- 3-1 Given the sinusoid $10 \sin(10\pi t 45^0)$, calculate its amplitude, rms value, angular frequency, period, frequency and phase angle.
- 3-2 Find the phase angle between $u_1(t) = 200\sqrt{2} \sin(5t + 30^0)$ and $u_2(t) = 50 \cos(5t)$. Does u_1 leads or lags u_2 ?
- 3-3 Find the phase angle between $i_1(t) = -4 \sin(417t + 30^0)$ and $i_2(t) = -7 \cos(417t 35^0)$. Does i_1 leads or lags i_2 ?
- **3-4** Given $i_1(t) = 2\sqrt{2} \sin(\omega t + 45^0) A$ and $i_2(t) = 2\sqrt{2} \cos(\omega t 45^0) A$, find their sum $i(t) = i_1(t) + i_2(t)$.
- 3-5 Given $u_1(t) = 20\sqrt{2} \sin(\omega t + 45^0)V$ and $u_2(t) = -10\sqrt{2}\cos(\omega t 30^0)V$, find their sum $u(t) = u_1(t) + u_2(t)$.
- **3-6** Find the sinusoids corresponding to these phasors: a) $\underline{U} = -10 e^{j30^0} V$; b) $\underline{I} = 2\sqrt{2}(\cos 45^0 j \sin 45^0) A$; c) $\underline{I} = j(5 j12) A$.
- **3-7** Using the phasor approach, determine the current i(t) in a circuit described by the integrodifferential equation

$$4i(t) + 8 \int i(t)dt - 3 \frac{di(t)}{dt} = 50 \sqrt{2} \sin(2t + 75^{0}).$$

3-8 Find the voltage u(t) in a circuit described by the integrodifferential equation

$$2\sqrt{2}\frac{du(t)}{dt} + 5\sqrt{2}u(t) + 10\sqrt{2}\int u(t)dt = 50\sqrt{2}\sin(5t - 30^{0})$$

using the phasor approach.

3-9 Find the circuit current, i(t), and capacitor-voltage, $u_C(t)$, for the circuit below.

Problem 3-9

3-10 The circuit parameters for the RLC series circuit below are $R=20\Omega$, L=40mH, $C=50\mu F$, and the supplying voltage: $u(t) = 200 \sin(1000t - 30^{\circ}) V$. Calculate: a) the inductive and capacitive reactances and the circuit impedance, X_L , X_C , Z; b) the rms and the instantaneous value of the current, I, i(t); c) the rms and the instantaneous value of resistance-voltage, U_R , $u_R(t)$; d) the rms and the instantaneous value of inductance-voltage, U_L , $u_L(t)$; e) the rms and the instantaneous value of capacitance-voltage, U_C , $u_C(t)$. Draw the circuit diagram.

Problem 3-14

- For an RLC series circuit we know R = 30 Ω , $X_L = \omega L = 80\Omega$, $X_C = \frac{1}{\omega C} 40\Omega$ and the supplying voltage $u(t) = 100 \sqrt{2} \sin(100\pi t - 60^{\circ}) V$. Calculate: a) the impedance in phasor form and the circuit impedance, \underline{Z} , Z; b) the rms and the instantaneous value of circuit current, I, i(t); c) the active, reactive and apparent power, P, Q, S. Verify the conservation of the active and the reactive power. Draw the circuit diagram.
- For the circuit below we know $R=10\Omega$, $X_L=\omega L=5\Omega$, $X_C=\frac{1}{\omega C}=15\Omega$ and the voltage *3-12* $u_1(t) = 100 \sqrt{2} \sin 100\pi t V$. Find the output voltage, $u_2(t)$.

Problem 3-16

For the circuit below we know $\underline{Z}_1 = 3 + j4$, $\underline{Z}_2 = -j6$, $\underline{Z}_3 = 6 + j8$ and the rms current I =*3-13* 2A. Find: a) the rms voltage on each impedance, U_1 , U_2 , U_3 ; the rms value of the supplying voltage, u(t); c) the active, reactive and apparent power, P, Q, S.

Problem 3-17

For the circuit below we know $R=10\Omega$, $L=\frac{3}{10\pi}H$, $C=\frac{1}{2.1\pi}mF$, and the supplying 3-14 voltage: $u_e(t) = 100 \sqrt{2} \sin(100\pi t - 60^0) \text{ V}$. Calculate: a) the equivalent impedance and the circuit impedance regarding the source terminals, \underline{Z} , Z; b) the rms value of the current, I; c) the instantaneous value of the inductor-voltage, $u_L(t)$; d) the active, reactive and apparent power, P, Q, S. Verify the active and reactive power conservation.

Problem 3-18

For the circuit below we know $R=15\Omega$, $X_L=\omega L=30\Omega$, $X_M=\omega M=20\Omega$, $X_C=\frac{1}{\omega C}=0$ 50Ω , and supplying voltage $u(t) = 100\sqrt{2} \sin(100\pi t + 60^{\circ}) V$ Determine: a) the phasor form of the equivalent impedance and the circuit impedance, \underline{Z} , Z; b) the rms and the instantaneous value of the current, I, i(t); the rms and the instantaneous voltage indicated in figure, U_L , $u_L(t)$.

Problem 3-20

Determine the instantaneous value of current, $i_1(t)$, and the rms output-voltage U_2 for the circuit below. The circuit parameters are: $R=40\Omega$, $X_{L1}=X_{L2}=60\Omega$, $X_{M}=30\Omega$, $X_{C}=20\Omega$ and the supplying voltage $u_{1}(t)=400\sin(500t-30^{0})$ V.

Problem 3-22

The voltage and the current absorbed by the sub-circuit below are: u(t) = $200\sqrt{2} \sin(500t - 30^{\circ}) V$ and $i(t) = 5\sin(500t + 60^{\circ}) A$. Write the voltage and current phasor operator, <u>U</u>, <u>I</u>. Find the impedance phasor operator, <u>Z</u>, the circuit impedance, Z, the active power, P, and the reactive power, Q, removed by the sub-circuit.

Problem 3-25

For the circuit below find the equivalent impedance \underline{Z}_e , regarding terminals a and b. The circuit parameters are $R_1=R_2=R_3=10\Omega$, $L_3=\frac{20}{\pi}$ mH, $C_2=\frac{5}{\pi}$ mF, and f=50Hz. *3-18*

Problem 3-30

For the circuit below find the equivalent impedance \underline{Z}_e , regarding terminals a and b. The circuit parameters are $R=10\Omega$, $L=\frac{100}{\pi}$ mH, $C=\frac{1}{\pi}$ mF, and f=50Hz.

Problem 3-31

For the circuit below we know $\underline{Z}_1 = 10 + j40$, $\underline{Z}_2 = 20 - j20$, $\underline{Z}_1 = 20 + j20$ and rms current I = 4A. Find: a) the equivalent impedance regarding the source terminals; b) the rms and instantaneous value of supplying voltage, U_e , $u_e(t)$; the active, reactive and apparent power, P,Q, S.

Problem 3-33

3-21 For the circuit below find the potentials of the circuit nodes. Calculate the circuit currents.

Problem 3-37

3-22 For the circuit below find the potentials of the circuit nodes. Calculate the circuit currents.

Problem 3-39

For the circuit below determine the impedance value \underline{Z} which will absorb the greatest power *3-23* from the circuit.

Problem 3-43

For the circuit below determine the impedance value \underline{Z} which will absorb the greatest power from the circuit.

Problem 3-44