

Description

The HSM6115 is the high cell density trenched P-ch MOSFETs, which provide excellent RDSON and gate charge for most of the synchronous buck converter applications.

The HSM6115 meet the RoHS and Green Product requirement, 100% EAS guaranteed with full function reliability approved.

Product Summary

V _{DS}	-60	V
R _{DS(ON),max}	25	mΩ
I _D	-11	Α

- 100% EAS Guaranteed
- Green Device Available
- Super Low Gate Charge
- Excellent CdV/dt effect decline
- Advanced high cell density Trench technology

SOP8 Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter Rating		Units
V _{DS}	Drain-Source Voltage	-60	V
V_{GS}	Gate-Source Voltage	±20	V
I _D @T _C =25°C	Continuous Drain Current, -V _{GS} @ -10V ¹	-11	Α
I _D @T _C =100°C	Continuous Drain Current, -V _{GS} @ -10V ¹	-8.5	Α
I _{DM}	Pulsed Drain Current ²	-22	Α
EAS	Single Pulse Avalanche Energy ³	113	mJ
I _{AS}	Avalanche Current	47.6	Α
P _D @T _C =25°C	Total Power Dissipation ⁴	5.2	W
T _{STG}	Storage Temperature Range	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	°C

Thermal Data

Symbol	Parameter	Parameter Typ. Max.		Unit
$R_{\theta JA}$	Thermal Resistance Junction-Ambient ¹		85	°C/W
R _{0JC}	Thermal Resistance Junction-Case ¹		24	°C/W

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =-250uA	-60			V	
$\triangle BV_{DSS}/\triangle T_{J}$	BV _{DSS} Temperature Coefficient	Reference to 25°C , I _D =-1mA		-0.035		V/°C	
В	Static Drain-Source On-Resistance ²	V _{GS} =-10V , I _D =-10A			25	mΩ	
R _{DS(ON)}	Static Drain-Source On-Resistance	V_{GS} =-4.5 V , I_D =-8 A			33		
$V_{GS(th)}$	Gate Threshold Voltage	V _{GS} =V _{DS} . In =-250uA	-1.0		-2.5	V	
$\triangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	VGS-VDS , ID250UA		4.28		mV/°C	
	Drain Source Leakage Current	V_{DS} =-48V , V_{GS} =0V , T_J =25 $^{\circ}$ C			1	- uA	
I _{DSS}	Drain-Source Leakage Current	V_{DS} =-48V , V_{GS} =0V , T_J =55 $^{\circ}$ C			5		
I _{GSS}	Gate-Source Leakage Current	$V_{GS}=\pm 20V$, $V_{DS}=0V$			±100	nA	
gfs	Forward Transconductance	V _{DS} =-10V , I _D =-18A		23		S	
R_g	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		7		Ω	
Qg	Total Gate Charge (-4.5V)			25			
Q_gs	Gate-Source Charge	V_{DS} =-20V , V_{GS} =-4.5V , I_{D} =-10A		6.7		nC	
Q_gd	Gate-Drain Charge			5.5			
$T_{d(on)}$	Turn-On Delay Time			38			
Tr	Rise Time	V_{DD} =-15V , V_{GS} =-10V , R_{G} =3.3 Ω ,		23.6		no	
$T_{d(off)}$	Turn-Off Delay Time	I _D =-1A		100		ns	
T _f	Fall Time			6.8			
C _{iss}	Input Capacitance			3635			
C _{oss}	Output Capacitance	V _{DS} =-15V , V _{GS} =0V , f=1MHz		224		pF	
C _{rss}	Reverse Transfer Capacitance			141			

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current ^{1,5}	V _G =V _D =0V , Force Current			-11	Α
I _{SM}	Pulsed Source Current ^{2,5}	V _G -V _D -UV , Force Current			-22	Α
V_{SD}	Diode Forward Voltage ²	V _{GS} =0V , I _S =-1A , T _J =25°C	1		-1	V

Note:

^{1.}The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.

^{2.}The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%

^{3.} The EAS data shows Max. rating . The test condition is V_{DD} =-25V, V_{GS} =-10V, L=0.1mH, I_{AS} =-47.6A

^{4.}The power dissipation is limited by 150 $^{\circ}\text{C}\,$ junction temperature

^{5.} The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

HSM6115

Typical Characteristics

Fig.1 Typical Output Characteristics

Fig.3 Forward Characteristics Of Reverse

Fig.5 Normalized $V_{GS(th)}$ v.s T_J

P-Ch 60V Fast Switching MOSFETs

Fig.2 On-Resistance v.s Gate-Source

Fig.4 Gate-Charge Characteristics

Fig.6 Normalized R_{DSON} v.s T_J

Fig.7 Capacitance

Fig.8 Safe Operating Area

Fig.9 Normalized Maximum Transient Thermal Impedance

Fig.11 Unclamped Inductive Waveform

Ordering Information

Part Number	Package code	Packaging
HSM6115	SOP-8	2500/Tape&Reel

Symbol	Dimensions In Millimeters		Dimensions In Inches	
Symbol	Min.	Max.	Min.	Max.
Α	1.350	1.750	0.053	0.069
A1	0.100	0.250	0.004	0.010
A2	1.350	1.550	0.053	0.061
b	0.330	0.510	0.013	0.020
С	0.170	0.250	0.007	0.010
D	4.800	5.000	0.189	0.197
е	1.270 (BSC)		0.050 (BSC)	
E	5.800	6.200	0.228	0.244
E1	3.800	4.000	0.150	0.157
L	0.400	1.270	0.016	0.050
θ	0°	8°	0°	8°