

RISK REGISTER FOR EMBEDDED SYSTEMS PROJECT

Group Number:	2	2	Submission Date:	11/4/2018		
Group Members:	Osama Othman	Subhi Alsous	Aarambh Sinha	Marlon	Abdullah	

Project Risk	Severity			Potential			Score (Severity x Potential)	Mitigation Measures	Owner
	L	М	Н	L	М	Н	L=1, M=2, H=3		
Sensors circuit Soldering	•					•	3	Ensure that fume cupboard is right next to soldering and keep face away from fumes at a distance of 40cm. for heat, hold the solder pen from plastic area and always return solder pen to stand. When soldering, keep pen away from people around.	The one who is soldering and anyone close
Measuring motor torque: Laser tachometer		•		•			2	Ensure that no one's eyes are anywhere near the measurement area.	Other people around you
Measuring motor torque: Severe heat of motor could burn you	•			•			1	Take measurements for short periods and Let motor cooldown for minute intervals or use a digital thermometer if available to ensure motor doesn't get too hot	The one taking motor torque measurements
Measuring motor torque: high current through motor			•	•			3	With great certainty, ensure that all wires from the power supply unit to motor are covered with plastic. Also ensure that metal end	The one taking motor measurements

RISK REGISTER FOR EMBEDDED SYSTEMS PROJECT

ne University of Manchester		1	1	ı	ı	ı		T	
								leads are completely inside	
								their sources and not	
								exposed.	
Heavy equipment:								Make sure no weights are in	
during load								precarious positions at a	The one using the
measurement and		•		•			2	significant height and	weights and people
motors lab								handle with care when	around them
IIIotors lab								transporting.	
								Amend schedule to perform	
								missing team work in	
Team member								contingency and review	
unavailable due to		•		•			2	new deliverables. Carry	The entire team
extreme reasons								missing team member's	
								work by allocating multiple	
								current resources.	
5 6 6								every 20 minutes blink eyes	
Eye fatigue from using	•				•		1	slowly to remoisten them.	One using computer
computer								Use glare proof screens	
								If missing the deadline is	
								expected at current pacing	
								then group has to increase	
								group meeting to monitor	
								progress and set deliverable	
								at every meeting and get	
Missing deadlines for			•	•			3	guidance from tutor and	The entire team
major milestones								unit coordinators. And after	
								create a new schedule with	
								the new deliverable and	
								make sure everyone	
								understands their roles and	
								deadlines	
								Before lab measurements,	
								Review the criteria of the	
Incorrect lab			•	•			3	lab and lab instructions.	The entire team
measurements							-	Write what measurements	
								these criteria affect. Write	
								these criteria affect. Write	

RISK REGISTER FOR EMBEDDED SYSTEMS PROJECT

111	- Offiversity of Matteriester						
						down the experiment	
						control measures. When	
						taking measurements, take	
						a picture of lab setup for	
						reference to see if mistake	
						is serious.	
						First visually check if battery	
						is physically damaged.	
В						Check battery if expected	One using battery and
	Buggy: Battery damaged				2	voltage and current output	team if battery taken
	buggy. Battery damaged	•	•		2	match the battery	on race
						specification. If there is	Offrace
						something out of place	
						dispose of battery.	

We confirm that all group members participated in the production of this risk register: Yes / No