CS711: Introduction to Game Theory and Mechanism Design

Teacher: Swaprava Nath

Domination, Elimination of Dominated Strategies, Nash Equilibrium

Domination

• Normal form game $\langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle$

Domination

• Normal form game $\langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle$

Definition (Dominated Strategy)

A strategy $s_i' \in S_i$ of player i is **strictly dominated** if there exists another strategy s_i of i such that for every strategy profile $s_{-i} \in S_{-i}$ of the other players

$$u_i(s_i, s_{-i}) > u_i(s_i', s_{-i}).$$

A strategy $s_i' \in S_i$ of player i is **weakly dominated** if there exists another strategy s_i of i such that for every strategy profile $s_{-i} \in S_{-i}$ of the other players

$$u_i(s_i, s_{-i}) \geqslant u_i(s'_i, s_{-i}),$$

and there exists some $\tilde{s}_{-i} \in S_{-i}$ such that

$$u_i(s_i, \tilde{s}_{-i}) > u_i(s_i', \tilde{s}_{-i}).$$

Domination (Contd.)

Definition (Dominant Strategy)

A strategy s_i is **strictly (weakly) dominant strategy** for player i if s_i strictly (weakly) dominates all other $s_i' \in S_i \setminus \{s_i\}$.

Definition (Dominant Strategy Equilibrium)

A strategy profile (s_i^*, s_{-i}^*) is a **strictly (weakly) dominant strategy equilibrium** (SDSE (WDSE)) if s_i^* is a strictly (weakly) dominant strategy for every $i, i \in N$.

Examples

• Neighboring kingdoms' dilemma

$\mathbf{A}ackslash \mathbf{B}$	Agriculture	Defense
Agriculture	5,5	0,6
Defense	6,0	1,1

Examples

• Neighboring kingdoms' dilemma

$A \backslash B$	Agriculture	Defense
Agriculture	5,5	0,6
Defense	6,0	1,1

• Do the players have a dominant strategy? Which kind?

• One indivisible object for sale

- One indivisible object for sale
- ullet Two players, each having a *value* for the object, v_1 and v_2

- One indivisible object for sale
- ullet Two players, each having a *value* for the object, v_1 and v_2
- Rules:

- One indivisible object for sale
- ullet Two players, each having a *value* for the object, v_1 and v_2
- Rules:
 - $\,\blacktriangleright\,$ each player can choose a number in [0,M] which reflects her willingness to buy the object

- One indivisible object for sale
- ullet Two players, each having a *value* for the object, v_1 and v_2
- Rules:
 - \blacktriangleright each player can choose a number in [0,M] which reflects her willingness to buy the object
 - player quoting the larger number (tie broken in favor of player 1) wins

- One indivisible object for sale
- ullet Two players, each having a *value* for the object, v_1 and v_2
- Rules:
 - \blacktriangleright each player can choose a number in [0,M] which reflects her willingness to buy the object
 - player quoting the larger number (tie broken in favor of player 1) wins
 - pays the losing players chosen number

- One indivisible object for sale
- ullet Two players, each having a *value* for the object, v_1 and v_2
- Rules:
 - lacktriangle each player can choose a number in [0,M] which reflects her willingness to buy the object
 - ▶ player quoting the larger number (tie broken in favor of player 1) wins
 - pays the losing players chosen number
 - utility of the winning player is = her value her payment

- One indivisible object for sale
- ullet Two players, each having a *value* for the object, v_1 and v_2
- Rules:
 - \blacktriangleright each player can choose a number in [0,M] which reflects her willingness to buy the object
 - player quoting the larger number (tie broken in favor of player 1) wins
 - pays the losing players chosen number
 - utility of the winning player is = her value her payment
 - utility of the losing player is zero

- One indivisible object for sale
- ullet Two players, each having a *value* for the object, v_1 and v_2
- Rules:
 - lacktriangle each player can choose a number in [0,M] which reflects her willingness to buy the object
 - player quoting the larger number (tie broken in favor of player 1) wins
 - pays the losing players chosen number
 - utility of the winning player is = her value her payment
 - utility of the losing player is zero
- What is the normal form representation of this game?

- One indivisible object for sale
- ullet Two players, each having a *value* for the object, v_1 and v_2
- Rules:
 - ${\blacktriangleright}$ each player can choose a number in [0,M] which reflects her willingness to buy the object
 - player quoting the larger number (tie broken in favor of player 1) wins
 - pays the losing players chosen number
 - utility of the winning player is = her value her payment
 - utility of the losing player is zero
- What is the normal form representation of this game?
- $N = \{1, 2\}, S_1 = S_2 = [0, M]$

$$u_1(s_1, s_2) = \begin{cases} v_1 - s_2 & \text{if } s_1 \geqslant s_2 \\ 0 & \text{otherwise} \end{cases};$$

- One indivisible object for sale
- ullet Two players, each having a *value* for the object, v_1 and v_2
- Rules:
 - \blacktriangleright each player can choose a number in [0,M] which reflects her willingness to buy the object
 - player quoting the larger number (tie broken in favor of player 1) wins
 - pays the losing players chosen number
 - utility of the winning player is = her value her payment
 - utility of the losing player is zero
- What is the normal form representation of this game?
- $N = \{1, 2\}, S_1 = S_2 = [0, M]$

$$u_1(s_1,s_2) = \begin{cases} v_1 - s_2 & \text{if } s_1 \geqslant s_2 \\ 0 & \text{otherwise} \end{cases}; \qquad u_2(s_1,s_2) = \begin{cases} v_2 - s_1 & \text{if } s_1 < s_2 \\ 0 & \text{otherwise} \end{cases}$$

- One indivisible object for sale
- ullet Two players, each having a *value* for the object, v_1 and v_2
- Rules:
 - \blacktriangleright each player can choose a number in [0,M] which reflects her willingness to buy the object
 - player quoting the larger number (tie broken in favor of player 1) wins
 - pays the losing players chosen number
 - utility of the winning player is = her value her payment
 - utility of the losing player is zero
- What is the normal form representation of this game?
- $N = \{1, 2\}, S_1 = S_2 = [0, M]$

$$u_1(s_1,s_2) = \begin{cases} v_1 - s_2 & \text{if } s_1 \geqslant s_2 \\ 0 & \text{otherwise} \end{cases}; \qquad u_2(s_1,s_2) = \begin{cases} v_2 - s_1 & \text{if } s_1 < s_2 \\ 0 & \text{otherwise} \end{cases}$$

• Do the players have a dominant strategy? Which kind?

• Rational players do not play dominated strategies

- Rational players do not play dominated strategies
- To find a reasonable outcome, eliminate the dominated strategies

- Rational players do not play dominated strategies
- To find a reasonable outcome, eliminate the dominated strategies
- For strictly dominated strategies, the order of elimination does not matter always reaches the same residual game

- Rational players do not play dominated strategies
- To find a reasonable outcome, eliminate the dominated strategies
- For strictly dominated strategies, the order of elimination does not matter always reaches the same residual game
- For weakly dominated strategies, the order matters

- Rational players do not play dominated strategies
- To find a reasonable outcome, eliminate the dominated strategies
- For strictly dominated strategies, the order of elimination does not matter always reaches the same residual game
- For weakly dominated strategies, the order matters
- It can also eliminate some reasonable outcomes

1 \2	L	C	R
Т	1,2	2,3	0,3
М	2,2	2,1	3,2
В	2,1	0,0	1,0

- Rational players do not play dominated strategies
- To find a reasonable outcome, eliminate the dominated strategies
- For strictly dominated strategies, the order of elimination does not matter always reaches the same residual game
- For weakly dominated strategies, the order matters
- It can also eliminate some reasonable outcomes

1 \2	L	C	R
Т	1,2	2,3	0,3
M	2,2	2,1	3,2
В	2,1	0,0	1,0

• Order: T, R, B, C, Outcome: ML, Payoff: 2,2

- Rational players do not play dominated strategies
- To find a reasonable outcome, eliminate the dominated strategies
- For strictly dominated strategies, the order of elimination does not matter always reaches the same residual game
- For weakly dominated strategies, the order matters
- It can also eliminate some reasonable outcomes

1∖2	L	C	R
Т	1,2	2,3	0,3
M	2,2	2,1	3,2
В	2,1	0,0	1,0

- Order: T, R, B, C, Outcome: ML, Payoff: 2,2
- Order: B, L, C, T, Outcome: MR, Payoff: 3,2

- Rational players do not play dominated strategies
- To find a reasonable outcome, eliminate the dominated strategies
- For strictly dominated strategies, the order of elimination does not matter always reaches the same residual game
- For weakly dominated strategies, the order matters
- It can also eliminate some reasonable outcomes

1∖2	L	C	R
T	1,2	2,3	0,3
M	2,2	2,1	3,2
В	2,1	0,0	1,0

- Order: T, R, B, C, Outcome: ML, Payoff: 2,2
- Order: B, L, C, T, Outcome: MR, Payoff: 3,2
- ...

• Coordination game: drive to the left of right?

$1 \backslash 2$	L	R
L	1,1	0,0
R	0,0	1,1

• Coordination game: drive to the left of right?

1 \2	L	R
L	1,1	0,0
R	0,0	1,1

• Football or Cricket game

1 \2	F	C
F	2,1	0,0
С	0,0	1,2

• Coordination game: drive to the left of right?

1 \2	L	R
L	1,1	0,0
R	0,0	1,1

Football or Cricket game

1 \2	F	C
F	2,1	0,0
С	0,0	1,2

• Dominance cannot explain a reasonable outcome in this game - then what?

• Coordination game: drive to the left of right?

1 \2	L	R
L	1,1	0,0
R	0,0	1,1

• Football or Cricket game

1 \2	F	C
F	2,1	0,0
С	0,0	1,2

- Dominance cannot explain a reasonable outcome in this game then what?
- Refine the equilibrium concept

• This is a strategy profile from where no player gains by a unilateral deviation

• This is a strategy profile from where no player gains by a unilateral deviation

Definition (Pure strategy Nash equilibrium)

A strategy profile (s_i^*, s_{-i}^*) is a pure strategy Nash equilibrium (PSNE) if $\forall i \in N$ and $\forall s_i \in S_i$

$$u_i(s_i^*, s_{-i}^*) \geqslant u_i(s_i, s_{-i}^*).$$

• This is a strategy profile from where no player gains by a unilateral deviation

Definition (Pure strategy Nash equilibrium)

A strategy profile (s_i^*,s_{-i}^*) is a pure strategy Nash equilibrium (PSNE) if $\forall i\in N$ and $\forall s_i\in S_i$

$$u_i(s_i^*, s_{-i}^*) \geqslant u_i(s_i, s_{-i}^*).$$

1 \2	F	C
F	2,1	0,0
С	0,0	1,2

• This is a strategy profile from where no player gains by a unilateral deviation

Definition (Pure strategy Nash equilibrium)

A strategy profile (s_i^*,s_{-i}^*) is a pure strategy Nash equilibrium (PSNE) if $\forall i\in N$ and $\forall s_i\in S_i$

$$u_i(s_i^*, s_{-i}^*) \geqslant u_i(s_i, s_{-i}^*).$$

1 \2	F	C
F	2,1	0,0
С	0,0	1,2

A best response view

• This is a strategy profile from where no player gains by a unilateral deviation

Definition (Pure strategy Nash equilibrium)

A strategy profile (s_i^*, s_{-i}^*) is a pure strategy Nash equilibrium (PSNE) if $\forall i \in N$ and $\forall s_i \in S_i$

$$u_i(s_i^*, s_{-i}^*) \geqslant u_i(s_i, s_{-i}^*).$$

1 \2	F	C
F	2,1	0,0
С	0,0	1,2

A best response view

Definition (Best response set)

A best response of agent i against the strategy profile s_{-i} of the other players is a strategy that gives the maximum utility against the s_{-i} chosen by other players, i.e.,

$$B_i(s_{-i}) = \{ s_i \in S_i : u_i(s_i, s_{-i}) \geqslant u_i(s_i', s_{-i}), \ \forall s_i' \in S_i \}.$$

PSNE: Best Response View

Definition (PSNE)

A strategy profile (s_i^*, s_{-i}^*) is a pure strategy Nash equilibrium if $\forall i \in N, s_i^* \in B_i(s_{-i}^*)$.

Definition (PSNE)

A strategy profile (s_i^*, s_{-i}^*) is a pure strategy Nash equilibrium if $\forall i \in N, s_i^* \in B_i(s_{-i}^*)$.

Properties of PSNE

Stability – a point from where no player would like to deviate

Definition (PSNE)

A strategy profile (s_i^*, s_{-i}^*) is a pure strategy Nash equilibrium if $\forall i \in N, s_i^* \in B_i(s_{-i}^*)$.

Properties of PSNE

- Stability a point from where no player would like to deviate
- Self-enforcing agreement among the players

Definition (PSNE)

A strategy profile (s_i^*, s_{-i}^*) is a pure strategy Nash equilibrium if $\forall i \in N, s_i^* \in B_i(s_{-i}^*)$.

Properties of PSNE

- Stability a point from where no player would like to deviate
- Self-enforcing agreement among the players

But.

Definition (PSNE)

A strategy profile (s_i^*, s_{-i}^*) is a pure strategy Nash equilibrium if $\forall i \in N, s_i^* \in B_i(s_{-i}^*)$.

Properties of PSNE

- Stability a point from where no player would like to deviate
- Self-enforcing agreement among the players

But,

this still assumes players to be fully rational

Definition (PSNE)

A strategy profile (s_i^*, s_{-i}^*) is a pure strategy Nash equilibrium if $\forall i \in N, s_i^* \in B_i(s_{-i}^*)$.

Properties of PSNE

- Stability a point from where no player would like to deviate
- Self-enforcing agreement among the players

But.

- this still assumes players to be fully rational
- multiplicity of equilibria which one should players coordinate to

1 \2	L	R
Т	2,1	2,-20
М	3,0	-10,1
В	-100,2	3,3

• risky equilibrium

1 \2	L	R
Т	2,1	2,-20
М	3,0	-10,1
В	-100,2	3,3

• player 1 may choose T, since that is least risky

1 \2	L	R
Т	2,1	2,-20
М	3,0	-10,1
В	-100,2	3,3

- player 1 may choose T, since that is least risky
- player 2 should then choose L

1 \2	L	R
Т	2,1	2,-20
М	3,0	-10,1
В	-100,2	3,3

- player 1 may choose T, since that is least risky
- player 2 should then choose L
- another aspect of rationality where players make *pessimistic* estimate about others' play (instead of utility maximization)

1 \2	L	R
Т	2,1	2,-20
М	3,0	-10,1
В	-100,2	3,3

- player 1 may choose T, since that is least risky
- player 2 should then choose L
- another aspect of rationality where players make *pessimistic* estimate about others' play (instead of utility maximization)
- this worst case optimal choice is known as max-min strategy

1 \2	L	R
Т	2,1	2,-20
М	3,0	-10,1
В	-100,2	3,3

- player 1 may choose T, since that is least risky
- player 2 should then choose L
- another aspect of rationality where players make pessimistic estimate about others' play (instead of utility maximization)
- this worst case optimal choice is known as max-min strategy

$$u_i(s_i, s_{-i})$$

$1 \backslash 2$	L	R
Т	2,1	2,-20
М	3,0	-10,1
В	-100,2	3,3

- player 1 may choose T, since that is least risky
- player 2 should then choose L
- another aspect of rationality where players make pessimistic estimate about others' play (instead of utility maximization)
- this worst case optimal choice is known as max-min strategy

$$\min_{s_{-i} \in S_{-i}} u_i(s_i, s_{-i})$$

1 \2	L	R
Т	2,1	2,-20
М	3,0	-10,1
В	-100,2	3,3

- player 1 may choose T, since that is least risky
- player 2 should then choose L
- another aspect of rationality where players make pessimistic estimate about others' play (instead of utility maximization)
- this worst case optimal choice is known as max-min strategy

$$\underset{s_i \in S_i}{\operatorname{arg\,max}} \min_{s_{-i} \in S_{-i}} u_i(s_i, s_{-i})$$

1 \2	L	R
Т	2,1	2,-20
М	3,0	-10,1
В	-100,2	3,3

- player 1 may choose T, since that is least risky
- player 2 should then choose L
- another aspect of rationality where players make pessimistic estimate about others' play (instead of utility maximization)
- this worst case optimal choice is known as max-min strategy

$$s_i^* \in \underset{s_i \in S_i}{\operatorname{arg \, max}} \min_{s_{-i} \in S_{-i}} u_i(s_i, s_{-i})$$

• risky equilibrium

1 \2	L	R
Т	2,1	2,-20
М	3,0	-10,1
В	-100,2	3,3

- player 1 may choose T, since that is least risky
- player 2 should then choose L
- another aspect of rationality where players make pessimistic estimate about others' play (instead of utility maximization)
- this worst case optimal choice is known as max-min strategy

$$s_i^* \in \underset{s_i \in S_i}{\operatorname{arg \, max}} \min_{s_{-i} \in S_{-i}} u_i(s_i, s_{-i})$$

maxmin value

$$\underline{v}_i = \max_{s_i \in S_i} \min_{s_{-i} \in S_{-i}} u_i(s_i, s_{-i})$$

• risky equilibrium

1 \2	L	R
Т	2,1	2,-20
М	3,0	-10,1
В	-100,2	3,3

- player 1 may choose T, since that is least risky
- player 2 should then choose L
- another aspect of rationality where players make pessimistic estimate about others' play (instead of utility maximization)
- this worst case optimal choice is known as max-min strategy

$$s_i^* \in \underset{s_i \in S_i}{\operatorname{arg \, max}} \min_{s_{-i} \in S_{-i}} u_i(s_i, s_{-i})$$

maxmin value

$$\underline{v}_i = \max_{s_i \in S_i} \min_{s_{-i} \in S_{-i}} u_i(s_i, s_{-i})$$

$$u_i(s_i^*, t_{-i}) \geqslant \underline{v}_i, \ \forall t_{-i} \in S_{-i}$$

Relationship of max-min strategies and dominant strategies

Theorem

If s_i^* is a dominant strategy for player i, then it is a max-min strategy for player i as well, for all $i \in N$. Such a strategy is a best response of player i to any strategy profile of the other players.

Relationship of max-min strategies and dominant strategies

Theorem

If s_i^* is a dominant strategy for player i, then it is a max-min strategy for player i as well, for all $i \in N$. Such a strategy is a best response of player i to any strategy profile of the other players.

Proof sketch: [for strictly dominant strategies]

ullet Let s_i^* is the strictly dominant strategy of player i

$$u_i(s_i^*, s_{-i}) > u_i(s_i', s_{-i}), \ \forall s_i' \in S_i \setminus \{s_i^*\}, s_{-i} \in S_{-i}$$

Relationship of max-min strategies and dominant strategies

Theorem

If s_i^* is a dominant strategy for player i, then it is a max-min strategy for player i as well, for all $i \in N$. Such a strategy is a best response of player i to any strategy profile of the other players.

Proof sketch: [for strictly dominant strategies]

ullet Let s_i^* is the strictly dominant strategy of player i

$$u_i(s_i^*, s_{-i}) > u_i(s_i', s_{-i}), \ \forall s_i' \in S_i \setminus \{s_i^*\}, s_{-i} \in S_{-i}$$

 \bullet holds for every $\overline{s}_{-i}^{s_i'} \in \arg\min_{s_{-i} \in S_{-i}} u_i(s_i', s_{-i})$

Relationship of max-min strategies and dominant strategies

Theorem

If s_i^* is a dominant strategy for player i, then it is a max-min strategy for player i as well, for all $i \in N$. Such a strategy is a best response of player i to any strategy profile of the other players.

Proof sketch: [for strictly dominant strategies]

ullet Let s_i^* is the strictly dominant strategy of player i

$$u_i(s_i^*, s_{-i}) > u_i(s_i', s_{-i}), \ \forall s_i' \in S_i \setminus \{s_i^*\}, s_{-i} \in S_{-i}$$

- \bullet holds for every $\overline{s}_{-i}^{s_i'} \in \arg\min_{s_{-i} \in S_{-i}} u_i(s_i', s_{-i})$
- hence

$$u_i(s_i^*, \overline{s}_{-i}^{s_i'}) > u_i(s_i', \overline{s}_{-i}^{s_i'}), \ \forall s_i' \in S_i \setminus \{s_i^*\}$$

Relationship of max-min strategies and dominant strategies

Theorem

If s_i^* is a dominant strategy for player i, then it is a max-min strategy for player i as well, for all $i \in N$. Such a strategy is a best response of player i to any strategy profile of the other players.

Proof sketch: [for strictly dominant strategies]

ullet Let s_i^* is the strictly dominant strategy of player i

$$u_i(s_i^*, s_{-i}) > u_i(s_i', s_{-i}), \ \forall s_i' \in S_i \setminus \{s_i^*\}, s_{-i} \in S_{-i}$$

- \bullet holds for every $\overline{s}_{-i}^{s_i'} \in \arg\min_{s_{-i} \in S_{-i}} u_i(s_i', s_{-i})$
- hence

$$\begin{aligned} u_i(s_i^*, \overline{s}_{-i}^{s_i'}) &> u_i(s_i', \overline{s}_{-i}^{s_i'}), \ \forall s_i' \in S_i \setminus \{s_i^*\} \\ s_i^* &\in \underset{s_i \in S_i}{\text{max}} \min_{s_{-i} \in S_{-i}} u_i(s_i, s_{-i}) \end{aligned}$$

Relationship of max-min strategies and dominant strategies

Theorem

If s_i^* is a dominant strategy for player i, then it is a max-min strategy for player i as well, for all $i \in N$. Such a strategy is a best response of player i to any strategy profile of the other players.

Proof sketch: [for strictly dominant strategies]

ullet Let s_i^* is the strictly dominant strategy of player i

$$u_i(s_i^*, s_{-i}) > u_i(s_i', s_{-i}), \ \forall s_i' \in S_i \setminus \{s_i^*\}, s_{-i} \in S_{-i}$$

- \bullet holds for every $\overline{s}_{-i}^{s_i'} \in \arg\min_{s_{-i} \in S_{-i}} u_i(s_i', s_{-i})$
- hence

$$u_i(s_i^*, \overline{s}_{-i}^{s_i'}) > u_i(s_i', \overline{s}_{-i}^{s_i'}), \ \forall s_i' \in S_i \setminus \{s_i^*\}$$

$$s_i^* \in \operatorname*{arg\,max}_{s_i \in S_i} \min_{s_{-i} \in S_{-i}} u_i(s_i, s_{-i})$$

• The second part of the theorem follows from definition

Relationship of max-min strategies and dominant strategies

Theorem

If s_i^* is a dominant strategy for player i, then it is a max-min strategy for player i as well, for all $i \in N$. Such a strategy is a best response of player i to any strategy profile of the other players.

Proof sketch: [for strictly dominant strategies]

ullet Let s_i^* is the strictly dominant strategy of player i

$$u_i(s_i^*, s_{-i}) > u_i(s_i', s_{-i}), \ \forall s_i' \in S_i \setminus \{s_i^*\}, s_{-i} \in S_{-i}$$

- \bullet holds for every $\overline{s}_{-i}^{s_i'} \in \arg\min_{s_{-i} \in S_{-i}} u_i(s_i', s_{-i})$
- hence

$$\begin{aligned} u_i(s_i^*, \overline{s}_{-i}^{s_i'}) &> u_i(s_i', \overline{s}_{-i}^{s_i'}), \ \forall s_i' \in S_i \setminus \{s_i^*\} \\ s_i^* &\in \underset{s_i \in S_i}{\text{max}} \min_{s_{-i} \in S_{-i}} u_i(s_i, s_{-i}) \end{aligned}$$

• The second part of the theorem follows from definition

More results

Theorem

If every player $i \in N$ has a strictly dominant strategy s_i^* , then the strategy profile (s_1^*,\ldots,s_n^*) is the unique equilibrium point of the game and also the unique profile of max-min strategies.

Proof: exercise (can use the previous result)

More results

Theorem

If every player $i \in N$ has a strictly dominant strategy s_i^* , then the strategy profile (s_1^*,\ldots,s_n^*) is the unique equilibrium point of the game and also the unique profile of max-min strategies.

Proof: exercise (can use the previous result)

Relationship with pure strategy Nash equilibrium

Theorem

For every PSNE $s^*=(s_1^*,\ldots,s_n^*)$ of a normal form game satisfies $u_i(s^*)\geqslant \underline{v}_i$, for all $i\in N$.

More results

Theorem

If every player $i \in N$ has a strictly dominant strategy s_i^* , then the strategy profile (s_1^*,\ldots,s_n^*) is the unique equilibrium point of the game and also the unique profile of max-min strategies.

Proof: exercise (can use the previous result)

Relationship with pure strategy Nash equilibrium

Theorem

For every PSNE $s^* = (s_1^*, \dots, s_n^*)$ of a normal form game satisfies $u_i(s^*) \ge \underline{v}_i$, for all $i \in N$.

1 \2	L	R
Т	2,1	<mark>2</mark> ,-20
М	3,0	-10,1
В	-100,2	3,3

Proof

Proof:

$$u_i(s_i, s_{-i}^*) \geqslant \min_{s_{-i} \in S_{-i}} u_i(s_i, s_{-i}), \ \forall s_i \in S_i, \ \text{by definition of } \min$$

Proof

Proof:

$$u_i(s_i,s_{-i}^*)\geqslant \min_{s_{-i}\in S_{-i}}u_i(s_i,s_{-i}),\ \forall s_i\in S_i,\ \text{by definition of }\min$$
 Now, $u_i(s_i^*,s_{-i}^*)\geqslant u_i(s_i,s_{-i}^*),\ \forall s_i\in S_i,\ \text{by the best response definition}$

Proof

Proof:

$$u_i(s_i,s_{-i}^*)\geqslant \min_{s_{-i}\in S_{-i}}u_i(s_i,s_{-i}), \ \forall s_i\in S_i, \ \text{by definition of } \min$$
 Now, $u_i(s_i^*,s_{-i}^*)\geqslant u_i(s_i,s_{-i}^*), \ \forall s_i\in S_i, \ \text{by the best response definition}$ Hence, $u_i(s_i^*,s_{-i}^*)=\max_{s_i\in S_i}u_i(s_i,s_{-i}^*)\geqslant \max_{s_i\in S_i}\min_{s_{-i}\in S_{-i}}u_i(s_i,s_{-i})=\underline{v}_i$