Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Национальный исследовательский университет «МЭИ» Кафедра ВМСС

Расчетное задание 2: Расчет структуры вычислительной сети древовидной конфигурации

Курс: Методы проектирования и анализа сетей ЭВМ

Группа: А-07м-23

Вариант: 2

Выполнил: Балашов С.А.

Проверил: Абросимов Л.И.

Задание и начальные данные

Задание: Требуется построить древовидную иерархическую сеть минимальной длины, обеспечивающую многоуровневое покрытие исходных узлов.

Начальные данные:

- количество N узлов равно 9;
- вес каждого узла равен 1;
- суммарный вес центра группы уровня h=2 равен 3;
- суммарный вес центра группы уровня h=3 равен 9;
- пропускная способность $\Pi_{h=1} = 3$ центров групп h=1; пропускная способность $\Pi_{h=2} = 9$ центров групп h=2;

100

90

100

60

40

40

0

матрица М расстояний между узлами, представленная в виде таблицы 1.

Таблица 1

Матри	Матрица M расстояний между узлами для варианта №2										
-		1	2	3	4	5	6	7	8	9	
	1	0	15	24	25	50	70	75	60	100	
	2	15	0	10	11	35	55	50	48	90	
	3	24	10	0	21	45	65	60	55	100	
	4	25	11	21	0	25	45	40	35	60	
	5	50	35	45	25	0	40	30	26	70	
	6	70	55	65	45	40	0	12	30	40	
	7	75	50	60	40	30	12	0	18	28	
	8	60	48	55	35	26	30	18	0	40	

Ход алгоритма

Определение группы:

Из исходной матрицы M расстояний между узлами (см. таблицу 1) получим три матрицы \overline{M} , M^K , M^C (представлены в таблицах 2, 3 и 4 соответственно).

Таблица 2

Упорядоченная матрица \overline{M}

	1	2	3	4	5	6	7	8	9
1	0	0	0	0	0	0	0	0	0
2	15	10	10	11	25	12	12	18	28
3	24	11	21	21	26	30	18	26	40
4	25	15	24	25	30	40	28	30	40
5	50	35	45	25	35	40	30	35	60
6	60	48	55	35	40	45	40	40	70
7	70	50	60	40	45	55	50	48	90
8	75	55	65	45	50	65	60	55	100
9	100	90	100	60	70	70	75	60	100

Таблица 3

Матрица номеров M^K

	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9
2	2	3	2	2	4	7	6	7	7
3	3	4	4	3	8	8	8	5	6
4	4	1	1	1	7	5	9	6	8
5	5	5	5	5	2	5	5	4	4
6	6	8	8	8	6	4	4	9	5
7	7	7	7	7	3	2	2	2	2
8	8	6	6	6	1	3	3	3	1
9	9	9	9	9	9	1	1	1	3

Таблица 4

Матрица суммарная M^{C}

	1	2	3	4	5	6	7	8	9
1	0	0	0	0	0	0	0	0	0
2	15	10	10	11	25	12	12	18	28
3	39	21	31	32	51	42	30	44	68
4	64	36	55	57	81	82	58	74	108
5	114	71	100	82	116	122	88	109	168
6	174	119	155	117	156	167	128	149	238
7	244	169	215	157	201	222	178	197	328
8	319	224	280	202	251	287	238	252	428
9	419	314	380	262	321	357	313	312	528

Найдем минимальный элемент в 3-ей строке суммарной матрицы M^{C} : m_{32} =21 => центр группы располагается при 2-ом узле.

По 2-му столбцу матрицы номеров M^K определим номера узлов, входящих в группу:

$$\Gamma_{1h1} = \{2, 3, 4\}$$

Корректировка для группы Γ_{1h1} не производится.

Вычеркиваем строки и столбцы из исходной матрицы M с номерами элементов, входящих в группу Γ_{1h1} (2, 3 и 4) и получим матрицу M^1 (см. таблицу 5).

Таблица 5

Mатрица M^1

	1	5	6	7	8	9
1	0	50	70	75	60	100
5	50	0	40	30	26	70
6	70	40	0	12	30	40
7	75	30	12	0	18	28
8	60	26	30	18	0	40
9	100	70	40	28	40	0

Из полученной матрицы M^1 (см. таблицу 5) получим три матрицы $\overline{M^1}$, $M^{K(1)}$, $M^{C(1)}$ (представлены в таблицах 6, 7 и 8 соответственно).

Таблица 6

Упорядоченная матрица $\overline{M^1}$

	1	5	6	7	8	9
1	0	0	0	0	0	0
5	50	26	12	12	18	28
6	60	30	30	18	26	40
7	70	40	40	28	30	40
8	75	50	40	30	40	70
9	100	70	70	75	60	100

Таблица 7

Матрица номеров $M^{K(1)}$

	1	5	6	7	8	9
1	1	5	6	7	8	9
5	5	8	7	6	7	7
6	8	7	8	8	5	6
7	6	6	5	9	6	8
8	7	1	9	5	9	5
9	9	9	1	1	1	1

Таблица 8

Матрица суммарная $M^{C(1)}$

	1	5	6	7	8	9
1	0	0	0	0	0	0
5	50	26	12	12	18	28
6	110	56	42	30	44	68
7	180	96	82	58	74	108
8	255	146	122	88	114	178

9	355	216	192	163	174	278

Найдем минимальный элемент в 3-ей строке суммарной матрицы $M^{C(1)}$: m_{67} =30=> центр группы располагается при 7-ом узле.

По 7-му столбцу матрицы номеров $M^{K(1)}$ определим номера узлов, входящих в группу:

$$\Gamma_{2h1} = \{7, 6, 8\}.$$

Проверим необходимость корректировки для группы Γ_{2h1} :

 m_{67} > m_{62} — не выполняется, т.к. m_{67} =12, а m_{62} = 55;

 m_{87} > m_{82} — не выполняется, т.к. m_{67} =18, а m_{62} = 48.

Корректировку для группы Γ_{2h1} производить не следует.

Вычеркиваем строки и столбцы из матрицы M^1 с номерами элементов, входящих в группу Γ_{2h1} = $\{7, 6, 8\}$ и получим матрицу M^2 (см. таблицу 9).

Таблица 9

Матрица M²

	1	5	9
1	0	50	100
5	50	0	70
9	100	70	0

Из полученной матрицы M^2 (см. таблицу 9) получим три матрицы $\overline{M^2}$, $M^{K(2)}$, $M^{C(2)}$ (представлены в таблицах 10, 11 и 12 соответственно).

Таблица 10

Упорядоченная матрица $\overline{M^2}$,

	1	5	9
1	0	0	0
5	50	50	70
9	100	70	100

Таблица 11

Матрица номеров $M^{K(2)}$

	1	5	9
1	1	5	9
5	5	1	5
9	9	9	1

Таблица 12

Матрица суммарная M^{C(2)}

	1	5	9
1	0	0	0
5	50	50	70
9	150	120	170

Найдем минимальный элемент в 3-ей строке суммарной матрицы $M^{C(2)}$: $m_{95} = 120 = >$ центр группы располагается при 5-ом узле.

По 5-му столбцу матрицы номеров M^K определим номера узлов, входящих в группу:

$$\Gamma_{3h1} = \{5, 1, 9\}.$$

Проверим необходимость корректировки для группы Γ_{3h1} :

 m_{15} > m_{12} -выполняется, т.к. m_{15} =50, а m_{12} = 15;

 m_{95} > m_{97} -выполняется, т.к. m_{95} =70, а m_{97} = 28.

Следует произвести корректировку для группы Γ_{3h1} .

Улучшение группы.

В процессе корректировки узел 9 из группы Γ_{3h1} необходимо передать в группу Γ_{2h1} (с центром в узле 7), а из группы Γ_{2h1} необходимо узел, ближайший к группе Γ_{3h1} (с центром в узле 5), включить в состав группы Γ_{3h1} .

Рассмотрим матрицу номеров M^K (таблица 3), чтобы определить, какой из узлов для корректировки (6 или 8) находится ближе к центру группы Γ_{3h1} . Для этого посмотрим на столбец с номером центра группы Γ_{3h1} (т.е. 5) и определим, ячейка с номером какого узла (6 или 8) находится выше, т.е. ближе к узлу 5. Видно, что ячейка с номером узла 8 лежит выше ячейки с номером узла 6, следовательно, необходимо узел 9 включить в состав Γ_{2h1} , а узел 8 – в состав Γ_{3h1} .

По аналогии предыдущего абзаца, узел 1 из группы Γ_{3h1} необходимо передать в группу Γ_{1h1} (с центром в узле 2), а из группы Γ_{1h1} необходимо узел, ближайший к группе Γ_{3h1} (с центром в узле 5), включить в состав группы Γ_{3h1} .

Рассмотрим матрицу номеров M^K (таблица 3), чтобы определить, какой из узлов для корректировки (3 или 4) находится ближе к центру группы Γ_{3h1} . Для этого посмотрим на столбец с номером центра группы Γ_{3h1} (т.е. 5) и определим, ячейка с номером какого узла (3 или 4) находится выше, т.е. ближе к узлу 5. Видно, что ячейка с номером узла 4 лежит выше ячейки с номером узла 3, следовательно, необходимо узел 1 включить в состав Γ_{1h1} , а узел 4 – в состав Γ_{3h1} .

Таким образом, получаем скорректированные группы первого уровня:

$$\Gamma_{1h1}=\{2, 3, 1\}; \Gamma_{2h1}=\{7, 6, 9\}; \Gamma_{3h1}=\{5, 8, 4\};$$

Определение групп следующего уровня

Все узлы уровня h=1 сгруппированы, переходим к определению групп уровня h=2. Исходными узлами для уровня h=2 являются центры групп уровня h=1, которые расположены при узлах 2, 7, 5.

Корректируем исходную матрицу M так, что в ней остаются только центры групп (см. таблицу 13).

Таблица 13

Матрица центров групп

	2	5	7
2	0	35	50
5	35	0	30
7	50	30	0

По аналогии с предыдущими шагами, формируем три матрицы $\overline{M^{\text{ц}}}$, $M^{\text{K(ц)}}$, $M^{\text{C(ц)}}$ (представлены в таблицах 14, 15 и 16 соответственно).

Таблица 14

Упорядоченная матрица $\overline{M^{\mu}}$,

	2	5	7
2	0	0	0
5	35	30	30
7	50	35	50

Таблица 15

Матрица номеров $M^{K(u)}$

	2	5	7
2	2	5	7
5	5	7	5
7	7	2	2

Таблица 16

Матрица суммарная $M^{C(u)}$

	2	5	7
2	0	0	0
5	35	30	30
7	85	65	80

Найдем минимальный элемент в 3-ей строке суммарной матрицы $M^{C(u)}$: $m_{75} = 65 => центр$ группы располагается при 5-ом узле.

Состав группы
$$\Gamma_{1h2} = \{5, 7, 2\}.$$

Результаты

Все узлы соединены в древовидную иерархическую сеть минимальной длины, обеспечивающую многоуровневое покрытие исходных узлов (см. рис. 1).

Суммарная взвешенная длина полученной сети:

$$Q = m_{79} + m_{76} + m_{58} + m_{54} + m_{21} + m_{23} + m_{57} + m_{52} = 28 + 12 + 26 + 25 + 15 + 10 + 30 + 35 = 181$$

Рис. 1. Древовидная иерархическая сеть, полученная в результате выполнения алгоритма