Control flow optimization

- Control flow (if, while, etc.) = JUMPs and
 CJUMPs in intermediate code
- How can we reduce the number of JUMPs and CJUMPs executed?

Basic blocks

Intermediate code can be divided into basic blocks.

Basic block:

a sequence of statements with no branching to any statement in the block (except the first) or from any statement in the block (except the last).

In IR tree form:

Basic block:

a sequence of statements beginning with a LABEL statement and ending with a JUMP or CJUMP statement.

Dividing an IR tree program into basic blocks

```
add new label to first statement of program;
put this in new basic block;

for each statement in program {
   LABEL(L):
    if (current basic block doesn't end with JUMP or CJUMP) {
      add a JUMP(L) statement to end of current basic block;
    }
    start a new basic block;
    add this LABEL statement to current basic block;
   JUMP or CJUMP statement:
    add this statement to end of current basic block;
   start a new basic block;
   else:
    add this statement to the current basic block;
}
```

Basic block example

```
z = 0;
n = y;
while (n > 0) {
   z = z + x;
   n = n - 1;
}
prod = z;
```

Intermediate (IR tree) code:

MOVE(z, 0)	в0
MOVE(n, y)	
JUMP(NAME(L1))	
LABEL(L1)	B1
CJUMP(>, n, 0, NAME(L2), NAME(L3));	
LABEL(L2)	В2
MOVE(z, +(z, x))	
MOVE(n, -(n, 1))	
JUMP(NAME(L1))	
LABEL(L3)	В3
MOVE(prod, z)	
JUMP(end)	

(Control) flow graphs

Show structure of a program composed of basic blocks.

Flow graph: directed graph whose

- nodes are basic blocks
- edges show control flow between basic blocks:
 edge from A to B if A ends with JUMP or CJUMP to label that begins B.

Flow graph for example program:

Basic blocks can be in any order.

But for efficiency:

- each block should be followed by a successor in the flow graph:
 - block ending with JUMP(L) should be followed by block beginning with LABEL(L)

• block ending with CJUMP(..., ..., L1, L2) should be followed by block beginning with LABEL(L1) *or* block beginning with LABEL(L2)

Traces

Trace:

sequence of statements executed by a program

- = sequence of basic blocks executed by a program
- = sequence of basic blocks $b_1, ..., b_n$ in which each b_i 's successor is b_{i+1} .

To order basic blocks efficiently:

- 1. find a small set of nonoverlapping traces that cover the program
- 2. place traces in any order in final program

Dividing flow graph into nonoverlapping traces

```
put all basic blocks into list q;
create new empty trace t;
move first block b from q to t;
while (q not empty) {
  if (q contains a successor of b)
    c = any successor of b in q;
  or {
    end trace t;
    c = any block in q;
    create new empty trace t;
  }
  move c from q to t;
}
end trace t;
```

Traces example

Example flow graph: three ways to divide into two traces:

```
Trace 1
                                   Trace 2
[B0, B1, B2]
                                   [B0, B1, B3]
[B3]
                                   [B2]
                                   MOVE(z, 0)
MOVE(z, 0)
MOVE(n, y)
                                   MOVE(n, y)
                                   JUMP (NAME (L1))
JUMP (NAME (L1))
LABEL(L1)
                                   LABEL(L1)
CJUMP(>,n,0,NAME(L2),NAME(L3))
                                   CJUMP(>,n,0,NAME(L2),NAME(L3))
LABEL(L2)
                                   LABEL(L3)
MOVE(z, +(z, x))
                                   MOVE(prod, z)
MOVE(n, -(n, 1))
                                   JUMP (end)
JUMP (NAME (L1))
                                   LABEL(L2)
                                   MOVE(z, +(z, x))
LABEL(L3)
MOVE(prod, z)
                                   MOVE(n, -(n, 1))
JUMP (end)
                                   JUMP (NAME (L1))
```

```
Trace 3
[B0]
[B2, B1, B3]

MOVE(z, 0)
MOVE(n, y)
JUMP(NAME(L1))
LABEL(L2)
MOVE(z, +(z, x))
MOVE(n, -(n, 1))
JUMP(NAME(L1))
LABEL(L1)
CJUMP(>,n,0,NAME(L2),NAME(L3))
LABEL(L3)
MOVE(prod, z)
JUMP(end)
```

One jump is eliminated by canonicalization.

Last set of traces is the most efficient. Why?

Quadruple optimizations

Several optimizations can be done at the quadruples level:

- dead code elimination
- constant propagation
- copy propagation
- common subexpression elimination
- algebraic optimizations
- loop optimizations

Dead code elimination

Dead code:

```
quadruple
```

```
s: a = b op c
```

such that a is not subsequently used.

Do liveness analysis on quadruples:

- s is dead code if $a \notin out(s)$.
- dead code can be deleted

Optimization: constant propagation

If we have two quadruples

```
d: t = c
u: y = t op x
```

where c is a constant, maybe we can replace u

```
u: y = c op x
```

But how do we know that t (in u) has value c?

Constant propagation

where c is a constant.

We can replace *u*:

$$u: y = c op x$$

Conditions:

- 1. Definition d reaches u
- 2. No other definitions of t reach u

Reaching definitions

A definition

```
d: t = ...
```

reaches statement u if there is a path (of control flow) from d to u that does not contain a definition of t.

in(s) = set of definitions that reach the beginning of (statement) s out(s) = set of definitions that reach the end of (statement) s

In a program, each statement

- **generates** some definitions
- **kills** some definitions

gen(s) = set of definitions generated by statement s

kill(s) = set of definitions killed by statement s

For any assignment (to a temporary) s: t = ...

$$gen(s) = \{s\}$$
 $kill(s) = defs(t) - \{s\}$

For any other quadruple:

$$gen(s) = \{\}$$
 $kill(s) = \{\}$

Algorithm:

1. For each statement *n*:

$$out(n) = in(n) = \{\}$$

2. Repeat

For each statement *n*:

$$in'(n) = in(n)$$
 $out'(n) = out(n)$
 $in(n) = \bigcup_{p \in pred(n)} out(p)$
 $out(n) = gen(n) \cup in(n) - kill(n)$
until $in'(n) == in(n) && out'(n) == out(n)$ for all n

Example: Fibonacci program

<u>s</u>		gen(s)	kill(s)
0:	max = 1000	{0}	{}
1:	x = 0	$\{1\}$	{5}
2:	y = 1	{2}	{6}
3:	if (y > max) goto 8	{}	{}
4:	z = x + y	$\{4\}$	{}
5:	x = y	{5}	{1}
6:	y = z	{6}	{2}
7:	goto 3	{ }	{ }
8:	write(y)	{}	{ }

1st iteration:

```
in(0) = \{\}
out(0) = \{0\}
in(1) = \{0\}
out(1) = \{0, 1\}
in(2) = \{0, 1\}
out(2) = \{0, 1, 2\}
in(3) = out(2) \cup out(7) = \{0, 1, 2\} \cup \{\}
out(3) = \{0, 1, 2\}
in(4) = \{0, 1, 2\}
out(4) = \{0, 1, 2, 4\}
in(5) = \{0, 1, 2, 4\}
out(5) = \{0, 2, 4, 5\}
in(6) = \{0, 2, 4, 5\}
out(6) = \{0, 4, 5, 6\}
in(7) = \{0, 4, 5, 6\}
out(7) = \{0, 4, 5, 6\}
in(8) = \{0, 1, 2\}
out(8) = \{0, 1, 2\}
```

2nd iteration:

```
in(0) = \{\}
out(0) = \{0\}
in(1) = \{0\}
out(1) = \{0, 1\}
in(2) = \{0, 1\}
out(2) = \{0, 1, 2\}
in(3) = out(2) \cup out(7) = \{0, 1, 2\} \cup \{0, 4, 5, 6\} = \{0, 1, 2, 4, 5, 6\}
out(3) = \{0, 1, 2, 4, 5, 6\}
in(4) = \{0, 1, 2, 4, 5, 6\}
out(4) = \{0, 1, 2, 4, 5, 6\}
in(5) = \{0, 1, 2, 4, 5, 6\}
out(5) = \{0, 2, 4, 5, 6\}
in(6) = \{0, 2, 4, 5, 6\}
out(6) = \{0, 4, 5, 6\}
in(7) = \{0, 4, 5, 6\}
out(7) = \{0, 4, 5, 6\}
in(8) = \{0, 1, 2, 4, 5, 6\}
out(8) = \{0, 1, 2, 4, 5, 6\}
```

Constant propagation (contd.)

 $0: \max = 1000$

is the only definition of max, and 0 reaches

3: if (y > max) goto 8

so max can be replaced by 1000 in 3.

Can't replace y in 3 because both definitions of y (2 & 6) reach 3.

Optimization: copy propagation

If there is a quadruple

$$d: t = z$$

where z is a variable, and a quadruple

$$u: y = t op x$$

u can be replaced by

$$u: y = z op x$$

Conditions:

- 1. Definition d reaches u
- 2. No other definitions of t reach u
- 3. No definition of z on path from d to u