

TECNOLÓGICO NACIONAL DE MÉXICO INSTITUTO TECNOLÓGICO DE TLAXIACO

INTERPRETACIÓN DE 0 Y 1 A NIVEL DE HARDWARE

Alumno:

Sandoval Hernández Edgar Axel

NUMERO DE CONTROL: 22620093

SEMETRE: 5BS

Asignatura:

Arquitectura de Computadoras

CARRERA:

Ingeniería en sistemas computacionales

DOCENTE:

Ing.Osorio Salinas Edward

Tlaxiaco, Oaxaca, 14 de Octubre del 2024

ÍNDICE:

Interpretación de 0 y 1 a Nivel de Hardware	3
Representación Física	
Transistores y Estados Eléctricos	
Codificación y Comunicación	
Codificación de Datos	
Sincronización:	4
Lenguaje de Máquina	4
Instrucciones en Código Binario	4
Aplicaciones Prácticas	<u>/</u>
Operaciones Lógicas:	4
Conclusión:	5
FUENTES DE INFORMACION:	5

Interpretación de 0 y 1 a Nivel de Hardware

La representación de datos en los ordenadores se basa en el sistema binario, que utiliza solo dos dígitos: **0** y **1**. Esta forma de codificación es fundamental para el funcionamiento de todos los dispositivos electrónicos y computacionales. A continuación, se exploran cómo se interpretan estos valores a nivel de hardware.

Representación Física

Transistores y Estados Eléctricos

- En el hardware, los bits (0 y 1) se representan físicamente mediante transistores, que actúan como interruptores. Un transistor puede estar en un estado "encendido" (representando un 1) o "apagado" (representando un 0) dependiendo de si hay o no corriente eléctrica fluyendo a través de él.
- Este principio permite que los ordenadores realicen operaciones lógicas y aritméticas mediante la manipulación de estos estados eléctricos.

Codificación y Comunicación

Codificación de Datos

- Los datos se codifican en secuencias de bits que son interpretadas por la unidad central de procesamiento (CPU). Por ejemplo, un byte está compuesto por 8 bits, lo que permite representar 256 valores diferentes (de 0 a 255) al combinar diferentes configuraciones de 0s y 1s.
- Existen varios métodos para codificar estos bits en señales eléctricas, como el método NRZ (No Retorno a Cero), donde un nivel alto representa un 1 y un nivel bajo representa un 0.

Sincronización:

- Para asegurar que el receptor interprete correctamente los bits enviados, es crucial la sincronización entre el transmisor y el receptor. Esto se logra mediante el uso de relojes que permiten muestrear la señal en momentos específicos, garantizando que cada bit sea leído correctamente.

Lenguaje de Máquina

Instrucciones en Código Binario

- El lenguaje de máquina, que es el único lenguaje que entiende directamente la CPU, está formado por secuencias de 0s y 1s. Estas instrucciones pueden ser complejas, pero cada operación que realiza la CPU se traduce en esta forma binaria.
- Por ejemplo, una instrucción simple para mover datos podría representarse como una secuencia específica de bits que la CPU interpreta para realizar la acción deseada.

Aplicaciones Prácticas

Operaciones Lógicas:

- Las operaciones lógicas básicas (AND, OR, NOT) también se representan utilizando combinaciones de bits. Por ejemplo:

- AND: Solo devuelve 1 si ambos operandes son 1.
- OR: Devuelve 1 si al menos uno de los operandes es 1.

Estas operaciones son fundamentales para la toma de decisiones dentro del hardware y son ejecutadas por compuertas lógicas construidas con transistores.

Conclusión:

La interpretación del 0 y el 1 a nivel de hardware es esencial para el funcionamiento de los ordenadores. A través del uso de transistores, codificación adecuada y sincronización precisa, los sistemas digitales pueden procesar información compleja utilizando únicamente estos dos estados básicos. Esta simplicidad subyacente es lo que permite la complejidad de las operaciones modernas en computación.

FUENTES DE INFORMACION:

https://www.youtube.com/watch?v=tj3jk1aPtTk

http://silver.udg.edu/sip/ARXIUS/unedperi 3

https://es.wikipedia.org/wiki/Lenguaje de bajo nivel

https://www.profesionalreview.com/2018/12/19/puerto-serial-y-puerto-paralelo/

https://es.wikipedia.org/wiki/Bit

https://cs.uns.edu.ar/materias/iocp/downloads/Apuntes/Unidad%201%20-%20Hardware.pdf

https://www.profesionalreview.com/2020/03/07/puerto-serie-que-es-para-que-sirve-y-tipos/

https://ed.team/blog/por-que-las-computadoras-solo-entienden-0-y-1-codigo-binario