NWiMLDS Explore Series II

Data Science & Machine Learning

Lydia Gathoni Maureen Mathenge

Objectives

- Data Scientists vs ML Engineer
- Python Mini Crash Course
- CRISP-DM / ML Workflow
- ML Algorithms
 - Supervised
 - Unsupervised
- Hands On Lab

Python Mini Crash Course

Python Mini Crash Course

- Flow Control.
- Data Structures.
- Functions.
- Access Data

Flow Control

These are codes under different conditions

The basic principle for flow control is, if some conditions happens do sth else otherwise do sth else. 3 main types of flow control

- 1) If....else
- 2) For-loop
- 3) While-loop

If statement;

```
x = 20
if x > 0:
   print("Positive Number")

If...else;

x = 20
if x > 0:
   print("Positive Number")
else:
   print("Negative Number")
```

If...elif...else;

```
x = -20
if x > 0:
  print("Positive Number")
elif x == 0:
  print("zero")
else:
  print("Negative Number")
```

Nested if statements

We can have if...else statement inside another if...else statement

```
grade = 67
if grade >= 65:
    print("Passing grade of:")

if grade >= 90:
    print("A")

elif grade >=80:
    print("B")

elif grade >=70:
    print("C")

elif grade >= 65:
    print("D")

else:
    print("Failing grade")
```

Flow Control

For-loop

A for loop is used to iterate a sequence. It can be used with other conditional statements like if,continue,break,else

Nested loop

```
[54] prof = ["Doc", "Chef", "Data Scientist"]
    names = ["Jane", "John", "Fatuma"]

    for x in prof:
        for y in names:
            print(x, y)

Doc Jane
    Doc John
    Doc Fatuma
    Chef Jane
    Chef John
    Chef Fatuma
    Data Scientist Jane
    Data Scientist John
    Data Scientist Fatuma
```

While-loop

It keeps executing codes as long as it is true. It does not return if it is false

```
i = 1
while i < 6:
    print(i)
    i += 1

If you remove i += 1 you shall get a infinite loop</pre>
```

Data Structures

List

A list is a way to give a single name to a collection of values. It is ordered and changeable and written in square brackets

Example

```
weight = [44,65,78,54,45]

C [44,65,78,54,45]

Adding to the list

weight.append(98)

C [44,65,78,54,45,98]
```

Introducing names

```
['Maureen', 44, 'John', 65, 'Pooh', 78, 'Sam', 54]
```

Sublist for individual representation

```
['Maureen', 44], ['John', 65], ['Pooh', 78], ['Sam', 54]]
```

Tuple

A tuple is a collection which is ordered and unchangeable. They are written with round brackets

Tuples are faster than lists

```
x = ("Maureen", "John", "Sam")
You can convert a tuple to a list
y = list(x)
```

Dictionary

It is a collection which is unordered, changeable and indexed. They are written with curly brackets, and they have keys and values.

```
d = \{ 'a':3, 'b':7, 'c':8 \}
```

Values can take any form of data type and can be duplicated unlike keys which are immutable

Functions

It is a group of related statements that performs a specific task.

Access Data

We can view data from a dataframe using 2 methods:

- 1) Square Brackets
- 2) Advanced Methods: loc and iloc

df = pd.DataFrame({'EmployeeID':

Square brackets

'year':np.random.randint(2000,2020, 20)})

	EmployeeID	skill	age	year
0	42	2	33	2002
1	125	1	30	2016
2	114	2	22	2000
3	42	2	23	2016
4	101	3	26	2002

df[["EmployeeID"]].head()

Em	ployeeID
0	42
1	125
2	114
3	42
4	101

Advanced Methods

loc and iloc - They are used to access rows, columns and both rows and columns at the same time.

Difference

loc - label-based

Iloc - integer position based

loc

df.loc[0:3,"EmployeeID":"year"]

₽	EmployeeID	skill	age	year
0	42	2	33	2002
1	125	1	30	2016
2	114	2	22	2000
3	42	2	23	2016

iloc

df.iloc[0:3,0:3]

₽		EmployeeID	skill	age
	0	42	2	33
	1	125	1	30
	2	114	2	22

CRISP-DM / ML Workflows

Recap: CRISP-DM

CRISP-DM, which stands for Cross-Industry Standard Process for Data Mining, is an industry-proven way to guide your data mining efforts.

- → Business Understanding
- → Data Understanding
- → Data Preparation
- → Modelling
- **→** Evaluation
- → Deployment

ML Workflow

ML Algorithms

	Supervised Learning	Unsupervised Learning	
Definition The machine learns by using labelled data		The machine is trained on unlabelled data without any guidance	
Type of problems	Regression & Classification	Association & Clustering	
Type of data	Labelled data	Unlabelled data	
Training	External supervision	No supervision	
Approach	Map labelled input to known output	Understand patterns and discover output	
Popular algorithms	Linear regression, Logistic regression, Support Vector Machine, KNN, etc	K-means, C-means, etc	

Recap of Supervised ML Algorithms

- → Linear Regression
- → Decision Tree
- → Random Forest
- → Logistic Regression
- → KNN
- → Naive Bayes
- → Support Vector Machine

Unsupervised ML Algorithms

Unsupervised ML algorithms learn hidden patterns within the data structure. The data has no labels and no prior training has been done on the dataset.

Approaches of Unsupervised learning

- → Clustering
- → Association
- → Anomaly Detection
- → Dimensionality Reduction

Clustering

A cluster is therefore a collection of objects which are "similar" between them and are "dissimilar" to the objects belonging to other clusters.

Types of Clustering

- → K-means clustering
- → Hierarchical clustering
- → DBSCAN (Density-Based Spatial Clustering of Applications with Noise) clustering
- → Gaussian Clustering Model

References

- https://machinelearningmastery.com/
- https://towardsdatascience.com/
- Machine Learning Refined Jeremy Watts
- https://heartbeat.fritz.ai/
- Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow -O'Reilley

Hands-On Practice...