Ансамбли

Ансамбли

- Деревья решений могут восстанавливать очень сложные закономерности, но при этом неустойчивы к малейшим изменениям в данных
- Поэтому деревья решений самостоятельно используются редко, но в составе ансамблей (композиций, комитетов) показывают хорошие результаты

Ансамбли

Основные подходы:

- Усреднение несколько моделей строятся независимо, а их ответы усредняются
 - Бэггинг (bagging), случайные леса (random forests)
- Бустинг модели строятся последовательно, и каждая следующая модель исправляет ошибки предыдущей
 - AdaBoost, градиентный бустинг
- Стекинг (stacking) использование в качестве признаков предсказаний базовых классификаторов
- Голосование (voting)

Bagging

• Бэггинг (bagging = bootstrap aggregation) — независимо строит несколько моделей и усредняет их ответы

- Breiman Leo. Bagging Predictors // Technical Report No. 421. 1994
- Модели строятся на данных, полученных при помощи бутстрэпа
- Бутстрэп (bootstrap) способ многократной генерации выборок на основе имеющейся выборки методом Монте-Карло:
 - Пусть дана выборка $X = (x_i, y_i)$
 - Равномерно возьмем из выборки ℓ объектов с возвращением
 - Из-за возвращения среди них окажутся повторы
 - Обозначим новую подвыборку через X_1
 - Повторив процедуру N раз, сгенерируем N подвыборок X_1,\dots,X_N

Bagging

- Пусть имеется некоторый метод обучения $\mu(X)$
- Построим на его основе метод $\tilde{\mu}(X)$, который генерирует случайную подвыборку \tilde{X} с помощью бутстрэпа и подает ее на вход метода μ :

$$\tilde{\mu}(X) = \mu(\tilde{X})$$

• В бэггинге обучается некоторое число базовых алгоритмов b_n с помощью метода $\tilde{\mu}$, и строится итоговая композиция как среднее базовых алгоритмов:

$$a_N(x) = \frac{1}{N} \sum_{n=1}^{N} b_n(x) = \frac{1}{N} \sum_{n=1}^{N} \tilde{\mu}_n(X)(x)$$

Bagging

Позволяет снизить дисперсию и борется с переобучением

Bagging – scikit-learn

```
class sklearn.ensemble.BaggingClassifier(
    n estimators=10,
    max_samples=1.0,
    max_features=1.0,
    bootstrap=True, # Whether samples are drawn with replacement
    bootstrap features=False,
    warm_start=False,
    n_jobs=None,
    random state=None,
    verbose=0)
```

Bagging – scikit-learn

```
class sklearn.ensemble.BaggingRegressor (
    n estimators=10,
    max_samples=1.0,
    max features=1.0,
    bootstrap=True, # Whether samples are drawn with replacement
    bootstrap features=False,
    warm_start=False,
    n_jobs=None,
    random state=None,
    verbose=0)
```

- Метод случайных лесов (random forests) основан на бэггинге над решающими деревьями и методе случайных подпространств (random subspace)
 - Breiman Leo. Random Forests // Machine Learning. 2001
 - Ho Tin Kam. Random Decision Forests // 3rd International Conference on Document Analysis and Recognition, 1995
 - Random subspace method
- Вводятся два источника случайности:
 - случайная выборка обучающих объектов (бутстрэп)
 - случайное подмножество признаков при выборе оптимального разбиения в процессе построения дерева решений

9

- Для n = 1, ..., N:
 - Сгенерировать выборку $ilde{X}_n$ на основе бутстрэпа
 - Построить дерево решений $b_n(x)$ по выборке \tilde{X}_n :
 - Дерево строится, пока в каждом листе не окажется n_{min} или меньше объектов
 - При каждом разбиении сначала выбирается *m* случайных признаков и оптимальное разбиение ищется только среди них
- Вернуть ансамбль:

$$a_N(x) = \frac{1}{N} \sum_{n=1}^{N} b_n(x)$$

Рекомендации (d — число признаков):

- в задачах классификации: $m=\left|\sqrt{d}\right|$ (в scikit-learn именно так)
- в задачах регрессии: $m = \lfloor d/3 \rfloor$ (в scikit-learn m = d)

Отличия от Bagging:

- базовая модель всегда дерево
- случайные подмножества признаков на каждом разбиении

Random forests – scikit-learn

```
class sklearn.ensemble.RandomForestClassifier(
      n estimators=100, # The number of trees
      criterion='gini',  # 'gini', 'entropy', 'log_loss'
     max_depth=None,  # None -> pure leaves or min_samples_split
     min samples split=2, # n min - minimum number of samples to split
     min samples leaf=1,
     max_features='sqrt', # max_features=sqrt(n_features)
      bootstrap=True, # Whether samples are drawn with replacement
      oob score=False, # use out-of-bag samples
      n jobs=None,
      random state=None,
     verbose=0,
     warm_start=False,
      class_weight=None,
      max samples=None) # X.shape[0]
                                                                 13
```

Random forests – scikit-learn

```
class sklearn.ensemble.RandomForestRegressor(
      n estimators=100, # The number of trees
      criterion='squared_error',
     max depth=None, # None -> pure leaves or min samples split
     min samples split=2, # n min - minimum number of samples to split
     min samples leaf=1,
     max_features=1.0,
      bootstrap=True, # Whether samples are drawn with replacement
      oob score=False, # use out-of-bag samples
      n jobs=None,
      random state=None,
     verbose=0,
     warm_start=False,
     max samples=None) # X.shape[0]
```

- AdaBoost (Adaptive Boosting) последовательное построение моделей, каждая из которых исправляет ошибки предыдущей
 - Freund Yoav, Schapire Robert. A decision-theoretic generalization of on-line learning and an application to boosting // European Conference on Computational Learning Theory. 1995
- В качестве базовых моделей используются *слабые классификаторы* (weak learner) – распознают объекты немного лучше, чем случайное угадывание
 - Как правило, используется дерево решений с высотой 1 (decision stump «решающий пень»)

- Входные данные: $(x_1, y_1), \dots, (x_m, y_m), x_i \in X, y_i \in Y = \{-1, +1\}$
- Инициализация весов: $D_1(i) = 1/m, i = 1, ..., m$
- Для t = 1 ... T:
 - 1. Обучение слабого классификатора h_t с использованием распределения D_t
 - 2. Вычисление ошибки для h_t :

$$\epsilon_t = \sum_{i:h_t(x_i) \neq y_i} D_t(i)$$

3. Если $\epsilon_t \geq 0.5$, то останов (слабый классификатор должен давать не менее 50% правильных ответов)

4. Вычисление уверенности классификатора:

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

5. Обновление весов:

$$D_{t+1}(i) = rac{D_t(i)}{Z_t} imes egin{cases} e^{-lpha_t} \operatorname{ec}$$
ли $h_t(x_i) = y_i \ e^{lpha_t} \operatorname{ec}$ ли $h_t(x_i)
eq y_i = rac{D_t(i)}{Z_t} e^{-lpha_t y_i h_t(x_i)}$

где Z_t — нормализующий параметр, выбранный так, чтобы D_{t+1} являлось распределением вероятностей, т.е. $\sum_{i=1}^m D_{t+1}(i)=1$

6. Результирующий классификатор:

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

AdaBoost – scikit-learn

```
class sklearn.ensemble.AdaBoostClassifier(
    estimator=None,  # DecisionTreeClassifier(max_depth=1)
    *,
    n_estimators=50,
    learning_rate=1.0,
    algorithm='SAMME.R', # Zhu et al. Multi-class AdaBoost (2009)
    random_state=None
)
```

AdaBoost – scikit-learn

```
class sklearn.ensemble.AdaBoostRegressor(
    estimator=None,  # DecisionTreeRegressor(max_depth=3)
    *,
    n_estimators=50,
    learning_rate=1.0,
    loss='linear',  # 'linear', 'square', 'exponential'
    random_state=None
)
```

Bagging vs. Boosting

- Градиентный бустинг (Gradient Boosting Machine, GBM)
 - обобщение бустинга на произвольные (дифференцируемые)
 функции потерь
- Friedman Jerome. Greedy Function Approximation: A Gradient Boosting Machine // Annals of Statistics, 2001 (draft 1999)
- На практике используется градиентный бустинг над деревьями peшeний (Gradient Boosting over Decision Trees, GBDT)

- Пусть дана дифференцируемая функция потерь L(y,z)
- Будем строить ансамбль как взвешенную сумму базовых моделей:

$$a_N(x) = \sum_{n=0}^{N} \gamma_n b_n(x)$$

- Начальная модель $b_0(x)$ (лист):
 - $b_0(x) = 0$
 - $b_0(x) = \arg\max_{y \in \mathbb{Y}} \sum_{i=1}^l [y_i = y]$ в задачах классификации
 - $b_0(x) = \frac{1}{l} \sum_{i=1}^l y_i$ в задачах регрессии
 - $\gamma_0 = 1$

• Пусть построен ансамбль $a_{N-1}(x)$ из N-1 модели и нужно выбрать следующую базовую модель $b_N(x)$ так, чтобы минимизировать ошибку:

$$\sum_{i=1}^{l} L(y_i, a_{N-1}(x_i) + \gamma_N b_N(x_i)) \to \min_{b_N, \gamma_N}$$

• Задачу выбора функции $\gamma_N b_N(x_i)$ сводим к задаче выбора числовых значений s_1, \dots, s_l (остатков), которые должна аппроксимировать эта функция

- Рассмотрим l+1-мерное пространство, в котором функционал ошибки зависит от предсказаний текущего ансамбля $a_{N-1}(x)$
 - Каждая ось соответствует обучающему примеру
 - Значения на оси соответствуют предсказаниям текущего ансамбля для данного примера
- В градиентном бустинге значения s_1, \dots, s_l выбираются равными антиградиенту функционала ошибок в этом пространстве:

$$s_i = -\frac{\partial L}{\partial z} \bigg|_{z = a_{N-1}(x_i)}$$

• Таким образом, осуществляется один шаг градиентного спуска

- Требуется построить функцию $b_N(x)$ такую, которая аппроксимирует значения s_1, \dots, s_l задача обучения с учителем
- Можно использовать в качестве функционала среднеквадратичную ошибку:

$$b_N(x) = \arg\min_{b} \sum_{i=1}^{l} (b(x_i) - s_i)^2$$

• После нахождения $b_N(x)$ определяем γ_N :

$$\gamma_N = \arg\min_{\gamma} \sum_{i=1}^l L(y_i, a_{N-1}(x_i) + \gamma b_N(x_i))$$

Градиентный бустинг: функции потерь

• Регрессия:

- Среднеквадратическая: $L(y,z) = \frac{1}{2}(y-z)^2$
 - $\bullet L'(y,z) = z y$
- Модуль отклонения: L(y,z) = |y-z|
 - L'(y,z) = -sign(z-y)
- Классификация:
 - Логистическая: $L(y, z) = \log(1 + e^{-yz})$
 - $L'(y,z) = -\frac{y}{1+e^{-yz}}$
 - Экспоненциальная (AdaBoost): $L(y,z) = e^{-yz}$

$$L'(y,z) = -ye^{-yz}$$

Градиентный бустинг: пример

$$y = \cos(x) + \epsilon, \epsilon \sim \mathcal{N}\left(0, \frac{1}{5}\right), x \in [-5, 5]$$

29

Градиентный бустинг: пример

- Данные: $\{(x_i, y_i)\}_{i=1,...,300}$
- Число итераций: M = 3
- Среднеквадратическая функция потерь: $L(y,z) = \frac{1}{2}(y-z)^2$
- Градиент функции потерь (остатки): s = z y
- Базовые алгоритмы: деревья решений
- Гиперпараметры: глубина деревьев равна 2

Реализации градиентного бустинга:

- LightGBM (Microsoft)
 - https://habr.com/ru/companies/tochka/articles/751012
- Scikit-learn:
 - GradientBoostingClassifier, GradientBoostingRegressor
 - HistGradientBoostingClassifier, HistGradientBoostingRegressor
 - на основе LightGBM
 - быстрее, если в датасете десятки тысяч примеров
 - встроенная обработка пропущенных значений и категориальных признаков
- XGBoost (University of Washington)
- CatBoost (Yandex)
 - https://habr.com/ru/companies/tochka/articles/751012

Голосование (voting)

- VotingClassifier
 - Majority / Hard Voting
 - Weighted Average Probabilities / Soft Voting
- VotingRegressor

Stacking

- StackingClassifier
- StackingRegressor