EDA

EDA - Exploratory Data Analysis

- 1. Data Collection: Gather the dataset from various sources (e.g., CSV, database, APIs).
- 2. Data Cleaning: Handle missing values, duplicates, and inconsistencies in the data.
- 3. Data Transformation: Convert data types, create new features, or normalize/scale data if needed.
- 4. Data Visualization: Use plots (histograms, boxplots, scatter plots, etc.) to understand distributions, relationships, and patterns.
- 5. Statistical Summary: Calculate summary statistics like mean, median, mode, standard deviation, and correlations.
- 6. Outlier Detection: Identify and handle outliers that might skew analysis or modeling.
- 7. Feature Selection: Identify important features and drop irrelevant ones.
- 8. Correlation Analysis: Analyze relationships between features using correlation matrices or heatmaps.

The scientific stack

- Special packages in python for EDA:
 - NumPy: implementation of multi-dimensional arrays in Python.
 - pandas: Tabular data manipulation (table data).
 - matplotlib: A cornerstone for data visualization in Python.
 - seaborn: Smart visualizations of tabular data.

Pandas

Panel +Data =

- Library for dealing with tables.
- Install in conda: conda install pandas
- Import pandas as pd

Pandas

Pandas is a powerful library for data manipulation and analysis in Python. It provides data structures for efficiently storing large datasets and tools for working with them in a variety of ways. Some of the main features of pandas that are useful for EDA include:

- Reading and writing data: pandas provides functions for reading and writing data from a variety of formats, including CSV, Excel, and SQL databases.
- Handling missing values: pandas provides functions for identifying and handling missing values in a dataset.
- Data cleaning: pandas provides functions for cleaning and formatting data, such as converting data types and removing duplicates.
- Data visualization: pandas integrates with the Matplotlib library for data visualization, allowing you to create a variety of plots and charts to visualize your data.
- Data aggregation and grouping: pandas provides functions for performing aggregation and grouping operations on your data, such as calculating the mean or sum of a group of values.

Series

A 1-dimensional data structure, like a column in a table or a simple array, holding labeled data.

```
0 3.14159
1 2.71828
2 1.00000
3 -1.00000
4 0.00000
dtype: float64
```

```
0 Aurora
1 Belle
2 Cinderella
dtype: object
```


DataFrame

• The most useful part of pandas library.

VX XIXIX

• 2-dimensional data structure, like a 2-dimensional array, or a table with rows and columns.

	name	age	height	10-
0	Shir	20	160	
1	Alon	25	175	

DataFrame basic tools

head()

- Present the first rows (default=5).
- Useful for quickly testing if your object has the right type of data in it.

0	df.head()							
		longitude	latitude	housing_median_age	total_rooms			
	0	-114.31	34.19	15.0	5612.0			
	1	-114.47	34.40	19.0	7650.0			
	2	-114.56	33.69	17.0	720.0			
	3	-114.57	33.64	14.0	1501.0			
	4	-114.57	33.57	20.0	1454.0			

DataFrame basic tools

describe()

• Print descriptive statistics such as count, mean, min, max, std and more.

0	df.describe()							
		longitude	latitude	housing_median_age	total_rooms	total_bedrooms		
	count	17000.000000	17000.000000	17000.000000	17000.000000	17000.000000		
	mean	-119.562108	35.625225	28.589353	2643.664412	539.410824		
	std	2.005166	2.137340	12.586937	2179.947071	421.499452		
	min	-124.350000	32.540000	1.000000	2.000000	1.000000		
	25%	-121.790000	33.930000	18.000000	1462.000000	297.000000		
	50%	-118.490000	34.250000	29.000000	2127.000000	434.000000		
	75%	-118.000000	37.720000	37.000000	3151.250000	648.250000		
	max	-114.310000	41.950000	52.000000	37937.000000	6445.000000		

DataFrame basic tools

info()

- Print a summary of the dataframe.
- Including information about the index dtype and columns, non-null values and memory usage.

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 17000 entries, 0 to 16999
Data columns (total 9 columns):
                        Non-Null Count Dtype
     Column
     longitude
                        17000 non-null float64
    latitude
                        17000 non-null float64
    housing_median_age 17000 non-null float64
    total_rooms
                        17000 non-null float64
    total_bedrooms
                        17000 non-null float64
     population
                        17000 non-null float64
    households
                        17000 non-null float64
    median_income
                        17000 non-null float64
     median_house_value 17000 non-null float64
dtypes: float64(9)
memory usage: 1.2 MB
```


Basic Series Tools

Methods:

S_name.head() show the top (5 by default) results

S_name.tail() show the end (5 by default) results

S_name.describe() gives statistical data about the series

Attributes:

S_name.values - a list of the values in the series

S_name.index - information about the index

S_name.dtype - the data type of the values in the series. "Object" is used for

strings

Basic Series Tools

S_name.sum() -

S_name.product() -

S_name.mean()-

S_name.add(n)

S_name.sub(n)

S_name.div(n)

S_name.floordiv(n)

sum of elements multiplication average

Will calculate each value

Usefull Series Tools

sort_values: Sorts the Series by its values, ascending or descending.

is_unique: Returns True if all elements in the Series are unique.

ndim: Returns the number of dimensions (always 1 for Series).

shape: Returns a tuple showing the number of elements (rows,) in the Series.

size: Returns the total number of elements in the Series.

Usefull Series Tools

sort_values: Sorts the Series by its values, ascending or descending.

is_unique: Returns True if all elements in the Series are unique.

ndim: Returns the number of dimensions (always 1 for Series).

shape: Returns a tuple showing the number of elements (rows,) in the Series.

size: Returns the total number of elements in the Series.

