Схема засорений Мартина-Йохаи имеет вид:

$$y_t = u_t + z_t^{\gamma} \xi_t, \ t = 1, \dots, n$$

Здесь $\{u_t\}$ - "полезный сигнал"(временной ряд), $\{z_t^{\gamma}\}$ - н.о.р. сл.в., $z_1^{\gamma^-} \sim Bin(1,\gamma)$ с $0 \le \gamma \le 1$ (γ - уровень засорения);

 $\{\xi_t\}$ - н.о.р. сл.в. - грубые выбросы, ξ_1 - имеет распределение $\mu_{\xi} \in M_{\xi}$; распределение μ_{ξ} неизвестно, а множество M_{ξ} известно;

Последовательность $\{u_t\}, \{z_t^{\gamma}\}, \{\xi_t\}$ независимы между собой.

Пусть y_1,\ldots,y_n - наблюдения, и распределение вектора $Y_n=y_1,\ldots,y_n$ висит от неизвестного параметра β . Пусть $\hat{\beta}_n$ - некоторая оценка β

Основное предположение

При любом $0 \le \gamma \le 1$ существует предел

$$\hat{\beta}_n \xrightarrow{P} \theta_{\gamma}, \ n \to \infty; \theta_0 = \beta$$

Опр. 1. Если существует предел

$$IF(\theta, \mu_{\xi}) := \lim_{y \to 0} \frac{1}{y}$$

Если функционал влияния существует, то

$$\theta_{\gamma} = \theta_0 + IF(\theta_{\gamma}, \mu_{\varepsilon})\gamma + o(\gamma), \ \gamma \to +0$$

To есть $IF(\theta_{\gamma},\mu_{\xi})$ характеризует главный линейный по γ член в разложении по γ асимптотического смещения $\theta_{\gamma} - \theta_{0} = \theta_{\gamma} - \beta$

Опр. 2. Величина $GES(\theta_{\gamma}, M_{\gamma})$

Пример.

$$\begin{cases} u_t = a + \xi_t \\ y_t = u_t + z_t^{\gamma} \xi_t, \ t = 1, \dots, n \end{cases}$$

 $\{\xi_t\}$ - н.о.р. сл.в., $\mathrm{E}\varepsilon_1=0$ (тогда $\mathrm{E}u_t=a$), $\mathrm{E}|\xi_1|<\infty$

Тогда $\overline{y} \xrightarrow{P} E(u_1 + z_1^{\gamma} \xi_1) = a + \gamma E \xi_1 = \theta_{\gamma}^{LS}$ Функция θ_{γ}^{LS} определена при всех γ ,

$$\frac{d\theta_{\gamma}^{LS}}{d\gamma} = E\xi_1 = IF(\theta_{\gamma}^{LS}, \mu_{\xi})$$

. Если M_1 - ласс распределений с конечным первым моментом, то

$$GES(\theta_{\gamma}^{LS}, M_1) = \sup_{\mu_1 \in M_1} |E\xi_1| = \infty$$

Оценка \overline{y} е B - робастна на классе M_1

Пример (Выбороная медиана). Пусть $u_t = a + \varepsilon_t, \ t = 1, \ldots, n, \ \epsilon \partial e \{\varepsilon_t\}$ - н.о.р. сл.в.,

Мы знаем, что если G(x) дифф. в нуле, и g(0) = G'(0) > 0, то для выборочной медианы справедлива асимп. нормальность:

$$n^{1/2}(\hat{m}_n - a) \xrightarrow{d} N(0, \frac{1}{n}g^2(0)), n \to \infty$$

Пусть