Feedback — Quiz 3

You submitted this quiz on Wed 17 Apr 2013 11:09 AM PDT. You got a score of 13.00 out of 13.00.

Question 1

Please select all of the options that accurately describe the Fourier Transform.

V A		0	E. danser
Your Answer		Score	Explanation
An expression of a signal as a weighted sum of periodic	~	0.25	This option is correct!
functions of various frequencies.			
✓ A transformation of a signal from the time (or space) domain	~	0.25	This option is correct!
to a frequency domain.			
■ An expression of a signal as a weighted sum of linear	~	0.25	This option is not correct.
functions of various intercepts.			
A transformation of a signal from the frequency domain to a	~	0.25	This option is not correct. This describes an Inverse
time (or space) domain.			Fourier Transform.
Total		1.00 /	
		1.00	

Question 2

Recall the Fourier transform images from lecture, like the one on the right hand side here:

Please identify the dimensions of this image.

Your Answer	Score	Explanation
○ The x and y directions identify the horizontal and vertical amplitude, the intensity of each pixel is the frequency at that amplitude.		
• The x and y directions identify the horizontal and vertical frequency, the intensity of each pixel is the amplitude of that frequency.	1.00	Correct!
○ The x and y directions identify the horizontal and vertical amplitude, the intensity of each pixel is the number of cycles of that amplitude.		
○ The x and y directions identify the horizontal and vertical frequency, the intensity of each pixel is the number of cycles of that frequency.		
Total	1 00 / 1 00	

Total 1.00 / 1.00

Question 3

Please choose all of the options that accurately describe a Gaussian Pyramid.

Your Answer		Score	Explanation
☐ A representation of an image at multiple angles.	~	0.25	This option is not correct.
■ Each layer is constructed by running an EXPAND operation on the preceding, lower resolution, layer.	~	0.25	This option is not correct.
✓ A representation of an image at multiple scales.	~	0.25	This option is correct.
✓ Each layer is constructed by running a REDUCE operation on the preceding, higher	~	0.25	This option is correct.

resolution, layer.

Total 1.00 / 1.00

Question 4

Consider the following Gaussian Pyramid:

Please choose the one option that accurately describes how you would construct the first layer of the Laplacian pyramid for this image, L0

Your Answer		Score	Explanation
○ L0 = g1 + REDUCE(g0)			
L0 = g0 - EXPAND(g1)	~	1.00	Correct!

L0 = g0 + REDUCE(g1)

6/9/2016

 \bigcirc L0 = g1 - EXPAND(g0)

Total 1.00 / 1.00

Coursera

Question 5

Please choose all of the options that accurately describe a Laplacian Pyramid.

Your Answer		Score	Explanation
☐ Each layer captures information of different orientations in the image.	~	0.25	This option is not correct.
✓ Is used in image blending because it allows us to blend features from images at the appropriate scale.	~	0.25	This option is correct!
☐ Is used in image blending because it allows us to blend images faster than with alphablending.	~	0.25	This option is not correct.

☑ Each layer captures information of different frequency from the image.	~	0.25	This option is correct!
Total		1.00 / 1.00	

Question 6

Please choose all of the answers that describe properties that are desirable when finding features in an image.

Your Answer		Score	Explanation
■ Repeatibility / Precision - The feature should appear multiple times within the same image, and all of the appearances should be nearly identical.	~	0.12	This option is not correct.
✓ Locality - A feature should occupy a small area so that it is robust to clutter and occlusion.	~	0.12	This option is correct!
Repeatibility / Precision - We should be able to find the same feature in several images despite changes in location, perspective and illumination.	~	0.12	This option is correct!
Compactness and Efficiency - Features should be close to each other.	~	0.12	This option is not correct.
Locality - Features should be concentrated in only one part of the image.	~	0.12	This option is not correct.
Saliency / Matchability - Each feature occupies a large area within the image.	~	0.12	This option is not correct.
✓ Saliency / Matchability - Each feature has a distinctive description.	~	0.12	This option is correct!
✓ Compactness and Efficiency - There should be much fewer features than pixels in the image, so that matching features is more tractable computationally.	~	0.12	This option is correct!
Total		1.00 / 1.00	

Question 7

Please choose the one option that accurately describes a corner.

Your Answer	Score	Explanation
 In the region around the corner, the image gradient has no dominant direction. 		
 In the region around the corner, there are lots of pixels of different intensities. 		
In the region around a corner, the image gradient has two or more dominant directions.	1.00	Correct!
In the region around a corner, the image gradient has one dominant direction.		
Total	1.00 / 1.00	

Question 8

Please explain the one option that describes the process by which we align images for a panorama.

Your Answer	Score	Explanation
• We find an affine transform that allows us to line up the key points of the photos.		
 We compute a rotation transform that allows us to line up the photos. 		
We translate the photos so they line up as well as possible.		

• We find a homography to project the rays captured in each photo onto a common plane.	~	1.00	Correct!
Total		1.00 / 1.00	

Question 9

Please select all of the options that accurately describe the RANSAC algorithm.

Your Answer		Score	Explanation
☐ It relies on the fact that the number of outliers will be pretty small.	~	0.12	This option is not correct!
☐ The algorithm accepts the homography that matches all of the points the closest.	~	0.12	This option is not correct.
☐ The algorithm operates by finding a homography that minimizes the error across all points.	~	0.12	This option is not correct.
✓ It relies on the fact that homographies generated from outliers will be inconsistent with each other.	~	0.12	This option is correct!
RANSAC stands for RANdom SAmple Concensus.	~	0.12	This option is correct!
▼ The algorithm operates by sampling four points at random and computing candidate homographies.	~	0.12	This option is correct!
▼ The algorithm accepts the homography that has the largest number of inliers.	~	0.12	This option is correct!
RANSAC stands for Really Awesome New Sciency Algorithm Computation.	~	0.12	This option is not correct. :)
Total		1.00 / 1.00	

Question 10

Please choose the one answer that accurately defines luminance.

Your Answer		Score	Explanation
A measure of how reflective a material is.			
Luminous intensity per unit area traveling in a given direction.	~	1.00	Correct!
 Intensity of light multiplied by the angle of incidence on a given surface. 			
Number of photons per unit volume in space.			
Total		1.00 / 1.00	

Question 11

Please choose the one option that describes why we might want to do high-dynamic-range imaging.

Your Answer		Score	Explanation
• The human eye can perceive a wider range of intensities of light than is captured in conventional digital images. HDR is a technique for artificially increasing the range of light that can be captured by a digital camera.	~	1.00	Correct.

O Sometimes we want to use different part of multiple images of the same scene. HDR is a

technique for combining regions of images together.	
 Images captured by cameras often have unsatisfying contrast. HDR is a technique for increasing contrast in images. 	
 Cameras can record a wider range of light intensities than the human eye. HDR is a technique for compressing that information into a visible spectrum. 	
Total	1.00 / 1.00

Question 12

Recall the following curve from lecture:

Choose the one option that assigns appropriate labels to each axis.

Your Answer		Score	Explanation
x = log(Exposure)y = Exposure			
x = log(Exposure)y = Pixel Value	~	1.00	Correct. The response curves maps from exposure to pixel intensity.
x = log(Pixel Value) y = Pixel Value			
x = log(Pixel Value)y = Exposure			

Total	1.00 / 1.00

Question 13

Please choose the one option that describes the idea behind tone mapping.

Your Answer		Score	Explanation
Tone mapping is a technique for shuffling colors in an image.			
 Tone mapping is used to map a low dynamic range to a higher one while interpolating color information for a full range image. 			
Tone mapping is a technique for increasing contrast in an image.			
Tone mapping is used to map a high dynamic range to a lower range while preserving image details and color appearance of the full range image.	~	1.00	Correct!
Total		1.00 / 1.00	