Theory of Electromigration

RICHARD S. SORBELLO

Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin

I.	Introduction	159
II.	Driving Force for Electromigration	163
	1. Phenomenological Equations of Irreversible Thermodynamics	163
	2. Effective Valence	170
	3. Microscopic Forces and the Adiabatic Picture for Electromigration .	174
	4. Theoretical Framework for Microscopic Forces in Electromigration .	177
III.	Theoretical Calculations	181
	5. Ballistic Model	181
	6. Bosvieux-Friedel Analysis	185
	7. Pseudopotential-Based Analysis of the Wind Force	191
	8. Landauer's Analysis	200
	9. Das-Peierls Analysis	205
	10. Density Matrix Analysis	208
	11. Linear Response Theory	212
	12. Multiple Scattering Theory Calculations of the Wind Force	219
	13. Time-Dependent Density-Functional Analysis	223
IV.	Beyond the Adiabatic Picture	224
	14. Dynamical Effects in Electromigration	224
	15. Quantum Diffusion of Hydrogen in Metals	226
V.	Conclusion	228
	16 Summary and Outlook	228

i. Introduction

When an electric field is applied to a metal or semiconductor, a migration of atoms occurs. This phenomenon, which is known as electromigration, ¹⁻⁵ is a subject of both fundamental and technological interest. From a fundamental point of view, electromigration is interesting because it involves