Christopher John Frederick Cameron, PhD

- ¹ Department of Molecular Biophysics and Biochemistry, Yale University
- ² Department of Radiology and Biomedical Imaging, Yale University

As a computational biologist, I develop novel statistical, machine learning, and bioinformatics approaches to emerging molecular biology technologies. My postdoctoral research focuses on cryogenic Electron Microscopy (cryo-EM) image processing, specifically addressing the modeling and integration of prior information. During my PhD, I implemented analyses of Chromosome Conformation Capture (3C) and Chromatin ImmunoPrecipitation (ChIP) data that provided insight into the regulation of genomes through the organization of chromatin's higher-order structures.

Keywords: bioinformatics, AI specialist, 4D regulatory genomics, structural biology

Contact information

christopher [dot] cameron [at] yale [dot] edu https://ccameron.github.io/

Education

2019-Now	Postdoctoral Researcher
	Yale University, New Haven, USA
	Advisors: Mark Gerstein, Hemant Tagare and Yong Xiong
2013 – 19	PhD in Computer Science, concentration in Bioinformatics (October 2019)
	McGill University, Montréal, CAN
	Thesis: High-resolution computational analysis of chromatin architecture and function
	Advisors: Mathieu Blanchette and Josée Dostie
2012 – 13	MSc in Bioinformatics (February 2014)
	University of Guelph, Guelph, CAN
	Thesis: Tissue-to-plasma partition coefficient prediction by a multi-channel restricted
	Boltzmann machine
	Advisors: Andrea Edginton, Ronald Johnson and Stefan Kremer
2006-11	BSc in Biomedical Toxicology, minor in Computer Science (February 2012)
	University of Guelph, Guelph, CAN
	Thesis: Molecular graph neural networks for toxicology
	Advisor: Stefan Kremer

Positions held

2019-Now	Postdoctoral Associate
	Department of Molecular Biophysics and Biochemistry, Yale University
2021 – Now	Special Graduate Faculty
	School of Computer Science, University of Guelph
2013 – 19	Graduate Research Assistant
	School of Computer Science, McGill University
2017	Course Lecturer
	School of Computer Science, McGill University
2013 – 17	Teaching Assistant
	School of Computer Science, McGill University
2012 - 13	Graduate Service Assistant
	School of Computer Science, University of Guelph
2008 – 13	Research Assistant
	School of Computer Science, University of Guelph

Journal publications

† co-first or -second authors

- 12. Leng J, <u>Cameron CJF</u>, Oh S, Khurana E, Noonan JP and Gerstein MB. **LESSeq: local event-based analysis of alternative splicing using RNA-Seq data**. *BioRxiv*, *in preparation*. DOI:10.1101/841494
- 11. Prost JA[†], Cameron CJF[†] and Blanchette M. SACSANN: identifying sequence-based determinants of chromosomal compartments. *BioRxiv*, in preparation. DOI:10.1101/2020.10.06.328039
- 10. Rozowsky J, Drenkow J, Yang YT, [and 96 others, including <u>Cameron CJF</u>]. **Multi-tissue integrative** analysis of personal epigenomes. *In submission at Science*. DOI:10.1101/2021.04.26.441442
- 9. Amaya C, <u>Cameron CJF</u>[†], Devarkar SC[†], Seager SJH, Gerstein MB, Xiong Y and Schlieker C (2021) **Nodal modulator (NOMO) is required to sustain endoplasmic reticulum morphology**. *JBC*. DOI:10.1016/j.jbc.2021.100937
- 8. Ramilowski J, Yip CW, Agrawal S, [and 115 others, including <u>Cameron CJF</u>] (2020) Functional Annotation of Human Long Non-Coding RNAs via Molecular Phenotyping. Genome Res. DOI:10.1101/gr.254219.119
- 7. Cameron CJF, Wang XQD, Dostie J and Blanchette M (2020) LAMPS: an analysis pipeline for sequence-specific ligation-mediated amplification reads. *BMC Res Notes*, 13:273. DOI:10.1186/s13104-020-05106-1
- Bonetti A, Agostini F, Suzuki AM, [and 26 others, including <u>Cameron CJF</u>] (2020) RADICL-seq identifies general and cell type-specific principles of genome-wide RNA-chromatin interactions. Nat Commun, 11:1018. DOI:10.1038/s41467-020-14337-6
- 5. <u>Cameron CJF</u>, Dostie J and Blanchette M (2020) **HIFI: estimating DNA-DNA interaction frequency** from Hi-C data at restriction-fragment resolution. *Genome Biol*, **21**(1):11. DOI:10.1186/s13059-019-1913-v
- 4. Wang XQD[†], Cameron CJF[†], Paquette D, Segal D, Warsaba R, Blanchette M and Dostie J (2019) **2C-ChIP:** measuring chromatin immunoprecipitation signal from defined genomic regions with deep sequencing. *BMC Genomics*, **20**:162. DOI:10.1186/s12864-019-5532-5
- 3. Roche PJR, Gytz H, Hussain F, <u>Cameron CJF</u>, Paquette D, Blanchette M, Dostie J, Nagar B and Akavia UD (2018) **Double-Stranded Biotinylated Donor Enhances Homology-Directed Repair in Combination with Cas9 Monoavidin in Mammalian Cells**. *CRISPR J*, **1**(6). DOI:10.1089/crispr.2018.0045
- 2. Malina A, <u>Cameron CJF</u>, Robert F, Blanchette M, Dostie J and Pelletier J (2015) **PAM multiplicity** marks genomic target sites as inhibitory to CRISPR/Cas9 editing. *Nat Commun*, 6:10124. DOI:10.1038/ncomms10124
- 1. Ma EYT, <u>Cameron CJF</u> and Kremer SC (2010) Classifying and scoring of molecules with the NGN: new data sets, significance tests, and generalization. *BMC Bioinformatics*, **11**(Suppl 8):S4. DOI:10.1186/1471-2105-11-S8-S4

Peer-reviewed conference papers

- 2. Kirchhof M, <u>Cameron CJF</u> and Kremer SC (2021) **End-to-end chromosomal compartment prediction** from reference genomes. *IEEE BIBM 2021*: 50-57. DOI:10.1109/BIBM52615.2021.9669521
- 1. <u>Cameron CJF</u>, Ma EYT and Kremer SC (2010) **Neural Grammar Networks for Toxicology**. *IEEE CIBCB* 2010 (Montréal, CAN): 1-8. DOI:10.1109/CIBCB.2010.5510322

Conferences with abstract submission

- 10. <u>Cameron CJF</u>, Tagare H, Gerstein MB and Xiong Y (2020) **Improving agreement between structural** models and cryo-EM maps in reciprocal space. 5th NE Cryo-EM Symp, Boston, USA
- 9. <u>Cameron CJF</u>, Dostie J and Blanchette M (2018) **Prediction of complete Hi-C interaction matrices** from sequence-based determinants. *IRIC 2018 Annual Symp*, Montréal, CAN
- 8. <u>Cameron CJF</u>, Dostie J and Blanchette M (2018) **Prediction of complete Hi-C contact maps from genomic sequence**. *SCS and RegSys COSI at ISMB 2018*, Chicago, USA
- 7. <u>Cameron CJF</u>, Dostie J and Blanchette M (2018) **Prediction of complete Hi-C contact maps from genomic sequence alone**. *RECOMB 2018*, Paris, FRA
- 6. <u>Cameron CJF</u>, Dostie J and Blanchette M (2017) **High-resolution estimation of true DNA-DNA interaction frequency from Hi-C data**. SCS and RegGen COSI at ISMB/ECCB 2017, Prague, CZE

- 5. <u>Cameron CJF</u>, Dostie J and Blanchette M (2016) **Improved Hi-C Contact Maps by Adaptive Density** Estimation. *MRCCT* 1st International Symp on Immunogenetics of Infectious and Inflammatory Diseases, Montréal, CAN (PhD poster prize)
- 4. <u>Cameron CJF</u>, Blanchette M, De Hoon M and Dostie J (2016) **Identifying ncRNA Drivers of Architectural** Change in Chromatin. *RNA2016*, Kyoto, JPN
- 3. Cameron CJF, Dostie J and Blanchette M (2016) Improved Hi-C Contact Maps by Adaptive Density Estimation. GLBIO/CCBC 2016, Toronto, CAN
- 2. <u>Cameron CJF</u>, Kaplan M, Drouin A and Blanchette M (2016) Linking Transposable Elements to Chromatin Architecture in *Arabidopsis thaliana*. *GLBIO/CCBC 2016*, Toronto, CAN
- 1. <u>Cameron CJF</u>, Fraser J, Dostie J and Blanchette M (2014) **Chromosome conformation capture data** improves long-range eQTL prediction. *Epigenetics & Chromatin CSHL 2014*, Huntington, USA

Book chapters, reviews and non-refereed publications

- 3. Wang XQD, Cameron CJF, Segal D, Paquette D, Blanchette M and Dostie J (2021) Profiling Chromatin Landscape at High Resolution and Throughput with 2C-ChIP. In: Bodega B., Lanzuolo C. (eds) Capturing Chromosome Conformation. Methods in Molecular Biology, vol 2157. Humana, New York, NY. DOI:10.1007/978-1-0716-0664-3 8
- Cameron CJF, Fraser J, Blanchette M and Dostie J (2016) Mapping and Visualizing Spatial Genome Organization. In: Bazett-Jones D, Dellaire G (eds) The Functional Nucleus. Springer, Cham. DOI:10.1007/978-3-319-38882-3 16
- Marhon SA, <u>Cameron CJF</u> and Kremer SC (2013) Recurrent Neural Networks. In: Bianchini M, Maggini M, Jain L (eds) Handbook on Neural Information Processing. *Intelligent Systems Reference Library*, vol 49. Springer, Berlin, Heidelberg. DOI:10.1007/978-3-642-36657-4_2

Invited talks

- 3. (July 2017) The future of Hi-C. Birds of a Feather panel discussion at ISMB/ECCB 2017, Prague, CZE
- 2. (April 2017) **High-resolution estimation of DNA-DNA contact frequency from Hi-C data**. The Physical Basis of Functional Genome Organization: Genome organization as viewed by molecular and visual techniques, Holetown, BRB
- 1. (August 2016) **The 3D Genome**. Beijing Institute of Genomics (BIG) at the Chinese Academy of Sciences, Beijing, CHN

Awards and scholarships

2017 - 19	Walter Sumner Fellowship, Walter Sumner Foundation
2018	Travel Fellowship Award for ISCB Student Council Symposium, ISCB SCS
2017	Graduate Research Enhancement and Travel Award, McGill University
2017	Graduate Mobility Award, McGill University
2016	Mitacs Globalink Research Award, Mitacs/Japan Society for the Promotion of Science
2013 – 14	Grad Excellence Award in Computer Science, McGill University
2013 – 14	Walter Hitschfeld Award - Computer Science, McGill University

Academic service

2021 – 22	YPA symposium committee member & co-coordinator
2020-Now	CCTP completion & CIRTL associate
2020-22	Intelligent Systems for Molecular Biology (ISMB) peer reviewer
Fall 2017	COMP 364: Computer Tools for Life Sciences co-instructor (with Oliver CG)
2016-Now	Undergraduate and graduate student mentorship $(N = 17)$