Модификации метода анализа сингулярного спектра для анализа временных рядов: Circulant SSA

Погребников Николай Вадимович, гр. 21.Б04-мм

Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

3 курс (бак.) «Производственная практика (научно-исследовательская работа)» (Семестр б)

Санкт-Петербург, 2024

Модификации метода **SSA**

Модификации метода анализа синтулярного спектра для анализа временных рядов:
Circulant SSA

Потребняюв Няколай Вадимович, гр. 21.604-мм

Сант-Петербургскай государственный университет

Призоднам изитемител и информати

3 курс (бак.) «Производственная практию (научно-исследовательская работа)» (Семестр б)

Са вкт-Петербург, 2024

Научный руководитель д. ф.-м. н., доц. Голяндина Нина Эдуардовна, кафедра статистического моделирования

Введение

Перед началом исследования были поставлены следующие цели:

- **1** Ознакомиться с алгоритмом **CiSSA**;
- **2** Реализовать алгоритм **CiSSA** на языке R;
- **③** Сравнить алгоритмы **SSA**, разложение Фурье и **CiSSA**.

2/25Погребников Николай Вадимович, гр. 21.Б04-мм

Модификации метода SSA

Модификации метода **SSA**

<u></u>Введение

Перед началом исследования были поставлены следующие целя:

О панкомиться с алгорятьмом CSSA;
Реализовать алгориты CSSA на языне R;
Сравнить алгориты CSSA, разложене Фурке и CSSA.

Сингулярный спектральный анализ (**SSA** [3]) — метод, целью которого является разложение оригинального ряда на сумму небольшого числа интерпретируемых компонент, таких как медленно изменяющаяся тенденция (тренд), колебательные компоненты (сезонность) и "структурный" шум. В данном исследовании рассматривается математическая составляющая вариации алгоритма **SSA** — circulant singular spectrum analysis (**CiSSA**), предложенная в статье [1], а также сравнение базового метода и циркулярного, применение их на языке R.

Метод SSA. Алгоритм: разложение

взятые в неубывающем порядке.

Для временного ряда ${\sf X}=(x_1,\dots,x_N)$ выбирается длина окна $L,\,1< L< N$ и определяется K=N-L+1. Строится L-траекторная матрица ${\sf X}$, состоящая из столбцов вида ${\sf X}_i=(x_{i-1},\dots,x_{i+L-2})^{\rm T},\,1\leq i\leq K$. Пусть ${\sf S}={\sf X}{\sf X}^{\rm T},\,\lambda_1,\dots,\lambda_L$ — собственные числа матрицы ${\sf S}$,

Определение 1

Сингулярным разложением называется представление матрицы в виде:

$$\mathbf{X} = \mathbf{X}_1 + \dots + \mathbf{X}_d = \sum_{i=1}^d \sqrt{\lambda_i} U_i V_i^{\mathrm{T}},$$
 где (1)

 U_1, \dots, U_L — ортонормированная система собственных векторов матрицы \mathbf{S} , $d = \max\{i : \lambda_i > 0\}$ и $V_i = \mathbf{X}^T U_i / \sqrt{\lambda_i}$.

3/25Погребников Николай Вадимович, гр. 21.Б04-мм

Модификации метода SSA

Модификации метода **SSA**

Полезным свойством является то, что матрица ${\bf X}$ имеет одинаковые элементы на антидиагоналях. Таким образом, L-траекторная матрица является ганкелевой.

Набор $(\sqrt{\lambda_i}, U_i, V_i^{\mathrm{T}})$ называется i-й собственной тройкой разложения \mathbf{X} .

Метод SSA. Алгоритм: восстановление

На основе разложения (1) производится процедура группировки, которая делит все множество индексов $\{1,\ldots,d\}$ на m непересекающихся подмножеств I_1,\ldots,I_d . Пусть $I=\{i_1,\ldots,i_p\}$, тогда $\mathbf{X}_I=\mathbf{X_{i_1}}+\cdots+\mathbf{X_{i_p}}$. Такие матрицы вычисляются для каждого $I=I_1,\ldots,I_m$.

В результате получаются матрицы $\mathbf{X_{I_1}},\dots,\mathbf{X_{I_m}}$, для каждой из которых проводится операция диагонального усреднения, составляющая ряды длины $N\colon\mathsf{X}_1,\dots,\mathsf{X}_m$. При этом, $\mathsf{X}_1+\dots+\mathsf{X}_m=\mathsf{X}$.

4/25Погребников Николай Вадимович, гр. 21.Б04-мм

Модификации метода SSA

Модификации метода **SSA**

Метод SSA. Алгоритм: восстановление

На основе разлюжения (1) вроизводится процедура группировки, которая делят все множество индексо в $\{1,\dots,d$ на m не перес ем ощихся подмиожест I_1,\dots,I_d . Пуст $I=\{i_1,\dots,i_d\}$. Тотах $X_I=X_1+\dots+X_{k_d}$. Та кие матрицы вымисляются для актаждог $I=I_1,\dots,I_m$.

результате получаются матрицы $\mathbf{X}_{11},\dots,\mathbf{X}_{1m}$, для каждо которых проводится операция диагонального усреднения, ставляющая ряды длины $N:\mathbf{X}_1,\dots,\mathbf{X}_m$. ру этом, $\mathbf{X}_1+\dots+\mathbf{X}_m=\mathbf{X}_n$

Диагональное усреднение для каждой антидиагонали усредняет значения элементов матрицы.

Применяя данную операцию к матрицам $\mathbf{X_{I_1}},\dots,\mathbf{X_{I_m}}$, получаются m новых рядов: $\mathsf{X}_1,\dots,\mathsf{X}_m$. При этом, $\mathsf{X}_1+\dots+\mathsf{X}_m=\mathsf{X}$.

Метод SSA. Свойства: точная разделимость

Пусть временной ряд $X = X^{(1)} + X^{(2)}$ и задачей является нахождение этих слагаемых.

Будем говорить, что ряд X точно разделим на $X^{(1)}$ и $X^{(2)}$, если существует такое сингулярное разложение траекторной матрицы ${\bf X}$ ряда X, что его можно разбить на две части, являющиеся сингулярными разложениями траекторных матриц рядов $X^{(1)}, X^{(2)}$ [3].

	const	cos	exp	exp cos	ak+b
const	-	+	_	-	-
cos	+	+	_	-	-
exp	-	-	-	+	-
exp cos	-	-	+	+	-
ak+b	_	_	_	_	=

Таблица 1: Точная разделимость

5/25Погребников Николай Вадимович, гр. 21.Б04-мм

Модификации метода SSA

Модификации метода **SSA**

└─Метод SSA. Свойства: точная разделимость

Условия точной разделимости выводятся из понятий слабо L-разделимых рядов и сильно L-разделимых рядов [3]. Стоит отметить, что точная разделимость для \cos достигается, если $Lw \in \mathbb{N}, \ Kw \in \mathbb{N},$ где w — частота.

Однако, по таблице 1 видно, что условия точной разделимости достаточно жесткие и вряд ли выполнимы в реальных задачах. Тогда появляется такое понятие, как асимптотическая разделимость.

Метод SSA. Свойства: асимптотическая разделимость

$$\rho_{i,j}^{(M)} = \frac{\left(\mathsf{X}_{i,i+M-1}^{(1)}, \mathsf{X}_{j,j+M-1}^{(2)}\right)}{\left|\left|\mathsf{X}_{i,i+M-1}^{(1)}\right|\right|\left|\left|\mathsf{X}_{j,j+M-1}^{(2)}\right|\right|}.$$

Определение 2

Pяды $\mathsf{X}^{(1)},\mathsf{X}^{(2)}$ называются arepsilon-разделимыми при длине окна L, если

$$\rho^{(L,K)} \stackrel{\text{def}}{=} \max \left(\max_{1 \le i,j \le K} |\rho_{i,j}^{(L)}|, \max_{1 \le i,j \le L} |\rho_{i,j}^{(K)}| \right) < \varepsilon \text{ [3]}.$$

Определение 3

Если $ho^{(L(N),K(N))} o 0$ при некоторой последовательности L=L(N), $N o \infty$, то ряды $\mathsf{X}^{(1)},\mathsf{X}^{(2)}$ называются асимтпотически L(N)-разделимыми [3].

6/25Погребников Николай Вадимович, гр. 21.Б04-мм

Модификации метода SSA

Модификации метода **SSA**

Для любого ряда X длины N определим $\mathsf{X}_{i,j}=(x_{i-1},\cdots,x_{j-1}),\ 1\leq i\leq j< N.$ Пусть $\mathsf{X}^{(1)}=(x_0^{(1)},\dots,x_{N-1}^{(1)}), \mathsf{X}^{(2)}=(x_0^{(2)},\dots,x_{N-1}^{(2)}).$ Тогда определим коэффициент корреляции.

Метод SSA. Свойства: асимптотическая разделимость

Таблица 2: Асимптотическая разделимость

	const	cos	exp	exp cos	ak+b
const	-	+	+	+	-
cos	+	+	+	+	+
exp	+	+	+	+	+
exp cos	+	+	+	+	+
ak+b	+	+	+	+	-

Замечание 1

Для **SSA** существуют алгоритмы улучшения разделимости [2]. Они позволяют более точно отделять временные ряды друг от друга. В данной работе будут использоваться методы EOSSA и FOSSA.

7/25Погребников Николай Вадимович, гр. 21.Б04-мм

Модификации метода SSA

Модификации метода **SSA**

Как можно заметить по таблице 2, для гораздо большего класса функций асимптотическая разделимость имеет место [3].

Метод CiSSA. Алгоритм: разложение

Как и в **SSA** считается \mathbf{X} , по которой строится $\hat{\mathrm{C}}_L$:

$$\hat{c}_m = \frac{L-m}{L}\hat{\gamma}_m + \frac{m}{L}\hat{\gamma}_{L-m}, \ \hat{\gamma}_m = \frac{1}{N-m}\sum_{t=1}^{N-m} x_t x_{t+m}, \ m = 0: L-1.$$

$$\hat{C}_{L} = \begin{pmatrix} \hat{c}_{1} & \hat{c}_{2} & \dots & \hat{c}_{L} \\ \hat{c}_{2} & \hat{c}_{1} & \dots & \hat{c}_{L-1} \\ \vdots & \vdots & \vdots & \vdots \\ \hat{c}_{L} & \hat{c}_{L-1} & \dots & \hat{c}_{1} \end{pmatrix}.$$

Собственные числа и вектора матрицы $\hat{\mathrm{C}}_L$, задаются по формулам:

$$U_k = L^{-1/2}(u_{k,1}\cdot \cdot \cdot \cdot, u_{k,L}),$$
 где $u_{k,j} = \exp\left(-\mathrm{i}2\pi (j-1)rac{k-1}{L}
ight),$ $\lambda_{L,k} = \sum_{m=0}^{L-1} \hat{c}_m \exp\left(i2\pi m rac{k-1}{L}
ight), \ k=1:L.$

8/25Погребников Николай Вадимович, гр. 21.Б04-мм

Модификации метода SSA

Модификации метода **SSA**

└─Mетод CiSSA. Алгоритм: разложение

Модификация **SSA** на основе циркулярной матрицы [1]. Авторы метода называют её автоматизированной. Причем автоматизированная в том смысле, что компоненты ряда группируются по частотам самим алгоритмом.

Метод CiSSA. Алгоритм: восстановление

Для каждой частоты $w_k=\frac{k-1}{L}$, $k=2:\lfloor\frac{L+1}{2}\rfloor$, есть два собственных вектора: U_k и U_{L+2-k} . За частоту w_0 отвечает один собственный вектор — U_0 . Если L — четное, то частоте $w_{\frac{L}{2}+1}$ будет соответствовать один вектор $U_{\frac{L}{2}+1}$.

Следовательно, индексы группируются следующим образом:

$$B_1=\{1\};\, B_k=\{k,L+2-k\},$$
 для $k=2:\lfloor rac{L+1}{2}
floor;$ $B_{rac{L}{2}+1}=\left\{rac{L}{2}+1
ight\},$ если $L\mid 2.$

Далее происходит группировка

$${f X}_{B_k} = {f X}_k + {f X}_{L+2-k} = U_k U_k^H {f X} + U_{L+2-k} U_{L+2-k}^H {f X},$$
 где U^H — это комплексное сопряжение и транспонирование вектора U . Затем диагональное усреднение.

9/25Погребников Николай Вадимович, гр. 21.Б04-мм

Модификации метода SSA

Модификации метода **SSA**

└─ Метод CiSSA. Алгоритм: восстановление

Метод CiSSA. Алгоритм: восстановление

Для каждо k частоти $w_k = \frac{k-1}{2}$, k = 2: $\left[\frac{k+1}{2}\right]$, сеть два собственных векто ра: U_k и U_{k+2-k} . За частоту w_0 отвечает один собственный вектор $-U_0$. Если L — четное, то частот $w_{\frac{k-1}{2}}$ будет соответствовать один вектор $U_{\frac{k-1}{2}}$.

 $B_1 = \{1\}; B_k = \{k, L+2-k\},$ для $k=2: \lfloor \frac{L+1}{2} \rfloor$

 $B_{\frac{L}{2}+1} = \left\{\frac{L}{2}+1\right\}, \, \operatorname{ech}\, \operatorname{M}\, L \mid 2.$

Далее происходит группи ровка $\mathbf{X}_{B_k} = \mathbf{X}_k + \mathbf{X}_{L+2-k} = U_k U_k^H \mathbf{X} + U_{L+2-k} U_{L+2-k}^H \mathbf{X}.$ гре $U^H -$ это комплексное сопряжение и транспони рован вектора U. Затем и из гомальное угородие мус

Группировка будет производиться на непересекающиеся подгруппы по частотам от 0 до 0.5, поскольку частоты выше 0.5 представляют собой зеркальное отражение частот ниже 0.5. Именно поэтому объединяются матрицы $\mathbf{X}_{B_k} = \mathbf{X}_k + \mathbf{X}_{L+2-k}$.

Метод CiSSA. Свойства: связь с разложением Фурье

Определение 4

Разложение

$$x_n = c_0 + \sum_{k=1}^{\lfloor \frac{N+1}{2} \rfloor} (c_k \cos(2\pi nk/N) + s_k \sin(2\pi nk/N)),$$
 (2)

где $1 \le n \le N$ и $s_{N/2} = 0$ для четного N, называется разложением Фурье ряда X.

Замечание 2

 $U_k U_k^H + U_{L+2-k} U_{L+2-k}^H$ является оператором проектирования на подпространство, которое порождено синусами и косинусами с частотой $w_k = \frac{k-1}{L}$. Это пространство соответствует компонентам синусоидальной структуры временного ряда, связанных с конкретной частотой, выделяемой методом.

10/25Погребников Николай Вадимович, гр. 21.Б04-мм Модификации метода SSA

Модификации метода **SSA**

∟Метод CiSSA. Свойства: связь с разложением Фурье

По замечанию 2 видно, что при вычислении $\mathbf{X}_{B_k} = \mathbf{X}_k + \mathbf{X}_{L+2-k} = U_k U_k^H \mathbf{X} + U_{L+2-k} U_{L+2-k}^H \mathbf{X}$, воспроизводится разложение Фурье для K векторов матрицы \mathbf{X} . Затем вычисляется диагональное усреднение $*X_{B_k}$.

Метод CiSSA. Свойства: разделимость

Точная разделимость. Поскольку данный метод является аналогом разложения Фурье, то в смысле сильной разделимости можно точно разделить ряд, в котором одной из компонентов является $\cos(2\pi w + \varphi)$ с частотой w такой, что $Lw = k \in \mathbb{N}$, или константа.

Асимптотическая разделимость. Асимптотическая разделимость в данном случае будет означать, что при увеличении L разбиение сетки будет увеличиваться, а значит, и частоты в сетке начнут сближаться к истинным частотам периодических компонентов (либо становиться равными им), что будет снижать ошибку вычислений.

11/25Погребников Николай Вадимович, гр. 21.Б04-мм Модификации метода SSA

Модификации метода **SSA**

└─Mетод CiSSA. Свойства: разделимость

Метод CiSSA. Свойства: разделимост

Точная разделимость. Поскольку двяный метод является знакогом разложения Фурме, то с кимоле сланый возраднямостя комон точко разделямостя сомого точко разделямостя комон точко разделямостя статогой метамой, что $Lm = K \otimes N$, аят мостатат. Асминтотическая разделимость. Асминтотическая разделимость. Асминтотическая разделямость Асминтотическая разделимость Асминтотическая разделимость Асминтотическая разделимость Асминтотическая разделимость Асминтотическая разделимость Асминтотическая разделимость Барест вачать, что при умелячения L дазбежения сеть будет умелячаваться, а значат, частоты межеты мачут бельяматся ж истатыми мастотам от мастотым статогам межетом разделя мачут бельяматся ж истатыми мастотам от мастотам

Как можно заметить, классов точной разделимости меньше, чем у **SSA**

Метод CiSSA. Свойства: эквивалентность методов

Определение 5

Будем говорить, что методы M_1 и M_2 асимптотически эквивалентны, если их матрицы вложения S_1, S_2 асимптотически эквиваленты в смысле $\lim_{L \to \infty} \frac{||S_1 - S_2||_F}{\sqrt{L}} = 0$, где $||\cdot||_F$ — норма Фробениуса. Тогда $M_1 \sim M_2$, $S_1 \sim S_2$.

Теорема 1

Дана $L \times K$ траекторная матрица ${\bf X}$. Пусть $S_B = {\bf X}{\bf X}^T/K$, S_C — матрица, определенная в (8). Тогда $S_B \sim S_C$.

Доказательство.

Доказательство в источнике [1].

12/25Погребников Николай Вадимович, гр. 21.Б04-мм Модификации метода SSA

Модификации метода **SSA**

В статье [1] говорится, что асимптотически методы **SSA** и **CiSSA** эквивалентны и в доказательство приводится теорема.

Метод CiSSA. Свойства: применимость к нестационарным рядам

Алгоритм **CiSSA** применим для стационарных рядов. Однако, как утверждается авторами статьи [1], для использования на нестационарных временных рядах, нужно выполнить процедуру расширения ряда.

13/25Погребников Николай Вадимович, гр. 21.Б04-мм

Модификации метода SSA

Модификации метода **SSA**

└─ Метод CiSSA. Свойства: применимость к нестационарным рядам

Метод CiSSA. Свойства: применимость н

Алгоритм CISSA применим для стационарных рядов. Однаю, ко кутереждается авторами статьи [1], для использования на нестационарных временных рядах, нужно выполнить процедуру расширя няя ряда.

Формальное определение стационарности ряда можно увидеть в отчёте данной работы [4]. Стационарный ряд — это такой временной ряд, в котором изменения происходят вокруг некоторого среднего значения, и это среднее остаётся более-менее постоянным на протяжении всего ряда.

Сама процедура расширения ряда X производится с использованием авторегрессионной (AR) модели. Эта процедура позволяет предсказать значения временного ряда за его пределами (экстраполяция) как в правом, так и в левом направлениях на заданное число шагов H. Таким образом, трендовая (нелинейная) компонента ряда будет выделяться заметно лучше.

Сравнение алгоритмов. SSA, разложение Фурье, CiSSA

Будем сравнивать пять различных методов: базовый **SSA**, **SSA** с использованием EOSSA для улучшения разделимости, разложения Фурье, базового **CiSSA** и **CiSSA** с расширением ряда. Для наглядного отображения преимуществ каждого из этих методов составлена таблица 3

Метод/Условие	cos,	cos,	cos,	X _{np1}	X_{np}	group
	$Lw = k \in \mathbb{N},$	$Lw = k \in \mathbb{N}$,	$Lw = k \not\in \mathbb{N}$,	•	_	
	$Kw = k \in \mathbb{N}$	$Kw = k \not \in \mathbb{N}$	$Kw = k \not \in \mathbb{N}$			
SSA	+	\rightarrow	\rightarrow	\rightarrow	\rightarrow	
SSA EOSSA	+	\rightarrow	\rightarrow	\rightarrow	\rightarrow	+
Fourier	+	+	\rightarrow	_	_	+
CiSSA	+	+	\rightarrow	_	_	+
CiSSA extended	+	+	\rightarrow	\rightarrow	_	+

Таблица 3: Преимущества и недостатки ряти методов

14/25Погребников Николай Вадимович, гр. 21.Б04-мм Модификации метода SSA

Модификации метода **SSA**

Сравнение алгоритмов. SSA, разложение Фурье, CiSSA

На пересечении строк и столбцов указан знак, показывающий, достигается ли разделение компоненты: плюс (+) обозначает точное выполнение, знак стремления указывает на асимптотическое выполнение, а минус (-) — на отсутствие разделимости. Для разложения Фурье подразумевается, что L=N.

Обозначения:

- \cos в ряде присутствуют только периодические компоненты вида $\cos(2\pi\omega x + \varphi)$;
- $X_{\rm np1}$ одна непериодическая компонента в ряде, остальные имеют период;
- $X_{\rm np}$ несколько непериодических компонент в ряде, остальные имеют период, интересует разделение между непериодическими компонентами;
- group автоматическая группировка по заданным частотам.

 $X = X_{\sin} + X_{\cos} = \sin \frac{2\pi}{12} x + \frac{1}{2} \cos \frac{2\pi}{3} x$, L = 96, $N = 96 \cdot 2$ для разложения Фурье и $N = 96 \cdot 2 - 1$ для остальных, чтобы выполнялись условия выполнения разделимости частот. Сравним результаты по среднеквадратичной ошибке:

Метод/Компонента	X_{\sin}	X_{\cos}
SSA	6.8e-30	1.5e-29
SSA EOSSA	1.5e-29	7.5e-30
Fourier	1.7e-28	3.5e-28
CiSSA	1.9e-29	5.3e-30
CiSSA extended	2.0e-04	8.6e-04

Таблица 4: MSE разложений ряда $X = X_{\sin} + X_{\cos}$ пяти методов

15/25Погребников Николай Вадимович, гр. 21.Б04-мм Модификации метода SSA

Таблица 4 показывает, что первые четыре разложения сделали правильное (с точностью до вычислений с помощью компьютера) разделение компонент ряда. Однако расширение в методе **CiSSA** ухудшило разделимость периодических частей.

 ${\sf X}={\sf X}_{
m sin}+{\sf X}_{
m cos}+{\sf X}_{
m noise}=\sinrac{2\pi}{12}x+rac{1}{2}\cosrac{2\pi}{3}x+arepsilon_n$, где $arepsilon_n\sim {\sf N}(0,0.1)$, L=96, $N=96\cdot 2$ для разложения Фурье и $N=96\cdot 2-1$ для остальных.

Метод/Компонента	X_{\sin}	X_{\cos}
SSA	2.9e-04	3.1e-04
SSA EOSSA	2.9e-04	3.1e-04
Fourier	1.0e-04	1.1e-04
CiSSA	1.6e-04	1.8e-04
CiSSA extended	6.6e-04	1.9e-03

Таблица 5: MSE разложений ряда $X = X_{\rm sin} + X_{\rm cos} + X_{\rm noise}$ пяти методов

16/25Погребников Николай Вадимович, гр. 21.Б04-мм Модификации метода SSA

Проводилось 100 тестов, в таблице 5 указаны средние значения ошибки для одних и тех же реализаций шума.

По таблице 5 видно, что зашумление ряда дало негативный эффект на ошибку. Также был проведен парный t-критерий для зависимых выборок с целью проверки гипотезы о равенстве средних значений ошибки для каждой компоненты, попарно для всех методов. В качестве нулевой гипотезы (H_0) предполагалось, что средние значения двух сравниваемых выборок равны. Критический уровень значимости был установлен на уровне $\alpha=0.05$. Результаты анализа показали, что во всех случаях p-значение оказалось меньше 0.05, что позволяет отвергнуть нулевую гипотезу.

$$\mathsf{X}=\mathsf{X}_{\sin}+\mathsf{X}_{\cos}+\mathsf{X}_c+\mathsf{X}_e=\sinrac{2\pi}{12}x+rac{1}{2}\cosrac{2\pi}{3}x+1+e^{rac{x}{100}}$$
, $L=96$, $N=96\cdot 2$ для разложения Фурье и $N=96\cdot 2-1$

Метод/Компонента	$X_c + X_e$	X_{\sin}	X_{\cos}
SSA	5.0e-03	8.9e-07	5.2e-05
SSA EOSSA	1.7e-28	1.6e-29	8.7e-30
Fourier	1.1e-01	6.1e-04	6.8e-03
CiSSA	5.3e-02	1.6e-05	4.9e-04
CiSSA extended	5.0e-04	2.1e-04	1.1e-03

Таблица 6: MSE разложений ряда $\mathsf{X} = \mathsf{X}_{\sin} + \mathsf{X}_{\cos} + \mathsf{X}_c + \mathsf{X}_e$ четырех методов

17/25Погребников Николай Вадимович, гр. 21.Б04-мм Модификации метода SSA

Модификации метода **SSA**

└Сравнение алгоритмов. Пример 3

v .v .v .	V .:. 2f	1 2π	
$= X_{sin} + X_{cos} + X_c +$ $= 96. N = 96 \cdot 2$ для			
— 50, 1v — 50 · 2 для	разложения Ф	Abec w 14	- 50 - 2 -
Метод/Компон	ента $X_c + X_c$	X_{sin}	X _{cos}
SSA	5.0e-03	8.9e-07	5.2e-05
SSA EOSSA	1.7e-28	1.6e-29	8.7e-30
Fourier	1.1e-01	6.1e-04	6.8e-03
CISSA	5.3e-02	1.6e-05	4.9e-04

Непериодические компоненты будут отвечать низким частотам. Проблема лишь в том, что с помощью методов разложения Фурье **CiSSA** невозможно различить между собой две непериодические компоненты, поскольку группировка работает по частотам, элементы разложения неизбежно смешаются между собой. Будем искать экспоненту и константу по низким частотам, назовем это трендовой составляющей ряда. По таблице 3 лучше всех должен справиться **SSA** с улучшением разделимости EOSSA. Хуже всех — разложение Фурье, поскольку он никаким образом не сможет вычленить из ряда экспоненту.

Результаты таблицы 6 повторяют вышеизложенные рассуждения. Также заметно, что периодические компоненты лучше выделились с помощью **CiSSA** без процедуры расширения ряда в сравнении с **CiSSA** с расширением.

$${\sf X}={\sf X}_{
m sin}+{\sf X}_{
m cos}+{\sf X}_c+{\sf X}_e+{\sf X}_{
m noise}=\ \sinrac{2\pi}{12}x+rac{1}{2}\cosrac{2\pi}{3}x+1+e^{rac{x}{100}}++arepsilon_n$$
, где $arepsilon_n\sim{
m N}(0,0.1)$, $L=96$, $N=96\cdot 2$ для разложения Фурье и $N=96\cdot 2-1$.

Метод/Компонента	X_{\sin}	X_{\cos}	$X_c + X_e$
SSA	2.9e-04	3.6e-04	5.2e-03
SSA EOSSA	2.9e-04	3.1e-04	9.4e-04
Fourier	6.9e-04	7.2e-03	1.2e-01
CiSSA	1.7e-04	7.0e-04	5.5e-02
CiSSA extended	6.8e-04	2.1e-03	2.7e-03

Таблица 7: MSE разложений ряда $X=X_{\sin}+X_{\cos}+X_c+X_e+X_{\mathrm{noise}}$ четырех методов

18/25Погребников Николай Вадимович, гр. 21.Б04-мм Модификации метода SSA

Модификации метода **SSA**

Сравнение алгоритмов. Пример 4

$\sin \frac{2\pi}{12} x + \frac{1}{2} \cos \frac{2\pi}{3} x + 1 + e^{\frac{2\pi}{10}}$ $N = 96 \cdot 2$ для разложения			
Метод/Компонента	X_{sin}	X _{cos}	$X_c + X_c$
SSA	2.9e-04	3.6e-04	5.2e-03
SSA EOSSA	2.9e-04	3.1e-04	9.4e-04
Fourier	6.9e-04	7.2e-03	1.2e-01
CiSS A	1.7e-04	7.0e-04	5.5e-02
CiSSA extended	6.8e-04	2.1e-03	2.7e-03
CiSS A	1.7e-04 6.8e-04	7.0e-04 2.1e-03	5.5e-02 2.7e-03

Как видно из таблицы 7, разделения ухудшились, однако **SSA** с улучшением разделимости EOSSA отработал лучше всех. Также был проведен был проведён двухвыборочный t-критерий для зависимых выборок с целью проверки гипотезы о равенстве средних значений ошибки для каждой компоненты, попарно для всех методов. В качестве нулевой гипотезы (H_0) предполагалось, что средние значения двух сравниваемых выборок равны. Критический уровень значимости был установлен на уровне $\alpha=0.05$. Результаты анализа показали, что во всех случаях p-значение оказалось меньше 0.05, что позволяет отвергнуть нулевую гипотезу.

Сравнение алгоритмов. Собственные пространства

Каждый алгоритм после группировки порождает построенными матрицами собственные подпространства. В случае базового ${\bf SSA}$ алгоритма базис подпространств является адаптивным, то есть зависящим от ${\bf X}, L, N$. Таким образом, ${\bf SSA}$ может отличить, например, произведение полиномов, экспонент и косинусов друг от друга.

В случае **CiSSA** базис зависит только от L,N. Если зафиксировать данные параметры, и менять X, базис никак не поменяется.

19/25Погребников Николай Вадимович, гр. 21.Б04-мм Модификации метода SSA

Модификации метода **SSA**

—Сравнение алгоритмов. Собственные пространства

сравнение авторитмов. Сооственные пространетва

Каждый алгоритм после труппировки порождает построенными матрицими собственные подпространства. В случае базового SSA алгоритма базо колоространства и SSA алгоритма базо колоространства и SSA и может отклитать и мале та алагона материами, то есть заяженицим от X_cLN . Таким образом, SSA может откличать, выприме, прог взедение поляномог, зак совент и коскуссо друг от друга. В случае CSSA базих заякся только от L.N. Еслу зафикк розать диные параметры, и менять X, базис и кож не поменяется.

От собственных пространств зависит то, какие компоненты временного ряда будут разделимы между собой.

Теперь рассмотрим реальные данные — месячные ряды промышленного производства (Industrial Production, IP), index 2010=100, в США. Размер выборки составляет N=537. Применим как **CiSSA**, так и **SSA** с автоматическим определением частот и улучшением разделимости по следующим группам:

- ① Трендовой составляющей должны отвечать низкие частоты, поэтому диапазон: $\left[0,\frac{1}{192}\right]$;
- ② Циклы бизнеса по диапазонам: $\left[\frac{2}{192}, \frac{10}{192}\right]$;
- **©** Сезонность по частотам $\omega_k = 1/12, 1/6, 1/4, 1/3, 5/12, 1/2;$

На основе предыдущих требований взято L=192.

20/25Погребников Николай Вадимович, гр. 21.Б04-мм Модификации метода SSA

Модификации метода **SSA**

—Сравнение алгоритмов. Реальные данные

Сравнение алгоритмов. Реальные данные

Теперь рассмотрям реальные данные — месячные ряды про мышенного приз водства (Industrial Production, IP), index 2010 — 100 в. США. Развер выборк исставляет № 537.

Применям на CSSA, так и SSA с аго октяческим определение частот и улучшением разделямостя по следующим группами.

■ Тридорой составляющий должны оттечать наиже частоты, поэтому дивалоне (10, 100 пр. 100);

■ Шяжы безяеся по двалазовым (100 пр. 100);

■ Сазонность по частоты мы = 1/12.1/6.1/4.1/3.5/12.1/2;

На основе предмаущих требований ваято L = 192.

Данные промышленного производства полезны, поскольку оно указывается в определении рецессии Национальным бюро экономических исследований (NBER), как один из четырех ежемесячных рядов индикаторов, которые необходимо проверять при анализе делового цикла. Эти показатели демонстрируют различные тенденции, сезонность и цикличность (периодические компоненты, которые соответствуют циклам бизнеса).

IP USA тренд

Рис. 1: Трендовая составляющая данных IP USA

21/25Погребников Николай Вадимович, гр. 21.Б04-мм Модификации метода SSA

Модификации метода **SSA**— Сравнение алгоритмов. Реальные данные

— Сравнение алгоритмов. Реальные данные

— Риз. 1: Тре дован составляющия далык Р. USA

При применении FOSSA улучшения разделимости алгоритм **SSA** выделяет тренд довольно похоже с **CiSSA**. Весь график **SSA** тренд EOSSA выглядит более изогнутым при визуальном сравнении с остальными.

IP USA цикличность

Рис. 2: Циклическая составляющая данных IP USA

22/25Погребников Николай Вадимович, гр. 21.Б04-мм Модификации метода SSA

Модификации метода **SSA**— Сравнение алгоритмов. Реальные данные

— Сравнение алгоритмов. Реальные данные

Рес. 2: Целячис да доста для при да данных Р USA

Аналогичная тренду ситуация происходит с цикличностью. В случае EOSSA правый хвост (значения ряда после 2010-ого года) смешался между цикличностью и трендом.

Рис. 3: Сезонная составляющая данных IP USA

23/25Погребников Николай Вадимович, гр. 21.Б04-мм Модификации метода SSA

Поскольку в базовом **SSA** адаптивный базис, сезонность является менее систематичной, разброс значений выше по сравнению с **CiSSA**. Таким образом, получились довольно похожие результаты в выделении тренда и цикличности при использовании **SSA** с FOSSA и **CiSSA**. Несколько иные результаты при **SSA** с EOSSA. Сезонная составляющая в силу неадаптивного базиса более строго выглядит для метода **CiSSA**.

По полученным результатам, можно следующие выводы:

- Алгоритм CiSSA работает лучше разложения Фурье;
- Если понятно, что ряд состоит только из периодических компонент, стоит использовать CiSSA без процедуры расширения, поскольку она делает ошибки разделений периодики больше. И напротив, если есть непериодичность, лучше расширять ряд;
- Если данные зашумлены или имеется непериодичность, алгоритм SSA с улучшением разделимости справляется в среднеквадратичном лучше CiSSA с расширением ряда или без.

24/25Погребников Николай Вадимович, гр. 21.Б04-мм Модификации метода SSA

В данной работе исследован алгоритм **CiSSA**, сравнены методы **CiSSA** и **SSA**, и полученные знания были проверены на реальных и смоделированных примерах с помощью языка R. Оба алгоритма справляются с поставленными задачами, существенным различием является то, что алгоритм **SSA** является более гибким: в нем адаптивный базис, есть дополнительные алгоритмы, которые довольно похоже приближают этот алгоритм к **CiSSA**, а также методы для автоматического выбора компонентов по частотам. Метод **CiSSA** является простым в использовании.

Дальнейшими действиями является рассмотрение других модификаций метода **SSA**.

Все вычисления, а также код **CiSSA** можно найти в github репозитории [4].

Список литературы

Juan Bogalo, Pilar Poncela, and Eva Senra.

Circulant singular spectrum analysis: A new automated procedure for signal extraction.

Signal Processing, 177, 2020.

Nina Golyandina, Pavel Dudnik, and Alex Shlemov.

Intelligent identification of trend components in singular spectrum analysis.

Algorithms, 16(7):353, 2023.

Nina Golyandina, Vladimir Nekrutkin, and Anatoly Zhigljavsky. Analysis of Time Series Structure: SSA and Related Techniques. Chapman and Hall/CRC, 2001.

Nikolay Pogrebnikov.

SPbSU CISSA coursework: Time series analysis.

https://github.com/xSICHx/spbu_cissa_coursework, 2024.

25/25Погребников Николай Вадимович, гр. 21.Б04-мм Модификации метода SSA

На данном слайде представлен список основных источников, используемых в моей работе. Спасибо за внимание.