(c)
$$\Gamma \cup \{\varphi\} \vdash \psi$$
 implies $\Gamma \setminus \{\varphi\} \vdash (\varphi \to \varphi) \land (\varphi \to \psi)$

Sea
$$\mathbb{D} \in \mathcal{D}$$
 tal que $\mathbb{D} := \begin{pmatrix} \frac{[\varphi]_1}{(\varphi \longrightarrow \varphi)} \to \mathbb{I}_1 \end{pmatrix} \begin{pmatrix} \frac{\mathbb{D}^1}{(\varphi \longrightarrow \psi)} \to \mathbb{I}_2 \end{pmatrix} \begin{pmatrix} \frac{[\varphi]_1}{(\varphi \longrightarrow \varphi)} \to \mathbb{I}_2 \end{pmatrix}$

Wego
$$concl(D) = (P \longrightarrow P) \land (P \longrightarrow V)$$

Determinemos el conzento $Hip(D)$
 $Hip(D)$
= | Def de Hip con respecto a (^I) {
 $Hip(D'') \cup Hip(D''')$
= | Def de Hip con respecto a (>I) {
 $(P \setminus P) \cup (Hip(D') \setminus P)$
= | Def de diferencia de conzentos, for Hipotesis $Hip(D') \subseteq T \cup P$ {
 $(P \cup P) \cup P$ $(P \cup P) \cup P$

i.e.
$$Hip(D) \subseteq \Gamma$$

Por lo tato
$$\Gamma \cup \{ \varphi \} \vdash \psi \Longrightarrow \Gamma \setminus \{ \varphi \} \vdash (\varphi \longrightarrow \varphi) \land (\varphi \longrightarrow \psi)$$