

Metabolic Diseases: Pathway Analysis

Computation Health Laboratory Final Project

Marzeddu Simone Raffi Jacopo

O1 Note: Project Introduction

O2Metabolic Diseases: Background

Background

Metabolic Diseases

The process of converting food to energy on a cellular level.

Metabolic Diseases Effects

These diseases affect the ability of the cell to perform biochemical reactions that involve the processing or transport of proteins, carbohydrates, or lipids.

Contraction of Diseases

Metabolic diseases are typically hereditary, yet most persons affected by them may appear healthy for days, months, or even years.

Diseases Consequences

Consequences may be severe: intellectual disability, seizures, decreased muscle tone, organ failure, blindness, or even deafness depending on which enzyme is dysfunctional.

O3 Project Roadmap

Project Roadmap

Selection of the subclass of Metabolic **Diseases**

Disorders of

Aminoacid

Metabolism

Data Analysis and Results

- Drugbank
- rBiopaxParser
- igraph

- **General human** organism interactions
- biogridr

- Ranking Algorithm
- Qualitative Validation

04 Drug Ranking

Mean Distance Algorithm

```
ranking <- function(ig, drugs, genes, directed){</pre>
 # drugs -> vector containing all drugs
 # genes -> vector containing all the genes of the studied disease
  m = "all"
  if(directed)
   m = "out"
 dist = distances(ig, v = drugs, to = genes, mode = m)
 # generation of a matrix containing association between drugs and mean distances from the genes of the disease
 means = matrix(nrow = length(drugs), ncol = 4)
  for(i in 1:nrow(dist)){
   means[i,1] = drugs[i]
   means[i,2] = mean(dist[i,])
 # sorting of the matrix based on the mean distances: -> the drugs column represent the ranking
 means = means[order(as.numeric(means[,2]), decreasing = FALSE),]
  return(means)
```


Ranking Results Example

Methylmalonic Acidemia

O5 Validation and Results

Validation

First Qualitative Validation

79.17% of drugs known for the analysed diseases qualify in **high rankings** for those diseases

Mean Rank Analysis

Comparison between the mean rank achieved by drugs in target diseases' rankings and in non target diseases' rankings

3 out of **14** drugs **failed** this test

Interesting Insights

Among the "new" drugs that emerged from our analysis, we identified interesting factors

Such as *Entinostat*, *Vorinostat*, *Belinostat* in the top ranking for Propionic Acidemia.

Such as Gantenerumab, found now linked to Methylmalonic Acidemia.

Drugs found in Rabies'Pathway

Rabies Immune Globuline, in the top ranking for Homocystinuria.

Drugs/Disease links mentioned in Scientific Literature

Vitamine **B12** and **Hydroxocobalamin**, found as the best drugs against Methylmalonic Acidemia.

source: PubMed

Future Plans

Future plans

Test the method with different and more drugs

Update the project with less naive approaches

Biological study to confirm or reject the implications of rankings

- Hyperglicinemia
- Methylmalonic Acidemia

Marzeddu Simone – Raffi Jacopo

slidesgo