Rechnerarchitekturen 1*

Rechnerarithmetik

Prof. Dr. Alexander Auch

*Teilweise entnommen aus "Mikrocomputercomputertechnik 1" von Prof.Dr-Ing. Ralf Stiehler, Rechnerarchitektur von Dr. Leonard Stiegler, Patterson&Hennessy

Ziele der Veranstaltung

Rechnerentwurf:

- → Prozessor, Speicher, Ein-/Ausgabe
- → Entwurfs- und Optimierungsmöglichkeiten

Prozessorentwurf:

- Befehlsverarbeitung
- → Entwurfs- und Optimierungsmöglichkeiten

Assemblerprogrammierung:

→ im MIPS-Simulator MARS

Rechnerarithmetik: Zahlendarstellungen

- Zahlensysteme: binär; dezimal; hexadezimal
- Negative Zahlen: Vorzeichen
- Zweier-Komplement: Einfachere Binär-Arithmetik mit Vorzeichen
- Rationale/Reelle Zahlen: Fest-/Gleitkommazahlen

Rechnerarithmetik: Zahlendarstellungen

- Dezimal-System: Basis=10
 - → Symbolmenge = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
 - \Rightarrow zB: 234 = 2x10² + 3x10¹ + 4x10⁰
- Binär-System: Basis=2
 - → Symbolmenge = {0, 1}
 - → zB: 234₁₀
 - $= 1x2^7 + 1x2^6 + 1x2^5 + 0x2^4 + 1x2^3 + 0x2^2 + 1x2^1 + 0x2^0$
 - $= 2^7 + 2^6 + 2^5 + 2^3 + 2^1$
 - = 1110 1010
- Hexadezimal-System: Basis=16
 - → Symbolmenge = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}
 - → zB: $234_{10} = 1110 \ 1010_2 = EA_{16} = 0xEA$

Umrechnung von Zahlsystemen

Beispiel Basis 16:

```
Ziffernumfang \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F\}
(3EC9)_{16} = 9 \cdot 16^{0} + 12 \cdot 16^{1} + 14 \cdot 16^{2} + 3 \cdot 16^{3} = (3EC9)_{16} = (3EC9)_{hex}
= 9 \cdot 1 + 12 \cdot 16 + 14 \cdot 256 + 3 \cdot 4096
= 9 + 192 + 3584 + 12288
= 16073
```

Beispiel Basis 60:

Ziffernumfang $\{0,1,2,3,4,5,6,7,8,9,a,b,c......$ Zeichenvorratsproblem $\}$ $(321)_{60} = 1.60^{\circ} + 2.60^{\circ} + 3.60^{\circ}$ = 1.1 + 2.60 + 3.3600 = 1 + 120 + 10800

= 10921

Umrechnung Binär ⇔ **Hexadezimal**

0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
Α	1010
В	1011
С	1100
D	1101
Ε	1110
F	1111

- ⇒ Man braucht 4 Binärzahlen, um eine der 16 Hex-Zahlen darstellen zu können.
- ⇒ 4-er Gruppen bilden
- ⇒ 4-er Gruppen einzeln umcodieren
- ⇒ dabei Big/Little Endian beachten

Endianness

Quelle: https://getkt.com/blog/endianness-little-endian-vs-big-endian/

Ganzzahl-Arithmetik

Addition: bitweise Addition; XOR

```
→ zB: 234 = 1110 1010
+34 = 0010 0010
268 = 1 0000 1100
```

- Negative Zahlen: Vorzeichen durch das linke Bit bestimmt
 - → negativ: zB -234 = 1 1110 1010
 - positiv: zB +234 = 0 1110 1010
 - Wichtig: normalerweise wird Zweierkomplement benutzt! (siehe später)
 - ALU soll möglichst nur bitweise addieren müssen!

Einführung einfacher Kombinatorischer Grundschaltungen

Addition von Binärzahlen (1)

Halbaddierer: Addition von zwei 1 Bit-Zahlen

a ₀	b 0	s ₀	c _o
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Summe
$$s_0 = a_0 XOR b_0$$

Carry
$$c_0 = a_0$$
 AND b_0

- ⇒ ein Überlauf (Carry) entsteht bei Bereichsüberschreitung!
- ⇒ Wie addiert man mehrstellige Binärzahlen ?

Addition von Binärzahlen (2)

⇒ bei mehrstelligen Binärzahlen braucht man einen weiteren Eingang, der das Carry-Bit verarbeitet

Volladdierer: Addition von mehrstelligen Binärzahlen

Summe,	Carry	= f	(a,	b _o C _i	_)
 ,		-	(0	0 - II	1 /

Wahr	Wahrheitstabelle Volladdierer						
а	b	c _i	s	Со			
0	0	0	0	0			
0	0	1	1	0			
0	1	0	1	0			
0	1	1	0	1			
1	0	0	1	0			
1	0	1	0	1			
1	1	0	0	1			
1	1	1	1	1			

Zweierkomplementdarstellung (2k-Zahlen)

- ⇒ ist die üblichste Darstellung, praktisch alle Rechner verwenden sie
- ⇒ man durchläuft erst alle positiven Zahlen und dann die negativen Zahlen in umgekehrter Reihenfolge

0000 = 0	1000 = - 8
0001 = 1	1001 = - 7
0010 = 2	1010 = - 6
0011 = 3	1011 = - 5
0100 = 4	1100 = - 4
0101 = 5	1101 = - 3
0110 = 6	1110 = - 2
0111 = 7	1111 = - 1

- ⇒ das erste Bit gibt das Vorzeichen an
- ⇒ es gibt eine eindeutige Darstellung für Null

Zweierkomplement für n=3

Zweierkomplement für n=31

Definition des Zweierkomplements

 \Rightarrow Die Bitfolge z_n z_{n-1} z_{n-2} ... z_1 z_0 repräsentiert die Binärzahl

$$-z_n \cdot 2^n + z_{n-1} \cdot 2^{n-1} + z_{n-2} \cdot 2^{n-2} + \ldots + z_1 \cdot 2^1 + z_0$$

- ⇒ Negieren durch bitweises Komplementieren und Addition von 1
- ⇒ asymmetrischer Zahlenbereich: [-(2ⁿ) .. (2ⁿ-1)]
- ⇒ Es gibt eine eindeutige Darstellung von Null
- ⇒ Bereichserweiterung durch Auffüllen mit dem Vorzeichenbit
- ⇒ Addition mit Standardaddierwerk, aber besondere Überlaufdetektion!

Umrechnung von Zweierkomplementzahlen in Dezimalzahlen

Beispiel 5:

$$5 = (0101)_{2k} = -0.2^{3} + 1.2^{2} + 0.2^{1} + 1.2^{0}$$
$$= 0 + 4 + 0 + 1$$
$$= 5$$

Beispiel 7:

$$7 = (0111)_{2k} = -0.2^{3} + 1.2^{2} + 1.2^{1} + 1.2^{0}$$
$$= 0 + 4 + 2 + 1$$
$$= 7$$

Beispiel -7:

$$-7 = (1001)_{2k} = -1 \cdot 2^{3} + 0 \cdot 2^{2} + 0 \cdot 2^{1} + 1 \cdot 2^{0}$$
$$= -8 + 0 + 0 + 1$$
$$= -7$$

Zweierkomplementdarstellung – Negation und Subtraktion

⇒ addiert man zu einer Zahl ihre Komplementärzahl, erhält man eine Reihe von Einsen, was der Zahl -1 entspricht

Zahl	6	0	1	1	0
Komplement dazu	-7	1	0	0	1
Additionsergebnis	-1	1	1	1	1

⇒ deswegen negiert man eine Zahl, indem man 1 zu ihrer Komplementärzahl addiert

Zahl	6	0	1	1	0
Komplement dazu	-7	1	0	0	1
Komplement + 1	-6	1	0	1	0

Wahr	Wahrheitstabelle Volladdierer					
а	b	c _i	s	Co		
0	0	0	0	0		
0	0	1	1	0		
0	1	0	1	0		
0	1	1	0	1		
1	0	0	1	0		
1	0	1	0	1		
1	1	0	0	1		
1	1	1	1	1		

⇒ Subtraktion erfolgt durch Negation des zweiten Operanden und anschliessende Addition

Addition/Subtraktion von 2K-Zahlen und Überlaufdetektion

Zahl 1	90		0	1	0	1	1	0	1	0
minus Zahl 2	67		0	1	0	0	0	0	1	1
Komplement von 67	188		1	0	1	1	1	1	0	0
(Komplement von 67) + 1	-67		1	0	1	1	1	1	0	1
Carry-Bit		1	1	1	1	1	0	0	0	0
Zahl 1 +										
Komplement von Zahl 2	<u>23</u>		0	0	0	1	0	1	1	1

Wahrheitstabelle Volladdierer						
а	b	c _i	s	Со		
0	0	0	0	0		
0	0	1	1	0		
0	1	0	1	0		
0	1	1	0	1		
1	0	0	1	0		
1	0	1	0	1		
1	1	0	0	1		
1	1	1	1	1		

- ⇒ 90 67 = 23 => Ergebnis stimmt trotz Überlauf!
- ⇒ Keine Bereichsüberschreitung liegt vor, d.h. beide Summanden und das Ergebnis sind als 8 Bit 2k Binärzahlen darstellbar
- ⇒ binärer Overflow kann auftreten (oder nicht) , wird für die 2k-Addition ignoriert
- ⇒ Aber auch bei 2k-Binärzahlen sind Bereichsüberschreitungen möglich, aber der Overflow ist anders definiert

MIPS-Light: Wir bauen einen Computer

⇒ "Großes Ziel" ist der Aufbau eines Prozessors MIPS-Light, der die folgende Teilmenge an MIPS-Instruktionen verarbeiten kann.

⇒ Erster Schritt ist der Aufbau einer einfachen ALU (Arithmetic Logical Unit)

Aufbau einer einfachen ALU (Arithmetic Logical Unit)

Zur Realisierung einer MIPS - Light- ALU, die einfache arithmetische und logische MIPS-Light-Operationen durchführen soll braucht man nur :

operation

- ⇒ ein paar einfache logische Gatter : and/or/nand/nor,xor,...
- ⇒ ein paar Volladdierer
- ⇒ ein paar Multiplexer und Demultiplexer bzw. Encoder/Decoder
- ⇒ um später die ALU in einen MIPS-Light Prozessor zu integrieren, benötigt man dann zusätzlich noch ein paar in Reihe geschaltete Flipflops ="Register"
- ⇒ immer klarer wird auch :
 - ⇒ Wir müssen dazu die grundlegenden ISA-Befehlsstrukturen kennen
 - ⇒ Warum ?
 - ⇒ Befehle liegen in Hardware-Registern (Flipflops), die wir "irgendwie" mir der ALU und anderen Prozessorkomponenten verbinden müssen

Aufbau einer einfachen ALU (Arithmetic Logical Unit)

- ⇒ Grundgedanke ist, zunächst eine 1 Bit-ALU zu konstruieren und diese dann auf 32 Bit zu erweitern
- ⇒ Betrachten wir zunächst das Blockschaltbild einer einfachen
 1- bit ALU, die nur die Operationen AND und OR ausführt:

- ⇒ Beide Eingänge werden auf die entsprechenen Gatter geführt und das Ergebnis per 1Bit - Multiplexer (die "Befehlsauswahl") auf den Ausgang gelegt => trivial!
- ⇒ Nächster Schritt : Erweiterung der 1- Bit ALU für den ADD-Befehl

- ⇒ die Schaltung wird um einen Volladdierer VA erweitert.
- ⇒ man braucht nun wegen des VA-Ausgangs einen 3 → 1 Multiplexer
 ⇒ Id(3)=1.58 → 2 Bit für die Befehlsauswahl nötig
- → Nächster Schritt: Erweiterung der 1- Bit ALU für den SUB-Befehl

1-Bit ALU für AND, OR, ADD und SUB

- ⇒ Subtraktion = Addition mit dem Zweierkomplement des zweiten Summanden
 - ⇒ Bitweise Komplementierung des Operanden
 - ⇒ Addition von 1 zum komplementierten Operanden
- ⇒ Wir brauchen einen Inverter zur Komplementierung des Bits
- ⇒ Wir brauchen einen Multiplexer (mit Steuereingang), damit man an einem Eingang des VA zwischen negiertem und nicht negiertem Wert wählen kann

Binvert = Wahl des Zweierkomplements

Die noch fehlende Addition von 1 wird später über das Carry-In-Bit implementiert!

Erweiterung um NOR Funktion und Zusammenfassung

- ⇒ die Schaltung wird um eine NOR-Funktion erweitert.
 - ⇒ hierzu fügt man einen Inverter und MUX am verbleibenden Eingang hinzu

$$NOR: \overline{A} \wedge \overline{B} = A \vee B$$

→ Nächster Schritt: Kombination von 32 1- Bit ALUs zu einer einzigen 32 Bit ALU

32-Bit ALU für AND, OR, ADD, SUB, NOR

- ⇒ Ainvert, Binvert, Operation gehen auf alle ALUs
- ⇒ Carries werden weitergereicht
- ⇒ Carryout₃₁ = binary Overflow (nicht benötigt)
- ⇒ Carryin₀ dient der Addition von 1 bei der Zweierkomplementbildung der Subtraktion und kann somit mit Binvert verbunden werden

Was fehlt?

- ⇒ 2k-Overflow-Detektion
- ⇒ SLT, BEQ BNE kann man zusätzlich implementieren (2 Register werden verglichen und je nach Ergebnis ein Register auf 0 oder 1 gesetzt)
- ⇒ Nächster Schritt : Overflow, SLT, BEQ, BNE implementieren !

Implementierung von SLT

- ⇒ slt \$t0, \$s1, \$s2 :
- ⇒ Berechne \$s1-\$s2.
- ⇒ Wenn negativ, setze LSB von \$t0 auf 1 und alle anderen Bits von \$t0 auf 0, wenn positiv, setze alle Bits von \$t0 auf 0
- ⇒ Wie setzt man diese Bits ?
 - ⇒ Neues Signal "Less"

Hardware- Implementierung:
Vorzeichenbit (an ALU31) mit
Less verbinden (an ALU0) verbinden
Less von ALU 1...ALU31 auf "0"

Overflow detection:

Auswertung von a, b, Carry an ALU 31

Implementierung von BEQ BNE

- → MIPS Befehl
 beq \$\$1, \$\$2, label
- ⇒ Alle Bits von \$s1 und \$s2 über XOR (Volladdierer) in der ALU vergleichen und dann über ein OR auswerten
- ⇒ Zero-Flag setzen

Fertige 32-Bit MIPS Light ALU

Operationen: and, or, nor, add, sub, slt, beq/bne

ALU Steuersignale: 2 Leitungen für and, or, add, und slt

2 Leitungen für sub, nor, and slt

ALU Control Lines	Function
0000	And
0001	Or
0010	Add
0110	Sub
0111	Slt
1100	NOR

- Zweier-Komplement: zur Addition negativer Zahlen
 - → 1. alle Bits invertieren/negieren (Einer-Komplement)
 - → 2. eine 1 addieren (Zweier-Komplement)
 - → 3. links ein Vorzeichenbit anhängen
 - zB: 234 = 1110 1010
 -234 = 0001 0101 + 1 = 1 0001 0110
- Subtraktion: negative Zahlen in deren Zweier-Komplement miteinander addieren
 - → zB: -234 = 1 0001 0110 (Zweier-Komplement) +234 = 0 1110 1010 0 0000 0000 = 0

- Multiplikation: $n_{10} \times 2^k = n_2 \text{ k-mal links verschieben}$
 - zB: 234 x 2 = 1110 1010 << 1
 = 1 1101 0100 = 468

- Multipliziererwerk: parallele Multiplikation beliebiger Zahlen
 - → Basisoperationen: Zweier-Komplement; links verschieben

Multiplikation

Einfache Multiplikationslogik:

Length of product is the sum of operand lengths

Patterson/Hennessy

Multiplikation

Patterson/Hennessy

Schnellere Multiplikation durch mehr Hardware

- Add/Shift parallel ausführen
- Mehrere Addierer parallel benutzen

MIPS-Multiplikation

- O Das Produkt wird in zwei speziellen 32-bit-Registern gespeichert:
 - HI: MSB (obere 32 bit)
 - LO: LSB (untere 32 bit)
- Instruktionen:
 - O Zuerst Multiplikation t0 * t1 → HI/LO mult t0, t1 oder multu t0, t1
 - O HI nach t3 kopieren, LO nach t2 mfhi t3 mflo t2
 - O Der Assembler unterstützt Makro mul für t2 = LSB (t0 * t1) mul t2, t0, t1

Division

MIPS-Division

O Das Ergebnis wird wieder in zwei speziellen 32-bit-Registern gespeichert:

O HI: 32bit Restwert

LO: 32bit Quotient

Instruktionen:

O Division t0 / t1 \rightarrow HI = t0 mod t1, LO = t0 / t1

O Kein Overflow-Check oder Check auf Division durch 0!

<u>Gleitkommazahlen</u>

- Rationale Zahl: umrechnen in Fest- oder Gleitkommazahl
- Festkommazahl: konstante Vor- und Nachkommastellen
 - festgelegt bei Definition des Datentyps
 - Prozessor-Unterstützung: nur wenn Gleitkommazahl nicht unterstützt wird
 - → SW-Unterstützung: Unterschiedliche Notationen
 - Arithmetische Operationen komplizierter als bei Gleitkommazahlen
- Q-Notation: Qm.f ist Zweierkomplement Integer mit Vorzeichen
 - → zB Q1.30:
 - → 1 Bit Vorzeichen
 - → m: 1 Bit Vorkommastellen = {0, 1}
 - → f: 30 Bits Nachkommastellen im Zweierkomplement
- → Standard IEEE 754

- Gleitkommazahl: IEEE 754 Standard
 - Single Precision, 32 bit
 - Double Precision, 64 bit
- Format: $x = (-1)^s \times 2^e \times m$
 - → S: Vorzeichen
 - E: Exponent (wird gespeichert mit "Bias" +127 bei Single Precision oder +1023 bei Double Precision → negative Exponenten)
 Exponenten mit 1...1 sind reserviert für NaN und +/- Infinity
 - → M: Mantisse / Fraction
- → Durch Normalisierung ist 1. Bit immer 1, wird weggelassen

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S Exponent Fraction

 $x = (-1)^S \times (1 + Fraction) \times 2^{(Exponent-Bias)}$

- IEEE 754: spezielle Gleitkommazahlen
- Floating Point Unit (FPU): implementiert IEEE 754

Single F	Precision	Double Precision		Object Represented
E (8)	F (23)	E (11)	F (52)	
0	0	0	0	true zero (0)
0	nonzero	0	nonzero	± denormalized number
± 1-254	anything	± 1-2046	anything	± floating point number
± 255	0	± 2047	0	± infinity
255	nonzero	2047	nonzero	not a number (NaN)

Floating-Point-Addition

- Consider a 4-digit decimal example
 - \circ 9.999 × 10¹ + 1.610 × 10⁻¹
- 1. Align decimal points
 - Shift number with smaller exponent
 - \circ 9.999 × 10¹ + 0.016 × 10¹
- 2. Add significands
 - \circ 9.999 × 10¹ + 0.016 × 10¹ = 10.015 × 10¹
- 3. Normalize result & check for over/underflow
 - \circ 1.0015 × 10²
- 4. Round and renormalize if necessary
 - \circ 1.002 × 10²

Patterson/Hennessy

Floating-Point-Multiplikation

- Consider a 4-digit decimal example
 - \circ 1.110 × 10¹⁰ × 9.200 × 10⁻⁵
- 1. Add exponents
 - For biased exponents, subtract bias from sum
 - New exponent = 10 + -5 = 5
- 2. Multiply significands
 - \circ 1.110 × 9.200 = 10.212 \Rightarrow 10.212 × 10⁵
- 3. Normalize result & check for over/underflow
 - \circ 1.0212 × 10⁶
- 4. Round and renormalize if necessary
 - 0.021×10^{6}
- 5. Determine sign of result from signs of operands
 - \circ +1.021 × 10⁶

Patterson/Hennessy

FP-Addition in Hardware

Sehr kompliziert, braucht mehrere Clock-Cycles

FP in MIPS

- Single-precision arithmetic
 - o add.s, sub.s, mul.s, div.s
 o e.g., add.s \$f0, \$f1, \$f6
- Double-precision arithmetic
 - o add.d, sub.d, mul.d, div.d
 o e.g., mul.d \$f4, \$f4, \$f6
- Single- and double-precision comparison
 - \circ c.xx.s, c.xx.d (xx is eq, lt, le, ...)
 - Sets or clears FP condition-code bit e.g. c.lt.s \$f3, \$f4
- Branch on FP condition code true or false
 - obc1t, bc1f
 - e.g., bc1t TargetLabel

Patterson/Hennessy

FP in MIPS

- FP hardware is coprocessor 1
 - Adjunct processor that extends the ISA
- Separate FP registers
 - 32 single-precision: \$f0, \$f1, ... \$f31
 - O Paired for double-precision: \$f0/\$f1, \$f2/\$f3, ...
 - O Release 2 of MIPs ISA supports 32 × 64-bit FP reg's
- FP instructions operate only on FP registers
 - Programs generally don't do integer ops on FP data, or vice versa
 - More registers with minimal code-size impact
- FP load and store instructions
 - O lwc1, ldc1, swc1, sdc1
 O e.g., ldc1 \$f8, 32(\$sp)

Patterson/Hennessy

Rechnerarithmetik: Binär-Logik

Wahrheitstwerte für Junktoren der Binär-Logik

Name

Variable		Negation		Kon- junktion	Dis- junktion	Sub- junktion	Bij- unktion	NAND	NOR	XOR	
Х	у	¬X	¬у	хлу	xvy	$X \rightarrow Y$	X ↔ Y	x ⊼ y ⇔ ¬x ∨ ¬y	x ⊽ y ⇔ ¬x ∧ ¬y	$x\underline{V}y\Leftrightarrow \neg(x\leftrightarrow y)$	
1	1	0	1	1	1	1	1	0	0	0	
1	0	0	0	0	1	0	0	1	0	1	
0	1	1	1	0	1	1	0	1	0	1	
0	0	1	1	0	0	1	1	1	1	0	

ASCII Tabelle (American Standard Code for Information Interchange)

Decima	al Hexadecimal	Binary	0ctal	Char	Decimal	Hexadecimal	Binary	0ctal	Char	Decimal	Hexadecimal	Binary	0ctal	Char
0	0	0	0	[NULL]	48	30	110000	60	0	96	60	1100000	140	`
1	1	1	1	[START OF HEADING]	49	31	110001	61	1	97	61	1100001	141	a
2	2	10	2	[START OF TEXT]	50	32	110010	62	2	98	62	1100010		b
3	3	11	3	[END OF TEXT]	51	33		63	3	99	63	1100011	143	c
4	4	100	4	[END OF TRANSMISSION]	52	34	110100	64	4	100	64	1100100	144	d
5	5	101	5	[ENQUIRY]	53	35	110101	65	5	101	65	1100101	145	e
6	6	110	6	[ACKNOWLEDGE]	54	36	110110	66	6	102	66	1100110		f
7	7	111	7	[BELL]	55	37	110111	67	7	103	67	1100111	147	g
8	8	1000	10	[BACKSPACE]	56	38	111000	70	8	104	68	1101000	150	h
9	9	1001	11	[HORIZONTAL TAB]	57	39	111001	71	9	105	69	1101001	151	i
10	A	1010	12	(LINE FEED)	58	3A	111010	72	:	106	6A	1101010	152	j
11	В	1011	13	[VERTICAL TAB]	59	3B	111011	73	;	107	6B	1101011	153	k
12	C	1100	14	(FORM FEED)	60	3C	111100	74	<	108	6C	1101100	154	1
13	D	1101	15	[CARRIAGE RETURN]	61	3D	111101	75	=	109	6D	1101101	155	m
14	E	1110	16	[SHIFT OUT]	62	3E	111110	76	>	110	6E	1101110	156	n
15	F	1111	17	[SHIFT IN]	63	3F	111111	77	?	111	6F	1101111	157	0
16	10	10000	20	[DATA LINK ESCAPE]	64	40	1000000	100	@	112	70	1110000	160	p
17	11	10001	21	[DEVICE CONTROL 1]	65	41	1000001	101	Α	113	71	1110001	161	q
18	12	10010	22	[DEVICE CONTROL 2]	66	42	1000010	102	В	114	72	1110010	162	r
19	13	10011	23	[DEVICE CONTROL 3]	67	43	1000011		C	115	73	1110011		5
20	14	10100	24	[DEVICE CONTROL 4]	68	44	1000100		D	116	74	1110100		t
21	15	10101	25	[NEGATIVE ACKNOWLEDGE]	69	45	1000101		E	117	75	1110101		u
22	16	10110	26	[SYNCHRONOUS IDLE]	70	46	1000110		F	118	76	1110110		V
23	17	10111	27	[ENG OF TRANS. BLOCK]	71	47	1000111		G	119	77	1110111		w
24	18	11000	30	[CANCEL]	72	48	1001000		н	120	78	1111000		x
25	19	11001	31	(END OF MEDIUM)	73	49	1001001		1	121	79	1111001		У
26	1A	11010	32	[SUBSTITUTE]	74	4A	1001010		J	122	7A	1111010		Z
27	1B	11011	33	(ESCAPE)	75	4B	1001011		K	123	7B	1111011		<u>{</u>
28	1C	11100	34	[FILE SEPARATOR]	76	4C	1001100		L	124	7C	1111100		Ţ
29	1D	11101	35	[GROUP SEPARATOR]	77	4D	1001101		М	125	7D	1111101		}
30	1E	11110	36	[RECORD SEPARATOR]	78	4E	1001110		N	126	7E	1111110		~
31	1F		37	[UNIT SEPARATOR]	79	4F	1001111		0	127	7F	1111111	1//	[DEL]
32	20	100000		[SPACE]	80	50	1010000		P					
33	21	100001		!	81	51	1010001		Q					
34	22	100010			82	52	1010010		R					
35 36	23 24	100011		#	83 84	53 54	1010011		S T					
37	25	100100		\$ %	85	55	1010100		Ü					
38	26	100101		% &	86	56	1010101		v					
39	27	100111		α.	87	57	1010111		w					
40	28	101000		1	88	58	1011000		x					
41	29	101000		1	89	59	1011000		Ŷ					
42	2A	101010		4	90	5A	1011010		ż					
43	2B	101011		+	91	5B	1011011		ī					
44	2C	101100			92	5C	1011100		î.					
45	2D	101101		1	93	5D	1011101		ì					
46	2E	101110			94	5E	1011110		,					
47	2F	101111		;	95	5F	1011111							
				,					-					
BW	Mosbac	.11			Vorles	sung Red	nnera	archii	tektu	ren				46/
schule						_								

