```
In [1]: import pandas as pd
   import numpy as np
   import os
   import matplotlib.pyplot as plt
   from matplotlib import pyplot
   import seaborn as sns
   from sklearn.decomposition import PCA
   from sklearn.preprocessing import scale
   from statsmodels.tsa.arima_model import ARIMA
   from datetime import datetime
```

In [2]: #insert data from csv df = pd.read_csv('/Users/amrita/Desktop/zillow data.csv')

In [41]: df.head()

Out[41]:

	RegionID	SizeRank	RegionName	RegionType	StateName	1/31/00	2/29/00	3/31/00	4/30/
0	102001	0	United States	Country	NaN	127104.0	127448.0	127809.0	128546
1	394913	1	New York, NY	Msa	NY	223875.0	225213.0	226416.0	22878
2	753899	2	Los Angeles- Long Beach- Anaheim, CA	Msa	CA	231151.0	231956.0	233189.0	23553(
3	394463	3	Chicago, IL	Msa	IL	169017.0	169416.0	169932.0	17096
4	394514	4	Dallas-Fort Worth, TX	Msa	TX	130276.0	130380.0	130466.0	130678

5 rows × 268 columns

In [43]: ndf.head()

Out[43]:

	RegionID	SizeRank	RegionName	RegionType	StateName	Date	Price
0	102001	0	United States	Country	NaN	1/31/00	127104.0
1	394913	1	New York, NY	Msa	NY	1/31/00	223875.0
2	753899	2	Los Angeles-Long Beach- Anaheim, CA	Msa	CA	1/31/00	231151.0
3	394463	3	Chicago, IL	Msa	IL	1/31/00	169017.0
4	394514	4	Dallas-Fort Worth, TX	Msa	TX	1/31/00	130276.0

```
#summary of the datatype
In [44]:
          ndf.dtypes
Out[44]: RegionID
                            int64
          SizeRank
                            int64
          RegionName
                           object
                           object
          RegionType
          StateName
                           object
                           object
          Date
          Price
                          float64
          dtype: object
          #no. of missing values by column
In [45]:
          ndf.isna().sum()
                              0
Out[45]: RegionID
          SizeRank
                              0
          RegionName
                              0
          RegionType
                              0
          StateName
                            263
          Date
          Price
                          48727
          dtype: int64
 In [8]: #Checking for the total count of Region name=United States
          i= ndf[ndf['RegionName']=='United States']
          i.shape
 Out[8]: (263, 7)
In [46]: i.head()
Out[46]:
                RegionID SizeRank RegionName RegionType StateName
                                                                   Date
                                                                           Price
                  102001
                               0 United States
                                                Country
                                                             NaN
                                                                 1/31/00 127104.0
             0
                  102001
                                 United States
                                                                 2/29/00 127448.0
            908
                                                Country
                                                             NaN
                               0 United States
           1816
                  102001
                                                Country
                                                             NaN
                                                                 3/31/00 127809.0
                               0 United States
```

Country

Country

0 United States

NaN

4/30/00 128546.0

NaN 5/31/00 129288.0

2724

3632

102001

102001

```
In [47]: #Dropping all rows with Region Name=United States and creating a new datafr

df_new= ndf[ndf.RegionName != 'United States']
    df_new.head()
```

Out[47]:

	RegionID SizeRank		RegionName	RegionType	StateName	Date	Price
1	394913	1	New York, NY	Msa	NY	1/31/00	223875.0
2	753899	2	Los Angeles-Long Beach- Anaheim, CA	Msa	CA	1/31/00	231151.0
3	394463	3	Chicago, IL	Msa	IL	1/31/00	169017.0
4	394514	4	Dallas-Fort Worth, TX	Msa	TX	1/31/00	130276.0
5	394974	5	Philadelphia, PA	Msa	PA	1/31/00	129615.0

In [69]: df_new.describe()

Out[69]:

	RegionID	SizeRank	Price
count	238541.000000	238541.000000	1.898140e+05
mean	415361.502756	458.604190	1.612216e+05
std	83488.890005	267.525459	1.038787e+05
min	394297.000000	1.000000	2.848100e+04
25%	394548.000000	227.000000	9.925225e+04
50%	394804.000000	455.000000	1.320360e+05
75%	395050.000000	687.000000	1.877395e+05
max	753929.000000	933.000000	1.506129e+06

```
In [78]: df_new.(RegionName=='New York, NY').Date.unique()

File "<ipython-input-78-9002fa9f8b66>", line 1
    df_new.(RegionName=='New York, NY').Date.unique()
```

SyntaxError: invalid syntax

```
In [11]: df_new.shape
```

Out[11]: (238541, 7)

```
In [12]: df_new.dtypes
```

Out[12]: RegionID int64 SizeRank int64 RegionName object RegionType object StateName object Date object Price float64

dtype: object

```
In [48]: #Changing date from object to datetime

df_new['Date'] = pd.to_datetime(df_new['Date'])
df new.head()
```

/Users/amrita/opt/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:3: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

This is separate from the ipykernel package so we can avoid doing imports until

Out[48]:

	RegionID	SizeRank	RegionName	RegionType	StateName	Date	Price
1	394913	1	New York, NY	Msa	NY	2000- 01-31	223875.0
2	753899	2	Los Angeles-Long Beach- Anaheim, CA	Msa	CA	2000- 01-31	231151.0
3	394463	3	Chicago, IL	Msa	IL	2000- 01-31	169017.0
4	394514	4	Dallas-Fort Worth, TX	Msa	TX	2000- 01-31	130276.0
5	394974	5	Philadelphia, PA	Msa	PA	2000- 01-31	129615.0

In [49]: df new.dtypes

Out[49]: RegionID int64 SizeRank int64 RegionName object RegionType object StateName object Date datetime64[ns] Price float64 dtype: object

In [50]: #no. of missing values by column in the new dataset df_new.isna().sum()

Out[50]: RegionID 0 SizeRank 0 RegionName 0 RegionType 0 StateName 0 Date 0 Price 48727 dtype: int64


```
column_name percent_missing
RegionID
              RegionID
                               0.000000
              SizeRank
SizeRank
                               0.00000
RegionName RegionName
                               0.00000
RegionType RegionType
                               0.000000
StateName
             StateName
                               0.000000
                               0.000000
Date
                  Date
Price
                 Price
                              20.427096
```

```
In [52]: #impute missing values using interpolation method
    interpolated = df_new.interpolate(method='linear')
    interpolated.head()
```

Out[52]:

	RegionID	SizeRank	RegionName	RegionType	StateName	Date	Price
1	394913	1	New York, NY	Msa	NY	2000- 01-31	223875.0
2	753899	2	Los Angeles-Long Beach- Anaheim, CA	Msa	CA	2000- 01-31	231151.0
3	394463	3	Chicago, IL	Msa	IL	2000- 01-31	169017.0
4	394514	4	Dallas-Fort Worth, TX	Msa	TX	2000- 01-31	130276.0
5	394974	5	Philadelphia, PA	Msa	PA	2000- 01-31	129615.0

```
In [54]: #no missing values
         interpolated.isna().sum()
Out[54]: RegionID
                        0
         SizeRank
                        0
         RegionName
                        0
         RegionType
                        0
         StateName
                        0
         Date
                        0
         Price
                        0
         dtype: int64
In [55]: #percent missing values by each column
         percentage missing = interpolated.isnull().sum() * 100 / len(interpolated)
         missing value = pd.DataFrame({'column name': interpolated.columns,
                                            'percent missing': percentage missing})
         missing_value.sort_values('percent_missing', inplace=True)
         print(missing value)
                     column name
                                  percent_missing
         RegionID
                        RegionID
                                               0.0
                        SizeRank
                                               0.0
         SizeRank
         RegionName RegionName
                                               0.0
                                               0.0
         RegionType
                     RegionType
         StateName
                                               0.0
                       StateName
         Date
                            Date
                                               0.0
         Price
                           Price
                                               0.0
In [56]: # total unique region names
         interpolated. RegionName. nunique()
Out[56]: 907
In [57]: interpolated['RegionName'].value counts().head(100)
Out[57]: Albemarle, NC
                              263
         Hereford, TX
                              263
         Scottsbluff, NE
                              263
         Red Bluff, CA
                              263
         Indianapolis, IN
                              263
                             . . .
         Fort Morgan, CO
                              263
         Worcester, MA
                              263
         Menomonie, WI
                              263
         Ocean City, NJ
                              263
         Eau Claire, WI
                              263
         Name: RegionName, Length: 100, dtype: int64
```

```
In [66]: #Distribution of price by RegionName
region_price_means = interpolated.groupby("RegionName")[['Price']].mean()
region_price_means.head(90)
```

Out[66]:

Price

131921.124585
194096.368061
134786.818931
80116.889734
133173.357414
90701.484791
189141.785171
106751.771863
147310.996198
184398.741445

90 rows × 1 columns

In [59]: # statistical summary of all the numerical columns interpolated.describe().T

Out[59]:

	count	mean	std	min	25%	50%	75%	ma
RegionID	238541.0	415361.502756	83488.890005	394297.0	394548.0	394804.0	395050.0	753929.
SizeRank	238541.0	458.604190	267.525459	1.0	227.0	455.0	687.0	933.
Price	238541.0	154240.877113	98655.340633	28481.0	95525.0	126544.0	179056.0	1506129.

```
In [60]: interpolated.Price.hist(bins=20)
    plt.xlabel('Price')
    plt.ylabel('Count')
    plt.title('Distribution of Price');
```


In [61]: interpolated['log_base10'] = np.log10(interpolated['Price'])
interpolated.head()

Out[61]:

	RegionID	SizeRank	RegionName	RegionType	StateName	Date	Price	log_base10
1	394913	1	New York, NY	Msa	NY	2000- 01-31	223875.0	5.350006
2	753899	2	Los Angeles-Long Beach-Anaheim, CA	Msa	CA	2000- 01-31	231151.0	5.363896
3	394463	3	Chicago, IL	Msa	IL	2000- 01-31	169017.0	5.227930
4	394514	4	Dallas-Fort Worth, TX	Msa	TX	2000- 01-31	130276.0	5.114864
5	394974	5	Philadelphia, PA	Msa	PA	2000- 01-31	129615.0	5.112655

```
In [62]: #taking natural log to achieve a normal distribution
   interpolated['natural_log'] = np.log(interpolated['Price'])
   interpolated.head()
```

Out[62]:

	RegionID	SizeRank	RegionName	RegionType	StateName	Date	Price	log_base10	natural _.
1	394913	1	New York, NY	Msa	NY	2000- 01-31	223875.0	5.350006	12.318
2	753899	2	Los Angeles- Long Beach- Anaheim, CA	Msa	CA	2000- 01-31	231151.0	5.363896	12.350
3	394463	3	Chicago, IL	Msa	IL	2000- 01-31	169017.0	5.227930	12.037
4	394514	4	Dallas-Fort Worth, TX	Msa	TX	2000- 01-31	130276.0	5.114864	11.777
5	394974	5	Philadelphia, PA	Msa	PA	2000- 01-31	129615.0	5.112655	11.772

```
In [63]: interpolated.natural_log.hist(bins=20)
    plt.xlabel('Price')
    plt.ylabel('Count')
    plt.title('Distribution of Price');
```



```
In [64]: interpolated.drop('log_base10', axis=1, inplace=True)
```

In [65]: interpolated.head()

Out[65]:

	RegionID	SizeRank	RegionName	RegionType	StateName	Date	Price	natural_log
1	394913	1	New York, NY	Msa	NY	2000- 01-31	223875.0	12.318843
2	753899	2	Los Angeles-Long Beach-Anaheim, CA	Msa	CA	2000- 01-31	231151.0	12.350826
3	394463	3	Chicago, IL	Msa	IL	2000- 01-31	169017.0	12.037755
4	394514	4	Dallas-Fort Worth, TX	Msa	TX	2000- 01-31	130276.0	11.777411
5	394974	5	Philadelphia, PA	Msa	PA	2000- 01-31	129615.0	11.772324

```
In [67]: interpolated.shape
```

Out[67]: (238541, 8)

In [68]: interpolated.to_excel('output1.xlsx', engine='xlsxwriter')