

Linear Regression

X (Independent)	Y (Dependent)	X - X_Bar	Y - Y_Bar	(X-X_Bar)^2 (X -	- X_Bar) * (Y - Y_Bar)	Yp	(Yp - Y_Bar)	(Yp - Y_Bar) ^ 2	(Y - Y_Bar)^2
1	3	-2	-0.6	4	1.2	2.8	-0.8	0.64	0.36
2	4	-1	0.4	1	-0.4	3.2	-0.4	0.16	0.16
3	2	0	-1.6	0	0	3.6	0	0	2.56
4	4	1	0.4	1	0.4	4.0	0.4	0.16	0.16
5	5	2	1.4	4	2.8	4.4	0.8	0.64	1.96
X_Bar 3	Y_Bar. 3.6			Sum = 10 Sui	m = 4.0			Sum = 1.6	Sum = 5.2

Equation of line : Y = mX + C

Y Dependent VariableX Independent Variable

m Slope of line

c Y intercept of line

R Square method

Distance (predicted - mean) VS

Distance (actual - mean)

m = 4/10

m = 0.4

R_Square formula

Σ(Yp - Y_Bar)^2

 $\Sigma(Y - Y_Bar)^2$

Y = mX + C3.6 = 0.4 * 3 + C

3.6 = 1.2 + CC = 3.6 - 1.2

C = 2.4

 $R^2 = 1.6 / 5.2$

 $R^2 = 0.3$

