Harrison Williams

Postdoctoral Researcher, Dept. of Computer Science Virginia Tech

https://harriswms.github.io/ hrwill@vt.edu

Research Interests

I perform research in the areas of computer architecture and embedded systems, ranging from transistor-level hardware design to software analysis and optimization. I am particularly interested in designing systems that explore the interactions between the software, architecture, and device layers to improve resource-constrained and low-power embedded and mobile systems.

Education

PhD, Computer Science

2019-2024

Circuit Support for Practical and Performant Batteryless Systems

Virginia Tech

Advisor: Dr. Matthew Hicks

Dual BS, Electrical & Computer Engineering

2015-2019

Virginia Tech

Conference Publications

- [6] A Software Caching Runtime for Embedded NVRAM Systems. <u>Harrison Williams</u> and Matthew Hicks. *Architectural Support for Programming Languages and Operating Systems (ASPLOS)*, 2025.
- [5] A Difference World: High-performance, NVM-invariant, Software-only Intermittent Computation. Harrison Williams*, Saim Ahmad*, and Matthew Hicks. *Equal contribution. USENIX Annual Technical Conference (ATC), 2024.
- [4] Energy-Adaptive Buffering for Efficient, Responsive, and Persistent Batteryless Systems.

 Harrison Williams and Matthew Hicks. Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2024.
- [3] Practical Considerations of Energy Harvesting Source in Minimization of Age of Information with Updating Erasures. Fariborz Lohrabi Pour, <u>Harrison Williams</u>, Matthew Hicks, and Dong Sam Ha. *International Symposium on Circuits & Systems (ISCAS)*, 2023.
- [2] Failure Sentinels: Ubiquitous Just-in-time Intermittent Computation via Low-cost Hardware Support for Voltage Monitoring. Harrison Williams, Michael Moukarzel, and Matthew Hicks. International Symposium on Computer Architecture (ISCA), 2021.
- [1] Forget Failure: Exploiting SRAM Data Remanence for Low-overhead Intermittent Computation. Harrison Williams, Xun Jian, and Matthew Hicks. Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2020.

Funding

- [1] NSF SHF: Small: Circuit Support for Maintaining the Continuous-power Abstraction in Energy Harvesting Systems
 - Principal Investigator: Dr. Matthew Hicks.
 - Timeframe: 2023-09-01 to 2026-08-31.
 - Total: \$450.000.
 - Role: Co-author. My work on hardware support for batteryless systems was the basis of this grant. I provided preliminary data and wrote the grant with Dr. Hicks.

Professional Experience

Virginia Tech

Postdoctoral Researcher

Graduate Research Assistant

Graduate Teaching Assistant

Undergraduate Research Assistant

CS 4264: Principles of Computer Security

Undergraduate Research Assistant

2019-2024

Fall 2019

2017-2019

Raytheon Missile Systems

Technical Intern Summers 2017, 2018

Updated June 29, 2024.

Selected Projects

Graduate Research

- Software Caching Runtimes: Emerging memories enable low-power microcontrollers to record and operate on large data streams, but do so with a performance penalty due to energy and latency limitations. This work explores software techniques to offload code and data to higher-performance on-chip SRAM to improve performance and energy efficiency. Outcome: One conference paper (ASPLOS '25).
- **Dynamic Energy Buffering**: Batteryless systems store energy in capacitors and face performance tradeoffs based on capacitor size. This work introduces adaptive and efficient variable-capacitance circuits to blend the advantages of different capacitor sizes. **Outcome**: One conference paper (ASPLOS '24).
- Integrated Circuits for Batteryless Systems: Designed custom integrated circuits for variable-resolution supply voltage supervisors targeting energy-constrained batteryless systems. Outcome: One conference paper (ISCA '21) and one paper under submission.
- **SRAM-based Intermittent Computation**: Batteryless devices operate intermittently on harvested energy, but need high-performance non-volatile memory to preserve program state. This work uses SRAM data remanence to preserve program state and eliminate the need for high-performance memory. **Outcome**: Two conference papers (ASPLOS '20, ATC '24).

Undergraduate Research

Counterfeit Device Detection: SRAM cells age as they hold data, revealing information about software operation through transistor-level changes visible in memory startup state. This work uses these software-induced changes to detect counterfeit recycled microcontrollers using statistical analysis to compare aged devices with an unaged golden model. Outcome: https://arxiv.org/pdf/2009.04002.pdf.

Recognition

Davenport Leadership Scholarship

2022

NSF Graduate Research Fellowship Program

2021

Honorable Mention

Service

Reviewer:

Journal of Systems Architecture

JSA '24

Sub-reviewer:

Architectural Support for Programming Languages and Operating Systems	ASPLOS '24, '23, '20
European Conference on Computer Systems	EuroSys '22
Transactions on Embedded Computing Systems	TECS '21
Design Automation Conference	DAC '20
Languages, Compilers, Tools and Theory of Embedded Systems	LCTES '20
International Workshop on Energy Harvesting $\&$ Energy-Neutral Sensing Systems	ENSsys '19