Rešavanje problema p-hab medijane neograničenih kapaciteta

PETAR KOŠANIN 140/2015

UVOD

- Mreže sa habovima su široko rasprostranjene u modernim transportnim sistemima.
- Umesto dirketnih veza izvor-destinacija, protok se uspostavlja preko habova tj izvor – hab – hab – destinacija.
- Smanjena cena transporta izmedju habova.
- Glavni problem je izbor habova kao I povezati ostale čvorove sa njima
- Razlikujemo više p-hab lokacijskih problema, a na to utiču način povezivanja sa habovima I ograničenja kapaciteta habova
- U ovomradu biće razmatran problem sa jednostrukim vezama (USApHMP).

MATEMATIČKA FORMULACIJA

- Ciljna funkcija (1) minimizuje ukupnu cenu transporta izvor-hab, hab-hab, habdestinacija
- Ograničenje (2) obezbedjuje alociranje tačno p habova
- Ograničenja (3) I (5) obezbedjuju da su čvorovi povezani sa tačno jednim habom
- Ograničenje

 (4) obezbedjuje da protok ide isključivo preko habova

$$min\sum_{i}\sum_{j}\sum_{k}\sum_{l}W_{ij}(\chi C_{ik}H_{ik} + \alpha C_{kl}H_{kl} + \delta C_{lj}H_{lj})$$
 (1)

uz ograničenja:

$$\sum_{k}^{n} H_{kk} = p \tag{2}$$

$$\sum_{k=1}^{n} H_{ik} = 1, \forall i = 1, ..., n$$
 (3)

$$H_{ik} < H_{kk}, \forall i, k = 1, ..., n \tag{4}$$

$$H_{ik} \in \{0, 1\}, \forall i, k = 1, ..., n$$
 (5)

GENTETSKI ALGORITAM (GA)

- Metaheuristika zasnovana na prirodnoj evoluciji.
- Osnovna struktura je populacija jedinki
- Selekcija
- ▶ Reprodukcija
- Mutacija
- Funkcija prilagodjenosti

REPREZENTACIJA JEDINKE

- Genetski kod jedinke sastoji se od n gena, gde jedan gen čine par bitova I pomoćnog niza habova (niz je sortiran rastuće).
- Prvi bit ukazije da li je čvor hab ili ne(1 ako je hab, 0 inače)
- Drugi bit predstavlja indeks haba u nizu alociranih habova sa kojim je čvor povezan(habovi su povezani sami sa sobom).
- ▶ Primer jedinke zan = 5 lp = 3:
- 00 | 10 | 10 | 10 | 02

SELEKCIJA

- Izbor n jedinki je analogno igranju n partija ruleta.
- Povremeno nasumično prerasporedjivanje elemenata u populaciji
- Elitizam

REPRODUKCIJA

- Standardno jednopoziciono ukrštanje lako može proizvesti nepravilne rezultate.
- Modifikovano ukrštanje
- Dodatna korekcija radi obezbedjivanja tačno p habova.

MUTACIJA

- Operator mutacije se primenjuje nakon ukrštanja
- Sa verovatnoćom 0.05 menja drugi bit gena ne-habova.
- Operator se primenjuje nad svim ne-hab čvorovima

OSTALI ASPEKTI

- ▶ Opisani GA je implementiran u C++
- Testiran nad CAB (Civil Aeronautics Board) skupom podataka
- Maksimalan broj iteracija je 500 (u slučaju da se rezultat ne menja posle 200 iteracija, prekida se izvršavanje algoritma)
- Veličina populacije je 150
- ▶ U Selekciji učestvuju sve jedinke
- Verovatnoća mutacije je 0.05

REZULTATI

- Prva kolona predstavlja broj čvorova
- Druga kolona predstavlja broj habova
- Alpha predstavlja koeficijent popusta transporta izmedju dva haba
- Best kolonu najbolja funkcija prilagodjenosti

n	р	alpha	best
20	2	0.2	184382
20	2	0.4	200540
20	2	0.6	212234
20	2	0.8	222394
20	2	1	229359
25	2	0.2	328511
25	2	0.4	351185
25	2	0.6	373006
25	2	0.8	400290
25	2	1	414192
20	3	0.2	141785
20	3	0.4	153263
20	3	0.6	166070
20	3	0.8	186024
20	3	1	171984
25	3	0.2	254219
25	3	0.4	291539
25	3	0.6	315426
25	3	0.8	332488
25	3	1	345962
20	4	0.2	113780
20	4	0.4	129563
20	4	0.6	147657
20	4	0.8	164812
20	4	1	166048
25	4	0.2	215564
25	4	0.4	251923
25	4	0.6	272010
25	4	0.8	305854
25	4	1	322176

Tabela 1: Rezultati nad CAB instancama