ORTHOGONAL FREQUENCY-DIVISION MULTIPLEX SYSTEM AND TRANSMITTER/RECEIVER

Publication number: JP2003169036 (A)

Publication date:

2003-06-13

Also published as:

JP3875086 (B2)

Inventor(s):

MASUI ATSUYOSHI; FUJII TERUYA +

Applicant(s):

JAPAN TELECOM CO LTD +

Classification:

- international:

H04B7/26; H04J11/00; H04B7/26; H04J11/00; (IPC1-

7): H04B7/26; H04J11/00

- European:

Application number: JP20010366285 20011130 Priority number(s): JP20010366285 20011130

Abstract of JP 2003169036 (A)

PROBLEM TO BE SOLVED: To reduce the processing quantity of control over a modulation system by reducing the amount of control information.; SOLUTION: A received electric power measurement part 22 measures the received electric power of each subcarrier of an OFDM signal to put together continuous subcarriers having received electric power which do not exceed a threshold [Delta]E preliminarily set in a control part 26 in a block. Modulation information consisting of modulation system specification information specifying a modulation system corresponding to the received electric power of each block and the head subcarrier numbers of the respective blocks is generated by the control part 26 and reported from a mobile station 2 to a base station 1.; The base station 1 stores the modulation information in a modulation information management table 15a in a control part 15 and controls modulation systems of the respective subcarriers of the OFDM signal to be sent to the mobile station 2, block by block, according to the modulation information.; COPYRIGHT: (C)2003,JPO

Data supplied from the espacenet database — Worldwide

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-169036 (P2003-169036A)

(43)公開日 平成15年6月13日(2003.6.13)

(51) Int.Cl.7	識別記号	FΙ	テーマコート*(参考)
H 0 4 J 11/00		H04J 11/00	Z 5 K 0 2 2
H 0 4 B 7/26		H 0 4 B 7/26	102 5K067
	102		С

審査請求 未請求 請求項の数12 〇L (全 18 頁)

(21)出顯審号	特顏2001-366285(P2001-366285)	(71)出願人	502306660 日本テレコム株式会社
(22) 出顧日	平成13年11月30日(2001.11.30)	(72)発明者	東京都中央区八丁堀四丁目7番1号 好井 淳祥 東京都中央区八丁堀四丁目7番1号 日本 テレコム株式会社内
		(72)発明者	藤井 輝也 東京都中央区八丁堀四丁目7番1号 日本 テレコム株式会社内
		(74)代理人	100102635 弁理士 浅見 保男 (外4名)

最終頁に続く

(54) 【発明の名称】 直交周波数分割多重システムおよび送受信装置

(57)【要約】

【課題】 制御情報量を低減して、変調方式の制御の処理量を低減する。

【解決手段】 OFDM信号の各サブキャリアの受信電力を受信電力測定部22で測定することにより、制御部26において予め設定されているΔEのしきい値を超えない受信電力とされている、連続するサブキャリアをブロックにまとめる。各ブロックの受信電力に対応する変調方式を指定する変調方式指定情報と、各ブロックの先頭サブキャリア番号とからなる変調情報を制御部26で作成し、移動局2から基地局1へ通知する。基地局1は、変調情報を制御部15内の変調情報管理テーブル15aに保管し、この変調情報に基づいて移動局2へ送信するOFDM信号における各サブキャリアの変調方式をブロック毎に制御する。

【特許請求の範囲】

【請求項1】 送信側から固定の送信電力で送信された 直交周波数分割多重信号を、受信側において受信し、 受信された前記直交周波数分割多重信号を構成している 複数のサブキャリアの受信電力値に応じて、いくつかの 前記サブキャリアからなるブロックにまとめ、

該ブロックにおける特定の位置のサブキャリアの番号と、それぞれの前記ブロックにおける受信電力値の大きさに応じて決定された変調多値数の変調方式指定情報とからなる変調情報を前記送信側へ通知し、

前記変調情報を受け取った前記送信側において、直交周 波数分割多重信号を構成する複数のサブキャリアを、前 記変調情報の内の前記サブキャリアの番号に基づいてブ ロックに分割すると共に、前記変調情報の内の前記変調 方式指定情報に基づいて当該ブロックのサブキャリアの 変調方式を制御するようにしたことを特徴とする直交周 波数分割多重システム。

【請求項2】 送信側から固定の送信電力で送信された 直交周波数分割多重信号を、受信側において受信し、 受信された前記直交周波数分割多重信号を構成している 複数のサブキャリアの受信電力値に応じて、いくつかの 前記サブキャリアからなるブロックにまとめ、

該ブロックにおける特定の位置のサブキャリアの番号と、それぞれの前記ブロックにおける受信電力値と複数の規定受信電力との差分が最も小さい規定受信電力値を決定し、該決定された規定受信電力値に応じて指定された変調多値数の変調方式指定情報とからなる変調情報、および、前記受信電力値と前記決定された規定受信電力との差分に応じた送信電力の制御情報とを前記送信側へ通知し、

前記変調情報と前記制御情報とを受け取った前記送信側において、直交周波数分割多重信号を構成する複数のサブキャリアを、前記変調情報の内の前記サブキャリアの番号に基づいてブロックに分割すると共に、前記変調情報の内の前記変調方式指定情報に基づいて当該ブロックのサブキャリアの変調方式を制御し、さらに、前記制御情報に基づいて当該ブロックのサブキャリアの送信電力を制御するようにしたことを特徴とする直交周波数分割多重システム。

【請求項3】 サブキャリア間の受信電力の差が所定の しきい値内に収まるサブキャリアをまとめることによ り、前記ブロックに分割するようにしたことを特徴とす る請求項1あるいは2記載の直交周波数分割多重システム。

【請求項4】 前記複数のサブキャリアが前記ブロックに分割された際に、分割されたブロックに含まれるサブキャリア数が最小値のブロックを求め、全てのブロックのブロック長を前記求められたブロックのブロック長とするようにしたことを特徴とする請求項1あるいは2記載の直交周波数分割多重システム。

【請求項5】 サブキャリア数に対するそのサブキャリア数が存在する確率分布の累積値のテーブルを参照して、ブロックに分割する際のサブキャリア数を求めるようにしたことを特徴とする請求項1あるいは2記載の直交周波数分割多重システム。

【請求項6】 受信側における受信電力が予め定められた最小受信電力値に達しないブロックについては、送信側において前記変調情報あるいは前記制御情報に基づいて当該ブロックのサブキャリアの送信電力をゼロとして、シンボル送信を行わないようにしたことを特徴とする請求項1あるいは2記載の直交周波数分割多重システム。

【請求項7】 直交周波数分割多重信号を送受信可能な 送受信装置であって、

固定の送信電力で送信された直交周波数分割多重信号を 構成している複数のサブキャリアの受信電力値に応じ て、いくつかの前記サブキャリアからなるブロックにま とめる分割手段と、

該分割手段において分割されたそれぞれのブロックにおける特定の位置のサブキャリアの番号と、前記分割されたそれぞれのブロックにおける受信電力値の大きさに応じて決定した変調多値数の変調方式指定情報とからなる変調情報を作成する制御手段とを備え、

前記変調情報を、前記制御手段の制御の基で所定の周期毎に送信するようにしたことを特徴とする送受信装置。

【請求項8】 直交周波数分割多重信号を送受信可能な 送受信装置であって、

固定の送信電力で送信された直交周波数分割多重信号を 構成している複数のサブキャリアの受信電力値に応じ て、いくつかの前記サブキャリアからなるブロックにま とめる分割手段と、

該分割手段において分割されたそれぞれのブロックにおける特定の位置のサブキャリアの番号と、それぞれの前記ブロックにおける受信電力値と複数の規定受信電力との差分が最も小さい規定受信電力値を決定し、該決定された規定受信電力値に応じて指定された変調多値数の変調方式指定情報とからなる変調情報、および、前記受信電力値と前記決定された規定受信電力との差分に応じた送信電力の制御情報とを作成する制御手段とを備え、

前記変調情報および制御情報とを、前記制御手段の制御の基で所定の周期毎に送信するようにしたことを特徴とする送受信装置。

【請求項9】 サブキャリア間の受信電力の差が所定のしきい値内に収まるサブキャリアをまとめることにより、前記ブロックに分割するようにしたことを特徴とする請求項7あるいは8記載の送受信装置。

【請求項10】 前記複数のサブキャリアが複数のブロックに分割された際に、分割されたブロックに含まれるサブキャリア数が最小値のブロックを求め、全てのブロックのブロック長を前記求められたブロックのブロック

長とするようにしたことを特徴とする請求項7あるいは 8記載の送受信装置。

【請求項11】 サブキャリア数に対するそのサブキャリア数が存在する確率分布の累積値のテーブルを参照して、ブロックに分割する際のサブキャリア数を求めるようにしたことを特徴とする請求項7あるいは8記載の送受信装置。

【請求項12】 受信電力が予め定められた最小受信電力値に達しないブロックについては、前記制御手段は、当該ブロックのサブキャリアの送信電力をゼロとして、シンボル送信を行わないようにする変調情報あるいは制御情報を作成するようにしたことを特徴とする請求項7あるいは8記載の送受信装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、多数の直交するサブキャリアを用いる直交周波数分割多重システムに関する。

[0002]

【従来の技術】ヨーロッパやカナダにおいて移動体向け 高品質ディジタル音声放送 (DSB:Digital Sound Broadc asting)の開発が進められている。この音声放送システ ムではマルチパス伝送路でも良好な伝送特性を有する直 交周波数分割多重通信方式(OFDM:Orthogonal Fre quency Division Multiplexing) が採用されている。こ のOFDM通信方式は、情報データ系列を互いに直交す る多数のサブキャリアを用いて伝送するようにしてい る。この場合、1シンボル長を長くすることができるこ とから、ゴースト妨害を軽減することができるようにな る。さらに、ガードインターバルを設けることにより周 波数選択性フェージングに強くなる。また、時間インタ リーブに加えて周波数インタリーブも可能であり、誤り 訂正の効果を有効に使えるようになる。さらに、各サブ キャリアのスペクトルを密に配置することができ、周波 数利用効率を高めることができる。さらにまた、各サブ キャリアへの情報を任意に割り当てることができるた め、干渉が予想されるサブキャリアは使用しない等の柔 軟な情報伝送を可能とすることができる。さらにまた、 各サブキャリアの変調方式を変える等により情報の階層 化を容易とすることができる。

[0003]

【発明が解決しようとする課題】ところで、高速伝送を行う場合の一つの方法として多値変調を行う方法がある。OFDM通信方式においても、サブキャリアを多値変調することにより高速のデータ伝送を実現することができる。しかし、OFDM通信方式において周波数選択性フェージングを受けると、次のように受信電力が変動することになる。例えば、図19はOFDM通信方式における送信されたOFDM信号の一例である。このOFDM信号は多数のサブキャリアから構成されており、各

々のサブキャリアは等しい送信電力で送信されている。 このようなOFDM信号が、マルチパス環境を伝搬する と周波数選択性フェージングの影響を受けて、サブキャ リア間の受信電力は図20に示すように変動するように なる。この場合、サブキャリア間の受信電力の変動特性 は、伝搬路の環境により様々に変化するようになる。

【0004】このようにサブキャリア間の受信電力が変動した場合は、受信電力が最も小さいサブキャリアにおいて所要の誤り率を上昇させないために、各サブキャリアの変調多値数を低減する必要がある。すると、所定の高速伝送を実現することができないことになってしまう。これを解決するために、全てのサブキャリアに対し一律な多値数の多値変調方式を用いるのではなく受信電力が大きいサブキャリアには例えば大きな多値数のBPSKと、サブキャリアごとの受信電力に応じて多値数の異なるシンボル変調方式に変更することが検討されている(信学論 J78-B-II, No6, pp.435-444 参照)。

【0005】しかし、サブキャリアごとにシンボル変調 方式を決める方法は、送受信機間でサブキャリア毎の変 調方式の通知が必要となり、そのための通知情報量、通 知情報を記憶する記憶手段の記憶容量及び通知情報に基 づいて実行する制御の制御量が大きくなるという問題点 があった。またその制御量はサブキャリア数に依存する ためサブキャリア数が多くなるに伴い制御量は増加し、 その実現が困難になると考えられる。これを解決するた めに、サブキャリアをグループ化することにより通知情 報量や制御量を削減することが検討されている(信学技 報 RCS2001-109(2001-09) Yuanrun Teng 外3名「適 応変調を用いたバーストモードOFDM通信方式に関する検 討」参照)。しかしながら、サブキャリアをグループ化 して扱うこの検討については、グループ化の有効性につ いては述べられているものの、グループに含まれるサブ キャリア数は同数とされており、伝搬路環境の変化に応 じた適応的なグループ化がされていないという問題点が あった。

【0006】そこで、本発明は、伝搬路環境の変化に応じていくつかのサブキャリアをまとめたブロックとすることができると共に、制御量を増加させることなく各サブキャリアの変調方式を制御することのできる直交周波数分割多重システムおよび送受信機を提供することを目的としている。

[0007]

【課題を解決するための手段】上記目的を達成するために、本発明の第1の直交周波数分割多重システムは、送信側から固定の送信電力で送信された直交周波数分割多重信号を、受信側において受信し、受信された前記直交周波数分割多重信号を構成している複数のサブキャリアの受信電力値に応じて、いくつかの前記サブキャリアからなるブロックにまとめ、該ブロックにおける特定の位

置のサブキャリアの番号と、それぞれの前記ブロックにおける受信電力値の大きさに応じて決定された変調多値数の変調方式指定情報とからなる変調情報を前記送信側へ通知し、前記変調情報を受け取った前記送信側において、直交周波数分割多重信号を構成する複数のサブキャリアを、前記変調情報の内の前記サブキャリアの番号に基づいてブロックに分割すると共に、前記変調情報の内の前記変調方式指定情報に基づいて当該ブロックのサブキャリアの変調方式を制御するようにしている。

【0008】次に、上記目的を達成することのできる本 発明の第2の直交周波数分割多重システムは、送信側か ら固定の送信電力で送信された直交周波数分割多重信号 を、受信側において受信し、受信された前記直交周波数 分割多重信号を構成している複数のサブキャリアの受信 電力値に応じて、いくつかの前記サブキャリアからなる ブロックにまとめ、該ブロックにおける特定の位置のサ ブキャリアの番号と、それぞれの前記ブロックにおける 受信電力値と複数の規定受信電力との差分が最も小さい 規定受信電力値を決定し、該決定された規定受信電力値 に応じて指定された変調多値数の変調方式指定情報とか らなる変調情報、および、前記受信電力値と前記決定さ れた規定受信電力との差分に応じた送信電力の制御情報 とを前記送信側へ通知し、前記変調情報と前記制御情報 とを受け取った前記送信側において、直交周波数分割多 重信号を構成する複数のサブキャリアを、前記変調情報 の内の前記サブキャリアの番号に基づいてブロックに分 割すると共に、前記変調情報の内の前記変調方式指定情 報に基づいて当該ブロックのサブキャリアの変調方式を 制御し、さらに、前記制御情報に基づいて当該ブロック のサブキャリアの送信電力を制御するようにしている。

【0009】また、上記本発明の第1および第2の直交 周波数分割多重システムにおいて、サブキャリア間の受 信電力の差が所定のしきい値内に収まるサブキャリアを まとめることにより、前記ブロックに分割するようにし てもよい。さらに、上記本発明の第1および第2の直交 周波数分割多重システムにおいて、前記複数のサブキャ リアが前記ブロックに分割された際に、分割されたブロックに含まれるサブキャリア数が最小値のブロックを求 め、全てのブロックのブロック長を前記求められたブロックのブロック長とするようにしてもよい。

【0010】さらにまた、上記本発明の第1および第2の直交周波数分割多重システムにおいて、サブキャリア数に対するそのサブキャリア数が存在する確率分布の累積値のテーブルを参照して、ブロックに分割する際のサブキャリア数を求めるようにしてもよい。さらにまた、上記本発明の第1および第2の直交周波数分割多重システムにおいて、受信側における受信電力が予め定められた最小受信電力値に達しないブロックについては、送信側において前記変調情報あるいは前記制御情報に基づいて当該ブロックのサブキャリアの送信電力をゼロとし

て、シンボル送信を行わないようにしてもよい。

【0011】次に、上記目的を達成することのできる本 発明の第1の送受信装置は、直交周波数分割多重信号を 送受信可能な送受信装置であって、固定の送信電力で送信された直交周波数分割多重信号を構成している複数の サブキャリアの受信電力値に応じて、いくつかの前記サブキャリアからなるブロックにまとめる分割手段と、該分割手段において分割されたそれぞれのブロックにおける特定の位置のサブキャリアの番号と、前記分割されたそれぞれのブロックにおける受信電力値の大きさに応じて決定した変調多値数の変調方式指定情報とからなる変調情報を作成する制御手段とを備え、前記変調情報を、前記制御手段の制御の基で所定の周期毎に送信するようにしている。

【0012】次に、上記目的を達成することのできる本 発明の第2の送受信装置は、直交周波数分割多重信号を 送受信可能な送受信装置であって、固定の送信電力で送 信された直交周波数分割多重信号を構成している複数の サブキャリアの受信電力値に応じて、いくつかの前記サ ブキャリアからなるブロックにまとめる分割手段と、該 分割手段において分割されたそれぞれのブロックにおけ る特定の位置のサブキャリアの番号と、それぞれの前記 ブロックにおける受信電力値と複数の規定受信電力との 差分が最も小さい規定受信電力値を決定し、該決定され た規定受信電力値に応じて指定された変調多値数の変調 方式指定情報とからなる変調情報、および、前記受信電 力値と前記決定された規定受信電力との差分に応じた送 信電力の制御情報とを作成する制御手段とを備え、前記 変調情報および制御情報とを、前記制御手段の制御の基 で所定の周期毎に送信するようにしている。

【0013】また、上記本発明の第1および第2の送受信装置において、サブキャリア間の受信電力の差が所定のしきい値内に収まるサブキャリアをまとめることにより、前記ブロックに分割するようにしてもよい。さらに、上記本発明の第1および第2の送受信装置において、前記複数のサブキャリアが複数のブロックに分割された際に、分割されたブロックに含まれるサブキャリア数が最小値のブロックを求め、全てのブロックのブロック長を前記求められたブロックのブロック長とするようにしてもよい。

【0014】さらにまた、上記本発明の第1および第2の送受信装置において、サブキャリア数に対するそのサブキャリア数が存在する確率分布の累積値のテーブルを参照して、ブロックに分割する際のサブキャリア数を求めるようにしてもよい。さらにまた、上記本発明の第1および第2の送受信装置において、受信電力が予め定められた最小受信電力値に達しないブロックについては、前記制御手段は、当該ブロックのサブキャリアの送信電力をゼロとして、シンボル送信を行わないようにする変調情報あるいは制御情報を作成するようにしてもよい。

【0015】このような本発明によれば、受信電力に応 じてサブキャリアをまとめてブロックとし、ブロック毎 に受信電力に応じた変調多値数の変調方式でシンボル変 調するようにしている。このように、いくつかのサブキ ャリアをまとめたブロック毎に変調方式の制御を行うよ うにしたので、変調情報量を低減することができると共 に、制御に要する処理量や変調情報の記憶容量を低減す ることができるようになる。このような変調方式の制御 処理は、送信側から固定の送信電力でパイロット信号が 送信される毎に行われるようになる。また、上記したよ うにブロック化できるのは、隣接するサブキャリアは周 波数相関が高く、一定の相関帯域輻内のサブキャリアに おける周波数選択性フェージングの影響による受信電力 の変動はほぼ同等とみなすことができるからである。こ のため、そのブロック構成は伝搬路の特定の変化に適応 的となり、効率のよい変調多値数とされる変調方式の制 御を行うことができるようになる。従って、本発明の直 交周波数分割多重システムでは、高速伝送および高品質 伝送を可能とすることができる。

【 O O 1 6 】さらに、本発明では、受信電力に応じてまとめたサブキャリアからなるブロック毎に、その受信電力に応じた効率のよい変調多値数とされる変調方式の制御にくわえて、指定された変調多値数に適する受信電力となるように送信電力制御も行うようにすることができる。これにより、周波数分割多重システムを周波数選択性フェージングの影響の変化にさらに適応的とすることができるようになる。

[0017]

【発明の実施の形態】本発明の第1の実施の形態にかか る直交周波数分割多重システムの構成例を図1に示す。 ただし、図1には基地局1と1つの移動局2とが示され ているが、移動局は多数存在しており、その内の移動局 2だけが示されている。また、移動局2は本発明の第1 の実施の形態にかかる送受信装置に相当する。図1にお いて、基地局1はOFDM変調器10とOFDM復調器 16、およびシンボル変調器12における変調方式の制 御を行う制御部15を備えている。このOFDM復調器 16は、後述する移動局2におけるOFDM復調器20 の受信電力測定部22を省略した構成とされている。送 信データはOFDM変調器10における符号器11に印 加されて、誤り訂正符号化や圧縮符号化等の符号化が行 われる。符号器11から出力される符号化データは、シ ンボル変調器12において制御部15から指定された変 調方式でシンボル変調される。この場合の変調方式の指 定は、後述するブロックに収まる符号化データ毎に行わ れる。

【0018】このシンボル変調器12においては、BPSK、QPSKあるいは16QAMや64QAM等の変調方式の一つがブロック毎に指定されて、当該ブロックに収まる符号化データが指定された変調方式でシンボル

変調される。シンボル変調器12から出力される変調シンボルは、直列一並列変換部(S/P変換部)13において、サブキャリア数に相当する並列数の変調シンボルに変換される。この結果、S/P変換部13から出力される変調シンボルのシンボル速度は1/サブキャリア数に低減されるようになる。S/P変換部13から出力されるサブキャリアの並列数とされる並列変調シンボルは、逆高速フーリエ変換部(IFFT)14において逆フーリエ変換されてOFDM信号とされる。IFFT14は、逆離散フーリエ変換部(IDFT)としてもよい。このOFDM信号は、所定の周波数の搬送波に乗せられて基地局1から送信される。

【0019】このOFDM信号を受信可能な移動局2 は、OFDM復調器20とOFDM変調器27、および 制御部26とを備えている。このOFDM変調器27 は、基地局1におけるOFDM変調器10と同様の構成 とされている。移動局2において受信されたOFDM信 号は高速フーリエ変換部(FFT)21においてフーリ 工変換が施されて、サブキャリア毎に分解される。FF T21を、離散フーリエ変換部(DFT)としてもよ い。FFT部21から並列に出力されるサブキャリアの 各々の受信電力が、受信電力測定部22において測定さ れ、サブキャリアの各々の受信電力値は制御部26へ供 給される。FFT部21から並列に出力されるサブキャ リアは、受信電力測定部22を介して並列ー直列変換部 (P/S変換部) 23に供給され、並列とされているサ ブキャリアの変調シンボルは直列の変調シンボルに変換 される。このP/S変換部23から出力されるサブキャ リアの変調シンボルは、シンボル復調器25において復 調されて復調データとされる。シンボル復調器25にお いては、送信側において施されたBPSK、QPSKあ るいは16QAMや64QAM等の変調に応じた復調が 行われる。なお、シンボル復調器25には、制御部26 に内蔵されている変調情報管理テーブル26 bに保管さ れている各ブロックの変調方式指定情報が供給されてお り、この変調方式指定情報に基づいて各ブロックにおけ るサブキャリアのシンボル復調が行われる。シンボル復 調器25から出力される復調データは、復号器24にお いて誤り訂正や伸長処理等が行われて受信データに復号 され出力される。

【0020】制御部26は、受信電力測定部22から供給された各サブキャリアの受信電力値に応じて、いくつかのサブキャリアからなるブロックに分割する。そして、分割したブロックの先頭サブキャリアのサブキャリア番号と、当該ブロックの受信電力に適した変調方式を指定する変調方式指定情報からなる変調情報を作成する。この場合、当該ブロックにおけるサブキャリアの最小の受信電力によりシンボル変調テーブル26 aを参照して、当該ブロックに適した変調多値数の変調方式を決定する。決定された変調方式を指定する変調方式指定情

報と、分割したブロックの先頭サブキャリアのサブキャリア番号とは、変調情報管理テーブル26bに変調情報として保管される。この変調情報は、OFDM変調器27に供給され、変調情報が周期的に移動局2から基地局1へ送信されるようになる。この変調情報においては、先頭サブキャリア番号に替えて最後尾サブキャリア番号としてもよい。

【0021】なお、移動局2においてサブキャリアの受信電力を測定するために、基地局1は、送信電力制御が行われていないOFDM変調されたパイロット信号を周期的に送信している。このパイロット信号を送る周期は、伝搬路における周波数選択性フェージングの特性が余り変化しない周期とされる。そして、このパイロット信号の受信電力を移動局2は測定するようにする。この場合、基地局1において変調方式が制御されるチャネルは、各移動局毎に設定される通信チャネルとされる。この変調方式の制御は、移動局から送信された変調情報に従って行われるため、移動局毎に異なる変調方式の制御が行われるようになる。

【0022】次に、図1に示す直交周波数分割多重システムにおける変調方式の制御の具体的な処理を図2ないし図8を参照して詳細に説明する。図2には、基地局1から送信される送信電力が固定値とされているパイロット信号であるOFDM信号を示している。このOFDM信号のサブキャリアは、例えばサブキャリアSC1~サブキャリアSC23のサブキャリアから構成されているものとする。SC1~SC23はそれぞれサブキャリア 番号である。サブキャリアSC1~サブキャリアSC23のサブキャリアから構成されているOFDM信号が、マルチパス環境の伝搬路において周波数選択性フェージングの影響を受けると、例えば図3に示すようにサブキャリアのエンベロープが変動するようになる。すなわち、移動局2で受信されたOFDM信号における個々のサブキャリアのレベルが変動するようになる。

【0023】すると、移動局2における受信電力測定部 22において測定されたサブキャリアSC1〜サブキャ リアSC23の受信電力値は、図4に示す先に矢印を付 したスペクトルの長さで示されるようになる。この受信 電力値を {E1, E2, ···, En} と表す。ただ し、E1はサブキャリアSC1の受信電力値、E2はサ ブキャリアSC2の受信電力値であり、Enは最後のサ ブキャリア (図示する場合はサブキャリアSC23、す なわち n=23)の受信電力値である。この場合、隣接 するサブキャリアは周波数相関が高く、一定の相関帯域 幅内のサブキャリアにおける周波数選択性フェージング の影響による受信電力の変動はほぼ同等とみなすことが できる。そこで、これを利用して次に、サブキャリアS C1~サブキャリアSC23を制御部26においていく つかのサブキャリアからなるブロックに分割する。制御 部26でブロックに分割する場合、先頭のサブキャリア

の受信電力値の±ΔΕに収まる連続するサブキャリアを 1ブロックとする。すなわち、|Eh-Ei| <ΔΕを 演算して、与式を満足する受信電力値Εiに対応する連 続するサブキャリアをそのブロックのサブキャリアとす る。ただし、Ehはブロックの先頭のサブキャリアに対 応する受信電力値である。また、最小受信電力のしきい 値Emod1に満たないサブキャリアは、まとめて1つ のブロックとされる。

【0024】この場合、しきい値△Eを小さくするとブ ロック数が増加し、しきい値ムEを大きくするとブロッ ク数が減少する。このように、任意のブロック数に分割 することができるようになるが、周波数選択性フェージ ングの影響による受信電力の変動がほぼ同等とみなすこ とができるようなブロック数が得られるしきい値△Eの 値を予め決定しておくようにする。この場合、BER (Bit Error Rate) がほぼ同等とされる範囲を、周波数 選択性フェージングの影響による受信電力の変動がほぼ 同等とみなすようにすることができる。このようにして 決定されたしきい値 Δ E を用いて図3に示す周波数選択 性フェージングの影響を受けたOFDM信号のサブキャ リアをブロックに分割すると、図4に示すようになる。 すなわち、第1ブロックB1はサブキャリアSC1~S C5により構成され、第2ブロックB2はサブキャリア SC6~SC8により構成され、第3ブロックB3はサ ブキャリアSC9~SC11により構成され、第4ブロ ックB4はサブキャリアSC12~SC14により構成 され、第5ブロックB5はサブキャリアSC15, SC 16により構成され、第6ブロックB6はサブキャリア SC17、SC18により構成され、第7ロックB7は サブキャリアSC19,SC20により構成され、第8 ブロックB8はサブキャリアSC21~SC23により 構成されるようになる。このように、周波数選択制フェ ージングの影響による変動の激しさに応じたブロック長 に分割されるようになる。

【0025】このように制御部26でブロック化することにより、しきい値 Δ E内に収まるサブキャリアによりそれぞれのブロックを構成することができる。このブロック化に替えて、制御部26において図5に示すようにブロック化してもよい。図5に示すブロック化は、1ブロック化含まれるサブキャリア数(ブロック長)を固定値としてブロックに分割するようにしている。この場合の1ブロックに含まれるサブキャリア数は、図4に示すようにしきい値 Δ E内に収まることを条件にブロック化した際に、最も少ないサブキャリア数からなるブロックのサブキャリア数とする。図4に示す場合は第5ブロックのサブキャリアからなることから、図5に示すように各ブロックB1~B11は2つのサブキャリアからなるようにブロック化されている。

【0026】次に、図4に示すようなブロックに分割処

理した後に、制御部26において各ブロックの受信電力に適する変調多値数の変調方式を、各ブロック毎に指定する変調方式指定情報を作成する。この変調情報指定情報は、制御部26に保管されているシンボル変調テーブル26 aを参照して作成する。すなわち、シンボル変調テーブル26 aを参照して作成する。すなわち、シンボル変調テーブル26 aを参照するで調う値数の変調方式のテーブルとされており、各ブロックにおけるサブキャリアの受信電力値の最小値により、シンボル変調テーブル26 aを参照することにより当該ブロックの変調方式を決定する。そして、決定された変調多値数の変調方式を指定する変調方式指定情報を作成する。

【 0 0 2 7 】 例えば、図7 に示すテーブルの各変調方式 の受信電力のしきい値Emod1, Emod2, Emo d4を図6に示して説明すると、第1ブロックB1の変 調方式指定情報は第1ブロックB1内における最小のサ ブキャリアSC5の受信電力EB1はしきい値Emod 4以上とされていることから、変調多値数の多い16Q AMを指定する変調方式指定情報とされる。この変調方 式指定情報により基地局1においてシンボル変調される 際には、第1ブロックB1に対応する符号化データはシ ンボル変調器12において16QAMされる。また、第 2ブロックB2の変調方式指定情報は第2ブロックB2 内における最小のサブキャリアSC8の受信電力EB2 はしきい値Emod2以上とされ、しきい値Emod4 未満とされていることから、変調多値数が適度とされて いるQPSKを指定する変調方式指定情報とされる。こ の変調方式指定情報により基地局1においてシンボル変 調される際には、第2ブロックB2に対応する符号化デ ータはシンボル変調器12においてQPSKされる。

【0028】同様にして、第3ブロックB3内における最小のサブキャリアSC11の受信電力EB3はしきい値Emod2以上とされ、しきい値Emod4未満とされていることから、QPSKを指定する変調方式指定情報とされる。この変調方式指定情報により基地局1においてシンボル変調される際には、第3ブロックB3に対応する符号化データはシンボル変調器12においてQPSKされる。さらに、第4ブロックB4内における最小のサブキャリアSC14の受信電力EB4はしきい値Emod1以上とされ、しきい値Emod2未満とされていることから、変調多値数が少なくされているBPSKを指定する変調方式指定情報とされる。この変調方式指定情報により基地局1においてシンボル変調される際には、第4ブロックB4に対応する符号化データはシンボル変調器12においてBPSKされる。

【0029】また、第5ブロックB5は最小受信電力のしきい値Emod1に満たないサブキャリアSC15, SC16のブロックとされているため、第5ブロックB 5のサブキャリアSC15, SC16は送信されない変 調方式指定情報とされる。これは、しきい値Emod1 が移動局2における受信側の背景ノイズのレベルの近傍のレベルとされているため、第5ブロックB5のサブキャリアSC15,SC16を変調した符号化データを誤ることなく復号することが困難になるからである。また、第5ブロックB5のサブキャリアSC15,SC16を送信しないことにより、その送信電力を他のブロックに振り分けることができるようになるからである。

【0030】さらにまた、第6ブロックB6内における 最小のサブキャリアSC17の受信電力EB6はしきい 値Emod1以上とされ、しきい値Emod2未満とさ れていることから、BPSKを指定する変調方式指定情 報とされる。この変調方式指定情報により基地局1にお いてシンボル変調される際には、第6ブロックB6に対 応する符号化データはシンボル変調器12においてBP SKされる。さらにまた、第7ブロックB7内における 最小のサブキャリアSC19の受信電力EB7はしきい 値Emod2以上とされ、しきい値Emod4未満とさ れていることから、QPSKを指定する変調方式指定情 報とされる。この変調方式指定情報により基地局1にお いてシンボル変調される際には、第7ブロックB7に対 応する符号化データはシンボル変調器12においてQP SKされる。さらにまた、第8ブロックB8内における 最小のサブキャリアSC21の受信電力EB8はしきい 値Emod4以上とされていることから、16QAMを 指定する変調方式指定情報とされる。この変調方式指定 情報により基地局1においてシンボル変調される際に は、第8ブロックB8に対応する符号化データはシンボ ル変調器12において16QAMされる。

【0031】本発明の直交周波数分割多重システムで は、上記説明したような各ブロックにおける変調方式指 定情報と、分割された各ブロックの先頭のサブキャリア の番号情報とからなる変調情報が、制御部26内の変調 情報管理テーブルに保管される。そして、この変調情報 は周期的に変調情報管理テーブル266から読み出され てOFDM変調器27に供給される。OFDM変調器2 7においては、図8に示すように通信用のデータに周期 的に変調情報が挿入されて、移動局2から基地局1へ送 信される。変調情報を送る周期は、伝搬路における周波 数選択性フェージングの特性が余り変化しない周期とさ れる。なお、変調情報管理テーブル26bに保管されて いる変調情報はシンボル復調器25にも供給されてい る。シンボル復調器25においては、P/S変換部23 から供給される変調シンボルが、変調情報に基づくブロ ックに対応する変調シンボル毎に指定された変調多値数 の復調方式で復調されるようになる。これにより、変調 方式がブロック毎に異なっていても正確に復調すること ができるようになる。

【0032】基地局1においては移動局2から送信された変調情報を受信し、OFDM復調器16において変調情報が復調されて制御部15へ供給される。また、通信

用のデータは、OFDM復調器16において復調されて 受信データとして出力される。復調された変調情報は制 御部15へ供給され、内蔵される変調情報管理テーブル 15aに保管される。変調情報は、周期的に送られてく るため、受信する毎に変調情報管理テーブル15a上の 変調情報が更新されるようになる。このため、伝搬路に おける周波数選択性フェージングの影響が変化しても、 その変化に追随する変調情報が変調情報管理テーブル1 5aに保管されていることになる。また、変調情報管理 テーブル15aには基地局1に在圏する移動局の変調情 報が保管されるようになる。

【〇〇33】制御部15においては、通信チャネルの変調方式の制御を行う場合は、設定された通信チャネルに該当する移動局の変調情報を変調情報管理テーブル15 aから読み出す。次いで、シンボル変調器12において変調情報におけるブロックの先頭のサブキャリア番号に基づいて各ブロックに対応する符号化データに切り分ける。さらに、シンボル変調器12において変調情報中の各ブロックに指定されている変調方式指定情報に基づいて、当該ブロックに対応する符号化データを指定されたBPSK、QPSKあるいは16QAMや64QAM等の変調方式でシンボル変調する。そして、上述したようにS/P変換部13および1FFT部14においてOFDM信号とされるようになる。

【0034】以上説明したように、本発明の第1の実施 の形態の直交周波数分割多重システムにおいては、受信 電力の大きいブロックにおけるサブキャリアはデータ伝 送速度が高速となる変調多値数の変調方式が指定され、 受信電力の小さいブロックはデータ伝送速度が低速とな る変調多値数の変調方式が指定される。この場合、いく つかのサブキャリアをまとめたブロック毎に変調方式を 指定するようにしたので、変調情報を保管する変調情報 管理テーブル15aの記憶量を低減することができると 共に、変調方式の制御の処理量を低減することができる ようになる。また、周波数選択性フェージングの影響に よる受信電力の変動はほぼ同等とみなすことができるよ うにブロック化していることから、そのブロック構成は 伝搬路特定の変化に適応して変更されるようになり、誤 り率を所定以下とした効率のよい変調多値数の変調方式 とする制御を行うことができる。このため、本発明の直 交周波数分割多重システムでは高速伝送および高品質伝 送を可能とすることができるようになる。

【0035】ところで、サブキャリアを次のようにしてまとめてブロックとしてもよい。移動局 2 において受信されたOFDM信号が図9に示すようなエンベロープとされて受信されたとする。この場合のサブキャリア数 n は、例えば60とされている。そして、図4に示すようにしきい値 Δ Eの範囲内の受信電力のサブキャリアをまとめてブロック化した際に、図9に示すように第1 ブロック10 のサブキャリア数は102 なり、第2 ブロック

B2のサブキャリア数も10となり、第3ブロックB3のサブキャリア数は5となり、第4ブロックB4のサブキャリア数は15となり、第5ブロックB5のサブキャリア数が20になったとする。この場合のキャリア数に対する当該キャリア数が存在する確率分布の累積値を求めると、図10に示す図表の通りとなる。

【0036】すなわち、キャリア数が5とされるブロッ クは第3ブロックB3だけであり、この場合の(ブロッ ク数/全ブロック数)は1/5となる。従って、キャリ ア数が5以下の累積値も1/5となる。また、キャリア 数が10とされるブロックは第1ブロックB1と第2ブ ロックB2であり、この場合の(ブロック数/全ブロッ ク数)は2/5となる。従って、キャリア数が10以下 の累積値は1/5+2/5=3/5となる。さらに、キ ャリア数が15とされるブロックは第4ブロックB4だ けであり、この場合の(ブロック数/全ブロック数)は 1/5となる。従って、キャリア数が15以下の累積値 は1/5+2/5+1/5=4/5となる。さらにま た、キャリア数が20とされるブロックは第5ブロック B5だけであり、この場合の(ブロック数/全ブロック 数)は1/5となる。従って、キャリア数が20以下の 累積値は1/5+2/5+1/5+1/5=5/5とな る。この累積値をパーセント値として、キャリア数(S C数)を横軸としてグラフ表示すると、図11に示すグ ラフとなる。このグラフから、例えば累積値が約54% になるキャリア数を求めると、サブキャリア数はほぼり となる。そこで、サブキャリア数を9として60のサブ キャリアを 9 サブキャリア毎にブロックにまとめるよう にしてもよい。このように、確率分布の累積値から求め たサブキャリア数毎のブロックとすることができる。こ の場合は、各ブロックのサブキャリア数は固定値とな

【0037】次に、本発明の第1の実施の形態にかかる 直交周波数分割多重システムにおける変調方式の制御処 理のフローチャートを図12に示す。図12に示す変調 方式の制御処理が開始されて、基地局が制御チャネルに よりパイロット信号を送信する(ステップS1)と、こ のパイロット信号を移動局が受信する(ステップSI 0)。次いで、ステップS11にて受信したパイロット 信号におけるOFDM信号の全てのサブキャリアの受信 電力を測定する。 ステップS12では、 隣接するサブキ ャリアは周波数相関が高く、一定の相関帯域幅内のサブ キャリアにおける周波数選択性フェージングの影響によ る受信電力の変動はほぼ同等とみなすことができること を利用して、サブキャリアをブロック化している。すな わち、設定されたしきい値ΔEを超えない連続するサブ キャリアをブロックにまとめることにより、サブキャリ アをブロック化する。さらに、ステップS13において 分割したブロック数を検出し、各々のブロックにおける 先頭サブキャリア番号を決定する。ここでは、ブロック

にまとめられたサブキャリア数が最も少ないブロック長に、ブロック長を固定してブロック化し直してもよい。 さらに、図11に示すような累積値に対するサブキャリア数のグラフを参照して、所望の累積値になるサブキャリア数を求めて、求められたサブキャリア数のブロックにブロック化し直してもよい。

【0038】次いで、ステップS14において各プロッ クにおける最小受信電力のサブキャリアの受信電力値 と、シンボル変調テーブル26aにおけるしきい値Em od1, Emod2, Emod4とを対比することによ り各ブロックに適した変調多値数の変調方式を決定す る。そして、決定された変調方式を指定する変調方式指 定情報とステップS13で決定された先頭サブキャリア 番号とからなる変調情報を基地局へ通知する(ステップ S15)。この運知を受けた基地局は、通知された変調 情報に基づきステップS2にて各ブロックに対応する符 号化データを当該ブロックに指定された変調多値数の変 調方式でシンボル変調する。これにより、周波数選択性 フェージングを受けた際に、その影響に応じた変調多値 数の変調方式でいくつかのサブキャリアからなるブロッ クをシンボル変調するように制御することができるよう になる。

【0039】以上説明した本発明の移動局2において、OFDM変調器27に変調情報を供給し、この変調情報におけるブロックの先頭のサブキャリア番号に基づいてブロックに対応する符号化データに切り分け、変調情報中の各ブロックに指定されている変調方式指定情報に基づいて、当該ブロックに対応する符号化データを指定されたBPSK、QPSKあるいは16QAMや64QAM等の変調方式でシンボル変調するようにしてもよい。この場合、基地局1においては変調情報管理テーブル15aに保管されている変調情報をOFDM復調器16に供給し、直列に変換された各サブキャリアの変調シンボルを、変調情報に基づくブロックに対応する変調シンボル毎に指定された変調多値数の復調方式で復調するようにする。

【0040】次に、本発明の第2の実施の形態にかかる直交周波数分割多重システムの構成例を図13示す。ただし、図13には基地局51と1つの移動局52とが示されているが、移動局は多数存在しており、その内の移動局52だけが示されている。また、移動局52は本発明の第2の実施の形態にかかる送受信装置に相当する。図13において、基地局51はOFDM変調器60とOFDM復調器16、およびシンボル変調器12における変調方式の制御、および、送信電力制御部17における送信電力制御を行う制御部35を備えている。OFDM復調器16は、後述する移動局52におけるOFDM復調器20の受信電力測定部22を省略した構成とされている。送信データはOFDM変調器60における符号器11に印加されて、誤り訂正符号化や圧縮符号化等の符

号化が行われる。符号器 1 1 から出力される符号化データは、シンボル変調器 1 2 において制御部 3 5 から指定された変調多値数の変調方式でシンボル変調される。この場合の変調方式の指定は、後述するブロックに収まる符号化データ毎に行われる。

【0041】このシンボル変調器12においては、BP SK、QPSKあるいは16QAMや64QAM等の変 調方式の一つがブロック毎に指定されて、当該ブロック に収まる符号化データが指定された変調多値数の変調方 式でシンボル変調される。シンボル変調器12から出力 される変調シンボルは、直列-並列変換部(S/P変換 部)13において、サブキャリア数に相当する並列数の 変調シンボルに変換される。この結果、S/P変換部1 3から出力される変調シンボルのシンボル速度は1/サ ブキャリア数に低減されるようになる。S/P変換部1 3から出力されるサブキャリアの並列数とされる並列変 調シンボルは、送信電力制御部17において制御部35 からの送信電力制御信号により、変調方式が指定されて いる前記ブロック毎に送信電力制御されるようになる。 このブロックはいくつかのサブキャリアから構成され る。送信電力制御部17において送信電力制御が行われ たサブキャリアの並列数とされている並列変調シンボル は、逆高速フーリエ変換部(IFFT)14において逆 フーリエ変換されてOFDM信号とされる。IFFT1 4は、逆離散フーリエ変換部(IDFT)としてもよ い。このOFDM信号は、所定の周波数の搬送波に乗せ られて基地局51から送信される。

【0042】このOFDM信号を受信可能な移動局52 は、OFDM復調器20とOFDM変調器27、および 制御部36とを備えている。このOFDM変調器27 は、基地局51におけるOFDM変調器60の送信電力 制御部17を省略した構成とほぼ同様の構成とされてい る。移動局52において受信されたOFDM信号は高速 フーリエ変換部 (FFT) 21 においてフーリエ変換が 施されて、サブキャリア毎に分解される。FFT21 を、離散フーリエ変換部 (DFT) としてもよい。FF T部21から並列に出力されるサブキャリアの各々の受 信電力が、受信電力測定部22において測定され、サブ キャリアの各々の受信電力値は制御部36へ供給され る。FFT部21から並列に出力されるサブキャリア は、受信電力測定部22を介して並列一直列変換部(P /S変換部)23に供給され、並列とされているサブキ ャリア毎の変調シンボルが直列の変調シンボルに変換さ れる。このP/S変換部23から出力される変調シンボ ルは、シンボル復調器25において復調されて復調デー タとされる。シンボル復調器25においては、送信側に おいて施されたBPSK、QPSKあるいは16QAM や64QAM等の変調に応じた変調多値数の復調が行わ れる。なお、シンボル復調器25には、制御部36に内 蔵されている変調情報管理テーブル36bに保管されて

いる各ブロックの変調方式指定情報が供給されており、 この変調方式指定情報に基づいて各ブロックにおけるサ ブキャリアのシンボル復調が行われる。シンボル復調器 25から出力される復調データは、復号器24において 誤り訂正や伸長処理等が行われて受信データに復号され 出力される。

【0043】制御部36は、受信電力測定部22から供 給された各サブキャリアの受信電力値に応じて、いくつ かのサブキャリアからなるブロックに分割する。そし て、分割したブロックの先頭サブキャリアのサブキャリ ア番号と、当該ブロックの受信電力に適した変調多値数 の変調方式を指定する変調方式指定情報からなる変調情 報、および、当該ブロックの受信電力が規定の受信電力 となるように送信電力を制御するための送信電力制御情 報からなる制御情報を作成する。この場合、レベルの異 なる複数の規定受信電力値を予め定めておき、当該ブロ ックにおけるサブキャリアの最小の受信電力との差分が 最も小さい規定受信電力値を決定して、その規定受信電 力値になるような送信電力制御情報を作成する。また、 決定された規定受信電力値によりシンボル変調テーブル 36 a を参照して、当該ブロックに適した変調多値数の 変調方式を決定する。決定された変調方式を指定する変 調方式指定情報と、分割したブロックの先頭サブキャリ アのサブキャリア番号とは、変調情報管理テーブル36 bに変調情報として保管される。この変調情報および制 御情報は、OFDM変調器27に供給され、変調情報お よび制御情報が周期的に移動局52から基地局51へ送 信されるようになる。この変調情報および制御情報にお いては、ブロックの境界を示す情報を先頭サブキャリア 番号に替えて最後尾サブキャリア番号としてもよい。

【0044】なお、移動局52においてサブキャリアの受信電力を測定するために、基地局51は、送信電力制御が行われていないOFDM変調されたパイロット信号を周期的に送信している。このパイロット信号が送信される周期は、伝搬路における周波数選択性フェージング等により生じる受信電力の変動に十分追随できる周期とされている。そして、このパイロット信号の受信電力を移動局52は測定するようにする。この場合、基地局51において変調方式が制御されると共に送信電力が制御されるチャネルは、各移動局毎に設定される通信チャネルとされる。この変調方式の制御および送信電力制御は、移動局から送信された変調情報および制御情報に従って行われるため、移動局毎に異なる変調方式の制御および送信電力制御が行われるようになる。

【0045】図13に示す第2の実施の形態の直交周波数分割多重システムにおける変調方式の制御および送信電力制御において、変調方式の制御および送信電力制御はいくつかのサブキャリアからなるブロック毎に行われる。このブロックは前述した第1の実施の形態の変調方式の制御におけるブロックと同一のブロックとされてお

り、このため、その具体的なブロック化の手法は同様と されている。以下に、第2の実施の形態の直交周波数分 割多重システムにおける変調方式の制御および送信電力 制御について説明する。

【0046】サブキャリアSC1~SC23は、図4に 示すように先頭のサブキャリアの受信電力値の±ΔEに 収まる連続するサブキャリアを1ブロックとして第1ブ ロックB1ないし第8ブロックB8に分割されている。 この分割した第1ブロックB1ないし第8ブロックB8 において変調方式を制御する変調情報および送信電力制 御させるための送信電力制御情報が作成される。この場 合、当該ブロックにおけるサブキャリアの最小の受信電 力Ebiと、図14に示す複数の規定受信電力値とされ るしきい値Emod1, Emod2, Emod4のそれ ぞれとの差分 | Emodx-Ebil (ただし、xはし きい値番号、iはブロック番号)を算出する。算出され た差分の内の最小の差分の絶対値が得られるしきい値を 決定する。決定されたしきい値によりシンボル変調テー ブル36 a を参照して、当該ブロックの受信電力に適し た変調多値数の変調方式を決定する。

【0047】例えば、第1ブロックB1における最小の サブキャリアSC5の受信電力と、しきい値Emod 1, Emod 2, Emod 4のそれぞれとの最小の差分 の絶対値はしきい値Emod4により得られる。しきい 値Emod4は高いレベルとされているため、しきい値 Emod4によりシンボル変調テーブル36aを参照す ると、第1ブロックB1の受信電力に適した変調方式は 変調多値数の多い16QAMと決定される。また、第2 ブロックB2における最小のサブキャリアSC8の受信 電力と、しきい値Emod1, Emod2, Emod4 のそれぞれとの最小の差分の絶対値はしきい値Emod 4により得られる。従って、しきい値Emod4により シンボル変調テーブル36 aを参照すると、第2ブロッ クB2の受信電力に適した変調方式は16QAMと決定 される。さらに、第3ブロックB3における最小のサブ キャリアSC11の受信電力と、しきい値Emod1, Emod 2, Emod 4のそれぞれとの最小の差分の絶 対値はしきい値Emod2により得られる。しきい値E mod2は中位のレベルとされているため、しきい値E mod 2によりシンボル変調テーブル36aを参照する と、第3ブロックB3の受信電力に適した変調方式は変 調多値数が中位とされているQPSKと決定される。

【0048】さらにまた、第4ブロックB4における最小のサブキャリアSC14の受信電力と、しきい値Emod1, Emod2, Emod4のそれぞれとの最小の差分の絶対値はしきい値Emod1により得られる。しきい値Emod1は低いレベルとされているため、しきい値Emod1によりシンボル変調テーブル36aを参照すると、第4ブロックB4の受信電力に適した変調方式は変調多値数の少ないBPSKと決定される。さらに

また、第5ブロックB5は最小受信電力のしきい値Eminに満たないサブキャリアSC15, SC16のブロックとされている。このしきい値Eminは、最小受信電力のしきい値Emod1と同一のしきい値である。そして、最小受信電力のしきい値Emin(Emod1)に満たないサブキャリアは送信しないようにしている。このため、第5ブロックB5には変調方式は割り当てられない。さらにまた、第6ブロックB6における最小のサブキャリアSC17の受信電力と、しきい値Emod1, Emod2, Emod4のそれぞれとの最小の差分の絶対値はしきい値Emod1により得られる。従って、しきい値Emod1によりシンボル変調テーブル36aを参照すると、第6ブロックB6の受信電力に適した変調方式はBPSKと決定される。

【0049】さらにまた、第7ブロックB7における最 小のサブキャリアSC19の受信電力と、しきい値Em od1, Emod2, Emod4のそれぞれとの最小の 差分の絶対値はしきい値Emod4により得られる。従 って、しきい値Emod4によりシンボル変調テーブル 36aを参照すると、第7ブロックB7の受信電力に適 した変調方式は16QAMと決定される。さらにまた、 第8ブロックB8における最小のサブキャリアSC21 の受信電力と、しきい値Emod1, Emod2, Em od4のそれぞれとの最小の差分の絶対値はしきい値E mod4により得られる。従って、しきい値Emod4 によりシンボル変調テーブル36 aを参照すると、第8 ブロックB8の受信電力に適した変調方式は16QAM と決定される。上述した各ブロックにおける最小の差分 の絶対値である最小値と、最小値が得られた規定受信電 力値(しきい値)と、決定された変調方式の図表を図1 7に示す。このようにして決定された変調方式を指定す る変調方式指定情報と、分割されたブロックの先頭サブ キャリアのサブキャリア番号とは、変調情報管理テーブ ル36日に変調情報として保管される。この変調情報 は、OFDM変調器27に供給され、変調情報が周期的 に移動局52から基地局51へ送信されるようになる。 この変調情報においては、先頭サブキャリア番号に替え て最後尾サブキャリア番号としてもよい。

【0050】また、送信電力制御情報を作成するには、前述したように各ブロックに決定されたしきい値Emodxと当該ブロックにおけるサブキャリアの最小の受信電力Ebiとの差分Ebid(=Emodx-Ebi)を算出する。そして、算出された差分Ebidを送信電力制御情報とする。例えば、図14に示す例では、第1ブロックB1の送信電力制御情報は第1ブロックB1内における最小のサブキャリアSC5の受信電力としきい値Emod4との差分EB1dとなる。この送信電力制御情報EB1dは負となり基地局51において送信電力制御される際には、図15に示すように第1ブロックB1の送信電力は送信電力制御情報EB1dに相当する分

だけ低減される。

【0051】また、第2ブロックB2の送信電力制御情 報は第2ブロックB2内における最小のサブキャリアS C8の受信電力としきい値Emod4との差分EB2d となる。この送信電力制御情報EB2dは正となり基地 局51において送信電力制御される際には、図15に示 すように第2ブロックB2の送信電力は送信電力制御情 報EB2dに相当する分だけ増加される。さらに、第3 ブロック B 3 の送信電力制御情報は第3ブロック B 3 内 における最小のサブキャリアSC 11の受信電力としき い値Emod2との差分EB3dとなる。この送信電力 制御情報EB3dは負となり基地局51において送信電 力制御される際には、図15に示すように第3ブロック B3の送信電力は送信電力制御情報EB3dに相当する 分だけ低減される。さらにまた、第4ブロックB4の送 信電力制御情報は第4ブロックB4内における最小のサ ブキャリアSC14の受信電力としきい値Emod1と の差分EB4dとなる。この送信電力制御情報EB4d は負となり基地局51において送信電力制御される際に は、図15に示すように第4ブロックB4の送信電力は 送信電力制御情報EB4dに相当する分だけ低減され

【0052】さらにまた、第5ブロックB5は最小受信 電力のしきい値Emi nに満たないサブキャリアSC1 5, SC16のブロックとされている。このしきい値E minは、前述した最小受信電力のしきい値Emod1 と同一のしきい値である。前述したように、最小受信電 力のしきい値Emin(Emod1)に満たないサブキ ャリアは送信しないようにしている。このため、第5ブ ロックB5の送信電力制御情報EB5dは、サブキャリ アSC15, SC16を送信しない送信電力制御情報E B5dとされる。これは、前述した理由に加えてしきい 値Eminが移動局52における受信側の背景ノイズの レベルの近傍のレベルとされているため、第5ブロック B5のサブキャリアSC15, SC16の受信電力を正 確に測定できないことと、送信電力制御した際に第5ブ ロックB5は高い送信電力を消費することになり、相対 的に他のブロックの送信電力が低下してしまうようにな るからである。

【0053】さらにまた、第6ブロックB6の送信電力制御情報は第6ブロックB6内における最小のサブキャリアSC17の受信電力としきい値Emod1との差分EB6dとなる。この送信電力制御情報EB6dは負となり基地局51において送信電力制御される際には、図15に示すように第6ブロックB6の送信電力は送信電力制御情報EB6dに相当する分だけ低減される。さらにまた、第7ブロックB7の送信電力制御情報は第7ブロックB7内における最小のサブキャリアSC19の受信電力としきい値Emod4との差分EB7dとなる。この送信電力制御情報EB37は正となり基地局51に

おいて送信電力制御される際には、図15に示すように 第7ブロックB7の送信電力は送信電力制御情報EB7 dに相当する分だけ増加される。さらにまた、第8ブロックB8の送信電力制御情報は第8ブロックB8内にお ける最小のサブキャリアSC21の受信電力としきい値 Emod4との差分EB8dとなる。この送信電力制御 情報EB8dは負となり基地局51において送信電力制 御される際には、図15に示すように第8ブロックB8 の送信電力は送信電力制御情報EB8dに相当する分だ け低減される。

【0054】このような各ブロックにおける送信電力制 御情報からなる制御情報と、前述した変調情報管理テー ブル366に保管されている各ブロックにおける変調方 式指定情報と、分割された各ブロックの先頭のサブキャ リアの番号情報とからなる変調情報とが、制御部36か らOFDM変調器27に供給される。OFDM変調器2 7においては、図8に示すように通信用のデータに周期 的に制御情報が挿入されて、移動局52から基地局51 へ送信される。変調情報および制御情報を送る周期は、 伝搬路における周波数選択性フェージングの特性が余り 変化しない周期とされる。なお、変調情報管理テーブル 36 b に保管されている変調情報はシンボル復調器 25 にも供給されている。シンボル復調器25においては、 P/S変換部23から供給される変調シンボルが変調情 報に基づくブロックに対応する変調シンボル毎に指定さ れた変調方式に対応する復調方式で復調されるようにな る。これにより、変調方式がブロック毎に異なっていて も正確に復調することができるようになる。

【0055】基地局51においては移動局52から送信 された変調情報および制御情報を受信し、OFDM復調 器16において変調情報および制御情報が復調されて制 御部35へ供給される。また、通信用のデータは、OF DM復調器16において復調されて受信データとして出 力される。復調された変調情報および制御情報は制御部 35へ供給され、内蔵される制御情報,変調情報管理テ ーブル35aに保管される。変調情報および制御情報 は、周期的に送られてくるため、受信する毎に制御情 報,変調情報管理テーブル35a上の変調情報および制 御情報が更新されるようになる。このため、伝搬路にお ける周波数選択性フェージングの影響が変化しても、そ の変化に追随する変調情報および制御情報が制御情報、 変調情報管理テーブル35aに保管されていることにな る。また、制御情報、変調情報管理テーブル35aには 基地局51に在圏する移動局の制御情報が保管されるよ うになる。

【0056】制御部35においては、通信チャネルの変調方式の制御および送信電力制御を行う場合は、設定された通信チャネルに該当する移動局の制御情報を制御情報、変調情報管理管理テーブル35aから読み出す。次いで、シンボル変調器12において変調情報におけるブ

ロックの先頭のサブキャリア番号に基づいて各ブロック に対応する符号化データに切り分ける。さらに、シンボ ル変調器12において変調情報中の各ブロックに指定さ れている変調方式指定情報に基づいて、当該ブロックに 対応する符号化データを指定されたBPSK、QPSK あるいは16QAMや64QAM等の変調方式でシンボ ル変調する。続いて、送信電力制御部17において変調 情報におけるブロックの先頭のサブキャリア番号に基づ いて分割されたいくつかのサブキャリアからなるブロッ クの送信電力制御を行う。この場合、制御情報における 各ブロックの送信電力制御情報に基づいて、当該ブロッ クのサブキャリアの送信電力を制御する。ただし、各ブ ロックの送信電力の総和は常に等しくなる。すなわち、 送信電力制御情報が変更された場合には、個々のブロッ クにおける送信電力は制御情報に応じて変更されるよう になるが、各ブロックの送信電力の総和は、変更前の送 信電力の総和と等しくなる。

【0057】ここで、パイロット信号を受信した際に図14に示す受信電力とされた場合における変調情報および制御情報に基づいて、基地局51におけるシンボル変調器12で変調方式の制御が行われると共に、送信電力制御部17で送信電力制御されたOFDM信号の各ブロックの送信電力の一例を図15に示す。このように送信電力制御されたOFDM信号が移動局52において受信電力制御されたOFDM信号が移動局52において受信された際の、受信電力を図16に示す。図16を参照すると、各ブロックにおけるサブキャリアの受信電力は、当該ブロックに指定されている変調方式の変調多値数に応じたしきい値の受信電力となっている。すなわち、変調方式の変調多値数に適した効率のよい送信電力制御が行われていることがわかる。

【0058】以上説明したように、本発明の第2の実施の形態の直交周波数分割多重システムにおいては、受信電力の大きいブロックにおけるサブキャリアはデータ伝送速度が高速となる変調多値数の変調方式が指定されると共に、送信電力が指定された変調多値数に適する大きな受信電力となるように制御され、受信電力の小さいブロックはデータ伝送速度が低速となる変調多値数の変調方式が指定されると共に、送信電力が指定された変調多値数に適する小さな受信電力となるように制御される。これにより、各ブロックに指定されている変調多値数の変調方式に適した受信電力となるように、各ブロックのサブキャリアの送信電力が制御されるようになり、直交周波数分割多重システムにおける高速伝送を可能とすることができるようになる。

【0059】本発明の第2の実施の形態の直交周波数分割多重システムにおいては、受信電力が所定範囲に収まる連続するサブキャリアをまとめてブロックとし、そのブロック毎に変調方式の制御および送信電力制御を行うようにしている。このように、いくつかのサブキャリアをまとめたブロック毎に変調方式および送信電力制御を

行うようにしたので、制御情報および変調情報を保管す る制御情報,変調情報管理テーブル35aの記憶量を低 減することができると共に、変調方式の制御の処理量お よび送信電力制御の処理量を低減することができるよう になる。また、周波数選択性フェージングの影響による 受信電力の変動はほぼ同等とみなすことができるように ブロック化していることから、そのブロック構成は伝搬 路特定の変化に適応して変更されるようになり、効率の よい変調方式の制御および送信電力制御を行うことがで きる。このため、本発明の第2の実施の形態の直交周波 数分割多重システムにおいては、さらなる高速伝送およ び高品質伝送を可能とすることができるようになる。な お、本発明の第2の実施の形態の直交周波数分割多重シ ステムにおいても、前記図9ないし図11を参照して説 明したように、確率分布の累積値から求めたサブキャリ ア数毎のブロックとしてもよい。

【0060】次に、本発明の第2の実施の形態にかかる 直交周波数分割多重システムにおける変調方式の制御お よび送信電力制御処理のフローチャートを図18示す。 図18に示す変調方式の制御および送信電力制御処理が 開始されて、基地局がパイロット信号を送信する(ステ ップS20)と、このパイロット信号を移動局が受信す る(ステップS30)。次いで、ステップS31にて受 信したパイロット信号におけるOFDM信号の全てのサ ブキャリアの受信電力を測定する。 ステップ S32で は、隣接するサブキャリアは周波数相関が高く、一定の 相関帯域幅内のサブキャリアにおける周波数選択性フェ ージングの影響による受信電力の変動はほぼ同等とみな すことができることを利用して、サブキャリアをブロッ ク化している。すなわち、設定されたしきい値△Eを超 えない連続するサブキャリアをブロックにまとめること により、サブキャリアをブロック化する。さらに、ステ ップS33において分割したブロック数を検出し、各々 のブロックにおける先頭サブキャリア番号を決定する。 ここでは、ブロックにまとめられたサブキャリア数が最 も少ないブロック長に、ブロック長を固定してブロック 化し直してもよい。さらに、図11に示すような累積値 に対するサブキャリア数のグラフを参照して、所望の累 積値になるサブキャリア数を求めて、求められたサブキ ャリア数のブロックにブロック化し直してもよい。

【0061】次いで、ステップS34において各ブロックにおける最小受信電力のサブキャリアの受信電力値と、複数の規定受信電力値とされるしきい値Emod1, Emod2, Emod4のそれぞれとの差分を算出する。そして、算出された差分の内の最小の差分の絶対値が得られるしきい値を決定し、決定されたしきい値によりシンボル変調テーブル36aを参照して、当該ブロックの受信電力に適した変調多値数の変調方式を決定する。さらに、決定されたしきい値と最小受信電力のサブキャリアの受信電力値との差分を各ブロックにおける送

信電力制御値とする。そして、算出された送信電力制御 値からなる制御情報と、決定された変調多値数の変調方 式を指定する変調方式指定情報とステップS33で決定 された先頭サブキャリア番号とからなる変調情報を基地 局へ通知する(ステップS35)。この通知を受けた基 地局は、通知された変調情報に基づきステップS21に て各ブロックに対応する符号化データを当該ブロックに 指定された変調多値数の変調方式でシンボル変調する。 さらに、通知された制御情報に基づき各ブロックの送信 電力を制御する。すなわち、サブキャリアを、変調情報 の内の先頭サブキャリア番号の直前までのいくつかのサ ブキャリアにまとめてブロック化し、ブロック化した各 々のブロックにおけるサブキャリアの送信電力を、制御 情報における当該ブロックの送信電力制御情報に従って 制御する。これにより、周波数選択性フェージングを受 けた際に、その影響に応じた変調多値数の変調方式でい くつかのサブキャリアからなるブロックをシンボル変調 するように制御することができると共に、移動局におい て受信されるOFDM信号の各サブキャリアの受信電力 が変調多値数に適した送信電力となるように制御するこ とができるようになる。

【0062】以上説明した本発明の移動局52において、OFDM変調器27に制御部36の変調情報管理テーブル36bに保管されている変調情報を供給し、この変調情報におけるブロックの先頭のサブキャリア番号に基づいてブロックに対応する符号化データに切り分け、変調情報中の各ブロックに指定されている変調方式指定情報に基づいて、当該ブロックに対応する符号化データを指定されたBPSK、QPSKあるいは16QAMや64QAM等の変調方式でシンボル変調するようにしてもよい。この場合、基地局51においては変調情報管理テーブル35aに保管されている変調情報をOFDM復調器16に供給し、直列に変換された各サブキャリアの変調シンボルを、変調情報に基づくブロックに対応する変調シンボル毎に指定された変調多値数の復調方式で復調するようにする。

【0063】さらに加えて、本発明の移動局52において、OFDM変調器27内に基地局51と同様に送信電力制御部を備えるようにし、制御部36により得られた制御情報に基づいて、OFDM信号の送信電力制御を行うようにしてもよい。この場合、変調情報の内の先頭サブキャリア番号に基づいてサブキャリアをブロック化し、当該ブロックに対応する送信電力制御値に応じて、そのブロック内のサブキャリアの送信電力を制御する。なお、以上説明した本発明の第1および第2の実施の形態の直交周波数分割多重システムにおいて、基地局から送信される送信電力制御が行われていないOFDM変調されたパイロット信号が送信される周期は、伝搬路における周波数選択性フェージング等により生じる受信電力の変動に十分追随できる周期とされている。

[0064]

【発明の効果】本発明は以上説明したように、受信電力 に応じてサブキャリアをまとめてブロックとし、ブロッ ク毎に受信電力に応じた変調多値数の変調方式でシンボ ル変調するようにしている。このように、いくつかのサ ブキャリアをまとめたブロック毎に変調方式の制御を行 うようにしたので、変調情報量を低減することができる と共に、制御に要する処理量や変調情報の記憶容量を低 減することができるようになる。このような変調方式の 制御処理は、送信側から固定の送信電力でパイロット信 号が送信される毎に行われるようになる。また、上記し たようにブロック化できるのは、隣接するサブキャリア は周波数相関が高く、一定の相関帯域幅内のサブキャリ アにおける周波数選択性フェージングの影響による受信 電力の変動はほぼ同等とみなすことができるからであ る。このため、そのブロック構成は伝搬路の特定の変化 に適応的となり、効率のよい変調多値数とされる変調方 式の制御を行うことができるようになる。従って、本発 明の直交周波数分割多重システムでは、高速伝送および 高品質伝送を可能とすることができる。

【0065】さらに、本発明では、受信電力に応じてまとめたサブキャリアからなるブロック毎に、その受信電力に応じた効率のよい変調多値数とされる変調方式の制御にくわえて、指定された変調多値数に適する受信電力となるように送信電力制御も行うようにすることができる。これにより、周波数分割多重システムを周波数選択性フェージングの影響の変化にさらに適応的とすることができるようになる。

【図面の簡単な説明】

【図1】本発明の第1の実施の形態にかかる直交周波数 分割多重システムの構成例を示す図である。

【図2】本発明の第1の実施の形態にかかる直交周波数 分割多重システムにおける基地局から送信されるパイロ ット信号を示す図である。

【図3】本発明の第1の実施の形態にかかる直交周波数 分割多重システムにおける選択性フェージングの影響を 受けたOFDM信号を示す図である。

【図4】本発明の第1の実施の形態にかかる直交周波数 分割多重システムにおける受信したOFDM信号をブロックにまとめる説明をするための図である。

【図5】本発明の第1の実施の形態にかかる直交周波数 分割多重システムにおける受信したOFDM信号をブロックにまとめる他の説明をするための図である。

【図6】本発明の第1の実施の形態にかかる直交周波数 分割多重システムにおけるブロックの変調方式指定情報 を説明するための図である。

【図7】本発明の第1の実施の形態にかかる直交周波数 分割多重システムにおける受信電力と変調方式指定情報 との関係を示す図である。

【図8】本発明の第1の実施の形態にかかる直交周波数

分割多重システムにおける変調情報を送る態様を示す図 である。

【図9】本発明の第1の実施の形態にかかる直交周波数 分割多重システムにおける選択性フェージングの影響を 受けたOFDM信号を、ブロック化したサブキャリア数 を示す図である。

【図10】図9に示す例におけるキャリア数に対する当該キャリア数が存在する確率分布の累積値を示す図表である。

【図11】図10に示すキャリア数に対する当該キャリア数が存在する確率分布の累積値を示すグラフである。

【図12】本発明の第1の実施の形態にかかる直交周波数分割多重システムにおける変調方式の制御処理のフローチャートである。

【図13】本発明の第2の実施の形態にかかる直交周波数分割多重システムの構成例を示す図である。

【図14】本発明の第2の実施の形態にかかる直交周波数分割多重システムにおけるブロックの変調情報および送信電力制御情報を説明するための図である。

【図15】本発明の第2の実施の形態にかかる直交周波数分割多重システムにおける変調方式の制御および送信電力制御されて送信されたOFDM信号を示す図である。

【図16】本発明の第2の実施の形態にかかる直交周波数分割多重システムにおける変調方式の制御および送信電力制御されて送信されたOFDM信号を受信した際の受信電力を示す図である。

【図17】本発明の第2の実施の形態にかかる直交周波数分割多重システムの各ブロックにおける最小の差分の絶対値である最小値と、最小値が得られた規定受信電力値(しきい値)と、決定された変調方式を示す図表である。

【図18】本発明の第2の実施の形態にかかる直交周波数分割多重システムにおける変調方式の制御および送信電力制御処理のフローチャートである。

【図19】従来の直交周波数分割多重システムにおける 基地局から送信されるOFDM信号を示す図である。

【図20】直交周波数分割多重システムにおける選択性フェージングの影響を受けたOFDM信号を示す図である。

【符号の説明】

1 基地局、2 移動局、10 OFDM変調器、11 符号器、12 シンボル変調器、13 S/P変換部、14 IFFT部、15 制御部、15a 変調情報管理テーブル、16 OFDM復調器、17 送信電力制御部、20 OFDM復調器、21 FFT部、2 受信電力測定部、23 P/S変換部、24 復号器、25 シンボル復調器、26 制御部、26a シンボル変調テーブル、26b 変調情報管理テーブル、27 OFDM変調器、35 制御部、35a 制御情

報,変調情報管理管理テーブル、36 制御部、36a シンボル変調テーブル、36b 変調情報管理テーブ ル、51 基地局、52 移動局、60 OFDM変調 累

[図1]

【図6】

【図9】

【図10】

C=60		
SC数	プロック数/総プロック数	果铁楦
5	1/5	1/5
10	2/5	3/5
15	1/5	4/5
20	1/5	5/5

【図11】

【図12】

【図14】

【図15】

【図13】

【図16】

【図17】

ブロック 番号	最小值	規定受信電力値 (しきい値)	変質方式
1	Emod4-EB1	Emod4	16QAM
2	[Emod4-EB2]	Emod4	16QAM
3	Emod2~EB3	Emod2	QPSK
4	Emod1-EB4	Emod1	BPSK
b	_	-	
6	Emod1-EB6	Emod 1	BPSK
Y	Emod4-EB7	Emod4	16QAM
8	Emod4-EB6	Emod4	16QAM

【図19】

【図20】

【図18】

フロントページの続き

Fターム(参考) 5K022 DD01 DD13 DD17 DD23 DD33 5K067 AA02 CC01 CC02 DD27 DD44 EE02 EE10 EE61 GG08 GG09 HH21 HH22