

ORA PROVA TU Una spira circolare di raggio 12 cm è concentrica a un solenoide e posta in un piano perpendicolare al suo campo di intensità iniziale pari a $1,0 \times 10^{-2}$ T che aumenta nel tempo al ritmo di 1.0×10^{-3} T/s.

▶ Quanto vale il modulo del campo elettrico indotto lungo la spira?

Suggerimento: puoi scrivere il valore del campo magnetico come funzione del tempo, cioè $B(t) = B_0 + (1.0 \times 10^{-3} \text{ T/s}) t$.

$$\left[6.0\times10^{-5}\,\frac{\mathrm{N}}{\mathrm{C}}\right]$$

 $\Phi'(B) = S \cdot B(t) =$

V PRENDO IL MODICO

= 5 (1,0 × 10-3 T)

$$\int_{\mathcal{L}} (\vec{E}) = -\frac{d\vec{D}}{dt}$$

$$\oint_{\mathcal{L}} \vec{E} \cdot d\vec{U} = -S(1,0 \times 10^{-3} \frac{T}{S})$$

$$\oint_{\mathcal{L}} \vec{E} \cdot d\vec{U} = -S(1,0 \times 10^{-3} \frac{T}{S})$$

$$\oint_{S} E dl = -S(1,0 \times 10^{-3} T)$$

Egdl =
$$-\pi\pi^2 \left(1,0 \times 10^{-3} \frac{T}{S}\right)$$

$$2\pi\pi = lugherro della spira$$

$$E = \frac{72}{2} \left(1,0 \times 10^{-3} \frac{T}{5} \right) = \left(6,0 \times 10^{-2} m \right) \left(1,0 \times 10^{-3} \frac{T}{5} \right) =$$

$$= 6,0 \times 10^{-5} \frac{N}{C}$$

- Una spira circolare di raggio 12 cm è immersa in un campo magnetico uniforme di intensità B₁ = 1,2 × 10⁻⁶ T perpendicolare alla sua superficie. Il modulo del campo magnetico viene progressivamente aumentato fino al valore di B_f = 8,4 × 10⁻⁶ T e nel processo viene indotto nella spira un campo elettrico con modulo di valore medio 2,2 × 10⁻⁸ N/C.
 In quale intervallo di tempo è avvenuta la variazione
 - ▶ In quale intervallo di tempo è avvenuta la variazione di intensità del campo magnetico per ottenere questo campo elettrico medio?

 $[\Delta t = 20 \text{ s}]$ \$ Em de = AD & Em dl = Diriste - Biriste - Biris - Sister - Biriste - $E_m \text{ fal} = S(B_f - B_i)$ $E_{m} \cdot 2\pi \pi = \pi \pi^{2} (B_{f} - B_{i})$ $\Delta t = \pi (B_{f} - B_{i}) = (12 \times 10^{-2} \text{ m})[(8, 4 - 1, 2) \times 10^{-6} \text{ T}]$ $2E_{m} = 2(2, 2 \times 10^{-8} \frac{N}{c})$ = 19,63... s ~ 20 s

B(t)

B(t)= & t2