

Inventory Management

Summer 2025

- Assignment 6 -

Prof. Dr. Stefan Minner
Logistics & Supply Chain Management
TUM School of Management

Exercise 1:

A manufacturer produces ten products on one machine. No other products are assigned to this equipment. The data for the items are given in the following table.

Item	1	2	3	4	5	6	7	8	9	10
Demand rate										
(units/year)	200	50	800	500	20	600	100	1000	80	450
Production rate										
(units/year)	5000	2000	4000	6400	300	36000	2000	6000	900	7250
Setup time × 10 ⁻⁴										
(years)	0.0005	0.0006	0.0008	0.0004	0.0001	0.0002	0.0001	0.0006	0.0002	0.0001
Setup cost (€)	75	120	110	60	200	150	80	300	115	95
Holding cost (€/year)	8	14	5	2	25	3	6	20	15	3

- a) Determine the independent optimal production lot-sizes.
- b) Determine the production policy for the common cycle approach.
- c) Use the basic period approach to find a solution.

Exercise 1.a) Determine the independent optimal production lot-sizes.

Item	1	2	3	4	5	6	7	8	3	9	10
Demand rate (u	nits/year)	200	50	800	500	20	600	100	1000	80	450
Production rate	(units/year)	5000	2000	4000	6400	300	36000	2000	6000	900	7250
Setup time × 10	⁻⁴ (years)	0.0005	0.0006	.0008	0.0004	0.0001	0.0002	0.0001	0.0006	0.0002	0.0001
Setup cost (€)		75	120	110	60	200	150	80	300	115	95
Holding cost (€,	/year)	8	14	5	2	25	3	6	20	15	3
Machine		1	2	3	4	5	6	7	8	9	10
Q (EPQ)	$\sqrt{\frac{2dA}{h(1-\frac{d}{p})}}$	$(=\sqrt{\frac{\frac{2*200*75}{8(1-\frac{200}{5000})}})}$	$(=\sqrt{\frac{\frac{2*50*120}{14(1-\frac{50}{2000})}})$	209.76	180.40	18.52	247.02	52.98	189.74	36.69	174.32
T (Cycle Length)	$\frac{EPQ}{D}$	0.31 (=62.50/200)	0.59 (=29.65/50)	0.26	0.36	0.93	0.41	0.53	0.19	0.46	0.39
Total Time (Manufacturing + Setup)	$\frac{Q}{p}$ + Setup	0.013 (=62.5/5000 + 0.0005)	0.015 (=29.65/2000 + 0.0006)	- 0.053	0.029	0.062	0.007	0.027	0.032	0.041	0.024
Cost	$\frac{d}{Q} \cdot A + \frac{h}{2} (p - d) \cdot \frac{Q}{p}$	$ 480.00 (= \frac{200*75}{62.5} + \frac{8}{2} * \frac{(5000-200)62.5}{5000} $	404.72 $ (= \frac{50*120}{29.65} + \frac{14}{2} $ $ \frac{(2000-50)29.65}{2000})$	* 839.05	332.60	432.05	728.70	301.99	3162.28	501.46	490.49

Exercise 1.a) Determine the independent optimal production lot-sizes.

Machine	1	2	3	4	5	6	7	8	9	10	Total
T (Cycle Length)	0.31	0.59	0.26	0.36	0.93	0.41	0.53	0.19	0.46	0.39	
Q (EPQ)	62.50	29.65	209.76	180.40	18.52	247.02	52.98	189.74	36.69	174.32	
Total Time (Manufacturing + Setup)	0.013	0.015	0.053	0.029	0.062	0.007	0.027	0.032	0.041	0.024	0.30
Cost	480.00	404.72	839.05	332.60	432.05	728.70	301.99	3162.28	501.46	490.49	7673.34

Total cost (lower bound)	7673.34
Required manufacturing time	0.30
Minimum cycle time	0.19

Exercise 1.b) Determine the production policy for the common cycle approach.

Item	1	2	3	4	5	6	7	8	9	10	Sum
Demand rate (units/year)	200	50	800	500	20	600	100	1000	80	450	3800
Production rate											
(units/year)	5000	2000	4000	6400	300	36000	2000	6000	900	7250	69850
Setup time × 10 ⁻⁴ (years)	0.0005	0.0006	0.0008	0.0004	0.0001	0.0002	0.0001	0.0006	0.0002	0.0001	0.0036
Setup cost (€)	75	120	110	60	200	150	80	300	115	95	1305
Holding cost (€/year)	8	14	5	2	25	3	6	20	15	3	101
$h_i d_i (1 - \frac{d_j}{n})$	1536.00 (=8*200(1-		2222.00	024.00	466.67	4770.00	570.00	16666.67	1002.22	1266.21	20472.25
p_i	200/5000))	682.50	3200.00	921.88	466.67	1770.00	570.00	16666.67	1093.33	1266.21	28173.25
$\frac{a_j}{p_j}$	0.04(=200/5000)	0.025	0.2	0.0781	0.0667	0.0167	0.05	0.1667	0.0889	0.0621	0.79

Unconstrained optimum	$T = \sqrt{\frac{2\sum_{j=1}^{n} A_j}{\sum_{j=1}^{n} h_j d_j (1 - \frac{d_j}{p_j})}}$	$0.304 = \sqrt{\frac{2 * 1305}{28173.25}}$
Minimum cycle length (= Constraint)	$T^{\min} = \frac{\sum_{j=1}^{n} r_j}{1 - \sum_{j=1}^{n} \frac{d_j}{P_j}}$	$0.017 = \frac{0.0036}{1 - 0.79}$
Optimal cycle	Max{Uncons Opt, Min Cycle}	$0.304 = Max\{0.304, 0.017\}$

Exercise 1.b) Determine the production policy for the common cycle approach.

Item	1	2	3	4	5	6	7	8	9	10	Sum
Demand rate (units/year)	200	50	800	500	20	600	100	1000	80	450	3800
Production rate											
(units/year)	5000	2000	4000	6400	300	36000	2000	6000	900	7250	69850
Setup time × 10 ⁻⁴ (years)	0.0005	0.0006	0.0008	0.0004	0.0001	0.0002	0.0001	0.0006	0.0002	0.0001	0.0036
Setup cost (€)	75	120	110	60	200	150	80	300	115	95	1305
Holding cost (€/year)	8	14	5	2	25	3	6	20	15	3	101
$h_j d_j (\frac{p_j - d_j}{p_j})$	1536.00	682.50	3200.00	921.88	466.67	1770.00	570.00	16666.67	1093.33	1266.21	28173.25

^{*}Optimal Common Cycle: 0.304

Item		1	2	3	4	5	6	7	8	9	10
Q	= D * Opt Cycle	60.87 (=0.304*200)	15.22	243.50	152.18	6.09	182.62	30.44	304.37	24.35	136.97
Cost	$= \frac{A_j}{T} + \frac{h_j}{2} (p_j - d_j) \frac{d_j}{p_j} T$	$(=\frac{75}{0.304} + \frac{0.304}{2} *1536)$	498.12	848.39	337.42	728.11	762.19	349.58	3522.06	544.22	504.82
Total cost (upper bound)	$= \sum_{j=1}^{n} \left(\frac{A_j}{T} + \frac{h_j}{2} (p_j - d_j) \frac{d_j}{p_j} T \right)$				857	75.09					

Algorithm Recap

- 1. Determine W: Minimum cycle length from independent optimization
- 2. Determine n_i , given $W(n_i=2^m)$
- 3. Determine new W
- 4. Back to Step 2 unless the procedure has converged (multipliers do not change anymore).
- 5. If converged, check feasibility. If not feasible, adjust ni and determine W from 3.

Item	1	2	3	4	5	6	7	8	9	10
Demand rate (units/year)	200	50	800	500	20	600	100	1000	80	450
Production rate (units/year)	5000	2000	4000	6400	300	36000	2000	6000	900	7250
Setup time × 10 ⁻⁴ (years)	0.0005	0.0006	0.0008	0.0004	0.0001	0.0002	0.0001	0.0006	0.0002	0.0001
Setup cost (€)	75	120	110	60	200	150	80	300	115	95
Holding cost (€/year)	8	14	5	2	25	3	6	20	15	3
$h_j d_j (\frac{p_j - d_j}{p_j})$	1536.00	682.50	3200.00	921.88	466.67	1770.00	570.00	16666.67	1093.33	1266.21

1. Determine W: Minimum cycle length from independent optimization & 2. Determine n_i, given W

$$C(W, n_i) = \sum_{j=1}^{n} \left(\frac{A_j}{n_j W} + \frac{h_j}{2} (p_j - d_j) \frac{d_j}{p_j} n_j W \right)$$

Basic period (W)_initial	i				0.19					
Item	1	2	3	4	5	6	7	8	9	10
n _i =2 ^m	2	4	1	2	4	2	2	1	2	2
Cost	$489.208 = \left(\frac{75}{2*0.19} + \frac{2*0.19}{2} \cdot 1536\right)$	417.245 $= \left(\frac{120}{4 * 0.19} + \frac{4 * 0.19}{2} 682.5\right)$	882.947	333.051	440.491	731.037	318.826	3162.281	510.365	490.579
Total cost					7776.60					

Basic period(W)_{new}?
$$W = \sqrt{\frac{2\sum_{i=1}^{N} \frac{A_i}{n_i}}{\sum_{i=1}^{N} h_i(p_i - d_i) \frac{d_i}{p_i} n_i}}$$

3. Determine new W & 4. Back to Step 2 unless the multipliers do not change anymore

Item	1	2	3	4	5	6	7	8	9	10
Demand rate (units/year)	200	50	800	500	20	600	100	1000	80	450
Production rate (units/year)	5000	2000	4000	6400	300	36000	2000	6000	900	7250
Setup time × 10 ⁻⁴ (years)	0.0005	0.0006	0.0008	0.0004	0.0001	0.0002	0.0001	0.0006	0.0002	0.0001
Setup cost (€)	75	120	110	60	200	150	80	300	115	95
Holding cost (€/year)	8	3 14	5	2	25	3	6	20	15	3
n _i =2 ^m	2	2 4	1	2	4	2	2	1	2	2
$h_j d_j (\frac{p_j - d_j}{p_j})$	1536.00	682.50	3200.00	921.88	466.67	1770.00	570.00	16666.67	1093.33	1266.21

Item	1	2	3	4	5	6	7	8	9	10	Sum
$\frac{A_i}{n_i}$	37.5 (=75/2)	1	110	30.0	50.0	75.0	40.0	300.0	57.5	47.5	777.5
$h_i(p_i-d_i)\frac{d_i}{p_i}n_i$	3072 (= 1536 * 2)	2730 (= 682.5 * 4)	3700	1843.8	1866.7	3540.0	1140.0	16666.7	2186.7	2532.4	38778.2

$$\therefore W = \sqrt{\frac{2 * 777.5}{38778.2}} = 0.2002$$

Item	1	2	3	4	5	6	7	8	9	10
Demand rate (units/year)	200	50	800	500	20	600	100	1000	80	450
Production rate (units/year)	5000	2000	4000	6400	300	36000	2000	6000	900	7250
Setup time × 10 ⁻⁴ (years)	0.0005	0.0006	0.0008	0.0004	0.0001	0.0002	0.0001	0.0006	0.0002	0.0001
Setup cost (€)	75	120	110	60	200	150	80	300	115	95
Holding cost (€/year)	8	14	5	2	25	3	6	20	15	3
n _i =2 ^m	2	4	1	2	4	2	2	1	2	2
$h_j d_j (\frac{p_j - d_j}{p_j})$	1536.00	682.50	3200.00	921.88	466.67	1770.00	570.00	16666.67	1093.33	1266.21

$$*W \approx 0.2002$$

$$C(W, n_i) = \sum_{j=1}^{n} \left(\frac{A_j}{n_j W} + \frac{h_j}{2} (p_j - d_j) \frac{d_j}{p_j} n_j W \right)$$

5. If converged, check feasibility. If not feasible, adjust ni and determine W from 3.

	1	2	3	4	5	6	7	8	9	10
Q $(=d_j*n_j*W)$	80.08 (=200*2*0.2002)	40.04	160.16	200.20	16.02	240.24	40.04	200.20	32.03	180.18
Time $ (= \frac{r_j}{n_i} + \frac{Q_i}{n_i p_j}) $	$\left(=\frac{0.0005}{2} + \frac{80.08}{2*5000}\right)$	0.00516	0.04085	0.01584	0.01337	0.00344	0.01006	0.03397	0.01790	0.01248
Cost	$(=\frac{75}{2*0.2002} + \frac{1536*2*0.2002}{2})$	$\left(=\frac{120}{4*0.2002} + \frac{682.5*4*0.2002}{2}\right)$	869.77	334.41	436.60	728.98	313.91	3166.83	506.10	490.76

$$\sum_{j=1}^{n} \left(\frac{r_j}{n_j} + \frac{Q_j}{n_j p_j} \right) \le W ? \to 0.16134 \le 0.2002$$

$$\therefore$$
 Total cost = 7765.31

Independent Approach: 7673.34

Common Cycle: 8575.09

Exercise 2:

Consider two products with constant demand rate of d1 = 200 and d2 = 250 units per period which are stored in a warehouse with a **total capacity of 300** units. The products require a1 = 3 and a2 = 1 units of warehouse space. The ordering costs are A1=150 and A2=111. Additionally, the products cause holding costs of h1 = 1 per unit per period and h2 = 2 per unit per period.

- a) Determine the optimal order quantities using the strategy of dedicated space.
- b) How much would you be willing to pay to obtain additional warehouse space of 700 units?
- c) Use the common-cycle method to determine the optimal replenishment cycle for all products.
- d) Use the results in c) to determine how many units of product 1 are in stock when you replenish product 2.

Exercise 2.a) Determine the optimal order quantities using the strategy of dedicated space.

Product	1	2
d	200	250
A	150	111
h	1	2
a	3	1

*Capacity(W) = 300

$$L = \sum_{i=1}^{N} \left[\frac{d_i}{Q_i} A_i + \frac{h_i}{2} Q_i \right] + \lambda \left[\sum_{i=1}^{N} \alpha_i Q_i - W \right]$$

$$\frac{\partial L}{\partial Q_i} = \frac{-d_i}{Q_i^2} A_i + \frac{h_i}{2} + \lambda a_i = 0$$

$$\Rightarrow Q_i^*(\lambda) = \sqrt{\frac{2d_i A_i}{h_i + 2\lambda a_i}} \quad i = 1, 2, \dots, N$$

Solution

Case 1: Unconstrained solution $\lambda = 0$ Case 2: Constrained solution, choose λ such that $\sum_{i=1}^{N} a_i Q_i^*(\lambda) = W$ Case 1: Unconstrained solution

$$Q_1^* = \sqrt{\frac{2 * 200 * 150}{1}} = 244.95, \qquad Q_2^* = \sqrt{\frac{2 * 250 * 111}{2}} = 166.58$$

Total used space? = $244.95*3 + 166.58*1 = 901.43 \approx 902 (> 300!!!)$

Cost
$$(Q_1^*) = \frac{d_i}{Q_i} A_i + \frac{h_i}{2} Q_i = \frac{200}{244.95} * 150 + \frac{244.95}{2} * 1 \approx 244.95$$

Cost
$$(Q_2^*) = \frac{250}{166.58} * 111 + \frac{166.58}{2} * 2 \approx 333.17$$

Exercise 2.a) Determine the optimal order quantities using the strategy of dedicated space.

Product	1	2
d	200	250
A	150	111
h	1	2
a	3	1
*Capacity(W)	= 300	

How to derive λ ?

$$\sum_{i=1}^{N} a_i Q_i^*(\lambda) = W$$

$$a_1 \sqrt{\frac{2d_1 A_1}{h_1 + 2\lambda a_1}} + a_2 \sqrt{\frac{2d_2 A_2}{h_2 + 2\lambda a_2}} = 300$$

$$3\sqrt{\frac{2*200*150}{1+2\lambda*3}} + 1\sqrt{\frac{2*250*111}{2+2\lambda*1}} = 300$$

$$\lambda = 2$$

Case 2: Constrained solution

$$Q_1^* = \sqrt{\frac{2 * 200 * 150}{1 + 2 * 2 * 3}} = 67.94, \qquad Q_2^* = \sqrt{\frac{2 * 250 * 111}{2 + 2 * 2 * 1}} = 96.18$$

Total used space? = 67.94*3 + 96.18*1 = 300

$$L = \sum_{i=1}^{N} \left[\frac{d_i}{Q_i} A_i + \frac{h_i}{2} Q_i \right] + \lambda \left[\sum_{i=1}^{N} a_i Q_i - W \right]$$

Cost
$$(Q_1^*) = \frac{d_i}{Q_i} A_i + \frac{h_i}{2} Q_i = \frac{200*150}{67.94} + \frac{1*67.94}{2} \approx 475.54$$

Cost
$$(Q_2^*) = \frac{250*111}{96.18} + \frac{96.18*2}{2} \approx 384.70$$

Total Cost =
$$475.54 + 384.70 \approx 860.2$$

Exercise 2.b) How much would you be willing to pay to obtain additional warehouse space of 700 units?

Product	1	2
d	200	250
A	150	111
h	1	2
a	3	1
*Capacity(W	/) = 1000	

From the unconstrained solution...

$$\therefore$$
 Solution: $Q_1^* = 244.95$, $Q_2^* = 166.58$

Total used space? =
$$244.95*3 + 166.58*1 = 901.43 (< 1000)$$

Total Cost = **578.12**

By contrained with W= 300...

$$\therefore$$
 Solution: $Q_1^* = 67.94$, $Q_2^* = 96.18$

Total used space? =
$$67.94*3 + 96.18*1 = 300$$

W=300	860.24
W=1000	578.12
Delta	282.12

Exercise 2.c) Use the common-cycle method to determine the optimal replenishment cycle for all products.

Product	
d	
Α	
h	
a	

$$T^* = \min \left\{ \sqrt{\frac{2\sum_{i=1}^{N} A_i}{\sum_{i=1}^{N} h_i d_i}}; W \frac{\sum_{i=1}^{N} a_i d_i}{\sum_{i=1}^{N} \sum_{j=1}^{i} a_i a_j d_i d_j} \right\}$$

$$T_{uncons} = \sqrt{\frac{2\sum_{i=1}^{N} A_i}{\sum_{i=1}^{N} h_i d_i}} = \sqrt{\frac{2(150 + 111)}{(200 * 1 + 250 * 2)}} = 0.86355$$

$$T_{cons} = W \frac{\sum_{i=1}^{N} a_i d_i}{\sum_{i=1}^{N} \sum_{j=1}^{i} a_i a_j d_i d_j}$$

$$= 300 \frac{(3 \cdot 200 + 1 \cdot 250)}{(3 \cdot 3 \cdot 200 \cdot 200) + (1 \cdot 1 \cdot 250 \cdot 250) + (1 \cdot 3 \cdot 250 \cdot 200)}$$

$$= 0.4454$$

$$T^* = \min\{0.86355; 0.445\} = 0.445$$

^{*}Capacity(W) = 300

Exercise 2.c) Use the **common-cycle method** to determine **the optimal replenishment cycle** for all products.

Product	
d	
A	
h	
a	

$$C = \sum_{i=1}^{N} \left(\frac{A_i}{T} + \frac{h_i d_i}{2} T \right)$$
 where, $T^* = 0.4454$

Cost
$$(Q_1^*) = \frac{A_1}{T} + \frac{h_1 d_1}{2} T = \frac{150}{0.445} + \frac{1*200}{2} * 0.445 \approx 381.58$$

Cost
$$(Q_2^*) = \frac{A_2}{T} + \frac{h_2 d_2}{2} T = \frac{111}{0.445} + \frac{2*250}{2} * 0.445 \approx 360.69$$

Total Cost =
$$381.58 + 360.69 = 742.27$$

Exercise 2.d) Use the results in c) to determine how many units of product 1 are in stock when you replenish product 2.

$$t_{i} = \frac{\sum_{j=1}^{i} a_{j} d_{j}}{\sum_{j=1}^{N} a_{j} d_{j}} T$$

$$t_1 = \frac{200 \cdot 3}{(200 \cdot 3 + 250 \cdot 1)} 0.445 \approx 0.314$$

$$t_2 = \frac{(200 \cdot 3 + 250 \cdot 1)}{(200 \cdot 3 + 250 \cdot 1)} 0.445 \approx 0.445$$

$$t_{gap} = t_2 - t_1 = 0.131$$

$$Q_i = d_i \cdot T \rightarrow Q_1 = 200 \cdot 0.4454 \approx 89$$

$$\therefore Q_{1L/O} = Q_1 - d_1 \cdot t_{gap} = 89 - 200 \cdot 0.131 \approx 62.8$$

Exercise 3:

Ten products are ordered by a distributor from a single supplier. The specific product data are given in the following table and the following general information has been gathered. The major ordering cost is $A_0 = 30 \in A_0$ and the minor ordering cost for each product is $A_0 = 15 \in A_0$. The delivery lead time is **one week.**

Product	Monthly demand (units)	Holding cost (€)
1	8	1
2	25	2
3	4	0.6
4	63	5.2
5	67	1.6
6	46	0.4
7	54	0.098
8	2	12
9	83	2
10	82	1

- a) Find the optimal order frequencies for each product.
- b) What are the corresponding overall costs?

Iterative solution approach recap

- 1. Let T₁ the smallest cycle time from independent planning
- 2. Determine initial multipliers by rounding non-integer values $n_i = \sqrt{\frac{A_i h_1 d_1}{h_i d_i (A_0 + A_1)}}$

3. Determine
$$T_1$$
 $T_1^* = \sqrt{\frac{2(A_0 + \sum_{i=1}^N \frac{A_i}{n_i})}{\sum_{i=1}^N h_i d_i n_i}}$

- 4. Determine new integers from cost function
 - Minimum integer that satisfies $n_i(n_i+1) \ge \frac{2A_i}{h_i d_i T_1^2}$
- 5. Back to step 2 if any integer changed

Product	1	2	3	4	5	6	7	8	9	10
demand	8	25	4	63	67	46	54	2	83	82
holding cost	1	2	0.6	5.2	1 6	0.4	0.098	12	2	1

Major Setup=30€ Minor Setup=15€

1) Determine initial multipliers by rounding non-integer values

Product	1	2	3	4	5	6	7	7	8	9	10
Independent											
cycle times	1.9365	0.7746	3.5355	0.3026	0.5290						
$T_i = \sqrt{\frac{2A_i}{h_i d_i}}$	$=\sqrt{\frac{2\cdot15}{1\cdot8}}$	$=\sqrt{\frac{2\cdot15}{2\cdot25}}$	$=\sqrt{\frac{2\cdot15}{0.6\cdot4}}$	$=\sqrt{\frac{2\cdot15}{5\cdot2\cdot63}}$	$=\sqrt{\frac{2\cdot15}{1.6\cdot67}}$	1.2769	2.3810) 1.118	80 (0.4251	0.6049
Optimal multipliers											
n_i	3.695	1.478	3	6.745	0.577						
$=\sqrt{\frac{A_i h_4 d_4}{h_i d_i (A_0 + A_4)}}$	$=\sqrt{\frac{15.5.2.63}{1.8\cdot(30+15)}}$	$=\sqrt{\frac{15\cdot5.2\cdot63}{2\cdot25\cdot(30+15)}}$	1	$\frac{6.5.2.63}{6.(30+15)} = \sqrt{\frac{1}{2}}$	15·5.2·63 5.2·63·(30+15)	1.009	2.436	4.543	2.133	0.811	1.154
Rounded*	4	-	L	7	1	1	2	5	2	1	1

1) Determine initial multipliers by rounding non-integer values

Major Setup=30
$$\in$$
 Minor Setup=15 \in $\underline{C} = \sqrt{2(A_0 + A_4)h_4d_4} + \sum_{i=2}^{N} \sqrt{2A_ih_id_i}$

Product	1	2	3	4	5	6	7	8	9	10
demand	8	25	4	63	67	46	54	2	83	82
holding cost	1	2	0.6	5.2	1.6	0.4	0.098	12	2	1
$\sqrt{2A_ih_id_i}$	15.49	38.73	8.49	99.14	56.71	23.49	12.60	26.83	70.57	49.60

2) Determine T₁

Major Setup=30€
$$T^* = \sqrt{\frac{2(A_0 + \sum_{i=1}^N \frac{A_i}{n_i})}{\sum_{i=1}^N h_i d_i n_i}}$$

Product	1	2	3	4	5	6	7	8	9	10
demand	8	25	4	63	67	46	54	2	83	82
holding cost	1	2	0.6	5.2	1.6	0.4	0.098	12	2	1
n_i	4	1	7	1	1	2	5	2	1	1

Sum

$rac{A_i}{n_i}$	3.75 $\left(=\frac{15}{4}\right)$	$(=\frac{15}{1})$	2.14286 $\left(=\frac{15}{7}\right)$	$(=\frac{15}{1})$	$(=\frac{15}{1})$	7.5 $\left(=\frac{15}{2}\right)$	$(=\frac{15}{5})$	7.5 $\left(=\frac{15}{2}\right)$	$(=\frac{15}{1})$	$(=\frac{15}{1})$	98.89
$h_i d_i n_i$	32 (=1*8*4)	50 (=2*25*1)	16.8 (=0.6*4*7)	327.6	107.2	36.8	26.46	48	166	82	892.86

$$\therefore T^* = \sqrt{\frac{2(A_0 + \sum_{i=1}^N \frac{A_i}{n_i})}{\sum_{i=1}^N h_i d_i n_i}} = \sqrt{\frac{2(30 + 98.89)}{892.86}} = \mathbf{0.53732}$$

3) Determine new integers from cost function

$$n_i(n_i+1) >= \frac{2A_i}{h_i d_i T^2}$$

*Multiplier of the 2nd and 7th item changed!

Product	1	2	3	4	5	6	7	8	9	10
demand	8	25	4	63	67	46	54	2	83	82
holding cost	1	2	0.6	5.2	1.6	0.4	0.098	12	2	1
$\langle 2A_i \rangle$	12.988	2.07	78							_

$RH \; (\frac{2A_i}{h_i d_i T^2})$	$(=\frac{12.988}{2*15} (=\frac{2*15}{1*8*0.53732^2}) (=$	$= \frac{2.078}{2*15} = \frac{2*15}{2*25*0.53732^2}$	43.295	0.317	0.969	5.647	19.635	4.329	0.626	1.267
New multipliers	4	2	7	1	1	2	4	2	1	1
$LF\left(n_i(n_i+1)\right)$	20	6	56	2	2	6	20	6	2	2

Initial n _i	4	1	7	1 1	. 2	2 5	2	1		1
------------------------	---	---	---	-----	-----	-----	---	---	--	---

3) Determine new integers from cost function

Product	1	2	3	4	5	6	7	8	9	10	Total sum
New multipliers	4	2	7	1	1	2	4	2	1	1	iotai suili
$rac{A_i}{n_i}$	3.75 $\left(=\frac{15}{4}\right)$	7.5 $\left(=\frac{15}{2}\right)$	2.14286 $\left(=\frac{15}{7}\right)$	$ \begin{array}{c} 15 \\ (=\frac{15}{1}) \end{array} $	$ \begin{array}{c} 15 \\ (=\frac{15}{1}) \end{array} $	7.5 $(=\frac{15}{2})$	3.75 $(=\frac{15}{4})$		15 $(=\frac{15}{1})$	$(=\frac{15}{1})$	92.14
$h_i d_i n_i$	32 (=1*8*4)	100 (=2*25*2)	16.8 (=0.6*4*7)	47/6	107.2	36.8	26.46 (=0.098*54*4)	1 /12	166	82	937.57

$$\therefore T^* = \sqrt{\frac{2(A_0 + \sum_{i=1}^N \frac{A_i}{n_i})}{\sum_{i=1}^N h_i d_i n_i}} = \sqrt{\frac{2(30 + 92.14)}{937.57}} = \mathbf{0.51044}$$

3) Determine new integers from cost function

$$T^* = 0.51044$$

$$n_i(n_i+1) >= \frac{2A_i}{h_i d_i T^2}$$

*Multiplier of the 6th and 7th item changed!

$\left(\frac{2A_{i}}{2}\right)$	14.392	2.303	47 Q75	0.251	1 074	6 259	21 757	/ 7Q7	0.604	1 404
					·	·				
holding cost	1	2	0.6	5.2	1.6	0.4	0.098	12	2	1
demand	8	25	4	63	67	46	54	2	83	82
Product	1	2	3	4	5	6	7	8	9	10

$RH\ (rac{2A_i}{h_id_iT^2})$	$(=\frac{14.392}{1*8*0.51044^2}) (=$	$\frac{2.303}{2*15}$ $\frac{2*15}{2*25*0.51044^2}$	47.975	0.351	1.074	6.258	21.757	4.797	0.694	1.404
New multipliers	4	2	7	1	1	3	5	2	1	1
$LF\left(n_i(n_i+1)\right)$	20	6	56	2	2	12	30	6	2	2

Previous n _i	4	2	7	1	1	2	4	2	1	1
-------------------------	---	---	---	---	---	---	---	---	---	---

3) Determine new integers from cost function

Product	1	2	3	4	5	6	7	8	9	10	Total sum
New multipliers	4	2	7	1	1	3	5	2	1	1	iotai suiii
$rac{A_i}{n_i}$	3.75 $\left(=\frac{15}{4}\right)$	7.5 $(=\frac{15}{2})$	2.14286 $(=\frac{15}{7})$	$ \begin{array}{c} 15 \\ (=\frac{15}{1}) \end{array} $	$ \begin{array}{c} 15 \\ (=\frac{15}{1}) \end{array} $	$(=\frac{15}{3})$	$(=\frac{15}{5})$	7.5 $\left(=\frac{15}{4}\right)$	$ \begin{array}{c} 15 \\ (=\frac{15}{1}) \end{array} $	$(=\frac{15}{1})$	88.89
$h_i d_i n_i$	32 (=1*8*4)			37/6	107.2	36.8 (=0.4*46*3)	26.46 (=0.098*54*5)	48	166	82	961.26

$$T^* = \sqrt{\frac{2(A_0 + \sum_{i=1}^N \frac{A_i}{n_i})}{\sum_{i=1}^N h_i d_i n_i}} = \sqrt{\frac{2(30 + 88.89)}{961.26}} = \mathbf{0.4974}$$

4) Back to step 2 if any integer changed

$$T^* = 0.4974$$

$$n_i(n_i+1) >= \frac{2A_i}{h_i d_i T^2}$$

*Multipliers did not change!

Product	1	2	3	4	5	6	7	8	9	10
demand	8	25	4	63	67	46	54	. 2	83	82
holding cost	1	2	0.6	5.2	1.6	0.4	0.098	12	2	1
	1 - 1 - 0	2.4	nc							

$RH\;(\frac{2A_i}{h_id_iT^2})$	$(=\frac{2*15}{1*8*0.4974^2})$	$(=\frac{2.426}{2*15})$	50.532	0.370	1.131	6.591	22.917	5.053	0.731	1.479
New multipliers	4	2	7	1	1	3	5	2	1	1
$LF\left(n_i(n_i+1)\right)$	20	6	56	2	2	12	30	6	2	2

Previous n _i	4	2	7	1	1	3	5	2	1	. 1

Exercise 3.b) What are the corresponding overall costs?

Product	1	2	3	4	5	6	7	8	9	10
demand	8	25	4	63	67	46	54	. 2	83	82
holding cost	1	2	0.6	5.2	1.6	0.4	0.098	12	2	1

Excel File will be provided

 $T^* = 0.4974$

$$C = \frac{A_0 + A_1 + \sum_{i=2}^{N} \frac{A_i}{n_i}}{T_1} + \frac{T_1(h_1 d_1 + \sum_{i=2}^{N} h_i d_i n_i)}{2}$$

Product	1	. 2	3	4	5	6	7	8	9	10	Total sum
Final multipliers	4	2	7	1	1	3	5	2	1	1	Total Sulli
$rac{A_i}{n_i}$	3.75	7.5	2.14286	15	15	5	3	7.5	15	15	88.89
$h_i d_i$	8	50	2.4	327.6	107.2	18.4	5.292	24	166	82	790.89
$h_i d_i n_i$	32	100	16.8	327.6	107.2	55.2	26.46	48	166	82	961.26

$$\therefore C = \frac{A_0 + A_1 + \sum_{i=2}^{N} \frac{A_i}{n_i}}{T_1} + \frac{T_1(h_1 d_1 + \sum_{i=2}^{N} h_i d_i n_i)}{2} = \frac{30 + 15 + (88.89 - 15)}{0.49736} + \frac{0.49736(327.6 + (961.26 - 327.6))}{2} \approx 478.09 \qquad \underline{C} = 474.22$$

Thank you!