

Figure 1 (A-F)

Construct Forms Comprising at Least one Single-Stranded Region

Figure 2 (A-F)

Functional Forms of the Construct

Figure 3 (A-C)

Three Constructs with an RNA Polymerase Covalently Attached to a Transcribing Cassette

4/29

Figure 4 (A-C)

Three Constructs with Promoters for Endogenous RNA Polymerase

5/29

				*	
M13mp	18. Seq Len	gth: 7250			
1.	AATGCTACTA	CTATTAGTAG	AATTGATGCC	ACCTITICAG	СПОЗОЗОССС
51.	AAATGAAAAT	ATAGCTAAAC	AGGITATIGA	CCATTTCCCCA	AATGTATCTA
101.	ATGGTCAAAC	TAAATCTACT	OGTTOGCAGA	ATTOGGAATC	AACTGTTACA
151.	TGGAATGAAA	CTTOCAGACA	COGTACTTTA	GTTGCATATT	TAAAACATGT
201	TGAGCTACAG	CACCAGATTC	AGCAATTAAG	CTCTAAGCCA	TOOGCAAAAA
251	TGACCTCTTA	TCAAAAGGAG	CAATTAAAGG	TACTCTCTAA	TOCTGACCTG
301.	TTGGAGTTTG	CITCOGGICT	GGITOGCTTT	GAAGCTOGAA	TTAAAAOGOG
351.	ATATTTGAAG	тстпоесес	ПССТСТТАА.	TCTTTTCAT	GCAATCCCGCT
401.	TIECTICICA	CTATAATAGT	CAGGGTAAAG	ACCTGATTTT	TGATTTATGG
451.	TCATTCTCGT	TTTCTGAACT	GTTTAAAGCA	TTTGAGGGGG	ATTCAATGAA
501.	TATTTATGAC	GATTOOGCAG	TATTOGACGC	TATCCAGTCT	AAACATTTTA
551.	CTATTACCCC	CTCTGGCAAA	ACTICITITIE	CAAAAGCCTC	TOGCTATTTT
601.	GGTTTTTATC	GIOGICIEGI	AMOGAGGGT	TATGATAGTG	TTGCTCTTAC
651.	TATECCTOST	AATTCCTTTT	GEOGITATGT	ATCTGCATTA	GTTGAATGTG
701.	GTATTCCTAA	ATCTCAACTG	ATGAATCTTT	CTACCTGTAA	TAATGTTGTT
751.	COGITAGITC	GTTTTATTAA	CGTAGATTTT	TCTTCCCAAC	GICCIGACIG
801.	GTATAATGAG	CCAGTTCTTA	AAATOGCATA	AGGTAATTCA	CAATGATTAA
851.	AGTTGAAATT	AAACCATCTC	AAGCCCAATT	TACTACTOGT	TCTGGTGTTC
901.	TOGTCAGGGC	AAGCTTATT	CACTGAATGA	GCAGCITIGT	TACGTTGATT
951.	TGGGTAATGA	ATATOOGGTT	CITGTCGAAG	ATTACTCTTG	ATGAAGGTCA
1001	GOCAGOCTAT	ececciedic	TGTACACCGT	TCATCTGTCC	TCTTTCAAAG
1051	TIGGTCAGTT	COGTICCCIT	ATGATTGACC	GICIGOGOCT	CONTROCACT
1101	AAGTAACATG	GAGCAGGTOG	COGATTTCGA	CACAATTTAT	CAGGOGATGA
1151	TACAAATCTC	OGTTGTACCTT	таттювовс	TTGGTATAAT	остесст
1201	CAAAGATGAG	TGTTTTAGTG	TATTCTTTCG	CCICITICGT	TTTAGGTTGG

Figure 5

6/29

1251	TGCCTTCGTA	GTGGCATTAC	GTATTTTACC	CGTTTAATGG	AAACTTCCTC
1301	ATGAAAAAGT	CTTTAGTCCT	CAAAGCCTCT	GTAGCOGTTG	CTACCCTCGT
1351	TOOGATGCTG	TCTTTCGCTG	CTGAGGGTGA	OGATOCOGCA	AAAGOGGCCT
1401	TTAACTCCCT	GCAAGOCTCA	COCACCCAAT	ATATOGGTTA	TGOGTGGGGGG
1451	ATGGTTGTTG	TCATTGTCGG	OGCAACTATC	GGTATCAAGC	TGTTTAAGAA
1501	ATTCACCTCG	AAAGCAAGCT	GATAAACCGA	TACAATTAAA	GCTCCTTTT
1551	GCACCCTTTT	TTTTTGGAGA	TTTTCAACGT	GAAAAAATTA	TTATTOGCAA
1601	TTCCTTTAGT	TGTTCCTTTC	TATTCTCACT	COCCTICANAC	TGTTGAAAGT
1651	TGTTTAGCAA	AACCCCATAC	AGAAAATTCA	TTTACTAACG	TCTGGAAAGA
1701	CGACAAAACT	TTAGATCGTT	ACGCTAACTA	TGAGGGTTGT	CTGTGGAATG
1751	CTACAGGCGT	TGTAGTTTGT	- ACTEGTIGACG	AAACTCAGTG	TTACGGTACA
1801	TEGETTECTA	TTGGGCTTGC	TATOCCTGAA	AATGAGGGTG	GTGGCTCTGA
1851	COCTICOCOCCT	TCTGAGGGTG	COCCTTCTCA	COGNICECCE	ACTAAACCTC
1901	CTGAGTACGG	TGATACACCT	ATTOOGGGCT	ATACTTATAT	CAACCCTCTC
1951	GACGGCACTT	ATCCCCCTCG	TACTGAGCAA	AACCCGCTA	ATOCTAATOC
2001	TTCTCTTGAG	GAGTCTCAGC	CTCTTAATAC	TITCATGTTT	CAGAATAATA
2051	GGTTCCGAAA	TAGGCAGGGG	CCATTAACTG	TTTATACGGC	CACTGTTACT
2101	CAAGGCACTG	ACCCCCGTTAA	AACTTATTAC	CAGTACACTC	CTGTATCATC
2151	AAAAGOCATG	TATGACGCTT	ACTOGAACOG	TAAATTCAGA	GACTGOGGCTT
2201	CAAGGCACTG	ACCCCCGTTAA	AACTTATTAC	CAGTACACTC	CTGTATCATC
2151	AAAAGCCATG	TGCCTCAACC	TOCTGTCAAT	6	CICICGICG
2201	TOCATTCTGG	CTTTAATCAA	GATOCATTOG	TTTGTGAATA	TCAAGGCCAA
2251	TOGTCTGACC	TECCTCAACC	TOCTGTCAAT	eciessesses	ecticiegieg
2301	TEGTTCTEGT	CECCECTICIG	AGGGIGGIGG	CICTGAGGGT	COCCUTTCTG
2351	ACCETECCE	CTCTGAGGGA	GEÓGELLOCCE	GIGGIGGCIC	TOGTTOOOGT
2401	GATTTTGATT	ATGAAAAGAT	COCAMACOCT	AATAAGGGGG	CTATGACCGA
2451	AAATGCCGAT	GAMAACGCCGC	TACAGTICTGA	COCTAMAGIC	AAACTTGATT

Figure 5

7/29

250	1	CTGTCGCTAC	TGATTAOGGT	GCTGCTATCG	ATGGTTTCAT	TEGTGACGTT
255	5 1	TOOGGOOTTG	CTAATGGTAA	TOGTOCTACT	GGTGATTTTG	CTEGCTCTAA
260) 1	TTCCCAAATG	CCTCAAGTOG	GTGACCETGA	TAATTCACCT	TTAATGAATA
265	5 1	ATTTCCGTCA	ATATTTACCT	TOOCTOOCTC	AATOOGTTGA	ATGTCGCCCT
270	0 1	TTTGTCTTTA	GOGCTGGTAA	ACCATATGAA	TTTICTATIG	ATTGTGACAA
27!	5 1	AATAAACTTA ,	TTOOGTEGTE	TCTTTGCGTT	TCTTTTATAT	GTTGCCACCT
286	0 1	TTATGTATGT	ATTTTCTACG	TTTGCTAACA	TACTGCGTAA	TAAGGAGTCT
28	5 1	TTATCATGOC	AGTTCTTTTG	GGTATTCCGT	TATTATTGCG	TITOCTOGGT
29	0 1	TTCCTTCTGG	TAACTTTGTT	OGGCTATCTG	CTTACTTTTC	TTAAAAAGGG
29	5 1	CTTCGGTAAG	ATAGCTATTG	CTATTTCATT	GITICITECT	CTTATTATTG
30	0 1	GECTTAACTC	AATTCTTGTG	GGTTATCTCT	CTGATATTAG	COCTCAATTA
30	5 1	COCTCTGACT	TTGTTCAGGG	TGTTCAGTTA	ATTICTICCCCGT	CTAATGCGCT
31	0 1	TCCCTGTTTT	TATGTTATTC	TCTCTGTAAA	GGCTGCTATT	TICATITITG
31	5 1	ACGTTAAACA	AAAAATCGTT	TCTTATTTGG	ATTGGGATAA	ATAATATGGC
32	0 1	TGTTTATTTT	GTAACTGGCA	AATTAGGCTC	TOGAMAGACG	CTOGTTAGOG
32	5 1 ₋	TTGGTAAGAT	TCAGGATAAA	ATTIGTAGCTG	GGTGCAAAAT	AGCAACTAAT
33	0 1	CTTGATTTAA	GGCTTCAAAA	OCTOCCOCAA	GTCGGGAGGT	TOGOTAMAC
33	5 1	COCTOCOCTT	CTTAGAATAC	COGGATAAGCC	TTCTATATCT	GATTTGCTTG
34	0 1	CTATTGGGGG	COGTAATGAT	TOCTACGAATG	AAAATAAAAA	озаспест
34	5 1	GTTCTCGATG	AGTGCCGTAC	TTGGTTTAAT	ACCOGTTCTT	GGAATGATAA
35	0 1	GGAAAGACAG	COGATTATTG	ATTGGTTTCT	ACTECTOGT	AAATTAGGAT
35	5 1	GGGATATTAT	тпспсп	CAGGACTTAT	CTATTGTTGA	TAMACAGGGGG
36	0 1	CGTTCTGCAT	TAGCTGAACA	TGTTGTTTAT	TGTCGTCGTC	TOGACAGAAT
36	5 1	TACTTTACCT	TTTGTCGGTA	CTTTATATTC	TCTTATTACT	GGCTOGAAAA
37	01	TEXCTCTEXC	TAAATTACAT	eileccelle	TTAAATATGG	CGATTCTCAA
37	51	TTAAGCCCTA	CIGTIGAGOG	TTGGCTTTAT	ACTOGTAAGA	ATTTGTATAA
38	01	COCATATGAT	ACTAMACAGG	CTTTTTCTAG	TAATTATGAT	TOOGGIGITT

Figure 5

8/29

3851	ATTCTTATTT	AACGCCTTAT	TTATCACACG	GTOGGTATTT	CAAACCATTA
3901	AATTTAGGTC	AGAAGATGAA	ATTAACTAAA	ATAATATTGA	AAAAGTTTTC
3951	TOGOGTTCTT	TGTCTTGOGA	TTGGATTTGC	ATCAGCATTT	ACATATAGTT
4001	ATATAACCCA	ACCTAAGOOG	GAGGTTAAAA	AGGTAGTCTC	TCAGACCTAT
4051	GATTTTGATA	AATTCACTAT	TGACTCTTCT	CAGOGTICTTA	ATCTAAGCTA
4101	TOGCTATGTT	TTCAAGGATT	CTAAGGGAAA	TAATTAATTA	AGOGACGATT
4151	TACAGAAGCA	AGGTTATTCA	CTCACATATA	TTGATTTATG	TACTGTTTCC
4201	ATTAAAAAAG	GTAATTCAAA	TGAAATTGTT	AAATGTAATT	MITTIGTTT
4251	TCTTGATGTT	TGTTTCATCA	TCTTCTTTTG	CTCAGGTAAT	TGAAATGAAT
4301	AATTOGOCTC	TECCECCEATTT	TGTAACTTGG	TATTCAAAGC	AATCAGGGGA
4351	AATCCGTTATT	GITTCTCCCCG	ATGTAAAAGG	TACTGTTACT	GTATATTCAT
4401	CTGACGTTAA	ACCTGAAAAT	CTACGCAATT	TCTTTATTTC	TGTTTTACGT
4451	GCTAATAATT	TTGATAATGGT	TGGTTCAATT	CCTTCCATAA	TTCAGAAGTA
4501	TAATOCAAAC	AATCAGGATT	ATATTGATGA	ATTGCCATCA	TCTGATAATC
4551	AGGAATATGA	TGATAATTCC	ectecticis	GIGGITTCIT	TGTTCCGCAA
4601	AATĢATAATG	TTACTCAAAC	TTTTAAAATTT	AATAAOGTTC	GGGCAAAGGA
4651	TTTAATACGA	GTTGTCGAAT	TGTTTGTAAA	GTCTAATACT	TCTAAATOCT
4701	CAAATGTATT	ATCTATTGAC	GECTICTAATIC	TATTAGTTGT	TAGTGCTCCT
4751	AAAGATATTT	TAGATAACCT	TOCTCAATTC	CTTTCTACTG	TTGATTTGCC
4801	AACTGACCAG	ATATTGATTG	AGGGTTTGAT	ATTTGAGGTT	CAGCAAGGTG
4851	ATGCTTTAGA	TTTTTCATTT	ectecteect	CTCAGOGTEG	CACTGTTGCA
4901	GGCGGTGTTA	ATACTGACCG	OCTCACCTCT	GTTTTATCTT	CTECTEGTEG
4951	TICGHICGGT	ATTTTTAATG	GCGATGTTTT	AGGGCTATCA	GTTCGCCGCAT
5001	TAAAGACTAA	TAGOCATTCA	AAAATATTGT	CTGTGCCACG	TATTCTTACG
5051	CTTTCAGGTC	AGAAGGGTTC	TATCTCTGTT	CCCCAGAATG	TCCCTTTTAT
5101	TAAAGACTAA	TAGOCATTCA	AAAATATTGT	CTGTGCCACG	TATTCTTACG
5151	OGATTGAGOG	TCAAAATGTA	GGTATTTCCA	TGAGOGTTTT	TOCTGTTGCA

-Figure 5

9/29

5201	ATGGCTGGGG -	GTAATATTGT.	TCTGGATATT	ACCAGCAAGG	COGATAGTTT
5251	GAGITICICT	ACTCAGGCAA	GIGATGTTAT	TACTAATCAA	AGAAGTATTG
5.301	CTACAACGGT	TAATTTGCGT	GATGGACAGA	CTCTTTTACT	COGTICOCCTC
5351	ACTGATTATA	AAAACACTTC	TCAAGATTCT	GGOGTACOGT	TOCTGTCTAA
5401	AATCCCTTTA	ATCGGCCTCC	TGTTTAGCTC	COSCTCTGAT	TOCAAOGAGG
5451	AAAGCACGTT	ATACGTGCTC	GTCAAAGCAA	CCATACITACG	COCCTGTAG
5501	CCCCCCCATTA	AGOGGGGGG	GIGIGGIGGI	TACGCGCAGC	GTGACCGCTA
5551	CACTTGCCAG	OGCOCTAGOG	COOCCICCTT	TOGOTHICH	ссстт
5601	CTOGOCAOGT	TOGOOGGCTT	TOOCOGTICAA	CCTCTAAATC	GGGGGCICCC
5651	TTTAGGGTTC	CGATTTAGTG	CTTTACCGCCA	CCTTCGACCCCC	AAAAAACTTG
5701	ATTTEGGTGA	TEGTTCACGT	AGTGGGCCAT	OGCCCTGATA	GACGGTTTTT
5751	CCCCTTTGA	CETTECACTC	CACGITICITT	AATAGTGGAC	TCTTGTTCCA
5801	AACTGGAACA	ACACTCAACC	CTATCTCCCC	CTATTCTTTT	GATTTATAAG
5851	GGATTTTGCC	GATTTOGGAA	CCACCATCAA	ACAGGATTIT	COCCIOCIOC
5901	GGCAAACCAG	CCTTCCACCCCC	TTGCTGCAAC	TCTCTCAGGG	CCAGGOGGTG
5951	AAGGGCAATC	AGCTGTTGCC	OGICIOGCIG	GTGAAAAGAA	AAAOCAOOCT
6001	GEOGEOCCAAT	ACGCAAACCG	CTCTCCCCCG	ососттессс	GATTCATTAA
6051	TECACCTECC	ACGACAGGIT	TOCOGACTEG	AAAGOGGGCA	GTGAGOGCAA
6101	CCCAATTAAT	GTGAGTTAGC	TCACTCATTA	GGCACCCCAG	GCTTTACACT
6151	TTATGCTTCC	GCTCGTATG	TIGIGIGGAA	TTGTGAGOOGG	ATAACAATTT
6201	CACACAGGAA	ACAGCTATGA	CCATGATTAC	GAATTOGAGC	TOGGTACCCG
6251	GOGATOCTCT	AGAGTOGACC	TOCAGOCATG	CAAGCTTGGC	ACTGGCCGTC
6301	GTTTTACAAC	GTOGTGACTG	GGAAAACCCT	GEOGITIACCC	AACTTAATOG
6351	OCTTOCAGCA	CAATCCCCTT	TOGOCAGCTG	GOGTAATAGC	GAAGAGGCCCC
6401	OCACCGATCG	COCTTOCCAA	CAGITIGOGCA	GOCTGAATGG	CGAATGGCGC
6451	THECCIGGI	TITOOGGCACC	AGA4GOGGTG	CCCGAMAGCT	GECTECAGTG
6501		GAGGCCGATA	cegiogicgi	COCCTCAAAC	TEGECAGATEC

Figure 5

10/29

6551	ACGGTTACGA	TEXCECCATC	TACACCAACG	TAACCTATCC	CATTACGGTC
6601	AATCCGCCCGT	TIGITICCCAC	CCACAATOOG	ACGCGTTGTT	ACTOGCTCAC
6651	ATTTAATGTT	GATGAAAGCT	GGCTACAGGA	ACCOCAGACG	CGAATTATTT
6701	TTGATGGCGT	TOCTATTGGT	TAAAAAATGA	GCTGATTTAA	CAAAAATTTA
6751	ACCCCAATTT	TAACAAAATA	TTAACGTTTA	CAATTTAAAT	ATTTGCTTAT
6801	ACAATCTTCC	TGTTTTTGGG	GCTTTICTGA	TTATCAACOG	GGGTACATAT
6851	GATTGACATG	CTAGTTTTAC	GATTACOGTT	CATOGATTCT	співпівст
6901	CCAGACTCTC	AGGCAATGAC	CTGATAGOCT	TTGTAGATCT	CTCAAAAATA
6951	GCTACCCTCT	COGGCATGAA	TTTATCAGCT	AGAACGGTTG	AATATCATAT
7001	TGATGGTGAT	TIGACIGICT	COCCECTITIC	TCACCCTTTT	GAATCTTTAC
7051	CTACACATTA	CTCAGGCATT	GCATTTAAAA	TATATGAGGG	TTCTAAAAAT
7101	TTTTATCCTT	COCTTGAAAT	AAAGGCTTCT	CCCCCAAAAG	TATTACAGGG
7151	TCATAATGTT	TTTGGTACAA	COGATTTAGC	TTTATGCTCT	GAGGCTTTAT

Figure 5

11/29

COMPLEMENTARY TO M₁₃

POSITION 6 4 5	5 ' 3' AGCAACACTATCATA	POSITION 631	M ₁₃ /1
615	ACGACGATAAAAACC	601	M ₁₃ /2
585	TTTTGCAAAAGAAGT	571	M ₁₃ /3
555	AATAGTAAAATGTTT	541	M ₁₃ /4
525	CAATACTGOGGAATG	511	M ₁₃ /5
495	TGAATCCCCCTCAAA	481	M ₁₃ /6
465	AGAAAACGAGAATGA	451	M ₁₃ /7
435	CAGGTCTTTACCCTG	421	M ₁₃ /8
405	AGGAAAGCOGATTGC	391	M ₁₃ /9
375	AGGAAGOOOGAAAGA	361	M ₁₃ /10

COMPLEMENTARY TO SS PHAGE DNA

POSITION	s • 3'	POSITION	
351	ATATTIGAAGTCTTT	366	M ₁₃ /11
371	TCTTTTTGATGCAAT	386	M ₁₃ /12
391	CTATAATACTCAGGG	406	M ₁₃ /13
411	TGATTTATGGTCATT	426	· M ₁₃ /14
431	GTTTAAAGCATTTGA	446	M ₁₃ /15
451	TATTTATGACGATTC	466	M ₁₃ /16
471	TATOCAGTCTAAACA	486	M ₁₃ /17
491	CTCTGGCAAAACTTC	506	M ₁₃ /18
5 1-1	TOGOTATITTGGTTT	526	M ₁₃ /19
-531	AAAOGAGGGTTATGA	546	M _{13/2} 0

Figure 6

Primers for Nucleic Acid Production Derived from M13mp18 Sequence

12/29

Figure 7

Appropriate M13mp18 Restriction Sites

13/29

Lane 1: from calf thymus + Taq digested mp18 amplification reaction

Lane 2: from Taq digested mp18 amplification reaction

Lane 3: from calf thymus amplification reaction

Lane 4: øX174 Hinf1 size marker

Figure 8

14/29

Lane 1: no template

Lane 2: mp18 template, phosphate buffer

Lane 3: Mspl/pBR322 size marker Lane 4: mp18 template, MOPS buffer

Figure 9

15/29

Top= (+) Template Bottom= (-) Template

Lane 1: phosphate buffer

Lane 2: MES Lane 3: MOPS Lane 4: DMAB Lane 5: DMG

Lane 6: pBR322/Mspl size marker

Figure 10

16/29

Lane 1: DMAB buffer, no template Lane 2: DMAB buffer, mp18 template Lane 3: DMG buffer, no template Lane 4: DMG buffer, mp18 template

Lane 5: No reaction

Lane 6: 200 ng Taq I digested mp18 size marker/positive control

Figure 11

17/29

First Time Interval Second Time Interval

Agarose Gel Analysis

Lane 1: lambda Hind III marker

Lane 2: Amp/Untreated

Lane 3: Amp/Kinased

Lane 4: Amp/Kinased/Ligated

Lane 5: PCR/Untreated

Lane 6: PCR/Kinased

Lane 7: PCR/Kinased/Ligated Lane 8: øX174/Hinf1 marker

Figure 12

18/29

Figure 13

19/29

1 2 3 4 5 6

Lane 1: Primers alone

Lane 2: Primers + taq digested M13 DNA

Lane 3: Molecular weight markers

Lane 4: Primers + RNA

Lane 5: Primers alone

Lane 6: M13 digested DNA

Buffer was dimethyl amino glycine, pH 8.6

Figure 14

20/29

Lane 1: Primers alone

Lane 2: Primers + taq digested M13 DNA

Lane 3: Molecular weight markers

Lane 4: Primers + RNA

Lane 5: Primers alone Lane 6: M13 digested DNA

Buffer was dimethyl amino glycine, pH 8.6

Figure 15

Figure 16

Figure 17

23/29

pIBI 31-BH5-2

fmet AUG of Lac z {T7 Promotor region---- LAC PROMOTOR.ATG ACC ATG ATT ACG CCA GAT ATC AAA TTA ATA CGA CTC ACT ATA

oligo 50-mer 3'- tac t'aa t'gc ggt' ct'a t'ag t'Vt aat' tat' gct' gag t'ga t'at' c-5' 10 base insert

T7 RNA Start («« T3 Promotor Region)
IGGG CTC ICCT TTA GTG ACG GTT AAT
....») «- T3 Start Signal

pIBI 31 BSII/HCV

fmet AUG of Lac z (T3 Promotor region -») T3 RNA Start LAC PROMOTOR .ATG ACC ATG ATT ACG CCA AGC TCG AAA TTA ACC CTC ACT AAA /GGG oligo 50-mer 3'- tac t*aa t*ac t*aa t*gc ggt* t*V--10 base insert-------------------------

("- T7 Promotor Region)

MULTIPLE CLONING SITE + 390 BASE INSERT CTA /TAG TGA GTC CGT ATT AAT....

"- T7 Start Signal

5'-ct*a t*ag t*ga gt*c gt*a tt*a at*...........

24/29

 	 		5
 	 		9
 	 	****	J

25/29

Replication Bubble with Nucleotide Analogs

Primer-Dependent DNA Production Using Nucleic Acid Construct

26/29

Hairpin Product

27/29

Linked Complementary Production Constructs

28/29

Cloning Site in Production Constructs

29/29

ARRANGEMENT OF OLIGONUCLEOTIDE PRIMERS IN AMPLIFICATION REACTION

1	2	3	4	5	6	7	8	9	10
	.——								
20	19	. 18	17	16	15	14	13	12	11