NTW Model Checks for Silica

Adityan S

Contents

T	NV	E Checks	1
	1.1	Parameters	1
	1.2	Energy	2
	1.3	Temperature and Velocity Distribution	2
	1.4	Pressure	3
	1.5	Ensemble Momentum and COM Velocity	4
2	Coc	oling Checks	5
	2.1	Parameters	5
	2.2	$T_f^* = 0.28, N = 501 \dots \dots \dots \dots \dots \dots \dots$	5
		2.2.1 Energy	5
		2.2.2 Temperature	7
		2.2.3 Pressure	7
		2.2.4 Average NVT Temperature vs KE	8
3 NVT Checks		T Checks	9
	3.1	Coslovich and Pastore RDF Check $T_f^* = 0.28, N = 501, \rho = 1.655 \dots \dots$	9
		$3.1.1 g_{11}(r) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	9
		$3.1.2 g_{12}(r) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	10
		$3.1.3 g_{22}(r) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	10
		3 1 4 Density Check	11

1 NVE Checks

1.1 Parameters

Temperature	$T_i^* = 0.28 \implies T_i = 1960K$
Density	$\rho^* = 1.655 \implies \rho = 4.475 \text{g/cm}^3$
Pressure	$P^* = 2.37 \times 10^{-6} \implies P = 1 \text{ atm}$
Number of Atoms	N = 501
	$N_{Si} = N_1 = 188$
	$N_O = N_2 = 376$

1.2 Energy

1.3 Temperature and Velocity Distribution

1.4 Pressure

1.5 Ensemble Momentum and COM Velocity

2 Cooling Checks

2.1 Parameters

- \bullet Initial NVE Temperature T_{NVE}
- \bullet Thermalize (Nose-Hover) to $T_f + 500K = T_f^* + 0.07$
- Cooling to T_f in steps. Each cooling step involves rapid cooling for n_c , followed by thermalization (Nose-Hover) for n_t

2.2
$$T_f^* = 0.28, \quad N = 501$$

2.2.1 Energy

2.2.2 Temperature

2.2.3 Pressure

2.2.4 Average NVT Temperature vs KE

3.1 Coslovich and Pastore RDF Check $T_f^* = 0.28, \quad N = 501, \quad \rho = 1.655$

3.1.1 $g_{11}(r)$

3.1.3 $g_{22}(r)$

3.1.4 Density Check

1. N = 501, $\rho = 1.655$

$$z(R = 4.22113) = 522.054$$

$$R_0 = 4.22113 \implies \frac{4}{3}\pi R_0^3 = 315.047$$

$$N_{sim} = 501, \quad \rho = 1.655$$

$$\implies L = 6.71449326567 \implies L^3 = 302.718$$

$$\rho = \frac{N+1}{L^3} = \frac{z(R_0)}{\frac{4}{3}\pi R_0^3} = 1.657$$

$$\implies N+1 = 501.7 \implies N = 500.7 \approx 501$$