

Schletter, Inc.		20° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	2000 mm	Height =	1900 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 20°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

g_{MAX}	=	3.00	psf
g _{мім}	=	1.75	psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load, P_g =	30.00 psf	
Sloped Roof Snow Load, P _s =	20.62 psf	(ASCE 7-05, Eq. 7-2)
I _s =	1.00	
C _s =	0.91	
$C_e =$	0.90	

 $C_t =$

1.20

2.3 Wind Loads

Design Wind Speed, V =	130 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, q_z = 26.53 psf Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Ct+ _{TOP}	=	1.050	
Cf+ BOTTOM	=	1.050 1.650 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel
Cf- TOP, OUTER PURLIN	=	-2.400	testing done by Ruscheweyh Consult. Coefficients are located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.840 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	applica and from the sames.

2.4 Seismic Loads

$S_S =$ $S_{DS} =$ $S_1 =$ $S_{TT} =$	1.67 1.00	R = 1.25 $C_S = 0.8$ $\rho = 1.3$	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5 may be used to calculate the base shear, C_s , of structures under five stories and with a period, T_s , of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
$S_{D1} =$		$\Omega = 1.25$	of 0.5 or less. Therefore, a S $_{\rm ds}$ of 1.0 was used to
T _a =	0.06	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6W + 0.5S $0.9D + 1.6W^{M}$ 1.54D + 1.3E + 0.2S R 0.56D + 1.3E R 1.54D + 1.25E + 0.2S O

1.2D + 1.6S + 0.8W

(ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2)

0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S1.0D + 1.0W1.0D + 0.75L + 0.75W + 0.75S $0.6D + 1.0W^{M}$ (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E O 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	1273.28	<u>6713.44</u>	k
Compressive Load =	4099.25	4928.78	k
Lateral Load =	272.21	2961.79	k
Moment (Weak Axis) =	<u>0.55</u>	0.28	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (3) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 187852.3 in-lbs Resisting Force Required = 2627.30 lbs A minimum 143in long x 36in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 4378.84 lbs to resist overturning. Minimum Width = <u>36 in</u> in Weight Provided = 7775.63 lbs Sliding Force = 712.24 lbs Use a 143in long x 36in wide x 18in tall Friction = 0.4 Weight Required = 1780.61 lbs ballast foundation to resist sliding. Resisting Weight = 7775.63 lbs Friction is OK. Additional Weight Required = Cohesion 712.24 lbs Sliding Force = Cohesion = 130 psf Use a 143in long x 36in wide x 18in tall 35.75 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3887.81 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required.

2500 psi

8 in

 $f_c =$ Length =

 Bearing Pressure

 Ballast Width

 36 in
 37 in
 38 in
 39 in

 Pftg = (145 pcf)(11.92 ft)(1.5 ft)(3 ft) =
 7776 lbs
 7992 lbs
 8208 lbs
 8424 lbs

ASD LC		1.0D	+ 1.0S		1.0D + 1.0W			1.0D + 0.75L + 0.75W + 0.75S			0.6D + 1.0W					
Width	36 in	37 in	38 in	39 in	36 in	37 in	38 in	39 in	36 in	37 in	38 in	39 in	36 in	37 in	38 in	39 in
FA	1135 lbs	1135 lbs	1135 lbs	1135 lbs	1723 lbs	1723 lbs	1723 lbs	1723 lbs	2048 lbs	2048 lbs	2048 lbs	2048 lbs	-608 lbs	-608 lbs	-608 lbs	-608 lbs
FB	1201 lbs	1201 lbs	1201 lbs	1201 lbs	2106 lbs	2106 lbs	2106 lbs	2106 lbs	2380 lbs	2380 lbs	2380 lbs	2380 lbs	-3224 lbs	-3224 lbs	-3224 lbs	-3224 lbs
F _V	99 lbs	99 lbs	99 lbs	99 lbs	1252 lbs	1252 lbs	1252 lbs	1252 lbs	1006 lbs	1006 lbs	1006 lbs	1006 lbs	-1424 lbs	-1424 lbs	-1424 lbs	-1424 lbs
P _{total}	10112 lbs	10328 lbs	10544 lbs	10760 lbs	11605 lbs	11821 lbs	12037 lbs	12253 lbs	12204 lbs	12420 lbs	12636 lbs	12852 lbs	833 lbs	963 lbs	1092 lbs	1222 lbs
M	2603 lbs-ft	2603 lbs-ft	2603 lbs-ft	2603 lbs-ft	4770 lbs-ft	4770 lbs-ft	4770 lbs-ft	4770 lbs-ft	5310 lbs-ft	5310 lbs-ft	5310 lbs-ft	5310 lbs-ft	4202 lbs-ft	4202 lbs-ft	4202 lbs-ft	4202 lbs-ft
е	0.26 ft	0.25 ft	0.25 ft	0.24 ft	0.41 ft	0.40 ft	0.40 ft	0.39 ft	0.44 ft	0.43 ft	0.42 ft	0.41 ft	5.04 ft	4.36 ft	3.85 ft	3.44 ft
L/6	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft							
f _{min}	246.2 psf	245.4 psf	244.7 psf	244.0 psf	257.4 psf	256.3 psf	255.3 psf	254.3 psf	266.6 psf	265.3 psf	264.0 psf	262.8 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	319.5 psf	316.8 psf	314.1 psf	311.7 psf	391.8 psf	387.1 psf	382.6 psf	378.4 psf	416.2 psf	410.8 psf	405.7 psf	400.9 psf	202.3 psf	130.6 psf	108.9 psf	99.5 psf

Maximum Bearing Pressure = 416 psf Allowable Bearing Pressure = 1500 psf Use a 143in long x 36in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Seismic Design

Overturning Check

 $M_0 = 2379.1 \text{ ft-lbs}$

Resisting Force Required = 1586.06 lbs S.F. = 1.67 Weight Required = 2643.43 lbs

Minimum Width = 36 in in Weight Provided = 7775.63 lbs

A minimum 143in long x 36in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1.238D + 0.875E			1.1785D + 0.65625E + 0.75S			0.362D + 0.875E				
Width		36 in			36 in			36 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	243 lbs	485 lbs	168 lbs	735 lbs	1920 lbs	677 lbs	97 lbs	142 lbs	23 lbs		
F _V	169 lbs	166 lbs	171 lbs	126 lbs	122 lbs	132 lbs	170 lbs	167 lbs	170 lbs		
P _{total}	9869 lbs	10111 lbs	9795 lbs	9898 lbs	11084 lbs	9841 lbs	2912 lbs	2957 lbs	2838 lbs		
М	671 lbs-ft	663 lbs-ft	677 lbs-ft	505 lbs-ft	501 lbs-ft	525 lbs-ft	671 lbs-ft	661 lbs-ft	673 lbs-ft		
е	0.07 ft	0.07 ft	0.07 ft	0.05 ft	0.05 ft	0.05 ft	0.23 ft	0.22 ft	0.24 ft		
L/6	0.50 ft	0.50 ft	0.50 ft	0.50 ft	0.50 ft	0.50 ft	0.50 ft	0.50 ft	0.50 ft		
f _{min}	238.5 psf	245.7 psf	236.1 psf	248.6 psf	282.0 psf	245.9 psf	43.9 psf	45.7 psf	41.8 psf		
f _{max}	313.6 psf	319.9 psf	311.8 psf	305.1 psf	338.1 psf	304.6 psf	119.0 psf	119.7 psf	117.0 psf		

Maximum Bearing Pressure = 338 psf Allowable Bearing Pressure = 1500 psf

Use a 143in long x 36in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 143in long x 36in wide x 18in tall ballast foundation and fiber reinforcing with (3) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut
Maximum Axial Load =	3.153 k	Maximum Axial Load = 4.625 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity = 12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity = 7.421 k
Utilization =	<u>42%</u>	Utilization = 62%
<u>Diagonal Strut</u> Maximum Axial Load =	2.269 k	

M12 Bolt Shear Capacity = 12.808 k Strut Bearing Capacity = 7.421 k Utilization = 31%

Bolt and bearing capacities are accounting for double shear. (ASCE 8-02, Eq. 5.3.4-1)

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, h_{sx} = 51.89 in Allowable Story Drift for All Other Structures, Δ = { $0.020h_{sx}$ 1.038 in Max Drift, Δ_{MAX} = 0.464 in 0.464 ≤ 1.038, OK.

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 78 \text{ in} \\ \mathsf{J} = & 0.432 \\ & 215.785 \\ S1 = & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ S2 = & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = & \mathsf{\phib[Bc-1.6Dc*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb*}\sqrt{(\mathsf{lyJ})/2}))]} \end{array}$$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= 78 \\ \mathsf{J} &= 0.432 \\ 137.226 \\ S1 &= \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= 0.51461 \\ S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= 1701.56 \\ \varphi \mathsf{F_L} &= \varphi b [\mathsf{Bc-1.6Dc*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb*} \sqrt{(\mathsf{lyJ})/2}))]} \\ \varphi \mathsf{F_l} &= 29.6 \end{split}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 25.1 \text{ ksi}$$

 $\phi F_1 = 28.6 \text{ ksi}$

3.4.16

b/t = 37.0588

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 23.1 \text{ ksi}$$

N/A for Weak Direction

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr - mDbr^* h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

3.4.16.1

S1 =
$$\frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

S1 = 36.9
m = 0.65
C₀ = 45.5
Cc = 45.5
S2 = $\frac{k_1Bbr}{mDbr}$
S2 = 77.3
 $\phi F_L = 1.3\phi y Fcy$
 $\phi F_L = 23.1$ ksi

$$\phi F_L St = 25.1 \text{ ksi}$$
 $bx = 897074 \text{ mm}^4$
 2.155 in^4
 $y = 41.015 \text{ mm}$
 $5x = 1.335 \text{ in}^3$
 $5x = 1.335 \text{ k-ft}$

$$\begin{array}{lll} \phi F_L W k = & 23.1 \text{ ksi} \\ ly = & 446476 \text{ mm}^4 \\ & 1.073 \text{ in}^4 \\ x = & 45.5 \text{ mm} \\ Sy = & 0.599 \text{ in}^3 \\ M_{max} W k = & 1.152 \text{ k-ft} \end{array}$$

Compression

3.4.9

b/t = 32.195
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

 $\phi F_L = 25.1 \text{ ksi}$
b/t = 37.0588
S1 = 12.21
S2 = 32.70
 $\phi F_L = (\phi ck2^*\sqrt{(BpE))}/(1.6b/t)$
 $\phi F_L = 21.9 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

$$P_{\text{max}} = 41.32 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: 3.4.14

$$L_b = 104.56 \text{ in}$$
 $J = 1.08$
 179.85

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 29.0 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 104.56$$
 $J = 1.08$
 190.335

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{16Dc}\right)^{\frac{1}{2}}$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

 $\phi F_1 =$

28.9

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$1.6Dp$$

S2 = 46.7

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 31.6 \text{ ksi}$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$k.Bp$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

S2 =
$$\frac{1}{46.7}$$

 $\varphi F_L = \varphi y F c y$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used Rb/t = 18.1
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = \phi b[Bt-Dt^* \sqrt{(Rb/t)}]$$

31.1 ksi

29.0 ksi

2.366 in⁴

1.375 in³

3.323 k-ft

 $lx = 984962 \text{ mm}^4$

y = 43.717 mm

 $\phi F_L =$

16.2

 $\frac{\theta_y}{2}$ 1.3Fcy

3.4.18

h/t =

Bbr -

3.4.18

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{rcl} \text{S1} = & 36.9 \\ \text{m} = & 0.65 \\ \text{C}_0 = & 40 \\ \text{Cc} = & 40 \\ \end{array}$$

$$\begin{array}{rcl} S2 = \frac{k_1 Bbr}{mDbr} \\ \text{S2} = & 77.3 \\ \text{ϕF_L} = & 1.3 \text{$\phi y F c y$} \\ \text{ϕF_L} = & 43.2 \text{ ksi} \end{array}$$

$$\begin{array}{rcl} \text{ϕF_L} \text{Wk} = & 33.3 \text{ ksi} \\ \text{$l y = } & 923544 \text{ mm}^4$ \\ & & 2.219 \text{ in}^4$ \\ \text{$x = } & 40 \text{ mm} \\ \text{$S y = } & 1.409 \text{ in}^3 \\ \text{M_{max}Wk} = & 3.904 \text{ k-ft} \end{array}$$

Compression

 $M_{max}St =$

Sx =

 $\phi F_L St =$

3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\varphi F_L = \varphi c[Bp-1.6Dp*b/t]$ $\varphi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$ $\varphi F_L =$ 33.3 ksi

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3

$$\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

58.55 kips

 $P_{max} =$

Rev. 07.29.2016

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = **55x55**

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 24.8 \text{ in} \\ \mathsf{J} = & 0.942 \\ & 38.7028 \\ S1 = & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ S2 = & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = & \mathsf{\phib[Bc-1.6Dc*}\sqrt{((\mathsf{LbSc})/(\mathsf{Cb*}\sqrt{(\mathsf{lyJ})/2}))]} \end{array}$$

Weak Axis:

3.4.14

$$\begin{split} L_b &= & 24.8 \\ J &= & 0.942 \\ & 38.7028 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= & 1701.56 \\ \phi F_L &= & \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}] \\ \phi F_L &= & 31.4 \end{split}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

 $\phi F_L = 31.4 \text{ ksi}$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used
Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$
S1 = 1.1
$$S2 = C_t$$
S2 = 141.0
$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$k = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

27.5 mm

0.621 in³

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$V = 27.5 \text{ mm}$$

 $Sy = 0.621 \text{ in}^3$

 $M_{max}Wk = 1.460 \text{ k-ft}$

h/t = 24.5

y = Sx =

 $M_{max}St = 1.460 \text{ k-ft}$

SCHLETTER

Compression

3.4.7 $\lambda = 0.57371$ r = 0.81 in $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$ $S1^* = 0.33515$ $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ $S2^* = 1.23671$ $\phi cc = 0.87952$ $\phi F_L = \phi cc (Bc-Dc^*\lambda)$ $\phi F_L = 28.0279 \text{ ksi}$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \end{array}$$

3.4.10

 $\varphi F_L =$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

 $S1 = 6.87$
 $S2 = 131.3$
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 28.03 \text{ ksi}$
 $\phi F_L = 663.99 \text{ mm}^2$
 $\phi F_L = 1.03 \text{ in}^2$

28.85 kips

28.2 ksi

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

 $P_{max} =$

Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 98.03 in 98.03 0.942 0.942 J = J = 152.985 152.985 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461 S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_1 =$ 29.4 ksi $\varphi F_1 =$ 29.4

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

Not Used 0.0 3.4.16.1

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$
 $1x = 279836 \text{ mm}^4$

$$0.672 \text{ in}^4$$

 $y = 27.5 \text{ mm}$
 $Sx = 0.621 \text{ in}^3$
 $M_{max}St = 1.460 \text{ k-ft}$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 2.26776 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.89749 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 6.10803 \text{ ksi} \end{array}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

$$\begin{aligned} \text{h/t} &= & 24.5 \\ S1 &= & \frac{Bbr - \frac{\theta_y}{\theta_b} \, 1.3Fcy}{mDbr} \\ \text{S1} &= & 36.9 \\ \text{m} &= & 0.65 \\ \text{C}_0 &= & 27.5 \\ \text{Cc} &= & 27.5 \\ \text{S2} &= & \frac{k_1Bbr}{mDbr} \\ \text{S2} &= & 77.3 \\ \text{\phiF}_L &= & 1.3\text{\phiyFcy} \\ \text{\phiF}_L &= & 43.2 \text{ ksi} \end{aligned}$$

$$\begin{array}{lll} \phi F_L W k = & 28.2 \text{ ksi} \\ ly = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ Sy = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \end{array}$$

3.4.10

 $\phi F_L =$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 6.11 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{\text{max}} = 6.29 \text{ kips}$$

28.2 ksi

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis: Weak Axis: 3.4.14 $L_b =$ 61.10 in $L_b =$ 61.1 0.942 0.942 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_L =$ $\phi F_L = 30.2 \text{ ksi}$ 30.2

$$SA.16$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

$$SA.16$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max} W k = 1.460 \text{ k-ft}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.41345 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ \phi cc = & 0.77788 \\ \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ \phi F_L = & 13.6277 \text{ ksi} \end{array}$$

$$\begin{array}{lll} \textbf{.9} \\ \text{b/t} = & 24.5 \\ \text{S1} = & 12.21 \text{ (See 3.4.16 above for formula)} \\ \text{S2} = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi \textbf{F}_{L} = & \phi \textbf{c} [\textbf{Bp-1.6Dp*b/t}] \\ \phi \textbf{F}_{L} = & 28.2 \text{ ksi} \\ \\ \textbf{b/t} = & 24.5 \\ \text{S1} = & 12.21 \\ \text{S2} = & 32.70 \\ \phi \textbf{F}_{L} = & \phi \textbf{c} [\textbf{Bp-1.6Dp*b/t}] \\ \phi \textbf{F}_{L} = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt} \right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF}_L \text{ψF}_L \text{ψF}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

Model Name

: Schletter, Inc.: HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:____

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(MeS	Surface(
1	Dead Load, Max	DĽ		-1	,			4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

_		Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
	1	M13	Υ	-9.843	-9.843	0	0
	2	M14	Υ	-9.843	-9.843	0	0
	3	M15	Υ	-9.843	-9.843	0	0
	4	M16	Υ	-9.843	-9.843	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-5.454	-5.454	0	0
2	M14	Υ	-5.454	-5.454	0	0
3	M15	Υ	-5.454	-5.454	0	0
4	M16	Υ	-5.454	-5.454	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-63.565	-63.565	0	0
2	M14	Υ	-63.565	-63.565	0	0
3	M15	Υ	-63.565	-63.565	0	0
4	M16	Υ	-63 565	-63 565	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-91.409	-91.409	0	0
2	M14	٧	-91.409	-91.409	0	0
3	M15	V	-143.642	-143.642	0	0
4	M16	V	-143.642	-143.642	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	208.934	208.934	0	0
2	M14	V	160.183	160.183	0	0
3	M15	V	87.056	87.056	0	0
4	M16	V	87 056	87 056	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Z	7.874	7.874	0	0
2	M14	Ζ	7.874	7.874	0	0
3	M15	Ζ	7.874	7.874	0	0
4	M16	Z	7.874	7.874	0	0
5	M13	Ζ	0	0	0	0
6	M14	Z	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:____

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	.Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	. Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	653.195	2	1295.541	2	.464	1	.002	1	0	1	0	1
2		min	-792.582	3	-1710.859	3	-46.883	5	21	4	0	1	0	1
3	N7	max	.016	9	1087.012	2	361	10	0	10	0	1	0	1
4		min	261	2	-303.163	3	-209.39	4	42	4	0	1	0	1
5	N15	max	0	13	3153.273	2	0	3	0	3	0	1	0	1
6		min	-2.4	2	-979.444	3	-200.508	4	407	4	0	1	0	1
7	N16	max	2040.848	2	3791.366	2	0	2	0	1	0	1	0	1
8		min	-2278.298	3	-5164.188	3	-47.061	5	212	4	0	1	0	1
9	N23	max	.026	14	1087.012	2	5.907	1	.012	1	0	1	0	1
10		min	261	2	-303.163	3	-204.911	4	413	4	0	1	0	1
11	N24	max	653.195	2	1295.541	2	026	10	0	10	0	1	0	1
12		min	-792.582	3	-1710.859	3	-47.409	5	212	4	0	1	0	1
13	Totals:	max	3344.315	2	11709.745	2	0	3						
14		min	-3864.541	3	-10171.676	3	-752.782	4						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	53.339	4	446.652	2	-6.973	12	0	15	.112	4	0	4
2			min	1.773	10	-811.661	3	-118.908	1	011	2	.005	10	0	3
3		2	max	44.817	4	310.213	2	-5.942	12	0	15	.074	4	.501	3
4			min	1.773	10	-574.476	3	-90.422	1	011	2	001	10	273	2
5		3	max	36.371	1	173.774	2	-4.406	10	0	15	.046	5	.83	3
6			min	1.773	10	-337.291	3	-61.937	1	011	2	03	1	448	2
7		4	max	36.371	1	38.046	1	-1.603	10	0	15	.027	5	.988	3
8			min	1.773	10	-100.106	3	-33.545	4	011	2	064	1	524	2
9		5	max	36.371	1	137.078	3	1.2	10	0	15	.009	5	.974	3
10			min	1.773	10	-99.104	2	-26.089	4	011	2	078	1	502	2
11		6	max	36.371	1	374.263	3	23.521	1	0	15	004	12	.79	3
12			min	1.697	15	-235.543	2	-22.782	5	011	2	071	1	381	2
13		7	max	36.371	1	611.448	3	52.007	1	0	15	002	10	.434	3
14			min	-5.909	5	-371.982	2	-21.212	5	011	2	044	1	165	1
15		8	max	36.371	1	848.633	3	80.493	1	0	15	.006	2	.156	2
16			min	-14.432	5	-508.421	2	-19.642	5	011	2	039	4	093	3
17		9	max	36.371	1	1085.818	3	108.979	1	0	15	.072	1	.573	2
18			min	-22.954	5	-644.86	2	-18.073	5	011	2	052	5	792	3

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]							LC		LC
19		10	max	43.153	4	781.299	2	-2.308	12	.011	2	.161	1	1.088	2
20			min	1.773	10	-1323.002	3	-137.464	1	01	3	006	3	-1.662	3
21		11	max	36.371	1	644.86	2	-1.277	12	.011	2	.075	4	.573	2
22			min	1.773	10	-1085.818	3	-108.979	1	0	15	008	3	792	3
23		12	max	36.371	1	508.421	2	115	3	.011	2	.039	4	.156	2
24		40	min	1.773	10	-848.633	3	-80.493	1	0	15	008	3	093	3
25		13	max	36.371	1	371.982	2	1.432	3	.011	2	.019	5	.434	3
26		4.4	min	1.773	10	-611.448	3	-52.007	1	0	15	044	1	1 <u>65</u>	1
27		14	max	36.371	1	235.543	2	2.979	3	.011	2	0	15	.79	3
28		4.5	min	.97	15	-374.263	3	-30.173	4	0	15	071	1	381	2
29		15	max	36.371	5	99.104	3	4.965 -23.641	5	.011	15	003	12	.974 502	2
30		16	min	-7.037 36.371	1		3	33.451	1	.011	2	078 0	3	502 .988	3
32		10	max min		5	100.106 -38.046	<u> </u>	-22.072	5	.011	15	064	1	524	2
33		17		<u>-15.559</u> 36.371	1	337.291	3	61.937	1	.011	2	.005	3	.83	3
34		17	max min	-24.082	5	-173.774	2	-20.502	5	0	15	056	4	<u>.os</u> 448	2
35		18	max	36.371	1	574.476	3	90.422	1	.011	2	.025	1	.501	3
36		10	min	-32.604	5	-310.213	2	-18.933	5	0	15	064	5	273	2
37		19	max	36.371	1	811.661	3	118.908	1	.011	2	.101	1	0	1
38		13	min	-41.127	5	-446.652	2	-17.363	5	0	15	077	5	0	3
39	M14	1	max	34.971	4	551.953	2	-7.299	12	.016	3	.17	4	0	1
40	IVIIT		min	1.6	10	-681.306	3	-124.772	1	017	2	.007	10	0	3
41		2	max	26.449	4	415.514	2	-6.268	12	.016	3	.119	4	.427	3
42			min	1.6	10	-500.456	3	-96.286	1	017	2	0	10	349	2
43		3	max	26.11	1	279.075	2	-4.86	10	.016	3	.074	5	.723	3
44			min	1.6	10	-319.606	3	-67.8	1	017	2	013	1	6	2
45		4	max	26.11	1	142.636	2	-2.057	10	.016	3	.043	5	.888	3
46			min	1.6	10	-138.755	3	-51.925	4	017	2	052	1	752	2
47		5	max	26.11	1	42.095	3	.746	10	.016	3	.012	5	.923	3
48			min	-4.609	5	-3.033	9	-44.468	4	017	2	07	1	806	2
49		6	max	26.11	1	222.945	3	17.657	1	.016	3	004	12	.828	3
50			min	-13.132	5	-131.71	1	-39.616	5	017	2	067	1	761	2
51		7	max	26.11	1	403.796	3	46.143	1	.016	3	002	10	.601	3
52			min	-21.654	5	-266.681	2	-38.047	5	017	2	055	4	618	2
53		8	max	26.11	1	584.646	3	74.629	1	.016	3	.004	2	.244	3
54			min	-30.177	5	-403.12	2	-36.477	5	017	2	074	4	376	2
55		9	max	26.11	1	765.496	3	103.115	1	.016	3	.063	1	.018	9
56			min	-38.699	5	-539.559	2	-34.908	5	017	2	097	5	243	3
57		10	max	55.542	4	675.998	2	-1.982	12	.017	2	.17	4	.43	1
58			min	1.6	10	-946.347	3	-131.601	1	016	3	007	3	861	3
59		11		47.019	4	539.559			12	.017	2	.118	4	.018	9
60		40	min	1.6	10			-103.115		016	3	008	3	243	3
61		12		38.497	4	403.12	2	.384	3	.017	2	.072	4	.244	3
62		40	min	1.6	10	-584.646	3	-74.629	1	016	3	008	3	376	2
63		13	max	29.974	4	266.681	2	1.931	3	.017	2	.04	5	.601	3
64		4.4	min	1.6	10	-403.796	3	-52.887	4	016	3	044	1	<u>618</u>	2
65		14		26.11	1	131.71	1	3.478	3	.017	2	.009	5	.828	3
66		4.5	min	1.6	10	-222.945	3	-45.43	4	016	3	067	1	761	2
67		15	max	<u> 26.11</u>	1	3.033	9	10.829	1	.017	2	002	12	.923	3
68		16	min	1.6	10	-42.095	3	-39.82	5	016	3	07	1	806	2
69		16	max	26.11	1	138.755	3	39.315	1	.017	2	.002	3	.888	3
70		17	min	-1.268	5	-142.636	2	-38.251	5	016	2	059	3	752	2
71		17	max	26.11	1	319.606	3	67.8	1	.017		.007	_	<u>.723</u>	3
72		10	min	-9.791	5	-279.075 500.456	2	-36.681	5	016	3	079	4	6 427	2
73 74		18	max	<u>26.11</u> -18.313	5	500.456 -415.514	2	96.286 -35.112	5	.017 016	3	.046 101	5	.427 349	2
75		10	min max	26.11	1	681.306	3	124.772	1	.017	2	.126	1		1
L / O		19	шах	∠0.11		001.300	<u>ა</u>	124.//2	1	.017	<u> </u>	.120	1	0	\perp

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
76			min	-26.836	5	-551.953	2	-33.542	5	016	3	126	5	0	3
77	M15	1	max	67.849	5	756.022	2	-7.065	12	.018	2	.232	4	0	2
78			min	-27.096	1	-397.653	3	-124.827	1	013	3	.007	10	0	3
79		2	max	59.327	5	559.224	2	-6.033	12	.018	2	.168	4	.252	3
80			min	-27.096	1	-301.305	က	-96.341	1	013	3	0	10	475	2
81		3	max	50.804	5	362.427	2	-4.98	10	.018	2	.11	5	.435	3
82			min	-27.096	1	-204.957	3	-78.036	4	013	3	013	1	808	2
83		4	max	42.281	5	165.63	2	-2.177	10	.018	2	.065	5	.548	3
84			min	-27.096	1	-108.609	S	-70.579	4	013	3	052	1	998	2
85		5	max	33.759	5	168	15	.626	10	.018	2	.021	5	.592	3
86			min	-27.096	1	-31.167	2	-63.122	4	013	3	07	1	-1.047	2
87		6	max	25.236	5	84.087	3	17.602	1	.018	2	003	12	.566	3
88			min	-27.096	1	-227.964	2	-58.249	5	013	3	067	1	953	2
89		7	max	16.714	5	180.435	3	46.088	1	.018	2	002	10	.471	3
90			min	-27.096	1	-424.761	2	-56.68	5	013	3	073	4	718	2
91		8	max	8.191	5	276.783	3	74.574	1	.018	2	.004	2	.306	3
92			min	-27.096	1	-621.558	2	-55.11	5	013	3	106	4	34	2
93		9	max	164	15	373.131	3	103.06	1	.018	2	.063	1	.18	2
94			min	-27.096	1	-818.356	2	-53.54	5	013	3	143	5	0	15
95		10	max	-1.303	10	1015.153	2	-2.217	12	.013	3	.229	4	.842	2
96			min	-27.096	1	-469.479	3	-131.546	1	018	2	005	3	233	3
97		11	max	-1.303	10	818.356	2	-1.185	12	.013	3	.163	4	.18	2
98			min	-27.096	1	-373.131	3	-103.06	1	018	2	007	3	0	15
99		12	max	-1.303	10	621.558	2	.01	3	.013	3	.104	4	.306	3
100			min	-27.096	1	-276.783	3	-79.015	4	018	2	008	3	34	2
101		13	max	-1.303	10	424.761	2	1.557	3	.013	3	.058	5	.471	3
102			min	-27.096	1	-180.435	3	-71.558	4	018	2	044	1	718	2
103		14	max	-1.303	10	227.964	2	3.104	3	.013	3	.014	5	.566	3
104			min	-35.052	4	-84.087	3	-64.101	4	018	2	067	1	953	2
105		15	max	-1.303	10	31.167	2	10.883	1	.013	3	002	12	.592	3
106			min	-43.575	4	.169	15	-58.451	5	018	2	07	1	-1.047	2
107		16	max	-1.303	10	108.609	3	39.369	1	.013	3	.001	3	.548	3
108			min	-52.097	4	-165.63	2	-56.881	5	018	2	082	4	998	2
109		17	max	-1.303	10	204.957	3	67.855	1	.013	3	.006	3	.435	3
110			min	-60.62	4	-362.427	2	-55.312	5	018	2	114	4	808	2
111		18	max	-1.303	10	301.305	3	96.341	1	.013	3	.046	1	.252	3
112			min	-69.142	4	-559.224	2	-53.742	5	018	2	15	5	475	2
113		19	max	-1.303	10	397.653	3	124.827	1	.013	3	.126	1	0	2
114			min	-77.665	4	-756.022	2	-52.172	5	018	2	188	5	0	3
115	M16	1	max	63.122	5	657.258	2	-6.243	12	.005	1	.156	4	0	2
116	IVIIO				1	-310.779				011	3	.006	10	0	3
117		2	max	54.6	5	460.461	2	-5.212	12	.005	1	.109	4	.19	3
118			min		1	-214.431	3	-91.095	1	011	3	0	10	404	2
119		3	max	46.077	5	263.664	2	-4.181	12	.005	1	.072	5	.31	3
120			min	-40.828	1	-118.083	3	-62.609	1	011	3	028	1	665	2
121		4	max	37.555	5	66.867	2	-2.029	10	.005	1	.043	5	.36	3
122			min	-40.828	1	-21.735	3	-46.649	4	011	3	063	1	784	2
123		5	max	29.032	5	74.613	3	.774	10	.005	1	.016	5	.341	3
124			min	-40.828	1	-129.93	2	-39.192	4	011	3	078	1	762	2
125		6	max	20.51	5	170.961	3	22.849	1	.005	1	004	12	.252	3
126			min	-40.828	1	-326.728	2	-35.743	5	011	3	071	1	597	2
127		7	max	11.987	5	267.309	3	51.335	1	.005	1	003	10	.094	3
128			min		1	-523.525	2	-34.173	5	011	3	046	4	29	2
129		8	max	3.464	5	363.657	3	79.821	1	.005	1	.005	2	.159	2
130			min	-40.828	1	-720.322	2	-32.603	5	011	3	061	4	134	3
131		9	max	-40.828 -2.405	10	460.005	3	108.306	1	.005	1	.071	1	<u>134</u> .751	2
132		3	min		1	-917.119		-31.034	5	011	3	083	5	431	3
102			1111111	70.020		317.113		31.034	J	011	J	005	J	01	J

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Nov 23, 2015

Checked By:__

133	Member	Sec 10	max	Axial[lb] -2.405	LC 10	y Shear[lb]	LC 2	z Shear[lb] -3.038	LC 12	Torque[k-ft] .011	LC 3	y-y Mome .159	LC 1	z-z Mome 1.484	LC 2
134		10	min	-40.828	1	-556.354	3	-136.792	1	005	1	002	3	798	3
135		11	max	.508	5	917.119	2	-2.007	12	.011	3	.106	4	.751	2
136			min	-40.828	1	-460.005	3	-108.306	1	005	1	005	3	431	3
137		12	max	-2.405	10	720.322	2	975	12	.011	3	.061	4	.159	2
138		12	min	-40.828	1	-363.657	3	-79.821	1	005	1	006	3	134	3
139		13	max	-2.405	10	523.525	2	.265	3	.011	3	.031	5	.094	3
140		10	min	-40.828	1	-267.309	3	-51.335	1	005	1	045	1	29	2
141		14	max	-2.405	10	326.728	2	1.812	3	.011	3	.003	5	.252	3
142		17	min	-40.828	1	-170.961	3	-43.108	4	005	1	071	1	597	2
143		15	max	-2.405	10	129.93	2	5.637	1	.011	3	003	12	.341	3
144		10	min	-42.818	4	-74.613	3	-36.582	5	005	1	078	1	762	2
145		16	max		10	21.735	3	34.123	1	.011	3	0	12	.36	3
146		10	min	-51.341	4	-66.867	2	-35.012	5	005	1	064	4	784	2
147		17	max	-2.405	10	118.083	3	62.609	1	.011	3	.003	3	.31	3
148		17	min	-59.863	4	-263.664	2	-33.442	5	005	1	081	4	665	2
149		18	max		10	214.431	3	91.095	1	.011	3	.027	1	.19	3
150		10	min	-68.386	4	-460.461	2	-31.873	5	005	1	098	5	404	2
151		19	max		10	310.779	3	119.58	1	.011	3	.103	1	0	2
152		19	_	-76.908	-	-657.258	2	-30.303	5	005	1	121	5	0	5
	M2	1	min	1122.477	<u>4</u> 2	2.219	4	.425	<u> </u>	005 0	5	<u>121</u> 0	3	0	1
153	IVIZ	l		-1529.874				-38.616			1		2		1
154		2		1122.893	3	.547 2.211	15		4	0		0		0	_
155		2			2		4	.425	1	0	5	011	1	0	15
156		2	_	-1529.562	3	.545	15	-38.977	4	0			4	0	4
157		3		1123.309	2	2.202	4	.425	1	0	5	0	1	0	15
158		4		-1529.25	3	.543	15	-39.337	4	0	1	022	4	001	4
159		4		1123.725	2	2.193	4	.425	1	0	5	0	1	0	15
160		_		-1528.938	3	.541	15	-39.698	4	0	1_	033	4	002	4
161		5		1124.141	2	2.185	4	.425	1	0	5	0	1	0	15
162		_		-1528.626	3	.539	15	<u>-40.058</u>	4	0	1	044	4	002	4
163		6		1124.556	2	2.176	4	.425	1	0	5	0	1	0	15
164		_		-1528.314	3	.537	15	-40.418	4	0	1	055	4	003	4
165		7		1124.972	2	2.167	4	.425	1	0	5	0	1	0	15
166				-1528.002	3	.535	15	-40.779	4	0	1	067	4	004	4
167		8		1125.388	2	2.158	4	.425	1	0	5	0	1	001	15
168		_		-1527.69	3	.533	15	-41.139	4	0	1	078	4	004	4
169		9		1125.804	2	2.15	4	.425	1	0	5	0	1	001	15
170		40		-1527.378	3	.531	15	<u>-41.5</u>	4	0	1_	09	4	005	4
171		10	max		2	2.141	4	.425	1	0	5	.001	1	001	15
172		44		-1527.066	3	.529	15	<u>-41.86</u>	4	0	1	102	4	006	4
173		11		1126.636	2	2.132	4	.425	11	0	5	.001	1	002	15
174		40		-1526.754	3	.527	15	-42.221	4	0	1	113	4	006	4
175		12		1127.052	2	2.124	4	.425	1	0	5	.001	1	002	15
176		40		-1526.443	3	.525	15	-42.581	4	0	1	125	4	007	4
177		13		1127.468	2	2.115	4	.425	1	0	5	.001	1	002	15
178		4.4		-1526.131	3	.523	15	-42.942	4	0	1	137	4	007	4
179		14		1127.883	2	2.106	4	.425	1	0	5	.002	1	002	15
180		4.5		-1525.819	3	.521	15	-43.302	4	0	1_	149	4	008	4
181		15		1128.299	2	2.097	4	.425	1	0	5	.002	1	002	15
182		4.0		-1525.507	3	.518	12	-43.663	4	0	1_	161	4	008	4
183		16		1128.715	2	2.089	4	.425	1	0	5	.002	1	002	15
184				-1525.195	3_	.514	12	-44.023	4	0	1_	174	4	009	4
185		17		1129.131	2	2.08	4	.425	1	0	5	.002	1	002	15
186				-1524.883	3_	.511	12	-44.384	4	0	1_	186	4	01	4
187		18		1129.547	2	2.071	4	.425	1	0	5	.002	1	003	15
188			_	-1524.571	3_	.508	12	-44.744	4	0	1_	199	4	01	4
189		19	max	1129.963	2	2.063	4	.425	1	0	5	.002	1	003	15

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
190			min	-1524.259	3	.504	12	-45.105	4	0	1	211	4	011	4
191	M3	1	max	654.331	2	9.138	4	.11	1	0	3	0	1	.011	4
192			min	-790.451	3	2.163	15	-2.789	5	0	4	004	4	.003	15
193		2	max	654.161	2	8.263	4	.11	1	0	3	0	1	.007	4
194			min	-790.579	3	1.958	15	-2.18	5	0	4	005	4	.001	12
195		3	max	653.99	2	7.389	4	.11	1	0	3	0	1	.004	2
196			min	-790.706	3	1.752	15	-1.571	5	0	4	006	5	0	3
197		4	max	653.82	2	6.515	4	.11	1	0	3	0	1	0	2
198			min	-790.834	3	1.547	15	963	5	0	4	006	5	002	3
199		5	max	653.65	2	5.64	4	.11	1	0	3	0	1	0	15
200				-790.962	3	1.341	15	354	5	0	4	006	5	004	3
201		6	max		2	4.766	4	.303	4	0	3	0	1	001	15
202			min	-791.09	3	1.135	15	.006	10	0	4	007	5	006	6
203		7	max	653.309	2	3.891	4	.912	4	0	3	0	1	002	15
204			min	-791.217	3	.93	15	.006	10	0	4	006	5	008	6
205		8	max	653.139	2	3.017	4	1.521	4	0	3	0	1	002	15
206			min	-791.345	3	.724	15	.006	10	0	4	006	5	009	6
207		9	max	652.968	2	2.142	4	2.129	4	0	3	0	1	002	15
208		 		-791.473	3	.519	15	.006	10	0	4	005	5	011	6
209		10	max	652.798	2	1.268	4	2.738	4	0	3	0	1	003	15
210		10		-791.601	3	.313	15	.006	10	0	4	004	5	011	6
211		11			2	.468	2	3.347	4	0	3	0	1	003	15
212			max		3	052	3	.006	10	0	4	002	5	003 012	_
		12		-791.728						-		_	1		6
213		12	max	652.457	2	098	15	3.956	4	0	3	0		003	15
214		40	min	-791.856	3	563	3	.006	10	0	4	0	5	012	6
215		13	max	652.287	2	303	15	4.564	4	0	3	.002	4	003	15
216		4.4	min	-791.984	3	-1.357	6	.006	10	0	4	0	10	011	6
217		14	max	652.117	2	509	15	5.173	4	0	3	.004	4	002	15
218		45		-792.112	3	-2.231	6	.006	10	0	4	0	10	01	6
219		15	max	651.946	2	714	15	5.782	4	0	3	.007	4	002	15
220		40		-792.239	3	-3.106	6	.006	10	0	4	0	10	009	6
221		16	max		2	92	15	6.39	4	0	3	.009	4	002	15
222		-		-792.367	3_	-3.98	6	.006	10	0	4	0	10	008	6
223		17	max	651.606	2_	-1.126	15	6.999	4	0	3	.013	4	001	15
224			min	-792.495	3_	-4.855	6	.006	10	0	4	0	10	005	6
225		18	max	651.435	2	-1.331	15	7.608	4	0	3	.016	4	0	15
226			min	-792.623	3	-5.729	6	.006	10	0	4	0	10	003	6
227		19	max	651.265	2	-1.537	15	8.217	4	0	3	.02	4	0	1
228			min	-792.75	3	-6.603	6	.006	10	0	4	0	10	0	1
229	<u>M4</u>	1		1083.946	2	0	1	368	10	0	1_	.012	4	0	1
230				-305.463		0		-207.409		0	1	0	10	0	1
231		2	max	1084.116	2	0	1	368	10	0	1	0	12	0	1
232				-305.335	3	0	1	-207.557	4	0	1	012	4	0	1
233		3	max	1084.286	2	0	1	368	10	0	1_	0	10	0	1
234			min	-305.207	3	0	1	-207.705	4	0	1	036	4	0	1
235		4	max	1084.457	2	0	1	368	10	0	1	0	10	0	1
236			min	-305.079	3	0	1	-207.852	4	0	1	06	4	0	1
237		5	max	1084.627	2	0	1	368	10	0	1	0	10	0	1
238			min	-304.952	3	0	1	-208	4	0	1	084	4	0	1
239		6		1084.797	2	0	1	368	10	0	1	0	10	0	1
240				-304.824	3	0	1	-208.148	4	0	1	108	4	0	1
241		7		1084.968	2	0	1	368	10	0	1	0	10	0	1
242				-304.696	3	0	1	-208.295		0	1	131	4	0	1
243		8		1085.138	2	0	1	368	10	0	1	0	10	0	1
244				-304.568	3	0	1	-208.443	4	0	1	155	4	0	1
245		9		1085.308	2	0	1	368	10	0	1	0	10	0	1
246				-304.44	3	0	1	-208.59	4	0	1	179	4	0	1
240			1111111	JU4.44	J	U		-200.03	7	U		173	7	U	

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
247		10	max	1085.479	2	0	1	368	10	0	1	0	10	0	1
248			min	-304.313	3	0	1	-208.738	4	0	1	203	4	0	1
249		11	max	1085.649	2	0	1	368	10	0	1	0	10	0	1
250			min		3	0	1	-208.886	4	0	1	227	4	0	1
251		12	max	1085.819	2	0	1	368	10	0	1	0	10	0	1
252			min	-304.057	3	0	1	-209.033	4	0	1	251	4	0	1
253		13	max	1085.99	2	0	1	368	10	0	1	0	10	0	1
254			min	-303.929	3	0	1	-209.181	4	0	1	275	4	0	1
255		14	max	1086.16	2	0	1	368	10	0	1	0	10	0	1
256			min	-303.802	3	0	1	-209.329	4	0	1	299	4	0	1
257		15	max	1086.33	2	0	1	368	10	0	1	0	10	0	1
258			min	-303.674	3	0	1	-209.476	4	0	1	323	4	0	1
259		16	max	1086.501	2	0	1	368	10	0	1	0	10	0	1
260			min	-303.546	3	0	1	-209.624	4	0	1	347	4	0	1
261		17	max	1086.671	2	0	1	368	10	0	1	0	10	0	1
262			min	-303.418	3	0	1	-209.772	4	0	1	371	4	0	1
263		18	max	1086.842	2	0	1	368	10	0	1	0	10	0	1
264			min		3	0	1	-209.919	4	0	1	396	4	0	1
265		19	max	1087.012	2	0	1	368	10	0	1	0	10	0	1
266			min	-303.163	3	0	1	-210.067	4	0	1	42	4	0	1
267	M6	1		3279.948	2	2.672	2	0	1	0	4	0	4	0	1
268			min	-4625.309	3	021	3	-38.995	4	0	1	0	1	0	1
269		2		3280.364	2	2.665	2	0	1	0	4	0	1	0	3
270			min	-4624.997	3	026	3	-39.355	4	0	1	011	4	0	2
271		3		3280.779	2	2.658	2	0	1	0	4	0	1	0	3
272			min	-4624.685	3	031	3	-39.716	4	0	1	022	4	001	2
273		4		3281.195	2	2.652	2	0	1	0	4	0	1	0	3
274			min	-4624.373	3	036	3	-40.076	4	0	1	033	4	002	2
275		5		3281.611	2	2.645	2	0	1	0	4	0	1	0	3
276			min	-4624.061	3	041	3	-40.437	4	0	1	045	4	003	2
277		6		3282.027	2	2.638	2	0	1	0	4	0	1	0	3
278			min	-4623.749	3	046	3	-40.797	4	0	1	056	4	004	2
279		7		3282.443	2	2.631	2	0	1	0	4	0	1	0	3
280			min	-4623.437	3	052	3	-41.158	4	0	1	067	4	004	2
281		8		3282.859	2	2.625	2	0	1	0	4	0	1	0	3
282			min	-4623.125	3	057	3	-41.518	4	0	1	079	4	005	2
283		9		3283.275	2	2.618	2	0	1	0	4	0	1	0	3
284			min	-4622.813	3	062	3	-41.879	4	0	1	091	4	006	2
285		10		3283.691	2	2.611	2	0	1	0	4	0	1	0	3
286		10	min	-4622.502	3	067	3	-42.239	4	0	1	102	4	007	2
287		11		3284.107		2.604	2	0	1	0	4	0	1	0	3
288				-4622.19		072	3	-42.6	4	0	1	114	4	007	2
289		12		3284.522	2	2.597	2	0	1	0	4	0	1	0	3
290		12	min		3	077	3	-42.96	4	0	1	126	4	008	2
291		13		3284.938	2	2.591	2	0	1	0	4	0	1	008 0	3
292		13	min		3	082	3	-43.321	4	0	1	138	4	009	2
293		1.1		3285.354		2.584	2	0	1		4	0	1	0009	3
		14			2		3		4	0					2
294		4.5	min		3	087	_	-43.681		0	1	151	4	01	_
295		15		3285.77	2	2.577	2	0	1	0	4	162	1	0	3
296		40	min	-4620.942	3	092	3	-44.042	4	0	1	163	4	01	2
297		16		3286.186	2	2.57	2	0	1	0	4	0	1	0	3
298		47		-4620.63	3	097	3	-44.402	4	0	1	175	4	011	2
299		17		3286.602	2	2.563	2	0	1	0	4	0	1	0	3
300		4.0	min		3	102	3	-44.763	4	0	1	188	4	012	2
301		18		3287.018	2	2.557	2	0	1	0	4	0	1	0	3
302		4 -	min	-4620.006	3	108	3	-45.123	4	0	1	2	4	012	2
303		<u> 19</u>	max	3287.434	2	2.55	2	0	1	0	4	0	1	0	3

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
304			min	-4619.694	3	113	3	-45.484	4	0	1	213	4	013	2
305	M7	1	max	2049.149	2	9.127	6	0	1	0	1	0	1	.013	2
306			min	-2266.277	3	2.143	15	-2.967	5	0	4	004	4	0	3
307		2	max	2048.979	2	8.253	6	0	1	0	1	0	1	.01	2
308			min	-2266.405	3	1.937	15	-2.358	5	0	4	005	4	002	3
309		3	max	2048.809	2	7.378	6	0	1	0	1	0	1	.007	2
310			min	-2266.532	3	1.732	15	-1.75	5	0	4	006	4	004	3
311		4	max	2048.638	2	6.504	6	0	1	0	1	0	1	.004	2
312			min	-2266.66	3	1.526	15	-1.141	5	0	4	006	4	006	3
313		5	max	2048.468	2	5.63	6	0	1	0	1	0	1	.001	2
314			min	-2266.788	3	1.321	15	532	5	0	4	007	4	007	3
315		6	max	2048.298	2	4.755	6	.098	4	0	_1_	0	1	0	2
316			min	-2266.916	3	1.115	15	0	1	0	4	007	5	008	3
317		7	max	2048.127	2	3.881	6	.706	4	0	1	0	1	002	15
318			min	-2267.043	3	.91	15	0	1	0	4	007	5	009	3
319		8	max	2047.957	2	3.006	6	1.315	4	0	1	0	1	002	15
320			min	-2267.171	3	.686	12	0	1	0	4	006	5	01	3
321		9	max	2047.787	2	2.228	2	1.924	4	0	1	0	1	003	15
322			min	-2267.299	3	.346	12	0	1	0	4	006	5	011	4
323		10	max	2047.616	2	1.546	2	2.532	4	0	1	0	1	003	15
324			min	-2267.427	3	04	3	0	1	0	4	005	5	011	4
325		11	max	2047.446	2	.865	2	3.141	4	0	1	0	1	003	15
326			min	-2267.555	3	551	3	0	1	0	4	003	5	012	4
327		12	max	2047.276	2	.183	2	3.75	4	0	1	0	1	003	15
328			min	-2267.682	3	-1.062	3	0	1	0	4	002	5	012	4
329		13	max	2047.105	2	324	15	4.359	4	0	1	0	4	003	15
330			min	-2267.81	3	-1.573	3	0	1	0	4	0	1	011	4
331		14	max	2046.935	2	529	15	4.967	4	0	1	.003	4	002	15
332			min	-2267.938	3	-2.24	4	0	1	0	4	0	1	01	4
333		15	max	2046.764	2	735	15	5.576	4	0	1	.005	4	002	15
334			min	-2268.066	3	-3.115	4	0	1	0	4	0	1	009	4
335		16	max	2046.594	2	94	15	6.185	4	0	1	.008	4	002	15
336			min	-2268.193	3	-3.989	4	0	1	0	4	0	1	008	4
337		17	max	2046.424	2	-1.146	15	6.793	4	0	1	.011	4	001	15
338			min	-2268.321	3	-4.864	4	0	1	0	4	0	1	005	4
339		18	max	2046.253	2	-1.351	15	7.402	4	0	1	.014	4	0	15
340			min	-2268.449	3	-5.738	4	0	1	0	4	0	1	003	4
341		19	max	2046.083	2	-1.557	15	8.011	4	0	1	.018	4	0	1
342			min	-2268.577	3	-6.613	4	0	1	0	4	0	1	0	1
343	M8	1	max	3150.207	2	0	1	0	1	0	1	.011	4	0	1
344				-981.744	3	0	1	-200.778	4	0	1	0	1	0	1
345		2	1	3150.377	2	0	1	0	1	0	1	0	1	0	1
346				-981.616		0	1	-200.926	4	0	1	012	4	0	1
347		3	max	3150.548	2	0	1	0	1	0	1	0	1	0	1
348			min		3	0	1	-201.074	4	0	1	035	4	0	1
349		4		3150.718	2	0	1	0	1	0	1	0	1	0	1
350				-981.361	3	0	1	-201.221	4	0	1	059	4	0	1
351		5		3150.888	2	0	1	0	1	0	1	0	1	0	1
352			min		3	0	1	-201.369		0	1	082	4	0	1
353		6		3151.059	2	0	1	0	1	0	1	0	1	0	1
354				-981.105	3	0	1	-201.517	4	0	1	105	4	0	1
355		7	max	3151.229	2	0	1	0	1	0	1	0	1	0	1
356			min	-980.977	3	0	1	-201.664	4	0	1	128	4	0	1
357		8		3151.399	2	0	1	0	1	0	1	0	1	0	1
358			min		3	0	1	-201.812	4	0	1	151	4	0	1
359		9		3151.57	2	0	1	0	1	0	1	0	1	0	1
360			min	-980.722	3	0	1	-201.96	4	0	1	174	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 23, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
361		10	max	3151.74	2	0	1	0	1	0	1	0	1	0	1
362			min	-980.594	3	0	1	-202.107	4	0	1	197	4	0	1
363		11	max	3151.91	2	0	1	0	1	0	1	0	1	0	1
364			min	-980.466	3	0	1	-202.255	4	0	1	221	4	0	1
365		12	max	3152.081	2	0	1	0	1	0	1	0	1	0	1
366			min	-980.338	3	0	1	-202.402	4	0	1	244	4	0	1
367		13	max	3152.251	2	0	1	0	1	0	1	0	1	0	1
368			min	-980.211	3	0	1	-202.55	4	0	1	267	4	0	1
369		14	max	3152.421	2	0	1	0	1	0	1	0	1	0	1
370			min	-980.083	3	0	1	-202.698	4	0	1	29	4	0	1
371		15		3152.592	2	0	1	0	1	0	1	0	1	0	1
372			min	-979.955	3	0	1	-202.845	4	0	1	314	4	0	1
373		16		3152.762	2	0	1	0	1	0	1	0	1	0	1
374		1.0	min		3	0	1	-202.993	4	0	1	337	4	0	1
375		17		3152.932	2	0	1	0	1	0	1	0	1	0	1
376		 ''	min	-979.7	3	0	1	-203.141	4	0	1	36	4	0	1
377		18		3153.103	2	0	1	0	1	0	1	0	1	0	1
378		10	min	-979.572	3	0	1	-203.288	4	0	1	384	4	0	1
379		19		3153.273	2	0	1	0	1	0	1	0	1	0	1
380		19	min	-979.444	3	0	1	-203.436	4	0	1	407	4	0	1
381	M10	1		1122.477	2	2.101	6	021	10	0	1	407 0	4	0	1
382	IVITO	-	min	-1529.874		.467	15	-38.848	4	0	10	0	3	0	1
		2		1122.893	3	2.092		021			1	0			15
383				-1529.562	2		6		10	0			10	0	
384			min		3	.465	15	-39.208	4	0	10	011	4	0	6
385		3		1123.309	2	2.083	6	021	10	0	1	0	10	0	15
386		1	min	-1529.25	3	.463	15	-39.569	4	0	10	022	4	001	6
387		4		1123.725	2	2.074	6	021	10	0	1	0	10	0	15
388		-	min	-1528.938	3	.461	15	-39.929	4	0	10	033	4	002	6
389		5		1124.141	2	2.066	6	021	10	0	1	0	10	0	15
390			min	-1528.626	3	.459	15	-40.29	4	0	10	044	4	002	6
391		6		1124.556	2	2.057	6	021	10	0	1	0	10	0	15
392		<u> </u>	min	-1528.314	3	.457	15	-40.65	4	0	10	056	4	003	6
393		7		1124.972	2	2.048	6	021	10	0	1	0	10	0	15
394		_	min	-1528.002	3	.455	15	-41.011	4	0	10	067	4	003	6
395		8		1125.388	2	2.04	6	021	10	0	1	0	10	0	15
396			min	-1527.69	3	.453	15	-41.371	4	0	10	079	4	004	6
397		9	max		2	2.031	6	021	10	0	1	0	10	001	15
398			min	-1527.378	3	.451	15	-41.732	4	0	10	09	4	005	6
399		10	max		2	2.022	6	021	10	0	1	0	10	001	15
400			min	-1527.066	3	.449	15	-42.092	4	0	10		4	005	6
401		11	max	1126.636	_2_	2.013	6	021	10	0	1	0	10	001	15
402			min		3	.447	15	-42.453	4	0	10	114	4	006	6
403		12		1127.052	2	2.005	6	021	10		1	0	10	001	15
404			min		3	.445	15	-42.813	4	0	10	126	4	006	6
405		13	max	1127.468	2	1.996	6	021	10	0	1	0	10	002	15
406			min	-1526.131	3	.443	15	-43.174	4	0	10	138	4	007	6
407		14	max	1127.883	2	1.987	6	021	10	0	1	0	10	002	15
408			min	-1525.819	3	.441	15	-43.534	4	0	10	15	4	007	6
409		15	max	1128.299	2	1.979	6	021	10	0	1	0	10	002	15
410			min		3	.439	15	-43.895	4	0	10		4	008	6
411		16		1128.715	2	1.97	6	021	10	0	1	0	10	002	15
412			min	-1525.195	3	.436	15	-44.255	4	0	10	175	4	009	6
413		17		1129.131	2	1.961	6	021	10	0	1	0	10	002	15
414			min		3	.434	15	-44.616	4	0	10		4	009	6
415		18		1129.547	2	1.952	6	021	10	0	1	0	10	002	15
416		10	min		3	.432	15	-44.976	4	0	10		4	01	6
417		19	_	1129.963	2	1.944	6	021	10	0	1	0	10	002	15
717		10	IIIIUA	1. 120.000		1.077		.021	10				_ 10	.002	

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
418			min	-1524.259	3	.43	15	-45.337	4	0	10	212	4	01	6
419	M11	1	max		2	9.068	6	006	10	0	1	0	10	.01	6
420			min	-790.451	3	2.116	15	-2.801	5	0	4	004	4	.002	15
421		2	max	654.161	2	8.193	6	006	10	0	1	0	10	.007	2
422			min	-790.579	3	1.91	15	-2.192	5	0	4	005	4	.001	12
423		3	max	653.99	2	7.319	6	006	10	0	1	0	10	.004	2
424			min	-790.706	3	1.705	15	-1.583	5	0	4	006	4	0	3
425		4	max	653.82	2	6.444	6	006	10	0	1	0	10	0	2
426			min	-790.834	3	1.499	15	975	5	0	4	006	4	002	3
427		5	max	653.65	2	5.57	6	006	10	0	1	0	10	0	15
428			min	-790.962	3	1.294	15	366	5	0	4	007	4	004	3
429		6	max	653.479	2	4.695	6	.244	4	0	1	0	10	002	15
430			min	-791.09	3	1.088	15	11	1	0	4	007	4	006	4
431		7	max	653.309	2	3.821	6	.853	4	0	1	0	10	002	15
432			min	-791.217	3	.882	15	11	1	0	4	006	4	008	4
433		8	max		2	2.946	6	1.462	4	0	1	0	10	002	15
434			min	-791.345	3	.677	15	11	1	0	4	006	4	01	4
435		9	max		2	2.072	6	2.07	4	0	1	0	10	003	15
436			min	-791.473	3	.471	15	11	1	0	4	005	4	011	4
437		10	max		2	1.198	6	2.679	4	0	1	0	10	003	15
438			min	-791.601	3	.266	15	11	1	0	4	004	4	012	4
439		11	max		2	.468	2	3.288	4	0	1	0	10	003	15
440			min	-791.728	3	052	3	11	1	0	4	002	4	012	4
441		12	max		2	145	15	3.897	4	0	1	0	10	003	15
442			min	-791.856	3	563	3	11	1	0	4	0	4	012	4
443		13	max		2	351	15	4.505	4	0	1	.001	5	003	15
444		1.0	min	-791.984	3	-1.427	4	11	1	0	4	0	1	012	4
445		14	max		2	556	15	5.114	4	0	1	.004	5	003	15
446			min	-792.112	3	-2.302	4	11	1	0	4	0	1	011	4
447		15	max		2	762	15	5.723	4	0	1	.006	5	002	15
448		10	min	-792.239	3	-3.176	4	11	1	0	4	0	1	009	4
449		16	max		2	968	15	6.331	4	0	1	.009	5	002	15
450		10	min	-792.367	3	-4.051	4	11	1	0	4	0	1	008	4
451		17	max		2	-1.173	15	6.94	4	0	1	.012	5	001	15
452		1 ''	min	-792.495	3	-4.925	4	11	1	0	4	0	1	005	4
453		18	max		2	-1.379	15	7.549	4	0	1	.016	5	<u>.005</u>	15
454		10	min	-792.623	3	-5.799	4	11	1	0	4	0	1	003	4
455		19	max		2	-1.584	15	8.157	4	0	1	.019	5	0	1
456		15	min	-792.75	3	-6.674	4	11	1	0	4	0	1	0	1
457	M12	1		1083.946	2	0.074	1	6.101	1	0	1	.012	5	0	1
458	IVIIZ			-305.463		0		-204.083	_	0	1	0	1	0	1
459		2		1084.116	2	0	1	6.101	1	0	1	0	1	0	1
460					3	0	1	-204.231	4	0	1	012	4	0	1
461		3		1084.286	2	0	1	6.101	1	0	1	0	1	0	1
462		1	min	-305.207	3	0	1	-204.379	4	0	1	035	4	0	1
463		4		1084.457	2	0	1	6.101	1	0	1	.002	1	0	1
464				-305.079	3	0	1	-204.526	4	0	1	059	4	0	1
465		5		1084.627	2	0	1	6.101	1	0	1	.002	1	0	1
466		1		-304.952	3	0	1	-204.674		0	1	082	4	0	1
467		6		1084.797	2	0	1	6.101	1	0	1	.003	1	0	1
468		U	min		3	0	1	-204.822	4	0	1	106	4	0	1
469		7		1084.968	2	0	1	6.101	1	0	1	.004	1	0	1
470				-304.696	3	0	1	-204.969		0	1	129	4	0	1
471		8		1085.138	2		1	6.101	1		1	.004	1		1
471		0		-304.568	3	0	1	-205.117	4	0	1	153	4	0 0	1
473		9	min	1085.308	2	0	1	6.101	1	0	1	.005	1	0	1
474		+ 3					1	-205.265			1				1
4/4			min	-304.44	3	0		-205.205	4	0		177	4	0	

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
475		10	max	1085.479	2	0	1	6.101	1	0	1	.006	1	0	1
476			min	-304.313	3	0	1	-205.412	4	0	1	2	4	0	1
477		11		1085.649	2	0	1	6.101	1	0	1	.006	1	0	1
478			min	-304.185	3	0	1	-205.56	4	0	1	224	4	0	1
479		12	max	1085.819	2	0	1	6.101	1	0	1	.007	1	0	1
480			min	-304.057	3	0	1	-205.707	4	0	1	247	4	0	1
481		13	max	1085.99	2	0	1	6.101	1	0	1	.008	1	0	1
482			min	-303.929	3	0	1	-205.855	4	0	1	271	4	0	1
483		14	max	1086.16	2	0	1	6.101	1	0	1	.009	1	0	1
484			min	-303.802	3	0	1	-206.003	4	0	1	295	4	0	1
485		15	max		2	0	1	6.101	1	0	1	.009	1	0	1
486			min	-303.674	3	0	1	-206.15	4	0	1	318	4	0	1
487		16	max	1086.501	2	0	1	6.101	1	0	1	.01	1	0	1
488			min		3	0	1	-206.298	4	0	1	342	4	0	1
489		17	max	1086.671	2	0	1	6.101	1	0	1	.011	1	0	1
490			min	-303.418	3	0	1	-206.446	4	0	1	366	4	0	1
491		18	max	1086.842	2	0	1	6.101	1	0	1	.011	1	0	1
492			min	-303.291	3	0	1	-206.593	4	0	1	389	4	0	1
493		19	max	1087.012	2	0	1	6.101	1	0	1	.012	1	0	1
494			min	-303.163	3	0	1	-206.741	4	0	1	413	4	0	1
495	M1	1	max		1	811.584	3	41.099	5	0	1	.101	1	0	15
496			min	-17.363	5	-445.892	2	-36.331	1	0	3	077	5	011	2
497		2	max	119.488	1	810.397	3	42.559	5	0	1	.078	1	.266	2
498			min	-17.094	5	-447.475	2	-36.331	1	0	3	051	5	514	3
499		3	max		3	606.184	2	6.161	5	0	3	.056	1	.532	2
500			min	-319.296	2	-642.603	3	-36.001	1	0	2	024	5	-1	3
501		4	max		3	604.601	2	7.621	5	0	3	.033	1	.17	1
502			min	-318.72	2	-643.79	3	-36.001	1	0	2	02	5	601	3
503		5	max		3	603.018	2	9.081	5	0	3	.011	1	006	15
504			min	-318.144	2	-644.977	3	-36.001	1	0	2	015	5	218	2
505		6	max		3	601.435	2	10.541	5	0	3	0	10	.199	3
506			min	-317.567	2	-646.165	3	-36.001	1	0	2	011	1	592	2
507		7	max		3	599.851	2	12.001	5	0	3	001	15	.601	3
508			min		2	-647.352	3	-36.001	1	0	2	034	1	965	2
509		8	max		3	598.268	2	13.462	5	0	3	.006	5	1.003	3
510			min	-316.415	2	-648.54	3	-36.001	1	0	2	056	1	-1.336	2
511		9	max		3	50.317	2	41.657	5	0	9	.038	1	1.166	3
512			min	-269.252	2	.474	15	-62.138	1	0	3	101	5	-1.521	2
513		10	max		3	48.733	2	43.117	5	0	9	0	10	1.143	3
514			min	-268.676	2	009	5	-62.138	1	0	3	075	4	-1.552	2
515		11	max	526.399		47.15	2	44.577	5	0	9	002	10	1.121	3
516				-268.099	2	-2.02	4	-62.138	1	0	3	056	4	-1.582	2
517		12		537.671	3	438.416	3	117.141	5	0	2	.055	1	.986	3
518				-220.757	2	-706.733	2	-35.045	1	0	3	19	5	-1.405	2
519		13		538.103	3	437.229	3	118.601	5	0	2	.033	1	.714	3
520			min		2	-708.317	2	-35.045	1	0	3	117	5	966	2
521		14		538.535	3	436.042	3	120.061	5	0	2	.012	1	.443	3
522				-219.605	2	-709.9	2	-35.045	1	0	3	043	5	526	2
523		15		538.967	3	434.854	3	121.521	5	0	2	.032	5	.173	3
524		ľ	min		2	-711.483	2	-35.045	1	0	3	01	1	106	1
525		16		539.399	3	433.667	3	122.981	5	0	2	.108	5	.357	2
526		<u>.</u>			2	-713.066	2	-35.045	1	0	3	032	1	096	3
527		17		539.832	3	432.479	3	124.441	5	0	2	.184	5	0 <u>00</u>	2
528				-217.876		-714.649		-35.045	1	0	3	054	1	365	3
529		18			5	659.524	2	-2.406	10	0	5	.163	5	.405	2
530		10	min		1	-309.708		-78.354	4	0	2	078	1	181	3
531		10	max		5	657.94	2	-2.406	10	0	5	.121	5	.011	3
UUI		נון	παχ	30.302	J	007.84		-2.400	ΙU	U	J	.141	J	.011	<u>J</u>

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
532			min	-119.577	1	-310.896	3	-76.894	4	0	2	103	1	005	1
533	<u>M5</u>	1	max	274.922	1	2645.998	3	67.075	5	0	1	0	1	.023	2
534			min	4.618	12	-1559.682	2	0	1	0	4	149	4	0	15
535		2	max	275.498	1	2644.811	3	68.535	5	0	1	0	1	.991	2
536			min	4.906	12	-1561.265	2	0	1	0	4	107	4	-1.621	3
537		3	max	1515.181	3	1502.936	2	34.002	4	0	4	0	1	1.927	2
538			min	-956.116	2	-1765.25	3	0	1	0	1	065	4	-3.214	3
539		4	max	1515.613	3	1501.353	2	35.463	4	0	4	0	1	.995	2
540			min	-955.54	2	-1766.438	3	0	1	0	1	043	4	-2.118	3
541		5	max	1516.045	3	1499.77	2	36.923	4	0	4	0	1	.114	1
542			min	-954.964	2	-1767.625	3	0	1	0	1	021	4	-1.022	3
543		6	max	1516.477	3	1498.187	2	38.383	4	0	4	.003	4	.076	3
544			min	-954.387	2	-1768.812	3	0	1	0	1	0	1	867	2
545		7	max	1516.909	3	1496.604	2	39.843	4	0	4	.027	4	1.174	3
546			min	-953.811	2	-1770	3	0	1	0	1	0	1	-1.796	2
547		8	max	1517.342	3	1495.02	2	41.303	4	0	4	.052	4	2.273	3
548			min	-953.235	2	-1771.187	3	0	1	0	1	0	1	-2.724	2
549		9	max	1523.195	3	173.048	2	140.18	4	0	1	0	1	2.624	3
550			min	-843.976	2	.476	15	0	1	0	1	15	4	-3.126	2
551		10	max	1523.627	3	171.465	2	141.64	4	0	1	0	1	2.528	3
552			min	-843.4	2	002	15	0	1	0	1	063	5	-3.233	2
553		11	max	1524.059	3	169.882	2	143.1	4	0	1	.026	4	2.433	3
554			min	-842.823	2	-1.9	6	0	1	0	1	0	1	-3.339	2
555		12	max	1530.657	3	1130.63	3	158.177	4	0	1	0	1	2.121	3
556			min	-733.923	2	-1837.229	2	0	1	0	4	264	4	-2.981	2
557		13	max	1531.089	3	1129.443	3	159.637	4	0	1	0	1	1.42	3
558			min	-733.347	2	-1838.812	2	0	1	0	4	165	4	-1.84	2
559		14	max	1531.521	3	1128.255	3	161.098	4	0	1	0	1	.719	3
560			min	-732.771	2	-1840.395	2	0	1	0	4	066	4	698	2
561		15	max	1531.954	3	1127.068	3	162.558	4	0	1	.035	4	.444	2
562			min	-732.195	2	-1841.978	2	0	1	0	4	0	1	.001	15
563		16	max	1532.386	3	1125.881	3	164.018	4	0	1	.136	4	1.588	2
564			min	-731.618	2	-1843.562	2	0	1	0	4	0	1	68	3
565		17	max	1532.818	3	1124.693	3	165.478	4	0	1	.238	4	2.733	2
566			min	-731.042	2	-1845.145	2	0	1	0	4	0	1	-1.378	3
567		18	max	-6.363	12	2231.605	2	0	1	0	4	.244	4	1.392	2
568			min	-274.167	1	-1111.721	3	-24.108	5	0	1	0	1	713	3
569		19	max	-6.075	12	2230.021	2	0	1	0	4	.23	4	.01	1
570			min	-273.591	1	-1112.909	3	-22.648	5	0	1	0	1	023	3
571	M9	1	max	118.912	1	811.584	3	53.427	4	0	3	005	10	0	15
572			min	6.973	12	-445.892	2	1.773	10	0	4	112	4	011	2
573		2	max	119.488	1	810.397	3	54.888	4	0	3	004	10	.266	2
574			min		12	-447.475	2	1.773	10	0	4	078	1	514	3
575		3	max	511.731	3	606.184	2	36.001	1	0	2	003	10	.532	2
576			min	-319.296	2	-642.603	3	1.753	10	0	3	056	1	-1	3
577		4	max	512.163	3	604.601	2	36.001	1	0	2	002	10	.17	1
578			min	-318.72	2	-643.79	3	1.753	10	0	3	033	1	601	3
579		5	max	512.595	3	603.018	2	36.001	1	0	2	0	10	006	15
580			min	-318.144	2	-644.977	3	1.753	10	0	3	019	4	218	2
581		6		513.027	3	601.435	2	36.001	1	0	2	.011	1	.199	3
582				-317.567	2	-646.165	3	1.753	10	0	3	008	5	592	2
583		7		513.459	3	599.851	2	36.001	1	0	2	.034	1	.601	3
584				-316.991	2	-647.352	3	1.753	10	0	3	.001	15	965	2
585		8	1	513.891	3	598.268	2	36.001	1	0	2	.056	1	1.003	3
586			min	-316.415	2	-648.54	3	1.753	10	0	3	.003	10	-1.336	2
587		9		525.535	3	50.317	2	62.728	4	0	3	002	10	1.166	3
588				-269.252	2	.489	15	3.354	10	0	9	115	4	-1.521	2

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:__

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	525.967	3	48.733	2	64.189	4	0	3	0	1	1.143	3
590			min	-268.676	2	.012	15	3.354	10	0	9	075	4	-1.552	2
591		11	max	526.399	3	47.15	2	65.649	4	0	3	.039	1	1.121	3
592			min	-268.099	2	-1.899	6	3.354	10	0	9	043	5	-1.582	2
593		12	max	537.671	3	438.416	3	130.004	4	0	3	003	10	.986	3
594			min	-220.757	2	-706.733	2	2.05	10	0	2	21	4	-1.405	2
595		13	max	538.103	3	437.229	3	131.464	4	0	3	002	10	.714	3
596			min	-220.181	2	-708.317	2	2.05	10	0	2	129	4	966	2
597		14	max	538.535	3	436.042	3	132.924	4	0	3	0	10	.443	3
598			min	-219.605	2	-709.9	2	2.05	10	0	2	047	4	526	2
599		15	max	538.967	3	434.854	3	134.385	4	0	3	.036	4	.173	3
600			min	-219.028	2	-711.483	2	2.05	10	0	2	0	10	106	1
601		16	max	539.399	3	433.667	3	135.845	4	0	3	.12	4	.357	2
602			min	-218.452	2	-713.066	2	2.05	10	0	2	.002	10	096	3
603		17	max	539.832	3	432.479	3	137.305	4	0	3	.204	4	.8	2
604			min	-217.876	2	-714.649	2	2.05	10	0	2	.003	10	365	3
605		18	max	-6.532	12	659.524	2	40.866	1	0	2	.191	4	.405	2
606			min	-120.154	1	-309.708	3	-64.698	5	0	3	.005	10	181	3
607	·	19	max	-6.244	12	657.94	2	40.866	1	0	2	.156	4	.011	3
608			min	-119.577	1	-310.896	3	-63.238	5	0	3	.006	10	005	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	Ō	1	.245	2	.01	3	1.666e-2	2	NC	1	NC	1
2			min	483	4	08	3	006	2	-5.145e-3	3	NC	1	NC	1
3		2	max	0	1	.202	2	.012	3	1.739e-2	2	NC	4	NC	1
4			min	483	4	.005	15	006	5	-4.492e-3	3	1333.541	3	NC	1
5		3	max	0	1	.171	2	.019	1	1.812e-2	2	NC	4	NC	2
6			min	483	4	.004	15	008	5	-3.839e-3	3	729.531	3	7762.792	1
7		4	max	0	1	.197	3	.028	1	1.885e-2	2	NC	5	NC	2
8			min	483	4	.004	15	007	5	-3.187e-3	3	563.31	3	5391.136	1
9		5	max	0	1	.22	3	.031	1	1.958e-2	2	NC	4	NC	2
10			min	483	4	.004	15	004	10	-2.534e-3	3	520.452	3	4787.939	1
11		6	max	0	1	.203	3	.029	1	2.031e-2	2	NC	4	NC	2
12			min	483	4	.004	15	006	10	-1.881e-3	3	551.62	3	5221.136	
13		7	max	0	1	.236	2	.026	3	2.104e-2	2	NC	2	NC	2
14			min	483	4	.005	15	008	10	-1.229e-3	3	667.324	3	7295.26	1
15		8	max	0	1	.286	2	.027	3	2.177e-2	2	NC	4	NC	1
16			min	483	4	.006	15	012	2	-5.759e-4	3	932.06	3	8968.379	3
17		9	max	0	1	.329	2	.028	3	2.25e-2	2	NC	4	NC	1
18			min	483	4	.007	15	017	2	7.679e-5	3	1479.622	3	8511.212	3
19		10	max	0	1	.349	2	.029	3	2.322e-2	2	NC	4	NC	1
20			min	483	4	003	3	02	2	4.503e-4	15	1511.315	2	8379.246	3
21		11	max	0	10	.329	2	.028	3	2.25e-2	2	NC	4	NC	1
22			min	483	4	.006	15	017	2	7.679e-5	3	1479.622	3	8511.212	3
23		12	max	0	10	.286	2	.027	3	2.177e-2	2	NC	4	NC	1
24			min	483	4	.006	15	012	2	-5.759e-4	3	932.06	3	8968.379	3
25		13	max	0	10	.236	2	.026	3	2.104e-2	2	NC	2	NC	2
26			min	483	4	.005	15	008	10	-1.229e-3	3	667.324	3	7295.26	1
27		14	max	0	10	.203	3	.029	1	2.031e-2	2	NC	4	NC	2
28			min	483	4	.004	15	006	10	-1.881e-3	3	551.62	3	5221.136	1
29		15	max	0	10	.22	3	.031	1	1.958e-2	2	NC	4	NC	2
30			min	483	4	.003	15	004	10	-2.534e-3	3	520.452	3	4787.939	1
31		16	max	0	10	.197	3	.028	1	1.885e-2	2	NC	5	NC	2
32			min	483	4	.003	15	004	10	-3.187e-3	3	563.31	3	5391.136	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:__

34		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) L/y Ratio	LC		LC
18	33		17	max	0	10	.171	2	.019	1 1.812e-2	2	NC	4	NC	2
36	34			min	483	4	.003	15	003	10 -3.839e-3	3	729.531	3	7762.792	1
36	35		18	max	0	10	.202	2	.012	3 1.739e-2	2	NC	4	NC	1
19					483	4	.004	15	004		3	1333.541	3	NC	1
38			19			10		2			2		1		1
M14			1										1		
40		M14	1							_ 0000					-
41		IVIIT	<u> </u>	_											
A2			2										•		
444															
44										5 -8.3466-3					
45			3												
46				min	377	4									-
48	45		4	max	0	1		3	.022		2		<u>5</u>		
48	46			min	377	4	-1.164	2	009	5 -1.035e-2	3	341.172	2	6751.669	1
48	47		5	max	0	1	1.002	3	.026	1 1.339e-2	2	NC	15	NC	2
49	48			min	377	4	-1.265	2	004	10 -1.135e-2	3	279.663	2	5704.298	1
50			6			1									_
51				_											
52			7												
53 8 max 0 1 1.042 3 0.024 3 1.665e-2 2 NC 15 NC 1 55 9 max 0 1 1.018 3 .025 3 1.774e-2 2 NC 15 NC 1 56 min -3.377 4 -1.376 2 -0.16 2 -1.535e-2 3 232.285 2 9636.541 3 57 10 max 0 1 1.004 3 .025 3 1.882e-2 2 NC 15 NC 1 58 min -3.77 4 -1.371 2 -0.018 2 1.665e-2 2 NC 15 NC 1 60 min -3.377 4 -1.332 2 -0.018 2 -1.655e-2 2 NC 15 NC 1 61 12 min -3.377 4			- '												
55			0												
Secondary Seco			8												
56					_										4
57			9												1
Section	56			min	377	4	-1.376		016		3			9636.541	3
59	57		10	max	0	1	1.004	3	.025		2	NC			
59	58			min	377	4	-1.371	2	018	2 -1.635e-2	3	235.134	2	9459.376	3
60	59		11	max	0	10	1.018	3	.025		2		15	NC	1
61				_											3
62			12												
63			12												
Color			12												
65			13												
66					_										
67 15 max 0 10 1.002 3 .026 1 1.339e-2 2 NC 15 NC 2 68 min 377 4 -1.265 2 004 10 -1.135e-2 3 279.663 2 5704.298 1 69 16 max 0 10 .921 3 .022 1 1.23e-2 2 NC 5 NC 2 70 min 377 4 -1.164 2 003 10 -1.035e-2 3 341.72 2 6751.669 1 71 min 377 4 -1.033 2 003 10 -9.346e-3 3 47.713 2 783.525 4 73 18 max 0 10 .655 3 .012 4 1.013e-2 2 NC 5 NC 1 74 .02 .03 .03 .			14												
68 min 377 4 -1.265 2 004 10 -1.135e-2 3 279.663 2 5704.298 1 69 16 max 0 10 .921 3 .022 1 1.23e-2 2 NC 5 NC 2 70 min 377 4 -1.164 2 003 10 -1.035e-2 3 341.172 2 6751.669 1 71 17 max 0 10 .803 3 .019 4 1.122e-2 2 NC 5 NC 1 72 min 377 4 -1.033 2 003 10 -9.346e-3 3 478.713 2 783.525 4 73 18 max 0 10 .655 3 .012 4 1.013e-2 2 NC 5 NC 1 74 min -3.377 4				min											
69 16 max 0 10 .921 3 .022 1 1.23e-2 2 NC 5 NC 2 70 min 377 4 -1.164 2 003 10 -1.035e-2 3 341.172 2 6751.669 1 71 17 max 0 10 .803 3 .019 4 1.122e-2 2 NC 5 NC 1 72 min 377 4 -1.033 2 003 10 -9.346e-3 3 478.713 2 7833.525 4 73 18 max 0 10 .655 3 .012 4 1.013e-2 2 NC 5 NC 1 74 min 377 4 877 2 004 2 -8.346e-3 3 917.661 2 NC 1 75 19 max 0 10			15	max		10					2		<u> 15</u>		
70 min 377 4 -1.164 2 003 10 -1.035e-2 3 341.172 2 6751.669 1 71 17 max 0 10 .803 3 .019 4 1.122e-2 2 NC 5 NC 1 72 min 377 4 -1.033 2 003 10 -9.346e-3 3 478.713 2 7833.525 4 73 18 max 0 10 .655 3 .012 4 1.013e-2 2 NC 5 NC 1 74 min 377 4 877 2 004 2 -8.346e-3 3 917.661 2 NC 1 75 19 max 0 10 .491 3 .009 3 9.044e-3 2 NC 1 NC 1 76 min 377 4 707 </td <td>68</td> <td></td> <td></td> <td>min</td> <td>377</td> <td>4</td> <td>-1.265</td> <td>2</td> <td>004</td> <td></td> <td>3</td> <td>279.663</td> <td>2</td> <td></td> <td>1</td>	68			min	377	4	-1.265	2	004		3	279.663	2		1
70 min 377 4 -1.164 2 003 10 -1.035e-2 3 341.172 2 6751.669 1 71 17 max 0 10 .803 3 .019 4 1.122e-2 2 NC 5 NC 1 72 min 377 4 -1.033 2 003 10 -9.346e-3 3 478.713 2 7833.525 4 73 18 max 0 10 .655 3 .012 4 1.013e-2 2 NC 5 NC 1 74 min 377 4 877 2 004 2 -8.346e-3 3 917.661 2 NC 1 75 19 max 0 10 .491 3 .009 3 9.044e-3 2 NC 1 NC 1 76 min 377 4 707 </td <td>69</td> <td></td> <td>16</td> <td>max</td> <td>0</td> <td>10</td> <td>.921</td> <td>3</td> <td>.022</td> <td>1 1.23e-2</td> <td>2</td> <td>NC</td> <td>5</td> <td>NC</td> <td>2</td>	69		16	max	0	10	.921	3	.022	1 1.23e-2	2	NC	5	NC	2
71 17 max 0 10 .803 3 .019 4 1.122e-2 2 NC 5 NC 1 72 min 377 4 -1.033 2 003 10 -9.346e-3 3 478.713 2 7833.525 4 73 18 max 0 10 .655 3 .012 4 1.013e-2 2 NC 5 NC 1 74 min 377 4 877 2 004 2 -8.346e-3 3 917.661 2 NC 1 75 19 max 0 10 .491 3 .009 3 9.044e-3 2 NC 1 NC 1 76 min 377 4 707 2 006 2 -7.346e-3 3 NC 1 NC 1 77 M15 1 max 0 10<				min	377	4	-1.164	2	003		3	341.172	2	6751.669	1
72 min 377 4 -1.033 2 003 10 -9.346e-3 3 478.713 2 7833.525 4 73 18 max 0 10 .655 3 .012 4 1.013e-2 2 NC 5 NC 1 74 min 377 4 877 2 004 2 -8.346e-3 3 917.661 2 NC 1 75 19 max 0 10 .491 3 .009 3 9.044e-3 2 NC 1 NC 1 76 min 377 4 707 2 006 2 -7.346e-3 3 NC 1 NC 1 77 M15 1 max 0 10 .502 3 .008 3 6.224e-3 3 NC 1 NC 1 78 min 315 4			17			10									
73 18 max 0 10 .655 3 .012 4 1.013e-2 2 NC 5 NC 1 74 min 377 4 877 2 004 2 -8.346e-3 3 917.661 2 NC 1 75 19 max 0 10 .491 3 .009 3 9.044e-3 2 NC 1 NC 1 76 min 377 4 707 2 006 2 -7.346e-3 3 NC 1 NC 1 77 M15 1 max 0 10 .502 3 .008 3 6.224e-3 3 NC 1 NC 1 78 min 315 4 706 2 005 2 -9.365e-3 2 NC 1 NC 1 80 min 315 4 903															
74 min 377 4 877 2 004 2 -8.346e-3 3 917.661 2 NC 1 75 19 max 0 10 .491 3 .009 3 9.044e-3 2 NC 1 NC 1 76 min 377 4 707 2 006 2 -7.346e-3 3 NC 1 NC 1 77 M15 1 max 0 10 .502 3 .008 3 6.224e-3 3 NC 1 NC 1 78 min 315 4 706 2 005 2 -9.365e-3 2 NC 1 NC 1 79 2 max 0 10 .632 3 .009 3 7.05e-3 3 NC 5 NC 1 80 min 315 4 903			10									NC			
75 19 max 0 10 .491 3 .009 3 9.044e-3 2 NC 1 NC 1 76 min 377 4 707 2 006 2 -7.346e-3 3 NC 1 NC 1 77 M15 1 max 0 10 .502 3 .008 3 6.224e-3 3 NC 1 NC 1 78 min 315 4 706 2 005 2 -9.365e-3 2 NC 1 NC 1 79 2 max 0 10 .632 3 .009 3 7.05e-3 3 NC 5 NC 1 80 min 315 4 903 2 016 5 -1.05e-2 2 792.803 2 8959.899 5 81 3 max 0 10			10												
76 min 377 4 707 2 006 2 -7.346e-3 3 NC 1 NC 1 77 M15 1 max 0 10 .502 3 .008 3 6.224e-3 3 NC 1 NC 1 78 min 315 4 706 2 005 2 -9.365e-3 2 NC 1 NC 1 79 2 max 0 10 .632 3 .009 3 7.05e-3 3 NC 5 NC 1 80 min 315 4 903 2 016 5 -1.05e-2 2 792.803 2 8959.899 5 81 3 max 0 10 .751 3 .014 1 7.876e-3 3 NC 5 NC 1 82 min 315 4 -1.08			40					_							
77 M15 1 max 0 10 .502 3 .008 3 6.224e-3 3 NC 1 NC 1 78 min 315 4 706 2 005 2 -9.365e-3 2 NC 1 NC 1 79 2 max 0 10 .632 3 .009 3 7.05e-3 3 NC 5 NC 1 80 min 315 4 903 2 016 5 -1.05e-2 2 792.803 2 8959.899 5 81 3 max 0 10 .751 3 .014 1 7.876e-3 3 NC 5 NC 1 82 min 315 4 -1.08 2 02 5 -1.163e-2 2 416.698 2 7134.397 5 83 4 max 0 10 <td></td> <td></td> <td>19</td> <td></td>			19												
78 min 315 4 706 2 005 2 -9.365e-3 2 NC 1 NC 1 79 2 max 0 10 .632 3 .009 3 7.05e-3 3 NC 5 NC 1 80 min 315 4 903 2 016 5 -1.05e-2 2 792.803 2 8959.899 5 81 3 max 0 10 .751 3 .014 1 7.876e-3 3 NC 5 NC 1 82 min 315 4 -1.08 2 02 5 -1.163e-2 2 416.698 2 7134.397 5 83 4 max 0 10 .853 3 .022 1 8.702e-3 3 NC 5 NC 2 84 min 315 4 -1.225 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>															
79 2 max 0 10 .632 3 .009 3 7.05e-3 3 NC 5 NC 1 80 min 315 4 903 2 016 5 -1.05e-2 2 792.803 2 8959.899 5 81 3 max 0 10 .751 3 .014 1 7.876e-3 3 NC 5 NC 1 82 min 315 4 -1.08 2 02 5 -1.163e-2 2 416.698 2 7134.397 5 83 4 max 0 10 .853 3 .022 1 8.702e-3 3 NC 5 NC 2 84 min 315 4 -1.225 2 016 5 -1.276e-2 2 300.561 2 6694.528 1 85 5 max 0 10		<u>M15</u>	1_												
80 min 315 4 903 2 016 5 -1.05e-2 2 792.803 2 8959.899 5 81 3 max 0 10 .751 3 .014 1 7.876e-3 3 NC 5 NC 1 82 min 315 4 -1.08 2 02 5 -1.163e-2 2 416.698 2 7134.397 5 83 4 max 0 10 .853 3 .022 1 8.702e-3 3 NC 5 NC 2 84 min 315 4 -1.225 2 016 5 -1.276e-2 2 300.561 2 6694.528 1 85 5 max 0 10 .932 3 .027 1 9.527e-3 3 NC 5 NC 2 86 min 315 4 -1.329 <td>78</td> <td></td> <td></td> <td>min</td> <td>315</td> <td>4</td> <td></td> <td>_</td> <td></td> <td></td> <td>2</td> <td></td> <td>_1_</td> <td></td> <td>1</td>	78			min	315	4		_			2		_1_		1
81 3 max 0 10 .751 3 .014 1 7.876e-3 3 NC 5 NC 1 82 min 315 4 -1.08 2 02 5 -1.163e-2 2 416.698 2 7134.397 5 83 4 max 0 10 .853 3 .022 1 8.702e-3 3 NC 5 NC 2 84 min 315 4 -1.225 2 016 5 -1.276e-2 2 300.561 2 6694.528 1 85 5 max 0 10 .932 3 .027 1 9.527e-3 3 NC 5 NC 2 86 min 315 4 -1.329 2 006 5 -1.389e-2 2 250.462 2 5649.702 1 87 6 max 0 10 .987 3 .025 1 1.035e-2 3 NC 15 NC <t< td=""><td>79</td><td></td><td>2</td><td>max</td><td>0</td><td>10</td><td>.632</td><td>3</td><td>.009</td><td>3 7.05e-3</td><td>3</td><td>NC</td><td>5</td><td>NC</td><td>1</td></t<>	79		2	max	0	10	.632	3	.009	3 7.05e-3	3	NC	5	NC	1
81 3 max 0 10 .751 3 .014 1 7.876e-3 3 NC 5 NC 1 82 min 315 4 -1.08 2 02 5 -1.163e-2 2 416.698 2 7134.397 5 83 4 max 0 10 .853 3 .022 1 8.702e-3 3 NC 5 NC 2 84 min 315 4 -1.225 2 016 5 -1.276e-2 2 300.561 2 6694.528 1 85 5 max 0 10 .932 3 .027 1 9.527e-3 3 NC 5 NC 2 86 min 315 4 -1.329 2 006 5 -1.389e-2 2 250.462 2 5649.702 1 87 6 max 0 10 .987 3 .025 1 1.035e-2 3 NC 15 NC <t< td=""><td>80</td><td></td><td></td><td>min</td><td>315</td><td>4</td><td>903</td><td>2</td><td>016</td><td>5 -1.05e-2</td><td>2</td><td>792.803</td><td>2</td><td>8959.899</td><td>5</td></t<>	80			min	315	4	903	2	016	5 -1.05e-2	2	792.803	2	8959.899	5
82 min 315 4 -1.08 2 02 5 -1.163e-2 2 416.698 2 7134.397 5 83 4 max 0 10 .853 3 .022 1 8.702e-3 3 NC 5 NC 2 84 min 315 4 -1.225 2 016 5 -1.276e-2 2 300.561 2 6694.528 1 85 5 max 0 10 .932 3 .027 1 9.527e-3 3 NC 5 NC 2 86 min 315 4 -1.329 2 006 5 -1.389e-2 2 250.462 2 5649.702 1 87 6 max 0 10 .987 3 .025 1 1.035e-2 3 NC 15 NC 2 88 min 315 4 -1.39<			3												
83 4 max 0 10 .853 3 .022 1 8.702e-3 3 NC 5 NC 2 84 min 315 4 -1.225 2 016 5 -1.276e-2 2 300.561 2 6694.528 1 85 5 max 0 10 .932 3 .027 1 9.527e-3 3 NC 5 NC 2 86 min 315 4 -1.329 2 006 5 -1.389e-2 2 250.462 2 5649.702 1 87 6 max 0 10 .987 3 .025 1 1.035e-2 3 NC 15 NC 2 88 min 315 4 -1.39 2 005 10 -1.502e-2 2 228.13 2 5942.589 1															
84 min 315 4 -1.225 2 016 5 -1.276e-2 2 300.561 2 6694.528 1 85 5 max 0 10 .932 3 .027 1 9.527e-3 3 NC 5 NC 2 86 min 315 4 -1.329 2 006 5 -1.389e-2 2 250.462 2 5649.702 1 87 6 max 0 10 .987 3 .025 1 1.035e-2 3 NC 15 NC 2 88 min 315 4 -1.39 2 005 10 -1.502e-2 2 228.13 2 5942.589 1			Δ												
85 5 max 0 10 .932 3 .027 1 9.527e-3 3 NC 5 NC 2 86 min 315 4 -1.329 2 006 5 -1.389e-2 2 250.462 2 5649.702 1 87 6 max 0 10 .987 3 .025 1 1.035e-2 3 NC 15 NC 2 88 min 315 4 -1.39 2 005 10 -1.502e-2 2 228.13 2 5942.589 1															
86 min 315 4 -1.329 2 006 5 -1.389e-2 2 250.462 2 5649.702 1 87 6 max 0 10 .987 3 .025 1 1.035e-2 3 NC 15 NC 2 88 min 315 4 -1.39 2 005 10 -1.502e-2 2 228.13 2 5942.589 1			-												
87 6 max 0 10 .987 3 .025 1 1.035e-2 3 NC 15 NC 2 88 min 315 4 -1.39 2 005 10 -1.502e-2 2 228.13 2 5942.589 1			5												
88 min315 4 -1.39 2005 10 -1.502e-2 2 228.13 2 5942.589 1															
			6												
89 7 max 0 10 1.019 3 .021 4 1.118e-2 3 NC 15 NC 2				min	315		-1.39				2		2		
	89		7	max	0	10	1.019	3	.021	4 1.118e-2	3	NC	15	NC	2

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:____

90		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					
93	90			min	315	4	-1.412	2	006	10 -1.615e-2	2	221.02	2	6999.61	4
94			8												
94															
95			9		-										
96			40			-									
97			10												
98			11												
12 max															
100			12												
101			12			-						223 304			_
102			13												
103			13												_
104			14												
105			17		-	-									
106			15												
107															
108			16												2
109															
110			17												
111						4									4
112	111		18			1		3			3		5		1
114	112			min	315	4	903		003		2	792.803	2	7941.661	4
115 M16	113		19	max	0	1	.502	3	.008	3 6.224e-3	3	NC	1	NC	1
116	114			min	315	4	706	2	005	2 -9.365e-3	2	NC	1	NC	1
117 2 max 0 10 .142 1 .008 3 1.288e-2 3 NC 4 NC 1 118 min 116 4 157 3 01 5 -1.446e-2 2 2012.701 2 NC 1 119 3 max 0 10 .095 1 .019 1 1.359e-2 3 NC 4 NC 2 120 min 116 4 14 3 014 5 -1.47e-2 2 1123.924 2 7709.56 1 121 4 max 0 10 .07 1 .028 1 1.431e-2 3 NC 4 NC 2 122 min 116 4 136 3 012 5 -1.49ae-2 2 901.467 2 5318.366 1 122 min 116 4 146	115	M16	1	max	0	10	.219		.007		3		1_		1
118 min 116 4 157 3 01 5 -1.446e-2 2 2012.701 2 NC 1 119 3 max 0 10 .095 1 .019 1 1.359e-2 3 NC 4 NC 2 120 min 116 4 14 3 014 5 -1.47e-2 2 1123.924 2 7709.56 1 121 4 max 0 10 .07 1 .028 1 1.431e-2 3 NC 4 NC 2 122 min 116 4 136 3 012 5 -1.493e-2 2 901.467 2 5318.366 1 123 5 max 0 10 .07 1 .028 1 1.502e-2 2 901.467 2 5318.366 1 124 min 116 4	116			min	116	4	182	3	005		2		1	NC	1
119 3 max 0 10 .095 1 .019 1 1.359e-2 3 NC 4 NC 2 120 min 116 4 14 3 014 5 -1.47e-2 2 1123.924 2 7709.56 1 121 4 max 0 10 .07 1 .028 1 1.431e-2 3 NC 4 NC 2 122 min 116 4 136 3 012 5 -1.493e-2 2 901.467 2 5318.366 1 123 5 max 0 10 .07 1 .032 1 1.502e-2 3 NC 4 NC 2 124 min 116 4 146 3 006 5 -1.516e-2 2 889.786 2 4683.792 1 125 6 max 0 10			2												1
120 min 116 4 14 3 014 5 -1.47e-2 2 1123.924 2 7709.56 1 121 4 max 0 10 .07 1 .028 1 1.431e-2 3 NC 4 NC 2 122 min 116 4 136 3 012 5 -1.493e-2 2 901.467 2 5318.366 1 123 5 max 0 10 .07 1 .032 1 1.502e-2 3 NC 4 NC 2 124 min 116 4 146 3 006 5 -1.516e-2 2 889.786 2 4683.792 1 125 6 max 0 10 .096 1 .03 1 1.574e-2 3 NC 3 NC 2 126 min 116 4 17 </td <td></td> <td></td> <td></td> <td>min</td> <td>116</td> <td></td> <td></td> <td>3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td>				min	116			3							•
121 4 max 0 10 .07 1 .028 1 1.431e-2 3 NC 4 NC 2 122 min 116 4 136 3 012 5 -1.493e-2 2 901.467 2 5318.366 1 123 5 max 0 10 .07 1 .032 1 1.502e-2 3 NC 4 NC 2 124 min 116 4 146 3 006 5 -1.516e-2 2 889.786 2 4683.792 1 125 6 max 0 10 .096 1 .03 1 1.574e-2 3 NC 3 NC 2 126 min 116 4 17 3 004 10 -1.539e-2 2 1064.431 2 5038.338 1 127 7 max 0 10			3					-		1 1.359e-2					
122 min 116 4 136 3 012 5 -1.493e-2 2 901.467 2 5318.366 1 123 5 max 0 10 .07 1 .032 1 1.502e-2 3 NC 4 NC 2 124 min 116 4 146 3 006 5 -1.516e-2 2 889.786 2 4683.792 1 125 6 max 0 10 .096 1 .03 1 1.574e-2 3 NC 3 NC 2 126 min 116 4 17 3 004 10 -1.539e-2 2 1064.431 2 5038.338 1 127 7 max 0 10 .142 1 .022 1 1.645e-2 3 NC 4 NC 2 128 min 116 4															-
123 5 max 0 10 .07 1 .032 1 1.502e-2 3 NC 4 NC 2 124 min 116 4 146 3 006 5 -1.516e-2 2 889.786 2 4683.792 1 125 6 max 0 10 .096 1 .03 1 1.574e-2 3 NC 3 NC 2 126 min 116 4 17 3 004 10 -1.539e-2 2 1064.431 2 5038.338 1 127 7 max 0 10 .142 1 .022 1 1.645e-2 3 NC 4 NC 2 128 min 116 4 204 3 005 10 -1.562e-2 2 1667.034 2 6836.714 1 129 8 max 0 10 </td <td></td> <td></td> <td>4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1 1.431e-2</td> <td></td> <td></td> <td></td> <td></td> <td></td>			4							1 1.431e-2					
124 min 116 4 146 3 006 5 -1.516e-2 2 889.786 2 4683.792 1 125 6 max 0 10 .096 1 .03 1 1.574e-2 3 NC 3 NC 2 126 min 116 4 17 3 004 10 -1.539e-2 2 1064.431 2 5038.338 1 127 7 max 0 10 .142 1 .022 1 1.645e-2 3 NC 4 NC 2 128 min 116 4 204 3 005 10 -1.562e-2 2 1667.034 2 6836.714 1 129 8 max 0 10 .196 1 .02 3 1.717e-2 3 NC 1 NC 1 130 min 116 4			_										_		
125 6 max 0 10 .096 1 .03 1 1.574e-2 3 NC 3 NC 2 126 min 116 4 17 3 004 10 -1.539e-2 2 1064.431 2 5038.338 1 127 7 max 0 10 .142 1 .022 1 1.645e-2 3 NC 4 NC 2 128 min 116 4 204 3 005 10 -1.562e-2 2 1667.034 2 6836.714 1 129 8 max 0 10 .196 1 .02 3 1.717e-2 3 NC 1 NC 1 130 min 116 4 242 3 008 2 -1.586e-2 2 2585.621 3 NC 1 131 9 max 0 10 .247 2 .02 3 1.788e-2 3 NC 4 NC <t< td=""><td></td><td></td><td>5</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2</td></t<>			5		-										2
126 min 116 4 17 3 004 10 -1.539e-2 2 1064.431 2 5038.338 1 127 7 max 0 10 .142 1 .022 1 1.645e-2 3 NC 4 NC 2 128 min 116 4 204 3 005 10 -1.562e-2 2 1667.034 2 6836.714 1 129 8 max 0 10 .196 1 .02 3 1.717e-2 3 NC 1 NC 1 130 min 116 4 242 3 008 2 -1.586e-2 2 2585.621 3 NC 1 131 9 max 0 10 .247 2 .02 3 1.788e-2 3 NC 4 NC 1 132 min 116 4 274						_									1
127 7 max 0 10 .142 1 .022 1 1.645e-2 3 NC 4 NC 2 128 min 116 4 204 3 005 10 -1.562e-2 2 1667.034 2 6836.714 1 129 8 max 0 10 .196 1 .02 3 1.717e-2 3 NC 1 NC 1 130 min 116 4 242 3 008 2 -1.586e-2 2 2585.621 3 NC 1 131 9 max 0 10 .247 2 .02 3 1.788e-2 3 NC 4 NC 1 132 min 116 4 274 3 013 2 -1.609e-2 2 1686.338 3 NC 1 133 10 max 0 1			Ь												
128 min 116 4 204 3 005 10 -1.562e-2 2 1667.034 2 6836.714 1 129 8 max 0 10 .196 1 .02 3 1.717e-2 3 NC 1 NC 1 130 min 116 4 242 3 008 2 -1.586e-2 2 2585.621 3 NC 1 131 9 max 0 10 .247 2 .02 3 1.788e-2 3 NC 4 NC 1 132 min 116 4 274 3 013 2 -1.609e-2 2 1686.338 3 NC 1 133 10 max 0 1 .273 2 .02 3 1.86e-2 3 NC 4 NC 1 134 min 116 4 288			7												
129 8 max 0 10 .196 1 .02 3 1.717e-2 3 NC 1 NC 1 130 min 116 4 242 3 008 2 -1.586e-2 2 2585.621 3 NC 1 131 9 max 0 10 .247 2 .02 3 1.788e-2 3 NC 4 NC 1 132 min 116 4 274 3 013 2 -1.609e-2 2 1686.338 3 NC 1 133 10 max 0 1 .273 2 .02 3 1.86e-2 3 NC 4 NC 1 134 min 116 4 288 3 015 2 -1.632e-2 2 1463.436 3 NC 1 135 11 max 0 1 .247 2 .02 3 1.788e-2 3 NC 4 NC 1			/		_										
130 min 116 4 242 3 008 2 -1.586e-2 2 2585.621 3 NC 1 131 9 max 0 10 .247 2 .02 3 1.788e-2 3 NC 4 NC 1 132 min 116 4 274 3 013 2 -1.609e-2 2 1686.338 3 NC 1 133 10 max 0 1 .273 2 .02 3 1.86e-2 3 NC 4 NC 1 134 min 116 4 288 3 015 2 -1.632e-2 2 1463.436 3 NC 1 135 11 max 0 1 .247 2 .02 3 1.788e-2 3 NC 4 NC 1			0												
131 9 max 0 10 .247 2 .02 3 1.788e-2 3 NC 4 NC 1 132 min 116 4 274 3 013 2 -1.609e-2 2 1686.338 3 NC 1 133 10 max 0 1 .273 2 .02 3 1.86e-2 3 NC 4 NC 1 134 min 116 4 288 3 015 2 -1.632e-2 2 1463.436 3 NC 1 135 11 max 0 1 .247 2 .02 3 1.788e-2 3 NC 4 NC 1			0							3 1.7176-2					
132 min 116 4 274 3 013 2 -1.609e-2 2 1686.338 3 NC 1 133 10 max 0 1 .273 2 .02 3 1.86e-2 3 NC 4 NC 1 134 min 116 4 288 3 015 2 -1.632e-2 2 1463.436 3 NC 1 135 11 max 0 1 .247 2 .02 3 1.788e-2 3 NC 4 NC 1			a												
133 10 max 0 1 .273 2 .02 3 1.86e-2 3 NC 4 NC 1 134 min 116 4 288 3 015 2 -1.632e-2 2 1463.436 3 NC 1 135 11 max 0 1 .247 2 .02 3 1.788e-2 3 NC 4 NC 1			9												
134 min 116 4 288 3 015 2 -1.632e-2 2 1463.436 3 NC 1 135 11 max 0 1 .247 2 .02 3 1.788e-2 3 NC 4 NC 1			10		_								_		
135 11 max 0 1 .247 2 .02 3 1.788e-2 3 NC 4 NC 1			10		-										
			11			_									
137			12							3 1 717e-2					-
138 min116 4242 3008 5 -1.586e-2 2 2585.621 3 NC 1															
139			13										_		
140 min116 4204 3005 10 -1.562e-2 2 1667.034 2 6836.714 1						4		-							
141			14												
142 min116 417 3004 10 -1.539e-2 2 1064.431 2 5038.338 1					-			_		10 -1.539e-2					
143			15		_										
144 min116 4146 3003 10 -1.516e-2 2 889.786 2 4683.792 1						4		3					2		
145			16			_									
146 min116 4136 3002 10 -1.493e-2 2 901.467 2 5318.366 1					116	4	136	3				901.467	2	5318.366	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC		LC
147		17	max	0	1	.095	1	.022	4	1.359e-2	3	NC	4	NC	2
148			min	116	4	14	3	002	10	-1.47e-2	2	1123.924	2	6811.934	4
149		18	max	0	1	.142	1	.014	4	1.288e-2	3	NC	4	NC	1
150			min	115	4	157	3	003	10	-1.446e-2	2	2012.701	2	NC	1
151		19	max	0	1	.219	2	.007	3	1.216e-2	3	NC	1	NC	1
152			min	115	4	182	3	005	2	-1.423e-2	2	NC	1	NC	1
153	M2	1	max	.007	2	.009	2	.005	1	1.915e-3	5	NC	1	NC	1
154	1412	<u> </u>	min	009	3	014	3	457	4	-9.914e-5	1	6857.386	2	132.423	4
155		2	max	.006	2	.008	2	.004	1	1.912e-3	5	NC	1	NC	1
156			min	008	3	013	3	42	4	-9.293e-5	1	7820.882	2	144.286	4
157		3		.006	2	.007	2	.004	1	1.909e-3	5	NC	1	NC	1
		3	max							-8.672e-5	3				
158		-	min	008	3	013	3	382	4			9084.039	2	158.392	4
159		4	max	.005	2	.006	2	.004	1	1.906e-3	_5_	NC		NC 177	1
160			min	007	3	012	3	345	4	-8.051e-5	1_	NC	1_	175.332	4
161		5	max	.005	2	.005	2	.003	1	1.904e-3	<u>5</u>	NC	_1_	NC	1
162			min	007	3	012	3	309	4	-7.43e-5	_1_	NC	1_	195.91	4
163		6	max	.005	2	.004	2	.003	1	1.901e-3	4_	NC	<u>1</u>	NC	1
164			min	006	3	011	3	274	4	-6.809e-5	1	NC	1	221.242	4
165		7	max	.004	2	.003	2	.002	1	1.9e-3	4	NC	1	NC	1
166			min	006	3	01	3	239	4	-6.188e-5	1	NC	1	252.919	4
167		8	max	.004	2	.002	2	.002	1	1.898e-3	4	NC	1	NC	1
168			min	005	3	01	3	207	4	-5.567e-5	1	NC	1	293.265	4
169		9	max	.004	2	.001	2	.002	1	1.897e-3	4	NC	1	NC	1
170			min	005	3	009	3	175	4	-4.946e-5	1	NC	1	345.797	4
171		10	max	.003	2	0	2	.001	1	1.895e-3	4	NC	1	NC	1
172		10	min	004	3	008	3	146	4	-4.325e-5	1	NC	1	416.035	4
173		11		.003	2	008	2	.001	1	1.894e-3		NC	1	NC	1
			max								4				1
174		40	min	004	3	008	3	118	4	-3.704e-5		NC NC	1_	513.065	4
175		12	max	.003	2	0	15	0	1	1.892e-3	4_	NC		NC 050.740	1
176		4.0	min	003	3	007	3	093	4	-3.083e-5	1_	NC	1	652.716	4
177		13	max	.002	2	0	15	0	1	1.891e-3	4	NC	_1_	NC	1
178			min	003	3	006	3	07	4	-2.462e-5	_1_	NC	_1_	864.637	4
179		14	max	.002	2	0	15	0	1	1.89e-3	_4_	NC	_1_	NC	1
180			min	002	3	005	3	05	4	-1.842e-5	1_	NC	1_	1209.881	4
181		15	max	.001	2	0	15	0	1	1.888e-3	4	NC	1_	NC	1
182			min	002	3	004	3	033	4	-1.221e-5	1	NC	1	1831.55	4
183		16	max	.001	2	0	15	0	1	1.887e-3	4	NC	1	NC	1
184			min	001	3	003	3	019	4	-5.996e-6	1	NC	1	3135.082	4
185		17	max	0	2	0	15	0	1	1.885e-3	4	NC	1	NC	1
186			min	0	3	002	3	009	4	-1.293e-6	3	NC	1	6686.398	4
187		18	max	0	2	0	15	0	1	1.884e-3	4	NC	1	NC	1
188		''	min	0	3	001	3	003	4	-1.196e-7	3	NC	1	NC	1
189		19	max	0	1	0	1	<u>003</u>	1	1.882e-3	4	NC	1	NC	1
190		19	min	0	1	0	1	0	1	6.89e-7	12	NC	1	NC	1
	MO	1			1		1		1						
191	<u>M3</u>	1	max	0	_	0	-	0		-2.754e-7	12	NC NC	1	NC NC	1
192			min	0	1	0	1	0	1	-3.656e-4	4	NC NC	1_	NC NC	1
193		2	max	0	3	0	15	.01	4	1.515e-4	4	NC	1	NC NC	1
194			min	0	2	002	6	0	12	5.637e-7	10	NC	1_	NC	1
195		3	max	0	3	001	15	.021	4	6.685e-4	_4_	NC	_1_	NC	1
196			min	0	2	005	6	0	12	1.404e-6	10	NC	1_	NC	1
197		4	max	.001	3	002	15	.03	4	1.186e-3	4	NC	_1_	NC	1
198			min	001	2	008	6	0	12	2.244e-6	10	NC	1	NC	1
199		5	max	.002	3	002	15	.04	4	1.703e-3	4	NC	1	NC	1
200			min	001	2	011	6	0	12	3.085e-6	10	9503.482	6	NC	1
201		6	max	.002	3	003	15	.049	4	2.22e-3	4	NC	1	NC	1
202			min	002	2	013	6	0	12	3.925e-6	10	7609.189	6	NC	1
203		7	max	.003	3	003	15	.058	4	2.737e-3	4	NC	5	NC	1
			IIIUA	.000		.000		.000			т	.,,		- 1,0	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r			LC		LC
204			min	002	2	016	6	0	12	4.765e-6	10	6473.883	6	NC	1
205		8	max	.003	3	004	15	.066	4	3.254e-3	4_	NC	5	NC	1
206			min	002	2	018	6	0	12	5.606e-6		5773.065	6	NC	1
207		9	max	.003	3	004	15	.074	4	3.771e-3	4_	NC	5	NC	1
208		40	min	003	2	019	6	0	10	6.446e-6	10	5354.485	6	NC	1
209		10	max	.004	3	004	15	.082	4	4.288e-3	4	NC 54.40.054	5_	NC NC	1
210		4.4	min	003	2	02	6	0	10	7.286e-6		5143.851	6	NC NC	1
211		11	max	.004	3	004	15	.089	4	4.805e-3	4	NC 5400 C4C	5	NC NC	1
212		40	min	004	2	02	6	0	10	8.127e-6		5109.616	6	NC NC	1
213		12	max	.005	3	004 019	15	.097	4	5.322e-3 8.967e-6	4	NC 5250.8	5	NC NC	1
215		13	min	004 .005	3	019 004	15	<u> </u>	10 4		10	NC	<u>6</u> 5	NC NC	1
216		13	max	004	2	004 018	6	104 0	10	5.839e-3 9.808e-6	<u>4</u> 10	5598.098	<u>5</u>	NC NC	1
217		14	max	.006	3	016 004	15	.112	4	6.356e-3	4	NC	5	NC NC	1
218		14	min	005	2	016	6	0	10	1.065e-5	10	6230.224	6	NC	1
219		15	max	.006	3	003	15	.12	4	6.873e-3	4	NC	2	NC	1
220		13	min	005	2	014	6	0	10	1.149e-5	10	7323.327	6	NC	1
221		16	max	.006	3	002	15	.128	4	7.39e-3	4	NC	1	NC	1
222		10	min	005	2	011	6	0	10	1.233e-5		9305.315	6	NC	1
223		17	max	.007	3	001	15	.136	4	7.907e-3	4	NC	1	NC	1
224			min	006	2	008	6	0	10	1.317e-5	10	NC	1	NC	1
225		18	max	.007	3	0	15	.146	4	8.424e-3	4	NC	1	NC	1
226			min	006	2	005	1	0	10	1.401e-5	10	NC	1	NC	1
227		19	max	.008	3	0	5	.156	4	8.941e-3	4	NC	1	NC	1
228			min	006	2	002	1	0	10	1.485e-5	10	NC	1	NC	1
229	M4	1	max	.003	2	.006	2	0	10	4.203e-5	1	NC	1	NC	2
230			min	0	3	008	3	156	4	-3.237e-4	5	NC	1	158.788	4
231		2	max	.002	2	.006	2	0	10	4.203e-5	1	NC	1	NC	2
232			min	0	3	007	3	144	4	-3.237e-4	5	NC	1	172.806	4
233		3	max	.002	2	.005	2	0	10	4.203e-5	1_	NC	1_	NC	2
234			min	0	3	007	3	131	4	-3.237e-4	5	NC	1	189.481	4
235		4	max	.002	2	.005	2	0	10	4.203e-5	_1_	NC	_1_	NC	2
236			min	0	3	007	3	118	4	-3.237e-4	5	NC	1_	209.503	4
237		5	max	.002	2	.005	2	0	10	4.203e-5	_1_	NC	_1_	NC	2
238			min	0	3	006	3	106	4	-3.237e-4	5	NC	1_	233.812	4
239		6	max	.002	2	.004	2	0	10	4.203e-5	_1_	NC	_1_	NC	2
240		_	min	0	3	006	3	094	4	-3.237e-4	5	NC	1_	263.711	4
241		7	max	.002	2	.004	2	0	10	4.203e-5	_1_	NC	1_	NC	1
242			min	0	3	005	3	082	4	-3.237e-4	5_	NC	_1_	301.05	4
243		8	max	.002	2	.004	2	0	10	4.203e-5	_1_	NC NC	1_	NC 040,500	1
244			min		3	005	3	071		-3.237e-4		NC NC	1	348.526	
245		9	max	.001	2	.003	2	0	10		1_	NC NC	1	NC	1
246		10	min	0	3	004	2	<u>06</u>	10	-3.237e-4	5	NC NC	<u>1</u> 1	410.201	1
247 248		10	max	.001 0	3	.003 004	3	0 05	10	4.203e-5 -3.237e-4	<u>1</u> 5	NC NC	1	NC 492.422	
249		11	min max	.001	2	.003	2	<u>05</u> 0	10	4.203e-5	<u> </u>	NC NC	1	NC	1
250		11	min	0	3	003	3	041	4	-3.237e-4	5	NC NC	1	605.578	4
251		12	max	.001	2	.002	2	<u>041</u> 0	10		<u> </u>	NC NC	1	NC	1
252		12	min	0	3	003	3	032	4	-3.237e-4	5	NC NC	1	767.637	4
253		13	max	0	2	.002	2	<u>032</u> 0	10	4.203e-5	1	NC	1	NC	1
254		13	min	0	3	003	3	025	4	-3.237e-4	5	NC NC	1	1011.954	_
255		14	max	0	2	.002	2	0	10	4.203e-5	1	NC	1	NC	1
256		17	min	0	3	002	3	018	4	-3.237e-4	5	NC	1	1406.392	_
257		15	max	0	2	.002	2	0	10	4.203e-5	1	NC	1	NC	1
258		10	min	0	3	002	3	012	4	-3.237e-4	5	NC	1	2107.408	4
259		16	max	0	2	0	2	0	10	4.203e-5	1	NC	1	NC	1
260		1.0	min	0	3	001	3	007	4	-3.237e-4	5	NC	1	3547.563	
					_		_			JJ. J. J.			_	30 11 1000	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 23, 2015

Checked By:____

004	Member	Sec		x [in]	LC	y [in]	LC	z [in]	1		LC	(n) L/y Ratio	LC		LC
261		17	max	0	2	0	2	0	10	4.203e-5	_1_	NC	1	NC	1
262		10	min	0	3	0	3	003	4	-3.237e-4	5	NC	1_	7331.003	4
263		18	max	0	2	0	2	0	10	4.203e-5	1_	NC	1_	NC	1
264			min	0	3	0	3	001	4	-3.237e-4	5	NC	1_	NC	1
265		19	max	0	1	0	1	0	1	4.203e-5	_1_	NC	_1_	NC	1_
266			min	0	1	0	1	0	1	-3.237e-4	5	NC	_1_	NC	1
267	<u>M6</u>	1_	max	.019	2	.028	2	0	1	1.98e-3	_4_	NC	4_	NC	1_
268			min	027	3	04	3	462	4	0	1_	1529.055	3	131.215	4
269		2	max	.018	2	.025	2	0	1	1.975e-3	4	NC	4	NC	1
270			min	025	3	037	3	424	4	0	1_	1619.576	3	142.97	4
271		3	max	.017	2	.023	2	0	1	1.97e-3	4	NC	4_	NC	1_
272			min	024	3	035	3	386	4	0	_1_	1721.482	3	156.949	4
273		4	max	.016	2	.021	2	0	1	1.966e-3	4	NC	4_	NC	1
274			min	022	3	033	3	349	4	0	1	1837.057	3	173.736	4
275		5	max	.015	2	.018	2	0	1	1.961e-3	4	NC	4	NC	1_
276			min	021	3	031	3	312	4	0	1	1969.237	3	194.128	4
277		6	max	.014	2	.016	2	0	1	1.956e-3	4	NC	4	NC	1
278			min	019	3	029	3	276	4	0	1	2121.861	3	219.232	4
279		7	max	.013	2	.014	2	0	1	1.951e-3	4	NC	4	NC	1
280			min	018	3	026	3	242	4	0	1	2300.046	3	250.623	4
281		8	max	.012	2	.012	2	0	1	1.946e-3	4	NC	1	NC	1
282			min	016	3	024	3	208	4	0	1	2510.775	3	290.606	4
283		9	max	.011	2	.01	2	0	1	1.942e-3	4	NC	1_	NC	1
284			min	015	3	022	3	177	4	0	1	2763.819	3	342.665	4
285		10	max	.01	2	.008	2	0	1	1.937e-3	4	NC	1	NC	1
286			min	013	3	02	3	147	4	0	1	3073.293	3	412.272	4
287		11	max	.009	2	.007	2	0	1	1.932e-3	4	NC	1	NC	1
288			min	012	3	018	3	119	4	0	1	3460.373	3	508.431	4
289		12	max	.007	2	.005	2	0	1	1.927e-3	4	NC	1	NC	1
290			min	01	3	015	3	094	4	0	1	3958.331	3	646.828	4
291		13	max	.006	2	.004	2	0	1	1.922e-3	4	NC	1	NC	1
292			min	009	3	013	3	071	4	0	1	4622.625	3	856.85	4
293		14	max	.005	2	.003	2	0	1	1.918e-3	4	NC	1	NC	1
294			min	007	3	011	3	051	4	0	1	5553.075	3	1199.004	4
295		15	max	.004	2	.002	2	0	1	1.913e-3	4	NC	1	NC	1
296		1	min	006	3	009	3	033	4	0	1	6949.326	3	1815.117	4
297		16	max	.003	2	0	2	0	1	1.908e-3	4	NC	1	NC	1
298			min	004	3	007	3	019	4	0	1	9277.213	3	3107.026	
299		17	max	.002	2	0	2	0	1	1.903e-3	4	NC	1	NC	1
300			min	003	3	004	3	009	4	0	1	NC	1	6626.781	4
301		18	max	.001	2	0	2	0	1	1.898e-3	4	NC	1	NC	1
302		10	min	001	3	002	3	003	4	0	1	NC	1	NC	1
303		19	max	0	1	0	1	0	1	1.893e-3	4	NC	1	NC	1
304		10	min	0	1	0	1	0	1	0	1	NC	1	NC	1
305	M7	1	max	0	1	0	1	0	1	0	1	NC	1	NC	1
306	1717		min	0	1	0	1	0	1	-3.675e-4	4	NC	1	NC	1
307		2	max	.001	3	0	2	.01	4	1.369e-4	4	NC	1	NC	1
308			min	001	2	004	3	0	1	0	1	NC	1	NC	1
309		3	max	.002	3	004 001	15	.021	4	6.413e-4	4	NC	1	NC	1
310		5	min	002	2	007	3	0	1	0.4136-4	1	NC NC	1	NC	1
311		4	max	.004	3	007	15	.03	4	1.146e-3	4	NC	1	NC	1
312		+	min	003	2	00 <u>2</u> 01	3	<u>.03</u>	1	0	1	NC NC	1	NC	1
313		5		.005	3	003	15	.04	4	1.65e-3	4	NC NC	1	NC NC	1
314		10	max	004	2	003 013	3	04 0	1	0	1	8116.36	3	NC NC	1
315		6		.004	3	013 003	15	.049	4	2.154e-3	4	NC	<u>ာ</u> 1	NC NC	1
316		U	max	006	2	003 016	3	<u>.049</u>	1	2.1546-3	<u>4</u> 1	6840.101	3	NC NC	1
		7	min						•	_					
317		/	max	.007	3	004	15	.058	4	2.659e-3	4	NC	_1_	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio			LC
318			min	007	2	018	3	0	1	0	1_	6073.154	3	NC	1
319		8	max	.009	3	004	15	.066	4	3.163e-3	4	NC	2	NC	1
320			min	008	2	019	3	0	1	0	1	5613.825	3	NC	1
321		9	max	.01	3	005	15	.074	4	3.668e-3	4	NC	2	NC	1
322			min	009	2	02	3	0	1	0	1	5328.701	4	NC	1
323		10	max	.011	3	005	15	.082	4	4.172e-3	4	NC	2	NC	1
324			min	01	2	021	3	0	1	0	1	5120.611	4	NC	1
325		11	max	.012	3	005	15	.089	4	4.676e-3	4	NC	5	NC	1
326			min	011	2	021	3	0	1	0	1	5087.801	4	NC	1
327		12	max	.014	3	005	15	.096	4	5.181e-3	4	NC	5	NC	1
328			min	012	2	02	4	0	1	0	1	5229.475	4	NC	1
329		13	max	.015	3	004	15	.103	4	5.685e-3	4	NC	2	NC	1
330			min	013	2	019	4	0	1	0	1	5576.336	4	NC	1
331		14	max	.016	3	004	15	.111	4	6.189e-3	4	NC	2	NC	1
332			min	015	2	017	4	0	1	0	1	6206.9	4	NC	1
333		15	max	.017	3	003	15	.118	4	6.694e-3	4	NC	1	NC	1
334			min	016	2	015	3	0	1	0	1	7296.768	4	NC	1
335		16	max	.019	3	003	15	.125	4	7.198e-3	4	NC	1	NC	1
336			min	017	2	012	3	0	1	0	1	9272.42	4	NC	1
337		17	max	.02	3	002	15	.133	4	7.702e-3	4	NC	1	NC	1
338			min	018	2	01	3	0	1	0	1	NC	1	NC	1
339		18	max	.021	3	001	15	.142	4	8.207e-3	4	NC	1	NC	1
340			min	019	2	007	1	0	1	0	1	NC	1_	NC	1
341		19	max	.022	3	0	15	.152	4	8.711e-3	4	NC	1_	NC	1
342			min	02	2	005	1	0	1	0	1	NC	1	NC	1
343	M8	1	max	.008	2	.019	2	0	1	0	1	NC	1	NC	1
344			min	002	3	022	3	152	4	-4.082e-4	4	NC	1	163.592	4
345		2	max	.007	2	.018	2	0	1	0	1	NC	1	NC	1
346			min	002	3	021	3	139	4	-4.082e-4	4	NC	1	178.047	4
347		3	max	.007	2	.017	2	0	1	0	1	NC	1	NC	1
348			min	002	3	02	3	127	4	-4.082e-4	4	NC	1	195.239	4
349		4	max	.006	2	.016	2	0	1	0	1	NC	1_	NC	1
350			min	002	3	019	3	115	4	-4.082e-4	4	NC	1_	215.883	4
351		5	max	.006	2	.015	2	0	1	0	1	NC	1	NC	1
352			min	002	3	017	3	103	4	-4.082e-4	4	NC	1	240.947	4
353		6	max	.005	2	.014	2	0	1	0	1	NC	1	NC	1
354			min	002	3	016	3	091	4	-4.082e-4	4	NC	1	271.774	4
355		7	max	.005	2	.013	2	0	1	0	1	NC	1	NC	1
356			min	002	3	015	3	08	4	-4.082e-4	4	NC	1	310.271	4
357		8	max	.005	2	.012	2	0	1	0	1	NC	1	NC	1
358			min	001	3	014	3	069	4	-4.082e-4	4	NC	1	359.219	4
359		9	max	.004	2	.01	2	0	1	0	1	NC	1_	NC	1
360			min	001	3	012	3	059	4	-4.082e-4	4	NC	1	422.806	4
361		10	max	.004	2	.009	2	0	1	0	1	NC	1	NC	1
362			min	001	3	011	3	049	4	-4.082e-4	4	NC	1	507.577	4
363		11	max	.003	2	.008	2	0	1	0	1	NC	1	NC	1
364			min	001	3	01	3	04	4	-4.082e-4	4	NC	1	624.243	4
365		12	max	.003	2	.007	2	0	1	0	1	NC	1	NC	1
366			min	0	3	009	3	031	4	-4.082e-4	4	NC	1	791.331	4
367		13	max	.003	2	.006	2	0	1	0	1	NC	1	NC	1
368			min	0	3	007	3	024	4	-4.082e-4	4	NC	1	1043.232	4
369		14	max	.002	2	.005	2	0	1	0	1	NC	1	NC	1
370			min	0	3	006	3	017	4	-4.082e-4	4	NC	1	1449.92	4
371		15	max	.002	2	.004	2	0	1	0	1	NC	1	NC	1
372		1.0	min	0	3	005	3	011	4	-4.082e-4	4	NC	1	2172.722	4
373		16	max	.001	2	.003	2	0	1	0	1	NC	1	NC	1
374		T	min	0	3	004	3	007	4	-4.082e-4	4	NC	1	3657.671	4
<u> </u>			11.001			1001		1001		1100Z0 T				30011011	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r			LC		
375		17	max	0	2	.002	2	0	1	0	1_	NC	1_	NC	1
376			min	0	3	002	3	003	4	-4.082e-4	4	NC	1_	7558.923	4
377		18	max	0	2	.001	2	0	1	0	_1_	NC	1_	NC NC	1
378		40	min	0	3	001	3	0	4	-4.082e-4	4	NC	1_	NC	1
379		19	max	0	1	0	1	0	1	0 -4.082e-4	1_	NC NC	1	NC NC	1
380	N440	1	min	.007	2	.009		0	_		4	NC NC	1	NC NC	1
381	M10	1	max		3		3		10	1.963e-3 4.084e-6	4	6857.386	2		4
383		2	min	009 .006	2	014 .008	2	<u>46</u> 0	10		4	NC	1	131.686 NC	1
384			max min	008	3	013	3	422	4	3.803e-6	10	7820.882	2	143.483	4
385		3	max	.006	2	.007	2	<u>422</u> 0	10		4	NC	1	NC	1
386		-	min	008	3	013	3	384	4	3.523e-6	10	9084.039	2	157.512	4
387		4	max	.005	2	.006	2	504	10		4	NC	1	NC	1
388			min	007	3	012	3	347	4	3.242e-6	10	NC	1	174.359	4
389		5	max	.005	2	.005	2	0	10	1.943e-3	4	NC	1	NC	1
390			min	007	3	012	3	311	4	2.962e-6	10	NC	1	194.824	4
391		6	max	.005	2	.004	2	0	10		4	NC	1	NC	1
392			min	006	3	011	3	275	4	2.682e-6	10	NC	1	220.017	4
393		7	max	.004	2	.003	2	0	10	1.934e-3	4	NC	1	NC	1
394			min	006	3	01	3	241	4	2.401e-6	10	NC	1	251.52	4
395		8	max	.004	2	.002	2	0	10		4	NC	1	NC	1
396			min	005	3	01	3	208	4	2.121e-6	10	NC	1	291.646	4
397		9	max	.004	2	.001	2	0	10		4	NC	1	NC	1
398			min	005	3	009	3	176	4	1.841e-6	10	NC	1	343.891	4
399		10	max	.003	2	0	2	0	10	1.919e-3	4	NC	1	NC	1
400			min	004	3	008	3	146	4	1.56e-6	10	NC	1	413.746	4
401		11	max	.003	2	0	2	0	10		4	NC	<u>1</u>	NC	1
402			min	004	3	008	3	119	4	1.28e-6	10	NC	1_	510.248	4
403		12	max	.003	2	0	2	0	10		4	NC	_1_	NC	1
404			min	003	3	007	3	093	4	9.996e-7	10	NC	_1_	649.141	4
405		13	max	.002	2	001	2	0	10		4_	NC	_1_	NC	1
406			min	003	3	006	3	07	4	7.193e-7	10	NC	1_	859.916	4
407		14	max	.002	2	<u>001</u>	2	0	10		4	NC		NC 1000 000	1
408		45	min	002	3	005	3	05	4	4.389e-7	10	NC NC	1_	1203.299	4
409		15	max	.001	2	001	15	0	10	1.895e-3	4	NC NC	1_	NC 4004 COE	1
410		4.0	min	002	3	004	3	033	4	1.586e-7	10	NC NC	1_	1821.635	
411		16	max	.001	3	003	15	0	10	1.89e-3 -1.218e-7	4	NC NC	1	NC	1
413		17	min	001			15	<u>019</u>	4		10	NC NC		3118.236	1
414		11/	max min	<u> </u>	3	0 002	4	0 009	10	1.885e-3 -6.284e-7	2	NC NC	1	NC 6650.934	
415		1Ω	max	0	2	002 0	15	<u>009</u> 0		1.88e-3	4	NC NC	1	NC	1
416		10	min	0	3	001	4	003	4	-6.423e-6	1	NC	1	NC	1
417		19	max	0	1	0	1	<u>003</u> 0	1	1.875e-3	4	NC	1	NC	1
418		13	min	0	1	0	1	0	1	-1.263e-5	1	NC	1	NC	1
419	M11	1	max	0	1	0	1	0	1	3.985e-6	1	NC	1	NC	1
420	17111		min	0	1	0	1	0	1	-3.634e-4	4	NC	1	NC	1
421		2	max	0	3	0	15	.01	4	1.463e-4	4	NC	1	NC	1
422		Ė	min	0	2	003	4	0	1	-9.556e-6	1	NC	1	NC	1
423		3	max	0	3	001	15	.02	4	6.559e-4	4	NC	1	NC	1
424			min	0	2	006	4	0	1	-2.31e-5	1	NC	1	NC	1
425		4	max	.001	3	002	15	.03	4	1.166e-3	4	NC	1	NC	1
426			min	001	2	009	4	0	1	-3.664e-5	1	NC	1	NC	1
427		5	max	.002	3	003	15	.04	4	1.675e-3	4	NC	1	NC	1
428			min	001	2	012	4	0	1	-5.018e-5	1	9025.607	4	NC	1
429		6	max	.002	3	004	15	.049	4	2.185e-3	4	NC	1	NC	1
430			min	002	2	014	4	0	1	-6.372e-5	1	7262.975	4	NC	1
431		7	max	.003	3	004	15	.057	4	2.695e-3	4	NC	5	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 23, 2015

Checked By:____

422	Member	Sec	min	x [in]	LC 2	y [in]	LC 4	z [in]	LC 1	x Rotate [r	LC 1		LC 4	(n) L/z Ratio	LC 1
432		8	min max	002 .003	3	017 005	15	.066	4	-7.726e-5 3.204e-3	4	6204.159 NC	5	NC NC	1
434		0	min	002	2	005 019	4	0	1	-9.08e-5	1	5550.604	4	NC	1
435		9	max	.002	3	005	15	.074	4	3.714e-3	4	NC	5	NC	1
436		-	min	003	2	003	4	0	1	-1.043e-4	1	5161.998	4	NC	1
437		10	max	.004	3	005	15	.081	4	4.223e-3	4	NC	5	NC	1
438		10	min	003	2	021	4	001	1	-1.179e-4	1	4970.026	4	NC	1
439		11	max	.004	3	005	15	.089	4	4.733e-3	4	NC	5	NC	1
440			min	004	2	021	4	001	1	-1.314e-4	1	4946.183	4	NC	1
441		12	max	.005	3	005	15	.096	4	5.243e-3	4	NC	5	NC	1
442		12	min	004	2	021	4	002	1	-1.45e-4	1	5090.822	4	NC	1
443		13	max	.005	3	005	15	.103	4	5.752e-3	4	NC	5	NC	1
444		1.0	min	004	2	02	4	002	1	-1.585e-4	1	5434.653	4	NC	1
445		14	max	.006	3	004	15	.111	4	6.262e-3	4	NC	5	NC	1
446			min	005	2	018	4	002	1	-1.72e-4	1	6054.889	4	NC	1
447		15	max	.006	3	004	15	.118	4	6.772e-3	4	NC	2	NC	1
448			min	005	2	015	4	003	1	-1.856e-4	1	7123.511	4	NC	1
449		16	max	.006	3	003	15	.126	4	7.281e-3	4	NC	1	NC	1
450			min	005	2	012	4	003	1	-1.991e-4	1	9057.688	4	NC	1
451		17	max	.007	3	002	15	.135	4	7.791e-3	4	NC	1	NC	1
452			min	006	2	009	4	003	1	-2.127e-4	1	NC	1	NC	1
453		18	max	.007	3	001	15	.144	4	8.301e-3	4	NC	1	NC	1
454			min	006	2	005	4	004	1	-2.262e-4	1	NC	1	NC	1
455		19	max	.008	3	0	10	.154	4	8.81e-3	4	NC	1	NC	1
456			min	006	2	002	1	004	1	-2.397e-4	1	NC	1	NC	1
457	M12	1	max	.003	2	.006	2	.004	1	-2.21e-6	10	NC	1	NC	2
458			min	0	3	008	3	154	4	-3.373e-4	4	NC	1	161.292	4
459		2	max	.002	2	.006	2	.004	1	-2.21e-6	10	NC	1	NC	2
460			min	0	3	007	3	141	4	-3.373e-4	4	NC	1	175.533	4
461		3	max	.002	2	.005	2	.004	1	-2.21e-6	10	NC	1	NC	2
462			min	0	3	007	3	129	4	-3.373e-4	4	NC	1	192.473	4
463		4	max	.002	2	.005	2	.003	1	-2.21e-6	10	NC	1_	NC	2
464			min	0	3	007	3	117	4	-3.373e-4	4	NC	1_	212.813	4
465		5	max	.002	2	.005	2	.003	1	-2.21e-6	10	NC	_1_	NC	2
466			min	0	3	006	3	104	4	-3.373e-4	4	NC	1_	237.509	4
467		6	max	.002	2	.004	2	.003	1	-2.21e-6	10	NC	_1_	NC	2
468			min	0	3	006	3	093	4	-3.373e-4	4	NC	<u>1</u>	267.883	4
469		7	max	.002	2	.004	2	.002	1	-2.21e-6	10	NC	1_	NC	1
470			min	0	3	005	3	081	4	-3.373e-4	4_	NC	1_	305.816	4
471		8	max	.002	2	.004	2	.002	1	-2.21e-6	10	NC	1_	NC	1
472			min	0	3	005	3	07		-3.373e-4		NC NC	1	354.046	4
473		9	max	.001	2	.003	2	.002	1	-2.21e-6	<u>10</u>	NC NC	1_	NC 44.0.7	1
474		40	min	0	3	004	3	06	4	-3.373e-4	4	NC NC	1_	416.7	4
475		10	max	.001	2	.003	2	.001	1	-2.21e-6	10	NC NC	1_	NC FOO 220	1
476		11	min	001	3	004	3	05 001	4	-3.373e-4	4	NC NC	1_1	500.228 NC	1
477		11	max	.001	3	.003 003	3	.001	1	-2.21e-6	<u>10</u>	NC NC	1_1	615.182	
478 479		12	min	.001	2	.002	2	04 0	1	-3.373e-4 -2.21e-6	4	NC NC	<u>1</u> 1	NC	1
480		12	max min	0	3	003	3	032	4	-2.21e-6 -3.373e-4	<u>10</u> 4	NC NC	1	779.816	4
481		12		0	2	.002	2	03 <u>2</u> 0	1		10	NC NC	1	NC	1
482		13	max min	0	3	002	3	024	4	-2.21e-6 -3.373e-4	4	NC NC	1	1028.015	
483		14		0	2	.002	2	<u>024</u> 0	1	-3.373e-4 -2.21e-6	10	NC NC	1	NC	1
484		14	max min	0	3	002	3	017	4	-3.373e-4	4	NC NC	1	1428.723	
485		15	max	0	2	002 .001	2	<u>017</u> 0	1	-3.373e-4 -2.21e-6	10	NC NC	1	NC	1
486		13	min	0	3	002	3	012	4	-3.373e-4	4	NC	1	2140.882	
487		16	max	0	2	<u>002</u> 0	2	<u>012</u> 0	1	-2.21e-6	10	NC	1	NC	1
488		10	min	0	3	001	3	007	4	-3.373e-4		NC	1	3603.936	
TUU			11/011	U	J	.001	J	.007		0.07.06-4	7	140		0000.000	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 23, 2015

Checked By:__

489	Member	Sec 17	max	x [in]	LC 2	y [in] 0	LC 2	z [in]	LC 1	x Rotate [r	LC 10	(n) L/y Ratio	LC 1	(n) L/z Ratio	LC 1
490		17	min	0	3	0	3	003	4	-3.373e-4	4	NC	1	7447.555	4
491		18	max	0	2	0	2	0	1	-2.21e-6	10	NC	1	NC	1
492		10	min	0	3	0	3	001	4	-3.373e-4	4	NC	1	NC	1
493		19	max	0	1	0	1	0	1	-2.21e-6	10	NC	1	NC	1
494		10	min	0	1	0	1	0	1	-3.373e-4	4	NC	1	NC	1
495	M1	1	max	.01	3	.245	2	.483	4	5.315e-3	1	NC	1	NC	1
496			min	006	2	08	3	0	10	-1.398e-2	3	NC	1	NC	1
497		2	max	.01	3	.121	2	.471	4	6.075e-3	4	NC	5	NC	1
498		_	min	006	2	04	3	003	1	-6.944e-3	3	1087.422	2	NC	1
499		3	max	.01	3	.014	3	.457	4	1.116e-2	4	NC	5	NC	1
500			min	006	2	012	2	005	1	-9.02e-5	3	527.932	2	8461.295	5
501		4	max	.01	3	.093	3	.443	4	9.59e-3	4	NC	15	NC	1
502			min	006	2	157	2	004	1	-3.662e-3	3	337.252	2	6035.761	5
503		5	max	.01	3	.189	3	.429	4	8.022e-3	4	NC	15	NC	1
504			min	006	2	306	2	003	1	-7.235e-3	3	245.795	2	4791.119	5
505		6	max	.009	3	.291	3	.414	4	1.108e-2	2	8753.411	15	NC	1
506			min	006	2	449	2	001	1	-1.081e-2	3	195.053	2	4024.819	5
507		7	max	.009	3	.387	3	.399	4	1.476e-2	2	7418.877	15	NC	1
508			min	006	2	576	2	0	3	-1.438e-2	3	164.93	2	3486.752	4
509		8	max	.009	3	.466	3	.384	4	1.845e-2	2	6626.63	15	NC	1
510			min	006	2	677	2	0	10	-1.795e-2	3	147.042	2	3078.171	4
511		9	max	.009	3	.518	3	.368	4	2.053e-2	2	6210.779	15	NC	1
512			min	005	2	74	2	0	1	-1.859e-2	3	137.696	2	2794.722	4
513		10	max	.009	3	.537	3	.349	4	2.153e-2	2	6083.305	15	NC	1
514			min	005	2	761	2	0	10	-1.728e-2	3	134.959	2	2690.111	4
515		11	max	.008	3	.525	3	.328	4	2.254e-2	2	6210.446	15	NC	1
516			min	005	2	74	2	0	10	-1.596e-2	3	138.177	2	2710.419	4
517		12	max	.008	3	.481	3	.305	4	2.143e-2	2	6625.828	15	NC	1
518			min	005	2	674	2	0	1	-1.405e-2	3	148.424	2	2851.642	4
519		13	max	.008	3	.411	3	.278	4	1.718e-2	2	7417.31	15	NC	1
520			min	005	2	57	2	0	1	-1.124e-2	3	168.137	2	3344.625	4
521		14	max	.008	3	.32	3	.247	4	1.292e-2	2	8750.561	15	NC	1
522			min	005	2	439	2	0	12	-8.434e-3	3	201.677	2	4490.332	4
523		15	max	.008	3	.217	3	.216	4	8.671e-3	2	NC	<u>15</u>	NC	1
524		1.0	min	005	2	293	2	0	10	-5.627e-3	3	259.01	2	7280.002	4
525		16	max	.007	3	11	3	<u>.185</u>	4	7.391e-3	4	NC	<u>15</u>	NC	1
526		1	min	005	2	<u>145</u>	2	0	10	-2.821e-3	3	364.197	2	NC	1
527		17	max	.007	3	.005	3	.157	4	8.46e-3	4_	NC 500 750	5	NC NC	1
528		40	min	005	2	007	2	0	10	-1.392e-5	3	586.759	2	NC NC	1
529		18	max	.007	3	.112	2	.134	4	4.699e-3		NC 4004 404	5	NC NC	1
530		40	min	005	2	091	3	0	10	-1.487e-3	3	1234.181	2	NC NC	1
531 532		19	max	.007	3	.219	3	<u>.115</u> 0	1	9.341e-3	2	NC NC	1	NC NC	1
533	M5	1	min max	005 .029	3	182 .349	2	.483	4	-3.036e-3 0	<u>3</u> 1	NC NC	1	NC NC	1
534	IVIO	+ '	min	02 <u>9</u>	2	003	3	<u>.463</u>	1	-1.132e-5	4	NC NC	1	NC	1
535		2	max	.029	3	003 .172	2	.474	4	5.698e-3	4	NC	5	NC	1
536		+-	min	02	2	004	3	<u>.474</u> 0	1	0	1	779.799	2	NC	1
537		3	max	.029	3	.04	3	<u></u> .461	4	1.127e-2	4	NC	5	NC	1
538		-	min	02	2	031	2	0	1	0	1	361.054	2	7010.982	4
539		4	max	.028	3	.165	3	.447	4	9.183e-3	4	NC	15	NC	1
540		+	min	019	2	283	2	44 7	1	0	1	216.665	2	5341.388	-
541		5	max	.027	3	.349	3	.431	4	7.095e-3	4	7477.789	15	NC	1
542		-	min	019	2	562	2	431	1	0	1	150.007	2	4499.825	<u> </u>
543		6	max	.027	3	.561	3	.415	4	5.008e-3	4	5707.863	15	NC	1
544			min	019	2	843	2	.415	1	0.000e-3	1	114.541	2	3957.929	4
545		7	max	.026	3	043 .771	3	.399	4	2.92e-3	4	4694.983	15	NC	1
UTU			πιαλ	.020		.111	J	.000		2.020-0	т_	1007.000	10	110	<u> </u>

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		_		(n) L/y Ratio			
546			min	018	2	-1.1	2	0	1	0	1_	94.198	2	3525.215	
547		8	max	.026	3	.949	3	.383	4	8.331e-4	4_		<u>15</u>	NC	1
548			min	018	2	-1.307	2	0	1	0	1_	82.432		3118.672	4
549		9	max	.025	3	1.064	3	.368	4	0	1_		<u>15</u>	NC 0700 044	1
550		40	min	018	2	-1.439	2	0	1	-6.177e-6	5	76.415	2	2788.341	4
551		10	max	.024	3	1.106	3	.349	1	0 -5.861e-6	1	3721.495	<u>15</u>	NC	4
552		11	min	017 .024	3	<u>-1.485</u> 1.078	3	<u> </u>	4	4.986e-8	<u>5</u> 14	74.658 3811.698	<u>2</u> 15	2718.213 NC	1
553 554			max	017	2	-1.441	2	<u>320</u>	1	-5.546e-6	5	76.713	2	2753.013	_
555		12		.023	3	.982	3	.306	4	6.044e-4	<u>3</u> 4		15	NC	1
556		12	max min	017	2	-1.304	2	<u>.306</u>	1	0.0446-4	1	83.441	2	2798.059	
557		13	max	.023	3	.828	3	.279	4	2.119e-3	4		15	NC	1
558		13	min	016	2	-1.085	2	0	1	0	1	96.896	2	3243.892	4
559		14	max	.022	3	.635	3	.248	4	3.633e-3	4	5710.4	15	NC	1
560		17	min	016	2	816	2	0	1	0	1	120.816	2	4493.937	4
561		15	max	.021	3	.422	3	.214	4	5.147e-3	4		15	NC	1
562		10	min	016	2	527	2	0	1	0	1	164.211	2	8184.126	_
563		16	max	.021	3	.208	3	.181	4	6.661e-3	4	NC	15	NC	1
564			min	015	2	25	2	0	1	0	1	250.378	2	NC	1
565		17	max	.02	3	.013	3	.152	4	8.176e-3	4	NC	5	NC	1
566			min	015	2	017	2	0	1	0	1	449.303	2	NC	1
567		18	max	.02	3	.147	2	.13	4	4.135e-3	4	NC	5	NC	1
568			min	015	2	148	3	0	1	0	1	1031.967	2	NC	1
569		19	max	.02	3	.273	2	.116	4	0	1	NC	1	NC	1
570			min	015	2	288	3	0	1	-5.409e-6	4	NC	1	NC	1
571	M9	1	max	.01	3	.245	2	.483	4	1.398e-2	3	NC	1_	NC	1
572			min	006	2	08	3	0	1	-5.315e-3	1_	NC	1_	NC	1
573		2	max	.01	3	.121	2	.472	4	6.944e-3	3	NC	5	NC	1
574			min	006	2	04	3	0	10	-2.563e-3	1_	1087.422	2	NC	1
575		3	max	.01	3	.014	3	.46	4	1.122e-2	4_	NC	5_	NC	1
576			min	006	2	012	2	0	10	-2.969e-5	<u>10</u>	527.932	2	7632.715	
577		4	max	.01	3	.093	3	.445	4	8.892e-3	5	NC	<u>15</u>	NC	1
578			min	006	2	1 <u>57</u>	2	0	10	-3.706e-3	2	337.252	2	5631.124	
579		5	max	.01	3	.189	3	.43	4	7.235e-3	3_	NC 0.45.705	<u>15</u>	NC 4000.00	1
580			min	006	2	306	2	0	10	-7.391e-3	2	245.795	2	4606.09	4
581		6	max	.009	3	.291	3	.415	4	1.081e-2	3		<u>15</u>	NC 2000 OCE	1
582		7	min	006	3	<u>449</u>	3	200	10	-1.108e-2	2	195.053	<u>2</u>	3960.965	
583		/	max	.009	2	.387	2	.399	1	1.438e-2	3		<u>15</u> 2	NC 3487.402	4
584 585		8	min	006 .009	3	<u>576</u> .466	3	0 .383	4	-1.476e-2 1.795e-2	3	164.93 6601.271	15	NC	1
586		0	max min		2	677	2	<u>.363</u>		-1.845e-2				3093.224	
587		9	max	.009	3	.518	3	.368	4	1.859e-2	3		15	NC	1
588		-	min	005	2	74	2	0	10		2	137.696		2788.263	
589		10	max	.009	3	.537	3	.349	4	1.728e-2	3	6060.194	15	NC	1
590		10	min	005	2	761	2	0	1	-2.153e-2	2	134.959	2	2690.767	4
591		11	max	.008	3	.525	3	.328	4	1.596e-2	3	6186.732	15	NC	1
592			min	005	2	74	2	0	1	-2.254e-2	2	138.177	2	2717.445	_
593		12	max	.008	3	.481	3	.306	4	1.405e-2	3		15	NC	1
594		i -	min	005	2	674	2	0	10	-2.143e-2	2	148.424	2	2838.079	_
595		13	max	.008	3	.411	3	.278	4	1.124e-2	3		15	NC	1
596			min	005	2	57	2	0	10	-1.718e-2	2	168.137	2	3340.481	4
597		14	max	.008	3	.32	3	.247	4	8.434e-3	3	8716.154	15	NC	1
598			min	005	2	439	2	001	1	-1.292e-2	2	201.677	2	4556.832	5
599		15	max	.008	3	.217	3	.214	4	5.627e-3	3	NC	15	NC	1
600			min	005	2	293	2	003	1	-8.671e-3	2	259.01	2	7658.472	5
601		16	max	.007	3	.11	3	.182	4	6.624e-3	5	NC	15	NC	1
602			min	005	2	145	2	004	1	-4.417e-3	2	364.197	2	NC	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 23, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	o LC
603		17	max	.007	3	.005	3	.154	4	8.303e-3	4	NC	5	NC NC	1
604			min	005	2	007	2	004	1	-3.201e-4	1	586.759	2	NC	1
605		18	max	.007	3	.112	2	.132	4	4.089e-3	5	NC	5	NC	1
606			min	005	2	091	3	003	1	-4.673e-3	2	1234.181	2	NC	1
607		19	max	.007	3	.219	2	.116	4	3.036e-3	3	NC	1	NC	1
608			min	005	2	182	3	0	10	-9.341e-3	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method: ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			•

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1020.0	27.0	565.0	565.6	
Sum	1020.0	27.0	565.0	565 6	

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1020

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)	
8095	0.75	6071	

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_t)$	Nc / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4))			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247.75	0.967	1.00	1.000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

rt-term K _{sat} τ _{k,cr} (psi)
0 1.00 1035
. D-16f)
(in) h_{ef} (in) N_{a0} (lb)
0 6.000 9755
Ψ _{ed,Na} Ψ _{p,Na} N _{a0} (Sec. D.4.1 & Eq. D-16a)
$\Psi_{\text{ed},Na}$ $\Psi_{\text{p},Na}$

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-40 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	7.00	6947			
$\phi V_{cby} = \phi (A_V)$	/c / A vco) \(\mathcal{P}_{ed, V} \(\mathcal{P}_{c, V} \)	$ eg \Psi_{h,V} V_{by} $ (Sec.	D.4.1 & Eq. D-2	1)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$arPsi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)	
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934	

 V_{bx} (lb)

8282

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)								
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)				
4.00	0.50	1.00	2500	7.87				

 $\phi V_{cbx} = \phi (A_{Vc}/A_{Vco}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx}$ (Sec. D.4.1 & Eq. D-21)

Avc (in ²)	Avco (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f_c c_{a1}}^{1.5} \text{ (Eq. D-24)}$ $\frac{I_e \text{ (in)} \qquad d_a \text{ (in)} \qquad \lambda \qquad \qquad f'_c \text{ (psi)} \qquad c_{a1} \text{ (in)} \qquad V_{by} \text{ (lb)}}{4.00 \qquad 0.50 \qquad 1.00 \qquad 2500 \qquad 7.00 \qquad 6947}$ $\phi V_{cbx} = \phi (2) (A_{Vc}/A_{Vc}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{by} \text{ (Sec. D.4.1, D.6.2.1(c) \& Eq. D-21)}$

$\varphi \mathbf{v} \cos \varphi \left(\frac{2}{3} \right) (11)$	2/(NVC) / NVCO) I ed, v I C, v I II, v v by (OCO. D.4.1, D.O.Z. NO) & Eq. D Z 1)						
Avc (in ²)	$Av\infty$ (in ²)	$\varPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	da (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cby} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a \; ; \; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \, \Psi_{ed,Na} \, \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc}/A_{Nco}) \, \Psi_{ed,N} \, \Psi_{c,N} \, \Psi_{cp,N} N_b| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{p,Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
Anc (in²)	Ανω (in²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ	$\phi V_{c ho}$ (lb)
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 14-40 Inch Width				
Address:					
Phone:					
E-mail:			_		

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1020	6071	0.17	Pass
Concrete breakout	1020	5710	0.18	Pass
Adhesive	1020	5365	0.19	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	566	3156	0.18	Pass (Governs)
T Concrete breakout y+	565	3934	0.14	Pass
T Concrete breakout x+	27	3018	0.01	Pass
Concrete breakout y+	27	8508	0.00	Pass
Concrete breakout x+	565	6875	0.08	Pass
Concrete breakout, combined	-	-	0.14	Pass
Pryout	566	12298	0.05	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rat	io Permissible	Status
Sec. D.7.1 0.1	9 0.00	19.0 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	1/5		
Project:	Standard PVMax - Worst Case, 32-40 Inch Width				
Address:					
Phone:					
E-mail:					

1.Project information

Customer company: Customer contact name: Customer e-mail:

Comment:

Project description:

Location:

Fastening description:

2. Input Data & Anchor Parameters

General

Design method: ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 32-	40 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 32	-40 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2732.0	1650.0	0.0	1650.0
2	2732.0	1650.0	0.0	1650.0
Sum	5464.0	3300.0	0.0	3300.0

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5464 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5} \text{ (Eq. D-7)}$

Kc	λ	ť (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_I)$	$_{ m Nc}$ / $A_{ m Nco}$) $\Psi_{ m ec,N}$ $\Psi_{ m ec}$	I,N $\Psi_{c,N} \Psi_{cp,N} N_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ec,N}$	$\mathscr{V}_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
408.24	324.00	1.000	1.000	1.00	1.000	12492	0.65	10231

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	$f_{ extit{short-term}}$	K _{sat}	τ _{k,cr} (psi)	
1035	1.00	1.00	1035	_
$N_{a0} = \tau_{k,cr} \pi d_{a}$	hef (Eq. D-16f)			
τ _{k,cr} (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)	
1035	0.50	6.000	9755	_
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / A_{Na0}) $\Psi_{ed,Na}$ Ψ	$Y_{g,Na} \Psi_{ec,Na} \Psi_{p,Na} N$	ao (Sec. D.4.1 & Eq.	D-16b)

A_{Na} (in ²)	A _{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\Psi_{g,Na}$	$\Psi_{ec,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)	
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093	

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 32-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	da (in)	λ	f'_c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	Avc/Avco) Yec, v Ye	$_{ed,V} arPsi_{c,V} arPsi_{h,V} arV_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\varPsi_{\sf ed,V}$	$arPsi_{ extsf{c}, extsf{V}}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (lb)
576.00	648.00	1.000	0.928	1.000	1.000	15593	0.70	9001

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

le (in)	da (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	13.66	18939		
$\phi V_{cbx} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$arPsi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
737.64	839.68	1.000	1.000	1.000	18939	0.70	23292

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\textit{Cpg}} = \phi \min |\textit{KcpNag}\;;\; \textit{KcpNcbg}| = \phi \min |\textit{Kcp}(\textit{A}_\textit{Na} / \textit{A}_\textit{Na0}) \, \Psi_{\textit{ed},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, N_{\textit{a0}}\;;\; \textit{Kcp}(\textit{A}_\textit{Nc} / \textit{A}_\textit{Nco}) \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, N_{\textit{b}}|\; (\text{Eq. D-30b})$

, ,,,	1 1 3 7 1		(3,	r, , , , , , , ,	, ,		
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\Psi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m extsf{p},Na}$	<i>N</i> _{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A _{Nc} (in²)	A _{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	N _{cb} (lb)	ϕ
408.24	324.00	1.000	1.000	1.000	1.000	12492	15740	0.70

φV_{cpg} (lb) 20601

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2732	6071	0.45	Pass
Concrete breakout	5464	10231	0.53	Pass
Adhesive	5464	8093	0.68	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1650	3156	0.52	Pass (Governs)
T Concrete breakout x+	3300	9001	0.37	Pass

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 32-40 Inch Width				
Address:					
Phone:					
E-mail:					

Concrete breakou	ut y- 1650	23292	2. 0.	07	Pass	
Pryout	3300	20601	0.	16	Pass	
Interaction check	Nua/øNn	Vua/øVn	Combined Ratio	Permissible	Status	
Sec. D.7.3	0.68	0.52	119.8 %	1.2	Pass	

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.