Instructor: Tatsunari Watanabe

TA: Carlos Salinas

MA 26500-215 Quiz 6

July 15, 2016

1. Consider the matrix

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 3 & 3 \\ 0 & -1 & -1 \end{bmatrix}. \tag{*}$$

(a) (12 points) Recall that the **nullspace** of an $m \times n$ matrix A is the set of vectors \mathbf{x} in \mathbb{R}^m such that $A\mathbf{x} = \mathbf{0}$. This subset spans a subspace of \mathbb{R}^m . Give a description of the nullspace of the matrix (\star) by writing down basis for the nullspace.

[HINT: You should begin by putting the matrix in rref.]

Solution: We know from Kolman and Hill that elementary row operations do not change the nullspace of a matrix. Therefore, our first step should be to find the row-reduced echelon form A; call it A_{rref} . After doing some calculations to the side, we get that

$$A_{\text{rref}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

Now, $\mathbf{x} = (x_1, x_2, x_3, x_4)$ is in the nullspace of A_{rref} if $A_{\text{rref}}\mathbf{x} = (0, 0, 0, 0)$. When does this happen? Well

$$A_{\text{rref}}\mathbf{x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

so $x_1 = x_2 = x_3 = 0$. This forces **x** to be (0, 0, 0, 0) so the nullspace of A_{rref} (which is the same as the nullspace of A) is $\{0\}$, hence, it has no basis.

(b) (8 points) The **range** or **columnspace** of an $m \times n$ matrix A is the set of vectors \mathbf{y} in \mathbb{R}^n that are, in some sense, "hit" by vectors \mathbf{x} in \mathbb{R}^n by the matrix A, i.e., $\mathbf{y} = A\mathbf{x}$ for some \mathbf{x} . Using your calculations from above (the hint), write down a basis for the range of (\star) .

Solution: Using the row reduced echelon of the matrix above, we see that

$$A_{\text{rref}}\mathbf{x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ 0 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}.$$

Hence, the set $\left\{\begin{bmatrix}1\\0\\0\end{bmatrix},\begin{bmatrix}0\\1\\0\end{bmatrix},\begin{bmatrix}0\\0\\1\\0\end{bmatrix}\right\}$ is a basis for the range. **Note** this is not a basis for \mathbb{R}^4 which is a 4-dimensional vector space.