

Simulations with TCAD

Tutorial

Overview

- 1.) Building a structure
 - Using a scheme command file
- 2.) Define simulation parameters
 - Using an Input command file

- Example: 'Simple' Diode

1.) Geometry file

- A scheme file consists of
 - Parameter definitions
 - Geometry definitions
 - Doping profile definitions
 - Meshing definitions
 - Contact definitions and placements
 - Operation orders

1.A Parameter definition

- You could define:
 - -Geometry sizes:
 - (define Diode_thickness 320.0);

```
(define Diode_width 500.0); (define Oxide_thickness 1.2); (define Al_thickness 1); (define Doping_thickness_BP 10); (define Doping_thickness_implant 1); (define Connection_hole_width 10)
```

- Or doping concentrations
 - (define concentration_bulk 1.5e12);

(define concentration_implant 1e19); (define concentration_BP 1e19)

1.B Geometry

(sdegeo:create-rectangle (position 0 0 0)
 (position Diode_width Diode_thickness 0)
 "Silicon" "bulk")

Material could be a default material or a self define material; material properties could be change in the Material.par file

(sdegeo:create-rectangle (position 0 (* -1 Oxide_thickness) 0) (position Diode_width (* -1 (+ Oxide_thickness Al_thickness)) 0) "Aluminum" "TopCon")

```
Epsilon
{* Ratio of the permittivities of material and vacuum

* epsilon() = epsilon
epsilon = 11.9 # default 11.7[1] }
```


1.C Doping profileI – Reference Window

 (sdedr:define-refeval-window "BP_DopingRefWin" "Line" (position 0 Diode_thickness 0) (position Diode_width Diode_thickness 0))

(sdedr:define-refeval-window "Top_DopingRefWin" "Line" (position 0 0 0) (position Diode_width 0 0))

1.C Doping profileII – Profile definition

- (sdedr:define-constant-profile "BulkDopingProfile" "BoronActiveConcentration" concentration bulk)
- (sdedr:define-gaussian-profile "BPDopingProfile"
 "BoronActiveConcentration" "PeakPos" 0 "PeakVal"
 concentration_BP "ValueAtDepth" concentration_bulk
 "Depth" Doping_thickness_BP "Gauss" "Factor" 0.5)
- (sdedr:define-gaussian-profile "TopDopingProfile" "PhosphorusActiveConcentration"
 "PeakPos" 0 "PeakVal" concentration_implant "ValueAtDepth" concentration_bulk "Depth"
 Doping thickness implant"Gauss" "Factor" 0.5)

1.C Doping profileIII – Create the profile

- (sdedr:define-constant-profile-material "bulkDopingPlacement" "BulkDopingProfile" "Silicon")
- (sdedr:define-analytical-profile-placement "BPDopingPlacement" "BPDopingProfile" "BP_DopingRefWin" "Both" "NoReplace" "Eval")
- (sdedr:define-analytical-profile-placement "TopDopingPlacement" "TopDopingProfile"
 "Top DopingRefWin" "Both" "NoReplace" "Eval")

1.D MeshingI – Reference window

- (sdedr:define-refeval-window "surfaceRefinementPlacement" "Rectangle" (position 0 0 0) (position Diode_width (* thickness_implant 1.5) 0))
- (sdedr:define-refeval-window "overshutRefinementPlacement" "Rectangle" (position 0 0 0) (position Diode_width (* (+ Al_thickness Oxide_thickness) -1) 0))
- (sdedr:define-refeval-window "bulkRefinementPlacement" "Rectangle" (position 0 (* thickness_implant 1.5) 0) (position Diode_width (- Diode_thickness (* thickness_BPimplant 1.5)) 0))
- (sdedr:define-refeval-window "BPRefinementPlacement" "Rectangle" (position 0 (-Diode_thickness (* thickness_BPimplant 1.5)) 0) (position Diode_width (+ Diode_thickness_Al_thickness) 0))

1.D Meshing II – Refinement

(sdedr:define-refinement-size
 "surfaceRefinementSize" (/ Diode_width 200) (/
 Doping_thickness_implant 20) (/ Diode_width 2000) (/
 Doping_thickness_implant 200))

- (sdedr:define-refinement-size "overshutRefinementSize" (/ Diode_width 20) (/ Oxide_thickness 2) (/ Diode_width 200) (/ Oxide_thickness 10))
- (sdedr:define-refinement-size "BulkRefinementSize" (/ Diode_width 10)
 (/ Diode_thicknes 20) (/ Diode_width 200) (/ Diode_thicknesr 100))
- (sdedr:define-refinement-size "BPRefinementSize" (/ Diode_width 50) (/ Doping_thickness_BP 10) (/ Diode_width 250) (/ Doping_thickness_BP 100))

1.D Meshing III – Refinement function

(sdedr:define-refinement-function
 "surfaceRefinementSize" "DopingConcentration"
 "MaxGradient" 1)

- (sdedr:define-refinement-function "overshutRefinementSize" "DopingConcentration"
 "MaxGradient" 1
- (sdedr:define-refinement-function "BulkRefinementSize" "DopingConcentration" "MaxGradient" 1)
- (sdedr:define-refinement-function "BPRefinementSize" "DopingConcentration" "MaxGradient" 1)

1.D Meshing IV – Build the Refinement

(sdedr:define-refinement-placement "surfaceRefinement" "surfaceRefinementSize" "surfaceRefinementPlacement"

(sdedr:define-refinement-placement "overshutRefinement" "overshutRefinementSize" "overshutRefinementPlacement")

sdedr:define-refinement-placement "bulkRefinement" "BulkRefinementSize" "bulkRefinementPlacement")

(sdedr:define-refinement-placement "BPRefinement" "BPRefinementSize" "BPRefinementPlacement")

1.E Contact definition

- (sdegeo:define-contact-set "BPContact" (color:rgb 1 0 0) "##")
- (sdegeo:define-2d-contact (list (car (find-edge-id (position (/ Diode_width 2) Diode_thickness 0))) (car (find-edge-id (position 0 (+ Diode_thickness (/ Al_thickness 2)) 0))) (car (find-edge-id (position Diode_width (+ Diode_thickness (/ Al_thickness 2)) 0))) (car (find-edge-id (position (/ Diode_width 2) (+ Diode_thickness Al_thickness) 0))))) "BPContact")

Starting with mesh building

- Additional Options
 - (sde:save-model "/afs/ifh.de/group/cms/bergholz/daten/TCAD/Diode/ diodeModel")
 - (sde:build-mesh "snmesh" "-a -c boxmethod" "/afs/ifh.de/group/cms/bergholz/daten/TCAD/Diode/ diodeMesh")
- sde -e -l SchemeFile.scm

2. Simulation

- The input file for the device simulation consists of
 - An input and output file definition
 - An Electrode definition
 - A definition of the used physical models
 - Plot and math selections
 - Spice transformation for capacitance
 - Simulation order 'Voltage ramps'

2.A File input and contacts

- File { * input files
- Grid = "DiodeMesh_msh.tdr"
- Doping = "DiodeMesh_msh.tdr"
- Parameter = "Silicon.par" $\leftarrow \varepsilon, \tau$
- * output file
- Current = "Diode_des.plt"}
- Electrode {
- {Name = "BPContact" voltage = 0.0 Material = "Aluminum" }
- {Name = "TopContact" voltage = 0.0 Material = "Aluminum" }}
 - Name must be the same than in model!
 - "Barrier=-0.55"

2. B "Standard" physical models

Physics {

Temperature = 295

Fermi #Using Fermi Statistic

EffectiveIntrinsicDensity (BandGapNarrowining(Slotboom))

2.B Mobility models

Mobility (

Honstin $\frac{T}{300}$

DopingDependence

(HighFieldSaturation)

Influence of mobility models

-8.0n

-6.0n

-4.0n

-2.0n

Pure Diode
Only doping dependence
Without any mobility model

Over the pure Diode
Only doping dependence
Without any mobility model

Voltage [V]

CarrierCarrierScattering (ConwellWeisskopf)

Enormal)

Masetti model

Conwell-Weisskopf-Model

2.B Recombination models

Recombination (

SRH (DopingDependence TempDependence

ElectricField (Lifetime=Hurkx))

Auger

eAvalanche (vanOverstraeten) hAvalanche (vanOverstraeten)

Band2Band(Hurkx))}

X [um]

Physics (MaterialInterface="Silicon/Oxide")
 {Charge(Conc=1.1e10) Recombination(surfaceSRH)}

Plot{

eDensity hDensity eMobility hMobility ElectricField/Vector Potential SpaceCharge

*--Generation/Recombination

SRH Band2Band Auger SurfaceRecombination eLifetime hLifetime

* -Driving forces

eEparallel hEparallel eENormal hENormal

BandGap BandGapNarrowing}

Math {

Method = pardiso

ACMethod = Blocked

Number_of_Threads = 4

Derivatives

RelErrControl

Iterations = 25}

System {

Diode trans (BPContact=a TopContact=b)

Vsource_pset vBP (a 0) {dc=0}

Vsource_pset vTop (b 0) {dc=0}}


```
Solve {
#-a) Initial
Poisson
Coupled { Poisson Electron Hole }
#-b) ramp IV
QuasiStationary (
InitialStep=1e-6 Minstep=1e-10 MaxStep=2e-3
Increment=1.25 Decrement=4
Goal { parameter =vBP.dc voltage = -1000 })
```


#-c) ramp CV

```
{ACCoupled (
  StartFrequency=1e6 EndFrequency=1e6
  NumberOfPoints=1 Decade
  Node(a b) Exclude(vTop vBP))
  { Poisson Electron Hole }}}
```

Results

	Peak value	Additional Information
Silicon		DESV
Epsilon	1.19E+01	\ DEST
lifetime[ms]	4	
Poly-Silicon		
Thickness[um]	5	(Mpix)
Oxide		
Oxide charge	1.5	
Charge [cm-3]	1.00E+10	
Metal (AI)		
thickness [um]	1	
Contact barrier	-0.55?	
Doping		
bulk-Doping [cm-3]	1.50E+12	
Pad-Doping [cm-3]	1.00E+19	Gauss, Faktor 0.5
Top-doping thickness[um	1.20E+00	
Backplan-doping[cm-3]	1.00E+19	
Backplane-thickness[um]	1.00E+02	
P-Stop [cm-3]	1.00E+16	???
p-Stop thickness	1	???
p-Stop Width	4	
p-Spray [cm-3]	How ???	
p-Spray thickness	to ???	
17-\$Meayi@011	implement ???	Used Parameters

Conclusions

- TCAD Software is a strong and power full tool for device simulation
- BUT the quality of the output strongly depends of the knowledge of the physical properties of the simulated device

Appendix

Parameter	Electrons	Holes
μ_1	43,4cm ² /Vs	29cm ² /Vs
μ_{min1}	52,2cm ² /Vs	44,9cm ² /Vs
$\mu_{ ext{min}2}$	52,2cm ² /Vs	0
P_{c}	0	9,23*10 ¹⁶ cm ⁻³
C_{f}	9,68*10 ¹⁶ cm ⁻³	2,23*10 ¹⁷ cm ⁻³
Cs	3,43*10 ²⁰ cm ⁻³	6,1*10 ²⁰ cm ⁻³
α	0,68	0,719
β	2	2

