Homework 4 David Yang

- 1. Suppose V_1 and V_2 are independent $\mathrm{Gamma}(1,\lambda)$ random variables that represent waiting times in a Poisson process with rate λ events per unit time. Let $X=V_1$ be the time of the first event and let $Y=V_1+V_2$ be the time of the second event.
 - a) Find the joint CDF for X and Y: $F_{xy}(x,y) = P(X \le x, Y \le y)$. Hint: Graph the positive quadrant of the plane with axes V_1 and V_2 , and mark the region where $V_1 \le x$ and $V_1 + V_2 \le y$. Integrate the joint pdf for V_1 and V_2 over this region to obtain the function $F_{xy}(x,y)$. Note that if there are restrictions on the arguments x and y that you do not specify, then you have failed to define the function.
 - b) Show how to get the marginal CDF F_x by taking the upper limit for y, and F_y by taking the upper limit for x. Differentiate each marginal CDF to get the marginal pdfs.
 - c) Show that taking partial derivatives of F_{xy} with respect to x and y yields the joint pdf:

$$\frac{\partial^2}{\partial x \partial y} F_{xy}(x, y) = \lambda^2 e^{-\lambda y} I(0 < x < y).$$

2. Suppose Z_1 and Z_2 have joint pdf

$$f_{12}(z_1, z_2) = \exp\left[-\log(\pi) - 2(z_1^2 + z_2^2 + \sqrt{3}z_1z_2)\right].$$

a) Identify this as a bivariate Normal density by specifying the means μ_1 and μ_2 , standard deviations σ_1 and σ_2 , and the correlation ρ .

Solution. Note that

$$f_{12}(z_1, z_2) = \exp\left[-\log(\pi) - 2(z_1^2 + z_2^2 + \sqrt{3}z_1z_2)\right]$$
$$= \frac{1}{\pi} \exp\left[-2(z_1^2 + z_2^2 + \sqrt{3}z_1z_2)\right].$$

Rewriting this expression, we have that

$$f_{12}(z_1, z_2) = \frac{1}{\pi} \exp\left[-2(z_1^2 + z_2^2 + \sqrt{3}z_1 z_2)\right]$$
$$= \frac{1}{2\pi \left(\frac{1}{2}\right)} \exp\left[-\frac{1}{2\left(\frac{1}{4}\right)}(z_1^2 + z_2^2 - 2\left(-\frac{\sqrt{3}}{2}\right)z_1 z_2)\right].$$

We recognize this as a bivariate Normal density, with

$$\mu_1 = \mu_2 = 0, \sigma_1 = \sigma_2 = 1, \text{ and } \rho = -\frac{\sqrt{3}}{2}$$

b) Any joint pdf may be expressed as a marginal pdf multiplied by a conditional pdf. Show that $f_{12}(z_1, z_2)$ may be written as the product of a standard Normal density for Z_1 and a Normal density for $Z_2 \mid z_1$ that depends on z_1 . Give the conditional mean and variance for $Z_2 \mid z_1$ and show that they agree with the formulas $\mathbb{E}[Z_2 \mid z_1] = \beta_0 + \beta_1 z_1$ with $\beta_1 = \rho \frac{\sigma_2}{\sigma_1}$, $\beta_0 = \mu_2 - \beta_1 \mu_1$, and $\operatorname{Var}[Z_2 \mid z_1] = (1 - \rho^2)\sigma_2^2$.

Solution. Let $Z_1 \sim N(0,1)$. We know that $f_{Z_1}(z_1) = \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{z_1^2}{2}\right]$.

$$f_{12}(z_1, z_2) = \frac{1}{\pi} \exp\left[-2(z_1^2 + z_2^2 + \sqrt{3}z_1 z_2)\right]$$
$$= \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{z_1^2}{2}\right] \frac{\sqrt{2}}{\sqrt{\pi}} \exp\left[-\left(\frac{3}{2}z_1^2 + 2z_2^2 + 2\sqrt{3}z_1 z_2\right)\right]$$

Recognizing the first term as $f_{Z_1}(z_1)$, the pdf for Z_1 , we have that

$$f_{12}(z_1, z_2) = f_{Z_1}(z_1) \frac{\sqrt{2}}{\sqrt{\pi}} \exp\left[-\left(\frac{3}{2}z_1^2 + 2z_2^2 + 2\sqrt{3}z_1z_2\right)\right].$$

Rearranging the second term and simplifying, we get that

$$f_{12}(z_1, z_2) = f_{Z_1}(z_1) \frac{\sqrt{2}}{\sqrt{\pi}} \exp\left[-\left(\frac{3}{2}z_1^2 + 2z_2^2 + 2\sqrt{3}z_1z_2\right)\right]$$

$$= f_{Z_1}(z_1) \frac{\sqrt{2}}{\pi} \exp\left[-2\left(z_2^2 + \sqrt{3}z_1z_2 + \frac{3}{4}z_1^2\right)\right]$$

$$= f_{Z_1}(z_1) \frac{1}{\sqrt{2\pi \cdot \frac{1}{4}}} \exp\left[-\frac{\left(z_2 + \frac{\sqrt{3}}{2}z_1\right)^2}{2\left(\frac{1}{4}\right)}\right].$$

We recognize the second term now as the pdf for $Z_2 \mid z_1 \sim N\left(-\frac{\sqrt{3}}{2}z_1, \frac{1}{4}\right)$, so we conclude

$$f_{12}(z_1, z_2) = f_{Z_1}(z_1) f_{Z_2|z_1}(z_2 \mid z_1).$$

Note that $\mathbb{E}[Z_2 \mid z_1] = -\frac{\sqrt{3}}{2}z_1$, and

$$\beta_0 + \beta_1 z_1 = \left(\mu_2 - \left(\rho \frac{\sigma_2}{\sigma_1}\right) \mu_1\right) + \rho \frac{\sigma_2}{\sigma_1} z_1$$
$$= (0 - 0) - \frac{\sqrt{3}}{2} z_1$$
$$= -\frac{\sqrt{3}}{2} z_1.$$

Similarly, $\operatorname{Var}\left[Z_2 \mid z_1\right] = \frac{1}{4}$ and

$$(1 - \rho^2) \sigma_2^2 = \left(1 - \left(-\frac{\sqrt{3}}{2}\right)^2\right) 1^2$$
$$= \frac{1}{4},$$

matching the results from the given formulas.

c) You can also show conditional results using representation. For $Z_o \sim N(0,1)$ independent of Z_2 , define $Z_1 = \rho Z_2 + \sqrt{1-\rho^2}Z_o$ to have correlation ρ with Z_2 . Show that conditioning on $Z_2 = z_2$ and treating this as constant in the representation of Z_1 results in a conditional distribution $Z_1 \mid z_2$ that mirrors that of $Z_2 \mid z_1$ from part (b).

Solution. For $Z_o \sim N(0,1)$ independent of Z_2 , define $Z_1 = \rho Z_2 + \sqrt{1-\rho^2} Z_o$ as stated. Note that $\sqrt{1-\rho^2} Z_o \sim N(0,1-\rho^2)$. Conditioning on $Z_2 \mid z_2$, we find that

$$Z_1 \mid z_2 \sim N(\rho Z_2, 1 - \rho^2)$$

For $\rho = -\frac{\sqrt{3}}{2}$ (giving $1 - \rho^2 = \frac{1}{4}$), we have

$$Z_1 \mid z_2 \sim N\left(-\frac{\sqrt{3}}{2}z_2, \frac{1}{4}\right)$$

which matches the distribution of $Z_2 \mid z_1$ in part (b).

- 3. Suppose X and Y have joint pdf $f_{xy}(x,y) = I(0 < x < 1, -x < y < x)$.
 - a) Explain how you can tell, without finding the marginal densities, that the conditional densities are Uniform. Write out the conditional densities $f_{x|y}(x \mid y)$ and $f_{y|x}(y \mid x)$.

Solution. The conditional densities are uniform as they are proportional to the joint density, which can be thought of as Uniform (as it is an indicator variable).

Since by construction, |y| < x and x < 1 it follows that the conditional density is

$$f_{x|y}(x \mid y) = \frac{1}{1 - |y|} I(|y| < x < 1).$$

Similarly, we must have that -x < y < x, so

$$f_{x|y}(y \mid x) = \frac{1}{2x}I(-x < y < x).$$

b) Explain how you can tell, without finding the marginal densities, that X and Y are not independent. Find the marginal pdf's $f_x(x)$ and $f_y(y)$ and verify that $f_{xy}(x,y) \neq f_x(x)f_y(y)$.

Solution. Note that very clearly, $f_{x|y}(x,y)$ are not equal for different values of y, so X and Y cannot be independent. We can verify this with the marginal pdfs:

$$f_x(x) = \frac{f_{xy}(x,y)}{f_{y|x}(y \mid x)} = \frac{I(0 < x < 1, -x < y, x)}{\frac{1}{2x}I(-x < y < x)} = 2xI(0 < x < 1).$$

Similarly,

$$f_x(y) = \frac{f_{xy}(x,y)}{f_{x|y}(x \mid y)} = \frac{I(0 < x < 1, -x < y, x)}{\frac{1}{1-|y|}I(|y| < x < 1)} = (1-|y|)I(-1 < y < 1).$$

We check that

$$f_X(x)f_Y(y) = 2x(1 - |y|)I(0 < x < 1)I(-1 < y < 1)$$

$$\neq I(0 < x < 1, -x < y, x) = f_{XY}(x, y)$$

confirming that X and Y are not independent.

c) Show that X and Y are uncorrelated.

Solution. Note that

$$\mathbb{E}[XY] = \int_0^1 \int_{-x}^x xy I(0 < x < 1, -x < y < x) \, dy \, dx = 0$$

by symmetry. Similarly,

$$\mathbb{E}[X] = \int_0^1 x(2x) \, dx = 1$$

and

$$\mathbb{E}[Y] = \int_{-1}^{1} y(1 - |y|) \, dy = 0$$

by symmetry. Thus, we have that

$$\mathbb{E}\left[XY\right] - \mathbb{E}\left[X\right]\mathbb{E}\left[Y\right] = 0$$

so X and Y are uncorrelated, as desired.

- 4. a) Suppose X_1 and X_2 are Bernoulli random variables with expectations p_1 and p_2 . Show that X_1 and X_2 are independent if and only if they are uncorrelated. This shows the Bernoulli distribution is special like the multivariate Normal distribution in that uncorrelated implies independence.
 - b) Suppose $Y = X_1 + X_2$ with X_1 and X_2 independent. If you learn that Y and X_1 are Normal variables, prove that X_2 is also a Normal random variable.