Price Discrimination, Bundling, and Tying

Reference: Pepall, Richards, and Norman, chapters 5, 6, 8.2

- Price data for UA Flight 815 from Chicago-LA, Oct. 15, 1997
- Why is there such variation in prices?
 - Quality differences (First class vs. economy seating)
 - O Airlines use time of purchase to infer willingness to pay

Ticket Price	Number of Passengers	Average Advance Purchase (days)
\$2,000 or more	18	12
\$1,000 - \$1,999	15	14
\$800 - \$999	23	32
\$600 - \$799	49	46
\$400 - \$599	23	65
\$200 - \$399	23	35
Less than \$199	34	26
0	19	-

Price discrimination

- o Charging different prices to different consumers for the same product
- o Charging a consumer a price which varies with the quantity bought
- Examples
 - o Movie or museum tickets sold at **discounted prices** for students and senior citizens
 - Singapore Flyer: \$33.00 for an adult, \$24.00 for a senior citizen
 - o coupons
 - o prescription drugs and movie DVDs are cheaper in some countries than others
- But not all price differences reflect price discrimination → e.g., there may be cost differentials to supplying a product to different groups of consumers

Starbucks: price discrimination?

Brewed Coffee Tall: 0.01/ml Grande: .009/ml Venti: .008/ml

Fixed cost but when divided when the amount it is smaller.

- Why is price discrimination profitable?
 - Because consumers have different valuations/willingnesses to pay
 - → firms try to charge consumers with higher valuations a higher price
- Conditions necessary for price discrimination
 - \circ the firm must have some market power (able to set p > mc)
 - the firm must be able to distinguish consumers on the basis of their WTP
 - o the firm must be able to **prevent resale** from consumers who pay a lower price to consumers who are willing to pay a higher price
 - Canada to US drug resales

There are three classifications of price discrimination:

- o **First-degree** price discrimination (personalized pricing): the firm is able to charge the maximum each consumer is willing to pay
- o **Second-degree** price discrimination (menu pricing): the price per unit depends on the number of units purchased the firm cannot observe the WTP, self select pricing
- o **Third-degree** price discrimination (group pricing): consumers are grouped with each group having its own price

Examples of how price discrimination is implemented:

- o two-part tariff: the firm charges a lump-sum fee and a per unit price
 - ex. amusement parks (Disneyland pricing)
 Personal seat license in NFL: fans pay a fee of \$250 to \$4000 for the right to buy season tixs
- o quantity discounts: a discount for larger purchases
 - ex. 2-for-1 schemes, 12-pack of Coke Light vs. 1 can (\$0.78 vs. \$1 per can at NTUC Fairprice)
- o **tie-in-sales**: the consumer can buy one product only if another product is also purchased
 - ex. razor and razor blades Polaroid cameras

- Consumers can be grouped by some easily observable characteristic that serves as a good proxy for WTP
 - o students and senior citizens
- A uniform price is charged to all consumers of a particular group
- Different uniform prices are charged to different groups → group pricing
 - o This is the simplest pricing scheme. Others are possible.
- Examples:
 - o early-bird specials and happy hours
 - o airline tickets: day ticket is purchased, whether there is a weekend layover, etc.

- The pricing rule is:
 - o Consumers with a **low elasticity of demand** are charged a **high price** and consumers with a **high elasticity of demand** are charged a **low price**
- Recall that the relationship between MR and elasticity: $MR_i = p_i \left(1 + \frac{1}{\varepsilon_i} \right)$
- Output is allocated such that MR is equalized across markets (and equal to MC)
- With two markets and constant MC:

$$p_1 \left(1 + \frac{1}{\varepsilon_1} \right) = p_2 \left(1 + \frac{1}{\varepsilon_2} \right) = MC \implies p_i = MC / \left(1 + \frac{1}{\varepsilon_i} \right)$$
with two different price elasticities

Price will be higher in the market with the more inelastic/less elastic demand

o ex.
$$\varepsilon_1 = -5$$
, $\varepsilon_2 = -2$ → $p_1 = 1.25MC$, $p_2 = 2MC$

- Ex: Harry Potter and the Deathly Hallows book
- Inverse demand in US: $\mathbf{p}_{\mathrm{U}} = 36 4\mathbf{Q}_{\mathrm{U}}$, in Europe: $\mathbf{p}_{\mathrm{E}} = 24 4\mathbf{Q}_{\mathrm{E}}$, $\mathbf{MC} = 4$
- Suppose initially that the publisher treats the two markets as a single, integrated market → the same price is charged in the US and Europe
- Invert to find demand:

$$p_U = 36 - 4Q_U \rightarrow Q_U = 9 - \frac{1}{4} p_U \text{ for } p_U \le 36$$

$$p_E = 24 - 4Q_E \rightarrow Q_E = 6 - \frac{1}{4} p_E \text{ for } p_E \le 24$$

• Denote $\mathbf{p} = \mathbf{p}_{\mathbf{U}} = \mathbf{p}_{\mathbf{E}}$. Aggregate demand:

$$Q = Q_U + Q_E = 9 - \frac{1}{4}p \quad \text{for } 24 \le p \le 36$$

$$Q = Q_U + Q_E = 15 - \frac{1}{2}p \quad \text{for } p < 24$$

At these prices only the US market is active

Qe=0

Both markets are active

• Invert the direct demands:

$$Q = 9 - \frac{1}{4} p_U \text{ for } 24 \le p_U \le 36$$

$$\rightarrow p = 36 - 4Q \text{ for } Q \le 3$$

$$Q = 15 - \frac{1}{2} p_U \text{ for } p_U \le 24$$

$$\rightarrow p = 30 - 2Q \text{ for } 3 \le Q \le 15$$

Kinked point at \$24

Marginal revenue:

$$MR = 36 - 8Q \quad \text{for } Q \le 3$$

$$MR = 30 - 4Q$$
 for $3 < Q \le 15$

Profit maximization:

$$MR = MC \rightarrow 30 - 4Q = 4$$

 $\rightarrow Q^* = 6.5, p^* = 17$

Substitute the price into the individual demand functions:

$$Q_U = 9 - \frac{1}{4}p = 9 - \frac{1}{4} \times 17 = 4.75$$
 million

$$Q_E = 6 - \frac{1}{4}p = 6 - \frac{1}{4} \times 17 = 1.75$$
 million

Aggregate profit:

$$\pi = (p-c)Q = (17-4)6.5 = $84.5 \text{ million}$$

Assumption: Separate markets

- But the firm can do better than this. Notice that MR is not equal to MC in either market \rightarrow MR = 10 > MC in Europe and MR = -2 < MC in the US
 - o The firm is selling too many books in the US and too few in Europe
 - o If you take one of the books sold in the US and sell it in Europe instead, revenue and profit would increase by \$12
 - o Now suppose that the publisher sets a different price in each market

$$\pi = p_1 q_1 + p_2 q_2 - c(q_1 + q_2) \rightarrow MR_1 = c, MR_2 = c$$

Profit function

assumes that the cost remains constant

• From the US market:

$$MR = MC \rightarrow 36 - 8Q_U = 4 \rightarrow Q_U^* = 4, p_U^* = $20$$

From the European market:

$$MR = MC \rightarrow 24 - 8Q_E = 4 \rightarrow Q_E^* = 2.5, p_E^* = $14$$

- Aggregate sales are 6.5 million books, the same as under uniform pricing the fact the quantity sold is the same is a coincidence
- Profit: $\pi = \pi_U + \pi_E = 20x4 + 14x2.5 6.5x4 = 89 million
 - Profit is \$4.5 million greater than under no price discrimination

What if MC was not constant but increasing?

$$\circ$$
 MC = 0.75 + Q/2

- **No price discrimination.** Apply these steps to find the equilibrium:
 - o Calculate aggregate demand as done previously
 - Calculate MR \rightarrow MR = 30 4Q if both markets are served
 - MR = MC \rightarrow 30 4Q = 0.75 + Q/2 \rightarrow Q* = 6.5
 - o Find price from aggregate demand → p = 30 2Q → $p^* = 17$
 - Units sold: $Q_U^* = 9 17/4 = 4.75$, $Q_E^* = 6 17/4 = 1.75$

- Suppose the publisher instead price discriminates
 - O How much should be produced in total and how should the output be distributed across the two markets?
- The firm's decision is always to find quantity such that MR = MC but now it must think in the aggregate since the cost function depends on aggregate output
- Profit maximization: If the maximum MR from selling a book is greater than the MC, the firm should sell another book
 - \circ max(MR_E, MR_{US}) > MC then sell another book
- Following this rule results in MR that is the same across markets (when demand is continuous)

Numerical (discrete) example

Unit	MR_1	MR ₂	Unit	MR	MC	_
1	15	11	1	15	1	
2	13	9	2	13	3	
3	9	7	3	11	5	
4	8	5	4	9	8	
5	2	3	5	9	9 Sto	op here where MR=MC
6	1	1	6	8	12	

- Sell three units in market 1, sell two units in market 2, $MR_1 = MR_2$
- Generally: derive *aggregate* MR and set it equal to MC
 - o For a given MR, how many units are sold in aggregate?

- Mathematically...
- Derive the MR in each market, invert and add (horizontally)

o
$$MR = 36 - 8Q_U$$
 and $MR = 24 - 8Q_E$ invert \Rightarrow $Q_U = 4.5 - MR/8$ and $Q_E = 3 - MR/8$ \Rightarrow sum and then invert again:

$$Q = Q_U = 4.5 - MR/8 \text{ for } 24 < MR \le 36$$
 $\rightarrow MR = 36 - 8Q \text{ for } Q < 1.5$

$$Q = Q_U + Q_E = 7.5 - MR/4 \text{ for } MR \le 24$$

$$\rightarrow MR = 30 - 4Q \text{ for } Q \ge 1.5$$

■ MR = MC
$$\rightarrow$$
 30 – 4Q = 0.75 + Q/2 \rightarrow Q* = 6.5, MR = 4

• Find quantities by equating each market's MR to 4:

$$\circ$$
 36 - 8Q_U = 4 \rightarrow Q_U* = 4, 24 - 8Q_E = 4 \rightarrow Q_E* = 2.5

Find prices from each market's demand curve:

$$p_{IJ}^* = 36 - 4Q_{IJ}^* = 36 - 4x4 = 20, p_{E}^* = 24 - 4Q_{E}^* = 24 - 4x2.5 = 14$$