Diffusion Models DDPM

Все ли картины настоящие?

Хосин Зиани. Венеция

MidJourney.
Ilya Repin painting depicting a foggy morning in Venice

Клод Моне. Вестминстерский дворец

Сильные стороны диффузионных моделей

- Очень высокое качество генерации
- Способны к переносу стиля
- Генерация может быть как безусловная, так и условная
- Можно применять не только для генерации изображений/видео, но и:
 - к задачам генерации последовательностей
 - для повышения качества/детализированности изображения
 - для расшумления изображений

DDPM: основная идея

• Пусть есть пространство объектов $\{\mathbf x_0\}, \quad \mathbf x_0 \sim q(\mathbf x_0)$

• Предложение 1: При долгом последовательном добавлении шума к объектам объекты становятся распределенными так же, как и шум

• Предложение 2: Убирая шум от зашумленных объектов так же, как и добавляли его, получим исходное распределение объектов

DDPM: основная идея

Идея: Используя предложения 1 и 2, можно, аппроксимируя обратные шаги, научиться восстанавливать из шума распределение объектов $q(\mathbf{x}_0)$.

Сэмплировать объекты можно так же: берём объект, заполненный шумом, и "восстанавливаем" его аппроксимациями обратных шагов.

- Пусть есть пространство объектов $\{\mathbf x_0\}, \quad \mathbf x_0 \sim q(\mathbf x_0)$
- x_1, \dots, x_T латентные переменные (x_t объект после применения к нему t шагов forward process)
- Пусть для простоты весь рассматриваемый шум нормальный (многомерное нормальное распределение).

- Forward (diffusion) process:
 - Цепь Маркова
 - Стартовое состояние $\mathrm{x}_0 \sim q(\mathrm{x}_0)$
 - Добавляет шум к данным согласно variance schedule β_1, \dots, β_T , каждый переход между соседними двумя состояниями происходит со следующей вероятностью:

$$q(\mathbf{x}_t|\mathbf{x}_{t-1}) \coloneqq \mathcal{N}(\mathbf{x}_t; \sqrt{1-\beta_t}\mathbf{x}_{t-1}, \beta_t\mathbf{I})$$

• Воспользуемся марковским свойством. Тогда:

$$q(\mathbf{x}_{1:T}|\mathbf{x}_0) \coloneqq \prod_{t=1}^T q(\mathbf{x}_t|\mathbf{x}_{t-1})$$

- Reverse process:
 - Тоже цепь Маркова
 - Стартовое состояние $\mathbf{x}_T \sim p(\mathbf{x}_T) = \mathcal{N}(\mathbf{x}_T; \mathbf{0}, \mathbf{I})$
 - Убирает шум гауссовскими обратными шагами (будем обучать модель их выполнять)
 - Каждый переход между соседними двумя состояниями происходит со следующей вероятностью:

$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) \coloneqq \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_t, t))$$

• Воспользуемся марковским свойством. Тогда:

$$p_{\theta}(\mathbf{x}_{0:T}) \coloneqq p(\mathbf{x}_T) \prod_{t=1}^{T} p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)$$

- Полезная репараметризация: $\alpha_t\coloneqq 1-\beta_t$, $\bar{\alpha}_t\coloneqq \prod_{s=1}^t \alpha_s$
- С её помощью можно вывести, что:

$$q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1}; \tilde{\boldsymbol{\mu}}_t(\mathbf{x}_t,\mathbf{x}_0), \tilde{eta}_t \mathbf{I}),$$
 где $\tilde{\boldsymbol{\mu}}_t(\mathbf{x}_t,\mathbf{x}_0) \coloneqq \frac{\sqrt{ar{lpha}_{t-1}}eta_t}{1-ar{lpha}_t}\mathbf{x}_0 + \frac{\sqrt{lpha_t}(1-ar{lpha}_{t-1})}{1-ar{lpha}_t}\mathbf{x}_t$, $\tilde{eta}_t \coloneqq \frac{1-ar{lpha}_{t-1}}{1-ar{lpha}_t}eta_t$

• Также верно, что: $q(\mathbf{x}_t|\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\bar{\alpha}_t}\mathbf{x}_0, (1-\bar{\alpha}_t)\mathbf{I})$

Причём тут нейросети?

Задача:

• Хотим обучить модель предсказывать параметры распределений $p_{ heta}(\mathbf{x}_{t-1}|\mathbf{x}_t)$.

$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) := \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_t, t))$$

• Хотим максимизировать $p_{ heta}(\mathbf{x}_0) \Leftrightarrow$ хотим минимизировать $\underbrace{\mathbb{E}\left[-\log p_{ heta}(\mathbf{x}_0)
ight]}_{ ext{NLL Loss}}$

• Хотим обучаться с помощью градиентного спуска (так как это просто)

Проблема

Непонятно, как полученный лосс оптимизировать

В общем виде такое правдоподобие нельзя найти, так как не знаем $\mathbf{x}_{1:T}$

Решение

Надо перейти к какой-нибудь верхней оценке на лосс и минимизировать её

ELBO

• Заметим: построенные forward и reverse процессы — Markovian Hierarchical VAE.

• Для VAE верно неравенство ELBO:

$$\log p_{ heta}(\mathrm{x}_0) \geqslant \mathbb{E}_{\mathrm{x}_{1:T} \sim q(\mathrm{x}_{1:T} | \mathrm{x}_0)} \left\lceil \log \left(rac{p_{ heta}(\mathrm{x}_{0:T})}{q(\mathrm{x}_{1:T} | \mathrm{x}_0)}
ight)
ight
ceil$$

Применяем ELBO к лоссу

Преобразуем лосс дальше

Преобразуем лосс дальше

$$L = \mathbb{E}_q \left[\underbrace{D_{\mathrm{KL}}(q(\mathbf{x}_T|\mathbf{x}_0) \parallel p(\mathbf{x}_T))}_{L_T} + \sum_{t>1} \underbrace{D_{\mathrm{KL}}(q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0) \parallel p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t))}_{L_{t-1}} \underbrace{-\log p_{\theta}(\mathbf{x}_0|\mathbf{x}_1)}_{L_0} \right]$$

$$\mathbf{x}_T \sim p(\mathbf{x}_T) = \underbrace{\mathcal{N}(\mathbf{x}_T; \mathbf{0}, \mathbf{I})}_{\mathsf{известно}}$$

$$q(\mathbf{x}_t|\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\bar{\alpha}_t}\mathbf{x}_0, (1-\bar{\alpha}_t)\mathbf{I})$$

Hеизвестно, если не знаем variance schedule.
Считаем, что знаем, так проще

Итог: не зависит от параметров

Экспериментально показано, что без оптимизации данного члена метрики лучше => не будем его рассматривать

Упрощаем KL-дивергенции

$$L = \mathbb{E}_q \left[\underbrace{D_{\mathrm{KL}}(q(\mathbf{x}_T | \mathbf{x}_0) \parallel p(\mathbf{x}_T))}_{L_T} + \sum_{t>1} \underbrace{D_{\mathrm{KL}}(q(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{x}_0) \parallel p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t))}_{L_{t-1}} \underbrace{-\log p_{\theta}(\mathbf{x}_0 | \mathbf{x}_1)}_{L_0} \right]$$

• Ірезультат:
$$L_{t-1} = \mathbb{E}_q \left[\frac{1}{2\sigma_t^2} \| \tilde{\boldsymbol{\mu}}_t(\mathbf{x}_t, \mathbf{x}_0) - \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t) \|^2 \right] + C$$
 => $\underbrace{\| \tilde{\boldsymbol{\mu}}_t(\mathbf{x}_t, \mathbf{x}_0) - \underline{\boldsymbol{\mu}}_{\theta}(\mathbf{x}_t, t) \|^2}_{\text{ground truth } q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0)} \right]$ предсказание $p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)$

• II результат:
$$L_{\text{simple}}(\theta) \coloneqq \mathbb{E}_{t,\mathbf{x}_0,\boldsymbol{\epsilon}} \Big[\big\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t}\mathbf{x}_0 + \sqrt{1-\bar{\alpha}_t}\boldsymbol{\epsilon},t) \big\|^2 \Big] \longrightarrow \min_{\theta}$$

Какой лосс выбрать?

Unconditional CIFAR10 reverse process parameterization and training objective ablation. Blank entries were unstable to train and generated poor samples with out-of-range scores.

Objective	IS	FID
$ ilde{\mu}$ prediction (baseline)		
L , learned diagonal $oldsymbol{\Sigma}$ L , fixed isotropic $oldsymbol{\Sigma}$ $\ oldsymbol{ ilde{\mu}} - oldsymbol{ ilde{\mu}}_{ heta}\ ^2$	7.28 ± 0.10 8.06 ± 0.09	23.69 13.22 -
ϵ prediction (ours)		
L , learned diagonal Σ L , fixed isotropic Σ $\ \tilde{\epsilon} - \epsilon_{\theta}\ ^2 (L_{\text{simple}})$	-7.67 ± 0.13 9.46 ± 0.11	- 13.51 3.17

Оптимизация forward process

ullet В наивном варианте зашумляем \mathbf{x}_0 до \mathbf{x}_t за O(t) - долго

• Ранее вывели: $q(\mathbf{x}_t|\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\bar{\alpha}_t}\mathbf{x}_0, (1-\bar{\alpha}_t)\mathbf{I}) =>$ можно зашумлять за O(1)

Алгоритмы обучения и сэмплирования

Algorithm 1 Training

1: repeat

- 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$
- 3: $t \sim \text{Uniform}(\{1, \dots, T\})$
- 4: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 5: Take gradient descent step on

$$\nabla_{\theta} \| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \|^2$$

6: **until** converged

Algorithm 2 Sampling

- 1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 2: **for** t = T, ..., 1 **do**
- 3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if t > 1, else $\mathbf{z} = \mathbf{0}$
- 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$
- 5: end for
- 6: return x_0

Архитектурные решения

- Backbone: U-Net co skip connections
- Параметры (предсказания) привязаны ко времени с помощью positional embedding'ob
- Между U-Net-блоками Attention

Результаты

CIFAR10 results.

Model	IS	FID
Conditional		
EBM [11]	8.30	37.9
JEM [17]	8.76	38.4
BigGAN [3]	9.22	14.73
StyleGAN2 + ADA (v1) [29]	10.06	2.67
Unconditional		
Diffusion (original) [53]		
Gated PixelCNN [59]	4.60	65.93
Sparse Transformer [7]		
PixelIQN [43]	5.29	49.46
EBM [11]	6.78	38.2
NCSNv2 [56]		31.75
NCSN [55]	8.87 ± 0.12	25.32
SNGAN [39]	8.22 ± 0.05	21.7
SNGAN-DDLS [4]	9.09 ± 0.10	15.42
StyleGAN2 + ADA (v1) [29]	9.74 ± 0.05	3.26
Ours (L, fixed isotropic Σ)	7.67 ± 0.13	13.51
Ours $(L_{\rm simple})$	9.46 ± 0.11	3.17

Сильные и слабые стороны DDPM

Плюсы:

- Высокое качество генерации (при достаточной настройке – лучше GANob)
- Flexibility

Минусы:

- Очень медленная генерация (за O(T))
- По умолчанию нет условной генерации

Что дальше?

- Learnable variance => better results
- Conditional learning
- Cascaded diffusion (объединение нескольких диффузионок в пайплайн)
- CLIP + Diffusion model = DALL-E 2
- LLMs + Diffusion models (ImageGen)

A robot couple fine dining with Eiffel Tower in the background.

Источники

- Denoising Diffusion Probabilistic Models (arxiv.org)
- Diffusion model Wikipedia
- The DDPM Model | Daniel Gu (dg845.github.io)
- The Annotated Diffusion Model (huggingface.co)

