend:
■ = "good" (milky)
■ = "ok" (turbid or flakey)
■ = bad (precipitated or reacted)

PEP = poly ethylene oxide
PEP = poly "methyl ethylene oxide (propyl oxide)
scrb = sorbito derivat.

Main Conclusions:

- Solvent: everything works \Rightarrow concentrate on xylene
- Surfactant: amines, PEO, esters, amides + anionic work

nc-Si:H Ink Formulation

Goals:

- Identify Surfactant Suitable For Dispersion of <0.5 Micron nc-Si:H Agglomerates In Xylen

Surfactant	Affter centrifugation	Filtration	Affter FT-IR Oxidation ²
Hexadecylamine		pale yellow	
Dimethyldecylamine			
Trioctylamine			
4-Dodecyldiethylbenzylamine	yellow SN	pale yellow	yellow
N,N-Diethyldecanamide	pale yellow SN	pale yellow	pale yellow
Sorbitan monooleate		n/a	
Linoleic acid ethyl ester	pale yellow SN		
C12E5		faint yellow	
Triton X-100		faint yellow	
Triton X-114			
Triton Xl-80N			
Igepal CO 210			
Igepal CO 520			
Addid 130		n/a	
K-Sperse 152/MS		pale yellow	
Disparion KS-873N dispersing agent	Yellow/orange SN	yellow	yellow
	Yellow/orange SN	yellow	
			colored, transparent milky

Main Conclusions:

- 3 Formulations give yellow, mostly transparent solutions after 0.5 micron filtration
- 2 are anionic surfactants!!!! How does that work???
- Si-Mass loading estimated to be ~0.01% \Rightarrow Surfactant-Si mass ratio: 500

nc-Si Project

CONFIDENTIAL

KOVIO

Results

- All Solvents Can Yield Milky Dispersions of nc-Si:H
- Amines, Polyethers, Esters, Anionic Surfactants “Work”
-

Milestone Weekly Schedule – nc-Si

Crit Path	Milestone	Who	Start	OS	CS	Done?	Comments
nc-Si	FTIR + TEM of Supernatants	BR/FZ	08/19	08/21			verfiy identity of supernatants
nc-Si	Sonication of Surfactants + Solvents as Control	FZ	08/20	08/21			verfiy identity of supernatants
nc-Si	search for multidentate + polymeric amines	FZ/BR	08/18	08/25			
nc-Si	DOE on sonication: power, time, surfactant concentration	FZ/BR	08/19	08/25			
nc-Si	Screen surfactants in pyrdine	BR	08/20	08/23			

EXHIBIT B

Surface Derivatization of Silicon Nanocrystals

Fabio Zurcher, Brent Ridley
[REDACTED]

CONFIDENTIAL

kovio

Ufficio

Pros & Cons of the AIBN Reaction

Pros	Cons
<ul style="list-style-type: none">Short reaction time (30min)Reliable reactionNo obvious source of metal or halogen contaminationReliable and relatively simple isolation/purification stepProduct is a well defined, dry powderProduct is very soluble in hydrocarbons and ethers	<ul style="list-style-type: none">Product shows reoxidationYield is not exceptionally highAIBN byproducts are difficult to removeProduct is not extremely soluble in aromatics

Derivatization Reaction Flow

Step	Description
Derivatization	<p>nano-Si stock (etch product suspended in xylene) + dodecene + AIBN + solvent (xylene).</p> <p>[dodecene] = 1M; [Si] = 0.25M; [AIBN] = 0.1M</p> <p>T = 120°C t = 30min</p>
Filtration	<p>Reaction product is filtered hot through a 0.2μm PTFE filter</p>
Precipitation	<p>Product is precipitated with cold MeOH and centrifuged to remove the SN</p>
Wash	<p>The precipitated product is washed with AcN to remove residual AIBN byproducts and then centrifuged</p>
Dry	<p>The remaining solid is dried overnight under Ar or N₂ flow</p>

Ufa

CONFIDENTIAL

KOVIO

EXHIBIT C

Silicon Film Formation From Nanocrystals

Joerg Rockenberger, Fabio Zurcher, Brent Ridley
[REDACTED]

Kovio

CONFIDENTIAL

Silicon Film Formation from Nanoparticles

Surface-Modified Si Nanoparticles

		AIBN	AlEtCl2
Synthesis:	Si-NC production [mg/batch]	30	90
	Synthesis + Isolation Time [h]	3	72
	Temperature [C]	120	40
Ink Formulation:	Oxygen – Level [%]	0.5	0.1 – 0.2
	TGA – Mass Loss [%]	20	TBD
	Solubility – Xylene [%]	TBD	5%
Film Characterization:	Solubility – Butylether [%]	> 5%	< 1%
	Oxygen – Level [%]	15 / 11	21
	Carbon - Level [%]	15 / 18	17
SEM - Morphology	Hydrogen – Level [%]	18	TBD
	SEM – Thickness [nm]	150 – 250	0 - 100
	XRD – Grain Size [nm]	TBD	very rough – waffle
Tencor – Thickness [nm]	Tencor – Thickness [nm]	150 -250	85
	Tencor – Roughness [nm]	< 2	6

BIGGEST DIFFERENCE: RELATED TO SOLUBILITY + RESULTING FILM MORPHOLOGY!

CONFIDENTIAL

Si Film Formation from Nanoparticles

KOVIO

Surface-Modified Si Nanoparticles

AIBN Reaction

5% in Butylether, 300 rpm
100 C softcure, 900 C hardcore

Lewis Acid Reaction

2% in Xylene, 300 rpm
100 C softcure, 500 C hardcore

Si Film Formation from Nanoparticles

CONFIDENTIAL

KOVIO

EXHIBIT D

Polysilane ink formulation

Polysilane ink formulation

Goal

- Find solvents that are compatible with cyclosilane.
- Reproducibly provide a polysilane ink formulation with a shelf life of > 1 day.

Module	Experiments
Ink formulation stability	Test cyclosilane compatibility in different solvents
	2. Thermally polymerize cyclosilane <ul style="list-style-type: none">– FTIR– Solubility in cyclosilane, cyclooctane
	3. UV polymerize cyclosilane at RT <ul style="list-style-type: none">– FTIR– Solubility in cyclosilane, cyclooctane– Weight loss

Silane Compatibility With Solvents

Linear Alkanes	Cyclic alkanes	Alcohols/Ketones/Enes	Aromatics	Ethers	Fluoro
Decane	Cyclonexane	α -Terpineol	Benzene	Dicyanette®	Fluorinert FC 70
Tetradecane	Cycloneptane	DHT	Toluene	Butylether	Perfluoro(1-methyl)decaline
	Cyclooctane	1-Methoxy-2-propanol	O-xylene	Anisol	Fluorinert FC 70 + Perfluoroctansulfonylfluoride
	Cyclodecane (tbd)	α -Pinene	Mesitylene		
	Methyl-cyclohexane	2-Butanone	t-Butyl-toluene		
	t-Butyl-cyclohexane	2-Heptanone	Cyclohexylbenzene		Stable > 2 days
	trans-decaline	Cyclopentanone	Tetraline		Limited stability white ppt.
	Bis-cyclohexyl	Ethylpyruvate			white ppt., then dissolution two phases
	Butylether				

Polysilane ink formulation

Sources that may have an impact on ink stability	Parameters for experimental matrix
Light or temperature induced polymerization	Temperature: ~0C, 45C Light/dark: dark at 0C, clear/amber glass vials at 45C
Solvent purity (water and other impurities)	Distill and dry Cyclooctane, cis-decaline
OH (leaching from glass wall) induced polymerization	Teflon vials and silanized glass vials
Contamination from tips, cap lining	Use current pipettor tips, cap lining
Nature of silane mixture, SiH ₃ groups as radical initiators)	Silane batch: fixed, █ 21-1A, needed: 30 x 30 uL = 900 uL; NMR control of cyclosilane/cyclohexane ink
Mass loading	Concentration: fixed, 20 vol%, Amount: fixed, 150 uL
Nature of solvent	Solvent: Cyclohexane, Cyclooctane, (Cycloheptane), Ether, toluene, (cyclododecane), decaline █ █
	█ █

EXHIBIT E

kovio

Silane Ink Formulation

Solvent Selection and Controlled Polymerization

Silane Ink Formulation

kovio

Solvent/Silane Compatibility

Solvent	bP (°C)	V (cP)	S (mN/m)	Cutoff (nm)	Solubility	FTIR	Thin Film
Alkanes/Aromatics							
Cyclooctane	151	1.0			OK	No Si-O	
cis-Decalin	193	3.0			OK	No Si-O (100 °C)	UV Film OK
Decalin (mixture)	191	2-3			OK		
<i>o</i> -Xylene	144	0.8	29.5		OK	No Si-O (100 °C)	
Tetralin	207	2.1			OK		
Methylnaphthalene	240	3.1			OK	No Si-O (150 °C)	
Tetradecane	252	2.1			Cloudy→OK	No Si-O (150 °C)	
Exotics							
D4 Cyclomethicone		2.4	17.4		OK	No Si-O (150 °C)	
D5 Cyclomethicone		3.8	17.4		OK	No Si-O (150 °C)	
Cineole*		176	2.3		OK→Solids	No Si-O (100 °C)	
EG-dibutylether	203	14			OK→Solids		
3-Octanol*	174	7			Cloudy	Oxidation	
2-Ethyhexanol	182	4-6			Cloudy	Oxidation	
Dihydroturpene†	208	46			OK	Oxidation	
Dihydroturpene (FF)	208	46			OK→Solids		
Terpinen-4-ol*	212	12			OK	No Si-O (150 °C)	Film oxidation
Terpineol*	217	37	32		OK	No Si-O (150 °C)	Film oxidation
Pine Oil 60			5		OK	Oxidation	

*Similar results after drying solvent over molecular sieves

kovio

Silane Ink Formulation

Silane Polymerization

Sample	Loading (vol%)	Solvent	Exposure (min)	Observation		FTIR (cast)
				UV	(solution)	
4-60-0	none	c-C ₈ H ₁₆	5min	Clear	N/A	N/A
4-60-1	5%	c-C ₈ H ₁₆	5min	Cloudy (from walls)	Good wetting/film	No change(s)
4-60-2	5%	<i>o</i> -xylene	5min	Clear (even walls)	Good wetting/film	No change(s)
4-60-3	5%	c-C ₈ H ₁₆	20min	Clear	Good wetting/film	No change(s)
4-62-1	25%	c-C ₈ H ₁₆	20min	Clear	Good wetting/film	No change(s)
4-62-2	25%	c-C ₈ H ₁₆	60min	Milk	N/A	Broad, Baseline
4-63-1	25%	<i>o</i> -xylene	40min	Cloudy	Good wetting/film	Broadening
4-68-1	100%	none	20min	Clear, viscous		Broadening
4-68-2	100%	none	60min	Pale amber, viscous		
Molecular Sieve				Sieves		
4-58-1	5%	c-C ₈ H ₁₆	none	Clear	Poor wetting/film	N/A
4-60-2N	5%	<i>o</i> -xylene	none	Clear	Poor wetting/film	N/A
4-58-1S	5%	c-C ₈ H ₁₆	4days	Clear	Poor wetting/film	No change(s)

White films form routinely form on walls above liquid level (from vapor)

kovio

Silane Ink Formulation

Viscous Silane(s) Solubility

* 10% solutions – all others 20%

Silane Ink Formulation

Big Picture Objective:

- Formulate silane ink suitable for inkjet printing (viscosity, surface tension, etc.)
 1. Appropriate solvent selection
 2. Controlled silane polymerization
 - [REDACTED]
- Investigate alternatives to inkjet technology (microspot...)

Key Results:

- The viscous tertiary alcohol terpinen-4-ol is retained in UV-spun silane films and leads to oxygen and carbon loaded silane films after curing at 400 °C
- After drying over sieves, alcohol and ether solvents still cause problems with solubility and/or oxidation – so far, no solvents containing oxygen have worked except for the cyclomethicones
- UV polymerization reactions initiated – control of viscosity is underway [REDACTED], but polymerization (and precipitation) occurs in both cyclooctane and xylene solvents

EXHIBIT F

Solvent Compatibility Tables

Technical Report

Activated Alumina Purification for Solvent Screen - █

Purpose

- Purify inkjet solvent candidates and test solubility, stability, and printability

Method

- Single-pass column purification of solvent – 9g activated alumina (500 °C under vacuum 6h), collecting 4mL fractions in amber vials after discarding first mL
- 20% solution using █ SOP polysilane

Solvents

- Alkanes: Tetradecane, dicyclohexyl, decane, pinane, *t*-butylcyclohexane, isopropylcyclohexane, trimethylcyclohexane
- Aromatic: Methylnaphthalene, tetralin, cyclohexylbenzene
- Ethers: Diethylene glycol diethyl ether, dibutyl ether
- Halogenated: Chlorooctane, cyclohexyl chloride
- Silane: Tetraethylsilane

Analysis Proposal

- Suggested testing, in order of execution: miscibility and solubility at 50% and 20%, stability at 20%, viscosity, contact angle, printability, NMR, GC-MS

Results

- All 15 solvents were poor solvents for polysilane!
- Most were turbid solutions or two phase mixtures
- Some solvents formed two clear phases – tetradecane, decane
- **What makes *cis*-decalin and cyclooctane (and cyclooctane) so good?**

Solvent/Silane Compatibility - 2004

Solvent	bP (°C)	η (cP)	γ (mN/m)	Solubility (5-10 vol%)	FTIR	Thin Film
Cyclooctane	151	2.2		OK		
Nonane	151	0.6	25	OK → Precip		TFTs
Decane	174	0.8	23	OK → Precip		
Decalin (mixture)	191	2.2	32	OK		
cis-Decalin	193	3.0	32	OK	No Si-O (100 °C)	TFTs
Cyclodecane	201	4.3		OK	No Si-O (150 °C)	
Dicyclohexyl	207	3.3		OK*		
Dodecane	216	1.2	25	OK → Precip		
Tetradecane	252	1.9		Cloudy → OK *	No Si-O (150 °C)	
<i>o</i> -Xylene	144	0.8	30	OK*	No Si-O (100 °C)	
1,2 Dichlorobenzene	180	1.3	37	Cloudy → OK *	No Si-O (150 °C)	
Tetralin	207	2.1	33	OK*	No Si-O (100 °C)	
MethylNaphthalene	240	3.1	40	OK*	No Si-O (150 °C)	UV Film Patchy Streaks
2,6-Lutidine	144		32	*		
Quinoline			43	OK	Si-O (150 °C)	
Anisole	154		35	Cloudy (10%)	No Si-O (150 °C)	
Phenylethane	256		39	Cloudy (10%)	No Si-O (150 °C)	
D4 Cyclomethicone		2.4	117	OK	No Si-O (150 °C)	
D5 Cyclomethicone		3.8	17	OK	No Si-O (150 °C)	UV Film Patchy Streaks

* Limited solubility above 5% or with polymeric silanes

Italicized viscosity values are from literature, not in-house measurements

kovio

Silane Ink Formulation

Solvent/Silane Compatibility (Problematic) - 2004

	Solvent	bp (°C)	η (cP)	γ (mN/m)	Solubility (5 vol%)	FTIR	Thin Film
	D4 Cyclomethicone	24	17.4	OK	No Si-O (150 °C)		
	D5 Cyclomericone	38	17.4	OK	No Si-O (150 °C)	UV Film Patchy streaks	
Exotics	Cineole*	176	2.3	OK→Solids	No Si-O (100 °C)		
	ECC-diobutyl ether	203	14	OK→Solids			
	3-Octanol*	174	7	Cloudy	Oxidation		
	2-Ethylhexanol	182	46	Cloudy	Oxidation		
	Dihydrotetrahydrofuran	208	46	OK	Oxidation		
	Dihydrotetrahydrofuran (HTF)	208	46	OK→Solids			
	Terpinen-4-ol*	212	12	OK	No Si-O (150 °C)	Film oxidation	
	Terpineol*	217	37	32	OK	No Si-O (150 °C)	Film oxidation
	Pine Oil 60		5	OK	Oxidation		

*Similar results after drying solvent over molecular sieves

kovio

Silane Ink Formulation