Computing and Data Science

Simulations
Assignment no. 5 (Continuous Distributions)

3rd Year

ID: 20221449583

Name: Ali Mohamed Sayed Ahmed Eng.Mohamed Hatem Dr. Emad Rauf

- 1. Let x be the random variable described by the uniform probability distribution with its lower bound at a = 120, upper bound at b = 140. Find the following:
 - a. PDF
 - b. Average
 - c. SD
 - d. Variance
 - e. p(x = 130)
 - f. p $(125 \le x \le 135)$

Answer:

a. pdf =
$$\{\frac{1}{b-a}$$
 $a \le x \le b$

pdf =
$$\frac{1}{140-120}$$
 = 0.05 120 \leq x \leq 140

b.
$$E(x) = \frac{140+120}{2} = 130$$

c. SD =
$$\frac{(b-a)}{\sqrt{12}} = \frac{140-120}{\sqrt{12}} = 5.77305$$

d. Variance =
$$\frac{(b-a)^2}{12}$$
 = 33.333333

e. p (x = 130) =
$$\frac{1}{b-a}$$
 = 0.05

f. p
$$(125 \le x \le 135) = F(135) - F(125)$$

$$=\frac{135-125}{140-120}=0.5$$

- 2. According to British weather forecasters, the average monthly rainfall in London during the month of June is μ = 2.09 inches. Assume the monthly precipitation is a normally-distributed random variable with a standard deviation of σ = 0.48 inches.
 - a. What is the probability that London will have between 1.5 and 2.5 inches of precipitation next June?
 - b. What is the probability that London will have 1 inch or less of precipitation?
 - c. If London authorities prepare for flood conditions when the monthly precipitation falls in the upper 5% of the normal June amounts, how much rain would have to fall to cause local authorities to begin flood preparations?

Answer:

a. p
$$(1.5 \le x \le 2.5) =$$

$$= p \left(\frac{1.5 - 2.09}{0.48} \le z \le \frac{2.5 - 2.09}{0.48}\right)$$

$$= p \left(-1.229 \le z \le 0.854\right)$$

$$= \varphi \left(0.854\right) - \varphi \left(-1.229\right)$$

$$= \varphi \left(0.854\right) - \left(1 - \varphi \left(1.229\right)\right)$$

$$= 0.693$$
b. p $(x \le 1) = p \left(z \le \frac{1 - 2.09}{0.48}\right) = p \left(z \le -2.2708\right) = 0.0116$
c. P(Z>z) = 0.05 = P $(Z \le z) = 0.95$

$$\frac{x - 2.09}{0.48} = z_{0.95} = \emptyset (z) = 0.95 = 1.64$$

$$x = 1.64 * 0.48 + 2.09 = 2.8772$$

- 3. The number of visits to the Book4Less.com discount travel website is a Poisson- distributed random variable with a mean arrival rate of 10 visits per minute.
 - a. What is the CDF?
 - b. What is the standard deviation of the distribution?

Answer:

a. CDF =
$$\sum_{i=0}^{k=10} \frac{e^{-\Lambda} * \Lambda^i}{i!} = \sum_{i=0}^{k=10} \frac{e^{-10} * 10^i}{i!}$$

- b. standard deviation = $\sqrt{10}$
- 4. Solve same Erlang question with three lambs in the device.

Answer:

$$k = 3$$
 $E = 1/k\theta$ $\theta = 0.0003$

F (2160) = 1-
$$\sum_{i=0}^{k-1} \frac{e^{-k\theta \times k\theta \times i}}{i!} = 1 - \sum_{i=0}^{2} \frac{e^{-1.944} \cdot 1.944^{i}}{i!} = 0.308$$

the required probability is 1- 0.308 = 0.6918