COT 3100C: INTRODUCTION TO DISCRETE STRUCTURES

SUMMER 2024

Number Theory

Part-1

Mesut Ozdag, Ph.D. mesut.ozdag@ucf.edu

Section Summary

- Divisibility and Modular Arithmetic.
- Integer Representations and Algorithms.
- Primes and Greatest Common Divisors.
- Congruences.

Section:

Divisibility and Modular Arithmetic

Division

Definition: If a and b are integers with $a \neq 0$, then a divides b if there exists an integer c such that b = ac.

- a is a factor or divisor of b,
- b is a multiple of a.
 - The notation a | b denotes that a divides b.
 - If $a \mid b$, then b/a is an integer.
 - If a does not divide b, we write $a \nmid b$

Example: Determine whether 3 | 7 and whether 3 | 12.

Properties of Divisibility

Theorem 1: Let a, b, and c be integers, where $a \neq 0$.

- i. If $a \mid b$ and $a \mid c$, then $a \mid (b + c)$;
- ii. If $a \mid b$, then $a \mid bc$ for all integers c;
- iii. If $a \mid b$ and $b \mid c$, then $a \mid c$.
- **Proof**: (i) Suppose $a \mid b$ and $a \mid c$, then it follows that there are integers s and t with b = as and c = at.

$$b + c = as + at = a(s + t).$$

 $a \mid (b + c)$

Corollary: If a, b, and c be integers, where $a \ne 0$, such that $a \mid b$ and $a \mid c$, then $a \mid mb + nc$ whenever m and n are integers.

Division Theorem

Division Algorithm: If a is an integer and d a positive integer, then there are unique integers q and r, with $0 \le r < d$, such that a = dq + r.

- d is called the divisor.
- a is called the dividend.
- *q* is called the *quotient*.
- r is called the remainder.

Definitions of Functions **div** and **mod**

$$q = a \operatorname{div} d$$

$$r = a \mod d$$

Examples:

- What are the quotient and remainder when 101 is divided by 11?
 - Solution: The quotient when 101 is divided by 11 is → 9 = 101 div 11,
 - and the remainder is \rightarrow 2 = 101 mod 11.
- What are the quotient and remainder when −11 is divided by 3?
 - Solution: The quotient when -11 is divided by 3 is $\rightarrow -4 = -11$ div 3,
 - and the remainder is \rightarrow 1 = -11 mod 3.

Congruence Relation

Definition: If *a* and *b* are integers and *m* is a positive integer, then *a is congruent to b modulo m* if *m* divides *a* − *b*.

- The notation: $a \equiv b \pmod{m}$
- $a \equiv b \pmod{m}$ is a **congruence**, and that m is its **modulus**.
- Two integers are congruent mod m iff they have the same remainder when divided by m.
- If a is **not congruent** to b modulo m, $a \not\equiv b \pmod{m}$.

Example: Determine whether 17 is congruent to 5 modulo 6 and whether 24 and 14 are congruent to modulo 6.

Solution:

- $17 \equiv 5 \pmod{6}$ because 6 divides 17 5 = 12.
- . $24 \neq 14 \pmod{6}$ since 24 14 = 10 is not divisible by 6.

