

Multi-start local search for the traveling salesman problem

Jorge E. Mendoza

Department of Computer Science
Polytech Tours
France

The traveling salesman problem (TSP)

Definition

"Given a collection of cities and the cost of travel between each pair of them, the **traveling salesman problem**, or **TSP** for short, is to find the cheapest way of visiting all of the cities and returning to your starting point."

 The TSP is an NP-complete problem (i.e., we do not know a "good" algorithm to solve it)

Source: xkcd.com

 The TSP is an NP-complete problem (i.e., we do not know a "good" algorithm to solve it)

Largest TSP solved to optimality 85,900 cities

Solved with the Concorde algorithm in 2006

- The TSP is an NP-complete problem (i.e., we do not know a "good" algorithm to solve it)
- Solution approaches
 - Dynamic programming
 - Constraint programming
 - Constructive heuristics
 - Metaheuristics

- The TSP is an NP-complete problem (i.e., we do not know a "good" algorithm to solve it)
- Solution approaches
 - Dynamic programming
 - Constraint programming
 - Constructive heuristics
 - Metaheuristics
 - Local Search-based
 - Genetic Algorithms
 - Large Neighborhood Search

- The TSP is an NP-complete problem (i.e., we do not know a "good" algorithm to solve it)
- Solution approaches
 - Dynamic programming
 - Constraint programming
 - Constructive heuristics
 - Metaheuristics
 - Local Search-based
 - Genetic Algorithms
 - Large Neighborhood Search

- Start from an initial solution
- Apply small changes to the solution
- Check if the solution improves
- Repeat until some stopping criterion is met
- Main "ingredients"
 - Solution representation
 - Neighborhood Scheme
 - Stopping criterion
 - Initial solution generator

Solution representation: better with an example

Solution representation for the TSP

Alternative 1: the index of the positions of an array of integers indicates the visiting order of the city represented by the integer inside the position

0	1	2	3	4	5
0	3	1	5	4	2

Solution representation: better with an example

Solution representation for the TSP

Alternative 1: the index of the positions of an array of integers indicates the visiting order of the city represented by the integer inside the position

0	1	2	3	4	5
0	3	1	5	4	2

Alternative 2:?

Solution representation: better with an example

Solution representation for the TSP

Alternative 1: the index of the positions of an array of integers indicates the visiting order of the city represented by the integer inside the position

0	1	2	3	4	5
0	3	1	5	4	2

Alternative 2: the positions of the array represent the cities and the integer inside each position indicates what city comes next in the tour

0	1	2	3	4	5
3	5	0	1	2	4

Solution representation

The solution/search space

Solution representation

Key aspects

- Completeness: all solutions associated with the problem must be represented
- Connexity: a search path must exist between any two solutions of the search space. Any solution of the search space, especially the global optimum solution, can be attained
- **Efficiency:** the representation must be easy to manipulate by search operators. The time and space complexities of the operators dealing with the representation should be as low as possible

Neighborhood and neighbor solutions

Neighborhood:

Let S be the set of all solutions that form the solution space. A neighborhood function N is a mapping $N: S \rightarrow 2^S$ that assigns to each solution s of S a set of solutions $N(s) \subseteq S$.

Neighborhood and neighbor solutions

Neighborhood:

Let S be the set of all solutions that form the solution space. A neighborhood function N is a mapping $N: S \rightarrow 2^S$ that assigns to each solution s of S a set of solutions $N(s) \subseteq S$.

Neighbor:

A neighbor is a solution s' in the neighborhood of s (s' \in N(s)).

A neighbor is generated by the application of a *move* operator m that performs a small perturbation to the solution s

Swap move: given two cities, exchange their positions in the tour

Swap move: given two cities, exchange their positions in the tour

swapNeighborhood(s)

$$N = \{\}$$

for $i = 0$ to $n - 1$ do
for $j = i + 1$ to $n - 1$ do
 $s' = swap(s, i, j)$
 $N = N \cup s'$
end for
end for
return N

Re-locate move: extract a city from the tour and re-insert it on a different position

Re-locate move: extract a city from the tour and re-insert it on a different position

Re-locate move: extract a city from the tour and re-insert it on a different position

relocateNeighborhood(s)

$$N = \{\}$$

for $i = 0$ to $n - 1$ do

 $v = s_i$
 $s' = s \setminus v$

for $a = 1$ to $|s'|$ do

 $s'' = relocate(s', v, a)$
 $N = N \cup s''$

end for

end for

return N

20pt move: eliminate 2 non-adjacent arcs and reconnect the tour

20pt move: eliminate 2 non-adjacent arcs and reconnect the tour

20pt move: eliminate 2 non-adjacent arcs and reconnect the tour

twoOptNeighborhood(s)

7

Local optima

Local optimum:

Relatively to neighborhood N, a solution $s \in S$ is a local optimum if it has a better quality than all its neighbors; that is, $f(s) \le f(s')$ for all $s' \in N(s)$

A local optimum for a neighborhood N_1 may not be a local optimum for a different neighborhood N_2 !!!!!

Principle: pure descent

- Create a starting solution s
- Explore the neighborhood for a better solution
- If you find a better solution, explore the neighborhood of that solution looking for a better one
- Repeat until you get trap in a local optimum

Exploring neighborhoods: first vs. best improvement

Best improvement:

- Explore the entire neighborhood
- Move the search to the best solution found
- Start over

First improvement:

- Explore the neighborhood until you find an improving solution
- Move the search to that solution
- Start over

Exploring neighborhoods: first vs. best improvement

General framework

```
Step 1 (initialization)
```

- a) choose an initial solution $s \in S$
- b) $s^* \leftarrow s$ (i.e. record the best solution found so far)

step 2 (choice)

- a) choose $s' \in N(s)$
- b) $s \leftarrow s'$ (i.e. replace s by s')

step 3 (update & termination)

- a) $s^* \leftarrow s$ if $f(s) < f(s^*)$
- b) if the stop test is verified terminate and return s*; otherwise go to 2

Choosing an initial solution: some ideas

- Random initialization
- Constructive heuristic
- Partially constructed + random completion

Stopping criteria: some ideas

- Maximum number of iterations
- A number of iterations without improvement
- The improvement gap between two iterations is lower than a given constant
- Reach of an objective function target
- Maximum number of objective function evaluations
- Time limit

General framework

Step 1 (initialization)

- a) choose an initial solution $s \in S$
- b) $s^* \leftarrow s$ (i.e. record the best solution found so far)

step 2 (choice)

- a) choose $s' \in N(s)$
- b) $s \leftarrow s'$ (i.e. replace s by s')

The million-dollar question: how do we escape local optima?

step 3 (update & termination)

- a) $s^* \leftarrow s$ if $f(s) < f(s^*)$
- b) if the stop test is verified terminate and return s*; otherwise go to 2

Escaping local optima

- Changing neighborhood structures
 - Variable neighborhood descent/search
- Starting from different solutions
 - Multi-start local search, GRASP
- Allow hill climbing moves
 - Tabu Search, Simulated Annealing
- Jumping to a different search region
 - Iterated local search

Multi-start Local Search

```
Step 1 (initialization)
```

- a) choose an initial solution $s \in S$
- b) $s^* \leftarrow s$ (i.e. record the best solution found so far)

step 2 (choice)

- a) choose $s' \in N(s)$
- b) $s \leftarrow s'$ (i.e. replace s by s')

step 3 (update & termination)

- a) $s^* \leftarrow s$ if $f(s) < f(s^*)$
- b) if the stop test is verified go to 3c; otherwise go to 2
- c) If the second stop test is verified terminate and return s*; otherwise go to 1

Multi-start Local Search and GRASP

Multi-start Local Search

- Classic approach: Start from a randomly generated solution
- Alternative: start from a solution generated by a different heuristic each time

Multi-start local search

Pseudocode

```
mls(){
s* = generateRandomSolution()
while(!stop())
      s = generateRandomSolution()
      s' = localSearch(s)
      if(f(s')<f(s*)
            S^*=S
end while
return s*
```


Multi-start local search

Pseudocode

```
localSearch(s){
continue=true
while(continue)
      s' = exploreNeighborhood(s)
      if(f(s')<f(s))</pre>
             S=S^{\prime}
      else
             continue=false
end while
return s
```


Multi-start local search

Pseudocode

```
exploreNeighborhood(s){
s^* = s
for(i=0 to s.size)
       for(j=0 to s.size)
               s'=swap(i,j,s) //control special cases (e.g., i=j)
               if(f(s') < f(s^*))
                       s^*=s'
       end for
end for
return s*
```


Your assignment

- Design a parallel version of the multi-start local search algorithm for the TSP (there are plenty of opportunities!)
- Implement your algorithm in Java
- Conduct a small computational study on standard instances
 - How much can you speed up your computations?
 - What is the best configuration for your algorithm?
 - Number of threads?
 - Number of tasks?