

Cell and Tissue Engineering Non-ideal Mechanics in the Human Body

Modeling non-ideal human tissues

Muscular hydrostats are both solid and fluid

Biological tissues: creep and stress relaxation behaviors

Biological tissues: creep and stress relaxation behaviors

Biological tissues: creep and stress relaxation behaviors

Creep **Force** (N) Time (s) Deformation (µm) Time (s)

Modeling viscoelastic materials with springs and dashpots

Modeling viscoelastic materials with springs and dashpots

Spring Model Dashpot Model Voigt Model Maxwell Model

Deriving differential equations for viscoelastic models

Voight Model

$$F = kx$$

spring

$$F = \eta \frac{\delta x}{\delta t}$$
 dashpot

$$F = F_1 + F_2$$

$$F = kx + \eta \frac{\delta x}{\delta t}$$

Deriving differential equations for viscoelastic models

Maxwell Model

$$F = kx$$

spring

$$F = \eta \frac{\delta x}{\delta t}$$

dashpot

$$x = x_1 + x_2$$

$$x = x_1 + x_2 \qquad \frac{dx}{dt} = \frac{dx_1}{dt} + \frac{dx_2}{dt}$$

$$\frac{dx}{dt} = \frac{dF / dt}{k} + \frac{F}{\eta}$$

Review and rewind

Viscoelastics modeling

