Algorithmic Equivalence Relations

Jan Reimann Pennsylvania State University

- The study of definable equivalence relations in Polish spaces has been a major topic in several branches of mathematics.
 - (Descriptive) Set Theory
 - Ergodic Theory
 - Operator Algebras
 - Representation Theory
 - Recursion Theory
 - Harrington-Kechris-Louveau (Effective Descriptive Set Theory)
 - Slaman-Steel
 - Martin's Conjecture

- Let X be a Polish space, i.e. a topological space that is completely metrizable and has a countable dense subset.
 - Standard examples: 2^{ω} (Cantor space), ω^{ω} (Baire space)
 - In fact, every Polish space is the continuous image of ω^{ω} .
- A relation $R \subseteq X \times X$ is Borel, if it is a Borel subset of the product space $X \times X$.
- If R is an equivalence relation, we say R is countable if every equivalence class is countable.

Motivation:

- Some important objects in mathematics (orbit spaces, moduli spaces) do not carry a Polish structure, but can be represented in the form X/E, where X is Polish and E is an analytic equivalence relation.
- Classification problems: Describe objects up to isomorphism. Assign invariants.
 - Example: Bernoulli shifts up to conjugacy → entropy (Ornstein)
- Effective/definable cardinality.

- Examples
 - id_X identity on X
 - E_0 Vitali equivalence on 2^{ω} , ω^{ω}

$$A E_0 B \Leftrightarrow \exists m \forall n \geq m [A(n) = B(n)]$$

• Compare equivalence relations:

E on X is Borel reducible (\leq_B) to F on Y if there exists Borel f: X \rightarrow Y such that

$$x_0 E x_1$$
 iff $f(x_0) F f(x_1)$

Example:

$$id_{\mathbf{R}} \leq_{\mathsf{B}} \mathsf{E}_{\mathsf{0}}$$

The Column Method

f(A)

Borel Reductions

• A Borel reduction, i.e. $f: X \rightarrow Y$ such that

can be seen as a definable injection of X/E into Y/F.

- If a reduction cannot be reversed, this means Y/F has higher definable cardinality than X/E.
- Example: $id_{\mathbb{R}} \ngeq_{\mathbb{B}} \mathsf{E}_0$.
 - Suppose f is a reduction. We may assume $f(2^{\omega}) \subseteq [0,1]$.
 - The preimages $f^{-1}[0,1/2]$, $f^{-1}[1/2,1]$ are Borel tail sets, so by Zero-One Law one of them has measure 1.
 - Continue splitting, obtain that f is constant almost everywhere – contradiction.

Dichotomies for Equivalence Relations

- Silver [1980]: For any Borel equivalence relation E,
 E has either countably many classes or there exists a perfect set of mutually E-inequivalent elements.
 - Corollary: For any Borel E

either $E \leq_B id_N$ or $id_R \leq_B E$.

- CH holds for Borel (even co-analytic) equivalence relations.
- Harrington-Kechris-Louveau [1990]: For any Borel E either $E \leq_B id_R$ or $E_0 \leq_B E$.

A Universal Countable Relation

 Any action of a group G on a space X gives rise to an orbit equivalence

$$x \sim_G y \Leftrightarrow \exists g (y = g \cdot x).$$

- Feldman-Moore [1977]: Any countable Borel equivalence relation can be represented as an orbit equivalence of a Borel action.
- If G is a group, G acts on 2^G via the shift-operation:

$$(g \cdot A)(h) = A(g^{-1} \cdot h)$$

- Let F_2 be the free group on two generators.
- Shift-equivalence on 2^{F_2} is a universal countable Borel equivalence relation, E_∞ .

Shift-equivalence on subsets of F₂

Shift-equivalence on subsets of F₂

Shift-equivalence on subsets of F₂

Classifying Turing Equivalence

- An equivalence relation is hyperfinite if it can be written as an increasing sequence of finite Borel equivalence relations.
 - Equivalently, a hyperfinite equivalence relation is one that is induced by a Z-action.
- Slaman-Steel [1988]: Turing equivalence is not hyperfinite.
 - Corollary: No countable Borel equivalence relation coarser than I-equivalence is hyperfinite.

Proof: Use $X \equiv_T Y$ iff $X' \equiv_I Y'$.

Classifying Turing Equivalence

• Kechris [1991]:

```
■T is not amenable.
```

Jackson-Kechris-Louveau [2000]:

```
■T is not treeable.
```

• Thomas [2007]:

```
not generated by a free group action
```

■T is not essentially free.

Question/Conjecture [Kechris]:

```
= T is universal (?)
```

Universality of Algorithmic Relations

• Permutation equivalence: Let $n \in \{1,2,3,...\} \cup \{\omega\}, S \leq S_{\infty}$.

For
$$X,Y \in n^{\omega}$$
: $X \equiv_S Y \Leftrightarrow \exists \pi \in S \ \forall n \ [Y(n) = X(\pi(n))]$

Dougherty-Kechris [1991]:

Recursive isomorphism on ω^{ω} is universal.

They prove something more general:

There is a recursive countable group $S_0 \le S_\infty$ such that for any countable group S with $S_0 \le S \le S_\infty$, S-permutation equivalence on ω^{ω} is universal.

Andretta-Camerlo-Hjorth [2001]:

Recursive isomorphism on 5^{ω} is universal.

The Reduction

$g(\pi_1 \cdot A) = g(\pi_2 \cdot A) = g(\pi_1 \cdot A)$
--

f(A)

The Reduction

Universality of Algorithmic Relations

Marks [2011]:

Recursive isomorphism on 3^{ω} is universal.

- The proof is based on the Dougherty-Kechris approach.
- Marks also identified combinatorial obstacles why this cannot easily be extended to k = 2.

Weak Reducibilities

- Slaman-Steel [unpublished]:
 Arithmetic equivalence =_A on 2^ω is universal.
 - As before, reduce shift equivalence on 2^F₂.
 - Basic idea: Code into an arithmetic degree based on distances in the Cayley graph –

the further away Y is from X shift-wise, the more jumps are needed to recover F(Y) from F(X).

- Use the technique of jump-coding.
- The method can be adapted to variants of Turing reducibility, like polynomially bounded T-equivalence.

Jump Coding

• A frequently used way to make $X \leq_T Y'$ is to ensure

$$X(n) = \lim_{s} Y(n,s)$$

- This can be combined with a finite extension strategy (Cohen conditions).
- The accordant forcing notion has the property that

we code C into the jump of X

Jump Coding

• Construct Borel $F: 2^{F_2} \rightarrow 2^N$ such that

$$F(X)' \equiv_T G_X \oplus f_X \oplus C_X \oplus 0'$$

where

$$C_X = F(aX) \oplus F(bX) \oplus F(a^{-1}X) \oplus F(b^{-1}X)$$

Iterated jump coding

$$F(X)^{(k)} \equiv_T \left(\bigoplus_{\substack{w \in F_2 \\ |w| < k}} G_{w \cdot X} \oplus f_{w \cdot X} \oplus C_{w \cdot X} \right) \oplus \left(\bigoplus_{\substack{w \in F_2 \\ |v| = k}} F(v \cdot X) \right) \oplus 0^{(k)}.$$

Turing Equivalence

- Why is the case of Turing equivalence so hard?
- It is tied to a deep problem in recursion theory: What are the definable (Turing) degree invariant functions?
- A function $f: 2^{\omega} \to 2^{\omega}$ is degree invariant if $X \equiv_T Y$ implies $f(X) \equiv_T f(Y)$.
- Standard examples:
 - identity, jump operator, iterates of the jump operator
- Question: are there other (natural) examples?

Martin's Conjecture

- 1. If f is a Borel, Turing degree invariant function, then either f is increasing on a cone or f is constant on a cone.
- 2. The relation

$$f \leq_M g \Leftrightarrow \{X: f(X) \leq_T g(X)\}$$
 contains a cone

prewellorders the degree-invariant functions which are increasing on a cone. If f has \leq_M -rank α , then f' has rank $\alpha+1$, where f'(X) = (f(X))'.

Martin's Conjecture

- If =_T is universal, then Martin's Conjecture fails.
 - If \equiv_T is universal, then $\equiv_T \times \equiv_T \leq_B \equiv_T$.
 - It follows there exists a degree-invariant pairing function \(\lambde{\cdots},.\rangle\)
 - Then $X \to \langle 0, X \rangle$ and $X \to \langle 0', X \rangle$ are degree-invariant Borel injections, hence not constant on a cone.
 - If MC holds, then both must be increasing on a cone.
 - Then their ranges are disjoint, cofinal Borel sets, contradicting Turing-Determinacy.

Uniform Reductions

• If E, F are countable Borel equivalence relations represented by orbit equivalences E_G and F_H , respectively, then a reduction $E_G \leq_B F_H$ given by f is uniform iff there exists t: G \rightarrow H such that

$$g \cdot x = y \Leftrightarrow t(g) \cdot f(x) = f(y).$$

All known universality proofs so far are uniform.

Uniform Reductions

• Montalban-R.-Slaman: Shift-equivalence on 2^{F_2} is not uniformly reducible to \equiv_T :

There do not exist Borel f: $2^{F_2} \rightarrow 2^N$ and t: $F_2 \rightarrow N$ such that

$$g \cdot x = y \Leftrightarrow f(x) \equiv_T f(y)$$

via reduction $t(g) = (\Phi_d, \Phi_e)$.

 The proof extends the game-theoretic approach used by Slaman and Steel to show that Martin's Conjecture holds for uniformly degree invariant functions.

Excursion: Cocycles

- The question of uniform reductions is related to the notion of a cocyle.
- Suppose f: $X \to Y$ is a Borel reduction $E \leq_B F$. Suppose further E, F are generated by groups G, H, respectively.
- Suppose further the action is free,
 i.e. g · x ≠ x for all g ≠ I and all x ∈ X.
- Then $\alpha(g,x)$ = unique $h \in H$ such that $f(g \cdot x) = h \cdot f(x)$ is defined.
- The function α is a typical example of a Borel cocyle.
- If the reduction is uniform, α depends only on g and becomes a group homomorphism.
- Popa [2007] showed that cocylces on free Bernoulli actions of sufficiently mixing groups are essentially homomorphisms.

Essentially Free Equivalence Relations

- Question: Can we recover G from the equivalence relation E it induces?
- If so, we could hope to gain insights on the complexity of E
 by studying the complexity of G.
- Two necessary requirements:
 - The action must be free.
 - There must exist a G-invariant probability measure on X.
- A countable Borel equivalence relation is essentially free if it is Borel equivalent to an equivalence relation generated by a free group action.

Essentially Free Equivalence Relations

- Essentially free equivalence relations
 - are closed downwards under Borel reducibility,
 - are closed under refinement.
- Thomas [2009]: The class of essentially free equivalence relations does not admit a universal element.
 - The proof uses Popa's superrigidity result.
- Corollary: =⊤ is not essentially free.
 - If it were, then the shift equivalence on 2^{F_2} , seen as a refinement of \equiv_T , were essentially free and universal.

Weak Universality

 The closure of essentially free equivalence relations under refinements gives rise to a weaker notion of reducibility

E is weakly reducible to F if there is a countable-to-one Borel homomorphism from E to F.

- E is weakly reducible to F iff there exists a countable equivalence relation $R \subseteq F$ such that $E \leq_B R$.
- Thomas [2009]:
 - No weakly universal equivalence relation is essentially free.
 - Turing equivalence is weakly universal.
- Question: Is every weakly universal equivalence relation universal?

Ergodicity

- If G acts on X and µ is a G-invariant probability measure on X, then the action of G is said to be ergodic if every G-invariant subset of X has either measure 0 or 1.
- An equivalence relation E is ergodic if some action that induces it is ergodic.
- Generalization: Suppose E, F are equivalence relations on X, Y, respectively, and μ is an E-invariant measure on X.
 - A Borel homomorphism from E to F is a Borel function f:
 X → Y such that x E y implies f(x) F f(y).
 - E is called F-ergodic if there exists $Z \subseteq X$ such that $\mu(Z) = I$ and $f|_Z$ is F-constant.
- Ergodicity in this framework becomes id_R-ergodicity.

Ergodicity

- If E is ergodic it cannot reduce to id_R: This would imply the
 existence of an equivalence class of measure 1, which is
 impossible.
- Martin measure on 2^N/≡_T:
 m(A) = I if A contains a cone, 0 otherwise.
 - This is indeed a Borel measure by Borel-Turing Determinacy.
- Martin measure is ergodic:
 Every degree invariant mapping to the reals is constant on a cone.

Ergodicity

- If Martin's Conjecture (MC) holds, =⊤ satisfies an even stronger ergodicity property.
- Thomas [2009]: Suppose MC is true. If E is any countable Borel equivalence relation, then exactly one of the following conditions holds:
 - (a) E is weakly universal.
 - (b) ≡_T is E-ergodic.

Further Directions

- Prove Martin's Conjecture
- Extend Slaman-Steel technique to other reducibilities
 - interesting candidate: LR-reducibility
- Extend universality to other strong reducibilities
 - Recent work by Marks
- Prove further ergodicity results (w/o assuming MC)
 - Maybe easier for arithmetic equivalence.
- Study possible group representations for =⊤