QUESTION BANK (STATISTICAL TECHNIQUES)

- Q.1. Compute first four moments of the data 3, 5, 7, 9 about the mean. Also, compute the first four moments about the point 4.
- Q.2. In a certain distribution the first four moments about the point x=4 are -1.5, 17, -30 and 308, Calculate β_1 and β_2 and comment upon the skewness and kurtosis of the distribution.
- **Q.3.** Find the moment generating function of the discrete distribution given by $f(x) = e^{-\lambda} \lambda^x / x!$. Also find the first and second moments about the mean.
- Q.4. Find the least squares approximations of second degree for the discrete data

X	-2	-1	0	1	2
Y	15	1	1	3	19

- **Q.5.** For two random variables, x and y with the same mean, the two regression equations are y = ax + b and $x = \alpha x + \beta$. Show that $\frac{b}{\beta} = \frac{1-a}{1-\alpha}$. Find also the common mean.
- Q.6. Find the coefficient of correlation between x and y from the table of their values

X	1	3	4	6	8	9	11	14
Y	1	2	4	4	5	7	8	9

- Q.7. The following regression equations and variances are obtained from a correlation table:
- 20x 9y 107 = 0,4x 5y + 33 = 0, variance of x=9. Find (i) the mean values x and y (ii) the standard deviation of y.
- **Q.8.** Given the following data:

X_1	3	5	6	8	12	14
X_2	16	10	7	4	3	2
X_3	90	72	54	42	30	12

Compute the coefficient of linear multiple correlation of X_3 on X_1 and X_2 .

Q.9. Fit an exponential curve obeying the gas equation $PV^{\gamma} = k$ for the following data:

V	50	100	150	200
P	135	48	26	17

- Q.10. Find the moment generating function of the normal distribution.
- Q.11. Obtain the moment generating function of the random variable x having probability distribution:

$$F(x) = \begin{cases} x & for \ 0 < x < 1 \\ 2 - x & for \ 1 \le x \le 2 \\ 0 & for \ x \ge 2 \end{cases}$$

Q.12. Calculate the first four central moments about mean of the following data:

Class interval	0-10	10-20	20-30	30-40	40-50
Frequency	10	20	40	20	10

- **Q.13.** Find the moment generating function of the exponential distribution $f(x) = \frac{1}{c}e^{-x/c}$, $0 < x < \infty$, c > 0. Also find its mean and standard deviation.
- **Q.14.** By the method of least squares, fit the curve $y = ax + bx^2$ that best fits the following data:

X	1	2	3	4	5
Y	1.8	5.1	8.9	14.1	19.8

Q.15. Fit a parabolic curve of regression of y on x to the following data:

X	1	1.5	2	2.5	3	3.5	4
Y	1.1	1.3	1.6	2.0	2.7	3.4	4.1

Q.16. Fit a relation $y=ax + \frac{b}{x}$ which satisfies the following data, using method of least squares:

X	1	2	3	4	5	6	7	8
Y	5.4	6.2	8.2	10.3	12.6	14.8	17.2	19.5

- **Q.17.** The two regression equations of the variables x and y are x=19.13-0.87y and y=11.64-0.50x. Find (i) mean of x & y (ii) correlation coefficient between x & y.
- **Q. 18.** Define skewness and kurtosis. Explain their types and also their relation with Karl Pearson's β and γ coefficients.
- Q. 19. Calculate first four moments about mean for the following frequency distributions and comment upon skewness and kurtosis:

Marks		0-10	10-20	20-30	30-40	40-50
No.	of	5	10	40	20	25
students						

- **Q. 20.** In a frequency distribution the mean is 1.5, variance 0.64, is β_2 2.5 and γ_1 is 0.3. Find μ_1 and μ_2 and also the first four moments about origin.
- Q. 21. The first four moments of a distribution about '0' are -0.20, 1.76, -2.36 and 10.88. Find the first four moments about mean.
- **Q. 22.** Fit the curve $y = \frac{c_0}{r} + c_1 \sqrt{x}$ to the following data:

X	0.1	0.2	0.4	0.5	1.0	2.0
Y	21	11	7	6	5	6

Q. 23. The marks secured by recruits in the selection test (X) and in the proficiency test (Y) are given below:

Serial no.:	1	2	3	4	5	6	7	8	9
X:	10	15	12	17	13	16	24	14	22
Y:	30	42	45	46	33	34	40	35	39

Calculate the rank correlation co-efficient.

Q. 24. Find an expression for the angle between two regression lines for two variables x and y. explain its significance when r = 0 and r = +-1.

Q25. The following results were obtained from records of age (x) and systolic blood pressure (y) of a group of 10 men:

	X	Y
Mean	53	142
Variance	130	165

And $\sum (x-\bar{x})(y-\bar{y}) = 1220$

Find the appropriate regression equation and use it to estimate the blood pressure of a man whose age is 45.

Q.25. Fit a second-degree parabola to the following data by Least Square method:

X	1	2	3	4	5
Y	1090	1220	1390	1625	1915

Q.26. For 10 observations on price (x) and supply(y), the following data were obtained (in appropriate units):

 $\sum x=130$, $\sum y=220$, $\sum x^2$

 $\sum x^2 = 2288, \qquad \sum y$

 $\Sigma y^2 = 5506 \text{ and } \Sigma xy = 3467$

Obtain the two lines of regression and estimate the supply when the price is 16 units.

- **Q.27.** Find the expressions for the regression coefficients in linear regression. Also find the relation between regression coefficients and coefficient of co-relation.
- **Q.28.** Define Karl Pearson's coefficient of correlation. How would you interpret the sign and magnitude of correlation coefficient?