The Art of Machine Learning

Learn To Make Your Machine Learn

Why Machine Learning?

- Some tasks are too complex to code directly
 - Medical diagnosis assistance to diagnose a particular disease
 - A lot of parameters to handle
 - e.g. body temperature, pain conditions, blood pressure, eyes condition and a lot more
 - To code them explicitly is Impractical, if not impossible
- A practical approach
 - to handle complex task, make an algorithm which can learn the parameters from sample data

What is Machine Learning?

Machine learning is all about building a mathematical model of a sample data in order to make decisions or predictions.

The Art of Machine Learning

Have patience and Learn To Make Your Machine Learn

Wait!

- We defined a system
- We gave it an input
- System gave an output
- We knew the required output
- We found some error by comparison
- Made some changes in our system's according to a criteria

A person willing to learn ML

Machine Learning is Easy - Believe me

The most important thing

Patience

- Other important things
 - Don't get scared of complex mathematics
 - It's easy to if you try to find the meaning
 - A lot of implemented work is available (e.g tensorflow, pytorch etc)

What is the meaning of this equation?

$$ax + b = c$$

Prediction

 You have a sample dataset of defined points and you have to predict output of a system for new unseen data point

Classification

 You have a sample dataset of defined points and their classes, you have to find class of a new data point

- Prediction
 - Let's assume sample data points (x,y)
 - x is input and y is output
 - (1,10) (2,9) (2.5,8) (8.1,6.8)

- Prediction
 - Let's assume sample data points (x,y)
 - x is input and y is output
 - (1,10) (2,9) (2.5,8) (8.1,6.8)
 - Now you have a new value for x = 5.2
 - y = ?

- Prediction
 - Let's assume sample data points (x,y)
 - x is input and y is output
 - (1,10) (2,9) (2.5,8) (8.1,6.8)
 - Now you have a new value for x = 5.2
 - y = ?

- Prediction
 - Let's assume sample data points (x,y)
 - x is input and y is output
 - (1,10) (2,9) (2.5,8) (8.1,6.8)
 - Now you have a new value for x = 5.2
 - y = ?

- Prediction
 - Let's assume sample data points (x,y)
 - x is input and y is output
 - (1,10) (2,9) (2.5,8) (8.1,6.8)
 - Now you have a new value for x = 5.2
 - y = ?

- Prediction
 - Let's assume sample data points (x,y)
 - x is input and y is output
 - (1,10) (2,9) (2.5,8) (8.1,6.8)
 - Now you have a new value for x = 5.2
 - y = ?

- Prediction
 - Let's assume sample data points (x,y)
 - x is input and y is output
 - (1,10) (2,9) (2.5,8) (8.1,6.8)
 - Now you have a new value for x = 5.2
 - y = ?

- Prediction
 - Let's assume sample data points (x,y)
 - x is input and y is output
 - (1,10) (2,9) (2.5,8) (8.1,6.8)
 - Now you have a new value for x = 5.2
 - y = ?

- Prediction
 - Let's assume sample data points (x,y)
 - x is input and y is output
 - (1,10) (2,9) (2.5,8) (8.1,6.8)
 - Now you have a new value for x = 5.2
 - y = ?

Prediction

- Let's assume sample data points (x,y)
 - x is input and y is output
 - (1,10) (2,9) (2.5,8) (8.1,6.8)
- Now you have a new value for x = 5.2

Classification

 You have a sample dataset of defined points and their classes, you have to find class of a new data point

Prediction

- Let's assume sample data points (x,y)
 - x is input and y is output
 - (1,10) (2,9) (2.5,8) (8.1,6.8)
- Now you have a new value for x = 5.2
 - y = ?

Classification

 You have a sample dataset of defined points and their classes, you have to find class of a new data point

Basic steps to build ML system

- Collect and analyze data for ML problem (training data)
- Make a mathematical model of the problem
- Define an error function
- Define a criteria to update system parameters to minimize error

Predict no. of coffee cups sold on random day

no. of cups sold	avg temp of the day x
150	0
140	5
148	10
120	15
90	20
94	25
40	30
44	35
30	40
35	45
31	50

Step1: Analyze Data

160

Avg temperature of the day

/目心田风公

Predict no. of coffee cups sold on random day

Step2: Make a mathematical model

$$ax+b=c$$
 $(b-c) + (a)x = 0$

$$(w0) + (w1)x = 0$$
These are called systems parameters
$$f(x) = (w0) + (w1)x$$

Predict no. of coffee cups sold on random day

Step2: Make a mathematical model

Predict no. of coffee cups sold on random day

Step2: Make a mathematical model

$$ax+b=c$$

$$(b-c) + (a)x = 0$$

$$(w0) + (w1)x = 0$$

$$These are called systems parameters$$

$$f(x) = (w0) + (w1)x$$

Predict no. of coffee cups sold on random day

Step2: Make a mathematical model

Predict no. of coffee cups sold on random day

Step2: Make a mathematical model

Predict no. of coffee cups sold on random day

Step2: Make a mathematical model

Predict no. of coffee cups sold on random day

Step2: Make a mathematical model

$$ax+b=c$$

$$(b-c) + (a)x = 0$$

$$(w0) + (w1)x = 0$$

$$begin{tabular}{c} These are called systems parameters } f(x) = (w0) + (w1)x$$

Predict no. of coffee cups sold on random day

Step3: find an error function Let's take h = f(x) = (w0) + (w1)xError function $E = sum(|y - h|) \quad \text{For each point in given data}$ What we want? argmin sum(|y-h|) = ?

Predict no. of coffee cups sold on random day

Step4: find a criteria to update w

Predict no. of coffee cups sold on random day

Step4: find a criteria to update w

Predict no. of coffee cups sold on random day

Step4: find a criteria to update w

Predict no. of coffee cups sold on random day

Step4: find a criteria to update w

Predict no. of coffee cups sold on random day

Step4: find a criteria to update w

What is derivative?

Predict no. of coffee cups sold on random day

Step4: find a criteria to update w

What will happen if we update the weight in negative direction on derivative of this error function?

Predict no. of coffee cups sold on random day

Step4: find a criteria to update w

What will happen if we update the weight in negative direction on derivative of this error function?

updating weights

$$w0 = w0 - \alpha \frac{d(|y - h|)}{dw0}$$

$$w1 = w1 - \alpha \frac{d(|y - h|)}{dw1}$$

learning rate

Predict no. of coffee cups sold on random day

Step4: find a criteria to update w

What will happen if we update the weight in negative direction on derivative of this error function?

updating weights

$$w0 = w0 - \alpha \frac{d(|y - h|)}{dw0}$$

$$w1 = w1 - \alpha \frac{d(|y - h|)}{dw1}$$

learning rate

Predict no. of coffee cups sold on random day

Step4: find a criteria to update w

What will happen if we update the weight in negative direction on derivative of this error function?

updating weights

$$w0 = w0 + \alpha \frac{d(|y - h|)}{dw0}$$

$$w1 = w1 + \alpha \frac{d(|y - h|)}{dw1}$$

learning rate

Learning/Training steps

- 1- randomly initialize w0 and w1
- 2- compute error between h (hypothesis) and y (ground truth)
- 3- update weights

Repeat steps 2 and 3 until error becomes very small

Higher order polynomial fitting

$$W_0 + W_1 x + W_2 x^2 = 0$$

$$W_0 + W_1 x + W_2 x^2 + W_3 x^3 = 0$$

- Higher dimensional problems
 - o e.g. no. of coffee cups sold depends on,
 - \blacksquare X1 = temperature of the day
 - X2 = no. of people passing nearby

$$w_0 + w_{11}x_1 + w_{21}x_2 + w_{12}x_1^2 + w_{22}x_2^2 = 0$$

