1 Claudio Fontanari: 模空间

2 Joseph Bernstein: 什么是群表示

定义 2.1 (商群胚)

设群 G 作用于集合 X, 定义商群胚 (quotient groupoid) X/G 为

命题 2.2

$$\operatorname{Sh}(X/G) \simeq \operatorname{Sh}_G(X).$$

3 Pivet: 2-范畴上的层

4 Peter Haine: 由平展意象重构概形

5 景的态射与余态射

6 Matthias Ritter (Hutzler): 综合代数几何

我们使用的综合代数几何的语言是用同伦类型论表述的 Zariski (∞ -) 意象的内语言.

定义 6.1 (射影空间)

$$\mathbb{P}^n := \sum_{L \subset R^{n+1} \neq \not \in} \|L \simeq R^1\|_{\text{prop}}.$$

定义 6.2 (抽象直线的空间, 线丛, Picard 群)

定义抽象直线的空间 (space of abstract lines)

$$BR^\times := \sum_{L: R\mathsf{Mod}} \|L \simeq R^1\|_{\mathrm{prop}}.$$

由于 R-模的张量积满足 $R^1 \otimes R^1 \simeq R^1$, 有运算

$$\otimes : BR^{\times} \times BR^{\times} \to BR^{\times},$$

且 \otimes 构成 BR^{\times} 上的 (高阶) 群结构, 单位为 R^{1} , 逆为 $L \mapsto L^{\vee} = \text{Hom}(L, R^{1})$.

定义空间 (类型) X 上的线丛为映射 $X \to BR^{\times}$. 定义 X 的 Picard 群为

$$\operatorname{Pic}(X) := \|X \to BR^{\times}\|_{\operatorname{set}}.$$

例 6.3 (重言线丛, $\mathcal{O}(d)$)

射影空间 \mathbb{P}^n 上的重言线丛 $\mathcal{O}(-1)$ 定义为

$$\mathcal{O}(-1) \colon \mathbb{P}^n \to BR^{\times}, \ L \mapsto L.$$

定义 $\mathcal{O}(d)$ 为 $\mathcal{O}(-1)$ 的 (-d) 次张量积.

命题 6.4

 $\operatorname{Pic} \mathbb{P}^n \simeq \mathbb{Z}.$

7 Michael Shulman: 意象图表的内语言

定义 7.1 (意象的图表)

定义一个意象的图表是一个 2-函子 $\mathcal{M}\to \mathcal{T}opos$, 其中 \mathcal{M} 是任意 2-范畴, $\mathcal{T}opos$ 是意象的 2-范畴.

例 7.2

以下结构均为意象的图表的特例.

- S-意象, 也即几何态射 $f: \mathcal{E} \to \mathcal{S}$;
- 局部 S-意象, 也即几何态射 $f: \mathcal{E} \to \mathcal{S}$ 及其...
- 完全连通 S-意象.