

A Novel Multi-Detector Fusion Framework for Multi-Object Tracking

Dipl.-Math. Roberto Henschel

henschel@tnt.uni-hannover.de

Motivation Tracking

[1]

Sport Analysis

Application:

- Obtain statistics
- Improve performance

Sociology/Economy

Application:

- Urban planning
- Optimize product placement

Surveillance

Application:

- Unusual behaviour
- Autonomous driving

Standard Paradigm

Tracking-by-Detection

Step 1: Detect

Step 2: Track

Tracking-by-Detection Paradigm

- Solve $\max_T \Pr(T|D)$ for detections D
- Information reduction by full-body boxes
 - Efficient calculation
- BUT: Usefull information might be lost

Occlusion

Missed detection

Rare pose

- Intrinsic Problem
- Solution via feature fusion

Standard Assignment Problem

Ensure temporal consistency

Standard Assignment Problem

Ensure temporal consistency

Fusion of Input Features

Track-by-X Ensure temporal + spatial consistency

Fusion of Input Features

Track-by-X Ensure temporal + spatial consistency

Which Feature to use?

- Head detections[1]
 - Less prone to occlusion.
 - Less prone to pose variation.
 - Sparse

^[1] R. Stewart, M. Andriluka, and A. Y. Ng. End-to-end peopledetection in crowded scenes. In CVPR, 2016.

People Tracking via Feature Fusion

Approach

Fusion of multiple input features

Concept

Any feature can be used to create a trajectory

- Ensure consistency within all time steps
- Ensure consistency within each frame

Solution

Best fusion via Graph Labeling

Feature Fusion

Multi-Feature Tracking via Graph Labeling

Feature Fusion

Multi-Feature Tracking via Graph Labeling

Feature Fusion

- Multi-Feature Tracking via Graph Labeling
 - Each node has a weight, reflecting probability of the feature.
 - Each edge has a weight, reflecting how likely the edge connects two features that belong to the same person.

Tracking via Graph Labeling

Goal: Find minimizing labeling

- Former trackers: 1st order Markov chain
 - current position depends only on last position

A and D not compatible!

Long-term Consistency

Result

We achieve consistency to **all** equally labeled nodes!

Model

$$\arg\min_{x} f(x) := \sum_{l=1}^{K} \left(\sum_{v \in V} c_{v} x_{v}^{l} + \sum_{\{u,v\} \in E} q_{u,v} x_{u}^{l} x_{v}^{l} \right)$$

s.th.
$$\forall v : \sum_{l=1}^{K} x_v^l \le 1, \ x \in \{0,1\}^{|F| \cdot K}$$

|F| = Number of features K = max. number of Labels

 x_v^l : Assignment of label l to node v

 $c = (c_v)$: Node affinity $Q = (q_{u,v})$: Edge affinity

Solving a BQP

- The graph labling problem is a BQP (Binary Quadratic Problem)
- NP-hard to solve!
- We approximate it using the Frank-Wolfe algorithm on the relaxation (delivers local optimum).

$$\begin{split} \arg \min_{x} f(x) := \sum_{l=1}^{K} \left(\sum_{v \in V} c_{v} x_{v}^{l} + \sum_{\{u,v\} \in E} q_{u,v} x_{u}^{l} x_{v}^{l} \right) \\ \text{s.th.} \quad \forall v \, : \sum_{l=1}^{K} x_{v}^{l} \leq 1, \, x \in \{0,1\}^{|F| \cdot K} \end{split}$$

Solving a BQP

- The graph labling problem is a BQP (Binary Quadratic Problem)
- NP-hard to solve!
- We approximate it using the Frank-Wolfe algorithm on the relaxation (delivers local optimum).

$$\begin{aligned} \arg\min_{x} f(x) &:= \sum_{l=1}^K \left(\sum_{v \in V} c_v x_v^l + \sum_{\{u,v\} \in E} q_{u,v} x_u^l x_v^l \right) \\ \text{s.th.} \quad \forall v \ : \sum_{l=1}^K x_v^l \leq 1, \ x \in \{0,1\}^{|F| \cdot K} \\ & \qquad \qquad [0,1]^{|F|K} \end{aligned}$$

Improving the BQP Solver

- We improved the standard Frank-Wolfe via
 - Speed up
 - Regularization
 - Hierarchical improvement
- Experiment: Our BQP solver vs Gurobi
 - 40 frames
 - Only body detections
 - K=70 labels allowed
 - 400 detections
 - >28.000 variables

Improving the BQP Solver

Minimization quality

Full evaluation

	Time[sec]	Obj. Value	
FW	0.7	-3060	
FW+u	27	-5481	
FW+u+h	27.5	-5925	
Gurobi	1000	-5531	
Bound	1000	-5973	

Experiment Feature Fusion

- Evaluation on MOT16 train set
 - 5300 frames
 - 110.000 body boxes
 - 517 trajectories
- Metrics
 - MT = number of mostly tracked trajectories ($\geq 80\%$ of the track is correct)
 - FP = numer of false positive detections
 - MOTA = multiple object tracking accuracy, incorporates: missing detections, identity switches, false positives.

	мота↑	MT ↑	FP ↓
Body	33.0	76	11949
Body+Head	38.2	86	4972

Experiment Feature Fusion

Visual result

Tracking Challenge

- 7 Sequences, 3 different detectors
- Compared to other methods we perform state-of-the-art

Summary

- Tracking via Graph Labeling
 - Long-term temporal consistency
 - State-of-the-art results

- Feature Fusion via labeling
 - Fusion improves results considerably

- Solver for labeling problem
 - More efficient than Gurobi
 - Can be applied to other labeling problems

Experiment Test Set Evaluation

- Evaluation on MOT16 test set
 - 5900 frames
 - 180.000 body boxes
 - 760 trajectories
- Evaluation on MOT17 test set
 - 17000 frames
 - 560.000 body boxes
 - 2300 trajectories

Experiement Test Evaluation

MOT16

We rank 2nd

	МОТА	MT	ML	FP	FN
[1]	48.8	18.2	40.1	6654	86245
Ours	47.8	19.1	38.2	8886	85487
[2]	47.6	17.0	40.4	5844	89093

Metrics

- MT = number of mostly tracked trajectories ($\geq 80\%$ of the track is correct)
- ML = number of mostly lost trajectories ($\leq 20\%\,$ of the track is correct)
- FP = numer of false positive detections
- FN = numer of false negative detections
- MOTA = multiple object tracking accuracy, incorporates: missing detections, identity switches, false positives.

Experiement Test Evaluation

MOT17

We rank 1st

	МОТА	MT	ML	FP	FN
Ours	51.3	21.4	35.2	24101	247921
[1]	50.7	20.8	36.9	22875	252889
[2]	50.0	21.6	36.3	32279	247297

Metrics

- MT = number of mostly tracked trajectories ($\geq 80\%$ of the track is correct)
- ML = number of mostly lost trajectories ($\leq 20\%$ of the track is correct)
- FP = numer of false positive detections
- FN = numer of false negative detections
- MOTA = multiple object tracking accuracy, incorporates: missing detections, identity switches, false positives.

Regularization

Improvement of Frank-Wolfe optimization via

$$f_u(x) = f(x) + u \sum_{i} (x_i^2 - x_i)$$

- Note that $f_u(x) = f(x)$, if \mathcal{X} is binary
- The function $(x_i^2 x_i)$ is minimal at 0.5
- The function $-(x_i^2 x_i)$ is minimal at 0 and 1, within [0,1].
- For u<0, results are closer to discrete solutions
- For u>0 big enough, the function becomes convex

Hierarchical Improvement

1. Label result

2. Correction + Recompute

Hierarchical Improvement

2. Correction + Recompute

3. Expand

Hierarchical Improvement

Correction step

- Fixes obvious error due to
 - Rounding
 - Local optimality

Recompute step

- Enourmos reduction of problem size
 - Can be solved optimally via Gurobi
- Continues optimizing the labeling problem
 - New label problem w.r.t. last solution
 - Recompute weights accordingly