Numerical Analysis Day 2

Jeff Parker

September 11th 2012

Our problem tonight is finding the roots (zeros) of a continuous function f(x)

1 Bisection

If we know points a and b such that f(a) < 0 and f(b) > 0 we can bisect the interval [a, b] and get a smaller interval with a similar property.

Start with the function $f(x) = x^2 - 2$

a	c = (a+b)/2	b	f(a)	f(c)	f(b)
0	1	2	-2	-1	2
1	1.5	2			

2 Heron's Method

The find the square root of R, we start with an estimate $x = x_0$ and iterate $x_1 = (x_0 + R/x_0)/2$ Let's try this with $x_0 = 1$ and R = 2

(x+2/x)/2
(1+2)/2 = 1.5

3 Fixed Point Iteration

Look for fixed points of the iteration $x = \sqrt{x}$ and $x = x^2$

•	
X	\sqrt{x}
0.1	
X	x^2
0.9	
	1

4 Three Examples

To find the roots of the function $f(x) = x^3 + x - 1$ we try iterating three functions x = g(x)

$$x = 1 - x^{3}$$

$$x = \sqrt[3]{1 - x}$$

$$x = (1 + 2x^{3})/(1 + 3x^{2})$$

Conclusion: an iteration converges when:

5 Newton's Method

Newton's method iterates the function g(x) defined as

$$g(x) = x - \frac{f(x)}{f'(x)}$$

Compute g'(x)

Fails to converge when: ______

For roots of order m, such as $f(x) = (x-1)^2(x+1)^3$, iterate

$$g(x) = x - m \frac{f(x)}{f'(x)}$$

2