3.1 Introduction to Determinants

Notation: A_{ij} is the matrix obtained from matrix A by deleting the ith row and jth column of A.

EXAMPLE:

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{bmatrix} \qquad A_{23} = \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix}$$

Recall that
$$\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$$
 and we let $\det[a] = a$.

For $n \ge 2$, the **determinant** of an $n \times n$ matrix $A = [a_{ij}]$ is given by

$$\det A = a_{11} \det A_{11} - a_{12} \det A_{12} + \dots + (-1)^{1+n} a_{1n} \det A_{1n}$$
$$= \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \det A_{1j}$$

EXAMPLE: Compute the determinant of
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 3 & -1 & 2 \\ 2 & 0 & 1 \end{bmatrix}$$

Solution

$$\det A = 1 \det \begin{bmatrix} -1 & 2 \\ 0 & 1 \end{bmatrix} - 2 \det \begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix} + 0 \det \begin{bmatrix} 3 & -1 \\ 2 & 0 \end{bmatrix}$$

$$= = \begin{bmatrix} 3 & 2 \\ 2 & 0 \end{bmatrix}$$

Common notation:
$$\det \begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix}$$
.

So

$$\begin{vmatrix} 1 & 2 & 0 \\ 3 & -1 & 2 \\ 2 & 0 & 1 \end{vmatrix} = 1 \begin{vmatrix} -1 & 2 \\ 0 & 1 \end{vmatrix} - 2 \begin{vmatrix} 3 & 2 \\ 2 & 1 \end{vmatrix} + 0 \begin{vmatrix} 3 & -1 \\ 2 & 0 \end{vmatrix}$$

The (**i**, **j**)-cofactor of A is the number C_{ij} where $C_{ij} = (-1)^{i+j} \det A_{ij}$.

$$\begin{vmatrix} 1 & 2 & 0 \\ 3 & -1 & 2 \\ 2 & 0 & 1 \end{vmatrix} = 1C_{11} + 2C_{12} + 0C_{13}$$

(cofactor expansion across row 1)

THEOREM 1 The determinant of an $n \times n$ matrix A can be computed by a cofactor expansion across any row or down any column:

$$\det A = a_{i1}C_{i1} + a_{i2}C_{i2} + \cdots + a_{in}C_{in}$$
 (expansion across row i)
$$\det A = a_{1j}C_{1j} + a_{2j}C_{2j} + \cdots + a_{nj}C_{nj}$$
 (expansion down column j)

Use a matrix of signs to determine $(-1)^{i+j}$

$$\begin{bmatrix}
 + & - & + & \cdots \\
 - & + & - & \cdots \\
 + & - & + & \cdots \\
 \vdots & \vdots & \vdots & \ddots
 \end{bmatrix}$$

EXAMPLE: Compute the determinant of
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 3 & -1 & 2 \\ 2 & 0 & 1 \end{bmatrix}$$

using cofactor expansion down column 3.

Solution

$$\begin{vmatrix} 1 & 2 & 0 \\ 3 & -1 & 2 \\ 2 & 0 & 1 \end{vmatrix} = 0 \begin{vmatrix} 3 & -1 \\ 2 & 0 \end{vmatrix} - 2 \begin{vmatrix} 1 & 2 \\ 2 & 0 \end{vmatrix} + 1 \begin{vmatrix} 1 & 2 \\ 3 & -1 \end{vmatrix} = 1.$$

EXAMPLE: Compute the determinant of $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 1 & 5 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 3 & 5 \end{bmatrix}$

Solution

$$= 1 \begin{vmatrix} 2 & 1 & 5 \\ 0 & 2 & 1 \\ 0 & 3 & 5 \end{vmatrix} - 0 \begin{vmatrix} 2 & 3 & 4 \\ 0 & 2 & 1 \\ 0 & 3 & 5 \end{vmatrix} + 0 \begin{vmatrix} 2 & 3 & 4 \\ 2 & 1 & 5 \\ 0 & 3 & 5 \end{vmatrix} - 0 \begin{vmatrix} 2 & 3 & 4 \\ 2 & 1 & 5 \\ 0 & 2 & 1 \end{vmatrix}$$

$$= 1 \cdot 2 \left| \begin{array}{cc} 2 & 1 \\ 3 & 5 \end{array} \right| = 14$$

Method of cofactor expansion is not practical for large matrices - see Numerical Note on page 190.

Triangular Matrices:

THEOREM 2: If A is a triangular matrix, then $\det A$ is the product of the main diagonal entries of A.

EXAMPLE:

3.2 **Properties of Determinants**

THEOREM 3 Let *A* be a square matrix.

- a. If a multiple of one row of A is added to another row of A to produce a matrix B, then $\det A = \det B$.
- b. If two rows of A are interchanged to produce B, then $\det B = -\det A$.
- c. If one row of A is multiplied by k to produce B, then $\det B = k \cdot \det A$.

EXAMPLE: Compute
$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 0 & 5 & 0 & 0 \\ 2 & 7 & 6 & 10 \\ 2 & 9 & 7 & 11 \end{vmatrix}.$$

Solution

$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 0 & 5 & 0 & 0 \\ 2 & 7 & 6 & 10 \\ 2 & 9 & 7 & 11 \end{vmatrix} = 5 \begin{vmatrix} 1 & 3 & 4 \\ 2 & 6 & 10 \\ 2 & 7 & 11 \end{vmatrix} = 5 \begin{vmatrix} 1 & 3 & 4 \\ 0 & 0 & 2 \\ 2 & 7 & 11 \end{vmatrix}$$

$$= 5 \begin{vmatrix} 1 & 3 & 4 \\ 0 & 0 & 2 \\ 0 & 1 & 3 \end{vmatrix} = -5 \begin{vmatrix} 1 & 3 & 4 \\ 0 & 1 & 3 \\ 0 & 0 & 2 \end{vmatrix} = \underline{\qquad} = \underline{\qquad}.$$

Theorem 3(c) indicates that
$$\begin{vmatrix} * & * & * & \\ -2k & 5k & 4k & = k & -2 & 5 & 4 \\ * & * & * & & \end{vmatrix}$$
.

Solution

$$\begin{vmatrix} 2 & 4 & 6 \\ 5 & 6 & 7 \\ 7 & 6 & 10 \end{vmatrix} = 2 \begin{vmatrix} 1 & 2 & 3 \\ 5 & 6 & 7 \\ 7 & 6 & 10 \end{vmatrix} = 2 \begin{vmatrix} 1 & 2 & 3 \\ 0 & -4 & -8 \\ 0 & -8 & -11 \end{vmatrix}$$

$$= 2(-4) \begin{vmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & -8 & -11 \end{vmatrix} = 2(-4) \begin{vmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 5 \end{vmatrix}$$

$$= 2(-4)(1)(1)(5) = -40$$

row reduction and cofactor expansion.

Solution
$$\begin{vmatrix} 2 & 3 & 0 & 1 \\ 4 & 7 & 0 & 3 \\ 7 & 9 & -2 & 4 \\ 1 & 2 & 0 & 4 \end{vmatrix} = -2 \begin{vmatrix} 2 & 3 & 1 \\ 4 & 7 & 3 \\ 1 & 2 & 4 \end{vmatrix} = -2 \begin{vmatrix} 2 & 3 & 1 \\ 0 & 1 & 1 \\ 1 & 2 & 4 \end{vmatrix}$$

$$= 2 \begin{vmatrix} 2 & 3 & 1 \\ 1 & 2 & 4 \\ 0 & 1 & 1 \end{vmatrix} = -2 \begin{vmatrix} 1 & 2 & 4 \\ 2 & 3 & 1 \\ 0 & 1 & 1 \end{vmatrix} = -2 \begin{vmatrix} 1 & 2 & 4 \\ 0 & -1 & -7 \\ 0 & 1 & 1 \end{vmatrix}$$

$$= -2 \begin{vmatrix} 1 & 2 & 4 \\ 0 & -1 & -7 \\ 0 & 0 & -6 \end{vmatrix} = -2(1)(-1)(-6) = -12.$$

row replacements and row interchanges, then

$$\det A = \begin{cases} (-1)^r \begin{pmatrix} \text{product of} \\ \text{pivots in } U \end{pmatrix} & \text{when } A \text{ is invertible} \\ 0 & \text{when } A \text{ is not invertible} \end{cases}$$

THEOREM 4 A square matrix is invertible if and only if $\det A \neq 0$.

THEOREM 5 If A is an $n \times n$ matrix, then $\det A^T = \det A$.

Partial proof $(2 \times 2 \text{ case})$

$$\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc \qquad \text{and}$$

$$\det \begin{bmatrix} a & b \\ c & d \end{bmatrix}^T = \det \begin{bmatrix} a & c \\ b & d \end{bmatrix} = ad - bc$$

$$\Rightarrow \det \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] = \det \left[\begin{array}{cc} a & c \\ b & d \end{array} \right].$$

$$(3 \times 3 \text{ case})$$

$$\det \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$

$$\det \begin{bmatrix} a & d & g \\ b & e & h \\ c & f & i \end{bmatrix} = a \begin{vmatrix} e & h \\ f & i \end{vmatrix} - b \begin{vmatrix} d & g \\ f & i \end{vmatrix} + c \begin{vmatrix} d & g \\ e & h \end{vmatrix}$$

$$\Rightarrow \det \left[\begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right] = \det \left[\begin{array}{ccc} a & d & g \\ b & e & h \\ c & f & i \end{array} \right].$$

Implications of Theorem 5?

Theorem 3 still holds if the word row is replaced

with ______.

THEOREM 6 (Multiplicative Property)

For $n \times n$ matrices A and B, det(AB) = (det A)(det B).

EXAMPLE: Compute $\det A^3$ if $\det A = 5$.

Solution:
$$\det A^3 = \det(AAA) = (\det A)(\det A)(\det A)$$

EXAMPLE: For $n \times n$ matrices A and B, show that A is singular if $\det B \neq 0$ and $\det AB = 0$.

Solution: Since

$$(\det A)(\det B) = \det AB = 0$$

and

$$\det B \neq 0$$
,

then det A = 0. Therefore A is singular.