

LEVEL TRASANA

TECHNICAL REPORT NO. 3-78

DDC FILE COPY

FLIGHT PROFILE PERFORMANCE HANDBOOK

VOLUME IX - UH-IH (HUEY)

NOVEMBER 1978

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Lin

DEPARTMENT OF THE ARMY
US ARMY TRADOC SYSTEMS ANALYSIS ACTIVITY
WHITE SANDS MISSILE RANGE
NEW MEXICO 88002

49 U 22 079

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position.

WARNING

Information and data contained in this document are based on the input available at the time of preparation. The results may be subject to change and should not be construed as representing TRADOC position unless so specified.

DEPARTMENT OF THE ARMY
US ARMY TRADOC SYSTEMS ANALYSIS ACTIVITY
WHITE SANDS MISSILE RANGE
NEW MEXICO 88002

(14)	
TRASANA-MR-	
IECHNICAL REPORT, NO. 3-78 - VOL-	9

FLIGHT PROFILE PERFORMANCE HANDBOOK. YOLUME IX . UH-IH (HUEY) .

PREPARED BY

Nathan H. Cleek, Jr Alan J./Wolfe

1060547

16 AD63 754

STEINGSTICS/AVAILABILITY &

12, 128p. 1

DEPARTMENT OF THE ARMY US ARMY TRADOC SYSTEMS ANALYSIS ACTIVITY WHITE SANDS MISSILE RANGE **NEW MEXICO 88002**

499764

89 "O1 22

Approved for public release; Distribution Unlimited

DISTRIBUTION STATEMENT A

ACKNOWLEDGMENT

At AVRADCOM, Mr. Harold Sell, Mr. James O'Malley and Mr. Dale Pitt provided and validated the data in the Handbook. They also assisted in devising the formats to assure clarity in the data presentation and discussion.

At TRASANA, Mr. Frank Gonzalez provided help and guidance during the preparation of the Handbook.

TABLE OF CONTENTS

<u></u>	Page
Acknowl edgment	iv
Index of Tables and Figures	vi
Chapter 1 - Introduction	1
Chapter 2 - Flight Profile Example	5
Chapter 3 - Performance Data Table Descriptions	11
Chapter 4 - HUEY Performance Data Tables	25
Appendix A - Functions for Calculating Basic Fuel Flow	117
Appendix B - Function for Calculating Delta Fuel Flow for Drag	121
Appendix C - Function for Calculating Ground Idle Fuel Flow	125
Appendix D - Functions for Calculating Gross Weight Limits for Takeoff	127
Appendix E - Short Description of HUEY Data Source	131

INDEX OF TABLES AND FIGURES

	Page
UH-1H (HUEY)	vii
Illustration 2-1 - Mission Example	5
Table 2-1 - Flight Plan Example	6
Table 2-2 - Ground Idle Fuel Flow Table	7
Table 2-3 - Basic Fuel Flow	8
Table 2-4 - Completed Flight Plan Example	9
Table 3-1 - Basic Fuel Flow	13
Table 3-2 - Delta Fuel Flow for Drag	14
Figure 3-1 - Takeoff Criteria	17
Table 3-3 - Gross Weight Limit for Takeoff	19
Table 3-4 - Gross Weight Limit for Takeoff	20
Table 3-5 - Velocity Limits Table	22
Table 3-6 - Expanded Flight Plan Example	23
Tables 4-1 to 4-24 - Basic fuel Flow data	27
Tables 4-25 to 4-48 - Delta Fuel Flow for Drag Data	53
Table 4-49 - Ground Idle Fuel Flow Data	79
Tables 4-50 to 4-55 - Gross Weight Limits Data	83
Tables 4-56 to 4-79 - Velocity Limits Data	91

CHAPTER 1

INTRODUCTION

1. PURPOSE

The purpose for preparing this handbook series is fourfold: (a) to validate HUEY performance data quickly, (b) to reduce the manpower and time to prepare accurate flight profiles, (c) to standardize performance data so that the analysis community can benefit from a single reference in conducting studies and (d) to provide a handbook that can be used for training in the mission profile planning area.

2. BACKGROUND

The HUEY performance data contained in this Flight Profile Performance Handbook (FPPH) series was originally acquired as a data base for the Aircraft Mission Processing Simulation (AMPS) model. AMPS is a computer program developed by the Aviation Systems Analysis Branch of the US Army TRADOC Systems Analysis Activity (TRASANA) to support Cost and Operational Effectiveness Analyses (CCEAs). AMPS generates detailed flight profiles for a wide variety of helicopter missions. The data was provided TRASANA by the Army Aviation Research and Development Command (AVRADCOM) and was the most accurate data available to AVRADCOM at the time of handbook publication. In structuring the data base for AMPS it was noted that the data, when properly organized, could provide a method of doing quick and simple flight profile simulations. This volume presents the HUEY data and explains how it can be used.

3. OBJECTIVES OF THE HANDBOOK

- a. <u>Data Validation</u>. This volume of the handbook contains tables with the precise performance data and format required to develop flight profiles for computer simulations. Using the handbooks as a reference, the individual project manager (PM) will be able to quickly validate or update as required all associated data contained in the different tables. If this procedure is followed by the various PMs, support of Helicopter COEAs and other analyses can be efficiently implemented.
- b. Flight Profile Development. Much of the manpower and time spent in preparing flight profiles for supporting aircraft COEAs is dedicated to look-up, correlation and validation of performance data. Once the procedure contained in this handbook is implemented, flight profiles can be easily prepared. What normally took one man 4 to 5 days to prepare can now be prepared in 3 to 4 hours.

- c. Standardization of Performance Data. Each of the PMs has been contacted by AVRADCOM to validate the performance data contained in each handbook in this series. Once each handbook is published, the data contained will be kept current as of the publication date. Since the requests for current information are constantly being forwarded to the PMs by analysis groups, this handbook can be a reference and assure a commonality in studies within the community.
- d. Training for Planning Missions and Flight Profiles. For training purposes each handbook can stand alone. It is only a matter of following the example provided and applying the proper data to fit the flight profile desired. Although the example shown is simplistic, the methodology may be expanded to apply to any flight profile no matter how complex.

4. OTHER VOLUMES

This handbook is one of a series that covers the helicopters in the US Army inventory. The complete set of handbooks and their subjects are:

Volume I - FPPH Description

Volume II - UH-60A (BLACKHAWK)

Volume III - AH-1G (COBRA)

Volume IV - AH-1S (COBRA)

Volume V - YAH-64 (Advanced Attack Helicopter [AAH])

Volume VI - OH-58C (KJOWA)

Volume VII - CH-47 (CHINOOK)

Volume VIII - CH-54 (TARHE)

Volume IX - UH-1H (HUEY)

5. GENERAL HANDBOOK DESCRIPTION

a. <u>Performance Data</u>. The data contained in these volumes is HUEY performance data compiled from the results of actual experiments. It is not engineering data and is not intended to serve as a base for future helicopter construction or acquisition. The more mature the helicopter becomes, the less likely there will be a change in the basic performance data.

b. <u>Handbook Organization</u>. This volume is one of a series of volumes as identified in paragraph 4 above. Volume I is a description of the methodology used to develop the tables for each of the other volumes. This volume and all other volumes except Volume I provides a simplified flight profile example in Chapter 2. Chapter 3 provides an explanation of each of the five types of data tables contained in the handbook. The five types of tables deal with: (1) Basic Fuel Flow Data, (2) Delta Fuel Flow for Drag Data, (3) Ground Idle Fuel Flow Data, (4) Gross Weight Limits Data and, (5) Velocity Limits Data. Chapter 4 contains the actual tables to be used for developing flight profiles.

CHAPTER 2

FLIGHT PROFILE EXAMPLE

1. GENERAL

This chapter provides an example of how to develop a flight profile, albeit simple, that can be extended to cover any number of stops, loads and distances all depending on helicopter capability and fuel available.

2. DISCUSSION

a. The main question this example of a flight profile will answer is, "Do I have enough fuel to fly the proposed mission?"

b. Suppose a pilot is to fly a simple resupply mission in a UH-IH (HUEY) helicopter that calls for flying (as shown in illustration 2-1) from point A (the air base), to point B (the pick up area) to point C (the drop off area) and return to A.

Illustration 2-1

c. The other information given is airspeed (AS) from A to B which is to be 70 knots (kts), from B to C 40 kts, and from C to A 70 kts. The HUEY helicopter is to be flown, at 4,000 ft for all legs at an ambient temperature of 15°C, and an idle altitude for take off, pick-up and drop off areas (ground level) of 2000 ft*. The mission plan also shows 10 minutes idle at A before take off, 20 minutes idle at B while loading, 20 minutes idle at C while unloading and 10 minutes idle on return to A before shut down. The HUEY will be flown at a gross weight (GW) of 6,000 lbs from A to B and from C to A, while the cargo from B to C will be 3,000 lbs.

^{*}All altitudes are in reference to sea level.

d. The flight plan is prepared by drawing up a table similar to Table 2-1 below. By filling in the blanks under fuel, it can be determined if the total is too large for the helicopter.

TABLE 2-1

Helicopter: HUEY

Altitude: 4000 ft flight/2000 ft idle

Temperature: 15°C

LEG	DISTANCE	AS	TIME	GH (1bs)	FUEL
Idle 0 A	-	-	10 min	-	
A-B	70 N.M.	70 kts) hr	6,000	
Idle @ B	-	-	20 min	-	
В-С	80 N.M.	40 kts	2 hr	9,000	
Idle 0 C		-	20 min	-	
C-A	140 N.M.	70 kts	2 hr	6,000	
Idle @ A	-	-	10 min	-	

e. first fill in Idle 0 A, Idle 0 B, Idle 0 C and 2nd Idle 0 A since they will all come from Table 2-2. In each case the idle is at 2000 ft and a temperature of 15° C. Consulting the ground idle fuel shown in Table 2-2, the value of 309 lbs/hr is at the intersection of 2000 ft and 15° C.

1st Idle $0 A = 1/6 \times 309 = 52 \text{ lbs}$

Idle θ B = 1/3 x 309 = 103 lbs

Idle θ C = 1/3 X 309 = 103 1bs

2nd Idle θ A = 1/6 X 309 = 52 lbs

TABLE 2-2

GEOUND IDLE FUEL FLOW AIRCRAFT - UH-1H HUEY

			PRESSURE	PRESSURE ALTITUDE (FT)	(F T)		
		SEA LEVEL		4000	0009	8,00	1 0000
	-25 C	320	303	288	274	260	246
DEGREES	3 5-	323	906	291	277	492	250
CENTIGRADE	15 C	326	309	294	280	268	254
	35 C	330	312	298	284	271	259

ENTRIES ARE AIRCRAFT FUEL F.OW RATES IN LBS/HR

TABLE 2-3

FUEL. FLAR RATES FOR THE GIVEN CONDITIONS IN LBS/HR PRESSURE: 4000 FT TEMPERATURE: 15 C BASIC FUEL FLOW

		>
		_
		_
•		

GROSS				F 1 2	FLIGHT HODE (KTS)	(KTS)				
	HIGE	HOGE	NOE	0.7	90	80	100	120	140	160
.000	454	476	439	402	403	425	481	595	682	872
4.000	497	521	472	422	419	441	56 h	580	715	906
000.	938	572	509	447	431	454	513	808	249	953
2.500	261	598	530	461	438	195	524	919	769	981
00019	20%	626	551	476	446	469	535	638	290	1010
0.800	9	663	577	492	458	479	546	653	810	1038
• ,000	559	162	409	205	473	493	559	899	631	1067
9,500	659	716	620	524	490	910	574	687	840	1111

Notice the conversion from minutes to hours. These values must be used because fuel flow is in lbs/hr.

- f. The fuel flow for the three legs of the mission are calculated next. The heading on Table 2-1 shows a need for the Basic Fuel Flow data chart for the HUEY helicopter flying at 4000 ft and at 15°C ambient temperature. Table 2-3 contains the necessary information.
- (1) Leg A-B is at 70 kts and 6,000 lbs. This is not one of the values given but 60 kts is 419 lb/hr and 80 kts is 441 lb/hr. Interpolation gives the value of 430 lb/hr for a 70 kts airspeed. Since the leg is one hour long:

Leg A-B = $1 \times 430 = 430 \text{ lbs}$

(2) Leg B-C is at 40 kts and 9,000 lbs. This value is in the table; 507 lbs/hr. Since the leg is two hours long:

Leg B-C = $2 \times 507 = 1014$ lbs

(3) Leg C-A is at 70 kts and 6,000 lbs. This fuel flow rate was computed above to be 430 lbs/hr. Since the leg is two hours long:

Leg $C-A = 2 \times 430 = 860 \text{ lbs.}$

g. The flight profile can be finished by filling in Table 2-1 as shown in Table 2-4.

TABLE 2-4

Helicopter: HUEY

Altitude: 4000 ft flight/2000 ft Idle

Temperature: 15°C

LEG	DISTANCE	AS	TIME	GW (1bs)	FUEL
Idle @ A	-	-	10 min	-	52 1bs
Л -В	70 N.M.	70 kts	1 hr	6,000	430 lbs
Idle @ B	-	-	20 min	-	103 lbs
В-С	80 N.M.	40 kts	2 hr	9,000	1014 1bs
Idle 0 C		-	20 min	-	103 1bs
C-A	140 N.M.	70 kts	2 hr	6,000	860 1bs
Idle @ A	-	-	10 min	-	52 1bs
	*			TOTAL	2614 1bs

- h. Although only two look-up tables were used for this example, each type of table has several conditions that are changed so that a wide band of performance parameters can be addressed. The discussion on each of the five types of tables is contained in Chapter 3. A succinct description of each of these five types of tables is:
- (1) Basic Fuel Flow Data: Gives the rate the aircraft uses fuel dependent on the given flight conditions.
- (2) Delta Fuel Flow for Drag Data: Gives the additional rate of fuel flow to be added to the basic rate for external drag.
- (3) Ground Idle Fuel Flow Data: Gives the rate fuel is used when the aircraft is on the ground with its engine running.
- (4) Gross Weight Limits Data: A check on whether or not the aircraft has enough lift to take off with a given weight.
- (5) Velocity Limits Data: Gives the optimum (long range) speed and maximum rates of speed.

CHAPTER 3

PERFORMANCE DATA TABLE DESCRIPTIONS

1. GENERAL

This chapter describes each of the five basic type tables used for developing flight profiles. The variables within each type of table are described as well as how the specific data required can be extracted.

2. BASIC FUEL FLOW DATA

- a. The basic rate of fuel flow* is determined by five variables:
- (1) Type of aircraft
- (2) Altitude (Air Pressure)**
- (3) Temperature***
- (4) Gross Weight****
- (5) Flight Mode
- b. In each table (see Table 3-1) within the basic type, the first three variables are held constant for the whole table, i.e., (a) Type of Aircraft, (b) Altitude (Air Pressure) above sea level, and (c) Temperature. These variables are stated at the top of each table.
- c. There are eight rows of fixed gross weights: 5,000 lbs, 6,000 lbs, 7,000 lbs, 7,500 lbs, 8,000 lbs, 8,500 lbs, 9,000 lbs and 9,500 lbs. The ten columns are fixed flight modes.
- (1) The first column is Hover In Ground Effect (HIGE). HIGE is used for hovers at a height of 2 feet or less and a component of forward flight 10 kts or less.
- (2) The second column is Hover Out of Ground Effect (HOGE). This is used for hovers at a height of more than 2 feet.

^{*}The basic fuel flow data represents a clean drag configuration with all doors closed, no wing stores, and no external sling loads.

^{**}All altitudes or air pressures are feet above sea level.

^{***}For simplicity, all temperatures are considered to be the average temperature in which the helicopter is operating (Degrees Centigrade).

****Total vehicle weight in pounds.

- (3) The third column is Nap of the Earth (NOE). This is defined as all flight for variable speeds from 0 to 40 kts and variable altitudes.
- (4) The remaining seven columns are for given airspeeds* (in kts) as the flight mode.
- d. There are 24 of these basic fuel flow charts. Each chart is for a different combination of Air Pressure (Altitude) and temperature.
- e. The Basic Fuel Flow Data is the main table used in simulating a flight profile. For example, assume a pilot's flight path will require 30 minutes of flight at 80 kts airspeed, 4000 ft. altitude, 15°C and a gross weight of 8,000 lbs in a UH-1H helicopter. Using Table 3-1 at a gross weight of 8,000 lbs and an airspeed of 80 kts, the helicopter will use 469 lbs/hr fuel, i.e., for 30 minutes, 235 lbs of fuel will be used.
- f. The gross weight values selected provide the basic range of load carrying capability for the ten flight modes of the HUEY helicopter. Within the gross weight band shown, linear interpolation** is quite accurate for estimating the fuel flow rates.
- g. For example, using Table 3-1, if the helicopter's gross weight was 6,500 lbs and if the flight mode was 60 kts, the fuel flow cannot be found directly. But by interpolating between 60 kts, 6,000 lbs 419 lbs/hr and 7,000 lbs 431 lbs/hr, the basic fuel flow rate for 5,500 lbs is 425 lbs/hr. In this example, if the helicopter flies in this mode for 30 minutes, 213 lbs of fuel will be used.
- h. As altitude and/or temperature changes occur, different tables are used to look up the aircraft's basic fuel flow rate for each leg of the flight path. Care must be taken that the proper table is used.
- i. Appendix A contains a set of functions that will give a good approximation of the basic rate of fuel flow.

3. DELTA FUEL FLOW FOR DRAG DATA

- a. The delta fuel flow for drag is also determined by five variables:
- (1) Type of Aircraft
- (2) Altitude (Air Pressure)
- (3) Temperature
- (4) Drag Surface (Equivalent Square Footage)
- (5) Air Speed

^{*}All references to airepeeds are to true airepeeds.

**All references to interpolation are linear interpolations. See FPPH,

Volume I, Chapter 3 for a discussion on the accuracy of interpolation.

TABLE 3-1

FUEL FLAM RATES FOR THE GIVEN CONDITIONS IN LBS/HR Pressure: 4000 FT TEMPERATURE: 15 C

AIRCRAFT - UH-1H

HUEY

					:		;			•
808		1) I T J	FLIGHT HODE (KTS)	(KTS)				
11.03	HIGE	HOGE	NOE	40	90	80	100	120	1 40	160
5,000	45.9	476	439	402	403	425	481	595	289	872
0.000	497	521	472	422	414	144	564	085	512	908
7,000.	538	572	808	447	431	454	513	709	646	953
7,500	561	598	830	461	438	194	524	519	692	981
8,000	564	626	155	476	944	469	515	889	066	1010
6,500	408	663	577	492	458	479	9 h S	£ 5 9	018	1038
00000	533	107	509	507	473	493	655	899	1 6 8	1067
9,500	659	716	620	524	490	510	625	189	098	1111

TABLE 3-2

CORRECTION FUE! FLOW LBS/HR FOR EXTERNAL DRAG PRESSURE: 4000 FT TEMPERATURE: 15 C AIRCRAFT = UH=1H

HUEY

			AIR	SPEED	IN KTS	S		
		40	9	80	100	120	140	160
DRAG	5	-	#	٥	17	7.5	55	98
N.	15	3	11	27	53	9 6	175	295
SOUARE	25	9	61	# #	60	168	301	495
	35	8	26	29	125	239	436	569
•	45	01	34	79	163	316	569	994
	55	12	4.1	44	203	394	703	1094

- b. Like the basic fuel flow tables, there are 24 tables for delta fuel flow for drag.
- c. There are six fixed rows of equivalent square feet of drag: 5, 15, 25, 35, 45, and 55 equivalent sq ft.
- d. The seven columns are for airspeeds in kts of: 40 kts, 60 kts, 80 kts, 100 kts, 120 kts, 140 kts, and 160 kts.
- e. When an external load is placed on the helicopter, the amount of fuel consumed per hour increases. The delta fuel flow for drag tables indicate how much extra fuel consumption to add to the basic fuel flow rate.
- f. In the example given earlier, a 30 minute flight at 80 kts airspeed, 4000 ft altitude, 15°C and a gross weight of 8,000 lbs was used. Using the basic fuel flow tables, the basic fuel flow rate was 469 lbs/hr. Assuming for this new example that part of the load is external and inducing a 35 equivalent sq ft external drag, the delta fuel flow for drag (Table 3-2) shows 62 lbs/hr should be added to the basic fuel flow rate. Thus the basic fuel flow rate becomes 469 + 62 or 531 lbs per hour and for a half-hour flight, 266 lbs of fuel will be used instead of the 235 lbs figured without an external load.
- g. Appendix B contains a function that will give a good approximation of the delta fuel flow for drag.

4. GROUND IDLE FUEL FLOW DATA

- a. The ground idle fuel flow rate is determined by only three variables:
 - (1) Type of Aircraft
 - (2) Altitude (Air Pressure)
 - (3) Temperature
- b. There is only one ground idle fuel flow table (shown as Table 2-2). The table has four rows of temperatures: -25°C , -5°C , 15°C and 35°C , and six columns of altitudes: Sea Level, 2000 ft., 4000 ft., 6000 ft., 8000 ft., and 10000 ft.
- c. The ground idle fuel flow table is used as discussed in the example flight profile in Chapter 2 (Table 2-2). The UK-1K helicopter idling for 20 minutes at 2000 ft. altitude and 15°C, (across the row labeled 15°C and down the column labeled 2000) find the intersection at 309. Thus, the UK-1K uses 309 lbs/hr at these conditions and since it is idling for 20 minutes or 1/3 of an hour, it will use 103 lbs of fuel.

- d. If the helicopter had only been 1000 ft. above sea level, the consumption rate would be found by interpolating between the sea level rate of 326 lbs/hr and the 2000 ft. rate of 309 lbs/hr which would be 317 lbs/hr. In 1/3 of an hour 106 lbs of fuel would be used.
- e. Appendix C contains a function that will give a good approximation of the ground idle fuel flow.

5. GROSS WEIGHT LIMITS DATA

- a. Gross weight limits tables are intended to show whether or not the aircraft can safely take off for four sets of criteria. These criteria are defined in the following paragraphs:
- (1) Criteria #1 is based on the helicopter using 100% of Maximum Power for take off and having enough power to lift straight up and above ground effect (See Figure 3-1). Once it is in hovering above ground effect level, the helicopter begins forward flight until it acquires transitional lift and is able to climb at 450 ft/min (a desired standard rate of climb) to the desired altitude. This criteria has some risk since the pilot has no reserve power. It has less risk than Criteria #3 but more than Criteria #2 thus it is considered to be "Middle of the Road" risk.
- (2) Criteria #2 (Figure 3-1) is based on the helicopter using 95% of Maximum Power for take off and enough power to immediately begin to climb at a rate of 450 ft/min. This is the least risky criteria since the pilot has power in reserve and is still able to climb at a satisfactory rate.
- (3) Criteria #3 (Figure 3-1) has the most risk. Using 100% of Maximum Power the helicopter will only hover in ground effect. Therefore, at an altitude of 2 feet or less, the pilot must begin forward flight and gradually increase airspeed to acquire transitional lift to climb. The reasons for its high risk are readily apparent. First, there is no power in reserve. Second, the pilot must begin forward flight at a very low altitude.
- (4) Criteria #4. Structural Gross Weight Limits is the total upper limit of gross weight the helicopter can carry under any take off criteria.
 - b. Gross Weight Limits are determined by four variables:
 - (1) Type of Aircraft
 - (2) Criteria Chosen
 - (3) Altitude (Air Pressure)
 - (4) Temperature

CRITERIA #2 (LEAST RISKY)

95% OF RATED POWER. VERTICAL RATE OF CLIMB 450 FT/MIN, HOGE

NOTHING TO SPARE.

CRITERIA #3
(MOST RISKY)

TRANSITIONAL LIFT CLIMB
HIGE

NOTHING TO SPARE.

FIGURE 3-1

- c. Additionally, Criteria #1, #2, and #3 differ due to engine power limits or transmission power limits of the aircraft. Thus there are six tables:
 - (1) Criteria #1 (Due to engine)
 - (2) Criteria #1 (Due to transmission)
 - (3) Criteria #2 (Due to engine)
 - (4) Criteria #2 (Due to transmission)
 - (5) Criteria #3 (Due to engine)
 - (6) Criteria #3 (Due to transmission)
- d. The structural gross weight limit is a single value for each helicopter and is only dependent on the type helicopter. The HUEY structural gross weight limit is given as 9,500 lbs and is listed at the bottom of each table. As the name implies, it is simply not safe to expect the UH-lH structure to maneuver normally when the total weight is larger than that value.
- e. In simulating inflight profile, the gross weight limits tables are used to check whether the aircraft is going to be too heavy to take off under the given conditions. As an example, assume a HUEY pilot planned a mission that called for using take off criteria.#1 and the take off was to be at 6000 ft., 15°C, and a gross weight of 8,800 Three checks would be required: First, does this gross weight exceed the structural gross weight limit? Second, does it exceed Criteria #1 (due to transmission)? Third, does it exceed Criteria #1 (due to engine)? In the example given, the answer to all three questions is "No", the take off will not exceed aircraft limits. (Tables 3-3 and 3-4)
- f. If the assigned gross weight had been 9,000 lbs, it would have exceeded the value given for 6,000 ft. and 15°C at Criteria #1 (Due to engine). (Table 3-3) The mission could not be flown as planned. The plan could be changed, for example to take off at 4000 ft. (which might not be practical) or change to take off Criteria #3 (which is more risky but has higher limits).
- g. If the assigned gross weight had been 9,700 lbs., it would have exceeded the structural limits. To perform the mission the only choices would be to lighten the load or get another type helicopter.
- h. Appendix D contains a set of functions that will give a good approximation of the gross weight limits for takeoff.

TABLE 3-3

COUE TO ENGINE)

FOR TAKEOFF CRITERIA #1

1008 OF MAXIMUM POWER (HOGE)

AIRCRAFT - UH-1H

HUEY

		PRES	PRESSURE ALTITURE	TURE (FT)			
		SEA LEVEL	2002	4000	0009	8.00	1000
TEMBERAGIOS	-25 C	13412	12622	11705	10878	10095	9348
	⊃ S •	12459	11357	10808	10038	4626	8594
NTIG	15 C	11154	10367	9557	9854	8 1 58	7537
	35 C	9576	8198	7982	7386	6831	6285

ENTRIES ARE AIRCRAFT GROSS WEIGHTS IN LBS

STRUCTURAL GROSS WEIGHT LIMIT: 9500 LBS

TABLE 3-4

GROSS WEIGHT LIMITS
(DUE TO TRANSMISSION)
FOR TAKEOFF CRITERIA #1
1008 OF MAXIMUM POWER (HOGE)
AIRCRAFT = UH-IM

HUEY

•	PRES	PRESSURE ALTITUDE (FT)	TUBE (FT)			
	SEA LEVEL	2000	000 tr	0009	8000	1 0000
.25 C	10117	5466	9742	9523	9352	9161
٠ • •	10001	9626	9584	9430	9211	8658
15 C	9825	9618	9470	9252	8701	8377
35 C	9643	1616	9297	8773	8394	8448

ENTRIES ARE AIRCRAFT GROSS WEIGHTS IN LBS

STRUCTURAL GROSS WEIGHT LIMIT: 9500 LnS

6. VELOCITY LIMITS DATA

- a. There are various types of data given in these tables but like the gross weight limits tables, they are primarily restraints on what can be expected of a helicopter in planning a mission profile. Velocity limits tables are influenced by five variables:
 - (1) Type of aircraft
 - (2) Air pressure (altitude)
 - (3) Temperature
 - (4) Gross weight
 - (5) Condition or limit
- b. Items (1) through (4) are self-explanatory. There are five types of information that can be listed under (5):
 - (1) Long range
 - (2) Maximum continuous power
 - (3) Maximum power (due to engine limits)
 - (4) Transmission limits
 - (5) V_{ne}(velocity never exceed)
- c. For each aircraft, there are 24 Velocity Limits Tables depending on air pressure and temperature combination. Table 3-3 is an example of the content of the Velocity Limits Table.
- d. The two columns under Long Range (Table 3-5) give the optimum speed and fuel flow for each set of variables #1 through #4 above. Thus the HUEY helicopter operating at 2000 ft., temperature 15° C, and having a gross weight of 8,000 lbs will fly a longer distance if the velocity is kept at 123 kts and will use 686 lbs/hr of fuel at that velocity.
- e. Maximum continuous power gives the fastest speed at which a helicopter can fly for long periods (30 minutes or more) and the associated fue; flow rate. An example from Table 3-5 would be a HUEY helicopter at 2000 ft. and 15°C weighing 8,000 lbs could fly 129 kts with a fuel usage of 730 lbs/hr.

TABLE 3-5

VELOCITY LIMITS TABLE

(INCLUDING FUEL FLOW RATES)

PRESCURE: 2000 FT TEMPERATURE: 15 C

AIRCRAFT - UH-IH

40£Y

	-160	35 28 28 69 19	E TO	X X X X X X X X X X X X X X X X X X X	X O C	大 (((((((((((((((((((TRANS	MISSION MITS	VELOCI	11Y NEVER
	>X ====================================	(. 65/HR	(KTS)	(LBS/HR)	(KTS)	(LBS/HR)	(KTS)	(LBS/HR)	K TEL	(LBS/HR)
FERENS FERENS FERENS										
8.000	129	959	140	730	147	796	142	744	123	620
00019	130	676	137	730	h b l	796	139	744	123	632
7,000	55	697	134	730	161	796	136	744	123	059
7,500	124	678	131	730	139	796	133	744	123	999
9 1 000	123	989	129	730	127	796	131	b b L	120	663
91800	123	169	127	730	134	196	129	h h L	811	660
0000.	1.10	683	124	730	132	796	126	446	511	999
9.500	1.17.	169	122	730	130	196	124	744	113	662

- f. Maximum power (engine and transmission limits) show the maximum speeds the aircraft can structurally attain for short periods of time (less than 30 minutes). Thus the HUEY helicopter at 2000 ft and 15°C weighing 8,000 lbs has an engine that is capable of producing enough power to fly 137 kts but the transmission limits the aircraft to 131 kts. Between these two columns then, the flight cannot exceed 131 kts with a fuel flow rate of 744 lbs/hr.
- g. There is another limiting factor called V (velocity never exceed). This velocity limit is determined by helicopter structural considerations. Vne's function like maximum power limits, that is, it lists velocities that the HUEY cannot exceed for the given conditions. Since a value of 120 kts is listed for 2,000 ft., 15°C, and 8,000 lbs, this implies that none of the values in d, e, or f can be reached.

7. DETAILED FLIGHT PROFILE USING ALL PERFORMANCE DATA TABLES

The example of a Flight Profile in Chapter 2 was intentionally simplified to assure clarity. The description of the various tables in this handbook, however, indicates a more complex set of considerations are normally encountered in developing the flight profile. With the description provided in this chapter, additional information should be included in the flight plan beyond that shown in the example and a suggested format is provided below in Table 3-6.

TABLE 3-6

Helicopter: Altitude: Temperature:

LEG	DISTANCE	AS	CHECK VELOCITY LIMIT	TIME	GW (LBS)	DRAG	FUEL
							·

Needed for each take off:
Weight at take off:
Type of take off:
Check transmission limits:
Check engine limits:
Check structural gross weight limit:

CHAPTER 4

HUEY PERFORMANCE DATA TABLES

GENERAL

The following tables are the major information presented in this hand-book. If the procedure for using them is understood, a flight profile for the HUEY helicopter can be prepared in a matter of a few hours. The performance data contained have been reviewed for accuracy and are corrected to the best of our knowledge. The tables are organized in the following manner:

Tables 4-1 to 4-24	Basic Fuel Flow Data
Tables 4-25 to 4-48	Delta Fuel Flow for Drag Data
Table 4-49	Ground Idle Fuel Flow Data
Tables 4-50 to 4-55	Gross Weight Limits Data
Tables 4-56 to 4-79	Velocity Limits Data

BASIC FUEL FLOW DATA
TABLES

TABLE 4-1

BASIC FUEL FLOW
FUEL F, TW RATE, FOR THE GIVEN CONDITIONS IN LBS/HR
PRESSURE: SEA LEVEL TEMPERATURE: -25 C
AIRCRAFT - UH-IH

SNO 8.2	A			FL1	FLIGHT MODE	(KTS)				
(188)	HIGE	HOGE	NOE	9.5	09	90	100	120	140	161
8,000	480	497	472	8 17 17	462	508	609	807	1132	1635
000 4 9	516	535	200	594	644	525	628	847	1203	1734
7,000	553	91	532	485	664	546	999	892	1278	1843
7,500	\$72	603	550	964	509	959	682	617	1320	1901
0000	592	627	568	. 805	517	. 295	669	946	1364	1964
0.500	612	653	587	521	526	577	718	- 416	1412	2031
0000	634	089	809	535	535	587	740	1012	9941	2104
9,500	959	707	629	059	543	265	763	1050	1521	2181

TABLE 4-2

BASIC FUEL FLOW FUEL FL'AW RATES FOR THE GIVEN CONDITIONS IN LBS/HR Pressure: Sea Level Temperature: -5 c

AIRCRAFT - UH-IH

HUEY

			•	ļ						
01 01 01 01				FLI	FLIGHT MODE	MODE (KTS)				
(503)	HIGE	390H	NOE	0 %	09	80	100	120	140	091
. 5,000.	491	508	478	844	h 5 h	887	895	889	895	1205
6,000	5.28	845	909	594	470	504	583	104	929	1263
7,000	898	249	538	485	488	522	009	742	696	1324
71500	808	919	554	964	96h	163	609	151	993	1360
8.000	909	169	575	808	504	539	619	775	1021	1 400
9,500	626	899	595	522	511	246	169	964	1052	1445
00000	689	669	615	536	518	554	643	820	5901	1493
0,500	672	721	636	551	526	295	959	7 7 8	1120	1543

30

TABLE 4-3

BASIC FUEL FLOW
FUEL FLOW RATES FOR THE GIVEN CONDITIONS IN LBS/HR
PRESSURE: SEA LEVEL TEMPERATURE: 15 C
AIRCRAFT - UH-IH

HUEY

	•									
62055 PF16176) I 7 g	FLIGHT HODE (KTS)	(KTS)				
1.65)	HIGE	HOGE	NOE	40	09	9	100	120	140	091
S + 000.	zos	618	984	453	455	480	242	949	77.0	656
00019	0 6 9	195	818	470	470	495	999	959	793	1016
00012	578	909	548	064	485	===	575	673	929	1050
7,500	865	169	995	203	492	919	583	683	9+8	1072
0000	619	189	985	<u>515</u>	864	\$28	592	569	663	1007
0.500	157	663	909	625	504	531	209	708	663	1126
9,000	599	010	429	776	212	538	613	721	#06	1154
00516	289	141	059	655	522	547	625	246	924	1163

TABLE 4-4

BASIC FUEL FLOW FUEL FLOW RATES FOR THE GIVEN CONDITIONS IN LBS/HR PRESSURE: SEA LEVEL TEMPERATURE! 35 C

AIRCRAFT - UN-1H HUEY

										•
0 C C C C C C C C C C C C C C C C C C C				FL1	FLIGHT MODE (KTS)	(KTS)				
(168)	HIGE	HOGE	NOE	40	09	00	100	120	140	091
8,000	513	530	495	654	654	084	536	621	733	863
000 • •	551	573	525	264	474	262	548	169	743	948
7,000.	591	. 621	560	499	487	507	562	949	759	416
7,500.	411	9 % 9	578	115	493	512	570	559	770	926
. 6,000.	633	179	598.	575	864	518	579	999	783	943
6,500.	959	849	619	539	505	525	589	677	764	959
0000	679	73.1	643.	554	515	533	665	989	608	973
9,500	703	769	699	695	528	545	609	697	821	786

TABLE 4-5

BASIC FUEL FLOW
FUEL. FLOW RATES FOR THE GIVEN CONDITIONS IN LBS/HR
PRESSURE: 2000 FT TEMPERATURE: -25 C
AIRCRAFT + UH-IH

HUEY

				,						•
6. 04. 04.	e in materials and the second			FL 1	FLIGHT MODE (KTS)	(KTS)				
"1(88)"	HIGE	390H	NOE	04	09	80	100	120	140	160
. \$,000.	459	524	077	422	435	478	573	764	1076	1554
0000	495	515	478	441	484	497	409	908	1151	1657
7,000.	633	562	512	462	473	518	635	854	1229	1771
7,500	553	287	530	474	482	529	652	883	1274	1834
0000	573.	612	550	487	166	539	672	916	1323	1902
0 2 5 6 0	. 595.	639	570	501	664	845	769	951	1376	1976
9,000	617	667	592	517	508	558	7,18	066	1433	2055
9,500	149	969	\$19	533	517	578	744	1031	1493	2136

TABLE 4-6

BASIC FUEL FLOW
FUEL FLAW RATES FOR THE GIVEN CONDITIONS IN LBS/HR
PRESSURE: 2000 FT TEMPERATURE: -5 C
AIRCRAFT - UH-IH

85 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6				FLI	FLIGHT MODE (KTS)	(KTS)				
(188)	HIGE	HOGE	NOE	40	09	90	1 00	120	1 40	091
\$.000.	694	786	† 5 †	72 h	42B	484	533	S # 9	**	1140
00000	905	528	181	0 % %	まるの	476	849	676	879	1196
7,000	515	574	518	462	462	* 6 *	567	705	926	1267
7,500	395	009	537	424	694	502	577	723	689	1307
0,000	\$ 87	729	557	488	946	605	589	745	796	1383
005.5	409	789	577	502	483	219	601	294	101	1401
4,000	632	087	599	818	492	525	614	793	1054	1462
9,500	989	714	624	\$33	502	536	643	817	1092	1502

TABLE 4-7

BASIC FUEL FLOW
FUEL FLOW RATES FOR THE GIVEN CONDITIONS IN LBS/HR
PRESSURE: 2000 FT TEMPERATURE: 15 C
AIRCRAFT - UH-IH

										• 1
68088 4616114			•	FLIGHT	SHT MODE	MODE (KTS)				
(188)	H J GE	HOGE	BON	40	09	00	100	120	140	160
8,000	480	467	29h	426	428	452	513	509	729	929
0000.9	518	240	764	445	222	467	526	617	758	956
7,000	857	508	528	467	458	482	545	636	786	966
.7,500	678	614	547	097	464	488	555	647	808	1024
0000	001	0 + 9	295	56h	470	495	595	199	828	1052
0 5 5 0	623	667	588	605	478	503	573	474	948	1081
0000	647	702	613	525	489	513	585	969	998	1109
9,500	672	742	641	540	503	526	265	713	887	1137

TABLE 4-8

BASIC FUEL FLOW
FUEL FLOW RATES FOR THE GIVEN CONDITIONS IN LBS/HR
PRESSURE: 2000 FT TEMPERATURE: 35 C
AIRCRAFT - UM"IH

		(A-i								
7088 1687				FLIGHT		HODE (KTS)				
	HIGE	HOGE	NOE	0	0.4	80	150	120	140	1 60
, 000	400	808	024	433	432	451	505	580	989	828
• 000	\$29	553	205	25h	944	594	515	265	269	688
000	870	707	539	476	458	477	530	609	717	863
1800	168	627	559	064	h9h	482	623	620	729	879
000	111	689	580	504	1.4 %	489	645	632	743	768
1500	637	069	+09	615	482	664	655	249	954	906
000	299	726	630	534	96%	511	949	759	892	921
0051	687	743	647	5.50	512	527	£85	599	786	***

TABLE 4-9

BASIC FUEL FLOW
FUEL FLOW RATES FOR THE GIVEN CONDITIONS IN LBS/HR
PRESSURE: 4000 FT TEMPERATURE! -25 C
AIRCRAFT - UH-IH

¥UEY

SOS				F. 1	FLIGHT MODE (KTS)	(KTS)				
(103)	H16E	HOGE	NOE	0.4	0,9	90	100	. 20	140	99
8,000	439	455	427	398	410	450	539	724	1025	1479
6,000	474	498	95h	418	430	470	573	768	1100	1586
7,000.	515	S	664	164	448	492	607	822	1186	1708
7,500	535,	573	513	454	457	205	627	855	1236	1777
0,000	\$57	009	534	694	465	511	649	168	1290	1852
0.500	290	829	556	70 B	424	125	h L 9	156	1348	1931
900.6	607	658	579	105	483	2+5	107	426	4041	2014
9,500	628	769	909	818	495	655	728	1019	1471	2097

TABLE 4-10

BASIC FUEL FLOW
FUEL FLOW RATES FOR THE GIVEN CONDITIONS IN LBS/HR
PRESSURE: 4000 FT TEMPERATURE: -5 C
AIRCRAFT - UH-IH

NO AUDI

99089				81.18	FLIGHT MODE	(KTS)				
	HIGE	HOGE	NON	\$0	09	00	100	120	140	160
6.000	647	***	432	398	403	432	500	605	296	1079
4,000	*87	509	463	417	420	450	517	639	838	1141
2.000	624	\$59	500	1 7 7	436	467	537	673	887	1217
7.600		595	5.20	455	4.4.3	474	5.48	969	918	1263
000	671	612	541	970	451	482	199	719	953	1312
005.4	763	640	563	4.66	460	- 6 #	985	743	066	1363
000.0	119	677	589	105	47.1	502	603	767	1028	1413
005.6	643	720	619	518	486	517	622	791	1068	1463

TABLE 4-11

BASIC FUEL FLOW
FUEL. FLAW RATES FOR THE GIVEN CONDITIONS IN LBS/HR
PRESSURE: 4000 FT TEMPERATURE: 15 C
AIRCRAFT - UH-IH

>

***************************************						-				•
80 W				FLIG	FLIGHT MODE (KTS)	(KTS)				
1,63	H1GE.	HOGE	NOE	40	09	80	100	120	140	160
5,000.	454	476	439	402	403	425	481	5.65	682	872
6,000	497	521	472	422	419	441	495	580	715	906
7,000	538	572	509	447	431	454	513	602	749	953
7,500	199	598	530	461	438	195	524	615	769	186
0000	564	929	551	476	9.44	691	535	638	790	1010
0,500	409	663	577	492	45.8	624	546	653	810	1038
0000	633	701	604	205	473	493	529	899	831	1067
9,500	659	716	620	5.24	065	015	574	687	860	====

TABLE 4-12

BASIC FUEL FLOW FUEL FLYW RATES FOR THE GIVEN CONDITIONS IN LBS/HR Pressure: 4000 ft temperature: 35 c Aircraft - UH-IH

*8008										•
				F. 1	FLIGHT MODE	(KTS)				
(163)	HIGE	HOGE	NOF	ş	07	90	9	. 35	3	
8 1000	691	407	877	407			20.	150		0
					10,	. 7	47.	245	629	770
0.014	808	\$ C .	482	429	420	437	282	556	759	788
7,000	155	584	520	456	43.5	877	5.53			
7.500							204	2//	9/9	817
	5/9	613	242	470	439	455	511	5.8.8	492	1
000	259	617	567	485	700	7 7 7				
1000					130	100	526	598	104	9 7 8
	779	290	591	201	465	419	533	609	718	940
00004	949	969	607	517	482	495	546	767	730	
9,500	367	330						96.7	, ,	907
			05/	535	200	515	199	679	774	770

TABLE 4-13

BASIC FUEL FLOW
FUEL FLOW RATES FOR THE GIVEN CONDITIONS IN LBS/HR
PRESSURE: 6000 FT TEMPERATURE: -25 C
AIRCRAFT - UH"IM

× 4 H

					-					,
600 600 600 600 600 600 600 600 600 600				FL	FLIGHT MODE	(KTS)				
	HIGE.	HOGE	30N	40	09	80	100	120	1.40	160
6,000.	420	437	404	376	388	425	515	687	978	1410
00019	458	£84	440	397	407	9++	546	734	1056	1522
7,000.	499	633	478	423	425	466	583	796	1151	1654
7,500.	. 620		664	437	433	476	909	833	1206	1730
00048	543		521	453	442	486	631	873	1264	1810
0,500.	567	620	545	470	452	508	658	917	1325	1893
1,000	265	659	573	487	465	526	686	696	388	1977
9.500	620	702	709	906	482	845	716	1008	1452	2062

TABLE 4-14

BASIC FUEL FLOW FUEL FLIW RATES FOR THE GIVEN CONDITIONS IN LBS/HR PRESSURE: 6000 FT TEMPERATURE! -5 C

AIRCRAFT - UH-IH HUEY

										•
2 C C C C C C C C C C C C C C C C C C C				F. 1	FLIGHT MODE (KTS)	(KTS)				
(188)	HIGE	HOGE	30N	40	0,9	80	1 io	120	- 40	3
8,000	430	447	412	376	380	407	470	578	75.1	1023
000.9	468	493	445	397	397	425	488	909	795	1089
7.000	510	545	181	423	412	440	510	647	855	1176
.7,500	533	572	505	438	61 5	844	523	671	989	1225
8,000	556	602	528	484	67 h	458	548	569	927	1276
0.500	105	642	556	C/h	1 h h	470	595	718	996	1325
0000.	209	189	584	487	487	486	585	743	1001	1377
9.500	635	969	009	505	476	505	607	775	1056	- 4 4 5

TABLE 4-15

BASIC FUEL FLOW
FUEL FLOW RATES FOR THE GIVEN CONDITIONS IN LBS/HR
PRESSURE: 4000 FT TEMPERATURE: 15 C
AIRCRAFT — UH-IM

		A STATE OF THE PARTY OF THE PAR		A - 20 4 10 10 1		,				••
		*		FLI	FLIGHT MODE (KTS)	(KTS)				
1:03/	H16E	HOGE	NOE	40	09	90	1 00	120	1 40	160
8,000	0 % %	854	419	380	980	400	451	529	649	820
00019	479	505	453	402	394	415	467	547	677	856
7,000	523	299	493	429	407	428	487	572	715	912
.7,500	245	588	515	444	514	436	498	294	967	941
000 0	5.69	625	542	460	428	844	510	609	256	696
0.849	8.68	199	995	476	222	462	523	625	779	1001
4,000	622	674	583	493	462	419	539	848	812	1053
0.800	189	773	643	512	480	498	095	489	863	1130

TABLE 4-16

BASIC FUEL FLOW
FUEL FL'AW RATES FOR THE GIVEN CONDITIONS IN LBS/HR
PRESSURE: 6000 FT TEMPERATURE: 35 C
AIRCRAFT - UH-IM

Yanı

6805				PLIG	PLIGHT MODE (KTS)	(KTS)				
1,05) 5	HIGE	HOGE	NOE	40	9	80	100	120	140	091
\$1000	449	468	427	386	382	398	1 10 10	507	898	720
00019	489	517	463	606	394	410	954	524	219	743
7,000	534	571	504	438	408	423	475	547	643	774
7,500	955	608	530	453	420	434	486	557	559	787
9,000	583.	637	552	468	435	818	497	568	670	803
6,500	609	657	57.1	485	453	494	512	585	+69	839
00014	637.	767	636	504	470	482	532	615	734	668
9,500	999	466	#99	5.29	490	505	095	159	777	932

TABLE 4-17

BASIC FUEL FLOW
FUEL FLAW RATES FOR THE GIVEN CONDITIONS IN LBS/HR
PRESSURE: 8000 FT TEMPERATURE: -25 C
AIRCRAFT - UH-IH
HUEY

•		. 344								
68088	en brest dy ig as identification base			FLiG	FLIGHT MODE (KTS)	(KTS)				
(102)	HIGE	HOGE	NOE	0.6	9	80	100	120	1 40	160
5,000	403	421	389	356	366	401	488	653	933	1346
00019	442	469	424	379	385	422	521	904	1018	1466
7,000	485	522	465	407	402	442	564	776	1123	1611
7,500	205	155	487	423	411	459	065	816	1182	1692
8,000	532	589	512	440	422	475	219	198	1244	1775
8,500	587	625	541	457	436	494	5 h 9	907	1306	1859
9,000.	595	664	570	475	454	518	929	953	1372	1946
9,500	619	209	588	964	475	546	713	1001	1447	2049

TABLE 4-18

BASIC FUEL FLOW FUEL FLYW RATES FOR THE GIVEN CONDITIONS IN LBS/HR PRESSURE: 8000 FI TEMPERATURE: -5 C

AIRCRAFT - UH-IH

88089		ï		FLIG	FLIGHT MODE	(KTS)				
## FE	HIGE	HOGE	NOF	40	0.9	80	1 00	120	140	160
\$,000.	412	431	393	356	359	384	442	545	711	970
0000	452	479	429	379	375	401	461	578	761	1045
7,000	764	532	470	408	389	914	98h	424	828	1140
.7,500	\$20.	564	493	423	399	426	510	648	865	1191
000.8	248	909	522	439	413	439	528	672	506	1240
00919	671	638	547	456	429	456	6 7 5	869	646	1295
00044	\$00	959	999	475	677	475	573	734	1002	1371
00916	631	768	632	497	694	265	509	584	1074	1475

TABLE 4-19

BASIC FUEL FLOW FUEL FLAW RATES FOR THE GIVEN CONDITIONS IN LBS/HR PRESSURE: BOOO FT TEMPERATURE! IS C AIRCRAFT - UH-IH

4UE Y

					1		1			••
			,	FLi	FLIGHT HODE (KTS)	(KTS)				
N (SO)	HIGE	HOGE	NOE	0.6	09	9.0	1 00	120	0 # 1	160
5 ,000.	422	441	400	359	358	376	424	964	610	172
6,000	462	164	437	78¢	178	390	166	215	643	818
7.000	508	547	480	413	386	405	463	552	489	875
7,500.	832	985	507	424	399	214	475	295	104	903
6,000	558	219	529	Shb	415	432	488	b85	729	938
9,500.	505	643	553.	£9h	4 C H	954	505	019	191	466
9,000	616	767	620	h 8 b	453	044	528	159	822	1079
9.500	857	624	5 7 9	510	76	965	570	269	882	1120

TABLE 4-20

BASIC FUEL FLOW
FUEL FLXW RATES FOR THE GIVEN CONDITIONS IN LBS/HR
PRESSURE: 8000 FT TEMPERATURE! 35 C
AIRCRAFT - UH-IH

	>
	L
	7
•	2

						1				• :
81 81 81		į) [T]	FLIGHT MODE	(KTS)				
(507)	HIGE	HOGE	NOE	40	09	90	100	120	1 40	1 60
5,000	431	451	408	366	359	374	414	475	8 60	474
6,000	473	105	944	166	371	385	431	964	583	702
7,000	519	295	767	421	390	403	451	517	809	730
00512	544	592	514	437	90#	410	£9h	829	624	240
00010	37.1	627	1 45	484	424	434	664	645	799	791
00919	007	731	603	475	442	453	501	199	569	980
00010	632	741	621	501	453	.479	534	129	240	990
9,500	674	788	299	936	664	820	965	416	878	1005

TABLE 4-21

BASIC FUEL FLOW FUEL FLOW RATES FOR THE GIVEN CONDITIONS IN LBS/HR Pressure: 10000 ft temperature: -25 c

AIRCRAFT - UH-IH

_
4
2
I

										٠
				FLIG	FLIGHT MODE (KTS)	(KTS)				
1	. HIGE HO	HOGE	NOE	0#	09	80	90	120	140	160
\$ 000	387	407	372	338	347	379	797	622	894	1288
6,000	428	457	4 10	363	364	400	500	683	987	419
7 ,000.	472	513	453	393	382	427	549	761	1011	1576
7,500	497	547	479	0.14	393	443	576	908	1.61	1,450
8,000	.523	590	509	428	408	463	608	A 5 t	1226	1743
00510		9	. 535	446	427	4.88	618	A 9.9	1294	1834
	681	644	555	467	449	518	678	958	1375	1947
00518	611	762	626	490	472	552	724	1032	1475	2090

TABLE 4-22

BASIC FUEL FLOW
FUEL FLOW RATES FOR THE GIVEN CONDITIONS IN LBS/HR
PRESSURE: 10000 FT TEMPERATURE: -S C
AIRCRAFT - UH-IH
MUEY

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2	-	P. 1. 9	FLIGHT MODE (KTS)	(KTS)				
(193)	HIGE	HOGE	NOE	40	09	80	1 00	120	1 40	160
8,000	396	416	377	337	338	362	916	516	675	924
0,000	436	467	415	363	353	378	437	555	733	1008
7.000	*0*	929	460	394	371	396	475	603	908	1106
7,500	\$04	568	489	410	385	60%	493	929	845	1158
00010	536	593	510	427	402	427	514	654	990	1216
00519	\$15	430	539	447	422	447	540	969	950	1302
00010	597	749	609	470	443	470	575	752	1028	1407
00816	629	766	632	498	196	605	622	818	1110	1470

TABLE 4-23

BASIC FUEL FLOW FUEL FLÓW RATES FOR THE GIVEN CONDITIONS IN LBS/HR Pressure; 10000 Ft temperature; 15 c Aircraft. — UH-IH

,	Apr. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					The second secon				
8088	a			FLi	FLIGHT MODE (KTS)	(KTS)				
WEIGHTS	HIGE.	350H	NOE	40	09	80	100	120	0 + 1	160
5,000	405	424	383	341	336	354	398	466	925	730
0000	448	424	423	368	349	367	417	491	h19	782
7,000	495		473	399	37.1	388	441	526	459	839
.7,590	521	1	492	415	388	403	455	544	089	877
8,000	550_	622	528	433	404	124	473	574	723	546
0.590	580	7117	586	456	426	443	464	618	781	1020
90000	615	724	604	4 8 5	440	473	548	670	850	1059
9.500	658	785	799	523	4	519	6.28	800	1048	1388

TABLE 4-24

BASIC FUEL FLOW
FUEL FLAW RATER FOR THE GIVEN CONDITIONS IN LBS/HR
PRESSURE: 10000 FT TEMPERATURE: 35 C
AIRCRAFT - UH-IH

LUCY

68088				F. 1.	FLIGHT MODE	(KTS)				
(587)	H16E.	HOGE	NOE	40	09	80	100	120	140	160
8,000	414	436	392	347	337	351	389	447	526	633
0000	458	064	432	375	350	563	408	694	551	799
000 • 4	507	549	477	90%	378	389	430	164	5.60	969
7,500	534	603	513	424	396	405	447	513	611	744
000'8	563	684	365	944	h1 h	426	471	2#5	+59	296
8,500	599	692	584	475	437	954	511	265	712	830
000'	559	76!	537	513	473	204	593	737	639	1268
9,500	700	838	700	295	925	h 4 5	732	1040	1422	2346

DELTA FUEL FLOW FOR DRAG DATA
TABLES

TABLE 4-25

CORRECTION FUE! FLOW LBS/HR FOR EXTERNAL DRAG PRESSURE: SE_LEVEL TEMPERATURE: -25 C

AIRCRAFT - UH-1H

Y DE

			AIR	SPEE	AIR SPEED IN KTS	15		
		40	09	90	100	120	140	091
	ro.	-	5	12	25	20	06	134
2 2	15	3	15	36	9.2	155	270	403
7 4 4 1 G 2	25	7	25	09	131	592	05#	671
	35	10	35	85	185	379	629	626
	4.5	13	45	011	241	492	808	1208
	55	10	55	135	300	909	989	1476

TABLE 4-26

CORRECTION FUE; FLOW LBS/HR FOR EXTERNAL DRAG PRESSURE: SEA LEVEL TEMPERATURE: "S C

AIRCRAFT - UN-1H Huey

			A 1.	I SPEF	AIR SPEED IN KTS	Ts		
		40	90	00	0g t	120	1 40	
	8	-	9	-	77	42	77	124
9 2	15	3	1.4	33	49	130	237	373
2 - 0	25	7	23	58	112	612	404	621
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	35	01	33	77	150	316	570	869
	4.5	.12.	42	66	209	916	736	1,18
	r.	9	•	122	250	5.2	903	9961

TABLE 4-27

CORRECTION FUEL FLOW LBS/HR FOR EXTERNAL DRAG Pressure: Sea Levél Temperature: 15 c Aircraft - Um"im

			AIA	SPEE	AIR SPEED IN KTS	TS		
		40	60.	08	100	120	1 40	
8	5	-	#	01	20	36	59	101
2	91	7	13	31	99	111	199	338
SOUARE	25	9	22	19	102	761	243	699
	35	6	30	72	144	273	500	900
	45	12	39	92	187	359	759	1031
,	S.	5 T	48	113	232	450	607	1962

TABLE 4-28

CORRECTION FUEL FLOW LBS/HR FOR EXTERNAL DRAG Pressure: Sea Level Temperature: 35 C

AIRCRAFT - CK-IK

			ž	37.6	AIR SPEED IN KIS	2		
		40	09	0.	001	120	150	9-
0.0	9	1	*	01	=	12	1	
2	1.5	*	22	53	79	10	155	•
- A D A D C	25	•	20	9	20	121	302	- 1
	36	-	28	62	130	27		
	4.5	=	1	1				
				•	25	223	281	437
		3	7	105	211	402	725	1153

TABLE 4-29

CORRECTION FUEL FLOW LBS/HR FOR EXTERNAL DRAG PRESSURE: 2000.Ft TEMPERATURE: "25 C

AIRCRAFT - UH-1H

			AIR	SPEE	AIR SPEED IN KTS	TS		
		40	09	80	001	120	340	1 60
0.0046	\$		2	11	23	4.0	20	125
2 2	15	7	b 1	34.	7.2	9 1 1	251	374
	25	7	23	95	124	152	81,	429
	35	10	32	80	174	356	585	873
3	45	12	42	103	227	194	752	1123
	S	- C	ď	126	283	275	616	1172

TABLE 4-30

۲.

CORRECTION FUEL FLOW LBS/HR FOR EXTERNAL DRAG Pressure: 2000 ft temperature: -5 C Aircraft - UH-1H

			AIA	SPEE	AIR SPEED IN KTS	15		
		40	09	00	100	120	140	160
3460	2		7	0	12	9	72	51.1
Z Z	15	*	13	16	62	121	223	1
	25	9	2.2	19	105	206	377	
	35	•	30	72	140	296	532	909
E E	45	12	39	93	961	389	687	1039
	3	4	4.7	71	243	400	A. 2	

TABLE 4-31

CORRECTION FUEL FLOW LBS/HR FOR EXTERNAL DRAG Pressure: 2000 ft temperature: 15 c Aircraft - UH-1H

			AIR	SPEED	AIR SPEED IN KTS	S		
		40	09	08	1 00	120	140	160
0046	9	-	7	01	61	34	0,	200
2	15	7	1.2	29	95	104	186	316
S OU A D S	25	9	20	8 7	96	180	321	168
	35	8	28	99	134	255	596	745
	45	-	36	98	174	337	609	096
	55	13	4.4	105	217	421	753	9211

TABLE 4-32

CORRECTION FUEL FLOW LBS/HR FOR EXTERNAL DRAG Pressure: 2000 ft temperature: 35 c Aircraft - Uh-IH

			AIR	SPEEC	AIR SPEED IN KTS	15		
		9	9	80	9	30	100	
					3	72.	2	
DRAG	1		*	•	17	31	53	15
	4	-						
Z		·		;	25	70	591	27.1
COUABE	25	•	:	45	8.7	5	١	
	3.5	·	1	1			-00	7/4
FEET.		0	77	62	123	231	408	173
	4.5	10	34	80				
	2.4	!				78	1 4 4	874
		71	_	96	101	~	4-0	֭֭֭֡֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜
						· · ·	10	

TABLE 4-33

CORRECTION FUE; FLOW LBS/HR FOR EXTERNAL DRAG Pressure: 4000 ft temperature: -25 c Aircraft - UH-IH

74 163 334 543 96 214 431 699 1	4 6 6	0 - 7 0	60	31 10 80	4 10 22 1 69 1 22 3 31 69 1	137	140 78 233	160 116 348
11 39 96 214 431 699 14 48 118 267 529 854	35	6	30	74	69	33.6	286	579
14 48 116 267 529 854	£ 5	=	39	96	219	100	669	1043
-	23	P. 1	4.8	116	267	529	854	1275

TABLE 4-34

CORRECTION FUE! FLOW LBS/HR FOR EXTERNAL DRAG PRESSURE! 4000 FT TEMPERATURE: -5 C

AIRCRAFT - UHTH HUEY

			AIF	SPEE!	AIR SPEED IN KTS	TS		
		40	09	00	001	120	140	1 60
	\$	1	4	•	61	3.0	67	107
3 4 3	9 1	*	1.2	2.8	99	611	210	322
244100	25	9	20	4	9.6	+61	253	969
	35	9	28	67	140	278	964	184
- 4 #	5 h	11	36	79	184	99E	049	596
	99	13	* * *	701	227	457	784	1180

TABLE 4-35

CORRECTION FUE; FLOW LBS/HR FOR EXTERNAL DRAG Pressure: 4000 ft temperature: 15 c Aircraft - UH-IH

			AIA	AIR SPEED IN KIS	Z	15		
		0	0,9	80	100	120	140	100
	9	-]	ľ				4
DRAG	1	-	-	^	17	~	55	95
2	9	~		27	53	80	175	395
•	3.5	Ī.						
SQUARE	,	•	61	T	6	168	301	567
	51	٩		ľ	I			-
FEET		•	92	70	125	239	436	569
	_ 	0 1	3.4	0,	Ţ.			
			5		- 63	917	269	768
	55	7	7	47	203	304	763	700
•				1			•	

TABLE 4-36

CORRECTION FUE! FLOW LBS/HR FOR EXTERNAL DRAG Pressure: 4000 ft temperature: 35 c

AIRCRAFT - UH-IH

			AIA	SPEE	AIR SPEED IN KTS	75		
		40	09	90	100	120	140	091
0.044	5	-	3		16	29	90	90
2 -	15	C	10	25	8 7	88	154	255
	5 2	•	17	4.1	10	150	266	442
	35	7	24	5.8	115	217	383	629
	45	•	31	7.4	149	282	510	815
	5.5	-	38	9.1	701	353	633	1002

TABLE 4-37

CORRECTION FUEL FLOW BS/HR FOR EXTERNAL DRAG PRESSURE: 6000 FT TEMPERATURE: -25 C

AIRCRAFT - UH-IH

			AIR	SPEE	SPEED IN KTS	15		
		0	9	80	100	120	140	160
DBAG	2	-	æ	01	-7	42	72	108
2 -	15	*	12	29	99	130	216	323
:	52	9	20	4.0	109	221	360	538
	35	8	28	70	154	312	504	753
-	45	11	36	9.0	202	403	849	996
	55	13	3	111	157	493	792	1183

TABLE 4-38

CORRECTION FUE; FLOW LBS/HR FOR EXTERNAL DRAG Pressure: 6000 ft temperature: -5 c

AIRCRAFT - UH-IH

			AIA	SPEE	AIR SPEED IN KTS	15		
		0	09	08	100	120	140	-
DRAG	S	-	4	•	16	35	3	6
. z	15	3	11	26	79	105	26	298
SOUARE	25	2	61	44	9.5	182	330	497
FEE.	35	9	26	6.2	121	260	463	969
- 	4.5	10	33	8.1	172	345	965	968
	5.5	12	4	66	212	428	730	300

TABLE 4-39

CORRECTION FUE; FLOW LBS/HR FOR EXTERNAL DRAG PRESSURE: 6000 FT TEMPERATURE: 15 C AIRCRAFT - UH-1H

			AIR	SPEEL	AIR SPEED IN KTS	2		
		40	09	90	100	120	140	09!
94.0	s	1	C	•	1.6	29	8.2	-
2 2 2 2	15	3	10	25	4.0	9.5	79.	276
	25	5	17	1 6	63	156	284	9 #
	36	7	24	5.2	117	224	# 0	249
- - - - - - -	4.5	6	3.1	66	153	296	532	832
	55	11	90	9.1	190	349	656	1017

TABLE 4-40

CORRECTION FUE! FLOW LOS/HA FOR EXTERNAL DRAG Pressure: 6010 ft temperature: 35 c

AIRCRAFT - UH-IH

			AIR	SPERO	AIR SPEED IN KTS	75		
		0	0,	•	100	120	140	991
0.04	ų	-	-	-	- 2	27	3	
. z	1.5	3	10	23	4.5	70	=======================================	339
A B E A B E	25	•	91	3.6	2.	=	249	
	35	,	23	5	107	202	38.9	
	45	6	29	\$	139	26.4	478	260
	55	11	36	**	172	330	105	1

TABLE 4-41

CORRECTION FUEL FLOW LBS/HR FOR EXTERNAL DRAG Pressure: 8000 ft temperature: -25 c Aircraft - UH-1H

			AIR	SPEED	AIR SPEED IN KTS	S		
		40	90	90	100	120	1 40	091
3100	9	1	-	•	202	ç	6.7	18
, z	15	3	-	28	19	125	200	599
4000	25	9	19	9 h	102	208	334	864
	35	8	2.6	59	9 1 1	292	467	697
- 1	4.5	10	34	9.4	161	376	109	897
	. 55	12	1 7	103	752	440	734	4601

TABLE 4-42

CORRECTION FUEL FLOW LBS/HR FOR EXTERNAL DRAG TEMPERATURE: -5 C AIRCRAFT - UH-IH PRESSURE: 8000 FT

			AIR	SPEE	AIR SPEED IN KTS	TS		
		40	9	80	100	120	140	1,60
94.60	S	1	C	•	17	32		92
	j s	C	01	25	19	66	185	277
	58	9	17	1 h	78	171	308	19#
	35	,	24	88	124	245	432	645
4	5 tr	•	31	2.8	191	325	955	930
	5.5	11	3.6	9.2	199	402	629	1014

TABLE 4-43

CORRECTION FUE! FLOW LBS/HR FOR EXTERNAL DRAG Pressure: 8000 ft temperature: 15 c

IRCRAFT - UH-IH

HUEY

160 258 429

601 772

TABLE 4-44

CORRECTION FUE; FLOW LBS/HR FOR EXTERNAL DRAG Pressure: 8000 ft temperature: 35 c

AIRCRAFT - UH-IH

HIFY

			AIR	SPEE	AIR SPEED IN KTS	75		
		40	09	90	100	120	140	0,1
4	5		3	7	1.4	25	\$	72
7 2	15	3	6	21	42	17	135	225
S T T T T T T T T T T T T T T T T T T T	25	*	1.5	35	7.1	132	233	386
	35	9	2.1	90	100	189	336	949
	45	•	27	6.4	130	246	444	707
	5.5	0	33	7.8	191	309	551	467

TABLE 4-45

CORRECTION FUE; FLOW LBS/HR FOR EXTERNAL DRAG Pressure: 10000 ft temperature: -25 c Incraft - UH*1H

			AIA	SPEE	AIR SPEED IN KTS	15		
		40	90	90	001	120	140	091
94.00	S	1	~	•	-	3.0	62	
2 2	15	n	10	26	2.6	1:2	185	Ľ
	52	9	12	43	76	100	30.6	_1_
H 10 10 10 10 10 10 10 10 10 10 10 10 10	35	•	24	19	137	25.5		
 	4.5	•	15	2	17.	36.	5,64	
	. 65	1.1	3.0	:	:			2

TABLE 4-46

CORRECTION FUEL FLOW LBS/HR FOR EXTERNAL DRAG Pressure: 10000 ft temperature: -5 c

AIRCRAFT - UH-IN

			PIV	SPEE	AIR SPEED IN KTS	TS		
		40	90	80	100	120	140	091
	9	1	•	•	16	30	5.8	9.0
2 2	15	C	01	23	8 %	9.6	172	256
20010	25	2	91	36	83	162	287	427
	35	7	22	54	117	233	104	597
4	4.5	•	29	70	152	308	515	768
	55	0	5	98	188	377	0 5 9	939

TABLE 4-47

CORRECTION FUEL FLOW LBS/HR FOR EXTERNAL DRAG Pressure: 10000 ft temperature: 15 c Aircraft - UH-IH

Ī	Ì	091	ie	?	239	000		557		:
	ĺ		L			L	_			I
		- 40 - 40	47		9 7 7	263		359	445	
75		120	27	1	83	139		200	262	† -
AIR SPEED IN KTS	1	1001	1 4			72		3	135	-
R SPEE	and a	,	^	1		35	9		p 6	•
A 1	9		•	•	1	15	2.1	1	27	-
	40		-	-		*	•			9
				15	1	22	35	1		5.5
		-	1		L	1		_	1	_
			DRAG	2	<u> </u>	SQUARE				
		l				-1				

TABLE 4-48

CORRECTION FUE! FLOW LBS/MR FOR EXTERNAL DRAG Pressure: 10000 ft temperature: 35 c

AIRCRAFT - UH-1H

>	
=	
I	

			AIR	SPEE	AIR SPEED IN KTS	ŢS		
		40	9	0	001	120	140	091
9 4 6	S	-	-	-	=	23	7	
2 2	15	2	•	2	=	72	126	212
	25	7	*	5	:	124	218	360
	35	•	61	9	6.9	176	315	000
	8.0	7	25	9.0	121	231	2 2	457
	5.5	•	30	7.3	181	200	2.6	Š

GROUND IDLE FUEL FLOW DATA

TABLE

TABLE 4-49
GEOUND IDLE FUEL FLOW
AIRCRAFT - UH-1H
HUEY

			PRESSURE	PRESSURE ALTITUDE (FT)	(FT)		
		SEA LEVEL	2000	0004	0009	00 ^u 8	1 0000
TEMPERATURE	•25 C	320	303	268	274	260	246
	2 5-	323	306	162	277	492	250
CENTIGRADE	15 C	326	306	294	280	268	254
	38 C	330	312	298	284	271	259

ENTRIES ARE AIRCRAFT FUEL FIOW RATES IN LBS/HR

GROSS WEIGHT LIMITS DATA
TABLES

RESONT LIMITS

(DUE TO ENGINE)

FOR TAKEOFF CRITERIA #1

1008 OF MAXIMUM POWER (HOGE)

AIRCRAFT . UH-1H

HUEY

		PRES	PRESSURE ALTITUDE (FT)	TURE (FT)			
		SEA LEVEL	2000	000+	0009	9.00	10000
TEMPERATURE	-25 C	21461	12622	11705	10878	10095	9348
DEGREES	-5 C	65421	11357	10808	10038	9294	8594
CENTIGRADE	18 C	h5111	10367	9557	8854	8,58	7537
	38 C	9626	8618	7982	7386	6831	6285

ENTRIES ARE AIRCRAFT GROSS WEIGHTS IN LBS

STRUCTURAL GROSS WEIGHT LIMIT: 9500 LBS

TABLE 4-51

GROSS WEIGHT LIMITS
(DUE TO TRANSMISSION)
FOR TAKEOFF CRITERIA #1
100% OF MAXIMUM POWER (HOGE)
AIRCRAFT * UH-1M

		538d	PRESSURE ALTITUDE (FT)	TUDE (FT)			
		SEA LEVEL	2000	000#	0009	0009	00001
TEMPERATURE	-28 C	10117	5466	9742	9523	9352	9161
DEGRETS	5 9.	10001	9626	486	9430	9211	9999
CENTIGRADE) SI	9825	9618	9470	9252	8701	8377
	38 C	6496	7676	9297	8773	8394	8948

ENTRIES ARE AIRCRAFT GROSS WEIGHTS IN LBS

STRUCTURAL GROSS WEIGHT LIMIT: 9500 LBS

GROSS WEIGHT LIMITS

(DUE TO ENGINE)

FOR TAKEOFF CRITERIA #2

958 OF RATED POWER. VERTICAL RATE OF CLIMB 450 FT/MIN.

AIRCRAFT - UH-1H

HUEY

		SS38d	PRESSURE ALTITUDE (FT)	UDE (FT)			
		SEA LEVEL	2000	4000	0009	8000	1 0000
TEXPERATION	•25 C	12289	11865	10919	10235	4656	8908
	3 5.	6 p p 1	10338	10002	9316	8604	7936
CENTIGOADE	15 C	hh101	9458	6697	8058	7430	6867
	၁ Տင	98+8	7865	7281	6736	6228	5726

ENTRIES ARE AIRCRAFT GROSS WEIGHTS IN LBS

STRUCTURAL GROSS WEIGHT LIMIT: 9500 LAS

TABLE 4-53

TRANSHISSION POWER LIMIT. VERTICAL RATE OF CLIMB 450 FT/MIN. OGE FOR TAKEOFF CRITERIA #2 (DUE TO TRANSMISSION) GROSS WEIGHT LIMITS

HUEY

AIRCRAFT - UH"IH

		PRESS	PRESSURE ALTITUDE (FT)	UDE (FT)			
		SEA LEVEL	2000	000 b	0009	0000	1000
	-28 C	9530	9398	9245	9062	9968	8721
TENTENATORE	2 5.	6776	9526	2116	6923	8791	1563
DEGREES	15 0	9321	0116	5968	8888	9098	8075
CENTERADE	35 6	6916	6446	1988	9998	bb 18	7892

ENTRIES ARE AIRCRAFT GROSS WEIGHTS IN LBS

STRUCTURAL GROSS WEIGHT LIMIT: 9500 LBS

GROSS WEIGHT LIMITS
(DUE TO ENGINE)
FOR TAKEOFF CRITERIA #3

AIRCRAFT - UH-IH

HUEY

		SS384	PRESSURE ALTITUDE (FT)	UDE (FT)			
		SEA LEVEL	2000	0007	0009	8 n00	1 0000
TEMPERATURE	-25 C	18291	80961	13482	12598	11768	10914
DEGREES	2 S-	42141	12807	12311	11456	10590	9776
CENTIGRADE	1 5 C	98521	11651	10745	9566	9178	8460
	38 C	12401	6996	9448	8276	1992	7034

ENTRIES ARE AIRCRAFT GROSS WEIGHTS IN LBS

STRUCTURAL GROSS WEIGHT LIMIT: 9500 LAS

TABLE 4-55

GROSS WEIGHT LIMITS
(DUE TO TRANSMISSION)
FOR TAKEOFF CRITERIA #3
1008 OF MAXIMUM POWER (HIGE)
AIRCRAFT - UH-1H

		PRES	PRESSURE ALTITUDE (FT)	Une (FT)			
		SEA LEVEL	2000	0007	0009	9000	1 0000
TEMPERATURE	-25 C	11320	11179	11020	10842	10650	10420
	3 % -	11170	11012	10835	9 7 9 0 1	10418	10101
CENTIGORDE	18 C	11014	10840	10654	10432	10125	9756
	38 C	10854	10672	10459	10165	9805	9422

ENTRIES ARE AIRCRAFT GROSS WEIGHTS IN LUS

STRUCTURAL GROSS WEIGHT LIMIT: 9500 LBS

VELOCITY LIMITS DATA

TABLES

VELOCITY LIMITS TABLE (INCLUDING FUEL FLOW RATES)

PRESCURE: SEA LEVEL TEMPERATURE: 725 C

AIRCRAFT - UH-IH

		DNG	1	**	3	×		1 5	76:07	Z
	iec	ANGE.	CONTI	ANDOUS NEROUS	E 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	NE NE N	17	N T S	EXCE	E0 .
	(KFS)	CLOS/HRY	VEL (KTS)	(F85/HR)	(KTS)	(LBS/HR)	(KTS)	F.F.	(4EL)	(LBS/HR)
METOSS (ESS)										
5.000	103	169	131	971	133	995	115	744	111	710
6 , 000	102	249	128	126	130	966	111	744	111	744
7,000	9,6	169	125	971	126	995	108	446	111	781
7:500	64	634	123	471	125	995	106	744	111	802
000:0	93	049	121	971	123	995	104	744	111	928
0.500	9.6	663	120	971	121	995	103	562	=	950
000.	4.8	669	118	174	119	566	1 00	744	111	876
4.500	9.4	705	911	471	113	966	9.8	744	==	906

VELOCITY LIMITS TABLE (INCLUDING FUEL FLOW RATES) PRESSURE: SEA LEVEL TEMPERATURE: IS C

AIRCRAFT - UH-IH

		90 90 90 90 90 90 90	XAE	AX	E	A X A	TRANS	NO I SO I E	VELOG	STY NEVER
			0	WERO S	S S S S S S S S S S S S S S S S S S S	GINE	_	-	j	
	(KTS)	F.F.	VEL (KTS)	(LBS/HR)	VEL	(GH / VB 1)	VEL	F.F.	VEL	(LBS/HR)
S PP PP SIS SIS	:)		<u>.</u>			
000.8	119	989	139	199	1 43	939	126	754	9:1	959
4,000	120	704	136	100		939	125	754	9.	673
7,000	113	109	133	188	138	939	121	754	911	703
7.500	113	699	132	199	136	939	120	754	=	716
9:000	107	671	130	188	134	434	118	754	911	737
0.500	108	149	128	199	132	939	115	754	91-	756
0000.	193	676	126	199	130	939	113	754	===	777
9.500	103	685	123	188	128	939	111	754	3	800

VELOCITY LIMITS TABLE (INCLUDING FUEL FLOW RATES)
PRESGURE: SEA LEVEL TEMPERATURE: 15 C

AIRCRAFT - UH-IH HUEY

	.3ec	######################################	CONT	N D D W Z P D	X A S C	X W Z	TRANS	HISSION HITS	VELOCI	TTY NEVER
	VE		l		5 B (
	(KTS)	(LBS/HR)	(KTS)	(LBS/HR)	VEL (KTS)	, m / m / m / m / m / m / m / m / m / m	VEL	F 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	141 N	6.66
BE LESS					•		_	(KB) (B)	(X)	(LBS/HR)
0004 \$	120	701	Ξ	78%	4.8		T			
4.000						000	138	+0/	120	6 4 5
		3	139	786	9 7 1	929	136	764	120	454
7:000	130	738	136	786	3	856		17.		
7 . 500	130	749	135	784					3	673
000.0	124	522	132			860	ין מי	197	120	683
009.9	2	735			2	850	621	764	120	569
0000		12.5				856	127	764	120	708
			27	786	135	856	125	764	110	713
000.		732	125	786	133	958	122	764	19	0.5,
						The same of the last				

TABLE 4-59

VELOCITY LIMITS TABLE (INCLUDING FUEL FLOW RATES)
PRESUUR: SEA LEVEL TEMPERATURE: 35 C

AIRCRAFT - UH-IH

	.162	RC NG R	MAX CONTINUOUS POFER	AX NUOUS FR R	POWER (ENGINE	A N N N N N N N N N N N N N N N N N N N	TRANSHISS LIMITS	HISSION HITS	VELOC	VELOCITY NEVER
	(KTS)	F.F.	VEL (KTS)	(LBS/HR)	VEL (KTS)	(LBS/HR)	VEL (KTS)	F.F.	VEL (KTS)	F.F.
68058 8676875 (185)										
5:000	136	722	134	569	143	750	9 h 1	h L L	123	635
4.000	139	736	132	469	191	750	145	774	123	645
7 , 000	140	758	129	469	139	750	142	774	123	099
7,500	140	177	127	469	137	750	141	477	123	670
8,000	140	785	125	669	135	750	139	774	121	699
0.500	140	798	123	469	133	750	137	774	118	899
11000	110	600	121	469	131	750	135	h24 .	116	999
9.500	139.	013	119	569	129	750	133	774	113	199

TABLE 4-60

VELOCITY LȚMITS TABLE (INCLUDING FUEL FLOW RĂTES) PRESSURE: 2000 FT TEMPERATURE: "25 C AIRCRAFT - UH-1H

3

	.Je	ANGE	CONT MAX	N X X X X X X X X X X X X X X X X X X X	EOS FOS	NOT	TRANS	MISSION	VELOC	CITY NEVER EXCEED
	VEL	F.F.	VEL	F.F.	VEL (KTS)	F.F.	VEL (KTS)	F.F.	VEL	F • F •
E COSS FIGURA FI				ļ						
B : 000	102	265	131	911	134	962	117	728	115	7.14
000.9	9.6	588	127	911	130	962	113	728	115	752
7 , 000	4.6	290	124	911	127	962	110	728	115	795
7.500	9,6	929	122	911	125	962	108	728	115	820
9 . 000	9,6	637	120	911	123	962	106	728	115	848
9.500	9.8	849	117	911	121	962	103	728	115	880
00000	93	658	115	116	118	962	101	728	115	916
9.500	93	676	113	911	116	962	66	728	51.1	953

TABLE 4-61

VELOCITY LIMITS TABLE (INCLUDING FUEL FLOW RATES)
PRESIURE: 2000 FT TEMPERATURE: "S C

AIRCRAFT - UH-IH

	عو	# ## ## ## ## ## ## ## ## ## ## ## ## #	E LO	ANX AND AND BROCUS	FOR	A X X X X X X X X X X X X X X X X X X X	TRANS	MISSION	VELOCI	ITY NEVER.
	VEL (KTS)	(LBS/HR)	VEL (KTS)	(LBS/HR)	VEL (KTS)	(LBS/HR)	VEL (KTS)	(LBS/HR)	VEL (KTS)	(LBS/HR)
# # # # # # # # # # # # # # # # # # #										
8 + 000	119	049	138	823	140	848	130	736	120	949
000.4	113	929	135	623	137	8+8	127	736	120	929
7 ,000	112	149	132	623	134	848	123	736	120	206
7.500	101	623	130	623	132	848	121	736	öz 1	724
000.0	501	62 9	128	623	130	848	119	736	120	7 4 5
005.0	104	169	125	623	128	848	117	736	1 20	764
9,000	103	069	123	623	125	949	114	736	611	780
009.6	104	677	121	823	123	848	112	736	116	779

VELOCITY L'MITS TABLE (INCLUDING FUEL FLOW RATES)

PRESQURE: 2000 FT TEMPERATURE: 15 C

AIRCRAFT - UH-IH

AUFY

_										
	_se	ANGE	MAX CONTINUOL POMER	AX NUOUS #FR	EOG.	P S S S S S S S S S S S S S S S S S S S	FRANSMISS LIMITS	MISSION	VELOC	117 NEVER
	(KTS)	(LBS/HR	VEL	(LBS/HR)	VEL KTS	(1 Bc/HB	VEL	F F F F F F F F F F F F F F F F F F F	VEL	7 S S S S S S S S S S S S S S S S S S S
REIGH S							1			
\$ 1000	129	959	140	730	147	79.6	142	744	123	620
4.000	130	929	137	730	1 4 4	796	139	744	123	632
7 , 000	130	169	134	730	141	796	136	744	123	959
7,800	124	675	131	730	139	196	133	744	123	999
0000	123	***	129	730	137	796	131	744	120	663
995	123	5	127	730	134	196	129	744	118	999
0000.6	=	683	124	730	132	796	126	744	115	999
9.500	1.17	169	122	730	130	964	124	744	113	662

TABLE 4-63

VELOCITY LĪMITS TABLE (INCLUDING FUEL FLOW RATES) Presture: 2000 ft temperature: 35 c

AIRCRAFT - UH-IH HUFY

	-16E	ANS NGE	CONTINUOUS POWER	AX NCOUS FR	E P P	POS X NO 1 NE 1	TRANSH LIM	115510N	VELOCITY EXCE	ITY NEVER
	(KTS)	(LBS/HR)		F . F .	VEL	F . F .	K < 45	F • F •	VE V	9.6
METCH CENTS (CENTS)					ł .				4	
\$,000	138	676	133	579	142	969	151	753	120	579
4 + 000	139	269	131		140	969	÷	753	021	240
7,000	1 40	718	127		137	969	9# 1	75.3	120	909
7,500	140	732	125	449	134	969	4 4 1	753	120	519
0001	140	745	122	449	132	969	142	753	=	9.5
9:500	140	753	120	11.59	131	767	140	753	115	617
0001	5.	252	122	644	127	969	138	753	112	919
9.500	137	764	116	644	126	969	135	753	109	618

TABLE 4-64

VELOCITY LÏMITS TABLE
(INCLUDING FUEL FLOW RATES)
PRESCURE: 4000 FT TEMPERATURE: -25 C
AIRCRAFT - UH-IH

X O E

	34	22 22 20 20 20 20 20 20 20 20 20 20 20 2	NO N	s non	¥ OZ	×uz	TRANST LIN	15510N	VELOCI	TT NEVER
	(XTR)	(LBS/HR)	VEL (KTS)	(LBS/HR)) Jû	_	VEL (KTS)	(LBS/HR)	VEL (KTS)	(LBS/HR)
# 10 × 3 × 3 × 3 × 3 × 3 × 3 × 3 × 3 × 3 ×										606
000.9	201	999	130	# S @	132	865	119	713	371	53/
000.4	-	544	126	954	128	5 2 8	911	713	120	766
		582	122	954	124	998	111	713	120	820
200		593	120	854	122	998	109	713	120	853
000		107	117	120	120	998	106	713	120	688
1.500	-	Soo	112	854	115	305	112	713	120	928
000	-	15.9	=======================================	954	-118	888	101	713	116	955
	1	650	0	954	7112	909	66	713	117	956

VELOCITY LÄMITS TABLE (INCLUDING FUEL FLOW RATES)

PRESEURE: 4000 FT TEMPERATURE: "5 C

AIRCRAFT - UH-1H

¥ 2.4 4.0 1.4

	عهد.	RONGE ANGE	CONTINCOC	A X X X X X X X X X X X X X X X X X X X	P C C C C C C C C C C C C C C C C C C C	X X X X X X X X X X X X X X X X X X X	TRANS	NOISE IN	VELOC	ACEED KER
	VEL (KTS)	(LBS/HR)	VEL (KTS)	(LBS/HR)	VEL (KTS)	(LBS/HR)	VEL (KTS)	(LBS/HR)	VEL (KTS)	(LBS/HR)
2000 2000 2000 2000 2000 2000 2000 200	,									
8.000	120	603	137	766	142	920	132	721	123	626
		587	134	992	139	920	129	721	123	662
7 - 000		523	130	766	135	820	125	721	123	697
7.500		105	127	766		820	123	721	123	720
000.0		587	125	796	130	820	120	721	120	721
0.500		====	122	766	127	820	118	721	118	722
.000.		627	120	766	125	820	115	721	115	722
. 500.	101	630	118	766	123	820	113	721	113	722

VELOCITY LÏMITS TABLE (INCLUDING FUFL FLOW RATES) PRESSURE: 4000 FT TEMPERATURE: 15 C AIRCRAFT - UH-1H

HOTA

	يعو	LONGE	CONTRACT	ANS SNA SNA SNA SNA SNA SNA SNA SNA SNA	EOU LZ	A X X X X X X X X X X X X X X X X X X X	A A L L	MISSION	VELOCITY	TY NEVER XCEED
	VEL	(LBS/HR	VEL (KTS)	(L85/HR)	(KTS)	1.85/HR	VEL (KTS)	(LBS/HR)	VEL	(LBS/HR)
# # # # # # # # # # # # # # # # # # #										}
6 , 000	130	819	139	878	146	734	145	728	119	26
00000	1 30	636	136	678	1 42	734	141	728	119	577
2,000	124	627	121	878	138	734	137	728	119	598
7.500	123	638	129	678	136	734	135	728	119	611
00018	411	630	126	678	133	734	133	728	117	617
005.0	117	636	124	9.29	121	734	130	728	114	615
0000.	117	569	121	67.8	129	734	128	728	112	219
9.500	122	704	119	678	126	734	125	728	109	622

VELOCITY LȚMITS TABLE (INCLUDING FUEL FLOW RATES) PRESSURE: 4000 FT TEMPERATURE: 35 C AIRCRAFT - UH-IM

	_144	AN Se F	CONTI	MAX CONTINCOUS POWER	EOU	TOX XXX XXX	TRANG	TRANSHISSION LIMITS	VELOCITY	TTY NEVER
	(KTS)	F.F.	VEL	9 6	۶	:	VEL	6.6.	VEL	
E E E E E E E E E E E E E E E E E E E					-	X	(KTS)	(L85/HR)	(KTS)	(LBS/HR)
00018	139	633	132	597						
00019	3.5	653	120	i		7	155	735	=	526
7.000	=	Г		1	-	645.	153	735	911	540
7.500			1	597	+21	25	111	735	116	240
000.9			221	597	132	645	147	735	116	571
0.500				232	138	445	145	735	113	570
0000				5,47		645	142	735	111	570
0091			1	77.2	12	645	139	735	108	574
	1		108	5.77	6 1	445	1.15	716	39.	

TABLE 4-68

VELOCITY LINITS TANLE
(INCLUDING FUEL FLOW WATES)
PRESSURE: LUDU FT TEMPERATURE: -25 C

AIRCRAFT - UH-IH

•										
	78.	LONG RANGE	CONTINUOUS POREK POREK	inous Lek	MAX POWEH (ENGINE)	IX VEH (NE)	TRANSM LIA	TRANSHISSTON LIMITS	750731	VELUCITY NEVER
	(KTS)	(LBS/AR)	(KTS)	F.F.	(KFS)	(LBS/AR)	(KTS)	(LBE/HR)	(KTS)	(LUS/HK)
GHOSS WEIGHTS (Lis)		į				!				
5.000	99	510	129	196	131	8.30	121	648	123	718
000•9.	h 6	508	125	961	127	830	117	967	123	771
7,000	9.5	551	120	962	152	830	112	478	123	836
7,500	46	795	117	94.2	071	0.6	109	847	123	876
000.6	91	557	111	962	115	930	107	498	120	879
8.500	93	594	112	796	114	830	104	AVA	118	882
9.000	92.	- 604	109	7.96	112	639	101	464	411	189
9.500	9.1	069	166	140	109	630	86	X > '	-	ABA

VELOCITY LIMITS TABLE (INCLUDING FUEL FLOW RATES)
PRESSURE: 6000 FT TEMPERATURE: -5 C

HC.Y

AIRCRAFT - UH-IH

•										
		N AN BE	CONT	THE STATE OF THE S	FS	AX WER INE)	TRANS	NO ISSINI Inits	3 NET OC	ACEED VER
	(KTS)	(LBS/HR	VEL (KTS)	F.F.	VEL	F . F .	VEL	F . F .	VEL	6 6 6
METOSS METOSS METOSTS					•	'n	-	2 L L L L L L L L L L L L L L L L L L L	1	2 0 0 2 2
\$,000	114	838	136	117	1.0	764	135	705	-	533
00019	113	299	132			764	132	705		
1,000	105	\$29	127	7.11	132	764	12	705		940
7.500	104	948	125	711	130	764	124	705	2	899
000	10,	989	122	111	127	764	121	705	E	999
88:1	20	3	61	=	124	764	119	705	==	33.
0001	8	3		17	122	764	116	705	111	667
2000	105	2	=	73.5	=	764	113	705	109	673

VELOCITY LYMITS TABLE
(INCLUDING FUEL FLOW RATES)
PRESIURE: 4000 FT TEMPERATURE: 18 C
AIRCRAFT - UH-IH

HO.

	"sec	22 23 20 1	E-0	N T T T T T T T T T T T T T T T T T T T	E O C	A X X X X X X X X X X X X X X X X X X X	TRANSP	SHISSION	VEL OCITY EXCER	TT NEVER
	(KTS)	(BS/HR)	X < 45°L	40.00	V.E.L.	9.0	VEL		VEL	
THE PARTY OF THE P		•			-	SELVS OF THE SELVS	×	(LBS/HR)	₩ •	(LOS/HR)
8 :000	130	980	137	428	777	047				
000:9	130	009	7.7	128			2			015
7 ,000	123	3					=	?	=	527
7.500		133				000	2	213	11	644
8.000				929	=	999	137	713	118	999
9.4	J.	***	2	628	=	999	135	713	611	545
999			2	=	-28	989	132	713	0.1	299
				628	125	099	129	713	107	576
000.	1.15	979	112	428	119	089	124	713	50.	

TEMPERATURE: 35 C (INCLUDING FUEL FLOW RATES) VELOCITY LIMITS TABLE PRESTURES 6000 FT

AIRCRAFT - UH-IH

									1	
	Jec	70 X 00 X	RONTE	MAX INUOUS	TON TON	TAX OFFR SINE	TRANS	AISSION AITS	30131	XCEED WEVER
	1×55.	1 BS/HR	VEL IXTS)	(LBS/HR)	(KTS)	(LBS/HR)	VEL (KTS)	(LBS/HR)	VEL (XTS)	F.F.
M M M M M M M M M M M M M M M M M M M						ı				
1,000	139	593	131	553	140	597	160	612	112	478
00019	140	919	127	553	136	597	157	414	112	#6#
7 , 000	1.40	449	121	583	131	597	152	612	112	515
7.500	139	059	119	155	129	597	150	219	112	525
00018	(37	559	117	553	126	597	8#1	219	109	526
0 1 500	136	999	112	553	122	597	144	616	106	532
0007	133	900	105	553	116	297	138	219	103	544
9,500	131	612	66	553	601	597	131	614	101	563

TABLE 4-72

VELOCITY LIMITS TABLE
(INCLUDING FUEL FLOW RATES)
PRESTURE: 8000 FT TEMPERATURE: -25 C

.

	Jez	M 22 23 04	SUSUSUS SUSUS SUSU	N 3 00 X 7 X 7 X 7 X 7 X 7 X 7 X 7 X 7 X 7	EO.	P Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	TRANS	MISSION	VELOCITY	ITY NEVER
	VEL	0 0 0	VEL	F.F.	VEL	FF	7	9.6	3	
20.00	-	ב •	S X	(LBS/HR)	(KTS)	(LBS/HR)	(X + S)	(LBS/HR)	(KTS)	(LBS/HR)
(185										
\$.000	36	468	127	130	3					
9000	1	905			2	7/8	123	686	1.19	645
		2005	123	739	126	778	118	686	611	
7 1000	44	522	117	739	120	32.5				
7 , 500	93	537	3.5	23.0			1	000		:
00018	5	555				1/8	2	686	119	808
00518	-			2	=	778	107	989	117	810
			2	739	112	778	104	686	=	
000:	177	595	105	739	109	778	13	787		
9.500	16	629	102	210						
				137	60	778	- 80	684	~ C -	700

VELOCITY LJMITS TABLE
(INCLUDING FUEL FLOW RATES)
PRESIURE: 8000 FT TEMPERATURE: "S C

	-AOE	20 20 20 20 20 20 20 20 20 20 20 20 20 2	CONTE	N D O O O O O O O O O O O O O O O O O O	10	SE S	TRANKE IN	ZO SHIT	VELOS	JIY NEVER
	YEY.	0 de de	VEL	F. F.		1 NE 1				
# 6 M 8 M 8 M 8 M 8 M	~	¥	X X X	(LBS/HR)	X 17 17 17 17 17 17 17 17 17 17 17 17 17	# / S & / S	> X M F NA	(LBS/HR)	X < +#	(LBS/HR)
<i>3</i> 1 +										
		503	135	659	139	306	1:	1	1	
4.000	107	864	100	750	1	2	2	169	115	\$ 1 ¢
7.000	103	507	3		2	705		169	115	546
7,500	5	5 8 2		Ž.	2	705	128	169	511	35.5
00010	3	0,0		626	126	705	126	169	115	1000
00919	=			i i	124	502	122	169	E	=======================================
00016	104	909			127	705	011	169	07.	616
9 5 5 0 0	104	632				502	116	169	107	429
				-	-		-			

TABLE 4-74

VFLOCITY LIMITS TABLE (INCLUDING FUEL FLOW RATES) PRESSURE: 8000 FT TEMPERATURE: 19 C

AIRCRAFT - UHLIH

									1	
		A N S E	NON	N D P P P P P P P P P P P P P P P P P P	E O	× × × × × × × × × × × × × × × × × × ×	TRAN	ZO I ON I	VELUC	XCEED XCE
	X X X Y S Y S Y S Y S Y S Y S Y S Y S Y	(85/HR)	VEL (KTS)	(LBS/HR)	S		VEL (KTS)	(LBS/HR)	X TEL	(LBS/HR)
SE SENTS										
8.000	130	220	136	280	142	627	152	669	=	794
	120	539	131	580	138	627	147	869	=	187
			125	5.80	132	627	142	869	111	506
7.500	153		122	5.80	130	627	139	869	111	518
			119		127	627	136	869	108	- I
	120		115	580	123	627	132	698	901	m .l
333	1 : 1		109	9.80	911	627	126	698	103	543
7777			102	580	011	627	120	869	001	571

TABLE 4-75

VELOCITY LIMITS TABLE (INCLUDING FUEL FLOW RATES)
PRESQURE: 8000 FT TEMPERATURE: 35 C

AIRCRAFT - UH-1H

HUEY

	J	AN GR	CONTI	MAX INUOUS OHER	PHA	AX Wer Ne?	TRANSH LIM	M15510N M175	VELOC1TY	TT NEVER
	(KTS)	(LBS/HR)	(KTS)	(LBS/HR)	VEL (KTS)	(LAS/HR)	(KTS)	(LBS/HR)	VEL	(LBS/HR)
68055 PE16HTS (185)										
8.000	1 90	155	129	510	138	252	591	704	101	435
4.000	1 40	585	124	i	134	552	160	407	101	452
7,000	139.	603	118	510	129	252	951	704	101	473
7.500	137	909	116	510	126	\$52	153	407	201	***
000.0	135	625	110	510	121	552	8 1 1	404	104	492
005:0	132.	949	102	510	114	552	1 1 1	104	101	909
0000+	132.	101	93	510	105	552	134	704	66	529
4,500	122.	7.30	7.8	\$ 10	06	582	119	704	96	928

TABLE 4-76

VELOCITY LIMITS TABLE
(INCLUDING FUEL FLOW RATES)
PRESSURE: 10000 FT TEMPERATURE: 725 C
AIRCRAFT - UH-IH

		LONG RANGE.	CONT	MAX INUOUS ORER	FPON	A A A A A A	TRANSMI	MISSION	VELOCITY Excee	ITY NEVER
	VEL (KTS)	F.F.	VEL (KTS)	(LBS/HR)	VEL	F F F	VEL	F • F •	134	F.F.
46.00 0.00 0.00 0.00 0.00 0.00								4	2	
5,000	96	435	125	489	129	723	125	677	511	578
6 : 000.	98	473	120	589	123	723	120	677	115	630.
7,000	66	664	114	h 9 9	117	723	113	677	115	700
7,500	62	516	111	489	114	723	110	677	511	739
00000	91	533	108	589	111	723	107	673	113	744
9 : 500	10	195	104	489	108	723	104	677	110	751
00000	92	599	101	484	104	723	001	677	107	763
9,500	92	049	48	489	66	723	8 2	677	105	7.83

TABLE 4-77

VELOCITY LIMITS TABLE (INCLUDING FUEL FLOW RATES)
PRESGURE: 10000 FT TEMPERATURE: -5 C

HUEY

•	_3 ec	ANS GE	CONTE	MAX Inuous Ower	PENGI	NEX New New New New New New New New New New	TRANS	MISSION MITS	VELOC	TT NEVER
	(KTS)	(LBS/HR)	(KTS)	(L85/HR)	VEL (KTS)	(LBS/HR)	VEL	F.F.	VEL	F.F.
SE SONS CERNS CERNS CERNS										
00015	113	471	133	809	138	199	141	189	==	094
000.9	105	296	127	809	-		135	189	Ξ	497
000; /	105	105	121	909	126	159	129	189	Ξ	537
7 ; 500	101	105	118	909	123	451	126	189	==	559
000 : 2	105	244	114	809	120	651	123	189	108	595
00618	104	695	110	809	115	159	119	189	105	576
000	102	593	105	809	110	651	113	189	103	593
4,500	102	636	8.6	809	104	159	107	189	100	620

TABLE 4-78

VELOCITY LIMITS TABLE (INCLUDING FUEL FLOW RATES)
PRESSURE: 10000 FT TEMPERATURE: 15 C

AIRCRAFT - UH-IH

NO.

	مد	78 28 28 28 28 28	E L NOU	MAX	Q	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	TRANS	MINSION	30134	11Y NEVER
			PO	~l	ENG.	INE				
	(KTS)	(LBS/HR)	VEL (KTS)	(LBS/HR)	K TS)	(BS/HR)	(KTS)	(LBS/HR)	X VEL	(LBS/HR)
WELONS TENDING TENDING										:
6.000	.30	115	134	563	141	579	155	685	107	B 1 4
		808	128	535	135	878	150	685	101	439
			12	5.36	129	57.5	5 10 1	589	201	462
7.500		558	118	535	126	579	141	989	10t	482
			113	535	121	579	136	685	+01	06%
004.4	· a		107	535	7 -	828	129	589	101	503
000	115		98	575	106	\$7.9	122	589	9.6	537
99.0	101	459	9.4	535	76	629	108	685	95	593
2				1						

TABLE 4-79

VELOCITY LIMITS TABLE (INCLUDING FUEL FLOW RATES)
PRESQURE: 10000 FT TEMPERATURE: 3s c

TO.

	_اور	RONGE	CONTINUOUS POWER	AX Nuous . Wer	N S S S S S S S S S S S S S S S S S S S	X X X X X X X X X X X X X X X X X X X	TRANS	MISSION MITS	30731	1 TY NEVER
	(KTS)	(LBS/HR)	VEL (KTS)	(LBS/HR)	VEL (KTS)	(LBC/HR)	(VEL	F.F.	VEL	F - F - F
E STORE										
000.3	140	526	127	471	136	\$06	170	069	102	395
000.9	1 40	252	120	126	130	809	1.64	069	102	# T
7,000	137	h 7 9	115	124	124	809	150	069	102	436
7 , 500	138	582	108	124	611	\$0	153	069	102	453
000.0	131	909	100	471	111	\$00	146	069	•	*97
00518	131	099	9.8	2	66	• 0 6	=	069	•	• • •
00016	110	459	o	171		\$00	1.14	069	20	3
4.500	43	099	0	471	0	\$08	?	069	9	3

APPENDIX A FUNCTIONS FOR CALCULATING BASIC FUEL FLOW

There are four functions that can be used to calculate the basic fuel flow for the UH-1H helicopter. In order to use the functions the following data is needed:

- 1. Flight Mode
- 2. Temperature
- 3. Pressure (altitude)
- 4. Gross weight

Which of the four functions will be used depends on the flight mode. The first function is for HIGE (Hover In Ground Effect).

The second function is for HOGE (Hover Out of Ground Effect).

$$FF (HOGE) = f (TEMP, ALT, GW)$$

The third function is for NOE (Nap of the Earth).

$$FF(NOE) = f(TEMP, ALT, GW)$$

The fourth function is for Forward Flight.

The equation for FF (HIGE) is:

$$FF$$
 (HIGE) = A (ALT) + B (TEMP) + C (GW) + D (ALT)(TEMP)
+ E (ALT) (GW) + F (TEMP) (GW)
+ G (ALT) (TEMP) (GW) + K

Where ALT is the altitude, TEMP is the temperature and GW is the gross weight and the constants have the following values:

$$A = -1.67887814 \times 10^{-2}$$
 E = 1.29600248 × 10⁻⁶

$$B = 4.10161592 \times 10^{-1}$$
 F = 3.0132207 × 10⁻⁵

$$C = 3.91685739 \times 10^{-2}$$
 $G = 1.17938045 \times 10^{-8}$

$$D = -8.21728881 \times 10^{-5}$$
 $K = 2.92933769 \times 10^{2}$

The equation for FF (HOGE) is exactly the same form as FF (HIGE). A new set of values for the constants is used. These values are:

A = -2.63614934 X 10^{-2} E = 3.02673962 X 10^{-6} B = 1.93964556 X 10^{-1} F = 6.59458456 X 10^{-5} C = 4.56838422 X 10^{-2} G = 2.37175783 X 10^{-8} D = -1.43400082 X 10^{-4} K = 2.74731071 X 10^{2}

The equation for FF (NOE) is once again the same as FF (HIGE). The new values for the constants are:

 $A = -2.22641672 \times 10^{-2}$ $E = 2.17353323 \times 10^{-6}$ $E = 2.23785236 \times 10^{-1}$ $E = 3.08376766 \times 10^{-5}$ $E = 3.08376766 \times 1$

For the Forward Flight modes the form of the equation is:

 $FF = A(AS) + B(AS^{2}) + C(AS^{3}) + D(TEMP) + E(GW) + F(ALT) + G(AS^{3})(TEMP) + H(AS^{2})(TEMP) + I(AS)(TEMP) + J(AS^{3})(GW) + K(AS^{2})(GW) + L(AS)(GW) + M(AS^{3})(ALT) + N(AS^{2})(ALT) + D(AS)(ALT) + P(TEMP)(GW)$

+ Q(TEMP)(ALT) + R(GW)(ALT) + S(TEMP)(GW)(ALT) + T

Where AS is the air speed in kts and the values of the constants are:

 $K = 3.03806055 \times 10^{-5}$ 1.59068222 X 10 $B = -2.07244817 \times 10^{-1}$ $L = -2.6563704 \times 10^{-3}$ $C = 9.4490312 \times 10^{-4}$ $M = -4.39906813 \times 10^{-8}$ $N = 1.01244432 \times 10^{-5}$ 1.39238681 8.46537426 x 10⁻² $0 = -7.65462173 \times 10^{-4}$ $F = -3.69644095 \times 10^{-3}$ $P = -1.80674342 \times 10^{-4}$ $G = -3.31475934 \times 10^{-6}$ $0 = -2.52322902 \times 10^{-5}$ 4.58021714 X 10⁻⁶ $R = 1.68428633 \times 10^{-6}$ $S = 1.34310624 \times 10^{-9}$ 1.22959614 X 10⁻² $J = -9.9763934 \times 10^{-8}$ $T = -1.92733078 \times 10$

These functions allow anyone with a simple calculator to figure the fuel flow of the aircraft and bypass both looking up the values and interpolating for points in between the data points in the tables.

The above equations calculate the basic fuel flow for the HUEY helicopter with the following accuracies:

FF (HIGE) - 99.06% FF (HOGE) - 96.45%

FF (NOE) - 97.22%

FF (Forward Flight) - 96.72%

APPENDIX B

FUNCTION FOR CALCULATING DELTA FUEL FLOW FOR DRAG

The function below will calculate the delta fuel flow for drag for the UH-IH helicopter. Recall from the discussion in chapter three that this value is added to the basic fuel flow value whenever drag is increasing the rate of fuel flow.*

In order to use the function the following data is needed:

- 1. Air Speed (AS)
- 2. Equivalent Square Footage of Drag (SQ)
- 3. Temperature (TEMP) in degrees centigrade
- 4. Altitude (ALT) in feet above sea level

That is:

$$FF (Drag) = f(AS, SQ, TEMP, ALT)$$

The equation for FF (Drag) is:

$$FF (Drag) = A(AS) + B(AS^2) + C(AS^3) + D(TEMP) + E(SQ) + F(ALT)$$

$$+ G(AS^3)(TEMP) + H(AS^2)(TEMP) + I(AS)(TEMP) + J(AS^3)(SQ) + K(AS^2)(SQ)$$

$$+ L(AS)(SQ) + M(AS^3)(ALT) + N(AS^2)(ALT) + O(AS)(ALT) + P(TEMP)(SQ)$$

+
$$Q(TEMP)(ALT) + R(SQ)(ALT) + S(SQ)(ALT)(TEMP) + T$$

Where the constants have the following values:

$$A = 1.20850778$$
 $K = 1.6429491 \times 10^{-4}$

$$B = -1.7245627 \times 10^{-2}$$
 L = -3.931427 × 10⁻²

$$C = 9.34083073 \times 10^{-5} M = -1.27597747 \times 10^{-8}$$

$$D = -7.75502279 \times 10^{-1} N = 1.82550063 \times 10^{-6}$$

$$E = 2.63399982$$
 $0 = -1.13339163 \times 10^{-4}$

$$F = 9.42266406 \times 10^{-3} \quad P = -2.40131395 \times 10^{-2}$$

$$G = 1.68433911 \times 10^{-6} \quad Q = -1.68563065 \times 10^{-6}$$

$$H = -5.68644718 \times 10^{-4} R = -2.57801366 \times 10^{-4}$$

$$1 = 4.71237898 \times 10^{-2} \text{ S} = 2.58660063 \times 10^{-6}$$

$$J = 5.16584009 \times 10^{-6} \quad T = -6.4234005 \times 10^{-6}$$

^{*}There is no delta fuel flow for drag for HIGE, HOGE, or NOE flight.

This equation calculates the delta fuel flow for drag value with an accuracy of 98.25%. It should be noted that in some instances the computed value will be negative. If this occurs, zero (9) should be used as the value for delta fuel flow.

* · · · · ·

APPENDIX C FUNCTION FOR CALCULATING GROUND IDLE FUEL FLOW

The function below will calculate the ground idle fuel flow rate for the UH-lH helicopter. In order to use the function the following data is needed:

- 1. Temperature (TEMP) in degrees centigrade.
- 2. Altitude (ALT) in feet above sea level.

That is:

$$FF$$
 (Idle) = f (TEMP, ALT)

The equation, for FF (Idle) is:

Where the constants have the following values:

 $A = 1.45684561 \times 10^{-1} D = 3.12500328 \times 10^{-4}$

 $B = -8.34276131 \times 10^{-3} E = 1.14954767 \times 10^{-7}$

 $C = 5.07142136 \times 10^{-6} \quad F = 3.23437859 \times 10^{2}$

This equation calculates the ground idle fuel flow rate with an accuracy of 99.95%.

APPENDIX D FUNCTIONS FOR CALCULATING GROSS WEIGHT LIMITS FOR TAKEOFF

The functions given below will calculate the gross weight limits for take off for the UH-1H helicopter. Each of the functions is of the same basic form with the values of the constants changing depending on which take off criteria is being used. In all cases the Structural Gross Weight Limit of the UH-1H helicopter is 9,500 lbs.

In order to use the functions the following data is needed:

- 1. Temperature (TEMP) in degrees centigrade
- 2. Altitude (ALT) in feet above sea level

That is:

The basic equation for GW (Limit) is:

$$GW (Limit) = A(TEMP) + B(ALT) + C(TEMP)(ALT) + D$$

For take off criteria #1 the equation must be used twice, once using the engine limit constants and once using the transmission limit constants. For take off criteria #1 the constants for engine limits are:

$$A = -6.85016747 \times 10$$
 $C = 1.71550139 \times 10^{-3}$
 $B = -3.70859645 \times 10^{-1}$ $D = 1.18470441 \times 10^{4}$

For take off criteria #1 the constants for transmission limits are:

```
A = -6.92928457 C = -7.39143041 \times 10^{-4}

B = -1.22411422 \times 10^{-1} D = 9.99151526 \times 10^{3}
```

For take off criteria #2 two checks must also be made. The constants for engine limits, take off criteria #2 are:

```
A = -6.52326231 \times 10 C = 1.13485783 \times 10^{-3}

B = -3.27509999 \times 10^{-1} D = 1.08683416 \times 10^{4}
```

For take off criteria #2 the constants for transmission limits are:

$$A = -4.73714191$$
 $C = -8.22071597 \times 10^{-4}$
 $B = -9.93717806 \times 10^{-2}$ $D = 9.43963794 \times 10^{3}$

Also for take off criteria #3 two checks must be made. The constants for engine limits, take off criteria #3 are:

 $A = -8.2112627 \times 10$ $C = 1.67585877 \times 10^{-3}$

 $B = -4.10679288 \times 10^{-1}$ $D = 1.34328130 \times 10^{4}$

For take off criteria #3 the constants for transmission limits are:

A = -6.72952366

 $C = -9.07928614 \times 10^{-4}$

 $B = -1.10792495 \times 10^{-1}$

D = 1.11857665 X 104

This equation with the various sets of constants gives results that are 95.62% accurate or better.

APPENDIX E SHORT DESCRIPTION OF HUEY DATA SOURCE

DRDAV-EQA(A)

SUBJECT: Short Description of UH-1H Performance Data Provided to TRADOC Systems Analysis Activity (TRASANA)

MFR:

1. References:

- a. Engineering Flight Test, UH-1H Helicopter; Phase D (Limited) USAASTA Project No. 66-04.
- b. Determination of the Effects of Rotor Blade Compressibility on the Performance of the UH-1F; FTC-TR-65-17.
 - c. Operator's Manual, Army Model UH-1H Helicopter, TM55-1520-210-10.
- 2. The performance data presented to TRASANA is the result of combining the helicopter power required, engine power available and engine fuel flow characteristics. The UH-IH power required was calculated from a non-dimensional representation of engine power required (coefficient of power) v.s. gross weight (coefficient of thrust) and true airspeed (advance ratio). The non-dimensional power required was obtained from reference la. All performance in ground effect represents a 5 foot skid height. A temperature dependent correction, based on the method outlined in reference lb, was made to the power required to account for compressibility which could not be accounted for in the non-dimensional representation.
- 3. The T53-L-13 engine power available to the UH-1H (which was used in combination with the power required to find helicopter take-off and speed limits) was used as a function of altitude and temperature, from reference la.
- 4. The engine fuel flow at a particular altitude and temperature combination was derived from a representative referred fuel flow as a function of referred engine power. The referred fuel flow curve for the T53-L-13 engine was taken from reference la. The calculated fuel flows reflect 5% conservatism. A referred parameter is one which is divided by temperature and pressure ratios in order to represent all atmospheric conditions by one function.
- 5. The never exceed speeds (Vn.e.) were calculated from those shown graphically in an unpublished new version of reference 1c.
- 6. The Structural Gross Weight limit of the UH-1H is 9500 lbs.

JAMES A. O'MALLEY III
Aerospace Engineer
DEDAV-EQA(A)