

Content of this lecture Administrative announcements Disk scheduling File systems basic concepts Summary The hardest question: Using swap to implement mutex Cs 323 - Operating Systems, Yuanyuan Zhou

Administatives Regrading Period MP1: until this Friday, 3/21 5pm Midterm1: until Friday, 3/21 5pm Pick/up your midterm from TA's office Submit written request to TA After this deadline, no regrading request will be granted!! 3/31 & 4/2 lectures Given by TA: Jeff CS 323 - Operating Systems, Yuanyuan Zhou

Power management - Power-down after idle for some time • Disk internal and trends CS 323 - Operating Systems, Yuanyuan Zhou

Disk Performance Seek Position heads over cylinder, typically 5.3 – 8 ms Rotational delay - Wait for a sector to rotate underneath the heads Typically 8.3 − 6.0 ms (7,200 − 10,000RPM) or ½ rotation takes 4.15-3ms Transfer bytes Average transfer bandwidth (15-37 Mbytes/sec) Performance of transfer 1 Kbytes - Seek (5.3 ms) + half rotational delay (3ms) + transfer (0.04 - Total time is 8.34ms or 120 Kbytes/sec! • What block size can get 90% of the disk transfer bandwidth? CS 323 - Operating Systems, 3/16/2003 Yuanyuan Zhou

	Observations	
	 Getting first byte from disk read is slow high latency Peak bandwidth high, but rarely achieve Need to mitigate disk performance impa Do extra calculations to speed up disk acces Schedule requests to shorten seeks Move some disk data into main memory – fill system caching 	ct ss
7	CS 323 - Operatin 3/16/2003 Yuanyuan 2	

Disk Behaviors There are more sectors on outer % of Disk **Block Size** tracks than inner tracks Transfer (Kbytes) Read outer tracks: 37.4MB/sec Bandwidth Read inner tracks: 22MB/sec Seek time and rotational latency 0.5% 1Kbytes dominates the cost of small reads 8Kbytes 3.7% - A lot of disk transfer bandwidth are wasted Need algorithms to reduce seek 256Kbytes 55% 1Mbytes 83% 2Mbytes 90% 3/16/2003 Yuanyuan Zhou

History of Disk-related Concerns

- When memory was expensive
 - Do as little bookkeeping as possible
- When disks were expensive
 - Get every last sector of usable space
- When disks became more common
 - Make them much more reliable
- When processor got much faster
 - Make them appear faster

3/16/2003

CS 323 - Operating Systems, Yuanyuan Zhou

Disk Versus Memory

Memory

- Latency in 10's of processor cycles
- Transfer rate 300+MB/s
- Contiguous allocation gains ~10x

Disk

- Latency in milliseconds
- Transfer rate 5-50MB/s
- Contiguous allocation gains ~1000x

CS 323 - Operating Systems 3/16/2003 Yuanyuan Zhou

On-Disk Caching

- Method
 - Put RAM on disk controller to cache blocks
 - Seagate ATA disk has .5MB, IBM Ultra160 SCSI has 16MB
 - Some of the RAM space stores "firmware" (an OS)
 - Blocks are replaced usually in LRU order
- Pros
 - Good for reads if you have locality
- Cons
 - Expensive
 - Need to deal with reliable writes

3/16/2003

CS 323 - Operating Systems, Yuanyuan Zhou

Why Files?

- Physical reality
 - Block oriented
 - Physical sector #s
 - No protection among users of the system
 - Data might be corrupted if machine crashes
- Filesystem model
 - Byte oriented
 - Named files
 - Users protected from each other
 - Robust to machine failures

CS 323 - Operating Systems 3/16/2003 Yuanyuan Zhou

Group Discussion • What functions should file systems provide?

CS 323 - Operating Systems,

Yuanvuan Zhou

File Concepts

3/16/2003

- Files
- Directory structures
- Partitions (possible)
- File Concept: OS abstracts from the physical properties of its storage device to define a logical storage unit, called file. Files are mapped by the OS onto physical devices.

CS 323 - Operating Systems. 3/16/2003 Yuanyuan Zhou

File System Requirements

- Users must be able to:
 - create, modify, and delete files at will.
 - read, write, and modify file contents with a minimum of fuss about blocking, buffering, etc.
 - share each other's files with proper authorization
 - transfer information between files.
 - refer to files by symbolic names.
 - retrieve backup copies of files lost through accident or malicious destruction.
 - see a logical view of their files without concern for how they are stored.

CS 323 - Operating Systems Yuanyuan Zhou

File Attributes

- Name: symbolic file name, the only information kept in humanreadable form. Many OS support two part file names (name.extension)
- Type: needed for systems that support different types.
 - Regular files user information, regular files are generally either ASCII or binary files.
 - Directories system files for maintaining the structure of the file
 - Character special files related to input/output and used to model serial I/O devices such as terminals, printers, and networks
 - Block special files used to model disks
- Location: pointer to a device and to the location of the file on that device.
- Size: current size and maximal possible size
- · Protection: Access-control information.
- · Time, date, user identification: creation time, last modification, last use.

CS 323 - Operating Systems. 3/16/2003 Yuanyuan Zhou

File Types ASCII – plain text A Unix executable file header: magic number, sizes, entry point, flags Text (code) Data relocation bits symbol table Devices Everything else in the system CS 323 - Operating Systems, Yuanyuan Zhou

Reminder CS 323 - Operating Systems, Yuanyuan Zhou

So What Makes Filesystems Hard? Files grow and shrink in pieces Little a priori knowledge Gorders of magnitude in file sizes Overcoming disk performance behavior Desire for efficiency Coping with failure CS 323 - Operating Systems, Yuanyuan Zhou