

Digital Receipt

This receipt acknowledges that Turnitin received your paper. Below you will find the receipt information regarding your submission.

The first page of your submissions is displayed below.

Submission author: Christopher Kitching

Assignment title: Project reports

2nd Year - Theory Computing Rep... Submission title:

> File name: Theory_Computing_Report.pdf

File size: 798.49K

Page count: 12

Word count: 3,407

Character count: 16,957

Submission date: 30-Apr-2019 05:54PM (UTC+0100)

Submission ID: 105879069

The classical H₂⁺ ion

Christopher Kitching and Elanor Harrington 10134621 and 10134324

> School of Physics and Astronomy The University of Manchester

Second Year Theory Computing Project Report

Apr 2019

Abstract

The aim of this project was to use purely classical physics to simulate the orbital motion of the positive molecular hydrogen ion, H_3^+ . This was achieved by using various numerical integration techniques, namely the leapfrog and Runge-Kutta 4^{th} order methods, to solve Newton's equations of motion. The unmerical accuracy of these integration techniques was considered throughout. The simulations increased in complexity; beginning with a simple two-body model of the ion, up to the general three-body model. Where possible, comparisons with the analytic solution were explored.