Estatítica para Ciência de Dados

Aula 4: Distribuição Normal e Teorema Central do Limite

Francisco A. Rodrigues ICMC/USP francisco@icmc.usp.br

Aula 4: Distribuição Normal e Teorema Central do Limite

Distribuição Normal
 Teorema Central do Limite
 Lei dos grandes números

 Em 1809 Gauss publicou o trabalho "Theoria motus corporum coelestium in sectionibus conicis solem ambientium" onde ele introduziu o método dos mínimos quadrados, o método da máxima verossimilhança e a distribuição normal, dentre outros conceitos estatísticos.

Alturas Women

Definição: A v.a. contínua X que tome todos os valores na reta real

 -∞ < x < ∞ segue uma distribuição normal (ou Gaussiana) se sua
 função densidade de probabilidade é dada por:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right)$$

Onde

- $\bullet \quad E[X] = \mu$
- $V(X) = \sigma^2$

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right)$$

- Propriedades:
- f(x) é simétrica em relação à μ .
- $f(x) \to 0$ quando $x \to \pm \infty$.
- O valor máximo de X ocorre em $x = \mu$.

• Tabulação: $X \sim N(\mu, \sigma)$

$$Z = \frac{X-\mu}{\sigma} \rightarrow Z \sim N(\mu = 0, \sigma = 1)$$

Tabulação:

Standard Normal Cumulative Probability Table

Cumulative probabilities for NEGATIVE z-values are shown in the following table:

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0143
-2.0	0.0220	0.0222	0.0217	0.0212	0.0207	0.0202	0.0137	0.0132	0.0100	0.0100
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0274	0.0236	0.0329	0.0322	0.0230	0.0307	0.0203	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455

- Exemplo:
- Se $X \sim N(\mu = 165, \sigma^2 = 9)$, calcule P(X < 162).
- $P(X < 162) = P\left(\frac{X-\mu}{\sigma} < \frac{162-165}{3}\right) = P(Z < -1) = 0.158$

Standard Normal Cumulative Probability Table

Cumulative probabilities for NEGATIVE z-values are shown in the following table:

0.00	000 0000						0.08	0.09
	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
			• • • •					
0.0	793 0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
0.0	951 0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
1151 0.1	131 0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
1357 0.1	335 0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
1587 0.1	562 0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
	0968 0.0 1151 0.1 1357 0.1	0968 0.0951 0.0934 1151 0.1131 0.1112 1357 0.1335 0.1314	0968 0.0951 0.0934 0.0918 1151 0.1131 0.1112 0.1093 1357 0.1335 0.1314 0.1292	0808	0808	0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230	0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210	0808

- Exemplo:
- Se $X \sim N(\mu = 10, \sigma^2 = 4)$, calcule P(X > 13).

•
$$P(X > 13) = P\left(\frac{X-\mu}{\sigma} > \frac{13-10}{2}\right) = P(Z > 1,5) = 1 - P(Z < 1,5) = 1 - 0.93 = 0.07$$

Standard Normal Cumulative Probability Table

Cumulative probabilities for NEGATIVE z-values are shown in the following table:

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
		0.0045	0.0057	0.0070	0.0000	0.0004	0.0400	0.0440	0.0400	0.0444
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633

- Exemplo:
- Se $X \sim N(\mu = 165, \sigma^2 = 9)$, calcule P(X < 162).

```
import scipy.stats as st

media = 165
dp = 3
z = (162-media)/dp
print(st.norm.cdf(z))
```

0.15865525393145707

• Se $X \sim N(\mu = 10, \sigma^2 = 4)$, calcule P(X > 13).

```
import scipy.stats as st

media = 10
dp = 2
z = (13-media)/dp
print(1-st.norm.cdf(z))
```

0.06680720126885809

 Exemplo: O peso médio de 500 estudantes do sexo masculino de uma determinada universidade é 75,5 Kg e o desvio padrão é 7,5 Kg.
 Admitindo que os pesos são normalmente distribuídos, determine a percentagem de estudantes que pesam entre 60 e 77,5 Kg.

```
= P(2632) - P(363.) = 0/58
```

```
import scipy.stats as st
media = 75.5
dp = 7.5
21 = (60-media)/dp
5 z2 = (77.5-media)/dp
6 st.norm.cdf(z2)-st.norm.cdf(z1)
```

0.5857543024471563

Teorema Central do Limite

 Teorema: Seja uma amostra da população X com média e variância finita. Então:

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(\mu = 0, \sigma^2 = 1)$$

Teorema Central do Limite

Exemplo: Seja a variável aleatória com distribuição de probabilidade dada abaixo ($\mu = 5.4$; $\sigma^2 = 4.44$). Uma amostra com 40 observações é sorteada. Qual é a probabilidade de que a média amostral ser maior do que 5?

$$E[X] = 5.4; V(X) = 4.43$$

X	3	6	8
P(X=x)	0,4	0,3	0,3

$$P(X=x) = P(X=x) = P$$


```
def esperanca(X,P):
    E = 0
    for i in range(0, len(X)):
        E = E + X[i]*P[i]
    return E
def variancia(X,P):
    E = 0; E2 = 0
    for i in range(0, len(X)):
        E = E + X[i]*P[i]
        E2 = E2 + (X[i]**2)*P[i]
    V = E2-E**2
    return V
X = [3,6,8]
P = [0.4, 0.3, 0.3]
E = esperanca(X,P)
V = variancia(X,P)
print("Esperança:", E, "Variância:",V)
```

Esperança: 5.4 Variância: 4.43999999999991

```
import scipy.stats as st
import numpy as np

mu = E
sigma = np.sqrt(V)
n = 40
x = 5
Zt = (x - mu)/(sigma/np.sqrt(n))
pt = 1-st.norm.cdf(Zt)
print('Probabilidade:',pt)
```

Probabilidade: 0.885046886863795

Media das amostras: 5.40425 Media da população: 5.4

Sumário

Distribuição Normal
 Teorema Central do Limite

Leitura Complementar

