Путин Павел Александрович, группа 7.1

Лабораторная работа № 3

Вариант № 6

Моделирование систем массового обслуживания (Q-систем) в Simulink с использованием библиотеки SimEvents

Цель работы

Практическое изучение технологий визуального программирования имитационных моделей систем с использованием подсистемы Simulink, построение систем массового обслуживания, а также оценка различных показателей эффективности с помощью библиотеки SimEvents.

Задание

В службу поддержки банка в среднем за сутки поступает 80000 заявок на переговоры. Средняя длительность переговоров составляет 7 мин. Длина очереди не должна превышать 4 абонентов. Потоки заявок и обслуживаний простейшие. В службе поддержке работает 32 оператора. Определить характеристики обслуживания переговорного пункта в стационарном режиме: среднее число заявок в системе, вероятность обслуживания клиента, пропускную способность системы за неделю.

Код программы (внесённые изменения в шаблон кода выделены)

- % 6. В службу поддержки банка в среднем за сутки поступает 80000
- % заявок на переговоры. Средняя длительность переговоров составляет 7 мин.
- % Длина очереди не должна превышать 4 абонентов. Потоки заявок и
- % обслуживаний простейшие. В службе поддержке работает 32 оператора.
- % Определить характеристики обслуживания переговорного пункта
 в
- % стационарном режиме: среднее число заявок в системе, вероятность
- % обслуживания клиента, пропускную способность системы за неделю.

clear all;

Ts = 60 * 24 * 7; % моделирование 7 дней работы

```
s = sim('my_queueing', Ts); % моделирование

disp('Среднее число заявок в системе:');
disp(mean(s.inSystem.Data));

p = s.success.Data(end) ./ (s.success.Data(end) +
s.failure.Data(end));
disp('Вероятность обслуживания клиента:');
disp(p);

disp('Пропускная способность системы за неделю:');
disp(s.totalUsers.Data(end));
```

Схема системы в Simulink

Рисунок 1 — СМО, имитирующая службу поддержки банка

Блок Entity Generator генерирует сущности по заданному закону распределения (экспоненциальный) с математическим ожиданием 60 * 24 / 80000 = 0.018.

Рисунок 2

Блок Scope отображает график генерации пользователей за время моделирования.

Блок To Workspace отправляет в УП переменную totalUsers.

Блок Entity Output Switch служит для разделения потока сущностей. Сущности двигаются по первому свободному каналу.

Рисунок 3

Блок Entity Terminator служит для сбора статистики о сущностях, которым было отказано в обслуживании.

Блок To Workspace2 отправляет в УП переменную failure.

Блок Entity Queue представляет FIFO очередь объёмом 4.

Рисунок 4

Блок Entity Server представляет собой 32 канала обслуживания. Каждый канал тратит 7 единиц времени на обслуживание сущности.

Рисунок 5

Блок То Workspace3 отправляет в УП переменную inSystem, определённую как сумма сущностей в Entity Queue и Entity Server.

Блок Entity Terminator служит для сбора статистики о сущностях, которые были обслужены.

Блок Scope1 отображает график пользователей, которые были обслужены.

Блок To Workspace1 отправляет в УП переменную success.

Результаты выполнения задания

Таблица 1 — Оценка значений характеристик СМО

Характеристика СМО	Значение
Среднее число заявок в системе	35.8428
Вероятность обслуживания клиента	0.0823

Рисунок 6 — Осциллограмма генерации сущностей

Рисунок 7 — Осциллограмма обслуженных сущностей

На основе полученных значений и рисунков можно сделать вывод, что пропускной способности данной СМО достаточно лишь для обработки около 8% пользователей.

Выводы

Были изучены технологии визуального программирования имитационных моделей систем с использованием подсистемы Simulink, построение систем массового обслуживания, а также оценка различных показателей эффективности с помощью библиотеки SimEvents.