iNEXT: An R package for interpolation and extrapolation in measuring species diversity

T. C. Hsieh, K. H. Ma, Anne Chao

2015 台灣生態研究網年會, 14 March 2015

Agenda

- What is species diversity?
- Why we need interpolation and extrapolation?
- Demo and case study.
- Intro to shiny, a web app for R.

What is species diversity?

- > Species diversity is defined as the number of species and abundance of each species in a given community
- The number of species that live in a certain location, species richness is the most widely used diversity measure.
- The effective number of species refers to the number of equally abundant species needed to obtain the same mean proportional species abundance observed in the dataset of interest.

Chao and Jost (2012, Ecology Vol. 93)

Effective transform

10 different abundant species

10 equally abundant species

Effective number (Hill 1973)

$${}^{q}D = \left(\sum_{i=1}^{S} p_{i}^{q}\right)^{1/(1-q)}$$

- If ${}^qD = x$, the value is equivalent to that of an idealized assemblage with x equally abundant species, $x = [x \cdot (1/x)^q]^{1/(1-q)}$
- \triangleright The parameter q determines the sensitivity of the relative frequencies

Order	q = 0	q = 1	q = 2
✓ Name	✓ Richness	✓ exp(Shannon entropy)	✓ 1 / (Simpson index)
✓ Senstive to	✓ All species	✓ Typical species	✓ Dominant species

Interpolation and Extrapolation

- The number of species counted in a biodiversity study is usually a biased **underestimate**.
- The observed number of species is sensitive to the sample size or sampling efforts.
- We develop interpolation and extrapolation curve for abundance-based and incidence-based data

$$^{q}D(m) \approx \left[\sum_{X_{i}>0} \left(\frac{X_{i}}{m}\right)^{q}\right]^{1/(1-q)},$$
 where $\sum_{X_{i}>0} X_{i} = m.$

The effective number with sample of size m.

Interpolation and Extrapolation

- The number of species counted in a biodiversity study is usually a biased **underestimate**.
- The observed number of species is sensitive to the sample size or sampling efforts.
- We develop interpolation and extrapolation curve for abundance-based and incidence-based data

The interpolated and extrapolated species diversity curves for abundance-based data.

Coverage-based comparison

- Samples standardized by size will usually have different degrees of sample completeness or sample coverage.
- Ex: 10 tree species with sample of 100 individuals in a temperate-zone tree community vs. 50 species with sample of 100 individuals in a tropical rain forest community.

$$C(m) = \sum_{i=1}^{S} p_i I(X_i > 0)$$

$$\approx \sum_{i=1}^{S} p_i [1 - (1 - p_i)^m]$$

Coverage is defined as the total relative abundances of the observed species

Coverage-based comparison

- Samples standardized by size will usually have different degrees of sample completeness or sample coverage.
- Ex: 10 tree species with sample of 100 individuals in a temperate-zone tree community vs. 50 species with sample of 100 individuals in a tropical rain forest community.

The interpolated and extrapolated species diversity curves for abundance-based data.

Demo and case study

Install iNEXT package from github and import package

```
install.packages('devtools')
library(devtools)
install_github('iNEXT','JohnsonHsieh')
library(iNEXT)
```

Run the demo

```
data(spider)
out <- iNEXT(spider, q=0, datatype="abundance", endpoint=500)
ggiNEXT(out, type=1, color.var="site", facet.var="site")
ggiNEXT(out, type=2, color.var="site", facet.var="site")
ggiNEXT(out, type=3, color.var="site", facet.var="site")
```


Intro to shiny

"Let R user become web application designer wihtout HTML, CSS, or JavaScript"

If you're new to Shiny, these simple but complete applications are designed for you to study.

Kmeans example

Telephones by region

Faithful

Word cloud

Shiny Cheat Sheet learn more at shiny.rstudio.com Shiny 0.10.0 Updated: 6/14

Studio

- 2. server.R A set of instructions that build the R components of your app. To write server.R:
- Provide server.R with the minimum necessary code, shinyServer(function(input, output) {})
- Define the R components for your app between the braces that follow function(input, output)
- Save each R component in your UI as output\$<component name>
- Create each output component with a render* function.
- Give each render* function the R code the server needs to build the component. The server will note any reactive values that appear in the code and will rebuild the component whenever these values change.
- Refer to widget values with input\$<widget name>.

1. Structure Each app is a directory that contains a server.R file and usually a ui.R file (plus optional extra files)

render* functions

expects	creates						
any table-like object	DataTables.js table						
list of image attributes	HTML image						
plot	plot						
any printed output	text						
any table-like object	plain table						
character string	text						
Shiny tag object or	UI element (HTML)						
	any table-like object list of image attributes plot any printed output any table-like object character string						

input values are reactive.

They must be surrounded with one of:

render* - creates a shiny UI component reactive - creates a reactive expression observe - creates a reactive observer

isolate - creates a non-reactive copy of a reactive object

server.R

3. Execution Place code where it will be run the minimum necessary number of times

Run once - code placed outside of shinyServer will be run once, when you first launch your app. Use this code to set up the tools that your server will only need one copy of.

Run once per user - code placed inside shinyServer will be run once each time a user visits your app (or refreshes his or her browser). Use this code to set up the tools that your server will need a unique copy of for each user.

Run often - code placed within a render*, reactive, or observe function will be run many times. Place here only the code that the server needs to rebuild a UI component after a widget changes.

4. Reactivity When an input changes, the server will rebuild each output that depends on it (even if the dependence is indirect). You can control this behavior by shaping the chain of dependence.

RStudio® and Shiny™ are trademarks of RStudio, Inc. CC BY RStudio info@rstudio.com 844-448-1212 rstudio.com

render* - An output will automatically update whenever an input in its render* function changes.

})

Reactive expression - use reactive to create objects that will be used in multiple outputs.

isolate - use use Isolate to use an Input without depending on it. Shiny will not rebuild the output when the isolated Input changes.

output\$z <- renderText({ isolate(input\$a). input\$b

observe - use observe to create code that runs when an input changes, but does not create an output object.

observe({ input\$a # code to run

ui.R

⊘ shinyUI(fluidPage(

```
titlePanel("mtcars data"),
sidebarLayout(
    sidebarPanel(

    textInput("title", "Plot title:",
        value = "x v y"),

    selectInput("x", "Choose an x var:",
        choices = names(mtcars),
        selected = "disp"),

    selectInput("y", "Choose a y var:",
        choices = names(mtcars),
        selectInput("y", "Choose a y var:",
        choices = names(mtcars),
```

selected = "mpa")

h3(textOutput("text")).

plotOutput("plot")

(G) In each panel or column, place...

mainPanel(

))

R components - These are the output objects that you defined in server.R. To place a component:

- Select the *Output function that builds the type of object you want to place in the UI.
- Pass the *Output function a character string that corresponds to the name you assigned the object in server.R, e.g.

*Output functions

dataTableOutput htmlOutput imageOutput plotOutput

tableOutput textOutput uIOutput verbatImTextOutput

5. UI.R A description of your app's User Interface (UI), the web page that displays your app. To write ui.R:

- A Include the minimum necessary code for ui.R, shinyUl(fluidPage())

 *note use naybarPage (instead of fluidPage () you'd like your app to have multiple pages connected by a naybar
- Build a layout for your UI. sidebarLayout provides a default layout when used with sidebarPanel and mainPanel. splitLayout, flowLayout, and inputLayout divide the page into equally spaced regions. fluidRow and column work together to create a grid-based layout, which you can use to layout a page or a panel.

side main panel panel

shinyUI(fluidPage(
 sidebarLayout(
 sidebarPanel(_),
 mainPanel(_))
))

Widgets - The first argument of each widget function is the <name> for the widget. You can access a widget's current value in server.R with input\$<name>

widget	function	common arguments
Action button	actionButton	inputId, label
checkbox	checkboxInput	inputId, label, value
checkbox group	checkboxGroupInput	inputId, label, choices, selected
date selector	dateInput	inputId, label, value, min, max, format
date range selector	dateRangeInput	inputld, label, start, end, min, max, format
file uploader	fileInput	inputId, label, multiple
Numberfield	num@r1cInput	inputId, label, value, min, max, step
Radio buttons	rad1oButtons	inputId, label, choices, selected
select box	selectInput	inputId, label, choices, selected, multiple
slider	sliderInput	inputId, label, min, max, value, step
submit button	subm1tButton	text
text field	textInput	inputId, label, value

HTML elements - Add html elements with shiny functions that parallel common HTML tags.

a	tags\$col	tags\$form	tags\$input	tags\$output	tags\$sub
tags\$abbr	tags\$colgroup	h1	tags\$ins	Ρ.	tags\$summary
tags\$address	tags\$command	h2	tags\$kbd	tags\$param	tags\$sup
tags Sarga	tags\$data	h3	tags\$keygen	pre	tags\$table
tags\$article	tags\$datalist	h4	tags\$køygen tags\$label	tags\$progress	tags\$tbody
tags\$aside	tags\$dd	h6	tags\$legend	tags\$q	tags\$td
tags\$audio	tags\$del	h6	tags\$li	tagsSruby	tagsStextarea
tags\$b	tags\$details	tags\$head	tags\$link	tags\$rp	tags\$tfoot
tags\$base	tags\$dfn	tags\$header	tagsSmark	tags\$rt	tags\$th
tags\$bd1	div	tags\$hgroup	tags\$map	tags\$s	tags\$thead
tags\$bdo	tags\$dl	pr.	tags\$menu	tags\$samp	tags\$time
tags\$blockquote	tags Selt	HTML	tags\$meta	tags\$script	tags\$title
ragasonociduose	am Gagaran	tags\$I	tags\$meter	tags\$section	tags\$tr
tags\$body	tags\$embed	tags\$frame	tags\$nav	tags\$select	tags\$track
br	tagssembed	tagsşirrame	tags\$noscript	tags\$small	tagaştırıcı
tags\$button	tags\$eventsource	img	tagasinuscript	tags\$source	tags\$u
tags\$canvas	tags\$fieldset	IndudeCSS	tags\$object		tags\$ul
tags\$caption	tags\$figcaption	IncludeMarkdo	tags\$ol	span	tags\$var
tags\$cite	tags\$figure	WIT	tags\$optgroup	strong	tags\$video
code	tags\$footer	IncludeScript	tags\$option	tags\$style	tags\$wbr
					_

6. Run your app

runApp - run from local files

 $\textbf{runGitHub} \cdot \text{run from files hosted on } \underline{\textbf{www.GitHub.com}}$

runGist - run from files saved as a gist (gist.github.com)

runURL - run from files saved at any URL

■ Studio

7. Share your app Launch your app as a live web page that users can visit online.

ShinyApps.io

Host your apps on RStudio's server. Free and paid options www.shinyapps.io

Shiny Server

Build your own linux server to host apps. Free and open source. shiny.rstudio.com/deploy

Shiny Server Pro

Build a commercial server with authentication, resource management, and more. shiny.rstudio.com/deploy

Key references

- 1. Chao, A., N. J. Gotelli, **T. C. Hsieh**, E. L. Sander, K. H. Ma, R. K. Colwell, and A. M. Ellison 2014. Rarefaction and extrapolation with Hill numbers: a unified framework for sampling and estimation in biodiversity studies, Ecological Monographs 84:45-67.
- 2. Chao, A., and L. Jost. 2012. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93:2533-2547.
- 3. Colwell, R. K., A. Chao, N. J. Gotelli, S. Y. Lin, C. X. Mao, R. L. Chazdon, and J. T. Longino. 2012. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. Journal of Plant Ecology 5:3-21.
- **4.Hsieh, T. C.**, K. H. Ma, and A. Chao. 2013. iNEXT online: interpolation and extrapolation (Version 1.3.0) [Software]. Available from http://chao.stat.nthu.edu.tw/blog/software-download/.
- **5.Hsieh T. C.,** K. H. Ma, and A. Chao. 2014. iNEXT: An R package for interpolation and extrapolation in measuring species diversity. Unpublished manuscript.

Thanks For Listening