Análisis para el dataset Caschool (Parte 3)

Joel Alejandro Zavala Prieto

Contents

Información de contacto	2
Modelando el dataset caschool	3
Descripción	3
Visualización	3
Propuesta de modelo	4
Ajuste por forma matricial	4
Medidas extras	5
Observaciones ajustadas	5
Residuales	5
Error Estándar de la regresión	5
Suma de los residuos al cuadrado	6
Suma explicada de cuadrados	6
Suma total de cuadrados	6
Coeficiente de determinación	6
Coeficiente de determinación ajustado	6
Inferencias a los parámetros obtenidos	7
Test de Shapiro-Wilk	7
Test de Breusch-Pagan	7
Matrix de varianza-covarianza homocedástica	7
Significancia para el intercepto	8
Significancia para el coeficiente de str	8
Significancia para el coeficiente de el_pct	8
Por linea de comando	9

Información de contacto

```
Mail: alejandro.zavala1001@gmail.com
Facebook: https://www.facebook.com/AlejandroZavala1001
Git: https://github.com/AlejandroZavala98

## Loading required package: zoo

## ## Attaching package: 'zoo'

## The following objects are masked from 'package:base': ##

## as.Date, as.Date.numeric
```

Modelando el dataset caschool

Descripción

En esta parte se hara un análisis del conjunto de datos "Caschool". Cuya descripción citare

"La base de datos caschool. R
Data contiene información de las calificaciones de estudiantes de puntaje de prueba de California

dist_code:	district Code;
Read_scr:	avg Reading Score;
$Math_scr:$	avg Math Score;
County:	county;
District:	District;
gr_span:	grade span of district;
$enrl_tot:$	total enrollment;
teachers:	number of teachers;
computer:	number of computers;
testscr:	avg test score (= $(read_scr+math_scr)/2$);
$comp_stu:$	computers per student (= computer/enrl_tot);
$expn_stu:$	expentitures per student (\$'s);
str:	NA
el_pct:	percent of English Learners;
Meal_pct:	Percent qualifying for reduced-price lunch;
cAlw_pct:	Percent qualifying for CalWorks;
avGinc:	district average income (in \$1000's);

Visualización

Se muestra a continuación las variables a tomar para el analisis:

Las calificaciones obtenidas en los exámenes (testscr) con la ratio estudiantes-maestros (str) y el porcentaje de estudiantes que estudian inglés (el_pct).

Mostrando las primeras 10 observaciones

$\operatorname{testscr}$	str	el_pct
690.80	17.88991	0.000000
661.20	21.52466	4.583334
643.60	18.69723	30.000002
647.70	17.35714	0.000000
640.85	18.67133	13.857677
605.55	21.40625	12.408759
606.75	19.50000	68.717949
609.00	20.89412	46.959461
612.50	19.94737	30.079157
612.65	20.80556	40.275921

Propuesta de modelo

Se propone el modelo

$$testscr_i = \beta_0 + \beta_1 str_i + \beta_2 elpct_i + \epsilon_i$$

Cuya función ajustada es:

$$tes\hat{t}scr_i = \hat{\beta_0} + \hat{\beta_1}str_i + \hat{\beta_2}elpct_i$$

Ajuste por forma matricial

```
Recordando el modelo Y = X\beta
```

La matrix X^tX

```
## [,1] [,2] [,3]
## [1,] 420.000 8248.979 6622.625
## [2,] 8248.979 163513.029 132790.993
## [3,] 6622.625 132790.993 244529.766
```

La matrix $(X^tX)^{-1}$

```
## [,1] [,2] [,3]
## [1,] 0.2625332419 -1.336368e-02 1.468819e-04
## [2,] -0.0133636794 6.911896e-04 -1.341804e-05
## [3,] 0.0001468819 -1.341804e-05 7.398080e-06
```

Para obtener finalmente

```
## [,1]
## [1,] 686.0322487
## [2,] -1.1012959
## [3,] -0.6497768
```

Que por linea de comando

```
##
## Call:
## lm(formula = testscr ~ str + el_pct, data = caschool)
##
## Coefficients:
## (Intercept) str el_pct
## 686.0322 -1.1013 -0.6498
```

Cuya función ajustada finalmente es:

$$testscr_i = 686.0322 - 1.1013str_i - 0.6498elpct_i$$

Medidas extras

Observaciones ajustadas

Las observaciones ajustadas de forma matricial son (mostrando primeros 5 observaciones):

Las observaciones ajustadas por linea de comando (mostrando primeras 5 observaciones):

Residuales

Los residuales de forma matricial son (mostrando primeros 5 observaciones):

Los residuales por linea de comando son (mostrando primeros 5 observaciones):

Error Estándar de la regresión

El error estándar de la regresión de forma matricial es:

El error estándar de la regresión por linea de comando es:

Suma de los residuos al cuadrado

SRC

Suma explicada de cuadrados

SEC

Suma total de cuadrados

STC

Coeficiente de determinación

De forma manual

Por linea de comando

[1] 0.4264314

Coeficiente de determinación ajustado

De forma manual

Por linea de comando

[1] 0.4236804

Inferencias a los parámetros obtenidos

Test de Shapiro-Wilk

```
##
## Shapiro-Wilk normality test
##
## data: ols_caschool$residuals
## W = 0.99634, p-value = 0.4515
```

Test de Breusch-Pagan

```
##
## studentized Breusch-Pagan test
##
## data: ols_caschool
## BP = 29.501, df = 2, p-value = 3.925e-07
```

Matrix de varianza-covarianza homocedástica

De forma matricial la matrix de varianza-covarianza homocedástica es:

```
## [,1] [,2] [,3]
## [1,] 54.927553 -2.795967 0.030731
## [2,] -2.795967 0.144612 -0.002807
## [3,] 0.030731 -0.002807 0.001548
```

Por linea la matrix de varianza-covarianza homocedástica es:

```
## (Intercept) str el_pct

## (Intercept) 54.92755274 -2.79596671 0.030730824

## str -2.79596671 0.14461160 -0.002807340

## el_pct 0.03073082 -0.00280734 0.001547836
```

Significancia para el intercepto

Sabemos que el parámetro estimado del intercepto es:

```
## [,1]
## [1,] 686.0322
```

De forma matricial el error estándar es:

```
## [1] 7.411312
```

Cuyo estadístico "T" es:

```
## [,1]
## [1,] 92.56555
```

Significancia para el coeficiente de str

Sabemos que el parámetro estimado del coeficiente de la variabñe str es:

```
## [,1]
## [1,] -1.101296
```

De forma matricial el error estándar es:

```
## [1] 0.3802783
```

Cuyo estadístico "T" es:

```
## [,1]
## [1,] -2.896026
```

Significancia para el coeficiente de el_pct

Sabemos que el parámetro estimado del coeficiente de la variable el_pct es:

De forma matricial el error estándar es:

```
## [1] 0.03934255
```

Cuyo estadístico "T" es:

Por linea de comando

```
##
## Call:
## lm(formula = testscr ~ str + el_pct, data = caschool)
## Residuals:
              1Q Median
##
      Min
                            3Q
## -48.845 -10.240 -0.308 9.815 43.461
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 686.03225 7.41131 92.566 < 2e-16 ***
             -1.10130 0.38028 -2.896 0.00398 **
## str
             -0.64978
                          0.03934 -16.516 < 2e-16 ***
## el_pct
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 14.46 on 417 degrees of freedom
## Multiple R-squared: 0.4264, Adjusted R-squared: 0.4237
## F-statistic: 155 on 2 and 417 DF, p-value: < 2.2e-16
```