Dynamic Programming

lecture 2

M1 M2 M3

C1=R2

$$A_1 \cdot A_2 \cdot A_3$$

Associative

$$(A_1 . A_2). A_3$$
 $A_1 . (A_2 . A_3)$

$A_1 . A_2 . A_3$

$(A_1 . A_2). A_3$

10.100.5 + 10.5.50

$A_1 \cdot (A_2 \cdot A_3)$

Order Matters

$$A_1 \cdot A_2 \cdot A_3 \cdot \cdot \cdot \cdot A_n$$
N-1 multiplication

$$A_1 \cdot A_2 \cdot A_3 \cdot \cdot \cdot \cdot A_n$$

$$P(n) = P(1).P(n-1) +$$

$$A_1$$
. A_2 . A_3 A_n

$$A_1 \cdot A_2 \cdot A_3 \cdot \cdot \cdot \cdot A_n$$

$$P(n) = P(1).P(n-1) + P(2).P(n-2) +$$

$$A_1 \cdot A_2 \cdot A_3 \cdot \cdot \cdot A_n$$

$$A_1 \cdot A_2 \cdot A_3 \cdot \cdot \cdot \cdot A_n$$

$$P(n) = P(1).P(n-1) + P(2).P(n-2) + P(3).P(n-3) +$$

$$A_1 \cdot A_2 \cdot A_3 \cdot A_4 \cdot \cdot \cdot A_n$$

$$A_1 \cdot A_2 \cdot A_3 \cdot \cdot \cdot \cdot A_n$$

$$P(n) = P(1).P(n-1) + P(2).P(n-2) + P(3).P(n-3) + + P(n-1)P(1)$$

$$A_1 \cdot A_2 \cdot A_3 \cdot A_{n-1} \cdot A_n$$

$$A_1 \cdot A_2 \cdot A_3 \cdot \cdot \cdot \cdot A_n$$

$$P(n) = P(1).P(n-1) + P(2).P(n-2) + P(3).P(n-3) + + P(n-1)P(1)$$

$$=\sum_{i=1}^{n-1} P(i).P(n-i) \approx 4^n$$

$$A_1 \cdot A_2 \cdot A_3 \cdot \dots \cdot A_l \cdot A_{l+1} \cdot \dots \cdot A_n$$

Optimal last step: A[1...l] . A[l+1,....n]

$$B[1,n] = B[1,l] + B[l+1,n] + R_1.C_l.C_{l+1}$$

Optimal last step: A[1...l] . A[l+1,....n]

B[1,n]= smallest number of operations needed to multiply the chain

$$B[1,n] = B[1,l] + B[l+1,n] + R_1.C_l.C_{l+1}$$

How many choices we have for I? I∈ [1,n-1]

$$B[1,1]$$
 $B[1,2]$ $B[1,n-2]$ $B[1,n-1]$ $B[2,n]$ $B[3,n]$... $B[n-1,n]$ $B[n,n]$ $B[n-1,n]$ $B[n-1,n]$ $B[n-1,n]$ $B[n-1,n]$ $B[n-1,n]$

Which Order to Solve?

$$A_1 . A_2 . A_3 A_{n-1} . A_n$$

$$B(i,i)=0$$

$$B(i,j) = min \frac{j-1}{k=i} B(i,k) + B(k+1,j) + R_iC_kC_j$$

Which Order to Solve?

$$A_1 . A_2 . A_3 A_{n-1} . A_n$$

$$B(i,i)=0$$

$$B(i,j) = min \frac{j-1}{k=i} B(i,k) + B(k+1,j) + R_iC_kC_j$$

Which Order to Solve?

$$A_1 . A_2 . A_3 A_{n-1} . A_n$$

K=3

$$B(i,i)=0$$
 $i=2$ $j=n-1$ $B(i,j)=min {j-1 \atop k=i} B(i,k) + B(k+1,j) + R_iC_kC_j$

$$B(i,i)=0$$

$$B(i,j) = min \frac{j-1}{k=i} B(i,k) + B(k+1,j) + R_iC_kC_j$$

Matrix Chain Multiplication

Initialize array m[x,y] to zero Starting at diagonal, working toward upper left

 $\theta(n^2)$

Compute B[i,j] according to:

$$B(i,i)=0$$

$$B(i,j) = \min_{k=i}^{j-1} B(i,k) + B(k+1,j) + R_i C_k C_j$$
 $\theta(n)$

Runtime: $\theta(n3)$

Dynamic Programming

lecture 3

 $(x_1,x_2,x_3,...,X_n)$: mile markers

 $(v_1, v_2, v_3, ..., v_n)$: Viewership, e.g., v_i = number of people that view billboard at x_i

 $(v_1, v_2, v_3,, v_n)$: Viewership, e.g., v_i = number of people that view billboard at x_i

D: distance parameters, can not place ads that are closer than D miles apart

Goal: is to maximize viewership for an acceptable campaign

 $(x_1,x_2,x_3,...,X_n)$: mile markers

 $(v_1, v_2, v_3, ..., v_n)$: Viewership, e.g., v_i = number of people that view billboard at x_i

D: distance parameters, can not place ads that are closer than D miles apart

Goal: is to maximize viewership for an acceptable campaign

Best_i= max viewership for an acceptable campaign that considers the first j billboards

 $Best_n = max \ viewership \ for \ an \ acceptable \ campaign \ that \ considers \ the \ first \ n \ billboards$

Best_j = max viewership for an acceptable campaign that considers the first j billboards

Best_j= max
$$V_j$$
+Best_(closest billboard that is atleastD away)

 $Best_n = max \ viewership \ for \ an \ acceptable \ campaign \ that \ considers \ the \ first \ n \ billboards$

Best_j = max viewership for an acceptable campaign that considers the first j billboards

 $Best_n = max \ viewership for an acceptable campaign that considers the first n billboards$

Best_i= max viewership for an acceptable campaign that considers the first j billboards

Pre-Computation to speed up DP Algorithm

Dynamic Programming

- 1. Has a **recursive solution** to the problem
- Has memory
- Pick the correct order for evaluating the smaller problems

Best[0]=0 For i=1 to n

 $\theta(n)$

cl=i-1
while(dist(x[cl],x[i]<D) cl--;</pre>

 $\theta(n)$

But, we can do better?

 $\theta(n^2)$

Best[i]=max {best[i-1], v[i]+best[cl] }

Return best[n]

right=n, left=n

right=n, left=n

While right and left are valid:

move left until distance(x[right],x[left]) > D

right=n, left=n

While right and left are valid:

move left until distance(x[right],x[left]) > D

right=n, left=n

While right and left are valid:

move left until distance(x[right],x[left]) > D buddy[right]=left

right=n, left=n

While right and left are valid:

move left until distance(x[right],x[left]) > D
buddy[right]=left

buddy[10]=8

right=n, left=n

While right and left are valid:

move left until distance(x[right],x[left]) > D buddy[right]=left move right one position buddy[10]=8

right=n, left=n

While right and left are valid:

move left until distance(x[right],x[left]) > D
buddy[right]=left
move right one position

buddy[10]=8

right=n, left=n

While right and left are valid:

move left until distance(x[right],x[left]) > D

buddy[right]=left

move right one position

buddy[10]=8
buddy[9]=7

Pre-process to find every board's buddy (in order n time):

right=n, left=n

While right and left are valid:

move left until distance(x[right],x[left]) > D buddy[right]=left move right one position buddy[10]=8
buddy[9]=7
buddy[8]=7

Pre-process to find every board's buddy (in order n time):

right=n, left=n

While right and left are valid:

move left until distance(x[right],x[left]) > D

buddy[right]=left

move right one position

buddy[10]=8

buddy[9]=7

buddy[8]=7

DNA Testing

 A DNA sequence is a series of nucleotides (ACGT).

One compares DNA for:

- Maternity/paternity testing
- Finding how similar a newly found gene is to existing known genes
- Find what breeds are in your dog through DNA testing
- Finding longest common set of nucleotides.

Application: comparison of two Sequence

Longest Common Subsequence:

$$X = ABCDEFGHIJ$$

$$Y = ECDGI$$

Application: comparison of two Sequence

Longest Common Subsequence:

Application: comparison of two Sequence

Longest Common Subsequence:

$$Y = E C D G I$$

Application: comparison of two Sequence

Longest Common Subsequence:

X= ABCDEFGI

Brute-force algorithm

Find our all subsequence of X and Y, and match them.

Number of subsequence of a n length sequence: 2ⁿ

ECDGI

Suppose: {A B C}

Subsequences: {}, {A}, {B}, {C}, {A B}, {A C}, {B C}, {A B C}

Brute-force algorithm run-time $\theta(2^n 2^m)$

Define the sub-problems

 $X = \overrightarrow{ABCB}$

Y=BDCAB m

Base Case:

If one or both strings are {}, then the solution is clearly 0/

Define the sub-problems

Base Case:

If one or both strings are {}, then the solution is clearly 0

Let LCS (i, j) be the **sub-problem** of LCS(X_n, Y_m) where:

- X_i is the first i characters of string X_n
- Y_j is the first j characters of string Y_m

Define the sub-problems

Base Case:

If one or both strings are {}, then the solution is clearly 0

Let LCS (i, j) be the **sub-problem** of LCS(X_n, Y_m) where:

X_i is the first i characters of string X_n

m

Key observation

If last two characters match, then we can use LCS of sub-problem and simply add the last two matching characters to it.

If
$$X[i]==Y[j]$$

 $LCS(X_{i},Y_{j})=LCS(X_{i-1},Y_{j-1})+1$

But if last characters do not match?

LCS(
$$X_{i-1}, Y_j$$
) LCS(X_i, Y_{j-1}) $X=ABC$ $X=ABCB$ $Y=BDC$ $Y=BD$

Key observation

If last two characters match, then we can use LCS of sub-problem and simply add the last two matching characters to it.

If
$$X[i]==Y[j]$$

$$LCS(X_i,Y_j)=LCS(X_{i-1},Y_{j-1})$$

But if last characters do not match?

LCS(
$$X_i, Y_j$$
)=MAX (LCS(X_{i-1}, Y_j) LCS(X_i, Y_{j-1}) X=ABCB

$$X[4]=Y[5]$$

$$LCS(X_4,Y_5)=LCS(X_3,Y_4)+1$$

$$CS(Y_1,Y_2,Y_3)$$

$$X=ABCB$$

$$Y=BDC$$

Memory

C[i,j] two-dimensional array that stores LCS(Xi, Yi)

Base Case:

We start with i=j=0 (empty substrings of x and y)

If any of the length is $0, X_0, Y_0$, their LCS is empty

LCS Example

- We'll see how LCS algorithm works on the following example:
 - X = ABCB

What is the Longest Common Subsequence of X and Y?

- LCS(X,Y) = BCB
 X = A B C B
 Y = B D C A B

$$X = ABCB; m = |X| = 4$$

 $Y = BDCAB; n = |Y| = 5$
Allocate array c[5,4]

Memory

C[i,j] two-dimensional array that stores LCS(X_i, Y_j)

We start with i=j=0 (empty substrings of x and y)

Base Case:

If any of the length is $0, X_0, Y_0$, their LCS is empty

for
$$i = 1$$
 to m $c[i,0] = 0$
for $j = 1$ to n $c[0,j] = 0$

ABCB LCS Example (1) Yj B B Xi 0 0 0 0 0 A B 0 0 B

for
$$i = 1$$
 to m $c[i,0] = 0$
for $j = 1$ to n $c[0,j] = 0$

if (X[i] == Y[j])

$$c[i,j] = c[i-1,j-1] + 1$$

else $c[i,j] = max(c[i-1,j],c[i,j-1])$

ABCB LCS Example (3) B B A Xi 0 0 0 0 0 B 0 0 B 0

if (X[i] == Y[j])

$$c[i,j] = c[i-1,j-1] + 1$$

else $c[i,j] = max(c[i-1,j],c[i,j-1])$

if
$$(X[i] == Y[j])$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

ABCB LCS Example (5) Yj A B D B Xi 0 0 0 0 0 0 0 0 0 0 B 0 0 B 0

if
$$(X[i] == Y[j])$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (5) Yj B B D A Xi 0 0 0 0 0 0 0 0 0 0 0 B 0

if (
$$X[i] == Y[j]$$
)
 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

if
$$(X[i] == Y[j])$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

if
$$(X[i] == Y[j])$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

ABCB LCS Example (7) Yj B B Xi 0 0 0 A 0 0 **1 0** 0 0 B 0

if
$$(X[i] == Y[j])$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

ABCB LCS Example (7) Yj B B Xi 0 0 0 0 0 0 A 0 0 0 0 B 0 0 B 0

if (X[i] == Y[j])

$$c[i,j] = c[i-1,j-1] + 1$$

else $c[i,j] = max(c[i-1,j],c[i,j-1])$

ABCB LCS Example (7) Yj B B Xi 0 0 0 0 0 0 A 0 0 0 0 B 0 0 B 0

if (X[i] == Y[j])

$$c[i,j] = c[i-1,j-1] + 1$$

else $c[i,j] = max(c[i-1,j],c[i,j-1])$

if
$$(X[i] == Y[j])$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (10) i 0 1 3 4 5 BDCAB

	j	0	1	2	3	4	5 B
i		Yj	$\left(\mathbf{B}\right)$	(D)	C	A	В
0	Xi	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	В	0		$\begin{pmatrix} 1 \end{pmatrix}$	1	1	2
3	(C)	(0)		$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$			
4	В	0					

if (X[i] == Y[j])

$$c[i,j] = c[i-1,j-1] + 1$$

else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (11) Yj B D B A Xi 0 0 0 0 0 0 A 0 0 0 B 0 1 0 B 0

if
$$(X[i] == Y[j])$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

ABCB LCS Example (13) B Υj B D Xi 0 0 0 0 0 0 A 0 0 0 0 B 0 0 0

if
$$(X[i] == Y[j])$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (14) Yj B B A Xi 0 0 0 0 0 0 A 0 0 0 0 B 0 0 B 0

if (X[i] == Y[j])

$$c[i,j] = c[i-1,j-1] + 1$$

else $c[i,j] = max(c[i-1,j],c[i,j-1])$


```
LCS Length Algorithm
LCS-Length(X,Y)
  m = length(X) // get the # of symbols in X
  n = length(Y) // get the # of symbols in Y
  for i = I to m
                 c[i,0] = 0
                                // special case: Y<sub>0</sub>
  for j = 1 to n c[0,j] = 0
                               // special case: X_0
  for i = I to m
                                   // for all X<sub>i</sub>
                                           // for all Y
              if (X[i] == Y[i])
                     c[i,j] = c[i-1,j-1] + 1
              else
                     c[i,j] = max(c[i-1,j],c[i,j-1])
  return c[m,n] // return LCS length for X and Y
```