

Universidade do Minho Escola de Ciências

Departamento de Matemática e Aplicações

Folha 2

Exercício 2.1 Mostre que:

a)
$$\lim_{(x,y)\to(0,0)} \frac{x^3}{x^2+y^2} = 0$$

$$\lim_{(x,y)\to(0,0)} \frac{x^3}{x^2 + y^2} = 0; \qquad \text{b)} \quad \lim_{(x,y)\to(0,0)} \frac{y^2}{\sqrt{x^2 + y^2}} = 0; \quad \text{c)} \quad \lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2 + y^2}} = 0.$$

c)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}} = 0$$

Exercício 2.2 Calcule, caso exista, cada um dos seguintes limites:

a)
$$\lim_{(x,y)\to(0,1)} x^3 y;$$

f)
$$\lim_{(x,y)\to(1,1)} \frac{y^2-x^2}{x-y}$$
;

j)
$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4+y^2}$$

b)
$$\lim_{(x,y)\to(0,0)} \frac{e^{xy}}{x+1}$$

g)
$$\lim_{(x,y)\to(0,0)} \frac{\operatorname{sen}(xy)}{xy}$$
;

a)
$$\lim_{(x,y)\to(0,1)} x^3y$$
; f) $\lim_{(x,y)\to(1,1)} \frac{y^2-x^2}{x-y}$; j) $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4+y^2}$; b) $\lim_{(x,y)\to(0,0)} \frac{e^{xy}}{x+1}$; g) $\lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{xy}$; k) $\lim_{(x,y)\to(0,0)} \frac{x^3y}{x^2+y^2} + x$; c) $\lim_{x\to 1} (x^2, e^x)$; h) $\lim_{(x,y)\to(0,0)} \frac{(x-y)^2}{x^2+y^2}$; l) $\lim_{(x,y)\to(0,0)} \frac{y^2}{x^2-y^2}$;

c)
$$\lim_{x \to 1} (x^2, e^x)$$

d)
$$\lim_{(x,y)\to(0,0)} \left(\frac{\cos x}{x^2+y^2+1}, e^{x^2}\right)$$

h)
$$\lim_{(x,y)\to(0,0)} \frac{(x-y)^2}{x^2+y^2}$$
;

1)
$$\lim_{(x,y)\to(0,0)} \frac{y^2}{x^2 - y^2}$$

e)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2+2}$$
; i) $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$;

i)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$$
;

m)
$$\lim_{(x,y)\to(0,0)} \frac{xy^5}{x^2+y^4}$$

Exercício 2.3 Apresente, caso seja possível, um prolongamento contínuo à origem de cada uma das funções definidas por:

a)
$$f(x,y) = \frac{\sin(x+y)}{x+y}$$
; c) $f(x,y) = \frac{xy}{\sqrt{x^2+y^2}}$; e) $f(x,y) = \frac{2x^2y}{x^2+3y^2}$;

c)
$$f(x,y) = \frac{xy}{\sqrt{x^2 + y^2}};$$

e)
$$f(x,y) = \frac{2x^2y}{x^2 + 3y^2}$$

b)
$$f(x,y) = \frac{xy}{x^2 + y^2}$$

b)
$$f(x,y) = \frac{xy}{x^2 + y^2}$$
; d) $f(x,y) = \frac{2(x-1)y^2}{x^2 + y^2}$; f) $f(x,y) = \frac{x^2y^3}{2x^4 + y^4}$.

f)
$$f(x,y) = \frac{x^2y^3}{2x^4 + y^4}$$

Exercício 2.4 Estude a continuidade de cada uma das funções definidas por:

a)
$$f(x,y) = \begin{cases} \frac{x^2y}{x^2+y^2} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0); \end{cases}$$
 d) $f(x,y) = \begin{cases} \frac{x^2y^2}{x^4+y^4} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0); \end{cases}$

d)
$$f(x,y) = \begin{cases} \frac{x^2 y^2}{x^4 + y^4} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0); \end{cases}$$

b)
$$f(x,y) = \begin{cases} \frac{3x^2 - y^2}{x^2 + y^2} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0); \end{cases}$$
 e) $f(x,y) = \begin{cases} x & \text{se } x \geq y, \\ y & \text{se } x < y; \end{cases}$

e)
$$f(x,y) = \begin{cases} x & \text{se } x \ge y, \\ y & \text{se } x < y; \end{cases}$$

c)
$$f(x,y) = \begin{cases} \frac{x^2y}{x^2+y^2} & \text{se } x \neq -y, \\ \frac{x^2}{2} & \text{se } x = -y; \end{cases}$$

$$f) \quad f(x,y) = \begin{cases} \frac{y^3}{x^2 + y^2} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$$