Examen de "Processus Stochastiques et Applications Financières"

Documents autorisés: notes de cours, exercices et DM de cette année corrigésautres documents et calculatrices interdits -

Durée: 3h00

ENSIMAG 2A/IF, 16 décembre 2021

Barême prévisionnel: Exercice 1, 4 points, Exercice 2, 5 points, Exercice 3, 5 point, Exercice 4, 6 points.

La notation dépendra grandement de la qualité de la rédaction. Les questions étoilées sont plus longues ou plus difficiles.

Exercice 1.

Aléaville fut fondée le 25 décembre 1121. Il se trouve que s'il y fait beau un jour il y fait beau le lendemain avec probabilité 1/5. S'il y pleut un jour il y fait beau le lendemain avec probabilité 1/10. On n'a aucune information sur le temps qu'il y faisait le jour de la fondation, ni sur le temps qu'il y fait aujourd'hui.

Quelle est la probabilité qu'il y fasse beau ce Noël?

Exercice 2.

Soit $(\xi_i)_{i\geq 1}$ une suite de v.a.r. i.i.d dont la loi est donnée par

$$\mathbb{P}(\xi_1 = 0) = \mathbb{P}(\xi_1 = 2) = \frac{1}{2}.$$

Pour $n \geq 1$, on note $\mathcal{F}_n = \sigma(\xi_1, \dots, \xi_n)$ et $X_n = \prod_{k=1}^n \xi_k$.

- 1) Montrer que $(X_n)_{n\geq 1}$ est une $(\mathcal{F}_n)_{n\geq 1}$ -martingale.
- 2) Montrer que $(X_n)_{n\geq 1}$ converge p.s. vers une v.a. intégrable X_{∞} .
- **3*)** On cherche à identifier X_{∞} . On pose,

$$\Omega_0 = \bigcup_{k>1} \{\xi_k = 0\}.$$

Montrer que $\mathbb{P}(\Omega_0)=1$. Que vaut $\lim_{n\to\infty}X_n(\omega)$ pour $\omega\in\Omega_0$? Conclure.

Indication: A un moment donné on pourra remarquer (et justifier) que $\Omega_0^c = \cap_{n\geq 1} \cap_{k=1}^n \{\xi_k = 2\}$, ce qui permet d'utiliser une propriété bien connue d'une mesure de probabilités...

4) La suite $(X_n)_{n\geq 1}$ converge-t-elle dans L^1 ? Comment peut-on se l'expliquer?

Exercice 3: Relation de parité Call-Put.

On se propose dans cet exercice de retrouver la relation de Parité Call-Put, mais par le calcul risque-neutre, et non par les arguments d'arbitrage vus en TD. Merci donc de respecter l'esprit de l'exercice!

On est dans le cadre du modèle CRR vu au cours avec -1 < a < r < b. On en reprend les notations, on particulier on note \mathbb{P}^* la mesure de probabilités risque-neutre.

D'après la théorie développée dans le Chapitre 5 du cours le prix d'un Call européen de strike K et de maturité N à l'instant $n \leq N$ est donné par

$$C_n = \mathbb{E}^* \left[(1+r)^{n-N} (S_N - K)_+ \mid \mathcal{F}_n \right].$$

On considère un Put européen de maturité N et de strike K. Cette option donne le droit à son détenteur de vendre au prix K l'actif risqué à l'échéance N.

- 1) On note $f(S_N)$ le pay-off du Put européen. Donnez l'expression de f(x), en expliquant votre réponse d'un point de vue financier.
 - ${\bf 2})$ On note P_n le prix à l'instant $n \leq N$ du Put européen. Montrer que

$$P_n = \mathbb{E}^* \left[(1+r)^{n-N} (K - S_N)_+ \mid \mathcal{F}_n \right].$$

3) Montrer que

$$C_n - P_n = \mathbb{E}^* [(1+r)^{n-N} (S_N - K) | \mathcal{F}_n].$$

4*) Montrer alors la relation de parité Call-Put

$$C_n - P_n = S_n - (1+r)^{n-N}K.$$

Exercice 4: modèle de taux d'intérêt stochastique, bis repetita.

Dans ce problème on se replace dans le modèle de taux stochastique à temps discret déjà étudié dans le DM. Mais on va explorer (quelques petites) questions différentes, liées à la notion de "prixforward".

On rappelle les contours du modèle.

Un horizon temporel $N \in \mathbb{N}^*$ est donné. On a un processus de taux d'intérêt $R = (R_n)_{0 \le n \le N-1}$ défini sur un espace de probabilités $(\Omega, \mathcal{F}, \tilde{\mathbb{P}})$. On suppose que $|\Omega| < \infty$, que $\mathcal{F} = \mathcal{P}(\Omega)$, et que R est adapté à une filtration $(\mathcal{F}_n)_{0 \le n \le N}$ vérifiant $\mathcal{F}_0 = \{\emptyset, \Omega\}$ et $\mathcal{F}_N = \mathcal{F}$. La mesure de probabilité $\tilde{\mathbb{P}}$ doit être vue comme une mesure de probabilité "risque-neutre". La signification du processus R est la suivante: 1 euro placé à la banque à un instant $0 \le n \le N-1$, vaudra $(1+R_n)$ euros à l'instant n+1. Ainsi 1 euro placé à la banque à l'instant n=0 vaudra $(1+R_0)\dots(1+R_{n-1})$ euros en $1 \le n \le N$.

On suppose que $R_n > -1$ (p.s.) pour tout $0 \le n \le N-1$. On introduit le processus d'actualisation $D = (D_n)_{0 \le n \le N}$ défini par

$$D_0 = 1$$
 et $D_n = \frac{1}{(1 + R_0) \dots (1 + R_{n-1})}, \forall 1 \le n \le N.$

Ainsi pour toute v.a. X exprimée en euros, on appelle D_nX la valeur actualisée (en n) de X.

On admet qu'il n'y a pas de possibilité d'arbitrage dans ce modèle.

On appelle zéro-coupon de maturité $0 \le m \le N$ un titre émis par la banque et payant 1 euro à l'instant m. On note son prix à l'instant $0 \le n \le m$ par $B_{n,m}$.

On appelle "actif" une entité financière dont le prix au cours du temps est donné par un processus $(S_n)_{0 \le n \le N}$ adapté. C'est en général un produit portant sur le taux d'intérêt R. Par analogie avec le chapitre 5 du cours on considère que le processus $(D_n S_n)_{0 \le n \le N}$ est une martingale sous $\tilde{\mathbb{P}}$.

On suppose qu'on a accès à la formule de pricing suivante: soit une variable aléatoire \mathcal{F}_m mesurable, pour $0 \leq m \leq N$, le prix à l'instant $0 \leq n \leq m$ d'un produit dérivé payant h à la
maturité m est donné par

$$\tilde{\mathbb{E}}\Big[\frac{D_m}{D_n}h\,|\,\mathcal{F}_n\Big].\tag{1}$$

On pourra utiliser cette formule dans diverses questions mais il est "interdit" de l'utiliser dans les questions 2) à 3). On insiste sur le fait que h est ici de signe quelconque.

1) Montrer que pour $0 \le n \le m$ on a

$$B_{n,m} = \tilde{\mathbb{E}} \left[\frac{D_m}{D_n} \, | \, \mathcal{F}_n \right].$$

Commenter ce résultat. Que vaudrait $B_{n,m}$ si le processus R était déterministe (c'est à dire si pour tout n la quantité R_n ne dépend pas du hasard), mais non nécessairement constant (c'est à dire sans qu'on ait $R_n = r$ pour tout n)?

On donne maintenant la définition suivante.

Definition 1 Un "contrat forward" est un accord, entre un acheteur et un vendeur, par lequel l'acheteur promet d'acheter, à une date $0 \le m \le N$ et à un prix K convenus à l'avance, un actif de prix S_m à l'instant m. Le "prix m-forward" de cet actif à l'instant $0 \le n \le m$ est la valeur de K qui rend nulle à l'instant n la valeur du contrat forward portant sur l'actif. Il est noté $For_{n,m}$.

Dans les questions 2) à 4) on cherche à montrer que

$$For_{n,m} = \frac{S_n}{B_{n,m}}. (2)$$

- 2) On suppose que $\operatorname{For}_{n,m} > \frac{S_n}{B_{n,m}}$. Expliquer l'arbitrage qui en découlerait.
- 3) On suppose que $\operatorname{For}_{n,m} < \frac{S_n}{B_{n,m}}$. Expliquer l'arbitrage qui en découlerait et conclure.
- **4*)** Montrer à nouveau (2) mais en vous appuyant sur le formule (1) (sans faire de raisonnement par arbitrage).
- 5*) Soient $0 \le n \le m \le N-1$. A l'instant n on vend à découvert 1 part de zéro-coupon de maturité m (opération qui consiste à emprunter une quantité d'argent qu'on précisera). On achète $B_{n,m}/B_{n,m+1}$ parts de zéro-coupon d'échéance m+1.

Que nous coûtent ces opérations à l'instant n? Que doit-on payer en m? Que reçoit-on en m+1? (justifier vos réponses).

Montrer alors que tout se passe comme si entre les instants m et m+1 on avait investi au taux

$$F_{n,m} = \frac{B_{n,m}}{B_{n,m+1}} - 1 = \frac{B_{n,m} - B_{n,m+1}}{B_{n,m+1}},$$

appelé "taux forward de maturité m en n" (rencontré dans le DM).