

Note:

- Cross your Registration number(with leading zero). It will be evaluated automatically.
- · Sign in the corresponding signature field.

Statistical Foundations of Learning

Exam: CIT4230004 / Endterm Date: Friday 11th August, 2023

Examiner: Prof. Debarghya Ghoshdastidar **Time:** 11:00 – 13:00

	P 1	P 2	P 3	P 4	P 5	P 6
I						

Working instructions

- This exam consists of 12 pages with a total of 6 problems.
 Please make sure now that you received a complete copy of the exam, and all pages are correctly printed.
- · You need to answer all problems.
- The total amount of achievable credits in this exam is 42 credits.
- Sub-problems. marked * can be solved without solving the previous parts
- · Answers are only accepted if the solution approach is documented.
 - Give a reason for each answer in the solution box of the respective subproblem.
 - If you use additional space for answer (given at end of paper), mention this in the solution box.
- You are allowed to use the lecture slides, assignments solutions or reference texts (either in printed form or on an electronic device).
- For iPads/laptops, you are only allowed to browse using a mouse/trackpad/touchscreen, but should not use the internet, any mode of typing (physical or virtual keyboard), or any means of communication.
- Do not write with red or green colours, nor use pencils.

Left room from	to	/	Early submission at

Problem 1 VC Dimension (6 credits)

Let $v_1, ..., v_n \in \mathbb{R}^d$ for some n < d. Define the hypothesis class

$$\mathcal{H} = \left\{ x \mapsto sign\left(\sum_{i=1}^{n} \alpha_i \langle v_i, x \rangle + b\right) \mid \alpha_1, \dots, \alpha_n, b \in \mathbb{R} \right\}$$

b) State a nece	ssary and suffici	ient condition on	v_1, \dots, v_n such the results your	nat VCdim(\mathcal{H}) =	n + 1. You ne	ed to state
b) State a nece but can use any	ssary and suffici	ient condition on ure (clearly state	v_1, \dots, v_n such the results you	nat VCdim(\mathcal{H}) = use).	n + 1. You ne	ed to state
b) State a nece but can use any	ssary and sufficing result from lecture.	ient condition on ure (clearly state	v_1, \dots, v_n such the results you to	nat VCdim (\mathcal{H}) = use).	n + 1. You ne	ed to state
b) State a nece but can use any	essary and sufficing result from lectu	ient condition on ure (clearly state	v_1, \dots, v_n such the results you to	nat VCdim (\mathcal{H}) = use).	n + 1. You ne	ed to state
b) State a nece but can use any	essary and suffici result from lectu	ient condition on ure (clearly state	v_1, \dots, v_n such the results you t	nat VCdim(H) = use).	n + 1. You ne	ed to state
b) State a nece but can use any	essary and sufficing result from lectu	ient condition on ure (clearly state	v_1, \dots, v_n such the results you t	nat VCdim (\mathcal{H}) = use).	n + 1. You ne	ed to state
b) State a nece but can use any	essary and suffici result from lectu	ient condition on ure (clearly state	v_1, \dots, v_n such the results you t	nat VCdim(\mathcal{H}) =	n + 1. You ne	ed to state
b) State a nece but can use any	essary and sufficing result from lectu	ient condition on ure (clearly state	v_1, \dots, v_n such the results you t	nat VCdim(\mathcal{H}) =	n + 1. You ne	ed to state
b) State a nece but can use any	essary and suffici result from lectu	ient condition on ure (clearly state	v_1, \dots, v_n such the results you t	nat VCdim(\mathcal{H}) =	n + 1. You ne	ed to state
b) State a nece but can use any	essary and sufficing result from lectu	ient condition on ure (clearly state	v_1, \dots, v_n such the results you to	nat VCdim(\mathcal{H}) =	n + 1. You ne	ed to state
b) State a nece but can use any	essary and suffici result from lectu	ient condition on ure (clearly state	v_1, \dots, v_n such the results you u	nat VCdim(\mathcal{H}) =	n + 1. You ne	ed to state
b) State a nece but can use any	essary and suffici result from lectu	ient condition on ure (clearly state	v_1, \dots, v_n such the results you u	nat VCdim(\mathcal{H}) =	n + 1. You ne	ed to state
b) State a nece but can use any	essary and suffici result from lectu	ient condition on ure (clearly state	v_1, \dots, v_n such the results you to	nat VCdim(\mathcal{H}) =	n + 1. You ne	ed to state
b) State a nece but can use any	essary and suffici result from lectu	ient condition on ure (clearly state	v_1, \dots, v_n such the results you u	nat VCdim(\mathcal{H}) =	n + 1. You ne	ed to state

Problem 2 Explainable Clustering (9 credits)

Consider a dataset $\mathcal{X} \subset \mathbb{R}^d$. Given two centers $a, b \in \mathbb{R}^d$, define the subsets

$$A = \{x \in \mathcal{X} : \|x - a\|_2 \le \|x - b\|_2\}$$
 and $B = \{x \in \mathcal{X} : \|x - b\|_2 \le \|x - a\|_2\}$

and define the 2-centers cost of clustering into A, B accordingly as

$$cost(A, B) = \max_{x \in \mathcal{X}} \min \{ \|x - a\|_2, \|x - b\|_2 \}.$$

We now construct a decision tree to approximate the clustering into A, B by partitioning $\mathcal X$ into two leaves

$$C_1 = \{x : x_i > \theta\}$$
 and $C_2 = \{x : x_i \le \theta\}$

where we threshold at $i = \operatorname{argmax}_{i \in [d]} |a_i - b_i|$ and $\theta = \frac{a_i + b_i}{2}$.

* Prove that if a point $x \in A$ is split from a in the decision tree, then $ x - b _2 \le (1 + 2\sqrt{d}) \cdot x - a _2$	
Using the argument in part-(b), show that $cost(C_1, C_2) \le (1 + 2\sqrt{d}) \cdot cost(A, B)$	

Problem 3 Stability of bagged Tikhonov learners (5 credits)

Given a training sample S, consider the Tikhonov regularised loss minimisation

$$\widehat{w} = \underset{w \in \mathcal{H}}{\operatorname{arg\,min}} L_{S}(w) + \lambda ||w||^{2}$$

Let us call \hat{w} a Tikhonov learner. In this problem, we study the on-average-replace-one stability of an ensemble of Tikhonov learners.

Suppose that the training sample S, of size m, is equally split into k sub-samples C_1, \ldots, C_k (assume m is a multiple of k). Using each sub-sample C_j (of size $\frac{m}{k}$), we obtain a Tikhonov learner $\widehat{w}_{j,S} = \underset{w \in \mathcal{H}}{\arg\min} \ L_{C_j}(w) + \lambda ||w||^2$.

Define $\widehat{w}_{bag,S} = \frac{1}{k} \sum_{i=1}^{k} \widehat{w}_{j,S}$, and assume that the loss is convex and ρ -Lipschitz.

0	
1	
2	
3	

a) Prove that the on-average-replace-one stability of the bagged learner $\widehat{w}_{bag,S}$ is smaller than

$$\frac{\rho}{k} \cdot \mathbb{E}_{S \sim \mathcal{D}^m, (\mathbf{x}', \mathbf{y}') \sim \mathcal{D}, i \sim \mathsf{Uniform}\{1, \dots, m\}} \left[\| \mathbf{w}_{j, S^i} - \mathbf{w}_{j, S} \| \right] \qquad \text{for a particular } j \in \{1, \dots, k\}.$$

Note that Sⁱ above refers to the standard notation of one-replaced training sample used in lecture.

Uaing part-(a), show that the bagged learner $\widehat{w}_{bag,S}$ is on-average-replace-one stable with ra	te $\frac{2\rho^2}{\lambda m}$.

Problem 4	Bayes Risk	(8 credits)
-----------	------------	-------------

Suppose that the feature space $\mathcal X$ can be written as $\mathcal X=\mathcal U\times\mathcal V$, that is each feature vector $x\in\mathcal X$ can be written as x=(u,v), where $u\in\mathcal U$ and $v\in\mathcal V$ are smaller feature vectors. In this problem, we will study the risk of binary classifiers that can only see part of the data, that is, h is a function of only u instead of x=(u,v).

a) Let \mathcal{D} be a distribution on $\mathcal{X} \times \{0, 1\}$ that is characterised as $\mathcal{D}_{\mathcal{X}} \times \eta$, where $\eta(x) = \mathbb{P}(y = 1 x)$. Define $\mathcal{H} \subset \{0, 1\}^{\mathcal{X}}$ as the set of all binary predictors that only consider information in u , that is, if $x = (u, v)$ and $x' = (u, v')$, then any $h \in \mathcal{H}$ satisfies $h(x) = h(x')$. Let $L_{\mathcal{D}}(h)$ denote the risk with respect to the 0-1 loss.
• Compute the minimum risk $\min_{h \in \mathcal{H}} L_{\mathcal{D}}(h)$ achieved by any classifier in \mathcal{H} .
. What is the entimal algorifier that achieves the above risk?

• What is the optimal classifier that achieves the above risk? **Hint:** It may help to write $\eta(x)$ more explicitly as $\eta(u,v)$ for any x=(u,v), and write expectations over $x=(u,v)\sim\mathcal{D}_{\mathcal{X}}$ in terms of $u\sim\mathcal{D}_{\mathcal{U}}$, $v\sim\mathcal{D}_{\mathcal{V}|u}$ (first u is sampled, and then v sampled given u).

b) Consider the problem where $\mathcal{X}=\{0,1\}^3$, $\mathcal{D}_{\mathcal{X}}$ is uniform over \mathcal{X} and, for every x=(a,b,c), $\eta(x)=\frac{a+2b+3c}{6}$.

Use part (a) to derive the optimal axis-aligned classifier for this problem.

Note: There must be an argument about why the presented axis-aligned classifier is optimal.

Problem 5 Robust risk of 1-nearest neighbour classifier (9 credits)

Assume $\mathcal{X} = \mathbb{R}^p$. For any binary classifier, $h: \mathcal{X} \to \{0, 1\}$, we define δ -robust risk in the following way:

• For any test pair $(x, y) \in \mathcal{X} \times \{0, 1\}$, let \tilde{x} be sampled from a normal distribution centred at x and covariance $\delta^2 I$, that is, $\widetilde{x} \sim \mathcal{N}(x, \delta^2 I)$.

- The δ -robust 0-1 loss is computed at (x,y) as $\mathbb{E}_{\widetilde{x} \sim \mathcal{N}(x,\delta^2 I)}\left[\mathbf{1}\left\{h(\widetilde{x}) \neq y\right\}\right]$.
- The δ -robust risk is defined as $L^{rob}_{\mathcal{D}}(h) = \mathbb{E}_{(\mathbf{x},\mathbf{y})\sim\mathcal{D}}\mathbb{E}_{\widetilde{\mathbf{x}}\sim\mathcal{N}(\mathbf{x},\delta^2I)}\left[\mathbf{1}\left\{h(\widetilde{\mathbf{x}})\neq\mathbf{y}\right\}\right]$

a) For the 1-nearest neighbour classifier $h = h^{NN}$, prove that the asymptotic δ -robust risk $\lim_{m \to \infty} \mathbb{E}_{S \sim \mathcal{D}}$ be computed as $\lim_{m \to \infty} \mathbb{E}_{S \sim \mathcal{D}^m} \left[L^{rob}_{\mathcal{D}}(h^{NN}) \right] = \mathbb{E}_{\mathbf{x} \sim \mathcal{D}_{\mathcal{X}}} \mathbb{E}_{\widetilde{\mathbf{x}} \sim \mathcal{N}(\mathbf{x}, \delta^2 I)} \left[\eta(\mathbf{x}) + \eta(\widetilde{\mathbf{x}}) - 2\eta(\mathbf{x})\eta(\widetilde{\mathbf{x}}) \right].$ Note: You may assume η is uniformly continuous.	$_{^m}[L^{rob}_{\mathcal{D}}(h)]$ can
---	---------------------------------------

2 3 4

P	rob	lem	6	Universal Kernels	(5 credits)
---	-----	-----	---	-------------------	-------------

Let $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a postive semidefinite kernel, and let $\phi : [0,1] \to \mathcal{H}$ be the feature map into its RKHS \mathcal{H} . In this problem, we show that if the kernel k is universal, then ϕ is injective (that is, for every $x \neq x'$, ϕ satisfies $\phi_x \neq \phi_{x'}$).

	$ f(x)-f(x') \leq h(x)-h(x') +\epsilon$	for every $x, x' \in C$.	
Using the statement	t of part-(a), prove by contradiction that	ϕ must be injective.	
Using the statement	t of part-(a), prove by contradiction that	ϕ must be injective.	
Using the statement	t of part-(a), prove by contradiction that	ϕ must be injective.	
Using the statement	t of part-(a), prove by contradiction that	ϕ must be injective.	
Using the statement	t of part-(a), prove by contradiction that	ϕ must be injective.	
Using the statement	t of part-(a), prove by contradiction that	ϕ must be injective.	
Using the statement	t of part-(a), prove by contradiction that	ϕ must be injective.	

Additional space for solutions-clearly mark the (sub)problem your answers are related to and strike out invalid solutions.						
1						

