Inertial Sensors Motion Sensing

Suresh Devasahayam Department of Bioengineering Christian Medical College, Vellore

Lecture - Outline

- Accelerometers and Gyroscopes
- Acceleration sensing
- Angular velocity sensing

Accelerometers and Gyroscopes

- Inertial motion
- Do not depend on connection to a reference frame
 - "Tetherless"
- Suitable for ambulatory measurement

Accelerometers

- Measurement of acceleration
 - Force and mass: F=ma
- Acceleration due to gravity is always present on Earth
- Need to separate acceleration due to motion from gravity

Measurement of Acceleration

Principle of Equivalence

- From the point of view of a mass:
 - Acceleration due to gravity is indistinguishable from acceleration due to motion
- A mass in a gravitational field experiences a force in the same way as if the mass is moving with acceleration

Tilt measurement

Accelerometer axes

Tilt sensing with multi-axis accelerometer

- Tilt of the sensor with respect to the direction of acceleration
- Used in mobile devices, games, etc.

Gyroscope

- Spinning mass
- Spin, Precession, Nutation
- Gyroscopic moment
 - Moving particles in the rim of wheel
- Tilt wheel
 - Resisting force

Gyroscope

Gyroscope Principle

Disc gyroscope

$$mgr = \omega_s \omega_p I_s$$

- Mass, m
- Radius of disc, r
- Spin angular vel
- Precession angular vel
- Spin moment of inertia

Example

- Disc of mass: m=5kg
- Spin=12 rps
- Radius of spin gyration, r = 70mm
- Precession=0.5 rps
- Spin : $\omega_s = 2(3.14159)(12) = 75.4 \text{ radians/s}$
- Precession: $\omega_p = 2(3.14159)(0.5) = 3.14159 \text{ rad/s}$
- Moment of inertia: $I_s = (m)(r^2) = 0.0245 \text{ kg.m}$
- Gyroscopic force= $\omega_s \omega_p I_s = 5.8 \text{ Nm}$

Vibrating gyroscopes

Vibrating gyroscope – Coriolis force

- Force, F
- Angular Velocity of rotation/precession
- Linear velocity of oscillation
- Mass, m

$$F = -2 \omega_p v_{osc} m$$

End of Lecture