

Homework 03

Any Questions:

- --Google!
- --Discuss with peers, post questions on the class Piazza (https://piazza.com/class/j6o5l788o874i))
- --Come to Office Hours on Tuesday 11am to 12 pm in Etcheverry 4176B.

Submission:

Submit on beourses as directed in the assignment instructions.

```
In [1]: # Load required modules
   import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
```

Reading File

1) Read in a CSV file called 'data3.csv' into a dataframe called df.

Data description

- Data source: http://www.fao.org/nr/water/aquastat/data/query/index.html?*) lang=en
- · Data, units:
- GDP, current USD (CPI adjusted)
- NRI, mm/yr
- Population density, inhab/km²
- Total area of the country, 1000 ha = 10km²
- Total Population, unit 1000 inhabitants

2.1) Display the first 10 lines of the dataframe

2.1) Display the column names.

```
In [18]: df = pd.read_csv('data3.csv')
    print(df.head(10))
    print()
    print('column names')
    print(list(df))
```

```
Area Area Id
                                   Variable Name Variable Id
                                                                 Year \
  Argentina
                 9.0
                      Total area of the country
                                                       4100.0
                                                               1962.0
1
  Argentina
                      Total area of the country
                                                       4100.0
                                                               1967.0
                 9.0
2
  Argentina
                                                       4100.0
                 9.0
                      Total area of the country
                                                               1972.0
3
  Argentina
                 9.0
                      Total area of the country
                                                       4100.0
                                                               1977.0
                                                       4100.0
4
  Argentina
                 9.0
                      Total area of the country
                                                               1982.0
5 Argentina
                 9.0
                      Total area of the country
                                                       4100.0
                                                               1987.0
6 Argentina
                      Total area of the country
                                                       4100.0
                                                               1992.0
                 9.0
7 Argentina
                 9.0 Total area of the country
                                                       4100.0
                                                               1997.0
8 Argentina
                      Total area of the country
                                                       4100.0
                                                               2002.0
                 9.0
9 Argentina
                 9.0 Total area of the country
                                                       4100.0
                                                               2007.0
     Value Symbol Other
0
  278040.0
                 Ε
                      NaN
                 Ε
1
  278040.0
                      NaN
2
  278040.0
                 Ε
                     NaN
3 278040.0
                 Ε
                     NaN
4
  278040.0
                 Ε
                     NaN
5
  278040.0
                 Ε
                     NaN
                 Ε
6 278040.0
                     NaN
7
                 Ε
  278040.0
                     NaN
  278040.0
                 Ε
                     NaN
  278040.0
                 Ε
                      NaN
column names
['Area', 'Area Id', 'Variable Name', 'Variable Id', 'Year', 'Value', 'Symbol',
 'Other'l
```

Data Preprocessing

3.1) Create a mask of NAN values (i.e. apply .isnull on the dataframe). Inspect the mask for 'True' values, they denote NANs.

Hint: [You will notice that the last 8 rows and the last column ('Other') have NAN values. You can also use df.tail() to see the last lines.]

3.2) Now, we will try to get rid of the NaN valued rows and columns. Remove the bottom 8 rows from the dataframe. Also remove the column 'Other'.

```
In [19]: mask = df.isnull()
    df = df[:-8]
    df = df.drop(df[['Other']], axis=1)
    df.head(5)
```

Out[19]:

	Area	Area Id	Variable Name	Variable Id	Year	Value	Symbol
0	Argentina	9.0	Total area of the country	4100.0	1962.0	278040.0	E
1	Argentina	9.0	Total area of the country	4100.0	1967.0	278040.0	E
2	Argentina	9.0	Total area of the country	4100.0	1972.0	278040.0	E
3	Argentina	9.0	Total area of the country	4100.0	1977.0	278040.0	E
4	Argentina	9.0	Total area of the country	4100.0	1982.0	278040.0	E

4.1) For our analysis we do not want all the columns in our dataframe. Lets drop all the redundant columns/ features.

Drop columns: Area Id, Variable Id, Symbol. Save the new dataframe as df1.

```
In [23]: df1 = df.drop(df[['Area Id', 'Variable Id', 'Symbol']], axis=1)
    df1.head(5)
```

Out[23]:

	Area	Variable Name	Year	Value
0	Argentina	Total area of the country	1962.0	278040.0
1	Argentina	Total area of the country	1967.0	278040.0
2	Argentina	Total area of the country	1972.0	278040.0
3	Argentina	Total area of the country	1977.0	278040.0
4	Argentina	Total area of the country	1982.0	278040.0

4.2) Display all the unique values in your new dataframe for column: Area, Variable Name, Year.

Note the Countries and the Metrics (ie.recorded variables) represented in your dataset.

Hint: Use .unique() method.

```
In [30]: print('unique area')
    print(df1['Area'].unique())
    print('unique name')
    print(df1['Variable Name'].unique())
    print()
    print('Unique year')
    print(df1['Year'].unique())
```

```
['Argentina' 'Australia' 'Germany' 'Iceland' 'Ireland' 'Sweden'
 'United States of America']
unique name
['Total area of the country' 'Total population' 'Population density'
 'Gross Domestic Product (GDP)' 'National Rainfall Index (NRI)']
Unique year
[ 1962. 1967. 1972. 1977. 1982.
                                   1987. 1992.
                                                1997. 2002.
                                                             2007.
 2012. 2014. 2015.
                     1963. 1970.
                                   1974. 1978.
                                                1984. 1990.
                                                             1964.
 1981. 1985. 1996.
                     2001. 1969.
                                   1973. 1979.
                                                1993.
                                                       1971.
                                                             1975.
 1986. 1991. 1998.
                     2000. 1965.
                                   1983. 1988.
                                                1995.]
```

5) Convert the year column to pandas datetime.

Convert the 'Year' column string values to pandas datetime objects, where only the year is specified.

Hint:

df1['Year'] = pd.to datetime(pd.Series(df1['Year']).astype(int),format='%Y').dt.year

Run df1.tail() to see if you get what you expect

Out[33]:

	Area	Variable Name	Year	Value
387	United States of America	National Rainfall Index (NRI)	1992	1020.0
388	United States of America	National Rainfall Index (NRI)	1996	1005.0
389	United States of America	National Rainfall Index (NRI)	2002	938.7

Extract specific statistics from the preprocessed data:

6) Create a dataframe 'dftemp' to store rows where Area is Iceland.

```
In [34]: dftemp = df1[df1.Area=='Iceland']
    print(dftemp)
```

	Area	Variable Name	Year	Value
166	Iceland	Total area of the country	1962	1.030000e+04
167	Iceland	Total area of the country	1967	1.030000e+04
168	Iceland	Total area of the country	1972	1.030000e+04
169	Iceland	Total area of the country	1977	1.030000e+04
170	Iceland	Total area of the country	1982	1.030000e+04
171	Iceland	Total area of the country	1987	1.030000e+04
172	Iceland	Total area of the country	1992	1.030000e+04
173	Iceland	Total area of the country	1997	1.030000e+04
174	Iceland	Total area of the country	2002	1.030000e+04
175	Iceland	Total area of the country	2007	1.030000e+04
176	Iceland	Total area of the country	2012	1.030000e+04
177	Iceland	Total area of the country	2014	1.030000e+04
178	Iceland	Total population	1962	1.826000e+02
179	Iceland	Total population	1967	1.974000e+02
180	Iceland	Total population	1972	2.099000e+02
181	Iceland	Total population	1977	2.221000e+02
182	Iceland	Total population	1982	2.331000e+02
183	Iceland	Total population	1987	2.469000e+02
184	Iceland	Total population	1992	2.599000e+02
185	Iceland	Total population	1997	2.728000e+02
186	Iceland	Total population	2002	2.869000e+02
187	Iceland	Total population	2002	3.054000e+02
188	Iceland	Total population	2012	3.234000e+02
189	Iceland	Total population	2012	3.294000e+02
190	Iceland			1.773000e+00
190	Iceland	Population density	1962	
		Population density	1967	1.917000e+00
192	Iceland	Population density	1972	2.038000e+00
193	Iceland	Population density	1977	2.156000e+00
194	Iceland	Population density	1982	2.263000e+00
195	Iceland	Population density	1987	2.397000e+00
196	Iceland	Population density	1992	2.523000e+00
197	Iceland	Population density	1997	2.649000e+00
198	Iceland	Population density	2002	2.785000e+00
199	Iceland	Population density	2007	2.965000e+00
200	Iceland	Population density	2012	3.140000e+00
201	Iceland	Population density	2015	3.198000e+00
202	Iceland	Gross Domestic Product (GDP)	1962	2.849165e+08
203	Iceland	Gross Domestic Product (GDP)	1967	6.212260e+08
204	Iceland	Gross Domestic Product (GDP)	1972	8.465069e+08
205	Iceland	Gross Domestic Product (GDP)	1977	2.226539e+09
206	Iceland	Gross Domestic Product (GDP)	1982	3.232804e+09
207	Iceland	Gross Domestic Product (GDP)	1987	5.565384e+09
208	Iceland	Gross Domestic Product (GDP)	1992	7.138788e+09
209	Iceland	Gross Domestic Product (GDP)	1997	7.596126e+09
210	Iceland	Gross Domestic Product (GDP)	2002	9.161798e+09
211	Iceland	Gross Domestic Product (GDP)	2007	2.129384e+10
212	Iceland	Gross Domestic Product (GDP)	2012	1.419452e+10
213	Iceland	Gross Domestic Product (GDP)	2015	1.659849e+10
214	Iceland	National Rainfall Index (NRI)	1967	8.160000e+02
215	Iceland	National Rainfall Index (NRI)	1971	9.632000e+02
216	Iceland	National Rainfall Index (NRI)	1975	1.010000e+03
217	Iceland	National Rainfall Index (NRI)	1981	9.326000e+02

```
218  Iceland National Rainfall Index (NRI) 1986  9.685000e+02
219  Iceland National Rainfall Index (NRI) 1991  1.095000e+03
220  Iceland National Rainfall Index (NRI) 1997  9.932000e+02
221  Iceland National Rainfall Index (NRI) 1998  9.234000e+02
```

7) Print the years when the National Rainfall Index (NRI) was greater than 950 or less than 900 in Iceland. Use the dataframe you created in the previous question 'dftemp'.

US statistics:

- 8) Get all the rows of df1 (preprocessed dataframe) area is United States of America
- 1) Create a new DataFrame called df_usa that only contains values where 'Area' is equal to 'United States of America'. Set the indices to be the 'Year' column (Use .set_index())
- 2) Pivot the DataFrame so that the unique 'Variable Name' entries becomes the column entries. The DataFrame values should be the ones in the the 'Value' column. Do this by running the three lines of code below:

```
df usa=df usa.pivot(columns='Variable Name',values='Value')
```

3) Display df_usa.head(), rename new columns to ['GDP','NRI','PD','Area','Population']

```
In [79]: df_usa = df1[df1.Area == 'United States of America'].set_index('Year')
    df_usa=df_usa.pivot(columns='Variable Name',values='Value')
    df_usa = df_usa.rename(index=str, columns = {'Gross Domestic Product (GDP)':'GDF
    df_usa.head(4)
```

Out[79]:

Variable Name	GDP	NRI	PD	Area	Population
Year					
1962	6.050000e+11	NaN	19.93	962909.0	191861.0
1965	NaN	928.5	NaN	NaN	NaN
1967	8.620000e+11	NaN	21.16	962909.0	203713.0
1969	NaN	952.2	NaN	NaN	NaN

4) Find df_usa.isnull().sum().This gives us the number of NAN values in each column. Replace NAN values by 0, using df_usa=df_usa.fillna(0). Again check df_usa.isnull().sum().'

```
In [80]: df_usa.isnull().sum()
    df_usa_nonNan=df_usa.fillna(0)
    df_usa_nonNan.isnull().sum()
```

Out[80]: Variable Name
GDP 0
NRI 0
PD 0
Area 0
Population 0
dtype: int64

5) Calculate and print all the column averages and the column standard deviations.

```
In [81]: print('I calculate the mean and std of metric with NAN value instead of 0')
metric = df_usa.describe()
metric.loc[('mean','std'),:]
```

I calculate the mean and std of metric with NAN value instead of 0

Out[81]:

Variable Name	GDP	NRI	PD	Area	Population
mean	7.316417e+12	972.025000	26.444167	966331.666667	255729.583333
std	6.256868e+12	35.068861	4.425996	7857.100059	44281.029610

9) Use df_usa:

1: Multiply the Area by 10 (so instead of 1000 ha, the unit becomes 100 ha = 1km²)

Out[82]:

Variable Name	GDP	NRI	PD	Area	Population
Year					
1962	6.050000e+11	NaN	19.93	9629090.0	191861.0
1965	NaN	928.5	NaN	NaN	NaN
1967	8.620000e+11	NaN	21.16	9629090.0	203713.0
1969	NaN	952.2	NaN	NaN	NaN
1972	1.280000e+12	NaN	22.14	9629090.0	213220.0

2: Create a new column in df_us called 'GDP/capita' and populate it with the calculated GDP per capita. Round the results to two decimal points.

Out[90]:

Variable Name	GDP	NRI	PD	Area	Population	GDP/capita	PD2
Year							
1962	6.050000e+11	NaN	19.93	9629090.0	191861.0	3153.324542	0.02
1965	NaN	928.5	NaN	NaN	NaN	NaN	NaN
1967	8.620000e+11	NaN	21.16	9629090.0	203713.0	4231.443256	0.02
1969	NaN	952.2	NaN	NaN	NaN	NaN	NaN
1972	1.280000e+12	NaN	22.14	9629090.0	213220.0	6003.189194	0.02
1974	NaN	1008.0	NaN	NaN	NaN	NaN	NaN
1977	2.090000e+12	NaN	23.17	9629090.0	223091.0	9368.374341	0.02
1981	NaN	949.2	NaN	NaN	NaN	NaN	NaN
1982	3.340000e+12	NaN	24.30	9629090.0	233954.0	14276.310728	0.02
1984	NaN	974.6	NaN	NaN	NaN	NaN	NaN
1987	4.870000e+12	NaN	25.49	9629090.0	245425.0	19843.129266	0.03
1992	6.540000e+12	1020.0	26.78	9629090.0	257908.0	25357.879554	0.03
1996	NaN	1005.0	NaN	NaN	NaN	NaN	NaN
1997	8.610000e+12	NaN	28.34	9629090.0	272883.0	31551.983817	0.03
2002	1.100000e+13	938.7	29.95	9632030.0	288471.0	38132.082601	0.03
2007	1.450000e+13	NaN	31.32	9632030.0	301656.0	48067.997984	0.03
2012	1.620000e+13	NaN	32.02	9831510.0	314799.0	51461.408708	0.03
2014	NaN	NaN	NaN	9831510.0	NaN	NaN	NaN
2015	1.790000e+13	NaN	32.73	NaN	321774.0	55629.106143	NaN

3: Create a new column called 'PD2' (i.e. Population density 2). Calculate the Population density. Note: the units should be inhab/km^2 (see Data description above). Round the reults to two decimal point.

Out[91]:

Variable Name	GDP	NRI	PD	Area	Population	GDP/capita	PD2
Year							
1962	6.050000e+11	NaN	19.93	9629090.0	191861.0	3153.324542	19.93
1965	NaN	928.5	NaN	NaN	NaN	NaN	NaN
1967	8.620000e+11	NaN	21.16	9629090.0	203713.0	4231.443256	21.16
1969	NaN	952.2	NaN	NaN	NaN	NaN	NaN
1972	1.280000e+12	NaN	22.14	9629090.0	213220.0	6003.189194	22.14
1974	NaN	1008.0	NaN	NaN	NaN	NaN	NaN
1977	2.090000e+12	NaN	23.17	9629090.0	223091.0	9368.374341	23.17
1981	NaN	949.2	NaN	NaN	NaN	NaN	NaN
1982	3.340000e+12	NaN	24.30	9629090.0	233954.0	14276.310728	24.30
1984	NaN	974.6	NaN	NaN	NaN	NaN	NaN
1987	4.870000e+12	NaN	25.49	9629090.0	245425.0	19843.129266	25.49
1992	6.540000e+12	1020.0	26.78	9629090.0	257908.0	25357.879554	26.78
1996	NaN	1005.0	NaN	NaN	NaN	NaN	NaN
1997	8.610000e+12	NaN	28.34	9629090.0	272883.0	31551.983817	28.34
2002	1.100000e+13	938.7	29.95	9632030.0	288471.0	38132.082601	29.95
2007	1.450000e+13	NaN	31.32	9632030.0	301656.0	48067.997984	31.32
2012	1.620000e+13	NaN	32.02	9831510.0	314799.0	51461.408708	32.02
2014	NaN	NaN	NaN	9831510.0	NaN	NaN	NaN
2015	1.790000e+13	NaN	32.73	NaN	321774.0	55629.106143	NaN

4: Find the maximum value and minimum value of the 'NRI' column in the US (using pandas methods). What years do the min and max values occur?

```
In [117]: print('year maximum NRI is')
    print(df_usa['NRI'].ix[df_usa[['NRI']].idxmax()])
    print()
    print('year minimum NRI is')
    print(df_usa['NRI'].ix[df_usa[['NRI']].idxmin()])

year maximum NRI is
    Year
    1992    1020.0
    Name: NRI, dtype: float64

year minimum NRI is
```

Now, lets read another CSV file.

1965 928.5 Name: NRI, dtype: float64

Year 1965

See https://www.quantshare.com/sa-43-10-ways-to-download-historical-stock-quotes-data-for-free (https://www.quantshare.com/sa-43-10-ways-to-download-historical-stock-quotes-data-for-free)

10 a) Show a 3 x 3 correlation matrix for Nike, Apple, and Disney stock prices for the month of July, 2017

```
In [119]: dfa = pd.read csv('https://www.google.com/finance/historical?output=csv&q=aapl')
          dfn = pd.read csv('https://www.google.com/finance/historical?output=csv&q=nke')
          dfd = pd.read_csv('https://www.google.com/finance/historical?output=csv&q=dis')
          dfa = dfa.rename(columns = {'Close':'AAPL'})
In [133]:
          dfd = dfd.rename(columns = {'Close':'DIS'})
          dfn = dfn.rename(columns = {'Close':'NKE'})
          df full = dfa[['Date', 'AAPL']].merge(dfd[['Date', 'DIS']])
          df_full = df_full.merge(dfn[['Date','NKE']])
          corrl = df_full[32:52].corr()
          print(corrl)
                    AAPL
                               DIS
                                         NKE
          AAPL 1.000000 0.524912
                                    0.417947
          DIS
                0.524912 1.000000
                                    0.459045
```

10b) Show the same correlation matrix but over different time periods,

1.000000

i) the last 20 days ii) the last 80 days

0.459045

0.417947

NKE

```
In [134]: print('corr the last 20 days')
    print(df_full[:20].corr())
    print()
    print('corr the last 80 days')
    print(df_full[:80].corr())
```

```
corr the last 20 days
                     DIS
                              NKE
          AAPL
AAPL
     1.000000 0.237467 -0.547436
DIS
      0.237467
               1.000000
                          0.240004
NKE -0.547436 0.240004
                          1.000000
corr the last 80 days
          AAPL
                     DIS
                              NKE
AAPL 1.000000 -0.507881 -0.078793
    -0.507881
DIS
              1.000000
                          0.272226
NKE
    -0.078793 0.272226 1.000000
```

11) Change the code so that it accepts a list of any stock symbols, ie ['NKE', 'APPL', 'DIS', ...] and creates a correlation matrix for the time period of the past 100 days

```
In [135]: # Insert List of companies here. Should be >=2 companies
l = ['AAPL', 'NKE', 'DIS', 'GOOG']
df1 = pd.read_csv('https://www.google.com/finance/historical?output=csv&q='+1[0]
df2 = pd.read_csv('https://www.google.com/finance/historical?output=csv&q='+1[1]
df1 = df1.rename(columns = {'Close':1[0]})
df2 = df2.rename(columns = {'Close':1[1]})

dff = df1[['Date',1[0]]].merge(df2[['Date',1[1]]])

for n in l[2:]:
    dfn = pd.read_csv('https://www.google.com/finance/historical?output=csv&q='+
    dfn = dfn.rename(columns = {'Close':n})
    dff = dff.merge(dfn[['Date', n]])

corr = dff[:100].corr()
print(corr)
```

```
AAPL NKE DIS GOOG
AAPL 1.000000 -0.068436 -0.529913 0.028501
NKE -0.068436 1.000000 0.106217 -0.201377
DIS -0.529913 0.106217 1.000000 -0.091609
GOOG 0.028501 -0.201377 -0.091609 1.000000
```