2014 TAIWAN B

International Olympiad in Informatics 2014

13-20th July 2014 Taipei, Taiwan Day-2 tasks

gondola Language: hu-HU

Gondola

A Mao-Kong Gondola Tajpej egyik látványossága, amely egy körgyűrű egy állomással és \boldsymbol{n} gondolával, amiket $\boldsymbol{1}$ -től \boldsymbol{n} -ig sorszámozunk. Minden gondola azonos irányban halad, kezdetben sorszámuk szerinti sorrendben egymás után. Mivel körbe mennek, ezért az \boldsymbol{n} . gondolát az $\boldsymbol{1}$. követi.

A tartalék gondolák sorszámai: n+1, n+2, és így tovább. Amikor egy gondola elromlik, a sorrendben következő tartalékra cserélik (a lecserélt pozíciójára kerül). Például, ha 5 gondola esetén az 1. elromlik, a 6. gondolára cserélik.

Gondola sorozat: egy adott pillanattól az állomáson megfigyeljük az áthaladó **n** darab gondolát, a sorszámuk alkotta sorozatot nevezzük *gondola sorozatnak*. A megfigyelés előtt lehetett hibás gondola cseréje, de a megfigyelés közben már nem.

Például, ha nem volt még csere, akkor 5 gondola esetén a (2, 3, 4, 5, 1) és a (4, 5, 1, 2, 3) is gondola sorozat, de a (4, 3, 2, 5, 1) nem (mert a sorrendjük nem jó).

Ha az 1. gondolát lecseréljük, akkor a (4, 5, 6, 2, 3) gondola sorozat lesz. Ha ezután a 4. is meghibásodik, a 7.-re cseréljük és így a (6, 2, 3, 7, 5) gondola sorozat lesz. Ha a 7. romlik el, akkor a 8.-ra cseréljük és a (3, 8, 5, 6, 2) gondola sorozat lesz.

hibás gondola	új gondola	lehetséges gondola sorozat
1	6	(4, 5, 6, 2, 3)
4	7	(6, 2, 3, 7, 5)
7	8	(3, 8, 5, 6, 2)

A cseresorozat elromlott gondolák sorszámai sorozata, időrend szerinti sorrendben. Az előző példában cseresorozat az (1, 4, 7). Azt mondjuk, hogy az r cseresorozat a g gondola sorozatot eredményezi, ha az r-beli cseréket egymás után végrehajtva a g gondola sorozat megfigyelhető lesz.

Gondola sorozat ellenőrzés

Az első három részfeladatban ellenőrizned kell, hogy adott sorozat gondola sorozat-e valamely cseresorozat esetén! Ennek megoldására a valid függvényt kell megírnod!

- valid(n, inputSeq)
 - n: a bemenő sorozat hossza.
 - inputSeq: n elemű tömb; inputSeq[i] az ellenőrizendő sorozat i. eleme ($0 \le i \le n-1$).
 - A függvény eredménye 1 legyen, ha a sorozat gondola sorozat, egyébként pedig 0!

1., 2., 3. részfeladat

ré s z fe la dat	pont	n	inputSeq
1	5	$n \leq 100$	minden 1 és n közötti szám pontosan egyszer van benne
2	5	$n \leq 100,000$	$1 \le \text{inputSeq[i]} \le n$
3	10	$n \leq 100,000$	$1 \le inputSeq[i] \le 250,000$

Példák

ré s z fe la dat	inputSeq	függvényérték	megjegyzés
1	(1, 2, 3, 4, 5, 6, 7)	1	
1	(3, 4, 5, 6, 1, 2)	1	
1	(1, 5, 3, 4, 2, 7, 6)	0	az 1 nem lehet közvetlenül az 5 előtt
1	(4, 3, 2, 1)	0	a 4 nem lehet közvetlenül a 3 előtt
2	(1, 2, 3, 4, 5, 6, 5)	0	az 5 kétszer fordul elő
3	(2, 3, 4, 9, 6, 7, 1)	1	az (5, 8) cseresorozat esetén
3	(10, 4, 3, 11, 12)	0	a 4 nem lehet közvetlenül a 3 előtt

Cseresorozat

A következő három részfeladatban olyan cseresorozatot kell készítened, amely adott godola sorozatot eredményez! Ennek megoldására a replacement függvényt kell megírnod!

- replacement(n, gondolaSeq, replacementSeq)
 - n a gondola sorozat hossza.
 - lacktriangledown gondolaSeq: n elemű tömb; gondolaSeq biztosan gondola sorozat, gondolaSeq[i] a bemenő sorozat i. eleme ($0 \le i \le n-1$).
 - lacktriangle A függvény eredménye a cseresorozat $m{l}$ hossza legyen!
 - lacktriangledown replacementSeq: a cseresorozatot tartalmazó tömb; replacementSeq[i] legyen a cseresorozat i. eleme $(0 \le i \le l-1)$.

4., 5., 6. részfeladat

részfeladat	pont	n	gondolaSeq
4	5	$n \leq 100$	$1 \le \text{gondolaSeq[i]} \le n+1$
5	10	$n \leq 1,000$	$1 \le \text{gondolaSeq[i]} \le 5,000$
6	20	$n \leq 100,000$	$1 \le \text{gondolaSeq[i]} \le 250,000$

Példák

ré szfe ladat	gondolaSeq	függvényérték	replacementSeq
4	(3, 1, 4)	1	(2)
4	(5, 1, 2, 3, 4)	0	()
5	(2, 3, 4, 9, 6, 7, 1)	2	(5, 8)

Cseresorozatok száma

A következő négy részfeladatban a lehetséges cseresorozatok számát kell kiszámítanod adott sorozathoz (ami nem feltétlenül gondola sorozat), modulo 1,000,000,009! Ennek megoldására a countReplacement függvényt kell megírnod!

- countReplacement(n, inputSeq)
 - n: a bemenő sorozat hossza.
 - lacksquare inputSeq: n elemű tömb; inputSeq[i] a sorozat i. eleme ($0 \leq i \leq n-1$).
 - Ha a bemenő sorozat gondola sorozat, akkor a függvény eredménye azon cseresorozatok száma legyen modulo **1,000,000,009**, amelyek ezt a gondolasorozatot eredményezhetik! Ha a bemenő sorozat nem gondola sorozat, akkor a függvény értéke 0 legyen! Ha a bemenő sorozat gondolasorozat, de nem volt csere, akkor a függvény értéke 1 legyen!

7., 8., 9., 10. részfeladat

ré s z fe la dat	pont	\boldsymbol{n}	inputSeq
7	5	$4 \le n \le 50$	$1 \le inputSeq[i] \le n+3$
8	15	$4 \le n \le 50$	$1 \leq \text{inputSeq[i]} \leq 100$, a kezdeti $1, \ldots, n$ gondola sorozatból legalább $n-3$ nem romlott el.
9	15	$n \leq 100,000$	$1 \le inputSeq[i] \le 250,000$
10	10	$n \leq 100,000$	$1 \le inputSeq[i] \le 1,000,000,000$

Példák

ré szfe ladat	inputSeq	függvényérték	cseresorozat
7	(1, 2, 7, 6)	2	(3, 4, 5) or (4, 5, 3)
8	(2, 3, 4, 12, 6, 7, 1)	1	(5, 8, 9, 10, 11)
9	(4, 7, 4, 7)	0	inputSeq nem gondola sorozat
10	(3, 4)	2	(1, 2) vagy (2, 1)

Megvalósítás

A gondola.c, gondola.cpp vagy gondola.pas fájlt kell beküldened! Ebben kell megvalósítanod a kért függvényeket! Include-old a gondola.h-t!

C/C++ program

```
int valid(int n, int inputSeq[]);
int replacement(int n, int gondolaSeq[], int replacementSeq[]);
int countReplacement(int n, int inputSeq[]);
```

Pascal program

```
function valid(n: longint; inputSeq: array of longint): integer;
function replacement(n: longint; gondolaSeq: array of longint;
var replacementSeq: array of longint): longint;
function countReplacement(n: longint; inputSeq: array of longint):
longint;
```

Minta értékelő

A minta értékelő a bemenetet az alábbi formában várja:

- 1. sor: T, részfeladat sorszáma ($1 \le T \le 10$).
- 2. sor: n, a bemenő sorozat hossza.
- 3. sor: Ha Térétke 4, 5, vagy 6, akor ez a sor az inputSeq[0], ..., inputSeq[n-1] értékeket tartalmazza. Egyébként ez a sor a gondolaSeq[0], ..., gondolaSeq[n-1] értékeket tartalmazza.