Scientific calculators are allowed Section-A

Each question carries one mark $(30 \times 1 = 10 \text{ Marks})$

E	ach question carries	one mark (30 x	I = IU Ma	rks)	
1. One μm=nm			6.466		
a) 0.001		c) 0.01			
2. How many nano seconds d					
a) 3.33	b) 0.33		d) 333	aguation	
3. The velocity (m/s) of the pa					
$V = at + \frac{b}{t+c}$. Using the pr	inciple of homogenei	ty, the dimension			y are
a) L^2, T, LT^{-2}	* b) LT ⁻² ,LT,L	$c)LT^{-2},L,T$	d)L	L,LT,T ²	
4. The acceleration of a vertice	ally projected body	at the maximum l	neight is		
(a) Zero	(b) >g		(d) <	g	
5. Area under the v-t graph of	f straight line motion	ı is			
a) Change in velocity	b) Insta	ntaneous acceler	ation		
c) Change in position	d) none	,			: 41
6. A stone is dropped from t	he same height when	another stone is	thrown hor	izontally. They will h	it the
ground					
a) Simultaneously	· -	ends on the obse	rver		
c) One after the other	r d) No	ne	T1	in atal aggalaration W	rill he
7. A motor cycle driver tripl	es its velocity when	he is taking a turi	n. The cenu	npetat acceleration w	III oc
a) 4 times	b) 9 times	c)1/4 times)1/9 times	
8. The SI unit of measuring	the change in momen	ntum of a moving	g body is	d) N m^2/kg^2	
a) N.s	b) kg.m/s	c) both a&b	,	u) IV III /Kg	
9. Momentum is conserved		h) in an i	inalactic co	llision of two halls	
a) in an elastic collis		b) in an inelastic collision of two ballsd) in all of the above cases			
c) in the absence of	an external force	er) III all	otion of a 1	igid hody is known a	as ———
10. The combination of rota	tional motion and th	e translational ili b) Axis	onotion	igid body is known	•
a) Frictional motion			ng motion	,	
c) Angular motion	1 11 -	(r) Kullii	ng monon	of 75m. Find the time	taken by the
c) Angular motion 11. A stone is thrown vertice	ally upward with a s	peed 10 HVS Hol	around	of / Jill. I fild the tille	· ·
stone to reach the ground ar	nd speed of the stone	when it hits the	ground.		
A) 5 s, 30 m/s	b) 5s, 35 m/		25 m/s	d) 5s, 40 m/s	
12. A vector A has magnitude	ide of 30 units and	makes 30° with	+X axis in	counter clockwise di	irection and
vector \vec{B} has magnitude of	' 10√2 units and ma	kes 45° with neg	gative X ax	is in clockwise direc	tion. II
$\vec{R} = \vec{A} + \vec{B}$. Find the	magnitude of \vec{R} an	angle made by A	\mathbf{W} with \mathbf{X}	axis	
a)30 units, 32.6 de		b) 25 units	, 32.6 degr	ees	
57 4 1		d) 30 units	45 degree	es	_
c) 30 units ,5 /.4 de 13. The resistance R=V/I w	where $V = (2.00 \pm 5) \text{ V}$	and $I = (16 \pm 0.4)$	A. Find th	e percentage error in	.R
a) 4%	b) 5%	c) 7	%	d) 6%	

14. A circular racetrack of radius 200 m is banked at an car to avoid wear and tear on its tyres?	angle of 10° What is the set			
car to avoid wear and tear on its tyres?	rangle of 10°, what is the optimum speed of the race			
(a) 18.59 m/s (b) 20.25 m/s (c))19 15 m/s (4)17 12 -/-			
13. 3000 files of water is to be filled in a tank at a heigh	the of 20 m. If the discount			
water is 50 minute find the power of the motor (density	y of water 1000kg/m ³			
(a) 130 W (b) 126 W	(a) 166 111			
16. Which of the following set of quantities have the sa	(c) 165 W (d) 196 W			
P. Force and Energy				
Q. Work and Energy	R. Impulse and momentum			
Now choose from the following	S. Distance and displacement			
a) Only P b)P, Q and R	(X)Q, R and S d)Both P and S.			
17. A block of mass 5 kg initially at rest at the origin is	sacted on by a force along the positive V direction			
represented by $F = (20+5x) N$. calculate the work done	by the force during the displacement of the block from			
x=0 to $x=4$ m.	by the force during the displacement of the block from			
a) 100 J	c) 80 J d) 60 J			
18. Which of the following statements are correct for s				
P. In translational motion linear velocity is same.	y			
Q. In rotational motion angular velocity is same.				
R. Rolling motion means rotation about a fixed axis				
S. Internal forces do effect the motion of center of mas	SS			
Now choose from the following				
a) P, Q by P, R	c) P,S d) Q,R			
19. When the projectile is at the highest point of its traj	jectory, the direction of its velocity and acceleration are			
a) Parallel to each other	o) anti parallel to each other			
c) Perpendicular to each other	Inclined to each other at 45			
20. What is the mass of a cart that has an acceleration	of 5 ms ⁻² when a net force of 2000 N is applied to it?			
a. 10,000 kg	b. 2000 kg			
c. 1000 kg	d. 400 kg			
21. Which of the following groups are vector quantitie	es?			
a)Velocity, displacement, energy	c) Momentum, displacement, weight			
b) Momentum, work, acceleration	d) Momentum, force, power.			
22. A block of mass 2 kg rests on a rough inclined plan	ne making an angle of 30° with the horizontal. The			
coefficient of static friction between he block and the p	plane is 0.7. The frictional force on the block is			
(a) 9.8 N	$(\cancel{b}) 0.7 \times 9.8 \times \sqrt{3} \text{ N}$			
(c) $9.8 \times \sqrt{3} \text{ N}$	(d) $0.7 \times 9.8 \text{ N}$			
23. The horizontal and vertical displacement of the pro	pjectile at time t are $x=36t$, $y=48t-4.9t^2$ where x and y			
are in meters and t in second. Initial velocity of the pro	ojectile in ms ⁻¹			
a)60 ms ⁻¹	b)30 ms ⁻¹			
c) 90 ms ⁻¹	d) 100 m/s			
24. The work done by the centripetal force for a body r				
	b)Positive			
a)Negative	d) none of these			
Ø) Zero25. A body of mass 100 kg falls from a height of 10 m.				
	8)1000 J			
a)9800 J	d)3000 J			
c)5000 J	4)3000 3			
26. No work is done if	b) Displacement is zero			
a) Force and displacement are perpendicular	d) All of the these			
c) Force is zero	th uniform acceleration of 2 m/s ² . If the displacement			
27. A body starts from rest and travels for t second wit	if uniform acceleration of 2 m/s. If the displacement			
made by it is 16 m, the time of travel t is				

a) 3 s **b**) 4s c) 5s d) 6s 28. If for two vectors A and B , A.B = 0 (dot product) the vectors a) are parallel to each other b) act at an angle of 60 care perpendicular to each other d) act at an angle of 30 degrees 29. A 6 kg object is subject to three forces $F_1 = 20i + 30j$ N, $F_2 = 8i - 50j$ N and $F_3 = 2i + 2j$ N. Find the acceleration of object a) 5i + 3jb) 5i - 3j c) 3i + 5id) 3i - 5i 30. Shape of the x-t curve for accelerated motion of a particle is? a) Straight line parallel to time axis b) Straight line having positive slope c) Parabola d) Straight line parallel to position axis Section-B Attempt any of the three following (3 x 10M = 30 Marks) 1a) Count the significant figures from the following numbers (5M)i) 7.095 ii) 0.0060 iii) 2.70 x 10² v) 9400 iv) 5.55505 b) A physical quantity X related to four measurable quantities a,b,c and d as follows $X = a^4b^{-2}c^{-3/2}d^{-1}$. The percentage error in the measurement of a,b,c and d are 1%,3%,2% and 4 % respectively. What is the percentage error in X. 2 a) Derive kinematic equations for uniformly accelerated motion. (5M) b) A bullet with a speed of 360 kmh⁻¹ strikes a tree and penetrates 5.0 cm before stopping. What is the magnitude of its retardation. 3a) Show that the path of the projectile is parabola. Obtain expression for the range of the projectile. (5M) b) An object is launched from a cliff 20 m above the ground at an an angle of 30° above the horizontal with a speed of 30 ms⁻¹. How far horizontally does the object travel before landing on the ground. (g=10 ms⁻²) (5M) 4 a) Discuss the types of friction and write the expressions of these frictional forces. b) What is the acceleration of the block and trolley system as shown in below figure, If the coefficient of kinetic friction between the trolley and surface is 0.05? What is tension the string? (Take g=10 ms⁻² and neglect (5M) the mass of the string) Figure 4(b) 5a) Derive an expression for maximum velocity on a banked road. b)A ball is freely dropped from the certain height h₁ it collides the floor with speed 10 ms⁻¹ and rebounds to height of h₂ is 4m. Calculate the coefficient of restitution. (5M) 6a) State and prove Work energy theorem. b) To simulate the car accidents, auto manufacturers study the collisions of moving cars with mounted

springs of different spring constants. Consider a typical simulation with a car of mass 800 kg moving with a speed 18.0 km/h on a smooth road and colliding with a horizontally mounted spring of the spring constant

1.11 x 10³ Nm⁻¹. What is the maximum compression of the spring?