

NT6511

16K 4-Bit Microcontroller with LCD Driver

Features

- NT6610C-based single-chip 4-bit Microcontroller with LCD driver
- ROM: 16 K x 16 bits (bank switched)
- RAM: 512 x 4 bits (system control register & data memory)
- Operating Voltage Range: 2.4V 5.5V
- 8 CMOS I/O ports
- 4 level subroutine nesting including interrupts`
- One 8-bit timer with pre-divider circuit
- Warm-up timer for power-on reset
- Powerful interrupt sources:
 - -Timer0 interrupt
 - -Port B interrupt (falling edge)
- System clock: 2 MHz single-pin voltage-controlled oscillator

- Table Branch and Return Constant Instructions for Table Data Generation
- Data pointer with special system register control
- Two low power operating modes HALT and STOP
- Instruction cycle time: 2 µs for 2 MHz voltagecontrolled oscillator
- Built-in 2-channel PSG for sound effects, switch able to noise channel
- Directly drives speaker
- Type B LCD drive circuit
- LCD driver: 40 x 8 (1/8 duty cycle, 1/4 bias)
- LCD off by programming LCDOFF register
- Available in CHIP FORM

General Description

NT6511 is a single chip 4 bit μ C dedicated chip for handheld games. This device integrates a NT6610 4-bit CPU core with RAM, ROM, timer, 2-channel PSG, and dot matrix LCD driver.

Pad Configuration

Block Diagram

Pad Description

Pad No.	Symbol	I/O	Shared by	Reset	Description
1 - 21, 46 - 64	SEG1 - 40	0			Segment signal output for LCD display
22 - 29	COM8 -1	0			Common signal output for LCD display
30 - 33	PB3 - PB0	I/O	PORT INT.	0FH	Bit programmable I/O, Vector Interrupt
34 - 37	PA3 - PA0	0		0	Output ports
38, 41	OP1, OP0	I			Bonding option
39	V_{DD}				Power supply
40	OSCI	I			OSC input
42	GND				Ground
43	AOUT	0			Audio output
44	RESET	I			Reset input (active low)
45	TEST	I			TEST (No connect for user)

Functional Description

1. CPU

The CPU core contains the following function blocks: Program Counter, ALU, Carry Flag, Accumulator, Table Branch Register (TBR), Data Pointer (INX, DPH, DPM and DPL), and Stack.

(a) PC (Program Counter)

The PC is used for ROM addressing consisting of 12-bits: Page Register (PC11), and Ripple Carry Counter (PC10 - PC0).

The program counter normally increases by one (+1) with each execution of an instruction except in the following cases:

- When executing a jump instruction (such as JMP, BA0, BAC);
- 2) When executing a subroutine call instruction (CALL);
- 3) When an interrupt occurs;
- 4) When the chip is at INITIAL RESET. The program counter is loaded with data corresponding to each instruction. The unconditional jump instruction (JMP) can be set at 1-bit page register for higher than 2K.

Program Counter can only address a 4K program ROM. To address 16K program ROM, use bank switch (Refer to the ROM description in Section 3 for details).

(b) ALU and CY

ALU performs arithmetic and logic operations.

The ALU provides the following functions:

Binary addition/subtraction (ADC, SBC, ADD, SUB, ADI, SBI)

Decimal adjustment for addition/subtraction (DAA, DAS) Logic operations (AND, EOR, OR, ANDI, EORI, ORI) Decision (BA0, BA1, BA2, BA3, BAZ, BAC)

The Carry Flag (CY) holds the arithmetic operation ALU overflow.

During interrupt or call instruction, carry is pushed onto stack and restored from stack by RTNI. It is unaffected by an RTNW instruction.

(c) Accumulator

Accumulator is a 4-bit register holding the results of the arithmetic logic unit. In conjunction with ALU, data transfers between the accumulator and system register, LCD RAM, or data memory can be performed.

(d) Stack

A group of registers used to save the contents of CY & PC (10-0) sequentially with each subroutine call or interrupt. It is organized 13 bits \times 4 levels. The MSB is saved for CY. 4 levels are the maximum allowed for subroutine calls and interrupts.

The contents of Stack are returned sequentially to the PC with the return instructions (RTNI/RTNW). Stack is operated on a first-in, last-out basis. This 4-level nesting includes both subroutine calls and interrupt requests. Note that program execution may enter an abnormal state if the number of calls and interrupt requests exceeds 4, and the bottom of stack will be shifted out.

2. RAM

RAM consists of general-purpose data memory, LCD RAM, and system registers.

(a) RAM Addressing

Data memory and system register can be accessed in one instruction by direct addressing. Following is the memory allocation map:

000 - 1F: System register and I/O (32 x 4 bits)

\$020 - \$1FF: Data Memory (480 x 4 bits)

\$200 - \$2FF: Reserved

\$300 - \$34F: LCD RAM space (80 x 4 bits)

(c) System Registers

The configuration of system registers is as follows:

(b) Data Memory

Data memory is organized as 480×4 bits (\$020 - \$1FF). Because of its static nature, the RAM can keep data after the CPU enters STOP or HALT.

	Bit 3	Bit 2	Bit 1	Bit 0	R/W	Remarks
\$00	-	IET0	-	IEP	R/W	Interrupt enable flags
\$01	-	IRQT0	-	IRQP	R/W	Interrupt request flags
\$02	-	TM0.2	TM0.1	TM0.0	R/W	Timer0 mode register (TM0)
\$03	-	-	-	-	-	Reserved
\$04	TL.3	TL.2	TL.1	TL.0	R/W	Timer0 load/counter register low digit
\$05	TH.3	TH.2	TH.1	TH.0	R/W	Timer0 load/counter register high digit
\$06	-	-	-	-	-	Reserved
\$07	-	-	-	-	-	Reserved
\$08	PA.3	PA.2	PA.1	PA.0	R/W	PORTA
\$09	PB.3	PB.2	PB.1	PB.0	R/W	PORTB
\$0A	-	-	-	-	-	-
\$0B	-	-	-	-	-	-
\$0C	-	-	OP1	OP0	R	Bonding Option
\$0D	-	-	-	-	-	Reserved
\$0E	TBR.3	TBR.2	TBR.1	TBR.0	R/W	Table Branch Register (TBR)
\$0F	INX.3	INX.2	INX.1	INX.0	R/W	Pseudo Index Register (INX)

(c) System Registers (continued)

	Bit 3	Bit 2	Bit 1	Bit 0	R/W	Remarks
\$10	DPL.3	DPL.2	DPL.1	DPL.0	R/W	Data Pointer for INX low nibble
\$11	-	DPM.2	DPM.1	DPM.0	R/W	Data Pointer for INX middle nibble
\$12	-	DPH.2	DPH.1	DPH.0	R/W	Data Pointer for INX high nibble
\$13	C1.3	C1.2	C1.1	C1.0	W	PSG Channel 1 low digit
\$14	C1M	C1.6	C1.5	C1.4	W	PSG Channel 1 high digit
\$15	C2.3	C2.2	C2.1	C2.0	W	PSG Channel 2 low digit
\$16	C2.7	C2.6	C2.5	C2.4	W	PSG Channel 2
\$17	C2.11	C2.10.	C2.9	C2.8	W	PSG Channel 2
\$18	C2M	C2.14	C2.13	C2.12	W	PSG Channel 2 high digit
\$19	VOL1	VOL0	CH2EN	CH1EN	W	Bit 0: PSG Channel 1 enable Bit 1: PSG Channel 2 enable Bit 2, Bit 3: Volume Control (Initially 0, no sound)
\$1A	-	-	P1.1	P1.0	W	PSG 1 Prescaler
\$1B	-	-	P2.1	P2.0	W	PSG 2 Prescaler
\$1C	-	TM.2	TM.1	LCDOFF	W	Bit 0: LCD Power Control Bit 2, Bit 1: Reserved for TEST Mode (TMR)
\$1D	1	-	-	-	-	Reserved for ICE
\$1E	-	-	-	-	-	Reserved for ICE
\$1F	-	BNK2	BNK1	BNK0	W	Bank Register for ROM (BNK), bit 3 reserved for ICE

(d) Data Pointer

Data memory can be indirectly addressed by the Data Pointer. Pointer address is located in register DPM (3-bits) and DPL (4-bits). The addressing range can have 128 locations. Pseudo index address (INX) is used to read or write Data memory, then RAM address bit9-bit0 comes from DPH, DPM and DPL.

3. ROM

NT6511 can address up to 16K \times 16 bits of program area from \$000 to \$3FFF.

ROM SPACE in the system is 16384 \times 16 bits.

(a) Vector Address Area (\$000 to \$004)

The program is sequentially executed. An area from address \$000 through \$004 is reserved for special interrupt service routines as starting execution of a vector address.

Address	Instruction	Remarks
\$000	JMP	Jump to RESET
\$001	-	Reserved
\$002	JMP	Jump to TIMER0
\$003	-	Reserved
\$004	JMP	Jump to PB (Port B)

^{*} JMP can be replaced by any other instruction.

(b) Table Data Reference

Table Data can be stored in program memory and can be referenced by using Table Branch (TJMP) and Return Constant (RTNW) instructions. The Table Branch Register (TBR) and Accumulator (A) is placed by an offset address in program ROM. TJMP instruction branch into address ((PC11 - PC8) $\times (2^8$) + (TBR, A)). The address is determined by RTNW to return look-up value into (TBR, A). ROM code bit7-bit4 is placed into TBR and bit3-bit0 into A.

(c) Bank Switch Mapping

Program Counter (PC11 - PC0) can only address 4K ROM space. Bank switch technique is used to extend the CPU address space. The lower 2K of the CPU addressing space maps to lower 2K of ROM space (BANK0). The upper 2K of the CPU addressing space maps to one of the seven banks (BANK 1, 2, 3, 4, 5, 6, 7) of the upper 14K of ROM. (according to the Bank Register)

The bank switch mapping is as follows:

CPU	ROM Space,	ROM Space,			ROM Space,	ROM Space,	ROM Space,
Address	BNK = 0	BNK = 1			BNK = 4	BNK = 5	BNK = 6
000-7FF	0000 - 07FF						
	(BANK 0)						
800 - FFF	0800-0FFF	1000 -17FF	1800 -1FFF	2000 -27FF	2800 -2FFF	3000 -37FF	3800 -3FFF
	(BANK 1)	(BANK 2)	(BANK 3)	(BANK 4)	(BANK 5)	(BANK 6)	(BANK 7)

System Register 0CH

	Bit 3	Bit 2	Bit 1	Bit 0	R/W	Remarks	Power-on
\$0C	-	-	OP1	OP0	R	Bit0: Bonding option 0, internal weak drive Bit1: Bonding option 1, internal weak drive	Pull high Pull low
	Х	Х	0	1			Yes
	Х	Х	0	0		OP0 bond to GND	
	Х	Х	1	1		OP1 bond to V _{DD}	
	Х	Х	1	0		OP0 bond to GND and OP1 bond to V _{DD}	

NT6511 Bonding Option

Up to 4 different bonding options are possible for the user's needs. The chip's program has 4 different program flows that will vary depending on which bonding option is used. The readable contents of OP1 and OP0 will differ depending on bonding.

4. Timer

NT6511 has one 8-bit timer for count-up, consisting of an 8-bit counter and an 8-bit pre-loaded register.

Timer provides the following functions:

- * Programmable interval timer
- * Read counter value

(a) Timer0 Configuration and Operation:

Timer-0 is an 8-bit write-only timer load register (TL0L, TL0H), and an 8-bit read-only timer counter (TC0L, TC0H). Each low order digits and high order digits. Timer counter is initialized by writing data into the timer load register (TL0L, TL0H).

First write the low-order digit, then the high-order digit. Timer counter is automatically loaded with the contents of the loaded register when the high order digit is written or count overflows occurs. Timer overflow will result in a interrupt if the interrupt enable flag is set.

Timer can be programmed in several different clock sources by setting Timer Mode Register (TM0).

(b) Timer Mode Register:

Timer Mode Registers (TM0) are 4-bit registers used for timer control as shown in Table 1. Mode Register selects input pulse sources to the timer.

Table 1. Timer0 Mode Registers (\$02)

TM0.2	TM0.1	TM0.0	Prescaler Divide Ratio	Clock Source
0	0	0	/2 ¹¹	System clock
0	0	1	/29	System clock
0	1	0	/27	System clock
0	1	1	/2 ⁵	System clock
1	0	0	/2³	System clock
1	0	1	/2 ²	System clock
1	1	0	/2 ¹	System clock
1	1	1	/2 ⁰	System clock

5. I/O Ports

(a) Functional Description

- CMOS type output port
- PMOS as pull-up for Input on PortB
- Output low initially for PortA
- Output high initially for PortB
- Operates same as data memory for arithmetic and logic instructions

(b) Circuit Diagrams (PORT A and PORT B)

(c) Programming

- I/O ports can be accessed with the read/write system register.
- Memory-mapped addresses are listed as follows:

Address	Bit 3	Bit 2	Bit 1	Bit 0	R/W	Remarks
\$08	PA.3	PA.2	PA.1	PA.0	R/W	PORTA
\$09	PB.3	PB.2	PB.1	PB.0	R/W	PORTB
\$0A	-	-	-	-	-	Reserved
\$0B	-	-	-	-	-	Reserved
\$0C	-	-	OP1	OP0	R	Optional Register

- Users can output any value to any I/O port bit at any time.
- Before reading PORTB I/O bits, the user needs to output "1" to the same bit.

6. Programmable Sound Generator (PSG)

2-Channel PSG is provided. Channel 1 is a 7-bit pseudo random counter. Channel 2 is a 15-bit pseudo random counter. Mode bits CH1M, CH2M determine which of each pseudo random counter will be a noise or a tone generator. To reduce power consumption, disable the sound effect generator during both STOP and HALT.

Note: Don't enable two PSG channels together to produce one tone, or it will produce some unpredicted errors. If it is necessary to use 2 channels together (EX. To play two channel melody), don't let the score always be the same tones as we can do, then the unpredicted errors will not occur or it will be ignore through user hearing

Channel 2 TONE mode is same as Channel 1. (7-bit pseudo-random counter). This eliminates some programming codes.

Address	Bit 3	Bit 2	Bit 1	Bit 0	R/W	Remarks
\$13	C1.3	C1.2	C1.1	C1.0	W	PSG Channel 1 low digit
\$14	C1M	C1.6	C1.5	C1.4	W	PSG Channel 1 high digit
\$15	C2.3	C2.2	C2.1	C2.0	W	PSG Channel 2 low digit
\$16	C2.7	C2.6	C2.5	C2.4	W	PSG Channel 2
\$17	C2.11	C2.10.	C2.9	C2.8	W	PSG Channel 2
\$18	C2M	C2.14	C2.13	C2.12	W	PSG Channel 2 high digit
\$19	VOL1	VOL0	CH2EN	CH1EN	W	Bit 0: PSG Channel 1 enable Bit 1: PSG Channel 2 enable Bit 2, Bit 3: Volume Control (Initially 0, no sound)
\$1A	-	-	P1.1	P1.0	W	PSG 1 Prescaler
\$1B	-	-	P2.1	P2.0	W	PSG 2 Prescaler

P.1	P.0	Prescaler Divide Ratio	Clock Source	Actual Clock
0	0	1	32 KHz	32 KHz
0	1	2	32 KHz	16 KHz
1	0	4	32 KHz	8 KHz
1	1	8	32 KHz	4 KHz

Music Table1:

Following is the music scale reference table for channel 1 (or channel 2) under Actual Clock=32KHz.

Note	Ideal freq.	N	LSFR (C1.6~C1.0) (C2.14~C2.8)	Real freq.	Error %	Note	ldeal freq.	N	LSFR (C1.6~C1.0) (C2.14~C2.8)	Real freq.	Error %
C3	130.81	122	20	131.15	0.26%	G4	392.0	41	58	390.24	-0.44%
D3	146.83	109	51	146.79	-0.03%	A4	440.0	36	1A	444.44	1.01%
E3	164.81	97	45	164.95	0.08%	B4	493.9	32	25	500.00	1.24%
F3	174.61	92	33	173.91	-0.40%	C5	523.2	31	4B	516.13	-1.36%
G3	195.99	82	27	195.12	-0.44%	D5	587.3	27	3B	592.59	0.90%
А3	220.00	73	21	219.18	-0.37%	E5	659.2	24	5C	666.67	1.13%
B3	246.94	65	44	246.15	-0.32%	F5	698.4	23	39	695.65	-0.40%
C4	261.62	61	49	262.30	0.26%	G5	784.0	20	4C	800.00	2.04%
D4	293.66	54	5A	296.30	0.90%	A5	880.0	18	32	888.89	1.01%
E4	329.62	49	5B	326.53	-0.94%	B5	987.7	16	4A	1000.00	1.24%
F4	349.22	46	5E	347.83	-0.40%	C6	1046.5	15	15	1066.67	1.93%

Music Table2:

Following is the music scale reference table for channel 1 (or channel 2) under Actual Clock=16KHz.

Note	ldeal freq.	N	LSFR (C1.6~C1.0) (C2.14~C2.8)	Real freq.	Error %	Note	Ideal freq.	N	LSFR (C1.6~C1.0) (C2.14~C2.8)	Real freq.	Error %
C2	65.41	122	20	65.57	0.26%	G3	195.99	41	58	195.12	-0.44%
D2	73.41	109	51	73.39	-0.03%	А3	220.00	36	1A	222.22	1.01%
E2	82.41	97	45	82.47	0.08%	В3	246.94	32	25	250.00	1.24%
F2	87.31	92	33	86.96	-0.40%	C4	261.62	31	4B	258.06	-1.36%
G2	98.00	82	27	97.56	-0.44%	D4	293.66	27	3B	296.30	0.90%
A2	110.00	73	21	109.59	-0.37%	E4	329.62	24	5C	333.33	1.13%
B2	123.47	65	44	123.08	-0.32%	F4	349.22	23	39	347.83	-0.40%
C3	130.81	61	49	131.15	0.26%	G4	391.99	20	4C	400.00	2.04%
D3	146.83	54	5A	148.15	0.90%	A4	439.99	18	32	444.44	1.01%
E3	164.81	49	5B	163.27	-0.94%	B4	493.87	16	4A	500.00	1.24%
F3	174.61	46	5E	173.91	-0.40%	C5	523.24	15	15	533.33	1.93%

Music Table3:

Following is the music scale reference table for channel 1 (or channel 2) under Actual Clock=8KHz.

Note	ldeal freq.	N	LSFR (C1.6~C1.0) (C2.14~C2.8)	Real freq.	Error %	Note	ldeal freq.	N	LSFR (C1.6~C1.0) (C2.14~C2.8)	Real freq.	Error %
C1	32.70	122	20	32.79	0.26%	G2	98.00	41	58	97.56	-0.44%
D1	36.71	109	51	36.70	-0.03%	A2	110.00	36	1A	111.11	1.01%
E1	41.20	97	45	41.24	0.08%	B2	123.47	32	25	125.00	1.24%
F1	43.65	92	33	43.48	-0.40%	C3	130.81	31	4B	129.03	-1.36%
G1	49.00	82	27	48.78	-0.44%	D3	146.83	27	3B	148.15	0.90%
A1	55.00	73	21	54.79	-0.37%	E3	164.81	24	5C	166.67	1.13%
B1	61.73	65	44	61.54	-0.32%	F3	174.61	23	39	173.91	-0.40%
C2	65.41	61	49	65.57	0.26%	G3	195.99	20	4C	200.00	2.04%
D2	73.41	54	5A	74.07	0.90%	А3	220.00	18	32	222.22	1.01%
E2	82.41	49	5B	81.63	-0.94%	B3	246.94	16	4A	250.00	1.24%
F2	87.31	46	5E	86.96	-0.40%	C4	261.62	15	15	266.67	1.93%

Music Table4:

Following is the music scale reference table for channel 1 (or channel 2) under Actual Clock=4KHz.

-											
Note	ldeal freq.	N	LSFR (C1.6~C1.0) (C2.14~C2.8)	Real freq.	Error %	Note	ldeal freq.	N	LSFR (C1.6~C1.0) (C2.14~C2.8)	Real freq.	Error %
C0	16.35	122	20	16.39	0.26%	G1	49.00	41	58	48.78	-0.44%
D0	18.35	109	51	18.35	-0.03%	A1	55.00	36	1A	55.56	1.01%
E0	20.60	97	45	20.62	0.08%	B1	61.73	32	25	62.50	1.24%
F0	21.83	92	33	21.74	-0.40%	C2	65.41	31	4B	64.52	-1.36%
G0	24.50	82	27	24.39	-0.44%	D2	73.41	27	3B	74.07	0.90%
A0	27.50	73	21	27.40	-0.37%	E2	82.41	24	5C	83.33	1.13%
В0	30.87	65	44	30.77	-0.32%	F2	87.31	23	39	86.96	-0.40%
C1	32.70	61	49	32.79	0.26%	G2	98.00	20	4C	100.00	2.04%
D1	36.71	54	5A	37.04	0.90%	A2	110.00	18	32	111.11	1.01%
E1	41.20	49	5B	40.82	-0.94%	B2	123.47	16	4A	125.00	1.24%
F1	43.65	46	5E	43.48	-0.40%	C3	130.81	15	15	133.33	1.93%

7. LCD

The LCD has 8 common signal pads, a controller, a LCD voltage generator, and 40 segment driver pads. The controller consists of display data RAM and a duty generator. LCD is 1/8 duty, and 1/4 bias. The LCD data RAM is a dual port RAM that automatically transfers data to segment. The LCD can be turned off with the internal LCDOFF register.

Address	Bit3	Bit2	Bit1	Bit0
\$300	SEG1	SEG1	SEG1	SEG1
\$301	SEG2	SEG2	SEG2	SEG2
\$302	SEG3	SEG3	SEG3	SEG3
\$303	SEG4	SEG4	SEG4	SEG4
\$304	SEG5	SEG5	SEG5	SEG5
\$305	SEG6	SEG6	SEG6	SEG6
\$306	SEG7	SEG7	SEG7	SEG7
\$307	SEG8	SEG8	SEG8	SEG8
\$308	SEG9	SEG9	SEG9	SEG9
\$309	SEG10	SEG10	SEG10	SEG10
\$30A	SEG11	SEG11	SEG11	SEG11
\$30B	SEG12	SEG12	SEG12	SEG12
\$30C	SEG13	SEG13	SEG13	SEG13
\$30D	SEG14	SEG14	SEG14	SEG14
\$30E	SEG15	SEG15	SEG15	SEG15
\$30F	SEG16	SEG16	SEG16	SEG16
\$310	SEG17	SEG17	SEG17	SEG17
\$311	SEG18	SEG18	SEG18	SEG18
\$312	SEG19	SEG19	SEG19	SEG19
\$313	SEG20	SEG20	SEG20	SEG20
\$314	SEG21	SEG21	SEG21	SEG21
\$315	SEG22	SEG22	SEG22	SEG22
\$316	SEG23	SEG23	SEG23	SEG23
\$317	SEG24	SEG24	SEG24	SEG24
\$318	SEG25	SEG25	SEG25	SEG25
\$319	SEG26	SEG26	SEG26	SEG26
\$31A	SEG27	SEG27	SEG27	SEG27
\$31B	SEG28	SEG28	SEG28	SEG28
\$31C	SEG29	SEG29	SEG29	SEG29
\$31D	SEG30	SEG30	SEG30	SEG30
\$31E	SEG31	SEG31	SEG31	SEG31
\$31F	SEG32	SEG32	SEG32	SEG32
\$320	SEG33	SEG33	SEG33	SEG33
\$321	SEG34	SEG34	SEG34	SEG34
\$322	SEG35	SEG35	SEG35	SEG35
\$323	SEG36	SEG36	SEG36	SEG36
\$324	SEG37	SEG37	SEG37	SEG37
\$325	SEG38	SEG38	SEG38	SEG38
\$326	SEG39	SEG39	SEG39	SEG39
\$327	SEG40	SEG40	SEG40	SEG40
Duty	COM4	COM3	COM2	COM1

LCD RAM Area Configuration (continued):

Address	Bit 3	Bit 2	Bit 1	Bit 0
\$328	SEG1	SEG1	SEG1	SEG1
\$329	SEG2	SEG2	SEG2	SEG2
\$32A	SEG3	SEG3	SEG3	SEG3
\$32B	SEG4	SEG4	SEG4	SEG4
\$32C	SEG5	SEG5	SEG5	SEG5
\$32D	SEG6	SEG6	SEG6	SEG6
\$32E	SEG7	SEG7	SEG7	SEG7
\$32F	SEG8	SEG8	SEG8	SEG8
\$330	SEG9	SEG9	SEG9	SEG9
\$331	SEG10	SEG10	SEG10	SEG10
\$332	SEG11	SEG11	SEG11	SEG11
\$333	SEG12	SEG12	SEG12	SEG12
\$334	SEG13	SEG13	SEG13	SEG13
\$335	SEG14	SEG14	SEG14	SEG14
\$336	SEG15	SEG15	SEG15	SEG15
\$337	SEG16	SEG16	SEG16	SEG16
\$338	SEG17	SEG17	SEG17	SEG17
\$339	SEG18	SEG18	SEG18	SEG18
\$33A	SEG19	SEG19	SEG19	SEG19
\$33B	SEG20	SEG20	SEG20	SEG20
\$33C	SEG21	SEG21	SEG21	SEG21
\$33D	SEG22	SEG22	SEG22	SEG22
\$33E	SEG23	SEG23	SEG23	SEG23
\$33F	SEG24	SEG24	SEG24	SEG24
\$340	SEG25	SEG25	SEG25	SEG25
\$341	SEG26	SEG26	SEG26	SEG26
\$342	SEG27	SEG27	SEG27	SEG27
\$343	SEG28	SEG28	SEG28	SEG28
\$344	SEG29	SEG29	SEG29	SEG29
\$345	SEG30	SEG30	SEG30	SEG30
\$346	SEG31	SEG31	SEG31	SEG31
\$347	SEG32	SEG32	SEG32	SEG32
\$348	SEG33	SEG33	SEG33	SEG33
\$349	SEG34	SEG34	SEG34	SEG34
\$34A	SEG35	SEG35	SEG35	SEG35
\$34B	SEG36	SEG36	SEG36	SEG36
\$34C	SEG37	SEG37	SEG37	SEG37
\$34D	SEG38	SEG38	SEG38	SEG38
\$34E	SEG39	SEG39	SEG39	SEG39
\$34F	SEG40	SEG40	SEG40	SEG40
Duty	COM8	COM7	COM6	COM5

(b) LCD Voltage Generator

LCD voltages V1, V2, V3 are obtained using resistor divider network. The LCD can be turned off by with the LCDOFF register.

(c) LCD Waveform

The output waveform of 1/8 duty and 1/4 bias is shown below.

8. Interrupt

Two interrupt sources are available on the NT6511:

- Timer0 interrupt (TMR0)
- Port falling edge detection interrupt (PB)
- (a) Interrupt Control Bits and Interrupt Service:
- Interrupt control flags are mapped on \$00 through \$01 of the system register. They can be accessed or tested by the program. These flags are cleared to 0 at initialization.

	Bit 3	Bit 2	Bit 1	Bit 0	Remarks
\$00	-	IET0	-	IEP	Interrupt enable flags
\$01	-	IRQT0	-	IRQP	Interrupt request flags

- Interrupt request begins when IRQx is set to 1 and IEx is 1. At this time, interrupt will activate and vector address will commence from the priority PLA corresponding to the interrupt source. When an interrupt occurs, the PC and CY flags will be saved in stack memory and jump to an interrupt service vector address. After interrupt occurs, all interrupt enable flags (IEx) are automatically reset to 0, so any interrupt is disabled. The IRQx, which caused interrupt, must be reset by software in the interrupt service routine. When IEx is set to 1 again, NT6511 can service multi-level interrupts.

(b) Vector Address and Interrupt Priority

Priority	Interrupt source
1 (Most)	RESET
2	Reserved
3	TMR0
4	Reserved
5 (Least)	РВ

9. System Clock and Oscillation Circuit

The system clock generator produces clock pulses supplied to the CPU and on-chip peripherals.

 Instruction cycle time 2 μs for 2 MHz clock

10. HALT or STOP

- After execution of HALT, NT6511 will enter HALT. In HALT, the CPU will stop operating, but the peripheral circuit (timer) will operate.
- After execution of STOP, NT6511 will enter STOP. In STOP, the entire chip (including oscillator) will stop operating, and the LCD automatically powers-off.
- In HALT, NT6511 will wake up if an interrupt occurs.
- In STOP, NT6511 will wake up if port interrupt occurs.

11. Warm-up Timer

The warm-up timer eliminates an initial oscillation instability in the following two cases:

- 1) power-on reset
- 2) Wake-up from STOP.

The warm-up time interval is 32 clock cycles.

12. System Reset

- Hardware reset input
- Warm-up timer for power-on reset

(a) Initial State

Hardware	After Power-on Reset
Program Counter	\$000
CY	Undefined
Data Memory	Undefined
System Register	Undefined
AC	Undefined
Timer Counter	Undefined
Timer Load Register	Undefined
Interrupt Enable Flags	0
Interrupt Request Flags	0
DPH, DPM, DPL	Undefined
TBR	Undefined
LCD Driver Output	active
PORT A	\$0
PORT B	\$F
Bank bit 2, 1, 0	\$0

13. Instruction Set

All instructions are one cycle and one word instructions. The characteristic is memory-oriented operation. Arithmetic and logical instruction

Accumulator Type

Mnemonic	Instruction Code	Function	Flag Change
ADC X(,B)	00000 0bbb xxx xxxx	$AC \leftarrow Mx + AC + CY$	CY
ADCM X(,B)	00000 1bbb xxx xxxx	$AC,Mx \leftarrow Mx + AC + CY$	CY
ADD X(,B)	00001 0bbb xxx xxxx	AC ← Mx + AC	CY
ADDM X(,B)	00001 1bbb xxx xxxx	$AC,Mx \leftarrow Mx + AC$	CY
SBC X(,B)	00010 0bbb xxx xxxx	$AC \leftarrow Mx + -AC + CY$	CY
SBCM X(,B)	00010 1bbb xxx xxxx	$AC,Mx \leftarrow Mx + -AC + CY$	CY
SUB X(,B)	00011 0bbb xxx xxxx	AC ← Mx + -AC + 1	CY
SUBM X(,B)	00011 1bbb xxx xxxx	$AC,Mx \leftarrow Mx + -AC +1$	CY
EOR X(,B)	00100 0bbb xxx xxxx	$AC \leftarrow Mx \oplus AC$	
EORM X(,B)	00100 1bbb xxx xxxx	$AC,\!Mx \leftarrow Mx \oplus AC$	
OR X(,B)	00101 0bbb xxx xxxx	$AC \leftarrow Mx \mid AC$	
ORM X(,B)	00101 1bbb xxx xxxx	$AC,Mx \leftarrow Mx \mid AC$	
AND X(,B)	00110 0bbb xxx xxxx	AC ← Mx & AC	
ANDM X(,B)	00110 1bbb xxx xxxx	AC,Mx ← Mx & AC	
SHR	11110 0000 000 0000	$0 \rightarrow AC[3]; AC[0] \rightarrow CY;$	CY
		AC shift right one bit	

Immediate Type

Mnemo	onic	Instruction Code	Function	Flag Change
ADI	X,I	01000 iiii xxx xxxx	$AC \qquad \leftarrow Mx + I$	CY
ADIM	X,I	01001 iiii xxx xxxx	$AC,Mx \leftarrow Mx + I$	CY
SBI	X,I	01010 iiii xxx xxxx	AC ← Mx + -l +1	CY
SBIM	X,I	01011 iiii xxx xxxx	AC,Mx ← Mx + -I + 1	CY
EORIM	X,I	01100 iiii xxx xxxx	$AC,Mx \leftarrow Mx \oplus I$	
ORIM	X,I	01101 iiii xxx xxxx	$AC,Mx \leftarrow Mx \mid I$	
ANDIM	X,I	01110 iiii xxx xxxx	AC,Mx ← Mx & I	

^{*} In the assembler ASM66 V1.0, EORIM mnemonic is EORI. However, EORI has the same operation identical with EORIM. Same for the ORIM with respect to ORI, and ANDIM with respect to ANDI.

Decimal Adjustment

Mnemonic	Instruction Code	Function	Flag Change
DAA X	11001 0110 xxx xxxx	AC; Mx Decimal adjustment for add.	CY
DAS X	11001 1010 xxx xxxx	AC; Mx Decimal adjustment for sub.	CY

Transfer Instruction

Mnemonic	Instruction Code	Function	Flag Change
LDA X(,B)	00111 0bbb xxx xxxx	$AC \leftarrow Mx$	
STA X(,B)	00111 1bbb xxx xxxx	$Mx \leftarrow AC$	
LDI X,I	01111 iiii xxx xxxx	$AC,Mx \leftarrow I$	

Control Instruction

Mnemonic	Instruction Code	Function	Flag Change
BAZ X	10010 xxxx xxx xxxx	$PC \leftarrow X \text{if AC=0}$	
BNZ X	10000 xxxx xxx xxxx	PC ← X if AC 0	
BC X	10011 xxxx xxx xxxx	PC ← X if CY=1	
BNC X	10001 xxxx xxx xxxx	PC ← X if CY 1	
BA0 X	10100 xxxx xxx xxxx	$PC \leftarrow X \text{ if } AC(0)=1$	
BA1 X	10101 xxxx xxx xxxx	$PC \leftarrow X \text{ if } AC(1)=1$	
BA2 X	10110 xxxx xxx xxxx	$PC \leftarrow X \text{if AC(2)=1}$	
BA3 X	10111 xxxx xxx xxxx	$PC \leftarrow X \text{ if } AC(3)=1$	
CALL X	11000 xxxx xxx xxxx	ST ← CY; PC +1	
		$PC \leftarrow X(Not \ including \ p)$	
RTNW H;L	11010 000h hhh IIII	$PC \leftarrow ST; TBR \leftarrow hhhh;$	
		AC← IIII	
RTNI	11010 1000 000 0000	CY;PC ← ST	CY
HALT	11011 0000 000 0000		
STOP	11011 1000 000 0000		
JMP X	1110p xxxx xxx xxxx	$PC \qquad \leftarrow X(Include \ p)$	
TJMP	11110 1111 111 1111	PC ← (PC11-PC8) (TBR) (A)	
NOP	11111 1111 111 1111	No Operation	

Where,

PC	Program counter	I	Immediate data		
AC	Accumulator		Logical exclusive OR		
-AC	Complement of accumulator	l	Logical OR		
CY	Carry flag	&	Logical AND		
Mx	Data memory	bbb	RAM bank=000		
р	ROM page =0				
ST	Stack	TBR	Table Branch Register		

Absolute Maximum Ratings*

DC Supply Voltage0.3Vto +7			
Input Voltage	0.3V to V_{DD} +0.3V		
Operating Ambient Temperature	10°C to +60°C		
Storage Temperature	55°C to +125°C		

*Comments

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to this device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied or intended. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.

DC Electrical Characteristics ($V_{DD} = 3.0V$, GND = 0V, $T_A = 25$ °C, $F_{osc} = 2$ MHz, unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit	Conditions
V_{DD}	Operating Voltage	2.4	3.0	3.4	V	
I _{OP}	Operating Current		0.1	0.19	mA	V _{DD} = 3.0V, no load
I _{SB}	Standby Current		0.7	1.2	μА	V_{DD} = 3.0V, OSC stop, all outputs unloaded
lı	Input Current		6	35	μΑ	$V_{DD} = 3.0V$
						V(input) = 3.0V
V _{IH}	Input High Voltage	V _{DD} -0.5		V _{DD} +0.3	V	
VIL	Input Low Voltage	-0.3		GND+0.5	V	
l _{oL}	Output Low Drive Current	1.8			mA	PORTA and PORTB, V _{oL} = 0.5V
l _{он}	Output High Drive Current	250			μΑ	PORTA, V _{OL} = V _{DD} -0.5V
I _{OH} I _{OL}	AOUT Output Current	1.2 1.2			mA mA	$V_{OUT} = V_{DD} - 0.6V$ $V_{OUT} = 0.5V$
R _{PU}	Pull-up Resistance		20	100	ΚΩ	PORTB

Application Circuit (for reference only):

AP1:

AP2:

Bonding Diagram

* Substrate connect to GND

		Substi	ale connect to G	אוט			
Pad No.	Designation	X	Y	Pad No.	Designation	X	unit: μm Y
1	SEG21	-770	935	33	PB0	660	-935
2	SEG20	-660	935	34	PA3	550	-935
3	SEG19	-550	935	35	PA2	440	-935
4	SEG18	-440	935	36	PA1	330	-935
5	SEG17	-330	935	37	PA0	220	-935
6	SEG16	-220	935	38	OP1	110	-935
7	SEG15	-110	935	39	V_{DD}	110	-840
8	SEG14	0	935	40	OSCI	0	-935
9	SEG13	110	935	41	OP0	-110	-935
10	SEG12	220	935	42	GND	-110	-840
11	SEG11	330	935	43	AOUT	-220	-935
12	SEG10	440	935	44	RESET	-330	-935
13	SEG9	550	935	45	TEST	-440	-935
14	SEG8	660	935	46	SEG40	- 55 0	-935 -935
15	SEG7	770	935	47	SEG39	-660	-935
16	SEG6	770	825	48	SEG38	-770	-935
17	SEG5	770	715	49	SEG37	-770	-825
18	SEG4	770	605	50	SEG36	-770	-715
19	SEG3	770	495	51	SEG35	-770	-605
20	SEG2	770	385	52	SEG34	-770	-495
21	SEG1	770	275	53	SEG33	-770	-385
22 23	COM8	770	165 55	54	SEG32	-770	-275
23 24	COM7	770	-55	55	SEG31	-770	-165
2 4 25	COM6 COM5	770 770	-55 -165	56	SEG30	-770	-55
26	COM4	770 770	-165 -275	57	SEG29	-770	55
27	COM3	770 770	-275 -385	58	SEG28	-770	165
28	COM2	770 770	-365 -495	59	SEG27	-770	275
29	COM2 COM1	770 770	-605	60	SEG26	-770	385
30	PB3	770 770	-715	61	SEG25	-770	495
31	PB2	770 770	-825	62	SEG24	-770	605
32	PB1	770 770	-935	63	SEG23	-770	715
02	, 5,	,,,	000	64	SEG22	-770	825

Ordering Information

Part No.	Package		
NT6511H-XX XXX	CHIP FORM		

Programming Note (for reference only):

- Execute HALT instruction frequently.
- Turn off PSG when it is not used.
- Reduce the frequency of system clock by enlarging the value of the external resistor that connects to the OSCI pin. But the
 lower frequency is, the poorer LCD performance is. It is recommended that LCD frame frequency must over 26 Hz, that is,
 system clock over 1.625 MHz. However, LCD panel operating frequency should meet the LCD frame frequency of
 NT6511. Pin option in the program for different system clock frequency might be the good choice for the first code that
 provides an alternative for different LCD panel performance.
- Since the variation of system clock is affected by the value of the external resistor that connects to OSCI pin, it is suggested to use the resistor with 3% precision.
- To get real time clock, one analog clock chip, UM3252A/62A, is used to generate a 2Hz pulse that is connected to the Port B of NT6511.
- The normal operating current of NT6511 for F_{OSC}=2MHz is about 100uA~80uA. If 80mAHr battery is used, 1000-hour (~42 days) lifetime can be reached easily.