Tranzistorový zesilovač se společným emitorem

Figure 1: Schema zapojení bez poruchy

		. 1	** /
		simulace	měření
bez poruchy	$U_C[V]$	6.12	4.89
	$U_B[V]$	1.34	1.38
	$U_E[V]$	0.56	0.75
rozpojení na R_{B2}	$U_C[V]$	1.45	1.44
	$U_B[V]$	2.19	2.09
	$U_E[V]$	1.39	1.41
rozpojení na R_E	$U_C[V]$	10.00	10.15
	$U_B[V]$	1.37	1.39
	$U_E[V]$	4.98	1.05
rozpojení na R_C	$U_C[V]$	0.10	0.10
	$U_B[V]$	1.37	1.39
	$U_E[V]$	4.98	1.05
zkrat báze kolektor	$U_C[V]$	1.88	1.78
	$U_B[V]$	4.00	4.4.4
	$U_E[V]$	1.09	1.14
zkrat báze kolektor zkrat báze kolektor	$U_C[V]$	10.00	10.15
	$U_B[V] = U_E[V]$	0.18	0.18
	- 1		
	$\frac{U_C[V]}{U_E[V]}$	1.26	1.27
	$U_B[V]$	1.37	1.39

Table 1: pracovní bod pro zapojení

Zesilovač má zesílením zhruba -6, což je vidět na simulovaném průběhu bez poruch obr. 2. Při reálném měřený dosahoval zesilovač výrazně menšího zesílení než v simulaci.

Při rozpojení na R_2 zesilovač ztrácí schopnost zesilovat napětí. V kladné půlvlně napětí prochází jen skrz PN přechod báze kolektor, zesílení je tím pádem kladné a menší než 1. Záporná půlvlna začne tranzistor přivírat a napětí se tak začíná zesilovat se záporným zesílením lehce vetším než 1. Simulace viz obr. 4 Měřený průběh se chová úplně jinak, zesílení není nikdy záporné.

Při rozpojení na R_3 zesilovač úplně ztrácí schopnost zesilovat napětí. Simulace viz obr. 6. Emitor není pro nízké frekvence připojený k zemi, čímž se změní pracovní bod a na přechodu BC tak není pro funkci dostatečné napětí. Změna napětí na bázi tak prakticky nedokáže tranzistor řídit a na výstupu se tak vstup projevuje teprve při velké amplitudě a se zesílením menším než 1. Měřený průběh odpovídá simulaci, stejnosměrný posun výstupního napětí je jen nedokončený přechodový jev (nabitý kondenzátor C_1).

Při rozpojení na R_5 je stejnosměrné napětí na kolektoru nulové a ani při působení vstupního střídavého napětí tak nemůže klesnout níž. Simulace viz obr. 8. Záporná půlvlna je tak oříznuta a kladná prochází jen přes přechod BC. Na měřeném průběhu se saturace neprojevila.

Při zkratu mezi bází a kolektorem je vstup připojen na výstup přímo přes C_3 a C_1 . Simulace viz obr. 10. Jak v simulaci tak v reálném měření se vstup a výstup prakticky rovnají.

Při zkratu mezi bází a emitorem je tranzistor trvale zavřený a na výstup se tak vstupní střídavé napětí může dostat jen skrz přechod BC. Simulace viz obr. 12. Měřený napěťový průběh neodpovídá simulaci, napěťové zesílení je ale kladné a menší než jedna. Pravděpodobně také zásadně vzrostl výstupní odpor.

Při zkratu mezi kolektorem a emitorem je tranzistor úplně vyřazen z provozu a napětí na bázi se tak nemá jak dostat na výstup. Simulace viz obr. 14. Měřený průběh odpovídá simulaci.

Figure 2: Simulace zapojení bez poruchy

Figure 3: Měření zapojení bez poruchy

Figure 4: Simulace rozpojení na odporu \mathbb{R}_2 neboli \mathbb{R}_{B2}

Figure 5: Měření rozpojení na odporu ${\cal R}_2$ neboli ${\cal R}_{B2}$

Figure 6: Simulace rozpojení na odporu ${\cal R}_3$ neboli ${\cal R}_E$

Figure 7: Měření rozpojení na odporu ${\cal R}_3$ neboli ${\cal R}_E$

Figure 8: Simulace rozpojení na odporu ${\cal R}_5$

Figure 9: Měření rozpojení na odporu ${\cal R}_5$

Figure 10: Simulace zkratu mezi bází a kolektorem

Figure 11: Měření zkratu mezi bází a kolektorem

Figure 12: Simulace zkratu mezi bází a emitorem

Figure 13: Měření zkratu mezi bází a emitorem

Figure 14: Simulace zkratu mezi bází a emitorem

Figure 15: Měření zkratu mezi bází a emitorem

Tranzistorový zesilovač se společným kolektorem

		SC simulace	SC měření
bez poruchy	$U_C[V]$	10.00	10.15
	$U_B[V]$	4.69	4.56
	$U_E[V]$	4.00	4.47
rozpojení na R_{B2}	$U_C[V]$	10.00	10.15
	$U_B[V]$	7.09	4.11
	$U_E[V]$	6.38	4.45
rozpojení na R_E	$U_C[V]$	10.00	10.16
	$U_B[V]$	5.71	4.54
	$U_E[V]$	5.68	4.12
zkrat báze kolektor	$\begin{array}{ c c } U_C[V] \\ \hline U_B[V] \end{array}$	10.00	10.15
	$U_E[V]$	9.27	9.45
zkrat báze kolektor	$U_C[V]$	10.00	10.15
	$U_B[V] = U_E[V]$	0.20	0.20
zkrat báze kolektor	$U_C[V] \\ U_E[V]$	10.00	10.15
	$U_B[V]$	5.71	4.74

Table 2: pracovní bod pro zapojení

Zesilovač má zesílením lehce menší 1, což je vidět na simulovaném průběhu bez poruch obr. 17 i na měřeném průběhu.

Při rozpojení na R_2 neboli R_{B2} se posouvají mezní napětí a saturace v záporné půlvlně tak nastává mnohem dřív než v kladné půlvlně. Simulace viz obr. 19. Až na stejnosměrný posun se simulace a měření shodují.

Při rozpojení na R_3 neboli R_E zásadně vzrůstá výstupní odpor a výstup proto nemůžeme zatížit bez zkreslení. V simulaci obr. 21 je proto použit odpor $R_4 = 100[k]$, aby se vysoký výstupní odpor projevil. Měření ukazuje trochu jinak zkreslený signál, jinak ale simulace odpovídá.

Zkrat mezi bází a kolektorem má za následek trvalé otevření tranzistoru a na výstup se tak vstupní napětí nemá jak dostat. Simulace viz obr. 23. Simulace a měření se shodují.

Zkrat mezi bází a emitorem má za následek růst výstupního odporu, neboli vyřazení proudového zesílení zesilovače. Simulace viz obr. 25

Zkrat mezi kolektorem a emitorem vyřazuje tranzistor z provozu a na výstup se tak napětí ze vstupu nedostává. Simulace viz obr. 27

Figure 17: Simulace zapojení bez poruchy

Figure 18: Měření zapojení bez poruchy

Figure 19: Simulace rozpojení na odporu ${\cal R}_2$ neboli ${\cal R}_{B2}$

Figure 20: Měření rozpojení na odporu ${\cal R}_2$ neboli ${\cal R}_{B2}$

Figure 21: Simulace rozpojení na odporu R_3 neboli R_E

Figure 22: Měření rozpojení na odporu ${\cal R}_3$ neboli ${\cal R}_E$

Figure 23: Simulace zkratu mezi bází a kolektorem

Figure 24: Měření zkratu mezi bází a kolektorem

Figure 25: Simulace zkratu mezi bází a emitorem

Figure 26: Měření zkratu mezi bází a emitorem

Figure 27: Simulace zkratu mezi kolektorem a emitorem

Figure 28: Měření zkratu mezi kolektorem a emitorem