ENSIMAG 1A TD Analyse

Espaces vectoriels normés et théorème du point fixe contractant

Exercice 1 Dans un espace vectoriel normé $(E, \|\cdot\|)$, on rappelle la définition de la boule unité :

$$B(0,1) = \{ u \in E ; ||u|| < 1 \}.$$

On se place dans $E = \mathbb{R}^2$ muni des trois normes suivantes : pour $X = (x_1, x_2) \in \mathbb{R}^2$,

$$||X||_1 = |x_1| + |x_2|, \quad ||X||_2 = (x_1^2 + x_2^2)^{\frac{1}{2}}, \quad ||X||_{\infty} = \max(|x_1|, |x_2|).$$

- 1. Représenter graphiquement les boules unités de chacune des trois normes.
- 2. Comparer ces trois normes.

Exercice 2 Soient N_1 et N_2 deux normes sur un espace vectoriel E.

1. On note $B_1 = \{x \in E, N_1(x) \le 1\}$ et $B_2 = \{x \in E, N_2(x) \le 1\}$. Montrer que

$$B_1 = B_2 \Rightarrow N_1 = N_2$$
.

2. Même question avec les boules unités ouvertes.

Exercice 3 Pour toute matrice $A \in \mathcal{M}_n(\mathbb{C})$, on définit

$$||A||_F = \left(\sum_{1 \le i, j \le n} |a_{ij}|^2\right)^{1/2}.$$

- 1. Vérifier que $\|\cdot\|_F$ définit une norme sur $\mathcal{M}_n(\mathbb{C})$.
- 2. Montrer que pour toutes matrices $A=(a_{ij})$ et $B=(b_{ij})$ dans $\mathcal{M}_n(\mathbb{C})$, les coefficients $(AB)_{ij}$ de la matrice produit AB vérifient

$$|(AB)_{ij}|^2 \le \left(\sum_{k=1}^n |a_{ik}|^2\right) \left(\sum_{k=1}^n |b_{kj}|^2\right).$$

3. En déduire que $||AB||_F \le ||A||_F ||B||_F$ pour toutes matrices A, B de $\mathcal{M}_n(\mathbb{C})$.

Exercice 4 Soit $E = \mathcal{C}^0([0,1])$ l'espace des fonctions $f:[0,1] \to \mathbb{R}$ continues sur [0,1].

1. Montrer que

$$||f||_1 = \int_0^1 |f(x)| dx$$

est une norme sur E.

2. Soit la suite $(f_n)_{n>1}$ des fonctions définies par

$$f_n(x) = \begin{cases} (2x)^n, & x \in [0, \frac{1}{2}], \\ 1, & x \in [\frac{1}{2}, 1]. \end{cases}$$

Montrer que la suite $(f_n)_{n\geq 1}$ est une suite de Cauchy de $(E,\|\cdot\|_1)$.

3. L'espace E muni de la norme $\|\cdot\|_1$ est-il complet?

Exercice 5 Soit E l'espace vectoriel des fonctions à valeurs dans \mathbb{R} , définies, continûment dérivables sur [0,1] et vérifiant f(0) = 0. On définit sur cet espace les deux normes suivantes : $N_1(f) = ||f||_{\infty}$ et $N_2(f) = ||f'||_{\infty}$.

- 1. Montrer que $N_1(f) \leq N_2(f)$. En déduire que l'application identique de (E, N_2) vers (E, N_1) est continue.
- 2. À l'aide de la fonction $f_n = \frac{x^n}{n}$, montrer que l'application identique de (E, N_1) vers (E, N_2) n'est pas continue.

ENSIMAG 1A TD Analyse

Exercice 6 On munit $E = \mathcal{C}([0,1])$ de la norme $\|\cdot\|_1$ définie par $\|u\|_1 = \int_0^1 |u(t)| \ dt$ pour $u \in E$.

Pour $u \in E$, on pose

$$Tu(x) = \int_0^x u(t) \ dt.$$

- 1. Montrer que $T \in \mathcal{L}(E)$.
- 2. Calculer ||T||.

Exercice 7 Montrer que le système

$$\begin{cases} x_1 = \frac{1}{5}(2\sin x_1 + \cos x_2), \\ x_2 = \frac{1}{5}(\cos x_1 + 3\sin x_2) \end{cases}$$

admet une solution unique dans \mathbb{R}^2 .

Exercice 8 Soit $(E, \|\cdot\|)$ un espace de Banach et T une application définie sur E à valeurs dans E. Soit $a \in E$ et r > 0 tels que T soit contractante de constante $\ell \in [0, 1[$ sur la boule fermée B(a, r), et $\|T(a) - a\| < (1 - \ell)r$.

1. On considère la suite définie par $x_0 = a$ et $x_{n+1} = T(x_n)$. Montrer par récurrence que

$$||x_n - a|| \le \frac{1 - \ell^n}{1 - \ell} ||x_1 - a||,$$

et en déduire que x_n demeure dans B(a,r) pour tout n.

2. Montrer que T admet au moins un point fixe dans B(a,r).

Exercice 9 Lorsqu'un espace vectoriel E est en outre muni d'une multiplication, l'application $N: E \to \mathbb{R}$ est dite norme multiplicative si N est une norme et si de plus pour tout A, B de E, $N(AB) \leq N(A)N(B)$. Soit $E = \mathcal{M}_n(\mathbb{R})$, l'espace vectoriel des matrices carrées à n lignes et n colonnes dont on note les éléments $A = (a_{ij})_{1 \leq i,j \leq n}$.

- 1. Montrer que $N_{\infty}(A) = \max_{1 \le i \le n} \left\{ \sum_{j=1}^{n} |a_{ij}| \right\}$ définit une norme multiplicative sur E.
- 2. Montrer que $N_{\infty}(A) = \max_{X \in \mathbb{R}^n, \|X\|_{\infty} = 1} \|AX\|_{\infty}$.
- 3. Soit $A \in E$ telle que pour tout $1 \le i \le n$, $|a_{ii}| > \sum_{j=1, j \ne i} |a_{ij}|$ et D la matrice diagonale formée avec les éléments diagonaux de A. Soit F un vecteur de \mathbb{R}^n . On considère la suite des $X^p \in \mathbb{R}^n$ définie pour $p \ge 0$ par

$$\begin{cases} X^0 = X_0 \in \mathbb{R}^n, \\ X^{p+1} = (\mathbb{I} - D^{-1}A)X^p + D^{-1}F. \end{cases}$$

Montrer qu'elle est convergente et calculer sa limite.

Exercice 10 Soit $E = \mathbb{R}^d$ muni d'une norme $\|\cdot\|$. On rappelle qu'une application continue g de E dans E est dite contractante s'il existe $K \in]0,1[$ tel que

$$\forall x, y \in E, \|q(x) - q(y)\| < K\|x - y\|.$$

On rappelle aussi que toute application contractante admet un unique point fixe. Soit f une application continue de E dans E telle qu'il existe un entier p tel que f^p soit contractante. On note x_0 le point fixe de f^p .

- 1. Montrer que tout point fixe de f est un point fixe de f^p .
- 2. Montrer que si x est un point fixe de f^p , il en est de même pour f(x).
- 3. En déduire que x_0 est l'unique point fixe de f.