第一章 绪论

- 1.1 数据库系统概述
- 1.2 数据模型
- 1.3 数据库系统结构
- 1.4 数据库系统的组成(自学)

上一讲复习

西南交通大学

《数据库原理及应用》第二章

课堂练习

层次型、网状型和关系型数据库划分原则

是 C

- A.记录长度
- B.文件的大小
- C.数据之间的联系方式
- D.联系的复杂程度

上一讲复习

数据库系统结构 — 三级模式结构和两级映像

数据与程序之间的独立性:

数据独立于应用程序

课堂练习

数据库三级模式中,真正存在的是

C

- A. 子模式
- B. 外模式
- C. 内模式
- D. 模式

课堂练习

在文件系统中,当文件数据结构发生任何 微小变化时,必须修改或重新编写程序的 特点,称为_____。

- A.数据共享困难
- B.数据冗余
- C.数据异常
- D.数据独立性差

从数据库中读取一个数据的工作过程

西南交通大学

《数据库原理及应用》第二章

第7页

8、海军某部要建立一个舰队信息系统:

(1) 舰队方面

舰队:舰队名称、基地地点

(2) 舰艇方面

官兵 <mark>m</mark> 属

w艇 安装 n 武器

舰队

拥有

舰艇: 舰艇编号、舰艇名称

武器: 武器编号、武器名称、武器生产时间

官兵: 官兵证号、姓名

其中,一个舰队拥有多艘舰艇,一艘舰艇属于一个舰队;一艘舰艇有多名官兵,一名官兵只属于一艘舰艇。一艘舰艇安装多种武器,一种武器可安装于多艘舰艇之上;请根据以上描述,画出该舰队信息系统的ER图,并将ER图转换为关系模型。

{{}

舰队(舰队名称,基地地点)

武器(武器编号,武器名称,武器生产时间)

舰艇(舰艇编号,舰艇名称,舰队名称)

官兵(官兵证号,姓名,舰艇编号)

安装 (舰艇编号,武器编号)

西南交通大学

- 2.1 关系数据结构及形式化定义
- 2.2 关系操作
- 2.3 关系的完整性
- 2.4 关系代数

第二章 关系数据库

- 口 关系数据库系统是指支持关系模型的数据库系统。
 - 1970年, E.F.Codd发表多篇论文, 系统而严格地提出了关系模型。
 - 70年代中期后,关系数据库成了占据主导地位的数据库。

关系数据库建立在严格的关系代数基础之上, 具有严格的数学基础。

口 域:一组具有相同数据类型的值的集合。

 \square 笛卡尔积: 给定一组域 $D_1,D_2,...,D_n$, 其笛卡尔积为:

$$D_1 \times D_2 \times ... \times D_n = \{(d_1, d_2, ..., d_n) \mid d_i \in D_i, i=1,2,...,n\}$$

■ 笛卡尔积的表示方法: 可表示为一张二维表

口 关系: 笛卡尔积的一个子集。

笛卡儿积

域

D1={陈佳迪,徐瑶琪} D2={男,女} D3={上海,浙江,山西} 笛卡儿积

陈佳迪	男	上海
陈佳迪	男	浙江
陈佳迪	男	山西
陈佳迪	女	上海
陈佳迪	女	浙江
陈佳迪	女	山西
徐瑶琪	男	上海
徐瑶琪 徐瑶琪	男男	上海 浙江
徐瑶琪	男	浙江
徐瑶琪 徐瑶琪	男男	浙江山西
徐瑶琪 徐瑶琪 徐瑶琪	男女	浙江 山西 上海

选子集

字生				
姓名	性别	籍贯		
陈佳迪	男	上海		
徐瑶琪	女	浙江		

关系

- 口 关系: 笛卡尔积中具有某一方面意义的那些元组被称作一个 关系,表示为 $R(D_1,D_2,...,D_n)$, R为关系名,n是关系的目(度)。
- 口关系模型由一组关系组成。每个关系的数据结构是一张 规范化的二维表。
 - 一个关系由关系名、关系模式和关系实例组成,通俗地讲,它们分别对应于二维表的表<u>名、表头和数据</u>。

 关系模式: 对关系的描述
 姓名
 性别
 籍贯

 关系实例: 具体的数据
 陈佳迪
 男
 上海
 元组

■ 关系中每行对应一个元组,每列对应一个域。不同的列可能属于相同的域,所以给每一列取一个名字,称为属性。一个n目(n元)关系就有n个属性。

西南交通大学

候选码: 如果关系中某一个属性组的值能唯一标识一

个元组,则称该属性组为候选码,又称为关键字、码。

候选码

系名	年级	班级	平均身高	平均年龄
电子	2018	1	1.68	21
电子	2018	2	1.70	20

一个关系中可能有多个候选码。

- 口 可选定其中一个作为主码, 也称主关键字。
- 口 候选码的诸属性称为主属性,而不含在任何候选码中的属性称为非主属性(非码属性)。

□ 基本关系的基本性质

- 列是同质的: 同一列中的数据, 其数据类型相同
- 不同的列可出自同一个域:每一列为一个属性。
- 列的顺序无所谓: 列的次序可以任意交换
- 行的顺序无所谓: 行的次序可以任意交换
- 任意两个元组的候选码不能相同。
- 分量必须取原子值:每一个分量都必须是不可分的数据项

在一个给定的应用领域中,所有实体及实体之间联系的关系的集合构成一个关系数据库。

2.2 关系操作

- □ 关系操作的特点
 - 集合操作方式,即操作的对象和结果都是集合
 - 非关系数据模型的数据操作方式: 一次一记录
- □ 常用的关系操作
 - 查询 查询的表达能力是其中最主要的部分
 - 数据更新
 - ○插入、删除、修改
- □ 关系操作的三种表示:
 - 代数方式——关系代数
 - ■逻辑方式——关系演算
 - 结构化查询语言SQL(具有关系代数和关系演算双重特点)

下列选项中不是关系数据库基本特征的是 (B)。

- A.不同的列应有不同的列名
- B.不同的列应有不同的数据类型
- C.与行的次序无关
- D.与列的次序无关

2.3 关系的完整性

关系模型的完整性规则是对关系的某种约束条件。

- □ 关系的三类完整性约束
 - 实体完整性
 - ■参照完整性
 - ■用户自定义完整性

关系模型必须满足的完整性约束条件, 由关系系统自动支持。

体现具体领域中的语义约束。 用户定义后由系统支持

1、实体完整性

□ 实体完整性规则:关系的主属性不能取空值。

主属性

违反实体完整性规则

学号	姓名	性别	生日	系	专业
199101			—		
199102					

主属性为空,空值是"不知道"或"不存在"

1、 实体完整性

□ 如果基本关系中的码包含多个属性,则所有主属 性都不能为空。例如,在选课关系中:

学号	课程号	成绩
2016001	X929101	88
>	B324455	90
2016002		85

主属性为空

主属性为空

违反实体完整性规则

一关系模型中实体及联系都用关系来描述,这就存在关系与关系间的引用。当一个关系被更新时,为保持数据的一致性,也必须对相关的关系进行检查或更新。

西南交通大学

外码:如果关系R中某属性集F是关系S的主码,则F是R的外码。R为参照关系,S为被参照关系或目标关系。

- \blacksquare S 的主码和 R 的外码 F 须定义在同一个(或一组)域上。
- R 和 S 可以是同一关系。

R与S可以是同一关系。外码和主码可不同名。

例 学生关系及其内部的领导联系

学生(学号, 胜名, 性别, 专业号, 年龄, 班长)

主码

定义外码的作用

用学号表示与主码不同名

学号	姓名	性別	专业号	年龄	班长
801	张三	女	01	19	802
802	李四	男	01	20	\ /
803	王五	男	01	20	802

西南交通大学

《数据库原理及应用》第二章

第24页

口参照完整性规则:关系R的任何一个元组在外码F上的取值要么是空值,要么是被参照关系S中一个元组的主码值。

例,学生(学号,胜名,性别,专业号,年龄)

在学生关系中,外码"专业号"可以为空, 也可以是专业关系中某个元组的专业号值。

例,这修(学号,课程号,成绩)

外码"学号"和"课程号"能否<mark>取空值</mark>②

学号和课程号是这课关系的 至 局 性, 不 能 取 空 值

3、用户自定义完整性

由用户根据系统的特殊要求,定义一些约束条件,来反映具体应用所涉及的数据和数据之间应满足的条件和要求。

例如:

学号	姓名	性别	年龄	籍贯	专业
201601891					电子信息
2012010000					电子信息
201603000			500		磁浮

2.4 关系代数

- □ 关系代数是一种抽象的查询语言,用对关系的运算来表达查询。
- 二 关系代数运算分为传统的集合运算和专门的关系运算,其运算对象和运算结果都是关系。

在传统的集合运算中,并、差和交运算都是建立在相容关系(同目同域)基础之上的。

1.并运算 (Union) : RUS

其结果仍然为n目关系,由属于R或属于S的元组组成。

R

A	В	C
a1	b 1	c1
a2	b2	c2
a3	b3	c3

S

A	В	C
d1	e1	f1
a3	b3	c3

RUS

A	В	C
a1	b1	c1
a2	b 2	c2
a3	b 3	c3
d1	e1	f1

升运算中,同一元组只能出现一次。

2.**差运算 (Except)** : R-S

其结果仍然为n目关系,由属于R但不属于S的元组组成

R			
A	В	C	
a1	b 1	c1	
a2	b2	c2	
a3	b3	c3	

A	В	C
a1	b 1	c1
d1	e1	f1
a3	b3	c3

R—S

A	В	C	
a2	b2	c2	

S-R

A	В	C
d1	e1	f1

3.交运算 (Intersection): R∩S

其结果仍然为n目关系,由既属于R又属于S的元组组成

11	
В	C
h1	c1

A	В	C
a1	b 1	c1
a2	b2	c2
a3	b3	c3

P

A	В	C
a1	b1	c1
d1	e1	f1
a2	b2	c2

RNS

A	В	C
a1	b1	c1
a2	b2	c2

关系的交可用差来表示:

R∩S=R - (R - S)

4. 笛卡尔积

设关系R为n目关系,关系S为m目关系,关系R与 关系S的广义笛卡尔积记为R×S,其结果为n+m目关系 ,关系中每个元组的前n列是关系R的一个元组,后m 列是关系S的一个元组。若R有k₁个元组,S有k₂个元组 ,则R与S的广义笛卡尔积中共有k₁×k₂个元组。

R

A	В	C
a1	b 1	c1
a2	b2	c2
a3	b3	c3

S

A	D
d1	e1
d2	e2

RXS

R.A	В	C	S.A	D
a1	b1	c1	d1	e1
a1	b1	c1	d2	e2
a2	b2	c2	d1	e1
a2	b2	c2	d2	e2
a3	b 3	c3	d1	e1
a3	b3	c3	d2	e2

设R和S分别是r和s元关系,且R有n个元组,S有m个元组,

执行关系R和S的笛卡尔积,记为T=R×S,则(B)

- A.T的元数是(r+s), 且有(n+m)个元组
- B. T的元数是(r+s), 且有(n×m)个元组
- C. T的元数是(r×s), 且有(n+m)个元组
- D. T的元数是(r×s), 且有(n×m)个元组

(一) 选择运算 (Selection)

从关系R中选择符合条件的元组构成新的关系。

记为 $\sigma_{F}(R)$

- □ F为逻辑表达式,给出选择条件,基本形式为XθY
 - X_Y:属性名;常量;简单函数
 - **0: 比较运算符,例如**,>,≥,<,≤,=,<>
 - F可以是多条件,用逻辑运算符

例从关系Students中查询所有的男同学。

Sno	Sname	Ssex	Sage	Class
\$01 \$02 \$03 \$04	王建平 刘 华 范林军 李 伟	男女女男	21 19 18 19	199901 199902 200101 200101

 $\sigma_{\text{Ssex} = ', \emptyset}$ (Students)

查询结果为

Sno	Sname	Ssex	Sage	Class
S01	王建平	男	21	199901
S04	李伟	男	19	200101

例 从关系Students中查询年龄大于19岁的男同学。

O Ssex = '男'∧Sage>19 (Students)

(二) 投影运算 (Projection)

从关系R中选择若干个属性列构成新的关系。

记为 $\prod_{\mathbf{A}}(\mathbf{R})$

A为R中的属性列。

□ 投影之后不仅取消了原关系中的某些列, 而 且还可能取消某些元组(去掉重复行)。

例查询关系Sudents中的Sname, Sage和Class

Sno	Sname	Ssex	Sage	Class
S01	王建平	男女女男	21	199901
S02	刘 华		19	199902
S03	范林军		18	200101
S04	李 伟		19	200101

∏ Sname, Sage, Class (Students)

查询结果为

Sname	Sage	Class
王建平	21	199901
刘华	19	199902
范林军	18	200101
李 伟	19	200101

例查询关系Sudents中男同学的Sname, Sage和Class。

 Π Sname, Sage, Class ($\sigma_{\text{Ssex} = ', \#}$, (Students))

西南交通大学

《数据库原理及应用》第二章

第37页

例 求没有选修2号课程的学生学号。

SC(Sno,Cno,Grade)

Students(Sno,Sname,Ssex,Sage,Class)

Sno	Cno	Grade
200211	2	92
200212	3	88
200211	1	78

注意,对于否定的操作,一般要用差操作表示。