СОДЕРЖАНИЕ

1 Введение		2
2 Цели		2
3 Выводы		2
4 Рекомендаци	пи	2
5 Заключение		2
6 Содержание	отчета	2
6.1 Исходные	данные и описание работы	2
6.2 Выбор и в	алидация расчетной модели	4
6.3 Определен	ие основных характеристик модели	4
Список литературы		

Полп. и лата										
Инв. № дубл.										
№										
Λ_{HB}										
	1									
Взам. инв. №										
M.										
B38										
Подп. и дата										
Ioli										
ľ		[An. c	Пухот	No waxee	Потт	Пото				
Инв. № подл.		изм. Разј	Лист раб.	№ докум. Целищев	Подп.	Дата	J	Іит.	Лист	Листов
		Про					Η̈́		1	5
№ I								-		
HB.			онтр.							
\square		Утв								

- 1 ВВЕДЕНИЕ
- 2 ЦЕЛИ
- 2.1 Выбор и определение параметров расчетной модели
- 2.2 Определение сопротивления движению груза даунриггера при подводном движении на скоростях от 0.5 до $2~\rm m/c$ с заглублением от 0.5 до $50~\rm meteoremath{\rm Meteoremath{\rm Meteoremath{\rm g}}}$ с нормальной температурой среды, с учетом удерживающего троса диаметром $1~\rm mm.;$
- 2.3 Определение устойчивости движения груза дауриггера во всем диаппазоне приведенном в п. 2.2.
 - 3 ВЫВОДЫ
 - 4 РЕКОМЕНДАЦИИ
 - 5 ЗАКЛЮЧЕНИЕ
 - 6 СОДЕРЖАНИЕ ОТЧЕТА
 - 6.1 Исходные данные и описание работы

Груз даунриггера применяется для заглубления и стабидизации глубины движения приманки при рыбной ловле на глубинах от 2 до 20 метров при скоростях движения судна от 0.5 до 2 м/с. Общий вид груза даунрингера приведен на рисунке 1.

Анв. № подл. Подп. и дата Взам. инв. №

Инв. № дубл.

Изм Лист № докум. Подп. Дата

Лист

6.1.1 Харарактеристики среды и режима движения жидкости

Поскольку ловля с помощью даунриггера производится в летнее время, а характеристики воды в открытых водоемах изменяются незначительно, то расчеты выполним при температуре воды $15\ ^{0}C$. Для воды в нормальных условиях характеристики жидкости:

- а) плотность, $\kappa \Gamma / M^2$: 1000
- б) динамическая вязкость, $\Pi a \cdot c$ [2]: $1006 \cdot 10^{-6}$
- в) кинематическая вязкость, $\frac{M^2}{c}$ [2]: $1.006 \cdot 10^{-6}$

6.2 Выбор и валидация расчетной модели

Поскольку точные данные по лобовому сопротивлению груза даунриггера отсутсвуют, то для разработки расчетной сетки используем доступные экспериментальные данные по лобовому сопротивлению:

– обтекании цилиндра при направлении вектора набегающего потока направленном под прямым углом к оси цилиндра [1];

При движении груза необходимо учитывать удельное (по глубине погружения) сопротивлене троса подвеса груза. В этом случае модель сопротивления, изложенная в [1], может также использоваться для валидации применяемой модели и коэффициентов сопротивления.

- 6.3 Определение основных характеристик модели
- 6.3.1 Определение основных характеристик среды и режима движения жидкости

Для воды в нормальных условиях характеристики жидкости:

а) плотность, $\kappa \Gamma / M^2$: 1000

Инв. № дубл.

Взам. инв. №

- б) динамическая вязкость, $\Pi a \cdot c$ [2]: $1006 \cdot 10^{-6}$
- в) кинематическая вязкость, $\frac{\text{M}^2}{\text{c}}$ [2]: $1.006 \cdot 10^{-6}$
- 6.3.2 Определение основных характеристик движения жидкости
- 6.3.2.1 В качестве характерного размера даунриггера примем: максимальльный диаметр «тела», равный 0.05 м. Для этого характерного размера число Рейнолдса равно:

$$Re = \frac{u \cdot L}{\nu} \tag{1}$$

					Лист
изи	и Лист	№ докум.	Подп.	Дата	4

Копировал

Формат А4

По расчету:

$$Re = \frac{(0,5...2) \cdot 0,05}{1.006 \cdot 10^{-6}} = 24850,89...99403,58$$
 (2)

Исходя из числа Рейнолдса видно, что движение жидкости при обтекании груза даунриггера турбулентное.

Характерный размер подвесного троса — диаметр, равный $0.0005\dots0.001~\mathrm{m}$. Для этого характерного размера число Рейнолдса равно:

$$Re = \frac{(0,5...2) \cdot (0,0005...0.001)}{1.006 \cdot 10^{-6}} = 248,509...1988,07$$
 (3)

6.3.2.2 Исходя из числа Рейнолдса видно, что движение жидкости при обтекании троса подвеса переходное, от ламинарного к турбулентному. Для определения коэффициента сопротивления движению воспользуемся зависимостью 2.

СПИСОК ЛИТЕРАТУРЫ

- 1. [S. l. : s. n.]. URL: http://scienceworld.wolfram.com/physics/CylinderDrag.html.
- 2. Вязкость воды [Teкcт]. [Б. м. : б. и.]. URL: http://thermalinfo.ru/svojstva-zhidkostej/voda-i-rastvory/vyazkost-vody-h2o.

Изм	Лист	№ докум.	Подп.	Дата

Инв. № дубл.

Взам. инв. №

Лист