Analysis III: Maßtheorie und Integralrechnung mehrerer Variablen

24. Oktober 2019

Inhaltsverzeichnis

Ι	Maßtheorie			2
	I.1	Maßpr	oblem und Paradoxien	2
	I.2	Ringe	und Algebren	4
		I.2.1	Die Ringstruktur auf Potenzmengen	4
		I.2.2	Ringe und Algebren	5
		I.2.3	Halbringe	7
		I.2.4	Produkte von Halbringen und Ringen	8
	I.3	Inhalt	e und Prämaße	10
		I.3.1	Inhalte auf Halbringen und Ringen	10
		I.3.2	Fortsetzung von Inhalten von Halbringen auf Ringe	11
		I.3.3	Prämaße	13

I Maßtheorie

I.1 Maßproblem und Paradoxien

14.10.2019

Maßtheorie ist die Theorie des Volumens. Motivierende Beispiele sind:

- i) Volumina von Teilmengen des euklidischen Raums
- ii) Wahrscheinlichkeiten (= "Volumina von Ereignissen")

Wir konzentrieren uns im Rest des Abschnitts auf \mathbb{R}^d . Wir wollen leistungsfähigen Volumenbegriff haben, sodass die Volumina von möglich vielen Teilmengen flexibel gemessen werden können. Unser erster "naiver" Ansatz wäre, dass wir Volumenmessung für *alle* Teilmengen verlangen, also eine Funktion

$$\operatorname{vol}: \mathcal{P}(\mathbb{R}^d) \longrightarrow [0,\infty]$$

Unsere grundlegende Forderung ist die Additivität von Volumina bei Zerlegungen, also

(i) (endliche) Additivität: Sind $M_1, ..., M_n \subset \mathbb{R}^d$ paarweise disjunkt, so gilt

$$vol(M_1 \cup ... \cup M_n) = vol(M_1) + ... + vol(M_n)$$

Volumina als geometrische Größen sollten durch die metrische Struktur (Längenmessung) bestimmt sein, also invariant unter Symmetrien der metrischen Struktur:

(ii) Bewegungsinvarianz: Für jede Bewegung $\phi: \mathbb{R}^d \longrightarrow \mathbb{R}^d$ und jede Teilmenge $A \subset \mathbb{R}^d$ gilt

$$vol(\phi(A)) = vol(A)$$

(iii) Normierung: $\operatorname{vol}([0,1]^d) = 1$.

Verstärke Forderung (i): (Borel, Lebesgue)

(i') σ -Additivität¹: Für Folgen $(M_n)_{n\in\mathbb{N}}$ paarweise disjunkter Teilmengen $M_n\subset\mathbb{R}^d$ gilt:

$$\operatorname{vol}\left(\bigcup_{n\in\mathbb{N}}M_n\right) = \sum_{n\in\mathbb{N}}\underbrace{\operatorname{vol}(M_n)}_{\in[0,\infty]}$$

Bemerkung. Wegen des Umordnungssatzes spielt die Reihenfolge der Summanden keine Rolle, da sie alle positiv sind.

→ flexibilisiert Volumenmessung entscheidend, wir können also komplizierte Figuren durch einfach Figuren approximieren.

Cantons Mengenlehre \rightsquigarrow Existenz von "naiver" Volumenfunktion wurde hinterfragt:

 $^{^{1}\}sigma$: abzählbar, unendlich oft.

Maßproblem Existiert eine Volumenfunktion vol : $\mathcal{P}(\mathbb{R}^d) \longrightarrow [0, \infty]$ mit (i') + (ii) + (iii)?

Satz (Vitali, 1905). Nein, das naive Maßproblem ist unlösbar.

Beweis. Aus dem Auswahlaxiom folgt die Existenz "verrückter" (d.h. geometrisch unvorstellbarer) Teilmengen des \mathbb{R}^d . Hier existiert $M \subset \mathbb{R}^d$, ein Vertretersystem für Nebenklassen von \mathbb{Q}^d (Untergruppe von \mathbb{R}^d) in \mathbb{R}^d . Der Quotient abelscher Gruppen $\mathbb{R}^d/\mathbb{Q}^d$ ist also die Menge der Nebenklassen. Die Nebenklassen $a + \mathbb{Q}^d$ für $a \in \mathbb{R}^d$ partitionieren (d.h. zerlegen disjunkt) \mathbb{R}^d (überabzählbar viele). Für alle $a, b \in \mathbb{R}^d$ besteht Dichotomie:

- i) entweder $a + \mathbb{Q}^d = b + \mathbb{Q}^d$ (nämlich wenn $a b \in \mathbb{Q}^d$),
- ii) oder $(a + \mathbb{Q}^d) \cap (b + \mathbb{Q}^d) = \emptyset$ (nämlich wenn $a b \notin \mathbb{Q}^d$).

D.h. für alle $a \in \mathbb{R}^d$ besteht $M \cap (a + \mathbb{Q}^d)$ aus genau einem Element. Daraus folgt, die Translate q + M (abzählbar viele) für $q \in \mathbb{Q}^d$ partitionieren \mathbb{R}^d . Aus der σ -Additivität von Volumen folgt

$$\underbrace{\operatorname{vol}(\mathbb{R}^d)}_{>0} = \sum_{q \in \mathbb{Q}^d} \underbrace{\operatorname{vol}(q+M)}_{\underset{=}{\operatorname{Bew Inv}}_{\operatorname{vol}(M)}}$$

und somit also vol(M) > 0.

Jetzt wähle M spezieller, nämlich beschränkt, z.B. für $O \subset \mathbb{R}^d$ offen können wir M so wählen, dass $M \subset O$, weil $a + \mathbb{Q}^d$ dicht in \mathbb{R}^d , also $(a + \mathbb{Q}^d) \cap O \neq \emptyset$. Z.B. wähle $M \subset (0, \frac{1}{2})^d$, so enthält $[0, 1]^d$ abzählbar unendlich viele paarweise disjunkte Translate q + M, nämlich für alle $q \in \mathbb{Q}^d \cap (0, \frac{1}{2})^d$ gilt

$$V:=\bigcup_{q\in(0,\frac{1}{2})^d\cap\mathbb{Q}^d}(q+M)\subset[0,1]^d$$

weil $\operatorname{vol}(V) + \underbrace{\operatorname{vol}([0,1]^d - V)}_{\geq 0} = \underbrace{\operatorname{vol}([0,1]^d)}_{=1}$. Daraus folgt $\operatorname{vol}(V) \leq 1 < \infty$ und

$$\operatorname{vol}(V) = \sum_{q \in (0, \frac{1}{2})^d \cap \mathbb{Q}^d} \underbrace{\operatorname{vol}(q + M)}_{=\operatorname{vol}(M)}$$

Somit muss gelten vol(M) = 0.

Noch dramatischer: In dim ≥ 3 kann man je zwei Teilmengen (unter sehr allgemeinen Annahmen) aus demselben (abzählbaren, oft sogar endlichen) "Bausatz" zusammensetzen.

Satz (Banach-Tarski, 1924). Seien $A, B \subset \mathbb{R}^d$ Teilmengen mit nichtleerem Inneren.

- (i) Sei $d \geq 3$ und seien A, B beschränkt. Dann existieren endlich viele Teilmengen $M_k \subset \mathbb{R}^d$ und Bewegungen ϕ_k des \mathbb{R}^d , so dass disjunkte Zerlegungen $A = \bigsqcup_k M_k$ und $B = \bigsqcup_k \phi(M_k)$ bestehen.
- (ii) Jetzt $d \geq 1$ beliebig und A, B nicht notwendig beschränkt. Dann existieren abzählbar viele Teilmengen $M_k \subset \mathbb{R}^d$ und Bewegungen ϕ_k , sodass disjunkte Zerlegungen $A = \bigsqcup_k M_k$ und $B = \bigsqcup_k \phi(M_k)$ bestehen.

Der Beweis verwendet Gruppentheorie, Struktur von orthogonalen Gruppen O(d). (nicht mehr auflösbar für $d \geq 3$.)

Das naive *Inhaltsproblem*, also eine Volumenfunktion mit Eigenschaften (i), (ii) und (iii), ist lösbar in $d \leq 2$, aber nicht eindeutig, nicht lösbar in $d \geq 3$. (Banach 1923, Hausdorff 1914) Dies führt zu:

Maßproblem (post-paradox): Man definiere eine Volumenfunktion vol: $\mathcal{F} \longrightarrow [0,\infty]$ mit Eigenschaften (i'), (ii) und (iii) auf einer möglich großen und flexiblen Familie $\mathcal{F} \subset \mathcal{P}(\mathbb{R}^d)$, die die geometrisch wichtigen Teilmengen umfasst und abgeschlossen ist unter grundlegenden mengentheoretischen Operationen (Vereinigung, Schnitt, Differenz und Komplement).

I.2 Ringe und Algebren

17.10.2019

Wir untersuchen Familien von Teilmengen (einer festen Menge), die unter grundlegenden (endlichen) Mengenoperationen abgeschlossen/ stabil sind. $(\cup, \cap, \setminus, \mathbb{C})$ Sie werden Definitionsbereiche der allgemeinsten von uns betrachteten Volumenfunktion sein. ("Inhalte")

I.2.1 Die Ringstruktur auf Potenzmengen

Sei X eine Menge. Die Potenzmenge ist definiert als die Familie aller Teilmengen $\mathcal{P}(X)$. Wir können die Potenzmenge ebenfalls auffassen als

$$\mathcal{P}(X) \underset{\text{bij}}{\overset{\cong}{\longleftrightarrow}} \{0,1\}^X = \{f : X \longrightarrow \{0,1\}\}$$

da

$$A \longmapsto \chi_A(x) = \begin{cases} 1, & \text{falls } x \in A \\ 0, & \text{sonst} \end{cases}$$
$$f^{-1}(1) \longleftarrow f$$

wobei χ_A de charakteristische Funktion von A ist.

Wir fassen nun $\{0,1\}$ auf als den Körper mit 2 Elementen (Restklassen modulo 2). So ist $\{0,1\}^X$ ein kommutativer Ring mit Eins (multiplikatives Einselement) (im Sinne der Algebra), sogar eine \mathbb{F}_2 -Algebra.

Bemerkung. Die Addition und Multiplikation von Funktionen erfolgt punktweise:

$$-(f+q)(x) := f(x) + q(x)$$

$$- (fq)(x) = f(x) \cdot q(x)$$

und $\{0,1\} = \mathbb{F}_2$ ist ein Körper mit zwei Elementen.

Die Nullelement ist $f \equiv 0$, also χ_{\varnothing} und das Einselement ist $\chi_X(\equiv 1)$. Die Addition von charakteristischen Funktionen entspricht der symmetrischen Differenz $A \triangle B$ und die Multiplikation entspricht dem Duchrschnitt von Mengen. Also

$$\chi_A + \chi_B = A \triangle B$$
$$\chi_A \cdot \chi_B = A \cap B$$

Somit ist $(\mathcal{P}(X), \triangle, \cap) \cong (\mathbb{F}_2^X, +, \cdot)$ ein kommutativer Ring mit dem Nullelement \varnothing bzw. χ_{\varnothing} und dem Einselement X bzw. χ_X .

I.2.2 Ringe und Algebren

Definition. Eine Familie $\mathcal{R} \subset \mathcal{P}(X)$ heißt

- (ρ) ein **Ring** auf X, falls sie ein Unterring von $(\mathcal{P}(X), \triangle, \cap)$ ist.
- (α) eine **Algebra** auf X, falls sie außerdem das Einselement enthält, d.h. $X \in \mathcal{R}$.

Bemerkung. "Algebra" wird in verschiedenen Bedingungen verwendet, nämlich die Algebra als ein mathematisches Gebiet, eine Algebra als algebraische Struktur im Sinne der Algebra und eine Algebra im Sinne der obigen Definition.

 (ρ) bedeutet $\emptyset \in \mathcal{R}$, abgeschlossen unter Addition (Δ) (dasselbe wie Subtraktion, da mod 2) und Multiplikation (\cap) , d.h.

$$A, B \in \mathcal{R} \implies A \triangle B, A \cap B \in \mathcal{R}$$

d.h. \triangle - stabil und \cap - stabil. Wir können \triangle, \cap ausdrücken durch \setminus und \cup :

$$A \triangle B = (A \setminus B) \cup (B \setminus A)$$
$$A \cap B = A \setminus (A \setminus B)$$

und umgekehrt

$$A \setminus B = (A \triangle B) \cap A$$
$$A \cup B = (A \triangle B) \triangle (A \cap B)$$

Bemerkung. Die letzte Gleichung gilt, da $(A \triangle B)$ und $(A \cap B)$ disjunkt sind.

Daraus folgt die Charakterisierung von Ringen:

Lemma. Eine Familie $\mathcal{R} \subset \mathcal{P}(X)$ ist genau dann ein Ring auf X, wenn

- (i) $\varnothing \in \mathcal{R}$,
- (ii) \- stabil, d.h. $A, B \in \mathcal{R} \implies A \setminus B \in \mathcal{R}$,
- (iii) \cup stabil, d.h. $A, B \in \mathcal{R} \implies A \cup B \in \mathcal{R}$.

entspricht für Algebren:

Lemma. Eine Familie $\mathcal{A} \subset \mathcal{P}(X)$ ist genau dann eine Algebra auf X, wenn

- (i) $\varnothing \in \mathcal{A}$,
- (iii) ∪- stabil,
- (iv) \mathbb{C} stabil, d.h. $A \in \mathcal{A} \implies \mathbb{C}A := X \setminus A \in \mathcal{A}$.

Beweis. Sind diese Eigenschaften erfüllt, so implizieren (i + iv), dass

$$X = \mathcal{C}\varnothing \in \mathcal{A}$$

"\" kann ausgedrückt werden durch "∪" und "C": Aus

$$C(A \setminus B) = (CA) \cup B$$

folgt

$$A \setminus B = \mathbb{C}((\mathbb{C}A) \cup B)$$

Also ist \mathcal{A} ein Ring, und damit \mathcal{A} eine Algebra.

Ist umgekehrt $\mathcal A$ eine Algebra, so gelten (i + iii). Da auch $X \in \mathcal A$, können wir "C" durch "\" ausdrücken

$$CA = X \setminus A$$

Also gilt auch (iv).

Folgerung. Ist \mathcal{R} ein Ring auf X und $A, B \in \mathcal{R}$, so auch $A \setminus B, A \cap B, B \setminus A$ und $A \cup B \in \mathcal{R}$. (Bem. Alle in $A \cup B$ enthalten.) Ist \mathcal{A} eine Algebra auf X und $A, B \in \mathcal{A}$, so ist außerdem auch $\mathcal{C}(A \cup B) \in \mathcal{A}$.

Beispiel.

- (o) $\{\emptyset\} \subset \mathcal{P}(X)$ ist ein Ring auf X, $\{\emptyset, X\} \subset \mathcal{P}(X)$ ist die kleinste Algebra auf $X, \mathcal{P}(X) \subset \mathcal{P}(X)$ die größte.
- (i) $\{\emptyset, A\} \subset \mathcal{P}(X)$ ist ein Ring auf X für ein $A \in \mathcal{P}(X)$, $\{\emptyset, A, \mathcal{C}A, X\} \subset \mathcal{P}(X)$ ist eine Algebra auf X.
- (ii) Die Familie der endlichen (bzw. abzählbaren) Teilmengen von X ist ein Ring. (eine Algebra, nur falls X selbst endlich bzw. abzählbar)
 Die Familie der Teilmengen, die endlich (bzw. abzählbar) sind oder endliches (bzw. abzählbares) Komplement haben, ist eine Algebra.

Weitere Beispiele folgen nach der Diskussion vom Erzeugendensystem.

Beobachtung. Der Durchschnitt beliebig vieler Ringe (bzw. Algebren) auf einer festen Menge ist wieder ein Ring (bzw. eine Algebra). Zu jeder Menge $\mathcal{E} \subset \mathcal{P}(X)$ gibt es eine(n) bezüglich mengentheoretischer Inklusion kleinste(n) Ring (bzw. Algebra), der (die) \mathcal{E} umfasst, nämlich den Durchschnitt aller Ringe (bzw. Algebren), die \mathcal{E} umfassen.

Definition (Erzeugendensystem). Der von einer Familie $\mathcal{E} \subset \mathcal{P}(X)$ erzeugte Ring auf X ist der kleinste Ring, der sie enthält. Man nennt \mathcal{E} ein Erzeugendensystem dieses Rings, oder Erzeuger. (Analog für Algebren)

Die Algebra eines Erzeugendensystems ist oft die einfachste Art, eine(n) Ring bzw. Algebra zu beschreiben.

Ein Ring geht aus einem Erzeugendensystem $\mathcal{E} \subset \mathcal{P}(X)$ konstruktiv durch einen abzählbaren (induktiv!) Prozess hervor, ebenso eine Algebra.

Ring. Definiere induktiv eine Folge von Familien $\mathcal{F}_0 \subset \mathcal{F}_1 \subset ... \subset \mathcal{F}_n \subset ... \subset \mathcal{P}(X)$ mit

$$\mathcal{F}_0 := \mathcal{E} \cup \{\varnothing\}$$

$$\mathcal{F}_n := \{A \setminus B, A \cup B \mid A, B \in \mathcal{F}_{n-1}\}, \ n \ge 1$$

So ist $\bigcup_{n\in\mathbb{N}} \mathcal{F}_n \subset \mathcal{P}(x)$ \- und \(\text{\text{--stabil}}\), also ein Ring.

Algebra. analog.

I.2.3 Halbringe

Hat ein Erzeugendensystem strukturelle Eigenschaft, so ist die Beschreibung des erzeugenden Rings einfach. Eine natürliche auftretende Bedingung ist:

Definition (Halbringe). Eine Familie $\mathcal{H} \subset \mathcal{P}(X)$ heißt ein Halbring auf X, falls

- (i) $\varnothing \in \mathcal{H}$,
- (ii) \mathcal{H} ist \cap stabil,
- (iii) Für $A, B \in \mathcal{H}$ existieren disjunkte Teilmengen $C_1, ..., C_n \in \mathcal{H}$ mit $A \setminus B = C_1 \sqcup ... \sqcup C_n$.

Bemerkung. Halbring ist eine Verallgemeinerung des Begriffs Ring, Ringe sind also Halbringe.

Beispiel.

- (o) $\{\emptyset\} \subset \mathcal{P}(X)$ ist ein Halbring auf X.
- (i) Die Familie bestehend aus \emptyset und allen (einelementigen) Teilmengen $\{\emptyset\} \cup \{\{a\} \mid a \in X\}$ ist ein Halbring auf X, sie erzeugt den Ring der endlichen Teilmengen von X.

Der Grundbaustein für später:

(ii) Die Familie der halboffenen Intervalle $[a, b) \subset \mathbb{R}$, falls a < b, also $\{[a, b) \mid a, b \in \mathbb{R}, a < b\}$, ist ein Halbring auf \mathbb{R} .

Beschreibe den von einem Halbring erzeugenden Ring, die folgende Beobachtung wird darüber hinaus nützlich sein:

Lemma (Simultane Zerlegung). Zu beliebigen Teilmengen $H_1, ..., H_m \in \mathcal{H}$ existieren paarweise disjunkte Teilmengen $H'_1, ..., H'_n \in \mathcal{H}$, sodass jedes H_i sich als die Vereinigung einiger H'_j 's darstellen lässt.

Beweis. Betrachte die 2^m-1 Durchschnitte der Form $G_1 \cap ... \cap G_m$, wobei $G_i = H_i$ oder CH_i und nicht alle gleich CH_i . Sie sind paarweise disjunkt und zerlegen $H_1 \cup ... \cup H_m$. Jedes H_i ist die Vereinigung von 2^{m-1} von ihnen. Es genügt zu zeigen, dass diese Durchschnitte disjunkte Vereinigungen von Teilmengen aus \mathcal{H} sind. Da Halbringe \cap stabil sind, reicht es zu zeigen, dass die Teilmengen der Form

$$H \cap \widehat{\mathsf{C}H_l} \cap ... \cap \widehat{\mathsf{C}H_1} \quad \text{mit } H, \widetilde{H_1}, ..., \widetilde{H_l} \in \mathcal{H}$$

disjunkte Vereinigungen von Teilmengen in \mathcal{H} sind.

Da für $H \cap \widehat{\mathsf{CH}}_l = H \setminus \widetilde{H}_l$ (Axiom (iii)) gilt, reduziert die Behauptung für l auf Behauptung für l-1, mit Induktion liefert dann die Behauptung.

21.10.2019

Proposition. Jede Teilmenge im von einem Halbring \mathcal{H} erzeugten Ring \mathcal{R} ist eine endliche disjunkte Vereinigung von Teilmengen in \mathcal{H} , d.h. (ein einfacher Erzeugungsprozess!)

$$\mathcal{R} := \left\{ \bigsqcup_{k=1}^{n} A_k \mid n \in \mathbb{N}, A_1, ..., A_n \in \mathcal{H} \right\}$$
 (I.1)

Beweis. Sei \mathcal{R} die Familie der endlichen disjunkten Vereinigungen von Teilmengen in \mathcal{H} . Mit dem letzten Lemma ist \mathcal{R} gleich der Familie aller endlichen Vereinigungen von Teilmengen in \mathcal{H} . Sie ist offensichtlich \cup -stabil. Zu verifizieren bleibt die \setminus - Stabilität. Seien hierzu $A = A_1 \cup ... \cup A_m$ und $B = B_1 \cup ... \cup B_n$, $A_i, B_j \in \mathcal{H}$. Aus dem Lemma folgt, dass es endlich viele nichtleere, paarweise disjunkte $H'_k \in \mathcal{H}$ existieren, sodass jedes A_i und B_j eine Vereinigung einiger H'_k 's ist. Daraus folgt, dass auch A und B Vereinigungen einiger H'_k 's sind. So ist auch $A \setminus B$ die Vereinigung einiger H'_k 's, nämlich derer, die in A, aber nicht in B enthalten sind. Also ist \mathcal{R} ein Ring (\cup -stabil), enthalten in von \mathcal{H} erzeugendem Ring, also gleich.

Bemerkung. Man kann den von einer Familie \mathcal{E} erzeugten Halbring nicht (analog zu Ringen und Algebren) definieren, denn das Halbring-Axiom (iii) vererbt nicht auf Durchschnitte von Familien. Es gibt Durchschnitte von Halbringen, die keine Halbringe sind. M.a.W. existieren Familien, die nicht in einem eindeutigen kleinsten Halbring enthalten sind.

I.2.4 Produkte von Halbringen und Ringen

Sind $\mathcal{F}_i \subset \mathcal{P}(X_i)$, i = 1, ..., n Familien von Teilmengen, so entstehen das Produkt von "Quadern"

$$\mathcal{F}_1 * \dots * \mathcal{F}_n := \{ \underbrace{M_1 \times \dots \times M_n}_{\subset X_1 \times \dots \times X_n} \mid M_i \in \mathcal{F}_i \text{ für } i = 1, \dots, n \}$$

$$\subset \mathcal{P}(X_1 \times \dots \times X_n)$$

und die \cup -stabile Hülle, die Familie $\mathcal{F}_1 \boxtimes ... \boxtimes \mathcal{F}_n$ der endlichen Vereinigungen von "Quadern" in $\mathcal{F}_1 * ... * \mathcal{F}_n$, die Figuren,

 $\mathcal{F}_1 \boxtimes ... \boxtimes \mathcal{F}_n = \{\text{endlcihe Vereinigungen von Teilmengen in } \mathcal{F}_1 * ... * \mathcal{F}_n \}$

Beide Produkte * und \boxtimes sind assoziativ, d.h.

$$(\mathcal{F}_1 * \mathcal{F}_2) * \mathcal{F}_3 = \mathcal{F}_1 * \mathcal{F}_2 * \mathcal{F}_3 = \mathcal{F}_1 * (\mathcal{F}_2 * \mathcal{F}_3)$$

und

$$(\mathcal{F}_1 \boxtimes \mathcal{F}_2) \boxtimes \mathcal{F}_3 = \mathcal{F}_1 \boxtimes \mathcal{F}_2 \boxtimes \mathcal{F}_3 = \mathcal{F}_1 \boxtimes (\mathcal{F}_2 \boxtimes \mathcal{F}_3)$$

Wir definieren weiter

$$\mathcal{Z} = \mathcal{Z}(\mathcal{F}_1, ..., \mathcal{F}_n) \subset \mathcal{F}_1 * ... * \mathcal{F}_n$$

die Familie der Zylindermengen bestehend aus

$$\pi_k^{-1}(M_k) = X_1 \times \dots \times X_{k-1} \times M_k \times X_{k+1} \times \dots \times X_n$$

mit $1 < k < n, M_k \in \mathcal{F}_k$

wobei $\pi_k: X_1 \times ... \times X_n \to X_k, (x_1, ..., x_n) \mapsto x_k$ die natürliche Projektion ist.

Proposition.

- (i) Seien $\mathcal{H}_i \subset \mathcal{P}(X_i)$ Halbringe (i = 1, ..., n) und $\mathcal{R}_i \subset \mathcal{P}(X_i)$ die von ihnen erzeugten Ringe. Dann ist $\mathcal{H}_1 * ... * \mathcal{H}_n$ ein Halbring auf $X_1 \times ... \times X_n$ und $\mathcal{H}_1 \boxtimes ... \boxtimes \mathcal{H}_n = \mathcal{R}_1 \boxtimes ... \boxtimes \mathcal{R}_n$ der von ihm erzeugte Ring.
- (ii) Sind $\mathcal{R}_i \subset \mathcal{P}(X_i)$ Ringe und $\mathcal{E}_i \subset \mathcal{R}_i$ Erzeugendensysteme für i = 1, ..., n, so erzeugt die Familie von Zylindermengen $\mathcal{Z}(\mathcal{E}_1, ..., \mathcal{E}_n)$ den Produktring.

Beweis.

(i) Zunächst im Fall n=2. Klar enthält $\mathcal{H}_1 * \mathcal{H}_2$ auch \varnothing und ist \cap -stabil. Wir betrachten die disjunkte Zerlegung

$$(A_{1} \times A_{2}) \setminus (B_{1} \times B_{2}) =$$

$$\underbrace{(A_{1} \cap B_{1}) \times (A_{2} \setminus B_{2})}_{\text{zerlegbar in Teilmengen aus } \mathcal{H}_{2}} \sqcup \underbrace{((A_{1} \setminus B_{1}) \times (A_{2} \setminus B_{2}))}_{\text{zerlegbar in Teilmengen aus } \mathcal{H}_{2}} \sqcup \underbrace{((A_{1} \setminus B_{1}) \times (A_{2} \cap B_{2}))}_{\text{zerlegbar in Teilmengen aus } \mathcal{H}_{2}} \sqcup \underbrace{((A_{1} \setminus B_{1}) \times (A_{2} \cap B_{2}))}_{\text{analog zerlegbar aus } \mathcal{H}_{2}}$$

Also ist $(A_1 \times A_2) \setminus (B_1 \times B_2)$ disjunkt zerlegbar in Teilmengen aus $\mathcal{H}_1 * \mathcal{H}_2$, also erfüllt Axiom (iii) für Halbringe, d.h. $\mathcal{H}_1 * \mathcal{H}_2$ ist ein Halbring. Mit Induktion liefert dann die Behauptung auch für $\mathcal{H}_1 * ... * \mathcal{H}_n, n \geq 1$.

Aus (I.1) folgt, dass $\mathcal{H}_1 \boxtimes ... \boxtimes \mathcal{H}_n$ der von $\mathcal{H}_1 * ... * \mathcal{H}_n$ erzeugte Ring ist.

(ii) Für jedes i wird der Ring auf $X_1 \times ... \times X_n$ bestehend aus den Zylindermengen $\pi_i^{-1}(M_i)$ für $M_i \in \mathcal{R}_i$ von der Familie der Zylindermengen $\pi_i^{-1}(E_i)$ für $E_i \in \mathcal{E}_i$ erzeugt, denn jede Teilmenge $M_i \in \mathcal{R}_i$ kann durch endlich viele Mengenoperationen aus Teilmengen $E_{ij} \in \mathcal{E}_i$ hergestellt werden und $\pi_i^{-1}(M_i)$ entsprechend aus den $\pi_i^{-1}(E_{ij})$.

Daraus folgt, dass $\mathcal{Z}(\mathcal{E}_1,...,\mathcal{E}_n)$ erzeugt denselben Ring wie $\mathcal{Z}(\mathcal{R}_1,...,\mathcal{R}_n)$ und denselben wie $\mathcal{R}*...*\mathcal{R}_n$, also den Produktring $\mathcal{R}_1 \boxtimes ... \boxtimes \mathcal{R}_n$.

Definition. Wir nennen den Halbring $\mathcal{H}_1 * ... * \mathcal{H}_n$ das Produkt der Halbringe \mathcal{H}_i , den Ring $\mathcal{R}_1 \boxtimes ... \boxtimes \mathcal{R}_n$ das Produkt der Ringe \mathcal{R}_i .

Beispiel (*Hauptbeispiel*, Quader und Figuren in \mathbb{R}^d). Ist $a, b \in \mathbb{R}^d$ mit $a_i < b_i \forall i$, so entsteht achsenparalleler halboffener Quader

$$[a,b):=[a_1,b_1)\times\ldots\times[a_d,b_d)$$

Wir bezeichnen

 $Q^d :=$ Familie dieser Quader

und

 $\mathcal{I}:=\mathcal{Q}^1,$ Familie der halboffenen Intervalle

Also gilt

$$\mathcal{Q}^d = \underbrace{\mathcal{I} * ... * \mathcal{I}}_{d ext{-Mal}}$$

Aus der letzten Proposition folgt, dass Q^d ein Halbring auf \mathcal{R}^d ist. Es folgt ebenfalls, dass

$$\mathcal{F}^d := \underbrace{\mathcal{I} oxtimes ... oxtimes \mathcal{I}}_{d ext{-Mal}}$$

der Ring erzeugt von \mathcal{Q}^d ist, also der Ring der d-dimensionale "Figuren". Wir haben gesehen: Figuren sind disjunkte Vereinigungen von Quadern.

Wir arbeiten aus technischen Gründen mit halboffenen Intervallen und Quadern. Besonders übersichtliche sind Halbringe, die abgeschlossen unter Produktbildung sind, jedoch nicht die Teilmengen enthalten, die uns geometrisch primär interessieren: die offenen und abgeschlossenen Quader, die nicht achsenparallele sind, Polygone und Polytope, gekrümmte "elementare Geometrie" sowie Gebilde: Scheiben, Bälle, Zylinder und Kegel. Deshalb müssen wir unsere Ringe weiter anreichern und flexibilisieren, damit sie stabil unter abzählbaren Vereinigungen sind. $\rightsquigarrow \sigma$ -Algebra.

I.3 Inhalte und Prämaße

Wir beginnen mit der Untersuchung von Volumenfunktionen. Die grundlegende Forderung ist die Additivität. Volumina dürfen nicht negativ sein, d.h. $\in [0, \infty] := [0, \infty) \cup \{\infty\}$, also die erweiterte positive Halbgerade.

Bemerkung. Die erweiterten reellen Zahlen ist definiert als $\overline{\mathbb{R}} := \{-\infty\} \cup \mathbb{R}\{\infty\}$ mit natürlichen Konventionen

$$x + \infty = \infty$$
 für $x > -\infty$
 $x \cdot \infty = \infty$ für $x > 0$

Später werden wir außerdem sehen

$$0 \cdot \infty = 0$$

$$(da\ 0 \cdot n \longrightarrow 0 \text{ für } n \longrightarrow \infty).$$

I.3.1 Inhalte auf Halbringen und Ringen

Die allgemeinste Sorte von uns betrachteter Volumenfunktion ist endlich additiv und definiert auf Halbringen.

Definition (Inhalt). Ein Inhalt auf einer Halbring \mathcal{H} ist eine Funktion $\mu : \mathcal{H} \to [0, \infty]$ mit den Eigenschaften:

- (i) $\mu(\varnothing) = 0$
- (ii) Additivität: Sind $A_1, ..., A_n \in \mathcal{H}$ paarweise disjunkt mit $A_1 \sqcup ... \sqcup A_n \in \mathcal{H}^2$, so gilt $\mu(A_1 \sqcup ... \sqcup A_n) = \mu(A_1) + ... + \mu(A_n)$

²Die Voraussetzung ist redundant, falls \mathcal{H} ein Ring ist.

Beispiel.

- (o) $\mu \equiv 0$ "der Nullinhalt" und $\nu(A) = \begin{cases} 0, & A = \emptyset \\ \infty, & \text{sonst} \end{cases}$ sind stets Inhalte auf beliebigen Halbringen.
- (i) Sei X nichtleer. Betrachte die Algebra $\{\emptyset, X\} \subset \mathcal{P}(X)$. So wird ein Inhalt $\begin{cases} \emptyset \mapsto 0 \\ x \mapsto v \in [0, \infty] \end{cases}$ definiert.

Beispiel (Halboffene Intervalle in \mathbb{R} , der Grundbaustein für Lebesgue-Maß). Wir betrachten den Halbring $\mathcal{I} = \mathcal{Q}^1 \subset \mathcal{P}(\mathbb{R})$. So wird ein Inhalt gegeben durch die euklidische Länge

$$\lambda_{\mathcal{I}}^1 : \mathcal{I} \to [0, \infty), \quad \lambda_{\mathcal{I}}^1([a, b)) := b - a \ (a < b)$$
 (I.2)

Wir überprüfen die Additivität: Sei $a = x_0 < x_1 < ... < x_n = b$ eine Unterteilung von [a, b). So entsteht die disjunkte Zerlegung $[a, b) = [a, x_1) \sqcup ... \sqcup [x_{n-1}, b)$. Es folgt

$$\underbrace{\lambda_{\mathcal{I}}^{1}([a,b)]}_{b-a} = \underbrace{\lambda_{\mathcal{I}}^{1}([a,x_{1}))}_{x_{1}-a} + \underbrace{\lambda_{\mathcal{I}}^{1}([x_{1},x_{2}))}_{x_{2}-x_{1}} + \dots + \underbrace{\lambda_{\mathcal{I}}^{1}([x_{n-1},b))}_{b-x_{n-1}}$$

24.10.2019

Lemma (Einfache Eigenschaften von Inhalten). Seien \mathcal{H} ein Halbring und μ : $\mathcal{H} \longrightarrow [0, \infty]$ ein Inhalt. Dann gilt:

- (i) Monotonie: Ist $A, B \in \mathcal{H}$ mit $A \subset B$, so ist $\mu(A) \leq \mu(B)$.
- (ii) Subadditivität: Seien $A_1, ..., A_n \in \mathcal{H}$ (nicht notwendigerweise disjunkt!) mit $A_1 \cup ... \cup A_n \in \mathcal{H}$, dann gilt

$$\mu(A_1 \cup \dots \cup A_n) \le \mu(A_1) + \dots + \mu(A_n)$$

Beweis.

- (i) Setze $B \setminus A = C_1 \sqcup ... \sqcup C_n$ mit $C_i \in \mathcal{H}$ paarweise disjunkt, bzw. $B = A \sqcup C_1 \sqcup ... \sqcup C_n$. Aus der Additivität folgt dann $\mu(B) = \mu(A) + \underbrace{\mu(C_1) + ... + \mu(C_n)}_{>0} \geq \mu(A)$.
- (ii) Aus dem Lemma "simultane Zerlegung" folgt, dass es paarweise disjunkte $H_i \in \mathcal{H}$ existieren, sodass jedes A_j die Vereinigung einiger von H_i ist. Entsprechend summieren sich die Volumina auf. Die Ungleichung folgt, denn jedes $\mu(H_j)$ genau einmal auf der linken Seite und je mindestens einmal auf der rechten Seite.

I.3.2 Fortsetzung von Inhalten von Halbringen auf Ringe

Satz. Jeder Inhalt μ auf einem Halbring \mathcal{H} besitzt eine eindeutige Fortsetzung zu einem Inhalt $\overline{\mu}$ auf dem von \mathcal{H} erzeugten Ring \mathcal{R} .

Beweis.

- Eindeutigkeit folgt aus der Additivität von Inhalten und Beschreibung des erzeugten Rings \mathcal{R} . Jede Teilmenge in \mathcal{R} ist eine disjunkte Vereinigung (wegen (I.1)) $A_1 \sqcup ... \sqcup A_n$ mit $A_i \in \mathcal{H}$. Daher notwendig

$$\overline{\mu}(A_1 \sqcup \ldots \sqcup A_n) = \underbrace{\mu(A_1)}_{=\overline{\mu}(A_1)} + \ldots + \overline{\mu}(A_n)$$
(I.3)

- Existenz bzw. Wohldefiniertheit von $\overline{\mu}$ durch (I.3): Wir betrachten eine weitere disjunkte Zerlegung derselben Teilmengen

$$A_1 \sqcup ... \sqcup A_n = B_1 \sqcup ... \sqcup B_m \in \mathcal{R}, A_i, B_i \in \mathcal{H}$$

so entstehen Zerlegungen

$$A_i = \bigsqcup_{j=1}^m (A_i \cap B_j)$$

$$B_j = \bigsqcup_{i=1}^n (A_i \cap B_j)$$

Daraus folgt (Wir bemerken, dass $A_i \cap B_j \in \mathcal{H}$, denn $\mathcal{H} \cap \text{-stabil ist.}$)

$$\sum_{i} \mu(A_i) = \sum_{i} \underbrace{\sum_{j} \mu(A_i \cap B_j)}_{\mu(A_i)} = \sum_{j} \underbrace{\sum_{i} \mu(A_i \cap B_j)}_{\mu(B_j)} = \sum_{j} \mu(B_j)$$

Also ist $\overline{\mu}$ wohldefiniert.

- Es bleibt zu zeigen, dass $\overline{\mu}$ tatsächlich ein Inhalt ist. $\overline{\mu}$ ist laut der Definition (I.3) offensichtlich additiv und somit ein Inhalt.

Bemerkung. Hat μ endliche Werte, so hat $\overline{\mu}$ auch endliche Werte.

Beispiel. Wir setzen den in dem letzten Beispiel definierten Inhalt (I.2)

$$\lambda_{\mathcal{Q}^1}^1: \mathcal{I} = \mathcal{Q}^1 \longrightarrow [0, \infty)$$

auf den Halbring \mathcal{I} fort zu

$$\lambda^1_{\mathcal{F}^1}:\mathcal{F}^1\longrightarrow [0,\infty)$$

wobei \mathcal{F}^1 den von \mathcal{Q}^1 erzeugten Ring der 1-dimensionale Figuren bezeichnen, also die Summe der Längen der Teilintervalle.

Bemerkung. Die Fortsetzung von Inhalten von Ringen auf Algebren ist nicht eindeutig. Z.B. betrachten wir die vom Ring $\mathcal{R} = \{\emptyset\}$ erzeugte Algebra $\mathcal{A} = \{\emptyset, X\}$, so können wir den Inhalt von X beliebig $\in [0, \infty)$ wählen.

I.3.3 Prämaße

Wir betrachten Verhalten von Volumina bei gewissen Grenzprozessen. (Approximation von innen und außen) Wir arbeiten mit Teilmengen einer festen Menge X.

Falls $(A_n)_{n\in\mathbb{N}}$ eine aufsteigende Folge von Teilmengen von X mit $\bigcup_{n\in\mathbb{N}} A_n =: A$,

$$A_1 \subset A_2 \subset ... \subset A_n \subset ... \subset X$$

so schreiben wir $A_n \nearrow A$.

Falls $(A'_n)_{n\in\mathbb{N}}$ absteigend mit $\bigcap_{n\in\mathbb{N}} A'_n = A$,

$$X \supset A'_1 \supset A'_2 \supset ... \supset A'_n \supset ...$$

so schreiben wir $A'_n \searrow A$.

Beobachtung. Es gelten

$$A_n \nearrow A \iff A \setminus A_n \searrow \varnothing$$
$$A'_n \searrow A \iff A'_n \setminus A \searrow \varnothing$$

Sei $\mu: \mathcal{R} \longrightarrow [0, \infty]$ ein Inhalt. Dann gilt

$$A_n \nearrow A \searrow A'_n \xrightarrow{\text{Monotonie}} \mu(A_n) \le \mu(A) \le \mu(A'_n)$$
 fällt

Da $\mu(A_n)$ und $\mu(A'_n)$ nur schwach monoton sind, folgt nur die Ungleichung

$$\lim_{n \to \infty} \mu(A_n) \le \mu(A) \le \lim_{n \to \infty} \mu(A'_n) \tag{I.4}$$

Wir formulieren nun einen disjunkte Zerlegung für A_n durch einen Induktiven Prozess:

$$A_0 := \emptyset$$
$$\tilde{A}_n := A_n \setminus A_{n-1}$$

so entsteht die disjunkte Zerlegung

$$A = \bigsqcup_{n \in \mathbb{N}} \widetilde{A}_n$$

Dann ist (I.4) äquivalent zu: Für Folgen $(\widetilde{A}_n)_{n\in\mathbb{N}}$ paarweise disjunkter Teilmengen mit $A:=\bigsqcup_{n\in\mathbb{N}}\widetilde{A}_n\in\mathcal{R}$ gilt

$$\mu\left(\underbrace{\bigsqcup_{n\in\mathbb{N}}\widetilde{A}_n}\right) \ge \sum_{n=1}^{\infty} \mu(\widetilde{A}_n)$$
 (\sigma-Subadditivit\(\text{\text{it}}\))

Gilt in einer der Gleichung (I.4) die Gleichheit, so fassen wir das als **Stetigkeitseigenschaften** auf. Wir vergleichen nun die Stetigkeitseigenschaften:

Proposition. Für einen Inhalt $\mu : \mathcal{R} \longrightarrow [0, \infty]$ auf einem Ring \mathcal{R} sind die beiden folgenden Eigenschaften äquivalent:

(i) σ -Additivität: Ist $(A_n)_{n\in\mathbb{N}}$ eine Folge paarweise disjunkter Teilmengen, $A_n \in \mathcal{R}$ mit $\bigsqcup_n A_n \in \mathcal{R}$, so gilt

$$\mu\bigg(\bigsqcup_{n=1}^{\infty} A_n\bigg) = \sum_{n=1}^{\infty} \mu(A_n)$$

(ii) Stetigkeit von unten: Ist $(B_n)_{n\in\mathbb{N}}$ aufsteigend, $B_n\in\mathcal{R}$ mit $B_n\nearrow B\in\mathcal{R}$, so gilt

$$\mu(B_n) \nearrow \mu(B)$$

Sie implizieren die beiden folgenden, ebenfalls zueinander äquivalenten, Eigenschaften:

(iii) Stetigkeit von oben: Ist $(C_n)_{n\in\mathbb{N}}$ absteigend, $C_n \in \mathcal{R}$ mit $\mu(C_n) < \infty$ und $C_n \setminus C \in \mathcal{R}$, so gilt

$$\mu(C_n) \searrow \mu(C)$$

(iv) Stetigkeit von \varnothing : Ist $(D_n)_{n\in\mathbb{N}}$ absteigend, $D_n\in\mathcal{R}$ mit $\mu(D_n)<\infty$ und $D_n\searrow\varnothing$, so gilt

$$\mu(D_n) \searrow 0$$

Falls μ endliche Werte hat, gilt umgekehrt (iii), (iv) \implies (i), (ii).

Beweis.

- (i) \iff (ii). Übergang durch $B_n = A_1 \sqcup ... \sqcup A_n$, bzw. $A_n = B_n \setminus B_{n-1}$, $B = \coprod_n A_n$. Aus der endlichen Additivität folgt $\mu(B_n) = \sum_{i=1}^n \mu(A_i)$. Daraus folgt $\lim_{n \to \infty} \mu(B_n) = \sum_{n \in \mathbb{N}} \mu(A_n)$. Außerdem gilt $\mu(B) = \mu(\coprod_n A_n)$. \checkmark
- (ii) \Longrightarrow (iii). Sei $C_n \searrow C$ mit endlichen Inhalten. Setze $B_n := C_1 \setminus C_n \in \mathcal{R}$ und $B := C_1 \setminus C$, d.h. $C_1 = B_n \sqcup C_n$ und $C_1 = B \sqcup C$. Daraus folgt wegen der Additivität des Inhalts $\mu(C_1) = \mu(B_n) + \mu(C_n) = \mu(B) + \mu(C)$. Es gilt n.V. $\mu(B_n) \nearrow \mu(B)$, da $B_n \nearrow B$. Da alle Inhalte endlich sind, gilt $\mu(B_n) = \mu(C_1) \mu(C_n)$ und $\mu(B) = \mu(C_1) \mu(C)$. Also gilt $\mu(C_1) \mu(C_n) \nearrow \mu(C_1) \mu(C)$. Daraus folgt, dass $\mu(C_n) \searrow \mu(C)$, also (iii).
- (iii) \Leftarrow (iv). (Die andere Richtung ist klar, da (iv) ist Spezialfall von (iii)!) Sei $C_n \searrow C$ mit endlichen Inhalten. Setze $D_n := \underbrace{C_n \backslash C}_{\in \mathcal{R}} \searrow \varnothing$. Dann ist $C_n =$

 $D_n \sqcup C$ und somit $\mu(C_n) = \mu(D_n) + \mu(C)$. Da alle Inhalte endlich sind, gilt $\mu(D_n) = \mu(C_n) - \mu(C)$. Daraus folgt $\mu(C_n) \searrow \mu(C)$, also (iii).

- μ habe endliche Werte, es gelte (iv). Zeige (ii). Sei $B_n \nearrow B$. Setze $D_n := B \setminus B_n$. Da $\mu(D_n) = \mu(B) - \mu(B_n)$ und alle Inhalte endlich sind, gilt $\mu(B_n) \nearrow \mu(B)$, d.h. (ii).