Functional Analysis HW4

Kim Juhyeong

November 30, 2020

Problem 16.

Since the left-invariant Haar measure of the G is $\frac{1}{x^2}dxdy$ or $\frac{1}{x^2}dydx$ and right Haar measure is $\frac{1}{|x|}dxdy$ or $\frac{1}{|x|}dydx$, G is not unimodular. (notation overlapping. why? how do you get them?)

Furthermore, let adjoint representation of
$$g_1, g_2 \in G$$
 be $ad_{g_1}g_2 = g_1g_2 - g_2g_1$.
Then, for $g_1 = \begin{bmatrix} x & y \\ 0 & 1 \end{bmatrix}$, $g_2 = \begin{bmatrix} z & w \\ 0 & 1 \end{bmatrix}$, $ad_{g_1}g_2 = \begin{bmatrix} 0 & xw + y - yz - w \\ 0 & 0 \end{bmatrix}$.

Then, $|\det ad_{g_1}\bar{g_2}| = 0$ for $\forall g_1, \bar{g_2} \in G$.

Thus, it is not unimodular.

(Your argument is not sufficient.)

5/10

Problem 17.

For $f \in B_1$, define function $F : \mathbb{R} \to \mathbb{R}, t \mapsto \int_0^t |f(x)| dx$. Then, for $a, b \in [0, 1]$,

$$|F(b) - F(a)| = \left| \int_{a}^{b} |f(x)| dx \right| \le ||f||_{L^{1}([0,1])} |b - a|$$

 $\text{Moreover, } \|F\|_{L(\mathbb{R})} \leq \|f\|_{L^1([0,1])} < \infty.$

Using Intermediate Value Theorem, $\exists t \in [0,1]$ such that $F(t) = \frac{1}{2} ||f||_{L^1}$. (separate the trivial case f = 0 in your argument.)

Then, $2f|_{X[0,t]}, 2f|_{X[t,1]} \in B_1$ and $2f|_{X[0,t]} \neq f \neq 2f|_{X[t,1]}$.

However, $f = f|_{X[0,t]} + f|_{X[t,1]}$.

Thus f cannot be extreme point.

In conclusion, there are no extreme points in B_1 .

Therefore, the assumption that $L^1([0,1])$ is a dual space of a Banach Space is wrong since if it was dual space of Banach space, weak* topology of B_1 is compact by Banach-Alaoglu Theorem.

10/10

Problem 18.

Let T be a compact operator and (u_n) be a weakly convergent sequence converging to u. Since u_n is weakly convergent, it follows that it is bounded and T is compact.

Thus, for any subsequence (Tu_{n_s}) converge strongly in Y to Tu.

Then any subsequence of (Tu_n) has a convergent subsequence with limit Tu (why?). By topological lemma, $Tu_n \to Tu$ in Y.

Please write more detail of the proof.

2/10

Problem 19.

Given $\epsilon > 0$, let $x_0 \in \mathcal{H}$ and $||x_0||_{\mathcal{H}} \leq 1$ such that $||Tx_0||_{\mathcal{H}} \geq ||T||_{op} - \epsilon$. If we extend x_0 to orthonormal basis e_i ,

$$||T||_{op}^2 = \sup_{\|x\| \le 1} ||Tx||_{\mathcal{H}}^2 \le ||Tx_0||_{\mathcal{H}}^2 + \epsilon$$

Since $x_0 = \sum_i \alpha_i e_i$ for some constant $\{\alpha_i\}$ such that $\forall i, |\alpha_i| \leq 1$ and orthnormal basis $\{e_i\}$.

$$||Tx_0||_{\mathcal{H}}^2 = \left\|\sum_i T(\alpha_i e_i)\right\|_{\mathcal{H}}^2 = \sum_i ||T(\alpha_i e_i)||_{\mathcal{H}}^2$$

By Pythagoras's theorem.

$$\sum_{i} \|T(\alpha_{i}e_{i})\|_{\mathcal{H}}^{2} = \sum_{i} \alpha_{i}^{2} \|T(e_{i})\|_{\mathcal{H}}^{2} \leq \sum_{i} \|Te_{i}\|_{\mathcal{H}}^{2} = \|T\|_{HS}^{2}$$

Then, since we can choose ϵ arbitarily small, $\|T\|_{op}^2 \leq \|T\|_{HS}^2$ and $\|T\|_{op} \leq \|T\|_{HS}$

10/10

Problem 20.

Since $||I - A^{-1}B|| \le ||A - B|| ||A^{-1}|| = ||B - A|| ||A^{-1}|| \le 1$.

By theorem in Analysis, $I - (I - A^{-1}B) = A^{-1}B$ is invertible. (you should explain what you mean clearly with writing down the right argument. Do not rely on the high level language. I know what you're saying but cannot give you full credit.)

Also, BA^{-1} is invertible similarly.

Assume B is not invertible and thus, not bijective.

Then, neither $A^{-1}B$ nor BA^{-1} is bijective.

This is contradiction.

Therefore, B is invertible.

(Do not skip the detail.)

2/10