DATA MINING

01 Introduction

DEWI RAHMAWATI, S.KOM., M.KOM., MOS. SOFTWARE ENGINEERING - SISTEM INFORMASI – S1

dewirahmawati@ittelkom-sby.ac.id

Daftar Pustaka

- Jiawei Han and Micheline Kamber, Data Mining: Concepts and Techniques Third Edition, Elsevier, 2012
- Ian H. Witten, Frank Eibe, Mark A. Hall, Data mining: Practical Machine Learning Tools and Techniques 3rd Edition, *Elsevier*, 2011
- Ethem Alpaydin, Introduction to Machine Learning, 3rd ed., MIT Press, 2014
- Florin Gorunescu, Data Mining: Concepts, Models and Techniques, Springer, 2011

Daftar Pustaka

- Jiawei Han and Micheline Kamber, Data Mining: Concepts and Techniques Third Edition, Elsevier, 2012
- Ian H. Witten, Frank Eibe, Mark A. Hall, Data mining: Practical Machine Learning Tools and Techniques 3rd Edition, Elsevier, 2011
- Ethem Alpaydin, Introduction to Machine Learning, 3rd ed., MIT Press, 2014
- Florin Gorunescu, Data Mining: Concepts, Models and Techniques, Springer, 2011

Tugas, Latihan Soal dan Quiz

Tugas:

- - Tugas Mandiri
- - Tugas Berkelompok dan di Presentasikan

Latihan Soal:

 Akan diberikan pada penjelasan materi tertentu

Quiz

- - Mendadak
- - Ada pemberitahuan sebelumnya

Sistematika Penilaian

- □ 10 % Tugas
- □ 20 % Quiz
- □ 35 % UTS
- □ 35 % UAS

Diluar Penilaian Sebenarnya:

□80 % kehadiran (Minimal 12 x hadir)

Nilai Akhir (Grade) Akan dipertimbangkan

Batas Nilai Akhir:

Nilai Skor Matakuliah (NSM)	Nilai Mata Kuliah (NMK)
NSM > 80	A
$70 < \text{NSM} \le 80$	AB
$65 < NSM \le 70$	В
$60 < \text{NSM} \le 65$	BC
55 < NSM ≤ 60	C
$40 < \text{NSM} \le 55$	D
NSM ≤ 40	E

https://academic.ittelkom-sby.ac.id/wp-content/uploads/2019/03/SK-Buku-Pedoman-Akademik.pdf

Outline mata kuliah: data mining

- Pengenalan data mining
- Pemahaman tentang data

Capaian Pembelajaran pertemuan ini

- Mengetahui konsep dasar, tujuan dan penerapan data mining
- Ilmu yang terkait dengan data mining
- Pengenalan awal tentang metode data mining yang dapat dipakai di dunia nyata
- Pengenalan awal tentang data
- Pengenalan awal tentang Metode learning pada algoritma data mining

Apa itu data mining

Manusia memproduksi data

wiseGKK

Finansial

Kesehatan

Traffic Patterns

Sensor Networks

E-Commerce

Cuaca

Kenapa data mining? Commercial viewpoint

Banyak data dikumpulkan dan di simpan

- Web data
 - Facebook punya miliaran data pengguna

- Pembelian di supermarket (mini market), e-commerce
 - Tokopedia, blibli, shopee, dll menerima jutaan visit perhari
 - alfamart mempunyai data konsumen
- Komputer harganya semakin terjangkau
- Persaingan dari competitor yang semakin kuat

Kenapa data mining? scientific viewpoint

• Data dikumpulkan dan disimpan dengan kecepatan yang sangat tinggi

fMRI Data from Brain

Sky Survey Data

Gene Expression Data

Surface Temperature of Earth

- Data mining membantu ilmuwan
 - dalam menganalisis dataset yang massif secara otomatis
 - Dalam merumuskan dan membuktikan hipotesis

Data mining bisa membantu menyelesaikan masalah

Improving health care and reducing costs

Finding alternative/ green energy sources

Reducing hunger and poverty by increasing agriculture production

Pengertian data mining

Pengertian data mining (secara global)

- Disiplin ilmu yang mempelajari metode untuk mengekstrak pengetahuan atau menemukan pola dari suatu data yang besar
- Ekstraksi dari data ke pengetahuan:
 - 1. Data: fakta yang terekam dan tidak membawa arti
 - 2. Pengetahuan: pola, rumus, aturan atau model yang muncul dari data
- Nama lain data mining:
 - Knowledge Discovery in Database (KDD)
 - Knowledge extraction
 - Pattern analysis
 - Information harvesting
 - Business intelligence

Pengertian data mining (menurut pakar)

- Melakukan ekstraksi untuk mendapatkan informasi penting yang sifatnya implisit dan sebelumnya tidak diketahui, dari suatu data (Witten et al., 2011)
- Kegiatan yang meliputi pengumpulan, pemakaian data historis untuk menemukan keteraturan, pola dan hubungan dalam set data berukuran besar (Santosa, 2007)
- Extraction of interesting (non-trivial, implicit, previously unknown and potentially useful) patterns or knowledge from huge amount of data (Han et al., 2011)

Data – informasi - pengetahuan

NIP	TGL	DATANG	PULANG
1103	02/12/2004	07:20	15:40
1142	02/12/2004	07:45	15:33
1156	02/12/2004	07:51	16:00
1173	02/12/2004	08:00	15:15
1180	02/12/2004	07:01	16:31
1183	02/12/2004	07:49	17:00

Data Kehadiran Pegawai

Data – informasi - pengetahuan

NIP	Masuk	Alpa	Cuti	Sakit	Telat
1103	22				
1142	18	2		2	
1156	10	1	11		
1173	12	5			5
1180	10			12	

Informasi Akumulasi Bulanan Kehadiran Pegawai

Data – informasi - pengetahuan

	Senin	Selasa	Rabu	Kamis	Jumat
Terlambat	7	0	1	0	5
Pulang Cepat	0	1	1	1	8
Izin	3	0	0	1	4
Alpa	1	0	2	0	2
•					

Pola Kebiasaan Kehadiran Mingguan Pegawai

Data – informasi – pengetahuan - kebijakan

Kebijakan penataan jam kerja karyawan khusus untuk hari senin dan jumat

- Peraturan jam kerja:
 - Hari Senin dimulai jam 10:00
 - Hari Jumat diakhiri jam 14:00
 - Sisa jam kerja dikompensasi ke hari lain

Data mining pada business intelligence

Awal mula data mining

- Berasal dari machine learning / AI, pattern recognition, statistic dan database systems
- Data mining cocok untuk data yang berkarakteristik
 - Large-scale
 - High dimensional
 - Heterogeneous
 - Complex
 - distributed

Database Technology, Parallel Computing, Distributed Computing

Masalah-Masalah di Data Mining

- Tremendous amount of data
 - Algorithms must be highly scalable to handle such as tera-bytes of data
- High-dimensionality of data
 - Micro-array may have tens of thousands of dimensions
- High complexity of data
 - Data streams and sensor data
 - Time-series data, temporal data, sequence data
 - Structure data, graphs, social networks and multi-linked data
 - Heterogeneous databases and legacy databases
 - Spatial, spatiotemporal, multimedia, text and Web data
 - Software programs, scientific simulations
- New and sophisticated applications

break

Tugas Data Mining

- Metode Prediksi
 - Menggunakan beberapa variables untuk memprediksi nilai yang akan datang pada variable lain
 - Prediksi harga rumah
- Metode Deskripsi
 - Menemukan pola dari sebuah data yang bisa dipahami manusia

Tugas data mining

Tugas data mining Income range of applicant? \$30-70K > \$70K Years in present job? Criminal record? (no ban) Makes credit card payments? Data Married 70K Single 120K Divorced 95K Married Divorced 220K Yes 85K Single Married 75K Single 90K Yes 0 75K 90K 0 0

1. Estimasi

Estimasi go-food

Customer	Jumlah Pesanan (P)	Jumlah Traffic Light (TL)	Jarak (J)	Waktu Tempuh (T)
1	3	3	3	16
2	1	7	4	20
3	2	4	6	18
4	4	6	8	36
•••				
1000	2	4	2	12

Pembelajaran dengan Metode Estimasi (*Regresi Linier*)

Waktu Tempuh (T) = 0.48P + 0.23TL + 0.5J

Pengetahuan

2. Regresi

Regresi (regression)

- Memprediksi nilai variabel bernilai kontinu yang diberikan berdasarkan nilai-nilai variabel lain, dengan asumsi model dependensi linier atau nonlinier.
- Secara ekstensif dipelajari dalam statistik, bidang jaringan saraf.
- Contoh:
 - Memprediksi jumlah penjualan produk baru berdasarkan pembelanjaan yang menguntungkan.
 - Memprediksi kecepatan angin sebagai fungsi suhu, kelembaban, tekanan udara, dll.
 - Prediksi deret waktu dari indeks pasar saham.

3. Klasifikasi

model prediksi: klasifikasi

Temukan model untuk atribut kelas sebagai fungsi dari nilai atribut lainnya

Class

Tid	Employed	Level of Education	# years at present address	Credit Worthy
1	Yes	Graduate	5	Yes
2	Yes	High School	2	No
3	No	Undergrad	1	No
4	Yes	High School	10	Yes
	•••	•••	•••	

Model for predicting credit worthiness

Contoh klasifikasi

Contoh klasifikasi yang lain

- Mengklasifikasikan transaksi kartu kredit sebagai sah atau curang
- Klasifikasi tutupan lahan (badan air, daerah perkotaan, hutan, dll.) Menggunakan data satelit
- Mengkategorikan berita sebagai keuangan, cuaca, hiburan, olahraga, dll
- Mengidentifikasi penyusup di dunia maya
- Memprediksi sel tumor sebagai jinak atau ganas
- Mengklasifikasikan struktur sekunder protein sebagai alfa-helix, beta-sheet, atau koil acak

Contoh penerapan klasifikasi (1)

Fraud detection (deteksi penipuan kartu kredit)

- Goal (sasaran)
 - Memprediksi kasus penipuan dalam transaksi kartu kredit.
- Approach (pendekatan)
 - Gunakan transaksi kartu kredit dan informasi pada pemegang akunnya sebagai atribut.
 - Kapan seorang pelanggan membeli, apa yang dia beli, seberapa sering dia membayar tepat waktu, dll
 - Beri label transaksi masa lalu sebagai penipuan atau transaksi wajar. Ini membentuk atribut kelas.
 - Pelajari model untuk kelas transaksi.
 - Gunakan model ini untuk mendeteksi penipuan dengan mengamati transaksi kartu kredit di akun.

Contoh penerapan klasifikasi (2)

Prediksi churn untuk pelanggan telepon seluler (indosat / telkomsel)

- Goal (sasaran)
 - Memprediksi apakah seorang pelanggan kemungkinan hilang oleh pesaing.
- Approach (pendekatan)
 - Gunakan catatan rinci transaksi dengan masing-masing pelanggan di masa lalu dan sekarang, untuk menemukan atribut.
 - Seberapa sering pelanggan menelepon, di mana ia menelepon, jam berapa ia paling sering menelepon, status keuangannya, status perkawinan, dll.
 - Beri label pada pelanggan sebagai loyal atau tidak loyal.
 - Temukan model untuk loyalitas.

4. Clustering

Clustering

 Menemukan kelompok objek sedemikian rupa sehingga objek dalam grup akan serupa (atau terkait) satu sama lain dan berbeda dari (atau tidak terkait dengan) objek dalam grup lain

Inter-cluster Intra-cluster distances are distances are maximized minimized

Contoh penerapan clustering

- Understanding
 - Custom profiling for targeted marketing
 - Group related documents for browsing
 - Group genes and proteins that have similar functionality
 - Group stocks with similar price fluctuations

- Summarization
 - Reduce the size of large data sets

Contoh penerapan clustering (1)

Market segmentation

- Goal (sasaran)
 - membagi pasar menjadi subset pelanggan yang berbeda di mana setiap subset mungkin dapat dipilih sebagai target pasar yang akan dicapai dengan bauran pemasaran yang berbeda.
- Approach (pendekatan)
 - Kumpulkan berbagai atribut pelanggan berdasarkan informasi geografis dan gaya hidup mereka.
 - Temukan kelompok pelanggan yang serupa.
 - Mengukur kualitas pengelompokan dengan mengamati pola pembelian pelanggan dalam kelompok yang sama vs yang dari kelompok yang berbeda.

Contoh penerapan clustering (2)

Document clustering

- Goal (sasaran)
 - Untuk menemukan kelompok dokumen yang mirip satu sama lain berdasarkan istilah-istilah penting yang muncul di dalamnya..
- Approach (pendekatan)
 - Untuk mengidentifikasi istilah yang sering muncul di setiap dokumen. Bentuk ukuran kesamaan berdasarkan frekuensi istilah yang berbeda. Gunakan untuk mengelompokkan.

5. Association Rule Discovery

Association rule discovery: definisi

- Diberikan satu set records (catatan) yang masing-masing berisi sejumlah item dari koleksi yang diberikan
 - Menghasilkan aturan ketergantungan yang akan memprediksi terjadinya suatu item berdasarkan kemunculan item lainnya.

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

```
Rules Discovered:
{Milk} --> {Coke}
{Diaper, Milk} --> {Beer}
```

Association Analysis: Applications

- Analisis pasar-keranjang (Market-basket analysis)
 - Aturan digunakan untuk promosi penjualan, manajemen rak, dan manajemen inventaris
- Diagnosis alarm telekomunikasi
 - Aturan digunakan untuk menemukan kombinasi alarm yang sering muncul bersamaan dalam periode waktu yang sama
- Informatika Medis
 - Aturan digunakan untuk menemukan kombinasi gejala pasien dan hasil tes yang terkait dengan penyakit tertentu

Association Analysis: Applications

Contoh Pola Koekspresi Diferensial Subruang dari dataset kanker

paru-paru

Three lung cancer datasets [Bhattacharjee et al. 2001], [Stearman et al. 2005], [Su et al. 2007]

Diperkaya dengan jalur pensinyalan TNF / NFB yang dikenal terkait dengan kanker paru-paru

Association Analysis: Applications

- pada hari kamis malam, 1000 pelanggan telah melakukan belanja di supermaket ABC, dimana:
 - 200 orang membeli Sabun Mandi
 - dari 200 orang yang membeli sabun mandi, 50 orangnya membeli Fanta
- Jadi, association rule menjadi, "Jika membeli sabun mandi, maka membeli Fanta", dengan nilai support = 200/1000 = 20% dan nilai confidence = 50/200 = 25%
- Algoritma association rule diantaranya adalah: A priori algorithm, FP-Growth algorithm, GRI algorithm

6. Anomaly Detection

Deteksi anomali

Mendeteksi penyimpangan yang signifikan dari perilaku normal

- Aplikasi:
- Deteksi Penipuan Kartu Kredit
- Deteksi intrusi jaringan
- Identifikasi perilaku anomali dari jaringan sensor untuk pemantauan dan pengawasan.
- Mendeteksi perubahan tutupan hutan global.

Tes pemahaman

• Pikirkan, kira-kira, data mining bisa diterapkan di area apa saja?

break

Pengenalan tentang data (dataset)

Akan dijelaskan lebih lanjut di pertemuan berikutnya

dataset

petal sepal

sepal: kelopak bunga

	Attribute/Feature			Class	/Label/Target	
	Sepal Length (cm)	Sepal Width (cm)	Petals Length (cm)	Petal Width (cm)	Туре	1 \
1	5.1	3.5	1.4	0.2	Iris setosa ← Record	/د
2	4.9	3.0	1.4	0.2	Iris setosa ← Object	:/
3	4.7	3.2	1.3	0.2	Iris setosa	
4	4.6	3.1	1.5	0.2	Iris setosa ← Sampl	e/
5	5.0	3.6	1.4	0.2	Iris setosa ← Tuple	
51	7.0	3.2	4.7	1.4	Iris versicolor	
52	6.4	3.2	4.5	1.5	Iris versicolor	
53	6.9	3.1	4.9	1.5	Iris versicolor	
54	5.5	2.3	4.0	1.3	Iris versicolor Iris versicolor Nomina	, I
55	6.5	2.8	4.6	1.5	Iris versicolor	
101	6.3	3.3	6.0	2.5	Iris virginica	
102	5.8	2.7	5.1	1.9	Iris virginiča	
103	7.1	3.0	5.9	2.1	Iris virginica	

Attribute/Feature

Jenis atribut

Jenis Atribut	Deskripsi	Contoh	Operasi
Ratio (Mutlak)	 Data yang diperoleh dengan cara pengukuran, dimana jarak dua titik pada skala sudah diketahui Mempunyai titik nol yang absolut (*, /) 	UmurBerat badanTinggi badanJumlah uang	geometric mean, harmonic mean, percent variation
Interval (Jarak)	 Data yang diperoleh dengan cara pengukuran, dimana jarak dua titik pada skala sudah diketahui Tidak mempunyai titik nol yang absolut (+, -) 	 Suhu 0°c-100°c, Umur 20-30 tahun 	mean, standard deviation, Pearson's correlation, t and F tests
Ordinal (Peringkat)	 Data yang diperoleh dengan cara kategorisasi atau klasifikasi Tetapi diantara data tersebut terdapat hubungan atau berurutan	Tingkat kepuasan pelanggan (puas, sedang, tidak puas)	median, percentiles, rank correlation, run tests, sign tests
Nominal (Label)	 Data yang diperoleh dengan cara kategorisasi atau klasifikasi Menunjukkan beberapa object yang berbeda (=, ≠) 	Kode posJenis kelaminNomer id karyawanNama kota	mode, entropy, contingency correlation, χ^2 test

Metode learning pada data mining

Metode learning

A. Supervised Learning

- Pembelajaran dengan guru, data set memiliki target/label/class
- Sebagian besar algoritma data mining (estimation, prediction/forecasting, classification) adalah supervised learning
- Algoritma melakukan proses belajar berdasarkan nilai dari variabel target yang terasosiasi dengan nilai dari variable prediktor

A. Supervised Learning – contoh dataset dengan kelas

B. UnSupervised Learning

- Algoritma data mining mencari pola dari semua variable (atribut)
- Variable (atribut) yang menjadi target/label/class tidak ditentukan (tidak ada)
- Algoritma clustering adalah algoritma unsupervised learning

B. UnSupervised Learning

Attribute/Feature

	Sepal (cm)	Sepal Width (cm)	Petala Length (cm)	Petal Width (cm)			
1	5.1	3.5	1.4	0.2			
2	4.9	3.0	1.4	0.2			
3	4.7	3.2	1.3	0.2			
4	4.6	3.1	1.5	0.2			
5	5.0	3.6	1.4	0.2			
51	7.0	3.2	4.7	1.4			
52	6.4	3.2	4.5	1.5			
53	6.9	3.1	4.9	1.5			
54	5.5	2.3	4.0	1.3			
55	6.5	2.8	4.6	1.5			
101	6.3	3.3	6.0	2.5			
102	5.8	2.7	5.1	1.9			
103	7.1	3.0	5.9	2.1			

A. Semi-Supervised Learning

- Semi-supervised learning adalah metode data mining yang menggunakan data dengan label dan tidak berlabel sekaligus dalam proses pembelajarannya
- Data yang memiliki kelas digunakan untuk membentuk model (pengetahuan), data tanpa label digunakan untuk membuat batasan antara kelas

C. Semi-Supervised Learning

- If we consider the labeled examples, the dashed line is the decision boundary that best partitions the positive examples from the negative examples
- Using the unlabeled examples, we can refine the decision boundary to the solid line
- Moreover, we can detect that the two positive examples at the top right corner, though labeled, are likely noise or outliers

Algoritma Data Mining (DM)

1. Estimation (Estimasi):

• Linear Regression, Neural Network, Support Vector Machine, etc.

2. Prediction/Forecasting (Prediksi/Peramalan):

• Linear Regression, Neural Network, Support Vector Machine, etc.

3. Classification (Klasifikasi):

 Naive Bayes, K-Nearest Neighbor, C4.5, ID3, CART, Linear Discriminant Analysis, Logistic Regression, etc

4. Clustering (Klastering):

• K-Means, K-Medoids, Self-Organizing Map (SOM), Fuzzy C-Means, etc.

5. Association (Asosiasi):

• FP-Growth, A Priori, Coefficient of Correlation, Chi Square, etc.

Review Sebelum pertemuan selesai

Apa yang sudah kita pelajari pada pertemuan ini?

- Pengenalan data mining
- Kapan memakai klasifikasi
- Kapan memakai clustering
- Kapan memakai association rules
- Kapan memakai anomaly detection
- Pengenalan awal tentang data
- Pengenalan dasar Metode learning pada algoritma data mining

Penutup

- Pada pertemuan berikutnya, kita akan mempelajari dan membahas tentang "pemahaman data", yang berupa:
 - Review atribut dan object
 - Tipe data
 - Kualitas data
 - Similarity dan distance (jarak)
 - Data preprocessing
 - Data cleansing
 - Data transformation
 - Feature selection

Tugas

• Dikumpulkan pada:

selesai