Abstract Algebra Summary

Mathematical Notes

October 19, 2025

Contents

1	Groups				
	1.1	Definition and Basic Properties	3		
	1.2	Abelian Groups	3		
	1.3	Order of Elements and Groups	3		
	1.4	Subgroups	3		
	1.5	Cyclic Groups	3		
	1.6	Cosets and Lagrange's Theorem	3		
	1.7	Normal Subgroups	4		
	1.8	Quotient Groups	4		
	1.9	Homomorphisms	4		
	1.10	First Isomorphism Theorem	4		
2	Rin	${f gs}$	4		
	2.1	Definition and Basic Properties	4		
	2.2	Types of Rings	4		
	2.3	Subrings and Ideals	5		
	2.4	Quotient Rings	5		
	2.5	Ring Homomorphisms	5		
	2.6	First Isomorphism Theorem for Rings	5		
3	Fiel	${f ds}$	5		
	3.1	Definition and Examples	5		
	3.2	Field Extensions	5		
	3.3	Algebraic and Transcendental Elements	6		
	3.4	Minimal Polynomial	6		
	3.5	Finite Fields	6		
4	Polynomial Rings				
	4.1		6		
	4.2		6		
	4.3		6		
	4.4	Eisenstein's Criterion	6		

5	Gal	ois Theory	6
	5.1	Automorphisms	6
	5.2	Fixed Fields	7
	5.3	Galois Extensions	7
	5.4	Fundamental Theorem of Galois Theory	7
6	Mod	dules	7
	6.1	Definition	7
	6.2	Submodules and Quotient Modules	7
	6.3	Module Homomorphisms	7
7	Vec	tor Spaces	7
	7.1	Definition	7
	7.2	Basis and Dimension	8
	7.3	Linear Transformations	8
8	Gro	oup Actions	8
	8.1	Definition	8
	8.2	Orbits and Stabilizers	8
	8.3	Orbit-Stabilizer Theorem	8
9	Sylc	ow Theorems	8
U	9.1	Definition	8
	9.2	First Sylow Theorem	8
	9.3	Second Sylow Theorem	8
	9.4	Third Sylow Theorem	9
10	Frod	e Groups and Presentations	9
τO		Free Groups	9
		Group Presentations	9
			0
ТT		oortant Theorems Cayley's Theorem	9
			9
		Chinese Remainder Theorem	
		Classification of Finite Simple Groups	
		Wedderburn's Theorem	9
	11.5	Hilbert's Nullstellensatz	9
12		plications	10
		Cryptography	10
		Coding Theory	10
		Algebraic Geometry	10
	12.4	Number Theory	10

1 Groups

1.1 Definition and Basic Properties

Definition 1.1. A group is a set G together with a binary operation * such that:

- 1. Closure: For all $a, b \in G$, $a * b \in G$
- 2. Associativity: For all $a, b, c \in G$, (a * b) * c = a * (b * c)
- 3. **Identity**: There exists $e \in G$ such that e * a = a * e = a for all $a \in G$
- 4. **Inverses**: For each $a \in G$, there exists $a^{-1} \in G$ such that $a * a^{-1} = a^{-1} * a = e$

1.2 Abelian Groups

Definition 1.2. A group G is abelian (or commutative) if a * b = b * a for all $a, b \in G$.

1.3 Order of Elements and Groups

Definition 1.3. The **order** of an element $g \in G$ is the smallest positive integer n such that $g^n = e$. If no such n exists, g has infinite order.

Definition 1.4. The order of a group G, denoted |G|, is the number of elements in G.

1.4 Subgroups

Definition 1.5. A subset H of a group G is a **subgroup** if H is itself a group under the operation of G.

Theorem 1.1 (Subgroup Test). A nonempty subset H of a group G is a subgroup if and only if:

- 1. For all $a, b \in H$, $ab \in H$
- 2. For all $a \in H$, $a^{-1} \in H$

1.5 Cyclic Groups

Definition 1.6. A group G is cyclic if there exists $g \in G$ such that $G = \langle g \rangle = \{g^n : n \in \mathbb{Z}\}.$

Theorem 1.2. Every cyclic group is abelian.

Theorem 1.3. If G is a cyclic group of order n, then $G \cong \mathbb{Z}_n$.

1.6 Cosets and Lagrange's Theorem

Definition 1.7. Let H be a subgroup of G and $a \in G$. The **left coset** of H containing a is $aH = \{ah : h \in H\}$. The **right coset** is $Ha = \{ha : h \in H\}$.

Theorem 1.4 (Lagrange's Theorem). If G is a finite group and H is a subgroup of G, then |H| divides |G|.

1.7 Normal Subgroups

Definition 1.8. A subgroup N of G is **normal** if gN = Ng for all $g \in G$. We write $N \triangleleft G$.

Theorem 1.5. A subgroup N of G is normal if and only if $gNg^{-1} \subseteq N$ for all $g \in G$.

1.8 Quotient Groups

Definition 1.9. If N is a normal subgroup of G, then the **quotient group** G/N is the set of cosets of N in G with operation (aN)(bN) = (ab)N.

1.9 Homomorphisms

Definition 1.10. A homomorphism from group G to group H is a function $\phi: G \to H$ such that $\phi(ab) = \phi(a)\phi(b)$ for all $a, b \in G$.

Definition 1.11. A homomorphism $\phi: G \to H$ is:

- An **isomorphism** if it is bijective
- A monomorphism if it is injective
- An **epimorphism** if it is surjective

1.10 First Isomorphism Theorem

Theorem 1.6. If $\phi: G \to H$ is a homomorphism, then $\ker(\phi) \triangleleft G$ and $G/\ker(\phi) \cong \operatorname{im}(\phi)$.

2 Rings

2.1 Definition and Basic Properties

Definition 2.1. A ring is a set R with two binary operations + and \cdot such that:

- 1. (R, +) is an abelian group
- 2. Multiplication is associative: (ab)c = a(bc)
- 3. Distributive laws: a(b+c) = ab + ac and (a+b)c = ac + bc

2.2 Types of Rings

Definition 2.2. A ring R is:

- Commutative if ab = ba for all $a, b \in R$
- A ring with unity if there exists $1 \in R$ such that $1 \cdot a = a \cdot 1 = a$ for all $a \in R$
- An integral domain if it is commutative, has unity, and has no zero divisors
- A field if it is commutative, has unity, and every nonzero element has a multiplicative inverse

2.3 Subrings and Ideals

Definition 2.3. A subset S of a ring R is a **subring** if S is itself a ring under the operations of R.

Definition 2.4. A subset I of a ring R is an **ideal** if:

- 1. I is a subgroup of (R, +)
- 2. For all $r \in R$ and $a \in I$, both $ra \in I$ and $ar \in I$

2.4 Quotient Rings

Definition 2.5. If I is an ideal of R, then the **quotient ring** R/I is the set of cosets of I in R with operations (a + I) + (b + I) = (a + b) + I and (a + I)(b + I) = (ab) + I.

2.5 Ring Homomorphisms

Definition 2.6. A ring homomorphism from ring R to ring S is a function $\phi: R \to S$ such that:

- 1. $\phi(a+b) = \phi(a) + \phi(b)$
- 2. $\phi(ab) = \phi(a)\phi(b)$

2.6 First Isomorphism Theorem for Rings

Theorem 2.1. If $\phi: R \to S$ is a ring homomorphism, then $\ker(\phi)$ is an ideal of R and $R/\ker(\phi) \cong \operatorname{im}(\phi)$.

3 Fields

3.1 Definition and Examples

Definition 3.1. A **field** is a commutative ring with unity in which every nonzero element has a multiplicative inverse.

Example 3.1. Examples of fields:

- Q (rational numbers)
- \mathbb{R} (real numbers)
- C (complex numbers)
- \mathbb{Z}_p where p is prime

3.2 Field Extensions

Definition 3.2. If F is a subfield of field E, then E is a **field extension** of F, denoted E/F.

Definition 3.3. The **degree** of extension E/F, denoted [E:F], is the dimension of E as a vector space over F.

3.3 Algebraic and Transcendental Elements

Definition 3.4. An element $\alpha \in E$ is **algebraic** over F if there exists a nonzero polynomial $f(x) \in F[x]$ such that $f(\alpha) = 0$. Otherwise, α is **transcendental**.

3.4 Minimal Polynomial

Definition 3.5. The **minimal polynomial** of α over F is the monic polynomial of least degree in F[x] that has α as a root.

3.5 Finite Fields

Theorem 3.1. For every prime p and positive integer n, there exists a unique field of order p^n , denoted \mathbb{F}_{p^n} .

4 Polynomial Rings

4.1 Definition

Definition 4.1. The **polynomial ring** R[x] over ring R is the set of all polynomials with coefficients in R.

4.2 Division Algorithm

Theorem 4.1. Let F be a field and $f(x), g(x) \in F[x]$ with $g(x) \neq 0$. Then there exist unique polynomials $g(x), r(x) \in F[x]$ such that f(x) = g(x)q(x) + r(x) where $\deg(r) < \deg(g)$.

4.3 Irreducible Polynomials

Definition 4.2. A polynomial $f(x) \in F[x]$ is **irreducible** over F if it cannot be factored as a product of two non-constant polynomials in F[x].

4.4 Eisenstein's Criterion

Theorem 4.2. Let $f(x) = a_n x^n + \cdots + a_0 \in \mathbb{Z}[x]$. If there exists a prime p such that:

- 1. $p \nmid a_n$
- 2. $p \mid a_i \text{ for } i = 0, 1, \dots, n-1$
- 3. $p^2 \nmid a_0$

then f(x) is irreducible over \mathbb{Q} .

5 Galois Theory

5.1 Automorphisms

Definition 5.1. An automorphism of field E is an isomorphism from E to itself.

Definition 5.2. The **Galois group** of extension E/F, denoted Gal(E/F), is the group of all automorphisms of E that fix F pointwise.

5.2 Fixed Fields

Definition 5.3. If G is a group of automorphisms of field E, then the **fixed field** of G is $Fix(G) = \{a \in E : \sigma(a) = a \text{ for all } \sigma \in G\}.$

5.3 Galois Extensions

Definition 5.4. A finite extension E/F is **Galois** if |Gal(E/F)| = [E : F].

5.4 Fundamental Theorem of Galois Theory

Theorem 5.1. Let E/F be a Galois extension with Galois group G. Then there is a one-to-one correspondence between:

- Subgroups of G and intermediate fields of E/F
- \bullet Normal subgroups of G and normal extensions of F contained in E

6 Modules

6.1 Definition

Definition 6.1. Let R be a ring. A **left** R-module is an abelian group M together with a scalar multiplication $R \times M \to M$ satisfying:

- 1. (r+s)m = rm + sm
- $2. \ r(m+n) = rm + rn$
- 3. (rs)m = r(sm)
- 4. 1m = m (if R has unity)

6.2 Submodules and Quotient Modules

Definition 6.2. A submodule of R-module M is a subgroup N of M such that $rn \in N$ for all $r \in R$ and $n \in N$.

Definition 6.3. If N is a submodule of M, then the **quotient module** M/N is the quotient group with scalar multiplication r(m+N) = rm + N.

6.3 Module Homomorphisms

Definition 6.4. An R-module homomorphism from M to N is a group homomorphism $\phi: M \to N$ such that $\phi(rm) = r\phi(m)$ for all $r \in R$ and $m \in M$.

7 Vector Spaces

7.1 Definition

Definition 7.1. A vector space over field F is an abelian group V with scalar multiplication $F \times V \to V$ satisfying the module axioms.

7.2 Basis and Dimension

Definition 7.2. A basis for vector space V is a linearly independent spanning set.

Theorem 7.1. Every vector space has a basis, and any two bases have the same cardinality.

Definition 7.3. The **dimension** of vector space V, denoted $\dim(V)$, is the cardinality of any basis.

7.3 Linear Transformations

Definition 7.4. A linear transformation from vector space V to vector space W is a function $T: V \to W$ such that:

- 1. T(v + w) = T(v) + T(w)
- 2. T(cv) = cT(v)

8 Group Actions

8.1 Definition

Definition 8.1. A **group action** of group G on set X is a function $G \times X \to X$ (denoted $(g,x) \mapsto g \cdot x$) such that:

- 1. $e \cdot x = x$ for all $x \in X$
- 2. $(gh) \cdot x = g \cdot (h \cdot x)$ for all $g, h \in G$ and $x \in X$

8.2 Orbits and Stabilizers

Definition 8.2. The **orbit** of $x \in X$ under action of G is $Orb(x) = \{g \cdot x : g \in G\}$.

Definition 8.3. The stabilizer of $x \in X$ is $Stab(x) = \{g \in G : g \cdot x = x\}$.

8.3 Orbit-Stabilizer Theorem

Theorem 8.1. If G acts on X and $x \in X$, then $|\operatorname{Orb}(x)| = |G|/|\operatorname{Stab}(x)|$.

9 Sylow Theorems

9.1 Definition

Definition 9.1. Let G be a finite group and p a prime. A **Sylow** p-subgroup of G is a maximal p-subgroup of G.

9.2 First Sylow Theorem

Theorem 9.1. If G is a finite group and p divides |G|, then G has a Sylow p-subgroup.

9.3 Second Sylow Theorem

Theorem 9.2. All Sylow p-subgroups of G are conjugate to each other.

9.4 Third Sylow Theorem

Theorem 9.3. If G is a finite group and p divides |G|, then the number of Sylow p-subgroups is congruent to 1 mod p and divides |G|.

10 Free Groups and Presentations

10.1 Free Groups

Definition 10.1. A group F is **free** on set X if every function from X to a group G extends uniquely to a homomorphism from F to G.

10.2 Group Presentations

Definition 10.2. A group presentation is an expression of the form $\langle X|R\rangle$ where X is a set of generators and R is a set of relations.

11 Important Theorems

11.1 Cayley's Theorem

Theorem 11.1. Every group is isomorphic to a subgroup of a symmetric group.

11.2 Chinese Remainder Theorem

Theorem 11.2. If m and n are relatively prime integers, then $\mathbb{Z}_{mn} \cong \mathbb{Z}_m \times \mathbb{Z}_n$.

11.3 Classification of Finite Simple Groups

Theorem 11.3. Every finite simple group is one of:

- A cyclic group of prime order
- An alternating group A_n for $n \geq 5$
- A group of Lie type
- One of 26 sporadic groups

11.4 Wedderburn's Theorem

Theorem 11.4. Every finite division ring is a field.

11.5 Hilbert's Nullstellensatz

Theorem 11.5. Let k be an algebraically closed field and I an ideal in $k[x_1, \ldots, x_n]$. Then $I(V(I)) = \sqrt{I}$ where V(I) is the variety of I and \sqrt{I} is the radical of I.

12 Applications

12.1 Cryptography

Abstract algebra is fundamental to:

- RSA encryption (based on Euler's theorem)
- Elliptic curve cryptography
- Diffie-Hellman key exchange
- Digital signatures

12.2 Coding Theory

Applications include:

- Error-correcting codes
- Linear codes over finite fields
- Cyclic codes
- Reed-Solomon codes

12.3 Algebraic Geometry

Connections to:

- Varieties and schemes
- Commutative algebra
- Homological algebra
- Category theory

12.4 Number Theory

Applications in:

- Algebraic number theory
- Class field theory
- Modular forms
- Diophantine equations