PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-129703

(43) Date of publication of application: 18.05.1999

(51)Int.CI.

B60B 35/18

F16C 33/58

(21) Application number: **09-321055**

(71)Applicant: NIPPON SEIKO KK

(22)Date of filing:

21.11.1997

(72)Inventor: MIYAZAKI HIRONARI

ONUKI YOSHIHISA KUWANO TAKASHI SAWAI HIROYUKI

(30)Priority

Priority number : **09232798**

Priority date : 28.08.1997

Priority country: JP

(54) ROLLING BEARING UNIT FOR WHEEL SUPPORTING

(57) Abstract:

PROBLEM TO BE SOLVED: To ensure the rolling contact fatigue life of a first inner ring raceway track and to realize low cost structure.

SOLUTION: A hub 2b made of carbon steel with a carbon content ≥0.45 wt.% and an inner ring 3 made of high carbon steel are coupled with a calking part 19 formed at the edge part of the hub 2n. An inclined grid part containing a first inner ring raceway track 7 of a hub 2b is hardened by quenching. An inner ring 3 is hardened by quenching to the core part. A part for forming at least the calking part 19 of the hub 2b is kept raw without conducting quenching.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application

converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-129703

(43)公開日 平成11年(1999)5月18日

(51) Int.CL ⁶	織別配号	P I	
B60B 3	35/18	B60B 35/18	A
F16C 9	33/58	F16C 33/58	

審査請求 未請求 請求項の数6 OL (全 16 頁)

(21)出癩番号	特顯平9−321055	(71)出廢人	000004204
			日本精工株式会社
(22)出頭目	平成9年(1997)11月21日		京京都品川区大崎1丁目6番3号
		(72) 発明者	宮崎 裕也
(31)優先機主張番号	粉節平 9-232798		神奈川県脳沢市曽沼神明一丁目 5 番50号
(32)優先日	平 9 (1997) 8 月28日		日本接工株式会补内
(33)優先權主張国	日本 (JP)	(72) 8#B3 #	大賞 道久
(***	m. (0 2)	1,2,7,6,72	神奈川県脳沢市協沿神明一丁目5番50号
			日本指工株式会社内
		(79) 8##35	桑野 孝空
		(12/70974	神奈川県藤沢竹鶴沼紗明一丁目 5 巻80号
]	
			日本稍工株式会社内
		(74)代理人	
			最終頁に続く

(54)【発明の名称】 車輪支持用転がり軸受ユニット

(57)【要約】

【課題】 第一の内輪軌道?の転がり疲れ寿命を確保 し、しかも低コストの構造を実現する。

【解挟手段】 炭素の含有量が0.46 重置%以上である炭素銅製のハブ2 b と高炭素銅製の内輪3 とを、ハブ2 b の端部に形成したかしめ部19により結合する。ハブ2 b は、上記第一の内輪軌道7を含む斜格子部分を焼き入れ硬化する。ハブ2 b のうち、少なくとも上記かしめ部19を形成する部分は焼き入れせず、生のままとする。

(2)

【特許請求の範囲】

【請求項1】 一端部外周面に第一のフランジを、中間 部外周面に第一の内輪軌道を、それぞれ形成したハブ と、このハブの他場部に形成された、上記第一の内輪軌 道を形成した部分よりも外径寸法が小さくなった段部 と、外国面に第二の内輪軌道を形成して上記段部に外嵌 した内輪と、内周面に上記第一の内輪軌道に対向する第 一の外輪軌道及び上記第二の内輪軌道に対向する第二の 外輪軌道を、外周面に第二のフランジを、それぞれ形成 した外輪と、上記第一、第二の内輪軌道と上記第一、第 10 二の外輪軌道との間に、それぞれ複数個ずつ設けられた 転動体とを備え、上記ハブの他繼部で少なくとも上記段 部に外嵌した内輪よりも突出した部分に形成した円筒部 を直径方向外方にかしめ広げる亭で形成したかしめ部に より、上記段部に外嵌した内輪をこの段部の段差面に向 け抑え付けて、この段部に外嵌した内輪を上記ハブに結 台固定した草輪支持用転がり軸受ユニットに於いて、上 記ハブは炭素の含有量が(). 4.5 重量%以上の炭素鋼製 であり、少なくとも上記第一の内輪軌道部分を焼き入れ 処理により硬化させると共に少なくとも上記円筒部には 20 上記焼き入れ処理を施さずに生のままとし、上記内輸は 高炭素鋼製で心部まで焼き入れ硬化させている事を特徴 とする車輪支持用転がり軸受ユニット。

【請求項2】 ハブを構成する炭素鋼中の炭素の含有量 は0.45~1.10重量%であり、第一の内輪軌道は ハブの中間部外周面に直接形成されており、このハブの うちの少なくとも上記第一の内輪軌道を形成した部分は 焼き入れ硬化されており、少なくとも上記ハブの他端部 に形成した円筒部の硬度は、かしめ加工前に於いて且々 200~300である、請求項1に記載した車輪支持用 30 転がり軸受ユニット。

【語求項3】 ハブを構成する炭素鋼中の炭素の含有量 は0.45~0.60重量%であり、このハブはこの炭 素鋼を鍛造加工する事により造られており、少なくとも 円筒部はこのハブの鍛造加工後に焼鈍されていない、請 求項1~2の何れかに記載した車輪用転がり軸受ユニッ

【請求項4】 ハブを構成する炭素剱中の炭素の含有量 は0.60~1.10重量%であり、このハブはこの炭 円筒部はこのハブの鍛造加工後に焼雑されている 請求 項1~2の何れかに記載した直輪用転がり舗受ユニッ ŀ.

【請求項5】 一端部外周面に第一のフランジを形成し たハブと、このハブの外周面に軸方向中間部から他端部 に亙り形成された段部と、外周面に第一の内輪軌道を形 成して上記段部の一端側に外嵌した第一の内輪と、外周 面に第二の内輪軌道を形成して上記段部の他幾側に外嵌 した第二の内輪と、内周面に上記第一の内輪軌道に対向 第二の外輪軌道を、外周面に第二のフランジを、それぞ れ形成した外輪と、上記第一、第二の内輪軌道と上記第 一、第二の外輪軌道との間に、それぞれ複数個ずつ設け られた転動体とを備え、上記ハブの他端部で少なくとも 上記段部の他端側に外嵌した第二の内輪よりも突出した 部分に形成した円筒部を直径方向外方にかしめ広げる事 で形成したかしめ部により、上記段部に外嵌した第一、 第二の内輪をとの段部の段差面に向け抑え付けて、上記 段部に外嵌した第一、第二の内輪を上記ハブに結合固定 した車輪支持用転がり軸受ユニットに於いて、上記ハブ は少なくとも上記段部の段差面を含むこの段部の一端部 分を綰き入れ処理により硬化させると共に少なくとも上 記円筒部には上記焼き入れ処理を施さずに生のままと し、上記第一、第二の内輪はそれぞれ高炭素鋼製で心部 まで焼き入れ硬化させている字を特徴とする車輪支持用 転がり軸受ユニット。

【請求項6】 一端部外周面に第一のフランジを、中間 部外周面に第一の内輪軌道を、それぞれ形成したハブ と、このハブの他繼部に形成された。上記第一の内輪軌 道を形成した部分よりも外径寸法が小さくなった段部 と、外周面に第二の内輪軌道を形成して上記段部に外嵌 した内輪と、内周面に上記第一の内輪軌道に対向する第 一の外輪軌道及び上記第二の内輪軌道に対向する第二の 外輪軌道を、外周面に第二のフランジを、それぞれ形成 した外輪と、上記第一、第二の内輪軌道と上記第一、第 二の外輪軌道との間に、それぞれ複数個ずつ設けられた 転動体とを備え、上記ハブの他端部で少なくとも上記段 部に外嵌した内輪よりも突出した部分に形成した円筒部 を直径方向外方にかしめ広げる字で形成したかしめ部に より、上記段部に外嵌した内輪をこの段部の段差面に向 け抑え付けて、この段部に外嵌した内輪を上記ハブに結 台固定した車輪支持用転がり軸受ユニットに於いて、円 筒部を直径方向外方にかしめ広ける作業は揺動プレスに より行なっており、このかしめ広け作業時には外層面に 第二の内輪軌道を形成した内輪若しくは第二の内輪を治 具により抑えた車輪支持用転がり発光ユニット。

【発明の詳細な説明】

[0001]

【発明の届する技術分野】との発明に係る宣輪支持用転 素鋼を鍛造加工する事により造られており、少なくとも 40 がり軸受ユニットは、自動車の車輪を懸架装置に対して 回転自在に支持する為に利用する。

[0002]

【従来の技術】自動車の車輪は、車輪支持用転がり軸受 ユニットにより野架装置に支持する。図17は、従来か ち広く実施されている車輪支持用転がり軸受ユニットの 第1例を示している。この車輪支持用転がり輪受ユニッ ト1は、ハブ2と、内輪3と、外輪4と、複数個の転動 体5. 5とを備える。このうちのハブ2の外国面の外端 部(外とは、自動車への組み付け状態で幅方向外寄りと する第一の外輪軌道及び上記第二の内輪軌道に対向する 50 なる側を言い. 図4~6を除く各図の左側となる。反対

に帽方向中央寄りとなる側を内と言い、図4~6を除く 各図の右側となる。〉には、車輪を支持する為の第一の フランジ6を形成している。又、このハブ2の中間部外 園面には第一の内輪軌道?を、同じく内端部には外径寸 法が小さくなった段部8を、それぞれ形成している。 【0003】上記段部8には、外国面に第二の内輪軌道

9を形成した、上記内輪3を外嵌している。又、上記ハ ブ2の内端部には確ねじ部10を形成し、この維ねじ部 10の先端部を、上記内輪3の内端面よりも内方に突出 ト11と上記段部8の段差面12との間で上記内輪3を 挟持する亭により、この内輪3を上記ハブ2の所定位置 に結合固定している。尚. 上記雄ねじ部10の先端部外 園面には、係止凹部14を形成している。そして、上記 ナット11を所定のトルクで緊縮した後、このナット1 1の一部で上記係止凹部14に整合する部分を直径方向 内方にかしめ付ける事により、このナット11の緩み止 めを図っている。

【0004】又、上記外輪4の内周面には、上記第一の 内輪軌道7と対向する第一の外輪軌道15及び上記第二 20 の内輪軌道9に対向する第二の外輪軌道16を形成して いる。そして、これら第一、第二の内輪軌道7、9と第 一、第二の外輪軌道15、16との間に上記転動体5、 5を、それぞれ複数個ずつ設けている。尚、図示の例で は、転動体5、5として玉を使用しているが、重量の嵩 む自動車用の転がり軸受ユニットの場合には、これら転 動体としてテーバころを使用する場合もある。

【0005】上述の様な車輪支持用転がり軸受ユニット 1を自動車に組み付けるには、上記外輪4の外層面に形 置に固定し、上記第一のフランジ6に車輪を固定する。 この結果、この車輪を懸架装置に対し回転自在に支持す る事ができる。

【0006】又、米国特許第5490732号明細書に は、図18に示す機な機造の車輪支持用転がり軸受ユニ ット1が記載されている。この従来構造の第2例の場合 には、外周面に第一のフランジ6を設けたハブ18の外 周面に第一の内輪41と第二の内輪3とを外嵌してい る。そして、上記ハブ18の内端部で第二の内輪3の内 ける事によりかしめ部19を形成し、このかしめ部19 と上記ハブ18の中間部外周面で上記第一のフランジ6 の墓部に設けた段差面12aとの間で、上記第一、第二 の内輪41、3を挟持している。即ち、上記ハブ18の 内端部で上記第二の内輪3よりも内方に突出した部分に 形成した円筒部を直径方向外方にかしめ広げる事で上記 かしめ部19を形成し、このかしめ部19により上記算 一. 第二の内輪41、3を. 上記段差面12 a に向け抑 え付けている。

[0007]

【発明が解決しようとする課題】図17に示した従来機 造の第1例の場合には、雄ねじ部10の先端部に係止凹 部14を形成する作業、及びナット11の一部を直径方 向内方にかしめ付ける作業が必要になる。この為、草輪 支持用転がり軸受ユニット1の部品製造作業及び組立作 柔が面倒になり、コストが嵩む。

【0008】又、図18に示した第2例の構造の場合、 ハブ18に対して第一、第二の内輪41、3を結合固定 する為のかしめ部19を、上記ハブ18に形成する必要 させている。そして、この縫ねじ部10に螺合したナッ 10 がある。従って、上記ハブ18を、上記かしめ部19を 形成可能な材料により造る必要がある。図18に示した 第2例の構造の場合には、上記ハブ18自体には内輪軌 道を設けず、このハブ18に外嵌した第一、第二の内輪 41. 3の外周面に第一. 第二の内輪軌道7、9を設け ている為、上記ハブ18の材料として上記かしめ部19 を形成し易い。炭素の含有率が(). 45重置%未満の炭 素鋼を使用できる。但し、上述の様なかしめ部19の加 工に伴い、上記ハブ18に外嵌した第二の内輪3には大 きな荷重が加わる。この為、上記算二の内輪3が変形し て、転がり軸受ユニットの(正又は負の)内部陰間が、 所望値からずれる可能性がある。そして、上記内部隙間 が適正値からずれた場合には、上記第二の内輪3の外国 面に形成した第二の内輪軌道9の転がり疫れ寿命の低下 を招く事になる。

【0009】この機な不都合は、図17に示した構造と 図18に示した構造とを組み合わせ、ハブ2に第一のフ ランジ6と第一の内輪軌道?とを設けた標準で、内輪3 を上記ハブ2に対しかしめ部19により結合固定する機 造の場合にも発生する。更に、この様な構造を採用した 成した第二のフランジ17により、この外輪4を壁架装 30 場合には、図18に示した従来構造のハブ18の様に、 上記ハブ2を炭素の含有率が0.45重置%未満の炭素 鋼により造ると、第一の内輪軌道7部分の硬度を十分に 高くできず、十分な耐久性を確保できない。本発明はこ の様な事情に鑑みて、低コストでしかも十分な耐久性を 有する草輪支持用転がり軸受ユニットを提供すべく発明 したものである。

[0010]

【課題を解決するための手段】本発明の車輪支持用転が り軸受ユニットのうち、請求項1に記載したものは、一 **端面よりも内方に突出した部分を直径方向外方に折り曲 40 端部外周面に第一のフランジを、中間部外周面に第一の** 内輪軌道を、それぞれ形成したハブと、このハブの他鑑 部に形成された、上記第一の内輪軌道を形成した部分よ りも外径寸法が小さくなった段部と、外周面に第二の内 輪軌道を形成して上記段部に外嵌した内輪と、内層面に 上記第一の内輪軌道に対向する第一の外輪軌道及び上記 第二の内輪軌道に対向する第二の外輪軌道を、外層面に 第二のフランジを、それぞれ形成した外輪と、上記第 一、第二の内輪軌道と上記第一、第二の外輪軌道との間 に、それぞれ複数個ずつ設けられた転動体とを備え、上 50 記ハブの他雄部で少なくとも上記段部に外嵌した内輪よ

りも突出した部分に形成した円筒部を直径方向外方にか しめ広げる字で形成したかしめ部により、上記段部に外 **嵌した内輪をこの段部の段差面に向け抑え付けて、この** 段部に外嵌した内輪を上記ハブに結合固定している。特 に、請求項上に記載した車輪支持用転がり軸受ユニット に於いては、上記ハブは炭素の含有量が0.45重置% 以上の炭素銅製であり、少なくとも上記第一の内輪軌道 部分を焼き入れ処理により硬化させると共に少なくとも 上記円筒部には上記焼き入れ処理を施さずに生のままと し、上記内輪は軸受鋼等の高炭素鋼製で心部まで焼き入 10 れ硬化させている。

【①①】1】尚、上述の様な草輪支持用転がり軸受ユニ ットを実施する場合に、上記ハブを構成する炭素鋼中の 炭素の含有率は、例えばり、45~1、10重量%とす る。との場合には、上記ハブのうちの少なくとも上記第 一の内輪軌道を形成した部分を焼き入れ硬化し、上記ハ ブの他繼部に形成した円筒部の硬度を、かしめ加工前に 於いて日 ٧200~300とする (請求項2)。 又、上 記ハブを構成する炭素鋼中の炭素の含有量は、例えば 0. 45~0. 60重量%とする。この場合には、上記 20 保しつつ低コスト化を図れる。 ハブはこの炭素鋼を鍛造加工する事により造り、少なく とも円筒部はこのハブを鍛造加工後に焼錬しない(請求 項3)。又、上記ハブを構成する炭素鋼中の炭素の含有 置は、例えばり、60~1、10重量%とする。この場 台には、上記ハブはこの炭素銅を鍛造加工する事により 造り、円筒部はこのハブを鍛造加工後に焼鈍する (請求 項4)。又、少なくとも上記段部の開角部で、上記内輪 を外嵌固定する円筒状の外層面とこの内輪の端面を突き 当てる段差面との連続部に好ましくは、断面形状が四分 の一円弧状である曲面部 (開R部) を形成する。そし て. この曲面部の断面の曲率半径を. 2.5±1.5mm の範囲に規制する。

【0012】又、請求項5に記載したものは、一端部外 園面に第一のフランジを形成したハブと、このハブの外 周面に軸方向中間部から他端部に互り形成された段部 と、外周面に第一の内輪軌道を形成して上記段部の一端 側に外嵌した第一の内輪と、外周面に第二の内輪軌道を 形成して上記段部の他總側に外嵌した第二の内輪と、内 周面に上記第一の内輪軌道に対向する第一の外輪軌道及 周面に第二のフランジを、それぞれ形成した外輪と、上 記第一、第二の内輪軌道と上記第一、第二の外輪軌道と の間に、それぞれ複数個ずつ設けられた転動体とを備 え、上記ハブの他端部で少なくとも上記段部の他端側に 外嵌した第二の内輪よりも突出した部分に形成した円筒 部を直径方向外方にかしめ広げる字で形成したかしめ部 により、上記段部に外嵌した第一、第二の内輪をとの段 部の段差面に向け抑え付けて、上記段部に外嵌した第 一、第二の内輪を上記ハブに結合固定している。特に、

いては、上記ハブは少なくとも上記段部の段差面を含む この段部の一端部分を焼き入れ処理により硬化させると 共に少なくとも上記円筒部には上記続き入れ処理を施さ ずに生のままとし、上記第一、第二の内輪はそれぞれ軸 受鋼等の高炭素鋼製で心部まで焼き入れ硬化させてい

【0013】尚、上記請求項5に記載した車輪支持用転 がり軸受ユニットを実施する場合に、上記ハブを炭素鋼 製とし、この炭素銅中の炭素の含有率は、好ましくは 0.20~1.1重置%とする。そして、上記円筒部を 直径方向外方にかしめ広げる以前の状態に於ける。焼き 入れ硬化処理を縮していない部分の硬度をHv200~ 300とする。

[0014]

【作用】上述の様に構成する本発明の車輪支持用転がり 軸受ユニットにより、懸架装置に対して車輪を回転自在 に支持する作用は、従来から知られている草輪支持用転 がり軸受ユニットと同様である。特に、本発明の車輪支 **締用転がり軸受ユニットの場合には、十分な耐久性を確**

【0015】先ず、請求項1(及び請求項2~4)に記 載した発明の場合、ハブを、炭素の含有量が()、45% 以上である炭素鋼製とし、少なくとも第一の内輪軌道部 分を高周波焼き入れ、浸炭焼き入れ、レーザ焼き入れ等 の焼き入れ処理により硬化させている。この為、上記第 一の内輪軌道表面の転がり疲れ寿命(剥離寿命)を、転 動体から繰り返し加えられる負荷に抑らず、十分に確保 できる。即ち、上記転がり疲れ寿命を確保する為には、 上記第一の内輪軌道の表面部分の硬度を高く(例えば日 30 、550~900程度に)する必要がある。この表面部 分の硬度が低いと、上記第一の内輪軌道の転がり疲れ寿 命が短くなる。ハブを炭素の含有量が(). 4.5重量%未 満の炭素鋼により造った場合には、仮に上記第一の内輪 軌道部分に焼き入れ処理を施しても、必要とする硬度を 得られない。とれに対して請求項1に記載した発明の場 台には、上記ハブを炭素の含有量が(). 45重量%以上 の炭素鋼製とすると共に上記第一の内輪軌道部分を焼き 入れ処理により硬化させている為、上記第一の内輪軌道 部分の硬度を十分に高くして、この第一の内輪軌道部分 び上記第二の内輪軌道に対向する第二の外輪軌道を、外 49 の転がり疲れ寿命の確保を図れる。この様にして第一の 内輪軌道部分の転がり疲れ寿命を確保した場合でも、上 記ハブに設けた円筒部は、上記焼き入れ処理を施さずに 生のままとしている。この為、上記ハブと内輪とを結合 する為のかしめ部の加工が面倒になる事はない。

【0016】又、上記内輪を軸受鋼等の高炭素鋼製と し、心部まで焼き入れ硬化させている為、上記かしめ部 の加工に伴って上記内輪に大きな荷重が加わった場合で も、この内輪の変形を防止して、転がり輪受ユニットの (正又は負の) 内部隙間が、所望値からずれる事を防止 請求項5 に記載した草輪支持用転がり軸受ユニットに於 50 できる。即ち 上記円筒部をかしめ広げて上記かしめ部

を形成する際には、この円筒部に、直径方向外方に向く 大きな荷重を付与する必要がある。この結果、上記かし め部の形成作業に伴って上記内輪の内層面及び端面に、 大きな面圧が作用する。従って、上記内輪の硬度が低い と、上記面圧によりこの内輪が変形して、上記転がり輪 受ユニットの内部隙間が所望値からずれてしまう。これ に対して請求項1に記載した発明の場合には、上記内輪 を軸受鋼等の高炭素鋼製とし、心部まで焼き入れ硬化さ せている為、この内輪の硬度が十分に高く、上記大きな 内部隙間を所望値に保てる。又、上記第二の内輪軌道の 直径が変化したり、形状精度(真円度)断面形状)が悪 化する亭を防止して、この第二の内輪軌道の転がり渡れ 寿命の低下防止を図れる。

【0017】尚、請求項2に記載した車輪支持用転がり 軸受ユニットの様に、ハブを構成する炭素鋼中の炭素の 含有量を0.45~1.10重置%とし、このハブの他 **蟷部に形成した円筒部の硬度を、かしめ加工前に於いて** Hv200~300とすれば、上記第一の内輪軌道部分 の硬度を確保し、しかも上記円筒部のかしめ広げ作業を 20 ら、この内輪3の嵌合部である円筒状の外周面の一部) 十分に行なえる。尚、請求項3に記載した発明の様に、 ハブを構成する炭素鋼中の炭素の含有量を0.45~ 0.60重量%とすれば、鍛造後に競鈍を行なわなくと も良い。又、鍛造後に冷却速度を簡易的に制御して、上 記円筒部の硬さをH v 200~300にできる。これに 対して、請求項4に記載した発明の様に、ハブを構成す る炭素師中の炭素の含有量を(). 6()~1.1()重置% とした場合には、鍛造後に競鈍を行なう。

【0018】又、請求項5に記載した発明の場合、ハブ かしめ部を形成し易い、炭素の含有量が0.45重量% 未満の炭素鋼を使用できる。但し、上記ハブは、少なく とも段部の段差面を含むこの段部の一端部分を、焼き入 れ処理により硬化させている。この為、上記かしめ部と 共に上記段部に外嵌した第一、第二の内輪を挟持する部 分である上記段部の段差面、及び転がり軸受ユニットの 使用時に集中応力が発生し易い上記段部の一端部分の強 度及び耐久性を確保できる。一方、上記ハブに設けた円 筒部は、上記続き入れ処理を施さず生のままとしている 為、上記ハブと第一、第二の内輪とを結合する為のかし、40 は、上記内輪3との嵌合部であるこの段部8の外周面 め部の加工が面倒になる事はない。又、上記段部に外嵌 する第一、第二の内輪をそれぞれ高炭素銅製とし、心部 まで続き入れ硬化させている。この為、第一、第二の両 内輪軌道部分の硬度を確保できるだけでなく、上述した 請求項1に記載した発明を構成する内輪の場合と同様 に、上記ハブに形成するかしめ部の加工に伴って上記算 二の内輪に大きな荷盒が削わった場合でも、この第二の 内輪の変形を防止して、転がり軸受ユニットの内部隙間 が、所望値からずれる亭を防止できる。又、この第二の 内輪の外周面に形成した第二の内輪軌道の直径が変化し 50

たり、精度が悪化する事を防止して、との第二の内輪軌 道の転がり疫れ寿命の低下防止を図れる。 [0019]

【発明の実施の形態】図1~4は、請求項1~4に対応 する。本発明の実施の形態の第1例を示している。本例 の車輪支持用転がり軸受ユニット 1 a は、ハブ2 b と、 内輪3と、外輪4と、複数個の転動体5、5とを備え る。このうちのハブ2 bの外周面の外端寄り部分には、 車輪を支持する為の第一のフランジ6を形成している。 面圧に釣らず、この内輪が変形する事を防止して、上記 10 又、この第一の内輪部材2 b の中間部外周面には第一の 内輪軌道7を、同じく内端部には外径寸法が小さくなっ た段部8を、それぞれ形成している。この様なハブ2り は、炭素の含有率が(). 45~1.1() 重置%である炭 素鋼製の素材に鍛造を施す事により、一体に造ってい

> 【0020】又、この様なハブ2bの一部外園面で図1 に斜格子で示した部分、即ち、上記第一の内輪軌道7部 分、上記第一のフランジ6の基端部分、及び上記段部8 の基半部分(内輪3の突き当て面である段差面12か には、高周波線を入れ、浸炭焼き入れ、レーザ線を入れ 等の焼き入れ処理を施して、当該部分の硬度を、Hv5 50~900程度に高くしている。尚、上記各続き入れ 処理のうち、高周波焼き入れ処理が、処理コストが低原 である為、最も好ましい。とれに対して、浸炭焼き入れ 処理は硬化させない部分に防炭メッキ処理を施す必要が ある為、処理コストが嵩む。又、レーザ焼き入れ処理は 設備資が高む。

【0021】尚、上記斜格子で示した焼き入れ処理を施 自体には内輪軌道を設けていない為。ハブの材料として「30」す部分のうち、上記第一の内輪軌道?部分は、上記転動 体5の転動面との当接に基づいて大きな面圧を受ける 為、転がり疫れ寿命を確保する為に硬化させる。又、上 記第一のフランジ6の基端部分は、車輪を固定した上記 第一のフランジ6から受けるモーメント荷重に抑らず、 上記墓蟾部分が変形する事を防止する為に硬化させる。 見に、上記段部8の基半部分のうち、上記段部8の一部 外周面部分は、上記内輪3の嵌合圧力及び上記複数の転 動体5から上記内輪3が受けるラジアル荷重に抑らず、 この段部8の外周面が変形するのを防止したり、更に に、フレッチング摩耗が発生する亭を防止する為に硬化 させる。又、上記段部8の段差面12部分は、後述する かしめ作業により上記内輪3に加わる軸方向荷重に拘ら ず、この段差面12が変形するのを防止したり、更に は、上記内輪3の外端面との当接面であるこの段差面1 2に、フレッチング摩耗が発生する事を防止する為に硬 化させる。又、上記段部8の外周面と上記段差面12と の連続部である開R部分は、応力集中により変形する亭 を防止する為に硬化させる。尚、好ましくは、この陽R 部分の断面の曲率半径を、2.5±1.5mmの節囲に規

(6)

制する。この部分の曲率半径が1mm未満になると、応力 集中により亀裂等の損傷を発生する可能性が生じる。反 対に、上記部分の曲率半径が4mmを超えると、上記内輪 3の端部内園緑と干渉し易くなって、車輪支持用転がり 軸受ユニットが難しくなる。

【0022】尚、上記斜格子で示した焼き入れ硬化層の 内端の軸方向位置(図1のイ点)は、上記内輪3の周囲 に配置した複数個の転動体5の中心の軸方向位置(図1 の口点) よりも内側(図1の右側)で、後述するかしめ 部19の基端(かしめ部の外径が段部8の外径よりも大 10 きくなり始める部分)の軸方向位置(図1のハ点)より も外側(図1の左側)とする。上記焼き入れ硬化層の内 **磐位置をこの様に規制する理由は、上記段部8の外周面** 部分に存在する焼き入れ硬化層の表面積をできるだけ広 くし、しかも上記かしめ部19の加工を容易にすると共 に、上記焼き入れ硬化層の存在に基づいてこのかしめ部 19に亀裂等の損傷が発生しない様にする為である。 尚、上述の様な焼き入れ硬化層は、必要とする部分毎に 不連続に形成しても良いが、図1に示した本例の様に、 ブ2 bの強度及び耐久性の向上を図れる。

【0023】上記ハブ26の内繼部には、上記内輪3を 固定する為のかしめ部19を構成する為の円筒部20を 形成している。 図示の例では、この円筒部20の内厚 は、図3に示した、この円筒部20を直径方向外方にか しめ広げる以前の状態で、先端縁に向かう程小さくなっ ている。この為に図示の例の場合には、上記ハブ2ヵの 内端面に、凹部に向かう程次第に内径が小さくなるテー パ乳21を形成している。 又、上記内輪3は、SUJ2 等の高炭素クロム軸受鋼の様な高炭素鋼製とし、心部ま 30 で焼き入れ硬化させている。

【0024】尚、上記ハブ2りを構成する炭素鋼中の炭 素の含有量は前述の様にり、45~1、10重量%と し、少なくとも上記ハブ2bの他蟾部に形成した円筒部 20の硬度は、図3に示したかしめ加工前に於いて且v 200~300とする。この様な条件を満たす事によ り、前記第一の内輪軌道?部分に必要とする硬度(Hv 550~900) を確保し、しかも上記円筒部20のか しめ広げ作業を十分に行なえる。即ち、上記円筒部20 ①の硬度が且v300を超えていると、形成されたかし め部19にクラックが発生したり、かしめが不十分とな ってかしめ部19と内輪3とが密着しなくなって上記ハ ブ2 bに対するこの内輪3の締結力が小さくなったりす る。又、上記かしめ部19を形成する為に要する荷重が 過大になって、かしめ作業に伴って各軌道面や転動体 5. 5に圧痕等の損傷を生じ易くなる他、各部の寸法精 度が悪化する可能性を生じる。又、ハブ2 b の機械加工 が困難になる。即ち、加工時間が長くなると共に工具寿 命が低下し、コスト上昇を招く。

【0025】上記ハブ2bを構成する炭素鋼中の炭素の 含有量が1.10重量%を越えると、上記円筒部20の 硬度をHv300以下に抑える率が難しくなる為。上記 ハブ2bを構成する炭素鋼中の炭素の含有量の上限を 1. 10重置%とした。反対に、上記円筒部20の硬度 がHv200に達しないと、この円筒部20をかしめる 亭により形成したかしめ部19の硬度を確保できず、や はりこのかしめ部19による上記内輪3の締結力が不足 する。上記ハブ2 b を構成する炭素鋼中の炭素の含有量 がり、45重量%に達しないと、第一の内輪軌道?部分 に必要とする硬さ(H v 5 5 0 ~ 9 0 0)を確保でき ず、との第一の内輪軌道?部分の寿命が低下する為、上 記ハブ2 b を構成する炭素鋼中の炭素の含有量の下限を 0.45重置%とした。

【0026】尚、上記ハブ2りは、上述の楊な理由で炭 素の含有量を0.45~1.10重量%とした炭素鋼に 鍛造加工を施す事により造るが、炭素の含有量がり、4 5~0.60重量%の場合には、鍛造後に焼鈍処理を施 す必要はない。即ち、穀造後の冷却速度を簡易的に制御 鱗り合う焼き入れ硬化層同士を連続して形成すれば、ハー20 する事により、少なくとも上記円筒部20の硬度をHv 200~300に範囲に収める事が可能である。従っ て、上記ハブ2 bを鍛造加工により造った後、上記円筒 部20をかしめ部19に加工する作業を、焼鈍処理を行 なう事なく可能になって、このかしめ部19を備えた車 輪支持用転がり軸受ユニットを低コストで造れる。 【0027】これに対して、上記ハブ2りを構成する炭 素鋼中の炭素の含有量を0.60~1.10重量%とし た場合には、上記ハブ2bを鍛造加工により造った後、 焼鈍する必要がある。即ち、炭素鋼中の炭素の含有量を 0.60~1.10 重置%とした場合でも、鍛造後の冷 知速度を制御する字により、上記円筒部20の硬度を目 v200~300程度にする事は可能ではある。但し、 冷却退度を相当に小さく(遅く)する必要がある為、長 時間を要し、専用の設備も必要になる。この為、上記冷 却遠度を制御するよりも競鈍を行なった方が、生産効率 の確保並びに生産設備の簡素化の面から好ましい。又、 一度鏡鏡を行なった方が、上記ハブ2 bの必要個所を焼 き入れする際の競き入れ性が良くなる。そこで、このハ ブ2 bを鍛造加工により造った後、鷓鈍処理を能して、 をかしめ広げてかしめ部19とする際に、この円筒部2 40 少なくとも上記円筒部20の硬度をHv200~300 程度にする。尚、上記ハブ2 b を構成する炭素鋼中の炭 素の含有量を0.60~1.10重量%とした場合で、 鍛造後の冷却速度を遅くせず、焼鈍処理も行なわない場 台には、前述した様な上記炭素鋼中の含有量が1.10 重量%を越えた場合と同様の問題を生じる。ちなみに、 上記炭素鋼中の含有量が1.10重量%を越えた場合に は、鍛造後の冷却速度を遅くしたり、焼鈍処理を縮した 場合でも、上記円筒部20の硬度をHv300以下に抑 える事が難しくなる。

50 【0028】上記ハブ2bの内端部に上記内輪3を固定

11

すべく、上述の様な円筒部20の先端部をかしめ広げる には、上記ハブ2りが軸方向にずれ動かない様に固定し た状態で、図2に示す様に、押型22を上記円筒部20 の先端部に強く押し付ける。この押型22の先端面(図 2の左端面) 中央部には、上記円筒部20の内側に押し 込み自在な円錐台状の凸部23を形成し、この凸部23 の周囲に断面円弧状の凹部24を、この凸部23の全周 を囲む状態で形成している。尚、この凹部24の断面形 状、並びに外径R1。及び深さD1。は、上記円筒部20を 塑性変形させて上記かしめ部19を形成する際に、この 10 円筒部20を構成する金属(炭素鋼)に圧縮方向の力を 付与しつつ、所定の形状及び大きさを有する上記かしめ 部19を形成する様に規制する。即ち、上記凹部24の 断面形状は、この凹部24により上記円筒部20の先鋒 部を塑性変形させる字により得られるかしめ部19の断 面形状が、基端部から先端部に向かう程厚さ寸法が漸次 小さくなる様に、特にこの厚さ寸法が先端部で急激に小 さくなる様に、外径側に向かう程曲率半径が小さくなる 復合曲面としている。又、外径Raiは、形成すべきかし め部19の外径R.,と同じか、このかしめ部19の外径 20 R.,よりも僅かに小さい程度(R., ≦R.,)にしてい る。更に、深さD.。は、上記内輪3の内端部内周面及び 内端面との間で上記円筒部20の先端部を挟持する事に より上記かしめ部19を形成した状態で、上記紳型22 の先端面と上記内輪3の内端面との間に隙間25が残図 する様に規制する。

【0029】上述の様な形状並びに寸法の凸部23と凹 部24とを有する押型22を上記円筒部20の先端部に 押し付ければ、この円筒部20の先端部を直径方向外方 にかしめ広げて、上記かしめ部19を形成する事ができ る。そして、このかしめ部19とハブ2りの内端部に形 成した段部8の段差面12との間で上記内輪3を挟持し て、この内輪3を上記ハブ25に固定できる。 図示の例 の場合には、上記円筒部20の内端面を塑性変形させる 率により上記かしめ部19を形成する最終段階で、上記 凹部24の内面からこのかしめ部19の外径面に、直径 方向内方に向く圧縮力が作用する。従って、このかしめ 部19の外国縁に亀裂等の損傷が発生する事を、有効に 防止できる。又、上記かしめ部19の基端部外径面が当 接する、上記内輪3の内端開口図縁部には、断面円弧状 40 の曲面部26を形成している。従って、上記かしめ部1 9の基礎部の曲率半径が小さくなる事はなく、この基礎 部にも無理な応力が加わりにくくなる。

【①①③①】上述の機に本発明の車輪支持用転がり軸受ユニットの場合には、上記ハブ2bを、炭素の含有量がの、45~1.10重量%の炭素鋼製とし、前記第一の内輪軌道7部分を焼き入れ処理により硬化させている為、上記第一の内輪軌道7表面の転がり変れ寿命を、転動体5、5から繰り返し加えられる負荷に拘らず、十分に確保できる。一方、上記円筒部20には焼き入れ処理 50 製等の損傷が発生する亭を防止し、且つ、このかしめ部

を縋す亭なく、生のままとしている。との為、上記円筒 部20を塑性変形させる為に要する力が徒に大きくなっ たり、或は上記円筒部20を塑性変形させる場合にこの 円筒部20に亀裂等の損傷が発生し易くなる亭はない。 従って、上述の様に第一の内輪軌道で部分の硬度を高く してとの第一の内輪軌道?部分の転がり疫れ寿命を確保 した場合でも、上記ハブ2 b と内輪3 とを結合する為の かしめ部19の加工が面倒になる率はない。しかも、上 記内輪3を軸受鋼等の高炭素鋼製とし、心部まで焼き入 れ硬化させている為、上記かしめ部19の加工に伴って 上記内輪3に大きな荷盒が加わった場合でも、この内輪 3の変形を防止して、転がり軸受ユニットの内部隙間 が、所望値からずれる亭を防止できる。又、上記内輪3 の外周面に形成した第二の内輪軌道9の直径が変化した り、精度が悪化する事を防止して、この第二の内輪軌道 9の転がり疲れ寿命の低下防止を図れる。

【0031】更に、図示の例の場合には、かしめ部19 を形成する為の円筒部20の肉厚を先端縁に向かう程小 さくしている為、上記ハブ20を炭素の含有量が0.4 5~1.10重量%の炭素鋼により造った場合でも、上 記円筒部20の先端部を前述の様な押型22により塑性 変形させて上記かしめ部19を形成する為に要する力 が、徒に大きくなる事がない。この為、かしめ作業に伴 ってかしめ部19に亀裂等の損傷が発生したり、或はか しめ部19により固定する内輪3に、この内輪3の直径 を予圧や転がり疲れ寿命等の耐久性に影響を及ばす程大 きく変える様な力が作用する亭を、より確実に防止でき る。特に、図示の例では、かしめ部19の先端部に圧縮 応力を作用させると共に、このかしめ部19の基端部の 曲率半径を大きくしている為、このかしめ部19の損傷 防止をより有効に図れる。尚、転動体5、5を設けた空 聞27の外端開口部はシールリング28により、内端関 口部は登体29により、それぞれ塞いで、上記空間27 に虚芥が進入したり、敢はこの空間から潤滑袖等が漏出 するのを防止している。

[0032]次に、図1~4に示す様な構造を実現する場合に於ける。各部の寸法の適正値に就いて説明する。尚、この値は、一般的な乗用車に組み込む車輪支持用転がり軸受ユニットの場合、即ち、ハブ2りに固定すべき内輪3の内径r,が20~60m程度、同じく長さ寸き人。が15~40m程度の場合で、ハブ2りの特質を、炭素の含有量が0.45~1.10重量%である炭素銅とし、内輪3の特質をSUJ2等の高炭素クロム軸の制度とした場合に関するものである。先ず、上記かしめ部19を加工する以前に於ける上記円筒部20の先端部の厚さ寸法1,は、1.5~5mmの範囲が好ましい。この円筒部20の基端部の厚さ寸法1,。と、の円筒部20の基端部の厚さ寸法1,。と、の円筒部20の基端部の厚さ寸法1,。と、の円筒部20元間が発表しい。これも先端部及び基端部の厚さ寸法1。及び1,0を2の提供が発力によります。

19による上記内輪3の支持剛性を確保できる。即ち、 変形量が多くなる円筒部20の先端部を薄肉にし、この 先端部を容易に塑性変形できる様にして、上記鎖傷の発 生防止を有効に図れる。又、上記内輪3を前記段差面1 2に向け抑え付ける為に利用する、上記円筒部20の基 鑑部を厚肉にして、上記内輪3の支持強度を十分に確保 できる。

13

【0033】又、上記円筒部20の長さ寸法しょ。は、8 ~20mm程度とする事が好ましい。この長さ寸法しょが 小さ過ぎる (Lzo < 8 mm) と、上記かしめ部19を十分 10 に形成できなかったり、或は形成時にかしめ部19の一 部に角裂等の損傷が発生し易くなる。これに対して、上 記長さ寸法しょが大き過ぎる(しょ>20㎜)と、ハブ 2 b の内端部に存在する中空部の長さ寸法が長くなり過 ぎて、このハブ21の強度が低くなり、上記内輪3に加 わるラジアル荷重に基づいて上記ハブ2万の内端部が変 形し易くなる。尚、上述の様な寸法に規制した円筒部2 ()を塑性変形させて上記かしめ部19とする作業は、競 造加工、揺動プレス加工により行なう事が好ましい。

る荷重の作用線(転動体5の接触角を表す図2の鎖線α に一致する)は、この内輪3の内周面と前記段部8との 嵌合面を通過し、上記かしめ部19を通過する事がない。 様にする。この様に規制する理由は、上記荷章が、かし め部19を直径方向内方に直接変形させる力として働か ない様にして、このかしめ部19が変形或は破損するの を防止する為である。

【0035】次に、上記内輪3のうち、第二の内輪軌道 9よりも外側寄り部分(図3のA-A線部分)の断面積 S」と、当該部分に於けるハブ2りの断面積 Sza との関 30 係に就いては、S。<Saとし、更に好ましくはS。≦ 0.94526とする。これら各部の断面積をこの様に規 制する理由は、上記ハブ2bに対する上記内輪3の支持 強度を確保する為である。即ち、上記かしめ部19と前 記段差面12との間で上記内輪3を挨持した状態で、こ の内輪3を輪方向に揮圧してこの内輪3の回転を防止す る力(輔力)は、上記ハブ2 b及び内輪3の輔方向に基 る歪み畳の差で定まる。即ち、かしめ加工中は、内輪3 の弾性変形量がハブ21の弾性変形量よりも大きい。そ して、かしめ加工終了後は、これら内輪3及びハブ2ヵ が弾性復帰して、この内輪3に轄方向の力(輪方)が付 与される。内輪3を構成する材料とハブ2 b を構成する 材料とは、弾性係数がほぼ同じである為、上述の様にS 。<5.,とすれば、かしめ加工中の弾性変形量はハブ2 りよりも内輪3の方が大きい。従って、各部の断面積を この様に規制すれば、上記内輪3に十分な圧縮荷重を付 与し続けて、上記内輪3がハブ2hに対して回転する、 所謂クリーブの発生を有効に防止できる。

【0036】次に、内輪3の周囲に配置した複数の転動 体5が玉である場合、この転動体5の中心Oから上記内 50 縁並びに上記ホルダ4.5の上鑑開口部内園面は、上方に

輪3の内端面までの距離し。は、転動体5の直径D。の 0. 75倍以上(La,≥0. 75D,) とする事が好ま しい。この距離し。」を或る程度以上確保する理由は、上 記かしめ部19の形成作業に伴って、上記転動体5の転 動面が当接する。前記第二の内輪軌道9部分の直径が大 きくなったり、 結度 (真円度、断面形状) が悪化する字 を防止する為である。即ち、この距離し。、が小さ過ぎる と、上記かしめ部19の基端部が上記第二の内輪軌道9 の内径側部分に存在する様になって、上記かしめ部19 の形成作業に伴い、上記第二の内輪軌道9部分の直径が **無視できない程度に大きくなったり上記精度が悪化する** 可能性が生じる。

【0037】次に、前述したかしめ部19の外径R .aは、内輪3の内径 r 』と、この内輪3の外繼部で上記 第二の内輪軌道9から外れた部分の外径R』との関係 で、次の範囲に規制する事が好ましい。

 $r_1 + 0.7(R_1 - r_2) \le R_{10} \le r_1 + 1.3(R_1)$ z - rz

上記かしめ部19の外径Rょ。をこの範囲に規制する事に 【0034】又、複数の転跡体5から上記内輪3に加わ 20 より、このかしめ部19に割れ等の損傷が発生する草を 防止し、且つ、上記ハブ2 bに対する上記内輪3の支持 強度を確保できる。上記外径R、が上記範囲よりも大き い方向にずれると、上記損傷が発生し易くなる。反対 に、上記外径Rigが上記範囲よりも小さい方向にずれる と、上記支持強度を確保する事が難しくなる。

> 【0038】更に、前記曲面部26の断面形状は、次の 様に規制する事が好ましい。先ず、この曲面部26の始 点寄りに傾斜面部分を設け、この傾斜面部分が上記内輪 3の中心軸に対し傾斜する角度 θ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{6}$ $_{6}$ する。又、上記内輪3の内周面と上記傾斜面部分とを連 続させる部分の曲率半径12.を、2~8㎜とする。更 に、上記領斜面部分と上記内輪3の端面とを連続させる 部分の曲率半径R1,を、3~10mとする。上記曲面部 26の断面形状をこの様に規制する事により、前記円筒 部2()を塑性変形させて上記かしめ部19を形成する際 に、このかしめ部19の基端部分に過大な応力が発生す る事がなくなり、この基端部分の破損防止を図れる。 【0039】又、上記円筒部20を塑性変形させて(か

しめ広げて)上記かしめ部19を形成する作業は、図5 40 ~6に示す様な揺動プレス装置43を使用して行なう事 が好ましい。この揺動プレス装置43は、押型22と、 抑え治具44と、ホルダ45とを備える。このうちのホ ルダ45は、十分に大きな剛性を有する金属材により有 底円筒状に構成しており、底部4.6の上面は、ハブ2.6 の外端部をがたつきなく突き当て自在な形状としてい る。又、上記抑え治具44は、それぞれが半円弧形に機 成した治具素子47、47を組み合わせる字により全体 を円輪状に構成したもので、内周縁部に円筒状の抑え部 48を備える。又、これら各治具素子47、47の外周 15

向かう程直径が大きくなる方向に傾斜したテーバ面とし ている。上記各治具素子47、47を、通孔49、49 を挿道した図示しないボルトにより、上記ホルダ45の 上部内周面に設けた取付部51に結合固定する過程で上 記各治具素子47、47は、上記テーバ面同士の係合に 基づき、直径方向内方に変位する。そして、これら各治 具素子47、47により構成する上記抑え治具44の抑 え部48の内層面を、内輪3の外層面に強く押し付け る。この様に構成する為、上記抑え治具4.4は、上記内 輪3の外径が、寸法公差(50μm)の範囲内でずれて 10 種類に関係なく得られる。 も、この内輪3を十分に強く抑え付ける率ができる。 【① 040】上記円筒部20をかしめ広げて上記かしめ 部19を形成する際には、上記ホルダ45を介して上記 ハブ2 bを上方に押圧しつつ、上記押型22を援助回転 させる。即ち、この押型22の中心軸と上記ハブ21の 中心軸とを角度θだけ傾斜させた状態で、この押型22 を、このハブ2bの中心軸を中心として回転させる。こ の様な揺動プレスにより上記かしめ部19を形成する際 には、上記押型22の円周方向の一部が前記円筒部20 を押圧する事になり、上記かしめ部19への加工作業は 20 部分的に且つ円周方向に連続して進行する事になる。と の為。一般的な鍛造加工により上記かしめ部19を形成 する場合に比べて、加工時に上記円筒部20に加える前 重を小さくできる。尚、上記抑え治具44は、上記押型 22によるかしめ部19の加工時に上記ハブ2bが振れ る事を防止して、各軌道面や転動体5、5等、構成各部 の寸法並びに形状精度が悪化する寧を防止する。

【0041】尚、上記押型22の傾斜角度 (揺動角度) 6. 揺動回転速度、押し付け荷重等は、上記かしめ部1 等に応じて設計的に定めるが、例えば、前述した様な形 状及び寸法の円筒部20を有する、一般的な無用車用の 車輪支持用転がり軸受ユニットの場合、次の範囲に定め る。先ず、傾斜角度 θ に関しては、0.5~5.0度程 度が好ましい。この傾斜角度 8 が 0.5 度未満の場合に は、上記円筒部20を塑性変形させて上記かしめ部19 とする為に要する荷量が大きくなり、各軌道面、転動体 の寸法精度並びに形状精度が悪化したり、圧痕等が生じ 易くなる。反対に、上記傾斜角度のから度を越えると、 る際に上記ハブ2 bが直径方向に振られて、前記抑え治 具44によってとのハブ2bを十分に保持できなくな り、やはり各軌道面、転動体の寸法領度並びに形状精度 が悪化したり、圧痕等が生じ易くなる。

【0042】又、揺動回転速度に関しては、100~5 () () r.p.m. (mm¹) 程度が好ましい。この揺動回転速 度が100 r.p.m.未満の場合には、加工時間が徒に長く なる。反対に、500 r.p.m.を越えると、加工硬化によ り、得られるかしめ部19が硬くなり、割れ等の損傷を 発生し易くなる。更に、上記押し付け荷倉に関しては、

15~50 1程度が好ましい。この押し付け荷重が15 t未満の場合には、上記円筒部20を十分に塑性変形さ せる事ができず、良好なかしめ部19を得られない為、 上記ハブ2 りに対する前記内輪3の結合強度が不足す る。反対に、上記押し付け荷盒が50 tを越えると、各 軌道面、転動体の寸法精度並びに形状精度が悪化した り、圧痕等が生じ易くなる。尚、上述の様な揺動プレス 装置43によりかしめ部19を形成する字による作用・ 効果は、上記ハブ2 b 及び内輪3を構成する金属材料の

【0043】次に、図7は、やはり請求項1~4に対応 する。本発明の実施の形態の第2例を示している。本例 は、車輪の回転速度を検出する為の回転速度検出装置付 の車輪支持用転がり軸受ユニットに、本発明を適用した ものである。この為に本例の場合には、内輪3の内端部 に、この内輪3の肩部30よりも小径で、この肩部30 よりも内方に突出する段部31を形成している。そし て、この肩部30に、回転速度検出装置を模成するトー ンホイール32の基端部(図7の左端部)を外嵌固定し ている。このトーンホイール32の一部は、上記肩部3 ①の内端面で上記段部31の基端部(図7の左端部) 周 岡部分に突き当てて、韓方向(図7の左右方向)に互る 位置決めを図っている。又、外輪4の内端関口部には合 成樹脂製取は金属製のカバー33を嵌合固定し、このカ バー33に包埋したセンサ34を、上記トーンホイール 32に対向させて、回転速度検出装置を構成している。 【①①44】本例の場合、上述の様に内輪3の内端部に 段部31を形成し、ハブ2bの内端部に形成したかしめ 部19により、この段部31を抑え付けている。この機 9を加工すべき車輪支持用転がり軸受ユニットの大きさ 30 な段部31を形成した分。上記かしめ部19と、上記内 輪3の外周面に形成した第二の内輪軌道9との軸方向距 離が能れる。この結果、上記かしめ部19の形成に伴う 上記第二の内輪軌道9の寸法変化をより小さく抑える字 ができる。 更には、この第二の内輪軌道 9 部分だけでな く、上記肩部30の外径が大きくなる事も防止できる。 従って、この肩部30にシールリングやトーンホイール を外嵌したり、この肩部30の外周面にシールリップを 鐕瑗させたりする場合に、シールリングやトーンホイー ルの機能が損なわれる事を防止できる。尚、本例の場合 上記円筒部20を塑性変形させて上記かしめ部19とす 40 も、内輪3の周囲に配置した複数の転動体5が玉である 場合。この転動体5の中心〇から上記第二の内輪部材3 の内端面までの距離L。は、転動体5の直径D,の(). 75倍以上(L。2≥0.75D。)とする亭が好まし い。その他の部分の構成及び作用は、上述した第1例の 場合と同様であるから、同等部分には同一符号を付して 重複する説明を省略する。尚、本例の場合(並びに以下 に述べる第3~11例の場合)も、ハブのうちで焼き入 れ硬化している部分を斜格子で表している。

【0045】次に、図8は、やはり請求項1~4に対応 50 する、本発明の実施の形態の第3例を示している。前述

した第1例及び上述した第2例が、何れも、回転しない 外輪4の内側にハブ2 bを回転自在に設けていたのに対 して、本例の場合には、外輪4の側が回転する様にして いる。即ち、本例の場合には、この外輪4が、車輪と共 に回転する。回転側と静止側とが、直径方向で内外逆に なり、それに伴って軸方向の内外が一部逆になった以外 の構成及び作用は、前述した第1例の場合と同様である から、同等部分には同一符号を付して重複する説明を省 略する。

17

【0046】次に、図9は、やはり請求項1~4に対応 10 する。本発明の実施の形態の第4例を示している。前述 した第1~2例及び上述した第3例が、何れも、回転駆 動しない従動輪(FR車及びRR車の前輪、FF車の後 輪)を回転自在に支持する為の車輪支持用転がり軸受ユ ニットに本発明を適用していたのに対して、本例の場合 には、駆動輪(FR車及びRR車の後輪、FF車の前 輪、4WD車の全輪〉を回転自在に支持する為の車輪支 特用転がり発受ユニットに本発明を適用したものであ る.

状に形成すると共に、このハブ2 cの内国面に雌スプラ イン部35を形成している。そして、この難スプライン 部35に、等速ジョイント36に付属で、外周面に能え プライン部を形成した駆動軸37を挿入している。-方、上記ハブ2cの内嶋部外周面に形成した段部8には 内輪3を外嵌しており、との内輪3の内端面内径寄り部 分に段部38を形成している。そして、上記ハブ2cの 内端部に形成したかしめ部19を、上記段部38に向け かしめ付けている。この状態で上記かしめ部19は、上 て、上記等速ジョイント36の本体部分39の外端面 は、上記内輪3の内端面に当接している。この様に、本 体部分39の外端面を内輪3の内端面に当接させた状態 で、上記駆動軸37の先端部で上記ハブ2cの外端面よ りも突出した部分にナット40を螺合し、更に緊縮する 亭により、上記内輪3とハブ2cとを、輪方向に亙り強 く挨持している。

【0048】尚、本例の構造で、内輪3の周囲に配置し た複数の転動体5が玉である場合、好ましくは、この転 asを、転動体5の直径D。(図3参照)の()、75倍以 上(し,,≧0.75D,)とする。その他の部分の構成 及び作用は、前述した第1例の場合と同様であるから、 同等部分には同一符号を付して重複する説明を省略す

【0049】尚、本例の場合には、ハブ2cとして中空 円筒状のものを使用している為、このハブ2cの断面積 を内輪3の断面積よりも大きくする事が難しい場合も考 えられる。但し、本例の構造は、使用状態では上記ナッ ト38の緊縮に基づく軸力により、上記内輪3をハブ2 50 41.3の外周面に、それぞれ形成している。この様な

cの段差面12に強く押し付けるので、この内輪3から 上記かしめ部19に、このかしめ部19を緩める方向に 作用する力は限られたものとなる。従って、上記断面積 の関係を満たせなくても、上記かしめ部19の耐久性が 損なわれる字はない。

【0050】次に、図10は、やはり請求項1~4に対 応する、本発明の実施の形態の第5例を示している。本 例の場合には、ハブ2 cの内端部に形成したかしめ部1 9 a を、内輪3の内端面に向けかしめ付けて、このかし め部19 a を、この内輪3の内端面よりも軸方向内方に 突出させている。又、このかしめ部198の内側面側に 円輪状の平坦面42を形成し、この平坦面42と等速ジ ョイント36の本体部分39の外端面とを当接させてい る。上記かしめ部19aは、生のままの炭素鋼である が、上記平坦面42により上記本体部分39の外端面と 広い面積で当接するので、ナット40の緊縮時にも、当 接部に加わる面圧が極端に高くなる事はない。従って、 長期間に互る使用に拘らず、上記かしめ部19 aがへた る事を防止して、このかしめ部19aのへたりにより、 【0047】との為に本例の場合には、ハブ2cを円筒 20 上記ナット40の緩みや転勤体5、6設置部分のがたつ きが発生する事を有効に防止できる。その他の部分の機 成及び作用は、上述した第4例の場合と同様であるか 5. 同等部分には同一符号を付して重複する説明を省略

【0051】次に、図11~13は、やはり請求項1~ 4に対応する。本発明の実施の形態の第6~8例を示し ている。上述した第1~5例の場合には、何れもかしめ 部19を形成する部材に能す焼き入れ硬化層を迫続的に 形成していたのに対し、これら第5~7例の場合。上記 記内輪3の内端面よりも内方に突出する亭はない。従っ 30 焼き入れ硯化層は、特に必要とする部分毎に不迫続に形 成している。即ち、図11に示した第6例の場合は、第 一の内輪軌道?部分と段差面12及びこの段差面12の 内周寄り部に存在する陽R部とにのみ、図12に示した 第7例の場合は、第一の内輪軌道7部分と段差面12及 び上記隔R部及び段部8の基半部外周面とにのみ、図1 3に示した第8例の場合は、第一の内輪軌道7部分及び 第一のフランジ6の基準部分と段差面12及び上記陽R 部及び段部8の基半部外周面とにのみ、それぞれ上記焼 き入れ硬化層を形成している。但し、前述した通り、上 動体5の中心〇から上記段部38の段差面までの距離L 49 記憶き入れ硬化層は、上途の様に特に必要とする部分毎 に不連続に形成するよりも、図1、7、8、9、10に 示した第1~5例の様に、隣り合う焼き入れ硬化層同士 を連続して形成した方が、上記焼き入れ硬化層を縮す部 材の強度及び耐久性の向上を図れる。その他の部分の標 成及び作用は、前述した第1例の場合と同様である。 【0052】次に、図14は、請求項5に対応する、本 発明の実施の形態の第9例を示している。本例の事輪支 **毎用転がり軸受ユニットは、第一、第二の内輪軌道7、** 9を、ハブ2dの段部8aに外嵌した第一、第二の内輪

第一、第二の各内輪41、3は、共にSUJ2等の高炭 素クロム軸受鋼の様な高炭素鋼製とし、心部まで焼き入 れ硬化させている。又、これら第一、第二の内輪41、 3は、上記段部8aに外嵌した状態で、上記ハブ2aの 内端部に形成したかしめ部19と第一のフランジ6の基 部に形成した段差面12との間に挟持している。

19

【0053】又、本例の場合、上記ハブ2gは、炭素の 含有量が(). 45 重量%未満の炭素鋼とする事が可能と なる。そして、図14に斜格子で示した部分、即ち、上 記第一のフランジ6の基端部分、上記段差面12を含む 10 上記段部8aの基端部分、及び上記段部8aの外層面の 内端寄り部を除く部分に焼き入れ処理を施して、当該部 分の硬度を高くしている。但し、少なくとも上記かしめ 部19を形成する部分である上記ハブ2日の円筒部2日 には、上記焼き入れ処理を施さずに生のままとしてい る。尚、ハブ2 dの上記各部分に焼き入れ処理を能す理 由、及び上記斜格子で示した焼き入れ硬化層の内端の軸 方向位置(図14のイ点)を規制する理由は、前途した 第1例の場合と同様である。

り軸受ユニットの場合、ハブ2 d 自体には内輪軌道を設 けていない為、 とのハブ2 dの材料としてかしめ部19 を形成し易い、炭素の含有量が0.45重置%未満の炭 素鋼を使用できる。但し、上記ハブ2 d は上述の図 1 4 に斜格子で示した部分に焼き入れ硬化層を形成してい る。この為、上記焼き入れ硬化層を形成した部分にフレ ッチング摩耗が発生したり、或はこの焼き入れ硬化層を 形成した部分が変形する事を防止して、上記ハブ2dの 強度及び耐久性を確保できる。一方、少なくとも上記ハ ブ2 dに設けた円筒部20に、上記鏡き入れ処理を施さ 30 ず生のままとしている為、上記ハブ2dと第一、第二の 内輪41、3とを結合する為のかしめ部19の加工が面 倒になったり、このかしめ部19に損傷が発生する事は

【①055】又、上記段部8aに外嵌する第二の内輪3 を軸受鋼等の高炭素鋼製とし、心部まで焼き入れ硬化さ せている。この為、前述した第1例の内輪3の場合と同 様. 上記ハブ2 dに形成するかしめ部19の加工に伴っ て上記第二の内輪3に大きな荷重が加わった場合でも、 上の内部隙間が、所望値からずれる事を防止できる。 又、この第二の内輪3の外層面に形成した第二の内輪軌 道9の直径が変化したり、結度が悪化する亭を防止し て、この第二の内輪軌道9の転がり疲れ寿命の低下防止 を図れる。尚、本例の場合、上記ハブ2 d を、炭素の含 有量が(). 45~1.10)重量%の炭素鋼製とする率も できる。この場合には、上記ハブ2 d の強度及び耐久性 は更に向上する。その他の部分の構成及び作用は、前述 した第1例の場合と同様である。

【0056】尚、本例(並びに後述する第10~11

例) の場合、上記ハブ2 d を模成する炭素鋼中の炭素の 含有量を(). 2()~1.1()重置%の範囲に規制し、少 なくとも上記円筒部20の硬度を、かしめ加工前で日々 200~300とする。上記ハブ20は、この様な条件 を満たす炭素鋼に鍛造加工を施す事により造る。又、上 記ハブ2 d を構成する炭素鋼中の炭素の含有量が(). 2 0~0.60重量%の範囲である場合には、鍛造加工 後、上記円筒部20をかしめ広げる以前に於いて、少な くともこの円筒部20に競鈍処理を超さない。これに対 して、上記ハブ2dを構成する炭素鋼中の炭素の含有量 がり、60~1、10重量%の範囲である場合には、敍 造加工後、上記円筒部20をかしめ広げる以前に於い て、少なくともこの円筒部20に焼鈍処理を施す。ハブ 2 d の硬度、鍛造加工後に於ける焼鈍の要否に就いて は、前述の第1例の場合と同様である。

【0057】次に、図15~16は、やはり請求項5に 対応する、本発明の実施の形態の第10~11例を示し ている。これら第10~11例の場合には、ハブ20に 施す焼き入れ硬化層を、転がり軸受の使用時に、特に大 【0054】上述の様に構成する本例の車輪支持用転が 20 きな荷重を受ける部分にのみ形成している。即ち、図1 5に示した第10例の場合は、段差面12を含む上記段 部8aの基端部分にのみ、図16に示した第11例の場 台は、上記段差面12を含む上記段部8aの基端部分及 び上記第一のフランジ6の基端部分にのみ、それぞれ上 記憶き入れ硬化層を形成している。その他の部分の構成 及び作用は、上述した第9例の場合と同様である。

> 【0058】又、図示は省略したが、以上に述べた各案 施の形態で、各かしめ部19と内輪 (第二の内輪) 3と は、必ずしも対向部分の全面に互って密接しなくても良 い。対向部分の一部に隙間が存在しても、本発明の作用 ・効果は同様に得られる。 尚、上記かしめ部19を形成 する以前に於ける円筒部20の硬度はHv200~30 ①程度であるが、この円筒部20をかしめ広げて上記か しめ部19とした状態では、加工硬化によりこのかしめ 部19の硬度は、HV200~300よりも大きくな

[0059]

【発明の効果】本発明の車輪支持用転がり軸受ユニット は、以上に述べた通り構成され作用するので、低コスト この第二の内輪3の変形を防止して、転がり軸受ユニッ 40 でしかも十分な耐久性を有する車輪支持用転がり軸受ユ ニットを実現できる。更に、図示の例の様に、かしめ部 を形成する為の円筒部の形状を、この円筒部を直径方向 外方にかしめ広げる以前の状態で、先端縁に向かう程小 さくする事により、かしめ部に亀製等の損傷が発生する 亭を防止すると共に、このかしめ部によりハブに固定さ れる内輪の直径が実用上問題になる程変化する事を防止 できる。そして、この内輪がその固定作業に基づいて損 傷する可能性を低くすると共に予圧を適正値に維持で き、しかも部品点数、部品加工、組立工数の減少によ 50 り、コスト低減を図れる。

(12)

特開平11-129703

【図面の簡単な説明】 【図1】本発明の実施の形態の第1例を示す半部断面 ☒. 【図2】第1例の構造の製造時に内輪を固定する為、ハ

21

ブの内端部をかしめ広げる状態を示す部分拡大断面図。

【図3】同じくハブの内端部をかしめ広げる以前の状態 で示す部分拡大断面図。

【図4】図3のA-A断面図。

【図5】揺動プレス装置の要部縦断面図。

【図6】揺動プレス装置に組み込む抑え治具の平面図。 10 23 凸部

【図7】本発明の実施の形態の第2例を示す半部断面 図.

【図8】同第3例を示す半部断面図。

【図9】同第4例を示す半部断面図。

【図10】同第5例を示す半部断面図。

【図11】同第6例を示す半部断面図。

【図12】同第7例を示す半部断面図。

【図13】同第8例を示す半部断面図。

【図14】同第9例を示す半部断面図。

【図15】同第10例を示す半部断面図。

【図16】同第11例を示す半部断面図。

【図17】従来構造の第1例を示す半部断面図。

【図18】同第2例を示す断面図。

【符号の説明】

1. 1a 車輪支持用ハブユニット

2. 2a, 2b. 2c, 2d ハブ

3 内輪 (第二の内輪)

4 外輪

5 転動体

6 第一のフランジ

7 第一の内輪軌道

8.8a 段部

9 第二の内輪軌道

10 雑ねじ部

11 ナット

12.12a 段差面

13 第二の内輪部材

* 14 係止凹部

15 第一の外輪軌道

16 第二の外輪軌道

1? 第二のブランジ

18 ハブ

19.19a かしめ部

2() 円筒部

21 テーパ孔

22 押型

24 凹部

25 隙間

26 曲面部

27 空間

28 シールリング

29 登体

30 肩部

31 段部

32 トーンホイール

29 33 カバー

34 センサ

35 雌スプライン部

36 等速ジョイント

37 駆動軸

38 段部

39 本体部分

40 ナット

4.1 第一の内輪

42 平坦面

30 4.3 揺動プレス装置

4.4 抑え治具

45 **ホルダ**

4.6 底部

47 治具案子

48 抑え部

49 通孔

50 取付部

[図4]

(15) 特関平11-129703

(15)

特開平11-129703

フロントページの続き

(72)発明者 沢井 弘幸

神奈川県蘇沢市島沼神明一丁目5番50号 日本精工株式会社内