湖南科技大学考试试题纸 (A卷)

(2021-2022 学年度第二学期)

课程名	你: 1	夏变函数	开课单位:数	女学学院_		命题教	如: <u>刘</u>	<u>丁明</u>
授课对	象:	数学学院 2020 级学生	_	学院 _	2020	年级	<u>各适用</u>	_ 班
考试时	量: <u>1</u>	<u>00 分钟</u> 考核方式: <u>2</u>	考试 考试方3	式: <u>闭卷</u>	审核时间	: <u>2022</u>	年 <u>5</u> 月 <u>3</u>	<u>o</u> 日
一、填	空题	(每小题 3 分,共 24 分	})					
(1)	Ln(i ⁵)的值为						
(2)	设 z=x+iy,复数方程	$Re (1-\overline{z}) = -1$	表示的平	面曲线方	程为		
(3)	设圆周 C: Z =r,0<	r<1,则积分 \oint_c	$\frac{dz}{z^2} =$,			
(4)	函数 w= ¹ 将平面上的	射线 argz= $ heta_0$,	- π <θ ₀ < π	映为 w 平	面上的_		(请
	写	出 w 平面上的曲线方程	2).					
(5)	设u(x, y) =x ² - y ²	² ,为使 f(z)	=u+iv 是 解	『析函数 ,	且满足(f (i) =-1	,则 v
	()	(, y) =	_					
(6)	已知 f(z)= $\frac{2}{z+2}$ 按 z-1	. 的幂展成了泰	 、勒级数,	则级数的	收敛半名	圣为	
(7)	函数 $\frac{z}{\cos z}$ 在 $z=\frac{\pi}{2}$ 处的留	数为					
(8)	方程z ⁸ – 5z ⁵ – 2z +	1 = 0在单位图	园 z <1 内	根的个数	为		
二、判	断题	(每小题 3 分,本题共	18分)					
(1	() 以	1, $-\frac{1}{2} + \frac{\sqrt{3}}{2}i$, $-\frac{1}{2} - \frac{1}{2}i$	/3 2 i 为顶点的∃	三角形是等	沙 三角形	•		()

(2) 级数
$$\sum_{n=0}^{\infty} \frac{cosin}{2^n}$$
是收敛级数. ()

(3)
$$\frac{1}{\sin^{\frac{1}{z}}}$$
在 z=0 的去心邻域内能展开成洛朗级数 ()

(4) 设 f (z) 在 0<|z-a|<R 内解析,且 $\lim_{z\to a}$ (z - a) f (z) = 0,则 z=a 是 f (z) 的

(6) 设 p (z) = (z-a₁) (z-a₂) ··· (z-a_n), 其中 a_{1, a2, ...a_n 各不相同,闭路 C 不经过 a_{1,}}

$$a_{2, \dots} a_{n}$$
,则积分 $\frac{1}{2\pi i}$ $\oint_{\mathcal{C}} \frac{p^{'}(z)}{p(z)} dz$ 等于位于 C 内 P(z)的零点个数 ()

三、计算与证明(本题共6小题,共48分)

1. (本题 8 分)求 $f(z)=\sqrt[3]{z(1-z)}$ 可分出三个单值解析分支的区域,并求出其在点

z=2 取负值的那个分支在 z=i 的值

2. (本题 8 分)设函数 f(z)=u+iv 在区域 D 上解析,证明:
$$\begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix} = |f'(z)|^2$$

- 3. (本题 8 分) $|e^z|$ 在闭圆 $|z-z_0| \le 1$ 上的何处达到最大?并求出最大值
- 4. (本题 8 分)分别求出 $f(z) = \frac{2z}{(z+1)(z-2)}$ 在圆环域 1 < |z| < 2 上的洛朗展示
- 5. (本题 8 分)用留数方法计算实积分: $\int_0^{+\infty} \frac{\cos x}{1+x^2} dx$
- 6. (本题 8 分)计算积分 $\oint_c \frac{z^{15}}{(z^4+2)^3(z^2+1)^2} dz$,其中 C 为正向圆周 |z|=5
- 四、论述题(本题共 10 分)请用你自己的话叙述解析函数惟一性定理的含义,并给出一实例来说明你表达的意思。