	import pandas as pd import tensorflow as tf import seasorn as ass import datetime from datetime from datetime import timedelta import math import requests import plotly as py import plotly as py import plotly as py import plotly as py import plotly graph_objects as go import plotly.subplots import make_subplots import plotly.graph_objects as go import sklearn as sk import sklearn preprocessing from sklearn import metrics from matplotlib.pyplot import figure from sklearn import processing import (StandardScaler, MinMaxScaler, LabelBinarizer) from sklearn import amodel from sklearn import confusion matrix, ConfusionMatrixDisplay from sklearn import linear model from sklearn.import amodel import LinearRegression, LogisticRegression import xgboost as xgb from sklearn.metrics import * from sklearn.metrics import reas squared error, r2_score from sklearn.metrics import reas repaired error, from sklearn.metrics import reas repaired error, from sklearn.metrics import reas from sklearn.model selection import train_test_split, GridSearchCV from sklearn.model selection import train_test_split, GridSearchCV from sklearn.model selection import train_test_split, GridSearchCV from sklearn.metrics import Pipeline from sklearn.metrics import Pipeline from sklearn.metrics import Sequential from keras.models import Sequential from keras.models import Sequential from keras.layers import Dense, Dropout, LSTM, Bidirectional import plotly import chart_studio import chart_studio import plotly.express as px
In [347	numDaysBack = str(365*5) #for daily you can go back multiple years worth, for daily you can only go back 90 day myInterval = 'daily' # options are daily or hourly theCoins = ['ethereum'] #can add more than one coin if you like window_length = 14 mycom = 0.4 lower_macd_ema = 12 upper_macd_ema = 26
	<pre>def df_builder_clean(days, interval, coins): #manipulatable variables numDaysBack = days #for daily you can go back multiple years worth, for daily you can only go back 90 days myInterval = interval # options are daily or hourly theCoins = coins #builds initial dataframe with ethereum as first market but just to log the dates we are working with geckoReq = 'https://api.coingecko.com/api/v3/coins/ethereum/market_chart?vs_currency=usd&days='+numDaysBack' r = requests.get(geckoReq).json() ts = r['prices'][0][0] ts = ts/1000 HistPricesList = [] for i in range(len(r['prices'])): currentUnix = r['prices'][i][0] price = r['prices'][i][1] currentUnix = currentUnix/1000 currentTS = datetime.datetime.fromtimestamp(currentUnix).strftime("%d-%m-%Y %H:%M:%S") #adding dd-mm- currentTS = datetime.datetime.fromtimestamp(currentUnix).strftime("%m-%d-%Y") #just the date mm-dd-yyyy HistPricesList.append([currentTS]) global df df = pd.DataFrame(HistPricesList, columns = ['date'])</pre>
	<pre>#looping through each coin and adding in all data points and input variables for coin in theCoins: price_data(coin) # add_ewm(coin, mycom) # add_rsi(coin, window_length) # add_macd(coin, lower_macd_ema, upper_macd_ema, trigger_macd_ema) print('just added: ', coin) df['date'] = pd.to_datetime(df['date']) df = df.set_index('date') # print('r') # display(r)</pre>
	<pre>return df def price_data(coin): global df # geckoReq = 'https://api.coingecko.com/api/v3/coins/ethereum/market_chart?vs_currency=usd&days=60&interva. geckoReq = 'https://api.coingecko.com/api/v3/coins/'+coin+'/market_chart?vs_currency=usd&days='+numDaysBac} r = requests.get(geckoReq).json() ts = r['prices'][0][0] # print(ts) ts = ts/1000 print(datetime.datetime.fromtimestamp(ts).strftime("%m-%d-%Y")) # print('prices length',len(r['prices'])) HistPricesList = [] for i in range(len(r['prices'])): currentUnix = r['prices'][i][0] price = r['prices'][i][1] volume = r['total_volumes'][i][1] currentUnix = currentUnix/1000 currentTS = datetime.datetime.fromtimestamp(currentUnix).strftime("%m-%d-%Y") # print('price: ', price, 'TS: ', currentTS) HistPricesList.append([currentTS, price, volume])</pre>
	<pre># currentUnix = currentTS print(HistPricesList) dfCoin = pd.DataFrame(HistPricesList, columns = ['date', coin, coin+'_volume']) # print('dfCoin') # display(dfCoin) df = pd.merge(df, dfCoin[coin], left_on = df['date'], right_on=dfCoin['date']).drop(['key_0'], axis = 1) df = pd.merge(df, dfCoin[coin+'_volume'], left_on = df['date'], right_on=dfCoin['date']).drop(['key_0'], axis) def add_ewm(coin, mycom): df[coin+'_ewm'] = df[coin].ewm(com=mycom).mean() def add_rsi(coin, window_length): global df df['diff'] = df[coin].diff(1)</pre>
	<pre>df['gain'] = df['diff'].clip(lower=0).round(2) df['loss'] = df['diff'].clip(upper=0).abs().round(2) # Get initial Averages df['avg_gain'] = df['gain'].rolling(window=window_length, min_periods=window_length).mean()[:window_length-df['avg_loss'] = df['loss'].rolling(window=window_length, min_periods=window_length).mean()[:window_length-df['avg_loss'] = df['loss'].rolling(window_length, min_periods=window_length).mean()[:window_length-df['avg_gain'].iloc[i + window_length + 1] = \</pre>
	<pre>df = pd.DataFrame(df) df = df.drop(['gain', 'loss', 'avg_loss', 'avg_gain', 'rs'], axis = 1) #renaming diff and rsi columns dict = ('diff': coin+'_diff',</pre>
	mydf = pd.DataFrame(df_builder_clean(numDaysBack, myInterval, theCoins)) display(mydf) 08-18-2017 just added: ethereum ethereum_volume
In [348 In [349	<pre>2022-08-16 1896.031277 1.424023e+10 2022-08-16 1896.031277 1.412055e+10 1832 rows × 2 columns mydf.dropna(inplace=True) # myCols = ['ethereum', 'ethereum_volume', 'ethereum_ewm', 'ethereum_rsi', 'macd', 'macd_h', 'macd_s', 'ethereum_acd_b', 'macd_b', 'macd_b', 'macd_b', 'ethereum_acd_b', 'ethereum_acd_b', 'macd_b', 'macd_b', 'macd_b', 'macd_b', 'ethereum_acd_b', 'ethereum_acd_b', 'ethereum_acd_b', 'ethereum_acd_b', 'ethereum_acd_b', 'macd_b', 'macd_b', 'macd_b', 'macd_b', 'macd_b', 'ethereum_acd_b', 'ethereum_acd_b'</pre>
	date 2022-08-16 1896.031277 1.424023e+10 2022-08-16 1880.600101 1.424023e+10 2022-08-16 1880.600101 1.412055e+10 2022-08-16 1896.031277 1.424023e+10 2022-08-16 1896.031277 1.412055e+10 ethereum ethereum_volume date 2017-08-18 296.622090 5.537022e+08 2017-08-29 322.201220 1.743910e+09 2017-08-21 312.174471 8.983443e+08 2017-08-22 316.788920 4.664746e+08
	<pre>coulons</pre> 2022-08-11 1881.427405
Out[350 In [351 Out[351	<pre>return datetime.datetime(year=year, month=month, day=day) datetime_object = str_to_datetime('2017-08-16') datetime_object datetime.datetime(2017, 8, 16, 0, 0) my_data = df #df.rename(columns={"date": "Date"}) df = df.rename(columns=!"ethereum": "Close", "date": "Date"}) #df = df.drop(columns = 'ethereum_volume') df Close ethereum_volume date 2017-08-18 296.622090 5.537022e+08 2017-08-19 295.171577 3.428230e+08 2017-08-19 295.171577 3.428230e+08</pre>
In [352	2017-08-20 322.201220 1.743910e+09 2017-08-21 312.174471 8.983443e+08 2017-08-22 316.788920 4.664746e+08 2022-08-16 1896.031277 1.412055e+10 2022-08-16 1880.600101 1.424023e+10 2022-08-16 1896.031277 1.42205e+10 2022-08-16 1896.031277 1.424023e+10 2022-08-16 1896.031277 1.424023e+10 2022-08-16 1896.031277 1.424023e+10 2022-08-16 1896.031277 1.412055e+10 1832 rows × 2 columns #Plotting the close price over specified time (5 years) plt.plot(df.index, df['Close']) plt.xlabel('Date')
Out[352 In [353	plt.ylabel('ETH Price in \$') [<matplotlib.lines.line2d 0x117e45cb2b0="" at="">] 5000 4000 2000 2001 2018 2019 2020 2021 2022 **''Function to create sliding window using 3 previous days as window length'''</matplotlib.lines.line2d>
	<pre>def create_sliding_window(dataframe, first_date_str, last_date_str, n=3): first_date = str_to_datetime(first_date_str) last_date = str_to_datetime(last_date_str) target_date = first_date dates = [] X, Y = [], [] last_time = False while True: df_subset = dataframe.loc[:target_date].tail(n+1) if len(df_subset) != n+1: print(f'Error: Window of size {n} is too large for date {target_date}') return values = df_subset('Close').to_numpy() x, y = values[:-1], values[-1] dates.append(target_date) X.append(x) Y.append(y)</pre>
	<pre>next_week = dataframe.loc[target_date:target_date+datetime.timedelta(days=7)] next_datetime_str = str(next_week.head(2).tail(1).index.values[0]) next_date_str = next_datetime_str.split('T')[0] year_month_day = next_date_str.split('-') year, month, day = year_month_day next_date = datetime.datetime(day=int(day), month=int(month), year=int(year)) if last_time: break target_date = next_date if target_date == last_date: last_time = True ret_df = pd.DataFrame({}) ret_df['Target Date'] = dates #creating target - i dates for 3 previous dates in our case X = np.array(X) for i in range(0, n): X[:, i] ret_df['Target-{n-i}'] = X[:, i] #Target is the oucome variable</pre>
Out[353	ret_df['Target'] = Y return ret_df # Start day first time around: '2017-08-19' # Start day second time around: '2021-08-16' sliding_window_df = create_sliding_window(df,
In [354	1815 2022-08-11 1775.701356 1698.966129 1852.878555 1881.427405 1959.330925 1816 2022-08-12 1698.966129 1852.878555 1881.427405 1959.330925 1817 2022-08-13 1852.878555 1881.427405 1959.330925 1982.411828 1818 2022-08-14 1881.427405 1959.330925 1982.411828 1936.701164 1819 2022-08-15 1959.330925 1982.411828 1936.701164 1908.277642 1820 rows × 5 columns '''this function takes sliding window df, output is date, 3d matrix X of 3 day windowed dates, and the target of the sliding window df to date X y (windowed dataframe): def sliding window df to date X y (windowed dataframe): df as np = windowed dataframe.to_numpy() #take in first column as dates dates = df_as_np[:, 0] #takes middle datrix = df_as_np[:, 1:-1] X = middle_matrix.reshape((len(dates), middle_matrix.shape[1], 1)) # y is target column Y = df_as_np[:, -1]
Out[354 In [355	<pre>return dates, X.astype(np.float32), Y.astype(np.float32) dates, X, y = sliding_window_df_to_date_X_y(sliding_window_df) dates.shape, X.shape, y.shape ((1820,), (1820, 3, 1), (1820,)) #split data into train-test validation 80-10-10% q_80 = int(len(dates) * .8) q_90 = int(len(dates) * .9) #training = first 80% of data</pre>
Out[355	dates_train, X_train, y_train = dates[:q_80], X[:q_80], y[:q_80] #validation to get data between 80-90% dates_val, X_val, y_val = dates[q_80:q_90], X[q_80:q_90], y[q_80:q_90] #test data is 90-100% dates_test, X_test, y_test = dates[q_90:], X[q_90:], y[q_90:] plt.plot(dates_train, y_train) plt.plot(dates_val, y_val) plt.plot(dates_test, y_test) plt.xlabel('Date') plt.ylabel('ETH Price in \$') plt.legend(['Training Data', 'Validation Data', 'Testing Data']) <pre> </pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> Taining Data</pre></pre></pre>
In [356	from tensorflow.keras.models import Sequential from tensorflow.keras.soptimizers import Adam from tensorflow.keras.soptimizers import Adam from tensorflow.keras import layers #best model is full 5 year with LSTM 200 , dense layers 80, learning rate .001 #rectified linear activation function or ReLU for short is a piecewise linear function that will output the in #if it is positive, otherwise, it will output zero. It has become the default activation function for many type #because a model that uses it is easier to train and often achieves better performance. model = Sequential([layers.Input((3, 1)),
	<pre>###### model.compile(loss='mse',</pre>
	Total params: 184,241 Trainable params: 184,241 Non-trainable params: 0 Epoch 1/13 46/46 [====================================
	46/46 [==========] - 0s 5ms/step - loss: 23647.6758 - mean_absolute_error: 53.9253 - val_loss: 1526048.3750 - val_mean_absolute_error: 1103.2618 Epoch 6/13 46/46 [=========] - 0s 5ms/step - loss: 17900.8223 - mean_absolute_error: 45.4817 - val_loss: 741587.8750 - val_mean_absolute_error: 721.6210 Epoch 7/13 46/46 [========] - 0s 6ms/step - loss: 13010.6523 - mean_absolute_error: 44.6935 - val_loss: 741313.5625 - val_mean_absolute_error: 717.1180 Epoch 8/13 46/46 [===========] - 0s 6ms/step - loss: 11432.8779 - mean_absolute_error: 40.0447 - val_loss: 697089.4375 - val_mean_absolute_error: 682.3502 Epoch 9/13 46/46 [====================] - 0s 6ms/step - loss: 12158.1416 - mean_absolute_error: 43.0863 - val_loss: 666023.3750 - val_mean_absolute_error: 654.3730 Epoch 10/13 46/46 [=====================] - 0s 6ms/step - loss: 13832.5225 - mean_absolute_error: 48.2737 - val_loss: 1188815.7500 - val_mean_absolute_error: 946.7506 Epoch 11/13 46/46 [====================================
In [357 Out[357	#Prediction on the training set train_predictions = model.predict(X_train).flatten() plt.plot(dates_train, train_predictions) plt.plot(dates_train, y_train) plt.xlabel('Date') plt.ylabel('ETH Price in \$') plt.legend(['Training Predictions', 'Training Observations']) 46/46 [
In [358	<pre>#plotly graph of train set fig = px.line(x=dates_train, y=[y_train, train_predictions],labels=('wide_variable_0':'Train Predictions', 'wide_variable_1 and the set of the set of the set of train s</pre>
In [359	<pre>#prediction on the validation set val_predictions = model.predict(X val).flatten()</pre>
Out[359	<pre>val_predictions = model.predict(X_val).flatten() plt.plot(dates_val, val_predictions) plt.plot(dates_val, y_val) plt.xlabel('Date') plt.ylabel('ETH Price in \$') plt.legend(['Validation Predictions', 'Validation Observations']) 6/6 [===================================</pre>
In [360	#plotly graph of val set fig = px.line(x=dates_val, y=[y_val, val_predictions],labels={'wide_variable_0':'Validation Predictions', 'wide fig.update_layout(title="Validation Set Predictions (Red) vs Actual (Blue)", xaxis_title="Pate", yaxis_title="Price (\$)", font=dict(family="Arial, monospace", size=18, color="Black") fig.update_layout(legend_title_text = "Plots") fig.update_layout(legend=False) fig.show()
In [361 Out[361	<pre>#Prediction on testing set test_predictions = model.predict(X_test).flatten() plt.plot(dates_test, test_predictions) plt.plot(dates_test, y_test) plt.xlabel('Date') plt.ylabel('THP Price in \$') plt.legend(['Testing Predictions', 'Testing Observations']) #seems to predict downfalls better than upticks 6/6 [===================================</pre>
In [362	#plotly graph of test set fig = px.line(x=dates_test, y=[y_test, test_predictions],labels={'wide_variable_0':'Test Predictions', 'wide_variable_1':'Test Predictions', 'wide_variable_1
	_
In [363	<pre>from sklearn.metrics import r2_score</pre> <pre>print(!R2 score for Training Set: ! r2 score(v train train predictions))</pre>
In [364	<pre>print('R2_score for Training Set: ', r2_score(y_train, train_predictions)) print('R2_score for Validation Set: ', r2_score(y_val, val_predictions)) print('R2_score for Test Set: ', r2_score(y_test, test_predictions)) R2_score for Training Set: 0.9896533080152631 R2_score for Validation Set: 0.07083109590160397 R2_score for Test Set: 0.9698724359608772 rmse_train = np.sqrt(np.mean(train_predictions - y_train)**2) rmse_val = np.sqrt(np.mean(val_predictions - y_val)**2) rmse_test = np.sqrt(np.mean(test_predictions - y_test)**2) print('RMSE for Training Set: ',rmse_train) print('RMSE for Validation Set: ',rmse_test) RMSE for Training Set: 7.104269504547119 RMSE for Training Set: 52.23227310180664 #combined prediction on train/val/testing plt.plot(dates_train, train_predictions) plt.plot(dates_train, train_predictions) plt.plot(dates_train, y_train)</pre>
Out[365	

