In-tutorial exercise sheet 4

supporting the lecture Mathematical Finance and Stochastic Integration

(Discussion in the tutorial on May 12th 2016, 2:15 p.m.)

Remark: Two σ -algebras \mathcal{A}, \mathcal{B} are called independent if

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$$

holds for all $A \in \mathcal{A}$ and $B \in \mathcal{B}$.

Exercise P.10.

Prove Kolmogorov's zero-one law: Let $(A_n)_{n\in\mathbb{N}_0}$ be a sequence of independent σ -algebras and

$$\mathcal{F}_n = \sigma\Big(\bigcup_{m\geq n} \mathcal{A}_m\Big), n \in \mathbb{N}_0.$$

Denote by

$$\mathcal{F}_{\infty} = \bigcap_{n=0}^{\infty} \mathcal{F}_n$$

the terminal σ -algebra. Then $\mathbb{P}(A) \in \{0,1\}$ for all $A \in \mathcal{F}_{\infty}$. Proceed as follows:

a) Prove that \mathcal{F}_{n+1} is independent from

$$\mathcal{G}_n = \sigma \Big(\bigcup_{m \le n} \mathcal{A}_m \Big).$$

Hint: It suffices to look at sets $A = \bigcap_{k=1}^m A_{n_k}$ with $A_{n_k} \in \mathcal{A}_{n_k}$, $n_k \geq n+1$, $m \in \mathbb{N}$ and $B = \bigcap_{k=1}^l B_{n_k}$ with $B_{n_k} \in \mathcal{B}_{n_k}$, $n_k \leq n$, $l \in \mathbb{N}$.

b) Use part a) to deduce $\mathbb{P}(A) \in \{0,1\}$ for all $A \in \mathcal{F}_{\infty}$.

Hint: Have a look at the proof of Blumenthal's zero-one law (Theorem 1.18 from the lecture notes).