APOSTOLOS MAVROGIANNAKIS CHARALAMBOS VARSAMIS

Fraud detection WITH MACHINE LEARNING

Why Machine Learning?

- SUPER FAST
- ACCURATE
- CHEAP

GRAPH ANALYSIS METRICS

- Pagerank: determine a rough estimate of how important the node is.
- Closeness Centrality: how close and central a node is to other nodes.
- **Eigenvector Centrality:** centrality for a node based on the centrality of its neighbors.

Important Terminologies

Confusion Matrices

ROC Curve & AUC score

Confusion Matrix

- Allows visualisation of the performance of an algorithm
- True Positives
- False Positives
- True Negatives
- False Negatives

ROC & AUC

ROC

- True Positive Rate against False Positive Rate
- Summary of Confusion Matrices for each threshold

AUC

Easy to compare ROC Curves

Supervised Learning & Unsupervised Learning

Supervised learning

- Random Forest
- Adaptive Boosting
- Logistic Regression

Create a bootstrap dataset

	rı.	\sim 11	n	\sim 1
\circ	ш	Чı		uі

FEATURE 1	FEATURE 2	FEATURE 3	FEATURE 4
YES	NO	YES	YES
NO	YES	YES	NO
YES	NO	YES	NO
NO	YES	NO	YES

Bootstrap

FEATURE 1	FEATURE 2	FEATURE 3	FEATURE 4
YES	NO	YES	YES
NO	YES	YES	NO
YES	NO	YES	NO
YES	NO	YES	NO

Create Decision Tree with random columns

• Create Multiple Decision Trees

• Take each row and run through the Decision Trees we created

Bootstrap Dataset

FEATURE	FEATURE	FEATURE	FEATURE	FRAUD
1	2	3	4	
YES	NO	YES	YES	YES

FRAUD			
YES	NO		
3	1		

 To evaluate Random Forest we need to calculate an Error over Out-of-Bag samples

INCORRECT

Out-of-Bag Dataset

FEATURE 1	FEATURE 2	FEATURE 3	FEATURE 4	FRAUD
NO	YES	NO	YES	NO
YES	YES	NO	YES	YES

CORRECT

of incorrectly classified OOB-samples

Out-of-Bag Error =

of OOB-samples

Adaptive Boosting

Random Forest

Logistic Regression

Unsupervised Learning

- K-Means Clustering
- Isolation Forest

Why Unsupervised Learning?

K-Means Clustering

K-means is a centroid-based algorithm.

- 1. Choose the number of clusters k
- 2. Select k random points from the data as centroids
- 3. Assign all the points to the closest cluster centroid
- 4. Recompute the centroids of newly formed clusters
- 5. Repeat steps 3 and 4

Isolation Forest

- Isolation forest is a machine learning algorithm for anomaly detection.
- Isolation Forest is based on the Decision Tree algorithm
- How does it detect anomalies?
- $F(x) = P(Anomaly' \mid G(x))$

Isolation Forest

Principal Component Analysis

PCA is a dimensionality reduction Algorithm

It helps with reducing the dimensions of large datasets

Which makes visualizations and analyzations easier

K-Means Clustering

Isolation Forest

Without PCA

With PCA

Isolation Forest

Without PCA

With PCA

ROC Curve

Isolation Forest

K-Means

Questions?