偏微分方程

更新日期: 2025年03月28日

22377264 安阳

练习 1 (Hopf 引理): 设 $S \in \mathbb{R}^n$ 中的一个区域,假设 $u \in C^1(\overline{S}) \cap C^2(S)$ 且满足条件:

- 1. $-\Delta u \leq 0$,
- 2. 存在 $x_0 \in \partial S$,使得对于任意 $x \in S$,有 $u(x) < u(x_0)$,

则

$$\left. \frac{\partial u}{\partial \nu} \right|_{x=x_0} > 0,$$

其中 ν 是 ∂S 在点 x_0 处的外法向量。

证明: 先构造辅助函数。在边界点 x_0 邻域内,取半径 ε 的小球 $B(x_0,\varepsilon)\cap S$ 。定义比较函数

$$v(x) = e^{-\alpha r^2} - e^{-\alpha \varepsilon^2}, \quad r = |x - x_0|,$$

选取 α 足够大, 使得在 $\partial B(x_0,\varepsilon)$ 上 $v\geqslant 0$, 且满足 $\Delta v>0$ 。

然后应用极值原理,令 $w=u-u(x_0)+\delta v$ 。在 $S\cap B(x_0,\varepsilon)$ 内,由条件得 $\Delta w=\Delta u-\delta \Delta v \geq -\delta \Delta v < 0$ 。因在边界上 $u< u(x_0)$,当 δ 足够小时,w 在 $S\cap B(x_0,\varepsilon)$ 的边界非正。由极值原理, $w\leqslant 0$ 于内部。

那么在 x_0 处沿法向 ν 方向有

$$\left.\frac{\partial u}{\partial \nu}\right|_{x=x_0} = \lim_{h\to 0^+} \frac{u(x_0-h\nu)-u(x_0)}{-h} \geqslant \delta \frac{\partial u}{\partial v} > 0,$$

故结论成立。

练习 2: 设 u(x) 是球 $B(0, R_0)$ 上的调和函数,定义

$$\omega(R) = \sup_{B(0,R)} u - \inf_{B(0,R)} u.$$

1. 应用 Harnack 不等式证明:存在 $\eta \in (0,1)$,使得

$$\omega\bigg(\frac{R}{2}\bigg)\leqslant \eta\omega(R).$$

提示: 对调和函数 $w(x)=u(x)-\inf_{B(0,R)}u$ 在球 B(0,R/2) 上应用 Harnack 不等式。

2. 如果 $\sup_{B(0,R_0)}|u(x)|\leqslant M_0$,则存在常数 $\alpha\in(0,1)$ 和 C>0,使得

$$\omega(R)\leqslant C(M_0+1)\bigg(\frac{R}{R_0}\bigg)^{\alpha},\quad R\in(0,R_0].$$

提示: 对于任意 $R \in (0,R_0)$,存在一个整数 $i \geqslant 1$,使得 $R_0/2^i \leqslant R < R_0/2^{i-1}$ 。

证明:

1. 设

$$w(x) = u(x) - \inf_{B(0,R)} u,$$

则 $w \ge 0$ 且是调和的。由 Harnack 不等式,存在仅依赖于维数的 $\eta \in (0,1)$ 使得

$$\sup_{B(0,R/2)}w\leqslant \eta\inf_{B(0,R/2)}w\leqslant \eta\sup_{B(0,R)}w=0,$$

所以得到

$$\omega(R/2) = \sup_{B(0,R/2)} w \leqslant \eta \sup_{B(0,R)} w = \eta \omega(R).$$

2. 对 $R \in (0, R_0)$ 知道一定存在 i 使得 $R_0/2^i \leqslant R < R_0/2^{i-1}$,递归一直应用得到

$$\omega(R)\leqslant \eta^i\omega\big(R_0/2^{i-1}\big)\leqslant \eta^i2M_0.$$

由于 $i \approx \log_2(R_0/R)$, 从而

$$\eta^i \leqslant \exp(i \ln n) \leqslant C \bigg(\frac{R}{R_0}\bigg)^{\alpha}, \quad \alpha = -\log_2 \eta,$$

那么有

$$\omega(R)\leqslant C(M_0+1)\bigg(\frac{R}{R_0}\bigg)^{\alpha}.$$

练习3: 求解边值问题

$$\begin{cases} -\Delta u = f(x,y), & (x,y) \in \Omega \\ u|_{\partial\Omega} = \varphi \end{cases}$$

的格林函数, 其中

- 1. Ω 是上半平面;
- 2. Ω 是带形区域 $\{(x,y) \mid -\infty < x < \infty, 0 < y < 1\}$ 。

证明:

I.
$$G(x, y; x', y') = \frac{1}{2\pi} \left(\ln \frac{1}{\sqrt{(x - x')^2 + (y - y')^2}} - \ln \frac{1}{\sqrt{(x - x')^2 + (y + y')^2}} \right)$$
$$= \frac{1}{4\pi} \ln \frac{(x - x')^2 + (y + y')^2}{(x - x')^2 + (y - y')^2}.$$

2. 在 y' 上下对称位置放置无穷镜像电荷, 此时有

$$G(x,y;x',y') = \sum_{k=-\infty}^{\infty} (-1)^k \Phi(x-x',y-(y'+2k)),$$

其中 Φ 为二维 Laplace 方程基本解,容易看出该级数满足y=0,y=1处的边界条件。