Computer Organization Lab5

Name:黄芷柔

ID:110550142

Architecture diagrams:

Hardware module analysis:

在 lab5 中,使用了 lab4 的 Adder, MUX_2to1, MUX_4to1, Decoder, Sign-extend, Shift left 2, ALU control, ALU,新增了 Hazard Detection 跟 Forwarding Unit。Hazard Detection:

偵測是否有 Hazard。如果 branch 有 taken 的話,就把 IF/ID, ID/EX, EX/MEM 的 pipe register 全部 flush;如果 D/EX.MemRead and ((ID/EX.RegisterRt = IF/ID.RegisterRs) or (ID/EX.RegisterRt = IF/ID.RegisterRt)),就 flush ID/EX 的 pipe register,也就是 stall 一個 clock cycle。

Forwarding Unit:

If (EX/MEM.RegWrite and (EX/MEM.RegisterRd \neq 0) and (EX/MEM.RegisterRd = ID/EX.RegisterRs)) , forwardA=10

if (EX/MEM.RegWrite and (EX/MEM.RegisterRd \neq 0) and (EX/MEM.RegisterRd = ID/EX.RegisterRt)) , forwardB=10

if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0) and (MEM/WB.RegisterRd = ID/EX.RegisterRs)) , ForwardA=01

if (MEM/WB.RegWrite and (MEM/WB.RegisterRd \neq 0) and (MEM/WB.RegisterRd = ID/EX.RegisterRt)) ForwardB = 01

其他情况下 Forward=00

在 EX,如果 Forward 是 10,就輸入上個 ALU 的結果(在 MEM);如果 Forward 是 01,就輸入 WB RegisterRd 的 data。

優點:CPU 可以自己解決 hazard 的問題

缺點:由於 decoder 是沿用 lab3,有設計 jump 需要的輸出,在 lab5 不需要寫 jump,所以浪費了一些沒用到的 bit。

Finished part:

Testcase1:

######	##########		###### clk_ 				!##########	###
r0 =	0, r1 =		256, r3 =				24, r7 =	26
r8 =	8, r9 =	1, r10=	0, r11=	0, r12=	0, r13=	0, r14=	0, r15=	0
r16=	0, r17=	0, r18=	0, r19=	0, r20=	0, r21=	0, r22=	0, r23=	0
r24=	0, r25=	0, r26=	0, r27=	0, r28=	0, r29=	0, r30=	0, r31=	0
				=Memorv====				
m0 =	0, m1 =		0, m3 =			0, m6 =	0, m7 =	0
m8 =	0, m9 =	0, m10=	0, m11=	0, m12=	0, m13=	0, m14=	0, m15=	0
m16=	0, m17=	0, m18=	0, m19=	0, m20=	0, m21=	0, m22=	0, m23=	0
m24=	0, m25=	0, m26=	0, m27=	0, m28=	0, m29=	0, m30=	0, m31=	0

Testcase2

######################################											
						16, r6 =	0, r7 =	0			
r8 =	2, r9 =	0, r10=	0, r11=	0, r12=	0, r13=	0, r14=	0, r15=	0			
r16=	0, r17=	0, r18=	0, r19=	0, r20=	0, r21=	0, r22=	0, r23=	0			
r24=	0, r25=	0, r26=	0, r27=	0, r28=	0, r29=	0, r30=	0, r31=	0			
				-Mama ex-							
m0 =	4, m1 =					0, m6 =	0, m7 =	0			
m8 =	0, m9 =	0, m10=	0, m11=	0, m12=	0, m13=	0, m14=	0, m15=	0			
m16=	0, m17=	0, m18=	0, m19=	0, m20=	0, m21=	0, m22=	0, m23=	0			
m24=	0, m25=	0, m26=	0, m27=	0, m28=	0, m29=	0, m30=	0, m31=	0			

兩個 testcase 都跟提供的解答一樣。

Problems you met and solutions:

在測試 testcase2 時,遇到 r2 大於 r5 還一直累加的問題,後來發現問題出在 hazard 沒有把 branch 跟 load-use 分開。除此之外還發現 decoder beq/ bne/ bge/ bgt 沒有寫得很完整,透過這次 lab 修正。

Summary:

實做過 lab 後,我對 Pipelined CPU 解決 Hazard 的方式更加熟悉。