

总线的性能指标

1. 总线的传输周期(总线周期)
2. 总线时钟周期
3. 总线的工作频率
4. 总线的时钟频率
5. 总线宽度
6. 总线背宽
7. 总线复用
8. 信号线数

1. 总线的传输周期(总线周期)

一次总线操作所需的时间(包括申请阶段、寻址阶段、传输阶段和结束阶段),通常由若干个总线时钟周期构成。

总线周期与总线时钟周期的关系比较魔幻, 大多数情况下,一个总线周期包含多个总线时钟周期 有的时候,一个总线周期就是一个总线时钟周期 有的时候,一个总线时钟周期可包含多个总线周期

2. 总线时钟周期

即机器的时钟周期。计算机有一个统一的时钟,以控制整个计算机的各个部件,总 线也要受此时钟的控制。

现在的计算机中, 总线时钟周期也有 可能由桥接器提供

3. 总线的工作频率

总线上各种操作的频率,为**总线周期的倒数**。 若总线周期=N个时钟周期,则总线的工作频率=时钟频率/N。 实际上指一**秒内传送几次数据**。

即机器的时钟频率,为**时钟周期的倒数**。若时钟周期为T,则时钟频率为1/T。 实际上指**一秒内有多少个时钟周期**。

王道考研/CSKAOYAN.COM

3

总线的性能指标

5. 总线宽度

又称为**总线位宽**,它是总线上**同时能够传输的数据位数**,通常是指**数据总线的根数**,如32根称为32位(bit)总线。

6. 总线带宽

可理解为总线的**数据传输率**,即**单位时间内总线上可传输数据的位数**,通常用每秒钟传送信息的字节数来衡量,单位可用字节/秒(B/s)表示。

总线带宽 = 总线工作频率 × 总线宽度 (bit/s) = 总线工作频率 × (总线宽度/8) (B/s)

= <u>总线宽度</u> (bit/s) = <u>总线宽度/8</u> (B/s)

注: 总线带宽是指总线本身所能达到的**最高传输速率**。 在计算实际的**有效数据传输率**时,要用实际传输的数据量除以耗时。

王道考研/CSKAOYAN.COM

4

总线的性能指标-带宽

总线带宽 = 总线工作频率 \times 总线宽度 (bit/s) = 总线工作频率 \times (总线宽度/8) (B/s) 注:总线带宽是指总线本身所能达到的最高传输速率。

在计算实际的**有效数据传输率**时,要用实际传输的数据量除以耗时。

- 例. 某同步总线采用数据线和地址线复用方式,其中地址/数据线有32根,总线时钟频率为66MHz,每个时钟周期传送两次数据(上升沿和下降沿各传送一次数据)。
- 1) 该总线的最大数据传输率(总线带宽)是多少?
- 2) 若该总线支持突发(猝发)传输方式,传输一个地址占用一个时钟周期,则一次"主存写"总线事务传输128位数据所需要的时间至少是多少?
- 1) 每个时钟周期传送两次数据 → 总线工作频率是时钟频率的两倍 总线工作频率 = 2 × 66MHz =132MHz 总线宽度 = 32bit = 4B 总线带宽 = 总线工作频率 × 总线宽度 = 132 × 4 MB/s = 528 MB/s
- 2) 突发(猝发)传输方式:一次总线事务中,主设备只需给出一个首地址,从设备就能从首地址开始的若干连续单元读出或写入多个数据。

发送首地址占用1个时钟周期, 128位数据需传输4次, 占用2个时钟周期 一个时钟周期 = 1/66MHz ≈ 15ns 总耗时 = (1+2) × 15ns =45ns

王道考研/CSKAOYAN.COM

5

串行总线与并行总线

优点: 只需要一条传输线,成本低廉,广泛应用于长距离传输; 应用于计算机内部时,可以节省 布线空间。

缺点:在数据发送和接收的时候要进行拆卸和装配,要考虑串行-并行转换的问题。

优点:总线的逻辑时序比较简单, 电路实现起来比较容易。

缺点:信号线数量多,占用更多的布线空间;远距离传输成本高昂;由于工作频率较高时,并行的信号线之间会产生严重干扰,对每条线等长的要求也越高,所以无法持续提升工作频率。

王道考研/CSKAOYAN.COM

6

串行总线与并行总线

速度?

总线带宽 = 总线工作频率 × 总线宽度 (bit/s)

- 1. 工作频率相同时,串行总线传输速度 比并行总线慢。
- 2. 并行总线的工作频率无法持续提高, 而串行总线可以通过不断提高工作频率 来提高传输速度,最终超过并行总线。

优点: 只需要一条传输线,成本低廉,广泛应用于长距离传输; 应用于计算机内部时,可以节省 布线空间。

缺点:在数据发送和接收的时候 要进行拆卸和装配,要考虑串行-并行转换的问题。

优点:总线的逻辑时序比较简单, 电路实现起来比较容易。

缺点:信号线数量多,占用更多的布线空间;远距离传输成本高昂;由于工作频率较高时,并行的信号线之间会产生严重干扰,对每条线等长的要求也越高,所以无法持续提升工作频率。

王道考研/CSKAOYAN.COM

7

8

总线的性能指标

- 1. 总线的传输周期(总线周期)
- 一**次总线操作所需的时间**(包括申请阶段、寻址阶段、传输阶段和结束阶段),通常由若干个总线时钟周期构成。
- 2. 总线时钟周期
- 即<mark>机器的时钟周期</mark>。计算机有一个统一的时钟,以控制整个计算机的各个部件,总线也要受此时钟的控制。
- 3. 总线的工作频率
- 总线上各种操作的频率,为总线周期的倒数。实际上指一秒内传送几次数据。
- 4. 总线的时钟频率
- 即机器的时钟频率,为时钟周期的倒数。实际上指一秒内有多少个时钟周期。
- 5. 总线宽度
- 又称为<mark>总线位宽</mark>,它是总线上**同时能够传输的数据位数**,通常是指**数据总线的根数**,如32根称为32位(bit)总线。
- 6. 总线带宽
- 可理解为总线的**数据传输率**,即**单位时间内总线上可传输数据的位数**,通常用每秒钟传送信息的字节数来衡量,单位可用字节/秒(B/s)表示。
- 总线带宽 = 总线工作频率 × 总线宽度 (bit/s) = 总线工作频率 × (总线宽度/8) (B/s)
- 7. 总线复用
- 总线复用是指**一种信号线在不同的时间传输不同的信息**。可以使用**较少的线**传输更多的信息,从而节省了空间和成本。
- 8. 信号线数
- 地址总线、数据总线和控制总线3种总线数的总和称为信号线数。

王道考研/CSKAOYAN.COM

你还可以在这里找到我们

快速获取第一手计算机考研信息&资料

购买2024考研全程班/领学班/定向班 可扫码加微信咨询

微博:@王道计算机考研教育

B站: @王道计算机教育

₩15 小红书:@王道计算机考研

知 知乎: @王道计算机考研

抖音: @王道计算机考研

淘宝:@王道论坛书店