BIOS 662 Fall 2018 Analysis of Variance, Part I

David Couper, Ph.D.

 $david_couper@unc.edu$

or

couper@bios.unc.edu

https://sakai.unc.edu/portal

Outline

- Introduction
- Alternative models
- SS decomposition
- Example using SAS, R

Analysis of Variance Model

- Chapter 10 of the text (skip 10.3-10.5); chapter 12
- How do we test hypotheses about the mean of more than two groups? Analysis of variance (ANOVA) model
- Definition 10.1: An analysis of variance model is a linear regression model in which the predictor variables are classification variables. The categories of a variable are called the *levels* of the variable.
- Categorical predictor variables are also called *qualitative*factors

Notation

• Let Y_{ij} be the j^{th} observation in the i^{th} group

•
$$i = 1, ..., K; j = 1, ..., n_i$$

• Let
$$N = \sum_{i=1}^{K} n_i$$

$$\bullet \bar{Y}_{i.} = \sum_{j} Y_{ij}/n_{i}$$

ANOVA Model and Hypotheses

- Assume $Y_{ij} \sim N(\mu_i, \sigma^2)$
- Want to test

$$H_0: \mu_1 = \mu_2 = \dots = \mu_K$$

versus

 H_A : at least one inequality

Two Variance Estimators

• The pooled estimator of σ^2 is:

$$s_p^2 = \frac{\sum_{i=1}^K (n_i - 1) s_i^2}{\sum_{i=1}^K (n_i - 1)}$$

• Under H_0 , the (weighted) variance of the \bar{Y}_i .s will estimate σ^2

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^K n_i (\bar{Y}_i - \bar{Y})^2}{K - 1}$$

where

$$\bar{Y} = \frac{\sum_{i=1}^{K} \sum_{j=1}^{n_i} Y_{ij}}{N}$$

ANOVA: F Test

• It can be shown that under H_0 :

$$(N - K)s_p^2/\sigma^2 \sim \chi_{N-K}^2$$

 $(K - 1)\hat{\sigma}^2/\sigma^2 \sim \chi_{K-1}^2$

and s_p^2 and $\hat{\sigma}^2$ are independent

• Therefore, under H_0 ,

$$F \equiv \frac{\hat{\sigma}^2}{s_p^2} \sim F_{K-1,N-K}$$

ANOVA: F Test

• To test H_0 ,

$$C_{\alpha} = \{F : F > F_{K-1,N-K;1-\alpha}\}$$

- \bullet The test uses $F>F_{K-1,N-K;1-\alpha}$ because under $H_A,$ $E(\hat{\sigma}^2)>E(s_p^2)$
- In particular, $E(s_p^2) = \sigma^2$, whereas

$$E(\hat{\sigma}^2) = \sigma^2 + \frac{\sum_i n_i (\mu_i - \mu)^2}{K - 1}$$

where μ is the overall mean defined in equation (1) a few pages ahead

ANOVA: Example

- Passive smoking and lung function
- A study was conducted to compare the lung function of groups of smokers and non-smokers. Lung function was measured by forced expiratory flow (FEF)
- FEF for males by smoking status:

Group	n_i	Mean (L/sec)	sd (L/sec)
Non-smokers	200	3.78	0.79
Passive smokers	200	3.30	0.77
Non-inhalers	50	3.32	0.86
Light smokers	200	3.23	0.78
Mod. smokers	200	2.73	0.81
Heavy smokers	200	2.59	0.82

ANOVA: Example cont.

$$C_{0.05} = \{F > F_{5,1044;0.95} = 2.22\}$$

$$s_p^2 = \frac{199(0.79)^2 + 199(0.77)^2 + \dots + 199(0.82)^2}{1044} = 0.636$$

$$\hat{\sigma}^2 = \frac{200(3.78 - 3.158)^2 + \dots + 200(2.59 - 3.158)^2}{5} = 36.987$$

- F = 36.987/0.636 = 58.17 > 2.22; so reject H_0
- Reference: White JR, Froeb HF. N Engl J Med 302(13): 720-3, 1980. (Results presented here may differ from those in the original manuscript because of rounding.)

Aside: Obtaining Quantiles/CDFs

• In R

```
> qf(0.95,5,1044)
[1] 2.222674
> 1-pf(58.17,5,1044)
[1] 0
```

• In SAS

```
data;
    y = finv(0.95,5,1044);
    y1 = quantile('F',0.95,5,1044);
    fy = cdf('F',58.17,5,1044);
proc print;

Obs     y     y1     fy

1     2.22267     2.22267     1
```

Cell Means Model

• The version of the ANOVA model we have looked at so far is called the *cell means model*

$$Y_{ij} = \mu_i + \epsilon_{ij}$$
 for $i = 1, 2, \dots, K; \ j = 1, 2, \dots, n_i$ where
$$\epsilon_{ij} \sim N(0, \sigma^2) \text{ for all } i, j$$

Factor Effects Model

• An equivalent model is the factor effects model

$$Y_{ij} = \mu + \alpha_i + \epsilon_{ij}$$

for $i = 1, 2, ..., K; j = 1, 2, ..., n_i$ where

$$\mu = \frac{1}{N} \sum_{i=1}^{K} n_i \mu_i \tag{1}$$

 $\alpha_i = \mu_i - \mu$

and

$$\epsilon_{ij} \sim N(0, \sigma^2)$$
 for all i, j

- Note typo in the text on page 363
- Here α_i does not denote type I error

Factor Effects Model

• Constraint: $\sum_{i=1}^{K} n_i \alpha_i = 0$

• Suppose K=4, then from the constraint,

$$n_1\alpha_1 + n_2\alpha_2 + n_3\alpha_3 + n_4\alpha_4 = 0$$

and so

$$\alpha_4 = -(n_1\alpha_1 + n_2\alpha_2 + n_3\alpha_3)/n_4$$

Thus

$$Y_{1j} = \mu + 1\alpha_1 + \epsilon_{1j}$$

$$Y_{2j} = \mu + 1\alpha_2 + \epsilon_{2j}$$

$$Y_{3j} = \mu + 1\alpha_3 + \epsilon_{3j}$$

$$Y_{4j} = \mu - \frac{n_1}{n_4}\alpha_1 - \frac{n_2}{n_4}\alpha_2 - \frac{n_3}{n_4}\alpha_3 + \epsilon_{4j}$$

Model Equivalence

• Equivalence of null hypotheses

$$H_0: \mu_1 = \cdots = \mu_K \iff H_0: \alpha_i = 0; \ i = 1, 2, \dots, K$$

 $\bullet \alpha_i$ is called the $i^{ ext{th}}$ main effect or factor effect

$$Y_{ij} = \mu_i + \epsilon_{ij}$$

$$= \mu + (\mu_i - \mu) + \epsilon_{ij}$$

$$= \mu + \alpha_i + \epsilon_{ij}$$

$$= \text{mean} + i^{\text{th}} \text{ main effect} + \text{error}$$

• Data can be partitioned similarly

$$Y_{ij} = \bar{Y} + (\bar{Y}_{i.} - \bar{Y}) + (Y_{ij} - \bar{Y}_{i.})$$

= $\bar{Y} + a_i + e_{ij}$

Reference Group Model

- Another equivalent model is the reference group model
- One group is chosen as the reference; suppose it is group 1
- Then

$$Y_{1j} = \mu_1 + \epsilon_{1j}$$

$$Y_{ij} = \mu_1 + (\mu_i - \mu_1) + \epsilon_{ij}, \quad i = 2, 3, \dots, K$$

$$= \mu_1 + \beta_i + \epsilon_{ij}, \quad i = 2, 3, \dots, K$$

for

$$j=1,2,\ldots,n_i$$

and

$$\epsilon_{ij} \sim N(0, \sigma^2)$$
 for all i, j

• Null hypothesis:

$$H_0: \beta_2 = \beta_3 = \dots = \beta_K = 0$$

ANOVA: Sum of Squares

• It can be shown (see a few pages ahead) that

$$\sum_{i=1}^{K} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y})^2 = \sum_{i=1}^{K} \sum_{j=1}^{n_i} (\bar{Y}_{i.} - \bar{Y})^2 + \sum_{i=1}^{K} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_{i.})^2$$

• That is,

$$SST = SSA + SSW$$

$$= (K-1)\hat{\sigma}^2 + (N-K)s_p^2$$

• SSW is also referred to as SSE

ANOVA: Sum of Squares

• Expected value of sum of squares

$$E\left(\sum_{i=1}^{K} n_i (\bar{Y}_{i.} - \bar{Y})^2\right) = \sum_{i=1}^{K} n_i \alpha_i^2 + (K - 1)\sigma^2$$

$$E\left(\sum_{i=1}^{K} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_{i.})^2\right) = (N - K)\sigma^2$$

• Under $H_0: \alpha_1 = \cdots = \alpha_K = 0$,

$$E\left(\sum_{i=1}^{K} n_{i}(\bar{Y}_{i}. - \bar{Y})^{2}\right) = (K - 1)\sigma^{2}$$

ANOVA: F Test and ANOVA Table

• Therefore, under H_A : at least one $\alpha_i \neq 0$,

• That is, we reject H_0 if F is too large

$$C_{\alpha} = \{F : F > F_{K-1, N-k; 1-\alpha}\}$$

ANOVA Table

Source of variation	df	MS	F
Among groups	K-1	$\hat{\sigma}^2 = \frac{\sum_{i=1}^{K} n_i (\bar{Y}_i - \bar{Y})^2}{K - 1}$	MSA/MSW
Within groups	N - K	$s_p^2 = \frac{\sum_{i=1}^K (n_i - 1)s_i^2}{N - K}$	
Total	N-1		

ANOVA: Sum of Squares Proof

• Start with

$$\sum_{ij} (Y_{ij} - \bar{Y})^2 = \sum_{ij} (Y_{ij} - \bar{Y}_{i.} + \bar{Y}_{i.} - \bar{Y})^2$$

• The RHS is equivalent to

$$\sum_{ij} (Y_{ij} - \bar{Y}_{i.})^2 + \sum_{ij} (\bar{Y}_{i.} - \bar{Y})^2 + 2\sum_{ij} (Y_{ij} - \bar{Y}_{i.})(\bar{Y}_{i.} - \bar{Y})$$

• The last term can be written as

$$2\sum_{i} \left((\bar{Y}_{i.} - \bar{Y}) \sum_{j} (Y_{ij} - \bar{Y}_{i.}) \right)$$

which equals zero because

$$\sum_{i} (Y_{ij} - \bar{Y}_{i.}) = 0 \text{ for all } i$$

ANOVA: E(SSW) Proof

$$E(SSW) = E\left(\sum_{ij} (Y_{ij} - \bar{Y}_{i.})^2\right)$$

$$= E\left(\sum_{i} (n_i - 1) \frac{\sum_{j} (Y_{ij} - \bar{Y}_{i.})^2}{n_i - 1}\right)$$

$$= \sum_{i} (n_i - 1) E(s_i^2)$$

$$= \sum_{i} (n_i - 1) \sigma^2$$

$$= (N - K) \sigma^2$$

ANOVA: Example

• Table 10.1: Distribution of ages (in months) at which infants first walked alone

Active	Passive	No-Exercise	Eight-week
Group	Group	Group	Control group
9.00	11.00	11.50	13.25
9.50	10.00	12.00	11.50
9.75	10.00	9.00	12.00
10.00	11.75	11.50	13.50
13.00	10.50	13.25	11.50
9.50	15.00	13.00	

BIOS 662 Fall 2018 22 ANOVA, Part I

ANOVA: Example cont.

ANOVA: SAS – Cell Means Model

```
proc anova data=one;
* Using the following proc statement yields exactly the same ANOVA table;
* proc glm data=one;
   class group;
   model age=group;
```

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	3	14.77780797	4.92593599	2.14	0.1285
Error	19	43.68958333	2.29945175		
Corrected Total	22	58.46739130			

ANOVA: SAS – Factor Effects Model

```
data two;
   set one;
   x1=0; x2=0; x3=0;
   if group="active" then x1=1;
      else if group="passive" then x2=1;
      else if group="no" then x3=1;
      else if group="eight" then do; x1=x2=x3=-6/5; end;

proc reg data=two;
   model age = x1 x2 x3;
```

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	3	14.77781	4.92594	2.14	0.1285
Error	19	43.68958	2.29945		
Corrected Total	22	58.46739			

ANOVA: SAS – Reference Group Model

```
data three;
  set one;
  x2=0; x3=0; x4=0;
  if group="passive" then x2=1;
    else if group="no" then x3=1;
    else if group="eight" then x4=1;

proc reg data=three;
  model age = x2 x3 x4;
```

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	3	14.77781	4.92594	2.14	0.1285
Error	19	43.68958	2.29945		
Corrected Total	22	58.46739			

ANOVA: R

> group <- as.factor(group)</pre>