Making electrocompetent *E.coli*

See allied protocol for electrotransformation

NOTE 1: Electrocompetent *E.coli* generally have a higher transformation efficiency (more colonies per $\mu g / DNA$) than chemically competent cells (**Expected** $\geq 5 \times 10^9$ cells / $\mu g DNA$). On the minus side the protocol is more fiddly than heat-shocking.

NOTE 2: *E.coli* strains used (detailed genotypes online)

(i)	XL1-blue	Tet ^R	• 1	,
(ii)	S28	Tet ^R		vv. weak pellet
(iii)	DH5α	Tet ^S		stronger pellet
(iv)	DH10b	Tet ^S		

- 1. Confirm the genotype of the strain to be made competent. Determine if it has an F' (usually required for color-selection), and thus whether the seed should be grown with Tetracycline.
- 2. Inoculate colony into 50ml LB (+ Tet if appropriate). Grow overnight: 37°C, 300rpm.
- 3. Sub 1/100 into 1L LB. Note OD_{600} . Incubate 37°C, 300rpm. Measure OD_{600} every 30 60 mins. Harvest at $OD_{600} \approx 0.5$ (range 0.4 –> 0.6). Chill culture 15 min in an ice-bath.
 - **NOTE 3:** ALL buffers from now on are sterile and pre-chilled on ice. Keep everything $\leq 2^{\circ}$ C.
- **4.** Transfer culture to centrifuge flasks and collect 4000rpm, 2°C, 10m.
 - **NOTE 4:** The quality of the *E.coli* pellet will get worse after each spin (presumably the *E.coli* contacts are ion-dependent).
- 5. Discard supernatant (careful) and resuspend pellet in 250ml ddH₂O. Centrifuge 4000rpm, 2°C, 10m. Repeat this step twice.
 - **NOTE 5:** Pre-label ependorffs and store rack at -20° C. Also get some dry-ice.
- Resuspend pellet in 40ml 10% glycerol. Transfer cells to a 50ml Falcon tube. Centrifuge 6000rpm, 2°C, 10m. Estimate packed cell volume and add an equal volume of 10% glycerol. Dispense 200µl aliquots into tubes on dry-ice and store at -80°C.
- 7. Estimate the competence (expressed as colonies per μ g plasmid) by transforming with a known amount of plasmid. Plate numerous dilutions and count cells. Note the competence and date on the box and consider that the efficiency will drop with increasing storage, even at -80oC (best to use cells within ≤ 12 months).
 - **NOTE 6:** The number of transformants increases linearly with input DNA over a wide range (5pg -> 500ng). However it is important to keep the added volume of DNA as small as possible (particularly important for ligations) since arcing can occur at salt concentrations >1mM.