

Sorbonne Université M1 Androide / IQ

MOGPL

Projet - Automne 2021

Hugo Abreu Krisni Almehdi

soutenu le 17 Décembre 2021

1 Introduction

Dans ce projet, on considère des multigraphes orientés pondérés par le temps. Ce type de graphe est utile notamment pour la plannification temporelle - nous considèrerons le cas où un réseau de transport aérien est représenté par un tel graphe.

2 Préliminaires

Question 1. En utilisant l'instance de la figure de gauche de l'Exemple 1 (dans l'énoncé) ou une autre instance, montrer que les assertions suivantes sont vraies.

Par soucis de simplicité et pour être plus concis, une instance alternative est proposée. Considérons G_1 , le multigraphe orienté pondéré orienté par le temps donné par le diagramme de la Figure 1:

Figure 1: Diagramme représentant le multigraphe pondéré orienté par le temps G_1

Le multigraphe G_1 sera utilisé pour justifier les assertions suivantes.

Assertion 1.1. Un sous-chemin préfixe d'un chemin d'arrivée au plus tôt peut ne pas être un chemin d'arrivée au plus tôt.

Réponse. Considérons l'ensemble de chemins $\mathcal{P}(a, c, [0, \infty])$ dans le multigraphe G_1 , qui correspond à l'ensemble de tous les chemins réalisables de a à c dans G_1 :

$$\mathcal{P}(a, c, [0, \infty]) = \{ P_1 = ((a, b, 1, 1), (b, c, 4, 1)),$$

$$P_2 = ((a, b, 1, 1), (b, c, 7, 1)),$$

$$P_3 = ((a, b, 3, 1), (b, c, 4, 1)),$$

$$P_4 = ((a, b, 3, 1), (b, c, 7, 1)) \}.$$

$$(1)$$

Pour déterminer le(s) chemin(s) d'arrivée au plus tôt de a à c dans le graphe G_1 , soit un chemin P tel que fin(P) = min($\{$ fin(P') : $P' \in \mathcal{P}(a, c, [0, \infty])\}$), calculons les dates de fin pour tout P appartenant à $\mathcal{P}(a, c, [0, \infty])$:

$$fin(P_1) = 4 + 1 = 5,$$

 $fin(P_2) = 7 + 1 = 8,$
 $fin(P_3) = 4 + 1 = 5,$
 $fin(P_4) = 7 + 1 = 8.$
(2)

Ainsi, $\min(\{5, 8, 5, 8\}) = 5$ et les chemins d'arrivée au plus tôt sont P_1 et P_3 .

 $P_3' = ((a, b, 3, 1))$, un chemin de a vers b, est un sous-chemin préfixe (un sous-chemin partant du sommet de départ) de P_3 . Cependant, il existe un chemin $P_{a\to b} = ((a, b, 1, 1))$ tel que

$$fin(P_3') = 3 + 1 = 4 > fin(P_{a \to b}) = 1 + 1 = 2,$$
 (3)

donc P_3^\prime n'est pas un chemin d'arrivée au plus tôt de a à b.

Ainsi, un sous-chemin préfixe d'un chemin d'arrivée au plus tôt peut ne pas être un chemin d'arrivée au plus tôt. \Box

Assertion 1.2. Un sous-chemin postfixe d'un chemin de départ au plus tard peut ne pas être un chemin de départ au plus tard.

Réponse. Considérons de nouveau l'ensemble de chemins $\mathcal{P}(a,c,[0,\infty])$, donné en Équation 1.

Un chemin de départ au plus tard de a à c, dans le multigraphe G_1 , correspond à un chemin P tel que début $(P) = \max(\{\text{début}(P') : P' \in \mathcal{P}(a, c, [0, \infty]\})$. On observe facilement que

$$\operatorname{début}(P_1) = \operatorname{début}(P_2) = 1 < \operatorname{début}(P_3) = \operatorname{début}(P_4) = 3, \tag{4}$$

donc les chemins de départ au plus tard entre a et c sont P_3 et P_4 .

 $P_3'' = ((b, c, 4, 1))$, un chemin de b vers c, est un sous-chemin postfixe (un sous-chemin partant du sommet final) de P_3 . Cependant, il existe un chemin $P_{b\to c} = ((b, c, 7, 1))$ tel que

$$d\acute{e}but(P_3'') = 3 < d\acute{e}but(P_{b\to c}) = 7 \tag{5}$$

donc $P_3^{\prime\prime}$ n'est pas un chemin de départ au plus tard de b à c.

Ainsi, un sous-chemin postfixe d'un chemin de départ au plus tard peut ne pas être un chemin de départ au plus tard. \Box

Assertion 1.3. Un sous-chemin d'un chemin le plus rapide peut ne pas être un chemin le plus rapide.

Réponse. Considérons les chemins de a à d dans G_1 :

$$\mathcal{P}(a,d,[0,\infty]) = \{ P_5 = ((a,b,1,1),(b,d,2,1),(d,e,4,1)) \}. \tag{6}$$

Comme il n'existe qu'un seul chemin réalisable, c'est forcément un chemin le plus rapide de a à d, un chemin P tel que durée $(P) = \min(\{\operatorname{dur\acute{e}e}(P') : P' \in \mathcal{P}(a,d,[0,\infty])\})$.

 $P_5' = ((b, d, 2, 1), (d, e, 4, 1))$, un chemin de b à e, est un sous-chemin de P_5 . Cependant, il existe un chemin $P_{b\to e} = ((b, e, 1, 1))$ de b vers e tel que

$$\operatorname{dur\acute{e}}(P_5') = (4+1) - 1 = 4 > \operatorname{dur\acute{e}}(P_{b \to e}) = (1+1) - 1 = 1, \tag{7}$$

donc P_5' n'est pas un chemin le plus rapide de b à e.

Ainsi, un sous-chemin d'un chemin le plus rapide peut ne pas être un chemin le plus rapide. \Box

Assertion 1.4. Un sous-chemin d'un plus court chemin peut ne pas être un plus court chemin.

Réponse. Considérons de nouveau les chemins $\mathcal{P}(a,d,[0,\infty])$ de a vers d donnés en Équation 6.

De même, comme il n'existe qu'un seul chemin réalisable, P_5 est forcément le chemin le plus court: un chemin P tel que $\operatorname{dist}(P) = \min(\{\operatorname{dist}(P') : P' \in \mathcal{P}(a, d, [0, \infty])\}).$

Considérons de nouveau les chemins P_5'' et $P_{b\rightarrow e}$ donnés en Assertion 1.3.

$$dist(P_5') = 1 + 1 = 2 > dist(P_{b \to e}) = 1, \tag{8}$$

donc P_5' n'est pas un chemin le plus court de b à e.

Ainsi, un sous-chemin d'un chemin le plus court peut ne pas être un chemin le plus court.

- 3 Algorithmes de plus court chemin dans des multigraphes orientés pondérés par le temps
- 4 Conclusion