gate 1

EE24Btech11041 - Mohit

Q.7-Q.24 carry two marks each

to 3 places of decimals is

a) 8	b) 7	c) 6	d) 5	
2) The iteration so The value of <i>x</i>	scheme $x_{n+1} = \frac{1}{1+x_n^2}$ converge correct up to 2 places of x_n	ges to a real number x in decimal is equal to	n the interval $(0,1)$ with 3	$x_0 = 0.5.$

1) The minimum number of terms required in the series expansion of e^x to evaluate at x = 1 correct up

3) If the diagonal elements of a lower triangular square matrix A are all different from zero, then the matrix A will always be

c) 0.73

d) 0.80

a) symmetric b) non-symmetric c) singular d) non-singular

4) If two eigenvalues of the matrix (2 6 0)

$$M = \begin{pmatrix} 2 & 6 & 0 \\ 1 & p & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

a) 0.65

are -1 and 4, then the value of p is:

a) 4 b) 2 c) 1 d) -1

5) Consider the system of linear simultaneous equations:

b) 0.68

$$x + 10y = 5;$$
 $y + 5z = 1;$ $10x - y + z = 0$

On applying Gauss-Seidel method, the value of x correct up to 4 decimal places is:

a) 0.0385 b) 0.0395 c) 0.0405 d) 0.0410

6) The graph of a function y = f(x) passes through the points (0, -3), (1, -1), (2, 3). Using Lagrange interpolation, the value of x at which the curve crosses the x-axis is obtained as:

a) 1.375 b) 0.0395 c) 0.0405 d) 0.0410

7) The equation of the straight line of best fit using the following data: by the principle of least squares

X	1	2	3	4	5
У	14	13	9	5	2

is:

a)
$$y = 18 - 3x$$
 b) $y = 18.1 - 3.1x$ c) $y = 18.2 - 3.2x$ d) $y = 18.3 - 3.3x$

8) On solving the initial value problem:

$$\frac{dy}{dx} = xy^2, \quad y(1) = 1 \tag{1}$$

by Euler's method, the value of y at x = 1.2 with h = 0.1 is:

				2					
	a) 1.1000	b) 1.1232	c) 1.2210	d) 1.2331					
9)	9) The local error of the following scheme:								
	$y_{n+1} = y_n + \frac{h}{12} \left(5y'_{n+1} + 8y'_n - y'_{n-1} \right) \tag{2}$								
	by comparing with the	Taylor series:	2						
	$y_{n+1} = y_n + hy'_n + \frac{h^2}{2!}y''_n + \cdots $ (3)								
	is:		2.						
	a) $O(h^4)$	b) $O(h^5)$	c) $O(h^2)$	d) $O(h^3)$					
10)	0) The area bounded by the curve $y = 1 - x^2$ and the x-axis from $x = -1$ to $x = 1$ using Trapezoidal rule with step length $h = 0.5$ is:								
	a) 1.20	b) 1.23	c) 1.25	d) 1.33					
11)	The iteration scheme:	$x_{n+1} = \sqrt{a} \left(1 + \frac{1}{2} \right)$	$\left(\frac{3a^2}{x_n^2}\right) - \frac{3a^2}{x_n}, a > 0$	(4)					
	converges to the real nu	ımber:							
	a) \sqrt{a}	b) <i>a</i>	c) $a\sqrt{a}$	d) a^2					
12)	2) If the binary representation of two numbers m and n are 01001101 and 00101011, respectively, ther the binary representation of $m - n$ is:								
	a) 00010010	b) 00100010	c) 00111101	d) 00100001					
13)	B) Which of the following statements are true in a C program? P: A local variable is used only within the block where it is defined, and its sub-blocks Q: Global variables are declared outside the scope of all blocks R: Extern variables are used by linkers for sharing between other compilation units S: By default, all global variables are extern variables								
	a) P and Q	b) P, Q and R	c) P, Q and S	d) P, Q, R and S					
14)	4 Consider the following	recursive function $g()$.							
	Recursive integer function integer :: m , n	ion g(m, n) result (r)							

if(n==0) then r = melse if $(m \le 0)$ then r = n + 1else if ((n-n/2*2) == 1) then r = g(m-1,n/2)end if end

Which value will be returned if the function g is called with 6, 6?

```
a) 2
                        b) 4
                                                 c) 6
                                                                         d) 8
```

15) If the following function is called with x = 1

```
real function print value(x)
real:: x , sum , term
integer :: i
sum = 2.0
term = 1.0
do while (term > 0.00001)
term (x * term / (i + 1))
sum = sum + term
i = i + 1
end to
print value = sum
end
```

The value returned will be close to

a) $\log_e 2$

- b) log_e 3
- c) 1 + e

d) e

16) Consider the following C program

```
#include < stdio.h >
#include < string.h >
void main()
char s[80],*p
int sum =0;
 p=s;
gets(s); while(*p)
if (*p=='1')
sum = 2*sum + 1;
else if (*p=='0')
sum = sum*2
else
printf("invalid string");
p++;
printf("%d",sum);
```

Which number will be printed if the input string is 10110?

a) 31

b) 28

c) 25

d) 22