MATH 611 HOMEWORK (DUE 9/25)

HIDENORI SHINOHARA

Exercise. (Problem 4, Chapter 1.3) Construct a simply-connected covering space of the space $X \subset \mathbb{R}^3$ that is the union of a sphere and a diameter. Do the same when X is the union of a sphere and a circle intersecting it in two points.

Proof. We claim that the space described in Figure 1 is a covering space of X.

- The shape is an infinitely long chain of spheres and lines. The chain goes infinitely both ways (up and down). This space is clearly simply connected.
- We will map each sphere to the sphere of X. Each line will be mapped to the diameter up side down. Figure 1 shows how each part gets mapped.
- We claim that such a mapping is a covering map and thus this infinite chain is indeed a covering space. Let $x \in X$.

Prove this.

Second part.

FIGURE 1. Problem 4 (Part 1)

Exercise. (Problem 5, Chapter 1.3) Let X be the subspace of \mathbb{R}^2 consisting of the four sides of the square $[0,1]\times[0,1]$ together with the segments of the vertical lines $x=1/2,1/3,1/4,\cdots$ inside the square. Show that for every covering space $X\to X$ there is some neighborhood of the left edge of X that lifts homeomorphically to \tilde{X} . Deduce that X has no simply-connected covering space.

Proof. For each $y \in [0,1]$, the point (0,y) has a basis element $U_y = B_{\mathbb{R}^2}(y,r_y) \cap Y$ that is evenly covered. (This is because any subset of an evenly covered set is evenly covered.) Consider $\{U_y \mid y \in [0,1]\}$. Then it is an open cover of the segment $\{0\} \times [0,1]$. Since the segment is compact, there exists a finite subcover, U_{y_1}, \dots, U_{y_n} .

Actually I don't think the tube lemma can be applied here because X is not a product space. A similar idea can be applied, for sure though.

By the tube lemma, there exists an open $N \subset [0,1]$ such that $N \times [0,1] \subset U_{y_1} \cup \cdots \cup U_{y_n}$. Since each U_{y_1}, \cdots, U_{y_n} is a subset of an open ball, there must exist a partition $0 = t_0 < t_1 < \cdots < t_m = 1$ such that for all $i, N \times [t_i, t_{i+1}]$ is contained in U_{y_j} for some j.

Exercise. (Problem 7, Chapter 1.3) Let Y be the quasi-circle in the figure in the textbook. Collapsing the segment of Y in the y-axis to a point gives a quotient map $f: Y \to S^1$. Show that f does not lift to the covering space $\mathbb{R} \to S^1$, even though $\pi_1(Y) = 0$. Thus local path-connectedness of Y is a necessary hypothesis in the lifting criterion.

The lifting criterion is Proposition 1.33. The only property that Y is missing is the local path connectedness. I need to understand the proof because I essentially have to find where the proof goes wrong if local path connectedness is missing. I think what happens is that if \tilde{f} existed, it would have to be unique. Thus we could look into the one function that could possibly be \tilde{f} . Since the local connectedness is used to prove continuity of \tilde{f} and Y is not locally connected around the [-1,1] segment, I would guess that that one function is not continuous at a point on the [-1,1] segment. See Figure 2.

Proof.

Exercise. (Problem 8, Chapter 1.3) Let \tilde{X} and \tilde{Y} be simply-connected covering spaces of the path-connected, locally path-connected spaces X and Y. Show that if $X \simeq Y$ then $\tilde{X} \simeq \tilde{Y}$.

By Proposition 1.33, we can lift the two compositions as in Figure 3 This works because $\pi_1(\tilde{X}) = \pi_1(\tilde{Y}) = 0$.

2

FIGURE 2. Delete this!

FIGURE 3. delete this!