

SEARCHED

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

CORRECTED VERSION

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
13 June 2002 (13.06.2002)

PCT

(10) International Publication Number
WO 02/046415 A2

(51) International Patent Classification⁷: C12N 15/12.
C12Q 1/68, C07K 14/705, 16/28, A61K 31/17, G01N
33/50, 33/68

(21) International Application Number: PCT/US01/46963

(22) International Filing Date: 5 December 2001 (05.12.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/254,303 8 December 2000 (08.12.2000) US
60/256,190 15 December 2000 (15.12.2000) US
60/257,504 21 December 2000 (21.12.2000) US
60/261,546 12 January 2001 (12.01.2001) US
60/262,832 19 January 2001 (19.01.2001) US
60/264,377 26 January 2001 (26.01.2001) US
60/266,019 2 February 2001 (02.02.2001) US

(71) Applicant (for all designated States except US): INCYTE GENOMICS, INC. [US/US]; 3160 Porter Drive, Palo Alto, CA 94304 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): LEE, Ernestine, A. [US/US]; 624 Kains Street, Albany, CA 94706 (US). BAUGHN, Maria, R. [US/US]; 14244 Santiago Road, San Leandro, CA 94577 (US). YUE, Henry [US/US]; 826 Lois Avenue, Sunnyvale, CA 94087 (US). DING, Li [CN/US]; 3353 Alma Street #146, Palo Alto, CA 94306 (US). RAU-MANN, Brigitte, E. [US/US]; 5801 South Dorchester Avenue #3B, Chicago, IL 60637 (US). HAFALIA, April, J., A. [US/US]; 2227 Calle de Primavera, Santa Clara, CA 95054 (US). KHAN, Farrah, A. [IN/US]; 9445 Harrison Street, Des Plaines, IL 60016 (US). NGUYEN, Dannie, B. [US/US]; 1403 Ridgewood Drive, San Jose, CA 95118 (US). ELLIOTT, Vicki, S. [US/US]; 3770 Polten Place Way, San Jose, CA 95121 (US). RAMKUMAR, Jayalaxmi [IN/US]; 34359 Maybird Circle, Fremont, CA 94555 (US). WALIA, Narinder, K. [US/US]; 890 Davis Street #205, San Leandro, CA 94577 (US). ISON, Craig, H. [US/US]; 1242 Weathersfield Way, San Jose, CA 95118 (US). LU, Yan [CN/US]; 3885 Corrina Way, Palo Alto, CA 94303 (US). GANDHI, Ameena, R. [US/US]; 705 5th Avenue, San Francisco, CA 94118 (US). WARREN, Bridget, A. [US/US]; 10130 Parkwood Drive #2, Cupertino,

CA 95014 (US). DUGGAN, Brendan, M. [AU/US]; 243 Buena Vista Avenue #306, Sunnyvale, CA 94086 (US). TRIBOULEY, Catherine, M. [FR/US]; 1121 Tennessee Street #5, San Francisco, CA 94107 (US). BURFORD, Neil [GB/US]; 105 Wildwood Circle, Durham, CT 06422 (US). LU, Dyung, Aina, M. [US/US]; 233 Coy Drive, San Jose, CA 95123 (US). LAL, Preeti, G. [IN/US]; P.O. Box 5142, Santa Clara, CA 95056 (US). YAO, Monique, G. [US/US]; 1189 Woodgate Drive, Carmel, IN 46033 (US). XU, Yuming [US/US]; 1739 Walnut Drive, Mountain View, CA 94040 (US). BRUNS, Christopher, M. [US/US]; 575 S. Rengstorff Avenue #126, Mountain View, CA 94040 (US). THANGAVELU, Kavitha [IN/US]; 1950 Montecito Avenue #23, Mountain View, CA 94043 (US). SWARNAKAR, Anita [CA/US]; 8 Locksley Avenue #5D, San Francisco, CA 94122 (US). TANG, Y, Tom [US/US]; 4230 Ranwick Court, San Jose, CA 95118 (US). AZIMZAI, Yalda [US/US]; 5518 Boulder Canyon Drive, Castro Valley, CA 94552 (US). THORNTON, Michael [US/US]; 9 Medway Road, Woodside, CA 94062-2612 (US). ARVIZU, Chandra [US/US]; 490 Sherwood Way #1, Menlo Park, CA 94025 (US). POLICKY, Jennifer, L. [US/US]; 1511 Jarvis Court, San Jose, CA 95118 (US).

(74) Agents: HAMLET-COX, Diana et al.; Incyte Genomics, Inc., 3160 Porter Drive, Palo Alto, CA 94304 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— without international search report and to be republished upon receipt of that report

[Continued on next page]

WO 02/046415 A2
(54) Title: TRANSPORTERS AND ION CHANNELS

(57) Abstract: The invention provides human transporters and ion channels (TRICH) and polynucleotides which identify and encode TRICH. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for diagnosing, treating, or preventing disorders associated with aberrant expression of TRICH.

WO 02/046415 A2

(48) Date of publication of this corrected version:
6 September 2002

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(15) Information about Correction:
see PCT Gazette No. 36/2002 of 6 September 2002, Section II

TRANSPORTERS AND ION CHANNELS

This invention relates to nucleic acid and amino acid sequences of transporters and ion channels and to the use of these sequences in the diagnosis, treatment, and prevention of transport, 5 neurological, muscle, immunological and cell proliferative disorders, and in the assessment of the effects of exogenous compounds on the expression of nucleic acid and amino acid sequences of transporters and ion channels.

BACKGROUND OF THE INVENTION

Eukaryotic cells are surrounded and subdivided into functionally distinct organelles by hydrophobic lipid bilayer membranes which are highly impermeable to most polar molecules. Cells and organelles require transport proteins to import and export essential nutrients and metal ions including K⁺, NH₄⁺, P_i, SO₄²⁻, sugars, and vitamins, as well as various metabolic waste products. Transport proteins also play roles in antibiotic resistance, toxin secretion, ion balance, synaptic 15 neurotransmission, kidney function, intestinal absorption, tumor growth, and other diverse cell functions (Griffith, J. and C. Sansom (1998) The Transporter Facts Book, Academic Press, San Diego CA, pp. 3-29). Transport can occur by a passive concentration-dependent mechanism, or can be linked to an energy source such as ATP hydrolysis or an ion gradient. Proteins that function in transport include carrier proteins, which bind to a specific solute and undergo a conformational 20 change that translocates the bound solute across the membrane, and channel proteins, which form hydrophilic pores that allow specific solutes to diffuse through the membrane down an electrochemical solute gradient.

Carrier proteins which transport a single solute from one side of the membrane to the other are called uniporters. In contrast, coupled transporters link the transfer of one solute with 25 simultaneous or sequential transfer of a second solute, either in the same direction (symport) or in the opposite direction (antiport). For example, intestinal and kidney epithelium contains a variety of symporter systems driven by the sodium gradient that exists across the plasma membrane. Sodium moves into the cell down its electrochemical gradient and brings the solute into the cell with it. The sodium gradient that provides the driving force for solute uptake is maintained by the 30 ubiquitous Na⁺/K⁺ ATPase system. Sodium-coupled transporters include the mammalian glucose transporter (SGLT1), iodide transporter (NIS), and multivitamin transporter (SMVT). All three transporters have twelve putative transmembrane segments, extracellular glycosylation sites, and cytoplasmically-oriented N- and C-termini. NIS plays a crucial role in the evaluation, diagnosis, and treatment of various thyroid pathologies because it is the molecular basis for radioiodide 35 thyroid-imaging techniques and for specific targeting of radioisotopes to the thyroid gland (Levy,

O. et al. (1997) Proc. Natl. Acad. Sci. USA 94:5568-5573). SMVT is expressed in the intestinal mucosa, kidney, and placenta, and is implicated in the transport of the water-soluble vitamins, e.g., biotin and pantothenate (Prasad, P.D. et al. (1998) J. Biol. Chem. 273:7501-7506).

One of the largest families of transporters is the major facilitator superfamily (MFS), also called the uniporter-symporter-antiporter family. MFS transporters are single polypeptide carriers that transport small solutes in response to ion gradients. Members of the MFS are found in all classes of living organisms, and include transporters for sugars, oligosaccharides, phosphates, nitrates, nucleosides, monocarboxylates, and drugs. MFS transporters found in eukaryotes all have a structure comprising 12 transmembrane segments (Pao, S.S. et al. (1998) Microbiol. Molec. Biol. Rev. 62:1-34). The largest family of MFS transporters is the sugar transporter family, which includes the seven glucose transporters (GLUT1-GLUT7) found in humans that are required for the transport of glucose and other hexose sugars. These glucose transport proteins have unique tissue distributions and physiological functions. GLUT1 provides many cell types with their basal glucose requirements and transports glucose across epithelial and endothelial barrier tissues; GLUT2 facilitates glucose uptake or efflux from the liver; GLUT3 regulates glucose supply to neurons; GLUT4 is responsible for insulin-regulated glucose disposal; and GLUT5 regulates fructose uptake into skeletal muscle. Defects in glucose transporters are involved in a recently identified neurological syndrome causing infantile seizures and developmental delay, as well as glycogen storage disease, Fanconi-Bickel syndrome, and non-insulin-dependent diabetes mellitus (Mueckler, M. (1994) Eur. J. Biochem. 219:713-725; Longo, N. and L.J. Elsas (1998) Adv. Pediatr. 45:293-313).

Monocarboxylate anion transporters are proton-coupled symporters with a broad substrate specificity that includes L-lactate, pyruvate, and the ketone bodies acetate, acetoacetate, and beta-hydroxybutyrate. At least seven isoforms have been identified to date. The isoforms are predicted to have twelve transmembrane (TM) helical domains with a large intracellular loop between TM6 and TM7, and play a critical role in maintaining intracellular pH by removing the protons that are produced stoichiometrically with lactate during glycolysis. The best characterized H⁺-monocarboxylate transporter is that of the erythrocyte membrane, which transports L-lactate and a wide range of other aliphatic monocarboxylates. Other cells possess H⁺-linked monocarboxylate transporters with differing substrate and inhibitor selectivities. In particular, cardiac muscle and tumor cells have transporters that differ in their K_m values for certain substrates, including stereoselectivity for L- over D-lactate, and in their sensitivity to inhibitors. There are Na⁺-monocarboxylate cotransporters on the luminal surface of intestinal and kidney epithelia, which allow the uptake of lactate, pyruvate, and ketone bodies in these tissues. In addition, there are specific and selective transporters for organic cations and organic anions in organs including the

kidney, intestine and liver. Organic anion transporters are selective for hydrophobic, charged molecules with electron-attracting side groups. Organic cation transporters, such as the ammonium transporter, mediate the secretion of a variety of drugs and endogenous metabolites, and contribute to the maintenance of intercellular pH (Poole, R.C. and A.P. Halestrap (1993) Am. J. Physiol.

- 5 264:C761-C782; Price, N.T. et al. (1998) Biochem. J. 329:321-328; and Martinelle, K. and I. Haggstrom (1993) J. Biotechnol. 30:339-350).

ATP-binding cassette (ABC) transporters are members of a superfamily of membrane proteins that transport substances ranging from small molecules such as ions, sugars, amino acids, peptides, and phospholipids, to lipopeptides, large proteins, and complex hydrophobic drugs. ABC 10 transporters consist of four modules: two nucleotide-binding domains (NBD), which hydrolyze ATP to supply the energy required for transport, and two membrane-spanning domains (MSD), each containing six putative transmembrane segments. These four modules may be encoded by a single gene, as is the case for the cystic fibrosis transmembrane regulator (CFTR), or by separate genes. When encoded by separate genes, each gene product contains a single NBD and MSD. These "half-molecules" form homo- and heterodimers, such as Tap1 and Tap2, the endoplasmic reticulum-based major histocompatibility (MHC) peptide transport system. Several genetic diseases are attributed to defects in ABC transporters, such as the following diseases and their corresponding proteins: cystic fibrosis (CFTR, an ion channel), adrenoleukodystrophy (adrenoleukodystrophy protein, ALDP), Zellweger syndrome (peroxisomal membrane protein-70, PMP70), and hyperinsulinemic 15 hypoglycemia (sulfonylurea receptor, SUR). Overexpression of the multidrug resistance (MDR) protein, another ABC transporter, in human cancer cells makes the cells resistant to a variety of cytotoxic drugs used in chemotherapy (Taglicht, D. and S. Michaelis (1998) Meth. Enzymol. 292:130-162).

A number of metal ions such as iron, zinc, copper, cobalt, manganese, molybdenum, 25 selenium, nickel, and chromium are important as cofactors for a number of enzymes. For example, copper is involved in hemoglobin synthesis, connective tissue metabolism, and bone development, by acting as a cofactor in oxidoreductases such as superoxide dismutase, ferroxidase (ceruloplasmin), and lysyl oxidase. Copper and other metal ions must be provided in the diet, and are absorbed by transporters in the gastrointestinal tract. Plasma proteins transport the metal ions to 30 the liver and other target organs, where specific transporters move the ions into cells and cellular organelles as needed. Imbalances in metal ion metabolism have been associated with a number of disease states (Danks, D.M. (1986) J. Med. Genet. 23:99-106).

P-type ATPases comprise a class of cation-transporting transmembrane proteins. They are integral membrane proteins which use an aspartyl phosphate intermediate to move cations across a 35 membrane. Features of P-type ATPases include: (i) a cation channel; (ii) a stalk, formed by

extensions of the transmembrane α -helices into the cytoplasm; (iii) an ATP binding domain; (iv) a phosphorylated aspartic acid; (v) an adjacent transduction domain; (vi) a phosphatase domain, which removes the phosphate from the aspartic acid as part of the reaction cycle; and (vii) six or more transmembrane domains. Included in this class are heavy metal-transporting ATPases as well
5 as aminophospholipid transporters.

The transport of phosphatidylserine and phosphatidylethanolamine by aminophospholipid translocase results in the movement of these molecules from one side of a bilayer to another. This transport is conducted by a newly identified subfamily of P-type ATPases which are proposed to be amphipath transporters. Amphipath transporters move molecules having both a hydrophilic and a
10 hydrophobic region. As many as seventeen different genes belong to this P-type ATPases subfamily, being grouped into several distinct classes and subclasses (Halleck, M.S. et al., (1999) Physiol. Genomics 1:139-150; Vulpe,C. Et al., (1993) Nat. Genet. 3:7-13).

Transport of fatty acids across the plasma membrane can occur by diffusion, a high capacity, low affinity process. However, under normal physiological conditions a significant
15 fraction of fatty acid transport appears to occur via a high affinity, low capacity protein-mediated transport process. Fatty acid transport protein (FATP), an integral membrane protein with four transmembrane segments, is expressed in tissues exhibiting high levels of plasma membrane fatty acid flux, such as muscle, heart, and adipose. Expression of FATP is upregulated in 3T3-L1 cells during adipose conversion, and expression in COS7 fibroblasts elevates uptake of long-chain fatty
20 acids (Hui, T.Y. et al. (1998) J. Biol. Chem. 273:27420-27429).

The lipocalin superfamily constitutes a phylogenetically conserved group of more than forty proteins that function as extracellular ligand-binding proteins which bind and transport small hydrophobic molecules. Members of this family function as carriers of retinoids, odorants, chromophores, pheromones, allergens, and sterols, and in a variety of processes including nutrient
25 transport, cell growth regulation, immune response, and prostaglandin synthesis. A subset of these proteins may be multifunctional, serving as either a biosynthetic enzyme or as a specific enzyme inhibitor. (Tanaka, T. et al. (1997) J. Biol. Chem. 272:15789-15795; and van't Hof, W. et al. (1997) J. Biol. Chem. 272:1837-1841.)

Members of the lipocalin family display unusually low levels of overall sequence
30 conservation. Pairwise sequence identity often falls below 20%. Sequence similarity between family members is limited to conserved cysteines which form disulfide bonds and three motifs which form a juxtaposed cluster that functions as a target cell recognition site. The lipocalins share an eight stranded, anti-parallel beta-sheet which folds back on itself to form a continuously hydrogen-bonded beta-barrel. The pocket formed by the barrel functions as an internal ligand
35 binding site. Seven loops (L1 to L7) form short beta-hairpins, except loop L1 which is a large

omega loop that forms a lid to partially close the internal ligand-binding site (Flower (1996) Biochem. J. 318:1-14).

Lipocalins are important transport molecules. Each lipocalin associates with a particular ligand and delivers that ligand to appropriate target sites within the organism. Retinol-binding protein (RBP), one of the best characterized lipocalins, transports retinol from stores within the liver to target tissues. Apolipoprotein D (apo D), a component of high density lipoproteins (HDLs) and low density lipoproteins (LDLs), functions in the targeted collection and delivery of cholesterol throughout the body. Lipocalins are also involved in cell regulatory processes. Apo D, which is identical to gross-cystic-disease-fluid protein (GCDFP)-24, is a progesterone/pregnenolone-binding protein expressed at high levels in breast cyst fluid. Secretion of apo D in certain human breast cancer cell lines is accompanied by reduced cell proliferation and progression of cells to a more differentiated phenotype. Similarly, apo D and another lipocalin, α_1 -acid glycoprotein (AGP), are involved in nerve cell regeneration. AGP is also involved in anti-inflammatory and immunosuppressive activities. AGP is one of the positive acute-phase proteins (APP); circulating levels of AGP increase in response to stress and inflammatory stimulation. AGP accumulates at sites of inflammation where it inhibits platelet and neutrophil activation and inhibits phagocytosis. The immunomodulatory properties of AGP are due to glycosylation. AGP is 40% carbohydrate, making it unusually acidic and soluble. The glycosylation pattern of AGP changes during acute-phase response, and deglycosylated AGP has no immunosuppressive activity (Flower (1994) FEBS Lett. 354:7-11; Flower (1996) supra).

The lipocalin superfamily also includes several animal allergens, including the mouse major urinary protein (mMUP), the rat α -2-microglobulin (rA2U), the bovine β -lactoglobulin (β Ig), the cockroach allergen (Bla g4), bovine dander allergen (Bos d2), and the major horse allergen, designated *Equus caballus* allergen 1 (Equ c1). Equ c1 is a powerful allergen responsible for about 80% of anti-horse IgE antibody response in patients who are chronically exposed to horse allergens. It appears that lipocalins may contain a common structure that is able to induce the IgE response (Gregoire, C. et al., (1996) J. Biol. Chem. 271:32951-32959).

Lipocalins are used as diagnostic and prognostic markers in a variety of disease states. The plasma level of AGP is monitored during pregnancy and in diagnosis and prognosis of conditions including cancer chemotherapy, renal dysfunction, myocardial infarction, arthritis, and multiple sclerosis. RBP is used clinically as a marker of tubular reabsorption in the kidney, and apo D is a marker in gross cystic breast disease (Flower (1996) supra). Additionally, the use of lipocalin animal allergens may help in the diagnosis of allergic reactions to horses (Gregoire supra), pigs, cockroaches, mice and rats.

Mitochondrial carrier proteins are transmembrane-spanning proteins which transport ions

and charged metabolites between the cytosol and the mitochondrial matrix. Examples include the ADP, ATP carrier protein; the 2-oxoglutarate/malate carrier; the phosphate carrier protein; the pyruvate carrier; the dicarboxylate carrier which transports malate, succinate, fumarate, and phosphate; the tricarboxylate carrier which transports citrate and malate; and the Grave's disease carrier protein, a protein recognized by IgG in patients with active Grave's disease, an autoimmune disorder resulting in hyperthyroidism. Proteins in this family consist of three tandem repeats of an approximately 100 amino acid domain, each of which contains two transmembrane regions (Stryer, L. (1995) *Biochemistry*, W.H. Freeman and Company, New York NY, p. 551; PROSITE PDOC00189 Mitochondrial energy transfer proteins signature; Online Mendelian Inheritance in Man (OMIM) *275000 Graves Disease).

This class of transporters also includes the mitochondrial uncoupling proteins, which create proton leaks across the inner mitochondrial membrane, thus uncoupling oxidative phosphorylation from ATP synthesis. The result is energy dissipation in the form of heat. Mitochondrial uncoupling proteins have been implicated as modulators of thermoregulation and metabolic rate, and have been proposed as potential targets for drugs against metabolic diseases such as obesity (Ricquier, D. et al. (1999) *J. Int. Med.* 245:637-642).

Ion Channels

The electrical potential of a cell is generated and maintained by controlling the movement of ions across the plasma membrane. The movement of ions requires ion channels, which form ion-selective pores within the membrane. There are two basic types of ion channels, ion transporters and gated ion channels. Ion transporters utilize the energy obtained from ATP hydrolysis to actively transport an ion against the ion's concentration gradient. Gated ion channels allow passive flow of an ion down the ion's electrochemical gradient under restricted conditions. Together, these types of ion channels generate, maintain, and utilize an electrochemical gradient that is used in 1) electrical impulse conduction down the axon of a nerve cell, 2) transport of molecules into cells against concentration gradients, 3) initiation of muscle contraction, and 4) endocrine cell secretion.

Ion Transporters

Ion transporters generate and maintain the resting electrical potential of a cell. Utilizing the energy derived from ATP hydrolysis, they transport ions against the ion's concentration gradient. These transmembrane ATPases are divided into three families. The phosphorylated (P) class ion transporters, including $\text{Na}^+ \text{-K}^+$ ATPase, Ca^{2+} -ATPase, and H^+ -ATPase, are activated by a phosphorylation event. P-class ion transporters, also known as E1-E2 type ATPases, are responsible for maintaining resting potential distributions such that cytosolic concentrations of Na^+ and Ca^{2+} are low and cytosolic concentration of K^+ is high. The vacuolar (V) class of ion transporters includes H^+ pumps on intracellular organelles, such as lysosomes and Golgi. V-class ion transporters are

responsible for generating the low pH within the lumen of these organelles that is required for function. The coupling factor (F) class consists of H⁺ pumps in the mitochondria. F-class ion transporters utilize a proton gradient to generate ATP from ADP and inorganic phosphate (P_i).

The P-ATPases are hexamers of a 100 kD subunit with ten transmembrane domains and several large cytoplasmic regions that may play a role in ion binding (Scarborough, G.A. (1999) Curr. Opin. Cell Biol. 11:517-522). The V-ATPases are composed of two functional domains: the V₁ domain, a peripheral complex responsible for ATP hydrolysis; and the V₀ domain, an integral complex responsible for proton translocation across the membrane. The F-ATPases are structurally and evolutionarily related to the V-ATPases. The F-ATPase F₀ domain contains 12 copies of the c subunit, a highly hydrophobic protein composed of two transmembrane domains and containing a single buried carboxyl group in TM2 that is essential for proton transport. The V-ATPase V₀ domain contains three types of homologous c subunits with four or five transmembrane domains and the essential carboxyl group in TM4 or TM3. Both types of complex also contain a single a subunit that may be involved in regulating the pH dependence of activity (Forgac, M. (1999) J. Biol. Chem. 274:12951-12954).

The resting potential of the cell is utilized in many processes involving carrier proteins and gated ion channels. Carrier proteins utilize the resting potential to transport molecules into and out of the cell. Amino acid and glucose transport into many cells is linked to sodium ion co-transport (symport) so that the movement of Na⁺ down an electrochemical gradient drives transport of the other molecule up a concentration gradient. Similarly, cardiac muscle links transfer of Ca²⁺ out of the cell with transport of Na⁺ into the cell (antiport).

Gated Ion Channels

Gated ion channels control ion flow by regulating the opening and closing of pores. The ability to control ion flux through various gating mechanisms allows ion channels to mediate such diverse signaling and homeostatic functions as neuronal and endocrine signaling, muscle contraction, fertilization, and regulation of ion and pH balance. Gated ion channels are categorized according to the manner of regulating the gating function. Mechanically-gated channels open their pores in response to mechanical stress; voltage-gated channels (e.g., Na⁺, K⁺, Ca²⁺, and Cl⁻ channels) open their pores in response to changes in membrane potential; and ligand-gated channels (e.g., acetylcholine-, serotonin-, and glutamate-gated cation channels, and GABA- and glycine-gated chloride channels) open their pores in the presence of a specific ion, nucleotide, or neurotransmitter. The gating properties of a particular ion channel (i.e., its threshold for and duration of opening and closing) are sometimes modulated by association with auxiliary channel proteins and/or post translational modifications, such as phosphorylation.

35 Mechanically-gated or mechanosensitive ion channels act as transducers for the senses of

touch, hearing, and balance, and also play important roles in cell volume regulation, smooth muscle contraction, and cardiac rhythm generation. A stretch-inactivated channel (SIC) was recently cloned from rat kidney. The SIC channel belongs to a group of channels which are activated by pressure or stress on the cell membrane and conduct both Ca^{2+} and Na^+ (Suzuki, M. et al. (1999) J. Biol. Chem. 274:6330-6335).

The pore-forming subunits of the voltage-gated cation channels form a superfamily of ion channel proteins. The characteristic domain of these channel proteins comprises six transmembrane domains (S1-S6), a pore-forming region (P) located between S5 and S6, and intracellular amino and carboxy termini. In the Na^+ and Ca^{2+} subfamilies, this domain is repeated four times, while in the K⁺ channel subfamily, each channel is formed from a tetramer of either identical or dissimilar subunits. The P region contains information specifying the ion selectivity for the channel. In the case of K⁺ channels, a GYG tripeptide is involved in this selectivity (Ishii, T.M. et al. (1997) Proc. Natl. Acad. Sci. USA 94:11651-11656).

Voltage-gated Na⁺ and K⁺ channels are necessary for the function of electrically excitable cells, such as nerve and muscle cells. Action potentials, which lead to neurotransmitter release and muscle contraction, arise from large, transient changes in the permeability of the membrane to Na⁺ and K⁺ ions. Depolarization of the membrane beyond the threshold level opens voltage-gated Na⁺ channels. Sodium ions flow into the cell, further depolarizing the membrane and opening more voltage-gated Na⁺ channels, which propagates the depolarization down the length of the cell.

Depolarization also opens voltage-gated potassium channels. Consequently, potassium ions flow outward, which leads to repolarization of the membrane. Voltage-gated channels utilize charged residues in the fourth transmembrane segment (S4) to sense voltage change. The open state lasts only about 1 millisecond, at which time the channel spontaneously converts into an inactive state that cannot be opened irrespective of the membrane potential. Inactivation is mediated by the channel's N-terminus, which acts as a plug that closes the pore. The transition from an inactive to a closed state requires a return to resting potential.

Voltage-gated Na⁺ channels are heterotrimeric complexes composed of a 260 kDa pore-forming α subunit that associates with two smaller auxiliary subunits, $\beta 1$ and $\beta 2$. The $\beta 2$ subunit is an integral membrane glycoprotein that contains an extracellular Ig domain, and its association with α and $\beta 1$ subunits correlates with increased functional expression of the channel, a change in its gating properties, as well as an increase in whole cell capacitance due to an increase in membrane surface area (Isom, L.L. et al. (1995) Cell 83:433-442).

Non voltage-gated Na⁺ channels include the members of the amiloride-sensitive Na⁺ channel/degenerin (NaC/DEG) family. Channel subunits of this family are thought to consist of two transmembrane domains flanking a long extracellular loop, with the amino and carboxyl termini

located within the cell. The NaC/DEG family includes the epithelial Na⁺ channel (ENaC) involved in Na⁺ reabsorption in epithelia including the airway, distal colon, cortical collecting duct of the kidney, and exocrine duct glands. Mutations in ENaC result in pseudohypoaldosteronism type 1 and Liddle's syndrome (pseudohyperaldosteronism). The NaC/DEG family also includes the

5 recently characterized H⁺-gated cation channels or acid-sensing ion channels (ASIC). ASIC subunits are expressed in the brain and form heteromultimeric Na⁺-permeable channels. These channels require acid pH fluctuations for activation. ASIC subunits show homology to the degenerins, a family of mechanically-gated channels originally isolated from *C. elegans*. Mutations in the degenerins cause neurodegeneration. ASIC subunits may also have a role in neuronal

10 function, or in pain perception, since tissue acidosis causes pain (Waldmann, R. and M. Lazdunski (1998) *Curr. Opin. Neurobiol.* 8:418-424; Eglen, R.M. et al. (1999) *Trends Pharmacol. Sci.* 20:337-342).

K⁺ channels are located in all cell types, and may be regulated by voltage, ATP concentration, or second messengers such as Ca²⁺ and cAMP. In non-excitable tissue, K⁺ channels 15 are involved in protein synthesis, control of endocrine secretions, and the maintenance of osmotic equilibrium across membranes. In neurons and other excitable cells, in addition to regulating action potentials and repolarizing membranes, K⁺ channels are responsible for setting the resting membrane potential. The cytosol contains non-diffusible anions and, to balance this net negative charge, the cell contains a Na⁺-K⁺ pump and ion channels that provide the redistribution of Na⁺, K⁺, and Cl⁻. The pump actively transports Na⁺ out of the cell and K⁺ into the cell in a 3:2 ratio. Ion 20 channels in the plasma membrane allow K⁺ and Cl⁻ to flow by passive diffusion. Because of the high negative charge within the cytosol, Cl⁻ flows out of the cell. The flow of K⁺ is balanced by an electromotive force pulling K⁺ into the cell, and a K⁺ concentration gradient pushing K⁺ out of the cell. Thus, the resting membrane potential is primarily regulated by K⁺ flow (Salkoff, L. and T. 25 Jegla (1995) *Neuron* 15:489-492).

Potassium channel subunits of the Shaker-like superfamily all have the characteristic six transmembrane/1 pore domain structure. Four subunits combine as homo- or heterotetramers to form functional K channels. These pore-forming subunits also associate with various cytoplasmic β subunits that alter channel inactivation kinetics. The Shaker-like channel family includes the 30 voltage-gated K⁺ channels as well as the delayed rectifier type channels such as the human ether-a-go-go related gene (HERG) associated with long QT, a cardiac dysrhythmia syndrome (Curran, M.E. (1998) *Curr. Opin. Biotechnol.* 9:565-572; Kaczorowski, G.J. and M.L. Garcia (1999) *Curr. Opin. Chem. Biol.* 3:448-458).

A second superfamily of K⁺ channels is composed of the inward rectifying channels (Kir). 35 Kir channels have the property of preferentially conducting K⁺ currents in the inward direction.

These proteins consist of a single potassium selective pore domain and two transmembrane domains, which correspond to the fifth and sixth transmembrane domains of voltage-gated K⁺ channels. Kir subunits also associate as tetramers. The Kir family includes ROMK1, mutations in which lead to Bartter syndrome, a renal tubular disorder. Kir channels are also involved in regulation of cardiac pacemaker activity, seizures and epilepsy, and insulin regulation (Doupnik, C.A. et al. (1995) *Curr. Opin. Neurobiol.* 5:268-277; Curran, *supra*).

The recently recognized TWIK K⁺ channel family includes the mammalian TWIK-1, TREK-1 and TASK proteins. Members of this family possess an overall structure with four transmembrane domains and two P domains. These proteins are probably involved in controlling the resting potential in a large set of cell types (Duprat, F. et al. (1997) *EMBO J* 16:5464-5471).

The voltage-gated Ca²⁺ channels have been classified into several subtypes based upon their electrophysiological and pharmacological characteristics. L-type Ca²⁺ channels are predominantly expressed in heart and skeletal muscle where they play an essential role in excitation-contraction coupling. T-type channels are important for cardiac pacemaker activity, while N-type and P/Q-type channels are involved in the control of neurotransmitter release in the central and peripheral nervous system. The L-type and N-type voltage-gated Ca²⁺ channels have been purified and, though their functions differ dramatically, they have similar subunit compositions. The channels are composed of three subunits. The α₁ subunit forms the membrane pore and voltage sensor, while the α₂δ and β subunits modulate the voltage-dependence, gating properties, and the current amplitude of the channel. These subunits are encoded by at least six α₁, one α₂δ, and four β genes. A fourth subunit, γ, has been identified in skeletal muscle (Walker, D. et al. (1998) *J. Biol. Chem.* 273:2361-2367; McCleskey, E.W. (1994) *Curr. Opin. Neurobiol.* 4:304-312).

The high-voltage-activated Ca²⁺ channels that have been characterized biochemically include complexes of a pore-forming alpha1 subunit of approximately 190-250 kDa; a transmembrane complex of alpha2 and delta subunits; an intracellular beta subunit; and in some cases a transmembrane gamma subunit. A variety of alpha1 subunits, alpha2delta complexes, beta subunits, and gamma subunits are known. The Cav1 family of alpha1 subunits conduct L-type Ca²⁺ currents, which initiate muscle contraction, endocrine secretion, and gene transcription, and are regulated primarily by second messenger-activated protein phosphorylation pathways. The Cav2 family of alpha1 subunits conduct N-type, P/Q-type, and R-type Ca²⁺ currents, which initiate rapid synaptic transmission and are regulated primarily by direct interaction with G proteins and SNARE proteins and secondarily by protein phosphorylation. The Cav3 family of alpha1 subunits conduct T-type Ca²⁺ currents, which are activated and inactivated more rapidly and at more negative membrane potentials than other Ca²⁺ current types. The distinct structures and patterns of regulation of these three families of Ca²⁺ channels provide an array of Ca²⁺ entry pathways in

response to changes in membrane potential and a range of possibilities for regulation of Ca²⁺ entry by second messenger pathways and interacting proteins (Catterall, W.A. (2000) Annu. Rev. Cell Dev. Biol. 16:521-555).

The alpha-2 subunit of the voltage-gated Ca²⁺-channel may include one or more Cache domains. An extracellular Cache domain may be fused to an intracellular catalytic domain, such as the histidine kinase, PP2C phosphatase, GGDEF (a predicted diguanylate cyclase), HD-GYP (a predicted phosphodiesterase) or adenylyl cyclase domain, or to a noncatalytic domain, like the methyl-accepting, DNA-binding winged helix-turn-helix, GAF, PAS or HAMP (a domain found in histidine kinases, denylyl cyclases, ethyl-binding proteins and phosphatases). Small molecules are bound via the Cache domain and this signal is converted into diverse outputs depending on the intracellular domains (Anantharaman, V. and Aravind, L.(2000) Trends Biochem. Sci. 25:535-537).

The transient receptor family (Trp) of calcium ion channels are thought to mediate capacitative calcium entry (CCE). CCE is the Ca²⁺ influx into cells to resupply Ca²⁺ stores depleted by the action of inositol triphosphate (IP3) and other agents in response to numerous hormones and growth factors. Trp and Trp-like were first cloned from Drosophila and have similarity to voltage gated Ca²⁺ channels in the S3 through S6 regions. This suggests that Trp and/or related proteins may form mammalian CCE channels (Zhu, X. et al. (1996) Cell 85:661-671; Boulay, G. et al. (1997) J. Biol. Chem. 272:29672-29680). Melastatin is a gene isolated in both the mouse and human, whose expression in melanoma cells is inversely correlated with melanoma aggressiveness in vivo.
The human cDNA transcript corresponds to a 1533-amino acid protein having homology to members of the Trp family. It has been proposed that the combined use of malastatin mRNA expression status and tumor thickness might allow for the determination of subgroups of patients at both low and high risk for developing metastatic disease (Duncan, L.M. et al (2001) J. Clin. Oncol. 19:568-576).

Chloride channels are necessary in endocrine secretion and in regulation of cytosolic and organelle pH. In secretory epithelial cells, Cl⁻ enters the cell across a basolateral membrane through an Na⁺, K⁺/Cl⁻ cotransporter, accumulating in the cell above its electrochemical equilibrium concentration. Secretion of Cl⁻ from the apical surface, in response to hormonal stimulation, leads to flow of Na⁺ and water into the secretory lumen. The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel encoded by the gene for cystic fibrosis, a common fatal genetic disorder in humans. CFTR is a member of the ABC transporter family, and is composed of two domains each consisting of six transmembrane domains followed by a nucleotide-binding site. Loss of CFTR function decreases transepithelial water secretion and, as a result, the layers of mucus that coat the respiratory tree, pancreatic ducts, and intestine are dehydrated and difficult to clear.
The resulting blockage of these sites leads to pancreatic insufficiency, "meconium ileus", and

devastating "chronic obstructive pulmonary disease" (Al-Awqati, Q. et al. (1992) *J. Exp. Biol.* 172:245-266).

The voltage-gated chloride channels (CLC) are characterized by 10-12 transmembrane domains, as well as two small globular domains known as CBS domains. The CLC subunits 5 probably function as homotetramers. CLC proteins are involved in regulation of cell volume, membrane potential stabilization, signal transduction, and transepithelial transport. Mutations in CLC-1, expressed predominantly in skeletal muscle, are responsible for autosomal recessive generalized myotonia and autosomal dominant myotonia congenita, while mutations in the kidney channel CLC-5 lead to kidney stones (Jentsch, T.J. (1996) *Curr. Opin. Neurobiol.* 6:303-310).

10 Ligand-gated channels open their pores when an extracellular or intracellular mediator binds to the channel. Neurotransmitter-gated channels are channels that open when a neurotransmitter binds to their extracellular domain. These channels exist in the postsynaptic membrane of nerve or muscle cells. There are two types of neurotransmitter-gated channels. Sodium channels open in response to excitatory neurotransmitters, such as acetylcholine, glutamate, 15 and serotonin. This opening causes an influx of Na^+ and produces the initial localized depolarization that activates the voltage-gated channels and starts the action potential. Chloride channels open in response to inhibitory neurotransmitters, such as γ -aminobutyric acid (GABA) and glycine, leading to hyperpolarization of the membrane and the subsequent generation of an action potential. Neurotransmitter-gated ion channels have four transmembrane domains and probably 20 function as pentamers (Jentsch, *supra*). Amino acids in the second transmembrane domain appear to be important in determining channel permeation and selectivity (Sather, W.A. et al. (1994) *Curr. Opin. Neurobiol.* 4:313-323).

Ligand-gated channels can be regulated by intracellular second messengers. For example, calcium-activated K^+ channels are gated by internal calcium ions. In nerve cells, an influx of 25 calcium during depolarization opens K^+ channels to modulate the magnitude of the action potential (Ishi et al., *supra*). The large conductance (BK) channel has been purified from brain and its subunit composition determined. The α subunit of the BK channel has seven rather than six transmembrane domains in contrast to voltage-gated K^+ channels. The extra transmembrane domain is located at the subunit N-terminus. A 28-amino-acid stretch in the C-terminal region of the subunit (the 30 "calcium bowl" region) contains many negatively charged residues and is thought to be the region responsible for calcium binding. The β subunit consists of two transmembrane domains connected by a glycosylated extracellular loop, with intracellular N- and C-termini (Kaczorowski, *supra*; Vergara, C. et al. (1998) *Curr. Opin. Neurobiol.* 8:321-329).

35 Cyclic nucleotide-gated (CNG) channels are gated by cytosolic cyclic nucleotides. The best examples of these are the cAMP-gated Na^+ channels involved in olfaction and the cGMP-gated

cation channels involved in vision. Both systems involve ligand-mediated activation of a G-protein coupled receptor which then alters the level of cyclic nucleotide within the cell. CNG channels also represent a major pathway for Ca^{2+} entry into neurons, and play roles in neuronal development and plasticity. CNG channels are tetramers containing at least two types of subunits, an α subunit which
5 can form functional homomeric channels, and a β subunit, which modulates the channel properties. All CNG subunits have six transmembrane domains and a pore forming region between the fifth and sixth transmembrane domains, similar to voltage-gated K^+ channels. A large C-terminal domain contains a cyclic nucleotide binding domain, while the N-terminal domain confers variation among channel subtypes (Zufall, F. et al. (1997) *Curr. Opin. Neurobiol.* 7:404-412).

10 The activity of other types of ion channel proteins may also be modulated by a variety of intracellular signalling proteins. Many channels have sites for phosphorylation by one or more protein kinases including protein kinase A, protein kinase C, tyrosine kinase, and casein kinase II, all of which regulate ion channel activity in cells. Kir channels are activated by the binding of the $\text{G}\beta\gamma$ subunits of heterotrimeric G-proteins (Reimann, F. and F.M. Ashcroft (1999) *Curr. Opin. Cell. Biol.* 11:503-508). Other proteins are involved in the localization of ion channels to specific sites in the cell membrane. Such proteins include the PDZ domain proteins known as MAGUKs (membrane-associated guanylate kinases) which regulate the clustering of ion channels at neuronal synapses (Craven, S.E. and D.S. Bredt (1998) *Cell* 93:495-498).

Disease Correlation

20 The etiology of numerous human diseases and disorders can be attributed to defects in the transport of molecules across membranes. Defects in the trafficking of membrane-bound transporters and ion channels are associated with several disorders, e.g., cystic fibrosis, glucose-galactose malabsorption syndrome, hypercholesterolemia, von Gierke disease, and certain forms of diabetes mellitus. Single-gene defect diseases resulting in an inability to transport small
25 molecules across membranes include, e.g., cystinuria, iminoglycinuria, Hartup disease, and Fanconi disease (van't Hoff, W.G. (1996) *Exp. Nephrol.* 4:253-262; Talente, G.M. et al. (1994) *Ann. Intern. Med.* 120:218-226; and Chillon, M. et al. (1995) *New Engl. J. Med.* 332:1475-1480).

Human diseases caused by mutations in ion channel genes include disorders of skeletal muscle, cardiac muscle, and the central nervous system. Mutations in the pore-forming subunits of
30 sodium and chloride channels cause myotonia, a muscle disorder in which relaxation after voluntary contraction is delayed. Sodium channel myotonias have been treated with channel blockers. Mutations in muscle sodium and calcium channels cause forms of periodic paralysis, while mutations in the sarcoplasmic calcium release channel, T-tubule calcium channel, and muscle sodium channel cause malignant hyperthermia. Cardiac arrhythmia disorders such as the long QT
35 syndromes and idiopathic ventricular fibrillation are caused by mutations in potassium and sodium

channels (Cooper, E.C. and L.Y. Jan (1998) Proc. Natl. Acad. Sci. USA 96:4759-4766). All four known human idiopathic epilepsy genes code for ion channel proteins (Berkovic, S.F. and I.E. Scheffer (1999) Curr. Opin. Neurology 12:177-182). Other neurological disorders such as ataxias, hemiplegic migraine and hereditary deafness can also result from mutations in ion channel genes

5 (Jen, J. (1999) Curr. Opin. Neurobiol. 9:274-280; Cooper, supra).

Ion channels have been the target for many drug therapies. Neurotransmitter-gated channels have been targeted in therapies for treatment of insomnia, anxiety, depression, and schizophrenia.

Voltage-gated channels have been targeted in therapies for arrhythmia, ischemic stroke, head trauma, and neurodegenerative disease (Taylor, C.P. and L.S. Narasimhan (1997) Adv. Pharmacol.

10 39:47-98). Various classes of ion channels also play an important role in the perception of pain, and thus are potential targets for new analgesics. These include the vanilloid-gated ion channels, which are activated by the vanilloid capsaicin, as well as by noxious heat. Local anesthetics such as lidocaine and mexiletine which blockade voltage-gated Na⁺ channels have been useful in the treatment of neuropathic pain (Eglen, supra). Calcium-channel protein expression is altered in

15 metastatic melanomas (Enklaar, T. et al. (2000) Genomics 67:179-187.

Ion channels in the immune system have recently been suggested as targets for immunomodulation. T-cell activation depends upon calcium signaling, and a diverse set of T-cell specific ion channels has been characterized that affect this signaling process. Channel blocking agents can inhibit secretion of lymphokines, cell proliferation, and killing of target cells. A peptide 20 antagonist of the T-cell potassium channel Kv1.3 was found to suppress delayed-type hypersensitivity and allogenic responses in pigs, validating the idea of channel blockers as safe and efficacious immunosuppressants (Cahalan, M.D. and K.G. Chandy (1997) Curr. Opin. Biotechnol. 8:749-756).

The discovery of new transporters and ion channels, and the polynucleotides encoding them, satisfies a need in the art by providing new compositions which are useful in the diagnosis, prevention, and treatment of transport, neurological, muscle, immunological and cell proliferative disorders, and in the assessment of the effects of exogenous compounds on the expression of nucleic acid and amino acid sequences of transporters and ion channels.

30 SUMMARY OF THE INVENTION

The invention features purified polypeptides, transporters and ion channels, referred to collectively as "TRICH" and individually as "TRICH-1," "TRICH-2," "TRICH-3," "TRICH-4," "TRICH-5," "TRICH-6," "TRICH-7," "TRICH-8," "TRICH-9," "TRICH-10," "TRICH-11," "TRICH-12," "TRICH-13," "TRICH-14," "TRICH-15," "TRICH-16," "TRICH-17," "TRICH-18," 35 "TRICH-19," "TRICH-20," "TRICH-21," "TRICH-22," "TRICH-23," "TRICH-24," "TRICH-25,"

"TRICH-26," "TRICH-27," "TRICH-28," "TRICH-29," "TRICH-30," "TRICH-31," and "TRICH-32." In one aspect, the invention provides an isolated polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-32.

In one alternative, the invention provides an isolated polypeptide comprising the amino acid sequence of SEQ ID NO:1-32.

The invention further provides an isolated polynucleotide encoding a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-32.

In one alternative, the polynucleotide encodes a polypeptide selected from the group consisting of SEQ ID NO:1-32. In another alternative, the polynucleotide is selected from the group consisting of SEQ ID NO:33-64.

Additionally, the invention provides a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-32.

In one alternative, the invention provides a cell transformed with the recombinant polynucleotide.

In another alternative, the invention provides a transgenic organism comprising the recombinant polynucleotide.

The invention also provides a method for producing a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of

SEQ ID NO:1-32, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-32. The method comprises a) culturing a cell under conditions suitable for expression of the 5 polypeptide, wherein said cell is transformed with a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding the polypeptide, and b) recovering the polypeptide so expressed.

Additionally, the invention provides an isolated antibody which specifically binds to a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid 10 sequence selected from the group consisting of SEQ ID NO:1-32, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group 15 consisting of SEQ ID NO:1-32.

The invention further provides an isolated polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:33-64, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the 20 group consisting of SEQ ID NO:33-64, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d). In one alternative, the polynucleotide comprises at least 60 contiguous nucleotides.

Additionally, the invention provides a method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide selected from the group 25 consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:33-64, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:33-64, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d). The method comprises a) hybridizing the sample with a probe comprising at least 20 contiguous 30 nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and b) detecting the presence or absence of said hybridization complex, and optionally, if 35 present, the amount thereof. In one alternative, the probe comprises at least 60 contiguous

nucleotides.

The invention further provides a method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of 5 SEQ ID NO:33-64, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:33-64, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d). The method comprises a) amplifying said target polynucleotide or fragment thereof using polymerase chain 10 reaction amplification, and b) detecting the presence or absence of said amplified target polynucleotide or fragment thereof, and, optionally, if present, the amount thereof.

The invention further provides a composition comprising an effective amount of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, b) a polypeptide comprising a 15 naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, and a pharmaceutically acceptable excipient. In one embodiment, 20 the composition comprises an amino acid sequence selected from the group consisting of SEQ ID NO:1-32. The invention additionally provides a method of treating a disease or condition associated with decreased expression of functional TRICH, comprising administering to a patient in need of such treatment the composition.

The invention also provides a method for screening a compound for effectiveness as an 25 agonist of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, and d) an 30 immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-32. The method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting agonist activity in the sample. In one alternative, the invention provides a composition comprising an agonist compound identified by the method and a pharmaceutically acceptable excipient. In another alternative, the invention provides a method of 35 treating a disease or condition associated with decreased expression of functional TRICH,

comprising administering to a patient in need of such treatment the composition.

Additionally, the invention provides a method for screening a compound for effectiveness as an antagonist of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-32. The method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting antagonist activity in the sample. In one alternative, the invention provides a composition comprising an antagonist compound identified by the method and a pharmaceutically acceptable excipient. In another alternative, the invention provides a method of treating a disease or condition associated with overexpression of functional TRICH, comprising administering to a patient in need of such treatment the composition.

The invention further provides a method of screening for a compound that specifically binds to a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-32. The method comprises a) combining the polypeptide with at least one test compound under suitable conditions, and b) detecting binding of the polypeptide to the test compound, thereby identifying a compound that specifically binds to the polypeptide.

The invention further provides a method of screening for a compound that modulates the activity of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-32. The method comprises a) combining the polypeptide with at least one test compound under conditions permissive for the activity of the polypeptide, b) assessing the activity of the polypeptide in the presence of the test compound, and c) comparing the activity of the polypeptide in the presence of the test compound with the activity of the polypeptide in the

absence of the test compound, wherein a change in the activity of the polypeptide in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide.

The invention further provides a method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a 5 polynucleotide sequence selected from the group consisting of SEQ ID NO:33-64, the method comprising a) exposing a sample comprising the target polynucleotide to a compound, b) detecting altered expression of the target polynucleotide, and c) comparing the expression of the target polynucleotide in the presence of varying amounts of the compound and in the absence of the compound.

10 The invention further provides a method for assessing toxicity of a test compound, said method comprising a) treating a biological sample containing nucleic acids with the test compound; b) hybridizing the nucleic acids of the treated biological sample with a probe comprising at least 20 contiguous nucleotides of a polynucleotide selected from the group consisting of i) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:33-64, ii) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:33-64, iii) a polynucleotide having a sequence complementary to i), iv) a polynucleotide complementary to the polynucleotide of ii), and v) an RNA equivalent of i)-iv). Hybridization occurs under conditions whereby a specific hybridization complex is formed between said probe and a target polynucleotide 15 in the biological sample, said target polynucleotide selected from the group consisting of i) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:33-64, ii) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:33-64, iii) a polynucleotide complementary to the polynucleotide of i), iv) a polynucleotide 20 complementary to the polynucleotide of ii), and v) an RNA equivalent of i)-iv). Alternatively, the target polynucleotide comprises a fragment of a polynucleotide sequence selected from the group consisting of i)-v) above; c) quantifying the amount of hybridization complex; and d) comparing the amount of hybridization complex in the treated biological sample with the amount of hybridization complex in an untreated biological sample, wherein a difference in the amount of hybridization 25 complex in the treated biological sample is indicative of toxicity of the test compound.

BRIEF DESCRIPTION OF THE TABLES

Table 1 summarizes the nomenclature for the full length polynucleotide and polypeptide sequences of the present invention.

35 Table 2 shows the GenBank identification number and annotation of the nearest GenBank

homolog for polypeptides of the invention. The probability scores for the matches between each polypeptide and its homolog(s) are also shown.

Table 3 shows structural features of polypeptide sequences of the invention, including predicted motifs and domains, along with the methods, algorithms, and searchable databases used
5 for analysis of the polypeptides.

Table 4 lists the cDNA and/or genomic DNA fragments which were used to assemble polynucleotide sequences of the invention, along with selected fragments of the polynucleotide sequences.

Table 5 shows the representative cDNA library for polynucleotides of the invention.
10 Table 6 provides an appendix which describes the tissues and vectors used for construction of the cDNA libraries shown in Table 5.

Table 7 shows the tools, programs, and algorithms used to analyze the polynucleotides and polypeptides of the invention, along with applicable descriptions, references, and threshold parameters.

15

DESCRIPTION OF THE INVENTION

Before the present proteins, nucleotide sequences, and methods are described, it is understood that this invention is not limited to the particular machines, materials and methods described, as these may vary. It is also to be understood that the terminology used herein is for the 20 purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.

It must be noted that as used herein and in the appended claims, the singular forms "a," "an," and "the" include plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to "a host cell" includes a plurality of such host cells, and a reference to "an 25 antibody" is a reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth.

Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any machines, materials, and methods similar or equivalent to those described 30 herein can be used to practice or test the present invention, the preferred machines, materials and methods are now described. All publications mentioned herein are cited for the purpose of describing and disclosing the cell lines, protocols, reagents and vectors which are reported in the publications and which might be used in connection with the invention. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of 35 prior invention.

DEFINITIONS

"TRICH" refers to the amino acid sequences of substantially purified TRICH obtained from any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine, and human, and from any source, whether natural, synthetic, semi-synthetic, or recombinant.

5 The term "agonist" refers to a molecule which intensifies or mimics the biological activity of TRICH. Agonists may include proteins, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of TRICH either by directly interacting with TRICH or by acting on components of the biological pathway in which TRICH participates.

10 An "allelic variant" is an alternative form of the gene encoding TRICH. Allelic variants may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypeptides whose structure or function may or may not be altered. A gene may have none, one, or many allelic variants of its naturally occurring form. Common mutational changes which give rise to allelic variants are generally ascribed to natural deletions, additions, or substitutions of 15 nucleotides. Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence.

15 "Altered" nucleic acid sequences encoding TRICH include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polypeptide the same as TRICH or a polypeptide with at least one functional characteristic of TRICH. Included within this definition 20 are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding TRICH, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding TRICH. The encoded protein may also be "altered," and may contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a 25 functionally equivalent TRICH. Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of TRICH is retained. For example, negatively charged amino acids may include aspartic acid and glutamic acid, and positively charged amino acids may include lysine and arginine. Amino acids with uncharged polar 30 side chains having similar hydrophilicity values may include: asparagine and glutamine; and serine and threonine. Amino acids with uncharged side chains having similar hydrophilicity values may include: leucine, isoleucine, and valine; glycine and alanine; and phenylalanine and tyrosine.

The terms "amino acid" and "amino acid sequence" refer to an oligopeptide, peptide, polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or 35 synthetic molecules. Where "amino acid sequence" is recited to refer to a sequence of a naturally

occurring protein molecule, "amino acid sequence" and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.

"Amplification" relates to the production of additional copies of a nucleic acid sequence.

- 5 Amplification is generally carried out using polymerase chain reaction (PCR) technologies well known in the art.

The term "antagonist" refers to a molecule which inhibits or attenuates the biological activity of TRICH. Antagonists may include proteins such as antibodies, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the 10 activity of TRICH either by directly interacting with TRICH or by acting on components of the biological pathway in which TRICH participates.

The term "antibody" refers to intact immunoglobulin molecules as well as to fragments thereof, such as Fab, F(ab')₂, and Fv fragments, which are capable of binding an epitopic determinant. Antibodies that bind TRICH polypeptides can be prepared using intact polypeptides or 15 using fragments containing small peptides of interest as the immunizing antigen. The polypeptide or oligopeptide used to immunize an animal (e.g., a mouse, a rat, or a rabbit) can be derived from the translation of RNA, or synthesized chemically, and can be conjugated to a carrier protein if desired. Commonly used carriers that are chemically coupled to peptides include bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin (KLH). The coupled peptide is then used 20 to immunize the animal.

The term "antigenic determinant" refers to that region of a molecule (i.e., an epitope) that makes contact with a particular antibody. When a protein or a fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to antigenic determinants (particular regions or three-dimensional structures 25 on the protein). An antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.

The term "aptamer" refers to a nucleic acid or oligonucleotide molecule that binds to a specific molecular target. Aptamers are derived from an *in vitro* evolutionary process (e.g., SELEX (Systematic Evolution of Ligands by EXponential Enrichment), described in U.S. Patent No. 30 5,270,163), which selects for target-specific aptamer sequences from large combinatorial libraries. Aptamer compositions may be double-stranded or single-stranded, and may include deoxyribonucleotides, ribonucleotides, nucleotide derivatives, or other nucleotide-like molecules. The nucleotide components of an aptamer may have modified sugar groups (e.g., the 2'-OH group of a ribonucleotide may be replaced by 2'-F or 2'-NH₂), which may improve a desired property, e.g., 35 resistance to nucleases or longer lifetime in blood. Aptamers may be conjugated to other molecules,

e.g., a high molecular weight carrier to slow clearance of the aptamer from the circulatory system. Aptamers may be specifically cross-linked to their cognate ligands, e.g., by photo-activation of a cross-linker. (See, e.g., Brody, E.N. and L. Gold (2000) J. Biotechnol. 74:5-13.)

The term "intramer" refers to an aptamer which is expressed in vivo. For example, a
5 vaccinia virus-based RNA expression system has been used to express specific RNA aptamers at
high levels in the cytoplasm of leukocytes (Blind, M. et al. (1999) Proc. Natl Acad. Sci. USA
96:3606-3610).

The term "spiegelmer" refers to an aptamer which includes L-DNA, L-RNA, or other left-
handed nucleotide derivatives or nucleotide-like molecules. Aptamers containing left-handed
10 nucleotides are resistant to degradation by naturally occurring enzymes, which normally act on
substrates containing right-handed nucleotides.

The term "antisense" refers to any composition capable of base-pairing with the "sense"
(coding) strand of a specific nucleic acid sequence. Antisense compositions may include DNA;
RNA; peptide nucleic acid (PNA); oligonucleotides having modified backbone linkages such as
15 phosphorothioates, methylphosphonates, or benzylphosphonates; oligonucleotides having modified
sugar groups such as 2'-methoxyethyl sugars or 2'-methoxyethoxy sugars; or oligonucleotides having
modified bases such as 5-methyl cytosine, 2'-deoxyuracil, or 7-deaza-2'-deoxyguanosine. Antisense
molecules may be produced by any method including chemical synthesis or transcription. Once
introduced into a cell, the complementary antisense molecule base-pairs with a naturally occurring
20 nucleic acid sequence produced by the cell to form duplexes which block either transcription or
translation. The designation "negative" or "minus" can refer to the antisense strand, and the
designation "positive" or "plus" can refer to the sense strand of a reference DNA molecule.

The term "biologically active" refers to a protein having structural, regulatory, or
biochemical functions of a naturally occurring molecule. Likewise, "immunologically active" or
25 "immunogenic" refers to the capability of the natural, recombinant, or synthetic TRICH, or of any
oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to
bind with specific antibodies.

"Complementary" describes the relationship between two single-stranded nucleic acid
sequences that anneal by base-pairing. For example, 5'-AGT-3' pairs with its complement,
30 3'-TCA-5'.

A "composition comprising a given polynucleotide sequence" and a "composition
comprising a given amino acid sequence" refer broadly to any composition containing the given
polynucleotide or amino acid sequence. The composition may comprise a dry formulation or an
aqueous solution. Compositions comprising polynucleotide sequences encoding TRICH or
35 fragments of TRICH may be employed as hybridization probes. The probes may be stored in freeze-

dried form and may be associated with a stabilizing agent such as a carbohydrate. In hybridizations, the probe may be deployed in an aqueous solution containing salts (e.g., NaCl), detergents (e.g., sodium dodecyl sulfate; SDS), and other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.).

- 5 "Consensus sequence" refers to a nucleic acid sequence which has been subjected to repeated DNA sequence analysis to resolve uncalled bases, extended using the XL-PCR kit (Applied Biosystems, Foster City CA) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from one or more overlapping cDNA, EST, or genomic DNA fragments using a computer program for fragment assembly, such as the GELVIEW fragment assembly system (GCG, 10 Madison WI) or Phrap (University of Washington, Seattle WA). Some sequences have been both extended and assembled to produce the consensus sequence.

"Conservative amino acid substitutions" are those substitutions that are predicted to least interfere with the properties of the original protein, i.e., the structure and especially the function of the protein is conserved and not significantly changed by such substitutions. The table below shows 15 amino acids which may be substituted for an original amino acid in a protein and which are regarded as conservative amino acid substitutions.

	Original Residue	Conservative Substitution
20	Ala	Gly, Ser
	Arg	His, Lys
	Asn	Asp, Gln, His
	Asp	Asn, Glu
	Cys	Ala, Ser
	Gln	Asn, Glu, His
25	Glu	Asp, Gln, His
	Gly	Ala
	His	Asn, Arg, Gln, Glu
	Ile	Leu, Val
	Leu	Ile, Val
	Lys	Arg, Gln, Glu
30	Met	Leu, Ile
	Phe	His, Met, Leu, Trp, Tyr
	Ser	Cys, Thr
	Thr	Ser, Val
35	Trp	Phe, Tyr
	Tyr	His, Phe, Trp
	Val	Ile, Leu, Thr

- Conservative amino acid substitutions generally maintain (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a beta sheet or alpha helical 40 conformation, (b) the charge or hydrophobicity of the molecule at the site of the substitution, and/or (c) the bulk of the side chain.

A "deletion" refers to a change in the amino acid or nucleotide sequence that results in the

absence of one or more amino acid residues or nucleotides.

The term "derivative" refers to a chemically modified polynucleotide or polypeptide.

Chemical modifications of a polynucleotide can include, for example, replacement of hydrogen by an alkyl, acyl, hydroxyl, or amino group. A derivative polynucleotide encodes a polypeptide which
5 retains at least one biological or immunological function of the natural molecule. A derivative polypeptide is one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.

A "detectable label" refers to a reporter molecule or enzyme that is capable of generating a measurable signal and is covalently or noncovalently joined to a polynucleotide or polypeptide.

10 "Differential expression" refers to increased or upregulated; or decreased, downregulated, or absent gene or protein expression, determined by comparing at least two different samples. Such comparisons may be carried out between, for example, a treated and an untreated sample, or a diseased and a normal sample.

15 "Exon shuffling" refers to the recombination of different coding regions (exons). Since an exon may represent a structural or functional domain of the encoded protein, new proteins may be assembled through the novel reassortment of stable substructures, thus allowing acceleration of the evolution of new protein functions.

20 A "fragment" is a unique portion of TRICH or the polynucleotide encoding TRICH which is identical in sequence to but shorter in length than the parent sequence. A fragment may comprise up to the entire length of the defined sequence, minus one nucleotide/amino acid residue. For example, a fragment may comprise from 5 to 1000 contiguous nucleotides or amino acid residues. A fragment used as a probe, primer, antigen, therapeutic molecule, or for other purposes, may be at least 5, 10, 15, 16, 20, 25, 30, 40, 50, 60, 75, 100, 150, 250 or at least 500 contiguous nucleotides or amino acid residues in length. Fragments may be preferentially selected from certain regions of a
25 molecule. For example, a polypeptide fragment may comprise a certain length of contiguous amino acids selected from the first 250 or 500 amino acids (or first 25% or 50%) of a polypeptide as shown in a certain defined sequence. Clearly these lengths are exemplary, and any length that is supported by the specification, including the Sequence Listing, tables, and figures, may be encompassed by the present embodiments.

30 A fragment of SEQ ID NO:33-64 comprises a region of unique polynucleotide sequence that specifically identifies SEQ ID NO:33-64, for example, as distinct from any other sequence in the genome from which the fragment was obtained. A fragment of SEQ ID NO:33-64 is useful, for example, in hybridization and amplification technologies and in analogous methods that distinguish SEQ ID NO:33-64 from related polynucleotide sequences. The precise length of a fragment of SEQ
35 ID NO:33-64 and the region of SEQ ID NO:33-64 to which the fragment corresponds are routinely

determinable by one of ordinary skill in the art based on the intended purpose for the fragment.

A fragment of SEQ ID NO:1-32 is encoded by a fragment of SEQ ID NO:33-64. A fragment of SEQ ID NO:1-32 comprises a region of unique amino acid sequence that specifically identifies SEQ ID NO:1-32. For example, a fragment of SEQ ID NO:1-32 is useful as an immunogenic peptide for the development of antibodies that specifically recognize SEQ ID NO:1-32. The precise length of a fragment of SEQ ID NO:1-32 and the region of SEQ ID NO:1-32 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.

A "full length" polynucleotide sequence is one containing at least a translation initiation codon (e.g., methionine) followed by an open reading frame and a translation termination codon. A "full length" polynucleotide sequence encodes a "full length" polypeptide sequence.

"Homology" refers to sequence similarity or, interchangeably, sequence identity, between two or more polynucleotide sequences or two or more polypeptide sequences.

The terms "percent identity" and "% identity," as applied to polynucleotide sequences, refer to the percentage of residue matches between at least two polynucleotide sequences aligned using a standardized algorithm. Such an algorithm may insert, in a standardized and reproducible way, gaps in the sequences being compared in order to optimize alignment between two sequences, and therefore achieve a more meaningful comparison of the two sequences.

Percent identity between polynucleotide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence alignment program. This program is part of the LASERGENE software package, a suite of molecular biological analysis programs (DNASTAR, Madison WI). CLUSTAL V is described in Higgins, D.G. and P.M. Sharp (1989) CABIOS 5:151-153 and in Higgins, D.G. et al. (1992) CABIOS 8:189-191. For pairwise alignments of polynucleotide sequences, the default parameters are set as follows: Ktuple=2, gap penalty=5, window=4, and "diagonals saved"=4. The "weighted" residue weight table is selected as the default. Percent identity is reported by CLUSTAL V as the "percent similarity" between aligned polynucleotide sequences.

Alternatively, a suite of commonly used and freely available sequence comparison algorithms is provided by the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST) (Altschul, S.F. et al. (1990) J. Mol. Biol. 215:403-410), which is available from several sources, including the NCBI, Bethesda, MD, and on the Internet at <http://www.ncbi.nlm.nih.gov/BLAST/>. The BLAST software suite includes various sequence analysis programs including "blastn," that is used to align a known polynucleotide sequence with other polynucleotide sequences from a variety of databases. Also available is a tool called "BLAST 2 Sequences" that is used for direct pairwise comparison of two nucleotide sequences. "BLAST 2

Sequences" can be accessed and used interactively at <http://www.ncbi.nlm.nih.gov/gorf/bl2.html>. The "BLAST 2 Sequences" tool can be used for both blastn and blastp (discussed below). BLAST programs are commonly used with gap and other parameters set to default settings. For example, to compare two nucleotide sequences, one may use blastn with the "BLAST 2 Sequences" tool

- 5 Version 2.0.12 (April-21-2000) set at default parameters. Such default parameters may be, for example:

Matrix: BLOSUM62

Reward for match: 1

Penalty for mismatch: -2

- 10 *Open Gap: 5 and Extension Gap: 2 penalties*

Gap x drop-off: 50

Expect: 10

Word Size: 11

Filter: on

- 15 Percent identity may be measured over the length of an entire defined sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined sequence, for instance, a fragment of at least 20, at least 30, at least 40, at least 50, at least 70, at least 100, or at least 200 contiguous nucleotides. Such lengths are exemplary only, and it is understood that any fragment 20 length supported by the sequences shown herein, in the tables, figures, or Sequence Listing, may be used to describe a length over which percentage identity may be measured.

- 25 Nucleic acid sequences that do not show a high degree of identity may nevertheless encode similar amino acid sequences due to the degeneracy of the genetic code. It is understood that changes in a nucleic acid sequence can be made using this degeneracy to produce multiple nucleic acid sequences that all encode substantially the same protein.

- The phrases "percent identity" and "% identity," as applied to polypeptide sequences, refer to the percentage of residue matches between at least two polypeptide sequences aligned using a standardized algorithm. Methods of polypeptide sequence alignment are well-known. Some alignment methods take into account conservative amino acid substitutions. Such conservative 30 substitutions, explained in more detail above, generally preserve the charge and hydrophobicity at the site of substitution, thus preserving the structure (and therefore function) of the polypeptide.

- Percent identity between polypeptide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence alignment program (described and referenced above). For pairwise alignments of 35 polypeptide sequences using CLUSTAL V, the default parameters are set as follows: Ktuple=1, gap

penalty=3, window=5, and "diagonals saved"=5. The PAM250 matrix is selected as the default residue weight table. As with polynucleotide alignments, the percent identity is reported by CLUSTAL V as the "percent similarity" between aligned polypeptide sequence pairs.

Alternatively the NCBI BLAST software suite may be used. For example, for a pairwise comparison of two polypeptide sequences, one may use the "BLAST 2 Sequences" tool Version 2.0.12 (April-21-2000) with blastp set at default parameters. Such default parameters may be, for example:

Matrix: BLOSUM62

Open Gap: 11 and Extension Gap: 1 penalties

10 *Gap x drop-off: 50*

Expect: 10

Word Size: 3

Filter: on

Percent identity may be measured over the length of an entire defined polypeptide sequence, 15 for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined polypeptide sequence, for instance, a fragment of at least 15, at least 20, at least 30, at least 40, at least 50, at least 70 or at least 150 contiguous residues. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures or Sequence 20 Listing, may be used to describe a length over which percentage identity may be measured.

"Human artificial chromosomes" (HACs) are linear microchromosomes which may contain DNA sequences of about 6 kb to 10 Mb in size and which contain all of the elements required for chromosome replication, segregation and maintenance.

The term "humanized antibody" refers to an antibody molecule in which the amino acid 25 sequence in the non-antigen binding regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding ability.

"Hybridization" refers to the process by which a polynucleotide strand anneals with a complementary strand through base pairing under defined hybridization conditions. Specific hybridization is an indication that two nucleic acid sequences share a high degree of 30 complementarity. Specific hybridization complexes form under permissive annealing conditions and remain hybridized after the "washing" step(s). The washing step(s) is particularly important in determining the stringency of the hybridization process, with more stringent conditions allowing less non-specific binding, i.e., binding between pairs of nucleic acid strands that are not perfectly matched. Permissive conditions for annealing of nucleic acid sequences are routinely determinable 35 by one of ordinary skill in the art and may be consistent among hybridization experiments, whereas

wash conditions may be varied among experiments to achieve the desired stringency, and therefore hybridization specificity. Permissive annealing conditions occur, for example, at 68°C in the presence of about 6 x SSC, about 1% (w/v) SDS, and about 100 µg/ml sheared, denatured salmon sperm DNA.

5 Generally, stringency of hybridization is expressed, in part, with reference to the temperature under which the wash step is carried out. Such wash temperatures are typically selected to be about 5°C to 20°C lower than the thermal melting point (T_m) for the specific sequence at a defined ionic strength and pH. The T_m is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. An equation for 10 calculating T_m and conditions for nucleic acid hybridization are well known and can be found in Sambrook, J. et al. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, Cold Spring Harbor Press, Plainview NY; specifically see volume 2, chapter 9.

High stringency conditions for hybridization between polynucleotides of the present invention include wash conditions of 68°C in the presence of about 0.2 x SSC and about 0.1% SDS, 15 for 1 hour. Alternatively, temperatures of about 65°C, 60°C, 55°C, or 42°C may be used. SSC concentration may be varied from about 0.1 to 2 x SSC, with SDS being present at about 0.1%. Typically, blocking reagents are used to block non-specific hybridization. Such blocking reagents include, for instance, sheared and denatured salmon sperm DNA at about 100-200 µg/ml. Organic solvent, such as formamide at a concentration of about 35-50% v/v, may also be used under 20 particular circumstances, such as for RNA:DNA hybridizations. Useful variations on these wash conditions will be readily apparent to those of ordinary skill in the art. Hybridization, particularly under high stringency conditions, may be suggestive of evolutionary similarity between the nucleotides. Such similarity is strongly indicative of a similar role for the nucleotides and their encoded polypeptides.

25 The term "hybridization complex" refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary bases. A hybridization complex may be formed in solution (e.g., C₀t or R₀t analysis) or formed between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate 30 substrate to which cells or their nucleic acids have been fixed).

The words "insertion" and "addition" refer to changes in an amino acid or nucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively.

"Immune response" can refer to conditions associated with inflammation, trauma, immune disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression 35 of various factors, e.g., cytokines, chemokines, and other signaling molecules, which may affect

cellular and systemic defense systems.

An "immunogenic fragment" is a polypeptide or oligopeptide fragment of TRICH which is capable of eliciting an immune response when introduced into a living organism, for example, a mammal. The term "immunogenic fragment" also includes any polypeptide or oligopeptide fragment of TRICH which is useful in any of the antibody production methods disclosed herein or known in the art.

The term "microarray" refers to an arrangement of a plurality of polynucleotides, polypeptides, or other chemical compounds on a substrate.

The terms "element" and "array element" refer to a polynucleotide, polypeptide, or other chemical compound having a unique and defined position on a microarray.

The term "modulate" refers to a change in the activity of TRICH. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional, or immunological properties of TRICH.

The phrases "nucleic acid" and "nucleic acid sequence" refer to a nucleotide, oligonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material.

"Operably linked" refers to the situation in which a first nucleic acid sequence is placed in a functional relationship with a second nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence. Operably linked DNA sequences may be in close proximity or contiguous and, where necessary to join two protein coding regions, in the same reading frame.

"Peptide nucleic acid" (PNA) refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubility to the composition. PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their lifespan in the cell.

"Post-translational modification" of an TRICH may involve lipidation, glycosylation, phosphorylation, acetylation, racemization, proteolytic cleavage, and other modifications known in the art. These processes may occur synthetically or biochemically. Biochemical modifications will vary by cell type depending on the enzymatic milieu of TRICH.

"Probe" refers to nucleic acid sequences encoding TRICH, their complements, or fragments thereof, which are used to detect identical, allelic or related nucleic acid sequences. Probes are isolated oligonucleotides or polynucleotides attached to a detectable label or reporter molecule.

Typical labels include radioactive isotopes, ligands, chemiluminescent agents, and enzymes. "Primers" are short nucleic acids, usually DNA oligonucleotides, which may be annealed to a target polynucleotide by complementary base-pairing. The primer may then be extended along the target DNA strand by a DNA polymerase enzyme. Primer pairs can be used for amplification (and identification) of a nucleic acid sequence, e.g., by the polymerase chain reaction (PCR).

- 5 Probes and primers as used in the present invention typically comprise at least 15 contiguous nucleotides of a known sequence. In order to enhance specificity, longer probes and primers may also be employed, such as probes and primers that comprise at least 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, or at least 150 consecutive nucleotides of the disclosed nucleic acid sequences.
- 10 Probes and primers may be considerably longer than these examples, and it is understood that any length supported by the specification, including the tables, figures, and Sequence Listing, may be used.

Methods for preparing and using probes and primers are described in the references, for example Sambrook, J. et al. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, Cold Spring Harbor Press, Plainview NY; Ausubel, F.M. et al. (1987) Current Protocols in Molecular Biology, Greene Publ. Assoc. & Wiley-Intersciences, New York NY; Innis, M. et al. (1990) PCR Protocols, A Guide to Methods and Applications, Academic Press, San Diego CA. PCR primer pairs can be derived from a known sequence, for example, by using computer programs intended for that purpose such as Primer (Version 0.5, 1991, Whitehead Institute for Biomedical Research, 20 Cambridge MA).

Oligonucleotides for use as primers are selected using software known in the art for such purpose. For example, OLIGO 4.06 software is useful for the selection of PCR primer pairs of up to 100 nucleotides each, and for the analysis of oligonucleotides and larger polynucleotides of up to 5,000 nucleotides from an input polynucleotide sequence of up to 32 kilobases. Similar primer selection programs have incorporated additional features for expanded capabilities. For example, the PrimOU primer selection program (available to the public from the Genome Center at University of Texas South West Medical Center, Dallas TX) is capable of choosing specific primers from megabase sequences and is thus useful for designing primers on a genome-wide scope. The Primer3 primer selection program (available to the public from the Whitehead Institute/MIT Center for Genome Research, Cambridge MA) allows the user to input a "mispriming library," in which sequences to avoid as primer binding sites are user-specified. Primer3 is useful, in particular, for the selection of oligonucleotides for microarrays. (The source code for the latter two primer selection programs may also be obtained from their respective sources and modified to meet the user's specific needs.) The PrimeGen program (available to the public from the UK Human Genome Mapping Project Resource Centre, Cambridge UK) designs primers based on multiple

sequence alignments, thereby allowing selection of primers that hybridize to either the most conserved or least conserved regions of aligned nucleic acid sequences. Hence, this program is useful for identification of both unique and conserved oligonucleotides and polynucleotide fragments. The oligonucleotides and polynucleotide fragments identified by any of the above 5 selection methods are useful in hybridization technologies, for example, as PCR or sequencing primers, microarray elements, or specific probes to identify fully or partially complementary polynucleotides in a sample of nucleic acids. Methods of oligonucleotide selection are not limited to those described above.

A "recombinant nucleic acid" is a sequence that is not naturally occurring or has a sequence 10 that is made by an artificial combination of two or more otherwise separated segments of sequence. This artificial combination is often accomplished by chemical synthesis or, more commonly, by the artificial manipulation of isolated segments of nucleic acids, e.g., by genetic engineering techniques such as those described in Sambrook, *supra*. The term recombinant includes nucleic acids that have been altered solely by addition, substitution, or deletion of a portion of the nucleic acid. Frequently, 15 a recombinant nucleic acid may include a nucleic acid sequence operably linked to a promoter sequence. Such a recombinant nucleic acid may be part of a vector that is used, for example, to transform a cell.

Alternatively, such recombinant nucleic acids may be part of a viral vector, e.g., based on a 20 vaccinia virus, that could be used to vaccinate a mammal wherein the recombinant nucleic acid is expressed, inducing a protective immunological response in the mammal.

A "regulatory element" refers to a nucleic acid sequence usually derived from untranslated 25 regions of a gene and includes enhancers, promoters, introns, and 5' and 3' untranslated regions (UTRs). Regulatory elements interact with host or viral proteins which control transcription, translation, or RNA stability.

"Reporter molecules" are chemical or biochemical moieties used for labeling a nucleic acid, amino acid, or antibody. Reporter molecules include radionuclides; enzymes; fluorescent, 30 chemiluminescent, or chromogenic agents; substrates; cofactors; inhibitors; magnetic particles; and other moieties known in the art.

An "RNA equivalent," in reference to a DNA sequence, is composed of the same linear 35 sequence of nucleotides as the reference DNA sequence with the exception that all occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.

The term "sample" is used in its broadest sense. A sample suspected of containing TRICH, nucleic acids encoding TRICH, or fragments thereof may comprise a bodily fluid; an extract from a 35 cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic DNA, RNA, or

cDNA, in solution or bound to a substrate; a tissue; a tissue print; etc.

The terms "specific binding" and "specifically binding" refer to that interaction between a protein or peptide and an agonist, an antibody, an antagonist, a small molecule, or any natural or synthetic binding composition. The interaction is dependent upon the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule. For example, if an antibody is specific for epitope "A," the presence of a polypeptide comprising the epitope A, or the presence of free unlabeled A, in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.

The term "substantially purified" refers to nucleic acid or amino acid sequences that are removed from their natural environment and are isolated or separated, and are at least 60% free, preferably at least 75% free, and most preferably at least 90% free from other components with which they are naturally associated.

A "substitution" refers to the replacement of one or more amino acid residues or nucleotides by different amino acid residues or nucleotides, respectively.

"Substrate" refers to any suitable rigid or semi-rigid support including membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers, microparticles and capillaries. The substrate can have a variety of surface forms, such as wells, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.

A "transcript image" or "expression profile" refers to the collective pattern of gene expression by a particular cell type or tissue under given conditions at a given time.

"Transformation" describes a process by which exogenous DNA is introduced into a recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method for transformation is selected based on the type of host cell being transformed and may include, but is not limited to, bacteriophage or viral infection, electroporation, heat shock, lipofection, and particle bombardment. The term "transformed cells" includes stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for limited periods of time.

A "transgenic organism," as used herein, is any organism, including but not limited to animals and plants, in which one or more of the cells of the organism contains heterologous nucleic acid introduced by way of human intervention, such as by transgenic techniques well known in the art. The nucleic acid is introduced into the cell, directly or indirectly by introduction into a precursor of the cell, by way of deliberate genetic manipulation, such as by microinjection or by

infection with a recombinant virus. The term genetic manipulation does not include classical cross-breeding, or *in vitro* fertilization, but rather is directed to the introduction of a recombinant DNA molecule. The transgenic organisms contemplated in accordance with the present invention include bacteria, cyanobacteria, fungi, plants and animals. The isolated DNA of the present invention can be introduced into the host by methods known in the art, for example infection, transfection, transformation or transconjugation. Techniques for transferring the DNA of the present invention into such organisms are widely known and provided in references such as Sambrook et al. (1989), *supra*.

- A "variant" of a particular nucleic acid sequence is defined as a nucleic acid sequence having at least 40% sequence identity to the particular nucleic acid sequence over a certain length of one of the nucleic acid sequences using blastn with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) set at default parameters. Such a pair of nucleic acids may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, or at least 98%, or greater sequence identity over a certain defined length. A variant may be described as, for example, an "allelic" (as defined above), "splice," "species," or "polymorphic" variant. A splice variant may have significant identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides due to alternate splicing of exons during mRNA processing. The corresponding polypeptide may possess additional functional domains or lack domains that are present in the reference molecule. Species variants are polynucleotide sequences that vary from one species to another. The resulting polypeptides will generally have significant amino acid identity relative to each other. A polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species. Polymorphic variants also may encompass "single nucleotide polymorphisms" (SNPs) in which the polynucleotide sequence varies by one nucleotide base. The presence of SNPs may be indicative of, for example, a certain population, a disease state, or a propensity for a disease state.

A "variant" of a particular polypeptide sequence is defined as a polypeptide sequence having at least 40% sequence identity to the particular polypeptide sequence over a certain length of one of the polypeptide sequences using blastp with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) set at default parameters. Such a pair of polypeptides may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, or at least 98%, or greater sequence identity over a certain defined length of one of the polypeptides.

35 THE INVENTION

The invention is based on the discovery of new human transporters and ion channels (TRICH), the polynucleotides encoding TRICH, and the use of these compositions for the diagnosis, treatment, or prevention of transport, neurological, muscle, immunological and cell proliferative disorders.

5 Table 1 summarizes the nomenclature for the full length polynucleotide and polypeptide sequences of the invention. Each polynucleotide and its corresponding polypeptide are correlated to a single Incyte project identification number (Incyte Project ID). Each polypeptide sequence is denoted by both a polypeptide sequence identification number (Polypeptide SEQ ID NO:) and an Incyte polypeptide sequence number (Incyte Polypeptide ID) as shown. Each polynucleotide
10 sequence is denoted by both a polynucleotide sequence identification number (Polynucleotide SEQ ID NO:) and an Incyte polynucleotide consensus sequence number (Incyte Polynucleotide ID) as shown.

Table 2 shows sequences with homology to the polypeptides of the invention as identified by BLAST analysis against the GenBank protein (genpept) database. Columns 1 and 2 show the
15 polypeptide sequence identification number (Polypeptide SEQ ID NO:) and the corresponding Incyte polypeptide sequence number (Incyte Polypeptide ID) for polypeptides of the invention. Column 3 shows the GenBank identification number (GenBank ID NO:) of the nearest GenBank homolog. Column 4 shows the probability scores for the matches between each polypeptide and its homolog(s). Column 5 shows the annotation of the GenBank homolog(s) along with relevant
20 citations where applicable, all of which are expressly incorporated by reference herein.

Table 3 shows various structural features of the polypeptides of the invention. Columns 1 and 2 show the polypeptide sequence identification number (SEQ ID NO:) and the corresponding Incyte polypeptide sequence number (Incyte Polypeptide ID) for each polypeptide of the invention. Column 3 shows the number of amino acid residues in each polypeptide. Column 4 shows potential
25 phosphorylation sites, and column 5 shows potential glycosylation sites, as determined by the MOTIFS program of the GCG sequence analysis software package (Genetics Computer Group, Madison WI). Column 6 shows amino acid residues comprising signature sequences, domains, and motifs. Column 7 shows analytical methods for protein structure/function analysis and in some cases, searchable databases to which the analytical methods were applied.

30 Together, Tables 2 and 3 summarize the properties of polypeptides of the invention, and these properties establish that the claimed polypeptides are transporters and ion channels. For example, SEQ ID NO:1 is 83% identical to human sodium-hydrogen exchanger 6 (GenBank ID g2944233) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 5.1e-242, which indicates the probability of obtaining the observed
35 polypeptide sequence alignment by chance. SEQ ID NO:1 also contains a sodium/hydrogen

exchanger family domain as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein family domains. (See Table 3.) Data from BLIMPS, and other BLAST analyses provide further corroborative evidence that SEQ ID NO:1 is a sodium-hydrogen exchange transporter. In another example, SEQ ID NO:7
5 is 85% identical to Rattus norvegicus Na⁺/K⁺-ATPase alpha subunit (GenBank ID g619915) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 0.0, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ ID NO:7 also contains an E1-E2 ATPase domain as determined by searching for statistically significant matches in the hidden Markov model (HMM)-
10 based PFAM database of conserved protein family domains. (See Table 3.) Data from BLIMPS, MOTIFS, and PROFILESCAN analyses provide further corroborative evidence that SEQ ID NO:7 is a cation-transporting ATPase. In yet another example, SEQ ID NO:13 is 77% identical to a human carrier-like protein (GenBank ID g3694661) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 5.5e-209, which indicates
15 the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ ID NO:13 also contains a mitochondrial energy transfer protein domain as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein family domains. (See Table 3.) The presence of this domain is confirmed by BLIMPS, MOTIFS, and PROFILESCAN analyses, providing further corroborative evidence that
20 SEQ ID NO:13 is a transporter. Further, SEQ ID NO:16 is 41% identical to human novel ATPase (GenBank ID g8979801) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 1.1e-165, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ ID NO:16 also contains an E1-E2 ATPase domain as determined by searching for statistically significant matches in the hidden
25 Markov model (HMM)-based PFAM database of conserved protein family domains. (See Table 3.) Data from BLIMPS, MOTIFS, and PROFILESCAN analyses provide further corroborative evidence that SEQ ID NO:16 is a cation-transporting ATPase. In a further example, SEQ ID NO:19 is 43% identical to Sinorhizobium sp. As4 ArsA, the catalytic subunit of the arsenic oxyanion-translocating ATPase (GenBank ID g5802945) as determined by the Basic Local Alignment Search Tool
30 (BLAST). (See Table 2.) The BLAST probability score is 7.7e-125, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ ID NO:19 also contains an anion-transporting ATPase domain as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein family domains. (See Table 3.) Data from additional BLAST and PROFILESCAN analyses provide
35 further corroborative evidence that SEQ ID NO:19 is an anion-transporting ATPase. In yet a further

example, SEQ ID NO:21 is 54% identical to a murine putative E1-E2 ATPase (GenBank ID g28577) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 5.2e-190, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ ID NO:21 also contains six transmembrane domains as determined using TMAP, a program which delineates transmembrane segments. (See Table 3.) Data from BLIMPS, and MOTIFS, analyses provide further corroborative evidence that SEQ ID NO:21 is an ATPase. In a futher example, SEQ ID NO:24 is 52% identical, from residue A77 to residue L1007, to rat NMDAR-L (GenBank ID g2160125) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 1.5e-262, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ ID NO:24 also contains a ligand gated ion channel domain as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein family domains. (See Table 3.) Data from BLIMPS analysis provide further corroborative evidence that SEQ ID NO:24 is a glutamate receptor. SEQ ID NO:2-6, SEQ ID NO:8-12, SEQ ID NO:14-15, SEQ ID NO:17-18, SEQ ID NO:20, SEQ ID NO:22-23, and SEQ ID NO:25-32 were analyzed and annotated in a similar manner. The algorithms and parameters for the analysis of SEQ ID NO:1-32 are described in Table 7.

As shown in Table 4, the full length polynucleotide sequences of the present invention were assembled using cDNA sequences or coding (exon) sequences derived from genomic DNA, or any combination of these two types of sequences. Column 1 lists the polynucleotide sequence identification number (Polynucleotide SEQ ID NO:), the corresponding Incyte polynucleotide consensus sequence number (Incyte ID) for each polynucleotide of the invention, and the length of each polynucleotide sequence in basepairs. Column 2 shows the nucleotide start (5') and stop (3') positions of the cDNA and/or genomic sequences used to assemble the full length polynucleotide sequences of the invention, and of fragments of the polynucleotide sequences which are useful, for example, in hybridization or amplification technologies that identify SEQ ID NO:33-64 or that distinguish between SEQ ID NO:33-64 and related polynucleotide sequences.

The polynucleotide fragments described in Column 2 of Table 4 may refer specifically, for example, to Incyte cDNAs derived from tissue-specific cDNA libraries or from pooled cDNA libraries. Alternatively, the polynucleotide fragments described in column 2 may refer to GenBank cDNAs or ESTs which contributed to the assembly of the full length polynucleotide sequences. In addition, the polynucleotide fragments described in column 2 may identify sequences derived from the ENSEMBL (The Sanger Centre, Cambridge, UK) database (*i.e.*, those sequences including the designation "ENST"). Alternatively, the polynucleotide fragments described in column 2 may be derived from the NCBI RefSeq Nucleotide Sequence Records Database (*i.e.*, those sequences

including the designation "NM" or "NT") or the NCBI RefSeq Protein Sequence Records (*i.e.*, those sequences including the designation "NP"). Alternatively, the polynucleotide fragments described in column 2 may refer to assemblages of both cDNA and Genscan-predicted exons brought together by an "exon stitching" algorithm. For example, a polynucleotide sequence 5 identified as FL_XXXXXX_N₁_N₂_YYYYY_N₃_N₄ represents a "stitched" sequence in which XXXXXX is the identification number of the cluster of sequences to which the algorithm was applied, and YYYYY is the number of the prediction generated by the algorithm, and N_{1,2,3...}, if present, represent specific exons that may have been manually edited during analysis (See Example V). Alternatively, the polynucleotide fragments in column 2 may refer to assemblages of exons 10 brought together by an "exon-stretching" algorithm. For example, a polynucleotide sequence identified as FLXXXXXX_gAAAAAA_gBBBBB_1_N is a "stretched" sequence, with XXXXXX being the Incyte project identification number, gAAAAAA being the GenBank identification number of the human genomic sequence to which the "exon-stretching" algorithm was applied, gBBBBB being the GenBank identification number or NCBI RefSeq identification number of the nearest GenBank 15 protein homolog, and N referring to specific exons (See Example V). In instances where a RefSeq sequence was used as a protein homolog for the "exon-stretching" algorithm, a RefSeq identifier (denoted by "NM," "NP," or "NT") may be used in place of the GenBank identifier (*i.e.*, gBBBBB).

Alternatively, a prefix identifies component sequences that were hand-edited, predicted from genomic DNA sequences, or derived from a combination of sequence analysis methods. The 20 following Table lists examples of component sequence prefixes and corresponding sequence analysis methods associated with the prefixes (see Example IV and Example V).

Prefix	Type of analysis and/or examples of programs
GNN, GFG, ENST	Exon prediction from genomic sequences using, for example, GENSCAN (Stanford University, CA, USA) or FGENES (Computer Genomics Group, The Sanger Centre, Cambridge, UK).
GBI	Hand-edited analysis of genomic sequences.
FL	Stitched or stretched genomic sequences (see Example V).
INCY	Full length transcript and exon prediction from mapping of EST sequences to the genome. Genomic location and EST composition data are combined to predict the exons and resulting transcript.

In some cases, Incyte cDNA coverage redundant with the sequence coverage shown in 30 Table 4 was obtained to confirm the final consensus polynucleotide sequence, but the relevant Incyte cDNA identification numbers are not shown.

Table 5 shows the representative cDNA libraries for those full length polynucleotide

sequences which were assembled using Incyte cDNA sequences. The representative cDNA library is the Incyte cDNA library which is most frequently represented by the Incyte cDNA sequences which were used to assemble and confirm the above polynucleotide sequences. The tissues and vectors which were used to construct the cDNA libraries shown in Table 5 are described in Table 6.

5 The invention also encompasses TRICH variants. A preferred TRICH variant is one which has at least about 80%, or alternatively at least about 90%, or even at least about 95% amino acid sequence identity to the TRICH amino acid sequence, and which contains at least one functional or structural characteristic of TRICH.

10 The invention also encompasses polynucleotides which encode TRICH. In a particular embodiment, the invention encompasses a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:33-64, which encodes TRICH. The polynucleotide sequences of SEQ ID NO:33-64, as presented in the Sequence Listing, embrace the equivalent RNA sequences, wherein occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.

15 The invention also encompasses a variant of a polynucleotide sequence encoding TRICH. In particular, such a variant polynucleotide sequence will have at least about 70%, or alternatively at least about 85%, or even at least about 95% polynucleotide sequence identity to the polynucleotide sequence encoding TRICH. A particular aspect of the invention encompasses a variant of a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:33-64 which has at least about 70%, or alternatively at least about 85%, or even at least about 95% polynucleotide sequence identity to a nucleic acid sequence selected from the group consisting of SEQ ID NO:33-64. Any one of the polynucleotide variants described above can encode an amino acid sequence which contains at least one functional or structural characteristic of TRICH.

20 In addition, or in the alternative, a polynucleotide variant of the invention is a splice variant of a polynucleotide sequence encoding TRICH. A splice variant may have portions which have significant sequence identity to the polynucleotide sequence encoding TRICH, but will generally have a greater or lesser number of polynucleotides due to additions or deletions of blocks of sequence arising from alternate splicing of exons during mRNA processing. A splice variant may have less than about 70%, or alternatively less than about 60%, or alternatively less than about 50% 25 polynucleotide sequence identity to the polynucleotide sequence encoding TRICH over its entire length; however, portions of the splice variant will have at least about 70%, or alternatively at least about 85%, or alternatively at least about 95%, or alternatively 100% polynucleotide sequence identity to portions of the polynucleotide sequence encoding TRICH. Any one of the splice variants described above can encode an amino acid sequence which contains at least one functional or 30 structural characteristic of TRICH.

It will be appreciated by those skilled in the art that as a result of the degeneracy of the genetic code, a multitude of polynucleotide sequences encoding TRICH, some bearing minimal similarity to the polynucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention contemplates each and every possible variation of polynucleotide sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the polynucleotide sequence of naturally occurring TRICH, and all such variations are to be considered as being specifically disclosed.

Although nucleotide sequences which encode TRICH and its variants are generally capable of hybridizing to the nucleotide sequence of the naturally occurring TRICH under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding TRICH or its derivatives possessing a substantially different codon usage, e.g., inclusion of non-naturally occurring codons. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host. Other reasons for substantially altering the nucleotide sequence encoding TRICH and its derivatives without altering the encoded amino acid sequences include the production of RNA transcripts having more desirable properties, such as a greater half-life, than transcripts produced from the naturally occurring sequence.

The invention also encompasses production of DNA sequences which encode TRICH and TRICH derivatives, or fragments thereof, entirely by synthetic chemistry. After production, the synthetic sequence may be inserted into any of the many available expression vectors and cell systems using reagents well known in the art. Moreover, synthetic chemistry may be used to introduce mutations into a sequence encoding TRICH or any fragment thereof.

Also encompassed by the invention are polynucleotide sequences that are capable of hybridizing to the claimed polynucleotide sequences, and, in particular, to those shown in SEQ ID NO:33-64 and fragments thereof under various conditions of stringency. (See, e.g., Wahl, G.M. and S.L. Berger (1987) Methods Enzymol. 152:399-407; Kimmel, A.R. (1987) Methods Enzymol. 152:507-511.) Hybridization conditions, including annealing and wash conditions, are described in "Definitions."

Methods for DNA sequencing are well known in the art and may be used to practice any of the embodiments of the invention. The methods may employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENASE (US Biochemical, Cleveland OH), Taq polymerase (Applied Biosystems), thermostable T7 polymerase (Amersham Pharmacia Biotech, Piscataway NJ), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE amplification system (Life Technologies, Gaithersburg MD). Preferably, sequence

preparation is automated with machines such as the MICROLAB 2200 liquid transfer system (Hamilton, Reno NV), PTC200 thermal cycler (MJ Research, Watertown MA) and ABI CATALYST 800 thermal cycler (Applied Biosystems). Sequencing is then carried out using either the ABI 373 or 377 DNA sequencing system (Applied Biosystems), the MEGABACE 1000 DNA sequencing system (Molecular Dynamics, Sunnyvale CA), or other systems known in the art. The resulting sequences are analyzed using a variety of algorithms which are well known in the art. (See, e.g., Ausubel, F.M. (1997) Short Protocols in Molecular Biology, John Wiley & Sons, New York NY, unit 7.7; Meyers, R.A. (1995) Molecular Biology and Biotechnology, Wiley VCH, New York NY, pp. 856-853.)

- 10 The nucleic acid sequences encoding TRICH may be extended utilizing a partial nucleotide sequence and employing various PCR-based methods known in the art to detect upstream sequences, such as promoters and regulatory elements. For example, one method which may be employed, restriction-site PCR, uses universal and nested primers to amplify unknown sequence from genomic DNA within a cloning vector. (See, e.g., Sarkar, G. (1993) PCR Methods Applic. 2:318-322.) Another method, inverse PCR, uses primers that extend in divergent directions to amplify unknown sequence from a circularized template. The template is derived from restriction fragments comprising a known genomic locus and surrounding sequences. (See, e.g., Triglia, T. et al. (1988) Nucleic Acids Res. 16:8186.) A third method, capture PCR, involves PCR amplification of DNA fragments adjacent to known sequences in human and yeast artificial chromosome DNA.
- 15 (See, e.g., Lagerstrom, M. et al. (1991) PCR Methods Applic. 1:111-119.) In this method, multiple restriction enzyme digestions and ligations may be used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR. Other methods which may be used to retrieve unknown sequences are known in the art. (See, e.g., Parker, J.D. et al. (1991) Nucleic Acids Res. 19:3055-3060). Additionally, one may use PCR, nested primers, and
- 20 PROMOTERFINDER libraries (Clontech, Palo Alto CA) to walk genomic DNA. This procedure avoids the need to screen libraries and is useful in finding intron/exon junctions. For all PCR-based methods, primers may be designed using commercially available software, such as OLIGO 4.06 primer analysis software (National Biosciences, Plymouth MN) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal
- 25 to the template at temperatures of about 68°C to 72°C.

- When screening for full length cDNAs, it is preferable to use libraries that have been size-selected to include larger cDNAs. In addition, random-primed libraries, which often include sequences containing the 5' regions of genes, are preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries may be useful for extension of
- 30 sequence into 5' non-transcribed regulatory regions.

Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products. In particular, capillary sequencing may employ flowable polymers for electrophoretic separation, four different nucleotide-specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths. Output/light intensity may be converted to electrical signal using appropriate software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, Applied Biosystems), and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled. Capillary electrophoresis is especially preferable for sequencing small DNA fragments which may be present in limited amounts in a particular sample.

10 In another embodiment of the invention, polynucleotide sequences or fragments thereof which encode TRICH may be cloned in recombinant DNA molecules that direct expression of TRICH, or fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced and used to express TRICH.

15 The nucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter TRICH-encoding sequences for a variety of purposes including, but not limited to, modification of the cloning, processing, and/or expression of the gene product. DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences. For example, 20 oligonucleotide-mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth.

The nucleotides of the present invention may be subjected to DNA shuffling techniques such as MOLECULARBREEDING (Maxygen Inc., Santa Clara CA; described in U.S. Patent No. 25 5,837,458; Chang, C.-C. et al. (1999) Nat. Biotechnol. 17:793-797; Christians, F.C. et al. (1999) Nat. Biotechnol. 17:259-264; and Crameri, A. et al. (1996) Nat. Biotechnol. 14:315-319) to alter or improve the biological properties of TRICH, such as its biological or enzymatic activity or its ability to bind to other molecules or compounds. DNA shuffling is a process by which a library of gene variants is produced using PCR-mediated recombination of gene fragments. The library is 30 then subjected to selection or screening procedures that identify those gene variants with the desired properties. These preferred variants may then be pooled and further subjected to recursive rounds of DNA shuffling and selection/screening. Thus, genetic diversity is created through "artificial" breeding and rapid molecular evolution. For example, fragments of a single gene containing random point mutations may be recombined, screened, and then reshuffled until the desired 35 properties are optimized. Alternatively, fragments of a given gene may be recombined with

fragments of homologous genes in the same gene family, either from the same or different species, thereby maximizing the genetic diversity of multiple naturally occurring genes in a directed and controllable manner.

In another embodiment, sequences encoding TRICH may be synthesized, in whole or in part, using chemical methods well known in the art. (See, e.g., Caruthers, M.H. et al. (1980) Nucleic Acids Symp. Ser. 7:215-223; and Horn, T. et al. (1980) Nucleic Acids Symp. Ser. 7:225-232.) Alternatively, TRICH itself or a fragment thereof may be synthesized using chemical methods. For example, peptide synthesis can be performed using various solution-phase or solid-phase techniques. (See, e.g., Creighton, T. (1984) Proteins, Structures and Molecular Properties, WH Freeman, New York NY, pp. 55-60; and Roberge, J.Y. et al. (1995) Science 269:202-204.) Automated synthesis may be achieved using the ABI 431A peptide synthesizer (Applied Biosystems). Additionally, the amino acid sequence of TRICH, or any part thereof, may be altered during direct synthesis and/or combined with sequences from other proteins, or any part thereof, to produce a variant polypeptide or a polypeptide having a sequence of a naturally occurring polypeptide.

The peptide may be substantially purified by preparative high performance liquid chromatography. (See, e.g., Chiez, R.M. and F.Z. Regnier (1990) Methods Enzymol. 182:392-421.) The composition of the synthetic peptides may be confirmed by amino acid analysis or by sequencing. (See, e.g., Creighton, supra, pp. 28-53.)

In order to express a biologically active TRICH, the nucleotide sequences encoding TRICH or derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted coding sequence in a suitable host. These elements include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5' and 3' untranslated regions in the vector and in polynucleotide sequences encoding TRICH. Such elements may vary in their strength and specificity. Specific initiation signals may also be used to achieve more efficient translation of sequences encoding TRICH. Such signals include the ATG initiation codon and adjacent sequences, e.g. the Kozak sequence. In cases where sequences encoding TRICH and its initiation codon and upstream regulatory sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals including an in-frame ATG initiation codon should be provided by the vector. Exogenous translational elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers appropriate for the particular host cell system used. (See, e.g., Scharf, D. et al. (1994) Results Probl. Cell Differ.

20:125-162.)

Methods which are well known to those skilled in the art may be used to construct expression vectors containing sequences encoding TRICH and appropriate transcriptional and translational control elements. These methods include in vitro recombinant DNA techniques, 5 synthetic techniques, and in vivo genetic recombination. (See, e.g., Sambrook, J. et al. (1989) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Plainview NY, ch. 4, 8, and 16-17; Ausubel, F.M. et al. (1995) Current Protocols in Molecular Biology, John Wiley & Sons, New York NY, ch. 9, 13, and 16.)

A variety of expression vector/host systems may be utilized to contain and express 10 sequences encoding TRICH. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); plant cell systems transformed with viral expression vectors (e.g., cauliflower mosaic virus, CaMV, or tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti 15 or pBR322 plasmids); or animal cell systems. (See, e.g., Sambrook, supra; Ausubel, supra; Van Heeke, G. and S.M. Schuster (1989) *J. Biol. Chem.* 264:5503-5509; Engelhard, E.K. et al. (1994) *Proc. Natl. Acad. Sci. USA* 91:3224-3227; Sandig, V. et al. (1996) *Hum. Gene Ther.* 7:1937-1945; Takamatsu, N. (1987) *EMBO J.* 6:307-311; The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York NY, pp. 191-196; Logan, J. and T. Shenk (1984) *Proc. Natl. Acad. Sci. USA* 81:3655-3659; and Harrington, J.J. et al. (1997) *Nat. Genet.* 15:345-355.) Expression 20 vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses, or from various bacterial plasmids, may be used for delivery of nucleotide sequences to the targeted organ, tissue, or cell population. (See, e.g., Di Nicola, M. et al. (1998) *Cancer Gen. Ther.* 5(6):350-356; Yu, M. et al. (1993) *Proc. Natl. Acad. Sci. USA* 90(13):6340-6344; Buller, R.M. et al. (1985) *Nature* 25 317(6040):813-815; McGregor, D.P. et al. (1994) *Mol. Immunol.* 31(3):219-226; and Verma, I.M. and N. Somia (1997) *Nature* 389:239-242.) The invention is not limited by the host cell employed.

In bacterial systems, a number of cloning and expression vectors may be selected depending upon the use intended for polynucleotide sequences encoding TRICH. For example, routine cloning, subcloning, and propagation of polynucleotide sequences encoding TRICH can be achieved 30 using a multifunctional E. coli vector such as PBLUESCRIPT (Stratagene, La Jolla CA) or PSPORT1 plasmid (Life Technologies). Ligation of sequences encoding TRICH into the vector's multiple cloning site disrupts the *lacZ* gene, allowing a colorimetric screening procedure for identification of transformed bacteria containing recombinant molecules. In addition, these vectors may be useful for in vitro transcription, dideoxy sequencing, single strand rescue with helper phage, 35 and creation of nested deletions in the cloned sequence. (See, e.g., Van Heeke, G. and S.M.

Schuster (1989) J. Biol. Chem. 264:5503-5509.) When large quantities of TRICH are needed, e.g. for the production of antibodies, vectors which direct high level expression of TRICH may be used. For example, vectors containing the strong, inducible SP6 or T7 bacteriophage promoter may be used.

5 Yeast expression systems may be used for production of TRICH. A number of vectors containing constitutive or inducible promoters, such as alpha factor, alcohol oxidase, and PGH promoters, may be used in the yeast Saccharomyces cerevisiae or Pichia pastoris. In addition, such vectors direct either the secretion or intracellular retention of expressed proteins and enable integration of foreign sequences into the host genome for stable propagation. (See, e.g., Ausubel, 10 1995, supra; Bitter, G.A. et al. (1987) Methods Enzymol. 153:516-544; and Scorer, C.A. et al. (1994) Bio/Technology 12:181-184.)

Plant systems may also be used for expression of TRICH. Transcription of sequences encoding TRICH may be driven by viral promoters, e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO 15 J. 6:307-311). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used. (See, e.g., Coruzzi, G. et al. (1984) EMBO J. 3:1671-1680; Broglie, R. et al. (1984) Science 224:838-843; and Winter, J. et al. (1991) Results Probl. Cell Differ. 17:85-105.) These constructs can be introduced into plant cells by direct DNA transformation or [→]pathogen-mediated transfection. (See, e.g., The McGraw Hill Yearbook of Science and Technology 20 (1992) McGraw Hill, New York NY, pp. 191-196.)

In mammalian cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, sequences encoding TRICH may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential E1 or E3 region of the viral genome may be used to 25 obtain infective virus which expresses TRICH in host cells. (See, e.g., Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. USA 81:3655-3659.) In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells. SV40 or EBV-based vectors may also be used for high-level protein expression.

Human artificial chromosomes (HACs) may also be employed to deliver larger fragments of 30 DNA than can be contained in and expressed from a plasmid. HACs of about 6 kb to 10 Mb are constructed and delivered via conventional delivery methods (liposomes, polycationic amino polymers, or vesicles) for therapeutic purposes. (See, e.g., Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355.)

For long term production of recombinant proteins in mammalian systems, stable expression 35 of TRICH in cell lines is preferred. For example, sequences encoding TRICH can be transformed

into cell lines using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for about 1 to 2 days in enriched media before being switched to selective media. The purpose of the selectable marker is to 5 confer resistance to a selective agent, and its presence allows growth and recovery of cells which successfully express the introduced sequences. Resistant clones of stably transformed cells may be propagated using tissue culture techniques appropriate to the cell type.

Any number of selection systems may be used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase and adenine 10 phosphoribosyltransferase genes, for use in *tk* and *apr* cells, respectively. (See, e.g., Wigler, M. et al. (1977) Cell 11:223-232; Lowy, I. et al. (1980) Cell 22:817-823.) Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection. For example, *dhfr* confers resistance to methotrexate; *neo* confers resistance to the aminoglycosides neomycin and G-418; and *als* and *pat* confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively. (See, e.g., 15 Wigler, M. et al. (1980) Proc. Natl. Acad. Sci. USA 77:3567-3570; Colbere-Garapin, F. et al. (1981) J. Mol. Biol. 150:1-14.) Additional selectable genes have been described, e.g., *trpB* and *hisD*, which alter cellular requirements for metabolites. (See, e.g., Hartman, S.C. and R.C. Mulligan (1988) Proc. Natl. Acad. Sci. USA 85:8047-8051.) Visible markers, e.g., anthocyanins, green 20 fluorescent proteins (GFP; Clontech), β glucuronidase and its substrate β -glucuronide, or luciferase and its substrate luciferin may be used. These markers can be used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system. (See, e.g., Rhodes, C.A. (1995) Methods Mol. Biol. 55:121-131.)

Although the presence/absence of marker gene expression suggests that the gene of interest is also present, the presence and expression of the gene may need to be confirmed. For example, if 25 the sequence encoding TRICH is inserted within a marker gene sequence, transformed cells containing sequences encoding TRICH can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a sequence encoding TRICH under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.

30 In general, host cells that contain the nucleic acid sequence encoding TRICH and that express TRICH may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations, PCR amplification, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein 35 sequences.

Immunological methods for detecting and measuring the expression of TRICH using either specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing 5 monoclonal antibodies reactive to two non-interfering epitopes on TRICH is preferred, but a competitive binding assay may be employed. These and other assays are well known in the art. (See, e.g., Hampton, R. et al. (1990) Serological Methods, a Laboratory Manual, APS Press, St. Paul MN, Sect. IV; Coligan, J.E. et al. (1997) Current Protocols in Immunology, Greene Pub. Associates and Wiley-Interscience, New York NY; and Pound, J.D. (1998) Immunochemical Protocols, 10 Humana Press, Totowa NJ.)

A wide variety of labels and conjugation techniques are known by those skilled in the art and may be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding TRICH include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled 15 nucleotide. Alternatively, the sequences encoding TRICH, or any fragments thereof, may be cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes *in vitro* by addition of an appropriate RNA polymerase such as T7, T3, or SP6 and labeled nucleotides. These procedures may be conducted using a variety of commercially available kits, such as those provided by 20 Amersham Pharmacia Biotech, Promega (Madison WI), and US Biochemical. Suitable reporter molecules or labels which may be used for ease of detection include radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.

Host cells transformed with nucleotide sequences encoding TRICH may be cultured under 25 conditions suitable for the expression and recovery of the protein from cell culture. The protein produced by a transformed cell may be secreted or retained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides which encode TRICH may be designed to contain signal sequences which direct secretion of TRICH through a prokaryotic or eukaryotic cell membrane.

In addition, a host cell strain may be chosen for its ability to modulate expression of the 30 inserted sequences or to process the expressed protein in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a "pro" or "pro" form of the protein may also be used to specify protein targeting, folding, and/or activity. 35 Different host cells which have specific cellular machinery and characteristic mechanisms for

post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and WI38) are available from the American Type Culture Collection (ATCC, Manassas VA) and may be chosen to ensure the correct modification and processing of the foreign protein.

- In another embodiment of the invention, natural, modified, or recombinant nucleic acid sequences encoding TRICH may be ligated to a heterologous sequence resulting in translation of a fusion protein in any of the aforementioned host systems. For example, a chimeric TRICH protein containing a heterologous moiety that can be recognized by a commercially available antibody may facilitate the screening of peptide libraries for inhibitors of TRICH activity. Heterologous protein and peptide moieties may also facilitate purification of fusion proteins using commercially available affinity matrices. Such moieties include, but are not limited to, glutathione S-transferase (GST), maltose binding protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6-His, FLAG, *c-myc*, and hemagglutinin (HA). GST, MBP, Trx, CBP, and 6-His enable purification of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, calmodulin, and metal-chelate resins, respectively. FLAG, *c-myc*, and hemagglutinin (HA) enable immunoaffinity purification of fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags. A fusion protein may also be engineered to contain a proteolytic cleavage site located between the TRICH encoding sequence and the heterologous protein sequence, so that TRICH may be cleaved away from the heterologous moiety following purification. Methods for fusion protein expression and purification are discussed in Ausubel (1995, *supra*, ch. 10). A variety of commercially available kits may also be used to facilitate expression and purification of fusion proteins.

In a further embodiment of the invention, synthesis of radiolabeled TRICH may be achieved *in vitro* using the TNT rabbit reticulocyte lysate or wheat germ extract system (Promega). These systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, for example, ³⁵S-methionine.

- TRICH of the present invention or fragments thereof may be used to screen for compounds that specifically bind to TRICH. At least one and up to a plurality of test compounds may be screened for specific binding to TRICH. Examples of test compounds include antibodies, oligonucleotides, proteins (e.g., receptors), or small molecules.

In one embodiment, the compound thus identified is closely related to the natural ligand of TRICH, e.g., a ligand or fragment thereof, a natural substrate, a structural or functional mimetic, or a natural binding partner. (See, e.g., Coligan, J.E. et al. (1991) *Current Protocols in Immunology* 1(2): Chapter 5.) Similarly, the compound can be closely related to the natural receptor to which TRICH binds, or to at least a fragment of the receptor, e.g., the ligand binding site. In either case,

the compound can be rationally designed using known techniques. In one embodiment, screening for these compounds involves producing appropriate cells which express TRICH, either as a secreted protein or on the cell membrane. Preferred cells include cells from mammals, yeast, Drosophila, or E. coli. Cells expressing TRICH or cell membrane fractions which contain TRICH 5 are then contacted with a test compound and binding, stimulation, or inhibition of activity of either TRICH or the compound is analyzed.

An assay may simply test binding of a test compound to the polypeptide, wherein binding is detected by a fluorophore, radioisotope, enzyme conjugate, or other detectable label. For example, the assay may comprise the steps of combining at least one test compound with TRICH, either in 10 solution or affixed to a solid support, and detecting the binding of TRICH to the compound.

Alternatively, the assay may detect or measure binding of a test compound in the presence of a labeled competitor. Additionally, the assay may be carried out using cell-free preparations, chemical libraries, or natural product mixtures, and the test compound(s) may be free in solution or affixed to a solid support.

15 TRICH of the present invention or fragments thereof may be used to screen for compounds that modulate the activity of TRICH. Such compounds may include agonists, antagonists, or partial or inverse agonists. In one embodiment, an assay is performed under conditions permissive for TRICH activity, wherein TRICH is combined with at least one test compound, and the activity of TRICH in the presence of a test compound is compared with the activity of TRICH in the absence 20 of the test compound. A change in the activity of TRICH in the presence of the test compound is indicative of a compound that modulates the activity of TRICH. Alternatively, a test compound is combined with an in vitro or cell-free system comprising TRICH under conditions suitable for TRICH activity, and the assay is performed. In either of these assays, a test compound which modulates the activity of TRICH may do so indirectly and need not come in direct contact with the 25 test compound. At least one and up to a plurality of test compounds may be screened.

In another embodiment, polynucleotides encoding TRICH or their mammalian homologs may be "knocked out" in an animal model system using homologous recombination in embryonic stem (ES) cells. Such techniques are well known in the art and are useful for the generation of animal models of human disease. (See, e.g., U.S. Patent No. 5,175,383 and U.S. Patent No. 30 5,767,337.) For example, mouse ES cells, such as the mouse 129/SvJ cell line, are derived from the early mouse embryo and grown in culture. The ES cells are transformed with a vector containing the gene of interest disrupted by a marker gene, e.g., the neomycin phosphotransferase gene (neo; Capecchi, M.R. (1989) Science 244:1288-1292). The vector integrates into the corresponding region of the host genome by homologous recombination. Alternatively, homologous 35 recombination takes place using the Cre-loxP system to knockout a gene of interest in a tissue- or

developmental stage-specific manner (Marth, J.D. (1996) Clin. Invest. 97:1999-2002; Wagner, K.U. et al. (1997) Nucleic Acids Res. 25:4323-4330). Transformed ES cells are identified and microinjected into mouse cell blastocysts such as those from the C57BL/6 mouse strain. The blastocysts are surgically transferred to pseudopregnant dams, and the resulting chimeric progeny 5 are genotyped and bred to produce heterozygous or homozygous strains. Transgenic animals thus generated may be tested with potential therapeutic or toxic agents.

Polynucleotides encoding TRICH may also be manipulated in vitro in ES cells derived from human blastocysts. Human ES cells have the potential to differentiate into at least eight separate cell lineages including endoderm, mesoderm, and ectodermal cell types. These cell lineages 10 differentiate into, for example, neural cells, hematopoietic lineages, and cardiomyocytes (Thomson, J.A. et al. (1998) Science 282:1145-1147).

Polynucleotides encoding TRICH can also be used to create "knockin" humanized animals (pigs) or transgenic animals (mice or rats) to model human disease. With knockin technology, a region of a polynucleotide encoding TRICH is injected into animal ES cells, and the injected 15 sequence integrates into the animal cell genome. Transformed cells are injected into blastulae, and the blastulae are implanted as described above. Transgenic progeny or inbred lines are studied and treated with potential pharmaceutical agents to obtain information on treatment of a human disease. Alternatively, a mammal inbred to overexpress TRICH, e.g., by secreting TRICH in its milk, may also serve as a convenient source of that protein (Janne, J. et al. (1998) Biotechnol. Annu. Rev. 20 4:55-74).

THERAPEUTICS

Chemical and structural similarity, e.g., in the context of sequences and motifs, exists between regions of TRICH and transporters and ion channels. In addition, examples of tissues expressing TRICH can be found in Table 6. Therefore, TRICH appears to play a role in transport, 25 neurological, muscle, immunological and cell proliferative disorders. In the treatment of disorders associated with increased TRICH expression or activity, it is desirable to decrease the expression or activity of TRICH. In the treatment of disorders associated with decreased TRICH expression or activity, it is desirable to increase the expression or activity of TRICH.

Therefore, in one embodiment, TRICH or a fragment or derivative thereof may be 30 administered to a subject to treat or prevent a disorder associated with decreased expression or activity of TRICH. Examples of such disorders include, but are not limited to, a transport disorder such as akinesia, amyotrophic lateral sclerosis, ataxia telangiectasia, cystic fibrosis, Becker's muscular dystrophy, Bell's palsy, Charcot-Marie Tooth disease, diabetes mellitus, diabetes insipidus, diabetic neuropathy, Duchenne muscular dystrophy, hyperkalemic periodic paralysis, 35 normokalemic periodic paralysis, Parkinson's disease, malignant hyperthermia, multidrug

resistance, myasthenia gravis, myotonic dystrophy, catatonia, tardive dyskinesia, dystonias, peripheral neuropathy, cerebral neoplasms, prostate cancer, cardiac disorders associated with transport, e.g., angina, bradycardia, tachycardia, hypertension, Long QT syndrome, myocarditis, cardiomyopathy, nemaline myopathy, centronuclear myopathy, lipid myopathy,

5 mitochondrial myopathy, thyrotoxic myopathy, ethanol myopathy, dermatomyositis, inclusion body myositis, infectious myositis, polymyositis, neurological disorders associated with transport, e.g., Alzheimer's disease, amnesia, bipolar disorder, dementia, depression, epilepsy, Tourette's disorder, paranoid psychoses, and schizophrenia, and other disorders associated with transport, e.g., neurofibromatosis, postherpetic neuralgia, trigeminal neuropathy, sarcoidosis, sickle cell anemia,

10 Wilson's disease, cataracts, infertility, pulmonary artery stenosis, sensorineural autosomal deafness, hyperglycemia, hypoglycemia, Grave's disease, goiter, Cushing's disease, Addison's disease, glucose-galactose malabsorption syndrome, glycogen storage disease, hypercholesterolemia, adrenoleukodystrophy, Zellweger syndrome, Menkes disease, occipital horn syndrome, von Gierke disease, pseudohypoaldosteronism type 1, Liddle's syndrome, cystinuria, iminoglycinuria, Hartup

15 disease, Fanconi disease, and Bartter syndrome; a neurological disorder such as epilepsy, ischemic cerebrovascular disease, stroke, cerebral neoplasms, Alzheimer's disease, Pick's disease, Huntington's disease, dementia, Parkinson's disease and other extrapyramidal disorders, amyotrophic lateral sclerosis and other motor neuron disorders, progressive neural muscular atrophy, retinitis pigmentosa, hereditary ataxias, multiple sclerosis and other demyelinating

20 diseases, bacterial and viral meningitis, brain abscess, subdural empyema, epidural abscess, suppurative intracranial thrombophlebitis, myelitis and radiculitis, viral central nervous system disease, prion diseases including kuru, Creutzfeldt-Jakob disease, and Gerstmann-Straussler-Scheinker syndrome, fatal familial insomnia, nutritional and metabolic diseases of the nervous system, neurofibromatosis, tuberous sclerosis, cerebelloretinal hemangioblastomatosis,

25 encephalotrigeminal syndrome, mental retardation and other developmental disorders of the central nervous system including Down syndrome, cerebral palsy, neuroskeletal disorders, autonomic nervous system disorders, cranial nerve disorders, spinal cord diseases, muscular dystrophy and other neuromuscular disorders, peripheral nervous system disorders, dermatomyositis and polymyositis, inherited, metabolic, endocrine, and toxic myopathies, myasthenia gravis, periodic

30 paralysis, mental disorders including mood, anxiety, and schizophrenic disorders, seasonal affective disorder (SAD), akathesia, amnesia, catatonia, diabetic neuropathy, hemiplegic migraine, tardive dyskinesia, dystonias, paranoid psychoses, postherpetic neuralgia, Tourette's disorder, progressive supranuclear palsy, corticobasal degeneration, and familial frontotemporal dementia; a muscle disorder such as cardiomyopathy, myocarditis, Duchenne's muscular dystrophy, Becker's muscular

35 dystrophy, myotonic dystrophy, central core disease, nemaline myopathy, centronuclear myopathy,

lipid myopathy, mitochondrial myopathy, infectious myositis, polymyositis, dermatomyositis, inclusion body myositis, thyrotoxic myopathy, ethanol myopathy, angina, anaphylactic shock, arrhythmias, asthma, cardiovascular shock, Cushing's syndrome, hypertension, hypoglycemia, myocardial infarction, migraine, pheochromocytoma, and myopathies including encephalopathy,

5 epilepsy, Kearns-Sayre syndrome, lactic acidosis, myoclonic disorder, ophthalmoplegia, acid maltase deficiency (AMD, also known as Pompe's disease), generalized myotonia, and myotonia congenita; an immunological disorder such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune

10 thyroiditis, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple

15 sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and

20 helminthic infections, and trauma; and a cell proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone,

25 bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus.

In another embodiment, a vector capable of expressing TRICH or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of TRICH including, but not limited to, those described above.

In a further embodiment, a composition comprising a substantially purified TRICH in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of TRICH including, but not limited to, those provided above.

35 In still another embodiment, an agonist which modulates the activity of TRICH may be

administered to a subject to treat or prevent a disorder associated with decreased expression or activity of TRICH including, but not limited to, those listed above.

In a further embodiment, an antagonist of TRICH may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of TRICH. Examples of such disorders include, but are not limited to, those transport, neurological, muscle, immunological and cell proliferative disorders described above. In one aspect, an antibody which specifically binds TRICH may be used directly as an antagonist or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissues which express TRICH.

In an additional embodiment, a vector expressing the complement of the polynucleotide encoding TRICH may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of TRICH including, but not limited to, those described above.

In other embodiments, any of the proteins, antagonists, antibodies, agonists, complementary sequences, or vectors of the invention may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.

An antagonist of TRICH may be produced using methods which are generally known in the art. In particular, purified TRICH may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind TRICH. Antibodies to TRICH may also be generated using methods that are well known in the art. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression library. Neutralizing antibodies (i.e., those which inhibit dimer formation) are generally preferred for therapeutic use.

For the production of antibodies, various hosts including goats, rabbits, rats, mice, humans, and others may be immunized by injection with TRICH or with any fragment or oligopeptide thereof which has immunogenic properties. Depending on the host species, various adjuvants may be used to increase immunological response. Such adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH, and dinitrophenol. Among adjuvants used in humans, BCG (bacilli Calmette-Guerin) and Corynebacterium parvum are especially preferable.

It is preferred that the oligopeptides, peptides, or fragments used to induce antibodies to TRICH have an amino acid sequence consisting of at least about 5 amino acids, and generally will

consist of at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural protein. Short stretches of TRICH amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be produced.

- 5 Monoclonal antibodies to TRICH may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique. (See, e.g., Kohler, G. et al. (1975) *Nature* 256:495-497; Kozbor, D. et al. (1985) *J. Immunol. Methods* 81:31-42; Cote, R.J. et al. (1983) *Proc. Natl. Acad. Sci. USA* 80:2026-2030; and Cole, S.P. et al. (1984) *Mol. Cell Biol.* 62:109-120.)

- 10 In addition, techniques developed for the production of "chimeric antibodies," such as the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity, can be used. (See, e.g., Morrison, S.L. et al. (1984) *Proc. Natl. Acad. Sci. USA* 81:6851-6855; Neuberger, M.S. et al. (1984) *Nature* 312:604-608; and Takeda, S. et al. (1985) *Nature* 314:452-454.) Alternatively, techniques described for the production of single chain antibodies may be adapted, using methods known in the art, to produce TRICH-specific single chain antibodies. Antibodies with related specificity, but of distinct idiotypic composition, may be generated by chain shuffling from random combinatorial immunoglobulin libraries. (See, e.g., Burton, D.R. (1991) *Proc. Natl. Acad. Sci. USA* 88:10134-20 10137.)

Antibodies may also be produced by inducing *in vivo* production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature. (See, e.g., Orlandi, R. et al. (1989) *Proc. Natl. Acad. Sci. USA* 86:3833-3837; Winter, G. et al. (1991) *Nature* 349:293-299.)

- 25 Antibody fragments which contain specific binding sites for TRICH may also be generated. For example, such fragments include, but are not limited to, F(ab')₂ fragments produced by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab')₂ fragments. Alternatively, Fab expression libraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity. (See, e.g., Huse, W.D. 30 et al. (1989) *Science* 246:1275-1281.)

Various immunoassays may be used for screening to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are well known in the art. Such immunoassays typically involve the measurement of complex formation between TRICH and its 35 specific antibody. A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies

reactive to two non-interfering TRICH epitopes is generally used, but a competitive binding assay may also be employed (Pound, supra).

Various methods such as Scatchard analysis in conjunction with radioimmunoassay techniques may be used to assess the affinity of antibodies for TRICH. Affinity is expressed as an 5 association constant, K_a , which is defined as the molar concentration of TRICH-antibody complex divided by the molar concentrations of free antigen and free antibody under equilibrium conditions. The K_a determined for a preparation of polyclonal antibodies, which are heterogeneous in their affinities for multiple TRICH epitopes, represents the average affinity, or avidity, of the antibodies for TRICH. The K_a determined for a preparation of monoclonal antibodies, which are monospecific 10 for a particular TRICH epitope, represents a true measure of affinity. High-affinity antibody preparations with K_a ranging from about 10^9 to 10^{12} L/mole are preferred for use in immunoassays in which the TRICH-antibody complex must withstand rigorous manipulations. Low-affinity antibody preparations with K_a ranging from about 10^6 to 10^7 L/mole are preferred for use in immunopurification and similar procedures which ultimately require dissociation of TRICH, 15 preferably in active form, from the antibody (Catty, D. (1988) Antibodies, Volume I: A Practical Approach, IRL Press, Washington DC; Liddell, J.E. and A. Cryer (1991) A Practical Guide to Monoclonal Antibodies, John Wiley & Sons, New York NY).

The titer and avidity of polyclonal antibody preparations may be further evaluated to determine the quality and suitability of such preparations for certain downstream applications. For 20 example, a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml, preferably 5-10 mg specific antibody/ml, is generally employed in procedures requiring precipitation of TRICH-antibody complexes. Procedures for evaluating antibody specificity, titer, and avidity, and guidelines for antibody quality and usage in various applications, are generally available. (See, e.g., Catty, supra, and Coligan et al. supra.)

25 In another embodiment of the invention, the polynucleotides encoding TRICH, or any fragment or complement thereof, may be used for therapeutic purposes. In one aspect, modifications of gene expression can be achieved by designing complementary sequences or antisense molecules (DNA, RNA, PNA, or modified oligonucleotides) to the coding or regulatory regions of the gene encoding TRICH. Such technology is well known in the art, and antisense 30 oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding TRICH. (See, e.g., Agrawal, S., ed. (1996) Antisense Therapeutics, Humana Press Inc., Totowa NJ.)

In therapeutic use, any gene delivery system suitable for introduction of the antisense sequences into appropriate target cells can be used. Antisense sequences can be delivered 35 intracellularly in the form of an expression plasmid which, upon transcription, produces a sequence

complementary to at least a portion of the cellular sequence encoding the target protein. (See, e.g., Slater, J.E. et al. (1998) *J. Allergy Clin. Immunol.* 102(3):469-475; and Scanlon, K.J. et al. (1995) 9(13):1288-1296.) Antisense sequences can also be introduced intracellularly through the use of viral vectors, such as retrovirus and adeno-associated virus vectors. (See, e.g., Miller, A.D. (1990)

- 5 *Blood* 76:271; Ausubel, *supra*; Uckert, W. and W. Walther (1994) *Pharmacol. Ther.* 63(3):323-347.) Other gene delivery mechanisms include liposome-derived systems, artificial viral envelopes, and other systems known in the art. (See, e.g., Rossi, J.J. (1995) *Br. Med. Bull.* 51(1):217-225; Boado, R.J. et al. (1998) *J. Pharm. Sci.* 87(11):1308-1315; and Morris, M.C. et al. (1997) *Nucleic Acids Res.* 25(14):2730-2736.)

- 10 In another embodiment of the invention, polynucleotides encoding TRICH may be used for somatic or germline gene therapy. Gene therapy may be performed to (i) correct a genetic deficiency (e.g., in the cases of severe combined immunodeficiency (SCID)-X1 disease characterized by X-linked inheritance (Cavazzana-Calvo, M. et al. (2000) *Science* 288:669-672), severe combined immunodeficiency syndrome associated with an inherited adenosine deaminase
- 15 (ADA) deficiency (Blaese, R.M. et al. (1995) *Science* 270:475-480; Bordignon, C. et al. (1995) *Science* 270:470-475), cystic fibrosis (Zabner, J. et al. (1993) *Cell* 75:207-216; Crystal, R.G. et al. (1995) *Hum. Gene Therapy* 6:643-666; Crystal, R.G. et al. (1995) *Hum. Gene Therapy* 6:667-703), thalassamias, familial hypercholesterolemia, and hemophilia resulting from Factor VIII or Factor IX deficiencies (Crystal, R.G. (1995) *Science* 270:404-410; Verma, I.M. and N. Somia (1997) *Nature* 389:239-242)), (ii) express a conditionally lethal gene product (e.g., in the case of cancers which result from unregulated cell proliferation), or (iii) express a protein which affords protection against intracellular parasites (e.g., against human retroviruses, such as human immunodeficiency virus (HIV) (Baltimore, D. (1988) *Nature* 335:395-396; Poeschla, E. et al. (1996) *Proc. Natl. Acad. Sci. USA* 93:11395-11399), hepatitis B or C virus (HBV, HCV); fungal parasites, such as Candida albicans and Paracoccidioides brasiliensis; and protozoan parasites such as Plasmodium falciparum and Trypanosoma cruzi). In the case where a genetic deficiency in TRICH expression or regulation causes disease, the expression of TRICH from an appropriate population of transduced cells may alleviate the clinical manifestations caused by the genetic deficiency.

- In a further embodiment of the invention, diseases or disorders caused by deficiencies in TRICH are treated by constructing mammalian expression vectors encoding TRICH and introducing these vectors by mechanical means into TRICH-deficient cells. Mechanical transfer technologies for use with cells in vivo or ex vitro include (i) direct DNA microinjection into individual cells, (ii) ballistic gold particle delivery, (iii) liposome-mediated transfection, (iv) receptor-mediated gene transfer, and (v) the use of DNA transposons (Morgan, R.A. and W.F. Anderson (1993) *Annu. Rev. Biochem.* 62:191-217; Ivics, Z. (1997) *Cell* 91:501-510; Boulay, J-L. and H. Récipon (1998) *Curr.*

Opin. Biotechnol. 9:445-450).

Expression vectors that may be effective for the expression of TRICH include, but are not limited to, the PCDNA 3.1, EPITAG, PRCCMV2, PREP, PVAX, PCR2-TOPOTA vectors (Invitrogen, Carlsbad CA), PCMV-SCRIPT, PCMV-TAG, PEGSH/PERV (Stratagene, La Jolla CA), and PTET-OFF, PTET-ON, PTRE2, PTRE2-LUC, PTK-HYG (Clontech, Palo Alto CA).
5 TRICH may be expressed using (i) a constitutively active promoter, (e.g., from cytomegalovirus (CMV), Rous sarcoma virus (RSV), SV40 virus, thymidine kinase (TK), or β -actin genes), (ii) an inducible promoter (e.g., the tetracycline-regulated promoter (Gossen, M. and H. Bujard (1992) Proc. Natl. Acad. Sci. USA 89:5547-5551; Gossen, M. et al. (1995) Science 268:1766-1769; Rossi,
10 F.M.V. and H.M. Blau (1998) Curr. Opin. Biotechnol. 9:451-456), commercially available in the T-REX plasmid (Invitrogen)); the ecdysone-inducible promoter (available in the plasmids PVGRXR and PIND; Invitrogen); the FK506/rapamycin inducible promoter; or the RU486/mifepristone inducible promoter (Rossi, F.M.V. and H.M. Blau, supra), or (iii) a tissue-specific promoter or the native promoter of the endogenous gene encoding TRICH from a normal individual.

15 Commercially available liposome transformation kits (e.g., the PERFECT LIPID TRANSFECTION KIT, available from Invitrogen) allow one with ordinary skill in the art to deliver polynucleotides to target cells in culture and require minimal effort to optimize experimental parameters. In the alternative, transformation is performed using the calcium phosphate method (Graham, F.L. and A.J. Eb (1973) Virology 52:456-467), or by electroporation (Neumann, E. et al.
20 (1982) EMBO J. 1:841-845). The introduction of DNA to primary cells requires modification of these standardized mammalian transfection protocols.

In another embodiment of the invention, diseases or disorders caused by genetic defects with respect to TRICH expression are treated by constructing a retrovirus vector consisting of (i) the polynucleotide encoding TRICH under the control of an independent promoter or the retrovirus long
25 terminal repeat (LTR) promoter, (ii) appropriate RNA packaging signals, and (iii) a Rev-responsive element (RRE) along with additional retrovirus *cis*-acting RNA sequences and coding sequences required for efficient vector propagation. Retrovirus vectors (e.g., PFB and PFBNEO) are commercially available (Stratagene) and are based on published data (Riviere, I. et al. (1995) Proc. Natl. Acad. Sci. USA 92:6733-6737), incorporated by reference herein. The vector is propagated in
30 an appropriate vector producing cell line (VPCL) that expresses an envelope gene with a tropism for receptors on the target cells or a promiscuous envelope protein such as VSVg (Armentano, D. et al. (1987) J. Virol. 61:1647-1650; Bender, M.A. et al. (1987) J. Virol. 61:1639-1646; Adam, M.A. and A.D. Miller (1988) J. Virol. 62:3802-3806; Dull, T. et al. (1998) J. Virol. 72:8463-8471; Zufferey,
· R. et al. (1998) J. Virol. 72:9873-9880). U.S. Patent No. 5,910,434 to Rigg ("Method for obtaining
35 retrovirus packaging cell lines producing high transducing efficiency retroviral supernatant")

discloses a method for obtaining retrovirus packaging cell lines and is hereby incorporated by reference. Propagation of retrovirus vectors, transduction of a population of cells (e.g., CD4⁺ T-cells), and the return of transduced cells to a patient are procedures well known to persons skilled in the art of gene therapy and have been well documented (Ranga, U. et al. (1997) J. Virol. 71:7020-5 7029; Bauer, G. et al. (1997) Blood 89:2259-2267; Bonyhadi, M.L. (1997) J. Virol. 71:4707-4716; Ranga, U. et al. (1998) Proc. Natl. Acad. Sci. USA 95:1201-1206; Su, L. (1997) Blood 89:2283-2290).

In the alternative, an adenovirus-based gene therapy delivery system is used to deliver polynucleotides encoding TRICH to cells which have one or more genetic abnormalities with respect to the expression of TRICH. The construction and packaging of adenovirus-based vectors are well known to those with ordinary skill in the art. Replication defective adenovirus vectors have proven to be versatile for importing genes encoding immunoregulatory proteins into intact islets in the pancreas (Csete, M.E. et al. (1995) Transplantation 27:263-268). Potentially useful adenoviral vectors are described in U.S. Patent No. 5,707,618 to Armentano ("Adenovirus vectors for gene therapy"), hereby incorporated by reference. For adenoviral vectors, see also Antinozzi, P.A. et al. (1999) Annu. Rev. Nutr. 19:511-544 and Verma, I.M. and N. Somia (1997) Nature 18:389:239-242, both incorporated by reference herein.

In another alternative, a herpes-based, gene therapy delivery system is used to deliver polynucleotides encoding TRICH to target cells which have one or more genetic abnormalities with respect to the expression of TRICH. The use of herpes simplex virus (HSV)-based vectors may be especially valuable for introducing TRICH to cells of the central nervous system, for which HSV has a tropism. The construction and packaging of herpes-based vectors are well known to those with ordinary skill in the art. A replication-competent herpes simplex virus (HSV) type 1-based vector has been used to deliver a reporter gene to the eyes of primates (Liu, X. et al. (1999) Exp. Eye Res. 169:385-395). The construction of a HSV-1 virus vector has also been disclosed in detail in U.S. Patent No. 5,804,413 to DeLuca ("Herpes simplex virus strains for gene transfer"), which is hereby incorporated by reference. U.S. Patent No. 5,804,413 teaches the use of recombinant HSV d92 which consists of a genome containing at least one exogenous gene to be transferred to a cell under the control of the appropriate promoter for purposes including human gene therapy. Also taught by this patent are the construction and use of recombinant HSV strains deleted for ICP4, ICP27 and ICP22. For HSV vectors, see also Goins, W.F. et al. (1999) J. Virol. 73:519-532 and Xu, H. et al. (1994) Dev. Biol. 163:152-161, hereby incorporated by reference. The manipulation of cloned herpesvirus sequences, the generation of recombinant virus following the transfection of multiple plasmids containing different segments of the large herpesvirus genomes, the growth and propagation of herpesvirus, and the infection of cells with herpesvirus are techniques well known to

those of ordinary skill in the art.

In another alternative, an alphavirus (positive, single-stranded RNA virus) vector is used to deliver polynucleotides encoding TRICH to target cells. The biology of the prototypic alphavirus, Semliki Forest Virus (SFV), has been studied extensively and gene transfer vectors have been based 5 on the SFV genome (Garoff, H. and K.-J. Li (1998) Curr. Opin. Biotechnol. 9:464-469). During alphavirus RNA replication, a subgenomic RNA is generated that normally encodes the viral capsid proteins. This subgenomic RNA replicates to higher levels than the full length genomic RNA, resulting in the overproduction of capsid proteins relative to the viral proteins with enzymatic activity (e.g., protease and polymerase). Similarly, inserting the coding sequence for TRICH into 10 the alphavirus genome in place of the capsid-coding region results in the production of a large number of TRICH-coding RNAs and the synthesis of high levels of TRICH in vector transduced cells. While alphavirus infection is typically associated with cell lysis within a few days, the ability to establish a persistent infection in hamster normal kidney cells (BHK-21) with a variant of Sindbis virus (SIN) indicates that the lytic replication of alphaviruses can be altered to suit the needs of the 15 gene therapy application (Dryga, S.A. et al. (1997) Virology 228:74-83). The wide host range of alphaviruses will allow the introduction of TRICH into a variety of cell types. The specific transduction of a subset of cells in a population may require the sorting of cells prior to transduction. The methods of manipulating infectious cDNA clones of alphaviruses, performing 20 alphavirus cDNA and RNA transfections, and performing alphavirus infections, are well known to those with ordinary skill in the art.

Oligonucleotides derived from the transcription initiation site, e.g., between about positions -10 and +10 from the start site, may also be employed to inhibit gene expression. Similarly, inhibition can be achieved using triple helix base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the 25 binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature. (See, e.g., Gee, J.E. et al. (1994) in Huber, B.E. and B.I. Carr, Molecular and Immunologic Approaches, Futura Publishing, Mt. Kisco NY, pp. 163-177.) A complementary sequence or antisense molecule may also be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.

30 Ribozymes, enzymatic RNA molecules, may also be used to catalyze the specific cleavage of RNA. The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage. For example, engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyze endonucleolytic cleavage of sequences encoding TRICH.

35 Specific ribozyme cleavage sites within any potential RNA target are initially identified by

scanning the target molecule for ribozyme cleavage sites, including the following sequences: GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides, corresponding to the region of the target gene containing the cleavage site, may be evaluated for secondary structural features which may render the oligonucleotide inoperable. The suitability of 5 candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.

Complementary ribonucleic acid molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oligonucleotides such as solid phase phosphoramidite 10 chemical synthesis. Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding TRICH. Such DNA sequences may be incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6. Alternatively, these cDNA constructs that synthesize complementary RNA, constitutively or inducibly, can be introduced into cell lines, cells, or tissues.

15 RNA molecules may be modified to increase intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends of the molecule, or the use of phosphorothioate or 2'-O-methyl rather than phosphodiesterase linkages within the backbone of the molecule. This concept is inherent in the production of PNAs and can be extended in all of these molecules by the inclusion of nontraditional bases such as 20 inosine, queosine, and wybutoxine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytidine, guanine, thymine, and uridine which are not as easily recognized by endogenous endonucleases.

An additional embodiment of the invention encompasses a method for screening for a compound which is effective in altering expression of a polynucleotide encoding TRICH.
25 Compounds which may be effective in altering expression of a specific polynucleotide may include, but are not limited to, oligonucleotides, antisense oligonucleotides, triple helix-forming oligonucleotides, transcription factors and other polypeptide transcriptional regulators, and non-macromolecular chemical entities which are capable of interacting with specific polynucleotide sequences. Effective compounds may alter polynucleotide expression by acting as either inhibitors 30 or promoters of polynucleotide expression. Thus, in the treatment of disorders associated with increased TRICH expression or activity, a compound which specifically inhibits expression of the polynucleotide encoding TRICH may be therapeutically useful, and in the treatment of disorders associated with decreased TRICH expression or activity, a compound which specifically promotes expression of the polynucleotide encoding TRICH may be therapeutically useful.

35 At least one, and up to a plurality, of test compounds may be screened for effectiveness in

altering expression of a specific polynucleotide. A test compound may be obtained by any method commonly known in the art, including chemical modification of a compound known to be effective in altering polynucleotide expression; selection from an existing, commercially-available or proprietary library of naturally-occurring or non-natural chemical compounds; rational design of a 5 compound based on chemical and/or structural properties of the target polynucleotide; and selection from a library of chemical compounds created combinatorially or randomly. A sample comprising a polynucleotide encoding TRICH is exposed to at least one test compound thus obtained. The sample may comprise, for example, an intact or permeabilized cell, or an in vitro cell-free or reconstituted biochemical system. Alterations in the expression of a polynucleotide encoding 10 TRICH are assayed by any method commonly known in the art. Typically, the expression of a specific nucleotide is detected by hybridization with a probe having a nucleotide sequence complementary to the sequence of the polynucleotide encoding TRICH. The amount of hybridization may be quantified, thus forming the basis for a comparison of the expression of the polynucleotide both with and without exposure to one or more test compounds. Detection of a 15 change in the expression of a polynucleotide exposed to a test compound indicates that the test compound is effective in altering the expression of the polynucleotide. A screen for a compound effective in altering expression of a specific polynucleotide can be carried out, for example, using a Schizosaccharomyces pombe gene expression system (Atkins, D. et al. (1999) U.S. Patent No. 5,932,435; Arndt, G.M. et al. (2000) Nucleic Acids Res. 28:E15) or a human cell line such as HeLa 20 cell (Clarke, M.L. et al. (2000) Biochem. Biophys. Res. Commun. 268:8-13). A particular embodiment of the present invention involves screening a combinatorial library of oligonucleotides (such as deoxyribonucleotides, ribonucleotides, peptide nucleic acids, and modified oligonucleotides) for antisense activity against a specific polynucleotide sequence (Bruice, T.W. et al. (1997) U.S. Patent No. 5,686,242; Bruice, T.W. et al. (2000) U.S. Patent No. 6,022,691).

25 Many methods for introducing vectors into cells or tissues are available and equally suitable for use in vivo, in vitro, and ex vivo. For ex vivo therapy, vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient. Delivery by transfection, by liposome injections, or by polycationic amino polymers may be achieved using methods which are well known in the art. (See, e.g., Goldman, C.K. et al. (1997) 30 Nat. Biotechnol. 15:462-466.)

Any of the therapeutic methods described above may be applied to any subject in need of such therapy, including, for example, mammals such as humans, dogs, cats, cows, horses, rabbits, and monkeys.

An additional embodiment of the invention relates to the administration of a composition 35 which generally comprises an active ingredient formulated with a pharmaceutically acceptable

excipient. Excipients may include, for example, sugars, starches, celluloses, gums, and proteins. Various formulations are commonly known and are thoroughly discussed in the latest edition of Remington's Pharmaceutical Sciences (Maack Publishing, Easton PA). Such compositions may consist of TRICH, antibodies to TRICH, and mimetics, agonists, antagonists, or inhibitors of

5 TRICH.

The compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, pulmonary, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.

10 Compositions for pulmonary administration may be prepared in liquid or dry powder form. These compositions are generally aerosolized immediately prior to inhalation by the patient. In the case of small molecules (e.g. traditional low molecular weight organic drugs), aerosol delivery of fast-acting formulations is well-known in the art. In the case of macromolecules (e.g. larger peptides and proteins), recent developments in the field of pulmonary delivery via the alveolar
15 region of the lung have enabled the practical delivery of drugs such as insulin to blood circulation (see, e.g., Pattoh, J.S. et al., U.S. Patent No. 5,997,848). Pulmonary delivery has the advantage of administration without needle injection, and obviates the need for potentially toxic penetration enhancers.

Compositions suitable for use in the invention include compositions wherein the active
20 ingredients are contained in an effective amount to achieve the intended purpose. The determination of an effective dose is well within the capability of those skilled in the art.

Specialized forms of compositions may be prepared for direct intracellular delivery of macromolecules comprising TRICH or fragments thereof. For example, liposome preparations containing a cell-impermeable macromolecule may promote cell fusion and intracellular delivery of
25 the macromolecule. Alternatively, TRICH or a fragment thereof may be joined to a short cationic N-terminal portion from the HIV Tat-1 protein. Fusion proteins thus generated have been found to transduce into the cells of all tissues, including the brain, in a mouse model system (Schwarze, S.R. et al. (1999) Science 285:1569-1572).

For any compound, the therapeutically effective dose can be estimated initially either in cell
30 culture assays, e.g., of neoplastic cells, or in animal models such as mice, rats, rabbits, dogs, monkeys, or pigs. An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.

A therapeutically effective dose refers to that amount of active ingredient, for example
35 TRICH or fragments thereof, antibodies of TRICH, and agonists, antagonists or inhibitors of

TRICH, which ameliorates the symptoms or condition. Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such as by calculating the ED₅₀ (the dose therapeutically effective in 50% of the population) or LD₅₀ (the dose lethal to 50% of the population) statistics. The dose ratio of toxic to therapeutic effects is 5 the therapeutic index, which can be expressed as the LD₅₀/ED₅₀ ratio. Compositions which exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies are used to formulate a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that includes the ED₅₀ with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, 10 the sensitivity of the patient, and the route of administration.

The exact dosage will be determined by the practitioner, in light of factors related to the subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the 15 subject, time and frequency of administration, drug combination(s), reaction sensitivities, and response to therapy. Long-acting compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance rate of the particular formulation.

Normal dosage amounts may vary from about 0.1 µg to 100,000 µg, up to a total dose of about 1 gram, depending upon the route of administration. Guidance as to particular dosages and 20 methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.

DIAGNOSTICS

In another embodiment, antibodies which specifically bind TRICH may be used for the diagnosis of disorders characterized by expression of TRICH, or in assays to monitor patients being treated with TRICH or agonists, antagonists, or inhibitors of TRICH. Antibodies useful for diagnostic purposes may be prepared in the same manner as described above for therapeutics. Diagnostic assays for TRICH include methods which utilize the antibody and a label to detect 25 TRICH in human body fluids or in extracts of cells or tissues. The antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule. A wide variety of reporter molecules, several of which are described above, are known in the art and may be used.

A variety of protocols for measuring TRICH, including ELISAs, RIAs, and FACS, are 30 known in the art and provide a basis for diagnosing altered or abnormal levels of TRICH expression.

Normal or standard values for TRICH expression are established by combining body fluids or cell extracts taken from normal mammalian subjects, for example, human subjects, with antibodies to TRICH under conditions suitable for complex formation. The amount of standard complex formation may be quantitated by various methods, such as photometric means. Quantities of

- 5 TRICH expressed in subject, control, and disease samples from biopsied tissues are compared with the standard values. Deviation between standard and subject values establishes the parameters for diagnosing disease.

In another embodiment of the invention, the polynucleotides encoding TRICH may be used for diagnostic purposes. The polynucleotides which may be used include oligonucleotide

- 10 sequences, complementary RNA and DNA molecules, and PNAs. The polynucleotides may be used to detect and quantify gene expression in biopsied tissues in which expression of TRICH may be correlated with disease. The diagnostic assay may be used to determine absence, presence, and excess expression of TRICH, and to monitor regulation of TRICH levels during therapeutic intervention.

- 15 In one aspect, hybridization with PCR probes which are capable of detecting polynucleotide sequences, including genomic sequences, encoding TRICH or closely related molecules may be used to identify nucleic acid sequences which encode TRICH. The specificity of the probe, whether it is made from a highly specific region, e.g., the 5' regulatory region, or from a less specific region, e.g., a conserved motif, and the stringency of the hybridization or amplification will determine
20 whether the probe identifies only naturally occurring sequences encoding TRICH, allelic variants, or related sequences.

- Probes may also be used for the detection of related sequences, and may have at least 50% sequence identity to any of the TRICH encoding sequences. The hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ ID NO:33-64 or
25 from genomic sequences including promoters, enhancers, and introns of the TRICH gene.

- Means for producing specific hybridization probes for DNAs encoding TRICH include the cloning of polynucleotide sequences encoding TRICH or TRICH derivatives into vectors for the production of mRNA probes. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA
30 polymerases and the appropriate labeled nucleotides. Hybridization probes may be labeled by a variety of reporter groups, for example, by radionuclides such as ^{32}P or ^{35}S , or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.

- Polynucleotide sequences encoding TRICH may be used for the diagnosis of disorders associated with expression of TRICH. Examples of such disorders include, but are not limited to, a
35 transport disorder such as akinesia, amyotrophic lateral sclerosis, ataxia telangiectasia, cystic

fibrosis, Becker's muscular dystrophy, Bell's palsy, Charcot-Marie Tooth disease, diabetes mellitus, diabetes insipidus, diabetic neuropathy, Duchenne muscular dystrophy, hyperkalemic periodic paralysis, normokalemic periodic paralysis, Parkinson's disease, malignant hyperthermia, multidrug resistance, myasthenia gravis, myotonic dystrophy, catatonia, tardive dyskinesia, dystonias,

5 peripheral neuropathy, cerebral neoplasms, prostate cancer, cardiac disorders associated with transport, e.g., angina, bradyarrhythmia, tachyarrhythmia, hypertension, Long QT syndrome, myocarditis, cardiomyopathy, nemaline myopathy, centronuclear myopathy, lipid myopathy, mitochondrial myopathy, thyrotoxic myopathy, ethanol myopathy, dermatomyositis, inclusion body myositis, infectious myositis, polymyositis, neurological disorders associated with transport, e.g.,

10 Alzheimer's disease, amnesia, bipolar disorder, dementia, depression, epilepsy, Tourette's disorder, paranoid psychoses, and schizophrenia, and other disorders associated with transport, e.g., neurofibromatosis, postherpetic neuralgia, trigeminal neuropathy, sarcoidosis, sickle cell anemia, Wilson's disease, cataracts, infertility, pulmonary artery stenosis, sensorineural autosomal deafness, hyperglycemia, hypoglycemia, Grave's disease, goiter, Cushing's disease, Addison's disease,

15 glucose-galactose malabsorption syndrome, glycogen storage disease, hypercholesterolemia, adrenoleukodystrophy, Zellweger syndrome, Menkes disease, occipital horn syndrome, von Gierke disease, pseudohypoaldosteronism type 1, Liddle's syndrome, cystinuria, iminoglycinuria, Hartup disease, Fanconi disease, and Bartter syndrome; a neurological disorder such as epilepsy, ischemic cerebrovascular disease, stroke, cerebral neoplasms, Alzheimer's disease, Pick's disease,

20 Huntington's disease, dementia, Parkinson's disease and other extrapyramidal disorders, amyotrophic lateral sclerosis and other motor neuron disorders, progressive neural muscular atrophy, retinitis pigmentosa, hereditary ataxias, multiple sclerosis and other demyelinating diseases, bacterial and viral meningitis, brain abscess, subdural empyema, epidural abscess, suppurative intracranial thrombophlebitis, myelitis and radiculitis, viral central nervous system

25 disease, prion diseases including kuru, Creutzfeldt-Jakob disease, and Gerstmann-Straussler-Scheinker syndrome, fatal familial insomnia, nutritional and metabolic diseases of the nervous system, neurofibromatosis, tuberous sclerosis, cerebelloretinal hemangioblastomatosis, encephalotrigeminal syndrome, mental retardation and other developmental disorders of the central nervous system including Down syndrome, cerebral palsy, neuroskeletal disorders, autonomic

30 nervous system disorders, cranial nerve disorders, spinal cord diseases, muscular dystrophy and other neuromuscular disorders, peripheral nervous system disorders, dermatomyositis and polymyositis, inherited, metabolic, endocrine, and toxic myopathies, myasthenia gravis, periodic paralysis, mental disorders including mood, anxiety, and schizophrenic disorders, seasonal affective disorder (SAD), akathesia, amnesia, catatonia, diabetic neuropathy, hemiplegic migraine, tardive

35 dyskinesia, dystonias, paranoid psychoses, postherpetic neuralgia, Tourette's disorder, progressive

supranuclear palsy, corticobasal degeneration, and familial frontotemporal dementia; a muscle disorder such as cardiomyopathy, myocarditis, Duchenne's muscular dystrophy, Becker's muscular dystrophy, myotonic dystrophy, central core disease, nemaline myopathy, centronuclear myopathy, lipid myopathy, mitochondrial myopathy, infectious myositis, polymyositis, dermatomyositis,

5 inclusion body myositis, thyrotoxic myopathy, ethanol myopathy, angina, anaphylactic shock, arrhythmias, asthma, cardiovascular shock, Cushing's syndrome, hypertension, hypoglycemia, myocardial infarction, migraine, pheochromocytoma, and myopathies including encephalopathy, epilepsy, Kearns-Sayre syndrome, lactic acidosis, myoclonic disorder, ophthalmoplegia, acid maltase deficiency (AMD, also known as Pompe's disease), generalized myotonia, and myotonia

10 congenita; an immunological disorder such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis,

15 diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma,

20 Sjögren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; and a cell proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease

25 (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis,

30 thymus, thyroid, and uterus. The polynucleotide sequences encoding TRICH may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in dipstick, pin, and multiformat ELISA-like assays; and in microarrays utilizing fluids or tissues from patients to detect altered TRICH expression. Such qualitative or quantitative methods are well known in the art.

35 In a particular aspect, the nucleotide sequences encoding TRICH may be useful in assays

that detect the presence of associated disorders, particularly those mentioned above. The nucleotide sequences encoding TRICH may be labeled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantified and compared with a 5 standard value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of nucleotide sequences encoding TRICH in the sample indicates the presence of the associated disorder. Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual patient.

10 In order to provide a basis for the diagnosis of a disorder associated with expression of TRICH, a normal or standard profile for expression is established. This may be accomplished by combining body fluids or cell extracts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, encoding TRICH, under conditions suitable for hybridization or amplification. Standard hybridization may be quantified by comparing the values obtained from 15 normal subjects with values from an experiment in which a known amount of a substantially purified polynucleotide is used. Standard values obtained in this manner may be compared with values obtained from samples from patients who are symptomatic for a disorder. Deviation from standard values is used to establish the presence of a disorder.

Once the presence of a disorder is established and a treatment protocol is initiated, 20 hybridization assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in the normal subject. The results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.

With respect to cancer, the presence of an abnormal amount of transcript (either under- or 25 overexpressed) in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.

30 Additional diagnostic uses for oligonucleotides designed from the sequences encoding TRICH may involve the use of PCR. These oligomers may be chemically synthesized, generated enzymatically, or produced *in vitro*. Oligomers will preferably contain a fragment of a polynucleotide encoding TRICH, or a fragment of a polynucleotide complementary to the polynucleotide encoding TRICH, and will be employed under optimized conditions for 35 identification of a specific gene or condition. Oligomers may also be employed under less stringent

conditions for detection or quantification of closely related DNA or RNA sequences.

In a particular aspect, oligonucleotide primers derived from the polynucleotide sequences encoding TRICH may be used to detect single nucleotide polymorphisms (SNPs). SNPs are substitutions, insertions and deletions that are a frequent cause of inherited or acquired genetic disease in humans. Methods of SNP detection include, but are not limited to, single-stranded conformation polymorphism (SSCP) and fluorescent SSCP (fSSCP) methods. In SSCP, oligonucleotide primers derived from the polynucleotide sequences encoding TRICH are used to amplify DNA using the polymerase chain reaction (PCR). The DNA may be derived, for example, from diseased or normal tissue, biopsy samples, bodily fluids, and the like. SNPs in the DNA cause differences in the secondary and tertiary structures of PCR products in single-stranded form, and these differences are detectable using gel electrophoresis in non-denaturing gels. In fSSCP, the oligonucleotide primers are fluorescently labeled, which allows detection of the amplimers in high-throughput equipment such as DNA sequencing machines. Additionally, sequence database analysis methods, termed *in silico* SNP (isSNP), are capable of identifying polymorphisms by comparing the sequence of individual overlapping DNA fragments which assemble into a common consensus sequence. These computer-based methods filter out sequence variations due to laboratory preparation of DNA and sequencing errors using statistical models and automated analyses of DNA sequence chromatograms. In the alternative, SNPs may be detected and characterized by mass spectrometry using, for example, the high throughput MASSARRAY system (Sequenom, Inc., San Diego CA).

Methods which may also be used to quantify the expression of TRICH include radiolabeling or biotinylation of nucleotides, coamplification of a control nucleic acid, and interpolating results from standard curves. (See, e.g., Melby, P.C. et al. (1993) *J. Immunol. Methods* 159:235-244; Duplaa, C. et al. (1993) *Anal. Biochem.* 212:229-236.) The speed of quantitation of multiple samples may be accelerated by running the assay in a high-throughput format where the oligomer or polynucleotide of interest is presented in various dilutions and a spectrophotometric or colorimetric response gives rapid quantitation.

In further embodiments, oligonucleotides or longer fragments derived from any of the polynucleotide sequences described herein may be used as elements on a microarray. The microarray can be used in transcript imaging techniques which monitor the relative expression levels of large numbers of genes simultaneously as described below. The microarray may also be used to identify genetic variants, mutations, and polymorphisms. This information may be used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, to monitor progression/regression of disease as a function of gene expression, and to develop and monitor the activities of therapeutic agents in the treatment of disease. In particular, this

information may be used to develop a pharmacogenomic profile of a patient in order to select the most appropriate and effective treatment regimen for that patient. For example, therapeutic agents which are highly effective and display the fewest side effects may be selected for a patient based on his/her pharmacogenomic profile.

- 5 In another embodiment, TRICH, fragments of TRICH, or antibodies specific for TRICH may be used as elements on a microarray. The microarray may be used to monitor or measure protein-protein interactions, drug-target interactions, and gene expression profiles, as described above.

A particular embodiment relates to the use of the polynucleotides of the present invention to
10 generate a transcript image of a tissue or cell type. A transcript image represents the global pattern of gene expression by a particular tissue or cell type. Global gene expression patterns are analyzed by quantifying the number of expressed genes and their relative abundance under given conditions and at a given time. (See Seilhamer et al., "Comparative Gene Transcript Analysis," U.S. Patent No. 5,840,484, expressly incorporated by reference herein.) Thus a transcript image may be
15 generated by hybridizing the polynucleotides of the present invention or their complements to the totality of transcripts or reverse transcripts of a particular tissue or cell type. In one embodiment, the hybridization takes place in high-throughput format, wherein the polynucleotides of the present invention or their complements comprise a subset of a plurality of elements on a microarray. The resultant transcript image would provide a profile of gene activity.

20 Transcript images may be generated using transcripts isolated from tissues, cell lines, biopsies, or other biological samples. The transcript image may thus reflect gene expression in vivo, as in the case of a tissue or biopsy sample, or in vitro, as in the case of a cell line.

Transcript images which profile the expression of the polynucleotides of the present invention may also be used in conjunction with in vitro model systems and preclinical evaluation of
25 pharmaceuticals, as well as toxicological testing of industrial and naturally-occurring environmental compounds. All compounds induce characteristic gene expression patterns, frequently termed molecular fingerprints or toxicant signatures, which are indicative of mechanisms of action and toxicity (Nuwaysir, E.F. et al. (1999) Mol. Carcinog. 24:153-159; Steiner, S. and N.L. Anderson (2000) Toxicol. Lett. 112-113:467-471, expressly incorporated by reference herein). If a test
30 compound has a signature similar to that of a compound with known toxicity, it is likely to share those toxic properties. These fingerprints or signatures are most useful and refined when they contain expression information from a large number of genes and gene families. Ideally, a genome-wide measurement of expression provides the highest quality signature. Even genes whose expression is not altered by any tested compounds are important as well, as the levels of expression
35 of these genes are used to normalize the rest of the expression data. The normalization procedure is

useful for comparison of expression data after treatment with different compounds. While the assignment of gene function to elements of a toxicant signature aids in interpretation of toxicity mechanisms, knowledge of gene function is not necessary for the statistical matching of signatures which leads to prediction of toxicity. (See, for example, Press Release 00-02 from the National Institute of Environmental Health Sciences, released February 29, 2000, available at <http://www.niehs.nih.gov/oc/news/toxchip.htm>.) Therefore, it is important and desirable in toxicological screening using toxicant signatures to include all expressed gene sequences.

In one embodiment, the toxicity of a test compound is assessed by treating a biological sample containing nucleic acids with the test compound. Nucleic acids that are expressed in the treated biological sample are hybridized with one or more probes specific to the polynucleotides of the present invention, so that transcript levels corresponding to the polynucleotides of the present invention may be quantified. The transcript levels in the treated biological sample are compared with levels in an untreated biological sample. Differences in the transcript levels between the two samples are indicative of a toxic response caused by the test compound in the treated sample.

Another particular embodiment relates to the use of the polypeptide sequences of the present invention to analyze the proteome of a tissue or cell type. The term proteome refers to the global pattern of protein expression in a particular tissue or cell type. Each protein component of a proteome can be subjected individually to further analysis. Proteome expression patterns, or profiles, are analyzed by quantifying the number of expressed proteins and their relative abundance under given conditions and at a given time. A profile of a cell's proteome may thus be generated by separating and analyzing the polypeptides of a particular tissue or cell type. In one embodiment, the separation is achieved using two-dimensional gel electrophoresis, in which proteins from a sample are separated by isoelectric focusing in the first dimension, and then according to molecular weight by sodium dodecyl sulfate slab gel electrophoresis in the second dimension (Steiner and Anderson, *supra*). The proteins are visualized in the gel as discrete and uniquely positioned spots, typically by staining the gel with an agent such as Coomassie Blue or silver or fluorescent stains. The optical density of each protein spot is generally proportional to the level of the protein in the sample. The optical densities of equivalently positioned protein spots from different samples, for example, from biological samples either treated or untreated with a test compound or therapeutic agent, are compared to identify any changes in protein spot density related to the treatment. The proteins in the spots are partially sequenced using, for example, standard methods employing chemical or enzymatic cleavage followed by mass spectrometry. The identity of the protein in a spot may be determined by comparing its partial sequence, preferably of at least 5 contiguous amino acid residues, to the polypeptide sequences of the present invention. In some cases, further sequence data may be obtained for definitive protein identification.

A proteomic profile may also be generated using antibodies specific for TRICH to quantify the levels of TRICH expression. In one embodiment, the antibodies are used as elements on a microarray, and protein expression levels are quantified by exposing the microarray to the sample and detecting the levels of protein bound to each array element (Lueking, A. et al. (1999) *Anal.*

- 5 Biochem.
- 270:103-111; Mendoza, L.G. et al. (1999) *Biotechniques* 27:778-788). Detection may be performed by a variety of methods known in the art, for example, by reacting the proteins in the sample with a thiol- or amino-reactive fluorescent compound and detecting the amount of fluorescence bound at each array element.

Toxicant signatures at the proteome level are also useful for toxicological screening, and 10 should be analyzed in parallel with toxicant signatures at the transcript level. There is a poor correlation between transcript and protein abundances for some proteins in some tissues (Anderson, N.L. and J. Seilhamer (1997) *Electrophoresis* 18:533-537), so proteome toxicant signatures may be useful in the analysis of compounds which do not significantly affect the transcript image, but which alter the proteomic profile. In addition, the analysis of transcripts in body fluids is difficult, 15 due to rapid degradation of mRNA, so proteomic profiling may be more reliable and informative in such cases.

In another embodiment, the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound. Proteins that are expressed in the treated biological sample are separated so that the amount of each protein can be quantified. The amount of 20 each protein is compared to the amount of the corresponding protein in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic response to the test compound in the treated sample. Individual proteins are identified by sequencing the amino acid residues of the individual proteins and comparing these partial sequences to the polypeptides of the present invention.

25 In another embodiment, the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound. Proteins from the biological sample are incubated with antibodies specific to the polypeptides of the present invention. The amount of protein recognized by the antibodies is quantified. The amount of protein in the treated biological sample is compared with the amount in an untreated biological sample. A difference in the amount 30 of protein between the two samples is indicative of a toxic response to the test compound in the treated sample.

Microarrays may be prepared, used, and analyzed using methods known in the art. (See, e.g., Brennan, T.M. et al. (1995) U.S. Patent No. 5,474,796; Schena, M. et al. (1996) *Proc. Natl. Acad. Sci. USA* 93:10614-10619; Baldeschweiler et al. (1995) PCT application WO95/251116; 35 Shalon, D. et al. (1995) PCT application WO95/35505; Heller, R.A. et al. (1997) *Proc. Natl. Acad.*

Sci. USA 94:2150-2155; and Heller, M.J. et al. (1997) U.S. Patent No. 5,605,662.) Various types of microarrays are well known and thoroughly described in DNA Microarrays: A Practical Approach, M. Schena, ed. (1999) Oxford University Press, London, hereby expressly incorporated by reference.

- 5 In another embodiment of the invention, nucleic acid sequences encoding TRICH may be used to generate hybridization probes useful in mapping the naturally occurring genomic sequence. Either coding or noncoding sequences may be used, and in some instances, noncoding sequences may be preferable over coding sequences. For example, conservation of a coding sequence among members of a multi-gene family may potentially cause undesired cross hybridization during
- 10 chromosomal mapping. The sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial P1 constructions, or single chromosome cDNA libraries. (See, e.g., Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355; Price, C.M. (1993) Blood Rev. 7:127-134; and Trask, B.J.
- 15 (1991) Trends Genet. 7:149-154.) Once mapped, the nucleic acid sequences of the invention may be used to develop genetic linkage maps, for example, which correlate the inheritance of a disease state with the inheritance of a particular chromosome region or restriction fragment length polymorphism (RFLP). (See, for example, Lander, E.S. and D. Botstein (1986) Proc. Natl. Acad. Sci. USA 83:7353-7357.)
- 20 Fluorescent in situ hybridization (FISH) may be correlated with other physical and genetic map data. (See, e.g., Heinz-Ulrich, et al. (1995) in Meyers, supra, pp. 965-968.) Examples of genetic map data can be found in various scientific journals or at the Online Mendelian Inheritance in Man (OMIM) World Wide Web site. Correlation between the location of the gene encoding TRICH on a physical map and a specific disorder, or a predisposition to a specific disorder, may
- 25 help define the region of DNA associated with that disorder and thus may further positional cloning efforts.

- In situ hybridization of chromosomal preparations and physical mapping techniques, such as linkage analysis using established chromosomal markers, may be used for extending genetic maps. Often the placement of a gene on the chromosome of another mammalian species, such as mouse,
- 30 may reveal associated markers even if the exact chromosomal locus is not known. This information is valuable to investigators searching for disease genes using positional cloning or other gene discovery techniques. Once the gene or genes responsible for a disease or syndrome have been crudely localized by genetic linkage to a particular genomic region, e.g., ataxia-telangiectasia to 11q22-23, any sequences mapping to that area may represent associated or regulatory genes for
- 35 further investigation. (See, e.g., Gatti, R.A. et al. (1988) Nature 336:577-580.) The nucleotide

sequence of the instant invention may also be used to detect differences in the chromosomal location due to translocation, inversion, etc., among normal, carrier, or affected individuals.

In another embodiment of the invention, TRICH, its catalytic or immunogenic fragments, or oligopeptides thereof can be used for screening libraries of compounds in any of a variety of drug screening techniques. The fragment employed in such screening may be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly. The formation of binding complexes between TRICH and the agent being tested may be measured.

Another technique for drug screening provides for high throughput screening of compounds having suitable binding affinity to the protein of interest. (See, e.g., Geysen, et al. (1984) PCT application WO84/03564.) In this method, large numbers of different small test compounds are synthesized on a solid substrate. The test compounds are reacted with TRICH, or fragments thereof, and washed. Bound TRICH is then detected by methods well known in the art. Purified TRICH can also be coated directly onto plates for use in the aforementioned drug screening techniques.

Alternatively, non-neutralizing antibodies can be used to capture the peptide and immobilize it on a solid support.

In another embodiment, one may use competitive drug screening assays in which neutralizing antibodies capable of binding TRICH specifically compete with a test compound for binding TRICH. In this manner, antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with TRICH.

In additional embodiments, the nucleotide sequences which encode TRICH may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are currently known, including, but not limited to, such properties as the triplet genetic code and specific base pair interactions.

Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.

The disclosures of all patents, applications and publications, mentioned above and below, including U.S. Ser. No. 60/254,303, U.S. Ser. No. 60/256,190, U.S. Ser. No. 60/257,504, U.S. Ser. No. 60/261,546, U.S. Ser. No. 60/262,832, U.S. Ser. No. 60/264,377, and U.S. Ser. No. 60/266,019, are expressly incorporated by reference herein.

EXAMPLES

I. Construction of cDNA Libraries

Incyte cDNAs were derived from cDNA libraries described in the LIFESEQ GOLD

database (Incyte Genomics, Palo Alto CA). Some tissues were homogenized and lysed in guanidinium isothiocyanate, while others were homogenized and lysed in phenol or in a suitable mixture of denaturants, such as TRIZOL (Life Technologies), a monophasic solution of phenol and guanidine isothiocyanate. The resulting lysates were centrifuged over CsCl cushions or extracted 5 with chloroform. RNA was precipitated from the lysates with either isopropanol or sodium acetate and ethanol, or by other routine methods.

Phenol extraction and precipitation of RNA were repeated as necessary to increase RNA purity. In some cases, RNA was treated with DNase. For most libraries, poly(A)+ RNA was isolated using oligo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles 10 (QIAGEN, Chatsworth CA), or an OLIGOTEX mRNA purification kit (QIAGEN). Alternatively, RNA was isolated directly from tissue lysates using other RNA isolation kits, e.g., the POLY(A)PURE mRNA purification kit (Ambion, Austin TX).

In some cases, Stratagene was provided with RNA and constructed the corresponding cDNA libraries. Otherwise, cDNA was synthesized and cDNA libraries were constructed with the 15 UNIZAP vector system (Stratagene) or SUPERSCRIPT plasmid system (Life Technologies), using the recommended procedures or similar methods known in the art. (See, e.g., Ausubel, 1997, *supra*, units 5.1-6.6.) Reverse transcription was initiated using oligo d(T) or random primers. Synthetic oligonucleotide adapters were ligated to double stranded cDNA, and the cDNA was digested with the appropriate restriction enzyme or enzymes. For most libraries, the cDNA was size-selected 20 (300-1000 bp) using SEPHACRYL S1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (Amersham Pharmacia Biotech) or preparative agarose gel electrophoresis. cDNAs were ligated into compatible restriction enzyme sites of the polylinker of a suitable plasmid, e.g., PBLUESCRIPT plasmid (Stratagene), PSPORT1 plasmid (Life Technologies), PCDNA2.1 25 plasmid (Invitrogen, Carlsbad CA), PBK-CMV plasmid (Stratagene), PCR2-TOPOTA plasmid (Invitrogen), PCMV-ICIS plasmid (Stratagene), pIGEN (Incyte Genomics, Palo Alto CA), pRARE (Incyte Genomics), or pINCY (Incyte Genomics), or derivatives thereof. Recombinant plasmids were transformed into competent *E. coli* cells including XL1-Blue, XL1-BlueMRF, or SOLR from Stratagene or DH5 α , DH10B, or ElectroMAX DH10B from Life Technologies.

II. Isolation of cDNA Clones

30 Plasmids obtained as described in Example I were recovered from host cells by *in vivo* excision using the UNIZAP vector system (Stratagene) or by cell lysis. Plasmids were purified using at least one of the following: a Magic or WIZARD Minipreps DNA purification system (Promega); an AGTC Miniprep purification kit (Edge Biosystems, Gaithersburg MD); and QIAWELL 8 Plasmid, QIAWELL 8 Plus Plasmid, QIAWELL 8 Ultra Plasmid purification systems 35 or the R.E.A.L. PREP 96 plasmid purification kit from QIAGEN. Following precipitation, plasmids

were resuspended in 0.1 ml of distilled water and stored, with or without lyophilization, at 4°C.

Alternatively, plasmid DNA was amplified from host cell lysates using direct link PCR in a high-throughput format (Rao, V.B. (1994) *Anal. Biochem.* 216:1-14). Host cell lysis and thermal cycling steps were carried out in a single reaction mixture. Samples were processed and stored in 5 384-well plates, and the concentration of amplified plasmid DNA was quantified fluorometrically using PICOGREEN dye (Molecular Probes, Eugene OR) and a FLUOROSCAN II fluorescence scanner (Labsystems Oy, Helsinki, Finland).

III. Sequencing and Analysis

- Incyte cDNA recovered in plasmids as described in Example II were sequenced as follows.
- 10 Sequencing reactions were processed using standard methods or high-throughput instrumentation such as the ABI CATALYST 800 (Applied Biosystems) thermal cycler or the PTC-200 thermal cycler (MJ Research) in conjunction with the HYDRA microdispenser (Robbins Scientific) or the MICROLAB 2200 (Hamilton) liquid transfer system. cDNA sequencing reactions were prepared using reagents provided by Amersham Pharmacia Biotech or supplied in ABI sequencing kits such 15 as the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Applied Biosystems). Electrophoretic separation of cDNA sequencing reactions and detection of labeled polynucleotides were carried out using the MEGABACE 1000 DNA sequencing system (Molecular Dynamics); the ABI PRISM 373 or 377 sequencing system (Applied Biosystems) in conjunction with standard ABI protocols and base calling software; or other sequence analysis systems known in the art. Reading 20 frames within the cDNA sequences were identified using standard methods (reviewed in Ausubel, 1997, *supra*, unit 7.7). Some of the cDNA sequences were selected for extension using the techniques disclosed in Example VIII.

The polynucleotide sequences derived from Incyte cDNAs were validated by removing vector, linker, and poly(A) sequences and by masking ambiguous bases, using algorithms and 25 programs based on BLAST, dynamic programming, and dinucleotide nearest neighbor analysis. The Incyte cDNA sequences or translations thereof were then queried against a selection of public databases such as the GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases, and BLOCKS, PRINTS, DOMO, PRODOM; PROTEOME databases with sequences from Homo sapiens, Rattus norvegicus, Mus musculus, Caenorhabditis elegans, Saccharomyces cerevisiae, 30 Schizosaccharomyces pombe, and Candida albicans (Incyte Genomics, Palo Alto CA); and hidden Markov model (HMM)-based protein family databases such as PFAM. (HMM is a probabilistic approach which analyzes consensus primary structures of gene families. See, for example, Eddy, S.R. (1996) *Curr. Opin. Struct. Biol.* 6:361-365.) The queries were performed using programs based on BLAST, FASTA, BLIMPS, and HMMER. The Incyte cDNA sequences were assembled 35 to produce full length polynucleotide sequences. Alternatively, GenBank cDNAs, GenBank ESTs,

stitched sequences, stretched sequences, or Genscan-predicted coding sequences (see Examples IV and V) were used to extend Incyte cDNA assemblages to full length. Assembly was performed using programs based on Phred, Phrap, and Consed, and cDNA assemblages were screened for open reading frames using programs based on GeneMark, BLAST, and FASTA. The full length
5 polynucleotide sequences were translated to derive the corresponding full length polypeptide sequences. Alternatively, a polypeptide of the invention may begin at any of the methionine residues of the full length translated polypeptide. Full length polypeptide sequences were subsequently analyzed by querying against databases such as the GenBank protein databases (genpept), SwissProt, the PROTEOME databases, BLOCKS, PRINTS, DOMO, PRODOM, Prosite,
10 and hidden Markov model (HMM)-based protein family databases such as PFAM. Full length polynucleotide sequences are also analyzed using MACDNASIS PRO software (Hitachi Software Engineering, South San Francisco CA) and LASERGENE software (DNASTAR). Polynucleotide and polypeptide sequence alignments are generated using default parameters specified by the CLUSTAL algorithm as incorporated into the MEGALIGN multisequence alignment program
15 (DNASTAR), which also calculates the percent identity between aligned sequences.

Table 7 summarizes the tools, programs, and algorithms used for the analysis and assembly of Incyte cDNA and full length sequences and provides applicable descriptions, references, and threshold parameters. The first column of Table 7 shows the tools, programs, and algorithms used, the second column provides brief descriptions thereof, the third column presents appropriate
20 references, all of which are incorporated by reference herein in their entirety, and the fourth column presents, where applicable, the scores, probability values, and other parameters used to evaluate the strength of a match between two sequences (the higher the score or the lower the probability value, the greater the identity between two sequences).

The programs described above for the assembly and analysis of full length polynucleotide
25 and polypeptide sequences were also used to identify polynucleotide sequence fragments from SEQ ID NO:33-64. Fragments from about 20 to about 4000 nucleotides which are useful in hybridization and amplification technologies are described in Table 4, column 2.

IV. Identification and Editing of Coding Sequences from Genomic DNA

Putative transporters and ion channels were initially identified by running the Genscan gene
30 identification program against public genomic sequence databases (e.g., gbpri and gbhtg). Genscan is a general-purpose gene identification program which analyzes genomic DNA sequences from a variety of organisms (See Burge, C. and S. Karlin (1997) J. Mol. Biol. 268:78-94, and Burge, C. and S. Karlin (1998) Curr. Opin. Struct. Biol. 8:346-354). The program concatenates predicted exons to form an assembled cDNA sequence extending from a methionine to a stop codon. The output of
35 Genscan is a FASTA database of polynucleotide and polypeptide sequences. The maximum range

of sequence for Genscan to analyze at once was set to 30 kb. To determine which of these Genscan predicted cDNA sequences encode transporters and ion channels, the encoded polypeptides were analyzed by querying against PFAM models for transporters and ion channels. Potential transporters and ion channels were also identified by homology to Incyte cDNA sequences that had been annotated as transporters and ion channels. These selected Genscan-predicted sequences were then compared by BLAST analysis to the genpept and gbpri public databases. Where necessary, the Genscan-predicted sequences were then edited by comparison to the top BLAST hit from genpept to correct errors in the sequence predicted by Genscan, such as extra or omitted exons. BLAST analysis was also used to find any Incyte cDNA or public cDNA coverage of the Genscan-predicted sequences, thus providing evidence for transcription. When Incyte cDNA coverage was available, this information was used to correct or confirm the Genscan predicted sequence. Full length polynucleotide sequences were obtained by assembling Genscan-predicted coding sequences with Incyte cDNA sequences and/or public cDNA sequences using the assembly process described in Example III. Alternatively, full length polynucleotide sequences were derived entirely from edited or unedited Genscan-predicted coding sequences.

V. Assembly of Genomic Sequence Data with cDNA Sequence Data

"Stitched" Sequences

Partial cDNA sequences were extended with exons predicted by the Genscan gene identification program described in Example IV. Partial cDNAs assembled as described in Example III were mapped to genomic DNA and parsed into clusters containing related cDNAs and Genscan exon predictions from one or more genomic sequences. Each cluster was analyzed using an algorithm based on graph theory and dynamic programming to integrate cDNA and genomic information, generating possible splice variants that were subsequently confirmed, edited, or extended to create a full length sequence. Sequence intervals in which the entire length of the interval was present on more than one sequence in the cluster were identified, and intervals thus identified were considered to be equivalent by transitivity. For example, if an interval was present on a cDNA and two genomic sequences, then all three intervals were considered to be equivalent. This process allows unrelated but consecutive genomic sequences to be brought together, bridged by cDNA sequence. Intervals thus identified were then "stitched" together by the stitching algorithm in the order that they appear along their parent sequences to generate the longest possible sequence, as well as sequence variants. Linkages between intervals which proceed along one type of parent sequence (cDNA to cDNA or genomic sequence to genomic sequence) were given preference over linkages which change parent type (cDNA to genomic sequence). The resultant stitched sequences were translated and compared by BLAST analysis to the genpept and gbpri public databases. Incorrect exons predicted by Genscan were corrected by comparison to the top BLAST hit from

genpept. Sequences were further extended with additional cDNA sequences, or by inspection of genomic DNA, when necessary.

"Stretched" Sequences

Partial DNA sequences were extended to full length with an algorithm based on BLAST analysis. First, partial cDNAs assembled as described in Example III were queried against public databases such as the GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases using the BLAST program. The nearest GenBank protein homolog was then compared by BLAST analysis to either Incyte cDNA sequences or GenScan exon predicted sequences described in Example IV. A chimeric protein was generated by using the resultant high-scoring segment pairs (HSPs) to map the translated sequences onto the GenBank protein homolog. Insertions or deletions may occur in the chimeric protein with respect to the original GenBank protein homolog. The GenBank protein homolog, the chimeric protein, or both were used as probes to search for homologous genomic sequences from the public human genome databases. Partial DNA sequences were therefore "stretched" or extended by the addition of homologous genomic sequences. The resultant stretched sequences were examined to determine whether it contained a complete gene.

VI. Chromosomal Mapping of TRICH Encoding Polynucleotides

The sequences which were used to assemble SEQ ID NO:33-64 were compared with sequences from the Incyte LIFESEQ database and public domain databases using BLAST and other implementations of the Smith-Waterman algorithm. Sequences from these databases that matched SEQ ID NO:33-64 were assembled into clusters of contiguous and overlapping sequences using assembly algorithms such as Phrap (Table 7). Radiation hybrid and genetic mapping data available from public resources such as the Stanford Human Genome Center (SHGC), Whitehead Institute for Genome Research (WIGR), and Généthon were used to determine if any of the clustered sequences had been previously mapped. Inclusion of a mapped sequence in a cluster resulted in the assignment of all sequences of that cluster, including its particular SEQ ID NO:, to that map location.

Map locations are represented by ranges, or intervals, of human chromosomes. The map position of an interval, in centiMorgans, is measured relative to the terminus of the chromosome's p-arm. (The centiMorgan (cM) is a unit of measurement based on recombination frequencies between chromosomal markers. On average, 1 cM is roughly equivalent to 1 megabase (Mb) of DNA in humans, although this can vary widely due to hot and cold spots of recombination.) The cM distances are based on genetic markers mapped by Généthon which provide boundaries for radiation hybrid markers whose sequences were included in each of the clusters. Human genome maps and other resources available to the public, such as the NCBI "GeneMap'99" World Wide Web site (<http://www.ncbi.nlm.nih.gov/genemap/>), can be employed to determine if previously

identified disease genes map within or in proximity to the intervals indicated above.

VII. Analysis of Polynucleotide Expression

Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which

- 5 RNAs from a particular cell type or tissue have been bound. (See, e.g., Sambrook, *supra*, ch. 7; Ausubel (1995) *supra*, ch. 4 and 16.)

Analogous computer techniques applying BLAST were used to search for identical or related molecules in cDNA databases such as GenBank or LIFESEQ (Incyte Genomics). This analysis is much faster than multiple membrane-based hybridizations. In addition, the sensitivity of 10 the computer search can be modified to determine whether any particular match is categorized as exact or similar. The basis of the search is the product score, which is defined as:

$$\frac{\text{BLAST Score} \times \text{Percent Identity}}{5 \times \min\{\text{length(Seq. 1)}, \text{length(Seq. 2)}\}}$$

15

The product score takes into account both the degree of similarity between two sequences and the length of the sequence match. The product score is a normalized value between 0 and 100, and is calculated as follows: the BLAST score is multiplied by the percent nucleotide identity and the product is divided by (5 times the length of the shorter of the two sequences). The BLAST score is 20 calculated by assigning a score of +5 for every base that matches in a high-scoring segment pair (HSP), and -4 for every mismatch. Two sequences may share more than one HSP (separated by gaps). If there is more than one HSP, then the pair with the highest BLAST score is used to calculate the product score. The product score represents a balance between fractional overlap and quality in a BLAST alignment. For example, a product score of 100 is produced only for 100% 25 identity over the entire length of the shorter of the two sequences being compared. A product score of 70 is produced either by 100% identity and 70% overlap at one end, or by 88% identity and 100% overlap at the other. A product score of 50 is produced either by 100% identity and 50% overlap at one end, or 79% identity and 100% overlap.

Alternatively, polynucleotide sequences encoding TRICH are analyzed with respect to the 30 tissue sources from which they were derived. For example, some full length sequences are assembled, at least in part, with overlapping Incyte cDNA sequences (see Example III). Each cDNA sequence is derived from a cDNA library constructed from a human tissue. Each human tissue is classified into one of the following organ/tissue categories: cardiovascular system; connective tissue; digestive system; embryonic structures; endocrine system; exocrine glands; genitalia, female; 35 genitalia, male; germ cells; hemic and immune system; liver; musculoskeletal system; nervous

system; pancreas; respiratory system; sense organs; skin; stomatognathic system; unclassified/mixed; or urinary tract. The number of libraries in each category is counted and divided by the total number of libraries across all categories. Similarly, each human tissue is classified into one of the following disease/condition categories: cancer, cell line, developmental, 5 inflammation, neurological, trauma, cardiovascular, pooled, and other, and the number of libraries in each category is counted and divided by the total number of libraries across all categories. The resulting percentages reflect the tissue- and disease-specific expression of cDNA encoding TRICH. cDNA sequences and cDNA library/tissue information are found in the LIFESEQ GOLD database (Incyte Genomics, Palo Alto CA).

10 **VIII. Extension of TRICH Encoding Polynucleotides**

Full length polynucleotide sequences were also produced by extension of an appropriate fragment of the full length molecule using oligonucleotide primers designed from this fragment. One primer was synthesized to initiate 5' extension of the known fragment, and the other primer was synthesized to initiate 3' extension of the known fragment. The initial primers were designed using 15 OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68°C to about 72°C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.

Selected human cDNA libraries were used to extend the sequence. If more than one 20 extension was necessary or desired, additional or nested sets of primers were designed.

High fidelity amplification was obtained by PCR using methods well known in the art. PCR was performed in 96-well plates using the PTC-200 thermal cycler (MJ Research, Inc.). The reaction mix contained DNA template, 200 nmol of each primer, reaction buffer containing Mg²⁺, (NH₄)₂SO₄, and 2-mercaptoethanol, Taq DNA polymerase (Amersham Pharmacia Biotech), 25 ELONGASE enzyme (Life Technologies), and Pfu DNA polymerase (Stratagene), with the following parameters for primer pair PCI A and PCI B: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C. In the alternative, the parameters for primer pair T7 and SK+ were as follows: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 57°C, 1 min; Step 4: 68°C, 2 min; Step 30 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C.

The concentration of DNA in each well was determined by dispensing 100 µl PICOGREEN quantitation reagent (0.25% (v/v) PICOGREEN; Molecular Probes, Eugene OR) dissolved in 1X TE and 0.5 µl of undiluted PCR product into each well of an opaque fluorimeter plate (Corning Costar, Acton MA), allowing the DNA to bind to the reagent. The plate was scanned in a Fluoroskan II 35 (Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the sample and to quantify the

concentration of DNA. A 5 μ l to 10 μ l aliquot of the reaction mixture was analyzed by electrophoresis on a 1 % agarose gel to determine which reactions were successful in extending the sequence.

The extended nucleotides were desalted and concentrated, transferred to 384-well plates, 5 digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison WI), and sonicated or sheared prior to religation into pUC 18 vector (Amersham Pharmacia Biotech). For shotgun sequencing, the digested nucleotides were separated on low concentration (0.6 to 0.8%) agarose gels, fragments were excised, and agar digested with Agar ACE (Promega). Extended clones were religated using T4 ligase (New England Biolabs, Beverly MA) into pUC 18 vector 10 (Amersham Pharmacia Biotech), treated with Pfu DNA polymerase (Stratagene) to fill-in restriction site overhangs, and transfected into competent *E. coli* cells. Transformed cells were selected on antibiotic-containing media, and individual colonies were picked and cultured overnight at 37°C in 384-well plates in LB/2x carb liquid media.

The cells were lysed, and DNA was amplified by PCR using Taq DNA polymerase 15 (Amersham Pharmacia Biotech) and Pfu DNA polymerase (Stratagene) with the following parameters: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 72°C, 2 min; Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72°C, 5 min; Step 7: storage at 4°C. DNA was quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries were reamplified using the same conditions as described above. Samples were 20 diluted with 20% dimethylsulfoxide (1:2, v/v), and sequenced using DYENAMIC energy transfer sequencing primers and the DYENAMIC DIRECT kit (Amersham Pharmacia Biotech) or the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Applied Biosystems).

In like manner, full length polynucleotide sequences are verified using the above procedure or are used to obtain 5' regulatory sequences using the above procedure along with oligonucleotides 25 designed for such extension, and an appropriate genomic library.

IX. Labeling and Use of Individual Hybridization Probes

Hybridization probes derived from SEQ ID NO:33-64 are employed to screen cDNAs, genomic DNAs, or mRNAs. Although the labeling of oligonucleotides, consisting of about 20 base pairs, is specifically described, essentially the same procedure is used with larger nucleotide 30 fragments. Oligonucleotides are designed using state-of-the-art software such as OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oligomer, 250 μ Ci of [γ -³²P] adenosine triphosphate (Amersham Pharmacia Biotech), and T4 polynucleotide kinase (DuPont NEN, Boston MA). The labeled oligonucleotides are substantially purified using a SEPHADEX G-25 superfine size exclusion dextran bead column (Amersham Pharmacia Biotech). 35 An aliquot containing 10⁷ counts per minute of the labeled probe is used in a typical membrane-

based hybridization analysis of human genomic DNA digested with one of the following endonucleases: Ase I, Bgl II, Eco RI, Pst I, Xba I, or Pvu II (DuPont NEN).

The DNA from each digest is fractionated on a 0.7% agarose gel and transferred to nylon membranes (Nytran Plus, Schleicher & Schuell, Durham NH). Hybridization is carried out for 16 hours at 40°C. To remove nonspecific signals, blots are sequentially washed at room temperature under conditions of up to, for example, 0.1 x saline sodium citrate and 0.5% sodium dodecyl sulfate. Hybridization patterns are visualized using autoradiography or an alternative imaging means and compared.

X. Microarrays

The linkage or synthesis of array elements upon a microarray can be achieved utilizing photolithography, piezoelectric printing (ink-jet printing, See, e.g., Baldeschweiler, *supra*), mechanical microspotting technologies, and derivatives thereof. The substrate in each of the aforementioned technologies should be uniform and solid with a non-porous surface (Schena (1999), *supra*). Suggested substrates include silicon, silica, glass slides, glass chips, and silicon wafers. Alternatively, a procedure analogous to a dot or slot blot may also be used to arrange and link elements to the surface of a substrate using thermal, UV, chemical, or mechanical bonding procedures. A typical array may be produced using available methods and machines well known to those of ordinary skill in the art and may contain any appropriate number of elements. (See, e.g., Schena, M. et al. (1995) Science 270:467-470; Shalon, D. et al. (1996) Genome Res. 6:639-645; Marshall, A. and J. Hodgson (1998) Nat. Biotechnol. 16:27-31.)

Full length cDNAs, Expressed Sequence Tags (ESTs), or fragments or oligomers thereof may comprise the elements of the microarray. Fragments or oligomers suitable for hybridization can be selected using software well known in the art such as LASERGENE software (DNASTAR). The array elements are hybridized with polynucleotides in a biological sample. The polynucleotides in the biological sample are conjugated to a fluorescent label or other molecular tag for ease of detection. After hybridization, nonhybridized nucleotides from the biological sample are removed, and a fluorescence scanner is used to detect hybridization at each array element. Alternatively, laser desorption and mass spectrometry may be used for detection of hybridization. The degree of complementarity and the relative abundance of each polynucleotide which hybridizes to an element on the microarray may be assessed. In one embodiment, microarray preparation and usage is described in detail below.

Tissue or Cell Sample Preparation

Total RNA is isolated from tissue samples using the guanidinium thiocyanate method and poly(A)⁺ RNA is purified using the oligo-(dT) cellulose method. Each poly(A)⁺ RNA sample is reverse transcribed using MMLV reverse-transcriptase, 0.05 pg/ μ l oligo-(dT) primer (21mer), 1X

first strand buffer, 0.03 units/ μ l RNase inhibitor, 500 μ M dATP, 500 μ M dGTP, 500 μ M dTTP, 40 μ M dCTP, 40 μ M dCTP-Cy3 (BDS) or dCTP-Cy5 (Amersham Pharmacia Biotech). The reverse transcription reaction is performed in a 25 ml volume containing 200 ng poly(A)⁺ RNA with GEMBRIGHT kits (Incyte). Specific control poly(A)⁺ RNAs are synthesized by in vitro

5 transcription from non-coding yeast genomic DNA. After incubation at 37°C for 2 hr, each reaction sample (one with Cy3 and another with Cy5 labeling) is treated with 2.5 ml of 0.5M sodium hydroxide and incubated for 20 minutes at 85°C to stop the reaction and degrade the RNA. Samples are purified using two successive CHROMA SPIN 30 gel filtration spin columns (CLONTECH Laboratories, Inc. (CLONTECH), Palo Alto CA) and after combining, both reaction

10 samples are ethanol precipitated using 1 ml of glycogen (1 mg/ml), 60 ml sodium acetate, and 300 ml of 100% ethanol. The sample is then dried to completion using a SpeedVAC (Savant Instruments Inc., Holbrook NY) and resuspended in 14 μ l 5X SSC/0.2% SDS.

Microarray Preparation

Sequences of the present invention are used to generate array elements. Each array element
15 is amplified from bacterial cells containing vectors with cloned cDNA inserts. PCR amplification uses primers complementary to the vector sequences flanking the cDNA insert. Array elements are amplified in thirty cycles of PCR from an initial quantity of 1-2 ng to a final quantity greater than 5 μ g. Amplified array elements are then purified using SEPHACRYL-400 (Amersham Pharmacia Biotech).

Purified array elements are immobilized on polymer-coated glass slides. Glass microscope slides (Corning) are cleaned by ultrasound in 0.1% SDS and acetone, with extensive distilled water washes between and after treatments. Glass slides are etched in 4% hydrofluoric acid (VWR Scientific Products Corporation (VWR), West Chester PA), washed extensively in distilled water, and coated with 0.05% aminopropyl silane (Sigma) in 95% ethanol. Coated slides are cured in a
25 110°C oven.

Array elements are applied to the coated glass substrate using a procedure described in U.S. Patent No. 5,807,522, incorporated herein by reference. 1 μ l of the array element DNA, at an average concentration of 100 ng/ μ l, is loaded into the open capillary printing element by a high-speed robotic apparatus. The apparatus then deposits about 5 nl of array element sample per slide.

30 Microarrays are UV-crosslinked using a STRATALINKER UV-crosslinker (Stratagene). Microarrays are washed at room temperature once in 0.2% SDS and three times in distilled water. Non-specific binding sites are blocked by incubation of microarrays in 0.2% casein in phosphate buffered saline (PBS) (Tropix, Inc., Bedford MA) for 30 minutes at 60°C followed by washes in 0.2% SDS and distilled water as before.

35 Hybridization

Hybridization reactions contain 9 μ l of sample mixture consisting of 0.2 μ g each of Cy3 and Cy5 labeled cDNA synthesis products in 5X SSC, 0.2% SDS hybridization buffer. The sample mixture is heated to 65°C for 5 minutes and is aliquoted onto the microarray surface and covered with an 1.8 cm² coverslip. The arrays are transferred to a waterproof chamber having a cavity just slightly larger than a microscope slide. The chamber is kept at 100% humidity internally by the addition of 140 μ l of 5X SSC in a corner of the chamber. The chamber containing the arrays is incubated for about 6.5 hours at 60°C. The arrays are washed for 10 min at 45°C in a first wash buffer (1X SSC, 0.1% SDS), three times for 10 minutes each at 45°C in a second wash buffer (0.1X SSC), and dried.

10 **Detection**

Reporter-labeled hybridization complexes are detected with a microscope equipped with an Innova 70 mixed gas 10 W laser (Coherent, Inc., Santa Clara CA) capable of generating spectral lines at 488 nm for excitation of Cy3 and at 632 nm for excitation of Cy5. The excitation laser light is focused on the array using a 20X microscope objective (Nikon, Inc., Melville NY). The slide containing the array is placed on a computer-controlled X-Y stage on the microscope and raster-scanned past the objective. The 1.8 cm x 1.8 cm array used in the present example is scanned with a resolution of 20 micrometers.

In two separate scans, a mixed gas multiline laser excites the two fluorophores sequentially. Emitted light is split, based on wavelength, into two photomultiplier tube detectors (PMT R1477, 20 Hamamatsu Photonics Systems, Bridgewater NJ) corresponding to the two fluorophores.

Appropriate filters positioned between the array and the photomultiplier tubes are used to filter the signals. The emission maxima of the fluorophores used are 565 nm for Cy3 and 650 nm for Cy5. Each array is typically scanned twice, one scan per fluorophore using the appropriate filters at the laser source, although the apparatus is capable of recording the spectra from both fluorophores 25 simultaneously.

The sensitivity of the scans is typically calibrated using the signal intensity generated by a cDNA control species added to the sample mixture at a known concentration. A specific location on the array contains a complementary DNA sequence, allowing the intensity of the signal at that location to be correlated with a weight ratio of hybridizing species of 1:100,000. When two 30 samples from different sources (e.g., representing test and control cells), each labeled with a different fluorophore, are hybridized to a single array for the purpose of identifying genes that are differentially expressed, the calibration is done by labeling samples of the calibrating cDNA with the two fluorophores and adding identical amounts of each to the hybridization mixture.

The output of the photomultiplier tube is digitized using a 12-bit RTI-835H analog-to-digital (A/D) conversion board (Analog Devices, Inc., Norwood MA) installed in an IBM-

compatible PC computer. The digitized data are displayed as an image where the signal intensity is mapped using a linear 20-color transformation to a pseudocolor scale ranging from blue (low signal) to red (high signal). The data is also analyzed quantitatively. Where two different fluorophores are excited and measured simultaneously, the data are first corrected for optical 5 crosstalk (due to overlapping emission spectra) between the fluorophores using each fluorophore's emission spectrum.

A grid is superimposed over the fluorescence signal image such that the signal from each spot is centered in each element of the grid. The fluorescence signal within each element is then integrated to obtain a numerical value corresponding to the average intensity of the signal. The 10 software used for signal analysis is the GEMTOOLS gene expression analysis program (Incyte).

XI. Complementary Polynucleotides

Sequences complementary to the TRICH-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturally occurring TRICH. Although use of oligonucleotides comprising from about 15 to 30 base pairs is described, essentially the same 15 procedure is used with smaller or with larger sequence fragments. Appropriate oligonucleotides are designed using OLIGO 4.06 software (National Biosciences) and the coding sequence of TRICH. To inhibit transcription, a complementary oligonucleotide is designed from the most unique 5' sequence and used to prevent promoter binding to the coding sequence. To inhibit translation, a complementary oligonucleotide is designed to prevent ribosomal binding to the TRICH-encoding 20 transcript.

XII. Expression of TRICH

Expression and purification of TRICH is achieved using bacterial or virus-based expression systems. For expression of TRICH in bacteria, cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA 25 transcription. Examples of such promoters include, but are not limited to, the *trp-lac* (*tac*) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the *lac* operator regulatory element. Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3). Antibiotic resistant bacteria express TRICH upon induction with isopropyl beta-D-thiogalactopyranoside (IPTG). Expression of TRICH in eukaryotic cells is achieved by infecting 30 insect or mammalian cell lines with recombinant *Autographica californica* nuclear polyhedrosis virus (AcMNPV), commonly known as baculovirus. The nonessential polyhedrin gene of baculovirus is replaced with cDNA encoding TRICH by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription. 35 Recombinant baculovirus is used to infect *Spodoptera frugiperda* (Sf9) insect cells in most cases, or

human hepatocytes, in some cases. Infection of the latter requires additional genetic modifications to baculovirus. (See Engelhard, E.K. et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945.)

In most expression systems, TRICH is synthesized as a fusion protein with, e.g., glutathione S-transferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, affinity-based purification of recombinant fusion protein from crude cell lysates. GST, a 26-kilodalton enzyme from Schistosoma japonicum, enables the purification of fusion proteins on immobilized glutathione under conditions that maintain protein activity and antigenicity (Amersham Pharmacia Biotech). Following purification, the GST moiety can be proteolytically cleaved from TRICH at specifically engineered sites. FLAG, an 8-amino acid peptide, enables immunoaffinity purification using commercially available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak). 6-His, a stretch of six consecutive histidine residues, enables purification on metal-chelate resins (QIAGEN). Methods for protein expression and purification are discussed in Ausubel (1995, *supra*, ch. 10 and 16). Purified TRICH obtained by these methods can be used directly in the assays shown in Examples XVI, XVII, and XVIII where applicable.

XIII. Functional Assays

TRICH function is assessed by expressing the sequences encoding TRICH at physiologically elevated levels in mammalian cell culture systems. cDNA is subcloned into a mammalian expression vector containing a strong promoter that drives high levels of cDNA expression. Vectors of choice include PCMV SPORT (Life Technologies) and PCR3.1 (Invitrogen, Carlsbad CA), both of which contain the cytomegalovirus promoter. 5-10 µg of recombinant vector are transiently transfected into a human cell line, for example, an endothelial or hematopoietic cell line, using either liposome formulations or electroporation. 1-2 µg of an additional plasmid containing sequences encoding a marker protein are co-transfected. Expression of a marker protein provides a means to distinguish transfected cells from nontransfected cells and is a reliable predictor of cDNA expression from the recombinant vector. Marker proteins of choice include, e.g., Green Fluorescent Protein (GFP; Clontech), CD64, or a CD64-GFP fusion protein. Flow cytometry (FCM), an automated, laser optics-based technique, is used to identify transfected cells expressing GFP or CD64-GFP and to evaluate the apoptotic state of the cells and other cellular properties.

FCM detects and quantifies the uptake of fluorescent molecules that diagnose events preceding or coincident with cell death. These events include changes in nuclear DNA content as measured by staining of DNA with propidium iodide; changes in cell size and granularity as measured by forward light scatter and 90 degree side light scatter; down-regulation of DNA synthesis as measured by decrease in bromodeoxyuridine uptake; alterations in expression of cell surface and intracellular proteins as measured by reactivity with specific antibodies; and alterations in plasma membrane

composition as measured by the binding of fluorescein-conjugated Annexin V protein to the cell surface. Methods in flow cytometry are discussed in Ormerod, M.G. (1994) Flow Cytometry, Oxford, New York NY.

The influence of TRICH on gene expression can be assessed using highly purified populations of cells transfected with sequences encoding TRICH and either CD64 or CD64-GFP. CD64 and CD64-GFP are expressed on the surface of transfected cells and bind to conserved regions of human immunoglobulin G (IgG). Transfected cells are efficiently separated from nontransfected cells using magnetic beads coated with either human IgG or antibody against CD64 (DYNAL, Lake Success NY). mRNA can be purified from the cells using methods well known by those of skill in the art. Expression of mRNA encoding TRICH and other genes of interest can be analyzed by northern analysis or microarray techniques.

XIV. Production of TRICH Specific Antibodies

TRICH substantially purified using polyacrylamide gel electrophoresis (PAGE; see, e.g., Harrington, M.G. (1990) *Methods Enzymol.* 182:488-495), or other purification techniques, is used to immunize rabbits and to produce antibodies using standard protocols.

Alternatively, the TRICH amino acid sequence is analyzed using LASERGENE software (DNASTAR) to determine regions of high immunogenicity, and a corresponding oligopeptide is synthesized and used to raise antibodies by means known to those of skill in the art. Methods for selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions are well described in the art. (See, e.g., Ausubel, 1995, supra, ch. 11.)

Typically, oligopeptides of about 15 residues in length are synthesized using an ABI 431A peptide synthesizer (Applied Biosystems) using Fmoc chemistry and coupled to KLH (Sigma-Aldrich, St. Louis MO) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) to increase immunogenicity. (See, e.g., Ausubel, 1995, supra.) Rabbits are immunized with the oligopeptide-KLH complex in complete Freund's adjuvant. Resulting antisera are tested for antipeptide and anti-TRICH activity by, for example, binding the peptide or TRICH to a substrate, blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with radio-iodinated goat anti-rabbit IgG.

XV. Purification of Naturally Occurring TRICH Using Specific Antibodies

Naturally occurring or recombinant TRICH is substantially purified by immunoaffinity chromatography using antibodies specific for TRICH. An immunoaffinity column is constructed by covalently coupling anti-TRICH antibody to an activated chromatographic resin, such as CNBr-activated SEPHAROSE (Amersham Pharmacia Biotech). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.

Media containing TRICH are passed over the immunoaffinity column, and the column is

washed under conditions that allow the preferential absorbance of TRICH (e.g., high ionic strength buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody/TRICH binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and TRICH is collected.

5 **XVI. Identification of Molecules Which Interact with TRICH**

Molecules which interact with TRICH may include transporter substrates, agonists or antagonists, modulatory proteins such as G $\beta\gamma$ proteins (Reimann, *supra*) or proteins involved in TRICH localization or clustering such as MAGUKs (Craven, *supra*). TRICH, or biologically active fragments thereof, are labeled with ^{125}I Bolton-Hunter reagent. (See, e.g., Bolton A.E. and W.M. Hunter (1973) *Biochem. J.* 133:529-539.) Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled TRICH, washed, and any wells with labeled TRICH complex are assayed. Data obtained using different concentrations of TRICH are used to calculate values for the number, affinity, and association of TRICH with the candidate molecules.

Alternatively, proteins that interact with TRICH are isolated using the yeast 2-hybrid system (Fields, S. and O. Song (1989) *Nature* 340:245-246). TRICH, or fragments thereof, are expressed as fusion proteins with the DNA binding domain of Gal4 or lexA, and potential interacting proteins are expressed as fusion proteins with an activation domain. Interactions between the TRICH fusion protein and the TRICH interacting proteins (fusion proteins with an activation domain) reconstitute a transactivation function that is observed by expression of a reporter gene. Yeast 2-hybrid systems are commercially available, and methods for use of the yeast 2-hybrid system with ion channel proteins are discussed in Niethammer, M. and M. Sheng (1998, *Meth. Enzymol.* 293:104-122).

TRICH may also be used in the PATHCALLING process (CuraGen Corp., New Haven CT) which employs the yeast two-hybrid system in a high-throughput manner to determine all interactions between the proteins encoded by two large libraries of genes (Nandabalan, K. et al. (2000) U.S. Patent No. 6,057,101).

Potential TRICH agonists or antagonists may be tested for activation or inhibition of TRICH ion channel activity using the assays described in section XVIII.

XVII. Demonstration of TRICH Activity

Ion channel activity of TRICH is demonstrated using an electrophysiological assay for ion conductance. TRICH can be expressed by transforming a mammalian cell line such as COS7, HeLa or CHO with a eukaryotic expression vector encoding TRICH. Eukaryotic expression vectors are commercially available, and the techniques to introduce them into cells are well known to those skilled in the art. A second plasmid which expresses any one of a number of marker genes, such as β -galactosidase, is co-transformed into the cells to allow rapid identification of those cells which have taken up and expressed the foreign DNA. The cells are incubated for 48-72 hours after

transformation under conditions appropriate for the cell line to allow expression and accumulation of TRICH and β -galactosidase.

Transformed cells expressing β -galactosidase are stained blue when a suitable colorimetric substrate is added to the culture media under conditions that are well known in the art. Stained cells 5 are tested for differences in membrane conductance by electrophysiological techniques that are well known in the art. Untransformed cells, and/or cells transformed with either vector sequences alone or β -galactosidase sequences alone, are used as controls and tested in parallel. Cells expressing TRICH will have higher anion or cation conductance relative to control cells. The contribution of TRICH to conductance can be confirmed by incubating the cells using antibodies specific for 10 TRICH. The antibodies will bind to the extracellular side of TRICH, thereby blocking the pore in the ion channel, and the associated conductance.

Alternatively, ion channel activity of TRICH is measured as current flow across a TRICH-containing Xenopus laevis oocyte membrane using the two-electrode voltage-clamp technique (Ishi et al., supra; Jegla, T. and L. Salkoff (1997) J. Neurosci. 17:32-44). TRICH is subcloned into an 15 appropriate Xenopus oocyte expression vector, such as pBF, and 0.5-5 ng of mRNA is injected into mature stage IV oocytes. Injected oocytes are incubated at 18 °C for 1-5 days. Inside-out macropatches are excised into an intracellular solution containing 116 mM K-gluconate, 4 mM KCl, and 10 mM Hepes (pH 7.2). The intracellular solution is supplemented with varying concentrations of the TRICH mediator, such as cAMP, cGMP, or Ca⁺² (in the form of CaCl₂), where appropriate. 20 Electrode resistance is set at 2-5 M Ω and electrodes are filled with the intracellular solution lacking mediator. Experiments are performed at room temperature from a holding potential of 0 mV. Voltage ramps (2.5 s) from -100 to 100 mV are acquired at a sampling frequency of 500 Hz. Current measured is proportional to the activity of TRICH in the assay. In particular, the activity of TRICH-1 is measured as Na⁺ conductance and the activity of TRICH-3 is measured as Ca²⁺ 25 conductance.

Transport activity of TRICH is assayed by measuring uptake of labeled substrates into Xenopus laevis oocytes. Oocytes at stages V and VI are injected with TRICH mRNA (10 ng per oocyte) and incubated for 3 days at 18°C in OR2 medium (82.5mM NaCl, 2.5 mM KCl, 1mM CaCl₂, 1mM MgCl₂, 1mM Na₂HPO₄, 5 mM Hepes, 3.8 mM NaOH, 50 μ g/ml gentamycin, pH 7.8) to 30 allow expression of TRICH. Oocytes are then transferred to standard uptake medium (100mM NaCl, 2 mM KCl, 1mM CaCl₂, 1mM MgCl₂, 10 mM Hepes/Tris pH 7.5). Uptake of various substrates (e.g., amino acids, sugars, drugs, ions, and neurotransmitters) is initiated by adding labeled substrate (e.g. radiolabeled with ³H, fluorescently labeled with rhodamine, etc.) to the oocytes. After incubating for 30 minutes, uptake is terminated by washing the oocytes three times 35 in Na⁺-free medium, measuring the incorporated label, and comparing with controls. TRICH

activity is proportional to the level of internalized labeled substrate. Test substrates include ran-GTP for TRICH-2, glucose for TRICH-5, amino acids for TRICH-6 and TRICH-14, cations for TRICH-7 and TRICH-16, Na⁺, K⁺ and Cl⁻ ions for TRICH-15, reduced folate or analogues such as methotrexate for TRICH-17, divalent cations for TRICH-18, anions such as arsenate and antimonite for TRICH-19, and nitrate or oligopeptides for TRICH-20.

ATPase activity associated with TRICH can be measured by hydrolysis of radiolabeled ATP-[γ-³²P], separation of the hydrolysis products by chromatographic methods, and quantitation of the recovered ³²P using a scintillation counter. The reaction mixture contains ATP-[γ-³²P] and varying amounts of TRICH in a suitable buffer incubated at 37°C for a suitable period of time. The 10 reaction is terminated by acid precipitation with trichloroacetic acid and then neutralized with base, and an aliquot of the reaction mixture is subjected to membrane or filter paper-based chromatography to separate the reaction products. The amount of ³²P liberated is counted in a scintillation counter. The amount of radioactivity recovered is proportional to the ATPase activity of TRICH in the assay.

Lipocalin activity of TRICH is measured by ligand fluorescence enhancement spectrofluorometry (Lin et al. (1997) Molecular Vision 3:17). Examples of ligands include retinol (Sigma, St. Louis MO) and 16-anhydroyloxy-palmitic acid (16-AP) (Molecular Probes Inc., Eugene OR). Ligand is dissolved in 100% ethanol and its concentration is estimated using known extinction coefficients (retinol: 46,000 A/M/cm at 325 nm; 16-AP: 8,200 A/M/cm at 361 nm). A 15 700 μl aliquot of 1 μM TRICH in 10 mM Tris (pH 7.5), 2 mM EDTA, and 500 mM NaCl is placed in a 1 cm path length quartz cuvette and 1 μl aliquots of ligand solution are added. Fluorescence is measured 100 seconds after each addition until readings are stable. Change in fluorescence per unit 20 change in ligand concentration is proportional to TRICH activity.

XVIII. Identification of TRICH Agonists and Antagonists

TRICH is expressed in a eukaryotic cell line such as CHO (Chinese Hamster Ovary) or HEK (Human Embryonic Kidney) 293. Ion channel activity of the transformed cells is measured in the presence and absence of candidate agonists or antagonists. Ion channel activity is assayed using patch clamp methods well known in the art or as described in Example XVII. Alternatively, ion 25 channel activity is assayed using fluorescent techniques that measure ion flux across the cell membrane (Velicelebi, G. et al. (1999) Meth. Enzymol. 294:20-47; West, M.R. and C.R. Molloy (1996) Anal. Biochem. 241:51-58). These assays may be adapted for high-throughput screening using microplates. Changes in internal ion concentration are measured using fluorescent dyes such as the Ca²⁺ indicator Fluo-4 AM, sodium-sensitive dyes such as SBFI and sodium green, or the Cl⁻ indicator MQAE (all available from Molecular Probes) in combination with the FLIPR fluorimetric 30 35 plate reading system (Molecular Devices). In a more generic version of this assay, changes in

membrane potential caused by ionic flux across the plasma membrane are measured using oxonol dyes such as DiBAC₄ (Molecular Probes). DiBAC₄ equilibrates between the extracellular solution and cellular sites according to the cellular membrane potential. The dye's fluorescence intensity is 20-fold greater when bound to hydrophobic intracellular sites, allowing detection of DiBAC₄ entry 5 into the cell (Gonzalez, J.E. and P.A. Negulescu (1998) Curr. Opin. Biotechnol. 9:624-631).

Candidate agonists or antagonists may be selected from known ion channel agonists or antagonists, peptide libraries, or combinatorial chemical libraries.

Various modifications and variations of the described methods and systems of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the 10 invention. Although the invention has been described in connection with certain embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology or related fields are intended to be within the scope of the following claims.

Table 1

Incye Project ID	Polypeptide SEQ ID NO:	Incye Polypeptide ID	Polynucleotide SEQ ID NO:	Incye Polynucleotide ID
7484831	1	7484831CD1	33	7484831CB1
2477266	2	2477266CD1	34	2477266CB1
3552033	3	3552033CD1	35	3552033CB1
4778139	4	4778139CD1	36	4778139CB1
4787433	5	4787433CD1	37	4787433CB1
7483598	6	7483598CD1	38	7483598CB1
7484823	7	7484823CD1	39	7484823CB1
143935	8	143935CD1	40	143935CB1
5923789	9	5923789CD1	41	5923789CB1
6046484	10	6046484CD1	42	6046484CB1
7481427	11	7481427CD1	43	7481427CB1
7483595	12	7483595CD1	44	7483595CB1
3788427	13	3788427CD1	45	3788427CB1
6972455	14	6972455CD1	46	6972455CB1
8077668	15	8077668CD1	47	8077668CB1
55120485	16	55120485CD1	48	55120485CB1
3112883	17	3112883CD1	49	3112883CB1
4253888	18	4253888CD1	50	4253888CB1
7479974	19	7479974CD1	51	7479974CB1
7483850	20	7483850CD1	52	7483850CB1
5508353	21	5508353CD1	53	5508353CB1
8543628	22	8543628CD1	54	8543628CB1
7482754	23	7482754CD1	55	7482754CB1
3794818	24	3794818CD1	56	3794818CB1
4717525	25	4717525CD1	57	4717525CB1
5091793	26	5091793CD1	58	5091793CB1
5945527	27	5945527CD1	59	5945527CB1
6941124	28	6941124CD1	60	6941124CB1
6972530	29	6972530CD1	61	6972530CB1

Table 1

Incyte Project ID	Polypeptide SEQ ID NO:	Incyte Polypeptide ID	Polynucleotide SEQ ID NO:	Incyte Polynucleotide ID
6991750	30	6991750CD1	62	6991750CB1
71726948	31	71726948CD1	63	71726948CB1
7487393	32	7487393CD1	64	7487393CB1

Table 2

Polypeptide SEQ ID NO:	Incyte Polypeptide ID	GenBank ID NO: g2944233	Probability score 5.1e-242	GenBank Homolog Sodium-hydrogen exchanger 6 [Homo sapiens] (Numata, M. et al. (1998) J. Biol. Chem. 273:6951-6959)
1	7484831CD1			
2	2477266CD1	92102696	1.0e-37	[Homo sapiens] karyopherin beta 3 Yaseen,N.R. and Blobel,G. (1997) Proc. Natl. Acad. Sci. U.S.A. 94:4451-4456
3	3552033CD1	g3243075	0.0	[Homo sapiens] melastatin 1 Hunter, J.J. et al. (1998) Genomics 1998 54:116-123
4	4778139CD1	98131903	5.1e-107	[Mus musculus] transient receptor potential-related protein
5	4787433CD1	g2337865	2.3e-251	[Homo sapiens] organic cation transporter
6	7483598CD1	g6978016	1.9e-32	[Rattus norvegicus] neuronal glutamine transporter Varoqui,H. et al. (2000) J. Biol. Chem. 275:4049-4054
7	7484823CD1	g619915	0.0	[Rattus norvegicus] Na,K-ATPase alpha subunit
8	143935CD1	g179304	7.8e-116	Shamraj, O.I., and Lingrel, J.B. (1994) Proc. Natl. Acad. Sci. USA 91:12952-12956
9	5923789CD1	g1552526	0.0	B12 protein [Homo sapiens] (Wolf, F.W. et al. (1992) J. Biol. Chem. 267:1317-1326)
10	6046484CD1	g3243075	0.0	sodium-calcium exchanger form 3 [Rattus norvegicus] (Nicoll, D.A. et al. (1996) J. Biol. Chem. 271:24914-24921)
11	7481427CD1	g178661	9.8e-93	melastatin 1 [Homo sapiens] (Hunter, J.J. (1998) Genomics 54:116-123) adenine nucleotide translocator-2 [Homo sapiens] (Ku, D.H. et al. (1990) J. Biol. Chem. 265: 16060-16063)

Table 2 (cont.)

Polypeptide SEQ ID NO:	Incyte Polypeptide ID	GenBank ID NO: g9453726	Probability score 3.7e-61	GenBank Homolog bA48209 .2 (Novel sulphate transporter family member) [Homo sapiens]
12	7483595CD1			
13	3788427CD1	g3694661	5.5e-209	carrier protein-like; similar to Q01888 (PTD.g266574) [Homo sapiens] [Helicobacter pylori J99] AMINO ACID ABC TRANSPORTER, BINDING PROTEIN PRECURSOR
14	6972455CD1	g4155688	1.7e-24	
15	8077668CD1	g5081312	6. 6e-47	[Rattus norvegicus] bumetanide-sensitive Na-K-2Cl cotransporter Anzai, N., et al. (1999) Roles of vasopressin and hyper tonicity in basolateral Na/K/2Cl cotransporter expression in rat kidney inner medullary collecting duct cells. Jpn. J. Physiol. 49, 201-206
16	55120485CD1	g8979801	1.1e-165	dJ37C10.3 (novel ATPase) [Homo sapiens]
17	3112883CD1	g3115983	4.0e-128	dJ206D15.1 (Reduced Folate Carrier protein RFC-LIKE) [Homo sapiens]
18	4253888CD1	g3925431	1.6e-29	[Caenorhabditis elegans] (Z82084) contains similarity to Pfam domain: PF01769 (Divalent cation transporter). Score=211.5, E-value=4.2e-60, N=2
19	7479974CD1	g5802945	7.7e-125	[Sinorhizobium sp. As4] ArsA (catalytic subunit of arsenic oxyanion-translocating ATPase)
20	7483850CD1	g11933414	6.3e-11	[Glycine max] nitrate transporter NR1r-5
21	5508353CD1	g6457270	5.2e-190	[Mus musculus] putative El-E2 ATPase Halleck, M.S. et al. (1999) Physiol. Genomics (Online) 1:139-150 MEDLINE : 20473714
22	8543628CD1	g69967939	3.7e-45	[Campylobacter jejuni] amino-acid ABC transporter integral membrane protein Takamori S. et al., (2000) Nature 407:189-94

Table 2 (cont.)

Polypeptide SEQ ID NO:	Incyte Polypeptide ID	GenBank ID NO:	Probability score	GenBank Homolog
23	7482754CD1	g11640743	1.9e-20	[Homo sapiens] amino acid transporter system A1 Wang H. et al. (2000) Biochem. Biophys. Res. Commun. 273:1175-9
24	3794818CD1	g2160125	1.5e-262	NMDAR-L [Rattus norvegicus] Sucher,N.J. et al. (1995) J. Neurosci. 15:6509-6520
25	4717525CD1	g6841066	7.8e-111	calcium-binding transporter [Homo sapiens]
26	5091793CD1	g3880532	1.1e-51	Similarity to multidrug resistance protein (SW:BMRL_BACSU) [Caenorhabditis elegans] The C. elegans Sequencing Consortium (1998) Science 282: 2012-2018
27	5945527CD1	g7543982	1.5e-161	glycerol 3-phosphate permease [Homo sapiens]
28	6941124CD1	g476222	6.8e-66	anion exchanger 3 brain isoform [Homo sapiens] Yannoukakos,D. et al. (1994) Circ. Res. 75:603-614
29	6972530CD1	g10175963	3.5e-16	potassium channel protein [Bacillus halodurans] Takami,H. et al. (1999) Extremophiles 3:21-28
30	6991750CD1	g6273849	5.5e-11	cardiac sodium-calcium exchanger [Oncorhynchus mykiss] Xue,X.H. et al. (1999) Am. J. Physiol. 277:C693-C700
31	71726948CD1	g1628579	1.0e-152	sodium iodide symporter [Homo sapiens] Smanik,P.A. et al. (1996) Biochem. Biophys. Res. Commun. 226:339-345
32	7487393CD1	g7707622	2.2e-118	organic anion transporter 4 [Homo sapiens] Cha,S.H. et al. (2000) J. Biol. Chem. 275:4507-4512

Table 3

SEQ NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
1	7484831CD1	726	S11 S52 S66 S244 S260 S546 S585 S689 S694 S695 S712 T59 T1133 T154 T177 T591 T658 T665 T684	N145 N401	Signal peptide: M1-A37	HMMER
					Transmembrane domains: P18-A39, R68-I88, R95-I115, K175-H203, L208-L1236, D245-A269, A282-Q306, A319-L347, L360-L388, Y428-G456, H482-R502, Q508-L536 N-terminus is non-cytosolic	TMAP
					Sodium/hydrogen exchanger family: L74-V540	HMMER-PFAM
					Na+/H+ exchanger isoform signatures PR01088: S44-A63, E64-I88, W89-I107, Y108-Q134, S299-D316, A318-M337, G588-D606, P612-Q640, V641-D668	BLIMPS-PRINTS
					Na+/H+ exchanger signatures PRO1084: V182-F193, G196-S210, I211-T219, G256-T266	BLIMPS-PRINTS
					Na+ transport exchanger PD01672: V182-M230, A319-V344, F381-F414, F419-S465, F466-T512	BLIMPS-PRODOM
					Sodium hydrogen exchanger 6, myeloblast PD177855: Y557-N725, G527-E547	BLAST-PRODOM
					Na+/H+ transmembrane transport antiporter, exchanger PD000631: E181-R539, L74-G125	BLAST-PRODOM
					Beta Na exchanger: DM02572 P48764 10-734: D171-R539, R21-L116 DM02572 Q01345 12-703: D179-D563, L22-R117 DM02572 P50482 16-723: E181-F558, G16-S124 DM02572 P26434 14-716: D179-D563, A48-T120, F605-P620	BLAST-DO MO

Table 3 (cont.)

EQ ID	Incyte Polypeptide ID NO: 2477266CD1	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
2	1081	S47 S79 S148	S180 S192 S315 S493 S615 S639 S697 S1011 T18 T25 T61 T147 T167 T328 T532 T586 T786 T813 T871 T881 T907 T974	N165 N686	Transmembrane domains: P197-L213 R255-V275 E498-P520 I839-V863 N terminus cytosolic	TMAP
3	1172	S212 S235 S300 S366 S401 S528 S558 S618 S687 S688 S884 S1017 S1059 S1060 N960 S1069 S1076 N1058 S1088 S1125 T9 T147 T422 T459 T460 T917 T962 T984 T1031 T1112 T1118 T1132 T1155 Y645 Y857	N144 N233 N298 N420 N576 N579 N789 N915 N960 N1074	IMPORTIN SUBUNIT KARYOPHERIN PROTEIN TRANSPORT REPEAT PD014526: F691-D1033 PD014366: A458-S615, Q389-N412 Leucine zipper pattern L177-L198 Phospholipase A2 histidine active site C725-C732	BLAST_PRODOM	
3	3552033CD1				Transient receptor: Y943-M1001, R817-E882, E750-L807, D562-W608	HMMER_PFAM
					F712-V740 E786-R806 V822-G842 M852-A872 W934-T962 N terminus cytosolic	TMAP
					Transient receptor potential family signature PRO1097: A941-T962, F963-F976, V990-M1003	BLIMPS_PRINTS
					PROTEIN MELASTATIN CHROMOSOME TRANSMEMBRANE PD018035: M1-L333 PD151509: I829-L1117 PD039592: E464-E660 PD022180: W328-R438	BLAST_PRODOM

Table 3 (cont.)

EQ ID	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases	
3					ANK MOTIF REPEAT DM03196 P34586 38-822 : I819-C1009, L583-G619, L702-L807, D114-N144, T9-Q48	BLAST_DOMO	
4	4778139CD1	742	S42 S104 S135 S194 S203 S214 S220 S221 S234 S239 S277 S319 S339 S352 S354 S403 S435 S438 S479 S491 S510 S722 S735 T111 T325 T371 T508 T575 T619 T635 T731	N238 N258 N294 N650 N711	Aminocycl-transfer RNA synthetases class-II MOTIFS signature 2 A1111-L1120	KINASE TRANSFERASE SERINE/THREONINE PROTEIN ATP BINDING ELONGATION FACTOR EEF2_EEF2K CALCITUM/CALMODULINDEPENDENT EUKARYOTIC PD011701: K536-R709	BLAST_DOMO
5	4787433CD1	577	S70 S119 S176 S319 S337 S544 S550 S560 T135 T356 T521 T534 T535 T569 Y10	N31 N57 N65 N68 N108 N345 N352 N546 N558	Sugar (and other) transporter: K120-E538	HMMER_PFAM	
6	7483598CD1	462	S24 S56 S90 S242 S243 S393 T282 T391	N100 N331 N436 N441 N457	Transmembrane domains: G17-G45 R150-R178 L185-Y205 F214-I234 S243-L263 L269-F293 I355-S377 N390-D410 T416-P436 L442-Y462 A488-L516 N terminus cytosolic Na+/H+ exchanger isoform PR010870 I32-V46 Leucine zipper pattern L146-L167 Transmembrane amino acid transporter protein: S56-G412	TMAP BLIMPS_PRINTS MOTIFS HMMER_PFAM	
					Transmembrane domains: C33-L53 G65-K85 T102-A130 N148-L168 A175-V195 W213-Y241 A250-F278 F328-A348 L358-P378 T391-N419 N terminus non-cytosolic ACID AMINO PROTEIN TRANSPORTER PERMEASE TRANSMEMBRANE INTERGENIC REGION PUTATIVE PROLINE PD001875: F39-T209	TMAP BLAST_DOMO	

Table 3 (cont.)

EQ ID	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
7	7484823CD1	1018	S10 S49 S151 S157 S372 S463 S525 S585 S648 S732 S938 T44 T82 T250 T344 T393 T399 T404 T444 T482 T618 T635 T755 T934 Y461 Y889	N212 N480	E1-E2 (cation transport) ATPase: V132-T363	HMMER_PPAM
					Na+/K+ ATPase C-terminus: R829-Y1017, E30-S113	HMMER_PPAM
					Transmembrane domains: H287-L315 E781-T809 I845-F873 V909-I931 A972-R1000 N terminus non-cytosolic	TMAP
					E1-E2 ATPases phosphoryl BL00154: V329- G365, T367-V385, K504-C514, D588-I628, V707-G730, G733-N766, G185-L202	BLIMPS_BLOCKS
					E1-E2 ATPases phosphorylation site atpase_e1_e2.prf: L354-E401	PROFILES CAN
					P-type cation-transporting atpase superfamily signature PR00119: D211-S225, C371-V385, G582-A593, A604-D614, T710-M729, S734-L746	BLIMPS_PRINTS
					H+-transporting ATPase (proton pump) signature PR00120: E682-E698, T710-G726, D742-L767	BLIMPS_PRINTS
					Sodium/potassium-transporting ATPase signature PR00121: L100-I114, L127-Q147, L291-G313, L364-V385, L501-L519, I782-L803, Y849-A869, F911-I931, R945-M969	BLIMPS_PRINTS
					ATPASE TRANSMEMBRANE TRANSPORT PUMP MAGNESIUM PD000132: V132-Y312, W314-N426, D667-E820, K473-D742, F118 S225, V581-I628 CALCIUM PD000121: L643-N749, I587-I629 CALCIUM PD000388: K828-Y1017	BLAST_PRODOM
					PTYPE TRANSPORTING ATPASE 1 PD111120: F750-H842	BLAST_PRODOM

Table 3 (cont.)

EQ ID	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
7					E1-E2 ATPases PHOSPHORYLATION SITE DM00115 P50993 80-807: P79-D806 A34474 80-807: P79-D806 P06686 80-807: P79-D806 P24797 77-804: P79-D806	BLAST_DOMO
8	143935CD1	313	S23 S30 S62 S101 S145 S146 S156 S176 S193 T51 T69 T235 T240	N166	E1-E2 ATPases phosphorylation site D373-T379	MOTIFS
9	5923789CD1	921	S69 S144 S151 S312 S381 S382 S691 S713 S720 S794 T106 T113 T125 T194 T267 T277 T460 T522 T572 T583 T594 T597 T632 T637 T672 Y405 Y608	N45 N130 N135 N817	Na+/H+ exchanger isoform PR01085H: T133-S145 EDP1 TNF ALPHA INDUCED ENDOTHELIAL B12 PD037429: L109-Q313 signal cleavage: M1-T21	BLIMPS_PRINTS BLAST_PROMO MOTIFS
					Sodium/calcium exchanger protein: L757-L905, R110-F257	HMMER_PFFAM
					PRECURSOR TRANSPORT SIGNAL GLYCOPROTEIN NA+/CA2+EXCHANGER SYMPORT TRANSMEMBRANE PD004181: W249-E390 PD001766: E385-H528 PD149743: V674-I777 PD149807: A529-G627	BLAST_PROMO
					SODIUM/CALCIUM EXCHANGER CHAIN DM05297 P48768 1-920; C48-F921 DM05297 P48765 6-969; 16-E625, I628-F921	BLAST_DOMO
					do ANTIPORTER; MURZ; III; 34.7; DM02122 S20969 450-604; N130-W249	BLAST_DOMO

Table 3 (cont.)

EQ ID NO: 9	Incyte Polypep- tide ID	Amino Acid Residues	Potential Phosphoryl- ation Sites	Potential Glycosyl- ation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
					Transmembrane domains: A2-R29, K73-S101, P167-P190, T194-M219, T237-M261, S720-P741, G748-T776, T776-D797, I815-W841, H849-R877, C891-T911 N-terminus is cytosolic	TMAP
					signal cleavage: M1-A30	SPSCAN
					Signal Peptide: M1-A32	HMMER
10	6046484CD1	1466	S86 S212 S235 S300 S366 S401 S518 S548 S608 S660 S719 S858 S988 S1011 S1039 S1040 S1049 S1056 S1087 S1114 S1166 S1224 S1234 S1323 S1399 S1410 T9 T422 T449 T450 T629 T637 T742 T941 T963 T1164 T1268 T1297 T1387 T1389 T1449 T1462 Y635	N113 N144 N233 N298 N420 N566 N569 N763 N1054 N1245	Transient receptor: Y922-H979, R791-L851, D552-W598	HMMER_PFFAM
					Transient receptor potential family	BLIMPS_PRINTS
					PRO1097: A920-T941, F942-F955	
					MELASTATIN 1 PDI183973: L1097-C1466	BLAST_PRODOM
					MELASTATIN CHROMOSOME TRANSMEMBRANE	BLAST_PRODOM
					C05C12.3 T01H8.5 I P54D1.5 IV	
					PD018035: M1-L333	
					PD151509: I803-L1097	
					PD039592: E454-T652	
					Transmembrane domains: G51-I75, D397-R425, L602-Y630, F692-V712, W717-I737, N763-N783, Y789-F809, Y818-A846, W913-T941, L970-L987 N-terminus is cytosolic	TMAP
11	7481427CD1	222	S28 S142 S159 T144		Mitochondrial carrier proteins: S7-K105, Y112-T202	HMMER_PFFAM

Table 3 (cont.)

EQ ID	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
11					Mitochondrial energy transfer proteins BL00215: L13-Q37, I158-G170	BLIMPS_BLOCKS
					Mitochondrial energy transfer proteins mitoch carrier.prf: C110-I158	PROFILESCAN
					Mitochondrial energy transfer proteins: P127-A136	MOTIFS
					Mitochondrial carrier protein signature PR00926: G120-D138, Y168-F186, D11-T24, T24-M38, G73-D93	BLIMPS_PRINTS
					Adenine nucleotide transfer protein PR00927: F8-A20, C51-R72, T84-K96, R111- V124, R146-L167, S207-S222	BLIMPS_PRINTS
					PROTEIN TRANSPORT TRANSMEMBRANE REPEAT MITOCHONDRIAL CARRIER MEMBRANE INNER MITOCHONDRIAL ADP/ATP PD000117: S7-A123, Y112-S222	BLAST_PRODOM
					MITOCHONDRIAL ENERGY TRANSFER PROTEINS DM000026 P02722 11-96: F12-I98 DM000026 S31935 14-108: F12-T107 DM000026 P02722 116-205: L117-N201 DM000026 S31935 110-208: Q108-N201	BLAST_DOMO
					Transmembrane domains: I164-R187 N-terminus is cytosolic	TMAP
12	7483595CD1	461	S168 S212 S338 S362 S439 T318	S233 S382 T348	N98 N163 N288 N344 N380 N381	SULFATE TRANSPORTER PROTEIN TRANSPORT TRANSMEMBRANE AFFINITY GLYCOPROTEIN PD001755: R216-D272, V414-D459
					SULFATE TRANSPORTERS DM01229 P40879 5-462: T23-A140, Q124-L222 DM01229 P45380 10-468: P130-L222, T23-L138 DM01229 P50443 49-505: I136-K247, T23-S144	BLAST_PRODOM
					Transmembrane domains: F6-F26, L31-S51, M62-S82, C91-A111, E128-K156, L161-R186 N-terminus is cytosolic	TMAP
13	3788427CD1	502	S146 S304 S467 T25 T96 T104 T385 T492	S446 T59 T164 T501	Mitochondrial carrier proteins: S361-Y461, S266-Q359, T172-H264	HMMER_PFFAM

Table 3 (cont.)

SEQ ID NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
13					Mitochondrial energy transfer proteins mitoch_carrier.prfl: L1362-I1417 mitoch_carrier.prf2: S270-I315	PROFILESCAN
					Mitochondrial energy transfer proteins: P287-T296	MOTIFS
					Mitochondrial carrier protein signature PR00926: G232-R252, V280-Q298, Y325-L343, V369-Q391	BLIMPS_PRINTS
					PROTEIN TRANSPORT TRANSMEMBRANE REPEAT MITOCHONDRIAL CARRIER MEMBRANE INNER MITOCHONDRIAL ADP/ATP PD000117: Y305-R453	BLAST_PRODOM
					MITOCHONDRIAL ENERGY TRANSFER PROTEINS DM00026 Q01888 I126-D14: G263-I352 DM00026 P29518 233-310: I271-I352	BLAST_DOMO
					Transmembrane domains: R176-G204, A323-K351, L424-K452 N-terminus is cytosolic	TMAP
14	6972455CD1	261	S6 S26 S135 S198 T2 T36 T64 T84 T92 T165 Y218	N82 N172 N173	SPSCAN Signal Peptide: M1-P22, M1-A23, M1-A25, M1-HMMER G27 Bacterial extracellular solute-binding protein domain: M1-L253	HMMER_PFAM
					N-terminus is non-cytosolic	TMAP
					Transmembrane domains: T175-A196 Bacterial extracellular solute binding protein signature BL01039: G52-L72, R86-Y118, L90-S101	BLIMPS_BLOCKS
					BACTERIAL EXTRACELLULAR SOLUTE-BINDING PROTEINS, FAMILY 3 DM00557 P27676 32-261: S19-K223 DM00557 P30860 5-241: L37-W252 DM00557 P39174 15-260: L8-W252 DM00557 P45678 11-258: A11-W252	BLAST_DOMO

Table 3 (cont.)

SEQ ID NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
15	8077668CD1	570	S40 S82 S265 S314 S349 S442 S446 S551 T50 T324 T344	N11 N342 N440	Transmembrane domains: V163-V183 N194-T214 V232-I259 I275-R302 S353-N373 A382-G402 P465-G481 N-terminus is cytosolic	TMAP
16	55120485CD1	1033	S5 S103 S159 S241 S249 S338 S567 S587 S671 S798 S833 S850 S1008 S1028 T78 T97 T172 T375 T490 T664 T701 T784 T859 T871 Y85	N540 N669 N781 N819 N848 N867 N875 N1005	CHLORIDE; DM01337 P55011 409-906: V278-G402 DM01337 P55013 381-879: V278-G402 DM01337 A53491 381-879: V278-G402 DM01337 P55014 297-795: V278-G402	do SENSITIVE; COTRANSPORTER; SODIUM; BLAST_DOMO
					Transmembrane domains: F24-Y52 K197-L217 Y223-Y243 L394-Y422 D429-N454 T877-F893 T903-L931 L937-E964 N-terminus is non-cytosolic	TMAP
					E1-E2 ATPase domain: V268-P324	HMMER_PFAAM
					E1-E2 ATPases phosphorylation site signature BL00154: G284-L301, V442-G478, I480-L498, K624-C634, N695-M735	BLIMPS_BLOCKS
					E1-E2 ATPases phosphorylation site: F515	PROFILES CAN
					P-type cation-transporting ATPase superfamily signature PR00119: N309-T323, C484-L498, A711-D721	BLIMPS_PRINTS
					Sodium/potassium-transporting ATPase signature PR00121: C477-L498, V621-V639	BLIMPS_PRINTS
					ATPASE HYDROLASE TRANSMEMBRANE PHOSPHORYLATION ATP BINDING TRANSPORT PUMP CALCIUM MAGNESIUM MEMBRANE PD000132: I230- D494	BLAST_PRODOM

Table 3 (cont.)

SEQ ID NO.	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
16					E1-E2 ATPases PHOSPHORYLATION SITE DM00115 P22189 49-801: Q597-P738, W196-K322, P389-P447, S671-L723 DM00115 P37278 58-755: I192-I743, V822-K840 DM00115 P47317 26-695: F600-E749, I230-K559, K815-E853 DM00115 P54707 97-825: I232-I743, L813-E853	BLAST_DOMO
17	3112883CD1	496	S40 S211 S241 S251 S274 S275 S463 S466 S482 S493 T47 T117		E1-E2 ATPases phosphorylation site: D486-T492 Reduced folate carrier domain: S10-V441	MOTIFS HMMER_PFAM
18	4253888CD1	573	S8 S35 S77 S88 S106 S137 S229 S304 S321 S340 S379 T10 T27 T148 T194 T401 Y115		Transmembrane domains: L8-M28 N53-Y76 Y79-TMAP Q107 F111-R138 L148-S168 V174-K194 K276-D304 N316-Y336 D342-L362 A367-A395 L405-V425 P434-L454 N-terminus is cytosolic FOLATE CARRIER PROTEIN REDUCED TRANSPORTER GLYCOPROTEIN FOLATE BINDING TRANSPORT TRANSMEMBRANE METHOTREXATE PD003967: S11-E230, G327-S493, F262-W303	BLAST_PRODOM TMAP
19	7479974CD1	573	S69 S138 S198 S221 S261 S355 S473 S478 S509 S543 T24 T159 T176 T401 T406 T474 T499		Divalent cation transporter domain: L199-S335, Y413-H559 Anion-transporting ATPase domain: L354-S553	HMMER_PFAM HMMER_PFAM

Table 3 (cont.)

EQ ID	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
19					PLASMID ARSENICAL PUMPDRIVING ATPBINDING ARSA HYDROLASE RESISTANCE ATPBINDING ARSA PDD006335: D460-P568	BLAST_PRODOM
					NIFH_FRXC FAMILY DM00105 P08690 7-180; Y20-E191 DM00105 P08690 326-473; L333-K472 DM00105 P30632 17-190; K19-S167	BLAST_DOMO
					ATP/GTP-binding site motif A (P-loop): G25-T32, G337-T344	MOTIFS
20	7483850CD1	248	S42 S85 S121 S198 S215 S227 S233 S239		Transmembrane domains: D8-S36, R44-I72, C96-R123, S133-I158, L171-F194 N-terminus is non-cytosolic	TMAP
					POT family (proton/oligopeptide symporter) domain: G56-N141	HMMER_PFAM
21	5508353CD1	761	S5 S62 S109 S115 S185 S312 S409 S476 S556 S706 S734 T28 T30 T78 T162 T201 T227 T335 T534 T674 T695 T738 Y189	N700 N732	Transmembrane domains: P84-K112, Y459-N487, P528-Y553, G564-K584, L592-C612, I624-Y652 N-terminus is cytosolic	TMAP
					P-type cation-transporting atpase superfamily signature PR00119: A247-D257	BLIMPS_PRINTS
					H+-transporting Atpase (proton pump) signature PR00120: T162-A180	BLIMPS_BLOCKS
					ATPASE HYDROLASE TRANSMEMBRANE PHOSPHORYLATION ATP-BINDING PROTEIN PROBABLE CALCIUM TRANSPORTING CALCIUM TRANSPORT PDD04657: A423-P661	BLAST_PRODOM
					ATPASE HYDROLASE TRANSMEMBRANE PHOSPHORYLATION ATP-BINDING PROBABLE PROTEIN CALCIUM TRANSPORTING CALCIUM TRANSPORT PD149930: C363-F422	BLAST_PRODOM

Table 3 (cont.)

SEQ ID NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
21					ATPASE; CALCIUM; TRANSPORTING; DM02405 P32660 318-1225: E45-N487 ATPASE; CALCIUM; TRANSPORTING; DM02405 Q09891 206-1107: L56-N487	BLAST_DOMO
					ATPASE; CALCIUM; TRANSPORTING; DM02405 S51243 356-1267: E59-F486 ATPASE; CALCIUM; TRANSPORTING; DM02405 P39524 236-1049: Y58-D287, L332-N487	BLAST_DOMO
					ATP/GTP-binding site motif A (P-loop): G331-T338, A699-S706	MOTIFS
22	8543628CD1	219	S4 T148		Binding-protein-dependent transport system: A112-Y185	HMMER_PFAM
					Transmembrane domains: A20-N48, V70-S98, T156-R183, Y185-A208 N-terminus is non-cytosolic	TMAP
					Binding-protein-dependent transport systems inner membrane component: V105-T161	PROFILESCAN
					PROTEIN TRANSPORT TRANSMEMBRANE PERMEASE MEMBRANE AMINO ACID INNER SYSTEM	BLAST_PRODOM
					TRANSPORTER ABC PD001196: E7-G111	
					BINDING-PROTEIN-DEPENDENT TRANSPORT SYSTEMS INNER MEMBRANE DM00388 P10345 3-214: L9-R215	BLAST_DOMO
					BINDING-PROTEIN-DEPENDENT TRANSPORT SYSTEMS INNER MEMBRANE DM00388 P42399 12-220: S12-R215	BLAST_DOMO
					BINDING-PROTEIN-DEPENDENT TRANSPORT SYSTEMS INNER MEMBRANE DM00388 P45023 17-232: P14-R215	BLAST_DOMO
					BINDING-PROTEIN-DEPENDENT TRANSPORT SYSTEMS INNER MEMBRANE DM00388 P42200 15-226: P14-R215	BLAST_DOMO
					Binding-protein-dependent transport systems inner membrane component signature: L113-P141	MOTIFS
23	7482754CD1	463	S249 S254 S420 T451	S413 T458	Transmembrane amino acid transporter protein: A48-C433	HMMER_PFAM

Table 3 (cont.)

EQ ID	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
23					Transmembrane domains: L24-N44, G54-V74, R93-R121, D148-R168, H180-T200, S249-S274, G298-R326, W353-M373, S377-P397 N-terminus is non-cytosolic	TMAP
					Transmembrane four family signature PR00259: F59-Y82, L73-A99, V302-Y328 ACID AMINO PROTEIN TRANSPORTER PERMEASE TRANSMEMBRANE INTERGENIC REGION PUTATIVE PROLINE PDO001875: F31-I320	BLIMPS_PRINTS BLAST_PRODOM
24	3794818CD1	1043	S36 S153 S206 S372 S388 S402 S536 S633 S700 S709 S721 S747 S849 S867 S876 S891 S901 S1014 S1036 T157 T192 T210 T421 T491 T593 T604 T636 T641 T673 T696 T725 T916	N69 N344 N451 N465 N609 M1-G21	Signal Peptide: HMMER	HMMER
					SPSCAN signal_cleavage: M1-G22	
					Ligand-gated ion channel: H574-E852	HMMER_PFM
					Transmembrane domains: H574-R598, P640-V667, T823-L847 N terminus is non-cytosolic	TMAP
					NMDA receptor signature PR00177: F493-L521, T577-G602, L644-D671, F831-F855	BLIMPS_PRINTS
					R32184_2 TONOTROPIC GLUTAMATE RECEPTOR PDO156309: A77-Y477 RECEPTOR GLUTAMATE SUBUNIT SIGNAL PRECURSOR CHANNEL IONIC TRANSMEMBRANE POSTSYNAPTIC PDO000500: M570-E852	BLAST_PRODOM BLAST_PRODOM

Table 3 (cont.)

SEQ ID NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
24					RECEPTOR SIGNAL GLUTAMATE SUBUNIT PROTEIN TRANSMEMBRANE CHANNEL IONIC PD000273: G478-A563, G728-V817	BLAST_PRODOM
					GLUTAMATE RECEPTOR DM00247 Q03391 640-919 : T631-S901, C964-P980	BLAST_DOMO
					DM00247 P35436 615-886: T631-F856	
					DM00247 Q01098 613-882: T631-E904	
					DM00393 Q01097 377-614: G387-F628	
25	4717525CD1	480	S4 S23 S56 S105 S176 S411 S418 T161 T170 T220 T302 T410 T469		Mitochondrial carrier proteins: M184-T276, G319-L413	HMMER_PFAM
					EF hand: Q117-H145, R13-L141, R81-L109	HMMER_PFAM
					Mitochondrial energy transfer proteins BL00215: V190-Q214, I369-G381	BLIMPS_BLOCKS
					Mitochondrial energy transfer proteins signature: I320-S371, K187-L241, V279-S331	PROFILESCAN
					Mitochondrial carrier protein signature PR00926: Q188-T201, T201-V215, G244-E264, C333-Q351, Y379-Y397, G327-Q349	BLIMPS_PRINTS
					Graves disease carrier protein signature PR00928: Q274-Q294, P205-I225, Y263-S287, I369-Y389	BLIMPS_PRINTS
					TRANSPORT TRANSMEMBRANE CARRIER INNER MITOCHONDRIAL ADP/ATP PD000117: K187-S466	BLAST_PRODOM
					MITOCHONDRIAL ENERGY TRANSFER PROTEINS DM000026 S57544 26-107: V190-I270 DM000026 Q01888 38-124: V190-I270	BLAST_DOMO
					EF-hand calcium-binding domain: D22-L34 D90-I102	MOTIFS

Table 3 (cont.)

SEQ ID NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
26	5091793CD1	518	S8 S38 S161 S240 S253 S331 S389 S510 T378	N6 N171 N371 N376	Transmembrane domains: G77-W97, K104-L124, N131-V151, A170-T191, Q206-E234, I264-P292, Q304-K332, E336-I364, A406-N434, P481-L509 N terminus is non-cytosolic.	TMAP
27	5945527CD1	501	S39 S66 S263 S267 S329 S421 T338 T418	N53 N62 N68	Transmembrane domains: V9-H37, E85-S105, L114-L134, L197-T225, G290-W317, V342-A362, Y379-G399, T433-L453, N460-L480 N terminus is cytosolic.	TMAP
28	6941124CD1	801	S21 S171 S305 S399 S442 S469 S564 T6 T20 T56 T130 T174 T198 T200 T400 T420 T438 T704 Y791	N52 N388 N455 N463	GLPT family of transporters DM02439 P37948 1-403 : K84-H244, L305-L446 DM02439 P09836 1-401: L87-E234, P295-A426, S16-K41 DM02439 P08194 1-403: L87-D256, Q251-A444, R22-I45 HCO3- transporter family: A571-L745, H240-F546, R119-L208	BLIMPS_BLOCKS BLAST_DOMO BLAST_TRANSPORTERS
					Transmembrane domains: V282-G304, L330-I358, T373-M393, I403-I423, H478-Y499, V514-E542, S564-L592, T604-A630, S672-Y700, L748-I776 N terminus is non-cytosolic.	TMAP

Table 3 (cont.)

EQ ID NO: 28	Incyte Polypeptide ID 28	Amino Acid Residues Incident Sites	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases BLIMPS_BLOCKS
					Anion exchangers family BR00219: S448-T483, P243-V282, T289-D312, L342-F380, A382-Y429, Q481-S534, A567-W608, D609-E647, H653-F698, Y700-T743, L748-I787	
					Anion exchanger signature PR00165: G253-T275, K284-G304, A371-S390, A482-L501, I517-G537	BLIMPS_PRINTS
					ANION EXCHANGE TRANSMEMBRANE GLYCO-PROTEIN LIPOPROTEIN PALMITATE BICARBONATE COTRANSporter PD001455: T483-T743, F752-S457, R158-A237	BLAST_PRODOM
					BAND 3 ANION TRANSPORT PROTEIN DM02294 P48751 601-1229: A190-E798 DM02294 P02730 311-908: T483-E798 DM02294 A42497 403-1027: F252-E798 DM02294 P04920 602-1237: D248-E798	BLAST_DOMO
					SPSCAN signal_cleavage: M1-A34	
29	6972530CD1	344	S101 S133 S157 S319 S333 T117 T145 T196 T286 Y330	N223 N299	Signal Peptide: M9-A34	HMMER
					Transmembrane domains: R8-L36 V39-V63 Q71-T99 N terminus is non-cytosolic.	TMAP

Table 3 (cont.)

SEQ NO.	Incyte ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
30	6991750CD1	2701	S1063 S1231 S1270 S40 S1367 S1526 S551 S1603 S193 S1710 S1793 S223 S1824 S1866 S274 S1879 S230 S1893 S1915 S651 S1922 S307	N56 N218 N319 N330 N364 N396 N452 N480 N539 N607 N667 N691 N772 N828 N875 N885 N921 N949 N964 N988 N1135	Transmembrane domains: I965-S986, E1281-T1300, N1670-S1692, V1836-W1864, V2276-N2292, A2507-F2534. N terminus is non-cytosolic.	TMAP
			S1952 S1978 S461 S2029 S382 S2045 S2090 S2230 S495 S2388 S2438 S792 S2464 S790 S2488 S2496 S2506 S901 S2537 S809 S2545 S2573 S856 S2631	N1153 N1166 N1241 N1259 N1273 N1305 N1323 N1372 N1479 N1525 N1528 N1618 N1624 N1892 N1969 N2134 N2342 N2428 N2510 N2596 N2625	Adenosine and AMP deaminase signature S2386-P2392	MOTIFS

Table 3 (cont.)

SEQ ID NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
30			T122 T158 T276 T417 T581 T774 T881 T989 T1004 T1030 T1045 T1051 S941 T1058 T1090 S953 T1307 T1559 T1610 T1658 T1786 T1887 T1945 T2171 T2213 T2266 T2328 T2409 T2415 T2446 T2450 T2459 T2549 T2694 Y130		Sodium/Calcium Exchanger Chain DM05297 P48765 6-969 : v263-T492 P=2.8-09	BLAST_DOMO
31	71726948CD1	610	S114 S269 S317 S375 S377 S563 S576 S602 T3 T41 T53 T74 T158 T312 T364 T483 T491 T557 Y554	N260 N481 N485 N606	Signal Peptide: HMMER F45-G449	HMMER HMMER_PFAM TMAP

Table 3 (cont.)

EQ ID	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
31					TRANSMEMBRANE TRANSPORT PERMEASE SODIUM SYMPORT PROLINE GLYCOPROTEIN PD000991: F45-P234, L129-G449	BLAST_PRODOM
					SYMPORTER SODIUM IODIDE THYROID PD024705: A451-P552	BLAST_PRODOM
					SODIUM: SOLUTE SYMPORTER FAMILY DM00745 JC2382 3-485:Y15-W455 DM00745 P45174 3-495:T9-W455 DM00745 P31448 1-494:F18-G449 DM00745 P44963 1-483:V23-Y463	BLAST_DOMO
32	7487393CD1	552	S46 S60 S68 S143 S167 S276 S282 S408 S475 S537 T58 T133 T311 T323 T391 T526	N39 N56 N62 N102 N377	Sugar (and other) transporter: I18-V530	HMMER_PFM
					Transmembrane domains: V10-E38, K145-G164, I174-L202, M232-A252, Q262-S282, K345-I368, G375-L397, F412-L440, S475-L496, P497-L514 N terminus is non-cytosolic.	TMAP
					ORGANIC TRANSPORTERLIKE TRANSPORT PROTEIN RENAL ANION TRANSPORTER CATIONIC KIDNEY SPECIFIC SOLUTE PD151320: N102-K145	BLAST_PRODOM

Table 4

Polynucleotide SEQ ID NO./ Incyte ID/ Sequence Length	Sequence Fragments
337/484831CB1/2365	1-325, 94-240, 106-242, 106-244, 106-514, 106-515, 106-582, 106-593, 106-597, 106-612, 109-245, 110-245, 128-770, 160-516, 164-267, 176-549, 181-440, 184-581, 234-317, 234-409, 252-770, 275-469, 275-473, 275-570, 275-636, 275-700, 336-1038, 338-1038, 377-543, 413-622, 414-1038, 495-1038, 504-764, 504-1009, 521-952, 521-1038, 523-680, 704-974, 781-1246, 824-1377, 884-1127, 904-1254, 916-1533, 940-1038, 958-1226, 978-1038, 990-1038, 1018-1637, 1031-1722, 1064-1463, 1070-1211, 1086-1149, 1110-1336, 1110-1375, 1110-1386, 1110-1387, 1110-1391, 1110-1462, 1113-1382, 1139-1622, 1144-1622, 1153-1629, 1178-1434, 1178-1749, 1210-1694, 1262-1309, 1445-1969, 1445-2000, 1455-1830, 1463-1630, 1478-1701, 1519-1790, 1526-1952, 1582-1838, 1669-1886, 1676-1846, 1772-2205, 1846-2117, 1847-2060, 1890-2209, 1934-2041, 1938-2315, 1950-2365
341/2477266CB1/3400	1-89, 1-306, 13-348, 13-665, 16-468, 23-270, 23-271, 23-404, 23-512, 27-306, 35-386, 35-589, 37-693, 124-795, 240-510, 317-524, 366-999, 459-996, 473-1144, 492-1041, 493-1060, 505-1019, 761-1360, 798-1025, 798-1268, 872-1360, 875-1143, 988-1278, 996-1252, 996-1612, 1024-1265, 1032-1623, 1054-1507, 1078-1341, 1192-1726, 1213-1608, 1218-1469, 1253-1798, 1332-1567, 1332-1800, 1345-1908, 1387-1693, 1419-1981, 1434-1737, 1436-1726, 1518-2165, 1524-2132, 1562-1836, 1775-2024, 1779-2022, 1797-2084, 1890-2052, 1890-2116, 1890-2334, 1890-2438, 1913-2196, 1942-2197, 1949-2528, 1952-2509, 1954-2029, 1981-2621, 1994-2104, 1994-2174, 1994-2252, 1994-2258, 1994-2259, 2039-2147, 2040-2319, 2062-2315, 2142-2732, 2205-2493, 2238-2536, 2255-2795, 2275-2544, 2277-2528, 2302-2718, 2337-2622, 2380-2920, 2444-2841, 2467-2711, 2472-2728, 2472-2737, 2472-2955, 2484-2753, 2492-2641, 2503-2746, 2512-3142, 2517-3095, 2555-3131, 2568-3246, 2590-2931, 2605-2903, 2643-2973, 2646-2931, 2656-2902, 2673-3284, 2725-3400, 2766-3312, 2766-3390, 2766-3398, 2795-3082, 2800-3097, 2818-3039, 2818-3355, 2832-3051, 2832-3088, 2851-307, 2851-3015, 2851-3028, 2854-3120, 2868-3336, 2871-3133, 2871-3195, 2884-3181, 2892-3104
35/3552033CB1/4458	1-1188, 405-1189, 422-1189, 44-1152, 47-1189, 50-1189, 51-1189, 515-1185, 523-1188, 535-1189, 540-1188, 547-1189, 550-1189, 560-1189, 561-1189, 570-1189, 571-1275, 579-1189, 585-1189, 586-1141, 602-1189, 602-1275, 629-1275, 631-1189, 635-1189, 636-1275, 638-1189, 640-1189, 643-1189, 653-1189, 654-1189, 655-1120, 675-1240, 695-1188, 699-1188, 700-1189, 701-1189, 708-1189, 735-1189, 743-1189, 746-1189, 748-1189, 749-1189, 752-1189, 761-1189, 762-1189, 763-1189, 768-1189, 775-1189, 780-1188, 820-1189, 844-1600, 887-1496, 970-1185, 1008-1841, 1023-1188, 1028-1189, 1055-1574, 1108-1275, 1171-1275, 1491-2041, 1491-2086, 1551-2416, 1874-2534, 1874-2548, 1874-2561, 1874-2574, 1874-2576, 1875-2432, 1875-2436, 1875-2539, 1887-2564, 1909-2592, 1917-2507, 1940-2494, 1955-2542, 1959-2477, 1962-2428, 1964-2460, 1978-2424, 1988-2500, 1992-2500, 1994-2673, 1996-2500, 2014-2906, 2017-2437, 2025-2578, 2033-2525, 2038-2492, 2045-2611, 2053-2644, 2066-2555, 2087-2691, 2104-2699, 2105-2514, 2147-2427,

Table 4

Polynucleotide SEQ ID NO./ Incyte ID/ Sequence Length	Sequence Fragments
35	2171-2621, 2181-2699, 2196-2743, 2205-3023, 2207-2752, 2215-2959, 2221-3026, 2222-3058, 2229-2765, 2249-27165, 2290-3024, 2291-2959, 2295-2796, 2300-2958, 2320-3022, 2325-2763, 2384-3024, 2391-3024, 2406-3024, 2407-3024, 2414-3024, 2420-3024, 2433-2718, 2433-2900, 2433-3024, 2435-3025, 2434-3024, 2438-3024, 2441-3024, 2446-3024, 2451-3023, 2455-3024, 2470-3024, 2479-3024, 2480-3024, 2482-3024, 2484-3024, 2488-3024, 2491-3024, 2501-3024, 2508-3024, 2511-3024, 2522-3024, 2582-3024, 2583-3024, 2587-3024, 2590-3024, 2592-2877, 2592-3022, 2592-3024, 2596-3024, 2602-3279, 2612-3024, 2621-3063, 2621-3092, 2626-3279, 2632-3024, 2633-3024, 2652-3024, 2653-3024, 2671-3015, 2671-3024, 2671-3022, 2671-3024, 2688-3024, 2688-3024, 2689-3024, 2718-3024, 2732-3279, 2734-3024, 2736-3279, 2763-3024, 2766-2830, 2770-3021, 2773-3203, 2802-3279, 2812-3004, 2831-3008, 2831-3037, 2831-3117, 2831-3220, 2831-3225, 2831-3300, 2831-3490, 2842-3330, 2853-3278, 2866-3103, 2902-3270, 2998-3234, 2998-3456, 2998-3524, 2998-3550, 2998-3606, 3003-3715, 3032-3279, 3052-3811, 3078-3935, 3175-3935, 3182-3854,
36/4778139CBI/2722	3219-3792, 3224-3807, 3247-3811, 3267-3811, 3355-3885, 3359-3811, 3359-3429, 3359-4035, 3393-4035, 3402-3915, 3423-3982, 3427-4044, 3444-3811, 3463-4149, 3472-4150, 3485-4080, 3498-3527, 3510-3811, 3521-4030, 3547-4047, 3552-4035, 3552-4039, 3606-4267, 3606-4430, 3629-3871, 3629-4047, 3631-4047, 3660-4047, 3673-4416, 3676-3848, 3703-3811, 3713-3864, 3714-3972, 3767-4458, 3792-4454, 3817-4084, 3820-4047, 3852-4458, 3887-4035, 3932-4144, 3934-4347, 3939-4152, 4201-4458, 4219-4458, 4295-4458
37/478433CBI/1924	1-77, 1-100, 1-480, 1-545, 1-554, 1-567, 1-574, 1-575, 1-594, 1-606, 1-671, 1-1206, 5-2226, 157-394, 424-874, 433-874, 448-874, 459-874, 461-874, 467-874, 481-874, 498-874, 508-874, 563-874, 580-874, 1464-1728, 1464-1973, 1660-1896, 1660-1919, 1935-2155, 2166-2453, 2166-2722, 2178-2456
38/7483598CBI/1797	940-1543, 951-1593, 952-1426, 962-1646, 990-1548, 1001-1588, 1029-1577, 1047-1657, 1048-1442, 1059-1472, 1059-1569, 1064-1527, 1075-1646, 1076-1628, 1082-1734, 1091-1693, 1095-1701, 1099-1339, 1104-1681, 1104-1707, 1106-1674, 1112-1332, 1119-1583, 1123-1765, 1129-1683, 1169-1608, 1200-1626, 1207-1745, 1218-1832, 1230-1611, 1232-1669, 1244-1741, 1256-1758, 1265-1584, 1273-1758, 1280-1557, 1284-1765, 1303-1924, 1356-1592, 1359-1585, 1359-1823, 1366-1917, 1382-1911, 1387-1913, 1518-1924, 1575-1909, 1776-1886
	1-808, 8-302, 13-417, 14-808, 179-808, 490-808, 491-808, 732-1017, 881-1226, 881-1227, 891-1105, 1157-1429, 1157-1700, 1184-1753, 1184-1760, 1197-1708, 1197-1754, 1197-1755, 1197-1757, 1199-1757, 1199-1797, 1200-1754, 1292-1707, 1295-1760, 1324-1759, 1359-1744, 1359-1749, 1359-1760, 1362-1760

Table 4

Polynucleotide SEQ ID NO./ Incyte ID/ Sequence Length	Sequence Fragments
39/7484823CB1/3277	1-174, 64-1458, 1324-1458, 1324-1660, 1326-1458, 1327-1458, 1340-1458, 1458-1660, 1459-1660, 1459-2936, 1484-1651, 1506-1732, 1663-2339, 1700-2334, 1724-2174, 1724-2423, 1792-2400, 1804-2530, 1822-2278, 1834-2323, 1840-2516, 1878-2430, 1891-2244, 1922-2694, 1926-2592, 1931-2472, 1938-2431, 1940-2458, 1941-2472, 1944-2546, 1956-2566, 1962-2561, 1970-2530, 1976-2515, 1977-2497, 1980-2431, 2012-2660, 2020-2596, 2046-2671, 2049-2576, 2083-2578, 2095-2752, 2098-2659, 2105-2794, 2114-2787, 2129-2908, 2162-2720, 2163-2689, 2225-3024, 2229-2763, 2241-2925, 2358-3057, 2374-3044, 2444-2930, 2455-3277, 2531-3023, 2557-3140, 2586-3078
40/143935CB1/2773	1-217, 1-462, 1-942, 16-601, 34-217, 39-566, 176-217, 206-667, 217-756, 217-759, 274-800, 288-919, 316-814, 316-956, 328-967, 334-597, 374-939, 377-855, 388-785, 388-930, 389-791, 407-678, 409-1068, 435-1053, 464-1123, 468-723, 475-1045, 524-1016, 527-684, 527-1039, 564-964, 564-1004, 564-1098, 565-896, 574-1137, 598-933, 660-1190, 660-1192, 663-1285, 690-967, 704-1368, 713-1134, 748-1007, 760-1016, 760-1032, 760-1210, 769-1455, 771-1097, 782-1415, 808-1391, 867-1133, 870-1407, 873-1460, 885-1501, 899-1078, 899-1158, 961-1613, 976-1240, 994-1459, 1006-1508, 1014-1386, 1017-1416, 1025-1452, 1044-1307, 1059-1249, 1059-1668, 1085-1705, 1098-1506, 1099-1346, 1099-1401, 1099-1545, 1149-1353, 1157-1592, 1157-1661, 1193-1716, 1202-1431, 1212-1753, 1250-1654, 1268-1570, 1285-1841, 1285-1851, 1285-1919, 1285-1930, 1285-1945, 1285-1952, 1285-1963, 1285-1965, 1285-1979, 1292-1886, 1300-1453, 1305-1577, 1310-1858, 1316-1530, 1317-1569, 1317-1872, 1317-1915, 1353-1865, 1356-1488, 1372-1714, 1416-2049, 1421-1709, 1430-1847, 1437-1742, 1441-1991, 1500-1747, 1505-2163, 1515-1815, 1515-1911, 1538-2068, 1556-1827, 1560-1954, 1572-1793, 1573-1837, 1580-2192, 1585-2093, 1601-1839, 1601-1840, 1618-2132, 1632-1887, 1651-1754, 1686-1944, 1686-1950, 1686-1965, 1686-2298, 1688-1978, 1689-1955, 1734-2319, 1743-2254, 1743-2377, 1749-2032, 1755-1996, 1755-2346, 1762-2492, 1763-2071, 1774-2011, 1784-2152, 1795-2063, 1795-2066, 1797-2299, 1819-2416, 1826-2091, 1827-2517, 1829-2490, 1829-2508, 1839-2076, 1842-2348, 1868-2396, 1868-2421, 1873-2459, 1875-2415, 1878-2145, 1880-2563, 1880-2052, 1880-2415, 1880-2467, 1880-2470, 1897-2131, 1907-2180, 1908-2168, 1917-2209, 1919-2386, 1919-2470, 1922-2470, 1923-2179, 1936-2195, 1937-2180, 1941-2267, 1944-2627, 1945-2556, 1965-2538, 1980-2269, 1982-2504, 1983-2560, 2001-2303, 2005-2567, 2012-2410, 2021-2569, 2027-2289, 2027-2303, 2027-2487, 2039-2531, 2048-2277, 2058-2293, 2089-2369, 2095-2559, 2096-2559, 2104-2561, 2108-2580, 2110-2564, 2113-2559, 2115-2669, 2116-2564, 2117-2561, 2120-2422, 2122-2577, 2128-2439, 2129-2580, 2143-2559, 2145-2670, 2146-2561, 2151-2453, 2152-2559, 2153-2401, 2153-2572, 2154-2562, 2156-2580, 2168-2438, 2168-2550, 2169-2559, 2171-2563, 2188-2405, 2188-2559, 2196-2773, 2204-2472, 2220-2455, 2222-2559, 2230-2538, 2233-2471, 2233-2502, 2233-2773, 2235-2567, 2237-2572, 2243-2536, 2251-2564, 2279-2559, 2296-2559, 2299-2773, 2299-2561, 2323-2630, 2332-2567, 2333-2621, 2346-2562

Table 4

Polynucleotide SEQ ID NO./ Incyte ID/ Sequence Length	Sequence Fragments
41/5923789CB1/2966	1-1985, 1337-1980, 1564-2177, 1960-2223, 1960-2460, 1960-2503, 1960-2510, 1960-2622, 1973-2554, 2029-2390, 2087-2410, 2087-2686, 2087-2838, 2139-2966, 2161-2348, 2193-2420, 2205-2412, 2216-2420, 2227-2838, 2233-2838, 2271-2838, 2306-2833, 2314-2778, 2327-2838, 2337-2838, 2339-2838, 2355-2767, 2355-2838, 2359-2838, 2377-2838, 2378-2838, 2396-2575
42/6046484CB1/4404	1-966, 355-1040, 456-1274, 477-1118, 520-1325, 722-1557, 817-1375, 859-1564, 940-1040, 1025-1441, 1165-1850, 1198-1314, 1314-1850, 1413-1850, 1417-4404, 1444-1850
43/7481427CB1/669	1-669
44/7483595CB1/1823	1-351, 309-664, 348-668, 541-1059, 817-889, 988-1355, 1060-1248, 1060-1663, 1277-1663, 1354-1411, 1354-1577, 1354-1636, 1355-1823
45/3788427CB1/2931	1-1173, 428-1018, 432-983, 463-733, 497-793, 649-1173, 707-1128, 771-1417, 842-1065, 975-1512, 1056-1310, 1056-1604, 1056-1746, 1056-1771, 1059-1681, 1114-1696, 1133-1562, 1197-1817, 1309-1798, 1343-1972, 1344-1884, 1363-1652, 1363-1912, 1364-1978, 1371-1910, 1392-2005, 1396-1803, 1410-1943, 1419-2005, 1498-2167, 1502-1723, 1537-2239, 1547-1822, 1548-1975, 1551-2230, 1558-2210, 1561-2168, 1569-2279, 1570-2232, 1591-2280, 1596-2135, 1602-1879, 1617-2134, 1620-2322, 1670-2289, 1706-2210, 1714-1926, 1755-2450, 1773-2391, 1786-2373, 1805-2270, 1821-2067, 1890-2464, 1968-2608, 1979-2567, 2127-2446, 2161-2439, 2230-2425, 2230-2677, 2230-2722, 2230-2752, 2230-2762, 2230-2821, 2245-2512, 2247-2378, 2247-2419, 2247-2838, 2275-2558, 2276-2822, 2314-2585, 2352-2630, 2394-2863, 2446-2930, 2466-2733, 2486-2734, 2490-2743, 2490-2770, 2578-2822, 2599-2834, 2663-2861, 2618-2891, 2628-2931
46/6972455CB1/1492	1-447, 1-576, 1-620, 1-649, 255-890, 289-944, 496-1098, 670-1452, 772-1234, 856-1492, 876-1492, 907-1244, 933-1492, 1009-1492, 1061-1492
47/8077668CB1/2406	1-429, 108-429, 331-428, 331-652, 425-934, 430-768, 771-1250, 771-1254, 1212-1343, 1212-1573, 1321-1817, 1374-1664, 1750-2406, 1764-2198
48/55120485CB1/3686	1-63, 9-302, 9-397, 9-484, 9-565, 9-586, 9-632, 9-638, 60-301, 60-304, 60-597, 64-238, 186-742, 226-730, 284-784, 335-779, 623-1272, 689-1272, 739-1272, 762-1272, 800-1204, 802-1273, 826-1272, 884-1272, 900-1272, 982-1915, 988-1272, 1024-1272, 1047-1272, 1104-1272, 1107-1272, 1160-1272, 1232-1272, 1262-1675, 1273-1653, 1273-1675, 1322-1675, 1323-1675, 1591-1675, 1634-1918, 1635-1918, 1674-2808, 1675-1918, 1675-2525, 2157-2256, 2526-2764, 2526-2928, 2557-3036, 2644-2892, 2658-3194, 2664-2790, 2664-2909, 2672-2790, 2874-3078, 2888-3292, 2916-3215, 2916-3530, 2937-3614, 2950-3102, 3000-3665, 3007-3664, 3019-3093, 3090-3349, 3110-3673, 3399-3673, 3419-3681, 3476-3686

Table 4

Polynucleotide SEQ ID NO./ Incyte ID/ Sequence Length	Sequence Fragments
49/3112883CB1/2807	1-346, 20-455, 23-481, 32-509, 39-710, 83-240, 149-240, 170-281, 170-436, 170-440, 170-661, 170-700, 170-697, 170-725, 170-728, 170-729, 170-737, 170-784, 170-857, 175-705, 216-342, 235-394, 317-704, 408-1134, 428-569, 442-834, 458-1060, 472-912, 547-1270, 575-1134, 583-1254, 586-1204, 595-1258, 652-1234, 656-1231, 662-1226, 676-943, 676-1287, 698-1388, 701-968, 707-992, 707-1098, 762-1077, 762-1309, 765-1335, 788-1403, 798-1366, 805-1032, 816-1391, 825-1415, 843-1421, 857-1367, 866-1448, 930-1331, 936-1539, 946-1551, 947-1206, 949-1476, 1054-1469, 1074-1638, 1089-1638, 1129-1533, 1220-1571, 1232-1810, 1283-1529, 1325-1533, 1445-1674, 1481-2085, 1506-1764, 1515-2092, 1518-2142, 1530-1810, 1531-2141, 1552-2154, 1650-1908, 1650-2149, 1688-1961, 1731-2154, 1749-1984, 1808-2155, 1818-1960, 1838-2155, 2078-2807, 2108-2155, 2198-2426, 2296-2426, 2423-2575, 2423-2578, 2423-2583, 2423-2587, 2423-2625, 2423-2701, 2423-2742, 2423-2769, 2431-2561, 2444-2627, 2444-2769, 2484-2769, 2499-2720, 2499-2769, 2502-2769, 2510-2769, 2538-2769, 2546-2769, 2552-2769, 2578-2769, 2602-2769, 2611-2769, 2615-2769, 2625-2769
50/4253888CB1/2170	1-629, 105-746, 105-783, 106-600, 676-887, 676-1004, 715-1004, 825-936, 868-1104, 885-1482, 931-1612, 943-1612, 1112-1612, 1125-1348, 1125-1700, 1513-1988, 1532-1596, 1588-2038, 1596-2036, 1661-1893, 1813-2158, 1826-2058, 1826-2146, 1827-2073, 1827-2170, 1904-2162
51/7479974CB1/1722	1-1722, 251-1712
52/7483850CB1/1424	1-283, 1-533, 1-569, 1-578, 1-582, 1-583, 1-584, 5-584, 27-584, 59-285, 61-285, 64-285, 84-285, 139-283, 140-283, 284-334, 284-347, 284-369, 284-403, 284-412, 284-431, 530-659, 594-1248, 594-1320, 594-1321, 594-1335, 594-1424, 599-1042
53/55008353CB1/3598	1-250, 12-553, 12-673, 12-704, 49-248, 49-568, 356-929, 482-1038, 767-1173, 767-1201, 771-1247, 789-1080, 810-1477, 958-1217, 958-1486, 1010-1393, 1207-1393, 1348-1891, 1389-1776, 1399-2116, 1431-2008, 1434-2085, 1465-1961, 1682-2144, 1745-2115, 1783-1949, 1783-2318, 1792-1874, 1792-2229, 1833-2070, 1855-2127, 1855-2149, 1855-2185, 1855-2341, 1855-2432, 1958-2588, 1979-2104, 1979-2169, 2033-2712, 2064-2515, 2076-2331, 2177-2441, 2177-2708, 2238-2501, 2243-2883, 2245-2513, 2264-2537, 2301-2555, 2338-2636, 2363-2883, 2367-2906, 2381-2671, 2384-2626, 2384-2849, 2551-2763, 2551-2866, 2551-3054, 2713-2995, 2764-3247, 2799-3041, 2805-3598, 2819-3093, 2832-3264, 2841-3094
54/8543628CB1/1485	1-501, 1-502, 1-525, 1-563, 1-573, 1-580, 1-622, 1-751, 1-782, 1-812, 2-929, 11-37, 30-749, 33-854, 46-929, 65-788, 93-906, 144-883, 231-936, 261-1072, 491-1485, 509-1035
55/7482754CB1/1470	1-817, 73-267, 145-1266, 155-767, 631-734, 631-742, 641-1470, 713-766, 713-767, 793-1055, 908-1055, 908-1143, 1056-1265, 1144-1265
56/3794818CB1/3132	1-2052, 1021-2199, 2071-3132, 2467-2702, 2555-2792, 2632-2702, 2722-2867

Table 4

Polynucleotide SEQ ID NO./ Incyte ID/ Sequence Length	Sequence Fragments
57/4717525CB1/1832	1-447, 69-292, 69-442, 69-504, 69-460, 69-506, 69-534, 69-625, 69-643, 69-675, 69-686, 69-693, 69-703, 69-705, 69-732, 69-738, 80-434, 81-606, 83-464, 87-447, 147-1059, 157-413, 157-475, 181-443, 181-570, 187-802, 199-440, 210-640, 237-535, 246-841, 255-517, 255-890, 300-830, 301-774, 327-990, 358-889, 37-1018, 379-671, 439-1025, 443-781, 445-997, 455-1059, 469-1060, 528-1013, 539-1059, 541-1048, 558-1059, 566-1003, 583-1059, 585-1059, 597-882, 599-1014, 619-864, 635-1059, 656-1059, 673-1059, 677-1059, 691-924, 692-1059, 711-1059, 717-1059, 720-1059, 728-1010, 735-1059, 741-1069, 760-1059, 765-1059, 779-1059, 794-1059, 796-1059, 805-1049, 814-1373, 821-941, 850-1059, 858-1069, 862-1059, 876-1059, 881-1059, 889-1059, 905-1049, 915-1059, 916-1059, 918-1059, 931-1059, 935-1059, 949-1046, 959-1059, 967-1059, 975-1059, 981-1049, 987-1059, 1002-1059, 1006-1059, 1008-1059, 1010-1382, 1015-1059, 1019-1059, 1047-1076, 1047-1093, 1047-1114, 1047-1139, 1047-1169, 1047-1173, 1047-1180, 1047-1184, 1047-1191, 1047-1198, 1047-1200, 1047-1206, 1047-1262, 1047-1269, 1047-1290, 1047-1305, 1047-1334, 1047-1335, 1047-1353, 1047-1355, 1047-1381, 1047-1383, 1049-1382, 1053-1200, 1058-1382, 1063-1315, 1110-1381, 1128-1366, 1317-1832, 1478-1718, 1478-1811, 1482-1567
58/5091793CB1/1902	1-248, 1-544, 1-547, 1-567, 1-598, 1-648, 1-691, 1-720, 1-732, 1-737, 1-752, 1-796, 1-816, 1-833, 13-572, 48-884, 71-486, 71-550, 81-267, 82-549, 113-380, 113-549, 118-514, 127-558, 134-267, 159-986, 176-446, 265-528, 292-578, 375-663, 427-646, 593-879, 645-832, 645-884, 645-1125, 645-1149, 645-1164, 645-1233, 687-808, 769-1108, 806-1047, 806-1271, 806-1353, 807-974, 807-1318, 815-1109, 819-1004, 821-1461, 941-1108, 952-1641, 1041-1108, 1168-1561, 1213-1695, 1213-1742, 1215-1742, 1231-1742, 1246-1878, 1250-1738, 1257-1614, 1315-1727, 1318-1847, 1349-1742, 1392-1902, 1411-1707, 1422-1742, 1426-1742, 1427-1742, 1438-1742, 1442-1742, 1458-1562, 1458-1628, 1458-1630, 1458-1666, 1458-1680, 1458-1683, 1458-1693, 1458-1697, 1458-1742, 1476-1742, 1504-1902, 1511-1742, 1565-1742, 1576-1742
59/5945527CB1/2820	1-332, 1-444, 25-450, 31-538, 213-693, 347-617, 451-1061, 785-1155, 792-1095, 895-942, 942-1056, 942-1096, 1033-1104, 1033-1199, 1044-1315, 1181-1275, 1256-1526, 1280-1477, 1280-1905, 1389-1625, 1546-1821, 1546-2082, 1547-1589, 1547-1590, 1547-1611, 1547-1644, 1547-1669, 1547-1680, 1547-1681, 1547-1688, 1547-1717, 1547-1720, 1547-1734, 1547-1757, 1547-1775, 1547-1776, 1547-1844, 1547-1867, 1547-1912, 1547-1987, 1547-2007, 1547-2042, 1547-2055, 1547-2071, 1547-2269, 1560-1840, 1627-2238, 1648-2068, 1656-1920, 1661-2365, 1667-2189, 1675-2354, 1698-2330, 1761-2039, 1776-2056, 1778-2037, 1778-2238, 1793-2339, 1814-2063, 1822-2494, 1837-2466, 1856-2516, 1868-2572, 1881-2465, 1990-2655, 1995-2567, 2050-2498, 2069-2668, 2134-2660, 2187-2507, 2187-2820, 2220-2820, 2222-2497, 2240-2668, 2264-2668, 2271-2536, 2316-2668, 2384-2820, 2395-2654, 2395-2676, 2398-2668, 2401-2556, 2410-2558, 2745-2811, 2747-2820

Table 4

Polynucleotide SEQ ID NO./ Incyte ID/ Sequence Length	Sequence Fragments
60/6941124CB1/3920	1-552, 54-555, 384-722, 455-729, 548-1246, 726-938, 728-1114, 1033-1856, 1203-1438, 1203-1630, 1203-1701, 1260-1857, 1374-1642, 1414-1642, 1502-1642, 1615-2327, 1642-1992, 1642-2002, 1672-2155, 1672-2262, 1673-2342, 1875-2328, 1932-2328, 1976-2483, 2070-2653, 2086-2328, 2169-2324, 2211-2328, 2296-2323, 2378-2625, 2378-2749, 2378-2816, 2378-2853, 2378-2866, 2378-2879, 2378-2882, 2378-2887, 2378-2908, 2378-2957, 2378-2964, 2378-2970, 2378-2971, 2378-2986, 2378-3019, 2378-3084, 2378-3087, 2378-3095, 2378-3126, 2378-3158, 2379-2852, 2400-3107, 2403-2520, 2403-2647, 2457-3035, 2474-3042, 2494-3206, 2512-3231, 2519-3086, 2521-2983, 2600-3107, 2600-3348, 2612-3344, 2631-3070, 2635-3311, 2663-3259, 2663-3415, 2758-3371, 2786-3425, 2787-2932, 2787-3205, 2793-3341, 2796-3360, 2824-3517, 2833-3458, 2852-3443, 2853-3373, 2856-3465, 2870-3494, 2881-3570, 2888-3404, 2888-3466, 2900-3526, 2907-3255, 2911-3421, 2911-3470, 2912-3614, 2929-3314, 2938-3443, 2942-3443, 2954-3472, 2967-3537, 2989-3602, 3001-3247, 3004-3717, 3006-3704, 3014-3090, 3049-3536, 3058-3795, 3073-3813, 3078-3670, 3078-3807, 3094-3833, 3096-3785,
3100-3833, 3119-3833, 3168-3417, 3168-3575, 3168-3596, 3168-3828, 3168-3892, 3168-3919, 3169-3443, 3195-3833, 3220-3724, 3229-3856, 3230-3864, 3251-3549, 3254-3566, 3257-3801, 3260-3814, 3288-3832, 3289-3592, 3316-3833, 3333-3832, 3340-3833,	
3348-3833, 3363-3840, 3391-3897, 3400-3833, 3402-3653, 3402-3831, 3402-3852, 3409-3839, 3427-3830, 3427-3833, 3449-3720, 3464-3920, 3468-3783, 3477-3761, 3479-3727, 3479-3885, 3479-3920, 3509-3747, 3508-3733, 3521-3760, 3550-3871, 3550-3690, 3581-3920, 3678-3910, 3701-3918, 3720-3906, 3746-3920, 3747-3894, 3747-3920, 3763-3910, 3786-3920, 3828-3920	
61/6972530CB1/1333	1-549, 1-566, 391-966, 421-966, 711-1333
62/6991750CB1/8487	1-724, 32-456, 52-627, 78-723, 105-694, 135-637, 143-723, 172-683, 175-420, 175-469, 175-496, 175-500, 175-541, 175-684, 175-764, 175-767, 175-784, 175-918, 187-677, 222-918, 254-723, 258-918, 305-918, 310-720, 358-918, 370-723, 386-918, 432-674, 432-918, 487-918, 847-1242, 847-1285, 896-2353, 917-1415, 917-1416, 917-1417, 920-1414, 1232-1739, 1232-1740, 1233-1739, 1246-1739, 1254-1898, 1266-1739, 1290-1834, 1290-1861, 1290-1858, 1581-2120, 1581-2121, 1584-2121, 1587-2121, 1950-2121, 2085-2762, 2088-2762, 2090-2744, 2090-2754, 2090-2756, 2090-2758, 2090-2762, 2094-2762, 2152-2938, 2248-2900, 2269-2797, 2269-2949, 2993-3677, 3458-4151, 3585-8102, 3887-4151, 3931-4242, 4024-4540, 4024-4650, 4024-4651, 4027-4643, 4027-4648, 4027-4650, 4027-4651, 4903-5354, 4903-5386, 4903-5433, 4903-5507, 4903-5517, 4903-5525, 4903-5534, 4903-5548, 4903-5553, 4903-5561, 4903-5565, 4903-5567, 4903-5574, 5176-5434, 5340-6117, 5356-6117, 5364-6113, 5368-6117, 5393-6117, 5404-6117, 5409-6117, 5410-6117, 5417-6117, 5439-6117, 5449-6117, 6257-6768, 6398-6543, 6961-7140, 7135-7747, 7140-7935,

Table 4

Polynucleotide SEQ ID NO./ Incyte ID/ Sequence Length	Sequence Fragments
62	7508-7900, 7614-8041, 7615-8102, 7843-8102, 7843-8209, 7843-8227, 7843-8236, 7843-8241, 7843-8262, 7843-8280, 7843-8341, 7843-8389, 7843-8430, 7843-8455, 7843-8465, 7843-8485, 7843-8486, 7843-8487
63/71726948CB I/3264	1-486, 4-441, 23-504, 24-504, 253-457, 286-504, 339-860, 355-823, 502-743, 502-1025, 550-856, 574-1259, 784-1237, 1104-1359, 1104-1362, 1104-1639, 1104-1654, 1104-1812, 1116-1681, 1360-1860, 1365-1834, 1366-1824, 1369-1881, 1419-2213, 1424-1890, 1523-2245, 1562-2184, 1724-2515, 1819-2533, 1838-2430, 1888-2228, 1888-2456, 1906-2469, 1931-2199, 1933-2190, 1991-2644, 1993-2507, 2008-2693, 2036-2682, 2046-2496, 2057-2684, 2172-2869, 2173-2869, 2181-2869, 2268-2813, 2271-2813, 2301-2809, 2312-3014, 2328-2953, 2351-2751, 2397-3204, 2404-2835, 2406-2835, 2444-3013, 2449-2716, 2466-3075, 2492-2960, 2536-3140, 2549-3201, 2574-3173, 2582-2743, 2669-2975, 2762-3227, 2807-3250, 2813-3244, 2852-3060, 3000-3249, 3113-3256, 3113-3264, 3114-3261
64/7487393CB I/1659	1-402, 1-1659, 307-506, 416-506, 547-860, 547-863, 547-867, 1147-1598

Table 5

Polynucleotide SEQ ID NO:	Incyte Project ID:	Representative Library
33	7484831CB1	LIVRNON08
34	2477266CB1	LIVRNON08
35	3552033CB1	BRAHTDK01
36	4778139CB1	PROSTUS19
37	4787433CB1	PGANNOT01
38	7483598CB1	BRAITUT29
39	7484823CB1	TESTNOC01
40	143935CB1	BRACDIK08
41	5923789CB1	BRAIFET02
42	6046484CB1	BRACNOK02
44	7483595CB1	TESTNOC01
45	3788427CB1	BONEUNR01
46	6972455CB1	BMARUNR02
47	8077668CB1	ADRETUE02
48	55120485CB1	BRAITUT29
49	3112883CB1	BRSTNOT03
50	4253888CB1	ADRETUE02
52	7483850CB1	LIVRDIT06
53	5508353CB1	NERDTDN03
54	8543628CB1	BMARUNR02
55	7482754CB1	PTHYTMN05
56	3794818CB1	KIDEUNE02
57	4717525CB1	KIDEUNE02
58	5091793CB1	LUNGTUT08
59	5945527CB1	SINTNOR01
60	6941124CB1	FTUBTUR01
61	6972530CB1	BMARUNR02
62	6991750CB1	BRAIFER06
63	71726948CB1	KIDNNOT32

Table 6

Library	Vector	Library Description
ADRETUE02	PCDNA2.1	This 5' biased random primed library was constructed using RNA isolated from right adrenal tumor tissue removed from a 49-year-old Caucasian male during unilateral adrenalectomy. Pathology indicated adrenal cortical carcinoma comprising nearly the entire specimen. The tumor was attached to the adrenal gland which showed mild cortical atrophy. The tumor was encapsulated, being surrounded by a thin (1-3 mm) rim of connective tissue. The patient presented with adrenal cancer, abdominal pain, pyrexia of unknown origin, and deficiency anemia. Patient history included benign hypertension. Previous surgeries included adenotonsillectomy. Patient medications included aspirin, calcium, and iron. Family history included atherosclerotic coronary artery disease in the mother; cerebrovascular accident and atherosclerotic coronary artery disease in the father; and benign hypertension in the grandparent(s).
BMARUNR02	PIGEN	This random primed library was constructed using RNA isolated from an untreated SH-SY5Y cell line derived from bone marrow neuroblastoma tumor cells removed from a 4-year-old Caucasian female.
BONEUNR01	PCDNA2.1	This random primed library was constructed using pooled cDNA from two different donors. cDNA was generated using mRNA isolated from an untreated MG-63 cell line derived from an osteosarcoma tumor removed from a 14-year-old Caucasian male (donor A) and using mRNA isolated from sacral bone tumor tissue removed from an 18-year-old Caucasian female (donor B) during an exploratory laparotomy and soft tissue excision. Pathology indicated giant cell tumor of the sacrum in donor B. Donor B's history included pelvic joint pain, constipation, urinary incontinence, unspecified abdominal/pelvic symptoms, and a pelvic soft tissue malignant neoplasm. Family history included prostate cancer in donor B.
BRACDIK08	PSPORT1	This amplified and normalized library was constructed using RNA isolated from diseased corpus callosum tissue removed from the brain of a 57-year-old Caucasian male who died from a cerebrovascular accident. Serologies were negative. Patient history included Huntington's disease, emphysema, and tobacco abuse (3-4 packs per day for 40 years).

Table 6

Library	Vector	Library Description
BRACNOK02	PSPORT1	This amplified and normalized library was constructed using RNA isolated from posterior cingulate tissue removed from an 85-year-old Caucasian female who died from myocardial infarction and retroperitoneal hemorrhage. Pathology indicated atherosclerosis, moderate to severe, involving the circle of Willis, middle cerebral, basilar and vertebral arteries; infarction, remote, left dentate nucleus; and amyloid plaque deposition consistent with age. There was mild to moderate leptomeningeal fibrosis, especially over the convexity of the frontal lobe. There was mild generalized atrophy involving all lobes. The white matter was mildly thinned. Cortical thickness in the temporal lobes, both maximal and minimal, was slightly reduced. The substantia nigra pars compacta appeared mildly depigmented. Patient history included COPD, hypertension, and recurrent deep venous thrombosis. 6.4 million independent clones from this amplified library were normalized in one round using conditions adapted from Soares et al., PNAS (1994) 91:9228-9232 and Bonaldo et al., Genome Research 6 (1996):79.
BRAHTDK01	PSPORT1	This amplified and normalized library was constructed using pooled RNA isolated from archaecortex, anterior and posterior hippocampus tissue removed from a 55-year-old Caucasian female who died from cholangiocarcinoma. Pathology indicated mild meningeal fibrosis predominately over the convexitie, scattered axonal spheroids in the white matter of the cingulate cortex and the thalamus, and a few scattered neurofibrillary tangles in the entorhinal cortex and the periaqueductal gray region. Pathology for the associated tumor tissue indicated well-differentiated cholangiocarcinoma of the liver with residual or relapsed tumor. Patient history included cholangiocarcinoma, post-operative Budd-Chiari syndrome, biliary ascites, hydrothorax, dehydration, malnutrition, oliguria and acute renal failure. Previous surgeries included cholecystectomy and resection of 85% of the liver. 7.6x10 ⁵ independent clones from this amplified library were normalized in 1 round using conditions adapted Soares et al., PNAS (1994) 91:9228-9232 and Bonaldo et al., Genome Research (1996) 6:791, except that a significantly longer (48 hours/round) reannealing hybridization was used.
BRAIFER06	PCDNA2.1	This random primed library was constructed using RNA isolated from brain tissue removed from a Caucasian male fetus who was stillborn with a hypoplastic left heart at 23 weeks' gestation. Serologies were negative.
BRAIFET02	pINCY	Library was constructed using RNA isolated from brain tissue removed from a Caucasian male fetus, who was stillborn with a hypoplastic left heart at 23 weeks' gestation.
BRAITUT29	pINCY	Library was constructed using RNA isolated from brain tumor tissue removed from the parietal lobe of a 43-year-old female during excision of a cerebral meningeal lesion. Pathology indicated high grade glioma. Family history included acute myocardial infarction, atherosclerotic coronary artery disease, benign hypertension, and hyperlipidemia.

Table 6

Library	Vector	Library Description
BRSTNOT03	PSPORT1	Library was constructed using RNA isolated from diseased breast tissue removed from a 54-year-old Caucasian female during a bilateral radical mastectomy. Pathology for the associated tumor tissue indicated residual invasive grade 3 mammary ductal adenocarcinoma. Patient history included kidney infection and condyloma acuminatum. Family history included benign hypertension, hyperlipidemia and a malignant neoplasm of the colon.
FTUBTUR01	PCDNA2.1	This random primed library was constructed using RNA isolated from fallopian tube tumor tissue removed from an 85-year-old Caucasian female during bilateral salpingo-oophorectomy and hysterectomy. Pathology indicated poorly differentiated mixed endometrioid (80%) and serous (20%) adenocarcinoma, which was confined to the mucosa without mural involvement. Endometrioid carcinoma in situ was also present. Pathology for the associated uterus tumor indicated focal endometrioid adenocarcinoma in situ and moderately differentiated invasive adenocarcinoma arising in an endometrial polyp. Metastatic endometrioid and serous adenocarcinoma was present at the cul-de-sac tumor. Patient history included medullary carcinoma of the thyroid and myocardial infarction.
KIDEUNE02	pINCY	This 5' biased random primed library was constructed using RNA isolated from an untreated transformed embryonal cell line (293-EBNA) derived from kidney epithelial tissue (In vitroigen). The cells were transformed with adenovirus 5 DNA.
KIDNNNOT32	pINCY	Library was constructed using RNA isolated from kidney tissue removed from a 49-year-old male who died from an intracranial hemorrhage and cerebrovascular accident. Patient history included tobacco abuse.
LIVRDIT06	pINCY	This library was constructed using RNA isolated from diseased liver tissue removed from a 35-year-old Caucasian male during needle biopsy of the liver. Patient history included hepatitis C.
LIVRNNO08	pINCY	This normalized library was constructed from 5.7 million independent clones from a pooled liver tissue library. Starting RNA was made from pooled liver tissue removed from a 4-year-old Hispanic male who died from anoxia and a 16 week female fetus who died after 16-weeks gestation from anencephaly. Serologies were positive for cytomegalovirus in the 4-year-old. Patient history included asthma in the 4-year-old. Family history included taking daily prenatal vitamins and mitral valve prolapse in the mother of the fetus. The library was normalized in 2 rounds using conditions adapted from Soares et al., PNAS (1994) 91:9228 and Bonaldo et al., Genome Research 6 (1996):791, except that a significantly longer (48 hours/round) reannealing hybridization was used.

Table 6

Library	Vector	Library Description	
LUNGTR08	pTNCY	Library was constructed using RNA isolated from lung tumor tissue removed from a 63-year-old Caucasian male during a right upper lobectomy with fiberoptic bronchoscopy. Pathology indicated a grade 3 adenocarcinoma. Patient history included atherosclerotic coronary artery disease, an acute myocardial infarction, rectal cancer, an asymptomatic abdominal aortic aneurysm, tobacco abuse, and cardiac dysrhythmia. Family history included congestive heart failure, stomach cancer, and lung cancer, type II diabetes, atherosclerotic coronary artery disease, and an acute myocardial infarction.	
NERDTDN03	pTNCY	This normalized dorsal root ganglion tissue library was constructed from 1.05 million independent clones from a dorsal root ganglion tissue library. Starting RNA was made from dorsal root ganglion tissue removed from the cervical spine of a 32-year-old Caucasian male who died from acute pulmonary edema, acute bronchopneumonia, bilateral pleural effusions, pericardial effusion, and malignant lymphoma (natural killer cell type). The patient presented with pyrexia of unknown origin, malaise, fatigue, and gastrointestinal bleeding. Patient history included probable cytomegalovirus infection, liver congestion, and steatosis, splenomegaly, hemorrhagic cystitis, thyroid hemorrhage, respiratory failure, pneumonia of the left lung, natural killer cell lymphoma of the pharynx, Bell's palsy, and tobacco and alcohol abuse. Previous surgeries included colonoscopy, closed colon biopsy, adenotonsillectomy, and nasopharyngeal endoscopy and biopsy. Patient medications included Diflucan (fluconazole), Deltasone (prednisone), hydrocodone, Lortab, Alprazolam,	
PGANNTO1	PSPORT1	Reazodone, ProMace-Cytabom, Etoposide, Cisplatin, Cytarabine, and dexamethasone. The patient received radiation therapy and multiple blood transfusions. The library was normalized in 2 rounds using conditions adapted from Soares et al., PNAS (1994) 91:9228-9232, and Bonaldo et al., Genome Research 6 (1996):791, except that a significantly longer (48 hours/round) reannealing hybridization was used.	Library was constructed using RNA isolated from paraganglionic tumor tissue removed from the intra-abdominal region of a 46-year-old Caucasian male during exploratory laparotomy. Pathology indicated a benign paraganglioma and was associated with a grade 2 renal cell carcinoma, clear cell type, which did not penetrate the capsule. Surgical margins were negative for tumor.

Table 6

Library	Vector	Library Description
PROSTUS19	pINCY	This subtracted prostate tumor tissue library was constructed using 2.36 million clones from the PROSTUT13 library and was subjected to two round of subtraction hybridization with 2.36 million clones from EPTPNOT01 library. The starting library for subtraction was constructed using RNA isolated from prostate tumor tissue removed from a 59-year-old Caucasian male during a radical prostatectomy with regional lymph node excision. Pathology indicated adenocarcinoma (Gleason grade 3+3) involving the prostate peripherally with invasion of the capsule. Adenofibromatous hyperplasia was present. The patient presented with elevated prostate-specific antigen (PSA). Patient history included diverticulitis of colon, asbestos, and thrombophlebitis. Family history included benign hypertension, multiple myeloma, hyperlipidemia, and rheumatoid arthritis. Subtractive hybridization conditions were based on the methodologies of Swaroop et al. NAR (1991) 19:1954 and Bonaldo, et al. Genome Research (1996) 6:791.
PTHYTMN05	pINCY	Library was constructed using RNA isolated from parathyroid tissue removed from a 44-year-old Caucasian male during a partial parathyroidectomy. Pathology for the matched tumor tissue indicated parathyroid carcinoma (grade 1 or 4) forming a partially cystic tan mass. Both capsular and vascular invasion were present. The patient presented with unspecified parathyroid disorder and calcium metabolism disorder. Patient history included kidney calculus and obesity. Previous surgeries included vasectomy and parathyroid surgery. Family history included emphysema in the mother; type II diabetes in the father; and type I diabetes and hyperlipidemia in the sibling(s).
SINTNOR01	PCDNA2.1	This random primed library was constructed using RNA isolated from small intestine tissue removed from a 31-year-old Caucasian female during Roux-en-Y gastric bypass. Patient history included clinical obesity.
TESTNOC01	PBLUESCRIPT	This large size fractionated library was constructed using RNA isolated from testicular tissue removed from a pool of eleven, 10 to 61-year-old Caucasian males.

Table 7

Program	Description	Reference	Parameter Threshold
ABI FACTURA	A program that removes vector sequences and masks ambiguous bases in nucleic acid sequences.	Applied Biosystems, Foster City, CA.	
ABI/PAPACHEL FDF	A Fast Data Finder useful in comparing and annotating amino acid or nucleic acid sequences.	Applied Biosystems, Foster City, CA; Paracel Inc., Pasadena, CA.	Mismatch <50%
ABI AutoAssembler	A program that assembles nucleic acid sequences.	Applied Biosystems, Foster City, CA.	
BLAST	A Basic Local Alignment Search Tool useful in sequence similarity search for amino acid and nucleic acid sequences. BLAST includes five functions: blastp, blastn, tblastx, tblastn, and tblastx.	Altschul, S.F. et al. (1990) <i>J. Mol. Biol.</i> 215:403-410; Altschul, S.F. et al. (1997) <i>Nucleic Acids Res.</i> 25:3389-3402.	<i>ESTs:</i> Probability value= 1.0E-8 or less <i>Full Length sequences:</i> Probability value= 1.0E-10 or less
FASTA	A Pearson and Lipman algorithm that searches for similarity between a query sequence and a group of sequences of the same type. FASTA comprises at least five functions: fasta, tfasta, fastx, and search.	Pearson, W.R. and D.J. Lipman (1988) <i>Proc. Natl. Acad. Sci. USA</i> 85:2444-2448; Pearson, W.R. (1990) <i>Methods Enzymol.</i> 183:63-98; and Smith, T.F. and M.S. Waterman (1981) <i>Adv. Appl. Math.</i> 2:482-489.	<i>ESTs:</i> fasta E. value= 1.0E-6 <i>Assembled ESTs:</i> fasta Identity= 95% or greater and Match length=200 bases or greater, fasta E. value= 1.0E-8 or less <i>Full Length sequences:</i> fasta score= 100 or greater
BLIMPS	A BLOCKs IMProved Searcher that matches a sequence against those in BLOCKS, PRINTS, DOMO, PRODOM, and PFAM databases to search for gene families, sequence homology, and structural fingerprint regions.	Henikoff, S. and J.G. Henikoff (1991) <i>Nucleic Acids Res.</i> 19:6565-6572; Henikoff, J.G. and S. Henikoff (1996) <i>Methods Enzymol.</i> 266:88-105; and Altwood, T.K. et al. (1997) <i>J. Chem. Inf. Comput. Sci.</i> 37:417-424.	Probability value= 1.0E-3 or less
HMMER	An algorithm for searching a query sequence against hidden Markov model (HMM)-based databases of protein family consensus sequences, such as PFAM.	Krogh, A. et al. (1994) <i>J. Mol. Biol.</i> 235:1501-1531; Sonnhammer, E.L.L. et al. (1988) <i>Nucleic Acids Res.</i> 26:320-322; Durbin, R. et al. (1998) <i>Our World View</i> , in a Nishihara, Cambridge Univ. Press, pp. 1-350.	<i>PFAM hits:</i> Probability value= 1.0E-3 or less <i>Signal peptide hits:</i> Score= 0 or greater

Table 7 (cont.)

Program	Description	Reference	Parameter Threshold
ProfileScan	An algorithm that searches for structural and sequence motifs in protein sequences that match sequence patterns defined in Prosite.	Gribskov, M. et al. (1988) CABIOS 4:61-66; Gribskov, M. et al. (1989) Methods Enzymol. 183:146-159; Bairoch, A. et al. (1997) Nucleic Acids Res. 25:217-221.	Normalized quality score= GCG-specified "HIGH" value for that particular Prosite motif. Generally, score=1.4-2.1.
Phred	A base-calling algorithm that examines automated sequencer traces with high sensitivity and probability.	Ewing, B. et al. (1998) Genome Res. 8:175-185; Ewing, B. and P. Green (1998) Genome Res. 8:186-194.	
Phrap	A Phil's Revised Assembly Program including SWAT and CrossMatch, programs based on efficient implementation of the Smith-Waterman algorithm, useful in searching sequence homology and assembling DNA sequences.	Smith, T.F. and M.S. Waterman (1981) Adv. Appl. Math. 2:482-489; Smith, T.F. and M.S. Waterman (1981) J. Mol. Biol. 147:195-197; and Green, P., University of Washington, Seattle, WA.	Score= 120 or greater; Match length= 56 or greater
Consed	A graphical tool for viewing and editing Phrap assemblies.	Gordon, D. et al. (1998) Genome Res. 8:195-202.	
SPScan	A weight matrix analysis program that scans protein sequences for the presence of secretory signal peptides.	Nielson, H. et al. (1997) Protein Engineering 10:1-6; Claverie, J.M. and S. Audic (1997) CABIOS 12:431-439.	Score=3.5 or greater
TMAP	A program that uses weight matrices to delineate transmembrane segments on protein sequences and determine orientation.	Person, B. and P. Argos (1994) J. Mol. Biol. 237:182-192; Person, B. and P. Argos (1996) Protein Sci. 5:363-371.	
TMHMMER	A program that uses a hidden Markov model (HMM) to delineate transmembrane segments on protein sequences and determine orientation.	Sonnhammer, E.L. et al. (1998) Proc. Sixth Int. Conf. on Intelligent Systems for Mol. Biol., Glasgow et al., eds., The Am. Assoc. for Artificial Intelligence Press, Menlo Park, CA, pp. 175-182.	
Motifs	A program that searches amino acid sequences for patterns that matched those defined in Prosite.	Bairoch, A. et al. (1997) Nucleic Acids Res. 25:217-221; Wisconsin Package Program Manual, version 9, page M51-59, Genetics Computer Group, Madison, WI.	

What is claimed is:

1. An isolated polypeptide selected from the group consisting of:
 - a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-32,
 - b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-32,
 - c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, and
 - d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-32.
- 10 2. An isolated polypeptide of claim 1 comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-32.
- 15 3. An isolated polynucleotide encoding a polypeptide of claim 1.
4. An isolated polynucleotide encoding a polypeptide of claim 2.
- 20 5. An isolated polynucleotide of claim 4 comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:33-64.
- 25 6. A recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide of claim 3.
7. A cell transformed with a recombinant polynucleotide of claim 6.
- 30 8. A transgenic organism comprising a recombinant polynucleotide of claim 6.
9. A method of producing a polypeptide of claim 1, the method comprising:
 - a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide, and said recombinant polynucleotide comprises a promoter sequence operably linked to a polynucleotide encoding the polypeptide of claim 1, and

b) recovering the polypeptide so expressed.

10. A method of claim 9, wherein the polypeptide comprises an amino acid sequence selected from the group consisting of SEQ ID NO:1-32.

5

11. An isolated antibody which specifically binds to a polypeptide of claim 1.

12. An isolated polynucleotide selected from the group consisting of:

10

- a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:33-64,
- b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:33-64,
- c) a polynucleotide complementary to a polynucleotide of a),
- d) a polynucleotide complementary to a polynucleotide of b), and
- e) an RNA equivalent of a)-d).

15. An isolated polynucleotide comprising at least 60 contiguous nucleotides of a polynucleotide of claim 12.

20

14. A method of detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide of claim 12, the method comprising:

25

- a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and
- b) detecting the presence or absence of said hybridization complex, and, optionally, if present, the amount thereof.

30

15. A method of claim 14, wherein the probe comprises at least 60 contiguous nucleotides.

35

16. A method of detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide of claim 12, the method comprising:

- a) amplifying said target polynucleotide or fragment thereof using polymerase chain

- reaction amplification, and
- b) detecting the presence or absence of said amplified target polynucleotide or fragment thereof, and, optionally, if present, the amount thereof.
- 5 17. A composition comprising a polypeptide of claim 1 and a pharmaceutically acceptable excipient.
- 10 18. A composition of claim 17, wherein the polypeptide comprises an amino acid sequence selected from the group consisting of SEQ ID NO:1-32.
- 15 19. A method for treating a disease or condition associated with decreased expression of functional TRICH, comprising administering to a patient in need of such treatment the composition of claim 17.
- 20 20. A method of screening a compound for effectiveness as an agonist of a polypeptide of claim 1, the method comprising:
- a) exposing a sample comprising a polypeptide of claim 1 to a compound, and
- b) detecting agonist activity in the sample.
- 25 21. A composition comprising an agonist compound identified by a method of claim 20 and a pharmaceutically acceptable excipient.
22. A method for treating a disease or condition associated with decreased expression of functional TRICH, comprising administering to a patient in need of such treatment a composition of claim 21.
- of 23. A method of screening a compound for effectiveness as an antagonist of a polypeptide claim 1, the method comprising:
- a) exposing a sample comprising a polypeptide of claim 1 to a compound, and
- b) detecting antagonist activity in the sample.
- 30 24. A composition comprising an antagonist compound identified by a method of claim 23 and a pharmaceutically acceptable excipient.
- 35 25. A method for treating a disease or condition associated with overexpression of

functional TRICH, comprising administering to a patient in need of such treatment a composition of claim 24.

26. A method of screening for a compound that specifically binds to the polypeptide of
5 claim 1, the method comprising:

- a) combining the polypeptide of claim 1 with at least one test compound under suitable conditions, and
- b) detecting binding of the polypeptide of claim 1 to the test compound, thereby identifying a compound that specifically binds to the polypeptide of claim 1.

10

27. A method of screening for a compound that modulates the activity of the polypeptide of claim 1, the method comprising:

- a) combining the polypeptide of claim 1 with at least one test compound under conditions permissive for the activity of the polypeptide of claim 1,
- b) assessing the activity of the polypeptide of claim 1 in the presence of the test compound, and
- c) comparing the activity of the polypeptide of claim 1 in the presence of the test compound with the activity of the polypeptide of claim 1 in the absence of the test compound, wherein a change in the activity of the polypeptide of claim 1 in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide of claim 1.

20

28. A method of screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a sequence of claim 5, the method comprising:

- a) exposing a sample comprising the target polynucleotide to a compound, under conditions suitable for the expression of the target polynucleotide,
- b) detecting altered expression of the target polynucleotide, and
- c) comparing the expression of the target polynucleotide in the presence of varying amounts of the compound and in the absence of the compound.

30

29. A method of assessing toxicity of a test compound, the method comprising:

- a) treating a biological sample containing nucleic acids with the test compound,
- b) hybridizing the nucleic acids of the treated biological sample with a probe comprising at least 20 contiguous nucleotides of a polynucleotide of claim 12 under

35

conditions whereby a specific hybridization complex is formed between said probe and a target polynucleotide in the biological sample, said target polynucleotide comprising a polynucleotide sequence of a polynucleotide of claim 12 or fragment thereof,

- 5 c) quantifying the amount of hybridization complex, and
d) comparing the amount of hybridization complex in the treated biological sample with the amount of hybridization complex in an untreated biological sample, wherein a difference in the amount of hybridization complex in the treated biological sample is indicative of toxicity of the test compound.

10

30. A diagnostic test for a condition or disease associated with the expression of TRICH in a biological sample, the method comprising:

15

- a) combining the biological sample with an antibody of claim 11, under conditions suitable for the antibody to bind the polypeptide and form an antibody:polypeptide complex, and
b) detecting the complex, wherein the presence of the complex correlates with the presence of the polypeptide in the biological sample.

25

31. The antibody of claim 11, wherein the antibody is:

- a) a chimeric antibody,
b) a single chain antibody,
c) a Fab fragment,
d) a F(ab')₂ fragment, or
e) a humanized antibody.

30

32. A composition comprising an antibody of claim 11 and an acceptable excipient.

33. A method of diagnosing a condition or disease associated with the expression of TRICH in a subject, comprising administering to said subject an effective amount of the composition of claim 32.

34. A composition of claim 32, wherein the antibody is labeled.

35. A method of diagnosing a condition or disease associated with the expression of TRICH in a subject, comprising administering to said subject an effective amount of the

composition of claim 34.

36. A method of preparing a polyclonal antibody with the specificity of the antibody of
claim 11, the method comprising:

- 5 a) immunizing an animal with a polypeptide consisting of an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, or an immunogenic fragment thereof, under conditions to elicit an antibody response,
- b) isolating antibodies from said animal, and
- c) screening the isolated antibodies with the polypeptide, thereby identifying a
10 polyclonal antibody which binds specifically to a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-32.

37. A polyclonal antibody produced by a method of claim 36.

15 38. A composition comprising the polyclonal antibody of claim 37 and a suitable carrier.

39. A method of making a monoclonal antibody with the specificity of the antibody of
claim 11, the method comprising:

- 20 a) immunizing an animal with a polypeptide consisting of an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, or an immunogenic fragment thereof, under conditions to elicit an antibody response,
- b) isolating antibody producing cells from the animal,
- c) fusing the antibody producing cells with immortalized cells to form monoclonal antibody-producing hybridoma cells,
- 25 d) culturing the hybridoma cells, and
- e) isolating from the culture monoclonal antibody which binds specifically to a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-32.

30 40. A monoclonal antibody produced by a method of claim 39.

41. A composition comprising the monoclonal antibody of claim 40 and a suitable carrier.

42. The antibody of claim 11, wherein the antibody is produced by screening a Fab
35 expression library.

43. The antibody of claim 11, wherein the antibody is produced by screening a recombinant immunoglobulin library.
44. A method of detecting a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-32 in a sample, the method comprising:
- 5 a) incubating the antibody of claim 11 with a sample under conditions to allow specific binding of the antibody and the polypeptide, and
- b) detecting specific binding, wherein specific binding indicates the presence of a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-32 in the sample.
- 10
45. A method of purifying a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-32 from a sample, the method comprising:
- 15 a) incubating the antibody of claim 11 with a sample under conditions to allow specific binding of the antibody and the polypeptide, and
- b) separating the antibody from the sample and obtaining the purified polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-32.
- 20
46. A microarray wherein at least one element of the microarray is a polynucleotide of claim 13.
47. A method of generating an expression profile of a sample which contains polynucleotides, the method comprising:
- 25 a) labeling the polynucleotides of the sample,
- b) contacting the elements of the microarray of claim 46 with the labeled polynucleotides of the sample under conditions suitable for the formation of a hybridization complex, and
- c) quantifying the expression of the polynucleotides in the sample.
- 30
48. An array comprising different nucleotide molecules affixed in distinct physical locations on a solid substrate, wherein at least one of said nucleotide molecules comprises a first oligonucleotide or polynucleotide sequence specifically hybridizable with at least 30 contiguous nucleotides of a target polynucleotide, and wherein said target polynucleotide is
- 35 a polynucleotide of claim 12.

49. An array of claim 48, wherein said first oligonucleotide or polynucleotide sequence is completely complementary to at least 30 contiguous nucleotides of said target polynucleotide.

5 50. An array of claim 48, wherein said first oligonucleotide or polynucleotide sequence is completely complementary to at least 60 contiguous nucleotides of said target polynucleotide.

10 51. An array of claim 48, wherein said first oligonucleotide or polynucleotide sequence is completely complementary to said target polynucleotide.

52. An array of claim 48, which is a microarray.

15 53. An array of claim 48, further comprising said target polynucleotide hybridized to a nucleotide molecule comprising said first oligonucleotide or polynucleotide sequence.

54. An array of claim 48, wherein a linker joins at least one of said nucleotide molecules to said solid substrate.

20 55. An array of claim 48, wherein each distinct physical location on the substrate contains multiple nucleotide molecules, and the multiple nucleotide molecules at any single distinct physical location have the same sequence, and each distinct physical location on the substrate contains nucleotide molecules having a sequence which differs from the sequence of nucleotide molecules at another distinct physical location on the substrate.

25 56. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:1.

57. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:2.

30 58. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:3.

59. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:4.

60. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:5.

61. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:6.
62. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:7.
- 5 63. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:8.
64. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:9.
65. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:10.
- 10 66. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:11.
67. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:12.
- 15 68. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:13.
69. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:14.
70. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:15.
- 20 71. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:16.
72. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:17.
- 25 73. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:18.
74. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:19.
75. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:20.
- 30 76. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:21.
77. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:22.
- 35 78. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:23.

79. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:24.
80. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:25.
- 5 81. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:26.
82. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:27.
83. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:28.
- 10 84. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:29.
85. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:30.
- 15 86. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:31.
87. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:32.
88. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID
20 NO:33.
89. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID
NO:34.
- 25 90. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID
NO:35.
91. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID
NO:36.
- 30 92. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID
NO:37.
93. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID
35 NO:38.

94. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:39.

5 95. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:40.

96. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:41.

10 97. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:42.

98. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:43.

15 99. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:44.

20 100. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:45.

101. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:46.

25 102. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:47.

103. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:48.

30 104. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:49.

35 105. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:50.

106. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:51.

5 107. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:52.

108. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:53.

10 109. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:54.

110. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:55.

15 111. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:56.

20 112. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:57.

113. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:58.

25 114. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:59.

115. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:60.

30 116. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:61.

35 117. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:62.

118. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:63.

119. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID
5 NO:64.

<110> INCYTE GENOMICS, INC.
LEE, Ernestine A.
BAUGHN, Mariah R.
YUE, Henry
DING, Li
RAUMANN, Brigitte E.
HAFALIA, April J.A.
KHAN, Farrah A.
NGUYEN, Dannie B.
ELLIOTT, Vicki S.
RAMKUMAR, Jayalaxmi
WALIA, Narinder K.
ISON, Craig H.
LU, Yan
GANDHI, Ameena R.
WARREN, Bridget A.
DUGGAN, Brendan M.
TRIBOULEY, Catherine M.
BURFORD, Neil
LU, Dyung Aina M.
LAL, Preeti
YAO, Monique G.
XU, Yuming
BRUNS, Christopher M.
THANGAVELU, Kavitha
SWARNAKAR, Anita
TANG, Y. Tom
AZIMZAI, Yalda
THORNTON, Michael
ARVIZU, Chandra
POLICKY, Jennifer L.

<120> TRANSPORTERS AND ION CHANNELS

<130> PI-0314 PCT

<140> To Be Assigned
<141> Herewith

<150> 60/254,303; 60/256,190; 60/257,504; 60/261,546; 60/262,832;
60/264,377; 60/266,019
<151> 2000-12-08; 2000-12-15; 2000-12-21; 2001-01-12; 2001-01-19;
2001-01-26; 2000-02-02

<160> 64

<170> PERL Program

<210> 1
<211> 726
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 7484831CD1

<400> 1
Met Glu Pro Gly Asp Ala Ala Arg Pro Gly Ser Gly Arg Ala Thr
1 5 10 15
Gly Ala Pro Pro Pro Arg Leu Leu Leu Leu Pro Leu Leu Gly
20 25 30
Trp Gly Leu Arg Val Ala Ala Ala Ser Ala Ser Ser Ser Gly

	35	40	45
Ala Ala Ala Glu Asp Ser Ser Ala Met Glu Glu Leu Ala Thr Glu	50	55	60
Lys Glu Ala Glu Glu Ser His Arg Gln Asp Ser Val Ser Leu Leu	65	70	75
Thr Phe Ile Leu Leu Leu Thr Leu Thr Ile Leu Thr Ile Trp Leu	80	85	90
Phe Lys His Arg Arg Val Arg Phe Leu His Glu Thr Gly Leu Ala	95	100	105
Met Ile Tyr Gly Leu Ile Val Gly Val Ile Leu Arg Tyr Gly Thr	110	115	120
Pro Ala Thr Ser Gly Arg Asp Lys Ser Leu Ser Cys Thr Gln Glu	125	130	135
Asp Arg Ala Phe Ser Thr Leu Leu Val Asn Val Ser Gly Lys Phe	140	145	150
Phe Glu Tyr Thr Leu Lys Gly Glu Ile Ser Pro Gly Lys Ile Asn	155	160	165
Ser Val Glu Gln Asn Asp Met Leu Arg Lys Val Thr Phe Asp Pro	170	175	180
Glu Val Phe Phe Asn Ile Leu Leu Pro Pro Ile Ile Phe His Ala	185	190	195
Gly Tyr Ser Leu Lys Lys Arg His Phe Phe Arg Asn Leu Gly Ser	200	205	210
Ile Leu Ala Tyr Ala Phe Leu Gly Thr Ala Val Ser Cys Phe Ile	215	220	225
Ile Gly Asn Leu Met Tyr Gly Val Val Lys Leu Met Lys Ile Met	230	235	240
Gly Gln Leu Ser Asp Lys Phe Tyr Tyr Thr Asp Cys Leu Phe Phe	245	250	255
Gly Ala Ile Ile Ser Ala Thr Asp Pro Val Thr Val Leu Ala Ile	260	265	270
Phe Asn Glu Leu His Ala Asp Val Asp Leu Tyr Ala Leu Leu Phe	275	280	285
Gly Glu Ser Val Leu Asn Asp Ala Val Ala Ile Val Leu Ser Ser	290	295	300
Ser Ile Val Ala Tyr Gln Pro Ala Gly Leu Asn Thr His Ala Phe	305	310	315
Asp Ala Ala Ala Phe Phe Lys Ser Val Gly Ile Phe Leu Gly Ile	320	325	330
Phe Ser Gly Ser Phe Thr Met Gly Ala Val Thr Gly Val Val Thr	335	340	345
Ala Leu Val Thr Lys Phe Thr Lys Leu His Cys Phe Pro Leu Leu	350	355	360
Glu Thr Ala Leu Phe Phe Leu Met Ser Trp Ser Thr Phe Leu Leu	365	370	375
Ala Glu Ala Cys Gly Phe Thr Gly Val Val Ala Val Leu Phe Cys	380	385	390
Gly Ile Thr Gln Ala His Tyr Thr Tyr Asn Asn Leu Ser Val Glu	395	400	405
Ser Arg Ser Arg Thr Lys Gln Leu Phe Glu Val Leu His Phe Leu	410	415	420
Ala Glu Asn Phe Ile Phe Ser Tyr Met Gly Leu Ala Leu Phe Thr	425	430	435
Phe Gln Lys His Val Phe Ser Pro Ile Phe Ile Ile Gly Ala Phe	440	445	450
Val Ala Ile Phe Leu Gly Arg Ala Ala His Ile Tyr Pro Leu Ser	455	460	465
Phe Phe Leu Asn Leu Gly Arg Arg His Lys Ile Gly Trp Asn Phe	470	475	480
Gln His Met Met Met Phe Ser Gly Leu Arg Gly Ala Met Ala Phe	485	490	495
Ala Leu Ala Ile Arg Asp Thr Ala Ser Tyr Ala Arg Gln Met Met	500	505	510

Phe	Thr	Thr	Thr	Leu	Leu	Ile	Val	Phe	Phe	Thr	Val	Trp	Ile	Ile
				515				520					525	
Gly	Gly	Gly	Thr	Thr	Pro	Met	Leu	Ser	Trp	Leu	Asn	Ile	Arg	Val
				530				535					540	
Gly	Val	Glu	Glu	Pro	Ser	Glu	Glu	Asp	Gln	Asn	Glu	His	His	Trp
				545				550					555	
Gln	Tyr	Phe	Arg	Val	Gly	Val	Asp	Pro	Asp	Gln	Asp	Pro	Pro	Pro
				560				565					570	
Asn	Asn	Asp	Ser	Phe	Gln	Val	Leu	Gln	Gly	Asp	Gly	Pro	Asp	Ser
				575				580					585	
Ala	Arg	Gly	Asn	Arg	Thr	Lys	Gln	Glu	Ser	Thr	Trp	Ile	Phe	Arg
				590				595					600	
Leu	Trp	Tyr	Ser	Phe	Asp	His	Asn	Tyr	Leu	Lys	Pro	Ile	Leu	Thr
				605				610					615	
His	Ser	Gly	Pro	Pro	Leu	Thr	Thr	Thr	Leu	Pro	Ala	Trp	Cys	Gly
				620				625					630	
Leu	Leu	Ala	Arg	Cys	Leu	Thr	Ser	Pro	Gln	Val	Tyr	Asp	Asn	Gln
				635				640					645	
Glu	Pro	Leu	Arg	Glu	Glu	Asp	Ser	Asp	Phe	Ile	Leu	Thr	Glu	Gly
				650				655					660	
Asp	Leu	Thr	Leu	Thr	Tyr	Gly	Asp	Ser	Thr	Val	Thr	Ala	Asn	Gly
				665				670					675	
Ser	Ser	Ser	Ser	His	Thr	Ala	Ser	Thr	Ser	Leu	Glu	Gly	Ser	Arg
				680				685					690	
Arg	Thr	Lys	Ser	Ser	Ser	Glu	Glu	Val	Leu	Glu	Arg	Asp	Leu	Gly
				695				700					705	
Met	Gly	Asp	Gln	Lys	Val	Ser	Ser	Arg	Gly	Thr	Arg	Leu	Val	Phe
				710				715					720	
Pro	Leu	Glu	Asp	Asn	Ala									
				725										

<210> 2
<211> 1081
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2477266CD1

<400> 2														
Met	Glu	Ser	Ala	Gly	Leu	Glu	Gln	Leu	Leu	Arg	Glu	Leu	Leu	Leu
1				5				10					15	
Pro	Asp	Thr	Glu	Arg	Ile	Arg	Arg	Ala	Thr	Glu	Gln	Leu	Gln	Ile
				20				25					30	
Val	Leu	Arg	Ala	Pro	Ala	Ala	Leu	Pro	Ala	Leu	Cys	Asp	Leu	Leu
				35				40					45	
Ala	Ser	Ala	Ala	Asp	Pro	Gln	Ile	Arg	Gln	Phe	Ala	Ala	Val	Leu
				50				55					60	
Thr	Arg	Arg	Arg	Leu	Asn	Thr	Arg	Trp	Arg	Arg	Leu	Ala	Ala	Glu
				65				70					75	
Gln	Arg	Glu	Ser	Leu	Lys	Ser	Leu	Ile	Leu	Thr	Ala	Leu	Gln	Arg
				80				85					90	
Glu	Thr	Glu	His	Cys	Val	Ser	Leu	Ser	Leu	Ala	Gln	Leu	Ser	Ala
				95				100					105	
Thr	Ile	Phe	Arg	Lys	Glu	Gly	Leu	Glu	Ala	Trp	Pro	Gln	Leu	Leu
				110				115					120	
Gln	Leu	Leu	Gln	His	Ser	Thr	His	Ser	Pro	His	Ser	Pro	Glu	Arg
				125				130					135	
Glu	Met	Gly	Leu	Leu	Leu	Leu	Ser	Val	Val	Val	Thr	Ser	Arg	Pro
				140				145					150	
Glu	Ala	Phe	Gln	Pro	His	His	Arg	Glu	Leu	Leu	Arg	Leu	Leu	Asn
				155				160					165	

Glu	Thr	Leu	Gly	Glu	Val	Gly	Ser	Pro	Gly	Leu	Leu	Phe	Tyr	Ser
				170					175					180
Leu	Arg	Thr	Leu	Thr	Thr	Met	Ala	Pro	Tyr	Leu	Ser	Thr	Glu	Asp
				185					190					195
Val	Pro	Leu	Ala	Arg	Met	Leu	Val	Pro	Lys	Leu	Ile	Met	Ala	Met
				200					205					210
Gln	Thr	Leu	Ile	Pro	Ile	Asp	Glu	Ala	Lys	Ala	Cys	Glu	Ala	Leu
				215					220					225
Glu	Ala	Leu	Asp	Glu	Leu	Leu	Glu	Ser	Glu	Val	Pro	Val	Ile	Thr
				230					235					240
Pro	Tyr	Leu	Ser	Glu	Val	Leu	Thr	Phe	Cys	Leu	Glu	Val	Ala	Arg
				245					250					255
Asn	Val	Ala	Leu	Gly	Asn	Ala	Ile	Arg	Ile	Arg	Ile	Leu	Cys	Cys
				260					265					270
Leu	Thr	Phe	Leu	Val	Lys	Val	Lys	Ser	Lys	Ala	Leu	Leu	Lys	Asn
				275					280					285
Arg	Leu	Leu	Pro	Pro	Leu	Leu	His	Thr	Leu	Phe	Pro	Ile	Val	Ala
				290					295					300
Ala	Glu	Pro	Pro	Pro	Gly	Gln	Leu	Asp	Pro	Glu	Asp	Gln	Asp	Ser
				305					310					315
Glu	Glu	Glu	Glu	Leu	Glu	Ile	Glu	Leu	Met	Gly	Glu	Thr	Pro	Lys
				320					325					330
His	Phe	Ala	Val	Gln	Val	Val	Asp	Met	Leu	Ala	Leu	His	Leu	Pro
				335					340					345
Pro	Glu	Lys	Leu	Cys	Pro	Gln	Leu	Met	Pro	Met	Leu	Glu	Glu	Ala
				350					355					360
Leu	Arg	Ser	Glu	Ser	Pro	Tyr	Gln	Arg	Lys	Ala	Gly	Leu	Leu	Val
				365					370					375
Leu	Ala	Val	Leu	Ser	Asp	Gly	Ala	Gly	Asp	His	Ile	Arg	Gln	Arg
				380					385					390
Leu	Leu	Pro	Pro	Leu	Leu	Gln	Ile	Val	Cys	Lys	Gly	Leu	Glu	Asp
				395					400					405
Pro	Ser	Gln	Val	Val	Arg	Asn	Ala	Ala	Leu	Phe	Ala	Leu	Gly	Gln
				410					415					420
Phe	Ser	Glu	Asn	Leu	Gln	Pro	His	Ile	Ser	Ser	Tyr	Ser	Arg	Glu
				425					430					435
Val	Met	Pro	Leu	Leu	Leu	Ala	Tyr	Leu	Lys	Ser	Val	Pro	Leu	Gly
				440					445					450
His	Thr	His	His	Leu	Ala	Lys	Ala	Cys	Tyr	Ala	Leu	Glu	Asn	Phe
				455					460					465
Val	Glu	Asn	Leu	Gly	Pro	Lys	Val	Gln	Pro	Tyr	Leu	Pro	Glu	Leu
				470					475					480
Met	Glu	Cys	Met	Leu	Gln	Leu	Leu	Arg	Asn	Pro	Ser	Ser	Pro	Arg
				485					490					495
Ala	Lys	Glu	Leu	Ala	Val	Ser	Ala	Leu	Gly	Ala	Ile	Ala	Thr	Ala
				500					505					510
Ala	Gln	Ala	Ser	Leu	Leu	Pro	Tyr	Phe	Pro	Ala	Ile	Met	Glu	His
				515					520					525
Leu	Arg	Glu	Phe	Leu	Leu	Thr	Gly	Arg	Glu	Asp	Leu	Gln	Pro	Val
				530					535					540
Gln	Ile	Gln	Ser	Leu	Glu	Thr	Leu	Gly	Val	Leu	Ala	Arg	Ala	Val
				545					550					555
Gly	Glu	Pro	Met	Arg	Pro	Leu	Ala	Glu	Glu	Cys	Cys	Gln	Leu	Gly
				560					565					570
Leu	Gly	Leu	Cys	Asp	Gln	Val	Asp	Asp	Ala	Asp	Leu	Arg	Arg	Cys
				575					580					585
Thr	Tyr	Ser	Leu	Phe	Ala	Ala	Leu	Ser	Gly	Leu	Met	Gly	Glu	Gly
				590					595					600
Leu	Ala	Pro	His	Leu	Glu	Gln	Ile	Thr	Thr	Leu	Met	Leu	Leu	Ser
				605					610					615
Leu	Arg	Ser	Thr	Glu	Gly	Ile	Val	Pro	Gln	Tyr	Asp	Gly	Ser	Ser
				620					625					630
Ser	Phe	Leu	Leu	Phe	Asp	Asp	Glu	Ser	Asp	Gly	Glu	Glu	Glu	

	635	640	645											
Glu	Leu	Met	Asp	Glu	Asp	Val	Glu	Glu	Glu	Asp	Asp	Ser	Glu	Ile
	650			655			655			660				
Ser	Gly	Tyr	Ser	Val	Glu	Asn	Ala	Phe	Phe	Asp	Glu	Lys	Glu	Asp
	665			670			670			675				
Thr	Cys	Ala	Ala	Val	Gly	Glu	Ile	Ser	Val	Asn	Thr	Ser	Val	Ala
	680			685			685			690				
Phe	Leu	Pro	Tyr	Met	Glu	Ser	Val	Phe	Glu	Glu	Val	Phe	Lys	Leu
	695			700			700			705				
Leu	Glu	Cys	Pro	His	Leu	Asn	Val	Arg	Lys	Ala	Ala	His	Glu	Ala
	710			715			715			720				
Leu	Gly	Gln	Phe	Cys	Cys	Ala	Leu	His	Lys	Ala	Cys	Gln	Ser	Cys
	725			730			730			735				
Pro	Ser	Glu	Pro	Asn	Thr	Ala	Ala	Leu	Gln	Ala	Ala	Leu	Ala	Arg
	740			745			745			750				
Val	Val	Pro	Ser	Tyr	Met	Gln	Ala	Val	Asn	Arg	Glu	Arg	Glu	Arg
	755			760			760			765				
Gln	Val	Val	Met	Ala	Val	Leu	Glu	Ala	Leu	Thr	Gly	Val	Leu	Arg
	770			775			775			780				
Ser	Cys	Gly	Thr	Leu	Thr	Leu	Lys	Pro	Pro	Gly	Arg	Leu	Ala	Glu
	785			790			790			795				
Leu	Cys	Gly	Val	Leu	Lys	Ala	Val	Leu	Gln	Arg	Lys	Thr	Ala	Cys
	800			805			805			810				
Gln	Asp	Thr	Asp	Glu	Glu	Glu	Glu	Glu	Asp	Asp	Asp	Gln	Ala	
	815			820			820			825				
Glu	Tyr	Asp	Ala	Met	Leu	Leu	Glu	His	Ala	Gly	Glu	Ala	Ile	Pro
	830			835			835			840				
Ala	Leu	Ala	Ala	Ala	Ala	Gly	Gly	Asp	Ser	Phe	Ala	Pro	Phe	Phe
	845			850			850			855				
Ala	Gly	Phe	Leu	Pro	Leu	Leu	Val	Cys	Lys	Thr	Lys	Gln	Gly	Cys
	860			865			865			870				
Thr	Val	Ala	Glu	Lys	Ser	Phe	Ala	Val	Gly	Thr	Leu	Ala	Glu	Thr
	875			880			880			885				
Ile	Gln	Gly	Leu	Gly	Ala	Ala	Ser	Ala	Gln	Phe	Val	Ser	Arg	Leu
	890			895			895			900				
Leu	Pro	Val	Leu	Leu	Ser	Thr	Ala	Gln	Glu	Ala	Asp	Pro	Glu	Val
	905			910			910			915				
Arg	Ser	Asn	Ala	Ile	Phe	Gly	Met	Gly	Val	Leu	Ala	Glu	His	Gly
	920			925			925			930				
Gly	His	Pro	Ala	Gln	Glu	His	Phe	Pro	Lys	Leu	Leu	Gly	Leu	
	935			940			940			945				
Phe	Pro	Leu	Leu	Ala	Arg	Glu	Arg	His	Asp	Arg	Val	Arg	Asp	Asn
	950			955			955			960				
Ile	Cys	Gly	Ala	Leu	Ala	Arg	Leu	Leu	Met	Ala	Ser	Pro	Thr	Arg
	965			970			970			975				
Lys	Pro	Glu	Pro	Gln	Val	Leu	Ala	Ala	Leu	Leu	His	Ala	Leu	Pro
	980			985			985			990				
Leu	Lys	Glu	Asp	Leu	Glu	Glu	Trp	Val	Thr	Ile	Gly	Arg	Leu	Phe
	995			1000			1000			1005				
Ser	Phe	Leu	Tyr	Gln	Ser	Ser	Pro	Asp	Gln	Val	Ile	Asp	Val	Ala
	1010			1015			1015			1020				
Pro	Glu	Leu	Leu	Arg	Ile	Cys	Ser	Leu	Ile	Leu	Ala	Asp	Asn	Lys
	1025			1030			1030			1035				
Ile	Pro	Pro	Asp	Thr	Lys	Ala	Ala	Leu	Leu	Leu	Leu	Leu	Thr	Phe
	1040			1045			1045			1050				
Leu	Ala	Lys	Gln	His	Thr	Asp	Ser	Phe	Gln	Ala	Ala	Leu	Gly	Ser
	1055			1060			1060			1065				
Leu	Pro	Val	Asp	Lys	Ala	Gln	Glu	Leu	Gln	Ala	Val	Leu	Gly	Leu
	1070			1075			1075			1080				
Ser														

<211> 1172
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 3552033CD1

<400> 3
Met Tyr Val Arg Val Ser Phe Asp Thr Lys Pro Asp Leu Leu Leu
1 5 10 15
His Leu Met Thr Lys Glu Trp Gln Leu Glu Leu Pro Lys Leu Leu
20 25 30
Ile Ser Val His Gly Gly Leu Gln Asn Phe Glu Leu Gln Pro Lys
35 40 45
Leu Lys Gln Val Phe Gly Lys Gly Leu Ile Lys Ala Ala Met Thr
50 55 60
Thr Gly Ala Trp Ile Phe Thr Gly Gly Val Asn Thr Gly Val Ile
65 70 75
Arg His Val Gly Asp Ala Leu Lys Asp His Ala Ser Lys Ser Arg
80 85 90
Gly Lys Ile Cys Thr Ile Gly Ile Ala Pro Trp Gly Ile Val Glu
95 100 105
Asn Gln Glu Asp Leu Ile Gly Arg Asp Val Val Arg Pro Tyr Gln
110 115 120
Thr Met Ser Asn Pro Met Ser Lys Leu Thr Val Leu Asn Ser Met
125 130 135
His Ser His Phe Ile Leu Ala Asp Asn Gly Thr Thr Gly Lys Tyr
140 145 150
Gly Ala Glu Val Lys Leu Arg Arg Gln Leu Glu Lys His Ile Ser
155 160 165
Leu Gln Lys Ile Asn Thr Arg Ile Gly Gln Gly Val Pro Val Val
170 175 180
Ala Leu Ile Val Glu Gly Gly Pro Asn Val Ile Ser Ile Val Leu
185 190 195
Glu Tyr Leu Arg Asp Thr Pro Pro Val Pro Val Val Val Cys Asp
200 205 210
Gly Ser Gly Arg Ala Ser Asp Ile Leu Ala Phe Gly His Lys Tyr
215 220 225
Ser Glu Glu Gly Gly Leu Ile Asn Glu Ser Leu Arg Asp Gln Leu
230 235 240
Leu Val Thr Ile Gln Lys Thr Phe Thr Tyr Thr Arg Thr Gln Ala
245 250 255
Gln His Leu Phe Ile Ile Leu Met Glu Cys Met Lys Lys Lys Glu
260 265 270
Leu Ile Thr Val Phe Arg Met Gly Ser Glu Gly His Gln Asp Ile
275 280 285
Asp Leu Ala Ile Leu Thr Ala Leu Leu Lys Gly Ala Asn Ala Ser
290 295 300
Ala Pro Asp Gln Leu Ser Leu Ala Leu Ala Trp Asn Arg Val Asp
305 310 315
Ile Ala Arg Ser Gln Ile Phe Ile Tyr Gly Gln Gln Trp Pro Val
320 325 330
Gly Ser Leu Glu Gln Ala Met Leu Asp Ala Leu Val Leu Asp Arg
335 340 345
Val Asp Phe Val Lys Leu Leu Ile Glu Asn Gly Val Ser Met His
350 355 360
Arg Phe Leu Thr Ile Ser Arg Leu Glu Glu Leu Tyr Asn Thr Arg
365 370 375
His Gly Pro Ser Asn Thr Leu Tyr His Leu Val Arg Asp Val Lys
380 385 390
Lys Gly Asn Leu Pro Pro Asp Tyr Arg Ile Ser Leu Ile Asp Ile
395 400 405

Gly Leu Val Ile Glu Tyr Leu Met Gly Gly Ala Tyr Arg Cys Asn
 410 415 420
 Tyr Thr Arg Lys Arg Phe Arg Thr Leu Tyr His Asn Leu Phe Gly
 425 430 435
 Pro Lys Arg Pro Lys Ala Leu Lys Leu Leu Gly Met Glu Asp Asp
 440 445 450
 Ile Pro Leu Arg Arg Gly Arg Lys Thr Thr Lys Lys Arg Glu Glu
 455 460 465
 Glu Val Asp Ile Asp Leu Asp Asp Pro Glu Ile Asn His Phe Pro
 470 475 480
 Phe Pro Phe His Glu Leu Met Val Trp Ala Val Leu Met Lys Arg
 485 490 495
 Gln Lys Met Ala Leu Phe Phe Trp Gln His Gly Glu Glu Ala Met
 500 505 510
 Ala Lys Ala Leu Val Ala Cys Lys Leu Cys Lys Ala Met Ala His
 515 520 525
 Glu Ala Ser Glu Asn Asp Met Val Asp Asp Ile Ser Gln Glu Leu
 530 535 540
 Asn His Asn Ser Arg Asp Phe Gly Gln Leu Ala Val Glu Leu Leu
 545 550 555
 Asp Gln Ser Tyr Lys Gln Asp Glu Gln Leu Ala Met Lys Leu Leu
 560 565 570
 Thr Tyr Glu Leu Lys Asn Trp Ser Asn Ala Thr Cys Leu Gln Leu
 575 580 585
 Ala Val Ala Ala Lys His Arg Asp Phe Ile Ala His Thr Cys Ser
 590 595 600
 Gln Met Leu Leu Thr Asp Met Trp Met Gly Arg Leu Arg Met Arg
 605 610 615
 Lys Asn Ser Gly Leu Lys Val Ile Leu Gly Ile Leu Leu Pro Pro
 620 625 630
 Ser Ile Leu Ser Leu Glu Phe Lys Asn Lys Asp Asp Met Pro Tyr
 635 640 645
 Met Ser Gln Ala Gln Glu Ile His Leu Gln Glu Lys Glu Ala Glu
 650 655 660
 Glu Pro Glu Lys Pro Thr Lys Glu Lys Glu Glu Glu Asp Met Glu
 665 670 675
 Leu Ile Ala Met Leu Gly Arg Asn Asn Gly Glu Ser Ser Arg Lys
 680 685 690
 Lys Asp Glu Glu Glu Val Gln Ser Glu His Arg Leu Ile Pro Leu
 695 700 705
 Gly Arg Lys Ile Tyr Glu Phe Tyr Asn Ala Pro Ile Val Lys Phe
 710 715 720
 Trp Phe Tyr Thr Leu Ala Tyr Ile Gly Tyr Leu Met Leu Phe Asn
 725 730 735
 Tyr Ile Val Leu Val Lys Met Glu Arg Trp Pro Pro Thr Gln Glu
 740 745 750
 Trp Ile Val Ile Ser Tyr Ile Phe Thr Leu Gly Ile Glu Lys Met
 755 760 765
 Arg Glu Ile Leu Met Ser Glu Pro Gly Lys Leu Leu Gln Lys Val
 770 775 780
 Lys Val Trp Leu Gln Glu His Trp Asn Val Thr Asp Leu Ile Ala
 785 790 795
 Ile Leu Leu Phe Ser Val Gly Met Ile Leu Arg Leu Gln Asp Gln
 800 805 810
 Pro Phe Arg Ser Asp Gly Arg Val Ile Tyr Cys Val Asn Ile Ile
 815 820 825
 Tyr Trp Tyr Ile Arg Leu Leu Asp Ile Phe Gly Val Asn Lys Tyr
 830 835 840
 Leu Gly Pro Tyr Val Met Met Ile Gly Lys Met Met Ile Asp Met
 845 850 855
 Met Tyr Phe Val Ile Ile Met Leu Val Val Leu Met Ser Phe Gly
 860 865 870
 Val Ala Arg Gln Ala Ile Leu Phe Pro Asn Glu Glu Pro Ser Trp

	875	880	885
Lys Leu Ala Lys Asn Ile Phe Tyr Met Pro Tyr Trp Met Ile Tyr	890	895	900
Gly Glu Val Phe Ala Asp Gln Ile Asp Pro Pro Cys Gly Gln Asn	905	910	915
Glu Thr Arg Glu Asp Gly Lys Ile Ile Gln Leu Pro Pro Cys Lys	920	925	930
Thr Gly Ala Trp Ile Val Pro Ala Ile Met Ala Cys Tyr Leu	935	940	945
Val Ala Asn Ile Leu Leu Val Asn Leu Ile Ala Val Phe Asn	950	955	960
Asn Thr Phe Phe Glu Val Lys Ser Ile Ser Asn Gln Val Trp Lys	965	970	975
Phe Gln Arg Tyr Gln Leu Ile Met Thr Phe His Glu Arg Pro Val	980	985	990
Leu Pro Pro Pro Leu Ile Ile Phe Ser His Met Thr Met Ile Phe	995	1000	1005
Gln His Leu Cys Cys Arg Trp Arg Lys His Glu Ser Asp Pro Asp	1010	1015	1020
Glu Arg Asp Tyr Gly Leu Lys Leu Phe Ile Thr Asp Asp Glu Leu	1025	1030	1035
Lys Lys Val His Asp Phe Glu Glu Gln Cys Ile Glu Glu Tyr Phe	1040	1045	1050
Arg Glu Lys Asp Asp Arg Phe Asn Ser Ser Asn Asp Glu Arg Ile	1055	1060	1065
Arg Val Thr Ser Glu Arg Val Glu Asn Met Ser Met Arg Leu Glu	1070	1075	1080
Glu Val Asn Glu Arg Glu His Ser Met Lys Ala Ser Leu Gln Thr	1085	1090	1095
Val Asp Ile Arg Leu Ala Gln Leu Glu Asp Leu Ile Gly Arg Met	1100	1105	1110
Ala Thr Ala Leu Glu Arg Leu Thr Gly Leu Glu Arg Ala Glu Ser	1115	1120	1125
Asn Lys Ile Arg Ser Arg Thr Ser Ser Asp Cys Thr Asp Ala Ala	1130	1135	1140
Tyr Ile Val Arg Gln Ser Ser Phe Asn Ser Gln Glu Gly Asn Thr	1145	1150	1155
Phe Lys Leu Gln Glu Ser Ile Asp Pro Ala Glu His Pro Leu Tyr	1160	1165	1170
Ser Val			

<210> 4
<211> 742
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 4778139CD1

<400> 4
Met Glu Ile Ala Gly Glu Lys Lys Tyr Gln Tyr Tyr Ser Met Pro
1 5 10 15
Ser Ser Leu Leu Arg Ser Leu Ala Gly Gly Arg His Pro Pro Arg
20 25 30
Val Gln Arg Gly Ala Leu Leu Glu Ile Thr Asn Ser Lys Arg Glu
35 40 45
Ala Thr Asn Val Arg Asn Asp Gln Glu Arg Gln Glu Thr Gln Ser
50 55 60
Ser Ile Val Val Ser Gly Val Ser Pro Asn Arg Gln Ala His Ser
65 70 75
Lys Tyr Gly Gln Phe Leu Leu Val Pro Ser Asn Leu Lys Arg Val

	80	85	90
Pro Phe Ser Ala Glu	Thr Val Leu Pro	Leu Ser Arg Pro Ser	Val
95	100	105	
Pro Asp Val Leu Ala	Thr Glu Gln Asp	Ile Gln Thr Glu Val	Leu
110	115	120	
Val His Leu Thr Gly	Gln Thr Pro Val	Val Ser Asp Trp Ala	Ser
125	130	135	
Val Asp Glu Pro Lys	Glu Lys His Glu	Pro Ile Ala His Leu	Leu
140	145	150	
Asp Gly Gln Asp Lys	Ala Glu Gln Val	Leu Pro Thr Leu Ser	Cys
155	160	165	
Thr Pro Glu Pro Met	Thr Met Ser Ser	Pro Leu Ser Gln Ala	Lys
170	175	180	
Ile Met Gln Thr Gly	Gly Gly Tyr Val	Asn Trp Ala Phe Ser	Glu
185	190	195	
Gly Asp Glu Thr Gly	Val Phe Ser Ile	Lys Lys Lys Trp Gln	Thr
200	205	210	
Cys Leu Pro Ser Thr	Cys Asp Ser Asp	Ser Ser Arg Ser Glu	Gln
215	220	225	
His Gln Lys Gln Ala	Gln Asp Ser Ser	Leu Ser Asp Asn Ser	Thr
230	235	240	
Arg Ser Ala Gln Ser	Ser Ser Glu Cys Ser	Glu Val Gly Pro Trp	Leu
245	250	255	
Gln Pro Asn Thr Ser	Phe Trp Ile Asn	Pro Leu Arg Arg Tyr	Arg
260	265	270	
Pro Phe Ala Arg Ser	His Ser Phe Arg	Phe His Lys Glu Glu	Lys
275	280	285	
Leu Met Lys Ile Cys	Lys Ile Lys Asn	Leu Ser Gly Ser Ser	Glu
290	295	300	
Ile Gly Gln Gly Ala	Trp Val Lys Ala	Lys Met Leu Thr Lys	Asp
305	310	315	
Arg Arg Leu Ser Lys	Lys Lys Lys Asn	Thr Gln Gly Leu Gln	Val
320	325	330	
Pro Ile Ile Thr Val	Asn Ala Cys Ser	Gln Ser Asp Gln Leu	Asn
335	340	345	
Pro Glu Pro Gly Glu	Asn Ser Ile Ser	Glu Glu Glu Tyr Ser	Lys
350	355	360	
Asn Trp Phe Thr Val	Ser Lys Phe Ser	His Thr Gly Val Glu	Pro
365	370	375	
Tyr Ile His Gln Lys	Met Lys Thr Lys	Glu Ile Gly Gln Cys	Ala
380	385	390	
Ile Gln Ile Ser Asp	Tyr Leu Lys Gln	Ser Gln Glu Ser Ala	Gln
395	400	405	
Asp Leu Ser Lys Asn	Ser Leu Trp Asn	Ser Arg Ser Thr Asn	Leu
410	415	420	
Asn Arg Asn Ser Leu	Ser Ser Leu Ile	Ser Glu Ile Ser Ala	Ser
425	430	435	
Leu Lys Ser Pro Gln	Glu Pro His His	His Tyr Ser Pro Ser	Leu
440	445	450	
Leu Phe Ala Ala Gly	Glu Glu Ile Thr	Val Tyr Arg Leu Glu	Glu
455	460	465	
Ser Ser Pro Leu Asn	Leu Asp Lys Ser	Met Ser Ser Trp Ser	Gln
470	475	480	
Arg Gly Arg Ala Ala	Met Ile Gln Val	Leu Ser Arg Glu Glu	Met
485	490	495	
Asp Gly Gly Leu Arg	Lys Ala Met Arg	Val Val Ser Thr Trp	Ser
500	505	510	
Glu Asp Asp Ile Leu	Lys Pro Gly Gln	Val Phe Ile Val Lys	Ser
515	520	525	
Phe Leu Pro Glu Val	Val Arg Thr Trp	His Lys Ile Phe Gln	Glu
530	535	540	
Ser Thr Val Leu His	Leu Cys Leu Arg	Glu Ile Gln Gln Gln	Arg
545	550	555	

Ala Ala Gln Lys Leu Ile Tyr Thr Phe Asn Gln Val Lys Pro Gln		
560	565	570
Thr Ile Pro Tyr Thr Pro Arg Phe Leu Glu Val Phe Leu Ile Tyr		
575	580	585
Cys His Ser Ala Asn Gln Trp Leu Thr Ile Glu Lys Tyr Met Thr		
590	595	600
Gly Glu Phe Arg Lys Tyr Asn Asn Asn Gly Asp Glu Ile Thr		
605	610	615
Pro Thr Asn Thr Leu Glu Glu Leu Met Leu Ala Phe Ser His Trp		
620	625	630
Thr Tyr Glu Tyr Thr Arg Gly Glu Leu Leu Val Leu Asp Leu Gln		
635	640	645
Gly Val Gly Glu Asn Leu Thr Asp Pro Ser Val Ile Lys Pro Glu		
650	655	660
Val Lys Gln Ser Arg Gly Met Val Phe Gly Pro Ala Asn Leu Gly		
665	670	675
Glu Asp Ala Ile Arg Asn Phe Ile Ala Lys His His Trp Asn Ser		
680	685	690
Cys Cys Arg Lys Leu Lys Leu Pro Asp Leu Lys Arg Asn Asp Tyr		
695	700	705
Ser Pro Glu Arg Ile Asn Ser Thr Phe Gly Leu Glu Ile Lys Ile		
710	715	720
Glu Ser Ala Glu Glu Pro Pro Ala Arg Glu Thr Gly Arg Asn Ser		
725	730	735
Pro Glu Asp Asp Met Gln Leu		
740		

<210> 5
<211> 577
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 4787433CD1

<400> 5	
Met Gly Ser Arg His Phe Glu Gly Ile Tyr Asp His Val Gly His	
1 5 10 15	
Phe Gly Arg Phe Gln Arg Val Leu Tyr Phe Ile Cys Ala Phe Gln	
20 25 30	
Asn Ile Ser Cys Gly Ile His Tyr Leu Ala Ser Val Phe Met Gly	
35 40 45	
Val Thr Pro His His Val Cys Arg Pro Pro Gly Asn Val Ser Gln	
50 55 60	
Val Val Phe His Asn His Ser Asn Trp Ser Leu Glu Asp Thr Gly	
65 70 75	
Ala Leu Leu Ser Ser Gly Gln Lys Asp Tyr Val Thr Val Gln Leu	
80 85 90	
Gln Asn Gly Glu Ile Trp Glu Leu Ser Arg Cys Ser Arg Asn Lys	
95 100 105	
Arg Glu Asn Thr Ser Ser Leu Gly Tyr Glu Tyr Thr Gly Ser Lys	
110 115 120	
Lys Glu Phe Pro Cys Val Asp Gly Tyr Ile Tyr Asp Gln Asn Thr	
125 130 135	
Trp Lys Ser Thr Ala Val Thr Gln Trp Asn Leu Val Cys Asp Arg	
140 145 150	
Lys Trp Leu Ala Met Leu Ile Gln Pro Leu Phe Met Phe Gly Val	
155 160 165	
Leu Leu Gly Ser Val Thr Phe Gly Tyr Phe Ser Asp Arg Leu Gly	
170 175 180	
Arg Arg Val Val Leu Trp Ala Thr Ser Ser Ser Met Phe Leu Phe	
185 190 195	

Gly Ile Ala Ala Ala Phe Ala Val Asp Tyr Tyr Thr Phe Met Ala
 200 205 210
 Ala Arg Phe Phe Leu Ala Met Val Ala Ser Gly Tyr Leu Val Val
 215 220 225
 Gly Phe Val Tyr Val Met Glu Phe Ile Gly Met Lys Ser Arg Thr
 230 235 240
 Trp Ala Ser Val His Leu His Ser Phe Phe Ala Val Gly Thr Leu
 245 250 255
 Leu Val Ala Leu Thr Gly Tyr Leu Val Arg Thr Trp Trp Leu Tyr
 260 265 270
 Gln Met Ile Leu Ser Thr Val Thr Val Pro Phe Ile Leu Cys Cys
 275 280 285
 Trp Val Leu Pro Glu Thr Pro Phe Trp Leu Leu Ser Glu Gly Arg
 290 295 300
 Tyr Glu Glu Ala Gln Lys Ile Val Asp Ile Met Ala Lys Trp Asn
 305 310 315
 Arg Ala Ser Ser Cys Lys Leu Ser Glu Leu Leu Ser Leu Asp Leu
 320 325 330
 Gln Gly Pro Val Ser Asn Ser Pro Thr Glu Val Gln Lys His Asn
 335 340 345
 Leu Ser Tyr Leu Phe Tyr Asn Trp Ser Ile Thr Lys Arg Thr Leu
 350 355 360
 Thr Val Trp Leu Ile Trp Phe Thr Gly Ser Leu Gly Phe Tyr Ser
 365 370 375
 Phe Ser Leu Asn Ser Val Asn Leu Gly Gly Asn Glu Tyr Leu Asn
 380 385 390
 Leu Phe Leu Leu Gly Val Val Glu Ile Pro Ala Tyr Thr Phe Val
 395 400 405
 Cys Ile Ala Met Asp Lys Val Gly Arg Arg Thr Val Leu Ala Tyr
 410 415 420
 Ser Leu Phe Cys Ser Ala Leu Ala Cys Gly Val Val Met Val Ile
 425 430 435
 Pro Gln Lys His Tyr Ile Leu Gly Val Val Thr Ala Met Val Gly
 440 445 450
 Lys Phe Ala Ile Gly Ala Ala Phe Gly Leu Ile Tyr Leu Tyr Thr
 455 460 465
 Ala Glu Leu Tyr Pro Thr Ile Val Arg Ser Leu Ala Val Gly Ser
 470 475 480
 Gly Ser Met Val Cys Arg Leu Ala Ser Ile Leu Ala Pro Phe Ser
 485 490 495
 Val Asp Leu Ser Ser Ile Trp Ile Phe Ile Pro Gln Leu Phe Val
 500 505 510
 Gly Thr Met Ala Leu Leu Ser Gly Val Leu Thr Leu Lys Leu Pro
 515 520 525
 Glu Thr Leu Gly Lys Arg Leu Ala Thr Thr Trp Glu Glu Ala Ala
 530 535 540
 Lys Leu Glu Ser Glu Asn Glu Ser Lys Ser Ser Lys Leu Leu Leu
 545 550 555
 Thr Thr Asn Asn Ser Gly Leu Glu Lys Thr Glu Ala Ile Thr Pro
 560 565 570
 Arg Asp Ser Gly Leu Gly Glu
 575

<210> 6
 <211> 462
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 7483598CD1

<400> 6

Met	Gly	Tyr	Gln	Arg	Gln	Glu	Pro	Val	Ile	Pro	Pro	Gln	Arg	Asp
1					5				10				15	
Leu	Asp	Asp	Arg	Glu	Thr	Leu	Val	Ser	Glu	His	Glu	Tyr	Lys	Glu
					20				25				30	
Lys	Thr	Cys	Gln	Ser	Ala	Ala	Leu	Phe	Asn	Val	Val	Asn	Ser	Ile
					35				40				45	
Ile	Gly	Ser	Gly	Ile	Ile	Gly	Leu	Pro	Tyr	Ser	Met	Lys	Gln	Ala
					50				55				60	
Gly	Phe	Pro	Leu	Gly	Ile	Leu	Leu	Phe	Trp	Val	Ser	Tyr	Val	
					65				70				75	
Thr	Asp	Phe	Ser	Leu	Val	Leu	Leu	Ile	Lys	Gly	Gly	Ala	Leu	Ser
					80				85				90	
Gly	Thr	Asp	Thr	Tyr	Gln	Ser	Leu	Val	Asn	Lys	Thr	Phe	Gly	Phe
					95				100				105	
Pro	Gly	Tyr	Leu	Leu	Leu	Ser	Val	Leu	Gln	Phe	Leu	Tyr	Pro	Phe
					110				115				120	
Ile	Ala	Met	Ile	Ser	Tyr	Asn	Ile	Ile	Ala	Gly	Asp	Thr	Leu	Ser
					125				130				135	
Lys	Val	Phe	Gln	Arg	Ile	Pro	Gly	Val	Asp	Pro	Glu	Asn	Val	Phe
					140				145				150	
Ile	Gly	Arg	His	Phe	Ile	Ile	Gly	Leu	Ser	Thr	Val	Thr	Phe	Thr
					155				160				165	
Leu	Pro	Leu	Ser	Leu	Tyr	Arg	Asn	Ile	Ala	Lys	Leu	Gly	Lys	Val
					170				175				180	
Ser	Leu	Ile	Ser	Thr	Gly	Leu	Thr	Thr	Leu	Ile	Leu	Gly	Ile	Val
					185				190				195	
Met	Ala	Arg	Ala	Ile	Ser	Leu	Gly	Pro	His	Ile	Pro	Lys	Thr	Glu
					200				205				210	
Asp	Ala	Trp	Val	Phe	Ala	Lys	Pro	Asn	Ala	Ile	Gln	Ala	Val	Gly
					215				220				225	
Val	Met	Ser	Phe	Ala	Phe	Ile	Cys	His	His	Asn	Ser	Phe	Leu	Val
					230				235				240	
Tyr	Ser	Ser	Leu	Glu	Glu	Glu	Pro	Thr	Val	Ala	Lys	Trp	Ser	Arg
					245				250				255	
Ile	His	Met	Ser	Ile	Val	Ile	Ser	Val	Phe	Ile	Cys	Ile	Phe	
					260				265				270	
Ala	Thr	Cys	Gly	Tyr	Leu	Thr	Phe	Thr	Gly	Phe	Thr	Gln	Gly	Asp
					275				280				285	
Leu	Phe	Glu	Asn	Tyr	Cys	Arg	Asn	Asp	Asp	Leu	Val	Thr	Phe	Gly
					290				295				300	
Arg	Phe	Cys	Tyr	Gly	Val	Thr	Val	Ile	Leu	Thr	Tyr	Pro	Met	Glu
					305				310				315	
Cys	Phe	Val	Thr	Arg	Glu	Val	Ile	Ala	Asn	Val	Phe	Phe	Gly	
					320				325				330	
Asn	Leu	Ser	Ser	Val	Phe	His	Ile	Val	Val	Thr	Val	Met	Val	Ile
					335				340				345	
Thr	Val	Ala	Thr	Leu	Val	Ser	Leu	Leu	Ile	Asp	Cys	Leu	Gly	Ile
					350				355				360	
Val	Leu	Glu	Leu	Asn	Gly	Val	Leu	Cys	Ala	Thr	Pro	Leu	Ile	Phe
					365				370				375	
Ile	Ile	Pro	Ser	Ala	Cys	Tyr	Leu	Lys	Leu	Ser	Glu	Glu	Pro	Arg
					380				385				390	
Thr	His	Ser	Asp	Lys	Ile	Met	Ser	Cys	Val	Met	Leu	Pro	Ile	Gly
					395				400				405	
Ala	Val	Val	Met	Val	Phe	Gly	Phe	Val	Met	Ala	Ile	Thr	Asn	Thr
					410				415				420	
Gln	Asp	Cys	Thr	His	Gly	Gln	Glu	Met	Phe	Tyr	Cys	Phe	Pro	Asp
					425				430				435	
Asn	Phe	Ser	Leu	Thr	Asn	Thr	Ser	Glu	Ser	His	Val	Gln	Gln	Thr
					440				445				450	
Thr	Gln	Leu	Ser	Thr	Leu	Asn	Ile	Ser	Ile	Phe	Gln			
					455				460					

<210> 7
 <211> 1018
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 7484823CD1

<400> 7
 Met Gly Glu Gly Asp Ser Gly Leu Arg Ser Pro Arg Gly Pro Gln
 1 5 10 15
 Glu Gly Gly Lys Cys Ser Arg Glu Lys Gln Lys Arg Asn Met Glu
 20 25 30
 Glu Leu Lys Lys Glu Val Val Met Asp Asp His Lys Leu Thr Leu
 35 40 45
 Glu Glu Leu Ser Thr Lys Tyr Ser Val Asp Leu Thr Lys Gly His
 50 55 60
 Ser His Gln Arg Ala Lys Glu Ile Leu Thr Arg Gly Gly Pro Asn
 65 70 75
 Thr Val Thr Pro Pro Pro Thr Pro Glu Trp Val Lys Phe Cys
 80 85 90
 Lys Gln Leu Phe Gly Phe Ser Leu Leu Leu Trp Thr Gly Ala
 95 100 105
 Ile Leu Cys Phe Val Ala Tyr Ser Ile Gln Ile Tyr Phe Asn Glu
 110 115 120
 Glu Pro Thr Lys Asp Asn Leu Tyr Leu Ser Ile Val Leu Ser Val
 125 130 135
 Val Val Ile Val Thr Gly Cys Phe Ser Tyr Tyr Gln Glu Ala Lys
 140 145 150
 Ser Ser Lys Ile Met Glu Ser Phe Lys Asn Met Val Pro Gln Gln
 155 160 165
 Ala Leu Val Ile Arg Gly Gly Glu Lys Met Gln Ile Asn Val Gln
 170 175 180
 Glu Val Val Leu Gly Asp Leu Val Glu Ile Lys Gly Gly Asp Arg
 185 190 195
 Val Pro Ala Asp Leu Arg Leu Ile Ser Ala Gln Gly Cys Lys Val
 200 205 210
 Asp Asn Ser Ser Leu Thr Gly Glu Ser Glu Pro Gln Ser Arg Ser
 215 220 225
 Pro Asp Phe Thr His Glu Asn Pro Leu Glu Thr Arg Asn Ile Cys
 230 235 240
 Phe Phe Ser Thr Asn Cys Val Glu Gly Thr Ala Arg Gly Ile Val
 245 250 255
 Ile Ala Thr Gly Asp Ser Thr Val Met Gly Arg Ile Ala Ser Leu
 260 265 270
 Thr Ser Gly Leu Ala Val Gly Gln Thr Pro Ile Ala Ala Glu Ile
 275 280 285
 Glu His Phe Ile His Leu Ile Thr Val Val Ala Val Phe Leu Gly
 290 295 300
 Val Thr Phe Phe Ala Leu Ser Leu Leu Leu Gly Tyr Gly Trp Leu
 305 310 315
 Glu Ala Ile Ile Phe Leu Ile Gly Ile Ile Val Ala Asn Val Pro
 320 325 330
 Glu Gly Leu Leu Ala Thr Val Thr Val Cys Leu Thr Leu Thr Ala
 335 340 345
 Lys Arg Met Ala Arg Lys Asn Cys Leu Val Lys Asn Leu Glu Ala
 350 355 360
 Val Glu Thr Leu Gly Ser Thr Ser Thr Ile Cys Ser Asp Lys Thr
 365 370 375
 Gly Thr Leu Thr Gln Asn Arg Met Thr Val Ala His Met Trp Phe
 380 385 390
 Asp Met Thr Val Tyr Glu Ala Asp Thr Thr Glu Glu Gln Thr Gly

	395	400	405
Lys Thr Phe Thr	Lys Ser Ser Asp Thr	Trp Phe Met Leu Ala	Arg
410	415	420	
Ile Ala Gly Leu	Cys Asn Arg Ala Asp	Phe Lys Ala Asn Gln	Glu
425	430	435	
Ile Leu Pro Ile Ala	Lys Arg Ala Thr	Thr Gly Asp Ala Ser	Glu
440	445	450	
Ser Ala Leu Leu	Lys Phe Ile Glu Gln	Ser Tyr Ser Ser Val	Ala
455	460	465	
Glu Met Arg Glu	Lys Asn Pro Lys Val	Ala Glu Val Pro Phe	Asn
470	475	480	
Ser Thr Asn Lys	Tyr Gln Met Ser Ile	His Leu Arg Glu Asp	Ser
485	490	495	
Ser Gln Thr His	Val Leu Met Met Lys	Gly Ala Pro Glu Arg	Ile
500	505	510	
Leu Glu Phe Cys	Ser Thr Phe Leu Leu	Asn Gly Gln Glu Tyr	Ser
515	520	525	
Met Asn Asp Glu	Met Lys Glu Ala Phe	Gln Asn Ala Tyr Leu	Glu
530	535	540	
Leu Gly Gly Leu	Gly Glu Arg Val Leu	Gly Phe Cys Phe Leu	Asn
545	550	555	
Leu Pro Ser Ser	Phe Ser Lys Gly Phe	Pro Phe Asn Thr Asp	Glu
560	565	570	
Ile Asn Phe Pro	Met Asp Asn Leu Cys	Phe Val Gly Leu Ile	Ser
575	580	585	
Met Ile Asp Pro	Pro Arg Ala Ala Val	Pro Asp Ala Val Ser	Lys
590	595	600	
Cys Arg Ser Ala	Gly Ile Lys Val Ile	Met Val Thr Gly Asp	His
605	610	615	
Pro Ile Thr Ala	Lys Ala Ile Ala Lys	Gly Val Gly Ile Ile	Ser
620	625	630	
Glu Gly Thr Glu	Thr Ala Glu Glu Val	Ala Ala Arg Leu Lys	Ile
635	640	645	
Pro Ile Ser Lys	Val Asp Ala Ser Ala	Ala Lys Ala Ile Val	Val
650	655	660	
His Gly Ala Glu	Leu Lys Asp Ile Gln	Ser Lys Gln Leu Asp	Gln
665	670	675	
Ile Leu Gln Asn	His Pro Glu Ile Val	Phe Ala Arg Thr Ser	Pro
680	685	690	
Gln Gln Lys Leu	Ile Ile Val Glu Gly	Cys Gln Arg Leu Gly	Ala
695	700	705	
Val Val Ala Val	Thr Gly Asp Gly Val	Asn Asp Ser Pro Ala	Leu
710	715	720	
Lys Lys Ala Asp	Ile Gly Ile Ala Met	Gly Ile Ser Gly Ser	Asp
725	730	735	
Val Ser Lys Gln	Ala Ala Asp Met Ile	Leu Leu Asp Asp Asn	Phe
740	745	750	
Ala Ser Ile Val	Thr Gly Val Glu Glu	Gly Arg Leu Ile Phe	Asp
755	760	765	
Asn Leu Lys Lys	Ser Ile Met Tyr Thr	Leu Thr Ser Asn Ile	Pro
770	775	780	
Glu Ile Thr Pro	Phe Leu Met Phe Ile	Ile Leu Gly Ile Pro	Leu
785	790	795	
Pro Leu Gly Thr	Ile Thr Ile Leu Cys	Ile Asp Leu Gly Thr	Asp
800	805	810	
Met Val Pro Ala	Ile Ser Leu Ala Tyr	Glu Ser Ala Glu Ser	Asp
815	820	825	
Ile Met Lys Arg	Leu Pro Arg Asn Pro	Lys Thr Asp Asn Leu	Val
830	835	840	
Asn His Arg Leu	Ile Gly Met Ala Tyr	Gly Gln Ile Gly Met	Ile
845	850	855	
Gln Ala Leu Ala	Gly Phe Phe Thr Tyr	Phe Val Ile Leu Ala	Glu
860	865	870	

Asn	Gly	Phe	Arg	Pro	Val	Asp	Leu	Leu	Gly	Ile	Arg	Leu	His	Trp
875							880							885
Glu	Asp	Lys	Tyr	Leu	Asn	Asp	Leu	Glu	Asp	Ser	Tyr	Gly	Gln	
890								895						900
Trp	Thr	Tyr	Glu	Gln	Arg	Lys	Val	Val	Glu	Phe	Thr	Cys	Gln	Thr
905								910						915
Ala	Phe	Phe	Val	Thr	Ile	Val	Val	Val	Gln	Trp	Ala	Asp	Leu	Ile
920								925						930
Ile	Ser	Lys	Thr	Arg	Arg	Asn	Ser	Leu	Phe	Gln	Gln	Gly	Met	Arg
935								940						945
Asn	Lys	Val	Leu	Ile	Phe	Gly	Ile	Leu	Glu	Glu	Thr	Leu	Leu	Ala
950								955						960
Ala	Phe	Leu	Ser	Tyr	Thr	Pro	Gly	Met	Asp	Val	Ala	Leu	Arg	Met
965								970						975
Tyr	Pro	Leu	Lys	Ile	Thr	Trp	Trp	Leu	Cys	Ala	Ile	Pro	Tyr	Ser
980								985						990
Ile	Leu	Ile	Phe	Val	Tyr	Asp	Glu	Ile	Arg	Lys	Leu	Leu	Ile	Arg
995								1000						1005
Gln	His	Pro	Asp	Gly	Trp	Val	Glu	Arg	Glu	Thr	Tyr	Tyr		
1010								1015						

<210> 8
<211> 313
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 143935CD1

<400> 8															
Met	Glu	Glu	Met	Ser	Gly	Glu	Ser	Val	Val	Ser	Ser	Ala	Val	Pro	
1								5						15	
Ala	Ala	Ala	Thr	Arg	Thr	Thr	Ser	Phe	Lys	Gly	Thr	Ser	Pro	Ser	
								20						30	
Ser	Lys	Tyr	Val	Lys	Leu	Asn	Val	Gly	Gly	Ala	Leu	Tyr	Tyr	Thr	
								35						45	
Thr	Met	Gln	Thr	Leu	Thr	Lys	Gln	Asp	Thr	Met	Leu	Lys	Ala	Met	
								50						60	
Phe	Ser	Gly	Arg	Met	Glu	Val	Leu	Thr	Asp	Ser	Glu	Gly	Trp	Ile	
								65						75	
Leu	Ile	Asp	Arg	Cys	Gly	Lys	His	Phe	Gly	Thr	Ile	Leu	Asn	Tyr	
								80						90	
Leu	Arg	Asp	Gly	Ala	Val	Pro	Leu	Pro	Glu	Ser	Arg	Arg	Glu	Ile	
								95						105	
Glu	Glu	Leu	Leu	Ala	Glu	Ala	Lys	Tyr	Tyr	Leu	Val	Gln	Gly	Leu	
								110						120	
Val	Glu	Glu	Cys	Gln	Ala	Ala	Leu	Gln	Asn	Lys	Asp	Thr	Tyr	Glu	
								125						135	
Pro	Phe	Cys	Lys	Val	Pro	Val	Ile	Thr	Ser	Ser	Lys	Glu	Gln		
								140						150	
Lys	Leu	Ile	Ala	Thr	Ser	Asn	Lys	Pro	Ala	Val	Lys	Leu	Leu	Tyr	
								155						165	
Asn	Arg	Ser	Asn	Asn	Lys	Tyr	Ser	Tyr	Thr	Ser	Asn	Ser	Asp	Asp	
								170						180	
Asn	Met	Leu	Lys	Asn	Ile	Glu	Leu	Phe	Asp	Lys	Leu	Ser	Leu	Arg	
								185						195	
Phe	Asn	Gly	Arg	Val	Leu	Phe	Ile	Lys	Asp	Val	Ile	Gly	Asp	Glu	
								200						210	
Ile	Cys	Cys	Trp	Ser	Phe	Tyr	Gly	Gln	Gly	Arg	Lys	Ile	Ala	Glu	
								215						225	
Val	Cys	Cys	Thr	Ser	Ile	Val	Tyr	Ala	Thr	Glu	Lys	Lys	Gln	Thr	
								230						240	
								235							

Lys	Val	Glu	Phe	Pro	Glu	Ala	Arg	Ile	Tyr	Glu	Glu	Thr	Leu	Asn
		245			250								255	
Ile	Leu	Leu	Tyr	Glu	Ala	Gln	Asp	Gly	Arg	Gly	Pro	Asp	Asn	Ala
		260			265								270	
Leu	Leu	Glu	Ala	Thr	Gly	Gly	Ala	Ala	Gly	Arg	Ser	His	His	Leu
		275			280								285	
Asp	Glu	Asp	Glu	Glu	Arg	Glu	Arg	Ile	Glu	Arg	Val	Arg	Arg	Ile
		290			295								300	
His	Ile	Lys	Arg	Pro	Asp	Asp	Arg	Ala	His	Leu	His	Gln		
		305			310									

<210> 9
<211> 921
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 5923789CD1

<400> 9														
Met	Ala	Trp	Leu	Arg	Leu	Gln	Pro	Leu	Thr	Ser	Ala	Phe	Leu	His
1			5					10					15	
Phe	Gly	Leu	Val	Thr	Phe	Val	Leu	Phe	Leu	Asn	Gly	Leu	Arg	Ala
			20					25					30	
Glu	Ala	Gly	Gly	Ser	Gly	Asp	Val	Pro	Ser	Thr	Gly	Gln	Asn	Asn
			35					40					45	
Glu	Ser	Cys	Ser	Gly	Ser	Ser	Asp	Cys	Lys	Glu	Gly	Val	Ile	Leu
			50					55					60	
Pro	Ile	Trp	Tyr	Pro	Glu	Asn	Pro	Ser	Leu	Gly	Asp	Lys	Ile	Ala
			65					70					75	
Arg	Val	Ile	Val	Tyr	Phe	Val	Ala	Leu	Ile	Tyr	Met	Phe	Leu	Gly
			80					85					90	
Val	Ser	Ile	Ile	Ala	Asp	Arg	Phe	Met	Ala	Ser	Ile	Glu	Val	Ile
			95					100					105	
Thr	Ser	Gln	Glu	Arg	Glu	Val	Thr	Ile	Lys	Lys	Pro	Asn	Gly	Glu
			110					115					120	
Thr	Ser	Thr	Thr	Thr	Ile	Arg	Val	Trp	Asn	Glu	Thr	Val	Ser	Asn
			125					130					135	
Leu	Thr	Leu	Met	Ala	Leu	Gly	Ser	Ser	Ala	Pro	Glu	Ile	Leu	
			140					145					150	
Ser	Leu	Ile	Glu	Val	Cys	Gly	His	Gly	Phe	Ile	Ala	Gly	Asp	Leu
			155					160					165	
Gly	Pro	Ser	Thr	Ile	Val	Gly	Ser	Ala	Ala	Phe	Asn	Met	Phe	Ile
			170					175					180	
Ile	Ile	Gly	Ile	Cys	Val	Tyr	Val	Ile	Pro	Asp	Gly	Glu	Thr	Arg
			185					190					195	
Lys	Ile	Lys	His	Leu	Arg	Val	Phe	Phe	Ile	Thr	Ala	Ala	Trp	Ser
			200					205					210	
Ile	Phe	Ala	Tyr	Ile	Trp	Leu	Tyr	Met	Ile	Leu	Ala	Val	Phe	Ser
			215					220					225	
Pro	Gly	Val	Val	Gln	Val	Trp	Glu	Gly	Leu	Leu	Thr	Leu	Phe	Phe
			230					235					240	
Phe	Pro	Val	Cys	Val	Leu	Leu	Ala	Trp	Val	Ala	Asp	Lys	Arg	Leu
			245					250					255	
Leu	Phe	Tyr	Lys	Tyr	Met	His	Lys	Lys	Tyr	Arg	Thr	Asp	Lys	His
			260					265					270	
Arg	Gly	Ile	Ile	Ile	Glu	Thr	Glu	Gly	Asp	His	Pro	Lys	Gly	Ile
			275					280					285	
Glu	Met	Asp	Gly	Lys	Met	Met	Asn	Ser	His	Phe	Leu	Asp	Gly	Asn
			290					295					300	
Leu	Val	Pro	Leu	Glu	Gly	Lys	Glu	Val	Asp	Glu	Ser	Arg	Arg	Glu
			305					310					315	

Met Ile Arg Ile	Leu Lys Asp Leu Lys Gln Lys His Pro Glu Lys
320	325 330
Asp Leu Asp Gln	Leu Val Glu Met Ala Asn Tyr Tyr Ala Leu Ser
335	340 345
His Gln Gln Lys	Ser Arg Ala Phe Tyr Arg Ile Gln Ala Thr Arg
350	355 360
Met Met Thr Gly	Ala Gly Asn Ile Leu Lys Lys His Ala Ala Glu
365	370 375
Gln Ala Lys Lys	Ala Ser Ser Met Ser Glu Val His Thr Asp Glu
380	385 390
Pro Glu Asp Phe	Ile Ser Lys Val Phe Phe Asp Pro Cys Ser Tyr
395	400 405
Gln Cys Leu Glu	Asn Cys Gly Ala Val Leu Leu Thr Val Val Arg
410	415 420
Lys Gly Gly Asp	Met Ser Lys Thr Met Tyr Val Asp Tyr Lys Thr
425	430 435
Glu Asp Gly Ser	Ala Asn Ala Gly Ala Asp Tyr Glu Phe Thr Glu
440	445 450
Gly Thr Val Val	Leu Lys Pro Gly Glu Thr Gln Lys Glu Phe Ser
455	460 465
Val Gly Ile Ile	Asp Asp Asp Ile Phe Glu Glu Asp Glu His Phe
470	475 480
Phe Val Arg Leu	Ser Asn Val Arg Ile Glu Glu Glu Gln Pro Glu
485	490 495
Glu Gly Met Pro	Pro Ala Ile Phe Asn Ser Leu Pro Leu Pro Arg
500	505 510
Ala Val Leu Ala	Ser Pro Cys Val Ala Thr Val Thr Ile Leu Asp
515	520 525
Asp Asp His Ala	Gly Ile Phe Thr Phe Glu Cys Asp Thr Ile His
530	535 540
Val Ser Glu Ser	Ile Gly Val Met Glu Val Lys Val Leu Arg Thr
545	550 555
Ser Gly Ala Arg	Gly Thr Val Ile Val Pro Phe Arg Thr Val Glu
560	565 570
Gly Thr Ala Lys	Gly Gly Glu Asp Phe Glu Asp Thr Tyr Gly
575	580 585
Glu Leu Glu Phe	Lys Asn Asp Glu Thr Val Lys Thr Ile Arg Val
590	595 600
Lys Ile Val Asp	Glu Glu Glu Tyr Glu Arg Gln Glu Asn Phe Phe
605	610 615
Ile Ala Leu Gly	Glu Pro Lys Trp Met Glu Arg Gly Ile Ser Asp
620	625 630
Val Thr Asp Arg	Lys Leu Thr Met Glu Glu Glu Ala Lys Arg
635	640 645
Ile Ala Glu Met	Gly Lys Pro Val Leu Gly Glu His Pro Lys Leu
650	655 660
Glu Val Ile Ile	Glu Glu Ser Tyr Glu Phe Lys Thr Thr Val Asp
665	670 675
Lys Leu Ile Lys	Lys Thr Asn Leu Ala Leu Val Val Gly Thr His
680	685 690
Ser Trp Arg Asp	Gln Phe Met Glu Ala Ile Thr Val Ser Ala Ala
695	700 705
Gly Asp Glu Asp	Glu Asp Glu Ser Gly Glu Glu Arg Leu Pro Ser
710	715 720
Cys Phe Asp Tyr	Val Met His Phe Leu Thr Val Phe Trp Lys Val
725	730 735
Leu Phe Ala Cys	Val Pro Pro Thr Glu Tyr Cys His Gly Trp Ala
740	745 750
Cys Phe Ala Val	Ser Ile Leu Ile Ile Gly Met Leu Thr Ala Ile
755	760 765
Ile Gly Asp Leu	Ala Ser His Phe Gly Cys Thr Ile Gly Leu Lys
770	775 780
Asp Ser Val Thr	Ala Val Val Phe Val Ala Phe Gly Thr Ser Val

	785	790	795
Pro Asp Thr Phe Ala Ser Lys Ala Ala		Leu Gln Asp Val Tyr	
800	805		810
Ala Asp Ala Ser Ile Gly Asn Val Thr Gly Ser Asn Ala Val Asn			
815	820		825
Val Phe Leu Gly Ile Gly Leu Ala Trp Ser Val Ala Ala Ile Tyr			
830	835		840
Trp Ala Leu Gln Gly Gln Glu Phe His Val Ser Ala Gly Thr Leu			
845	850		855
Ala Phe Ser Val Thr Leu Phe Thr Ile Phe Ala Phe Val Cys Ile			
860	865		870
Ser Val Leu Leu Tyr Arg Arg Arg Pro His Leu Gly Gly Glu Leu			
875	880		885
Gly Gly Pro Arg Gly Cys Lys Leu Ala Thr Thr Trp Leu Phe Val			
890	895		900
Ser Leu Trp Leu Leu Tyr Ile Leu Phe Ala Thr Leu Glu Ala Tyr			
905	910		915
Cys Tyr Ile Lys Gly Phe			
920			

<210> 10
<211> 1466
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 6046484CD1

	<400> 10		
Met Tyr Ile Arg Val Ser Tyr Asp Thr Lys Pro Asp Ser Leu Leu			
1	5	10	15
His Leu Met Val Lys Asp Trp Gln Leu Glu Leu Pro Lys Leu Leu			
20	25		30
Ile Ser Val His Gly Gly Leu Gln Asn Phe Glu Met Gln Pro Lys			
35	40		45
Leu Lys Gln Val Phe Gly Lys Gly Leu Ile Lys Ala Ala Met Thr			
50	55		60
Thr Gly Ala Trp Ile Phe Thr Gly Gly Val Ser Thr Gly Val Ile			
65	70		75
Ser His Val Gly Asp Ala Leu Lys Asp His Ser Ser Lys Ser Arg			
80	85		90
Gly Arg Val Cys Ala Ile Gly Ile Ala Pro Trp Gly Ile Val Glu			
95	100		105
Asn Lys Glu Asp Leu Val Gly Lys Asp Val Thr Arg Val Tyr Gln			
110	115		120
Thr Met Ser Asn Pro Leu Ser Lys Leu Ser Val Leu Asn Asn Ser			
125	130		135
His Thr His Phe Ile Leu Ala Asp Asn Gly Thr Leu Gly Lys Tyr			
140	145		150
Gly Ala Glu Val Lys Leu Arg Arg Gln Leu Glu Lys His Ile Ser			
155	160		165
Leu Gln Lys Ile Asn Thr Arg Ile Gly Gln Gly Val Pro Val Val			
170	175		180
Ala Leu Ile Val Glu Gly Gly Pro Asn Val Ile Ser Ile Val Leu			
185	190		195
Glu Tyr Leu Arg Asp Thr Pro Pro Val Pro Val Val Val Cys Asp			
200	205		210
Gly Ser Gly Arg Ala Ser Asp Ile Leu Ala Phe Gly His Lys Tyr			
215	220		225
Ser Glu Glu Gly Gly Leu Ile Asn Glu Ser Leu Arg Asp Gln Leu			
230	235		240
Leu Val Thr Ile Gln Lys Thr Phe Thr Tyr Thr Arg Thr Gln Ala			

	245		250		255
Gln His Leu Phe	Ile Ile Leu Met Glu	Cys Met Lys Lys Lys	Glu		
260	265		270		
Leu Ile Thr Val	Phe Arg Met Gly Ser	Glu Gly His Gln Asp	Ile		
275	280		285		
Asp Leu Ala Ile	Leu Thr Ala Leu Leu	Lys Gly Ala Asn Ala	Ser		
290	295		300		
Ala Pro Asp Gln	Leu Ser Leu Ala Leu	Ala Trp Asn Arg Val	Asp		
305	310		315		
Ile Ala Arg Ser	Gln Ile Phe Ile Tyr	Gly Gln Gln Trp Pro	Val		
320	325		330		
Gly Ser Leu Glu	Gln Ala Met Leu Asp	Ala Leu Val Leu Asp	Arg		
335	340		345		
Val Asp Phe Val	Lys Leu Leu Ile Glu	Asn Gly Val Ser Met	His		
350	355		360		
Arg Phe Leu Thr	Ile Ser Arg Leu Glu	Glu Leu Tyr Asn Thr	Arg		
365	370		375		
His Gly Pro Ser	Asn Thr Leu Tyr His	Leu Val Arg Asp Val	Lys		
380	385		390		
Lys Gly Asn Leu	Pro Pro Asp Tyr Arg	Ile Ser Leu Ile Asp	Ile		
395	400		405		
Gly Leu Val Ile	Glu Tyr Leu Met Gly	Gly Ala Tyr Arg Cys	Asn		
410	415		420		
Tyr Thr Arg Lys	Arg Phe Arg Thr Leu	Tyr His Asn Leu Phe	Gly		
425	430		435		
Pro Lys Arg Asp	Asp Ile Pro Leu Arg	Arg Gly Arg Lys Thr	Thr		
440	445		450		
Lys Lys Arg Glu	Glu Glu Val Asp Ile	Asp Leu Asp Asp Pro	Glu		
455	460		465		
Ile Asn His Phe	Pro Phe Pro Phe His	Glu Leu Met Val Trp	Ala		
470	475		480		
Val Leu Met Lys	Arg Gln Lys Met Ala	Leu Phe Phe Trp Gln	His		
485	490		495		
Gly Glu Glu Ala	Met Ala Lys Ala Leu	Val Ala Cys Lys Leu	Cys		
500	505		510		
Lys Ala Met Ala	His Glu Ala Ser Glu	Asn Asp Met Val Asp	Asp		
515	520		525		
Ile Ser Gln Glu	Leu Asn His Asn Ser	Arg Asp Phe Gly Gln	Leu		
530	535		540		
Ala Val Glu Leu	Leu Asp Gln Ser Tyr	Lys Gln Asp Glu Gln	Leu		
545	550		555		
Ala Met Lys Leu	Leu Thr Tyr Glu Leu	Lys Asn Trp Ser Asn	Ala		
560	565		570		
Thr Cys Leu Gln	Leu Ala Val Ala Ala	Lys His Arg Asp Phe	Ile		
575	580		585		
Ala His Thr Cys	Ser Gln Met Leu Leu	Thr Asp Met Trp Met	Gly		
590	595		600		
Arg Leu Arg Met	Arg Lys Asn Ser Gly	Leu Lys Val Ile Leu	Gly		
605	610		615		
Ile Leu Leu Pro	Pro Thr Ile Leu Phe	Leu Glu Phe Arg Thr	Tyr		
620	625		630		
Asp Asp Phe Ser	Tyr Gln Thr Ser Lys	Glu Asn Glu Asp Gly	Lys		
635	640		645		
Glu Lys Glu Glu	Glu Asn Thr Asp Ala	Asn Ala Asp Ala Gly	Ser		
650	655		660		
Arg Lys Gly Asp	Glu Glu Asn Glu His	Lys Lys Gln Arg Ser	Ile		
665	670		675		
Pro Ile Gly Thr	Lys Ile Cys Glu Phe	Tyr Asn Ala Pro Ile	Val		
680	685		690		
Lys Phe Trp Phe	Phe Gln Ile Ser Tyr	Leu Gly Tyr Leu Leu	Leu		
695	700		705		
Phe Asn Tyr Val	Ile Leu Val Arg Met	Asp Gly Trp Pro Ser	Leu		
710	715		720		

Gln Glu Trp Ile Val Ile Ser Tyr Ile Val Ser Leu Ala Leu Glu
 725 730 735
 Lys Ile Arg Glu Val Ala Thr Pro Lys Ala Ser Pro Ser Pro Leu
 740 745 750
 Ala Arg Lys Ser Lys Phe Gly Phe Gln Glu Tyr Trp Asn Ile Thr
 755 760 765
 Asp Leu Val Ala Ile Ser Thr Phe Met Ile Gly Ala Ile Leu Arg
 770 775 780
 Leu Gln Asn Gln Pro Tyr Met Gly Tyr Gly Arg Val Ile Tyr Cys
 785 790 795
 Val Asp Ile Ile Phe Trp Tyr Ile Arg Val Leu Asp Ile Phe Gly
 800 805 810
 Val Asn Lys Tyr Leu Gly Pro Tyr Val Met Met Ile Gly Lys Met
 815 820 825
 Val Ser Ser Gly Ile Leu Trp Val Val Ile Met Leu Val Val Leu
 830 835 840
 Met Ser Phe Gly Val Ala Arg Gln Ala Ile Leu His Pro Glu Glu
 845 850 855
 Lys Pro Ser Trp Lys Leu Ala Arg Asn Ile Phe Tyr Met Pro Tyr
 860 865 870
 Trp Met Ile Tyr Gly Glu Val Phe Ala Asp Gln Ile Asp Arg Lys
 875 880 885
 Ser Phe Phe Leu Ser Ala Pro Cys Gly Glu Asn Leu Tyr Asp Glu
 890 895 900
 Glu Gly Lys Arg Leu Pro Pro Cys Ile Pro Gly Ala Trp Leu Thr
 905 910 915
 Pro Ala Leu Met Ala Cys Tyr Leu Leu Val Ala Asn Ile Leu Leu
 920 925 930
 Val Asn Leu Leu Ile Ala Val Phe Ser Asn Thr Phe Phe Glu Val
 935 940 945
 Lys Ser Ile Ser Asn Gln Val Trp Lys Phe Gln Arg Tyr Gln Leu
 950 955 960
 Ile Met Thr Phe His Asp Arg Pro Val Leu Pro Pro Pro Met Ile
 965 970 975
 Ile Leu Ser His Ile Tyr Ile Ile Ile Met Arg Leu Ser Gly Arg
 980 985 990
 Cys Arg Lys Lys Arg Glu Gly Asp Gln Glu Glu Arg Asp Arg Gly
 995 1000 1005
 Leu Ser Met Phe Leu Ser Asp Glu Glu Leu Lys Arg Leu His Glu
 1010 1015 1020
 Phe Glu Glu Gln Cys Val Gln Glu His Phe Arg Glu Lys Glu Asp
 1025 1030 1035
 Glu Gln Gln Ser Ser Ser Asp Glu Arg Ile Arg Val Thr Ser Glu
 1040 1045 1050
 Arg Val Glu Asn Met Ser Met Arg Leu Glu Glu Ile Asn Glu Arg
 1055 1060 1065
 Glu Thr Phe Met Lys Thr Ser Leu Gln Thr Val Asp Leu Arg Leu
 1070 1075 1080
 Ala Gln Leu Glu Glu Leu Ser Asn Arg Met Val Asn Ala Leu Glu
 1085 1090 1095
 Asn Leu Ala Gly Ile Asp Arg Ser Asp Leu Ile Gln Ala Arg Ser
 1100 1105 1110
 Arg Ala Ser Ser Glu Cys Glu Ala Thr Tyr Leu Leu Arg Gln Ser
 1115 1120 1125
 Ser Ile Asn Ser Ala Asp Gly Tyr Ser Leu Tyr Arg Tyr His Phe
 1130 1135 1140
 Asn Gly Glu Glu Leu Leu Phe Glu Asp Thr Ser Leu Ser Thr Ser
 1145 1150 1155
 Pro Gly Thr Gly Val Arg Lys Lys Thr Cys Ser Phe Arg Ile Lys
 1160 1165 1170
 Glu Glu Lys Asp Val Lys Thr His Leu Val Pro Glu Cys Gln Asn
 1175 1180 1185
 Ser Leu His Leu Ser Leu Gly Thr Ser Thr Ser Ala Thr Pro Asp

	1190	1195	1200
Gly Ser His Leu Ala Val Asp Asp Leu Lys Asn Ala Glu Glu Ser			
1205	1210	1215	
Lys Leu Gly Pro Asp Ile Gly Ile Ser Lys Glu Asp Asp Glu Arg			
1220	1225	1230	
Gln Thr Asp Ser Lys Lys Glu Glu Thr Ile Ser Pro Ser Leu Asn			
1235	1240	1245	
Lys Thr Asp Val Ile His Gly Gln Asp Lys Ser Asp Val Gln Asn			
1250	1255	1260	
Thr Gln Leu Thr Val Glu Thr Thr Asn Ile Glu Gly Thr Ile Ser			
1265	1270	1275	
Tyr Pro Leu Glu Glu Thr Lys Ile Thr Arg Tyr Phe Pro Asp Glu			
1280	1285	1290	
Thr Ile Asn Ala Cys Lys Thr Met Lys Ser Arg Ser Phe Val Tyr			
1295	1300	1305	
Ser Arg Gly Arg Lys Leu Val Gly Gly Val Asn Gln Asp Val Glu			
1310	1315	1320	
Tyr Ser Ser Ile Thr Asp Gln Gln Leu Thr Thr Glu Trp Gln Cys			
1325	1330	1335	
Gln Val Gln Lys Ile Thr Arg Ser His Ser Thr Asp Ile Pro Tyr			
1340	1345	1350	
Ile Val Ser Glu Ala Ala Val Gln Ala Glu His Lys Glu Gln Phe			
1355	1360	1365	
Ala Asp Met Gln Asp Glu His His Val Ala Glu Ala Ile Pro Arg			
1370	1375	1380	
Ile Pro Arg Leu Ser Leu Thr Ile Thr Asp Arg Asn Gly Met Glu			
1385	1390	1395	
Asn Leu Leu Ser Val Lys Pro Asp Gln Thr Leu Gly Phe Pro Ser			
1400	1405	1410	
Leu Arg Ser Lys Ser Leu His Gly His Pro Arg Asn Val Lys Ser			
1415	1420	1425	
Ile Gln Gly Lys Leu Asp Arg Ser Gly His Ala Ser Ser Val Ser			
1430	1435	1440	
Ser Leu Val Ile Val Ser Gly Met Thr Ala Glu Glu Lys Lys Val			
1445	1450	1455	
Lys Lys Glu Lys Ala Ser Thr Glu Thr Glu Cys			
1460	1465		

<210> 11
<211> 222
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 7481427CD1

<400> 11		
Met Thr Glu Gln Ala Ile Ser Phe Ala Lys Asp Phe Leu Ala Gly		
1	5	10
		15
Gly Ile Thr Ala Ala Ile Ser Lys Thr Ala Val Ala Ser Ile Lys		
20	25	30
Arg Val Gln Leu Leu Gln Met Gln His Ala Ser Met Pro Met		
35	40	45
Ala Ala Ala Lys Gln Cys Lys Gly Ile Val Asp Cys Ile Val Arg		
50	55	60
Ile Pro Lys Asp Gln Gly Val Leu Ser Phe Trp Arg Gly Asn Leu		
65	70	75
Ala Asn Val Ile Arg Tyr Ser Pro Thr Gln Ala Leu Asn Phe Ala		
80	85	90
Phe Lys Asp Lys Tyr Lys Gln Ile Phe Leu Ala Gly Val Asp Lys		
95	100	105
His Thr Gln Phe Cys Arg Tyr Phe Ala Gly Asn Leu Ala Ser Gly		

Gly	Thr	Ala	Val	Val	Tyr	Pro	Leu	Asp	Phe	Thr	Arg	Thr	Arg	Leu
110														
125														135
Ala	Ala	Asp	Val	Gly	Lys	Ser	Gly	Thr	Glu	Arg	Glu	Phe	Arg	Gly
140														150
Leu	Gly	Asp	Cys	Leu	Val	Lys	Ile	Ser	Lys	Ser	Asp	Gly	Ile	Arg
155														165
Gly	Leu	Tyr	Gln	Gly	Phe	Ser	Val	Ser	Val	Gln	Ala	Ile	Ile	Ile
170														180
Tyr	Gln	Ala	Ala	Tyr	Phe	Arg	Val	Tyr	Asp	Thr	Ala	Asn	Gly	Met
185														195
Phe	Pro	Asp	Pro	Lys	Asn	Thr	His	Ile	Leu	Val	Ser	Trp	Met	Thr
200														210
Ala	Gln	Thr	Val	Thr	Ala	Val	Ala	Gly	Val	Leu	Ser			
215														220

<210> 12
<211> 461
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 7483595CD1

Met	Glu	Thr	Leu	Leu	Phe	Leu	Glu	Ser	Ala	Ile	Gly	Ala	Ile	Ala
1									5	10				15
Gly	Leu	Lys	Thr	Phe	Tyr	Pro	Thr	Leu	Val	Phe	Ser	Ser	Leu	Gln
										20	25			30
Leu	Ile	Met	Gly	Val	Leu	Gly	Leu	Gly	Phe	Ile	Ala	Thr	Tyr	Leu
										35	40			45
Pro	Glu	Ser	Ala	Met	Ser	Ala	Tyr	Leu	Ala	Ala	Val	Ala	Leu	His
										50	55			60
Ile	Met	Leu	Ser	Gln	Leu	Thr	Phe	Ile	Phe	Gly	Ile	Met	Ile	Ser
										65	70			75
Phe	His	Ala	Gly	Pro	Ile	Ser	Phe	Phe	Tyr	Asp	Ile	Ile	Asn	Tyr
										80	85			90
Cys	Val	Ala	Leu	Pro	Lys	Ala	Asn	Ser	Thr	Ser	Ile	Leu	Val	Phe
										95	100			105
Leu	Thr	Val	Val	Val	Ala	Leu	Arg	Ile	Asn	Lys	Cys	Ile	Arg	Ile
										110	115			120
Ser	Phe	Asn	Gln	Tyr	Pro	Ile	Glu	Phe	Pro	Met	Glu	Leu	Phe	Leu
										125	130			135
Ile	Ile	Leu	Gln	Ala	Phe	Ser	Leu	Ser	Leu	Val	Ser	Ser	Phe	Leu
										140	145			150
Leu	Ile	Phe	Leu	Gly	Lys	Lys	Ile	Ala	Ser	Leu	His	Asn	Tyr	Ser
										155	160			165
Val	Asn	Ser	Asn	Gln	Asp	Leu	Ile	Ala	Ile	Gly	Leu	Cys	Asn	Val
										170	175			180
Val	Ser	Ser	Phe	Phe	Arg	Ser	Cys	Val	Phe	Thr	Gly	Ala	Ile	Ala
										185	190			195
Arg	Thr	Ile	Ile	Gln	Asp	Lys	Ser	Gly	Gly	Ser	Thr	Thr	Val	Cys
										200	205			210
Ile	Ser	Gly	Arg	Arg	Arg	Ala	Lys	Ile	Leu	Leu	Gly	Gln	Ile	
										215	220			225
Pro	Asn	Thr	Asn	Ile	Tyr	Arg	Ser	Ile	Asn	Asp	Tyr	Arg	Glu	Ile
										230	235			240
Ile	Thr	Ile	Pro	Gly	Val	Lys	Ile	Phe	Gln	Cys	Cys	Ser	Ser	Ile
										245	250			255
Thr	Phe	Val	Asn	Val	Tyr	Tyr	Leu	Lys	His	Lys	Leu	Leu	Lys	Glu
										260	265			270
Val	Asp	Met	Val	Lys	Val	Pro	Leu	Lys	Glu	Glu	Glu	Ile	Phe	Ser

	275	280	285
Leu Phe Asn Ser	Ser Asp Thr Asn Leu	Gln Gly Gly Lys Ile	Cys
290	295	300	
Arg Cys Phe Cys	Asn Cys Asp Asp Leu	Glu Pro Leu Pro Arg	Ile
305	310	315	
Leu Tyr Thr Glu Arg	Phe Glu Asn Lys	Leu Asp Pro Glu Ala	Ser
320	325	330	
Ser Val Asn Leu	Ile His Cys Ser His	Phe Glu Ser Met Asn	Thr
335	340	345	
Ser Gln Thr Ala	Ser Glu Asp Gln Val	Pro Tyr Thr Val Ser	Ser
350	355	360	
Val Ser Gln Lys	Asn Gln Gly Gln Gln	Tyr Glu Glu Val Glu	Glu
365	370	375	
Val Trp Leu Pro Asn	Asn Ser Ser Arg	Asn Ser Ser Pro Gly	Leu
380	385	390	
Pro Asp Val Ala	Glu Ser Gln Gly Arg	Arg Ser Leu Ile Pro	Tyr
395	400	405	
Ser Asp Ala Ser	Leu Leu Pro Ser Val	His Thr Ile Ile Leu	Asp
410	415	420	
Phe Ser Met Val	His Tyr Val Asp Ser	Arg Gly Leu Val Val	Leu
425	430	435	
Arg Gln Val Ser	Thr Glu Glu Ala Leu	Ala Gly Ala Leu Ile	Pro
440	445	450	
Leu Leu Pro Ser	Gln Pro His Pro Asp	Pro Asp	
455	460		

<210> 13
<211> 502
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 3788427CD1

	<400> 13		
Met Ser Ile Val Arg	Leu Ser Val His Ala Lys Trp Ile Met Gly		
1	5	10	15
Lys Val Thr Gly Thr	Lys Met Gln Lys Thr Ala Lys Val Arg Val		
	20	25	30
Ile Arg Leu Val	Leu Asp Pro His Leu Leu Lys Tyr Tyr Asn Lys		
	35	40	45
Gln Lys Thr Tyr	Phe Ala His Asn Ala Leu Gln Gln Cys Thr Ile		
	50	55	60
Gly Asp Ile Val	Leu Leu Lys Ala Leu Pro Val Pro Arg Thr Lys		
	65	70	75
His Val Lys His	Glu Leu Ala Glu Ile Val Phe Lys Val Gly Lys		
	80	85	90
Leu Val Asp Pro Val	Thr Gly Lys Pro Arg Ala Gly Thr Thr Tyr		
	95	100	105
Leu Glu Ser Pro	Leu Ser Ser Glu Thr Thr Gln Gly Val Asp Gly		
	110	115	120
Ala Ser Arg Pro	Ser Arg Gly Pro Ala Pro Cys Arg Ala Gly Pro		
	125	130	135
Gly Ala Arg Arg	Leu Arg Pro Trp Pro Glu Ser Pro Arg Pro Glu		
	140	145	150
Pro Arg Gly Leu	Pro Gly Pro Gly Arg Gly Ser Met Ala Thr Trp		
	155	160	165
Arg Arg Asp Gly	Arg Leu Thr Gly Gly Gln Arg Leu Leu Cys Ala		
	170	175	180
Gly Leu Ala Gly	Thr Leu Ser Leu Ser Leu Thr Ala Pro Leu Glu		
	185	190	195
Leu Ala Thr Val	Leu Ala Gln Val Gly Val Val Arg Gly His Ala		

	200	205	210
Arg Gly Pro Trp Ala Thr Gly His Arg Val Trp Arg Ala Glu Gly	215	220	225
Leu Arg Ala Leu Trp Lys Gly Asn Ala Val Ala Cys Leu Arg Leu	230	235	240
Phe Pro Cys Ser Ala Val Gln Leu Ala Ala Tyr Arg Lys Phe Val	245	250	255
Val Leu Phe Thr Asp Asp Leu Gly His Ile Ser Gln Trp Ser Ser	260	265	270
Ile Met Ala Gly Ser Leu Ala Gly Met Val Ser Thr Ile Val Thr	275	280	285
Tyr Pro Thr Asp Leu Ile Lys Thr Arg Leu Ile Met Gln Asn Ile	290	295	300
Leu Glu Pro Ser Tyr Arg Gly Leu Leu His Ala Phe Ser Thr Ile	305	310	315
Tyr Gln Gln Glu Gly Phe Leu Ala Leu Tyr Arg Gly Val Ser Leu	320	325	330
Thr Val Val Gly Ala Leu Pro Phe Ser Ala Gly Ser Leu Leu Val	335	340	345
Tyr Met Asn Leu Glu Lys Ile Trp Asn Gly Pro Arg Asp Gln Phe	350	355	360
Ser Leu Pro Gln Asn Phe Ala Asn Val Cys Leu Ala Ala Ala Val	365	370	375
Thr Gln Thr Leu Ser Phe Pro Phe Glu Thr Val Lys Arg Lys Met	380	385	390
Gln Ala Gln Ser Pro Tyr Leu Pro His Ser Gly Gly Val Asp Val	395	400	405
His Phe Ser Gly Ala Val Asp Cys Phe Arg Gln Ile Val Lys Ala	410	415	420
Gln Gly Val Leu Gly Leu Trp Asn Gly Leu Thr Ala Asn Leu Leu	425	430	435
Lys Ile Val Pro Tyr Phe Gly Ile Met Phe Ser Thr Phe Glu Phe	440	445	450
Cys Lys Arg Ile Cys Leu Tyr Gln Asn Gly Tyr Ile Leu Ser Pro	455	460	465
Leu Ser Tyr Lys Leu Thr Pro Gly Val Asp Gln Ser Leu Gln Pro	470	475	480
Gln Glu Leu Arg Glu Leu Lys Lys Phe Phe Lys Thr Arg Lys Leu	485	490	495
Lys Pro Lys Lys Pro Thr Leu	500		

<210> 14
<211> 261
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 6972455CD1

<400> 14
Met Thr Lys Arg Tyr Ser Ala Leu Leu Thr Ala Leu Phe Ala Ser
1 5 10 15
Leu Met Leu Ser Gln Ala Pro Ala Gln Ala Ser Gly Leu Asp Asp
20 25 30
Ile Val Ala Arg Gly Thr Leu Lys Val Ala Val Pro Gln Asp Phe
35 40 45
Pro Pro Phe Gly Ser Val Gly Pro Asp Met Gln Pro Arg Gly Leu
50 55 60
Asp Ile Asp Thr Ala Lys Leu Leu Ala Asp Gln Leu Lys Val Lys
65 70 75
Leu Glu Leu Thr Pro Val Asn Ser Thr Asn Arg Ile Pro Phe Leu

80	85	90
Thr Thr Gly Lys Val Asp Leu Val Ile Ser Ser Leu Gly Lys Asn		
95	100	105
Pro Glu Arg Ala Lys Val Ile Asp Phe Ser Asn Ala Tyr Ala Pro		
110	115	120
Phe Tyr Leu Ala Val Phe Gly Pro Pro Asp Ala Ala Ile Ala Ser		
125	130	135
Leu Asp Asp Leu Lys Gly Lys Thr Ile Ser Val Thr Arg Gly Ala		
140	145	150
Ile Glu Asp Ile Glu Leu Thr Ala Val Ala Pro Lys Glu Ala Thr		
155	160	165
Ile Lys Arg Phe Glu Asp Asn Asn Ser Thr Ile Ala Ala Tyr Leu		
170	175	180
Ala Gly Gln Val Asp Leu Ile Ala Ser Gly Asn Val Val Met Val		
185	190	195
Ala Ile Ser Glu Arg Asn Pro Lys Arg Val Pro Ala Leu Lys Val		
200	205	210
Lys Leu Lys Asp Ser Pro Val Tyr Val Gly Val Asn Lys Asn Glu		
215	220	225
Pro Ala Leu Leu Glu Lys Val Asn Gln Ile Leu Val Ala Ala Lys		
230	235	240
Ala Asp Gly Ser Leu Gly Lys Asn Ala Met Gln Trp Leu Lys Glu		
245	250	255
Pro Leu Pro Ala Asp Leu		
260		

<210> 15

<211> 570

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 8077668CD1

<400> 15

Met Tyr Asp Pro Pro Lys Val Asn Lys Lys Asn Asp Ser Ala Asp		
1 5 10 15		
His Ser Asp Glu Ser Val Glu Ile Gln Ser Ala Leu His Ile Cys		
20 25 30		
Gly Phe Asp Gln Gly Arg Trp Ile Leu Ser Tyr Arg Arg Ser Pro		
35 40 45		
Ala Arg Arg His Thr Gly Leu Ala Pro Val Leu Gly Val Arg Val		
50 55 60		
Arg Val Cys Val Gly Cys Gln Gly Ala Arg Val Pro Ala Trp Pro		
65 70 75		
Lys Arg Glu Gly Arg Gly Ser Ala Glu Glu Pro Val Glu Arg Lys		
80 85 90		
Asp Gly Gln Gln Gly Glu Arg Arg Gly Glu Ala Ser Leu Thr Lys		
95 100 105		
Asp Ala Val Thr Phe Gln Ser Ser Leu Pro Val Gln Ile Thr Arg		
110 115 120		
Ile Pro Ala Cys Trp Arg Met Thr Gln Met Ser Gln Val Gln Glu		
125 130 135		
Leu Phe His Glu Ala Ala Gln Gln Asp Ala Leu Ala Gln Pro Gln		
140 145 150		
Pro Trp Trp Lys Thr Gln Leu Phe Met Trp Glu Pro Val Leu Phe		
155 160 165		
Gly Thr Trp Asp Gly Val Phe Thr Ser Cys Met Ile Asn Ile Phe		
170 175 180		
Gly Val Val Leu Phe Leu Arg Thr Gly Trp Leu Val Gly Asn Thr		
185 190 195		
Gly Val Leu Leu Gly Met Phe Leu Val Ser Phe Val Ile Leu Val		

Ala	Leu	Val	Thr	200	Val	Leu	Ser	Asp	Ile	Gly	Val	Gly	Glu	Arg	Ser
				215						220					225
Ser	Ile	Gly	Ser		Gly	Gly	Val	Tyr	Ser	Met	Ile	Ser	Ser	Val	Leu
				230						235					240
Gly	Gly	Gln	Thr		Gly	Gly	Thr	Ile	Gly	Leu	Leu	Tyr	Val	Phe	Gly
				245					250						255
Gln	Met	Tyr	Ile		Thr	Gly	Phe	Ala	Glu	Ser	Ile	Ser	Asp	Leu	Leu
				260					265						270
Gly	Leu	Gly	Asn		Ile	Trp	Ala	Val	Arg	Gly	Ile	Ser	Val	Ala	Val
				275					280						285
Leu	Leu	Ala	Leu		Leu	Gly	Ile	Asn	Leu	Ala	Gly	Val	Lys	Trp	Ile
				290					295						300
Ile	Arg	Leu	Gln		Leu	Leu	Leu	Phe	Leu	Leu	Ala	Val	Ser	Thr	
				305					310						315
Leu	Asp	Phe	Val		Val	Gly	Ser	Phe	Thr	His	Leu	Asp	Pro	Glu	His
				320					325						330
Gly	Phe	Ile	Gly		Tyr	Ser	Pro	Glu	Leu	Leu	Gln	Asn	Asn	Thr	Leu
				335					340						345
Pro	Asp	Tyr	Ser		Pro	Gly	Glu	Ser	Phe	Phe	Thr	Val	Phe	Gly	Val
				350					355						360
Phe	Phe	Pro	Ala		Ala	Thr	Gly	Val	Met	Ala	Gly	Phe	Asn	Met	Gly
				365					370						375
Gly	Asp	Leu	Arg		Glu	Pro	Ala	Ala	Ser	Ile	Pro	Leu	Gly	Ser	Leu
				380					385						390
Ala	Ala	Val	Gly		Ile	Ser	Trp	Phe	Leu	Tyr	Ile	Gly	Tyr	Arg	Ser
				395					400						405
His	Gly	Arg	Leu		Gln	His	Gly	Gly	Arg	Pro	Gln	Gly	Ala	Cys	Arg
				410					415						420
Gln	His	Ser	Pro		Gly	Leu	Pro	Gly	Ser	Cys	Trp	His	Leu	Val	Ser
				425					430						435
Ser	Pro	His	Gly		Asn	Gln	Ser	Glu	Leu	Glu	Ser	Gly	Arg	Glu	Asn
				440					445						450
Pro	Arg	Gln	Lys		Arg	Asp	Cys	Pro	Phe	Cys	Ser	Glu	Ser	Ala	Pro
				455					460						465
Thr	Val	Thr	Asn		Leu	Phe	His	Ile	Pro	Ile	Leu	Leu	Leu	Thr	Leu
				470					475						480
Gly	Gly	Leu	Glu		Asn	Ser	Arg	Leu	Val	Gly	Ser	Asp	Thr	Ala	Leu
				485					490						495
Ser	Cys	Ala	Leu		Pro	Gly	Asn	Ala	Ala	Glu	Glu	Glu	Cys	Arg	Asp
				500					505						510
Pro	Asp	His	Arg		Ser	Asn	Pro	Phe	Phe	Pro	Phe	Leu	Gly	Leu	Pro
				515					520						525
Pro	Pro	Ser	Leu		Pro	His	Pro	His	Phe	Glu	Leu	Gly	Asp	Phe	Phe
				530					535						540
Asn	His	Arg	Val		Ser	Arg	Ile	Thr	Gly	Gly	Ser	Ile	Lys	Met	Lys
				545					550						555
Ser	Phe	Ala	Ile		Arg	Arg	Ile	Gly	Ala	Ala	Ser	Gln	Leu	Cys	Arg
				560					565						570

<210> 16
<211> 1033
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 55120485CD1

<400> 16
Met Glu Glu Asn Ser Lys Lys Asp His Arg Ala Leu Leu Asn Gln
1 5 10 15

Gly Glu Glu Asp Glu Leu Glu Val Phe Gly Tyr Arg Asp His Asn
 20 25 30
 Val Arg Lys Ala Phe Cys Leu Val Ala Ser Val Leu Thr Cys Gly
 35 40 45
 Gly Leu Leu Leu Val Phe Tyr Trp Arg Pro Gln Trp Arg Val Trp
 50 55 60
 Ala Asn Cys Ile Pro Cys Pro Leu Gln Glu Ala Asp Thr Val Leu
 65 70 75
 Leu Arg Thr Thr Asp Glu Phe Gln Arg Tyr Met Arg Lys Lys Val
 80 85 90
 Phe Cys Leu Tyr Leu Tyr Thr Leu Lys Phe Pro Val Ser Lys Lys
 95 100 105
 Trp Glu Glu Ser Leu Val Ala Asp Arg His Ser Val Ile Asn Gln
 110 115 120
 Ala Leu Ile Lys Pro Glu Leu Lys Leu Arg Cys Leu Glu Val Gln
 125 130 135
 Lys Ile Arg Tyr Val Trp Asn Asp Leu Glu Lys Arg Phe Gln Lys
 140 145 150
 Val Gly Leu Leu Glu Asp Ser Asn Ser Cys Ser Asp Ile His Gln
 155 160 165
 Thr Phe Gly Leu Gly Leu Thr Ser Glu Glu Gln Glu Val Arg Arg
 170 175 180
 Leu Val Cys Gly Pro Asn Ala Ile Glu Val Glu Ile Gln Pro Ile
 185 190 195
 Trp Lys Leu Leu Val Lys Gln Val Leu Asn Pro Phe Tyr Val Phe
 200 205 210
 Gln Ala Phe Thr Leu Thr Leu Trp Leu Ser Gln Gly Tyr Ile Glu
 215 220 225
 Tyr Ser Val Ala Ile Ile Ile Leu Thr Val Ile Ser Ile Val Leu
 230 235 240
 Ser Val Tyr Asp Leu Arg Gln Gln Ser Val Lys Leu His Asn Leu
 245 250 255
 Val Glu Asp His Asn Lys Val Gln Val Thr Ile Ile Val Lys Asp
 260 265 270
 Lys Gly Leu Glu Glu Leu Glu Ser Arg Leu Leu Val Pro Gly Asp
 275 280 285
 Ile Leu Ile Leu Pro Gly Lys Phe Ser Leu Pro Cys Asp Ala Val
 290 295 300
 Leu Ile Asp Gly Ser Cys Val Val Asn Glu Gly Met Leu Thr Gly
 305 310 315
 Glu Ser Ile Pro Val Thr Lys Thr Pro Leu Pro Gln Met Glu Asn
 320 325 330
 Thr Met Pro Trp Lys Cys His Ser Leu Glu Asp Tyr Arg Lys His
 335 340 345
 Val Leu Phe Cys Gly Thr Glu Val Ile Gln Val Lys Pro Ser Gly
 350 355 360
 Gln Gly Pro Val Arg Ala Val Val Leu Gln Thr Gly Tyr Asn Thr
 365 370 375
 Ala Lys Gly Asp Leu Val Arg Ser Ile Leu Tyr Pro Arg Pro Leu
 380 385 390
 Asn Phe Lys Leu Tyr Ser Asp Ala Phe Lys Phe Ile Val Phe Leu
 395 400 405
 Ala Cys Leu Gly Val Met Gly Phe Phe Tyr Ala Leu Gly Val Tyr
 410 415 420
 Met Tyr His Gly Val Pro Pro Lys Asp Thr Val Thr Met Ala Leu
 425 430 435
 Ile Leu Leu Thr Val Thr Val Pro Pro Val Leu Pro Ala Ala Leu
 440 445 450
 Thr Ile Gly Asn Val Tyr Ala Gln Lys Arg Leu Lys Lys Lys
 455 460 465
 Ile Phe Cys Ile Ser Pro Gln Arg Ile Asn Met Cys Gly Gln Ile
 470 475 480
 Asn Leu Val Cys Phe Asp Lys Thr Gly Thr Leu Thr Glu Asp Gly

	485	490	495
Leu Asp Leu Trp Gly	Thr Val Pro Thr Ala Asp Asn Cys Phe Gln		
500	505	510	
Glu Ala His Ser Phe	Ala Ser Gly Gln Ala Val Pro Trp Ser Pro		
515	520	525	
Leu Cys Ala Ala Met	Ala Ser Cys His Ser Leu Ile Leu Leu Asn		
530	535	540	
Gly Thr Ile Gln Gly	Asp Pro Leu Asp Leu Lys Met Phe Glu Gly		
545	550	555	
Thr Ala Trp Lys Met	Glu Asp Cys Ile Val Asp Ser Cys Lys Phe		
560	565	570	
Gly Thr Ser Val Ser	Asn Ile Ile Lys Pro Gly Pro Lys Ala Ser		
575	580	585	
Lys Ser Pro Val Glu	Ala Ile Ile Thr Leu Cys Gln Phe Pro Phe		
590	595	600	
Ser Ser Ser Leu Gln	Arg Met Ser Val Ile Ala Gln Leu Ala Gly		
605	610	615	
Glu Asn His Phe His	Val Tyr Met Lys Gly Ala Pro Glu Met Val		
620	625	630	
Ala Arg Phe Cys Arg	Ser Glu Thr Val Pro Lys Asn Phe Pro Gln		
635	640	645	
Glu Leu Arg Ser Tyr	Thr Val Gln Gly Phe Arg Val Ile Ala Leu		
650	655	660	
Ala His Lys Thr Leu	Lys Met Gly Asn Leu Ser Glu Val Glu His		
665	670	675	
Leu Ala Arg Glu Lys	Val Glu Ser Glu Leu Thr Phe Leu Gly Leu		
680	685	690	
Leu Ile Met Glu Asn	Arg Leu Lys Lys Glu Thr Lys Leu Val Leu		
695	700	705	
Lys Glu Leu Ser Glu	Ala Arg Ile Arg Thr Val Met Ile Thr Gly		
710	715	720	
Asp Asn Leu Gln Thr	Ala Ile Thr Val Ala Lys Asn Ser Glu Met		
725	730	735	
Ile Pro Pro Gly Ser	Gln Val Ile Ile Val Glu Ala Asp Glu Pro		
740	745	750	
Glu Glu Phe Val Pro	Ala Ser Val Thr Trp Gln Leu Val Glu Asn		
755	760	765	
Gln Glu Thr Gly Pro	Gly Lys Lys Glu Ile Tyr Met His Thr Gly		
770	775	780	
Asn Ser Ser Thr Pro	Arg Gly Glu Gly Ser Cys Tyr His Phe		
785	790	795	
Ala Met Ser Gly Lys	Ser Tyr Gln Val Ile Phe Gln His Phe Asn		
800	805	810	
Ser Leu Leu Pro Lys	Ile Leu Val Asn Gly Thr Val Phe Ala Arg		
815	820	825	
Met Ser Pro Gly Gln	Lys Ser Ser Leu Ile Glu Glu Phe Gln Lys		
830	835	840	
Leu Asn Ala Cys Thr	Val Gln Asn Glu Ser Ile Ser Glu Leu Thr		
845	850	855	
Met Ser Pro Thr Ala	Pro Glu Lys Met Glu Ser Asn Ser Thr Phe		
860	865	870	
Thr Ser Phe Glu Asn	Thr Thr Val Trp Phe Leu Gly Thr Ile Asn		
875	880	885	
Cys Ile Thr Val Ala	Leu Val Phe Ser Lys Gly Lys Pro Phe Arg		
890	895	900	
Gln Pro Thr Tyr Thr	Asn Tyr Ile Phe Val Leu Val Leu Ile Ile		
905	910	915	
Gln Leu Gly Val Cys	Leu Phe Ile Leu Phe Ala Asp Ile Pro Glu		
920	925	930	
Leu Tyr Arg Arg Leu	Asp Leu Leu Cys Thr Pro Val Leu Trp Arg		
935	940	945	
Ala Ser Ile Val Ile	Met Leu Ser Leu Asn Phe Ile Val Ser Leu		
950	955	960	

Val	Ala	Glu	Glu	Ala	Val	Ile	Glu	Asn	Arg	Ala	Leu	Trp	Met	Met
														975
		965					970							
Ile	Lys	Arg	Cys	Phe	Gly	Tyr	Gln	Ser	Lys	Ser	Gln	Tyr	Arg	Ile
														990
		980					985							
Trp	Gln	Arg	Asp	Leu	Ala	Asn	Asp	Pro	Ser	Trp	Pro	Pro	Leu	Asn
														1005
		995					1000							
Gln	Thr	Ser	His	Ser	Asp	Met	Pro	Glu	Cys	Gly	Arg	Gly	Val	Ser
														1020
		1010					1015							
Tyr	Ser	Asn	Pro	Val	Phe	Glu	Ser	Asn	Glu	Glu	Gln	Leu		
		1025					1030							

<210> 17
<211> 496
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 3112883CD1

<400> 17														
Met	Asp	Cys	Tyr	Arg	Thr	Ser	Leu	Ser	Ser	Ser	Trp	Ile	Tyr	Pro
1							5		10					15
Thr	Val	Ile	Leu	Cys	Leu	Phe	Gly	Phe	Phe	Ser	Met	Met	Arg	Pro
									20		25			30
Ser	Glu	Pro	Phe	Leu	Ile	Pro	Tyr	Leu	Ser	Gly	Pro	Asp	Lys	Asn
									35		40			45
Leu	Thr	Ser	Ala	Glu	Ile	Thr	Asn	Glu	Ile	Phe	Pro	Val	Trp	Thr
									50		55			60
Tyr	Ser	Tyr	Leu	Val	Leu	Leu	Leu	Pro	Val	Phe	Val	Leu	Thr	Asp
									65		70			75
Tyr	Val	Arg	Tyr	Lys	Pro	Val	Ile	Ile	Leu	Gln	Gly	Ile	Ser	Phe
									80		85			90
Ile	Ile	Thr	Trp	Leu	Leu	Leu	Phe	Gly	Gln	Gly	Val	Lys	Thr	
									95		100			105
Met	Gln	Val	Val	Glu	Phe	Phe	Tyr	Gly	Met	Val	Thr	Ala	Ala	Glu
									110		115			120
Val	Ala	Tyr	Tyr	Ala	Tyr	Ile	Tyr	Ser	Val	Val	Ser	Pro	Glu	His
									125		130			135
Tyr	Gln	Arg	Val	Ser	Gly	Tyr	Cys	Arg	Ser	Val	Thr	Leu	Ala	Ala
									140		145			150
Tyr	Thr	Ala	Gly	Ser	Val	Leu	Ala	Gln	Leu	Leu	Val	Ser	Leu	Ala
									155		160			165
Asn	Met	Ser	Tyr	Phe	Tyr	Leu	Asn	Val	Ile	Ser	Leu	Ala	Ser	Val
									170		175			180
Ser	Val	Ala	Phe	Leu	Phe	Ser	Leu	Phe	Leu	Pro	Met	Pro	Lys	
									185		190			195
Ser	Met	Phe	Phe	His	Ala	Lys	Pro	Ser	Arg	Glu	Ile	Lys	Lys	Ser
									200		205			210
Ser	Ser	Val	Asn	Pro	Val	Leu	Glu	Glu	Thr	His	Glu	Gly	Glu	Ala
									215		220			225
Pro	Gly	Cys	Glu	Glu	Gln	Lys	Pro	Thr	Ser	Glu	Ile	Leu	Ser	Thr
									230		235			240
Ser	Gly	Lys	Leu	Asn	Lys	Gly	Gln	Leu	Asn	Ser	Leu	Lys	Pro	Ser
									245		250			255
Asn	Val	Thr	Val	Asp	Val	Phe	Val	Gln	Trp	Phe	Gln	Asp	Leu	Lys
									260		265			270
Glu	Cys	Tyr	Ser	Ser	Lys	Arg	Leu	Phe	Tyr	Trp	Ser	Leu	Trp	Trp
									275		280			285
Ala	Phe	Ala	Thr	Ala	Gly	Phe	Asn	Gln	Val	Leu	Asn	Tyr	Val	Gln
									290		295			300
Ile	Leu	Trp	Asp	Tyr	Lys	Ala	Pro	Ser	Gln	Asp	Ser	Ser	Ile	Tyr
									305		310			315

Asn	Gly	Ala	Val	Glu	Ala	Ile	Ala	Thr	Phe	Gly	Gly	Ala	Val	Ala
				320					325					330
Ala	Phe	Ala	Val	Gly	Tyr	Val	Lys	Val	Asn	Trp	Asp	Leu	Leu	Gly
				335					340					345
Glu	Leu	Ala	Leu	Val	Val	Phe	Ser	Val	Val	Asn	Ala	Gly	Ser	Leu
				350					355					360
Phe	Leu	Met	His	Tyr	Thr	Ala	Asn	Ile	Trp	Ala	Cys	Tyr	Ala	Gly
				365					370					375
Tyr	Leu	Ile	Phe	Lys	Ser	Ser	Tyr	Met	Leu	Leu	Ile	Thr	Ile	Ala
				380					385					390
Val	Phe	Gln	Ile	Ala	Val	Asn	Leu	Asn	Val	Glu	Arg	Tyr	Ala	Leu
				395					400					405
Val	Phe	Gly	Ile	Asn	Thr	Phe	Ile	Ala	Leu	Val	Ile	Gln	Thr	Ile
				410					415					420
Met	Thr	Val	Ile	Val	Val	Asp	Gln	Arg	Gly	Leu	Asn	Leu	Pro	Val
				425					430					435
Ser	Ile	Gln	Phe	Leu	Val	Tyr	Gly	Ser	Tyr	Phe	Ala	Val	Ile	Ala
				440					445					450
Gly	Ile	Phe	Leu	Met	Arg	Ser	Met	Tyr	Ile	Thr	Tyr	Ser	Thr	Lys
				455					460					465
Ser	Gln	Lys	Asp	Val	Gln	Ser	Pro	Ala	Pro	Ser	Glu	Asn	Pro	Asp
				470					475					480
Val	Ser	His	Pro	Glu	Glu	Glu	Ser	Asn	Ile	Ile	Met	Ser	Thr	Lys
				485					490					495

Leu

<210> 18
<211> 573
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 4253888CD1

<400>	18													
Met	Thr	Asn	Ser	Lys	Gly	Arg	Ser	Ile	Thr	Asp	Lys	Thr	Ser	Gly
1				5					10					15
Gly	Pro	Ser	Ser	Gly	Gly	Gly	Phe	Val	Asp	Trp	Thr	Leu	Arg	Leu
				20					25					30
Asn	Thr	Ile	Gln	Ser	Asp	Lys	Phe	Leu	Asn	Leu	Leu	Leu	Ser	Met
				35					40					45
Val	Pro	Val	Ile	Tyr	Gln	Lys	Asn	Gln	Glu	Asp	Arg	His	Lys	Lys
				50					55					60
Pro	Asn	Gly	Ile	Trp	Gln	Asp	Gly	Leu	Ser	Thr	Ala	Val	Gln	Thr
				65					70					75
Phe	Ser	Asn	Arg	Ser	Glu	Gln	His	Met	Glu	Tyr	His	Ser	Phe	Ser
				80					85					90
Glu	Gln	Ser	Phe	His	Ala	Asn	Asn	Gly	His	Ala	Ser	Ser	Ser	Cys
				95					100					105
Ser	Gln	Lys	Tyr	Asp	Asp	Tyr	Ala	Asn	Tyr	Asn	Tyr	Cys	Asp	Gly
				110					115					120
Arg	Glu	Thr	Ser	Glu	Thr	Thr	Ala	Met	Leu	Gln	Asp	Glu	Asp	Ile
				125					130					135
Ser	Ser	Asp	Gly	Asp	Glu	Asp	Ala	Ile	Val	Glu	Val	Thr	Pro	Lys
				140					145					150
Leu	Pro	Lys	Glu	Ser	Ser	Gly	Ile	Met	Ala	Leu	Gln	Ile	Leu	Val
				155					160					165
Pro	Phe	Leu	Leu	Ala	Gly	Phe	Gly	Thr	Val	Ser	Ala	Gly	Met	Val
				170					175					180
Leu	Asp	Ile	Val	Gln	His	Trp	Glu	Val	Phe	Arg	Lys	Val	Thr	Glu
				185					190					195

Val Phe Ile Leu Val Pro Ala Leu Leu Gly Leu Lys Gly Asn Leu
 200 205 210
 Glu Met Thr Leu Ala Ser Arg Leu Ser Thr Ala Val Asn Ile Gly
 215 220 225
 Lys Met Asp Ser Pro Ile Glu Lys Trp Asn Leu Ile Ile Gly Asn
 230 235 240
 Leu Ala Leu Lys Gln Val Gln Ala Thr Val Val Gly Phe Leu Ala
 245 250 255
 Ala Val Ala Ala Ile Ile Leu Gly Trp Ile Pro Glu Gly Lys Tyr
 260 265 270
 Tyr Leu Asp His Ser Ile Leu Leu Cys Ser Ser Ser Val Ala Thr
 275 280 285
 Ala Phe Ile Ala Ser Leu Leu Gln Gly Ile Ile Met Val Gly Val
 290 295 300
 Ile Val Gly Ser Lys Lys Thr Gly Ile Asn Pro Asp Asn Val Ala
 305 310 315
 Thr Pro Ile Ala Ala Ser Phe Gly Asp Leu Ile Thr Leu Ala Ile
 320 325 330
 Leu Ala Trp Ile Ser Gln Gly Leu Tyr Ser Cys Leu Glu Thr Tyr
 335 340 345
 Tyr Tyr Ile Ser Pro Leu Val Gly Val Phe Phe Leu Ala Leu Thr
 350 355 360
 Pro Ile Trp Ile Ile Ile Ala Ala Lys His Pro Ala Thr Arg Thr
 365 370 375
 Val Leu His Ser Gly Trp Glu Pro Val Ile Thr Ala Met Val Ile
 380 385 390
 Ser Ser Ile Gly Gly Leu Ile Leu Asp Thr Thr Val Ser Asp Pro
 395 400 405
 Asn Leu Val Gly Ile Val Val Tyr Thr Pro Val Ile Asn Gly Ile
 410 415 420
 Gly Gly Asn Leu Val Ala Ile Gln Ala Ser Arg Ile Ser Thr Tyr
 425 430 435
 Leu His Leu His Ser Ile Pro Gly Glu Leu Pro Asp Glu Pro Lys
 440 445 450
 Gly Cys Tyr Tyr Pro Phe Arg Thr Phe Phe Gly Pro Gly Val Asn
 455 460 465
 Asn Lys Ser Ala Gln Val Leu Leu Leu Leu Val Ile Pro Gly His
 470 475 480
 Leu Ile Phe Leu Tyr Thr Ile His Leu Met Lys Ser Gly His Thr
 485 490 495
 Ser Leu Thr Ile Ile Phe Ile Val Val Tyr Leu Phe Gly Ala Val
 500 505 510
 Leu Gln Val Phe Thr Leu Leu Trp Ile Ala Asp Trp Met Val His
 515 520 525
 His Phe Trp Arg Lys Gly Lys Asp Pro Asp Ser Phe Ser Ile Pro
 530 535 540
 Tyr Leu Thr Ala Leu Gly Asp Leu Leu Gly Thr Ala Leu Leu Ala
 545 550 555
 Leu Ser Phe His Phe Leu Trp Leu Ile Gly Asp Arg Asp Gly Asp
 560 565 570
 Val Gly Asp

```

<210> 19
<211> 573
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 7479974CD1

<400> 19
  
```

Met Asp Ala Val Lys Tyr Leu Asn Lys Leu Asn Leu Asp Asn Ile
 1 5 10 15
 Glu Leu Thr Lys Tyr Leu Phe Phe Thr Gly Lys Gly Gly Val Gly
 20 25 30
 Lys Thr Thr Ile Ser Ser Phe Ile Ala Leu Asn Leu Ala Glu Asn
 35 40 45
 Gly Lys Lys Val Ala Leu Val Ser Thr Asp Pro Ala Ser Asn Leu
 50 55 60
 Gln Asp Val Phe Gln Met Glu Leu Ser Asn Lys Leu Thr Lys Tyr
 65 70 75
 Gln Pro Ile Pro Asn Leu Ser Ile Ala Asn Phe Asp Pro Ile Val
 80 85 90
 Ala Ala Asp Asp Tyr Lys Ala Gln Ser Ile Glu Pro Tyr Glu Gly
 95 100 105
 Ile Leu Pro Glu Asp Val Leu Ala Glu Met Lys Glu Gln Leu Ser
 110 115 120
 Gly Ser Cys Thr Val Glu Val Ala Ala Phe Asn Glu Phe Thr Asn
 125 130 135
 Phe Leu Ser Asp Lys Thr Leu Glu Gln Glu Phe Asp Phe Ile Ile
 140 145 150
 Phe Asp Thr Ala Pro Thr Gly His Thr Leu Arg Met Leu Glu Leu
 155 160 165
 Pro Ser Ala Trp Thr Asp Tyr Leu Asn Thr Thr Ser Asn Asp Ala
 170 175 180
 Ser Cys Leu Gly Gln Leu Ser Gly Leu Asn Glu Asn Arg Val Lys
 185 190 195
 Tyr Asn Ser Ala Leu Glu Lys Leu Arg Asn Gln Asp Asp Thr Thr
 200 205 210
 Met Met Leu Val Ala Arg Pro Thr His Ser Ser Ile Tyr Glu Ile
 215 220 225
 Gln Arg Ala Gln Gln Glu Leu Gln Gln Leu Ser Ile Ser Lys Phe
 230 235 240
 Lys Val Ile Ile Asn Asn Tyr Ile Glu Glu Ser His Gly Leu Ile
 245 250 255
 Ser Ser Gln Met Lys Ser Glu Gln Asp Lys Asn Ile Asn His Phe
 260 265 270
 Thr Glu Trp Leu Asn Asn Asn His Ala Tyr Tyr Val Pro Tyr Lys
 275 280 285
 Lys Gln Lys Glu Glu Gly Ile Glu Asn Leu Thr Asn Leu Leu Asn
 290 295 300
 Asp Asp Asn Leu Ile Glu Asn Asp Asp Phe Ile Val Glu Asp His
 305 310 315
 Pro Gln Phe Asn Lys Leu Ile Asp Glu Ile Glu Asn Ser Lys Val
 320 325 330
 Gln Tyr Leu Phe Thr Met Gly Lys Gly Val Gly Lys Thr Thr
 335 340 345
 Val Ala Thr Gln Leu Ala Thr Ala Leu Ser Asn Lys Gly Tyr Arg
 350 355 360
 Val Leu Leu Ala Thr Thr Asp Pro Thr Lys Glu Ile Asn Val Glu
 365 370 375
 Thr Thr Ser Asn Leu Asn Thr Ala Tyr Ile Asp Glu Glu Gln Ala
 380 385 390
 Leu Glu Lys Tyr Lys Lys Glu Val Leu Ala Thr Val Asn Asp Asp
 395 400 405
 Thr Pro Gln Asp Asp Ile Asp Tyr Ile Met Glu Asp Leu Lys Ser
 410 415 420
 Pro Cys Thr Glu Glu Ile Ala Phe Phe Lys Ala Phe Ser Asp Ile
 425 430 435
 Met Glu Asn Gln Asp Asp Met Asp Tyr Val Ile Val Asp Thr Ala
 440 445 450
 Pro Thr Gly His Thr Leu Leu Leu Asp Ser Ser Glu Asn His
 455 460 465
 His Arg Glu Leu Lys Lys Ser Thr Gln Thr Thr Ser Asn Val

	470	475	480
Glu Thr Leu Leu Pro Lys Ile Gln Asn Lys Asn Leu Thr Gln Met			
485	490	495	
Ile Ile Val Thr Leu Ala Glu Lys Thr Pro Tyr Leu Glu Ser Lys			
500	505	510	
Arg Leu Val Glu Asp Leu Asn Arg Ala Asn Ile Gly His Asn Trp			
515	520	525	
Trp Val Val Asn Gln Ser Leu Val Thr Leu Asn Gln Arg Asp Asp			
530	535	540	
Leu Phe Ser Asn Lys Lys Glu Asp Glu Ser Phe Trp Ile Asn Lys			
545	550	555	
Ile Lys Asn Glu Ser Phe Asp Asn Tyr Phe Val Ile Pro Tyr Gly			
560	565	570	
Gly Leu Ser			

<210> 20
<211> 248
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 7483850CD1

	<400> 20	
Met Asn Ser Asn Leu Asn Leu Asp Gly Phe Leu Leu Pro Ile Ala		
1	5	10
Val Met Asn Ala Ile Ser Ser Leu Pro Leu Leu Ile Leu Ala Pro		
20	25	30
Phe Leu Glu Tyr Phe Ser Thr Cys Leu Phe Pro Ser Lys Arg Val		
35	40	45
Gly Ser Phe Leu Ser Thr Cys Ile Ile Ala Gly Asn Leu Phe Ala		
50	55	60
Ala Leu Ser Val Met Ile Ala Gly Phe Phe Glu Ile His Arg Lys		
65	70	75
His Phe Pro Ala Val Glu Gln Pro Leu Ser Gly Lys Val Leu Thr		
80	85	90
Val Ser Ser Met Pro Cys Phe Tyr Leu Ile Leu Gln Tyr Val Leu		
95	100	105
Leu Gly Val Ala Glu Thr Leu Val Asn Pro Ala Leu Ser Val Ile		
110	115	120
Ser Tyr Arg Phe Val Pro Ser Asn Val Arg Gly Thr Ser Met Asn		
125	130	135
Phe Leu Thr Leu Phe Asn Gly Phe Gly Cys Phe Thr Gly Ala Leu		
140	145	150
Leu Val Lys Leu Val Tyr Leu Ile Ser Glu Gly Lys Asn Arg Gln		
155	160	165
Trp Phe Pro Asn Thr Leu Asn Lys Gly Asn Leu Glu Gly Phe Phe		
170	175	180
Phe Phe Leu Ala Ser Leu Thr Leu Leu Asn Val Leu Gly Phe Cys		
185	190	195
Ser Val Ser Gln Arg Tyr Cys Asn Leu Asn His Phe Asn Ala Gln		
200	205	210
Asn Ile Arg Gly Ser Asn Leu Glu Glu Thr Leu Leu Leu His Glu		
215	220	225
Lys Ser Leu Lys Phe Tyr Gly Ser Ile Gln Glu Phe Ser Ser Ser		
230	235	240
Ile Asp Leu Trp Glu Thr Ala Leu		
245		

<210> 21
<211> 761

<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 5508353CD1

<400> 21
Met Lys Pro Ala Ser Pro Val Glu Glu Glu Val Ser Gln Val Cys
1 5 10 15
Glu Ser Pro Gln Cys Ser Ser Ser Ser Ala Cys Cys Thr Glu Thr
20 25 30
Glu Lys Gln His Gly Asp Ala Gly Leu Leu Asn Gly Lys Ala Glu
35 40 45
Ser Leu Pro Gly Gln Pro Leu Ala Cys Asn Leu Cys Tyr Glu Ala
50 55 60
Glu Ser Pro Asp Glu Ala Ala Leu Val Tyr Ala Ala Arg Ala Tyr
65 70 75
Gln Cys Thr Leu Arg Ser Arg Thr Pro Glu Gln Val Met Val Asp
80 85 90
Phe Ala Ala Leu Gly Pro Leu Thr Phe Gln Leu Leu His Ile Leu
95 100 105
Pro Phe Asp Ser Val Arg Lys Arg Met Ser Val Val Val Arg His
110 115 120
Pro Leu Ser Asn Gln Val Val Val Tyr Thr Lys Gly Ala Asp Ser
125 130 135
Val Ile Met Glu Leu Leu Ser Val Ala Ser Pro Asp Gly Ala Ser
140 145 150
Leu Glu Lys Gln Gln Met Ile Val Arg Glu Lys Thr Gln Lys His
155 160 165
Leu Asp Asp Tyr Ala Lys Gln Gly Leu Arg Thr Leu Cys Ile Ala
170 175 180
Lys Lys Val Met Ser Asp Thr Glu Tyr Ala Glu Trp Leu Arg Asn
185 190 195
His Phe Leu Ala Glu Thr Ser Ile Asp Asn Arg Glu Glu Leu Leu
200 205 210
Leu Glu Ser Ala Met Arg Leu Glu Asn Lys Leu Thr Leu Leu Gly
215 220 225
Ala Thr Gly Ile Glu Asp Arg Leu Gln Glu Gly Val Pro Glu Ser
230 235 240
Ile Glu Ala Leu His Lys Ala Gly Ile Lys Ile Trp Met Leu Thr
245 250 255
Gly Asp Lys Gln Glu Thr Ala Val Asn Ile Ala Tyr Ala Cys Lys
260 265 270
Leu Leu Glu Pro Asp Asp Lys Leu Phe Ile Leu Asn Thr Gln Ser
275 280 285
Lys Asp Ala Cys Gly Met Leu Met Ser Thr Ile Leu Lys Glu Leu
290 295 300
Gln Lys Lys Thr Gln Ala Leu Pro Glu Gln Val Ser Leu Ser Glu
305 310 315
Asp Leu Leu Gln Pro Pro Val Pro Arg Asp Ser Gly Leu Arg Ala
320 325 330
Gly Leu Ile Ile Thr Gly Lys Thr Leu Glu Phe Ala Leu Gln Glu
335 340 345
Ser Leu Gln Lys Gln Phe Leu Glu Leu Thr Ser Trp Gly Gln Ala
350 355 360
Val Val Cys Cys Arg Ala Thr Pro Leu Gln Lys Ser Glu Val Val
365 370 375
Lys Leu Val Arg Ser His Leu Gln Val Met Thr Leu Ala Ile Gly
380 385 390
Asp Gly Ala Asn Asp Val Ser Met Ile Gln Val Ala Asp Ile Gly
395 400 405
Ile Gly Val Ser Gly Gln Glu Gly Met Gln Ala Val Met Ala Ser

	410	415	420
Asp Phe Ala Val Ser Gln Phe Lys His		Leu Ser Lys Leu Leu	Leu
425		430	435
Val His Gly His Trp Cys Tyr Thr Arg		Leu Ser Asn Met Ile	Leu
440		445	450
Tyr Phe Phe Tyr Lys Asn Val Ala Tyr		Val Asn Leu Leu Phe	Trp
455		460	465
Tyr Gln Phe Phe Cys Gly Phe Ser Gly		Thr Ser Met Thr Asp	Tyr
470		475	480
Trp Val Leu Ile Phe Phe Asn Leu Leu		Phe Thr Ser Ala Pro	Pro
485		490	495
Val Ile Tyr Gly Val Leu Glu Lys Asp		Val Ser Ala Glu Thr	Leu
500		505	510
Met Gln Leu Pro Glu Leu Tyr Lys Ser		Gly Gln Lys Ser Glu	Ala
515		520	525
Tyr Leu Pro His Thr Phe Trp Ile Thr		Leu Leu Asp Ala Phe	Tyr
530		535	540
Gln Ser Leu Val Cys Phe Phe Val Pro		Tyr Phe Thr Tyr Gln	Gly
545		550	555
Ser Asp Thr Asp Ile Phe Ala Phe Gly		Asn Pro Leu Asn Thr	Ala
560		565	570
Ala Leu Phe Ile Val Leu Leu His Leu		Val Ile Glu Ser Lys	Ser
575		580	585
Leu Thr Trp Ile His Leu Leu Val Ile		Ile Gly Ser Ile Leu	Ser
590		595	600
Tyr Phe Leu Phe Ala Ile Val Phe Gly		Ala Met Cys Val Thr	Cys
605		610	615
Asn Pro Pro Ser Asn Pro Tyr Trp Ile		Met Gln Glu His Met	Leu
620		625	630
Asp Pro Val Phe Tyr Leu Val Cys Ile		Leu Thr Thr Ser Ile	Ala
635		640	645
Leu Leu Pro Arg Phe Val Tyr Arg Val		Leu Gln Gly Ser Leu	Phe
650		655	660
Pro Ser Pro Ile Leu Arg Ala Lys His		Phe Asp Arg Leu Thr	Pro
665		670	675
Glu Glu Arg Thr Lys Ala Leu Lys Lys		Trp Arg Gly Ala Gly	Lys
680		685	690
Met Asn Gln Val Thr Ser Lys Tyr Ala		Asn Gln Ser Ala Gly	Lys
695		700	705
Ser Gly Arg Arg Pro Met Pro Gly Pro		Ser Ala Val Phe Ala	Met
710		715	720
Lys Ser Ala Ser Ser Cys Ala Ile Glu		Gln Gly Asn Leu Ser	Leu
725		730	735
Cys Glu Thr Ala Leu Asp Gln Gly Tyr		Ser Glu Thr Lys Ala	Phe
740		745	750
Glu Met Ala Gly Pro Ser Lys Gly Lys		Glu Ser	
755		760	

<210> 22
<211> 219
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 8543628CD1

<400> 22
Met Ala Ser Ser Gly Leu Glu Leu Leu Trp Val Ser Leu Pro Gln
1 5 10 15
Leu Gly Lys Gly Ala Ala Gln Thr Leu Ser Ile Ser Phe Leu Ser
20 25 30
Ile Gly Phe Ser Thr Val Gly Gly Val Leu Tyr Gly Val Leu Arg

	35	40	45
Thr Leu Asn Asn Lys Ala Ile Asn Gly Val	Leu Arg Val Tyr Leu		
50	55		60
Glu Leu Phe Arg Ala Ile Pro Val Leu Val Trp	Leu Tyr Leu Leu		
65	70		75
Phe Phe Gly Val Pro Ile Phe Phe Gly	Leu Ser Ile Pro Ser Phe		
80	85		90
Trp Cys Ala Val Leu Val Leu Ser Leu Trp	Gly Ala Ser Glu Val		
95	100		105
Gly Glu Val Val Arg Gly Ala Leu His	Ser Leu Pro Arg Gly Gln		
110	115		120
Arg Glu Ala Gly Leu Ser Ile Gly Leu	Ser Asp Leu Gln Leu Tyr		
125	130		135
Gly Tyr Val Leu Leu Pro Gln Ala Leu Arg	Arg Met Thr Pro Pro		
140	145		150
Thr Ile Asn Val Tyr Thr Arg Ile Ile Lys	Thr Ser Ser Leu Ala		
155	160		165
Val Leu Ile Gly Val Val Asp Val Ile Lys	Val Gly Gln Gln Ile		
170	175		180
Ile Glu Arg Thr Tyr Glu Ser Val Leu Ile	Tyr Gly Ala Leu Phe		
185	190		195
Leu Phe Phe Phe Ile Cys Tyr Pro Leu Ser Ala	Ala Ser Lys		
200	205		210
Leu Leu Glu Arg Arg Trp Ala Gln Ala			
	215		

<210> 23
<211> 463
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 7482754CD1

	<400> 23		
Met Glu Gly Gln Thr Pro Gly Ser Arg Gly	Leu Pro Glu Lys Pro		
1	5	10	15
His Pro Ala Thr Ala Ala Ala Thr Leu Ser	Ser Met Gly Ala Val		
20	25		30
Phe Ile Leu Met Lys Ser Ala Leu Gly Ala	Gly Leu Leu Asn Phe		
35	40		45
Pro Trp Ala Phe Ser Lys Ala Gly Gly	Val Val Pro Ala Phe Leu		
50	55		60
Val Glu Leu Val Ser Leu Val Phe Leu Ile	Ser Gly Leu Val Ile		
65	70		75
Leu Gly Tyr Ala Ala Ala Val Ser Gly Gln	Ala Thr Tyr Gln Gly		
80	85		90
Val Val Arg Gly Leu Cys Gly Pro Ala Ile	Gly Lys Leu Cys Glu		
95	100		105
Ala Cys Phe Leu Leu Asn Leu Leu Met Ile	Ser Val Ala Phe Leu		
110	115		120
Arg Val Ile Gly Asp Gln Leu Glu Lys	Leu Cys Asp Ser Leu Leu		
125	130		135
Ser Gly Thr Pro Pro Ala Pro Gln Pro Trp	Tyr Ala Asp Gln Arg		
140	145		150
Phe Thr Leu Pro Leu Leu Ser Val Leu Val	Ile Leu Pro Leu Ser		
155	160		165
Ala Pro Arg Glu Ile Ala Phe Gln Lys	Tyr Thr Ser Pro Ser His		
170	175		180
Gly His Cys Val Ser Ile Leu Gly Thr Leu	Ala Ala Cys Tyr Leu		
185	190		195
Ala Leu Val Ile Thr Val Gln Tyr Tyr Leu	Trp Pro Gln Gly Leu		

	200	205	210											
Val	Arg	Glu	Ser	His	Pro	Ser	Leu	Ser	Pro	Ala	Ser	Trp	Thr	Ser
				215					220				225	
Val	Phe	Ser	Val	Phe	Pro	Thr	Ile	Cys	Phe	Gly	Phe	Gln	Cys	His
				230					235				240	
Glu	Ala	Ala	Val	Ser	Ile	Tyr	Cys	Ser	Met	Arg	Lys	Arg	Ser	Leu
				245					250				255	
Ser	His	Trp	Ala	Leu	Val	Ser	Val	Leu	Ser	Leu	Leu	Ala	Cys	Cys
				260					265				270	
Leu	Ile	Tyr	Ser	Leu	Thr	Gly	Val	Tyr	Gly	Phe	Leu	Thr	Phe	Gly
				275					280				285	
Thr	Glu	Val	Ser	Ala	Asp	Val	Leu	Met	Ser	Tyr	Pro	Gly	Asn	Asp
				290					295				300	
Met	Val	Ile	Ile	Val	Ala	Arg	Val	Leu	Phe	Ala	Val	Ser	Ile	Val
				305					310				315	
Thr	Val	Tyr	Pro	Ile	Val	Leu	Phe	Leu	Gly	Arg	Ser	Val	Met	Gln
				320					325				330	
Asp	Phe	Trp	Arg	Arg	Ser	Cys	Leu	Gly	Gly	Trp	Gly	Pro	Ser	Ala
				335					340				345	
Leu	Ala	Asp	Pro	Ser	Gly	Leu	Trp	Val	Arg	Met	Pro	Leu	Thr	Ile
				350					355				360	
Leu	Trp	Val	Thr	Val	Thr	Leu	Ala	Met	Ala	Leu	Phe	Met	Pro	Asp
				365					370				375	
Leu	Ser	Glu	Ile	Val	Ser	Ile	Ile	Gly	Gly	Ile	Ser	Ser	Phe	Phe
				380					385				390	
Ile	Phe	Ile	Phe	Pro	Gly	Pro	Gly	Gly	Lys	His	Arg	Phe	Cys	Glu
				395					400				405	
Gly	Trp	Phe	Leu	Arg	Lys	Pro	Ser	Gln	Thr	Ala	Gln	Ala	Leu	Ser
				410					415				420	
Glu	Lys	Gly	Lys	Pro	Ala	Arg	Phe	Val	Pro	His	Leu	Cys	Asn	Gly
				425					430				435	
Cys	Arg	Ala	Tyr	Arg	Thr	Lys	Ser	Gln	Val	Arg	Asn	Leu	Arg	Ala
				440					445				450	
Thr	Gly	Arg	Glu	Ser	Leu	Ser	Thr	Gln	Tyr	Glu	Gly	Ile		
				455					460					

<210> 24

<211> 1043

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 3794818CD1

<400> 24

Met	Glu	Phe	Val	Arg	Ala	Leu	Trp	Leu	Gly	Leu	Ala	Leu		
1					5				10				15	
Gly	Pro	Gly	Ser	Ala	Gly	Gly	His	Pro	Gln	Pro	Cys	Gly	Val	Leu
					20				25				30	
Ala	Arg	Leu	Gly	Gly	Ser	Val	Arg	Leu	Gly	Ala	Leu	Leu	Pro	Arg
					35				40				45	
Ala	Pro	Leu	Ala	Arg	Ala	Arg	Ala	Ala	Leu	Ala	Arg	Ala		
					50				55				60	
Ala	Leu	Ala	Pro	Arg	Leu	Pro	His	Asn	Leu	Ser	Leu	Glu	Leu	Val
					65				70				75	
Val	Ala	Ala	Pro	Pro	Ala	Arg	Asp	Pro	Ala	Ser	Leu	Thr	Arg	Gly
					80				85				90	
Leu	Cys	Gln	Ala	Leu	Val	Pro	Pro	Gly	Val	Ala	Ala	Leu	Leu	Ala
					95				100				105	
Phe	Pro	Glu	Ala	Arg	Pro	Glu	Leu	Leu	Gln	Leu	His	Phe	Leu	Ala
					110				115				120	
Ala	Ala	Thr	Glu	Thr	Pro	Val	Leu	Ser	Leu	Leu	Arg	Arg	Glu	Ala

	125	130	135
Arg Ala Pro Leu Gly	Ala Pro Asn Pro Phe His Leu Gln Leu His		
140	145	150	
Trp Ala Ser Pro Leu Glu Thr Leu Leu Asp Val Leu Val Ala Val			
155	160	165	
Leu Gln Ala His Ala Trp Glu Asp Val Gly Leu Ala Leu Cys Arg			
170	175	180	
Thr Gln Asp Pro Gly Gly Leu Val Ala Leu Trp Thr Ser Arg Ala			
185	190	195	
Gly Arg Pro Pro Gln Leu Val Leu Asp Leu Ser Arg Arg Asp Thr			
200	205	210	
Gly Asp Ala Gly Leu Arg Ala Arg Leu Ala Pro Met Ala Ala Pro			
215	220	225	
Val Gly Gly Glu Ala Pro Val Pro Ala Ala Val Leu Leu Gly Cys			
230	235	240	
Asp Ile Ala Arg Ala Arg Arg Val Leu Glu Ala Val Pro Pro Gly			
245	250	255	
Pro His Trp Leu Leu Gly Thr Pro Leu Pro Pro Lys Ala Leu Pro			
260	265	270	
Thr Ala Gly Leu Pro Pro Gly Leu Leu Ala Leu Gly Glu Val Ala			
275	280	285	
Arg Pro Pro Leu Glu Ala Ala Ile His Asp Ile Val Gln Leu Val			
290	295	300	
Ala Arg Ala Leu Gly Ser Ala Ala Gln Val Gln Pro Lys Arg Ala			
305	310	315	
Leu Leu Pro Ala Pro Val Asn Cys Gly Asp Leu Gln Pro Ala Gly			
320	325	330	
Pro Glu Ser Pro Gly Arg Phe Leu Ala Arg Phe Leu Ala Asn Thr			
335	340	345	
Ser Phe Gln Gly Arg Thr Gly Pro Val Trp Val Thr Gly Ser Ser			
350	355	360	
Gln Val His Met Ser Arg His Phe Lys Val Trp Ser Leu Arg Arg			
365	370	375	
Asp Pro Arg Gly Ala Pro Ala Trp Ala Thr Val Gly Ser Trp Arg			
380	385	390	
Asp Gly Gln Leu Asp Leu Glu Pro Gly Gly Ala Ser Ala Arg Pro			
395	400	405	
Pro Pro Pro Gln Gly Ala Gln Val Trp Pro Lys Leu Arg Val Val			
410	415	420	
Thr Leu Leu Glu His Pro Phe Val Phe Ala Arg Asp Pro Asp Glu			
425	430	435	
Asp Gly Gln Cys Pro Ala Gly Gln Leu Cys Leu Asp Pro Gly Thr			
440	445	450	
Asn Asp Ser Ala Thr Leu Asp Ala Leu Phe Ala Ala Leu Ala Asn			
455	460	465	
Gly Ser Ala Pro Arg Ala Leu Arg Lys Cys Cys Tyr Gly Tyr Cys			
470	475	480	
Ile Asp Leu Leu Glu Arg Leu Ala Glu Asp Thr Pro Phe Asp Phe			
485	490	495	
Glu Leu Tyr Leu Val Gly Asp Gly Lys Tyr Gly Ala Leu Arg Asp			
500	505	510	
Gly Arg Trp Thr Gly Leu Val Gly Asp Leu Leu Ala Gly Arg Ala			
515	520	525	
His Met Ala Val Thr Ser Phe Ser Ile Asn Ser Ala Arg Ser Gln			
530	535	540	
Val Val Asp Phe Thr Ser Pro Phe Phe Ser Thr Ser Leu Gly Ile			
545	550	555	
Met Val Arg Ala Arg Asp Thr Ala Ser Pro Ile Gly Ala Phe Met			
560	565	570	
Trp Pro Leu His Trp Ser Thr Trp Leu Gly Val Phe Ala Ala Leu			
575	580	585	
His Leu Thr Ala Leu Phe Leu Thr Val Tyr Glu Trp Arg Ser Pro			
590	595	600	

Tyr	Gly	Leu	Thr	Pro	Arg	Gly	Arg	Asn	Arg	Ser	Thr	Val	Phe	Ser
605						610							615	
Tyr	Ser	Ser	Ala	Leu	Asn	Leu	Cys	Tyr	Ala	Ile	Leu	Phe	Arg	Arg
620							625						630	
Thr	Val	Ser	Ser	Lys	Thr	Pro	Lys	Cys	Pro	Thr	Gly	Arg	Leu	Leu
635							640						645	
Met	Asn	Leu	Trp	Ala	Ile	Phe	Cys	Leu	Leu	Val	Leu	Ser	Ser	Tyr
650							655						660	
Thr	Ala	Asn	Leu	Ala	Ala	Val	Met	Val	Gly	Asp	Lys	Thr	Phe	Glu
665							670						675	
Glu	Leu	Ser	Gly	Ile	His	Asp	Pro	Lys	Leu	His	His	Pro	Ala	Gln
680							685						690	
Gly	Phe	Arg	Phe	Gly	Thr	Val	Trp	Glu	Ser	Ser	Ala	Glu	Ala	Tyr
695							700						705	
Ile	Lys	Lys	Ser	Phe	Pro	Asp	Met	His	Ala	His	Met	Arg	Arg	His
710							715						720	
Ser	Ala	Pro	Thr	Thr	Pro	Arg	Gly	Val	Ala	Met	Leu	Thr	Ser	Asp
725							730						735	
Pro	Pro	Lys	Leu	Asn	Ala	Phe	Ile	Met	Asp	Lys	Ser	Leu	Leu	Asp
740							745						750	
Tyr	Glu	Val	Ser	Ile	Asp	Ala	Asp	Cys	Lys	Leu	Leu	Thr	Val	Gly
755							760						765	
Lys	Pro	Phe	Ala	Ile	Glu	Gly	Tyr	Gly	Ile	Gly	Leu	Pro	Gln	Asn
770							775						780	
Ser	Pro	Leu	Thr	Ser	Asn	Leu	Ser	Glu	Phe	Ile	Ser	Arg	Tyr	Lys
785							790						795	
Ser	Ser	Gly	Phe	Ile	Asp	Leu	Leu	His	Asp	Lys	Trp	Tyr	Lys	Met
800							805						810	
Val	Pro	Cys	Gly	Lys	Arg	Val	Phe	Ala	Val	Thr	Glu	Thr	Leu	Gln
815							820						825	
Met	Ser	Ile	Tyr	His	Phe	Ala	Gly	Leu	Phe	Val	Leu	Leu	Cys	Leu
830							835						840	
Gly	Leu	Gly	Ser	Ala	Leu	Leu	Ser	Ser	Leu	Gly	Glu	His	Ala	Phe
845							850						855	
Phe	Arg	Leu	Ala	Leu	Pro	Arg	Ile	Arg	Lys	Gly	Ser	Arg	Leu	Gln
860							865						870	
Tyr	Trp	Leu	His	Thr	Ser	Gln	Lys	Ile	His	Arg	Ala	Leu	Asn	Thr
875							880						885	
Glu	Pro	Pro	Glu	Gly	Ser	Lys	Glu	Glu	Thr	Ala	Glu	Ala	Glu	Pro
890							895						900	
Ser	Gly	Pro	Glu	Val	Glu	Gln	Gln	Gln	Gln	Gln	Gln	Asp	Gln	Pro
905							910						915	
Thr	Ala	Pro	Glu	Gly	Trp	Lys	Arg	Ala	Arg	Arg	Ala	Val	Asp	Lys
920							925						930	
Glu	Arg	Arg	Val	Arg	Phe	Leu	Leu	Glu	Pro	Ala	Val	Val	Val	Ala
935							940						945	
Pro	Glu	Ala	Asp	Ala	Glu	Ala	Glu	Ala	Ala	Pro	Arg	Glu	Gly	Pro
950							955						960	
Val	Trp	Leu	Cys	Ser	Tyr	Gly	Arg	Pro	Pro	Ala	Ala	Arg	Pro	Thr
965							970						975	
Gly	Ala	Pro	Gln	Pro	Gly	Glu	Leu	Gln	Glu	Leu	Glu	Arg	Arg	Ile
980							985						990	
Glu	Val	Ala	Arg	Glu	Arg	Leu	Arg	Gln	Ala	Leu	Val	Arg	Arg	Gly
995							1000						1005	
Gln	Leu	Leu	Ala	Gln	Leu	Gly	Asp	Ser	Ala	Arg	His	Arg	Pro	Arg
1010							1015						1020	
Arg	Leu	Leu	Gln	Ala	Arg	Ala	Ala	Pro	Ala	Glu	Ala	Pro	Pro	His
1025							1030						1035	
Ser	Gly	Arg	Pro	Gly	Ser	Gln	Glu							
1040														

<210> 25
<211> 480

<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 4717525CD1

<400> 25
Met Arg Gly Ser Pro Gly Asp Ala Glu Arg Arg Gln Arg Trp Gly
1 5 10 15
Arg Leu Phe Glu Glu Leu Asp Ser Asn Lys Asp Gly Arg Val Asp
20 25 30
Val His Glu Leu Arg Gln Gly Leu Ala Arg Leu Gly Gly Asn
35 40 45
Pro Asp Pro Gly Ala Gln Gln Gly Ile Ser Ser Glu Gly Asp Ala
50 55 60
Asp Pro Asp Gly Gly Leu Asp Leu Glu Glu Phe Ser Arg Tyr Leu
65 70 75
Gln Glu Arg Glu Gln Arg Leu Leu Met Phe His Ser Leu Asp
80 85 90
Arg Asn Gln Asp Gly His Ile Asp Val Ser Glu Ile Gln Gln Ser
95 100 105
Phe Arg Ala Leu Gly Ile Ser Ile Ser Leu Glu Gln Ala Glu Lys
110 115 120
Ile Leu His Ser Met Asp Arg Asp Gly Thr Met Thr Ile Asp Trp
125 130 135
Gln Glu Trp Arg Asp His Phe Leu Leu His Ser Leu Glu Asn Val
140 145 150
Glu Asp Val Leu Tyr Phe Trp Lys His Ser Thr Val Leu Asp Ile
155 160 165
Gly Glu Cys Leu Thr Val Pro Asp Glu Phe Ser Lys Gln Glu Lys
170 175 180
Leu Thr Gly Met Trp Trp Lys Gln Leu Val Ala Gly Ala Val Ala
185 190 195
Gly Ala Val Ser Arg Thr Gly Thr Ala Pro Leu Asp Arg Leu Lys
200 205 210
Val Phe Met Gln Val His Ala Ser Lys Thr Asn Arg Leu Asn Ile
215 220 225
Leu Gly Gly Leu Arg Ser Met Val Leu Glu Gly Gly Ile Arg Ser
230 235 240
Leu Trp Arg Gly Asn Gly Ile Asn Val Leu Lys Ile Ala Pro Glu
245 250 255
Ser Ala Ile Lys Phe Met Ala Tyr Glu Gln Ile Lys Arg Ala Ile
260 265 270
Leu Gly Gln Gln Glu Thr Leu His Val Gln Glu Arg Phe Val Ala
275 280 285
Gly Ser Leu Ala Gly Ala Thr Ala Gln Thr Ile Ile Tyr Pro Met
290 295 300
Glu Thr Leu Lys Asn Trp Trp Leu Gln Gln Tyr Ser His Asp Ser
305 310 315
Ala Asp Pro Gly Ile Leu Val Leu Leu Ala Cys Gly Thr Ile Ser
320 325 330
Ser Thr Cys Gly Gln Ile Ala Ser Tyr Pro Leu Ala Leu Val Arg
335 340 345
Thr Arg Met Gln Ala Gln Ala Ser Ile Glu Gly Gly Pro Gln Leu
350 355 360
Ser Met Leu Gly Leu Leu Arg His Ile Leu Ser Gln Glu Gly Met
365 370 375
Arg Gly Leu Tyr Arg Gly Ile Ala Pro Asn Phe Met Lys Val Ile
380 385 390
Pro Ala Val Ser Ile Ser Tyr Val Val Tyr Glu Asn Met Lys Gln
395 400 405
Ala Leu Gly Val Thr Ser Arg Leu Glu Tyr Ser Gly Ser Ile Ser

	410	415	420
Asp His Cys Asn Leu Cys Leu Pro Gly Ser Ser Asp Ser Pro Ala			
425	430	435	
Ser Ala Ser Arg Val Ala Gly Ile Thr Gly Phe His His Val Ala			
440	445	450	
Gln Ala His Leu Gly Leu Val Gly Ser Arg Asn Ser Ala Ala Phe			
455	460	465	
Ser Leu Pro Thr Cys Trp Asp Tyr Arg Lys Pro Val Val Met Pro			
470	475	480	

<210> 26
<211> 518
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 5091793CD1

<400> 26			
Met Ala Gly Leu Arg Asn Glu Ser Glu Gln Glu Pro Leu Leu Gly			
1	5	10	15
Asp Thr Pro Gly Ser Arg Glu Trp Asp Ile Leu Glu Thr Glu Glu			
20	25	30	
His Tyr Lys Ser Arg Trp Arg Ser Ile Arg Ile Leu Tyr Leu Thr			
35	40	45	
Met Phe Leu Ser Ser Val Gly Phe Ser Val Val Met Met Ser Ile			
50	55	60	
Trp Pro Tyr Leu Gln Lys Ile Asp Pro Thr Ala Asp Thr Ser Phe			
65	70	75	
Leu Gly Trp Val Ile Ala Ser Tyr Ser Leu Gly Gln Met Val Ala			
80	85	90	
Ser Pro Ile Phe Gly Leu Trp Ser Asn Tyr Arg Pro Arg Lys Glu			
95	100	105	
Pro Leu Ile Val Ser Ile Leu Ile Ser Val Ala Ala Asn Cys Leu			
110	115	120	
Tyr Ala Tyr Leu His Ile Pro Ala Ser His Asn Lys Tyr Tyr Met			
125	130	135	
Leu Val Ala Arg Gly Leu Leu Gly Ile Gly Ala Gly Asn Val Ala			
140	145	150	
Val Val Arg Ser Tyr Thr Ala Gly Ala Thr Ser Leu Gln Glu Arg			
155	160	165	
Thr Ser Ser Met Ala Asn Ile Ser Met Cys Gln Ala Leu Gly Phe			
170	175	180	
Ile Leu Gly Pro Val Phe Gln Thr Cys Phe Thr Phe Leu Gly Glu			
185	190	195	
Lys Gly Val Thr Trp Asp Val Ile Lys Leu Gln Ile Asn Met Tyr			
200	205	210	
Thr Thr Pro Val Leu Leu Ser Ala Phe Leu Gly Ile Leu Asn Ile			
215	220	225	
Ile Leu Ile Leu Ala Ile Leu Arg Glu His Arg Val Asp Asp Ser			
230	235	240	
Gly Arg Gln Cys Lys Ser Ile Asn Phe Glu Glu Ala Ser Thr Asp			
245	250	255	
Glu Ala Gln Val Pro Gln Gly Asn Ile Asp Gln Val Ala Val Val			
260	265	270	
Ala Ile Asn Val Leu Phe Phe Val Thr Leu Phe Ile Phe Ala Leu			
275	280	285	
Phe Glu Thr Ile Ile Thr Pro Leu Thr Met Asp Met Tyr Ala Trp			
290	295	300	
Thr Gln Glu Gln Ala Val Leu Tyr Asn Gly Ile Ile Leu Ala Ala			
305	310	315	

Leu	Gly	Val	Glu	Ala	Val	Val	Ile	Phe	Leu	Gly	Val	Lys	Leu	Leu
														330
														320
Ser	Lys	Lys	Ile	Gly	Glu	Arg	Ala	Ile	Leu	Leu	Gly	Gly	Leu	Ile
														345
														335
Val	Val	Trp	Val	Gly	Phe	Phe	Ile	Leu	Leu	Pro	Trp	Gly	Asn	Gln
														360
														350
Phe	Pro	Lys	Ile	Gln	Trp	Glu	Asp	Leu	His	Asn	Asn	Ser	Ile	Pro
														375
														365
Asn	Thr	Thr	Phe	Gly	Glu	Ile	Ile	Ile	Gly	Leu	Trp	Lys	Ser	Pro
														390
														380
Met	Glu	Asp	Asp	Asn	Glu	Arg	Pro	Thr	Gly	Cys	Ser	Ile	Glu	Gln
														405
														395
Ala	Trp	Cys	Leu	Tyr	Thr	Pro	Val	Ile	His	Leu	Ala	Gln	Phe	Leu
														420
														410
Thr	Ser	Ala	Val	Leu	Ile	Gly	Leu	Gly	Tyr	Pro	Val	Cys	Asn	Leu
														435
														425
Met	Ser	Tyr	Thr	Leu	Tyr	Ser	Lys	Ile	Leu	Gly	Pro	Lys	Pro	Gln
														450
														440
Gly	Val	Tyr	Met	Gly	Trp	Leu	Thr	Ala	Ser	Gly	Ser	Gly	Ala	Arg
														465
														455
Ile	Leu	Gly	Pro	Met	Phe	Ile	Ser	Gln	Val	Tyr	Ala	His	Trp	Gly
														480
														470
Pro	Arg	Trp	Ala	Phe	Ser	Leu	Val	Cys	Gly	Ile	Ile	Val	Leu	Thr
														495
														485
Ile	Thr	Leu	Leu	Gly	Val	Val	Tyr	Lys	Arg	Leu	Ile	Ala	Leu	Ser
														510
														500
Val	Arg	Tyr	Gly	Arg	Ile	Gln	Glu							
														515

<210> 27
<211> 501
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 5945527CD1

<400>	27													
Met	Arg	Ser	Ser	Leu	Ala	Pro	Gly	Val	Trp	Phe	Phe	Arg	Ala	Phe
														15
														10
Ser	Arg	Asp	Ser	Trp	Phe	Arg	Gly	Leu	Ile	Leu	Leu	Leu	Thr	Phe
														30
														25
Leu	Ile	Tyr	Ala	Cys	Tyr	His	Met	Ser	Arg	Lys	Pro	Ile	Ser	Ile
														45
														35
Val	Lys	Ser	Arg	Leu	His	Gln	Asn	Cys	Ser	Glu	Gln	Ile	Lys	Pro
														60
														50
Ile	Asn	Asp	Thr	His	Ser	Leu	Asn	Asp	Thr	Met	Trp	Cys	Ser	Trp
														75
														65
Ala	Pro	Phe	Asp	Lys	Asp	Asn	Tyr	Lys	Glu	Leu	Leu	Gly	Gly	Val
														90
														85
Asp	Asn	Ala	Phe	Leu	Ile	Ala	Tyr	Ala	Ile	Gly	Met	Phe	Ile	Ser
														105
														95
Gly	Val	Phe	Gly	Glu	Arg	Leu	Pro	Leu	Arg	Tyr	Tyr	Leu	Ser	Ala
														120
														110
Gly	Met	Leu	Leu	Ser	Gly	Leu	Phe	Thr	Ser	Leu	Phe	Gly	Leu	Gly
														135
														125
Tyr	Phe	Trp	Asn	Ile	His	Glu	Leu	Trp	Tyr	Phe	Val	Val	Ile	Gln
														150
														140
Val	Cys	Asn	Gly	Leu	Val	Gln	Thr	Thr	Gly	Trp	Pro	Ser	Val	Val
														165
														155
Thr	Cys	Val	Gly	Asn	Trp	Phe	Gly	Lys	Gly	Lys	Arg	Gly	Phe	Ile
														180
														175

Met	Gly	Ile	Trp	Asn	Ser	His	Thr	Ser	Val	Gly	Asn	Ile	Leu	Gly
				185					190					195
Ser	Leu	Ile	Ala	Gly	Ile	Trp	Val	Asn	Gly	Gln	Trp	Gly	Leu	Ser
				200					205					210
Phe	Ile	Val	Pro	Gly	Ile	Ile	Thr	Ala	Val	Met	Gly	Val	Ile	Thr
				215					220					225
Phe	Leu	Phe	Leu	Ile	Glu	His	Pro	Glu	Asp	Val	Asp	Cys	Ala	Pro
				230					235					240
Pro	Gln	His	His	Gly	Glu	Pro	Ala	Glu	Asn	Gln	Asp	Asn	Pro	Glu
				245					250					255
Asp	Pro	Gly	Asn	Ser	Pro	Cys	Ser	Ile	Arg	Glu	Ser	Gly	Leu	Glu
				260					265					270
Thr	Val	Ala	Lys	Cys	Ser	Lys	Gly	Pro	Cys	Glu	Glu	Pro	Ala	Ala
				275					280					285
Ile	Ser	Phe	Phe	Gly	Ala	Leu	Arg	Ile	Pro	Gly	Val	Val	Glu	Phe
				290					295					300
Ser	Leu	Cys	Leu	Leu	Phe	Ala	Lys	Leu	Val	Ser	Tyr	Thr	Phe	Leu
				305					310					315
Tyr	Trp	Leu	Pro	Leu	Tyr	Ile	Ala	Asn	Val	Ala	His	Phe	Ser	Ala
				320					325					330
Lys	Glu	Ala	Gly	Asp	Leu	Ser	Thr	Leu	Phe	Asp	Val	Gly	Gly	Ile
				335					340					345
Ile	Gly	Gly	Ile	Val	Ala	Gly	Leu	Val	Ser	Asp	Tyr	Thr	Asn	Gly
				350					355					360
Arg	Ala	Thr	Thr	Cys	Cys	Val	Met	Leu	Ile	Leu	Ala	Ala	Pro	Met
				365					370					375
Met	Phe	Leu	Tyr	Asn	Tyr	Ile	Gly	Gln	Asp	Gly	Ile	Ala	Ser	Ser
				380					385					390
Ile	Val	Met	Leu	Ile	Ile	Cys	Gly	Gly	Leu	Val	Asn	Gly	Pro	Tyr
				395					400					405
Ala	Leu	Ile	Thr	Thr	Ala	Val	Ser	Ala	Asp	Leu	Gly	Thr	His	Lys
				410					415					420
Ser	Leu	Lys	Gly	Asn	Ala	Lys	Ala	Leu	Ser	Thr	Val	Thr	Ala	Ile
				425					430					435
Ile	Asp	Gly	Thr	Gly	Ser	Ile	Gly	Ala	Ala	Leu	Gly	Pro	Leu	Leu
				440					445					450
Ala	Gly	Leu	Ile	Ser	Pro	Thr	Gly	Trp	Asn	Asn	Val	Phe	Tyr	Met
				455					460					465
Leu	Ile	Ser	Ala	Asp	Val	Leu	Ala	Cys	Leu	Leu	Leu	Cys	Arg	Leu
				470					475					480
Val	Tyr	Lys	Glu	Ile	Leu	Ala	Trp	Lys	Val	Ser	Leu	Ser	Arg	Gly
				485					490					495
Ser	Gly	Tyr	Lys	Glu	Ile									
				500										

<210> 28
<211> 801
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 6941124CD1

<400> 28
Met Gln Ala His Asn Thr Glu Asn Glu Ala Thr Ser Gly Gly Cys
1 5 10 15
Val Leu Leu His Thr Ser Arg Lys Tyr Leu Lys Leu Lys Asn Phe
20 25 30
Lys Glu Glu Ile Arg Ala His Arg Asp Leu Asp Gly Phe Leu Ala
35 40 45
Gln Ala Ser Ile Val Leu Asn Glu Thr Ala Thr Ser Leu Asp Asn
50 55 60

Val	Leu	Arg	Thr	Met	Leu	Arg	Arg	Phe	Ala	Arg	Asp	Pro	Asp	Asn
				65					70					75
Asn	Glu	Pro	Asn	Cys	Asn	Leu	Asp	Leu	Leu	Met	Ala	Met	Leu	Phe
				80					85					90
Thr	Asp	Ala	Gly	Ala	Pro	Met	Arg	Gly	Lys	Val	His	Leu	Leu	Ser
				95					100					105
Asp	Thr	Ile	Gln	Gly	Val	Thr	Ala	Thr	Val	Thr	Gly	Val	Arg	Tyr
				110					115					120
Gln	Gln	Ser	Trp	Leu	Cys	Ile	Ile	Cys	Thr	Met	Lys	Ala	Leu	Gln
				125					130					135
Lys	Arg	His	Val	Cys	Ile	Ser	Arg	Leu	Val	Arg	Pro	Gln	Asn	Trp
				140					145					150
Gly	Glu	Asn	Ser	Cys	Glu	Val	Arg	Phe	Val	Ile	Leu	Val	Leu	Ala
				155					160					165
Pro	Pro	Lys	Met	Lys	Ser	Thr	Lys	Thr	Ala	Met	Glu	Val	Ala	Arg
				170					175					180
Thr	Phe	Ala	Thr	Met	Phe	Ser	Asp	Ile	Ala	Phe	Arg	Gln	Lys	Leu
				185					190					195
Leu	Glu	Thr	Arg	Thr	Glu	Glu	Glu	Phe	Lys	Glu	Ala	Leu	Val	His
				200					205					210
Gln	Arg	Gln	Leu	Leu	Thr	Met	Val	Ser	His	Gly	Pro	Val	Ala	Pro
				215					220					225
Arg	Thr	Lys	Glu	Arg	Ser	Thr	Val	Ser	Leu	Pro	Ala	His	Arg	His
				230					235					240
Pro	Glu	Pro	Pro	Lys	Cys	Lys	Asp	Phe	Val	Pro	Phe	Gly	Lys	Gly
				245					250					255
Ile	Arg	Glu	Asp	Ile	Ala	Arg	Arg	Phe	Pro	Leu	Tyr	Pro	Leu	Asp
				260					265					270
Phe	Thr	Asp	Gly	Ile	Ile	Gly	Lys	Asn	Lys	Ala	Val	Gly	Lys	Tyr
				275					280					285
Ile	Thr	Thr	Thr	Leu	Phe	Leu	Tyr	Phe	Ala	Cys	Leu	Leu	Pro	Thr
				290					295					300
Ile	Ala	Phe	Gly	Ser	Leu	Asn	Asp	Glu	Asn	Thr	Asp	Gly	Ala	Ile
				305					310					315
Asp	Val	Gln	Lys	Thr	Ile	Ala	Gly	Gln	Ser	Ile	Gly	Gly	Leu	Leu
				320					325					330
Tyr	Ala	Leu	Phe	Ser	Gly	Gln	Pro	Leu	Val	Ile	Leu	Leu	Thr	Thr
				335					340					345
Ala	Pro	Leu	Ala	Leu	Tyr	Ile	Gln	Val	Ile	Arg	Val	Ile	Cys	Asp
				350					355					360
Asp	Tyr	Asp	Leu	Asp	Phe	Asn	Ser	Phe	Tyr	Ala	Trp	Thr	Gly	Leu
				365					370					375
Trp	Asn	Ser	Phe	Phe	Leu	Ala	Leu	Tyr	Ala	Phe	Phe	Asn	Leu	Ser
				380					385					390
Leu	Val	Met	Ser	Leu	Phe	Lys	Arg	Ser	Thr	Glu	Glu	Ile	Ile	Ala
				395					400					405
Leu	Phe	Ile	Ser	Ile	Thr	Phe	Val	Leu	Asp	Ala	Val	Lys	Gly	Thr
				410					415					420
Val	Lys	Ile	Phe	Trp	Lys	Tyr	Tyr	Tyr	Gly	His	Tyr	Leu	Asp	Asp
				425					430					435
Tyr	His	Thr	Lys	Arg	Thr	Ser	Ser	Leu	Val	Ser	Leu	Ser	Gly	Leu
				440					445					450
Gly	Ala	Ser	Leu	Asn	Ala	Ser	Leu	His	Thr	Ala	Leu	Asn	Ala	Ser
				455					460					465
Phe	Leu	Ala	Ser	Pro	Thr	Glu	Leu	Pro	Ser	Ala	Thr	His	Ser	Gly
				470					475					480
Gln	Ala	Thr	Ala	Val	Leu	Ser	Leu	Leu	Ile	Met	Leu	Gly	Thr	Leu
				485					490					495
Trp	Leu	Gly	Tyr	Thr	Leu	Tyr	Gln	Phe	Lys	Lys	Ser	Pro	Tyr	Leu
				500					505					510
His	Pro	Cys	Val	Arg	Glu	Ile	Leu	Ser	Asp	Cys	Ala	Leu	Pro	Ile
				515					520					525
Ala	Val	Leu	Ala	Phe	Ser	Leu	Ile	Ser	Ser	His	Gly	Phe	Arg	Glu

	530		535		540
Ile Glu Met Ser	Lys	Phe Arg Tyr Asn	Pro Ser Glu Ser Pro	Phe	
	545		550		555
Ala Met Ala Gln	Ile Gln Ser Leu Ser	Leu Arg Ala Val Ser	Gly		
	560	565		570	
Ala Met Gly Leu	Gly Phe Leu Leu Ser	Met Leu Phe Phe Ile	Glu		
	575	580		585	
Gln Asn Leu Val	Ala Ala Leu Val Asn	Ala Pro Glu Asn Arg	Leu		
	590	595		600	
Val Lys Gly Thr	Ala Tyr His Trp Asp	Leu Leu Leu Ala	Ile		
	605	610		615	
Ile Asn Thr Gly	Leu Ser Leu Phe Gly	Leu Pro Trp Ile His	Ala		
	620	625		630	
Ala Tyr Pro His	Ser Pro Leu His Val	Arg Ala Leu Ala Leu	Val		
	635	640		645	
Glu Glu Arg Val	Glu Asn Gly His Ile	Tyr Asp Thr Ile Val	Asn		
	650	655		660	
Val Lys Glu Thr	Arg Leu Thr Ser Leu	Gly Ala Ser Val	Leu Val		
	665	670		675	
Gly Leu Ser Leu	Leu Leu Leu Pro Val	Pro Leu Gln Trp Ile	Pro		
	680	685		690	
Lys Pro Val Leu	Tyr Gly Leu Phe Leu	Tyr Ile Ala Leu Thr	Ser		
	695	700		705	
Leu Asp Gly Asn	Gln Leu Val Gln Arg Val	Ala Leu Leu Lys			
	710	715		720	
Glu Gln Thr Ala	Tyr Pro Pro Thr His	Tyr Ile Arg Arg Val	Pro		
	725	730		735	
Gln Arg Lys Ile	His Tyr Phe Thr Gly	Leu Gln Val Leu Gln	Leu		
	740	745		750	
Leu Leu Leu Cys	Ala Phe Gly Met Ser	Ser Leu Pro Tyr Met	Lys		
	755	760		765	
Met Ile Phe Pro	Leu Ile Met Ile Ala	Met Ile Pro Ile Arg	Tyr		
	770	775		780	
Ile Leu Leu Pro	Arg Ile Ile Glu Ala	Lys Tyr Leu Asp Val	Met		
	785	790		795	
Asp Ala Glu His	Arg Pro				
	800				

<210> 29
<211> 344
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 6972530CD1

<400> 29
Met Ser Ile Phe Leu Leu Leu Arg Met Tyr Ala Ser Ser Leu Phe
1 5 10 15
His Arg Phe Gly Trp Ala Gly Leu Ile Val Ala Leu Gly Val His
20 25 30
Leu Ser Thr Ala Tyr Leu Gly Leu Val Leu Leu Gly Glu Gln His
35 40 45
Leu Thr Ala Ala Ala Thr Phe Ile Tyr Phe Tyr Leu Thr Thr Thr
50 55 60
Leu Thr Val Gly Tyr Gly Asp Leu Ala Pro Gln Thr Ser Ala Gly
65 70 75
Arg Ile Phe Val Ala Ala Trp Val Met Leu Gly Gly Ile Ala Leu
80 85 90
Leu Thr Ala Ala Ile Gly Lys Thr Thr Ser Ser Val Ile Asp Ala
95 100 105
Trp Arg Lys Gly Met Lys Gly Lys Gly Asp Phe Thr Gly Lys Val

	110	115	120
Gly His Thr Val	Leu Ile Gly Trp Glu	Gly Ala Ser Ser Glu	Arg
125	130	135	
Val Ile Glu Leu	Leu Leu Gln Asp Glu	Thr Ser Asn Asp Asn	Leu
140	145	150	
Ile Val Ile Cys	Asp Cys Ser Leu Glu	Glu Asn Pro Met Pro	Gly
155	160	165	
Lys Ala Ala Phe	Ile Arg Gly Glu Ser	Leu Ser Ser Thr Ala	Leu
170	175	180	
Leu Leu Arg Ala	Gly Val Pro Gly Ala	Glu Arg Val Leu Val	Arg
185	190	195	
Thr Pro Ser Asp	Asp Leu Thr Leu Ala	Thr Val Leu Ala Val	Asn
200	205	210	
Gln Leu Ser Pro	Val Gly His Val Val	Ala His Phe Asn Glu	Ser
215	220	225	
Glu Ile Ala Ala	Leu Ala Ser Ser Tyr	Ala Pro Arg Leu Glu	Cys
230	235	240	
Thr Ser Ser Met	Ala Ile Glu Met Leu	Val Arg Ala Ser Gln	Asp
245	250	255	
Pro Gly Ser Ser	Val Val Ile Asn Glu	Leu Leu Cys Val Gly	Gln
260	265	270	
Gly Ala Thr Gln	Tyr Leu Met Lys Leu	Pro Glu Ala Phe Glu	Ala
275	280	285	
Thr Phe Gly Glu	Leu Tyr Thr Gln Met	Lys Glu Arg His Asn	Ala
290	295	300	
Thr Leu Ile Gly	Tyr Arg Ala Lys Gly	Val Gln Gln Pro Ser	Ile
305	310	315	
Asn Pro Pro Ser	Ala Thr Glu Val Lys	Gly Gly Glu Leu Phe	Tyr
320	325	330	
Ile Ala Ser Thr	Arg Leu Lys Glu Ile	Ser His Gly Met Ala	
335	340		

<210> 30
<211> 2701
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 6991750CD1

	<400> 30		
Met His Leu Leu Ile Ile	Tyr Ile Gln Phe Gln Ile Ala Glu Glu		
1	5	10	15
Gly Ser Thr Ile Ser	Cys Val Val Glu Arg Thr Arg Gly Ala Leu		
20	25	30	
Asp Tyr Val His Val	Phe Tyr Thr Ile Ser Gln Ile Glu Thr Asp		
35	40	45	
Gly Ile Asn Tyr Leu	Val Asp Asp Phe Ala Asn Ala Ser Gly Thr		
50	55	60	
Ile Thr Phe Leu Pro	Trp Gln Arg Ser Glu Val Leu Asn Ile Tyr		
65	70	75	
Val Leu Asp Asp Asp	Ile Pro Glu Leu Asn Glu Tyr Phe Arg Val		
80	85	90	
Thr Leu Val Ser Ala	Ile Pro Gly Asp Gly Lys Leu Gly Ser Thr		
95	100	105	
Pro Thr Ser Gly Ala	Ser Ile Asp Pro Glu Lys Glu Thr Thr Asp		
110	115	120	
Ile Thr Ile Lys Ala	Ser Asp His Pro Tyr Gly Leu Leu Gln Phe		
125	130	135	
Ser Thr Gly Leu Pro	Pro Pro Gln Pro Lys Asp Ala Met Thr Leu Pro		
140	145	150	
Ala Ser Ser Val Pro	His Ile Thr Val Glu Glu Asp Gly Glu		

Ile	Arg	Leu	Leu	Val	Ile	Arg	Ala	Gln	Gly	Leu	Leu	Gly	Arg	Val
155					160								165	
					170								180	
Thr	Ala	Glu	Phe	Arg	Thr	Val	Ser	Leu	Thr	Ala	Phe	Ser	Pro	Glu
					185								195	
Asp	Tyr	Gln	Asn	Val	Ala	Gly	Thr	Leu	Glu	Phe	Gln	Pro	Gly	Glu
					200								210	
Arg	Tyr	Lys	Tyr	Ile	Phe	Ile	Asn	Ile	Thr	Asp	Asn	Ser	Ile	Pro
					215								225	
Glu	Leu	Glu	Lys	Ser	Phe	Lys	Val	Glu	Leu	Leu	Asn	Leu	Glu	Gly
					230								240	
Gly	Ala	Ser	Leu	Gly	Val	Ala	Ser	Gln	Ile	Leu	Val	Thr	Ile	Ala
					245								255	
Ala	Ser	Asp	His	Ala	His	Gly	Val	Phe	Glu	Phe	Ser	Pro	Glu	Ser
					260								270	
Leu	Phe	Val	Ser	Gly	Thr	Glu	Pro	Glu	Asp	Gly	Tyr	Ser	Thr	Val
					275								285	
Thr	Leu	Asn	Val	Ile	Arg	His	His	Gly	Thr	Leu	Ser	Pro	Val	Thr
					290								300	
Leu	His	Trp	Asn	Ile	Asp	Ser	Asp	Pro	Asp	Gly	Asp	Leu	Ala	Phe
					305								315	
Thr	Ser	Gly	Asn	Ile	Thr	Phe	Glu	Ile	Gly	Gln	Thr	Ser	Ala	Asn
					320								330	
Ile	Thr	Val	Glu	Ile	Leu	Pro	Asp	Glu	Asp	Pro	Glu	Leu	Asp	Lys
					335								345	
Ala	Phe	Ser	Val	Ser	Val	Leu	Ser	Ser	Gly	Ser	Leu	Gly		
					350								360	
Ala	His	Ile	Asn	Ala	Thr	Leu	Thr	Val	Leu	Ala	Ser	Asp	Asp	Pro
					365								375	
Tyr	Gly	Ile	Phe	Ile	Phe	Ser	Glu	Lys	Asn	Arg	Pro	Val	Lys	Val
					380								390	
Glu	Glu	Ala	Thr	Gln	Asn	Ile	Thr	Leu	Ser	Ile	Ile	Arg	Leu	Lys
					395								405	
Gly	Leu	Met	Gly	Lys	Val	Leu	Val	Ser	Tyr	Ala	Thr	Leu	Asp	Asp
					410								420	
Met	Glu	Lys	Pro	Pro	Tyr	Phe	Pro	Pro	Asn	Leu	Ala	Arg	Ala	Thr
					425								435	
Gln	Gly	Arg	Asp	Tyr	Ile	Pro	Ala	Ser	Gly	Phe	Ala	Leu	Phe	Gly
					440								450	
Ala	Asn	Gln	Ser	Glu	Ala	Thr	Ile	Ala	Ile	Ser	Ile	Leu	Asp	Asp
					455								465	
Asp	Glu	Pro	Glu	Arg	Ser	Glu	Ser	Val	Phe	Ile	Glu	Leu	Leu	Asn
					470								480	
Ser	Thr	Leu	Val	Ala	Lys	Val	Gln	Ser	Arg	Ser	Ile	Pro	Asn	Ser
					485								495	
Pro	Arg	Leu	Gly	Pro	Lys	Val	Glu	Thr	Ile	Ala	Gln	Leu	Ile	Ile
					500								510	
Ile	Ala	Asn	Asp	Asp	Ala	Phe	Gly	Thr	Leu	Gln	Leu	Ser	Ala	Pro
					515								525	
Ile	Val	Arg	Val	Ala	Glu	Asn	His	Val	Gly	Pro	Ile	Ile	Asn	Val
					530								540	
Thr	Arg	Thr	Gly	Gly	Ala	Phe	Ala	Asp	Val	Ser	Val	Lys	Phe	Lys
					545								555	
Ala	Val	Pro	Ile	Thr	Ala	Ile	Ala	Gly	Glu	Asp	Tyr	Ser	Ile	Ala
					560								570	
Ser	Ser	Asp	Val	Val	Leu	Leu	Glu	Gly	Glu	Thr	Ser	Lys	Ala	Val
					575								585	
Pro	Ile	Tyr	Val	Ile	Asn	Asp	Ile	Tyr	Pro	Glu	Leu	Glu	Ser	
					590								600	
Phe	Leu	Val	Gln	Leu	Met	Asn	Glu	Thr	Thr	Gly	Gly	Ala	Arg	Leu
					605								615	
Gly	Ala	Leu	Thr	Glu	Ala	Val	Ile	Ile	Ile	Glu	Ala	Ser	Asp	Asp
					620								630	

Pro Tyr Gly Leu Phe Gly Phe Gln Ile Thr Lys Leu Ile Val Glu
 635 640 645
 Glu Pro Glu Phe Asn Ser Val Lys Val Asn Leu Pro Ile Ile Arg
 650 655 660
 Asn Ser Gly Thr Leu Gly Asn Val Thr Val Gln Trp Val Ala Thr
 665 670 675
 Ile Asn Gly Gln Leu Ala Thr Gly Asp Leu Arg Val Val Ser Gly
 680 685 690
 Asn Val Thr Phe Ala Pro Gly Glu Thr Ile Gln Thr Leu Leu Leu
 695 700 705
 Glu Val Leu Ala Asp Asp Val Pro Glu Ile Glu Glu Val Ile Gln
 710 715 720
 Val Gln Leu Thr Asp Ala Ser Gly Gly Thr Ile Gly Leu Asp
 725 730 735
 Arg Ile Ala Asn Ile Ile Ile Pro Ala Asn Asp Asp Pro Tyr Gly
 740 745 750
 Thr Val Ala Phe Ala Gln Met Val Tyr Arg Val Gln Glu Pro Leu
 755 760 765
 Glu Arg Ser Ser Cys Ala Asn Ile Thr Val Arg Arg Ser Gly Gly
 770 775 780
 His Phe Gly Arg Leu Leu Leu Phe Tyr Ser Thr Ser Asp Ile Asp
 785 790 795
 Val Val Ala Leu Ala Met Glu Glu Gly Gln Asp Leu Leu Ser Tyr
 800 805 810
 Tyr Glu Ser Pro Ile Gln Gly Val Pro Asp Pro Leu Trp Arg Thr
 815 820 825
 Trp Met Asn Val Ser Ala Val Gly Glu Pro Leu Tyr Thr Cys Ala
 830 835 840
 Thr Leu Cys Leu Lys Glu Gln Ala Cys Ser Ala Phe Ser Phe Phe
 845 850 855
 Ser Ala Ser Glu Gly Pro Gln Cys Phe Trp Met Thr Ser Trp Ile
 860 865 870
 Ser Pro Ala Val Asn Asn Ser Asp Phe Trp Thr Tyr Arg Lys Asn
 875 880 885
 Met Thr Arg Val Ala Ser Leu Phe Ser Gly Gln Ala Val Ala Gly
 890 895 900
 Ser Asp Tyr Glu Pro Val Thr Arg Gln Trp Ala Ile Met Gln Glu
 905 910 915
 Gly Asp Glu Phe Ala Asn Leu Thr Val Ser Ile Leu Pro Asp Asp
 920 925 930
 Phe Pro Glu Met Asp Glu Ser Phe Leu Ile Ser Leu Leu Glu Val
 935 940 945
 His Leu Met Asn Ile Ser Ala Ser Leu Lys Asn Gln Pro Thr Ile
 950 955 960
 Gly Gln Pro Asn Ile Ser Thr Val Val Ile Ala Leu Asn Gly Asp
 965 970 975
 Ala Phe Gly Val Phe Val Ile Tyr Asn Ile Ser Pro Asn Thr Ser
 980 985 990
 Glu Asp Gly Leu Phe Val Glu Val Gln Glu Gln Pro Gln Thr Leu
 995 1000 1005
 Val Glu Leu Met Ile His Arg Thr Gly Gly Ser Leu Gly Gln Val
 1010 1015 1020
 Ala Val Glu Trp Arg Val Val Gly Gly Thr Ala Thr Glu Gly Leu
 1025 1030 1035
 Asp Phe Ile Gly Ala Gly Glu Ile Leu Thr Phe Ala Glu Gly Glu
 1040 1045 1050
 Thr Lys Lys Thr Val Ile Leu Thr Ile Leu Asp Asp Ser Glu Pro
 1055 1060 1065
 Glu Asp Asp Glu Ser Ile Ile Val Ser Leu Val Tyr Thr Glu Gly
 1070 1075 1080
 Gly Ser Arg Ile Leu Pro Ser Ser Asp Thr Val Arg Val Asn Ile
 1085 1090 1095
 Leu Ala Asn Asp Asn Val Ala Gly Ile Val Ser Phe Gln Thr Ala

	1100	1105	1110
Ser Arg Ser Val Ile Gly His Glu Gly Glu Ile Leu Gln Phe His	1115	1120	1125
Val Ile Arg Thr Phe Pro Gly Arg Gly Asn Val Thr Val Asn Trp	1130	1135	1140
Lys Ile Ile Gly Gln Asn Gln Glu Leu Asn Phe Ala Asn Phe Ser	1145	1150	1155
Gly Gln Leu Phe Phe Pro Glu Gly Ser Leu Asn Thr Thr Leu Phe	1160	1165	1170
Val His Leu Leu Asp Asp Asn Ile Pro Glu Glu Lys Glu Val Tyr	1175	1180	1185
Gln Val Ile Leu Tyr Asp Val Arg Thr Gln Gly Val Pro Pro Ala	1190	1195	1200
Gly Ile Ala Leu Leu Asp Ala Gln Gly Tyr Ala Ala Val Leu Thr	1205	1210	1215
Val Glu Ala Ser Asp Glu Pro His Gly Val Leu Asn Phe Ala Leu	1220	1225	1230
Ser Ser Arg Phe Val Leu Leu Gln Glu Ala Asn Ile Thr Ile Gln	1235	1240	1245
Leu Phe Ile Asn Arg Glu Phe Gly Ser Leu Gly Ala Ile Asn Val	1250	1255	1260
Thr Tyr Thr Thr Val Pro Gly Met Leu Ser Leu Lys Asn Gln Thr	1265	1270	1275
Val Gly Asn Leu Ala Glu Pro Glu Val Asp Phe Val Pro Ile Ile	1280	1285	1290
Gly Phe Leu Ile Leu Glu Glu Gly Glu Thr Ala Ala Ala Ile Asn	1295	1300	1305
Ile Thr Ile Leu Glu Asp Asp Val Pro Glu Leu Glu Glu Tyr Phe	1310	1315	1320
Leu Val Asn Leu Thr Tyr Val Gly Leu Thr Met Ala Ala Ser Thr	1325	1330	1335
Ser Phe Pro Pro Arg Leu Asp Ser Glu Gly Leu Thr Ala Gln Val	1340	1345	1350
Ile Ile Asp Ala Asn Asp Gly Ala Arg Gly Val Ile Glu Trp Gln	1355	1360	1365
Gln Ser Arg Phe Glu Val Asn Glu Thr His Gly Ser Leu Thr Leu	1370	1375	1380
Val Ala Gln Arg Ser Arg Glu Pro Leu Gly His Val Ser Leu Phe	1385	1390	1395
Val Tyr Ala Gln Asn Leu Glu Ala Gln Val Gly Leu Asp Tyr Ile	1400	1405	1410
Phe Thr Pro Met Ile Leu His Phe Ala Asp Gly Glu Arg Tyr Lys	1415	1420	1425
Asn Val Asn Ile Met Ile Leu Asp Asp Asp Ile Pro Glu Gly Asp	1430	1435	1440
Glu Lys Phe Gln Leu Ile Leu Thr Asn Pro Ser Pro Gly Leu Glu	1445	1450	1455
Leu Gly Lys Asn Thr Ile Ala Leu Ile Ile Val Leu Ala Asn Asp	1460	1465	1470
Asp Gly Pro Gly Val Leu Ser Phe Asn Asn Ser Glu His Phe Phe	1475	1480	1485
Leu Arg Glu Pro Thr Ala Leu Tyr Val Gln Glu Ser Val Ala Val	1490	1495	1500
Leu Tyr Ile Val Arg Glu Pro Ala Gln Gly Leu Phe Gly Thr Val	1505	1510	1515
Thr Val Gln Phe Ile Val Thr Glu Val Asn Ser Ser Asn Glu Ser	1520	1525	1530
Lys Asp Leu Thr Pro Ser Lys Gly Tyr Ile Val Leu Glu Glu Gly	1535	1540	1545
Val Arg Phe Lys Ala Leu Gln Ile Ser Ala Ile Leu Asp Thr Glu	1550	1555	1560
Pro Glu Met Asp Glu Tyr Phe Val Cys Thr Leu Phe Asn Pro Thr	1565	1570	1575

Gly Gly Ala Arg Leu Gly Val His Val Gln Thr Leu Ile Thr Val
 1580 1585 1590
 Leu Gln Asn Gln Ala Pro Leu Gly Leu Phe Ser Ile Ser Ala Val
 1595 1600 1605
 Glu Asn Arg Ala Thr Ser Ile Asp Ile Glu Glu Ala Asn Arg Thr
 1610 1615 1620
 Val Tyr Leu Asn Val Ser Arg Thr Asn Gly Ile Asp Leu Ala Asp
 1625 1630 1635
 Leu Asn Ile Glu Asn Pro Lys Thr Cys Glu Ala Phe Asn Ile Gly
 1640 1645 1650
 Phe Ser Pro Tyr Phe Val Ile Thr His Glu Glu Arg Asn Glu Glu
 1655 1660 1665
 Lys Pro Ser Leu Asn Ser Val Phe Thr Phe Thr Ser Gly Phe Lys
 1670 1675 1680
 Leu Phe Leu Val Gln Thr Ile Ile Ile Leu Glu Ser Ser Gln Val
 1685 1690 1695
 Arg Tyr Phe Thr Ser Asp Ser Gln Asp Tyr Leu Ile Ile Ala Ser
 1700 1705 1710
 Gln Arg Asp Asp Ser Glu Leu Thr Gln Val Phe Arg Trp Asn Gly
 1715 1720 1725
 Gly Ser Phe Val Leu His Gln Lys Leu Pro Val Arg Gly Val Leu
 1730 1735 1740
 Thr Val Ala Leu Phe Asn Lys Gly Gly Ser Val Phe Leu Ala Ile
 1745 1750 1755
 Ser Gln Ala Asn Ala Arg Leu Asn Ser Leu Leu Phe Arg Trp Ser
 1760 1765 1770
 Gly Ser Gly Phe Ile Asn Phe Gln Glu Val Pro Val Ser Gly Thr
 1775 1780 1785
 Thr Glu Val Glu Ala Leu Ser Ser Ala Asn Asp Ile Tyr Leu Ile
 1790 1795 1800
 Phe Ala Lys Asn Val Phe Leu Gly Asp Gln Asn Ser Ile Asp Ile
 1805 1810 1815
 Phe Ile Trp Glu Met Gly Gln Ser Ser Phe Arg Tyr Phe Gln Ser
 1820 1825 1830
 Val Asp Phe Ala Ala Val Asn Arg Ile His Ser Phe Thr Pro Ala
 1835 1840 1845
 Ser Gly Ile Ala His Ile Leu Leu Ile Gly Gln Asp Met Ser Ala
 1850 1855 1860
 Leu Tyr Cys Trp Asn Ser Glu Arg Asn Gln Phe Ser Phe Val Leu
 1865 1870 1875
 Glu Val Pro Ser Ala Tyr Asp Val Ala Ser Val Thr Val Lys Ser
 1880 1885 1890
 Leu Asn Ser Ser Lys Asn Leu Ile Ala Leu Val Gly Ala His Ser
 1895 1900 1905
 His Ile Tyr Glu Leu Ala Tyr Ile Ser Ser His Ser Asp Phe Ile
 1910 1915 1920
 Pro Ser Ser Gly Glu Leu Ile Phe Glu Pro Gly Glu Arg Glu Ala
 1925 1930 1935
 Thr Ile Ala Val Asn Ile Leu Asp Asp Thr Val Pro Glu Lys Glu
 1940 1945 1950
 Glu Ser Phe Lys Val Gln Leu Lys Asn Pro Lys Gly Gly Ala Glu
 1955 1960 1965
 Ile Gly Ile Asn Asp Ser Val Thr Ile Thr Ile Leu Ser Asn Asp
 1970 1975 1980
 Asp Ala Tyr Gly Ile Val Ala Phe Ala Gln Asn Ser Leu Tyr Lys
 1985 1990 1995
 Gln Val Glu Glu Met Glu Gln Asp Ser Leu Val Thr Leu Asn Val
 2000 2005 2010
 Glu Arg Leu Lys Gly Thr Tyr Gly Arg Ile Thr Ile Ala Trp Glu
 2015 2020 2025
 Ala Asp Gly Ser Ile Ser Asp Ile Phe Pro Thr Ser Gly Val Val
 2030 2035 2040
 Glu Lys Arg Met Ser Ala Lys Ile Leu Phe Thr Glu Gly Gln Val

2045	2050	2055
Leu Ser Thr Ile Thr	Leu Thr Ile Leu Ala Asp Asn Ile Pro Glu	
2060	2065	2070
Leu Ser Glu Val Val	Ile Val Thr Leu Thr Arg Ile Thr Thr Glu	
2075	2080	2085
Gly Val Glu Asp Ser Tyr Lys Gly Ala Thr Ile Asp Gln Asp Arg		
2090	2095	2100
Ser Lys Ser Val Ile Thr Thr Leu Pro Asn Asp Ser Pro Phe Gly		
2105	2110	2115
Leu Val Gly Trp Arg Ala Ala Ser Val Phe Ile Arg Val Ala Glu		
2120	2125	2130
Pro Lys Glu Asn Thr Thr Thr Leu Gln Leu Gln Ile Ala Arg Asp		
2135	2140	2145
Lys Gly Leu Leu Gly Asp Ile Ala Ile His Leu Arg Ala Gln Pro		
2150	2155	2160
Asn Phe Leu Leu His Val Asp Asn Gln Ala Thr Glu Asn Glu Asp		
2165	2170	2175
Tyr Val Leu Gln Glu Thr Ile Ile Ile Met Lys Glu Asn Ile Lys		
2180	2185	2190
Glu Ala His Ala Glu Val Ser Ile Leu Pro Asp Asp Leu Pro Glu		
2195	2200	2205
Leu Glu Glu Gly Phe Ile Val Thr Ile Thr Glu Val Asn Leu Val		
2210	2215	2220
Asn Ser Asp Phe Ser Thr Gly Gln Pro Ser Val Arg Arg Pro Gly		
2225	2230	2235
Met Glu Ile Ala Glu Ile Met Ile Glu Glu Asn Asp Asp Pro Arg		
2240	2245	2250
Gly Ile Phe Met Phe His Val Thr Arg Gly Ala Gly Glu Val Ile		
2255	2260	2265
Thr Ala Tyr Glu Val Pro Pro Pro Leu Asn Val Leu Gln Val Pro		
2270	2275	2280
Val Val Arg Leu Ala Gly Ser Phe Gly Ala Val Asn Val Tyr Trp		
2285	2290	2295
Lys Ala Ser Pro Asp Ser Ala Gly Leu Glu Asp Phe Lys Pro Ser		
2300	2305	2310
His Gly Ile Leu Glu Phe Ala Asp Lys Gln Val Thr Ala Met Ile		
2315	2320	2325
Glu Ile Thr Ile Ile Asp Asp Ala Glu Phe Glu Leu Thr Glu Thr		
2330	2335	2340
Phe Asn Ile Ser Leu Ile Ser Val Ala Gly Gly Gly Arg Leu Gly		
2345	2350	2355
Asp Asp Val Val Val Thr Val Val Ile Pro Gln Asn Asp Ser Pro		
2360	2365	2370
Phe Gly Val Phe Gly Phe Glu Glu Lys Thr Val Met Ile Asp Glu		
2375	2380	2385
Ser Leu Ser Ser Asp Asp Pro Asp Ser Tyr Val Thr Leu Thr Val		
2390	2395	2400
Val Arg Ser Pro Gly Gly Lys Gly Thr Val Arg Leu Glu Trp Thr		
2405	2410	2415
Ile Asp Glu Lys Ala Lys His Asn Leu Ser Pro Leu Asn Gly Thr		
2420	2425	2430
Leu His Phe Asp Glu Thr Glu Ser Gln Lys Thr Ile Val Leu His		
2435	2440	2445
Thr Leu Gln Asp Thr Val Leu Glu Glu Asp Arg Arg Phe Thr Ile		
2450	2455	2460
Gln Leu Ile Ser Ile Asp Glu Val Glu Ile Ser Pro Val Lys Gly		
2465	2470	2475
Ser Ala Ser Ile Ile Ile Arg Gly Asp Lys Arg Ala Ser Gly Glu		
2480	2485	2490
Val Gly Ile Ala Pro Ser Ser Arg His Ile Leu Ile Gly Glu Pro		
2495	2500	2505
Ser Ala Lys Tyr Asn Gly Thr Ala Ile Ile Ser Leu Val Arg Gly		
2510	2515	2520

Pro	Gly	Ile	Leu	Gly	Glu	Val	Thr	Val	Phe	Trp	Arg	Ile	Phe	Pro
2525														2535
Pro	Ser	Val	Gly	Glu	Phe	Ala	Glu	Thr	Ser	Gly	Lys	Leu	Thr	Met
														2550
2540														
Arg	Asp	Glu	Gln	Ser	Ala	Val	Ile	Val	Val	Ile	Gln	Ala	Leu	Asn
														2565
2555														
Asp	Asp	Ile	Pro	Glu	Glu	Lys	Ser	Phe	Tyr	Glu	Phe	Gln	Leu	Thr
														2580
2570														
Ala	Val	Ser	Glu	Gly	Gly	Val	Leu	Ser	Glu	Ser	Ser	Ser	Thr	Ala
														2595
2585														
Asn	Ile	Thr	Val	Val	Ala	Ser	Asp	Ser	Pro	Tyr	Gly	Arg	Phe	Ala
														2610
2600														
Phe	Ser	His	Glu	Gln	Leu	Arg	Val	Ser	Glu	Ala	Gln	Arg	Val	Asn
														2625
2615														
Ile	Thr	Ile	Ile	Arg	Ser	Ser	Gly	Asp	Phe	Gly	His	Val	Arg	Leu
														2640
2630														
Trp	Tyr	Lys	Thr	Met	Ser	Gly	Thr	Ala	Glu	Ala	Gly	Leu	Asp	Phe
														2655
2645														
Val	Pro	Ala	Ala	Gly	Glu	Leu	Leu	Phe	Glu	Ala	Gly	Glu	Met	Arg
														2670
2660														
Lys	Ser	Leu	His	Val	Glu	Ile	Leu	Asp	Asp	Asp	Tyr	Pro	Glu	Gly
														2685
2675														
Pro	Glu	Glu	Phe	Ser	Leu	Thr	Ile	Thr	Lys	Val	Glu	Leu	Gln	Gly
														2700
2690														

Arg

<210> 31
<211> 610
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 71726948CD1

<400> 31														
Met	Asp	Thr	Pro	Arg	Gly	Ile	Gly	Thr	Phe	Val	Val	Trp	Asp	Tyr
1						5				10				15
Val	Val	Phe	Ala	Gly	Met	Leu	Val	Ile	Ser	Ala	Ala	Ile	Gly	Ile
						20				25				30
Tyr	Tyr	Ala	Phe	Ala	Gly	Gly	Gly	Gln	Gln	Thr	Ser	Lys	Asp	Phe
						35				40				45
Leu	Met	Gly	Gly	Arg	Arg	Met	Thr	Ala	Val	Pro	Val	Ala	Leu	Ser
						50				55				60
Leu	Thr	Ala	Ser	Phe	Met	Ser	Ala	Val	Thr	Val	Leu	Gly	Thr	Pro
						65				70				75
Ser	Glu	Val	Tyr	Arg	Phe	Gly	Ala	Ile	Phe	Ser	Ile	Phe	Ala	Phe
						80				85				90
Thr	Tyr	Phe	Phe	Val	Val	Val	Ile	Ser	Ala	Glu	Val	Phe	Leu	Pro
						95				100				105
Val	Phe	Tyr	Lys	Leu	Gly	Ile	Thr	Ser	Thr	Tyr	Glu	Tyr	Leu	Glu
						110				115				120
Leu	Arg	Phe	Asn	Lys	Cys	Val	Arg	Leu	Cys	Gly	Thr	Val	Leu	Phe
						125				130				135
Ile	Val	Gln	Thr	Ile	Leu	Tyr	Thr	Gly	Ile	Val	Ile	Tyr	Ala	Pro
						140				145				150
Ala	Leu	Ala	Leu	Asn	Gln	Val	Thr	Gly	Phe	Asp	Leu	Trp	Gly	Ala
						155				160				165
Val	Val	Ala	Thr	Gly	Val	Val	Cys	Thr	Phe	Tyr	Cys	Thr	Leu	Gly
						170				175				180
Gly	Leu	Lys	Ala	Val	Ile	Trp	Thr	Asp	Val	Phe	Gln	Val	Gly	Ile
						185				190				195

Met Val Ala Gly Phe Ala Ser Val Ile Ile Gln Ala Val Val Met		
200	205	210
Gln Gly Gly Ile Ser Thr Ile Leu Asn Asp Ala Tyr Asp Gly Gly		
215	220	225
Arg Leu Asn Phe Trp Asn Phe Asn Pro Asn Pro Leu Gln Arg His		
230	235	240
Thr Phe Trp Thr Ile Ile Ile Gly Gly Thr Phe Thr Trp Thr Ser		
245	250	255
Ile Tyr Gly Val Asn Gln Ser Gln Val Gln Arg Tyr Ile Ser Cys		
260	265	270
Lys Ser Arg Phe Gln Ala Lys Leu Ser Leu Tyr Ile Asn Leu Val		
275	280	285
Gly Leu Trp Ala Ile Leu Thr Cys Ser Val Phe Cys Gly Leu Ala		
290	295	300
Leu Tyr Ser Arg Tyr His Asp Cys Asp Pro Trp Thr Ala Lys Lys		
305	310	315
Val Ser Ala Pro Asp Gln Leu Met Pro Tyr Leu Val Leu Asp Ile		
320	325	330
Leu Gln Asp Tyr Pro Gly Leu Pro Gly Leu Phe Val Ala Cys Ala		
335	340	345
Tyr Ser Gly Thr Leu Ser Thr Val Ser Ser Ser Ile Asn Ala Leu		
350	355	360
Ala Ala Val Thr Val Glu Asp Leu Ile Lys Pro Tyr Phe Arg Ser		
365	370	375
Leu Ser Glu Arg Ser Leu Ser Trp Ile Ser Gln Gly Met Ser Val		
380	385	390
Val Tyr Gly Ala Leu Cys Ile Gly Met Ala Ala Leu Ala Ser Leu		
395	400	405
Met Gly Ala Leu Leu Gln Ala Ala Leu Ser Val Phe Gly Met Val		
410	415	420
Gly Gly Pro Leu Met Gly Leu Phe Ala Leu Gly Ile Leu Val Pro		
425	430	435
Phe Ala Asn Ser Ile Gly Ala Leu Val Gly Leu Met Ala Gly Phe		
440	445	450
Ala Ile Ser Leu Trp Val Gly Ile Gly Ala Gln Ile Tyr Pro Pro		
455	460	465
Leu Pro Glu Arg Thr Leu Pro Leu His Leu Asp Ile Gln Gly Cys		
470	475	480
Asn Ser Thr Tyr Asn Glu Thr Asn Leu Met Thr Thr Thr Glu Met		
485	490	495
Pro Phe Thr Thr Ser Val Phe Gln Ile Tyr Asn Val Gln Arg Thr		
500	505	510
Pro Leu Met Asp Asn Trp Tyr Ser Leu Ser Tyr Leu Tyr Phe Ser		
515	520	525
Thr Val Gly Thr Leu Val Thr Leu Leu Val Gly Ile Leu Val Ser		
530	535	540
Leu Ser Thr Gly Gly Arg Lys Gln Asn Leu Asp Pro Arg Tyr Ile		
545	550	555
Leu Thr Lys Glu Asp Phe Leu Ser Asn Phe Asp Ile Phe Lys Lys		
560	565	570
Lys Lys His Val Leu Ser Tyr Lys Ser His Pro Val Glu Asp Gly		
575	580	585
Gly Thr Asp Asn Pro Ala Phe Asn His Ile Glu Leu Asn Ser Asp		
590	595	600
Gln Ser Gly Lys Ser Asn Gly Thr Arg Leu		
605	610	

<210> 32
<211> 552
<212> PRT
<213> Homo sapiens

<220>

<221> misc_feature
<223> Incyte ID No: 7487393CD1

<400> 32

Met Gly Phe Asp Val Leu Leu Asp Gln Val Gly Gly Met Gly Arg
1 5 10 15
Phe Gln Ile Cys Leu Ile Ala Phe Phe Cys Ile Thr Asn Ile Leu
20 25 30
Leu Phe Pro Asn Ile Val Leu Glu Asn Phe Thr Ala Phe Thr Pro
35 40 45
Ser His Arg Cys Trp Val Pro Leu Leu Asp Asn Asp Thr Val Ser
50 55 60
Asp Asn Asp Thr Gly Thr Leu Ser Lys Asp Asp Leu Leu Arg Ile
65 70 75
Ser Ile Pro Leu Asp Ser Asn Leu Arg Pro Gln Lys Cys Gln Arg
80 85 90
Phe Ile His Pro Gln Trp Gln Leu Leu His Leu Asn Gly Thr Phe
95 100 105
Pro Asn Thr Asn Glu Pro Asp Thr Glu Pro Cys Val Asp Gly Trp
110 115 120
Val Tyr Asp Arg Ser Ser Phe Leu Ser Thr Ile Val Thr Glu Trp
125 130 135
Asp Leu Val Cys Glu Ser Gln Ser Leu Lys Ser Met Val Gln Ser
140 145 150
Leu Phe Met Ala Gly Ser Leu Leu Gly Gly Leu Ile Tyr Gly His
155 160 165
Leu Ser Asp Arg Val Gly Arg Lys Ile Ile Cys Lys Leu Cys Phe
170 175 180
Leu Gln Leu Ala Ile Ser Asn Thr Cys Ala Ala Phe Ala Pro Thr
185 190 195
Phe Leu Val Tyr Cys Ile Leu Arg Phe Leu Ala Gly Phe Ser Thr
200 205 210
Met Thr Ile Leu Gly Asn Thr Phe Ile Leu Ser Leu Glu Trp Thr
215 220 225
Leu Pro Arg Ser Arg Ser Met Thr Ile Met Val Leu Leu Cys Ser
230 235 240
Tyr Ser Val Gly Gln Met Leu Leu Gly Gly Leu Ala Phe Ala Ile
245 250 255
Gln Asp Trp His Ile Leu Gln Leu Thr Val Ser Thr Pro Ile Ile
260 265 270
Val Leu Phe Leu Ser Ser Trp Lys Met Val Glu Ser Ala Arg Trp
275 280 285
Leu Ile Ile Asn Asn Gln Leu Asp Glu Gly Leu Lys Glu Leu Arg
290 295 300
Arg Val Ala His Ile Asn Gly Lys Lys Asn Thr Glu Glu Thr Leu
305 310 315
Thr Thr Glu Leu Val Arg Ser Thr Met Lys Lys Glu Leu Asp Ala
320 325 330
Val Arg Ile Lys Thr Ser Ile Phe Ser Leu Phe Arg Ala Pro Lys
335 340 345
Leu Arg Met Arg Val Phe Gly Leu Cys Phe Val Arg Phe Ala Ile
350 355 360
Thr Val Pro Phe Tyr Gly Leu Ile Leu Asn Leu Gln His Leu Gly
365 370 375
Ser Asn Val Ser Leu Phe Gln Ile Leu Cys Gly Ala Val Thr Phe
380 385 390
Thr Ala Arg Cys Val Ser Leu Leu Thr Leu Asn His Met Gly Arg
395 400 405
Arg Ile Ser Gln Ile Leu Phe Thr Phe Pro Val Gly Leu Phe Ile
410 415 420
Leu Val Asn Thr Phe Leu Pro Gln Glu Met Gln Ile Leu Arg Val
425 430 435
Val Leu Ala Thr Leu Gly Ile Gly Ser Val Ser Ala Ala Ser Asn

440		445		450
Ser Ala Ser Val His His Asn Glu Leu Val Pro Thr Ile Leu Arg				
455		460		465
Ser Thr Val Ala Gly Ile Asn Ala Val Ser Gly Arg Thr Gly Ala				
470		475		480
Ala Leu Ala Pro Leu Leu Met Thr Leu Met Ala Tyr Ser Pro His				
485		490		495
Leu Pro Trp Ile Ser Tyr Gly Val Phe Pro Ile Leu Ala Val Pro				
500		505		510
Val Ile Leu Leu Leu Pro Glu Thr Arg Asp Leu Pro Leu Pro Asn				
515		520		525
Thr Ile Gln Asp Val Glu Asn Asp Arg Lys Asp Ser Arg Asn Ile				
530		535		540
Lys Gln Glu Asp Thr Cys Met Lys Val Thr Gln Phe				
545		550		

<210> 33
<211> 2365
<212> DNA
<213> Homo

<220>
<221> misc_feature
<223> Incyte ID No: 7484831CB1

<400> 33

atggagcctg gtgacgcggc gcgccctggc tcgggtcggy ctaccggggc gccgccccg 60
cggtctgtc tgctggcgct gctgtgggt tggggctgc gagtcgcggc cgccgcctcg 120
gcctccctct ctggggcgcc ggcccaggac agcagcgca tggaggagct cgctactgag 180
aaggaggccg aggagagcca cggcaagac akgctgagcc tgctcacctt catcctgtc 240
ctcacgtca ccacatccac catctggctc ttcaagcacc gcccgggtcgctt cttctgcac 300
gagaccggc tggccatgtat ctatgggctc atcggtgggg tgatccttgag gtatggtaac 360
cctgtacca gtggccgtga caaatcactc agctgcactc aggaagacag ggccttcagt 420
acctttagt tgaatgtcag cggaaagtgc ttcgaataca cttctggaaagg agaaatcagt 480
cctggcaaga tcaacagcgt agagcagaat gatatgtcact ggaaggtaac attcgatcca 540
gaagtatattt tcaacattct tctgcctcca attattttc atactggata cagcttaaag 600
aagagacact ttttcagaaaa ttttggatct atactggct atgccttctt ggggactgct 660
gtttcatgt tcattattgg aaatctcatg tatgggttgg tgaagctcat gaagattatg 720
ggacagctct cagataaaatt ttactacaca gattgtctct tttttggagc aatcatctct 780
gccactgacc cagtgactgt gctggcgata tttaaatgaat tgcattgcaga cgtggatctt 840
tacgcacttc tttttggaga gagcgtccta aatgtatgtc ttgcattgt actgtccctcg 900
tctatttttgc cctaccagcc agcgggactg aacactcactc ctttgcatttgc tgctgcctt 960
ttaagtctag ttggcatttt tctaggtata ttttagtggct cttttaccat gggagctgtg 1020
actgggtttg tgactgtctc agtgaactaag tttaccaaac tgcactgtctt ccccccgtctg 1080
gagacggcgc tggtttccct catgtccctgg agcactgttcc tcttggcaga agcctgcgg 1140
tttacagggt tgtagctgt cttttctgt ggaatcacac aactgtcatttgc cacttacac 1200
aatctgtcgg tggaatcaag aatgtcaacc aagcactctt ttgagggtt acatttctg 1260
gcagagaact tcatcttcctt ctacatggcc ctggactgtt ttacccatca gaagcactgtt 1320
ttcagccccca ttttcatcat cggagcttt gttgcattct tccctggcag agccgcgcac 1380
atctaccggc tctcccttctt cctcaacttgc ggcagaaggc ataagattgg ctggaaatttt 1440
caacacatga tgatgttttgc aggccctcagg ggagcaatgg cattttgcgtt ggcctatccgt 1500
gacacggcat cctatgtctcg ccagatgtat ttcacgacca cccttctcat tttttttttc 1560
actgtctggc tcattggagg aggcacgaca cccatgttgt catggctaa catcagagtt 1620
ggcgtcgagg agccctccga agaggaccag aatgaacacc actggcagta cttcagagtt 1680
ggtgttgacc ccgatcaaga cccaccaccc aacaacgaca gctttcaagt cttacaagg 1740
gacggcccg attctgcccgg aggaaacccgg aaaaaacagg agagcactatg gatattcagg 1800
ctgtgttaca gctttgatca caattatctg aagcccatcc tcacacacag tggccccca 1860
ctaaccacca cgccccccgc ctgggtgtggc ttactagctc gatgtctgc gatccccccag 1920
gtgtacgata accaagagcc actggagagag gaagactctg attttcatctt gaccgaaggc 1980
gacctgacat tgacccatcg ggacagcaca gtgactgcaa atggctcctc aagttccac 2040
accggccctca cgagtctggg gggcagccgg agaacaaga gcaagctcgaa ggaagtgtctg 2100
gagcgagacc tgggaatggg agaccagaag gtttcagcc ggggcaccccg cctagtggtt 2160
ccccctggaaq ataatgttgc actttttttccca aagccctgg cgcgatgggaa ctgaagattt 2220

aaaatacatc cacgaacatt tcaacatgga acgaagaatt atagtcctt ctctggctat 2280
atccataaag aagttagttt gaaatgtta aaaccaaagg caaatagtgt tataactctta 2340
tttttgcgatc atctgaggaa aggag 2365

<210> 34
<211> 3400
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2477266CB1

<400> 34
agcggcggtc cagttgtgc catggagtca gcccggctag agcagtcct acgggagctg 60
ctgtctaccgg acaccgagcg catccgtcgg gcccacggaaac agctccagat cgtttcttcgg 120
gccccccggc ctttgcggc tctctgcac ctgtctgcac cggcgccga ccccccagatc 180
cgcccgatgg cggccgtgct gacccgcaga cgactgaaca cccgcgtggcg acggctggcg 240
gcggagcaac gggagagcct caagtcctg atcctgacgg ccctgcagag agaaacagag 300
caactgtgtga gcctcagcct ggcccgatc tcagccacca ttttcgaaa ggaaggcttg 360
gaggccctggc cacagctttt gcagctgctt cagcacagta cccacagccc ccacagccca 420
gagagagaga tggggctttt gctgctaagt gtgggtggta cctccggcc cgaggccctc 480
caaccccccacc accgggagct tcttcggctt ctgaatgaga ctctttgtga ggtgggctct 540
cctgggctgc tttctactc cctgcgact ctgaccacca tggctcccta cctcagcact 600
gaagatgtgc ctctcgctc gatgttggcg cccaaatgtga tcatggccat gcaagactctg 660
atccccatag atgaggcaaa ggctgtgtag gcccctgagg ctttggatga actgttggag 720
tcagaggtgc cggtcatcac cccctacatc tctgaatgttcc tcacattctg cctggaggta 780
gctagaaaatg tggccctggg caatgcgata cgcatacgtt ttctctgctg cctcactttc 840
tttgtcaaaatg tcaagagcaa ggccttactg aagaatcgtt tcctgccacc cttgctgcac 900
acccttttcc ccattgtggc tgctgagccc ccaccaggcc agttggatcc cgaggaccag 960
gattcagaag aggaagatgtt ggagattgag ctgatggggg agactccaa gcatttcgct 1020
gtacaagtgtt tggacatgtt ggcactacac ctggcccccgg agaagctctg tccccagctg 1080
atgcccattgt tggagaggc tttggggggc gagagcccat accagcgcaa agctggactc 1140
cttgggtctgg ccgtgtgtc tgacggagct ggcgaccaca tcaggcagag actgtgtcccc 1200
ccactgtgtc agatgtgtg caaggccctg gaggaccctt cgcgaatgtt acgcaatgtt 1260
gcgtgttttgc ccctggccca gtttcgtgaa aacctacago cccatatacag cagctattca 1320
agggaggtaa tgccactgtt ccttcgttac ttgaagtctgg tgccttctgg acacacacac 1380
cacctagcca aggctgtcta tgccctggag aattttgtgg agaacatagg gcccaagggtg 1440
cagccctacc ttccggagct tatggaatgc atgctgcagc ttctgaggaa ccccaaggat 1500
ccccggggcca aggagctggc tggagcgtcc ctggagccca ttgctacggc tgcccaggcc 1560
tcgtgtgtgc cctacttccc tgccatcatg gggcacctgc gggaaattctt gttAACAGGC 1620
cgtgaggacc ttccagctgt gcagatccag gcaatggggggc agcctggaga cactgggggt gctggcacga 1680
gcagtggggg agcccatgag gcccgtggct gaggaaatgtt gccagctggg tctgggcctc 1740
tgcgaccagg tagacgacgc tgacttgcgg cgcgtcactt acagcattt tgcaaggctta 1800
tcgggtctga tgggtgaggg ccttggcgccc cacttggaaatg agatcaccac gctcatgtt 1860
ctgtcaactgc gttccaccga gggcattgtt cctcagtatg acgggagcag ctccttcctt 1920
ctgtttgacg atgagagtga tggggaaagaa gaggaggagc tcatggatga ggatgtggaa 1980
gaagaggatg actcagagat ctcaagggtac agcgtggaga atgccttctt cgatgagaag 2040
gaagacacact gtgctggcgtt gggggagatc tctgtgaaca ccagtgtggc cttcccttcca 2100
tacatggaaa gtgtcttga agaagtattt aaactgtctgg agtgcctca cctgaatgtt 2160
cggaaggccat cccatgaggc tctgggtcag ttttgcgtgtg cactgcacaa ggcctgtcaa 2220
agctgccccctt cggaaaccctt cactgtgtc ttgcaggctg ccctggcccg agtctgtccca 2280
tcctacatgc aggcaatgtt caggagccgg gaacggccagg tggatgtggc cgtgtggag 2340
gcccctgacag ggggtctggc cagctgtggg accctcacac tgaaggcccc tggggccctc 2400
gctgagctctt gttccaccgtt cttccgtgtt ctgcagagga agacagccctg tcaggatact 2460
gacgaggagg aggaagagga agatgtatgtt caggctgaat acgacccat gttgtggag 2520
cacgtggag aggccatccc tgccctggca gcccggctg gggggagactc ctttggccca 2580
ttctttggcc gtttcctgtttt attattgtt tgcaagacaa aacagggtcg cacagtggca 2640
gagaagtccctt ttgcagtggg gacccgtggca gagactattt agggcctggg tgctgcctca 2700
gccccatgggg tttttttttt gttttttttt ctgtttttttt ccctccgtggc gggggagccgaa 2760
gaggtgcgaa gcaatccat cttccggatg ggcgtgtgg cagagcatgg gggccaccct 2820
gccccaggaaac acttcccaa gctgtgtggg ctcccttttc ccctccgtggc gggggagccgaa 2880
catgtatgttgc tccgtgacaa catctgtggg gcacttgcggc gcctgttgat ggccagttccc 2940

accaggaaac cagagccccca ggtgctggct gcccctactgc atgcccgtgcc actgaaggag 3000
gacttggagg agtgggtcac cattgggcgc ctcttcagct tcctgtacca gagcagccct 3060
gaccaggtta tagatgtggc tcccgagctt ctgcgtatct gcagcctcat tctggctgac 3120
aacaagatcc caccagacac caagggcgca ctgttgctgc tcctgacgtt cctggccaaa 3180
cagcacaccc acagttca agacgtctg ggctcactgc ctgttgacaa ggctcaggag 3240
ctccaggctg tactgggcet ctcttagact gcaggctgca gccagtccag agagaataga 3300
gcctgcccag gccttaagac caccctctag cccagttcag ttctgcctta ccaaagattc 3360
tgagactcat acccatttgg agccagcccc acttgctgcc 3400

<210> 35

<211> 4458

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 3552033CB1

<400> 35

gttgttgcata gtatgatata gatcatgtgt acgtctatgt tagtgctatg tacgttgtta 60
tagtgttcttgcata ctttgttatg ctatattgtt attgtttctgt ttttgtgtgt tatatattttat 120
tatcgtttgcata cccgtttaat taccctccat gggggcccccga gttttatattt cccccccttgg 180
tgggatgcgtt cttcaatcac cgcttttata ccctgtatattt cggttcaagg gactttctcc 240
gggggctctt tcggcaccac cgcaagaacc ggttctcagct caaatcccgg aatgaaggcc 300
tttaaaaaaaa agatgtggcc aacatgtgaaa ccccccggcc agggccctata ggtttcccttgg 360
ggcttctgtat aggcccagca ttggccctca ccccccagttat ctccggcttc agaattgaga 420
aaaatgaaag tcgcctctcc cgaaaggaca tccagttctga aaagtggtcc atcagcaaac 480
acactcaact cagccctacg gatgttttg ggaccatttga gttccaaaggga ggtggccatt 540
ccaaacaaaggc catgtatgtt cgagttatctt ttgatacaaa acctgtatctc ctcttacacc 600
tgatgaccaa ggaatggcag ttggagcttc ccaagcttctt catctctgtc catggggggcc 660
tgcagaacctt tgaactccag cccaaactca agcaagtctt tggaaaggg ctcatcaaag 720
cagctatgac aactggagcg tggatattca ctggagggtt taacacagggtt gttattcgtc 780
atgttggcga tgccttgaag gatcatgtt ctaagtctcg agggaaagata tgccacatag 840
gtattgccccctt ctggggaaattt gtggaaaacc agggagacat catttggaaa gatgttgc 900
ggccataccca gaccatgtcc aatcccatga gcaagctcac tggatcaac agcatgcatt 960
cccaacttcat tctggctgac aacgggacca ctggaaaata tggagcagag gtgaaaacttc 1020
gaagacaact gggaaaaggcat atttcaactcc agaagataaa cacaagaatc ggtcaagggt 1080
ttcctgtgggtt ggcactcata gtggaaaggag gacccaatgtt gatctcgatt gttttggagt 1140
accttcgaga caccctccccc gtggcagtgg tttgtctgttga tggagatggaa cgggcatacg 1200
acatcttggcata ctttggcat aaatacttagt aagaaggccgg actgtataat gaatcttga 1260
gggaccagctt gttggtact atacagaaga ctttcacata cactcgaacc caagctcagc 1320
atctgttcatat catccctatg gatgtcatgtt agaagaaggaa attgattacg gtatttccgga 1380
tggatcagaaggacaccatgacatttggatatttgcata gacatttggatctcttgcata gacatgttca 1440
ccaatgcctc gggcccccggac caacttgcgtt tagcttttagt ctggaaacaga gtcgacatcg 1500
cttcgcagccat gatcttttacatggcaac agtggccgtt gggatctctg gagaatggca 1560
tggatggatgc cttagttctg gacagagtgg attttgcata attactcata gagaatggag 1620
taagcatgca ccgttttctc accatctcca gactagagga attgtacaat acgagacatg 1680
ggccctcaaa tacattgtac cacttggtca gggatgtcaa aaaggggaaac ctgccccccag 1740
actacagaat cagccttgcattt gacatcgccct tggatgtca gtagcttgcattt ggcggggctt 1800
atcgctgcaat ctacacgcgc aagcgcttcc ggaccctcta ccacaacccctc ttccggccca 1860
agaggcccaa agccttggaaa ctgttgggaa tggaggatgttattcccttg aggccggagaa 1920
gaaaagacaaac caagaacatc gaagaaggagg tggacatttgcata cttggatgtatcgt 1980
accacttccccttccatcatgtatcgttca tggatgtggc tggatgtatcgttgcata aagcggcaga 2040
agatggccctt gttttctgttgcacccatgat gggggccat gggcaaggcc ctggggccctt 2100
gcaagctctg caaaaggccatg gctcatgttgcaggctt cctctgagaa cgacatgtt gacgacattt 2160
cccaggagctt gaatcacaat tccagagactt ttggccagctt ggctgtggag ctccctggacc 2220
agtccttacaa gcaggacgaa cagctggccat tggatgtggc tggatgtggc tggatgtggc 2280
ggagcaacgcg cacgttgcctg cagcttgcgg tggatgtggc tggatgtggc acaccgcgac 2340
acacgtgcgc ccagatgttgc ctcaccgcata tggatgtggc tggatgtggc tggatgtggc 2400
actcaggccctt caaggttattt ctggatgttgc tggatgtggc tggatgtggc tggatgtggc 2460
tcaagaacaa agacgcacatg cccttatatgt tggatgtggc tggatgtggc tggatgtggc 2520
aggaggcaga agaaccagag aagcccacaa tggatgtggc tggatgtggc tggatgtggc 2580
tagcaatgtt gggacgaaac aacggggatgtt cttccaggaa gaaggatgtt gggatgttc 2640

agagcgagca ccggtaatc cccctcgca gaaaaatcta tgaattctac aatgcaccca 2700
 tcgtgaagt ctggttctac acactggcg atatcgata cctgatgctc ttcaactata 2760
 tcgtgttagt gaagatggaa cgctggccgc ccacccagga atggatcgta atctccctata 2820
 tttcacccct gggatagaa aagatgagag agattctgtat gtcagagcca gggaaagttgc 2880
 tacagaaaatg gaaggatatgg ctgcaggagc actggaatgt cacggacccatc atcgccatcc 2940
 ttctgttttc tgctcgaatg atccctcgatc tccaagacca gcccctcagg agtgacggga 3000
 gggcatctta ctgcgtgaac atcattact ggtatatccg tctccctagac atcttcggcg 3060
 tgaacaagta ttggggcccg tatgtaatga tgattggaaa aatgtatgata gacatgtatgt 3120
 actttgtcat cattatgctg gtggttctga tgagctttgg ggtcggccagg caagccatcc 3180
 ttttcccaa tgaggagcca tcatggaaac tggccaagaa catcttctac atgcccattt 3240
 ggtatgttta tggggaaatg tttgcccggc agatagaccc tccctgtgaa cagaatgaga 3300
 cccgagagga tggtaaaaata atccagctgc ctccctgcaaa gacaggagct tgatcggtc 3360
 cggccatcatc ggcctgtac ctcttagtgg caaacatctt gctggcaac ctccctcattt 3420
 ctgtctttaa caatgtttaa aatcgatcatc caaccaatgc tgaaagtttc 3480
 agaggatcatc gtcatcatcg atcttccatg aaaggccagt tctgccccca ccactgtatc 3540
 tcttcagcca catgaccatg atattccagc acctgtgtcg cccatggagg aaacacgaga 3600
 ggcacccggaa tggaaaggac taatggctga aactcttcat aaccgtatgt gagctcaaga 3660
 aagtacatga ctttgaagag caatgcata aagaataactt cagagaaaag gatgtatcggt 3720
 tcaactcatc taatgtatgtt aggatcggg tgacttcaga aagggtggag aacatgtctc 3780
 tgcggcttga ggaagtcaac gagagagac actccatgaa ggcttactc cagaccgtgg 3840
 acatccggct ggcgcagctg gaagacccatc tggggcgcat ggcacccggcc ctggagcgcc 3900
 tgcacaggctc ggagcggggcc gacttcaaca aatccgtc gaggacctcg tcagactgca 3960
 cggacccggc ctacattgtc cgtcagagca gcttcaacag ccagggaaaggaa aacacccatc 4020
 agcttccaaaagagttatcag cctgcagagc atcccttttta ttcatgtataa gcccggcagca 4080
 accatgttca cctaaatgtcc cacatccatc tcatgttcaac acttctgttta ttatcattt 4140
 taaagaaaaa acaaggttaac agtcatatgtt cacatgttctc ttatcttattt acttctgggt 4200
 ccacaactgt ttatcctttt ttgaagaaaaa taaggaaaca gaaatgcctt ttgtatttgc 4260
 aatcgaaatg aaagaagagt tgatgtttaaa aaaacaaaag tcaagtgttatttata 4320
 agtggggcggtt caagtctatgtt cggcaagct caggagaatg taattaaata attttatattt 4380
 tttaatttta tttgtatctt caccatgtatc ggtatgttcc atttactgttata 4440
 tgaacccatc aaaaaaaaaaaaaaa 4458

<210> 36
 <211> 2722
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 4778139CB1

<220>
 <221> unsure
 <222> 2609
 <223> a, t, c, g, or other

<400> 36
 atggagatcg ctggagagaaa gaaataccag tattatagca tgcccttttc tttgctgagg 60
 accctggctg gaggccggca tcccccaaga gtgcagaggg gggcacttct tgagattaca 120
 aacagtaaaa gagaggctac aaatgttaaga aatgaccagg aaagggcaaga aacacaaaatg 180
 agtatagtgg tttctgggggt gtctcttaac aggcaagcac actcaatgtt tgccctgtt 240
 ctctggctt cctcttaatct aaagcgatgtt cctttttcag cagaatgtt ctgcctctg 300
 tccagacccct ctgtggccaga tggctggca actgaacagg acatccagac tgagttctt 360
 gtcatctga ctggggcagac cccaggatgtc tctgactggg catcaatgtt gaaacccaaag 420
 gaaaaggcagc agccttattgc tcacttactg gatggacaag acaaggcaga gcaagtgtca 480
 cccactttga gttgcacacc tgaacccatg acaatgagct ccccttttc ccaagccaaag 540
 atcatgcaaa ctggagggtgg atatgttaaac tggcatttt cagaagggtga tggaaactgg 600
 gtgttttagca tcaagaaaaa gtggcaaaacc tgcttgcctt ccacttgtt cagtgttcc 660
 ttcggagtg aacagcacca gaagcaggcc caggacactt ccctatctga taactcaaca 720
 agatcgccccc agagtagtga atgctcagag gtggggaccat ggcttcagcc aacacatcc 780
 tttggatca atccctcccg cagatacagg cccttcgtca ggagtcatag tttagatttcc 840
 cataaggagg agaaaattgtt gaagatctgtt aagataaaaa atctttcagg ctcttcagaa 900
 ataggcagg gaggatgggtt caaagcgaaa atgcttaacca aagacaggag actgtcaaaag 960

aaaagaaga	atactcaagg	actccaggt	ccaatcataa	cagtcaatgc	ctgctctcag	1020
agtgaccagt	tgaatccaga	gccaggagaa	aacagcatct	ctgaagagga	gtacagcaag	1080
aactggtca	cagtgtccaa	atttagtcac	acagggttag	aaccttacat	acatcgaaaa	1140
atgaaaacta	aagaatttg	acaatgtct	atacaaatac	gtgattacct	aaagcagtct	1200
caagagtcg	ctcaggatct	cagcaaaaac	tctttgtgga	attccaggag	caccaaccc	1260
aattaggaact	ccctgtcctc	tctaatttca	gagatctcag	cctcccttaaa	aagccctcaa	1320
gagcctcacc	atcatttac	accttactt	ctctttgcag	caggagaaga	aataactgtc	1380
tacagggtgg	aggagagttc	ccctttaaac	cttgataaaaa	gcatgtcctc	ttggtctcag	1440
cgtggggag	cgcaatgtat	ccaggattt	ttcccggaggg	agatggatgg	ggggccctcg	1500
aaagctatga	gagtctcg	cacttggtct	gaggatgaca	tttcgaagcc	gggacaagg	1560
ttcattgtca	agtctttct	ttctgaggtt	gtgcggacat	ggcataaaaat	cttccaggag	1620
agcactgtgc	ttcatcttt	cctcagggaa	attcaacaac	aaagagctgc	tcaaaaattt	1680
atctataacct	tcaaccaagt	gaaaccacaa	accataccct	acacaccaag	gttccctggaa	1740
gttttcttaa	tctactgcca	ttcagccaaac	cagtgggtga	ccattgagaa	gtatatgaca	1800
ggggagttcc	ggaagtataa	caacaacaat	ggtgtataaa	tcacccccac	caacaccctg	1860
gaggagctga	tgttggctt	ctctactgg	acctatgagt	acactcgggg	agagctgtc	1920
gtttttagatt	tgcagggtgt	ttggaaaaat	ttgacagatc	catctgttat	aaaacctgaa	1980
gtcaaacaat	caagggaaat	gtgttttttgc	ccggcccaatt	ttggggaaaga	tgcattttaga	2040
aacttttcat	ccaaaatcat	ttggaaacttgc	tgcgtccgga	agotcaaact	cccgatttt	2100
aaaagaaaatg	actattcccc	tgaaaggata	aattccacct	ttgacttga	gataaaaaat	2160
gaatcagctg	aggagcctcc	agcaagggag	acgggttagaa	attccccaga	agatgtatg	2220
caactataaa	aaggaggag	caagaagatc	ccagtgttt	ccctgcctgc	caggaactct	2280
gtgataacat	agattgtatc	acgtgtatgtt	gattacatca	gcgtctccct	gggacacgccc	2340
ttctgagctt	cacatctctt	tctgttcaaa	ggcctcattt	gtatatgtatc	aatgggtttt	2400
cctagacact	gacactgtc	cagggtactt	tgcagctcca	tcctcaagtt	ccacacgaa	2460
atgttttgc	gagtctgtc	ggaatatttt	tcttgcgtac	ctcattgttt	tagctgttca	2520
ctggaaactt	tggagcagaa	ttctgcacat	taaaggatgg	ggttgggggg	gatacattt	2580
ttttattttc	tcaactatgt	tgcagactng	accccccact	actattgtc	accttcaccc	2640
cagattgtat	ttatgtctat	atatatgttt	cataaaaaagc	ttaccaaaacc	caaaaaaaaa	2700
aaaaaaaaaa	aaaaaaaaaa	aa				2722

<210> 37
<211> 1924
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 4787433CB1

<400> 37

cggcgccca	tgcacggccg	caccatgggg	tcccggccact	tcgaggggat	ttatgaccac	60
gtggggcact	tcggcagatt	ccagagagtc	ctctatttca	tatgtgcctt	ccagaacatc	120
tcttgtgta	ttcactactt	gccttctgt	ttcatggag	tcacccctca	tcatgtctgc	180
aggccccca	gcaatgtgag	ttaggttgtt	ttccataatc	actctaattg	gagtttggag	240
gacaccgggg	ccctgttg	ttcaggccag	aaagattatg	ttacgggtca	gttgcagaat	300
ggtgagatct	gggagctctc	aagggtgtagc	aggaataaga	gggagaacac	atcgagttt	360
ggctatgaat	acatctggcag	taagaaaagag	tttccctgt	tggatggcta	catatatgac	420
cagaacacat	ggaaaagcac	tgcgggtgacc	cagtggaaacc	tggtgtgt	ccgaaaaatgg	480
cttgcata	tgatccagcc	cctatttat	tttggagttcc	tactgggatc	gttgacttt	540
ggctacttt	ctgacaggct	aggacggccgg	gtggcttgt	gggccacaag	cagtagcatg	600
tttttgtt	gaatagcagc	ggcggttgc	gttgattatt	acaccttcat	ggctgctcgc	660
tttttctt	ccatgttgc	aagtggctat	cttgggtgg	ggtttgtcta	tgtgatggaa	720
ttcattggca	tgaagtctcg	gacatgggcg	tctgtccatt	tgcatccctt	tttgcagtt	780
ggaaccttc	tggtggctt	gacaggatac	ttggtcagga	cctgggtggct	ttaccagatg	840
atcccttcca	cagtgactgt	cccccttatac	ctgtgtgtt	gggtgctccc	agagacacct	900
ttttggctt	tctcagaggg	acgatatgaa	gaagcacaaa	aaatagttga	catcatggcc	960
aagtggaca	gggcacagtc	ctgtttaactg	tcagaactt	tatctactgga	cctacaagg	1020
cctgttagt	atagccccac	tgaagttca	aaggcacaacc	tatcatatct	gtttataac	1080
tggcattt	cggaaaaggac	acttaccgtt	tggctatct	ggttcactgg	aaaggttggga	1140
ttctactcgt	tttcccttgc	ttctgtttaac	tttagaggc	atgaaatactt	aaaccttcc	1200
ctccctgggt	tagtggaaat	tcccggctac	accttctgt	gcatcgccat	ggacaaggc	1260
gggaggagaa	cagtccctggc	ctactcttctt	ttctgcagtg	cactggcctg	ttgggtgtcg	1320

atgggtatcc cccagaaaca ttatattttg ggtgtggta cagctatgg tggaaaattt 1380
gccatcgccc cagcattttg cctcattttt ctttatacag ctgagctgtt tccaaccattt 1440
gttaagatcgc tggctgtggg aagccgcagc atgggtgttgc gcctggccag catcctggcg 1500
ccgttctctg tggaccttcag cagcattttg atcttcatac cacagtgtt tggggact 1560
atggccctcc tgagtgagggtt gttaacacta aagcttccag aaaccctttg gaaacggct 1620
gcaactactt gggaggaggc tgcaaaaactg gagtcagaga atgaaagcaa gtcaagcaaa 1680
ttacttctca caactataa tagtgggtcg gaaaaaacgg aagcgattac ccccaggat 1740
tctggctttg gtgaataaat gtgcattgtcc tgctgtcttag cacctgaaat attatttacc 1800
ctaattgcctt tgtatttagag gaatcttattt ctcatttcccc atatgttgg tttatgtctt 1860
ttaataaat tttgtaaagaa aattttaaag caaatatgtt ataaaagaaa taaaaactaa 1920
gatg 1924

<210> 38
<211> 1797
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 7483598CB1

<400> 38
acatcccccg tcccggagga aaaaacattt gtctggcgaa ctccgggtgg aaagcgcccc 60
agctgcccc acgccttagaga tcttgggct tcagccccctc ggggcctgtcc gaggggagcag 120
ggggcgcccc tggaaacttgc tccctgcagc tctgggtcgta cacggccgacc tcggctgtgt 180
ggcgggtggc ggaggaggctt ggcgggtgc gatccgtac ccggcccccacatcttccac 240
ctggctggaga ccacccgtca gccatgggttcc accagggcca ggagctgtc atccccggcc 300
agagagattt agatgacaga gaaaaccctt tttctgaaca tgatgtataaa gagaaaaacct 360
gtcagtcgtc tgctctttt aatgttgcacttcgattt aggtatgtgttataataggat 420
tgccttattt aatgaagcaa gctgggtttc ctttgggaat attgctttt ttcctgggttt 480
catatgttac agactttcc cttgttttat tgataaaaagg agggggccctc tctggAACAG 540
atacctacca gtctttggc aataaaaactt tcggctttcc agggtatctg ctccctctctg 600
ttttcagtt tttgtatcc tttatagcaa tgataagtttta caatataa gctggagata 660
ctttgagcaa agtttttccaa agaatcccag gagttgatcc tgaaaaacgtg ttatgggtc 720
gcacacttcat tattggactt tccacagttt ctttacttgccttgccttaccc ttgtaccgaa 780
atatacgaaa gcttggaaag gtcctccatc tttctacagg tttaacaact ctgattctt 840
gaattgtatg ggcaaggggca atttactgg gtcacacat accaaaaaca gaagacgctt 900
gggttatttgc aaagcccaat gccattcaag cggtcggggt tatgtttttt gcatttat 960
gcaccataa ctcccttta gtttacagttt ctctagaaga acccacagta gctaagtgg 1020
cccgcccttat ccatatgtcc atcgatattt ctgttattt ctgtatattt tttgctacat 1080
gtggatactt gacattttact ggcttcaccc aaggggactt atttggaaat tactgcagaa 1140
atgatgaccc ggttaacattt ggaagatttt gttatgggtt cactgtcattt ttgacatacc 1200
ctatggatg ctttgtgaca agagaggtaa ttgccaatgtt gttttttgtt ggaatcttt 1260
catcggtttt ccacattgtt gtaacagtga tggtcatcac tggccacg ctgtgtcat 1320
tgctgattgtt ttgccttggg atatgttcttag aactcaatgg tggctctgtt gcaactcccc 1380
tcatttttat cattccatca gctgttttgc tggaaactgtc tgaagaacca aggacacact 1440
ccgataagat tattgtttgtt gtcattgtcc ccattgggtc tgggtgatg gttttttggat 1500
tgcgtcatggc tattacaat actcaagact gcacccatgg gcaggaaaatg ttctactgct 1560
tttctgacaa ttctctctc acaaataacctt cagagtctca tggcggccag acaacacaac 1620
tttctactttt aaatattttt atctttcaat gagttgactg cttaaaaat atgtatgttt 1680
tcatacgactt taaaacacat aacatttacg cttgttttag tctgttattt ttttatataa 1740
aattattttt ttggcttttca aacatgtt gctttatgtt gtagtgcaat ataaaaaa 1797

<210> 39
<211> 3277
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 7484823CB1

<400> 39

atgggggaag gagatagtg gttgaggagc ccaagaggcc cacaggaagg tggaaaatgc 60
agtagggaaa aacagaagcg caatatggag gaactgaaga aggaagtgtt catggatgtat 120
cacaattaa ccttggaga gctgagcacc aagtactccg tggacctgac aaaggccat 180
agccaccaa gggcaaagga aatctctgact cgaggtggac ccaatactgt tacccccaccc 240
cccaccaact cagaatgggt caaattctgt aagcaactgt tcggaggctt ctccccctta 300
ctatggactg gggccatct ctgccttgc gcctacagca tccagatata ttcaatgag 360
gagcctacca aagacaacct ctacctgagc atcgactgt ccgtctgtt catcgtaact 420
ggctgcttct cctattatca ggagggcaag agctccaaga tcatggagtc tttaagaac 480
atggtgccctc agcaagctct ggttaattcga ggaggagaga agatgcaaat taatgtacaa 540
gaggtgggtt tgggagaccc ggtggaaatc aagggtggag accgagtc tgcgtaccc 600
cgcccttatct ctgcacaagg atgtaagggt gacaactcat ccttgcactgg ggagtccagaa 660
ccccagagcc gctccccat cttcacccat gagaaccctc tggagaccgg aaacatctgc 720
ttcttttcca ccaactgtgt ggaaggaacc gccccgggtt ttgtgattgc tacgggagac 780
tccacagtga tggcagaat tgcctccctg acgtcaggcc tggcggttg ccagacaccc 840
atcgctgtc agatcgaaca cttcatccat ctgatcaactg tggtggccgtt cttcccttgg 900
gtcactttt ttgcgtctc acttcttgc ggctatgggtt ggctggggc tatcattttt 960
ctcattggca tcattgtggc caatgtgcct ggagggtgtt tggccacagt cactgtgtgc 1020
ctgaccctca cagccaagcg catggcggg aagaactgccc tggtaagaa cctggaggcg 1080
gtggagacgc tgggctccac gtccaccatc tgctcagaca agacgggcac cctcaccctc 1140
aaccgcatga ccgtcgccca catgtggttt gatatgaccg tggatgaggc cgacaccact 1200
gaagaacaga ctggaaaaac atttaccaag agctctgata cctgggttat gctggcccg 1260
atcgctggcc tctgcaaccg ggctgacttt aaggctaattc aggagatcc tcccaattgtc 1320
aagagggcca caacaggtga tgctcccgag tcagccccc tcaaggatcat cgagcagtct 1380
tacagctctg tggcggagat gagagagaaaa aaccccaagg tggcagaggt tccctttat 1440
tctaccaaca agtaccagat gtccatccac cttcggggagg acagctccca gaccacacgt 1500
ctgatgatga agggatgtcc ggagaggatc tggtggat tttctaccc tcttctgaat 1560
ggcaggagt actcaatgaa cgatggaaatc aaggaaagcct tccaaatgc ctattnagaa 1620
ctgggagggtc tgggggaacg tgcgttaggc ttctgcttct tgaatctgcc tagcagcttc 1680
tccaagggtat tcccatttaa tacagatgaa ataaatttcc ccatggacaa ccttgggtt 1740
gtgggcctca tatccatgat tgaccctccc cgagctgcag tgcctgatgc tggagcaag 1800
tgtcgactg caggaattaa ggtgatcatg gtaacaggag atcatccat tacagctaag 1860
gccattgcca aggggtgtggg catcatctca gaaggcactg agacggcaga ggaagtcgct 1920
gcccggtta agatccctat cagcaaggc gatgccatg ctggccaaaggc cattgtgggt 1980
catgggtcag aactgaagga catacagtc aacgcgtt atcagatcc tccagaccc 2040
cctgagatcg tgggtgtcg gacccccc tccggatgc tccatgttgc tggggatgt 2100
cagaggctgg gaggctgttggc ggcgtgaca ggtgacgggg tgaacggactc cctggcgtg 2160
aagaaggctg acattggcat tgccatggc atctctggc tgcacgtctc taagcaggca 2220
gcccacatga tcctgctggc tgacaaactt gcctccatcg tcacgggggtt ggaggaggc 2280
ccgctgatct ttgacaaccc gaagaaatcc atcatgtaca ccctgaccag caacatcccc 2340
gagatcacgc ctttctgtat gttcatcatc ctccgtatac ccctgcctct ggaaccata 2400
accatccctc gcattgtatc cggcaactgac atggccctg ccattccctt ggcttatgag 2460
tcaagctgaaa ggcacatcat gaagaggctt ccaagggacc caaagacggaa taatctgggt 2520
aaccaccgtc tcattggcat ggcctatggc cagattgggta tgatccaggc tctggctgg 2580
ttctttacct actttgtatc cctggctgg aatgggtttt ggcctgttgc tctggctggc 2640
atccgcctcc actggaaaga taaatactt aatgcctgg aggacacgtca cggacaccc 2700
tggacctatg agcaacggaa agtttggag ttcacatgcc aaacggccctt tttgtcacc 2760
atcggttttgc tgcagtgggc ggtatctatc atctccaaatc ctcacttttc 2820
cagcaggggca tgagaaacaa agtcttaata tttgggatcc tggaggagac actcttggct 2880
gcatttctgt cttacactcc aggcatggac gtggccctgc gaatgtaccc actcaagata 2940
acctgggtggc tctgtggccat tccctacagt attctcatat tcgtctatga tggaaatcaga 3000
aaactccctca tccgtcagca cccggatggc tgggtggaaa gggagacgtt ctactaaact 3060
cagcagatga agagcttcat gtgacacacagg ggtgttgc gagctggat gggccagag 3120
attataagtt tgacacaaca tctgagacac taggatgaat tatcttggat gagaaagatg 3180
ggcaatectg ggctggcttg agggaaatcat gggcagagga tgaggtggc tgaagggaaag 3240
cccagccctgc atctagctgg agccccgcag ggaggggg 3277

<210> 40
<211> 2773
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature

<223> Incyte ID No: 143935CB1

<400> 40
atggaaagaga tgcaggaga aagtgtggg agctcagcgg tgccagcggc tgctaccgc 60
accacttct tcaaggcac gagccccagc tccaaatacg tgaagctgaa tgtgggtgga 120
gccctctact ataccacca gcaagcgtg accaagcagg acaccatgtc gaaggccatg 180
ttcagcggc gcattgaaggt gtcaccgac agtgaaggct ggatcctcat tgaccgtgt 240
ggaaagcaact ttgttacgat actaactac cttcgagac gggcggtgcc tttaaccgag 300
agccccggg agatcgagga gctgttaga gaagccaagt actacatgt ccaaggccatg 360
gtggaaaggt gcccggcgc cttacaaaac aaagatactt atgacgtt ctgcaagggtc 420
cctgtatca cctcatccaa ggaagaacaa aaacttatag cgacttcaaa taagccagcc 480
gtgaagttgc tctacaacag aagtaacaac aaatactcat ataccagcaa ttctgacgac 540
aatatgtga aaaacattga actgtttgat aagctgttctc tgccgtttaa cggaaagggtc 600
ctgttcataa aggatgttat tggggatgaa atctgtgtc ggtcctttta tggtcaggc 660
cggaagattg ctgaagtctg ttgtacccc atcgtctatg ccactgagaa gaaacagacc 720
aagggtggagt tccccgaac ccggatttat gaggagaccc tgaacattt gctgtatgag 780
gcccaggatg gcccgggacc tgacaatgac ctcctggagg ccacaggcgg ggcggccggg 840
cgctccacc acctggacga ggacgaggag cgggagcggg tcgagcgcgt ggggaggatc 900
cacatcaagc gcccgtatg cccggccac ctccaccaatg gacggcggaa gagaccggc 960
cgccctctc tcaccggccc cactccctgc cgtgtcac acagatcctg tgcaggctgc 1020
cgggcccccct ctgttccct tggagcctgg agatacttt gtaacaagcc agatgattat 1080
tttggtattt ctgtacaagg caaatttgatt gtcttgcacc aggcgtatga cccctgtcgt 1140
tgaacaagct gtgtctaaga tctctacttt tcatgagaat ctgagactct tggagccag 1200
gttttctcggt ttctcagagg aaaagtatga atgagtgtga agtgtatgtg agaactttt 1260
tttgcataat ttattttgt ggggtgtcgc ttcctatgtg ggctttttgg gtgacactcc 1320
cttaagggtt cagtttgaca attctgagag ttgtccgtca gtggaggcc accagaggta 1380
tctgagctcc ctgttccctt tttcataatc ctccacccccc agcagggttca ctctgggtc 1440
ctgtgtttt ggccggggca caatccccac tgctttgtca gacgtgtt ctccatgtg 1500
gtttggggcc tagagtttgc tgataatttgc agcttggc agtggaaata tggctaatg 1560
agcgtctaaa ctgttgagac cagtgcact ttgggtgcaa ggctttgttt agggatcaag 1620
ccttttgcca ccttggctg gtcttggcc tggtgctcac tgggacccca tatgtctgcg 1680
taggagcaga actttccatg gcagtaagt tccagctctg tttctgttcc ttcccccaac 1740
tccagccccg tccagtgtt ctcctgtatg acccgactcc actccaggaa ggccatctga 1800
ccctgtgaca ggcatagtctc ataaaactacc ctccttggg atcccgctcc tcttcagcc 1860
ccttcccccatt gaagctgggc taactttcta agtcattttg cttagaaatt cagtgtggcc 1920
cataccctttt gtcctccctg cctggcatcc aggcaggggac acccttcacac caccagcccc 1980
agggagcttc cctgtctaaa acacagaccc ccttgcattt gcctctgtt ttacacagt 2040
gtagagtggc cagcgtgaa cagggttggg atgtcggtt agatagataa ctttgggtct 2100
gttttgtgtc tgggttcatg ttgtttaag ggatatgtgt gactgtgggt ggggacgtgt 2160
gcttgtgggg cacagggtgc gggccctgtt ggagccccggc tgggcgcagc gcctatgttag 2220
gacgggtgtt ctcaagtgacc tacctccctg gctccctctgc acctgcaaaag gaacaggagt 2280
gagtcgtgac tgacaggggt ggtttagact agacttagtta gagtagttac caggagatgt 2340
gaatgtgcgt cagggtatgg atgggttgtt caagggaaatc gttaccgtt tataccaaag 2400
gtatataacat gggcagccctt tgacacatgt attccaaaaaa cgagttata ttttcaaacg 2460
gtttttacag cttagactt gtaacttactg ccctgcctgt gacagttgt tgccttcatt 2520
ttgtatccaa cagcaaagtc tacaataaaa cttaaaaaca atcatgactg aatgtcaaaa 2580
tcgtgttgc ggcagatgt ttttaaaactg tcgtgtgaga aacttttata tttagccatt 2640
tggattttat taatgtctaa ggaaagaggc cttagaaaaat gttcgtaaa tattttatac 2700
tggtaatgt taaaacacca accctgttcc tcttttgggt ttagcttttt tagaaagtgc 2760
aagtgaatgt tgg 2773

<210> 41
<211> 2966
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 5923789CB1

<400> 41
tttttccaag tgagagactg ccccatatgt tagtgcataa tgtcaactgg a ggtgaagcat 60
cagtgtatt ggtggaaacc tggccgtttgc tgtcccccttt ttccatgc cttttcctgc 120

ctctctgatc ttttctaggt ctctggccta tcaggaggac aactgggtgc gcaatagaag 180
 ccagtggcta agtctcggt atggcgtggt taaggttgc gccttcacc tctgccttcc 240
 tcacattttgg gctggttacc tttgtgtct tcctgaatgg tcttcgagca gaggctgggt 300
 gtcaggggga cgtgccaagg acagggcaga acaatggatc ctggtcaggag tcatcgact 360
 gaaaggaggg tgcatactcg ccaatctggt accccggagaa cccttccctt ggggacaaga 420
 ttgcgggggt cattgtctat ttttgcccc tgatatacat gttccttggg gtgtccatca 480
 ttgctgaccg cttcatggca tctatgttgc tcatcaccc tcaagagagg gaggtgacaa 540
 ttaagaaaacc caatggagaa accagcacaa ccactattc ggtcttggat gaaactgtct 600
 ccaacctgac ccttatggcc ctgggttect ctgctctgata gatactcctc tcttaattg 660
 aggtgtgtgg tcatgggttc attgtgtgg atctgggacc ttctaccatt gttagggagt 720
 cagcctcaa catgttcatc atcattggca tctgtgtcta cgtgatccca gacggagaga 780
 ctcgcaagat caagcatcta cgagtttct tcataccccc tgcttggagt atctttgcct 840
 acatctggct ctatatgatt ctggcagttc tctccctgg tgggtccag gtttgggaag 900
 gcctcctcac tcttttttctt tttccatgtgt gtgtccctt ggcctgggtg gcagataaac 960
 gactgtctt ctacaatatac atgcacaaaaa agtaccgcac agacaaacac cgaggaatta 1020
 tcatacgac agaggggtgac caccatgggg tggatggat ggttggaaa atgtatgatt 1080
 cccatttctt agatggggac ctggggcccc tggaaaggaaa ggaatggat gagtcccgca 1140
 gagagatgat ccggatttcc aaggatctga acaaaaaaca cccagagaag gacttagatc 1200
 agctgggtgg aatggccaat tactatgtc tttccacca acagaagac cgtgccttct 1260
 accgtatcca agccactctgt atgtgactg gtgcaggcaaa tataatggat aacatgcag 1320
 cagaacaagc caagaaggcc tccagcatga gcgagggtgca caccatgtg cctgaggact 1380
 ttatccaa ggtcttctt gaccatgtt ttaccatgtg cttggagaac tggggggctg 1440
 tactcctgac agtgggtgagg aaaggggggg acatgtcaaa gaccatgtat gtggactaca 1500
 aacacagggaa tgggtctgcc aatgcagggg ctgactatgat gttcacagag ggcacgggtgg 1560
 ttctgaagcc aggagagacc cagaaggagt tctccgtggg cataattgtat gacgacattt 1620
 ttgaggagcc tgaacactt tttgtatggat tggatgtatc cgcatacgag gaggagcagc 1680
 cagaggaggg gatgcctcca gcaatattca acatgttcc cttgcctcg gctgtccatg 1740
 cctccccctt tggccacca gttaccatct tggatgtatg ccatgcaggc atcttactt 1800
 ttgaatgtga tactattcat gtcagtggaa gtattgggt tatggagggtc aaggttctgc 1860
 ggacatcagg tggccgggtt acatgtatcg tcccctttag gacatggat gggacagcca 1920
 agggtgtggcg tgaggacttt gaagacacat atggggaggat ggaattcaag aatgtatgaaa 1980
 ctgtgaaaac cataagggtt aaaatagtag atgaggaggaa atacggaaagg caagagaatt 2040
 ttttcattgc ccttgggtggaa ccggaaatggaa tggacgtgg aatatcgat gtgcacagaca 2100
 ggaagctgac tatggaaaga gaggaggccaa agaggatgc acatgtggaa aagccagtt 2160
 tgggtgaaca ccccaacta gaatgtatcg tggatgtatc tcatgtatc aagactacgg 2220
 tgacaaact gatcaagaag acaaaacctgg cttgggtgtt ggggacccat tctggaggg 2280
 accagttcat ggaggccatc accgtcagtg cagcaggggaa tgaggatgtatc gatgtatccg 2340
 gggaggagag gtcgcctcc tgcttgcact acgtcatgca ctccctgact gtcttctgg 2400
 aggtgtgtt tgcctgtgtt ccccccacag agtactgcca cggctggcc tgcctcgccg 2460
 tctccatcct catcattggc atgtcaccgc ccatcattgg ggacctggcc tcgcacttcg 2520
 gctgcaccat tggatgtatc gattcgtca cagctgtgtt ttgcgtggca ttggcacct 2580
 ctgtcccaaga tacgtttggcc agcaagactg ctgcctccca ggatgtatat gcaagacggct 2640
 ccattggccaa cgtgacggcc agcaacggcc tcaatgttctt cctgggcattt ggcctggct 2700
 ggtccgtggc cggccatcatc tggatgtgtt gggggatggat gttccacgtg tggccggca 2760
 cactggccctt ctccgtcacc ctcttccatc tctttgcatt tggatgtatc acgtgtctt 2820
 ttttgcgttgg gggccggcc acgggggggg agtgggtgg ccccccgtggc tggccggca 2880
 cacaacatg gtcctttgtt agcgtgtggc tcctctacat actctttggc acactagagg 2940
 cctattgtca catcaaggggg ttctaa 2966

<210> 42
 <211> 4404
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 6046484CB1

<400> 42
 atgtatatcc gtgtatccata tgacaccaag ccagactcac tgctccatct catgggtaaaa 60
 gattggcagc tggaaactccc caagcttta atatctgtgc atggggccct ccagaacttt 120
 gagatgcagc ccaagctgaa acaatgtttt gggaaaggcc tggatcaaggc tgctatgacc 180
 accggggccctt ggatcttccatc cgggggtgtc agcacaagggtt ttatcagccca cgttagggat 240

gccttggatccatcg accactcctc caagttccaga ggccgggtt gtgctatagg aattgctcca 300
tggggcatcg tggagaataa ggaagacctg gttggaaagg atgtaacaag agtgtaccag 360
accatgtcca accctctaag taagctctt gtgctcaaca actcccacac ccacttcata 420
ctggctgaca atggcacccct gggcaagtat ggcgcggagg taaaacttcg aagacaactg 480
aaaaagcata ttcaactcca gaagataaac acaagaatcg gtcagggtgt tcctgtgt 540
gcactcatag tggaggagg acccaatgtg atctcgattt tttggatg cttcgagac 600
accctcccg tgccagtgg tgcgtgtat gggagtggac ggcatacgga catcctggcc 660
tttggcata aatactcaga agaaggcgga ctgataatg aatcttgag ggaccagctg 720
ttggtgacta tacagaagac ttccatatac actcgaaccc aagtcgcga tctgttcata 780
atccctatgg agtgcata gagaaggaa ttgatcagg tatttcggat gggatcagaa 840
ggacaccagg acatgtttt ggctatctt acagcttac tcaaaggagc caatgcctc 900
gccccagacc aactgagctt agcttagcc tggaaacagag tcgacatcgc tcgcagccag 960
atctttatcc acggcaaca gtggccgtt ggatctctgg agcaagccat gttggatgcc 1020
ttagttctgg acagagtggg tttgtgaaa ttactcatag agaatggagt aagcatcac 1080
cgtttctca ccatctccag actagaggaa ttgtacaata cgagacatgg gccctcaa 1140
acattgtacc acttggtcag ggtatgtcaaa aagggaacc tggcccccaga ctacagaatc 1200
agcctgatgg acatcgccct ggtgtatcg tacctgtatgg ggggggctta tgcgtgcac 1260
tacacgcgca agcgctcccg gaccctctac cacaacctt tggccccca gagggtatgat 1320
attcccttga ggcgaggaaag aaagacaacc aagaacatgtg aagaagaggt ggacatgtac 1380
ttggatgatc ctgagatca gatggccctt ttcccttttcc atgactcat ggtgtggct 1440
gttctcatga agcggcagaa caagctctgaa aagccatgg cttatgaggc ctctgagaac 1500
gccaaggccc tggggctgtt gatggccctt ccaggagctg aatcacaatt ccagagactt tggccagctg 1560
gacatgggtt acgacatttc tgcctacaag caggacgaac agctggccat gaaactgtc 1620
gctgtggagc tcctggacca gagcaacccc acgtgcctgc agttggccgt ggctgccaa 1680
acgtatgagc tgaagaactg cacgtgcagc cagatgtgc tcaaccgacat gtggatggc 1800
caccgcgact tcatcgccca tccaggccctc aaggttattt tggaaattt tctacccccc 1860
cggtccgca tgcgcaagaa tgcacatat gatgattttt cgtatcaa 1920
accatcttgc ttttggattt aagagggggg atgaggagaa aatccaggat atccaggaa 1980
aatggaggat gcaaaagaaaa agaagggggg atgaggagaa aatccaggat atccaggaa 2040
agaaaaggggg atgaggagaa aatccaggat atccaggaa tgcgtccctc 2100
atctgttgc ttttggattt aagagggggg atgaggagaa aatccaggat atccaggaa 2160
ggctacatgc tgcgtttaa ctacgtcatc ctgggtcgga tggatggctg gccgtccctc 2220
caggagggtt tcgtcatctc ctacatctg agcctggcgtagagaagat acgagagggtg 2280
gctactccaa aggctcccc tggccacta gccagaaaat caaagtttgg ctccaggag 2340
tactggaaaca tcacagatct cgtggccatt tccacattca tgattggac aattcttcgc 2400
ctacagaacc agccctacat gggctatggc cgggtatctt actgtgtggc tatcatctt 2460
tggtacatcc gtgtccctgg tagtggcatc ctgtgggttag tcatcatgt ggtgtgtc 2520
atgattggaa agatggtag tcaaggccat ctgcattccag aggagaagcc ctcttgaaa 2580
atgagttcg gagtagcccc tggccctac tggatgtatc atggagagggt gtttgcagac 2640
ctggccggaa acatcttca cagatagacc gtaagagttt ttttcttca gctccctgtg gtgagaacct atatgtgag 2700
gagggcaagc ggcttcctcc ctgtatctac tggccggaa catccgtctg gtgaacctgc tgattgtctgt 2760
accttcttgc aagtaaaatc aatatccaa caggtgtgg aatccagcg atatcgatc 2820
attatgacat ttcatgacag tacatcatca ttatgcgtct gccagtcctg cccccaccga tgatcattt aagccacatc 2880
tatcatcatca ttatgcgtct gacccatcgatc cggccgtcc tcaatccatc tggatgtatc atatcattttt 2940
gaacgggatc gtggatttag ttcgaggagc agtgcgtca agcgtccatc cggccgtcc tcaatccatc tggatgtatc atatcattttt 3000
ttcgaggagc agtgcgtca agcgtccatc cggccgtcc tcaatccatc tggatgtatc atatcattttt 3060
agcgcacggc gtcgtccatc cggccgtcc tcaatccatc tggatgtatc atatcattttt 3120
gatggacttc cggccgtcc tcaatccatc tggatgtatc atatcattttt 3180
catccgtctg gtgaacctgc tgattgtctgt gttcagcaat 3240
cacttcttgc aagtttttttca ttttcttgc agactgttg ctttcgtactt 3300
tttttgc aatccatc tggatgtatc atatcattttt 3360
tttttgc aatccatc tggatgtatc atatcattttt 3420
tttttgc aatccatc tggatgtatc atatcattttt 3480
tttttgc aatccatc tggatgtatc atatcattttt 3540
tttttgc aatccatc tggatgtatc atatcattttt 3600
tttttgc aatccatc tggatgtatc atatcattttt 3660
tttttgc aatccatc tggatgtatc atatcattttt 3720
tttttgc aatccatc tggatgtatc atatcattttt 3780
tttttgc aatccatc tggatgtatc atatcattttt 3840
tttttgc aatccatc tggatgtatc atatcattttt 3900
tttttgc aatccatc tggatgtatc atatcattttt 3960
tttttgc aatccatc tggatgtatc atatcattttt 4020

acgcgctctc atagcacaga tattccttac attgtgtcgg aagctgcagt gcaagctgag 4080
cataaagagc agtttgcaga tatgaagat gaacaccatg tcgctgaagc aattccctcg 4140
atccctcgct tgcccttaac cattactgac agaaatggga tggaaaactt actgtctgtg 4200
aagccagatc aaacttggg attccatct ctcaggtcaa aaagttaca tggacatcct 4260
agaatgtga aatccatca gggaaagtta gacagatctg gacatgccag tagttaagc 4320
agcttagta ttgtgtcgg aatgacagca gaagaaaaaa aggttaagaa agagaaagct 4380
tccacagaaa ctgaatgta gtct 4404

<210> 43
<211> 669
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 7481427CB1

<400> 43
atgacggAAC aagccatctc cttgcCcAAg gacttccTAG ctggaggcat caccGCCGCT 60
atctccaAGA cagccgtGGC atcgatcaAG cgggtCCAGC tgctgtcGA gatgcAGCAC 120
gccAGCATGC cgatggCCGc CGCCAAgCAG tgCAAGGGCA tcgtggACTG catcgTCCGc 180
atccccAAAG atcaggGCgt gctgtcCTTC tggagggGCA acctggCCAA tgtcatCCGc 240
tactccccCA cgcaAGCCTC caattcGcc ttcaaggATA agtacaAGCA gatcttCCTG 300
gcgggcgtGG acaAGCACAC gcagttCTGc aggtactttG cgggcaACCT ggCCtCTGGc 360
ggcAcGCGCC tcgtgtATCC cctggattTC accagaACCC gcctggCAGC cgacgtGGGA 420
aagtCAGGCA cggAGCggCA gttcCAGGcC ctgggAGACT gcctAGtgAA gatcAGCAAG 480
tccgacGGCA tccggggCCT ttacCAGGcC ttcaGcGTt ccgtgcAGGC catcatcatc 540
taccaggcAG cctacttCAG ggtgtacGAT acggCCAAtG gcatgttccc cgacCCCCAAG 600
aacacacacaA tcctggtgAG ctggatgACC gCgcAGACCG tgacggCCGT ggctggCgtG 660
ctctcctAA 669

<210> 44
<211> 1823
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 7483595CB1

<400> 44
aaaaaaaaAAAC aaataaaaaaa tgcccAGTGT gagcatctgt agtcccAGCT atttggGAAG 60
ttgaAGCAGA gaatccCTTG tgcccAGGAG tttgaggttA cagtGAGCTA tgattGcAcc 120
actgcACTCC ggcctGGGCA acAGAGTgAG atcctgtCTC ataaATAAAT aaatAGGCAA 180
agcTTGTTc tgatCACCTt gtcCCTGTT tccccAAAGTC aacctaGAGA gcaGtAGATT 240
ctaggGCAAG aacttaAGTg agctGACTGc tcacaAAAGAA ggAAAGGAGT agtGtGAGCT 300
agcacttGTT gggAGCCTCt gatcaACAAT acaAGGACCC gtGTTatCAA cttctGTTCA 360
ttagggAAAG agAGTTACAA gagTTACCA AgggGCTAT cttaACTTTt ctatggAAAC 420
ccttctttc ctggagAGTg ccattGGTGC cattGCTGGA ttGAAGACAT tctacCCCAC 480
tctggTTTc tcttctCTGc agctaATAAt gggcgtATTg ggtttggGCT tcattGCCAC 540
ttaccttCCG gagtCTGCAAt tgagtGCTTA cctGGCTGCT gtggCactTC atatcatGCT 600
gtccccAGCTG actttcatCT ttgggattAT gattGTTc catGCGGTC ccatctcCTT 660
cttctatGAC ataattaAtt actGTgtAGC tctccAAAGA gcaattCCA ccAGCATTCT 720
agatTTtCA actgttGTT tgctctGCG AATCAACAAA tGtATCAGAA ttctttCAA 780
tcagtatCCc attgAGTTtC ccatGGAAtt atttCTGATA attttACAAG ctttctcCTT 840
atctttGGTG agctCCttC tgctCATAtt tctGGGCAAG aagattGCCA gctttcACAA 900
ttacAGTGTc aattCCAACC aggATTAAt agccatGCC CTTGCAATG tcgtcAGTTc 960
atTTTcAGA tcttGtGTt ttactGGTGC tattGCTAGG actattatCC aggataAAAtC 1020
tggAGGAAGC acaACAGTTt gcatctCTGG tagGCGCAGA gctaAGATTc ttctcCTGGG 1080
tcaaATCCt aacaccaACA ttatAGAAG catcaATGAT tatCggGAGA toatcaccat 1140
tcttggggTG aaaaATCTCC agtGtGcAGC ctcaattACA ttGtAAATG ttactacCT 1200
aaAGCATAAG ctgttAAAG aggttgatAT ggtAAAGGtG cctcttAAAG aagaAGAAAt 1260
tttcAGCTTG ttAAATTCAA gtGACACCAA tctacaAGGA ggAAAGATTt gcaggtGTTt 1320

ctgcaactgt gatgatctgg agccgctgcc caggattctt tacacagagc gatttggaaaa 1380
 taaactggat cccgaagcat cctccgttaa cctgattcac tgctcaccatt ttgagagcat 1440
 gaacacaaggc caaactgcac ccgaagacca agtgcacatac acagtatcg cctgtctca 1500
 gaaaatcaa gggcaacagt atgaggaggt ggaggaattt tggcttccta ataactcatc 1560
 aagaaacaggc tcaccaggac tgcctgatgt ggcggaaaggc cagggggagga gatcactcat 1620
 cccttactca gatgcgtctc tactgcccag tgtccacacc atcatccgg atttctccat 1680
 ggtacactac gtggattcac gggggtagt cgtattaaga caggttaagta ctgaggaggc 1740
 ctggcagga gctctgatcc ccctccatacc atccccaccc caccctgatc ctgattgaat 1800
 tctgttagtc actgatcagc tgc 1823

<210> 45
 <211> 2931
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 3788427CB1

<400> 45
 atgtccatag ttctttatc cgtccatgcc aaatggatta tggggaaaggc gactgggaca 60
 aaaatgcaaa agactgcata agtgagatg atcaggctg ttctggatcc ccatttatta 120
 aagtattata ataagcaaa aacgtacttt gctcacaatg cccttcagca gtgcacaattt 180
 gggatatacg tgcttctcaa agcttacat gttccacgaa caaagcatgt gaaacatgaa 240
 ctggctgaga ttgtttcaa agtggaaaaa ctcgtagatc ctgtgacagg aaaacctcg 300
 gcaggaacta cctatctgg aagtccattt agttcgaaaa ccaccgggg ctagacggg 360
 gttcccggtc ctcacgcgg gccccccca tgccgggg ggcctgggg cccggccctc 420
 cggcccggtgc cggagagccc caggcccgag ccacgcggc ttccggggcc ggtcggggc 480
 tcaatggcta cgtggaggcg ggacggccga ctgacaggcg gccaaggct gctgtgcgt 540
 gggctggcg ggacgctcag ctcagccctc accgcgcccc tggagctcgc caccgtgctg 600
 gcccaggttgc gctgtgtcg aggccacggc cggggaccgt gggccacagg gcaaccgggtg 660
 tggggggcag aggggctccg gcccctgtgg aaggggaaacg cggtgccgtg cctgcgcctc 720
 ttccctgtca ggcggcgtca gtcggccccc taccgcataat ttgttgctg gtcacagat 780
 gacctggcc acatttccca gtggagctcc atcatggctg ggagtcgtc aggcattgg 840
 tccaccattt taacatatcc tacagaccc atcaaaaccc gttgtatcat gcaaaacata 900
 ctggggccat cgtcagggg gctccatc gcttttctt ctttttccatc acaggaagg 960
 ttccctgtccc ttatcgagg gtttccctc actgtttagt gtgtctccc gttctctg 1020
 ggctcccttc ttgtttacat gaaacctggag aaaatctgga acggaccccg agatcgttc 1080
 tctctccac agaactttgc taatgtctgt ctggctgtc cagtgaccca gaccctctcc 1140
 ttcccttttgc agaccgtgaa gagaaagatg caggctcaga gcccctacat cccacacagt 1200
 ggaggagtag atgtccattt ctctggagca acggccaaat tactggat agttccat 1260
 cagggggtcc tggggctctg gaatggattt acggccaaat tactggat agttccat 1320
 ttggaaattt tggttagcac ctggatcc tgcaagagaa tctgtttta tcaaaatgg 1380
 tacattctgt ctccactggatg ctataattt gggccgggg tgcgtcggat ttgcagccc 1440
 caggaatttac gagaattaaa gaagttccca aaaaacggaaa aactggaccc taaaaaacc 1500
 actctataaa atgaaatggaa actagaagtg cactgactga cagcatgttga caatcacaga 1560
 taaaatgtac ctcataactg tgccacgttgc gagggatgag aagctactgc tatctgtc 1620
 tctggaaat gagatgttt ggccatgcac cacctcagat ctccaaactg atgtccctgt 1680
 gaacacctgc actatgagaa gtttcccaaa caaggtgtt tcatgtatggc atccacgg 1740
 attttataac cagagtcttag cagtgataaa atgtacaatt tacgtctga atagaaacat 1800
 ggcaccaaaag aaaggccat gccatgacat ctcaaaagccaa caggttattt aagtggctg 1860
 gtggatccacat cgttgtgagg tgcacatgg ggtcaacttgt agtcaatgc aagcttgcac 1920
 aaaccaacgt cagcctatgtt tcaatcgatg tgacattggatc ctttccatca caatctgtt 1980
 tttttttttt ttttttagaga cagggtcttgc caatcatgc ctttaactac tgggtcaag acatccctc gettcagcc 2100
 ccagagatgtt gggaccatag gtgcacacca ccacacccat ctaatttttt gggggaggct 2160
 tgctatgttgc cccaggctgg tcttgcactc ctgggtctat gcaatccctc tgccctggcc 2220
 tcccaaagcg cttaggattt aggtgtgacg cgctgcaccc tgccccagta caatctttt 2280
 tgaactcaaa tttttgttgc catctgatgttgc cacacaccac agtgtaaattt atgccttacc 2340
 agaatctaaa tgaaaatagc gaacatttaa aagctatcac cattgttagta gaatcatcc 2400
 tcttttttttgc aatttgcggatc taaaatctgttgc tggggggggaa agacagttt 2460
 taccatgtact gcttaattat ccccccaag accttctgtat tgaagtcatg tacagttcag 2520
 tggccctaaat tctctgtccctt ttttaacttgc ttttgcaccc tactctgaaa ataagttt 2580

tagtcaagtt attctcaaag atgtcccagt tgcctagaaa ggatcaaatg gaacatttg 2640
cacacatact caaaaaaaatg taactgacta taaaacactt aacctaatac tctgtatcaa 2700
actttctaaa aatcaaatac caggattgtt ccactttaga gattctatgt aaagtttata 2760
taactatact tgcataatag cacctatcta tgcatttaaa aatgcattaa tatctaaca 2820
aaaattgtta atttatacac acacatacac ttatacatag agagagattt tcggtatgtt 2880
gcaagtattt ttccgatta aatttatttt ccaaagaaaa aaaaaaaaaa a 2931

<210> 46
<211> 1492
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 6972455CB1

<400> 46
cttgctcctt gatcagttt cgatggcct gcaaggccgc ttccggtagc gcttggcaa 60
tggaaattcat aaaaagctca gggttcccgta tagcgtgtgt gaccgggtgt aaaaactattc 120
atagctggct gcaagccacg ccccaaaggc gtcgcggct ttttgc当地 gctc当地aaag 180
ggtgc当地ggaa acctgaccac tggttagacc agtaagacca ctgcacctca acaaacatca 240
gccttgcaga cgatccgaac ggtgtggca tgggctgtgc actgggcaaa ctc当地aaaaat 300
tccttcgcct ttttccggaga gctgccatga ccaaggcgcta cagcgc当地ctg ctcaactgccc 360
tgtttgc当地cag cctgtatgtg agccaggc ac cccccc当地ggc gagtggctg gatgacatcg 420
tc当地ccctgtgg caccctgtgg aacccctgtgg cccaggactt cccgc当地gtt ggttccggctg 480
gc当地ctgtggat gcaacccccc ggccctggaca tgc当地acccgc caagctgtg gccgaccaac 540
tcaagggtcaa gctggaaactg acgc当地ggta acagc当地aaa ccgc当地atccg ttccctacca 600
ctggc当地aaatg cgacctgtt atttccaggcc tgggcaagaaa ccccgagcgc gcaaagggtca 660
tc当地acttctc caacgc当地tac gc当地ccgttct accttgc当地gt gtttggccg cctgatgccc 720
ccatcgccag cctcgacac ctcaaggccaa agaccatca cgtgacccgt ggc当地ccatcg 780
aagacatcga gctgacccgc gttagcccca aggaaggccac gatcaacgc当地 tttgaagaca 840
acaactccac catcgccccc tacctggccg gccagggc当地ga cctgatgccc agtggcaacg 900
tgc当地tcatgtt ggccatcagc gaacgc当地acc ccaaggcgctg accggcactg aaggtgaaac 960
tcaaggattt gccgggtgtac gttagccgtga acaaggaaacga gccggc当地gtg ctggaaaagg 1020
tcaaccaggat cctgggtggca gccaaggc当地tgg acggc当地ggctt tgggaaaaggc gcatgc当地gt 1080
ggctcaaaggat accgctgttcc ggc当地acccctt gacggc当地ggc当地 tcaaaggatgg cctatcaatt 1140
cgacttctgtt cccgggtgtgg ccaataccga cctgctcctt cgtggc当地gc当地 tggc当地accct 1200
tgagctgacg gccattggcc ccatcttccgg cgtggccctt ggc当地actgtg ggc当地ccgtgg 1260
acgggctgtgg aagatccaaac cgtttgc当地gt ggtctttgtt gtgtatgtg agttgatccg 1320
caacacgccc ttccctggta aactgttctt catcttcttcc ggc当地tccat cc当地tccgggtt 1380
gaaaatttacc gagtggcaag cc当地ccgtgtcc ggc当地atggt atcaacctgg gggc当地acttc 1440
caccgagatc atccgtggcc gcatccaggc catccacgg gggcaactgg ag 1492

<210> 47
<211> 2406
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 8077668CB1

<400> 47
atgtatgacc caccaaaatg gaataagaaa aatgactctg ctgatcattt tgatgaatct 60
gtggaaataac agtc当地ccct tcatatctgt ggatttgc当地 aaggcagggtg gatcctctcc 120
taccggccgtt caccggccgg cccggc当地acacg ggc当地tggccc cagacttgg ggtgc当地gggtc 180
cgctgtctgtgg tgggggtggca aggggccccgg gtc当地ccggctg ggc当地aaaacg tgagggttagg 240
ggctccggccgg aggagccactg agagagaaaag gatggacaaac aaggggagag gagaggagaa 300
gc当地agccctga ccaaggatgc tggatccctt cagagcactg tccctgtccaa gatcaccagg 360
atccctgttctt gctggagaat gacccaggatg tccctggatgtc aggagcttccat ccatgaggca 420
gc当地ccaggcagg atgc当地ctggc cc当地ggccagg cc当地tggatgtcc agacccaggct gtc当地atgtgg 480
gagcctgtgc tggatgtggc ctggatgtgg tggatgtccat cctgatgtatcaacatctt 540
gggggttgc当地 tcttccctgag gactggctgg ctggatgtgg aacacaggactg gtc当地ctggcc 600

atgttcctgg tgccttcgt catcctggtg gcccctcgta cggtgctgtc tgacattggc 660
gtcggggagc gcagcagcat cggcagcggt ggcgtctact ccatgatctc ctgcgtccctg 720
ggtgggcaga cgggaggcac catcgggctg ctctatgtgt ttggacagat gtatatcacc 780
ggctttgctg aatccatctc ggatttgcgt ggcctcgaaa atatctggc tgcggagga 840
atttcagttt cgggtctctt ggccttgcgt ggcattaaacc tgcgggtgt caaatggata 900
atccgcctcc agctgcgttt gctttccctg ctggccgtgt ccacactgga ctttgcgtgt 960
ggttcttca cccacctgga cccagaacat gtttcttgcgt gatattacc cgaactgcta 1020
cagaacaaca cgctgcccga ttacagccccggggaaatctt ttttctactgt ctttgggtt 1080
ttcttcccaag cggctacagg agtcatggcc ggcttcaaca tggggggcga cctcaggag 1140
cctggcccca gcattccctt gggctccctg gcagctgtt gcatctcgta gtttgcgtac 1200
atccggctaca ggagtcatgg ccggcttcaa catggggggc gacccctggg aggccctgccc 1260
cagcattccc ctgggctccc tggcagctgt tggcatctcg taagttcccc tcattggcaat 1320
cagtctgagc tagagagttt gagagaaaac cccaggcaga agagggtttt ccccttttgt 1380
tctgagagtg cccccgactgt gaccaatctt tttcatattt cgtatcttctt ttaacactc 1440
ggtgggctgg aaaatttacg tcttgcgtt tcagacactg cccttcattt cggccctgcct 1500
ggaaatgtctt ccgaggagga gtgtcgccgc ccagatcaca gatcaatcc tttttttctt 1560
ttcctcgccccc tcccccgtt ccctccccc acccccattt ttgaacttgg ggtttttttt 1620
aaccaccggat ttccagat cactggaggg agcataaaga tgaaggttt tgaatcaga 1680
cgaatttgggg ctgcatttcgc gctctggccgc tgattggctg catgactctg gacaattttac 1740
tgagttctctt gaggctccat ttccctttttt gtggaaatggg gataatgaca ctgtatgtgc 1800
ttccttagatt gcccggggaa gagaaggcac acagtggaaag ctccagcaccc agctttttttt 1860
cttccccccag tgaggctccc ctccagctcc cccaggccgtt caggctctg ggttttttgt 1920
tcacactgtg ccacccacac aagcaggctg ggttaacccctt ggtcttattt tggccctttta 1980
gaatattgtt tctctctgtt ccacaggaag aagcttctt gccccttattt gggtaggtgt 2040
gaagaggcaa agagatcaga gaccggaaac aatgacttga gaagttaaaa gggccctgtgt 2100
tattctaacc acagtttta gaaaatattt atgtatctgtt ttccacaaaaca ctgaattttgt 2160
tcttagctt ctgcagttt accattgttca tccatgttgcgtt gtagcgttccatc aggttattttt 2220
gtgcaataaac attgggaaga aaatgttgcgtt aacagagata gagttggatgtt tggggaaagga 2280
aataaaaagaa agaggcttctt gaatggggac cctgttctt ttcctggccccc agctggggagg 2340
ttccaggagg aacccttggc ccatttcgtt attacccttca tggaaatggag gagaccacag 2400
gaacctt 2406

<210> 48
<211> 3686
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 55120485CB1

<400> 48
atggaaagaga acagtaagaa ggaccatcggttgcctca accagggaga ggaggatgaa 60
ctggagggtt ttgggttaccg ggaccacaat gtacggaaag ctttcgtccct tgcgtccatcc 120
gtgtgttgcctt gtggggggctt tctgtgggtt ttctactgtt gacccctggg gagagtgtgg 180
gccaaactgca tcccatgccc cttgtcaagaa gcagacactg ttttgcgttag gacaacagac 240
gaatttcaaa gatataatggaa gaaaggatgtt ttctgccttctt acttataacac actgttgg 300
cctgttaagca agaaggggaa agaattccctg gtggctgacc gccactctgtt cataaaaccaa 360
gccttaataaa agccagaattt aaaaactgttgcgg tgcctggaaag tgcagaaaat caggttatgtt 420
tggaaacgacc tggagaagcg gtttcagaaa gttgggttgc tagaaagacag caattccctgc 480
tctgacatcc atcagacattt tggattgggtt ctgaccatgtt aagggcaaga ggtcagaaga 540
tttagtgcgtt ggcccaacgc cattggggat gaaatccaaac ccattatggaa gctgtttgtt 600
aaacagggttt taaatccattt ctatgttgcgtt caaggcttca cccttaactttt gttggctgtct 660
caagggttaca tagaataatctt tggccatc atcatttttttgcgttatttctt cattgttctt 720
agtgtgtatg atttgttgcaca gcaatcgtt aagctgttgcata accttcgttgc gggaccacaa 780
aaagtccagg ttacaatcat tggaaaagac aaagggtttgg aggaggttgcgtt atccctgtct 840
ttgggttccctt gggatcttctt tattttttttt catttgcgttgcgtt tgatgtgtttt 900
ttgttgcgtt gggatgttgcgtt ggttgcgtt ggcgttgcgtt caggagaaaag tatacctgtt 960
acaaagacac cattggccca gatggagaac actatgcctt gggaaatgttca cagtttggag 1020
gattatagga aacacgttctt ttctgttgcgtt acagaatgttca tccagggttca gcccctgtgg 1080
caggggccctgt tacgagactgtt cgttttgcgtt acagggttaca atacagccaa agggggacttta 1140
gtgagatcca tccatgttgcgtt cccggccctgtt aacttcaaaac tatacagcgtt ggccttcaag 1200
ttcatgttgcgtt tccatgttgcgtt ccttgcgttgcgtt atgggtttttt tctatgttgcgtt aggggttat 1260

atgtaccatg	gagttcctcc	aaaagatact	gtgaccatgg	ccctgtatcct	cctcacccgtg	1320
actgtccctc	cagtgtgcc	agctgcctg	accataggca	acgtgtatgc	tcagaagaga	1380
ctgaagaaaa	agaaaatctt	ctgtatctcc	ccacagagaa	tcaacatgtg	tgcccataa	1440
aacctcggt	gcttgacaa	aactggact	ctcaactgaag	atgggctgga	cctctgggg	1500
actgtcccta	ctgctgacaa	ctgcttccag	gaagcccaca	gcttgcctc	aggccaggct	1560
gtgccatgga	gcccactgtg	tgccggccatg	gccagctgccc	actctctgtat	ccttctcaat	1620
gggaccatcc	agggagaccc	tctggaccc	aaaatgtttt	agggactgtc	ctggaaaatg	1680
gaagattgtc	tttagatctc	ctgcacaaat	gggacgtcag	tttcaaacat	cataaaacca	1740
ggaccaaaaag	ccagtaagag	tccagtgaaa	gccatcatca	ccttgcgc	gtttccattt	1800
tcctcgagcc	tgcagaggat	gtccgtatc	gctcaatgt	ctggggagaa	tcattttcat	1860
gtctcatatg	aaaggcccc	agaaaatgtt	gccaggatct	gcagatctga	aacagtgc	1920
aagaatttcc	cacaggaact	gaggagttac	acgggtcaag	gcttccgtgt	cattgtctt	1980
gcccacaaaa	ccttaaagat	gggaaatctt	tcagaatgtc	agcacttagc	cagagaaaaa	2040
gtggagtcag	agttAACATT	tctgggactt	ctcatcatgg	agaatcgctt	aaaaaaagaa	2100
accaaactgg	tcttgaagga	actgagttag	gcccgtatca	ggactgtgtat	gattacaggt	2160
gataaccc	aaacggccat	tactgttgc	aagaattctg	aatatgtccc	tccaggc	2220
caagtgtatc	tttgtgaggc	cgatgaacca	gaagaatttg	ttctgcctc	tgtgacttgg	2280
cagctgggg	agaaccaaga	gactggatc	gggaaagaaag	aatatctat	gcatactgg	2340
aacagtccaa	ccccctcg	ggaaggagga	agctgttacc	attttgcaat	gagtggaaa	2400
tcataccaa	tgatatttc	gcatttcaac	agcttgcttc	aaaaaaatct	ggtaatgg	2460
acagtttttgc	caagaatgtc	tcctgggcag	aaatoaagcc	ttattgaaga	atttcagaaa	2520
ttaaatggct	gcacagtaca	aaatgaaagc	atctcagagt	taaccatgtc	tccaactgt	2580
ccagaaaaaa	tggaaaagtaa	tagcaccc	acaagttt	agaacactac	agtctgttc	2640
ttggaaacaa	tcaactgtat	cactgtggc	cttgcgttct	ctaaaggaaa	accatttaga	2700
cagccaaactt	atacaacta	tatatttgc	cttgcgtctg	taatacagct	tgggtatgt	2760
ctattcattc	tattgtgt	tataccagaa	ttatatacag	gttggatct	gctctgcact	2820
cccgccctgt	ggagggcctc	cattgtcatc	atgcttcagct	tgaatttcat	tgtgtccct	2880
gtggccgagg	aggctgttat	tggaaatcga	gcccgttgg	tgtgattaa	aagatgttc	2940
ggctatcgt	caaaaagcc	gtatcggtt	tgccggaggg	acttggccaa	tgacccttagt	3000
tggcccccc	taaaaaaaac	ctcccaactt	gacatggccgg	agtgtggcag	aggaggtgtct	3060
taacagcaatc	cagtatttgc	gagcaatgaa	gaacaactct	gaaggacatg	tgatatccaa	3120
gttgatatta	cagagaaaaca	atgacaaaag	ggaccagttt	cattgatttt	aagaaatgag	3180
actcttgc	catcagctgg	agttttggg	ctacccatca	aatatgtgt	acaaaactaaa	3240
gtctgttgc	taaaaatactg	tctacagaga	agaacattga	cccagaagag	tgctttccct	3300
ttggcttctg	aaggatttag	aggcattcag	tgaaggcag	aatgggccaa	gaattttctat	3360
gggccaagag	acaacgcaggc	taaaggggaa	aaatatgtg	tctttccct	tagacagg	3420
caatactttc	ctttttataa	aaataggttg	aggggaaatg	tgactgtgt	tactcagg	3480
gttgaattt	ttgaattttt	acttcatcga	tggaaaaact	aatgcgtgg	aaacattaca	3540
ccaaatctt	ctgtctgggt	tcctttctc	tgttagtactt	ttcagatttgc	aggcttttc	3600
ttctgttctt	ggcccttaccc	aacatattgt	taaggataag	tttagccat	gctgcaataa	3660
aaaacaactc	tcaaaaaaaaaa	aaaaaaa				3686

<210> 49
<211> 2807
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 3112883CB1

```

<400> 49
aagaattcgg cacgaggcca cagccgcggg tgcgtggtcg tgccgcaga ggcgatttg 60
gtgaacagac actcccttct gtagccatgg attgttacag aacttcacta agcagtctc 120
ggattttaccc cactgtgate ctctgcttat ttggttttt ctccatgtg agacccttcag 180
aaccattct tatcccatat ttatctggac cagataaaaa cctgaccagt gcagagataa 240
caaatggat cttccccgtt tggacatact cctacctggt gctgtctgtg cctgtgtttg 300
tcctcacccg ttatgtccgc tacaagccag tcatacatctt gcaaggatato agtttcatca 360
ttacactggct gctgtgttgg tttggccaaag gagttaaagac catgcggatgtt gtagagttct 420
tctatggat ggtcacccggc ggcgaggatgg cctactacgc ctacatatac agcgtgttca 480
gccccgagca tcaccagaga gtgagcggtt actgcaggag cgtcacgtg gccgcctaca 540
cagcagggttc ggtgttggct caactcttgg tatccctggc gaacatgtcg tacttttacc 600
tcaacgtcat atccttggcc tctgtctccg tggcttcctt ttctcaactt ttccctaccaa 660

```

tggccaaagaaa	aagcatgtttt	tttcatgc当地	aaccgc当地	agaaaataaaag	aagtcatcaa	720
cgctgaatcc	agtatttagag	gaaactca	aagggtga	accaggc	taagggc	780
aaccccacatc	agaaaataactc	agcacttc	ggaagctgaa	taaggccag	ctgaacagcc	840
tgaaaaccaag	caatgtgact	gtggacg	tttg	gttccaagat	ttgaaggagt	900
gctactc	aaaacgtt	ttctactg	ctctatgg	gctttc	acagcagg	960
ttaaccagg	tttgaactat	gttcaatcc	tgtggat	caaggc	tcccaagatt	1020
cttccatcta	taatggggcc	gtagaagct	ttgcaac	tggggg	gtggctgc	1080
ttgcagtg	ttatgtgaaa	gtcaactg	ac	agagct	ctggtgt	1140
tctcagtg	caatgc	ttttt	tcatgc	cacagcc	atctgg	1200
gctatgc	ctat	ttcaagt	gctatgc	tcttataacc	atagcag	1260
ttcagatgc	agttaatctg	aatgtgg	gctatgc	ggat	atcaacac	1320
tttgc	ggtattc	accat	ctgtgatt	atgatc	agagg	1380
acttgc	cagcatt	tttt	atgggag	tttgc	attgctg	1440
ttttc	gagaag	tatattac	actcaac	atccc	gatgtac	1500
gccctgc	aagtgaga	ccagatgt	ctcac	ggaagag	aatatcat	1560
tgtcaac	actcta	catcg	aac	tggctt	agttat	1620
taataagg	agat	atggg	tatgtt	cataact	catgtt	1680
aaatctgg	tccaat	cttcaaa	cacaac	cctc	agatgag	1740
tctatgt	caattt	ggat	gacag	gtc	at	1800
catattgg	acccc	tgt	gat	at	actctgt	1860
aagacat	gatggc	tttt	tgaaa	ccag	tggagt	1920
attcacc	tgtgagg	tttt	tttt	tatt	ctt	1980
tattt	tacca	ttt	gtcaac	gggac	ttt	2040
ttccttct	atta	ttt	ttt	ttt	ttt	2100
ttgtcccc	tcta	ttt	ttt	ttt	ttt	2160
tgtat	attat	ttt	ttt	ttt	ttt	2220
tgtt	aaagt	ttt	ttt	ttt	ttt	2280
ggtcatt	ctcc	ttt	ttt	ttt	ttt	2340
gttaat	ca	ttt	ttt	ttt	ttt	2400
gccaagg	ttt	ttt	ttt	ttt	ttt	2460
gcctcg	cccc	ttt	ttt	ttt	ttt	2520
ctgat	ttt	ttt	ttt	ttt	ttt	2580
gttaacat	ttt	ttt	ttt	ttt	ttt	2640
tcaagaa	ttc	ttt	ttt	ttt	ttt	2700
gtcagat	ttt	ttt	ttt	ttt	ttt	2760
gtgagagg	ttt	ttt	ttt	ttt	ttt	2807

<210> 50
<211> 2170
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 4253888CB1

```

<400> 50
gtgaatggcc cttccatccc ccgccccctgg tgtctcggtc tggtctgagg agacggggac 60
ccttctcaca ccggccgctg ccgcccgcgc gtcggaaac agatccagtc cttctgtgga 120
acttctgaac atctttatt agtggaaata ttttctacac aatgaagtca acaacttaat 180
ttaaaccagt gtttgtcggt ttctgattca tctgtgtgg tttcccaagaac ttgagatcta 240
aggagtacag ggtcttttgcgatgacaata tgactaatag taaaggaaaga tcttattaccg 300
ataaaaacaag tgggtgtcca agtagtggag gaggtttgt agattggact ttacgtttaa 360
acacaattca atccgacaag tttttaaatt tactctttag tatggttcca gtgatttacc 420
agaaaaaaccga agaagacagg cacaaaaaaac caaacggcat ttggcaagat ggattatcaa 480
ctgcagtaca gacttttagt aatagatctg agcaacacat ggagtatcac agtttcttag 540
agcagtcttt tcatgccaat aatgggcacg catcatcaag ctgcagccaa aagtatgtatg 600
actatgccaa ttataattac tggatggaa gggagacttc aaaaaccact gccatgttatc 660
aagatgaaga tatatcttagt gatggtgatg aagatgtat tgtagaaagtg aaaaaaaat 720
tacccaaaggatccaggatc atcatggcat tgcaataact tggtccccctt ttgcgtatgt 780
gttttggaaac agtttcaggttgcgtatggat tggatatagtt acagcacttgg gaggtgttca 840
gaaaagttagtac agaaattttc atttttagtcc ctgcacttct tggtctcaaa gggaaacttgg 900
aaatgacatt ggcatccaga ttatccactg cagtaaatat tggttaagatg gattcaccca 960

```

tgtaaaaatgt	gaacctataa	attggcaact	tggctttaaa	gcagggttcag	gcaacagtag	1020
tgggtttct	agcagctgtg	gcagcaatta	tattgggctg	gattccagaa	ggaaaatatt	1080
accttgcata	ttccataactt	ctgtgctcta	gcagtgtggc	aactgcctc	attgcatctc	1140
ttctgcaggg	aataataatg	gttggggta	tcgttggtc	aaagaagact	ggtataaaatc	1200
ctgataatgt	tgctacaccc	attgctgcta	gtttggcga	ccttataact	cttgccatat	1260
tggcttgat	aagtccaggc	ttataactcc	gtcttgagac	cttattactac	atttctccat	1320
tagtttgt	attttcttgc	gtctcaaccc	ctatttggat	tataatagct	gccaacatc	1380
cagcccaaaatc	aacagtctc	cactcaggct	gggagctgt	cataaacatc	atggttataa	1440
gttagcatgg	gggccttatt	ctggacacaa	ctgtatcaga	ccccaaacttg	gttgggattg	1500
ttgtttcac	gccagttatt	aatggtatttgc	gtggtaattt	ggggccatt	caggctagca	1560
ggattttcac	ctacccat	ttacatagca	ttccaggaga	atggcctgtat	gaacccaaag	1620
gttgttacta	cccatttaga	actttcttgc	gtccaggagt	aaataataaag	tctgctcaag	1680
ttctactgtt	tttagtatt	cctggacatt	taattttcct	ctacactatt	catttgatga	1740
aaagtggtca	tacttcttta	actataatct	tcatagtagt	gtattttttt	ggcgctgtgt	1800
tacaggatt	tacccgtgt	tggattgtctg	actggatgtt	ccatcaacttc	tggaggaaag	1860
gaaaggaccc	ggatagtttgc	tccatccccct	acctaacaage	atgggtgtat	ctgctcggga	1920
cagctctgtt	agcccttaagt	ttcatttttc	tttggcttat	tggagatcga	gatggagatg	1980
ttggagacta	ataaattcttca	caaactgtct	tcaagtacc	aagaagaaaa	atacacgaca	2040
accacttgc	gctcttttgc	aaaactctta	aatcagtagt	ttgacttttg	ccagggttaat	2100
cttcagttgg	ccctgattca	attaaatggc	cttaattttt	tttaaggaa	tttgtgtcaa	2160
aaaaaaaaaaa						2170

<210> 51
<211> 1722
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 7479974CB1

<400>	51					
atggatgctg	ttaaaaactt	aaataaaattg	aatttagata	acattgagtt	aacaaaatat	60
ttgttttta	ctggtaaagg	tggcgttagc	aaaacaacga	tatcaagttt	tattgcctta	120
aaccttagcg	agaatggaaa	gaaagtagct	ttagtaagta	ctgatccagc	tagtaattta	180
caagatgtat	ttcaaatgga	attatctaatt	aaattaaacta	aatatcaacc	tataccat	240
ctctctatag	ccaaatccg	cccggatttt	gctgcagacg	attataaagg	acaatctata	300
gaaccttatg	agggttattct	accagaagat	gtgcttgct	aaatgaaaga	acagttagt	360
ggttcatgt	cagttgaagt	agcgcattt	aatgaattta	caaattttt	atccgataaa	420
actttagaac	agaattttgt	tttcattata	tttgatatacag	ctccccacagg	tcacacttt	480
agaatgcgt	aattaccc	tgcatggaca	gattatttaa	atacaacacg	taatgacgct	540
tcttgcttag	gtcaatttac	aggtttaat	gaaaatagag	ttaaatataa	ttcagcactt	600
aaaaaaactac	gtaaccaaga	tgatagcacc	atgatgttag	ttgcgagacc	tactcactt	660
tctatataat	aaattcaaa	agcgcacaa	gaattacaac	aactgtcaat	ttctaaattc	720
aaagtaatca	ttaacaacta	tatagaagaa	agtcacgggt	taatttcgag	tcagatgaaa	780
tcggAACAAg	ataaaaaacat	taatcattt	actgaatgg	taataaacaac	tcatgcttat	840
tacgttccat	ataaaaaagca	gaaagaagaa	ggtatagaaa	atthaataaa	tctattaaat	900
gatgataact	taattggaaa	tgatgactt	attgttgaag	atcatccgc	attaataaaa	960
ttatcgat	aaattggaaa	tagttaagg	caatattat	ttacaatggg	aaaagggtgg	1020
gttggtaaaa	cgcacgtac	aacgcaatta	gctacagcat	tatctaataa	aggatatcgt	1080
gttcttttag	caactactga	ccctactaaa	gaaattaatg	ttgaaactac	aagtaattta	1140
aatactgctt	atattgtga	agaacaagca	ttagaaaagt	ataaaaaaga	agtactagcc	1200
acagtgaatg	atgatacacc	acaagacgat	attgattata	ttatggaga	ttaaaatca	1260
ccttgtacag	aagaaaatgc	attttcaaa	gccttttagt	acattatgg	gaatcaagac	1320
gacatggatt	acgtcattgt	agacacagct	cctacaggcc	ataccttgct	gttacttgat	1380
tctagtgaaa	atcatcatag	agaattaaag	aaaaaatcaa	ctcaaactac	cgttaatgtt	1440
gaaacattat	tacctttaaa	tcaaaaaaaa	aatttaacac	agatgataat	cgtaaacacta	1500
gcagaaaaaaaa	cacccatttt	agaatctaaa	cgttttagtag	agatttaaa	tagagctaat	1560
ataggccata	atgggtgggt	tgttaatcaa	tcgttagtta	cgctaaatca	acgtgtatgac	1620
cttttagta	acaaaaaaaga	agatgaatca	ttttggataa	acaagattaa	aatgaaagtt	1680
tttgacaatt	atttgtcat	acctttaggg	gggttatcat	aa		1722

<210> 52

<211> 1424
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 7483850CB1

```

<400> 52
ctgatgtcta tttaggaaga aacaaactgg tgtatatttgc cttgtttcta cattttctag 60
gcactgcctt gttatctgtg gtggcttttc ccttggaaaga tttctatctg ggcacttacc 120
atgcagttaa caacatacca aaaacagagc agcacaggct gtttatgta gcactgctga 180
ccatggct tggcatttggaa ggcgtaaagag ccatcgctg tccactgggt gcttttgccc 240
ttcaggagta tggatcacaa aaaacatgtt cttttttaa ctgattccctt caggatatta 300
tctgcaaaact atgaatttcca acctgaattt ggatggattt ctctgcggaa ttgcagtaat 360
aatggccatc agcggcttac cattactaat tctggctctt tttctggagt atttcagcac 420
ctgctgtt cccttcaaga gagttggatc atttctgtca acatgcataa ttgctggaaa 480
tcttttgcgt gcatgtctg tggatgttcc tggcttctt gaaataccacc gaaaacattt 540
ccctgcagt gggccccc ttccaggaaa agttctactt gttccctcca tgccctgttt 600
ctacctgatt cttagtatttgg tttacttgg agtggccggaa acactggtaa acccagccct 660
ctctgttaata tcatacagat ttgttccaaag caatgtcaga ggaaccttcca tgaattttct 720
gacactgttc aatggatttgc gctgtttcac aggggcaactg ctggtaagt tggatatact 780
catctcagaa ggtaaaaata ggcaatggtt tccaaacaca taaaacaaaag gcaattttaga 840
aggettcttc ttcttcgtt catcattaaac attgttgaac gtccctggat tctgcagtgt 900
ttcacaagaata tattgtatc taaatcattt taatgccag aacatccgtg gaagtaatct 960
tgaagaaaca ctttcctcc acggaaaaatc tctgaaattt tatggcgtt tacaggaatt 1020
ttcttcagaat ttgtatctt gggagacagc cctatgaaatc tggatgtttag tctacccgtc 1080
ttatggaaac agtatttcattt gttttcttct tcagttggac attttatgtt ttttagtgta 1140
aaagccaaata tatacagagg tgattttaca aatatcatct gtatacttta tttacaaga 1200
ctaattatga attttcttagt aaactgtcat gcttttgcatt taacatgtta tagcattttaga 1260
atthaataaaa ataatttcaa agtctcgtt attactctat gacaaaaaaaaaa aaaggggggc 1320
ggccgatttagt gagttcgtc gacccggaaa taattccggaa cgacactgca ggcgtaggcg 1380
atccctoqagat tccatcaatg ggggcgtcga gcatgtttaa aggc 1424

```

<210> 53
<211> 3598
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 5508353CB1

tgccagagca agtgcattt agtgaagatt tacttcagcc tcctgtcccc cggacttag 1200
 gtttacgagc tggactcatt atcactggaa agaccctgaa gtttgcctg caagaaaatgc 1260
 tccaaaagca gttcctggaa ctgcacatctt ggggtcaagc tgggtctgc tgccgagcca 1320
 caccgctgca gaaaagtcaa gtggtaaat tggcccgag ccatcccgat gtgtaccc 1380
 ttgttatgg tggatggcc aatgtatgtt gcatgataca agtggcagac attggatag 1440
 gggctcagg tcaagaaggc atgcaggctg tggatggccag tgacttgcc gtttctcagt 1500
 tcaaacatct cagcaagctc cttctgtcc atggacactg gtgtataaca cgctttcca 1560
 acatgattct ctatttttc tataagaatg tggctatgtt gaaaccttctt ttctggtacc 1620
 agttcttttgg tggatttca ggaacatcca tgactgatta ctgggttttgg atcttcttca 1680
 accctcttcc cacatctgccc cctccgtca tttatgggtt tttggagaaa gatgtgtctg 1740
 cagagaccct catgcaactg cctgaactt acaaaaagtgg tcagaatca gaggcatact 1800
 taccccccatac cttctggatc accttattgg atgcttttta tcaaagcctg gctgcttct 1860
 ttgtgccttta ttttacccatc cagggtctcg atactgacat ctttgcattt gggaaaccccc 1920
 tgaacacagc cgctctgttc atcggttctcc tccatctgtt cattgaaaggc aagagtttg 1980
 ctggatttca cttgtctggc atcattggta gcatcttgc ttatgggtt ttggccatag 2040
 ttttggagc catgtgtgtt acttgcAAC caccatccaa cccttactgg attatgcagg 2100
 agcacatgtt ggatccatgtt ttctacttag tttgtatctt caccgttcc attgcttcc 2160
 tggccagggtt tgatatacaga gtttccgtt gatccctgtt tccatctcca attctgagag 2220
 ctaagcaactt tgacagacta actccagagg agaggactaa agctctcaag aagtggagag 2280
 gggctggaaa gatgaatcaa gtgacatcaa agtatgttca ccaatctggc ggcaagtctg 2340
 gaagaagacc catgcctggc cttctgtctg tatttgcattt gaaatgttca agttccctgtg 2400
 ctattgagca aggaaacttta tctctgtgtt aaactgtttt agatcaaggc tactctgaaa 2460
 ctaaggccctt tgagatggct ggacccttca aaggtaaaa aagctagata ccctcccttgg 2520
 agttcaagt atttttcaat ggttggaaaga gggattttgg agaggatctt ctccaaagccaa 2580
 gaatgacttgc tttttccata aggacatgtt gcatgttactt agggctggaa gagctgacat 2640
 gatgagcattt attgtatgtt tgatataca tttgtatgtt tttgtatgtt agggcttagg tttgacccat 2700
 agagagtttta aggaaggtaa atattttaattt cagaacccaa tgctttgtt aacttttttgg 2760
 gattttgttta aagcattttc attcttcttagg aaattcaagt attttcaagg ggagtctt 2820
 gagatatttatttatttacta ggagatcttta tattctaggg aaatgttta aatgggtcagg 2880
 ctccagtcgg aatttttttta agaaaaaaatg agtttttaat acattggtaa ggactcagag 2940
 gaaaatacggaa aaaaacattttagatgttta atttacagat aaaatccaa gggcccttta 3000
 aacaacaagg tacctaaaaat agggtataat tataactgtt aaaatatacgat tagtgcctat 3060
 taatagctttt ttatccata tggggagatg cttttggctt tctggctgaa gatgttaggca 3120
 taccttcac tcatttcaat gtttccctgaa ggtggagctt tcattggaaa ggggaaagag 3180
 ggattcttagg gtttcatcg ggaccaggaa tgcatccctc tgcagggttcc caatcaagg 3240
 aagacatctttt atgagatctg cctctgtata gatgtctgtca gtttagaaac tggccatata 3300
 ggtcaggaga catcagtcgatc gcctgtggcc atgggttattt tctgttattt taaaactgtac 3360
 agtagcctgatc tccaaacgttatacat tttcaacacc atccttcaga gggacaatgtg 3420
 aggtcattaaat gtttacaat tacctggata ttttcagggtt gttggccctc taaaattggaa 3480
 ttaacacggaa actatacagt ggtccggagg tcaagggttca ggggggttca cggaaaattt ggtacatctc 3540
 tcggccggag tcacacagtc cctcggactt gtcgggttca cacacatttca cagggggca 3598

<210> 54
 <211> 1485
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 8543628CB1

<400> 54
 gctattggat tctccctata tgagtcgtat taatttctac tacggaaatgc tcggccgtgt 60
 gacgctgttgc tgcgtgtgt tggatggcc gttgtcgctg ttgtctagcc gcctggaaag 120
 gagggtcccgat catggccaggat tcgggtcttg agttgtctcg ggtgtcgctt ccccaactgg 180
 gcaaggccgc tgcgcAAAC ctgtcaattt ctgttttggat catgggttc agtacgggtt 240
 gcggcgtgtctt ctacggcgatc ctgcgcactt tgaataacaa ggcgtatcaac ggccgtgttgc 300
 ggggtctacccat ggaactgttcc cggccatcc cgggtgtgtt gttgggttac ctgtctttttt 360
 ttggcggtgcc gatcttcttc ggcctgagca tcccgagttt ctgggtcgcc gtgtcggtgc 420
 tggcggtgtt gggcgccaggc gaggtggccg aagtgggtcg tggcgccgtt cattcgctgc 480
 cccgtggcca acgcgaagca ggcttgcgtt tggccctgtt cggccatccatgtt ttttacgggt 540
 acgtactgtt gccccaggcc ctcaggcgatc tgacggccggcc gaccatcaac gtgtacacgc 600
 gcatcatcaa gaccatgttcc ctggcggtgc tgatggcggtt ggtggatgtt atcaagggtcg 660

gccagcaaat catcgagcgc acctacgagt cggatttatgt ctacggtgcg ctgttcctgt 720
tttcttctt tatctgtac ccgttgtcgcc cccctccaa gctgctggaa cggcgctggg 780
cccaaggatg agcgcatgtga tcgagttcca gggtttcaac aaattcttcg gcgaggcgca 840
ggtgctcaag ggcatcgacc tgaggctgca ggcgcggcgaa gtgggtggta tcttaggccc 900
cagcggctgt ggcaaaaagca ccttgttgcg ctgcctcaat gggctggaag tcgacgacag 960
cggcagccgt cgctttggcg gcaaaagagct gctggataaa accaccgact ggcgcctgggt 1020
acgcaggac attggcatgg tatttcagag ctaccacctg tcccccacat gagcgtgcct 1080
cgaaaacatcc tgctcgcccg ctgaaagtgg aaaagcgcgaa cgcgtgggt gcctgtgagc 1140
aggcggaaaa atgctggag cgccgtggcc ttgcccggaaag cgacacgcct tccccacgcc 1200
agctttccgg tggccagcaa caacgcattcg catcgccgt cggtgtgcatt gaaccctcag 1260
tcatgctgtt gacgaagttt accggggcct cgccgaaatg gcaggaatgt tgagtggtcc 1320
agaattgccc gagggttacc ctgttttcc cagaatgggtt gccggcgccg cgacagggtg 1380
atgagggcgc tctaaaaaac ccgggtttta ccgcacgcgc gactggagct ttcccccaa 1440
gaggttaatta cgctgcctcg gggagaacaa cggagacaca cgcgc 1485

<210> 55
<211> 1470
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 7482754CB1

<400> 55
gcctgttctg cagaggagga ggctgggctc agggcacttt tcacgcccccc tccgttgggc 60
tggggacattt ggttaagccat ggaggggacag accccaggaa gcagggggct tccagaaaaag 120
cctcaccctg ccacggctgc tgccactctg tcctcgatgg gcgctgtctt catcctctatg 180
aagtccgcgc tgggagctgg cctgctcaac ttccccctggg ccttctccaa agcggggcgga 240
gtggtccctg ctttcctgtt ggagctggc tcgttggct tcctgatcag cgggctggc 300
atcctgggtt atgctgtgc tgtcagtggc caggccaccc accaggggtt ggtcaggggg 360
ctgtgtggcc ctgcatttgg gaagctgtgt gaggcctgt tcctcctcaa cctgctcatg 420
atctccgtgg ctttcctcag ggtgatcggg gaccagctgg agaagctgtg tgactccctc 480
ctgtctggca cccccccccccccc cccgcagccg tggtaacgcag accagcgctt caccctgcccc 540
ctgtctccgg tgctggatc cctgccccctg tctggccccc gggagatcgc cttccagaaaa 600
tacacaagcc cctcacacccggt tcactgtgtt agcatcttag gcactctggc tgctgtttac 660
ctggccctgg tcatcaccgt gcgtactac ctctggccccc agggcctgt ggtgagttcc 720
catccttcac tgagccctgc ctctggacc tctgtttca gtgtcttccc caccatctgc 780
ttcgggttcc agtgtcacga agtgcgttc tccatctact gcagcatgcg caaacgggac 840
ctctcccaact gggccctggt gtctgtgtc tcctgtgttgg cctgtgtccct catctattca 900
ctgacgggggg ttatggctt cctactttt gggacagaag ttctgtga cgtcttgatg 960
tcctaccctgg gcaatgatat ggtcatcatt gtggcccccggg tccttttgc tgcctccatc 1020
gttaactgtct accccatctgt gctttctgtt gggaggtcag tgatgcaggaa cttctggagg 1080
aggagctgtt tggggggatg gggcccccggc gcccctggccg accccctcagg gctgtgggtc 1140
cgatgcggc tgaccatctt gtgggtcacc gtgacgtccg ccatggcgt gtgtatggct 1200
gacccatcgcc agatcgatc catcatcgga ggcatttcat cttcatcttc 1260
ccaggccctgg gaggcaaca ccgtttctgc gaaggatgtt ttcttaggaa accctcccaa 1320
acagcccaag cattatctga gaaggggaaag ccagcaaggt ttgtgcctca tctgtgcaat 1380
gggtgtcgag cctataggac caagagtcaa gtgagaaacc tgcgagccac aggaagagag 1440
tctctgtcta cccagtatga gggcatctga 1470

<210> 56
<211> 3132
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 3794818CB1

<400> 56
atggagtttgc tgccggcgct gtggctgggc ctggcgctgg cgctggggcc ggggtcccg 60
ggggggccacc ctcagccgtg cggcgctctg ggcgcctccgt ggcgcctggc 120

gccccttcgtc cccggcgccc ttcggccccgc gcccgcgccc gcgccgcctt ggcccggccc 180
 gcccctggcgc cgccggctgcc gcacaacctg agcttgagc ttgtgtcgcc cgccgggggg 240
 gccccgcacc ccgcctcgct gaccggcgcc ctgtgcccagg cgctgtgtgc tcggggcggtg 300
 gccccctgtc tgcgtttcc cgaggctcggt cccgagctgc tgcaagctgca cttccctggcg 360
 gccccccaccc agaccccccgt gctcagccgt ctggcgccgg aggccgcgcgc gcccctcgga 420
 gccccgaacc cattccaccc tcagctgcac tggggccagcc cccttgagac gctgtggat 480
 gtgtgtgtgg cgggtgtcgca ggccgcaccc tggaaagacg tcggcttgc cctgtgcgc 540
 actcaggacc ccggcgccctt ggtggccctc tggacaaggcc gggctggccg gccccccacag 600
 ctgggtcttgc acctaaggcc gcccggacacg ggagatgcag gactgcgggc acggctggcc 660
 ccggatggcgcc cgccagttgg gggtaagca ccggtagcccg cggcggtctt cctcggtgt 720
 gacatcgccc gtggccgtcg ggtgtggag gccgtaccc tcggcccccata ctggctgtt 780
 gggacaccac tggccccaat gggccctggcc accggggggc tgccaccagg gctgtggcg 840
 ctggggcgagg tggcacgacc cccgctggag gcccgcattcc atgacattgt gcaactgggt 900
 gccccggcgcc tggggcagtgc gggccagggtg cagccgaagc gagccctctt ccccgccccgg 960
 gtcaactgcg gggacactgca gcccggccggg cccgagttcc cggggcgctt ctggcacccg 1020
 ttccctggccca acacgtctt ccaggggccgc acggggccccc tgggggtgc aggcaactcc 1080
 caggatcacca tggctcgca cttttagtgc tggagcccttc gcccggaccc acggggcgcc 1140
 cccggcttggg ccacgggtggg cagctggcg gacggccagc tggacttggaa accggggaggt 1200
 gcccctgcac ggccccccgc cccacagggt gcccaggctt ggccccaaact gctgtggta 1260
 aegctgttgg aacacccatt tggtttgc cgtgatccag acgaagacgg gcaagtgcaca 1320
 gccccggcgc tggcccttggg ccctggcacc aacgacttgg ccaccctggaa cgcactgttc 1380
 gcccgcgtgg ccaacggctc agcggccctt gcccgcgtca agtgcgtcta cggctactgc 1440
 attgacctgc tggagccgtt ggcggaggac acggcccttcg acttcgagct gtaacctcg 1500
 ggtgacggca agtacggcgc cctggggac gggccgttgc cccggctgtt cggggacccgt 1560
 ctggccggcc gggcccat gggccgttacc agcttcgatca tcaactccgc cgcctcacag 1620
 gtgggtggact tcaccagccc cttttcttc accaggcttgc gcatatggt gcccggaccc 1680
 gacacggccctt caccatcg tgcctttatg tggcccttgc actggccac gttggctggc 1740
 gtctttgggg cccctgcaccc caccgcgtc ttccctcaccg tggactggatg gctgtggcc 1800
 tacggccatca cgccacgtgg ccgcacccgc agcaccgttct ttccttactc ctcagccctc 1860
 aacctgtgtt acgcccatttc ttccagacgc accgtgttcca gcaagacggc caagtgcaca 1920
 acggggccgc tgcctcatgaa cctctggcc atcttcttgc tgctgtgtt gtcctagctac 1980
 acggcccaacc tggctggcgt catggcgccg cacgacccca agctgcacca cccggcgccag
 agcgccggagg cgtacatcaa gaagagctt acggccatccca ccacggccccc cccgcgttgc
 agcgccggccca ccacggccccc cggcgccgc gtcctatca tggacaatggc gtcggggatc 2040
 gacaagaccc tggctggcgtt catggcgccg ggttccgct tcggccacccgt gtggggagage 2100
 agcgccatccca ccacggccccc cccgcgttgc acgcacacat gcccggccac 2160
 atgcctacca gtcctatggt gtcctatggt gtcctatggt gtcctatggt gtcctatggt 2220
 ttcggggcc ttcctgttgc ttcctgttgc ttcctgttgc ttcctgttgc ttcctgttgc 2280
 ggcctggca ggcgtctgtt cagctcgctg gggggctatg ggatcgact gcccggggac 2340
 cccgcgtatcc gcaagggggag cagctgcagc atcagccgtt acaagtgcctc cggcttcatc 2400
 cgcgcctca acacggagcc accagagggg agcgccccc aggtggagca gcaagccgggt 2460
 acagagaccc tgcagatgag catctaccac gtcctatggc ttcctgttgc ttcctgttgc 2520
 ggcctggca ggcgtctgtt cagctcgctg gggggctatg ggatcgact gcccggggac 2580
 tactggctgc acacccggcc gaaaatccac 2640
 tcgaaggagg agacggcaga ggcggggccc 2700
 cagcaggacc agccaaacggc tccggggggc 2760
 gagcggccggc tgccgttccct gtcggggcc 2820
 tggaaacgggg cggccggggc cttggacaatg gggggggggc ctggccggcg agagggggggc 2880
 gcccgtgggtt tggacccggc agccggacggc gggggggggc ctggccggcg agagggggggc 2940
 gggggagctgc aggagcttgg ggcggccatc gaaatgcgtgc gtgagccgtt cccggccaggcc 3000
 ctgggtcgcc gcccggccatc cttggccatc gtcctgggaca ggcacgtca cccggccctcg 3060
 cgcttgcgttcc aggccagagc ggccccccgg gaggccccac cacactctgg cccgaccgggg 3120
 agccaggaat ga 3132

<210> 57
 <211> 1832
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 4717525CB1

<400> 57
 ggagctgacc ctgcggggtc ccggggggggg agggggagcc gcaagccccc cactgagtgc 60

cggcgctgcc ggggggggag ggggagccgc gaagccccca ctgaggccgc cgctgccggg 120
 cctccccctcc cccccggcgc ggcgccatgc gggggagccc gggcgaacgcg gagcggcggc 180
 agcgctgggg tcgcctgttc gaggagctgg acagtaacaa ggatggccgc gtggacgtgc 240
 acgagttgcg ccaggggctg gccaggctgg gcggggggcaa cccagacccc ggcgcacaac 300
 agggtatctc ctctgagggt gatgtgacc cagatggcgg gctcgacactg gaggaatttt 360
 cccgctatct gcaggagcgg gaacagcgtc tgctgctcat gtttcacagt ctgaccgga 420
 accaggatgg tcacattgtat gtcttgaga tccaacagag tttccgagct ctggcattt 480
 ccatctcgct ggagcagact gaaaaattt tgcacagcat ggaccgagac ggcacaatga 540
 ccattgactg gcaagaatgg cgcgaccact ttctgttgc ttcgctggaa aatgtggagg 600
 acgtgtgtt tttctggaa cattccacgg ttctggacat tggcgagtgc ctgacagtgc 660
 cggacgagtt ctcaaagcaa gagaagctga cgggcatgtg gtggaaagcag ctggtgccg 720
 ggcgagtggc aggtgccgt tcacggacag gcacggcccc tctggaccgc ctcaaggct 780
 tcatgcaggt ccatgcctca aagaccaacc ggctgaacat ccttgggggg cttcgaagca 840
 tggtccttga gggaggcata cgctccctgt ggccggcga tggtagaat gtactcaaga 900
 ttggcccccga gtcagctatc aagtcatgg cctatgaaca gatcaagg gccatccctgg 960
 ggcagcaggaa gacactgcat gtgcaggagc gcttcgtggc tggctccctg gctgggtccca 1020
 cagcccaaac catcattac cctatggaga ctctgaagaa ctggtgctt cagcagtaca 1080
 gccacgactc ggcagacca ggcacccctcg tgctccctggc ctgcgttacc atatccagca 1140
 cctgcggcca gatagccagt taccggctgg ccctggctcg gacccgcattt cagggcacaag 1200
 cctccatcgat gggtgtcccc cagctgtcca tgctgggtct gctacgtcac atccctgtccc 1260
 aggagggcat gcccggcctc taccggggga tcgcccccaa cttcatgaag gtattccag 1320
 ctgtgagcat ctccatgtt gtcacgaga acatgaagca ggccttaggg gtcacgttcca 1380
 ggctcgagta cagtggtcg atttcagatc actgcaacct ctgccttcca gttcaagcg 1440
 attctccctgc ctcagctcc agagtagctg gtattacagg atttcatcat gttgcccagg 1500
 ctcatctcggt actctgtggg tcaaggaattt cggcagccctt cagcccttcca acgtgtggg 1560
 attacaggaa gccggctgc atgcacatgg cagccttatg gatgtggacca tggtaagg 1620
 aactcagcca atagccatgt aacttaggt tgaagaggat cttgtgtcc tgcccaacat 1680
 ctcactgcgtt ttctatcagt tgaatttctt ggatagtcca agctttttt gatcccttca 1740
 ccggtagcgc tgggttccag taactgaatc ctgagtttta tgatgttttta ctcaagcat 1800
 gggtcaggggg acagcgggtt atgggttccct tg 1832

<210> 58
 <211> 1902
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 5091793CB1

<400> 58
 cccaccttca gtcctggctc tgacaagccc tccagcttca cgccacccgg gatgggagaa 60
 agcagggtgtc gcgagagggt ggcgcacagac gccttggtagg gatgtgtaat atggccggcc 120
 tgccggAACGA aagtgaacag gagccgcctt taggcacac accttggaa acgaaatggg 180
 acatTTTGA gactgaagag cattataaga gccgtgggg atctttagg attttatatc 240
 ttactatgtt ttcagcgtt gtagggttt ctgtgtgtat gatgtccata tgccatata 300
 tccaaaAGAT tgatccgaca gctgtatcaa gttttttggg ctgggttattt gcttcatata 360
 gtcttggcca aatggtagct tcacccatat ttggttatg gtctaattat agaccaagaa 420
 aagacccctt tattgtctcc atttgtatcc cctgtggcagg caactgcctc tatgtatcc 480
 tccacatccc agcttctcat aataaaatact acatgtgtt tgctcgttggg ttgtgggaa 540
 ttggagcagg aaatgttaga gttttagat cataactgc tgggtctact tcccttcagg 600
 aaagaacaag ttccatggca aacataagca tgggtcaagc attaggtttt attcttaggtc 660
 cagTTTTCA gacttgggg acatccctt gaaaaaaagg tggacatgg gatgtgatta 720
 aactgcagat aaacatgtat acaacacccag ttttacttag cgccttccgg ggaattttaa 780
 atattattctt gatcccttgc atactaagag aacatgtgtt gatgtactca ggaagacagt 840
 gtaaaaAGAT taatTTTGA aagcaagta cagatgaagc tcagggttttccca caaggaaata 900
 ttgaccagggt tgctgttgc gccatcaatg ttctgtttt tggacttca ttatctttt 960
 cccttttga aaccatcatt actccattaa caatggatat gtatgcctgg actcaagaac 1020
 aagctgtgtt atataatggc ataataacttgc ctgctcttgg ggttgaagcc gttgttattt 1080
 tcttaggagt taagttgtt tccaaaaaga ttggcgagcg tgctattctt ctggggaggac 1140
 tcatcggtt atgggttggc ttctttatct tggtagtccctt gggaaatcaa ttcccaaaaa 1200
 tacagtggga agatTTGcAC aataattcaa tccctaaatc cacattggg gaaatttatta 1260
 ttggtcttttga aaggtctcca atggaaagatg acaatgaaaag accaactggg tgctcgattt 1320

aacaaggctg gtgcctctac accccggta ttcattctggc ccagttcctt acatcagctg 1380
tgctaataagg attaggctat ccagtctgca atcttatgtc ctataactcta tattcaaaaa 1440
ttcttaggacc aaaacctcgag ggtgtataca tgggctgggt aacagcatct ggaagtggag 1500
cccggattct tgggcctatg ttcatcagcc aagtgtatgc tcacttggga ccacgatggg 1560
cattcagctt ggtgtgtgaa ataatagtgc tcacccatcac cttctggga gtggtttaca 1620
aaagactcat tgctcttct gtaagatgt ggaggattca ggaataaaact agctaagact 1680
gtatggaaa ctacttgcgt tggactt cctggcttaa agtctgcata gacaattgcg 1740
gttgggtgca gtgtctcatg cctgtaatcc cagcaacttg gaaggccaag gcaggaggat 1800
tgcttgaggc caggaattca agaccagct gggaaacaaa gtgagaccct gtcttacaa 1860
aaaataaaaa caaaaattta aaactgtaaa aaaaaaaaaa aa 1902

<210> 59
<211> 2820
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 5945527CB1

<400> 59
gcgcggcagct ctgtagcctc ctccgtcgac tcagccttag gtaccggta ggcaaaaatgc 60
ggctcccccgggatggctgggtct tccggccctt ctccaggggac agctgggtcc 120
gaggcctcat cctgtgtgtc accttcctaa ttacgcctg ctatcataatg tccaggaagc 180
ctatcgtat cgtcaagagc cgtgtgcacc agaactgtc ggacgatc aaacccatca 240
atgataactca cagtctcaat gacacatgt ggtgcagctg ggccccattt gacaaggaca 300
actataagga gttacttaggg ggcgtggaca acgccttc catgcctat gccatcgcc 360
tggtcatcag tgggggtttt ggggagcgcc ttccgctccg ttactaccc tcagctggaa 420
tgctgctcag tggcctttt acctcgctt ttggcctggg atatttctgg aacatccacg 480
agctctggta ctttgtggc atccaggctt gtaatggact cgtccagacc acaggctggc 540
cctctgtggt gacctgtgtt ggcaactggc tcgggaaaggg gaagcggggg ttcatcatgg 600
gcacatctggaa ttcccacaca tctgtggca acatcctggg ctccctgtat gccggcatct 660
gggtgaacgg gcaagtggggc ctgtgttca tcgtgcctgg catcattact gccgtcatgg 720
gcgtcatcac ctcccttc ctcatcgaa acccagaaga tgtggactgc gccccttc 780
agcaccacgg tgagccagct gagaacagg acaaccctga ggaccttggg aacagtccct 840
gtcttcatcag ggagaggccc cttagactg tggccaaatg ctccaaagggg ccatgcgaag 900
agctgctgc catcagttc tttggggcgc tccggatccc aggctggc gagttctc 960
tggtcctgct gtttgcctaa ctgttcgtt acaccccttctt ctactggctg cccctctaca 1020
tcgccaatgt ggctcaattt agtgcctaaagg aggctggga cctgtctaca ctcttcgtat 1080
tttgtggcat cataggcccgc atcgtggcag ggctgtctc tgactacacc aatggcaggg 1140
ccaccacttg ctgtgtcatg ctcatcttgg ctggcccat gatgttcctg tacaactaca 1200
ttggccagga cggggatgcc agtccatag tgatgtctgat catctgtggg ggcctgggtca 1260
atggccctata cgccgtcatc accatgtc tctctgtca tctggggact cacaagagcc 1320
tgaaggggcaa cgccaaagcc ctgtccacgg tcacggccat cattgcggc accggctcca 1380
taggtggccc tctggggct ctgtggctt ggctcatctc ccccaacgggg tggaaacaatg 1440
tcttctacat gtcatcttgc ggcacgtcc tagcctgtt gtcctttgc cggttagtat 1500
acaaaagagat ctggcctgg aagggttccc tgagcagagg cagcgggtat aaagaaaatat 1560
gaggccccaa ttggAACAGC agcatggagg gtcccagg tggcccaac gtgctcccc 1620
tggggcaagac aatggaaact tccacaagca gggggaggcaa accctttta ttgaacatta 1680
gccagccccag cccagacccc aggctgcctt aaggacacag agattctca tggaaagggg 1740
actgccaaggc atgagggaaat agaagattca ggggcctgag ctctggaaagc tgcacaa 1800
agggatggga ctagggtgtca gttgtgtctc cattttgtata agggaaaggat atgctcacac 1860
tcttgcgttgc tcaatgttca agacagaagg cttcacttgc ccaacgcctg gaaaatgggc 1920
atcttccttcccttccatgttca gctttaatcttgc cttgtatcttca taggtggc 1980
tctcaatgttca tcaaaggagc ccacgccttc tttgtccctc taccatgcaaa cagtcttc 2040
tgcatttc cccaaaggctgg gcccctttt actctccatt taggcctgtt gataacttca 2100
ttacccaccc atcactgtc ttctccagg gccagcactc gggcgaggca ggggagctgc 2160
cttcggtaca taatttgaag gggcactccc tcttgggacat gtcggggccc tgagtgcctc 2220
ccttgcctca ctctgtatccc ggcggccat tgcctgttgc ggaagggtgac tggggggccgg 2280
tgctgtgggg agagtagaaaa gaggggttgg catgactaaa aataccatgt tgggtattaa 2340
gtatggatgg aatggaaatgc caaggactgc ctactgtatgc ccagctctgc tcttaggaatg 2400
gagtagacag tggacacaag aaggacttac gcccgtggca caggtggccaa cggtgacaag 2460
actggcaaga cgtgaggc tgaatgggttccattcaggcag ctgctgcagg tgggttcacc 2520

tgggccatc tgctgctccc tttccactt ttctatgtcc tccttcacc ccaagccccg 2580
 gatcactcg tggggctgg cttagcttt gcacatccat ctgagcctaa agttggccac 2640
 tggcaccaat agattctgtt tgacctgctg tgcccatgt catcttggtc ggggcttggc 2700
 ttggcaggcg gtgaggctgg catgggtgc tgaagtgggg ttcagtgag gggtagacagc 2760
 gtcgtggcag tcctcacagc ctcgtcgcc ttcggcgcc tcctctgcct gggctccac 2820

 <210> 60
 <211> 3920
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <223> Incyte ID No: 6941124CB1

 <400> 60
 ccggccgtga gtgcgcgagt gtccatggc cgccggcacc aggccgcgtgt tccatctgca 60
 gccgtgcggg ggggtgcgtga accccggggc gcggccggaa gggccggcccg gtctccgcca 120
 ccgtctcccg tcggggaccc cggggagaaac gcggatgcgg ttcgcctgcg cggccggccgg 180
 ccggtggcg agagggtcg gggattccca gcccgggggaa ggccggcg ggtgcgggag 240
 gcccggccg ggcttcgccc acccgccg cttgggttca tttagggctct gctgtcgccg 300
 tcttgaattt cttaccagggt ttgaacagct gatgcagccg gtcgagggcg gggagctcga 360
 aagtggccag ggcggagctg tggggctccc agcgcccccg ggcggagct tttggagcc 420
 tggccggccg cgcctcgga aggtctcatt ttacccccc cccgggcata ttccctcg 480
 gcccggcggt gggagccccg gaaccctgg agtttggga gtcggggac ccctgaccgt 540
 gccctgcgcg gccgcagccg ttctccctt gctctgacac gggaggccca gccctgggtc 600
 cccgcccaggaa cccaggttt tacgaccctt tacgtgcacg tggggccggc ggacggaaagc 660
 ggaggtgtca cggggccaaac cttcccgagac ctcgtcgcc cacggccgtgg gacgcggcccc 720
 agcgccccct agcagatggg ctaagcaatt gaatttctga gattaaggct ggctccccc 780
 gctatgggc cccctcccg gcaacttcctc tcgtctccctt ttctccctag ggtggcgtgg 840
 gttgcatacc tcggaaagagc gaaggaatga gccaggtcg gggggggggaa gacagggtca 900
 cacaggaggt ccagggtctt gtccatgggg ctgggtacact ttctgttcc cttgcagaaaa 960
 actctcccac catgtcgacg aatggatact tcgaggattc aagctactac aagtgtgaca 1020
 cagatgacac cttcgaagcc cgagaggaga tcctgggggaa tgaggccctc gacactgcca 1080
 actcctccat cgtgtctggc gagagtatcc gtttcttgc aatgtcaacc ttgagatgca 1140
 ggcccacaac actgagaatg aagcgacttc cggtgtctgt gtgtctctgc acacccccc 1200
 aaagtacctg aagttaaaaga acttcaagga agagatccgt ggcgcacccgg acctagatgg 1260
 cttectggcg caggccagca tcgtccctgaa cgagacggcc acctccctgg ataacgtgt 1320
 gcccggccatc cttccggct tcgccccgggaa ccctgacaac atagggccca actgcacact 1380
 ggacccgttc atggccatgc ttttcacccgatc tgccggggca cccatgcggg gtaaaagtcca 1440
 cctgtgtca gataccatcc aagggggtcac cggccacagtg acaggggtgc ggtaccagca 1500
 gtcgtggctc tgcatacatct gtaccatgaa ggccttacag aagcggcacc tggtcatcag 1560
 ccgcctgggtt cgcggccacaga actggggggaa gaattctgtt gagggtcggt tcgtcatcct 1620
 ggtgtggcc ccacccaaga taaaaggcac taagactgcg atggaggtgg cgcgcacgtt 1680
 tgccaccatg ttctcgata ggaattcaag gaggccttgg agtggcgccg agaacaacggc 1740
 gcccggccatc atccatcc tttccgggtt ctcaatgacg cggccagagc atcgccgggg 1800
 gctgaccacc tttccgggtt tttccgggtt tttccgggtt tttccgggtt tttccgggtt 1860
 gctgaccacc tttccgggtt tttccgggtt tttccgggtt tttccgggtt tttccgggtt 1920
 tggacttcac tgatggcattt attggggaaa acaaggctgt 1980
 ccctgttctt ctacttcgtcc tgcctctgc ccaccatcgc 2040
 agaacaacaga cggggccatc gacgtgcaga agaccatagc 2100
 tgctctacgc gcttctctt gggcagccat tgggtattct 2160
 cgctctacat ccagggtatt cgtgtcatct gtgtacta 2220
 tctacgcatt gacggccctg tggaaatagtt tttccctgc 2280
 gctttatgcc ttttcaacc tcagcctgtt catgagtctc ttcaagaggt cgacggagga 2340
 gatcatcgcc ctcttcattt ccacacgtt tgggtgttgc ggcgtcaagg gcacggtaa 2400
 aatcttcgtt aagtagtactat atgggcattt cttggacac tatcacacaa aaaggacttc 2460
 atcccttgc acgtctgtcg gctccggcg cagcccaac gccagccctc acactgcct 2520
 caatgccagg ttcctcgcc gccccacggg gctggccctg gccacacact caggccaggc 2580
 gaccggccgtg ctacgtcgcc tggccacgtt tggctgggtt acacccctcta 2640
 ccaattcaag aagagccccctt acctgcaccc ctgcgtgcga gagatctgtt ccgactgcgc 2700
 ccttcccttccat cgggtgtcgcc ctttctccctt catcagctcc catggcttcc gggaaatcga 2760
 gatgagcaag ttccgtacaa accccagcga gagccctttt gcgatggcgcc agatccagtc 2820

gctgtccctg agggccgtca gcggtgccat gggcctcgcc ttccctgctgt ccatgctctt 2880
cttcatcgag cagaacttgg tggccgcctt ggtgaatgca ccggagaaca ggctggtaa 2940
ggcaactgcc taccactggg acctctgtct cctcgccatc atcaacacag ggctgtctct 3000
gtttgggctg ctttgatcc atgccccta cccccactcc ccgctgcacg tgcgagccct 3060
ggccttagtg gaggagcgtg tggagaacgg acacatctat gacacgattg tgaacgtgaa 3120
ggagacgcgg ctgacccctcg tgggcgcag cgtctgggt ggcctgtccc tggctgtct 3180
gccggtcccc cttagtggta tcccccaagcc cgtctgtat ggccttcc tctacatcgc 3240
gtcacccctcc ctcgatggca accagctcg ctagcgcgtg gcccctgtgc tcaaggagca 3300
gactgegtac cccccgacac actacatcc gagggtgccc cagaggaaga tccactactt 3360
cacgggcctg cagggtcttc agctgtct gctgtgtgcc ttcggcatga gctccctgcc 3420
ctacatgaag atgatcttc ccctcatcat gatcgccatg atccccatcc gctatatctt 3480
gctgccccga atcattgaag ccaagtactt ggtgtcatg gacgctgagc acaggcctt 3540
actggcagac cctgcccacg cccccatcg cagccctcca cgtcctccca ggctggctct 3600
ggagctgtga ggggaggtgt aggtgtgtgg gtgactgtct tggctgcgc ctctctatgg 3660
ctgactcagg cctggggcat ctggcattt taggggtgca gtggatgtgt cccacccctc 3720
tcccattatc ctttagctt aggccaagag ctttgcttag ggcagcttct gcccagggtg 3780
ggtgggactg agcaggatgg attttctttt gataaaagag tcgatgcctg aaagagaaaac 3840
catttccttg attgtgtaaag gaacttgctg gacgcacatt agagaataaa gtcctgtttt 3900
ctaggctctt aaaaaaaaaa 3920

<210> 61
<211> 1333
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 6972530CB1

<400> 61
tggggcaacc tgctaacagc cgctgttgtg gctttgtgt atggccgact ggtcgtggc 60
ttcctccgc ggcagggcgt ttccctcgaa gggcatctgt ttggtgcgt cgccggattt 120
attgcagcca aggtacttct atccaccccg cgcagcgggt ttaatccgg gtgaacgcac 180
tttagcatcc agacgcccag gcgatgtgt cgtcaggatt caagtaccca gggagccagg 240
ggctaaatgt cgatttctt actgtacgc atgtacgcct cgtcccttct tcacatgcctt 300
ggttggcag gcctgatgt tgccttgggt gtccacccgtt gcaccgccta cttgggcctg 360
gttggctgg gcaacaaca cctcaccgcgt gcccacactt ttatctactt ctatctcacc 420
accacactca cctgtcggtt tggcaccctt cgcggcaga cgtctgtgg gcaattttc 480
gtggcatgtt ggggtcatgtt cggggcattt gcgctgctca cggcagccat cggcaaaaacc 540
accagcagtgtt attagcatgtc atggagaaaaa ggcataaagg gcaaaaggta tttcaccggc 600
aagggtcgcc ataccgtgtt gatcggttgtt gagggcgcgtt ccagcgacg ggtgatttag 660
tttggctgtc aagacgaaac ctgcacgcac aacctgatgt tgatctgcgtt ttgcagccctt 720
gaagaaaatc cgatgcccggg caaaagcagcg ttcatcccg gcgaaaggct gtcttccacc 780
gcactgttgc tgcgtgcccgtt tggccgtgtt gcccggcgtt tgctgtgtc aaccccgctt 840
gatgacctga cgctggccac cgtgttgtttt gtgaaccaac tgagttccgtt cgggcattgt 900
gtcgccccact tcaacgaaag tgaatcgcc gcaactcgcca gctccctacgc cccggccctg 960
gagtgcacgtt ccagcatggc aatttggaaatg ctgggtgcgtt cctctcgatgg tccgggctcg 1020
tcgggtgtca tcaatgtt gctgtgtgtt gggcaggggc ccacccagta cctgtatgaaa 1080
ttggcccaag ctttgaggac aacattcgcc gagctgtaca cgcagatgaa ggagcgccac 1140
aacgcaccc tcattggcta tgcgcacaa ggtgttcacg agccgtcgat caacccgccc 1200
agtgccacag aggtcaaaagg cggcgaactt ttctacatcg ttccactcg ccttaaggaa 1260
atctcccatgtt ggtgtgttta aacagttgtt ggggtttagt gccccaaaag ccactaccga 1320
ctcgagccga acc 1333

<210> 62
<211> 8487
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 6991750CB1

<400> 62

ctcatgggg aaccctcagc aaaatataat ggtaccgcta ttatcagcct tggcgaggc 7560
 ccagggattt tgggggaggt cacagtttc tggaggataat tccctccctc cgtggggaa 7620
 ttgcgtaaa catcaggaaa actgacaatg cgagacgaaac agtctgcagt cattgttagta 7680
 atacaggctt tgaacatgtc cattcccgg gaaaaaaagct tctatgagg tca gtcact 7740
 gcagtctgtc agggaggagt tctgagtggaa tccagcagca ctgccaacat caccgggtg 7800
 gccagcact ctccctatgg ccggatggcc ttttcacatg agcaacttcg achtgcagaa 7860
 gcacagaggg ttaacatcac aatcatccgt tccagtgag attttgcca tggcgactc 7920
 tggtacaaga cgatgacgg gacagcggaa gcaggctgg attttgtcc tgcagcaggg 7980
 gagctccctt ttgaagcagg ggagatgagg aaaagtctgc atgttggaaat cttgtatgat 8040
 gactatcctg aaggcccaga ggaattttct ctaacaatta caaagggtga actccaggg 8100
 agttaaagga gaaaggcaat tagaaaaaag aaagcaaaga gcagagagaa agagagaaag 8160
 ttctattgtg tagagattaa tactgagctc taaagcagg tttccctac tctttctcag 8220
 atttgtgtg cattagaaca ggacatacaa gggaaattat gacaatgact gagttttttt 8280
 ttttaattt gttaaatata accccctt gaaaatttggaa agtacgtgtt tctattgtgt 8340
 ggacacactc tggtagcca ggaatttggaa tatgataacg gcttctaattt ggtgaagaca 8400
 cagcctaaca gctctctaaa tcagaggcgtca gctgtgtgg ctgaaatttgc ttcttttgat 8460
 ttccataactt gtgaaagggt gaaggga 8487

<210> 63
 <211> 3264
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 71726948CB1

<400> 63
 cgctggaaagc agctggaggc tccagttctc atctgcttag gtgtccccgg cgcccttggcg 60
 aactcgccca ctccagttcc tcacgtggg agcactcagg gcagcgggtc gattttccga 120
 ggtcccatac ctgggtttaa ggggcgcggc tcgcagcggc gggtgcaggg gcgactgcca 180
 gccctcaccgc cgcctcgaaa tgccgttccgaa ggccgacacc tggaggacgc ctccagtc 240
 cgcgggacgc caccgcctcgcc cgccaggat ccgggataag aagtgcgcgc cgggctccgg 300
 ctgcgcgcgc cggggccacc agtttgcgcg cagggtctag gcgcacgtgc gcccattggac 360
 acgccacggg gcatcgccac cttcggtgt tgggactacg tgggtttcgc gggcatgtcg 420
 gtcatctcgcc cgcctcgaa catctactac gccttcgtg ggggcggccca gcagaccc 480
 aaggacttcc tgatggccgg ccgcagaatg accgcagtgc ccgtggcgcgt gtccctcacc 540
 gctagcttca tgcagccgt cactgtccctg ggcacccctt ccgaggctca ccgttttggg 600
 gccatttta gcatcttgc cttcacctac ttctttgtgg tggtcatcag cgcggaggc 660
 ttccctcccg tggtctacaa actggaaattt accagcacct acgagatattt agaacttcga 720
 ttacaaaat gtgttctgtt ctgtggaaaca gtcctttca ttgttcaaac aattctgtat 780
 actggaaattt ttatattgc ccctgcctcg gctttaatgc aagtccacagg atttgcattc 840
 tggggcgcgg tagtggcaac ggggggtggc tgcacattt actgcacact ggggtgtctt 900
 aaagcgttca tctggacaga tggggatca gttggatca tggtgctgg atttgcattcc 960
 gtgattatac aggctgtgtt gatcggagg ggaatcagaat cttttttttt tgatgcctat 1020
 gatgggtggaa gattaaaaat ttggaaattttt aatcctaacc ctttgcggaa acacaccc 1080
 tgacaattt ttataggagg gacccctaca tggaccagca tctacgggtt caaccaatcc 1140
 cagggtgcaga gatataattt ttgttttttccca agattccagg caaaactgtc tctctacatc 1200
 aatcttgcgg gactctggc aatcctcaca tgctcgtgtt ttgtggcgtt cgccctataat 1260
 tccaggtaacc atgactgtga tccttggaca gccaagaaag tgcgttcacc agaccagctc 1320
 atgccttattt tggtaactggc cattctgca gattatccag gactttctgg attttttgc 1380
 gcctgtgtt acagtggggac attaagcaca gttgccttca gtatattgc cttagcagca 1440
 gtaactgtgg aagatctaat caaaccttac ttgcagatgc tctcggaaat gtcctgtct 1500
 tgatttccca aaggaaatgg tggggatgtt gggggctgtt gatggat ggtgcgtcg 1560
 gcttcactta tggggatgtt gttgcaggca gcactcagcg tattttgtt ggttgggtgg 1620
 ccacttatgg gcctgttcgc tttggcatt tgggttccctt ttggcaactc aatttggagca 1680
 cttgttggc tggatggcgtt atttgcattt tctctatggg ttggatgtt agtcaataa 1740
 ttcctccac ttgcgttggc aacattggca ttgcacccctt atatccaagg ctgttaacagc 1800
 acctacaatg agacaaaattt gatgacaacc acagaaaatgc catttactac tagtggttttt 1860
 caaatataca atgttcaaaag gactccactg atggataact ggttattttt atcatatctg 1920
 tacttcagca ctgttggaaac tttggtaaca ttatttagtgg ggataactgtt cagtttataca 1980
 acaggaggaa gaaaacagaa cttagacccc agatataac taaccaaaga ggactttttt 2040
 tccaaattttt gatggatggaaat gatggatggaaat gatggatggaaat gatggatggaaat 2100

```

gaagatgttg gaactgataa tcctgcttc aaccacattg aattgaactc agatcgaggt 2160
ggcaagagca atggactcg tttgtgaagc tgctctgata ctagatatcc ttaaatgtat 2220
tttcaatttt atatgtttc taagataatt ggatcagggt ttctttgtgt gtgtgtgtgt 2280
gttgtatcat gagtgtttgg gggataagtt tttgttaaaa caaagtctgg actatcttca 2340
tttactacat cattaattga tgttactctg gagtttagaa ttctggcatt gacatttccc 2400
tctctttctt ttatttcgat gaagctataa ttgtgaaaat tgtaactaca tagatgctga 2460
aaggctaata cacacatcat cacatgttatt tgattgtcaa aggtatattc ttaaattttgg 2520
gttatttga aaatattttc catgccttgg tgcttagata taagtttggg agtttgccaa 2580
catcacaaat catcttgaaa agagctttt tccctcttac cacatcacacc attcttaggg 2640
agcaatgagg taacaggctc gtgttgcata gatctttgct ttttatcccc ctatcagttc 2700
agggcatata ctaacctgca aactgattct gaatcaggaa ggttgtaatt aataagtatt 2760
ctggctggaa aagaccgtgg gcccaatgat caaagcttcc ttgggtctgt tcattaattc 2820
tttgtccctt tggcttgttt tctagagttt ctgggtttt gctgtgtata ctgccttct 2880
tagactgtaa ttttatctg catgcccagt ttctgaccta tcaacttggg ttttattgtg 2940
cactctaact gagcttgcct tcataatttt ctgtttattt ccctgggttt ggatatgtct 3000
caagacactc atgtgaatca tgccacccca aatccctgggt tatcaagtcc cagactataa 3060
attatgaact ccccttagct tggtaactaac atataactgt tgtaggtatt tatggacttg 3120
atgatccaaat aattatatat tctttaaaaat gtttaagctc catggagttt gatgactaca 3180
cttaatgcta ttaagttgaa cttttgaatg tcaactaatt tgcaatcaat taaagataca 3240
tatqcctaga aaaaaaaaaa aaaa taaagataca 3264

```

<210> 64
<211> 1659
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 7487393CB1

<400>	64					
atgggcttg	atgtgcctt	ggatcaagt	ggggcatgg	ggagattcca	attttgtctg	60
atacgcttc	tttgcacac	caacatcta	ctgtcccta	atattgtgtt	ggagaacttc	120
actgcattca	ccccatgtca	tcgctgctgg	gtccccctcc	tggacaatga	cactgtgtct	180
gacaatgata	ccgggaccct	cagcaaggat	gaccccttga	gaatctccat	cccactggac	240
tcaaaccgtg	ggccacagaa	gtgtcagcgc	tttatccatc	cccgatggca	gtcccttcac	300
ctgaacggga	ccttccccaa	cacaatgag	ccagacacgg	agccctgtgt	ggatggctgg	360
gtgtacgaca	gaagctttt	cctcttccacc	atcgtaactg	agtgggacct	gttatgtgaa	420
tctcagtac	aaaaatcaat	ggttcaattc	ctatattatgg	ctgggtcact	gtctggaggt	480
ctaataatatg	gccatcttc	agacagggtt	ggacggaaga	tcatatgcaa	atttgtttc	540
ctccagctgg	ccatctctaa	cacctgtgcg	gccttcgtc	ccacccctcct	tgtttactgc	600
atactgcgt	tcttggcagg	gttctccacc	atgactat	tggaaacac	ttttatctc	660
agcttagagt	ggacattgccc	ccggtcacga	tctatgacaa	taatggtgc	attatgttcc	720
tacagtgtt	ggcagatgt	ccttaggaggg	ctggcttttgc	ccattcagga	ctggcacata	780
ttgcaactga	ctgtgtctac	accataatt	gtcccttctt	gtcctcttgc	gaagatgtgt	840
gagttctgtc	ggtggctgtat	tatcaacaat	cagtagat	agggtttaaa	ggagcttaga	900
agagttgcac	acataaatgg	aaaaaaagaaat	actgaagaga	cactgaccac	tgagcttgc	960
agatccacca	tgaagaagga	gttggatgca	gtccgaatta	aaacatccat	ttttccctg	1020
ttccgtgcac	ccaaatttgc	aatgagagtc	ttcggctgt	gttttgtgag	attcgcaatc	1080
actgtaccc	tttatggct	gataactcaac	ttgcagact	tagggagcaa	tgtctccctg	1140
ttccagattc	tctgtggagc	tgtcacattc	acagccagat	gtgtttccct	tttgacactg	1200
aatcatatgg	gtcgtcgaat	aagccagata	ttgttcacgt	tcccggtggg	acttttcatt	1260
ctggtcaaca	cctttttgccc	ccaaagaaatg	cagatctgc	gtgtggttt	agcaactttg	1320
ggaattggta	gtgtttctgc	tgcttagcaac	agtgtttctg	tccacccacaa	cgagctcgtc	1380
cccacccat	tgaggtaaac	agttgcagga	atcaatgcag	tgtccggtag	gactggggca	1440
gcactggctc	ctctgttgc	gacccatata	gctgtatctc	ccccacatacc	ctggatttcc	1500
tatggagtt	tccccatctt	tgtctccct	gttatacctcc	ttcttccaga	aaccagggtat	1560
ctaccttc	ctaacacccat	ccaggatgt	aaaaatgaca	aaaaagattc	aagaaacata	1620
aaccaaggaaq	ataacttgcat	aaaaatgtac	cagttttaa			1659

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.