Assignment: Dimensionality Reduction

Qianlang Chen (u1172983)

 ${\rm CS}~5140~{\rm Spring}~2021$

```
import numpy

A = numpy.loadtxt('./data/A.csv', delimiter=',')
print(A.shape)
```

(3500, 20)

Problem 1

Part A

```
from scipy import linalg

U, S, Vt = linalg.svd(A)
S = numpy.identity(len(S)) * S

def Ak(k):
    Uk = U[:,:k]
    Sk = S[:k,:k]
    Vtk = Vt[:k,:]
    return Uk @ Sk @ Vtk

K = tuple(range(1, 11))
```

```
for k in K:
    print(f'k = {k}: {linalg.norm(A - Ak(k), 2)}')
```

```
k = 1: 100.00246446709691

k = 2: 92.11139537014573

k = 3: 87.43842799887248

k = 4: 70.84270143876726

k = 5: 58.89263665883072

k = 6: 57.77458152758134

k = 7: 25.86135552441823

k = 8: 24.871609868369216

k = 9: 24.395000417106157

k = 10: 22.997273663616927
```

Part B

```
norm_A = linalg.norm(A, 2)

K = tuple(range(1, 21))
for k in K:
   if linalg.norm(A - Ak(k), 2) < .2 * norm_A:
        print(k)
        break</pre>
```

10

Part C

```
from matplotlib import pyplot
from sklearn import decomposition

A2 = decomposition.PCA(2).fit_transform(A)
_ = pyplot.scatter(A2[:, 0], A2[:, 1])
```


I applied the PCA method from the lecture that found a subspace B minimizing SSE(A,B). The algorithm first centered the data points and then performed SVD. I made use of an existing implementation for this method from SciKit-Learn (https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html).

Problem 2

Part A

• How large does l need to be for the above error to be at most $||A||_F^2/20$?

```
from lib import FD

def find_min_l(A, err_bound):
    n, d = A.shape
    for l in range(1, n // 2):
        B = FD.freq_dir(A, l)
        err = linalg.norm(A.T @ A - B.T @ B)
        if err <= err_bound:
            return l, err

l, err = find_min_l(A, linalg.norm(A)**2 / 20)
print(l)</pre>
```

7

• How does this compare to the theoretical bound (e.g. for k=0)?

```
print(f'||Ax||^2 - ||Bx||^2:\t\t\t\t\err\')
for k in range(1):
    print(f'||A - Ak||_F^2 / (1 - k) [with 1 = {1}, k = {k}]:'
        f'\t{linalg.norm(A - Ak(k))**2 / (1 - k)}')
```

The tightest bound occurred when k = 4 (5642), but the bounding expression

$$||Ax||^2 - ||Bx||^2 \le ||A - A_k||_F^2/(l - k)$$

still holds true.

• How large does l need to be for the above error to be at most $||A - A_k||_F^2/20$ (for k = 2)?

```
k = 2
l, err = find_min_l(A, linalg.norm(A - Ak(k))**2 / 20)
print(l)
```

9

Appendix

lib/FD.py

```
import numpy
from scipy import linalg
def freq dir(A, 1):
   n, d = A.shape
   B = numpy.zeros((2 * 1, d))
   zero_index = 0
   for i in range(n):
        B[zero_index] = A[i]
        zero_index += 1
        if zero_index == 2 * 1: # full
            U, S, Vt = linalg.svd(B)
            delta = S[-1]**2
            S_{prime} = numpy.zeros((2 * 1, d))
            numpy.fill_diagonal(S_prime,
                                [(sigma**2 - delta)**.5 for sigma in S])
            B = S prime @ Vt
           for zero_index in range(2 * 1):
                if not B[zero_index].any(): break # the first empty row
   return B
```