Classical and Quantum Algorithms for Variants of Subset-Sum via Dynamic Programming

J. Allcock, Y. Hamoudi, A. Joux, F. Klingelhöfer, and M. Santha

arXiv:2111.07059

The Problems

SUBSET-SUM

Input: Multiset $\{a_1, ..., a_n\}$ and target m *Output*: $S \subseteq \{1, ..., n\}$ such that $\sum_{i \in S} a_i = m$

SHIFTED-SUMS

Input: Multiset $\{a_1, ..., a_n\}$ and shift s

Output: $S_1 \neq S_2 \subseteq \{1, ..., n\}$ s.t. $\sum_{i \in S_1} a_i + s = \sum_{i \in S_2} a_i$

Special cases of SHIFTED-SUMS:

EQUAL-SUMS

Input: Set $\{a_1, \ldots, a_n\}$

Output: $S_1 \neq S_2 \subseteq \{1, ..., n\}$ s.t. $\sum_{i \in S_1} a_i = \sum_{i \in S_2} a_i$

PIGEONHOLE EQUAL-SUMS

Input: Set $\{a_1, ..., a_n\}$ s.t. $\sum_{i=1}^n a_i < 2^n - 1$

Output: $S_1 \neq S_2 \subseteq \{1, ..., n\}$ s.t. $\sum_{i \in S_1}^{i=1} a_i = \sum_{i \in S_2} a_i$

Known Results

Classical results:

- SUBSET-SUM $\in \widetilde{O}(2^{n/2})$ [HS'74] Meet in the Middle
- SUBSET-SUM $\in \widetilde{O}(n+m)$ [Bri'17]
- SETH $\Rightarrow \forall \epsilon > 0, \exists \delta > 0, \text{Subset-Sum} \notin O(m^{1-\epsilon}2^{n\delta})$ [ABHS'19]
- EQUAL-SUMS $\in \widetilde{O}(3^{n/2}) \le O(2^{0.793n})$ [Woe'08] MiM
- EQUAL-SUMS $\in O(2^{0.773n})$ [MNPW'19]

Quantum results:

- Subset-Sum $\in \widetilde{O}(2^{n/3})$ [BJLM'13] MiM
- EQUAL-SUMS $\in \widetilde{O}(3^{n/3}) \le O(2^{0.529n})$ MiM

Our Results

	Classical	Quantum
SUBSET-SUM (not MiM)	$\widetilde{O}(2^{n/2})$	$\widetilde{O}(2^{n/3})$
SHIFTED-SUMS	$O(2^{0.773n})$	$O(2^{0.504n})$
PIGEONHOLE EQUAL-SUMS	$O(2^{n/2})$	$O(2^{0.4n})$

Dynamic Programming Datastructure

$$T_{p,k} = \{ S \subseteq \{1, ..., n\} : \sum_{i \in S} a_i \equiv k \pmod{p} \}$$

- 1 Compute the size $|T_{p,k}|$ by dynamic programming:
 - Let $t_p[i,j] = \left| \left\{ S \subseteq \{1,\ldots,i\} : \sum_{i \in S} a_i \equiv j \pmod p \right\} \right|$. The table $t_p[i,j]$ can be constructed in time O(np): $t_p[i,j] = t_p[i-1,j] + t_p[i-1,(j-a_i) \mod p]$.
- 2 Given random access to the table t_p , we construct an oracle that gives access to the elements of $T_{p,k}$ in time O(n) (for a certain total order \prec over $T_{p,k}$).

Main Ideas for Quantum SHIFTED-SUMS

Maximum solution size, $\ell \in (0, 1)$:

$$\ell n = \max\{|S_1| + |S_2| : S_1, S_2 \text{ disjoint solutions}\}$$

Suppose that ℓ is known. Then:

- If ℓ < 0.190 or ℓ > 0.809, use quantum MiM.
- If $0.190 \le \ell \le 0.809$, use representation technique.

Example when $\ell = 3/5$:

- 1 Choose a random prime $p \in \{2^{2n/5}, \dots, 2^{2n/5+1}\}.$
- 2 Choose a random index $k \in [0, p-1]$.
- 3 Search for a solution in $T_{p,k}$ using the dynamic programming oracle and Ambainis' Collision Finding.
- \rightarrow Expected bin size $|T_{p,k}| \approx 2^{3n/5}$,
- Sufficiently large to contain a solution.
- -Sufficiently small to keep the cost of search low: $\tilde{O}(2^{2n/5})$.

Additional ideas when $\ell < 3/5$:

- Choose $p \in \{2^{(1+\ell)n/4}, \dots, 2^{(1+\ell)n/4+1}\}.$
- Multiple solutions in a random $T_{p,k}$.
- New faster Collision Finding for multiple collisions.

Additional ideas when $\ell > 3/5$:

- Choose $p \in \{2^{2n/5}, \dots, 2^{2n/5+1}\}$.
- Solution in a random $T_{p,k}$ with exp. small probability.
- Use Variable-Time Amplitude Amplification to boost the success probability of sampling a good $T_{p,k}$.