Modul 5: forelæsning 1 Ikke-lineære systemer af differentialligninger Matematik og modeller 2018

Thomas Vils Pedersen Institut for Matematiske Fag vils@math.ku.dk

7. juni 2018 — Dias 1/47

KØBENHAVNS UNIVERSITET

Oversigt

- 1 (Ikke-lineære) systemer af differentialligninger
- 2 Ligevægt og stabilitet Funktionalmatricen
- Vekselvirkende populationer

Konkurrerende arter Rovdyr-byttedyr Symbiose

- Makroøkonomisk model
- 6 Generelt om matematisk modellering
- 6 En model for foderoptagelse hos køer

KØBENHAVNS UNIVERSITE

Kort oversigt over kurset

- Lineære differensligninger: $x_{t+1} = ax_t + b_t$ (Modul 2)
- Generelle differensligninger: $x_{t+1} = f(t, x_t)$ (Modul 2)
- Lineære systemer af differensligninger: $\mathbf{x}_{t+1} = \mathbf{A}\mathbf{x}_t + \mathbf{b}_t$ (Mod. 1, 2)
- Generelle systemer af differensligninger: $\mathbf{x}_{t+1} = \mathbf{f}(t, \mathbf{x}_t)$ (Modul 2)
- Lineære differentialligninger: x' = ax + b(t) (Modul 3)
- Generelle differentialligninger: x' = f(t, x) (Modul 3)
- Lineære systemer af differentialligninger: $\mathbf{x}' = \mathbf{A}\mathbf{x} + \mathbf{b}(t)$ (Modul 4)
- Generelle systemer af differentialligninger: $\mathbf{x}' = \mathbf{f}(t, \mathbf{x})$ (Modul 5)

Dias 2/47

KØBENHAVNS UNIVERSITE

Tre modeller som inspiration

Vekselvirkende populationer

To populationer af størrelse M = M(t) og N = N(t):

$$\frac{dM}{dt} = M(r_M + aM + bN)$$

$$\frac{dN}{dt} = N(r_N + cM + dN)$$

De 3 typer vekselvirkning

- b < 0 og c < 0: Konkurrerende arter
- II b < 0 og c > 0: Rovdyr-byttedyr
- III b > 0 og c > 0: Symbiose

Gennemgås i detaljer senere.

Tre modeller som inspiration

Makroøkonomisk model

• k = k(t): Kapitalen til tiden t

• c = c(t): Forbruget til tiden t

$$\frac{dk}{dt} = p(k) - c - (n+g)k$$

$$\frac{dc}{dt} = \frac{p'(k) - \rho - \theta g}{\theta} \cdot c$$

hvor

• p(k) er produktionen som funktion af kapitalen. Denne funktion antages at være konkav, dvs. p''(k) < 0.

• ρ , θ , g og n er økonomiske parametre.

Gennemgås senere.

Dias 5/47

KØBENHAVNS UNIVERSITET

Systemer af differentialligninger

System af 2 differentialligninger

(kaldes også 2 samhørende differentialligninger):

$$x'(t) = f(t, x(t), y(t))$$

$$y'(t) = g(t, x(t), y(t))$$

System af n differentialligninger

(kaldes også *n* samhørende differentialligninger):

$$x_1'(t) = f_1(t, x_1(t), \dots, x_n(t))$$

$$x_2'(t) = f_2(t, x_1(t), \dots, x_n(t))$$

:

$$x'_n(t) = f_n(t, x_1(t), \dots, x_n(t))$$

På vektorform

$$\mathbf{x}' = \mathbf{f}(t, \mathbf{x})$$

KØBENHAVNS UNIVERSITE

Tre modeller som inspiration

Foderoptagelse hos køer (simpel udgave)

V: mængden af sukker; BC: mængden af store partikler cellulose:

$$\frac{dV}{dt} = h_1 b_{KV} + h_4 b_{GV} - (f_V + I_A)V$$

$$\frac{dBC}{dt} = h_4 b_{GC} - \left(f_C g_1 \left(\frac{BC}{V} \right) + I_B \right) BC$$

hvor $g_1(x) = 1 - e^{-\alpha x}$.

En mere avanceret model gennemgås senere.

Dias 6/47

KØBENHAVNS UNIVERSITE

Løsning af systemer af differentialligninger

Definition Løsning

En partikulær løsning \mathbf{x} er en vektorfunktion $\mathbf{x} = \mathbf{x}(t)$ som opfylder

$$\mathbf{x}' = \mathbf{f}(t, \mathbf{x}).$$

Den fuldstændige løsning til $\mathbf{x}' = \mathbf{f}(t, \mathbf{x})$ er alle mulige løsninger til ligningen. (Ofte kan denne ikke *opskrives* eksplicit.)

Eksistens og entydighed Givet et "tidspunkt" t_0 og en (start)vektor $\mathbf{x}_0 = (x_{1,0}, \dots, x_{n,0})$. To spørgsmål:

- Findes der en løsning $\mathbf{x} = \mathbf{x}(t) \mod \mathbf{x}(t_0) = \mathbf{x}_0$?
- Findes der mere end én løsning $\mathbf{x}(t)$ med $\mathbf{x}(t_0) = \mathbf{x}_0$?

Sætning Eksistens og entydighed

Antag at funktionerne f_1, \ldots, f_n har kontinuerte partielle afledede.

For ethvert "tidspunkt" t_0 og hver (start)vektor \mathbf{x}_0 findes der netop én løsning $\mathbf{x} = \mathbf{x}(t)$ til ligningen $\mathbf{x}' = \mathbf{f}(t, \mathbf{x})$, som opfylder $\mathbf{x}(t_0) = \mathbf{x}_0$.

"Alternativer" til løsning

For de fleste *ikke*-lineære systemer af differentialligninger kan man *ikke* opskrive løsningen.

To muligheder

- Undersøge opførslen i det lange løb: Ligevægt og stabilitet. (Kun for autonome systemer.)
 Gennemgås i dag.
- Numerisk løsning.
 Gennemgås næste gang.

Dias 9/47

KØBENHAVNS UNIVERSITET

Ligevægt for systemer af 2 differentialligninger

Autonomt system af 2 differentialligninger:

$$x' = f(x, y)$$

$$y' = g(x,y)$$

En vektor $\binom{x^*}{y^*}$ er en ligevægt, hvis

$$f(x^*, y^*) = 0$$
 og $g(x^*, y^*) = 0$.

KØBENHAVNS UNIVERSITET

Ligevægt for systemer af differentialligninger

Definition Autonomt system af differentialligninger

Et system af differentialligninger kaldes autonomt, hvis det er på formen

$$\mathbf{x}' = \mathbf{f}(\mathbf{x})$$

dvs. hvis højresiden ikke afhænger direkte af t.

Definition Ligevægt

En vektor \mathbf{x}^* kaldes en *ligevægt* for et autonomt system af differentialligninger $\mathbf{x}' = \mathbf{f}(\mathbf{x})$, hvis

$$f(x^*)=0.$$

Bemærk Hvis $\mathbf{x}(t) = \mathbf{x}^*$ er konstant, så er $\mathbf{x}' = \mathbf{0}$. En ligevægt for et autonomt system er altså en *konstant* løsning til systemet.

Dias 10/47

KØBENHAVNS UNIVERSITE

Stabilitet af ligevægte

Definition Stabil ligevægt

En ligevægt \mathbf{x}^* for et autonomt system $\mathbf{x}' = \mathbf{f}(\mathbf{x})$ kaldes *stabil*, hvis der gælder:

For hvert $t_0 \in \mathbb{R}$ og for alle vektorer \mathbf{x}_0 i nærheden af \mathbf{x}^* vil løsningen $\mathbf{x} = \mathbf{x}(t)$ med $\mathbf{x}(t_0) = \mathbf{x}_0$ opfylde

$$\mathbf{x}(t) \to \mathbf{x}^*$$
 for $t \to \infty$.

(Løst sagt: Hvis løsningen $\mathbf{x}(t)$ nærmer sig ligevægten \mathbf{x}^* i det lange løb.)

For lineære systemer (se Modul 4):

Sætning Stabilitet af ligevægt for x' = Ax + b

Antag **A** har *n* forskellige (komplekse) egenværdier $\lambda_1, \ldots, \lambda_n$.

Ligevægten $\mathbf{x}^* = -\mathbf{A}^{-1}\mathbf{b}$ for systemet $\mathbf{x}' = \mathbf{A}\mathbf{x} + \mathbf{b}$ er stabil, når alle \mathbf{A} 's egenværdier har *negativ realdel* (dvs. Re $\lambda < 0$ for alle egenværdier λ).

Stabilitet af ligevægt for systemet x' = f(x)

Spørgsmål Hvordan afgør vi stabilitet af en ligevægt **x***?

Svar Brug funktionalmatricen.

Definition Funktionalmatrix

For det autonome system $\mathbf{x}' = \mathbf{f}(\mathbf{x}) \mod \mathbf{f} = (f_1, \dots, f_n)$ er funktionalmatricen

$$D\mathbf{f}(\mathbf{x}) = egin{pmatrix} f'_{1,\mathbf{x_1}}(\mathbf{x}) & \cdots & f'_{1,\mathbf{x_n}}(\mathbf{x}) \ dots & \ddots & dots \ f'_{n,\mathbf{x_1}}(\mathbf{x}) & \cdots & f'_{n,\mathbf{x_n}}(\mathbf{x}) \end{pmatrix}$$

${\sf Sætning}$ Stabilitet af ligevægt for ${\sf x}'={\sf f}({\sf x})$

- Hvis alle egenværdier for D(f)(x*) har negativ realdel, så er ligevægten x* stabil.
- Hvis blot én af egenværdierne for D(f)(x*) har positiv realdel, så er ligevægten x* ikke stabil.

Dias 13/47

KØBENHAVNS UNIVERSITET

Eksempel 21: Retningsfelt

Bemærk opførslen i nærheden af den stabile ligevægt (2,1). [Ligevægtene (0,0), $(\frac{5}{2},0)$ og $(0,\frac{5}{3})$ er ustabile]

KØBENHAVNS UNIVERSITE

Stabilitet af ligevægt for system af 2 differentialligninger

Autonomt system

$$x' = f(x, y)$$
$$y' = g(x, y)$$

Funktionalmatricen

$$D\binom{f}{g}(x,y) = \begin{pmatrix} f'_x(x,y) & f'_y(x,y) \\ g'_x(x,y) & g'_y(x,y) \end{pmatrix}$$

Sætning Stabilitet af ligevægt (2 differentialligninger)

- Hvis begge egenværdier for $D\binom{f}{g}(x^*, y^*)$ har negativ realdel, så er ligevægten (x^*, y^*) stabil.
- Hvis blot én af egenværdierne for $D\binom{f}{g}(x^*, y^*)$ har positiv realdel, så er ligevægten (x^*, y^*) ikke stabil.

Dias 14/47

KØBENHAVNS UNIVERSITE

Opgave 5.6: Retningsfelt nær (0,0)

$$x' = -x - xy$$
$$y' = -y + xy$$

Udregning af $\binom{x'}{y'}$ i f.eks. (x, y) = (0.4, 0.2):

$$x' = -0.4 - 0.4 \cdot 0.2 = -0.48$$
 og $y' = -0.2 + 0.4 \cdot 0.2 = -0.12$.

Vektorerne $\binom{x'}{y'}$ afsat i nærheden af ligevægten (0,0):

Opgave 5.6: Retningsfelt nær (1, -1)

$$x' = -x - xy$$
$$y' = -y + xy$$

Vektorerne $\binom{x'}{y'}$ afsat i nærheden af ligevægten (1,-1):

Dias 17/47

KØBENHAVNS UNIVERSITET

Hvorfor gælder sætningen om stabilitet?

Hvordan ser det ud for n = 1?

- Systemet er én ligning: x' = f(x). Ligevægt x^* dvs. $f(x^*) = 0$.
- Idé: Brug lineær approksimation $f(x) \simeq f(x^*) + f'(x^*)(x x^*) = a(x x^*).$
- Betragt andet system $x' = a(x x^*)$.
- Bestem fuldstændig løsning $x(t) = x^* + ce^{at}$.
- Hvis a < 0 gælder $x(t) = x^* + ce^{at} \rightarrow x^*$ for $t \rightarrow \infty$.

Hvordan ser det ud for n > 1?

- Systemet er $\mathbf{x}' = \mathbf{f}(\mathbf{x})$. Ligevægt \mathbf{x}^* dvs. $\mathbf{f}(\mathbf{x}^*) = \mathbf{0}$.
- Idé: Brug lineær approksimation $f(x) \simeq f(x^*) + D(f)(x^*)(x x^*) = A(x x^*).$
- Betragt andet system $\mathbf{x}' = \mathbf{A}(\mathbf{x} \mathbf{x}^*)$.
- Bestem fuldstændig løsning $\mathbf{x}(t) = \mathbf{x}^* + c_1 e^{\lambda_1 t} \mathbf{q}_1 + \ldots + c_n e^{\lambda_n t} \mathbf{q}_n$ (vha. egenværdier og -vektorer).
- Hvis alle egenværdier har negativ realdel, så gælder $\mathbf{x}(t) \to \mathbf{x}^*$ for $t \to \infty$.

KØBENHAVNS UNIVERSITE

Opgave 5.6: Samlet retningsfelt

Øv 12 0g 14: Ligevægt og stabilitet

Dias 18/47

KØBENHAVNS UNIVERSITE

Vekselvirkende populationer

Problemstilling Undersøge vekselvirkningen mellem 2 populationer af størrelse M(t) og N(t).

Antagelser

• Autonomi: Variablen t indgår ikke direkte, dvs.

$$\frac{dM}{dt} = f(M, N)$$
 og $\frac{dN}{dt} = g(M, N)$

• Vækstraterne er lineære i M og N, dvs.

$$\frac{1}{M}\frac{dM}{dt} = r_M + aM + bN$$

$$\frac{1}{N}\frac{dN}{dt} = r_N + cM + dN$$

hvor $a \le 0$ og $d \le 0$ (selvbegrænsning).

Bemærkning N = 0 giver logistisk vækst af M (hvis $r_M > 0$).

3 typer vekselvirkning mellem populationerne

$$\frac{dM}{dt} = M(r_M + aM + bN)$$

$$\frac{dN}{dt} = N(r_N + cM + dN)$$

Selvbegrænsning $a \le 0$ og $d \le 0$.

De 3 typer vekselvirkning

- b < 0 og c < 0: Konkurrerende arter
- II b < 0 og c > 0: Rovdyr-byttedyr
- III b > 0 og c > 0: Symbiose

Dias 21/47

Konkurrerende arter: Øvelse 18(1)

$$M' = M(1 - \frac{1}{6}M - \frac{1}{12}N)$$

 $N' = N(1 - \frac{1}{12}M - \frac{1}{6}N)$

dvs.

$$r_{M} = r_{N} = 1$$

$$a=d=-\tfrac{1}{6}$$

$$r_M = r_N = 1,$$
 $a = d = -\frac{1}{6}$ og $b = c = -\frac{1}{12}$.

- $L_3 = (0,6)$ er ustabil
- $L_4 = (4,4)$ er stabil

Konkurrerende arter (b < 0 og c < 0)

$$\frac{dM}{dt} = M(r_M + aM + bN)$$

$$\frac{dN}{dt} = N(r_N + cM + dN)$$

med

$$r_M > 0$$
, $r_N > 0$, $a < 0$, $d < 0$, $b < 0$, $c < 0$.

4 ligevægte

$$L_1 = (0,0)$$
 (altid ustabil)

$$L_2 = \left(-\frac{r_M}{a}, 0\right)$$

$$L_3 = \left(0, -\frac{r_N}{d}\right)$$

 $L_4 = l$ øsningen (hvis den findes) til ligningerne

$$r_M + aM + bN = 0$$
 og $r_N + cM + dN = 0$

Dias 22/47

Konkurrerende arter: Øvelse 18(2)

$$M' = M(1 - \frac{1}{12}M - \frac{1}{12}N)$$

$$N' = N(1 - \frac{1}{6}M - \frac{1}{6}N)$$

dvs.

$$r_{M}=r_{N}=1$$

$$c = d = -$$

$$r_M = r_N = 1$$
, $c = d = -\frac{1}{6}$ og $a = b = -\frac{1}{12}$.

- L₄ findes ikke
- $L_2 = (12,0)$ er stabil

Konkurrerende arter: Øvelse 18(3)

$$M' = M(1 - \frac{1}{12}M - \frac{1}{6}N)$$

 $N' = N(1 - \frac{1}{6}M - \frac{1}{12}N)$

dvs.

$$r_{\mathcal{M}}=r_{\mathcal{N}}=1.$$

$$r_M = r_N = 1,$$
 $b = c = -\frac{1}{6}$ og $a = d = -\frac{1}{12}$

•
$$L_4 = (4,4)$$
 er ustabil

•
$$L_2 = (12, 0)$$
 er stabil

•
$$L_3 = (0, 12)$$
 er stabil

Dias 25/47

Homo sapiens udkonkurrerede neandertalerne

- Kolodny, O. and Feldman, M.W. A parsimonious neutral model suggests Neanderthal replacement was determined by migration and random species drift. Nature Communications 8:1040 (2017). (Ligger på Absalon.)
- Se også artikel på videnskab.dk:

"Matematik afslører endelig, hvorfor neandertalerne uddøde"

https://videnskab.dk/naturvidenskab/matematikere-afsloerer-endelig-hvorfor-neandertalerne-uddoede

"Neandertalerne forsvandt ikke, fordi moderne mennesker var de klogeste eller bedste. Vi var bare flere."

Konkurrerende arter: Oversigt over stabile ligevægte

4 muligheder afhængigt af parameterværdierne:

- Løsningen nærmer sig den stabile ligevægt L₄ (uafhængigt af startpopulationerne). **Fortolkning** Beskedent nicheoverlap (eks. Darwins finker).
- Løsningen nærmer sig den stabile ligevægt L_2 (uafhængigt af startpopulationerne). **Fortolkning** *M* udkonkurrerer altid *N* (eks. rurer ved en kyst).
- Løsningen nærmer sig den stabile ligevægt L₃ (uafhængigt af startpopulationerne). **Fortolkning** *N* udkonkurrerer altid *M*.
- Afhængigt af startpopulationerne nærmer løsningen sig en af de to stabile ligevægte L_2 og L_3 . Fortolkning Stort nicheoverlap; evt. gensidig aggression. Eksempel: Homo sapiens udkonkurrerede neandertalerne (se næste

Dias 26/47

slide)

Rovdyr-byttedyr (b < 0 og c > 0)

B byttedyr

R rovdyr

Simplere model Ser bort fra selvbegrænsningen, dvs. a = 0 og d = 0:

$$\frac{dB}{dt} = B(r_B + bR)$$

$$\frac{dB}{dt} = B(r_B + bR) \qquad \qquad \frac{dB}{dt} = B(0.1 - 0.001 R)$$

$$\frac{dR}{dt} = R(r_R + cB)$$

$$\frac{dR}{dt} = R(r_R + cB)$$
 eks.
$$\frac{dR}{dt} = R(-0.2 + 0.0002 B)$$

med $r_B > 0$, $r_R < 0$, b < 0, c > 0.

2 ligevægte

• $L_1 = (0,0)$ Altid ustabil

•
$$L_2 = \left(-\frac{r_R}{c}, -\frac{r_B}{b}\right)$$

Egenværdier for funktionalmatricen i L_2 : $\lambda = \pm i \sqrt{-r_B r_R}$. Da realdelen er = 0, kan vi ikke afgøre om ligevægten er stabil.

Rovdyr-byttedyr: Taleksempel

$$r_B = 0.1, r_R = -0.2, \qquad b = -0.001, c = 0.0002.$$

Miniprojekt 5 Mere realistisk rovdyr-byttedyr model.

Dias 29/47

KØBENHAVNS UNIVERSITET

Makroøkonomisk model (Ramsey-modellen)

- k = k(t): Kapitalen til tiden t.
- c = c(t): Forbruget til tiden t.

Økonomiske antagelser

- Forbrugerne optimerer deres "livsnytte".
- Antagelser vedrørende investering (påvirker kapitalen).

Disse antagelser leder til systemet af differentialligninger:

$$\frac{dk}{dt} = p(k) - c - (n+g)k \qquad = f(k,c)$$

$$\frac{dc}{dt} = \frac{p'(k) - \rho - \theta g}{\theta} \cdot c \qquad = g(k, c)$$

hvor

- p(k) er produktionen som funktion af kapitalen. Denne funktion antages at være konkav, dvs. p''(k) < 0.
- ρ , θ , g og n er økonomiske parametre.

KØBENHAVNS UNIVERSITE

Symbiose (b > 0 og c > 0) – kort

$$M' = M(r_M + aM + bN)$$

 $N' = N(r_N + cM + dN)$

med $r_M > 0, r_N > 0, a \le 0, d \le 0, b > 0, c > 0.$

Taleksempel 1

$$M' = M(1 - 0.6 M + 0.2 N)$$

 $N' = N(1 + 0.1 M - 1.2 N)$

4 ligevægte: (0,0), (1.67,0), (0,0.83), (2,1). Kun (2,1) er stabil.

Taleksempel 2

$$M' = M(1 - M + 2N)$$

 $N' = N(1 + 3M - 4N)$

4 ligevægte: (0,0), (1,0), (0,0.25), (-3,-2). Ingen stabile: populationerne går begge mod uendelig.

Dias 30/47

KØBENHAVNS UNIVERSITE

Makroøkonomisk model: Ligevægt

Der er netop en ligevægt (k^*, c^*) :

- Først bestemmes k^* ud fra $p'(k^*) = \rho + \theta g$. (Kun en løsning da p'(k) er aftagende.)
- Dernæst fås $c^* = p(k^*) (n+g)k^*$.

Fortegnene af $\frac{dk}{dt}$ og $\frac{dc}{dt}$:

- $\frac{dk}{dt} > 0$ for $c < c^*$
 - $\frac{dk}{dt}$ < 0 for $c > c^*$
- $\frac{dc}{dt} > 0$ for $k < k^*$

$$\frac{dc}{dt}$$
 < 0 for $k > k^*$

Makroøkonomisk model: Dynamik omkring ligevægt

Grafisk illustration af (k^*, c^*) samt fortegnene af $\frac{dk}{dt}$ og $\frac{dc}{dt}$:

Ud fra øverste venstre og nederste højre hjørne ser det ud til, at ligevægten er ustabil. Vil undersøge det vha. funktionalmatricen.

Dias 33/47

KØBENHAVNS UNIVERSITET

Makroøkonomisk model: "Saddel-stien"

Økonomisk fortolkning Man nærmer sig kun ligevægten, hvis man kommer fra "den rigtige retning" (langs "the saddle path"):

For en given startværdi k_0 af kapitalen, justerer forbrugerne startforbruget c_0 så (k_0, c_0) ligger på saddel-stien.

Tæt på (k^*, c^*) er "den rigtige retning" bestemt ved egenvektoren \mathbf{q}_2 til den negative egenværdi λ_2 .

KØBENHAVNS UNIVERSITET

Makroøkonomisk model: Stabilitetsundersøgelse

Funktionalmatricen

$$D\binom{f}{g}(k,c) = \begin{pmatrix} p'(k) - (n+g) & -1\\ \frac{p''(k)}{\theta} \cdot c & \frac{p'(k) - \rho - \theta g}{\theta} \end{pmatrix}$$

Da $p'(k^*) = \rho + \theta g$ fås

$$Dinom{f}{g}(k^*,c^*) = egin{pmatrix}
ho + heta g - (n+g) & -1 \ rac{
ho^{\prime\prime}(k^*)}{ heta} \cdot c^* & 0 \end{pmatrix}$$

Økonomisk antagelse $\rho + \theta g - (n+g) = \rho - n - (1-\theta)g > 0$ (svarer til at "livsnytten er endelig").

Fortegn i funktional matricen
$$D\binom{f}{g}(k^*,c^*) = \begin{pmatrix} + & - \\ - & 0 \end{pmatrix}$$

Egenværdier for funktionalmatricen Dette fører til

$$\lambda_1 > 0$$
 og $\lambda_2 < 0$

så fra et matematisk synspunkt er ligevægten ustabil.

Dias 34/47

KØBENHAVNS UNIVERSITET

Matematisk modellering

(Benytte matematik til at beskrive og analysere problemer fra virkeligheden)

Problemformulering

- Afgrænsning af virkeligheden.
- Hvad ønsker man at opnå viden om?

Matematisk beskrivelse og analyse af modellen

- Oversættelse af problemformuleringen til "matematiksprog". Som regel ved at indføre variable og parametre.
- Matematisk analyse af problemet, dvs. løsning vha. matematiske metoder.

Fortolkning af resultatet

- Oversættelse af den matematiske løsning til "virkelighedssprog".
 Fortolkning.
- Beskriver modellen på rimelig vis virkeligheden? Er løsningen fornuftig i forhold til det givne problem?

Dias 35/47

Generelt om matematiske modeller

Hvad er matematisk modeller og hvordan opstilles de?

- En matematisk model er en beskrivelse af dele af virkeligheden vha.

 matematik
- Der indgår normalt variable, parametre, funktioner mm.
- Modellen skal uddrage de væsentligste træk ved situationen.
- Så simpel, at den kan analyseres men detaljeret nok til at afspejle de vigtigste egenskaber.
- Teoretiske og empiriske modeller

Hvorfor og hvordan benyttes matematisk modeller?

- Virkelige problemstillinger er ofte for komplicerede at analysere.
- Modeller kan afsløre mangler i vores viden.
- Estimere parametre dvs. kalibrere modellen.
- Validere modellen: beskrives den virkelige problemstilling?
- Drage konklusioner ud fra modellen.

Dias 37/47

KØBENHAVNS UNIVERSITET

Foderoptagelse: Foder i vommen

Unedbrudt organisk foder i vommen Opdeles i 8 puljer (der alle afhænger af tiden t):

- AU: Ufordøjeligt fiber; små partikler
- BU: Ufordøjeligt fiber; store partikler
- AN: Protein; små partikler
- BN: Protein; store partikler
- AC: Cellulose; små partikler
- BC: Cellulose; store partikler
- S: Stivelse
- V: Sukker

Den samlede mængde foder i vommen:

$$R = AU + BU + AN + BN + AC + BC + S + V$$

Foderoptagelse hos køer

Baseret på rapporten

E. S. Kristensen, Udvikling af en matematisk model til bestemmelse af foderoptagelsen og fordøjelsen hos malkekøer på græs (1984).

Formål

Kende den kvantitative sammenhæng mellem fodertilbud, -optagelse og produktion med henblik på at bestemme en økonomisk optimal foderplan.

Herunder at kunne forudsige græsoptagelsen ud fra bl.a. data om kraftfoder og græstilbud.

Dias 38/47

KØBENHAVNS UNIVERSITE

Foderoptagelse: Tilførsel af foder

Tilførsel af foder

- Fra kraftfoder: små partikler samt stivelse og sukker.
- Fra græs: store partikler samt stivelse og sukker.

Ædehastigheder

- h₁(t): Hastighed hvormed kraftfoder tilføres og spises.
 (Maks. 5 kg pr. time.)
- *h*₄(*R*): Hastighed hvormed græs spises. (Maksimalt 2 kg pr. time.)

[Ædehastigheden h_4 afhænger af den totale fodermængde R i vommen. I rapporten er der en kompliceret model for $h_4(R)$; men den gennemgås ikke her.]

KØBENHAVNS UNIVERSITET

Foderoptagelse: Sammensætningen af foder

Sammensætningen af kraftfoder Beskrives med parametrene

$$b_{KU}$$
, b_{KN} , b_{KC} , b_{KS} , b_{KV}

(så 1 kg kraftfoder indeholder b_{KU} kg ufordøjeligt fiber osv.)

Talværdier:

Byg:
$$b_{KU} = 0.02$$
, $b_{KN} = 0.09$, $b_{KC} = 0.17$, $b_{KS} = 0.63$, $b_{KV} = 0.02$
C-bl.: $b_{KU} = 0.13$, $b_{KN} = 0.25$, $b_{KC} = 0.37$, $b_{KS} = 0.05$, $b_{KV} = 0.02$

Sammensætningen af græsset Beskrives med parametrene

$$b_{GU}$$
, b_{GN} , b_{GC} , b_{GS} , b_{GV}

(så 1 kg græs indeholder b_{GU} kg ufordøjeligt fiber osv.)

Talværdier:

Ungt græs:
$$b_{GU} = 0.08$$
, $b_{GN} = 0.13$, $b_{GC} = 0.32$, $b_{GS} = 0.02$, $b_{GV} = 0.30$
Ældre græs: $b_{GU} = 0.08$, $b_{GN} = 0.13$, $b_{GC} = 0.52$, $b_{GS} = 0.02$, $b_{GV} = 0.10$

Dias 41/47

KØBENHAVNS UNIVERSITET

Foderoptagelse: Nedbrydning

Nedbrydning

• Nedbrydningshastighederne er proportionale med forgæringshastighederne f_N , f_C , f_S , f_V for de enkelte typer (afhænger ikke af partikelstørrelsen). Talværdier:

$$f_N = 0.1$$
, $f_C = 0.07$, $f_S = 0.15$, $f_V = 0.25$ $(f_U = 0)$

• Nedbrydningshastighederne for protein og cellulose er også proportionale med størrelsen $g_1(X)$, som er et udtryk for forgæringsforholdene i vommen. Her er

$$X = \frac{BN + BC + BU}{S + V}$$

forholdet mellem [store partikler] og [stivelse+sukker], og $g_1(X)=1-e^{-\alpha X}$ (med talværdi $\alpha=0.5$)

- Meget stivelse og sukker: $X \simeq 0 \ \Rightarrow \ g_1(X) \simeq 0$ lille nedbrydning
- Mange store partikler: $X \simeq \infty \Rightarrow g_1(X) \simeq 1$ stor nedbrydning

Foderoptagelse: Udskillelse

Foderet forsvinder fra vommen ved udskillelse og nedbrydning:

Udskillelse Udskillelseshastighederne afhænger kun af om partiklerne er små eller store (stivelse og sukker er også små partikler)

- *I_A*: Udskillelseshastighed for små partikler
- IB: Udskillelseshastighed for store partikler

Talværdier:

$$I_A = 0.05$$
 $I_B = 0.025$ pr. time

Dias 42/47

KØBENHAVNS UNIVERSITE

Foderoptagelse: Kompartmentdiagram "Knude"-diagram) Kraftfoder Græs $h_1(t)$ $h_4(R)$ $h_1(t)b_{KV}$ AC BU BNBC I_AV I_BBU I_BBN I_BBC Udsk. 0 $f_Ng_1(X)AN$ $f_Cg_1(X)AC$ f_SS $f_V V$ Nedbr. $\int f_N g_1(X)BN \quad f_C g_1(X)BC$

KØBENHAVNS UNIVERSITET

Foderoptagelse: Differentialligningsmodel

$$AU' = h_1(t)b_{KU} - I_AAU$$

$$AN' = h_1(t)b_{KN} - (f_Ng_1(X) + I_A)AN$$

$$AC' = h_1(t)b_{KC} - (f_Cg_1(X) + I_A)AC$$

$$S' = h_1(t)b_{KS} + h_4(R)b_{GS} - (f_S + I_A)S$$

$$V' = h_1(t)b_{KV} + h_4(R)b_{GV} - (f_V + I_A)V$$

$$BU' = h_4(R)b_{GU} - I_BBU$$

$$BN' = h_4(R)b_{GN} - (f_Ng_1(X) + I_B)BN$$

$$BC' = h_4(R)b_{GC} - (f_Cg_1(X) + I_B)BC$$

Modellen er ikke lineær pga. leddene med

$$g_1(X) = g_1\left(\frac{BN + BC + BU}{S + V}\right) = 1 - \exp\left(-\alpha \frac{BN + BC + BU}{S + V}\right)$$

Dias 45/47

KØBENHAVNS UNIVERSITET

Foderoptagelse: Endnu simplere autonom model

- Antager fortsat at $h_1 = h_1(t)$ og $h_4 = h_4(R)$ er konstante.
- Antager endvidere, at vommen kun indeholder sukker og store cellulosepartikler.

Dvs. alle andre variable end V og BC er 0.

• Fører til modellen

$$V' = h_1 b_{KV} + h_4 b_{GV} - (f_V + I_A)V$$

 $BC' = h_4 b_{GC} - (f_C g_1 (\frac{BC}{V}) + I_B) BC$

• Indgår i Miniprojekt 5.

Dias 47/47

KØBENHAVNS UNIVERSITET

Foderoptagelse: Simplere autonom model

- Antager at $h_1 = h_1(t)$ og $h_4 = h_4(R)$ er konstante.
- Modellen bliver dermed autonom.
- For givne parameterværdier (inkl. h₁ og h₄) kan ligevægten bestemmes numerisk.
- Funktionalmatricen (8 × 8) opstilles; mange 0'er.
- Ligevægten er stabil for alle værdier af parameterne.

Dias 46/47