

QoS for Things: State of the Art and Challenges

Giacomo Tanganelli Dip. Ingegneria dell'Informazione University of Pisa

g.tanganelli@iet.unipi.it

QoS in IoT

QoS requirements

- Bandwidth
- Peak Rate

- End-to-end delay
- Jitter

State of the Art

- Few IoT protocols targets QoS
- Many general purpose protocols with QoS by design
 - Use them as examples

IoT@Work

- FP7 Project: https://www.iot-at-work.eu/
- Publish/Subscribe based on AMQP
 - Relies on TCP

IoT@Work

- QoS implemented through Layer 2 and Layer 3:
 - MPLS/VLAN
 - Centralized approach
- Lack of implementations

WirelessHART

- Industrial standard, extension of the HART (cabled) standard
- TDMA, strong synchronization
- Centralized coordination
 - Routes forwarded to devices
 - Graph Routing
- Reliable/Unreliable messages

WirelessHART

QoS Policies:

- Command: devices must accept message
- Process-data: devices accept message if above threshold
- Normal: devices accept message if above threshold
- Alarm: devices accept message if buffer space
- Route planning for time guarantees

Descending importance

Bluetooth

- Master based
 - Small networks (max 7 devices)
 - Polling mechanism
- Time Division Duplex
 - Time is strictly slotted

Bluetooth

- Negotiate ACL to achieve QoS
 - Token Rate
 - Token Bucket Size
 - Peak Bandwidth
 - Latency
 - Delay Variation (jitter)
 - Flush Time Out (timeout for retransmit)
 - Tpoll (time interval for slave transmissions)

Data Distribution Service (DDS)

- Publish/Subscribe based on topics
 - Relies on UDP
 - Reliable/Unreliable
- Publisher announces topic enriched with QoS capabilities
- Subscriber matches topics with required QoS guarantees

Data Distribution Service (DDS)

QoS policies:

- Deadline: maximum interarrival time (periodic stream)
- Time based filter: minimum inter arrival time (no flood of data)
- Latency budget: delay between write on outgoing and receive on incoming (hint)
- Transport Priority: set priority of underlying transport layer (hint)
- Does not consider lower layer issues

MQTT

- Messaging transport protocol following Publish/Subscribe paradigm
 - Relies on TCP
 - Agnostic to message payload
 - Broker based

MQTT

- QoS policies (delivery assurances):
 - At most once: best-effort
 - At least once: Application ACK
 - Exactly once: 2-way Application ACK
- Lack of QoS time guarantees

6TiSCH

- 6top
 - LLC between6LoWPAN and MAC
- Slotted
 - Hard cell
 - Soft cell
- Routing:
 - Centralized (PCE)
 - Distributed (RPL)

6TiSCH

6top Data Transfer Model

- Negotiate Soft Cells
- QoS policies
 - Multiple outgoing queues
 - DiffServ from upper layer
 - Deterministic forwarding
 - DiffServ for LLN

QoS Modeling

Deterministic

Static networks

- Deterministic end-to-end assurances IntServ like
- Not possible over contention-based
- Proportional

Dynamic networks

- Service differentiation DiffServ like
- Qualities of flows with respect to each other stay constant
- Statistical
 - Probability to meet QoS requirements

Resource Allocation/Bandwidth Manager

- A Must for deterministic QoS
- Hard in multi-hop distributed networks
 - Exchange of needed information through routing packets
- Centralized approach
 - Scalability issues
 - Involved during flow establishment, teardown, change traffic patter etc.

End-to-End Delay

- May rely on bandwidth management
- Adaptation of Application's requirements
- Cross-layer design
- Applications can be:
 - Aware of QoS
 - Directly negotiate requirements
 - Unaware of QoS
 - Framework infers Application's requirements

QoS Frameworks

Cross-Layer QoS

- MAC
 - Differentiation scheduler
- Transport
 - Classifier
 - Maps application's priorities to network's priorities
 - Delay monitor
 - Measures delays, e.g. through timestamps
 - Feedback adapter
 - Dynamically adjust priorities to meet requirements
- Application
 - QoS requirements adapter
 - Generates delay requirements

Cross-Layer implementations

Cross-Layer implementations

ZeroMQ

- Asynchronous message exchange framework
- Many communication patterns:
 - Publisher/Subscriber
 - Request/Response
 - Pipeline
 - **—** ...
- Many underlying protocols
 - Interprocess communication
 - Multicast (pgm)
 - TCP
 - **–** ...
- No explicit QoS support
 - Relies on underlying transport protocol and network devices configurations

WirelessHART

- Industrial standard, extension of the HART (cabled) standard
- TDMA, strong synchronization
- Centralized coordination
 - Routes forwarded to devices
 - Graph Routing
- Reliable and Unreliable messages

(Needed) components

- Admission control
- Enforcement
- Monitoring/Adaptation
- Routing

- All components not always needed
 - Enforcement and Monitoring/Adaptation can be enough for statistical/proportional QoS

Admission

- Stores admitted flows
- Keeps track of resource usage
- Decision based on application QoS requirements and available resources

Central point of coordination

Enforcement

- Regulates sending rates
- Manages negotiated flows and best-effort
- Must be cross-layer

Monitoring/Adaptation

- Reactive approach
- Re-allocate resource in case of issues
- Must be cross-layer

Routing

- QoS based best route
- Difficult in distributed environment
- Centralized approach suffer from scalability