DIP Assignment - 3.

Subhani shaik M18117

 \bigcirc given g(x+1,y) + g(x-1,y)

For s(n+114) = center lies at (1,0) == it is a -ve axes

 $\frac{d^{+}}{d^{-}} = \frac{1}{2} = \frac{1}{2$ so do modulo.

For S'(1-1)y) = at (1,0) . The ornel ~

- FFT equation. 15.

 $F\left(X(\omega,\omega)\right) = X(K,Y)$

 $\chi(m_1 \pi \pi)$) = $\Lambda(m_1 \pi)$ = $J_2 \pi k \pi$ - $J_2 \pi k \pi$ [from lecture $\chi(K_1 k)$] = $\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \chi(m_1 m)$ e $\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \chi(m_1 m)$ e $\sum_{n=0}^{\infty} \chi(m_1 m)$ e $\sum_{n=0}^{\infty} \chi(m_1 m)$

 $f(x(n-1)0) = \sum \sum x(n-1)n = \frac{-j 2\pi(n-1)n}{n} = \frac{-j 2\pi(n-1)n}{n} = \frac{-j 2\pi(n-1)n}{n}$ $= \sum x(n-1)0) = \sum x(n-1)n = \frac{-j 2\pi(n-1)n}{n} = \frac{-j 2\pi(n-1)n}{n} = \frac{-j 2\pi(n-1)n}{n}$ $= \sum x(n-1)0 = \sum x(n-1)n = \frac{-j 2\pi(n-1)n}{n} = \frac{-j 2\pi(n-1)n}{n} = \frac{-j 2\pi(n-1)n}{n} = \frac{-j 2\pi(n-1)n}{n} = \frac{-j 2\pi(n-1)n}{n}$

 $f(x(n,0)) = \lambda(n,m) = \frac{-j 2\pi \cdot 0 \cdot m}{N}$ $= \lambda(n,m) = \frac{-j 2\pi \cdot 0 \cdot m}{N}$ $= \frac{-j 2\pi \cdot 0}{N}$

=f(8(n+1,4)+8(n-1,9))=2(n+1)+2(n+1)

 $F(\chi(K,L)) = \chi(n,m)e + \chi(n,m) = \frac{-j 2\pi \cdot o \cdot n}{N}$ At K, 1=0.

x(n,m).1+ n(n,m). 1

= 2. A(n)n)

 $F[X(K,L)] = a(n,m) e^{-j2\pi t} \frac{Mn}{2n} + a(n,m) e^{-j2\pi t} \frac{Mn}{2n}$ = $\chi(n,m)$ e + $\chi(n,m)$ e = $\chi(n,m)$ e + $\chi(n,m)$ e given the Highest Frequencies are at $K = \frac{N}{2}$, $l = \frac{m}{2}$ The fughest frequencies are

it is either =0 or =0

it is either =0 or =0

i.e., band-pass filtering.

Low-pass biltering.

For N=odd; N=even = +0.

Tesuencies

Tesuencies

it varies.

[passes him frequencies] [rejects high frequencies]

given the image has a periodic horizontal lines (referred online source).

To remove this horitontal lines, to Use Notch filters. which are helpful to remove these kind of noises.