Určení polohy Barnardovy hvězdy na nebeské sféře

F4191: Praktikum z astronomie 2 Artem Gorodilov

30. října 2024

1. Abstrakt

V této práci jsme určili přesnou polohu hvězdy Barnadra k datu 01.05.2024 02:06 (UT). Pozorování bylo provedeno na Vyškovské hvězdárně (17.02236954°, 49.28377745°) ve filtru Halfa, expoziční doba 30 s.

Výpočty byly provedeny pomocí skriptu v Pythonu^[1].

2. Zpracování dat

2.1. Popis paipelinu

Jako vstupní data skript použije tabulku "data/positions.csv", jejíž data jsou ve formátu:

```
ra,dec,X,Y
"17:57:24.446","+04:36:08.11",1292.5,1651.1667
...
```

kde ra,dec jsou souřadnice hvězd převzaté z databáze Aladin^[2] a X,Y jsou souřadnice stejných hvězd v osách Image X a Image Y.

```
# Importing data
data = pd.read_csv('data/positions.csv')
```

Dále načteme náš .fits snimek pomocí knihovny astropy a určíme jeho střed v pixelech. V naší práci jsme analyzovali snimek barnard_2024-05-01_02-06-51_Halpha_0310.fits.

Střed snimku (neboli střed CCD čipu):

```
x_{center} = 1028 \text{ px}, y_{center} = 1031 \text{ px}
```

Pak jsme transformovali souřadný systém tak, že počátek (0,0) je v bodě (x_{center}, y_{center}) :

```
# Convert coordinate system to have (0,0) at
          (x_center, y_center)
2 data['X'] = data['X'] - x_center
3 data['Y'] = data['Y'] - y_center
```

Dále jsme převedli Ra a Dec z positions.csv na desetinné stupně pomocí ra_to_decimal() a dec to decimal().

Protože byl náš obrázek otočen vzhledem k původním souřadnicím Ra a Dec a posunut podél příslušných os, musíme vypočítat parametry těchto transformací. To jsme provedli pomocí afinní transformace zobrazení:

$$\begin{bmatrix} X_{trans} \\ Y_{trans} \end{bmatrix} = \begin{bmatrix} a & b \\ b & -a \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix} + \begin{bmatrix} c \\ d \end{bmatrix}$$
 (1)

$$X_{trans} = aX + bY + c \tag{2}$$

$$Y_{trans} = bX - aY + d \tag{3}$$

kde jsme pomocí knihovny scipy a metody nejmenších čtverců least_squares zjistili koeficienty a a b (koeficienty rotace), c a d (koeficienty posunu).

Dále jsme určili směrodatné odchylky pomocí funkce residuals () a jacobianu transformace, ze které jsme pak získali kovarianční matici, jejíž kořeny diagonálních prvků jsou směrodatné odchylky parametrů a,b,c,d.

$$p = [a, b, c, d]^T$$
 - koeficienty transformace $\text{Cov}(\mathbf{p}) = \sigma^2 (\mathbf{J}^T \mathbf{J})^{-1}$ - kovarianční matice $\sigma_p = \sqrt{diag(Cov(p))}$ - směrodatné odchylky

kde σ^2 je střední hodnota kvadrátu reziduí, J je jakobian transformace.

Pro výpočet úhlu otočení kamery θ vzhledem k souřadnicím použijeme vzorec:

$$\theta = \arctan \frac{b}{a} \tag{4}$$

Nakonec můžeme pomocí funkce transform_coordinates() a zjištěných parametrů a,b,c,d vypočítat skutečné Ra a Dec pro libovolné vybrané objekty se souřadnicemi X a Y.

Zorné pole jsme vypočítali tak, že jsme zjistili krajní hodnoty Ra, Dec pro osy X a Y a jednu od druhé odečetli.

Rozlišení kamery jsme určili jako:

$$R = \sqrt{a^2 + b^2} \cdot 3600 \tag{5}$$

Při znalosti fyzické velikosti pixelů čipu CCD (S = $7.4 \text{x} 7.4 \ \mu\text{m}^2$) a rozlišení kamery jsme byli schopni určit ohniskovou vzdálenost dalekohledu pomocí funkce calculate_focal_length().

$$f = \frac{S}{R} \cdot 206265 \tag{6}$$

kde S je velikost pixelu, R je rozlišení kamery.

3. Výsledky

Pro určení transformačních parametrů jsme vybrali 21 hvězd určením jejich polohy na snímku (X,Y) a jejich souřadnic z Aladinu (Ra, Dec). Údaje jsou uvedeny v tabulce (1) a na obrázku (1).

Jako instrumentální chybu jsme použili tyto hodnoty:

$$\sigma_{x,y} = 0.5 \text{ px}, \sigma_{ra,dec} = 0.1 \text{ arcsec}$$

Určili jsme transformační parametry a,b,c,d:

$$a = 5.37(1) \cdot 10^{-5} \text{ [deg/px]}, b = -2.128(1) \cdot 10^{4} \text{ [deg/px]},$$

$$c = 269.46954(7) \text{ [deg]}, d = 4.69246(7) \text{ [deg]}$$

Z toho jsme určili úhel otočení θ :

$$\theta = -75.84(3) \text{ [deg]}$$

Poté jsme určili souřadnice středu čipu:

$$X_{center} = 1028 \text{ px}, Y_{center} = 1031 \text{ px}$$

 $Ra_{center} = 17:57:52.69(3) \text{ [h]},$
 $Dec_{center} = +04:41:32.9(5) \text{ [deg]}$

Poté jsme určili souřadnice Barnardovy hvězdy:

$$X_{Barnard}$$
 = 687.7441 px, $Y_{Barnard}$ = 1051.81917 px
 $Ra_{Barnard}$ = 17:57:47.24(3) [h],
 $Dec_{Barnard}$ = +04:45:49.6(5) [deg]

Poté jsme vypočítali zorné pole kamery:

$$FOV_{ra} = 1183(1)$$
 [arcsec], $FOV_{dec} = 1974(1)$ [arcsec]

A také rozlišení kamery:

$$R = 0.7902(4) [arcsec/px]$$

Velikost čipu je 2056x2062.

Ohniskovou vzdálenost dalekohledu jsme určili jako:

$$f = 1.9316(9)$$
 [m]

Pro kontrolu jsme vynesli do grafu hodnoty Ra a Dec, které jsme získali, a hodnoty získané z Aladinu. Výsledky jsou znázorněny na obrázku (2).

K ověření správné identifikace Barnardovy hvězdy jsme použili data Gaia DR3 a práci (Buchheim+)^[3]. Jak je vidět, hvězda má vysoký vlastní pohyb, který jsme také vypočítali:

$$\mu_{ra} = (-752\pm30) \text{ [mas/yr]},$$

 $\mu_{dec} = (10427\pm30) \text{ [mas/yr]}$

4. Závěr

Jak je patrné z obrázku (2), parametry transformace byly určeny správně. Totéž lze říci o úhlu otočení. Hodnoty zorného pole a rozlišení kamery se zdají být důvěryhodné, ale bylo by dobré je porovnat se skutečnými údaji. Na základě zjištěných rychlostí vlastního pohybu hvězdy a jejich porovnání s údaji z literatury [3], můžeme říci, že jsme správně identifikovali Barnardovu hvězdu.

$$\mu_{ra} = 801.551 \text{ [mas/yr]},$$

 $\mu_{dec} = 10362.394 \text{ [mas/yr]}$

Figure (1) Snímek noční oblohy s vyznačenými hvězdami, Barnardovou hvězdou a centrem čipu

Figure (2) Graf Ra a Dec souřadnic hvězd z Aladinu a získaných z obrázku, Barnardova hvězda je vyznačena modřym křížem

4.1. Tabulka 1: Souřadnice hvězd a residua transformace

ra	dec	X	Y	res_x	res_y
17:57:24.446	+04:36:08.11	1292.5	1651.1667	-1.0937e-04	6.2177e-04
17:57:29.108	+04:35:36.49	1354.5	1575.0	5.1111e-06	2.9796e-04
17:57:32.544	+04:35:31.50	1377.0	1513.0	9.2253e-05	2.2353e-04
17:57:34.962	+04:35:11.05	1415.5	1476.5	-1.4739e-04	-3.3077e-04
17:57:38.111	+04:35:12.71	1427.5	1416.5	1.4625e-04	-1.2499e-04
17:57:32.401	+04:34:48.69	1429.5	1528.5	2.0743e-04	1.0913e-04
17:57:30.349	+04:34:25.14	1450.5	1574.0	2.0063e-04	-2.6135e-04
17:57:24.988	+04:34:05.86	1449.0	1678.0	3.2246e-04	-1.6951e-04
17:57:21.537	+04:33:43.02	1460.5	1748.5	3.1389e-04	-5.7316e-05
17:57:34.667	+04:33:19.14	1549.9536	1516.6014	-2.3553e-04	-1.4228e-05
17:57:31.785	+04:32:49.36	1572.1035	1578.9755	-3.1371e-04	1.9526e-04
17:57:29.378	+04:32:08.04	1613.8482	1636.2772	-2.3957e-04	-2.8791e-04
17:57:51.826	+04:36:24.33	1404.5686	1144.4403	-3.2596e-04	-5.3394e-04
17:57:49.580	+04:42:24.63	949.9396	1071.7271	1.0291e-04	4.8466e-05
17:57:51.935	+04:42:20.59	966.5458	1029.9069	8.2802e-05	-1.1873e-04
17:57:54.496	+04:40:50.21	1088.1639	1012.347	-3.2186e-04	4.4531e-05
17:57:51.951	+04:40:27.62	1104.8391	1062.9849	3.9980e-04	5.2050e-05
17:58:10.833	+04:49:23.07	534.4945	552.3371	-2.0743e-04	1.1974e-04
17:58:16.400	+04:50:25.93	481.6455	430.0311	-2.0897e-04	4.7258e-04
17:58:21.586	+04:36:10.57	1558.5017	599.9235	-1.6861e-04	-2.4354e-04
17:57:18.900	+04:45:36.65	572.6328	1575.7567	4.0487e-04	-4.2736e-05

References

- [1] 1. Praktikum-z-astronomie, Available online:
 https://github.com/PoruchikRzhevsky/Praktikum-z-astronomie
- [2] 2. Aladin Lite, Available online: https://aladin.cds.unistra.fr/AladinLite/
- [3] 3. Buchheim, Robert K, 2011, Society for Astronomical Sciences Annual Symposium, 109-114, Available online: https://ui.adsabs.harvard.edu/abs/2011SASS...30..109B
- [4] 4. Gaia Data Release 3. Summary of the content and survey properties, 2023, A&A, 674, id.A1, 22 pp., Available online: https://ui.adsabs.harvard.edu/abs/2023A%26A...674A...1G