XGBoost

各类赛事排名第一的算法;

XGBoost: A Scalable Tree Boosting System

Tianqi Chen
University of Washington
tqchen@cs.washington.edu

Carlos Guestrin
University of Washington
guestrin@cs.washington.edu

ABSTRACT

Tree boosting is a highly effective and widely used machine learning method. In this paper, we describe a scalable end-to-end tree boosting system called XGBoost, which is used widely by data scientists to achieve state-of-the-art results on many machine learning challenges. We propose a novel sparsity-aware algorithm for sparse data and weighted quantile sketch for approximate tree learning. More importantly, we provide insights on cache access patterns, data compression and sharding to build a scalable tree boosting system. By combining these insights, XGBoost scales beyond billions of examples using far fewer resources than existing systems.

problems. Besides being used as a stand-alone predictor, it is also incorporated into real-world production pipelines for ad click through rate prediction [15]. Finally, it is the defacto choice of ensemble method and is used in challenges such as the Netflix prize [3].

In this paper, we describe XGBoost, a scalable machine learning system for tree boosting. The system is available as an open source package². The impact of the system has been widely recognized in a number of machine learning and data mining challenges. Take the challenges hosted by the machine learning competition site Kaggle for example. Among the 29 challenge winning solutions ³ published at Kaggle's blog during 2015, 17 solutions used XGBoost. Among these solutions, eight solely used XGBoost to train the mod-

Bagging vs Boosting

Bagging

Leverages unstable base learners that are weak because of overfitting

Boosting

Boosting: Leverage stable base learners that are weak because of underfitting

算法核心思想

例子: 预测年龄

PersonID	Age	LikesGardening	PlaysVideoGames	LikesHats
1	13	FALSE	TRUE	TRUE
2	14	FALSE	TRUE	FALSE
3	15	FALSE	TRUE	FALSE
4	25	TRUE	TRUE	TRUE
5	35	FALSE	TRUE	TRUE
6	49	TRUE	FALSE	FALSE
7	68	TRUE	TRUE	TRUE
8	71	TRUE	FALSE	FALSE
9	73	TRUE	FALSE	TRUE

例子: 预测年龄(续)

下一颗决策树需要拟合这个数

Weak learner

例子: 预测年龄(续)

PersonID	Age	Tree1 Prediction		Tree1 Residual	
1	13	19.25		-6.25	
2	14	19.25		-5.25	
3	15	19.25		-4.25	
4	25	57.2		-32.2	
5	35	19.25		15.75	
6	49	57.2		-8.2	
7	68	57.2		10.8	
8	71	57.2		13.8	
9	73	57.2		15.8	

第二颗决策树

例子: 预测年龄(续)

PersonID	Age	Tree1 Prediction	Tree1 Residual	Tree2 Prediction	Combined Prediction	Final Residual
1	13	19.25	-6.25	-3.567	15.68	2.683
2	14	19.25	-5.25	-3.567	15.68	1.683
3	15	19.25	-4.25	-3.567	15.68	0.6833
4	25	57.2	-32.2	-3.567	53.63	28.63
5	35	19.25	15.75	-3.567	15.68	-19.32
6	49	57.2	-8.2	7.133	64.33	15.33
7	68	57.2	10.8	-3.567	53.63	-14.37
8	71	57.2	13.8	7.133	64.33	-6.667
9	73	57.2	15.8	7.133	64.33	-8.667
T4 665				in a loca		

Tree1 SSE	Combined SSE
1994	1765

Looking into details of XGBoost ...

本节很多的PPT来自于Tianqi: https://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf

Why XGBoost is so popular?

Speed and Performance

Core algorithm is parallelizable

Consistently outperforms other algorithm methods

Wide variety of tuning parameters

Ensemble of Trees

使用多棵树预测

假设已经训练了K颗树,对于第i个样本的预测值为:

$$\hat{y}_i = \sum_{k=1}^K f_k(x_i), \quad f_k \in \mathcal{F}$$

Space of functions containing all Regression trees

目标函数

假设有K颗树:

$$\hat{y}_i = \sum_{k=1}^K f_k(x_i), \quad f_k \in \mathcal{F}$$

目标函数:

$$Obj = \sum_{i=1}^{n} l(y_i, \hat{y}_i) + \sum_{k=1}^{K} \Omega(f_k)$$

Training loss Complexity of the Trees

The model is regression tree that splits on time

Piecewise step function over time

Observed user's interest on topic k against time t

 \mathbf{X} Wrong split point, L(f) is high

 \mathbf{X} Too many splits, $\Omega(f)$ is high

 \bigcirc Good balance of $\Omega(f)$ and L(f)

目标函数

$$Obj = \sum_{i=1}^{n} l(y_i, \hat{y}_i) + \sum_{k=1}^{K} \Omega(f_k)$$

Training loss

Complexity of the Trees

Using Square loss $l(y_i, \hat{y}_i) = (y_i - \hat{y}_i)^2$

Will results in common gradient boosted machine

Using Logistic loss $l(y_i, \hat{y}_i) = y_i \ln(1 + e^{-\hat{y}_i}) + (1 - y_i) \ln(1 + e^{\hat{y}_i})$

Will results in LogitBoost

如何去训练模型

Additive Training

$$\begin{array}{ll} \hat{y}_i^{(0)} &= 0 \\ \hat{y}_i^{(1)} &= f_1(x_i) = \hat{y}_i^{(0)} + f_1(x_i) \\ \hat{y}_i^{(2)} &= f_1(x_i) + f_2(x_i) = \hat{y}_i^{(1)} + f_2(x_i) \\ & \cdots \\ \hat{y}_i^{(t)} &= \sum_{k=1}^t f_k(x_i) = \hat{y}_i^{(t-1)} + f_t(x_i) \\ \hline \end{array}$$
 New function

Model at training round t

Keep functions added in previous round

Additive Training

- How do we decide which f to add?
 - Optimize the objective!!
- The prediction at round t is $\hat{y}_i^{(t)} = \hat{y}_i^{(t-1)} + f_t(x_i)$

This is what we need to decide in round t

$$Obj^{(t)} = \sum_{i=1}^{n} l(y_i, \hat{y}_i^{(t)}) + \sum_{i=1}^{t} \Omega(f_i)$$

$$= \sum_{i=1}^{n} l(y_i, \hat{y}_i^{(t-1)}) + \sum_{i=1}^{t} \Omega(f_i) + Constant$$

Goal: find f_t to minimize this

Consider square loss

$$Obj^{(t)} = \sum_{i=1}^{n} \left(y_i - (\hat{y}_i^{(t-1)} + f_t(x_i)) \right)^2 + \Omega(f_t) + const$$

= $\sum_{i=1}^{n} \left[2(\hat{y}_i^{(t-1)} - y_i) f_t(x_i) + f_t(x_i)^2 \right] + \Omega(f_t) + const$

This is usually called residual from previous round

使用泰勒级数近似目标函数

- Goal $Obj^{(t)} = \sum_{i=1}^{n} l\left(y_i, \hat{y}_i^{(t-1)} + f_t(x_i)\right) + \Omega(f_t) + constant$
 - Seems still complicated except for the case of square loss
- Take Taylor expansion of the objective
 - Recall $f(x+\Delta x)\simeq f(x)+f'(x)\Delta x+\frac{1}{2}f''(x)\Delta x^2$
 - Define $g_i = \partial_{\hat{y}^{(t-1)}} l(y_i, \hat{y}^{(t-1)}), \quad h_i = \partial_{\hat{y}^{(t-1)}}^2 l(y_i, \hat{y}^{(t-1)})$

$$Obj^{(t)} \simeq \sum_{i=1}^{n} \left[l(y_i, \hat{y}_i^{(t-1)}) + g_i f_t(x_i) + \frac{1}{2} h_i f_t^2(x_i) \right] + \Omega(f_t) + constant$$

得到的新的目标函数

$$\begin{split} \sum_{i=1}^n \left[g_i f_t(x_i) + \tfrac{1}{2} h_i f_t^2(x_i) \right] + \Omega(f_t) \\ \text{where} \quad g_i = \partial_{\hat{y}^{(t-1)}} l(y_i, \hat{y}^{(t-1)}), \quad h_i = \partial_{\hat{y}^{(t-1)}}^2 l(y_i, \hat{y}^{(t-1)}) \end{split}$$

g, h 是很容易计算的,但f(x)如何去表示呢? 因为它是一棵树,如 果表示成函数的形式呢?

重新定义一棵树

 We define tree by a vector of scores in leafs, and a leaf index mapping function that maps an instance to a leaf

树的复杂度

Define complexity as (this is not the only possible definition)

$$\Omega(f_t) = \gamma T + \frac{1}{2}\lambda \sum_{j=1}^{T} w_j^2$$

Number of leaves

L2 norm of leaf scores

新的目标函数

Objective, with constants removed

$$\sum_{i=1}^{n} \left[g_i f_t(x_i) + \frac{1}{2} h_i f_t^2(x_i) \right] + \Omega(f_t)$$

$$g_i = \partial_{\hat{y}^{(t-1)}} l(y_i, \hat{y}^{(t-1)}), \quad h_i = \partial_{\hat{y}^{(t-1)}}^2 l(y_i, \hat{y}^{(t-1)})$$

- Define the instance set in leaf j as $I_j = \{i | q(x_i) = j\}$
 - Regroup the objective by leaf

$$Obj^{(t)} \simeq \sum_{i=1}^{n} \left[g_{i} f_{t}(x_{i}) + \frac{1}{2} h_{i} f_{t}^{2}(x_{i}) \right] + \Omega(f_{t})$$

$$= \sum_{i=1}^{n} \left[g_{i} w_{q(x_{i})} + \frac{1}{2} h_{i} w_{q(x_{i})}^{2} \right] + \gamma T + \lambda \frac{1}{2} \sum_{j=1}^{T} w_{j}^{2}$$

$$= \sum_{j=1}^{T} \left[\left(\sum_{i \in I_{j}} g_{i} \right) w_{j} + \frac{1}{2} \left(\sum_{i \in I_{j}} h_{i} + \lambda \right) w_{j}^{2} \right] + \gamma T$$

This is sum of T independent quadratic function

新的目标函数(续)

Two facts about single variable quadratic function

$$argmin_x Gx + \frac{1}{2}Hx^2 = -\frac{G}{H}, \ H > 0 \quad \min_x Gx + \frac{1}{2}Hx^2 = -\frac{1}{2}\frac{G^2}{H}$$

• Let us define $G_j = \sum_{i \in I_i} g_i \ H_j = \sum_{i \in I_i} h_i$

$$Obj^{(t)} = \sum_{j=1}^{T} \left[(\sum_{i \in I_j} g_i) w_j + \frac{1}{2} (\sum_{i \in I_j} h_i + \lambda) w_j^2 \right] + \gamma T$$

= $\sum_{j=1}^{T} \left[G_j w_j + \frac{1}{2} (H_j + \lambda) w_j^2 \right] + \gamma T$

 Assume the structure of tree (q(x)) is fixed, the optimal weight in each leaf, and the resulting objective value are

$$w_j^* = -\frac{G_j}{H_j + \lambda}$$
 $Obj = -\frac{1}{2} \sum_{j=1}^T \frac{G_j^2}{H_j + \lambda} + \gamma T$

This measures how good a tree structure is!

计算Score

Instance index gradient statistics

1

g1, h1

2

g2, h2

3

g3, h3

4

g4, h4

5

g5, h5

$$Obj = -\sum_{j} \frac{G_{j}^{2}}{H_{j} + \lambda} + 3\gamma$$

The smaller the score is, the better the structure is

如何寻找树的形状?

Brute Force Solution:

- Enumerate the possible tree structures q
- Calculate the structure score for the q, using the scoring eq.

$$Obj = -\frac{1}{2} \sum_{j=1}^{T} \frac{G_j^2}{H_j + \lambda} + \gamma T$$

Find the best tree structure, and use the optimal leaf weight

$$w_j^* = -\frac{G_j}{H_j + \lambda}$$

如何寻找树的形状?

贪心算法

- In practice, we grow the tree greedily
 - Start from tree with depth 0
 - For each leaf node of the tree, try to add a split. The change of objective after adding the split is

 The complexity cost by

$$Gain = \frac{1}{2}[\frac{G_L^2}{H_L + \lambda} + \frac{G_R^2}{H_R + \lambda} - \frac{(G_L + G_R)^2}{H_L + H_R + \lambda}] - \gamma$$
 the score of left child the score of if we do not split the score of right child

Remaining question: how do we find the best split?

寻找最好的Split

• What is the gain of a split rule $x_j < a$? Say x_j is age

All we need is sum of g and h in each side, and calculate

$$Gain = \frac{G_L^2}{H_L + \lambda} + \frac{G_R^2}{H_R + \lambda} - \frac{(G_L + G_R)^2}{H_L + H_R + \lambda} - \gamma$$

 Left to right linear scan over sorted instance is enough to decide the best split along the feature