Part 6 Ordinary Differential Equations

Chapter 22
Initial Value Problem

Ordinary Differential Equations

 Methods described here are for solving differential equations of the form : 시간과 공간에 대한 변화율 문제

$$\frac{dy}{dt} = f(t, y)$$

All one-step methods have the general format:

$$y_{i+1} = y_i + \phi h$$

- where ϕ is called an *increment function (slope)*, and is used to extrapolate from an old value y_i to a new value y_{i+1} .

Ordinary Differential Equation

- ODE initial value problem : $y(t_0) = y_0$, y(t) = ?
 - One-step method
 - Euler's method
 - Heun's method
 - midpoint method
 - 4th order RK method
 - Multistep method
 - Adaptive Runge-Kutta method

$$y_{i+1} = y_i + \phi h$$

Euler's (or Euler-Cauchy) Method

• The first derivative provides a direct estimate of the slope at t_i :

$$\left. \frac{dy}{dt} \right|_{t_i} = f(t_i, y_i)$$

 and the Euler method uses that estimate as the increment function:

$$\phi = f(t_i, y_i)$$

$$y_{i+1} = y_i + f(t_i, y_i)h$$

Example

Solve $y'=4e^{0.8t}-0.5y$ with y(0)=2.

$$\phi = f(t_i, y_i)$$

$$y_{i+1} = y_i + f(t_i, y_i)h$$

$$y(1) = y(0) + f(0,2)(1)$$
, where $f(0,2) = 4e^{0} - 0.5(2) = 3$

$$\therefore$$
 $y(1) = 2+3(1) = 5$ (exact value at $t=1$ is 6.19463)

$$y(2) = y(1) + f(1,5)(1)$$
, where $f(1,5) = 4e^{0.8(1)} - 0.5(5) = 6.4.216$

 \therefore y(1) = 5 + 6.4.216 (1) = 11.40216 (exact value at t=2 is 14.84392)

t	Yttee	y _{Euler}	$[s_x]$ (%)
Q.	2,00000	2.00000	
T .	6.19463	5.00000	19.28
2	14,84392	11.40210	23.19
3	33.62717	25.51.321	24.24
4	75.3389b	56.84931	24.54

Analytical solution:

 $y=4/1.3 (e^{0.8t}-e^{-0.5t})+2e^{-0.5t}$

Heun's Method

• One method to improve Euler's method is to determine two derivatives at the beginning and predicted ending of the interval and average them:

- This process relies on making a prediction of the new value of *y*, then correcting it based on the slope calculated at that new value.
- This **predictor-corrector** approach can be iterated to convergence:

Heun's Method

기울기 추정값을 개선하기 위해 구간 초기점과 끝점에서 도함수를 구하여 평균을 취함

• 1단계: 시작점 기울기 계산

$$y_i' = f(x, y)$$

• 2단계: 시작점 기울기로 부터 끝점 예측

$$y_{i+1}^0 = y_i + f(x, y)h$$

• 3단계: 예측 끝점 이용하여 끝점 기울기 계산

$$y'_{i+1} = f(x_{i+1}, y_{i+1}^0)$$

• 4단계: 시작점과 끝점의 평균 기울기 계산

$$\overline{y'} = \frac{y'_i + y'_{i+1}}{2} = \frac{f(x_i, y_i) + f(x_{i+1}, y^0_{i+1})}{2}$$

• 5단계: 평균 기울기 이용하여 수정 끝점 예측

$$y_{i+1} = y_i + \frac{f(x_i, y_i) + f(x_{i+1}, y_{i+1}^0)}{2}h$$

Midpoint Method

• Another improvement to Euler's method is similar to Heun's method, but predicts the slope at the midpoint of an interval rather than at the end:

predictor: $y_{i+1/2} = y_i + f(t_i, y_i) \frac{h}{2}$

corrector: $y_{i+1} = y_i + f(t_{i+1/2}, y_{i+1/2})h$

• This method has a local truncation error of $O(h^3)$ and global error of $O(h^2)$

Runge-Kutta Methods

- Runge-Kutta (RK) methods achieve the accuracy of a Taylor series approach without requiring the calculation of higher derivatives.
- For RK methods, the increment function(slope) ϕ can be generally written as:

$$\phi = a_1 k_1 + a_2 k_2 + \dots + a_n k_n$$

where the a's, p's and q's are constants.

Runge-Kutta Methods

General Form

$$y_{i+1} = y_i + \phi(x_i, y_i, h)h$$
 increment function : 대표 기울기

Increment function

$$\phi = a_1 k_1 + a_2 k_2 + \dots + a_n k_n$$
 (a_i = constants)

$$k_1 = f(x_i, y_i)$$

$$k_2 = f(x_i + p_1 h, y_i + q_{11} k_1 h)$$

$$k_3 = f(x_i + p_2 h, y_i + q_{21} k_1 h + q_{22} k_2 h) \quad (p, q = \text{constants})$$

$$k_n = f(x_i + p_{n-1} h, y_i + q_{n-1,1} k_1 h + q_{n-1,2} k_2 h + \dots + q_{n-1,n-1} k_{n-1} h)$$

2nd order RK: Heun's and Midpoint methods

$$y_{i+1} = y_i + (a_1k_1 + a_2k_2)h$$

$$k_1 = f(x_i, y_i)$$

$$k_2 = f(x_i + p_1h, y_i + q_{11}k_1h)$$

derived by Chapra and Canale (2006)

$$a_1 + a_2 = 1$$

$$a_2 p_1 = \frac{1}{2}$$

$$a_2 q_{11} = \frac{1}{2}$$

3 equations 4 unknowns need to fix 1 unknown

① Heun Method without Iteration $\left(a_2 = \frac{1}{2}\right)$

$$a_1 = \frac{1}{2}$$

$$p_1 = q_{11} = 1$$

$$\begin{aligned} y_{i+1} &= y_i + \left(\frac{1}{2}k_1 + \frac{1}{2}k_2\right)h \\ k_1 &= f(x_i, y_i) \\ k_2 &= f(x_i + h, y_i + k, h) \end{aligned}$$

② The Midpoint Method $(a_2 = 1)$

$$a_1 = 0$$

$$p_1 = q_{11} = \frac{1}{2}$$

$$y_{i+1} = y_i + k_2 h$$
$$k_1 = f(x_i, y_i)$$

$$k_2 = f(x_i + \frac{1}{2}h\,,\,y_i + \frac{1}{2}k_1h\,)$$

2nd order RK: Ralston's method

$$a_1 = \frac{1}{3}$$

$$p_1 = q_{11} = \frac{3}{4}$$

$$\begin{split} y_{i+1} &= y_i + \big(\frac{1}{3}k_1 + \frac{2}{3}k_2\big)h \\ k_1 &= f(x_i, y_i) \\ k_2 &= f(x_i + \frac{3}{4}h, y_i + \frac{3}{4}k_1h) \end{split}$$

$$\begin{bmatrix} a_1 = 1 - a_2 \\ p_1 = q_{11} = \frac{1}{2a_2} \end{bmatrix}$$

3rd order RK

3rd RK method form

$$y_{i+1} = y_i + \frac{1}{6}(k_1 + 4k_2 + k_3)h$$

$$k_{1} = f(x_{i}, y_{i})$$

$$k_{2} = f(x_{i} + \frac{1}{2}h, y_{i} + \frac{1}{2}k_{1}h)$$

$$k_{3} = f(x_{i} + h, y_{i} - k_{1}h + 2k_{2}h)$$

Classical Fourth-Order Runge-Kutta Method

- The most popular RK methods are fourthorder

- The most commonly used form is:
$$y_{i+1} = y_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)h$$

MATLAB Functions

- MATLAB's ode23 function uses second- and third-order RK functions to solve the ODE and adjust step sizes. (Bogacki and Shampine algorithm)
 - [t,y]= ode23(odefun,[ti tf], y0)
 - [t,y]: solution array, where each column represents one of the variables and each row corresponds to a time in the t vector
 - odefun: function returning a column vector of the right-hand-sides of the ODEs
 - tspan: time over which to solve the system
- MATLAB's ode45 function uses fourth- and fifth-order RK functions to solve the ODE and adjust step sizes. (Dormand and Prince algorithm)
 - This is recommended as the first function to use to solve a problem.
 - ode45(odefun,[ti tf], y0)
- MATLAB's ode113 function is a multistep solver useful for computationally intensive ODE functions. (Variable order Adams-Bashforth-Moulton algorithm)
 - ode113(odefun,[ti tf], y0)

Example - Predator-Prey

• Solve: $\frac{dy_1}{dt} = 1.2y_1 - 0.6y_1y_2$ $\frac{dy_2}{dt} = 0.8y_2 + 0.3y_1y_2$

with $y_1(0)=2$ and $y_2(0)=1$ for 20 seconds

predprey.m M-file

```
function yp = predprey(t, y)
yp = [1.2*y(1)-0.6*y(1)*y(2);...
    -0.8*y(2)+0.3*y(1)*y(2)];
tspan = [0 20];
y0 = [2, 1];
[t, y] = ode45(@predprey, tspan, y0);
figure(1); plot(t,y);
figure(2); plot(y(:,1),y(:,2));
```


Part 6

Ordinary Differential Equations

Chapter 23 : Adaptive Methods and Stiff Systems

Stiffness

- A *stiff system* is one involving rapidly changing components together with slowly changing ones.
- An example of a single stiff ODE is: $\frac{dy}{dt} = -1000y + 3000 2000e^{-t}$

whose solution if y(0)=0 is: $y=3-0.998e^{-1000t}-2.002e^{-t}$

Implicit Euler's Method

$$\frac{dy}{dt} = -ay$$
$$y(0) = y_0$$
$$y = y_0 e^{-at}$$

Explicit method

$$\begin{aligned} y_{i+1} &= y_i + \frac{dy_i}{dt}h \\ &= y_i - ay_ih \\ &= y_i \left(1 - ah\right) \end{aligned}$$

$$|1-ah|<1$$
 stable

Implicit method

$$y_{i+1} = y_i + \frac{dy_{i+1}}{dt}h$$
$$= y_i - ay_{i+1}h$$

 $\therefore y_{i+1} = y_i \left(\frac{1}{1+ah} \right) \quad unconditionally stable$

Explicit vs. Implicit Euler's Method

$$\frac{dy}{dt} = -1000y + 3000 - 2000e^{-t}, y(0) = 0$$
$$y = 3 - 0.998e^{-1000t} - 2.002e^{-t}$$

MATLAB Functions for Stiff Systems

- MATLAB functions for solving stiff systems of ODEs
 - ode15s, ode23s, ode23t, ode23tb
- ode23tb(odefun,[ti tf], y0);
 - implicit RK methods
 - [ti tf]: time interval
 - y0 : initial condition vector

```
% The lorenz function is defined by:
% function dy = lorenz(times, y)
% dy = zeros(3, 1);
% dy(1) = 10*(y(2)-y(1));
% dy(2) = 28*y(1)-y(2)-y(1)*y(3);
% dy(3) = y(1)*y(2)-8/3*y(3);
[t, y] = ode23tb('lorenz', [0, 5], [1; 1; 1])
```

Adaptive Runge-Kutta Methods

- The solutions to some ODE problems exhibit multiple time scales
 - for some parts of the solution the variable changes slowly, while for others there are abrupt changes.
- Constant step-size algorithms would have to apply a small step-size to the entire computation
 - wasting many more calculations on regions of gradual change.
- Adaptive algorithms, on the other hand, can change stepsize depending on the region.

Approaches to Adaptive Methods

- There are two primary approaches to incorporate adaptive step-size control:
 - Step halving: perform the one-step algorithm two different ways, once with a full step and once with two half-steps, and compare the results.
 - Error estimate : difference between estimates based on one full step and two half steps
 - Embedded RK methods (Fehlberg RK methods): perform two RK iterations of different orders and compare the results. (this is the preferred method)
 - Error estimate : difference between two predictions based on different order RK methods

Part 6 Ordinary Differential Equations

Chapter 24
Boundary-Value Problems

Concept

□ 초기값 문제(IVP)

모든 조건이 독립변수의 일정한 값에서 지정

□ 경계값 문제(BVP)

모든 조건이 독립변수의 다른 값에서 지정

(일반적으로 끝단/경계 조건 지정)

Example of BVP

Heat Transfer

$$\frac{d^2T}{dx^2} + h'(T_a - T) = 0 \qquad h': 열전달율 T_a: 공기온도$$

경계조건
$$T(x=0) = T_1$$
, $T(x=L) = T_2$

□ Shooting Method

• 경계값문제를 초기값문제로 변환하여 시행착오법 적용

$$\frac{d^2T}{dx^2} + h'(T_a - T) = 0$$
 $h' = 0.01m^{-2}, T_a = 20 \, ^oC, L = 10m$ 경계조건 $T(x = 0) = 40, T(x = 10) = 200$

1단계: 2차 방정식을 2개의 1차 상미분 방정식으로 변환

$$\frac{dT}{dx} = \underbrace{z}, \quad \frac{dz}{dx} = h'(T - T_a)$$

2단계: 4차 RK법 등으로 초기값문제를 시행착오법 적용

□ Shooting method : 명중할 때까지 z(0) 가정

• 선형보간으로 T(10)=200 만족하는 z(0) 구함

$$z(0) = 10 + \frac{20 - 10}{285.8980 - 168.3797}(200 - 168.3797) = 12.6907$$

Finally... The Semester Ends...

익숙치 않은 공부하느라 모두 고생 많았습니다... 앞으로 여러분에게 결정적인 기회에 큰 보상이 있을 것입니다... Good Luck...

