Kurvenintegral

- Sei $U \subseteq \mathbb{R}^2(bzw.\mathbb{R}^3)$ offen. Dann ist $\overrightarrow{V}: U \rightarrow \mathbb{R}^2(bzw.\mathbb{R}^3)$ ein Vektorfeld
 - $-\overrightarrow{V}$ besteht aus Koordinatenfunktionen
 - $\overrightarrow{V}:U$ auf U koordinatenweise differenzierbar
 - * ==> differenzierbares Vektorfeld
- \bullet Gesucht: geleistete Arbeit W bei Bewegung entlang Kurve C in \overrightarrow{V}
 - C: $\vec{x}(t)$
 - $t \in [a,b]$
 - $W = \int_{a}^{b} \langle \vec{V}(\vec{x}(t)), \bar{\vec{x}}(t) \rangle dt$
 - $* \ \bar{\vec{x}}(t)dt = d\vec{x}$
 - \overrightarrow{V} besteht aus P(t), Q(t), R(t) ==> $W=\int_{C}Pdx+Qdy+Rdz$
- \bullet Kurven/Wegintegral ist unabhängig von orientierter Parametrisierung
 - lediglich von Kurve und Vektorfeld
- Bewegung entlang anderer Kurve in selbem Bereich ==> W anders

• Weitere Beispiele

 $[[Mehr dimensionale\ Integral rechnung]]\ [[Mehr dimensionale\ Differential rechnung]]$