Introduction to Machine Learning in Remote Sensing

Hou Chen Guang

Contents

- What is Machine Learning
- Neural Network
- Types of Machine Learning
- Machine Learning in Remote Sensing
- Machine Learning in GEE

Simple Rule: Round Object with Red/Orange Color

Simple Rule: Round Object with Red/Orange Color

Simple rules don't always work. Learn from examples, rather than apply simple rule

Simple rules don't always work. Learn from examples, rather than apply simple rule

Use the **Instincts**

Introduction to Machine Learning

Algorithm

Input Data

Desired Result

Automatic Improve

Machine Learning vs. Classical Approach

Classical Approach

Machine Learning

$$z = \frac{x - y}{x + y}$$

Wanted

Classical Approach

Machine Learning vs. Classical Approach

Classical Approach: Tree/Grass Classification

Machine Learning vs. Classical Approach

Manually Defined Decision Tree

Harder Task

Harder Task: SAR Classification

What does "learning" mean?

"Learning denotes changes in the system that are adaptive in the sense that they enable the system to do the task or tasks drawn from the same population more efficiently and more effectively the next time."

-- Herbert Simon

Try to minimize cost function

Machine learning: a computer has learned something after it enhanced the performance of doing something without changing program.

Classical Machine Learning Methods

Deep Learning

Artificial Intelligence — Hand-coded Human Intelligence

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

Deep Learning

more data + bigger models + more computation

Deep Learning Models

Train A Model: Apple or Orange

Fitting A Line

$$y = wx + b$$

$$\Delta y = wx + b - y_0$$

$$\frac{\partial \Delta y}{\partial b} = b$$

$$\frac{\partial \Delta y}{\partial b} = x$$

Neural Network

Neural Network

Neural Network

1D -> 2D

Sequential NN

Convolutional NN

Convolutional Neural Network

0	0	0	0	0	30	0
0	0	0	0	30	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	0	0	0	0

Pixel representation of filter

Visualization of a curve detector filter

Visualization of the receptive field

Pixel representation of the receptive field

Pixel representation of filter

*

Multiplication and Summation = (50*30)+(50*30)+(50*30)+(50*30)+(50*30)=6600 (A large number!)

0 0 0 0 0 0 0 0 40 0 0 0 0 0 40 0 40 0 0 0 0 40 20 0 0 0 0 0 0 50 0 0 0 0 0 0 0 50 0 0 0 0 25 25 0 50 0 0 0 0							
40 0 40 0 0 0 0 40 20 0 0 0 0 0 0 50 0 0 0 0 0 0 0 50 0 0 0 0	0	0	0	0	0	0	0
40 20 0 0 0 0 0 0 50 0 0 0 0 0 0 0 50 0 0 0 0	0	40	0	0	0	0	0
0 50 0 0 0 0 0 0 0 50 0 0 0 0	40	0	40	0	0	0	0
0 0 50 0 0 0	40	20	0	0	0	0	0
	0	50	0	0	0	0	0
25 25 0 50 0 0 0	0	0	50	0	0	0	0
	25	25	0	50	0	0	0

0	0	0	0	0	30	0
0	0	0	0	30	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	0	0	0	0

Visualization of the filter on the image

Pixel representation of receptive field

Pixel representation of filter

Multiplication and Summation = 0

Visualization of CNN

https://poloclub.github.io/cnn-explainer/

https://adamharley.com/nn_vis/cnn/3d.html

Classification, Object Detection, Segmentation

Object Classification is the task of identifying that picture is a dog

Object Detection involves localization of multiple objects (doesn't have to be the same class).

Object Segmentation involves the class label as well as an outline of the object in interest.

Types of Machine Learning

		Definitions	Algorithms
Companying all languages	Classification (discrete, class labels)	Identifying to which category an object belongs to.	SVM, nearest neighbors, random forest
Supervised learning	Regression (continuous, number)	Predicting a continuous-valued attribute associated with an object.	SVR, ridge regression, Lasso
Unsupervised	Clustering	Automatic grouping of similar objects into sets.	k-Means, spectral clustering
learning	Dimensionality reduction	Reducing the number of random variables to consider.	PCA, feature selection, non-negative matrix factorization

Landcover Classification (SAR)

Residential estate

Hangars

Fuel depot

Residential flats

Terminal

Light industrial buildings

Landcover Classification (SAR+Optical)

Land Use Classification

Land Use Classification

SAR Target Classification

Ship Detection

Object Detection

Object Detection

Building Segmentation

Machine Learning in GEE

•Supervised Classification:

• Use examples to teach a model to differentiate between classes.

•Unsupervised Classification:

• No examples given. Instead, the algorithm divides the available data into clusters based on inherent differences.

•Regression:

• To predict a continuous variable for each input. For example, predict water quality, percent forest cover, percent cloud cover or crop yield.

Machine Learning in GEE

•Supervised Classification:

• ee.Classifier

•Unsupervised Classification:

• ee.Clustere

•Regression:

- linear regression using reducers:
- ee.Reducer.linearFit()
- ee.Reducer.linearRegression()
- ee.Reducer.robustLinearRegression()
- ee.Reducer.ridgeRegression()

Classical Machine Learning Methods

Pixel-based Classification

Single Image or Multiple Images

Feature Selection

5

Three Bands Labels

Thanks!