Réalité Virtuelle WEBVR et Aframe

Christophe Vestri

Plan du cours

- 26 février : Intro Carto/géo, Leaflet
- 5 mars: Capteur et Geoloc/access en HTML5
- 12 mars: WebRTC, WebGL et Three.js
- 18 mars: Aframe, AR.js et VR
- 26 mars : Projets

Plan Cours 4

- Rappel dernier cours
- Réalité Virtuelle
- Outils pour la VR
 - AR.js (exercice)
 - VR in Unity
 - WebVR
 - Aframe (Exercice)
- Projet final

Graphique en HTML

- Canvas et SVG
 - context 2D. Exploré la dernière fois
- SVG: Scalable Vector Graphics
- CSS3D: pour des effets de rendu 3D (Ex1)
- WebGL: pour de la 3D basique
- Three.js: pour de la 3D plus poussée (Ex2)

WebGL

Qu'est-ce que WebGL

- Cross plateforme et libre de droits
- OpenGL ES (OpenGL simplifié pour l'embarqué) dans le Web (HTML5)
- Bonne intégration Html et mécanisme d'évènements
- DOM API pour affichage 2D et 3D
- Langage de type script (pas de compilation)
- Accélérations matérielles et GPU

Three.js

- Qu'est-ce que Three.js
 - Couche abstraite et haut niveau de WebGL
 - Librairie javascript pour créer des scènes 3D
 - Cross-plateforme et gratuit
 - Rendus en webGL, CSS3D et SVG
 - https://threejs.org/

Fonctionalités THREE^{JS}

- Scenes, Cameras, Renderer,
- Geometry, Materials, Textures
- Lights, Shadows
- Shaders, Particles, LOD
- Loaders: Json compatible Blender, 3D max, Wavefront OBJ, Autodesk FBX
- Animation, Trackballcontrols, Math Utilities

Exercice 2 – Three.js

- Exercice 2 (à rendre avec exercice 1):
 - Créez une scène + caméra + light + renderer
 - Créez un objet générique (sphère ou cube)
 - Texturez cet objet
 - Téléchargez un objet 3D
 - Animez les objets avec les DeviceEvents:
 DeviceOrientation, DeviceMotion
 - Ajoutez Fog/pluie ou particules
- Option, mettre un contexte: compas/gyro, système solaire....

Réalité Virtuelle

Continuum réalité-virtualité

Environnement réel

Réalité augmentée

Réalité virtuelle

Réalité mixte

virtuel

Réalité Virtuelle

- Objectif: Immersion
- Définition: Vi

Virtual reality (VR) is a computer-simulated environment that can simulate physical presence in places in the real world or imagined worlds. Virtual reality can recreate sensory experiences, including virtual taste, sight, smell, sound, touch, etc.

 La réalité virtuelle permet de s'extraire de la réalité physique pour changer virtuellement de temps, de lieu, et/ou de type d'interaction avec le monde simulé

Objectif immersion

Réalité Virtuelle

Applications

Objectif immersion

Principaux éléments de la VR

- Monde Virtuel
 - Généralement en 3D avec rendu infographie
- Immersion
 - Perception de présence monde non physique
- Retour Sensoriel
 - Maximum de sens: visuel, auditif, haptique...
- Interactivité
 - Augmente la sensation d'immersion

Principaux éléments de la VR

Types de VR

Non immersif

Semi-immersif

Immersif

Comment faire de la VR

2 vues

Infographie ou vidéos

Fonctionnement

- Un PC/Console/Smartphone
- Head-Mounted Display
 - Lentilles, écrans, processeurs
 - Magnétomètres, accéléromètres, gyroscopes
- Des capteurs d'entrées
 - Joystick, manettes, baguettes, gants
 - Plateformes de mouvements

Système de VR

Rendu vidéo

Rendu vidéo

Caractéristiques cléfs

- Champ de vue
- Résolution
- Fréquence de rafraichissement
- Latence

Principaux casques de VR

Ocuclus Rift

Samsung Gear

Google cardboard

HTC Vive

Playstation VR

Principaux casques de VR

Gear VR

Roso	lution

Per Eye

Field of View

Playstation	VR
-------------	----

on VR H

HTC Vive

Oculus Rift

Daydream View

2560 x 1440	1920 x 1080	2160 x 1200	2160 x 1200	2560 x 1440 Pixel XL 1920 x 1080 Pixel
1280 x 1440	960 x 1080	1080x 1200	1080 x 1200	1280 x 1440 Pixel XL 960x 1080 Pixel
100°	100°	110°	110°	90°

Plus d''infos

Cours de VR:

- http://www.ensiie.fr/~bouyer/RVSI/
- https://moodle.insa-rouen.fr/course/view.php?id=936
- https://eu.udacity.com/course/introduction-to-virtualreality--ud1012
- https://fr.coursera.org/specializations/virtual-reality
- https://www.edx.org/course/creating-virtual-reality-vr-appsuc-san-diegox-cse190x

Guides pratiques:

https://developer.oculus.com/design/latest/concepts/bookbp/

Unity 3D

- Unity XR
- https://docs.unity3d.com/Manual/XR.html
- https://unity3d.com/fr/learn/tutorials/s/xr

Download the Google VR SDK for Unity

Download the latest GoogleVRForUnity_*.unitypackage from the releases page.
 The SDK includes the following demo scenes for Daydream and Cardboard:

Scene	Description
HelloVR	Simple VR game in which you find and select a geometric shape
KeyboardDemo	Daydream: Shows keyboard input on a UI canvas
PermissionsDemo	Daydream: Shows a correct user permissions request flow
VideoDemo	Shows various ways to use stereo or 360° video through playback or remote streaming

AR.js

Artoolkit + Aframe

- https://github.com/jeromeetienne/ar.js
- https://aframe.io/blog/arjs/

AR.js


```
<script src="https://aframe.io/releases/0.7.0/aframe.min.js"></script>
 1.
      <script
 2.
      src="https://jeromeetienne.github.io/AR.js/aframe/build/aframe-ar.js">//
      script>
      <body style='margin : 0px; overflow: hidden;'>
       <a-scene embedded arjs>
 4.
          <a-marker preset=hiro>
 5.
             <a-box></a-box>
          </a-marker>
          <a-entity camera></a-entity>
 9.
       </a-scene>
10. </body>
```

Exercice

AR.Js:

- Augmenter deux marqueurs (Hiro et) avec un modèle 3D chacun
- Free models: https://www.turbosquid.com/Search/3D-Models

https://stemkoski.github.io/AR-Examples/

– Lancez un serveur local:

python -m http.server, wamp ...

http://localhost:8000/

Pause

WebVR

- Qu'est-ce que WebVR
 - Débuté en 2014
 - Javascript Api pour immersion 3D, Réalité virtuelle dans le navigateur
 - Supporté par Mozilla VR team et Google
 Chrome
 - Version 1.1 en 2017, remplacement par WebXR
 - <u>https://webvr.rocks/</u> (video)

WebVR

Liens

- Spec: https://immersive-web.github.io/webvr/spec/1.1/
- WebXR https://immersive-web.github.io/webxr/
- Quelques demos:
 - https://webvr.info/samples/
 - https://immersive-web.github.io/webxrsamples/
 - https://experiments.withgoogle.com/webvr

AFrame

- Qu'est-ce que Aframe:
 - Framework Opensource
 - Compatibles avec tous les navigateurs
 - Maintenu par Mozilla VR team
 - Basé sur three.js, utilise WebVR et WebGL
 - Langage déclaratif de type Html
 - Système d'entités-composantes
 - Inspecteur/éditeur visuel

AFrame

• Liens:

- https://aframe.io/
- https://aframe.io/docs/0.9.0/introduction/

Exemples

- https://aframe.io/aframe/examples/
- http://fluxo.fr/dokuwiki/doku.php?id=labz_con nectic_lab3d (demo CV)

Cours:

— <u>https://aframe.io/aframe-school/#/</u>

Exercice (à rendre)

- Construire une scène Egyptienne
 - Camera, lumière jaune, sky
 - Environnement Egypte + fog (sable)
 - Une primitive texturée + modèle 3D
- Exemples:
 - https://aframe.io/docs/0.8.0/guides/building-abasic-scene.html
 - www.3dvtech.com/DemoPhoto360VR/
 - http://www.3dvtech.com/DemoVR/

Projet final

- Projet final
 - GéoLocalisation
 - Capteurs mouvement/orientation
 - Ul et scene 3D, interaction

- Exemples:
 - Compas 2D/3D: carte 2D + geoloc et directions 3D
 - Objets 3D animés avec interaction smartphone
 - Réalité augmentée (Htlm5/JS)

Rappel

https://github.com/art mobilis/ArtMobilisjs/wiki/fr-Configurationframework-nodejsionic-android

Chrome:

- Bloque getUserMedia pour les fichiers locaux
- Lancer avec --disable-web-security pour du debug
- Navigator.getUserMedia plus supporté -> MediaDevices.getUserMedia()
- Il faudrait utiliser adapter.js
- Attention: exemples pas mis à jour -> utilisez Firefox

Firefox:

- Version 40 et +: pb avec les vielles cartes graphique blacklistées
- Installer version 31 pour du debug (marche sur mon laptop)