Introduction to the FRIB-TA Summer School: Quantum Computing and Nuclear Few- and Many-Body Problems with teaching plan and learning outcomes

Facility for Rare Isotope Beams, Michigan State University, USA

June 20

Introduction

Software and needed installations

We will make extensive use of Python as programming language and its myriad of available libraries. You will find Jupyter notebooks invaluable in your work. You can run **R** codes in the Jupyter/IPython notebooks, with the immediate benefit of visualizing your data. You can also use compiled languages like C++, Rust, Julia, Fortran etc if you prefer. The focus in these lectures will be on Python.

If you have Python installed (we strongly recommend Python3) and you feel pretty familiar with installing different packages, we recommend that you install the following Python packages via **pip** as

1. pip install numpy scipy matplotlib ipython scikit-learn mglearn sympy pandas pillow

For Python3, replace **pip** with **pip3**.

For OSX users we recommend, after having installed Xcode, to install **brew**. Brew allows for a seamless installation of additional software via for example

1. brew install python3

For Linux users, with its variety of distributions like for example the widely popular Ubuntu distribution, you can use **pip** as well and simply install Python as

1. sudo apt-get in stall python3 (or python for pyhton2.7) etc etc.

Python installers

If you don't want to perform these operations separately and venture into the hassle of exploring how to set up dependencies and paths, we recommend two widely used distrubutions which set up all relevant dependencies for Python, namely

• Anaconda,

which is an open source distribution of the Python and R programming languages for large-scale data processing, predictive analytics, and scientific computing, that aims to simplify package management and deployment. Package versions are managed by the package management system **conda**.

• Enthought canopy

is a Python distribution for scientific and analytic computing distribution and analysis environment, available for free and under a commercial license.

Furthermore, Google's Colab is a free Jupyter notebook environment that requires no setup and runs entirely in the cloud. Try it out!

Useful Python libraries

Here we list several useful Python libraries we strongly recommend (if you use anaconda many of these are already there)

- NumPy is a highly popular library for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays
- The pandas library provides high-performance, easy-to-use data structures and data analysis tools
- Xarray is a Python package that makes working with labelled multidimensional arrays simple, efficient, and fun!
- Scipy (pronounced "Sigh Pie") is a Python-based ecosystem of open-source software for mathematics, science, and engineering.
- Matplotlib is a Python 2D plotting library which produces publication quality figures in a variety of hardcopy formats and interactive environments across platforms.
- Autograd can automatically differentiate native Python and Numpy code.
 It can handle a large subset of Python's features, including loops, ifs, recursion and closures, and it can even take derivatives of derivatives of derivatives
- SymPy is a Python library for symbolic mathematics.

- scikit-learn has simple and efficient tools for machine learning, data mining and data analysis
- TensorFlow is a Python library for fast numerical computing created and released by Google
- Keras is a high-level neural networks API, written in Python and capable of running on top of TensorFlow, CNTK, or Theano
- And many more such as pytorch, Theano etc

Installing R, C++, cython or Julia

You will also find it convenient to utilize \mathbf{R} . We will mainly use Python during lectures and in various projects and exercises. Those of you already familiar with \mathbf{R} should feel free to continue using \mathbf{R} , keeping however an eye on the parallel Python set ups. Similarly, if you are a Python afecionado, feel free to explore \mathbf{R} as well. Jupyter/Ipython notebook allows you to run \mathbf{R} codes interactively in your browser. The software library \mathbf{R} is tuned to statistically analysis and allows for an easy usage of the tools we will discuss in these lectures.

To install \mathbf{R} with Jupyter notebook follow the link here