München, 25.10.2018

Prof. Dr. Peer Kröger Michael Fromm, Florian Richter

Einführung in die Programmierung WS 2018/19

Übungsblatt 1: Mengen, Boolesche Algebra

Besprechung: 29.10.2018 - 02.11.2018

Hinweise zur Abgabe:

Sammeln Sie die Lösungen zu diesem Übungsblatt (also mengen1.txt, mengen2.txt und relationen.txt) in einem zip-Archiv loesung01.zip. Dieses zip-Archiv können Sie schließlich unter https://uniworx.ifi.lmu.de/abgeben.

Wichtig: Achten Sie bitte darauf, dass Ihre Lösungsdateien die korrekten, d. h. die in der Angabe geforderten Namen haben, sonst kann Ihre Lösung nicht der richtigen Aufgabe zugeordnet werden. Java-Dateien, die nicht fehlerfrei kompilierbar sind, werden im Allgemeinen nicht korrigiert.

Aufgabe 1-1 *Mengenlehre*

In der Vorlesung haben Sie das Mengenkonzept kennengelernt. Beantworten Sie folgende Fragen zu mathematischen Mengen:

- (a) Geben Sie die Menge aller Zweierpotenzen zwischen 2 und 100 sowohl in *extensionaler* als auch in *intensionaler* Darstellung an.
- (b) Ist eine extensionale Aufzählung der Elemente der folgenden intensional definierten Menge möglich? Wenn Ja, geben Sie diese an. Wenn nein, begründen Sie, warum.

$$M_i = \{5^x | x \in \mathbb{Z} \land 1 \le 5^x \le 100\}$$

- (c) Für welche der folgenden Mengen gilt Äquivalenz, d.h. $M_i=M_j$?
 - $M_1 = \{1, 7, 9, 15, 16\}$
 - $M_2 = \{1, 7, 16, 15, 7\}$
 - $M_3 = \{1, 7, 9, 15, 16, 7\}$
 - $M_4 = \{16, 7, 15, 9, 1\}$
- (d) Berechnen Sie $A \cup B$, $A \cap B$, $A \setminus B$ für $A = \{1, 6, 17, 63, 82\}$ und $B = \{3, 6, 17, 62, 82\}$
- (e) Bestimmen Sie die extensionale Darstellung von:
 - (i) $M_1 = \{n \in \mathbb{Z} | |n^3| \le |n^2| \}$
 - (ii) $M_2 = \{X | X \subseteq \{1, 2, 3, 4\} \land |X| = 3\}$
 - (iii) $M_3 = \{(x, y) \in \mathbb{Z}^2 | x^2 + y^2 \le 1 \}$

(f) Bestimmen Sie die intensionale Darstellung von:

(i)
$$M_4 = \{1, 3, 5, 7, 9\}$$

(ii)
$$M_5 = \{1, 3, 9, 27, 81\}$$

(iii)
$$M_6 = \{1, 2, \frac{1}{2}\}$$

Geben Sie die Lösung zu dieser Aufgabe in einer Datei mengen1.txt ab.

Aufgabe 1-2 *Operationen auf Mengen*

Betrachten wir die Mengen $M_1 = \{a\}, M_2 = \{A, B, C, D\}$ und $M_3 = \{1, 2\}$.

Geben Sie die Elemente der Lösungsmengen zu den folgenden Definitionen extensional an, d.h. zählen Sie die jeweiligen Elemente explizit auf.

- Das kartesische Produkt $M_1 \times M_2 \times M_3$
- Die Potenzmenge $\wp(M_3)$
- Eine 2-stellige Relation zwischen M_1 und M_2 , die eine Funktion ist. (Eine mögliche Lösungsmenge genügt)
- Eine 2-stellige Relation zwischen M_3 und M_2 , die keine Funktion ist. (Eine mögliche Lösungsmenge genügt)
- Eine totale Funktion von M₂ nach M₃.
 (Eine mögliche Lösungsmenge genügt)

Geben Sie die Lösung zu dieser Aufgabe in einer Datei mengen2.txt ab.

Aufgabe 1-3 Relationen

Im folgenden seien $M, N \subseteq \mathbb{N}$ beliebige Mengen von natürlichen Zahlen. Die in Kapitel 3.1 eingeführten Beziehungen zwischen Mengen lassen sich auch als Relationen auffassen.

Bezeichnung	Notation	Bedeutung
M ist Teilmenge von N	$M \subseteq N$	aus $a \in M$ folgt $a \in N$
M ist echte Teilmenge von N	$M \subset N$	es gilt $M \subseteq N$ und $M \neq N$
M und N sind disjunkt	$M \cap N = \emptyset$	M und N haben keine gemeinsamen Elemente
M und N sind identisch	$M \equiv N$	es gilt $M \subseteq N$ und $N \subseteq M$

(a) Geben Sie jeweils die Wertebereiche dieser Relationen an!

Verwenden Sie für diese Aufgabe die Datei relationen.txt, in der Sie Ihre Antworten eintragen können.

- (b) Welche dieser Relationen sind
 - reflexiv?
 - symmetrisch?
 - antisymmetrisch?
 - transitiv?
 - alternativ?

Ergänzen Sie Ihre Lösung in der Datei relationen.txt entsprechend.