(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-9563

(43)公開日 平成8年(1996)1月12日

(51) Int.Cl.6

識別記号

FΙ

技術表示箇所

H 0 2 J 7/04

H01M 10/44

L

庁内整理番号

審査請求 未請求 請求項の数2 OL (全 5 頁)

(21)出願番号

特願平6-134281

(22)出願日

平成6年(1994)6月16日

(71)出願人 000003539

東芝電池株式会社

東京都品川区南品川3丁目4番10号

(72)発明者 松倉 国男

東京都品川区南品川3丁目4番10号 東芝

電池株式会社内

(72)発明者 相沢 幸雄

東京都品川区南品川3丁目4番10号 東芝

電池株式会社内

(74)代理人 弁理士 須山 佐一

(54) 【発明の名称】 二次電池の充電方法および二次電池の充電装置

(57)【要約】

(修正有)

【目的】 二次電池に対して、容易かつ確実に、満充電 状態の充電を達成し得る二次電池の充電方法および充電 装置を提供する。

【構成】 被充電電池2の負の電位差および被充電電池 の温度微分値が、予め選択・設定した負の電位差および 温度微分値に到達したときを充電の停止もしくは終了の 時点とする。充電装置は、被充電電池2の定電流による 充電電圧の負の電位差を検出する電圧検出回路1と、前 記被充電電池2の定電流充電に伴なう単位時間当たりの 電池温度の変化(温度微分値)を検出する温度検出回路 3と、前記電圧検出回路1で検出した負の電位差および 温度検出回路3で検出した温度微分値を、予め設定・内 蔵されている負の電位差および温度微分値とそれぞれ対 比して、充電スイッチ6を制御する充電制御回路5を有 する。

10

【特許請求の範囲】

二次電池に定電流で充電し、その充電進 【請求項1】 行に伴う被充電電池の負の電位差および単位時間当たり の温度変化(温度微分値)により満充電状態を検知し て、充電の停止ないし終了する二次電池の充電方法であ って、

前記被充電電池の負の電位差および被充電電池の温度微 分値が、予め選択・設定した負の電位差および温度微分 値に到達したときを充電の停止もしくは終了の時点とす ることを特徴とする二次電池の充電方法。

【請求項2】 被充電電池の定電流による充電電圧の負 の電位差を検出する電圧検出回路と、

前記被充電電池の定電流充電に伴なう単位時間当たりの 電池温度の変化(温度微分値)を検出する温度検出回路

前記電圧検出回路で検出した負の電位差および温度検出 回路で検出した温度微分値を、予め設定・内蔵されてい る負の電位差および温度微分値とそれぞれ対比して、充 電スイッチを制御する充電制御回路とを具備して成ると とを特徴とする二次電池の充電装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は二次電池の充電方法およ び充電装置に係り、さらに詳しくは正常な充電を確実に 実施し得る二次電池の充電方法および充電装置に関す る。

[0002]

【従来の技術】ニッケルー水素二次電池、あるいはニッ ケルーカドミウム二次電池などに代表される二次電池 は、たとえば携帯用電話機や携帯型撮像機など各種の機 30 器システムの作動電源として、広く実用化されている。 つまり、この種の二次電池は、いわゆる充電操作による 電力の確保もしくは貯蔵が可能なこと、また、前記確保 もしくは貯蔵した電力を電源として負荷の駆動(放電) の繰り返し動作が可能なことから、半永久的な電源とし て、各種の機器システムに組み込まれたりして実用され ている。

【0003】ところで、二次電池はいずれの場合も、前 記したように充電および放電が主要な機能であり、また 安全性の点から、充電の終止電圧(満充電状態)、放電 40 の終止電圧をそれぞれ限界とし、この限界範囲内の電圧 で充電や放電を行っている。そして、前記二次電池の定 電流充電においては、充電効率が電池の温度(充電温 度)に依存しており、高温の場合(たとえば45°C程度以 上)、酸素発生の増大を伴い充電効率が低減し、結果的 に電池寿命(放電作用)の低下を招来する。したがっ て、充電時の被充電電池の温度が45℃程度を超えたと き、充電を停止するという手法が採られている。

【0004】また、前記電池温度の変化による満充電状 態(充電終止)の判定を、被充電電池の充電電圧の負の 50 充電の停止ないし終了する二次電池の充電方法であっ

電位差検出およびタイマーの併用で行うことも知られて いる。つまり、定電流充電されている二次電池におい

て、充電の進行に伴なう充電電圧の急上昇傾向をある一 定の時間との関連で捉えることによって、より妥当な満 充電状態 (充電終止) の判定を行っている。

【0005】図5および図6は、充電電圧の負の電位差 検出およびタイマーの併用で、充電終止の判定を行う原 理を説明するためのである。すなわち、二次電池の定電 流充電においては、充電時間に伴なって図5に概略の傾 向を示すように、充電電圧(曲線A)が変化する。そし て、充電開始からまもなく、充電電圧は急激な変化を示 し、その後、充電電圧においては負の電位差 -△Ⅴ1 を を示して、通常の充電状態に入ったことが確認される。 との通常な充電の進行に伴なって、充電電圧は定常的に 保たれるが再び急激な変化を呈する。つまり、満充電状 態に近付くと、充電電圧においては負の電位差 -△V, を示す。図6は、前記満充電状態に近い時点における充 電電圧の急激な変化状態を示したものである。そして、 との時点では、充電電圧の負の電位差 -△V, を一定の 20 時間内での推移で捉えて、充電の終止としている。

[0006]

【発明が解決しようとする課題】しかしながら、二次電 池に対する定電流充電において、充電終止の判定に、前 記負の電位差検出およびタイマーを併用する方式を採っ た場合、実用上次のような問題点がある。すなわち、定 電流充電での進行に伴って、被充電電池が満充電状態に 近付くと、前記図5および図6に図示したごとく、充電 電圧は負の電位差-△V、が検出される。しかし、この 負の電位差 -△V, は比較的小さく、またタイマーを併 用しているとはいえ、満充電状態(充電終止)を精度よ く検出・把握し得ないので、実際的に正常な充電を行い 得ない。この点を、さらに詳述すると、前記充電電圧に おける負の電位差 $-\triangle V$ 、検出は、その電位差 $-\triangle V$ 、 変化が比較的微小で、かつ変化がなだらかであるため、 厳密な意味での満充電状態(充電終止)を検出すること が困難で、満充電状態に至らずに充電を終止したり、あ るいは逆に過充電状態化したりする恐れがある。そし て、とのような、充電未満の状態での放電は、結果的に 過放電状態に至らしめるので、電池の寿命低下を招来す ることになり、また過充電状態化は、電池の破損・損傷・ などを発生する。 本発明は上記事情に対処してなされ たもので、二次電池に対して、容易かつ確実に、満充電 状態の充電を達成し得る二次電池の充電方法および充電 装置の提供を目的とする。

[0007]

【課題を解決するための手段】本発明に係る二次電池の 充電方法は、二次電池に定電流で充電し、その充電進行 に伴う被充電電池の負の電位差および単位時間当たりの 温度変化(温度微分値)により満充電状態を検知して、

2

て、前記被充電電池の負の電位差および被充電電池の温 度微分値が、予め選択・設定した負の電位差および温度 微分値に到達したときを充電の停止もしくは終了の時点 とすることを特徴とする。また、本発明に係る二次電池 の充電装置は、被充電電池の定電流による充電電圧の負 の電位差を検出する電圧検出回路と、前記被充電電池の

定電流充電に伴なう単位時間当たりの電池温度の変化 (温度微分値)を検出する温度検出回路と、前記電圧検 出回路で検出した負の電位差および温度検出回路で検出 した温度微分値を、予め設定・内蔵されている負の電位 10 差および温度微分値とそれぞれ対比して、充電スイッチ を制御する充電制御回路とを具備して成ることを特徴と する。 本発明は、二次電池の定電流充電において、図 1 および図2 に模式的に示すごとく、満充電状態に到達 すると、被充電電池の充電電圧が負の電位差を呈するば かりでなく、被充電電池の充電単位時間当たりの温度変 化(温度微分値)も大きくなり、これら負の電位差およ び温度微分値から、定電流充電における満充電状態を的 確に検出し得ることに着目してなされたものである。す なわち、図1に概略の傾向を示すように、二次電池の定 20 電流充電においては、充電時間に伴なって充電電圧(曲 線A)および電池温度(曲線B)が変化する。そして、 充電開始からまもなく、充電電圧および電池温度は急激 な変化を示し、その後、充電電圧においては負の電位差 $-\Delta V_1$ を、また電池温度においても温度微分値 Δt_1 を示して、通常の充電状態に入ったことが確認される。 この通常な充電の進行に伴なって、充電電圧は定常的に 保たれ、また電池温度は徐々に温度上昇するが、再び急 激な変化を呈する。つまり、満充電状態に近付くと、充 電電圧においては負の電位差 - △V, を、また電池温度 30 においては比較的大きい温度微分値△t, をそれぞれ示 す。図2は、前記満充電状態に近い時点における充電電 圧および電池温度の急激な変化状態を示したものであ る。そして、この時点では、充電電圧の負の電位差 -△ Ⅴ、に対して、温度微分値△t、が比較的大きいので、 この負の電位差 -△V, および温度微分値△t, の相関 関係から満充電状態を把握すれば、容易かつ正確に満充 電状態の点で、充電停止を行うことが可能となる。つま り、充電電圧の負の電位差 - △V, 比べて、より明確に その変化が分かり易い温度微分値△t, を加え、両者を 相関させて基準とすることにより、正確な満充電状態の 検出を可能としたものである。

【0008】なお、本発明においては、充電用の電力源 として、商用の交流電源を適切な電圧を持った直流に変 換したものが使用されるが、その他に、たとえば燃料電 池からなる電源を使用してもよいし、あるいはガソリン エンジンないしはディーゼルエンジンなどから発電され る電力を用いてもよい。

[0009]

電電圧の負の電位差および充電温度が、満充電状態直前 で、急激に変化することを利用し、その負の電位差およ び温度変化を、充電電圧微分および温度微分の形でそれ ぞれ把え、かつ充電電圧微分(負の電位差)傾向と、温 度微分値の増大傾向(もしくは増大勾配)を目安とし て、定電流充電の続行や停止(終了)の判定がなされ る。つまり、負の電位差および温度微分値の併用にによ って満充電状態を、より高精度に検出・把握し得るの で、二次電池の長寿命化も図り得ることになる。

【0010】また、本発明に係る充電装置の場合は、充 電電圧の負の電位差を検出する電圧検出回路、温度微分 値を検出する温度検出回路、および充電スイッチを制御 する充電制御回路とによって、前記負の電位差および温 度微分値をそれぞれ検出し、予め設定・内蔵されている 基準値としての負の電位差および温度微分値とそれぞれ 対比して、充電の続行もしくは充電停止(充電終了)が 自動的に行われる。つまり、前記本発明に係る充電方法と の作用・効果が、煩雑な操作など要せずに、自動的に達 成し得るととになる。

[0011]

【実施例】以下、図3および図4を参照して本発明の実 施例を説明する。

【0012】先ず図3は、本発明に係る二次電池の充電 装置の要部構成例を示すブロック図であり、1は被充電 電池2、たとえばニッケルー水素電池を定電流充電して いるとき、その充電電圧の負の電位差を検出する電圧検 出回路、3は前記被充電電池2の定電流充電に伴なう単 位時間当たりの電池温度の変化(温度微分値)を検出す る温度検出回路である。ここで、電圧検出回路1は、定 電流充電する被充電電池2の充電入力4側に配置され、 定電流充電される被充電電池2の充電電圧を逐次検出す るもので、充電進行時の充電電圧は勿論のこと、満充電 状態の負の電位差も検出する機能を備えている。

【0013】また、温度検出回路3は、前記定電流充電 の進行に伴う被充電電池2の温度上昇・温度変化を、被 充電電池2に近接して配置された温度検出素子3aによっ て検出し、かつ温度微分値を算出・検出する機能を備え ている。さらに、5は前記電圧検出回路1および温度検 出回路3に接続し、電圧検出回路1で検出した負の電位 差および温度検出回路3で検出した温度微分値を、予め 設定・内蔵してある負の電位差および温度微分値とそれ ぞれ対比し、前記設定値の範囲にあるか否かで、充電ス イッチ6の開閉(on,off)を制御する充電制御回路であ る。

【0014】この充電制御回路5は、前記電圧検出回路 1で電圧異常が、また温度検出回路3で温度異常が検出 された場合は、充電スイッチ6を制御して定電流充電を 中止するとともに、電圧検出回路1で検出された充電電 圧の負の電位差 -△V, および温度検出回路3で検出 【作用】本発明に係る充電方法おいては、二次電池の充 50 された温度微分値△ t , が、予め設定・内蔵させてある

5

)

負の電位差範囲内にあるか否か、および温度微分値範囲内にあるか否かを対比し、前記定電流充電の続行もしくは停止を判定して、充電スイッチ6を開閉・制御を行うように機能する。

【0015】次に、前記充電装置における二次電池の充電助作を、図4のフローチヤートを参照して説明する。【0016】先ず、被充電電池2の満充電状態の充電電圧の負の電位差、および温度微分値の範囲をそれぞれ設定する一方、被充電電池2(たとえばニッケルー水素電池)をセットしてから、充電スイッチ6をonにして、定10電流充電を開始する。この定電流充電過程(充電進行中)で、被充電電池2の充電電圧および被充電電池2の温度を、電圧検出回路1および温度検出回路3にてそれぞれ検出する。そして、これらの検出操作において、電圧異常が認められたときは、充電スイッチ6をoffとして充電を中止するが、電圧異常が認められないときは、さらに温度異常の有無をみて、温度異常が認められないときは、充電スイッチ6をoffとして充電を中止し、温度異常が認められないときは充電を続行する。

【0017】この定電流充電がさらに進行して、前記電 20 圧検出回路1 および温度検出回路3 にて、それぞれ充電電圧の負の電位差、増大化した温度微分値が検出される時点では、これら負の電位差。温度微分値が、前記予め設定した負の電位差の範囲内か否か、温度微分値の範囲内か否かが、充電制御回路5 で比較・判定される。とこで、負の電位差 -△V,が、前記設定値を超えているときは温度微分値△t,が設定値の範囲を超えている否かが比較・判定されて、両者がともに超えている場合は、満充電状態に到達しているので充電スイッチ6が offされ、定電流充電が終了する。しかし、負の電位差 -△V 30,が、前記設定値を超えていないとき、もしくは負の電位差 -△V,は設定値を超えていても温度微分値△t,が設定値の範囲を超えていない場合は、前記定電流充電の操作が満充電状態に到達するまで続行される。

【0018】とうして、所要の被充電電池2について、 満充電状態の充電を行った後、被充電電池2を取り外 し、要すれば新たな被充電電池2を装着して、前記充電 操作を繰り返すことにより、常に正常な充電を行うこと が可能である。

【0019】なお、上記ではニッケル-水素電池に対す 40 る定電流充電について例示したが、本発明はこの例示に 限定されるものでなく、本発明の趣旨を逸脱しない範囲

でいろいろの変形を採り得る。たとえば、対象となる二次電池は、ニッケルーカドミウム二次電池などの場合も 同様に適用し、同様な作用効果を得ることが可能であ る。

[0020]

【発明の効果】以上実施例の説明などから分かるように、本発明によれば、被充電用の二次電池に対する定電流充電の実施において、被充電用の二次電池の充電に伴う満充電状態に近い時点(満充電直前)での、充電電圧の負の電位差を一つの目安としながら、一方では電池温度変化を温度微分の形で把え、かつこの温度微分値の増大化をも目安とし、これら両者の値が予め設定した値に到達した時点(もしくは超えた時点)を充電停止(終了)する方式を採っている。つまり、二次電池に対する満充電(もしくは満充電により近接した充電)の時点が、二つのファクターによって指示される。したがって、被充電電池に対する充電不足や過充電など確実に回避され、常時、正常な定電流充電を行い得ることになるので、前記充電不足(過放電)や過充電の問題も全面的になくなり、二次電池の超寿命化が図られることになる。

【図面の簡単な説明】

【図1】二次電池の定電流充電における充電経過時間と 充電電圧および電池温度との関係例を模式的に示す特性 図。

【図2】二次電池の定電流充電における満充電状態時の 充電電圧の負の電位差および電池温度変化(温度微分 値)例を模式的に示す特性図。

【図3】本発明に係る充電装置の構成例を示すブロック 図

【図4】本発明に係る充電装置による二次電池の定電流 充電方法の実施態様例を説明するためのフローチャート

【図5】二次電池の定電流充電における充電経過時間と 電池温度との関係例を模式的に示す特性図。

【図6】二次電池の定電流充電における満充電状態時の 電池温度変化(温度微分値)例を模式的に示す特性図。 【符号の説明】

1…電圧検出回路 2…被充電電池 3…温度検出0 回路 3a…温度検出素子 4…充電入力 5…充電制御回路 6…充電スイッチ

REST AVAILABLE COPY