Worksheet 9.2: Solutions

Galvanic cells

No.	Answer
1	 a Y b From X to Y c X (site of oxidation) d From the Y half-cell to the X half-cell
2	${f a} \qquad X(s) o X^{2+}(aq) + 2e^- \ {f b} \qquad Y^+(aq) + e o Y(s)$
3	a $X(s) \to X^{2+}(aq) + 2e^{-}$ b $Z^{2+}(aq) + 2e \to Z(s)$
4	In cell 1, the strongest reductant is X , since it is the metal oxidised; therefore $X > Y$ In cell 2, the strongest reductant is X , since it is the metal oxidised; therefore $X > Z$ The cell potential in cell 2 is less than that in cell 1, hence the difference in reductant strength between X and Z is less than that between X and Y ; therefore reductant strength order is $X > Z > Y$.
5	a From Z to Y b Z (site of oxidation) c $Y^{+}(aq) + e^{-} \rightarrow Y(s)$ d 0.46 V (X to Y = 1.05 V, X to Z = 0.59 V; therefore Y to Z = 1.05 – 0.59 = 0.46 V)
6	Cell potentials would vary, as reduction potential varies with concentration.
7	It is highly soluble and does not react with any of the half-cell chemicals.
8	 a Any metal above copper in the activity series. b Any metal below copper in the activity series.