Leveraging Linked Data to Discover Semantic Relations within Data Sources

Mohsen Taheriyan
Craig A. Knoblock
Pedro Szekely
Jose Luis Ambite

Map Structured Data to Ontologies

Map the source to the classes & properties in an ontology

Source

	title	date	name
1	The Island	2009	Walton Ford
2	Excavation at Night	1908	George Wesley Bellows
3	Rose Garden	1901	Maria Oakey Dewing

Domain Ontology

Semantic Types

Relationships

Problem:

How to automatically infer semantic relations?

Idea

Exploit the relationships within already published linked data

Approach

Input

- Target source (S)
- Domain Ontologies (O)
- Semantic labels of S
- Linked Data (in the same domain)

- Extract schema-level graph patterns from LD
- Construct a graph from LD patterns and the ontology
- Generate and rank semantic models

Output

A ranked set of semantic models for S

Approach

Input

- Target source (S)
- Domain Ontologies (O)
- Semantic labels of S
- Linked Data (in the same domain)

- 1 Extract schema-level graph patterns from LD
- Construct a graph from LD patterns and the ontology
- Generate and rank semantic models

Output

A ranked set of semantic models for S

Schema-Level LD Patterns

Schema-Level LD Patterns

Pattern Templates

- Many possible templates for patterns
 - Example: patterns for classes C1, C2, C3

- Consider only tree patterns
- Limit the length of the patterns

Extracting LD Patterns

Use SPARQL to extract patterns of length one

Extracting LD Patterns

 Iteratively construct larger patterns by joining with patterns of length 1

Extracting LD Patterns

 Filter out the patterns not appearing in the data

Approach

Input

- Target source (S)
- Domain Ontologies (O)
- Semantic labels of S
- Linked Data (in the same domain)

- Extract schema-level graph patterns from LD
- 2 Construct a graph from LD patterns and the ontology
- Generate and rank semantic models

Output

A ranked set of semantic models for S

Merge the Patterns into a Graph

Start from longer patterns, skip the ones already in the graph

Weighting the Links

Less weight for more popular links W = (1 - freq)/(total count of links)

Coherence

Links from the same pattern have the same tag

Add the paths from the Ontology

High weights for links that do not have any instance in the data

Approach

Input

- Target source (S)
- Domain Ontologies (O)
- Semantic labels of S
- Linked Data (in the same domain)

- Extract schema-level graph patterns from LD
- Construct a graph from LD patterns and the ontology
- Generate and rank semantic models

Output

A ranked set of semantic models for S

Map Semantic Labels to the Graph

т3

Map Semantic Labels to the Graph

т3

Generate Semantic Models

- Compute top k minimal trees
- Consider both coherence and popularity

*m*3

Evaluation

Dataset	Ontology	Gold Standard Models	Linked Data	
29 museum data sources 458 attributes (columns)	CRM 147 classes 409 properties	852 nodes 825 links	RDF generated from the same dataset (leave-one-out)	
29 museum data sources 458 attributes	CRM 147 classes 409 properties	852 nodes 825 links	RDF published by Smithsonian American Art Museum (more than 3 million triples)	
29 museum data sources 329 attributes	EDM 147 classes 409 properties	470 nodes 441 links	RDF generated from the same dataset (leave-one-out)	
15 sources containing data about weapon ads 175 attributes	schema.org (ext) 736 classes 1081 properties	261 nodes 246 links	RDF generated from the same dataset (leave-one-out)	

Example Gold Standard Models

Evaluation

- Compute precision and recall (between learned links and correct links)
- Correct semantic labels are given

correct model

Artwork,location,Museum>

learned model

<Museum,founder,Person>
<Artwork,location,Museum>

Precision: 0.5
Recall: 0.5

Results

max len of patter ns	Museum CRM (leave-one- out)		CRM (Sm	seum nithsonian .D)	Muse ED		Weap schem	
	precision	recall	precision	recall	precision	recall	precision	recall
0	0.07	0.05	0.07	0.05	0.01	0.01	0.03	0.02
1	0.60	0.60	0.28	0.29	0.85	0.78	0.84	0.79
2	0.64	0.67	0.53	0.58	0.81	0.81	0.83	0.79
•••		•••		•••				
5	0.75	0.77	0.61	0.67	0.83	0.82	0.86	0.82

- Very low accuracy if only using the ontology paths
- Considering coherence improves the quality of the models (longer patterns increase the accuracy)
- Higher precision & recall for less complex ontologies

Related Work

- Understand semantics of Web tables [Wang et al., 2012] [Limaye et al., 2010] [Venetis et al., 2011]
 - •Link table values to the LOD entities [Muoz et al., 2013] [Mulwad et al., 2013]
 - •Learn semantic models from previously modeled sources (Karma) [Taheriyan et al, 2015]
 - •Extract schema-level patterns (SLPs, length one) from LOD [Schaible et al., 2016]

 —E.g., ({Person,Player},{knows},{Person,Coach})

Discussion

- Manually constructing semantic models is hard & expensive
 - Needs domain knowledge and expertise in SW technologies
 - —Often requires many user interactions in modeling tools
- Infer semantic relations from linked data
 - —The suggested model can be refined in tools such as Karma

Help to publish consistent RDF data