Can Large Language Models *Transform* Computational Social Science?

Caleb Ziems^{†*}, William Held^{♦*}, Omar Shaikh^{†*}, Jiaao Chen^{♦*}, Zhehao Zhang^{‡*}, Diyi Yang[†]

* All heavily contributed to the implementation of this work

RQ: Are LLMs useful tools in the Computational Social Scientist's toolkit?

(Supervised)

Text Classification

RQ: Are LLMs useful tools in the Computational Social Scientist's toolkit?

(Supervised)

Text Classification

(Unsupervised)

Text Clustering

RQ: Are LLMs useful tools in the Computational Social Scientist's toolkit?

- 1. Viability
- Model-Selection
- Domain-Utility
- 4. Functionality

- 1. Viability
- 2. Model-Selection
- Domain-Utility
- 4. Functionality

- 1. Viability
- 2. Model-Selection
- 3. **Domain-Utility**
- 4. Functionality

- 1. Viability
- 2. Model-Selection
- 3. **Domain-Utility**
- 4. Functionality

politeness recognition		Stanford Politeness Corpus (Danescu-Niculescu-Mizil et al., 2013)
humor recognition	Psychology —	r/Jokes + Pun of the Day (Weller and Seppi 2019)
emotion recognition		CARER (Saravia et al. 2018)
empathy classification		EPITOME (Sharma et al., 2020)
stance detection	Political Science —	SemEval-2016 Stance Dataset (Mohammad et al., 2016)
ideology detection		Ideological Books Corpus (Gross et al., 2013)
agent framing	Literature —	Article Bias Corpus (Baly et al. 2020)
relationship dynamics		WikiEvents (Li et al., 2021)
event extraction	History $igspace$	Hippocorpus (Sap et al., 2020)
power relations identification	Sociology —	Wikipedia Talk Pages (Danescu-Niculescu-Mizil et al. 2012)
social role detection		CMU Movie Corpus (Bamman et al. 2013)
dialect feature identification	Linguistics $lacksquare$	Indian English Minimal Pairs (Demszky et al. 2019)

RQ1: Viability. Can LLMs augment the human annotation pipeline?

RQ1: Viability. Can LLMs augment the human annotation pipeline?

→ Finding: LLMs can make annotation more efficient but we still need humans in the loop

RQ1: Viability. Can LLMs augment the human annotation pipeline?

→ Finding: LLMs can make annotation more efficient but we still need humans in the loop

RQ1: Viability. Can LLMs augment the human annotation pipeline?

→ Finding: LLMs can make annotation more efficient but we still need humans in the loop

RQ1: Viability. Can LLMs augment the human annotation pipeline?

→ Finding: LLMs can make annotation more efficient but we still need humans in the loop

RQ1: Viability. Can LLMs augment the human annotation pipeline?

→ Finding: LLMs can make annotation more efficient but we still need humans in the loop

RQ2: Model-Selection.

RQ2: Model-Selection.

RQ2: Model-Selection.

RQ2: Model-Selection.

How does model size, architecture and pretraining affect downstream performance on CSS tasks?

→ Findings: Performance scales with model size

RQ2: Model-Selection.

How does model size, architecture and pretraining affect downstream performance on CSS tasks?

→ Findings: Performance scales with model size

RQ2: Model-Selection.

How does model size, architecture and pretraining affect downstream performance on CSS tasks?

→ Findings: Performance scales with model size

Recommendation:

What LLM to use?

Recommendation:

Recommendation:

RQ3: Domain-Utility. Are LLMs better adapted for some subfields than others?

RQ3: Domain-Utility. Are LLMs better adapted for some subfields than others?

→ Findings: Performance is not tied to academic discipline

RQ3: Domain-Utility. Are LLMs better adapted for some subfields than others?

→ Findings: Performance
 is not tied to
 academic
 discipline
 but rather by the
 complexity of the
 input

Recommendations:

- Validate on a small sample
- Weigh benefits with risks
- Move beyond Western studies

RQ4: High-Quality Generation Results

RQ4: Functionality. Are prompted LLMs useful for generatively implementing theories and explaining social scientific constructs with text?

```
emotion-specific summarization
```

CovidET (Zhan et al., 2022)

figurative language explanation

FLUTE (Chakrabarty et al., 2022)

implied misinformation explanation

Misinfo Reaction Frames (Gabriel et al., 2017)

hate speech explanation

Social Bias Inference Corpus (Sap et al. 2020)

positive reframing

Positive Psychology Frames (Ziems et al. 2022)

RQ4: High-Quality Generation Results

RQ4: Functionality. Are prompted LLMs useful for generatively implementing theories and explaining social scientific constructs with text?

```
emotion-specific summarization
   CovidET (Zhan et al., 2022)
figurative language explanation
   FLUTE (Chakrabarty et al., 2022)
implied misinformation explanation
   Misinfo Reaction Frames (Gabriel et al., 2017)
hate speech explanation
   Social Bias Inference Corpus (Sap et al. 2020)
positive reframing
   Positive Psychology Frames (Ziems et al. 2022)
```

RQ4: High-Quality Generation Results

RQ4: Functionality. Are prompted LLMs useful for generatively implementing theories and explaining social scientific constructs with text?

```
emotion-specific summarization
```

CovidET (Zhan et al., 2022)

figurative language explanation

FLUTE (Chakrabarty et al., 2022)

implied misinformation explanation

Misinfo Reaction Frames (Gabriel et al., 2017)

hate speech explanation

Social Bias Inference Corpus (Sap et al. 2020)

positive reframing

Positive Psychology Frames (Ziems et al. 2022)

RQ4: Functionality. Are prompted LLMs useful for generatively implementing theories and explaining social scientific constructs with text?

```
emotion-specific summarization
```

CovidET (Zhan et al., 2022)

figurative language explanation

FLUTE (Chakrabarty et al., 2022)

implied misinformation explanation

Misinfo Reaction Frames (Gabriel et al., 2017)

hate speech explanation

Social Bias Inference Corpus (Sap et al. 2020)

positive reframing

Positive Psychology Frames (Ziems et al. 2022)

RQ4: Functionality. Are prompted LLMs useful for generatively implementing theories and explaining social scientific constructs with text?

```
emotion-specific summarization
```

CovidET (Zhan et al., 2022)

figurative language explanation

FLUTE (Chakrabarty et al., 2022)

implied misinformation explanation

Misinfo Reaction Frames (Gabriel et al., 2017)

hate speech explanation

Social Bias Inference Corpus (Sap et al. 2020)

positive reframing

Positive Psychology Frames (Ziems et al. 2022)

RQ4: Functionality. Are prompted LLMs useful for generatively implementing theories and explaining social scientific constructs with text?

```
emotion-specific summarization
```

CovidET (Zhan et al., 2022)

figurative language explanation

FLUTE (Chakrabarty et al., 2022)

implied misinformation explanation

Misinfo Reaction Frames (Gabriel et al., 2017)

hate speech explanation

Social Bias Inference Corpus (Sap et al. 2020)

positive reframing

Positive Psychology Frames (Ziems et al. 2022)

RQ4: Functionality. Are prompted LLMs useful for generatively implementing theories and explaining social scientific constructs with text?

→ Findings: zero-shot GPT-4 produces helpful and informative generations in all five evaluation tasks

RQ4: Functionality. Are prompted LLMs useful for generatively implementing theories and explaining social scientific constructs with text?

→ Findings: zero-shot GPT-4 produces helpful and informative generations in all five evaluation tasks

Task	COVID Aspect	Misinformation	Figurative	Hate Speech	Positive
	Summarization	Explanation	Language	Explanation	Reframing
Expert	CDC Comm.	Public Policy	Grammarly	Journalism	Psychology
	Specialist	Grad Student	Writing Expert	Degree	Degree

RQ4: Functionality.

→ Findings: zero-shot GPT-4 beats reference levels of:

f: f Faithfulness

Task	COVID Aspect	Misinformation	Figurative	Hate Speech	Positive
	Summarization	Explanation	Language	Explanation	Reframing
Expert	CDC Comm.	Public Policy	Grammarly	Journalism	Psychology
	Specialist	Grad Student	Writing Expert	Degree	Degree

RQ4: Functionality.

→ Findings: zero-shot GPT-4 beats reference levels of:

Faithfulness

Relevance

Task	COVID Aspect	Misinformation	Figurative	Hate Speech	Positive
	Summarization	Explanation	Language	Explanation	Reframing
Expert	CDC Comm.	Public Policy	Grammarly	Journalism	Psychology
	Specialist	Grad Student	Writing Expert	Degree	Degree

RQ4: Functionality.

→ Findings: zero-shot GPT-4 beats reference levels of:

Faithfulness
Relevance
Coherence

Positive COVID Aspect Figurative Hate Speech Misinformation Task **Summarization Explanation** Reframing **Explanation** Language CDC Comm. **Public Policy Grammarly Journalism Psychology Expert Grad Student** Writing Expert **Specialist** Degree **Degree**

RQ4: Functionality.

→ Findings: zero-shot GPT-4 beats
reference levels of:

reference levels of:

Faithfulness
Relevance
Coherence

Fluency

Task	COVID Aspect	Misinformation	Figurative	Hate Speech	Positive
	Summarization	Explanation	Language	Explanation	Reframing
Expert	CDC Comm.	Public Policy	Grammarly	Journalism	Psychology
	Specialist	Grad Student	Writing Expert	Degree	Degree

Discussion

CSS Challenges for LLMs:

- 1. Subtle expert taxonomies
- 2. Size of the target label space
- 3. Structural parsing
- 4. Temporal grounding

Discussion

Recommendations:

- 1. Integrate LLMs in the loop to transform large-scale data labeling
- 2. Consider open-source LLMs for classification
- 3. Reinvest in expert annotation

Can Large Language Models *Transform* Computational Social Science?

Caleb Ziems^{†*}, William Held^{♦*}, Omar Shaikh^{†*}, Jiaao Chen^{♦*}, Zhehao Zhang^{‡*}, Diyi Yang[†]

* All heavily contributed to the implementation of this work

RQ1: Viability. Can LLMs augment the human annotation pipeline?

White House Ousts Top Climate Change Official

Which of the following describes the above news headline?

A: Misinformation

B: Trustworthy

RQ1: Viability. Can LLMs augment the human annotation pipeline?

White House Ousts Top Climate Change Official

Which of the following describes the above news headline?

A: Misinformation

B: Trustworthy

RQ1: Viability. Can LLMs augment the human annotation pipeline?

White House Ousts Top Climate Change Official

Which of the following describes the above news headline?

A: Misinformation ←

B: Trustworthy ←

RQ1: Viability. Can LLMs augment the human annotation pipeline?

White House Ousts Top Climate Change Official

Which of the following describes the above news headline?

A: Misinformation

B: Trustworthy