

VERFAHREN UND SCHALTUNG ZUM BERÜHRUNGSLOSEN ZÜNDEN EINES SCHWEISSLICHTBOGENS
MIT HOCHFREQUENTEN ZÜNDIMPULSPAketEN

Die Erfindung betrifft ein Verfahren zum berührungslosen Zünden eines Schweißlichtbogens, bei dem hochfrequente Zündimpulse zwischen die Schweißelektrode und dem zu bearbeitenden Werkstück zur Ionisierung der Strecke zwischen der Schweißelektrode und dem Werkstück angelegt werden, und bei dem nach dem Zünden des Schweißlichtbogens der Schweißstrom zugeschaltet wird, sowie eine Schaltung zum berührungslosen Zünden eines Schweißlichtbogens, mit einer Ladeschaltung, zumindest einem Impulskondensator, einer zumindest einen Schalter enthaltender Entladeschaltung, und einem Hochspannungsübertrager zur Einkopplung der sich vom Impulskondensator über den Schalter entladenden Hochfrequenz-Zündimpulse zur Schweißelektrode.

Das erfindungsgemäße Zündverfahren sowie die Zündvorrichtung sind prinzipiell für die verschiedensten Schweißverfahren, beispielsweise WIG (Wolfram-Inert-Gas)-Schweißverfahren und Plasma-Schweißverfahren sowie für Schweißverfahren mit abschmelzender Elektrode oder nichtabschmelzender Elektrode geeignet. Weiters eignet sich die Anwendung des Zündverfahrens bzw. der Zündvorrichtung sowohl für handgeführte Schweißbrenner als auch für Schweißbrenner in automatischen Anwendungen, insbesondere bei Roboteranwendungen.

Beim Zünden von Schweißlichtbögen unterscheidet man zwischen dem Kontaktzünden und dem berührungslosen HF-Zünden. Beim Kontaktzünden wird die Schweißelektrode auf das Werkstück aufgesetzt und danach unter gleichzeitiger Zuschaltung des Schweißstromes etwas die Schweißelektrode wieder vom Werkstück abgehoben, worauf der Lichtbogen gezündet wird. Dieses Verfahren ist relativ einfach und kostengünstig und vermeidet Störungen anderer elektronischer Komponenten der Schweißanlagen durch die bei der HF-Zündung eingesetzte Hochfrequenz. Allerdings können durch die Kontaktierung der Schweißelektrode mit dem Werkstück Einschlüsse und Verunreinigungen am Werkstück entstehen und andererseits wird die Elektrode durch die Kontaktierung abgenutzt.

Beim berührungslosen HF-Zünden hingegen bleibt die Schweiß-

elektrode immer vom Werkstück beabstandet und zwischen Schweißelektrode und Werkstück wird eine hochfrequente Hochspannung angelegt, wodurch die Gasmoleküle im Raum zwischen Elektrode und Werkstück ionisiert werden, so dass der Schweißlichtbogen ohne Berührung des Werkstücks mit der Elektrode gezündet werden kann. Um ein unabsichtliches Berühren des Werkstücks mit der Elektrode verhindern zu können, werden dabei Abstände zwischen Elektrode und Werkstück bei denen die Zündung erfolgen kann von zumindest einigen Millimetern bis zu einigen Zentimetern angestrebt. Nach der Zündung des Lichtbogens wird der Schweißbrenner weiter vom Werkstück entfernt bzw. an das Werkstück herangefahren und mit dem normalen Schweißstrom versorgt und der normale Schweißvorgang kann beginnen. Die zur Erzeugung der Hochspannungsimpulse verwendeten elektronischen Schaltelemente müssen dabei die beträchtlichen Ströme bzw. Spannungen aushalten. Aus diesem Grund werden üblicherweise Thyristoren bzw. Halbleiterbauelemente und Funkenstrecken als Schalter eingesetzt.

Die EP 1 197 285 A2 zeigt eine Schaltungsanordnung zur Erzeugung von Zündimpulsen für Schweißlichtbögen mit einer Sperrwandler-Schaltung mit vier Thyristoren in Brückenschaltung, welche von einer Triggerschaltung gesteuert werden. Zur Schaffung einer verbesserten Steuerung für die Zündimpulse erfolgt die Steuerung der Entladeschaltung zu Zeitpunkten, welche von den Parametern des Schweißprozesses abhängig sind. Nachteilig bei der Verwendung von Thyristoren als Schaltelemente ist, dass die maximale Schaltfrequenz relativ niedrig ist und darüber hinaus diese Bauelemente entsprechend groß dimensioniert werden müssen, wodurch es zu einer wesentlichen Verteuerung kommt. Durch die niedrige Schaltfrequenz der Thyristoren, welche beispielsweise bei 100 Hz liegt, wird eine schlechtere Ionisierung des Schutzgases erreicht, so dass es nicht immer sicher gestellt ist, dass eine sehr rasche bzw. sichere Zündung des Lichtbogens erfolgt.

Die EP 947 276 B1 zeigt ein Verfahren und eine Vorrichtung zur Zündung eines Schweißlichtbogens bei der der Ladekondensator über eine Funkenstrecke entladen wird. Funkenstrecken haben gegenüber Thyristoren den Vorteil, dass sie sehr robust sind und hohe Spannungen und Ströme aushalten. Darüber hinaus sind relativ hohe Schaltfrequenzen erzielbar. Nachteilig bei der

Verwendung von Funkenstrecken ist die Baugröße und der aufgrund der meist notwendigen Kühlung erforderliche konstruktive Mehraufwand. Darüber hinaus unterliegen die Funkenstrecken einem hohen Verschleiß und es kann durch die Ozonerzeugung zur Oxidation von Komponenten kommen. Schließlich können die elektromagnetischen Störungen insbesondere bei sehr empfindlichen Robotersteuerungen zu Problemen führen, welche nur durch entsprechende zusätzliche Abschirmungen verhindert werden können.

Die US 4 870 248 A zeigt ein Lichtbogenschweißgerät mit verbesselter Zündfähigkeit. Dabei wird die Spannung zwischen der Elektrode und dem Werkstück gemessen, um die Zündung des Lichtbogens erfassen zu können. Wenn der Lichtbogen nicht gezündet wurde, wird ein höherfrequenter Zündimpuls angelegt und dadurch eine erhöhte Zündwahrscheinlichkeit erzielt. Solange der Lichtbogen nicht gezündet wurde, steigt die Spannung an der Elektrode bis der Lichtbogen schließlich gezündet wird. Nach der Zündung des Lichtbogens liefert ein Oszillator die für das Schweißverfahren notwendige Frequenz und Pulsweite. Die der Elektrode zugeführte Energie muss jedoch unter vorgeschriebenen Grenzwerten liegen. Eine exaktere Zündung des Lichtbogens ist mit der Schaltung gemäß diesem Dokument nicht erzielbar.

Die DE 33 42 932 A1 beschreibt ein Verfahren zum stoßfreien Zünden beim MIG-MAG-Schweißen, wobei zwischen dem Schweißdraht und dem Werkstück eine Hochfrequenz-Spannung angelegt wird, deren Zündfolge von der Drahtvorschubgeschwindigkeit abhängt. Dadurch muss die Drahtvorschubgeschwindigkeit während der Zündung nicht reduziert werden. Eine exaktere bzw. sichere Zündung des Lichtbogens wird dadurch jedoch nicht erzielt.

Die Aufgabe der vorliegenden Erfindung besteht in der Schaffung eines oben genannten Zündverfahrens sowie einer entsprechenden Zündvorrichtung, durch welche eine exaktere bzw. sichere und sehr schnelle Zündung des Lichtbogens möglich wird bzw. zur Schaffung einer höheren Zündfähigkeit. Der Aufwand des Verfahrens bzw. der Vorrichtung soll möglichst gering sein. Schließlich soll das Zündverfahren bzw. die Vorrichtung zur Zündung an die jeweiligen Schweißbedingungen angepasst werden können. Weiters soll die Zündung möglichst unabhängig von der jeweiligen

Last funktionieren.

Die erfindungsgemäße Aufgabe wird in verfahrensmäßiger Hinsicht dadurch gelöst, dass mehrere Impulspakete mit vorgebbarer Frequenz oder Zeitdauer angelegt werden, wobei in einem Impulspaket mehrere aufeinanderfolgende Zündimpulse ausgegeben werden, wobei jeweils zwischen Impulspaketen eine Paketpause ausgeführt wird. Durch das Anlegen der Zündimpulse in mehreren Impulspaketen zwischen welchen entsprechend lange Pausen vorgesehen werden, kann die eingekoppelte Energie der Zündimpulse entsprechend hoch gewählt werden, so dass eine sichere und rasche Zündung zustande kommt, während die über die Zeit gemittelte maximal zulässige zugeführte Energie unter den vorgeschriebenen Grenzwerten angeordnet werden kann. Pro Impulspaket werden möglichst viele Zündimpulse angeordnet, was einer möglichst hohen Zündimpulsfrequenz bedarf. Durch eine höhere Anzahl von Zündimpulsen wird die Ionisation des Gases zwischen Schweißelektrode und zu bearbeitendem Werkstück erleichtert und somit eine leichtere Zündung des Schweißlichtbogens erzielt. Das erfindungsgemäße Zündverfahren zeichnet sich durch eine besonders hohe Qualität und eine sichere bzw. rasche Zündung des Lichtbogens aus. Das Zündverfahren ermöglicht eine Zündung bei größerem Abstand zwischen Schweißelektrode und Werkstück oder bei üblichem Abstand eine wesentlich exaktere Zündung als es bei üblichen Verfahren der Fall ist. Durch die geringe im Mittel eingebrachte Energie wird auch das Sicherheitsrisiko minimiert, d.h., dass der Bediener des Schweißbrenners nicht bzw. nicht so stark elektrisiert werden kann. Durch diese geringere Elektrisierwirkung können Unfälle, beispielsweise ein Fall des Schweißarbeiters von einem Gerüst oder dgl. vermieden werden.

Dadurch, dass die in einem Impulspaket ausgegebenen Zündimpulse in der Anzahl und/oder Frequenz verändert werden, wird in vorteilhafter Weise eine optimale Anpassung des Zündprozesses an die unterschiedlichsten Bedingungen erreicht.

Vorteilhafterweise ist das Verhältnis der Wiederholungsrate bzw. der Periodendauer der Impulspakete zur Dauer der Zündimpulse hoch.

Gemäß einem weiteren Merkmal der Erfindung werden die Zündimpulse innerhalb eines Impulspakets mit einer Periodendauer beispielsweise zwischen 25 µs und 1 ms, vorzugsweise 125 µs an die Schweißelektrode angelegt. Durch eine derartig niedrige Periodendauer bzw. hohe Wiederholungsfrequenz der Zündimpulse wird erzielt, dass die Ionisation des Gases zwischen der Schweißelektrode und dem Werkstück rascher und stärker und somit eine leichtere Zündung des Schweißlichtbogens erfolgt. Eine derartig niedrige Periodendauer bzw. hohe Wiederholungsfrequenz war mit den bisherigen Zündschaltungen, in welchen Thyristoren verwendet wurden, nicht möglich.

Die Periodendauer der Impulspakete liegt gemäß einem weiteren Merkmal der Erfindung zwischen 1 ms und 1 sek, vorzugsweise bei 100 ms. Bei einer derartigen Wiederholfrequenz im Bereich zwischen 1 Hz bis 1000 Hz bei einer entsprechend geringen Dauer der Impulspakete wird erreicht, dass die im Mittel übertragene Energie eingestellt bzw. angepasst werden kann, so dass beispielsweise bei handgeführten Schweißbrennern die Energiemenge vorgegeben werden kann und somit eine Anpassung an bestimmte Vorschriften und Normen erfolgen kann. Somit wird ohne Qualitäteinbußen eine sichere und rasche Zündung des Lichtbogens auch bei begrenzter Energiemenge am Ausgang der Schweißanlage erreicht.

Wenn der Schweißstrom eine bestimmte Zeitdauer nach Beginn der Zündimpulse bzw. der Impulspaketaussendung angelegt wird, kann eine noch bessere Zündung erfolgen, da während dieser vorgegebenen Zeitdauer eine Vorionisierung der Luft bzw. des Gasstromes stattfindet und somit eine bessere Zündung möglich wird, da entsprechende Ladungsträger zwischen der Schweißelektrode und dem Werkstück bereits vorhanden sind.

Vorteilhafterweise werden die Dauer der Impulspakete bzw. die Anzahl der Zündimpulse je Impulspaket in Abhängigkeit der Schweißparameter, wie z.B. des Materials des zu bearbeitenden Werkstücks, des Materials der Schweißelektrode und/oder des verwendeten Schutzgases, etc., eingestellt. Damit kann eine Anpassung des Zündverfahrens an die jeweiligen Schweißbedingungen erfolgen. Beispielsweise kann eine Anpassung bei der Verwendung

von schwer ionisierbaren Schutzgasen, wie z.B. Helium, vorgenommen werden, so dass auch dann eine sichere und sehr rasche Zündung möglich wird.

In schaltungstechnischer Hinsicht wird die erfindungsgemäße Aufgabe dadurch gelöst, dass eine mit der Ladeschaltung verbundene Impulskompressionsschaltung vorgesehen ist, umfassend den Impulskondensator, den Hochspannungsübertrager und den Schalter, wobei der Schalter durch eine magnetische Drossel gebildet ist, so dass eine hochfrequente Schaltung der Zündimpulse erreichbar ist. Die Verwendung einer magnetischen Drossel ermöglicht im Gegensatz zu Thyristoren oder Funkenstrecken die Schaltung der Zündimpulse mit hohen Frequenzen im Bereich, von beispielsweise 1-40 kHz. Durch die extrem hohen Zündfrequenzen wird eine exaktere und sichere Zündung erreicht, da eine stärkere Ionisation der Luft bzw. des Gasstromes zwischen der Schweißelektrode und dem Werkstück erzielt wird. Schließlich wird mit der erfindungsgemäßen Zündschaltung eine von der Last unabhängige Zündung erreicht und somit beispielsweise auch bei sehr langen Schlauchpaketen, welche eine hohe Belastung bewirken und die Zündspannung entsprechend absenken, eine wirkungsvolle Zündung erzielt, da durch die Aussendung von Impulspaketen eine höhere Spannung eingestellt werden kann, wobei der sich durch die Impulspakete ergebende Energiemittelwert entsprechend gering gehalten wird. Mit Thyristoren würde bei einer entsprechend niedrigen Spannung aufgrund langer Schlauchpakete oder dgl. keine oder nur eine besonders schlechte Zündung funktionieren bzw. müssten diese entsprechend groß dimensioniert werden.

Die Impulskompressionsschaltung kann auch aus zwei oder mehreren hintereinander geschalteten Stufen aufgebaut sein, wobei jede Stufe zumindest einen Impulskondensator, einen durch eine magnetische Drossel gebildeten Schalter und einen Hochspannungsübertrager beinhaltet. Während mit mehrstufigen Impulskompressionschaltungen die Anforderungen an die Ladeschaltung reduziert werden können, ist damit ein höherer Schaltungsaufwand und somit auch ein höherer Platzbedarf verbunden.

Wenn mit der Ladeschaltung eine Einrichtung zur Steuerung der Zündimpulse verbunden ist, kann eine entsprechende Steuerung der

Zündimpulse und damit eine Anpassung der Zündung an die jeweiligen Schweißparameter durchgeführt werden.

Wenn die Steuerungseinrichtung auch mit einer Schweißstromquelle zur Steuerung des Zeitpunktes des Zuschaltens des Schweißstromes nach erfolgter Zündung verbunden ist, kann beispielsweise eine Verzögerung des Zuschaltens des Schweißstromes im Bezug auf die Zündimpulspakete vorgenommen werden, wodurch eine Vorionisation der Luft bzw. des Gases zwischen Schweißbrenner und Werkstück stattfindet und somit eine noch exaktere und leichtere Zündung erfolgt. Die Einkopplung der Zündimpulse zum Schweißbrenner kann über einen in Serie geschalteten Einkoppelkondensator kapazitiv oder über eine Einkoppelspule induktiv erfolgen.

Die vorliegende Erfindung wird anhand der beigefügten Abbildungen näher erläutert. Darin zeigen

- Fig. 1 eine schaubildliche Darstellung einer Schweißanlage bzw. einer Schweißeinrichtung;
- Fig. 2 ein Blockschaltbild der Schweißeinrichtung mit einer Einrichtung zur berührungslosen Zündung des Schweißlichtbogens;
- Fig. 3 ein Prinzipschaltbild einer Zündschaltung mit Thyristor nach dem Stand der Technik;
- Fig. 4 ein Prinzipschaltbild einer Zündschaltung nach dem Stand der Technik mit einer Funkenstrecke;
- Fig. 5 eine detailliertere Abbildung einer Ausführungsform der Zündschaltung gemäß der vorliegenden Erfindung;
- Fig. 6 bis 10 zeigen unterschiedliche zeitliche Verläufe der generierten Zündspannung sowie Steuerspannung, in vereinfachter schematischer Form;
- Fig. 11 eine Ausführungsform der erfindungsgemäßen Zündschaltung mit zweistufiger Impulskompressionsschaltung;
- Fig. 12 ein Ausführungsbeispiel zur Anwendung des erfindungsgemäßen Verfahrens bei einer aus dem Stand der Technik bekannten Zündschaltung mit Thyristor; und
- Fig. 13 ein weiteres Ausführungsbeispiel zur Anwendung des erfindungsgemäßen Verfahrens bei einer aus dem Stand der Technik bekannten Zündschaltung mit einer Funkenstrecke.

In Fig. 1 ist ein Schweißgerät 1 bzw. eine Schweißanlage für verschiedenste Prozesse bzw. Verfahren, wie z.B. MIG/MAG-Schweißen bzw. WIG/TIG-Schweißen oder Elektroden-Schweißverfahren, Doppeldraht/Tandem-Schweißverfahren, Plasma- oder Lötverfahren usw., gezeigt.

Das Schweißgerät 1 umfasst eine Stromquelle 2 mit einem Leistungsteil 3, einer Steuervorrichtung 4 und einem dem Leistungsteil 3 bzw. der Steuervorrichtung 4 zugeordneten Umschaltglied 5. Das Umschaltglied 5 bzw. die Steuervorrichtung 4 ist mit einem Steuerventil 6 verbunden, welches in einer Versorgungsleitung 7 für ein Gas 8, insbesondere ein Schutzgas, wie beispielsweise CO₂, Helium oder Argon und dgl., zwischen einem Gasspeicher 9 und einem Schweißbrenner 10 bzw. einem Brenner angeordnet ist.

Zudem kann über die Steuervorrichtung 4 noch ein Drahtvorschubgerät 11, welches für das MIG/MAG-Schweißen üblich ist, angesteuert werden, wobei über eine Versorgungsleitung 12 ein Zusatzwerkstoff bzw. ein Schweißdraht 13 von einer Vorratstrommel 14 bzw. einer Drahtrolle in den Bereich des Schweißbrenners 10 zugeführt wird. Selbstverständlich ist es möglich, dass das Drahtvorschubgerät 11, wie es aus dem Stand der Technik bekannt ist, im Schweißgerät 1, insbesondere im Grundgehäuse, integriert ist und nicht, wie in Fig. 1 dargestellt, als Zusatzgerät ausgebildet ist.

Es ist auch möglich, dass das Drahtvorschubgerät 11 den Schweißdraht 13 bzw. den Zusatzwerkstoff außerhalb des Schweißbrenners 10 an die Prozessstelle zuführt, wobei hierzu im Schweißbrenner 10 bevorzugt eine nicht abschmelzende Elektrode angeordnet ist, wie dies beim WIG/TIG-Schweißen üblich ist.

Der Strom zum Aufbauen eines Lichtbogens 15, insbesondere eines Arbeitslichtbogens, zwischen der Elektrode und einem Werkstück 16 wird über eine Schweißleitung 17 vom Leistungsteil 3 der Stromquelle 2 dem Brenner 10, insbesondere der Elektrode, zugeführt, wobei das zu verschweißende Werkstück 16, welches aus mehreren Teilen gebildet sein kann, über eine weitere Schweißleitung 18 ebenfalls mit dem Schweißgerät 1, insbesondere mit der Stromquelle 2, verbunden ist und somit über den Lichtbogen

15 bzw. den gebildeten Plasmastrahl für einen Prozess ein Stromkreis aufgebaut werden kann.

Zum Kühlen des Schweißbrenners 10 kann über einen Kühlkreislauf 19 der Schweißbrenner 10 unter Zwischenschaltung eines Stromungswächters 20 mit einem Flüssigkeitsbehälter, insbesondere einem Wasserbehälter 21, verbunden werden, wodurch bei der Inbetriebnahme des Schweißbrenners 10 der Kühlkreislauf 19, insbesondere eine für die im Wasserbehälter 21 angeordnete Flüssigkeit verwendete Flüssigkeitspumpe, gestartet wird und somit eine Kühlung des Schweißbrenners 10 bewirkt werden kann.

Das Schweißgerät 1 weist weiters eine Ein- und/oder Ausgabevorrichtung 22 auf, über die die unterschiedlichsten Schweißparameter, Betriebsarten oder Schweißprogramme des Schweißgerätes 1 eingestellt bzw. aufgerufen werden können. Dabei werden die über die Ein- und/oder Ausgabevorrichtung 22 eingestellten Schweißparameter, Betriebsarten oder Schweißprogramme an die Steuervorrichtung 4 weitergeleitet und von dieser werden anschließend die einzelnen Komponenten der Schweißanlage bzw. des Schweißgerätes 1 angesteuert bzw. entsprechende Sollwerte für die Regelung oder Steuerung vorgegeben.

Weiters ist in dem dargestellten Ausführungsbeispiel der Schweißbrenner 10 über ein Schlauchpaket 23 mit dem Schweißgerät 1 bzw. der Schweißanlage verbunden. In dem Schlauchpaket 23 sind die einzelnen Leitungen vom Schweißgerät 1 zum Schweißbrenner 10 angeordnet. Das Schlauchpaket 23 wird über eine Kupplungsvorrichtung 24 mit dem Schweißbrenner 10 verbunden, wogegen die einzelnen Leitungen im Schlauchpaket 23 mit den einzelnen Kontakten des Schweißgerätes 1 über Anschlussbuchsen bzw. Steckverbindungen verbunden sind. Damit eine entsprechende Zugentlastung des Schlauchpaketes 23 gewährleistet ist, ist das Schlauchpaket 23 über eine Zugentlastungsvorrichtung 25 mit einem Gehäuse 26, insbesondere mit dem Grundgehäuse des Schweißgerätes 1, verbunden. Selbstverständlich ist es möglich, dass die Kupplungsvorrichtung 24 auch für die Verbindung am Schweißgerät 1 eingesetzt werden kann.

Grundsätzlich ist zu erwähnen, dass für die unterschiedlichen

Schweißverfahren bzw. Schweißgeräte 1, wie beispielsweise WIG-Geräte oder MIG/MAG-Geräte oder Plasmageräte nicht alle zuvor benannten Komponenten verwendet bzw. eingesetzt werden müssen. Hierzu ist es beispielsweise möglich, dass der Schweißbrenner 10 als luftgekühlter Schweißbrenner 10 ausgeführt werden kann.

Fig. 2 zeigt ein prinzipielles Blockschaltbild einer Schaltung zum berührungslosen Zünden eines Schweißlichtbogens mit einer Schweißstromquelle bzw. Stromquelle 2, welche den Schweißbrenner 10 gegenüber dem Werkstück 16 während des Schweißverfahrens mit entsprechendem Strom und entsprechender Spannung versorgt. Zum berührungslosen Zünden des Schweißlichtbogens 15 zwischen einer Schweißelektrode 27, in diesem dargestellten Beispiel eine nicht abschmelzende Elektrode, und dem zu bearbeitenden Werkstück 16 ist parallel zur Schweißelektrode 27 und dem Werkstück 16 eine Zündschaltung 28 angeordnet, welche hochfrequente Zündimpulse mit entsprechend hoher Spannung zwischen der Schweißelektrode 27 und dem Werkstück 16 anlegt, so dass die zwischen dem Schweißbrenner 10 und dem Werkstück 16 angeordnete Luft bzw. das Gas 8 ionisiert wird und die Ausbildung des Schweißlichtbogens 15 erleichtert. Zur Steuerung der Zündschaltung 28 dient die Steuervorrichtung 4, welche auch mit der Schweißstromquelle 2 verbunden sein kann. Dabei hat die Steuervorrichtung 4 beispielsweise die Zündschaltung bei einem Betätigen eines Startschalters am Schweißbrenner 10 zu aktivieren und bei einer Zündung des Lichtbogens 15 diese wiederum zu deaktivieren, damit die Hochspannungsimpulse während des Schweißprozesses nicht ausgesendet werden. Selbstverständlich wäre es möglich, dass über den gesamten Schweißprozess die Hochspannungsimpulse ausgesendet werden könnten, wobei jedoch die Gefahr besteht, dass dadurch benachbarte Geräte gestört werden könnten. Üblicherweise werden somit die Hochspannungsimpulse nach dem Zünden des Lichtbogens beendet oder bei entsprechend notwendigen Bedingungen diese wiederum kurzzeitig aktiviert, d.h., dass beispielsweise bei einer Wechselstromschweißung synchron zum Nulldurchgang die HF-Zündung, also die Zündschaltung 28, aktiviert wird, um eine bessere und vor allem sichere Wiederzündung des Lichtbogens 15 zu erreichen.

Die Fig. 3 und 4 zeigen prinzipielle Blockschaltbilder von Zünd-

schaltungen, wie sie nach dem Stand der Technik existieren. Fig. 3 zeigt hierzu eine Zündschaltung 28 bei der ein Thyristor 29 als Schalter eingesetzt wird, um die Ladung eines Impulskondensators 30, welche von einer Ladeschaltung 31 erzeugt wird, über einen Hochspannungsübertrager 32 an die Schweißelektrode 27 und das Werkstück 16 (nicht dargestellt) zu übertragen. Hierbei ist es möglich, dass jede beliebige aus dem Stand der Technik bekannte Ladeschaltung eingesetzt werden kann. Die Entladeschaltung kann auch durch vier in Brückenschaltung angeordnete Thyristoren 29 aufgebaut werden, wie es beispielsweise in der EP 1 197 285 A2 beschrieben wird. Thyristoren 29 als Schalter sind insofern von Nachteil, als mit ihnen nur relativ niedrige Schaltfrequenzen erzielt werden können.

Bei der Variante gemäß dem Stand der Technik entsprechend Fig. 4 wird eine Funkenstrecke 33 als Schalter eingesetzt, wodurch zwar höhere Schaltfrequenzen erzielt werden können, allerdings ein erhöhter konstruktiver Aufwand verbunden ist. Dabei liegt bei den Funkenstrecken 33 ein wesentlicher Nachteil darin, dass von diesen Ozon erzeugt wird, wodurch es beim Einbau von Funkenstrecken 33 in einem Schweißgerät 1 durch die erhöhte Ozonbelastung zu Zerstörungen der elektronischen Bauelemente und/oder der Leiterplatten und/oder der Kunststoffe usw. kommen kann. Gleichzeitig werden durch die Funkenstrecken 33 erhöhte elektromagnetische Störungen verursacht, zu deren Vermeidung ein sehr großer Aufwand zur Abschirmung betrieben werden muss.

Fig. 5 zeigt eine prinzipielle Ausführungsvariante der Zündschaltung 28 gemäß der vorliegenden Anmeldung, wobei die Ladeschaltung 31 einen Anschluss 34 zum Anschluss der Versorgungsspannung aufweist und einen gegen Masse geschalteten Pufferkondensator 35. Der Pufferkondensator 35 bzw. der Anschluss 34 ist über einen Übertrager 36 und ein Schaltelement 37 gegen Masse geschaltet. Mittels der an dem Anschluss 34 anliegenden Versorgungsspannung wird der Impulskondensator 30 über den Übertrager 36 geladen.

Zusätzlich kann ein Stromsensor 39 angeordnet sein, der den Ladestrom detektiert und ein dazu proportionales Signal an die Steuerung 38 sendet. Bei der Ladeschaltung 31 wurde ein aus dem

Stand der Technik bekannter Aufbau dargestellt, wobei jede beliebige aus dem Stand der Technik bekannte Ladeschaltung 31 eingesetzt werden kann. Weiters ist es möglich, dass anstelle der zusätzlichen Steuerung 38 eine direkte Ansteuerung von der Steuervorrichtung 4 des Schweißgerätes 1 durchgeführt wird.

Mit der Ladeschaltung 31 ist eine erfindungsgemäße Impulskompressionsschaltung 40 verbunden, wobei diese eine magnetische Drossel 41 als Schalter, den Impulskondensator 30 und den Hochspannungsübertrager 32 umfasst. Über die magnetische Drossel 41 wird die Ladung des Impulskondensators 30 an den Hochspannungsübertrager 32 und von diesem an die Klemmen der Schweißelektrode 27 bzw. das Werkstück 16 (nicht dargestellt) übertragen bzw. geschalten. Die Steuerung der Ladung des Impulskondensators 30 erfolgt über den elektronischen Schalter 37, der von einer entsprechenden Steuerung 38 oder 4 angesteuert wird, so dass bei aktiviertem Schalter 37 ein Stromfluss über die Primärseite des Übertragers 36 stattfindet, wodurch eine Energieübertragung am Übertrager 36 hervorgerufen wird, die den magnetischen Schalter bzw. die Drossel 41 rückgesetzt. Beim Deaktivieren des Schalters 37 wird dann die magnetisch gespeicherte Energie über den Übertrager 36 übertragen, wodurch der Impulskondensator 30 geladen wird. Wird eine bestimmte Spannungs-Zeitfläche beim Laden des Impulskondensators 30 erreicht, so schaltet automatisch die magnetische Drossel 41 durch, so dass die im Impulskondensator 30 geladene Energie über den Hochspannungsübertrager 32 entladen wird und ein Strom- bzw. Spannungsimpuls erzeugt wird. Durch die erfindungsgemäße Ausführung des Schalters als magnetische Drossel 41 können sehr hohe Schaltfrequenzen erzielt und somit eine rasche und sichere Zündung des Lichtbogens 15 erreicht werden. Darüber hinaus ist die Drossel 41 sehr robust im Bezug auf die bei der Zündung des Schweißlichtbogens 15 auftretenden hohen Spannungen und Ströme. Im Gegensatz zu Funkenstrecken 33, welche üblicherweise gekühlt werden müssen, ist der bauliche Aufwand bei der erfindungsgemäßen Drossel 41 relativ gering, wobei diese auch erheblich weniger Störsignale bildet.

In den Fig. 6 bis 10 sind unterschiedliche zeitliche Verläufe eines gebildeten HF-Ausgangssignales 42 und einer Steuerspannung 43 dargestellt. Dabei wurde das HF-Ausgangssignal 42 schematisch

in Form von Rechteckimpulsen, insbesondere der erzeugten Strom- und/oder Spannungsimpulse, dargestellt. Üblicherweise werden die Rechteckimpulse durch Strom- und/oder Spannungsimpulse mit aus- schwingendem Verlauf gebildet. Dabei wird das HF-Ausgangssignal 42 grundsätzlich derart gebildet, dass an die Schweißelektrode 27 ein oder mehrere Impulspakete 44 mit vorgebbarer Frequenz oder Zeitdauer angelegt werden und in einem Impulspaket 44 meh- rere aufeinanderfolgende Zündimpulse 45 ausgegeben werden, wobei jeweils zwischen den Impulspaketen 44 eine Paketpause 46 ausge- führt wird. Dabei ist das Verhältnis der Wiederholungsrate bzw. Periodendauer 47 der Impulspakete 44 zur Dauer bzw. Periodendau- er 50 der Zündimpulse 45 hoch. Beispielsweise beträgt die Paket- periodendauer 47, bestehend aus einem Impulspaket 44 mit einer daran anschließenden Paketpause, 1 ms bis 1 s entsprechend einer Wiederholungsfrequenz der Impulspakete 44 von 1-1000 Hz. Die Dauer 48 der Impulspakete 44 entspricht vorzugsweise 50 μ s bis 300 ms, wobei diese frei vorgebbar ist. Die Periodendauer 50 der Zündimpulse 45 beträgt beispielsweise 25 μ s bis 1 ms entspre- chend einer Wiederholungsfrequenz von 1 kHz bis 40 kHz.

Durch das Aussenden von einzelnen Impulspaketen 44 können unter- schiedliche HF-Ausgangssignale 42 mit unterschiedlichen zeitli- chen Verläufen bzw. Frequenzen gebildet werden. Damit kann eine optimale Anpassung des HF-Ausgangssignals 42 an die Schweißbe- dingungen vorgenommen werden, d.h., dass je nach eingestellten Parametern von dem Schweißgerät 1 bzw. der Steuervorrichtung 4 und/oder 38 entsprechende HF-Ausgangssignale 42 generiert werden, so dass eine sehr rasche und sichere Zündung des Licht- bogens 15 erreicht werden kann.

Beispielsweise ist in Fig. 6 das HF-Ausgangssignal 42 derart aufgebaut, dass eine Paketperiodendauer 47, die aus einem Impul- spaket 44 und einer Paketpause 46 besteht, aus einem gleichen Taktverhältnis gebildet wird, d.h., dass eine Zeitdauer 48 für ein Impulspaket 44 gleich groß einer Zeitdauer 49 für die Paket- pause 46 ist. Somit ist es möglich, dass je nach Dimensi- onierung, also je nach der Länge der Zeitdauer 48 eine Vielzahl von Zündimpulsen 45 in dem Impulspaket 44 enthalten sind. Bei- spielsweise können in einem Impulspaket 44 zwischen 1 und 300, bevorzugt 60, Zündimpulse 45 enthalten sein. Die Anzahl der

möglichen Zündimpulse 45 hängt dabei von der gewählten Zündperi- odendauer 50 bzw. deren Frequenz ab.

Der wesentliche Vorteil der paketförmigen Bildung des HF-Aus- gangssignals 42 liegt darin, dass damit die ausgesendete Energie reduziert werden kann, wobei jedoch eine sichere Zündung des Lichtbogens 15 gewährleistet ist, d.h., dass durch das Anlegen von Impulspaketen 44 an die Schweißelektrode 27 im Mittel weniger Energie an diese übermittelt wird, wobei jedoch während eines Impulspaketes 44 eine sehr hohe Energiemenge für die Zündung des Lichtbogens 15 vorhanden ist. Somit ist es möglich, dass aufgrund einer entsprechenden Steuerung des HF-Ausgangssi- gnals 42 die mittlere Energie eingestellt bzw. vorgegeben werden kann, so dass das vorliegende Zündverfahren auch bei manuell ge- führten Schweißbrennern oder auch bei automatischen Anwendungen, bei welchen die maximale Leistung bzw. Energiemenge begrenzt ist, einsetzbar ist.

In Fig. 7 ist ein weiteres Beispiel des HF-Ausgangssignals 42 dargestellt. Dabei wurde zum Unterschied zu dem Ausführungsbei- spiel der Fig. 6 nunmehr die Paketperiodendauer 47 beispiels- weise verdoppelt, wobei das Tastverhältnis zwischen der Zeitdauer 48 und 49 für die Impulspakete 44 und der Paketpausen 46 wiederum 50% beträgt.

Bei diesem Ausführungsbeispiel erfolgt die Steuerung über die Anzahl der Zündimpulse 45 in einem Impulspaket 44, d.h., dass in einem Impulspaket 44 immer wieder die gleiche bzw. vorgegebene Anzahl von Zündimpulsen 45 gebildet wird, wobei jedoch die Frequenz der Zündimpulse 45 verändert wird. Damit dies ersicht- lich ist, wurde bei dem dargestellten Ausführungsbeispiel in Fig. 7 die selbe Anzahl von Zündimpulsen 45, wie sie in Fig. 6 in einem Impulspaket 44 enthalten sind, verwendet. Beim Ver- gleich mit Fig. 6 ist nunmehr ersichtlich, dass also wiederum die selbe Anzahl von Zündimpulsen 45 in einem Impulspaket 44 enthalten ist, jedoch aufgrund der Verlängerung der Zeitdauer 48 für das Impulspaket 44 die Zündperiodendauer 50 entsprechend angepasst wurde.

Weiters ist es auch möglich, wie in Fig. 8 schematisch darge-

stellt, dass die Frequenz bzw. Zündperiodendauer 50 konstant gehalten wird, wodurch eine beliebige Anzahl von Zündimpulsen 45 in einem Impulspaket 44 gebildet wird, d.h., dass aufgrund der Zeitdauer 48 für das Impulspaket 44 über diese Zeitdauer 48 die Zündimpulse 45 mit konstanter Frequenz ausgesendet werden. Zum Vergleich wurde dabei die Frequenz bzw. Zündperiodendauer 50 von Fig. 6 in Fig. 8 verwendet, so dass nunmehr eindeutig ersichtlich ist, dass aufgrund der längeren Zeitdauer 48 für das Impulspaket 44 wesentlich mehr Zündimpulse 45 innerhalb des Impulspaketes 44 gebildet werden.

Bei dem Ausführungsbeispiel in Fig. 9 wird das HF-Ausgangssignal 42 derart gebildet, dass die Frequenz bzw. Zündperiodendauer 50 innerhalb des Impulspaketes 44 verändert wird. Wie schematisch dargestellt, wird dabei beispielsweise über definierte Zeitbereiche 51 bis 53 jeweils eine geänderte Frequenz bzw. Zündperiodendauer 50 in diesen Zeitbereichen 51 bis 53 ausgeführt. Weiters ist aus diesem Ausführungsbeispiel ersichtlich, dass das Tastverhältnis zwischen den Impulspaketen 44 und den Pulspausen 46 in einer Paketperiodendauer 47 verändert wurde, so dass nunmehr die Zeitdauer 48 für ein Impulspaket 44 länger ist, als die Zeitdauer 49 für die Pulspause 46. Selbstverständlich ist es möglich, dass die Zeitdauer 48 für das Impulspaket 44 kürzer als die Zeitdauer 49 für die Paketpause 46 sein kann.

Weiters ist es auch möglich, dass die Spannungshöhe 54 der Zündimpulse 45 für jedes Impulspaket 44 bzw. innerhalb eines Impulspaketes 44 verändert werden kann, wie dies in Fig. 10 dargestellt ist. Bei diesem Ausführungsbeispiel erfolgt dabei eine Verringerung der Spannungshöhe 54 innerhalb eines Impulspaketes 44.

Grundsätzlich ist zu erwähnen, dass es möglich ist, dass der Schweißstrom erst eine bestimmte Zeit nach dem Anlegen des ersten Zündimpulses 45 bzw. Impulspaketes 44 eingeschaltet wird, wodurch eine gewisse Vorionisierung der Luft bzw. des Gases 8 zwischen der Schweißelektrode 27 und dem Werkstück 16 und somit eine rasche und sichere Zündung des Schweißlichtbogens 15 stattfindet. Es ist auch möglich, dass die Impulspaketdauer, also die Zeitdauer 48 bzw. die Anzahl der Zündimpulse 45 innerhalb eines

Impulspakets 44 sowie die Paketperiodendauer 47 der Impulspakete 44 vorzugsweise an die Schweißbedingungen angepasst werden können, d.h., dass beispielsweise das HF-Ausgangssignal 42, insbesondere die Art bzw. Form des HF-Ausgangssignals 42, aufgrund der eingestellten Parameter, wie das Material des Werkstücks 16, das Material der Schweißelektrode 27 oder das verwendete Schutzgas oder dgl., erzeugt wird. Somit kann für jedes Schweißverfahren ein optimales Zündverfahren angewendet werden.

Die Einkopplung der HF-Zündung, insbesondere des HF-Ausgangssignals 42, in den Schweißkreis kann auf die unterschiedlichsten aus dem Stand der Technik bekannten Arten erfolgen. Hierbei werden beispielsweise die Hochspannungszündimpulse über einen Einkoppelkondensator kapazitiv eingekoppelt. Es ist natürlich auch möglich, die Einkopplung der hochfrequenten Zündimpulse induktiv durchzuführen.

In Fig. 11 ist eine Variante der erfindungsgemäßen Zündschaltung bei der die Impulskompressionsschaltung 40 zweistufig aufgebaut ist, wobei jede Stufe einen Impulskondensator 30, eine magnetische Drossel 41 und einen Hochspannungsübertrager 32 aufweist. Mehrstufige Impulskompressionsschaltungen 40 haben den Vorteil, dass die Anforderungen an die Ladeschaltung 31 nicht zu hoch sind, allerdings wird der bauliche Aufwand erhöht.

In den weiteren Ausführungsbeispielen der Fig. 12 und 13 ist eine Anwendung des Verfahrens zum Aussenden von Impulspaketen 44 bei den aus dem Stand der Technik bekannten Systemen, wie mit einem Thyristor 29 oder einer Funkenstrecke 33 dargestellt. Hierzu ist der Einfachheit halber ein Schaltelement 55 integriert, welches den Primärkreis des Hochspannungsübertragers 32 unterbricht, so dass entsprechende Ausgangsimpulse erzeugt werden. Damit ist es möglich, durch entsprechende Ansteuerung des Schaltelementes 55 über eine definierte Zeitdauer 48 ein Impulspaket 44 zu erzeugen, so dass ein entsprechendes HF-Ausgangssignal 42, wie in den Fig. 6 bis 10 beschrieben, generiert werden kann. Selbstverständlich kann dies durch entsprechende Ansteuerung des Thyristors 29 oder einer gesteuerten Funkenstrecke 33 realisiert werden. Weiters kann zur Anwendung des erfindungsgemäßen Verfahrens die Ladeschaltung 31 entsprechend

gesteuert werden, so dass am Ausgang bzw. an der Elektrode 27 die Impulspakete 44 mit den dazwischen gebildeten Pulspausen 46 mit den darin enthaltenen hochfrequenten Zündimpulsen 45 gebildet werden.

Wesentlich ist, dass das erzeugte HF-Ausgangssignal 42 durch einzelne Impulspakete 44 mit dazwischen angeordneten Paketpausen 46 gebildet wird. Damit kann die mittlere Energie bzw. Leistung über das Tastverhältnis eingestellt werden, so dass eine Anpassung der Leistung bzw. mittleren Energiemenge an die nationalen Vorschriften bzw. Normen durchgeführt werden kann.

Patentansprüche:

1. Verfahren zum berührungslosen Zünden eines Schweißlichtbogens, bei dem hochfrequente Zündimpulse zwischen die Schweißelektrode und dem zu bearbeitenden Werkstück zur Ionisierung der Strecke zwischen der Schweißelektrode und dem Werkstück angelegt werden, und bei dem nach dem Zünden des Schweißlichtbogens der Schweißstrom zugeschaltet wird, dadurch gekennzeichnet, dass mehrere Impulspakete (44) mit vorgebbarer Frequenz, insbesondere Paketperiodendauer (47), oder Zeitdauer (48) angelegt werden, wobei in einem Impulspaket (44) mehrere aufeinander folgende Zündimpulse (45) ausgegeben werden, wobei jeweils zwischen den Impulspaketen (44) eine Paketpause (46) ausgeführt wird.
2. Zündverfahren nach Anspruch 1, dadurch gekennzeichnet, dass die in einem Impulspaket (44) ausgegeben Zündimpulse (45) in der Anzahl und/oder Frequenz, insbesondere einer Zündperiodendauer (50), verändert werden.
3. Zündverfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Verhältnis der Paketperiodendauer (47) zur Dauer der Zündimpulse (45), also der Zündperiodendauer (50) hoch ist.
4. Zündverfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Zündimpulse (45) innerhalb eines Impulspakets (44) mit einer Zündperiodendauer (50) zwischen 25 µs und 1 ms, vorzugsweise 125 µs, angelegt werden.
5. Zündverfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Impulspakete (44) mit einer Paketperiodendauer (47) zwischen 1 ms und 1 s, vorzugsweise 100 ms, angelegt werden.
6. Zündverfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Schweißstrom eine bestimmte Zeitdauer nach dem ersten Zündimpuls (45) angelegt wird.
7. Zündverfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Zeitdauer (48) der Impulspakete (44) bzw. die Anzahl der Zündimpulse (45) je Impulspaket (44) in Abhängig-

keit der eingestellten Schweißparameter, wie zum Beispiel des Materials des zu bearbeitenden Werkstücks (16), des Materials der Schweißelektrode (27), eines verwendeten Schutzgases (8), etc. eingestellt bzw. erzeugt wird.

8. Schaltung zum berührungslosen Zünden eines Schweißlichtbogens, mit einer Ladeschaltung (31), zumindest einem Impulskondensator (30), einer zumindest einen Schalter enthaltenden Entladeschaltung, und einem Hochspannungsübertrager (32) zur Einkopplung der sich vom Impulskondensator (30) über den Schalter entladenden Hochfrequenz-Zündimpulse zur Schweißelektrode (27), dadurch gekennzeichnet, dass eine mit der Ladeschaltung (31) verbundene Impulskompressionsschaltung (40) vorgesehen ist, umfassend den Impulskondensator (30), den Hochspannungsübertrager (32) und den Schalter, wobei der Schalter durch eine magnetische Drossel (41) gebildet ist, sodass eine hochfrequente Schaltung der Zündimpulse erreichbar ist.

9. Zündschaltung nach Anspruch 8, dadurch gekennzeichnet, dass die Impulskompressionsschaltung (40) aus zwei oder mehreren hintereinandergeschalteten Stufen aufgebaut ist, wobei jede Stufe zumindest einen Impulskondensator (30), einen durch eine magnetische Drossel (41) gebildeten Schalter und einen Hochspannungsübertrager (32) beinhaltet.

10. Zündschaltung nach einem der Ansprüche 8 bis 9, dadurch gekennzeichnet, dass eine mit der Ladeschaltung (31) verbundene Einrichtung (4, 38) zur Steuerung der Zündimpulse vorgesehen ist.

11. Zündschaltung nach Anspruch 10, dadurch gekennzeichnet, dass die Steuerungseinrichtung (4, 38) mit einer Stromquelle (2) zur Steuerung des Zeitpunktes des Zuschaltens des Schweißstromes nach erfolgter Zündung verbunden ist.

THIS PAGE BLANK (USPTO)

Fig. 1

THIS PAGE BLANK (USPTO)

Fig.2

THIS PAGE BLANK (USPTO)

Fig. 3

28

Fig. 4

28

THIS PAGE BLANK (USPTO)

Fig.5

THIS PAGE BLANK (USPTO)

Fig. 6**Fig. 7****Fig. 8**

THIS PAGE BLANK (USPTO)

6/8

Fig.9**Fig.10**

THIS PAGE BLANK (USPTO)

Fig.11

THIS PAGE BLANK (USPS)

Fig. 12

Fig. 13

THIS PAGE BLANK (USPTO)

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/AT2004/000394

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 B23K9/067 B23K9/09

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 B23K H01H

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, PAJ

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	PATENT ABSTRACTS OF JAPAN Bd. 017, Nr. 123 (M-1380), 15. März 1993 (1993-03-15) -& JP 04 305374 A (DAIHEN CORP), 28. Oktober 1992 (1992-10-28)	1-3
Y	Zusammenfassung -----	6,7
Y	EP 1 197 285 A (LORCH SCHWEISSTECHNIK GMBH) 17. April 2002 (2002-04-17) in der Anmeldung erwähnt das ganze Dokument -----	6,7
A	DE 195 07 649 A1 (FRONIUS SCHWEISMASCHINEN KG) 14. September 1995 (1995-09-14)	8
X	-----	1-3,6,7
A	----- -/-	8

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- *A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- *E* älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldeatum veröffentlicht worden ist
- *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- *O* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- *P* Veröffentlichung, die vor dem internationalen Anmeldeatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- *T* Spätere Veröffentlichung, die nach dem internationalen Anmeldeatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- *X* Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden
- *Y* Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahelegend ist
- *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Absendedatum des internationalen Recherchenberichts

17. Februar 2005

25/02/2005

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax. (+31-70) 340-3016

Bevollmächtigter Bediensteter

Jeggy, T

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
P/AT2004/000394

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN		
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
Y	US 3 657 512 A (E.J. BONDARENKO) 18. April 1972 (1972-04-18)	8,10,11
A	Spalte 1, Zeilen 5-22 Spalte 2, Zeilen 10-26 Spalte 3, Zeilen 63-73; Anspruch 1; Abbildungen 1,2	1
Y	GB 1 225 054 A (R. KREEB ET AL) 17. März 1971 (1971-03-17) Seite 1, Zeilen 23-38	8,10,11
A	US 5 965 038 A (Y. NOMURA ET AL) 12. Oktober 1999 (1999-10-12) Spalte 1, Zeile 66 – Spalte 2, Zeile 11 Spalte 10, Zeilen 25-64; Abbildung 3	8

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
H0V/AT2004/000394

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
JP 04305374	A	28-10-1992	JP	3074765 B2		07-08-2000
EP 1197285	A	17-04-2002	DE EP	10050923 A1 1197285 A2		25-04-2002 17-04-2002
DE 19507649	A1	14-09-1995	AT AT CH	402035 B 50494 A 688992 A5		27-01-1997 15-06-1996 15-07-1998
US 3657512	A	18-04-1972	GB	1287873 A		06-09-1972
GB 1225054	A	17-03-1971	JP JP US	48014593 B 48022261 B 3657685 A		08-05-1973 04-07-1973 18-04-1972
US 5965038	A	12-10-1999	JP JP JP JP JP JP JP JP CN DE DE EP KR US	7314148 A 8010966 A 3190791 B2 8098562 A 8290269 A 3253822 B2 8308239 A 1119572 A ,C 69515083 D1 69515083 T2 0688626 A1 186890 B1 5844193 A		05-12-1995 16-01-1996 23-07-2001 12-04-1996 05-11-1996 04-02-2002 22-11-1996 03-04-1996 23-03-2000 12-10-2000 27-12-1995 01-04-1999 01-12-1998

THIS PAGE BLANK (USPTO)