Формулы по теории вероятностей

І. Случайные события

1. Основные формулы комбинаторики

- а) перестановки $P_n = n! = 1 \cdot 2 \cdot 3...(n-1) \cdot n$
- б) размещения $A_n^m = n \cdot (n-1)...(n-m+1).$
- в) сочетания $C_n^k = \frac{A_n^k}{P_k} = \frac{n!}{(n-k)! \, k!}$.

2. Классическое определение вероятности.

 $P(A) = \frac{m}{n}$, где m - число благоприятствующих событию A исходов, n - число всех элементарных равновозможных исходов.

3. Вероятность суммы событий

Теорема сложения вероятностей несовместных событий:

$$P(A+B) = P(A) + P(B)$$

Теорема сложения вероятностей совместных событий:

$$P(A+B) = P(A) + P(B) - P(AB)$$

4. Вероятность произведения событий

Теорема умножения вероятностей независимых событий:

$$P(A \cdot B) = P(A) \cdot P(B)$$

Теорема умножения вероятностей зависимых событий:

$$P(A \cdot B) = P(A) \cdot P(B \mid A)$$
,

$$P(A \cdot B) = P(B) \cdot P(A \mid B)$$
.

 $P(A \mid B)$ - условная вероятность события A при условии, что произошло событие B ,

P(B | A) - условная вероятность события B при условии, что произошло событие A.

5. Формула полной вероятности

$$P(A) = \sum_{k=1}^{n} P(H_k) P(A \mid H_k)$$
, где $H_1, H_2, ..., H_n$ - полная группа гипотез, то есть

$$H_i \cdot H_j = \emptyset, \ i \neq j, \bigcup_{i=1}^n H_i = \Omega, \ \Omega$$
 - достоверное событие.

6. Формула Байеса (формула Бейеса). Вычисление апостериорных вероятностей гипотез

$$P(H_m \mid A) = \frac{P(H_m)P(A \mid H_m)}{\displaystyle\sum_{k=1}^n P(H_k)P(A \mid H_k)}, \;\; m=1,...,n$$
 , где $H_1,H_2,...,H_n$ - полная группа гипотез.

7. Формула Бернулли

 $P_n(k) = C_n^k p^k (1-p)^{n-k} = \frac{n!}{k!(n-k)!} p^k (1-p)^{n-k}$ - вероятность появления события ровно k раз при n независимых испытаниях, p - вероятность появления события при одном испытании.

8. Наивероятнейшее число наступления события.

Наивероятнейшее число k_0 появления события при n независимых испытаниях: $np-(1-p) \le k_0 < np+p$, p - вероятность появления события при одном испытании.

9. Локальная формула Лапласа

$$P_n(k) \approx \frac{1}{\sqrt{npq}} \, \varphi\!\!\left(\frac{k-np}{\sqrt{npq}} \right)$$
 - вероятность появления события ровно k раз при n независимых испытаниях, p - вероятность появления события при одном испытании, $q=1-p$.

10. Интегральная формула Лапласа

$$P_{_{\!n}}(m_{_{\!1}},m_{_{\!2}}) pprox \Phi\!\left(rac{m_{_{\!2}}-np}{\sqrt{npq}}
ight)\!-\Phi\!\left(rac{m_{_{\!1}}-np}{\sqrt{npq}}
ight)\!-$$
 вероятность появления события не менее $k_{_{\!1}}$ и не

более k_2 раз при n независимых испытаниях, p - вероятность появления события при одном испытании, q=1-p.

11. Оценка отклонения относительной частоты от постоянной вероятности p:

$$P\left(\left|\frac{m}{n}-p\right| \le \varepsilon\right) \approx 2\Phi\left(\varepsilon\sqrt{\frac{n}{p(1-p)}}\right).$$

II. Случайные величины

12. Ряд распределения дискретной случайной величины

\mathcal{X}_{i}	x_1	x_2	 \mathcal{X}_n
p_{i}	$p_{_1}$	$p_{_2}$	 p_{n}

Сумма вероятностей всегда равна 1. $\sum_{i=1}^{n} p_i = 1$

13. Функция распределения (интегральная функция распределения)

Функция распределения случайной величины X определяется по формуле F(x) = P(X < x). Это неубывающая функция, принимающая значения от 0 до 1. Если

задана плотность распределения f(x), то функция распределения выражается как $F(x) = \int_{-\infty}^{x} f(t) dt \, .$

14. Плотность распределения (дифференциальная функция распределения)

Плотность распределения случайной величины X определяется по формуле f(x) = F'(x) . Существует только для непрерывной случайной величины. Для нее

выполняется условие нормировки: $\int_{-\infty}^{\infty} f(x) dx = 1$ (площадь под кривой равна 1).

15. Вероятность попадания случайной величины в заданный интервал

Может быть вычислена двумя способами:

- 1) через функцию распределения $P(\alpha < X < \beta) = F(\beta) F(\alpha)$
- 2) через плотность распределения $P(\alpha < X < \beta) = \int_{\alpha}^{\beta} f(x) dx$

16. Математическое ожидание случайной величины

1) Для дискретной случайной величины X, заданной рядом распределения:

$$M(X) = \sum_{i=1}^{n} x_i \cdot p_i$$

1) Для непрерывной случайной величины X , заданной плотностью распределения :

$$M(X) = \int_{-\infty}^{\infty} f(x) \cdot x \, dx.$$

17. Дисперсия случайной величины

По определению дисперсия — это второй центральный момент: $D(X) = M\left(\left\lceil X - M\left(X\right)\right\rceil^2\right) = M\left(X^2\right) - \left(M\left(X\right)\right)^2.$

1) Для дискретной случайной величины X, заданной рядом распределения:

$$D(X) = \sum_{i=1}^{n} (x_i - M(X))^2 \cdot p_i = \sum_{i=1}^{n} x_i^2 \cdot p_i - (M(X))^2 = \sum_{i=1}^{n} x_i^2 \cdot p_i - \left(\sum_{i=1}^{n} x_i \cdot p_i\right)^2$$

1) Для непрерывной случайной величины $\, X \,$, заданной плотностью распределения :

$$D(X) = \int_{-\infty}^{\infty} f(x) \cdot (x - M(X))^2 dx = \int_{-\infty}^{\infty} f(x) \cdot x^2 dx - (M(X))^2 = \int_{-\infty}^{\infty} f(x) \cdot x^2 dx - \left(\int_{-\infty}^{\infty} f(x) \cdot x dx\right)^2.$$

3

18. Среднее квадратическое отклонение случайной величины

$$\sigma = \sqrt{D(X)}$$

19. Начальный момент r-го порядка случайной величины

$$v_r = M(X^r)$$
.

В частности, первый начальный момент – это математическое ожидание:

$$v_1 = M\left(X^1\right) = M\left(X\right)$$

20. Центральный момент r - го порядка случайной величины

$$\mu_r = M\left(\left[X - M\left(X\right)\right]^r\right)$$

В частности, второй центральный момент – это дисперсия:

$$\mu_2 = M\left(\left[X - M(X)\right]^2\right) = D(X).$$

21. Асимметрия

$$A_s = \frac{\mu_3}{\sigma^3}$$

Коэффициент асимметрии положителен, если правый хвост распределения длиннее левого (правая часть кривой более пологая), и отрицателен в противном случае. Если распределение симметрично относительно математического ожидания, то его коэффициент асимметрии равен нулю.

22. Эксцесс

$$E = \frac{\mu_4}{\sigma^4} - 3$$

Коэффициент эксцесса нормального распределения равен нулю. Он положителен, если пик распределения около математического ожидания острый, и отрицателен, если пик гладкий.

III. Распределения случайных величин

21. Биномиальное распределение (дискретное)

X - количество «успехов» в последовательности из n независимых случайных экспериментов, таких что вероятность «успеха» в каждом из них равна p . q = 1 - p .

Закон распределения X имеет вид:

\boldsymbol{x}_k	0	1	 k	 n
$p_{\scriptscriptstyle k}$	q^{n}	$n \cdot p \cdot q^{n-1}$	$C_n^k \cdot p^k \cdot q^{n-k}$	p^{n}

Здесь вероятности находятся по формуле Бернулли: $P(X=k) = C_n^k p^k (1-p)^{n-k} = C_n^k p^k q^{n-k}$.

Характеристики:
$$M(X) = np$$
, $D(X) = npq$, $\sigma = \sqrt{npq}$

Примеры многоугольников распределения для n = 5 и различных вероятностей:

22. Пуассоновское распределение (дискретное)

Распределение Пуассона моделирует случайную величину, представляющую собой число событий, произошедших за фиксированное время, при условии, что данные события происходят с некоторой фиксированной средней интенсивностью и независимо друг от друга.

При условии $p \to 0$, $n \to \infty$, $np \to \lambda = const$ закон распределения Пуассона является предельным случаем биномиального закона. Так как при этом вероятность p события A в каждом испытании мала, то закон распределения Пуассона называют часто законом редких явлений.

Ряд распределения:

x_k	0	1		k	
$p_{\scriptscriptstyle k}$	$e^{-\lambda}$	$\lambda e^{-\lambda}$	••••	$\frac{\lambda^k}{k!}e^{-\lambda}$	

Вероятности вычисляются по формуле Пуассона: $P(X=k) = \frac{\lambda^k}{k!} e^{-\lambda}$.

Числовые характеристики: $M(X) = \lambda$, $D(X) = \lambda$, $\sigma = \sqrt{\lambda}$

Разные многоугольники распределения при $\,\lambda=1;4;10$.

23. Показательное распределение (непрерывное)

Экспоненциальное или показательное распределение — абсолютно непрерывное распределение, моделирующее время между двумя последовательными свершениями одного и того же события.

Плотность распределения:

$$p(x) = \begin{cases} 0, & x < 0 \\ \lambda \cdot e^{-\lambda x}, & x \ge 0 \end{cases}$$

 $\Gamma_{\rm Д} e \ \lambda > 0$

Числовые характеристики: $M(X) = \frac{1}{\lambda}$, $D(X) = \frac{1}{\lambda^2}$, $\sigma = \frac{1}{\lambda}$

Плотность распределения при различных значениях $\lambda > 0$

24. Равномерное распределение (непрерывное)

Равномерный закон распределения используется при анализе ошибок округления при проведении числовых расчётов (например, ошибка округления числа до целого распределена равномерно на отрезке [-0,5; 0,5]), в ряде задач массового обслуживания,

Сайт www.MatBuro.ru

©МатБюро - Решение задач по высшей математике, теории вероятностей

при статистическом моделировании наблюдений, подчинённых заданному распределению.

Плотность распределения:

$$p(x) = \begin{cases} 0 & x \le a \\ \frac{1}{b-a} & a \le x \le b \\ 0 & x > b \end{cases}$$

Числовые характеристики:
$$M(X) = \frac{a+b}{2}$$
, $D(X) = \frac{(b-a)^2}{12}$, $\sigma = \frac{b-a}{2\sqrt{3}}$

График плотности вероятностей:

25. Нормальное распределение или распределение Гаусса (непрерывное)

Нормальное распределение, также называемое распределением Гаусса, — распределение вероятностей, которое играет важнейшую роль во многих областях знаний, особенно в физике. Физическая величина подчиняется нормальному распределению, когда она подвержена влиянию огромного числа случайных помех. Ясно, что такая ситуация крайне распространена, поэтому можно сказать, что из всех распределений в природе чаще всего встречается именно нормальное распределение — отсюда и произошло одно из его названий.

Плотность распределения:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-a)^2}{2\sigma^2}\right)$$

Числовые характеристики: M(X) = a, $D(X) = \sigma^2$, $\sigma = \sigma$

Пример плотности распределения:

Нормальный закон распределения случайной величины с параметрами a=0 и $\sigma=1$ называется стандартным или нормированным, а соответствующая нормальная кривая - стандартной или нормированной.

Функция Лапласа
$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{-t^2/2} dt$$
.

Вероятность попадания нормально распределенной случайной величины X в заданный интервал $(\alpha; \beta)$

$$P(\alpha < X < \beta) = \Phi\left(\frac{\beta - a}{\sigma}\right) - \Phi\left(\frac{\alpha - a}{\sigma}\right)$$

Вероятность отклонения нормально распределенной случайной величины X на величину δ от математического ожидания (по модулю).

$$P(|X-a|<\delta) = 2\Phi\left(\frac{\delta}{\sigma}\right).$$

IV. Другие формулы

8

26. Неравенство Чебышева

$$P(|X-M(X)| < \varepsilon) \ge 1 - \frac{D(X)}{\varepsilon^2}$$

27. Неравенство Маркова

$$P(X \le \varepsilon) > 1 - \frac{MX}{\varepsilon}$$

28. Математическое ожидание функции одной случайной величины

$$M[\varphi(x)] = \sum_{i=1}^{n} \varphi(x_i) \cdot p_i$$

Сайт www.MatBuro.ru

©МатБюро - Решение задач по высшей математике, теории вероятностей

29. Корреляционный момент системы случайных величин X и Y

$$\mu_{XY} = M\left(\left[X - M(X)\right] \cdot \left[Y - M(Y)\right]\right) = M(X \cdot Y) - M(X) \cdot M(Y)$$

30. Коэффициент корреляции системы случайных величин $\ X$ и $\ Y$

$$r_{XY} = \frac{\mu_{XY}}{\sigma_X \cdot \sigma_Y}$$

31. Пуассоновский поток событий

$$p_{t}(k) = \frac{(\lambda t)^{k} \cdot e^{-\lambda t}}{k!}$$