CHAPTER SEVENTEEN

MOS Digital Integrated Circuits

Digital flectronics.

Introduction

There are several MOS logic families used in digital ICs: NMOS, PMOS, CMOS (<u>Complementary</u>), HCMOS (<u>High density and High speed</u>).

MOSFET transistors can be used as active devices and as load elements also.

We will emphasize on N-MOSFET (enhancement) in this chapter

General N-MOS Inverter

A generalized NMOS is shown below. The load device, may be a resistor or another MOSFET.

$$V_{IN} = V_{GS} + I_{G} R_{G} \qquad V_{IN} = V_{GS}$$

$$V_{OUT} = V_{DS}$$

$$V_{OUT} = V_{DS}$$

$$V_{IN} = I_{D} = I_{L} = I_{D}$$

$$V_{IN} = I_{D} = I_{D} = I_{D} = I_{D}$$

$$V_{IN} = I_{D} = I_{D}$$

Operation of N-MOS with Zero Drain Current

Graphical analysis:

If the drain current is forced to $I_D \sim 0$, then the drain-to-source voltage is also forced to $V_{DS} \sim 0$

Analytical analysis: Setting I_D~0 in the linear region gives:

$$0 = \frac{K_n}{2} \left[2 \times (V_{GS} - V_{TN}) V_{DS} - V_{DS}^2 \right]$$

$$V_{DS}[2(V_{GS}-V_{TN})-V_{DS}]=0$$

$$V_{DS} = 0$$

$$V_{DS} = 2(V_{GS} - V_{TN})$$

Invalid since V_{DS} has to be less than $(V_{GS}-V_{TN})$

Operation of N-MOS with Zero Drain Current

Conclusion:

The use of N-MOS as an output pull-down device is important, i.e. with proper selection of a load device, high V_{GS} results in low V_{DS} .

Resistance of Drain-to-Source (R_{DS})

Channel of NMOS Operating in Linear

<u>Mode</u> (example):

Let :
$$V_{GS} = 5V$$
, $V_{TN} = 1V$, $K_n = 40\mu A/V^2$.
Determine R_{DS}

Sol:

$$R_{DS} = \frac{1}{K_n [(V_{GS} - V_{TN}) - V_{DS}]}$$

It can be seen that the N-MOS operating in linear mode becomes more conductive as $V_{\rm DS}$ decreases.

Resistor

Graphical determination of VTC:

$$V_{IN} = V_{GS} \quad , \quad V_{OUT} = V_{DS}$$
 Load line:
$$I_L = I_D = \frac{v_{DD} - V_{DS}}{R_L}$$

From the intersections between the load intersections in the load intersections between the load intersection between the load in

can be determined

Resistor

Analytical determination of VTC:

V_{OH}

When V_{IN} is low, i.e. $V_{IN} = V_{GS} < V_{TN}$: $\rightarrow N_O$ is cut-off

$$I_L = I_D = 0 \quad V_{OH} = V_{DD}$$

 $V_{\scriptscriptstyle OL}$

 $I_{DD} = I_L = I_D$ R_L

For the low output state, the N-MOS operates in linear mode:

$$I_D = \frac{K_n}{2} \left[2 \times (V_{GS} - V_{TN}) V_{DS} - V_{DS}^2 \right]$$

Now, just as an assumption that the MOS is driven by a similar gate, i.e. $V_{IN} = V_{OH} = V_{DD}$.

$$I_{D} = \frac{K_{n}}{2} \left[2 \times (V_{DD} - V_{TN}) V_{DS} - V_{DS}^{2} \right] = \frac{V_{DD} - V_{DS}}{R_{L}}$$

Resistar

Analytical determination of VTC:

$$V_{\scriptscriptstyle OL}$$

$$V_{OL}^{2} - 2 \left[V_{DD} - V_{TN} + \frac{1}{K R_{\perp}} \right] V_{OL} + \frac{2}{K} \frac{V_{DD}}{R_{\perp}} = 0 \quad (*)$$

$$V_{OL} = \left[V_{DD} - V_{TN} + \frac{1}{K_n R_L} \right] \pm \sqrt{\left[V_{DD} - V_{TN} + \frac{1}{K_n R_L} \right]^2 - \frac{2}{K_n} \frac{V_{DD}}{R_L}}$$

OR: neglecting $V_{OL}^{2} = \frac{(\dagger)}{K_n} \frac{V_{DD}}{R_L} \left[\frac{K_n R_L}{(V_{DD} - V_{TN}) K_n R_L + 1} \right]_{\text{To ensure that N}_O}$

$$V_{OL} = \frac{V_{DD}}{(V_{DD} - V_{TN})K_nR_L + 1} = V_{DS} \le (V_{GS} - V_{TN})$$
 operates in linear mode

© Ch

17

VTC of N-MOS Loaded with

Resistor

 $I_{DD} = I_L = I_D < R_L$

Analytical determination of VTC:

 $V_{I\!L}$

 V_{IL} in MOSFET is defined as the input voltage slightly below $V_{OLT} = V_{OH}$ where slope=-1 or

$$\frac{dV_{OUT}}{dV_{W}} = -1$$

For low input voltages (i.e. $V_{OUT} \rightarrow V_{OH}$), N_O is in <u>saturation</u>

$$I_D = \frac{K_n}{2} (V_{GS} - V_{TN})^2 \longrightarrow I_D = \frac{K_n}{2} (V_{IN} - V_{TN})^2$$

&
$$I_D = \frac{V_{DD} - V_{DS}}{R_L}$$
 \Longrightarrow $I_D = \frac{V_{DD} - V_{OUT}}{R_L}$

$$\frac{dV_{OUT}}{dV_{IN}} = \frac{d}{V_{IN}} \left(V_{DD} - \frac{R_L K_n}{2} (V_{IN} - V_{TN})^2 \right) = -1 \qquad \Longrightarrow -R_L K_n (V_{IN} - V_{TN}) = -1$$

$$V_{IN} = V_{IL} = \frac{1}{R_L K_n} + V_{TN}$$

Resistor

Analytical determination of VTC:

 V_{IH} in MOSFET is defined as the input voltage slightly before $V_{OUT} = V_{OI}$

where slope=-1 or $\frac{dV_{OUT}}{dV_{OUT}} = -1$

For high input voltages (i.e.
$$V_{OUT} \rightarrow V_{OL}$$
), N_O is in linear operation

$$I_{D} = \frac{K_{n}}{2} \left[2 \times (V_{GS} - V_{TN}) V_{DS} - V_{DS}^{2} \right] \Longrightarrow I_{D} = \frac{K_{n}}{2} \left[2 \times (V_{IN} - V_{TN}) V_{OUT} - V_{OUT}^{2} \right]$$

&
$$I_D = \frac{V_{DD} - V_{DS}}{R_L}$$
 \Longrightarrow $I_D = \frac{V_{DD} - V_{OUT}}{R_L}$

$$V_{OUT}(IH) = \frac{V_{IH} - V_{TN}}{2} + \frac{1}{2R_{I}K_{n}}$$

$$\operatorname{must} V_{DS} \leq (V_{GS} - V_{TN}) \quad \text{i.e.} V_{OUT} (IH) \leq (V_{IH} - V_{TN})$$

Recietor

Analytical determination of VTC:

Mid point

$$V_{OUT} = V_{IN} = V_{M}$$

$$\Rightarrow$$

$$V_{GS} = V_{IN} = V_{IN}$$

$$V_{DS}(sat) = V_{GS} - V_{TN}$$
$$= V_{DS} - V_{TN}$$

$$V_{DS}(sat) < V_{DS}$$

 $V_{DS}(sat) < V_{DS}$ N_{O} is in <u>saturation operation</u>

$$I_D = \frac{K_n}{2} (V_M - V_{TN})^2$$
 & $I_D = \frac{V_{DD} - V_M}{R_*}$

$$\frac{K_n}{2} \left(V_M^2 - 2V_M V_{TN} + V_{TN}^2 \right) = \frac{V_{DD}}{R_L} - \frac{V_M}{R_L}$$

Then solve for $V_{\rm M}$

Resistor

Example

Calculate the critical values of the VTC of a resistor loaded NMOS inverter shown previously assuming:

$$V_{DD} = 5V$$
, $V_{T} = 1 V$, $k_{n} = 40\mu A/V^{2}$, $R_{L} = 50k\Omega$,

Solution

$$V_{OH} = V_{DD} = 5V$$

$$V_{OL} = \frac{V_{DD}}{(V_{DD} - V_{TN})K_nR_L + 1} = \frac{5}{(5 - 1)40 \times 10^{-3} \times 50 + 1} = 0.5556V$$

$$V_{IL} = \frac{1}{R_L K_n} + V_{TN} = \frac{1}{50 \times 40 \times 10^{-3}} + 1 = 1.5V$$

17

VTC of N-MOS Loaded with

Resistor

Example

Calculate the critical values of the VTC of a resistor loaded NMOS inverter shown previously assuming:

$$V_{DD} = 5V$$
, $V_{T} = 1 V$, $k_{\underline{n}} = 40\mu A/V^{2}$, $R_{\underline{L}} = 50k\Omega$,

Solution

$$V_{OUT}(IH) = \frac{V_{IH} - V_{TN}}{2} + \frac{1}{2R_L K_n} = \frac{2.27}{2} + \frac{1}{4} = 1.39V$$

Resistor

Example

Calculate the critical values of the VTC of a resistor loaded NMOS inverter shown, assuming:

$$V_{DD} = 5V$$
, $V_{T} = 1 V$, $k_{\underline{n}} = 40\mu A/V^{2}$, $R_{L} = 50k\Omega$,

Solution

Solve for $V_{\rm M}$

$$\frac{K_n}{2} \left(V_M^2 - 2V_M V_{TN} + V_{TN}^2 \right) = \frac{V_{DD}}{R_L} - \frac{V_M}{R_L}$$
$$V_M = 2.56V$$

