Classification: Naive Bayes Classifiers

Ninghao Liu

University of Georgia

March 14, 2023

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

How to predict the label given a new instance?

$$x : [Refund = No, Married, Income = 120K]$$
 (1)

Naive Bayes Classifiers

Approach the classification problem from the probabilistic perspective.

How to formally define the problem?

• Given an instance $\mathbf{x} = [x_1, x_2, ..., x_D]$, choose y that maximizes

$$P(y|x_1, x_2, ..., x_D).$$

A model based on posterior probability.

Can we estimate $P(y|x_1, x_2, ..., x_D)$ directly from data?

Naive Bayes Classifiers: Bayes theorem

- Approach:
 - Compute $P(y|x_1, x_2, ..., x_D)$ using the **Bayes theorem**

$$P(y|x_1, x_2, ..., x_D) = \frac{P(x_1, x_2, ..., x_D|y)P(y)}{P(x_1, x_2, ..., x_D)}$$

for each choice of $y \in \{1, 2, ..., C\}$.

- Choose the y that maximizes $P(y|x_1, x_2, ..., x_D)$.
- Equivalent to choosing value of y that maximizes

$$P(x_1, x_2, ..., x_D|y)P(y)$$
 or $P(x_1, x_2, ..., x_D, y)$

• How to compute $P(x_1, x_2, ..., x_D|y)$?

Naive Bayes Classifiers: Bayes theorem

Question: Can we directly compute $P(x_1, x_2, ..., x_D|y)$?

Naive Bayes Classifiers

Compute $P(x_1, x_2, ..., x_D|y)$ for an arbitrary instance x.

- Think about a binary classification scenario, where D=3 and each feature x_j has 2 possible values.
 - What type of intermediate data to store?
 - How large is the intermediate data?

Naive Bayes Classifiers: Challenges

Challenges for computing $P(x_1, x_2, ..., x_D|y)$.

- Think about a binary classification scenario, where D=3 and each feature x_j has 2 possible values.
 - What type of intermediate data to store?
 - How large is the intermediate data?
- What about when D = 100 and each feature x_j has 16 possible values?
 - What is the challenge?

Naive Bayes Classifiers: Conditional Independence

Definition: Conditional Independence.

Features in x are mutually independent, conditional on y. That is,

$$P(x_1, x_2, ..., x_D|y) = P(x_1|y) \cdot P(x_2|y) \cdot \cdots \cdot P(x_D|y).$$

Naive Bayes Classifiers: Conditional Independence

Definition: Conditional Independence.

Features in x are mutually independent, conditional on y. That is,

$$P(x_1, x_2, ..., x_D|y) = P(x_1|y) \cdot P(x_2|y) \cdot \cdots \cdot P(x_D|y).$$

- · Example: Arm length and reading skills
 - Young child has shorter arm length and limited reading skills, compared to adults
 - If age is fixed, no apparent relationship between arm length and reading skills
 - Arm length and reading skills are conditionally independent given age

Naive Bayes Classifiers: Framework

- **①** Compute $P(x_j|y)$ and P(y) for all cases given the training data.
- Assume conditional independence:

$$P(x_1, x_2, ..., x_D|y) = P(x_1|y) \cdot P(x_2|y) \cdot \cdots \cdot P(x_D|y).$$

3 A new instance x is classified to y_c if

$$P(y_c) \cdot \prod_{j=1}^D P(x_j|y_c)$$

is maximal.

Naive Bayes Classifiers: Computation Cost

Compute
$$P(x_1|y) \cdot P(x_2|y) \cdot \cdots \cdot P(x_D|y)$$
.

- Think about a binary classification scenario, where D=3 and each feature x_i has 2 possible values.
 - What type of intermediate data to store?
 - How large is the intermediate data?
- What about when D = 100 and each feature x_j has 16 possible values?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

 Class: P(Y) = N_c/N
 e.g., P(No) = 7/10, P(Yes) = 3/10

Let's work out all P(X|Y)

For discrete attributes:

$$P(X_i \mid Y_k) = |X_{ik}| / N_c$$

- where |X_{ik}| is number of instances having attribute value X_i and belonging to class Y_k
- Examples:

P(Status=Married|No) = 4/7 P(Refund=Yes|Yes)=0

- For continuous attributes:
 - Discretization: Partition the range into bins:
 - Replace continuous value with bin value
 - Probability density estimation:
 - Assume an attribute follows a normal distribution
 - Use data to estimate parameters of distribution (e.g., mean and standard deviation)
 - Once probability distribution is known, use it to estimate the conditional probability P(X_i|Y)

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Normal distribution:

$$P(X_{i} | Y_{j}) = \frac{1}{\sqrt{2\pi\sigma_{ij}^{2}}} e^{\frac{(X_{i} - \mu_{ij})^{2}}{2\sigma_{ij}^{2}}}$$

- One for each (X_i,Y_i) pair
- For (Income, Class=No):
 - If Class=No
 - sample mean = 110
 - sample variance = 2975

$$P(Income = 120 \mid No) = \frac{1}{\sqrt{2\pi}(54.54)}e^{\frac{(120-110)^2}{2(2975)}} = 0.0072$$

Given a Test Record:

X = (Refund = No, Married, Income = 120K)

naive Bayes Classifier:

```
P(Refund=Yes|No) = 3/7
P(Refund=No|No) = 4/7
P(Refund=Yes|Yes) = 0
P(Refund=No|Yes) = 1
P(Marital Status=Single|No) = 2/7
P(Marital Status=Divorced|No)=1/7
P(Marital Status=Single|Yes) = 2/3
P(Marital Status=Divorced|Yes)=1/3
P(Marital Status=Divorced|Yes)=1/3
P(Marital Status=Married|Yes) = 0
```

For taxable income:

If class=No: sample mean=110 sample variance=2975

If class=Yes: sample mean=90

sample variance=25

• P(X|Class=Yes) = P(Refund=No|Class=Yes) $\times P(Married|Class=Yes)$ $\times P(Income=120K|Class=Yes)$ $= 1 \times 0 \times 1.2 \times 10^{-9} = 0$

```
Since P(X|No)P(No) > P(X|Yes)P(Yes)
Therefore P(No|X) > P(Yes|X)
=> Class = No
```