Mining of Massive Datasets

Jure Leskovec Stanford Univ.

Anand Rajaraman Milliway Labs

Jeffrey D. Ullman Stanford Univ.

Copyright © 2010, 2011, 2012, 2013, 2014 An
and Rajaraman, Jure Leskovec, and Jeffrey D. Ullman

Contents

1	Dat	a Min	ing 1
	1.1	What	is Data Mining?
		1.1.1	Statistical Modeling
		1.1.2	Machine Learning
		1.1.3	Computational Approaches to Modeling 2
		1.1.4	Summarization
		1.1.5	Feature Extraction
	1.2	Statist	tical Limits on Data Mining
		1.2.1	Total Information Awareness 5
		1.2.2	Bonferroni's Principle
		1.2.3	An Example of Bonferroni's Principle 6
		1.2.4	Exercises for Section 1.2
	1.3	Thing	s Useful to Know
		1.3.1	Importance of Words in Documents 8
		1.3.2	Hash Functions
		1.3.3	Indexes
		1.3.4	Secondary Storage
		1.3.5	The Base of Natural Logarithms
		1.3.6	Power Laws
		1.3.7	Exercises for Section 1.3
	1.4	Outlin	ne of the Book
	1.5	Summ	ary of Chapter 1
	1.6		ences for Chapter 1
2	Ma	n D odu	ce and the New Software Stack 21
4	2.1	-	buted File Systems
	2.1	2.1.1	Physical Organization of Compute Nodes
		2.1.1	· · · · · · · · · · · · · · · · · · ·
	2.2		Large-Scale File-System Organization
	2.2	марк 2.2.1	
		2.2.1 $2.2.2$	T
		2.2.2 $2.2.3$	Grouping by Key
			The Reduce Tasks
		2.2.4	Combiners

viii CONTENTS

		2.2.5	Details of MapReduce Execution	3
		2.2.6	Coping With Node Failures)
		2.2.7	Exercises for Section 2.2)
	2.3	Algori	thms Using MapReduce)
		2.3.1	Matrix-Vector Multiplication by MapReduce 31	L
		2.3.2	If the Vector v Cannot Fit in Main Memory	L
		2.3.3	Relational-Algebra Operations)
		2.3.4	Computing Selections by MapReduce	<u>,</u>
		2.3.5	Computing Projections by MapReduce	
		2.3.6	Union, Intersection, and Difference by MapReduce 36	;
		2.3.7	Computing Natural Join by MapReduce	7
		2.3.8	Grouping and Aggregation by MapReduce	7
		2.3.9	Matrix Multiplication	3
		2.3.10	Matrix Multiplication with One MapReduce Step 39)
			Exercises for Section 2.3)
	2.4		sions to MapReduce	L
		2.4.1	Workflow Systems	
		2.4.2	Recursive Extensions to MapReduce 42	2
		2.4.3	Pregel	<u>,</u>
		2.4.4	Exercises for Section 2.4	
	2.5	The C	ommunication Cost Model	
		2.5.1	Communication-Cost for Task Networks 47	
		2.5.2	Wall-Clock Time)
		2.5.3	Multiway Joins	
		2.5.4	Exercises for Section 2.5)
	2.6	Compl	exity Theory for MapReduce	Į
		2.6.1	Reducer Size and Replication Rate	Į
		2.6.2	An Example: Similarity Joins	5
		2.6.3	A Graph Model for MapReduce Problems 57	7
		2.6.4	Mapping Schemas	3
		2.6.5	When Not All Inputs Are Present 60)
		2.6.6	Lower Bounds on Replication Rate 61	L
		2.6.7	Case Study: Matrix Multiplication 62)
		2.6.8	Exercises for Section 2.6	;
	2.7	Summ	ary of Chapter 2	7
	2.8		nces for Chapter 2)
3		_	milar Items 73	
	3.1		ations of Near-Neighbor Search	
		3.1.1	Jaccard Similarity of Sets	
		3.1.2	Similarity of Documents	
		3.1.3	Collaborative Filtering as a Similar-Sets Problem	
		3.1.4	Exercises for Section 3.1	
	3.2		ing of Documents	
		3.2.1	k-Shingles	7

CONTENTS ix

	3.2.2	Choosing the Shingle Size
	3.2.3	Hashing Shingles
	3.2.4	Shingles Built from Words
	3.2.5	Exercises for Section 3.2
3.3	Simila	rity-Preserving Summaries of Sets 80
	3.3.1	Matrix Representation of Sets
	3.3.2	Minhashing
	3.3.3	Minhashing and Jaccard Similarity 82
	3.3.4	Minhash Signatures
	3.3.5	Computing Minhash Signatures 83
	3.3.6	Exercises for Section 3.3
3.4	Locali	ty-Sensitive Hashing for Documents
	3.4.1	LSH for Minhash Signatures
	3.4.2	Analysis of the Banding Technique 89
	3.4.3	Combining the Techniques
	3.4.4	Exercises for Section 3.4
3.5	Distan	ice Measures
	3.5.1	Definition of a Distance Measure 92
	3.5.2	Euclidean Distances
	3.5.3	Jaccard Distance
	3.5.4	Cosine Distance
	3.5.5	Edit Distance
	3.5.6	Hamming Distance
	3.5.7	Exercises for Section 3.5
3.6	The T	heory of Locality-Sensitive Functions
	3.6.1	Locality-Sensitive Functions
	3.6.2	Locality-Sensitive Families for Jaccard Distance 100
	3.6.3	Amplifying a Locality-Sensitive Family 101
	3.6.4	Exercises for Section 3.6
3.7	LSH F	Camilies for Other Distance Measures
	3.7.1	LSH Families for Hamming Distance
	3.7.2	Random Hyperplanes and the Cosine Distance 105
	3.7.3	Sketches
	3.7.4	LSH Families for Euclidean Distance 107
	3.7.5	More LSH Families for Euclidean Spaces 108
	3.7.6	Exercises for Section 3.7
3.8	Applic	eations of Locality-Sensitive Hashing
	3.8.1	Entity Resolution
	3.8.2	An Entity-Resolution Example
	3.8.3	Validating Record Matches
	3.8.4	Matching Fingerprints
	3.8.5	A LSH Family for Fingerprint Matching
	3.8.6	Similar News Articles
	3.8.7	Exercises for Section 3.8
39	Metho	ds for High Degrees of Similarity 118

x CONTENTS

		3.9.1	Finding Identical Items	118
		3.9.2	Representing Sets as Strings	
		3.9.3	Length-Based Filtering	
		3.9.4	Prefix Indexing	
		3.9.5	Using Position Information	
		3.9.6	Using Position and Length in Indexes	
		3.9.7	Exercises for Section 3.9	
	3.10	Summ	nary of Chapter 3	
			ences for Chapter 3	
4	Min	ing D	ata Streams 1	31
	4.1	The S	tream Data Model	131
		4.1.1	A Data-Stream-Management System	132
		4.1.2	Examples of Stream Sources	133
		4.1.3	Stream Queries	
		4.1.4	Issues in Stream Processing	135
	4.2	Sampl	ling Data in a Stream	136
		4.2.1	A Motivating Example	136
		4.2.2	Obtaining a Representative Sample	137
		4.2.3	The General Sampling Problem	137
		4.2.4	Varying the Sample Size	138
		4.2.5	Exercises for Section 4.2	138
	4.3	Filteri	ing Streams	139
		4.3.1	A Motivating Example	139
		4.3.2	The Bloom Filter	140
		4.3.3	Analysis of Bloom Filtering	140
		4.3.4	Exercises for Section 4.3	41
	4.4	Count	ing Distinct Elements in a Stream	142
		4.4.1	The Count-Distinct Problem	
		4.4.2	The Flajolet-Martin Algorithm	
		4.4.3	Combining Estimates	44
		4.4.4	Space Requirements	
		4.4.5	Exercises for Section 4.4	
	4.5		ating Moments	
		4.5.1	Definition of Moments	145
		4.5.2	The Alon-Matias-Szegedy Algorithm for Second	
			Moments	
		4.5.3	Why the Alon-Matias-Szegedy Algorithm Works 1	
		4.5.4	Higher-Order Moments	
		4.5.5	Dealing With Infinite Streams	
		4.5.6	Exercises for Section 4.5	
	4.6		ing Ones in a Window	
		4.6.1	The Cost of Exact Counts	
		4.6.2	The Datar-Gionis-Indyk-Motwani Algorithm	
		463	Storage Requirements for the DGIM Algorithm 1	153

CONTENTS xi

		4.6.4	Query Answering in the DGIM Algorithm	. 153
		4.6.5	Maintaining the DGIM Conditions	
		4.6.6	Reducing the Error	
		4.6.7	Extensions to the Counting of Ones	
		4.6.8	Exercises for Section 4.6	
	4.7	Decay	ring Windows	
		4.7.1	The Problem of Most-Common Elements	
		4.7.2	Definition of the Decaying Window	
		4.7.3	Finding the Most Popular Elements	
	4.8		nary of Chapter 4	
	4.9		ences for Chapter 4	
5	\mathbf{Lin}	k Anal		163
	5.1	PageF		
		5.1.1	Early Search Engines and Term Spam	. 164
		5.1.2	Definition of PageRank	
		5.1.3	Structure of the Web	. 169
		5.1.4	Avoiding Dead Ends	
		5.1.5	Spider Traps and Taxation	
		5.1.6	Using PageRank in a Search Engine	
		5.1.7	Exercises for Section 5.1	
	5.2	Efficie	ent Computation of PageRank	. 177
		5.2.1	Representing Transition Matrices	. 178
		5.2.2	PageRank Iteration Using MapReduce	. 179
		5.2.3	Use of Combiners to Consolidate the Result Vector	. 179
		5.2.4	Representing Blocks of the Transition Matrix	. 180
		5.2.5	Other Efficient Approaches to PageRank Iteration	. 181
		5.2.6	Exercises for Section 5.2	. 183
	5.3	Topic-	-Sensitive PageRank	. 183
		5.3.1	Motivation for Topic-Sensitive Page Rank	. 183
		5.3.2	Biased Random Walks	. 184
		5.3.3	Using Topic-Sensitive PageRank	
		5.3.4	Inferring Topics from Words	
		5.3.5	Exercises for Section 5.3	
	5.4	Link S	*	
		5.4.1	Architecture of a Spam Farm	
		5.4.2	Analysis of a Spam Farm	
		5.4.3	Combating Link Spam	. 190
		5.4.4	TrustRank	
		5.4.5	Spam Mass	
		5.4.6	Exercises for Section 5.4	. 191
	5.5		and Authorities	_
		5.5.1	The Intuition Behind HITS	
		5.5.2	Formalizing Hubbiness and Authority	
		5.5.3	Exercises for Section 5.5	. 196

xii CONTENTS

	5.6	Summary of Chapter 5	196
	5.7	References for Chapter 5	
		•	
6	\mathbf{Fre}	quent Itemsets	201
	6.1		
		6.1.1 Definition of Frequent Itemsets	
		6.1.2 Applications of Frequent Itemsets	204
		6.1.3 Association Rules	205
		6.1.4 Finding Association Rules with High Confidence	207
		6.1.5 Exercises for Section 6.1	207
	6.2	Market Baskets and the A-Priori Algorithm	209
		6.2.1 Representation of Market-Basket Data	209
		6.2.2 Use of Main Memory for Itemset Counting	210
		6.2.3 Monotonicity of Itemsets	212
		6.2.4 Tyranny of Counting Pairs	213
		6.2.5 The A-Priori Algorithm	213
		6.2.6 A-Priori for All Frequent Itemsets	214
		6.2.7 Exercises for Section 6.2	217
	6.3	Handling Larger Datasets in Main Memory	218
		6.3.1 The Algorithm of Park, Chen, and Yu	218
		6.3.2 The Multistage Algorithm	220
		6.3.3 The Multihash Algorithm	
		6.3.4 Exercises for Section 6.3	224
	6.4	Limited-Pass Algorithms	226
		6.4.1 The Simple, Randomized Algorithm	226
		6.4.2 Avoiding Errors in Sampling Algorithms	227
		6.4.3 The Algorithm of Savasere, Omiecinski, and	
		Navathe	
		6.4.4 The SON Algorithm and MapReduce	
		6.4.5 Toivonen's Algorithm	
		6.4.6 Why Toivonen's Algorithm Works	
		6.4.7 Exercises for Section 6.4	
	6.5	Counting Frequent Items in a Stream	
		6.5.1 Sampling Methods for Streams	
		6.5.2 Frequent Itemsets in Decaying Windows	
		6.5.3 Hybrid Methods	
		6.5.4 Exercises for Section 6.5	
	6.6	Summary of Chapter 6	
	6.7	References for Chapter 6	238
7	Cl	stering	241
1	7.1	Introduction to Clustering Techniques	
	1.1	7.1.1 Points, Spaces, and Distances	
		7.1.2 Clustering Strategies	
		7.1.3 The Curse of Dimensionality	
		1.1.0 INCOURSE OF DIFFICUSIONALITY	444

CONTENTS xiii

		7.1.4	Exercises for Section 7.1	245
	7.2	Hierai	rchical Clustering	
		7.2.1	Hierarchical Clustering in a Euclidean Space	
		7.2.2	Efficiency of Hierarchical Clustering	
		7.2.3	Alternative Rules for Controlling Hierarchical	
			Clustering	249
		7.2.4	Hierarchical Clustering in Non-Euclidean Spaces	
		7.2.5	Exercises for Section 7.2	253
	7.3	K-mea	ans Algorithms	254
		7.3.1	K-Means Basics	
		7.3.2	Initializing Clusters for K-Means	255
		7.3.3	Picking the Right Value of k	256
		7.3.4	The Algorithm of Bradley, Fayyad, and Reina	257
		7.3.5	Processing Data in the BFR Algorithm	259
		7.3.6	Exercises for Section 7.3	262
	7.4	The C	CURE Algorithm	262
		7.4.1	Initialization in CURE	263
		7.4.2	Completion of the CURE Algorithm	264
		7.4.3	Exercises for Section 7.4	265
	7.5	Cluste	ering in Non-Euclidean Spaces	266
		7.5.1	Representing Clusters in the GRGPF Algorithm	
		7.5.2	Initializing the Cluster Tree	
		7.5.3	Adding Points in the GRGPF Algorithm	268
		7.5.4	Splitting and Merging Clusters	
		7.5.5	Exercises for Section 7.5	270
	7.6	Cluste	ering for Streams and Parallelism	
		7.6.1	The Stream-Computing Model	
		7.6.2	A Stream-Clustering Algorithm	
		7.6.3	Initializing Buckets	
		7.6.4	Merging Buckets	
		7.6.5	Answering Queries	
		7.6.6	Clustering in a Parallel Environment	
		7.6.7	Exercises for Section 7.6	
	7.7		nary of Chapter 7	
	7.8	Refere	ences for Chapter 7	280
8	Adv	vertisii	ng on the Web	281
Ü	8.1		s in On-Line Advertising	
	0.1	8.1.1	Advertising Opportunities	
		8.1.2	Direct Placement of Ads	
		8.1.3	Issues for Display Ads	
	8.2		ine Algorithms	
	- · -	8.2.1	On-Line and Off-Line Algorithms	
		8.2.2	Greedy Algorithms	
		8.2.3	The Competitive Ratio	
			1	-

xiv CONTENTS

		8.2.4	Exercises for Section 8.2	286
	8.3	The N	Matching Problem	287
		8.3.1	Matches and Perfect Matches	287
		8.3.2	The Greedy Algorithm for Maximal Matching	288
		8.3.3	Competitive Ratio for Greedy Matching	
		8.3.4	Exercises for Section 8.3	290
	8.4	The A	Adwords Problem	290
		8.4.1	History of Search Advertising	291
		8.4.2	Definition of the Adwords Problem	291
		8.4.3	The Greedy Approach to the Adwords Problem	
		8.4.4	The Balance Algorithm	293
		8.4.5	A Lower Bound on Competitive Ratio for Balance	294
		8.4.6	The Balance Algorithm with Many Bidders	296
		8.4.7	The Generalized Balance Algorithm	297
		8.4.8	Final Observations About the Adwords Problem	298
		8.4.9	Exercises for Section 8.4	299
	8.5	Adwo	ords Implementation	299
		8.5.1	Matching Bids and Search Queries	300
		8.5.2	More Complex Matching Problems	300
		8.5.3	A Matching Algorithm for Documents and Bids	301
	8.6		nary of Chapter 8	
	8.7	Refere	ences for Chapter 8	305
9	Dag		andation Creatores	207
9	9.1		endation Systems del for Recommendation Systems	307
	9.1	9.1.1	The Utility Matrix	
		9.1.1 $9.1.2$	The Long Tail	
		9.1.2 $9.1.3$	Applications of Recommendation Systems	
		9.1.3	Populating the Utility Matrix	
	9.2		ent-Based Recommendations	
	9.2	9.2.1	Item Profiles	
		9.2.1 $9.2.2$	Discovering Features of Documents	
		9.2.2	Obtaining Item Features From Tags	
		9.2.3	Obtaining item reatures from rags	
		0.2.4		215
		9.2.4	Representing Item Profiles	
		9.2.5	Representing Item Profiles	316
		$9.2.5 \\ 9.2.6$	Representing Item Profiles	$\frac{316}{317}$
		9.2.5 9.2.6 9.2.7	Representing Item Profiles	316 317 318
	0.9	9.2.5 9.2.6 9.2.7 9.2.8	Representing Item Profiles	316 317 318 320
	9.3	9.2.5 9.2.6 9.2.7 9.2.8 Collal	Representing Item Profiles	316 317 318 320 321
	9.3	9.2.5 9.2.6 9.2.7 9.2.8 Collab 9.3.1	Representing Item Profiles	316 317 318 320 321 322
	9.3	9.2.5 9.2.6 9.2.7 9.2.8 Collal 9.3.1 9.3.2	Representing Item Profiles	316 317 318 320 321 322 324
	9.3	9.2.5 9.2.6 9.2.7 9.2.8 Collal 9.3.1 9.3.2 9.3.3	Representing Item Profiles	316 317 318 320 321 322 324 325
		9.2.5 9.2.6 9.2.7 9.2.8 Collal 9.3.1 9.3.2 9.3.3 9.3.4	Representing Item Profiles	316 317 318 320 321 322 324 325 327
	9.3 9.4	9.2.5 9.2.6 9.2.7 9.2.8 Collal 9.3.1 9.3.2 9.3.3 9.3.4	Representing Item Profiles	316 317 318 320 321 322 324 325 327 328

CONTENTS xv

		9.4.2	Root-Mean-Square Error		. 32	29
		9.4.3	Incremental Computation of a UV-Decomposition		. 33	30
		9.4.4	Optimizing an Arbitrary Element		. 33	32
		9.4.5	Building a Complete UV-Decomposition Algorithm		. 33	34
		9.4.6	Exercises for Section 9.4		. 33	36
	9.5	The N	etflix Challenge		. 33	37
	9.6	Summ	ary of Chapter 9		. 33	38
	9.7	Refere	nces for Chapter 9		. 34	40
10	Min	ing So	cial-Network Graphs		34	13
-0			Networks as Graphs			
	10.1		What is a Social Network?			
			Social Networks as Graphs			
			Varieties of Social Networks			
			Graphs With Several Node Types			
			Exercises for Section 10.1			
	10.2		ring of Social-Network Graphs			
	10.2		Distance Measures for Social-Network Graphs			
			Applying Standard Clustering Methods			
			Betweenness			
			The Girvan-Newman Algorithm			
			Using Betweenness to Find Communities			
			Exercises for Section 10.2			
	10.3		Discovery of Communities			
	10.0		Finding Cliques			
			Complete Bipartite Graphs			
			Finding Complete Bipartite Subgraphs			
			Why Complete Bipartite Graphs Must Exist			
			Exercises for Section 10.3			
	10.4		ioning of Graphs			
	10.1		What Makes a Good Partition?			
			Normalized Cuts			
			Some Matrices That Describe Graphs			
			Eigenvalues of the Laplacian Matrix			
			Alternative Partitioning Methods			
			Exercises for Section 10.4			
	10.5		g Overlapping Communities			
			The Nature of Communities			
			Maximum-Likelihood Estimation			
			The Affiliation-Graph Model			
			Avoiding the Use of Discrete Membership Changes			
			Exercises for Section 10.5			
	10.6		nk			
			Random Walkers on a Social Graph			
			Random Walks with Restart			

xvi CONTENTS

		10.6.3	Exercises for Section 10.6	 . 380
	10.7	Counti	ing Triangles	 . 380
			Why Count Triangles?	
			An Algorithm for Finding Triangles	
			Optimality of the Triangle-Finding Algorithm	
			Finding Triangles Using MapReduce	
			Using Fewer Reduce Tasks	
			Exercises for Section 10.7	
	10.8		oorhood Properties of Graphs	
		_	Directed Graphs and Neighborhoods	
			The Diameter of a Graph	
			Transitive Closure and Reachability	
			Transitive Closure Via MapReduce	
			Smart Transitive Closure	
		10.8.6	Transitive Closure by Graph Reduction	 . 393
		10.8.7	Approximating the Sizes of Neighborhoods	 . 395
			Exercises for Section 10.8	
	10.9	Summ	ary of Chapter 10	 . 398
	10.10	Refere	nces for Chapter 10	 . 402
11	Dim	onsion	nality Reduction	405
11			values and Eigenvectors of Symmetric Matrices	
	11.1		Definitions	
			Computing Eigenvalues and Eigenvectors	
			Finding Eigenpairs by Power Iteration	
			The Matrix of Eigenvectors	
			Exercises for Section 11.1	
	11.2		pal-Component Analysis	
			An Illustrative Example	
			Using Eigenvectors for Dimensionality Reduction	
			The Matrix of Distances	
			Exercises for Section 11.2	
	11.3		ar-Value Decomposition	
			Definition of SVD	
		11.3.2	Interpretation of SVD	 . 420
		11.3.3	Dimensionality Reduction Using SVD	 . 422
		11.3.4	Why Zeroing Low Singular Values Works	 . 423
		11.3.5	Querying Using Concepts	 . 425
		11.3.6	Computing the SVD of a Matrix	 . 426
		11.3.7	Exercises for Section 11.3	 . 427
	11.4	CUR I	Decomposition \ldots	 . 428
			Definition of CUR	
			Choosing Rows and Columns Properly	
			Constructing the Middle Matrix	
		11.4.4	The Complete CUR Decomposition	 . 432

CONTENTS	xvii
----------	------

	11.4.5 Eliminating Duplicate Rows and Columns	434 434
		439
12.1	The Machine-Learning Model	
	12.1.1 Training Sets	
	12.1.2 Some Illustrative Examples	
	12.1.3 Approaches to Machine Learning	
	12.1.4 Machine-Learning Architecture	
	12.1.5 Exercises for Section 12.1	
12.2	Perceptrons	
	12.2.1 Training a Perceptron with Zero Threshold	
	12.2.2 Convergence of Perceptrons	
	12.2.3 The Winnow Algorithm	
	12.2.4 Allowing the Threshold to Vary	
	12.2.5 Multiclass Perceptrons	
	12.2.6 Transforming the Training Set	
	12.2.7 Problems With Perceptrons	
	12.2.8 Parallel Implementation of Perceptrons	
10.0	12.2.9 Exercises for Section 12.2	
12.3	Support-Vector Machines	
	12.3.1 The Mechanics of an SVM	
	12.3.2 Normalizing the Hyperplane	
	12.3.3 Finding Optimal Approximate Separators	
	12.3.4 SVM Solutions by Gradient Descent	
	12.3.5 Stochastic Gradient Descent	
	12.3.6 Parallel Implementation of SVM	
10.4	12.3.7 Exercises for Section 12.3	
12.4	Learning from Nearest Neighbors	
	12.4.1 The Framework for Nearest-Neighbor Calculations	
	12.4.2 Learning with One Nearest Neighbor	
	12.4.3 Learning One-Dimensional Functions	
	12.4.4 Kernel Regression	
	12.4.5 Dealing with High-Dimensional Euclidean Data	
	12.4.6 Dealing with Non-Euclidean Distances	
10.5	12.4.7 Exercises for Section 12.4	
12.5	Comparison of Learning Methods	400
	· · · · · · · · · · · · · · · · · · ·	
12.1	References for Chapter 12	400

xviii CONTENTS

Chapter 1

Data Mining

In this intoductory chapter we begin with the essence of data mining and a discussion of how data mining is treated by the various disciplines that contribute to this field. We cover "Bonferroni's Principle," which is really a warning about overusing the ability to mine data. This chapter is also the place where we summarize a few useful ideas that are not data mining but are useful in understanding some important data-mining concepts. These include the TF.IDF measure of word importance, behavior of hash functions and indexes, and identities involving e, the base of natural logarithms. Finally, we give an outline of the topics covered in the balance of the book.

1.1 What is Data Mining?

The most commonly accepted definition of "data mining" is the discovery of "models" for data. A "model," however, can be one of several things. We mention below the most important directions in modeling.

1.1.1 Statistical Modeling

Statisticians were the first to use the term "data mining." Originally, "data mining" or "data dredging" was a derogatory term referring to attempts to extract information that was not supported by the data. Section 1.2 illustrates the sort of errors one can make by trying to extract what really isn't in the data. Today, "data mining" has taken on a positive meaning. Now, statisticians view data mining as the construction of a *statistical model*, that is, an underlying distribution from which the visible data is drawn.

Example 1.1: Suppose our data is a set of numbers. This data is much simpler than data that would be data-mined, but it will serve as an example. A statistician might decide that the data comes from a Gaussian distribution and use a formula to compute the most likely parameters of this Gaussian. The mean

and standard deviation of this Gaussian distribution completely characterize the distribution and would become the model of the data. \Box

1.1.2 Machine Learning

There are some who regard data mining as synonymous with machine learning. There is no question that some data mining appropriately uses algorithms from machine learning. Machine-learning practitioners use the data as a training set, to train an algorithm of one of the many types used by machine-learning practitioners, such as Bayes nets, support-vector machines, decision trees, hidden Markov models, and many others.

There are situations where using data in this way makes sense. The typical case where machine learning is a good approach is when we have little idea of what we are looking for in the data. For example, it is rather unclear what it is about movies that makes certain movie-goers like or dislike it. Thus, in answering the "Netflix challenge" to devise an algorithm that predicts the ratings of movies by users, based on a sample of their responses, machine-learning algorithms have proved quite successful. We shall discuss a simple form of this type of algorithm in Section 9.4.

On the other hand, machine learning has not proved successful in situations where we can describe the goals of the mining more directly. An interesting case in point is the attempt by WhizBang! Labs¹ to use machine learning to locate people's resumes on the Web. It was not able to do better than algorithms designed by hand to look for some of the obvious words and phrases that appear in the typical resume. Since everyone who has looked at or written a resume has a pretty good idea of what resumes contain, there was no mystery about what makes a Web page a resume. Thus, there was no advantage to machine-learning over the direct design of an algorithm to discover resumes.

1.1.3 Computational Approaches to Modeling

More recently, computer scientists have looked at data mining as an algorithmic problem. In this case, the model of the data is simply the answer to a complex query about it. For instance, given the set of numbers of Example 1.1, we might compute their average and standard deviation. Note that these values might not be the parameters of the Gaussian that best fits the data, although they will almost certainly be very close if the size of the data is large.

There are many different approaches to modeling data. We have already mentioned the possibility of constructing a statistical process whereby the data could have been generated. Most other approaches to modeling can be described as either

1. Summarizing the data succinctly and approximately, or

¹This startup attempted to use machine learning to mine large-scale data, and hired many of the top machine-learning people to do so. Unfortunately, it was not able to survive.

2. Extracting the most prominent features of the data and ignoring the rest.

We shall explore these two approaches in the following sections.

1.1.4 Summarization

One of the most interesting forms of summarization is the PageRank idea, which made Google successful and which we shall cover in Chapter 5. In this form of Web mining, the entire complex structure of the Web is summarized by a single number for each page. This number, the "PageRank" of the page, is (oversimplifying somewhat) the probability that a random walker on the graph would be at that page at any given time. The remarkable property this ranking has is that it reflects very well the "importance" of the page – the degree to which typical searchers would like that page returned as an answer to their search query.

Another important form of summary – clustering – will be covered in Chapter 7. Here, data is viewed as points in a multidimensional space. Points that are "close" in this space are assigned to the same cluster. The clusters themselves are summarized, perhaps by giving the centroid of the cluster and the average distance from the centroid of points in the cluster. These cluster summaries become the summary of the entire data set.

Example 1.2: A famous instance of clustering to solve a problem took place long ago in London, and it was done entirely without computers.² The physician John Snow, dealing with a Cholera outbreak plotted the cases on a map of the city. A small illustration suggesting the process is shown in Fig. 1.1.

Figure 1.1: Plotting cholera cases on a map of London

²See http://en.wikipedia.org/wiki/1854_Broad_Street_cholera_outbreak.

The cases clustered around some of the intersections of roads. These intersections were the locations of wells that had become contaminated; people who lived nearest these wells got sick, while people who lived nearer to wells that had not been contaminated did not get sick. Without the ability to cluster the data, the cause of Cholera would not have been discovered. \Box

1.1.5 Feature Extraction

The typical feature-based model looks for the most extreme examples of a phenomenon and represents the data by these examples. If you are familiar with Bayes nets, a branch of machine learning and a topic we do not cover in this book, you know how a complex relationship between objects is represented by finding the strongest statistical dependencies among these objects and using only those in representing all statistical connections. Some of the important kinds of feature extraction from large-scale data that we shall study are:

- 1. Frequent Itemsets. This model makes sense for data that consists of "baskets" of small sets of items, as in the market-basket problem that we shall discuss in Chapter 6. We look for small sets of items that appear together in many baskets, and these "frequent itemsets" are the characterization of the data that we seek. The original application of this sort of mining was true market baskets: the sets of items, such as hamburger and ketchup, that people tend to buy together when checking out at the cash register of a store or super market.
- 2. Similar Items. Often, your data looks like a collection of sets, and the objective is to find pairs of sets that have a relatively large fraction of their elements in common. An example is treating customers at an online store like Amazon as the set of items they have bought. In order for Amazon to recommend something else they might like, Amazon can look for "similar" customers and recommend something many of these customers have bought. This process is called "collaborative filtering." If customers were single-minded, that is, they bought only one kind of thing, then clustering customers might work. However, since customers tend to have interests in many different things, it is more useful to find, for each customer, a small number of other customers who are similar in their tastes, and represent the data by these connections. We discuss similarity in Chapter 3.

1.2 Statistical Limits on Data Mining

A common sort of data-mining problem involves discovering unusual events hidden within massive amounts of data. This section is a discussion of the problem, including "Bonferroni's Principle," a warning against overzealous use of data mining.

1.2.1 Total Information Awareness

Following the terrorist attack of Sept. 11, 2001, it was noticed that there were four people enrolled in different flight schools, learning how to pilot commercial aircraft, although they were not affiliated with any airline. It was conjectured that the information needed to predict and foil the attack was available in data, but that there was then no way to examine the data and detect suspicious events. The response was a program called TIA, or *Total Information Awareness*, which was intended to mine all the data it could find, including credit-card receipts, hotel records, travel data, and many other kinds of information in order to track terrorist activity. TIA naturally caused great concern among privacy advocates, and the project was eventually killed by Congress. It is not the purpose of this book to discuss the difficult issue of the privacy-security tradeoff. However, the prospect of TIA or a system like it does raise many technical questions about its feasibility.

The concern raised by many is that if you look at so much data, and you try to find within it activities that look like terrorist behavior, are you not going to find many innocent activities – or even illicit activities that are not terrorism – that will result in visits from the police and maybe worse than just a visit? The answer is that it all depends on how narrowly you define the activities that you look for. Statisticians have seen this problem in many guises and have a theory, which we introduce in the next section.

1.2.2 Bonferroni's Principle

Suppose you have a certain amount of data, and you look for events of a certain type within that data. You can expect events of this type to occur, even if the data is completely random, and the number of occurrences of these events will grow as the size of the data grows. These occurrences are "bogus," in the sense that they have no cause other than that random data will always have some number of unusual features that look significant but aren't. A theorem of statistics, known as the Bonferroni correction gives a statistically sound way to avoid most of these bogus positive responses to a search through the data. Without going into the statistical details, we offer an informal version, Bonferroni's principle, that helps us avoid treating random occurrences as if they were real. Calculate the expected number of occurrences of the events you are looking for, on the assumption that data is random. If this number is significantly larger than the number of real instances you hope to find, then you must expect almost anything you find to be bogus, i.e., a statistical artifact rather than evidence of what you are looking for. This observation is the informal statement of Bonferroni's principle.

In a situation like searching for terrorists, where we expect that there are few terrorists operating at any one time, Bonferroni's principle says that we may only detect terrorists by looking for events that are so rare that they are unlikely to occur in random data. We shall give an extended example in the next section.

1.2.3 An Example of Bonferroni's Principle

Suppose there are believed to be some "evil-doers" out there, and we want to detect them. Suppose further that we have reason to believe that periodically, evil-doers gather at a hotel to plot their evil. Let us make the following assumptions about the size of the problem:

- 1. There are one billion people who might be evil-doers.
- 2. Everyone goes to a hotel one day in 100.
- 3. A hotel holds 100 people. Hence, there are 100,000 hotels enough to hold the 1% of a billion people who visit a hotel on any given day.
- 4. We shall examine hotel records for 1000 days.

To find evil-doers in this data, we shall look for people who, on two different days, were both at the same hotel. Suppose, however, that there really are no evil-doers. That is, everyone behaves at random, deciding with probability 0.01 to visit a hotel on any given day, and if so, choosing one of the 10^5 hotels at random. Would we find any pairs of people who appear to be evil-doers?

We can do a simple approximate calculation as follows. The probability of any two people both deciding to visit a hotel on any given day is .0001. The chance that they will visit the same hotel is this probability divided by 10^5 , the number of hotels. Thus, the chance that they will visit the same hotel on one given day is 10^{-9} . The chance that they will visit the same hotel on two different given days is the square of this number, 10^{-18} . Note that the hotels can be different on the two days.

Now, we must consider how many events will indicate evil-doing. An "event" in this sense is a pair of people and a pair of days, such that the two people were at the same hotel on each of the two days. To simplify the arithmetic, note that for large n, $\binom{n}{2}$ is about $n^2/2$. We shall use this approximation in what follows. Thus, the number of pairs of people is $\binom{10^9}{2} = 5 \times 10^{17}$. The number of pairs of days is $\binom{1000}{2} = 5 \times 10^5$. The expected number of events that look like evil-doing is the product of the number of pairs of people, the number of pairs of days, and the probability that any one pair of people and pair of days is an instance of the behavior we are looking for. That number is

$$5 \times 10^{17} \times 5 \times 10^5 \times 10^{-18} = 250,000$$

That is, there will be a quarter of a million pairs of people who look like evildoers, even though they are not.

Now, suppose there really are 10 pairs of evil-doers out there. The police will need to investigate a quarter of a million other pairs in order to find the real evil-doers. In addition to the intrusion on the lives of half a million innocent

people, the work involved is sufficiently great that this approach to finding evil-doers is probably not feasible.

1.2.4 Exercises for Section 1.2

Exercise 1.2.1: Using the information from Section 1.2.3, what would be the number of suspected pairs if the following changes were made to the data (and all other numbers remained as they were in that section)?

- (a) The number of days of observation was raised to 2000.
- (b) The number of people observed was raised to 2 billion (and there were therefore 200,000 hotels).
- (c) We only reported a pair as suspect if they were at the same hotel at the same time on three different days.
- ! Exercise 1.2.2: Suppose we have information about the supermarket purchases of 100 million people. Each person goes to the supermarket 100 times in a year and buys 10 of the 1000 items that the supermarket sells. We believe that a pair of terrorists will buy exactly the same set of 10 items (perhaps the ingredients for a bomb?) at some time during the year. If we search for pairs of people who have bought the same set of items, would we expect that any such people found were truly terrorists?³

1.3 Things Useful to Know

In this section, we offer brief introductions to subjects that you may or may not have seen in your study of other courses. Each will be useful in the study of data mining. They include:

- 1. The TF.IDF measure of word importance.
- 2. Hash functions and their use.
- 3. Secondary storage (disk) and its effect on running time of algorithms.
- 4. The base e of natural logarithms and identities involving that constant.
- 5. Power laws.

³That is, assume our hypothesis that terrorists will surely buy a set of 10 items in common at some time during the year. We don't want to address the matter of whether or not terrorists would necessarily do so.