FY1005/TFY4165 Termisk fysikk. Institutt for fysikk, NTNU. Våren 2014.

Veiledning: 7. og 10. april. Innleveringsfrist: Fredag 11. april kl 16.

Varmeledning med kulesymmetri

a) Vis ved innsetting at

$$T = T(r,t) = a \frac{\sin(kr)}{r} e^{-D_T k^2 t}$$

er en løsning av varmeledningsligningen

$$\frac{\partial T}{\partial t} = D_T \nabla^2 T$$
 der $\nabla^2 = \frac{1}{r} \frac{\partial^2}{\partial r^2} r$ med kulesymmetri.

b) En mer generell kulesymmetrisk løsning er gitt ved

$$T = \sum_{n=1}^{\infty} a_n \frac{\sin(k_n r)}{r} e^{-D_T k_n^2 t} + T_{\infty}.$$

Størrelsene a_n og k_n bestemmes av grensebetingelsene. Hvilke verdier kan k_n ha når en grensebetingelse er at $T(R,t) = T_{\infty}$?

c) Varmeledningsligningen skal ved siden av grensebetingelsen $T(R,t)=T_{\infty}$ løses med initialbetingelsen

$$T(r,0) - T_{\infty} = T_0$$
 (= konst), (for $r < R$).

Koeffisientene a_n kan så bestemmes ved å regne ut integralet

$$a_m = \frac{2}{R} \int_0^R (T(r,0) - T_\infty) r \sin(k_m r) dr.$$

Vis ved å sette inn uttrykket under punkt b) at dette gir riktig verdi for a_m . [Dette tilsvarer rekkeutvikling av en vilkårlig funksjon i egentilstander i kvantemekanikk. Her blir dette en fourier-rekke (sinusrekke) av funksjonen $(T - T_{\infty})r$ i intervallet -R < r < R.] Regn så ut koeffisientene a_n .

(Svar:
$$(-1)^{n-1}2RT_0/(n\pi)$$
)

Oppgitt:

$$2\sin A\sin B = \cos(A-B) - \cos(A+B)$$
 og $\int x\sin(\alpha x) dx = -x\cos(\alpha x)/\alpha + \sin(\alpha x)/\alpha^2$.

d) For store tider (slik at $\exp(-D_T k_1^2 t) \ll 1$) vil leddet med k_1 dominere slik at de øvrige leddene kan neglisjeres. Betrakt så avkjøling av ei kule der grensebetingelsene er som under punkt c). Anta at kula består vesentlig av vann (som er bundet slik at det ikke kan strømme). Ved hvilken tid $t=\tau$ er temperaturen i midten av kula (r=0) sunket til $T=0.1\,T_0+T_\infty$ (slik at k_1 -leddet dominerer) når R=5.0 cm og $D_T=0.00050$ m²/h for vann?

(Svar: 1 time 31 min)

Oppgitt: $\sin x/x \to 1$ når $x \to 0$.

e) Bestem T(r,t) numerisk for 0 < r < R og $0 < t < t_{\rm max}$, med (f.eks.) $t_{\rm max} = 3$ timer. Prøv deg fram når det gjelder hvor mange ledd du skal ta med i fourier-rekken. Lag en animasjon som viser tidsutviklingen av temperaturprofilen T(r). Lag også figurer med hhv T(t) for utvalgte verdier av posisjonen r og T(r) for utvalgte tidspunkter t. Bruk 4 - 5 kurver pr figur.

Nedenfor finner du et eksempel på hvordan man kan lage en animasjon i Matlab ved å slette den gamle grafen og tegne en ny graf i samme figur (ov13eksempel.m, tilgjengelig på hjemmesiden).

```
%Tabell med tidspunkter
t=0:1:20;
%Tabell med posisjoner
r=0.00:0.01:1.00;
"Starttabell for f(r) med like mange elementer som tabellen for posisjonen r:
f = linspace(0,10,length(r));
%Neste linje setter EraseMode til xor, bra for "smooth animation", se
%http://nd.edu/~dtl/cheg258/notes/doc/tec2.5.html
p=plot(r,f,'-','EraseMode','xor');
%Sett aksegrenser [xmin xmax ymin ymax]:
axis([0 1 0 2]);
"Nodvendig med "hold on" for fortsatt bruk av samme figur:
hold on;
xlabel('Posisjonen r');
ylabel('Funksjonen f');
title('Animasjon av f(r,t)');
for i = 1 : length(t),
 for k = 1 : length(r),
  f(k) = sin(r(k)*t(i))^2;
 end
 %Plott f(r,t) for aktuelt tidspunkt:
 set(p,'XData',r,'YData',f)
 %Oppdaterer grafen i figuren:
 drawnow
 %Forsinker framvisningen i 0.2 s (juster etter behov):
 pause(0.2);
end
hold off;
```