DATA LINK LAYER MAC SUB LAYER

DATA LINK LAYER- SUB LAYERS

Data link layer divided into two functionality-oriented sub layers

Responsible framing and MAC address and Multiple Access Control

MEDIA ACCESS CONTROL SUB LAYER

MAC LAYER

- Data link Layer Deals with transmitting bits from one end to other end of a point-to-point Link
- But how we do this in broadcast networks (More than two stations share a common communication link)
- Key issue is who is going to use the channel when there is a competition for it
- The protocol which determine who is going to transmit next, on multi access channel belong to a sub layer of the DLL
- It is called MAC layer
- It is the bottom part of DLL

MEDIUM SHEARING TECHNIQUE

RANDOM ACCESS TECHNIQUE: PURE ALOHA

Pure ALOHA Protocol Description

- All frames from any station are of fixed length (L bits)
- Stations transmit at equal transmission time (all stations produce frames with equal frame lengths).
- A station that has data can transmit at any time
- After transmitting a frame, the sender waits for an acknowledgment for an amount of time (time out) equal to the maximum round-trip propagation delay = 2* t_{prop}(see next slide)
- If no ACK was received, sender assumes that the frame or ACK has been destroyed and resends that frame after it waits for a random amount of time
- If station fails to receive an ACK after repeated transmissions, it gives up

MAXIMUM PROPAGATION DELAY

• Maximum propagation delay(t_{prop}): time it takes for a bit of a frame to travel between the <u>two most widely</u> separated stations.

RANDOM ACCESS TECHNIQUE: PURE ALOHA

Procedure for ALOHA protocol

FRAMES IN A PURE ALOHA NETWORK

PURE ALOHA PROTOCOL

- If the frame transmission time is T_{fr} sec, then the vulnerable time is $= 2 T_{fr}$ sec.
- This means no station should send during the $T_{\rm fr}$ -sec before this station starts transmission and no station should start sending during the Tfr -sec period that the current station is sending.

PURE ALOHA PROTOCOL

- The throughput for pure ALOHA is $S = G \times e^{-2G}$.
- The maximum throughput $S_{max} = 0.184$ when G = (0.5).

Where

- T_{fr} = Average transmission time for a frame
- G= Average number of frames generated by the system (all stations) during one frame transmission time($T_{\rm fr}$)
- Maximum throughput of pure aloha ($S_{max} = 0.184$) occurs at G=0.5 (which correspond to total arrival rate of "one frame per vulnerable period")
- $S_{max} = 0.184 => max$ pure aloha throughput =18% of channel capacity

Note

The throughput (S) for pure ALOHA is

$$S = G \times e^{-2G}$$

The maximum throughput

 $S_{\text{max}} = 0.184 \text{ when G} = (1/2).$

SLOTTED ALOHA

- Pure ALOHA vulnerable time = $2 \times T_{\rm fr}$ because there is no rule that defines when the station can send
- Slotted ALOHA was invented to improve the efficiency of pure ALOHA

SLOTTED ALOHA

- Throughput for slotted ALOHA is $S = G \times e^{-G}$.
- The maximum throughput $S_{max} = 0.368$ when G = 1(which correspond to total arrival rate of "one frame per vulnerable period")
- Slotted ALOHA vulnerable time = T_{fr}

The throughput for slotted ALOHA is

$$S = G \times e^{-G}$$

The maximum throughput

 $S_{max} = 0.368$ when G = 1.

Efficiency of Aloha

CARRIER SENSE MULTIPLE ACCESS (CSMA)

- To improve performance, we should avoid transmissions that are definite to cause collisions
- Based on the fact that in LAN propagation time is **very small**
- If a frame was sent by a station, All stations knows immediately, so they can **wait before start sending**
- A station with frames to be sent, should sense the medium for the presence of another transmission (carrier) before it starts its own transmission
- This can **reduce** the possibility of collision but it *cannot eliminate* it.
- Collision can only happen when more than one station begin transmitting within a short time (the propagation time period)

CARRIER SENSE MULTIPLE ACCESS (CSMA)

Carrier Sense Multiple Access (CSMA)

- Vulnerable time for CSMA is the maximum propagation time
- The longer the propagation delay, the worse the performance of the protocol because of the above case.

Types of CSMA Protocols

Different CSMA protocols that determine:

- What a station should do when the medium is **idle**?
- What a station should do when the medium is busy?
 - 1 Non-Persistent CSMA
 - 2.1-Persistent CSMA
 - 3.p-Persistent CSMA

Nonpersistent CSMA

- A station with frames to be sent, should sense the medium
 - 1. If medium is idle, transmit; otherwise, go to 2
 - If medium is busy, (back off) wait a random amount of time and repeat 1
- Non-persistent Stations are deferential (respect others)
- Performance:
 - Random delays reduces probability of collisions because two stations with data to be transmitted will wait for different amount of times.
 - Bandwidth is wasted if waiting time (back off) is large because medium will remain idle following end of transmission even if one or more stations have frames to send

1-PERSISTENT CSMA

- To avoid idle channel time, 1-persistent protocol used
- Station wishing to transmit listens to the medium:
 - 1. If medium idle, **transmit** immediately;
 - 2. If medium busy, **continuously listen** until medium becomes idle; then transmit immediately with probability 1
- Performance
 - 1-persistent stations are selfish
 - If two or more stations becomes ready at the same time, **collision guaranteed**

P-PERSISTENT CSMA

- Time is divided to slots where each Time unit (slot) typically equals
 maximum propagation delay
- Station wishing to transmit listens to the medium:
- 1. If medium idle,
 - transmit with probability (p), OR
 - wait **one time unit (slot)** with probability (1 p), then repeat 1.
- 2. If medium busy, **continuously listen until idle** and repeat step 1
- 3. Performance
 - Reduces the possibility of collisions like non persistent
 - Reduces channel idle time like 1-persistent

FLOW DIAGRAM FOR THREE PERSISTENCE METHODS

a. 1-persistent

b. Nonpersistent

c. p-persistent

CSMA/CD (COLLISION DETECTION)

- CSMA (all previous methods) has an inefficiency:
 - If a collision has occurred, the channel is unstable until colliding packets have been fully transmitted
- CSMA/CD (Carrier Sense Multiple Access with Collision Detection) overcomes this as follows:
 - While transmitting, the sender is **listening to** medium for collisions.
 - Sender stops transmission if collision has occurred reducing channel wastage.

HOW DOES A NODE DETECT COLLISION?

Transceiver: A node monitors the media while transmitting. If the observed power is more than transmitted power of its own signal, it means collision occurred

Hub: if input occurs simultaneously on two ports, it indicates a collision. Hub sends a collision presence signal on all ports.

CSMA/CD PROTOCOL

- Use one of the CSMA persistence algorithm
 (non-persistent, 1-persistent, p-persistent) for transmission
- If a collision is detected by a station during its transmission then it should do the following:
 - Abort transmission and
 - Transmit a *jam signal* (48 bit) to notify other stations of collision so that they will **discard the** transmitted frame
 - After sending the *jam signal*, back off (wait) for a *random* amount of time, then Transmit the frame again

CSMA/CD

- *Question:* How long does it take to detect a collision?
- Answer: In the worst case, twice the maximum propagation delay of the medium

 Note: a = maximum propagation

delay A begins transmission To+a-x B begins transmission To+a B detect collision To+2a A detects a collision

28

CSMA/CD

- Restrictions of CSMA / CD:
 - Packet transmission time should be at least as long as the time needed to detect a collision (2 * maximum propagation delay + jam sequence transmission time)

Packet **transmission time > (2***Maximum propagation delay + Jam sequence transmission time)

- To ensure that packet transmit with out collision, a host must be able to detect a collision before it finishes transmitting a packet
- In other words, there is a minimum length packet for CSMA/CD networks

SIMPLIFIED ALGORITHM OF CSMA/CD

DOES SWITCHED NETWORK NEED CSMA/CD?

FRAMING

- Character Count
- Flag bytes with byte stuffing
- Flag bytes with bit stuffing

FRAMING WITH CHARACTER COUNT

A character stream. (a) Without errors.

(b) With one error.

PROBLEM WITH FRAMING WITH CHARACTER COUNT

- What if the count is garbled
- Even if with checksum, the receiver knows that the frame is bad there is no way to tell where the next frame starts.
- Asking for retransmission doesn't help either because the start of the retransmitted frame is not known
- No longer used independently

FRAMING WITH BYTE STUFFING

PROBLEM IN FRAMING WITH BYTE STUFFING

- A major disadvantage of using this framing method is that it is closely tied to the use of 8-bit characters
- Not all character codes use 8-bit characters
- Example. UNICODE uses 16-bit characters
- Can't handle heterogeneous environment

FRAMING WITH BIT STUFFING

- This method allows character codes with an arbitrary number of bits per character
- Each frame begins and ends with a special bit pattern, 011111110 (a flag byte).
- Sender's data link layer encounters five consecutive 1s in the data, it automatically stuffs a 0 bit into the outgoing bit stream
- When the receiver sees five consecutive incoming 1 bits, followed by a 0 bit, it automatically destuffs (deletes) the 0 bit
 - (a) 011011111111111111110010
 - (b) 01101111101111101010 Stuffed bits
 - (c) 01101111111111111110010 (a) The original data.
 - (b) The data as they appear on the line.
 - (c) The data as they are stored in receiver's memory after destuffing.

PROBLEMS WITH BIT STUFFING

- This method only applicable to networks in which the encoding on the physical medium contains some redundancy
- Example, some LANs encode 1 bit of data by using 2 physical voltages. Normally, a 1 bit is a high-low pair and a 0 bit is a low-high pair
- Transition in the middle, making it easy for the receiver to locate the bit boundaries.