1 Stability of equilibrium points & bifurcations

1.1 Simple population model

The population model has in general two solutions (and hence two fixed points) for $\dot{N}=0$, namely

$$N_1 = 0$$
 and $N_2 = K \frac{\alpha - \beta}{\alpha}$.

The stability of these fixed points in function of α and β can be summarised as follows:

Parameter region	Fixed points
$\alpha < \beta$	$N_1=0$: stable $N_2<0$: unstable
$\alpha = \beta$	$N_1=N_2=0$: half-stable (unstable for $N<0$, stable for $N>0$)
$\alpha > \beta$	$N_1=0$: unstable $N_2>0$: stable

The system thus undergoes a transcritical bifurcation at $\alpha=\beta$. Note that the fixed point $N_2<0$ is not meaningful in this model, as N represents a non-negative population count.

For the given parameter values, $\alpha>\beta$. Using the above results, we therefore find an unstable fixed point $N_1=0$, and a stable fixed point $N_2=K(\alpha-\beta)/\alpha=4\,023\,913$. As the population starts at N>0, it will evolve towards N_2 . The difference between N(t) and $N(\infty)=N_2$ decays exponentially, as a Taylor approximation of \dot{N} around N_2 can show.

1.2 Gene control model

For r = 0, the system equations become decoupled:

$$\dot{x} = \frac{\alpha_1}{2} - x$$

$$\dot{y} = \frac{\alpha_2}{2} - y.$$

Figure 1: There is only one fixed point for 0 < r < 2. Phase space plots of the gene expression model, for r=1 and $\alpha_1=\alpha_2=2$. Left: some (partial) trajectories in phase space. Thicker lines represent a higher local speed. Note the attractor at (1,1). Middle: local velocities, evaluated on a grid. Right: same as middle, but for a larger region in phase space.

We can therefore analyse them separately. It is clear that there is one fixed point, at $x^* = \alpha_1/2$ and $y^* = \alpha_2/2$. It is a globally stable attractor, as $\forall x < x^*, \ \dot{x} > 0$ and $\forall x > x^*, \ \dot{x} < 0$ (and analogously for \dot{y}). The fixed point is thus an attracting star.

For $r \ge 0$ and $\alpha_1 = \alpha_2 = 2$, the equilibrium equations become

$$x(1+y^r) = 2$$
$$y(1+x^r) = 2.$$

It can be easily verified that (1,1) is a solution and hence a fixed point. We have already shown that it is the only fixed point for r=0. Plotting the gradient in phase space for different $r\in(0,2)$ strongly suggests that it is also the only fixed point for nonzero r (at least for $x\geq 0$ and $y\geq 0$). See e.g. fig. 1 for r=1. As a final piece of evidence, different trajectories simulated back in time all either tend towards (∞,∞) or cross into $x<0,\ y<0$ territory.