Modeling & Verification

Hennessy-Milner Logic with Recursion

Max Tschaikowski (tschaikowski@cs.aau.dk)
Slides Courtesy of Giorgio Bacci

in the last Lecture

- Limit of expressibility of Hennessy-Milner logic
- Tarski's Fixed Point Theorem (+ a bit of lattice theory)
- Computing fixed points on finite lattices

in this Lecture

- Fixed point Characterisation of Strong Bisimilarity
- Hennessy-Milner Logic with Recursively defined Variables
- Game characterisation of HML-satisfiability
- Mutually Recursive definitions (+ Characteristic Formula)

Strong Bisimilarity as a Fixed Point

$$\sim = \mathcal{B}(\sim)$$

Tarski's Fixed Point Theorem

Theorem (Tarski)

Let (D, \sqsubseteq) be a complete lattice and $f : D \longrightarrow D$ a monotonic function on D. Then

- 1. The set of fixed points of f is a complete lattice
- 2. The least and greatest fixed point of f exists and are given as follows

```
(least fixed point) Ifp(f) = \sqcap {d\inD | f(d) \sqsubseteq d } (greatest fixed point) gfp(f) = \sqcup {d\inD | d \sqsubseteq f(d) }
```

Strong Bisimilarity

Let (Proc, Act, $\{ \stackrel{\alpha}{\longrightarrow} \mid \alpha \in Act \}$) be an LTS.

Definition (Strong Bisimulation)

A binary relation R⊆Proc×Proc is a *strong bisimulation* iff whenever s R t, for each α∈Act

- if $s \xrightarrow{\alpha} s'$, then $t \xrightarrow{\alpha} t'$, for some t' such that s'R t'
- if $t \stackrel{\alpha}{\rightarrow} t'$, then $s \stackrel{\alpha}{\rightarrow} s'$, for some s' such that s'R t'

Definition (Strong Bisimilarity)

Two states s,t∈Proc are strongly bisimilar (s ~ t) iff there exists a strong bisimulation R such that s R t.

~ = U{R | R is a strong bisimulation }

Fixed Point Operator

We would like to define an operator on relations:

 $\mathcal{B}: 2 \text{Proc} \times \text{Proc} \longrightarrow 2 \text{Proc} \times \text{Proc}$

Definition (Bisimulation Operator)

Let $R \subseteq Proc \times Proc$. Then define $\mathcal{B}(R)$ as follows: $(s,t) \in \mathcal{B}(R)$ iff for each $\alpha \in Act$

- if $s \stackrel{\alpha}{\longrightarrow} s'$, then $t \stackrel{\alpha}{\longrightarrow} t'$, for some t' such that $(s',t') \in R$
- if $t \stackrel{\alpha}{\longrightarrow} t'$, then $s \stackrel{\alpha}{\longrightarrow} s'$, for some s' such that $(s',t') \in R$.

Bisimilarity is a Fixed Point

Observations

- (2^{Proc×Proc}, ⊆) is a complete lattice
- the function B is monotonic
- R is a strong bisimulation iff R ⊆ B(R)

Theorem

Strong bisimilarity is the greatest fixed point of ${\cal B}$

$$\sim = \cup \{R \mid R \subseteq \mathcal{B}(R)\} = gfp(\mathcal{B})$$

HML with Recursively defined Variables

HML with Recursion

Formulae of HML with recursively defined variables are defined by means of the following the grammar

$$\Phi := X \mid tt \mid ff \mid \phi \land \phi \mid \phi \lor \phi \mid \langle a \rangle \phi \mid [a] \phi$$
recursive variable $X \in X$

where each variable X is associated with a *unique* recursive equation of either one of the two following form:

$$X \stackrel{\min}{=} \varphi_X$$
 or $X \stackrel{\max}{=} \varphi_X$

such that ϕ_X is a formula of the logic (possibly containing X).

Semantics of HML

For each formula φ, we want to define ⟨φ⟩⊆Proc as the set of all states that satisfy the formula φ

associated with

Semantics of Variables

Assume for the moment that we have only one recursively defined variable, say X, with associated recursive definition

$$X \equiv \varphi_X \qquad \text{Recall that this means} \\ \langle\!\langle X \rangle\!\rangle = \langle\!\langle \varphi_X \rangle\!\rangle$$

Example

Assume that
$$\phi_X = [a]ff \lor \langle a \rangle X$$
. Then,
$$X = \phi_X \qquad \text{iff} \qquad \langle X \rangle = [\cdot a \cdot] \langle ff \rangle \cup \langle \cdot a \cdot \rangle \langle X \rangle$$
 It has the form of a fixed point!
$$\langle X \rangle = \mathcal{O}(\langle X \rangle)$$

Hence we can use the denotational semantics of formulae to induce an operator \mathcal{O}_{Φ} : $2^{\text{Proc}} \rightarrow 2^{\text{Proc}}$ on the lattice $(2^{\text{Proc}}, \subseteq)$

Definition of \mathcal{O}_{Φ}

Formally, the operator \mathcal{O}_{φ} : $2^{\text{Proc}} \longrightarrow 2^{\text{Proc}}$ is defined as follows, for arbitrary $S \subseteq \text{Proc}$

$$\mathcal{O}_X(S) = S$$

 $\mathcal{O}_{tt}(S) = Proc$

$$\mathcal{O}_{ff}(S) = \emptyset$$

For each formula ϕ the operator \mathcal{O}_{ϕ} is *monotonic*:

 $S\subseteq S'$ implies $\mathcal{O}_{\Phi}(S)\subseteq \mathcal{O}_{\Phi}(S')$

$$\mathcal{O}_{\Phi \wedge \psi}(S) = \mathcal{O}_{\Phi}(S) \cap \mathcal{O}_{\psi}(S)$$

$$\mathcal{O}_{\Phi \vee \psi}(S) = \mathcal{O}_{\Phi}(S) \cup \mathcal{O}_{\psi}(S)$$

$$\mathcal{O}_{\langle a \rangle \varphi}(S) = \langle \cdot a \cdot \rangle \mathcal{O}_{\varphi}(S)$$

$$\mathcal{O}_{[a]\Phi}(S) = [\cdot a \cdot] \mathcal{O}_{\Phi}(S)$$

Semantics of Variables

Observation

 $(2^{\text{Proc}}, \subseteq)$ is a complete lattice and $\mathcal{O}_{\varphi}: 2^{\text{Proc}} \longrightarrow 2^{\text{Proc}}$ is monotonic. So, by Tarski's fixed point theorem, it has unique greatest and least fixed points!

Semantics of the variable X

• If $X \stackrel{\text{min}}{=} \varphi$, then $\langle X \rangle = \bigcap \{ S \subseteq \text{Proc} \mid \mathcal{O}_{\varphi}(S) \subseteq S \} \prec \text{fixed}$

• If $X \stackrel{\text{max}}{=} \varphi$, then $\langle X \rangle = U\{ S \subseteq Proc \mid S \subseteq \mathcal{O}_{\varphi}(S) \}$

greatest fixed poin

Recursive Properties

- Pos(ϕ): $X \stackrel{\text{min}}{=} \phi \lor \langle Act \rangle X \stackrel{\text{possibly } \phi}{=}$
- $nv(\phi)$: $X \stackrel{max}{=} \phi \wedge [Act]X \stackrel{invariantly }{\checkmark}$

in all paths, φ is eventually satisfied

- Even(ϕ): $X \stackrel{\text{min}}{=} \phi \lor (\langle Act \rangle tt \land [Act]X)$
- Safe(φ): $X \stackrel{\text{max}}{=} \varphi \land ([Act]ff \lor \langle Act \rangle X)$

where ϕ^c is the complement of ϕ

exists a path where φ is always satisfied

Note that ...

$$Inv(\varphi^c) = Pos(\varphi)^c$$
 and $Safe(\varphi^c) = Even(\varphi)^c$

Strong & Weak Until

It is also possible to express that φ should be satisfied in each transition step until ψ becomes true

Strong Until

$$Φ$$
 u s $ψ$:

$$X \stackrel{\min}{=} \psi \vee (\phi \wedge \langle Act \rangle tt \wedge [Act]X)$$

"all paths reach a state where ψ is satisfied and ϕ must hold until this happens"

Weak Until

$$\Phi \mathcal{U}^{\mathsf{w}} \Psi$$
:

$$φ \mathcal{U}^w ψ$$
: $X \stackrel{\text{max}}{=} ψ \lor (φ \land [Act]X)$

"in all paths, φ must hold until it is reached a state where ψ is satisfied (but maybe this will never happen!)

Note that ...

$$Inv(\phi) = \phi \ \mathcal{U}^{w} \text{ ff} \quad \text{and} \quad Even(\phi) = tt \ \mathcal{U}^{s} \phi$$

Inv(
$$\varphi$$
): $X = \varphi \wedge [Act]X$

$$\phi \mathcal{U}^{w} \text{ ff:} \qquad X \stackrel{\text{max}}{=} \text{ff} \lor (\phi \land [Act]X)$$

Even(
$$\phi$$
): $X \stackrel{\text{min}}{=} \phi \lor (\langle Act \rangle tt \land [Act]X)$

tt
$$\mathcal{U}^s \varphi$$
: $X \stackrel{\text{min}}{=} \varphi \lor (\text{tt } \land \langle \text{Act} \rangle \text{tt } \land [\text{Act}]X)$

Game Semantics for HML

satisfiability proven or disproven by playing a game!

Game Characterisation

Intuition: attacker is aiming to prove $s \not\models \phi$,

while **defender** is aiming to prove $s \models \phi$.

The *configurations* of the game are pairs of the form (s,φ)

Definition (Next Configuration)

- (s,tt) and (s,ff) have no successor
- (s,φ∧ψ) and (s,φ∨ψ) have as successors: (s,φ) and (s,ψ)
- $(s,\langle a\rangle \varphi)$ and $(s,[a]\varphi)$ have as successor all configurations of the form (s',φ) , for all s' such that $s \stackrel{a}{\longrightarrow} s'$
- (s,X) has as unique successor (s, ϕ_X), for $X \stackrel{\text{min}}{=} \phi_X$ or $X \stackrel{\text{max}}{=} \phi_X$

The rules of the Game

The game starts from the configuration (s,φ) and the next configuration is selected according to the following rules:

Rules of the game

- Attacker picks a successor configuration whenever the current configuration is of the form (s,φ∧ψ) or (s,[a]φ)
- Defender picks a successor configuration whenever the current configuration is of the form (s,φνψ) or (s,⟨a⟩φ).
- If the current configuration is of the form (s,X), then the configuration is uniquely determined

A play is a maximal sequence of configuration following the rules.

Winning Conditions

Finite play

- Attacker wins if defender gets stuck (i.e., there are no next configurations) or the configuration (s,ff) is reached.
- **Defender** wins if **attacker** gets stuck (i.e., there are no next configurations) or the configuration (s,tt) is reached.

Infinite play

- Attacker wins if X is defined as $X \stackrel{\text{min}}{=} \phi_X$.
- **Defender** wins if X is defined as $X = \phi_X$.

Semantics via a Game

A universal strategy is a "game plot" that takes into consideration all the possible available moves that the opponent player can do.

Theorem

- s ⊨ φ iff defender has a universal winning strategy starting from (s, φ).
- s ⊭ φ iff attacker has a universal winning strategy starting from (s, φ).

$$s \xrightarrow{b} s_1 \xrightarrow{b} s_2 \xrightarrow{a} s_3 \Rightarrow x_3 \Rightarrow x_3 \Rightarrow x_4 \Rightarrow x_4 \Rightarrow x_5 \Rightarrow x_5$$

We show that s = X by defining a universal winning strategy for **defender** starting from (s,X)

$$(s,X) \longrightarrow (s, \langle a \rangle tt \vee \langle b \rangle X) \xrightarrow{\mathbf{D}} (s, \langle b \rangle X) \xrightarrow{\mathbf{D}} (s_1, X)$$

$$\longrightarrow (s_1, \langle a \rangle tt \vee \langle b \rangle X) \xrightarrow{\mathbf{D}} (s_1, \langle b \rangle X) \xrightarrow{\mathbf{D}} (s_2, X)$$

$$\longrightarrow (s_2, \langle a \rangle tt \vee \langle b \rangle X) \xrightarrow{\mathbf{D}} (s_2, \langle a \rangle tt) \xrightarrow{\mathbf{D}} (s_3, tt)$$

$$s \xrightarrow{b} s_1 \xrightarrow{b} s_2 \xrightarrow{a} s_3$$
 a
$$X \stackrel{\text{max}}{=} \langle b \rangle tt \wedge [b] X$$

We show that $s \not\models X$ by defining a universal winning strategy for **attacker** starting from (s,X)

$$(s,X) \longrightarrow (s, \langle b \rangle tt \land [b]X) \xrightarrow{\mathbf{A}} (s, [b]X) \xrightarrow{\mathbf{A}} (s_1, X)$$

$$\longrightarrow (s_1, \langle b \rangle tt \land [b]X) \xrightarrow{\mathbf{A}} (s_1, [b]X) \xrightarrow{\mathbf{A}} (s_2, X)$$

$$\longrightarrow (s_2, \langle b \rangle tt \land [b]X) \xrightarrow{\mathbf{A}} (s_2, \langle b \rangle tt) \longrightarrow$$

$$s \xrightarrow{b} s_1 \xrightarrow{b} s_2 \xrightarrow{a} s_3$$

$$a \qquad X \stackrel{\text{max}}{=} \langle a \rangle tt \wedge [a]X$$

$$X \stackrel{\text{max}}{=} \langle a \rangle \text{tt } \wedge [a]X$$

We show that $s_2 \models X$ by defining a universal winning strategy for **defender** starting from (s₂,X)

From (s_2,X) : $(s_2,X) \longrightarrow (s_2,\langle a\rangle tt \wedge [a]X)$

- if $(s_2, \langle a \rangle tt \wedge [a]X) \xrightarrow{A} (s_2, \langle a \rangle tt)$, then $(s_2, \langle a \rangle tt) \xrightarrow{D} (s_3, tt)$
- if $(s_2, \langle a \rangle tt \wedge [a]X) \xrightarrow{A} (s_2, [a]X)$, then $(s_2, [a]X) \xrightarrow{A} (s_3, X)$

From (s₃,X): (s₃,X) \longrightarrow (s₃, $\langle a \rangle$ tt \wedge [a]X)

- if $(s_3, \langle a \rangle tt \wedge [a]X) \xrightarrow{A} (s_3, \langle a \rangle tt)$, then $(s_3, \langle a \rangle tt) \xrightarrow{D} (s_3, tt)$
- if $(s_3, \langle a \rangle tt \wedge [a]X) \xrightarrow{A} (s_3, [a]X)$, then $(s_3, [a]X) \xrightarrow{A} (s_3, X)$

Mutually Recursive Equational Systems

More than one variable!

More than One Variable

Nested Definitions of Recursive Variables

$$X \stackrel{\min}{=} Y \vee \langle Act \rangle X$$

$$X \stackrel{\text{min}}{=} Y \lor \langle Act \rangle X$$
 $Y \stackrel{\text{max}}{=} \langle a \rangle tt \land \langle Act \rangle Y$

In this case, we can compute the solution of X and Y (i.e., their semantics) by first compute (Y) and then (X).

Mutually Recursive Definitions

$$X \stackrel{\text{max}}{=} [a]Y$$

$$Y \stackrel{\text{max}}{=} \langle a \rangle X$$

In this case, we need to consider the complete lattice $(2^{\text{Proc}} \times 2^{\text{Proc}}, \sqsubseteq)$, where $(S,S') \sqsubseteq (Q,Q')$ iff $S \subseteq Q$ and $S' \subseteq Q'$.

Mutual Recursion

In general, a mutually recursive equational system has the form

$$D = \left\{ \begin{array}{c} X_1 = \varphi_1 \;, \;\; \overbrace{\qquad \text{formulas can contain any of the variables } X_i} \\ \vdots \\ X_n = \varphi_n \;. \end{array} \right.$$

The semantic function that is used to obtain the largest or least solution

$$O_D(S_1, ..., S_n) = (O_{\phi_1}(S_1, ..., S_n), ..., O_{\phi_n}(S_1, ..., S_n))$$

where
$$\mathcal{O}_{Xi}(S_1, ..., S_n) = S_i$$
 for $1 \le i \le n$

$$s \xrightarrow{a} s_1 \xrightarrow{a} s_2 \xrightarrow{a} s_3 \xrightarrow{b}$$

$$D = \begin{cases} X \stackrel{\text{max}}{=} \langle a \rangle Y \land [a] Y \land [b] ff \\ Y \stackrel{\text{max}}{=} \langle b \rangle X \land [b] Y \land [a] ff \end{cases}$$

$$O_D(S_1,S_2) =$$

 $(\langle \cdot a \cdot \rangle S_2 \cap [\cdot a \cdot] S_2 \cap \{s, s_2\}, \langle \cdot b \cdot \rangle S_1 \cap [\cdot a \cdot] S_2 \cap \{s_1, s_3\})$

hence, to compute the *largest solution* of D we can use the iterative algorithm for computing the *largest fixed point*

Characteristic Property

Ones we have recursive variables and the possibility of mutually recursive definitions (hence a system of equations) we obtain

Theorem (Characteristic Formula)

Let (Proc, Act, $\{ \stackrel{a}{\longrightarrow} \mid a \in Act \}$) be a *finite* LTS and $s \in Proc$. Then, the formula

$$X_{s}^{\max} = \bigwedge_{a, s \xrightarrow{a} t} \langle a \rangle X_{t} \wedge \bigwedge_{a} [a] \left(\bigvee_{s \xrightarrow{a} t} X_{t} \right)$$

is the *characteristic property* for s, i.e., for each t∈Proc,

$$t \models X_s$$
 iff $t \sim s$

next time... First Mini-Project