學號:B04901056 系級: 電機三 姓名:張承洋

1.請比較你實作的 generative model、logistic regression 的準確率,何者較佳?

準確度	generative	logistic
training data	0.76064	0.85884
public testing data	0.76523	0.85909
private testing data	0.76231	0.85542

無論是在 training 還是 testing data,logictic model 的表現都優於 generative model, 我想是因為在實作 generative model 時我沒有刻意篩選優秀的 feature。

就這次的 data 而言,generative model 優點在於簡單且快速,logictic model 則是需要去不斷調整參數,用較長時間去訓練,才能得到較高的準確率。

2.請說明你實作的 best model,其訓練方式和準確率為何?

使用 training data 的每一個 feature 及(age,capital_gain,capital_loss,hours_per_week)的 0.5~9 次方(所有資料在 training 前都經過 normalization),使用 logistic regression,learing rate: 1.0, 1600 epochs,正規化 lambda=0.1。

❖ 我嘗試加入各種 feature 儘量使 traning data 的準確度提高,先不考慮 overfitting。

training data	public testing data	private testing data	
0.85884	0.85909	0.85542	

- 3.請實作輸入特徵標準化(feature normalization)並討論其對於你的模型準確率的影響。
- (a) 以我的 logistic regression 來說,若沒有標準化,高次方的 feature 有可能會 overflow,或是各種誤差導致準確率下降。

def divide_max(ipt):
ipt=np.array(ipt,dtype=float)
rec_max=ipt.max(axis=0)
for i in range(ipt.shape[0]):
 for j in range(ipt.shape[1]):
 ipt[i][j]=float(ipt[i][j]/rec_max[j])

執行 200 次 epochs	normalize	without
		normalize
training data	0.8533	0.7657
public testing data	0.8550	0.7651
private testing data	0.8539	0.7671

(b) 以我的 generative model 來說, 反而是沒有標準化準確度比較高

def	normalize(b):
	array=np.array(b.dtype=float)
	row means = np.mean(array, axis=0)
	row std = np.std(array, axis=1)
	<pre>for i in range(array.shape[0]):</pre>
	for j in range(array.shape[1]):
	<pre>if not row_std[i]== 0 :</pre>
	array[i][j] = (array[i][j]- row means[j]) / row std[j]
	return array

	normalize	without normalize
training data	0.7606	0.6322(爆炸)
public testing data	0.7652	0.8236
private testing data	0.7623	0.8252

- ❖ 由(a)(b)可得知, 有沒有標準化沒有絕對的好壞, 可能會有精度問題, 或是使原始資料某些性質不見, 但好處是可以增加訓練的速度。
- 4. 請實作 logistic regression 的正規化(regularization), 並討論其對於你的模型準確率的影響。

theta -= learning_rate *((-1) * add + 2 *lamda*theta)/(tot**0.5)

❖ 將 loss function 加上 x^2 項 , 使 model 參數不會太大

使用 best model 來比較 lambda, 準確度 (執行 200 次 epochs):

lambda	1	0.1	0.01	0
training data	0.8522	0.8533	0.8536	0.8538
public testing data	0.8542	0.8550	0.8548	0.8548
private testing data	0.8532	0.8539	0.8541	0.8542

- ❖ 由上表可知正規化對於我這題的 model 的準確度並沒有幫助,有可能是因為本題 traning data 和 testing data 相似,noise 不多。
- 5.請討論你認為哪個 attribute 對結果影響最大?

我透過加一個. 少一個 feature 的方式來決定要不要選某一個 feature

以 training data 準確度來觀察 (執行 200 次 epochs):

all feature	0.8446
no age	0.8444
no fnlwgt	0.8451
no sex	0.8537
no capital_gain	0.8424
no capital_loss	0.8442
no hours_per_week	0.8453

❖ 對結果影響最大的 feature 為 capital_gain