FONDAMENTI DELL'INFORMATICA – a.a. 2021/22

Esercitazione N^o 4

Soluzioni Proposte

ESERCIZIO 1

Ricordiamo le definizioni induttive dell'insieme dei naturali sintattici $\mathcal{N}Term$ (a sinistra) e della funzione $add: \mathcal{N}Term \times \mathcal{N}Term \to \mathcal{N}Term$ (a destra).

- 1. Sulla falsariga della definzione di add e utilizzando tale funzione, definire per induzione la funzione $mul: \mathcal{N}Term \times \mathcal{N}Term \to \mathcal{N}Term$ in modo tale che per ogni $x,y \in \mathcal{N}Term$ valga la proprietà $val(mul(x,y)) = val(x) \cdot val(y)$. Dimostrare tale proprietà per induzione strutturale.
- 2. Sulla falsariga della definzione di add e utilizzando la funzione mul, definire per induzione la funzione $exp: \mathcal{N}Term \times \mathcal{N}Term \to \mathcal{N}Term$ in modo tale che per ogni $x,y \in \mathcal{N}Term$ valga la proprietà $val(exp(x,y)) = val(x)^{val(y)}$. Dimostrare tale proprietà per induzione strutturale.
- 3. È vero che $0^0 \ge 0^1$? Quante sono le funzioni $f: \emptyset \to \emptyset$? Quante sono le funzioni $f: 1 \to \emptyset$? (Come al solito, l'insieme $1 = \{0\}$).

ESERCIZIO 2

Sia A un insieme e L_A l'insieme delle liste di elementi di A, e siano app, len e rev le funzioni su liste definite sulla dispensa. Dimostrare per induzione strutturale le seguenti uguaglianze

- 1. Per ogni $lst_1, lst_2 \in L_A$, $len(app(lst_1, lst_2)) = len(lst_1) + len(lst_2)$.
- 2. Per ogni $lst \in L_A$, len(rev(lst)) = len(lst).

ESERCIZIO 3

Sia $\mathbb{N} \cup \{\infty\}$ l'insieme dei numeri naturali \mathbb{N} esteso con un elemento ∞ che, intuitivamente, rappresenta un'entità più grande di tutti i numeri. Si consideri l'usuale relazione di ordinamento \leq su \mathbb{N} estesa a $\mathbb{N} \cup \{\infty\}$ nel modo ovvio: per tutti i numeri naturali $n \in \mathbb{N}$, $n \leq \infty$. Si consideri l'insieme $BT_{\mathbb{N}}$ degli alberi binari etichettati con elementi di \mathbb{N} .

- 1. Definire per induzione su $BT_{\mathbb{N}}$ la funzione $max \colon BT_{\mathbb{N}} \to \mathbb{N} \cup \{\infty\}$ che restituisce l'etichetta di valore massimo tra tutte quelle che appaiono in un albero. (Suggerimento: $max(\lambda) = 0$, dove λ come al solito è l'albero vuoto.)
- 2. Definire per induzione su $BT_{\mathbb{N}}$ la funzione $min: BT_{\mathbb{N}} \to \mathbb{N} \cup \{\infty\}$ che restituisce l'etichetta di valore minimo tra tutte quelle che appaiono in un albero. (Suggerimento: $min(\lambda) = \infty$, dove λ è l'albero vuoto.)

Ad esempio sia t_1 l'albero in Figura 1.1: $min(t_1) = 1$, $max(t_1) = 15$.

Figura 1.1: Tre alberi in $BT_{\mathbb{N}}$

ESERCIZIO 4

Si ricorda che l'insieme dei valori Booleani Bool è $\{t, f\}$ dove t sta per vero (true) e f sta per falso (false). Si consideri l'insieme $BT_{\mathbb{N}}$ e le funzioni $min, max \colon BT_{\mathbb{N}} \to \mathbb{N} \cup \{\infty\}$ dell'Esercizio 3. Si consideri la funzione $ordinato \colon BT_{\mathbb{N}} \to Bool$ definita come segue:

[Cl. Base] $ordinato(\lambda) = t$

$$[\text{CL. Induttiva}] \ ordinato(N(t_1,n,t_2)) = \begin{cases} \mathsf{f} & \text{se } n \not\geq max(t_1) \\ \mathsf{f} & \text{se } n \not\leq min(t_2) \\ ordinato(t_1) \land ordinato(t_2) & \text{altrimenti} \end{cases}$$

Siano t_1, t_2, t_3 gli alberi in Figura 1.1. Calcolare $ordinato(t_1), \, ordinato(t_2)$ e $ordinato(t_3)$.

ESERCIZIO 5

Si vuole definire una funzione $ins \colon \mathbb{N} \times BT_{\mathbb{N}} \to BT_{\mathbb{N}}$ che preso in input un numero naturale $n \in \mathbb{N}$ ed un albero $t \in BT_{\mathbb{N}}$ aggiunge a t una foglia etichettata con n. La difficoltà sta nel fatto che vogliamo che questa operazione preservi la proprietà ordinato definita nell'Esercizio 4: cioè se $ordinto(t) = \mathsf{t}$, allora vogliamo che $ordinato(ins(n,t)) = \mathsf{t}$. Ad esempio, riferendosi agli alberi t_2 e t_3 in Figura 1.1, si ha che $ins(4,ins(11,t_2)) = t_3$ e $ins(11,ins(4,t_2)) = t_3$.

- 1. Definire per induzione su $BT_{\mathbb{N}}$ la funzione $ins: \mathbb{N} \times BT_{\mathbb{N}} \to BT_{\mathbb{N}}$.
- 2. Sia $t = N(N(\lambda.2, \lambda), 5, N(\lambda, 7, \lambda)) \in BT_{\mathbb{N}}$. Valutare esplicitamente, usando la funzione proposta, ins(4, t), ins(6, t) e ins(9, t).

ESERCIZIO 6

Con riferimento alla funzione ordinato dell'Esercizio 4 e alla funzione ins dell'Esercizio 5, dimostrate per induzione strutturale che per tutti gli $n \in \mathbb{N}$ e $t \in BT_{\mathbb{N}}$ vale che:

Se
$$ordinato(t) = t$$
, allora $ordinato(ins(n, t)) = t$.

SOLUZIONI PROPOSTE

SOLUZIONE ESERCIZIO 1

1. Definiamo $mul: \mathcal{N}Term \times \mathcal{N}Term \rightarrow \mathcal{N}Term$ per induzione sul secondo argomento come segue:

```
[Clausola Base] mul(x, Z) = Z
[Clausola Induttiva] mul(x, S(y)) = add(mul(x, y), x)
```

Per verificare che vale $val(mul(x,y)) = val(x) \cdot val(y)$ procediamo nuovamente per induzione sul secondo argomento:

$$[\text{PASSO BASE}] \ y = Z$$

$$val(mul(x,Z)) = val(Z) \ (\text{Clausola base } mul)$$

$$= 0 \ (\text{Clausola base } val)$$

$$val(x) \cdot val(Z) = val(x) \cdot 0 \ (\text{Clausola base } val)$$

$$= 0 \ (\text{Calcolo})$$

$$[\text{PASSO INDUTTIVO}] \ y = S(z)$$

$$val(mul(x,S(z))) = val(add(mul(x,z),x)) \ (\text{Clausola induttiva } mul)$$

$$= val(mul(x,z)) + val(x) \ (\text{per Prop. } 7.4.16)$$

$$= val(x) \cdot val(z) + val(x) \ (\text{Ipotesi induttiva })$$

$$= val(x) \cdot (val(z) + 1) \ (\text{Calcolo})$$

$$= val(x) \cdot val(S(z)) \ (\text{Clausola induttiva } val)$$

2. Definiamo $exp: \mathcal{N}Term \times \mathcal{N}Term \to \mathcal{N}Term$ per induzione sul secondo argomento come segue:

```
Clausola Base exp(x,Z) = S(Z)
Clausola Induttiva exp(x,S(y)) = mul(exp(x,y),x)
```

Mostriamo che vale $val(exp(x,y)) = val(x)^{val(y)}$ per induzione su $y \in \mathcal{N}Term$:

$$[\text{Passo Base}] \ y = Z$$

$$val(exp(x,Z)) = val(S(Z)) \quad \text{(Clausola base } exp)$$

$$= 1 \qquad \text{(Clausola induttiva } val)$$

$$val(x)^{val(Z)} = val(x)^0 \quad \text{(Clausola base} val)$$

$$= 1 \qquad \text{(Calcolo)}$$

[Passo Induttivo] y = S(z)

$$\begin{array}{lll} val(exp(x,S(z))) & = & val(mul(exp(x,z),x)) & (\text{Clausola induttiva } exp) \\ & = & val(exp(x,z)) \cdot val(x) & (\text{per punto 1}) \\ & = & val(x)^{val(z)} \cdot val(x) & (\text{Ipotesi induttiva}) \\ & = & val(x)^{(val(z)+1)} & (\text{Calcolo}) \\ & = & val(x)^{val(S(z))} & (\text{Clausola induttiva } val) \end{array}$$

3. Si ricorda che $Fun(A, B) = \{f : A \to B\}$ e che

$$|Fun(A,B)| = |B|^{|A|}.$$

Poichè esiste un'unica funzione $f: \varnothing \to \varnothing \ (id_{\varnothing})$ è ragionevole che $0^0 = 1$. Invece $0^1 = 0$, perché non esistono funzioni $f: 1 \to \varnothing$: dovrebbe infatti esistere $b \in \varnothing$ tale che f(0) = b, e questo è impossibile perché \varnothing non ha elementi. In conclusione $0^0 \ge 0^1$.

SOLUZIONE ESERCIZIO 2

1. Dimostriamo per induzione su lst_1 che $len(app(lst_1, lst_2)) = len(lst_1) + len(lst_2)$.

[Passo base] $lst_1 = []$.

$$\begin{array}{rcl} len(app([\],lst_2)) & = & len(lst_2) & \text{(Clausola base } app) \\ & = & 0 + len(lst_2) \\ & = & len([\]) + len(lst_2) & \text{(Clausola base } len) \end{array}$$

[Passo induttivo] $lst_1 = a : lst'_1$.

Assumiamo che $len(app(lst'_1, lst_2)) = len(lst'_1) + len(lst_2)$, per dimostrare che $len(app(a: lst'_1, lst_2)) = len(a: lst'_1) + len(lst_2)$:

$$\begin{array}{lll} len(app(a:lst_1',lst_2)) & = & len(a:app(lst_1',lst_2)) & (\text{Clausola induttiva } app) \\ & = & len(app(lst_1',lst_2)) + 1 & (\text{Clausola induttiva } len) \\ & = & len(lst_1') + len(lst_2) + 1 & (\text{Ipotesi induttiva}) \\ & = & len(lst_1') + 1 + len(lst_2) \\ & = & len(a:lst_1') + len(lst_2) & (\text{Clausola induttiva } len) \end{array}$$

2. Dimostriamo per induzione su lst che len(rev(lst)) = len(lst)).

[Passo base] lst = [].

$$len(rev([\])) = len([\])$$
 (Clausola base rev)

[Passo induttivo] lst = a: lst'.

Assumiamo che len(rev(lst')) = len(lst'), per dimostrare che len(rev(a: lst')) = len(a: lst'):

$$len(rev(a: lst')) = len(app(rev(lst), a: []))$$
 (Clausola induttiva rev)
$$= len(rev(lst')) + len(a: [])$$
 (Per Es 2.1)
$$= len(rev(lst')) + len([]) + 1$$
 (Clausola induttiva len)
$$= len(rev(lst')) + 0 + 1$$
 (Clausola base len)
$$= len(lst') + 1$$
 (Ipotesi induttiva)
$$= len(a: lst')$$
 (Clausola induttiva len)

SOLUZIONE ESERCIZIO 3

Denotiamo con max e min (non in italico) le funzioni di massimo e minimo da $(\mathbb{N} \cup \{\infty\}) \times (\mathbb{N} \cup \{\infty\})$ a $(\mathbb{N} \cup \{\infty\})$. Queste sono definite per ogni $x, y \in \mathbb{N} \cup \{\infty\}$ come:

$$\max(x,y) = \begin{cases} x & \text{se } x \ge y \\ y & \text{altrimenti} \end{cases} \qquad \min(x,y) = \begin{cases} x & \text{se } x \le y \\ y & \text{altrimenti} \end{cases}$$

1. Definiamo $max: BT_{\mathbb{N}} \to \mathbb{N} \cup \{\infty\}$ per induzione come segue:

[Clausola Base] $max(\lambda) = 0$

[CLAUSOLA INDUTTIVA]

$$max(N(t_1, a, t_2)) = \begin{cases} a & \text{se } a \ge \max(max(t_1), max(t_2)) \\ \max(max(t_1), max(t_2)) & \text{altrimenti} \end{cases}$$

2. Definiamo $min: BT_{\mathbb{N}} \to \mathbb{N} \cup \{\infty\}$ per induzione come segue:

[Clausola Base]
$$min(\lambda) = \infty$$

[CLAUSOLA INDUTTIVA]

$$min(N(t_1, a, t_2)) = \begin{cases} a & \text{se } a \leq \min(min(t_1), min(t_2)) \\ \min(min(t_1), min(t_2)) & \text{altrimenti} \end{cases}$$

SOLUZIONE ESERCIZIO 4

Per prima cosa osserviamo che per ogni $m\in\mathbb{N}$ vale

$$ordinato(N(\lambda, m, \lambda)) = \mathsf{t}$$
 (1.1)

infatti $0 = max(\lambda) \le m \le min(\lambda) = \infty$, da cui

$$ordinato(N(\lambda, m, \lambda)) = ordinato(\lambda) \land ordinato(\lambda) = t \land t = t$$

Calcolo per t_1 : scriviamo

$$t_1 = N(N(N(\lambda, 1, \lambda), 3, N(\lambda, 5, \lambda)), 8, N(\lambda, 10, N(N(\lambda, 14, \lambda), 13, N(\lambda, 15, \lambda))))$$

= $N(t_1^{(l)}, 8, t_1^{(r)})$

Poichè $max(t_1^{(l)}) = 5$ e $min(t_1^{(r)}) = 10$, si ha che

$$ordinato(t_1) = ordinato(t_1^{(l)}) \land ordinato(t_1^{(r)})$$

Ora:

$$\begin{array}{lcl} ordinato(t_1^{(l)}) & = & ordinato(N(\lambda,1,\lambda)) \wedge ordinato(N(\lambda,5,\lambda)) & (1 \leq 3 \leq 5) \\ & = & \texttt{t} \wedge \texttt{t} \\ & = & \texttt{t} \end{array}$$

Mentre $0 \le 10 \le 13$, da cui

$$\begin{array}{lll} ordinato(t_1^{(r)}) & = & ordinato(\lambda) \wedge ordinato(N(N(\lambda,14,\lambda),13,N(\lambda,15,\lambda))) & (0 \leq 10 \leq 13) \\ & = & \texttt{t} \wedge ordinato(N(N(\lambda,14,\lambda),13,N(\lambda,15,\lambda))) \\ & = & \texttt{t} \wedge \texttt{f} & (13 < 14) \\ & = & \texttt{f} & \end{array}$$

Di conseguenza

$$ordinato(t_1) = \mathsf{t} \wedge \mathsf{f} = \mathsf{f}$$

Calcolo per t_2 : scriviamo

$$t_2 = N(N(N(\lambda, 1, \lambda), 3, N(\lambda, 5, \lambda)), 8, N(\lambda, 10, N(N(\lambda, 12, \lambda), 13, \lambda)))$$

= $N(t_2^{(l)}, 8, t_2^{(r)})$

Poichè $\max(t_2^{(l)})=5$ e $\min(t_2^{(r)})=12,$ vale

$$ordinato(t_2) = ordinato(t_2^{(l)}) \land ordinato(t_2^{(r)})$$

Inoltre $t_2^{(l)} = t_1^{(l)}$, quindi sappiamo gi $\tilde{\mathbf{A}}$ che

$$ordinato(t_2^{(l)}) = \mathtt{t}$$

Invece

$$\begin{array}{lll} ordinato(t_2^{(r)}) & = & \texttt{t} \wedge ordinato(N(N(\lambda,12,\lambda),13,\lambda)) & (0 \leq 10 \leq 13) \\ & = & \texttt{t} \wedge ordinato(N(\lambda,12,\lambda)) \wedge \texttt{t} & (12 \leq 13 \leq \infty) \\ & = & \texttt{t} \wedge \texttt{t} \wedge \texttt{t} \\ & = & \texttt{t} \end{array}$$

Da cui

$$\mathit{ordinato}(t_2) = \mathit{ordinato}(t_1^{(l)}) \land \mathit{ordinato}(t_2^{(r)}) = \texttt{t} \land \texttt{t} = \texttt{t}$$

Calcolo per t_3 : scriviamo

$$t_3 = N(N(N(\lambda, 1, \lambda), 3, N(N(\lambda, 4, \lambda), 5, \lambda)), 8, N(\lambda, 10, N(N(N(\lambda, 11, \lambda), 12, \lambda), 13, \lambda)))$$

= $N(t_3^{(l)}, 8, t_3^{(r)})$

Poichè $5 = max(t_3^{(l)}) \le 8 \le min(t_3^{(r)}) = 11$, vale di nuovo

$$ordinato(t_3) = ordinato(t_3^{(l)}) \land ordinato(t_3^{(r)})$$

Calcoliamo i due termini separatamente:

$$\begin{array}{lll} ordinato(t_3^{(l)}) & = & \texttt{t} \wedge ordinato(N(N(\lambda,4,\lambda),5,\lambda)) & (1 \leq 3 \leq 4) \\ & = & \texttt{t} \wedge ordinato(N(\lambda,4,\lambda)) \wedge \texttt{t} & (4 \leq 5 \leq \infty) \\ & = & \texttt{t} \wedge \texttt{t} \wedge \texttt{t} \\ & = & \texttt{t} \end{array}$$

mentre

$$\begin{array}{lll} ordinato(t_3^{(r)}) & = & \texttt{t} \wedge ordinato(N(N(N(\lambda,11,\lambda),12,\lambda),13,\lambda)) & (0 \leq 10 \leq 11) \\ & = & \texttt{t} \wedge ordinato(N(N(\lambda,11,\lambda),12,\lambda)) \wedge \texttt{t} & (12 \leq 13 \leq \infty) \\ & = & \texttt{t} \wedge N(\lambda,11,\lambda) \wedge \texttt{t} \wedge \texttt{t} & (11 \leq 12 \leq \infty) \\ & = & \texttt{t} \wedge \texttt{t} \wedge \texttt{t} \wedge \texttt{t} \\ & = & \texttt{t} \end{array}$$

da cui

$$ordinato(t_3) = \mathsf{t} \wedge \mathsf{t} = \mathsf{t}$$

SOLUZIONE ESERCIZIO 5

La funzione $ins: \mathbb{N} \times BT_{\mathbb{N}} \longrightarrow BT_{\mathbb{N}}$ è definita per induzione su $BT_{\mathbb{N}}$ nel modo seguente:

[CLAUSOLA BASE]
$$ins(n, \lambda) = N(\lambda, n, \lambda)$$

$$[\text{Clausola Induttiva}] \ ins(n,N(t_1,m,t_2)) = \begin{cases} N(t_1,m,ins(n,t_2)) & \text{se } n \geq m \\ N(ins(n,t_1),m,t_2) & \text{altrimenti} \end{cases}$$

L'idea che sta alla base della definizione di ins è la seguente: dati n e $N(t_1, m, t_2)$ confronto m ed n, se n < m inserisco n in t_1 altrimenti lo inserisco in t_2 .

SOLUZIONE ESERCIZIO 6

Dimostriamo la correttezza della funzione ins definita nell'esercizio precedente. L'enunciato è:

$$\forall n \in \mathbb{N}, \ \forall t \in BT_{\mathbb{N}}, \ \text{se } ordinato(t) = \mathsf{t}, \ \text{allora } ordinato(ins(n,t)) = \mathsf{t}.$$

Procediamo per induzione su $BT_{\mathbb{N}}$.

[Passo Base] $t = \lambda$.

Per definizione $ins(n,\lambda) = N(\lambda,n,\lambda)$ che risulta essere, per (1.1), ordinato per ogni $n \in \mathbb{N}$.

[Passo Induttivo]

Sia $t = N(t_1, m, t_2)$ ordinato, cioè ordinato(t) = t. Segue immediatamente dalla definizione di ordinato che

$$ordinato(t_1) = \mathsf{t} \wedge ordinato(t_2) = \mathsf{t}$$
 (1.2)

dunque, per ipotesi induttiva, si ha che

$$ordinato(ins(n, t_1)) = \mathsf{t} \wedge ordinato(ins(n, t_2)) = \mathsf{t}.$$
 (1.3)

Se $n \geq m$ allora:

```
ordinato(ins(n,t)) \ = \ ordinato(ins(n,N(t_1,m,t_2))
                         = odinato(N(t_1, m, ins(n, t_2)))
                                                                       (definizione di ins)
                         = ordinato(t_1) \wedge ordinato(ins(n, t_2))
                                                                       (definizione di ordinato)
                                                                       (da (2) e (3))
                          = t
Altrimenti (n < m):
   ordinato(ins(n,t))
                         = ordinato(ins(n, N(t_1, m, t_2)))
                          = \quad odinato(N(ins(n,t_1),m,t_2))
                                                                       (definizione di ins)
                             ordinato(ins(n, t_1)) \land ordinato(t_2)
                                                                       (definizione di ordinato)
                             \mathsf{t} \wedge \mathsf{t}
                                                                       (da (2) e (3))
                              t
```

E questo conclude la dimostrazione.