Benchmarking integration of single-cell differential expression

User Guide

1. GitHub folder structure

- 'code' contains the core analysis Python & R scripts for this study
 - o 'data-and-simulation' contains sample data and scripts for data preparation step
 - 'COVID19-data' gives scripts for data preparation using COVID-19 data
 - 'LUAD-data' gives scripts for data preparation using LUAD data
 - 'model-based-simulation' gives scripts for simulating data using MCA and Pancreas data
 - 'model-free-simulation' gives scripts for simulating data using Splatter
 - o 'method-executing-scripts' contains implementation for each considered method
 - o 'result-analysis' contains <ANA-function> scripts for analyzing
- 'data' contains figures and tables of the experimental results for illustration

2. Analysis code input-output

- R BEC-limma
- R BEC-pseudobulk_edger
- R BEC-seurat3
- R COV-deseq2
- R COV-edger
- R COV-edger_DetRate
- R COV-limma_trend
- R COV-limma_trend_Combat_false
- R COV-limma_trend_False
- R COV-limma_trend_mnnCorrect
- R COV-limma_trend_scMerge
- R COV-limma_voom
- R COV-mast
- R COV-zinbwave_deseq2
- R DE-DEGs_from_Seurat_auc
- R DE-Seurat_DEG_analysis_auc

- '<method-category>_<method-name>': script to specifically test a particular method
- o < method-category >: includes 'BEC', 'COV', 'META', 'DE', 'ANA' indicating the characteristic of a method.
 Note that all results of 'BEC', 'COV', 'META', 'DE' functions are required before running 'ANA' functions or else code modification is essential.
 - o < method-name >: indicate the specific method

o input:

■ a count matrix (genes × cells)

*	X1_A	‡ X1_A.1	‡	X1_A.2	÷]	X1_A.3	‡	X1_A.4	‡	X1_A.5	‡	X1_A.6	‡	X1_A.7	‡	X1_A.8	‡	X1_A.9	[‡] X1_A.1	, ÷
0610007P14Rik					0	(0													
0610012G03Rik		0	0		0		1				0								0	0
1110004E09Rik					0	(
1110004F10Rik		0	0			(0				0								0	0
1110008F13Rik					0	(
1110008P14Rik		0	0		0	(0				0								0	
1110038B12Rik					0	(
1110038F14Rik		0	0			(0				0								0	0
1110059E24Rik					0	(0													
1110059G10Rik		0	0		0	(0				0								0	
1300002E11Rik					0	(
1600020E01Rik		0	0		0	(0				0								0	0
1700037H04Rik					0	(
1700097N02Rik		0	0		0	(0				0								0	0

• a data frame of cell descriptions (group, batch, ... information)

a data frame of gene descriptions (id, name, code, ...information)

o output:

• batch effect correction methods: a matrix of corrected values (genes × cells)

Wilcoxson rank sum test: a data frame of gene ranking analysis

parametric and integration methods: a data frame of gene ranking analysis

meta-analysis methods: a data frame of gene ranking analysis

3. Sample code usage

- All requirement libraries used for testing Python (version >= 3.8) code are listed in the file
 'requirements.txt' including:
 - anndata==0.8.0
 - helpers==0.2.0
 - matplotlib==3.5.3
 - numpy==1.23.1
 - pandas==1.4.4
 - scanorama==1.7.2
 - scanpy==1.9.1
 - scgen==2.1.0
 - scipy==1.9.1
 - scvi==0.6.8
 - seaborn==0.12.1
 - torch==1.12.1
 - ✓ Python codes includes 'BEC_scanorama.py', 'BEC_scgen.py', 'BEC_scvi.py' for corresponding methods 'scanorama', 'scgen', and 'scvi'

√

✓ After installing library dependencies, a Python code can be used directly in the command line as:

\$>python BEC_scanorama.py

✓ Python codes are run separately, and the results will be integrated later via an R wrapper function from 'BEC_format_python_output.R'

- '_sample_run.R' shows how to use each separate method provided in the 'method-executing-scripts'

```
dir_refscript='ref_script'
files.sources = list.files(dir_refscript,full.names = T)

sapply(files.sources, source)

# example-1a on processing a BEC method
run_combat(count,cellinfo)
load('combat.rda')
run_wilcox(processed = T,cellinfo=cellinfo,is.log=T,former.meth = 'combat')
load('combat+wilcox.rda')

# example-1b on processing a BEC method using Python including 'scvi', 'scgen', 'scanorama'
run_format_python(cellinfo, meth='scvi')
run_wilcox(processed = T,cellinfo=cellinfo,is.log=T,former.meth = 'scvi')
load('scvi+wilcox.rda')

# example-2 on processing a COV method
run_limmavoom(count,cellinfo,cov=T)
load('limmavoom.rda')

# example-3 on processing a META method
run_LogNormalize_scp.rda')
run_limmatrend_sep.processed_processed,cellinfo=cellinfo,former.meth = 'LogNormalize')
load('LogNormalize_sep+limmatrend_sep.rda')
run_wFisher(res,processed=processed,cellinfo=cellinfo,former.meth='LogNormalize_sep+limmatrend')
load('LogNormalize_sep+limmatrend_sep+wfisher.rda')
```

- O Results from separate scripts will be looked like the following:
 - LogNormalize_sep.rda
 - LogNormalize sep sep+es sep.rda
 - LogNormalize sep sep+es sep sep+FEM.rda
 - LogNormalize_sep_sep+es_sep_sep+REM.rda
 - LogNormalize_sep_sep+limmatrend_sep.rda
 - LogNormalize_sep_sep+limmatrend_sep_sep+wfisher.rda
 - MAST.rda
 - MAST_Cov.rda
 - Seurat.rda
 - Seurat+wilcox.rda
 - cellinfo.txt
 - combat.rda
 - combat+limmatrend.rda
 - combat+wilcox.rda

4. Visualization

- o 'ANA_fbeta_2b.R'
 - ✓ Aggerate all output results and visualize F-beta performance

- o 'ANA_aupr_2b.R'
 - ✓ Aggerate all output results and illustrate the partial AUPR curve

