

૬. ખામી ઉભી થવાનાં કારણો અને ઉપાયો

સુક્ષ્મતત્વોની છોડમાં ખામી ઉભી થવા પાછળ વિવિધ પરિબળો જવાબદાર હોય છે. પ્રથમ તો સુક્ષ્મતત્વોની લભ્યતામાં ઘટાડો થાય છે. તેમ થવામાં જે તે સુક્ષ્મતત્વનાં જમીનમાં જોવા મળતા સ્વરૂપો અને તેમની વચ્ચે સર્જાયેલી અસમતુલા કારણભૂત હોય છે. આવું અસંતુલન ઉભુ થવામાં કેટલાક જમીન જન્ય પરિબળો હોય છે જેવા કે,

۹.	જમીનનો અમ્લતા આંક	:	ખાટાશ ધરાવતા અમ્લતા આંકની મર્યાદામાં મોલીબ્ડેનમ		
			સિવાયનાં બધાજ સુક્ષ્મતત્વોની લભ્યતા ઘટે છે.		
૨.	જમીનનું પોત	:	હલકા પોતવાળી જમીન કરતા ભારે પ્રતવાળી જમીનમાં સુક્ષ્મ		
			પોષકતત્વોનું પ્રમાણ વધારે હોય છે.		
з.	સેન્દ્રિય તત્વ	:	જમીનમાં સેન્દ્રિય તત્વ વધવાની સાથે તાંબા સિવાયનાં		
			સુક્ષ્મતત્વોની લભ્યતા વધે છે.		
8.	ચૂનાનું પ્રમાણ	:	જમીજમાં ચુનાનું પ્રમાણ વધવાથી મોલીબ્ડેનમ સિવાયનાં દરેક		
			સુક્ષ્મતત્વોની લભ્યતા ઘટે છે.		
પ.	જમીનની ઉપચયન સ્થિતી	:	ઉપચયન પરિસ્થિતીમાં લોહ, મેંગેનીઝ અને તાંબાની લભ્યતા		
			વધારે હોય છે.		
۶.	જમીન જન્ય ખનીજોનાં પ્રકાર	:	મોન્ટમોરીલોનાઈટ ખનીજ જસત અને તાંબાની લભ્યતા વધારે		
			છે, પણ મોલીબ્ડેનમની લભ્યતા ઘટાડે છે. તેમજ કેઓલીનાઈટ		
			ખનીજ મોલીબ્ડેનમને જકડી તેની લભ્યતા ઘટાડે છે.		
9.	જમીનમાં આપવામાં આવતા ખાતરો	:	ફોસ્ફરસ યુકત ખાતરો વધુ પ્રમાણમાં આપવાથી લોહ, મેંગેનીઝ		
			અને જસતની લભ્યતા ઘટે છે. નાઈટ્રોજન, ફોસ્ફરસ અને		
			સોડીયમ આપવાથી તાંબાની લભ્યતા વધે છે. પોટાશયુકત		
			ખાતરો લોહતત્વની લભ્યતા ઘટાડે છે. ફોસ્ફરસ અને ગંધક		
			આપવાથી મોલીબ્ડેનમની લભ્યતા વધે છે, જયારે નાઈટ્રોજન		
			આપવાથી તેની લભ્યતા ઘટે છે.		
۷.	જમીનનો ભેજ	:	જમીનમાં પાણી ભરાઈ રહેવાથી મેંગેનીઝ અને લભ્યતા વધે છે.		
			જયારે લોહતત્વની લભ્યતા ઘટે છે.		
C.	જમીનની ખારાશ	:	જમીનમાં ખારાશનું પ્રમાણ વધવાથી બોરોનનાં પ્રમાણમાં વધારો		
			થવાથી તેની ઝેરી અસર ઉભી થાય છે. જમીનમાં વધારે		
			પ્રમાણમાં બાયકાર્બોનેટ હોય તો છોડમાં લોહતત્વની ખામીથી		
			ઉભી થતી પીળાશ જોવા મળે છે.		

જમીનમાં દરેક સુક્ષ્મતત્વોનાં જોવા મળતા સ્વરૂપો તથા તેની વિવિધ સંજોગોમાં લભ્યતા અને અન્ય પરિબળો કે જેમાથી સુક્ષ્મતત્વોની ખામી સર્જાય છે. તેની વિસ્તૃત જાણકારી કોઠા–૧ માં આપી છે. સુક્ષ્મતત્વોની ખામી ઉભી થવાના મુખ્ય કારણો આ મુજબ છે.

٩.	લોહ	:	જમીનમાં લોહતત્વનું ઓછુ પ્રમાણ
			ફોસ્ફરસ, મેંગેનીઝ, જસત, તાંબુ, કોબાલ્ટ અને નિકલ વધારે પ્રમાણમાં લભ્ય
			વધારે ભેજ અને ઉચુ તાપમાન
			જમીનમાં હવાની નબળી અવર–જવર (વધારે અંગારવાયુ)
			કેલ્શીયમ, મેગ્નેશીયમ અને પોટાશ ઓછા પ્રમાણમાં લભ્ય
			ભાસ્મિક અમ્લતા આંક
			વધારે અમ્લતા આંક
			મૂળને નુકશાન
			ચૂનાનું પ્રમાણ વધારે
			બાયકાર્બોનેટનું પ્રમાણ વધારે
૨.	મેંગેનીઝ	:	રેતાળ, છીછરી અને ચૂનાયુકત જમીન
			કુદરતી રીતે ઓછા નીતારવાળી જમીન
			વધુ અમ્લતા આંક–સુકુ હવામાન
			જમીનમાં લોહ, તાંબુ અથવા જસતનું વધુ પ્રમાણ
			સેન્દ્રિય તતવોની અલ્પમાત્રા
			સૂર્યપ્રકાશની ઓછી તીવ્રતા, જમીનનું નીચુ તાપમાન
3.	જસત	:	અમ્લતા આંક વધ
3.	0 46/6	•	જમીનમાં જસતનું પ્રમાણ ઓછુ હોવુ
			કોસ્કરસ વધુ માત્રામાં લભ્ય
			રાસ્કરસ વધુ માત્રામાં હાલ્ય સેન્દ્રિય તતવનું ઓછુ પ્રમાણ
			ઠંડુ હવામાન
			રેતાળ જમીન
			ચૂનાયુકત જમીન
			ઘટું જમીનને લીધે ઓછો મૂળ વિસ્તાર
٧.	તાંબુ	:	છીંછરી, કાંકરાળ, રેતાળ અને ક્ષારીય જમીન
			જમીનમાં તાંબાનું ઓછુ પ્રમાણ
			પાણીનાં તળ નીચા
			જસતનું વધારે પ્રમાણ
			વધારે ફોસ્ફરસ, વધારે સેન્દ્રિય તત્વ અને નાઈટ્રોજન
પ.	બોરોન	•	વધુ વરસાદ
			જમીનમાં કુલ ઓછો બોરોન
			હલકી જમીન
			વધુ સૂર્યપ્રકાશની તિવ્રતા
			સુકુ હવામાન કેલ્શીયમનું પ્રમાણ વધુ હોય તેવી જમીન
۶.	મોલીબ્ડેનમ		કલ્શાયમનુ પ્રમાણ વધુ હાય તવા જમાન અમ્લતા આંક ૭ થી ઓછો
7.	નાલાજાવન		જમાતા આક ૭ વા આઝા જમીનમાં મોલીબ્ડેનમનું પ્રમાણ ઓછું
			જમાનમાં મુક્ત લોહતત્વનું પ્રમાણ વધારે હોવાથી
			0 10 1 10 30 10 10 10 10 10 10 10 10 10 10 10 10 10

આમ સુક્ષ્મતત્વોની ખામી ઉભી થયા પછી કે તે પહેલા જમીન અને હવામાન જન્ય પરિબળોનાં નિરિક્ષણથી જે તે સુક્ષ્મતત્વોની ખામી જાણી શકાય છે. અથવા તેની સંભવિત ખામી અંગે અનુમાન કરી શકાય છે. ઉદાહરણ રૂપે જે જમીનમાં ચૂનાનું પ્રમાણ વધુ હોય તેમા બોરોનની ખામીની શકયતા છે. તે જ રીતે જો જમીનમાં ફોસ્ફરસ વધુ હોય કે ખાતરરૂપે વધુ ઉમેરાય તો તેમા જસત અથવા લોહની ખામી ઉભી થાય છે. નવસાઘ્ય કરેલ જમીનમાં જસત તેમજ મોલીબ્ડેનમની ખામી ઉભી થઈ શકે. ખૂબ વર્ષા થઈ હોય તો લોહની ખામી ઉભી થાય. આવા જમીન–હવામાન જન્ય આધારો સુક્ષ્મતત્વની જમીનમાં પરિસ્થિતી અંગે વધુ ઉપયોગી તારણો તરફ લઈ જાય છે. સુક્ષ્મતત્વોની આ રીતે ખામી ઉભી થયા પછી તેમની પૂર્તિ કઈ રીતે કરવી તેના માર્ગદર્શન માટે કોઠા–ર માં સુક્ષ્મતત્વોનાં વિવિધ સ્ત્રોતો આપ્યા છે. બજારમાં ઉપલબ્ધ સ્ત્રોતોમાં પાણીમાં દ્રાવ્ય અગર છોડને સહેલાઈથી લભ્ય થાય તેવા અને સરખામણીમાં સસ્તો સ્ત્રોત પસંદ કરવો. જે તે ક્ષેત્ર પાકમાં ખેતી આબોહવા પરિસ્થિતી પ્રમાણે ભલામણ કરેલા દરથી તે આપવો.

કોઠા-૧ જમીનમાં જુદા જુદા સ્વરૂપે જોવા મળતા સુક્ષ્મતત્વો અને તેની લભ્યતા

સૂક્ષ્મતત્વ	જમીનમાં સ્વરૂપ	લભ્યતા
લોહ	જમીનમાં ખુબજ પ્રમાણમાં રહેલ છે. ફેરોમેગ્નેશીયમ ખનીજનો ખુબ જ મહત્વનો ભાગ છે.	કુલ લોહ તત્વની સરખામણીમાં દ્રાવ્ય લોહનું પ્રમાણ ખુબ જ ઓછુ હોય છે. સિવાય કે હવાની અવર—જવર વગરની પરિસ્તિીમાં સુક્ષ્મ જીવાણું ઓની પ્રક્રિયાથી લોહ તત્વનું અપચયન થાય છે. જમીનમાં લોહની લભ્યતાનો આભાર લોહ સઃજળ ઓકસાઈડની દ્રાવ્યતા ઉપર રહેલ છે.ઓકસાઈડની નીચે અવક્ષેપિત થવાથી પ્રક્રિયાઓ સંપૂર્ણ રીતે અમ્લતા આંક ઉપર આધારિત છે. અને તેથી જ દર એક અમ્લતા આંક વધવાથી જમીનનાં દ્રાવણમાં લોહની પ્રક્રિયા એક હજાર ગણી ઘટે છે. તેથી વધારે અમ્લતા આંક વાળી જમીનમાં જયાં વધારે ચૂનાનું પ્રમાણ હોય તેવી જમીનમાં લોહ તત્વની ખામી ઉભી થાય છે.
મેંગેનીઝ	૧. સેન્દ્રિય તત્વમાં ૨. વિનિમય પામે તેવું તાંબુ ૩. જમીનમાં દ્રાવ્ય સ્વરૂપે ૪. ખનીજતત્વોનાં બે પડ વચ્ચે	જમીનમાં દ્રાવણમાં તાંબાની સાંદ્રતા ખૂબજ ઓછી હોય છે. ખનીજતત્વોનાં બે પડ વચ્ચે તાંબાનું પ્રમાણ વધુ હોય છે. પણ આ સ્વરૂપમાં તે લભ્ય નથી. તાંબુ એ અસેન્દ્રિય કલિલો વચ્ચે સખત રીતે જોડાયેલું હોય છે. અને તે સહેલાઈથી લભ્ય થતુ નથી. જમીનનાં સેન્દ્રિય સંઘટિતો છોડને તાંબા ઉપર સંપૂર્ણ કાબુ ધરાવે છે. અને તેથી લભ્ય તાંબાનો જથ્થો નકકી કરવા માટે વારંવાર ચીલેટીંગ એજન્ટ ઈ.ડી.ટી.એ.નો ઉપયોગ કરવામાં આવે છે. વધારે પડતો ચૂનો નાખવાથી તાંબાની લભ્યતા ઘટે છે.

મેંગેનીઝ	૧. ખનીજતત્વોનાં બે પડ વચ્ચે	બે વીજભાર ધરાવતા મેંગેનીઝનાં સ્વરૂપમાં છોડ
	૨. કઠોળ પાકોનાં મૂળની ગાંઠોમાં	ઉપયોગ કરે છે. અને આ સ્વરૂપ ચયાપચયની
	૩. મેંગેનીઝ ધરાવતા લોહનાં આવરણમાં	પરિસ્થિતીમાં સ્થાઈ રહે છે. દર એક અમ્લતા
	૪. વિનિમય પામે તેવો મેંગેનીઝ	આંક વધવાથી મેંગેનીઝની સ્થિરતા ૧૦૦ ગણી
	પ. ત્રણ ચાર વાર વીજ ભારવાળા મેંગેનીઝનાં	ઘટે છે અને છોડને અલભ્ય એવા સેન્દ્રિય સંઘટિત
	ઓકસાઈડ	મેંગેનીઝ બનાવવાનું પ્રમાણ વધારે હોય છે. તેથી
		મેંગેનીઝની લભ્યતાનો આધાર જમીનમાં રહેલ
		પુરતા પ્રમાણમાં મેંગેનીઝનાં જથ્થા કરતા
		જમીનનો અમ્લતા આંક ને હવાની અવર–જવર
		ઉપર વધારે રહેલો છે. જો કે, ઘણી વખત
		મેંગેનીઝની ખામી હવામાનની સાથે સંકળાયેલ
		હોય છે. ખામી ગરમ સૂકા હવામાનમાં વધારે
		હોય છે. ઠંડા ભેજવાળા હવામાનમાં ઓછી હોય
		છે. મેગેનીઝની ખામી નકકી કરવા માટે
		રાસાયણિક પૃથ્થકરણ ઓછુ કામયાબ સાબિત
		થયેલ છે.
બોરોન	૧. ટુરમેલીન ખનીજમાં હોય છે અને તે ખનીજ	નીચા અમ્લતા આંક વાળી અમ્લીય જમીનમાં
	તત્વમાં એલ્યુમીનીયમ અને સીલીકોનની	કલિલ ઉપર અધિશોષીત બોરોનનું પ્રમાણ ઘટે
	જગ્યાએ વિસ્થાપિત થાય છે.	છે. બોરોનની લભ્યતા ઉચા અમ્લતા આંકવાળી
	ર. જમીનમાં કલિલની સપાટી પર અધિશોષિત	જમીનમાં પણ ઘટે છે. તેથી ચૂનો આપવાથી
	થાય છે.	બોરોનની ખામી ઉભી થાય છે. જો કે, બોરોનની
		ખામી અને ઝેરી અસર ઉપજાવતી માત્રા વચ્ચેનો
		ગાળો ખૂબજ ઓછો છે.
મોલીબ્ડેનમ	૧. ખનીજતત્વોની સપાટી ઉપર અધિશોષિત	ૠ઼શ આવેશ ધરાવતો હોવાથી બીજા સુક્ષ્મતત્વો
	થયેલ	કરતા મોલીબ્ડેનમની વર્તણૂંકતા જુદી હોય છે.
	ર. કેલ્શીયમ મોલીબ્ડેનમ તરીકે	ઓછા અમ્લતા આંકવાળી અને વધારે ચૂનાનાં
	૩. કયારેક સેન્દ્રિય સ્વરૂપમાં	ઉપયોગનાં પરિણામે છોડમાં મોલીબ્ડેનમની
	૪. સઃજળ મોલીબ્ડેનમ ઓકસાઈડનાં રૂપમાં	ખામી ઉભી થતી નથી. સિવાય કે જમીનનો
		અમ્લતા આંક <i>૬.</i> ૦ કરતા નીચે હોય.

કોઠો–ર સુક્ષ્મતત્વોનાં સ્ત્રોત

સુક્ષ્મતત્વ	સુક્ષ્મતત્વોનો સ્ત્રોત	પાણીમાં દ્રાવ્યતા
લોહ	હીરાકસી (ફેરસ સલ્ફેટ જલીય)	દ્રાવ્ય
	ફેરસ એમોનીયમ સલ્ફેટ	દ્રાવ્ય
	ફેરસ ઓકસાઈડ	અદ્રાવ્ય
મેંગેનીઝ	મેંગેનીઝ સલ્ફેટ	દ્રાવ્ય
	મેંગેનીઝ કાર્બોનેટ	અદ્રાવ્ય
	મેંગેનીઝ ઓકસાઈડ	અદ્રાવ્ય
જસત	ઝીંક સલ્ફેટ	દ્રાવ્ય
	ર્ઝીક ક્લોરાઈડ	દ્રાવ્ય
	ર્ઝીક ઓકસાઈડ	અદ્રાવ્ય
	ઝીક કાર્બોનેટ	અદ્રાવ્ય
	ર્ઝીક ગ્લાસફીટસ	થોડા પ્રમાણમાં દ્રાવ્ય
	ઝીંક મેટલ	અદ્રાવ્ય
	ર્ઝીક સલ્ફાઈટ	અદ્રાવ્ય
તાંબુ	કોપર સલ્ફેટ (મોરથુથુ)	દ્રાવ્ય
	કોપર ઓકસાઈડ	અદ્રાવ્ય
	કોપર કાર્બોનેટ	અદ્રાવ્ય
	કોપર ફેરસ સલ્ફાઈડ (ચાલકો પાઈરાઈટ)	અદ્રાવ્ય
	કોપર સલ્ફાઈડ (ચાલકો સાઈડ)	અદ્રાવ્ય
મોલીબ્ડેટ	સોડીયમ મોલીબ્ડેટ (જલીય)	દ્રાવ્ય
	સોડીયમ મોલીબ્ડેટ (નીર્જલીય)	<u>દ્રાવ્ય</u>
	એમોનીયમ મોલીબ્ડેટ	<u>દ્રાવ્ય</u>
	કેલ્શીયમ મોલીબ્ડેટ (પેથોલાઈટ)	દ્રાવ્ય
	મોલીબ્ડેનમ ઓકસાઈડ	થોડા પ્રમાણમાં દ્રાવ્ય
બોરોન	સોડીયમ બોરેટ (જલીય બોરેકસ)	<u>દ્રાવ્ય</u>
	સોડીયમ બોરેટ (નિર્જલીય બોરેકસ)	દ્રાવ્ય
	પોટેશીયમ બોરેટ	દ્રાવ્ય
	કેલ્શીયમ બોરેટ	થોડા પ્રમાણમાં દ્રાવ્ય
	બોરોનેટેડ ગ્લાસ	થોડા પ્રમાણમાં દ્રાવ્ય
	બોરીક એસીડ	દ્રાવ્ય