## ECON 6090

## Problem Set 5

Gabe Sekeres

December 5, 2024

9. The consumer solves the problem

$$\max_{x} u(w-x) + \mathbb{E}[v(x+y)]$$

where  $y \sim F(\cdot)$ . Denote the solution to this problem as  $x^*$  and the solution to the problem where y is degenerate with mean 0 as  $x_0$ .

- (a) Recall that in the degenerate problem, since u and v are concave, we have that  $v'(x_0) u'(w x_0) = 0$ . If  $\mathbb{E}[v'(x_0 + y)] > v'(x_0)$ , we have that  $\mathbb{E}[v'(x_0 + y)] u'(w x_0) > 0$ , so  $x_0$  is not a maximizer of the problem. It remains to show that the true maximizer is greater than  $x_0$ . At  $x_0$ , we have that  $\mathbb{E}[v'(x_0 + y)] > u'(w x_0)$ . At the true maximizer  $x^*$ , we have that  $\mathbb{E}[v'(x^* + y)] = u'(w x^*)$ . Conclusion follows by noting that u and v are concave, so u' and v' are decreasing in the argument. Thus,  $x^* > x_0$ .
- (b) We have that for  $v_1$  and  $v_2$ ,  $-v_1'''(x)/v_1''(x) \le -v_2'''(x)/v_2''(x)$  for all x, and that  $\mathbb{E}[v_1'(x_0+y)] > v_1'(x_0)$ . Note that the coefficient of absolute risk aversion of  $v_i'$  is equivalent to the coefficient of absolute prudence of  $v_i$ . Thus, from Proposition 6.C.2 in Mas-Colell, we have that since  $v_1'$  has a coefficient of absolute risk aversion that is not greater than  $v_2'$ ,  $v_2'$  has a greater certainty equivalent than  $v_1'$ , meaning that  $\mathbb{E}[v_2'(x_0+y)] > v_2'(x_0)$ . In the context of part (a), this implies that if one individual decides to invest in a risky lottery, a second individual with a not-greater coefficient of absolute prudence will also invest, and they will not invest less.
- (c) We have that v'''(x) > 0 for all x, then v' is convex, meaning that v' exhibits risk-loving behavior. Since  $\mathbb{E}[y] = 0$ , we have that  $\mathbb{E}[v'(x+y)] > v'(x)$  for all x.
- (d) We have that the coefficient of absolute risk aversion is decreasing in wealth, meaning that

$$\frac{\partial}{\partial w} \left[ -\frac{v''(x)}{v'(x)} \right] < 0 \Longrightarrow -\frac{v'''(x)v'(x) - (v''(x))^2}{(v'(x))^2} = \frac{v''(x)}{v'(x)} \left( \frac{v''(x)}{v'(x)} - \frac{v'''(x)}{v''(x)} \right) < 0$$

Thus, we have that  $-\frac{v''(x)}{v'(x)} < -\frac{v'''(x)}{v''(x)}$ .

- 14. We have that  $u^*(\cdot)$  is strongly more risk-averse than  $u(\cdot)$  if and only if there exists a positive constant k and a nonincreasing, concave function  $v(\cdot)$  such that  $u^*(x) = ku(x) + v(x)$  for all x.
  - (a) We have that the coefficient of absolute risk aversion for  $u^*$  at some x is

$$r(x, u^*) = -\frac{ku''(x) + v''(x)}{ku'(x) + v'(x)}$$

we want to show that

$$-\frac{ku''(x) + v''(x)}{ku'(x) + v'(x)} \ge -\frac{u''(x)}{u'(x)} \Longrightarrow u'(x)(ku''(x) + v''(x)) \le u''(x)(ku'(x) + v'(x))$$

This simplifies to

$$ku'(x)u''(x) + u'(x)v''(x) \le ku'(x)u''(x) + u''(x)v'(x) \Longrightarrow u'(x)v''(x) \le u''(x)v'(x)$$

1

Which holds as long as

$$-\frac{v''(x)}{v'(x)} \ge -\frac{u''(x)}{u'(x)}$$

Since, by assumption, u is increasing and concave, and v is non-increasing and concave, the left side is non-negative and the right side is non-positive. Conclusion follows.

- (b) Suppose FSOC that there exists  $u^*(x) = ku(x) + v(x)$ , where v is non-constant, non-increasing, and concave. Define M such that  $M = \inf\{C \in \mathbb{R} : u(x) \leq C \ \forall \ x\}$ . Since u is increasing, as  $x \to \infty$ ,  $u(x) \to M$ . However, since v is non-constant and non-increasing,  $\exists \ x \in \mathbb{R}$  sufficiently large such that  $u^*(x) > u^*(x + \varepsilon)$  for some  $\varepsilon > 0$ . This contradicts the assumption that  $u^*$  must be increasing.
- (c) We have from (a) that strong risk aversion implies Arrow-Pratt risk aversion. It remains to show that the converse is not true. Consider the functions  $u(x) = -\exp(-\alpha x)$  and  $v(x) = -\exp(-\beta x)$ , where  $\beta > \alpha$ . Both functions exhibit constant absolute risk aversion, so v is more risk-averse than u in the Arrow-Pratt sense. However, since they are each bounded above, by (b) v is not strongly more risk-averse than v.
- 15. We have a risk-averse decision maker, investing  $x_1$  in a riskless asset and  $x_2$  in a risky asset that pays a with probability  $\pi$  and b with probability  $1 \pi$ . They begin with w = 1.
  - (a) Since the decision-maker is risk-averse, they will invest strictly positive levels in the riskless asset if there is a probability of loss with respect to the risky asset. Thus, the necessary condition is that at least one of a, b is strictly less than 1.
  - (b) Again, since the decision-maker is risk-averse, they will invest in the risky asset only if its expected value is greater than that of the riskless asset, *i.e.* when  $\pi a + (1 \pi)b > 1$ .
  - (c) The decision-maker is maximizing the problem

$$\max_{x_1, x_2} \pi u(x_1 + ax_2) + (1 - \pi)u(x_1 + bx_2) \text{ s.t. } x_1, x_2 \in [0, 1], x_1 + x_2 = 1$$

The first condition falls away because we're assuming that the conditions from (a) and (b) hold, so the Lagrangian this admits is

$$\mathcal{L} = \pi u(x_1 + ax_2) + (1 - \pi)u(x_1 + bx_2) + \lambda(1 - x_1 - x_2)$$

The first order conditions are

$$\frac{\partial \mathcal{L}}{\partial x_1} = \pi u'(x_1 + ax_2) + (1 - \pi)u'(x_1 + bx_2) - \lambda = 0$$

$$\frac{\partial \mathcal{L}}{\partial x_2} = a\pi u'(x_1 + ax_2) + b(1 - \pi)u'(x_1 + bx_2) - \lambda = 0$$

which, combining, get

$$\pi u'(x_1 + ax_2) + (1 - \pi)u'(x_1 + bx_2) = a\pi u'(x_1 + ax_2) + b(1 - \pi)u'(x_1 + bx_2)$$

which imply

$$\pi(1-a)u'(x_1+ax_2) + (1-\pi)(1-b)u'(x_1+bx_2) = 0$$

The final first order condition is

$$\frac{\partial \mathcal{L}}{\partial \lambda} = 1 - x_1 - x_2 = 0 \Longrightarrow x_1 + x_2 = 1$$

(d) Using the implicit function theorem, and holding b constant, define

$$g(x_1, a, \pi) = \pi(1 - a)u'(x_1 + a(1 - x_1)) + (1 - \pi)(1 - b)u'(x_1 + b(1 - x_1))$$

We have that

$$\frac{\partial x_1}{\partial a} = -\frac{\frac{\partial g}{\partial a}}{\frac{\partial g}{\partial x_1}} = -\frac{-\pi u'(x_1 + a(1 - x_1)) + \pi(1 - a)(1 - x_1)u''(x_1 + a(1 - x_1))}{\pi(1 - a)(1 - a)u''(x_1 + a(1 - x_1)) + (1 - \pi)(1 - b)(1 - b)u''(x_1 + b(1 - x_1))}$$

where all terms in the numerator and denominator are negative, so  $\frac{\partial x_1}{\partial a} \leq 0$ .

- (e) If we are assuming, like in (d), that a < 1, it follows that b > 1. Thus, as  $\pi$  increases, the lottery gets worse, so the decision maker would invest more in the riskless asset. Thus, I conjecture that  $\frac{\partial x_1}{\partial \pi} > 0$ .
- (f) From the first order conditions and the implicit function theorem, we have that

$$\frac{\partial x_1}{\partial \pi} = -\frac{\partial g/\partial \pi}{\partial g/\partial x_1}$$

We know that the denominator is negative, from part (d). It remains to show that the numerator is positive, and conclusion will follow. We have that

$$\frac{\partial g}{\partial \pi} = \underbrace{(1-a)u'(x_1 + a(1-x_1))}_{>0} - \underbrace{(1-b)u'(x_1 + b(1-x_1))}_{<0} > 0$$

- 16. An individual has Bernoulli utility function  $u(\cdot)$  and initial wealth w. Let lottery L offer a payoff of G with probability p and a payoff of B with probability (1-p).
  - (a) The individual would sell the lottery for no less than the amount that would guarantee the same expected utility -i.e., a price y such that

$$pu(w+G) + (1-p)u(w+B) = u(w+y)$$

(b) They would purchase the lottery for an amount x such that they would have the same expected utility whether they had the lottery or not -i.e., a price x such that

$$pu(w - x + G) + (1 - p)u(w - x + B) = u(w)$$

(c) In general,  $x \neq y$ , as the different levels of wealth will change how much the lottery is 'worth' to the decision maker. However, if u exhibits constant absolute risk aversion, then they will coincide. If u exhibits CARA, then the above conditions imply that

$$w - c_w = (w - x) - c_{w-x}$$

where  $c_w$  is the certainty equivalent of the lottery with wealth w and  $c_{w-x}$  is the certainty equivalent of the lottery with wealth w-x.

(d) Directly calculating (using Wolfram), we get that y solves

$$p\sqrt{20} + (1-p)\sqrt{15} = \sqrt{10+y} \Longrightarrow y = -5\left(4\sqrt{3}p^2 - 7p^2 - 4\sqrt{3}p + 6p - 1\right)$$

and x solves

$$p\sqrt{20-x} + (1-p)\sqrt{15-x} = \sqrt{10} \Longrightarrow x = \frac{5\left(2p^3 + 7p^2 \pm 2\sqrt{2}\sqrt{-2p^5 + 7p^4 - 8p^3 + 3p^2} - 8p + 1\right)}{4p^2 - 4p + 1}$$

17. We have that an individual faces a two-period portfolio allocation problem, dividing her wealth between a risky asset with return x and a safe asset with return R. They have initial wealth  $w_0$ , and in period  $t \in \{1, 2\}$  their wealth depends on the portfolio  $\alpha_{t-1}$  chosen previously, defined by

$$w_t = ((1 - \alpha_{t-1})R + \alpha_{t-1}x_t)w_{t-1}$$

The individual is maximizing  $w_2$ , where we assume that  $x_1, x_2$  are i.i.d.

**Proof.** First, assume that u has CRRA preferences. The wealth at the end of each period is

$$w_1 = ((1 - \alpha_0)R + \alpha_0 x_1)w_0$$
 and  $w_2 = ((1 - \alpha_1)R + \alpha_1 x_2)w_1$ 

Combining, we get that

$$w_2 = ((1 - \alpha_1)R + \alpha_1 x_2)((1 - \alpha_0)R + \alpha_0 x_1)w_0$$

Since CRRA preferences are scale-invariant, for any  $\lambda$  we have that  $u(\lambda x) = \lambda^{1-\sigma}u(x)$ , where  $\sigma$  is the coefficient of relative risk aversion. When the consumer is maximizing the expected utility, we have that

$$\mathbb{E}[u(w_2)] = \mathbb{E}\left[((1 - \alpha_1)R + \alpha_1 x_2)^{1 - \sigma} u(w_1)\right] = \mathbb{E}[u(w_1)] \cdot ((1 - \alpha_1)R + \alpha_1 \mathbb{E}[x_2])^{1 - \sigma}$$

Thus, the choice of  $\alpha$  that maximizes  $w_1$  will also maximize  $w_2$ , since  $x_i$  are i.i.d., and  $\alpha_0 = \alpha_1$ .

Next, assume that u has CARA preferences. We know that u has the form  $u(x) = -\exp(-\gamma x)$ , where  $\gamma > 0$  is the coefficient of absolute risk aversion. Thus,

$$\mathbb{E}[u(w_2)] = \mathbb{E}\left[u(w_1)\exp(-\gamma(((1-\alpha_1)R + \alpha_1x_2)))\right]$$

However, we cannot split the expectation here as above, since we do not know that the relevant moments for x necessarily exist. Thus, the choice of  $\alpha_1$  depends on  $x_1$ , so it will not necessarily hold that  $\alpha_0 = \alpha_1$ .

- 18. Suppose that a decision maker has utility  $u(x) = \sqrt{x}$ .
  - (a) We have that wealth w = 5. The coefficient of absolute risk aversion is

$$-\frac{u''(w)}{u'(w)} = -\frac{(-0.25)w^{-1.5}}{(0.5)w^{-0.5}} = \frac{1}{2}\frac{\sqrt{5}}{\sqrt{125}} = \frac{1}{2} \cdot \frac{1}{5} = 0.1$$

The coefficient of relative risk aversion is

$$-w\frac{u''(w)}{u'(w)} = 5 \cdot \frac{1}{10} = 0.5$$

(b) The certainty equivalent of this lottery is

$$u^{-1}(0.5u(16) + 0.5u(4)) = u^{-1}(2+1) = u^{-1}(3) = 9$$

The probability premium is  $\pi$  such that

$$u(10) = (0.5 + \pi)u(16) + (0.5 - \pi)u(4) \Longrightarrow \sqrt{10} = 2 + 4\pi + 1 - 2\pi \Longrightarrow \pi = \frac{\sqrt{10} - 3}{2}$$

(c) The certainty equivalent of this lottery is

$$u^{-1}(0.5u(36) + 0.5u(16)) = u^{-1}(3+2) = u^{-1}(5) = 25$$

The probability premium is  $\pi$  such that

$$u(26) = (0.5 + \pi)u(36) + (0.5 - \pi)u(16) \Rightarrow \sqrt{26} = 3 + 6\pi + 2 - 4\pi \Rightarrow \pi = \frac{\sqrt{26} - 5}{2}$$

The probability premium is higher in the first lottery, which implies that u has decreasing absolute risk aversion, implied by the fact that it has constant relative risk aversion.

19. We have that an individual has utility  $u(x) = -\exp(-\alpha x)$  with  $\alpha > 0$ , and initial wealth w. He invests in a riskless asset with return r and N jointly normally distributed random assets with means  $\mu = (\mu_1, \dots, \mu_N)$  and variance V. We assume that V is full rank.

Denote by  $x_i$  the amount invested in risky asset i, and by  $y_i$  its return. The agent's realized wealth is

$$w' = \left(w - \sum_{i=1}^{N} x_i\right)r + \sum_{i=1}^{N} x_i y_i$$

By the properties of jointly normal distributions,  $w' \sim \mathcal{N}\left(\left(w - \sum_{i=1}^{N} x_i\right)r + \sum_{i=1}^{N} x_i\mu_i, x^TVx\right)$ . The expected utility of this is

$$\mathbb{E}[u(w')] = \mathbb{E}[-\exp(-\alpha w')]$$

Using the properties of the moment generating function of a normal random variable, we have that

$$\mathbb{E}[u(w')] = -\exp\left[\left(\left(w - \sum_{i=1}^{N} x_i\right)r + \sum_{i=1}^{N} x_i \mu_i\right)(-\alpha) - (x^T V x)\frac{\alpha^2}{2}\right]$$

Monotonically transforming this by  $ln(\cdot)$ , we get that expected utility is maximized when

$$-\alpha(\mu - r) - \alpha^2 V x = 0 \Longrightarrow x = \frac{\mu - r}{\alpha V}$$

where the - in the numerator denotes elementwise subtraction.