5. ირაციონალური გამოსახულებები

განსაზღვრება. n—ური ხარისხის ფესვი a ნამდვილი რიცხვიდან, $n \in N$, n > 1, ეწოდება ისეთ x რიცხვს, რომლის n—ური ხარისხი a—ს ტოლია, ე. ი.

$$x^n = a. (1)$$

იმის მიხედვით, თუ როგორი რიცხვია \mathbf{n} , გვაქვს შემდეგი შემთხვევები.

1. ვთქვათ, n კენტი რიცხვია, მაშინ (1) ტოლობას აკმაყოფილებს x—ის ერთადერთი ნამდვილი მნიშვნელობა. ამრიგად, კენტი ხარისხის ფესვი არსებობს ნებისმიერი a ნამდვილი რიცხვიდან და იგი ერთადერთია. მის აღსანიშნავად გვაქვს $\sqrt[n]{a}$ —სიმბოლო. n—ს ე $\sqrt[n]{m}$ ფესვის მაჩვენებელი, ხოლო a—ს—ფესვქვეშა გამოსახულება.

მაგალითად, $\sqrt[3]{8} = 2$ და $\sqrt[5]{-32} = -2$, რადგან $2^3 = 8$ და $(-2)^5 = -32$.

2. ვთქვათ, n ლუ \S ი რიცხვია.

თუ a>0, მაშინ (1) ტოლობას აკმაყოფილებს x-ის მხოლოდ ორი ნამდვილი მნიშვნელობა და ისინი ურთიერთმოპირდაპირე რიცხვებს წარმოადგენენ. მათ შორის დადებითი $\sqrt[n]{a}$ სიმბოლოთი აღინიშნება, ხოლო მისი მოპირდა-პირე რიცხვი ჩაიწერება - $\sqrt[n]{a}$ სახით.

$$\sqrt[2k]{a^{2k}} = \begin{cases} a, \ \text{როദ്ര } a \ge 0, \\ -a, \ \text{როദ്ര } a < 0, \ k \in N. \end{cases}$$
 $\sqrt[2k+1]{a^{2k+1}} = a, \ k \in N, \qquad \sqrt[2k]{a^{2k}} = |a|, \ \text{33რმოდ} \ \sqrt{a^2} = |a|.$

არიტმეტიკული ფესვის თვისებები

$$\sqrt[n]{ab} = \sqrt[n]{a}\sqrt[n]{b}$$

$$\sqrt[n]{a}\sqrt[m]{b} = \sqrt[n]{a}\sqrt[m]{b}$$

$$\sqrt[n]{a}\sqrt[m]{b} = \sqrt[n]{a}\sqrt[m]{b}$$

$$\sqrt[n]{a}\sqrt[m]{b} = \sqrt[n]{a}\sqrt[m]{b}$$

$$\sqrt[n]{a}\sqrt[m]{a}\sqrt[m]{b}\sqrt[m]{b}$$

$$\sqrt[n]{a}\sqrt[m]{a}\sqrt[m]{a}\sqrt[m]{b}\sqrt[m]{b}$$

$$\sqrt[n]{a}\sqrt[m]{a}\sqrt[m]{a}\sqrt[m]{a}\sqrt[m]{b}\sqrt[m]{a}\sqrt[m]{b}\sqrt[m]{a}\sqrt[m$$

რაციონალურ მაჩვენებლიანი ხარისხი:

განსაზღვრება. თუ a>0 და $r=\frac{m}{n}$ რაციონალური რიცხვია $(m \in \mathbb{Z}, n \in \mathbb{N}, n \neq 1)$, მაშინ

$$a^r = a^{\frac{m}{n}} = \sqrt[n]{a^m} .$$

განსაზღვრება. თუ a=0 და I დადებითი რაციონალური რიცხვია, მაშინ $a^r = 0$.

ცხადია, რომ თუ m,n $\in N$, მაშინ

$$a^{-\frac{m}{n}} = \frac{1}{\frac{m}{a^n}}.$$

რაციონალურმაჩვენებლიან ხარისხს გააჩნია მთელმაჩვენებლიანი ხარისხის ანალოგიური **თვისებები:**

1.
$$(a \cdot b)^r = a^r \cdot b^r$$
 2. $\left(\frac{a}{b}\right)^r = \frac{a^r}{b^r}$;

$$2. \left(\frac{a}{b}\right)^r = \frac{a^r}{b^r}$$

3.
$$a^{r_1} \cdot a^{r_2} = a^{r_1 + r_2}$$
;

3.
$$a^{r_1} \cdot a^{r_2} = a^{r_1 + r_2}$$
; 4. $(a^{r_1})^{r_2} = a^{r_1 \cdot r_2}$,

5.
$$\frac{a^{r_1}}{a^{r_2}} = a^{r_1 - r_2}$$
;

სადაც a > 0, b > 0 და $r_1, r_2, r \in Q$.