Solve $\frac{dx}{y+z} = \frac{dy}{z+x} = \frac{dz}{x+y}$ (1) Soi: choosing 1,-1,0 & 0,1,-1 as multipliers, each fruit $= \frac{dx - dy}{(y+z)-(z+x)} = \frac{dy - dz}{(z+x)-(x+y)}$ (2) So $\frac{dz-dy}{-(z-y)} = \frac{dy-dz}{-(y-z)} = \frac{dx-dy}{x-y} = \frac{dy-dz}{y-z}$ =) log(2-y) = log(y-z) + log c1 \Rightarrow $(x-y)/(y-z) = c_1$ (3) Choosing 1,1,1 as multipliers, each fraction of (1). $= \frac{dx + dy + dz}{2(x + y + z)}$ (4) Combining the first fraction in (2) with fractice), $\frac{dx-dy}{-(x-y)} = \frac{dx+dy+dz}{2(x+y+z)}$ $(2-y)(x+y+z)^{1/2}=c_2-5$ The regal-Soh in given by (3) &(5) Ex: Solve dx/y = dy/x = dz/z (1) So: From first throfractions, we obtain $2^2-y^2=c_1+2$ choosing 1,1,0 as multipliess, each fraction $\mathcal{A}(1)$ = $\frac{dx+dy}{y+x}$. Combining the fraction with last find of (1), west $\Rightarrow \frac{dx+dy}{x+y} = \frac{dz}{z} \Rightarrow \log(x+y) - \log z = \log(x)$ =) $(x+y)/2 = c_2$ (3) The complete soln is given by (2) &(3).