22/05/2025 Χαιδελβέργη, Γερμανία Αστέριος Καλογήρου ΑΕΜ : 15473

# Εισαγωγή

Οπως και στο προηγουμενο σετ ασκησεων ετσι και σε αυτο χρησιμοποιηθηκε η γλωσσα προγραμματισμου Julia και για την γραφη της εργασιας χρησιμοποιηθηκε ενα "custom template" του Typst το οποιο ειναι ενα καινουργιο εργαλειο ενναλακτικο της LaTeX. Ο κωδικας της Julia οπως και του Typst βρισκονται στο λινκ : https://github.com/Askalogi/Fysikh-kai-Texnologia-Imiagwgwn.







### 1) $EP\Omega TH\Sigma H$ :

• Για την πρωτη ερωτηση πρωτα υπολογιστηκαν τα  $\ln(I)$  με τα δεδομενα που δινονται απο το excel. Με τα υπολογισμενα δεδομενα κατασκευαστηκε το εξης γραφημα :



Figure 2: ln(I) - V

- Εγω παρατηρησα καποιες γραμμικές περιοχές στο γραφημα συγκέκριμενα στις τασεις 0.18 V με 0.28 V για τις χαμηλές τασεις και 0.68 V με 0.78 V για τις υψηλές τασεις.
- Χρησιμοποησα την γραμμικη παλινδρομηση για αυτές τις τιμές και στις δυο περιοχές για τον υπολογισμο των Is και n.
- Για την περιοχη με τις μεγαλές τασεις πέρα από την αρχική προσεγγισή, χρησιμοποίησα και την "διορθωμένη" τασή  $V_{\rm corr}=V-I*R_s$  με την επιδρασή μια αντιστάσης σε σείρα  $R_s=1\Omega$  αρά υπαρχούν δύο προσεγγισείς για την περιοχή με τις υψηλές τάσεις.
- Ο τυπος που χρησιμοποιηθηκε ειναι ο :

$$\mathbf{I} = \mathbf{I}_s * \exp\left(\frac{q*V}{n*k*T} - 1\right) \tag{1}$$

Φυσικα για την περιοχη με V>0.7V πηρα την προσεγγιση  $\mathbf{I}=\mathbf{I}_s*\exp\left(\frac{q*V}{n*k*T}\right)$  τον οποιο λογαριθμησα και βρηκα  $\ln(I)=\ln(I_s)+\frac{q*V}{n*k*T}$  ο οποιος εχει την μορφη  $y=\alpha*x+\beta$  με κλιση :

$$\alpha = \frac{q}{n * k * T} \tag{2}$$

οπου 
$$T=300[K]$$
 
$$k=1.38e-23\big[\frac{J}{K}\big]$$
 
$$q=1.6e-19[C]$$
 και  $\mathbf{n}$  αγνωστος. και τομη :

$$\beta = \ln(I_s) \tag{3}$$

 $\mu\epsilon~I_s~\text{rev}\mu\alpha~\text{korou}$  antistroghs polwshs.

- Για περιοχη με τασεις 0.18V-0.28V υπολογισα  $\alpha_l=15.806$  και  $\beta_l=-20.34$  αρα χρησιμοποιωντας τους τυπους  $\Rightarrow$  2 και  $\Rightarrow$  3 υπολογιζουμε το n=2.44και το  $I_s=1.45*10^{-9}[A]$  κανονικα επρεπε να εχουμε  $n\sim2$
- Για περιοχη με τασεις 0.68V-0.78V υπολογισα  $\alpha_l=30.84$  και  $\beta_l=-28.51$  αρα χρησιμοποιωντας τους τυπους  $\Rightarrow$  2 και  $\Rightarrow$  3 υπολογιζουμε το n=1.25 και το  $I_s=4.14*10^{-13}[A]$  κανονικα επρεπ να εχουμε  $n\sim1$



Figure 3: ln(I) - V με τις δυο ευθειες

Το αποτελεσμα φαινεται αρκετα καλο!

• Αλλα εχουμε και την προσεγγιση με την διορθωμενη ταση με την υπαρξη μιας μικρης αντιστασης  $R_s$  στο οποίο προκυπτεί αυτό το γραφημα :



Figure 4: ln(I) - V με ευθεια διορθωμενης τασης

## 2) $EP\Omega TH\Sigma H$ :

#### $\alpha$ ) ΥποΕρωτημ $\alpha$ :

• Για τον υπολογισμο του φραγματος δυναμικου της διοδου χρησιμοποιουμε παλι γραμμικη παλινδρομηση με τα δεδομενα που μας δινονται στον πινακα. Συγκεκριμενα πρωτα υπολογιζουμε  $\frac{1}{G^2}$  καθως γνωριζουμε τον τυπο :

$$\frac{1}{C^2} = \frac{2 * (V_{\text{bi}} - V_R)}{q * \varepsilon * A^2 * N} \tag{4}$$

οπου μπορουμε να το γραψουμε με την μορφη  $y=\alpha*x+\beta$  σαν :  $\frac{1}{C^2}=\alpha*V_R+\beta$  με  $\alpha=\frac{2}{q*\varepsilon*A^2*N}$  και  $\beta=\frac{2*V_{\rm bi}}{q*\varepsilon*A^2*N}$  για  $V_R=0$  οπου  $\varepsilon=\varepsilon_0*\kappa$  και  $\kappa$  = 12.

Εφοσον εχουμε τα C και V υπολογιζουμε κλιση και τομη (α,β) με  $\alpha=1.13*10^{21}$  και  $\beta=8.31*10^{20}$  και τωρα υπολογιζοθμε το  $V_{\rm bi}$  με τον τυπο :

$$V_{\rm bi} = -\frac{\beta}{\alpha} \tag{5}$$

και βρισκουμε V<sub>bi</sub> = 0.73 eV που ειναι κοντα στην ενδεικτικη λυση.



Figure 5: A ΥποΕρωτημα

## β) ΥποΕρωτημα:

• Apo ton tupo the grammikhe palindromhane sugkekrimena thn klish a upologičoume to  $N=4*10^{14} \mbox{[cm^3]}$  (einai mia takh meyeboue kata)

## $\gamma$ ) ΥποΕρωτη $\mu\alpha$ :

• Για τα δυο φορτια εφοσον εχουμε ιδιες προσμίξεις τα  $Q^+$  και  $Q^-$  θα ειναι ισα κατα μετρο και αντιθετα κατα προσημο. Υπολογιζονται απο την σχεση :

$$|Q^{+/-}| = C * (V_{bi} + V_R) \tag{6}$$

|Q|

| Φορτια σε Coulomb |
|-------------------|
| -2.5914e-11       |
| -6.3300e-12       |
| 5.90920e-12       |
| 1.51233e-11       |
| 2.28748e-11       |
| 3.50889e-11       |
| 4.40613e-11       |
| 5.32975e-11       |



Figure 6: Γ ΥποΕρωτημα

## δ) ΥποΕρωτημα:

- Για να υπολογισουμε το  $E_{\rm max}$  πρεπει πρωτα να υπολογισουμε το  ${\bf W}$  δηλαδη το πλατος περιοχης απογυμνωσης της διοδου.
- Χρηισμοποιουμε τον τυπο

$$W = \left(\varepsilon * \frac{\mathbf{A}}{C}\right) \tag{7}$$

• Εφοσον υπολογισουμε το  $\mathbf{W}$  για καθε τιμη που μας δινεται τοτε χρησιμοποιωντας τον τυπο :

$$E_{\text{max}} = \frac{V_{\text{bi}} + V_R}{W} \tag{8}$$

 $E_{max}$ 

| Μεγιστο   | Ηλεκτρικο | Πεδιο      | [V/cm] |  |
|-----------|-----------|------------|--------|--|
| -15243.88 |           |            |        |  |
| -3723.63  |           |            |        |  |
|           | 3476.0    | <b>0</b> 7 |        |  |
|           | 8896.2    | 24         |        |  |
|           | 13456.    | 05         |        |  |
| 20640.95  |           |            |        |  |
| 25918.93  |           |            |        |  |
| 31352.09  |           |            |        |  |





Figure 7:  $\Delta_1$  ΥποΕρωτημα



Figure 8:  $\Delta_2$   $Y\pi o E \rho \omega \tau \eta \mu \alpha$ 

## ε) ΥποΕρωτημα:

• Fia ton upologismo tou dunamikou sth metallourgikh epash  $V_{x=0}$  gia kabe V crhsimosoume ton tupo :

$$V_{x=0} = \frac{q * N * W}{2 * \varepsilon} \tag{9}$$

και βρισκουμε:

#### Δυναμικό στη Μεταλλουργική Επαφή $V_{x=0}$

| V <sub>x=0</sub> | σε  | Volt |
|------------------|-----|------|
| -14              | 180 | 0.65 |
| -19              | 943 | 9.65 |
| -23              | 325 | 8.16 |
| -26              | 31  | 2.26 |
| -28              | 378 | 3.58 |
| -33              | 361 | 1.79 |
| -38              | 359 | 1.31 |
| -41              | .67 | 8.62 |

# Δυναμικο στην μεταλλουργικη Επαφη για καθε ν\_



Figure 9: Ε ΥποΕρωτημα

# στ) ΓΡΑΦΗΜΑΤΑ ? :

• Βρισκονται το καθενα στις σελιδες  $\mu$ ε το αντιστοιχο υποερωτη $\mu$ α.

# 3) $EP\Omega TH\Sigma H$ :

## $\alpha$ ) ΥποΕρωτημ $\alpha$ :

• Απο το γραφημα που μας δινεται του οποίου η κλιμακα της χωρητικότητας είναι κανονικοποίημενη γνωρίζουμε πως  $C_0=8*10^{-12}F$  και  $C_5=3.2*10^{-12}F$  δηλαδη είναι το 40% της μεγιστης τίμης για -5 V. Γνωρίζοντας αυτές τις τίμες και εφαρμοζοντας τους τύπους  $\Rightarrow$  4 και  $\Rightarrow$  5 για τον υπολογίσμο των α και β και επείτα του  $V_{\rm bi}$  οπού το υπολογίσα ίσο με  $V_{\rm bi}=0.95$  eV

## β) ΥποΕρωτημα:

• Για τον υπολογισμο του επιπεδου νοθευσης στην πλευρα χαμηλης νοθευσης  $N_L$  χρησιμοποιηθηκε ο τυπος :

$$N_L = \frac{2}{q * e_s * A^2 * |a|} \tag{10}$$

Kai brhka oti to  $N_{L}$  einai iso me  $2.8*10^{15}$  cm^-3 to opoio einai mia taxh meyeqoux katw.

# γ) ΥποΕρωτημα:

- Για τον υπολογισμο του επιπεδου νοθευσης στην πλευρα υψηλης νοθευσης  $N_{\rm H}$  χρησιμοποιήθηκε ο τυπος :
- $N_H = \left(\frac{n_i^2}{N_L}\right) * \exp\left(\frac{V_{
  m bi}*q}{k*T}\right)$

οπου χρησιμοποιησα σαν δεδομενο  $n_i=1.5*10^{10}$  cm^-3 για διοδο πυριτιου (Si). Το αποτελεσμα που υπολογισα ειναι  $N_H=7.76*10^{20}$  cm^-3 το οποιο βγαινει 5 ταξεις μεγεθους πανω απο την πλευρα με χαμηλη νοθευση κατι αναμενομενο.

## ΣΥΜΠΕΡΑΣΜΑΤΑ:

Σχεδον ολα τα αποτελεσματα βγηκαν εντος των αναμενομενων κλιμακων εκτος της  $\mathbf{3}$ ης ερωτησης αλλα χωρις  $\mathbf{TEPA}\Sigma\mathbf{TIE}\Sigma$  αποκλισεις αυτο ισως να προκυπτει απο τις προγραμματιστικές μου ικανότητες καθώς η julia είναι μια καινουργία γλώσσα που μαθαίνω.