Guia 6 Complejidad Computacional 1 Cuatrimestre 2025

Juan DElia

Ejercicio 2 Probar que si $\Sigma_k^p = \Pi_k^p$ para algun $k \in \mathbb{N}$, entonces $\mathbf{PH} = \Sigma_k^p$

Recordar que PH es la union de todo Σ_k^p

Probar esto es probar que toda la jerarquia colapsa en ese k. Porque $\Sigma_{i \leq k} \subseteq \Sigma_k$, como todos los mas chicos ya sabemos que estan en Σ_k basta con ver que los mas grande tambien.

Veamos por induccion que $\Sigma_k^p = \Sigma_{k+n}^p$

CB, n=0

$$\Sigma_k^p = \Sigma_k^p$$

Trivial, vale.

Paso inductivo

$$HI: \Sigma_k^p = \Sigma_{k+n}^p$$

Quiero ver que: $\Sigma_k^p = \Sigma_{k+n+1}^p$

Reemplazando la izquierda del igual por la $H\!I$ es lo mismo que ver:

$$\Sigma_{k+n}^p = \Sigma_{k+n+1}^p$$

Ya sabemos que vale $\Sigma_{k+n}^p \subseteq \Sigma_{k+n+1}^p$

Veamos la otra contencion, tomo L $\in \Sigma_{k+n+1}^p$:

$$x \in L \iff \exists y_1 \forall y_2 ... Q_{k+n+1} y_{k+n+1} P(y_1, y_2, ..., y_{k+n+1})$$

El ultimo cuantificador dependiendo de la paridad de los literales puede ser un \exists o un \forall . Vimos en la teorica que cuando tenemos bloques de cuantificadores repetidos se pueden juntar en un unico cuantificador manteniendo asi la alternancia.

Si el cuantificador anterior al ultimo Q es el mismo que este Q los puedo juntar en uno mismo, asi manteniendo la alternancia y teniendo una variable cuantificada menos.

El otro caso seria que el cuantificador anterior sea distinto al ultimo, a priori no podriamos juntarlos. Pero por la hipotesis del enunciado $\Sigma = \Pi$ para algun k (ademas aca por HI tenemos que $\Sigma_{k+n} = \Sigma_k$). Entonces podemos invertir el orden de los cuantificadores y usar la misma idea, junto los del final.

Por lo tanto en cualquier caso puedo reescribir:

$$x \in L \iff Q_1 y_1 Q_2 y_2 ... Q_{k+n} y'_{k+n} P(y_1, ..., y'_{k+n})$$

Con esto puedo concluir que para cierto k, $\Sigma_k^p = \Sigma_{k+n}^p$

Y por lo que explique al principio $PH = \Sigma_k^p$

Ejercicio 3 Probar que si SAT $\leq_P \neg$ SAT entonces PH = NP

Por hipotesis puedo decir que $NP \subseteq coNP$, pues cualquier problema de NP seria menor o igual de dificil que uno de coNP.

Ademas la reduccion lo que me dice es $\phi \in SAT \iff f(\phi) \in \neg SAT$

Que es lo mismo (por como es SAT) que $\neg \phi \in \neg SAT \iff \neg f(\phi) \in SAT$

Es decir:

$$\neg SAT \leq_p SAT$$

Que al igual que antes implica que (not SAT es co
NP completo) $coNP \subseteq NP$

Por lo tanto coNP = NP

Con esto en mente recordemos del ejercicio anterior que:

Si para algun k $\Sigma_k^p = \Pi_k^p$ entonces PH = Σ_k^p

Tomando k=1:

$$\Sigma_1^p = NP = coNP = \Pi_1^p \Rightarrow PH = NP$$

Ejercicio 4 Probar que el problema FORMULA_MAS_CHICA de la guia anterior esta en Σ_2^p

$$\langle \phi, k \rangle \in \text{FORMULA MAS CHICA} \iff \exists v \forall \phi'(|\phi'| \leq k \Rightarrow \phi(v) \neq \phi'(v))$$

Es decir, que una formula sea mas chica que k implica que para alguna valuación ϕ y ϕ' son distintas.

 $M(\langle \phi, k, v, \phi' \rangle)$ Corre en timepo polinomial, solo tiene que evaluar ambas formulas en v y ver que sean distintas y chequear que la longitud de $\phi' \leq k$

Ejercicio 5 La clase $DP = \{L_1 \cap L_2 : L_1 \in NP, L_2 \in coNP\}$ consiste de la interseccion de problemas en NP y coNP (notar que $DP \neq NP \cap coNP$. Probar

a)
$$DP \subseteq \Sigma_2^p \cap \Pi_2^p$$

Aclaro (por que no es tan claro para mi) que $L\in DP\iff L=L_1\cap L_2\wedge L_1\in NP\wedge L_2\in coNP$

Tengo que ver que $\forall L \in DP \Rightarrow L \in \Sigma_2^p \cap \Pi_2^p$

Tiene que pertenecer a ambos asi que lo puedo ver por separado.

$L \in \Sigma_2^p$:

Sabemos que $NP = \Sigma_1^p$ y que $coNP = \Pi_1^p$

Entonces L se puede escribir como (usando las definiciones de pi y sigma):

$$L = L_1 \cap L_2 = (\exists y_1 M_1(x, y_1) \land (\forall y_2 M_2(x, y_2))) = \exists y_1 \forall y_2 M'(x, y_1, y_2)$$

Que claramente $\in \Sigma_2^2$

Para ver $\mathbf{L} \in \mathbf{\Pi_2^p}$ es analogo, si tomamos la interseccion al reves $(L_1 \cap L_2 = L_2 \cap L_1)$ quedan los cuantificadores invertidos.

$$\forall y_1 \exists y_2 M'(x, y_1, y_2) \in \Pi_2^p$$
 q.e.d

b) El siguiente lenguaje esta en DP. EXACT INDSET = $\{ \langle g,k \rangle : G \}$ es un grafo cuyo conjunto independiente mas grande tiene tamaño $k \}$

Tengo que escribir a EXACT-INDSET = $L_1 \cap L_2$ con $L_1 \in NP$ y $L_2 \in coNP$

Mi L_1 va a ser INDSET. Claramente es NP, el certificado es el conjunto de vertices tq |conjunto| es mayor o igual a k y todas cosas que se pueden chequear en tiempo polinomial.

Defino el otro lenguaje como $L_2 = \{ \langle g,k \rangle : G$ no tiene un conjunto independiente de longitud $> k \}$

El complemento de L_2 es $\{\langle g,k\rangle : G$ tiene un conjunto independiente de longitud $> k\}$. Este lenguaje al igual que el primero es claramente NP. Certificarlo es tan simple como dar el conjunto de nodos independientes. $\Rightarrow L_2 \in coNP$

Es trivial ver que $L_1 \cap L_2 = EXACT - INDSET$