1 Thermodynamik

isotherm:
$$\Delta u = 0$$
 $\Delta T = 0$ $\Delta w = +R \ T \ln \left(\frac{v_1}{v_2} \right) = -R \ T \ln \left(\frac{p_1}{p_2} \right)$

isobar:
$$\Delta w = R \Delta T$$
 $\Delta p = 0 \Rightarrow \int v dp = 0$ $\Delta h = \Delta q_a \text{ wenn } \Delta q_R = 0$

isobar:
$$\Delta w = R \ \Delta T$$
 $\Delta p = 0 \Rightarrow \int v dl p = 0$ $\Delta h = \Delta q_a \text{ wenn } \Delta q_R = 0$
isochor: $\Delta v = 0 \Rightarrow \int p dl v = 0$ $\Delta u = \Delta q_a \text{ wenn } \Delta q_R = 0$

Enthalpie:
$$h = u + pv$$
 Molare Masse: $M = \frac{m}{n}$

1. HS:
$$\Delta h = \Delta q_a + \Delta q_R + \int v \, dp$$
 $\Delta u = \Delta q_a + \Delta q_R - \int p \, dv$ $\Delta Q + \Delta W = \Delta U + \Delta E_a$

2. HS:
$$\Delta q_{rev} = \Delta q_a + \Delta q_R = \int T \, ds$$

1.1 Ideales Gas

$$v_{mn} = 22,414 \frac{\text{Nm}^3}{\text{kmol}} \qquad V_n = n \ v_{mn} \qquad \qquad R = \frac{R_{\text{m}}}{M} \qquad \kappa = \frac{c_p}{c_v}$$

$$R_{\text{m}} = 8314,47 \frac{\text{J}}{\text{kmol K}} \qquad p \ v = R \ T \qquad p \ V = m \ R \ T \qquad p \ V = n \ R_{\text{m}} \ T$$

$$c_p = \frac{c_{pm}}{M} = R + c_v = R \frac{\kappa}{\kappa - 1} \qquad c_p = c_p |_{t_1}^{t_2} = \frac{c_p |_{t_2}^{t_2} \cdot t_2 - c_p |_{t_1}^{t_1} \cdot t_1}{t_2 - t_1} \qquad \Delta u = c_v \ \Delta T \qquad \Delta h = c_p \ \Delta T$$

$$\Delta s = c_v \ln\left(\frac{T_2}{T_1}\right) + R \ln\left(\frac{v_2}{v_1}\right) \qquad = c_p \ln\left(\frac{T_2}{T_1}\right) - R \ln\left(\frac{p_2}{p_1}\right) \qquad = c_p \ln\left(\frac{v_2}{v_1}\right) + c_v \ln\left(\frac{p_2}{p_1}\right)$$

$$\text{Isentrope:} \qquad \frac{T_{2s}}{T_1} = \left(\frac{v_1}{v_2}\right)^{\kappa - 1} = \left(\frac{p_2}{p_1}\right)^{\frac{\kappa - 1}{\kappa}} \qquad p \ v^{\kappa} = p_1 \ v_1^{\kappa} = \text{konst.}$$

$$\int p \ dv = \frac{1}{-1} R \ T_1 \left[1 - \left(\frac{v_1}{v_1}\right)^{\kappa - 1}\right] \qquad \int v \ dp = \frac{\kappa}{-1} R \ T_1 \left[\left(\frac{p_2}{v_1}\right)^{\frac{\kappa - 1}{\kappa}} - 1\right]$$

$$\int p \, dv = \frac{1}{\kappa - 1} R \, T_1 \left[1 - \left(\frac{v_1}{v_2} \right)^{\kappa - 1} \right] \qquad \int v \, dp = \frac{\kappa}{\kappa - 1} R \, T_1 \left[\left(\frac{p_2}{p_1} \right)^{\frac{\kappa - 1}{\kappa}} - 1 \right]$$
Polytrope analog mit:
$$n = \frac{\ln \left(\frac{p_2}{p_1} \right)}{\ln \left(\frac{p_2}{p_1} \right) - \ln \left(\frac{T_2}{T_1} \right)} \qquad = 1 - \frac{\ln \left(\frac{T_2}{T_1} \right)}{\ln \left(\frac{v_1}{v_2} \right)} \text{ statt } \kappa$$

1.2 Gemische idealer Gase – Species i

$$\begin{aligned} y_i &= \frac{n_i}{n} = \frac{V_i}{V} = \frac{\dot{V}_i}{\dot{V}} = \frac{p_i}{p} & w_i &= \frac{m_i}{m} = \frac{\dot{m}_i}{\dot{m}} = y_i \frac{M_i}{M} & M = \sum y_i \ M_i & M_i &= \frac{m_i}{n_i} \\ c_p &= \sum c_{pi} \ w_i & \text{analog für: } c_v, \ \Delta u, \ \Delta h, \ \Delta s & c_{mp} &= \sum y_i \ c_{mpi} & \dot{V} &= A \ c \end{aligned}$$

1.3 Inkompressible Flüssigkeiten

$$c_v = c_p$$
 $v = \frac{1}{\varrho} = \text{konst.}$ $\dot{m} = \dot{V} \ \varrho$ $\Delta u = c_p \Delta T$ $\Delta h = c_p \Delta T + v \Delta p$ $\Delta s = c_p \ln \left(\frac{T_2}{T_1}\right)$

1.4 Gemische mischbarer, inkompressibler Flüssigkeiten – Species i

$$m_{i} = \frac{V_{i}}{v_{i}} \qquad v = \sum v_{i}w_{i} \qquad m = \sum m_{i} \qquad w_{i} = \frac{m_{i}}{m}$$

$$c_{p} = \sum c_{pi}w_{i} \qquad \text{analog für } \Delta u, \Delta h, \Delta s \qquad \Delta s_{i} = c_{pi}\ln\left(\frac{T_{2i}}{T_{1i}}\right) + R_{i}\ln\left(\frac{v_{2i}}{v_{1i}}\right)$$

$$x_{i} = w_{i}\frac{M}{M_{i}} = \varphi_{i}\frac{v_{i}}{v}\frac{M_{i}}{M} \qquad w_{i} = x_{i}\frac{M_{i}}{M} = \varphi_{i}\frac{v}{v_{i}} \qquad \varphi_{i} = x_{i}\frac{v}{v_{i}}\frac{M}{M_{i}} = w_{i}\frac{v_{i}}{v}$$

1.5 Nassdampf: u' = Wasser, u'' = Dampf

$$x=\frac{m''}{m'+m''}=\frac{u-u'}{u''-u'}$$

$$u=(1-x)\ u'+xu'' \qquad \qquad u=u'+x\ (u''-u') \qquad \qquad \text{analog für: } v,\,h,\,s$$

1.6 Geschlossene Systeme

1.7 Offene Systeme

$$\Delta W_v = -\int p \, dv \qquad \qquad \Delta U + \Delta E_a = \Delta Q_a + \Delta W_i + \sum \Delta m_j \, (h_j + e_{aj})$$

1.8 Einseitig offene Systeme

Einströmung – ideales Gas:
$$T_2 = T_1 \frac{\kappa}{1 + \frac{p_1}{p_u}(\kappa - 1)} \qquad \Delta m = \frac{m_1 (T_2 - T_1)}{\kappa T_1 - T_2}$$
 Einsaugen, Ausstoßen:
$$\Delta W_v = -p \ \Delta V$$

1.9 Ruhende, stationäre, 2-seitig offene Systeme

$$\Delta h + \Delta e_a = \Delta q_a + \Delta w_i$$
 $\Delta h = \Delta q_a + \Delta q_R + \int v \, dp$ $\int v \, dp + \Delta q_R + \Delta e_a = \Delta w_i$

1.10 Wirkungsgrade

Verdichtung:
$$\eta_{is} = \frac{\Delta w_{s=konst.}}{\Delta w_i} \qquad \eta_{it} = \frac{\Delta w_{T=konst.}}{\Delta w_i} \qquad \eta_a = \frac{\Delta w_i}{\Delta w_{eff}} \qquad \eta_{eff} = \eta_i \ \eta_a$$
 Entspannung:
$$\eta_{is} = \frac{\Delta w_i}{\Delta w_{s=konst.}} \qquad \eta_{it} = \frac{\Delta w_i}{\Delta w_{T=konst.}} \qquad \eta_a = \frac{\Delta w_{eff}}{\Delta w_i} \qquad \eta_{eff} = \eta_i \ \eta_a$$
 Wärmeübertragung:
$$\eta_{wue} = \frac{\dot{Q}}{\dot{Q}_{max}}$$

1.11 Ruhende, stationäre, 3-seitig offene Systeme

Mischung der Ströme i:
$$\sum m_i \ \Delta h_i = 0$$

1.12 Ruhende, stationäre, 4-seitig offene Systeme

Wärmeübertrager:
$$\sum m_i \ \Delta h_i = 0$$

Verdichter + Turbine: $P_{vi} + P_{T,eff} = 0$ montiert auf einer Welle

1.13 Kreisprozesse

Allgemein:
$$\eta_{therm} = \frac{|\Delta w_{ab}|}{\Delta q_{zu}}$$
 $\text{EER} = \frac{\Delta q_{zu}}{\Delta w_{zu}}$ $\text{COP} = \frac{|\Delta w_{ab}|}{\Delta w_{zu}}$ Carnot: $\eta_{therm} = 1 - \frac{T_{ab}}{T_{zu}}$ $\text{EER} = \frac{T_{zu}}{T_{ab} - T_{zu}}$ $\text{COP} = \frac{T_{ab}}{T_{ab} - T_{zu}}$ $\text{COP} = \frac{T_{ab}}{T_{ab} - T_{zu}}$ Gütegrad: $\eta_{G} = \frac{\text{EER}}{\text{EER}_{Carnot}}$ $\eta_{G} = \frac{\text{COP}}{\text{COP}_{Carnot}}$

1.14 Exergie

Arbeit:
$$e = \Delta w_{eff}$$
 Geschlossenes System:
$$e = u - u_u - T_u \ (s - s_u) - p_u \ (v_u - v)$$
 Fluid Strom :
$$e = h - h_u - T_u \ (s - s_u)$$
 Wärme:
$$e = \left(1 - \frac{T_u}{T}\right) \mathrm{d} q_a \cong \left(1 - \frac{T_u}{T_m}\right) \Delta q_a$$
 Exergetischer Wirkungsgrad:
$$\zeta = \frac{e_{ab}}{}$$

2 Strömungslehre

Dazu gehört auch die THD Formelsammlung. Notiz: rho = $\varrho \neq p$ = Druck, nü = $\nu \neq v$

2.1 Hydrostatik

i kennzeichnet eine beliebige Richtung z.B. x, y, z oder die Richtung einer schrägen Wand s

S kennzeichnet den Schwerpunkt

Druckgradient:
$$\frac{\partial p}{\partial x_i} = \varrho \ f_i$$
 Für $f_z = g$ ist der Überdruck $p_{\ddot{u}(z)} = \varrho \ g \ z$ $g, z \downarrow$

Exzentrizität:
$$e_{Si} = \frac{I_{Si}}{s_{Si} A}$$
 Vertikale Wandkraft: $F_{wi} = p_{\ddot{u},S} A_i$

 s_{Si} Lage des Flächenschwerpunkts S von Oberfläche in Richtung i

 I_{Si} Flächenträgheitsmoment in Richtung i um horizontale Achse durch Schwerpunkt S

Horizontale Wandkraft F_{wz} = Gewicht des darüberliegenden Fluids

Rechteckiger Deckel mit Breite a, Höhe b:
$$I_{Ss} = \frac{a\ b^3}{12}$$
 $A = a\ b$ $e_{Ss} = \frac{b^2}{12\ s_{Ss}}$ Kreisförmiger Deckel mit Radius r: $I_{Ss} = \frac{r^4\ \pi}{4}$ $A = r^2\ \pi$ $e_{Ss} = \frac{r^2}{4\ s_{Ss}}$ Gleichschenkeliges Dreieck, Basis a, Höhe b: $I_{Ss} = \frac{a\ b^3}{36}$ $A = \frac{a\ b}{2}$ $e_{Ss} = \frac{b^2}{18\ s_{Ss}}$

Gleichschenkeliges Dreieck, Basis a, Höhe b:
$$I_{Ss} = \frac{a b^3}{36}$$
 $A = \frac{a b}{2}$

3

Statische Auftriebskraft an der Unterseite eines eingetauchten Körpers: $F_A = \varrho_{Fl}~g~V_{K,eingetaucht}$

Horizontal beschleunigte Flüssigkeiten:
$$p_{\ddot{u}(x,z)} = -\varrho \ a \ x - \varrho \ g \ (z - z_0)$$
 $z_0 = h_0 + \frac{a}{q} x_S$

Spiegeloberfläche Neigung
$$\alpha = \arctan \frac{a}{g}$$
 $z_{(x)} = z_0 - \frac{a}{g}x$

Rotierend beschleunigte Flüssigkeiten:
$$p_{\ddot{u}(r,z)} = \frac{\varrho}{2} r^2 \omega - \varrho g (z - z_0) \quad z_0 = h_0 - \frac{I_p \omega^2}{2 g A}$$

Spiegeloberfläche
$$I_p = I_{pS} + r_S^2 A$$
 $z_{(r)} = z_0 + \frac{r^2 \omega^2}{2 g}$

 I_{pS} polare Trägheitsmoment um Schwerpunkt $S-r_S$ ist der Abstand vom Schwerpunkt zur Drehachse

2.2 Aerostatik

$$\begin{aligned} & \text{Standardatmosph\"{a}re } n = 1{,}235 & p_0 = 1 \text{ atm} = 101 \text{ } 325 \text{ Pa} & T_0 = 15 \text{ }^{\circ}\text{C} = 288{,}15 \text{ K} & H_0 = 8430 \text{ m} \\ & \frac{p_{(z)}}{p_0} = \left(1 - \frac{n-1}{n} \frac{z}{H_0}\right)^{\frac{n}{n-1}} & \frac{T_{(z)}}{T_0} = \left(1 - \frac{n-1}{n} \frac{z}{H_0}\right) & \frac{\varrho_{(z)}}{\varrho_0} = \left(1 - \frac{n-1}{n} \frac{z}{H_0}\right)^{\frac{1}{n-1}} \end{aligned}$$

2.3 Massenbilanz MB

$$\sum \dot{m}_{ein} - \sum \dot{m}_{aus} = 0 \qquad \dot{m} = \varrho \ \dot{V} \qquad \dot{V} = A \ c \qquad c \perp A$$

2.4 Energiebilanz EB, siehe auch THD

$$\Delta h + \Delta \frac{c^2}{2} + g \ \Delta z = \Delta q_a + \Delta w_i$$

$$\Delta h = \Delta q_a + \Delta q_R + \int v \ dp$$

$$\int v \ dp + \Delta q_R + \Delta \frac{c^2}{2} + g \ \Delta z = \Delta w_i$$
 Inkompressibel:
$$\frac{\Delta p}{\varrho} + \Delta q_R + \Delta \frac{c^2}{2} + g \ \Delta z = \Delta w_i$$

2.5 Impulsmomentenbilanz um Achse i IB_i

 c_i ist die Geschwindigkeitskomponente in Richtung i (relativ zum bewegten Kontrollvolumen)

$$\sum \dot{I}_{ein} - \sum \dot{I}_{ein} + \sum F_{p,i} + \sum F_{R,i} + \sum F_{g,i} = 0 \quad \dot{I} = \dot{m} \ c_i \quad F_{p,i} = p_{\ddot{u}} \ A_i \quad F_{R,i} = \tau_W \ A_{Wi} \quad F_{g,i} = m \ g_i$$

2.6 Impulsbilanz in Richtung i IB_i

 \boldsymbol{c}_n ist die Geschwindigkeit projiziert auf die Normalebene der Achsei

 r_i ist der Hebelarm zur Achse i in der Normalebene der Achse i

$$\sum \dot{L}_{ein} - \sum \dot{L}_{ein} + \sum M_{p,i} + \sum M_{R,i} + \sum M_{g,i} = 0 \quad \dot{L} = \dot{m} \ c_n \ r_i \quad M_{p,i} = F_p \ r_i \quad M_{R,i} = F_R \ r_i \quad M_{g,i} = F_g \ r_i$$

2.7 Isentrope kompressible Strömungen

Isentrope, ideales Gas, Isentropen-Koeffizient κ : Siehe THD Formelsammlung

Index T kennzeichnet totale Bedingungen bzw. Ruhebedingungen bei c=0

Index k kennzeichnet kritische Bedingungen bei Schallgeschwindigkeit c=a

Index u kennzeichnet Umgebungsbedingungen

Geschwindigkeitsfunktion ν

Durchflussfunktion
$$\psi$$

$$\nu_{(\frac{p}{p_T},\kappa)} = \sqrt{\frac{\kappa}{\kappa - 1} \left[1 - \left(\frac{p}{p_T} \right)^{\frac{\kappa - 1}{\kappa}} \right]}$$

$$\nu_{(\frac{p}{p_T},\kappa)} = \sqrt{\frac{\kappa}{\kappa - 1} \left[1 - \left(\frac{p}{p_T} \right)^{\frac{\kappa - 1}{\kappa}} \right]} \qquad \qquad \psi_{(\frac{p}{p_T},\kappa)} = \sqrt{\frac{\kappa}{\kappa - 1} \left[\left(\frac{p}{p_T} \right)^{\frac{2}{\kappa}} - \left(\frac{p}{p_T} \right)^{\frac{\kappa + 1}{\kappa}} \right]}$$

EB:
$$c = \sqrt{2 R T_T} \cdot \nu_{(p/p_T,\kappa)}$$

MB:
$$\dot{m} = A \varrho_T \sqrt{2 R T_T} \cdot \psi_{(p/p_T,\kappa)}$$

$$\frac{p_k}{p_T} = \left(\frac{2}{\kappa + 1}\right)^{\frac{\kappa}{\kappa - 1}} \quad \nu_k = \sqrt{\frac{\kappa}{\kappa + 1}} \quad \psi_k = \psi_{max} = \sqrt{\frac{\kappa}{\kappa + 1}} \left(\frac{2}{\kappa + 1}\right)^{\frac{1}{\kappa - 1}} \quad \frac{T_k}{T_T} = \frac{2}{\kappa + 1} \quad \frac{\varrho_k}{\varrho_T} = \left(\frac{2}{\kappa + 1}\right)^{\frac{1}{\kappa - 1}}$$

$$c_k = a_k = \sqrt{\kappa \ R \ T_k}$$
 Schallgeschwindigkeit: $a = \sqrt{\frac{\mathrm{d}p}{\mathrm{d}\varrho}} = \sqrt{\kappa \ R \ T}$ Machzahl: $Ma = \frac{c}{a}$

Der Druck am Auslass einer einfachen konvergenten Düse $p_a = \max(p_u, p_k)$

Für gegebene Ruhebedingungen ist der Druck am Auslass einer korrekt ausgelegten Laval Düse $p_a = p_u$

$$\begin{aligned} Ma &= \sqrt{\frac{2}{\kappa - 1} \left[\left(\frac{p}{p_T} \right)^{\frac{\kappa - 1}{-\kappa}} - 1 \right]} \\ \frac{\varrho}{\varrho_T} &= \left(\frac{p}{p_T} \right)^{\frac{1}{\kappa}} = \left(1 + \frac{\kappa - 1}{2} Ma^2 \right)^{\frac{-1}{\kappa - 1}} \end{aligned}$$

$$\frac{p}{p_T} = \left(1 + \frac{\kappa - 1}{2} Ma^2\right)^{\frac{-\kappa}{\kappa - 1}}$$

$$\frac{\varrho}{\varrho_T} = \left(\frac{p}{p_T}\right)^{\frac{1}{\kappa}} = \left(1 + \frac{\kappa - 1}{2} Ma^2\right)^{\frac{-1}{\kappa - 1}} \qquad \qquad \frac{T}{T_T} = \left(\frac{p}{p_T}\right)^{\frac{\kappa - 1}{\kappa}} = \left(1 + \frac{\kappa - 1}{2} Ma^2\right)^{-1}$$

2.8 Viskosität – Wandschubspannung

Dynamische Viskosität μ in $\left| \frac{\text{kg}}{\text{m s}} \right|$ bzw. [Pa s]

Kinematische Viskosität $\nu = \frac{\mu}{a}$ in $\left| \frac{\mathbf{m}^2}{\mathbf{s}} \right|$ γ zeigt weg von der Wand.

Newton'sches Schubspannungsgesetz $\tau_w = \mu \frac{\mathrm{d} c}{\mathrm{d} u}$

2.9 Durchströmung

$$NPSH = \frac{p - p_d}{\varrho \ g} \quad \dot{V} = c_{(y \text{ oder } r)} \ dA \qquad \text{Kanal: } dA = b \ dy \qquad \text{Rohr: } dA = r \ dr \ d\varphi$$

Reynolds Zahl:
$$Re = \frac{\overline{c} \ L_{char} \ \varrho}{\mu} = \frac{\overline{c} \ L_{char}}{\nu} \qquad L_{char} = d_h = \frac{4 \ A}{U}$$

Reibung:
$$\Delta q_R = \frac{\Delta p_v}{\rho} = g \ \Delta h$$
 $= \left(\zeta_F + \lambda \frac{L}{d_h}\right) \frac{\overline{c}^2}{2}$ $\Delta p_v = R_{ges} \ \dot{V}^2$

Reibung:
$$\Delta q_R = \frac{1}{\varrho} = g \Delta h$$
 $= \left(\zeta_F + \lambda \frac{1}{d_h}\right) \frac{1}{2}$ $\Delta p_v = R_{ges} V^2$ Widerstand: $R_i = \frac{\varrho}{2} \left(\zeta_{Fi} + \lambda_i \frac{L_i}{d_{hi}}\right)$ Seriell: $R_{ges} = \sum R_i$ Parallel: $\frac{1}{R_{ges}} = \left[\sum \sqrt{\frac{1}{R_j}}\right]^2$

2.10 Laminare Durchströmung

$$\begin{array}{lll} Re_{dh} < 2300 & \text{Rohrreibungsbeiwert } \lambda = \frac{64}{Re_{dh}} & \text{Hydrodynamische Einlaufstrecke } \frac{L_e}{d_h} = 0,06 \, Re_{dh} \\ & \text{Couette Strömung: } \frac{c_{(y)}}{c_{max}} = \frac{y}{h} & c_{max} = konst. & A = b \, h & \overline{c} = \frac{1}{2} c_{max} \\ & \text{Kanal Strömung: } \frac{c_{(y)}}{c_{max}} = 4 \left[\left(\frac{y}{h} \right) - \left(\frac{y}{h} \right)^2 \right] & c_{max} = \frac{1}{\mu} \frac{\Delta p_v \, h^2}{\Delta L \, 8} & A = b \, h & \overline{c} = \frac{2}{3} c_{max} \\ & \text{Rohr Strömung: } \frac{c_{(r)}}{c_{max}} = 1 - \left(\frac{r}{R} \right)^2 & c_{max} = \frac{1}{\mu} \frac{\Delta p_v \, R^2}{\Delta L \, 4} & A = R^2 \, \pi & \overline{c} = \frac{1}{2} c_{max} \end{array}$$

Rohr Strömung:
$$\frac{c_{(r)}}{c_{max}} = 1 - \left(\frac{r}{R}\right)^2 \qquad c_{max} = \frac{1}{\mu} \frac{\Delta p_v R^2}{\Delta L 4} \qquad A = R^2 \pi \qquad \overline{c} = \frac{1}{2} c_{max}$$

2.11 Turbulente Durchströmung

$$Re_{dh} > 4000$$
 Rohrreibungsbeiwert λ aus Moody Diagr. Hydrodynamische Einlaufstrecke $\frac{L_e}{d_h} = \frac{8}{\sqrt{\lambda}}$ 1/7 Potenzgesetz: $\frac{c_{(r)}}{c_{max}} = 1 - \left(\frac{r}{R}\right)^{1/7}$

2.12 Strömungsmaschinen

Drehzahl
$$\dot{n}$$
 Winkelgeschwindigkeit $\omega = 2 \pi \dot{n}$

Umfangsgeschwindigkeit
$$u = r \omega$$
 Relativgeschwindigkeit w Absolutgeschwindigkeit c

Index
$$r$$
 steht für Radialkomponente Index u steht für Umfangskomponente

MB:
$$\dot{m} = \varrho \ A_1 \ c_{1r} = \varrho \ A_2 \ c_{2r}$$
 EB: $\Delta p = \varrho \left[\Delta w - \frac{1}{2} (c_2^2 - c_1^2) - \Delta q_R \right]$

Euler'sche Momentengleichung aus IMB um Drehachse:
$$M_{Antrieb} = \dot{m}(c_{2u} r_2 - c_{1u} r_1)$$

Leistung:
$$P = M_{Antrieb} \ \omega = \dot{m} \ \Delta w$$
 Spez. Stutzenarbeit: $\Delta w = c_{2u} \ u_2 - c_{1u} \ u_1 (= Y)$

Serienschaltung:
$$\dot{V} = \dot{V}_i$$
 $\Delta p = \sum \Delta p_i$ Parallelschaltung: $\dot{V} = \sum \dot{V}_i$ $\Delta p = \Delta p_i$

2.13 Umströmung

Umschlag von laminar auf turbulent bei
$$5 \cdot 10^5 < Re_{Lchar} < 1 \cdot 10^6$$

Widerstandskraft $F_W = c_W \frac{\varrho_{fl}}{2} c_{rel}^2 A$ $c_{rel} = c_\infty - c_{K\"{o}rper}$

2.14 Umströmung einer Platte

Char. Länge L_{char} = Umströmte Plattenlänge L bzw. an der Stelle x

Bezugsfläche A = b L = Plattenoberfläche

Einfluss der Rauigkeit: siehe Widerstandsdiagramm der Platte

		Laminare Grenzschicht	Turbulente Grenzschicht (glatt)
Grenzschichtdicke	$\frac{\delta}{x} =$	$rac{5}{\sqrt{Re_x}}$	$\frac{0.37}{\sqrt[5]{Re_x}}$
Verdrängungsdicke	$\frac{\delta_1}{x} =$	$rac{1.72}{\sqrt{Re_x}}$	$\frac{0.046}{\sqrt[5]{Re_x}}$
Impulsverlustdicke	$\frac{\delta_2}{x} =$	$rac{0.665}{\sqrt{Re_x}}$	$\frac{0.036}{\sqrt[5]{Re_x}}$
Wandschubspannung	$\frac{ au_{\scriptscriptstyle W}}{arrho \cdot u_{\infty}^2} =$	$rac{0.332}{\sqrt{Re_x}}$	$rac{0{,}0296}{\sqrt[5]{Re_x}}$
Widerstandsbeiwert	$c_{\rm w} =$	$rac{1,328}{\sqrt{Re_l}}$	$\frac{0.074}{\sqrt[5]{Re_l}}$

2.15 Umströmung stumpfer Körper

Char. Länge L_{char} = Hydraulischer Durchmesser der Schattenfläche in Strömungsrichtung

Bezugsfläche A = Schattenfläche in Anströmrichtung

Umströmungsgeschwindigkeit an dickster Stelle (Apex): Zylinder: $c_{Apex} = 2 c_{rel}$ Kugel: $c_{Apex} = 1.5 c_{rel}$

2.16 Dynamischer Auftrieb

Char. Länge L_{char} = Sehnenlänge des Profils L

Bezugsfläche A=Grundfläche des Profils bei Anstellwinkel $\alpha=0^\circ$

Dyn. Auftriebskraft Kraft am Profilende Nickmoment um Nase Gleitzahl
$$\epsilon$$
 und Gleitwinkel γ

$$F_A = c_A \frac{\varrho_{fl}}{2} c_{rel}^2 A \qquad F_M = c_M \frac{\varrho_{fl}}{2} c_{rel}^2 A \qquad M_N = F_M L \qquad \qquad \epsilon = \tan \gamma = \frac{F_W}{F_A} = \frac{c_W}{c_A}$$

2.17 Kompressible Flüssigkeiten

Schallgeschwindigkeit:
$$a = \sqrt{\frac{E}{\varrho}}$$
 Flüssigkeit in elastischen Rohren: $a = \frac{\sqrt{\frac{E}{\varrho}}}{\sqrt{1 + \frac{dE}{sE_R}}}$

Empfohlene Schließzeit:
$$\Delta t > 3 \frac{2 L}{A}$$
 Joukowski Stoß: $\Delta p = \varrho \ a \ c$

2.18 Gas-Flüssig Strömung

Überdruck in Tröpfchen:
$$\Delta p = \frac{4 \sigma}{d}$$
 Spez. Zerstäubungsarbeit: $\Delta w = \frac{6 \sigma}{\varrho d}$

Steighöhe in Kapillaren:
$$h = \frac{4 \sigma \cos \gamma}{\varrho \ g \ d}$$
 Weber Zahl: $We = \frac{\varrho \ c^2 \ d}{\sigma}$ Schallgeschwindigkeit: $a = \sqrt{\frac{\mathrm{d} p}{\mathrm{d} \varrho}} = \sqrt{\frac{p_0 \ \kappa \ \varrho_{g0}}{w_g \ \varrho^2} \left[\frac{\varrho_{g0}}{w_g} \left(\frac{1}{\varrho} - \frac{1 - w_g}{\varrho_l} \right) \right]^{-\kappa - 1}}$

Schallgeschwindigkeit:
$$a = \sqrt{\frac{\mathrm{d}p}{\mathrm{d}\varrho}} = \sqrt{\frac{p_0 \kappa \varrho_{g0}}{w_g \varrho^2}} \left[\frac{\varrho_{g0}}{w_g} \left(\frac{1}{\varrho} - \frac{1 - w_g}{\varrho_l} \right) \right]^{-\kappa - 1}$$

2.19 Senkrechter Verdichtungsstoß

EB:
$$\frac{c_2}{c_1} = \frac{1}{\kappa + 1} \left[\kappa - 1 + \frac{2}{Ma_1^2} \right]$$
 < 1 IB: $\frac{p_2}{p_1} = 1 + \frac{2 \kappa}{\kappa + 1} (Ma_1^2 - 1)$ > 1

MB:
$$\frac{\varrho_2}{\varrho_1} = \frac{(\kappa + 1) Ma_1^2}{(\kappa - 1) Ma_1^2 + 2}$$
 > 1

Mit:
$$T = \frac{p}{R \ \varrho}$$
 und $a = \sqrt{\kappa \ R \ T}$ folgt:

$$\frac{T_2}{T_1} = \frac{a_2^2}{a_1^2} = 1 + \frac{2(\kappa - 1)}{(\kappa + 1)^2} \frac{\kappa M a_1^2 + 1}{M a_1^2} (M a_1^2 - 1) > 1$$

$$Ma_2 = \frac{c_2}{a_2} = \sqrt{\frac{(\kappa - 1) Ma_1^2 + 2}{2 \kappa Ma_1^2 - (\kappa - 1)}} \qquad \Delta s = s_2 - s_1 = c_p \ln \frac{T_2}{T_1} - R \ln \frac{p_2}{p_1} > 0$$

Neue Ruhebedingungen nach dem Stoß:
$$\frac{p_2}{p_{T2}} = \left(1 + \frac{\kappa - 1}{2} Ma_2^2\right)^{\frac{\kappa}{1 - \kappa}}$$

2.20 Schräger Verdichtungsstoß - Verdünnungswellen

$$\frac{c_2}{c_1} = \frac{\cos\alpha_1}{\cos(\alpha_1 - \delta)}$$

$$\frac{\varrho_2}{\varrho_1} = \frac{\tan\alpha_1}{\tan(\alpha_1 - \delta)}$$

$$\frac{p_2}{p_1} = 1 + \frac{2\kappa}{\kappa + 1} \left[(Ma_1 \sin\alpha_1)^2 - 1 \right]$$

$$\cot\delta = \tan\alpha_1 \left[\frac{\kappa + 1}{2} \frac{Ma_1^2}{(Ma_1 \sin\alpha_1)^2 - 1} - 1 \right]$$

2.21 Erweiterungen zu Laval-Düse

Index $a \dots$ Auslass; $k \dots$ kritischer/engster Querschnitt; α Winkel der Düse, bezogen auf Strömungsrichtung

$$\frac{A_a}{A_k} = \frac{1}{Ma} \left[1 + \frac{\kappa - 1}{\kappa + 1} \left(Ma^2 - 1 \right) \right]^{\frac{\kappa + 1}{2(\kappa - 1)}} \qquad L = \frac{D_a - D_k}{2 \tan \alpha} \qquad \frac{\psi_a}{\psi_k} = \frac{A_k}{A_a}$$

3 Wärmeübertragung

3.1 Wärmestrom und Wärmewiderstände

$$\Delta T = R_{ges} \ \dot{Q}$$

$$R = \frac{1}{k} \qquad = R_{ges} \ A_{wa} \qquad = \sum R_{einzel} \qquad = R_i + R_w + R_a \qquad R_w \qquad = \sum_{N_w}^{j=1} R_{w,j}$$

$$\dot{Q} = \frac{1}{R} A_{wa} \ \Delta T \qquad = k \ A_{wa} \ \Delta T \qquad \qquad \Delta T \qquad \qquad \Delta T \qquad = T_a - T_i$$

$$\dot{Q} = \frac{1}{R_i} A_{wa} \ \Delta T_i \qquad = \alpha_i \ A_{wa} \ \Delta T \qquad \qquad \Delta T_i \qquad = T_{wi} - T_i$$

$$\dot{Q} = \frac{1}{R_a} A_{wa} \ \Delta T_a \qquad = \alpha_a \ A_{wa} \ \Delta T \qquad \qquad \Delta T_a \qquad = T_a - T_{wa}$$

$$\dot{Q} = \frac{1}{R_{w,j}} A_{wa} \ \Delta T_{w,j} \qquad \qquad \Delta T_{w,j} = T_{w,j} - T_{w,j-1}$$

$$\dot{Q} = \dot{m}_H \ |\Delta h_H| \qquad = \dot{m}_H \ c_{p,H} \ |\Delta T_H| = \dot{W}_H \ |\Delta T_H|$$

$$\dot{Q} = \dot{m}_K \ \Delta h_K \qquad = \dot{m}_K \ c_{p,K} \ \Delta T_H \qquad = \dot{W}_K \ \Delta T_K \qquad \Delta T_K \qquad = T_{K2} - T_{K1}$$

3.2 Ebene Wände – Platten

$$A_{wa} = A_{wi} = A_{wj} = A_w = \text{konst.}$$
, Seitenflächen vernachlässigt $R_i = \frac{1}{\alpha_i}$ $R_{w,j} = \frac{\Delta x_j}{\lambda_i}$ $R_a = \frac{1}{\alpha_a}$

3.3 Rohr - Zylinderwände

$$A_{wa} = d_a \pi L$$
, Deckflächen vernachlässigt $R_i = \frac{d_a}{d_i \alpha_i}$ $R_{w,j} = \frac{d_a}{2 \lambda_j} \ln \left(\frac{d_j}{d_{j-1}} \right)$ $R_a = \frac{1}{\alpha_a}$

3.4 Kugelwände

$$A_{wa} = d_a^2 \pi$$
 $R_i = \left(\frac{d_a}{d_i}\right)^2 \frac{1}{\alpha_i}$ $R_{w,j} = \frac{d_a^2}{2 \lambda_j} \left(\frac{1}{d_{j-1}} - \frac{1}{d_j}\right)$ $R_a = \frac{1}{\alpha_a}$

3.5 Parallele Wandschichten

$$\frac{1}{R_w} = \sum_{N_{w(j)}}^{j=1} \frac{1}{R_{w,j}} \qquad \dot{Q} = \dot{Q}_{w,j} = \sum_{N_{w(j)}}^{j=1} \dot{Q}_{w,j} \qquad R_{w,j} = R_{w,j,seriell} \frac{A_{wa}}{A_{wa,j}}$$

- (a) Serielle Wandschicht
- (b) Zylinder- und Kugelwand
- (c) Parallele Wandschichten

3.6 Rippen

$$\eta_{Ri} = \frac{\dot{Q}_{Ri}}{\dot{Q}_{Ri,max}} = \frac{\tanh(m\ h)}{m\ h} \qquad m = \sqrt{\frac{\alpha\ U}{\lambda_{Ri}\ A}} \qquad \text{siehe 2b (nächste Seite)}$$

$$\dot{Q}_{Ri} = \lambda_{Ri}\ A_{Ri}\ \Delta T_0\ m \tanh(m\ h) \qquad \Delta T_{(x)} = T_{(x)} - T_u = \Delta T_0 \frac{\cosh\left(m\ h\left(1 - \frac{x}{h}\right)\right)}{\cosh(m\ h)}$$

$$\frac{A_{w,mit}}{A_{w,ohne}} = 1 - \frac{A_{Ri}}{A_{w,ohne}} + \frac{A_{w,Ri}}{A_{w,ohne}} \qquad \frac{\dot{Q}_{mit}}{\dot{Q}_{ohne}} = \frac{\alpha_{mit}}{\alpha_{ohne}} = 1 - \frac{A_{Ri}}{A_{w,ohne}} + \frac{U_{Ri}}{A_{w,ohne}} \frac{\tanh(m\ h)}{m}$$

3.7 Transiente Wärmeleitung

$$a = \frac{\lambda}{\varrho \ c_p} \quad \textit{Fo} = \frac{a \ t}{s^2} \quad \textit{Bi} = \frac{\alpha \ s}{\lambda} \quad \text{Platten: } s = \frac{\Delta x}{2} \quad \text{Zylinder, Kugeln: } s = \frac{d_a}{a} \quad \Theta = \frac{T - T_u}{T_0 - T_u}$$

3.8 Konvektion

Durchströmung:
$$L_{char} = d_h = \frac{4 A}{U}$$
 Umströmung: $L_{char} = L' = \frac{A_w}{U_{proj}}$

$$Re = \frac{c \ L_{char}}{\nu} = \frac{c \ L_{char} \ \varrho}{\mu} \quad Pr = \frac{\nu}{a} = \frac{\mu \ c_p}{\lambda} = \frac{\delta}{\delta_T} \quad Ra = \frac{g \ L_{char} \ \beta \ (T_w - T_{fl})}{\nu \ a} \quad Nu = \frac{\alpha \ L_{char}}{\lambda} = \frac{L_{char}}{\delta_T}$$

$$\beta_{ideales \ Gas} = \frac{1}{T_m} \quad \text{Stoffwerte der WUE bei } T_m = \frac{T_w + T_{fl}}{2} \quad \delta_T = \frac{\lambda}{\alpha} \quad \alpha = \frac{\lambda}{L'} Nu \quad \nu = \frac{\mu}{\varrho}$$

3.9 Erzwungene Konvektion

3.9.1 Durchströmung

Laminar
$$Re < 2300$$
: $Nu_{lam} = \sqrt[3]{3,66^3 + 0,664^3} \ Pr \left(Re \frac{d_h}{L}\right)^{3/2}$

Turbulent $Re > 10^4$: $Nu_{turb} = \frac{\zeta/8 \ Re \ Pr}{1 + 12,7 \sqrt{\zeta/8} \left(Pr^{2/3} - 1\right)} \ f_1 \ f_2$
 $\zeta = (1,8 \log(Re) - 1,5)^{-2}$ $f_1 = 1 + \left(\frac{d_h}{L}\right)^{2/3}$ $f_{2,fl} = \left(\frac{Pr}{Pr_w}\right)^{0,11}$ $f_{2,g} = \left(\frac{T}{T_w}\right)^{0,45}$

Übergang: $\gamma = \frac{Re - 2300}{10000 - 2300}$ $Nu = (1 - \gamma) \cdot Nu_{lam, Re = 2300} + \gamma \cdot Nu_{turb, Re = 10000}$

Ringspaltkorrektur: $Nu_{Rs} = Nu \ 0,86 \left(\frac{d_{aa}}{d_{ai}}\right)^{0,16}$

3.9.2 Umströmung

Keine Anströmung:
$$Re < 0,1: Nu_0 = 0,1 \text{ (Platte)} \quad 0,3 \text{ (Zylinder)} \quad 2 \text{ (Kugel)}$$
 laminar: $1 < Re < 10^5: Nu_{lam} = 0,664\sqrt[3]{Pr}\sqrt{Re}$ Turbulent: $5 \cdot 10^5 < Re < 10^7: Nu_{turb} = \frac{0,037 Re^{0,8} Pr}{1 + 2,443 Re^{-0,1} \left(Pr^{2/3} - 1\right)} f_3$ $f_{3,fl} = \left(\frac{Pr}{Pr_w}\right)^{0,25}$ $f_{3,g} = \left(\frac{T}{T_w}\right)^{0,121}$ Übergang: $10 < Re < 10^7 Nu = \sqrt{Nu_{lam}^2 + Nu_{turb}^2}$

Schräg umströmter Zylinder: Korrekturfaktor
$$f_5$$
 Längs umströmter Zylinder: $Nu = Nu_{Zylinder,90^{\circ}} f_5$ $f_5 = \text{siehe Diag. 2a}$ $Nu = Nu_{Platte} \left(1 + 2.3 \frac{L}{d} Re_L^{-0.5}\right)$

3.9.3 Umströmung in Durchströmung

Hohlraumanteil:

$$\varepsilon = 1 - \frac{V_K}{V_0} \qquad c = \frac{c_0}{\varepsilon}$$

Rohrbündel:

$$a = \frac{s_1}{d} \qquad b = \frac{s_2}{d}$$

 $Nu_{B\ddot{u}ndel} = Nu_{einzel} f_A$

$$f_{A,fluchtend} = 1 + \frac{0.7 (b/a - 0.3)}{\varepsilon^{1.5} (b/a + 0.7)^2}$$

$$f_{A,versetzt} = 1 + \frac{2}{3 b}$$

$$n \le 10: \quad f_{A,10} = \frac{1 + (n-1)f_A}{n}$$

 $n \dots$ Reihen

(a) Weil die Formel für f_5 noch fehlt

(b) Rippengeometrie (für m)

Abbildung 2: Hilfen etc.

3.10 Freie Konvektion

3.10.1 Durchströmung

- a) Einseitig beheizter ebener Kanal mit L_{char} = d
- b) Zweiseitig beheizter ebener Kanal mit L_{char} = d/2
- c) Beheiztes Rohr mit L_{char} = r = d/2

 $\dot{Q} = \alpha_E A_W (T_W - T_E)$ mit der Fluid-Eintrittstemperatur T_E !

$$Ra_{S}^{*} = \frac{g \beta L_{char}^{3} (T_{W} - T_{E})}{v a} \frac{L_{char}}{h}$$

	г	-	-2/3
$Nu_{SE} = \frac{\alpha_E L_{char}}{\lambda} =$	1 .	1	,
	$\frac{(C, Ra_{\circ}^{*})^{3/2}}{(C, Ra_{\circ}^{*})^{3/2}}$	$[C_2 (Ra_S^*)^{1/4}]^{3/2}$	
	[(C] Kas)	[C ₂ (Ras)]	

	C ₁	C ₂
a)	1/12	0,61
b)	1/3	0,69
c)	1/16	0,52

Ra.

3.10.2 Umströmung

Vertikale Wand: $Nu = (0.825 + 0.387 Ra^{1/6} f_1)$ $f_1 = (1 + 0.671 Pr^{-9/16})^{-8/27}$

$$f_1 = (1 + 0.671 \, Pr^{-9/16})^{-8/27}$$

Geneigte Wand, Winkel α zur Vertikalen:

ohne Ablösung: $Ra_{\alpha} = Ra \cos \alpha$

mit Ablösung:
$$Nu = 0.56 \sqrt[4]{Ra_{krit} \cos \alpha} + 0.13 \left(\sqrt[3]{Ra} - \sqrt[3]{Ra_{krit}}\right)$$

$$Ra_{krit} = 10^{(8,9-0,013\ \alpha-5,95\cdot 10^{-4}\ \alpha^2)}$$
 mit α in °

Horizontale Wand:

 $Ra \ f_2 \le 7 \cdot 10^4 : \qquad Nu = 0.766 \sqrt[5]{Ra \ f_2}$

 $f_2 = \left(1 + 0.536 \, Pr^{-11/20}\right)^{-20/11}$

 $Ra \ f_2 > 7 \cdot 10^4 : \qquad Nu = 0.15 \sqrt[3]{Ra \ f_2}$

Horizontaler Zylinder: $Nu = \left(0.752 + 0.387 \sqrt[6]{Ra} f_3\right)^2$ $f_3 = \left(1 + 0.721 Pr^{-11/20}\right)^{-8/27}$ Kugel: $Nu = 1 + 0.56 \sqrt[4]{\frac{Pr Ra}{0.846 + Pr}}$

3.10.3 Überlagerung mit erzwungener Konvektion

 $Nu = \sqrt[3]{Nu_{erzwungen}^3 \pm Nu_{frei}^3} + \dots$ gleichgerichtete, $-\dots$ entgegen-gerichtete Mischkonvektion

3.11 Wärmestrahlung zw. Oberflächen

Strahlungsbilanz:

$$a + r + t = 1$$

Planck'sches Gesetz:

$$i_{s(\lambda,T)} = \frac{C_1}{\lambda^5 \left(\exp\left(\frac{C_2}{\lambda T}\right) - 1 \right)}$$

Mit: $C_1 = 3{,}7418 \cdot 10^{-16} \, \mathrm{W} \, \mathrm{m}^2$

$$C_2 = 1{,}438 \cdot 10^{-2} \, \mathrm{K} \, \mathrm{m}^2$$

Wien'sches Gesetz:

$$\lambda_{s,max} = \frac{2898}{T} [\mu m]$$

Stefan Boltzmann Gesetz: mit $\mathrm{C_s} = 5{,}67$

$$\dot{q}_{s(T)} = \int_{\lambda=0}^{\infty} i_{s(\lambda,T)} \, d\lambda = C_{s} \left(\frac{T}{100}\right)^{4}$$

Graue Bande:

$$\dot{q}_{\lambda,s(T)} = \int_{\lambda=0}^{\lambda} i_{s(\lambda,T)} \, d\lambda = \varepsilon_{(\lambda)} \, f_{(\lambda,T)} \, \dot{q}_{s(T)}$$

Kirchhoff'sches Gesetz:

$$a = \varepsilon$$

Wärmestrom zw. zwei Flächen:

$$\dot{Q}_{12} = C_{12} A_{w1} \left[\left(\frac{T_1}{100} \right)^4 - \left(\frac{T_2}{100} \right)^4 \right]$$

Parallele Platten 1 und 2 mit N Platten (ε_s) dazwischen:

$$C_{12} = C_{\rm s} \left[\frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_2} - 1 + N \left(\frac{2}{\varepsilon_s} - 1 \right) \right]^{-1}$$

Konzentrische Zylinder/Kugelschalen (1 innen, 2 außen); N Schalen (ε_s) dazwischen:

$$C_{12} = C_{s} \left[\frac{1}{\varepsilon_{1}} + \frac{A_{w1}}{A_{w2}} \left(\frac{1}{\varepsilon_{2}} - 1 \right) + \left(\frac{2}{\varepsilon_{s}} - 1 \right) \sum_{i=1}^{N} \frac{A_{w1}}{A_{wsi}} \right]^{-1}$$

Beliebig orientierte Flächen:

$$C_{12} = C_{s} \frac{\varepsilon_{1} \varepsilon_{2} \varphi_{12}}{1 - (1 - \varepsilon_{1}) (1 - \varepsilon_{2}) \varphi_{12} \varphi_{21}}$$

$$\varphi_{12} = A_{w2} \frac{\cos \beta_1 \cos \beta_2}{r^2 \pi} = \varphi_{21} \frac{A_{w2}}{A_{w1}}$$

$$C_{12} = C_{\rm s} \left[\frac{1}{\varepsilon_1} + \frac{A_{w1}}{A_{w2}} \left(\frac{1}{\varepsilon_2} - 1 \right) \right]^{-1}$$

$$C_{12} = \varepsilon_1 \, \mathrm{C_s}$$

wenn
$$A_{w2} \gg A_{w1}$$
:

$$\alpha_{Str} = \left| \frac{\dot{q}_{Str}}{T_w - T_{fl}} \right|$$

 $\ddot{\rm A}{\rm quivalenter}$ Wärmübergangskoeffizient:

200	0,000000
400	0,000000
600	0,000000
800	0,000016
1 000	0,000321
1 200	0,002134
1 400	0,007790
1 600	0,019718
1 800	0,039341
2 000	0,066728
2 200	0,100888
2 400	0,140256
2 600	0,183120
2800	0,227897
2898	0,250108
3 000	0,273232
3 200	0,318102
3 400	0,361735
3 600	0,403607
3 800	0,443382
4000	0,480877
4200	0,516014
4 400	0,548796
4 600	0,579280
4800	0,607559
5 000	0,633747
5 2 0 0	0,658970
5 400	0,680360
5 600	0,701046
5 800	0,720158
6000	0,737818

$\lambda \cdot T$ (µm K)	$f_{\lambda}(T)$
6200	0,754140
6 400	0,769234
6 600	0,783199
6 800	0,796129
7 000	0,808109
7 200	0,819217
7 400	0,829527
7 600	0,839102
7 800	0,848005
8 000	0,856288
8 500	0,874608
9 000	0,890029
9 500	0,903085
10 000	0,914199
10 500	0,923710
11 000	0,931890
11 500	0,939959
12 000	0,945098
13 000	0,955139
14 000	0,962898
15 000	0,969981
16 000	0,973814
18 000	0,980860
20 000	0,985602
25 000	0,992215
30 000	0,995340
40 000	0,997967
50 000	0,998953
75 000	0,999713
100000	0.00000

3.12 Einseitig konstante Temperatur, Gleichstrom und Gegenstrom

Übertragungseinheit:
$$N_i = \frac{k A_{wa}}{\dot{m}_i c p_i}$$

$$m_i \ cp_i$$
Mittlere Temperaturdifferenz: $\Delta T = T_H - T_K = \frac{\Delta T_a - \Delta T_b}{\ln\left(\frac{\Delta T_a}{\Delta T_b}\right)} = \frac{\Delta T_b - \Delta T_a}{\ln\left(\frac{\Delta T_b}{\Delta T_a}\right)}$

Mittlere Wandtemperaturen:
$$T_{wH} = T_H - \frac{k A_{wa}}{\alpha_H A_{wH}} \Delta T$$

$$T_{wK} = T_K + \frac{k A_{wa}}{\alpha_K A_{wK}} \Delta T$$

3.13 Einseitig konstante Temperatur

Übertragungseinheit:
$$N = \frac{k A_{wa}}{\dot{m} cp} = \ln \left(\frac{\Delta T_a}{\Delta T_b} \right) > 0$$

3.14 Gleichstrom und Gegenstrom

Mittlere Temperaturen:
$$T_H \cong \frac{T_{H1} + T_{H2}}{2}$$
 $T_K \cong \frac{T_{K1} + T_{K2}}{2}$

3.15 Vorgangsweise Auslegung

Gegeben: Geometrie außer Außen-Oberfläche, Einlass-Zustände beidseitig,

eine Ziel-Auslasstemperatur

Gesucht: Außenoberfläche der wärmeübertragenden Wand,

davon abgeleitet Länge oder Rohranzahl etc.

Berechnung:

1. Geometrie: Querschnittflächen, char. Abmessungen, etc.

2. Wärmestrom, andere Auslasstemperatur, mittlere Temperaturdifferenz

3. Annahme sinnvoller Wandtemperaturen auf beiden Seiten und zw. Wandschichten

a) Bei freier Konvektion, Wärmestrahlung:

1. Annahme: $T_W \neq T_{fl}$

b) In Wärmeübertragern: nur erzwungene Konvektion,

1. Annahme: $T_W = T_{fl}$

4. Stoffwerte beidseitig bei Mitteltemperatur zwischen Fluid und Wand

5. Wand-, heißer -, kalter -, Gesamt-Widerstand, Wärmedurchgangskoeffizient

6. Außenoberfläche der wärmeübertragenden Wand etc.

7. Aktualisierung der Wandtemperaturen

8. Übereinstimmung mit angenommenen Wandtemperaturen?

a) $Ja \rightarrow OK$

b) Nein \rightarrow zurück zu 4.

3.16 Vorgangsweise Betriebsnachrechnung

Gegeben: vollständige Geometrie, Einlass-Zustände beidseitig

Gesucht: Auslasstemperaturen beidseitig

Berechnung:

- 1. Vervollständigung geometrischer Daten (z.B. char. Abmessungen) und der Einlass-Zustände
- 2. Annahme von k bzw. Übernahme von k aus Auslegung, iterative Aktualisierung:

3.16.1 Einseitig konstante Temperatur

$$\Delta T_2 = \Delta T_1 \ \mathbf{e}^{-N}$$
 $N \dots \text{ siehe } 3.13$

3.16.2 Gleichstrom

$$T_{H2} = T_{H1} - (T_{H1} - T_{K1}) \frac{\dot{W}_K}{\dot{W}_H + \dot{W}_K} \left(1 - e^{-\mu k A_{wa}} \right) \qquad \mu = \frac{1}{\dot{W}_H} + \frac{1}{\dot{W}_K}$$

$$T_{K2} = T_{K1} - (T_{H1} - T_{K1}) \frac{\dot{W}_K}{\dot{W}_H + \dot{W}_K} \left(1 - e^{-\mu k A_{wa}} \right)$$

3.16.3 Gegenstrom

$$\mu = \left| \frac{1}{\dot{W}_H} - \frac{1}{\dot{W}_K} \right|$$

$$T_{H2} = T_{H1} - (T_{H1} - T_{K1}) \frac{1 - \mathbf{e}^{-\mu \ k \ A_{wa}}}{1 - \frac{\dot{W}_H}{\dot{W}_K}} \mathbf{e}^{-\mu \ k \ A_{wa}}$$

$$T_{K2} = T_{H1} - (T_{H1} - T_{K1}) \frac{1 - \frac{\dot{W}_H}{\dot{W}_K}}{1 - \frac{\dot{W}_H}{\dot{W}_K}} \mathbf{e}^{-\mu \ k \ A_{wa}}$$

3.17 Rekuperatoren allgemein

$$P_{H} = \frac{T_{H1} - T_{H2}}{T_{H1} - T_{K1}} \qquad P_{K} = \frac{T_{K2} - T_{K1}}{T_{H1} - T_{K1}} \qquad \eta = \max(P_{H}, P_{K})$$

$$R_{H} = \frac{\dot{W}_{H}}{\dot{W}_{K}} = \frac{1}{R_{K}} \qquad \Theta = \frac{T_{H} - T_{K}}{T_{H1} - T_{K1}} = F \Theta_{Gegenstrom}$$

F aus Betriebscharakteristik: $f(P_H, N_H, N_K) = 0$ oder $f(P_H, N_H, R_H) = 0$

3.18 Regeneratoren

$$\Delta Q = \alpha_H A_w (T_H - T_{wH}) \Delta t_H \qquad \Delta Q = \frac{\lambda_s}{\Delta s_w} A_w (T_{wH} - T_s) \Delta t_H$$

$$\Delta Q = \alpha_K A_w (T_{wK} - T_K) \Delta t_K \qquad \Delta Q = \frac{\lambda_s}{\Delta s_w} A_w (T_s - T_{wK}) \Delta t_K$$

$$\frac{\Delta Q}{\Delta t_H + \Delta t_K} = \dot{Q} = f \ k_0 \ A_w (T_H - T_K) \qquad T_H - T_K = \frac{\Delta T_a - \Delta T_b}{\ln \left(\frac{\Delta T_a}{\Delta T_b}\right)}$$

$$\Delta T_a = T_{H1} - T_{K2} \qquad \Delta T_b = T_{H2} - T_{K1}$$

$$\frac{1}{k_0} = (\Delta t_H + \Delta t_K) \left[\frac{1}{\alpha_H \Delta t_H} + \frac{1}{\alpha_K \Delta t_K} + \frac{\Delta s_W \Phi}{\lambda_s} \left(\frac{1}{\Delta t_H} + \frac{1}{\Delta t_K} \right) \right]$$

mit f, Φ aus:

3.19 Gasstrahlung

Wärmestrom zw. heißem Gas (Flamme: ε_g , T_g) einerseits und Wänden (T_w , ε_w) und kaltem Gas an Wänden (T_w , a_g) andererseits:

$$\dot{Q} = \frac{\varepsilon_w \text{ C}_s A_w}{1 - (1 - a_g) (1 - \varepsilon_w)} \left[\varepsilon_g \left(\frac{T_g}{100} \right)^4 - a_g \left(\frac{T_w}{100} \right)^4 \right]$$

$$\varepsilon_g = \varepsilon_{\text{H}_2\text{O}} + \varepsilon_{\text{CO}_2} - (\Delta \varepsilon)_g \qquad a_g = a_{\text{H}_2\text{O}} + a_{\text{CO}_2} - (\Delta \varepsilon)_g$$

$$a_{\text{H}_2\text{O}} = \varepsilon_{\text{H}_2\text{O}(Tw, p\text{H}_2\text{O} Tg/Tw)}} \left(\frac{T_g}{T_w} \right)^{0.45} \qquad a_{\text{CO}_2} = \varepsilon_{\text{CO}_2(Tw, p\text{H}_2\text{O} Tg/Tw)}} \left(\frac{T_g}{T_w} \right)^{0.65}$$

Emissionsgrade = Absorptionsgrade aus Diagrammen in Abhängigkeit von Temperatur, Druck, Partialdruck von CO_2 bzw. H_2O , überlappenden Banden und gleichwertiger Schichtdicke s

$$s = 0.9 \, \frac{4 \, V_g}{A_w}$$