$8_{20} (K8n_1)$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^4 - u^3 - 2u^2 + b + 1, -u^4 + u^3 + 2u^2 + a - 2, u^5 - 2u^4 - 2u^3 + 3u^2 + 3u - 1 \rangle$$

$$I_2^u = \langle b + 1, a, u + 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 6 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle u^4 - u^3 - 2u^2 + b + 1, \ -u^4 + u^3 + 2u^2 + a - 2, \ u^5 - 2u^4 - 2u^3 + 3u^2 + 3u - 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{4} - u^{3} - 2u^{2} + 2 \\ -u^{4} + u^{3} + 2u^{2} - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{4} - u^{3} - 2u^{2} + 2 \\ u^{4} - 2u^{2} - 2u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{3} + 2u + 2 \\ u^{4} - 2u^{2} - 2u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^4 6u^3 8u^2 + 6u + 8$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^5 - 2u^4 - 2u^3 + 3u^2 + 3u - 1$
c_2, c_7	$u^5 + u^4 + 5u^3 + u^2 + 2u - 2$
<i>c</i> ₃	$u^5 + 8u^4 + 22u^3 + 25u^2 + 15u + 1$
c_5,c_8	$u^5 + 2u^4 + 2u^3 - u^2 - u - 1$
c_6	$u^5 + 6u^3 - u^2 - u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^5 - 8y^4 + 22y^3 - 25y^2 + 15y - 1$
c_2, c_7	$y^5 + 9y^4 + 27y^3 + 23y^2 + 8y - 4$
<i>c</i> 3	$y^5 - 20y^4 + 114y^3 + 19y^2 + 175y - 1$
c_5,c_8	$y^5 + 6y^3 - y^2 - y - 1$
c ₆	$y^5 + 12y^4 + 34y^3 - 13y^2 - y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.949895 + 0.441667I		
a = 0.682871 - 0.618084I	-1.85138 + 1.10891I	-2.36548 - 2.04112I
b = 0.317129 + 0.618084I		
u = -0.949895 - 0.441667I		
a = 0.682871 + 0.618084I	-1.85138 - 1.10891I	-2.36548 + 2.04112I
b = 0.317129 - 0.618084I		
u = 0.274898		
a = 1.83380	1.20365	8.94300
b = -0.833800		
u = 1.81245 + 0.17314I		
a = -0.099771 + 1.129450I	-11.90990 - 4.12490I	-1.10604 + 2.15443I
b = 1.09977 - 1.12945I		
u = 1.81245 - 0.17314I		
a = -0.099771 - 1.129450I	-11.90990 + 4.12490I	-1.10604 - 2.15443I
b = 1.09977 + 1.12945I		

II.
$$I_2^u = \langle b+1, \ a, \ u+1 \rangle$$

(i) Arc colorings

$$a_2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1,c_3,c_6 c_8	u-1
c_2, c_7	u
c_4, c_5	u+1

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_4 c_5, c_6, c_8	y-1
c_2, c_7	y

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = 0	0	0
b = -1.00000		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u-1)(u^5 - 2u^4 - 2u^3 + 3u^2 + 3u - 1)$
c_2, c_7	$u(u^5 + u^4 + 5u^3 + u^2 + 2u - 2)$
c_3	$(u-1)(u^5 + 8u^4 + 22u^3 + 25u^2 + 15u + 1)$
c_4	$(u+1)(u^5 - 2u^4 - 2u^3 + 3u^2 + 3u - 1)$
c_5	$(u+1)(u^5 + 2u^4 + 2u^3 - u^2 - u - 1)$
<i>c</i> ₆	$(u-1)(u^5 + 6u^3 - u^2 - u - 1)$
c ₈	$(u-1)(u^5 + 2u^4 + 2u^3 - u^2 - u - 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$(y-1)(y^5 - 8y^4 + 22y^3 - 25y^2 + 15y - 1)$
c_2, c_7	$y(y^5 + 9y^4 + 27y^3 + 23y^2 + 8y - 4)$
<i>c</i> ₃	$(y-1)(y^5 - 20y^4 + 114y^3 + 19y^2 + 175y - 1)$
c_5,c_8	$(y-1)(y^5+6y^3-y^2-y-1)$
<i>c</i> ₆	$(y-1)(y^5 + 12y^4 + 34y^3 - 13y^2 - y - 1)$