THE IMAGINEER PROJECT - FINAL ACCOUNTANT

태양광 발전량 예측 알고리즘 개발

지도 교수 : 이성근

20164368 김민수

20164370 배재한

20154376 김진성

20184304 한유리

Contents

주제 선정 이유

화석연료 사용으로 인한 지구온난화

화석연료의 고갈 문제

신재생 에너지의 시대

2. 목표 설정

연구의 목표

태양광 발전시설에 대한 고찰

- 태양광 발전 시설은 장기간 운용이 보장되어야 하며, 이 과정에서 발전 효율저하를 막고, 고장진단
 및 부품 교체 등의 사안에 대해 빠른 대응이 필요
- 태양광 시장에서 모듈가격이 하락하고 있는 상황에서 시스템을 유지보수하기 위한 비용이 상대적으로 증가하는 추세이므로, 지능적이고 효율적인 운용 및 진단 기능의 중요성이 크게 부각

2. 목표 설정

3. 설계 - 태양광 발전량 예측 시스템의 구성도

데이터 셋 – 관측 데이터

*PV : photovoltaic(태양광 발전)의 약어

*국내 최대 규모인 영암 태양광 발전소

데이터 셋 - 날씨데이터

데이터 셋 - 전체데이터

```
df = pd.read_csv('data/solar1.csv')
df.tail()
```

	day	temperature	solRadiation	cloud	irrModule	irrHorizontal	tempModule	tempAir	pvPower
3787	2021-08-02 8:00	25.1	0.22	10	277.62	329.75	35.34	27.91	27.96
3788	2021-08-02 9:00	25.2	0.32	9	430.88	493.25	40.20	30.62	42.75
3789	2021-08-02 10:00	26.2	1.18	9	323.50	381.12	38.67	31.70	30.70
3790	2021-08-02 11:00	26.4	1.09	9	197.57	229.29	33.54	29.43	20.46
3791	2021-08-02 12:00	27.1	1.71	9	398.00	439.00	35.50	29.20	45.60

temperature	지상 온도
solRadiation	일사량
Cloud	전운량
irrModule	경사일사량
irrHorizontal	수직일사량
tempModule	모듈 온도
tempAir	외기 온도
pvPower	태양광 패널 전력량
데이터 총 개수	3792개

데이터 – 일사량 측정 방법

데이터 분석 - 상관관계 그래프

다음 그래프를 통해서 태양광 발전량과 일사량이 밀접한 관계를 갖는다는 것을 알 수 있다.

4. 구현 - 환경

개발 언어	파이썬(python)			
프레임워크	파이토치(pytorch)			
모델	다중 계층 퍼셉트론(MLP)			
정규화	MinMaxScaler()			
최적화	Adam()			
비용함수	MSELoss()			

16

데이터 전처리 – MinMaxScaler()

df = pd.read_csv('data/solar1.csv')
df.tail()

	day	temperature	solRadiation	cloud	irrModule	irrHorizontal	tempModule	tempAir	pvPower
3787	2021-08-02 8:00	25.1	0.22	10	277.62	329.75	35.34	27.91	27.96
3788	2021-08-02 9:00	25.2	0.32	9	430.88	493.25	40.20	30.62	42.75
3789	2021-08-02 10:00	26.2	1.18	9	323.50	381.12	38.67	31.70	30.70
3790	2021-08-02 11:00	26.4	1.09	9	197.57	229.29	33.54	29.43	20.46
3791	2021-08-02 12:00	27.1	1.71	9	398.00	439.00	35.50	29.20	45.60

	temperature	solRadiation	cloud	irrModule	irrHorizontal	tempModule	tempAir	pvPower
3787	0.809302	0.059140	1.0	0.222885	0.291106	0.585486	0.691483	0.200223
3788	0.811628	0.086022	0.9	0.386624	0.473291	0.656023	0.744299	0.365106
3789	0.834884	0.317204	0.9	0.271902	0.348346	0.633817	0.765348	0.230769
3790	0.839535	0.293011	0.9	0.137361	0.179165	0.559361	0.721107	0.116611
3791	0.855814	0.459677	0.9	0.351496	0.412841	0.587808	0.716624	0.396878

모델


```
class MLP(nn.Module):
    def __init__(self):
        super().__init__()
        self.fc1 = nn.Linear(7, 10, bias=True)
        self.fc2 = nn.Linear(10, 10, bias=True)
        self.fc3 = nn.Linear(10, 10, bias=True)
        self.fc4 = nn.Linear(10, 1, bias=True)
   def forward(self, x):
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = F.relu(self.fc3(x))
        x = F.relu(self.fc4(x))
        return x
```

4. 구현 절차

1

데이터를 가져와서 MinMaxScaler()를 통해 정규화 진행

2

전체 데이터 중 훈련 데이터는 70%, 학습 데이터는 30%로 나눔

3

훈련 데이터를 구현한 MLP 모델에 적용해 훈련을 진행

4 각 파라미터를 Loss 값을 많이 줄이는 방향으로 계속 조정하여 학습을 진행

결과

0.06

0.04

0.02

0.00

25

50

```
plt.plot(train_losses, label='train_losses')
plt.plot(test_losses, label='test_losses')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend()
plt.show()
                                               train_losses
                                               test losses
   0.08
```

100

epoch

75

125

150

175

Batch_ size	Learning rate	Epochs	hidden layer	Activation function	
128	1e-5	200	2	ReLU	
print("MSE :	%.3f, RMSE :	%. <mark>3</mark> f" % (tes	t_mse, np.sqrt((test_mse)))	

MSE : 0.002, RMSE : 0.045

Mse 값이 0.002로 높은 정확도를 보였습니다.

그래프에서는 epoch가 많아질수록 loss값이 줄어드는 것을 보아 학습이 잘 되었다는 것을 알 수 있습니다.

*epoch: 데이터셋에 대하여 학습을 한번 완료한 상태

5. 향후 계획

- 데이터가 부족하여 생각한 것 보다 만족스럽지는 않았다.
 - → 기회가 된다면 여러 지역의 태양광 발전소들의 데이터를 가지고 연구할 계획
- 가지고 있는 데이터 특성상 시계열 데이터의 특징을 갖기 때문에 시계열 모델 예측에 적합한 RNN과 LSTM 모델을 이용한 구현을 연구할 계획

감사합니다.

2021/12/07 22