Corso di Laurea in Matematica

GEOMETRIA A

Prova scritta del 14.1.2020 - parte seconda

Esercizio 1. Si consideri il piano euclideo \mathbb{E}^2 con un sistema di coordinate ortogonali (x, y). Al variare del parametro reale a sia $f_a \colon \mathbb{E}^2 \to \mathbb{E}^2$ la funzione definita da

$$f_a(x,y) = \frac{1}{5}(-3x + 4y - 3, 4x + 3y + a).$$

- 1. Si dimostri che per ogni valore di a, f_a è un'isometria inversa. Si discuta al variare di a il tipo di isometria di f_a .
- 2. Verificato che $f_{3/2}$ è una riflessione, si determini l'equazione di r, retta dei punti fissi di $f_{3/2}$.
- 3. Si discuta al variare di $k \in \mathbb{R}$ il tipo euclideo della conica \mathcal{Q}_k definita dall'equazione

$$Q_k(x,y)$$
: $x^2 + (2k+4)xy + (2k+4)y^2 - 2x - (k+12)y + 6 = 0$

e si trovi per quali valori di $k \in \mathbb{R}$ la conica \mathcal{Q}_k risulta tangente alla retta r.

Esercizio 2. Si consideri nel piano affine \mathbb{C}^2 la curva piana \mathcal{C} definita da

$$f(x,y)$$
: $x^4 + y^4 - x^2y + xy^2 = 0$

e sia P = (-1, 1).

- (i) Si determini la molteplicità $m_P(\mathcal{C})$ di P per la curva \mathcal{C} e le tangenti principali in tale punto.
- (ii) Si determinino i punti singolari della curva \mathcal{C} e le tangenti principali in tali punti, calcolandone le molteplicità di intersezione.
- (iii) Utilizzando l'omogeneizzazione data da $x = x_1/x_0$ e $y = x_2/x_0$, si consideri la chiusura proiettiva della curva \mathcal{C} in $\mathbb{P}^2(\mathbb{C})$ e si trovino gli eventuali punti impropri della curva \mathcal{C} .