EDPs

$$\|f\|_{\alpha}^2 = \sum_{\omega} \|\omega\|^{2\alpha} |\hat{f}(\omega)|^2 \leqslant 1$$

Rudin-Osher-Fatemi model:

$$\min_{f} \int |f(x) - y(x)|^2 + \lambda ||\nabla f(x)|| dx$$

Parametrization (explicit)

$$\{\gamma(t) \; ; \; t \in [0,1]\}$$

Normal:
$$n = \frac{\gamma'}{\|\gamma'\|}$$

Curvature: κ

ODE curve evolution $\frac{d\gamma}{dt} = \alpha(\gamma, n, \kappa)n$

Levelset (implicit)

$$\{x \; ; \; \varphi(x) = 0\}$$

$$\frac{\nabla \varphi}{\|\nabla \varphi\|}$$

$$\operatorname{div}\left(\frac{\nabla\varphi}{\|\nabla\varphi\|}\right)$$

PDE on φ

$$\frac{\mathrm{d}\varphi}{\mathrm{d}t} = \alpha \left(\cdot, \frac{\nabla \varphi}{\|\nabla \varphi\|}, \operatorname{div}\left(\frac{\nabla \varphi}{\|\nabla \varphi\|}\right) \right) \|\nabla \varphi\|$$

Mumford-Shah / Chan-Vese evolution:

Gray-Scott Model:

$\frac{\partial u}{\partial t} = D_u \nabla^2 u - uv^2 + F(1 - u),$ $\frac{\partial v}{\partial t} = D_v \nabla^2 v + uv^2 - (F + k)v.$

By A. M. TURING, F.R.S. University of Manchester (Received 9 November 1951—Revised 15 March 1952)

F = 0.033, k = 0.062

F = 0.055, k = 0.063

$$L^2$$
 gradient flow: $\min_f E(f) \longrightarrow \frac{\partial f}{\partial t} = -\nabla E(f)$

Heat equation:
$$\frac{1}{2} \int \|\nabla f(x)\|^2 dx \longrightarrow \frac{\partial f}{\partial t} = \Delta f$$

TV flow:
$$\int \|\nabla f(x)\| dx \longrightarrow \frac{\partial f}{\partial t} = \operatorname{div}\left(\frac{\nabla f}{\|\nabla f\|}\right)$$

>†

Gradient: $\nabla f = (\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_1}) : \mathbb{R}^2 \to \mathbb{R}.$

Divergence: $\operatorname{div}(v) = \frac{\partial v^1}{\partial x_1} + \frac{\partial v^2}{\partial x_2} : \mathbb{R}^2 \to \mathbb{R}$.

$$L^{2}(\mathbb{R}^{2} \to \mathbb{R}) \xrightarrow{\overline{\mathbb{Q}}} L^{2}(\mathbb{R}^{2} \to \mathbb{R}^{2})$$

$$\nabla f = (f_{k_1+1,k_2} - f_k, f_{k_1,k_2+1} - f_k)_k$$

$$\operatorname{div}(v) = v_k^1 - v_{k_1-1,k_2}^1 + v_k^2 - v_{k_1,k_2-1}^2$$

$$\mathbb{R}^{n \times n} \xrightarrow{\square} (\mathbb{R}^{n \times n})^2$$

Adjointness: $\operatorname{div} = -\nabla^*$ $\int_{\mathbb{R}^2} \langle \nabla f(x), v(x) \rangle dx$ $= -\int_{\mathbb{R}^2} f(x) \operatorname{div}(v)(x) dx$

$$\sum_{k} \langle (\nabla f)_{k}, v_{k} \rangle$$
$$= -\sum_{k} f_{k} \operatorname{div}(v)_{k}$$

$$u = v + w$$

$$\begin{cases} \operatorname{div}(v) = 0 \\ \operatorname{curl}(w) = 0 \end{cases}$$