Covering maxima and Delaunay polytopes in lattices

Mathieu Dutour Sikirić Rudjer Bošković Institute, Croatia

Achill Schuermann
TU Delft. Netherland

Konstantin Rybnikov Massachussets, Lowell, USA

Frank Vallentin
TU Delft, Netherland

I. Quadratic functions

and the Erdahl cone

The Erdahl cone

▶ Denote by $E_2(n)$ the vector space of degree 2 polynomial functions on \mathbb{R}^n . We write $f \in E_2(n)$ in the form

$$f(x) = a_f + b_f \cdot x + Q_f[x]$$

with $a_f \in \mathbb{R}$, $b_f \in \mathbb{R}^n$ and Q_f a $n \times n$ symmetric matrix

▶ The Erdahl cone is defined as

$$Erdahl(n) = \{ f \in E_2(n) \text{ such that } f(x) \ge 0 \text{ for } x \in \mathbb{Z}^n \}$$

- It is a convex cone, which is non-polyhedral since defined by an infinity of inequalities.
- ▶ The group acting on Erdahl(n) is $AGL_n(\mathbb{Z})$, i.e. the group of affine integral transformations

$$x \mapsto b + xP$$
 for $b \in \mathbb{Z}^n$ and $P \in GL_n(\mathbb{Z})$

Scalar product

▶ Definition: If $f, g \in E_2(n)$, then:

$$\langle f,g
angle = a_f a_g + \langle b_f,b_g
angle + \langle Q_f,Q_g
angle$$

- ▶ Definition: For $v \in \mathbb{Z}^n$, define $ev_v(x) = (1 + v \cdot x)^2$.
- We have

$$\langle f, ev_v \rangle = f(v)$$

- ► Thus finding the rays of *Erdahl(n)* is a dual description problem with an infinity of inequalities and infinite group acting on it.
- Definition: We also define

$$Erdahl_{>0}(n) = \{ f \in Erdahl(n) : Q_f \text{ positive definite} \}$$

Empty sphere and Delaunay polytopes

- ▶ Definition: A sphere S(c, r) of center c and radius r in an n-dimensional lattice L is said to be an empty sphere if:
 - (i) $||v-c|| \ge r$ for all $v \in L$,
 - (ii) the set $S(c,r) \cap L$ contains n+1 affinely independent points.
- ▶ Definition: A Delaunay polytope P in a lattice L is a polytope, whose vertex-set is $L \cap S(c, r)$.

Delaunay polytopes define a tesselation of the Euclidean space.

Relation with Delaunay polytope

▶ If D is a Delaunay polytope of a lattice L of empty sphere S(c,r) then for every basis v_1, \ldots, v_n of L we define the function

$$f_D: \mathbb{Z}^n \to \mathbb{R}$$

$$x = (x_1, \dots, x_n) \mapsto \|\sum_{i=1}^n x_i v_i - c\|^2 - r^2$$

Clearly $f_D \in Erdahl_{>0}(n)$.

▶ On the other hand if $f \in Erdahl(n)$ then there exist a lattice L' of dimension $k \le n$, a Delaunay polytope D of L', a function $\phi \in \mathsf{AGL}_n(\mathbb{Z})$ such that

$$f \circ \phi(x_1,\ldots,x_n) = f_D(x_1,\ldots,x_k)$$

- ► Thus the faces of *Erdahl(n)* correspond to the Delaunay polytope of dimension at most *n*.
- ▶ The rank of a Delaunay polytope is the dimension of the face it defines in Erdahl(n).

Perfect quadratic function

▶ Definition: If $f \in Erdahl(n)$ then

$$Z(f) = \{ v \in \mathbb{Z}^n : f(v) = 0 \}$$

and

$$\mathsf{Dom}\ f = \sum_{v \in Z(f)} \mathbb{R}_+ e v_v$$

- We have $\langle f, \mathsf{Dom} \ f \rangle = 0$.
- ▶ Definition: $f \in Erdahl(n)$ is perfect if Dom f is of dimension $\binom{n+2}{2} 1$.
- ► This is equivalent to say that *f* defines an extreme ray in *Erdahl*(*n*).
- ▶ The interval [0,1] is a perfect Delaunay polytope and for every $n \ge 6$ there exist an n-dimensional perfect Delaunay polytope.
- Geometrically, this means that the only affine transformations that preserve the Delaunay property are isometries and homotheties.

Eutacticity

▶ If $f \in Erdahl_{>0}(n)$ then define μ_f and c_f such that

$$f(x) = Q_f[x - c_f] - \mu_f$$

Then define

$$u_f(x) = (1 + c_f \cdot x)^2 + \frac{\mu_f}{n} Q_f^{-1}[x]$$

- ▶ Definition: $f \in Erdahl_{>0}(n)$ is eutactic if $u_f \in relint(Dom f)$ and weakly eutactic if $u_f \in Dom f$.
- ▶ Definition: Take a Delaunay polytope P for a quadratic form Q of center c_P and square radius μ_P . P is called eutactic if there are $\alpha_V > 0$ so that

$$\begin{cases} 1 &= \sum_{v \in \text{vert } P} \alpha_v, \\ 0 &= \sum_{v \in \text{vert } P} \alpha_v(v - c_P), \\ \frac{\mu_P}{n} Q^{-1} &= \sum_{v \in \text{vert } P} \alpha_v(v - c_P)(v - c_P)^t. \end{cases}$$

Strongly perfect Delaunay polytopes

▶ Definition: We say that a finite, nonempty subset X in \mathbb{R}^n carries a spherical t-design if there is a similarity transformation mapping X to points on the unit sphere S^{n-1} so that

$$\frac{1}{|Y|} \sum_{y \in Y} f(y) = \frac{1}{\omega_n} \int_{S^{n-1}} f(y) d\omega(y).$$

holds, for all polynomials $f \in \mathbb{R}[x_1, \dots, x_n]$ up to degree t.

- ▶ If the vertices of *P* form a 2-design, then they define an eutactic form.
- ▶ Definition: A Delaunay polytope *P* is called strongly perfect if its vertex set form a 4-design.
- ▶ Theorem: A strongly perfect Delaunay polytope *P* is perfect.
- ▶ Proof: If f(v) = 0 for v a vertex of P then

$$\frac{1}{\omega_n} \int_{S^{n-1}} f(x)^2 dx = \frac{1}{|\operatorname{vert} P|} \sum_{v \in \operatorname{vert} P} f(v)^2 = 0$$

II. Covering maxima

and characterization

Lattice covering

▶ We consider covering of \mathbb{R}^n by *n*-dimensional balls of the same radius, whose center belong to a lattice L.

The covering density has the expression

$$\Theta(L) = \frac{\mu(L)^n \kappa_n}{\det(L)} \ge 1$$

with $\mu(L)$ being the largest radius of Delaunay polytopes and κ_n the volume of the unit ball B^n .

▶ The only general method for computing $\mu(L)$ is to compute all Delaunay polytopes of L.

Covering maxima and pessima

▶ Definition: If $f \in Erdahl_{>0}(n)$ then we define the inhomogeneous Hermite minimum by

$$H(f) = \mu_f (\det Q_f)^{-1/n}$$

We then have if Q is a quadratic form for L

$$\mu(L)^2 = \max\{\mu_f : f \in Erdahl(n) \text{ and } Q_f = Q\}$$

 $\Theta(L) = \kappa_n \max\{H(f)^{n/2} : f \in Erdahl(n) \text{ with } Q_f = Q\}$

- ▶ Definition: A lattice L is said to be a covering maximum if for every lattice L', which is near L we have $\Theta(L) > \Theta(L')$.
- ▶ Definition: A lattice L is said to be a covering pessimum if for every lattice L', which is near L we have $\Theta(L) > \Theta(L')$ except in a set of measure 0.
- ► Theorem: We have equivalence between:
 - ▶ *L* is a covering maximum (resp. pessimum).
 - ► For every $f \in Erdahl(n)$ with $\mu_f = Q$ and $\mu(L)^2 = \mu_f$ the function H(f) is a covering maximum (resp. pessimum)

Convexity results

- ▶ Theorem: The function $f \mapsto \mu_f$ is convex on Erdahl(n).
- ▶ Proof: Write f as

$$f(x) = Q_f[x - c_f] - \mu_f$$

and we have

$$-\mu_f = \min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$

which implies the result.

- ▶ Theorem (Minkovski): The function $f \mapsto d_f = (\det Q_f)^{-1/n}$ is convex on Erdahl(n).
- ▶ But the product $f \mapsto H(f) = \mu_f d_f$ is not convex.

Characterization of covering maxima

- ▶ Theorem: Take $f \in Erdahl_{>0}(n)$. The following are equivalent:
 - f is a covering maximum for H.
 - f is perfect and eutactic.
- ▶ Proof: Suppose that *f* is perfect and eutactic. We have the differentiation formula:

$$H(f + \delta f) = H(f) - \frac{1}{(\det Q_f)^{-1/n}} \langle u_f, \delta f \rangle + o(\delta f)$$

We also have

$$\langle u_f, \delta f \rangle = \sum_{v \in Z(f)} \alpha_v(\delta f)(v)$$

with $\alpha_{\nu} > 0$. If δf is not collinear to f then there exists $\nu \in Z(f)$ with $(\delta f)(\nu) > 0$. Thus H decreases in direction δf .

▶ The reverse implication follows by preceding convexity results.

Characterization of covering pessima

- ▶ Theorem: Take $f \in Erdahl_{>0}(n)$. The following are equivalent:
 - \triangleright f is a covering pessimum for H
 - f is weakly eutactic
- ▶ Proof: Suppose that *f* is weakly eutactic. We have the differentiation formula:

$$H(f + \delta f) = H(f) - \frac{1}{(\det Q_f)^{-1/n}} \langle u_f, \delta f \rangle + o(\delta f)$$

We also have

$$\langle u_f, \delta f \rangle = \sum_{v \in Z(f)} \alpha_v(\delta f)(v)$$

with $\alpha_v \ge 0$. If δf is not collinear to f and chosen outside of a set of measure 0 then $(\delta f)(v) > 0$ for all v and $\langle u_f, \delta f \rangle > 0$.

▶ The reverse implication follows by preceding convexity results.

Topological Morse function property

- ▶ Call Symm(n) the space of $n \times n$ symmetric matrices.
- ▶ Theorem: Take a lattice *L* and assume that all the Delaunay polytopes of maximal circumradius are eutactic. The following are equivalent:
 - ightharpoonup L is a non-degenerate topological Morse point for Θ
 - ▶ There exist a proper subspace SP_L of Symm(n) such that for every $f_0 \in Erdahl(n)$ with $Q_{f_0} = Q_0$ and $\mu(L)^2 = \mu_{f_0}$ we have

$$\left\{\begin{array}{c}Q\in Symm(n):\exists f\in Erdahl(n),\\Q_f=Q\text{ and }Z(f)=Z(f_0)\end{array}\right\}\subset SP_L$$

- ► Theorem: The covering density function $Q \mapsto \Theta(Q)$ is a topological Morse function if and only if $n \leq 3$.
- ▶ Proof: The lattice D₄ has three translation classes of Delaunay polytopes with the subspaces having zero intersection and their sum spanning *Symm*(4).

III. Examples

Known perfect Delaunay polytopes

- ▶ In dimension 6, there is only Gosset's 2₂₁, which defines the Delaunay polytopes of E₆.
- ▶ No classification in higher dimension.
 - ▶ For n = 7, conjectured only two cases:

	Lattice	# vertices	# facets	Sym
	E ₇	56	702	2903040 (Gosset's 3 ₂₁)
Į	ER_7	35	228	1440

- For n = 8, a conjectured list of 27 possibilities.
- For n = 9, at least 100000 perfect Delaunay polytopes.
- Some infinite series were built in
 - ▶ M. Dutour, *Infinite serie of extreme Delaunay polytopes*, European J. Combin. **26** (2005) 129–132.
 - ▶ V.P. Grishukhin, *Infinite series of extreme Delaunay polytopes*, European J. Combin. **27** (2006) 481–495.
 - R. Erdahl and K. Rybnikov, An infinite series of perfect quadratic forms and big Delaunay simplices in Zⁿ, Proc. Steklov Inst. Math. 239 (2002) 159–167.

Example of covering maxima and minima

▶ The following lattices are covering maxima:

	name	design strength	# vertices	# orbits Delaunay polytopes
_	E ₆	4	27	1
	E_7	5	56	2
	ER ₇	0	35	4
	O_{10}	3	160	6
	BW_{16}	5	512	4
	O ₂₃	7	94208	5
	Λ_{23}	7	47104	709

► The following lattices are covering pessima:

J			•
name	design strength	# vertices	# orbits Delaunay polytopes
\mathbb{Z}^n	3	2 ⁿ	1
D_n	3	2^{n-1}	2 (or 1)
E ₆ *	2	9	1
E ₇ *	3	16	1
E ₈	3	16	2
K_{12}	3	81	4

- ▶ Proof method: Take L a lattice
 - ▶ Enumerate all Delaunay polytopes of *L* up to symmetry
 - ► Select the ones of maximum circumradius.
 - Check for perfection (linear system problem)
 - check for eutacticity, resp. weakly eutacticity (linear programming problem)

Infinite sequence of covering maxima

- ▶ We need to find explicit lattice.
- If n even, $n \ge 6$, there is a n-dimensional extreme Delaunay ED_n formed with 3 layers of D_{n-1} lattice
 - a vertex
 - ▶ the n-1 half-cube
 - ▶ the n-1 cross-polytope
- If n odd, $n \ge 7$, there is a n-dimensional extreme Delaunay ED_n formed with 3 layers of D_{n-1} lattice
 - ▶ the n-1 cross polytope
 - ▶ the n-1 half-cube
 - ▶ the n-1 cross polytope
 - ▶ ED_6 is Gosset's 2_{21} and ED_7 is Gosset's 3_{21} .
 - For a Delaunay polytope P, we define L(P) to be the smallest lattice containing P.
- ▶ Theorem: The lattice $L(ED_n)$ spanned by ED_n is a covering maxima.
- ▶ We need the full list of orbits of Delaunay of $L(ED_n)$.

Proof method

▶ Suppose that we have p orbits O_1, \ldots, O_p of Delaunay polytopes P_1, \ldots, P_p then

$$1 \ge \sum_{i=1}^p |O_i| \text{ vol } P_i.$$

If equality then the list O_1, \ldots, O_p is complete.

▶ Take P is a polytope $c \in P$ a point invariant under Aut P. If F_1, \ldots, F_r are r orbits Orb_1, \ldots, Orb_r of facets of P then we have

$$\text{vol } P \geq \sum_{i=1}^{r} |Orb_i| \, \text{vol}(\text{conv}(F_i, c))$$

If equality then the list $F_1, \ldots F_r$ is complete.

▶ We get a conjectured list of orbits of Delaunay polytope of $L(ED_n)$, of facets of ED_n and prove their completude by the volume formula.

Non generating perfect Delaunay polytopes

- ▶ Theorem: There exist perfect Delaunay polytopes P in lattices L with $L(P) \neq L$.
- ▶ Proof:
 - ▶ Take $2 \le s$ and $4s \le n$ and define the *n*-polytope

$$J(n,s) = \{x \in \{0,1\}^{n+1} \text{ such that } \sum_{i=1}^{n+1} x_i = s\}$$

- ▶ Define the vector $v_{n,s} = \left(\left(\frac{1}{4} \right)^{4s}, 0^{n+1-4s} \right)$.
- ▶ $P(n,s) = J(n,s) \cup 2v_{n,s} J(n,s)$ is a perfect *n*-dimensional Delaunay polytope in $L_{n,s} = L(P(n,s))$.
- ► Fact: If

$$6s < \begin{cases} n+1 & \text{if } n \text{ is odd,} \\ n & \text{if } n \text{ is even.} \end{cases}$$

then there exist a superlattice $L'_{n,s}$ of $L_{n,s}$ in which $P_{n,s}$ is still a Delaunay polytope.

IV. A Voronoi algorithm?

Non local-polyhedrality

- ▶ In the theory of perfect forms, when one applies the Voronoi algorithm we deal only with the quadratic form of dimension *n* and not the ones of lower dimension.
- ► A perfect quadratic form has a finite number of neighbors. Enumerating them is a dual description problem.
- ▶ But if $f \in Erdahl(n)$ we can only conclude that Q_f is positive semidefinite. We can have

$$Z(f) = \phi(\text{vert } D \times \mathbb{Z}^{n-k}) \text{ with } \phi \in AGL_n(\mathbb{Z})$$

with D a k-dimensional Delaunay polytope and $k \le n$. Erdahl(n) contains the description of all the Delaunay polytopes of dimension at most n.

▶ Thus *Erdahl*(*n*) is not locally polyhedral.

Cellular structure

- ▶ Suppose that D_1 , D_2 , D_3 are Delaunay polyhedra with
 - ▶ the inclusions vert $D_1 \subset \text{vert } D_2 \subset \text{vert } D_3$
 - ▶ The rank conditions

$$\operatorname{\mathsf{rank}} D_1 = 2 + \operatorname{\mathsf{rank}} D_3$$
 and $\operatorname{\mathsf{rank}} D_2 = 1 + \operatorname{\mathsf{rank}} D_3$

Then there exist a unique Delaunay polyhedra D_2' with

$$\mathsf{vert}\ D_1 \subset \mathsf{vert}\ D_2' \subset \mathsf{vert}\ D_3\ \mathsf{and}\ D_2 \neq D_2'$$

- ► For every $1 \le k \le \frac{(n+1)(n+2)}{2}$ there are faces of dimension k of Erdahl(n).
- So, the Erdahl cone behaves like a polytope.

Recursive adjacency decomposition

We adapt the recursive adjacency decomposition for polytopes.

- For a Delaunay polyhedron D, we define Sub(D) the orbits of Delaunay polytopes contained in D and of rank 1 + rank D.
- The method is iterative
 - ▶ If vert *D* is finite (i.e. *D* a polytope) then we can compute directly *Sub*(*D*).
 - ▶ If D is not finite, then we find a subpolytope D' with vert $D' \subset \text{vert } D$ then by computing Sub(D') we can find the Delaunay adjacent to D' in Sub(D)

Implementation done but:

- Insufficient speed
- So far works in dimension 6.
- ▶ Need for Balinski type theorem to avoid some computation.