N₁ Produit scalaire

Le **produit scalaire** de \overrightarrow{u} et \overrightarrow{v} , noté $\overrightarrow{u}\cdot\overrightarrow{v}$, (se lit " \overrightarrow{u} scalaire \overrightarrow{v} ") est défini par :

$$\left[\overrightarrow{u}\cdot\overrightarrow{v}=rac{1}{2}\left(||\overrightarrow{u}+\overrightarrow{v}||^2-||\overrightarrow{u}||^2-||\overrightarrow{v}||^2
ight)
ight]$$

P Propriétés

- $\bullet \overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{v} \cdot \overrightarrow{u}$ (commutatif)
- ullet Si $\overrightarrow{u}=\overrightarrow{0}$ ou $\overrightarrow{v}=\overrightarrow{0}$ alors $\overrightarrow{u}\cdot\overrightarrow{v}=0$
- ullet $\overrightarrow{u} \cdot \overrightarrow{u} = \overrightarrow{u}^2$ (carré scalaire)
- ullet $\overrightarrow{u}^2 = ||\overrightarrow{u}||^2$
- Soit ABC un triangle tel que AB=6, AC=5 et BC=8. Calculer $\overrightarrow{BA}\cdot\overrightarrow{AC}$
- Soit EFG un triangle tel que EF=10, FG=3 et EG=8. Calculer $\overrightarrow{GE}\cdot \overrightarrow{EF}$
- Soit TRI un triangle tel que RI=5, RT=6 et IT=4. Calculer $\overrightarrow{IR}\cdot\overrightarrow{TI}$

N₂ Vecteurs orthogonaux

Deux vecteurs \overrightarrow{u} et \overrightarrow{v} sont **orthogonaux** quand $\overrightarrow{u} \cdot \overrightarrow{v} = 0$. On note alors $\overrightarrow{u} \perp \overrightarrow{v}$.

P Propriété

Soient deux vecteurs \overrightarrow{u} et \overrightarrow{v} non nuls et $k \in \mathbb{Z}$.

$$|\overrightarrow{u}\perp\overrightarrow{v}|$$
 si et seulement si $(\overrightarrow{u},\overrightarrow{v})=rac{\pi}{2}+k imes 2\pi$ ou $(\overrightarrow{u},\overrightarrow{v})=-rac{\pi}{2}+k imes 2\pi$

- Soit ABC un triangle tel que AB=5, AC=12 et BC=13. \overrightarrow{BA} et \overrightarrow{AC} sont-ils orthogonaux ?
- Soit EFG un triangle tel que EF=17, FG=8 et EG=15. \overrightarrow{GF} et \overrightarrow{EG} sont-ils orthogonaux ?
- Soit KTD un triangle tel que KT = 18, TD = 54 et KD = 45. \overrightarrow{TK} et \overrightarrow{KD} sont-ils orthogonaux ?
- Soit TRI un triangle tel que RI=24, RT=7 et IT=25. Démontrer que $(\overrightarrow{RT},\overrightarrow{RI})=rac{\pi}{2}$
- Soit MLA un triangle tel que ML=55, LA=73 et MA=48. Démontrer que $(\overrightarrow{ML},\overrightarrow{MA})=-rac{\pi}{2}$
- Soit CXV un triangle tel que CX=77, CV=35 et XV=85. \overrightarrow{CX} et \overrightarrow{CV} sont-ils orthogonaux ?

$n^{\circ}1$ Algorithme et produit scalaire

Ecrire un algorithme qui détermine le produit scalaire de deux vecteurs à partir de leur coordonnées.

n°2 Algorithme et droites perpendiculaires

Ecrire un algorithme :

- ullet demandant à l'utilisateur de saisir les coordonnées de quatre points $m{A}$, $m{B}$, $m{C}$ et $m{D}$;
- ullet affichant en sortie si les droites (AB) et (CD) sont perpendiculaires ou si elles ne le sont pas.

Produit scalaire et coordonnées

P Propriété

Dans un repère orthonormé du plan , soient $\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$, on alors : $(\overrightarrow{u}, \overrightarrow{v}) = xx' + yy'$

Calculer le produit scalaire de \overrightarrow{u} et \overrightarrow{v}

$$\overrightarrow{u} \stackrel{ op}{\left(rac{-2}{3}
ight)}$$
 et $\overrightarrow{v} \left(rac{7}{-5}
ight)$

$$\begin{array}{c|c} & \overrightarrow{u} \begin{pmatrix} -2 \\ 3 \end{pmatrix} \text{ et } \overrightarrow{v} \begin{pmatrix} 7 \\ -5 \end{pmatrix} \end{array} \qquad \begin{array}{c} & \overrightarrow{u} \begin{pmatrix} 15 \\ -8 \end{pmatrix} \text{ et } \overrightarrow{v} \begin{pmatrix} 6 \\ -9 \end{pmatrix}$$

$$egin{array}{c}
ightarrow u \left(egin{array}{c} -1 \ -2 \end{array}
ight) ext{ et } \overrightarrow{v} \left(egin{array}{c} -3 \ -4 \end{array}
ight)$$

$$\stackrel{4}{u}\stackrel{
ightarrow}{u}\left(egin{array}{c} \sqrt{3} \ -7 \end{array}
ight)$$
 et $\stackrel{
ightarrow}{v}\left(egin{array}{c} \sqrt{2} \ -\sqrt{6} \end{array}
ight)$

$$\overrightarrow{u}$$
 $\begin{pmatrix} \sqrt{3}-2 \\ 6 \end{pmatrix}$ et \overrightarrow{v} $\begin{pmatrix} \sqrt{3}+2 \\ 1 \end{pmatrix}$

$$\overrightarrow{u}=\overrightarrow{AB} ext{ et } \overrightarrow{v} \left(egin{array}{c} \sqrt{6} \ 2 \end{array}
ight), \ A(\sqrt{24}+5;1) ext{ et } B(5;\sqrt{2})$$

Orthogonalité et angles orientés

P Propriété

Soient deux vecteurs \overrightarrow{u} et \overrightarrow{v} non nuls et $k \in \mathbb{Z}$.

$$\overrightarrow{u}\perp\overrightarrow{v}$$
 si et seulement si $(\overrightarrow{u},\overrightarrow{v})=rac{\pi}{2}+k imes 2\pi$ ou $(\overrightarrow{u},\overrightarrow{v})=-rac{\pi}{2}+k imes 2\pi$

Droites perpendiculaire

Deux droites du plan sont perpendiculaires si et seulement si un vecteur directeur de l'une est orthogonal à un vecteur directeur de l'autre.

- Soient quatre points A(-1;2), B(5;0), C(3;4) et D(6;13). Montrer que les droites (AB) et (CD)sont perpendiculaires.
- Soient quatre points E(1;3), F-2;-2, G(3;1) et H(13;-5). Montrer que les droites (EF) et (GH) sont perpendiculaires.
- Soient deux droites (d_1) et (d_2) d'équations respectives 2x + 3y + 8 = 0 et -6x + 4y + 10 = 0. Montrer que $(d_1$ est perpendiculaire à (d_2) .
- Soient deux droites (d_1) et (d_2) d'équations respectives -7x + 6y 1 = 0 et y = -5x + 8. (d_1) et (d_2) sont-elles perpendiculaires?

N₅ Distributivité

P Propriétés

Soient k et k' deux réels et \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} trois vecteurs :

$$\bullet \ \overrightarrow{u} \cdot (\overrightarrow{v} + \overrightarrow{w}) = \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{w}$$

$$ullet (k\overrightarrow{u})\cdot (k'\overrightarrow{v}) = (k imes k')\overrightarrow{u}\cdot \overrightarrow{v}$$

$$\bullet \ (-\overrightarrow{u}) \cdot \overrightarrow{v} = \overrightarrow{u} \cdot (-\overrightarrow{v}) = -\overrightarrow{u} \cdot \overrightarrow{v}$$

Développer puis exprimer les produits scalaires en fonction de $||\overrightarrow{u}||$, $||\overrightarrow{v}||$ et $\overrightarrow{u} \cdot \overrightarrow{v}$

$$2 -2\overrightarrow{u}\cdot (-\overrightarrow{v}+2\overrightarrow{u})$$

$$(5\overrightarrow{u} - 4\overrightarrow{v}) \cdot (-\overrightarrow{v} + \overrightarrow{u})$$

$$\boxed{ 4 \quad (-2\overrightarrow{v} + 3\overrightarrow{u}) \cdot (4\overrightarrow{u} - 5\overrightarrow{v})}$$

N₆ Identités remarquables

P Propriétés

$$igg|_{ullet} (\overrightarrow{u} + \overrightarrow{v})^2 = \overrightarrow{u}^2 + \overrightarrow{v}^2 + 2\overrightarrow{u} \cdot \overrightarrow{v}$$

$$\bullet \ (\overrightarrow{u} - \overrightarrow{v})^2 = \overrightarrow{u}^2 + \overrightarrow{v}^2 - 2\overrightarrow{u} \cdot \overrightarrow{v}$$

$$\bullet \ (\overrightarrow{u} + \overrightarrow{v}) \cdot (\overrightarrow{u} - \overrightarrow{v}) = \overrightarrow{u}^2 - \overrightarrow{v}^2$$

$$\bullet \ ||\overrightarrow{u} + \overrightarrow{v}||^2 = ||\overrightarrow{u}||^2 + ||\overrightarrow{v}||^2 + 2\overrightarrow{u} \cdot \overrightarrow{v}$$

$$\bullet \ ||\overrightarrow{u} - \overrightarrow{v}||^2 = ||\overrightarrow{u}||^2 + ||\overrightarrow{v}||^2 - 2\overrightarrow{u} \cdot \overrightarrow{v}$$

$$\bullet \ (\overrightarrow{u} + \overrightarrow{v}) \cdot (\overrightarrow{u} - \overrightarrow{v}) = ||\overrightarrow{u}||^2 - ||\overrightarrow{v}||^2$$

Développer puis exprimer les produits scalaires en fonction de $||\overrightarrow{u}||$, $||\overrightarrow{v}||$ et $\overrightarrow{u} \cdot \overrightarrow{v}$

$$\boxed{1 \quad (5\overrightarrow{u} + 4\overrightarrow{v})^2}$$

$$(5\overrightarrow{u} + 4\overrightarrow{v}) \cdot (5\overrightarrow{u} - 4\overrightarrow{v})$$

$$(-\overrightarrow{u}-5\overrightarrow{v})^2$$

$$(2\overrightarrow{u}-3\overrightarrow{v})^2$$

N_7 Théorème de la médiane

T Théorème

P Propriétés

Soient $m{A}$ et $m{B}$ deux points distincts du plan et $m{I}$ le milieu de $[m{A}m{B}]$. Pour tout point $m{M}$ du plan :

$$MA^2 + MB^2 = 2MI^2 + rac{AB^2}{2}$$

Démontrer le théorème de la médiane.

N₈ Produit scalaire et cosinus

• Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs non nuls : $\overrightarrow{u} \cdot \overrightarrow{v} = ||\overrightarrow{u}|| \times ||\overrightarrow{u}|| \times \cos(\overrightarrow{u}, \overrightarrow{v})$

ullet Soient trois points A , B et C distincts du plan : $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times \cos{(\widehat{BAC})}$

Calculer $\overrightarrow{u} \cdot \overrightarrow{v}$ avec :

a)
$$||\overrightarrow{u}||=5$$
, $||\overrightarrow{v}||=2$ et $\cos{(\overrightarrow{u},\overrightarrow{v})}=0,1$

b)
$$||\overrightarrow{u}|| = 5$$
, $||\overrightarrow{v}|| = 8$ et $(\overrightarrow{u}, \overrightarrow{v}) = \frac{\pi}{6}$ (2π)

(c)
$$||\overrightarrow{u}|| = 7$$
, $||\overrightarrow{v}|| = 2$ et $(\overrightarrow{u}, \overrightarrow{v}) = \frac{5\pi}{2}$ (2π)

$$(\overrightarrow{u},\overrightarrow{v})=rac{5}{6},\ ||\overrightarrow{v}||=rac{\sqrt{3}}{8}$$
 et $(\overrightarrow{u},\overrightarrow{v})=-rac{5\pi}{6}\ (2\pi)$

e)
$$||\overrightarrow{u}|| = 9$$
, $||\overrightarrow{v}|| = 6$ et $\overrightarrow{u} = -1, \overrightarrow{5v}$

f)
$$||\overrightarrow{u}|| = 2\sqrt{2}$$
, $||\overrightarrow{v}|| = \sqrt{8}$ et $(\overrightarrow{u}, \overrightarrow{v}) = \pi (2\pi)$

g)
$$||\overrightarrow{u}|| = \sqrt{2} + 1$$
 et $\overrightarrow{u} = \sqrt{3}\overrightarrow{v}$

Soient
$$R(-1;-2)$$
, $S(5;-4)$ et $T(3;6)$.

Déterminer une mesure de \widehat{SRT} .

$$ABC$$
 est un triangle tel que $AB=5$; $BC=6$ et $\widehat{ABC}=60^\circ$

- a) Faire une figure.
- b) Calculer $\overrightarrow{BA} \cdot \overrightarrow{BC}$ et $\overrightarrow{CA} \cdot \overrightarrow{CB}$
- Soient A(0;0), B(5;1) et C(2;4)
 - a) Calculer $\overrightarrow{AB} \cdot \overrightarrow{AC}$. \overrightarrow{AB} et \overrightarrow{AC}
 - **b)** En déduire une mesure de l'angle \widehat{BAC} .
- ABC est un triangle tel que AB = 7, BC = 8 et AC = 12.
 - a) Calculer $\overrightarrow{AB} \cdot \overrightarrow{AC}$
 - **b)** En déduire une mesure de l'angle \widehat{BAC} .
 - Soient M(0;2), N(2;-2) et A(-3;1).

Déterminer une mesure de \widehat{MNA} .

Produit scalaire et colinéarité

P Propriété

 $ec{\mathsf{Si}} \stackrel{oldsymbol{ o}}{oldsymbol{u}}$ et $\stackrel{oldsymbol{ o}}{oldsymbol{v}}$ sont colinéaires alors :

- \bullet $\overrightarrow{u} \cdot \overrightarrow{v} = ||\overrightarrow{u}|| \times ||\overrightarrow{v}||$ si \overrightarrow{u} et \overrightarrow{v} sont de même sens
- $|\bullet \overrightarrow{u} \cdot \overrightarrow{v} = -||\overrightarrow{u}|| \times ||\overrightarrow{v}||$ si \overrightarrow{u} et \overrightarrow{v} sont de sens opposé

Démontrer la propriété précédente.

N_{10} Projection orthogonale

D Projeté orthogonal

Dans le plan, soient une droite (AB) et un point $C \notin (AB)$. H, projeté orthogonal de C sur (AB), est l'intersection de (AB) et de la perpendiculaire à (AB) passant par C.

P Propriété

Soient A, B et C trois points distincts du plan et H le projeté orthogonal de C sur (AB). On a :

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot \overrightarrow{AH}$$

On considère un carré \overrightarrow{ABCD} de côté 2 et I le milieu de [AB]. Calculer $\overrightarrow{AB} \cdot \overrightarrow{AC}$ puis $\overrightarrow{IC} \cdot \overrightarrow{BI}$

N₁₁ Vecteur normal

D Vecteur normal

Dans le plan, un vecteur non nul \overrightarrow{n} est **normal** à une droite (d) quand il est orthogonal à un vecteur directeur de la droite (d).

P Propriété

Dans un repère orthonormé du plan, soient deux réels $a \neq 0$ et $b \neq 0$.

- ullet La droite d'équation cartésienne ax+by+c=0 admet $\overrightarrow{n} \left(egin{array}{c} a \\ b \end{array}
 ight)$ pour vecteur normal.
- ullet Réciproquement, une droite qui a pour vecteur normal $\overrightarrow{n} \left(egin{array}{c} a \\ b \end{array}
 ight)$ a pour équation cartésienne ax+by+c=0 .

Donner un vecteur normal à la droite :

- a) (d_1) d'équation 2x-3y+5=0
- **b)** (d_2) d'équation 12x-3y=2
- c) (d_3) d'équation y=7x-3
- d) (d_4) d'équation y=-1
- $\mathbf{e})\left(d_{5}
 ight)$ d'équation x=5

Déterminer une équation de la droite de vecteur normal \overrightarrow{u} et passant par M :

a)
$$\overrightarrow{u}$$
 $\begin{pmatrix}1\\3\end{pmatrix}$ et $M(2;-5)$

- b) $\overrightarrow{u} \left(egin{array}{c} 0 \ 2 \end{array}
 ight)$ et M(-3;6)
- c) \overrightarrow{u} $\begin{pmatrix}10\\0\end{pmatrix}$ et M(2;-3)
- d) $\overrightarrow{u}\left(rac{\sqrt{2}}{\sqrt{3}}
 ight)$ et M(7;8)

N_{12} | Equation de cercle

Propriétés

Dans un repère orthonormé du plan : ullet Le cercle (\mathcal{C}) de centre $A(x_A;y_A)$ et de rayon r a pour équation :

$$\overline{(x-x_A)^2+(y-y_A)^2=r^2}$$

ullet Le cercle (\mathcal{C}) de diamètre [AB] est l'ensemble des points M vérifiant :

$$\overrightarrow{MA} \cdot \overrightarrow{MB} = 0$$

- Soient A(2;3) et B(5;-1). Déterminer une équation de (\mathcal{C}) , cercle de diamètre [AB].
- Soient G(1;5) et C(-2;1). Déterminer une équation de (\mathcal{C}) , cercle de rayon [GC].

$n^{\circ}3$ Aire de ABC

On considère trois points A(-1;1), B(2;2) et C(0;7) et B' le pied de la hauteur issue de B dans ABC.

- $\overrightarrow{CA} \cdot \overrightarrow{CB}$ en fonction de CB'
- $oxed{2}$ En déduire $\emph{CB'}$ puis $\emph{BB'}$
- 3 Calculer l'aire de *ABC*

n°4 Développements

On considère deux vecteurs \overrightarrow{u} et \overrightarrow{v} tels que : $\overrightarrow{u} \cdot \overrightarrow{v} = 4$, $||\overrightarrow{u}|| = 3$ et $||\overrightarrow{v}|| = 2$.

- Calculer $(\overrightarrow{u} + \overrightarrow{v})^2 (\overrightarrow{u} \overrightarrow{v})^2$
- Calculer $||2\overrightarrow{u} 3\overrightarrow{v}||^2 + ||4\overrightarrow{u} + 5\overrightarrow{v}||^2$

n°5 Rectangle ABCD

On considère un rectangle ABCD avec AB=5 et AD=3, E un point quelconque de [AD] et F un point quelconque de [BC]. Soit G un point de [CD]

- lacktriangledown Calculer $\overrightarrow{AB}\cdot\overrightarrow{EF}$
- $\overrightarrow{AB} \cdot \overrightarrow{EG}$ en fonction de DG
- $\overrightarrow{AD} \cdot \overrightarrow{GF}$ en fonction de BF

n°6 Tangentes perpendiculaires

On considère les fonctions f et g définies sur \mathbb{R}^* par : $f(x)=rac{1}{x}$ et $g(x)=-rac{1}{x}$

Les courbes représentatives de f et g admettent-elles des tangentes perpendiculaires ? Si oui, préciser lesquelles.

$n^{\circ}7$ Intersection droites et cercle

Déterminer les points d'intersection éventuels du cercle d'équation $(x+5)^2+y^2=9$ et de la droite :

- $oxed{2}$ (d_2) d'équation 3x+y=5.

n°8 Quelques configurations

- \overrightarrow{ABCD} est un parallélogramme avec $\overrightarrow{AB}=4$, $\overrightarrow{AD}=3$ et $\overrightarrow{AC}=6$. Calculer $\overrightarrow{AC}\cdot\overrightarrow{DA}$.
- ABCD est un parallélogramme avec $AB=a\ (a\in\mathbb{R})$ et I est à la fois le milieu de [AB] et le projeté orthogonal de C sur (AB). Calculer $\overrightarrow{AB}\cdot\overrightarrow{AC}$.
- \overrightarrow{ABCD} est un losange de côté $\overrightarrow{4}$ et vérifiant $\widehat{BAD} = 60^\circ$. Calculer $\overrightarrow{AB} \cdot \overrightarrow{AC}$.
- \overrightarrow{ABCD} est un carré de côté 1 et I est le milieu de [DC] et J est le milieu de [AD]. Calculer $\overrightarrow{JI} \cdot \overrightarrow{BI}$.
- \overrightarrow{ABCD} est un parallélogramme avec $\overrightarrow{AB}=5$ et $\overrightarrow{BD}=8$ et $\overrightarrow{ABD}=20^\circ$. Calculer $\overrightarrow{BA}\cdot\overrightarrow{BD}$, arrondir à 0,1 près.

$n^{\circ}9$ Un autre rectangle ABCD

On considère un rectangle ABCD tel que AB=4 et AD=3. Le point E appartient à [CB] tel que EC=1. On cherche à déterminer où placer le point F de [CD] tel que (DE) et (AF) soient perpendiculaires.

- 1 Faire une figure.
- 2 Calculer $(\overrightarrow{DC} + \overrightarrow{CE}) \cdot (\overrightarrow{AD} + \overrightarrow{DF})$
- En déduire que le point F de [CD] tel que (DE) et (AF) soient perpendiculaires vérifie : $DF=rac{3}{4}$

$n^{\circ}10$ Distance d'un point à une droite

On dit que la distance entre une droite (d) et un point A du plan est la longueur AA' où A' est le projeté orthogonal de A sur (d).

- Formule explicite. On considère une droite (d) d'équation ax + by + c = 0 et un point $A(x_A; y_A)$. a, b, c, x_A et y_A sont des réels.
 - a) Dans un repère du plan, tracer une droite (d) quelconque, un point A extérieur à (d) et $A'(x_{A'};y_{A'})$ son projeté orthogonal sur (d).
 - b) Soit \overrightarrow{n} le vecteur normal à (d). Montrer que : $|\overrightarrow{n}\cdot \overrightarrow{AA'}| = AA'\sqrt{a^2+b^2}$
 - c) Exprimer $\overrightarrow{n} \cdot \overrightarrow{AA'}$ en fonction de a, b, x_A , y_A , $x_{A'}$ et $y_{A'}$.
 - **d)** Justifier que $-ax_{A'}-by_{A'}=c$
 - e) En déduire que la distance entre A et (d) est égale à : $\dfrac{|ax_A+by_A+c|}{\sqrt{a^2+b^2}}$
- Application. Soit trois points F(0;6), G(2;-1) et H(-1;3).
 - a) Déterminer une équation de (FG).
 - b) En déduire la distance de H à (FG).
 - c) Calculer l'aire de FGH.
- Algorithme. Ecrire un algorithme :
 - ullet demandant à l'utilisateur de rentrer les coordonnées des points $m{A}$, $m{B}$ et $m{C}$.
 - ullet affichant la distance de C à (AB).

Vérifier la validité de cet algorithme en utilisant les points de la question 2

n°11 Démonstration

En utilisant le produit scalaire, pour deux réels a et b, démontrer que : $\cos{(a-b)} = \cos{a}\cos{b} + \sin{a}\sin{b}$