MLDS -- HW4 Seq2seq & RL -- Report B03202017 李漪莛,B03202047 王昱翔

1 Environment & Data Sets

OS	Ubuntu 16.04.2 LTS	Memory	4G		
CPU	Xeon E5-2630V3	GPU	NVIDIA GTX 970		
Libraries	Tensorflow r1.0, numpy 1.12.0, CUDA8.0				
Data Set	Cornell Movie-Dialogue Corpus				

2 Model Description & Reward Function

2.1 預處理

- Data set 整理成前後兩句為一組對話:input & response。
- 字母轉成小寫,數字轉成 "Number",每句頭尾加上 BOS、EOS。
- Vocabulary size = 10000, input 中沒見過的字轉成 Unknown, response 中沒見過的字刪掉,若要刪掉連續兩個字,則把整組對話刪掉。(原因在如 3.5)
- Input 取後 15 個字, response 取前 15 個字, 不夠長則補零,

2.2 Seq2Seq

- Input (15*10000) → FC (fully-connected) → 15*512 → encoding LSTM:tf.nn.dynamic_rnn (BasicLSTMCell) → 取出最後一個 num_steps 的 output,令為 hidden。
- Response (15*10000) \rightarrow FC \rightarrow 15*512 , 令成 last_word \circ
- 把前一個 num_steps decoding LSTM 輸出的字(1*512)直接取 argmax(1*1) → one hot vector(1*512),今成 last word。
- 一取出上兩個步驟的 last_words(Schedule Sampling): Concat[hidden, last_word] → 1*1024 → FC → ReLU → 1*512 → decoding LSTM → 取出 output → FC → ReLU → 1*10000 → argmax → output words。

2.3 Reward Function

- R1: p = model 輸出對應到 dull set 中的字的機率, R1 = -mean1(mean2(log(p)))。 意義:讓 model 避免輸出 dull 句子。 我們定義的 dull 的句子有五句,如下:I don't know., I have to go., no, I don't., no, I don't know what you are talking about., I dont want to see you.
- R2:p=model 輸出的字對應到 EOS 的機率, R2=-mean1(mean2(log(p)))。
 意義:少輸出 EOS 增加句子的長度。
- R3: p = 輸出的字對應到 data set 中正確的 response 中的字機率, R3 = mean1(mean2(log(p)))。

意義:增加回答正確的字的機率,與一般 seq2seq 的目標函數類似。

- 以上的 mean1 指對一個 batch 中所有句子的分數做平均, mean2 指對一個句子中的字數做平均。
- R = c1*(R1-b1) + c2*(R2-b2) + c3*(R3-b3), ci 的值記錄在下面, (b1, b2, b3) = (10, 40, -3)。
- 直接 maximize R。

3 How to improve performance

3.1 增加 Seq2Seq LSTM units 數量

對於 Seq2Seq, encoding 和 decoding 的 units 數目都定為 256 時,正確率約為 33%,改成 512 後,正確率可到 36~37%。

3.2 增加 Embedding 維度

當 embedding 維度是 128 維,有八成的回答是 I don't know.,當我們將 embedding 維度和 units 數目都改成 512 時,只有兩成的回答是 I don't know。

3.3 調整各種 Reward 的比重

訓練好 Seq2Seq 後,先分別針對我們定義的 R1、R2、R3 做優化,觀察三者的成效如何,方便我們知道怎麼調整到合理的訓練比例($c1\sim c3$),這部分是 RL 中使我們進步最多的方法,因為一旦比例不對,很容易造成文法特性喪失。(相關結果在 4.2)

3.4 不再訓練 Seq2Seq

我們原先以為同時優化 RL 和 Seq2Seq 比較能保值文法特性,但實際上,會造成出現許多不通順的句子,例如:iUnknown.i.EOS.EOS.;因此我們把 Seq2Seq 訓練好後就不再繼續優化。

3.5 去掉 Response 的 Unknown

原先,在訓練資料的 response 中若出現沒在 vocabulary 中的字,就把它 token 成 Unknown,但這會使 testing 的回覆句子中出現很多 Unknown,導致 post-process 時如果直接把 Unknown 拿掉,句子會很不通順。因此我們在預處理時,把 response 的 Unknown 去掉(Input message 中的繼續留著),直接銜接下一個字,若 Unknown 太多就不把這組對話當作訓練資料,可使 testing's response 的句子更通順。

3.6 不用 Attention

我們發現加入 attention 後回覆的句型並沒有明顯的差別,還導致整體訓練速度緩慢許多,因此 我們在後續的訓練過程不採用 attention。

4 Experiments settings and observation

4.1 Settings

- Learning rate = $0.001 \sim 0.0001$
- Epoch : Seq2Seq = 30, RL = 0.5
- Batch size = 64
- Optimizer = Adam

4.2 各種 Rewards 的結果整理

- 輸入相同的 4 句 input message,比較 response 的差別。
- 所有情況最好的結果,以「good」表示。
- 若 RL 訓練過久,可能喪失文法,我們記錄這筆結果,以「bad」表示。

	Resp 1	Resp 2	Resp 3	Resp 4	
Input	what is your	aro vou a hou?	hello , how are	how to go to	
	name ?	are you a boy?	you ?	supermarket?	
Seq2Seq	•	yes .	fine .	I dont know .	
R1 - good	what are you talking about ?	yes.	fine .	I dont know .	
R1 - bad	(都是) you lose.				
R2 - good	I dont know .	yes.	fine . ill be right	I dont know .	
			there .		
R2 - bad	(都是) i dont know.i dont know.i dont know.				
R3 - good	im not sure .	yes .	fine .	i dont know .	
R3 - bad	yeah .	yes . it is .	fine .	i dont know .	
Final - good		yes , sir .	fine .	i dont know .	
Final - bad	yeah .	a.	fine .	you not the one	
				day ?	

● 只優化 R1 的結果

第 200 個 batch reward 上升很快,最好的結果也是這時候得到。然而之後訓練的回覆開始不合文法,且繼續訓練下去,回覆都不再改變了。 此外,可看出只優化 R1 時,R2 也會跟著增加,R3 卻退步得很嚴重。(和下一點一起討論)

● 只優化 R2 的結果

R2 以句子長度做評分,出現 EOS 就扣分。在 testing 中,第 200 個 batch 以後的回答都是 i dont know.i dont know.i dont know.(連續三次)。我們認為是 R2 單方面降低 EOS 的機率,就會直接輸出原先機率最高的句子:i dont know.,這也是他最省力的方法。 觀察 到只優化 R2 時,R1 也跟著進步,但 R3 仍會下降。原因可能是:自定義 dull 句子字數都偏短,R1 在產生非 dull 句子的過程中,也更有機會產生較長的句子,所以 R2 會跟著提高。而 R2 產生這些較長的句子都並不在 dull sentences 中,所以 R1 也會跟著增加。然而不管 R1 或 R2,更新方向都與 R3 不同,才導致 R3 下降。

● 只優化 R3 的結果

可觀察到 R3 跟其他 reward 相比,優化幅度非常小。

我們推測原因是:R3 是答對時加分,而 R1、R2 是答錯時扣分,因此 R3 比較難訓練。並且,R1、R2 的分數不需考慮 input 的內容,只要看到 dull 句子或句子太短就扣分,R3 還需要考慮 input 的不同來調整 response 的方向。

同時訓練 R1, R3 的結果

從結果上看 R2 效果不大,所以我們最終 reward = 0.1*R1 + 0.05*R2 + 0.85*R3。

4.3 不同 Model: SeqGAN

我們嘗試加入 discriminator (簡稱 D) 來當作新的 reward, D 的架構參考:

https://arxiv.org/pdf/1609.05473.pdf。Label1 表示正確的回覆,Label0 表示產生的回覆。我們將先原本的 RL,和 SeqGAN 等比例輪流訓練。然而我們發現 D 的 loss 很快就會下降到很低,但回覆反而變得更差。

D_loss 很低的原因可能是產生的句子只要文法不對,或一直產生通用句型,都會被 SeqGAN 辨認出來。所以要訓練 SeqGAN 的 model 可能要更複雜一點。

5 Team divisions

李漪莛: preprocess、Seq2Seq、RL、report

王昱翔: SeqGAN、post-process、report、彙整上傳