Disclaimer: STA260 covers extensive material. Tutorials serve as additional aids, but they cannot cover every question type.

Question 1 (7.20 from the textbook)

- (a) If U has a χ^2 distribution with v degrees of freedom, find $\mathbb{E}(U)$ and $\mathbb{V}(U)$.
- (b) Using the results of Theorem 7.3, find $\mathbb{E}(S^2)$ and $\mathbb{V}(S^2)$ when $Y_1,Y_2,...,Y_n$ is a random sample from a normal distribution with mean μ and variance σ^2 . Note that S is defined as: $S^2 = \frac{\sum_{i=1}^n (Y_1 \bar{Y})^2}{1}$

(a) By the fact of Chi-squared distribution. $Q \sim \chi^2_{(n)}$

E(Q)=n & Var(Q)=2n (an derive from Gamma distribution)

Then for Un X2(V), E(U)=N & Var(U)=2N

(b) From Theorem 7.3

Let Y1, Y2... In be a roundom sample from a nomal distribution with mean a and variance 62.

Then
$$\frac{(n-1)S^2}{B^2} = \frac{1}{G^2} \sum_{i=1}^{n} (Y_i - \overline{Y})^2$$
 is $\chi^2(n-1)$.

Then
$$E\left(\frac{(n-1)S^2}{6^2}\right) = n-1 \Rightarrow \frac{n-1}{6^2} E(S^2) = n-1$$

 $\Rightarrow E(S^2) = 6^2$

And
$$Var\left(\frac{(n-1)S^2}{6^2}\right) = 2(n-1) \Rightarrow \frac{(n-1)^2}{(6^2)^2} Var(S^2) = 2(n-1)$$

$$\Rightarrow Var(S^2) = \frac{26^4}{n-1}$$