INSA - Département Génie Mathématique Année 2020 - 2021 Projet GM3

Simulation d'une loi exponentielle de paramètre λ

Tous les langages de programmation possèdent un générateur de nombres pseudo-aléatoires qui suit la loi uniforme sur l'interval [0,1].

Si U suit la loi uniforme sur [0,1], alors si $\alpha > 0$ et $\beta \in \mathbb{R}$, $\alpha U + \beta$ suit la loi uniforme sur $[\beta, \alpha + \beta]$.

Rappelons qu'une variable aléatoire X suit une loi exponentielle de parametre λ si et seulement si pour tout $t\in\mathbb{R}_+$

$$\mathbb{P}(X \le t) = 1 - \exp(-\lambda t).$$

Donc la fonction de répartition de X est $F(t) = 1 - \exp(-\lambda t)$. Cette fonction est une bijection de $(0, +\infty)$ dans (0, 1), d'inverse

$$G(u) = \frac{-1}{\lambda} \ln(1 - u).$$

- 1. Montrer que si U est de loi uniforme sur [0,1] alors G(U) suit la loi exponentielle de parametre λ .
 - 2. Peut-on remplacer U par 1-U ?
 - 3. Construir un exemple.