Discrete POWER & Signal Technologies

2N5484 2N5485 2N5486

MMBF5484 MMBF5485 MMBF5486

N-Channel RF Amplifier

This device is designed primarily for electronic switching applications such as low On Resistance analog switching. Sourced from Process 50.

Absolute Maximum Ratings*

TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V_{DG}	Drain-Gate Voltage	25	V
V_{GS}	Gate-Source Voltage	- 25	V
I _{GF}	Forward Gate Current	10	mA
T _J ,T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

- $\underline{\text{NOTES}}$: 1) These ratings are based on a maximum junction temperature of 150 degrees C.
- 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics

TA = 25°C unless otherwise noted

Symbol	Characteristic	Max		Units	
		2N5484	*MMBF5484		
P_D	Total Device Dissipation Derate above 25°C	350 2.8	225 1.8	mW mW/°C	
R _{θJC}	Thermal Resistance, Junction to Case	125	1.0	°C/W	
R _{θJA}	Thermal Resistance, Junction to Ambient	357	556	°C/W	

^{*}Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."

N-Channel RF Amplifier (continued)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
	1 didiliotoi	Tool Containions		. 76	Max	Omio
OFF CHA	ARACTERISTICS					
V _{(BR)GSS}	Gate-Source Breakdown Voltage	$I_G = -1.0 \mu A, V_{DS} = 0$	- 25			V
I _{GSS}	Gate Reverse Current	V _{GS} = - 20 V, V _{DS} = 0			- 1.0	nA
		$V_{GS} = -20 \text{ V}, V_{DS} = 0, T_A = 100^{\circ}\text{C}$			- 0.2	μΑ
$V_{GS(off)}$	Gate-Source Cutoff Voltage	V _{DS} = 15 V, I _D = 10 nA 2N5484	- 0.3		- 3.0	V
		2N5485 2N5486	- 0.5 - 2.0		- 4.0 - 6.0	V
	1		0		0.0	1
ON CHAI	RACTERISTICS					
I _{DSS}	Zero-Gate Voltage Drain Current*	$V_{DS} = 15 \text{ V}, V_{GS} = 0$ 2N5484	1.0		5.0	mA
		2N5485	4.0		10	mA
		2N5486	8.0		20	mA
SMALL S	SIGNAL CHARACTERISTICS		1		1	
g fs	Forward Transfer Conductance	$V_{DS} = 15, V_{GS} = 0, f = 1.0 \text{ kHz}$ 2N5484	3000		6000	μmhos
		2N5485	3500		7000	μmho
		2N5486	4000		8000	μmhos
Re _(yis)	Input Conductance	$V_{DS} = 15, V_{GS} = 0, f = 100 \text{ MHz}$				
		$V_{DS} = 15, V_{GS} = 0, f = 400 \text{ MHz}$			100	μmhos
		2N5485 / 2N5486			1000	μmhos
gos	Output Conductance	$V_{DS} = 15, V_{GS} = 0, f = 1.0 \text{ kHz}$				μιτιιοι
903		2N5484			50	μmhos
		2N5485			60	μmhos
Re ₍ y _{os)}	Output Conductance	$V_{DS} = 15, V_{GS} = 0, f = 100 \text{ MHz}$			75	μmhos
	Output Conductance	2N5484			75	μmhos
		$V_{DS} = 15, V_{GS} = 0, f = 400 \text{ MHz}$				'
_		2N5485 / 2N5486			100	μmhos
Re ₍ y _{fs)}	Forward Transconductance	$V_{DS} = 15, V_{GS} = 0, f = 100 \text{ MHz}$ 2N5484	2500			μmhos
		$V_{DS} = 15, V_{GS} = 0, f = 400 \text{ MHz}$	2300			μιιιος
		2N5485	3000			μmhos
		2N5486	3500			μmhos
C _{iss}	Input Capacitance	$V_{DS} = 15, V_{GS} = 0, f = 1.0 \text{ MHz}$			5.0	pF
C _{rss}	Reverse Transfer Capacitance	$V_{DS} = 15, V_{GS} = 0, f = 1.0 \text{ MHz}$			1.0	pF
Coss	Output Capacitance	$V_{DS} = 15, V_{GS} = 0, f = 1.0 \text{ MHz}$			2.0	pF
NF	Noise Figure	$V_{DS} = 15 \text{ V}, R_G = 1.0 \text{ k}\Omega,$			20	٩D
		f = 100 MHz 2N5484 V_{DS} = 15 V, R_G = 1.0 kΩ,			3.0	dB
		f = 400 MHz 2N5484		4.0		dB
		V_{DS} = 15 V , R_G = 1.0 k Ω ,				
		f = 100 MHz 2N5485 / 2N5486			2.0	dB
		V_{DS} = 15 V, R_G = 1.0 k Ω , f = 400 MHz 2N5485 / 2N5486			4.0	dB

^{*}Pulse Test: Pulse Width≤ 300 ms, Duty Cycle≤ 2%

(continued)

Typical Characteristics

Channel Resistance vs Temperature

Transconductance Characteristics

Common Drain-Source Characteristics

Output Conductance vs

Transconductance

(continued)

Typical Characteristics (continued)

(continued)

Common Source Characteristics

(continued)

Common Gate Characteristics

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.