Unit 13: An introduction to AS Level organic chemistry

Subunit 13.2: Characteristic organic reactions

Topical Question No: 1

19 Fumaric acid can be converted into oxaloacetic acid by a two-step process involving the intermediate **Q**.

Each of these steps can be achieved in the laboratory by a single reagent.

What could be the intermediate **Q** and the reagent for step 2?

	Q	reagent for step 2
Α	HO ₂ CCHBrCH ₂ CO ₂ H	warm acidified KMnO₄
В	HO₂CCHBrCH(OH)CO₂H	warm NaOH(aq)
С	HO ₂ CCH(OH)CH ₂ CO ₂ H	Fehling's solution
D	HO ₂ CCH(OH)CH ₂ CO ₂ H	warm acidified K ₂ Cr ₂ O ₇

Topical Question No: 2

26 Which compound, on reaction with hydrogen cyanide, produces a compound with a chiral centre?

A CH₃CHO

B CH₃CH₂COCH₂CH₃

C CH₃CO₂CH₃

D HCHO

Topical Question No: 3

23 Chloroethane can be used to make sodium propanoate.

chloroethane
$$\,\rightarrow\,$$
 Q $\,\rightarrow\,$ sodium propanoate

The intermediate, Q, is hydrolysed with boiling aqueous sodium hydroxide, to give sodium propanoate.

Which reagent would produce the intermediate, Q, from chloroethane?

- A concentrated ammonia solution
- B dilute sulfuric acid
- C hydrogen cyanide
- **D** potassium cyanide

Topical Question No: 4

- 21 What is true of every nucleophile?
 - **A** It attacks a double bond.
 - **B** It has a lone pair of electrons.
 - **C** It is a single atom.
 - **D** It is negatively charged.

Answer Key

- 1. Error
- 2. Error
- 3. Error
- 4. Error