Prednášky z Matematiky (4) — Logiky pre informatikov

Ján Kľuka, Jozef Šiška

Katedra aplikovanej informatiky FMFI UK Bratislava

Letný semester 2017/2018

10. prednáška

Korektnosť tabiel pre logiku prvého rádu

30. apríla 2018

Obsah 10. prednášky

Oznamy

3 Logika prvého rádu Tablá pre logiku prvého rádu Korektnosť tablového kalkulu pre logiku prvého rádu Ďalšie korektné pravidlá

Náhradné cvičenia

Náhradné cvičenia:

stredy 2. a 9. mája 2AIN1 14:50 M-I H-6 2AIN2 16:30 M-IX 2AIN3 16:30 M-XI

piatky 4. a 11. mája 3AIN*, ktorí nemôžu v stredu 9:50 F1-328

Organizácia skúšok

Termíny skúšok:

Termín	Písomná časť	Ústna	časť
Riadny	pon 21. mája	13:00 posl. A	pia 25. mája 9:30 I-9
1. opravný	pia 1. júna	9:30 posl. B	pia 8. júna 9:30 I-9
2. opravný	uto 19. júna	9:30 posl. A	pia 22. júna 9:30 I-9

Ústna skúška:

- Poradie študentov je dané poradím zapísania sa v AIS.
- Paralelne traja skúšajúci.
- Príprava + odpoveď: 15 + 15 min.
- Počas odpovede jednej trojice študentov sa ďalšia trojica bude pripravovať.

Sémantika logiky prvého rádu

Štruktúry

Definícia 3.38

Nech \mathcal{L} je jazyk logiky prvého rádu.

Štruktúrou pre jazyk $\mathcal L$ nazývame dvojicu $\mathcal M=(M,i)$, kde

doména M štruktúry \mathcal{M} je ľubovoľná **neprázdna** množina;

interpretačná funkcia i štruktúry \mathcal{M} je zobrazenie, ktoré

- každému symbolu konštanty c jazyka \mathcal{L} priraďuje prvok $i(c) \in M$;
- každému funkčnému symbolu f jazyka £ s aritou n
 priraďuje funkciu i(f): Mⁿ → M;
- každému predikátovému symbolu P jazyka \mathcal{L} s aritou n priraďuje množinu $i(P) \subseteq M^n$.

Hodnota termu

Definícia 3.42

Nech $\mathcal{M} = (M, i)$ je štruktúra pre jazyk logiky prvého rádu \mathcal{L} , nech e je ohodnotenie premenných.

Hodnotou termu t v štruktúre \mathcal{M} pri ohodnotení premenných e je prvok z \mathcal{M} označovaný $\mathbf{t}^{\mathcal{M}}[e]$ a zadefinovaný induktívne nasledovne:

$$x^{\mathcal{M}}[e] = e(x)$$
, ak x je premenná, $a^{\mathcal{M}}[e] = i(a)$, ak a je konštanta, $(f(t_1, \ldots, t_n))^{\mathcal{M}}[e] = i(f)(t_1^{\mathcal{M}}[e], \ldots, t_n^{\mathcal{M}}[e])$, ak t_1, \ldots, t_n sú termy.

Splnenie formuly v štruktúre

Definícia 3.44

Nech $\mathcal{M} = (M, i)$ je štruktúra, e je ohodnotenie premenných.

Relácia *štruktúra* \mathcal{M} *spĺňa formulu* A *pri ohodnotení* e (skrátene $\mathcal{M} \models A[e]$) má nasledovnú induktívnu definíciu:

- $\mathcal{M} \models t_1 \doteq t_2[e] \text{ vtt } t_1^{\mathcal{M}}[e] = t_2^{\mathcal{M}}[e],$
- $\mathcal{M} \models P(t_1, \ldots, t_n)[e] \text{ vtt } (t_1^{\mathcal{M}}[e], \ldots, t_n^{\mathcal{M}}[e]) \in i(P),$
- $\mathcal{M} \models \neg A[e] \text{ vtt } \mathcal{M} \not\models A[e],$
- $\mathcal{M} \models (A \land B)[e]$ vtt $\mathcal{M} \models A[e]$ a zároveň $\mathcal{M} \models B[e]$,
- $\mathcal{M} \models (A \lor B)[e] \text{ vtt } \mathcal{M} \models A[e] \text{ alebo } \mathcal{M} \models B[e],$
- $\mathcal{M} \models (A \rightarrow B)[e]$ vtt $\mathcal{M} \not\models A[e]$ alebo $\mathcal{M} \models B[e]$,
- $\mathcal{M} \models \exists x A[e]$ vtt pre nejaký prvok $m \in M$ máme $\mathcal{M} \models A[e(x/m)]$,
- $\mathcal{M} \models \forall x A[e]$ vtt pre každý prvok $m \in M$ máme $\mathcal{M} \models A[e(x/m)]$,

pre všetky arity n > 0, všetky predikátové symboly P s aritou n, všetky termy $t_1, t_2, ..., t_n$, všetky premenné x a všetky formuly A, B.

Voľné premenné a splnenie formuly. Teórie

Tvrdenie 3.58

Nech \mathcal{M} je štruktúra pre \mathcal{L} , nech e_1 a e_2 sú ohodnotenia, nech X je formula jazyka \mathcal{L} , nech S je množina formúl jazyka \mathcal{L} .

- Ak sa ohodnotenia e₁ a e₂ zhodujú na voľných premenných formuly X (teda $e_1(x) = e_2(x)$ pre každú $x \in free(X)$), tak $\mathcal{M} \models X[e_1]$ vtt $\mathcal{M} \models X[e_2]$.
- Ak sa ohodnotenia e₁ a e₂ zhodujú na voľných premenných všetkých formúl z S, tak $\mathcal{M} \models S[e_1]$ vtt $\mathcal{M} \models S[e_2]$.

Definícia 3.59

Formula A jazyka \mathcal{L} je **uzavretá** vtt neobsahuje žiadne voľné výskyty premenných (teda free(x) = \emptyset). **Teóriou** v jazyku \mathcal{L} je každá spočítateľná množinu uzavretých formúl jazyka \mathcal{L} .

Splnenie množiny formúl, teórie

Definícia 3.61 (+ 3.46)

Nech S je množina formúl jazyka \mathcal{L} , nech A je formula jazyka \mathcal{L} , nech \mathcal{M} je štruktúra pre \mathcal{L} , nech e je ohodnotenie indiv. premenných.

Štruktúra \mathcal{M} (súčasne) spĺňa množinu S pri ohodnotení e ($\mathcal{M} \models S[e]$) vtt pre všetky formuly A z S platí $\mathcal{M} \models A[e]$.

Štruktúra \mathcal{M} spĺňa formulu A ($\mathcal{M} \models A$) vtt A je splnená v štruktúre \mathcal{M} pri každom ohodnotení e.

Štruktúra \mathcal{M} *spĺňa množinu* S (\mathcal{M} je *modelom* S, $\mathcal{M} \models S$) vtt pre všetky formuly A z S platí $\mathcal{M} \models A$.

Nezávislosť od ohodnotení

Dôsledok 3.62

Nech X je uzavretá formula jazyka \mathcal{L} , nech \mathcal{M} je štruktúra pre \mathcal{L} . Potom sú nasledujúce tvrdenia ekvivalentné:

- a $\mathcal{M} \models X$ (teda $\mathcal{M} \models X[e]$ pre každé e),
- **b** $\mathcal{M} \models X[e]$ pri aspoň jednom ohodnotení e.

Dôsledok 3.63

Nech T je teória v jazyku \mathcal{L} , nech \mathcal{M} je štruktúra pre \mathcal{L} . Potom sú nasledujúce tvrdenia ekvivalentné:

- **b** $\mathcal{M} \models \mathsf{T}[e]$ pre všetky ohodnotenia e,
- \bigcirc $\mathcal{M} \models T[e]$ pre aspoň jedno ohodnotenie e.

Splniteľnosť, nesplniteľnosť, platnosť

Definícia 3.47

Nech X je formula jazyka $\mathcal L$ a nech S je množina formúl jazyka $\mathcal L.$

Formula X je **splniteľná** vtt aspoň jedna štruktúra \mathcal{M} pre \mathcal{L} spĺňa X pri aspoň jednom ohodnotení e.

Množina formúl S je **splniteľná** vtt aspoň jedna štruktúra \mathcal{M} pre \mathcal{L} spĺňa S pri aspoň jednom ohodnotení e.

Formula X (množina formúl S) je **nesplniteľná** vtt nie je splniteľná.

Definícia 3.48

Nech X je formula v jazyku \mathcal{L} .

Formula X je **platná** (skrátene $\models X$) vtt

každá štruktúra $\mathcal M$ pre $\mathcal L$ spĺňa X pri každom ohodnotení e.

Prvorádové vyplývanie

Definícia 3.49

Nech X je formula v jazyku \mathcal{L} , nech S je množina formúl v jazyku \mathcal{L} . Formula X (prvorádovo) vyplýva z S

(tiež X je **logickým dôsledkom** S, skrátene $S \models X$)

vtt pre každú štruktúru $\mathcal M$ pre $\mathcal L$ a každé ohodnotenie e platí, že ak $\mathcal M$ spĺňa S pri e, tak $\mathcal M$ spĺňa X pri e.

Vzťah splniteľnosti a vyplývania

Podobne ako vo výrokovej logike platí:

Tvrdenie 3.51

Nech X je formula a S je množina formúl v jazyku \mathcal{L} .

Formula X prvorádovo vyplýva z S vtt

množina $S \cup \{\neg X\}$ je prvorádovo súčasne nesplniteľná.

Substitúcie

Substitúcia a aplikovateľnosť

Definícia 3.64 (Substitúcia)

Substitúciou (v jazyku \mathcal{L}) nazývame každé zobrazenie $\sigma: V \to \mathcal{T}_{\mathcal{L}}$ z nejakej množiny indivíduových premenných $V \subseteq \mathcal{V}_{\mathcal{L}}$ do termov jazyka \mathcal{L} .

Príklad 3.65

Napríklad $\sigma_1 = \{x \mapsto \text{matka}(y), y \mapsto \text{Adelka}\}\$ je substitúcia.

Aplikovateľnosť substitúcie

Definícia 3.67 (Substituovateľnosť, aplikovateľnosť substitúcie)

Nech A postupnosť symbolov, nech t je term, x je premenná, nech $\sigma = \{x_1 \mapsto t_1, \dots, x_n \mapsto t_n\}$ je substitúcia.

Term t je substituovateľný za premennú x v A vtt pre žiadnu premennú y vyskytujúcu sa v t žiaden voľný výskyt premennej x v A sa nenachádza v oblasti platnosti kvantifikátora $\exists y$ ani $\forall y$ v A.

Substitúcia σ je *aplikovateľná* na A vtt term t_i je substituovateľný za x_i v A pre každé $i \in \{1, ..., n\}$.

Príklad 3.68

Ak $A = \exists \underline{y} \text{ rodič}(\underline{y}, x)$ a $\sigma_2 = \{x \mapsto \text{matka}(\underline{y})\}$, tak σ_2 nie je aplikovateľná na A.

Použitie substitúcie

Definícia 3.69 (Substitúcia do postupnosti symbolov)

Nech A je postupnosť symbolov,

nech $\sigma = \{x_1 \mapsto t_1, \dots, x_n \mapsto t_n\}$ je substitúcia.

Ak σ je aplikovateľná na A, tak $\mathbf{A}\sigma$ je postupnosť symbolov, ktorá vznikne súčasným dosadením t_i za každý voľný výskyt premennej x_i v A.

Príklad 3.70

```
Ak A = (z \doteq \text{Madga} \land \exists z \text{ rodič}(z, x))

a \sigma_3 = \{x \mapsto \text{matka}(u), y \mapsto \text{Adelka}, z \mapsto \text{matka}(y)\},

tak \sigma_3 je aplikovateľná na A

a A\sigma_3 = (\text{matka}(y) \doteq \text{Madga} \land \exists z \text{ rodič}(z, \text{matka}(u)))
```

Substitúcia do termov a formúl rekurzívne

Tvrdenie 3.71

Pre každú substitúciu $\sigma = \{x_1 \mapsto t_1, \dots, x_n \mapsto t_n\}$, každú premennú $y \in \mathcal{V}_f \setminus \{x_1, \dots, x_n\}$, každý symbol konštanty $a \in \mathcal{C}_f$, každý funkčný symbol $f^k \in \mathcal{P}_{\Gamma}$, každý predikátový symbol $P^k \in \mathcal{P}_{\Gamma}$, každé $i \in \{1, \ldots, n\}$, každú spojku $\diamond \in \{\land, \lor, \rightarrow\}$, všetky formuly A a B a všetky termy s_1, s_2 , ..., $s_k \in \mathcal{T}_f$ platí:

$$\begin{aligned} x_i \sigma &= t_i & y \sigma &= y & a \sigma &= a \\ (s_1 = s_2) \sigma &= (s_1 \sigma \doteq s_2 \sigma) & (P(s_1, \dots, s_k)) \sigma &= P(s_1 \sigma, \dots, s_k \sigma) \\ (\neg A) \sigma &= \neg (A \sigma) & (A \diamond B) \sigma &= (A \sigma \diamond B \sigma) \\ (\forall y A) \sigma &= \forall y (A \sigma) & (\exists y A) \sigma &= \exists y (A \sigma) \\ (\forall x_i A) \sigma &= \forall x_i (A \sigma_i) & (\exists x_i A) \sigma &= \exists x_i (A \sigma_i), \end{aligned}$$

 $kde \ \sigma_i = \sigma \setminus \{x_i \mapsto t_i\}.$

Sémantika substitúcie

Tvrdenie 3.76 (+ 3.75)

Nech t je term a A je formula jazyka \mathcal{L} a nech $\sigma = \{x_1 \mapsto t_1, \dots, x_n \mapsto t_n\}$ je substitúcia aplikovateľná na A. Nech \mathcal{M} je štruktúra pre \mathcal{L} a nech e je ohodnotenie indivíduových premenných. Potom $(t\sigma)^{\mathcal{M}}[e] = t^{\mathcal{M}}[e(x_1/t_1^{\mathcal{M}}[e]) \cdots (x_n/t_n^{\mathcal{M}}[e])]$ a $\mathcal{M} \models \mathsf{A}\sigma[e]$ vtt $\mathcal{M} \models \mathsf{A}[e(x_1/t_1^{\mathcal{M}}[e]) \cdots (x_n/t_n^{\mathcal{M}}[e])]$.

Inak povedané:

Štruktúra spĺňa formulu $A\sigma$ po substitúcii pri ohodnotení e vtt spĺňa pôvodnú formulu A pri takom ohodnotení e', ktoré každej substituovanej premennej x_i priradí hodnotu za ňu substituovaného termu t_i pri ohodnotení e a ostatným premenným priraďuje rovnaké hodnoty ako e.

Tablá pre logiku prvého rádu

Splnenie označených formúl, vyplývanie

Podobne ako vo výrokovej logike môžeme zaviesť označovanie formúl logiky prvého rádu znamienkami **T** a **F**.

Definícia 3.78

Nech \mathcal{M} je štruktúra pre jazyk \mathcal{L} , nech e je ohodnotenie indivíduových premenných, nech X je formula jazyka \mathcal{L} . Potom:

- $\mathcal{M} \models \mathsf{T}\mathsf{X}[e] \text{ vtt } \mathcal{M} \models \mathsf{X}[e];$
- $\mathcal{M} \models \mathsf{F} \mathsf{X}[e] \text{ vtt } \mathcal{M} \not\models \mathsf{X}[e].$

Splnenie množiny označených formúl a **splniteľnosť** ozn. formuly/množiny ozn. formúl definujeme analogicky ako pre neoznačené formuly.

Tvrdenie 3.79

Nech X je formula a S je množina formúl v jazyku \mathcal{L} . Formula X prvorádovo vyplýva z S vtt množina $\{ TY \mid Y \in S \} \cup \{ FX \}$ je prvorádovo súčasne nesplniteľná.

T¬A

 $\mathbf{F} \neg A$

FΑ

TA TA

FΑ

a α_2 príslušnú formulu z pravého stĺpca.

Jednotný zápis označených formúl $-\alpha$ a β

Pre všetky definície odteraz zvoľme pevne ľubovoľný jazyk logiky prvého rádu $\mathcal{L}.$

Definícia 3.80 (Jednotný zápis označených formúl typu α)						
Označená formula je $typu \ lpha$ vtt má jeden z tvarov	α	α_1	α_2			
v ľavom stĺpci tabuľky pre nejaké formuly A a B.	$T(A \wedge B)$	TΛ	TR			
Takéto formuly označujeme písmenom α ;	,	FA				
$lpha_1$ označuje príslušnú formulu zo stredného stĺpca	$\mathbf{F}(A \lor B)$					

Definícia 3.81 (Jednotný zápis označených formúl typu eta)						
Označená formula je $typuoldsymbol{eta}$ vtt má jeden z tvarov	β	β_1	β_2			
v ľavom stĺpci tabuľky pre nejaké formuly A a B.	$F(A \wedge B)$	FΑ	F B			
Takéto formuly označujeme písmenom β ; β_1 označuje príslušnú formulu zo stredného stĺpca	$T(A \vee B)$	TΑ	T B			
a β_2 príslušnú formulu z pravého stĺpca.	$T(A \rightarrow B)$	FA	T B			

Jednotný zápis označených formúl $-\gamma$ a δ

Definícia 3.82 (Jednotný zápis označených formúl typu y)

Označená formula je *typu y* vtt má jeden z tvarov v ľavom stĺpci tabuľky pre nejakú formulu A a indivíduovú premennú x.

Takéto formuly označujeme $\gamma(x)$ a pre ľubovoľný term t substituovateľný za x v A príslušnú formulu z pravého stĺpca označujeme $\gamma_1(t)$.

$$\frac{\gamma(x) \qquad \gamma_1(t)}{\mathsf{F} \exists x \, \mathsf{A} \quad \mathsf{F} \mathsf{A} \{x \mapsto t\}}$$

$$T \forall x A \quad TA\{x \mapsto t\}$$

Definícia 3.83 (Jednotný zápis označených formúl typu δ)

Označená formula je $typu \delta$ vtt má jeden z tvarov v ľavom stĺpci tabuľky pre nejakú formulu A a indivíduovú premennú x.

Takéto formuly označujeme $\delta(x)$ a pre ľubovoľnú premennú y substituovateľnú za x v A príslušnú formulu z pravého stĺpca označujeme $\delta_1(y)$.

$$\begin{array}{ll}
\delta(x) & \delta_1(y) \\
\hline
\mathsf{T} \exists x A & \mathsf{T} A \{x \mapsto y\} \\
\mathsf{F} \forall x A & \mathsf{F} A \{x \mapsto y\}
\end{array}$$

siiu

Rovnosť

- Pravidlá pre α a β formuly umožňujú pracovať s logickými spojkami
- Pravidlá pre γ a δ formuly umožňujú pracovať s kvantifikátormi.
- V jazyku je ešte jeden logický symbol rovnosť (=)
- Žiadne pravidlo s ňou zatiaľ nepracuje
- Čo potrebujeme, aby rovnosť mala očakávané vlastnosti?

Axiomatizácia rovnosti

- Rovnosť by sme mohli popísať teóriou axiomatizovať ju
- Je reflexívna, symetrická a tranzitívna:

$$\forall x \, x \doteq x$$
$$\dots$$

- Navyše má vlastnosť substitúcie alebo kongruencie:
 Pre každý pár rovnajúcich sa k-tic argumentov:
 - ► hodnota každého funkčného symbolu f^k je rovnaká,
 - každý predikátový symbol P^k je na oboch k-tiach splnený alebo na oboch nesplnený.

$$\forall x_1 \, \forall y_1 \dots \forall x_k \, \forall y_k \big(x_1 \doteq y_1 \wedge \dots \wedge x_k \doteq y_k \rightarrow \dots \big)$$

Dôkazy s axiomatizovanou rovnosťou

Skúsme niečo dokázať:

```
1. Tmatka(Oliverko) = Magda
2. T \exists x \text{ prv\'e\_die\'ta}(\text{matka}(\text{Oliverko}), x) \doteq \text{Adelka}
                                                                                          S^+
                                                                                          S^+
3. \mathbf{F} \exists x \text{ prv\'e\_die\'ta}(\text{Magda}, x) \doteq \text{Adelka}
```

J. Kľuka, J. Šiška

Eulerovo pravidlo

- Dôkazy s axiómami rovnosti sú prácne aj v jednoduchých prípadoch
- Vlastnosť kongruencie sa však dá induktívne zovšeobecniť na ľubovoľné formuly
- Eulerovo pravidlo: V každej formule môžeme nahradiť rovné rovným
 - 1. T matka(Oliverko) \doteq Magda S^+
 - 2. $T \exists x \text{ prv\'e_die\'ta}(\text{matka}(\text{Oliverko}), x) \doteq \text{Adelka} \quad S^+$
 - 3. $T \exists x \text{ prv\'e_die\'ta}(\text{Magda}, x) \doteq \text{Adelka}$ Euler 1, 2
- Ale naozaj?

T matka(Oliverko) $\doteq x$

 $T \exists x \text{ prv\'e_die\'ta}(\text{matka}(\text{Oliverko}), x) \doteq \text{Adelka}$

 $T \exists x \text{ prv\'e_die\'ta}(x, x) \doteq Adelka$ partenogenéza?!?

Eulerovo pravidlo presne

- Eulerovo pravidlo: V každej formule môžeme nahradiť rovné rovným
- Čo znamená "nahradit"? A kedy to môžeme urobiť bez zmeny významu formuly?
- Substitúcia $\{x \mapsto t\}$ nahrádza premennú termom
- Eulerovo pravidlo potrebuje nahradiť jeden term t₁ druhým t₂
- Dá sa to popísať substitúciami? Áno:
- Chceme nahradiť term $t_1 = \frac{\text{matka}(\text{Oliverko})}{\text{termom } t_2 = \text{Magda vo formule:}}$

$$A_1^+ = T \exists x \text{ prv\'e_die\'ta}(\text{matka}(\text{Oliverko}), x) \doteq \text{Adelka}$$
 $= A^+ \{ q \mapsto \text{matka}(\text{Oliverko}) \}$
 $A^+ = T \exists x \text{ prv\'e_die\'ta}(q, x) \doteq \text{Adelka}$
 $A_2^+ = A^+ \{ q \mapsto \text{Magda} \}$
 $= T \exists x \text{ prv\'e_die\'ta}(\text{Magda}, x) \doteq \text{Adelka}$

Eulerovo pravidlo — obmedzenia

Vyjadrenie Eulerovho pravidla pomocou substitúcií:

$$T t_1 \doteq t_2$$

$$A^+ \{ q \mapsto t_1 \}$$

$$A^+ \{ q \mapsto t_2 \}$$

- Automaticky dostávame aj rozumné obmedzenia
- Nemôžeme nahradiť term $t_1 = \frac{\text{matka}(Oliverko)}{\text{termom } t_2 = \frac{x}{N}}$ vo formule:

$$A_1^+ = T \exists \underline{x} \text{prv\'e_die\'ta}(\underline{\text{matka}(\text{Oliverko})}, \underline{x}) \doteq \text{Adelka}$$

$$= A^+ \{q \mapsto \underline{\text{matka}(\text{Oliverko})}\}$$

$$A^+ = T \exists \underline{x} \text{prv\'e_die\'ta}(q, \underline{x}) \doteq \text{Adelka}$$

lebo substitúcia $\{q \mapsto \underline{x}\}$ nie je aplikovateľná na A^+ (\underline{x} je viazané v mieste voľného výskytu q)

Vlastnosti rovnosti

- Eulerovo pravidlo odvodí symetriu, tranzitivitu aj kongruenciu
- Ale potrebuje pomocníčku reflexivitu:

$$T t_0 \doteq t_0$$

Symetriu potom odvodíme v table postupnosťou krokov:

1. **T**
$$t_1 \doteq t_2$$

2.
$$\mathbf{T} t_1 \doteq t_1$$
 reflexivita $\mathbf{A}^+ \{ q \mapsto t_1 \}$ pre $\mathbf{A}^+ = \mathbf{T} q \doteq t_1$

3. **T**
$$t_2 \doteq t_1$$
 Euler 1 a 2 $A^+\{q \mapsto t_2\}$

Tranzitivitu odvodíme:

1.
$$T t_1 \doteq t_2$$
 $A^+ \{q \mapsto t_2\} \text{ pre } A^+ = T t_1 \doteq q$

2. **T**
$$t_2 \doteq t_3$$

3. **T**
$$t_2 \doteq t_1$$
 Euler 2 a 1 $A^+\{q \mapsto t_3\}$

Tablové pravidlá pre logiku prvého rádu

Definícia 3.84

Tablovými pravidlami pre logiku prvého rádu sú:

$$\frac{\alpha}{\alpha_{1}} \frac{\alpha}{\alpha_{2}} \qquad \frac{\beta}{\beta_{1} \mid \beta_{2}}$$

$$\frac{\gamma(x)}{\gamma_{1}(t)} \qquad \frac{\delta(x)}{\delta_{1}(y)}$$

$$T t_{0} \doteq t_{0} \qquad T t_{1} \doteq t_{2} \quad A^{+} \{x \mapsto t_{1}\}$$

$$A^{+} \{x \mapsto t_{2}\}$$

pre všetky ozn. formuly $\alpha, \beta, \gamma(x), \delta(x)$ príslušných typov a všetky im zodpovedajúce $\alpha_1, \alpha_2, \beta_1, \beta_2, \gamma_1(t)$ a $\delta_1(y)$, všetky termy t_0 , všetky ozn. formuly A^+ , všetky termy t_1 a t_2 substituovateľné za x do príslušnej A^+ .

Tablo pre množinu označených formúl

Definícia 3.85

Analytické tablo pre množinu označených formúl S⁺ (skrátene **tablo pre S**⁺) je binárny strom, ktorého vrcholy obsahujú označené formuly a ktorý je skonštruovaný induktívne podľa nasledovných pravidiel:

- Strom s jediným vrcholom (koreňom) obsahujúcim niektorú označenú formulu A⁺ z S⁺ je tablom pre S⁺.
- Nech \mathcal{T} je tablo pre S^+ a ℓ je nejaký jeho list. Potom tablom pre S^+ je aj každé **priame rozšírenie** \mathcal{T} ktoroukoľvek z operácií:
 - Ak sa na vetve π_{ℓ} (ceste z koreňa do ℓ) vyskytuje nejaká označená formula α , tak ako jediné dieťa ℓ pripojíme nový vrchol obsahujúci α_1 alebo α_2 .
 - B Ak sa na vetve π_ℓ vyskytuje nejaká označená formula β , tak ako deti ℓ pripojíme dva nové vrcholy, pričom ľavé dieťa bude obsahovať β_1 a pravé β_2 .
 - S Ako jediné dieťa ℓ pripojíme nový vrchol obsahujúci ľubovoľnú označenú formulu A⁺ ∈ S⁺.

Tablo pre množinu označených formúl

Definícia 3.85 (pokračovanie)

- **©** Ak sa na vetve π_ℓ vyskytuje nejaká označená formula $\gamma(x)$, tak ako jediné dieťa ℓ pripojíme nový vrchol obsahujúci $\gamma_1(t)$ pre ľubovoľný term t substituovateľný za x v $\gamma_1(x)$.
- D Ak sa na vetve π_{ℓ} vyskytuje nejaká označená formula $\delta(x)$, tak ako jediné dieťa ℓ pripojíme nový vrchol obsahujúci $\delta_1(y)$ pre ľubovoľnú premennú y, ktorá je substitovateľná za x v $\delta_1(x)$ a nemá voľný výskyt v žiadnej formule na vetve π_{ℓ} .
- E Ak sa na vetve π_{ℓ} vyskytuje $\mathbf{T}t_1 \doteq t_2$ pre nejaké termy t_1 a t_2 a označená formula $A^+\{x \mapsto t_1\}$ pre nejakú A^+ , v ktorej sú t_1 a t_2 substituovateľné za x, tak ako jediné dieťa ℓ pripojíme nový vrchol obsahujúci $A^+\{x \mapsto t_2\}$.
- R Ako jediné dieťa ℓ pripojíme nový vrchol obsahujúci označenú formulu $\mathbf{T} t \doteq t$ pre ľubovoľný term t.

3.8

Korektnosť tablového kalkulu pre logiku prvého rádu

Korektnosť tablových pravidiel

Tvrdenie 3.86

Nech S je množina označených formúl v jazyku \mathcal{L} , nech x a y sú premenné, nech s, t sú termy, nech α , β , γ , δ sú ozn. formuly príslušného typu, A je ozn. formula.

- Ak $\alpha \in S$, tak S je splniteľná vtt $S \cup \{\alpha_1, \alpha_2\}$ je splniteľná.
- Ak $\beta \in S$, tak S je splniteľná vtt $S \cup \{\beta_1\}$ je splniteľná alebo $S \cup \{\beta_2\}$ je splniteľná.
- Ak $\gamma(x) \in S$ a τ je term substituovateľný za x v $\gamma_1(x)$, tak S je splniteľná vtt $S \cup \{\gamma_1(\tau)\}$ je splniteľná.
- Ak δ(x) ∈ S, y je substituovateľná za x v δ₁(x)
 a y sa nemá voľný výskyt v S,
 tak S je splniteľná vtt S ∪ {δ₁(y)} je splniteľná.
- S je splniteľná vtt S \cup {**T** t \doteq t} je splniteľná.
- Ak $\{T t_1 \doteq t_2, A^+\{x \mapsto t_1\}\} \subseteq S$, tak $S \cup \{A^+\{x \mapsto t_2\}\}$ je splniteľná.

Dôkaz (čiastočný, pre pravidlo δ v smere \Rightarrow).

Zoberme ľubovoľné S, x, y, t a $\delta(x)$ spĺňajúce predpoklady tvrdenia. Nech S je splniteľná, teda existuje štruktúra \mathcal{M} a ohodnotenie e také, že $\mathcal{M} \models S[e]$. Preto aj $\mathcal{M} \models \delta(x)[e]$. Podľa tvaru $\delta(x)$ môžu nastať nasledujúce dva prípady.

- Ak δ(x) = T ∃xA pre nejakú formulu A, tak podľa def. 3.78 M |= ∃xA[e] a podľa def. spĺňania máme nejakého svedka m ∈ M takého, že M |= A[e(x/m)]. Podľa tvr. 3.76 potom M |= A{x → y}[e(x/m)(y/m)]. Prem. x nie je voľná v A{x → y}, preto podľa tvr. 3.58 M |= A{x → y}[e(y/m)], teda M |= T A{x → y}[e(y/m)], teda M |= δ₁(y)[e(y/m)].
- Ak δ(x) = F ∀yA pre nejakú formulu A, tak podľa def. 3.78 M ⊭ ∀xA[e] a podľa def. spĺňania neplatí, že M ⊨ A[e(x/m)] pre každé m ∈ M. Preto máme nejaký kontrapríklad m ∈ M taký, že M ⊭ A[e(x/m)]. Podľa tvr. 3.76 potom M ⊭ A{x → y} [e(x/m)(y/m)]. Prem. x nie je voľná v A{x → y}, preto podľa tvr. 3.58 M ⊭ A{x → y}[e(y/m)], teda M ⊨ FA{x → y}[e(y/m)], čiže M ⊨ δ₁(y)[e(y/m)].

Navyše y nie je voľná v žiadnej formule z S, preto $\mathcal{M} \models S[e(y/m)]$. Teda $\mathcal{M} \models (S \cup \{\delta_1(y)\})[e(y/m)]$. Preto je $S \cup \{\delta_1(y)\}$ splniteľná.

J. Kľuka, J. Šiška

Korektnosť prvorádových tabiel

Otvorené a uzavreté vetvy a tablá sú definované rovnako ako pri tablách pre výrokovú logiku.

Veta 3.87 (Korektnosť tablového kalkulu)

Nech S^+ je množina označených formúl.

Ak existuje uzavreté tablo \mathcal{T} pre S^+ , tak je množina S^+ nesplniteľná.

Dôkaz (nepriamy).

Nech S^+ je množina označených formúl.

Nech S^+ je splniteľná. Dokážeme, že každé tablo \mathcal{T} pre S^+ je otvorené, úplnou indukciou na počet vrcholov tabla \mathcal{T} .

Ďalšie korektné pravidlá

Pohodlnejšie verzie pravidiel γ a δ

Tvrdenie 3.88

Nasledujúce pravidlá sú korektné:

$$\gamma^* \qquad \frac{\mathsf{T} \, \forall x_1 \dots \forall x_n \, \mathsf{A}}{\mathsf{T} \, \mathsf{A} \{ x_1 \mapsto t_1, \dots, x_n \mapsto t_n \}} \qquad \frac{\mathsf{F} \, \exists x_1 \dots \exists x_n \, \mathsf{A}}{\mathsf{F} \, \mathsf{A} \{ x_1 \mapsto t_1, \dots, x_n \mapsto t_n \}}$$

$$\delta^* \qquad \frac{\mathsf{F} \, \forall x_1 \dots \forall x_n \, \mathsf{A}}{\mathsf{F} \, \mathsf{A} \{ x_1 \mapsto y_1, \dots, x_n \mapsto y_n \}} \qquad \frac{\mathsf{T} \, \exists x_1 \dots \exists x_n \, \mathsf{A}}{\mathsf{T} \, \mathsf{A} \{ x_1 \mapsto y_1, \dots, x_n \mapsto y_n \}}$$

kde A je formula, $x_1, ..., x_n$ sú premenné, $t_1, ..., t_n$ sú termy substituovateľné za príslušné $x_1, ..., x_n$ v A a $y_1, ..., y_n$ sú premenné substituovateľné za príslušné $x_1, ..., x_n$ v A

pričom $y_1, ..., y_n$ sa **nevyskytujú voľné** vo vetve, v liste ktorej je pravidlo použité.

J. Kľuka, J. Šiška

Pravidlá pre ekvivalenciu

Tvrdenie 3.89

Nasledujúce pravidlá sú korektné:

ESTT
$$\frac{\mathsf{T}(A_1 \leftrightarrow A_2) \quad \mathsf{T}A_i}{\mathsf{T}A_{3-i}} \qquad \text{ESTF} \qquad \frac{\mathsf{T}(A_1 \leftrightarrow A_2) \quad \mathsf{F}A_i}{\mathsf{F}A_{3-i}}$$

$$\mathsf{ESFT} \qquad \frac{\mathsf{F}(A_1 \leftrightarrow A_2) \quad \mathsf{T}A_i}{\mathsf{F}A_{3-i}} \qquad \mathsf{ESFF} \qquad \frac{\mathsf{F}(A_1 \leftrightarrow A_2) \quad \mathsf{F}A_i}{\mathsf{T}A_{3-i}}$$

kde A_1 a A_2 sú formuly, $i \in \{1, 2\}$.

Dokazovanie s rovnosťou a explicitnými definíciami

- Využime nové pravidlá na dôkaz vlastnosti množín.
- Zoberme jazyk \mathcal{L} , kde $\mathcal{C}_{\mathcal{L}} = \{\emptyset\}, \mathcal{P}_{\mathcal{L}} = \{\in^2, \subseteq^2\}$ a $\mathcal{F}_f = \{ \bigcup^2, \cap^2, \setminus^2, \bigcap^1 \}.$
- Binárne symboly budeme zapisovať infixovo, napr. namiesto $\in (t_1, t_2)$ napíšeme $t_1 \in t_2$, namiesto $\cup (t_1, t_2)$ napíšeme $(t_1 \cup t_2), \ldots$

Príklad 3.90

Dokážme tablom, že $T \models X$ pre

$$T = \begin{cases} \forall x \, \forall y (x \subseteq y \leftrightarrow \forall z (z \in x \to z \in y)) \\ \forall x \, \forall y \, \forall z (z \in (x \cup y) \leftrightarrow (z \in x \lor z \in y)) \end{cases}$$
$$X = \forall x \, \forall y ((x \cup y) \doteq x \to y \subseteq x)$$

Literatúra

- Martin Davis and Hillary Putnam. A computing procedure for quantification theory. J. Assoc. Comput. Mach., 7:201-215, 1960.
- Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem-proving. Communications of the ACM, 5(7):394–397, 1962.
- Michael Genesereth and Eric Kao. Introduction to Logic. Morgan & Claypool, 2013. ISBN 9781627052481.
- Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994 ISBN 978-0-201-53082-7
- Raymond M. Smullyan. Logika prvého rádu. Alfa, 1979. Z angl. orig. First-Order Logic, Berlin-Heidelberg: Springer-Verlag, 1968 preložil Svätoslav Mathé.
- Vítězslav Švejdar. Logika: neúplnost, složitost, nutnost. Academia, 2002. Prístupné aj na http://www1.cuni.cz/~svejdar/book/LogikaSve2002.pdf.