高等代数 (II) 第五次习题课

李卓远 数学科学学院

zy.li@stu.pku.edu.cn

1 内容概要

- 线性映射的核, 像的基;
- 矩阵的最小多项式 (Jordan 标准形);
- 不变子空间.

2 补充知识

为简便起见, 以下用 $\mathbf{Vect}_{\mathbb{F}}$ 和 $\mathbf{FDVect}_{\mathbb{F}}$ 分别指代数域 \mathbb{F} 上线性空间和有限维线性空间全体.

2.1 线性映射

Definition 2.1.1 (linear map). 设 $V, V' \in \mathbf{Vect}_{\mathbb{F}}$. 称 $f: V \to V'$ 为线性映射, 若对任意 $\alpha, \beta \in \mathbb{F}$ 及任意 $v_1, v_2 \in V$ 有

$$f(k\alpha + l\beta) = kf(\alpha) + lf(\beta), \forall k, l \in \mathbb{F}, \alpha, \beta \in V.$$

记满足上述条件的映射全体构成的集合为 Hom(V, V') (homomorphisms). 特别地, 当 V = V' 时, Hom(V, V) 又记为 End(V) (endomorphisms), 并称此时的 f 为 V 上的线性变换.

Remark 2.1.2. 若 $V \in \mathbf{FDVect}_{\mathbb{F}}$, 在取定基后其上的线性映射总可以由矩阵表示, 这本质上是因为 $V \cong \mathbb{F}^{\dim V}$. 例如对 $V, V' \in \mathbf{FDVect}_{\mathbb{F}}$, $f \in \mathrm{Hom}(V, V')$, 取定 V 的一组基 $\alpha_1, \dots, \alpha_n$, 有

$$f\left(\sum_{j} k_j \alpha_j\right) = \sum_{j} k_j f(\alpha_j) \in \operatorname{span}(f(\alpha_j))_j,$$

即 $\operatorname{im} f$ 中的元素始终能由 $\{f(\alpha_j)\}_j$ 线性表出. 故而要确定一线性映射的函数关系, 只需给出 $\{f(\alpha_j)\}_j$ 具体的取值即可. 进一步地, 若再取 V' 的一组基 β_1, \cdots, β_m , 则 $\{f(\alpha_j)\}_j$ 可由它们被 $\{\beta_s\}_{s=1}^m$ 表出的方式唯一确定, 而这些表出方式共同构成了 f 的矩阵形式.

Remark 2.1.3. 对于 $V, V' \in \mathbf{Vect}_{\mathbb{F}}$, $\mathrm{Hom}(V, V')$ 自身也按照函数的加法和数乘构成一个线性空间. 当 $V, V' \in \mathbf{FDVect}_{\mathbb{F}}$ 时,

$$\operatorname{Hom}(V,V') \cong \operatorname{Hom}(\mathbb{F}^{\dim V},\mathbb{F}^{\dim V'}) \cong \mathbb{F}^{\dim V' \times \dim V}, \dim \operatorname{Hom}(V,V') = (\dim V)(\dim V').$$

特别地上述结论对 $\operatorname{End}(V)$ 也成立, 而在 $\operatorname{End}(V)$ 上类比 $\operatorname{End}(V)$ 还可以额外定义乘法 (复合函数), 构成一个含乘法单位元的环 (代数).

Example 2.1.4. 1. $\frac{d}{dx}$ on $C^{\infty}(a,b)$ or $\mathbb{F}[x]$;

- 2. 对于 $V = U \oplus W$, 投影算子 $P_U, P_W : V \to V$ 幂等, 互相正交;
- 3. $\mathbb{F}[A] \subseteq \operatorname{End}(V)$ for $A \in \operatorname{End}(V)$.

2.2 核空间与像空间

Definition 2.2.1 (kernel& image). 设 $V, V' \in \mathbf{Vect}_{\mathbb{F}}, f \in \mathrm{Hom}(V, V')$. 称

$$\ker f = \{v \in V | f(v) = 0\}, \text{ im } f = \{f(v) | v \in V\}$$

分别为 f 的核 (kernel) 空间和像 (image) 空间. 在一些结论的叙述中, 给出核空间 ker f 在一定意义下的对偶 coker f 可以帮助我们记忆和理解. 称

$$\operatorname{coker} f = V' / \operatorname{im} f$$

为余核 (cokernel) 空间. 这是因为它可以使得序列

$$0 \longrightarrow \ker f \xrightarrow{i} V \xrightarrow{f} V' \xrightarrow{q} \operatorname{coker} f \longrightarrow 0$$

正合 (exact), 即每个映射的像空间都恰好是下一个映射的核空间.

Proposition 2.2.2. 对于 $V \in \mathbf{FDVect}_{\mathbb{F}}, V' \in \mathbf{Vect}_{\mathbb{F}}, f \in \mathrm{Hom}(V, V')$, 由同态定理

$$V/\ker f \cong V'$$

有

$$\dim \ker f + \dim \operatorname{im} f = \dim V.$$

这恰好对应线性方程组解空间的维数 $(\dim \ker f)$ 与系数矩阵秩 $(\dim \operatorname{im} f)$ 的关系. 注意上述关系与 V' 的维数无关, 因为我们总是可以将 f 的值域限制在 $\operatorname{im} f$ 上, 从而将 V' 替换为 $\operatorname{im} f$, 而 $\dim V < +\infty$ 蕴含着 $\dim \operatorname{im} f < +\infty$.

Proposition 2.2.3. 读 $V, V' \in \mathbf{Vect}_{\mathbb{F}}, f \in \mathrm{Hom}(V, V')$, 则

- f 是单射当且仅当 $\ker f = 0$;
- f 是满射当且仅当 im f = V', 或 coker f = 0.

直接推论: 对于 $f \in \text{End}(V)$, 若 $V \in \mathbf{FDVect}_{\mathbb{F}}$, 利用维数关系有 $\ker f = 0$ 当且仅当 $\operatorname{im} f = V'$, 故而 f 为同构当且仅当其为单射或满射. 当 V 是无限维时结论不成立, 例如 $\frac{d}{dx}$ 是 $\mathbb{F}[x]$ 上的满射但不是单射.

2.3 线性映射的坐标表示

以下仅考虑 $V, V' \in \mathbf{FDVect}_{\mathbb{F}}$ 的情形, $\dim V = n$, $\dim V' = m$. 设 $f \in \mathrm{Hom}(V, V')$. 取 V 的一组基 $\alpha_1, \dots, \alpha_n$, 可以如下定义坐标映射 (同构)

$$T_{\alpha}: V \to \mathbb{F}^n$$

$$\sum_{i=1}^n k_i \alpha_i \mapsto (k_1, \cdots, k_n)^{\mathsf{T}}$$

而同一个向量 $v \in V$ 在不同基下的坐标表示可通过基之间的过渡矩阵给出. 设 β_1, \dots, β_n 是 V 的另一组基,满足

$$(\beta_1, \cdots, \beta_n) = (\alpha_1, \cdots, \alpha_n)P,$$

那么

$$v = \sum_{i=1}^{n} k_i \alpha_i = (\alpha_1, \dots, \alpha_n)(k_1, \dots, k_n)^{\mathsf{T}} = (\beta_1, \dots, \beta_n) P^{-1}(k_1, \dots, k_n)^{\mathsf{T}},$$

 $\mathbb{P} T_{\beta} = P^{-1} \circ T_{\alpha}.$

要考虑线性映射 $f \in \text{Hom}(V, V')$ 的坐标表示需要同时分别确定 V 和 V' 的一组基. 设 $\alpha_1, \dots, \alpha_n$ 是 V 的一组基, ξ_1, \dots, ξ_m 是 V' 的一组基, 那么 f 的坐标表示 $A_{\alpha,\xi}$ 满足

$$f\left(\sum_{i=1}^{n} k_i \alpha_i\right) = \sum_{i=1}^{n} k_i f(\alpha_i)$$
$$= (f(\alpha_1), \dots, f(\alpha_n))(k_1, \dots, k_n)^{\mathsf{T}}$$
$$= (\xi_1, \dots, \xi_m) A_{\alpha, \xi}(k_1, \dots, k_n)^{\mathsf{T}},$$

即下图交换

$$V \xrightarrow{f} V'$$

$$T_{\alpha} \downarrow \qquad \qquad \downarrow T_{\xi}$$

$$\mathbb{F}^{n} \xrightarrow{A_{\alpha,\xi}} \mathbb{F}^{m}$$

结合不同基下的过渡矩阵可得下图

特别地, 当 V=V', $\alpha=\xi$, $\beta=\eta$, P=Q 时 A_{α} 和 A_{β} 满足相似关系, 即同一个线性变换在不同基下的矩阵表示落在同一个相似等价类中.

2.4 最小多项式

以下均假定 $V \in \mathbf{FDVect}_{\mathbb{F}}$, $A \in \mathrm{End}(V)$. 设

$$\varphi_A : \mathbb{F}[x] \to \operatorname{End}(V)$$

$$f(x) \mapsto f(A)$$

那么 $\ker \varphi_A$ 即为 A 的零化多项式全体构成的集合. 由于 φ_A 为环同态, $\ker \varphi_A$ 必为主理想 ($\mathbb{F}[x]$ 为主理 想整环), 故而可设 $\ker \varphi_A = (m_A(x))$. 另一方面由 $\dim \operatorname{End}(V) = (\dim V)^2 < +\infty$ 可知对于充分大的 K, I, A, A^2, \dots, A^K 线性相关, 那么 $\ker \varphi_A = (m_A(x)) \neq 0$. 称首一多项式 $m_A(x)$ 即为 A 的最小多项式.

Remark 2.4.1. 关系式 $\ker \varphi_A = (m_A(x))$ 不依赖于 $\dim V < +\infty$. 试思考并求出 $\frac{\mathrm{d}}{\mathrm{d}x} : \mathbb{F}[x] \to \mathbb{F}[x]$ 的对应的 $\ker \varphi_A = (m_A(x))$.

Remark 2.4.2. 设 dim V=n, 取 $K=n^2$ 即有 I,A,A^2,\cdots,A^K 线性相关, 那么 deg $m_A \leq n^2$. 而进一步利用 Hamilton-Cayley 定理可知 det $(xI-A) \in \ker \varphi_A$, 即 deg $m_A \leq n$.

设 A 幂零, 幂零指数为 l, 即 $m_A(x) = x^l$. 再考虑 $B_a = aI + A$, 知 $(\lambda - a)^l$ 能被 $m_B(\lambda)$ 整除, 立即得 到 $m_B(\lambda) = (\lambda - a)^l$. 直接推论:

$$m_{J_{\lambda_0}}(\lambda) = (\lambda - \lambda_0)^l,$$

其中 l 为 Jordan 块 J_{λ_0} 的尺寸. 故 A 的 Jordan 标准形直接反映了 m_A 的形式, 即若 $A = \operatorname{diag}(A_1, \dots, A_s)$, 那么 $m_A(x) = [m_{A_1}(x), \dots, m_{A_s}(x)]$. 同样的结论对有理标准形等其他标准形均成立. 故而求 A 的最小多项式只需给出 A 对应的 λ -阵的标准形即可,简单计算可知这恰好为 A 的序号最大的不变因子.

3 典型例题

Problem 3.1. 是否存在 $A, B \in \text{End}(V)$ 使得 $AB - BA = 1_V$. 若存在, 证明这样的 A 和 B 还满足

$$A^k B - A B^k = k A^{k-1}.$$

证明. 对于 $V \in \mathbf{FDVect}_{\mathbb{F}}$, 不妨考虑 $V = \mathbb{F}^n$, $A, B \in \mathbb{F}^{n \times n}$. 那么

$$0 = \operatorname{Tr}(AB - BA) = \operatorname{Tr} I_n = n,$$

即只有可能 V 是零空间. 对于一般的 $V \in \mathbf{Vect}_{\mathbb{F}}$, 可能存在解, 例如 $V = \mathbb{F}[x]$,

$$A: f(x) \mapsto f'(x), \quad B: f(x) \mapsto xf(x),$$

那么

$$AB(f(x)) - BA(f(x)) = (xf(x))' - xf'(x) = f(x). \quad \forall f \in V.$$

当 $AB - BA = 1_V$ 时,

$$A^{k}B - AB^{k} = \sum_{j=0}^{k-1} A^{k-j}BA^{j} - A^{k-j-1}BA^{j+1} = \sum_{j=0}^{k-1} A^{k-j-1}(AB - BA)A^{j} = kA^{k-1}.$$

Problem 3.2. 设 Char $\mathbb{F} = 0$, $V \in \mathbf{Vect}_{\mathbb{F}}$. 若 $A_1, \dots, A_s \in \mathrm{End}(V)$ 两两不同,则存在 $\alpha \in V$ 使得 $A_1\alpha, \dots, A_s\alpha$ 两两不同.

证明. $A_1, \dots, A_s \in \text{End}(V)$ 两两不同当且仅当

$$\ker(A_k - A_l) \neq V, \forall k \neq l.$$

由于 $Char \mathbb{F} = 0$, V 不能表示为有限个真子空间的并 (见上一次讲义 Corollary 3.9), 故而存在 $\alpha \in V$ 使得

$$\alpha \in V \setminus \bigcup_{k \neq l} \ker(A_k - A_l),$$

即为所求.

Problem 3.3 (Frobenius inequality). 考虑线性映射

$$V \xrightarrow{C} V' \xrightarrow{B} V'' \xrightarrow{A} V'''$$

其中 $\dim V$, $\dim V' < +\infty$, 证明

$$rank(ABC) + rank B \ge rank(AB) + rank(BC)$$
,

注意这里的 rank 是指线性映射的秩, 即 rank(A) = dim im A. 特別地, 令 B 为恒等映射即得 Sylvester inequality

$$rank(AB) + \dim V'' \ge rank A + rank B.$$

证明.

$$\begin{aligned} \operatorname{rank}(ABC) &= \dim(ABCV) = \dim\operatorname{im}(A|_{BCV}) \\ &= \dim(BCV) - \dim\ker(A|_{BCV}) \\ &\geq \operatorname{rank}(BC) - \dim\ker(A|_{BV'}) \\ &= \operatorname{rank}(BC) - \dim(BV') + \dim\operatorname{im}(A|_{BV'}) \\ &= \operatorname{rank}(BC) - \operatorname{rank}B + \operatorname{rank}(AB) \end{aligned}$$

Problem 3.4. 设 $A, B \in \text{End}(V), \dim V < +\infty$. 证明

$$\operatorname{rank}(AB) = \operatorname{rank}(B) \Rightarrow \operatorname{rank}(ABC) = \operatorname{rank}(BC), \forall C : V' \to V.$$

证明.

$$\operatorname{rank}(ABC) = \dim(ABCV) = \dim\operatorname{im}(A|_{BCV})$$
$$= \dim(BCV) - \dim\ker(A|_{BCV})$$
$$= \dim(BCV) - \dim(\ker A \cap \operatorname{im}(BC)).$$

而由 $\operatorname{rank}(AB) = \operatorname{rank} B$,再将 $C = 1_V$ 代人上式知 $\dim(\ker A \cap \operatorname{im} B) = 0$,于是对一般的 C 总有 $\dim(\ker A \cap \operatorname{im}(BC)) = 0$,故 $\operatorname{rank}(ABC) = \operatorname{rank}(BC)$.

Problem 3.5. 设

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 1 \\ -1 & 0 & 1 \end{pmatrix},$$

求 A 的最小多项式 m_A , 全空间关于 m_A 的直和分解, 以及各子空间的一组基.

证明. 考虑 A 对应的 λ -阵

$$\lambda I - A = \begin{pmatrix} \lambda - 1 & 0 & 0 \\ -1 & \lambda - 2 & -1 \\ 1 & 0 & \lambda - 1 \end{pmatrix}$$

直接得到 $D_3(\lambda) = (\lambda - 1)^2(\lambda - 2)$, 于是 $m_A(x) = (x - 1)(x - 2)$ 或 $m_A = (x - 1)^2(x - 2)$, 验证可知 $(A - I)(A - 2I) \neq 0$, 故而 $m_A = (x - 1)^2(x - 2)$. 相应的,

$$V = \ker(A - I)^2 \oplus \ker(A - 2I).$$

- $\mathbf{R}(A-I)^2x = 0$ 得解空间的一组基 $(1,0,0)^{\mathsf{T}}, (0,1,-1)^{\mathsf{T}}$;
- $\mathbf{M}(A-2I)x=0$ 得解空间的一组基 $(0,1,0)^{\mathsf{T}}$.

* 注意运用结论 " $B^{l-1}\alpha \neq 0 = B^l\alpha \Rightarrow \alpha, B\alpha, \cdots, B^{l-1}\alpha$ 线性无关",只需求出 $(A-I)^2x = 0$ 的一个非零解,再用 (A-I) 作用一次可得另一个解. 这样做还有一个好处是可以给出 Jordan 标准形标准化所需的矩阵.

Problem 3.6. 设 dim V = n, $A \in \text{End}(V)$ 在基 $\alpha_1, \dots, \alpha_n$ 下的矩阵表示为

$$J_{a} = \begin{pmatrix} a & 1 & 0 & 0 & 0 \\ 0 & a & 1 & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 1 \\ 0 & 0 & 0 & \cdots & a \end{pmatrix}$$

证明

- 1. A-子空间若包含 α_n , 则为 V;
- 2. 非零 A-子空间必定包含 α_1 ;
- 3. V 不能分解为非平凡 A-子空间的直和,

并求出所有 A-子空间.

证明. 由于 W 为 A-子空间当且仅当 $\forall x \in W$, $Ax \in W$, 这又当且仅当 $\forall x \in W$, $(A-aI)x \in W$. 设 B=A-aI, 那么 W 为 A-子空间当且仅当 W 为 B 子空间, 于是我们不妨令命题中的 a=0, 即 $A\alpha_{k+1}=\alpha_k, k=0,1,\cdots,n-1$.

首先利用归纳立即有若 A-子空间包含 α_n , 则必包含所有 α_1 , α_2 , \cdots , α_n , 即为 V. 任取非零 A-子空间中的元素 $\beta \neq 0$, 设

$$\beta = k_{i_1} \alpha_{i_1} + \dots + k_{i_s} \alpha_{i_s}, k_{i_1} \dots k_{i_s} \neq 0, j_1 < j_2 < \dots < j_s,$$

则 $A^{j_s-1}\beta=k_{j_s}\alpha_1$ 也在这一非零 A-子空间中,结合 $k_{j_s}\neq 0$ 可知该子空间必定包含 α_1 . 由于非平凡 A-子空间必定相交至少包含 α_1 这一非零向量,它们比不可能构成直和. 最后我们给出所有的 A-子空间. 设 W 为 A-子空间,令 s 为满足 $W\subseteq \mathrm{span}(\alpha_1,\cdots,\alpha_s)$ 的最小的正整数. 取 $\beta=\alpha_s+\gamma\in W$,其中 $\gamma\in\mathrm{span}(\alpha_1,\cdots,\alpha_{s-1})$,这里 β 的存在性依赖于 s 的最小性. 下面使用归纳法证明 $\alpha_j\in W$, $\forall j=1,\cdots,s$. 当 j=1 时前文已证,现假设 $\alpha_1,\cdots,\alpha_{j-1}\in W$,则

$$W \ni A^{s-j}\beta = \alpha_j + A^{s-j}\gamma,$$

其中

$$A^{s-j}\gamma \in \operatorname{span}(A^{s-j}\alpha_1, \cdots, A^{s-j}\alpha_{s-1}) = \operatorname{span}(\alpha_1, \cdots, \alpha_{j-1}) \in W,$$

因此 $\alpha_j \in W$. 由归纳假设可知结论成立, 故而 $W = \mathrm{span}(\alpha_1, \cdots, \alpha_s)$, 即 W 为 A-子空间.

Problem 3.7. 设 V 为 $\mathbb C$ 上的 n 维线性空间, $A \in \operatorname{End}(V)$ 有 n 个互不相同的特征值, 求其所有的不变子空间.

证明. 令 W 为 A-子空间,若 $W \neq 0$,可取 $A|_W$ 的一个特征向量 $\eta \neq 0$ 满足 $A\eta = \mu\eta$,那么 A 的特征子空间 $V_\mu \subseteq W$. 若 $\dim V_\mu < \dim W$,可考虑其补空间 W' 使得 $W = V_\mu \oplus W'$. 注意到此时 W' 也为 A-子空间,因为 V 可以分解为 A 的 n 个互不相同的一维特征子空间的直和,考虑 V 中元素在这 n 个不同特征值所分别对应的特征向量构成的基下的坐标可知,W' 即为 V 中关于 η 的坐标为 0 的元素之集,故而 W' 为 A-子空间. 归纳地可知 W 总能表示为 A 的特征子空间的直和,加上零空间共有 2^n 种不同的特征子空间.

Problem 3.8. 设 $A \in \text{End}(V)$, 若 $f \in \mathbb{F}[x]$ 与 A 的最小多项式 m_A 互素,则 f(A) 可逆,特别地,若 m_A 不可约,则 $\mathbb{F}[A]$ 为域.

证明. 令 $uf + vm_A = 1$,代人 A 可知 u(A)f(A) = I,得 f(A) 可逆. 若 m_A 不可约,则对任一 $f \in \mathbb{F}[x]$, $(f, m_A) = 1$ 或 m_A . 若 $(f, m_A) = 1$,则 f(A) 可逆,若 $(f, m_A) = m_A$,则 f(A) = 0,故 $\mathbb{F}[A]$ 中的所有非零元都可逆.