- 1. Using Euclidean Algorithm find integers α and β such that $gcd(18, 127) = \alpha \cdot 18 + \beta \cdot 127$.
- 2. Using Euclidean Algorithm find integers α and β such that $\gcd(33,251) = \alpha \cdot 33 + \beta \cdot 251$.
- 3. Prove, that 5n + 3 and 7n + 4 are relatively prime for any positive n.
- 4. Find primes p, q if $n = p \cdot q = 414847$ and $\phi(n) = 413280$.
- 5. Find an integer a such that $a \equiv 4 \pmod{6}$ and $a \equiv 5 \pmod{35}$.
- 6. Find an integer a such that $a \equiv 4 \pmod{7}$ and $a \equiv 1 \pmod{19}$.
- 7. Find an integer a such that $a \equiv 38 \pmod{103}$ and $a \equiv 81 \pmod{83}$.
- 8. Find an integer a such that $a \equiv 4 \pmod{6}$ and $a \equiv 5 \pmod{35}$.
- 9. Find an integer a such that $a \equiv 4 \pmod{7}$ and $a \equiv 1 \pmod{19}$.
- 10. Find an integer a such that $a \equiv 38 \pmod{91}$, $a \equiv 81 \pmod{83}$ and $a \equiv 3 \pmod{95}$.