Tema 2

Кривые в трехмерном пространстве

Рассмотрим теперь регулярные кривые в трехмерном евклидовом пространстве \mathbb{R}^3 . В предыдущем разделе мы построили репер Френе для плоской бирегулярной кривой и изучили его зависимость от натурального параметра, что, в конечном счете, позволило нам решить натуральное уравнение. В трехмерном пространстве двух векторов — скорости и главной нормали, — не хватает для репера, поэтому нужны дополнительные построения.

2.1 Формулы Френе

Конструкция 2.1. Пусть $\gamma(s)$ — натурально параметризованная бирегулярная кривая в \mathbb{R}^3 . Как и выше, пусть τ — вектор скорости $\dot{\gamma}(s)$, и ν — главная нормаль к γ в точке $\gamma(s)$. Обозначим через β — векторное произведение $[\tau,\nu]$. Тройка (τ,ν,β) образует положительно ориентированный ортонормальный базис в \mathbb{R}^3 .

Определение 2.2. Вектор β называется *бинормалью* к бирегулярной кривой γ в точке $\gamma(s)$, а базис (τ, ν, β) — *репером* Френе кривой γ в точке $\gamma(s)$.

Лемма 2.3. Производная $\dot{\beta}(s)$ вектора бинормали по натуральному параметру коллинеарна вектору главной нормали ν .

Доказательство. По формуле Лейбница имеем

$$\dot{\beta} = [\tau, \nu] \cdot = [\dot{\tau}, \nu] + [\tau, \dot{\nu}] = [\tau, \dot{\nu}],$$

где последнее равенство справедливо, так как вектор $\dot{\tau}$, равный $\ddot{\gamma}$, коллинеарен ν и, значит, $[\dot{\tau},\nu]=0$. Отсюда, в частности, следует, что вектор $\dot{\beta}$ ортогонален τ . Далее, так как вектор $\beta(s)$ — единичный при каждом s, то $\dot{\beta}$ перпендикулярен β . Следовательно, $\dot{\beta}$ коллинеарен вектору ν , что и требовалось.

Определение 2.4. Величина $\varkappa = -\langle \dot{\beta}, \nu \rangle$ называется *кручением* бирегулярной кривой γ в точке $\gamma(s)$.

Замечание 2.5. Из определения и леммы 2.3 вытекает, что $\dot{\beta} = -\varkappa\nu$. Ясно, что кручение \varkappa является гладкой функцией натурального параметра s.

Теорема 2.6 (Формулы Френе). В сделанных предположениях справедливы следуюшие соотношения:

$$\begin{cases} \dot{\tau} = k \nu, \\ \dot{\nu} = -k \tau + \varkappa \beta, \\ \dot{\beta} = -\varkappa \nu. \end{cases}$$

где k и \varkappa — кривизна и кручение бирегулярной кривой γ в точке $\gamma(s),$ соответственно.

Доказательство. Первое и третье уравнения — это фактически определения кривизны и кручения. Осталось доказать второе равенство.

Так как вектор $\dot{\nu}$ перпендикулярен ν , то его можно разложить по векторам τ и β . Положим $\dot{\nu} = a \tau + b \beta$. В силу ортонормальности репера Френе имеем $a = \langle \dot{\nu}, \tau \rangle$ и $b = \langle \dot{\nu}, \beta \rangle$. Мы должны показать, что a = -k, а $b = \varkappa$.

Так как $\langle \nu, \tau \rangle = \langle \nu, \beta \rangle = 0$, то, дифференцируя эти равенства, заключаем, что

$$0 = \langle \dot{\nu}, \tau \rangle + \langle \nu, \dot{\tau} \rangle = a + k, \qquad 0 = \langle \dot{\nu}, \beta \rangle + \langle \nu, \dot{\beta} \rangle = b - \varkappa,$$

что и требовалось доказать.

Приведем теперь явные формулы для вычисления кривизны и кручения кривой в произвольной параметризации.

Теорема 2.7. Пусть $\gamma(t)$ — бирегулярная кривая. Тогда

$$k = \frac{\|[\dot{\gamma}, \ddot{\gamma}]\|}{\|\dot{\gamma}\|^3}, \qquad \varkappa = \frac{(\dot{\gamma}, \ddot{\gamma}, \dddot{\gamma})}{\|[\dot{\gamma}, \ddot{\gamma}]\|^2},$$

где через (u, v, w) обозначено смешанное произведение векторов $u, v u w u \in \mathbb{R}^3$.

Доказательство. Пусть сначала t=s — натуральный параметр. Тогда

$$\dot{\gamma} = \tau$$
, $\|\dot{\gamma}\| = 1$, $\ddot{\gamma} = k \nu$, $\|[\dot{\gamma}, \ddot{\gamma}]\| = k$

И

$$\ddot{\gamma} = \dot{k} \nu + k(-k \tau + \varkappa \beta), \qquad (\dot{\gamma}, \ddot{\gamma}, \ddot{\gamma}) = k^2 \varkappa,$$

поэтому в этом случае теорема имеет место.

Сделаем замену параметра. Оказывается, что приведенные формулы при этом не изменятся. Действительно, обозначая начальный параметр через s, новый параметр — через t, а дифференцирования по параметрам — соответствующими нижними индексами, получаем

$$\gamma_s = \gamma_t t_s, \quad \gamma_{ss} = \gamma_{tt} t_s^2 + \gamma_t t_{ss}, \quad \gamma_{sss} = \gamma_{ttt} t_s^3 + 3\gamma_{tt} t_s t_{ss} + \gamma_t t_{sss},$$

откуда

$$[\gamma_s, \gamma_{ss}] = [\gamma_t, \gamma_{tt}] t_s^3, \qquad (\gamma_s, \gamma_{ss}, \gamma_{sss}) = (\gamma_t, \gamma_{tt}, \gamma_{ttt}) t_s^6$$

и, наконец,

$$\frac{\left\| \left[\gamma_s, \gamma_{ss} \right] \right\|}{\| \gamma_s \|^3} = \frac{\left\| \left[\gamma_t, \gamma_{tt} \right] \right\|}{\| \gamma_t \|^3} \quad \text{и} \quad \frac{\left(\gamma_s, \gamma_{ss}, \gamma_{sss} \right)}{\left\| \left[\gamma_s, \gamma_{ss}, \right] \right\|^2} = \frac{\left(\gamma_t, \gamma_{tt}, \gamma_{ttt} \right)}{\left\| \left[\gamma_t, \gamma_{tt} \right] \right\|^2}.$$

Доказательство закончено.

Упражнение 2.8. Пусть t — произвольный параметр пространственной бирегулярной кривой γ . Проверить справедливость следующих формул для вычисления векторов бинормали и главной нормали:

$$\beta(t) = \frac{[\dot{\gamma}, \ddot{\gamma}]}{\|[\dot{\gamma}, \ddot{\gamma}]\|}, \qquad \nu(t) = [\beta, \tau].$$

2.2 Натуральные уравнения

Оказывается, кривизна и кручение полностью определяют форму бирегулярной кривой в трехмерном пространстве.

Теорема 2.9. Пусть f(s) и g(s) — две гладкие функции на отрезке [a,b], причем функция f(s) положительна. Тогда существует единственная, с точностью до сохраняющего ориентацию движения пространства, натурально параметризованная кривая $\gamma(s)$, такая, что ее кривизна k(s) и кручение $\varkappa(s)$ равны соответственно f(s) и g(s).

Доказательство. Формулы Френе, в которые вместо кривизны подставлена функция f, а вместо кручения — функция g, можно рассматривать как систему линейных дифференциальных уравнений первого порядка с девятью неизвестными — компонентами векторов τ , ν и β . Эту систему будем обозначать символом (*). Нам будем удобно записать ее в матричном виде. Пусть $\tau = (\tau^1, \tau^2, \tau^3), \ \nu = (\nu^1, \nu^2, \nu^3), \ \beta = (\beta^1, \beta^2, \beta^3),$ тогда система (*) имеет вид

$$\begin{pmatrix} \dot{\tau}^1 & \dot{\tau}^2 & \dot{\tau}^3 \\ \dot{\nu}^1 & \dot{\nu}^2 & \dot{\nu}^3 \\ \dot{\beta}^1 & \dot{\beta}^2 & \dot{\beta}^3 \end{pmatrix} = \begin{pmatrix} 0 & f & 0 \\ -f & 0 & g \\ 0 & -g & 0 \end{pmatrix} \begin{pmatrix} \tau^1 & \tau^2 & \tau^3 \\ \nu^1 & \nu^2 & \nu^3 \\ \beta^1 & \beta^2 & \beta^3 \end{pmatrix}.$$

Матрицу из системы (*), строками которой являются координаты векторов τ , ν и β , обозначим через η , а матрицу, содержащую f и g, — через Ω . Таким образом, система (*) имеет вид $\dot{\eta} = \Omega \eta$. Отметим, что Ω — кососимметричная матрица.

Выберем в \mathbb{R}^3 некоторый ортонормальный положительно ориентированный репер (τ_0, ν_0, β_0) . По теореме существования и единственности решения задачи Коши для системы дифференциальных уравнений существуют и единственны вектор-функции $\tau(s), \nu(s), \beta(s),$ удовлетворяющие системе (*) и начальным условиям $\tau(a) = \tau_0, \nu(a) = \nu_0, \beta(a) = \beta_0$. Положим

$$\gamma(s) = \gamma_0 + \int_a^s \tau(t) \, dt,$$

где γ_0 — произвольный вектор, и покажем, что γ — искомая кривая, т.е. γ — бирегулярная кривая, параметризованная натуральным параметром s, её кривизна k(s) равна f(s), а кручение $\varkappa(s)$ равно g(s).

Лемма 2.10. При каждом s тройка $(\tau(s), \nu(s), \beta(s))$ образует ортонормальный положительно ориентированный репер.

Доказательство. Ортонормированность репера $(\tau(s), \nu(s), \beta(s))$ равносильна ортогональности матрицы $\eta(s)$ при каждом s, т.е. $\eta^T(s)\eta(s) = E$, где E — единичная матрица. Так как начальное условие (τ_0, ν_0, β_0) представляет собой ортонормальный репер, то при s = a матрица $\eta(a)$ ортогональна. Поэтому достаточно проверить, что матрица $\eta^T(s)\eta(s)$ не зависит от s. Для этого продифференцируем выражение $\eta^T(s)\eta(s)$ по s и воспользуемся тем, что $\dot{\eta}(s) = \Omega \eta$. Имеем:

$$(\eta^T \eta)^{\cdot} = \dot{\eta}^T \eta + \eta^T \dot{\eta} = \eta^T \Omega^T \eta + \eta^T \Omega \eta = \eta^T (\Omega^T + \Omega) \eta = 0,$$

где последнее равенство следует из кососимметричности матрицы Ω , что и требовалось.

Положительность ориентации репера $(\tau(s), \nu(s), \beta(s))$ при каждом s следует из того, что репер (τ_0, ν_0, β_0) ориентирован положительно по предположению, а определитель матрицы $\eta(s)$ не обращается в нуль ни при каком s, значит ориентация не меняется. Лемма доказана.

Проверим, что γ — искомая кривая. Так как $\dot{\gamma}(s)=\tau(s)$, то из леммы 2.10 следует, что γ — регулярна, и s — натуральный параметр. Продифференцируем еще раз и воспользуемся тем, что γ — решение системы (*): $\ddot{\gamma}(s)=\dot{\tau}(s)=f(s)\,\nu(s)$. По предположению функция f(s) положительна, а $\nu(s)$ — единичный вектор в силу леммы 2.10, поэтому f(s) совпадает с кривизной, а $\nu(s)$ — с главной нормалью кривой γ в точке $\gamma(s)$. Так как $\gamma(s)>0$ при любом $\gamma(s)$ то кривая $\gamma(s)$ — бирегулярна. Далее, поскольку каждый из ортонормальных реперов $\gamma(s)$, $\gamma(s)$, $\gamma(s)$, $\gamma(s)$ положительно ориентирован, то $\gamma(s)$ совпадает с бинормалью к $\gamma(s)$. Наконец, по условию $\gamma(s)$ — $\gamma(s)$ 0 откуда $\gamma(s)$ 0 совпадает с кручением кривой $\gamma(s)$ 0. Таким образом, доказано существование кривой $\gamma(s)$ 1.

Теперь докажем теперь единственность кривой γ . Пусть имеются две натурально параметризованные параметром s кривые γ_1 и γ_2 с одинаковыми кривизной k и кручением \varkappa . С помощью движения совместим их начальные точки и начальные реперы Френе. Полученные кривые вновь обозначим теми же буквами. Пусть $(\tau_i(s), \nu_i(s), \beta_i(s))$ — семейство реперов Френе для кривой γ_i . Заметим, что эти реперы удовлетворяют одной и той же системе обыкновенных дифференциальных уравнений Френе и имеют одинаковые начальные условия. Отсюда по теореме единственности решения задачи Коши для обыкновенного дифференциального уравнения реперы Френе кривых γ_i совпадают в соответствующих точках. В частности, совпадают векторы $\tau_i(s)$. Наконец, так как $\gamma_i(s)$ является решением дифференциального уравнения $\dot{\gamma}_i(s) = \tau_i(s)$ с одинаковыми начальными условиями, кривые γ_i совпадают. Теорема доказана.

Определение 2.11. Если f(s) и g(s) — две гладкие функции, такие, что f(s) > 0 при всех s, то условия k(s) = f(s), $\varkappa(s) = g(s)$ на кривизну k и кручение \varkappa кривой γ называются натуральными уравнениями пространственной кривой. Решить натуральные уравнения означает найти натурально параметризованную бирегулярную кривую $\gamma(s)$ с кривизной f(s) и кручением g(s).

Следствие 2.12. Натуральное уравнение пространственной кривой всегда имеет решение. Более того, это решение единственно с точностью до сохраняющего ориентацию движения пространства \mathbb{R}^3 .

Замечание 2.13. Напомним, что в плоском случае по одной гладкой функции — ориентированной кривизне — однозначно восстанавливается регулярная (не обязательно бирегулярная) кривая. Дело в том, что в двумерном случае семейство ориентированных главных нормалей регулярной кривой продолжается по непрерывности в те точки кривой, в которых ускорение обращается в нуль, т.е. нарушается бирегулярность. В трехмерном пространстве такое продолжение, вообще говоря, невозможно, так как в окрестности точки, в которой нарушается бирегулярность, прямая, проведенная вдоль главной нормали, может меняться скачком.

Упражнение 2.14. Привести пример регулярной кривой $\gamma(s)$, для которой выполнено равенство $(\dot{\gamma}, \ddot{\gamma}, \ddot{\gamma}) = 0$, но кривая γ не лежит ни в одной двумерной плоскости. Может ли такая кривая быть бирегулярной? Исследовать поведение главной нормали построенной кривой в окрестности точек, в которых нарушается бирегулярность.