Capítulo 11

ÂNGULOS

Neste capítulo, considere fixado um sistema ortogonal de coordenadas cartesianas.

11.1 Ângulo entre Retas

Dadas duas retas não ortogonais \mathbf{r} e s, queremos encontrar a medida θ do ângulo **agudo** entre elas. Para isso, consideremos $\vec{r} \neq \vec{0}$ e $\vec{s} \neq \vec{0}$, respectivamente paralelos a \mathbf{r} e a s. Seja α a medida do ângulo entre \vec{r} e \vec{s} . Então:

$$\cos\alpha = \frac{\vec{r} \bullet \vec{s}}{\|\vec{r}\| \cdot \|\vec{s}\|}, \quad 0 < \alpha < \pi$$

Analisemos o sinal de $\vec{r} \bullet \vec{s}$:

♦ Se $\vec{r} \cdot \vec{s} > 0$, então $\cos \alpha > 0$ e, portanto, $0 < \alpha < \frac{\pi}{2}$ (veja a figura (a)). Daí:

$$\cos\theta = \frac{\vec{r} \bullet \vec{s}}{\|\vec{r}\| \cdot \|\vec{s}\|} = \frac{|\vec{r} \bullet \vec{s}|}{\|\vec{r}\| \cdot \|\vec{s}\|}$$

♦ Se $\vec{r} \cdot \vec{s} < 0$, então $\cos \alpha < 0$ e, portanto, $\frac{\pi}{2} < \alpha < \pi$ (veja a figura (b)). Daí:

$$\cos\theta = \cos(\pi - \alpha) = -\cos(\alpha) = -\frac{\vec{r} \cdot \vec{s}}{\|\vec{r}\| \cdot \|\vec{s}\|} = \frac{|\vec{r} \cdot \vec{s}|}{\|\vec{r}\| \cdot \|\vec{s}\|}$$

Ou seja, em qualquer um dos casos, vale a fórmula:

$$\cos \theta = \frac{\left| \vec{\mathbf{r}} \bullet \vec{\mathbf{s}} \right|}{\left\| \vec{\mathbf{r}} \right\| . \left\| \vec{\mathbf{s}} \right\|}, \quad \text{ para } \ 0 \ < \ extstyle \theta \ < \ frac{\pi}{2}$$

11.2 Problemas Resolvidos

1. Ache a medida em radianos do ângulo entre as retas r: $X = (1, 1, 9) + \lambda(0, 1, -1)$ e s: x - 1 = y z = 4

Solução: Temos $\vec{r} = (0, 1, -1), \vec{s} = (1, 1, 0)$ e, portanto

$$\cos \theta = \frac{|\vec{r} \bullet \vec{s}|}{\|\vec{r}\| \|\vec{s}\|} = \frac{|(0,1,-1) \bullet (1,1,0)|}{\|(0,1,-1) \cdot (1,1,0)\|} = \frac{1}{\sqrt{2}\sqrt{2}} = \frac{1}{2} \implies \theta = \frac{\pi}{3} \text{ radianos}$$

2. Obtenha os vértices B e C do triângulo equilátero ABC, sendo A = (1, 1, 0) e sabendo que o lado BC está contido na reta \mathbf{r} de equação vetorial $\mathbf{X} = (0, 0, 0) + \lambda(0, 1, -1)$.

Solução: Seja P um dos vértices procurados (B ou C). Então, P = $(0, \lambda, -\lambda)$, uma vez que P \in r. Além disso, o ângulo entre a reta r e a reta que passa por A = (1, 1, 0) e P é de 60° . Como $\vec{r} = (0, 1, -1)$ e $\overrightarrow{AP} = (-1, \lambda - 1, -\lambda)$, segue que:

$$\cos 60^0 = \frac{|\vec{r} \bullet \overrightarrow{AP}|}{\|\vec{r}\| \cdot \|\overrightarrow{AP}\|} = \frac{|(0,1,-1) \bullet (-1,\lambda-1,-\lambda)|}{\|(0,1,-1)\| \cdot \|(-1,\lambda-1,-\lambda)\|} \implies \frac{1}{2} = \frac{|\lambda-1+\lambda|}{\sqrt{2}\sqrt{1+(\lambda-1)^2+\lambda^2}} = \frac{|2\lambda-1|}{\sqrt{2}\sqrt{2(\lambda^2-\lambda+1)}}$$

daí, tirando-se o mmc e elevando-se ao quadrado, segue que

$$\lambda^2 - \lambda + 1 = (2\lambda - 1)^2 \implies \lambda^2 - \lambda = 0 \implies \lambda = 0 \text{ ou } \lambda = 1$$

Portanto, P = (0, 0, 0) ou P = (1, 1, -1), de onde concluímos que os vértices procurados B e C são (0, 0, 0) e (1, 1, -1).

n

30

11.3 Angulo entre Reta e Plano

Para encontrar a medida θ do ângulo entre a reta ${\bf r}$ e o plano II, basta achar a medida do ângulo α entre a reta r e uma reta n normal ao plano II, uma vez que $\theta + \alpha = \frac{\pi}{2}$. Dessa forma, se \vec{r} é um vetor diretor de r e n é um vetor normal ao plano II, segue que:

$$\cos\alpha = \frac{|\vec{\mathbf{n}} \bullet \vec{\mathbf{r}}|}{\|\vec{\mathbf{n}}\| \cdot \|\vec{\mathbf{r}}\|}$$

e daí, como α e θ são complementares, segue que:

Problemas Resolvidos 11.4

1. Ache a medida em radianos do ângulo entre \mathbf{r} : $\mathbf{X}=(0,1,0)+\lambda(-1,-1,0)$ e Π : y + z - 10 = 0.

Solução: Como $\vec{r} = (-1, -1, 0)$ é um vetor diretor de \vec{r} e $\vec{n} = (0, 1, 1)$ e é um vetor normal a Π , chamando-se de θ o ângulo entre \mathbf{r} e Π , temos que:

$$\operatorname{sen} \theta = \frac{\|\vec{n} \cdot \vec{r}\|}{\|\vec{n}\| \cdot \|\vec{r}\|} = \frac{|(0,1,1) \cdot (-1,-1,0)|}{\|(0,1,1)\| \cdot \|(-1,-1,0)\|} = \frac{1}{2} \implies \theta = \frac{\pi}{6}.$$

2. Obtenha equações paramétricas da reta ${\bf r}$ que passa pelo ponto ${\bf P}=(1,\,1,\,1),$ é paralela ao plano Π_1 : x+2y-z=0 e forma com o plano Π_2 : x-y+2z=1 um ângulo de $\frac{\pi}{3}$ rd.

Solução: Precisamos apenas obter um vetor diretor da reta r. Observe que, como há infinitos vetores paralelos à reta r, esse problema é indeterminado; isto é, não admite solução única. Seja $\vec{r} = (a, b, c)$ um vetor diretor da reta r. Como $\vec{n}_1 = (1, 2, -1)$ é normal a Π_1 , temos:

$$r // \Pi_1 \iff \vec{r} \bullet \vec{n}_1 = 0 \iff a + 2b - c = 0 \iff c = a + 2b$$

Por outro lado, $\vec{n}_2 = (1, -1, 2)$ é normal a Π_2 e portanto:

$$\frac{\sqrt{3}}{2} = \operatorname{sen} \frac{\pi}{3} = \frac{|\vec{\mathbf{r}} \bullet \vec{\mathbf{n}}_2|}{\|\vec{\mathbf{r}}\| \cdot \|\vec{\mathbf{n}}_1\|} = \frac{|(\mathbf{a}, \mathbf{b}, \mathbf{a} + 2\mathbf{b}) \bullet (1, -1, 2)|}{\sqrt{\mathbf{a}^2 + \mathbf{b}^2 + \mathbf{a} + 2\mathbf{b})^2} \sqrt{6}} = \frac{|3\mathbf{a} + 3\mathbf{b}|}{\sqrt{6}\sqrt{2\mathbf{a}^2 + 5\mathbf{b}^2 + 4\mathbf{a}\mathbf{b}}}$$

Portanto, elevando-se ao quadrado, e efetuando-se os cálculos, obtém-se $\mathbf{b} = \mathbf{0}$ e, dessa forma, $\mathbf{c} = \mathbf{a}$. Assim, $\vec{\mathbf{r}} = (\mathbf{a}, \mathbf{0}, \mathbf{a})$, para $\mathbf{a} \in \mathbb{R}^*$. Concluímos, então, quae $\vec{\mathbf{r}} = (1, 0, 1)$ é um vetor diretor de \mathbf{r} e, dessa forma:

$$\begin{cases} x = 1 + \lambda \\ y = 1 \\ z = 1 + \lambda \end{cases}, \text{ para } \lambda \in \mathbb{R}.$$

11.5 Ângulo entre Planos

A medida do ângulo θ entre os planos Π_1 e Π_2 é a medida do ângulo entre as retas r_1 e r_2 , respectivamente perpendiculares aos planos Π_1 e Π_2 .

Observe que: nestas condições, os vetores \vec{n}_1 e \vec{n}_2 são os respectivos vetores diretores de r_1 e r_2 e, portanto,

$$\cos\theta = \frac{|\vec{\mathbf{n}}_1 \bullet \vec{\mathbf{n}}_2|}{\|\vec{\mathbf{n}}_1\| \|\vec{\mathbf{n}}_2\|}$$

11.6 Problemas Resolvidos

1. Ache a medida θ do ângulo entre os planos Π_1 : x - y + z = 20 e Π_2 : x + y + z = 0.

Solução: Basta ver que o vetor $\vec{n}_1 = (1, -1, 1)$ é normal a Π_1 e $\vec{n}_2 = (1, 1, 1)$ é um vetor normal a Π_2 . Assim:

$$\cos\theta = \frac{|\vec{n}_1 \bullet \vec{n}_2|}{\|\vec{n}_1\| \|\vec{n}_2\|} = \frac{\|(1, -1, 1) \bullet (1, 1, 1)\|}{\|(1, -1, 1)\| \|(1, 1, 1)\|} = \frac{1}{\sqrt{3}\sqrt{3}} = \frac{1}{3} \implies \theta = \arccos\frac{1}{3}.$$

Solução: Sabemos que II: ax + by + cz + d = 0 é uma equação geral do plano II. Como r está contida em II, é claro que todo ponto de r é também um ponto de II. É fácil ver que o ponto $(0,0,0) \in \mathbf{r}$ e, portanto, $\mathbf{d} = \mathbf{0}$. Além disso, $\vec{\mathbf{r}} = (1,-2,2) \land (3,-5,7)$ é um vetor diretor de \mathbf{r} , uma vez que \mathbf{r} é a intersecção de dois planos que têm esses vetores como vetores normais. Assim, $\vec{\mathbf{r}} = (-4,-1,1)$ é um vetor diretor de \mathbf{r} . Como o vetor $\vec{\mathbf{n}} = (a,b,c)$ é ortogonal a todos os vetores de II, em particular é ortogonal a $\vec{\mathbf{r}}$, isto é:

$$\vec{n} \perp \vec{r} \iff \vec{n} \, \bullet \, \vec{r} = 0 \iff (a,\,b,\,c) \, \bullet \, (\text{-}4,\,\text{-}1,\,1) = 0 \iff \text{-}4a \,\text{-}b \,+\,c = 0 \iff c = 4a \,+\,b$$

Além disso, como o ângulo entre Π e Π_1 : x + z = 0 é de 60° , segue que:

$$\frac{1}{2} = \cos 60^{0} = \frac{|(a, b, 4a+b) \bullet (1,0,1)|}{\sqrt{17a^{2} + 2b^{2} + 8ab}\sqrt{2}} = \frac{|5a+b|}{\sqrt{2}\sqrt{17a^{2} + 2b^{2} + 8ab}}$$

Efetuando-se os cálculos, obtém-se ${\bf a}={\bf 0}\;$ ou $\;{\bf a}=-\frac{4{\bf b}}{11}.\;$ Ou seja:

$$\vec{n} = (0, b, b) \qquad \Longrightarrow \qquad \Pi: x + y = 0$$
 ou
$$\vec{n} = (-\frac{4b}{11}, b, -\frac{5b}{11}) \qquad \Longrightarrow \qquad \Pi: 4x + -11y + 5z = 0$$

11.7 Problemas Propostos

Considere fixado um sistema ortogonal de coordenadas cartesianas.

1. Ache o cosseno do ângulo θ entre as retas:

(a)
$$r: X = (\frac{5}{2}, 2, 0) + \lambda(\frac{1}{2}, 1, 1)$$
 s: $\begin{cases} 3x - 2y + 16 = 0 \\ 3x - z = 0 \end{cases}$

(b)
$$f: \begin{cases} x = 3 + \lambda \\ y = -2 - \lambda \\ z = \sqrt{2}\lambda \end{cases}$$
 s: $\begin{cases} x = -2 + \lambda \\ y = 3 + \lambda \\ z = -5 + \sqrt{2}\lambda \end{cases}$

(c)
$$r: \begin{cases} \frac{x+2}{3} = 3 - z \\ y = 0 \end{cases}$$
 s: $\begin{cases} \frac{x+1}{2} = z + 3 \\ y = 0 \end{cases}$

(d) r:
$$x = \frac{1-y}{2} = \frac{z}{3}$$
 s: $\begin{cases} 3x + y - 5z = 0 \\ 2x + 3y - 8z = 1 \end{cases}$

2. Ache a medida em radianos do angulo θ entre a reta e o plano dados:

(a)
$$r: \begin{cases} x = 0 \\ y = z \end{cases}$$

$$\Pi$$
: $z=0$

(b)
$$r: x = y = z$$

$$\Pi$$
: $z = 0$

(c) r:
$$X = (0, 0, 1) + \lambda (-1, 1, 0)$$

$$\Pi: 3x + 4y = 0$$

(d)
$$r: \begin{cases} x = 1 + \lambda \\ y = \lambda \\ z = -2\lambda \end{cases}$$

$$\Pi: \ \mathbf{x} + \mathbf{y} - \mathbf{z} - 1 = 0$$

(e) r:
$$\begin{cases} x + y = 2 \\ x - 1 + 2z \end{cases}$$

$$\Pi \colon \sqrt{\frac{45}{7}} \; x + y + 2z - 10 = 0$$

3. Ache a medida em radianos do ângulo θ entre os planos:

(a)
$$\Pi_1$$
: $2x + y - z - 1 = 0$

$$\Pi_2$$
: $x - y + 3z - 10 = 0$

(b) II₁:
$$X = (1, 0, 0) + \lambda(1, 0, 1) + \mu(-1, 0, 0)$$

11₂:
$$x + y + z = 0$$

(c)
$$\Pi_1$$
: $X = (0, 0, 0) + \lambda(1, 0, 0) + \mu(1, 1, 1)$ Π_2 : $X = (1, 0, 0) + \lambda(-1, 2, 0) + \mu(0, 1, 0)$

$$\Pi_2$$
: X = (1, 0, 0) + λ (-1, 2, 0) + μ (0, 1, 0)

4. Ache a reta ${\bf r}$ que intercepta as retas ${\bf s}$ e ${\bf t}$ e forma ângulos congruentes com os eixos coordenados, sabendo que s: $\frac{x-1}{3} = \frac{y-1}{2} = -\frac{z}{3}$ e t: $\begin{cases} x = -1 + 5\lambda \\ y = 1 + 3\lambda \end{cases}$

5. Ache a reta \mathbf{h} qua passa pelo ponto $P=(0,\,2,\,1)$ e forma ângulos congruentes com as retas:

r:
$$\begin{cases} x = \lambda \\ y = 2\lambda \\ z = 2\lambda \end{cases}$$
 s: $\begin{cases} x = 1 \\ y = 2 + 3\lambda \\ z = 3 \end{cases}$ t: $\begin{cases} x = 1 \\ y = 2 \\ z = 3\lambda \end{cases}$

- 6. Obtenha equações na forma simétrica da reta \mathbf{r} que passa pelo ponto P = (1, -2, 3) e que forma ângulos de 45° e 60° respectivamente com os eixo dos \mathbf{x} e dos \mathbf{y} .
- 7. Ache uma reta ${\bf t}$ que passa por $P=(1,\,1,\,1)$, intercepta a reta ${\bf r}:\,\frac{x}{2}=y=z$ e forma com ela um ângulo θ tal que cos $\theta=\frac{1}{\sqrt{3}}$.
- 8. Ache um vetor diretor de uma reta paralela ao plano II: x+y+z=0 e que forma um ângulo de 45^0 com o plano Π_1 : x-y=0.
- 9. Ache uma equação geral do plano II que contém a reta x = x + 1 e que forma um ângulo de $\frac{\pi}{3}$ rd com o plano II₁: x + 2y 3z + 2 = 0.
- 10. Obtenha uma equação geral do plano Π que contém a reta $x : \begin{cases} 3z x = 1 \\ y 1 = 1 \end{cases}$ e forma com a reta $x : X = (1, 1, 0) + \lambda(3, 1, 1)$ um ângulo cuja medida em radianos é $\theta = \arccos \frac{2\sqrt{30}}{11}$.