

WHAT IS CLAIMED IS:

1. A surface emitting semiconductor laser comprising:

5 a semiconductor substrate;

a first semiconductor multilayer reflection film of a first conduction type on the semiconductor substrate;

a second semiconductor multilayer reflection film of a second conduction type;

10 an active region and a current confining layer interposed between the first and second semiconductor multilayer reflection films; and

a low-resistance layer interposed between the current confining layer and the active region.

15

2. The surface emitting semiconductor laser as claimed in claim 1, wherein:

the active region comprises an active layer and a spacer layer in which the active layer is provided; and

20 the low-resistance layer is provided between the current confining layer and the spacer layer.

3. The surface emitting semiconductor laser as claimed in claim 1, wherein:

25 the low-resistance layer comprises $\text{Al}_x\text{Ga}_{1-x}\text{As}$;

the second semiconductor multilayer reflection film comprises $\text{Al}_a\text{Ga}_{1-a}\text{As}$ and $\text{Al}_b\text{Ga}_{1-b}\text{As}$; and

composition ratios a, b and x meet a > x > b.

4. The surface emitting semiconductor laser as claimed in claim 1, wherein:

5 the spacer layer comprises $Al_cGa_{1-c}As$; and composition ratios a, b, c and x meet a > x > b and x > c.

10 5. The surface emitting semiconductor laser as claimed in claim 1, wherein a product of d₁ and n₁ or a sum of a product d₁ and n₁ and a product of d₂ and n₂ is approximately equal to a quarter of λ where d₁ and n₁ respectively denote a thickness and a refractive index of the low-resistance layer, d₂ and n₂ respectively denote a thickness and a refractive index 15 of the central conductive region of the current confining layer, and λ is a wavelength of laser light emitted.

15 6. The surface emitting semiconductor laser as claimed in claim 1, wherein the low-resistance layer has a carrier density higher than that of the second semiconductor multilayer reflection film.

20 7. The surface emitting semiconductor laser as claimed in claim 1, wherein the low-resistance layer comprises 25 a laminate of semiconductor layers.

8. A surface emitting semiconductor laser

comprising:

- a semiconductor substrate;
- a first semiconductor multilayer reflection film of a first conduction type on the semiconductor substrate;
- 5 a second semiconductor multilayer reflection film of a second conduction type;
- an active region disposed between the first and second semiconductor multilayer reflection films;
- 10 a current confining layer in the second semiconductor multilayer reflection film; and
- 15 a low-resistance layer interposed between the current confining layer and the active region.

9. The surface emitting semiconductor laser as
15 claimed in claim 8, wherein:

- the active region comprises an active layer and a spacer layer in which the active layer is provided; and
- the low-resistance layer is provided between the current confining layer and the spacer layer.

20

10. The surface emitting semiconductor laser as
claimed in claim 8, wherein:
the low-resistance layer comprises $\text{Al}_x\text{Ga}_{1-x}\text{As}$;
the second semiconductor multilayer reflection film
25 comprises $\text{Al}_a\text{Ga}_{1-a}\text{As}$ and $\text{Al}_b\text{Ga}_{1-b}\text{As}$; and
composition ratios a, b and x meet a > x > b.

11. The surface emitting semiconductor laser as claimed in claim 8, wherein:

the spacer layer comprises $\text{Al}_c\text{Ga}_{1-c}\text{As}$; and composition ratios a , b , c and x meet $a > x > b$ and x

5 > c.

12. The surface emitting semiconductor laser as claimed in claim 8, wherein a product of d_1 and n_1 or a sum of a product d_1 and n_1 and a product of d_2 and n_2 is approximately equal to a quarter of λ where d_1 and n_1 respectively denote a thickness and a refractive index of the low-resistance layer, d_2 and n_2 respectively denote a thickness and a refractive index of the central conductive region of the current confining layer, and λ is a wavelength of laser light emitted.

15

13. The surface emitting semiconductor laser as claimed in claim 8, wherein the low-resistance layer has a carrier density higher than that of the second semiconductor multilayer reflection film.

20

14. The surface emitting semiconductor laser as claimed in claim 8, wherein the low-resistance layer comprises a laminate of semiconductor layers.

25

15. A surface emitting semiconductor laser comprising:

a semiconductor substrate;

a first semiconductor multilayer reflection film of a
first conduction type;

an active region;

a current confining layer formed by oxidizing a part of
5 a high-Al-composition-ratio layer having at least single
layer;

a second semiconductor multilayer reflection film of a
second conduction type; and

10 a low-resistance layer provided in the vicinity of the
current confining layer and comprising $\text{Al}_x\text{Ga}_{1-x}\text{As}$,

the second semiconductor multilayer reflection film
comprising $\text{Al}_a\text{Ga}_{1-a}\text{As}$ and $\text{Al}_b\text{Ga}_{1-b}\text{As}$,

composition ratios a , b and x meet $a > x > b$.

15 16. The surface emitting semiconductor laser as
claimed in claim 15, wherein the low-resistance layer is
provided so that the current confining layer is provided
therein.

20 17. A method of fabricating a surface emitting
semiconductor laser comprising the steps of:
forming a semiconductor laminate on a semiconductor
substrate, the semiconductor laminate including a first
semiconductor multilayer reflection film of a first conduction
25 type, an active region, a low-resistance layer, a
high-Al-composition-ratio semiconductor layer containing a
high Al composition ratio, and a second semiconductor

multilayer reflection film of a second conduction type;
etching the semiconductor laminate so that a mesa
structure is formed on the semiconductor substrate; and
forming a current confining layer by oxidizing a part
5 of the high-Al-composition-ratio layer from a side surface of
the mesa structure to thus form a current confining layer.

18. The method as claimed in claim 17, wherein the
low-resistance layer comprises $\text{Al}_x\text{Ga}_{1-x}\text{As}$;
10 the second semiconductor multilayer reflection film
comprises $\text{Al}_a\text{Ga}_{1-a}\text{As}$ and $\text{Al}_b\text{Ga}_{1-b}\text{As}$; and
composition ratios a, b and x meet $a > x > b$.

19. The method as claimed in claim 18, wherein
15 the active region comprises spacer layers between which
an active layer is sandwiched;
the spacer layers comprise $\text{Al}_c\text{Ga}_{1-c}\text{As}$; and
composition ratios a, b, c and x meet $a > x > b$ and $x > c$.

20. A method of fabricating a surface emitting
semiconductor laser comprising the steps of:
forming a semiconductor laminate on a semiconductor
substrate, the semiconductor laminate including a first
25 semiconductor multilayer reflection film of a first conduction
type, an active region, a high-Al-composition-ratio
semiconductor layer containing a high Al composition ratio,

low-resistance layers between which the high-Al-composition-ratio semiconductor layer is sandwiched, and a second semiconductor multilayer reflection film of a second conduction type;

5 etching the semiconductor laminate so that a mesa structure is formed on the semiconductor substrate; and forming a current confining layer by oxidizing a part of the high-Al-composition-ratio layer from a side surface of the mesa structure to thus form a current confining layer.

10 21. The method as claimed in claim 20, wherein the low-resistance layer comprises $\text{Al}_x\text{Ga}_{1-x}\text{As}$; the second semiconductor multilayer reflection film comprises $\text{Al}_a\text{Ga}_{1-a}\text{As}$ and $\text{Al}_b\text{Ga}_{1-b}\text{As}$; and composition ratios a , b and x meet $a > x > b$.

15 22. The method as claimed in claim 21, wherein the active region comprises spacer layers between which an active layer is sandwiched; the spacer layers comprise $\text{Al}_c\text{Ga}_{1-c}\text{As}$; and composition ratios a , b , c and x meet $a > x > b$ and $x > c$.