COGS 108 Week 7

Programmers while reviewing the codes

Slides Adapted from Previous Quarter

AGENDA FOR TODAY

1 LOGISTICS

DISCUSSION LAB 6

LOGISTICS

DUE DATES

- Data Checkpoint due THIS FRIDAY May 17, 11:59 PM
 - Submit on GitHub
 - Refer to feedback on your proposal and make revisions!
 - If you successfully addressed the issues on proposal feedback, you will get points back!
- D6, Q7 are due next Monday May 20, 11:59PM

DISCUSSION LAB 6 INFERENTIAL ANALYSIS

Get rid of the commas in the numbers for Daily Circulation:

#Look at daily circulation distribution in 2004 and in 2013

Plot using sns.histplot(). Parameters used for plot below:

 $bin_{s=40}$.

Tips: To create subplots in a plot

fig, (ax1, ax2) = plt.subplots(ncols=2,
sharey=True)

sns.histplot(...., ax=ax1)
sns.histplot(...., ax=ax2)

ax1 ax2

Let's look at the distribution of Pulitzer prize winners for the same time period.

Plot using sns.histplot() Parameters used for plot below: bins=30.

Plot the distribution of "change" in daily circulation:

Plot using sns.histplot(), parameters used for plot below: kde=False, bins=30, color="dimgrey"

Look at pulitzer prize winner distributions:

Plot using sns.histplot()

In the cell below look at pulitzer prize winner distributions
Plot using sns.histplot()

plot relationship between pulitzer prize winners/finalists in each time period and look at number of pulitzers between two time periods Plot using sns.lmplot(x = 'Series1', y = 'Series2',data = DataframeName, fit_reg = False, height = 6, aspect=2)

#Who has won the most pulitzers during the years we're looking at? Use sort_values() to look at the top values

#Plot the distribution of daily change in circulation after outlier removal

#Relationship between the total number of Pulitzers and change in readership (daily circulation)

Use sns.lmplot(x = 'Series1', y = 'Series2', data = dataFrameName, fit_reg = True, height = 6, aspect = 1.7, line_kws={'color': 'red'}, scatter_kws={'color': 'red'})

#Apply a log10-transformation the Pulitzer count data, with an offset of 0.1

Use pulitzer['pulitzer_log10'] = np.log10 (Series +0.1)

#In the next cell, visualize the distribution of the log10 column Use sns.histplot()

#plot the relationship between our two variables of interest Use sns.lmplot()

#Carry out linear regression; Now use statsmodels to initialize an OLS linear model This step initializes the model, and provides the data (but does not actually compute the model); fit the model; and Check out the results.

Check out the results
print(res_log.summary())

#Carry out linear regression => (A modern way) Fit the model; and Check out the results.

Go back up to the first cell and 'import statsmodels.formula.api as smf'

This step initializes the model, and provides the data (but does not actually compute the model) mod log = smf.ols(formula='circulation ~ pulitzer log10', data=df)

Check out the results
print(res_log.summary())

THANKS!

