Protocolo de Comunicação UCS Bus

Detalhes do Protocolo

- Protocolo de comunicação proprietário
- Duplex
- Comunicação:
 - Mestre Escravo
 - Escravo Escravo
- Topologia de Rede:
 - Barramento

Interface

RS485

Protocolo de Comunicação

ST	Tam Pacote	End Destino	End Origem	Comando	Dados	BCC
			9			

Onde:

- STX Comando de início de envio do pacote, da tabela ASCII é o número 0x02
- Tam Pacote Número de Bytes do pacote
- End. Destino Endereço do elemento da rede que irá receber o pacote
- End. Origem Endereço do elemento da rede que originou o envio do pacote
- **Comando** Comando implementado no protocolo, que o receptor deverá tratar, no caso possuímos 6 comandos:
 - o **0x1**: Leitura do status do botão 1, 0 quando não estiver acionado e 1 quando estiver acionado
 - o **0x2**: Leitura do status do botão 2, 0 quando não estiver acionado e 1 quando estiver acionado
 - o **0x3**: Escrita no Led 1, 0 para desligar o LED e 1 para ligar o LED
 - o **0x4**: Escrita no Led 2, 0 para desligar o LED e 1 para ligar o LED
 - 0x5: Pisca Led1, primeiro byte o número de piscadas e o segundo byte o tempo de cada piscada
 - 0x6: Pisca Led2, primeiro byte o número de piscadas e o segundo byte o tempo de cada piscada

o **0x7**: Escreve uma mensagem do display, onde o primeiro dado é a posição do display (0x80 para a primeira posição) e os demais dados a mensagem (em ASCII)

0

- Dados: Dados enviados no protocolo, lembrando que o retorno de uma mensagem sempre deverá iniciar os dados com 0x06 ACK (acknowledge) para sinalizar uma comunicação correta e 0x15 NAK (negative acknowledge) para sinalizar uma comunicação errada.
- BCC: Byte verificador, sendo composto por um XOR entre todos os bytes (sem considerar o próprio BCC)

Exemplos de Comunicação:

1 - O dispositivo Mestre (0x5) envia comando para acionar o LED 1 do dispositivo Escravo (0x60):

Comunicação do Mestre:

0x02	0x06	0x60	0x05	0x03	0x01	BCC			
Comunicação do Escravo:									
0x02	0x06	0x05	0x60	0x03	0x06	BCC			

2 - O dispositivo Mestre (0x5) envia comando para desligar o LED 1 do dispositivo Escravo (0x60):

Comunicação do Mestre:

0x02	0x06	0x60	0x05	0x03	0x00	BCC			
Comunicação do Escravo:									
0x02	0x06	0x05	0x60	0x03	0x06	BCC			

3 – O dispositivo Mestre (0x5) envia comando para realizar a leitura do botão 1 do dispositivo Escravo (0x60):

Comunicação do Mestre:

0x02 0x05		0x60	0x05	0x01		BCC			
Comunicação do Escravo quando o botão estiver acionado:									
0x02	0x07	0x05	0x60	0x01	0x06	0x01	BCC		
Comunicação do Escravo quando o botão não estiver acionado:									
0x02	0x07	0x05	0x60	0x01	0x06	0x00	BCC		

4 – O dispositivo Mestre (0x5) envia comando 0x20 para o dispositivo Escravo (0x60), comando este não implementado pelo protocolo:

Comunicação do Mestre:

Comunicação do Escravo: comando não reconhecido

0x02 | 0x06 | 0x05 | 0x60 | 0x20 | 0x15 | BCC