Discourse Structure in Dialogue

Lecture 3: The Logical Form of Narratives
Julian J. Schlöder

The need for defeasibility

 New information can change the interpretation of a dialogue at any time.

```
(1) \alpha : May fell. \beta : John kicked him. \rightsquigarrow \pi_0 : Explanation(\alpha, \beta)
```

```
(2) \alpha: May fell.

\beta: John kicked him.

\gamma: But this is not why he fell.

\delta: John kicked him after he fell.

\Rightarrow \pi_0: Narration(\alpha, \pi_1)

\pi_1: Contrast(\beta, \gamma) \land Elaboration(\beta, \delta)
```

We're going on a Tangent!

- We want to formalise the notion "typically" or "normally".
- This is so we can say "typically, a discourse with such and such linguistic form has such and such narrative form" (construction of SDRSs)
- We also want to say something like "speaker A thinks that normally salmon and cheese are a great dinner"
- We do this in default logics, logics that license statements like "X entails Y unless it doesn't"
- Because this is weird, I'm showing you one such logic.

Commonsense Entailment

Brief Excursion: Generics

– Prototypes:	
(3) Birds (can) fly.	

- (4) Mammals give live birth.
 - Habituals:
- (5) John smokes.
- (6) Lisa rides her bike to work.
 - Mixed:
- (7) Actors smoke.

Why We Care

- They Tolerate Exceptions
- (8) Birds fly. (unless they are penguins)
- (9) Mammals give live birth. (unless they are platypus)
- (10) John smokes. (except when he's trying to quit)
- (11) Lisa rides her bike to work (unless it rains).
- (12) Actors smoke. (not all; not always)

Why We Care

- They Tolerate Exceptions
- (8) Birds fly. (unless they are penguins)
- (9) Mammals give live birth. (unless they are platypus)
- (10) John smokes. (except when he's trying to quit)
- (11) Lisa rides her bike to work (unless it rains).
- (12) Actors smoke. (not all; not always)
 - The exceptions do not seem to impeach on our intuitions that the statements are, somehow, true.

Reasoning with Exceptions

- We feel entitled to use these sentences in inference.

(13) Birds fly.

Tux is a bird.

Tux flies.

(14) Julian uses the whiteboard to teach.

Julian is teaching.

Julian is using the whiteboard.

Reasoning with Exceptions

- We feel entitled to use these sentences in inference.

(13) Birds fly. Tux is a bird.

Tux flies.

(14) Julian uses the whiteboard to teach.

Julian is teaching.

Julian is using the whiteboard.

- We feel that such inferences blocked without contradiction.
- (15) Birds fly.

Tux is a bird.

Tux doesn't fly (he's a penguin!).

Contradiction.

They are intensional, too!

- (16) Mail from Antarctica goes to Helena.(we've never gotten any mail from Antarctica)
- (17) This button makes decaf coffee. (nobody ever pressed that button).
- (18) Around here, we help each other out in emergencies. (there has never been an emergency)
 - The generic statement need not occur even once.

They are intensional, too!

- (16) Mail from Antarctica goes to Helena.(we've never gotten any mail from Antarctica)
- (17) This button makes decaf coffee. (nobody ever pressed that button).
- (18) Around here, we help each other out in emergencies. (there has never been an emergency)
 - The generic statement need not occur even once.
 - ⇒ Extensional analysis is generally incorrect.
 - (e.g. frequency, proportion, similarity to a prototype)

The Epistemic Argument (Pelletier & Asher 1997)

- Exception-tolerant statements form a large part of our knowledge.
 - → And that knowledge is true, inferentially tractable, *good*.
 - → "intellectually satisfying and practically useful" (P&A 97)

The Epistemic Argument (Pelletier & Asher 1997)

- Exception-tolerant statements form a large part of our knowledge.
 - → And that knowledge is true, inferentially tractable, *good*.
 - → "intellectually satisfying and practically useful" (P&A 97)
- Commonsense Knowledge.
- \approx the knowledge of regularity while being simultaneously aware that regularities can be broken.

The Epistemic Argument (Pelletier & Asher 1997)

- Exception-tolerant statements form a large part of our knowledge.
 - → And that knowledge is true, inferentially tractable, *good*.
 - → "intellectually satisfying and practically useful" (P&A 97)
- Commonsense Knowledge.
- \approx the knowledge of regularity while being simultaneously aware that regularities can be broken.
- That is, we want:
- (a) Truth-conditional semantics for commonsense knowledge.
- (b) Inference on commonsense knowledge.

Default Logic

- Default Logics are logics of nonmonotonic inference.
 - \rightarrow Monotonicity: If $\Gamma \vdash \psi$ then $\Gamma, \varphi \vdash \psi$.
- The idea is that added information can cancel inferences.
 - \rightarrow "A entails B ($A \vdash B$) unless it happens to be the case that $\neg B$. Then A doesn't entail B (A, $\neg B \not\vdash B$)
 - → "A entails B unless we are in a state where it A came to be through abnormal circumstances, in which A doesn't entail B."

Default Logic

- Default Logics are logics of nonmonotonic inference.
 - \rightarrow Monotonicity: If $\Gamma \vdash \psi$ then $\Gamma, \varphi \vdash \psi$.
- The idea is that added information can cancel inferences.
 - \rightarrow "A entails B ($A \vdash B$) unless it happens to be the case that $\neg B$. Then A doesn't entail B ($A, \neg B \not\vdash B$)
 - → "A entails B unless we are in a state where it A came to be through **abnormal circumstances**, in which A doesn't entail B."
- Defeasible Modus Ponens:

$$A, A > B \mid \sim B$$
.
 $A, A > B, \neg B \mid \not\sim B$.

-
$$all(P)x.Qx = \forall x.Px \rightarrow Qx$$

-
$$all(P)x.Qx = \forall x.Px \rightarrow Qx$$

- How about this, then?
- $generic(P)x.Q(x) = \forall x.Px > Qx.$ (P&A 1997)

- $all(P)x.Qx = \forall x.Px \rightarrow Qx$
- How about this, then?
- $generic(P)x.Q(x) = \forall x.Px > Qx.$ (P&A 1997)
- This means that "birds fly" expands to "if I have an x that is a bird, then I have an x that flies, unless x happens to be a bird that doesn't fly"
- Write this as "if I have an x that is a bird, then I have an x that flies, unless x happens to be an abnormal bird"

- $all(P)x.Qx = \forall x.Px \rightarrow Qx$
- How about this, then?
- $generic(P)x.Q(x) = \forall x.Px > Qx.$ (P&A 1997)
- This means that "birds fly" expands to "if I have an x that is a bird, then I have an x that flies, unless x happens to be a bird that doesn't fly"
- Write this as "if I have an x that is a bird, then I have an x that flies, unless x happens to be an abnormal bird"
- For simplicity, let's not worry about quantifiers and zoom in on the propositional logic semantics of >.

Simple Transformations

(19) Birds fly.

Airplanes fly.

Things that are Birds or Airplanes fly.

- $b > f, a > f \sim (b \vee a) > f$. (Disjunction of the Antecedent).

Simple Transformations

(19) Birds fly.

Airplanes fly.

Things that are Birds or Airplanes fly.

- $b > f, a > f \sim (b \vee a) > f$. (Disjunction of the Antecedent).
- (20) Birds fly.

Fliers must have wings.

Birds have wings.

- b > f, $\Box(f \rightarrow w)$ |~ b > w. (Closure in the Consequent).

Simple Transformations

(19) Birds fly.

Airplanes fly.

Things that are Birds or Airplanes fly.

- b > f, $a > f | \sim (b \lor a) > f$. (Disjunction of the Antecedent).
- (20) Birds fly.

Fliers must have wings.

Birds have wings.

- b > f, \Box ($f \rightarrow w$) |~ b > w. (Closure in the Consequent).
- (21) Birds fly.

Birds fly or swim.

– b>f $\sim b>(f\vee s)$. (Consequent Weakening).

The Nixon Diamond

(22) Richard Nixon is a Quaker.

Richard Nixon is a Republican.

Republicans are warmongers.

Quakers are pacifists.

Nixon is a warmonger.

Nixon is a pacifist.

- When in doubt, conclude neither.

The Nixon Diamond

(22) Richard Nixon is a Quaker.

Richard Nixon is a Republican.

Republicans are warmongers.

Quakers are pacifists.

Nixon is a warmonger.

Nixon is a pacifist.

- When in doubt, conclude neither.

-
$$q, r, r > w, q > p, \neg(w \land p) \not\vdash p$$

$$-q,r,r>w,q>p,\neg(w\wedge p)\not\vdash w$$

The Penguin Principle

(23) Birds fly.

Penguins don't fly.

Penguins are birds (by definition).

Tux is a penguin.

Tux flies.

Tux doesn't fly.

- The more specific inference wins.

The Penguin Principle

(23) Birds fly.

Penguins don't fly.

Penguins are birds (by definition).

Tux is a penguin.

Tux flies.

Tux doesn't fly.

- The more specific inference wins.

(24) Birds fly.

Penguins don't fly.

All Penguins are Birds.

Penguins with jetpacks fly.

Tux is a *jetpack* penguin

Tux doesn't fly.

Tux flies.

Antecedent Strengthening?

(25) Birds fly.

Red Birds fly.

(26) Birds fly.

??Dead Birds fly.

- It is possible to phrase a cautious version of this.
- $p > q \mid \sim (p \land r) > q$, but not
- $-p>q, (p\wedge r)>\neg q \sim (p\wedge r)>q.$

Truth-Conditions for >

- The idea is that p > q is true if in all circumstances where p holds and these are normal circumstances for p, then q holds.

Truth-Conditions for >

- The idea is that p > q is true if in all circumstances where p holds and these are normal circumstances for p, then q holds.
- We express this with the following modal semantics.

Commonsense Entailment Frames

A commonsense entailment frame is a tuple $\langle W, * \rangle$ where W is a set of worlds (propositional models) and $*: W \times \mathcal{P}(W) \to \mathcal{P}(W)$ is a function such that:

- for all $w \in W$, $*(w, X) \subseteq X$,
- If $*(w,X) \subseteq Y$ and $*(w,Y) \subseteq X$, then *(w,X) = *(w,Y).
- for all w, X, Y: *(w, X ∪ Y) \subseteq *(w, X) ∪ *(w, Y) ("Dudley Doorite").

The Logic of Commonsense Entailment (cont.)

Truth

A commonsense entailment model is a structure $\langle W, *, V \rangle$ such that $\langle W, * \rangle$ is a CE frame and $V: W \to \mathcal{P}(\mathsf{At})$ is a valuation.

- M, $w \Vdash p$ iff $p \in V(w)$ for atoms p.
- $M, w \Vdash \neg A \text{ iff } M, w \Vdash A.$
- $M, w \Vdash A \land B \text{ iff } M, w \Vdash A \text{ and } M, w \Vdash B$.
- M, $w \Vdash \Box A$ iff for all v, M, $v \Vdash A$.
- $M, w \Vdash A > B \text{ iff } *(w, \llbracket A \rrbracket) \subseteq \llbracket B \rrbracket$ where: $\llbracket \varphi \rrbracket = \{ w' \in W \mid M, w' \Vdash \varphi \}.$
- A proposition A roughly corresponds to a set of worlds [A].
- We interpret * to select all the worlds where A is normal.
- So the truth-conditions of A > B are circumscribed as "everywhere where A is normally true, B is true."

Monotonic Commonsense Entailment

Validity

```
\Gamma \models A iff on all models M and for all w \in W^M: if M, w \Vdash \Gamma then M, w \Vdash A.
```

– Standard arguments (finite model property) show that this is decidable for finite Γ .

Monotonic Commonsense Entailment

Validity

 $\Gamma \models A$ iff on all models M and for all $w \in W^M$: if $M, w \Vdash \Gamma$ then $M, w \Vdash A$.

– Standard arguments (finite model property) show that this is decidable for finite Γ .

Lemma: Disjunction of the Antecedent

$$\models ((p > r) \land (q > r)) \rightarrow ((p \lor q) > r)).$$

Monotonic Commonsense Entailment

Validity

 $\Gamma \models A$ iff on all models M and for all $w \in W^M$: if $M, w \Vdash \Gamma$ then $M, w \Vdash A$.

– Standard arguments (finite model property) show that this is decidable for finite Γ .

Lemma: Disjunction of the Antecedent

$$\models ((p > r) \land (q > r)) \rightarrow ((p \lor q) > r)).$$

$$Proof: Suppose M, w \Vdash (p > r) \land (q > r). Then:$$

$$*(w, \llbracket p \lor q \rrbracket) = *(w, \llbracket p \rrbracket \cup \llbracket q \rrbracket) \subseteq *(w, \llbracket p \rrbracket) \cup *(w, \llbracket q \rrbracket) \subseteq \llbracket r \rrbracket. \square$$

Closure in the Consequent

$$- \models (\Box(B \to C) \land (A > B)) \to (A > C).$$

Closure in the Consequent

$$- \models (\Box(B \rightarrow C) \land (A > B)) \rightarrow (A > C).$$

- Proof:

- Fix a model M and a world w.
- Assume $M, w \Vdash \Box (B \rightarrow C) \land (A > B)$.
- By the first conjunct, $[B] \subseteq [C]$.
- By the second conjunct, $*(w, [A]) \subseteq [B]$.
- Hence $*(w, \llbracket A \rrbracket) \subseteq \llbracket C \rrbracket$.

- We now have a truth definition and a monotonic entailment relation that tells us from facts about generic statements further true generic statements.
 - \rightarrow That's pretty good!

- We now have a truth definition and a monotonic entailment relation that tells us from facts about generic statements further true generic statements.
 - → That's pretty good!
- But we want to know what to infer from A, A > B.
- So we know that if "Birds fly" and "Fliers have wings" that "Birds have wings", but we do not know that "Birds fly, Tux is a bird" (nonmonotonically) entails that "Tux flies."

- We now have a truth definition and a monotonic entailment relation that tells us from facts about generic statements further true generic statements.
 - → That's pretty good!
- But we want to know what to infer from A, A > B.
- So we know that if "Birds fly" and "Fliers have wings" that "Birds have wings", but we do not know that "Birds fly, Tux is a bird" (nonmonotonically) entails that "Tux flies."
- We need a definition of $\ \ \sim \$ that validates $A,A>B\ \ \sim B$ and $A,A>B, \neg B\ \ / \sim B$.

- We now have a truth definition and a monotonic entailment relation that tells us from facts about generic statements further true generic statements.
 - → That's pretty good!
- But we want to know what to infer from A, A > B.
- So we know that if "Birds fly" and "Fliers have wings" that "Birds have wings", but we do not know that "Birds fly, Tux is a bird" (nonmonotonically) entails that "Tux flies."
- We need a definition of | that validaates A, A > B | > B and A, A > B, ¬B | ≠ B.
- We are inclined to just take all normal worlds and check what is going on there.
 - → However, > embeds and thus this needs to be recursed. This is bonkers complicated.

Towards |∼

We want to nail down where we can use A > B, A to conclude
 B. We try to systematically eliminate abnormal premises.

- We want to nail down where we can use A > B, A to conclude
 B. We try to systematically eliminate abnormal premises.
- Let Γ be a finite set of formulae. Define:

$$Ant(\Gamma) = \{A \mid \Gamma \models A > B \text{ for some } B\}.$$

For any $A \in Ant(\Gamma)$ define:

$$\Gamma^A = \{ (A > B) \to (A \to B) \mid \Gamma \models A > B \}.$$

Towards |∼

- We want to nail down where we can use A > B, A to conclude B. We try to systematically eliminate abnormal premises.
- Let Γ be a finite set of formulae. Define:

$$Ant(\Gamma) = \{A \mid \Gamma \models A > B \text{ for some } B\}.$$

For any $A \in Ant(\Gamma)$ define:

$$\Gamma^A = \{ (A > B) \to (A \to B) \mid \Gamma \models A > B \}.$$

- An immediate extension of Γ is any set Γ' such that $\Gamma' = \Gamma \cup \bigcup_{A \in \mathcal{T}} \Gamma^A$ for some $\mathcal{T} \subseteq Ant(\Gamma)$.

- We want to nail down where we can use A > B, A to conclude
 B. We try to systematically eliminate abnormal premises.
- Let Γ be a finite set of formulae. Define:

$$Ant(\Gamma) = \{A \mid \Gamma \models A > B \text{ for some } B\}.$$

For any $A \in Ant(\Gamma)$ define:

$$\Gamma^{A} = \{ (A > B) \rightarrow (A \rightarrow B) \mid \Gamma \models A > B \}.$$

- An immediate extension of Γ is any set Γ' such that $\Gamma' = \Gamma \cup \bigcup_{A \in \mathcal{T}} \Gamma^A$ for some $\mathcal{T} \subseteq \mathsf{Ant}(\Gamma)$.
- An extension of Γ is an immediate extension of Γ or an immediate extension of an extension of Γ .

Commonsense Entailment (finally)

Propositional Commonsense Entailment

 $\Gamma \triangleright A$ iff $\Gamma^{\rightarrow} \models A$ for all maximally satisfiable extensions Γ^{\rightarrow} of Γ .

- Recall that \models is decidable; thus $\Gamma \triangleright A$ is decidable.

Commonsense Entailment (finally)

Propositional Commonsense Entailment

 $\Gamma \triangleright A$ iff $\Gamma^{\rightarrow} \models A$ for all maximally satisfiable extensions Γ^{\rightarrow} of Γ .

- Recall that \models is decidable; thus $\Gamma \triangleright A$ is decidable.
- It is easy to see that Defeasible Modus Ponens holds:
 - $\rightarrow A, A > B \sim B$ and $A, A > B, \neg B \sim B$.
 - \rightarrow But $A, A > B, C \sim B$ if C is not a defeater for B.
 - \rightarrow Because without a defeater, $(A > B) \rightarrow (A \rightarrow B)$ is in every consistent extension.

Commonsense Entailment (finally)

Propositional Commonsense Entailment

 $\Gamma \triangleright A$ iff $\Gamma^{\rightarrow} \models A$ for all maximally satisfiable extensions Γ^{\rightarrow} of Γ .

- Recall that \models is decidable; thus Γ \triangleright *A* is decidable.
- It is easy to see that Defeasible Modus Ponens holds:
 - $\rightarrow A, A > B \sim B$ and $A, A > B, \neg B \sim B$.
 - \rightarrow But $A, A > B, C \sim B$ if C is not a defeater for B.
 - \rightarrow Because without a defeater, $(A > B) \rightarrow (A \rightarrow B)$ is in every consistent extension.
- Nixon Diamond:
 - $\rightarrow A > B, C > \neg B, C, A \not\sim B.$
 - $\rightarrow A > B, C > \neg B, C, A \not\sim \neg B.$
 - \rightarrow Because there are consistent extensions with B and with $\neg B$.

Specificity (kudos to Michael Morreau)

- We need one more lemma for the penguin principle:
- \models ($\square(P \rightarrow B) \land (B > F) \land (P > \neg F)$) \rightarrow ($B > \neg P$). (Penguins are birds, birds fly, penguins do not fly. Thus, normal birds are not penguins.)

Specificity (kudos to Michael Morreau)

- We need one more lemma for the penguin principle:
- \models (\square ($P \rightarrow B$) ∧ (B > F) ∧ ($P > \neg F$)) \rightarrow ($B > \neg P$). (Penguins are birds, birds fly, penguins do not fly. Thus, normal birds are not penguins.)

- Proof:

- Fix a model M and a world w. Assume the antecedent of the conditional.
- Then $[\![P]\!] \subseteq [\![B]\!]$, i.e. $[\![B]\!] = ([\![B]\!] \setminus [\![P]\!]) \cup [\![P]\!]$.
- Then *(w, [B]) ⊆ $*(w, [B] \setminus [P]) \cup *(w, [P])$ by DD.
- Also $*(w, \llbracket P \rrbracket) \subseteq \llbracket \neg F \rrbracket$ and $*(w, \llbracket B \rrbracket) \subseteq \llbracket F \rrbracket$.
- So $*(w, \llbracket P \rrbracket)$ and $*(w, \llbracket B \rrbracket)$ are disjoint.
- Thus $*(w, \llbracket B \rrbracket) \subseteq *(w, \llbracket B \rrbracket \setminus \llbracket P \rrbracket)$.
- Hence $*(w, \llbracket B \rrbracket) \subseteq \llbracket B \rrbracket \setminus \llbracket P \rrbracket \subseteq \llbracket \neg P \rrbracket$.

The Penguin Principle

To show: □(P → B), B > F, P > ¬F, P | ¬F.
 (Penguins are Birds; Birds fly; Penguins don't fly; we have a penguin | it doesn't fly)

The Penguin Principle

- To show: □(P → B), B > F, P > ¬F, P | ¬F.
 (Penguins are Birds; Birds fly; Penguins don't fly; we have a penguin | it doesn't fly)
- Proof.
 - Let $\Gamma = \{ \Box (P \to B), B > F, P > \neg F, P \}$. Then, $Ant(\Gamma) = \{ A \mid \Gamma \models A > X \text{ for some } X \} = \{ P, B \}$.
 - We know: $\models (\Box(P \rightarrow B) \land (B > F) \land (P > \neg F)) \rightarrow (B > \neg P).$
 - So $\Gamma \models B > \neg P$.
 - So it is inconsistent to extend Γ with the antecedent B: $\Gamma \cup \{(B > \varphi) \to (B \to \varphi) \mid \Gamma \models B > \varphi\} \models P \land \neg P$.
 - Thus *B* as an antecedent is defeated. All maximally consistent extensions of Γ contain $P \rightarrow \neg F$.
 - So we get $\Gamma \sim \neg F$.

Commonsense Entailment

Context Update

Commonsense Entailment

Context Update

Modifications to DRT

- DRT hat the connectives \neg , \lor and \Rightarrow .
- We want to regiment ∨ and ⇒ in the narrative structure, so we remove them from the microstructure.
 - → But we keep how DRT does quantification!
- But we want to include "might" (♦) and "typically" (>), so add these to DRT.
- The SDRS microstructure is DRT with \neg , \Diamond , > and \Rightarrow as connectives.

Modifications to Commonsense Truth

Quantifier-free Commonsense Entailment Models

A **qf** commonsense entailment model is a structure $\langle W, *, D, I \rangle$ such that $\langle W, * \rangle$ is a CE frame, **D** is a set of referents, I is an interpretation that assigns a set of tuples to each predicate. Then, for a variable assignment f:

- $M, w, f \Vdash R(x_1, ..., x_n)$ iff $(f(x_1), ..., f(x_n)) \in I(R)$.
- M, w, f \Vdash ¬A iff M, w, f \Vdash A.
- M, w, f \Vdash \square A iff for all v, M, v, f \Vdash A.
- $M, w, f \Vdash A > B \text{ iff } *(w, \llbracket A \rrbracket) \subseteq \llbracket B \rrbracket$ where: $\llbracket \varphi \rrbracket = \{ w' \in W \mid M, w', f \Vdash \varphi \}.$

Microstructure Vocabulary

Variables $(x, y, ..., e_1, e_2, ...)$; Name symbols (John, Max, ...); Predicate symbols (eat, overlap, ...); logical connectives $(=, >, \Rightarrow, \neg, \lozenge)$.

Microstructure Formulas (DRSs)

A DRS is a tuple $\langle U, Cond \rangle$ where U is a set of variables, and Cond is a set of conditions.

- For a name N and a variable x, N(x) is a condition.
- For a predicate P and variables $x_1, ..., x_n$, $P(x_1, ..., x_n)$ is a condition.
- For variables x and y, x = y is a condition.
- If C_1 and C_2 are DRSs, $C_1 > C_2$, $C_1 \Rightarrow C_2$, $\neg C_1$ and $\Diamond C_1$ are conditions.

(add more as needed!)

Microstructure Evaluation (now with worlds!)

Microstructure Semantics

Let M = (W, *, I) be a qf commonsense entailment model. Define by simultaneous recursion for any $w \in W$:

- 1. $f[\langle U, Cons \rangle]_{M,w}g$ iff $f[\langle U, Cons \rangle]_{M,w}g$ and $M, w, g \models_{micro} C$ for all $C \in Cons$.
- 2. $M, w, f \models_{micro} R(x_1, \dots, x_n)$ iff $M, w, f \models R(f(x_1), \dots, f(x_n))$.
- 3. $M, w, f \models_{micro} \neg K$ iff there is no g with $f[K]_{M,w}g$.
- 4. $M, w, f \models_{micro} \lozenge K$ iff there is a $v \in W$ and a g with $f[\![K]\!]_{M,v}g$
- 5. $M, w, f \models_{micro} K_1 \Rightarrow K_2$ iff for every g with $f[K_1]_{M,w}g$ there is a h with $g[K_2]_{M,w}h$.

Microstructure Evaluation (now with worlds!)

Microstructure Semantics

Let M = (W, *, I) be a qf commonsense entailment model. Define by simultaneous recursion for any $w \in W$:

- 1. $f[\langle U, Cons \rangle]_{M,w}g$ iff $f[\langle U, Cons \rangle]_{M,w}g$ and $M, w, g \models_{micro} C$ for all $C \in Cons$.
- 2. $M, w, f \models_{micro} R(x_1, \dots, x_n)$ iff $M, w, f \models R(f(x_1), \dots, f(x_n))$.
- 3. $M, w, f \models_{micro} \neg K$ iff there is no g with $f[K]_{M,w}g$.
- 4. $M, w, f \models_{micro} \lozenge K$ iff there is a $v \in W$ and a g with $f[K]_{M,v}g$
- 5. $M, w, f \models_{micro} K_1 \Rightarrow K_2$ iff for every g with $f[K_1]_{M,w}g$ there is a h with $g[K_2]_{M,w}h$.
- 6. For M, g let $N^{M,g}(K)$ be the set of all worlds v such that there is a h with $g[\![K]\!]_{M,v}h$. Then: $M, w, f \models_{micro} K_1 > K_2$ iff: for any $v \in *(w, N^{M,f}(K_1))$ and g such that $f[\![K]\!]_{M,v}g$, there is a h such that $g[\![K_2]\!]_{M,v}h$

Sidenote: The trick about "might"

- The interesting thing about the clause for \Diamond is that $\Diamond K$ doesn't effect a context update:
- If $f[\![\lozenge K]\!]_{M,w}g$ then f=g.
- But if $f[\![K]\!]g$ then (generally) $f \neq g$.

Sidenote: The trick about "might"

- The interesting thing about the clause for \Diamond is that $\Diamond K$ doesn't effect a context update:
- If $f[\![\lozenge K]\!]_{M,w}g$ then f=g.
- But if $f[\![K]\!]g$ then (generally) $f \neq g$.
- (this is in general not quite right because of modal subordination)
- (27) A wolf might come in. It would eat Julian first.
 - But it's good enough for present purposes.

One more thing...

- Note that "microstructure" is just about clauses.
- Recall that we associated events with verb phrases.
- Let's call the event associated with the main verb phrase of a clause its semantic index.
- Let's refer to the semantic index of a microstructure K e_K .
- Or, if *K* is labelled by π , also e_{π} .

Reminder: Outscoping

Outscoping

- Note that \mathcal{F} induces an order on Π .
- Say that $\alpha < \beta$ iff α occurs in $\mathcal{F}(\beta)$.
- Let < denote the reflexive transitive closure of <.
- Call this relation "outscoping".

Interpretable SDRS

- A SDRS (Π , \mathcal{F} , \mathcal{L}) is well formed if:
- There is a unique outscoping-maximal label in Π ("root").
- < is anti-symmetric (in particular, then, it has no circles)

 To define evaluation/truth we need a more expressive language than the one we write SDRSs in.

Macrostructure Vocabulary

DRSs; discourse relation symbols (Elaboration, Narration, ...); label variables $(\pi, \lambda, ...)$; logical connectives $(\neg, >, \Rightarrow, \land, \lozenge)$.

Macrostructure Formulas

- Any DRS K is a macrostructure formula.
 (DRSs are like the atoms of the macrostructure)
- For a discourse relation R and label variables α , β , $R(\alpha, \beta)$ is a macrostructure formula.
- If *P* and *Q* are macrostructure formulae, then so are *P* ∧ *Q*, $\neg P$, $\Diamond P$, P > Q, $P \Rightarrow Q$.

Truth and Update

- Let P be a macrostructure formula, w be world worlds, f,g be variable assignments, M be a model, and $S = (\Pi, \mathcal{F}, L)$ be an SDRS such that all labels that appear in P are members of Π .
- We wish to define what it means that $f[P]_{M,w}^Sg$.
- So if you start with a *set* of possible worlds W and an assignment f, and you want to *narrow* this set down to the worlds that support the information in an SDRS $S = (\Pi, \mathcal{F}, L)$, you compute which world-assignment pairs are not ruled out by the content of S's root label π_0 :

$$\{(v,g) \mid \text{there is a } w \in W \text{ such that } f[[\mathcal{F}(\pi_0)]]_{M,w}^S g)\}$$

Macrostructure Evaluation (the idea)

- We recursively translate a macrostructure formula P into a microstructure K such that update with K represents the information in P (not as hard as it sounds!).
- A bit of notation:
- For two DRSs $K_1 = \langle U_1, C_1 \rangle$, $K_2 = \langle U_2, C_2 \rangle$, define $K_1 + K_2 = \langle U_1 \cup U_2, C_1 \cup C_2 \rangle$.

Macrostructure-to-Microstructure

Given an SDRS $S = (\Pi, \mathcal{F}, L)$, translate a macro formula P to a DRS $\llbracket P \rrbracket^S$ (say, P interpreted in the narrative structure S).

- 1. If P = K for a DRS K, then $\llbracket P \rrbracket^S = K$.
- 2a. If $P = Q_1 \wedge Q_2$, then $[\![P]\!]^S = [\![Q_1]\!]^S + [\![Q_2]\!]^S$.

2b. If
$$P = \neg Q$$
, then $\llbracket P \rrbracket^S = \boxed{\neg \llbracket Q \rrbracket^S}$

relation R (a meaning postulate).

2d. If
$$P = Q_1 > Q_2$$
, then $[\![P]\!]^S = \boxed{ [\![Q_1]\!]^S > [\![Q_2]\!]^S }$.

2e. If
$$P = Q_1 \Rightarrow Q_2$$
, then $\llbracket P \rrbracket^S = \boxed{ \llbracket Q_1 \rrbracket^S \Rightarrow \llbracket Q_2 \rrbracket^S }$.

3. If $P = R(\alpha, \beta)$ for a veridical discourse relation R, then $[\![P]\!]^S = [\![\mathcal{F}(\alpha) \land \mathcal{F}(\beta) \land \mathit{Info}_R(\mathcal{F}(\alpha), \mathcal{F}(\beta))]\!]^S$ where Info_R is the specific semantic contribution provided by the

 For example, Narration is veridical and adds the information that events are reported in order:

$$Info_{\mathsf{Narration}}(\mathcal{F}(\alpha), \mathcal{F}(\beta)) = e_{\alpha} < e_{\beta} \land end(e_{\alpha}) \approx start(e_{\beta})$$

 Elaboration is veridical and adds that the second content defeasibly entails the first, but not vice versa, and that the evens overlap:

$$Info_{\mathsf{Elab}}(\mathcal{F}(\alpha),\mathcal{F}(\beta)) = (\mathsf{K}_{\beta} > \mathsf{K}_{\alpha}) \land \neg (\mathsf{K}_{\alpha} > \mathsf{K}_{\beta}) \land \mathit{part-of}(e_{\beta},e_{\alpha})$$

 Explanation is veridical and adds that the second event caused the first.

$$Info_{\mathsf{Expl}}(\mathcal{F}(\alpha), \mathcal{F}(\beta)) = cause(e_{\beta}, e_{\alpha}) \land \neg (e_{\alpha} < e_{\beta})$$

CDUs

 Wait, Julian, what about CDUs that are parts of further discourse relations?

- Wait, Julian, what about CDUs that are parts of further discourse relations?
- I'm glad you ask: we also need to assign non-microstructure events a semantic index. So, technically:

$$\mathit{Info}_{\mathsf{Narration}}(\mathcal{F}(lpha),\mathcal{F}(eta)) = egin{array}{c} e & & & & & \\ \hline \mathit{part-of}(e_lpha,e) & & & & \\ \mathit{part-of}(e_eta,e) & & & & \\ e_lpha < e_eta & & & \\ \end{array}$$

While we are being technical...

- Actually, if we are being *super* precise, we need to keep track
 of which label in the SDRS we are evaluating gave rise to this *Info*_{Narration} so that we can assign *e* to that label.
- So we should write:
- 3. If $\mathcal{F}(\pi) = R(\alpha, \beta)$ for a veridical discourse relation R, then $f[\![\mathcal{F}(\pi)]\!]_{M,w}^S g$ iff $f[\![\mathcal{F}(\alpha) \wedge \mathcal{F}(\beta) \wedge \mathit{Info}_R(\pi, \mathcal{F}(\alpha), \mathcal{F}(\beta))]\!]_{M,w}^S g$ where Info_R is the specific semantic contribution provided by the relation R.

$$\mathit{Info}_{\mathsf{Narration}}(\pi, \mathcal{F}(lpha), \mathcal{F}(eta)) = egin{array}{c} e_\pi \\ \hline \mathit{part-of}(e_lpha, e_\pi) \\ \mathit{part-of}(e_eta, e_\pi) \\ e_lpha < e_eta \end{array}$$

Evaluating SDRSs

- When we evaluate an entire SDRS (Π, \mathcal{F}, L), we find its root label π_0 and compute $[\![\mathcal{F}(\pi_0)]\!]$.
- By design, this runs through the entire SDRS.
- In some SDRSs we might hit the same label multiple times;
 this is harmless since this just repeats information we already know.

(28) π_1 : John had a great lunch

 π_2 : He had a great lunch .

 π_3 : He had soup.

 π_4 : Then he had salmon.

 π_{5} : Afterwards, he visited his girlfriend.

$$- \Pi = \{\pi_0, \pi_1, \pi_2, \pi_3, \pi_4, \pi_5, \lambda, \rho\}, L = \pi_5.$$

-
$$\mathcal{F}(\pi_0) = \textit{Elaboration}(\pi_1, \lambda)$$

-
$$\mathcal{F}(\lambda) = \textit{Elaboration}(\pi_2, \rho) \land \textit{Narration}(\pi_2, \pi_5)$$

$$-\pi_0 \mathcal{F}(\rho) = Narration(\pi_3, \pi_4)$$

A non-veridical relation

- For non-veridical relations we need to give special evaluation clauses. Correction is quite interesting. Somewhat simplified, its semantics are:
- 4. If $\mathcal{F}(\pi) = \operatorname{Correction}(\alpha, \beta)$, then $f[\![\mathcal{F}(\pi)]\!]_{M,w}^{S}g$ iff there is a h such that $f[\mathcal{F}(\alpha)]h$ (note the single brackets) and $h[\![\mathcal{F}(\beta) \wedge \mathit{Info}_{\mathit{Correction}}(\pi, \mathcal{F}(\alpha), \mathcal{F}(\beta))]\!]_{M,w}^{S}g$

$$\mathit{Info}_{\mathsf{Corr}}(\pi, \mathcal{F}(\alpha), \mathcal{F}(\beta)) = \neg (\mathcal{F}(\alpha) \wedge \mathcal{F}(\beta))$$

A non-veridical relation

- For non-veridical relations we need to give special evaluation clauses. Correction is quite interesting. Somewhat simplified, its semantics are:
- 4. If $\mathcal{F}(\pi) = \operatorname{Correction}(\alpha, \beta)$, then $f[\![\mathcal{F}(\pi)]\!]_{M,w}^{S}g$ iff there is a h such that $f[\mathcal{F}(\alpha)]h$ (note the single brackets) and $h[\![\mathcal{F}(\beta) \wedge \mathit{Info}_{\mathit{Correction}}(\pi, \mathcal{F}(\alpha), \mathcal{F}(\beta))]\!]_{M,w}^{S}g$

$$Info_{\mathsf{Corr}}(\pi, \mathcal{F}(\alpha), \mathcal{F}(\beta)) = \neg(\mathcal{F}(\alpha) \wedge \mathcal{F}(\beta))$$

- The role of the single brackets:

(29) a. There is a cat outside.
b. No it's a dog.

What do these semantics do?

- (30) a. Frank doesn't have classic cars. b. He has two 1967 spiders. Correction
 - You learn that 1967 spiders are classic cars, because the "surviving worlds" in this update are *only* worlds where it is false that (Frank no classic cars & Frank has two 1967 spiders).
 - These are exactly the worlds where this conditional is true:
 Frank has two 1967 spiders → Frank has classic cars
 - Much the same can be said about the updates effected by Elaboration or Explanation (and many other relations).

- For more relations please refer to the glossary.
- Note however that the micro- and macrostructure is a good deal more expressive in the glossary (and in the book it's from).
- But this additional expressivity is not conceptually different—if you get all this here, it is easy to extend the language with whatever you need.