

Picosecond Time-Resolved Studies of Exciton Transport in Conjugated Polymer Nanoparticles

Department of Chemistry Louis C. Groff II

CLEMSON UNIVERSITY

Outline

Background

- Conjugated Polymers & Nanoparticles
- Why Study CPNs?
- Excited States in CPs and CPNs

Dye-Doped PFBT CPNs

- Red-shifted Emission
- Complex Fluorescence Lifetime Kinetics
- Modeling to Determine Intrinsic L_D

Solvent-Induced Swelling of CPNs

- Fluorescence Quantum Yield/Spectral Shifting
- Picosecond Decay Kinetics
- Fluorescence Anisotropy Decay
- Lattice Model
- Quantum Yield/Mobility Tradeoff
- Summary
- Acknowledgements

Conjugated Polymers – Basic Photophysics

- Plastic, amorphous organic semiconductors
 - Useful for low cost, flexible photovoltaics, LEDs and solar cells
- Repurposing CPs to make nanoparticles
 - Have many useful optical properties

Flexible Amorphous OLED Screen Prototype

Conjugated Polymer Nanoparticles (CPNs)

- Optical Properties
 - Extended π-conjugated chains
 - Structure, Heteroatoms: HOMO/LUMO gap in UV/Vis
 - Wide range of colors
 - High chromophore number density
 - Increased by nanoparticle formation
 - Highly fluorescent
 - Efficient Förster energy transfer hosts/dopants
 - Red-shifting, sensors
 - Wavelength tunability

PFBT

CP Properties and Structure

- Properties of conjugated polymers depend critically on nanoscale structure, heterogeneity, inter/intrachain interactions and other nm scale processes
 - Energy transfer and charge transfer
- CPNs comprised of one or more collapsed chains
 - Nanoscale, disordered, multichromophoric system
 - Studies of single CPNs provide unique perspective on nanoscale phenomena

Milestones in CPN Research

- Brightest (5-20 nm)
 nanoparticle probes
 reported to date
- 1000x brighter twophoton fluorescence compared to conventional dyes
- Effective fluorescent probes for imaging of cancer cells
- Novel oxygen sensing NPs

Confocal Imaging of Human Breast Cancer Cells

Two-Photon Brightness Comparisons

Oxygen Sensing CPNs

Why Study CPNs? – Imaging

- Brighter fluorescent probes still needed for imaging applications
 - CPNs are the brightest small fluorescent probes reported to date
 - 30x higher emission intensity compared to Quantum Dots
 - High quantum yield, fluorescence cross sections
 - Improvements in quantum yield and photostability are still needed

Brightness/Volume Ratios of Various Probes

Why Study CPNs? - Imaging

- Red-shifting needed for imaging applications
 - overcome background cell autofluorescence
 - Improve brightness,
 photostability
 - Have previously
 accomplished this via
 doping CPNs with other
 CPs or dyes

Brighter, more photostable particles via doping

Red-shifting of fluorescence via polymer blending

Red-shifting of fluorescence via dye doping

Why Study CPNs? – Imaging

- CPNs are non-toxic to cells
 - No heavy metals
 - Allows for imaging in live cells
- Easily functionalized
 - Can functionalize or bioconjugate CPNs for use in cellular media
- Challenges:
 - Cell media are complex
 - Background autofluorescence
 - Requires bright, red-shifted particles

Why Study CPNs? - Devices

- Optimize organic semiconductor devices such as LEDs, solar cells
- Conjugated polymer devices made by thin film casting
 - Bulk heterojunction film sandwiched between cathode/anode materials
 - Photoexcitation of film generates Frenkel excitons
 - Exciton transport to nano- microscale polymer interfaces
 - Charge transfer to generate electron and hole pair
 - Charges travel to cathode/anode materials

Why Study CPNs? – Photophysics

- Many radiative and nonradiative processes occur in CPNs
 - Conventional radiative/non-radiative decay
 - Polaron generation/quenching by polarons
 - Quenching by defects
 - Energy transfer to dopants
- Interested in determining the rates of energy transfer in CPNs

Excited States in Conjugated Polymers & CPNs: Frenkel Excitons

- Chromophore
 - Result of delocalized p_z orbitals
 - Individual chromophores are ~2-8 monomer units in length
- Molecular/Frenkel Exciton
 - Delocalized Excitation
 - Interacting transition
 dipoles between adjacent
 chromophores
 (perturbation theory)

Excited States in Conjugated Polymers & CPNs: Exciton Dimer Model

- Simplest Case: Dimer
 - Zero-order: two isolated chromophores
 - Energies correspond to excitation at respective sites
 - Introduce perturbation \hat{V}
 - Linear Combinations of Zero-Order States
 - Perturbed/Mixed states and energy $\propto V_{dd}$ and $\Delta E^{(0)}$
 - Different States/energy for non-degenerate and degenerate cases

$$\widehat{H} = \widehat{H}^{(0)} + \widehat{V}$$

Hamiltonian

$$H^{(0)}|a\rangle = E_a^{(0)}|a\rangle$$

 $H^{(0)}|b\rangle = E_b^{(0)}|b\rangle$
Zero-order states/energy

$$\hat{V} = V_{dd}\{|a\rangle\langle b| + |b\rangle\langle a|\}$$
Perturbation

$$|\pm\rangle = c_a |a\rangle \pm c_b |b\rangle$$

Perturbed/Mixed States

Excited States in Conjugated Polymers & CPNs: Exciton Dimer Model

- Non-degenerate chromophores
 - Weakly mixed states
 - Small energy shift
 - Incoherent energy transport (FRET)
- Degenerate Chromophores
 - Evenly mixed states
 - Large energy shift
 - Coherent energy transport

$$|+\rangle = |a\rangle + \frac{|V_{dd}|}{\Delta E^{(0)}}|b\rangle$$

$$|-\rangle = |b\rangle - \frac{|V_{dd}|}{\Delta E^{(0)}} |a\rangle$$

$$E_{+} = E_{a}^{(0)} + \frac{V_{dd}^{2}}{\Delta E^{(0)}}$$

$$E_{-} = E_{b}^{(0)} - \frac{V_{dd}^{2}}{\Delta E^{(0)}}$$

Excited States in Conjugated Polymers & CPNs: Exciton Dimer Model

- Non-degenerate chromophores
 - Weakly mixed states
 - Small energy shift
 - Describes incoherent energy transport (FRET)
- Degenerate Chromophores
 - Evenly mixed states
 - Large energy shift
 - Describes coherent energy transport

$$|+\rangle = \frac{1}{\sqrt{2}}[|a\rangle + |b\rangle]$$
$$|-\rangle = \frac{1}{\sqrt{2}}[|a\rangle - |b\rangle]$$

$$E_{+} = E^{(0)} + |V_{dd}|$$

 $E_{-} = E^{(0)} - |V_{dd}|$

Excited States in Conjugated Polymers & CPNs: Light and Dark Exciton States

- Transition dipole coupling splits energy levels of chromophores
 - T. dipole orientation dictates which state contributes to emission signal
 - Related to molecular orientation
 - Nonzero transition dipole vector sum → emissive state
- Basis of H- and J-aggregate spectral characteristics

Excited States in Conjugated Polymers & CPNs: Exciton Transport

$$|A(t)|^2 = sin^2 \left(\frac{V_{dd}}{\hbar} t \right)$$

Coherent Energy Transfer Probability

- Two types of energy transport
 - Coherent transport
 - DegenerateChromophores
 - No/low disorder
 - Strong coupling
 - Low T
 - Oscillating excitation across chromophores (fs time scale)

Excited States in Conjugated Polymers & CPNs: Exciton Transport

 $|A(t)|^2 = 2\pi\hbar |V_{dd}|^2 \rho(E_{res})t$ Incoherent Energy Transfer Probability

- Two types of energy transport
 - Incoherent transport
 - Non-degenerate chromophores
 - Significant disorder
 - Weak coupling
 - High (e.g. room) T
 - Energy transfer along or between chains, or to dopants (ps time scale)

Conventional Exciton Diffusion Length Measurement

- Exciton Diffusion Length
 - Length exciton is transported during exciton lifetime
 - Measured using doped or layered film samples, or direct imaging methods (e.g. NSOM)
- CPNs exhibit similar photophysics to thin films
- Fewer challenges/pitfalls compared to films
 - Pinholes in film (direct acceptor excitation)
 - Optical penetration depths > length scales of energy transport
 - Layer segregation issues
 - Quenching by surface plasmons of metal anode/cathode (in electroluminescent samples)

CPN Photophysics

- Want a model that can explain the complex photophysics of CPNs
 - Exciton Diffusion Energy Transfer Model
- Want to understand the underlying rate processes in CPNs as well as the length and time scales of nanoscale events in CPNs
 - Aid in optimizing CPNs for imaging applications and photovoltaic/OLED applications
 - Utilize a variety of time-resolved techniques to address these issues from multiple angles

Red-shifted CPNs via Förster Resonance Energy Transfer

PFBT – Host Polymer

- Very photostable (~109 photons/CPN emitted before photobleaching)
- High quantum yield (0.66 in THF)
- Broad emission spectrum

Perylene Red – Nonpolar dye dopant

- High quantum yield (0.98 in DCM)
- Laser dye highly photostable
- Excellent spectral overlap with PFBT
- Red-shifted emission spectrum

Preparing Dye-doped CPNs

Reprecipitation method

- Polymer/dye dissolved in THF
- Dilute solution
- Rapidly mix with water under sonication (30 s)
- Remove THF and filter to remove large aggregates
- Mean particle size ~10nm

Förster Resonance Energy Transfer

- Interacting chromophore transition dipoles
 - Related to dimer model
 - $-V_{dd} \propto R^{-3}$
 - $-|A(t)|^2 = 2\pi\hbar |V_{dd}|^2 \rho(E_{res})t$
 - Yields R^{-6} dependence
- Non-radiative energy transfer from donor to acceptor
- Donor/acceptor can be identical or different
 - Identical: Homotransfer
 - Degenerate chromophores
 - Thermal disorder causes incoherent transfer
 - Different: Heterotransfer
 - Transfer to dopants or defects

$$k_{et} = \frac{1}{\tau} \left(\frac{R_0}{R}\right)^6$$

Energy Transfer Rate Constant

Förster Resonance Energy Transfer

- Energy transfer efficiency depends on spectral overlap, distance between donor/acceptor and orientation κ^2
 - Scales as R⁻⁶
 - Useful as "molecular ruler"
- Förster Radus (R₀)
 - Distance at which energy transfer efficiency = 50%
 - Typically < 10 nm</p>

$$R_0^6 = \frac{9000Q_D(\ln 10)\kappa^2}{128\pi^5 n^4 N_A} \int f_D(\lambda)\varepsilon_A(\lambda)\lambda^4 d\lambda$$

Red-shifted, High Quantum Yield Dye-doped CPNs

$$\frac{F_0}{F} = 1 + K_{SV}[f]$$

Stern-Volmer Equation

- Efficient quenching of PFBT emission by perylene red
 - 86% quenching at 2% perylene red
- Quenching obeys Stern-Volmer equation
- Perylene red emission redshifts with increasing doping
- Aggregation quenching of acceptor at higher concentrations
 - Dynamic Quenching
 - Likely due to dye dimers in CPNs (J-aggregates)

Red-shifted, High Quantum Yield Dye-doped CPNs

$$\frac{F_0}{F} = 1 + K_{SV}[f]$$

Stern-Volmer Equation

- Successfully red-shifted particle emission
- CPN quantum yield not substantially reduced from 0.1% to 1% doping while ET is high
 - Photostability may be improved by doping
 - Saturated emission rate may also be improved by doping

Fluorescence Quenching and Lifetimes

- It is evidenced by fluorescence spectra that perylene red efficiently quenches emission
 - Is this quenching static or dynamic?
- What are the fluorescence lifetimes of the doped samples?
 - Previous work indicates PFBT CPN lifetimes on the picosecond time scale
 - Do these samples exhibit complex decay kinetics?
- What is the correct physical picture in terms of rate processes?

Picosecond Time-Correlated Single-Photon Counting (TCSPC) Spectroscopy

- Ultrafast, mode-locked, pulsed
 Ti:Sapphire laser source
- ~70 ps time resolution
- Frequency doubled for excitation

- Single-photon avalanche diode detector
- Fast electronics: arrival time measurements
- Histogram of detected photons

Picosecond Fluorescence Lifetimes of Dye-doped CPNs

Exponential

$$F(t) = F_0 e^{-t/\tau}$$

Stretched Exponential

$$F(t) = F_0 e^{-(t/\tau)^{\beta}}$$

- Previous experiments indicate CPNs exhibit complex decay kinetics
 - Stretched exponential lifetime decay
- β is an indication of heterogeneity in exciton lifetimes
 - Number varying between ~0.2 and 1
 - As β decreases, indicates a broadening distribution of exciton lifetimes
 - At β = 1, single exponential is recovered

Picosecond Fluorescence Lifetimes of Dye-doped CPNs

- Mean exciton lifetimes reduced by doping (dynamic quenching)
 - PFBT in THF fits well to single exponential (3 ns lifetime)
 - CPNs fit best to bi-exponential and stretched exponential decays
 - Decreasing trend in β as doping increases
 - Dynamic self-quenching of perylene red emission at high doping ratios
- Decreasing trend in β indicates a broadening distribution of exciton lifetimes as doping increases
 - Agrees qualitatively with physical picture of exciton multiple energy transfer
 - Range of exciton transfer distances broadens lifetime distribution

Exciton Diffusion and FRET Random Walk Model

- Multichromophoric system--Frenkel Exciton
- Excitons hop from site to site:
 hopping between polymer chains
 and segments, exciton transfers to
 dyes, quenchers or defects--Exciton
 diffusion
- Hole polaron generation
- emission/decay
- Exciton transport modeled as a 3D random walk confined to a sphere
- Results: excited state dynamics, quenching efficiency, blinking, twinkling

Exciton Diffusion Energy Transfer Model for Dye-doped NPs

FRET rate

$$k_{Q} = \frac{1}{\tau_{F}} \sum_{quenchers} \left(\frac{R_{0}}{R}\right)^{6}$$

- Radiative emission rate $k_F = \frac{1}{\tau_F}$
- Exciton diffusion
 - Gaussian RNG

$$L_D = \sqrt{2nD\tau}$$

$$\sigma^2 = 2nD\Delta t$$

Displacement per Δt

- Average over many exciton trajectories and quencher positions
- Results: Quenching efficiencies,
 Fluorescence decay kinetics

Modeling of Dye-Doped PFBT Fluorescence

- Average over many excitons, particles, quencher positions
 - 3000 excitons per particle, 50 particles per data point
 - Poisson distribution of defects and quenchers
 - Exciton diffusion length $L_D = 12$ nm, Förster radius $R_0 = 4$ nm
- Approximate match to experimental TCSPC fitting results
 - At 0% dopant, 2.3 defect quenchers (dye equivalents) present
 - $-\beta$ reduced by implementing Poisson statistics
 - Ignoring quenching by defects results in L_D 2x lower, lower quality of agreement

Dye-Doped PFBT CPNs: Summary

- Successfully red-shifted emission via dye-doping
 - High energy transfer efficiency and Φ at moderate doping
- Nanoparticle samples exhibit complex decay kinetics
 - Described best by bi-exponential or KWW dynamics
 - Decreased lifetimes in doped samples (dynamic quenching)
 - Acceptor is dynamically quenched at high doping ratios
- Exciton diffusion, Energy Transfer Model matches experimental dynamics well
 - Poisson distribution of defects and quenchers
 - ~2 defects/CPN
 - Length scale of exciton transport ~12 nm for PFBT $(D = 8 \times 10^{-9} \text{ m}^2 \text{ s}^{-1})$

Solvent-Induced Swelling of CPNs

- Use solvent-induced swelling methods to probe the changes in nanoparticle photophysics
 - Probe rates of multiple energy transfer
 - Determine nature of quenching defects (aggregates vs. oxidative)
- Rate of exciton motion hypothesized to be amplified for CPNs
 - Densely packed chromophores
 - Access to more nearest neighbor chromophores in CPNs vs. polymer in solution
 - Probe via fluorescence anisotropy decay (FAD) and modeling

Fluorescence Quantum Yield and Spectral Shifting

- - ~92% quenching at 0%THF
 - Φ_{THF} is recovered at high THF concentrations
- Normalized spectra show progressive blue shifting of emission peak
 - ~5 nm for PFBT
 - ~40 nm for MEH-PPV
 - Stronger dipole coupling in MEH-PPV

Fluorescence Decay Kinetics of Swelled CPNs

- Exciton lifetimes increase with increasing THF volume fraction
 - PFBT in THF fits well to single exponential (3 ns lifetime)
 - All others fit best to bi-exponential and stretched exponential decays
 - $-\beta$ increases with increasing THF, except PFBT in 80% THF
- Increasing trend in β indicates a narrowing distribution of exciton lifetimes as THF fraction increases
 - Multiple energy transfer is FRET mediated (R-6 dependence)
 - As CPN structure swells, neighboring chromophores become less accessible, reducing exciton mobility.

CLEMSON UNIVERSITY

Fluorescence Decay Kinetics of Swelled CPNs

- Evidence for possible dynamic equilibrium between CPNs and unassociated polymer
 - Drastic decrease in β to ~0.2 at 80% THF for PFBT suggests sudden increase in lifetime distribution
 - Bi-exponential fitting results
 - PFBT Short time constant ~ CPN lifetime (~275 ps)
 - PFBT Long time constant ~ polymer lifetime (~3 ns)
 - Weighted amplitudes shift for higher THF concentrations
 - Similar lifetime behavior for MEH-PPV between 40-60% THF.

Probing Energy Transport via Fluorescence Anisotropy Decay

- Challenge: Indistinguishable chromophores
 - Energetically degenerate, or neardegenerate
 - TCSPC can measure kinetics
 - Need method of measuring rate of energy transfer
- Time-resolved fluorescence anisotropy decay
 - Emission polarization is altered: rotational dynamics or energy transfer
 - Typical uses: rotational diffusion of macromolecules, small molecules
- Polarization changes due to energy homotransfer events
 - $τ_r$ α 1/ D_r (ns-μs), depending on particle size
 - $-\tau_r\gg au_{CPN}$ for 10 nm particle
 - Rotational motion is negligible for CPNs

$$D_r = \frac{k_b T}{8\pi \eta r^3}$$
 Stokes-Einstein Equation

$$r(t) = \frac{I_0(t) + I_{90}(t)}{I_0(t) - 2I_{90}(t)}$$
 Fluorescence Anisotropy Decay Equation

Polarization Loss via Exciton Diffusion

- Polarized excitation source
 - CPNs possess randomly oriented transition dipoles
 - Preferentially excite chromophore transition dipoles aligned relative to excitation
- FRET to neighboring chromophore with imperfectly aligned transition dipole
 - Each ET event alters polarization
 - Emission polarization depends on T. dipole alignment prior to decay
 - Measure intensity decays at 0°, 90°, 55°
 polarizations to construct ansiotropy decay
- Fundamental Questions
 - How many transfer events occur within the exciton lifetime?
 - What is the length scale of these transfers?

Picosecond Fluorescence Anisotropy Decay

- Measure fluorescence polarization loss as a function of time
 - Collect intensity decays at 0°, 90°, 55° polarizations relative to excitation source
 - Rotational diffusion does not affect polarization loss
 - Polarization loss due to multiple energy transfer of excitons
- Intricate fitting analysis to extract anisotropy parameters
 - Convolution fitting of polarized intensity decays
 - $-\,$ Determine limiting anisotropy r_0 and correlation time τ_c from fit results
 - r₀ gives information about transition dipole alignment at t₀
 - Able to measure rate constant k_{et} from correlation time, τ_c

Picosecond Fluorescence Anisotropy Decay

- Multiple energy transfer rate constant amplified in CPNs
 - For moderately swelled PFBT CPNs (above) k_{et} ~3x10¹⁰ s⁻¹
 - For PFBT in THF, $k_{et} \sim 1 \times 10^9 \, s^{-1}$
- Hypothesized to be due to quantity of nearest neighbor chromophores to move between
 - 6 neighbors in CPNs, allow for motion along or between chains
 - 2 neighbors in linear polymer, motion is restricted along chain

Discrete Lattice Modeling of Nanoparticle Swelling

Model Details

- Cubic lattice
- Energy transfer probability
 chromophore densities
- Initial lattice spacing determined from chromophore densities at ~1 nm
- Defects/quenchers added to unswelled lattice until Φ_{CPN} , τ_{CPN} reproduced
 - $-R_a = 4 \text{ nm}$
 - ~10 defects per CPN for both polymers
 - Oxidized defects assumed (defects present regardless of chromophore density)
- Quenching efficiency η defined via fluorescence quantum yield

$$p_{et} = 2D\Delta t / \Delta x_{np}^2$$

Multiple energy transfer probability

Defined from Random Walk

$$f^{4/3} = \left(\Delta x_{np} / \Delta x_{s}\right)^{4}$$

As lattice spacing increases, p_{et} reduced by f $^{4/3}$

$$\eta_{\rm exp} = 1 - (\Phi_s / \Phi_{poly})$$

Experimental quenching efficiency

Lattice Modeling Results

- Model reproduces experimental η , τ well
 - For low to moderate %THF
 - $-\beta$ reproduced well for PFBT
- Model/experiment divergence at mid/high THF concentrations
 - ascribed to dynamic equilibrum
 - absence of nanoparticle dissociation in model
- Energy transfer rate constants extracted from p_{et}
 - CPN ET rate constants 10-60x higher than polymer ET rate constants
 - Agrees with experimental anisotropy fit results
 - Agrees qualitatively with Förster exciton diffusion theory
 - Reduced chromophore number density reduces ET rate

MEH-PPV Model Results

PFBT Model Results

Fluorescence Quantum Yield/Exciton Mobility Tradeoff

- k_{et} is ~2x higher for MEH-PPV CPNs compared to PFBT CPNs
 - Due to stronger transition dipole coupling in MEH-PPV
- Φ is ~4x higher for PFBT CPNs compared to MEH-PPV CPNs
 - Weaker coupling/more isolated chromophores
- Increased exciton motion efficiently funnels excitons to defect quenchers
 - Reduction in lifetime
 - Reduction in Φ

Summary

- Successfully prepared redshifted PFBT CPNs with high Φ
- Determined L_D ~12 nm for PFBT
- Successfully used solvent-induced swelling to probe rates of exciton mobility using FAD
- Multiple energy transfer amplified 10x-60x in CPNs versus polymer in solution
- Lattice model results match well assuming oxidized defect quenchers
- Tradeoff between mobility and

 can be exploited for improvement of organic semiconductor devices

Acknowledgments

- Dr. Jason McNeill
- McNeill Group
 - Xiaoli Wang
 - Yifei Jiang
- NSF, NIH

- Clemson University Department of Chemistry
- You for your time and patience!

Backup slides

Why are the particles nearly spherical?

- Pi-conjugated backbone is rigid
- Should yield oblong particles / rods

However...

- Very hydrophobic: high polymer-water interface tension
- Small particle size (High surface/volume ratio)
- Favors nearly spherical shape

Confirmed by AFM, TEM, Preliminary Neutron Scattering

Stern-Volmer Derivations

Static

$$K_{SV} = \frac{[F - Q]}{[F][Q]}$$

$$[F]_0 = [F] + [F - Q]$$

$$K_{SV} = \frac{[F]_0}{[F][Q]} - \frac{1}{[Q]}$$

Dynamic

$$\frac{d[F]^*}{dt} = k_{abs} - (k_f + k_q[Q])[F]^* = 0$$

$$\frac{d[F]^*}{dt} = k_{abs} - k_f[F]_0^* = 0$$

$$\frac{F_0}{F} = \frac{k_f + k_q[Q]}{k_f} = 1 + k_q \tau_0[Q]$$

$$F_0/F = 1 + K_{SV}[Q]$$

Useful Equations

Quantum Yield Calc

$$\emptyset_{F(x)} = (\frac{A_s}{A_x})(\frac{F_x}{F_s})(\frac{n_x}{n_s})^2 \emptyset_{F(s)}$$

Quantum Yield (Rates)

$$\phi_F = \frac{k_R}{k_R + k_{NR}}$$

• Absorption Cross-section

$$\sigma = \frac{2.303\varepsilon}{N_A}$$

Hole Polarons: Photogeneration and Luminescence Quenching

- Quasiparticle, radical cation and local polarization field
- caused by reversible photoejection of e⁻
- Hole polaron can diffuse between chromophores or recombine with electron
- Extremely efficient fluorescence quenchers
 - One polaron quenches ~90% of fluorescence from a polymer chain of >100 chromophores
 - Significant quenching at 5x10¹⁷ holes per cm³ of polymer (exceeded in devices)

