

MET-348-3 Previsão Numérica de Tempo e Clima Docente Responsável: Paulo Kubota

Introdução;

- Equações governantes;
- 2. Inicialização: física, dinâmica;
- 3. Previsibilidade;
- 4. Métodos de previsão por conjuntos;
- 5. Modelagem climática e regionalização;
- 6. Modelos acoplados oceano-atmosfera: desenho, uso e aplicações;
- 7. Métricas de avaliação: tempo e clima;
- 8. Modelos operacionais.

Bibliografia:

Kalnay, E. 2003: Atmospheric modeling: data assimilation and predictability. Cambridge, UK. Cambridge University Press. Warner, T. T. 2011: Numerical Weather and Climate Prediction, 512pp.

Washington, W.M.; Parkinson, Cl. L. 1986: An introduction to three-dimensional climate modeling. Oxford University Press. 422pp.

Trenberth, K. 1995: Climate system modeling. Cambridge University Press.

July			Au	August						Sep	September									
Su	Мо	Tu	we	Th	Fr	Sa	Su	Мо	Tu	we	Th	Fr	Sa	Su	Мо	Tu	we	Τh	Fr	Sa
	1	2	3	4	5	6					1	2	3	1	2	3	4	5	6	7
7	8	9	10	11	12	13	4	5	6	7	8	9	10	8	9	10	11	12	13	14
14	15	16	17	18	19	20	11	12	13	14	15	16	17	15	(16)	17	18	(19)	20	21
21	22	23	24	25	26	27	18	19	20	21	22	23	24		23					
28	29	30	31				25	26	27	28	29	30	31	29	30					

October	November	December						
Su Mo Tu We Th Fr Sa	Su Mo Tu We Th Fr Sa	Su Mo Tu We Th Fr Sa						
1 2 3 4 5	1 2	1 2 3 4 5 6 7						
6 7 8 9 10 11 12	3 4 5 6 7 8 9	8 9 10 11 12 13 14						
13 14 15 16 17 18 19	10 11 12 13 14 15 16	15 16 17 18 19 20 21						
20 (21) 22 23 (24) 25 26	17 18 19 20 21 22 23	22 23 24 25 26 27 28						
27 28 29 30 31	24 25 26 27 28 29 30	29 30 31						

data	Numero de tópicos	

Turma 2024

670414/2024 Bárbara Silva Souza 972910/2024 Roseli de Oliveira

Turma 2024

- Alunos (2)
- Enviar as seguintes informações:
 - Nome, e-mail
 - Mestrando
 - Doutorando
 - Outros
 - Área de formação/Faculdade
 - Meteorologia
 - Física
 - Outro
 - Área de interesse

Áreas de interesse

- Modelagem numérica
- Estudos observacionais
- Modelo/observações
- Não definido (?)

Avaliação:

- 1 Exercícios em sala ou homework (30% da nota final)
- 2 Avaliação (40% da nota final)
- 3 Trabalho de Conclusão de Curso. Máximo 12 páginas (30% da nota final)

Finalidade das Listas

- Vários tipos de modelos atmosféricos:
 - Simplificados: Modelos filtrados (BVE ENIAC); Modelos baroclínicos (Eq. Primitivas-Richardson)
 - Modelos de PNTC: Circulação geral da atmosfera CPTEC, regionais (Eta, WRF, MPAS)
- Artigos: revisões, modelos CPTEC: BAM, BESM, MONAN, outros)
- Para compreender os métodos/processos envolvidos em PNTC e/ou analisar algum fenômeno meteorológico de interesse

Regras

- Os alunos desenvolverão um projeto (dados, documento e apresentação)
- Apresentação ao final do curso (10-15 min.), onde todos serão arguidos
- A nota final levara em conta o documento, apresentação e respostas (contribuição dos membros)
- Classe: concorda, esta errado, pode ser?

Ética

- Trabalho em equipe é bem-vinda
- Listas e provas individuais, suas interpretações e palavras
- Referenciar as fontes de dados e pesquisa
- Copia implicará desaprovação no curso

Aos Alunos

•Duvidas, perguntas?

An Introduction to Global Spectral Modeling

2nd Revised and Enlarged Edition

T.N. Krishnamurti H.S. Bedi

V.M. Hardiker

L. Ramaswamy

Atmospheric and Oceanographic Sciences Library

Principais Componentes dos Sistemas de Previsão Numérica do Tempo (PNT):

Assimilação de Dados:

Condições Iniciais:

Modelos Atmosféricos

Modelos Atmosféricos:

O núcleo dos sistemas de PNT são modelos matemáticos baseados nas leis fundamentais da física, incluindo as equações de Navier-Stokes para dinâmica de fluidos, termodinâmica e a equação de continuidade. A atmosfera é dividida em uma grade 3D onde variáveis como velocidade do vento, temperatura, pressão e umidade são calculadas em cada ponto.

Condições Iniciais:

A qualidade de uma previsão depende muito da precisão do estado inicial da atmosfera. Isso envolve combinar observações de várias fontes (satélites, estações meteorológicas, aeronaves, radiossondas, etc.).

Assimilação de Dados:

Uma técnica para fundir dados observacionais do mundo real com as previsões do modelo para criar a melhor estimativa do estado atual da atmosfera. Ela ajusta o modelo para se adequar às observações sem comprometer a dinâmica subjacente da atmosfera.

Principais Componentes dos Sistemas de Previsão Numérica do Tempo (PNT):

Física do Modelo:

Integração Numérica: Condições de Contorno:

Integração Numérica:

Uma vez definidas as condições iniciais, o modelo utiliza métodos numéricos para resolver as equações ao longo do tempo. Diferentes esquemas (por exemplo, diferenças finitas, métodos espectrais) são usados para aproximar as soluções dessas equações.

Condições de Contorno:

As condições de contorno levam em consideração as interações entre a atmosfera e outros componentes, como o oceano, a terra e o gelo. Essas condições afetam a dinâmica de longo prazo do modelo.

Física do Modelo:

Processos físicos como radiação, convecção, precipitação e formação de nuvens são parametrizados, pois ocorrem em escalas muito pequenas para serem resolvidas diretamente. Esses processos são conhecidos como "processos sub-malha".

Pós-Processamento e Interpretação:

A saída bruta do modelo é refinada por meio de métodos estatísticos, correção de viés e técnicas de visualização para torná-la utilizável por meteorologistas e tomadores de decisão.

Paulo Yoshio Kubota

Aplicações da Assimilação de Dados:

Condições Iniciais Melhoradas:

A assimilação de dados ajuda a construir a representação mais precisa do estado atual da atmosfera, crucial para previsões precisas. O método combina dados observacionais esparsos e, às vezes, ruidosos com previsões anteriores do modelo (chamadas de "fundo" ou "primeira estimativa").

Previsão Imediata ("Nowcasting"):

Em modelos de alta resolução, a assimilação de dados pode ajudar a atualizar previsões meteorológicas de curto prazo (algumas horas à frente). Isso é especialmente útil para previsões de clima severo, como tempestades ou tornados.

Projetos de Reanálise:

São registros consistentes de longo prazo do clima passado, criados executando modelos de PNT com assimilação de dados sobre observações históricas. Exemplos incluem o ERA5 do ECMWF e o CFSR da NOAA, amplamente utilizados em pesquisas climáticas.

Impacto das Observações:

A assimilação de dados pode avaliar a importância e a influência de diferentes tipos de dados observacionais, como produtos derivados de satélites ou estações de superfície, na melhoria da precisão da previsão.

Técnicas para Verificar Previsões:

Erro Quadrático Médio (RMSE):

O RMSE mede a diferença entre valores previstos e observados e é uma métrica comum para avaliar a precisão da previsão. Ele considera a magnitude dos erros, mas não a sua direção (positiva ou negativa).

Coeficiente de Correlação de Anomalias (ACC):

Mede o quão bem a previsão de um modelo das variações em relação à climatologia corresponde às variações observadas. É frequentemente utilizado para avaliar a habilidade de previsões de longo prazo.

Índice de Brier:

Para previsões probabilísticas, o índice de Brier mede a diferença quadrática média entre as probabilidades previstas e os resultados binários observados (por exemplo, chuva/não chuva). Valores mais baixos indicam previsões mais precisas.

Técnicas para Verificar Previsões:

Viés:

O viés refere-se ao erro sistemático em uma previsão. Um viés positivo significa que o modelo prevê consistentemente valores acima da realidade (por exemplo, temperatura), enquanto um viés negativo indica subprevisão.

Curva ROC (Receiver Operating Characteristic):

Curvas ROC são usadas para avaliar a habilidade de um modelo em distinguir entre diferentes eventos meteorológicos (por exemplo, chuva vs. não chuva). A área sob a curva (AUC) fornece uma medida de habilidade.

Tabelas de Contingência:

Usadas para avaliar previsões categóricas (por exemplo, taxas de acerto/erro para previsões de precipitação). Métricas derivadas, como a Probabilidade de Detecção (POD) e a Taxa de Falsos Alarmes (FAR), fornecem insights sobre a qualidade da previsão.

Análise de Previsões por Conjunto e a Previsibilidade Atmosférica:

Previsão por Conjunto (Ensemble Forecasting):

Em vez de depender de uma única previsão determinística, a previsão por conjunto executa o mesmo modelo várias vezes com pequenas variações nas condições iniciais ou na física do modelo. Isso fornece uma gama de possíveis resultados futuros e quantifica a incerteza.

Dispersão e Habilidade:

A dispersão do conjunto refere-se à gama de resultados produzidos pelos membros do conjunto. Uma grande dispersão indica alta incerteza, enquanto uma pequena dispersão sugere confiança na previsão. A relação entre dispersão do conjunto e habilidade da previsão é uma métrica-chave.

Previsões Probabilísticas:

Previsões por conjunto fornecem probabilidades de ocorrência de diferentes eventos meteorológicos, particularmente úteis para tomadores de decisão em cenários baseados em risco. Por exemplo, a probabilidade de exceder um limite de temperatura pode informar previsões de carga de energia.

Análise de Previsões por Conjunto e a Previsibilidade Atmosférica:

Previsibilidade:

A natureza caótica da atmosfera limita até onde no futuro previsões precisas podem ser feitas (previsibilidade atmosférica). Previsões de curto prazo (até 10 dias) geralmente têm maior precisão, enquanto a previsibilidade diminui para previsões de médio e longo prazo.

Alguns fenômenos atmosféricos, como padrões de bloqueio ou a Oscilação Madden-Julian, podem influenciar a previsibilidade ao alterar padrões climáticos típicos.

Verificação de Conjuntos:

Ferramentas como o Histograma de Classificação e o Índice de Probabilidade Classificada Contínua (CRPS) são usadas para avaliar o quão bem as previsões por conjunto correspondem às distribuições observadas. Esses métodos avaliam a dispersão, o viés e a confiabilidade dos conjuntos.

Sistemas de PNT desempenham um papel crucial na compreensão e previsão do comportamento da atmosfera. A assimilação de dados, a verificação de previsões e a previsão por conjuntos são fundamentais para melhorar a precisão e compreender as incertezas, contribuindo para uma previsibilidade atmosférica aprimorada.