CSCI 567 Fall 2016 Homework 2

 ${\it Mohammed Junaid Hundekar} \\ 2548-4069-96$

hundekar@usc.edu

Collaborators: Sagar Makhwana, Dhawal Shah, Ankit Kothari

October 3, 2016

1 Logistic Regression

a. Negative Log Likelihood as loss function: Consider the probability of a single training sample (x_n, y_n)

$$p(y_n|x_n;b;w) = \sigma(b+w^Tx_n) \qquad if y_n = 1$$
(1)

$$p(y_n|x_n;b;w) = 1 - \sigma(b + w^T x_n)$$
 $ify_n = 0$ (2)

$$p(y_n|x_n;b;w) = \sigma(b + w^T x_n)^{y_n} [1 - \sigma(b + w^T x_n)]^{1-y_n}$$
(3)

$$L(P(D)) = \prod_{n} \{ \sigma(b + w^{T} x_{n})^{y_{n}} [1 - \sigma(b + w^{T} x_{n})]^{1 - y_{n}} \}$$
(4)

Taking log likelihood on the whole training set of size $D(x_1, y_1), (x_2, y_2), ...(x_n, y_n)$

$$\log L(P(D)) = \sum_{n} \{ y_n \log \sigma(b + w^T x_n) + (1 - y_n) \log[1 - \sigma(b + w^T x_n)] \}$$
 (5)

Taking negative of the log likelihood

$$\varepsilon(b, w) = -\sum_{n} \{y_n \log \sigma(b + w^T x_n) + (1 - y_n) \log[1 - \sigma(b + w^T x_n)]\}$$

$$(6)$$

For convenience

Append 1 to $x \begin{bmatrix} 1 & x_1 & x_2 & x_3 & \dots & x_n \end{bmatrix}$

Append b to w $\begin{bmatrix} b & w_1 & w_2 & w_3 & \dots & w_n \end{bmatrix}$

Negative Log likelihood simplifies to

$$\varepsilon(b, w) = -\sum_{n} \{y_n \log \sigma(w^T x_n) + (1 - y_n) \log[1 - \sigma(w^T x_n)]\}$$
(7)

b. Gradient Descent Model Consider $\sigma(a) = \frac{1}{1+e^{-a}}$

$$\frac{d\sigma(a)}{da} = \sigma(a)[1 - \sigma(a)]$$

$$\frac{d\log\sigma(a)}{da} = 1 - \sigma(a)$$

Taking derivative of equation 7 w.r.t w

$$\frac{\partial \varepsilon(w)}{\partial w} = -\sum_{n} \{ y_n [1 - \sigma(w^T x_n)] x_n (1 - y_n) \sigma(w^T x_n) x_n \}$$
(8)

$$\frac{\partial \varepsilon(w)}{\partial w} = \sum_{n} \{ \sigma(w^T x_n) - y_n \} x_n \tag{9}$$

$$w^{(t+1)} = w^{(t)} - \eta \sum_{n} \{ \sigma(w^T x_n) - y_n \} x_n \qquad \eta > 0$$
 (10)

Gradient descent works by updating the weights by using equation 10.

For the gradient descent to converge we need to select the step size (η) carefully.

If η is too small then the algorithm will take a long time to converge, on the other hand if η is too long the algorithm will oscillate and may not converge.

c. Log Likelihood Multi-Class logistic regression Given

$$P(Y = k|X = x) = \frac{\exp(w_k^T x)}{1 + \sum_{t=1}^{k-1} \exp(w_t^T x)}$$
 for k=1,2...k-1 (11)

$$P(Y = k | X = x) = \frac{1}{1 + \sum_{t=1}^{k-1} \exp(w_t^T x)}$$
 for k=K (12)

We can simplify the above expression by introducing another fixed parameter $w_k = 0$ Thus we get

$$P(Y = k|X = x) = \frac{\exp(w_k^T x)}{\sum_{1}^{K-1} \exp(w_t^T x)}$$
 for k=1,2...k-1 (13)

$$P(Y = k | X = x) = \frac{1}{\sum_{t=1}^{K-1} \exp(w_t^T x)}$$
 for $k = K$ (14)

$$P(Y = k|X = x) = \frac{\exp(w_k^T x)}{\sum_{1}^{K} \exp(w_t^T x)}$$
 By adding 13 and 14 (15)

Let us y_n by an vector $\boldsymbol{y}_n = [y_{n1} \quad y_{n2} \quad y_{n3} \quad y_{n4} \quad \dots \quad y_{nK}]^T$ Where

$$y_{nk} = 1$$
 if $y_n = k$

 $y_{nk} = 0$ otherwise Taking the negative of the log likelihood

$$-\log L(P(D)) = -\sum_{n} \log P(y_n|x_n)$$
(16)

$$= -\sum_{n} \log \prod_{k=1}^{K} P(C_k|x_n)^{y_{nk}}$$
(17)

$$= -\sum_{n} \sum_{k} y_{nk} \log P(C_k | x_n) \tag{18}$$

$$= \sum_{n} \sum_{k} y_{nk} \log\left(\frac{\exp(w_k^T x)}{\sum_{1}^{K} \exp(w_t^T x)}\right)$$
(19)

$$l(w_1, w_2...w_k) = -\sum_{i=1}^n \sum_k y_{ik} \log P(y = y_{ik}|x = x_i)$$
(20)

$$l(w_1, w_2...w_k) = -\sum_{n} \sum_{k} y_{nk} [w_k^T x - \log(\sum_{1}^K \exp(w_t^T x))]$$
(21)

d. Gradient Descent of (c) Taking derivative of 20 w.r.t ∂w_i

$$\frac{\partial -l(w_1, w_2...w_k)}{\partial w_i} = \sum_{n} \left[\frac{\exp(w_i^T x)}{\sum_{1}^{K} \exp(w_t^T x)} x_i - x_i y_{ki} \right]$$
(22)

$$= \sum_{n} (x_i [P(Y = y_{ki} | X = x_i) - y_{ki}])$$
 (23)

Update rule for w

$$w_k \leftarrow w_k - \sum_i (P(Y = y_{ki}|X = x_i) - y_{ki})x_i$$
 (24)

2 Linear/Gaussian Discriminant

a. Given: $D = \{(x_n, y_n)\}_{n=1}^N$; $y_n \in \{1, 2\}$

$$p(x_n, y_n) = p(y_n)p(x_n) \tag{25}$$

$$= p_1 \frac{1}{\sqrt{2\pi}\sigma_1} \exp\left(-\frac{(x_n - \mu_1)^2}{2\sigma_1^2}\right) \quad ify_n = 1$$
 (26)

$$= p_2 \frac{1}{\sqrt{2\pi}\sigma_2} \exp\left(-\frac{(x_n - \mu_2)^2}{2\sigma_2^2}\right) \quad ify_n = 2$$
 (27)

$$\log P(D) = \sum_{n} \log p(x_n, y_n) \tag{28}$$

$$= \sum_{n:y_n=1} \log \left(p_1 \frac{1}{\sqrt{2\pi}\sigma_1} \exp\left(-\frac{(x_n - \mu_1)^2}{2\sigma_1^2}\right) \right) + \sum_{n:y_n=2} \log \left(p_2 \frac{1}{\sqrt{2\pi}\sigma_2} \exp\left(-\frac{(x_n - \mu_2)^2}{2\sigma_2^2}\right) \right)$$
(29)

$$= \sum_{n:u_n=1} (\log p_1 - \log \sqrt{2\pi}\sigma_1 - \frac{(x_n - \mu_1)^2}{2\sigma_1^2}) + \sum_{n:u_n=2} (\log p_2 - \log \sqrt{2\pi}\sigma_1 - \frac{(x_n - \mu_2)^2}{2\sigma_2^2})$$
(30)

Now we can maximize $\{p_1, \mu_1, \sigma_1, p_2, \mu_2, \sigma_2\}$ separately from the above equation by taking derivative and equating to zero for each term.

$$p_2 = 1 - p_1 \tag{31}$$

$$\frac{dl(D)}{dp_1} = \frac{\sum_{n:y=1} 1}{p_1} - \frac{\sum_{n:y=2} 1}{1 - p_1} = 0$$
(32)

$$\frac{N_{y=1}}{p_1} = \frac{N_{y=2}}{1 - p_1} \tag{33}$$

$$p_1 = \frac{N_{y=1}}{N} \tag{34}$$

Similarly,
$$p_2 = \frac{N_{y=2}}{N}$$
 (35)

$$\frac{dl(D)}{d\mu_1} = \sum_{n:\nu=1} \left[\frac{-2(x_n - \mu_1)(-1)}{2\sigma_1^2} \right] = 0$$
(36)

$$\sum_{n:y=1} (1)\mu_1 = \sum_{n:y=1} x_n \tag{37}$$

$$\mu_1 = \frac{\sum_{n:y=1} x_n}{N_{y=1}} \tag{38}$$

Similarly,
$$\mu_2 = \frac{\sum_{n:y=2} x_n}{N_{y=2}}$$
 (39)

$$\frac{dl(D)}{d\sigma_1} = \sum_{n:\nu=1} \left(\left[\frac{-1}{\sqrt{2\pi}\sigma_1} \sqrt{2\pi} \right] - \left[\frac{(x_n - \mu_2)^2}{2\sigma_1^3} (-2) \right] \right) = 0 \tag{40}$$

$$\frac{\sum_{n:y=1}(x_n - \mu_2)^2}{\sigma_1^3} = \left(\frac{\sum_{n:y=1} 1}{\sigma_1}\right) \tag{41}$$

$$\sigma_1^2 = \frac{\sum_{n:y=1} (x_n - \mu_1)^2}{N_{y=1}} \tag{42}$$

Similarly,
$$\sigma_2^2 = \frac{\sum_{n:y=2} (x_n - \mu_2)^2}{N_{y=2}}$$
 (43)

b. Given $P(x|y=c_1) = \mathcal{N}(\mu_1, \Sigma)$ and $P(x|y=c_2) = \mathcal{N}(\mu_2, \Sigma)$ Assume $P(y=1) = \pi$; $P(y=2) = 1 - \pi$

$$P(x|y=1) = \frac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu_1)^T \Sigma^{-1}(x-\mu_1)\right)$$
(44)

$$P(x|y=2) = \frac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu_2)^T \Sigma^{-1}(x-\mu_2)\right)$$
(45)

$$P(y=1|x) = \frac{P(x|y=1)P(y=1)}{P(x|y=1)P(y=1) + P(x|y=2)P(y=2)}$$
(46)

$$= \frac{1}{1 + \frac{P(x|y=2)P(y=2)}{P(x|y=1)P(y=1)}} \tag{47}$$

$$= \frac{1}{1 + \exp(-\frac{1}{2}(x - \mu_2)^T \Sigma^{-1}(x - \mu_2) + \frac{1}{2}(x - \mu_1)^T \Sigma^{-1}(x - \mu_1)) \frac{1 - \pi}{\pi}}$$
(48)

$$= \frac{1}{1 + \frac{1-\pi}{\pi} \exp\left(\sum_{i=1}^{N} \left[\frac{(x_i - \mu_{1i})^2}{2\sigma_i^2} - \frac{(x_i - \mu_{2i})^2}{2\sigma_i^2} \right]}$$
(49)

$$= \frac{1}{1 + \exp\left[\ln\frac{1-\pi}{\pi} + \sum_{i} \left(x_i \frac{\mu_{2i} - \mu_{1i}}{\sigma_i^2} + \frac{\mu_{1i}^2 - \mu_{2i}^2}{2\sigma_i^2}\right)\right]}$$
(50)

$$\theta_1 = -\left(\ln\left(\frac{1-\pi}{\pi}\right) + \sum_i \left(\frac{\mu_{2i}^2 - \mu_{1i}^2}{2\sigma_i^2}\right)\right) \tag{51}$$

$$\theta_2 = -\left(\sum_i \left(\frac{\mu_{1i} - \mu_{2i}}{\sigma_i^2}\right)\right) \tag{52}$$

$$P(Y = 1|x) = \frac{1}{1 + \exp(-\theta_1 - \theta_2 X)}$$
(53)

$$P(Y = 1|x) = \frac{1}{1 + \exp(-\theta^T X)}$$
 (54)

Appending a 1 in $X \leftarrow \begin{bmatrix} 1 & x_1 & x_2 & \dots & x_n \end{bmatrix}$ and $\theta = \theta_1 + \theta_2$

3 Programming - Linear Regression

3.1 Data Analysis

3.2 Linear Regression

Table 1: Linear and Ridge Regression Performance on Training and Test Data

Algorithm	Training Set MSE	Testing Set MSE
Linear Regression	20.9441	28.4368
Rigde Regression L $=0.01$	20.9441	28.4371
Rigde Regression L $=0.10$	20.9442	28.4405
Rigde Regression L $=1.00$	20.948	28.476

Ridge Regression with Cross-Validation:

Incrementing λ by 0.01 after each iteration. Displaying only every 100^{th} row for conciseness. See variable **Res_cv** for all values.

Table 2: Lamda and MSE on Training Data

Lamda Value	MSE
0.0001	32.887567
0.9801	32.790939
1.9801	32.716183
2.9801	32.66416
3.9801	32.633673
4.9801	32.623659
5.9801	32.633161
6.9801	32.661308
7.9801	32.707307
8.9801	32.770422
9.9801	32.849976

Table 3: Results of Cross validation on Testing Set

Lamda Value	e MSE
4.990100	28.671087

From the graph we can see that when $\lambda = 4.990100$ we get the minimum MSE on Training Data: MSE = 32.623659.

Choosing this, we get MSE = 28.671087 on the testing set.

3.3 Feature Selection

a. Four features with highest absolute correlation

Table 4: Features with highest absolute correlation

Attribute	Name	Correlation
13	LSTAT	0.74
6	RM	0.6909
11	PTRATIO	0.5053
3	INDUS	0.4831

Using the above 4 features to train the linear regression

MSE on training data:: 26.406604 MSE on Testing data:: 31.496203

b. Four features with highest absolute correlation with Residue

Table 5: Features and their correlation with Residue

Attribute	Name	Correlation
13	LSTAT	0.74
6	RM	0.3709
11	PTRATIO	0.2975
4	CHAS	0.2196

Using the above 4 features to train the linear regression

MSE on training data:: 25.106022 MSE on Testing data:: 34.600072

Selection with Brute-force Search

The columns that give MIN MSE: 25.106022 on Training SET: [4 6 11 13]

Corresponding MSE: 34.600072 on Testing SET

The columns that give MIN MSE: 30.100406 on Testing SET: [6 11 12 13]

Corresponding value of MSE: 25.744417 on Training SET

3.4 Polynomial Feature Expansion

Expanding the existing features by polynomial expansion $x_i * x_j \{i, j = 1, 2, 3...13\}$ to get 104 features. The result of training the linear regression model on these feature are:

MSE on Training data:: 5.077346 MSE on Testing data:: 14.559306