NAREN VOHRA

 $+1-541-740-7160 \diamond NarenVohra1994@gmail.com \diamond https://nvohra0016.github.io$

EMPLOYMENT

Postdoc, Los Alamos National Laboratory (LANL).

2023 - Present

Division: Applied Mathematics and Plasma Physics (T5).

EDUCATION

Ph.D. in Mathematics, Oregon State University (OSU).

2018 - 2023

Advisor: Prof. Malgorzata Peszynska. Thesis: Mathematical Models and Computational Schemes for Thermo-hydro-mechanical Phenomena in Permafrost: Multiple Scales and Robust Solvers.

Master of Science, Mathematics, OSU.

Bachelor of Science, Major in Mathematics, IISc.

2018 - 2020

Master of Science, Major in Mathematics, Indian Institute of Science (IISc), Bangalore, India.

2017 - 2018

Bangaiore, India.

2012 - 2017

PUBLICATIONS

- 1 N. Vohra and M. Peszynska, Iteratively Coupled Finite Element Solver for Thermo-hydromechanical Modeling of Permafrost Thaw, Results in Applied Mathematics, accepted 2023.
- 2 N. Vohra and M. Peszynska, Robust conservative scheme and nonlinear solver for phase transitions in heterogeneous permafrost, *Journal of Computational and Applied Mathematics*, 2023, 442, 115719.
- 3 M. Peszynska, N. Vohra, L. Bigler, **Upscaling an extended heterogeneous Ste- fan problem** from the pore-scale to the Darcy scale in permafrost, SIAM Multiscale Modeling and Simulation, accepted 2023.
- 4 N. Vohra, K. Lipnikov, S. Tokareva, Second-order accurate mimetic scheme for solute transport on polygonal meshes, Communications on Applied Mathematics and Computation, 2023.
- 5 L. Bigler, M. Peszynska, and N. Vohra, **Heterogeneous Stefan Problem and Permafrost Models with P0-P0 Finite Elements and Fully Implicit Monolithic Solver**, *Electronic Research Archive*, 2022, 30 (4), 1477–1531.
- 6 C. Shin, A. Alhammali, L. Bigler, N. Vohra, and M. Peszynska, Coupled flow and biomass-nutrient growth at pore-scale with permeable biofilm, adaptive singularity and multiple species. *Mathematical Biosciences and Engineering*, 2021, 18 (3), 2097-2149.

ARTICLES

N. Vohra, M. Peszynska, **Modeling Permafrost: Soil, Ice, and Some Really Hard Mathematics**, SIAM News Blog, 7/31/2023, Link: https://sinews.siam.org/Details-Page/modeling-permafrost-soil-ice-and-some-really-hard-mathematics

AWARDS AND ACHIEVEMENTS

Lightning Talk Award

2022

Awarded 2^{nd} place at the 2022 Student Lightning Talks, Los Alamos National Laboratory, for talk Well-balanced Discretizations of Shallow Water Systems on Arbitrary Polygonal Meshes.

Oregon Lottery Graduate Scholarship

2022

Awarded by the Graduate School, OSU, for the academic year 2022 - 2023.

Department of Mathematics, OSU.

Oberwolfach Leibniz Graduate Students

2022

Received support from Mathematisches Forschungsinstitut Oberwolfach to attend an Oberwolfach workshop (Id: 2204) in person.

NSF Mathematical Sciences Graduate Internship

2021

Internship at Los Alamos National Laboratory funded by Oak Ridge National Laboratory during Summer 2021.

Outstanding Performance in Coursework Award

2019, 2021

Department of Mathematics, OSU.

INSPIRE Fellow

2012-2013, 2015-2016

Awarded the INSPIRE Fellowship from August 2012 - January 2013 and August 2015 - July 2016 after securing admission into IISc through the AIEEE.

All India Rank 506 in AIEEE

2012

Secured an All India Rank of 506 in the 2012 All India Engineering Entrance Examination, taken by approximately 1.1 million students across the country.

EXPERIENCE

Research Interests

· Numerical analysis · Finite element methods · Mathematical and computational modeling of multiphysics multiscale phenomena.

Graduate Research Assistant, OSU Su, Fa 2019, Sp, 2020, Fa 2021, Wi 2022, Fa 22, Wi 23

• Currently working on the analysis and implementation of thermo-hydro-mechanical models to simulate energy, flow, and deformation in ice-rich porous media, such as permafrost • Implemented and analyzed numerical models using mixed finite elements for degenerate, non-degenerate parabolic (Stefan problem/permafrost models) and mixed elliptic-parabolic (Biot's poroelasticity) systems, and their subsequent coupling.

Support from NSF Grant DMS-1522734 and DMS-1912138. PI: Prof. Malgorzata Peszynska.

Los Alamos National Laboratory

6/21-8/27/2021, 6/20-8/26/2022

Worked under the guidance of Dr. Svetlana Tokareva and Dr. Konstantin Lipnikov in the Applied Mathematics and Plasma Physics group of Theoretical Division at Los Alamos National Laboratory (LANL), NM, US, as a NSF Mathematical Sciences Graduate Internship participant (2021) and as a LANL Graduate Student (2022).

 \cdot Studied well-balanced, depth-positivity preserving numerical schemes for the shallow water equations on unstructured polygonal meshes and worked on their implementation in the numerical framework $Amanzi \cdot$ Studied and implemented the coupling of surface flow with subsurface flow and solute transport.

Woodwell Climate Research Center

4/18-6/10/2022

Worked under the guidance of Prof. Malgorzata Peszynska, Dr. Elchin Jafarov, and Dr. Brendan Rogers as an Arctic Subsidence Modeling intern at Woodwell Climate Research Center, MA, US.

• Analyzed the correlation between thaw settlement and the change in the active layer depth by using the void ratio and moisture content of the frozen soil as a random parameter.

Technical University of Munich, Germany

1/30-2/4/2022

Visited Prof. Barbara Wohlmuth's group in the Department of Mathematics at Technical University of Munich.

• Worked on permafrost models and the challenges associated with their numerical implementation, with particular emphasis on introducing visco-elasticity to analyze deformation.

Graduate Teaching Assistant, OSU

2018-Present

- 2023: Models and Methods of Applied Mathematics (Sp; Grader).
- 2022: Models and Methods of Applied Mathematics (Sp; Grader).
- 2021: Models and Methods of Applied Mathematics and Probability 2 (Wi; Grader), Advanced Calculus and Probability 3 (Sp; Grader),
- 2020: Calculus for Management and Social Science (Wi), Integral Calculus (Su; Instructor), Differential Calculus (Fa).
- 2019: Differential Calculus (Wi), Calculus for Management and Social Science (Sp).
- 2018: Differential Calculus (Fa).

Project Trainee at CAOS, IISc

2016-2018

Project at Center for Atmospheric and Oceanic Sciences (CAOS) at IISc under the guidance of Prof. Venugopal V. and Dr. Fabrice Papa.

Worked on the analysis of the decadal cycle in Ganges river discharge and its relation to the Indian Monsoon by using time-frequency analysis, particularly the wavelet transform.

PRESENTATIONS AND CONFERENCES/WORKSHOPS ATTENDED

- 1 AGU (poster), Modeling of Urban Drainage Networks with Integrated Hydrological Models, Giacomo Capodagio, Daniil Svyatsky, Naren Vohra, David Moulton, San Francisco, California, 12/13/2023.
- 2 NGSolve User Meeting 2023, Portland State University, 7/8-7/11/2023.
- 3 Applied Math and Computational Seminar (oral), Working with Software Tools for Numerical PDEs, Naren Vohra, Zachary Hilliard, OSU, 6/2/2023.
- 4 ICIAM (oral, invited), Towards upscaling and simulation of coupled [THM] systems with applications to permafrost modeling, Malgorzata Peszynska, Naren Vohra, Waseda University, Tokyo, 8/2023.
- 5 SIAM GS23 (oral, invited), Mixed Finite Elements for Thermo-Hydro-Mechanical Models with Iterative Coupling, Naren Vohra, Malgorzata Peszynska, Bergen, 6/21/2023.
- 6 SIAM CSE23 (oral, invited), Finite Elements for Thermo-Hydro-Mechanical Coupling in Modeling Permafrost Thaw, Naren Vohra, Malgorzata Peszynska, Amsterdam, 2/28/2023.
- 7 AMS Fall Central Sectional Meeting (oral, invited), Mixed Finite Elements for Permafrost and Thermohydro-mechanical Models, Naren Vohra, Malgorzata Peszynska, The University of Texas at El Paso, 9/18/2022.
- 8 LANL Lightning Talk (oral), Well-balanced Discretizations of Shallow Water Systems on Arbitrary Polygonal Meshes, Naren Vohra, Svetlana Tokareva, Konstantin Lipnikov, Los Alamos National Laboratory, 8/9/2022.
- 9 Woodwell Climate Research Center (oral), Modeling Subsidence Due To Permafrost Thaw, Naren Vohra, Malgorzata Peszynska, Elchin Jafarov, Brendan Rogers, virtual, 6/2/2022.
- 10 3rd Biennial Meeting of SIAM Pacific Northwest Section (oral, invited), *Mixed Finite Elements for the Permafrost Model and Steps Towards Thermo-hydro-mechanical Coupling*, Naren Vohra, Malgorzata Peszynska, *Washington State University*, *Vancouver*, 5/21/2022.
- 11 The Finite Element Circus, University of Florida, virtual participant, 4/8-4/9/2022
- 12 Applied Math and Computational Seminar (oral), Mixed Finite Elements for the Heterogeneous Stefan Problem and Application to Multiscale Multiphysics Models of Permafrost, Naren Vohra, Lisa Bigler, Malgorzata Peszynska, OSU, 3/11/2022.
- 13 Oberwolfach Workshop on "Multiscale Coupled Models for Complex Media: From Analysis to Simulation in Geophysics and Medicine" (Workshop Id: 2204), Mathematisches Forschungsinstitut Oberwolfach, participant, 1/23–1/29/2022.
- 14 The Finite Element Circus, Penn State University, virtual participant, 11/5-11/6/2021.

- 15 NSF-MSGI Presentation (oral), Well-balanced Discretizations of Shallow Water Systems on Arbitrary Polygonal Meshes, Naren Vohra, Svetlana Tokareva, Konstantin Lipnikov, virtual, 8/12/2021.
- 16 SIAM GS21 (oral), Accounting for Mass and Volume Conservation in a Coupled Flow-Deformation-Energy Model at Pore-Scale, Naren Vohra, Malgorzata Peszynska, virtual, 6/21-6/24/2021.
- 17 SIAM CSE21 (oral), Coupled Biot and Phase Transition Model at Pore-Scale, Naren Vohra, Malgorzata Peszynska, virtual, 3/1-3/5/2021.
- 18 Joint Mathematics Meeting, virtual participant, 1/6-1/9/2021.
- 19 InterPore Short Course, Multiphase Flow in Permeable Media: A Pore-Scale Perspective, Professor Martin Blunt, Imperial College London, virtual participant, 12/7–12/10/2020.
- 20 Second Joint SIAM/CAIMS Annual Meeting (poster), Coupling of Flow and Deformation in Porous Media at the Network Scale, Naren Vohra, Malgorzata Peszynska, virtual, 7/6-7/17/2020.
- 21 Applied Math and Computation Seminar (oral), A Multiscale Study of the Biot System and the Stefan Problem, Naren Vohra, Malgorzata Peszynska, OSU, virtual, 5/29/2020.
- 22 7th Annual Cascade RAIN Meeting (oral), Coupling of Flow and Deformation in Porous Media at Network Scale, Naren Vohra, Malgorzata Peszynska, virtual, 4/4/2020.
- 23 2^{nd} Biennial Meeting of SIAM Pacific Northwest Section, Seattle University, participant, 10/18-10/20/2019.
- 24 Mathematical Problems in Industry Workshop, "Construction of the PDF of fiber size and distribution using finite samples" (project sponsored by Gore Technologies), New Jersey Institute of Technology, participant, 6/17-6/21/2019.
- 25 Graduate Student Mathematical Modeling Camp, "Modeling flow and fouling in elastic membrane filters", *University of Delaware*, participant, 6/12-6/15/2019.
- 26 OpenFOAM Workshop, OSU, participant, 6/3-6/4/2019.
- 27 6th Annual Cascade RAIN Meeting, University of Washington, Bothell, participant, 4/13/2019.

SKILLS

Programming languages

MATLAB (expert), C++ (advanced), Python (advanced).

Frameworks and libraries

Amanzi (Contributor) [https://github.com/amanzi/amanzi], deal.II [https://dealii.org], ParaView, Git, Blender, OpenFOAM, OpenMP, MPI.

SOFTWARE

This is a list of the open source software that I have contributed to and used in my research.

1. Poroelasticity code capsule in MATLAB and Python

Developed one-dimensional poroelasticity solver to simulate flow and deformation in porous media using quasi-static Biot's system.

MATLAB implementation: https://github.com/nvohra0016/Biot1D-MATLAB (Documentation with examples included)

Python implementation: https://github.com/nvohra0016/Biot1D-Python

Developers: Naren Vohra, Prof. Malgorzata Peszynska. Implemented as part of MPower (http://sites.science.oregonstate.edu/mpesz/mpower/)

2. Amanzi

Amanzi is a reactive flow and transport simulation framework: https://github.com/amanzi/amanzi

• Improved the shallow water equation solver to handle issues associated with surface flow over irregular dry beds, such as well-balancing and depth-positivity • Worked on the coupling of surface flow and subsurface flow, and surface flow and solute transport.

TRAVEL AWARDS

OSU College of Science Student Travel Award; travel support to attend SIAM CSE23, 2023.

OSU Graduate School Scholarly Presentation Award; registration support for SIAM CSE23, 2023.

SIAM travel award; Conference on Computational Science and Engineering (CSE23), 2023.

AMS travel award; Fall Central Sectional Meeting, 2022.

SIAM travel award; 3^{rd} Biennial Meeting of SIAM Pacific Northwest Section (PNW21), 2022.

SIAM travel award; Conference on Mathematical & Computational Issues in the Geosciences (GS21), 2021.

SIAM travel award; Conference on Computational Science and Engineering (CSE21), 2021.

OSU Graduate Student Professional Development Award; registration support for Joint Mathematics Meeting (JMM), 2021.

Mathematical Problems in Industry, New Jersey Institute of Technology; full support, 2019.

Graduate Student Mathematical Modeling Camp, University of Delaware; full support, 2019.

Annual Cascade RAIN Meeting, University of Washington; travel support, 2019.

SELECTED COURSEWORK

OSU (2018–Present)

Partial Differential Equations (PDE)

Finite Elements for PDE

Numerical Analysis

Finite Volume and Discontinuous Galerkin Methods

Structural Mechanics

Uncertainty Quantification

Computational Mathematics Foundations

of Multiphysics

IISc (2012–2018)

Functional Analysis Homogenization of PDE

Fourier Analysis

Digital Image Processing

Linear and Nonlinear Optimization

Probability Models

SERVICE

OSU Student Chapter SIAM

2019 - 2023

President (elected), 2021 – 2022.

Organized multiple talks and discussions with alumni for the chapter members along with programming tutorials.

Helped increase number of members by at least 10 during the 2021-2022 academic year.

Mathematics Ad Hoc Review Committee (OSU)

5/2022 - 3/2023

Member (invited) of the ad hoc committee to review the effectiveness of the PhD qualifying requirements in the department of mathematics.

Other responsibilities of the committee included reviewing the qualifying exam requirements at peer institutions, and reporting on the strengths and weaknesses of different possible requirements.