Capstone Project Report

Building a recommender system using 10M version of Movielens dataset

Endri Raco

Contents

Dedication
Acknowledgement
Introduction
Importing data
Describing Data
Data Wrangling
Exploring Data
Building models
Regularization
Results and conclusions

Dedication

This project and all my work is dedicated to victims of Albanian earthquake 26 November 2019.

Acknowledgement

I would like to express my special thanks of gratitude to Prof. Rafael Irizarry for the wonderful material and thorough explanations he provided during all courses. Also I want to thank my friends of this course who share the same interests for Data Science.

Introduction

Recommender systems are information filtering tools that aspire to predict the rating for users and items, predominantly from big data to recommend their likes. Movie recommendation systems provide a mechanism to assist users in classifying users with similar interests. This makes recommender systems essentially a central part of websites and e-commerce applications. This project focuses on building a movie recommendation system using data from 10M version of movielens dataset. Several Machine Learning techniques such as Matrix Factorization, Regularization etc will be used to produce evaluation

metrics such as root mean square error (RMSE) for the movie recommender system. For all project calculations is used the following PC:

```
print("Operating System:")
[1] "Operating System:"
version
```

```
x86_64-w64-mingw32
platform
arch
               x86_64
               mingw32
os
               x86_64, mingw32
system
status
major
minor
               6.1
year
               2019
               07
month
               05
day
               76782
svn rev
               R
language
version.string R version 3.6.1 (2019-07-05)
nickname
               Action of the Toes
```

Importing data

MovieLense dataset contains the ratings that the users give to movies. Code used in 'Importing data' section was previously provided by edX.

Let's start by checking if needed R packages for this project are installed. If not, code below will install them.

```
# required packages for our project
if(!require(kableExtra)) install.packages('kableExtra',
    repos = 'http://cran.us.r-project.org')
if(!require(dataCompareR)) install.packages('dataCompareR',
    repos = 'http://cran.us.r-project.org')
if(!require(tidyverse)) install.packages('tidyverse',
    repos = 'http://cran.us.r-project.org')
if(!require(caret)) install.packages('caret',
    repos = 'http://cran.us.r-project.org')
if(!require(data.table)) install.packages('data.table',
    repos = 'http://cran.us.r-project.org')
```

Now we are ready for data downloading:

```
# MovieLens 10M dataset:
# https://grouplens.org/datasets/movielens/10m/
# http://files.grouplens.org/datasets/movielens/ml-10m.zip

dl <- tempfile()
download.file('http://files.grouplens.org/datasets/movielens/ml-10m.zip', dl)</pre>
```

Some adjustments of downloaded data to have movielens dataframe as a result

```
ratings <- fread(text = gsub('::', '\t',
    readLines(unzip(dl, 'ml-10M100K/ratings.dat'))),
    col.names = c('userId', 'movieId', 'rating', 'timestamp'))
movies <- str_split_fixed(readLines(unzip(dl, 'ml-10M100K/movies.dat')), '\::', 3)
colnames(movies) <- c('movieId', 'title', 'genres')
movies <- as.data.frame(movies) %>%
mutate(movieId = as.numeric(levels(movieId))[movieId],
title = as.character(title),
genres = as.character(genres))
movielens <- left_join(ratings, movies, by = 'movieId')</pre>
```

When developing an algorithm, we usually have a dataset for which we know the outcomes, as we do with the heights: we know the sex of every student in our dataset. Therefore, to mimic the ultimate evaluation process, we typically split the data into two parts and act as if we don't know the outcome for one of these. We stop pretending we don't know the outcome to evaluate the algorithm, but only after we are done constructing it. We refer to the group for which we know the outcome, and use to develop the algorithm, as the training set. We refer to the group for which we pretend we don't know the outcome as the test set. A standard way of generating the training and test sets is by randomly splitting the data. The caret package includes the function **createDataPartition** that helps us generates indexes for randomly splitting the data into training and test sets:

```
# Validation set will be 10% of MovieLens data
set.seed(1, sample.kind='Rounding')
test_index <- createDataPartition(y = movielens$rating,
times = 1, p = 0.1, list = FALSE)</pre>
```

We use the result of the **createDataPartition** function call to define the training and test sets like this:

```
edx <- movielens[-test_index,]
temp <- movielens[test_index,]</pre>
```

And some final adjustments before cleaning environment from unused elements.

```
# Make sure userId and movieId in validation set are also in edx set

validation <- temp %>%
   semi_join(edx, by = 'movieId') %>%
   semi_join(edx, by = 'userId')

# Add rows removed from validation set back into edx set

removed <- anti_join(temp, validation)
edx <- rbind(edx, removed)

rm(dl, ratings, movies, test_index, temp, movielens, removed)</pre>
```

Now, we can save the result of steps above (\mathbf{edx} and $\mathbf{validation}$ dataframes) as R objects, so we can reload the final version of the data into the session for further analysis without repeating the process.

```
# Save our data as R objects
save(edx, file = 'edx.RData')
save(validation, file = 'validation.RData')
```

Describing Data

We stored the data for our project in two data frames. Let's access these datasets using the **load** function:

```
# Load data
load('edx.RData')
load('validation.RData')
```

First, we make a check if our data format is indeed **data frame**:

```
# Check format
class(edx)
[1] "data.frame"
class(validation)
[1] "data.frame"
```

Now let's take a look in our data. We start by finding out more about the structure of our \mathbf{edx} :

```
as_tibble(edx) %>%
slice(1:5) %>%
knitr::kable()
```

userId	movieId	rating	timestamp	title	genres
1	122	5	838985046	Boomerang (1992)	Comedy Romance
1	185	5	838983525	Net, The (1995)	Action Crime Thriller
1	292	5	838983421	Outbreak (1995)	Action Drama Sci-Fi Thriller
1	316	5	838983392	Stargate (1994)	Action Adventure Sci-Fi
1	329	5	838983392	Star Trek: Generations (1994)	Action Adventure Drama Sci-Fi

Now for **validation**:

```
as_tibble(validation) %>%
slice(1:5) %>%
knitr::kable()
```

userId	movieId	rating	timestamp	title	genres
1	231	5	838983392	Dumb & Dumber (1994)	Comedy
1	480	5	838983653	Jurassic Park (1993)	Action Adventure Sci-Fi Thriller
1	586	5	838984068	Home Alone (1990)	Children Comedy
2	151	3	868246450	Rob Roy (1995)	Action Drama Romance War
2	858	2	868245645	Godfather, The (1972)	Crime Drama

We see that \mathbf{edx} data frame has 9000055 rows and 6 variables, while **validation** data frame has 999999 rows and 6.

Now let's print features of both data frames **edx** and **validation together** to reassure ourselves that both contain the same features.

```
library(dataCompareR)
comp_edx_val <- rCompare(edx, validation)
comp_summ <- summary(comp_edx_val)
comp_summ[c('datasetSummary', 'ncolInAOnly', 'ncolInBOnly', 'ncolCommon', 'rowsInAOnly', '</pre>
```

\$datasetSummary

```
Dataset Name Number of Rows Number of Columns
          edx 9000055
1
   validation
                      999999
                                              6
$ncolInAOnly
[1] 0
$ncolInBOnly
[1] 0
$ncolCommon
[1] 6
$rowsInAOnly
  indices_removed
          2071691
2
          6108796
3
          8926402
4
          1873609
          4286454
$rowsInBOnly
[1] indices_removed
<0 rows> (or 0-length row.names)
$nrowCommon
[1] 999999
```

It is a good idea to check for dublicates so to create a general idea about number of distinct users, movies and genres.

$distinct_users$	$distinct_movies$	distinct_genres
69878	10677	797

Data Wrangling

When we printed **edx** and **validation** data frames as tibbles we noticed that we can make some arrangements in **title**, **timestamp** and **genres** columns to bring our data in a tidy format.

We are going to perform these tasks:

- Most of the movies have their **premier year** added to their **titles**. We will extract debut years in a separate column.
- Column **genres** has to be categorized. We will change the class of **genres** to **factor**
- Timestamp needs to be converted to rate_year.

For the sake of analysis we will need **userId** and **movieId** converted from class **integer** to class **factor**.

```
tidydf <- function(df){
    df$genres <- as.factor(df$genres) #Convert genres to factor
    df$timestamp <- as.Date(as.POSIXct(df$timestamp, origin='1970-01-01'))
    #Convert timestamp
    names(df)[names(df) == 'timestamp'] <- 'rate_year' # Rename column timestamp to rate_year
    df <- df %>%
        mutate(title = str_trim(title), rate_year = year(rate_year)) %>% #Mutate title and rate extract(title, c('title', 'premier_year'), regex = '(.*)\\s\\((\\d+)\\)', convert = TR
#Separate title from year
return(df)
}
# Transform our dataframes
edx <- tidydf(edx)
validation <- tidydf(validation)</pre>
```

Now our data frames look like this:

```
as_tibble(edx)
as_tibble(validation)
```

Probably is a good idea in this step to check for NA values:

```
# Check edx dataframe for NA values
edx_na <- edx %>%
filter(is.na(title) | is.na(year))
glimpse(edx_na)
Observations: 0
Variables: 7
$ userId
               <int>
$ movieId
               <dbl>
$ rating
               <dbl>
$ rate_year
               <int>
$ title
               <chr>>
$ premier_year <int>
$ genres
               <fct>
```

```
# Check validation dataframe for NA values
validation_na <- validation %>%
filter(is.na(title) | is.na(year))
glimpse(validation_na)
```

Exploring Data

Ratings frequency

From this step to the development of our algorithm we will continue using \mathbf{edx} dataframe. We will come back to **validation** dataframe to perform a final test of our algorithm, predict movie ratings in the validation set as if they were unknown.

Now let's begin our exploration by looking at rating variable.

```
# Check frequencies of ratings unique values
table_rating <- as.data.frame(table(edx$rating))
colnames(table_rating) <- c('Rating', 'Frequencies')
knitr::kable(table_rating)</pre>
```

Rating	Frequencies
0.5	85374
1	345679
1.5	106426
2	711422
2.5	333010
3	2121240
3.5	791624
4	2588430
4.5	526736
5	1390114

Now, we will build a frequency plot of the ratings using **ggplot2**. For this step we need to convert **ratings** into categories:

```
# Frequency plot of the ratings
table_rating %>% ggplot(aes(Rating, Frequencies)) +
geom_bar(stat = 'identity') +
labs(x='Ratings', y='Count') +
ggtitle('Distribution of ratings')
```

Distribution of ratings

We notice from the figure that most of the ratings are above 2, and the most common is 4.

Most viewed movies

Now let's check 10 most viewed movies:

```
# Top movies by number of views
tmovies <- edx %>% select(title) %>%
group_by(title) %>%
summarize(count=n()) %>%
arrange(desc(count))
# Print top_movies
knitr::kable(head(tmovies,10))
```

title	count
Pulp Fiction	31362
Forrest Gump	31079
Silence of the Lambs, The	30382
Jurassic Park	29360
Shawshank Redemption, The	28015
Braveheart	26212
Fugitive, The	26020
Terminator 2: Judgment Day	25984
Star Wars: Episode IV - A New Hope (a.k.a. Star Wars)	25672
Batman	24585

As we can see from the table, the most viewed movie is **Pulp Fiction** with ratings.

Ratings average

Our next task is to identify the top-rated movies by computing the **average score** for each of them.

```
# Top movies by rating average
rating_avg <- edx %>%
  select(title, rating) %>%
  group_by(title) %>%
  summarise(count = n(), avg = mean(rating), min = min(rating), max = max(rating)) %>%
  arrange(desc(avg))
# Print top_movies
knitr::kable(head(rating_avg,10))
```

title	count	avg	min	m
Blue Light, The (Das Blaue Licht)	1	5.00	5.0	
Fighting Elegy (Kenka erejii)	1	5.00	5.0	
Hellhounds on My Trail	1	5.00	5.0	
Satan's Tango (Sátántangó)	2	5.00	5.0	
Shadows of Forgotten Ancestors	1	5.00	5.0	
Sun Alley (Sonnenallee)	1	5.00	5.0	
Constantine's Sword	2	4.75	4.5	
Human Condition II, The (Ningen no joken II)	4	4.75	4.5	
Human Condition III, The (Ningen no joken III)	4	4.75	4.5	
Who's Singin' Over There? (a.k.a. Who Sings Over There) (Ko to tamo peva)	4	4.75	4.0	

By looking at the table above we get the feel that something is wrong. We see that best average rating is for movies with a very low number of ratings (sometimes only one person has voted for this movie). Since this doesn't help getting our analysis right, we have to treat these records as outliers and exclude them from further analysis. We will remove the movies whose number of views is below a defined threshold, for instance, below 200:

```
# Top movies by rating average
rating_avg_200 <- edx %>%
select(title, rating) %>%
group_by(title) %>%
summarise(count = n(), avg = mean(rating), min = min(rating), max = max(rating)) %>%
filter(count > 200) %>%
arrange(desc(avg))
# Print top_movies
knitr::kable(head(rating_avg_200,10))
```

title	count	avg	min	max
Shawshank Redemption, The	28015	4.455131	0.5	5
Godfather, The	17747	4.415366	0.5	5
Usual Suspects, The	21648	4.365854	0.5	5
Schindler's List	23193	4.363493	0.5	5
Casablanca	11232	4.320424	0.5	5
Rear Window	7935	4.318651	0.5	5
Sunset Blvd. (a.k.a. Sunset Boulevard)	2922	4.315880	0.5	5
Third Man, The	2967	4.311426	0.5	5
Double Indemnity	2154	4.310817	0.5	5
Paths of Glory	1571	4.308721	0.5	5

Let's built the chart:

```
rating_avg_200 %>%
  ggplot(aes(x= avg, fill = count)) +
  geom_histogram( binwidth = 0.2) +
  scale_x_continuous(breaks=seq(0, 5, by= 0.5)) +
  labs(x='rating average', y='count') +
  ggtitle('Distribution of average ratings ')
```


Largest number of rankings are between 3 and 4. The highest value it is around 4. It is interesting that no user has rated movies with 0s.

Data as matrix

As professor Rafael Irizarry mentioned in his book, we can think of our dataframe \mathbf{edx} as a very large matrix, with users on the rows and movies on the columns. To see how sparse the matrix is, we have to convert \mathbf{edx} to this format. The figure below shows the matrix for a random sample of 100 movies and 100 users with blue indicating a user/movie combination for which we have a rating

```
# We create a copy of existing edx
edx_copy <-edx
# Sample of 100 users
users <- sample(unique(edx_copy$userId), 100)
edx_copy %>% filter(userId %in% users) %>%
  select(userId, movieId, rating) %>%
  mutate(rating = 1) %>%
  spread(movieId, rating) %>% select(sample(ncol(.), 100)) %>%
  as.matrix() %>% t(.) %>%
  image(1:100, 1:100,., col = 'blue', xlab='Movies', ylab='Users', main = 'Heatmap of the
```

Heatmap of the movie rates matrix

However, this chart is just displaying some random users and items. What if, instead, want to visualize only the users who have seen many movies and the movies that have been seen by many users?

To identify and select the most relevant users and movies, let's determine first:

1. Some movies are rated more often than others. On the plot we can see distribution of movies based on user ratings

```
edx %>% count(movieId) %>%
  ggplot(aes(n)) +
  geom_histogram(bins = 30, color = 'black') +
  scale_x_log10() +
  ggtitle('Distribution of movies')
```


 $2. \,$ Some users are more active than others at rating movies:

```
edx %>% count(userId) %>%
  ggplot(aes(n)) +
  geom_histogram(bins = 30, color = 'black') +
  scale_x_log10() +
  ggtitle('Distribution of users')
```

Distribution of users

Building models

Following instruction provided in professor Rafael Irizarry course, I will start by building the simplest recommendation system:

Model 1 : Computing predicted ratings for all movies regardless of user

Our first model that assumes the same rating for all movies and users with all the differences explained by random variation would look like this:

$$Y_{u,i} = \mu + \varepsilon_{u,i}$$

where $\varepsilon_{i,u}$ are the i.i.d errors centered at 0 and μ the **true** rating for all movies.

```
# Rating for all movies
mu_hat <- mean(edx$rating)
mu_hat</pre>
```

[1] 3.512465

If we want to assess the strength of fit, one method is to check how far off the model is for a typical case. That is, for some observations, the fitted value will be very close to the actual value, while for others it will not. The magnitude of a typical residual can give us a sense of generally how close our estimates are.Least squares fitting procedure guarantee that the mean of the residuals is zero. Thus, it makes more sense to compute **root mean squared error (RMSE)**. We will use function **RMSE** from Prof. Rafael A. Irizarry lectures.

```
#RMSE function
RMSE <- function(true_ratings, predicted_ratings){
    sqrt(mean((true_ratings - predicted_ratings)^2))
}</pre>
```

```
# RMSE calculation
simple_model_rmse <- RMSE(validation$rating, mu_hat)
simple_model_rmse</pre>
```

[1] 1.061202

We see that our first evaluation for RMSE is 1.0612018 a little bit higher that 1. We will continue comparing different approaches to check if we can get a lower value for RMSE.

Below we create a results table to store all RMSE values we get in different approaches:

```
rmse_values <- tibble(method = 'Simple model RMSE', RMSE = simple_model_rmse)
knitr::kable(rmse_values)</pre>
```

	method	RMSE
•	Simple model RMSE	1.061202

Model 2: Computing predicted ratings for all movies based on movie effects

During data exploration, we noticed that some movies are just generally rated higher than others. We will add in our previously built simple model the term b_i to represent average ranking for movie i:

$$Y_{u,i} = \mu + b_i + \varepsilon_{u,i}$$

We will refer to the bs as **effects** or **bias**, movie-specific effect. We will estimate b_i -s using **least square method**. Function **lm** makes this possible, but it can be very slow so we will proceed by taking Professor Rafael Irizarry's advice.

In this particular situation, we know that the least squares estimate \hat{b}_i is just the average of $Y_{u,i} - \hat{\mu}$ for each movie i. So we can compute them this way:

```
#Compute the average of all ratings of the edx set
mu <- mean(edx$rating)
#Compute b_i
movie_avgs <- edx %>%
  group_by(movieId) %>%
  summarize(b_i = mean(rating - mu))
```

Let's plot now the estimated b_i -s distribution:

```
#Plot b_i distribution
movie_avgs %>%
ggplot(aes(b_i)) +
geom_histogram(bins = 30, color = 'black') +
ggtitle('Distribution of estimated b_i')
```


From the plot we can see that these estimates vary substantially.

method	RMSE
Simple model RMSE	1.0612018
Movie Effect Model	0.9439087

Our model has improved with movie effect added. Let's try to get it better.

Model 3: Computing predicted ratings for all movies based on movie and user effects

Another improvement to our model may be:

$$Y_{u,i} = \mu + b_i + b_u + \varepsilon_{u,i}$$

where b_u is a user-specific effect. Why should we think that adding user effect can lead to model improvement? Let's compute the average rating for user u for those that have rated over 100 movies and plot the estimated b_u -s distribution:

```
# Compute average rating for user u who rated more than 100 movies
edx %>%
  group_by(userId) %>%
  summarize(b_u = mean(rating)) %>%
  filter(n()>=100) %>%
  ggplot(aes(b_u)) +
  geom_histogram(bins = 30, color = 'black') +
  ggtitle('Distribution of estimated b_u')
```

Distribution of estimated b_u

We notice that there is substantial variability across users as well so we proceed with model fitting. Let's compute an approximation by computing $\hat{\mu}$ and \hat{b}_i and estimating \hat{b}_u as the average of $y_{u,i} - \hat{\mu} - \hat{b}_i$:

```
#Compute b_u on edx
user_avgs <- edx %>%
  left_join(movie_avgs, by='movieId') %>%
  group_by(userId) %>%
  summarize(b_u = mean(rating - mu - b_i))
```

Now let's see if RMSE improves:

method	RMSE
Simple model RMSE	1.0612018
Movie Effect Model	0.9439087
Movie + User Effects Model	0.8653488

Our RMSE is lower now but still not at the target we are looking for.

Regularization

For any machine learning problem, essentially, we can divide data points into two components — pattern + stochastic noise. The goal of machine learning is to model the pattern and ignore the noise. Probably our algorithm is trying to fit the noise in addition to the pattern, so we are dealing with **overfitting**.

Maybe we can hold back and check if our algorithm is fitting the noise. Let's explore problems in our first model, using only movie effects b_i following Prof. Rafael Irizarry approach.

```
validation %>%
left_join(movie_avgs, by='movieId') %>%
mutate(residual = rating - (mu + b_i)) %>%
arrange(desc(abs(residual))) %>%
select(title, residual) %>% slice(1:10)
```

We notice some large predictions for many of movies in the above table. Let's look at the top 10 worst and best movies based on b_i . First, let's create a database that connects **movieId** to movie **title**:

```
# merged database
merge_db <- edx %>%
select(movieId, title) %>%
distinct()
```

Here are the 10 best movies according to our estimate and how often they were rated:

```
# top 10 best movies based on b_i
movie_avgs %>% left_join(merge_db, by="movieId") %>%
arrange(desc(b_i)) %>%
```

```
select(title, b_i) %>%
slice(1:10)
```

title	b_i
Hellhounds on My Trail	1.487535
Satan's Tango (Sátántangó)	1.487535
Shadows of Forgotten Ancestors	1.487535
Fighting Elegy (Kenka erejii)	1.487535
Sun Alley (Sonnenallee)	1.487535
Blue Light, The (Das Blaue Licht)	1.487535
Who's Singin' Over There? (a.k.a. Who Sings Over There) (Ko to tamo peva)	1.237535
Human Condition II, The (Ningen no joken II)	1.237535
Human Condition III, The (Ningen no joken III)	1.237535
Constantine's Sword	1.237535

```
validation %>% count(movieId) %>%
left_join(movie_avgs) %>%
left_join(merge_db, by="movieId") %>%
arrange(desc(b_i)) %>%
select(title, b_i, n) %>%
slice(1:10)
```

title	b_i	n
Hellhounds on My Trail	1.4875348	1
More	1.2018205	1
Valerie and Her Week of Wonders (Valerie a týden divu)	0.9875348	1
Kansas City Confidential	0.9875348	1
Shawshank Redemption, The	0.9426660	3111
Red Desert, The (Deserto rosso, II)	0.9042015	1
Godfather, The	0.9029008	2067
Man Who Planted Trees, The (Homme qui plantait des arbres, L')	0.8875348	2
Usual Suspects, The	0.8533885	2389
Schindler's List	0.8510281	2584

And here are the 10 worst. Let's look at how often they are rated.

```
# top 10 worse movies based on b_i
movie_avgs %>% left_join(merge_db, by="movieId") %>%
arrange(b_i) %>%
select(title, b_i) %>%
slice(1:10)
```

title	b_i
Besotted	-3.012465
Hi-Line, The	-3.012465
Accused (Anklaget)	-3.012465
Confessions of a Superhero	-3.012465
War of the Worlds 2: The Next Wave	-3.012465
SuperBabies: Baby Geniuses 2	-2.717822
Hip Hop Witch, Da	-2.691037
Disaster Movie	-2.653090
From Justin to Kelly	-2.610455
Criminals	-2.512465

knitr::kable(movie_avgs)

68350	=Q:9 584958
68393	=1:9 249 69 2
68432	-0:8823867
63439	-0:4949058
6 344 4	=P: 8249652
63458	-0.9284658
63468	=0.7566972
63479	-0.4327985
63483	-0:3684653
63575	-0:2284650
mov est	-0:0930034
63987	
	-0:9033958
63945	-0:9040035
68943	-0:483433
63992	-0:0285359
6 89 8 9	-0:4935999
6 3988	-0:348494
6 333 \$	-0:8335649
68388	-0: 9275 244
68 388	
	=0:9 0238 5¥
68399	-0:48449
6838	-0:1129958
69 2 55	
68392	=0:948495 \$
6 3793	= 0:3084633
68794	=0:048 2 95 7
09394	
<u>68899</u>	=0:23049 59
68898	-0:5993059
6 3899	-0:4744953
63336	-0: 489534 6
63836	=0:9324952
63496	=0:0300008
63349	-0:4875848
68853	=0:990008B
63453	-0:9334285
63462	-0:2004053
68868	-0:5897959
68988	-0:2634654
68999	=0:3934953
64468	-0:9903962
64468	
03499	-0:4344253
64934	-0:0206500
64444	=0.538465 3
64449	
	-0:9622258
64453	=0: 94209 5 8
64494	-9:000000
64239	=0:0930953
64236	-0:0024958
64234	-0:8278458
64248	-0:0984958
64245	=0:0194 <u>2</u> 28
64440	-0:0350245 -0:0700208
64979	
64273	-0:0684957
64272	-0:49752 2 6
64278	-0:4875348
64220	-0: 227728 8
64223	=0:0033003
64426	-0:0704097
64228	
<u> </u>	-0:5332 9 52
6432	-0: 237729
64426	-0:2594952
64426	-0:2334304 -0:55599656
64498	-0:9953237
64395	-0:5084958
64399	-0:6 7 9 A 218
64498	
<u></u>	-0:2534653
64439	-0:3694657
64438	- 9:298333 0

```
validation %>% count(movieId) %>%
left_join(movie_avgs) %>%
left_join(merge_db, by="movieId") %>%
arrange(b_i) %>%
select(title, b_i, n) %>%
slice(1:10)
```

title	b_i	n
Confessions of a Superhero	-3.012465	1
War of the Worlds 2: The Next Wave	-3.012465	1
SuperBabies: Baby Geniuses 2	-2.717822	5
Disaster Movie	-2.653090	8
From Justin to Kelly	-2.610455	17
Criminals	-2.512465	2
Mountain Eagle, The	-2.512465	2
When Time Ran Out (a.k.a. The Day the World Ended)	-2.512465	2
Pokémon Heroes	-2.483268	19
Roller Boogie	-2.479132	2

Penalized least squares

The general idea behind regularization is to constrain the **total variability** of the effect sizes. We make this possible by adding a **penalty term** to the least square equation. This **penalty term** gets larger when b_i are large. So we consider **penalty term** a parameter which we have to tune to get optimal results.

We will use λ is a tuning parameter. We can use cross-validation to choose it.

```
lambdas <- seq(0, 10, 0.25)
mu <- mean(edx$rating)
just_the_sum <- edx %>%
  group_by(movieId) %>%
  summarize(s = sum(rating - mu), n_i = n())
rmses <- sapply(lambdas, function(1){
  predicted_ratings <- validation %>%
    left_join(just_the_sum, by='movieId') %>%
    mutate(b_i = s/(n_i+1)) %>%
    mutate(pred = mu + b_i) %>%
    pull(pred)
  return(RMSE(predicted_ratings, validation$rating))
})
```

Now we plot RMSE values together with lambdas:

```
# Plot lambdas and rmse
ggplot(data.frame(lambdas = lambdas, rmses = rmses ), aes(lambdas, rmses)) +
   geom_point()
lambdas[which.min(rmses)]
```

[1] 2.5

We can use regularization for the estimate user effects as well. We are minimizing:

$$\frac{1}{N} \sum_{u,i} (y_{u,i} - \mu - b_i - b_u)^2 + \lambda \left(\sum_i b_i^2 + \sum_u b_u^2 \right)$$

The estimates that minimize this can be found similarly to what we did above. Here we use cross-validation to pick a λ :

```
lambdas \leftarrow seq(0, 10, 0.25)
rmses <- sapply(lambdas, function(1){</pre>
mu <- mean(edx$rating)</pre>
b_i <- edx %>%
    group_by(movieId) %>%
    summarize(b_i = sum(rating - mu)/(n()+1))
b_u <- edx %>%
    left_join(b_i, by='movieId') %>%
    group_by(userId) %>%
    summarize(b_u = sum(rating - b_i - mu)/(n()+1))
    predicted_ratings <-</pre>
    validation %>%
    left_join(b_i, by = 'movieId') %>%
    left_join(b_u, by = 'userId') %>%
    mutate(pred = mu + b_i + b_u) %>%
    pull(pred)
return(RMSE(predicted_ratings, validation$rating))
```

ggplot(data.frame(lambdas = lambdas, rmses = rmses), aes(lambdas, rmses)) +
geom_point()

For the full model, the optimal λ is:

```
# Value of lambda that minimizes RMSE
lambda <- lambdas[which.min(rmses)]
lambda</pre>
```

[1] 5.25

method	RMSE
Simple model RMSE	1.0612018
Movie Effect Model	0.9439087
Movie + User Effects Model	0.8653488
Regularized Movie + User Effect Model	0.8648170

Results and conclusions

Finally we print again table of RMSE values for all models we build during this work:

method	RMSE
Simple model RMSE	1.0612018
Movie Effect Model	0.9439087
Movie + User Effects Model	0.8653488
Regularized Movie + User Effect Model	0.8648170

We can see that lowest value RMSE we could achive so far is which is lower than our starting goal (0.8775). **movieId** variable has a large impact on the **rmse** value. When we combined this impact with **usedId** effect, **rmse** value became smaller.

So our final model will be:

$$Y_{u,i} = \mu + b_i + b_u + \epsilon_{u,i}$$