

Figure 1

Figure 2a

Figure 2b

Figure 3a NGF

Figure 3b Anti-NGF

Figure 3c Anti-NGF + Neurturin

Figure 4

```
P.O K Q H A V L P R R E R N R Q A A A A N P E N S R G K G
              S P D K Q A A A L P R R E R N R Q A A A S P E N S R G K G
S P D K Q A A A L P R R E R N R Q A A A S P E N S R G K G
                                                                                                                                                                                     aGDNF
  1
                                                                                                                                                                                    rGDNF
                                                                                                                                                                                     HNTN
  1
                                                                                                                                                                                     MTM
  1
             R R G Q R G K N R G C V L T A I H L N V T D L G L G Y E T K hGDNF R R G Q R G K N R G C V L T A I H L N V T D L G L G Y E T K mGDNF R R G Q R G K N R G C V L T A I H L N V T D L G L G Y E T K rGDNF - - - A R L G A R P C G L R E L E V R V S E L G L G Y A S D hNTN - - - - P G A R P C G L R E L E V R V S E L G L G Y T S D mNTN
 31
31
 31
 1
           EELIFRYCSGSCOAAETTYDKILKNLSRNRELIFRYCSGSCESAETMYDKILKNLSRSRELIFRYCSGSCEAAETMYDKILKNLSRSRETVLFRYCAGACEAAARVYDLGLRRLRQRRETVLFRYCAGACEAAIRIYDLGLRRLRQRR
                                                                                                                                                                                    hGDNF
                                                                                                                                                                                    auGONF
 61
                                                                                                                                                                                    rGONF
61
                                                                                                                                                                                    HNTN
28
          R L V S D K V - G Q A C C R P I A F D D D L S F L D D N L V HGONF R L T S D K V - G Q A C C R P V A F D D D L S F L D D N L V MGONF R L T S D K V - G Q A C C R P V A F D D D L S F L D D S L V CONF R L R R E R V R A Q P C C R P T A Y E D E V S F L D A H S R HNTN R V R R E R A R A H P C C R P T A Y E D E V S F L D V H S R MNTN
91
91
91
58
          Y H I L R K H S A K R C G C I Y H I L R K H S A K R C G C I Y H I L R K H S A K R C G C I Y H T V H E L S A R E C A C V Y H T L Q E L S A R E C A C V
120
                                                                                                                                                                                    hGDNF
                                                                                                                                                                                     aGDNF
                                                                                                                                                                                     rGDNF
120
88
                                                                                                                                                                                    HNTN
                                                                                                                                                                                     MTN
```

RT-PCR Analysis of Neurturin and GDNF

ATGCAGCGCTGGAAGGCGGCCCTTGGCCTCAGTGCTCTGCAGCTCCGTGCTGTCCATC	60
Met Gln Arg Trp Lys Ala Ala Ala Leu Ala Ser Val Leu Cys Ser Ser Val Leu Ser I <u>le</u>	
TGGATGTGTCGAGAGGGCCTGCTTCTCAGCCACCGCCTCGGACCTGCGCTGGTCCCCCTG	120
Trp Met Cys Arg Glu Gly Leu Leu Leu Ser His Arg Leu Gly Pro Ala Leu Val Pro Leu	
CACCGCCTGCCTCGAACCCTGGACGCCCGGATTGCCCGCCTGGCCCAGTACCGTGCACTC	180
His Arg Leu Pro Arg Thr Leu Asp Ala Arg Ile Ala Arg Leu Ala Glin Tyr Arg Ala Leu	
CTGCAGGGGGCCCCGGATGCGATGGAGCTGCGCGAGCTGACGCCCTGGGCTGGGCGGCCC	2//0
Leu Gin Gly Ala Pro Asp Ala Met Glu Leu Arg Glu Leu Thr Pro Trp Ala Gly Arg Pro	240
	200
CCAGGTCCGCGCGCGGCGGGGGCGCGCGCGTTGGGGGGCG	300
Pro Gly Pro Ang Ang Ang Ala Gly Pro Ang Ang Ang Ala Ang Ala Ang Leu Gly Ala	
CGGCCTTGCGGGCTGCGCGAGCTGGAGGTGCGCGTGAGCGAGC	360
Arg Pro Cys Gly Leu Arg Glu Leu Glu Val Arg Val Ser Glu Leu Gly Leu Gly Tyr Ala	
TCCGACGAGACGGTGCTGTTCCGCTACTGCGCAGGCGCCTGCGAGGCTGCCGCGCGCG	420
Ser Asp Glu Thr Val Leu Phe Arg Tyr Cys Ala Gly Ala Cys Glu Ala Ala Ala Arg Val	
TACGACCTCGGGCTGCGACGACTGCGCCAGCGGCGCGCCCTGCGGCGGGAGCGGGTGCGC	480
Tyr Asp Leu Gly Leu Arg Arg Leu Arg Gln Arg Arg Arg Leu Arg Arg Glu Arg Val Arg	
GCGCAGCCCTGCTGCCGCCCGACGGCCTACGAGGACGAGGTGTCCTTCCT	540
Ala Gln Pro Cys Cys Arg Pro Thr Ala Tyr Glu Asp Glu Val Ser Phe Leu Asp Ala His	•
AGCCGCTACCACACGGTGCACGAGCTGTCGGCGCGCGAGTGCGCCTGCGTGTGA 594	
Ser Arg Tyr His Thr Val His Glu Leu Ser Ala Arg Glu Cys Ala Cys Val	

ATGAGGCGCTGGAAGGCAGCGGCCCTGGTGTCGCTCATCTGCAGCTCCCTGCTATCTGTC Met Arg Arg Trp Lys Ala Ala Leu Val Ser Leu IIe Cys Ser Ser Leu Leu Ser Val	60
TGGATGTGCCAGGAGGGTCTGCTCTTGGGCCACCGCCTGGGACCCGCGCTTGCCCCGCTA Trp Met Cys Gin Glu Gly Leu Leu Gly His Arg Leu Gly Pro Ala Leu Ala Pro Leu	120
CGACGCCCTCCACGCACCCTGGACGCCCGCATCGCCCGCC	
CTCCAGGGCGCCCCGACGCGGTGGAGCTTCGAGAACTTTCTCCCTGGGCTGCCCGCATC Leu Gin Gly Ala Pro Asp Ala Val Glu Leu Arg Glu Leu Ser Pro Trp Ala Ala Arg Ile	· 240
CCGGGACCGCGCGTCGAGCGGGTCCCCGGCGTCGGCGGGCG	300
Pro Gly Pro Arg Arg Arg Ala Gly Pro Arg Arg Arg Ala Arg Pro Gly Ala Arg Pro TGTGGGCTGCGCGAGCTCGAGGTGCGCGTGAGCGAGCTGGGCCTGGGCTACACGTCGGAT	360
Cys Gly Leu Arg Glu Leu Glu Val Arg Val Ser Glu Leu Gly Leu Gly Tyr Thr Ser Asp	
GAGACCGTGCTGTTCCGCTACTGCGCAGGCGCGTGCGAGGCGGCCATCCGCATCTACGAC Glu Thr Val Leu Phe Arg Tyr Cys Ala Gly Ala Cys Glu Ala Ala Ile Arg Ile Tyr Asp	420
CTGGGCCTTCGGCGCCTGCGCCAGCGGAGGCGCGTGCGCAGAGAGCGGGCGCGCGC	480
Leu Gly Leu Arg Arg Leu Arg Gln Arg Arg Arg Val Arg Arg Glu Arg Ala Arg Ala His	540
CCGTGTTGTCGCCCGACGGCCTATGAGGACGAGGTGTCCTTCCT	
TACCACACGCTGCAAGAGCTGTCGGCGCGGGGAGTGCGCGTGCGT	
Tyr His Thr Leu Gln Glu Leu Ser Ala Arg Glu Cys Ala Cys Val •	

GGAGGGAGAGCGCGGTGGTTTCGTCCGTGTGCCCCGCGCCCCGCGCGC	-301
TCTCGCGTGGCCCCGCGTCCTGAGCGCGCTCCAGCCTCCACGCGCGCCC	-251
TCCTCGCGTGGCCCCGCGTCCTGAGCGCGCTCCTCGAGAAGAGAGA	201
ACCCCGGGGTTCACTGAGCCCGGGGAGCCCGGGGAAGACAGAGAAAGAGA	-15 1
GGCCAGGGGGGAACCCCATGGCCCGGGCCCGTGTCCCGCACCCTGTGCGG	
TGGCCTCCTCCGGCACGGGTCCCCCGGGTCCCCGCGATCC	-101
GGATGGCGCACGCAGTGGCTGGGGCCCGGGCTCGGGTGGTCGGAGG	-51
AGTCACCACTGACCGGGTCATCTGGAGCCCGTGGCAGGCCCGAGGCCCAGG	-1
ATGAGGCGCTGGAAGGCAGCGCCCTGGTGTCGCTCATCTGCAGCTCCCT	50
GCTATCTGTCTGGATGTGCCAGGAGGGTCTGCTCTTGGGCCACCGCCTGG	100
GACCGCGCTTGCCCCGCTACGACGCCCTCCACGCACCCTGGACGCCCGC	150
ATCGCCCCCCCCCAGTATCGCGCTCTGCTCCAGGGCGCCCCCCGACGC	200
GGTGGAGCTTCGAGAACTTTCTCCCTGGGCTGCCCGCATCCCGGGACCGC	250
CCCTCCACCGCCTCCCCCCCCCCCCCCCCCCCCCCCCCC	300
TGTGGGCTGCGCGAGCTCGAGCTGAGCGAGCTGGGCCTA	350
CACGTCGGATGAGACCGTGCTGTTCCGCTACTGCGCAGGCGCGTGCGAGG	400
CGCCATCCGCATCTACGACCTGGGCCTTCGGCCCAGCGGAGG	450
CGCCTGCGCAGAGAGCGGGGGGGGGGGGCGCACCCGTGTTGTCGCCCGACGGC	500
	550
CTATGAGGACGAGGTGTCCTTCCTGGACGTGCACAGCCGCTACCACACGC	. 600
TGCAAGAGCTGTCGGCGCGGGAGTGCGCGTGCGTGTGATGCTACCTCACG	650
CCCCCGACCTGCGAAAGGGCCCTCCCTGCCGACCCTCGCTGAGAACTGA	
CTTCACATAAAGTGTGGGAACTCCC	679

Figure 10

GAGGGACCTGGACGCCCCATCAGGGTAAGAATTCCTGGGGGCCTCCCGACTCCCCAATTC	60
Glu Gly Pro Gly Arg Pro Ile Arg Val Arg Ile Pro Gly Gly Leu Pro Thr Pro Gln Phe	20
	120°
CTTCTCTCAAAGCCCTCACTTTGCCTTACAATCCTACTCTACCTTGCACTAGGTAACAAC	•
Leu Leu Ser Lys Pro Ser Leu Cys Leu Thr Ile Leu Leu Tyr Leu Ala Leu Gly Asn Asn	40
CATGTCCGTCTTCCAAGAGCCTTGGCTGGTTCATGCCGACTGTGGAGCCTGACCCTACCA	180
His Val Arg Leu Pro Arg Ala Leu Ala Gly Ser Cys Arg Leu Trp Ser Leu Thr Leu Pro	60
GTGGCTGAGCTGGGCCTGGGCTATGCCTCGGAGGAGAAGGTCATCTTCCGATACTGTGCT	240
Val Ala Glu Leu Gly Leu Gly Tyr Ala Ser Glu Glu Lys Val Ile Phe Arg Tyr Cys Ala	80
GGCAGCTGTCCCCAAGAGGCCCGTACCCAGCACAGTCTGGTACTGGCCCGGCTTCGAGGG	300
GGCAGCIGICCCCARGRAGAGE CONTROL OF THE GIR His Ser Leu Val Leu Ala Arg Leu Arg Gly	100
ተመመመመመ መመመመመ መመመ መመመመመመ የመደመ የሚያስ የሚያስ የሚያስ የሚያስ የሚያስ የሚያስ የመመመመመመ መመመመመ መመመመመ መመመመ የመደመ የመደመ የመደ	360
CGGGGTCGAGCCCATGGCCGACCCTGCTGCCAGCCACCAGCTATGCTGATGTGACCTTC Arg Gly Arg Ala His Gly Arg Pro Cys Cys Gln Pro Thr Ser Tyr Ala Asp Val Thr Phe	120
Arg Gly Arg Ala His Gly Arg Flo Cys Cys Gill 110 122 022 170 122	
CTTGATGATCAGCACCATTGGCAGCAGCTGCCTCAGCTCTCAGCTGCAGCTTGTGGCTGT	420
Leu Asp Asp Gln His His Trp Gln Gln Leu Pro Gln Leu Ser Ala Ala [‡] Ala Cys Gly Cys	140
GGTGGCTGAAGGAGGCCAGTCTGGTGTCTCAGAATCACAAGCATGAGACAGGCTGGGCTT	480
	142
Gly Gly	
TGAAAGGCTCAGGTGACATTACTAGAAATTTGCATAGGTAAAGATAAGAAGGGAAAGGAC	540
0.40	544
CAGG	

	S R R RIN MIN PSP		S S S
40	IY DK ILK NLSRS Y D LGLRR LRQR H SLV LAR LRGR	- 83 -	AKRCGCII. ARECBOV. AAACGGGG.
- 85 4	RYCSGSCEL-SALEUDA RYCAGACEDAAIRI- RYCAGSCPQEARIC	- 88-	F L D D N L V Y H I L R K H S R Y H T L Q E L S . T L D D Q H H W Q Q L P Q L S .
- &-	GYETKEELLF GYTSDETVLF GYASJEEKWIF	- &-	PVA F D D D L S P T A Y E D E V S P T S Y A D - V T
10	LTAIHLNYTOLGL LRELEVRYSELGL LWSLTLPWAELGL	-8	LTSOKV-GOAGCR VRRERARAHPCCR GRAHGRPCCQ
.	\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>		882 8812

Figure 1.2

CCTCAGAGGAGAAGATTATCTTCCGATACTGTGCTGGCAGCTGTCCCCAAGAGGTCCGTACC	62
Ser Glu Glu Lys Ile Ile Phe Arg Tyr Cys Ala Gly Ser Cys Pro Gln Glu Val Arg Thr	20
territoria de la companya de la comp	
CAGCACAGTCTGGTGCTGGCCCGTCTTCGAGGGCAGGGTCGAGCTCATGGCAGACCTTGC	122
CAGCACAGTCTGGTGCTGGCCCGTCTTCGAGGGCTGCTCTCGAGGGCTGCTCTCGAGGGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGC	40
TGCCAGCCCACCAGCTATGCTGATGTGACCTTCCTTGATGACCACCACCACTTGGCAGCAG	182
TGCCAGCCCACCAGCIAIGCIGATOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTO	60
CTGCCTCAGCTCTCAGCCGCAGCTTGTGGCTGTGGTGGCTGAAGGCGGCCAGCCTGGTCT	242
CTGCCTCAGCCGCAGCIIGIGGGCGCGCAGCIIGIGGGCGCGCAGCIIGIGGGCGCAGCIIGIGGGCGCAGCIIGIGGGCGCAGCIIGIGGGCGCAGCIIGIGGGCGCAGCIIGIGGGCGCAGCIIGIGGGCGCAGCIIGIGGGCGCAGCIIGIGGGCGCAGCIIGIGGGCGCAGCIIGIGGGCGCAGCCICAGCGCGCAGCCIIGIGGGCCGCAGCIIGIGGGCCGCAGCIIGIGGGCCGCAGCIIGIGGGCCAGCIIGIGGCCAGCAGCIIGIGGCCAGCAGCIIGIGGCCAGCAGCIIGIGGCCAGCAGCIIGIGGCCAGCAGCIIGIGGCCAGCAGCIIGIGGCCAGCAGCAGCIIGIGGCCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGC	73
CTCAGAATCACAAGCAAGAGGCAGCCTTTGAAAGGCTCAGGTGACGTTATTAGAAACTTG	302
CATAGGAGAAGATTAAGAAGAGAAAGGGGACCTG	336

TGCCGGCTGTGGAGCCTGACCCTACCAGTGGCTGAGCTTGGCCTGGGCTATGCCTCAGAG	60
Cys Arg Leu Trp Ser Leu Thr Leu Pro Val Ala Glu Leu Gly Leu Gly Tyr Ala Ser Glu	20
GAGAAGATTATCTTCCGATACTGTGCTGGCAGCTGTCCCCAAGAGGTCCGTACCCAGCAC	120
Glu Lys Ile Ile Phe Arg Tyr Cys Ala Gly Ser Cys Pro Gln Glu Val Arg Thr Gln His	40
AGTCTGGTGCTGGCCCGTCTTCGAGGGCAGGGTCGAGCTCATGGCAGACCTTGCTGCCAG	180
Ser Leu Val Leu Ala Arg Leu Arg Gly Gln Gly Arg Ala His Gly Arg Pro Cys Cys Gln	60
CCCACCAGCTATGCTGATGTGACCTTCCTTGATGACCACCACTTGGCAGCAGCTGCCT	240
Pro Thr Ser Tyr Ala Asp Val Thr Phe Leu Asp Asp His His His Trp Gln Gln Leu Pro	80
CAGCTCTCAGCCGCAGCTTGTGGCTGTGGTGGCTGAAGGCGGCCAGCCTGGTCTCTCAGA	
Gln Leu Ser Ala Ala Cys Gly Cys Gly Gly	300 91
ATCACAAGCAAGAGGCAGCCTTTGAAAGGCTCAGGTGACGTTATTAGAAACTTGCATAGG	360
AGAAGATTAAGAAGAGAAAGGGGACCTGATT	391

Figure 15 A

				,
	mPSP rPSP hPSP	mPSP rPSP hPSP	mPSP rPSP hPSP	rPSP rPSP hPSP
30	[H [H [H	G o o o	90 8 8 8 8	
``	ннн	田田田	AAA	
	> H >	AAA	လလလ	•
	x x x	段民民	그그그	
	ចាធា	დ დ დ	000	
	ыыы	よ Q Q	ддд	
	တလလ	0 0 0	그그그	
	AAA	22 22 23	O O K	
	***	그그그	000	
	000	民民民	333	
20	777	50 A A A	88 н н к	
•	000	그그그	##	
	그그그	> > <	OHK	
	ច្ចា	חחח	D D D	
	A A A	လလလ		
	>>>	ннн	нчн	
	ይይ	000	[בן [בן [בן	
	בונ	444	F F A	
	H H H	民民民	>>>	
	ברב	A>A	000	
10	လ လ လ	8 ыыо		
	333	OOK	M M M	
	그그그	ር ር ር	တတင	
	R R Q	$\circ \circ \circ$	8 8 6	
•	$\circ \circ \circ$	လလလ	ይ ይ	000
	ខ្មា	<u>ი</u> ი ი	O O R	ပ ပ ပ
	ი ი ი	AAA	$\circ \circ \circ$	000
	ልዋል	$\circ \circ \circ$	000	ი ი ი
	774	***	ддд	OOO
	**	民民民	ድ ዩ ር	AAA
		31	61 61 61	91 91 91

Figure 15B

OACCRPIAFO-DOLSFL----BMP5 BMP6 BMP7 BMP3 60A VG1 GDF1 GDF3 TGF81 TGF82 TGF83 INHBA INHBB NODAL BMP2 BMP4 [NR MIS GDF9 GONF **ფ**ბეტ-იი 4 ი 4 ი 8 განეტი 10 ი ი

FIGURE 16

1	ATGGCTGCAG	GAAGACTTCG	GATCCTGTGT	CTGCTGCTCC	TGTCCTTGCA	CCCGAGCCTC
	TACCGACGTC	CTTCTGAAGC	CTAGGACACA	GACGACGAGG	ACAGGAACGT	GGGCTCGGAG
61	GGCTGGGTCC	TTGATCTTCA	AGAGGCTTCT	GTGGCAGATA	AGCTCTCATT	TGGGAAGATG
	CCGACCCAGG	AACTAGAAGT	TCTCCGAAGA	CACCGTCTAT	TCGAGAGTAA	ACCCTTCTAC
!21	GCAGAGACTA	GAGGGACCTG	GACGCCCCAT	CAGGGTAAGA	ATTCCTGGGG	GCCTCCCGAC
	CGTCTCTGAT	CTCCCTGGAC	CTGCGGGGTA	GTCCCATTCT	TAAGGACCCC	CGGAGGGCTG
181	TCCCCAATTC	CTTCTCTCAA	AGCCCTCACT	TTGCCTTACA	ATCCTACTCT	ACCTTGCACT
	AGGGGTTAAG	GAAGAGAGTT	TCGGGAGTGA	AACGGAATGT	TAGGATGAGA	TGGAACGTGA
241	AGGTAACAAC	CATGTCCGTC	TTCCAAGAGC	CTTGGCTGGT	TCATGCCGAC	TGTGGAGCCT
	TCCATTGTTG	GTACAGGCAG	AAGGTTCTCG	GAACCGACCA	AGTACGGCTG	ACACCTCGGA
301 ₅₀	GACCCTACCA	GTGGCTGAGC	TGGGCCTGGG	CTATGCCTCG	GAGGAGAAGG	TCATCTTCCG
	CTGGGATGGT	CACCGACTCG	ACCCGGACCC	GATACGGAGC	CTCCTCTTCC	AGTAGAAGGC
}61	ATACTGTGCT	GGCAGCTGTC	CCCAAGAGGC	CCGTACCCAG	CACAGTCTGG	TACTGGCCCG
	TATGACACGA	CCGTCGACAG	GGGTTCTCCG	GGCATGGGTC	GTGTCAGACC	ATGACCGGGC
42년 10 10	CGAAGCTCCC	GCCCCAGCTC	GGGTACCGGC	ACCCTGCTGC TGGGACGACG	GTCGGGTGGT	CGATACGACT
481 1	ACACTGGAAG	GAACTACTAG	TCGTGGTAAC	GCAGCAGCTG CGTCGTCGAC	GGAGTCGAGA	GTCGACGTCG
541 ⁻⁴	AACACCGACA	CCACCGACTT	CCTCCGGTCA	CTGGTGTCTC GACCACAGAG	TCTTAGTGTT	CGIACICIGI
เก	CCGACCCGAA	ACTTTCCGAG	TCCACTGTAA	ACTAGAAATT TGATCTTTAA	ACGTATCCAT	TICTATICTI
루 .,610 대	GGGAAAGGAC CCCTTTCCTG	CAGGGGTTTT GTCCCCAAAA	TTGTTTCTTT AACAAAGAAA	CTTTGCTTGC GAAACGAACG	TTGTTAGTTT AACAATCAAA	TTTTTTTTT AAAAAAAAA
721	TTT AAA	,				

Figure 17A

1	ATGGCTGCAG	GAAGACTTCG GATCCTGT CTTCTGAAGC CTAGGACA	T CTGCTGCTCC	TGTCCTTGCA ACAGGAACGT	CCCGAGCCTC GGGCTCGGAG
1	M A A G	R L R I L C	L L L L		P S L
61	GGCTGGGTCC	TTGATCTTCA AGAGGCTT AACTAGAAGT TCTCCGAA	T GTGGCAGATA A CACCGTCTAT	AGCTCTCATT TCGAGAGTAA	TGGGAAGATG ACCCTTCTAC
21	G W V/L		V A D K	L S F	G K M
121	CGTCTCTGAT	GAGGGACCTG GACGCCCC CTCCCTGGAC CTGCGGGG	A GTCCCATTGT	TGGTACAGGC	AGAAGGTTCT
41	A E T R	G T W T P H	QGNN		L P R
181	CGGAACCGAC	GTTCATGCCG ACTGTGGA CAAGTACGGC TGACACCT	GC CTGACCCTAC CG GACTGGGATG L T L P	GTCACCGACT	GCTGGGCCTG CGACCCGGAC L G L
61	A L A G	S C R L W S	•		
241	CCGATACGGA	CGGAGGAGAA GGTCATCT GCCTCCTCTT CCAGTAGA	G GCTATGACAC	GACCGTCGAC	AGGGGTTCTC
81	G Y A S	EEKVIF	R Y C A		
3 <u>0</u> 1 1 <u>0</u> 1	CGGGCATGGG	AGCACAGTCT GGTACTGG TCGTGTCAGA CCATGACC	G GCCGAAGCTC	CCGCCCCAGC	AGCCCATGGC TCGGGTACCG A H G
101	ARTQ				,
361	CGACCCTGCT GCTGGGACGA	GCCAGCCCAC CAGCTATG CGGTCGGGTG GTCGATAC	A CTACACTGGA	AGGAACTACT	AGTCGTGGTA
121	R P C C	Q P T S Y A	D V T F	r D D	QHH
421	TGGCAGCAGC ACCGTCGTCG	TGCCTCAGCT CTCAGCTG ACGGAGTCGA GAGTCGAC	A GCTTGTGGCT	GTGGTGGCTG CACCACCGAC	A T
141	WQQL	P Q L S A A			

Figure 17B

1	ATGGCTGCAG TACCGACGTC				TGTCCTTGCA ACAGGAACGT	
61				= = =	AGCTCTCATC TCGAGAGTAG	
121					ATTCTTGGGG TAAGAACCCC	
181					ATCCTATTCT TAGGATAAGA	
241					TTGTGCCGGC AACACGGCCG	
301					GAGGAGAAGA CTCCTCTTCT	
361 N					CACAGTCTGG GTGTCAGACC	
421 -					CAGCCCACCA GTCGGGTGGT	
481					CCTCAGCTCT GGAGTCGAGA	
541 	TTGTGGCTGT AACACCGACA					
Ø	Figure 18A					

Figure 18A

Figure 18B

4

Murine psp Asat psp Asat psp COS cell lysate Mature PSP (E.coli)

46 kd — 14 Kd | 21 kd 📘 **1** 蛏 9 30 kd —

FIGURE 20A

8ub 6

PSP/NTN (SEQ ID NO:137)

ALAGSCRLWSLTLPVAELGLGYASEEKVIFRYCAGSCPQEARTQHSLVLA 50
RLRGRGRAHGRPCCRPTAYEDEVSFLDVHSRYHTLQELSARECACV 96

FIGURE 20E

NTN/PSP (SEQ ID NO:142)

PGARPCGLRELEVRVSELG/GYTSDETVLFRYCAGACEAAIRIYDLGLRR 50
LRQRRRVRRERARAHPCQQPTSYADVTFLDDQHHWQQLPQLSAAACGCGG 100

Figure 21a

21p Figure

TOH labeled cells in E14 mesencephalic cultures

Figure 22

74

Water

Kidney no RT

Cerebellum

Lung

Brain

Kidney

- Persephin

G ATGGCCGTAG GGAAGTTCCT GCTGGGCTCT CTGCTGCTCC TGTCCCTGCA GCTGGGACAG TACCGGCATC CCTTCAAGGA CGACCCGAGA GACGACGAGG ACAGGGACGT CGACCCTGTC L L L L GGCTGGGGCC CCGATGCCCG TGGGGTTCCC GTGGCCGATG GAGAGTTCTC GTCTGAACAG CCGACCCCGG GGCTACGGGC ACCCCAAGGG CACCGGCTAC CTCTCAAGAG CAGACTTGTC 21 G V P V A D G E F S * * GTGGCAAAGG CTGGAGGAC CTGGCTGGGC ACCCACCGCC CCCTTGCCCG CCTGCGCCGA 121 CACCGTTTCC GACCTCCTG GACCGACCCG TGGGTGGCGG GGGAACGGGC GGACGCGGCT 41 L G T H R P L A R GCCCTGTCTG GTCCATGCCA GCTGTGGAGC CTGACCCTGT CCGTGGCAGA GCTAGGCCTG 181 CGGGACAGAC CAGGTACGGT CGACACCTCG GACTGGGACA GGCACCGTCT CGATCCGGAC 61 ALSG L W S L T L S V A GGCTACGCCT CAGAGGAGAA GGTCATCTTC CGCTACTGCG CCGGCAGCTG CCCCCGTGGT CCGATGCGGA GTCTCCTCTT CCAGTAGAAG GCGATGACGC GGCCGTCGAC GGGGGCACCA 81 V I F R Y C A G S C GCCCGCACCC AGCATGGCCT GGCGCTGGCC CGGCTGCAGG GCCAGGGCCG AGCCCACGGT 301 l G CGGGCGTGGG TCGTACCGGA CCGCGACCGG GCCGACGTCC CGGTCCCGGC TCGGGTGCCA 101 ALA R L Q G QGR GGGCCCTGCT GCCGGCCCAC TCGCTACACC GACGTGGCCT TCCTCGATGA CCGCCACCGC 3*6*1 CCCGGGACGA CGGCCGGGTG AGCGATGTGG CTGCACCGGA AGGAGCTACT GGCGGTGGCG R Y T D V A TGGCAGCGC TGCCCCAGCT CTCGGCGGCT GCCTGCGGCT GTGGTGGCTG A ACCGTCGCCG ACGGGGTCGA GAGCCGCCGA CGGACGCCGA CACCACCGAC T PQL SAA ACGC G G