Dual Optimization for Newsvendor-like Problem

Chuwen

February 22, 2021

Primal problem

$$\min f(\delta, \epsilon) \tag{1}$$

s.t.
$$y + \delta - \epsilon = b$$
 (2)

$$y \in \Omega_y \subseteq \mathbb{R}^n, \delta \in \mathbb{R}^n_+, \epsilon \in \mathbb{R}^n_+$$
 (3)

- Assume $f = p^T \delta + h^T \epsilon$, $p \ge 0$, $h \ge 0$, (2) expresses the newsvendor objective.
- Ω_y is a mixed integer set, and can be decomposed into small problems that are easier to solve.

Lagrangian relaxation

Relax the newsvendor equation: $y + \delta - \epsilon = b$

$$\phi(\lambda) = \min_{\delta, \epsilon} (p + \lambda)^{\mathsf{T}} \delta + (h - \lambda)^{\mathsf{T}} \epsilon + \min_{y} \lambda^{\mathsf{T}} y - \lambda^{\mathsf{T}} b$$

$$= \min_{y} \lambda^{\mathsf{T}} y - \lambda^{\mathsf{T}} b$$

$$\mathbf{s.t.}$$

$$y \in \Omega_{y}$$

$$\delta \in \mathbb{R}^{n}_{+}, \epsilon \in \mathbb{R}^{n}_{+}$$

$$(4)$$

(Since $\lambda \in [-p, h]$ and $\delta^* = \epsilon^* = 0$ else unbounded)

Subgradient method

We want to solve $\max_{\lambda} \phi(\lambda)$ by subgradient method:

$$g = y - b \in \partial \phi$$

$$g_k = y_k - b$$

$$\lambda_{k+1} = \mathbf{P}(\lambda_k + s_k g_k)$$

$$s_k = \gamma_k \frac{\phi^* - \phi(\lambda_k)}{\|g_k\|^2}$$
(5)

P is the projection onto [-p, h]. Keep the averaged solution:

$$\bar{y}_k = \frac{1}{k} \sum_{i}^{k} y_i \tag{6}$$

Primal recovery

 $(y_k, \epsilon_k = 0, \delta_k = 0)$ may not be feasible, use recovery:

$$\epsilon_{k} = \max\{y_{k} - b, 0\}
\delta_{k} = \max\{b - y_{k}, 0\}
\bar{\epsilon}_{k} = \max\{\bar{y}_{k} - b, 0\}
\bar{\delta}_{k} = \max\{b - \bar{y}_{k}, 0\}$$
(7)

let corresponding primal value be $z(y_k) = f(\delta_k, \epsilon_k)$, $\bar{z}_k = z(\bar{y}_k)$

Motivation: fleet engine maintenance problem (FMP)

- ▶ engines: $i \in I$, time periods: t = 1, 2, ..., n, demand: $b = (b_1, ..., b_n)$.
- ▶ at each time we decide if engine i is working $u_{it} = 1$ or sent to maintenance $x_{it} = 1$ (and will be finished after τ periods)
- ▶ the lifespan of engine i decreases by α_i if working; increases by β_i if the maintenance is finished; the lifespan has a lower bound L.
- our goal is to satisfy demand b by minimizing the surplus ϵ and shortage δ : $f = p^T \delta + h^T \epsilon$
- let Ω_i be the mixed-integer set regarding the maintenance requirements individually, so we have Ω_i for each i

FMP

$$f = \min_{x_{it}, u_{it}, \delta_t, \epsilon_t} \sum_{t} (b \cdot \delta_t + h \cdot \epsilon_t)$$
(8)

s.t.

$$\sum_{i} u_{it} + \delta_t - \epsilon_t = d_t, \quad \forall t \in T$$
 (9)

$$s_{i,t+1} = s_{it} - \alpha_i u_{it} + \beta_i x_{i,t-\tau}, \quad \forall i \in I, t \in T$$
 (10)

$$x_{it} + u_{i,t} \le 1, \quad \forall i \in I, t \in T \tag{11}$$

$$x_{it} + x_{i\rho} + u_{i,\rho} \le 1, \quad \forall i \in I, t \in T, \rho = t + 1, ..., t + \tau$$
 (12)

$$s_{it} \ge L, \quad \forall i \in I, t \in T$$
 (13)

(10) - (13) can be expressed as Ω_i , $\forall i \in I$

FMP: continued

- ▶ (9) is the demand satisfaction constraint.
- ▶ (10) tracks the engine lifespan.
- ▶ (11) means an engine cannot work if sent to maintenance.
- ▶ (12) means the maintenance must be finished before an engine does anything else.
- ▶ (13) denotes the lower bound of lifespan.
- ▶ if relax (9) then we can solve for each *i* individually.

FMP: Lagrangian relaxation

For the FMP, dual function:

$$\phi(\lambda) = -\sum_{t} \lambda_{t} d_{t} + \sum_{i} \min_{\Omega_{i}} \sum_{t} \lambda_{t} u_{it}$$

It reduces to a set of low dimensional minimization problems for each $i \in I, \forall \lambda$

(Recall $\lambda_t \in [-b,h]$ and $\delta_t^\star = \epsilon_t^\star = 0$ else unbounded)

$$\min_{\Omega_i} \sum_t \lambda_t \cdot u_{i,t} \tag{14}$$

(14) is the subproblem to be solved by dynamic programming. (states: lifespan, action: work or start maintenance)

FMP: subgradient method

At each iteration k:

- \triangleright y_k solves $\phi(\lambda_k) = \min_y \lambda_k^{\mathsf{T}}(y-b)$
- ▶ for FMP: $y_k = U_k^\mathsf{T} 1 d$, $U_k = (u_{it}^{(k)})$, solved from (14) by DP.
- update λ_k by (5)

Results

Tests are done on FMP with random instances: rand(low, high) means random integer in [low, high]

- ► L = 2
- $d_t = \operatorname{rand}(\frac{|I|}{2}, |I|), \forall t$
- $au_i = rand(2,5), a_i = rand(2,5), b_i = rand(5,10), \forall i$
- $ightharpoonup s_{i,0} = \operatorname{rand}(5,8), \forall i$

We consider two cases for objective function

- i , time-invariant: $h_t = 11, p_t = 18, \forall t$
- ii , $h_t = \mathsf{rand}(10, 15), p_t = \mathsf{rand}(10, 16), \forall t$

Results

The subgradient method (sg) stops at (maximum) 400 iterations, then compared with benchmarks by Gurobi (grb).

- ▶ lb_grb, f_{grb} are lower bound, primal value from grb.
- t_grb, t_sg are runtime from grb and sg, respectively.
- $ightharpoonup \phi_{sg}$ is the dual value (ϕ) by sg.
- z_{sg} is primal value in sg using averaged primal recovery, i.e.

$$z_{\rm sg} = z(\bar{y}_k) = f(\bar{\delta}_k, \bar{\epsilon}_k)$$

 $\phi_{\rm gap}$, z_gap are relative gap from sg to grb for dual and primal values.

FMP: invariant $h_t = h, b_t = b, \forall t = 1, ..., n$

	lb_grb	$f_{\sf grb}$	t_grb	t_sg	ϕ_{sg}	$\phi_{\sf gap}$	$z_{\rm sg}$	z_gap
0	936.00	936.00	23.93	11.46	936.00	-0.00%	952.02	1.71%
1	954.00	954.00	11.00	8.88	954.00	0.00%	958.78	0.50%
2	1224.00	1224.00	1.11	6.74	1224.00	0.00%	1230.12	0.50%
3	1026.00	1026.00	2.76	7.58	1026.00	0.00%	1031.13	0.50%
4	882.00	882.00	3.41	6.98	882.00	0.00%	886.39	0.50%
5	990.00	990.00	0.94	9.35	990.00	0.00%	994.95	0.50%
6	774.00	774.00	1.08	9.73	774.00	0.00%	778.58	0.59%
7	864.00	864.00	1.26	9.06	864.00	0.00%	868.34	0.50%
8	972.00	972.00	1.02	6.97	972.00	0.00%	976.85	0.50%
9	648.00	648.00	88.56	16.14	645.14	-0.44%	665.45	2.69%

FMP: variant h, b

	lb_grb	$f_{ m grb}$	t_grb	t_sg	$\phi_{\sf sg}$	$\phi_{\sf gap}$	$z_{\rm sg}$	z_gap
0	608.00	608.00	8.34	12.76	607.57	-0.07%	650.63	7.01%
1	587.00	587.00	3.93	12.01	586.60	-0.07%	619.44	5.53%
2	538.00	538.00	22.73	12.33	537.36	-0.12%	574.96	6.87%
3	534.00	534.00	4.05	13.03	532.69	-0.24%	607.16	13.70%
4	684.00	684.00	19.14	7.61	684.00	0.00%	691.68	1.12%
5	620.00	620.00	4.88	8.06	619.98	-0.00%	625.29	0.85%
6	657.00	657.00	4.47	9.70	655.73	-0.19%	682.15	3.83%
7	625.00	625.00	8.25	12.04	622.30	-0.43%	670.87	7.34%
8	422.00	422.00	5.03	12.40	421.25	-0.18%	453.72	7.52%
9	485.00	485.00	4.32	13.59	484.87	-0.03%	517.35	6.67%

Conclusion

- ightharpoonup zero duality gap: $\phi^* = f^*$, ϕ^* is the best bound by ϕ and f^* is the best primal value.
- ▶ can we bound the quality of heuristic for averaged solution? $\bar{z}_k = z(\bar{y}_k)$ converges to ϕ^* :

$$|\bar{z}_k - \phi^*|$$

• for variant case, can we improve $\bar{z} = z(\bar{y})$?