lab 1 report

Report: Basic op-amp circuits	
Lab work done by	Sean Gordon
and	_Tejas Agarwal
Lab work date: 1/23/2019	
Report submission date:	
Lab Section: E	
Graded by	
Score	

Introduction

This lab acts as an initial review of op-amps, eventually sprinkling in newer concepts that use op amps in their implementations. The lab ensures experimentation with each device, and adds several questions for contemplation throughout the lab.

lab 1 report

A. Non-inverting amp

(Don't forget units in all the right places!) Using 324 Amp

$$G = 1 + R_2/R_1 = 1 + 15/1 = 16$$

Expected gain : *G* = _____16____

Measured $v_i =$ _____1.44 V_{rms} ____

Measured $v_o = ____12.78V_{_}$

Measure gain : G =_____14____

Figure 1: Insert an image of the oscilloscope trace of undistorted v_o and v_i together.

Figure 2: Insert an image of the oscilloscope trace of *clipped* v_o and v_i together.

lab 1 report

Maximum output without clipping: v_o (max) = _____13V_____

B. Transfer characteristic

Figure 3: Insert an oscilloscope image of the transfer characteristic when the output *is not* clipped.

/++

lab 1 report

Figure 4: Insert an image of transfer characteristic when the output is clipped. DS0-X 2024A, MY55140904: Thu Jan 24 08:03:59 2019

C. Unity-gain buffer

pot. position	a-calculated	a-measured	b - calculated	b - measured	c - measured
25%	11.25v	9.5	4.32	7.7	12.3
50%	7.5	5.27	2.57	4.06	7.55
75%	3.75	3.6	1.67	3.25	2.55

Write a paragraph explaining how the buffer amplifier works and how that leads to the results seen here.

The buffer amplifier uses negative feedback to provide an electrical impedance transformation. This buffers the output from anything the load may produce, driving the load as an ideal voltage source.

lab 1 report

D. Inverting amplifier

$$G = -R_2/R_1 = -50k/2.2k = -45.45$$

Using 324 Amp

Expected gain: $G = ____-22.72____$

Measured $v_i = ____-13.67v_{_}_-$

Measured $v_o = ____4.5v____$

Figure 5: Insert an image of the oscilloscope trace of undistorted v_o and v_i together.

Figure 6: Insert an image of the oscilloscope trace of *clipped* v_o and v_i together.

lab 1 report

Maximum output without clipping: v_o (max) = _____13.6v_____

Figure 7: Insert an oscilloscope image of the inverting transfer characteristic when the output *is not* clipped.

Figure 8: Insert an image of inverting transfer characteristic when the output *is* clipped.

lab 1 report

E. Summing amplifier

Expected out function : $v_o = \underline{\qquad} f(V1, V2, V3) = V1+V2+V3\underline{\qquad}$

$V_{o} = -Rf/R1 * V$	$1 - Rf/R2 * V2 - \dots$	=> -	- V1 -	V2-	V3
----------------------	--------------------------	------	--------	-----	----

' 0	9/111 4 / 1	19/112 *	<i>,</i> <u>, , , , , , , , , , , , , , , , , , </u>	1 /2 /3
V_I	V_2	V_3	$v_o(calculated)$	v _。 (measured)
1 V	1 V	1 V	-3v	-3v
2 V	1 V	1 V	-4V	-4
2 V	- 2 V	4 V	-4V	-4
4 V	- 3 V	5 V	-6V	-6

Figure 9: Insert an oscilloscope image of the v_o when the one of the inputs is a sinusoid and the other two inputs are some combination of DC values. (Be sure to list the voltages used.) All voltages 1v

lab 1 report

F. Integrating amplifier

Sketch the expected output voltage when the input is a 5-V square-wave on the graph below.

Figure 10. Oscilloscope trace of measured square-wave input and integrator output together. DS0-X 2024A, MY55140904: Thu Feb 07 07:48:52 2019

Figure 11. Oscilloscope trace of measured ramp-wave input and integrator output together. DSO-X 2024A, MY55140904: Thu Feb 07 07:50:02 2019

Figure 12. Oscilloscope trace of measured sinusoidal input and integrator output together.

lab 1 report

G. Difference amplifier

Expected out function : $v_o =$

With v_b grounded:

$$v_a =$$
 ______, $v_o =$ ______3.58v_____, $G_a =$ _____10.2____

With v_a grounded:

With $v_a = v_b = v_c$ (common-mode operation)

Figure 13: Insert an image of the input and output traces with $v_a = v_i$ and $v_b = 0$. (Green is input here) DSO-X 2024A, MY55140904: Thu Feb 07 08:30:23 2019

Figure 14: Insert an image of the input and output traces with v_a = 0 and v_b = v_i . DSO-X 2024A, MY55140904: Thu Feb 07 08:12:48 2019

lab 1 report

Add a short paragraph regarding CMRR.

CMRR is the ratio of differential voltage gain to common mode voltage gain. CMRR is calculated in decibels, using the equation db = $20\log(\text{CMRR})$. Common means both inputs are equal.

lab 1 report

H. Instrumentation amplifier

Expected difference-mode gain : G =

Measured difference-mode gain:

$$v_i =$$
 ______35v______, $v_o =$ ______3.6v______, $G =$ _____10.29_____

With $v_1 = v_2 = v_c$ (common-mode operation)

$$v_c =$$
 _____, $v_o =$ _____, $v_o =$ _____, $G_c =$ _____20.36____

CMRR = _____26.17_____

Figure 15: Insert an image of the input and output traces with $v_I = v_i$ and $v_b = 0$. DSO-X 2024A, MY55140904: Thu Feb 07 08:59:54 2019

Stop 2 1.00V/ KEYSIGHT TECHNOLOGIES Select Cursor +0.0s Normal +250.000000us 250MSa/s X1 X2 linked +350.00mV +3.60000V Y1 Y2 linked ΔΧ: +250.000000us <u>1/ΔX:</u> +4.0000kHz $\Delta Y(2)$: +3.25000V Autoscale Menu Acq Mode Undo Fast Debug 🖜 Channels Autoscale Normal

lab 1 report

Conclusion

The lab went smoothly, with each section taking around the same time to complete. There were some measurement issues in part C that I was unsure of, but the rest of the lab seems relatively consistent to calculations.