رمنا ادین بور 1814303 ر ر ا مترین مدر 8 منیزی انتیرونی

رس المعال المع

 $V_{T} = V_{p} - V_{o} = 6.85^{\circ}$, $V_{D,Sat} = V_{T} + V_{G} = 6.85^{\circ} - 3^{\circ} = 3.85^{\circ}$

 $V_{g:,0,-2,-4}$, $-6C_{S}$ C_{S} C_{S}

 $I_{0} = G_{0} \cdot V_{p} \left[\frac{V_{0}}{V_{p}} + \frac{2}{3} \left(\frac{V_{0} - V_{q}}{V_{p}} \right)^{\frac{3}{2}} - \frac{2}{3} \cdot \left(\frac{V_{0} + V_{0} - V_{q}}{V_{p}} \right)^{\frac{3}{2}} \right]$ $= 3.2 \times 10^{-3} \times 7.66 \left[\frac{V_{0}}{7.66} + \frac{2}{3} \left(\frac{0.814 - V_{q}}{7.66} \right)^{\frac{3}{2}} - \frac{2}{3} \cdot \left(\frac{0.814 + V_{0} - V_{q}}{7.66} \right)^{\frac{3}{2}} \right]$ $I_{0} = G_{0} \cdot V_{p} \left[\frac{V_{0}}{V_{p}} + \frac{2}{3} \left(\frac{0.814 - V_{q}}{7.66} \right)^{\frac{3}{2}} - \frac{2}{3} \cdot \left(\frac{0.814 + V_{0} - V_{q}}{7.66} \right)^{\frac{3}{2}} \right]$ $I_{0} = G_{0} \cdot V_{p} \left[\frac{V_{0}}{V_{p}} + \frac{2}{3} \left(\frac{0.814 - V_{q}}{7.66} \right)^{\frac{3}{2}} - \frac{2}{3} \cdot \left(\frac{0.814 + V_{0} - V_{q}}{7.66} \right)^{\frac{3}{2}} \right]$

(ق) باستاده از را به معبلین واسته برمیدان مقدر (۷۵،۷۵) وا رابر مشمق و مغل لیت ۱٬۵۰۶ و ۵۰۵ و ۱٬۵۰۶ ع , 5 مير دسترد ، لتار و ع Va = و Va معاس درس ليف رابله موسلتي واب به ميدان به معدات زيرات ؟ 1 (2) = \frac{\vec{Vd}}{\varepsilon} = \frac{\vec{Vd}}{1 + (\frac{\vec{Vd}}{\vec{V}})}

در المجامون الله معدال در مدان و معدال دون و المعدال و

(می سیستان سیس از میس سیس سیس سیس میس در میس (۱۵) درولتار مای (۱۵) درولتار مای ما باستاده از بط «علمار على الله عا رابه معدت تعرب الرام لله على بالرام لله على المام الم Jon 2 a Z Nd M = [1-(-VG /2) 2]

ع) درج، دلمازر الاست کا ترانزیة و خاموش می خود در سایس کانال صفری کود؟ a) $I_0 \approx G_0 \cdot \tilde{V}_P \cdot \left[\frac{V_0}{V_P} + \frac{2}{3} \cdot \left(\frac{-V_0}{V_P} \right)^{\frac{3}{2}} - \frac{2}{3} \cdot \left(\frac{V_0 - V_0}{V_P} \right)^{\frac{7}{2}} \right] = G_0 \left[V_0 + \frac{2}{3} \times \frac{(-V_0)^{\frac{5}{2}}}{V_0^{\frac{5}{2}}} - \frac{2}{3} \times \frac{(-V_0)^{\frac{5}{2}}}{V_0^{\frac{5}{2}}} \left(\frac{V_0}{-V_0} + 1 \right)^{\frac{5}{2}} \right]$ $\frac{\left(1+\chi\right)^{\frac{3}{2}} \simeq 1+\frac{3}{2}\chi}{V_0 + \frac{3}{2}} = G_0 \left[V_0 + \frac{2}{3} - \frac{\left(-V_G\right)^{\frac{3}{2}}}{V_0 + \frac{3}{2}} - \frac{2}{3} - \frac{\left(-V_G\right)^{\frac{3}{2}}}{V_0 + \frac{3}{2}} \cdot \left(1+\frac{3}{2} \left(\frac{-V_B}{V_G}\right)\right)\right] = G_0 V_0 \left[1-\left(\frac{-V_G}{V_P}\right)^{\frac{1}{2}}\right]$

b)
$$\frac{I_0}{V_0} = G_0 \left[i - \left(\frac{-V_0}{V_p} \right)^{\frac{1}{2}} \right] = g_m (sat)$$