

IN THE CLAIMS

Following is a complete set of claims as amended with this response, which includes an amendment to claim 3.

1 1. (canceled)

1 2. (previously amended) The method of claim 3, further comprising selecting said
2 memory banks for access by one of the first and second processors.

1 3. (currently amended) A method for allocating real-time audio data from a plurality
2 of audio channels in a system having a first processor and a second processor, the method
3 comprising:

4 providing a plurality of memory banks of semiconductor memory devices, each memory
5 bank being accessible to the first and second processors for operations selected from the group
6 comprising read and write operations, the ~~second~~ plurality of memory banks includes two
7 memory banks; and

8 storing subsets of said audio data in the ~~second~~ plurality of memory banks, the subsets
9 corresponding to different groups of audio channels.

1 4. (original)The method of claim 3 wherein one subset of said audio data
2 corresponds to even-numbered audio channels and one other subset of said audio data
3 corresponds to odd-numbered audio channels.

1 5. (canceled)

1 6. (previous amended) A system having first and second buses for processing real-
2 time audio data from a plurality of audio channels, the system comprising:

3 a first processor and a second processor coupled to said first and second busses,
4 respectively;

5 a plurality of memory banks of semiconductor memory devices coupled to said first and
6 second buses for storing said audio data, said plurality of memory banks being accessible to the

7 first and second processors for operations selected from the group comprising read and write
8 operations, said plurality of memory banks storing subsets of audio data, said subsets
9 corresponding to different groups of audio channels; and
10 a plurality of selectors coupled said first and second buses to select said memory banks
11 for access by one of said first and second processors.

1 7. (previously amended) The system of claim 6 wherein the plurality of selectors
2 include a plurality of address multiplexers and data transceivers.

1 8. (previously amended) The system of claim 6 wherein one subset of said audio
2 data corresponds to even-numbered audio channels and one other subset of said audio data
3 corresponds to odd-numbered audio channels.

1 9. (previously amended) The system of claim 6, wherein the memory banks include
2 dynamic random access memories.

1 10. (previously amended) The method of claim 3, wherein storing further comprises
2 interleaving the subsets of data.

1 11. (previously amended) The system of claim 6, wherein the subsets are stored in the
2 memory banks in an interleaving manner.

1 12. (previously amended) The method of claim 3, wherein storing comprises storing
2 one of the subsets of audio data in one of the memory banks, said method further comprising
3 reading stored audio data from a second of the memory banks.

1 13. (previously amended) The method of claim 3, wherein the first processor
2 performs a read operation on a first memory bank of the plurality of memory banks and the
3 second processor performs a write operation on a second memory bank of the plurality of
4 memory banks.

1 14. (previously amended) The system of claim 6, wherein subsets of audio data are
2 stored in one of the memory banks and stored audio data is read from a second memory bank of
3 the memory banks.

F
cont

1 15. (previously amended) The system of claim 6, wherein the first processor performs
2 a read operation on a first memory bank of the plurality of memory banks and the second
3 processor performs a write operation on a second memory bank of the plurality of memory banks.