FIR and Adaptive Filter Implementation on a FPGA Board

Xueyan Lu

Signal Processing Research Lab. (SPRL), Department of Electrical Engineering, Santa Clara University, CA 95053, USA

Date: June 15th, 2017

Outline

- Introduction
- Filters
 - FIR Filter
 - LMS Adaptive Filter
 - Block FIR Filter
 - Block LMS Adaptive Filter
- Conclusion
- Reference

- Development Tools
- Xilinx Vivado 2016.2
- Matlab and Verilog

Digilent Nexys 4 Artix-7

Santa Clara

University

- R2R Digital to Analog Converter (DAC)

- Clock Enable
- For the non-block filters, clock enable generator is used to slow down the frequency to 44KHz (audio sample rate).
- It is not used in the block filters.

- Tone/Waveform Generator

- Provides input signal for each filter design.
- 100 samples. Looped forever.
- For the non-block filters, the table is sampled at 44KHz producing a combination of 440Hz and 4.4KHz.
- For the block filters, it is sampled at the system frequency. Which is 60MHz and 50MHz for Block FIR and Block LMS respectively.

Santa Clara

University

- The simplest of the 4 filters.
- Uses pre-adders to take advantage of coefficient symmetry. Reduces the number of multipliers from 16 to 8.
- Implements an adder tree to calculate the final output.
- The Xilinx software optimized out the multipliers due to the small filter footprint.

- Filter Diagram

- System Diagram

- Simulation: Matlab Waveforms

Unfiltered Audio

Pre-filtered Audio Spectrum with Low-pass Filter Overlay

Filtered Audio

- Simulation: Vivado Waveforms

- Implementation Oscilloscope Waveforms

Before Filtering

After Filtering

- Performance
- Resource Usage

Resource	Utilization	Available	Utilization %	
LUT	1072	63400	1.69	
FF	287	126800	0.23	
IO	10	210	4.76	
BUFG	2	32	6.25	
MMCM	1	6	16.67	

- Maximum Clock Frequency
 - 264MHz

- Implements the Least Mean Square (LMS) algorithm.
- The slowest of the 4 filters.
- Cannot take advantage of coefficient symmetry. Uses 2 multipliers per coefficient and an additional removable 1 multiplier for μ (step size). The number of multipliers is 2*16 (+1) = 32 (or 33).

- Filter Diagram

- System Diagram

- Simulation: Matlab Waveforms

Filter Frequency Responses 55 FIR Filter 50 Adaptive Filter 45 40 Amplitude (dB) 35 20 15 10 -2 Frequency (Hz)

Adaptive Filter Error

Filter Frequency Responses

- Simulation: Vivado Waveforms

- Implementation Oscilloscope Waveforms

Tone Table as the Desired Output

FIR Filter as the Desired Output

- Performance
- Resource Usage

Resource	Utilization	Available	Utilization %	
LUT	1686	63400	2.66	
LUTRAM	1	19000	0.01	
FF	569	126800	0.45	
DSP	32	240	13.33	
IO	10	210	4.76	
BUFG	2	32	6.25	
MMCM	1	6	16.67	

- Maximum Clock Frequency
 - 19.8MHz

- Has a block length of 4.
- Processes 4 inputs and 4 outputs per clock cycle.
- Uses 64 multipliers.
- Not as fast as the FIR filter due to the larger footprint.

- Filter Diagram

- System Diagram

- Simulation: Vivado Waveforms

- Implementation Oscilloscope Waveforms

After Filtering

- Performance

Resource Usage

Resource	Utilization	Available	Utilization %	
LUT	293	63400	0.46	
FF	287	126800	0.23	
DSP	64	240	26.67	
Ю	10	210	4.76	
BUFG	3	32	9.38	
MMCM	1	6	16.67	

Maximum Clock Frequencies

• Sample Generator: 60MHz

• Filter: 15MHz

- The most complex of the 4 filters.
- Processes 4 inputs and 4 outputs every 2 clock cycles.
- The only filter with two stages. One for updating the coefficients, and the other for calculating the output.
- Uses 64 multipliers.
 - More than twice as fast as the LMS filter.

- Filter Diagram

Error Computing Unit

- System Diagram

- Simulation: Vivado Waveforms

- Implementation Oscilloscope Waveforms

Tone Table as the Desired Output

FIR Filter as the Desired Output

- Performance
- Resource Usage

Resource	Utilization	Available	Utilization %	
LUT	1973	63400	3.11	
LUTRAM	1	19000	0.01	
FF	1044	126800	0.82	
DSP	64	240	26.67	
IO	10	210	4.76	
BUFG	3	32	9.38	
MMCM	1	6	16.67	

Maximum Clock Frequencies

• Sample Generator: 50MHz

Filter: 25MHz

Conclusion

Filters		FIR Filter	LMS Adaptive Filter	Block FIR Filter	Block LMS Filter
Resource Usage	Multiplier	0	32	64	64
	LUT	1072	1686	293	1973
	FF	287	569	287	1044
Maximum Frequency	Sample Generator	264MHz	19.8MHz	60MHz	50MHz
	Filter			15MHz	25MHz

Reference

- Multiplier-based structure for BLMS adaptive filters, http://shodhganga.inflibnet.ac.in/bitstream/10603/120732/13/13_chapter3.pdf
- LMS Adaptive Filtering, https://ocw.mit.edu/courses/mechanical-engineering/2-161-signal-processing-continuous-and-discrete-fall-2008/lecture-notes/lecture_25.pdf
- Resistor ladder, https://en.wikipedia.org/wiki/Resistor_ladder

Thanks for Listening!

