Lecture Notes – The Julia Set Josh Lipschultz & Ricky LeVan

Preliminaries

As a quick recap of what we saw last week, recall the following facts. First, for the quadratic map $Q_0(z)=z^2$ we saw chaotic behavior only on S^1 by angle doubling $(\theta \to 2\theta)$. We saw that $Q_0(z) \to \infty$ for all |z| > 1 and $Q_0(z) \to 0$ for all |z| < 1.

We also defined the Julia Set J_c as the boundary of the Filled Julia Set K_c . We could alternatively define J_c as the closure of the set of repelling points of Q_c (in fact, this definition isn't limited to the quadratic map; any polynomial will do, and is denoted J(P) for some $P: \mathbb{C} \to \mathbb{C}$).

The *stable set* of a a complex polynomial P, denoted S(P), is the complement of I(C).

Finally, the previous group discussed how the points of S^1 were supersensitive. That is, any open ball around $z \in S^1$ has the property that $\bigcup_{n=0}^{\infty} Q_0^{\circ n}(z) = \mathbb{C} \setminus \{p\}$ for at most one point p.

16.3 – The Julia Set as a Cantor Set

For this section of the talk, we will consider the family of quadratic functions $Q_c(z) = z^2 + c$ when |c| > 2.

The first big Theorem we will discuss, not in complete detail, is the following.

Theorem 1. Suppose |c| > 2. Then $J_c = K_c$ is a Cantor set. Moreover, the quadratic map Q_c , when restricted to J_c , is conjugate to the shift map on two symbols.

Theorem 2 (The Escape Criterion).

Corollary 1.

Corollary 2.

Corollary 3.

16.4 – Computing the Filled Julia Set

16.5 – Computing the Julia Set Another Way