ÜBUNGEN ZUR VORLESUNG GRUNDBEGRIFFE DER THEORETISCHEN INFORMATIK

THOMAS SCHWENTICK

GAETANO GECK, LUTZ OETTERSHAGEN, CHRISTOPHER SPINRATH, MARCO WILHELM

SoSe 2018 ÜBUNGSBLATT 1 12.04.2018

Abgabe bis spätestens am Donnerstag, 19.04.2018,

- (vor der Vorlesung) im HG II, HS 3, oder
- in die Briefkästen im Durchgangsflur, der die 1. Etage der OH 12 mit dem Erdgeschoss der OH 14 verbindet.

Beachten Sie die Schließzeiten der Gebäude!

Beachten Sie unbedingt alle folgenden Konventionen für die Abgabe:

- Gewertet werden ausschließlich Einzelabgaben!
- Geben Sie zusammengeheftete DIN A4-Blätter ab!
- Notieren Sie folgende Informationen gut lesbar auf der ersten Seite der Abgabe:
 - Ihr Vorname und Nachname,
 - die Kennung ihrer Übungsgruppe und
 - die Nummer des Übungsblattes.

Beispiel: Miriam Musterfrau, Gruppe AB3, Blatt 1

Aufgabe 1.1 [Reguläre Ausdrücke vergleichen und interpretieren]

3 Punkte

a) Seien $\beta = (ab)^*$ und $\alpha_1, \ldots, \alpha_8$ die folgenden erweiterten regulären Ausdrücke. Beurteilen Sie für alle $i \in \{3, \ldots, 8\}$, ob $L(\alpha_i) \subseteq L(\beta)$ gilt. Vervollständigen Sie dazu die folgende Tabelle analog zu den Beispiel-Ausdrücken α_1, α_2 : Falls $L(\alpha_i) \nsubseteq L(\beta)$ gilt, geben Sie ein Wort $w_i \in L(\alpha_i) - L(\beta)$ an.

(2 Punkte)

$L(\alpha_i) \subseteq L(\beta)$	Gegenbeispiel
✓	
X	ba
	✓

b) Das Verhalten eines Netzwerk-Controllers soll anhand protokollierter Ausgaben analysiert werden. Der Controller schreibt, abhängig von der Eingabe, beliebig lange Bitfolgen. Eine Bitfolge wird als Wort über dem Alphabet $\{0,1\}$ repräsentiert. Die Menge der gültigen Ausgaben wird im Handbuch des Controllers formal als Sprache $L=\{0,1\}^*-L(\gamma)$ für den erweiterten regulären Ausdruck

$$\gamma = (0+1)^*(000+111)(0+1)^* + (10)^*1? + (01)^*0?$$

spezifiziert. Beschreiben Sie L natürlichsprachlich kurz in einem Satz.

(1 Punkt)

Aufgabe 1.2 [Reguläre Ausdrücke konstruieren]

6 Punkte

Geben Sie im Folgenden reguläre Ausdrücke bzw. erweiterte reguläre Ausdrücke an. Beschreiben Sie für jede Konstruktion kurz, warum Ihr Ausdruck die Sprache beschreibt (warum er *alle* Wörter der Sprache erzeugt und warum er *kein* Wort außerhalb der Sprache erzeugt).

Hinweis

Sie dürfen in dieser Aufgabe zunächst Teilausdrücke konstruieren und diese dann zu größeren Ausdrücken kombinieren. Beispielsweise dürften Sie

$$\alpha = (a+b)(a+b)$$
$$\beta = (\alpha\alpha)^*$$

schreiben, wenn β einen Ausdruck sein sollte, der alle Wörter über $\{a,b\}$ beschreibt, deren Länge durch 4 teilbar ist.

- a) Sei $\Sigma = \{0, 1, 2, \dots, 9, \oplus, \ominus, ., ^{\circ}, C\}$. Konstruieren Sie einen erweiterten regulären Ausdruck α über Σ , der genau die gültigen Temperaturangaben mit zwei Nachkommastellen in Grad Celsius beschreibt (0°C kann hier mit beiden Vorzeichen versehen sein). Eine solche Temperaturangabe ist gültig, wenn sie
 - genau zwei Nachkommastellen besitzt (nach dem Dezimalpunkt .);
 - keine überflüssigen führenden Nullen im ganzzahligen Anteil aufweist (Gegenbeispiele sind 013.88°C bzw. −00123.45°C);
 - den Minimalwert von $-273.15^{\circ}C$ nicht unterschreitet und
 - mit dem Zusatz ${}^{\circ}C$ endet.

Dabei sollen die Symbole \oplus bzw. \ominus anstelle der üblichen Zeichen + und – verwendet werden, um Verwechslungen mit dem Auswahloperator + zu vermeiden: Gültige Wörter sind dann beispielsweise 1234.56°C, \oplus 333.99°C und \ominus 199.91°C. (2 Punkte)

- b) Seien $\Sigma = \{a, b\}$ und $L_1 = \{\sigma\sigma u \mid \sigma \in \Sigma \text{ und } u \in \Sigma^*\}$ und $L_2 = \{\tau w\tau \mid \tau \in \Sigma \text{ und } w \in \Sigma^*\}$. Geben Sie reguläre Ausdrücke $\alpha_1, \alpha_2, \alpha$ mit $L(\alpha_1) = L_1, L(\alpha_2) = L_2$ und $L(\alpha) = L_1 \cap L_2$ an. (2 Punkte)
- c) Nach dem Standard ISO 8601 wird ein Datum in der Form JJJJ-MM-TT notiert. Beispielsweise wird der Geburtstag Alan Turings, der 23. Juni 1912, durch 1912-06-23 repräsentiert. Konstruieren Sie einen erweiterten regulären Ausdruck über dem Alphabet {0,1,...,9,-}, der alle gültigen Daten des Jahres 2018 beschreibt.
 (2 Punkte)