期中考试模拟题(六)参考答案 2022.11

一、单选题(每小题3分,共15分)

1. D 2.A 3.C 4.B 5.C

二、填空题(每小题3分,共15分)

1.
$$\left[\frac{1}{2\sqrt{x}} - \frac{2}{(2x-1)^2}\right] dx$$
; 2. 2; 3. 1/6; 4. $\frac{(-1)^{n-3}}{n-2}$; 5. $\frac{2}{3}$

三、计算(每小题 8 分, 共 48 分)

1.
$$y' = (e^{\sin x^2} \cdot \cos x^2 \cdot 2x) \arctan \sqrt{x^2 - 1} + e^{\sin x^2} \left(\frac{1}{x^2} \cdot \frac{1}{2\sqrt{x^2 - 1}} \cdot 2x\right)$$

= $2x \cos x^2 e^{\sin x^2} \arctan \sqrt{x^2 - 1} + \frac{1}{x\sqrt{x^2 - 1}} e^{\sin x^2}$

2. 该函数的定义区间为
$$(-\infty, +\infty)$$
. 又 $f''(x) = -\frac{8}{x^{4/3}(6-x)^{5/3}}$

所以,当 x = 0, 6 时, $f''(x) = \infty$; 当 $x \in (-\infty,0) \cup (0,6)$ 时, f''(x) < 0;

当 $x \in (6, +\infty)$ 时, f''(x) > 0. 由此, 将该曲线 $y = \sqrt[3]{6x^2 - x^3}$ 的凹凸性与拐点列表如下:

x	(-∞,0)	0	(0,4)	4	(4,6)	6	(6,+∞)
f''(x)	9	8	_	-0) –	8	+
f(x)	П		Д	凸	凸	拐点 (6,0)	回

凹区间为(6,+∞), 拐点为(6,0) 注意: 点 (0,0)不是该曲线的拐点.

3. 由条件易见
$$c \neq 0$$
. $\lim_{x \to \infty} \left(\frac{x+c}{x-c} \right)^x = \lim_{x \to \infty} \left[\left(1 + \frac{2c}{x-c} \right)^{\frac{x-c}{2c}} \right]^{\frac{2cL}{x-c}}$ 由拉格朗日定理,有 $f(x) - e^{2c}$ $f(x-1) = f'(\xi) \cdot 1$.其中 ξ 介于 $x-1$ 与 x 之间,那么 $\lim_{x \to \infty} [f(x) - f(x-1)] = e^{2c}$

$$f(x-1) = f'(\xi) \cdot 1$$
. 其中 ξ 介于 $x-1$ 与 x 乙间,那么 $\lim_{x \to \infty} [f(x) - f(x-1)] = \lim_{x \to \infty} f'(\xi) = e$. 于是, $e^{2c} = e$, 故 $c = \frac{1}{2}$.

4.
$$\Rightarrow y = 1 - x$$
, $f_{x \to 1^{-}} f(x) = \frac{1}{\pi} + \lim_{x \to 1^{-}} \frac{\pi(1 - x) - \sin \pi x}{\pi(1 - x) \sin \pi x} = \frac{1}{\pi} + \lim_{y \to 0^{+}} \frac{\pi y - \sin \pi y}{\pi y \sin \pi y}$

$$= \frac{1}{\pi} + \lim_{y \to 0^+} \frac{\pi y - \sin \pi y}{\pi^2 y^2} = \frac{1}{\pi} + \lim_{y \to 0^+} \frac{\pi - \pi \cos \pi y}{2\pi^2 y} = \frac{1}{\pi} + \lim_{y \to 0^+} \frac{\pi^2 \sin \pi y}{2\pi^2} = \frac{1}{\pi}$$

由于 f(x) 在 $\left[\frac{1}{2},1\right)$ 上连续, 因此定义 $f(1)=\frac{1}{\pi}$, 就可使 f(x) 在 $\left[\frac{1}{2},1\right]$ 上连续.

当
$$x > 0$$
 时, $f'(x) = 0$; 当 $x < 0$ 时, $f'(x) = \frac{2-x^2}{(2+x^2)^2}$; 而当 $x = 0$ 时, 因为

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{0 - 0}{x - 0} = 0, \ f'_{-}(0) = \lim_{x \to 0^{-}} \frac{\frac{x}{2 + x^{2}} - 0}{x - 0} = \frac{1}{2} \neq f'_{+}(0)$$

所以
$$f(x)$$
 在 $x = 0$ 处不可导. 综上所述, $f'(x) = \begin{cases} \frac{2-x^2}{(2+x^2)^2}, & x < 0, \\ 0, & x > 0. \end{cases}$

6. 方程 $te^y = y$ 两边对 t 求导, 得 $e^y + te^y \frac{dy}{dt} = \frac{dy}{dt}$, 整理得 $\frac{dy}{dt} = \frac{e^y}{1-y}$. 由 $x = t^2 + 2t$,

得
$$\frac{dx}{dt} = 2t + 2$$
. 所以 $\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = \frac{e^y}{2(1-y)(t+1)}$

$$\frac{d^{2}y}{dx^{2}} = \frac{d\left(\frac{dy}{dx}\right)}{dt} \cdot \frac{dt}{dx} = \frac{e^{y} \frac{dy}{dt}(t+1)(1-y) - e^{y} \left[(1-y) - (t+1) \frac{dy}{dt} \right]}{4(t+1)^{3}(1-y)^{2}}$$

$$\left. \left(\left(\frac{dy}{dx} \right) \right) \right|_{t=0} = 0, \frac{dy}{dt} \right|_{t=0} = 1, \text{ FE} \left. \frac{d^{2}y}{dx^{2}} \right|_{t=0} = \frac{1}{4}.$$

四、(I) 用归纳法证明 $\{x_n\}$ 单调下降且有下界.由 $0 < x_1 < \pi$, 得 $0 < x_2 = \sin x_1 < x_1 < \pi$; 设 $0 < x_n < \pi$, 则 $0 < x_{n+1} = \sin x_n < x_n < \pi$; 所以 (x_n) 单调下降且有下界, 故 $\lim_{n \to \infty} x_n$

存在.记 $a = \lim x_n$, 由 $x_{n+1} = \sin x_n$ 得 $a = \sin a$.所以 a = 0, 即 $\lim_{n \to \infty} x_n = 0$.

(II)
$$\exists \lambda \lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{\frac{1}{x^2}} = \lim_{x \to 0} e^{\frac{1}{x^2} \ln \frac{\sin x}{x}} = \lim_{x \to 0} e^{\frac{1}{2x} \left(\frac{\cos x}{\sin x} - \frac{1}{x} \right)} = \lim_{x \to 0} e^{\frac{x \cos x - \sin x}{2x^3}} = \lim_{x \to 0} e^{\frac{-x \sin x}{6x^2}} = e^{-\frac{1}{6}}.$$

又由 (I)
$$\lim x_n = 0$$
,所以 $\lim_{n \to \infty} \left(\frac{x_{n+1}}{x_n}\right)^{\frac{1}{x_n^2}} = \lim_{n \to \infty} \left(\frac{\sin x_n}{x_n}\right)^{\frac{1}{x_n^2}} = \lim_{x \to 0} \left(\frac{\sin x}{x}\right)^{\frac{1}{x^2}} = \mathrm{e}^{-\frac{1}{6}}.$

五、(1) 任给非零 $x \in (-1,1)$, 由拉 格朗日中值定理得 $f(x) = f(0) + xf'(\theta(x)x)$ $(0 < \theta(x) < 1)$ 因为 f''(x) 在 (-1,1) 内连续且 $f''(x) \neq 0$, 所以 f''(x) 在 (-1,1) 内 不变号,不妨 设 f''(x) > 0,则 f'(x) 在 (-1,1) 内 严格 单增,故 $\theta(x)$ 唯一.

(2) 证法一 由泰勒公式得 $f(x) = f(0) + f'(0)x + \frac{1}{2}f''(\xi)x^2$,其中 ξ 介于 0 与 x 之间.

所以
$$xf'(\theta(x)x) = f(x) - f(0) = f'(0)x + \frac{1}{2}f''(\xi)x^2$$
,

从而
$$\theta(x) \frac{f'(\theta(x)x) - f'(0)}{\theta(x)x} = \frac{1}{2}f''(\xi)$$
由于 $\lim_{x \to 0} \frac{f'(\theta(x)x) - f'(0)}{\theta(x)x} = f''(0).\lim_{x \to 0} f''(\xi)$

$$=\lim_{\xi\to 0} f''(\xi) = f''(0)$$
. $\text{id } \lim_{x\to 0} \theta(x) = \frac{1}{2}$.

$$\theta(x) < 1) \not \boxtimes \frac{f'(\theta(x)x) - f'(0)}{x} = \frac{f(x) - f(0) - f'(0)x}{x^2}, \quad \overline{m} \lim_{x \to 0} \frac{f'(\theta(x)x) - f'(0)}{\theta(x)x} = f''(0),$$

所以
$$\lim_{x\to 0} \frac{f(x)-f(0)-f'(0)x}{x^2} = \lim_{x\to 0} \frac{f'(x)-f'(0)}{2x} = \frac{1}{2}f''(0)$$
. 故 $\lim_{x\to 0} \theta(x) = \frac{1}{2}$