

Judit Szarvas, PhD

Taxonomic classification of genomes

15 November 2022 DTU Food Taxonomic annotation of genomes

Learning objectives

- Define what "taxonomic annotation" is
- List and explain the main steps of the general workflow
- Explain how GTDB's genome-based taxonomy was created
- Describe what GTDB contains
- Use GTDB-tk for taxonomic annotation
- Interpret the output of GTDB-tk classify_wf

Recap of process of getting MAGs

We have MAGs, what now...?

- Annotation of sequences:
 - –Open reading frames / coding regions
 - -Gene function, metabolic pathway reconstruction
 - –Mobile genetic elements

Taxonomic classification

Taxonomic classification

Predict the taxonomic label of the genome

Which tool(s) already introduced in this class could be also used for this purpose?

Exercise

• Run GTDB-Tk classify_wf on dereplicated MQ & HQ MAGs: https://learn.inside.dtu.dk/d2l/le/content/126041/viewContent/526170/View

10 mins to submit your jobscripts

General workflow – Define reference set

- Take a reference set of labelled sequences
 - -should be appropriate for the investigated ecosystem or host
 i.e. don't map soil samples to sequences from marine bacteria, or cow rumen samples to human gut microbiome catalog
 - -if individual genes or proteins, they should be present in MAGs
 - rRNA sequences are often missing from MAGs

General workflow – Distance estimation

 Estimate the evolutionary divergence between the query and the references

- -full genomes:
 - estimate average nucleotide identities (ANIs) (hash-based comparison, fx. mash)
- -single copy marker genes or proteins:
 - phylogenetic placement

reference

General workflow – Classification

- Classify query based on pre-determined threshold(s)
 - -closest reference, if below species ANI threshold

query

reference

-in the same clade of phylogenetic tree

General concept – Classification

What if the placement uncertain? Classify on higher taxonomical level (Family, order, etc)

Parks et al, Nat. Biotechnol. 2018 doi:10.1038/nbt.4229

> 15 November 2022 DTU Food Taxonomic annotation of genomes

Genus

Species

Genome Taxonomy DataBase (GTDB)

- https://gtdb.ecogenomic.org/
- General purpose reference database for bacteria and archea
- Genome-based taxonomy:
 - Re-names and normalizes taxonomic ranks
 - Boundaries are described

Parks et al, *Nat. Biotechnol.* 2018 doi:10.1038/nbt.4229

- Genomes and MAGs downloaded from NCBI RefSeq/GenBank
- Universal, single-copy proteins
 - -present in ≥90%, single-copy in ≥95% of genomes
 - -120 bacterial, 122 (currently 53) archeal
- Aligned, MSA trimmed of too diverse or too sparse columns
- Bootstrapped phylogenetic trees inferred

Parks et al, Nat. Biotechnol. 2020 doi:10.1038/s41587-020-0501-8.

- Labels from NCBI Taxonomy or 16S rRNA based novel names
- Manual curation to "split" polyphyletic groups:
 - Group with type material kept original name
 - New groups received alphabetic suffixes,
 ie. Bacillus A, Bacillus B

• Rank normalization: based on relative evolutionary divergence (RED) of internal nodes of the tree

Parks et al, Nat. Biotechnol. 2018 doi:10.1038/nbt.4229

 Rank normalization: based on relative evolutionary divergence (RED) of internal nodes of the tree

Parks et al, *Nat. Biotechnol.* 2018 doi:10.1038/nbt.4229

15

15 November 2022 DTU Food Taxonomic annotation of genomes

Genus

GTDB construction

Selecting species representative genomes, centering around type strains

ANI and alignment fraction (AF) based clustering

> Parks et al, Nat. Biotechnol. 2020 doi:10.1038/s41587-020-0501-8

Genome clustering scenarios 1

Genome clustering scenarios 2

Parks et al, *Nat. Biotechnol.* 2020 doi:10.1038/s41587-020-0501-8

Genome cluster characteristics

Parks et al, *Nat. Biotechnol.* 2020 doi:10.1038/s41587-020-0501-8

GTDB-tk

- Software for automatic taxonomic classification of genomes
- https://ecogenomics.github.io/GTDBTk
- GTDB based:
 - -marker genes
 - -species representative genomes
- Classify by:
 - –phylogenetic placement and RED
 - -ANI and AF

GTDB-tk Classify workflow

15 November 2022 DTU Food Taxonomic annotation of genomes

Species classification

- ANI trumps pplacer placement
- Generally, genomes of the same species have >95 ANI%
- GTDB-tk has ANI thresholds for each cluster

gtdbtk.bac120.summary.tsv

fastani_reference	fastani_reference_radius	fastani_taxonomy	fastani_ani	fastani_af
GCF_900102635.1	96.7402	d_Bacteria;p_Proteobacteria;c_Ga	98.52	0.89
GCF_003144325.1	96.4726	d_Bacteria;p_Proteobacteria;c_Ga	98.98	0.95
GCF_011045835.1	96.4726	d_Bacteria;p_Proteobacteria;c_Ga	99.49	0.93
GCF_003044425.1	95.8064	d_Bacteria;p_Proteobacteria;c_Ga	96.91	0.91
GCF_001883995.1	95.3658	d_Bacteria;p_Firmicutes;c_Bacilli;	95.88	0.81
GCF_000742895.1	95.2518	d_Bacteria;p_Firmicutes;c_Bacilli;	97.87	0.85
GCF_013267835.1	95.0019	d_Bacteria;p_Proteobacteria;c_Ga	96.24	0.89
GCF_000194945.1	95.0	d_Bacteria;p_Firmicutes;c_Bacilli;	95.67	0.94

Parks et al, *Nucleic Acids Research* 2022 doi:10.1093/nar/gkab776

Species classification

Summary output notes method of classification:

gtdbtk.bac120.summary.tsv

classification	classification_method	note
d_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_Enterobacterales;f_Enterobacteriaceae;g_Providencia; s_	taxonomic classification defined by topology and ANI	classification based on placement in class-level tree
d_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_Pseudomonadales;f_Pseudomonadaceae; g_Pseudomonas_E;s_Pseudomonas_E chengduensis	taxonomic classification defined by topology and ANI	topological placement and ANI have congruent species assignments
d_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_Burkholderiales;f_Neisseriaceae;g_Neisseria; s_Neisseria sicca_C	ANI	topological placement and ANI have incongruent species assignments

Manual curation of results is recommended!

• For novel organisms, the *de novo* workflow is needed, where a maximum likelihood tree is inferred on the protein alignment, giving more precise results.

Exercise

Look at GTDB-Tk classify_wf results
 https://learn.inside.dtu.dk/d2l/le/content/126041/viewContent/526170/View

