(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2002 年5 月10 日 (10.05.2002)

PCT

(10) 国際公開番号 WO 02/36583 A1

(51) 国際特許分類⁷: C07D 333/38, 333/54, 333/68, 333/62, 333/64, 333/76, 337/14, 307/68, 307/84, 307/85, 307/86, 307/91, 207/34, 209/42, 495/04, 209/42, 333/74, A61K 31/381, 31/38, 31/341

(21) 国際出願番号:

PCT/JP01/09435

(22) 国際出願日:

2001年10月26日(26.10.2001)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2000-334383 2000年11月1日(01.11.2000) JP

(71) 出願人 (米国を除く全ての指定国について): 塩野嚢 製薬株式会社 (SHIONOGI & CO., LTD.) [JP/JP]; 〒 541-0045 大阪府大阪市中央区道修町3丁目1番8号 Osaka (JP).

- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 谷本憲彦 (TAN-IMOTO, Norihiko) [JP/JP]. 平松義春 (HIRAMATSU, Yoshiharu) [JP/JP]. 本摩恒利 (HONMA, Tsunetoshi) [JP/JP]. 稲垣雅尚 (INAGAKI, Masanao) [JP/JP]; 〒553-0002 大阪府大阪市福島区鷺洲5丁目12番4号 塩野義 製薬株式会社内 Osaka (JP).
- (74) 代理人: 山内秀晃,外(YAMAUCHI, Hideaki et al.); 〒553-0002 大阪府大阪市福島区鷺洲5丁目12番4号 塩 野義製薬株式会社 知的財産部 Osaka (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK,

/続葉有/

- (54) Title: PGD₂ RECEPTOR ANTAGONISTIC PHARMACEUTICAL COMPOSITIONS
- (54) 発明の名称: PGD2 受容体拮抗性医薬組成物

(57) Abstract: Compounds of the general formula (I) which are metabolically stable and exhibit PGD₂ receptor antagonism, wherein Y is a bicyclic ring; R¹ is optionally substituted heteroaryl; R² is hydrogen or the like; R³ is -CH₂-COOR⁴; R⁴ is hydrogen or the like; and X¹ is -O- or the like.

(57) 要約:

O 02/36583

代謝的に安定な PGD。受容体拮抗活性を有する化合物として、式(I):

(式中、Yはビシクロ環; R^1 は置換されていてもよいヘテロアリール;

 R^2 は水素など; R^3 は-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₃-CH₄、

 $-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-COOR_{4}$, $-CH_{2}-CH=C$

H-CH₂-X¹-CH₂-COOR⁴または-CH₂-CH₂-CH₂-CH₂-

COOR⁴; R⁴は水素など; X¹は一〇 など。) で示される化合物を見出した。

DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) 指定国 *(*広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,

LU, MC, NL, PT, SE, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

明細書

PGD2 受容体拮抗性医薬組成物

5 技術分野

本発明は、新規なビシクロ環系アミド誘導体、PGD₂受容体拮抗剤およびそれら を含有する医薬組成物に関する。

背景技術

10 PGD₂ 受容体拮抗剤としては、WO97/00853 (1997 年 1 月 9 日国際公開) に記載の式:

(式中、Yはビシクロ環; Rはフェニルなど)で示される化合物が挙げられる。

一方、Bioorganic & Medicinal Chemistry Letters, Vol.2, No.9, pp.1069-1072, 15 1992 には、代謝的に安定な TXA₂/PGH₂ 受容体拮抗剤として、3-オキサ誘導体を合成した旨が記載されているが、該文献には化合物の活性値が記載されているにすぎず、代謝的に安定か否かは記載されていない。

(式中、Zはp-フルオロフェニル; $R\omega$ はベンゼンスルホニルアミノなど)

20 また、PROSTAGLANDINS, 1986, 31, 95 には、PGI₂ミメティックスである ILOPROST を 3-オキサ誘導体とすることで代謝的に安定となる旨記載されてい

る。しかし、ラットの代謝酵素存在下での各化合物の残存活性を比較しているに 過ぎず、代謝的に安定か否かは記載されていない。

発明の開示

5 従来の PGD₂ 受容体拮抗剤 (WO97/00853) のα鎖の構造修飾を行い、代謝的に 安定な PGD2 受容体拮抗剤を見出し、本発明を完成した。

すなわち、本発明は、

(1) 式(I):

$$\begin{array}{c|c}
R^2 & O \\
 & \parallel \\
 N - C - R^1
\end{array}$$

$$\begin{array}{c|c}
 & (I)
\end{array}$$

10 (式中、

は、

 R^1 は置換されていてもよいヘテロアリール;

15 R^2 は水素またはアルキル;

 $R^{3}kl - CH_{2} - COOR^{4};$

R⁴は水素またはアルキル;

20 X^1 は-O-または-S-である。) で示される化合物、そのプロドラッグもしく

はその製薬上許容される塩またはそれらの溶媒和物、

(2)

が、

5

10

である上記(1)記載の化合物、そのプロドラッグもしくはその製薬上許容される塩またはそれらの溶媒和物、

- (3) R¹が置換されていてもよいチエニル、置換されていてもよいベンゾチエニル、置換されていてもよいフリル、置換されていてもよいベンゾフリル、置換されていてもよいピロリル、置換されていてもよいチエノピロリルまたは置換されていてもよいインドリルである上記(1)または(2)記載の化合物、そのプロドラッグもしくはその製薬上許容される塩またはそれらの溶媒和物、
- (4) R¹が式: Z¹- Z² (式中、Z¹は単結合、-O-、-S-、-NH-、-、-NH-C(=O) 、-NH-C(=O) O-、-NH-SO₂-、-C
 15 (=O) -、-O-C(=O) -、-C(=O) O-、-SO₂-、-CH₂-O-、-CH₂-NH-C(=O) O-、-CH₂-NH-C(=O) O-、-CH₂-NH-C(=O) O-、-CH₂-NH-SO₂-または-CH₂-C(=O) であり、Z²はアルキルまたは置換されていてもよいアミノである)で示される基、カルボキシ、ハロゲン、ヒドロキシまたはニトロで置換されていてもよいヘテロアリールである上記(1) または(2) 記載の化合物、そのプロドラッグもしくはその製薬上許容される塩またはそれらの溶媒和物、
 - (5) $R^3 M C H_2 C H_2 C H_2 C H_2 C H_2 C H_2 C H_3 C H_4 C O O R^4$, $C H_2 C H_2 C H_2 C H_2 C H_2 C H_3 C H_4 C H_4 C H_5 C$

- (6) R³が-CH₂-CH₂-CH₂-CH₂-CH₂-CH=CH-COOR⁴または-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-COOR⁴であり、R⁴が水素であり、X¹が-O-または-S-である上記(5)記載の化合物、そのプロドラッグもしくはその製薬上許容される塩またはそれらの溶媒和物、
- (7) 上記(1)~(6)のいずれかに記載の化合物、そのプロドラッグも 10 しくはその製薬上許容される塩またはそれらの溶媒和物を含有することを特徴と する医薬組成物、
 - (8) PGD。受容体拮抗性である上記(7)記載の医薬組成物、
 - (9) 鼻閉治療用である上記(7)記載の医薬組成物、
 - (10) アレルギー性結膜炎治療用である上記(7)記載の医薬組成物、
- 15 (11) アレルギー性鼻炎治療用である上記(7)記載の医薬組成物、
 - (12) 上記(7)記載の医薬組成物を投与する鼻閉、アレルギー性結膜炎またはアレルギー性鼻炎の治療方法、
 - (13) 鼻閉、アレルギー性結膜炎またはアレルギー性鼻炎治療用薬剤を製造するための上記(1)~(6)のいずれかに記載の化合物の使用、
- 20 に関する。

以下に本明細書で使用する用語を説明する。なお、本明細書中、各用語は、単独または他の用語と一緒になって、統一した意味を有する。

「ヘテロアリール」とは、酸素原子、硫黄原子および/または窒素原子を環内 25 に1個以上含む5~7員の芳香族ヘテロ環、またはそれらが1個以上の芳香族炭 素環もしくは他の芳香族ヘテロ環と縮合している芳香環であって、置換可能な任 意の位置に結合手を有する基を意味する。芳香族ヘテロ環または芳香族炭素環の

いずれに結合手を有していてもよい。

例えば、ピロリル (例えば、2ーピロリル、3-ピロリル)、ピリジル (例えば、 2-ピリジル、3-ピリジル、4-ピリジル)、ピラゾリル(例えば、3-ピラゾ リル、4-ピラゾリル)、イミダゾリル(例えば、2-イミダゾリル、4-イミダ ゾリル)、ピリミジニル(例えば、2-ピリミジニル、4-ピリミジニル、5-ピ リミジニル)、ピラジニル(例えば、2-ピラジニル)、インドリル(例えば、2 ーインドリル、3ーインドリル、4ーインドリル、5ーインドリル、6ーインド リル、7-インドリル)、カルバゾリル(例えば、1-カルバゾリル、2-カル バゾリル、3-カルバゾリル、4-カルバゾリル)、ベンゾイミダゾリル(例え ば、2-ペンゾイミダゾリル、4-ベンゾイミダゾリル、5-ベンゾイミダゾリ 10 ル)、インダゾリル(例えば、3-インダゾリル、4-インダゾリル、5-イン ダゾリル、6-インダゾリル、7-インダゾリル)、キノリル(例えば、2-キ **ノリル、3-キノリル、4-キノリル、5-キノリル、6-キノリル、7-キノ** リル、8-キノリル)、イソキノリル(例えば、1-イソキノリル、3-イソキ 15 **ノリル、4-イソキノリル、5-イソキノリル、6-イソキノリル、7-イソキ** ノリル、8-イソキノリル)、フリル(例えば、2-フリル、3-フリル)、ベ ンゾフリル (例えば、2-ペンゾフリル、3-ベンゾフリル、4-ベンゾフリル、 5-ベンゾフリル、6-ベンゾフリル、7-ベンゾフリル)、チエニル(例えば、 2 - チエニル、3 - チエニル)、ペンゾチエニル(例えば、ベンゾ [b] チオフェ 20 ンー 2 ーイル、ベンゾ [b] チオフェンー 3 ーイル、ベンゾ [b] チオフェンー 4 ーイル、ベンゾ「b] チオフェンー 5 ーイル、ベンゾ「b] チオフェンー 6 ーイル、 ベンゾ [b] チオフェンー7ーイル、)、ジベンゾチエニル(例えば、2-ジベン ゾチエニル、3-ジベンゾチエニル)、ジベンゾフリル(例えば、2-ジベンゾ フリル、3-ジベンゾフリル)、ナフトチエニル(例えば、ナフト[2,3-b] チオフェン-2-4ル、ナフト [2, 3-b] チオフェン-3-4ル、ナフト [1, 3-b]25 2-b] チオフェンー2ーイル、ナフト [1, 2-b] チオフェンー3ーイル)、 オキサゾリル(例えば、2-オキサゾリル、4-オキサゾリル、5-オキサゾリ

5

ノ[3, 2-b]ピロールー2-イル、チエノ[3, 2-b]ピロールー3-イル、チエノ[3, 2-b]ピロールー5-イル)等が挙げられる。

特に、チエニル、ベンゾチエニル、フリル、ベンゾフリル、ピロリル、インドリルが好ましい。

15

10

5

上記「ヘテロアリール」に縮合していてもよい「芳香族炭素環もしくは他の芳香族ヘテロ環」とは、酸素原子、硫黄原子および/または窒素原子を環内に 1 個以上含んでいてもよい5~7 員の芳香環、またはそれらが2以上縮合している芳香環を意味する。

20

25

上記「ヘテロアリール」は、4員~7員のシクロアルカン、または4員~7員の非芳香族ヘテロ環が縮合していてもよい。シクロアルカンとしては、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘブタンが挙げられる。非芳香族ヘテロ環としては、ピロリジン、ピペラジン、オキソラン、1,3ージオキソラン、1,4ージオキサン、チオラン等が挙げられる。これらシクロアルカンおよび非芳香族ヘテロ環には、さらに芳香族炭素環(例えば、ペンゼン)または芳香族ヘテロ環(例えば、チオフェン、フラン)が縮合していてもよい。4員~7

員のシクロアルカンまたは4員~7員の非芳香族へテロ環が縮合しているヘテロアリールとしては、例えば、以下の基が挙げられる。

5

「置換されていてもよいヘテロアリール」における置換基としては、式: $-Z^1$ $-Z^2$ (式中、 Z^1 は単結合、-O-、-S-、-NH-、-NH-C (=O) - 、-NH-C (=O) - 、-NH-C (=O) - 、-NH-C (=O) - 、-C (=O) -O- 、 $-NH-SO_2-$ 、-C (=O) - 、-C (=O) -O- 、 $-CH_2-NH-C$ (=O) - 、 $-CH_2-NH-C$ (=O) - 、 $-CH_2-NH-C$ (=O) $-CH_2-C$ (=O) -CH

 $_2$ -、 $_-$ CH $_2$ -O-、 $_-$ CH $_2$ -NH-C(=O) -、 $_-$ CH $_2$ -NH-C(=O) -O-、 $_-$ CH $_2$ -NH-SO $_2$ -または $_-$ CH $_2$ -C(=O) -であり、 $_-$ C はアルキルまたは置換されていてもよいアミノである)で示される基、カルボキシ、ハロゲン、ヒドロキシまたは $_-$ トロが好ましく、さらには、式: $_-$ C $_-$ C $_+$ C

5

10 「アルキル」とは、直鎖状もしくは分枝鎖状のC1~C8のアルキルまたはC3~C8の環状アルキルを意味する。例えば、メチル、エチル、nープロピル、イソプロピル、nープチル、イソブチル、tertープチル、nーペンチル、イソベンチル、nーペキシル、nーペプチル、nーオクチル、シクロプロピル、シクロプチル、シクロペンチル、シクロペンチル、シクロペンチル、シクロペンチル、シクロペンチル、シクロペンチル、シクロペンチル、シクロペンチル、シクロペンチルである。

「ハロアルキル」とは、 $1 \sim 3$ 個のハロゲンが置換した上記アルキルを意味する。好ましくは、直鎖状もしくは分枝鎖状の $C1 \sim C3$ のハロアルキルであり、例えば、トリフルオロメチル、2,2,2-トリフルオロエチル等が挙げられる。

「アルケニル」とは、 $1 \sim 3$ 個の二重結合を有する上記アルキルを意味する。 20 好ましくは、直鎖状もしくは分枝鎖状の $C\ 2 \sim C\ 3$ のアルケニルであり、例えば、 ビニル、アリル、1-プロペニル、イソプロペニル等が挙げられる。

「アルキニル」とは、 $1 \sim 3$ 個の三重結合を有する上記アルキルを意味する。 好ましくは、直鎖状の $C \ 2 \sim C \ 3$ のアルケニルであり、例えば、エチニル等が挙 げられる。

25 「置換されていてもよいアミノ」の置換基としては、アルキル、アルキルオキシ、アルキルスルホニル、ヒドロキシ等が挙げられる。これらの置換基でモノまたはジ置換されていてもよい。

「ヒドロキシアルキル」とは、 $1 \sim 3$ 個のヒドロキシが置換した上記アルキルを意味する。好ましくは、直鎖状もしくは分枝鎖状の $C1 \sim C3$ のヒドロキシアルキルであり、例えば、ヒドロキシメチル、2-ヒドロキシエチル、1-ヒドロキシアチル等が挙げられる。

5 「ハロゲン」とは、フッ素、塩素、臭素、沃素を意味する。

本発明化合物は、下記に示される[2.2.1]および[3.1.1] ビシクロ骨格を有する。

10 なお、[2.2.1]および[3.1.1] ビシクロ骨格に関して以下の立体 異性体が存在し得る。

5 これらの化合物の中で、式:

で示される骨格を有する化合物が好ましい。

本発明はこれら個々の立体異性体を包含し、またそれらの任意の混合物をも包

含する。即ち、本発明ではビシクロ環に結合する結合手は R 配置または S 配置のいずれでもよく、その全ての立体異性体 (ジアステレオマー、エピマー、エナンチオマー等)、ラセミ体またはそれらの個々の化合物の任意の混合物を包含する。さらに、本発明化合物には α 鎖に関して Z 配置および E 配置が存在し得るが、本発明はいずれかの配置を有する化合物、あるいはその両者の混合物を包含する。

本発明には、式(I)で示される化合物のみならず、そのプロドラッグ、その 20 製薬上許容される塩、それらの溶媒和物も包含される。

式(I)で示される化合物のプロドラッグとしては、化学的または代謝的に 分解できる基を有する本発明に関する化合物の誘導体を意味し、加溶媒分解によ りまたは生理学的条件下でインビボにおいて薬学的に活性な本発明に関する化合 物となる化合物である。 適当なプロドラッグ誘導体を選択する方法および製造す る方法は、例えば Design of Prodrugs, Elsevier, Amsterdam 1985 に記載されて いる。

25

式(I)で示される化合物がカルボキシル基を有する場合は、もとになる酸性 化合物と適当なアルコールを反応させることによって製造されるエステル誘導体、 またはもとになる酸性化合物と適当なアミンを反応させることによって製造され るアミド誘導体のようなプロドラッグが例示される。プロドラッグとして特に好 ましいエステル誘導体としては、置換されていてもよいアルキルエステル誘導体 5 (例えば、メチルエステル、エチルエステル、n-プロピルエステル、イソプロ **ピルエステル、nーブチルエステル、イソプチルエステル、tertーブチルエステル、** モルホリノエチルエステル等)、アリールアルキルエステル誘導体(例えば、ベ ンジルエステル、フェネチルエステル、ベンズヒドリルエステル等)等が挙げら れる。アミド誘導体としては、アルキルアミド誘導体(N.メチルアミド、N.エチ 10 ルアミド、N-(n-プロピル)アミド、N-イソプロピルアミド、N-(n-ブチル)アミド、 N-イソブチルアミド、N-(tert-ブチル)アミド等)、アリールアルキルアミド誘導 体(例えば、N-ベンジルアミド、N-フェネチルアミド、ベンズヒドリルアミド等) 等が挙げられる。

式(I)で示される化合物がヒドロキシル基を有する場合は、例えばヒドロキシル基を有する化合物と適当なアシルハライドまたは適当な酸無水物とを反応させることに製造されるアシルオキシ誘導体のようなプロドラッグが例示される。プロドラッグとして特に好ましいアシルオキシ誘導体としては、置換されていてもよいアルキルカルボニルオキシ(例えば、 $-OCOC_2H_5$ 、-OCO(tert-Bu)、 $-OCOC_{15}H_{31}$ 、 $-OCOCH_2CH_2COONa$ 、-OCOCH(NH₂)CH₃、 $-OCOCH_2N$ (CH₃)。 置換されていてもよいアリールカルボニルオキシ(例えば、-OCO(m-COONa-Ph)等)等で置換されている誘導体等が挙げられる。

15

20

式(I)で示される化合物がアミノ基を有する場合は、アミノ基を有する化合 25 物と適当な酸ハロゲン化物または適当な混合酸無水物とを反応させることにより 製造されるアミド誘導体のようなプロドラッグが例示される。プロドラッグとし て特に好ましいアミド誘導体としては、置換されていてもよいアルキルカルボニ

ル (例えば、-NHCO (CH₂)₂₀CH₃、-NHCOCH (NH₂) CH₃等) 等で置換されている誘導体等が挙げられる。

式(I)で示される化合物またはそのプロドラッグの塩としては、アルカリ金 属塩(例えば、リチウム塩、ナトリウム塩もしくはカリウム塩等)、アルカリ土 類金属塩(例えば、カルシウム塩等)、有機塩基(例えば、トロメタミン、トリ メチルアミン、トリエチルアミン、2-アミノブタン、tert-ブチルアミン、ジイ ソプロピルエチルアミン、nーブチルメチルアミン、シクロヘキシルアミン、ジシ クロヘキシルアミン、N-イソプロピルシクロヘキシルアミン、フルフリルアミン、 ベンジルアミン、メチルベンジルアミン、ジベンジルアミン、N, N-ジメチルベ ンジルアミン、2-クロロベンジルアミン、4-メトキシベンジルアミン、1-ナフ 10 チレンメチルアミン、ジフェニルベンジルアミン、トリフェニルアミン、1-ナフ チルアミン、1-アミノアントラセン、2-アミノアントラセン、デヒドロアビエ チルアミン、 N - メチルモリホリンもしくはピリジン) との塩、またはアミノ酸 塩(例えば、リジン塩もしくはアルギニン塩等)を挙げることができる。

5

溶媒和物とは、式(I)で示される化合物、そのプロドラッグ、その製薬上許 15 容される塩の有機溶媒との溶媒和物および水和物などを意味し、例えば、1水和 物、2水和物等を挙げることができる。

「PGD2受容体拮抗性である医薬組成物」とは、PGD2受容体拮抗作用を有 20 する式(I)で示される化合物を少なくとも1つ含有する医薬組成物を意味する。 式(I)で示される化合物以外に、他の活性成分(例えば、他の抗炎症剤、他の 抗アレルギー剤など)、医薬品添加物(例えば、結合剤、賦形剤など)を含有し ていてもよい。

25 PGD₂ 受容体拮抗剤は、WO97/00853 および WO98/25919 に記載されているよ うに、PGD。の生産過多に起因する症状の改善、詳しくは、肥満細胞機能不全が関 与する疾患、例えば全身性肥満細胞症及び全身性肥満細胞活性化障害の治療剤、

具体的には、鼻閉治療剤、アレルギー性結膜炎治療剤、アレルギー性鼻炎治療剤、 抗気管収縮剤、抗喘息剤、抗蕁麻疹剤、虚血再灌流傷害治療薬、抗炎症剤、アト ビー性皮膚炎として有用である。

なお、本発明には、式(I)で示される化合物を投与する PGD_2 の生産過多に起因する症状(例えば、鼻閉、アレルギー性結膜炎、アレルギー性鼻炎など)の治療方法が包含される。また、本発明には、 PGD_2 の生産過多に起因する症状(例えば、鼻閉、アレルギー性結膜炎、アレルギー性鼻炎など)の治療用薬剤を製造するための式(I)で示される化合物の使用も包含される。

10

発明を実施するための最良の形態

本発明化合物である式(I)で示される化合物は以下のように製造することができる。

15 (式中、

 R^1 は置換されていてもよいヘテロアリール;

R²は水素またはアルキル;

20 $R^3 L - CH_2 - CH_$

 1 -CH₂-COOR⁴または-CH₂-CH₂-CH₂-CH₂-COOR⁴; R⁴は水素またはアルキル;

10

15

20

25

5 式(I)で示される化合物は上記の反応式に示されるように、式(M-1)で示されるアミノ化合物に式(M-2)で示されるカルボン酸またはその反応性誘導体を反応させることにより製造することができる。

式(M-2)で示されるカルボン酸の反応性誘導体とは、対応する酸ハロゲン化物(例えば、塩化物、臭化物、沃化物)、酸無水物(例えば、ぎ酸,酢酸もしくはトリフルオロ酢酸との混合酸無水物)、活性エステル(例えば、N-ヒドロキシスクシンイミドエステル)などを意味し、通常アミノ基のアシル化に使用するアシル化剤を包含する。

例えば、酸ハロゲン化物とするときは、ハロゲン化チオニル(例えば、塩化チオニル)、ハロゲン化リン(例えば、三塩化リン、五塩化リン、塩化ホスホリル)、ハロゲン化オギザリル(例えば、塩化オギザリル)等と公知の方法にしたがって反応させればよい。

反応は通常のアミノ基のアシル化反応の条件にしたがって行えばよく、例えば、酸ハロゲン化物による縮合反応の場合、溶媒としてエーテル系溶媒(例えば、ジエチルエーテル、テトラヒドロフラン、ジオキサン)、ベンゼン系溶媒(例えば、ベンゼン、トルエン、キシレン)、ハロゲン化炭化水素系溶媒(例えば、ジクロロメタン、ジクロロエタン、クロロホルム)、その他、酢酸エチル、 N、Nージメチルホルムアミド、ジメチルスルホキシド、アセトニトリルなどを使用し、必要であれば塩基(例えば、トリエチルアミン、ピリジン、4ージメチルアミノピリジン、Nーメチルモルホリンなどの有機塩基、あるいは水酸化ナトリウム、水酸化カリウム、炭酸カリウムなどの無機塩基)の存在下、冷却下ないし室温あるいは加熱下、好ましくは一20℃ないし氷冷下あるいは室温ないし反応系の加熱環流温度で、数分ないし数10時間、好ましくは0.5時間ないし24時間、よ

り好ましくは1時間ないし12時間実施すればよい。

10

また、 R^4 がアルキルの場合にはカルボン酸(M-2)を反応性誘導体とはせずに、遊離のまま使用する事も可能であり、アミンとカルボン酸の縮合反応に使用する縮合剤(例えば、ジシクロヘキシルカルボジイミド(DCC)、1-エチル-3-(3-ジメチルアミノプロビル)カルボジイミド、N, N-カルボニルジイミダゾール等)の存在下に反応させてもよい。

式 (M-2)で示される化合物の「置換されていてもよいアリール」または「置換されていてもよいヘテロアリール」の置換基として、例えばヒドロキシ基、アミノ基が置換している場合は、常法にしたがってアセチル基等で保護して反応させればよい。

他の反応性誘導体あるいは遊離の酸(M-2)とアミン(M-1)との反応においても、各反応性誘導体あるいは遊離酸の性質に応じて、公知の方法に従い、反応条件を定めればよい。反応生成物は通常の精製法、例えば、溶媒抽出、クロマトグラフィー、再結晶法などにより、精製することができる。

(式中、Qはアミノ基の保護基; R²、X¹およびR⁴は前記と同意義。)

5

上記の式(M-1)で示される化合物は、式 (M-3 a) あるいは式 (M-3 b) で表わされるアルデヒド誘導体 (Qは、ベンジルオキシカルボニルあるいは t-ブトキシカルボニル等の一般的に用いられるアミノ基の保護基) に、適宜他の化学反応を組み合わせながら、各種イリド化合物をウィッティッヒ (Wittig) 反応 (オーガニック・リアクション、1965、14、270) の条件にしたがって一回ないし数回反応させることにより製造することができる。

例えばアルデヒド(M-3a)に、WO9740104に記載された公知化合 物である6-プロモ-3-オキサヘキサン酸から得られるホスホニウム塩を、公 知のウィッティッヒ反応条件にしたがって反応させると化合物(M-4)が得られ、さらにパラジウム、白金等の触媒存在下、水素添加を行なうと、 R^3 が $-CH_2CH_2CH_2CH_2COOR^4$ である原料化合物(M-1a、 $X^1=O$)が得られる。また、メトキシメチルトリフェニルホスホニウム塩を用いたウィッ

ティッヒ反応後、塩酸、ぎ酸あるいは酢酸等による加水分解を行って合成するこ とも可能なアルデヒド(M-3b)に対し、(トリフェニルホスホラニリデン) 酢酸メチル等の安定イリドとのウィッティッヒ反応を行なうか、あるいはジメチ ルホスホノ酢酸メチル等を用いたホーナー・エモンズ(Horner-Emmo ns) 反応を行なって一般式 (M-5) で表わされる $\alpha\beta$ - 不飽和カルボン酸誘 導体へ誘導し、アルコール誘導体 (M-6a、X1=O) に還元後、塩基存在下、 ハロゲン化酢酸もしくはそのエステル誘導体を公知の方法にしたがって反応させ ればR³が-CH₀CH=CHCH₀OCH₀COOR⁴である原料化合物(M-1 b, $X^1 = 0$) が得られる。さらにアルコール誘導体 $(M - 6a, X^1 = 0)$ を公 知の方法によってチオール誘導体 $(X^1=S)$ に変換後、上記と同様にハロゲン化 酢酸誘導体と反応させればR³がーCH₂CH=CHCH₂SCH₂COOR⁴で ある原料化合物 $(M-1b, X^1=S)$ が得られる。また、アルコール誘導体 (M- 6 a、X¹=O)を公知の方法にしたがって対応するハロゲン化物に変換し、塩 基存在下、グリコール酸もしくはチオグリコール酸誘導体と反応させてもよい。 R³中の二重結合はいずれかの適当な段階においてパラジウム、白金等の触媒存在 下、水素添加による還元が可能であり、対応する飽和体 $(M-1a, X^1=0$ もし くはS)を容易に得ることができる。

10

15

アルデヒド(M-3b)から、2-(1,3-i)オキソラン-2-(1) エチルトリフェニルホスホニウム塩を用いたウィッティッヒ反応で一般式(M-7)で表わされる化合物へ誘導し、上記と同様に水素添加、アセタールの酸加水分解でアルデヒド(M-3c)とした後、(トリフェニルホスホラニリデン)酢酸メチル等の安定イリドとのウィッティッヒ反応を行なうか、あるいはジメチルホスホノ酢酸メチル等を用いたホーナー・エモンズ(Horner-Emmons)反応を行なって R^3 が $-CH_2$ C H_2 C H_2 C H_2 C H_2 C H_3 C H_4 C H_4 C H_4 C H_5 C H_4 C H_5 C H_4 C H_5

原料カルボン酸(M-2)とのアミド化は、必要に応じて目的とする α 鎖への変換途中の段階でアミノ基の保護基Qを脱保護し、行なうことも可能である。

「置換されていてもよいアリール」または「置換されていてもよいヘテロアリ ール」上に置換基を導入する場合は、カルボン酸またはその反応性誘導体(M-2) とアミン (M-1) との反応前または反応後に、官能基変換を行えばよい。 例えば、混酸等を用いてニトロ化を行い、ニトロ基で置換された芳香族ヘテロ環 化合物を得ることができる。さらに、塩酸中、すず等を用いて還元することによ って、アミノ基で置換された芳香族ヘテロ環化合物を得ることができる。さらに、 ジアゾ化を行い、アルカリ加水分解を行うことにより、ヒドロキシ基で置換され た芳香族へテロ環化合物を得ることができる。また、ジアゾ体にアルコールを反 応させることにより、アルコキシ基で置換された芳香族へテロ環化合物を得るこ 10 とができる。また、サンドマイヤー反応、すなわち、ジアゾ体に第一銅塩(Си Cl,、CuBr,等)を反応させることにより、ハロゲンに置換された芳香族へ テロ環化合物を得ることができる。また、ハロゲンに置換された芳香族ヘテロ環 化合物は、芳香族ヘテロ環化合物に直接塩素等を反応することによっても得るこ とができる。これらの方法を使い分けることにより、ハロゲンを所望の位置に導 15 入することができる。アルキル、アルケニル、アシルは、無水塩化アルミニウム 等とアルキル化剤、アルケニル化剤、アシル化剤を用いて、フリーデルクラフツ 反応により、直接芳香族ヘテロ環に導入することができる。

20 式(I)で示される化合物を治療に用いるには、通常の経口または非経口投与用の製剤として製剤化する。本発明に関する化合物を含有する医薬組成物は、経口および非経口投与のための剤形をとることができる。即ち、錠剤、カブセル剤、顆粒剤、散剤、シロップ剤などの経口投与製剤、あるいは、静脈注射、筋肉注射、皮下注射などの注射用溶液または懸濁液、吸入薬、点鼻薬、坐剤、点眼剤もしくは軟膏剤などの経皮投与用製剤などの非経口製剤とすることもできる。

これらの製剤は当業者既知の適当な担体、賦形剤、溶媒、基剤等を用いて製造 することができる。例えば、錠剤の場合、活性成分と補助成分を一緒に圧縮また

は成型する。補助成分としては、製剤的に許容される賦形剤、例えば結合剤(例、トウモロコシでん粉)、充填剤(例、ラクトース、微結晶性セルロース)、崩壊剤(例、でん粉グリコール酸ナトリウム)または滑沢剤(例、ステアリン酸マグネシウム)などが用いられる。錠剤は、適宜、コーティングしてもよい。シロップ剤、液剤、懸濁剤などの液体製剤の場合、例えば、懸濁化剤(例、メチルセルロース)、乳化剤(例、レシチン)、保存剤などを用いる。注射用製剤の場合、溶液、懸濁液または油性もしくは水性乳濁液の形態のいずれでもよく、これらは懸濁安定剤または分散剤などを含有していてもよい。吸入剤として使用する場合は吸入器に適応可能な液剤として用いる。

10

15

20

25

5

特に鼻閉症治療のための点鼻薬として用いる場合、通常の製剤化の方法にしたがって、液剤、懸濁化剤として用いるか、あるいは粉末化剤(例、ヒドロキシプロピルセルロース、カーボボール)等を加え、粉末剤として鼻孔に加える。あるいは、低沸点の溶媒とともに特殊な容器に充填し、噴射剤として用いることができる。

また、アレルギー性結膜炎治療のための点眼薬として用いる場合、本発明化合物を溶液または懸濁液として使用してもいいし、用時溶解または用時懸濁して使用してもよい。また、安定剤、溶解補助剤、懸濁化剤、乳化剤、緩衝液、保存剤等を含有していてもよい。また、点眼薬として使用する場合、特に無菌処理しておくことが好ましい。

本発明に関する化合物の投与量は、投与形態、患者の症状、年令、体重、性別、あるいは併用される薬物(あるとすれば)などにより異なり、最終的には医師の判断に委ねられるが、経口投与の場合、体重 1 kg あたり、 $1 \text{ HO} \cdot 0 \text{ 1} \sim 1 \text{ 0} \text{ 0} \text{ mg}$ 、好ましくは $0 \cdot 0 \text{ 1} \sim 1 \text{ 0} \text{ mg}$ 、より好ましくは $0 \cdot 0 \text{ 1} \sim 1 \text{ ng}$ 、非経口投与の場合、体重 1 kg あたり、 $1 \text{ HO} \cdot 0 \text{ 0} \text{ 1} \sim 1 \text{ 0} \text{ 0} \text{ mg}$ 、好ましくは $0 \cdot 0 \text{ 0} \text{ 1} \sim 1 \text{ ng}$ 、より好ましくは $0 \cdot 0 \text{ 0} \text{ 1} \sim 0 \text{ 1} \text{ mg}$ 、より好ましくは $0 \cdot 0 \text{ 0} \text{ 1} \sim 0 \text{ 0} \text{ 1}$ などにより異なり、 $0 \cdot 0 \text{ 1} \sim 0 \text{ 0} \text{ 1}$ なりの $0 \cdot 0 \text{ 1} \sim 0 \text{ 0}$ なりなよりない。

実施例

以下に実施例を挙げて本発明を詳しく説明するが、これらは単なる例示であり、 本発明はこれらに限定されるものではない。

5

実施例1 化合物(Ic-4)の合成

第1工程

10

15

20

化合物(1)(10.11g、39.9mmol)のトルエン(100ml) 溶液に、(トリフェニルホスホラニリデン)酢酸メチル(14.68g、43.9mmol)を加え、室温で17時間攪拌した。ヘキサン(100ml)を加え、生成する不溶物をろ過した後、濾液を濃縮して16.56gの残渣を得た。このうち16.12gをTHF(160ml)に溶解し、2N水酸化リチウム溶液(40ml)を加え、60℃で5時間加熱した。THFを減圧留去後、水(100ml)で希釈し、トルエンで2回洗浄、水層を塩酸で酸性(pH=1)とし、酢酸エチルで抽出した。抽出液を水、飽和食塩水で洗浄、乾燥、濃縮し、得られた残渣のメタノール(100ml)溶液に、10%パラジウムー炭素(360mg)を加え、水素雰囲気下、3時間攪拌した。反応液をろ過、濃縮し、THF(120ml)に溶解した。氷冷下トリエチルアミン(6.2ml、44.5mmol)、クロロぎ酸エチル(4.3ml、44.5mmol)を加え、氷冷下、30分間攪拌した。不溶の塩をろ過し、濾液に水素化ホウ素ナトリウム(3.06g、8

0.9 m m o 1) を加えた後、メタノール(40 m 1) を30分間かけて滴下した。滴下後さらに30分間攪拌した後、反応液を水で希釈、酢酸エチルで抽出した。抽出液を水、飽和食塩水で順次洗浄、乾燥し、残渣をヘキサン-酢酸エチル(90:10) から結晶化して化合物(2)(8.77g;収率80%)を得た。融点90-92 $^{\circ}$ 。

第2工程

5

化合物 (2) (1.68g、5.94mmol)のトルエン(17ml)溶液に、プロモ酢酸 t-ブチル(1.32ml、68.91mmol)、硫酸水素テトラブチルアンモニウム(201mg、0.6mmol)、50%水酸化ナトリウム(1.7ml)を加え、室温で22時間激しく攪拌した。トルエン層を分離し水、飽和食塩水で順次洗浄後、乾燥、濃縮し、残渣をシリカゲルクロマトグラフィー(ヘキサンー酢酸エチル、7:1)で精製し、化合物(3)(1.60g;収率68%)を得た。

15

20

10

第3工程

化合物(3)(10.42g、26.2mmol)のメタノール(50ml) 溶液に、4N塩酸ージオキサン溶液(65.5ml、262mmol)を加え、 室温で5時間攪拌した。反応液を減圧濃縮して得られる結晶性残渣をヘキサンー エーテルで洗浄し、化合物(4)(6.88g;収率90%)を得た。

第4工程

化合物(4)(642mg、2.20mmol)のTHF(8ml)溶液に、 チオフェン-3-カルボン酸(256mg、2.00mmol)、1-ヒドロキ 25 シベンゾトリアゾール(27mg、0.20mmol)、トリエチルアミン(0.34ml、2.40mmol)を加え、さらに氷冷下3-エチル-3-(3-ジ メチルアミノブロビル)カルボジイミド(370mg、2.40mmol)を加

えた。反応混合物を室温で16時間攪拌した後、酢酸エチルで希釈し、希塩酸、炭酸水素ナトリウム水溶液で順次洗浄、乾燥、濃縮した。残渣をシリカゲルクロマトグラフィー(トルエン-酢酸エチル、3:1)で精製し、化合物(5)(627mg;収率86%)を得た。融点68-70℃。

5

第5工程

化合物(5)(620mg、1.70mmo1)のメタノール(2m1)-T HF(1m1)溶液に、4N水酸化ナトリウム水溶液(1.0m1、4.0mm o1)を加え、室温で16時間攪拌した。反応液に2N塩酸を加え酸性とした後、 10 酢酸エチルで抽出し、抽出液を水、飽和食塩水で順次洗浄した。乾燥、濃縮後、 残渣をメタノールー水(5:7)から結晶化し、化合物(Ic-4)(461m g;収率77%)を得た。融点104-105℃。

実施例2 化合物(Ie-34)の合成

$$\begin{array}{c} O \downarrow O \\ \\ O \downarrow O \\ \\ OH \end{array}$$

$$\begin{array}{c} O \downarrow O \\ \\ O \downarrow O \\ \\ OH \end{array}$$

$$\begin{array}{c} O \downarrow O \\ \\ S \\ CO_2Me \end{array}$$

$$\begin{array}{c} O \downarrow O \\ \\ S \\ CO_2Me \end{array}$$

$$\begin{array}{c} O \downarrow O \\ \\ S \\ CO_2Me \end{array}$$

$$\begin{array}{c} O \downarrow O \\ \\ S \\ CO_2Me \end{array}$$

$$\begin{array}{c} O \downarrow O \\ \\ O \downarrow O$$

15

第1工程

化合物(2)(2.28g、8.05mmo1)のジクロロメタン(20m1)溶液に、水冷下トリフェニルホスフィン(2.32g、8.85mmo1)とNープロモスクシンイミド(1.58g、8.85mmo1)を加え、同温度でさらに1時間攪拌した。反応混合物をトルエンで希釈し、水、飽和食塩水で順次洗浄、乾燥した。濃縮後、残渣をシリカゲルクロマトグラフィー(ヘキサンー酢酸

エチル、9:1)で精製し、化合物(6)(2.70g;収率97%)を得た。

第2工程

ナトリウムメトキシド(842mg、15.6mmol)のメタノール(20 ml)溶液に、チオグリコール酸メチル(1.40ml、15.6mmol)を加え、室温で15分間攪拌した。化合物(6)(2.70g、7.80mmol)のTHF(20ml)溶液を加え、15時間攪拌した後、反応液を酢酸エチルで希釈し、水、飽和食塩水で順次洗浄、乾燥した。濃縮後、残渣をシリカゲルクロマトグラフィー(ヘキサン-酢酸エチル、78:22)で精製し、化合物(7)(2.84g;収率98%)を得た。

第3工程

化合物 (7) (2.84g、7.64mmol) に4N塩酸-酢酸エチル溶液 (15ml) を加え、室温で2時間攪拌した。反応液を減圧濃縮して得られる残15 渣をヘキサン-エーテルから結晶化し、化合物 (8) (2.16g;収率92%)を得た。

第4工程

化合物(8)(246mg、0.80mmol)のTHF(6ml)溶液に、ベンゾチオフェン-7-カルボン酸(150mg、0.80mmol)、1-ヒドロキシベンゾトリアゾール(11mg、0.08mmol),トリエチルアミン(0.12ml,0.96mmol)を加え、さらに氷冷下1-エチルー3ー(3-ジメチルアミノブロピル)カルボジイミド(149mg、0.96mmol)を加えた。反応混合物を室温で16時間攪拌した後、酢酸エチルで希釈し、25 希塩酸、炭酸水素ナトリウム水溶液で順次洗浄、乾燥、濃縮した。残渣をシリカゲルクロマトグラフィー(ヘキサン-酢酸エチル、3:1)で精製し、化合物(9)(324mg;収率94%)を得た。

第5工程

化合物(9)(315mg、0.73mmol)のTHF(3.6ml)ーメタノール(7.3ml)溶液に、1N水酸化ナトリウム水溶液(1.82ml、1.82mmol)を加え、室温で48時間攪拌した。反応液に2N塩酸を加え酸性とした後、酢酸エチルで抽出し、抽出液を水、飽和食塩水で順次洗浄し、化合物(Ie-34)(301mg;収率99%)を得た。

実施例3 化合物(IIb-28)の合成

10

第1工程

15

ビス(2,2,2-トリフルオロエチル) ホスホノ酢酸メチル(3.0ml、14.3mmol) と18-クラウン-6(5.64g、21.3mmol) のTHF(100ml) 溶液を-55℃に冷却し、ビス(トリメチルシリル) アミドカリウム(0.5Mトルエン溶液、28.5ml、14.3mmol) を滴下し、さらに15分攪拌した。化合物(10)(2.0g、7.11mmol) のTHF(20ml) 溶液を15分かけて滴下し、同温度でさらに1時間攪拌した。0℃まで昇温した後、反応混合物を水で希釈し、酢酸エチルで抽出した。抽出液

を水、飽和食塩水で順次洗浄、乾燥、濃縮後、残渣をシリカゲルクロマトグラフィー (ヘキサン-酢酸エチル、4:1)で精製し、化合物 (1:1) (2:1:6:g: 収率 9:0:%) を得た。

5 第2工程

化合物(11)(1.37g、4.05mmol)のジクロロメタン(10ml)ーヘキサン(10ml)溶液を-60℃に冷却し、水素化ジイソプロピルアルミニウム(0.95Mヘキサン溶液、10.7ml、10.2mmol)を滴下した。同温度で30分間攪拌した後、メタノール(0.6ml)を加え、室温まで昇温した。反応液に2N塩酸を加え、酢酸エチルで抽出した。抽出液を炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄、乾燥、濃縮後、残渣をシリカゲルクロマトグラフィー(ヘキサン-酢酸エチル、2:1)で精製し、化合物(12)(1.14g;収率91%)を得た。融点67-69℃。

15 第3工程

化合物(12)(1.03g、3.31mmol)のトルエン(10ml)溶液に、プロモ酢酸 tープチル(0.70ml、4.30mmol)、硫酸水素テトラプチルアンモニウム(170mg、0.5mmol)、50%水酸化ナトリウム(1.5ml)を加え、室温で18時間激しく攪拌した。反応混合物をトルエンで抽出し、水、飽和食塩水で順次洗浄後、乾燥、濃縮した。残渣をシリカゲルクロマトグラフィー(ヘキサンー酢酸エチル、4:1)で精製し、化合物(13)(1.32g;収率94%)を得た。

第4工程

25 化合物(13)(1.3g、3.07mmol)のトルエン(3ml)溶液に、トリフルオロ酢酸(3.5ml、46mmol)を加え、65℃で3.5時間加熱攪拌した。反応液を減圧下濃縮し、残渣にメタノール(30ml)と濃硫酸(0.

33ml)を加え、1時間加熱還流した。反応混合物を濃縮後、トルエンに溶解し、トリエチルアミン(4.3ml、30mmol)ついで炭酸水素ナトリウム水溶液を加えた。トルエン層を分離し、水、飽和食塩水で順次洗浄、乾燥、濃縮し、化合物(14)(697mg;収率81%)を得た。

5

第5工程

化合物(14)(141mg、0.50mmol)のTHF(4ml)溶液に、5-フルオロベンゾチオフェン-3-カルボン酸(98mg、0.50mmol)、1-ヒドロキシベンゾトリアゾール(7mg、0.05mmol)を加え、さらに氷冷下1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド(93mg、0.6mmol)を加えた。反応混合物を室温で16時間攪拌した後、酢酸エチルで希釈し、希塩酸、炭酸水素ナトリウム水溶液で順次洗浄、乾燥、濃縮した。残渣をシリカゲルクロマトグラフィー(ヘキサン-酢酸エチル、83:17)で精製し、化合物(15)(93mg;収率40%)を得た。

15

20

10

第6工程

化合物(15)(93mg、0.20mmol)のTHF(1ml)ーメタノール(2ml)溶液に、1N水酸化ナトリウム水溶液(0.5ml、0.5mmol)を加え、室温で18時間攪拌した。反応液に2N塩酸を加え酸性とした後、酢酸エチルで抽出し、抽出液を水、飽和食塩水で順次洗浄し、化合物(IIbー28)(82mg;収率91%)を得た。

実施例4 化合物(IIa-52)の合成

第1工程

2-(1,3-ジオキソラン-2-イル) エチルトリフェニルホスホニウムブロミド(13.28g、30.0mmol)のTHF(60ml)懸濁液を-30℃に冷却し、カリウム tーブトキシド(6.73g、60.0mmol)を加え、-30℃から0℃で1時間攪拌した。反応混合物を再び-25℃に冷却し、化合物(10)(5.62g、20.0mmol)のTHF(40ml)溶液を15分かけて滴下した。0℃まで昇温し、さらに1.5時間攪拌した後、反応液を水で希釈し、酢酸エチルで抽出、抽出液を水、飽和食塩水で洗浄、乾燥、濃縮した。得られた残渣をシリカゲルクロマトグラフィー(ヘキサン-酢酸エチル、85:15)で精製し、化合物(16)(6.27g;収率86%)を得た。

第2工程

10

化合物(16)(4.10g、11.2mmol)のメタノール(41ml)溶液に、10%パラジウムー炭素(0.21g)を加え、水素雰囲気下、2時間攪拌した。反応液をろ過、濃縮し、残渣(4.12g;収率100%)を得た。この粗生成物(3.68g、10.0mmol)のアセトンー水(4:1、50ml)溶液に、pートルエンスルホン酸ピリジニウム(503mg、2.0mm
 ol)を加え、16時間加熱還流した。反応液を水で希釈し、酢酸エチルで抽出、

抽出液を水、飽和食塩水で洗浄、乾燥、濃縮した。得られた残渣のトルエン(3 5 m l) 溶液に、(トリフェニルホスホラニリデン) 酢酸メチル(2.93 g、8.76 m m o l) を加え、室温で18時間攪拌した。酢酸エチルで希釈後、水、飽和食塩水で洗浄、乾燥、濃縮した。残渣をシリカゲルクロマトグラフィー(ヘキサン-酢酸エチル、85:15) で精製し、化合物(17)(2.71 g;収率71%)を得た。

第3工程

化合物(17)(2.35g、6.19mmol)のジクロロメタン(38m 10 1)溶液に、トリフルオロ酢酸(3.82ml、49.5mmol)を加え、室 温で3時間攪拌した。反応混合物を減圧下濃縮後、トルエン(50ml)と水(1 0ml)に溶解し、水層がアルカリ性(pH=10)になるまで2N水酸化ナト リウムを加えた。トルエン層を分離後、水、飽和食塩水で洗浄、乾燥、濃縮し、 化合物(18)(1.70g、収率98%)を得た。

15

20

25

第4工程

化合物(18)(280mg、1.0mmol)のTHF(5ml)溶液に、5-アセトキシベンゾフラン-3-カルボン酸(220mg、1.0mmol)、1-ヒドロキシベンゾトリアゾール(13mg、0.1mmol)を加え、さらに氷冷下1-エチル-3-(3-ジメチルアミノブロビル)カルボジイミド(200mg、1.3mmol)を加えた。反応混合物を室温で16時間攪拌した後、トルエンで希釈し、希塩酸、炭酸水素ナトリウム水溶液で順次洗浄、乾燥、濃縮した。残渣をシリカゲルクロマトグラフィー(ヘキサンー酢酸エチル、3:1)で精製し、化合物(19)(422mg;収率88%)を得た。融点119-120℃。

第5工程

化合物(19)(422mg、0.88mmol)のTHF(5.6ml)溶液に、1N水酸化リチウム水溶液(3.0ml、3.0mmol)を加え、室温で20時間攪拌した。反応液に2N塩酸を加え酸性とした後、酢酸エチルで抽出し、抽出液を水、飽和食塩水で順次洗浄した。乾燥、濃縮後、残渣をヘキサンー酢酸エチルから結晶化し、化合物(IIa-52)(327mg;収率87%)を得た。融点159-160℃。

5

上記実施例と同様にして製造した化合物および物性値を以下に示す。また、以下に表1以降で用いるIa、Ib、・・・、IIe、IIfの各記号の表わす部 10 分構造を示す。

表 1

$R^1 \setminus \bigcup_{\substack{0 \leq 1 \\ R^3}}$	₹¹ Ia	Ib	Ic	Id	Ie	If
S	Ia-1	Ib-1	Ic-1	Id-1	Ie-1	If-1
√s CH₃	Ia-2	Ib-2	Ic-2	Id-2	Ie-2	If-2
H ₃ C S	Ia-3	Ib-3	Ic-3	Id-3	Ie-3	If-3
S CH ₃	Ia-4	Ib-4	Ic-4	Id-4	Ie-4	If-4
S CH ₃	Ia-5	Ia-5	Ic-5	Id-5	Ie-5	If-5
CH ₃ CH ₃ CH ₃	Ia-6	Ib-6	Ic-6	Id-6	Ie-6	If-6
H ₃ C S	Ia-7	Ib-7	Ic-7	Id-7	Ie-7	If-7
CH₃	Ia-8	· Ib-8	Ic-8	Id-8	Ie-8	If-8
S Br	Ia-9	Ib-9	Ic-9	Id-9	Ie-9	If-9
S OCH₃	Ia-10	Љ-10	Ic-10	Id-10	Ie-10	If-10

表 2

O_ R	11	·····			_	
R^1 $\bigcap_{R^3}^{NH}$	Ia	Ib	Ic	Id	Ie	If
S SCH₃	Ia-11	Гь-11	Ic-11	Id-11	Ie-11	If-11
	Ia-12	Ib-12	Ic-12	Id-12	Ie-12	If-12
S CH ₃	Ia-13	Ib-13	Ic-13	Id-13	Ie-13	If-13
SOH	Ia-14	Ib-14	Ic-14	Id-14	Ie-14	If-14
S OCH3	Ia-15	Ia-15	Ic-15	Id-15	Ie-15	If-15
SOH	Ia-16	Ib-16	Ic-16	Id-16	Ie-16	If-16
)S	Ia-17	Ib-17	Ic-17	Id-17	Ie-17	If-17
H ₀ C S	Ia-18	Ib-18	Ic-18	Id-18	Ie-18	If-18
S CH ₃	Ia-19	ľb-19	Ic-19	Id-19	Ie-19	If-19
S _{CH3}	Ia-20	Гь-20	Ic-20	Id-20	Ie-20	Ief-20

表 3

			·			
R^1 \bigcirc	Ia	Ib	Ic	Id	Ie	If
OH S	Ia-21	Ib-21	Ic-21	Id-21	Ie-21	If-21
SOH	Ia-22	Ib-22	Ic-22	Id-22	Ie-22	If-22
SOH	Ia-23	Ib-23	Ic-23	Id-23	Ie-23	If-23
SOH	Ia-24	Ib-24	Ic-24	Id-24	Ie-24	If-24
OAc	Ia-25	Ia-25	Ic-25	Id-25	Ie-25	If-25
S OCH3	Ia-26	Ib-26	Ic-26	Id-26	Ie-26	If-26
S F	Ia-27	Ib-27	Ic-27	Id-27	Ie-27	If-27
S F	Ia-28	Ib-28	Ic-28	Id-28	Ie-28	If-28
S o	Ia-29	Ib-29	Ic-29	Id-29	Ie-29	If-29
S Br	Ia-30	Ib-30	Ic-30	Id-30	Ie-30	If-30

表 4

R^1 $\bigcap_{NH}^{O \times R^3}$	Ia	Ib	Ic	Id	Ie	If
Ş	Ia-31	Ib-31	Ic-31	Id-31	Ie-31	If-31
S.	Ia-32	Ib-32	Ic-32	Id-32	Ie-32	If-32
	Ia-33	Ib-33	Ic-33	Id-33	Ie-33	If-33
	Ia-34	Ib-34	Ic-34	Id-34	Ie-34	If-34
S CH ₃	Ia-35	Ia-35	Ic-35	Id-35	Ie-35	If-35
S _{CH3}	Ia-36	Ib-36	Ic-36	Id-36	Ie-36	If-36
S Br	Ia-37	Ib-37	Ic-37	Id-37	Ie-37	If-37
S _{Br}	Ia-38	Ib-38	Ic-38	Id-38	Te-38	If-38
S OCH3	Ia-39	Ib-39	Ic-39	Id-39	Ie-39	If-39
SCH ₃	Ia-40	Ib-40	Ic-40	Id-40	Ie-40	If-40

表 5

\mathbb{R}^1 $\mathbb{Q}^{0 \times 1}$	₹ ¹ Ia				_	
\mathbb{R}^1 $\mathbb{C}_{\mathbb{R}^3}$		Ib	Ic	Id	Ie	If
S	Ia-41	Ib-41	Ic-41	Id-41	Ie-41	If-41
SS	Ia-42	Т b-42	Ic-42	Id-42	Ie-42	If-42
S	Ia-43	Ib-43	Ic-43	Id-43	Ie-43	If-43
	Ia-44	Ib-44	Ic-44	Id-44	Ie-44	If-44
	Ia-45	Ia-45	Ic-45	Id-45	Ie-45	If-45
	Ia-46	Ib-46	Ic-46	Id-46	Ie-46	If-46
L°C)	Ia-47	Ть-47	Ic-47	Id-47	Ie-47	If-47
○ CH ₃	Ia-48	Ib-48	Ic-48	Id-48	Ie-48	If-48
CH₂OCH₃	Ia-49	Ib-49	Ic-49	Id-49	Ie-49	If-49
OH	Ia-50	Ib-50	Ic-50	Id-50	Ie-50	If-50

表 6

	R ¹ I	Ib	Ic	Id	Ie	If
LO COH	Ia-51	Ib-51	Ic-51	Id-51 [.]	Ie-51	If-51
ОН	Ia-52	Ib-52	Ic-52	Id-52	Ie-52	If-52
ОН	Ia-53	Ib-53	Ic-53	Id-53	Ie-53	If-53
₽	Ia-54	Ib-54	Ic-54	Id-54	Ie-54	If-54
F	Ia-55	Ia-55	Ic-55	Id-55	Ie-55	If-55
	Ia-56	Ib-56	Ic-56	Id-56	Ie-56	If-56
	Ia-57	Ib-57	Ic-57	Id-57	Ie-57	If-57
J°O	Ia-58	Ib-58	Ic-58	Id-58	Ie-58	If-58
H N N	Ia-59	Ib-59	Ic-59	Id-59	Ie-59	If-59
ÇH₃	Ia-60	_ Ib-60	Ic-60	Id-60 .	Ie-60	If-60

表 7

R^1 O_{R^3}	Ia	Ib	Ic	Id	Ĭe	If
H	Ia-61	Ib-61	Ic-61	Id-61	Ie-61	If-61
ÇH3	Ia-62	Ib-62	Ic-62	Id-62	Ie-62	If-62
IN H	Ia-63	Ib-63	Ic-63	Id-63	Ie-63	If-63
IN THE SECOND SE	Ia-64	Ib-64	Ic-64	Id-64	Ie-64	If-64
N H	Ia-65	Ia-65	Ic-65	Id-65	Ie-65	If-65
N S	Ia-66	Ib-66	Ic-66	Id-66	Ie-66	If-66
S N H	Ia- 67	Ib-67	Ic-67	Id-67	Ie-67	If-67
S N	Ia-68	Ib-68	Ic-68	Id-68	Ie-68	If-68
SNN CH₃	Ia-69	Ib-69	Ic-69	Id-69	Ie-69	If-69
ÇH ₃	Ia-70	Ib-70	Ic-70	Id-70	Ie-70	If-70

表 8

R^1 $\bigcap_{P^3}^{O}$	ı Ia	Ib	Ic	Id	Ie	If
S N	Ia-71	Ib-71	Ic-71	Id-71	Ie-71	If-71
S CH ₃	Ia-72	Ib-72	Ic-72	Id-72	Ie-72	If-72
N S CH3	Ia-73	Ib-73	Ic-73	Id-73	Ie-73	If-73
T _s T _s	Ia-74	Ib-74	Ic-74	Id-74	Ie-74	If-74
S	Ia-75	Ia-75	Ic-75	Id-75	Ie-75	If-75
HZ	Ia-76	Ть-76	Ic-76	Id-76	Ie-76	If-76
HN	Ia-77	T b-77	Ic-77	Id-77	· Ie-77	If-77
ÇH₃ N	Ia-78	Ib-78	Ic-78	Id-78	Ie-78	Íf-78
OCH ₃	Ia-79	Ib-79	Ic-79	Id-79	Ie-79	If-79
CH ₃ OCH ₃	Ia-80	Ib-80	Ic-80	Id-80	Ie-80	If-80

表 9

$R^1 \setminus \bigcup_{R^3}^{O \searrow R^1}$	Ia	Ib	Ic	Id	Ie	If
СН₃	Ia-81	Ib-81	Ic-81	Id-81	Ie-81	If-81
NO ₂	Ia-82	Ib-82	Ic-82	Id-82	Ie-82	If-82
NHAC	Ia-83	Ib-83	Ic-83	Id-83	Ie-83	If-83
NHCO₂Et	Ia-84	Ib-84	Ic-84	Id-84	Ie-84	If-84
NHSO ₂ CH ₃	Ia-85	Ib-85	Ic-85	Id-85	Ie-85	If-85
NHCONH₂	Ia-86	Ib-86	Ic-86	Id-86	Ie-86	If-86
NHCONHCH3	Ia-87	Ib-87	Ic-87	Id-87	Ie-87	If-87
NHCON(CH ₃) ₂	Ia-88	Ib-88	Ic-88	Id-88	Ie-88	If-88
NHSO ₂ NH ₂	Ia-89	Т b-89	Ic-89	Id-89	Ie-89	If-89
NHSO ₂ N(CH ₃) ₂	Ia-90	Ib-90	Ic-90	Id-90	Ie-90	If-90

表10

R^1 NH	Ia	Ib	Ic	Id	Ie	If
NHSO ₂ NH ₂	Ia-91	ľb-91	Ic-91	Id-91	Ie-91	If-91
NHCO₂Et	Ia-92	Ib-92	Ic-92	Id-92	Ie-92	If-92
NHCONH₂	Ia-93	Ib-93	Ic-93	Id-93	Ie-93	If-93
NHAC	Ia-94	Ib-94	Ic-94	Id-94	Ie-94	If-94
NHCO₂Et	Ia-95	Ib-95	Ic-95	Id-95	Ie-95	If-95
NHSO₂CH ₃	Ia-96	Ib-96	Ic-96	Id-96	Ie-96	If-96
NHCONH₂	Ia-97	Ib-97	Ic-97	Id-97	Ie-97	If-97
S CONH₂	Ia-98	Ib-98	Ic-98	Id-98	Ie-98	If-98
CONH₂	Ia-99	Гь-99	Ic-99	Id-99	Ie-99	If-99
S _{CO₂} H	Ia-100	Љ-100	Ic-100	Id-100	Ie-100	If-100

表11

			·			
$R^1 \setminus \bigoplus_{R^3}^{O \curvearrowright R^1}$	Ia	Ib	Ic	Id	Ie	If
CONHOCH3	Ia-101	Ib-101	Ic-101	Id-101	Ie-101	If-101
CONHSO₂CH₃	Ia-102	Гь-102	Ic-102	Id-102	Ie-102	If-102
S CONH ₂	Ia-103	Ib-103	Ic-103	Id-103	Ie-103	If-103
CONH₂ S	Ia-104	Ib-104	Ic-104	Id-104	Ie-104	If-104
S CONH ₂	Ia-105	Ib-105	Ic-105	Id-105	Ie-105	If-105
S CONHCH₃	Ia-106	Ib-106	Ic-106	Id-106	Ie-106	If-106
CON(CH ₃) ₂	Ia-107	Ib-107	Ic-107	Id-107	Ie-107	If-107
CONHET	Ia-108	Ib-108	Ic-108	Id-108	Ie-108	If-108
SO ₂ NH ₂	Ia-109	Ib-109	Ic-109	Id-109	Ie-109	If-109
SO ₂ NH ₂	Ia-110	Ib-110	Ic-110	Id-110	Ie-110	If-110

表12

$R^1 \setminus \bigcup_{R^3}^{O \downarrow F}$	l ¹	Ib	Ic	Id	Ie	If
SO ₂ NH ₂	Ia-111	Ib-111	Ic-111	Id-111	Ie-111	If-111
SO ₂ NH ₂	Ia-112	Ib-112	Ic-112	Id-112	Ie-112	If-112
SO ₂ NH ₂	Ia-113	Ib-113	Ic-113	Id-113	Ie-113	If-113
SO ₂ N(CH ₃) ₂	Ia-114	Ib-114 .	Ic-114	Id-114	Ie-114	If-114
CH ₃	Ia-115	Ib-115	Ic-115	Id-115	Ie-115	If-115
	Ia-116	Ib-116	Ic-116	Id-116	Ie-116	If-116
CH ₃	Ia-117	Ib-117	Ic-117	Id-117	Ie-117	If-117
S	Ia-118	Ib-118	Ic-118	Id-118	Ie-118	If-118
S CI	ľa-119	Ib-119	Ic-119	Id-119	Ie-119	If-1 19
S F	la-120	Ib-120	Ic-120	Id-120	Ie-120	If-120

表 1 3

	.			· · · · · · · · · · · · · · · · · · ·		
R^1 R^3	Ia	Ib	Ic	Id	Ie	If
S CH ₃ CH ₃	Ia-121	Ib-121	Ic-121	Id-121	Ie-121	If-121
S CH ₃ F	Ia-122	Ib-122	Ic-122	Id-122	Ie-122	If-122
∫ ^S F	Ia-123	Ib-123 ·	Ic-123	Id-123	Ie-123	If-123
S F	Ia-124	Ib-124	Ic-124	Id-124	Ie-124	If-124
CH ₃	Ia-125	Ib-125	Ic-125	Id-125	Ie-125	If-125
S CH ₃	Ia-126	Ib-126	Ic-126	Id-126	Ie-126	If-126
S CH ₃	Ia-127	Ib-127	Ic-127	Id-127	Ie-127	If-127
S	Ia-128	Ib-128	Ic-128	Id-128	Ie-128	If-128
SOMe	Ia-129	Ib-129	Ic-129	Id-129	Ie-129	If-129
S OCH₃ OCH₃	Ia-130	Ib-130	Ic-130	Id-130	Ie-130	If-130

表 1 4

$R^1 \setminus \bigoplus_{H^3}^{O \setminus H}$	Ia	Ib	Ic	Id	Ie	If
S OCH ₃	Ia-131	Ib-131	Ic-131	Id-131	Ie-131	If-131
NHAc	Ia-132	Ib-132	Ic-132	Id-132	Ie-132	If-132
NHCO₂Et	Ia-133	Ib-133	Ic-133	Id-133	Ie-133	If-133
NHSO ₂ CH ₃	Ia-134	Ib-134	Ic-134	Id-134	Ie-134	If-134
NHCONH₂	Ia-135	Ib-135	Ic-135	Id-135	Ie-135	If-135
NHAC	Ia-136	ľb-136	Ic-136	id-136	Ie-136	If-136
NHCO₂Et	Ia-137	Ib-137	Ic-137	Id-137	Ie-137	If-137
NHSO₂CH₃	Ia-138	Ib-138	Ic-138	Id-138	Ie-138	If-138
NHCONH₂	Ia-139	Ib-139	Ic-139	Id-139	Ie-139	If-139
CONH ₂	Ia-140	Ib-140	Ic-140	Id-140	Ie-140	If-140

表 1 5

	-					
R^1 R^3	Ia	Ib	Ic	Id	Ie	If
CO ₂ H	Ia-141	Ib-141	Ic-141 ·	Id-141	Ie-141	If-141
CONH₂	Ia-142	Ib-142	Ic-142	Id-142	Ie-142	If-142
CONH₂ CONH₂	Ia-143	Ib-143	Ic-143	Id-143	Ie-143	If-143
CONH₂	Ia-144	Ib-144	Ic-144	Id-144	Ie-144	If-144
SO ₂ NH ₂	Ia-145	I b-145	Ic-145	Id-145	Ie-145	If-145
SO ₂ NH ₂	Ia-146	Ib-146	Ic-146	Id-146	Ie-146	If-146
	Ia-147	Ib-147	Ic-147	Id-147	Ie-147	If-147
CO ₂ H	Ia-148	Ib-148	Ic-148	Id-148	Ie-148	If-148
O_CO ₂ CH ₃	Ia-149	Ib-149	Ic-149	Id-149	Ie-149	If-149
NHCO₂Et	Ia-150	Љ-150	Ic-150	Id-150	Ie-150	If-150

表 1 6

\mathbb{R}^1 \mathbb{Q}^{0}	R ¹	Гь	Ic	Id	Ie	If
NHCONH₂	Ia-151	Гь-151	Ic-151	Id-151	Ie-151	If-151
NHSO₂NH₂	Ia-152	Ib-152	Ic-152	Id-152	Ie-152	If-152
S CONH2	Ia-153	Ib-153	Ic-153	Id-153	Ie-153	If-153
S SO ₂ NH ₂	Ia-154	Ib-154	Ic-154	Id-154	Ie-154	If-154
S SO₂NH₂	Ia-155	Ib-155	Ic-155	Id-155	Ie-155	If-155
S CO2H	Ia-156	Ib-156	Ic-156	Id-156	Ie-156	If-156
_S CONH₂	Ia-157	Г b-157	Ic-157	Id-157	Ie-157	If-157
солнон	Ia-158	Ib-158	Ic-158	Id-158	Ie-158	If-158
S S	Ia-159	Ib-159	Ic-159	Id-159	Ie-159	If-159
	Ia-160	Ib-160	Ic-160	Id-160	Ie-160	If-160

表17

R^1 NH	Ia	Ib	Ic	Id	Ie	If
S	Ia-161	Ib-161	Ic-161	Id-161	Ie-161	If-161
T _S	Ia-162	Ib-162	Ic-162	Id-162	Ie-162	If-162
	Ia-163	Ib-163	Ic-163	Id-163	Ie-163	lf-163
T _S	Ia-164	Ib-164	Ic-164	Id-164	Ie-164	If-164
√ _s ↓S	Ia-165	Ib-165	Ic-165	Id-165	Ie-165	If-165
<u>s</u> s	Ia-166	Тb-166	Ic-166	Ìd-166	Ie-166	If-166

表 1 8

R ¹ O R ¹	IIa	Пр	Пс	IId	Пе	IIf
√s ·	IIa-1	IIb-1	IIc-1	IId-1	IIe-1	IIf-1
S CH₃	Па-2	IIb-2	IIc-2	IId-2	IIe-2	IIf-2
H ₃ C	Па-3	IIb-3	IIc-3	IId-3	IIe-3	IIf-3
) S	IIa-4	IIb-4	IIc-4	IId-4	IIe-4	IIf-4
∠S、_CH₃	IIa-5	IIb-5	IIc-5	IId-5	IIe-5	IIf-5
CH ₃	IIa-6	IIb-6	Пс-6	IId-6	IIe-6	IIf-6
H ₃ C S	IIa-7	Пь-7	Пс-7	IId-7	IIe-7	Ш f -7
CH ₃	Па-8	ПЬ-8	Пс-8	IId-8	Пе-8	IIf-8
S Br	Па-9	IIb-9	Пс-9	II d-9	IIe-9	IIf-9
S_OCH ₃	IIa-10	Пь-10	IIc-10	Пd-10	IIe-10	IIf-10

表19

0 R1	IIa	ПР	Ис	IId	Пе	IJf
S SCH ₃	Па-11	Пb-11	Пс-11	Пd-11	Пе-11	IIf-11
	Па-12	IIb-12	IIc-12	IId-12	Пе-12	Пf-12
S CH ₃	Па-13	Пь-13	Ис-13	IId-13	Пе-13	IIf-13
SOH	Па-14	Пь-14	IIc-14	IId-14	Пе-14	Пf-14
S OCH3	Па-15	llb-15	IIc-15	IId-15	Пе-15	IIf-15
SOH	IIa-16	Пь-16	IIc-16	IId-16	Ис-16	IIf-16
, s	IIa-17	IIb-17	Пс-17	IId-17	Пе-17	IIf-17
H ₃ C S	Па-18	Hb-18	Пс-18	∐d-18	Пе-18	Пf-18
S CH ₈	Па-19	IIb-19	IIc-19	Пd-19	He-19	IIf-19
S CH ₃	Па-20	Пь-20	Ис-20	IId-20	He-20	IIf-20

表 2 0

R ¹ ON R	Па	ПР	IIc	IJď	IIe	Пf
OH	Па-21	Пь-21	Пс-21	IId-21	IIe-21	IIf-21
SOH	IIa-22	IIb-22	IIc-22	IId-22	IIe-22	IIf-22
SOH	Па-23	IIb-23	IIc-23	IId-23	IIe-23	IIf-23
ОН	IIa-24	IIb-24	IIc-24	IId-24	IIe-24	IIf-24
SOAC	Па-25	IIb-25	IIc-25	IId-25	He-25	IIf-25
S OCH3	IIa-26	IIb-26	Пс-26	IId-26	He-26	IIf-26
S F	Па-27	Ш ь-2 7	Пс-27	IId-27	Пе-27	IIf-27
S F	Па-28	Пь-28	Пс-28	IId-28	IIe-28	IIf-28
S Br	IIa-29	Пь-29	Пс-29	IId-29	IIe-29	IIf-29
S Br	Па-30	Пр-30	Пс-30	Пd-30	Пе-30	IIf-30

表21

R ¹ O R ¹	IIa	Пр	IIc	IId	IIe	IIf
Ş	Па-31	IIb-31	Пс-31	IId-31	Це-31	IIf-31
□ _S	IIa-32	Пь-32	IIc-32	IId-32	Пе-32	IIf-32
S	IIa-33	IIb-33	Пс-33	IId-33	IIe-33	IIf-33
	IIa-34	IIb-34	Пс-34	IId-34	Пе-34	IIf-34
S CH ₃	IIa-35	IIb-35	Пс-35	IId-35	Пе-35	IIf-35
CH ₃	IIa-36	IIb-36	Пс-36	IId-36	IIe-36	Пf-36
S. Br	IIa-37	IIb-37	Пс-37	IId-37	Пе-37	Uf-37
S _{Br}	IIa-38	Пь-38	Пс-38	Пd-38	Пе-38	Пf-38
S OCH3	IIa-39	Пь-39	Пс-39	IId-39	Пе-39	Hf-39
SCH ₃	IIa-40	Пь-40	Пс-40	IId-40	Пе-40	IIf-40

表 2 2

	IIa	Пр	Пс	IId	Пе	Пf
S	Па-41	Пь-41	IIc-41	IId-41	IIe-41	IIf-41
	Па-42	Пь-42	IIc-42	IId-42	IIe-42	IIf-42
s	IIa-43	IIb-43	Пс-43	IId-43	IIe-43	IIf-43
	Па-44	IIb-44	Пс-44	IId-44	IIe-44	IIf-44
	Па-45	IIb-45	IIc-45	IId-45	IIe-45	IIf-45
	Па-46	IIb-46	IIc-46	IId-46	IIe-46	IIf-46
ĵ	Па-47	ПЬ-47	IIc-47	IId-47	IIe-47	IIf-47
CH₃	Па-48	IIb-48	Пс-48	IId-48	IIe-48	IIf-48
CH ₂ OCH ₃	Па-49	Пь-49	Пс-49	IId-49	IIe-49	IIf-49
OH OH	IIa-50	IIb-50	Пс-50	IId-50	Пе-50	IIf-50

表 2 3

$\mathbb{R}^{1} \qquad \mathbb{R}^{3}$	Па	Пр	Ис	IId	IIe	Пf
OCOH	IIa-51	ПЬ-51	IIc-51	IId-51	IIe-51	IIf-51
ОН	IIa-52	IIb-52	IIc-52	IId-52	IIe-52	IIf-52
ОН	IIa-53	ПЬ-53	Пс-53	IId-53	IIe-53	IIf-53
P P F	IIa-54	IIb-54	IIc-54	IId-54	IIe-54	IIf-54
∫ F	IIa-55	Пb-55	IIc-55	IId-55	Пе-55	IIf-55
	IIa-56	IIb-56	IIc-56	IId-56	IIe-56	IIf-56
	IIa-57	IIb-57	IIc-57	IId-57	IIe-57	IIf-57
	Па-58	Ш-58	IIc-58	IId-58	IIe-58	IIf-58
H H	IIa-59	IIb-59	Ис-59	IId-59	IIe-59	IIf-59
N CH₃	Па-60	IIb-60	Пс-60	IId-60	Пе-60	IIf-60

表 2 4

$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$	IIa	Пь	IIc	IId	Пе	Пf
H	Па-61	ПЬ-61	IIc-61	IId-61	IIe-61	IIf-61
ÇH₃ N	Па-62	Пь-62	Пс-62	Пd-62	Пе-62	IIf-62
TN H	Па-63	IIb-63	IIc-63	IId-63	IIe-63	IIf-63
H	Па-64	II b-64	Пс-64	Пd-64	IIe-64	IIf-64
N H	IIa-65	IIb-65	Пс-65	IId-65	IIe-65	IIf-65
N S	Па-66	IIb-66	Пс-66	IId-66	Пе-66	IIf-66
SN H	IIa-67	IIb-67	IIc-67	IId-67	Пе-67	IIf-67
s	Па-68	IIb-68	Пс-68	IId-68	Пе-68	IIf-68
S ^N CH ₃	Па-69	ПЬ-69	IIc-69	IId-69	Пе-69	IIf-69
ÇH _S	IIa-70	Шь-70	IIc-70	Пd-70	Пе-70	IIf-70

表 2 5

$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$	IIa	ПЬ	He	IId	Пе	Пf
S N	Па-71	Пь-71	Пс-71	IId-71	IIe-71	IIf-71
S CH ₃	Па-72	Пь-72	Пс-72	IId-72	Пе-72	IIf-72
NN S	IIa-73	IIb-73	Пс-73	IId-73	Пе-73	IIf-73
\s\s\s\	IIa-74	Пь-74	Пс-74	IId-74	IIe-74	IIf-74
s	Па-75	ПЬ-75	Пс-75	IId-75	He-75	IIf-75
N H	Па-76	Шь-76	Пс-76	IId-76	IIe-76	II f- 76
H N	IIa-77	IIb-77	IIc-77	IId-77	Пе-77	IIf-77
ÇH ₃	Па-78	IIb-78	Пс-78	IId-78	Пе-78	IIf-78
OCH ₃	IIa-79	IIb-79	IIc-79	IId-79	Пе-79	IIf-79
OCH ₃	Па-80	ПР-80	IIc-80	Пd-80	Пе-80	IIf-80

表 2 6

$\mathbb{R}^{1} \qquad \mathbb{R}^{3}$	IIa	Пь	Hc	IId	IIe	Пf
CH ₃	Па-81	Пь-81	Пс-81	IId-81	Пе-81	IIf-81
NO ₂	IIa-82	Пь-82	Пс-82	IId-82	He-82	IIf-82
NHAC	Па-83	Пь-83	Пс-83	П d- 83	He-83	IIf-83
NHCO₂Et	Па-84	Пь-84	Пс-84	IId-84	Пе-84	IIf-84
NHSO₂CH₃	IIa-85	IIb-85	Пс-85	IId-85	Пе-85	IIf-85
NHCONH₂	Па-86	IIb-86	Пс-86	IId-86	Пе-86	IIf-86
NHCONHCH₃	Па-87	Пь-87	IIc-87	IId-87	Пе-87	IIf-87
NHCON(CH ₃) ₂	Па-88	Пь-88	Пс-88	Пd-88	Пе-88	IIf-88
NHSO ₂ NH ₂	Па-89	Пь-89	Пс-89	Пd-89	Пе-89	IIf-89
NHSO ₂ N(CH ₃) ₂	Па-90	Пь-90	Пс-90	Пd-90	Пе-90	IIf-90

表 2 7

P ¹ CyR ¹	Па	Пр	IIc	IId	IIe	Пf
NHSO₂NH₂	Па-91	Пь-91	IIc-91	Пd-91	Пе-91	IIf-91
NHCO₂Et	Па-92	Пь-92	Пс-92	IId-92	He-92	IIf-92
NHCONH₂	IIa-93	Пь-93	Пс-93	IId-93	IIe-93	IIf-93
NHAC	Па-94	IIb-94	Пс-94	Пd-94	. Пе-94	IIf-94
NHCO₂Et	IIa-95	IIb-95	Пс-95	IId-95	IIe-95	IIf-95
NHSO₂CH ₃	Па-96	IIb-96	Пс-96	IId-96	Пе-96	IIf-96
NHCONH₂	Па-97	IIb-97	Пс-97	IId-97	Пе-97	IIf-97
S CONH ₂	Па-98	IIb-98	Пс-98	IId-98	IIe-98	11f-98
S CONH₂	Па-99	IIb-99	IIc-99	IId-99	IIe-99	IIf-99
S _{CO₂} H	Па-100	Пь-100	Пс-100	Пd-100	Пе-100	IIf-100

表 2 8

R ¹ O R ³	IIa	Пь	IIc	ПФ	IIe	Пf
CONHOCH₃	Па-101	Пь-101	Пс-101	IId-101	Пе-101	IIf-101
CONHSO ₂ CH ₃	Па-102	Пь-102	IIc-102	Пd-102	Пе-102	Пf-102
S CONH ₂	IIa-103	IIb-103	Пс-103	Пd-103	He-103	IIf-103
CONH₂ S	IIa-104	Пь-104	Пс-104	∐ d-104	Пе-104	IIf-104
S CONH ₂	Па-105	Пь-105	. Пс-105	IId-105	Пе-105	IIf-105
CONHCH3	Па-106	IIb-106	Пс-106	Пd-106	IIe-106	IIf-106
CON(CH ₃) ₂	IIa-107	Ш ь-107	Пс-107	IId-107	IIe-107	IIf-107
CONHET	Па-108	Пь-108	Пс-108	Пd-108	Пе-108	IIf-108
SO ₂ NH ₂	IIa-109	IIb-109	IIc-109	IId-109	Пе-109	IIf-109
SO ₂ NH ₂	Па-110	Пь-110	IIc-110	Пd-110	Пе-110	IIf-110

表 2 9

\mathbb{R}^1 \mathbb{R}^3	Па	Пр	Hc	IId	Пе	Пf
SO ₂ NH ₂ CH ₃	Па-111	Пь-111	Пс-111	IId-111	Пе-111	IIf-111
SO ₂ NH ₂	Па-112	Пь-112	IIc-112	IId-112	Пе-112	IIf-112
SO ₂ NH ₂	IIa-113	Пь-113	IIc-113	IId-113	Пе-113	IIf-113
SO ₂ N(CH ₃) ₂	Па-114	Пь-114	IIc-114	IId-114	Пе-114	IIf-114
CH ₃	Па-115	Пь-115	IIc-115	IId-115	IIe-115	IIf-115
	Па-116	Шь-116	Ис-116	Пd-116	IIe-116	IIf-116
CH ₃	Па-117	IIb-117	Пс-117	IId-117	Пе-117	IIf-117
ſ ^s	Па-118	IIb-118	Пс-118	Пd-118	IIe-118	IIf-118
SCI	Па-119	Пь-119	IIc-119	Пd-119	IIe-119	Пf-119
S F	Па-120	Пь-120	Пс-120	Пd-120	Пе-120	IIf-120

表30

R ¹ O R ³	IIa ·	Пр	He	IId	He	Пf
CH ₃ CH ₃	IIa-121	Пь-121	IIc-121	Пd-121	Пе-121	IIf-121
S CH₃ F	Па-122	Пь-122	Цс-122	IId-122	IIe-122	IIf-122
S F F	IIa-123	ПЬ-123	IIc-123	IId-123	Пе-123	IIf-123
S F	IIa-124	Пь-124	IIc-124	IId-124	Пе-124	IIf-124
CH ₃	Па-125	Пь-125	Пс-125	IId-125	IIe-125	IIf-125
CH ₃	Па-126	Пь-126	IIc-126	Пd-126	Пе-126	IIf-126
S CH ₃	Па-127	Пь-127	Пс-127	IId-127	Пе-127	IIf-127
STOH	IIa-128	IIb-128	Пс-128	IId-128	IIe-128	IIf-128
S	Ha-129	Пь-129	Пс-129	IId-129	IIe-129	IIf-129
S OCH ₃	Па-130	IIb-130	Hc-130	Пd-130	IIe-130	IIf-130

表31

\mathbb{R}^1 \mathbb{R}^3	Па	ПР	Ис	Па	Пе	Пf
S OCH₃	Па-131	Пь-131	IIc-131	IId-131	Пе-131	IIf-131
NHAC	Па-132	Пь-132	Пс-132	Пd-132	Пе-132	IIf-132
NHCO ₂ Et	IIa-133	IIb-133	IIc-133	Пd-133	Пе-133	IIf-133
NHSO ₂ CH ₃	Па-134	ПЬ-134	Пс-134	Пd-134	Пе-134	IIf-134
NHCONH ₂	Ha-135	Пь-135	Пс-135	IId-135	Пе-135	IIf-135
NHAC	Па-136	Пь-136	IIc-136	IId-136	Пе-136	IIf-136
NHCO₂Et	Па-137	Пь-137	IIc-137	Пd-137	IIe-137	IIf-137
NHSO₂CH₃	IIa-138	Пь-138	IIc-138	Пd-138	He-138	IIf-138
NHCONH ₂	IIa-139	Пь-139	IIc-139	Пd-139	Пе-139	IIf-139
CONH₂	Па-140	Пь-140	IIc-140	Пd-140	Пе-140	IIf-140

表 3 2

$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$	На	Пь	Hc	IId	He	Hf
CO ₂ H	IIa-141	Пь-141	IIc-141	IId-141	IIe-141	IIf-141
CONH ₂	Па-142	IIb-142	IIc-142	Пd-142	Пе-142	IIf-142
CONH ₂	Па-143	IIb-143	IIc-143	IId-143	Пе-143	IIf-143
CONH₂	Па-144	Пь-144	IIc-144	IId-144	Пс-144	IIf-144
SO ₂ NH ₂	Па-145	ПЬ-145	Пс-145	IId-145	IIe-145	IIf-145
SO ₂ NH ₂	IIa-146	Пь-146	Пс-146	Пd-146	Пе-146	IIf-146
	IIa-147	Пь-147	IIc-147	IId-147	IIe-147	IIf-147
CO₂H	Па-148	Пь-148	Пс-148	∏d-148	Пе-148	IIf-148
CO ₂ CH ₃	IIa-149	IIb-149	Пс-149	IId-149	Пе-149	IIf-149
NHCO₂Et	Па-150	ПЬ-150	Пс-150	Пd-150	Пе-150	IIf-150

表 3 3

\mathbb{R}^1 \mathbb{R}^3	Па	Пр	IIc	IId	IIe	IIf
NHCONH₂	Па-151	Пь-151	Пс-151	IId-151	Пе-151	IIf-151
NHSO ₂ NH ₂	Па-152	Пь-152	IIc-152	IId-152	Пе-152	IIf-152
S CONH ₂	IIa-153	Пь-153	Пс-153	Пd-153	Пе-153	IIf-153
S SO₂NH₂	IIa-154	IIb-154	Пс-154	Пd-154	He-154	IIf-154
S SO ₂ NH ₂	Па-155	IIb-155	Пс-155	Пd-155	Пе-155	IIf-155
S CO₂H	Па-156	ПЬ-156	IIc-156	IId-156	IIe-156	Пf-156
CONH₂	IIa-157	Пь-157	Пс-157	IId-157	Пе-157	IIf-157
сохнон	IIa-158	Пь-158	Пс-158	Пd-158	Пе-158	IIf-158
S S	Па-159	Пь-159	IIc-159	IId-159	Пе-159	IIf-159
	Па-160	Пь-160	Пс-160	Пd-160	Пе-160	IIf-160

表34

R ¹ O R ³	IIa	Пр	Пс	IId	IIe	Пf
s	Па-161	Пь-161	Пс-161	IId-161	Пе-161	IIf-161
T _s ()	IIa-162	Пь-162	Пс-162	Цd-162	Пе-162	IIf-162
S	Па-163	Пь-163	Цс-163	IId-163	IIe-163	IIf-163
T _S	Па-164	IIb-164	IIc-164	Пd-164	IIe-164	IIf-164
, s	IIa-165	Пь-165	Пс-165	Пd-165	Пе-165	IIf-165
S S	Па-166	Пъ-166	IIc-166	IId-166	Пе-166	IIf-166

表 3 5

ルム版平旦	Adm All 1th
化合物番号	物性値
Ia-04	mp 175-178 °C; ¹H-NMR (CDCl ₃ -CD ₃ OD) δ 1.04 (1H, m), 1.25-
	1.49 (10H, m), 1.57-1.66 (2H, m), 2.00 (1H, m), 2.15-2.22 (2H, m),
	2.51 (1H, m), 3.82 (1H, m), 5.77 (1H, dt, J = 15.9, 1.5 Hz), 6.41
	(1H, d, J = 7.8 Hz), 6.95 (1H, dt, J = 15.9, 7.1 Hz), 7.34 (1H, dd, J = 2.0 4.8 Hz), 7.41 (1H, dd, J = 1.5 4.8 Hz), 7.00 (1H, dd, J = 1.5 4.8 Hz)
	= 3.0, 4.8 Hz), 7.41 (1H, dd, J = 1.5, 4.8 Hz), 7.90 (1H, dd, J = 1.5, 2.0 Hz), IP (Naid) 2262, 2105, 2627, 1607, 1618, 1554, 1948, and
	3.0 Hz); IR (Nujol) 3363, 3105, 2627, 1697, 1618, 1554, 1248 cm ⁻¹ ; [α] _D ²⁵ +44.3±0.8° (c=1.011, MeOH); 元素分析 ($C_{19}H_{25}NO_3S$) 計
	算值 (%): C, 65.68; H, 7.25; N, 4.03; S, 9.23 実測值 (%): C,
	异他 (%): C, 65.58; H, 7.18; N, 4.03; S, 9.23 美測値 (%): C, 65.58; H, 7.18; N, 4.03; S, 9.18
I a - 17	mp 155-157 °C; ¹ H-NMR (CDCl ₃ -CD ₃ OD) δ 1.04 (1H, m), 1.22-
la-11	1.53 (10H, m), 1.60-1.71 (2H, m), 2.02 (1H, m), 2.17-2.23 (2H, m),
•	2.58 (1H, m), 3.92 (1H, m), 5.78 (1H, dt, J = 15.6, 1.5 Hz), 6.33
	(1H, d, J = 7.5 Hz), 6.97 (1H, dt, J = 15.6, 6.9 Hz), 7.38-7.49 (2H,
	m), 7.86-7.89 (3H, m), 8.30 (1H, dd, $J = 0.9$, 6.9 Hz); IR (Nujol)
	3276, 2671, 1693, 1622, 1529, 1421, 1377, 1298, 1277, 1254 cm ⁻¹ ;
	[a] _p ²⁵ +38.5±0.8° (c=1.018, MeOH); 元 素 分 析
	(C ₂₃ H ₂₇ NO ₃ S·0.2H ₂ O) 計算值 (%): C, 68.87; H, 6.88; N, 3.49; S,
	7.99 実測値 (%): C, 68.93; H, 7.01; N, 3.55; S, 7.87
Ia-20	mp 129-131 °C; ¹ H-NMR (CDCl ₃) δ 1.01 (1H, m), 1.26-1.52 (10H,
	m), 1.60-1.66 (2H, m), 2.02 (1H, m), 2.18-2.25 (2H, m), 2.49 (3H,
	s), 2.58 (1H, m), 3.95 (1H, m), 5.80 (1H, d, $J = 15.6$ Hz), 6.06 (1H,
1	d, $J = 7.8$ Hz), 7.04 (1H, dt , $J = 15.6$, 7.1 Hz), 7.23 (1H, dd , $J = 15.6$)
	1.2, 8.4 Hz, $7.74 (1H, d, J = 8.4 Hz)$, $7.80 (1H, s)$, $8.14 (1H, s)$;
	IR (Nujol) 3269, 3078, 2677, 1697, 1649, 1624, 1539, 1437, 1377,
	1298, 1281 cm ⁻¹ ; [α] _D ²⁵ +32.0±0.7° (c=1.005, MeOH); 元素分析
	(C ₂₄ H ₂₉ NO ₃ S) 計算值 (%): C, 70.04; H, 7.10; N, 3.40; S, 7.79 実
<u> </u>	測值 (%): C, 69.83; H, 7.10; N, 3.43; S, 7.64
Ia-28	mp 138-140 °C; ¹ H-NMR (CDCl ₃) δ 1.02 (1H, m), 1.21-1.52 (10H,
ĺ	m), 1.59-1.70 (2H, m), 2.01 (1H, m), 2.17-2.24 (2H, m), 2.56 (1H,
	m), 3.92 (1H, m), 5.79 (1H, dt, J = 15.6, 1.5 Hz), 6.14 (1H, d, J =
j	8.1 Hz), 7:03 (1H, dt, $J = 15.6$, 7.1 Hz), 7:16 (1H, td, $J = 8.6$, 2.7
	Hz), 7.77 (1H, dd, $J = 4.8$, 8.6 Hz), 7.91 (1H, s), 8.07 (1H, dd, $J = 2.7$, 10.2 Hz); IR (Nujol) 3276, 2671, 1695, 1624, 1533, 1442,
[1433, 1296, 1277, 1246, 1200 cm ⁻¹ ; $[\alpha]_0^{25} + 35.6 \pm 0.8^{\circ}$ (c=1.014,
	MeOH); 元素分析 (C ₂₃ H ₂₆ FNO ₈ S·0.2H ₂ O) 計算值 (%): C, 65.91;
	H, 6.35; F,4.53; N, 3.34; S, 7.65 実測値 (%): C, 65.99; H, 6.38;
	F,4.42; N, 3.39; S, 7.57
I a - 3 4	mp 172-173 °C; ¹ H-NMR (CDCl ₃ -CD ₃ OD) δ 1.08 (1H, m), 1.29-
	1.55 (10H, m), 1.60-1.69 (2H, m), 2.03 (1H, m), 2.14-2.21 (2H, m),
}	2.60 (1H, m), 3.96 (1H, m), 5.76 (1H, dt, J = 15.6,1.5 Hz), 6.57
	(1H, d, J = 7.5 Hz), 6.97 (1H, dt, J = 15.6, 7.1 Hz), 7.38 (1H, d, J)
	= 5.7 Hz), $7.42 (1H, t, J = 7.8 Hz$), $7.59 (1H, d, J = 5.7 Hz$), 7.65
	(1H, d, J = 6.9 Hz), 7.95 (1H, d, J = 7.8 Hz); IR (Nujol) 3302,
	$[2698, 1739, 1693, 1657, 1622, 1581, 1568, 1547, 1205 cm-1; [\alpha]_{D}^{25}]$
	+35.0±0.7° (c=1.013, MeOH); 元索分析 (C ₂₃ H ₂₇ NO ₃ S·0.2H ₂ O) 計
	算值 (%): C, 68.87; H, 6.88; N, 3.49; S, 7.99 実測値 (%): C,
	68.92; H, 7.05; N, 3.44; S, 7.67

表36

化合物番号	物性值
Ia-49	¹ H-NMR (CDCl ₃) δ 1.02 (1H, m), 1.29-1.74 (12H, m), 2.02 (1H,
	m), 2.17-2.24 (2H, m), 2.56 (1H, m), 3.44 (3H, s), 3.96 (1H, m),
	4.79 (2H, s), 5.79 (1H, dt, J = 15.6, 1.2 Hz), 5.98 (1H, d, J = 7.8
	$ Hz\rangle$, 7.01 (1H, dt, $J = 15.6$, 7.2 Hz), 7.33-7.40 (2H, m), 7.77 (1H,
	dd, J = 7.2, 2.4 Hz), 8.14 (1H, s); IR (CHCl ₃) 3442, 2682, 1695, 1652, 1573, 1508, 1425, 1284, 1205, 1120 cm ⁻¹ ; $[\alpha]_D^{25.0} + 31.0 \pm 0.7^{\circ}$
	(c=1.009, MeOH); 元素分析 (C ₂₅ H ₃₁ NO ₅ ·0.5H ₂ O) 計算值 (%): C,
	69.10; H, 7.42; N, 3.22 実測値 (%): C, 68.83; H, 7.48; N, 3.30
Ia-51	¹ H-NMR (CDCl ₃ -CD ₃ OD) δ 1.03 (1H, m), 1.20-1.51 (9H, m), 1.59-
	1.71 (3H, m), 2.01 (1H, d, $J = 3.6$ Hz), $2.15-2.22$ (2H, m), 2.56
	(1H, s), 3.90 $(1H, m)$, 5.77 $(1H, d, J = 15.6 Hz)$, 6.90 $(1H, dd, J = 15.6 Hz)$
	[2.1, 8.4 Hz), 6.96 (1H, dt, J = 15.6, 6.9 Hz), 6.99 (1H, d, J = 2.1)
	Hz), 7.58 (1H, d, J = 8.4 Hz), 8.01 (1H, s); IR (KBr) 3350, 3141,
	1695, 1628, 1560, 1523, 1493, 1441, 1367, 1279, 1225, 1136, 1124 cm ⁻¹ ;
	cm ⁻⁺ ;
	(O ₂₃ 11 ₂₇ 11O ₅ 0.511 ₂ O) 日 好個 (N). O, 08.57, 11, 0.51, N, 3.48 美術 値 (%): C, 68.47; H, 6.91; N, 3.66
I a - 5 2	¹ H-NMR (CDCl ₃ -CD ₃ OD) δ 1.02 (1H, m), 1.22-1.48 (9H, m), 1.57-
	1.60 (3H, m), 1.98 (1H, d, J = 3.3 Hz), 2.11-2.18 (2H, m), 2.53
	(1H, s), 3.89 (1H, m), 5.75 (1H, dd, J = 1.5, 15.3 Hz), 6.31 (1H, d, J)
	J = 7.8 Hz), 6.90 (1H, dd, $J = 2.4$, 8.7 Hz), 6.96 (1H, dt, $J = 15.3$,
	6.9 Hz), $7.33 (1H, d, J = 8.7 Hz$), $7.43 (1H, d, J = 2.4 Hz$), $8.07 (1H, d)$
	(1H, s); IR (KBr) 3347, 1695, 1635, 1558, 1524, 1462, 1309, 1271,
	1192, 1173, 1134 cm ⁻¹ ; [α] _D ²⁵ +20.1±0.6° (c=1.013, MeOH); 元素分
	析 (C ₂₃ H ₂₇ NO ₅ ·0.4H ₂ O) 計算値 (%): C, 68.27; H, 6.92; N, 3.46 実
I a - 5 4	測值 (%): C, 68.12; H, 7.00; N, 3.59
1 a - 5 4	TH-NMR (CDCl ₃) δ 1.05 (1H, m), 1.23-1.72 (10H, m), 2.02 (1H, m), 2.18-2.25 (2H, m), 2.55 (1H, m), 3.94 (1H, m), 5.79 (1H, dt, J
	= 15.6, 1.5 Hz), 5.91 (1H, d, J = 8.1 Hz), 7.03 (1H, dt, J = 15.6, 6.9)
	Hz), $7.09-7.16$ (1H, m), 7.25 (1H, dd, $J = 9.0$, 1.8 Hz), 7.84 (1H,
	dd, $J = 9.0$, 5.4 Hz), 8.06 (1H, s); IR (CHCl _s) 3442, 2680, 1695,
	1652, 1563, 1506, 1257, 1224, 1218, 1133, cm ⁻¹ ; $[\alpha]_{D}^{25.0} + 25.4 \pm 0.7^{\circ}$
	(c=1.005, MeOH); 元素分析 (C ₂₃ H ₂₆ FNO ₄ ·0.1H ₂ O) 計算值 (%):
	C, 68.85; H, 6.58; F, 4.73; N, 3.49 実測値 (%): C, 68.65; H, 6.43;
<u></u>	F, 4.59; N, 3.60
Ia-56	¹ H-NMR (CDCl ₃) δ 1.12 (1H, m), 1.29-1.53 (9H, m), 1.60-1.74
	(3H, m), 2.04 (1H, d, J = 3.6 Hz), 2.16-2.22 (2H, m), 2.57 (1H, s), 4.03 (1H, m), 5.77 (1H, d, J = 15.6 Hz), 6.89 (1H, d, J = 2.1 Hz),
	7.02 (1H, dt, $J = 15.3$, 7.2 Hz), 7.36 (1H, t, $J = 7.5$ Hz), 7.57 (1H,
	d, $J = 7.8$ Hz), 7.74 (1H, dd , $J = 1.2$, 7.5 Hz), 7.74 (1H, d , $J = 2.1$
1	Hz), 8.11 (1H, dd, $J = 1.2$, 7.5 Hz); IR (CHCl ₃) 3435, 2679, 1695,
	1653, 1595, 1547, 1533, 1475, 1458, 1421, 1306, 1286, 1167, 1120
	cm ⁻¹ ; [α] _D ^{25.5} +47.7±0.9° (c=1.003, MeOH); 元 索 分 析
	(C ₂₃ H ₂₇ NO ₄ ·0.1H ₂ O) 計算値 (%): C, 72.08; H, 7.15; N, 3.65 実測値
	(%): C, 72.01; H, 7.11; N, 3.72

表 3 7

化合物番号	物性值
Ia-65	¹ H-NMR (CDCl ₃) δ 1.02 (1H, m), 1.27-1.71 (12H, m), 2.01 (1H, d,
	J = 3.9 Hz), 2.16-2.23 (2H, m), 2.48 (1H, br s), 3.92 (1H, m), 5.81
	(1H, d, J = 15.6 Hz), 6.08 (1H, d, J = 8.4 Hz), 6.80 (1H, d, J = 1.5)
	Hz), 6.98 (1H, dt, $J = 5.4$ and 0.6 Hz), 7.03 (1H, dt, $J = 15.6$ and
	6.9 Hz), 10.49 (1H, s); IR (CHCl ₃) 3446, 3215, 1726, 1693, 1643,
	1541, 1504, 1477, 1462, 1402, 1373, 1303, 1248 cm ⁻¹ ; [a] _D ²⁶ +67.8
	±1.1° (c=1.002, MeOH) 元素分析 (C ₂₁ H ₂₆ N ₂ O ₃ S·0.25 CH ₃ COOEt)
	計算値 (%): C, 63.43; H, 6.77; N, 6.72; S, 7.69 実測値 (%): C, 63.66; H, 6.60; N, 6.93; S, 7.60
Ia-66	¹ H-NMR (CDCl ₂) δ 1.02 (1H, m), 1.27-1.70 (12H, m), 2.01 (1H, d,
1 2 0 0	J = 3.6 Hz), 2.15-2.22 (2H, m), 2.51 (1H, br s), 3.92 (1H, m), 5.80
	(1H, d, J = 15.6 Hz), 6.08 (1H, d, J = 7.8 Hz), 6.77 (1H, d, J = 2.1)
	Hz), 6.88 (1H, d, $J = 5.4 Hz$), 6.95 (1H, d, $J = 5.4 Hz$), 7.03 (1H,
	dt, $J = 15.6$ and 6.9 Hz), 11.07 (1H, s); IR (CHCl ₃) 3444 , 3191 ,
	2677, 1693, 1639, 1543, 1518, 1475, 1458, 1421, 1396, 1378,
	1296, 1279, 1255 cm ⁻¹ ; [α] _D ²⁶ +55.3±1.0° (c=1.001, MeOH) 元素
	分析 (C ₂₁ H ₂₆ N ₂ O ₃ S·0.3H ₂ O) 計算值 (%): C, 64.36; H, 6.84; N,
	7.15; S, 8.18 実測値 (%): C, 64.22; H, 6.48; N, 7.13; S, 8.22
Ia-95	mp 113-114 °C; ¹ H-NMR (CDCl ₃ -DMSO-d ₆) δ 1.12 (1H, m), 1.26
	(3H, t, J = 6.9 Hz), 1.27-1.64 (12H, m), 2.01 (1H, m), 2.15-2.22
	(2H, m), 2.57 (1H, br s), 3.90 (1H, m), 4.14 (2H, q, J = 6.9 Hz),
	4.48 (2H, br s), 5.57 (1H, br s), 5.77 (1H, d, J = 15.6 Hz), 6.68 (1H, br s), 6.92 (1H, dd, J = 15.6, 7.2 Hz), 7.38 (1H, br d, J = 8.1
	[Hz), 7.81 (1H, d, $J = 8.1 Hz)$, 7.95 (1H, s), 8.33 (1H, br s); IR
	(CHCl ₉) 3446, 1703, 1653, 1514, 1435, 1300, 1223, 1134 cm ⁻¹ ;
	[a] _D ²³ +5.5±0.5° (c=1.008, MeOH) 元 素 分 析
	(C ₂₇ H ₃₄ N ₂ O ₅ S·0.3H ₂ O) 計算值 (%): C, 64.34; H, 6.92; N, 5.56; S,
	6.36 実測値 (%): C, 64.27; H, 6.69; N, 5.54; S, 6.37
I c - 04	mp 105-107 °C; ${}^{1}H$ -NMR (CDCl ₈) δ 1.02 (1H, m), 1.20-1.70 (12H,
	m), 2.00 (1H, m), 2.49 (1H, br s), 3.47-3.58 (2H, m), 3.91 (1H, m),
}	4.04 (2H, s), 6.07 (1H, d, J = 7.2 Hz), 7.34 (1H, dd, J = 3.0, 5.1
İ	Hz), 7.37 (1H, dd, J = 1.5, 5.1 Hz), 7.88 (1H, dd, J = 1.5, 3.0 Hz);
	IR (Nujol) 3354, 3093, 2553, 1730, 1612, 1556, 1240, 1138 cm ⁻¹ ;
	値 (%): C, 61.51; H, 7.17; N, 3.99; S, 9.12 実測値 (%): C, 61.45;
	旧 (20). C, 61.31, 11, 7.17, 11, 3.33, 5, 3.12 关例值 (20). C, 61.43, H, 7.32; N, 4.06; S, 9.10
I c - 1 7	mp 149-151 °C; ¹H-NMR (CDCl ₃) δ 1.05 (1H, m), 1.21-1.72 (12H,
	m), 2.02 (1H, m), 2.57 (1H, br s), 3.47-3.58 (2H, m), 3.98 (1H, m),
	4.03 (2H, s), 6.14 (1H, d, J = 7.8 Hz), 7.40 (1H, d, J = 7.8 Hz),
	7.44 (1H, dt, $J = 1.2$, 7.5 Hz), 7.46 (1H, dt, $J = 1.2$, 7.5 Hz), 7.87
	(1H, dd, J = 1.2, 7.5 Hz), 7.88 (1H, s), 8.29 (1H, dd, J = 1.2, 7.5)
	Hz); IR (Nujol) 3296, 2528, 1726, 1604, 1558, 1240, 1228, 1140
	cm ⁻¹ ; [a] _D ²⁵ +38.1±0.8° (c=1.013, MeOH); 元素分析 (C ₂₂ H ₂₇ NO ₄ S)
	計算值 (%): C, 65.18; H, 6.78; N, 3.49; S, 7.99 実測値 (%): C,
	65.62; H, 7.06; N, 3.51; S, 7.78

表38

化合物番号	物性値
I C ~ 1 9	mp 145-147 °C; ¹ H-NMR (CDCl ₃) δ 1.05 (1H, m), 1.21-1.33 (2H,
16-19	m) 1.40-1.71 (10H, m), 2.01 (1H, m), 2.48 (3H, s), 2.56 (1H, br s),
	3.47-3.58 (2H, m), 3.97 (1H, m), 4.03 (2H, s), 6.12 (1H, d, J = 7.8)
	Hz , 7.28 (1H, m), 7.65 (1H, m), 7.78 (1H, s), 8.15 (1H, d, J = 8.4
	Hz); IR (Nujol) 3288, 2521, 1724, 1601, 1560, 1225, 1138 cm ⁻¹ ;
	[a] _D ²⁵ +36.8±0.8° (c=1.008, MeOH) 元素分析 (C ₂₃ H ₂₉ NO ₄ S) 計
	算值 (%): C, 66.48; H, 7.03; N, 3.37; S, 7.72 実測値 (%): C, 66.33;
	H, 7.03; N, 3.30; S, 7.43
Ic - 20	mp 135-136 °C; ¹ H-NMR (CDCl ₃) δ 1.05 (1H, m), 1.21-1.72 (12H,
	m), 2.02 (1H, m), 2.49 (3H, s), 2.57 (1H, br s), 3.48-3.59 (2H, m),
	3.97(1H, m), $4.03(2H, s)$, $6.12(1H, d, J = 7.5 Hz)$, $7.23(1H, dd, J = 7.5 Hz)$
	= 1.5, 8.4 Hz), 7.74 (1H, d, J = 8.4 Hz), 7.83 (1H, s), 8.12 (1H, d, J)
	= 1.5 Hz); IR (Nujol) 3384, 3361, 2546, 1736, 1718, 1616, 1533,
	1225, 1140 cm ⁻¹ ; [α] _D ²⁵ +32.4±0.7° (c=1.003, MeOH); 元素分析
	(C ₂₃ H ₂₉ NO ₄ S) 計算值 (%): C, 66.48; H, 7.03; N, 3.37; S, 7.72 実測
- <u>-</u>	値 (%): C, 66.31; H, 7.32; N, 3.34; S, 7.60
I c - 2 2	mp 76-79 °C; ¹H-NMR (CDCl ₃ -CD ₃ OD) δ 1.07 (1H, m), 1.20-1.32
	(2H, m), 1.34-1.70 (10H, m), 2.00 (1H, m), 2.57 (1H, br s),
	3.44-3.55 (2H, m), 3.88 (1H, m), 4.00 (2H, s), 6.43 (1H, d, J = 7.8
	Hz), 6.97 (1H, dd, $J = 2.4$ and 8.7 Hz), 7.25 (1H, d, $J = 2.4$ Hz), $ $ 7.65 (1H, s), 8.06 (1H, d, $J = 8.7$ Hz); IR (CHCl ₃) 3599, 3437,
	1780, 1649, 1603, 1516, 1124 cm ⁻¹ ; $[\alpha]_D^{25}$ +36.4±0.8° (c=1.013,
	MeOH) 元素分析 (C ₂₂ H ₂₇ NO ₅ S·0.6H ₂ O) 計算値 (%): C, 61.69;
	H, 6.64; N, 3.27; S, 7.49 実測値 (%): C, 61.58; H, 6.37; N, 3.54; S,
	7.48
Ic-23	mp 149-151 °C; ¹H-NMR (CDCl ₃) δ 1.08 (1H, m), 1.21-1.86 (12H,
	m), $1.99 (1H, m)$, $2.22 (2H, br s)$, $2.56 (1H, m)$, $3.53 (2H, t, J = 6.0)$
	Hz), 3.92 (1H, m), 4.03 (2H, s), 6.31 (1H, d, $J = 7.2$ Hz), 7.00 (1H,
	dd, J = 2.1, 8.7 Hz), 7.67 (1H, d, J = 8.7 Hz), 7.72 (1H, d, J = 2.4
	Hz), 7.83 (1H, s); IR (Nujol) 3313, 3104, 2636, 1743, 1626, 1599,
	1552, 1439, 1248, 1190, 1153, 1124 cm ⁻¹ ; [α] _D ²⁶ +33.6±0.7° (c=1.002%, MeOH); 元素分析 (C ₂₂ H ₂₇ NO ₅ S) 計算値 (%):C,
	(63.29; H, 6.52; N, 3.35; S, 7.68 実測値 (%):C, 62.99; H, 6.66; N,
	3.39; S, 7.57
I c - 28	mp 149-151 °C; ¹ H-NMR (CDCl ₃) δ 1.05 (1H, m), 1.21-1.72 (12H,
	m), 2.03 (1H, m), 2.56 (1H, br s), 3.48-3.60 (2H, m), 3.95 (1H, m),
	4.04 (2H, s), 6.11 (1H, d, J = 8.1 Hz), 7.16 (1H, dt, J = 2.4, 8.7)
	Hz), 7.78 (1H, dd, $J = 4.8$, 8.7 Hz), 7.92 (1H, s), 8.05 (1H, dd, $J =$
	2.4, 9.9 Hz); IR (Nujol) 3384, 3361, 2546, 1736, 1718, 1616, 1533,
	1225, 1140 cm ⁻¹ ; [a] _D ²⁵ +35.6±0.8° (c=1.014, MeOH); 元素分析
	(C ₂₂ H ₂₆ FNO ₄ S) 計算値 (%): C, 62.99; H, 6.25; F, 4.53; N, 3.34; S,
	7.64 実測値 (%): C, 62.84; H, 6.51; F, 4.44; N, 3.41; S, 7.40
Ic - 34	mp 154-157 °C; ¹ H-NMR (CDCl ₃) δ 1.09 (1H, m), 1.24-1.72 (12H,
	m), 2.04 (1H, m), 2.59 (1H, br s), 3.47-3.58 (2H, m), 4.02 (1H, m),
	4.02 (2H, s), 6.42 (1H, d, J = 7.5 Hz), 7.38 (1H, d, J = 5.4 Hz), 7.42 (1H, d, J = 7.5 Hz), 7.50 (1H, d, J = 5.4 Hz), 7.61 (1H, d, J = 7.5 Hz), 7.50 (1H, d, J = 5.4 Hz), 7.61 (1H, d, J = 7.5 Hz), 7.50 (1H, d, J = 7.5 Hz), 7.61 (1H, d, J = 7.5 Hz), 7.50 (1H, d, J = 7.5 Hz), 7.61 (1H, d, J = 7.5 Hz), 7.50 (1H, d, J = 7.5 Hz), 7.61 (1H, d, J = 7.5 (1H, d, J = 7.5 (1H, d
	7.43 (1H, d, J = 7.5 Hz), 7.59 (1H, d, J = 5.4 Hz), 7.61 (1H, d, J = 7.5 Hz), 7.96 (1H, dd, J = 0.9, 7.5 Hz); IR (Nujol) 3288, 2540,
	1726, 1614, 1577, 1554, 1319, 1244, 1225, 1138 cm ⁻¹ ; $[\alpha]_D^{25}$
	1726, 1614, 1677, 1664, 1619, 1244, 1226, 1138 cm , [6] _D
	(%): C, 65.81; H, 6.78; N, 3.49; S, 7.99 実測値 (%): C, 65.53; H,
	6.94; N, 3.52; S, 7.76
	0.01, 11, 0.02, 2, 11.0

表39

表 3 9	
化合物番号	物性值
Ic-39	¹ H-NMR (CDCl ₃) δ 1.10 (1H, m), 1.25-1.71 (12H, m), 2.03 (1H,
	m), 2.58 (1H, br s), 3.49-3.56 (2H, m), 3.98 (3H, s), 4.02 (2H, s),
	4.03 (1H, m), 6.40 (1H, d, J = 8.4 Hz), 6.42 (2H, s), 7.42 (1H, t, J)
	= 7.5 Hz), $7.66 (1H, d, J = 7.5 Hz$), $7.93 (1H, d, J = 7.5 Hz)$; IR
	(CHCl ₈) 3451, 1780, 1732, 1649, 1508, 1373, 1220, 1151 cm ⁻¹ ;
	[α] _D ²⁴ +37.0±0.8° (c=1.008, MeOH); 元 素 分 析 (C ₂₃ H ₂₉ NO ₅ S·0.3H ₂ O) 計算値 (%): C, 63.22; H, 6.83; N, 3.21; S,
	(C ₂₃ H ₂₉ NO ₅ S O.3H ₂ O) 計算值 (初). C, 03.22, H, 0.03, N, 3.21, B, 7.34 実測值 (%): C, 63.26; H, 6.78; N, 3.23; S, 7.17
I c - 4 9	1 H-NMR (CDCl ₃) δ 1.06 (1H, m), 1.29-1.36 (2H, m), 1.36-1.74
10-40	(10H, m), 2.03 (1H, m), 2.53 (1H, m), 3.45 (3H, s), 3.52 (2H, dt, J
	= 6.3, 1.5 Hz), 4.00 (1H, m), 4.02 (2H, s), 4.79 (2H, s), 6.07 (1H, d,
	J = 7.8 Hz, $7.33-7.40 (2H, m)$, $7.77 (1H, dd, J = 6.9, 2.1 Hz$), 8.16
	(1H, s); IR (CHCl ₃) 3440, 2829, 1652, 1573, 1509, 1226, 1205,
	1124 cm ⁻¹ ; [α] _D ^{25.0} +33.3±0.7° (c=1.016, MeOH); 元 素 分 析
	(C ₂₄ H ₃₁ NO ₆) 計算值 (%): C, 67.11; H, 7.27; N, 3.26 実測値 (%): C,
	66.82; H, 7.39; N, 3.32
I c - 5 1	¹ H-NMR (CDCl ₃ -CD ₃ OD) δ 1.08 (1H, m), 1.25-1.28 (2H, m), 1.37-1.62 (10H, m), 1.99 (1H, d, J = 3.3 Hz), 2.54 (1H, s), 3.45-3.49
	(2H, m), 3.87 (1H, m), 4.00 (2H, s), 6.44 (1H, d, J = 7.8 Hz), 6.88
	(1H, dd, J = 2.1, 8.7 Hz), 6.97 (1H, d, J = 2.1 Hz), 7.60 (1H, d, J = 2.1 Hz)
	8.7 Hz), 8.02 (1H, s); IR (KBr) 3365, 3140, 1734, 1628, 1560,
	1527 , 1493 , 1440 , 1363 , 1279 , 1220 , 1136 , 1124 cm ⁻¹ ; $[\alpha]_D^{27}$
	+29.1±0.7° (c=1.016, MeOH); 元素分析 (C ₂₂ H ₂₇ NO ₆ ·0.5H ₂ O) 計算
	值 (%): C, 64.38; H, 6.88; N, 3.41 実測値 (%): C, 64.39; H, 6.95;
I c - 5 2	N, 3.66 H-NMR (CDCl ₃ -CD ₃ OD) δ 1.07 (1H, m), 1.24-1.30 (3H, m), 1.45-
1 6 - 5 2	1.49 (5H, m), 1.59-1.65 (4H, m), 2.00 (1H, d, $J = 3.3 \text{ Hz}$), 2.59
	(1H, s), 3.52 (2H, t, J = 6.0 Hz), 3.89 (1H, m), 4.00 (1H, d, J =
	16.5 Hz), $4.06 (1H, d, J = 16.5 Hz$), $6.14 (1H, d, J = 8.1 Hz$), $6.90 Hz$
	(1H, dd, J = 2.1, 9.0 Hz), 7.34 (1H, d, J = 2.1 Hz), 7.36 (1H, d, J = 2.1 Hz)
	9.0 Hz), 8.06 (1H, s); IR (CHCl _s) 3438, 3267, 1730, 1647, 1620,
	1558, 1514, 1468, 1169, 1134 cm ⁻¹ ; [α] _D ²⁷ +25.0±0.7° (c=1.003, MeOH); 元素分析 (C ₂₂ H ₂₇ NO ₆ ·0.3H ₂ O) 計算値 (%): C, 64.95; H,
	6.84; N, 3.44 実測値 (%): C, 64.84; H, 6.96; N, 3.62
I c - 5 4	1 ¹ H-NMR (CDCl ₃) δ 1.04 (1H, m), 1.25-1.32 (2H, m), 1.43-1.68
1 0 - 0 4	(10H, m), 2.03 (1H, m), 2.53 (1H, m), 3.53 (2H, t, J = 6.6 Hz), 3.96
	(1H, m), 4.04 $(2H, s)$, 6.04 $(1H, d, J = 8.1 Hz)$, 7.09-7.16 $(1H, m)$,
	7.25 (1H, dd, $J = 8.4$, 2.4 Hz), 7.84 (1H, dd, $J = 8.4$, 5.7 Hz), 8.10
	(1H, s); IR (CHCl ₃) 3440, 2875, 1656, 1563, 1506, 1224, 1216,
	1205 cm ⁻¹ ; [α] _D ^{26.0} +27.6±0.7° (c=1.018, MeOH); 元素分析
	(C ₂₂ H ₂₆ FNO ₅ ·0.6H ₂ O) 計算值 (%): C, 63.79; H, 6.62; F, 4.59; N,
T	3.38 実測値 (%): C, 63.48; H, 6.49; F, 4.47; N, 3.59 mp 148-149 °C; ¹H-NMR (CDCl ₃) δ 1.05 (1H, m), 1.27-1.30 (2H,
I c - 6 5	mp 148-149 °C; 1 H-NMR (CDCl ₃) o 1.05 (1H, m), 1.27-1.30 (2H, m), 1.41-1.52 (6H, m), 1.59-1.71 (4H, m), 2.01 (1H, d, J = 3.3 Hz),
	(2.45 (1H, s), 3.53 (2H, dt, J = 1.5, 6.3 Hz), 3.94 (1H, m), 4.07 (2H, dt, J = 1.5, 6.3 Hz), 3.94 (1H, m), 4.07 (2H, dt, J = 1.5, 6.3 Hz), 3.94 (1H, m), 4.07 (2H, dt, J = 1.5, 6.3 Hz), 3.94 (1H, m), 4.07 (2H, dt, J = 1.5, 6.3 Hz), 3.94 (1H, m), 4.07 (2H, dt, J = 1.5, 6.3 Hz), 3.94 (1H, m), 4.07 (2H, dt, J = 1.5, 6.3 Hz), 3.94 (1H, m), 4.07 (2H, dt, J = 1.5, 6.3 Hz), 3.94 (1H, m), 4.07 (2H, dt, J = 1.5, 6.3 Hz), 3.94 (1H, m), 4.07 (2H, dt, J = 1.5, 6.3 Hz), 3.94 (1H, m), 4.07 (2H, dt, J = 1.5, 6.3 Hz), 3.94 (1H, m), 4.07 (2H, dt, J = 1.5, 6.3 Hz), 3.94 (1H, m), 4.07 (2H, dt, J = 1.5, 6.3 Hz), 3.94 (1H, dt, J = 1.5, 6.3 Hz)
	s), 6.13 (1H, d, J = 8.1 Hz), 6.78 (1H, d, J = 1.5 Hz), 6.98 (1H, d, J
	= 5.1 Hz), 7.23 (1H, d, $J = 5.1 Hz$), 10.27 (1H, s); IR (KBr) 3367,
	3292, 3111, 2758, 2636, 2544, 1712, 1601, 1574, 1510, 1458,
	1325, 1250, 1225, 1138 cm ⁻¹ ; $[\alpha]_{D}^{25}$ +66.6±1.1° (c=1.008, MeOH);
	元素分析 (C ₂₀ H ₂₆ N ₂ O ₄ S·0.1H ₂ O) 計算值 (%): C, 61.23; H, 6.68;
	N, 7.14; S, 8.17 実測値 (%): C, 61.20; H, 6.79; N, 7.25; S, 8.25

表40

化合物番号	物性値
I c - 6 6	mp 143-144 °C; ¹ H-NMR (CDCl ₃) δ 1.05 (1H, m), 1.24-1.30 (2H, m), 1.38-1.52 (6H, m), 1.59-1.67 (4H, m), 2.01 (1H, d, J = 3.0 Hz), 2.48 (1H, c) 2.52 (2H, t, J = 6.3 Hz), 2.04 (1H, m), 4.07 (2H, c)
	2.48 (1H, s), 3.52 (2H, t, J = 6.3 Hz), 3.94 (1H, m), 4.07 (2H, s), 6.12 (1H, d, J = 8.4 Hz), 6.73 (1H, d, J = 1.8 Hz), 6.88 (1H, d, J = 1.8 Hz)
	5.4 Hz), 6.93 (1H, d, J = 5.4 Hz), 10.80 (1H, s); IR (KBr) 3348,
	3105, 2754, 2648, 2551, 1738, 1587, 1556, 1520, 1437, 1425, 1223, 1146 cm ⁻¹ ; [a] _D ²⁵ +50.5±0.9° (c=1.014, MeOH); 元素分析
	$(C_{20}H_{26}N_2O_4S\cdot 0.1H_2O)$ 計算値 (%): C, 61.23; H, 6.68; N, 7.14; S,
	8.17 実測値 (%): C, 61.13; H, 6.79; N, 7.17; S, 8.07
I c - 8 1	1 H-NMR (CDCl ₃ -CD ₃ OD) δ 1.06 (1H, m), 1.20-1.28 (2H, m), 1.34- 1.49 (6H, m), 1.55-1.63 (4H, m), 1.95 (1H, d, J = 3.6 Hz), 2.42
	(3H, s), 2.56 (1H, brs), 3.48 (2H, t, J = 6.5 Hz), 3.84 (1H, br s),
	4.01 (2H, s), 6.37 (1H, d, $J = 7.5$ Hz), 6.71 (1H, d, $J = 2.1$ Hz),
	7.16 (1H, d, $J = 2.1 \text{ Hz}$), 8.10 (1H, s); IR (KBr) 3361, 3134, 1734, 1635, 1560, 1529, 1458, 1415, 1362, 1288, 1198, 1165, 1136 cm ⁻¹ ;
	[α] _D ²⁴ +28.1±0.7° (c=1.012, MeOH) 元 累 分 析
	(C ₂₃ H ₂₉ NO ₆ ·0.5H ₂ O) 計算值 (%): C, 65.08; H, 7.12; N, 3.30 実測
T - 0 4	值 (%): C, 65.14; H, 7.06; N, 3.43 mp 133-135 °C; ¹H-NMR (CDCl ₃) δ 1.09 (1H, m), 1.22-1.70 (12H,
I c — 8 4	mp 133-135 °C; "H-NMK (CDCl ₃) 8 1.09 (1H, m), 1.22-1.70 (12H, m), 2.01 (1H, d, $J = 3.3 \text{ Hz}$), 2.55 (1H, br s), 3.50-3.68 (2H, m),
	3.96-4.09 (3H, m), 4.21-4.35 (2H, m), 6.11 (1H, m), 7.64 (1H, dd,
	J = 1.8, 8.7 Hz), 7.77 (1H, d, J = 8.7 Hz), 7.85 (1H, br s), 8.18 (1H, br s); IR (Nujol) 3323, 2924, 1736, 1599, 1562, 1514, 1448, 1281,
	1217, 1142 cm ⁻¹ ; [α] _D ²⁴ +21.7±0.6° (c=1.017%, MeOH); 元素分析
	(C ₂₅ H ₃₂ N ₂ O ₆ S) 計算値 (%): C, 61.45; H, 6.60; N, 5.73; S, 6.56 実
I c - 8 6	測値 (%): C, 61.26; H, 6.41; N, 5.70; S, 6.48 1H-NMR (CDCl ₃) δ 1.16-1.69 (13H, m), 1.92 (1H, br s), 2.39 (1H,
	br s), 3.41 (2H, t, J = 5.4 Hz), 3.68 (1H, m), 3.92 (2H, s), 5.83 (2H,
,	s), 7.65 (1H, dd, J = 2.1; 8.7 Hz), 7.83 (1H, d, J = 8.7 Hz), 8.23 (1H, d, J = 8.4 Hz), 8.25 (1H, s), 8.27 (1H, d, J = 2.1 Hz), 8.77
	(1H, s), 12.53 (1H, br s); IR (Nujol) 3332, 2924, 1724, 1680, 1631,
	1572, 1529, 1444, 1375, 1350, 1244, 1128 cm ⁻¹ ; $[\alpha]_{D}^{24}$ +23.6±0.6°
	(c=1.014%, MeOH); 元素分析 (C ₂₃ H ₂₉ N ₃ O ₅ S·0.4H ₂ O) 計算值 (%):
	N, 8.87; S, 6.48
I c - 9 5	mp 118-120 °C; ¹H-NMR (CDCl ₃ -DMSO-d ₆) δ 1.16 (1H, m), 1.26
	(3H, t, J = 7.2 Hz), 1.27-1.66 (12H, m), 2.01 (1H, m), 2.59 (1H, m), 3.52 (2H, m), 3.90 (1H, m), 4.00 (2H, s), 4.14 (2H, q, J = 7.2)
	Hz), 4.48 (2H, br s), 5.62 (1H, br s), 6.68 (1H, br s), 7.38 (1H, br
	d, J = 8.7 Hz), 7.81 (1H, d, J = 8.7 Hz), 7.96 (1H, s), 8.31 (1H, br
	s); IR (CHCl _s) 3442, 1724, 1655, 1516, 1477, 1435, 1225, 1217, 1132, 1059 cm ⁻¹ ; [α] _D ²³ +25.9±0.7° (c=1.012, MeOH) 元案分析
	(C ₂₆ H ₃₄ N ₂ O ₆ S·0.2H ₂ O) 計算値 (%): C, 61.69; H, 6.85; N, 5.53; S,
	6.33 実測値 (%): C, 61.71; H, 6.73; N, 5.48; S, 6.32

表 4 1

化合物番号	物性値
Ic-99	¹ H-NMR (d ₆ -DMSO) δ 1.19-1.68 (13H, m), 1.93 (1H, br s), 2.43
	(1H, br s), 3.41 (2H, t, J = 6.6 Hz), 3.49 (2H, s), 3.71 (1H, m), 3.92
1	(2H, s), 7.38 (1H, br s), 7.87 (1H, dd, $J = 1.8, 8.7 Hz$), 8.07 (1H, br
	s), 8.09 (1H, d, J = 8.4 Hz), 8.35 (1H, d, J = 6.6 Hz), 8.39 (1H, s),
	8.85 (1H, d, J = 1.2 Hz); IR (Nujol) 3340, 3251, 2927, 1741, 1655,
	1624, 1539, 1458, 1377, 1244, 1134 cm $^{-1}$; [α] _D 25 +24.2±0.6° (c=1.009%, MeOH); 元素分析 (C ₂₈ H ₂₈ N ₂ O ₅ S·0.5H ₂ O) 計算値 (%):
	C, 60.91; H, 6.44; N, 6.18; S, 7.07 実測値 (%): C, 60.89; H, 6.57;
	N, 5.80; S, 6.91
Ic-115	mp 133-135 °C; ¹ H-NMR (CDCl ₃) δ 1.05 (1H, m), 1.21-1.34 (2H,
	m), 1.40-1.72 (10H, m), 2.02 (1H, m), 2.47 (3H, s), 2.53 (3H, s),
i	2.57 (1H, br s), 3.48-3.59 (2H, m), 3.97 (1H, m), 4.03 (2H, s), 6.12
	(1H, d, J = 7.5 Hz), 7.05 (1H, s), 7.84 (1H, s), 7.94 (1H, s); IR
	(Nujol) 3344, 2540, 1730, 1614, 1539, 1219, 1142 cm ⁻¹ ; [α] _D ²⁵ +34.7±0.7° (c=1.012, MeOH) 元素分析 (C ₂₃ H ₂₉ NO ₄ S) 計算値
	(%): C, 67.10; H, 7.27; N, 3.26; S, 7.64 実測値 (%): C, 66.81; H,
	7.50; N, 3.18; S, 7.32
Ic-128	¹ H-NMR (CDCl ₃) δ 1.05 (1H, m), 1.19-1.68 (12H, m), 1.99 (1H, br
	s), 2.57 (1H, br s), 3.48 (2H, t, $J = 6.3$ Hz), 3.49 (2H, s), 3.95 (1H,
j	m), 3.99 (2H, s), 4.85 (2H, br s), 6.27 (1H, d, $J = 8.1$ Hz), 7.47
	(1H, d, J = 9.9 Hz), 7.76 (1H, s), 8.07 (1H, d, J = 8.4 Hz); IR
	(CHCl ₃) 3435, 3192, 2954, 1730, 1637, 1520, 1435, 1275 cm ⁻¹ ;
	(C ₂₂ H ₂₆ NO ₅ SF·0.4H ₂ O) 計算值 (%): C, 59.20; H, 6.14; N, 3.14; S,
	7.18; F, 4.26 実測値 (%): C, 59.16; H, 5.90; N, 3.05; S, 7.09; F,
	4.14
Ic-129	mp 135-137 °C; ¹ H-NMR (CDCl ₃) δ 1.05 (1H, m), 1.22-1.69 (12H,
	m), 2.04 (1H, br s), 2.56 (1H, br s), 3.54 (2H, dt, $J = 1.5$, 6.6 Hz),
	3.96 (1H, m), 3.98 (3H, s), 4.03 (2H, s), 6.12 (1H, d, J = 6.9 Hz),
	7.52 (1H, d, J = 10.5 Hz), 7.77 (1H, s), 8.04 (1H, d, J = 8.4 Hz); IR (Nujol) 3334, 2924, 1745, 1618, 1535, 1498, 1462, 1415, 1281,
	[1259 cm ⁻¹ ; [a] _D ²⁴ +23.6±0.6° (c=1.014%, MeOH); 元素分析
	(C ₂₃ H ₂₈ NO ₅ SF) 計算値 (%): C, 61.45; H, 6.28; N, 3.12; S, 7.13; F,
	4.23 実測値 (%): C, 61.17; H, 6.33; N, 3.03; S, 7.04; F, 4.03
I c - 1 3 5	¹ H-NMR (CDCl ₃ -DMSO-d ₆) δ 1.17 (1H, m), 1.26-1.66 (12H, m),
	2.00 (1H, m), 2.56 (1H, m), 3.53 (2H, t, J = 6.3 Hz), 3.86 (1H, m),
	4.01 (2H, s), 6.62 (1H, br d, $J = 8.1 \text{ Hz}$), 7.40 (2H, br s), 7.96 (1H,
	s), 8.17 (1H, s); IR (nujol) 1726, 1633, 1556, 1303, 1252, 1176,
Ic-140	1130 cm ⁻¹ ; $[\alpha]_D^{24}$ +19.5±0.6° (c=1.009, MeOH) mp 96-98 °C; ¹ H-NMR (DMSO-d ₆) δ 1.18-1.31 (8H, m), 1.49-1.56
	(5H, m), 1.94 (1H, m), 2.38 (1H, br s), 3.40 (2H, t, J = 6.5 Hz),
	3.47 (2H, s), 3.68 (1H, m), 3.93 (2H, s), 6.88 (1H, br s), 7.26 (1H,
	dd, $J = 1.5$ and 8.7 Hz), 7.50 (1H, br s), 7.54 (1H, d, $J = 8.7$ Hz),
	7.94 (1H, d, $J = 1.5 \text{ Hz}$), 8.12 (1H, d, $J = 6.6 \text{ Hz}$), 8.59 (1H, s); IR
	(Nujol) 3386, 3276, 3195, 3064, 2549, 1747, 1697, 1666, 1624,
	1560, 1128 cm ⁻¹ ; [α] ₀ ²⁵ +22.0±0.6° (c=1.006, MeOH) 元素分析
	(C ₂₄ H ₃₀ N ₂ O ₆ ·0.8H ₂ O) 計算值 (%): C, 63.09; H, 6.97; N, 6.13 実測
L	值 (%): C, 63.18; H, 6.98; N, 5.94

表 4 2

化合物番号	物性值
I c - 1 4 2	¹ H-NMR (CDCl ₃ -CD ₃ OD) δ 1.19 (1H, m), 1.26-1.31 (2H, m), 1.39-1.64 (10H, m), 1.98 (1H, m), 2.55 (1H, br s), 3.50 (2H, t, J = 6.3 Hz), 3.86 (1H, m), 4.01 (2H, s), 6.44 (1H, br s), 6.88 (1H, d, J = 7.2 Hz), 7.29 (1H, br s), 7.50 (1H, d, J = 8.4 Hz), 7.89 (1H, dd, J = 1.8 and 8.4 Hz), 8.22 (1H, s), 8.45 (1H, d, J = 1.8 Hz); IR (CHCl ₃) 3026, 3014,2875, 1728, 1662, 1587, 1562, 1510,1126 cm ⁻¹ ; $[\alpha]_D^{25}$
	+19.6±0.6° (c=1.008, MeOH) 元素分析 (C ₂₃ H ₂₈ N ₂ O ₆ ·0.5H ₂ O) 計算值 (%): C, 63.14; H, 6.68; N, 6.40 実測値 (%): C, 63.02; H, 6.49; N, 6.35
I e - 3 4	¹ H-NMR (CDCl ₃) δ 1.08 (1H, m), 1.23-1.71 (12H, m), 2.03 (1H, d, J = 3.3 Hz), 2.60 (1H, br s), 2.63 (2H, t, J = 6.9 Hz), 3.18 (2H, br s), 4.03 (1H, m), 6.45 (1H, d, J = 7.5 Hz), 7.38 (1H, d, J = 5.7 Hz), 7.42 (1H, t, J = 7.5 Hz), 7.58 (1H, d, J = 5.4 Hz), 7.63 (1H, d, J = 6.9 Hz), 7.96 (1H, d, J = 7.8 Hz); IR (CHCl ₃) 3452, 2954, 1711, 1649, 1520, 1495, 1458, 1300, 1284 cm ⁻¹ ; [α] _D ²⁶ +38.1±1.6° (c=0.502%, MeOH); 元素分析 (C ₂₂ H ₂₇ NO ₃ S ₂ ·0.3H ₂ O) 計算值 (%):C, 62.47; H, 6.58; N, 3.31; S, 15.16 実測値 (%):C, 62.53; H, 6.63; N, 3.38; S, 15.16
I e — 4 9	1 H-NMR (CDCl ₃) δ 1.07 (1H, m), 1.29-1.68 (12H, m), 2.01 (1H, m), 2.55 (1H, m), 2.64 (2H, t, J = 7.5 Hz), 3.18 (2H, s), 3.44 (3H, s), 3.99 (1H, m), 4.78 (2H, s), 6.12 (1H, d, J = 7.2 Hz), 7.33-7.40 (2H, m), 7.79 (1H, dd, J = 6.9, 1.8 Hz), 8.17 (1H, s); IR (CHCl ₃) 3440, 2670, 1710, 1650, 1573, 1562, 1509, 1425, 1297, 1238, 1224 cm ⁻¹ ; [α] _D ^{24.0} +33.2±0.7° (c=1.019, MeOH); 元素分析 (C ₂₄ H ₃₁ NO ₅ S·0.2H ₂ O) 計算値 (%): C, 64.18; H, 7.05; N, 3.12 実測値 (%): C, 64.11; H, 7.11; N, 3.24
IIa-22	¹ H-NMR (CDCl ₃) δ 0.94 (1H, d, J = 10.2 Hz), 1.11 (3H, s), 1.23 (3H, s), 1.34-1.54 (6H, m), 1.65-1.89 (2H, m), 2.00 (1H, m), 2.13-2.39 (5H, m), 4.32 (1H, m), 5.75 (1H, dt, J = 15.9, 1.2 Hz), 6.22 (1H, d, J = 8.7 Hz), 6.98 (1H, dd, J = 2.1, 9.0 Hz), 6.99 (1H, td, J = 7.2, 15.9 Hz), 7.26 (1H, d, J = 2.1 Hz), 7.58 (1H, s), 8.08 (1H, d, J = 9.0 Hz); IR (KBr) 3300, 1695, 1603, 1522, 1468, 1417, 1236 cm ⁻¹ ; [α] _D ²⁶ +31.3±0.7° (c=1.000, MeOH); 元 素 分 析 (C ₂₅ H ₃₁ NO ₄ S·0.4H ₂ O) 計算値 (%): C, 66.91; H, 7.14; N, 3.12; S, 7.14 実測値 (%): C, 66.81; H, 7.05; N, 3.13; S, 7.07
IIa-23	mp 189-192 °C; ¹H-NMR (CDCl ₃) δ 0.96 (1H, d, J = 10.2 Hz), 1.13 (3H, s), 1.25 (3H, s), 1.28-2.39 (14H, m), 4.31 (1H, m), 5.78 (1H, d, J = 15.6 Hz), 6.19 (1H, d, J = 9.6 Hz), 6.99 (1H, m), 7.01 (1H, dd, J = 8.7, 2.7 Hz), 7.66 (1H, d, J = 8.7 Hz), 7.67 (1H, s), 7.89 (1H, d, J = 2.7- Hz); IR (Nujol) 3199, 2683, 1684, 1635, 1599, 1525, 1437, 1304, 1286, 1225 cm ⁻¹ ; [α] _D ^{26.0} +26.8±0.7° (c=1.011, MeOH); 元素分析 (C ₂₅ H ₃₁ NO ₄ S·0.3H ₂ O) 計算値 (%): C, 68.00; H, 7.08; N, 3.17; S, 7.26 実測値 (%): C, 68.09; H, 6.94; N, 3.16; S, 7.18

表 4 3

化合物番号	物性値
IIa-24	1 H-NMR (CDCl ₃) δ 0.96 (1H, d, J = 9.9 Hz), 1.15 (3H, s), 1.27 (3H, s), 1.32-1.60 (6H, m), 1.66-1.90 (2H, m), 2.04 (1H, m), 2.17-2.43 (5H, m), 4.29 (1H, m), 5.79 (1H, d, J = 15.6 Hz), 6.49 (1H, d, J = 9.0 Hz), 6.93 (1H, dd, J = 2.7, 5.7 Hz), 7.02 (1H, td, J = 6.9, 15.6 Hz), 7.31 (1H, d, J = 2.7 Hz), 7.32 (1H, t, J = 5.7 Hz), 7.65 (1H, s), 12.09 (1H, s); IR (CHCl ₃) 3521, 3454, 2686, 1695, 1651, 1624, 1585, 1562, 1522, 1456, 1271 cm ⁻¹ ; [α] _D ²⁷ +29.4±0.7° (c=1.004, MeOH); 元素分析 (C ₂₅ H ₃₁ NO ₄ S·0.4H ₂ O) 計算値 (%): C, 66.91; H, 7.14; N, 3.12; S, 7.14 実測値 (%): C, 66.97; H, 7.01; N, 3.23; S, 7.17
IIa-28	mp 172-174°C; ¹H-NMR (CDCl ₃) δ 0.96 (1H, d, J = 9.9 Hz), 1.13 (3H, s), 1.25 (3H, s), 1.30-2.42 (14H, m), 4.31 (1H, m), 5.79 (1H, dt, J = 15.6, 1.5 Hz), 6.08 (1H, d, J = 9.3 Hz), 7.03 (1H, dt, J = 15.6, 7.2 Hz), 7.17 (1H, dt, J = 8.7, 2.7 Hz), 7.80 (1H, dd, J = 8.7, 5.1 Hz), 7.83 (1H, s), 8.07 (1H, dd, J = 10.2, 2.7 Hz); IR (Nujol) 3374, 2719, 1698, 1650, 1627, 1525, 1442, 1431 cm ⁻¹ ; [α] _D ^{24.0} +28.2±0.7° (c=1.012, MeOH); 元素分析 ($C_{30}H_{37}NO_4S\cdot1.1H_2O$) 計算值 (%):計算值 (%): C, 67.57; H, 6.50; N, 3.15; S, 7.22 実測值 (%): C, 67.35; H, 6.76; N, 3.26; S, 7.12
IIa-34	mp 141-142°C; ¹H-NMR (CDCl ₃) δ 0.96 (1H, d, J = 9.9 Hz), 1.16 (3H, s), 1.24 (3H, s), 1.29-2.42 (14H, m), 4.39 (1H, m), 5.77 (1H, d, J = 15.6 Hz), 6.43 (1H, d, J = 8.7 Hz), 7.01 (1H, dt, J = 15.6, 3.6 Hz), 7.38 (1H, d, J = 5.4 Hz), 7.43 (1H, t, J = 7.5 Hz), 7.54 (1H, d, J = 7.5 Hz), 7.59 (1H, d, J = 5.4 Hz), 7.96 (1H, d, J = 7.5 Hz); IR (Nujol) 3380, 2686, 1699, 1619, 1581, 1461, 1234, 1200 cm ⁻¹ ; [α] _D ^{25.0} +48.8±0.9° (c=1.009, MeOH); 元素分析 (C ₂₅ H ₃₁ NO ₃ S) 計算値 (%): C, 70.55; H, 7.34; N, 3.29; S, 7.53 実測値 (%): C, 70.35; H, 7.33; N, 3.31; S, 7.44
IIa-51	mp 211-213 °C; ¹H-NMR (CDCl ₃ -CD ₃ OD) & 0.94 (1H, d, J = 9.9 Hz), 1.15 (3H, s), 1.24 (3H, s), 1.36-1.55 (6H, m), 1.70 (1H, m), 1.83 (1H, m), 2.02 (1H, m), 2.15-2.38 (5H, m), 4.29 (1H, m), 5.74 (1H, d, J = 15.6 Hz), 6.90 (1H, dd, J = 2.1, 8.7 Hz), 6.90 (1H, dt, J = 15.6, 6.9 Hz), 7.00 (1H, d, J = 2.1 Hz), 7.56 (1H, d, J = 8.7 Hz), 7.99 (1H, s); IR (KBr) 3425, 3255, 2600, 1938, 1685, 1626, 1605, 1579, 1522, 1442, 1265, 1146, 1128, 1107 cm ⁻¹ ; $[\alpha]_D^{27}$ +23.9±0.6° (c=1.004, MeOH); 元素分析 (C ₂₅ H ₃₁ NO ₅ ·0.1H ₂ O) 計算値 (%): C, 70.27; H, 7.36; N, 3.28 実測値 (%): C, 70.13; H, 7.34; N, 3.47
IIa-52	mp 159-160 °C; ¹H-NMR (CDCl ₈) δ 0.92 (1H, d, J = 9.9 Hz), 1.11 (3H, s), 1.21 (3H, s), 1.36-1.50 (6H, m), 1.63 (1H, m), 1.79 (1H, m), 1.98 (1H, s), 2.10-2.20 (4H, m), 2.30 (1H, s), 4.30 (1H, s), 5.69 (1H, d, J = 15.6 Hz), 6.20 (1H, d, J = 9.0 Hz), 6.91 (1H, dd, J = 2.4, 9.0 Hz), 6.94 (1H, dt, J = 15.6, 6.9 Hz), 7.33 (1H, d, J = 9.0 Hz), 7.56 (1H, d, J = 2.4 Hz), 7.98 (1H, s); IR (KBr) 3255, 2688, 1684, 1643, 1560, 1522, 1306, 1288, 1269, 1219, 1192, 1167, 1134 cm ⁻¹ ; $[\alpha]_D^{2\delta}$ +21.8±0.6° (c=1.020, MeOH); 元素分析 (C ₂₅ H ₃₁ NO ₅) 計算値 (%): C, 70.57; H, 7.34; N, 3.29 実測値 (%): C, 70.41; H, 7.16; N, 3.34

表 4 4

化合物番号	物性値
IIa-54	1 H-NMR (CDCl ₈) δ 0.95 (1H, d, J = 10.2 Hz), 1.14 (3H, s), 1.24 (3H, s), 1.32-1.57 (6H, m), 1.69-1.88 (2H, m), 2.02 (1H, m), 2.16-2.24 (4H, m), 2.35 (1H, m), 4.32 (1H, m), 5.78 (1H, dt, J = 15.3, 1.5 Hz), 6.02 (1H, d, J = 9.0 Hz), 7.02 (1H, dt, J = 15.3, 6.9 Hz), 7.09-7.15 (1H, m), 7.26 (1H, dd, J = 8.7, 2.1 Hz), 7.82 (1H, dd, J = 8.7, 5.4 Hz), 8.05 (1H, s); IR (CHCl ₈) 3446, 2680, 1695, 1652, 1257, 1220, 1214 cm ⁻¹ ; [α] _D ^{25.0} +23.3±0.6° (c=1.008, MeOH); 元素分析 (C ₂₅ H ₉₀ FNO ₄ ·0.4H ₂ O) 計算値 (%): C, 69.07; H, 7.14; F, 4.37; N, 3.22 実測値 (%): C, 68.82; H, 6.89; F, 4.49; N, 3.34
IIa-66	1 H-NMR (CDCl ₃) δ 0.95 (1H, d, J = 10.2 Hz), 1.14 (3H, s), 1.24 (3H, s), 1.40-1.55 (6H, m), 1.70-1.85 (2H, m), 2.00 (1H, br s), 2.12-2.37 (5H, m), 4.30 (1H, m), 5.80 (1H, d, J = 15.6 Hz), 6.17 (1H, d, J = 9.0 Hz), 6.68 (1H, d, J = 2.1 Hz), 6.88 (1H, d, J = 5.4 Hz), 6.94 (1H, d, J = 5.4 Hz), 7.03 (1H, dt, J = 15.6 and 6.9 Hz), 11.22 (1H, s); IR (CHCl ₃) 3448, 3188, 1693, 1637, 1543, 1518, 1471, 1421, 1396, 1385, 1257, 1232 cm ⁻¹ ; [α] _D ²⁶ +18.2±0.6° (c=1.005, MeOH) 元素分析 (C ₂₃ H ₃₀ N ₂ O ₃ S·0.2H ₂ O) 計算値 (%): C, 66.06; H, 7.33; N, 6.70; S, 7.66 実測値 (%): C, 66.19; H, 7.06; N, 6.83; S, 7.35
IIa-81	mp 167-168 °C; ¹H-NMR (CDCl ₃) δ 0.96 (1H, d, J = 10.2 Hz), 1.13 (3H, s), 1.23 (3H, s), 1.33-1.54 (6H, m), 1.64 (1H, m), 1.80 (1H, m), 1.99 (1H, br s), 2.12- 2.38 (5H, m), 2.44 (3H, s), 4.31 (1H, m), 5.71 (1H, d, J = 15.6 Hz), 6.08 (1H, d, J = 9.6 Hz), 6.72 (1H, d, J = 2.1 Hz), 6.97 (1H, dt, J = 15.6 and 6.9 Hz), 7.30 (1H, d, J = 2.1 Hz), 7.97 (1H, s); IR (KBr) 3276, 2686, 1693, 1643, 1610, 1562, 1518, 1460, 1417, 1385, 1367, 1284, 1200, 1136 cm ⁻¹ ; $[\alpha]_D^{24}$ +23.0±0.6° (c=1.020, MeOH) 元素分析 ($C_{26}H_{33}NO_5$ 0.2H ₂ O) 計算值 (%): C, 70.47; H, 7.60; N, 3.16 実測值 (%): C, 70.50; H, 7.47; N, 3.35
IIa-94	1 H-NMR (CDCl ₃) δ 0.97 (1H, d, J = 10.2 Hz), 1.14 (3H, s), 1.25 (3H, s), 1.42-1.56 (6H, m), 1.70-1.88 (2H, m), 2.00 (1H, m), 2.03 (3H, s), 2.18-2.38 (5H, m), 4.31 (1H, m), 4.55 (2H, m), 5.78 (1H, d, J = 15.6 Hz), 6.18-6.23 (2H, m), 6.98 (1H, dt, J = 15.6, 6.9 Hz), 7.34 (1H, dd, J = 1.8, 8.4 Hz), 7.77 (1H, s), 7.79 (1H, d, J = 8.4 Hz), 8.31 (1H, br s); IR (CHCl ₃) 3446, 1695, 1655, 1514, 1471, 1435, 1369, 1222, 1215 cm ⁻¹ ; $[\alpha]_{D}^{24} + 23.4 \pm 0.6^{\circ}$ (c=1.006, MeOH) 元素分析 ($C_{28}H_{36}N_{2}O_{4}S\cdot 0.4H_{2}O$) 計算值 (%): C, 66.74; H, 7.36; N, 5.56; S, 6.36 実測值 (%): C, 66.79; H, 7.23; N, 5.51; S, 6.39
IIa-99	mp 130-133 °C; 0.85 (1H, d, J = 9.6 Hz), 1.12 and 1.19 (3H, s), 1.25-2.38 (12H, m), 3.99 (1H, m), 5.72 (1H, d, J = 15.6 Hz), 6.79 (1H, dt, J = 6.6, 15.6 Hz), 7.38 (1H, s), 7.87 (1H, dd, J = 1.8, 8.7 Hz), 8.05-8.13 (3H, m), 8.31 (1H, s), 8.82 (1H, d, J = 1.2 Hz); IR (Nujol) 3375, 3178, 2918, 1703, 1653, 1626, 1527, 1460, 1398, 1255 cm ⁻¹ ; [α] _D ²⁵ +27.9±0.7° (c=1.011%, MeOH); 元素分析 ($C_{26}H_{32}N_2O_4S$ ·0.7AcOEt) 計算値 (%): C , 65.23; H , 7.15; N , 5.28; S , 6.05 実測値 (%): C , 64.99; H , 6.91; N , 5.52; S , 6.18

表 4 5

化合物番号	物性値
IIb-28	1 H-NMR (CDCl ₈) δ 0.97 (1H, d, J = 10.2 Hz), 1.13 (3H, s), 1.26 (3H, s), 1.59 (1H, ddd, J = 2.7, 5.7, 13.5 Hz), 1.95-2.57 (7H, m), 4.06-4.27 (4H, m), 4.33 (1H, m), 5.60-5.80 (2H, m), 6.18 (1H, d, J = 9.0 Hz), 7.17 (1H, dt, J = 3.0, 9.0 Hz), 7.79 (1H, dd, J = 4.8, 8.7 Hz), 7.89 (1H, s), 8.04 (1H, dd, J = 2.7, 9.9 Hz); IR (CHCl ₈) 3442, 3022, 1734, 1651, 1603, 1564, 1516, 1496, 1471, 1433, 1244, 1119 cm ⁻¹ ; [α] _D ²⁵ +43.8±1.4° (c=1.003%, MeOH); 元素分析 (C ₂₄ H ₂₈ NO ₄ SF·0.4H ₂ O) 計算值 (%):C, 63.67; H, 6.41; F, 4.20; N, 3.09; S, 7.08 実測値 (%):C, 63.73; H, 6.35; F, 4.11; N, 3.20; S, 7.07
IIc-04	mp 132-134 °C; ¹H-NMR (CDCl ₃) δ 0.94 (1H, d, J = 9.9 Hz), 1.13 (3H, s), 1.23 (3H, s), 1.40-1.86 (8H, m), 2.00 (1H, m), 2.13 (1H, m), 2.18-2.37 (2H, m), 3.53 (2H, t, J = 6.0 Hz), 4.04 (2H, s), 4.28 (1H, m), 6.14 (1H, d, J = 9.0 Hz), 7.31-7.36 (2H, m), 7.85 (1H, m); IR (Nujol) 3373, 3105, 2528, 1736, 1601, 1556, 1215, 1138 cm ⁻¹ ; [α] _D ²⁵ +22.7±0.6° (c=1.004, MeOH); 元素分析 (C ₂₀ H ₂₉ NO ₄ S) 計算值 (%): C, 63.30; H, 7.70; N, 3.69; S, 8.45 実測値 (%): C, 63.10; H, 7.73; N, 3.74; S, 8.34
IIc-17	mp 125-126 °C; ¹H-NMR (CDCl ₈) δ 0.97 (1H, d, J = 10.2 Hz), 1.13 (3H, s), 1.25 (3H, s), 1.40-1.93 (8H, m), 2.02 (1H, m), 2.17-2.41 (3H, m), 3.53 (2H, t, J = 6.3 Hz), 4.02 (2H, s), 4.36 (1H, m), 6.21 (1H, d, J = 9.0 Hz), 7.37-7.49 (2H, m), 7.84 (1H, s), 7.87 (1H, m), 8.30 (1H, m); IR (Nujol) 3282, 2540, 1724, 1604, 1554, 1246, 1228, 1130, 1109 cm ⁻¹ ; $[\alpha]_D^{25}$ +29.6±0.7° (c=1.013, MeOH); 元素分析 (C ₂₄ H ₃₁ NO ₄ S) 計算値 (%): C, 67.10; H, 7.27; N, 3.26; S, 7.46 実測値 (%): C, 66.88; H, 7.10; N, 3.30; S, 7.25
IIc-19	¹ H-NMR (CDCl ₃) δ 0.96 (1H, d, J = 10.2 Hz), 1.13 (3H, s), 1.24 (3H, s), 1.40-1.92 (8H, m), 2.01 (1H, m), 2.17-2.40 (3H, m), 2.48 (3H, s), 3.47-3.58 (2H, m), 3.97 (1H, m), 4.02 (2H, s), 4.34 (1H, m), 6.21 (1H, d, J = 9.3 Hz), 7.28 (1H, m), 7.65 (1H, m), 7.75 (1H, s), 8.16 (1H, d, J = 8.4 Hz); IR (CHCl ₃) 3442, 2567, 1780, 1732, 1649, 1514, 1242, 1134 cm ⁻¹ ; [α] _D ²⁵ +28.7±0.8° (c=1.003, MeOH) 元素分析 (C ₂₅ H ₃₃ NO ₄ S·0.4H ₂ O) 計算値 (%): C, 66.61; H, 7.56; N, 3.11; S, 7.11 実測値 (%): C, 66.67; H, 7.37; N, 3.03; S, 6.88
I I c - 2 0	mp 87-90 °C; ¹H-NMR (CDCl ₃) δ 0.97 (1H, d, J = 10.5 Hz), 1.14 (3H, s), 1.26 (3H, s), 1.40-1.92 (8H, m), 2.02 (1H, m), 2.18-2.41 (3H, m), 2.49 (3H, s), 3.54 (2H, t, J = 6.0 Hz), 4.02 (2H, s), 4.35 (1H, m), 6.20 (1H, d, J = 8.4 Hz), 7.23 (1H, dd, J = 0.6, 8.4 Hz), 7.74 (1H, d, J = 8.4 Hz), 7.80 (1H, s), 8.11 (1H, d, J = 0.6 Hz); IR (Nujol) 3411, 3357, 1736, 1604, 1531, 1219, 1134 cm ⁻¹ ; $[\alpha]_D^{25}$ +27.4±0.7° (c=1.013, MeOH); 元素分析 ($C_{25}H_{33}NO_4S$ ·0.3 H_2O) 計算值 (%): C, 66.87; H, 7.54; N, 3.12; S, 7.14 実測値 (%): C, 66.90; H, 7.50; N, 3.23; S, 7.05

表 4 6

ル A 伽 双 日	from July Cities
化合物番号	
I I c - 2 1	mp 183-185 °C; ¹ H-NMR (d_6 -DMSO) δ 0.84 (1H, d, J = 9.6 Hz),
	1.11 (3H, s), 1.18 (3H, s), 1.22-1.60 (7H, m), 1.93 (1H, m), 2.10-
	2.34 (6H, m), 3.41 (2H, t, J = 6.3 Hz), 3.92 (2H, s), 3.97 (1H, m),
	6.79 (1H, d, J = 7.8 Hz), 7.24 (1H, t, J = 7.8 Hz), 7.77 (1H, d, J =
	7.8 Hz, $7.97 (1H, d, J = 6.9 Hz)$, $8.18 (1H, s)$, $10.39 (1H, br)$, $10.52 (1H, br)$, $10.62 (1H, br)$,
	12.53 (1H, br); IR (Nujol) 3425, 3303, 3093, 2598, 1729, 1604,
	1574, 1522, 1469, 1282, 1230, 1122 cm ⁻¹ ; [α] _D ²⁷ +32.1±0.7° (c=1.000, MeOH); 元素分析 (C ₂₄ H ₃₁ NO ₅ S·0.4H ₂ O) 計算値 (%):
	C, 63.66; H, 7.08; N, 3.09; S, 7.08 実測値 (%): C, 63.79; H, 7.14;
T T = 0.0	N, 3.15; S, 7.06
I I c - 2 2	1 H-NMR (CDCl ₃) δ 0.93 (1H, d, J = 10.2 Hz), 1.10 (3H, s), 1.23
	(3H, s), 1.38-1.92 (8H, m), 1.99 (1H, m), 2.16-2.38 (3H, m), 3.46 (2H, t, J = 6.3 Hz), 3.95 (2H, s), 4.32 (1H, m), 6.32 (1H, d, J = 9.0
}	(211, t, 0 = 0.3 112), 3.33 (211, 8), 4.32 (111, 111), 6.32 (111, 112), 6.96 (111, 112), 7.51
	(1H, s), 8.04 $(1H, d, J = 9.0 Hz)$; IR (KBr) 3359, 1734, 1603, 1523,
ĺ	$1469, 1236, 1128 \text{ cm}^{-1}; [a]_{\text{D}}^{26} + 26.8 \pm 0.7^{\circ} \text{ (c=1.015, MeOH)}; 元素分$
	析 (C ₂₄ H ₈₁ NO ₅ S·0.4H ₂ O) 計算値 (%): C, 63.66; H, 7.08; N, 3.09;
1	S, 7.08 実測値 (%): C, 63.64; H, 7.13; N, 3.07; S, 6.99
IIc-23	¹ H-NMR (CDCl ₃) δ 0.98 (1H, d, J = 10.5 Hz), 1.12 (3H, s), 1.24
110 20	(3H, s), 1.38-2.40 (12H, m), 3.47 (2H, t, J = 6.6 Hz), 3.97 (2H, s),
	4.33 (1H, m), 5.36 (2H, br s), 6.28 (1H, d, $J = 9.0 \text{ Hz}$), 7.00 (1H,
	dd, $J = 2.1$, 8.7 Hz), 7.65 (1H, d, $J = 8.7$ Hz), 7.71 (1H, s), 7.98
	(1H, d, J = 2.1 Hz); IR (CHCl ₃) 3438, 3238, 1730, 1637, 1601,
	1518, 1436, 1124 cm ⁻¹ ; [α] _D ²⁴ +23.7±0.6° (c=1.004, MeOH); 元素分
	析 (C ₂₄ H ₃₁ NO ₅ S·0.5H ₂ O) 計算值 (%):C, 63.41; H, 7.10; N, 3.08;
	S, 7.05 実測值_(%):C, 63.40; H, 6.98; N, 3.25; S, 7.09
I I c - 2 4	¹ H-NMR (CDCl ₃) δ 0.96 (1H, d, J = 10.5 Hz), 1.16 (3H, s), 1.20
	(3H, s), 1.40-1.92 (8H, m), 2.04 (1H, m), 2.18-2.42 (3H, m), 3.55
	(2H, t, J = 6.3 Hz), 4.04 (2H, s), 4.30 (1H, m), 6.55 (1H, d, J = 8.7)
	Hz), 6.93 (1H, dd, $J = 2.4$, 6.6 Hz), 7.32 (1H, d, $J = 2.4$ Hz), 7.33
	(1H, d, J = 6.6 Hz), 7.67 (1H, s), 12.10 (1H, s); IR (CHCl3) 3508,
ľ	3450, 2684, 1780, 1732, 1624, 1585, 1562, 1523, 1456, 1269 cm ⁻¹ ;
	[α] _D ²⁷ +28.4±0.7° (c=1.000, MeOH); 元 素 分 析
1	(C ₂₄ H ₃₁ NO ₅ S·0.5H ₂ O) 計算值 (%): C, 63.41; H, 7.10; N, 3.08; S,
	7.05 実測値 (%): C, 63.48; H, 6.98; N, 3.16; S, 6.98
IIc-27	¹ H-NMR (CDCl ₃) δ 0.96 (1H, d, J = 10.2 Hz), 1.13 (3H, s), 1.25
	(3H, s), 1.40-1.92 (8H, m), 2.02 (1H, m), 2.17-2.41 (3H, m), 3.53
İ	(2H, t, J = 6.6 Hz), 4.03 (2H, s), 4.32 (1H, m), 6.18 (1H, d, J = 8.7 Hz), 7.21 (1H, dt, J = 2.4, 9.0 Hz), 7.53 (1H, dd, J = 2.4, 8.4 Hz),
	$ Hz\rangle$, 7.21 (1H, dt, $J = 2.4$, 9.0 Hz), 7.53 (1H, dd, $J = 2.4$, 8.4 Hz), 8.33 (1H, dd, $J = 5.1$, 9.0 Hz); IR (CHCl ₃) 3508, 3442, 1780, 1732,
1	1651, 1603, 1516, 1468, 1244, 1122 cm ⁻¹ ; $[\alpha]_D^{25}$ +29.2±0.7°
,	(c=1.006, MeOH); 元素分析 (C ₂₄ H ₃₀ FNO ₄ S·0.3H ₂ O) 計算值 (%):
	C, 63.64; H, 6.81; F, 4.19; N, 3.09; S, 7.08 実測値 (%):C, 63.65;
1	H, 6.76; F, 4.10; N, 3.14; S, 7.16
	11, 0.10, 1, 3.10, 11, 0.14, 0, 1.10

表 4 7

化合物番号	物性值
IIc-28	mp 144-146 °C; ¹ H-NMR (CDCl ₃) δ 0.97 (1H, d, $J = 10.5$ Hz), 1.13
	(3H, s), 1.25 (3H, s), 1.40-1.92 (8H, m), 2.02 (1H, m), 2.17-2.41
	(3H, m), 3.52-3.57 (2H, m), 4.03 (2H, s), 4.33 (1H, m), 6.16 (1H, l)
	d, J = 8.4 Hz, 7.17 (1H, dt, J = 2.7, 8.7 Hz), 7.78 (1H, dd, J = 5.1, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1
]	8.7 Hz), 8.06 (1H, dd, J = 2.7, 9.9 Hz); IR (Nujol) 3286, 2538, 1722, 1608, 1552, 1244, 1136 cm ⁻¹ ; $[\alpha]_D^{25}$ +27.3±0.7° (c=1.009,
	MeOH); 元素分析 (C ₂₄ H ₃₀ FNO ₄ S) 計算值 (%): C, 64.41; H, 6.76;
ľ	F, 4.24; N, 3.13; S, 7.16 実測值 (%): C, 64.23; H, 6.84; F, 4.16; N,
	3.19; S, 7.12
IIc-34	mp 95-96 °C; ¹ H-NMR (CDCl ₃) δ 0.97 (1H, d, J = 10.5 Hz), 1.17
11001	(3H, s), 1.24 (3H, s), 1.40-1.96 (8H, m), 2.02 (1H, m), 2.18-2.41
	(3H, m), 3.47-3.58 (2H, m), 4.01 (2H, s), 4.40 (1H, m), 6.50 (1H,
Í	[d, J = 8.7 Hz), 7.38 (1H, d, J = 5.7 Hz), 7.43 (1H, d, J = 7.8 Hz),]
	7.55 (1H, d, $J = 7.8 \text{ Hz}$), 7.59 (1H, d, $J = 5.7 \text{ Hz}$), 7.96 (1H, dd, $J = 1.00 \text{ Hz}$)
1	1.2, 7.8 Hz); IR (Nujol) 3265, 2544, 1728, 1608, 1577, 1550,
	1319, 1240, 1225, 1128, 1111 cm ⁻¹ ; [a] _D ²⁵ +45.6±0.9° (c=1.006,
	MeOH); 元素分析 (C ₂₄ H ₃₁ NO ₄ S) 計算値 (%): C, 67.10; H, 7.27; N 2 26; S 7 46 字測値 (%): C 66 88; H 7 14; N 2 34; S 7 43
IIc-39	N, 3.26; S, 7.46 実測値 (%): C, 66.88; H, 7.14; N, 3.34; S, 7.48 ¹ H-NMR (CDCl _s) δ 0.99 (1H, d, J = 10.2 Hz), 1.17 (3H, s), 1.24
110-39	(3H, s), 1.44-1.94 (8H, m), 2.02 (1H, m), 2.18-2.40 (3H, m), 3.53
	(3H, s), 1.44-1.04 (3H, m), 2.02 (1H, m), 2.10-2.40 (3H, m), 6.03 (2H, t, J = 6.3 Hz), 3.98 (3H, s), 4.01 (2H, s), 4.40 (1H, m), 6.43
	(1H, s), 6.49 (1H, d, J = 8.7 Hz), 7.42 (1H, t, J = 7.5 Hz), 7.58 (1H, J = 7.5 Hz)
	dd, $J = 0.9$, 7.5 Hz), 7.93 (1H, dd, $J = 0.9$, 7.5 Hz); IR (CHCl ₃)
	3455 , 1780, 1732, 1649, 1508, 1373, 1205, 1151 cm ⁻¹ ; $[\alpha]_D^{24}$
	+41.7±0.8° (c=1.007, MeOH); 元素分析 (C ₂₅ H ₉₃ NO ₅ S·0.2H ₂ O) 計
	算值 (%): C, 64.82; H, 7.27; N, 3.02; S, 6.92 実測値 (%): C,
L	64.85; H, 7.30; N, 3.10; S, 6.64
IIc-41	¹ H-NMR (CDCl ₃) δ 0.98 (1H, d, J = 9.9 Hz), 1.19 (3H, s), 1.25 (3H,
	s), 1.46-1.96 (8 \dot{H} , m), 2.03 (1 \dot{H} , m), 2.22-2.41 (3 \dot{H} , m), 3.53 (2 \dot{H} , t, J = 6.3 Hz), 4.00 (2 \dot{H} , s), 4.43 (1 \dot{H} , m), 6.53 (1 \dot{H} , d, J = 9.3 Hz),
	$\begin{bmatrix} 7.44-7.56 \\ 3H, m \end{bmatrix}$, 7.66 (1H, d, J = 6.3 Hz), 7.91 (1H, m), 8.18
	$(1H, m)$, 8.30 $(1H, d, J = 7.5 Hz)$; IR $(CHCl_3)$ 3454, 1780, 1731,
	1649, 1512, 1444, 1217, 1122 cm ⁻¹ ; $[\alpha]_D^{25}$ +45.4±0.8° (c=1.013,
	MeOH); 元素分析 (C28H33NO4S·0.3H2O) 計算值 (%): C, 69.34;
	H, 6.98; N, 2.89; S, 6.61 実測値 (%): C, 69.21; H, 7.01; N, 3.04;
	S, 6.59
IIc-49	¹ H-NMR (CDCl ₈) δ 0.97 (1H, d, J = 9.9 Hz), 1.17 (3H, s), 1.25 (3H,
	s), 1.49-2.39 (12H, m), 3.45 (2H, s), 3.51 (2H, t, J = 6.3 Hz), 4.00
1	(3H, s), 4.37 (1H, m), 4.79 (2H, s), 6.20 (1H, d, J = 9.3 Hz), 7.32-
	7.40 (2H, m), 7.74 (1H, dd, J = 7.2, 1.5 Hz), 8.16 (1H, s); IR (CHCl ₃) 3444, 2829, 1733, 1650, 1573, 1508, 1471, 1425, 1384,
	$(CHCl_3)$ 3444, 2829, 1733, 1600, 1873, 1808, 1471, 1423, 1864, 1867, 1214 cm ⁻¹ ; $[\alpha]_D^{24.0}$ +24.8±0.6° (c=1.020, MeOH); 元素分析
	(C ₂₆ H ₃₅ NO ₆ ·0.5H ₂ O) 計算値 (%): C, 66.93; H, 7.78; N, 3.00 実測値
	(%): C, 66.85; H, 7.78; N, 3.10
	1 (10/1 -)

表 4 8

化合物来早	film kit list
化合物番号	物性值
IIc-51	¹ H-NMR (CDCl ₃) δ 0.93 (1H, d, J = 9.9 Hz), 1.14 (3H, s), 1.23 (3H,
	s), 1.41-1.90 (8H, m), 2.00 (1H, m), 2.17-2.38 (3H, m), 3.49 (2H, t,
	J = 6.3 Hz, $3.99 (2H, s)$, $4.29 (1H, m)$, $6.27 (1H, d, J = 9.0 Hz)$,
	[6.89 (1H, dd, J = 2.1, 8.7 Hz), 6.99 (1H, d, J = 2.1 Hz), 7.56 (1H, d, J = 8.7 Hz), 8.00 (1H, a), IP (VP=) 2475 1724 1686 1560
	d, J = 8.7 Hz), 8.00 (1H, s); IR (KBr) 3475, 1734, 1626, 1560,
	1518, 1493, 1471, 1441, 1385, 1367, 1265, 1221, 1122 cm ⁻¹ ; [α] _p ²⁷
	值 (%): C, 65.74; H, 7.35; N, 3.19 実測値 (%): C, 65.79; H, 7.43;
	III (%): C, 65.74; II, 7.35; N, 3.19 吴枫祖 (%): C, 65.79; H, 7.43; N, 3.36
IIc-52	¹ H-NMR (CDCl ₃) δ 0.98 (1H, d, J = 10.5 Hz), 1.13 (3H, s), 1.24
	(3H, s), 1.48-1.90 (8H, m), 2.01 (1H, m), 2.18-2.40 (3H, m), 3.49
	(2H, t, J = 6.5 Hz), 3.95 (1H, d, J = 16.5 Hz), 4.02 (1H, d, J = 16.5 Hz)
	Hz), 4.32 (1H, m), 6.12 (1H, d, $J = 9.0$ Hz), 6.91 (1H, dd, $J = 2.7$,
	9.0 Hz), 7.36 (1H, d, $J = 9.0$ Hz), 7.52 (1H, d, $J = 9.0$ Hz), 7.98
	(1H, s); IR (CHCl ₃) 3442, 3265, 1730, 1643, 1620, 1558, 1514,
	1468, 1385, 1367, 1190, 1167, 1136 cm ⁻¹ ; $[\alpha]_D^{27}$ +21.6±0.6°
	(c=1.006, MeOH); 元素分析 (C ₂₄ H ₃₁ NO ₆ ·0.5H ₂ O) 計算値 (%): C,
TTOFO	65.74; H, 7.35; N, 3.19 実測値 (%): C, 65.80; H, 7.46; N, 3.34
IIc-56	¹ H-NMR (CDCl ₃) δ 0.99 (1H, d, J = 10.2 Hz), 1.25 (6H, s), 1.47-
	1.79 (7H, m), 1.92-2.05 (2H, m), 2.19 (1H, m), 2.25-2.39 (2H, m), 3.51 (2H, t, $J = 6.3 \text{ Hz}$), 3.96(1H, d, $J = 16.2 \text{ Hz}$), 4.00 (1H, d, $J = 16.2 \text{ Hz}$)
	(211, t, 3 = 0.3 Hz), 3.96(111, d, 3 = 16.2 Hz), 4.00 (111, d, 3 = 16.2 Hz), 4.46 (111, m), 6.89 (111, d, J = 2.1 Hz), 7.37 (111, t, J = 16.2 Hz)
	7.8 Hz), 7.69 (1H, d, $J = 2.1$ Hz), 7.74 (1H, dd, $J = 1.2$, 7.8 Hz),
	7.88 (1H, d, $J = 9.3 \text{ Hz}$), 8.13 (1H, dd, $J = 1.2$, 7.8 Hz); IR (CHCl ₃)
	3435, 2665, 2573, 2474, 1780, 1732, 1651, 1606, 1595, 1547,
ļ	1535, 1473, 1421, 1367, 1352, 1325, 1296, 1167, 1120 cm ⁻¹ ;
	[α] _D ^{25.5} +14.7±0.5° (c=1.007, MeOH); 元 素 分 析
	(C ₂₄ H ₃₁ NO ₅ ·0.3H ₂ O) 計算值 (%): C, 68.81; H, 7.60; N, 3.34 実測
	値 (%): C, 68.71; H, 7.60; N, 3.44
IIc-65	mp 191-192 °C; ${}^{1}\text{H-NMR}$ (CDCl ₃) δ 0.96 (1H, d, J = 10.5 Hz), 1.15
	(3H, s), 1.25 (3H, s), 1.46-1.88 (8H, m), 2.01 (1H, m), 2.11 (1H,
	m), 2.21-2.37 (2H, m), 3.51-3.58 (2H, m), 4.07 (2H, s), 4.30 (1H,
	m), 6.21 (1H, d, $J = 9.3$ Hz), 6.68 (1H, d, $J = 1.2$ Hz), 6.99 (1H, d,
	J = 5.4 Hz), 7.23 (1H, dd, $J = 0.6$, 5.4 Hz), 11.27 (1H, s); IR (KBr)
j ·	3433, 3276, 2663, 2534, 1736, 1591, 1541, 1508, 1473, 1458,
	1244, 1228, 1211, 1151 cm ⁻¹ ; [α] _D ²⁵ +18.0±06° (c=1.008, MeOH); 元素分析 ($C_{22}H_{30}N_2O_4S\cdot 0.1H_2O$) 計算值 (%): C, 62.86; H, 7.24;
	N, 6.66; S, 7.63 実測值 (%): C, 62.81; H, 7.30; N, 6.80; S, 7.47
IIc-66	1 H-NMR (CDCl ₃) δ 0.96 (1H, d, J = 10.2 Hz), 1.14 (3H, s), 1.24
0 0 0	(3H, s), 1.46-1.88 (8H, m), 2.01 (1H, m), 2.14 (1H, m), 2.21-2.37
	(2H, m), 3.53 $(2H, t, J = 6.6 Hz)$, 4.07 $(2H, s)$, 4.29 $(1H, m)$, 6.20
	(1H, d, J = 9.3 Hz), 6.64 (1H, d, J = 2.1 Hz), 6.86 (1H, d, J = 5.4)
	Hz), 6.92 (1H, d, $J = 5.4$ Hz), 11.06 (1H, s); IR (CHCl ₃) 3448,
	3209, 1726, 1631, 1543, 1518, 1126 cm ⁻¹ ; $[\alpha]_D^{25}$ +14.4±0.5°
	(c=1.007, MeOH); 元素分析 (C ₂₂ H ₃₀ N ₂ O ₄ S·0.4H ₂ O) 計算值 (%):
	C, 62.06; H, 7.29; N, 6.58; S, 7.53 実測値 (%): C, 62.02; H, 7.31;
	N, 6.67; S, 7.56

表 4 9

化合物番号	物性値
IIc-81	¹ H-NMR (CDCl ₃) δ 0.92 (1H, d, J = 10.2 Hz), 1.09 (3H, s), 1.20
	(3H, s), 1.41-1.73 (7H, m), 1.82 (1H, m), 1.96 (1H, br s), 2.14-
1	2.35 (3H, m), 2.41 (3H, s), 3.46 (2H, t, J = 6.3 Hz), 3.98 (2H, s),
	4.27 (1H, m), 6.22 (1H, d, J = 9.0 Hz), 6.72 (1H, d, J = 2.1 Hz),
	$\begin{array}{l} 7.24 \ (1H, d, J = 2.1 \ Hz), \ 8.03 \ (1H, s); \ IR \ (CHCl_s) \ 3599, \ 3442, \ 3265, \ 2565, \ 1730, \ 1645, \ 1608, \ 1570, \ 1514, \ 1460, \ 1417, \ 1385, \end{array}$
	$1367, 1329, 1286, 1240, 1137 \text{ cm}^{-1}; [\alpha]_0^{24} + 24.2 \pm 0.6^{\circ} \text{ (c=1.014,}$
	MeOH) 元素分析 (C ₂₅ H ₃₃ NO ₆ ·0.4H ₂ O) 計算値 (%): C, 66.62; H,
	7.55; N, 3.10 実測值 (%): C, 66.66; H, 7.47; N, 3.29
IIc-84	¹ H-NMR (CDCl ₃) δ 0.98 (1H, d, J = 10.2 Hz), 1.12 (3H, s), 1.25
	(3H, s), 1.34 (2H, t, J = 7.5 Hz), 1.44-2.41 (10H, m), 3.56 (2H, br
	t, J = 5.4 Hz, 4.04 (2H, br s), 4.22-4.40 (3H, m), 6.22 (1H, d, $J =$
	9.0 Hz), $7.65 (1H, dd, J = 1.5, 8.7 Hz$), $7.77 (1H, d, J = 8.7 Hz)$,
	7.78 (1H, br s), 8.22 (1H, br s); IR (CHCl ₃) 3437, 2924, 1730,
	1651, 1514, 1441, 1319 cm ⁻¹ ; [α] _D ²⁴ +20.9±0.6° (c=1.010%, MeOH); 元素分析 (C ₂₇ H ₃₆ N ₂ O ₆ S·0.4H ₂ O) 計算値 (%): C, 61.90;
	H, 7.08; N, 5.35; S, 6.12 実測值 (%): C, 61.82; H, 6.85; N, 5.30;
	S, 6.09
IIc-86	¹ H-NMR (d ₆ -DMSO) δ 0.85 (1H, d, J = 8.7 Hz), 1.11 (3H, s), 1.18
	(3H, s), 1.27-2.38 (12H, m), 3.41 (2H, t, J = 6.3 Hz), 3.73 (2H, s),
	3.97 (1H, m), $5.83 (2H, br s)$, $7.61 (1H, dd, J = 2.1, 8.7 Hz)$, 7.83
	(1H, d, J = 8.7 Hz), 7.98 (1H, d, J = 6.6 Hz), 8.18 (1H, br s), 8.28
	(1H, d, J = 2.1 Hz), 8.73 (1H, s), 12.54 (1H, br s); IR (Nujol) 3334
	2923, 1676, 1633, 1571, 1523, 1442, 1377, 1244, 1126 cm ⁻¹ ; $[\alpha]_D^{24}$ +19.1±0.6° (c=1.018%, MeOH); 元素分析 ($C_{25}H_{33}N_3O_5S\cdot0.4H_2O$)
	計算值 (%): C, 60.68; H, 6.88; N, 8.49; S, 6.48 実測値 (%): C,
	60.73; H, 6.86; N, 8.67; S, 6.41
IIc-94	¹ H-NMR (CDCl ₃) δ 0.98 (1H, d, J = 10.2 Hz), 1.15 (3H, s), 1.26
	(3H, s), 1.48-1.91 (8H, m), 2.02 (1H, m), 2.06 (3H, s), 2.18-2.40
	(3H, m), 3.51 (2H, t, J = 6.3 Hz), 3.90 and 3.97 (each 1H, ABq, J =
j	16.2 Hz), 4.36 (1H, m), 4.49 (1H, dd, J = 6.3, 15.0 Hz), 4.61 (1H, hz), 4.61 (1H, hz), 6.41 (1H, hz)
	dd, J = 6.3, 15.0 Hz), 6.27 (1H, br d, J = 9.0 Hz), 6.41 (1H, br s), 7.33 (1H, br d, J = 8.7 Hz), 7.76 (1H, s), 7.79 (1H, d, J = 8.7 Hz),
	8.29 (1H, br s); IR (CHCl ₃) 3444, 1733, 1653, 1516, 1471, 1435,
	$1367, 1240, 1130 \text{ cm}^{-1}; [\alpha]_{\text{D}}^{24} + 23.2 \pm 0.6^{\circ} (\text{c}=1.015, \text{MeOH})$ 元素
	分析 (C ₂₇ H ₃₆ N ₂ O ₅ S·0.3H ₂ O) 計算值 (%): C, 64.08; H, 7.29; N,
	5.54; S, 6.34 実測値 (%): C, 63.99; H, 7.24; N, 5.46; S, 6.35
IIc-95	mp 133-134 °C; ¹ H-NMR (CDCl ₃ -DMSO-d ₆) δ 0.96 (1H, d, J = 9.9
	Hz), 1.13 (3H, s), 1.25 (3H, s), 1.26 (3H, t, $J = 7.5$ Hz), $1.42-2.03$
	(9H, m), 2.22-2.39 (3H, m), 3.52 (2H, t, J = 6.6 Hz), 3.99 (2H, s),
	4.14 (2H, q, J = 7.5 Hz), 4.29 (1H, m), 4.49 (2H, br s), 5.50 (1h, br
	s), 6.34 (1H, br d, J = 8.7 Hz), 7.38 (1H, d, J = 8.1 Hz), 7.82 (1H, d, J = 8.1 Hz), 7.84 (1H, br s), 8.30 (1H, s); IR (CHCl ₃) 3446,
	$[a, 5-8.1 \text{ Hz}], 7.84 \text{ (111, bit s), 3.30 (111, s), 111 (CHO13) 5440,} 1722, 1653, 1514, 1471, 1435, 1385, 1238, 1132, 1061 cm-1; [\alpha]_D^{28}$
	+22.9±0.6° (c=1.013, MeOH) 元素分析 (C ₂₈ H ₃₈ N ₂ O ₆ S) 計算值
	(%): C, 63.37; H, 7.22; N, 5.28; S, 6.04 実測値 (%): C, 63.18; H,
	7.14; N, 5.23; S, 5.95

表 5 0

化合物番号	物性值
I I c - 9 6	¹ H-NMR (CDCl ₃) δ 0.98 (1H, d, J = 10.5 Hz), 1.16 (3H, s), 1.26 (3H, s), 1.47-1.72 (7H, m), 1.86 (1H, m), 2.02 (1H, m), 2.18-2.39
	(3H, m), 2.92 $(3H, s)$, 3.51 $(2H, m)$, 3.96 and 4.03 (each 1H, ABq, J = 16.5 Hz), 4.36 $(1H, m)$, 4.44 $(2H, br s)$, 5.75 $(1H, br s)$, 6.24
	(1H, br d, J = 8.7 Hz), 7.41 (1H, br d, J = 8.1 Hz), 7.76 (1H, s),
	7.83 (1H, d, J = 8.1 Hz), 8.42 (1H, br s); IR (CHCl ₃) 3442, 1734, 1649, 1516, 1496, 1471, 1437, 1327, 1223, 1149, 1074 cm ⁻¹ ; $[\alpha]_D^{26}$
	+19.2±0.6° (c=1.010, MeOH) 元素分析 (C ₂₆ H ₃₆ N ₂ O ₆ S ₂ ·0.4H ₂ O)
	計算値 (%): C, 57.41; H, 6.82; N, 5.15; S, 11.79 実測値 (%): C, 57.36; H, 6.65; N, 5.02; S, 11.65
IIc-97	¹ H-NMR (CDCl ₃) δ 0.96 (1H, d, J = 10.2 Hz), 1.13 (3H, s), 1.24
	(3H, s), 1.48-1.72 (7H, m), 1.89 (1H, m), 2.00 (1H, m), 2.16-2.38 (3H, m), 3.49 (2H, t, J = 6.6 Hz), 3.89 and 3.96 (each 1H, ABq, J =
	16.5 Hz), $4.25 (1H, br d, J = 15.0 Hz$), $4.32 (1H, m)$, $4.46 (1H, br)$
	$\begin{bmatrix} d, J = 15.0 \text{ Hz} \end{bmatrix}$, 6.37 (1H, d, $J = 8.4 \text{ Hz} \end{bmatrix}$, 7.21 (1H, dd, $J = 1.2$, 8.7 $\begin{bmatrix} Hz \end{bmatrix}$, 7.71 (1H, d, $J = 8.7 \text{ Hz} \end{bmatrix}$, 7.74 (1H, s), 8.21 (1H, br s); IR
	(CHCl ₃) 3440, 1720, 1645, 1601, 1518, 1471, 1437, 1240, 1215,
	1132 cm ^{·1} ; [α] _D ²⁵ +23.7±0.6° (c=1.009, MeOH) 元 索 分 析 (C ₂₆ H ₃₅ N ₃ O ₅ S·0.5H ₂ O) 計算值 (%): C, 61.15; H, 7.11; N, 8.23; S,
T.T. 0.0	6.28 実測値 (%): C, 61.02; H, 6.81; N, 8.14; S, 6.30
IIc-99	mp 164-166 °C; ¹ H-NMR (d_{s} -DMSO) δ 0.85 (1H, d, $J = 9.6$ Hz), 1.12 (3H, s), 1.19 (3H, s), 1.24-2.37 (12H, m), 3.41 (2H, t, $J = 6.3$
	Hz), 3.92 (2H, s), 3.99 (1H, m), 7.38 (1H, br s), 7.87 (1H, dd, J = 2.1, 8.7 Hz), 8.05-8.13 (3H, m), 8.32 (1H, s), 8.82 (1H, d, J = 1.2
	Hz); IR (Nujol) 3448, 3356, 3211, 2925, 1718, 1691, 1639, 1520,
	1462, 1402, 1254, 1144 cm ⁻¹ ; [α] _D ²⁵ +28.4±0.7° (c=1.008%, MeOH); 元素分析 (C ₂₅ H ₃₂ N ₂ O ₅ S·0.2H ₂ O) 計算値 (%): C, 63.05;
	H, 6.86; N, 5.88; S, 6.73 実測値 (%): C, 63.01; H, 6.78; N, 5.84; S, 6.70
IIc-11	¹ H-NMR (CDCl ₃) δ 0.97 (1H, d, J = 10.2 Hz), 1.14 (3H, s), 1.25
5	(3H, s), 1.40-1.92 (8H, m), 2.02 (1H, m), 2.18-2.41 (3H, m), 2.46 (3H, s), 2.53 (3H, s), 3.47-3.58 (2H, m), 4.02 (2H, s), 4.35 (1H, m),
	6.22 (1H, d, J = 8.4 Hz), 7.05 (1H, s), 7.83 (1H, s), 7.93 (1H, s);
	IR (CHCl ₃) 3508, 3440, 1780, 1732, 1649, 1514, 1242, 1126 cm ⁻¹ ; [α] _p ²⁵ +30.4±0.7° (c=1.017, MeOH) 元 素 分 析
	(C ₂₆ H ₃₅ NO ₄ S·0.2H ₂ O) 計算值 (%): C, 67.71; H, 7.74; N, 3.01; S,
I I c - 1 2	6.95 実測値 (%): C, 67.37; H, 7.91; N, 2.95; S, 6.79 'H-NMR (CDCl ₃) δ 0.99 (1H, d, J = 10.5 Hz), 1.12 (3H, s), 1.25
8	(each 3H, s), 1.41-2.41 (12H, m), 3.49 (2H, t, $J = 7.5 \text{ Hz}$), 3.99
	(2H, s), 4.32 $(2H, s)$, 5.05 $(2H, br s)$, 6.29 $(1H, d, J = 9.0 Hz)$, 7.48 $(1H, d, J = 10.2 Hz)$, 7.67 $(1H, s)$, 8.09 $(1H, d, J = 8.7 Hz)$; IR
	(CHCl3) 3579, 3438, 3192, 2924, 1730, 1635, 1518, 1433, 1277
	cm ⁻¹ ; [α] _D ²⁶ +22.4±0.6° (c=1.014%, MeOH); 元 素 分 析 (C ₂₄ H ₃₀ NO ₅ SF·0.6H ₂ O) 計算値 (%): C, 60.77; H, 6.63; N, 2.95; S,
	6.76; F, 4.00 実測値 (%): C, 60.72; H, 6.35; N, 2.85; S, 6.58; F,
L	4.01

表 5 1

化合物番号	物性値
I I c - 1 2	¹ H-NMR (CDCl ₂) δ 0.97 (1H, d, J = 10.5 Hz), 1.15 (3H, s), 1.25
9	(3H, s), 1.44-2.40 (12H, m), 3.55 (2H, t, J = 6.3 Hz), 3.98 (3H, s),
	4.02 (2H, s), 4.32 (1H, m), 6.19 (1H, d, J = 6.6 Hz), 7.62 (1H, d, J = 6.6 Hz)
	= 10.5 Hz), 7.69 (1H, s), 8.07 (1H, d, $J = 8.1 Hz$); IR (CHCl ₃) 3444,
	2924, 1780, 1732, 1649, 1512, 1466, 1415, 1263, 1225 cm ⁻¹ ; $[\alpha]_0^{25}$
ļ	+22.5±0.6° (c=1.006%, MeOH); 元素分析 (C ₂₈ H ₃₂ NO ₅ SF 0.2H ₂ O)
	計算値 (%): C, 62.40; H, 6.79; N, 2.91; S, 6.66; F, 3.95 実測値
	(%): C, 62.32; H, 6.74; N, 2.86; S, 6.72; F, 3.88
IIc-13	¹ H-NMR (CDCl ₃ -DMSO-d ₆) δ 0.93 (1H, d, J = 10.2 Hz), 1.16 (3H,
5	s), 1.23 (3H, s), 1.42-1.74 (7H, m), 1.91-2.02 (2H, m), 2.20-2.36
	(3H, m), 3.52 $(2H, t, J = 6.9 Hz)$, 4.00 $(2H, s)$, 4.27 $(1H, m)$, 6.34 $(1H, br d, J = 8.4 Hz)$, 7.35 $(1H, dd, J = 2.1, 8.7 Hz)$, 7.42 $(1H, d, J = 2.1, 8.7 Hz)$, 7.42 $(1H, d, J = 2.1, 8.7 Hz)$, 7.42 $(1H, d, J = 2.1, 8.7 Hz)$, 7.42 $(1H, d, J = 2.1, 8.7 Hz)$, 7.42 $(1H, d, J = 2.1, 8.7 Hz)$, 7.42 $(1H, d, J = 2.1, 8.7 Hz)$, 7.42 $(1H, d, J = 2.1, 8.7 Hz)$, 7.42 $(1H, d, J = 2.1, 8.7 Hz)$, 7.42 $(1H, d, J = 2.1, 8.7 Hz)$, 7.42 $(1H, d, J = 2.1, 8.7 Hz)$, 7.42 $(1H, d, J = 2.1, 8.7 Hz)$, 7.42 $(1H, d, J = 2.1, 8.7 Hz)$, 7.42 $(1H, d, J = 2.1, 8.7 Hz)$, 7.42 $(1H, d, J = 2.1, 8.7 Hz)$, 7.42 $(1H, d, J = 2.1, 8.7 Hz)$
	J = 8.7 Hz, 7.96 (1H, d, $J = 2.1 Hz$), 8.11 (1H, s); IR (nujol) 3440,
	1724, 1635, 1556, 1298, 1252, 1173, 1128 cm ⁻¹ ; $[\alpha]_D^{24} + 17.1 \pm 0.6^{\circ}$
	(c=1.004, MeOH)
I I e -04	mp 79-81 °C; ¹ H-NMR (CDCl ₃) δ 0.95 (1H, d, J = 9.9 Hz), 1.21
	(3H, s), 1.23 (3H, s), 1.36-1.88 (8H, m), 2.00 (1H, m), 2.10-2.38
	(3H, m), 2.65 (2H, t, J = 6.9 Hz), 3.17 (1H, d, J = 14.7 Hz), 3.22
	(1H, d, J = 14.7 Hz), 4.27 (1H, m), 6.18 (1H, d, J = 9.0 Hz), 7.32- 7.36 (2H, m), 7.86 (1H, dd, J = 1.5, 2.4 Hz); IR (Nujol) 3396,
	3361, 3109, 3076, 2617, 1720, 1631, 1593, 1543, 1508, 1234,
1	1221, 1124 cm ⁻¹ ; [α] _D ²⁶ +29.4±0.7° (c=1.005, MeOH); 元素分析
	(C ₂₀ H ₂₉ NO ₃ S ₂) 計算値 (%): C, 60.72; H, 7.39; N, 3.54; S, 16.21 実
	測值 (%): C, 60.73; H, 7.45; N, 3.61; S, 16.17
IIe-17	mp 176-178 °C; ${}^{1}H$ -NMR (CDCl ₃) δ 0.98 (1H, d, J = 9.9 Hz), 1.13
	(3H, s), 1.25 (3H, s), 1.40-1.92 (8H, m), 2.02 (1H, m), 2.18-2.41
	(3H, m), 2.66 (2H, t, $J = 6.9 Hz$), 3.15 (1H, d, $J = 14.7 Hz$), 3.21
1	(1H, d, J = 14.7 Hz), 4.36 (1H, m), 6.24 (1H, d, J = 8.7 Hz), 7.40
ļ.	(1H, dt, J = 1.2, 7.5 Hz), 7.45 (1H, dt, J = 1.2, 7.5 Hz), 7.85 (1H, s), 7.87 (1H, dd, J = 1.2, 7.5 Hz), 8.30 (1H, dd, 1.2, 7.5 Hz); IR
	(Nujol) 3425, 3091, 3059, 2632, 1726, 1608, 1522, 1261, 1250,
1	1215, 1126 cm ⁻¹ ; [α] _D ²⁶ +34.0±0.7° (c=1.002, MeOH); 元素分析
1	(C ₂₄ H ₃₁ NO ₃ S ₂) 計算值 (%): C, 64.68; H, 7.01; N, 3.14; S, 14.39 実
	測值 (%): C, 64.48; H, 7.01; N, 3.15; S, 14.25
I I e - 2 0	mp 117-118 °C; 1 H-NMR (CDCl ₃) δ 0.98 (1H, d, J = 10.5 Hz), 1.14
	(3H, s), 1.26 (3H, s), 1.40-1.92 (8H, m), 2.02 (1H, m), 2.18-2.42
	(3H, m), 2.49 (3H, s), 2.66 (2H, t, J = 6.9 Hz), 3.16 (1H, d, J =
	14.7 Hz), 3.21 (1H, d, $J = 14.7$ Hz), 4.35 (1H, m), 6.23 (1H, d, $J = 12.7$ Hz), 7.22 (1H, d, $J = 12.8$ A, Hz), 7.74 (1H, d, $J = 12.8$ A, Hz)
	8.7 Hz), 7.23 (1H, dd, J = 1.2, 8.4 Hz), 7.74 (1H, d, J = 8.4 Hz), 7.82 (1H, s), 8.11 (1H, d, J = 1.2 Hz; IR (Nujol) 3348, 1726, 1597,
1	$1537, 1255, 1219 \text{ cm}^{-1}; [\alpha]_D^{26} + 31.9 \pm 0.7^{\circ} \text{ (c=1.002, MeOH)}; 元素分$
1	析 (C ₂₅ H ₃₃ NO ₃ S ₂) 計算値 (%): C, 65.32; H, 7.24; N, 3.05; S, 13.95
]	実測値 (%): C, 65.15; H, 7.05; N, 3.10; S, 13.93
I I e - 2 1	mp 170-172 °C; ¹ H-NMR (d_6 -DMSO) δ 0.84 (1H, d, J = 9.9 Hz),
	1.11 (3H, s), 1.18 (3H, s), 1.28-1.60 (7H, m), 1.94 (1H, m), 2.12-
1	2.34 (6H, m), 2.55 (2H, t, J = 7.2 Hz), 3.17 (2H, s), 3.97 (1H, m),
<u> </u>	6.79 (1H, d, J = 7.8 Hz), 7.24 (1H, t, J = 7.8 Hz), 7.78 (1H, d, J =
	7.8 Hz), 7.98 (1H, d, $J = 6.6$ Hz), 8.18 (1H, s), 10.39 (1H, br), 12.46 (1H, br), IP (No.icl) 2257, 2246, 22612, 1602, 1505, 1574
	12.46 (1H, br); IR (Nujol) 3357, 3246, 32613, 1693, 1595, 1574,
[1541, 1469, 1296, 1228 cm ⁻¹ ; [α] _D ²⁷ +38.7±0.8° (c=1.004, MeOH); 元索分析 (C ₂₄ H ₃₁ NO ₄ S ₂) 計算值 (%): C, 62.44; H, 6.77; N, 3.03;
1	S, 13.89 実測値 (%): C, 62.25; H, 6.86; N, 3.08; S, 13.60
	0, 10.00 天倒阻 (/0). 0, 02.20, 11, 0.00, 11, 3.00, 13, 10.00

表 5 2

化合物番号	物性值
I I e - 2 2	¹ H-NMR (CDCl ₃) δ 0.93 (1H, d, J = 10.2 Hz), 1.10 (3H, s), 1.23 (3H, s), 1.36-1.92 (8H, m), 1.99 (1H, m), 2.16-2.39 (3H, m), 2.56 (2H, t, J = 7.2 Hz), 3.13 (2H, s), 4.32 (1H, m), 6.35 (1H, d, J = 9.0 Hz), 0.05 (1H, d, J = 9.0 Hz), 7.34 (1H, d, J = 2.1 Hz), 7.51
	Hz), 6.95 (1H, dd, J = 2.1, 9.0 Hz), 7.24 (1H, t, J = 2.1 Hz), 7.51 (1H, s), 8.03 (1H, d, J = 9.0 Hz); IR (KBr) 3361, 2661, 1707, 1603, 1523, 1468, 1236 cm ⁻¹ ; $[\alpha]_D^{26}$ +23.2±0.6° (c=1.015, MeOH); 元素分析 (C ₂₄ H ₃₁ NO ₄ S ₂ ·0.4H ₂ O) 計算値 (%): C, 61.48; H, 6.84; N, 2.99;
	S, 13.68 実測値 (%): C, 61.51; H, 6.74; N, 3.01; S, 13.67
I I e - 2 4	¹ H-NMR (CDCl ₃) δ 0.96 (1H, d, J = 10.5 Hz), 1.15 (3H, s), 1.26 (3H, s), 1.40-1.92 (8H, m), 2.03 (1H, m), 2.18-2.42 (3H, m), 2.64 (2H, t, J = 7.2 Hz), 3.19 (2H, s), 4.29 (1H, m), 6.59 (1H, d, J = 8.4 Hz), 6.92 (1H, dd, J = 2.1, 6.6 Hz), 7.31 (1H, t, J = 2.1 Hz), 7.32 (1H, t, J = 6.6 Hz), 7.69 (1H, s), 12.22 (1H, s); IR (CHCl ₃) 3508,
	3452, 2683, 1711, 1624, 1585, 1562, 1523, 1456, 1271, 1227, 1217, 1205 cm $^{-1}$; [α] $_{D}^{26}$ +34.1±0.7° (c=1.005, MeOH); 元素分析 (C $_{24}$ H $_{31}$ NO $_{4}$ S) 計算値 (%): C, 62.44; H, 6.77; N, 3.03; S, 13.89 実測値 (%): C, 62.48; H, 6.86; N, 3.03; S, 13.63
I I e - 2 8	mp 197-199 °C; ¹H-NMR (CDCl ₃) δ 0.98 (1H, d, J = 10.5 Hz), 1.14 (3H, s), 1.25 (3H, s), 1.40-1.92 (8H, m), 2.02 (1H, m), 2.18-2.41 (3H, m), 2.66 (2H, t, J = 6.9 Hz), 3.16 (1H, d, J = 15.0 Hz), 3.21 (1H, d, J = 15.0 Hz), 4.33 (1H, m), 6.19 (1H, d, J = 9.3 Hz), 7.16 (1H, td, J = 2.4, 8.7 Hz), 7.78 (1H, dd, J = 4.8, 8.7 Hz), 7.88 (1H,
	s), 8.07 (1H, dd, $J=2.4$, 10.2 Hz); IR (Nujol) 3423, 3087,2636, 1728, 1606, 1523, 1444, 1433, 1248, 1203, 1128 cm $^{-1}$; $[\alpha]_D^{26}$ +31.0±0.7° (c=1.013, MeOH); 元 素 分 析 ($C_{24}H_{30}FNO_3S_2\cdot 0.1AcOEt$) 計算值 (%): C, 62.03; H, 6.57; F, 4.02; N, 2.96; S, 13.57 実測值 (%): C, 61.84; H, 6.48; F, 3.96; N, 2.98; S, 13.56
IIe-34	mp 143-144 °C; ¹H-NMR (CDCl ₃) δ 0.98 (1H, d, J = 10.2 Hz), 1.17 (3H, s), 1.24 (3H, s), 1.40-1.96 (8H, m), 2.02 (1H, m), 2.19-2.41 (3H, m), 2.64 (2H, t, J = 7.2 Hz), 3.15 (1H, d, J = 15.0 Hz), 3.20 (1H, d, J = 15.0 Hz), 4.41 (1H, m), 6.53 (1H, d, J = 8.7 Hz), 7.38 (1H, d, J = 5.4 Hz), 7.43 (1H, t, J = 7.8 Hz), 7.43 (1H, t, J = 7.8 Hz), 7.55 (1H, dd, J = 1.2, 7.8 Hz), 7.59 (1H, d, 5.4 Hz), 7.96 (1H, dd, J = 1.2, 7.8 Hz); IR (Nujol) 3421, 3402, 2625, 1712, 1618, 1579, 1529, 1250, 1215, 1120 cm ⁻¹ ; [α] ₀ ²⁶ +48.2±0.9° (c=1.016, MeOH); 元素分析 (C ₂₄ H ₃₁ NO ₃ S ₂) 計算値 (%): C, 64.68; H, 7.01; N, 3.14; S, 14.39 実測値 (%): C, 64.49; H, 6.85; N, 3.16; S, 14.12
IIe-54	¹ H-NMR (CDCl ₃) δ 0.96 (1H, d, J = 10.2 Hz), 1.14 (3H, s), 1.24 (3H, s), 1.41-2.40 (12H, m), 2.64 (1H, t, J = 7.2 Hz), 3.19 (2H, s), 4.33 (1H, m), 6.14 (1H, d, J = 8.7 Hz), 7.12 (1H, dt, J = 6.0, 2.4 Hz), 7.25 (1H, dd, J = 8.4, 2.4 Hz), 7.81 (1H, dd, J = 8.4, 6.0 Hz), 8.09 (1H, s); IR (CHCl ₃) 3446, 2674, 1710, 1654, 1563, 1506, 1490, 1257, 1220, 1205 cm ⁻¹ ; [α] _D ^{26.0} +22.8±1.2° (c=0.510, MeOH); 元素分析 (C ₂₄ H ₃₀ FNO ₄ S·0.2H ₂ O) 計算値 (%): C, 63.89; H, 6.79; F, 4.21; N, 3.10; S, 7.11 実測値 (%): C, 63.83; H, 6.93; F, 4.02; N, 3.18; S,7.15

表 5 3

化合物番号	物性値
IIf-28	1 H-NMR (CDCl ₃) δ 0.96 (1H, d, J = 9.9 Hz), 1.13 (3H, s), 1.25 (3H, s), 1.42-1.86 (9H, m), 2.02 (1H, m), 2.20-2.39 (4H, m), 4.31 (1H, m), 6.01 (1H, d, J = 8.7 Hz), 7.16 (1H, dt, J = 2.4, 9.0 Hz), 7.77 (1H, dd, J = 4.5, 9.0 Hz), 7.84 (1H, s), 8.08 (1H, dd, J = 2.4, 10.2 Hz); IR (CHCl ₃) 3516, 3444, 1709, 1653, 1603, 1564, 1514, 1471, 1433, 1250, 1142 cm ⁻¹ ; [α] _D ²⁵ +33.6±0.7° (c=1.007, MeOH) 元素 分析 (C ₂₃ H ₂₈ FNO ₃ S·0.2H ₂ O) 計算値 (%): C, 65.60; H, 6.80; N, 3.33; F, 4.51; S, 7.61 実測値 (%): C, 65.70; H, 6.70; N, 3.28; F, 4.32: S, 7.56
IIf-84	1 H-NMR (CDCl ₃) δ 0.95 (1H, d, J = 9.9 Hz), 1.10 (3H, s), 1.25 (3H, s), 1.32 (3H, t, J = 7.2 Hz), 1.44-1.86 (9H, m), 2.00 (1H, m), 2.21-2.39 (4H, m), 2.24 (2H, q, J = 7.2 Hz), 4.30 (1H, m), 6.15 (1H, m), 7.65 (1H, br d, J = 8.4 Hz), 7.76 (1H, d, J = 8.4 Hz), 7.78 (1H, s), 8.18 (1H, br s); IR (CHCl ₃) 3510, 3437, 1713, 1651, 1606, 1570, 1514, 1441, 1319, 1225, 1207, 1169, 1155, 1080, 1066 cm ⁻¹ ; [α] _D ²⁴ +26.3±0.7° (c=1.009, MeOH) 元 索 分 析 (C ₂₆ H ₃₄ N ₂ O ₅ S·0.4H ₂ O) 計算値 (%): C, 63.24; H, 7.10; N, 5.67; S, 6.49 実測値 (%): C, 63.35; H, 6.88; N, 5.55; S, 6.34

上記実施例で得た化合物につき、以下の試験例に示す方法で、インビポおよび インビトロ活性を試験した。

5 試験例1 PGD2 受容体の結合実験

(1) ヒト血小板膜画分の調製

健常人(成人男性および女性)の静脈よりEDTA(終濃度10mM)の入ったプラスチック製シリンジにて採血した血液をプラスチック製試験管に入れ、軽く転倒混和した後、室温で、1200rpm、10分間遠心分離し、上清の多血10 小板血漿 [PRP (Platelet rich plasma)]を採取した。このPRPをさらに室温、2300rpm、22分間の遠心分離に付し、血小板を得た。得られた血小板は homogenizer (Ultra-Turrax)を用いてホモジナイズした後、4℃、200000rpm、10分間遠心分離を3回行い、血小板膜画分を得た。膜画分は蛋白定量後、2mg/m1とし、結合実験に供するまで-80℃で冷凍保存した。

15 (2) PGD 2 受容体の結合実験

結合反応液 (50 m M Tris/H Cl, pH 7.4, 10 m M M g Cl₂) にヒト血 小板膜画分 (0.08 m g) および 5 n M [³ H] P G D₂ (115 C i/m m o l)

試験例2 ヒト血小板を使ったPGD2受容体の拮抗活性

10 あらかじめ1/9量のクエン酸ーデキストロース液を添加したシリンジで健常人から末梢血を採取し、室温で1200rpm、10分間遠心した後、上清(PRP: platelet rich plasma)を採取した。得られたPRPを洗浄バッファーで3回遠心洗浄した後、血小板数をミクロセルカウンターでカウントした。最終濃度5×108個/m1となるようにPBSで調製した血小板浮遊液を37℃に加温後、3-イソブチルー1-メチルキサンチン(0.5mM)で5分間前処置し、種々の濃度に希釈した化合物を添加し、その10分後に終濃度0.1μMのPGD₂を添加して反応を惹起した。2分後に塩酸を加えて反応を停止し、超音波ホモジナイザーにて血小板を破壊し、遠心後その上清中の cAMP 量を放射性免疫測定法にて定量した。薬物のPGD₂受容体拮抗活性はPGD₂添加によって増加した20 cAMP 量に対する抑制率を各濃度で求め、50%の抑制を示す薬物濃度を算出して評価した。

試験例1および試験例2の結果を以下の表に示す。

表 5 4

化合物番号	試験例1:ヒト血小板膜画分	試験例2:ヒト血小板 cAMP 上昇
	結合阻害活性	阻害活性
	$IC_{50}(\mu \text{ mol/L})$	$IC_{50}(\mu \text{ mol/L})$
Ia-17		0.011
I a - 2 0		0.017
Ia-65		0.018
I c - 2 2		0.010
I c - 2 3		0.01
Ic - 52	0.074	0.01
I I a - 4	·	0.019
IIa-17		0.015
IIa-22		0.0037
IIa-23	0.033	0.0025
IIa-28		0.016
IIa-34		0.014
IIa-52		0.0037
IIa-54		0.015
IIa-66		0.017
I I c - 4		0.018
IIc-17		0.0054
I I c - 2 0		0.015
I I c - 2 2		0.0046
I I c - 2 3	0.0095	0.0049
I I c - 2 4		0.013
I I c - 2 8		0.013
IIc-34		0.011
IIc-52	0.0035	0.0082
IIc-81		0.008
IIc-86		0.008
IIc-96		0.017
IIc-97		0.011
IIc-99		0.006
IIc-128		0.005
IIc-129		0.018
IIc-135		0.003
I I e - 2 2		0.0048
I I e - 2 4		0.0057
I I e - 2 8		0.017
I I e - 3 4		0.019
I I f - 8 4		0.020

試験例3 ラットにおける血漿中濃度推移

Jcl-SD 系雄性ラットに化合物 (0.5-10 mg/kg) を静脈内投与した。投与 2、5、15、30、60、120、180、240分後の未変化体濃度を、HPLC (定量限界; 0.05 μg/ml) あるいはLC/MS/MS (定量限界; 0.001 μg/ml)を用いて測定し、消失半減期を算出した。

表 5 5

5

化合物番号	消失半減期(分)
参考化合物 1	8.0
IIa-4	21.6
IIc-4	44.3
I I e - 4	40.0
参考化合物 2	17.0
I I a - 3 4	34.6
I I c - 3 4	66.7
参考化合物 3	8.7
I I a - 5 2	16.7
I I c - 5 2	23.4

10

産業上の利用可能性

式(I)で示される本発明化合物は、 PGD_2 受容体拮抗活性を有し、代謝的にも安定であり、 PGD_2 の生産過多に起因する症状の改善に有用である。

請求の範囲

1. 式(I):

(式中、

は、

5

 R^1 は置換されていてもよいヘテロアリール;

R²は水素またはアルキル;

 X^1 は-0-または-8-である。)で示される化合物、そのプロドラッグもしく 15 はその製薬上許容される塩またはそれらの溶媒和物。

2.

が、

である請求の範囲第1項記載の化合物、そのプロドラッグもしくはその製薬上許容される塩またはそれらの溶媒和物。

- 3. R¹が置換されていてもよいチエニル、置換されていてもよいベンゾチエニル、置換されていてもよいフリル、置換されていてもよいベンゾフリル、置換されていてもよいピロリル、置換されていてもよいチエノピロリルまたは置換されていてもよいインドリルである請求の範囲第1項または第2項記載の化合物、そのプロドラッグもしくはその製薬上許容される塩またはそれらの溶媒和物。
- 4. R¹が式: -Z¹-Z² (式中、Z¹は単結合、-O-、-S-、-NH-、
 -NH-C (=O) -、-NH-C (=O) -O-、-NH-SO₂-、-C (=O) -、-O-C (=O) -、-C (=O) -O-、-SO₂-、-CH₂-O-、-CH₂-NH-C (=O) (-CH₂-NH-C (=O) -O-、-CH₂-NH-C (=O) -O-、-CH₂-O-、-CH₂-NH-C (=O) -O-、-CH₂-O-、-CH₂-O-、-CH₂-NH-C (=O) -O-、-CH₂-O-、-CH
- 6. R³が-CH₂-CH₂-CH₂-CH₂-CH₂-CH=CH-COOR⁴または-25 CH₂-CH₂-CH₂-CH₂-CH₂-COOR⁴であり、R⁴が水素であ

り、X¹が-O-または-S-である請求の範囲第 5 項記載の化合物、そのプロドラッグもしくはその製薬上許容される塩またはそれらの溶媒和物。

- 7. 請求の範囲第1項~第6項のいずれかに記載の化合物、そのプロドラッグ もしくはその製薬上許容される塩またはそれらの溶媒和物を含有することを特徴 5 とする医薬組成物。
 - 8. PGD₂受容体拮抗性である請求の範囲第7項記載の医薬組成物。
 - 9. 鼻閉治療用である請求の範囲第7項記載の医薬組成物。
 - 10. アレルギー性結膜炎治療用である請求の範囲第7項記載の医薬組成物。
 - 11. アレルギー性鼻炎治療用である請求の範囲第7項記載の医薬組成物。
- 10 12. 請求の範囲第7項記載の医薬組成物を投与する鼻閉、アレルギー性結膜炎またはアレルギー性鼻炎の治療方法。
 - 13. 鼻閉、アレルギー性結膜炎またはアレルギー性鼻炎治療用薬剤を製造するための請求の範囲第1項~第6項のいずれかに記載の化合物の使用。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP01/09435

A. CLASS Int.	SIFICATION OF SUBJECT MATTER C1 ⁷ C07D333/38, 333/54, 333/68, 307/84, 307/85, 307/86, 3 333/74, A61K31/381, 31/38,	07/91, 207/34, 209/42,	337/14, 307/68, 495/04, 209/42,
According to	According to International Patent Classification (IPC) or to both national classification and IPC		
B. FIELDS	SEARCHED		
	Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ C07D333/38, 333/54, 333/68, 333/62, 333/64, 333/76, 337/14, 307/68, 307/84, 307/85, 307/86, 307/91, 207/34, 209/42, 495/04, 209/42, 333/74, A61K31/381, 31/38, 31/341,		
Documentat	ion searched other than minimum documentation to the		in the fields searched
	ata base consulted during the international search (named in the international search	e of data base and, where practicable, sea	rch terms used)
C. DOCU	MENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.
A	WO 97/00853 A (Shionogi & Co., 09 January, 1997 (09.01.1997), the whole document & EP 837052 A	Ltd.),	1-11,13
		·	
	·	·	
·			
	·	•	
	·		
Furthe	r documents are listed in the continuation of Box C.	See patent family annex.	
"A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is step when the document		priority date and not in conflict with the understand the principle or theory und document of particular relevance; the considered novel or cannot be considered novel or cannot be step when the document is taken alone	ne application but cited to erlying the invention claimed invention cannot be red to involve an inventive
cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document published prior to the international filing date but later than the priority date claimed		when the document is documents, such skilled in the art	
04 մ	actual completion of the international search January, 2002 (04.01.02)	Date of mailing of the international sear 29 January, 2002 (29	-
	nailing address of the ISA/ nese Patent Office	Authorized officer	
Facsimile No.		Telephone No.	•

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP01/09435

Continuation of A. 31/343,31/40,31/404,31/407,A61P43/0	00,37/08,27/16,27/14,C0	7D333/40
Continuation of B. 31/343,31/40,31/404,31/407,C07D333/	/40	
		•
		-
·	·	

Form PCT/ISA/210 (extra sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP01/09435

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)		
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:		
1. Claims Nos.: 12		
because they relate to subject matter not required to be searched by this Authority, namely:		
Claim 12 relates to a method for treatment of the human body by therapy.		
2. Claims Nos.:		
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:		
3. Claims Nos.:		
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).		
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)		
This International Searching Authority found multiple inventions in this international application, as follows:		
·		
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable		
claims.		
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment		
of any additional fee.		
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers		
only those claims for which fees were paid, specifically claims Nos.:		
4. No required additional search fees were timely paid by the applicant. Consequently, this international		
search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:		
Remark on Protest The additional search fees were accompanied by the applicant's protest.		
No protest accompanied the payment of additional search fees.		

国際出願番号 PCT/JP01/09435 国際調査報告 発明の属する分野の分類(国際特許分類(IPC)) Int cl' C07D333/38, 333/54, 333/68, 333/62, 333/64, 333/7 6, 337/14, 307/68, 307/84, 307/85, 307/86, 307/91, 207/34, 209/42, 495/04, 209/42, 333/74, A61K31/381, 31/38, 31/341, 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int cl' C07D333/38, 333/54, 333/68, 333/62, 333/64, 333/7 6, 337/14, 307/68, 307/84, 307/85, 307/86, 307/91, 207/34, 209/42, 495/04, 209/42, 333/74, A61K31/381, 31/38, 31/341, 最小限資料以外の資料で調査を行った分野に含まれるもの 国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

CA (STN), REGISTRY (STN), WPIDS (STN)

引用文献の カテゴリー*	ると認められる文献 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	WO 97/00853 A (塩野義製薬株式会社)9.1月.1 997 (09.01.97) 文献全体 & EP 837052 A	1-11, 13
		·
i		
		·

|_ | C欄の続きにも文献が列挙されている。

| | パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」ロ頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 国際調査報告の発送日 **29.01.02** 04.01.02 4 P 国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 8615 日本国特許庁 (ISA/JP) 内藤 伸一 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 電話番号 03-3581-1101 内線 3492

A. の続き

31/343, 31/40, 31/404, 31/407, A61P43/00, 37/08, 27/16, 27/14, C07D333/40

B. の続き

31/343, 31/40, 31/404, 31/407, C07D333/40

国際出願番号 PCT/JP01/09435

	請求の範囲の一部の調査ができないときの意見 (第1ページの2の続き)
	◆第3項(PCT17条(2)(a))の規定により、この国際調査報告は次の理由により請求の範囲の一部について作
成しなか	った。
ء 57	無力のが四 10 は この同欧部本権用が開本をナスこしも面したい対象に伝えるのでもス
1. X	請求の範囲 <u>12</u> ,は、この国際調査機関が調査をすることを要しない対象に係るものである。 つまり、
	請求の範囲12の発明は、治療による人体の処置方法に関するものである。
•	開から 神田 エ とうとうけん 一口がたらな もって日 シンと 巨っち はんに 以) も しゃってい もも
_	
2.	請求の範囲 は、有意義な国際調査をすることができる程度まで所定の要件を満たしてい
	ない国際出願の部分に係るものである。つまり、
•	
•	
з. П	請求の範囲 は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に
ليسما	従って記載されていない。
第11欄	発明の単一性が欠如しているときの意見(第1ページの3の続き)
¥ /- 1≥	はべるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。
D. K. Z	でつるとしての国际山原に上外上の元の10°00000円で明正成例は100円であった。
	·
•	
1	出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求
	の範囲について作成した。
~ C	15 Lacron where the total is 100 at 1
.2. ∐	追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追
	加調査手数料の納付を求めなかった。
з. П	出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納
۰. ⊔	付のあった次の請求の範囲のみについて作成した。
•	
, \Box	
4. []	出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載 されている発明に係る次の請求の範囲について作成した。
	されている発明に係る氏の間状の範囲について作成した。
•	
追加調查	至手数料の異盤の申立てに関する注意
	〕追加調査手数料の納付と共に出願人から異議申立てがあった。
. [追加調査手数料の納付と共に出願人から異議申立てがなかった。

様式PCT/ISA/210 (第1ページの続葉 (1)) (1998年7月)