AD-A109 654		SH JU	NTER FO IIP OVER N 81 J	HAUL EF	FECTIVE	NE55, (1	J)	VA INS		TC F/6 5-C-0001 NL		
		1 or 2										

MICROCOPY RESISTATION TEST CHART

CNS 1157 / June 1981

LEVEL

SHIP OVERHAUL EFFECTIVENESS

John A. Berning, Jr. Robert N. MacGovern, Lt., USN S. Craig Goodwyn

CENTER FOR NAVAL ANALYSES

4 1 15 82 083

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Work conducted under contract M00014-76-C-0001

The work reported how was conducted under the direction of the Contex for Neval Analyses and represents the opinion of the Contex for Mand Analysis at the three of least. It does not necessarily represent the aphilon of the Department of the Hony encapt to the extent indicated by the estimates of the Chief of Read Occasion.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

	REPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM	
٦.	REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
	CNS 1157	HU-HIO7	694
4.	TITLE (and Subtitle)		S. TYPE OF REPORT & PERIOD COVERED
Í	Ship Overhaul Effectiveness	112/1	
		(10)	6. PERFORMING ORG. REPORT NUMBER
7.	AUTHOR(a)		S. CONTRACT OR GRANT NUMBER(s)
	John A. Berning Jr., Lt. Robert S. Craig Goodwyn	N. MacGovern	N00014-76-C-0001
9.	PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, YASK AREA & WORK UNIT NUMBERS
	Center for Naval Analyses 2000 No. Beauregard Street	1	
	Alexandria, Virginia 22311		
11,	CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE June 1981
	Office of Naval Research Department of the Navv	l	13. NUMBER OF PAGES
	Arlington, Virginia 22217		132
14.	. MONITORING AGENCY NAME & ADDRESS(If dillored	nt from Controlling Office)	15. SECURITY CLASS. (of this report)
	Office of the Chief of Naval Ope Department of the Navy	rations (Op96)	Unclassified
	Washington, D.C. 20350		184, DECLASSIFICATION/DOWNGRADING

is. Distribution statement (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Bleak 20, if different from Report)

18. SUPPLEMENTARY NOTES

The work reported here was conducted under the direction of the Center for Naval Analyses and represents the opinion of the Center for Naval Analyses at the time of issue. It does not necessarily represent the opinion of the Department of the Navy except to the extent indicated by the comments of the Chief of Naval Operations.

19. KEY WORDS (Continue on reverse side if necessary and identify by Nock number)

CASREPs, DDG-2 Class, FF-1052 Class, INSURV, PEB, ship maintenance, ship material condition, ship modernization, ship overhaul/repair, SSN-637 Class, statistical modeling, 3-M system, UNITREP

O. ABSTRACT (Continue on reverse side if necessary and identify by block mumber)

Effectiveness of naval shippard overhauls is examined by relating the amount of repair and alteration work done in overhaul to ship material condition during the full period after overhaul. The relationships are determined statistically through a model which also includes the effects of other influences on material condition, particularly personnel and operating tempo. The study focuses primarily on repair work. It considers overhauls from FY 72 through FY 78, and for each of the FF-1052, DDG-2, and SSN-637 classes separately.

In addition to examining the relationships between overhaul work and postoverhaul material condition at the whole ship level, the study also examined these relationships for a number of ship systems. These systems are representative of the hull, mechanical and electrical systems generally.

Material condition is measured by indicators from a number of sources. These sources include CASREPs, 3-M maintenance reports, UNITREP status, PEB examinations, and INSURV inspections. Limited use is also made of ship engineering logs. The single measure most emphasized is CASREP maintenance downtime.

DEPARTMENT OF THE NAVY OFFICE OF THE CHIEF OF NAVAL OPERATIONS WASHINGTON, D.C. 20350

Ser 964/33°516

SEP 0 9 1981

From: Chief of Naval Operations

To: Distribution List

Subj: Ship Overhaul Effectiveness Study; promulgation of

Encl: (1) CNA Study 1157, "Ship Overhaul Effectiveness"

- l. The ship Overhaul Effectiveness Study attempted to answer whether a ship's material condition following an overhaul is influenced by the amount of repair and modernization accomplished. For the period FY72 to FY78 three ship classes (FF-1052, DDG-2, SSN-637) were examined both at the whole ship level and for selected ship systems. The statistical model used in the study included the effects of several other factors such as personnel, operating tempo, ship age, overhaul yard, and fleet assignment -- all of which were thought to also influence the material condition. The primary thrust of the analysis was centered on relating overhaul repair mandays to the various material condition indicators available.
- 2. The analysis showed that increased repair mandays did result in improved material condition indicators for the whole ship. The results were not as conclusive at the ship system level. Any additional conclusions or extrapolation of the findings are tenuous because of the lack of consistent, strong statistical correlation.
- 3. The study notes that the limitations of existing data bases and the complex interrelationships among the many variables involved cause resource-to-readiness analysis to be difficult.

4. Enclosure (1) is forwarded.

Challus P I WALTED

R. L. WALTERS VADM USN

DIRECTOR, NAVY PROGPAM
PLANNING

Distribution List: (See Next Page)

Accession For
MTIS GTAX
DTIC T D
Unannounced
Justification

Prescribetter

Available to Special

Distribution List:

```
SNDL
Al
           Immediate Office of the Secretary (ASSTSECNAV MRA, ASST
           SECNAV RES, ASST SECNAV, FM only)
A2A
           Department of the Navy Staff Offices (NAVCOMPT, OPA,
           CNR only)
A4A
           Chief of Naval Material
           Special Agencies, Staffs, Boards, and Committees
B2A
           (JCS only)
B3
           College and University
B5
           U.S. Coast Guard (COMDT, USCG Hq only)
21A
           Fleet Commanders in Chief
22A
           Fleet Commanders
24D
           Surface Force Commanders
24F
           Logistics Command
24G
           Submarine Force Commanders
           Operational Test & Evaluation Force Command and
26F
           Detachment (COMOPTEVFOR, DEPCOMOPTEVFORPAC only)
28A
           Carrier Group
28B
           Cruiser-Destroyer Group
41A
           Military Sealift Command
C37A2
           CNM R&D Center Shore Based Detachments (Annapolis
           Lab, DTNSRDC; Carderock Lab DTNSRDC only)
E3A
           Laboratory ONR (NRL only)
           U.S. Naval Academy (Nimitz Library)
FF38
FF44
           Naval War College
FJ18
           Military Personnel Command
FKAlB
           Electronic Systems Command Headquarters
FKAlG
           Sea Systems Command Headquarters
FKA6A3A
           Ship Research and Development Center
FKA6A16
           Personnel Research and Development Center
FKPlG
           Ship Weapon Systems Engineering Station
FT73
           Scol Postgraduate
OPS (09BH, 96, 095, 098, 01, 02, 03, 04, 43, 06, 64, 966)
Under Secretary of Defense, Research and Engineering
Ass't Sec'y of Defense, Program Analysis & Evaluation (2 copies)
Ass't Sec'y of Defense, Manpower, Reserve Affairs & Logistics
Defense Logistics Studies Information Exchange (2 copies)
Defense Technical Information Center (12 copies)
Navy Tactical Support Activity
Institute for Defense Analyses
```

SHIP OVERHAUL EFFECTIVENESS

John A. Berning, Jr.
Robert N. MacGovern, Lt., USN
S. Craig Goodwyn

CENTER FOR NAVAL ANALYSES

2000 North Beauregard Street, Alexandria, Virginia 22311

403542

EXECUTIVE SUMMARY

Overhauls of naval ships are of inherent interest to the Navy. Their purpose is to accomplish modernization, and to restore ships to a higher level of material and equipment condition through repairs not easily accomplished outside a shipyard. The present report studies the effectiveness of overhauls in restoring material condition, for marginal changes in overhaul work, and quantifies the effectiveness in terms of available material condition indicators.

The study is limited to a consideration of FF-1052, DDG-2 and SSN-637 class ships. Overhauls done in naval shipyards (and private shipyards for SSNs) during the period FY 72 to FY 78 are studied. The effectiveness of these overhauls is assessed by examining ship material condition during the period following a specific overhaul and prior to the subsequent overhaul.

Measuring material condition is difficult; in the end, it depends on indicators of material condition coming from various Navy inspections and reporting systems. The paucity of direct and accurate data on material condition was a major limitation in the study. It has precluded precise estimation of relationships and tradeoffs.

In this study, indicators of material condition are developed from Casualty Reports (CASREPS), 3-M system reports of intermediate and ships force corrective maintenance work, Propulsion Examining Board (PEB) inspections, Board of Inspection and Survey (INSURV) examinations, and UNITREP readiness status reports. In addition, a limited though significant measure has been developed based on equipment out of commission entries listed in official ships' engineering smooth logs. Of the measures developed, those based on CASREPs are taken as most reliable and insightful.

The effect of more or less overhaul work on later material condition is studied for a number of ship systems as well as at the whole ship level. The systems are: hull structure; main propulsion and its subsystems propulsion shafting, main steam piping, feed and condensate, propulsion boilers, and combustion air; electrical and its subsystem power generators; sonar; interior communications; climate control; refrigeration; distilling plant; compressed air; and steering. The analysis for each of these systems and for the whole ship is approached in the same way, so that comparison among the systems can be made.

The analysis is based on a statistical model which relates overhaul repair and alteration work, measured in mandays, to each of the indicators of material condition, in turn. Because material condition is affected by more than just overhaul work, the model has been constructed to capture the effects of other factors as well. The effect of personnel has been included through variables counting the number of personnel in paygrades E5 through E9, and the average length of Navy service in paygrades E4 through E9. The effect of operating tempo has been included using information on steaming hours underway and hours cold iron. Preoverhaul condition is measured using CASREP maintenance downtime, and is included in the model. As well, ship age, ship fleet, and overhauling shipyard are included in the model. The focus in the model remains on overhaul repair mandays.

The analysis confirms previous, independent estimates of systematic increases in overhaul repair mandays during the period covered, for the FF-1052 and DDG-2 classes. It is noted, however, that the SSN-637 class has exhibited no discernible growth along these lines.

The principal finding in the analysis is that material condition was improved as a result of more repair mandays, within the range of mandays expended in the overhauls studied. This is consistently exhibited for the various indicators examined. While this improvement held for all three ship classes, however, it differed in degree among the ship classes.

This finding at the whole ship level is supported by the analysis of the systems. Among the main propulsion systems particularly, increased repair work was associated with better material condition. This result also persisted among the auxiliary systems, with a small number of exceptions which the Navy may want to look in to.

The primary policy implication resulting from the analysis is that a decrease in repair mandays below current levels can be expected to lead to a degradation in material condition. The implication that further increases in repair work will further improve material condition probably holds, but is not established, because current levels of overhaul work are already at the highest levels considered in the study.

TABLE OF CONTENTS

	<u>P</u> .	age
List of	Illustrations	v
List of	Tables	vii
Chapter	I: Introduction	1
Chapter	II: Variables	6
	terial Condition Indicators	8
	CASREP Variables	9
	Engineering Log Variable	10
	SF and IMA Variables	12
	UNITREP Variables	13
	PEB Variable	14
	INSURV Variables	15
	Other Material Condition Variables	15
Ex	planatory Variables	16
	Overhaul Expense Variables	16
	Personnel Variables	17
	Steaming Hour Variables	18
	Other Variables	20
Chapter	III: Analysis	22
Mo	del	22
	alysis at the Whole Ship Level	26
		26
	Effects of Other Variables	29
An	alysis at the System Level	
Chapter	IV: Summary and Implications	40
Referenc	es	43
Appendix	A: Ship System Definitions A-l - A	1- 5
	B: Statistical Output for Ship Classes stems B-l - B-	-69
lanondi -	Or Mahamial Condition Tudioston Musuda	

LIST OF ILLUSTRATIONS

			Page
1	Fiscal Year vs.	Repair Mandays in Overhaul	4
C-1	Fiscal Year vs.	CASREP Total Downtime	C-2
C-2	Fiscal Year vs.	CASREP Maintenance Downtime	C-3
C-3	Fiscal Year vs.	CASREP Occurrences	C-4
C-4	Fiscal Year vs.	IMA Hours	C-5
C-5	Fiscal Year vs.	Ships Force Hours	C-6
C-6	Fiscal Year vs.	UNITREP Overall C3-C4 Status	C-7
C-7	Fiscal Year vs.	UNITREP Equipment C3-C4 Status	C-8

LIST OF TABLES

	<u>Pa</u>	age
1	Ship Systems Examined	7
2	Material Condition Indicators	9
3	Ship Months for the Engineering Log Variale	12
4	Explanatory Variables	16
5	Systems and Corresponding Ratings	19
6	Material Condition Indicator Elasticities for Repair Mandays	27
7	Estimated Effect of 500 Additional Repair Mandays on CASREP Maintenance Downtime Per Month	28
8	Material Condition Indicator Elasticities for Repair Mandays When the Overhaul Years is Included	29
9	Material Condition Indicator Elasticities for Alteration Mandays	30
10	Average Repair and Alteration Mandays by System	33
11	Average CASREP Maintenance Downtime and CASREP C3-C4 Maintenance Downtime by System	34
12	Average CASREP Occurrences and CASREP C3-C4 Occurrences by System	34
13	CASREP Maintenance Downtime and CASREP Occurrence Elasticities for Repair Mandays by System	36
14	CASREP C3-C4 Maintenance Downtime and CASREP C3-C4 Occurrence Elasticities for Repair Mandays by System	37
15	CASREP Maintenance Downtime and CASREP Occurrence Elasticities for Alteration Mandays by System	38
-1	Surface Ship Systems: Definition by Ship Work Breakdown Structure (SWBS)	A-2
-2	Surface Ship Systems: Definition by Equipment Identification Code (EIC)	A-3

LIST OF TABLES (Cont'd)

	<u>Page</u>
A-3	Submarine Systems: Definition by Ship System Index (SSI)
A-4	Submarine Systems: Definition by Equipment Identification Code (EIC)
B-1	Shipyard Variable Values B-2
B-2	Whole Ship Averages B-4
B-3	FF-1052 Class Whole Ship B-5
B-4	DDG-2 Class Whole Ship B-6
B-5	SSN-637 Class Whole Ship B-7
B6	Hull Structure Averages B-8
B-7	FF-1052 Class Hull Structure B-9
B-8	DDG-2 Class Hull Structure B-10
B-9	SSN-637 Class Hull Structure B-11
B-10	Main Propulsion Averages B-12
B-11	FF-1052 Class Main Propulsion B-13
B-12	DDG-2 Class Main Propulsion B-14
B-13	SSN-637 Class Main Propulsion B-15
B-14	Propulsion Shafting Averages B-16
B-15	FF-1052 Class Propulsion Shafting B-17
B-16	DDG-2 Class Propulsion Shafting B-18
B-17	SSN-637 Class Propulsion Shafting B-19
B-18	Main Steam Piping Averages B-20
B-19	FF-1052 Class Main Steam Piping B-21
B-20	DDG-2 Class Main Steam Piping B-22
B-21	SSN-637 Class Main Steam Piping B-23

LIST OF TABLES (Cont'd)

		<u>Page</u>
B-22	Feed and Condensate Averages	B-24
B-23	FF-1052 Class Feed and Condensate	B-25
B-24	DDG-2 Class Feed and Condensate	B-26
B-25	SSN-637 Class Feed and Condensate	B-27
B-26	Propulsion Boilers Averages	B-28
B-27	FF-1052 Class Propulsion Boilers	B-29
B-28	DDG-2 Class Propulsion Boilers	B-30
B-29	Combustion Air Averages	B-31
B-30	FF-1052 Class Combustion Air	B-32
B-31	DDG-2 Class Combustion Air	B-33
B-32	Electrical Averages	B-34
B-33	FF-1052 Class Electrical	B-35
B-34	DDG-2 Class Electrical	B-36
B-35	SSN-637 Class Electrical	B-37
B-36	Power Generators Averages	B-38
B-37	FF-1052 Class Power Generators	B-39
B-38	DDG-2 Class Power Generators	B-40
B-39	SSN-637 Class Power Generators	B-41
B-40	Sonar Averages	B-42
B-41	FF-1052 Class Sonar	B-43
B-42	DDG-2 Class Sonar	B-44
B-43	SSN-637 Class Sonar	B-45
B-44	Interior Communications Averages	B-46
B-45	FF-1052 Class Interior Communications	B-47

LIST OF TABLES (Cont'd)

		Page
B-46	DDG-2 Class Interior Communications	B-48
B-47	SSN-637 Class Interior Communications	B-49
B-48	Climate Control Averages	B-50
B-49	FF-1052 Class Climate Control	B-51
B-50	DDG-2 Class Climate Control	B-52
B-51	SSN-637 Class Climate Control	B-53
B-52	Refrigeration Averages	B-54
B-53	FF-1052 Class Refrigeration	B-55
B-54	DDG-2 Class Refrigeration	B-56
B-55	SSN-637 Class Refrigeration	B-57
B-56	Distilling Plant Averages	B-58
B-57	FF-1052 Class Distilling Plant	B-59
B-58	DDG-2 Class Distilling Plant	B-60
B-59	SSN-637 Class Distilling Plant	B-61
B-60	Compressed Air Averages	B-62
B-61	FF-1052 Class Compressed Air	B-63
B-62	DDG-2 Class Compressed Air	B-64
B-63	SSN-637 Class Compressed Air	B-65
B-64	Steering Averages	B-66
B-65	FF-1052 Class Steering	B-67
B-66	DDG-2 Class Steering	B-68
B-67	SSN-637 Class Steering	B-69

CHAPTER I

INTRODUCTION

Ship overhauls constitute a considerable portion -- roughly 4 percent to 5 percent -- of the annual Navy budget. The effectiveness of overhauls in restoring ship operating condition is therefore an important concern for the Navy. An analysis of this effectiveness has implications for budget preparation, overhaul planning and overhaul management. Moreover, it bears on general Congressional interest in the relationship between resources and fleet readiness. This study provides a quantitative analysis of overhaul effectiveness.

The study specifically considers naval shippard overhauls, during the period 1972 to 1978, for FF-1052, DDG-2 and SSN-637 class ships. Each of these classes is addressed separately, though some comparison between them is made.

The study concentrates primarily on ships as a whole, but also considers a number of ship systems. These systems are primarily engineering systems, falling within the main propulsion, electrical or auxiliary areas. Analysis at the whole ship level is particularly important for budgetary use. For other purposes, there should be interest in the insights and comparisons coming from the system level analysis.

The focus in the study is on overhaul work and the effects of changing levels of it on material condition. However, material condition is a complicated interaction of many factors. Whether applied at the system or whole ship level, the model in the study postulates material condition to be a linear function of overhaul work, ship's personnel, operating tempo and such other factors as ship age. It is necessary to include as many of these other factors as possible in order to elicit the actual effect of overhaul work.

Measuring material condition is a significant difficulty in the study. No direct measurement has been possible. Rather, we rely on indicators of material condition coming from various sources. These include reporting systems, such as CASREP, UNITREP and 3-M, and inspection results, such as INSURV and PEB. They also include a limited use of ship engineering logs for the FF-1052 class; such use is uncommon in this kind of work.

There has been considerable analysis in recent years of overhauls generally. Most of this seems to have centered on analyzing and documenting the increases, or growth, in overhaul work. One effort, the Maintenance System Development Program (references 1, 2, and 3), has focused on the DDG-2 class and achieved considerable insight along these lines.

This analysis found that overhaul mandays increased at a compound annual rate of about 17% during the period 1963-1978 (see reference 2). Moreover, it concluded that this increase in mandays is attributable in large part to the addition of new work, including some movement of overhaul work from the organizational level to the depot level, and to the attempts at meeting generally higher standards. The analysis further concluded that ship age is a far less significant factor in explaining overhaul work growth. The equipment areas of this work growth, along with their annual growth rate and share of the overall cost, were also explored in this analysis.

A supporting effort (reference 5), which also concentrated on the DDG-2 class, has compared the period 1970 to 1974 with the period 1975 to 1979. It further documents the growth in overhaul work, and generally confirms the previous analysis.

In a related vein, there has been work analyzing the effect of timing in preoverhaul planning on the increases during the overhaul itself of overhaul work (see reference 6). Unlike the previously mentioned analyses, this work includes cruisers, destroyers and frigates generally, but only addresses ships at the whole ship level; it does not consider systems or equipments.

This work is important to the Navy; yet it leaves another important perspective untouched. This other perspective has to do with the relative effectiveness of more or less work in overhaul. If, as suggested earlier, new work done in overhaul as well as a higher grade or extent of repair work done, largely explain the increases in overhaul mandays, there then remains the question of whether this additional work leads to significantly better ship equipment condition. In other words, there is still the question of whether more overhaul work is of benefit to the Navy or not. The present study starts from just this perspective.

Only limited work along those lines has previously been done. One study (reference 4) purported to assess the effectiveness of overhauls. This assessment was in terms of the change in material condition from before to after overhaul. It did not look at the extent of the overhaul, that is, the mandays expended, nor relate the relative extent to relative postoverhaul material condition.

This study considered the material condition of ships from 18 months before to 18 months after overhaul. It studied selected systems and equipments, as well as ships as wholes. For insight into material condition, it relied primarily on maintenance data from the Maintenance and Material Management (3-M) system, and on CASREP data.

The general conclusion of this study was that a definite beneficial effect accrued from overhauls. That is, it concluded that

ships were in better material condition after overhaul than before. A minor though significant finding was that, due to a number of factors, the indicators of material condition and particularly CASREPs in the first few months after overhaul were liable to be misleading.

A more recent though quite limited work (reference 3) provides statistics on some ten indicators of material availability or condition. These are given for successive postoverhaul periods, for a number of DDG-2 class ships and only at the whole ship level. No firm conclusions are given. However, it is provocative that in all cases, overhaul mandays increased while in general, indicators of ship condition or availability declined.

The Ship Overhaul Effectiveness Study attempts a deeper and more penetrating analysis of the relationship between overhaul mandays and postoverhaul material condition. It is therefore a step toward filling an important void in the broad study of overhauls generally.

As it happens, the amount of repair work has varied over the period covered in the present study, even among ships in the same class and undergoing overhauls in the same year. Figure 1 portrays this variation by showing the overhaul repair mandays, for each overhaul included in the study, as a function of the fiscal year in which the overhaul began. It is clear from this figure that in any one year, the amount of repair work for FFs was less than for DDGs, which in turn was less, usually much less, than for SSNs. It is also clear that refueling overhauls for SSNs typically involve more repair mandays than regular overhauls.

Figure 1 also shows a distinct pattern of growth in repair mandays for FFs and DDGs. The rate of this growth appears to be roughly comparable for both ship types. Moreover, this pattern is fully consistent with the 17 percent annual rate of growth for DDGs mentioned earlier. In fact, our estimates of annual repair manday growth since the early 1970s are about 17 percent for the FF-1052 class and about 15 percent for the DDG-2 class. Since the DDG-2 class was commissioned in the early 1960s, and FF-1052 class in the late 1960s and early 1970s, it would appear that overall ship class age cannot solely explain an overhaul manday growth trend.

This growth trend is not apparent for SSNs. Rather, the apparent pattern is of a stable distribution in repair mandays over successive years. Our estimates of annual repair manday growth for the SSN-637 class, in fact, are less than 2 percent for regular overhauls and essentially 0 percent for refueling overhauls; in neither case is the estimate significantly different from zero in a statistical sense. It is clear, though, that there have been fewer regular overhauls and more refueling overhauls in recent years. As the SSN-637 class was commissioned in the late 1960s

FIG. 1: FISCAL YEAR VS. REPAIR MANDAYS IN OVERHAUL

and early 1970s, this simply reflects the beginning of an alternating pattern in type of overhaul.

The variation in the amount of overhaul work which is shown in figure 1 is the starting point for this study. The purpose of the study is to examine the correspondence which different levels of overhaul work have had with ship material condition in the period following overhaul.

Chapter II begins by defining the scope of the study. It then describes the data in the study by defining and discussing each of the variables which are used.

Chapter III explains the statistical model designed to quantitatively estimate the relationships between overhaul work and material condition. This chapter also discusses the results of using the model, and forms the basic conclusions of the study based on these results.

Finally, chapter IV summarizes the results of the study, and frames them in terms of policy implications.

CHAPTER II

VARIABLES

The scope of the Ship Overhaul Effectiveness Study is in some ways quite broad, and in other ways necessarily limited. In order to isolate and account for the effect of greater or fewer overhaul mandays on later material condition, it is necessary to also account for the many other factors which affect this material condition. Included among these are material condition prior to overhaul, operating tempo, ship personnel levels, and overhauling shipyard. Inclusion of these and other factors broadens the study considerably.

The study addresses three classes of ships. These are the FF-1052 class, the ODG-2 class, and the SSN-637 class. Each of these is large and as nearly homogeneous as any in the Navy. Each class has a history of overhauls through the 1970s. Also, these classes offer a rich diversity. There are contrasts between the surface ships and submarines; notably, in overhaul expenditure, personnel levels, and material condition. Between the FFs and DDGs, there is similarity in operations, but there are important differences in both size and equipment complexity.

Only overhauls which were completed in the period FY 72 to FY 78 are included in the study. This criterion allows enough overhauls to be included to be able to get statistically reliable conclusions. At the same time, it leaves out overhauls which may not be current; that is, which may have been completed under different policies or different reporting systems. Finally, this criterion allows enough time after each overhaul for an assessment of postoverhaul material condition.

For the FF-1052 and DDG-2 classes, only naval shipyard overhauls are considered. This is an unavoidable limitation, because private shipyard overhauls for surface ships were done on a fixed price basis, so that overhaul manday information is not available. In fact, all DDG-2 class overhauls took place in naval shipyards anyway. For the SSN-637 class, private shipyard as well as naval shipyard overhauls are considered. This is possible, since private shipyard overhauls for submarines have historically been done on a cost plus basis, so that manday information can be reconstructed. Actually, very few SSN-637 class overhauls have been done in private shipyards. Over all three classes, data was available for 30 FF-1052 class overhauls, 27 DDG-2 class overhauls, and 40 SSN-637 class overhauls.

Finally, the scope of the study encompasses a variety of ship systems. That is, the relationship of overhaul mandays to postoverhaul material condition, which is the focus of the study, is sought at the system level as well as the whole ship level.

The systems considered are shown in table 1. This list is a representative selection, primarily from among the engineering systems. It is not a comprehensive selection of all ship systems.

TABLE 1

SHIP SYSTEMS EXAMINED

Whole Ship

Hull Structure

Main Propulsion
Propulsion Shafting
Main Steam Piping
Feed and Condensate
Propulsion Boilers
Combustion Air

Electrical Power Generators

Sonar
Interior Communciations
Climate Control
Refrigeration
Distilling Plant
Compressed Air
Steering

Other than the ship as a whole, the major systems are hull structure, main propulsion, and electrical. There are a number of subsystems of main propulsion, and one subsystem of electrical. Propulsion boilers and combustion air do not apply to submarines. The remaining systems, other than sonar, are generally auxiliary systems within the engineering plant.

A number of factors led to the selection of these systems. First, the study was limited in the number of systems which could be included. Also, each system had to be specifically defined using each of two Navy classification schemes. The first is the ship work breakdown structure (SWBS), which, for submarines, has a modification, the ship system index (SSI). This scheme is used to document all overhaul work. The second scheme is the equipment identification code (EIC). It is used in all reporting within the CASREP and 3-M systems. System selection was greatly limited because The SWBS and EIC schemes do not closely overlap. The

defining boundaries of the systems under these two schemes are shown in appendix A.

Another criterion in system selection was that the systems each tend to have more repair work than alteration work. This was consistent with the focus on repair work in overhauls, and tends to be satisfied more often among the engineering systems, as opposed to weapon systems, for example. Also, our interest was largely on systems which were at least similar in function across the ship classes. It was too much to require that the systems correspond exactly or that they have the same relative amount of repair work between classes. However, some comparability between classes was desirable. To the extent that this exists, insight into overhauls from across class comparisons may be possible.

Finally, it was desirable that among the systems together, there be some contrast in system function and reliability. So, for example, there are main propulsion, electrical, and auxiliary systems, as well as one weapon system, sonar. Moreover, refrigeration, for example, is a system with low failure and CASREP rates, while combustion air, including forced draft blowers, has considerably higher failure and CASREP rates.

Most of the systems selected do not meet all these criteria. They do meet most of the criteria, and these criteria did guide the selection.

The variables in this study fall naturally into two categories. One category consists of the material condition indicators. These variables are used to assess the equipment condition of ships in the period when they are not in overhaul. The other category consists of a wide variety of variables, each of which may influence the indicators of a ship's equipment condition. This chapter defines each variable in detail.

The actual data for these variables as used in this study is available from two sources. Reference 7 presents the data at the whole ship level in hard copy. Reference 8 describes the availability and format of the data on computer tape.

MATERIAL CONDITION INDICATORS

Table 2 summarizes the variables we use as indicators of ship material condition. In this section, each of these variables is discussed in detail. Appendix C contains a detailed graphical presentation of the trend each of these indicators has undergone over the period covered in this study.

TABLE 2
MATERIAL CONDITION INDICATORS

<u>Variable</u>	Source	Applicable systems
CASREP total downtime CASREP maintenance downtime CASREP occurrences C3-C4 total downtime C3-C4 maintenance downtime C3-C4 occurrences Out of commission days IMA hours Ships force hours UNITREP C3-C4 overall status UNITREP C3-C4 equipment status INSURV inspection score PEB examination scores	CASREP reports CASREP reports CASREP reports CASREP reports CASREP reports CASREP reports Engineering smooth log 3-M data 3-M data UNITREP reports UNITREP reports INSURV results PEB results	all all all all all selected all all whole ship whole ship selected main propulsion

CASREP Variables

Casualty Reports (CASREPs) are filed when a material deficiency or failure degrades one of a ship's mission areas. A report must be filed if the deficiency requires outside assistance to correct or if it is expected to persist for 96 hours (or less, under certain conditions). The reports as finally submitted include, among other information, the beginning and ending times of the casualty, the amount of time in this interim waiting for needed parts, the cause of the casualty, and the equipment identification code (EIC) of the failed equipment. In addition, there is a word description of the equipment casualty and an assessment of the level of degradation, which is from a satisfactory condition level Cl to one of the increasingly degraded levels C2, C3, or C4.

From the records of a ship's CASREPs, we calculated several variables as indicators of material condition. One is the number of occurrences, i.e., the number of CASREPs filed. A second is the total sum of all CASREP equipment downtimes. A third is the sum of CASREP downtimes due to maintenance; that is, the total downtime less the amount of time awaiting parts supply.

Each of these variables was computed by system and by month. Moreover, each was computed by considering only C3 and C4 CASREPs together, and by considering all C2, C3 and C4 CASREPs. This is important, because different ship types exhibit very different patterns of CASREPs. For example, a DDG, which has four boilers,

may not be as seriously degraded by one boiler failure, and may only file a C2 CASREP. An FF, by contrast, has only two boilers, and a boiler failure may result in a C3 or even a C4 CASREP.

Over the period examined in this study, there has been a general decline in all these CASREP variables for all three ship classes. The decline in CASREP total downtime was on the order of six percent per year for the FF-1052 and DDG-2 classes, and about three percent per year for the SSN-637 class. The decline in the number of CASREPs reported was also about six percent for the FF-1052 class, but was close to zero for both of the other classes.

In general, the number and duration of C3-C4 CASREPs may be more accurate in indicating important differences in ship material condition for FFs and DDGs. For SSNs, however, C3-C4 CASREPs account for an extremely small fraction of all CASREPs and tend to represent unusual circumstances. The number and duration of all C2, C3 and C4 CASREPs is likely to be a better indicator for SSNs.

CASREP data as an indication of material condition is apt to be more reliable than other sources for several reasons. CASREPs are official reports which receive a high level of attention. Consequently, great care is taken in filing them and they are likely to be more accurate. The reports do contain the detailed information mentioned before, and they apply to all essential equipments.

CASREP data, however, may be an inconsistent indicator of material condition. This is largely due to the inherent subjectivity in deciding on the level of degradation caused by an equipment failure. These decisions would also be affected by the changing policies between type commanders and over years regarding emphasis on CASREP reporting. Also, a reluctance to attribute a casualty to personnel error may result in improper reporting of the cause of a CASREP, and CASREPs can be biased by their relationship with the supply system and by at sea periods.

Prior to our use of the CASREP data, effort was expended in editing the reports. In particular, the match between EIC and equipment word description was carefully checked to get the CASREP in the proper system. This should have largely remedied potential reporting mistakes.

Engineering Log Variable

A ship's engineering smooth log is a record required to be maintained daily and to be retained for at least three years. Among the entries in the log each day is a midwatch entry stating the ship's location and activity, and the major equipments in the engineering system which are currently on line and those which are out of commission (OOC).

As an indicator of material condition, we have tallied from these logs the number of times specific equipments were listed as OOC. The tallies were made over three month periods and were organized by system within the engineering area. We interpret the number of entries in the OOC listing as the number of days of system downtime. This is the engineering log variable for an engineering system in a three month period, or quarter.

Engineering logs are apt to be reliable, as they are official, legal documents and as the entries are easy to make. Moreover, the logs, and therefore our variables, represent a nearly continuous record of equipment condition.

However, there is no entirely specific policy on what equipments must be logged. This leads to some inconsistency between ships and even between periods for the same ship. The listing of some smaller equipments may reflect the interest or specialty of the person filling in the log. Moreover, there is ordinarily no description of the scope or criticality in an OOC entry, so that it may not be possible to distinguish equipments down for preventative maintenance. This suggests that our variable may be an overestimate of problems in material condition.

Finally, the number of logs we were able to examine was quite limited. The variable is applicable in this report only to the FF-1052 class; the ships and months for which data was obtained to compute this variable are shown in table 3.

Because it is also applicable only to selected systems, it is not emphasized in this report. However, this variable is thought to be quite accurate and penetrating as a measure of material condition. For this reason, a separate analysis (reference 9) was undertaken to compare this variable with those based on CASREP data.

The main conclusions of that analysis were twofold: first, there is a high degree of correlation between engineering log downtime and either CASREP C2-C3-C4 total downtime or CASREP C3-C4 total downtime; and second, even in the presence of this strong correlation, there is always a greater amount of engineering log downtime recorded in terms of actual magnitude. An additional conclusion was that the correlation was greater and more reliable for those systems which experienced greater amounts of equipment downtime generally.

The import of these conclusions for this report is that CASREP downtime at the whole ship level stands to be a reasonably dependable, relative measure of material condition.

TABLE 3
SHIP MONTHS FOR THE ENGINEERING LOG VARIABLE

Hull number	Ship	Number of months
FF 1054	USS Gray	12
FF 1055	USS Hepburn	15
FF 1058	USS Meyerkord	31
FF 1059	USS W.S. Sims	12
FF 1060	USS Lang	15
FF 1061	USS Patterson	12
FF 1062	USS Whipple	14
FF 1063	USS Reasoner	33
FF 1066	USS Marvin Shields	
FF 1068	USS Vreeland	14
FF 1070	USS Downes	24
FF 1072	USS Blakely	34
FF 1075	USS Trippe	12
FF 1076	USS Fanning	17
FF 1077	USS Ouellet	11
FF 1079	USS Bowen	16
FF 1080	USS Paul	12
FF 1084	USS McCandless	15
FF 1088	USS Barbey	15
FF 1092	USS Thomas S. Hart	14
FF 1095	USS Truett	12
FF 1096	USS Valdez	12
DDG 13	USS Hoel	29
		405

SF and IMA Variables

The Navy Maintenance and Material Management (3-M) system is the means for documenting maintenance work, whether done on the organizational level by a ship's force (SF) or on the intermediate level by an intermediate maintenance activity (IMA). With rare exceptions, the documentation pertains just to corrective maintenance.

We assume in general that more SF and IMA corrective work on a ship's system is an indication of worse material condition; we note, however, that good SF maintenance may improve ship condition going into overhaul. (Moreover, more SF and IMA preventative maintenance work would certainly not indicate worse material condition, and even more corrective work may include some fixing of small problems which prevents greater amounts of corrective work

later.) Under this assumption, we compute from 3-M data two variables as material condition indicators. One is the number of SF manhours expended on a system in a month. The other is the number of IMA manhours expended on a system in a month. A third possibility would be simply the number of maintenance actions by the SF or IMA. This, however, was felt to be less penetrating as an indicator of material condition problems.

During the period examined in this study, both SF and IMA corrective work declined by about 30 percent for the SSN-637 class, but increased by about 12 percent for SF and 30 percent for IMA for the DDG-2 class. For the FF-1052 class, there was an increase of about 6 percent in IMA and a decline of roughly 20 percent for SF.

Like CASREP reporting, 3-M reporting uses a standard and specific format. Also, it provides detailed information including the dates, EIC, and expended manhours, all of which we use.

As a data source, however, the 3-M system is likely to be less reliable than the CASREP system. 3-M reporting is a greater administrative burden and receives less attention, so that there may be less accuracy and completeness. For example, incorrect reporting of EIC can be expected more frequently.

A more serious reservation involves the reporting requirements. For surface ships, not all corrective maintenance need be reported. Although there are some specific guidelines, there is inconsistency in SF reporting. Consequently, we do not rely on the SF variable for surface ships. For submarines, however, all corrective maintenance actions are required to be reported. Therefore, the data should be very complete, and accordingly, we place more confidence on these variables for submarines.

Finally, there is some weakness in the IMA variable due to policy variation in the work undertaken between years and IMA facilities.

UNITREP Variables

Each ship's readiness condition, given as C1, C2, C3 or C4 exactly as with CASREPs, is continually reported through the Unit Reporting (UNITREP) system. This system was formerly the Force Status (FORSTAT) reporting system. It reports the ship condition in each primary mission area, for each of the categories of personnel, equipment, supply and training, as well as for the ship overall. The variables we use from this system are the percentage of time in which equipment and the ship overall are degraded to a C3-C4 condition. Over the period covered in this study, the average overall status improved by about 5 percent for the FF-1052 and DDG-2 classes, but became worse by about 15 percent per year for the SSN-637 class.

Like the CASREP system, the UNITREP system follows a standard policy and filing format, receives a high level of attention, but is ultimately subjective in assessing readiness condition. Our use of the variables from this system is considerably limited by two considerations. The reporting system, and therefore the variable, addresses only the whole ship and not specific systems. Also, the data is not available prior to 1975.

PEB Variable

The Propulsion Examining Board (PEB) conducts periodic propulsion plant inspections for all conventionally powered ships. A light off examination (LOE) is given shortly before a ship completes overhaul. An operational propulsion plant examination (OPPE) takes place several months following an overhaul and at roughly one year intervals thereafter.

Each exam results in extensive comments. In addition, a ship receives a pass or fail score in the areas of material, knowledge, and administration during an LOE, and in these as well as the areas of casualty control and boiler flexibility during an OPPE.

We use as one indicator of propulsion plant material condition a score of 1 or 0 depending on whether a ship did or did not pass, on the material portion, both its LOE and postoverhaul OPPE. We use as another indicator a score of 2, 1 or 0 depending on whether a ship passed, on the material portion, both, one or neither of the LOE and postoverhaul OPPE. We do not include later OPPEs because they are not uniformly scheduled throughout different ships' postoverhaul cycles, and because we wish to minimize any effect of a ship's operations and crew on the propulsion plant material condition. Similarly, other exam areas are not used because they are all a direct function of crew performance, and not as closely related to equipment condition.

These exams tend to be consistent and objective, and therefore provide a good basis for our indicator variable. However, the pass-fail scoring gives us only a crude distinction between ships and greatly limits our assessment of material condition. Moreover, the exams, and hence our variables, address only the main propulsion system generally. We get no insight into other systems and subsystems. Finally, our variable does not give us material condition information over an entire postoverhaul period.

The Nuclear Propulsion Examining Board (NPEB) conducts a postover-haul reactor safeguard examination (PORSE) and an operational reactor safeguard examination (ORSE) for submarines and other nuclear powered ships. These are similar to the LOE and OPPE. However, results of these exams were not available to us.

INSURV Variables

A direct and thorough examination of material condition is made on each ship by the Board of Inspection and Survey (INSURV Board). Generally, one exam is given during each postoverhaul period. Extensive comments are made, and for surface ships 25 factors within ten functions or areas of a ship are rated 0, 1, or 2, with a 0 as best. The sum of these represents a ship index.

Only four of the factors match up with a ship system. They are: sustained power with our main propulsion, electrical power with our electrical system, environment control with our climate control, and maneuver with our steering. We use the factor scores as variables for these four systems. We also use the overall ship index as a variable for the whole ship.

As with the PEB exams, these inspections are largely objective and consistent. They vary considerably in the time during the post-overhaul period at which they occur, though. Since material condition is apt to vary significantly in the postoverhaul period, this may greatly influence the scores.

Other difficulties with this source are that not all our systems are covered, and those which are are only measured crudely by the score of 0, 1 or 2. Finally, these variables are not available for submarines; although submarines have INSURV inspections, they are not given scores.

Other Material Condition Variables

Some insight into a ship's material condition comes from a consideration of the work done on it in restricted availabilities, selected restricted availabilities, and technical availabilities. Repair work in these availabilities affects subsequent material condition. However, more repair work in restricted and technical availabilities also indicates greater material condition problems. From this viewpoint, such repair work is a depot level counterpart to SF and IMA corrective maintenance work at the organizational and intermediate levels, respectively.

It has not been possible to develop an indicator of material condition based on these availabilities. This is because no consistent and detailed documentation of them is available for the period covered in this study. Records of these availabilities have not been uniformly maintained on file, and in any case, a breakdown of the work by repair mandays is often not made for work done in private and foreign shipyards. Therefore, this variable could not be included in the study.

Several other potential sources for material condition insight were considered and rejected. Among these, Ship Qualification

Trials were felt to be inappropriate as they deal only with weapons, which are not among our systems. Operational Readiness Inspections were not used since in addition to being subjective and dependent on individual squadron commanders, they are intended to measure primarily crew training.

Among the indicators which have been described, those from CASREPs are expected to be most complete and descriptive. The other variables are nevertheless important in contributing to the description, and in providing indications of consistency.

EXPLANATORY VARIABLES

The explanatory variables are listed in table 4. The more complicated of these are the ones dealing with overhaul work expense and ship crew characteristics. They are treated in considerable detail. The remaining variables are then treated through brief discussions.

TABLE 4

EXPLANATORY VARIABLES

Variable	Source
Overhaul Repair Cost	Shipyard Departure Reports
Overhaul Alteration Cost	Shipyard Departure Reports
Personnel Levels	Enlisted Master Records Ship Manning Document
Hours Steaming Underway, Not Underway, Cold Iron	Steaming and Fuel Master Data File
Ship Age Ship Fleet Type of Overhaul	Jane's Fighting Ships Jane's Fighting Ships Shipyard Departure Reports
Overhaul Shipyard	Shipyard Departure Reports

Overhaul Expense Variables

Variables for the amount of work expended on a system during an overhaul represent a primary focus of the study. The thrust of the study is in the direction of understanding the effect of these variables on later equipment condition.

The most fundamental of these variables measure, in shipyard mandays, the amount of overhaul work actually expended on each system. This work is broken down into repair work and alteration work, depending on whether it was funded by the type commander or by NavSea. This means that some minor alterations (e.g., title D and title F alterations) were grouped with repair work. All the manday expenses come from the official shipyard departure report issued at the overhaul completion. As such, they represent the actual documented work expended.

The departure report work items were matched to our systems primarily on the basis of the system work list identification number (SWLIN) under the SWBS or SSI system. Each of the systems in the study is essentially identified by a list of such numbers; these are given in appendix A. In order to avoid, as far as possible, reporting discrepancies, the departure report work items were also examined on the basis of their brief word description and, when it appears, the equipment identification code (EIC). This allowed for the best possible cross-checking.

Departure report work is documented in shipyard mandays, so that mandays lead directly to a unit of measure for this study. Beyond this, mandays are desirable, as opposed to dollar cost, because they are a more fixed and consistent standard for use between different shipyards and years. Dollar costs were obtained for the total overhaul expense on a ship, but were not used because of these inconsistencies.

In addition to these figures on final, actual overhaul expense, considerable effort was also made to obtain information on preoverhaul authorizations; these could provide greater insight on
estimates of necessary work. This effort met with only limited
success. The data has generally not been retained. Available
documentation of preoverhaul estimates and shippard planning
letters was too limited for use in this study.

Personnel Variables

A ship's crew has a considerable influence on the ship's equipment condition. This equipment cannot be divorced from the people who operate and maintain it. As a result, it is essential to include some account of crew capability in any relative assessment of equipment condition.

Our account of shipboard personnel is based on information obtained from the Navy enlisted master record (EMR) files. We were able to obtain for each ship and for various points in time, the number of crew members in each rating and paygrade, their length of Navy service, time onboard that ship, and number of Navy

enlisted classifications (NECs) accumulated. From this information, we have computed a number of variables which quantify various aspects of the ship's crew.

Before describing these variables in detail, it may be useful to discuss the way these variables are matched to the systems in the study, and the way they are derived for each month. Matching them to a system is achieved by computing the variables only for those ratings which most directly and significantly deal with the system. Table 5 shows the correspondence between the ratings and the systems in the study. As a result of this matchup, each personnel variable will have different values for different systems. This reflects a potentially different crew capability for different systems of the same ship. While there is some question concerning our assignment of ETs and ETNs to some of the SSN systems, the impact either way is expected to be quite small here.

The problem of deriving the variables by month arises from the fact that the EMRs are only available periodically, usually every three or six months. For a month in which an EMR is available, the calculation is straightforward, and simply uses that month. For a month between the dates of two available EMRs, a linear interpolation is used on the variables from those months. In this way, a value for each variable and each month results.

Two personnel variables are used in this study. The first is the number of enlisted crew members in paygrades E5 and above divided by the ship manpower document (SMD) requirement for paygrades E5 and above. This variable is therefore a measure of crew manning and to some extent crew quality.

For the SSN-637 class, there is only one SMD for the entire class. For the FF-1052 and DDG-2 classes, however, there is a specific SMD for each ship established at each overhaul. The SMD requirements for specific NECs may vary considerably. However, the SMD requirement aggregated to the rating and paygrade level is quite consistent over a class, and we use simply the average requirement. This is of minor consequence since the SMD requirement is used only as a standard for comparison between classes.

The second variable is the average length of Navy service among crew members in paygrades E4 and above. This variable is therefore a further measure of crew quality.

Steaming Hour Variables

The steaming hour variables used in the study are quite straightforward in description and computation. As they are quite important in the study, however, they are discussed separately here. The variables themselves are measures for each ship in each month. They measure the number of hours in the month that a ship was

TABLE 5 SYSTEMS AND CORRESPONDING RATINGS*

Systems	FF, DDG Ratings	SSN Ratings
Whole ship	All ratings	All ratings
Hull structure	нт	
Main propulsion Propulsion shafting Main steam piping Feed and condensate Propulsion boilers Combustion air	BT,MM MM BT,MM BT,IC BT	ET, ETN, MM MM ET, ETN, MM ET, ETN, MM
Electrical Power generators	MM, EM, EN, IC MM, EM, EN	MM, EM, IC MM, EM
Sonar Interior communications Climate control Refrigeration Distilling Compressed air Steering	ST,STG IC MM,EM,EN MM,EM,EN BT,MM,IC MM,EM MM,EM	ST, STS IC MM, EM MM, EM ET,ETN,MM,IC MM, EM MM, EM MM, EM

HT Hull Maintenance Technician

BT Boiler Technican

MM Machinist's Mate

ET Electronics Technician

ETN Electronics Technician (Communications)

EM Electrician's Mate

EN Engineman

IC Interior Communications Electrician

ST Sonar Technician

STG Sonar Technician (Surface) STS Sonar Technician (Submarine)

^{*}The rating abbreviations are as follows:

steaming and underway, steaming but not underway, and cold iron. A ship is always in one of these states. Therefore the sum of these variables should be the number of hours in the month.

These variables are used as a proxy for operating tempo. Steaming underway is generally taken to indicate a high tempo of operations, while cold iron is taken to indicate minimal tempo. As a proxy, this will naturally be more accurate for some systems than for others. For main propulsion, and its subsystems generally, steaming underway should be a good indicator of actual operating tempo. For auxiliary systems, it is much less clear. Probably for refrigeration and interior communications it will be quite poor, while for sonar and steering it may be far better. In any case, the steaming hours variables are our best available proxy for operating tempo.

Other Variables

A number of other variables are included in the model. Each of these may have an effect either on material condition itself or on the indicators of material condition used in the study. By not including them, the true effect of overhaul mandays may be masked and misestimated. A short description of each of these variables is given in this section.

The age of the ship at the end of overhaul is included to account for possible material condition change, probably deterioration, due simply to getting older. This is measured in months from the commissioning date of the ship to the overhaul completion date.

Another variable distinguishes a ship by assigning a 0 or 1 according to whether it is assigned to CINCLANTFLT or CINCPACFLT. This distinction of a ship according to fleet should account for differences in maintenance policy, whether on the depot, intermediate or organizational level. It should also account for systematic reporting differences between coasts in the indicators of material condition. Finally, it should account for different modes of operation between the coasts which may affect material condition.

For the SSN-637 class, a variable is included to distinguish the two types of overhauls it may undergo. A 1 or 2 is assigned according to whether the overhaul was a regular or a refueling overhaul. In the refueling overhaul, the nuclear core is replaced. This makes an overhaul more extensive, as well as longer by about three or four months. This variable therefore controls for the extended (nonoperational) depot period.

Another factor which may influence later material condition, and which, moreover, may particularly affect the relationship of over-haul mandays to material condition, is the overhauling shipyard.

One variable for each shippard is used to account for shippard differences. It assigns a 1 or 0 according to whether the overhaul was done in that shippard. This will account for general systematic differences resulting from having had overhauls in different shippards.

CHAPTER III

ANALYSIS

MODEL

An analytic model is used in this study to quantitatively measure the effect on a ship's material condition due to the many factors which impact this condition. The model developed here investigates this effect for each of the three ship classes and many ship systems described in Chapter II.

The factor of primary interest is overhaul repair mandays. A number of other factors are also of interest, however, and so is the comparison of relative effects among all the factors together. Moreover, inclusion of all the factors is necessary in order to accurately bring out the effect of each factor individually.

The model used to bring out these effects starts with the premise that the material condition of a ship system in a month may be represented as a linear sum of the values of the relevant factors for that month. Though the precise relationships may actually not be linear, a linear model is nevertheless reasonable, for several reasons. First, each ship class is examined separately, and the ranges of the variables in a class are relatively small, so that a linear approximation can be quite accurate. Moreover, the fundamental goal of the analysis is to determine the effect, positive or negative, of more overhaul work on material condition; and the estimated effect from a linear model will have the same sign as the (nonconstant) effect from a curvilinear model (some testing of various other forms has confirmed this assertion). Finally, the data in this study is not considered precise enough to distinguish the subtle differences among nonlinear forms.

In detail, the model presumes that material condition (MC) in a month is given by a linear combination of the following factors: the repair cost or work in the most recent overhaul (RC); the alteration cost or work in this overhaul (AC); the level of manning of the ship's crew in that month (PP); the quality of the ship's crew in that month (PQ); the amount of steaming underway during the three months prior to that month (ST); the amount of time cold iron in the month just preceding that month (CI); the preoverhaul material condition for the most recent overhaul (PC); the age of the ship at the end of that overhaul (AGE); the fleet, LANT or PAC, to which the ship is assigned (FL); and the overhauling shipyard of the preceding overhaul (SY). For submarines, there is additionally a term for the type of overhaul (OH), whether regular or refueling. This relationship is summarized in the following equation:

$$MC = a_0 + a_1RC + a_2AC + a_3PP + a_4PQ + a_5CI + a_6ST + a_7PC$$

$$+ a_8AGE + a_9FL + a_{10}SY$$

Months were chosen as being a reasonable period for observing material condition and other variables. An autocorrelation correction was made, since there is always some continuity in material condition from one month to the next. Each month following an overhaul was used as an observation period in the model, with the following exceptions. The first three months after overhaul were not used. These months include a shipyard warranty period on overhaul work, and indicators of material condition in this period are not reliable. Moreover, ships in this period are not yet at the point of performing their operational missions, so that material condition is not of the same significance. For SSNs, the months following a selected restricted availability were not used, since this additional depot level work could not be related to the preceding overhaul work. Finally, months beginning in 1980 and later were not included, since data in these months was not available.

Repair work and alteration work are given in mandays. The crew manning level refers to the number in paygrades E5 through E9. The crew quality uses the average length of service of the crew members. Preoverhaul material condition is measured by CASREP maintenance downtime in the nine months before overhaul. The other variables or factors are as discussed in Chapter II.

The coefficients a_0 , a_1 , a_2 ... are determined statistically using regression analysis and the equation above. The units of observation are ship-months for ships within a class; there were 817 such observations for the FF-1052 class, 856 for the DDG-2 class, and 946 for the SSN-637 class. Each coefficient gives the relationship of its variable or factor to material condition. These coefficients can be expected to differ between systems and ship classes. Consideration and comparison of them is the basis for the study conclusions.

The coefficient of primary interest in this study is that of repair cost (RC). The sign of this coefficient indicates the effect of more repair work on material condition. With respect to the CASREP variables, for example, a negative coefficient indicates that more repair mandays were associated with fewer CASREP problems, either in numbers or in downtime. This would, in fact, be the expected sign if repair work has its intended effect. The model described above accounts for the three major factors which impact material condition: overhaul work, crew personnel, and operating tempo. However, none of the variables used in this study to quantify material condition is, by itself, entirely

satisfactory. Conceivably, they may each give different insights. Therefore, all the variables are used. That is, coefficients in the above equation are generated for each of the indicators of material condition. For each such indicator, the coefficients show the effects which the explanatory variables have had on that indicator.

The initial quantitative output from the model is a set of tables, one for each ship system and class. Each table lists the coefficients for all the variables, for each material condition indicator. For any variable, comparison of that variable's coefficients shows how consistent an effect it has had on the different indicators. These tables are shown in appendix B.

In these tables, each coefficient has listed with it its t-statistic. This is a statistical measure of the confidence with which the variable may be taken to have the relationship indicated by its coefficient. Also given in these tables is the R-squared and F-statistic for each equation. These measure the extent to which the equation explains its material condition indicator, and the confidence with which this explanation may be taken, respectively. As is common in this kind of situation, the R-squared values can be expected to be fairly low due to the many individual ship differences and the randomness which is always a part of material condition.

Some care must be taken in interpreting and using the coefficients. As computed, they are the best estimate of a variable's relationship to a material condition indicator, as evidenced by the data documenting past Navy experience. If past policies and conditions remain the same, the statistically significant ones can be expected to predict well. However, they do not imply a causal connection.

For example, if the coefficient of the fleet variable indicates that ships from one of the fleets have registered better material condition, it does not imply that assigning a ship to that fleet will improve its material condition. It only means that ships in that fleet have on average recorded better material condition. Where a clear causal relationship is known or expected to exist, then a coefficient should indicate the nature of that relationship.

Finally, while the model described above does account for the important factors and seems best under the data and computational restrictions, it does have important limitations. The greatest may be the limitation in accounting for personnel. The actual ability and effect of a crew in dealing with ship equipment may not be well captured by the level of manning and length of service of crew members in the higher paygrades. Also, no account is made

of the motivation and leadership of a ship's officers and particularly of the commanding officer.

Equipment condition of a ship upon entering overhaul is also difficult to quantify. It may not be captured well in the preoverhaul condition variable used here since CASREPs just before overhaul can be misleading. Also, the effect of restricted availabilities and technical availabilities is not accounted for. Selected restricted availabilities for submarines have not been included, but neither have observations in the months following such an availability. This means that the months which are included all trace back directly to the last overhaul.

While these are the major limitations in the model, there are some others. Equipment usage may not be fully reflected in the hours steaming underway and cold iron used as variables for operating tempo. Also, the full effect of the overhauling shipyard, the proximity to homeport, and the effect of ships force overhaul work, have not been accounted for. Finally, there is uncertainty in the degree to which the indicators of material condition are accurate in reporting actual material condition.

To the extent that these limitations exist, the model may not fully reflect Navy operations, and particularly the effect of overhaul work. To the extent that they are divorced from the direct impact of overhaul work, the model should reveal the relationships of interest.

The estimates made from the model are statistically the best ones possible from the data. Because of variations in the data itself as well as in the amount of data available, however, the estimates differ considerably in their reliability. Consequently, the statistical significance of the estimates is also presented and discussed.

In the analysis for this study, significance levels of 80 percent and 90 percent are used. An estimate at one of these levels can be taken, with just this probability, as being different from zero, that is, of correctly showing the sign of the actual coefficient. When an estimate has a significance below one of these levels, less confidence must be given to it. It remains as the best possible estimate, but it is unreliable by comparison.

The estimated coefficients may be used to predict the effect of changes in the variables themselves on the material condition indicators. The product of a change in a variable times the coefficient of that variable is the predicted change in the material condition indicator. This kind of prediction is based on the fleet experience data from which the estimates were derived. It does not necessarily imply a causal relationship.

From the coefficients and the average values of the variables and material condition indicators, elasticities may be computed. The elasticity of a variable is the percentage change in the material condition indicator associated with a one percent change in the variable. It is calculated as the coefficient times the average value of the variable divided by the average value of the material condition indicator. Elasticities may be useful in gaining further insight into effects. Also, they help clarify comparisons of systems and ship classes. For these reasons, they are used in the analysis which follows.

All the average values and estimated coefficients are presented in appendix B. Moreover, a careful description of the variables, together with their units of measurement, is also given there. The analysis in the following sections is based on these tables, and frequent reference is made to them.

ANALYSIS AT THE WHOLE SHIP LEVEL

This section interprets and discusses the results of applying, at the whole ship level, the model described earlier. Table B-2 shows the average values of all the variables involved. Tables B-3 through B-5 give the estimated coefficient values for FFs, DDGs, and SSNs, respectively.

ŧ

In these latter tables, while the extent to which the equations explain the material condition indicator variables differs, it is high enough to make the equations meaningful. Several other general patterns are also apparent. CASREP maintenance downtimes are explained by the model somewhat better than total CASREP downtimes, and both of these are explained considerably better than the numbers of CASREPs reported. IMA hours and SF hours are the most poorly explained.

Effects of Repair Mandays

Our focus on repair costs begins with a calculation of their elasticities. These are shown in table 6, and are calculated at average values of the variables. Given the trends in repair mandays and in CASREPs over the period of the study, these average effects might have occurred at about the middle of the decade. The elasticities therefore estimate the effects of repair work at levels occurring in about 1975 or 1976. They should not be used for current levels.

Of greatest importance in the table is the consistent pattern of effect which repair cost has on the various indicators. A negative sign means that an increase in repair cost is associated with a decrease in the indicator value. The consistent pattern of negative signs in the table demonstrates an unambiguously beneficial effect on material condition. The fact that 10 of the 11

FF-1052 class indicators, 8 of the 11 DDG-2 class indicators, and 9 of the 10 SSN-637 class indicators are negative is evidence that more repair work was associated with fewer material condition problems over the period in the study.

TABLE 6

MATERIAL CONDITION INDICATOR ELASTICITIES
FOR REPAIR MANDAYS

		Elasticity ^a	
Material condition indicator	FFs	DDGs	SSNs
CASREP total downtime	-0.33	-0.36*	-0.31
CASREP maintenance downtime	-0.98**	-0.61**	-0.28
CASREP occurrences	-0.56**	-0.37**	-0.33**
CASREP C3-C4 total downtime	-0.85*	-0.10	-0.05
CASREP C3-C4 maintenance downtime	-0.98	-0.99*	-0.25
CASREP C3-C4 occurrences	-1.16**	-0.29	-0.27
IMA hours	+0.03	-0.12	-0.03
SF hours	-0.28	+0.02	-0.24
UNITREP C3-C4 overall status	-0.42*	+0.51**	+0.32
UNITREP C3-C4 equipment status	-0.52*	-0.04	-0.25
INSURV score	-0.93	+0.22	

aThe elasticities are the percent changes in the material condition indicators associated with a one percent increase in repair mandays, and are calculated at average values of the variables. One star indicates a significance of 80 percent, two stars a significance of 90 percent.

As indicated in the table, the estimates of this effect are statistically more significant for FFs and DDGs than for SSNs. Moreover, the actual magnitude of the effects is greatest for FFs and least for SSNs. For the CASREP indicators, the elasticities (percent of change due to a one percent increase in repair cost) range from -.3 to -1.2 for FFs, from -.1 to -1.0 for DDGs, and from -.1 to -.3 for SSNs.

As an alternative to discussing the effect of repair cost in terms of elasticities, the estimated effect can be assessed directly. In particular, the effect of 500 additional repair mandays on CASREP maintenance downtime, in hours per month, may be estimated using the coefficients for repair cost in tables B-3 to B-5. Such estimates are shown in table 7. The 500 repair mandays are to be taken in the context of an average repair manday overhaul total of 40,000 for FFs, 60,000 for DDGs and 130,000 for SSNs, over the period in this study. The same 500 repair mandays comprise a far

smaller fraction of the total overhaul repair manday package for SSNs, and this explains in part why the estimates are lower for SSNs.

TABLE 7

ESTIMATED EFFECT OF 500 ADDITIONAL REPAIR MANDAYS
ON CASREP MAINTENANCE DOWNTIME PER MONTH (In Hours)^a

	FFs	DDGs	SSNs
CASREP maintenance downtime	-39.8	-18.6	-1.1
CASREP C3-C4 maintenance downti	me -6.2	- 4.4	-0.04

aThese estimates assume an average repair package of 40,000 mandays for FFs, 60,000 mandays for DDGs and 130,000 mandays for SSNs.

Over the period in this study, the number of FF-1052 class and DDG-2 class overhaul repair mandays was correlated with the overhaul year. That is, later years generally meant more repair mandays, as sown in figure 1. To test whether the beneficial relationship observed between repair mandays and material condition is a reflection just of an unrelated improvement in material condition during later years, the model in the study was modified by adding a variable representing the overhaul year.

With this change, the correlation between repair mandays and overhaul year does lead to a reduction in the size of the repair manday coefficients, and ina couple of cases, to a reversal in sign (that is in estimated effect). However, in most cases, and in all cases of statistical significance, the estimated effect of repair mandays does not reverse. This tends to confirm the preceding analysis.

The elasticities for reapir mandays are shown in table 8. They may be compared with those in table 6. The preponderance of negative signs for repair mandays, particularly for the statistically significant cases, again suggests the beneficial relationship between material condition and more repair mandays. The ad hoc addition of the overhaul year variable does lead to a less certain and less strong estimated effect.

TABLE 8

MATERIAL CONDITION INDICATOR ELASTICITIES FOR REPAIR MANDAYS WHEN THE OVERHAUL YEAR IS INCLUDED

	Elasti	city ^a
Material Condition Indicator	FFS	DDGs
CASREP total downtime	+0.20	-0.32*
CASREP maintenance downtime	-0.69*	-0.53**
CASREP occurrences	+0.04	-0.40**
CASREP C3-C4 total downtime	-0.33	+0.10
CASREP C3-C4 maintenance downtime	-0.32	-0.76
CASREP C3-C4 occurrences	-0.81*	-0.27
IMA hours	-0.06	-0.22
SF hours	+3.42	-0.12
UNITREP C3-C4 overall status	-0.62*	+0.66**
UNITREP C3-C4 equipment status	-0.03	+0.01
INSURV score	-1.15	+0.13

aThe elasticities are percent changes in the material condition indicators for a one percent increase in repair mandays, calculated at average values of the variables. One star indicates a significance of 80 percent, two stars a significance of 90 percent.

Effects of Other Variables

The effect of alteration work on material condition provides a contrast to the effect of the repair work just discussed. It should be noted at the outset that alteration work does not have the same purpose as repair work. Whereas repair work is solely intended to restore or enhance material condition, alteration work is intended to improve capability, safety, or system reliability and maintainability. In particular, somewhat degraded material condition may be an acceptable cost for better capability. Moreover, the analysis can only address the particular alterations made during the period of the study, and may not anticipate the experience of future, different alterations.

Table 9 is similar to table 6, and shows the elasticities of the material condition indicators for alteration work. Here, in fact, there is a noticeably different effect than for repair work. For FFs, there is an absolutely consistent pattern of beneficial effect on material condition due to increased alteration work. As

with repair work, this tends to be most significant for C2 CASREPs. However, the magnitude of this effect due to alteration work is much smaller than for repair work. In fact, it is generally less than half as much.

TABLE 9

MATERIAL CONDITION INDICATOR ELASTICITIES
FOR ALTERATION MANDAYS

	E	lasticitya	
Material Condition Indicator	FFs	DDGs	SSNs
CASREP total downtime	-0.18	+0.29**	+0.05
CASREP maintenance downtime	-0.26*	+0.96**	+0.09
CASREP occurrences	-0.35**	+0.38*	+0.15*
CASREP C3-C4 total downtime	-0.35	+1.11*	-0.30
CASREP C3-C4 maintenance downtime	-0.47	+2.10**	+0.28
CASREP C3-C4 occurrences	-0.21	+0.82**	+0.33
IMA hours	-0.16	-0.14	-0.16*
SF hours	-0.52	-1.22**	+0.50**
UNITREP C3-C4 overall status	-0.17	-0.46*	-0.20
UNITREP C3-C4 equipment status	-0.30*	-0.13	-0.12
INSURV score	-0.53**	-0.09	

aThe elasticities are the percent changes in the material condition indicators associated with a one percent increase in alteration mandays, and are calculated at average values of the variables. One star indicates a significance of 80 percent, two stars a significance of 90 percent.

In contrast to this beneficial effect for FFs, there are mixed indications of effect for DDGs and SSNs, with at least some indications of detrimental effect on material condition. This is particularly so among the CASREP indicators, and with high statistical significance for the DDGs. The detrimental effect for DDGs is greater in magnitude than for SSNs; this is all the more noteworthy as alterations comprise a far greater portion of the overhaul work package for DDGs.

All three ship classes show a beneficial effect of alteration work on the UNITREP indicators, and with higher statistical significance for the FFs and DDGs. Moreover, for the the FFs and DDGs, the INSURV score also seems to have improved with more alteration work. Still, with the somewhat inconsistent patterns for DDGs and SSNs, and the contrast of these with the FF pattern, no firm conclusion on the effect of alteration work is warranted. Our estimates in any case apply only to the specific alterations

accomplished in the period of this study, and do not take account of the differences in alterations between classes or the improvements in capability due to alterations. The most which may be said is that alteration work appears not to have the same beneficial effect on material condition as does repair work.

The effect of our personnel variables on the indicators of material condition is also very unclear. The average length of service variable seems completely ambiguous, with no apparent pattern. The effects of the number of personnel in paygrades E5 to E9 are more systematic, but still mixed. For FFs, higher levels were associated with a consistent pattern of worse reported material condition. For DDGs and SSNs, there seemed to be better C3-C4 CASREP condition, and possibly better C2 CASREP condition for SSNs, but worse reported material condition otherwise. This lower level in reported condition may be due to the greater number of qualified personnel available to properly document material condition problems. The one consistent pattern for all three classes is a greater amount of intermediate and ships force corrective maintenance with higher manning levels.

Of the operating tempo variables, the hours cold iron in the previous month is ambiguous for all three ship classes. However, with high statistical significance for all three classes, it did indicate greater amounts of both intermediate maintenance and ships force maintenance, as might be expected.

In contrast to this, steaming hours underway has a consistent, though different, effect in the three classes. Moreover, the effect is more highly significant statistically. For FFs and DDGs, more steaming underway is associated with better material condition, as shown through the indicators. For SSNs, it is associated with worse material condition. While these associated effects can be predicted by the amounts of steaming, the steaming itself may not cause them. Rather, the steaming may be a proxy for such conditions as deployment and time away from port. Moreover, SSNs are affected by a very different mode of operations and preparation for operations; thus, the effects of increased operating tempo can not be compared betwen ship classes. Nevertheless, the associations described above stand up.

The age variable does not show a strong pattern in its coefficients, but it does suggest that older ships had worse material condition. The fleet variable is not easily interpretable, since it may reflect differences in fleet reporting. It does, however, account for differences in fleet practices.

This last comment also applies to the shippard variables. A clear pattern in these variables is not evident, and in fact, shippard performance is based on more than this study analyzed. Consequently, no conclusions on these variables are drawn.

In general, the variables other than repair cost have these characteristics: a number of them enter each equation with significant coefficients; many of them have the anticipated sign; and they tend to be consistent in sign between equations. These characteristics further suggests that the findings on overhaul work are not spurious.

ANALYSIS AT THE SYSTEM LEVEL

The analysis of the systems closely parallels that of the whole ship. In particular, the model used to explain material condition is exactly the same, and the analysis again focuses on overhaul repair work.

However, the analysis at the system level is less dependable than at the whole ship level. In part, this is due to inequivalent system definitions under different classification schemes, so that, for example, repair work and material condition may not cover exactly the same equipments. In part, it is also due to the smaller magnitudes involved; reporting errors have a correspondingly bigger effect at the system level.

Initial insight into overhaul work at the system level may be gained by considering the amount of overhaul work, on average, which each system received. Table 10 shows the average repair (RC) and alteration (AC) mandays expended in overhaul for each system and each ship class.

Not surprisingly, main propulsion receives a substantial fraction of the repair work for all three classes, particularly for the FFs and DDGs. It accounts for just over one quarter of all repair mandays for FFs, and over one third for DDGs. Among the main propulsion subsystems for these two classes, boilers receive more work than any other single equipment. In both cases, they account for just over a third of all main propulsion mandays. In fact, the distribution of main propulsion mandays among its subsystems is nearly identical for FFs and DDGs.

Alteration mandays generally accounted for only a fraction of repair mandays in the systems studied here. Climate control is an exception to this for both FFs and DDGs. A more notable exception in all three classes is sonar. However, there is no reason to expect that future alteration work will be distributed over the systems as it has been in the past.

With regard to later comparison of systems, further insight comes from examining the relative material condition of the systems. The average values of each of the material condition indicators may be compared using the tables in appendix B. Following our emphasis on CASREP maintenance downtime, these downtime averages

are summarized in table 11. CASREP occurrences (i.e., the number of CASREP reports) may also be of interest, and these are summarized in table 12.

TABLE 10

AVERAGE REPAIR AND ALTERATION MANDAYS
BY SYSTEM (in thousands)

System	F	Fs	DI	DGs	SSN	s
	RC	AC	RC	AC	RC	_AC_
Hull structure	1.49	3.35	2.26	.23	9.89	2.05
Main propulsion	9.95	.86	20.79	2.08	9.83	• 75
Propulsion shafting	.66	.00	1.31	.00	3.06	.00
Main steam piping	• 75	.06	1.60	.09	1.34	.00
Feed and condensate	1.70	. 26	3.09	.38	2.14	. 28
Propulsion boilers	3.54	.16	7.94	.65		
Combustion air	1.00	.03	2.00	.27		
Electrical	1.57	.11	1.37	4.10	3.71	.00
Power generators	.93	.01	•57	3.51	1.22	.00
Sonar	1.31	4.77	.36	4.39	1.05	6.79
Interior communications	.12	.35	.20	.00	.40	.00
Climate control	.77	1.32	1.64	3.74	4.34	.44
Refrigeration	.19	.00	.23	.00	.29	.00
Distilling plant	.54	.01	.61	.00	1.23	.23
Compressed air	.88	.58	.59	1.42	4.26	.20
Steering	.23	.00	.44	.00	1.54	.12
Whole ship	38.41	28.38	58.24	39.30	133.61	28.28

Main propulsion easily accounts for the most downtime in FFs and DDGs, but not in SSNs. There, sonar accounts for the most, being almost one quarter of the ship total. While propulsion boiler repair mandays made up approximately one third of all those for main propulsion, they account for nearly two thirds of the CASREP C3-C4 maintenance downtime for FFs, and over half for DDGs. Moreover, for FF boilers, maintenance downtime from C3-C4 CASREPs is nearly equal to that from C2 CASREPs.

The statistical output again appears in appendix B. It is organized by system, and encompasses tables B-6 through B-67. An explanation of the notation in these tables also appears in this appendix.

A broad look at these tables, i.e., the results of applying the model in Chapter II, shows that most often, the model more poorly explains material condition for the systems than it does for the whole ship. This is evidenced by the lower extent to which the variation in the material condition indicator values is explained,

TABLE 11

AVERAGE CASREP MAINTENANCE DOWNTIME AND CASREP
C3-C4 MAINTENANCE DOWNTIME BY SYSTEM (hours per month)

System		FFs		DDGs	ss	Ns
	<u>A11</u>	C3-C4	All	<u>C3-C4</u>	<u>A11</u>	C3-C4
Hull structure Main propulsion Propulsion shafting Main steam piping Feed and condensate Propulsion boilers Combustion air	30.0 589.7 7.5 10.7 150.7 229.1 94.5	5.6 183.2 1.5 3.6 27.5 113.5 28.5	26.3 964.4 10.6 44.6 269.1 306.1 97.8	6.5 176.6 4.1 14.3 29.4 93.1 2.3	1.7 33.8 4.1 3.3 2.7	0.0 2.6 0.2 1.3 0.1
Electrical Power generators Sonar Interior communicati Climate control Refrigeration Distilling plant Compressed air Steering Whole ship	217.4 131.6 203.4 ons 9.1 145.2 7.3 38.3 190.8 26.9 3119.9	49.1 44.1 42.7 0.0 10.4 0.8 11.4 9.6 5.8 484.4	290.7 145.6 52.7 21.3 156.9 4.3 19.3 150.0 10.5 3521.8	42.7 36.1 7.9 0.7 3.2 0.3 5.0 42.7 0.6 517.6	33.0 27.5 232.1 5.7 116.1 1.1 40.4 6.6 1.4	4.3 3.7 11.1 0.3 2.6 0.0 0.6 0.4 0.9 43.3

TABLE 12

AVERAGE CASREP OCCURRENCES AND CASREP C3-C4 OCCURRENCES
BY SYSTEM (occurrences per month)

System		FFs		DDGs	SSN	s
	All	<u>C3-C4</u>	All	<u>C3-C4</u>	_A11	<u>C3-C4</u>
Hull structure Main propulsion Propulsion shafting Main steam piping Feed and condensate Propulsion boilers Combustion air Electrical Power generators Sonar Interior communications Climate control Refrigeration Distilling plant Compressed air Steering	0.04 1.29 0.02 0.03 0.28 0.51 0.15 0.46 0.28 0.42 0.02 0.02 0.09 0.28	0.01 0.56 0.01 0.02 0.07 0.33 0.04 0.12 0.09 0.10 0.00 0.04 0.00 0.03 0.02 0.01	0.05 1.96 0.03 0.10 0.43 0.77 0.14 0.37 0.16 0.17 0.05 0.25 0.01	0.01 0.53 0.02 0.06 0.05 0.26 0.01 0.06 0.03 0.05 0.01 0.02 0.00	0.00 0.06 0.01 0.00 0.01 0.10 0.06 0.44 0.01 0.19 0.01 0.06 0.03	0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00
Compressed air	0.28	0.02	0.23	0.02	0.03	0.0

and the lower statistical significance which these explanations have. As indicated previously, this may be explained in part by inconsistent system definition under different classification schemes, and in part by greater inaccuracy of material condition indicators at the system level.

There is also less consistency in effect on the various material condition indicators at the system level than at the whole ship level. This, however, may be caused by genuinely different effects on the different indicators, which may have a tendency to average out when aggregated to the whole ship level. For example, CASREP supply downtime in contrast to maintenance downtime may be more significant or may be differently affected for a particular system than for the whole ship on average. Moreover, systems undoubtedly vary in the relative prominence of C3-C4 and C2 CASREPs; this is apparent from table 12. The focus on the analysis here is on CASREP maintenance downtime, and to a lesser extent, on CASREP occurrences. In addition to the advantages of CASREPs mentioned earlier, maintenance downtime as opposed to total downtime has the further advantage of differentiating equipment failures based on the amount of time taken for repair, but without including the random effects of supply. Finally, in addition to using all CASREPs, C3-C4 CASREPs alone are also used for FFs and DDGs. They are not, however, broken out for SSNs, because of the very small numbers involved at the system level.

Table 13 shows the effects of increased repair mandays on CASREP maintenance downtime and on CASREP occurrences. These effects are described by way of elasticities, and are especially useful for comparisons among ship classes and sysems. Table 14 shows the same effects but only for C3-C4 CASREPs, while table 15 shows the effects of increased alteration mandays.

With only a few exceptions, the statistically significant effects of increased repair work for systems are beneficial, just as for the whole ship. For main propulsion and its subsystems particularly, all the statistically significant effects indicate a beneficial effect; this is true whether all CASREPs or only C3-C4 CASREPs are regarded, and it is true for all three ship classes.

This pattern is also strongly evident for both interior communications and refrigeration. The magnitude of the beneficial effect appears to be greater for refrigeration.

Apparent exceptions to the pattern of beneficial effect occur in sonar for FFs and DDGs, and in distilling for SSNs. These exceptions could reflect unreliable system level estimation. Alternatively, they might indicate real concerns which the Navy may wish to look into.

TABLE 13

CASREP MAINTENANCE DOWNTIME AND CASREP OCCURRENCE ELASTICITIES FOR REPAIR MANDAYS BY SYSTEM^a

System		FFs		DDGs	SSN	5
	MNT	occ	MNT	occ	MNT	occ
Hull structure	-0.50	-0.12	0.18	0.13	-0.70	0.47
Main propulsion	-1.20*	-0.74*	0.57	-0.23	-3.32*	-0.96*
Propulsion shafting	0.40	-0.27	0.77	-0.26	-8.63*	-0.70
Main steam piping	-0.09	-0.90*	-2.27*	-0.15	-1.72	-0.60
Feed and condensate	-0.57*	0.11	0.13	0.07	-2.87*	-1.04
Propulsion boilers	-0.24	-0.07	-0.20	-0.64*		
Combustion air	0.20	0.24	-3.14*	-2.35*		
Electrical	-0.33	-0.15	-0.85*	-0.09	-0.64	0.47
Power generators	0.37	-0.02	-0.33	0.50*	-0.37	0.04
Sonar	0.23	0.31*	-0.17	0.29*	-0.11	-0.02
Interior communication	s-0.64*	-0.77*	-0.36	-0.58*	-1.95*	-1.31*
Climate control	-0.25	-0.20	-0.92*	-0.39	-0.54	-0.21
Refrigeration	-3.59*	-1.24*	-1.89*	-0.75	-0.45	-0.15
Distilling plant	-0.48	-0.70*	0.03	-0.04	2.55*	1.44*
Compressed air	-0.33	0.26	0.11	0.28	-0.25	0.60
Steering	-0.45	-0.80	0.17	0.12	0.70	-0.14
Whole ship	-0.98*	-0.56*	-0.61*	-0.37*	-0.28	-0.33*

^aThe elasticities are percentage changes in downtime or occurrences for a one percent increase in repair mandays, and are calculated at average values of the variables. A star indicates a significance of at least 80%.

TABLE 14

CASREP C3-C4 MAINTENANCE DOWNTIME AND CASREP C3-C4 OCCURRENCE ELASTICITIES FOR REPAIR MANDAYS BY SYSTEM^a

System		FFs		DDGs
	MNT	<u>occ</u>	MNT	occ
Hull structure	-1.67*	-1.25*	0.14	0.22
Main propulsion	-2.87*	-1.27*	-1.56*	-0.73
Propulsion shafting	-0.76	-0.51	0.51	-0.66
Main steam piping	-0.58	-1.21*	-1.70	0.21
Feed and condensate	0.63	0.47	-2.12*	-0.82
Propulsion boilers	-0.41	-0.19	-0.03	-0.30
Combustion air	1.20	1.33	0.91	2.00
Electrical	-0.79*	-0.44*	-8.22*	-0.61
Power generators	-0.35	-0.22	-3.56*	-0.02
Sonar	1.22*	0.11	-0.14	0.15
Interior communications	3		0.76	-0.55
Climate control	-0.35	-0.55	0.14	-0.84
Refrigeration	-4.72*	-0.00	-1.12	-0.00
Distilling plant	-0.85*	-1.07*	0.40	0.38
Compressed air	2.24	3.65*	0.33	0.11
Steering	-1.78*	-1.02*	-0.10	0.38
Whole ship	-0.98	-1.16*	-0.99	-0.29

aThe elasticities are percentage changes in downtime or occurrences for a one percent increase in repair mandays, and are calculated at average values of the variables. A star indicates a significance of at least 80%. Two dashes indicate that the average repair work was too small for calculation of an elasticity.

TABLE 15

CASREP MAINTENANCE DOWNTIME AND CASREP OCCURRENCE ELASTICITIES FOR ALTERATION MANDAYS BY SYSTEM^a

System		FFs		DDGs	SSN	5
	MNT	occ	MNT	occ	MNT	occ
Hull structure	0.16	-0.05	0.06	0.06	0.62	0.59
Main propulsion	0.12	0.00	-0.60*	-0.20*	0.00	0.04
Propulsion shafting						
Main steam piping	-0.06	0.07	-0.22	-0.19*		
Feed and condensate	0.10	-0.07	0.05	0.06	0.80	0.34
Propulsion boilers	-0.11	-0.02	-0.20*	-0.09		
Combustion air	0.04	-0.06	-0.10	0.01		
Electrical	0.14	-0.07	-0.60*	0.03		
Power generators	0.07	-0.06	-0.93*	0.34		
Sonar	-0.38	0.05	0.74*	0.53*	-0.10	0.02
Interior communication	s 1.04*	0.99*				
Climate control	-0.23	0.02	1.06*	0.47	-0.10*	-0.05*
Refrigeration						
Distilling plant	0.01	-0.09*			-0.22	-0.12
Compressed air	~0.22*	-0.07	-0.03	-0.18	-0.25	-0.23
Steering					-0.16	-0.39
Whole ship	-0.26*	-0.35*	0.96*	0.38*	0.09	0.15*

The elasticities are percentage changes in downtime or occurrences for a one percent increase in alteration mandays, and are calculated at average values of the variables. A star indicates a significance of at least 80%. Two dashes indicate that the average alteration work was too small for calculation of an elasiticity.

When regarded at the system level, increased alteration work has generally had a beneficial effect on material condition, but of relatively small magnitudes; this is shown in table 15. The exceptions to this are in auxiliary systems, and are very much class specific. In any case, these results can only apply to the specific alterations accomplished during the period observed in this study.

A final point in the analysis at the system level concerns the engineering log indicators of material condition. It has not been emphasized in this section because of the relative scarcity of data on which this variable is based; the data exists for only relatively few quarters, and only for FFs. It has been used, however, in the same way as the other material condition indicators, and the results appear in appendix B. In general, the effects of repair work on log downtime are similar to the effects on CASREP total downtime. This is especially so for main propulsion, which is the only system in which repair cost is statistically significant for both variables.

CHAPTER IV

SUMMARY AND IMPLICATIONS

The main concern of this study was the effect of overhaul repair work on the postoverhaul material condition of ships. As a means to exploring this concern, a number of variables were developed from a variety of Navy data bases. A major limitation in the study was the unavailability of further data.

In particular, consistent documentation of overhaul planning estimates was unobtainable, while data on overhaul work itself, for surface ships, was awkward to work with. The most serious limitation was the dearth of direct and reliable information on material condition. We could not fully trust 3-M and UNITREP data, because of errors found therein. CASREP data is not designed to measure material condition, and provides only a proxy for it. More detailed readiness and material condition analysis will in general require better maintained and more detailed data sources.

In examining the effect of overhaul repair work on postoverhaul material condition, we used statistical methods and took into account other factors that may affect material condition, particularly crew manning levels and ship operating tempo. Though we found significant relationships between overhaul repair work and postoverhaul material condition, these limitations of the analysis should be kept in mind:

- We examined only three classes of ships: the FF-1052, DDG-2, and SSN-637 classes.
- We used a number of different indicators of material condition, because no single indicator is completely suitable.
- We could not account for the effects of morale and leadership, or for all the aspects of crew experience that may affect material condition.
- To some extent, the effectiveness of overhaul repair work depends on the material condition of a ship going into overhaul. Though we used a measure of preoverhaul material condition, it is not as precise as we would have liked.
- Some other factors which may affect postoverhaul material condition could not be measured. Particularly, these are the amount of ships force work and private vendor repair work during overhaul, restricted and technical availabilities after overhaul, and specific differences between shipyards.

- Alteration work was measured by the number of shipyard mandays involved. The purpose of an alteration, the complexity of new equipment, and the amount of work done by private contractors were not included in the analysis.
- Operating tempo was measured only by the amount of steaming. This measure is probably suitable for a ship as a whole and for main propulsion systems, but should be less accurate for auxiliary systems.

However, despite the crudeness of some of our variables, we were able to account for the critical determinants of material condition. We therefore place confidence in our fundamental results.

Our principal finding is that increased repair work did, in fact, lead to better material condition. This result holds for all three ship classes, and for a wide range of material condition measures. This outcome should answer doubts about the efficacy of overhaul work during the period examined in the study.

The return from overhaul repair work did vary among the ship classes we studied. For material condition measured by number of CASREP occurrences, maintenance downtime due to CASREPs, and UNITREP equipment status, the improvement in material condition from a ten percent increase in repair work was roughly in a range of three percent to eight percent.

It is likely that other ship classes experienced further differences in the extent of benefit. However, the strength of our basic finding suggests that all ships benefitted from overhaul repair work.

Moreover, analysis of the relationship between overhaul work and the condition of ship systems indicates that the benefits of overhaul work were general, and not confined to a few systems. However, increased alteration work and improved material condition were not always in direct association. This finding may be influenced by the specific alterations made to the ships in our analysis. Nevertheless, had we not included alteration work as an explanatory variable, the effects of repair work might have been misestimated.

Due to the impreciseness in our data specifically and in measuring material condition generally, policy implications of our analysis cannot be stated quantitatively. The primary implication is that if the amount of overhaul repair work is reduced, the material condition of ships can be expected to decline. The implication that further increases in repair work will further improve material condition probably holds, but has not been established, because current levels of overhaul work are as high or higher than

at any time covered in the study. Moreover, both of these implications must be tempered by the consideration that ship classes or types are influenced to different degrees by changes in overhaul work. Nevertheless, overhaul repair work generally has had a substantial and beneficial effect on ship material condition.

REFERENCES

- 1. American Management Systems, Inc., Analysis of the Relationship of Ship Aging to Overhaul Repair Manday Work Growth, USS Charles F. Adams (DDG-2) Class Ships, Report 2201, 17 March 1980.
- 2. American Management Systems, Inc., Overhaul Repair Manday
 Work Growth Study, USS Charles F. Adams (DDG-2) Class Ships,
 Preliminary Findings, Report 2152, 13 August 1979.
- 3. American Management Systems, Inc., Statistics Concerning
 Overhauls of USS Charles F. Adams (DDG-2) Class Ships in the
 1970s, Technical Memorandum, 26 June 1980.
- 4. ARINC Research Corp., Effect of Overhaul on Ship Equipment Condition, Publication 1808-01-0-1546, October 1976.
- 5. ARINC Research Corp., <u>Trends and Associated Causal Factors</u> for Costs of Work Performed during Naval Ship Overhauls for Selected Equipments, Publication 1669-01-TR-2186, June 1980.
- 6. ROH, Inc., Ship Overhaul Planning Effectiveness Study, May 1979.
- 7. "Ship Level Data for the Ship Overhaul Effectiveness Study by S. Craig Goodwyn, John A. Berning, Jr., Unpublished, July 1981
- 8. CNA, Memorandum 81-1115, "Data Bases from the Ship Overhaul Effectiveness Study (U)," by S. Craig Goodwyn, Unclassified, 16 Jul 1981
- 9. CNA, Research Contribution 447, "A Comparison of CASREPs and Engineering Logs in Measuring Ship Material Condition (U)," John A. Berning, Jr., Unclassified, Apr 1981

APPENDIX A
SHIP SYSTEM DEFINITIONS

APPENDIX A

SHIP SYSTEM DEFINITIONS

The systems studied in the Ship Overhaul Effectiveness Study are specifically defined in this appendix. Their definitions are complicated by two factors. One factor is that surface ships and submarines are very different types of ships. Equipments and functions of one type do not always match those of the other. Even highly comparable systems can be expected to differ somewhat in the equipments included in them.

The second factor is that different classification schemes are used to specify equipments and systems in different contexts. Shipyard work is documented by the ship work breakdown structure (SWBS) for surface ships, and more commonly by the ship system index (SSI) for submarines. Each of these uses three numerical digits of which the first specifies a broad ship area.

By contrast, maintenance and equipment casualty actions are documented using the equipment identification code (EIC). This scheme uses four digits, each alphabetic or numeric.

As a result of these two complications, the ship systems must be defined separately for surface ships and submarines, and in each case, by using both classification schemes. The definitions are given in tables A-1 through A-4. The various definitions do not match exactly, but have been made to be as close as possible.

In the tables, an expression ending in zeros and followed by an s represents the expression for any possible replacement of the zeros. For example, "AB00s" indicates any EIC in which the first two digits are "AB." Also, in tables A-3 and A-4, the word "some" is used to indicate that word descriptions were used where possible to further aid the classification.

SURFACE SHIP SYSTEMS: DEFINITION BY SHIP WORK BREAKDOWN STRUCTURE (SWBS)

System	SWBS
Whole ship	A11
Hull structure	100s, exept 101-109, 165, 170-172, 179-199
Main propulsion	200s
Propulsion shafting	243, 244, 245
Main steam piping	253
Feed and condensate	255
Propulsion boilers	221
Combustion air	251
Electrical	300s
Power generators	311
Sonar	460-464, 111, 165
Interior communications	430-433
Climate control	510-515
Refrigeration	516, 638
Distilling plant	531
Compressed air	551
Steering	561, 562

SURFACE SHIP SYSTEMS: DEFINITION BY EQUIPMENT IDENTIFICATION CODE (EIC)

System

Whole ship Hull structure

Main propulsion Propulsion shafting

Main steam piping Feed and condensate Propulsion boilers

Combustion air
Electrical
Power generators
Sonar
Interior communications

Climate control
Refrigeration
Distilling plant
Compressed air
Steering

EIC

all

AA00s, AB00s, AD00s, A000-A600s, A800-A900s B000s, C000s, F000s, K000s B400-B406, C400-C406, FE00-FE05, KD00-KD05 F700s

F300s, K300s, some K700s F100, F101, F104, some F701, some F703 F400, F401, F403

EC00s, KG00s, some 3000s, some 4000s 3000, 3100-3107, 310C-310E R000s except R500-R800s, AF00, AF01 M000s, M300s, M400s, 410E, 410F,

410G T100s, T300s, T400s T500s TK00s

TF00s, N700s some TL00s

SUBMARINE SYSTEMS: DEFINITION BY SHIP SYSTEM INDEX (SSI)

System	<u>ssi</u>
Whole ship	all
Hull structure	100s except 156, 178
Main propulsion	200s except 201.4, 236, 237, 246,
	248
Propulsion shafting	201 except 201.4, 203
Main steam piping	207, 231
Feed and condensate	208, 233
Propulsion boilers	
Combustion air	
Electrical	300s, 236
Power generators	300
Sonar	425, 426
Interior communications	438, 439
Climate control	501, 502
Refrigeration	503
Distilling plant	517, 546
Compressed air	513, 530, 540, 541
Steering	518

SUBMARINE SYSTEMS: DEFINITION BY EQUIPMENT IDENTIFICATION CODE (EIC)

System	EIC
Whole ship	all
Hull structure	AA00s, AB00s, AD00s, 1106, A000- A600s, A800-A900s
Main propulsion	AA00s, F000s, T30K, 1106
Propulsion shafting	FE00s
Main steam piping	F700s
Feed and condensate	F300s, some K700s
Propulsion boilers	
Combustion air	
Electrical	EC00s, KG00s, some 3000s, some 4000s
Power generators	3000, 3100, some 3000s
Sonar	R000s except R500-R800s, AF00, AF01
Interior communications	M000s, M300s, M400s, M700s
Climate control	T100s, T300s, T400s, some T000s
Refrigeration	T500s
Distilling plant	TK00s
Compressed air	TF00s
Steering	TLOOs except TLO8, TLOC, TLOD

APPENDIX B
STATISTICAL OUTPUT FOR SHIP CLASSES AND SYSTEMS

APPENDIX B

STATISTICAL OUTPUT FOR SHIP CLASSES AND SYSTEMS

This appendix presents the numerical results of applying, for each ship class and system, the model described in Chapter III and summarized by the equation therein. Specifically, it presents statistical estimates for the average value of each variable, and for the coefficients in the equation.

The equation, in somewhat more detail, is as follows:

$$MC = a_0 + a_1RC + a_2AC + a_3PP + a_4PQ + a_5CI + a_6ST + a_7PC + a_8AGE$$
$$+ a_9FL + a_{10}SYL1 + a_{11}SYL2 + a_{12}SYL3 + a_{13}SYP + a_{14}OH$$

With this notation, a_0 , a_1 ,..., a_{14} are the coefficients which are estimated statistically and which are shown in the tables of this appendix.

The material condition variable MC actually represents any of the indicators of material condition developed in the study. These indicators, with the notation used for them in this appendix, are as follows. The CASREP indicators are total downtime hours (CASDWN), maintenance downtime hours (CASMNT), occurrences or reports (CASREP), C3-C4 total downtime hours (C34DWN), C3-C4 maintenance downtime hours (C34MNT), and C3-C4 occurrences or reports Then there are intermediate maintenance activity hours (IMA) and ships force hours (SF). The UNITREP indicators are the overall percentage of time in a C3-C4 readiness state (UREPR), and the percentage of time for equipment in a C3-C4 readiness state (UREPE). All of the above variables are computed by month. engineering log out of commission days (ENGLOG) are by quarter. The first of the indicators from examination results is the INSURV inspection score (INSURV). Then, finally, there are the PEB examination results, both the sum (PEBS) of the fail (0) or pass (1) for the LOE and postoverhaul OPPE, and the minimum (PEBM) of These indicators do not generally all apply to each ship class and system.

The independent variables appearing on the right hand side of the equation are as follows. First there are repair cost (RC) and alteration cost (AC), both in thousands of mandays. The personnel variables are percentage of personnel in rates E5 through E9 actually onboard relative to the ship manning document requirement (PP), and the average length of service in months among those in rates E4 through E9 (PQ). The operating tempo variables are

the cold iron hours per month (CI) for the previous month, and the average of steaming hours underway per month (ST) for the previous quarter. Preoverhaul condition (PC) is a weighted sum of CASREP maintenance downtime in hours per month over the nine months prior to overhaul. The age of the ship at the end of overhaul (AGE) is in months from the commissioning date. The fleet (FL) is zero if CINCLANTFLT and one if CINCPACFLT. The type of overhaul (OH) only applies to submarines, and is one for a regular overhaul, two for a refueling overhaul. The time of the inspection in months after overhaul (IM) applies only to the surface ship INSURV inspections.

The final variables are those for shipyard, and they vary by ship class. In a few cases, a shipyard was not assigned a variable, because it did not have enough overhauls to sufficiently distinguish it. Each shipyard variable is zero unless the overhaul took place in that shipyard, in which case it is one. Table B-1 shows the values that the fleet and each of the shipyard variables will have in order to designate any particular shipyard.

TABLE 8-1
SHIPYARD VARIABLE VALUES

		FFs				DDGs				SSNs		
Shipyard	FL	SYL	SYP	FL	SYLl	SYL2	SYP	FL	SYLl	SYL2	SYL3	SYP
Norfolk				0	1	0	0	0	1	0,	0	0
Charleston	0	1	0	0	0	1	0	0	0	1	0	0
Philadelphia	0	0	0	0	0	0	U					
Portsmouth								0	0	0	1	0
Long Beach	1	0	1	1	0	0	1					
Puget Sound				1	0	0	0	1	0	0	0	1
Pearl Harbor	1	0	0	1	0	0	0	1	0	0	0	0
Mare Island								1	0	0	0	0
private yard								0	0	0	0	0

Tables B-2 through B-67 in this appendix present the fundamental statistical output from the study. Among this output, for each ship class and system, are the average values and standard deviations for each of the variables. The average values are particularly valuable for two reasons. First, they make possible direct comparison of magnitudes between systems and between ship classes. This comparison may be particularly insightful for the variables representing repair and alteration costs, personnel levels, and the indicators of material condition. Second, the average values are the values at which the elasticities in Chapter III are calculated. These elasticities will therefore represent effects on an average or typical ship.

The remaining statistical output includes the coefficients estimated for the above equation. There is a table for each ship class and system. Within each table, there is a row of coefficients for each indicator of material condition. These coefficients estimate the effects of the variables on the material condition indicators, and are the basis for computing the elasticities in Chapter III.

In parentheses below each coefficient, the absolute value for the t-statistic of the coefficient is shown. This statistic indicates the reliability of the estimated coefficient. A t-statistic of 1.3 or above indicates a statistical significance of at least 80 percent, while a value of 1.7 or above indicates a significance of at least 90 percent.

Finally, for each row of coefficients, there is given an R-squared and F-statistic. The R-squared value estimates the amount of variation in the material condition indicator explained by the equation. The F-statistic indicates the reliability with which the equation explains this amount of variation. An F-statistic of 1.9 or above indicates a statistical significance of at least 95 percent, while a value of 2.4 or above indicates a significance of at least 99 percent.

In the tables, there are a few cases of missing entries. These are caused by a variable being always zero, or by a variable being totally insignificant in its effect on a material condition indicator.

TABLE B-2

WHOLE SHIP AVERAGES

	FF-1052	SS CLASS	393-2 CLAS	5:	SSN-537	CLASS
CASDEN	058.7	643-94	628.03 (421	4.39)	810.54	1664-31
CASHNI	0	2532-3	76 (271	-	ر. د:	1221.33
CASREP	~		7.94 (2.27	8
C34DMN	84.5	0-2	76.08 (14	C	3.60	197.44
C 34 MN T	4	931.72	.59 (9	~	• 30	151-15
C34REP	9	07	1.74 (6.	02.0	46.0
X = 1		40-7	777-39 (22	~	35.53	1969-19
SF	61.1	9892.24	2-11 (23	0	71.	615.39
UREPA	~	2	.75 (~	3.52	33.25
UREPE	~	3 · 3	0 05.7	~	.85	21.11
INSURV	17.45	4) 9g•	ac.	0	0
U Z	4	1 i.e.	8.24 (1		3.61	42.19
V.	~	1.1	9.30 (6.	23.26	11.34
44	89.33	(10.10)	81.95 (9	9-503	105-29 (12-32)
0	ñ	4.7	4.93 (►.	5.73	4.15
C1	62.4	237.1	30.34 (24	~	25.60	257.85
18	?	116.6	24.25 (12		1-16	149-22
n U	13.C	3:7.7	1.40 (38		72.00	_
A CE	6	11.6	60.40 (1	~	1.40	22.17
٦,	5	¢.	.53 (5	.36	S 4 5
SYL1	7	0.3	.	4.	.23	0.42
SYL2	_		.07 (~	3	0.27
SYL3				<u></u>	.21	14.0
SYP	0.34	7.0	J	0.43)	.23	0 - 42
- TO	ور			<u>^</u>	.18	39
¥ 1	22.40	(25.6)	22-14 (10	0.62)		C

TABLE 8-3

FF-1052 CLASS WHOLE SHIP

	COMST	RC	V C	£	9	13	51	5	A GE	น	sr	SYP	3
CASOUM	WW 724052.15 -30.86 (1.3) (1.1) (4.1) R-5GUARED= .545	-52.15	-38.86 (1.1) f= 2.8		-27.10	-1.623	27.36 -27.10 -1.623 -1.296 (1.1) (0.5) (4.2) (1.0)	(0.4)		48.94 -1657. (1.2) (2.3)	-664.2 (0.8)	1056.	
CASMUT	CASMUT 310979.50 -29.00 (0.9) (2.6) (1.3) R-SQUARE: .505 F: 3.5	-79.50 (2.6) (585 F	-29.00 (1.3) ± 5.5		-23.65	6085	28.05 -23.65608580313199 (1.7) (0.7) (2.4) (1.0) (0.7)	3199 (0.7)	53.73	1.60.0	-267.6	1454.	
CASREP	CASREP 8.91510800928 (1.6) (2.8) (3.C) R-SQUARE8206 F= 4.9	1080 	0926 (3.6) F= 4.9		.00090028 (0) (0.1)		.001600610001 (2.2) (3.3) (0.2)	10001		-2-229	.1067 -2.229 -1.177 (3.1) (3.4) (1.6)	1.624	
C3484R	C348MM -838.3 -17.29 -9.804 (0.5) (1.4) (1.0) R-S0UARED= 470	-17.29	-9.804 (1.0) f= 4.2	21.80	23.18	22739377 (1.6) (2.2)		. 1852	-17.04	-176.4	-370.3	244.3	
C34AHT	C34MNT -128112.3 (1.03 (1.2 R-SQUARED: .533	-12.39 (1.2) .533	-12-39 -7-943 (1-2) (1-0) -533 F= 4-3	19.88	15.06			.2392	-9.904	-16.46	175.7	361.2	
C34REP	3	22		(1.9)	(1.8)	0002	0035	. 6005	0035 (0.33	6492 (2.7)	(2.7)	.5418	
- L	-1250. 1.012 -6.733 (0.8) (0.4) (0.8) R-SQUARES071 F= 6.0	1.012	-6.7.33 (0.8) F= 6.0	6.609	13.54	1.254	4917 (0.8)	.3249	9.557	26.40	-328.1	-169.3	
۶۶ ۳	-494512-12 -10-57 (0-4) (0-1) (0-4) R-SQUARED= .226 F= 0-7	-12-12 (0 0 1) -226	-30.57 C 0.43 F= 0.7	66.58 (1.1)	38.34	2.018 4.368		.6216	-54.40	67.16	-320.0	1205.	
UREPA R-S	A 91.615457 (1.5) (1.3) R-SQUARED393	. 5457	2871 (0.8) F= 3.9	.0213	.3508	.0026	0227	.0200		-19.90	-27.49	4.637 (0.6)	
UREPE R-	UREPE -35.9056064564 (0.7) (1.5) (1.5) R-56UARED= .326 F= 3.6	5806	58064564 (1.5) (1.5) 328 F= 3.8	.4146	1.092	.0082	.66820050	.0069	2724	-12.44	-8.028	10.10	
INSURY R-	INSURV 94.3542063281 (1-7) (1-2) (2-14 R-SQUARED» .782 F= 1.6	4206 (1-2) .782	3281 (2.13 F= 1.6	2030	7528	0059	1000 3 (6.0)	(2.0)	.5872 4.698	4.690	-1.389	1.434	-1529

TABLE B-4

DDG-2 CLASS WHOLE SHIP

RC AC PP	MM -9461, -41.12 116.79294 (1.3) (1.6) (2.1) (0) R-56UARED= .522 F= 3.7	-37.12 05.03 22.44 (2.2) (2.4) (1.2)	EP -4.1870504 .00580087 (0.7) (0.3) R-500ARED= .222 F= 0.0	C34DEM -1395, -1.643 27.52 -7.004 (0.6) (0.2) (1.6) (0.7) R-59UARED= .344	C34MM7 -12928.778 27.63 -5.189 (0.5) (1.6) (2.3) (0.8) R-SUARED402 F. 3.6	AREP17640086 .03690193 (1.7) (1.9) (1.7) R-SQUARED177 F= 4.7	1134, -3.516 -6.372 24.40 (0.4) (0.4) (2.1) (2.1) R-SQUARED= .143	-10733494 -33.52 35.06 (0.4) (0.5) (2.9) (1.7) (2.9) (R-SQUARED: .094 f= 4.3	.4791 -63621079 (2.1) (1.3) (0.7) .379 F= 2.4	E -33.0703611564 .1562 (0.5) (0.5) (0.5) (0.5) (0.6) R-S60ARED= .252 F= 0.9	.070104341249 (1.0) (0.29 (0.9)
0	98.19	79.79	-0111	19.36	9.669 .1516	. 0030	(1.0)	-11.66	.5163	.7532	1952
15	-1.259	(6.9)	.0016	.0758	.1516	.0006	(6.2)	.5011	.0055	.0093	.0059
s	1.540	(1°1) 20£-1-	0072	-1.395	(2-7)	0028	.7208	. 0472	0429	.0010	1 0.63
<u>.</u>	1.357	.9033 14.58 (2.1) · (1.0)	. 0012	. 5913	.3817	. 2.4)	.1235	(0.0)	.0051		(0-1)
4 GE	42.19	14.58	-0484	2.055	3.941	(1.7)	4.727	(1.3)	(1:1)	.0760	.0545
f.	311.4	1576.	-3990	282.6	322.5	.7596	-316.6	470.6	-22-36	1,427	(10.13
S7L1	11242.	-74-46	9794	-6.956	106.7	.5363	120.5	66.56	-8.803	(0.8)	1.250
Srr.2	-1609.	-1190-	12.003	-413.7	-353.4	-1096	366.7	182.7	9.602	14.754	
STP	-1615.	-430.0 (0.6)	(2.1)	-50.25	245.2	(0.1)	-279.6	(1.6)	(1.8)	-3.247	(2.5)
ž											.2848

TABLE B-5

SSGN-637 CLASS WHOLE SHIP

x	135.5	-435.5 (0.9)	.5435	170.8	-106.6	1660-	-1625. (3.1)	1.55.0	3.952	-7.129
118	-137	-1496.	2127 (0.7)	79.46	8.626 (0.33	.0842	35.07	19.0	20.29	6.1.)
STLS	-146.4	-318.0	5925	3.376	2.065	1078	19.77	-129.4	1.000	2.753
SYLZ	-325.8	-580.1	.3000	.3637	12-61	6673 (1-03	-191.2	190.09	12.15	1464
STLI	-374.0	-625.0		-3.410	9.216	1443	-201.5	-82-02	1.821	-1.041
ı	1752.	1479.	1.142	9.316	(1.4)	.0622	-87.36	-213.0	-4.643 C 0.63	.1475 Z.955
AGE	11.51	13.70	.0101	3.083	2.265	.0001	6.142	0433 (0)	0724 (0.3)	.1475
5	. 5393	-1.667	000.5	.0910	0767	6	5215	0196	. 3.03	.0021
2.5	1.683	1.072	.0012	.1716	.1036	.0004	. 4176	2226	0029	.0117
3	(1.5)	1036	.0004		. 0138 C 0.73	.0001	.8362	.0907	.0027	(2.0)
a	2.434	4.038	0580	1.850	1.468		19.29	15-31	1.004	-1282
ŧ	13-92	3.293	.0576	1.673		0020	2.874		°°;	.0310
¥C	3.005 (0.3) f= 5.9	3.693 (6.5) Fr 7.2	.0120 (1.4) F. 6.4	6718 (0-6) Fr 1.4	.4354 (0.5) F= 1.2	.0023 (1-1) Fr 3-0	-9-616 (1-3) F= 7.5	4.699 (1.9) Fr. 2.4	1303 (0-7) f= 2-3	0529 (0.3) F= 1.1
3	230	-2.235 (0.6) .593	1.1370056 (1.0) (1.7)	0222	23	0004	172		75.0	0147 (0-3)
CONST	796.3 -4. (0.7) (1 R-SQUARED= .556	NT 96.94 -2.235 (0.1) (0.8) R-SQUARED= .593		C34DMM -22.960 (0.1) (0.1) R-SQUARED= .212	C34NNT -49-0903 (0.3) (0.8) (0.8) (0.8)	EF .44760((1.0) (0. R-SQUARED= .051	16494 (1.0) (0. R-SQUARED= .116	-576.9 (1.1) R-SQUARED-	R-SQUARED= .300	E 9.677 (0.48 R-SQUARED=
	CASDEM R-S	CASHUT	CASREP R-SG	C34DER	C34MNI R-S	C34REP	INA R-S	SF R-S	URERR R-S	URENE R-S

TABLE B-6

HULL STRUCTURE AVERAGES

	FF-105	FF-1052 CLASS	0.06-2	CLASS	SSN-637 CLASS	CLASS
Wags			30.37		~	30.56)
ASHMT				114-069	1.72 (30.56)
ASREP		0.23)	0.05		0.00	0.05)
NAG4E:			24-9		0	6
34MNT	5.63 (0	6
34REP			10-0			6
X X X	20.17 (57.59 (148-93)
44	19.76		32.65		60.	.24
ی	1.49 (0-96	2.26	1.20)	9.89 (2.47)
2	•	3.43	ò	0.65)		2.03)
4	J	24-06	6.	(54.95)	0	6
9	·	20-91	49	17-83)		6
· 	U	235.783	325.4	242-15)	325.60 (257.85)
=	J	117-09	227	121.79)	9	149.22)
Ų	·	12-20	2.5	13-783	0.03 (6.53)
1 GE	_	12,15	161.7	21.02)		22-77)
ب	•	64-0	4.0	0-20)		7
;YL1	0.16 (0.36)	0.25 (0.43)		0.423
; YL 2	•	ô	0.1	(05.0)		0.27)
:YL3	•	6		6	0.21 (0.41)
YP	0.35 (0.46) 0.26 ((11-0		(24-0
=	0	0		60	.18	0.39)

TABLE B-7

FF-1052 CLASS HULL STRUCTURE

	CONST	3	AC	2	2	2	18	a	A GE	ı	SYL	SVP
CASOUN R-S	13.61 (6.15 9UARED-	.5422	CASOWN 13-61 .54226053 .1071 .0265 .0002 .00104176 .3385 20.07 -19-62 -29-07 (0.1) (0) (0.2) (0.1) (0) (0.1) (0) (0.5) (0.5) (0.9) R-SQUAREO*.436 F* 0.3	.1071	.0265	.0022	0100-	(0.5)	.3385	20.07	(5.0)	.29.07
CASHNT N-S	12-30 (0.1) QUARED-	-10-13 C 0-73	CASHWT 12.30 -10.13 1.4093766 .1711 .0033 .01754699 .6708 25.76 -10.16 -50.33 (0.1) (0.1) (0.1) (0.2) (0.2) (0.4) (0.4) (0.7) (1.0) (0.3) (1.9) W-50UARED41) F= 0.6	.3766	(0-3)	.0033	.0175	(2.0)	6.00	25.76	-10.16	-50-33
CASREP R-S	.0764 (0.9)	0036 (0.33	CASREP .076800360007 .00040001 .0001000100040343 .06220249 (0.9) (0.9) (0.3) (0.5) (0.5) (1.6) (0.6) (0.5) (0.4) (1.5) (0.1) (1.1) R-SQUARED .019 F 1.6	.0004	0001	-0001		0003 (0.5)	1000-	0343	.0022	0249
C3404N	24.09 (1.1) QUARE D=	-6.246	C345WW 24.09 -6.24682380963 .1921 .004e007913011945 2.299 -1.885 -11.02 (1.1) (1.4) (0.6) (0.6) (0.4) (0.6) (0.7) (0.3) (0.2) (1.4) R-SQUARED101 F= 8.8	0963	.1921	.0018	(0.4)	1301	1945 (0.7)	2.299	-1.805 (0.2)	-11-02
C36MMT R=S	23.84 (1-1) QUARED=	-6.310 (1.5) -101	C34MMT 23.84 -6.31082990945 .1923 .0049007813601919 2.349 -1.938 -11.07 (1.1) (1.5) (0.8) (1.6) (0.6) (0.4) (0.6) (0.7) (0.3) (0.2) (1.4) R-SQUARED= .101 F= 0.8	0945	. 1923	.0049	0078	1300 (0.6)	1919 C 0.73	2.349	-1.938	11.07
C34REP R-S	.0392 (1.29 QUAREO=	0084 (1-43	C34REF .0392080408010802 0 0 00002 .0008 .00410178 (1.29 (1.4) (0.1) (0.4) (1.4) (0.4) (1.4) (0.4) (1.4) (0.4) (1.6) (0) (0.5) (0.1) (0.3) (1.6) R-S0UARED= .011 F= 0.9		. 0002	0.40	(1.0)	° 6	0002	.0000	.0041	0178
INA R-S	-12-69 (0.5) QUARED=	-3.353 (0.6) .023	-12.69 -3.1535620 .10771599 .0361 .04320120 .7015 -9.567 -9.564 2.514 (0.5) (0.5) (0.6) (0.4) (0.6) (2.5) (2.4) (1.5) (0) (2.0) (1.1) (0.9) (0.3) R-50UARED= .023 F= 1.5	.1077	3599	.0361	.0432	0120 (0)	.7015	-9.567	-9.564	2.544
\$. **	38.63 (0.4)	27.12	38-63 27-12 3-207 .497224880184 .U442 .42617718 -6.506 59-80 7-951 (0.4) (1.4) (1.4) (1.5) (0.3) (0.4) (0.5) (0.6) (0.3) (1.6) (0.2) R-SQUARED= .013 f= 1.1	.4972		0164	2442	.4261		-4.506	59.80	7.951

TABLE B-8

DDG-2 CLASS HULL STRUCTURE

ST	-3.783	1.892		0.321	6.321	.0057	-7.404	3.193
2745	CASOUM 166.2 8.082 7.5645083 .4178 .0026079023255452 -42.00 -28.77 -60.84 -3.783 (1.88 (1.88 (1.0) (0.9) (1.0) (0.1) (1.6) (0.5) (1.1) (1.3) (1.2) (2.2) (0.1) R-SBUARED= .201 f = 1.0	-57.38	0660	-17.23	-17.23	C34REP .0724 .0010 .001200010005 0 0000100610166 .01430187 .0057 (1.6) (0.2) (0.2) (2.1) (0.3) (0.3) (0.3) (0.3) (0.3) (1.1) (1.3) (2.4) R-50UARED* .022 F* 1.4	-20.83 .57452367 .09730885 .028102792786 .4167 -15.00 -9.978 -12.54 -7.404 (0.8) (0.9) (1.0) (0.8) (0.8) (0.8) (0.8) (0.8) (0.8) (0.8) (0.8) (0.8)	-22.05
SYLI	-28.77	-25.10	0028	-4.351 (0.4)	-4.351 (0.4)	(1.1)	-9.978	-21.84
4	-42.00	-40.44	0428	-21.78	-21.78	0166	-15.00	-23.90
A GE	5452	5086		2420	2420	(0.3)	.4167	.7703
5	2325	2433 (0-6)	6003 C 0-4)	0700 (0.3)	0700	0001 (0.3)	2786	2.237
18	0790	0768	(0-2)	0250	0250 (1.1)	(0.3)	0279 (1.0)	0306
13	.0026	(0.2)	(1.0)	.0096	.0096	0.80	.0281	.0041
2	(0:1)	.5938	°6	2136	2136	0005	0885	2713
Ł	5083	6607	0002	0239	0239	0 0 01	.0973	1959
ĄÇ	7.564 6 0.63 Fr. 1.0	6-169 C 0-73	.0132 (0.93 F= 0.6	6061 (6.1)	6461 (0.1)	.0012 (0.23 F= 1.4	2367 (0) F= 2.6	-9.680
Ĕ	6.082	2.054	.0028 (0.3)	1001	.4001	(0.2)	.5745	.6493
COMST	160.2 (1.0) DUAREO= .	CASMWT 158.7 2.054 6.8696607 .5938 .6035076824335086 -40.44 -25.10 -57.38 (2.0) (2.0) (0.3) (0.7) (1.3) (1.6) (0.2) (0.6) (1.2) (1.2) (1.2) (2.4) R-SQUARED176	CASREP .1237 .0028 .04320002 0 0 060036003642800280660 (1.1) (0.3) (0.4) (0.3) (0) (1.0) (0.2) (0.4) (0.5) (1.1) (0.1) (2.0) R-SQUARED= .013 F= 0.8	C340WW 76.96 .4001604102392136 .0096025007002420 -21.78 -4.351 -17.23 (2.2) (0.1) (0.1) (0.2) (1.2) (1.1) (1.1) (0.3) (1.2) (1.5) (0.4) (1.5) (8.4) (1.5) (1.5) (0.4) (1.5)	C34MWT 76.96 .4001606102392[36 .0096025007002420 -21.78 -4.351 -17.23 (2.2) (0.1) (0.1) (0.2) (1.2) (1.1) (1.1) (0.3) (1.2) (1.5) (0.4) (1.5) R-50UARED# .179 F= L.4	.0724 (1.6)	-28.63 (0.8)	-33.436493 -9.60019592713 .00410306 2.237 .7703 -23.90 -21.64 -22.05 3.195 (0.2) (0.2) (0.5) (0.5) (0.4) (0.1) (0.3) (2.7) (1.0) (0.5) (0.6) (0.5) (0.1) R-SJUAREO
	CASOUR R-S	CASHBT R-S	CASREP R-SI	C340WN R-S(C34MMT R-S(C34REP R-S(18A R-56	SF R-S

	CONST	Ä	V C	£	2		st	Ę	A GE	7	SYLI	SYL	STL3	SIF	5
CASOUR R-5	3.131 (0.4) (0.4)	CASOMM 3.1311266 (0.4) (0.2) R-S@UAREO= .007 F	, u			0050	0030	-4494 -0766	.0766	-1.016	2.541	.3629	3.258	1.942	-5.003 (0.6)
CASMRT R-1	CASMRT 3.1341266 (0.4) (0.2) R-SQUARED007	1266 (0.2)	. 5670 (1.0) F. 0.4				(0.430	. 4694	.0766	-1.016	2.341	.3629	3.258	1.942	-5.003 (0.63
CASREP	.0046	.0002	(9.0)			(6.9)	(0.9) (0.1)	0003	.0002	0005	0009	7.0002	.0063	.0078	
4 1 2	120-6 (3.00 0UARED=	INA 120.6 2.705 (3.00 (0.9) R-SQUARED: .049 F	2264 (0-1) F= 3.7			.0624		. 4105	-1.459	-4.469 (0.2)	4-750 (0.3)		-29.78	16.16	(2.6)
ŞĘ	7.50% .1378		2.00.			.0015	0027	.00631119	1119	-1.514	.3199	7208 (0.63	9764	.2889	(1-1)

TABLE B-10

MAIN PROPULSION AVERAGES

	FF-1052	52 CLASS	DDG-2 CLAS	ASS	SSN-637	CLASS
CASONN	8	958.05	23.62 (15	16.2	9.7	.58
CASMNT	12	. 87	964-47 (12	41.7	62-	• 45
CASREP	53	1-71	1-96 (2-4	90-0	.26
C340MM	210.66	(485.99)	14.24 (6	00	3.12 (-
C 34MN7	52	40	+) 29-	69-5	-62	-50
C34REP	26	0.96	.53	-	.01	.12
ENGLOG	0	64-31	0		0	0
IHA	12	461-16	59-30 (11	06-3	1.38	.31
SF	98	204 8. 25	.92 (11	91.2		50.45)
PE 85	.62	0.50	1.33 (0.5	0	0
PEBM	29	0-50	•39	5		0
INSURY	•	29	60		•	6
20	9.95	(+54)	6	4.45)	.83	
A C	0.36	•	2.08		13	-
9	77.55	2	79.0	~	5.72	17-74)
9	82.06	56	9.43	• 6	72.88	-
[]	361-87	35.78	25.44 (2	42-1	25.60	57-05
ST		117-09	1 (1	21.7	91.	
PC	N	9-60	0.04 (1	63.3	4.86	15.29
A GE	۵	12-15	1.72 (1.0	94.	•
I	0.59	63	Į,		.36	-
SYLI	0-16	36	52	4	-23	•
SYLZ	0		2	2	96.	
SYL 3				6	-21	_
SYP	0-35	646	0.26 (0.443	0.23 (0.42)
¥ 5	•	0) 0		6	•
	23-45	(%-75)	21.42 (11-81)		

TABLE B-11

FF-1052 CLASS MAIN PROPULSION

	COMST	3	¥	Ł	2	5	51	2	A GE	5	STL	STF	=
CASBUN R-S	4 312.4 -60.31 (0.4) (1.6) R-SQUARED536	-60.31 (1.6) .536	91-40 (0-5) F= L-4	(5.0.)		0949	.0339	.7223	6.900	17.07	-314-1	(9.6)	
CASHRT R-S	MT 240.8 -70.87 80.40 (0.4) (2.2) (0.6) R-SQUAREOR .559 F= 2.3	-70.17 (2.2) .559	80.40 (0.6) F= 2.3	(0-2)	1.643		2471	. 3581	10.54	217.6	-206.5	102.6	
CASREP R-S	EP 1.1480960 (1.4) (2.5) A-SQUARED= .092	0960		0065	.0002		(0.2) (2.9)	.0005	.0316	3679		.5586	
C3 404H	461.2 C 1-23	4.0	(111.7	1.036	-2.244	.0121	.0218	. 1748	5.666	93.04	(6-1)	-42.11	
C3488T	MT 416-6 -52.88 (1.17 (3.0) R-SQUARED= .526 F	-52.18 (3.0) .526	101.7 (1.3) F= 2.0	-1.226	-2.597	.0070	.0159 .0235 (0-1) (0-1)	. 0235	(1.3)	121-0	-138.2	-54.19	
C34REP R-S	1EP .30040714 (0.61 (3.4) R-SQUARED= .082 F	0714	.0994 (1.0) Fr 5.6	0003	.0001		(0.2) (3.1)	(1.0)	.0178	11163	2879	.2711	٠
)S-8 8019#3	08 1152, -14.81 (3.5) (1.5) R-SQUARED: -493	-14.81	-19.79 (0.4) F= 6.8	2572	-4.822 (2.7)	2001	.6469	.9137	-2.857 (0.7)	57.65	-6.536	19.99	
INA R-S	-337.4 2.213 (1.3) (0.2) R-SQUARED: .076 F	2.213	85.87 (1.8)	1.628	19567	.3589	.0330	(1.0)	3.433	-126.0	107.1	95.11	
SF #= 5	-51-14 -94.30 (0) (1.6) R-SQUARED= .111 F	-94.30 (1.6)	-251.6	4.874 (0.6)	-7.457 (0.7)	(0.7)	.0196	-2148	25.52	423.6 (1.2)	-36.93	-166.5	
PEBS R-S	-2.159 .1530 (0.8) (2.2) R-SQUARED= .744	(2.2)	.5016 (0-7) F= 2.4	.0059	.0068	.0020	.0005	0011	0024	5701	1.329	1.312	
PE BM	-3.159 .1530 (1.2) (2.2) R-SQUARED: .744 F	(2.2)	.5016 (0.71 F= 2.4	.0059	.0068	.0020	.0005	0011	1200-	5701	(2.6)	(1.5)	
Neuser Nes-R	5.416 4.23 IARE D=	1574	1574 .9245 (3.41 (5.2) .880 Fm 9.8	.0293	9620-	0026	0018	. 00 51	.0114			5633	.0195

TABLE B-12

DDG-2 CLASS MAIN PROPULSION

	COMST	BC	V C	ŧ	2	CI	SI	2	4 6£	7	STLI	SFLZ	57.5	R.
CASBUN R-S	HH -732.5 (0.5) R-SQUARED	(0.3)	-226.7 (1.9) f= 2.7	(3.25	11.64	.3383	1,447	2,135	(0.1)	-593.4	-165.4	-152.1	143.5	
CASHBI R-S	N1 -279.7 (0.2) R-SQUARED=	26.36	-277.8 (2-7) F: 3.0	39,33	(2-1)	(1.2)	9721	2.005	-3.396	-465.5	-167.0	-94.09 (0.3)	245.8	
CASREP R-S	EF 1.0.1 (0.7) R-SQUARED#	0213 (0.5)	1.1.1	.0363		.0005		(6·1) 100-	(1.3)		5162	(0.2)	(0 0)	
C34048	48 610.2 (1.23 R-SQUARED	-17.66	19.23	1.694	1.351	.1156		.4594	. 5673	-30.72	42.53	-92.67	\$6.43	
C34MMT R=S	NT 395.8 (0.9) R-SQUARED=	13.29	6.938 (0.23 F= 3.2	-1-444	3.005	.1172		.4959	5055	-26.40	-6.668 (0.1)	-80.70 C 0.83	79.71	
C34REP R-S	EP .5960 (0.8) R-SQUARED	0166	.0103 (0.5) F= 3.3	1.0055	.0029	.0004		.0004	.0029	(1.0)	.0825	560	.0441	
INA R-S	10 57. (1-39 R-50UARED	25.35 (1.4) .161	5.653 (0.1) f= 6.1	-7.191	(0.0)	1.224	0347	. 3451	1.684	(£-2)	.74.16	136.9	(1.0)	
Sf R*S	-1402. (1.99 R-SQUARED=	17.57 (1.0)	-62-39 (1.23 F= 1.8	3.162	-3115	.1480	(0.43	. 2623	6.218	107.9	228.1	309.7	281.6	
PEBS R-S	5.844 (2.2) R-59UARED=	1152 (1.1) -812	.0612 (0.5) F= 4.5	.0367	0388	.0005	0020	0013 (1.03	0036	1781 (0.2)	(5.0)	6257	.1738	
PEBN R-S	4.008 (2.0) R-SQUARED=	0956	.0032 (0) F= 1.9	.0349	0238	.0008		0089		-1962	5521	6723 (1-7)	.1748	
TRSURY F-S	RV 2.559 (0.9) R-50UARED=	0223 (1.53	.1469 (1-3) f= 2.5	.0105	.0227		.0026	.0006	C 0.73	10000	1096		.0226	.0136

TABLE B-13

SSN-637 CLASS MAIN PROPULSION

	COMSI	380	¥C	ŧ	0	5	ST	.	A 6E	7	SYLI	SYLZ	SFL3	STP	Ö
CA SOUR	6.55 C 0.1	-10-36	3.524 (6.13 F= 3.8	13.524 1.0730646 .0026 .0792 -1.9167901 130.6 -29.33 82.67 -74.39 (0646	.0026	.0792	-1.916	(0.6)	130.6	-29.33	82.67 (1.6)	-74.39	-141.6	64.50
CASBNT R-S	CASHNT 32.38 -11-40 (0.4) (2.3) R-SQUAREO= .436	-11-44 (2-3)		.0832 .760E0314 .0036 .0772 -2.1756386 130.4 -27.12 89.73 -71.40 -166.4 (0.0) (0.3) (0.0) (0.2) (1.9) (4.3) (0.5) (3.0) (0.0) (1.0) (2.0) (5.0) (5.0)	0314	.0036	.0772	-2.175	.6386	130.4	-27.12	69.73	-71.40	-166.4	66.06
CASREP R-S	0911 (1.1)	005 (L.3) .033	CASREP09110059 .0030 .0047 (1.1) (1.3) (0.1) (2.0) R-SQUARED=.033 f= 2.3	.0047	(1.3)	°6 J	(0.5)	(0.13	0029 0 0 0 -0003 .06870145 .027004360310 (1.3) (0.5) (0.2) (2.1) (0.5) (0.6) (1.9) (1.5)	.0687	0145	.0270	0636	0310 (1-p)	(9.0)
C34 DMM	C34DWN -62.25 (2.3) R-SQUAREG=	.101	-62.25 .8352 .8899 .0139 .7645 .0081 .0027 .1695 .0175 -6.337 -2.445 -9.089 -5.361 (2.33 (0.9) (0.2) (0.1) (2.4) (1.6) (0.3) (1.6) (0.1) (1.0) (0.4) (1.0) (0.8) R-SQUAREG= .101 F= 1.4	. 01.39	.7665	.0081	.0027	.1695	.0175	(0.1)	-2-645	. 1.05	-5.361	(1.7)	-3.331
C34MMT R-S	C34MMT -54.86 .8291 . (2.2) (1.0) (R-SQUARED= .136 F=	.8291 (1.0) -136	5920 (0.13 F= 1.2	.59200037 .6419 .0074 .0051 .1133 .0194 -4.0926143 -7.425 -2.020 (0.1) (0.1) (0.1) (0.1) (0.9) (1.5) F= 8.2	.6419	.0074	.0051	.1133	.0194	-4.092	6143 (0.1)	-7.425 (0.9)	-2.620	11.10 -2.241	-2-
34REP R-S	34REP0364 -0006 (0.4) (0.3) (R-SQUARED= -016 F=	. 000 (. 0.3)	1 .0114 .0002 (1.0) (0.7) F= 2.1	.0002	.0007	6 0.13	(1:1)	° 6	.0007 . 0 000030202035003620265 .3185 .4136 (0.9) (0.1) (1.1) (1.3) (0.4)	0202	0230	0362	0265	.x165	30
# F F S	-93.22 -19.28 (0.33 (2.0) R-SQUAREU= .030	-19.28 (2.03	33.58 (0.69 f= 2.1	33.51 .7322 (0.69 (0.7) f= 2.1	6.520	.0352	.0172	3009 (0.2)	6.520 .0352 .01723009 .5594 -100.6 -69.19 29.64 -131.9 -57.17 -97.33 (1.9) (0.5) (0.2) (1.4) (1.0) , 0.3) (1.9) (0.7)	-100.6	(1-0)	29.64	-131.9	-57.17	26-
72 S-F	29.67 (1.03	.0112 (0.9)	29-67 -8112 -10-370480 -0514 -00170896 -01120317 .8568 9-965 2-714 12-67 -2-074 -10-68 (1-0) (0.9) (2.1) (0.4) (0.2) (0.3) (0.4) (0.1) (0.1) (0.1) (0.1) (1.6) (0.3) (1.9) (0.3) (0.8) (0.8) (0.8)	.0480	.0514	(0.3)	0090	(0.13	-0317	. 0.13	63	2.714 (0.3)	(6.1.)	-2.074	= 0

TABLE B-14

PROPULSION SHAFTING AVERAGES

	FF-105	FF-1052 CLASS	006-2 CLASS	CLASS	SSN-637 CLASS	CLASS
ASOKA	11.87 (80-11)	10.81	68.78)		60.50)
ASHNT	7.52 (57.75)	10-59 (68.38)) 20-4	49-36)
ASREP	0.02 (0.03 €	0.16)		0.193
34048	3.95 (37.86)		5-92)
34MNT	1.50 (37.083		5.92)
34REP	0.01			0.13)		0.03)
4	2-52 (40-703		67-29)
•	1.10			39.92)		3.63)
U	99-0	0.32)	1-31 (0.66)	3.06 (1-09)
Ü			0	6		6
•	82.51 (63.74 (12.24)	105.77 (16.65)
•			81.34 (11.383		5.59)
_			325.44 (242 - 15)		257.85)
.				121.79)		149-22)
ü	1.57 (7-94)		0-083		4.48)
95	99.99	12.15)	161.72 (21.02)		22-17)
				0.50		0-483
7L 1	91.0		0.25 (0.43)		0.62)
7L 2			0.10	0-30)		0.273
7L3				60		0.41)
Y P	0.35 (0.46)	0.26 (0.44)	0.23 (0.42)
*	0	6	0	60		0-39)

TABLE B-15

FF-1052 CLASS PROPULSION SHAFTING

	CONST	3 C	ĄÇ	ŧ	2	73	25	ST PC	AGE	r.	SYL	SYP
CASDUN	0846 C 03 SQUARED=	CASDMM0846 -15.36 (0) (1.7) R-SQUARED= .318 F= 1.7	1°1 =		1.021	.0081	.0375	2890	-1.162 1.021 .0081 .03752890 .7121 6.242 8.281 -23.32 (1.9) (2.3) (0.4) (1.2) (0.5) (1.5) (0.4) (0.4) (1.6)	6.242	8.281 (0.4)	-23.32
CASMUT	.8381 (00 SQUARE 0=	CASHNT .0381 4.470 (00 (0.3) R-SQUANE 0= .177 F= 8.5			.0597	.0134	.0227	1418	1053 .0597 .0134 .02271418 .0672 -7.201 -6.008 -2.960 (0.3) (0.3) (0.5) (0.5) (0.3)	-7.201 (0.6)	-6.008 (0.5)	-2.960
CASREP	.0874 (1.43 SQUARED=	CASREP .08740083 (1.4) (0.4) R-SQUARED= .007 F= 0.6	9 0 E	0002	0003 C 0.63	(0.63	(0.1)	0002	00020003 0 00002000203000026 .0003 (0.4) (0.4) (0.4) (0.4) (0.4) (0.6) (0.1) (0.6)	0300	0026	.0083
C3404H	-1.182 (0) SOUARED=	C34DWM -1-182 -6.348 (0) (0.5) R-SQUARED= .360 F= 0.4	• 0 .	.1182 .0461 .003700772217 .0519 -12.42 -3.189 2.862 (0.6) (0.2) (0.7) (0.4) (0.6) (0.2) (1.4) (0.3) (0.3)	.0461	.0037	(0.4)	2217	.0519	-12.42	-3.169	2.882
C34MMT	.9712 (0.1) Sauareo .	C34MMT .9712 -1.744 .0428 .0216 0 -01051151 .0243 -5.065 -1.672 1.603 (0.1) (0.1) (0.7) (1.0) (0.4) (0.7) (1.0) (1.0) (1.7) (1.5) (0.4) (0.7) (1.0) (1.0)		.0428	.0216	° 6	0105	1151	.0243	-5.085	-1.672	1.803
C34REP	.0125 (0.3) SOUAREO*	C34REP .u1250.7 (0.3) (0.5) R-S0UARED: .014 F= 1.5			.0064	(1.7)	(2.0)	0006	0003 .0064 6 '00006000103640066 .0120 (1.2) (1.5) (1.7) (0.2) (1.4) (0.3) (2.8) (0.5) (1.2)	0304	0666	.0120
# H	6.759 (0.98 SQUARED=	6.7599563 (0.98 (0.3) R-SQUARED= .014 F= 0.7	i 0.7		0180 C 0-33	.0019	0900-	0854	01670180 .001900600854 .0273 -1.6679744 -1.862 (0.4) (0.4) (0.4) (0.9) (0.4) (0.9) (0.9)	1.667	.9744	-1.862 (0.9)
72	1.095	SF 1.095 .1523 (0.4) (0.1) BECOMMENDED OF B. C. B. C		.02630135 0000601540104 .69064671 -1.614 (1.6) (0.6) (0.3) (0.5) (0.4) (0.9) (0.5) (2.5)	0135	° 6	0004	0154	0104	.6906	1.4671	-1.614

TABLE B-16

DDG~2 CLASS PROPULSION SHAFTING

	COMST	3	A C	2	5	15	SŦ	2	A GE	7	STLI	STL2	SYP
CASBUR R-S	14-53 (0-9)	CASOWN 24.93 6.3513149 .33460161 .0213 87.431767 -8.967 -1.919 -22.50 13.74 (0.8) (0.9) (0.9) (0.5) (1.3) (1.1) (1.1) (1.1) (1.3) (1.1)	* 1:0	3149	.3346	0161	(0.0)	87.43	10.83	1964	1.919	-22.50	13.7
CASMII N-S	14.25 (4.41 (9.48	CASMWI 34.25 6.1911519 -1616 -0166 .0208 86.51 -1665 -0.426 -2.615 -22.45 11.21 (d.91 (0.9) (0.6) (0.7) (1.5) (0.7) (1.9) (0.8) (0.6) (0.21 (1.1) (1.0) R-SQUARCO= .136 F= 1.0	3:	. 35 39	.3616	9910-	. 0208	86.53	1665	-8-426	-2.635	-22.45	2.57
CASREP R-S	.0315 (0.5)	CASREF .03150055 (p.5) (0.5) R-SOUAREO= .011 F= 0.7	?	.0005	.0006	(9.0)	0001	. 0715	1.0004	.0128	.0005 .0006 00004 .07150004 .0128 .0196 .0254 .0058 (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5)	.0254	200.
C34BW#	16-01 (0-7) (0-7)	C348WH 16.01 1.714 .2194 -12110028 .0098 -5.6951401 2.759 6.490 -2.489 2.692 (4.7) (4.7) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4)	# 60 S	.2194	1211	(1°0)	.0096	.5.695	1401	2.759	6.490	(0.3)	2.69.2
C SANNI R-S	13.57 (0.6) BUARED=	C34MNI 13.57 1.594 .230210950033 .0092 -6.1661324 2.892 5.569 -2.310 2.567 (0.6) (0.6) (0.4) (8.4) (0.6) (0.5) (0.5) (1.2) (1.2) (0.4) (0.9) (3.2) (0.4) R-SBUAREDs .136 f= 0.5	# O #	.2302	1095	(0.5)	.0092	-6-168 (0.2)	.1324	2.892	5.569	(3.2)	2.50 (0.6
C348EP 8-5	.0615 (1.1) quareo-	C34MEP .06150100 .08040004 0 007220003 .0249 .0101 .0233013 (1.1) (1.1) (2.0) (1.1) (0.2) (0.9) (1.2) (1.2) (1.4) (0.7) (1.1) (0.9) A-SQUANEO016 F= &-1	1	.0804	0004	(0.2)	(6.9)		0003	(1.4)	.0101	.0233	.013
2 T T T T T T T T T T T T T T T T T T T	.7045 (0) (9UARED=	FMA .7045 -4.240 .31130098 .0167 .0078 11.6707893775 1.507 .8796 -1.594 (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5)	* 1.2	.3113	0098	.0167	.0078	11.67	.0769	.3775	1.307	.0796	-1.59
Sf R-S	-10.68 (0.6) QUARED=	-10.68 .2251 (0.6) (0.1) R-SQUARED= .016 F= 1.4	7 · 7		0857	.0027	0139	32.19	.0908	3.137	.08860857 .00270139 32.19 .0908 3.137 7.620 7.5028613 (0.7) (0.6) (0.6) (1.0) (1.6) (1.1) (0.6) (1.7) (3.1) (3.2)	(1.1)	

TABLE B-17

SSN-637 CLASS PROPULSION SHAFTING

CHAST RC 4C 4C PP PQ CI SI PC AGE FL SYLI SYLZ SYLZ SYLZ SYLZ SYLZ CHAST CI.23 (1.25)	5	3.536	.5612	.0048	.5794	.5794	.0032	2.296	-3.265
COUNTY RC AC PP PO CI ST PC AGE FL STLL STLLS STLLS R-SQUARED354 F = 4.2 R-SQUARED355 F = 4.2 R-SQUARED354 F = 4.3 R-SQUARED355 C -355 C		-27.34	-36.80	0035	2111 (0.3)	2111	0012	-6.788 (0.8)	.7209
COMST RC 4C PP PQ CI ST PC AGE FL STLIS STLOSS (0.5) (STL 3	11.19	-15.21	0028 (0.2)		0944		2.592 (0.3)	.5528
COMST RC 4C PP PQ CI SI PC AGE FL STL1 SBUM 66-18 -8-329 \$5660 -1.099 .86000048 -3.051 -0.0596 25.65 -6.530 R-SQUARED -354 F = 4.2 S-31	SYLZ	10.41	14.65	.0015	.3000	3000	0016	4.973 C 0.43	.0763
SBUN 66.18	SYLI	-6.530 (0.5)	-7-776 (0.6)	.0128	.7809	.7809	.0043	10.27	.4506
SBWN 66.18	i.	25.65	28-17	.0116	.3225	.3225	.0018	9.164	0619
SBUN 66.18	A GE	0596	.0731	0001	0126 (0.4)	0126	0001	3057 (1.0)	-0547 (3.1)
SBWH 66.18 -0.529 54601.099 .8600 0040 0063 (1.5) (1.5) (0.5) (1.5) (1.1) (0.7) (0.4) R-SQUARED= .354 F= 4.2	S.	-3.851	-4.392	.0003	0062	0062	(0.1)	0663	.0114
SBUM 66.18	ST	0063 (0.4)	0163	(9.0)	0003	00 63	(0.2)	.0040	0809
SBUN 66.18	5	(2.0)	0016	(1.2)	.0004	.0004	(0.5)	.0115	.0006
SBWH 66.16	2	.8600	1.024	0007	0500	(1.2)	0003	5071	.0801
SBUN 66.16 -8.529 5460. (1.5) (1.5) (0.5) R-SQUARED. 354 F= 4.2 SREF (2.4) (2.2) (0.9) R-SQUARED. 394 F= 0.9 R-SQUARED. 0.03 (0.1) R-SQUARED. 0.05 F= 0.6 4MM 7 7550 0.440 79.23 R-SQUARED. 0.09 F= 0.6 4MEP 0.004 0.0002 4355 C 0.1) (0.1) (0.1) R-SQUARED. 0.09 F= 0.6 C 0.3 (0.1) (0.1) C 0.1	Ł	1.099	-1-473	-0014	.0269	-0260	.0001	.2622	0012
SBUN 66-18 -8-529 R-SQUARED= -354 R-SQUARED= -354 SREP -0.271 (2.2) R-SQUARED= -0.015 G-33 (0.1) R-SQUARED= -0.00 AREP -0.004 C-33 (0.1) R-SQUARED= -0.00 R-SQUARED= -0.00 AREP -0.004 C-3.004 C-4.00 R-SQUARED= -0.00 AREP -0.004 C-4.00 R-SQUARED= -0.00 AREP -0.004 C-4.00 AREP -0.008 AREP -0.008	Ç	\$460. (0.5)	7047. (0-9)	-1-648 (0.1) F= 1-6	79.23 (0.1) F= 0.6	79.23 (0.13 f= 0.6	.4358 (6.1)	-3250. (0.4) F= 1.2	-79-09 (0.2) F= 2.1
SWIT (1.5) R-SQUARED= (1.7) R-SQUARED= (1.7) R-SQUARED= (1.7) R-SQUARED= (1.7) R-SQUARED= (1.7) R-SQUARED= (1.7) (1		-6.529	11.48		.00460	92	-0002	5.050	0083 (0)
2	COMST	66-16 (1-5) BUARE 0-	92.61 (2.4) BUAREO=	0717 (1.73 BUARED=	. 7550 (0.3)	. 7550 (0.3) PUARED= .	. 004.1 (0.3) tuare D=	14.40 (0.4) BUARED*	-5.24800 (2.9) (R-SQUARED= .033
		CASBUN R-S	CASMUT R-S	CASREP R-S	C340HB	C 34MMT	CS LREP R-S(INA R-S	SF R-S6

TABLE 8-18

MAIN STEAM PIPING AVERAGES

	FF-1052 CLASS	CLASS	006-2 CLASS	CLASS	SSN-637 CLASS	CLASS
	12.52 (78.14)	50.88 (78.6	3,36	5.6
CASHNT	10.74	73-24)		159.54)		44.7
CASREP	0.04	0.22)	0-10 (0.343	0.00	
NEGRE	1.04 (41.18)	6	95.52)	1.31	27.5
とかばない	3.64 (36.673	14.26 (9.		26.5
C34REP	0-02 (9	0.24)	0	0
•	19.00 €	90-9	194-94	0.3	45.29 (490.9
- L	·	237-88)	-	8		31.9
ر د	0.75 (0.41)	0	0.68)	1.34 (0.68
U	0.06	0-11)	60-	0.123		
4	77.55 (12.27)		9.10)		=
0	82.86 (v	_	•	72.88 (_
<u></u>	J	25	325.44 (2		25
21	u	117.093		121.79)	211.16	169.22
ر د	2-89 (-	2.95 (6		
AGE	99.99		N	-		23
ر	0.99 (0.493	0.45 (0.50)	0.36 (9
SYLI		0.36)	Ň	0.433		0
SYL2	0	60		0.30)		12.0
5 Y L 3	0	6		6	0.21 (, 🗪
SYP	0.35 (C+ 48)	0.26 ((14.0		9
2	-	~	c	6		•

TABLE B-19

FF-1052 CLASS MAIN STEAM PIPING

	CONST	36	¥C	ě	ē	ני	75	5	₽ 6€	ಚ	SYL	SYF
CA SDUN	-3.237 (0-1)	.7099	CASDWM -3.237 .7099 -10.390285 .041300120082 .1308 .1099 .2113 -2.994 27.24 (0.1b (0.1b (0) (0.2b (0.1) (0.1) (0.3) (0.3) (0.2) (1.9) (1.9) (R-SQUARED* .193	0285	.0413	0012 (0.1)	0082 (0.3)	.1308	.1099	.2113	-2.994 (0.2)	27.24
CASANT R-1	-6.799 (0.1)	-1.230 (0.1)	CASHNT -6.799 -1.230 -11.45 .2110104800470061 .0533 .0617 1.4623808 24.62 (0.1) (0.1) (0.2) (0.3) (0.2) (0.4) (0.2) (0.1) (0.1) (0.1) (1.7) R-SQUARED=.226 F= 1.0	-2116	-1048	0047	0061	.0533	.0617	1.402	.3608	24.62
CASREP R-1	3489 (0.5) (9uareo=	0430 (1.5)	CASREP24690430 .0436 .0805 0 0 0 .0036 .001002010029 .0366 (0.5) (0.5) (.0005	°a J	(0.3)	(0.5)	.0036	.0010	0201 (0.7)	0029	_0366 (_1.4)
C340NN	32.05 (1.7) (1.7)	-2.299 (0.4)	СЗ4DHW 32.D5 -2.299 24.9510611130 .00050062 .40551064 -7.835 -3.471 6.649 (1.7b (0.4) (1.4) (0.9) (0.7) (0.1) (0.4) (3.0) (0.6) (1.5) (3.7) (1.4) R-SQUARED# .021 F= 1.8		1130 (0.7)	(0.1)	0062	. 4055		-7.835	-3-471	
C34MKT	30-64 (1-8)	-2.779 (0.6) -015	C34MKT 30.64 -2.779 16.7810311071 .00658047 .21640962 -6.330 -3.403 5.463 (1.8) (0.6) (1.2) (1.0) (0.8) (0.1) (0.4) (1.8) (0.6) (1.3) (0.7) (1.2) M-SQUARED= 015 F= R.2	(1.0)	. 1071	.0065		.2184		-6.330	-3.403	5.663
C 34REP R-5	. 1193 (1.6)	0322 (1.4)	C34REP .11930322 .002800050007 00001 .0028 .00040226 .0020 .0243 (1.4) (1.4) (1.1) (1.0) (0) (0.0) (4.8) (0.5) (1.0) (0.1) (1.2) R-SQUARED .040 F= 3.4	0005	0007	98		. 0028	.000.	0226	.0020	.0243
1 1 A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-26.48 (0.8)	12-05	-26-48 12-05 30-91 .1377 .3121 .02460169 .07710189 -15.23 -6.360 13.53 (0.8) (1.3) (1.6) (0.7) (1.1) (2.2) (0.7) (0.3) (0.1) (1.6) (0.9) (1.6) A-SQUARED= .029 F= 1.4	.1377	.3121	.0246	0169	. 0.31		-15.23	-6.364	(1.6)
SF R-1	117.2 (1.0)	17.93	117.2 17.93 134.3 .23144062011911064131 -1.110 -26.00 -9.717 35.23 (1.4) (0.6) (1.3) (0.3) (1.3) (1.3) (0.3) (1.2) (1.5) (0.3) (1.2) (1.5) (0.5) (0.3) (1.2)	.2314	.4062	0119 (0.3)	1106	41 31 C 0.53	(1.110	-26.80	-9.717 (0.3)	35.23

TABLE B-20

DDG-2 CLASS MAIN STEAM PIPING

	CONSI	2	AC	å	2	CI	21	J.	A 6E	ı	2748	2745	SFP
CASOUM R-S	133.0 (1.00 QUAREO=	-36-27 (0-9)	CASOWM 133.0 -36.27 -128.2 -1.933 1.745 .04251168 .4028 .0685 26.84 90.51 7.173 (1.08 (1.08 (0.9) (1.08 (1.0) (1.1) (1.8) (1.7) (0.3) (0.1) (0.5) (1.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1)	-1.931	(1.1)	.0425	.1168	.4028	.0485	26.84 (0.5)	90.51 (1.1)	7.173	13.45
CASHK!	95.79 (0.8) QUARED=	-63-12 (1.8) .373	CASHMI 95.79 -63.12 -109.99692 1.279 .0471177 .6473 .0991 45.24 113.1 4.557 -11.64 (0.8) (1.8) (1.0) (0.6) (0.9) (1.9) (0.6) (0.1) (0.9) (1.7) (0.1) (0.3) R-5QUARED= .373 F= 1.8	9492	1.279		(1.9)	(0.6)	.0991	42.24 (0.9)	113.1	4,557 (0.1)	11.64
CASREP R-S	.1779 (1.13 (1.13)	0092 (0.2)	CASREP .1779D0922044 (0012 .00010002 .00050575034703450222 (L.1) (0.2) (1.4) (0) (0.6) (1.3) (1.3) (0.2) (0.6) (0.4) (0.6) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4)	°°°	0012	.0001	0002	.0003	.0005	(0.93	0307 (0.4)	0365	(0.4)
C34DUN	.1762 (0) Quareb=	6.449 (0.4)	C340NW .1782 6.449 34.3699fe 1.096 .0244073907330268 -15.01 -20.28 -2.614 16.80 (0) (0) (0.4) (0.21 (1.6) (1.9) (1.9) (0.1) (0.1) (0.6) (0.6) (0.1) (0.9) (0.5) (0.6) (0.1) (0.9) (0.5)	3766-	1-096	.0244	0739	(0.1)	0268	15.01	-20.28	-2.614	16.80
C34MMT R-5	30.95 (0.5) (04.5)	15.20	C34MMT 50.95 -15.20 9.33C6026 .5626 .02920504 .1200 .0036 4.467 6.147 -7.175 6.259 (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5)	6026	.5628	.0292	0504	.1200	.0038	4.467	6-147	-7.175 (0.5)	6.259
C34REP	.0451 (0.3)	.0078 (0.3)	C34REP .0451 .0078 .03670011 .0014 .000100020002 004690650 .0049 .0278 (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1)	(1.0)	.0014	. 69:1	0002	0002	(0-13	0409 C 1.03	(1.1)	.0049	.0278
INA R-S	19.09 (0.2) GUARED=	16.54 (0.0)	19.09 16.54 21.76 .19240817 .05950446 2.5441034 -16.49 -20.50 4.767 23.08 (0.2) (0.2) (0.3) (0.3) (0.1) (2.1) (0.4) (3.9) (0.2) (0.6) (0.5) (0.5) (1.0) 4.504RED= .054 F× E-6	.1928		.0595	0446	2.544	1034	16.49	-20-50	4.767 (b.2)	23.06
5	5.046 (0.2)	4.501	\$F 5.044 -4.501 -2.9740781 .0017 00158 .1464 .1102 2.403 10.24 7.108 1.377 (0.2) (1.1) (0.2) (0.5) (0.5) (1.5) (1.4) (0.4) (0.3) (1.4) (0.5) (1.4) (0.5)	0701 (0.5)	.0017	•6	0158	. 1464	.1102	2.403	10.24	7.108	1.377 (0.3)

TABLE B-21

SSN-637 CLASS MAIN STEAM PIPING

3	(0.2)	1.606	.0014	-2.619	-2.441	°G	140.3	16.91
55	2481 .0274 .6047 .00121657 .0987 14.892666 2.965 -5.821 -8796 -4.724 (0.3) (0.3) (0.5) (0.9) (0.2)	.0264 .0041 .00101719 .0972 14.692465 3.004 -4.974 -8.903 -4.604 (0) (0.9) (0.1) (0.1) (0.3) (1.3) (0) (0.2) (0.5) (0.2) (0.2)	F= 0.6 (0.1) (0.1) (0.4) (0.5) (0.5) (1.3) (0.3) (0.5) (0.7) (0.9)	0608 .6043 .0059 .00892208 .0821 -2.828 .3963 -3.748 .0452 8.601 -2.619 (0-7) (2-2) (1.8) (1.1) (0.3) (0.4) (0.5) (0.1) (0.5) (0) (1.6) (0.2)	.5825 .0054 .08882132 .8781 -2.733 .3770 -3.570 .0629 8.271 -2.441 (2.2) (1.7) (1.1) (0.3) (0.4) (0.5) (0.1) (0.5) (0.5) (0.5)	.0062 0	3.875 .0199 .6115 1.442 1.770 -85.58 -94.26 -30.37 -100.2 -20.79 -140.3 (1.2) (0.3) (0.1) (0.7) (1.3) (1.6) (0.5) (1.7) (0.5) (1.0)	019233810062001901404349 -4.424 -1.9257643 2.4063354 14.91 (1.2) (1.2) (1.6) (1.5) (0.3) (0.3) (0.6) (2.6) (2.1)
SYL3	-5.821	-4-974 (0.5)	0038 (0.7)	.0452	(0)		-100.2	2.406
SYL2	2.965	3.004	.0024	-3.748	-3.570	0 .0005 0 0 ~.4004 00032000100310006 (0.1) (0.1) (0.2) (0.2)	-36.37	(0.13
STL1	2666	2465	0016 (0.5)	.3963	.3770	1000-	-94.26	-1.925
7	16.69	14.69	.0079	-2.028	-2.733	0032	-83.58 (1.3)	4-454
A GE	.0967	.0972	0001	.0621	(1.0)	6	1.770	(2.6)
2	1657		0003	2208	2132	0004	1.442	
15	.0012	.0010	0.00	.0089	.0088	(1.1)	.6115	0019
5	.6047	.0041	(1.4)	.0059	.0054	(1:0)	.0199	0062
2	.0274	.0264	(0.1)	.6043	.5825	.0005	3.675	3361
t	2481	(0-3)	6 0.13			(0.1)	.7356	0192
VC	ř.		:	1.0	:	:	•	f= 1.5
) M	CASBAN 26.36 -4.220 (1.1) (0.7) R-SQUARED 413 F=	CASMNT 26.07 -4.244 (1-1) (0.7) R-SOWARED= 421 F=	REP .01350017 (0.6) (0.5) A-SQUARED* .008 F=	C34DWW -40.38 3.503 (2.0) (1.2) R-50UARED= .276 F=	C34MNT -46.46 3.446 (2.0) (1.1) R-SQUARED= .207 F=	C34REP0425 .0032 (2.3) (1.5) R-SQUARED= .015 F=	-154.6 -34.71 (0.3) (1.0) R-SQUARED: -812 F=	20
CONST	26.36 (1.1) DUARE D-	26.97 (1-1)	CASREP .0135 (0.03 4-SQUARED:	-46.38 (2.6) BUARED	-46.46 (2.0)	0425 (2.3) BUARED-	-154.6 (0-5)	47.18 2. (2.6) (1. R-SQUAREO= .U20
	CASBUR R-S	CASMNT R-S	CASREP R-S	C34088	C34881	C34REP	INA R-S	Sf R-S

TABLE B-22

FEED AND CONDENSATE AVERAGES

	FF-1052 CLAS	2	CLASS	006-2 CLASS	CLASS	SSN-637 CLASS	CL ASS
CASOME			53.22)	351-09 (643.673	2.89 (35-24)
CASMAT			196.90)	J	568.74)		34.97)
CASREP			0.59)	•	.0.91)		0-09)
CS4BNN			157-28)	36-28 (•	0-09	
CHAMM			140.51)	·	208.26)		2-04)
C34REP			6		•		•
ENGLOG		J	Ġ	0	6		6
¥ X I			×	142.88 (
SF	74.81		773.51)	_	540-399	3.60 (16-83)
<u>د</u>	1.70	_	0-80)	J	1.21)	2-14 (
U N			0-19)	•	0-469		
4			12.27)	J	9.10)	105.72 (17.7
9	9		9.563	U	9.64)	72.88 (9
C 1	361.07	2	235-78)	325-44 (242 - 159	325.60 (257-8
51	9 1		17.09)	•	121.79)		149.22)
ا د			25.20)	•	42-21)	0.36	1.86)
AGE			12-15)	V	21.023		22.77)
7			0-493	U	0-50)	0.36 (•
SYLL			0-36)	J	0.439		0-42)
SYL2			6	·	0.30)		N
SYL 3			6	-	6		•
SYP	0.35	_	648	0-26 (0.443		•
10	•	_	6	0	6	1.18	0-39)

TABLE B-23

FF-1052 CLASS FEED AND CONDENSATE

	COMST	8	ĄC	ŧ	g	5	S	Ę	A GE	ť	SYL	STF
CASDUR R-S	566.4 (2.2) SQUARE D=	-53.60 (1.2) .396	CASOMM 566.4 -53.60 153.5 -4.612 1.739 .03631742 .7864 -1.178 27.57 -82.42 -11.98 (2.2) (1.2) (1.1) (1.2) (0.7) (0.9) (1.3) (0.9) (0.4) (0.4) (1.8) (0.2) R-SQUARED* .396	-4-412	1.739	.0363	1742	.7864	-1.178	27.57 (0.6)	-82.42	-11.9
CASMNT R-S	417.5 (2.0)	-50,36 (1.4)	HMT 417.5 -50.36 57.58 -4.031 2.267 .00822109 .37517645 97.16 -36.97 -32.53 (2.0) (1.4) (0.5) (1.4) (1.2) (0.2) (1.9) (0.5) (0.3) (1.6) (0.6) (0.6) R-SQUARED= .367 F= 2.0	-4-031	2.267	.0082	2109	.3751	7645	97.16	-38.97 (0.6)	-32.53
CASREP R-S	.4584 (1.63 39UARED=	.0181 (0.4)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0060	-0022 (0.6)	.0001	0003	°S	.0022	0603 (0.0)	0257	.0946
C3404N	137.1 (1.2) SQUARED=	6.525 (0.5) .274	NHW 137.1 8.525 -32.35 .2282680780240669 .0670 -1.188 8.287 15.50 25.27 (1.2) (0.5) (0.6) (0.3) (0.7) (0.1) (1.1) (6.2) (1.0) (0.3) (0.5) (0.9) R-SQUARED= .274	.2282	. 6407	0024	0669	.0670	-1.168	0.287	15.50	25.27 (0.9)
C348NT	160.7 (1.63 10UARED=	10.25	C34MWT 160.7 10.25 -44.91 (1.6) (0.7) (0.9) R-SQUARED= .30.2 F= 1.1	.0287767300130630 .0613 -1.229 10.37 23.50 22.03 (0) (0.9) (0.1) (1.2) (0.2) (1.2) (0.4) (0.8) (0.9)	7673 (0.93		0630	.0613	-1-229	10.37	23.50	22-03
C34REP . R=S	.1134 (0.7)	.0195 (0.9) .018	C34REP1134 _01950547 _06066002	.0006		(9.6)	000J	.0002	0007	.0081	.0348	.0530
ENGLOG R-S	383.9 (3.33 GOVARED=	16.95 (1.1) .363	ENGLOG 383.9 16.95 -59.63 1.159 -1.79908692765 1.140 -2.991 40.42 15.78 -44.85 (3.3) (1.1) (0.9) (1.8) (2.2) (2.5) (4.1) (0.8) (2.5) (1.1) (0.7) (1.3) R-SQUAREO* 363 F* 3.5	1.159	-1.799	0869	2765	1.140	-2.991	40.42	15.78	-44.65 C 1.33
1# A # 1	19.57 (0.4) 1948E0=	37.37 (2.9)	19.57 37.37 -8.416 .20215768 .079313000356 .0094 -15.23 16.46 9.067 (0.4) (2.9) (0.2) (0.4) (0.7) (3.0) (2.1) (0.1) (0.1) (0.7) (0.4) (0.4) (0.4)	.2021	5768	.0793	1300		100.	15.23	16.48	9.067
Sf R-S	83.10 (0.1)	17.50 (0.2) .297	83.10 17.50 -118.8 2.830 .2659 .0684167917462.994 -7.103 10.61 72.41 (0.1) (0.2) (0.2) (0.4) (0.6) (0.1) (0.7) (0.5) (0.1) (0.5) (0.1) (0.5) (0.1) (0.5)	2.830	.2659	.0684		-1746	2-994	-7-103 (0)	10.61	72-41

TABLE B-24

DDG-2 CLASS FEED AND CONDENSATE

	CONST	2	¥	ŧ	9	13	ST	.	A GE	7	SYLI	SYL2	SYP
CASOUN	CASOWN 412.2 -1.206 -2.445 15.79 -6.80611143567 1.156 -3.860 -305.7 -36.80 -30.16 (0.8) (0.8) (0.8) (0.1) (1.2) (1.8) (0.3) (0.2) R-SQUANED= .390 F* 1.1	-1.286 (0)	-2-445 C 63 Fr 1.1	15.79	-6.806	1114	3567	1-156	-3.860	-305.7	-36.80	-30-86	126.0
CASMUT	CASMNT 957-1 11-09 31-04 7-174 -3-15002011147 1-271 -5-674 -294.9 -127.5 -33-80 151.1 (2-1) (2-1) (0-3) (1-2) (0-3) (0-3) (1-2) (0-3) (1-0) (1-0) (1-0) (1-0) (1-0) (1-0) (1-0) (1-0)	11.09	33.04 (0.3) fr 0.7	7.174	-3.150	.0201	.1147	1.271	-5.874	-294.9	127.5	-33.80	(1.0)
CASREP	CASREP 1.395 .0093 .0650 .00700070 .00010008 .0010005330941168 .0423 (3.2) (0.2) (0.7) (1.1) (1.3) (0.6) (2.3) (1.1) (2.1) (2.2) (1.1) (0.3) R-SQUARED= .037 F= 1.9	(0.2)	.0650 (0.73 F= 1.9	.0070	0070 (1.3)	.0001	(2.3)		0053 (2.1)	3094 (2.2)	-1168	.0423	(1.0)
C34DWN	C34DWN 137.1 -16.53 3.40785049041 .019005260302 .4830 -15.42 -16.78 66.57 (0.6) (1.0) (0.1) (0.5) (0.6) (0.6) (0.5) (0.1) (0.3) (0.4) (1.1) K-SQUARED# .229 F = 8.5	-16.53 (1.0) .289	3.407 (0.1) F= 4.5	8504	9041	.0190	526	(0.1)	.4830	-15.42	-16.78	66.57	20.66
C34KNT	C34MNT 99.38 -20.11 26.768259 .6367 .0331 .0414 .17151468 -43.36 -68.59 70.91 43.32 (0.5) (1.3) (0.8) (0.5) (0.4) (1.3) (0.5) (0.5) (0.1) (0.8) (1.5) (1.3) (0.9) R-SQUARED# .415 F= L.0	-20.11 (1.3) -415	26.76 (0.8) F= 1.0	.8259	.6367	.0331	.0414	.1715	1468	-43.36	-68.59	70.91	43.32
C34REP	C34REP .35100132 .021000270015 000020001 .00040002 .0040 .0313 (1.69 (0.9) (0.6) (1.7) (1.0) (0.1) (2.0) (0.4) (0.5) (0) (0.1) (0.6) R-SQUARED= .020 F= 0.9	0132 (0.93 -020	.0210 (0.6) F= 0.9	0027	(0.1)	(0.1)	0002	00 01 C 0.4.5	.0004	2000-	.0040	.0313	. 0182
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	INA 14.06 16.72 36.84 .0105 -1.920 .315205796943 .9404 25.01 24.64 58.28 -136.8 (0.1) (1.0) (1.0) (0) (1.2) (5.4) (0.4) (1.8) (0.9) (0.4) (0.5) (1.0) (2.8) R-SQUARED= .122	16.72 (1.0)	36.84 (1.0) f* 5.1	.0105	-1-920	.3152	0579		.9404	25.01	24.64	58.28	-136.8
SF	-59.89 -6.893 98.26 -1.086 -1.94004900273 .2537 1.862 44.10 46.40 60.58 57.14 (0.2) (0.3) (2.0) (0.4) (0.9) (0.5) (0.1) (0.5) (1.4) (0.6) (0.8) (0.9) (0.9) (0.9)	-6.893 (0.3)	98.26 (2.0) f = 4.5	-1.086	1.940	0.53	0273	.2537	1.862	44.10	16.40	60.58	57.14

TABLE B-25

SSN-637 CLASS FEED AND CONDENSATE

3	-5.378	-5.945	.0356	1.553	1.553	.0197	9.806	-2.237
516	6727	.06720014 .00631449 .1265 -3.016 -6.307 -2.928 -7.864 .0581 -5.945 (0.2) (0.3) (0.7) (0.2) (0.5) (0.5) (1.2) (0.4) (1.5) (0) (0.5)	.0019	1925		.3630 .0197 (0.7) (2.2)	.7273 .0050 .0137 -1.6623900 -16.46 20.12 9.621 2.010 .4936 6.806 (1.3) (0.5) (0.7) (1.1) (0.9) (2.0) (0.7) (0.2) (0) (0.4)	.75163618 -2.237 (0.4) (0.2) (3.5)
SFL3	-7.992 (1.5)	-7.864	0900-		(5.6) (0.5)	.0002	2.010	.7516
SYL2	-3.557	-2.928			0320 (0.1)	0004	9.821	.5278
SYL1	.0574 .07490023 .00450447 .1174 -2,706 -6.415 -3,557 -7,9926727 (0-1) (0-2) (0.5) (0.5) (0.1) (0.5) (0.1) (0.5) (0.1)	-6.307	.00090006 0 0 .00110002 .0078 .005800530060 .0019 (0.2)	376400640045 0000102210200 .1465 .23500320 .0119 .1925 (0045 0000102210200 .1465 .23500320 (0.2) (0.2) (1.2) (0.3) (0.6) (0.1)	004100010004 000040002 .0030 .00300004 (0.5) (1.1) (0.3) (1.4) (0.7) (0.8) (0.1) F = 1.1	20.12	.0239 .0037002314160833 -1.478 2.673 .5278 (0.2) (1.6) (0.6) (0.5) (0.9) (0.6) (1.5) (0.2)
1	-2.706	-3.016	(9.6)	.1465	.1465	.0030	-16.46	(0.6)
A GE	.1174	.1265	0002	0200	0200	0002		0833
2		1449 (0.2)	1000	0221 (0.4)	(0.0)	600¢ C 0.73	-1.682	1416
1S	.0045	.0063	(6.0)		0001	· (1 · 1)	.0137	0023
5	0023	0014	(0.30	6	6 0.13	(1: † °	.0050	.0037
2	.0749	.0672	0006		0045	0001 (0.3)	.7273	.0239
ŧ	.0574	7.610 .0570 (0.73 (0.13	.0009			0001	5 3.0452509 C 0.2) C 1.4)	-9.042 .0127 (2.2) (0.3) F= 1.6
¥C	7.671 (0.7) F= 0.5	7.610		3764 (0.5) F. 0.6		0044 (0.5) F: 1.1	3.045 (0.2) F= 2.7	-9.062 C 2.23 F= 1.6
2	-3.357	-3.580	0041 (0.9)	.0252	.0252	. 6001	50	1.164
COMST	CASDUM -3.864 -3.357 (0.2) (1.5) R-SQUAREO= .067	CASMNT - 3.186 - 3.580 (0.2) (1.6) R-SQUARED= .068	CASREP04000041 (1.2) (0.9) R-SQUARED -012		C34MH .6187 .0252 (0.49 (0.2) R-SQUARED= .221 F	1EF .0059 .4001 (0.3) (0.1) R-SQUARED .016	6.864 .1553 (0.1) (0) R-SBUARED: .046	8.319 1.164 - (0.9) (1.3) (R-SQUARED= .023 F=
	CASDER R-S	CASMUT	CASREP R-S	C34818 .6187 C 0.43 R-S0UARED	C34MHT	C34REP R-S	INA R-S	54 8-18-18-18-18-18-18-18-18-18-18-18-18-18

TABLE B-26

PROPULSION BOILERS AVERAGES

	FF-10	FF-1052 CLASS	0.00	CLASS	SSN-637 CLASS	s,
CASBEN	285.67	(461.78)	376.36 (616.23)		33
CASHNI	229.16	(427-10)	306-11 (489.35)		6
CASREP	0.52) 92-0	1.22)		6
C34 DMN	.52	N	103.17 (354.83))	6
C34MNT	.54	27	93.13 (329.22)		6
C34REP	.33	(0.64)	0.26 (0.73)		C
ENGLOG		1.2.1	0	0		6
IMA	.57	334.3	264.66 (538-421		6
SF	M	579.4	121.42 (500.31)		6
3	3.54	0	7.94 (2.413	0	6
V C	0.16	(0.13)	0.65 (0.75)	0	6
PP	75.74	(16-90)	63.73 (10-74)		6
P.0	11	13.	73.45 (10.413	ن ت	6
13	19	5.3	327.22 (240.85).		6
ST	226.19	(116.58)	226.78 (•	6
٩c	17.61	33.1	13.43 (23.84)		6
AGE	65.42	•	160.68 (20.89)		6
7	0.63	(34.0)) 24.0			6
SYLI	0.13	(0.34)	0.26 (0.44)		6
SYLZ	•	6	01.0	0.31)		6
SYL3	•	60	0	6		6
STP	0.38	(640)	0.26 (0.44)		6
H0	•	6	•	60	•	6

TABLE B-27

FF-1052 CLASS PROPULSION BOILERS

SYP	116.4	97.04	.3220	-43.52	148.06	.2178	9.013	-4.853 (0.1)	77.82
srt	9.69-1	-110.6	2662	-113.2	. 1.25	1436	25.62	. 2.03	
1	-169.7	- 39.93	1341	19.26	30.80	.1427	54.98 (0.9)	-50.95	.5544 -1.06000113219 .01513910 -65.01 -21.07 (0.4) (0.6) (0.1) (1.0) (0.3)
AGE	(2.0)	1.690	.0080	-1.275	-1.430	.0030	(0.2)	2.181	39 10
S.	(9.0)					~ 6	.2992		. 6153
15	08050985 (1.4) (0.6)	.8443078714957530 (G.4) (1.6) (0.9) (1.0)	0073 .0040 00065 .0003 (1.6) (1.5) (0.3)	1.1752719007600839187 (1.1) (0.2) (0.1) (1.7)	1-6496317011301749961 (1-13 (0-5) (0-3) (0-2) (1-9)	.0005 00004 D	01940373 (0.8) (0.8)	.1526 .24136266 (2.5) (1.9) (1.5)	3219
5	7.0805	0787	(0.3)	0076	0113	0.30	-0194	.1526	0011
2	9,90.	.0463	.0040	(0.2)	6317 (0.5)		(0.9)	.6907	-1.060
2	5.180	3.064	0073 (1-6)	(1-1)	1.13	.0013	.2519	1.073	.5544
ĄÇ	-23K.5 (0.8) F= 1.5	-158.7 (0.6) F= 1.6	0745 (0.2) F= 2.6	.6593 (0) F= 1.1	-11-62 (0.1) F* 1.2	.1364 (0.5) F= 2.0	.250.8 (1.38 Fr 2.5	254.2 (1.9) Fr 2.3	-216.1 (1.0) F= 0.6
2	-20.77 (0.7)	15.45	0097 (0.3)	-16-16	-13.23 (0.7)	.0141 (0.7)	12.32 (1.0)	-17.38	13.97 -216.1 (0.7) (1.0) -009 F= 0.6
CONST	IN 178.0 -20.77 -23K.5 (0.6) (0.7) (0.8) R-SQUARED* .468 F* 1.5	INT 195.6 -15.45 -158.7 (6.7) (0.6) (0.6) R-SQUARED= 498 Fx 1.6	EP .422100970745 (1.3) (0.3) (0.2) R-SQUARED= .053 F= 2.6	C34DWN 240.9 -16.16 .0598 (1.2) (0.9) (0) R-S0UARED= .402 F= 1.1	NT 256.1 -13.23 -11.62 (1.3) (0.7) (0.1) A-5QUAREDs .420 Fx 1.2	ier .14670161 .1364 (0.5) (0.5) (0.5) R-SQUARED* .039 F= 2.0	06 22.00 12.32 (0.1) (1.0) R-SPIARED: 450	-219.1 -17.38 251.2 (1.4) (1.3) (1.9) R-SQUARED= .042 F= 2.3	218.0 (0.9) R-SQUARED=
	CASDUM R-S	CASHNT R-S	CASREP R-5	C3404N	C34MMT	C34REP R-S	ENGLOG R-S	INA R-S	SF R-S

TABLE B-28

DDG-2 CLASS PROPULSION BOILERS

CONST	8	VC	ŧ	2	5	15	S.	A GE	7	SYLI	27AS	SKP
150.8 0.59 ARE 8=	-6.734 (0.33 .396	CASDNN -150.8 -6.734 -120.8 13.65 -6.60370 <i>06707022659267 -62.34 -</i> 197.9 -95.94 108.4 (0.5) (0.5) (0.5) (0.5) (0.6) (0.7) R-SQUAREB=396 F= 1.7	(2.5)	-6.603	0908	(2.9)	.2265	.9287	-62.34 (0.4)	-197.9	195.94	108.4
43.93 0-13	-7-748 (0.5) -298	CASHNT 43.93 -7.748 -93.46 9.369 -5.36303677227 .0898 .5344 38.23 -107.2 -30.26 81.92 (0.1) (0.5) (2.0) (2.3) (1.8) (0.5, (3.7) (0.1) (0.5) (0.4) (1.0) (0.2) (0.7) R-SQUAREO*.298 F* 2.5	9.389	-5.383	1.0367	(3.7)	.0898	.5344	38.23	-107.2	-30.26	91.93
.5161 [0.7] JARED=	0612	CASREP .518106121899 .08570052 .00030015 .0020 .8065 .0061482016941014 (0.7) (2.0) (1.2) (0.7) (0.9) (1.2) (3.1) (0.8) (1.6) (0) (2.4) (0.7) (0.5) R-SOUARED= .061 F= 2.8	.0057	0052	-0003	0015	.0020	.0065	1900-	4820		-1014
-121.0 (0.4) JARE D=	.2623	C34DWW -121.02023 -14.73 3.297 2.3580087409422604889 55.03 5.005 -51.69 29.57 (0.49 (0.49 (0.4) (1.8) (1.1) (0.2) (2.8) (0.3) (0.3) (0.7) (0.1) (0.6) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4)	3.297	2.358	0087		. 2260	.4889	55.03	5.005	53.69	29.5
-210.2 (0.4) UARED-	-,3581 (0) -249	C34RRR -118.2 -,3581 -7.047 3.052 2.011 .0031362034575318 70.52 29.16 -33.37 26.34 (0.6) (0) (0.2) (1.8) (1.0) (0.1] (2.8) (0.5) (0.6) (1.0) (0.4) (0.5) (0.4) (0.4)	3.052	2.011	.0031	3620	1457	5318 (0.4)	70.52	29.16	-33.37	\$ • 92 0)
4126 (0.9) UARED		C34REP412800060208 .0057 .DD16 .00020006 .0006 .0003 .163601910921 .D233 (.0857	.0046	.0002	0006	.0006	.0003	.1636	0191	(0-7)	.023
-174.8 (0.5) UARE D=	17.50	-174.0 17.50 (1.64 -2.157 4.784 .5295 .1891 .92808386 -205.1 53.28 213.6 165.0 { 0.5} (1.3) (0.3) (1.0) (1.9) (5.6) (0.9) (0.9) (0.5) (2.3) (0.6) (2.1) (1.7) R-SDUARED= .118 f= 4.7	(1.0)	4.784	. 5295	.1891	. 9280	8386	-205-1	51.28	213.6	165.
-418.4 (1.5) UARED-	-10.44	SF -418.4 -10.44 -33.11 1.70@ 1.01705463609 .6259 3.282 '53.30 13.46 92.00 -47.68 (1.5) (0.9) { 2.0) { 0.9) { 0.5} (0.6) { 2.0} (0.7) { 2.2} (0.7) { 0.2} { 1.1} (0.6) R-SQUARED= .021 F= 1.2	1.70%	1.017	1.0546	1.3605	(2.0.)	1.282	53.38	13.46	11-13	9-0 3

TABLE B-29

COMBUSTION AIR AVERAGES

FF-10	352	FF-1052 CLASS	2-900	00G-2 CLASS	SSN-637 CLASS	155
120-01	J	3.3	126.81	368.33)	0	6
94.5	J	319-45)	97-80	311.669		6
0.16	u	0.52)	0.14	(12.0		6
29.37	J	34.	2.91	1 34.793		0
	¥	233.88)	2-33	191-92)	9
0.04	·	0.27)	0-01	0.08)		6
90-64	J	27	123.91 (36		6
28.25	J		0			0
•	J	80	21-19	(563.99)		0
_	J	0.53)	2.09	0.373	0	6
0.83	J	0-01)	0.27	(0.32)	9 0	6
	J	~	27-46	10-819		6
87.40	J	6.0	77.93 (12.96)		6
364-61	J	5.3	327-22	(240-85)		6
226-19	J	118-56)	226-78	122-593		6
9	J	4.6	7.87	2		6
-	U	2	9	(68-02)		6
0.63	•	0.4.6)	1 25.0	0.50)	0	6
0-13	J	0-34)	0.26	•		6
0	J	6	01-0	~		6
•	J		0	6	_	6
0.38	J	0-493	0-26	(34-0)		6
•	J	6	0	6		6

FF-1052 CLASS COMBUSTION AIR

	CONST	Ş	VC	ŧ	2	13	5	2	7 0 E	ı	371	STP
CASOUN R-S	321.4 (1.53 00.4EG=	31.40	CASOWN 321-4 31-40 6/273 .3946 -2.0180331162650468059 -72.21 -37-84 (1.52 (0.4) (0.1) (0.1) (0.6) (1.2) (0.6) (0.1) (0.6) (0.4) R-50U4RED= .460 f= 0.5	.3946	610-2-	0331 (0.0)	1626	5046 (0.6)	8059 (0.3)	(0.0)	-37.84	109.3
CASANT R-S	2.4.4 C 1.13 90ARF P	19.32	CASMWT 2:4-4 10-32 126-3 .3572 -1.2550262155029933594 -74-54 (1.1) (0.3) (0.3) (0.1) (0.4) (0.1) (1.0) R-50VARF8466 F= 0.7	.3672	-1.255	0262	1550	2993	.3594	-74.54	. 0.93	(1.7)
CASREP R-S	.3614 63	.0367	CASREP .3614 .03672950 .00030012000180050005 .000113251410	.000	0012 (0.7)	.0001	0005	(0.6)	.0001	(1.7)		.1660
C34DWR	15.47 C 0.13 0UARED-	30.46	C34DWW 15.47 38.46 122.8 .9150 .2244 .026804861260 -1.712 -6.934 -51.44 (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1)	.9350	.2244	.0269		1260	-1-712	-6.934 C 0.13	-51-44	31.32 (0.5)
C34MMT R-5	34.52 (0.2) QUARED-	34.34	C34MMT 34.52 34.34 79.44 .0217 .0267 .025304350960 -1.591 -5.506 -41.75 (0.2) (0.6) (0.3) (0.9) (0) (1.0) (0.5) (0.2) (0.8) (0.1) (0.6) R-580ARED550 F. 0.5	. 0.93	.0267	.0253	0435	0960	-1.591 (0.8)	-5.506	-41.75	30.69
C34REP R-S	.1146 (1.0) QUARED=	.0530		.0010	70005	96	0002		0022	0441		.0577
ENGLOG	ENGLOG 315.5 (3.53 R-SQUARED.	13.16	13.16 271.0 (0.5) (1.3) .309 F= 1.9	.616	4363 (0.9)	.6416438302391574 (1.4) (0.9) (0.8) (2.7)	1974	1.140 -1.555 -51.67 -28.56 (0.9) (2.7) (1.7) (1.2)	-3.555	-51.67	-26.56	-13.45
III	A -46.29 (2.4) R-50UARE D=	-7.171	-7.171 -9.974 (1.43 (0.43 .039 f= 2.7	.0439	.1246	.0439 .1246 .0256 .01690062 (0.5) (1.3) (3.4) (1.1) (0.2)	.0169	0082	.5474	3.700	(1-1)	-5.942
SF R-5	-166.4 (0.53	-119-0	-166.4 -119.0 -29%.4 1.1671866 .0437 .3834 .5876 (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5)	1-167	1066 (0-1)	.0437	.3034	.5076	1.4%	62.84	34.62 -5.421 (0.3) (0.1)	-5-421

TABLE B-31

DDG-2 CLASS COMBUSTION AIR

CASMMT -125.1 -153.5 -36.11 4.327 -2.06700212844 1.310 2.631 -34.79 -43.10 -20.71 -116.7 (0.59 (1.0) (0.5) (1.0) (0) (2.3) (1.9) (1.6) (0.4) (0.6) (0.2) (1.3) R-SQUARED= .390 F = 2.1	-34.79 -43.10 -20.71 -116.7 (0.4) (0.6) (0.2) (1.3) -8323 -0028 -1163 -1674 (0.4) (1.1) (1.2) (1.6)	CASMIT -125.1 -153.5 -36.11 4.327 -2.06700212844 1.310 2.631 -34.79 -43.10 -20.71 -116.7	CASMET -125.1 -153.5 -36.11 4.327 -2.06700212844 1.310 2.631 -34.79 -43.10 -20.71 -116.7 C 0.55 C 0.55 C 1.65 C 0.55 C 0.55 C 0.65 C 0.6	CASMET -125.1 -153.5 -36.11 4.327 -2.06700212844 1.310 2.631 -34.79 -43.10 -20.71 -116.7	R-SQUARED350
1.63 (0.43	2.631 -34-79 1.63 (0.43 (-00246323 .	2.631 -34-79 2.631 - 54-79 2.632 - 6.53 2.632 - 6.532 - 6.532 2.632 - 6.532 - 6.532 - 6.532 2.632 - 6.532 - 6	2.631 -34.79 1.00 C 0.43 1.00 C 0.43 1.00 C 0.43 1.00 C 0.43 1.00 C 0.43	1.00	1.05 - 34.79 1.00 - 4.20 1.00
1.9) (6.1)	00° 2200°	1 0 (6:2) 1 0 (6:2) 1 0 (6:1)	1) (5:2) 1 0 (5:2) 1 0 (5:2) 1 0 (5:2)	01. 02.5 01. 02. 02. 02. 02. 02. 02. 02. 02. 02. 02	10 00 00 00 00 00 00 00 00 00 00 00 00 0
. 2844		7 1 2 2 3 3 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	7 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2.5041 2.6041 2.	
0021			-0021 (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-0021 -0113 -0113 -0063 -0063 -0063 -0063 -0063	-0021 -00113 -0063 -1063 -1143 -
(1.0)			(1.0) -0007 (0.3) -1168 (0.9)	(1.0) (0.1) (0.1) (1.1) (1.1) (1.1)	(1.0) (0.1) (0.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1)
:	200.	100.		76.0	
	1.1659	6.115 6.116 6.66	(1.165) (1.17) (1.116) (1.063) (1.063) (1.063)	(1.05) (1.05) (1.06) (1.06) (1.05) (1.05) (1.05) (1.05)	6.11.5 6.11.5 6.0.11.6 6.0.11.6 6.0.10.0
	. 1143 (0.4) QUARED= .	-1143 C 0-43 BUARED= - -51.24 C 2-43	-1143 (0.4) BUARED= , -31.24 (2.4) BUARED= , -33.58 (1.8)	-1143 (0.4) BUARED: -31.24 (2.4) JUARED: -13.58 (2.1) BUARED: -2924 (2.1)	-1143 (0.4) 10.45 -31.24 (2.4) 10.48 10.
		2 2	, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,		

TABLE B-32

ELECTRICAL AVERAGES

	FF-1052 CLASS	006-2 CLASS	SSN-637 CLASS
CASBUN	U	90	J
CASMRT	217.36 (383.31)	.70 (525.9	(133-4
CASREP	Ų	7.0)	(0.3
C340HN	8-20 (212-49	.13 (279.12	J
C34NNT	.10 (173.	.71 (259.6	(31.1
C34REP	•	.06 (0.3	1.0
ENGLOG	6.63 (64.38		J
TH T	.74 (438.98	8.03 (126.3	(136.
SF	YE) 08-4	.87 (241.5	(268.3
INSURV	(0.5	1.58 (0.69)	[c) 0
RC) 2:	1.37 (0.72)	3.71 (1.33)
AC	16 91	4.10 (2.9	_
44	15 (15.2	A0.03 C 1	1 (13.1
2	3 (7-9	85.28 (9.8	68.78 (5.0
CI	61-87 (235.7	325.44 (242.1	25.60 (257.8
ST	227-76 (117-09)	227-81 (121	211.16 (149.22)
PC	7 6 28.4	16-13 (40-1	5 (11.9
AGE	16 (12.15	161.72 (21.0	5 (22.7
7	10 7 6	0-45 (0-5	9.0) 9
SYLE	6 (0.3	0-25 (3 (0.4
SYLZ	0 > 0	.10 (8 C 0.2
SYL3	J		1-0 ·) 1
SYP	0.35 (0.42)	0.26 (0.44)	3 (0.4
ě	0 0	60) 0	B C 0.3
.	23.45 (9.75)	21.4	J

TABLE B-33

FF-1052 CLASS ELECTRICAL

CONST	181	3	ĄÇ	t	2	5	15	2	A GE	<u>۔</u>	SYL	STP	2
20 E	7.69	NM 368-4 -25-12 (0.9) (6.4) R-SQUARED= -410	311.6	5.484	-1.399	0666	(2.0)	-1.362	-4.649	-178-2	-511.7	144-1 C 1-53	
CASMMT -66.40 (0.2) R-588ARE D=	5.50 16.20 16.20	A	272.4 (0.9) F= 1.8	3.648	9308 (0.5)	.0223	.0467	8128	.1955	(9.0)	(2-1)	(5.5)	
CASREP .5	.5241 (1.43	EP .52410423 (1.43 (0.0) R-SQUARED= .026 F	2858 (0.0) F= 1.9	.0015	0027 (1.0)	 . 0. 83	0005	0015	-0037	.0790		.2533	
C340UN 29 K 1 R-50UAR	2.4 1.73 16.0-	04H 292.4 -38.38 (1.7) (1.5) R-SQUARED= 348	9.485 (0.13) F= 1.2		-1.695	0198 (0.7)	0074	(2.1.)	.6085	3.499	-42-01	66.88 (1.2)	
C34MNT 16 C 0 R-59WAR	12.4	INT 165.4 -24.58 (0.8) (1.3) R-SQUARED= .312	-27.54 (0.2) F= 1.7	0592	1.011		1035	.1015	1.200	5.602	-26.31 (0.7)	(2.2)	
C34REP 0413 (0.43 R-SQUARED=	100	0333 (1-3)	EP041303330895 (0.45 (1.35 (0.15 R-SQUARED: .052 F: 4.1	000	.0039				.0021	0586	0687 (1.3)	.1553	
ERCLOG 407.0 (2.6) R-SQUARED=		#4-64 (0.9)	60-74 (0.5) F= 2.4	5651	-1.340	-0157		(9.0)	-2.676	-6.110 (0.2)	-10.51	19-42	
99.69 (0.5) R-SQUARED=		17.34	-6.761 (0) F= 0.5		.2634	0247	0772	2058	.3035	39.99	-5.969	-56.64	
-96.91 (0.6) R-SQUARED=		13.31	-101.1 (0.6) F. 0.6	(0-1)	.4486	.1080	-0126	0332 (0.1)	•	-7.130 (0.2)	49.58	(2.31	
INSURY1266 (0) R-SQUARED-		.2936	(0.1) (0.1) F= 1.1	.0069	.0040	1.000	.000	. 0076	.0106	2665	.6710	.3590	0125 C 0.61

TABLE B-34

DDG-2 CLASS ELECTRICAL

	COMST	AC.	AC	ŧ	Ş	5	51	S.	AGE	1	SYLI	SYLZ	216	1
CASBUN B-S	CASONN 573.7 C 1.03 R-SOUARED	-173.2	-33.50	-18.82	9-779			1-932	6.333	253.6	-6.619	315.1	-139.3	
CASHUT		180-4	-42.71 (2.0) F= 3.2	19.46	5.764	(1.2)	.0385	0385 1.656 (0.2) (2.0)	5.5%	183.7	(0.0)	-60-14	-13.75	
CASREP R-S	.3504 (0.9)	1EF .3564 ".0228 (0.9) (0.3) R-SQUARED= .020	.0023 (0.2) F= 0.8	.004300010022 .0001 (0.2) (0) (0.5) (0.6) F= 0.8	0022	.0001			.0016	.0358	.0338	.0711	.0851	
##G+E U	289-4 (1.21 0UARED	-237-6 (6.3) 719	-41.57 -6.193 (5.09 (4.6) f= 9.3	(4 6)	2-262 (1-21	2.262 .0535	.1290	-1290 -2019	3.769	19.25	-144.5	145.0	15.46	
C34MMT	223.0 (1.0) guare d-	-256.4 (7.2)	-256.4 -47.31 -6.579 (7.2) (6.0) (5.3) .727 F= 11.2	-6.579	1.780	1.780 .0463	0018	.2396		4.794 .0744 -150.7 (3.7) (0) (2.5)	150.7	156.9	(0.1)	
C34REP	.0905 C 0.33	0269 (1.0) -018	0269 .08210019 (1.0) (0.4) (1.8) -018 F= 8.1		.0006	1000-0 9000-	.0001	. 0001	.0011	.0630	.0147	0073 (0.2)	0586 (1.5)	
4 # I	-10.95 (0.2) QUARED=	-12-26	-10.95 -12.26 -4.513 .2162 (0.51 (1.1) (2.2) (0.5) R-SQUARED= .(66 F= 3.7		. 6.13	.1094	109401810264	. 0264	.3228	15.37		10.97	11.28	
¥	. 30.00 (0.2)	-30.00 2.757 -2.651 (0.2) (0.1) (0.7) R-SQUARED= .011 F= 0.7	-2.651 (0.7) F= 0.7	.3134	(0.3)	.0266	2007 .024608531320 (0.3) (0.6) (1.0) (0.6)		.1905	-5.926	15.04	15-39	25.92	
INSUR R-S	1.909 (1.0)	.5535	. 1462 C 1-63	IMSURY 1.909 .5535 .1462 .UIG90215 00035002000751661 (1.00 (1.00 (1.10 (1.	0215	°ê		0020 (0-3)		1.1681	.6744			.0108 (0.6)

TABLE B-35

SSN-637 CLASS ELECTRICAL

ž	58.51	82.25 (1.5)	.0612	.13.17	-5.706	0428	-20-14	-51.74
21.5	98.14		.0505	5.469			. (9.6)	-24210567 -1.268021102180479 .5417 -47.70 -45.06 -5.705 -57.65 -2.957 -51.74 (0.4) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1)
STL3	(0.0)	1.34 -1.4670104 .0556 .06698289 29.32 44.61 25.17 10.29 66.12 (0.7) (0.8) (0.8) (0.1) (0.8) (1.5) (0.1) (0.8) (1.5) (0.8) (0.8) (1.5)	(2-1)	(1.63	6.004 -5.092 -9.19602906083 (1.3) (1.0) (1.4) (0) (0.2)		.0243 .049705632337 50.47 43.02 25.47 49.37 -11.04 (1.3) (1.5) (0.1) (0.3) (2.7) (2.2) (0.9) (2.0) (0.6)	-57.65
2715	2.736	25.17		-27.47	-9.198	0353	25.47	-5.705
STLI	(1.1)	33:	.0610	-14.22	-5.092	0318	(3.2)	-45.06
7	24.58 45.43	29.32	.0832	4.294	6.004	.0165031803530008 (0.7) (1.4) (1.1) (0.5)	58.57	27.7
A 6.E	.0075 .066523994995	(0-0)	.00	.3001	.0041 .0002 .0812 .0915 (1.0) (0.0) (0.5)	.0004	2337	.5417
2	-2399	.0689		.0129	.0012 2100	°ŝ	0563	0479
12	.0165	.0556	.0001	. 0077	2000-	.0001	.0497	0216
5	.0075	.0108	(0.2)	.00.0	.0041	(1.2)	.0243	1120-
2	-3.194	1.667	9.466 .0819 ~.4001? 0 .0001 ~.9006 .0001 .0832 .0640 ~.8494 (2.5) (0.6) (0.4) (0.2) (1.3) (0.6) (0.9) (1.9) (1.3) (0.7) F= 2.2	18035620 -00440077 -0129 -3081 4-294 -14-22 -27-47 4-453 (0.6) (1.1) (0.6) (0.6) (0.6) (0.6) (0.6) (0.6)	-190.105700040 (0.5) (0.6) (0) F= 8.8	0009 d .0001 d (0.7) (1.2) (1.4) (0)	2694	-1.268
t	2.678	1.366			0570	.003	-162.2 -4746 -2594 (0.1) (0.5) (0.2) f= 2.3	.0567
ĄÇ	2 3733. C 1.43 C F* 2.1	4.392. (2-1) Fr 2-4	9.486 (2.5) F= 2.2	715.0 (1.1) F= 2.0	-190.1 (0.5) F= 8.8	6.33 0.33	-182.2 (0.1) F= 2.3	-2421.
3	10-62	-5.71		7.509	2.171	.0009	3.000	
COMST	CASOWN -39.97 80.82 (0.39 (1.0) R-SQUARED: 363	CASMNT -10.00 -5.711 (0.1) (0.6) N-SQUARED -387	CASREP1948 .0124 (1.13 (0.9) R-SQUARED= .035	C34Bun 24.31 7.549 (0.69 (3.1) R-504AREB= .126	C34MH 1-103 2-171 (0-1) (1-6) R-50VARE6= .043	IAREP .0186 .0089 . (0.3) (1.3) (R-SQUARED: .020 F:	31.92 3.000 (0.4) (0.5) R-SOUARED -045	225.6 -11.38 (1.4) (1.1) 8-5844868- 4869
	CASOUR R-S	CASMUT R-S	CASREP R-S	C3404R	C3488T	C34REP R-S	INA R-S	\$\$

TABLE B-36

POWER GENERATORS AVERAGES

	FF-1052 CLASS	2	CLASS	006-2 CLASS	CLASS	SSN-637 CLASS	ಪ	LASS
700 d	100,001		101,283	202.74 (558.87)	38.09		153-78
A CREET	131-57		292-29)	165-60 (470-253	_	J	128-68
			0.631		0.553	_	J	0.27
34048	55.24		201-73)	7 88.64	277.33)	5.70	J	44.83
34MMT			170-74)		257.903		J	28.86
SAREP	0.09		0.35)	0.03 (0-26)		_	\$1.0
#GL06	54.39	_	53.76)	0	6	0	_	0
_	32.97 (_	59.34)	8.13	57.973	.73		136.24
يو	6-49		254-68)	18-20 (238-58)			268-37
u	0.93	u	0.483	0.57 (0.60)	1.22		19.0
, u	0-07		0-02)		3.01)	•	u	0
a .	107-30		15,56)		12-179	198-74	J	15.26
. G	83.49		8.62)		11.59)	67.56	_	4-74
) per	367-97	٠.	233-99)	327-22 (240-853	325.60	u	257-85
1	226.08		116.16)	226.78 (122.593	211-16	_	149.22
٠.	5-81		14-11)		31.82)	10.0	J	0.00
16E	65.78		12-87)		20-893		J	22-17
	0.64	_	0.463	_	•	0.36	J	0.48
571.1	0.13	J	0-34)		0-44)		J	21-0
17.5	•	J	6	_	0.31)		J	0.27
71.3	9	_	0	0	_		J	11.0
YP	0.37		0.46)	0.27 (0.443		J	0-62
=	•	u	6	0	60	1.18	u	0.39

TABLE B-37

FF-1052 CLASS POWER GENERATORS

	COMST	RC	ĄĊ	ŧ	2	5	15	ñ	A GE	ะ	SYL	STP
CA S DM N	HM 393.5 160.1 (1.39 (2.5) R-SQUARED= .427	160-1 (2-3)	-995.8 (0.6) f= 1.6	-1.55€	2.388	0167	(0.5)	-2.275	-2.275 -5.899 -14.26 (1.3) (1.0) (0.2)	-14.26	-115.4	92-72
CASHRT R-1	-49.97 (0.2) SQUARED=	52.06 (1.0)	CASHWT -49.97 52.06 659.2 (0.2) (1.0) (0.8) R-5QUARED= .334	.3042	.7208	.0150	1266	.1044	-,1266 -,1044 -,2076 26.07 (1.1) (0.1) (0.5)	26.07	-53.62	134.2
CASREP R-1	.4784 (1.7) SQUARED=	0066 (0.1)	EP	0011		0046 000050013 (2-1) (2-1)	0005		1 .0064	0277		.2432
C340HR	346.0 (2.2) SQUARED=	-17.95 (0.5))	5485	-2.503	0143 (0.5)	0659	. 7939	(0.2)	15.47	-7.608	55.98
C34HNT R-5	C34MT 223.6 (1.7) R-SQUARED=	-16.47 (0.5) -323	HRT 223.6 -16.47 -180.93495 -2.186 (1.7) (0.5) (0.3) (0.6) (1.8) R-SQUARED323 F= 1.8	3495	-2.186	0110 C 0.53	0738	-01100730 .4985 .5982 (0.5) (1.0) (0.7) (0.5)	.5982	16.76 (0.5)	6.070	68.92
C34REP	0418 (0.39 SQUARED=	021.7 (0.6)	C34REP0446021744040011 (0.3) (0.6) (0.6) (1.3) R-50UARED= .046 F= 3.2	0011	.0029	000	0004	. 4602	.0021	0632		.1575
E NGL UG	ENGLUG 214.6 (1.4) R-SQUARED*	14.89	214.6 14.89 -945.6 .1743 -1.322 (1.4) (0.4) (1.1) (0.3) (1.4) 004REO= .366 F= 2.5	.1743	-1-322	.0226	.0027	.0836	.0226 .0027 .0836 -1.460 15.74 (0.6) (0.4)		15.91	39.46
1 to 1 to 2 to 2 to 2 to 2 to 2 to 2 to	242.4 (1.1) R-SQUARED=	34.93	242.4 34.93 -16714014 (1.1) (0.7) (1.1) (0.7) (1.1) (0.7) (0.7)		1.676	1.0624		07497133) (1.0)	1.63	36.	.64.37
Sf R•5	-97.33 (0.63 R-50UARED=	14.58 (0.5)	-97.33 14.56 -484.91216 (0.8) (0.5) (0.9) (0.2) UARED= .000 F= 0.5	1218		.3385 .0889	.1123	2544	.1123 -2544 -3965 -3.1644015 (1.2) (0.4) (0.3) (0.1) (0)	-3.164	6015 (0)	34.33

TABLE B-38

DDG-2 CLASS POWER GENERATORS

	COMST	æ	AC	à	2	5	5	Ş	A GE	7	STL1	SYL2	37.
CASBUN R-S	1408. (3.2) (9UARE B=	-76.89	CASBUN 140878.89 -24.88 -14.40 7.24201762230 .9544 -1.984 -37.79 -112.8 (3.2) (0.6) (1.1) (2.3) (1.3) (0.3) (1.3) (0.9) (0.8) (0.2) (0.8) R-SQUARED654 F= 1.7	.14.40	7.242	.0176	2230	. 9544	-1.984	-37.79	112.8	-183.6	32.93
CASMR?	1178. (3.2)	-85.09 (0.8) .650	CASMWT 117885.09 -38.54 -15.64 7.98701880836 .95435853 -54.78 -40.83 -218.3 (J.2) (0.8) (2.1) (J.0) (1.7) (0.4) (0.6) (0.3) (0.4) (0.1) (0.5) (0.5) (1.4) (1.6)	15.64	(1.1)	0188 (0.4)		.9543	5853	-54.78	-40.03	-218.3	65.92
CA SAE P	.5748 (2.2) (QUARE 0=	.027	CASREP .5746 .1427 .08560065 .0001 .0001 .00012 0 .0616 .087104741238 (2.2) (2.2) (2.0) (1.3) (1.5) (0) (1.5) (0) (0.6) (0.5) (0.6) (1.5) R*SOUARED= .027 F= 1.6	0065	.0001	.0001	0003	. 0012	°a	.0618	.4171	1210	1238 (1.5)
C3484H	567.8 (2.5)	-216.2 (3.7) -772	C348MM 567.8 -210.2 -49.90 -5.955 2.474 .65701117 .5733 .6829 -88.07 -157.8 -191.3 15.00 (2.5) (3.7) (4.7) (4.7) (1.6) (2.8) (1.6) (1.2) (0.5) (1.1) (2.1) (2.5) (0.2) R-SQUARED= .772	.5.955	2.474	.6570	.1117	.5733	(5.0.)	-68.07	-157.8	-191.3	15.00
C34MN	542.2 (2.5)	-227.3	C34MN7 542.2 -227.3 -51.24 -6.262 1.920 .05360850 .6213 1.296 -104.0 -148.4 -189.3 45.30 (2.5) (4.2) (5.3) (5.1) (1.3) (2.8) (1.3) (1.4) (1.1) (1.4) (2.1) (2.6) (0.6) R-50UARED* .757 F* 9.2	-6.262	1.920	.0536	0850	.6213	1.2%	-104.0	-148.4	-169.3	45.30 (0.6)
C348EP R-S	.0835 (0.6) QUARE 0=	.0011	E34REP .08350011 .00020013 0 .00010001 .0001 .0003 .0492006001890640 (0013	°°	.0001		.0001	.0003	.0492	0060	0189	0190-
INA R-S	-21.61 (0.7)	-17.32 (2.2) •053	IMA -21.61 -17.12 -5.152 .06660234 .0467 .0095 .0305 .2102 3.262 8.748 9.632 (0.7) (2.2) (2.2) (2.2) (0.3) (0.1) (4.6) (0.4) (0.4) (1.4) (0.4) (1.2) (1.0) R-SQUAREG= .053 F= 3.1	.0666	0234	.04.07	.0095	.0305	.2102	3.262	6.748	9.632	1.938
SF R-S	-65.05 (0.5)	-11.25	-65.05 -11.25 -4.967 .45%5 .1803 .001909061771 .40247069 17.79 6.206 (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5)	.4545	.1803	.00.	0906		.4024		(9.6)	8.206 (3.2)	32.37

TABLE B-39

SSN-637 CLASS POWER GENERATORS

316	.5) (1.0) (3.8) (0.0)	137906419 1.2120028 .0366 -8.0613552 33.62 32.20 -6.942 1.217 60.69 77.29 (0.5) (0.3) (0.4) (0.5) (1.0) (0.1) (0.3) (1.1) (1.0) (0.2) (0.1) (1.4) $F=Z_0$	1810. 8858. 1108 EE4	,8) (0) (1.2) (0.2)	(1-2) (2-265 (0-3)	.8) (0) (1.2) (0.2) 191 9.619 2.265 -8.364 .7) (1.3) (0.3) (0.6) 160 1.008 -2.336 -3.664 .2) (0.2) (0.6) (0.4)	2.255 (3.3) (3.3) (3.6) (3.6) (3.6)	(0.0) (1.4) (1.8) (0.4) (0.1) (0.2) (1.5) (0.2) (0.4) (1.8) (0) (1.2) (0.2) (0.6)
SYLE SYL.	3.232 -2.161 .0024 .0366 -9.379 .3455 17.14 52.74 -25.44 34.56 (1.4) (0.9) (0.9) (0.1) (0.3) (0.5) (1.4) (0.5) (1.0)	62 32.20 -6.9 1) (1.0) (0.	-22.40 .00340044 0 00175 .0019 .0080 .013509338011 (0.8) (1.8) (0.8) (0.8) (1.8) (0.8)		54 -2.657 -17.	F= 1.1 -160647153159 .00290121 -14.19 .2540 4.054 -2-657 -17.91 9.619 (0.3) (1.3) (0.7) (0.5) (1.0) (0.6) (0.9) (0.5) (0.4) (1.7) (1.3) F= 1.9 -231810980567 .00420020 -9.016 .0539 5.492 -2-677 -6.068 1.008 (0.7) (1.5) (0.2) (1.1) (0.3) (0.7) (0.3) (1.2) (0.6) (1.2) (0.2) F= 4.1	10 - 2.657 - 17. 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	54 -2.657 -17. 53 (0.4) (1. 59 -2.677 -6.8 2) (0.6) (1. 77 -01335 -01 99 53.45 32. 89 53.45 12.
AGE FL	.3485 B/	13552 33.0	.0019 .00) (6.0) (2540 4-0.0 0-10 1 6-0 1	10. 2020. (0.0)	2554 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.
st Pc	.0366 -0.379 (0.9) (0.1)	.0366 -8.061	(0.1) (0.2)		0121 -14-19	0121	0121 -[4.19 (1.0) (0.0) 0029 -9.016 (6.3) (6.7)	7-1121 -1210-1 (1-0) (0-1) (1-0) (0-1) (1-0) (0-1) (1-0) (1-0) (1-0) (1-0) (1-0) (1-0)
P0 CI	191 (0.2)	.2120028 0.6) (0.2)	1.8) (0.8)		3159 .0029 0.73 (0.5)	3159 .0029 0.73 (0.5) 0587 .0042 0.23 (1.1)	3159 .0029 0.73 (0.53) 0.63 (0.43) 0.65 (0.43)	3159 .0029 . 0.73 (0.53 . 0.63 (0.43 . 0.63 (1.33 . 0.53 (1.33 . 0.53 (1.33 .
£	3.232 -2.			_	47151	200		
RC AC	13.77 7506. 3 (0.6) (0.3) (120					12.71 1666. (2.6) (0.31 103
CONST	CASBMM -244.5 13.77 (2.6) (0.6) R-SQUARED= 4422	CASMNT -130.6 -8.31? (1.33 (0.4) A-SQUARED= .432	CASREP036 .0(C34DM 21.43 12.71 (0.61 (2.6) R-56UARED= 103	C34DM 21.43 12.71 (0.61 (2.6) R-SQUARED= 103 C34MM 13.96 4.020 (0.7) (1.5) R-SQUARED= .031	C34BM 21.43 C34BM 11.06 C34BM 13.06 C34BF 0.70 C34BF 10.00 C34BF 10.00 C34BF 10.00	C34DM 21.43 12.73 - C34DM 21.43 12.74 - C34MM 13.06 4.05 - C34MM C0.77 (1.5) F= C34MF - 0.04 (0.7) C - C34MF - C0.45 (0.7) C - C34MF - C34MF - C0.45 (0.7) C - C34MF - C34MF - C0.45 (0.7) C - C34MF - C34

TABLE B-40

SONAR AVERAGES

	FF-10:	25	FF-1052 CLASS	000-5		CLASS	S SM-6 37		CLASS	
MKGSA		Ų	612,59)			322.37)			606-08)	
LXXX	03.35	J	8.7	2.72		176.21)		_	441-36)	
ASREP	24.0	J	100			0-46)			0	
340MM	86.89	J	245-35)	20-23	J	94-86)	16-16		110-17)	
134MNT		J	6.0		_	53.89)	11.05 (96.95)	
CBAREP		J	•			2		_		
T W N	6.27	J	2.20						5	
L .		J	80			256.14)			57.	
<u>ي</u>	1. 31	J	0-87)	0.36	_	0.42)	1.05		0	
2	23-4	J	2-26)		u	m	62	_	•	
d.		J	23-16)		J	22-22)	.38	J	26.79)	
9	7 9	J	8.60)			11.63)	20	J		
H 2		J	'n			242-15)	25.60			
15	227-76	J	Y.			121-79)	91			
ر د	27.08	J	45.76)			15.11)	*			
16E	92-99	J	12-15)			21-02)	9			
ب	0.59	J	0.49)			0.50)	9			
57L1	0-16	J	0-36)			0.43)	23			
STL2	0	J	0			0-303	90			
5 Y L 3	0	J		0	J	6	0.21 (0.41)	
. A. S	0.35	J	0-46)		_	0-44)	.23	_	7	
.	0	J	6	0	_	6	1.18	J	0.39)	

FF-1052 CLASS SONAR

STP	(0.6)	150.8	.0163	(0.2)	37.16	.0375	-18.62	(1.555
371	-33.02	15.72	1634	-69.88	-23.71	0356	-6.600 (1.2)	(1-1)
ı	-172.5	-167.6	(1.0)	17.72	3.863	0269	18.22	4.197
A 6E	0 118-5 -6.861 -2.575 1.53208061205 .92906321 -172.5 -33.02 0 (2.0) (6.3) (6.9) (6.6) (1.0) (6.5) (1.1) (6.1) (1.4) (6.5) 1 .326 F= 6.9	(0.3)	(0.2)	(2.2)	-2.637	0022	4.360 2.665 .0695 .0335 .0310 .019306333331 18.22 -0.600 -18.62 (1.3) (2.2) (0.7) (0.1) (2.9) (0.9) (1.2) (1.3) (2.6) (1.2) (2.6) (2.6)	
S.	.9290	1839 (0.3)	.0005	.0911	. 2939	.0006	(2.1)	.0066
ST	1205	.0206	.0001	(2.1)	(1.0)	(0.3)	(0.9)	.0810
5	0806	.6336	.0003	0261	.0116	.0001	(2.9)	.0995
2	1.532	1.630	.0028	1.693	1.639	.0022	.0335	.2987
£	-2-575	1.131	(9.3)	0761	2031	0010 (1.4)	.0695	. 2693
¥C	-6.381 (6.33 F= 6.9	16.27	.0048 C 0.39 F= 1.3	12.26 (1.3) F= 1.4	7.905 (1.1) F= 1.5	.0836 (0.43	2.665 (2.2) F= 2.8	10.33 (1.9) F* 1.0
AC.	118.5	35.51 (0.9) .321	.0976	46.42	39.74 (2.2) -524	.0066	4.360 (1.3)	17.20
ISNOO	CASDAM 603.0 (1.8) R-SQUARED:	CASMWT 2553-0 35-51 -16-27 -1.131 1.630 .6336 .620618397385 -167.6 -15.72 (1.1) (0.9) (1.1) (0.6) (0.9) (0.9) (0.6) (0.5) (0.1) (0.3) (2.1) (0.2) R-SQUAREGE -321	CASREF .3953 .0976 .08480837 .0028 .0803 .0001 .080500071672 (1.4) (2.1) (0.3) (4.6) (1.2) (2.0) (0.3) (0.7) (0.2) (1.8) R-SQUARED* .017 F* 1.3	C34DWW 182.3 46.42 12.260761 1.69302611027 .0923 -4.193 17.72 -69.86 (1.1) (1.3) (1.3) (0.9) (0.9) (1.2) (0.3) (2.2) (0.3) (1.2) W-SQUARE®* -448 F* 1.9	C34MWT 19.64 39.74 7.9052031 1.639 .0116 .0081 .2939 -2.637 3.863 -23.71 37.16 { 0.23 { 2.23 { 1.13 { 0.43 { 1.33 { 0.73 { 0.13 { 1.23 { 1.93 { 0.13 { 0.53 { 1.13 { 0.53 { 0.53 { 1.13 { 0.53 { 0.53 { 1.13 { 0.53 { 1.13 { 0.53 { 0.	C34REF17440086008360081000220001	-6.003 (0.3) R-SQUARED*	-65.37 17.20 10.33 .2493 .2987 .0995 .081008668949 4.197 -45.02 -1.555 (0.6) (1.2) (1.9) (0.5) (0.2) (2.1) (0.8) (0.4) (0.8) (0.1) (1.4) (0.1) (1.4) (0.1)
	CASDER R-S	CASHIT R-S	CASREP R-S	C340MM	C34HBT R-S	C34REP	INA R-Su	SF R-S

TABLE 8-42

DDG-2 CLASS SONAR

	COMST	3	3 4	Ł	2	2	15	90	A GE	1	SYLI	2718	SYP
CASOUR	-342.1 (1.5)	19.17	CASOWN -342.1 -19.17 15.78 .7581 .7712045101685585 1.674 87.96 26.61 176.4 (1.2) (1.3) (2.3) (0.5) (0.5) (1.1) (0.2) (0.4) (1.2) (1.1) (0.4) (2.1) (2.1)	.7581	.7712	(1.1)	.0168	5588	1.474	87.96	26.41	176.4	-115.0
CASMRT 8-5	-286.6 (2.73 (2.73	-25-25 (0.9) -225	CASMNT -286-6 -25-25 8-9421166 .7127 .012401272039 1:345 111.2 26.28 -50.73 -95.52 (2.71 (0.9) (2.4) (0.9) (0.9) (0.9) (0.2) (0.3) (2.4) (3.1) (0.9) (2.8) (2.8) A-500ARED225 F= 2.5	.1166	.7127	,0124 (0.5)	.0127	2039 (0.3)	1.345	111.2	26.28	-50.73	-95.52
CASREP R-5	1879 (0.9) 10UARED=	1,325 (2,3)	CASREP1879 .1325 .01994605 .46076001640936012 .6014 .0422 .6652 .17240137 (0.9) (2.3) (2.3) (0.5) (0.7) (1.5) (1.0) (1.3) (0.6) (1.5) (2.3) (0.2) R-SOUARED* .059 f* 3.1	0405	.0007	0001	4003	0012	.0014	(9.0)	.0852	.1724	0137
C34088	15.38 (0.2) squared	6.998	C34DBW 15.38 6.998 2.294 .28393567031503890262 .1252 -26.47 -10.49 -14.47 3.467 (0.2) (0.2) (0.2) (0.4) (1.2) (1.0) (0.7) (0.8) (1.0) (0.1) (0.4) (1.3) (0.6) (1.5) (0.2) R-SQUARED* .238 F= 6.7	.2239	3567	0115 (0.8)	0389	0262	-1252	-26-47	10.83	.34.47	3.467
C34ANT	-51.45 (1.9) SQUARED-	-3.076 (0.4)	C34MMT -53.45 -3.4763542 .0567 .3139 .005301840341 .2126 7.460 4.669 15.382979 [1.5) [1.5) [1.5] [0.4] [1.5] [0.6] [0.9] [0.2] [1.5] [0.9] [1.5] [0.9] [1.5] [0.9] [0.8] [.0507	. 31.59	.0053	.0104	0341 £ 0.23	.2126 (- 1.53	7.860	8.689	15.38	2979
C 34REP R-5	0343 (0.4)	120.	C14REP0383 .0205 .00250001 .00000001 .0002 .0002 .0004 .8121 .0315 .00100228 (0.4) (0.4) (0.6) (1.0) (0.2) (1.1) (1.5) (2.2) (0.5) (0.9) (0.4) (1.3) (0) (3.6) R-SQUAREO*.021 F= 1.3	(0.2)	-0008	6001	0002	.0002	10001		.0315	100.	
Z W W W W W W W W W W W W W W W W W W W	10-62 (1.0) \$90ARE D=	-1.534 (0.6)	INA 18-62 -1.534074008030044 .0034 .0058 .83140154 -1.592 .4978 -3.337 1.825 (1.0) (0.6) (0.6) (0.6) (0.6) (0.6) (0.6) (0.6) (0.6) (0.6) (0.6) (0.6) (0.6) (0.6)			.0034	. 6.73	.8314	0154 (0.3)	1.592	.4978	.3.337	(9.6)
25 F	74.10 (0.7) \$9UARED=	10.04	74.10 10.04 .0300 .1600 -1.484 .0109 -1.101 .1959 .1815 2.022 12.84 9.544 55.98 (0.7) (0.1) (0.1) (0.2) (1.1) R-SQUARED= .015 F= 0.8	1600	11.484	.0103	1.50	.1959	.1815 C 0.3)	27072	12.84	9.544	35.98

TABLE B-43 SSN-637 CLASS SONAR

#	133.17	-216.4	.0860	4.933 C 0.13	49.03	.0254 (0.4)	. 37.65	-7.219
STP	-7.810 -7.495 0.064 .0194 .4682 .2773 3.659 332.9 -148.6 -377.9 -36.04 -433.9 -39.17 (0.9) (1.5) (2.2) (0.3) (2.9) (0.3) (0.7) (2.2) (1.1) (2.2) (0.3) (3.0) (0.1) (2.2)	.0639 .2262 -1.760 5.537 206.4 -262.8 -192.0 -41.31 -394.5 -216.4 (1.5) (2.0) (2.3) (1.5) (2.0) (3.1) (1.6) (0.4) (3.9) (1.1)	.0012 .00010012 .0002 .00030005 .0025 .0605134609210634 .0181 (0.2) (-1.8972952 .26252039 .05961204 .2713 -14.87 -16.01 9.379 -17.59 -6.203 4.933 (1.5) (1.5) (1.4) (0.4) (0.3) (1.9) (0.3) (0.3) (0.3) (0.7) (0.8) (0.4) (0.4) (0.8) (0.3) (0.1) (1.5)	.2875 .0065 .041817844886 -4.493 -14.50 16.09 -25.80 -16.05 (0.5) (0.5) (0.5) (1.1) (0.7) (0.5) (0.6) (0.7) (1.4) (0.9)	(8.0)	-3.0600957 -2341 -0050 -0271 -1669 -3643 -24.66 1.626 17.13 -12.45 -3.289 -37.65 (1.9) (0.3) (0.3) (1.7) (0.6) (0.7) (0.4) (0.9) (0.1) (0.5) (0.5) (0.1) (0.7) f= 1.7	.9590 .0184 .4638 .01340261 ~.13911633 ~5.766 -4.301 -6.842 5.099 -1.847 -7.219 (2.0) (2.0) (0.5) (0.7) (0.7) (0.7) (0.2) (0.4) f= 2.6
21.3	-36.04	(10.0)	634	-17.59	(1-1)	000508030005 0 .08010003000101710669028706073225 (0.3) (0.9) (6.6) (0.8) (2.1) (1.2) (0.1) (0.5) (2.3) (0.8) (2.0) (0.8) F= 1.2	-12.05	5.099
SYLZ	-377.9	-192.0	0921	9.379	16.09	0287	17.13	-6-842
27.11	148.6	-282.8	1346	16.01	14.50	0669 (2.3)	1.626	105 30 V
7	332.9	206.8	(0.6)	14.87	(0.2)	(0.5)	99.92-	-5.766
A GE	3.659	5.537	(9.0)	.2713		0001	.3663	1633
Ş	. 2773	.1.760	(0.5)	.1204	-1704	0003 (1.2)	1669 C 0-73	(2-0)
15	.4682	.2262	.0003	.0596	.0418	.0001	.0271	0261
13	.0194	.0639	.0002	0039	.0065	6.0	. 1.73	.0134
2	0.064	2.085	0012	.2625	.2875	0005	(0.3)	.4638
ŧ	-7.495		.000	-2952	5 -1.2722796 (1.1) (1.5) (fr 1.2	0003	. 0.3)	.0384
ĄÇ	-7-610 (0.9) F= 2.5	-3.268 (0_6) F= 3.0	.0012 (0.2) F= 1.7	-1.897 (1.5) F= 1.1	-1.272 (1.1) F= 1.2		-3.060 (1.9) F= f.7	.9590 (2.03 F= 2.6
3	-38.96	-23.30 (0.7)		-8.219	-5.735 (0.9)	0175 (1.7) .025	.029 (0.8)	66
CONST	CASD#N 3.592 -38.96 (0) (0.9) R-SQUARED= .473	CASMNI 316.3 -23.30 (1.6) (0.7) R-SQUARED= .408	CASREF .16970073 (0.69 (0.2) M-SQUARED= .029	C34BM 36.73 -8.219 (0.8) (1.2) R-SQUARED= .208	C34MH 24.43 -5.735 (0.6) (0.9) R-SQUARED: .228	C34REP12260175 (1.6) (1.7) R-SQUARED025	96.70 -7.083 (1.6) (0.8) R-SQUAREU= .029	2-484 .0097 (0-1) (0) R-SQUARED= .043
	CASD#N R-S	CASMNT R-S	CASREP R-S	C349NH R-S	C34MMT R-S	CSAREP R-S	INA R-S	\$£

TABLE B-44

INTERIOR COMMUNICATIONS AVERAGES

	FF-10	32	FF-1052 CLASS	006-2 CLASS	CLASS	SSN-637	7	CLASS
CASDKN	14.70	J	7.16	5.25	244.			ä
CASHNI	10.	J		27	139.	5.68		•
CASREP	0	J	40	10-0	•			
C340NM	0	J	6	0.75 (13.		J	9.40
CJANNI		J		99	12.			
C34REP		J		0	•			
ENA	3.27	J	2-29	3-02	43.	26.		•
SF		J		9	310-013	2.05		~
RC	0.12	J	0.20)	0.20	0.14)	0.40		0.29
AC	35	J	-		60			0.01
4	90	J	46.62)	•	42.0	78.84		28.11
2	7	J	5-16		14-8	00		20.62
CI	20	J	35.78		242.1	25-60		57.85
ST	227.76	J			121.7	211.16		19.22
Pc	0	J			0.7	•		0.05
AGE	99-	J	K /	161.72 (21.0	9		22.17
7		J	•	-45	0.5	9		0.48
SYL1	917	J	9	'n	4.0	M		24-0
STL2		J	3	01.	0.3	0		0.27
SYL3		J	6	0		_		11-0
STP	0.35	J	6-48)	0-26 (0.449	0.23 (24.0
I,	•	J	6	0	6	80		0.39

TABLE B-45

FF-1052 CLASS N'FERIOR COMMUNICATIONS

				INFE	RIOR	COMMU	INTERIOR COMMUNICATIONS	ONS				
5	COMST) 2	V C	PP PQ CI ST	2	5	25	Š	A GE	1.	STL	SYP
.ASBMM -7.981 -50.51 24.120363 .314201270314 (0.1) (0.1) (1.3) (2.2) (0.1) (1.1) (0.9) R-SGWARGO576 F= 8.2	7.381 1850-	-50-51 (1-3) 576	24-12 (2-2) F= 1-2	.0363	.3142		0314		1024.	-21.73	.4204 -21,73 -22.48 -5.569 (0.2) (0.2)	-5.569
.ASMNT -77.46 -48.70 26.93 .2262125100020288 (1.5) (1.5) (3.1) (0.9) (0.5) (0.4) (0.6) R-SQUARED .479 Fx 1.7	77.48 1.53	-48.70 (1-5)	26.93 (3.1) F= 1.7	.2262	(0.5)	0082	0288		1.055	6239	1.0550239 1.733 13.00 (1.8) (0.7)	13.00
.ASREP02440215 .0095 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.0244 1.43	0215	.0095 (3.4) F= 2.4	(0.4)	6.60	0.43	(6.1)		.0085	8037 (0.7)	.008500370024 .0065 (2.0) (2.0) (1.0)	.0065
INA -46.97 -10.00 5.460 .0172 .0798 .0474 .0473 (1.13 (0.4) (0.6) (0.2) (0.4) (1.9) (1.0) R-SQUARED# .011 F= 1.0	16.97 11.13	110.00	5.460 C 0.63 F. 1.0	.0172	.079	.0474	.0473		.3123	21.00	.3123 21.00 "6.817 -23.00 (0.7) (1.4)	-23.00
.f -1	1.662 IRED= .	-28-64	-1.662 -24.64 -19.31 .35452434 .0806 .1510 (0.0 (0.6) (1.63 (2.1) (0.7) (2.0) (1.9) R-SQUARED= .017 F= 1.5	.3565	2434	.0006	.1510		9552	-1.066	9552 -1.006 -6.265 28.63 (1.1)	28.63

DDG-2 CLASS
INTERIOR COMMUNICATIONS

SFL2 STP	62.42 -63.74	24.72 -13.90	CASREP08691194 1.8856010 .0008 .0001 .00010064 .00180139608401670550 (0.7) (1.3) (0.3) (2.0) (1.9) (2.8) (0.6) (0.5) (1.8) (0.3) (0.3) (0.4) (1.6) R-SQUARED=.037	C34DMM -3.637 1.519 9.67400680192 .000700646329 .0497 -1.2728080 -1.605 -1.334 (0.6) (0.6) (0.5) (0.6)	-1.620 -1.297 (0.9) (0.8)	C34REP03250274 .066206010002 0 00040 .0004 .0029 .013700410052 (1.1) (1.0) (1.1) (1.0) (1.2) (1.3) (1.3) (1.3) (1.3) (1.4) (IMA 20.13 29.31 -188904160413 .01580139 1.4290537 3.536 1.128 5.9040783 (1.1) (1.1) (1.2) (1	SF 5-657 -41.43 -2031520362936115 -17.40 .9727 -19.72 -27.21 -45.06 -15.25
STLI	CASONN 260.3 -213.3 22351.864 .479002981807 -115.8 .6116 -16.92 -67.76 62.42 . (1.28 (1.3) (0.2) (2.2) (0.7) (1.1) (2.0) (4.3) (0.8) (3.3) (1.1) (3.9) (R-SQUAREO= .479 F= 2.9	CASMRT 25.32 -38.26 -875.75089 .3097 .00830526 -12.50 .1828 -9.299 -20.96 24.72 (0.3) (0.5) (0.5) (0.7) (0.9) (0.4) (0.9) (1.1) (0.4) (0.5) (0.6) (0.8) (0.8) (0.8) (0.8)		6080 (0.5)	C34MWI -2.031 2.520 5.02000370171 .000200735697 .0620 -1.472 -1.309 -1.620 (.0137	1.128	-27.21
ı	16.92	-9.299 (0.3)	0130	(0.7)	-1.472	(0.3)	3.536	-19.72
A GE	.6116	.1828	.0010	.0137	.0750	.0004	0537 (0.5)	.9727
2	-115.8	-12.50		6329 (0.9)	. 5697	0040	1.429	-17.40
15	1807	0526	.0001	0064	0073		0139	0115
5	0298	.0083	.0001	.0007	.0002 (0.1)	• • • •	.0158	.0293
2	.4790	. 3097	.0000	0192		0002	0613	6943
Ł	-1.164		6010	0068		0001	0418	5203
¥C	2235. (0-2) F= 2.9	-875-7 (0.2) F= 0.7	1.805 (0.3) F= 2.4).074 (0) F= 1.1	5.020 (0) F= 1.0	. 0682 (0) F= 1.7	-1889. (1.5) F= 1.8	-2031.
2	-213.3	-38.26 (0.5)	1194 (1.3) .037	1.519	2.528 (0.5) .016	0274 (1.0) .027	29.31 (1.7) .027	-81.43
CONST	260.3 (1.23 (9UARED=	25.32 (0.3) (auareo-	0869 (0.7)	- 3.037 (0.69 (0.89	-2.031 (0.4)	0325 (1.1)	20.13 (1.1) (1.1)	5.657
	CASOUN R-5	CASMRT R-3	CASREP	C340MM	C34MRT	C34REP	111 A 11	SF

SSN-637 CLASS INTERIOR COMMUNICATIONS

												,		1 1 1 2		ă
		•	7	ŧ	ĩ	13	••	25	Ş	A 6.E	7	27.5	34.5			95.54
	CONST	: :	1	7.663	260-2 90-22 5550- 0120- 6095-	.0210	7	0353	22-08	260.2	32.29	3.894	25.43 22.10	22.10	19-0 10-0 1-0	(1.9)
CASBUR	CASBUR -60-72	(2-1) (5-1)		(1.3)	(1.0)	(2.2	_	2.3	(2-6)	(5.3)		, ,				
R-S Casmit	-16.21	R-SQUARED# -477 CASMIT -16-21 -27-72	176.	.5956	6666	.00	٠.	0012	2.446	(1.6)	5.585	(5-0)	6666 .0082 .0012 2.446 .5957 5.585 4.626 -9.545 6.002 -1.100 (2.8) (0.5) (0.1) (0.1) (1.6) (0.5) (0.8) (0.7) (0.1)	(0.7)		(S -0)
R-S CASREP	R-SQUARED# .208 CASREP 0378 03		fr 1.5	.0004	0008	2.0.3	• •	0.30	6260	.0016	2610.	(9.0)		(1.5)		1.53
R-S C34DWR	R-Squared=	-020	7. 2.	F= 1.4 1 -36.300064	0220	93	· · ·	0005	1.003		.4416	3010.	1.276 - 0000 1.003012244162572 1.276 (1.1) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5)	1,276	. 5976	.3614
F-:	R-SOUARED A-SOUARED A-SOUARED	-007	-33.79	f= 0.5 -31_790059 .0205 .0006 .0005 .93370114411601742394 1.107 -31_790059 .0205 .0005 .93370114411601742394 1.107	.0205		 **	9965	.9337			0174	1627-	1.197	.5565	. 3364
R- C348EP	R-SQUAREO**	200		F= 0.3 F=	.0001	•	- 2	0.23	(2.0)	(0.3)			0009		.1021	
= =	SQUAREDO 34.96	R-SQUARED 607	-196-1	F= 8-5 -196.1 G4276 G4234 G642 -17-66 1603 -1-910 7-622 8-559 6-645 9-544 -196.1 G4276 G4236 G-236 G-436 G-4	0865	9.9	**	.0082	17.66	.1683	1.010	7.622	1.550	59.7	9.546 6.5.0	-20.56 (2.0)
* *	A 3.55 A 2.58 A	7.50) (6.5.) 7.50 - 6.5.3 7.50 - 6.5.3 7.50 - 6.5.3 7.50 - 6.5.3 7.50 - 6.5.3		F = 2-4 -45.08023600360005002237550466 -1.005 .5730 1.396 1.522 .7347 .0475 1 (1.5) (2.3) (0.3) (0.5) (1.2) (0.1) (1.1) (1.0) (0.6) (1.1) (1.5) (3.7) (3.4) F = 2.1		9.	88	1.23	3755 (0.1)			.5736	1.3%	(1.52		

TABLE B-48

CLIMATE CONTROL AVERAGES

	FF-145	FF-1852 CLASS	D06-2	CL ASS	SSN-637 CLASS	vs
CASOWN	243-21 (400	239.63 (477.33)	198-94 (378-7	.78)
CASMN	2119		156-89 (372-193	<u>۔</u>	.74)
CASREP	0.27 (•	0.25 (0.66)	1961.	.50)
CHOKE		113		•	ושו	18-323
CSAMNI		7	3-29 (•	.57 (3	.09)
C34REP		9		•) 10.	-13)
ENGLOG	37.25 (M	0	6	•	6
INA		110.	109.98 (217.13)	(343	.34)
SF		484	69-31 (112	.72)
INSURV		6	2.05 (0-713	0	6
20	0.77	0-50)	1.64 (1.07)	4.34 (1.	.33)
AC		1-1		1.973		-06)
99	J	14.9	76.85 (12.17)	(15	•26)
5	m	8.5	_	11.50)	J	-
13	361-07 (25.44	242.15)	325.60 (257.	0
21	9	117-0	227.81 (121.79)	611)	.223
PC	0.37	24.6	_	•	12)	.251
A GE		12.1	2	21.02)	71.46 (22.	
7	52	7 .	*	•	0	. (9)
STLI	0-16		0-25 (•	•	(21.
SYL2	0		7	•	о С	.273
SYL3	•	6	0	0)	- -	(1)
SYP	0.35 (0.46)	0.26 (0.44)	0	(21.
I O	0	6	0	6	0	-39)
**	23.45 ((52-6	2-05 (11-81)	0	6

TABLE B-49

FF-1052 CLASS CLIMATE CONTROL

	COMST	3	¥C	ŧ	2	5	st	2	A GE	7	SYL	SYP	=
CA SOMM	## 606.0 (2.1) R-SQUARED=	-6-035 (0-1) -362	21-66 (0.71 F= 1-4	(5:1)	2.570	(2.2)	. 3235	0738 (0.1)	1010-	-115.7	-98.15	73.89	
CASMMT R-S	CASMNT 24.22 (0.1) R-SQUARED	-40-02 (1-0) -261	NT 24.22 -40.02 -25.48 (0.1) (1.0) (1.2) R-50UARED -261 F= L-1	9369	\$2.24 \$2.27	0264	1876	2867 1.396 (0.4) (0.7)	1.396	71.93	40.15 C 9.73	6.195 (0.1)	
CASREP R-S	.1558 (0.5)	0700 (1-1)		000	0002	.0001	0004	6010	. 1.83	(1.0)	.0747	.164	
C340MB	C340WH -33.61 (0.43 R-SOUARED=	-3.067 (0.2) -372	-3.067 7.861 (0.2) (0.9) -372 f= 1.2	3457		1.7570165	.0035	0426	3753 (0.5)	-58.04	-44-70	26.42	
C34887	C34MNT -25.22 (0.5) R-5QUARED=	-4.713 (0.4) -186	7.887 (1.73	.0548	. 3766			0415 C 0.33	.3941	-13.61	-9.840	6020-	
C34REP	EP .0090 (0.1) R-SQUARED=	0284 (1-1)	02660004 (1-1) (0)		.0014	0001	0002	1000 -		0315 (1.01	.0048	. 0.75 (0.7)	
S - E RCT OF	ENGLOG -171.8 (2.2) R-SQUARED=	40.61 (2.0) -183	40.61 -9.626 (2.0) (1.3) -183 F= 1.4	0973 (0.3)	0974	.0161	2020-	3771 (2.6)	2.587	53.68	34.60	15.64	
THA THA	-196.0 (3.5) QUARED:	-6.344 (0.53	-196.8 -6.344 2.526 (3.5) (0.5) (0.5) R-SQUARED: -065 fs 3.9	.1406	1.810	.0503		1653 (0.8)	1.304	-20.30	-13.38	19.41	
S.F.	-11.92 (0) R-SOUARED= ,	39.58	34.54 -13.31 (0.7) (0.5) .062	1-134	6498	.1081	.1426	3099 (0.3)	-1.190	(9-0)	-20.32	72.47	
INSURV A-Sal		.5155	.5155 .2106 (1.6) (1.2) .694 fr 1.6	.00.65	(2.0)	-00290013	0024	00240043	.0021	1806	-1046	.6639	. 0.36

TABLE B-50

DDG-2 CLASS CLIMATE CONTROL

	CONST) W	VC	t	2	5	15	5	A GE	1	1745	SYLE	SIP	H.
CA SOUR	-1423- (2-5)	-123.6 (2.1)	CASOWN -1423. "123.E 71.15 1.916 3.5410036 .52288393 6.865 759.9 -11.65 (2.5) (2.5) (2.1) (3.4) (0.3) (0.0) (0.1) (2.9) (0.7) (2.6) (1.4) (0.1) (8.50 (0.1) (2.9) (0.7) (2.6) (1.4) (0.1)	1.916	3.541	0036	.5228	1393 (0.7)	(9.2)	5.9.9	-11.65	-135.2	-522.0	
CASHRT R-5	-967.2 (2.2)	-66.92 (1.9) -329	CASMAT -967.2 -66.02 44.49 2.335 4.869 .0303 .25117663 2.765 cFF 61.80 -21.27 (2.2) (1.9) (2.7) (4.5) (1.3) (0.6) (1.7) (4.0) (1.3) (0.9) (0.2) (6.2) (6.5) (6.5) (6.5) (6.5) (6.5)	2.335	4.869	.0343	(1.1)	(0-0)	2.755		65.80		(5.5)	
CASREP R=S	5679 (0-7)	0589 (1-1) .031	CASREP36780369 .031800090001 00015 .0056 .1464 .03501140 (0.7) (1.1) (1.7) (0.4) (0.2) (0.8) (0.1) (1.3) (2.3) (0.9) < 0.1) (1.1) R-SQUARED* .031 F= 1.5	6.62	(0.2)	(0.4)	60.10	0015	.0056	.1464	.0350		-2934	
C3404H	19-48 (0.9)	1235	C34DMM 19.48 -1235 -1.82518930032 -00400175 -0112 -0150 -1.105 3.7089065 ((1.7)	0032	.0040	0175 (1.5)	.0112	.0300	-1.105	3.70	9065	(0.1)	
C34MMT R-S	15.05 (0.7)	. 6.13	C34MNT 15.05 .275785841633 .0084 .00440173 .0094 .03979077 3.14256248880 (0.7) (0.1) (1.1) (1.5) (0.1) (0.8) (1.5) (0.2) (0.1) (0.1) (0.4) (0.1) (0.1) (0.1)	(5-1)	.0096	.0046	(1.5)	.00%	.0307		3.142	5626		
C34REP R-S	.0657 (0.9)	8102 (0-9)	C34REP .4845741024043740404 040401 0 .40404 .0145 .032040439 (0.9) (0.9) (0.9) (1.4) (0.2) (1.5) (0.1) (0.8) (0.4) (1.4) (0.2) R-SQUARED= .034 F= 0.9	(1-4)	0004	(0.2)	0001	6 0.13	.000	.0145	.0320	0039	-0248	
[MA R-5	-63.40 (0.4)	26-41	IMA -63.40 26.41 13.70 .36553880 .16770802 .0985 .1180 29.98 12.70 (0.4) (0.4) (1.9) (0.2) (0.2) (0.5) (0.3) R-SQUARED088 F= 3.6	.3655	3880	.1477	0802	.0965	(0.2)	29.98	(6.3)	106.5 34.58 (2.9)	34.58	
\$¢	-93.29 (0.3)	(10.3)	-93.29 61.20 3.677 1.7433326 .1284 .077947933445 -29.87 83.79 33.21 67.74 (0.3) (0.3) (0.3) (0.4) (1.1) (0.2) (1.6) (1.6) (1.1) (0.2) (1.1) (0.3) (1.1) (0.5) (0.6) (0.6)	(1-1)	. 3326	.1284	(0.5)	. 678	.3445	-29.87	(1.1)	33.21	(9.6)	
INSURY R-S	-2.587 (0.43	9484	[MSURY -2.5879484 .1447 .012801140031 .00120035 .0356 2.151 1.655 (0.4) (1.1) (0.7) (0.3) (0.3) (1.4) (0.2) (0.3) (2.0) (1.1) (1.1) (1.1) (1.1)	.0128	0114	0031	(0.2)	00 55 (0.3)	.0356	2.151	(1.1)		-2.646	.0241

TABLE B-51

SSN-637 CLASS CLIMATE CONTROL

#0	6 -189.9	-217.8	.1010	14.72	13.37	.3379	-19.96	39.75 (1.2)
57.5	-153.6	131.7	.0036	.0579 .186038290060 .018561932828 .9132 5.565 -2.050 -1.563 1.153 14.72 (0.1) (1.6) (1.6) (1.6) (0.1) (0.2) (1.0) (0.1) (0.2) (1.0) (0.1) (0.2) (1.0)	8600	0043	-7.405 -1.124 .0763 .069304504257 .7441 18.23 9.805 -25.10 -5.802 12.19 -99.96 (1.1) (1.4) (0) (1.5) (0.6) (0.7) (0.4) (0.4) (0.2) (0.2) (0.5) (0.1) (0.3) (1.0) F= 1.2	15.76
2713	-31-64 -5352 2.7720577 .2706 1.202 5.235 204.8 -93.44 -190.7 -40.80 -153.6 (3.1) (0.1) (0.5) (1.6) (2.0) (1.5) (1.6) (2.5) (1.6) (0.5) (1.9) (1.9)	-25.83 3.775 -1.4470542 .0977 .9592 4.865 120.0 -66.71 -134.9 -13.39 -131.7 (3.7) (1.0) (0.4) (2.1) (1.4) (1.5) (2.2) (2.2) (1.3) (1.9) (0.3) (2.4) f* 3.4	1758	-1.563	1.943	0303	-5.892	5.522 -10.48 -13.76 (0.1) (0.0) (1.0)
STL2	190.7	-134.9		-2.050	1.921	0162 (0.9)	-25-19	(1.0)
SYLI	-93.44	-66.71	1151	5.565	6.331	0219	9.885	-1.294
1	204.0	120-0	.000	.9132	2.647	0134	16.23	10.22
A GE	5.235	(2.2)	0012	2828	2188	0009 (1.4)		-1.199
ñ	1.202	. 9592	.0013	.6193	0132	.0004	. 4257	
ıs	.2766	.0977	.0002	.0165	.0160	0.00	(0.6)	
5	0577	0542	°â	0060	0033	6 6.49	.0693	.0072
2	2.772	1.447	0015	(6.0)	(012	.0002	.0763	(0.5)
t	.5352	3-775	.0024	.1860	.1572	°ŝ	-1.124	
Ą	-31.64 (3.1) Fr 3.2	-25.83 (3.7) f* 3.4	0199 (2.6) F= 3.3	.0579 (0-1) F= 0-7	0582 (0-1) F= C.1	1000 T	-7.485 (1.1) F= 1.2	.5231 (0.2) F= 1.5
3	-23.61	*****	150-	1134	1657 (0-1)		-6.273 (0.6)	-2.356
CONST	CASBUM -226.6 -23.61 (0.8) (1.2) R-SQUARED .516	CASMMT -153.8 -14.46 (0.6) (1.1) R-SQUARED: .448		C348WW 8.496 .1134 (0.3) (0.1) R-SQUAMED= 100	C34MW 9.25716570582 .157240120033 .016001322186 2.687 6.331 -1.921 -1.9436600 (0.49 (0.49 (0.1) (0.4) (1.5) (1.1) (0.8) (1.7) (0.2) (0.9) (0.5) (1.2) (0.3) (0.4) (3.2) (3.2) (3.2) (3.2) (3.2)	C34REP .0040500019 .00011 0 .0002 0 0 .0000400194013401219013030004 (0.5) (0.5	303.2 -6.273 (1.5) (0.6) R-SQUAMED= .018	95-61 -2-156 -5231 .00614435 .00720065 .6468 -1-199 '10-22 -1-294 (1-4) (0-7) (0-2) (0-5) (0-5) (0-3) (3-4) (1-9) (0-7) (0-1) (0-1) (0-1)
	CASBUN R-S	CASMMT R-S	CASREP (C34848	C348NT R-S	C34REP R-S	INA R-S	SF R-S

TABLE 8-52

REFRIGERATION AVERAGES

	01-10	25	FF-1052 CLASS	DDG-2 CLASS	CLASS	SSR-637	CL ASS
CASONA	11.85	J	80.073	8.51 (62.11)	5.07 (45.61)
CASHNT	7.26	J	58-07)	4.31 (42-65)	1.12 (14.36)
CASREP	0.02		0-14)	0	0.139	•	0-13)
C34DHN		J	20.66)	0.32 (8.79)	0	6
C34MNT			20-22)	~	8-70)		60
C34REP		J	0.06)	0	0.043		60
ENGLOG	-92	J	15-72)	0	6		6
IMA		J	19-91)	8.57 (52-729	M	48-72)
SF	.53	J	235.02)	16.26 (213-11)	1.62 (11.553
2	0.19	J	0-10)	0.23	0.139	0.29 (0-22)
AC	٥	J	0.01)	0	6		60
9			14.97)	76-85	12.17)	108.74 (15-26)
5		J	8-58)	89.87	11.503		4.74)
13	361.87		235-78)	325.44 (242-15)		257.85)
21	227.16	J	117-09)	227.81 (121.79)	211.16	149-22)
PC	1.50	J	7.29)	C	6		0.33)
AGE	94-99	J	12-15)	161.72	21.02)		22.17)
7.	0.59	J	0-49)	0.45	0.503	0.36 ((81-0
SYL1	0.16	Ų	0.36)	0.25 (0.43)	0.23 (0-42)
STL2	•	J	6	01.0	0-30)	90.0	0.27)
SYL3	•	J	6	0	6	0.21 (0.41)
STP	0.35	J	0-48)	0.26	0.44)	0.23 (0.42)
¥0	•	J	6	0	6	1.18 (0-39)

TABLE B-53

FF-1052 CLASS REFRIGERATION

	CONST	BC	¥	t	2	2	ST	č	A GE	FL		31.6
CASOUR	CASONN -63.31 C 1.59 R-SQUARED=	144.9	1 -144.9 -745.3 (2.2) (1.4) -193 F= 2.6	5-330580621 . .48 (0.6) (0.2) (2-6	0621 (0.2)	1.7)	_00816519 (0.3) (1.1)	6519	1.941	35.47	15.76	-7.110 (0.5)
CASHBY	-87.71 (2.2) SQUARE 0-	-137.0 (2-9)	CASHWY -87.71 -137.0 -467.7 .03171219 (2.2) (2.9) (1.3) (0.1) (0.4) A-50UARED103 F= 3.2	.0317	(0.4)	.0167	.0262	.0167 .02624787	1.552	27.14 (2.9)	14.69	-10.25
CASREP	1515 (2-1) SQUARED=	1313	CASREP15151313 -1.2470001 0 0 .00010002 (2.1) (1.6) (1.9) (0.2) (0.1) (1.9) (1.7) (0.3) R-50UARED*.029 F= 2.3		6 0-13 0-13	(1.3)	.0001	- 6002 (0.3)	.0022	.0397	.0196	.0062
C3408H	-12.00 (1.2) SQUARED=	-20.06	C34DMM -12.00 -20.06 -47.380807 .1167 .0052 .00100401 (1.2) (1.7) (0.5) (1.4) (1.3) (1.4) (0.1) (0.4) R-50UARED= .015 F= 1.2	607		.0052	.0010		-1466	5043	2.340	2.778
CSAMP	C34BB -12.17 (1.2) A-50UARED=	-19.31	-19.31 -47.840785 (1.7) (0.5) (1.6) -015 F= 1.2	0785	.1215	.0043	.0002		.18493437	3437	1.734	2.863
C34REP	C34REP0190 (0.7) R-SQUARED=	0223 (0.73 .009	IEP019902231286	0.33	.0002	• • • • • • • • • • • • • • • • • • • •	••	0002	.0001	100-		2900-
ENGLOG	ENGLOG 17.34 (0.4) R-SQUARED.	16.27	18.27 -13f.7 (0.4) (0.6) .271 F. 1.5	.2615	5312	.261553126135 .0084 1.463 (1.6) (2.1) (1.6) (0.5) (2.3)	.000,	1.463	0293 (0.1)	7.413 C 0.73	2.325 (0.3)	3.900
4 1	-27.20 9.507 -154.3 (2.8) (0.8) (1.7) H-SQUARED= .027 F= 2.2	9.507	-154.3 (1.2) Fr 2.2	.0674	.1311	.0061			.1257	1.231	-2.523	.5015
7	-34.15 (0.3) R-SQUARED=	160.3	160.3 -139.6 (1.4) (0.1) .013 F= 1.4	1892 1-302 (0-3) (1-3)	1.302		0910	.02130910 2.0939361 -29.40 -20.30 (0.5) (1.1) (1.7) (0.9) (1.2) (0.7)	9361	-29.40	-20.30	41.63

TABLE B-54

DDG-2 CLASS REFRIGERATION

	COMST	KC	VC		t	2	73	18	5	A GE	J.	276.1	SYL2	37.
CASDUN R-5	CASDEN -59.47 (1.7) R-598ARED= .	-39.52 (1-3)	2	~	.7754	7 - 19-52 - 7754 - 1293 - 0134 - 0003 (1.3) (1.3) (0.3) (1.2) (0)	.0134	.0003		.0829	.0029 0.512 20.43 1.053 (0.5) (0.8) (2.0) (0.1)	20.43	1.653	-14.06
CASMMI	CASHNI -38.72 -35.36 .83074238 .01310045 [1.7] (1.7) (1.8) (2.1) (1.3) (1.7) (0.3) R-SQUARED* .063 F* 1.4	-35.36 (1-8)	<u>.</u>	•	. 2.1)	4238	(1.7)	(0.3)		92,0-	7.732 8.962 2.885 (1.1) (1.3) (0.4)	6.962	2.885	-6.436
CASREP R-S	CASREP04690516 .00070001 0 0 (0.00	0516		•	.0007	0001	•;;	(0.3)		1000.	.0001 .0071 .02950060 (0.4) (0.4) (1.7) (0.3)	.0295	0060	.0144
C340MB	C348HH 5.378 -1.5580039017700090039 (1.2) (1.2) (0.5) (0.1) (0.6) (0.5) (1.3) R-SQUARED* .008 F* 0.6	-1.558 (0.5)	:	•		0177		0039		(0.7)	01270520 1.613 .1146 (0.13	(1:4)	.1146	1384
C3488T	C36HMT 5.378 -1.5580039017700090039 (1.2) (0.5) (0.1) (0.6) (1.3) R-50UARED* .000 F= 0.6	-1.558 (0.5)		•	0639 (0-1)	(9.0)		0039		0127	-01270520 1.613 -1146 (0.7) (0) (1.4) (0.1)	(1:4)		.1364
C34REP R-5	C34REP02250065 00001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0065 (6.5)		•		(9.0)	6.6	C 1.33		0001	00010002 .0067 .0005 (0.7) (0) (1.4) (0.1)	2900		.0006
INA R-S	INA -14.32 -3.386 .31850179 .01160129 (1.7) (1.7) (1.7) (1.7) (1.7) (1.7)	-3.306 (0.2)	7	7	.3185	(0.1)	.0116	0329		.0043	0043 3.592 5.165 1.892 (0.2) (0.2)	5.145	1.092	6.401
7. 2.	224.6 (1.53 R-SQUARED=	282.6 (2.7)	=	•	.1992	282.6 .1992 -1.706 .00880349 (2.7) (0.3) (0.4) (1.1) (0.1) (0.4)	.0088	(0.4)		8343	8343 -27.49 12.92 .2652 56.30 (1.4) (0.7) (0.3) (9) (1.5)	12.92	.2652	\$6.30

SSN-637 CLASS REFRIGERATION

F= 0-9 (0-1) (0-9) (0-9) (0-3) (2-4) (1-6) (1-6) (1-2) (1-0) (0-8) -.0002 -.0015 Q 0 -.0037 -.0005 .0283 -.0073 .0027 -.0037 -.0177 .0190 (0.9) (1.7) (0.1) (0.1) (0.1) (0.1) -3.903 2.467 .9085 3.849 (0.6) (0.3) (3.1) (9.5) -7.351 (0.6) -.1871 5.716 .4267 -.0263 -.8727 (1.9) (2.1) (0.2) (0) (0.4) 17.67 -1.486 -4.462 (1.8) (0.2) (0.4) SYLZ -1.495 -.2396 .0514 .0556 .0087 -.0013 .9898 -.4265 (0.4) (0.1) (1.5) (0.1) (6.5) (1.6) .0443 -1241 .0039 -.0006 -3.710 (0.3) (0.2) (0.8) (0.1) (1.3) .0205 --4624 .0004 --0016 -1.514 (0.4) (2.8) (0.2) (0.4) (1.9) F= 1-1 F= 1.7 f= 1.6 f= 1.9 158 -1553 --0052 (2-5) (0-3) R-50UARED= .032 CASMUT 29-62 -1-734 (2.5) (0.5) R-SQUARED- 191 15-17 12-65 (0.59 (1.3) R-SQUARED= .046 _2109 -1.508 (0) (0.7) R-SOUARED= .012 DMM 9-435 -14-63 (0-2) (1-1) R-SQUAREO= .328 COMST CASREP CASDUM ¥

TABLE B-56

DISTILLING PLANT AVERAGES

	FF-10	FF-1052 CLASS	DD6-2 CLASS	LASS	SSN-637 CLASS	
CASDER	58.71	(206-18)	U	117.01)	-	_
CASHNI	38-26	(153-91)	19.36 (96.593	40.39 (157.26)	
CASREP		(0-33)	90.0	0.26)	0-24	_
C340MN		(106.19)	6.02 (65.50)		
CBANNT		(83.79)	5.03 (61-81)	(10.43	
C34REP				0.13)	10.0	
ENGLOG			J	60	_	
INA		(80-12)	J	373.529	(267-83	_
SF	25.52	-	23.45 (339.78)	J	_
280	48-0	(0-28)	0.61	0.38)	1.23 (0.40)	_
V C		ċ	<u>۔</u>	0.02)	J	_
6	79-22	(12-79)		9-26)	101.65 (16.03)	_
9			J	6-683	¥	_
13		(235.7 8)	325.44 ()	242.15)	325.60 (257.85)	
ST			J	121.79)	J	
P			J	6-613	J	_
A 6E			J	21-02)	J	
I		(64-0)	u	0-50)	J	
SYL1	0.16		0.25 (0.43)	0.23 (0.42)	
SYLZ		0	0.10	0-30)	•	
SYL3			0	60	•••	_
SYP	0.35	(34.6)	0.26 (0.44)	0	_
X O	•	6	•	60	(0.3	_

TABLE B-57

FF-1052 CLASS

	CONST	3	VC	2	2	10	12	5	A GE	ſ	37.6	516
CASONN R-S	-391-7 (2-7)	(0.1) (15)	CASOWN -191.7 4.655 -144.6 3.838840800580423 -5.197 3.816 -28.30 8.363 109.1 (2.78 (0.1) (0.6) (0.6) (0.2) (0.6) (0.9) (2.79 (0.7) (0.2) (2.6) R-SQUARED= .415 F= 1.6	3.838	. 0.63	.0058	0423	-5.197	3.016	-28.30	8.363 (0.2)	109.1
CASHNT R-S	20.10 (0.2)	-34.27	CASHNY 20.10 -34.27 23.04 -1.274 .566602070929 -6.395 1.573 6.174 -7.348 59.47 (1.274	.5666	0207	0929 (1.6)	-6.395	1.573	6.174 (0.2)	-7.348 (0.2)	59.47
CASREP R-S	.3607 (2.4)	1148 (2-3)	CASREP .3607114880350013 .000100010051 .001506550064 (2.4) (2.4) (2.3) (1.4) (1.2) (0.9) (1.6) (0.6) (0.7) (1.1) (1.6) (0.1) R-58UARED=.062 F= 2.1	0025		.0001			.0015	(1.6)		.0593
C340#N	52.00 (6.8)	-20.75 (1.5) .136	C340WW 52.00 -20.75 -195.72024 .362300640064 -2.1330366 -10.73 -4.190 19.81 (2824	.3623	0087	0864	(0.0)	0306 (0-1)	-10.73 (0.73	-4.398 (0.2)	19.01
C34MMT R-S	15.69 (0.3)	-16.18 (1.3)	C34MMT 15.69 -18.18 -189.80510 .611102090797 -1.1871648 -8.9722995 12.98 (0.3) (1.3) (1.2) (0.2) (1.6) (1.5) (2.5) (0.6) (0.5) (0.9) (0) (1.2) R-SQUARED= .063 F= 8.7	0510 (0.2)	.6111	0209		1.187	1648	-6.972	2995	12.98
C34REP R-S	.1165 (1.1) (1.1)	0594 (1.9)	C34REP .1165059444060408 .0016	0001 (1-3)	.0016	(0.9)	0001		6011	0430	0270	(1.0)
E NGL 06	115.6 (1.6)	-14.55	EMGLOG 115.6 -14.55 142.735764567 .0101042115892062 18.17 -21.04 7.684 (1.6) (1.0) (0.7) (0.9) (0.6) (0.5) (1.1) (0.4) (0.5) (1.1) (0.4) (0.5) (1.1) (0.4) (0.5)	3576	.4567	.0101 C 0.53	(1:1)	1589	2062	10.17	-21-04	7.6
INA R-S	. 0.421 (0.2) (0.2)	.9781	-8.421 .9781 -66.933188 .2055 .03760124 -1.326 .5614 -5.707 -5.4589033 (0.2) (0.2) (0.1) (0.5) (1.4) (0.6) (2.7) (0.4) (0.8) (1.9) (0.7) (0.3) (0.1) R-SQUAREOR .033 F = L.8	31 86	.2055	.0376	0124	1.326	.5614	-5.707	-1.458	
SF B-S	-172.6 (0.73	-47.66 (0.7)	-172.6 -47.66 -186.0 .8384 1.370 .8599 .1529 -5819 -0707 -20.45 -15.96 31.52 (0.77 (0.77 (0.77) (0.7) (1.3) (1.2) (0.1) (0.1) (0.4) (0.2) (0.5) (0.5) R-SQUARED= .247 F= 0.4	.4384	1.370	.0599	.1529	5819	0707	-20.45	-15.96	31.52

DDG-2 CLASS DISTILLING PLANT Ξ

SStI-637 CLASS DISTILLING PLANT

	COMST	2	¥	Ł	E	5	54	Š	AGE	น	SYLI	STLZ	SYLS	SVP	š
ASBUN R-S	SDMM 52.93 94.69 -5 (0.5) (2.5) (R-SQUARED= .461 F=	94.69	2.4	-1.62f 1.1626221 .00607289 1.609 91.27 -62.25 -16.42 (0.5) (0.4) (1.2) (1.1) (0.3)	1.162	(2.1)	.0060	-,7289	1.609	91.27	(1.1)	16.42	-37.67	116.4	(2-1)
A SMBT R-S	#	10.25 13.62 (0.49 (2.5) UARED= .460	1.23	-1.920 1.6920005 .02654336 1.814 97.68 -40.79 -38.55 -37.12 (0.6) (0.7) (0.8) (1.5) (1.3) (2.6) (1.2) (0.8) (1.1)	1.692	0005	.0265	4336	1.814	97.68	-40.79	-38.55		-121.6	159.3
ASREP R-S	(EF .1027 .0700 (1.1) (2.4) R-SQUARED= .027	(2.4)	0317 (1-1) FI 1-7	0005 0 00001 .0001 .0002 .0362 .0011 .03750465 (0-2) (0-2) (0-2) (1.3)	°6 J	•:	0001	.0001	.0002	.0362	.0011	.0375	0415	£328 (1-1)	0521 (0.7)
340MM R-S	LA 2.754 3.009 (0.4) (2.3) R-SOUARED= .025			.1798 .02981808602860326081 .6134 2.994 .1184 -2.462 [0.13	1000	0020	0032	1000	.0134	2.9%		-2.062	.2272 (3.6.)	-2.569	-1.349 (0.4)
34MAT	NT 2.519 2.856 (0.4) (2.6) (R-SQUAREO= .027 F=	2.858	2076	.0296094800160032 .0015 .0096 2.875 .0549 -1.959 .2030 -2.655	0948	0016	0032	. 6.13	.8096	2.875	. 0549	1.959	.2030	-2.655	1.155
348EP 8-5	RF .0428 .0095 (1-1) (1-1) R-SQUARED= .013	.0095 (1.1)	0022 (0.3) F= 0.8	.0002	6008	6008 0 08681 0 .6145606850648684 (1.73 (1.73 (0.63 (0.23 (0.	°\$.0601	61.0	.0145	000	1.0064	1014	1.6071	
¥ .	-52.39 24.63 (0.4) (0.4) N-SQUANCE .022		-42-57 (1-4) F= 1.5	-42-57 .2730 1.434 .019206781976 .7192 58-65 21.10 -17.27 3.322 (1.4) (0.3) (0.4) (0.1) (1.4) (0.5) (1.1) (0.3) (0.5) (1.6) (0.5) (0.4) (0.1) (0.1)	1.434	.0192		-1176	(0.5)	58.65	(0.7)	(0.4)	3.322	.58.28	-71-46 C 0.93
	-91.21 47.00 (0.0) (1.9) R-53UARED .011	(6.1.3)	-18-21 (0.7) F. 0.4	.2975 .7146 .00060052 .08282919 .10.01 35.68 -26.83 .8.113 (0.6) (0.6) (0.6) (0.7) (1.4) (0.8) (0.3)	.7116	900-	(4.0)	(2.6)	(2.0)	(0.4.0	35.64	-26.83	(0.3)	3.535	.5.222

TABLE B-60

COMPRESSED AIR AVERAGES

. CLASS	(97.55) (57.33) (0.19)	(9-87) (0-05) (109-54) (25-92)	1.85 (1.85) (15.26) (257.85) (149.22) (22.72) (22.72) (10.62) (10.62)
SSN-637 CLASS	15.39 6.62 0.03 0.40	0.40 0 0 35.73 6.29	20000000000000000000000000000000000000
CLASS	464.15) 338.65) 0.529 245.75)	220.89) 0.25) 109.20) 36.56)	11.03) 12.17) 242.17) 31.00) 21.02) 0.53) 0.53) 0.44)
DDG-2 CLASS		42.67 (0.05 (0.05 (24.57 (10.93 (0.59 (1.42 (325.44 (227.81 (12.27 (161.72 (0.10 (0.25 (
FF-1052 CLASS	521-81) 337-08) 0-57)	61-17) 0-16) 95-81) 69-65) 274-27)	0.36) 0.48) 117.09) 117.09) 12.15) 0.49) 0.48)
FF-105	380.46 (190.81 (0.29 (15.93 (9.64 (0.02 (104.99 (22.54 (21.05 (0.88 (0.98 (107.84 (83.23 (227.76 (26.24 (66.46 (0.59 (0.16 (0.35 (
	CASONE CASSING CASSED CASSED CUADEN	C34NNT C34REP ENGLOG INA	A P S T L L S S T L L S S T L L S S T L L S S T L L S S T L L L S S T L L L L

TABLE B-61

FF-1052 CLASS COMPRESSED AIR

	CONST	æ	A C	t	2	5	15	Ę	AGE	1	SYL	SYP
CASDUM R-S	630.3 (1.5)	.543	CASOUM 630.3 "6.938 -177.3 -5.681 7.7292108 .1177 1.459 -3.158 -67.84 -50.00 -36.53 (1.5) (0) (1.9) (1.4) (2.7) (4.0) (0.7) (2.1) (0.7) (0.5) (0.4) (0.3) R-SOUAREO=.543 F= 4.8	1995	7.729	2106		1.459	-3.150	-67.84	150.00	. 36. 5
CASHUT A-S	119.2 (6.5) QUAREG-	-72.00 (0.8) -395	CASHWT 119.2 -72.00 -73.46 -2.612 3.6950990 .0114 .3667 .5331 104.3 40.06 7.945 (G.SD (G.OD (1.3) (1.0) (2.1) (2.4) (0.1) (0.8) (0.2) (1.4) (0.6) (0.1) R-SQUAREG= .395 F= 2.3	-2.612	3.695	0990		. 3667	.5331	104.3	40.06 (0.6)	7.943
CASREP R-S	. 1135 (1.2) 00 ARE 0-	.016	CASREP .3135 .28420333 .0002 .0005 00003 .0005000712111164 .1286 (1.2) (1.0) (0.6) (0.1) (0.2) (0.1) (1.4) (1.2) (0.3) (1.8) (1.8) (1.8) (1.8)	.0002	.0005	•::		.0005				.120
C34DUN	70.44 (0.8)	15-46	C34DMM 70.44 45.46 -22.17 1.026696802960335 .2128 -1.739 -4.859 -19.40 .6646 (0.8) (1.5) (1.3) (2.6) (0.9) (2.4) (0.9) (1.5) (1.9) (0.2) (0.8) (0.8) (0.8) (0.8) (0.8)	1.026	.6968	0296		.2128	-1.730	-4.859	01-67-	
C34MHT R-S	70.72 (1.1) 9UARE D	24.56 (1.1) .316	C34MWT 70.72 21.56 -15.56 .512081400155 .0075 .09489664 4.739 -5.3885684 (1.1) (1.1) (1.1) (1.2) (1.4) (1.5) (0.2) (0.9) (1.5) (0.3) (0.3) (0.3) (0.3) (0.5)	.5620	8140		.0075			(.739 (0.33	-5.388	- 566
C34REP R-S	0123 (6.1) QUARED-	.0102	C34REF0125 .08290255 .0013 .0004 00001 .0001002203770375 .0225 (0.1) (3.0) (1.6) (3.1) (0.5) (0.6) (1.7) (0.0) (2.7) (1.8) (1.2) (1.2) (1.2)	.0013	.0004	(0.6)	0001	.0001	0022	0377 (1.8)	0375	.0229
ENGLOG	216.1 (1.33 0uared=	238.4 (2.5)	ENGLOG 216.1 234.1 -14.97 1.343 -3.351043215616240 -2.296 (1.3) (2.5) (0.6) (1.3) (2.5) (0.6) (1.3) (2.0) (1.3) R-SOUARED* .340 F* 3.3	1.343	-3.351		1561	6240	-2.296	111.1	111.1 -10.44 -20.56	-20-50 (0-3)
INA R-S	-10-54 C 0.33	-5.603	-10-34 -5.603 6.142 -1430 .7211 .0053051006471916 -24.40 -13.315919 (0.3) (0.4) (0.6) (0.7) (1.9) (0.5) (0.9) (0.5) (2.3) (1.2) (0.1) R-SQUARED102 F= 1.6	. 0.73	(1.9)	.0053	0510	1.0647	-1916	-24.48	-13.31	
ş	-69.57 (0.5)	11.95	SF -69.57 11.95 5.396 .0053 .74720228 .0137 .5519 .1181 -31.78 -7.105 49.25 (0.5) (0.5) (0.1) (0.2) (0.6) (0.5) (0.1) (2.4) (0.1) (1.0) (0.2) (1.6) #P.COLMBERS .011 F. 0.0	.0053	.7472	6228	.0137	. 5519	1881.	-31.78	-7.105 (0-2)	19-7

DDG-2 CLASS COMPRESSED AIR

	COMST	BC.	¥	ŧ	9	5	ST	2	AGE	1	STLI	STL2	212
CASONI	CASDMM 187.2 -8.441 6.848 4.773 -1.46504.26 .135253714555 -18.25 -153.4 -159.1 f D.43 f D) c G.21 (G.8) f D.3) f D.8) f D.8) f D.5) f D.5) f D.5) f D.5) f D.5) f D.1) f D.3) f D.3)	10.441	6.048 (0.2) F= 0.8	(0.0)	1.465	(0.8)	(0.0)	(0.5)	(0.23	(0.1)	-153.6	(1.1)	-166.5
CASRR	CASMMT 133.5 27.19 -3.568 2.7559706 .0521 .0980 .03686724 43.30 -166.2 -51.07 -79.61 (0.53 (6.2) (0.1) (0.7) (0.5) (1.4) (0.8) (0.1) (0.6) (0.5) (2.3) (0.5) (3.9) R-SQUARED= .510 F= 1.1	27.19	-3.561 (0.1) F= (-1	(0.75	9706	.0521	.0980	.0368	8724	45.30	166.2	-51.07	(3.9)
CASRE	CASREF .1549 .11000207 .00070005 .00010006 .0005 .0000036005400570 .0F20 (0.4) (0.4) (0.2) (0.2) (0.4) (0.3) (0.3) (0.4) (0.2) (0.7) (1.0)	11100	0267 (1-1) f= 0.7	.0007	0005	.6091	0001	90000	.0003	1 0.53	.0440	.0570	.0720
C340W	C34DUM -89.52 -6.649 -18.62 1.689 .B13 .0341DDB3 .5786 .2780 -32.58 -39.85 -12.77 46.34 (0.45 (0.45 (0.17 (0.45 (-6.649 (0-1)	-16.62 (0.63 fr 0.6	1,689	(0)	.0341	(0.1)	.5788	_2780 (0.33	-32.58	19.85	12.77	19.34
C3488	C34MNT -68.37 24.30 -19.11 1.835 .2983 .0234 .0334 .5789 .0389 -40.22 -46.73 -20.67 72.79 (0.3) (0.3) (1.2) (0.3) (1.2) (0.3) (1.2) (0.3) (1.2)	24-30	-19.11 (1.0) f= 0.6	1.635	.2983	.0284	.0334	.5789	.0369	22.09-	 . 0.93	-20-67	(1.23
C 548E	C34ACF .0045 .0094024500120001	.0094 (0.2)	0245 (1.6) F= 1.3	0012	0041	649	0001	.0003	.0011	0066	,0004	0101	.0563
ė v	-70.06 -3.114 -6.803 .34021654 .054607200739 .5423 11.37 4.008 18.18 -5.075 [1.2) [0.2) [0.3) [0.4) [0.4) [0.4) [0.5) [0.4) [0.5) [0.4) [0.5) [0.4) [0.5] [0.4)	-3.114	47.7 × 4	.3402	(0.4)	.0516	0720	0739	.5423	11.37	4.008	5.6	-6.075
*	-29.92 11-62 .4621 .1f191869 .00560679 .2259 1.391 .6038 8.685 -1.541 (1.5) (1	11.62	. 4621 (0.3) F= 2.5	.4719	1869	.0056	0076	0699	(9.2)	1.393	.6038	6.685	-1.541

TABLE B-63

SSN-637 CLASS COMPRESSED AIR

TABLE B-64

STEERING AVERAGES

	FF-105	FF-1052 CLASS	006-2	CLASS	SSN-637 CLASS	LASS
NACEN		136.08)	13.58 (64.44)		32.18)
ASER	-	122-14)	10.51 (71.21)		17.83)
CASHEP	0.03 €	0-18)	0.03 (0.203		0-13)
C340MN		74.86)		38.81)	0.99	17.193
THEFT		53.93)	0.57 (8-09)		15.72)
C34REP		0.11)		0.10)		0.06)
ENGLOG	-	4.76)		6		6
T M A		22-95)		2		115.06)
SF	1.77 (9.61)		12.71)	.43	10.40)
INSURY	1.41	0.59)	1.47 €	6	0	60
د د	0.23 (0.15)) 11.0	0.35)	1.54 (1.17)
10		6		6	0.12 (0-10)
a.		15-98)	J	11.38)	108-74 (15.263
•		9.36)	J	11-47)	67.56 (4-74)
13	361.87 (235-783	325.44 (242-153	325.60 ((257-85)
15		•	J	121-79)	211.16	149.22)
2		1-43)	J	0-30)	0.23 (1.65)
1 6E	98-99	12-15)	J	21.023	71.46 (22.17)
-	_	0.493	·	0.50)	0.36 (0.48)
SYLI	0.16 (0-36)	J	0.43)	0.23 ((24-0
SYL2	3	6	J	0.309	90.0	0.27)
57L3	0	6	J	6	0.21 ((14-0
SYP	0.35 (0-48)	J	0.443	0.23 (0.42)
=	0	6	-	6	1.18 (0.391
=======================================	23.45 (9.75)	21.42 (11.81)	0	6

TABLE B-64

FF-1052 CLASS STEERING

	CONST	RC	Ş	Ł	2	13	ST	õ	A GE	ל	STL	SYP	=
CA 5046	MM 164.5 -96.02 (1.6) (1.5) R-SQUARED: .454	-96.02 (1.5)	-39.06 (0) f= 1.6	-1-916	1.375	.0041	.0034	-5-528	1272 (0.1)	-42.34	169-40	15.25	
CASHNT R-	CASMNT 155.7 -52.29 (1.7) (0.9) R-SQUARED: .456	.52-29 (0.9)	1046. (0.2) F= [.6	(9-1)	1.059	1.059 .0067 (1.5) (0.5)	1.0062	-5.769	.4204	-30.24	-66.92	-33.37	
CASREP.	.0226 (0.3) SQUARED=	1042 (2-2) .016	IEP .02261042 3.342 (0.5) (0.6) (2.2) (0.6) R-SQUARED= .016 F= 1.2	.0004	.0007	(1-0)	.0007 00401	. 0000	.0007	.0096	0252		
C340NB R-1	10-44 C 0-31	-67-61 (1-9) -336	-67.61 -904.20166 (1.9) (6.2) (0.1) -336 F= 8.6	(1.0)	2564		.0403	- 0179	.2679	-9.675	1.082 (0.1)	15.16	
C34MMT	22-70 (0.7) SQUARED=	-44.26 (2.0) -191	C34HMT 22_78 -44.26 -704.009382847 .0098 (0.7) (2.0) (0.3) (0.5) (0.9) (1.2) R-SQUARED= .191 F= 0.7		2847	.0090	.0278	766	.6441 .2108	-2.511	2.314 (0.2)	9.785	
C34REP R=5	.1049 (2.1) \$9UARED=	0443 (1-5)	(EP .1049 ~.0443 2.865 G G G ~.0661 C 2.11 (1.5) (0.6) (0.1) (0) (0.9) (1.8) R-SQUAREO= .024 F= 1.8	6.1.9	ື ຣ	(9.9)	(0.1)	. 0002	0007		(1.0)		
ENGLOG	ENGLOG 13.55 (1.0) R-SQUARED= .	4.015	.06 13.55 4.015 252.7 (1.0) (0.7) (0.5) R-SQUARED= .206 F= 1.7	1.03	1000010d	0100	0089	(0.5)	(0.0)	.0303	.7550	.1.114	
¥	-10.04 (0.9) R-SQUARED:	-7-090 (1-0)	-7-090 -787-7 (1-0) (0-9)	.1401	1004	.0099	.0124	. 1461	.0738	4.190	-3.465	1.512	
	-4,994 -6.643 -105.1 (1.2) (2.6) (0.3) R-SQUARED= .025 F= 2.4	.6.643 (2.6) .025	-105-1 (0-3) F= 2.4	.0142	0181		0054	. 0207	1606	.0253	.2704	1.132	
INSUR	.36%	1.385	INSURV .3694 1.385 222.100680036 (6.2) (1.7) (2.6) (1.0) (0.3)			.0005			10201	5066	5720	(0.7)	.0260

DDG-2 CLASS STEERING

		;	Ļ	1	2	5	st	٤	AGE	7	S TL 1	STL2	STP	=
## DATE	, 0 a 6	7.716		=	-1.235	0157	0621	. 3701	.3044	-19.06	-5.709	6.003	9.446 C 0.63	
\$- 2	R-SOUARED											•		
CASHAT	.5032	_		.5735	8781	1.0094	0425	9412	(1.0)	_2399 -7.648 3.848 (1.0) (0.5) (0.3)		-5.010 (0.3)		
S-1	R-SOUARE D=	-148 F=	•							;			9 2 6	
CASREP	CASREP0179	.4679		.0029	0023	(0.1)	(0.5)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(0.1) (1.5)	(1.5)	(1:1)	6.5	(1.1)	
Ş- 2		.010 f*	•							•		157 50	-1-165	
C340##	C3406# 7.196	•		2625	(0.5)	0012	0258	1.711	(1.0)	(1.0) (1.0)	(1.6)	6.6	(2.4)	
-	R-SOUAREO	•	6.0								•		1869	
C34HBT	3.290			0250	.0333	0014	0074	-1794 (0.2)	.0061	(0.4)	.00614920 -1-119 (0.3) (0.4) (1.2)		5.6.5	
ï	R-SOUARE D	.021	F= 1.3								,	,		
C34REP	.0323	.0086		000 (1.5)		6 5	(9-1) (9-0) (6-6)	1000.	°ş J	. 6.9.		6.63		
į.	R-SOUAREO=	.032	f. 1.3						•	,	300	70.2	-7.789	
4 2	-3.383			4.6.9.)	.0456	.0016		(0.2)	.72918074	5.057	(0-3)	(1.0)		
-	R-SOUARE DE	.013 Fz	. 0.										177	
5	0.554			.0062	1 0.53	.0058	(0.7)	. 7561	75610393 (0.4) (1.3)	-3.967	(0.5)	(9.6) (8.0)	_	
-	SQUARED	022 F=	F-19						1					0063
INSUE	185URT -1.784			.0491			61-1	.0021 .00365045 (1.3) (1.1) (1.2)		1.521	(1.5) (1.5)			(2.0)
ī	R-SOUARED=	.737 F=	· 1.7											

TABLE B-67

SSN-637 CLASS STEERING

SYP DH	5.2345193 (1.0) (0)	.1162 .0010 .005807160520 .5481 .9244 .1011 -1.061 2.0295322 (0.6) (0.4) (0.2) (0.5) (0.2) (0.4) (0.4) (0.1)	0127 .00060010 0 00002 .0001 .0069 .0014 .0051 .0025 .01930227 (0.0) (0.7) (1.1) (1.3) (6.1) (0.3) (0.5) (0.1) (0.3) (0.2) (1.5) (0.0)	268503581090 .0005 .004309290255 .4019 1.636 .5426 1.341 1.0669949 (0.2) (0.1) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2)	-2.628028010590801 .004706410370 .4442 1.542 .5070 .4458 .86453536 (0.31	\$110°- 6500°)	-51.54 .1666933600380154 -3.1899487 31.64 -7.443 2.027 -10.99 -30.42 35.18 (1.1) (0.6) (0.9) (0.2) (0.5) (1.2) (1.2) (1.9) (0.5) (0.1) (0.7) (2.4) (1.0) F= 1.0	2.458 .00740274 .00190017 .3320 .0171 -1.930 -1.142 -1.3190703 .3135 -1.409 (0.51 (
11.3 SKI	5963 5.0	2.190.	0025 .0	341 1-0	8-58 -8 8-23 (B	0091 -b	0.79 -36	0703 .3
SALZ S	0158 .3324 .1096 .0028 .0061 .049103699540 5.0759340 .6943 (0.0) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1)	1- 1101-	.0051	.5426 1	.5070	.025400010006 0 00006 .0001 .0027 .0039 .0028 .0091 (1.2) (0.7) (1.3) (0.5) (0.5) (0.3) (0.5) (0.3) (1.3) (1.3) (1.3)	2.827 -1 [0.13 C	-1.319
SYLA	5.075	1,24.	.001	1.636	1.542	.0039	. 0.51	211-1-
FL	(2.0)	.5481	.0069	(1.0.)	.4442	.0027	31.64	-1-930
A GE	.0369	0520	.0001	0255	0370	.0001		1710.
2	(1.0)	-0716	. 0002	(2.0)	. 0641		-3.189	.3328
S	.0061	(1.2)	C 1-39	.0043	(1:1)	6.6		7190
13	19-0	-0010	C 1-33			6.93	60036	100.
9	1096	9 .1162		.1096			.9336	720
£	.352	-1.4962099 (0.2) (1.2) f= 0.6	7.0) (i	15 - 035	10 - 028 10 (0.6		4 - 166 9 - 0 - 6	700-
AC	11 - 035 () (0	7 -1.89 7 (0.2 F= 0.	19 - 032 1) (0.8	10 - 268 1) (0	11 -2.62 1) (0.3 F= 0.	14 .025 1) (1.2 F= 9.	10 -51.5 1) (1.1 F= 1.	53 2.63
JE BC	13 C 0.1	24 . 629 13 (0-7 14 . 037	10000 30 C 0.2	11 662 10	52 -644 13 (0.7 1= .055	M .001	3) (0.1 3) (0.5 3-023	6.06. " 505. 6.04. " 6.43.
CONST	CASBUN -13.28 .1981 (0.6) (0.1) K-SQUARE D= .076	CASMNT 13.24 .6297 (1.3) (0.7) R-SQUARED= .037	CASREP .05140009 (1.0) (0.2) R-SQUARED= .013	C34BWN 12-11 .6620 (0.9) (0.7) R-SQUARED .039	C36MNT 11.62 .6441 (1.0) (0.7) R-SQUARED= .055	C34REP .0494 .0014 (1.4) (0.5) R-SQUARED .007	99.42 -5.120 (1.3) (0.9) R-SQUARED= .023	j
	CASI	CASH	CA SA	C341	C 341	C3 48	¥ # 1	S

APPENDIX C
MATERIAL CONDITION INDICATOR TRENDS

APPENDIX C

MATERIAL CONDITION INDICATOR TRENDS

3

This appendix presents figures which graph the average material condition for each ship during its postoverhaul period against the fiscal year of the overhaul. In computing the average material condition values of the various indicators, material condition in certain months was not included. These months are: the first three months following an overhaul; for SSNs, the months following a selected restricted availability; and any months from the beginning of 1980 and beyond.

Each of the material condition indicators is shown separately. Figures C-1 to C-3 show CASREP total downtime, CASREP maintenance downtime, and CASREP occurrences. Figures C-4 and C-5 show intermediate maintenance and ships force maintenance. Finally, figures C-6 and C-7 show UNITREP overall C3-C4 status and UNITREP equipment C3-C4 status. By agreement with Op-04C, individual values of INSURV scores are not shown.

The overwhelming characteristic of each of the figures is the high degree of variability within each year for the various material condition indicators and ship classes. The import of this is that while a trend may not be insignificant, it leaves a great deal still to be accounted for.

Beyond this, there was a general improvement in all the CASREP variables and in all three ship classes, over the period observed in the study. This was generally on the order of five to six percent improvement per year.

This consistency does not hold up with the other indicators. In fact, no other consistent pattern seems apparent.

FIG. C-1: FISCAL YEAR vs. CASREP TOTAL DOWNTIME

FIG. C-2: FISCAL YEAR vs. CASREP MAINTENANCE DOWNTIME

FIG. C-3: FISCAL YEAR vs. CASREP OCCURRENCES

5

FIG. C-4: FISCAL YEAR vs. IMA HOURS

FIG. C-5: FISCAL YEAR vs. SHIPS FORCE HOURS

FIG. C-6: FISCAL YEAR vs. UNITREP OVERALL C3-C4 STATUS

FIG. C-7: FISCAL YEAR vs. UNITREP EQUIPMENT C3-C4 STATUS

DATE